Linear DSGE Models and the Kalman Filter

Ed Herbst

November 10, 2020

Background

Textbook treatments: Woodford (2003), Galí (2008)

 Key empirical papers: Ireland (2004), Christiano et al. (2005), Smets and Wouters (2007), An and Schorfheide (2007),

► Frequentist estimation: Harvey (1991), Hamilton (1994),

Bayesian estimation: Herbst and Schorfheide (2015)

Small-Scale DSGE Model

Intermediate and final goods producers

Households

Monetary and fiscal policy

Exogenous processes

Equilibrium Relationships

Final Goods Producers

Perfectly competitive firms combine a continuum of intermediate goods:

$$Y_t = \left(\int_0^1 Y_t(j)^{1-\nu} dj\right)^{\frac{1}{1-\nu}}.$$

Firms take input prices $P_t(j)$ and output prices P_t as given; maximize profits

$$\Pi_t = P_t \left(\int_0^1 Y_t(j)^{1-\nu} dj \right)^{\frac{1}{1-\nu}} - \int_0^1 P_t(j) Y_t(j) dj.$$

Demand for intermediate good j:

$$Y_t(j) = \left(\frac{P_t(j)}{P_t}\right)^{-1/\nu} Y_t.$$

Zero-profit condition implies

$$P_t = \left(\int_0^1 P_t(j)^{\frac{\nu-1}{\nu}} dj\right)^{\frac{\nu}{\nu-1}}.$$

Intermediate Goods Producers

► Intermediate good j is produced by a monopolist according to:

$$Y_t(j) = A_t N_t(j).$$

 Nominal price stickiness via quadratic price adjustment costs

$$AC_t(j) = \frac{\phi}{2} \left(\frac{P_t(j)}{P_{t-1}(j)} - \pi \right)^2 Y_t(j).$$

Firm j chooses its labor input $N_t(j)$ and the price $P_t(j)$ to maximize the present value of future profits:

$$\mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s Q_{t+s|t} \left(\frac{P_{t+s}(j)}{P_{t+s}} Y_{t+s}(j) - W_{t+s} N_{t+s}(j) - AC_{t+s}(j) \right) \right].$$

Households

 Household derives disutility from hours worked H_t and maximizes

$$\mathbb{E}_{t} \left[\sum_{s=0}^{\infty} \beta^{s} \left(\frac{(C_{t+s}/A_{t+s})^{1-\tau} - 1}{1-\tau} + \chi_{M} \ln \left(\frac{M_{t+s}}{P_{t+s}} \right) - \chi_{H} H_{t+s} \right) \right].$$

Budget constraint:

$$P_{t}C_{t} + B_{t} + M_{t} + T_{t}$$

$$= P_{t}W_{t}H_{t} + R_{t-1}B_{t-1} + M_{t-1} + P_{t}D_{t} + P_{t}SC_{t}.$$

Monetary and Fiscal Policy

- Central bank adjusts money supply to attain desired interest rate.
- Monetary policy rule:

$$R_t = R_t^{*,1-\rho_R} R_{t-1}^{\rho_R} e^{\epsilon_{R,t}}$$

$$R_t^* = r \pi^* \left(\frac{\pi_t}{\pi^*}\right)^{\psi_1} \left(\frac{Y_t}{Y_t^*}\right)^{\psi_2}$$

- Fiscal authority consumes fraction of aggregate output: $G_t = \zeta_t Y_t$.
- Government budget constraint:

$$P_tG_t + R_{t-1}B_{t-1} + M_{t-1} = T_t + B_t + M_t.$$

Exogenous Processes

Technology:

$$\ln A_t = \ln \gamma + \ln A_{t-1} + \ln z_t, \quad \ln z_t = \rho_z \ln z_{t-1} + \epsilon_{z,t}.$$

▶ Government spending / aggregate demand: define $g_t = 1/(1-\zeta_t)$; assume

$$\ln g_t = (1 - \rho_g) \ln g + \rho_g \ln g_{t-1} + \epsilon_{g,t}.$$

▶ Monetary policy shock $\epsilon_{R,t}$ is assumed to be serially uncorrelated.

