TD de Probabilités et Statistique Correction du TD 3

Exercice 1 : Vers la simulation de variables aléatoires

Soit X une variable aléatoire réelle et F sa fonction de répartition. On suppose F continue et strictement croissante. Quelle est la loi de Y = F(X)?

Fonction de répartition : Elle est définie pour tout $x \in \mathbb{R}$ par $F(x) = \mathbb{P}[X \le x] = \int_{-\infty}^{x} f_X(t) dt$. Où f_X est la densité de X.

Pour commencer, Y est bien une variable aléatoire. En effet, F est une fonction de \mathbb{R} dans [0,1], et X est une v.a. qui prend des valeurs sur \mathbb{R} . Donc Y = F(X) est une v.a. à valeur dans [0,1].

Notion F_Y la fonction de répartition de Y, et essayons de la déterminer. Par définition, $\forall y \in \mathbb{R}$, $F_Y(y) = \mathbb{P}[Y \leq y]$. On a donc,

- 1. $\forall y \le 0, F_Y(y) = \mathbb{P}[Y < y] = 0,$
- 2. $\forall y \ge 1, F_Y(y) = \mathbb{P}[Y < y] = 1.$

Enfin, la fonction de répartition F de X est strictement croissante et continue. Elle est donc inversible sur \mathbb{R} . Notons F^{-1} son inverse.

Soit
$$y \in [0, 1]$$
, on a $F_Y(y) = \mathbb{P}[Y < y] = \mathbb{P}[F(X) < y] = \mathbb{P}[X < F^{-1}(y)] = F(F^{-1}(y)) = y$.
Finalement, $F_Y(y) = \begin{cases} 0 & y \le 0 \\ y & y \in [0, 1] \\ 1 & y > 1 \end{cases}$. Donc Y suit la loi uniforme sur $[0, 1]$.

Remarque : Pour une loi de probabilité continue, pour tout $x \in \mathbb{R}$, $\mathbb{P}[X = x] = 0$. Donc $\mathbb{P}[X < x] = \mathbb{P}[X \le x]$.

Utilité d'un tel résultat. Pour simuler (informatiquement) une variable aléatoire dont on connait la fonction de répartition F continue et strictement croissante, il nous suffit de générer une variable aléatoire Y qui suit la loi uniforme sur [0,1] puis de faire $X = F^{-1}(Y)$.

Exercice 2 : Lois du Sup et de l'Inf

Dans ce qui suit, X et Y sont des variables aléatoires indépendantes. On pose $Z = \sup(X, Y)$ et $T = \inf(X, Y)$. On demande de déterminer les lois de Z et de T dans les cas suivants :

- 1. X et Y suivent la loi uniforme sur $\{1, \ldots, n\}$,
- 2. X et Y suivent des lois exponentielles de paramètres respectifs $\lambda > 0$ et $\mu > 0$.

1) Les lois de X et Y sont discrètes, on va donc chercher $\mathbb{P}[Z=k]$ pour les entiers $k \in \{1,\ldots,n\}$. La variable $Z=\sup(X,Y)$ est à valeur dans le même ensemble que X et Y, donc $\{1,\ldots,n\}$. Puis pour $k \in \{1,\ldots,n\}$, $\mathbb{P}[Z=k]=\mathbb{P}[(X=k \text{ et } Y \leq k) \text{ ou } (Y=k \text{ et } X < k)]$.

Les évènement $(X = k \text{ et } Y \leq k)$ et (Y = k et X < k) sont disjoints (ils ne peuvent pas se produire en même temps, grâce à l'inégalité stricte en rouge), on peut donc decomposer l'union en somme :

$$\mathbb{P}\left[Z=k\right] = \mathbb{P}\left[\left(X=k \text{ et } Y \leq k\right) \text{ ou } \left(Y=k \text{ et } X < k\right)\right] = \mathbb{P}\left[\left(X=k \text{ et } Y \leq k\right)\right] + \mathbb{P}\left[\left(Y=k \text{ et } X < k\right)\right].$$

En utilisant l'indépendance de X et Y, on a

$$- \mathbb{P}\left[(X = k \text{ et } Y \leq k) \right] = \mathbb{P}\left[X = k \right] \mathbb{P}\left[Y \leq k \right] = \frac{1}{n} \frac{k}{n}$$

$$- \mathbb{P}\left[(Y = k \text{ et } X < k) \right] = \mathbb{P}\left[Y = k \right] \mathbb{P}\left[X < k \right] = \frac{1}{n} \frac{k-1}{n}$$

Finalement,

$$\mathbb{P}\left[Z=k\right] = \frac{2k-1}{n^2}$$

(et on peut vérifier que $\sum_{k=1}^{n} \mathbb{P}[Z=k] = 1$).

