Analiza wyników w trójboju siłowym Raport 1. Pakiety statystyczne

Emil Olszewski, Jakub Kempa

2024-01-17

1. Wstęp

Przedmiotem analizy są dane ze zbioru zawierającego informacje na temat trójboistów zrzeszonch w ramach federacji IPF. Dane zostały udostępnione na warunkach licencji GNU AGPLv3. Głównymi zmiennymi, które będą nas interesować są AgeClass, Sex (zmienne kategoryczne określające przedział wiekowy zawodnika oraz jego płeć) oraz zmienne ciągłe BodyweightKg, TotalKg, które wyrażają masę ciała zawodnika, oraz wynik całkowity będący sumą wyników w poszczególnych bojach (przysiad ze stangą, wyciskanie na ławce oraz martwy ciąg).

1.1 Opis zmiennych

- AgeClass (Wiek)- zmienna kateogryczna reprezentująca przedziały wiekowe według, których klasyfikowani są zawodnicy. Przyjmuje wartość najmniejszą 5-12 oraz największą 80+
- Sex (Płeć)- zmienna kategoryczna określająca płeć zawodnika.
- BodyweightKg (Masa)- zmienna reprezentująca masę ciała zawodnika w kilogramach.
 Masa ciała jest istotnym parametrem w trójboju siłowym, ponieważ klasyfikuje zawodników w odpowiednie kategorie wagowe i może wpływać na ich wydajność w zawodach.
- TotalKg (Wynik) zmienna ta odnosi się do sumy maksymalnych ciężarów, które zawodnik podniósł w trzech bojach: przysiadzie ze sztangą, wyciskaniu na ławce leżąc oraz martwym ciągu. Jest to główny wskaźnik wydajności w trójboju siłowym, odzwierciedlający siłe i umiejętności zawodnika. W dalszej części raportu będdziemy używać określeń takich jak Wynik sumaryczny, całkowity, total.

1.2 Pytania badawcze

W ramach analizy postaramy się odpowiedzieć na następujące pytania:

- 1. Czy istnieje zależność między wagą a wynikiem całkowitym?
- 2. Jakie parametry opisują rozkłady poszczególnych zmiennych?
- 3. W jaki sposób różnią się rozkłady wyniku oraz wagi w zależności od wieku i płci?

2. Ładowanie danych

Wpierw przystąpimy do załadowania potrzebnych bibliotek

```
library(tidyverse)
library(knitr)
library(e1071)
```

Teraz odczytamy dane z pliku csv.

```
probka <- read.csv("../powerlifting.csv")</pre>
```

Będziemy poddawać analizie próbkę o długości 49 999 obserwacji.

```
nrow(probka)
```

[1] 49999

Tak się prezentuje 10 początkowych obserwacji

```
head(probka)
```

	Name	Sex	Event	Equipment	Age	AgeClass	${\tt BirthYearClass}$
1	K Leong	M	В	Raw	NA	18-19	
2	Sergei Khitrov	M	SBD	Raw	38.0	35-39	24-39
3	Michael Werschem	M	SBD	Wraps	20.0	20-23	19-23
4	Ray Hickman	M	В	Multi-ply	28.5	24-34	24-39
5	John Robinson	M	В	Multi-ply	NA	40-44	40-49
6	Alexis Lafever	F	SBD	Single-ply	NA		