Equilibrium Conditions

- ► Consider the symmetric equilibrium in which all intermediate goods producing firms make identical choices; omit *j* subscript.
- Market clearing:

$$Y_t = C_t + G_t + AC_t$$
 and $H_t = N_t$.

Complete markets:

$$Q_{t+s|t} = (C_{t+s}/C_t)^{-\tau} (A_t/A_{t+s})^{1- au}.$$

Consumption Euler equation and New Keynesian Phillips curve:

$$1 = \beta \mathbb{E}_{t} \left[\left(\frac{C_{t+1}/A_{t+1}}{C_{t}/A_{t}} \right)^{-\tau} \frac{A_{t}}{A_{t+1}} \frac{R_{t}}{\pi_{t+1}} \right]$$

$$1 = \phi(\pi_{t} - \pi) \left[\left(1 - \frac{1}{2\nu} \right) \pi_{t} + \frac{\pi}{2\nu} \right]$$

$$\left[\left(C_{t+1}/A_{t+1} \right)^{-\tau} Y_{t+1}/A_{t+1} \right]$$

$$-\phi\beta\mathbb{E}_{t}\left[\left(\frac{C_{t+1}/A_{t+1}}{C_{t}/A_{t}}\right)^{-\tau}\frac{Y_{t+1}/A_{t+1}}{Y_{t}/A_{t}}(\pi_{t+1}-\pi)\pi_{t+1}\right]$$

Equilibrium Conditions – Continued

In the absence of nominal rigidities ($\phi = 0$) aggregate output is given by

$$Y_t^* = (1-\nu)^{1/\tau} A_t g_t,$$

which is the target level of output that appears in the monetary policy rule.

Steady State

- ▶ Set $\epsilon_{R,t}$, $\epsilon_{q,t}$, and $\epsilon_{z,t}$ to zero at all times.
- Because technology In A_t evolves according to a random walk with drift In γ, consumption and output need to be detrended for a steady state to exist.
- Let

$$c_t = C_t/A_t, \quad y_t = Y_t/A_t, \quad y_t^* = Y_t^*/A_t.$$

Steady state is given by:

$$\pi = \pi^*, \quad r = \frac{\gamma}{\beta}, \quad R = r\pi^*,$$
 $c = (1 - \nu)^{1/\tau}, \quad y = gc = y^*.$

Solving DSGE Models

- Derive nonlinear equilibrium conditions:
 - System of nonlinear expectational difference equations;
 - transversality conditions.
- Find solution(s) of system of expectational difference methods:
 - Global (nonlinear) approximation
 - Local approximation near steady state
- We will focus on log-linear approximations around the steady state.
- More detail in: Fernandez-Villaverde et al. (2016): "Solution and Estimation Methods for DSGE Models."

What is a Local Approximation?

▶ In a nutshell... consider the backward-looking model

$$y_t = f(y_{t-1}, \sigma \epsilon_t).$$

Guess that the solution is of the form

$$y_t = y_t^{(0)} + \sigma y_t^{(1)} + o(\sigma).$$

Steady state:

$$y_t^{(0)} = y^{(0)} = f(y^{(0)}, 0)$$

▶ Suppose $y^{(0)} = 0$. Expand $f(\cdot)$ around $\sigma = 0$:

$$f(y_{t-1}, \sigma\epsilon_t) = f_y y_{t-1} + f_\epsilon \sigma\epsilon_t + o(|y_{t-1}|) + o(\sigma)$$

Now plug-in conjectured solution:

$$\sigma y_t^{(1)} = f_V \sigma y_{t-1}^{(1)} + f_{\epsilon} \sigma \epsilon_t + o(\sigma)$$

▶ Deduce that $y_t^{(1)} = f_y y_{t-1}^{(1)} + f_{\epsilon} \epsilon_t$

What is a Log-Linear Approximation?

