

Article

Cavity-Assisted Spin-Orbit Coupling of Ultracold atoms

Lin Dong 1, Chuanzhou Zhu 1 and Han Pu 1*

Version February 17, 2015 submitted to Atoms. Typeset by ETFX using class file mdpi.cls

Abstract: We investigate dynamical and static properties of ultracold atoms confined in an optical cavity, where two photon Raman process induces effective coupling between atom's pseudo-spin and center-of-mass momentum. In the meantime, atomic dynamics exerts a back action to cavity photons. We adopt both mean field and master equation approach to tackle the problem and found surprising modifications to atomic dispersions and dynamical instabilities, arising from the intrinsic nonlinearity of the system. Correspondence between semi-classical and quantum limits is analyzed as well.

Keywords: cavity quantum electrodynamics; cold atoms; spin-orbit coupling

9 1. Introduction

When Jaynes and Cummings first studied the time evolution of a two-level atom in an electromagnetic field in a *fully* quantized way in 1960s [1], experimental realization of this ideal theoretical model was out of reach. It was made possible only with the advent of one-atom masers in late 1980s, by Rempe, Walther and Klein [2], to experimentally study the interaction of a single atom and a single resonant mode of electromagnetic field in a cavity. Jaynes-Cummings model (JCM) serves to understand the relationship between quantum theory of radiation and semi-classical theory of atom-light interaction. The field of cavity quantum electrodynamics (CQED) was further advanced by putting cold atoms into the high finesse optical cavities [3–5]. Unlike "hot" atoms, cold atoms' center-of-mass motion (COM) can no longer be neglected in this "atom + cavity" system. One needs to seek a self-consistent solution for both light and atom by treating them on equal footing. Because intra-cavity photon and atoms very frequently

¹ Department of Physics and Astronomy, Rice Quantum Institute, Rice University, Houston, Texas, 77251-1892, USA

^{*} Author to whom correspondence should be addressed; hpu@rice.edu

21

22

23

24

25

28

29

30

31

32

35

36

37

38

39

40

41

44

45

46

47

48

51

52

53

54

55

56

57

scatter off each other due to the geometric confinement, not only dipole force gets strongly enhanced but also atom's back-action *onto* light becomes significant. For Bose-Einstein condensate (BEC), atoms occupy the same motional quantum state, and because of long-range cavity photon mediation, the internal states (pseudo-spins) are infinitly coordinated. The most famous example is the Dicke model [6], which has been realized in CQED as well [7].

Another recent breakthrough in cold atoms stems from the realization of artificial (synthetic) gauge potentials for neutral atoms, first in bosonic systems [8,9] and later in fermionic counterparts [10,11]. Laser fields are properly aligned and designed in such a way that trapped atoms may mimic charged particles in a magnetic field with emergence of Lorentz-like force. The synthesis is achieved by inducing two-photon Raman transition between two hyperfine ground states. Using a group of degenerate (or quasi-degenerate) pseudospin eigenstates, non-abelian dynamics of cold atoms in light fields is generated, which effectively leads to the spin-orbit coupling (SOC) for cold atoms, simulating the electronic counterpart in condensed matter. Here, synthetic SOC refers to the coupling between pseudospins (i.e. hyperfine states) and atom's COM motion, rather than the generic interaction between electron's spin (or magnetic moment) and angular/linear momentum operator in quantum mechanics. SOC is essential in understanding numerous underlying condensed matter phenomena and particle physics [12], including *inter alia* topological insulators, Majorana and Weyl fermions, spin-Hall effects, etc [13–17].

In this work, we first briefly review our previous proposal [18], and theoretically explore the full quantum mechanical treatment beyond semi-classical mean field formalism, then investigate the correspondences in quantum and semi-classical regions. We consider a single atom (or an ensemble of \mathcal{N} non-interacting bosons) being confined by a single-mode unidirectional ring cavity, whose cavity mode together with an additional coherent laser beam form a pair of Raman beams that flips atomic transition between $|\uparrow\rangle$ and $|\downarrow\rangle$ while transferring recoil momentum of $\pm 2\hbar q_r \hat{z}$ from and/or to photon field. Hence, the so-realized effective coupling between atom's external and internal degrees of freedom is generated by the quantized light field, which is affected by atomic dynamics in return. In this sense, the cavity-assisted SOC becomes dynamic. We show that, at mean field level, the dynamic SOC dramatically modifies the atomic dispersion relation, in particular, with emergence of a loop structure under certain circumstances. We systematically characterize dispersion relation of atomic state and photon number, both as a function of atom's quasi-momentum. For given cavity parameters, we found with increasing Raman coupling strength Ω , dispersion curve changes from double minima to gapped single minimum, looped structure, and gapless single minimum in sequence. Furthermore, we carry out the full quantum mechanical treatment by solving master equations of density operators, and find good agreement by comparing averaged photon number with mean field results in limiting parameter regions. The two distinctively different approaches give us an unified understanding of the atom-light effective non-linearity and induced dynamical instability in this system.