Pense-bête : Pour couper une union \cup (ou) en "+", il faut que les événements soient disjoints. Pour couper une intersection \cap (et) en \times il faut que les variables aléatoires soient indépendantes.

Avec le même raisonnement on trouve pour T, pour $k \in \{1, \ldots, n\}$,

$$\mathbb{P}\left[T=k\right] = \frac{2n-2k+1}{n^2}.$$

(bonus) : X et Y suivent la loi uniforme sur [0,1] Cette fois les lois sont continues on va donc chercher leur fonction de répartition. L'idée reste la même. Soit $t \in [0,1]$,

$$\mathbb{P}\left[Z < t\right] = \mathbb{P}\left[\left(X < t\right) \cap \left(Y < t\right)\right] \overset{\text{(independance)}}{=} \mathbb{P}\left[X < t\right] \mathbb{P}\left[Y < t\right] = t^2.$$

Donc la fonction de répartition de Z est

$$F_Z(t) = \begin{cases} 0 & t \le 0 \\ t^2 & t \in [0, 1] \\ 1 & t \ge 1 \end{cases}$$

On peut aussi calculer sa densité en dérivant : $F'_Z(t) = 2t \mathbf{1}_{[0,1]}(t)$.

De même on peut montrer que la fonction de répartition de T est,

$$F_T(t) = \begin{cases} 0 & t \le 0 \\ 1 - (1 - t)^2 & t \in [0, 1], \\ 1 & t > 1 \end{cases}$$

de densité $F'_T(t) = 2(1-t) \mathbf{1}_{[0,1]}(t)$.

2) Cette fois X et Y suivent la loi exponentielle (continue) de paramètre λ , resp. μ . Leurs fonctions de densité sont $f_X(t) = \lambda e^{-\lambda t} \mathbf{1}_{\mathbb{R}_+}(t)$ resp. $f_Y(t) = \mu e^{-\mu t} \mathbf{1}_{\mathbb{R}_+}(t)$. Leurs fonctions de répartitions sont $F_X(t) = (1 - e^{-\lambda t}) \mathbf{1}_{\mathbb{R}_+}(t)$, resp. $F_Y(t) = (1 - e^{-\mu t}) \mathbf{1}_{\mathbb{R}_+}(t)$

Comme avant, on a donc, pour tout $t \ge 0$,

$$\mathbb{P}\left[Z < t\right] = \mathbb{P}\left[\left(X < t\right) \cap \left(Y < t\right)\right] \overset{\text{(independance)}}{=} \mathbb{P}\left[X < t\right] \mathbb{P}\left[Y < t\right] = \left(1 - e^{-\lambda t}\right) \left(1 - e^{-\mu t}\right).$$

De même, pour tout $t \geq 0$,

$$\mathbb{P}\left[T>t\right] = \mathbb{P}\left[(X>t)\cap(Y>t)\right] \overset{\text{(independance)}}{=} \mathbb{P}\left[X>t\right] \mathbb{P}\left[Y>t\right] = (1-F_X(t))\left(1-F_Y(t)\right) = e^{-(\lambda+\mu)t}.$$

Donc $\mathbb{P}[T \leq t] = (1 - e^{-(\lambda + \mu)t})\mathbf{1}_{\mathbb{R}_+}(t)$. La variable T suit la loi exponentielle de paramètre $\lambda + \mu$.

Application aux files d'attente Trois clients A, B et C se présentent à deux guichets libres. A et B entrent en service et C attend que l'un des deux guichets se libère puis entre en service. On suppose que les temps de service de A, B et C sont des variables aléatoires indépendantes de lois exponentielles de paramètres λ_A , λ_B et λ_C . Quel est le temps moyen d'attente de C? Quel est le temps moyen passé par C dans le système (attente + service)?