- ► Consider a Cobb-Douglas production function: $Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}$.
- ► Linearization around *Y*_{*}, *A*_{*}, *K*_{*}, *N*_{*}:

$$Y_t - Y_* \approx K_*^{\alpha} N_*^{1-\alpha} (A_t - A_*) + \alpha A_* K_*^{\alpha-1} N_*^{1-\alpha} (K_t - K_*)$$
$$+ (1-\alpha) A_* K_*^{\alpha} N_*^{-\alpha} (N_t - N_*)$$

▶ Log-linearization: Let $f(x) = f(e^v)$ and linearize with respect to v:

$$f(e^{v}) \approx f(e^{v_*}) + e^{v_*}f'(e^{v_*})(v - v_*).$$

Thus:

$$f(x) \approx f(x_*) + x_* f'(x_*) (\ln x/x_*) = f(x_*) + f'(x_*) \tilde{x}$$

► Cobb-Douglas production function (here relationship is exact):

$$\tilde{Y}_t = \tilde{A}_t + \alpha \tilde{K}_t + (1 - \alpha) \tilde{N}_t$$

Loglinearization of New Keynesian Model

Consumption Euler equation:

$$\hat{y}_t = \mathbb{E}_t[\hat{y}_{t+1}] - \frac{1}{\tau} \bigg(\hat{R}_t - \mathbb{E}_t[\hat{\pi}_{t+1}] - \mathbb{E}_t[\hat{z}_{t+1}] \bigg) + \hat{g}_t - \mathbb{E}_t[\hat{g}_{t+1}]$$

New Keynesian Phillips curve:

$$\hat{\pi}_t = \beta \mathbb{E}_t[\hat{\pi}_{t+1}] + \kappa (\hat{y}_t - \hat{g}_t),$$

where

$$\kappa = \tau \frac{1 - \nu}{\nu \pi^2 \phi}$$

Monetary policy rule:

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) \psi_1 \hat{\pi}_t + (1 - \rho_R) \psi_2 \left(\hat{y}_t - \hat{g}_t \right) + \epsilon_{R,t}$$

Canonical Linear Rational Expectations System

Define

$$\mathbf{x}_t = [\hat{\mathbf{y}}_t, \hat{\pi}_t, \hat{\mathbf{R}}_t, \epsilon_{R,t}, \hat{\mathbf{g}}_t, \hat{\mathbf{z}}_t]'.$$

- ▶ Augment x_t by $\mathbb{E}_t[\hat{y}_{t+1}]$ and $\mathbb{E}_t[\hat{\pi}_{t+1}]$.
- Define

$$s_t = [x'_t, \mathbb{E}_t[\hat{y}_{t+1}], \mathbb{E}_t[\hat{\pi}_{t+1}]]'.$$

Define rational expectations forecast errors forecast errors for inflation and output. Let

$$\eta_{y,t} = \hat{y}_t - \mathbb{E}_{t-1}[\hat{y}_t], \quad \eta_{\pi,t} = \hat{\pi}_t - \mathbb{E}_{t-1}[\hat{\pi}_t].$$

Write system in canonical form Sims (2002):

$$\Gamma_0 s_t = \Gamma_1 s_{t-1} + \Psi \epsilon_t + \Pi \eta_t.$$

How Can One Solve Linear Rational Expectations Systems? A Simple Example

Consider

$$y_t = \frac{1}{\theta} \mathbb{E}_t[y_{t+1}] + \epsilon_t, \tag{1}$$

where $\epsilon_t \sim iid(0,1)$ and $\theta \in \Theta = [0,2]$.

Introduce conditional expectation $\xi_t = \mathbb{E}_t[y_{t+1}]$ and forecast error $\eta_t = y_t - \xi_{t-1}$.

► Thus,

$$\xi_t = \theta \xi_{t-1} - \theta \epsilon_t + \theta \eta_t. \tag{2}$$

A Simple Example

▶ Determinacy: θ > 1. Then only stable solution:

$$\xi_t = 0, \quad \eta_t = \epsilon_t, \quad y_t = \epsilon_t$$
 (3)

▶ Indeterminacy: $\theta \le 1$ the stability requirement imposes no restrictions on forecast error:

$$\eta_t = M\epsilon_t + \zeta_t. \tag{4}$$

For simplicity assume now $\zeta_t = 0$. Then

$$y_t - \theta y_{t-1} = \widetilde{M} \epsilon_t - \theta \epsilon_{t-1}. \tag{5}$$

 General solution methods for LREs: Blanchard and Kahn (1980), King and Watson (1998), Uhlig (1999), Anderson (2000), Klein (2000), Christiano (2002), Sims (2002).