The article is organized as the following: After briefly reviewing key ideas of our previous work and semi-classical mean field approach in Sec. 2, we develop the full quantum mechanical formalism to the physical system of interest in Sec. 3 and discuss about the intimate correspondence between the two in Sec. 4, and finally conclude in Sec. 5.

71

72

73

2. Model Setup and Semi-classical Mean Field Formalism

We follow the effective model Hamiltonian proposed in [18],

$$\mathcal{H}_{\text{eff}} = \sum_{\sigma} \int d\mathbf{r} \left[\psi_{\sigma}^{\dagger}(\mathbf{r}) \left(\frac{\hat{\mathbf{k}}^{2} + 2\alpha q_{r} k_{z}}{2m} + \alpha \tilde{\delta} \right) \psi_{\sigma}(\mathbf{r}) \right] + \frac{\Omega}{2} \int d\mathbf{r} \left[\psi_{\uparrow}^{\dagger}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) c + h.c. \right] + i\varepsilon_{p} (c^{\dagger} - c) - \delta_{c} c^{\dagger} c - i\kappa c^{\dagger} c,$$
(1)

where $\psi_{\sigma}(\mathbf{r})$ ($\sigma=\uparrow,\downarrow$) is the atomic operator after gauge transformation in rotating frame at pump frequency ω_p . $\alpha=\pm 1$ for $\sigma=\uparrow,\downarrow$, respectively. q_r denotes recoil momentum, $\tilde{\delta}$ represents the two-photon Raman detuning, ε_p refers to pumping rate, and δ_c is the cavity-pump detuning. Ω describes the atom-photon coupling strength, however, the entire Raman coupling term $\frac{\Omega}{2}\int d\mathbf{r}e^{+2ik_rz}\Psi_{\uparrow}^{\dagger}(\mathbf{r})\Psi_{\downarrow}(\mathbf{r})\tilde{c}e^{+i\omega_Rt}$ together with its hermitian conjugate describe cavity-assisted two-photon Raman transition processes, where cavity photon amplitude of \tilde{c} or \tilde{c}^{\dagger} is explicitly taken into consideration. It is this coupling that renders the resulting SOC *dynamic*. Furthermore, in the semi-classical approach, we have treated the leakage of cavity photon phenomenologically by introducing a cavity decay rate κ .

From the Hamiltonian (1), one can easily obtain the EOM in Heisenberg picture. To make some progress, we adopt a mean-field approximation by replacing the operators by their respective expectation values: $c \to \langle c \rangle$, $\psi_{\sigma}(\mathbf{r}) \to \langle \psi_{\sigma}(\mathbf{r}) \rangle \equiv \varphi_{\sigma}(\mathbf{r})$. Assuming spatial homogeneity, we further take the plane-wave ansatz for the atomic modes $\varphi_{\sigma}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}\varphi_{\sigma}$ with the normalization condition $|\varphi_{\uparrow}|^2 + |\varphi_{\downarrow}|^2 = \mathcal{N}$. The steady-state solution for the photon field is obtained by taking the time derivative of the photon field to be zero, which is exact by itself without making further approximations After some algebra, we write down the coupled nonlinear time-dependent equations for the two spin components,

$$i\dot{\varphi}_{\uparrow} = \left(\frac{\mathbf{k}^2}{2m} + q_r k_z + \tilde{\delta}\right) \varphi_{\uparrow} + \frac{\Omega}{2} \frac{\varepsilon_p - \frac{i\Omega}{2} \mathcal{N} \varphi_{\downarrow}^* \varphi_{\uparrow}}{\kappa - i\delta_c} \varphi_{\downarrow}, \tag{2}$$

$$i\dot{\varphi}_{\downarrow} = \left(\frac{\mathbf{k}^2}{2m} - q_r k_z - \tilde{\delta}\right) \varphi_{\downarrow} + \frac{\Omega}{2} \frac{\varepsilon_p + \frac{i\Omega}{2} \mathcal{N} \varphi_{\uparrow}^* \varphi_{\downarrow}}{\kappa + i\delta_c} \varphi_{\uparrow}. \tag{3}$$

For a given atomic quasi-momentum \mathbf{k} , we define eigenstate and eigenenergy as the solution of the time-independent version of Eqs. (2) and (3), by replacing $i(\partial/\partial t)$ with $\epsilon(\mathbf{k})$. After some lengthy nonetheless straightforward algebra, we find that $\epsilon(\mathbf{k})$ obeys a quartic equation (we consider $\mathcal{N}=1$ hereafter):

$$4\epsilon^4 + B\epsilon^3 + C\epsilon^2 + D\epsilon + E = 0. (4)$$

where detailed derivations and coefficients are better elaborated in the Supplementary Material of [18]. [Rewrite it, simplify it and highlight it.] In principle, the quartic equation (4) can be solved analytically, but the expressions too cumbersome to give any physical insights. We plot the typical behavior of the dispersion relation $\epsilon(k_z)$ vs k_z for $\tilde{\delta}=0$ in Fig. ??. Note that we always take $k_x=k_y=0$, as the SOC only occurs along the z-axis. A maximum of four real roots are allowed by Eq. (4). As we will show, in such regimes, a loop structure develops in the dispersion curve. As shown in Fig. ??, for $\delta_c=0$ (i.e., the pump field is resonant with the cavity), we always have two dispersion branches. The two branches are gapped when the atom-photon coupling strength Ω is small and touch each other at

 $k_z=0$ when Ω exceeds a critical value. For $\delta_c\neq 0$, we again have two gapped branches at small Ω . As Ω is increased beyond a critical value, a loop appears near $k_z=0$ in either the upper or the lower branch depending on the sign of δ_c . The loop increases in size as Ω increases and finally touches the other branch and dissolves when Ω reaches a second critical value. Note that such a dispersion relation is markedly different from that without the cavity, in which case one always obtains two gapped branches. The dispersion curves for finite $\tilde{\delta}$ are qualitatively similar, but in that case the curves are no longer symmetric about $k_z=0$ and the loop emerges at finite k_z .

[Rewrite it, simplify it and highlight it. – also provide discussions on double minimum degeneracy conditions. We should have four regimes in total.] We can gain some insights about the general structure of the dispersion curve, and particularly the appearance and disappearance of the loop, by examining the quartic equation (4) for $k_z = 0$ and $\tilde{\delta} = 0$. Under these conditions, Eq. (4) is simplified to:

$$\epsilon^{2}(4\epsilon^{2} - 2w\epsilon + |v|^{2} - 4|u|^{2}) = 0,$$
(5)

with the constraint that the root $\epsilon=0$ is only valid for $\Omega\geq 4\epsilon_p$ (For $\Omega<4\epsilon_p$, the solution $\epsilon=0$ corresponds to trivial state with $\varphi_{\uparrow}=\varphi_{\downarrow}=0$.). Here the coefficients w,u and v are defined in the Supplementary Material of [18]. Simple analysis shows that there are four regimes. First, when $0<\Omega<\infty$ SOME VALUE HERE $\equiv\Omega_c^{(0)}$, Eq. (5) has two real roots with degenerate lowest eigenenergy (perhaps some value here as well?). When $\Omega_c^{(0)}<\Omega<4\epsilon_p\equiv\Omega_c^{(1)}$, Eq. (5) has two real roots, one positive and one negative. This corresponds to the two gapped branches for small Ω in the top row of Fig. ??. Second, when $\Omega_c^{(1)}\leq\Omega\leq4\epsilon_p\sqrt{1+(\delta_c/\kappa)^2}\equiv\Omega_c^{(2)}$, Eq. (5) has four real roots — two degenerate roots at $\epsilon=0$ and two additional roots with the same sign. This corresponds to the looped regime in the middle row of Fig. ??. Finally when $\Omega>\Omega_c^{(2)}$, only the two degenerate roots at $\epsilon=0$ exist, which correspond to the gapless regime represented by the bottom row in Fig. ??. Note that for $\delta_c=0$, we have $\Omega_c^{(1)}=\Omega_c^{(2)}=4\epsilon_p$, and the loop never develops, nonetheless degeneracy condition still holds as bla bla bla and bla.

