

ML Project Slides

Michele Di Niccola, Valerio Russo Risi Scotti MD in Digital Humanities, MD in Artificial Intelligence m.diniccola@studenti.unipi.it, v.russo22@studenti.unipi.it 28/01/2025

Project B

Introduction and objectives

This project is focused around developing an Artificial Neural Network, RBF Network and a Ridge Regression model, each one able to solve both classification and regression problems. The aim of the project was to pursue a rigorous method to select the best models and validate their results. To find the best configuration, we adopted a random search with 5-fold cross validation. Then the models were tested on an internal test set, providing an unbiased estimate of the performance of the models. The correctness of the implementation was tested on the well-known "Monk's problem". Subsequently, a selected neural network was deployed and used for predicting the outputs of the ML-CUP24-TS dataset. The results of the model selection phase and the experiments are described in the following sections.

Method

Libraries: Keras, sklearn on Python

Implemented models:

Neural Network

- ReLu, Sigmoid(for classification)
- Adam
- Minibatch
- L2 regularization
- Early stopping

RBF Network

- RBF, Sigmoid (for classification)
- Adam
- Minibatch
- Early stopping

Ridge Regression

- Adam
- Minibatch
- L2 regularization
- Early stopping

Monk Results

The inputs were transformed with a one-hot-encoding on all three Monks datasets.

The NN's topology used for MONKs consisted of 1 hidden layer with 4 neurons, with ReLu for the hidden layer and Sigmoid for the output layer, while the Ridge was a simple linear model with L2 penalty. RBF Network results are in the appendix.

	Task	lambda	dropout	eta	batch_size	accuracy/val	mse/val
NN							1.25E-
HPs	Monk-1	1.10E-05	0.0	0.0066	16	100%/100%	05/0.0009
	Monk-2	0.0028	0.1	0.0068	16	97.6%/97.2%	0.042/0.042
	Monk-3	3,26E-06	0.0	0.0042	16	95.1%/94.6%	0.027/0.036

D: 1				batch	accuracy/val	
Ridge	Task	lambda	eta	_size	accuracy	mse/val mse
HPs	Monk-1	0.00044	0.01	96	78.2%/724%	0.157/0.185
	Monk-2	0.31	0.001	48	62.1%/66.8%	0.227/0.221
	Monk-3	0.042	0.029	128	93.4%/97.2%	0.080/0.065

Monk Results

CUP Validation schema: data splitting

The ML-CUP24-TR dataset was split into development set(80%) and internal test set(20%).

5-fold-CV Training + Validation (80%) Hold-out Internal Test (20%)

CUP Validation schema: model selection

NN HP Space

Нр	Range	Description
units	32, 64, 96, 128	number of units per layer
num_layers	1, 2, 3	number of hidden layers
lambda	1e-6 a 1e-2 (log)	L2 regularization coefficient(lambda)
dropout	0.0, 0.1, 0.2, 0.3	Dropout percentage
eta	1e-4 a 1e-2 (log)	Leaming rate (eta)

Ridge HP Space

Нр	Range	Description		
		L2 regularization		
lambda	1e-6 a 1.0 (log)	coefficient(lambda)		
eta	1e-6 a 1e-1 (log)	Learning rate (eta)		

RBF Hp Space

Нр	Range
n contars	[100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200]
n_centers	100, 100, 100, 100, 200]
gamma	[0.1, 0.15, 0.2, 0.25, 0.3]
eta	[0.01, 0.05, 0.1, 0.2, 0.3, 0.4]

The adopted procedure consisted of a 5-fold cross validation with random search (50 hp configurations per fold).

Subsequently, the best model was selected and trained on the whole development set and then tested on the internal test set. Lastly, the model was retrained on the whole ML-CUP24-TR dataset before being used for predicting the outputs of the blind test.

Description
Number of RBF centers (used in the RBF layer)
Gamma value for the RBF activation function
Learning rate for the Adam optimizer

We first tried using Grid Search, but due to time constraints we settled on using random search (Keras Tuner). It took us up to 12 hours to run with a M1 and a M2 Macbook Air(with NN). With random search and 250 hyperparameter sets took us only 25-30 minutes per run(for all models).