Solving a More General System

Canonical form:

$$\Gamma_0(\theta)s_t = \Gamma_1(\theta)s_{t-1} + \Psi(\theta)\epsilon_t + \Pi(\theta)\eta_t, \tag{6}$$

The system can be rewritten as

$$s_t = \Gamma_1^*(\theta) s_{t-1} + \Psi^*(\theta) \epsilon_t + \Pi^*(\theta) \eta_t. \tag{7}$$

- ▶ Replace Γ₁* by $J ∧ J^{-1}$ and define $w_t = J^{-1} s_t$.
- To deal with repeated eigenvalues and non-singular Γ₀ we use Generalized Complex Schur Decomposition (QZ) in practice.
- ▶ Let the *i*'th element of w_t be $w_{i,t}$ and denote the *i*'th row of $J^{-1}\Pi^*$ and $J^{-1}\Psi^*$ by $[J^{-1}\Pi^*]_{i.}$ and $[J^{-1}\Psi^*]_{i.}$, respectively.

Solving a More General System

Rewrite model:

$$\mathbf{w}_{i,t} = \lambda_i \mathbf{w}_{i,t-1} + [J^{-1} \Psi^*]_{i.} \epsilon_t + [J^{-1} \Pi^*]_{i.} \eta_t.$$
 (8)

Define the set of stable AR(1) processes as

$$I_{s}(\theta) = \left\{ i \in \{1, \dots, n\} \middle| |\lambda_{i}(\theta)| \le 1 \right\}$$
 (9)

- ▶ Let $I_X(\theta)$ be its complement. Let Ψ_X^J and Π_X^J be the matrices composed of the row vectors $[J^{-1}\Psi^*]_{i.}$ and $[J^{-1}\Pi^*]_{i.}$ that correspond to unstable eigenvalues, i.e., $i \in I_X(\theta)$.
- Stability condition:

$$\Psi_X^J \epsilon_t + \Pi_X^J \eta_t = 0 \tag{10}$$

for all t.

Solving a More General System

▶ Solving for η_t . Define

$$\Pi_{x}^{J} = \begin{bmatrix} U_{.1} & U_{.2} \end{bmatrix} \begin{bmatrix} D_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V'_{.1} \\ V'_{.2} \end{bmatrix}$$

$$= \underbrace{U}_{m \times m} \underbrace{D}_{m \times k} \underbrace{V'}_{k \times k}$$

$$= \underbrace{U_{.1}}_{m \times r} \underbrace{D_{11}}_{r \times r} \underbrace{V'_{.1}}_{r \times k}.$$
(11)

If there exists a solution to Eq. (10) that expresses the forecast errors as function of the fundamental shocks ϵ_t and sunspot shocks ζ_t , it is of the form

$$\eta_t = \eta_1 \epsilon_t + \eta_2 \zeta_t
= (-V_{.1} D_{11}^{-1} U'_1 \Psi_x^J + V_{.2} \widetilde{M}) \epsilon_t + V_{.2} M_{\zeta} \zeta_t,$$
(12)

where \widetilde{M} is an $(k-r) \times I$ matrix, M_{ζ} is a $(k-r) \times p$ matrix, and the dimension of $V_{.2}$ is $k \times (k-r)$. The solution is unique if k=r and $V_{.2}$ is zero.

Proposition

If there exists a solution to Eq. (10) that expresses the forecast errors as function of the fundamental shocks ϵ_t and sunspot shocks ζ_t , it is of the form

$$\eta_t = \eta_1 \epsilon_t + \eta_2 \zeta_t
= (-V_{.1} D_{11}^{-1} U_{.1}' \Psi_x^J + V_{.2} \widetilde{M}) \epsilon_t + V_{.2} M_{\zeta} \zeta_t,$$
(13)

where \widetilde{M} is an $(k-r) \times I$ matrix, M_{ζ} is a $(k-r) \times p$ matrix, and the dimension of $V_{.2}$ is $k \times (k-r)$. The solution is unique if k=r and $V_{.2}$ is zero.

At the End of the Day...

▶ We obtain a transition equation for the vector s_t :

$$s_t = T(\theta)s_{t-1} + R(\theta)\epsilon_t.$$

▶ The coefficient matrices $T(\theta)$ and $R(\theta)$ are functions of the parameters of the DSGE model.

Measurement Equation

- \triangleright Relate model variables s_t to observables y_t .
- In NK model:

$$YGR_t = \gamma^{(Q)} + 100(\hat{y}_t - \hat{y}_{t-1} + \hat{z}_t)$$

 $INFL_t = \pi^{(A)} + 400\hat{\pi}_t$
 $INT_t = \pi^{(A)} + r^{(A)} + 4\gamma^{(Q)} + 400\hat{R}_t.$

where

$$\gamma = 1 + \frac{\gamma^{(Q)}}{100}, \quad \beta = \frac{1}{1 + r^{(A)}/400}, \quad \pi = 1 + \frac{\pi^{(A)}}{400}.$$

More generically:

$$y_t = D(\theta) + Z(\theta)s_t + \underbrace{\eta_t}_{\text{optional}}$$
.

The state and measurement equations define a *State Space Model*.

State Space Models

- State space models form a very general class of models that encompass many of the specifications that we encountered earlier.
- ARMA models and linearized DSGE models can be written in state space form.

A state space model consists of

- a measurement equation that relates an unobservable state vector s_t to the observables y_t,
- a transition equation that describes the evolution of the state vector s_t.

Measurement Equation

The measurement equation is of the form

$$y_t = D_{t|t-1} + Z_{t|t-1}s_t + \eta_t, \quad t = 1, ..., T$$
 (14)

where y_t is a $n_y \times 1$ vector of observables, s_t is a $n_s \times 1$ vector of state variables, $Z_{t|t-1}$ is an $n_y \times n_s$ vector, $D_{t|t-1}$ is a $n_y \times 1$ vector, and η_t are innovations (or often "measurement errors") with mean zero and $\mathbb{E}_{t-1}[\eta_t \eta_t'] = H_{t|t-1}$.

- ▶ The matrices $Z_{t|t-1}$, $D_{t|t-1}$, and $H_{t|t-1}$ are in many applications constant.
- ▶ However, it is sufficient that they are predetermined at t-1. They could be functions of $y_{t-1}, y_{t-2}, ...$
- ➤ To simplify the notation, we will denote them by Z_t, D_t, and H_t, respectively.

Transition Equation

The transition equation is of the form

$$s_t = C_{t|t-1} + T_{t|t-1}s_{t-1} + R_{t|t-1}\epsilon_t$$
 (15)

where R_t is $n_s \times n_\epsilon$, and ϵ_t is a $n_\epsilon \times 1$ vector of innovations with mean zero and variance $\mathbb{E}_{t|t-1}[\epsilon_t \epsilon_t'] = Q_{t|t-1}$.

- The assumption that s_t evolves according to an VAR(1) process is not very restrictive, since it could be the companion form to a higher order VAR process.
- It is furthermore assumed that (i) expectation and variance of the initial state vector are given by E[s₀] = A₀ and var[s₀] = P₀;
- ϵ_t and η_t are uncorrelated with each other in all time periods , and uncorrelated with the initial state. [not really necessary]

Adding it all up

If the system matrices Z_t , D_t , H_t , T_t , C_t , R_t , Q_t are non-stochastic and predetermined, then the system is linear and y_t can be expressed as a function of present and past ϵ_t 's and η_t 's.

- 1. calculate predictions $y_t | Y^{t-1}$, where $Y^{t-1} = [y_{t-1}, \dots, y_1]$,
- obtain a likelihood function

$$p(Y^T | \{Z_t, D_t, H_t, T_t, C_t, R_t, Q_t\})$$

3. back out a sequence

$$\{p(s_t|Y^t, \{Z_t, D_t, H_t, T_t, c_t, R_t, Q_t\})\}$$

The algorithm is called the *Kalman Filter* and was originally adopted from the engineering literature.