[Rewrite it, simplify it and highlight it.] The emergence of the loop structure is a distinctive nonlinear feature of the system. We remark that similar loop structures or the associated hysteretic phenomena have been found in other nonlinear systems [?]. The nonlinearity may originate from the mean-field density-density interaction [?] or from the cavity-induced feedback between atoms and photons [?]. The case studied here corresponds to the latter situation. However, in previous studies of "ultracold atom + cavity" systems [?], the interaction between the cavity photons and atoms is dispersive, and so it does not induce SOC directly. As we will show below, the system studied here possesses very different dynamical and stability properties.

3. Master Equation Approach: Full Quantum Mechanical Treatment

Semi-classical mean field approach gives an intuitive picture of understanding the atom-light interaction, as we have shown above. However, it ignores quantum fluctions of both operator c and $\psi_{\sigma}(\mathbf{r})$. A more stringent approach is given by solving quantum master equation, which is especially useful to study few cavity photon scenario. The quantum master equations, in a nutshell, are differential equations for the entire density matrix, including contributions from off-diagonal elements which represents quantum coherence as a characteristic quantum mechanical signiture. Master equation is generally

121

133

134

135

136

137

138

139

considered to be more general than the Schrödinger equation, since it uses the density operator instead of a specific state vector and can therefore give statistical as well as quantum mechanical information.

Instead of treating the leakage of cavity photon phenomenologically in Eq. (1), we model the dissipation process by Liouvillean terms \mathcal{L} appearing in the Lindblad master equation for the atom-field density operator, i.e.,

$$\dot{\rho} = \frac{1}{i\hbar} [H_{\text{eff}}, \rho] + \mathcal{L}\rho \,. \tag{6}$$

where H_{eff} is the same as \mathcal{H}_{eff} in Eq. (1) by dropping the last term of $-i\kappa c^{\dagger}c$. Cavity loss of photon is taken as the standard form of Lindblad superoperator [19,20],

$$\mathcal{L}\rho = \kappa (2c\rho c^{\dagger} - c^{\dagger}c\rho - \rho c^{\dagger}c). \tag{7}$$

Again, due to space homogeneity, we decouple momentum eigenstates by taking the plane-wave ansatz for the atomic modes $\varphi_{\sigma}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}\varphi_{\sigma}$. Thereon, we are granted to work with the Hilbert subspace of a given momentum value \mathbf{k} , where we write the commutator explicitly as,

$$[H_{\text{eff}}(\mathbf{k}), \rho] = \left(\frac{\mathbf{k}^{2}}{2m} + \frac{q_{r}k_{z}}{m} + \tilde{\delta}\right) \left(\varphi_{\uparrow}^{\dagger}\psi_{\uparrow}\rho - \rho\varphi_{\uparrow}^{\dagger}\psi_{\uparrow}\right) + \left(\frac{\mathbf{k}^{2}}{2m} - \frac{q_{r}k_{z}}{m} - \tilde{\delta}\right) \left(\psi_{\downarrow}^{\dagger}\varphi_{\downarrow}\rho - \rho\varphi_{\downarrow}^{\dagger}\varphi_{\downarrow}\right) + \mathcal{N}\frac{\Omega}{2} \left(\varphi_{\uparrow}^{\dagger}\varphi_{\downarrow}c\rho + c^{\dagger}\varphi_{\downarrow}^{\dagger}\varphi_{\uparrow}\rho - \rho\varphi_{\uparrow}^{\dagger}\varphi_{\downarrow}c - \rho c^{\dagger}\varphi_{\downarrow}^{\dagger}\varphi_{\uparrow}\right) + i\varepsilon_{p} \left(c^{\dagger}\rho - c\rho - \rho c^{\dagger} + \rho c\right) - \delta_{c} \left(c^{\dagger}c\rho - \rho c^{\dagger}c\right).$$

$$(8)$$

To solve the operator equation Eq. 6, we choose our basis states as $|n;\sigma\rangle$, n=0,1,2,...N where n denotes photon number and N is the truncation number of photon inside the cavity and $\sigma=\uparrow,\downarrow$. Our goal is to calculate the entire matrix elements of density operator under this basis states, where we denote $\langle m;\sigma|\rho|n;\sigma'\rangle\equiv\rho_{mn}^{\sigma\sigma'}$. For arbitrary state (note: we have taken atom number $\mathcal{N}=1$ to simply discussions), after some lengthy algebra we found,

