CS410: Parallel Computing Spring 2024

Week1: Administrivia, Motivation for HPC

Instructors and TAs

- Instructors:
 - Milind Chabbi
 - Nikhil Hegde

Course Schedule and LMS

- Class Schedule
 - Mondays: 9:30AM to 10:20AM
 - Wednesdays: 10:30AM to 11:20AM
 - Fridays: 11:30AM to 12:20PM
- Learning Management System (Google Classroom)
 - classroom.google.com
 - Administration of homework assignments, exams, and technical discussion facilitated by Google classroom

Course Assessment

- Programming Assignments, Exams (midsem, endsem),
 Class Participation
 - two in-semester (40%), one midsem (20%), and one endsem (20%)
 - The assignments can be done in teams of size at most two.
 - Late submission policy:
 - Can have 4 delay slots (1 delay slot = 1 Day, cannot subdivide the slot into hours.). Beyond this, for every delay slot, you will lose 10% of the weight allotted for an assignment (where delay is observed).
 - Cannot take a delay slot for the last assignment (to help with grade submission).
 - Midsem Exam (25%), Endsem Exam (40%)
 - There will be programming-based, take home parts in these exams. Midsem take home (20%) and endsem take home (20%).
 - Class Participation (5%)
 - Google form based MCQ

Programming Assignment Execution

- You will be executing your assignment programs on IIT Dharwad's HPC cluster and GPU servers
 - An account needs to be created first
- Minimal prerequisite software: ssh, scp
 - HPC101 Workshop Materials
 - GitHub Repo
 - Youtube link

Grading Criteria

If your numerical score is at least:	Your course grade will be at least:
90	AA
80	AB
70	BB
60	BC
50	CC
45	CD
40	DD

Academic Honesty

- You are allowed to discuss general issues with other students / teams (e.g. programming techniques, clearing up confusion about requirements, etc.).
- You may discuss algorithmic issues on the discussion forum (but do not copy-paste your code!).
- You can borrow code from StackOverflow or elsewhere.
 However, you must acknowledge the source (e.g. provide full information / website / github repo detail as a header in the file where used.)
- Do NOT borrow code from your peers and change variable names, the order of declaration of variables and program constructs!

Syllabus and Reference Texts

- Syllabus (Broadly):
 - Motivation for High-Performance Computing / Parallel Computing
 - Parallel Computer Architecture Basics (Taxonomy)
 - Parallel Programming Models, Identifying Parallelism in Programs
 - Parallel Program Analysis and Performance Measurement
- Reference Text(s):
 - Course material
 - Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Addison Wesley 2003
 - Eric Aubanel, Elements of Parallel Computing, CRC Press, 2017.

Learning Outcomes

- Explain basic properties of parallel computer architectures and their connection with the kind of parallel programs that they can execute
- 2. Analyze a program for parallelism and express the parallelism in the program using a suitable parallel programming model
- 3. Write parallel programs using different parallel programming models and analyze the performance
- 4. Explain performance factors of a parallel program