Division BodyweightKg WeightClassKg Squat1Kg Squat2Kg Squat3Kg Squat4Kg

1	17+	-	82.5	82	.5	NA	NA	1	VΑ
NA									
2	Open	l	86.6		90	200	210	212	. 5
NA									
	Juniors 20-23	3 1	03.6	1	10	175	195	225	. 0
NA	A								
4	Open	1	75.0		75	NA	NA	1	NΑ
NI									
	Masters 40-44		NA	14	0+	NA	NA	1	NΑ
NA									
6	Girls	3	82.1	82	.3	NA	NA	1	NΑ
NI									
	Best3SquatKg	Bench1Kg	Bench2Kg	Bench3K	g Bench	4Kg Be	_	Dead	dlift1Kg
1	NA	NA	NA	N	A	NA	65.00		NA
2	212.5	160.0	-165	165.	0	NA	165.00		240.0
3	225.0	112.5	125	-137.	5	NA	125.00		207.5
4	NA	NA	NA	N	A	NA	177.50		NA
5	NA	NA	NA	N	A	NA	328.85		NA
6	NA	NA	NA	N	A	NA	NA		NA
	Deadlift2Kg D	eadlift3K	g Deadlii	ft4Kg Be	st3Dead	liftKg	TotalKg Pl	Lace	Dots
1	NA	N	A	NA		NA	65.00	6	44.03
2	260.0	27	0	NA		270.0	647.50	6	427.10
3	237.5	N	A	NA		237.5	587.50	1	356.26
4	NA	N	A	NA		NA	177.50	2	127.34
5	NA	N	A	NA		NA	328.85	1	NA
6	NA	N	A	NA		NA	NA	DQ	NA
	Wilks Glossb	renner Go	odlift Te	ested	Country	State	Federation	ı	
1	43.54	41.90	32.75	Yes Au	stralia	QLD	PI	A	
2	421.86	405.01	87.74		Russia		IPI	_	
3	352.75	336.82	72.99	Yes	USA	OK	USP <i>I</i>	A	
4	126.48	122.21	68.34	Yes	USA		WABDI	_	
5	NA	NA	NA		USA	SC	SPI	7	
6	NA	NA	NA	Yes			THSWP	A	
	ParentFederat	ion	Date Mee	etCountr	y MeetS	tate		Ме	eetTown
1		IPF 2002-	01-01 <i>I</i>	Australi	a				
2		IPL 2017-	12-15	Russi	a		Do	olgop	orudnyy
3		IPL 2022-	06-11	US	A	OK			Norman
4		2000-	08-05	US	A	OR	V	lilso	onville
5		2008-	07-19	US	A	AL		Tus	caloosa
6					_	mv			0 -1 7
		2017-	01-14	US	A	TX C	oronado Mid	ате	School
		2017-	01-14	US MeetNa		TX C	oronado Mic	аате	SCHOOL
1	Australian			MeetNa	ne	TX C	oronado Mic	ате	SCHOOL

```
3 Drug Tested Oklahoma State Championships
4 World Cup
5 Temple Gym Classic
6 Plainview Invitational
```

2.1 Transformacje danych

Interesować nas będą tylko zmienne AgeClass, Sex, BodyweightKg, TotalKg

```
probka <- probka[, c("AgeClass", "Sex", "BodyweightKg", "TotalKg")]
summary(probka)</pre>
```

AgeClass	Sex	${ t BodyweightKg}$	${ t TotalKg}$
Length: 49999	Length: 49999	Min. : 20.00	Min. : 12.5
Class :character	Class :character	1st Qu.: 67.20	1st Qu.: 204.1
Mode :character	Mode :character	Median : 81.90	Median : 356.1
		Mean : 84.12	Mean : 378.3
		3rd Qu.: 98.79	3rd Qu.: 533.0
		Max. :241.10	Max. :1250.0
		NA's :644	NA's :3339

Napotykamy pierwszy problem. Typy niektórych zmiennych są nieodpowiednie. Prawidłowe typy to

- numeric dla BodyweightKg, TotalKg
- factor dla AgeClass oraz Sex

Dokonajmy więc konwersji

```
probka$BodyweightKg <- as.numeric(probka$BodyweightKg)
probka$TotalKg <- as.numeric(probka$TotalKg)

probka$AgeClass <- as.factor(probka$AgeClass)
probka$Sex <- as.factor(probka$Sex)

summary(probka)</pre>
```

```
AgeClass Sex BodyweightKg TotalKg
:13418 F:12515 Min. : 20.00 Min. : 12.5
24-34 :10615 M:37484 1st Qu.: 67.20 1st Qu.: 204.1
```

```
20-23 : 6007
                          Median : 81.90
                                           Median : 356.1
18-19 : 4300
                          Mean
                                 : 84.12
                                           Mean
                                                   : 378.3
16-17 : 3383
                          3rd Qu.: 98.79
                                           3rd Qu.: 533.0
35-39 : 2819
                          Max.
                                  :241.10
                                                   :1250.0
                                           Max.
(Other): 9457
                          NA's
                                 :644
                                           NA's
                                                   :3339
```

