§ 7.2 改进的欧拉法

§ 7.1.1 梯形公式

$$\int_{x_n}^{x_{n+1}} f(x, y(x)) \approx \frac{h}{2} [f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1}))]$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

$$R_{n+1} = y(x_{n+1}) - y(x_n) - \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y(x_{n+1}))]$$

$$= -\frac{h^3}{12} y'''(\xi) \qquad (x_n < \xi < x_{n+1}) \quad R(T) = -\frac{h^3}{12} f''(\eta)$$

梯形公式为二阶方法,属隐式格式,一般用迭代法求解。

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] & (k = 0,1,...) \end{cases}$$

根据Lipschitz条件:

$$\left| y_{n+1}^{(k+1)} - y_{n+1}^{(k)} \right| = \frac{h}{2} \left| f(x_{n+1}, y_{n+1}^{(k)}) - f(x_{n+1}, y(y_{n+1}^{(k-1)})) \right|$$

$$\leq \frac{hL}{2} \left| y_{n+1}^{(k)} - y_{n+1}^{(k-1)} \right|$$

收敛条件:

$$0 < \frac{hL}{2} < 1$$

§ 7.2.2 改选Euler法

在梯形公式中, 隐式公式的求解只迭代一次:

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) & 预测 \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] & 校正 \end{cases}$$

为编程方便,改写为:

$$\begin{cases} y_p = y_n + hf(x_n, y_n) \\ y_q = y_n + hf(x_n + h, y_p) \\ y_{n+1} = (y_p + y_q)/2 \end{cases}$$

算法 7.1

(1)输入 $a,b,f(x,y),N,y_0$

(2)
$$h = \frac{b-a}{N}, n = 0, x = a, y = y_0, \text{ fix } \exists (x, y)$$

$$(3)\begin{cases} y_p = y_n + hf(x_n, y_n) \\ y_q = y_n + hf(x_n + h, y_p) \end{cases}$$

$$(x_p + x_q)/2 \Rightarrow y, x + h \Rightarrow x, \text{ the } \exists (x, y)$$

(4)若 $n < N-1, n+1 \Rightarrow n,$ 转(3); 否则退出。

【例7.2】用改进Euler法求解(h=0.1, N=10):

$$\begin{cases} y' = x - y & (0 \le x \le 1) \\ y(0) = 0 \end{cases}$$

迭代形式为:

$$\begin{cases} y_p = y_n + 0.1(x_n - y_n) \\ y_q = y_n + 0.1(x_n + 0.1 - y_p) \\ y_{n+1} = (y_p + y_q)/2 \end{cases}$$

	表 7-2 数值计算结果					
x_n	y_n	$y(x_n)$	$y(x_n)-y_n$	$y(x_n)-y_n$		
0	0. 000000	0.000000	0, 000000	0.000000		
0.1	0.005000	0.004837	-0.000163	0.004837		
0, 2	0.019025	0.018731	-0.000294	0.008731		
0.3	0.041218	0.040818	-0.000400	0.011818		
0.4	0.070802	0.070320	-0.000482	0.014220		
0.5	0.107076	0. 106531	-0.000545	0.016041		
0.6	0.149404	0. 148812	-0,000592	0.017371		
0.7	0.197211	0. 196585	-0.000626	0.018288		
0.8	0.249976	0. 249329	-0.000647	0.018862		
0.9	0.307228	0.306570	-0.000658	0.019150		
1.0	0,368541	0.367879	-0.000662	0.019201		

§ 7.3 龙格-库塔(Runge-Kutta)法

§ 7.3.1龙格-库塔法基本思想

(1)Euler公式:

(2)改进的Euler公式:

$$\begin{cases} y_{n+1} = y_n + hK_1 \\ K_1 = f(x_n, y_n) \end{cases} \begin{cases} y_{n+1} = y_n + h(K_1 + K_2)/2 \\ K_1 = f(x_n, y_p) \\ K_2 = f(x_n + h, y_n + hK_1) \end{cases}$$

利用函数f(x,y)在某些点上的线性组合来计算 $y(x_{n+1})$ 的近似值 y_{n+1} 。

可利用近似Taylor展开式的更多项来增加精度。

$$y_{n+1} = y_n + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \dots + \frac{h^p}{p!}y^{(p)}(x_n)$$

§ 7.3.2 龙格-库塔法的构造

算法 7.1

$$\begin{cases} y_{n+1} = y_n + h \sum_{i=1}^{p} c_i K_i \\ K_1 = f(x_n, y_n) \end{cases}$$

$$K_i = f(x_n + a_i h, y_n + h \sum_{j=1}^{i-1} b_{ij} K_j)$$

参数确定原则: 其Taylor展开式与y(x)在xn处尽可能多项重合。

$$\begin{cases} y_{n+1} = y_n + h(c_1 K_1 + c_2 K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + a_2 h, y_n + h b_{21} K_1) \end{cases}$$