A Useful Lemma

Let (x', y')' be jointly normal with

$$\mu = \left[\begin{array}{c} \mu_{\text{X}} \\ \mu_{\text{Y}} \end{array} \right] \quad \text{and} \quad \Sigma = \left[\begin{array}{cc} \Sigma_{\text{XX}} & \Sigma_{\text{XY}} \\ \Sigma_{\text{YX}} & \Sigma_{\text{YY}} \end{array} \right]$$

Then the pdf(x|y) is multivariate normal with

$$\mu_{x|y} = \mu_x + \sum_{xy} \sum_{yy}^{-1} (y - \mu_y)$$

$$\sum_{xx|y} = \sum_{xx} - \sum_{xy} \sum_{yy}^{-1} \sum_{yx} \square.$$

(16)

A Bayesian Interpretation to the Kalman Filter

- Although the idea of the algorithm is based on linear projections, it has a very straightforward Bayesian interpretation.
- ▶ We will assume that the conditional distributions of s_t and y_t given time t-1 information are Gaussian.
- Since the system is linear, all the conditional and marginal distributions that we calculate when we move from period t − 1 to period t will also be Gaussian.
- Since the state vector s_t is unobservable, it is natural in Bayesian framework to regard it as a random vector.

Note: The subsequent analysis is conditional on the system matrices Z_t , D_t , H_t , T_t , C_t , R_t , Q_t . For notational convenience we will, however, drop the system matrices from the conditioning set.

The calculations will be based on the following conditional distribution, represented by densities:

- 1. Initialization: $p(s_{t-1}|Y^{t-1})$
- 2. Forecasting:

$$p(s_t|Y^{t-1}) = \int p(s_t|s_{t-1}, Y^{t-1})p(s_{t-1}|Y^{t-1})ds_{t-1}$$

$$p(y_t|Y^{t-1}) = \int p(y_t|s_t, Y^{t-1})p(s_t|Y^{t-1})ds_t$$

Updating:

$$p(s_t|Y^t) = rac{p(y_t|s_t, Y^{t-1})p(s_t|Y_{t-1})}{p(y_t|Y^{t-1})}$$

- ► The integrals look troublesome.
- ▶ However, since the state space model is linear, and the distribution of the innovations u_t and η_t are Gaussian ⇒ everything is Gaussian!
- Hence, we only have to keep track of conditional means and variances.

Initialization

In period zero, we will start with a prior distribution for the initial state s₀.

▶ This prior is of the form $s_0 \sim \mathcal{N}(A_0, P_0)$.

▶ If the system matrices imply that the state vector has a stationary distribution, we could choose A_0 and P_0 to be the mean and variance of this stationary distribution.

Forecasting

At $(t-1)^+$, that is, after observing y_{t-1} , the belief about the state vector has the form $s_{t-1}|Y^{t-1} \sim (A_{t-1}, P_{t-1})$.

► Thus, the "posterior" from period t-1 turns into a prior for $(t-1)^+$.

Since s_{t-1} and η_t are independent multivariate normal random variables, it follows that

$$s_t | Y^{t-1} \sim \mathcal{N}(\hat{s}_{t|t-1}, P_{t|t-1})$$
 (17)

where

$$\hat{\mathbf{s}}_{t|t-1} = T_t A_{t-1} + c_t$$
 $P_{t|t-1} = T_t P_{t-1} T'_t + R_t Q_t R'_t$

Forecasting y_t

The conditional distribution of $y_t|s_t$, Y^{t-1} is of the form

$$y_t|s_t, Y^{t-1} \sim \mathcal{N}(Z_t s_t + D_t, H_t)$$
 (18)

