Welcome to the Advanced Statistics!

Peter Lukianchenko

4 September 2021

Course structure

Course Plan

- Stochastic Processes
- Time Series
- Advanced Statistics UoL

Advanced statistics: statistical inference

J. Penzer ST2134

2018

Undergraduate study in Economics, Management, Finance and the Social Sciences

This subject guide is for a 200 course offered as part of the University of London undergraduate study in Economics, Management, Finance and the Social Sciences. This is equivalent to Level 5 within the Framework for Higher Education Qualifications in England, Wales and Northern Ireland (PHEQ).

For more information about the University of London, see: london.ac.uk

Advanced statistics: distribution theory

J. Penzer

ST2133 2018

Undergraduate study in Economics, Management, Finance and the Social Sciences

This subject guide is for a 200 course offered as part of the University of London in Economics, Management, Finance and the Social Sciences. This is equivalent to Level 5 within the Framework for Higher Education Qualifications in England, Wales and Northern teland (HEQ).

For more information about the University of London see: london.ac.uk

Course structure

Module	Time period	Control	Weight		
I		Fall Mock	45%		
II		Winter Exam	45%		
III		Spring Mock	10%		
IV		UoL Exam	65%		
		Final Exam	10%		

Formula for final grade

Fall = 0.45 * FallMock + 0.45 * WinterExam + 0.1 * FallHomework

Total = 0.25 * Fall + 0.75 * Spring

Course structure

Lecturer

Petr Lukianchenko e-mail: plukyanchenko@hse.ru or lukianchenko.pierre@gmail.com

Class teacher

Boris Demeshev, Office S517

e-mail:

bdemeshev@hse.ru or boris.demeshev@gmail.com

Stochastic Processes: Basic Definitions

Stochastic process

The value of a variable changes in an uncertain way

Discrete vs. continuous time

When can a variable change?

What values can a variable take?

Markov property

Only the current value of a variable is relevant for future predictions

No information from past prices or path

Stochastic Processes: Basic Definitions

Definition

```
Stochastic process X = \{X(t), t \in T\} is a collection of random variables (rvs); one rv for each X(t) for each t \in T.
```

Index set T – set of possible values of t; t only means time

T: countable – discrete-time process

T: real number – continuous-time process

State space – set of possible values of X(t)

Stochastic Processes: Basic Definitions (examples)

Consider a teletrafic (or any) system. It typically evolves in time randomly

- *Example 1*: the number of occupied channels in a telephone link at time t or at the arrival time of the n^{th} customer;
- *Example 2*: the number of packets in the buffer of a statistical multiplexer at time t or at the arrival time of the n^{th} customer;
- This kind of evolution is described by a stochastic processes;
- At any individual time t (or n) the system can be described by a random variable;
- Thus, the stochastic processes is a collection of random variables.

Stochastic Processes: Basic Definitions

Definition

A (real-valued) *stochastic process* $X = (X_t \mid t \in I)$ is a collection of random variables X_t

- o taking values in some (real-valued) set $S, X_t(w) \in S$, and
- o indexed by a real-valued (time) parameter $t \in I$.

Stochastic processes are also called *random processes* (or just *processes*).

- The index set $I \subset \Re$ is called the *parameter space* of the process
- The value set $S \subset \Re$ is called the *state space* of the process

Note:

sometimes notation X_t is used to refer to the whole stochastic process (instead of a single random variable)

Categories of stochastic processes

Reminder:

- Parameter space: set I of indices $t \in I$
- State space: set **S** of values $X_t(\omega) \in \mathbf{S}$

Categories:

- Based on the parameter space:
 - o **Discrete-time processes:** parameter space discrete
 - o Continuous-time processes: parameter space continuous
- Based on the state space:
 - o **Discrete-state processes:** state space discrete
 - o Continuous-state processes: state space continuous

In this course we will concentrate on the discrete-state processes (with either a discrete or a continuous parameter space). Typical processes describe the number of customers in a queueing system (the state space being thus $S = \{0,1,2,...\}$

Examples

Discrete-time, discrete-state processes

Example 1: the number of occupied channels in a telephone link at the arrival time of the n^{th} customer, n=1,2...

Example 2: the number of packets in the buffer of a statistical multiplexer at the arrival time of the n^{th} customer, n=1,2...

Continuous-time, discrete-state processes

Example 3: the number of occupied channels in a telephone link at time t > 0

Example 4: the number of packets in the buffer of a statistical multiplexer at time t > 0

- A stochastic process {X_t} is a Markov chain if it has Markovian property.
- Markovian property:

• P{
$$X_{t+1} = j \mid X_0 = k_0, X_1 = k_1, ..., X_{t-1} = k_{t-1}, X_t = i }$$

= P{ $X_{t+1} = j \mid X_t = i$ }

• P{ $X_{t+1} = j \mid X_t = i$ } is called the transition probability.