迭代公式的Taylor展开式:

$$y_{n+1} = y_n + h[c_1 f(x_n, y_n) + c_2 f(x_n + a_2 h, y_n + h b_{21} f(x_n, y_n))]$$

$$= y_n + h\{c_1 f(x_n, y_n) + c_2 [f(x_n, y_n) + a_2 h f'_x (x_n, y_n) + h b_{21} f'_y (x_n, y_n) f(x_n, y_n)]\} + O(h^3)$$

$$= y_n + (c_1 + c_2) f(x_n, y_n) h + c_2 [a_2 f'_x (x_n, y_n) + b_{21} f'_y (x_n, y_n) f(x_n, y_n)] h^2 + O(h^3)$$

 $y(x_{n+1})$ 在 x_n 处的Taylor展开式:

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + h^2 / 2y''(x_n) + O(h^3)$$

$$= y_n + f(x_n, y_n)h$$

$$+ h^2 / 2[f'_x(x_n, y_n) + f'_y(x_n, y_n)f(x_n, y_n)]O(h^3)$$

要求局部截断误差为O(h³),则前两式的前三项相同,得:

$$\begin{cases} c_1 + c_2 = 1 \\ c_2 a_2 = 1/2 \\ c_2 b_{21} = 1/2 \end{cases}$$

上式有无穷多解,如取 $c_1=c_2=1/2$, $a_2=b_{21}=1$,则:

$$\begin{cases} y_{n+1} = y_n + h(K_1 + K_2)/2 \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h, y_n + hK_1) \end{cases}$$

取
$$c_1=0$$
, $c_2=1$, $a_2=b_{21}=1/2$, 则:

$$\begin{cases} y_{n+1} = y_n + hK_2 \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h/2, y_n + hK_1/2) \end{cases}$$

常用的三阶方法:

$$\begin{cases} y_{n+1} = y_n + h/6 \cdot (K_1 + 4K_2 + K_3) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h/2, y_n + hK_1/2) \\ K_3 = f(x_n + h, y_n - hK_1 + 2hK_2) \end{cases}$$

常用的经典四阶方法:

$$\begin{cases} y_{n+1} = y_n + h/6 \cdot (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + h/2, y_n + hK_1/2) \\ K_3 = f(x_n + h/2, y_n + hK_2/2) \\ K_4 = f(x_n + h, y_n + hK_3) \end{cases}$$

【例7.3】用四阶RK方法求解(h=0.1, N=5):

$$\begin{cases} y' = x - y & (0 \le x \le 1) \\ y(0) = 0 \end{cases}$$

$$\begin{cases} y_{n+1} = y_n + \frac{0.2}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = x_n - y_n \\ K_2 = x_n + \frac{h}{2} - \left(y_n + \frac{h}{2}K_1\right) = 0.9(x_n - y_n) + 0.1 \\ K_3 = x_n + \frac{h}{2} - \left(y_n + \frac{h}{2}K_2\right) = 0.91(x_n - y_n) + 0.09 \\ K_4 = x_n + h - (y_n + hK_3) = 0.818(x_n - y_n) + 0.182 \end{cases}$$

四阶RK方法

x_n	Уn	$y(x_n)$	$y(x_n)-y_n$	Euler	改进Euler
0	0.000000	0.000000	0.000000	0. 000000	0. 000000
0.2	0.018733	0.018731	-0.000002	0. 008731	-0. 000294
0.4	0.070324	0.070320	-0.000004	0. 014220	-0. 000482
0.6	0.148817	0.148812	-0.000005	0. 017371	-0. 000592
0.8	0. 249335	0.249329	-0.000006	0. 018862	-0. 000647
1.0	0, 367886	0.367879	-0.000007	0. 019201	-0.000662

§ 7.3.3 变步长的龙格-库塔法

y(x)变化可能不均匀,等步长求解可能有些地方精度过高,有些地方精度过低。

如何根据精度自动调节步长?

以**p**阶公式、步长**h**计算:
$$y(x_{n+1}) - y_{n+1}^{(h)} \approx ch^{p+1}$$

以步长h/2计算两次:
$$y(x_{n+1}) - y_{n+1}^{(h/2)} \approx 2c \left(\frac{h}{2}\right)^{p+1}$$

$$(2^{p}-1)y(x_{n+1})-2^{p}y_{n+1}^{(h/2)}+y_{n+1}^{(h)}\approx 0$$

有:
$$|y(x_{n+1}) - y_{n+1}^{(h)}| \approx \frac{2^p}{(2^p - 1)} |y_{n+1}^{(h)} - y_{n+1}^{(h/2)}| \approx \Delta$$

缩小或放大h直到达到要求计算精度。

§ 7.4 线性多步法

前面的方法在计算 y_{n+1} 时仅利用了 y_n ,是否还可以利用 y_{n-1} , y_{n-2} , ...?