$$\frac{d}{dt}\rho_{mn}^{\sigma\sigma'} = -i\left(\frac{\mathbf{k}^{2}}{2m} + \frac{q_{r}k_{z}}{m} + \tilde{\delta}\right)\left(\delta_{\sigma\uparrow} - \delta_{\sigma'\uparrow}\right)\rho_{mn}^{\sigma\sigma'} - i\left(\frac{\mathbf{k}^{2}}{2m} - \frac{q_{r}k_{z}}{m} - \tilde{\delta}\right)\left(\delta_{\sigma\downarrow} - \delta_{\sigma'\downarrow}\right)\rho_{mn}^{\sigma\sigma'} \\
+ \frac{\Omega}{2i}\left(\delta_{\sigma\uparrow}\sqrt{m+1}\rho_{m+1n}^{\bar{\sigma}\sigma'} + \delta_{\sigma\downarrow}\sqrt{m}\rho_{m-1n}^{\bar{\sigma}\sigma'} - \delta_{\sigma'\uparrow}\sqrt{n+1}\rho_{mn+1}^{\sigma\bar{\sigma'}} - \delta_{\sigma'\downarrow}\sqrt{n}\rho_{mn-1}^{\sigma\bar{\sigma'}}\right) \\
+ \varepsilon_{p}\left(\sqrt{m}\rho_{m-1n}^{\sigma\sigma'} - \sqrt{m+1}\rho_{m+1n}^{\sigma\sigma'} + \sqrt{n}\rho_{mn-1}^{\sigma\sigma'} - \sqrt{n+1}\rho_{mn+1}^{\sigma\sigma'}\right) \\
+ i\delta_{c}\left(m-n\right)\rho_{mn}^{\sigma\sigma'} + \kappa\left(2\sqrt{m+1}\sqrt{n+1}\rho_{m+1n+1}^{\sigma\sigma'} - (m+n)\rho_{mn}^{\sigma\sigma'}\right) \tag{9}$$

where $\bar{\sigma}$ represents the flip-spin value, i.e. $\bar{\uparrow} = \downarrow$ and $\bar{\downarrow} = \uparrow$. Since we have finite truncation number N, we shall ignore terms involving $|N+1;\sigma\rangle$ or $|-1;\sigma\rangle$ generated by photon creation or annilation operators.

With Eq. 9, we can study dynamical evolution of density operator ρ for a given initial state. For instance, we can initiate the system with a pure state $|0;\uparrow\rangle$, construct density operator $\rho=|0;\uparrow\rangle\langle 0;\uparrow|$, and let it evolve according to Eq. 9 within truncated Hilbert state with maximum cavity photon $N\sim 10$ under consideration. Although at t=0 we have ${\rm Tr}[\rho^2]=1$, at later time, we will always have ${\rm Tr}[\rho^2]<1$ because cavity decay term renders the system into mixed states. The fate of time evolution gives the steady state solution, which can also be obtained by solving a set of linear equations after equating the RHS of Eq. 9 to zero.

4. Results and Discussions

With above preparations, we are now in a place to discuss about the results and relations between two entirely different theoretical approaches. As we have shown in previous work [18], the cavity feedback dramatically modifies single particle dispersion relation. For instance, in intermediate region of atom-photon coupling strength of Ω , a loop structure emerge from the center tip of the eigenenergy spectrum. Additionally, in this effective nonlinear system, although atom-photon coupling is linear, dispersion spectrum possesses intriguing stability/instability properties. What we have shown in [18] also indicates that only part of the dispersion is stable for a given quasi-momentum state k. The instability analysis prescribes a recipe to map out regions where fluctuation terms around fixed point solution would grow exponentially or not. Tout de suite, we apply the formalism developed in Sec. 3 to calculate photon number expectation value inside the cavity.

Figure 1. Photon number comparison between semi-classical mean field result and full quantum mechanical master equation approach. From (a) to (c), $\Omega=3\kappa, 5.6\kappa, 6\kappa$ and colorbar represents the renormalized decay rate γ/Ω of unstable states and red dashed lines are master equation solutions. Figure (d) to (f) plots the corresponding photon number fluctuation (blue solid curve) and negativity (green dashed line). At the large k_z limit, we found $\text{Tr}[\rho_{\text{photon}}n]$ asymtotes to semi-classical mean field result $|\langle c \rangle|^2$, which further matches stable branches according to mean field stability analysis.

