

Алгоритмы конфликтно-ориентированного поиска для задачи многоагентного планирования: CBS, CBS+PC, CBS+H, CBS+DS

Им Евгений Парамонов Антон Эмдин Григорий

Постановка задачи

Вход:

граф G(V, E)

агенты a_i : s_i , f_i

Выход:

 $s_i \rightarrow f_i \forall i$

Конфликт:

 $\left(a_i,a_j,v,t\right)$

— агенты a_i и a_j находятся в вершине v в момент времени t

Алгоритм conflict based search (CBS)

Ограничение:

(a, v, t)

— запрет агенту a находится в вершине v в момент времени t

Модификации

CBS + Prioritization of conflicts (PC)

```
Input: MAPF instance
Root.constraints = \emptyset
Root.solution = find individual paths by the low level()
Root.cost = SIC(Root.solution)
insert Root to OPEN
while OPEN not empty do
     P \leftarrow \text{best node from OPEN} || lowest solution cost
    Validate the paths in P until a conflict occurs.
    if P has no conflict then
         return P.solution || P is goal
    C \leftarrow \text{first conflict } (a_i, a_j, v, t) \text{ in } P \mid C \leftarrow \text{find-cardinal/semi-cardinal-conflict}(N) // (PC)
    foreach agent ai in C do
         A \leftarrow new node
         A.constraints \leftarrow P.constraints + (a_i, v, t)
         A.solution \leftarrow P.solution
         Update A. solution by invoking low level(a_i)
         A.cost = SIC(A.solution)
         if A.cost < \infty // A solution was found then
              Insert A to OPEN
```


CBS + H

Эвристики:

- h1: количество конфликтов
- h3: количество пар конфликтующих агентов
- h4: размер вершинного покрытия для графа, вершинами в котором являются агенты, а ребрами соединены те из них, между которыми есть хотя бы один конфликт
- CBS + Disjoint Splitting (DS)

Эксперименты

План работы

- 1. Реализация классического CBS
- 2. Реализация системы тестирования алгоритма на бенчмарках
- 3. Тестирование CBS на корректность на маленьких собственных примерах
- 4. Тестирование CBS на корректность на больших бенчмарках
- 5. Сравнение нашей реализации CBS с реализацией в статье
- 6. Реализация CBS + H
- 7. Реализация CBS + PC
- 8. Реализация CBS + DS
- 9. Замеры времени работы, стоимостей решения и количества узлов дерева для расширений и самого CBS, отрисовка графиков, анализ результатов

Май 2021					^	~	
Пн	Вт	Ср	Чт	Пт	C6	Вс	
26	27	28	29	30	1	2	
3	4	5	6	7	8	9	
10	1 - 5	12	13	14	15	16	
17	6 - 8	19	20	21	22	23	
24	25	26	27	28	29	30	
31	9	2	3	4	5	6	

• Спасибо за внимание!