Dokonamy teraz zmiany nazw kolumn na bardziej przystępne

```
colnames(probka) <- c("wiek", "plec", "masa", "total")</pre>
  head(probka)
  wiek plec masa total
1 18-19
           M 82.5 65.00
2 35-39
          M 86.6 647.50
3 20-23
          M 103.6 587.50
4 24-34
           Μ
             75.0 177.50
5 40-44
                NA 328.85
           Μ
           F 82.1
```

Nasze dane mają również rekordy z brakiem danych, zatem kolejnym krokiem jest usunięcie wierszy, w których takie braki się pojawiają.

```
probka <- probka %>% drop_na()
```

Dzięki temu otrzymujemy zestaw danych, który swobodnie może być poddawanym analizom.

3. Analiza jednowymiarowa

W tej części zajmiemy się analizą statystyczną wybranych przez nas kategorii. Zmienne kategoryczne mają ograniczone możliwości co do analizy, dlatego ograniczymy się do histogramu i przedstawienia liczności.

3.1 Zmienna: Płeć

Dla tej zmiennej występują tylko dwie wartości M, F, oznaczające płeć zawodnika/zawodniczki. Przewaga mężczyzn nie jest zaskakująca.

```
ggplot(probka, aes(x = plec, y = ..count.., fill = ..count..)) +
geom_bar(color = "black", alpha = 0.7, position = "identity") +
ggtitle("Histogram - Płeć") +
```


Table 1: Tabela przedstawiająca liczność i procent pod względem płci

Plec	Licznosc	Procent
$\overline{\mathbf{F}}$	11748	25.4
M	34510	74.6

Figure 1: Histogram zmiennej - Płeć Histogram zmiennej - Płeć

3.2 Zmienna: Kategoria wiekowa

Występuje tutaj 16 różnych wartości, przypisujących danego zawodnika do danej kategorii. Najwięcej osób startuje w kategorii wiekowej 24-34, co stanowi ok. 29% wszystkich zawodników. Kategorię 80-999 należy rozumieć jako osoby w wieku ≥ 80

Figure 2: Histogram zmiennej - Kategoria wiekowa

Table 2: Tabela przedstawiająca liczność i procent dla danej kategorii wiekowej

Wiek	Licznosc	Procent
	11966	25.87
13-15	1134	2.45
16-17	3160	6.83
18-19	3960	8.56
20 - 23	5644	12.20
24 - 34	9973	21.56
35-39	2637	5.70
40-44	2493	5.39
45-49	1637	3.54
5-12	171	0.37
50-54	1321	2.86
55-59	854	1.85
60-64	623	1.35
65-69	338	0.73
70-74	220	0.48
75-79	91	0.20
80-999	36	0.08

Histogram zmiennej - Kategoria wiekowa

3.3 Zmienna: Waga zawodnika

Dla tej zmiennej ciągłej można już przeprowadzić szereg analiz statystycznych oraz narysować wykres pudełkowy.

```
ggplot(probka, aes(y = masa)) +
  geom_boxplot() +
  ggtitle("Wykres pudełkowy masy") +
  theme_minimal()
```


Figure 3: Histogram Wykresy dla zmiennej Masa

Figure 4: Boxplot

Na histogramie widzimy, że jest on prawostronnie skośny i prawie symetryczny. Ponadto zarówno histogram, jak i wykres pudełkowy wykazują dużą obecność tzw. outliersów, czyli wartości odstających, wywołanych niskim rozstępem międzykwartylowym. Wysoka intensywność występowania wartości skrajnych może sugerować dodatnią kurtozę nadwyżkową. Poniżej w tabeli przedstawione są podstawowe statystki dla tej zmiennej.