As we show in Fig. 1(a)-(c), we compare photon number obtained from semi-classical mean field theory with full quantum master equation result. With increasing magnitude of Ω , we sweep over regions with only two real roots, four real roots and only one double root (at $\epsilon=0$) to the mean field solution of Eq. 4. We can further perform dynamical analysis [18] to pinpoint stable and unstable branches of the semi-classical solution. For unstable states, we use colorbar to denote the renormalized decay rate γ/Ω where γ refers to the largest real eigenvalue of perturbed dynamical equation [18]. We found

for any set of parameters and given k_z value, we always have dynamically stable and unstable branches, 157 regardless whether there is loop or not. This is rather surprising since it shows that the cavity back-action 158 completely modifies the system's stability properties. For comparison, with the same parameter sets, 159 we start from quantum master equation Eq. 9 and obtain steady state solution of density operator, and 160 compute expectation value of photon number operator by tracing over the product, i.e. $\langle n \rangle = \text{Tr}[\rho n]$. 161 We found, remarkably, in Fir. 1 that $Tr[\rho n]$ recovers $|\langle c \rangle|^2$ value in dynamically stable branches, to 162 a great extent. Several observations are in order. This agreement, first of all, further validates our 163 previous semi-classical mean field treatment [18]. Second, at large $|k_z|$ value, master equation solution 164 asymptotically collapes onto mean field solution, which can be complementarily understood from photon 165 number fluctuation's behavior. From the definition of $\frac{\langle (\Delta n)^2 \rangle}{\langle n \rangle} = \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle}$, we found the renormalized 166 fluctuation magnitude degrades to unit one in this limit, where photon statistics is best modeled by 167 the coherent state (Poissonian statistics) and atom's back-action *onto* photon becomes negligibly small. 168 In order to further quantitatively characterize atom-photon feedback, we invoke the easily computable 169 entanglement measure for mixed-state, the so-called negativity [21], defined as $\mathcal{N}(\rho) = \frac{||\rho^{T_A}||_1 - 1}{2}$, where 170 $||\rho^{T_A}||_1$ denotes the trace norm of partial transpose of density operator with respect to atom party (the same is true for photon party). Density matrix ρ itself gives all positive definite eigenvalues and thus the 172 trace norm $||\rho||_1 = \text{Tr}[\sqrt{\rho^{\dagger}\rho}] = \text{Tr}[\rho] = 1$. Although the partial transpose ρ^{T_A} still satisfies $\text{Tr}[\rho^{T_A}] = 1$, 173 it does not necessarily guarantee positive definiteness in eigenvalues. The trace norm is written generally 174 as $||\rho^{T_A}||_1 = 1 + 2\sum_i |\mu_i|$ where we have denoted negative eigenvalues as $\mu_i < 0$. Thus, by definition, the 175 negativity $\mathcal{N}(\rho)$ is equal to $\sum_i |\mu_i|$, which measures by how much ρ^{T_A} fails to be positive definite. An 176 immediate consequence for any separable (unentangled) state ρ_s is that $\mathcal{N}(\rho_s) = 0$, while for unseparable 177 mixed state, $\mathcal{N}(\rho)$ is believed to be a good entanglement measure. In Fig. 1(d)-(f), we plot negativity 178 side by side with fluctuation for different Ω values. Despite the fact the two curves' peak centers at 179 different k_z value, one could still conclude that when atom and photon field is more entangled, photon 180 number distribution deviates further away from Poissonian distribution. Third, there are regions where 181 renormalized fluctuation is smaller than one, e.g. in Fig. 1(d) at small negative k_z value, $\frac{\langle (\Delta n)^2 \rangle}{\langle n \rangle} \sim$ 182 0.95, which implies sub-Poissonian photon number distribution as a signiture of system being genuinely 183 non-classical. For the majority part, we have $\frac{\langle (\Delta n)^2 \rangle}{\langle n \rangle} > 1$ (super-Poissonian distribution), which leads to 184 bunched spacing according to the statistics, i.e. more thermal like. In other words, "slow" atomic states 185 have larger probabilities of back scattering cavity photon and photon field thus becomes more entangled 186 and behaves like a source of chaotic light. It can be shown by the application of Cauchy-Schwarz 187 inequality, the fluctuation term would have to be greater or equal to one, if we have a positive definite 188 probability distribution for photon number. But it seems in our system, the photon number probability 189 does not necessarily has to be greater than zero. (we can perhaps straightforwardly demonstrate this 190 by plotting $p(n) = \langle n | \hat{\rho}_{photon} | n \rangle$ where $\hat{\rho}_{photon}$ is the reduced density matrix for photon by tracing over 191 atomic degrees of freedom in total density opeartor, i.e. $\rho_{\mathrm{photon}} = \mathrm{Tr}_{\mathrm{atom}}[\rho]$. For coherent light, $p_{\mathrm{coh}}(n) = \mathrm{Tr}_{\mathrm{photon}}[\rho]$ 192 $\frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$; and for thermal light, $p_{\text{th}}(n) = \frac{1}{1+\langle n \rangle} (\frac{\langle n \rangle}{1+\langle n \rangle})^n$. We have found small pumping rate ε_p gives 193 better fit of p(n) to $p_{th}(n)$ and for large value of ε_p , p(n) is closer to $p_{coh}(n)$.) 194