Le temps d'attente de C est le temps que A ou B soient servis. Son temps d'attente est donc representé par $T_C = \inf(S_A, S_B)$ où S_A et S_B représentent les temps de service de A et B. On a montré à la question (2) que T_C suit la loi exponentielle de paramètre $\lambda_A + \lambda_B$ donc le temps moyen d'attente de T_C est,

$$\mathbb{E}\left[T_C\right] = \frac{1}{\lambda_A + \lambda_B}.$$

De même, \mathbb{E} [temps total passé par C] = \mathbb{E} [temps d'attente de C + temps de service de C]. On obtient,

$$\mathbb{E}\left[\text{temps total pass\'e par C}\right] = \mathbb{E}\left[T_{C}\right] + \mathbb{E}\left[S_{C}\right] = \frac{1}{\lambda_{A} + \lambda_{B}} + \frac{1}{\lambda_{C}}.$$

Exercice 3 : Mélanges gaussiens

Au cours d'une récolte de fruits, les variétés A et B sont mélangées. Le poids d'un fruit de la variété A est une variable aléatoire X de loi gaussienne $\mathcal{N}\left(m_1,\sigma_1^2\right)$. Le poids d'un fruit de la variété B est une variable aléatoire Y de loi gaussienne $\mathcal{N}\left(m_2,\sigma_2^2\right)$. Les fruits sont mélangés dans la proportion $p \in]0,1[$ pour la variété A et 1-p pour la variété B. Appelons Z la variable aléatoire égale au poids d'un fruit quelconque de la récolte.

- 1. Quelle est la fonction de répartition de Z?
- 2. Déterminer $\mathbb{E}(Z)$ et V(Z).
- 1) Soit F_Z la fonction de répartition de Z. Pour $z \ge 0$, on cherche $F_Z(z) = \mathbb{P}[Z \le z]$. Notons A l'événement "le fruit est de variété A", et B "le fruit est de variété B". On a (par la formule des probabilité totales),

$$\mathbb{P}\left[Z \leq z\right] = \mathbb{P}\left[(Z \leq z) \cap (A \cup B)\right] = \mathbb{P}\left[(Z \leq z \cap A) \cup (Z \leq z \cap B)\right].$$

Les événements A et B sont disjoints, donc,

$$\mathbb{P}\left[Z \leq z\right] = \mathbb{P}\left[\left(Z \leq z\right) \cap A\right] + \mathbb{P}\left[\left(Z \leq z\right) \cap B\right].$$

Enfin la (très importante) loi de Bayes, stipule que $\mathbb{P}[(Z \leq z) \cap A] = \mathbb{P}[Z \leq z \mid A] \mathbb{P}[A] = pF_X(z)$. Ici F_X dénote bien évidemment la fonction de répatition de X.

De même $\mathbb{P}[(Z \leq z) \cap B] = \mathbb{P}[Z \leq z \mid B] \mathbb{P}[B] = (1-p)F_Y(z)$. Finalement,

$$F_Z(z) = pF_X(z) + (1-p)F_Y(z).$$

2) La densité est la dérivé de la fonction de répartition. Soit f_Z la densité de Z, on a donc pour tout $z \ge 0$,

$$f_Z(z) = p f_X(z) + (1 - p) f_Y(z).$$

On va ensuite utiliser la définition suivante : Pour toute fonction (sous les bonnes hypothèses), on a :

$$\mathbb{E}[g(Z)] = \int g(z)f_Z(z) dz = \int g(z)(pf_X(z) + (1-p)f_Y(z)) dz = p\mathbb{E}[g(X)] + (1-p)\mathbb{E}[g(Y)]$$
(1)

Ainsi on a, (pour g(x) = x),

$$\mathbb{E}[Z] = p\mathbb{E}[X] + (1-p)\mathbb{E}[Y] = pm_1 + (1-p)m_2.$$

Pour la variance, Attention, la variance n'est pas linéaire, et en particulier, en général $V(X+Y) \neq V(X) + V(Y)$ (en revanche c'est vrai si X et Y sont indépendants). Ici on ne sait pas s'il y a indépendance donc on fait le calcul.