Table 3: Tabela przedstawiająca zbiór wartości poszczególnych statystyk

Statystyki Warto	osci
Minimum	20.000000
Pierwszy kwartyl	67.200000
Mediana	81.800000
Srednia	83.986440
Trzeci kwartyl	98.600000
Rozstep miedzykwartylowy	31.400000
Maximum	241.100000
Wariancja	505.735765
Skosnosc	0.672616
Kurtoza nadwyżkowa	0.652330

Wartość mediany jest zbliżona do wartości średniej, co wskazuje na dość dużą symetryczność rozkładu. Brak ich pokrycia wynika z istnienia wartości odstających. Skośność większa od 0 wskazuje na prawoskośność, co zgadza się z wnioskami odnośnie histogramu oraz jego wyglądem. Kurtoza nadwyżkowa większa od 0 oznacza, że rozkład jest leptokurtyczny. Istnieje jednak wiele podobieństw pomiędzy rozkładem mas zawodników oraz rozkładem normalnym. Rozbieżność występuje prawdopodobnie ze względu na niestandardowe warunki, którymi są zawody w trójboju siłowym. Zbiorem danych są sportowcy, a nie losowa grupa ludzi, przez co rozkład masy zawodników może bardziej różnić się od rozkładu normalnego, niż losowa próba z populacji.

3.4 Zmienna: Total

Dla tej zmiennej ciągłej również możemy narysować histogram, wykres pudełkowy oraz policzyć wartości wybranych statystyk.

theme_minimal()

Figure 5: Histogram Wykresy dla zmiennej Total

Figure 6: Boxplot

Na boxplocie widzimy znacznie mniej wartości odstających, niż dla zmiennej **masa**. Jest to spowodowane większą koncentracją danych i zwiększeniem rozstępu międzykwartylowego - zawodnicy są na podobnym poziomie, z pojedynczymi jednostkami wybitnymi. Histogram przypomina rozkład prawoskośny i jest niesymetryczny ze względu na swoje dwa *szczyty*.

Table 4: Tabela przedstawiająca zbiór wartości poszczególnych statystyk

	Statystyki	Wartosci	
Minimum			12.5000000
Pierwszy l	kwartyl	2	204.1200000
Mediana		3	356.0700000
Srednia		3	378.2211678
Trzeci kwa	artyl	5	32.5000000
Rozstep m	iedzykwarty	lowv 3	328.3800000

	Statystyki	Wartosci	
Maximum		12	50.0000000
Wariancja		418	87.4868748
Skosnosc			0.3981495
Kurtoza na	dwyżkowa		-0.6074609

Wartość mediany jest ponownie zbliżona do średniej, jednak wygląd histogramu wyklucza symetryczność rozkładu. Skośność, podobnie jak dla masy jest większa od 0, potwierdzając prawoskośność. Kurtoza nadwyżkowa tym razem spada poniżej zera, co oznacza platykurtyczność. W wypadku tych danych można odrzucić hipotezę o podobieństwie do rozkładu normalnego. Powodów może być kilka, przy czym najbardziej przekonującym jest zróżnicowanie. Wybieramy spośród sportowców, którzy mają różne programy treningowe, różne możliwości fizyczne, podantości na kontuzje, zdolności. Dodatkowo analizujemy tylko i wyłącznie tych, którzy konkurują w podnosieniu ciężarów. Prawdopodobnie inaczej wyglądałby wykres, gdyby móc przeanalizować dane dla wszystkich trójboistów - znacznie inaczej, gdyby przeanalizować również dane ludzi, którzy trójboju nie trenują. Ponadto dłuższy jest prawy ogon, ponieważ w trójboju raczej częściej będą zdarzać się jednostki wybitne, niż tragiczne. Wszyscy zadownicy są na podobnym poziomie, a jeśli już zdarzy się jakaś wartość odstająca, to raczej będzie lepsza od reszty, niż gorsza.