5. Conclusions

We have studied spin-orbit coupled cold atoms inside a ring cavity system, and found interesting XXX.

198 Acknowledgments

We acknowledge discussions with Zhengwei Zhou and XXX. H.P. is supported by the NSF and Welch Foundation (Grant No. C-1669 XXX);

201 Author Contributions

H.P. conceived the idea of the project, L.D. and C. Z. explored the theoretical and numerical aspects of the physics. All authors contributed to writing and revising the manuscript and participated in the discussions about this work.

205 Conflicts of Interest

The authors declare no conflict of interest.

207 References

- 208 1. E.T. Jaynes, F.W. Cummings (1963). Proc. IEEE 51 (1): 89âĂŞ109.
- 20. G. Rempe, H. Walther, and N. Klein (1987). Phys. Rev. Lett. 58 (4): 353âĂŞ356.
- 3. Brennecke, F., Donner, T., Ritter, S., Bourdel, T., Kohl, M., and Esslinger, T., *Nature* **2007**, *450* 268.
- 4. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D. and Reichel, J. *Nature* **2007**, *450* 272.
- 5. Slama, S., Bux, S., Krenz, G., Zimmermann, C. and Courteille, Ph. W. *Phys. Rev. Lett.* **2007**, *98* 053603.
- 6. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99âŧ110 (1954).
- 7. Kristian Baumann, Christine Guerlin, Ferdinand Brennecke Tilman Esslinger. Nature 464, 1301âĂ\$1306 (29 April 2010)
- 8. Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, *Nature* (London) **2011**, 471, 83.
- Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, W. D. Phillips, J. V. Porto, and I. B. Spielman, *Nat. Phys.* 2011, 7, 531.
- P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, *Phys. Rev. Lett.* **2012**,
 109, 095301.
- 11. L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, *Phys. Rev. Lett.* **2012**, *109*, 095302.
- ²²⁶ 12. V Galitski, IB Spielman, *Nature* **2013**, 494 7435.
- 13. Hasan, M. Z., Kane, C. L. Rev. Mod. Phys. 2010, 82 3045âĂŞ3067.
- ²²⁸ 14. Sau, J. D., Lutchyn, R. M., Tewari, S. and Sarma, Das, S. Phys. Rev. Lett. **2010**, 104 040502.
- 229 15. Burkov, A. A. and Balents, L., Phys. Rev. Lett. 2011, 107 127205.

- Sinova, J., Cilcer, D., Niu, Q., Sinitsyn, N., Jungwirth, T., and MacDonald, A., *Phys. Rev. Lett.* 2004, 92 126603.
- ²³² 17. Kato, Y. K., Myers, R. C., Gossard, A. C. and Awschalom, D. D., *Science* **2004**, *306* 1910âĂŞ1913.
- 233 18. Lin Dong, Lu Zhou, Biao Wu, B. Ramachandhran, and Han Pu, Phys. Rev. A **2014** 89, 011602(R).
- 234 19. Kossakowski, A. Rep. Math. Phys. **1972**, *3* (4): 247.
- 20. Lindblad, G. Commun. Math. Phys. 1976, 48 (2): 119.
- 21. Vidal, G., Werner, R. F., *Phys. Rev. A* **2002**, *65* 032314.
- © February 17, 2015 by the authors; submitted to *Atoms* for possible open access publication under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/4.0/.