On va utiliser la formule $V(Z) = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2$. Pour trouver $\mathbb{E}\left[Z^2\right]$, on a

$$\begin{split} & - V(X) = \sigma_1^2 = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 = \mathbb{E}\left[X^2\right] - m_1^2. \\ & - V(Y) = \sigma_2^2 = \mathbb{E}\left[Y^2\right] - \mathbb{E}\left[Y\right]^2 = \mathbb{E}\left[Y^2\right] - m_2^2. \\ \text{Ainsi grâce à la formule (1) avec } g(z) = z^2, \text{ on a} \end{split}$$

$$\mathbb{E}\left[Z^2\right] = p\mathbb{E}\left[X^2\right] + (1-p)\mathbb{E}\left[Y^2\right] = p(\sigma_1^2 + m_1^2) + (1-p)(\sigma_2^2 + m_2^2).$$

Enfin, on peut calculer V(Z),

$$V(Z) = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2 = p(\sigma_1^2 + m_1^2) + (1 - p)(\sigma_2^2 + m_2^2) - (pm_1 + (1 - p)m_2)^2,$$

et on peut s'amuser à développer.

Exercice 4: Gestion optimale de stock

Pour la vente d'un magazine spécialisé, un buraliste constitue un stock, au début de chaque mois. On note X la variable aléatoire réelle (VAR) qui représente le nombre de magazines vendus ou demandés à l'achat par les clients auprès de ce buraliste, dans le mois considéré. On peut admettre que X suit une loi uniforme sur [11;30], c'est-à-dire que $\forall l$, $11 \leq l \leq 30$, $\mathbb{P}[X=l]=\frac{1}{20}$. Tout magazine non vendu est perdu. Le buraliste achète les magazines 2 euros et les revend 3 euros. On note Y_k la VAR qui représente le gain du commerçant pour un mois donné, en ayant fait un stock de k magazines au début du mois.

- 1. Soit k fixé $\in [11; 30]$, calculer la loi de $Z = \inf(X, k)$.
- 2. En considérant d'abord k < 11, puis $11 \le k \le 30$, donner la loi de Y_k . Montrer que pour $k \in [[11;30]]$, on a

$$\mathbb{E}(Y_k) = \frac{1}{40} \left(-3k^2 + 103k - 330 \right)$$

- 3. Quelle valeur de k conseillez-vous au buraliste? Justifiez votre réponse.
- 1) Dans l'énoncé k représente le stock de journaux achetés par le commerçant pour le mois en cours. La variable $Z=\inf(X,k)$ est donc à valeur dans $[\![11,k]\!]$. Soit $l\in[\![11,k]\!]$, si l< k, $\mathbb{P}\left[Z=l\right]=\mathbb{P}\left[X=l\right]=\frac{1}{20}$. Sinon, si l=k, $\mathbb{P}\left[Z=l\right]=\mathbb{P}\left[Z=k\right]=\frac{30-k+1}{20}$.
- 2) Si $k \le 10$, le commerçant vend forcément tous ses exemplaires. Donc le bénéfice est $Y_k = (3-2)k = k$. Si maintenant $k \in [11; 30]$, alors $Y_k = 3\inf(X, k) 2k = 3Z 2k$, et on connait la loi de Z. Cela nous suffit pour calculer l'espérance de Y_k ,

$$\mathbb{E}[Y_k] = \mathbb{E}[3Z - 2k] = 3\mathbb{E}[Z] - 2k.$$

Or par définition,

$$\mathbb{E}\left[Z\right] = \sum_{l=11}^{30} l \mathbb{P}\left[Z = l\right] = \left(\sum_{l=11}^{k-1} l \frac{1}{20}\right) + k \frac{31 - k}{20} = \frac{1}{20} \left(\frac{k(k-1)}{2} - 55 + 31k - k^2\right).$$

Ici le -55 vient de $\left(\sum_{l=11}^{k-1} l\right) = \left(\sum_{l=1}^{k-1} l\right) - \left(\sum_{l=1}^{11} l\right) = \frac{k(k-1)}{2} - \frac{11 \times 10}{2}$ On trouve donc enfin,

$$\mathbb{E}[Y_k] = 3\mathbb{E}[Z] - 2k = \frac{1}{40} \left(-3k^2 + 183k - 330 \right) - 2k = \frac{1}{40} \left(-3k^2 + 103k - 330 \right).$$

3) Le buraliste veut maximiser le gain qu'il peut espérer avoir (en moyenne). Il veut donc choisir la taille k de son stock de manière à maximiser son gain moyen $\mathbb{E}[Y_k]$. On fait la traditionnelle étude du maximum sur la fonction $x\mapsto -3x^2+103x-330$. Le maximum est atteint en

$$-6x + 103 = 0 \iff x = \frac{103}{6} \approx 17, 16.$$

Le buraliste a donc intérêt à acheter entre 17 et 18 magazine par mois.