Since $s_t|Y^{t-1} \sim \mathcal{N}(\hat{s}_{t|t-1}, P_{t|t-1})$, we can deduce that the marginal distribution of y_t conditional on Y^{t-1} is of the form

$$y_t|Y_{t-1} \sim \mathcal{N}(\hat{y}_{t|t-1}, F_{t|t-1})$$
 (19)

where

$$\hat{y}_{t|t-1} = Z_t \hat{s}_{t|t-1} + d_t$$

 $F_{t|t-1} = Z_t P_{t|t-1} Z_t' + H_t$

Updating

To obtain the posterior distribution of $s_t|y_t, Y^{t-1}$ note that

$$s_t = \hat{s}_{t|t-1} + (s_t - \hat{s}_{t|t-1})$$

$$y_t = Z_t \hat{s}_{t|t-1} + D_t + Z_t (s_t - \hat{s}_{t|t-1}) + u_t$$
(20)

and the joint distribution of s_t and y_t is given by

$$\begin{bmatrix} s_t \\ x_t \end{bmatrix} | Y^{t-1} \sim \mathcal{N} \left(\begin{bmatrix} \hat{\mathbf{s}}_{t|t-1} \\ \hat{\mathbf{y}}_{t|t-1} \end{bmatrix}, \begin{bmatrix} P_{t|t-1} & P_{t|t-1} Z'_t \\ Z_t P'_{t|t-1} & F_{t|t-1} \end{bmatrix} \right)$$
(22)
$$s_t | y_t, Y^{t-1} \sim \mathcal{N}(A_t, P_t)$$
(23)

where

$$A_{t} = \hat{s}_{t|t-1} + P_{t|t-1} Z'_{t} F^{-1}_{t|t-1} (y_{t} - Z_{t} \hat{s}_{t|t-1} - d_{t})$$

$$P_{t} = P_{t|t-1} - P_{t|t-1} Z'_{t} F^{-1}_{t|t-1} Z_{t} P_{t|t-1}$$

The conditional mean and variance $\hat{y}_{t|t-1}$ and $F_{t|t-1}$ were given above. This completes one iteration of the algorithm. The posterior $s_t|Y^t$ will serve as prior for the next iteration. \Box

Likelihood Function

We can define the one-step ahead forecast error

$$\nu_t = y_t - \hat{y}_{t|t-1} = Z_t(s_t - \hat{s}_{t|t-1}) + u_t$$
 (24)

The likelihood function is given by

$$p(Y^{T}|\text{parameters}) = \prod_{t=1}^{T} p(y_{t}|Y^{t-1}, \text{parameters})$$

$$= (2\pi)^{-nT/2} \left(\prod_{t=1}^{T} |F_{t}|_{t-1}|\right)^{-1/2}$$

$$\times \exp\left\{-\frac{1}{2}\sum_{t=1}^{T} \nu_{t} F_{t}|_{t-1} \nu_{t}'\right\} \quad (25)$$

This representation of the likelihood function is often called prediction error form, because it is based on the recursive prediction one-step ahead prediction errors ν_t . \square

Multistep Forecasting

The Kalman Filter can also be used to obtain multi-step ahead forecasts. For simplicity, suppose that the system matrices are constant over time. Since

$$s_{t+h-1|t-1} = T^h s_{t-1} + \sum_{s=0}^{h-1} T^s c + \sum_{s=0}^{h-1} T^s R \eta_t$$
 (26)

it follows that

$$\hat{s}_{t+h-1|t-1} = [s_{t+h-1|t-1}|Y^{t-1}] = T^h A_{t-1} + \sum_{s=0}^{h-1} T^s c$$

$$P_{t+h-1|t-1} = var[s_{t+h-1|t-1}|Y^{t-1}] = T^h P_{t-1} T^h + \sum_{s=0}^{h-1} T^s RQR' T^{s'}$$

which leads to

$$y_{t+h-1}|Y_{t-1} \sim \mathcal{N}(\hat{y}_{t+h-1|t-1}, F_{t+h-1|t-1})$$
 (27)

where

$$\hat{y}_{t+h-1|t-1} = Z\hat{s}_{t+h-1|t-1} + d$$

Some Discussion

▶ Initialization. If s_t is covariance stationary, can set (A_0, P_0) , based on invariant distribution, otherwise, P_0 is typically extremely large, like $1000 \times I_n$

Kalman Gain.

$$K_t = P_{t|t-1} Z F_{t|t-1}^{-1},$$

is an $n_s \times n_y$ matrix that maps the "surprises" (forecast errors) in the observed data to changes in our beliefs about the underlying unobserved states.