一般形式:

$$y_{n+1} = \sum_{i=0}^{r} a_i y_{n-i} + \sum_{i=-1}^{r} \beta_i f_{n-i}$$

若 β_{-1} =0,显式;若 β_{-1} ≠ 0,隐式。

§ 7.4.1 线性多步公式的导出

- 将线性多步公式和y(x_{n+1})分别在x_n处进行Taylor展开;
- 根据阶数要求指定项的系数相等,解方程组得出 多步公式的各项系数。
- 由于线性多步公式中有2r+3个待定系数,最多可以达到2r+2阶精度。

$$\sum_{i=0}^{r} a_i = 1$$

$$\sum_{i=0}^{r} (-i)^{k} a_{i} + k \sum_{i=-1}^{r} (-i)^{k-1} \beta_{i} = 1$$

₹7.4.2 常用的线性多步公式

1、阿达姆斯(Admas)公式:

r=3,
$$a_1$$
= a_2 = a_3 = $β_{-1}$ =0,由方程组:

$$\begin{cases} \sum_{i=0}^{3} a_i = 1 \\ \sum_{i=1}^{3} (-i)^k a_i + k \sum_{i=-1}^{3} (-i)^{k-1} \beta_i = 1 \end{cases}$$

得到四阶显性公式:

$$y_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$$

四阶**隐性**公式:
$$y_{n+1} = y_n + \frac{h}{24}(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2})$$
 29

2、米恩尔(Milne)公式:

r=3, $a_0=a_1=a_2=β_{-1}=0$,得到四阶四步显式公式:

$$y_{n+1} = y_{n-3} + \frac{4}{3}h(2f_n - f_{n-1} + 2f_{n-2})$$

3、海明(Hamming)公式:

r=2, $a_1=β_2=0$,得到四阶三步隐式公式:

$$y_{n+1} = \frac{1}{8}(9y_n - y_{n-2}) + \frac{3}{8}h(f_{n+1} + 2f_n - f_{n-1})$$

【例 7.4】 分别用四阶 Adams 显式和隐式公式求初值问题

$$\begin{cases} y = x - y \\ y(0) = 0 \end{cases} 0 \le$$

≤1的数值解,取h = 0.1。

表 7-4 计算结果

x_n	Admas 显式法		Admas 隐式法		
	Уn	$ y(x_n)-y_n $	Уп	$ y(x_n)-y_n $	
0.0	0		0		
0.1	0.00483742		0.00483742		
0.2	0.01873075		0.01873075		
0.3	0.04081822	P 471 3	0.04081801	2.1×10 ⁻⁷	
0. 4	0.07032292	2.87×10 ⁻⁶	0. 07031966	3.8×10 ⁻⁷	
0.5	0.10653548	4.82×10 ⁻⁶	0.10653014	5. 2×10 ⁻⁷	
0.6	0.14881841	6,77×10 ⁻⁶	0.14881101	6. 3×10 ⁻⁷	
0.7	0. 19659339	8.09×10 ⁻⁶	0.19658459	7.1×10 ⁻⁷	
0.8	0, 24933816	9.19×10 ⁻⁶	0. 24932819	7.7×10 ⁻⁷	
0.9	0. 30657961	9.95×10 ⁻⁶	0. 30656885	8. 1×10 ⁻⁷	
1.0	0. 36788996	1.052×10 ⁻⁵	0.36787860	8.4×10 ⁻⁷	

隐式公式 精度高, 稳定性好, 但计算量 大。

§ 7.4.3 预测-校正系统

用显式公式计算预测值,用隐式公式进行校正。

Admas预测-校正公式:

$$\begin{cases} \overline{y}_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}) & \text{Min} \\ y_{n+1} = y_n + \frac{h}{24} [9f(x_{n+1}, \overline{y}_{n+1}) + 19f_n - 5f_{n-1} + f_{n-2}] & \text{Win} \end{cases}$$

Milne-Hamming预测-校正公式:

$$\begin{cases} \overline{y}_{n+1} = y_{n-3} + \frac{4}{3}h(2f_n - f_{n-1} + f_{n-2}) & \text{Min} \\ y_{n+1} = \frac{1}{8}(9y_n - y_{n-2}) + \frac{3}{8}h[9f(x_{n+1}, \overline{y}_{n+1}) + 2f_n - f_{n-1}] & \text{Win} \\ 32 \end{cases}$$

本章小结

• 欧拉(Euler)法

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

• 改进的欧拉法

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) & 预测 \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] & 校正 \end{cases}$$

龙格-库塔(Runge-Kutta)法

根据Taylor展开确定系数:

$$\begin{cases} y_{n+1} = y_n + \sum_{i=1}^{p} c_i K_i \\ K_1 = f(x_n, y_n) \end{cases}$$

$$K_i = f(x_n + a_i h, y_n + h \sum_{j=1}^{i-1} b_{ij} K_j)$$

根据精度自动调节步长:

$$|y(x_{n+1}) - y_{n+1}^{(h)}| \approx \frac{2^p}{(2^p - 1)} |y_{n+1}^{(h)} - y_{n+1}^{(h/2)}| \approx \Delta$$

• 线性多步法

$$y_{n+1} = \sum_{i=0}^{r} a_i y_{n-i} + \sum_{i=-1}^{r} \beta_i f_{n-i}$$

根据Taylor展开确定系数;

结合显式、隐式形成预测-校正系统。

课后作业

第七章习题的1、2、5、6。