4. Rozkłady warunkowe

4.1. Rozkłady zmiennych warunkowane płcią

Na wykresach poniżej znajdują się rozkłady zmiennych **Masa** oraz **Total** warunkowane zmienną **Płeć.** Z wykresów możemy zauważyć ewidentną **bimodalność** zmiennej **Total** dla określonej płci.

```
ggtitle("Histogram - Total") +
theme_minimal() +
facet_grid(plec ~ ., scales = "free_y") +
scale_y_continuous(labels = scales::percent_format(scale = 1))
```


Figure 7: Masa Histogramy masy zawodnika i jego wyniku dla poszczególnych płci

Figure 8: Total

4.2. Rozkłady zmiennych warunkowane wiekiem.

Na poniższych wykresach pudełkowych przedstawione są rozkłady zmiennych **Masa** i **Total** warunkowane zmienną **Wiek.**

```
ggplot(probka, aes(x = wiek, y = masa, fill = wiek)) +
   geom_boxplot() +
   ggtitle("Wykresy pudełkowe masy warunkowanej wiekiem") +
   scale_x_discrete(limits = desired_order) +
   theme_minimal()

ggplot(probka, aes(x = wiek, y = total, fill = wiek)) +
   geom_boxplot() +
   ggtitle("Wykresy pudełkowe wyniku total warunkowanego wiekiem") +
   scale_x_discrete(limits = desired_order) +
   theme_minimal()
```


Figure 9: Masa Wykresy pudełkowe masy zawodnika i jego wyniku dla poszczególnych przedziałów

Figure 10: Total

4.2.1. Wynik total a wiek.

Przypatrując się rozkładom zmiennej **Total** widzimy, że górne wąsy są znacznie dłuższe od dolnych oraz, że mediana jest bliżej pierwszego kwartyla. Dodatkowo różnice te zdają się narastać z wiekiem. Możemy zatem wywnioskować znaczną prawostronną skośność zmiennej **Total** warunkowanej **Wiekiem.** Dodatkowo skośność ta zwiększa się wraz ze wzrostem wieku. Potwierdza się to w danych z poniższej tabeli.

Table 5: Tabela przedstawiająca skośność i kurtozę rozkładu wyniku total warunkowanego wiekiem

wiek	Skosnosc	Kurtoza_	_nadwyzkowa
	0.2780792	2	-0.4331673
13 - 15	0.3746677	7	-0.4525842
16-17	0.0793386	3	-0.5930804
18-19	-0.1033734	1	-0.7966307
20-23	0.0521875	5	-0.8783159
24-34	0.3216442	2	-0.9021865
35-39	0.6204089)	-0.6613723

wiek	Skosnosc	Kurtoza_nadwyzkowa
40-44	0.6433957	-0.6440888
45-49	0.7545083	-0.3772775
5-12	2.4121606	6.6358645
50 - 54	0.7592848	-0.4474953
55-59	0.8461354	-0.4060648
60-64	0.7555853	-0.5720298
65-69	0.8043215	-0.5803235
70 - 74	0.7688846	-0.6465690
75-79	0.9158347	-0.5115341
80-999	1.1965920	0.4847552

4.2.2. Masa a wiek.

Patrząc zaś na boxploty opisujące \mathbf{mase} zawodnika widzimy wiele wartości skrajnych większych niż $Q_3+1,5$ IQR co jest przesłanką ku leptokurtyczności rozkładów warunkowych. Potwierdza się to w poniższej tabeli. Zjawisko to ma prostą interpretację. Otóż we wszystkich zawodach trójbojowych stosuje się $\mathbf{kategorie}$ \mathbf{wagowe} aby zwodnicy konkurowali z rywalami do siebie podobnymi. Ostatnią kategorią są zazwykle kategorie typu 120+, 140+, które nie posiadają kresu górnego. Tym samym u tych zawodników optymalne jest posiadanie jak największej masy ciała aby zyskać przewagę nad rywalami. Powoduje to częste występowanie wartości skrajnych. Z wykresu widzimy, że intensywność obserwacji wartości skrajnych jest największa u młodszych zawodników, mniej więcej do 35-tego roku życia. To również ma oczywistą interpretację. Zawodnikom młodszym łatwiej jest niż starszym nabrać duże ilości masy ciała jednocześnie zachowując odpowiednią atletyczność celem uzyskiwania jak najlepszych wyników.