Missing data. KF easily handles missing data through a change in the observation equation.

• Kalman Smoother delivers distributions, $\{s_t | Y^T\}_{t=1}^T$.

Relationship between State Space and VAR Models?

Question: Can we write the state space model as a VAR?

Assume the system matrices are time invariant,

$$C = D = H = 0$$
, and $n_y = n_\epsilon$.

Let's write the model slightly differently:

$$s_t = \mathbf{A}s_{t-1} + \mathbf{B}\epsilon_t \tag{28}$$

$$y_t = \mathbf{C}s_{t-1} + \mathbf{D}\epsilon_t \tag{29}$$

$$\mathbf{A} = T, \mathbf{B} = R, \mathbf{C} = ZT, \mathbf{D} = ZR$$

This means that

$$\epsilon_t = (\mathbf{D})^{-1} (y_t - \mathbf{C} s_{t-1}).$$

Using the state equation

$$s_t = (\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C}) s_{t-1} + \mathbf{B} \mathbf{D}^{-1} y_t.$$

Solving backwards,

$$\boldsymbol{s}_t = (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{t-1}\boldsymbol{s}_0 + \sum_{j=0} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{j-1}\mathbf{B}\mathbf{D}^{-1}\boldsymbol{y}_{t-j}$$

If eigenvalues of $(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})$ are less than one in modulus, then

$$lim_{t\to\infty}(\mathbf{A}-\mathbf{B}\mathbf{D}^{-1}\mathbf{C})^t\to 0$$

And we can write the states as a combination of the history of observations. So

$$y_t pprox \mathbf{C} \sum_{i=0}^{\infty} (\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C})^{j-1} \mathbf{B} \mathbf{D}^{-1} y_{t-1-j} + \mathbf{D} \epsilon_t.$$

We have a VAR(∞) representation for y_t whose innovations coincide with the structural shocks of our DSGE model!

The condition that eigenvalues of $(\mathbf{A} - \mathbf{B}(\mathbf{D})^{-1}\mathbf{C})$ are less than one in modulus is known as the Poor Man's Invertibility Condition, see Fernndez-Villaverde et al. (2007).

Example 1: New Keynesian DSGE

We can solve the New Keynesian DSGE model described earlier.

Obtain state space representation

Observables

Impulse Responses

Filtered Technology Shock (Mean)

Log Likelihood Increments

Forecast of Output Growth

Forecast of Inflation

Forecast of Interest Rate

References I

- An, S. and Schorfheide, F. (2007). Bayesian analysis of dsge models. *Econometric Reviews*, 26(2-4):113–172.
- Christiano, L. J., Eichenbaum, M., and Evans, C. L. (2005). Nominal rigidities and the dynamic effects of a shock to monetary policy. *Journal of Political Economy*, 113(1):1–45.
- Fernandez-Villaverde, J., Rubio-Ramirez, J., and Schorfheide, F. (2016). Solution and estimation methods for dsge models. Handbook of Macroeconomics, page 527 724.
- Fernndez-Villaverde, J., Rubio-Ramrez, J. F., Sargent, T. J., and Watson, M. W. (2007). Abcs (and ds) of understanding vars. *American Economic Review*, 97(3):10211026.
- Galí, J. (2008). *Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework*. Princeton University Press, 2nd edition.
- Hamilton, J. (1994). *Time Series Analysis*. Princeton University Press, Princeton, New Jersey.

References II

- Harvey, A. C. (1991). Forecasting, Structural Time Series Models and the Kalman Filter. University of Cambridge Press, Cambridge, United Kingdom.
- Herbst, E. and Schorfheide, F. (2015). *Bayesian Estimation of DSGE Models*. Princeton University Press, Princeton.
- Ireland, P. N. (2004). A method for taking models to the data. Journal of Economic Dynamics and Control, 28(6):1205–1226.
- Sims, C. A. (2002). Solving linear rational expectations models. *Computational Economics*, 20:1–20.
- Smets, F. and Wouters, R. (2007). Shocks and frictions in us business cycles: A bayesian dsge approach. *American Economic Review*, 97:586–608.
- Woodford, M. (2003). *Interest and Prices*. Princeton University Press.