Hyperparameters and performance of each fold's best model(NN) in the final CV in term of validation MEE

units	num_layers	lambda	dropout	eta	batch_size	fold	mean_euclidean_error	val_mean_euclidean_error
12	28	24.0E-05	0.1	0.0003340373742720006	16	3	10.5823448209471724	0.654441903092893
(32	11.2E-05	0.0	0.005486272562976355	128	3	20.4876851786935979	0.7673934876174269
(64	31.7E-06	0.1	0.0004826038221672518	16	3	3 0.5497460574487568	0.8026834356043445
9	96	11.9E-06	0.1	0.0010731280858402223	32	2	40.5228849806981878	0.5822320423174928
(32	35.0E-06	0.0	0.0022232368862489644	112	2	5 0.5176003019192953	0.5473737418140548

The final model(NN), built with the best hyperparameters(best in terms of MEE), retrained on all the training set and tested on the internal test set

units	num_layers	lambda	dropout	eta	batch_size	fold	mean_euclidean_error	test_mean_euclidean_error
				0.00222323688	6			
	32	35.0E-06	0.0	2489644	1:	12	5 0.45305779036346755	0.6576384612834375

The Final model's learning curve(NN used for predictions on the CUP TS)

Hyperparameters and learning curve of the final Ridge Regression model

						test_mean_euclidean_err
lam bda	eta	batch_size	mse	val_mse	mean_euclidean_error	or
	0.01610773375315315					
4,68E-05	7	16	0.6627398304113608	0.9369705357283487	1,37476226522372	1.5126772751701543

Hyperparameters and learning curve of the final RBF Network model

		batch_siz			mean_euclidean_err	test_mean_euclidean_er
n_centers gamma	eta	е	mse	val_mse	or	ror
			0.188801588585992	0.455742377361303	0.678781850854277	
125 0.22	0.28	48	83	7	3	0.8575121332574434

Discussion

In our experiments, we found that:

- Ridge Regression performs consistently worse than NN, but the trend inverts when comparing the results on Monk-3 dataset.
- Batch size can change drastically a model's performance. We had an issue with Keras
 Tuner and the batch size was fixed, after solving it, our models's performances
 improved.
- Random search can be a powerful tool to search a broad and continuous hyperparameter space.
- One-hot encoding made a great difference for Monk tests.

Conclusions

We found this experience to be very interesting and useful for developing a better understanding of the theoretical aspects studied during the course.

We acknowledge that this was a key experience, that thought us how important it is to work in a group, essential to prepare us to face the future challenges of work environment.

The predictions were saved on the file Risi_Scotti_ML-CUP24-TS.csv.

Our nickname is Risi Scotti.

Monk 3 Ridge

Ridge Regression Hyperparameter Tuning(CUP) - Best model for each fold

		batch_siz					val_mean_euclidean_err
lambda	eta	e	fold	mse	val_mse	mean_euclidean_error	
0.00024683720448102	0.0669915437673078			0.65855465451636	0.82232525996774		
04	3	16	1	41	59	1.3812835445176600	1.37550579946326
	0.0084564342966125			0.76076292074268	0.80887691132617		
3.55E-06	6	16	2	24	93	1.4591746435557400	1.5208871570526400
0.00048574595827698	0.0497479594662474			0.65623665723530	0.80573709747239		
64	24	96	3	363	37	1.33637090492062	1.5138571313484300
0.00069623244017176	0.0297612711429131			0.65385605775582	0.74527384693898		
76	6	16	4	12	86	1.340182301904970	1.485118935370190
	0.0161077337531531			0.71450587230778	0.61146969496579		
4.68E-05	57	16	5	95	47	1.4245221374248300	1.3057131054250200

Monk 3 RBF

RBF Monk results

Task	centers	gamma	eta	batch_siz e	accuracy/val_accuracy	mse/val_mse
Monk-1	145	0.125	0.31	80	100%/92.8%	0.0014/0.052
		0.15000				
		000000				
Monk-2	120	000002	0.34	16	83.4%/71.5%	0.1161/0.2037
Monk-3	175	0.175	0.2	16	97.5%/93%	0.0281/0.051

RBF Network Hyperparameter Tuning(CUP) - Best model for each fold

	gamm		batch_siz					val_mean_euclidean_err
centers	а	eta	е	fold	mse	val_mse	mean_euclidean_error	or
195	0.28	0.23	32	·	1 6.177328851585040	5.509577590931970	4.470656594060990	4.162796733295300
		0.099999999999999						
160	0.22	9	32	2 2	4.394603325158180	5.9287496041694400	3.588052221595290	4.342357352797260
185	0.17	0.16	16	;	4.518683959296190	4.198017274497010	3.7957561386794800	3.671718817215620
125	0.22	0.28	48	3 4	4.374723044405690	4.168321347721280	3.827341492109410	3.6425679674265700
140	0.27	0.31	48	3 !	7.102200713668150	7.1806889595744000	4.722077436918210	4.790320696960230