Table 6: Tabela przedstawiająca skośność i kurtozę rozkładu masy warunkowanego wiekiem

wiek	Skosnosc	Kurtoza_nadwyzkowa
	0.6626515	0.3105583
13-15	1.1867187	1.7087924
16-17	0.9426102	0.8932897
18-19	0.9770704	1.3976272

wiek	Skosnosc	$Kurtoza_{-}$	_nadwyzkowa
20-23	0.6631823		0.7298725
24-34	0.6850341		0.9967756
35-39	0.5599211		0.6767956
40-44	0.4696464		0.2185508
45-49	0.6895150		1.2378278
5-12	1.5794701		3.0748251
50-54	0.4386190		-0.0745676
55-59	0.5136044		0.5761644
60-64	0.6081655		0.5912268
65-69	0.2940936		-0.0756863
70-74	0.7152542		0.9151644
75-79	-0.1157421		-0.3153188
80-999	1.0261430		0.3067724

5. Analiza zależności

5.1 Zależność pomiędzy masą a wynikiem total.

```
ggplot(probka, aes(x = masa, y = total, color = plec)) +
geom_point(size = 1) +
labs(title = "Wykres rozproszenia ",
        x = "masa", y = "total", color = "płeć") +
theme_minimal()
```


Figure 11: Wykres rozproszenia wyniku total względem masy

Celem lepszej analizy zależności dokonamy teraz uśrednienia zmiennej **Total** po zawodnikach tej samej płci o tej samej masie.

Figure 12: Wykres rozproszenia po uśrednieniu po masie

Współczynniki korelacji pearsona dla całej populacji oraz dla każdej płci z osobna prezentują się następująco.

Korelacja pomiędzy masą a wynikiem dla każdej z płci:

```
print(cor_by_plec)
# A tibble: 2 x 2
plec correlation
```

```
<fct> <dbl>
1 F 0.350
2 M 0.378
```

```
cat("Korelacja pomiędzy masą a wynikiem dla całej próbki:\n")
```

Korelacja pomiędzy masą a wynikiem dla całej próbki:

```
print(cor_total)
```

```
[1] 0.4444799
```

Na podstawie powyższych wartości można stwierdzić, że istnieją przesłanki ku stwierdzeniu dodatniej korelacji pomiędzy masą ciała zawodnika a jego wynikami siłowymi niezależnie od płci.

6. Podsumowanie

W wyniku powyższej analizy doszliśmy do następujących wniosków

- Rozkłady wyników siłowych dla poszczególnych płci cechują się bimodalnością. Nie byliśmy w stanie stwierdzić z czego ona wynika lecz przypuszczamy, że może mieć związek z grupą zawodników, którym nie udało się uzyskać poprawnego podejścia do któregoś z bojów przez co uzyskali oni wynik znacznie niższy niż większość.
- Rozkłady masy zawodnika w niskich klasach wiekowych cechują się leptokurtycznością i prawoskośnością. Obserwujemy wiele wartości skrajnych oraz prawy ogon jest o wiele dłuższy od lewego. Zawodnikom młodym o wiele łatwiej jest utrzymywać wysoką masę ciała jednocześnie uzyskując dobre wyniki siłowe. Stanowi to przesłankę ku dodatniej korelacji wyników siłowych i masy ciała.
- Rozkłady warunkowe wyników total cechują się skośnością prawostronną, która
 zwiększa się wraz z wiekiem. Również od pewnego momentu (20-23) wraz z wiekiem
 maleje mediana. Można więc pokusić się o stwierdzenie, że wtedy największa ilość
 zawodników przeżywa swój szczyt możliwości.
- Masa zawodnika i jego osiągi siłowe są dodatnio skorelowane. Zgadza się to z naszą
 intuicją jak i poprzednimi obserwacjami. Uzasadnia to również dzielenie zawodników na
 kategorie wagowe jak ma to miejsce w przypadku większości zawodów.