INTRODUCTION TO THE DS4 AND FUNCTIONS

LAB 03

SECTION 5

ARYAN RAO DATE-09/14/2021 SUBMISSION DATE-09/21/2021

Problem 1

Use the DualShock 4 controller and collect data as we move the controller around.

Analysis

The ds4rd.exe file is already included. We need to run that and give variations to the movement of the controller so that we get different values.

Design

- Run the command /ds4rd.exe -d 054c:05c4 -D DS4_BT -t -g
- Place the DS4 flat and the rotate it each for 10 seconds.
- Hold the DS4 pointing upward and then turn it around.
- Choose a simple movement for the DS4(Sideways).

Testing

The first graph should have a bump in the middle and the second graph should be pointing downwards. Compare them with the results.

Comments

Make sure to use DS4_BT if using Bluetooth and DS4_USB if the controller is connected to the cable.

Screenshot 1(Compilation)

```
aryanrao@CO1318-01 /cygdrive/u/fall2021/se185/lab03
$ ./ds4rd.exe -d 054c:09cc -D DS4_USB -t -g > flat.csv

aryanrao@CO1318-01 /cygdrive/u/fall2021/se185/lab03
$ ./ds4rd.exe -d 054c:09cc -D DS4_USB -t -g > front.csv

aryanrao@CO1318-01 /cygdrive/u/fall2021/se185/lab03
$ ./ds4rd.exe -d 054c:09cc -D DS4_USB -t -g > custom.csv
```

Screenshot 2(Graph-FLAT)

Screenshot 3(Graph-FRONT)

Problem 2

Run the ds4.exe again and convert milliseconds to seconds, acceleration and get the magnitude.

Analysis

The ds4rd.exe file is already included. We need to write function magnitude to convert milliseconds to second, modify acceleration to get values up to 4 digits of precession and make functions minutes, seconds, and milliseconds.

Design

- Run the command ./ds4rd.exe -d 054c:05c4 -D DS4_BT -t -a | ./lab03-1
- Place the DS4 flat and do some movement to get values.
- Write function magnitude to convert milliseconds to seconds.
- Write functions minutes, seconds, and milliseconds to get subsequent values.

Testing

Calculate the magnitude manually and compare it with the answer you get. Check if function minutes, seconds, and milliseconds are working correctly by comparing them with the real values.

Comments

Make sure to prototype the functions beforehand and write their definition afterwards. Make sure to use DS4_BT if using Bluetooth and DS4_USB if the controller is connected to the cable.

Screenshot 1(Code-Part 1)

```
/* DO NOT MODIFY THESE VARIABLE DECLARATIONS */
int t;
double ax, ay, az;
int h,m;
double s;
   scanf("%d, %lf, %lf, %lf", &t, &ax, &ay, &az);
    /* CODE SECTION 0 */
   int f=t;
h=t/(60*60*1000);
   t=t-h*(60*60*1000);
    t=t-m*(60*1000);
    s=t/1000;
   printf("Echoing output: %lf.3, %lf, %lf, %lf\n", s, ax, ay, az);
    /* CODE SECTION 1 */
   printf("At %d ms, the acceleration's magnitude was: f^n, f, magnitude(ax, ay, az));
       CODE SECTION 2 */
        printf("At %lf minutes, %lf seconds, and %d milliseconds it was: %lf\n",
        minutes(t), seconds(t), milliseconds(t), magnitude(ax, ay, az));
```

Screenshot 2(Code-Part 2)

```
/* Put your functions here */
int minutes(int q) {
      int h,o;
h=q/(60*60*1000);
      q=q-h*(60*60*1000);
      o=q/(60*1000);
int seconds(int w){
      seconds(int w){
int h,m,s;
h=w/(60*60*1000);
w=w-h*(60*60*1000);
m=w/(60*1000);
      w=w-m*(60*1000);
      s=w/1000:
      int h,m,s;
h=r/(60*60*1000);
      r=r-h*(60*60*1000);
m=r/(60*1000);
      r=r-m*(60*1000);
      s=r/1000;
      r=r-(s*1000);
      return r:
 * Calculates and returns the magnitude of three given values.
 * @param x - The x-axis scanned values from the DS4 controller.
* @param y - The y-axis scanned values from the DS4 controller.
* @param z - The z-axis scanned values from the DS4 controller.
* @return - The magnitude of the given values.
double magnitude(double x, double v, double z)
      // Step 8, uncomment and modify the next line
      return sqrt((x*x)+(y*y)+(z*z));
```

Screenshot 3(Output)

```
AC 0.000000 smrutes, 0.000000 seconds, and 588 milliseconds it was: 0.987419
Echning output: 3.000000.3, -0.00780, 0.964844, 0.220317
AC 300.000, the acceleration: ammunitude was: 0.989708
Echning output: 3.000000.3, -0.00786, 0.96484, 0.220317
Echning output: 3.000000.3, -0.00786, 0.96484, 0.220317
Echning output: 3.000000.3, -0.00786, 0.96484, 0.21808
AC 0.000000 minutes, 0.000000 seconds, and 606 milliseconds it was: 0.989866
AC 0.000000 minutes, 0.000000 seconds, and 610 milliseconds it was: 0.989708
Echning output: 3.00000.3, -0.00000 seconds, and 610 milliseconds it was: 0.99708
AC 0.000000 minutes, 0.000000 seconds, and 610 milliseconds it was: 0.99708
AC 0.000000 minutes, 0.000000 seconds, and 610 milliseconds it was: 0.98780
Echning output: 3.000000.3, -0.00000 seconds, and 610 milliseconds it was: 0.98780
Echning output: 3.000000.3, -0.00000 seconds, and 610 milliseconds it was: 0.98780
Echning output: 3.000000.3, -0.00000 seconds, and 610 milliseconds it was: 0.989609
Echning output: 3.000000.3, -0.000981, 0.96727, 0.20859
AC 3618 ms, the acceleration's magnitude was: 0.986687
AC 3618 ms, the acceleration's magnitude was: 0.989864
AC 0.000000 minutes, 0.000000 seconds, and 623 milliseconds it was: 0.989864
AC 0.000000 minutes, 0.000000 seconds, and 623 milliseconds it was: 0.989864
AC 0.000000 minutes, 0.000000 seconds, and 623 milliseconds it was: 0.989864
AC 0.000000 minutes, 0.000000 seconds, and 624 milliseconds it was: 0.989864
AC 0.000000 minutes, 0.000000 seconds, and 628 milliseconds it was: 0.989891
Echning output: 3.000000.3, -0.00000 seconds, and 620 milliseconds it was: 0.989991
AC 0.000000 minutes, 0.000000 se
```

Problem 3

Run the ds4.exe file and count the different types of directions provided to the joystick.

Analysis

The ds4rd.exe file is already included. We need to provide a logic so that the code counts the different number of times the joystick has been moved.

Design

- Run the command /ds4rd.exe -d 054c:05c4 -D DS4_BT -b
- Move the joystick around to get different values.

Testing

Manually count the variations given to the joystick and compare that with the values we get.

Comments

Make sure to include fflush(stdout) statement in your code.

Screenshot 1(Code)

Screenshot 2(Output)

```
TRUMNING; Cd "/USers/aryan/" && gcc tempcodekunnerrite.c -o tempcodekunnerrite && "/USers/aryan/
1,0,0,0

1,1,0,0

1,0,0,0

1,0,0,1

1,0,0,0

1,1,0,0

1,0,0,1

1,0,0,0

8
```