Next state $Curvent state_{is}$ 11

- Stationary transition probability:
 - If ,for each i and j, P{ X_{t+1} = j | X_t = i } = P{ X₁ = j | X₀ = i }, for all t, then the transition probability are said to be stationary.

Transition matrix: state 0 1 2 3

0
$$p_{00}$$
 p_{01} p_{02} p_{03}

P = 1 p_{10} p_{11} p_{12} p_{13}

1 2 p_{20} p_{21} p_{22} p_{23}

3 p_{30} p_{31} p_{32} p_{33}

■
$$X_{t+1} = \max\{ 3 - D_{t+1}, 0 \}$$
 if $X_t = 0$
 $\max\{ X_t - D_{t+1}, 0 \}$ if $X_t \ge 1$

$$p_{03} = P\{ D_{t+1} = 0 \} = 0.368$$

•
$$p_{02} = P\{ D_{t+1} = 1 \} = 0.368$$

$$p_{01} = P\{ D_{t+1} = 2 \} = 0.184$$

•
$$p_{00} = P\{ D_{t+1} \ge 3 \} = 0.080$$

The state transition diagram:

- n-step transition probability :
 - $p_{ij}^{(n)} = P\{ X_{t+n} = j \mid X_t = i \}$
- n-step transition matrix :

state 0 1 ... M
$$0 P_{00}^{(n)} P_{01}^{(n)} ... P_{0M}^{(n)}$$

$$P(n) = 1 P_{10}^{(n)} P_{11}^{(n)} ... P_{1M}^{(n)}$$

$$\vdots$$

$$M P_{M0}^{(n)} P_{M1}^{(n)} ... P_{MM}^{(n)}$$

Chapman-Kolmogorove Equation :

The special cases of m = 1 leads to :

$$p_{ij}^{(n)} = \sum_{k=0}^{M} p_{ik}^{(1)} p_{kj}^{(n-1)}$$
 for all i and j

 Thus the n-step transition probability can be obtained from onestep transition probability recursively.

- Conclusion :
 - **P**(n) = **PP**(n-1) = **PPP**(n-2) = ... = **P**n
- n-step transition matrix for the inventory example :

	state	0	1	2	3	state	e 0	1	2	3
P =	0	0.080	0.184	0.368	0.368	0	0.289	0.286	0.261	0.164
	1	0.632	0.368	0.000	0.000	$P^{(4)} = 1$	0.282	0.285	0.268	0.166
	2	0.264	0.368	0.368	0.000	2	0.284	0.283	0.263	0.171
	3	0.080	0.184	0.368	0.368	3	0.289	0.286	0.261	0.164

- Long-Run Properties of Markov Chain
 - Steady-State Probability

	state	0	1	2	3		state	0	1	2	3
	0	0.080	0.184	0.368	0.368		0	0.286	0.285	0.264	0.166
P =	1	0.632	0.368	0.000	0.000	P (8) =	<u> </u>	0.286	0.285	0.264	0.166
	2	0.264	0.368	0.368	0.000		2	0.286	0.285	0.264	0.166
	3	0.080	0.184	0.368	0.368		3	0.286	0.285	0.264	0.166

- The steady-state probability implies that there is a limiting probability that the system will be in each state j after a large number of transitions, and that this probability is independent of the initial state.
- Not all Markov chains have this property.

state 0
 1
 2
 3

 0

$$\pi_0$$
 π_1
 π_2
 π_3

 1
 π_0
 π_1
 π_2
 π_3

 2
 π_0
 π_1
 π_2
 π_3

 3
 π_0
 π_1
 π_2
 π_3

Steady-State Equations:

Steady-State Equations:
$$\pi_{j} = \sum_{i=0}^{M} \pi_{i} p_{ij} \quad \text{for i = 0, 1, ..., M}$$

$$\sum_{j=0}^{M} \pi_{j} = 1$$

$$\sum_{j=0}^{M} \pi_{j} = 1$$

, which consists of M+2 equations in M+1 unknowns.

Review

Bayes theorem

Suppose B_1 , ... B_n be collectively exhaustive events such that $P(B_i) \neq 0$ for any i, then for any event A such that $P(A) \neq 0$, the following holds

$$P(B_k|A) = \frac{P(A|B_k) * P(B_k)}{\sum_{i=1}^{n} P(A|B_i) * P(B_i)}$$

for any possible *k*

Review

Definition

Events $A_1, ... A_n$ are **mutual independent** if for any collection $A_{k_1}, A_{k_2} ... A_{k_m}$ it holds that

$$P(A_{k_1} \cap ... \cap A_{k_m}) = P(A_{k_1})^* ... * P(A_{k_m})$$

where $k_1, ..., k_m$ are distinct indices.

Example:

A multiple-choice test has 10 questions, each with 4 answers where only one is correct. Suppose a student guesses the answers, what is the probability to answer all questions correctly? What is the probability to answer at least one question correctly?

Review

Dimension

The **covariance** of two random variables X and Y can take positive, negative values, or values close to zero.

