

PolarHT[™] HiPerFET IXFH 150N15P Power MOSFET IXFK 150N15P

N-Channel Enhancement Mode Fast Intrinsic Diode Avalanche Rated

V _{DSS}	=	150	V
I _{D25}	=	150	A
R _{DS(on}	≥(13	$m\Omega$
t _{rr}	≤	200	ns

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{DSS}	T ₁ = 25° C to 175° C	150	V		
V _{DGR}	T_J = 25°C to 175°C; R_{GS} = 1 M Ω	150	V		
V _{GS}	Continuous	<u>+</u> 20	V		
V _{GSM}	Transient	±30	V		
I _{D25}	T _C = 25° C	150	A		
I _{D(RMS)}	External lead current limit	75	Α		
I _{DM}	$T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$	340	Α		
I _{AR}	T _C = 25° C	60	А		
E _{AR}	T _c = 25° C	80	mJ		
E _{AS}	T _C = 25° C	2.5	J		
dv/dt	$I_{S} \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_{J} \leq 175^{\circ}$ C, $R_{G} = 4$ Ω	10	V/ns		
$\overline{P_{D}}$	T _C =25°C	714	W		
T _J		-55 +175	°C		
T_{JM}		175	°C		
T _{stg}		-55 + 175	°C		
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C		
M _d	Mounting torque	1.13/10	Nm/lb.in.		
Weight	TO-3P TO-264	5.5 10	g g		

Symbol (T _J = 25° C, u	Test Conditions nless otherwise specified)		Ch Min.	_	istic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		150			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 4 \text{ mA}$		3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 175° C			25 1000	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, t ≤300 µs, duty c	cycle d ≤ 2 %			13	mΩ

TO-264 (IXFK)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- ¹ Fast Intrinsic Diode
- ¹ International standard packages
- Unclamped Inductive Switching (UIS)
- Low package inductance
 - easy to drive and to protect

Advantages

- ^I Easy to mount
- Space savings
- ¹ High power density

© 2006 IXYS All rights reserved DS99328E(03/06)

Symbo	ol	Test Conditions $(T_{_{\rm J}} = 25^{\circ}{\rm C,un}$ Min	les		ristic Values ise specified) Max.
g_{fs}		V_{DS} = 10 V; I_{D} = 0.5 I_{D25} , pulse test	55	80	S
\mathbf{C}_{iss})			5800	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		1730	pF
C _{rss}	J			400	pF
t _{d(on)})			30	ns
t,		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = I_{D25}$		33	ns
$\mathbf{t}_{d(off)}$		$R_G = 3.3 \Omega$ (External)		100	ns
t _f)			28	ns
$\mathbf{Q}_{\mathrm{g(on)}}$)			190	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$		40	nC
\mathbf{Q}_{gd}	J			105	nC
R _{thJC}					0.21° C/W
R_{thCS}		TO-247		0.21	° C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-264		0.15	° C/W

Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ} C, \text{ unless otherwise specified})$

(1) 20 0, 411000 01101			oo opoo	
Symbol	Test Conditions Min.	Тур.	Max.	
Is	$V_{GS} = 0 V$		150	Α
I _{SM}	Repetitive		340	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, t ≤300 μ s, duty cycle d≤ 2 %		1.5	V
t _{rr}	$\begin{cases} I_F = 25 \text{ A} \\ -\text{di/dt} = 100 \text{ A/}\mu\text{s} \end{cases}$		200	ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	V _R = 100 V	0.8		μС

TO-247 (IXFH) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Millimeter		Inches		
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A ₁	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b ₁	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

TO-264 (IXFK) Outline

1 - GATE 2, 4 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER)

	INICI	ICC	14011114	TTEDC
SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.185	.209	4.70	5.31
A1	.102	.118	2.59	3.00
b	.037	.055	0.94	1.40
b1	.087	.102	2.21	2.59
b2	.110	.126	2.79	3.20
С	.017	.029	0.43	0.74
D	1.007	1.047	25.58	26.59
Ε	.760	.799	19.30	20.29
е	.215	BSC	5.46 BSC	
J	.000	.010	0.00	0.25
K	.000	.010	0.00	0.25
L	.779	.842	19.79	21.39
L1	.087	.102	2.21	2.59
ØΡ	.122	.138	3.10	3.51
Q	.240	.256	6.10	6.50
Q1	.330	.346	8.38	8.79
ØR	.155	.187	3.94	4.75
ØR1	.085	.093	2.16	2.36
S	.243	.253	6.17	6.43

Fig. 8. Transconductance 110 100 90 80 70 $T_{J} = -40^{\circ}C$ 60 25°C 50 150°C 40 30 20 10 0 100 125 150 175 200 225 250 0 25 50 I_D - Amperes

Fig. 10. Gate Charge

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance

