Handling Imbalanced Dataset in Multi-label Text Categorization using Bagging and Adaptive Boosting

Prepared by

Genta Indra Winata Masayu Leylia Khodra

Overview

Background

1. Imbalanced dataset distribution

classifier tends to be weighted down by the majority of the data and ignore the minority

Few research in **multi-label text** categorization which handles this issue

2. Lack of Density

70 labels

21% minority label

Many abbreviations and informal words found

Dataset

Each instance comprises features such as *id*, *complaint text*, complaint *topic* and *a set of label*.

Example

Text

"Di stasiun KA Kiaracondong (**jln** Kiaracondong antara kebaktian **s d** kantor Polisi kebon jayanti) ada **gepeng** anak usia sekolah **ngelem**, bicaranya kasar **tdk karuan**, suka ganggu penumpang wanita! **Trm ksh**!"

"In KA Kiaracondong station (Kiaracondong street between kebaktian and kebon jayanti police station), there were homeless students who did glue sniffing, spoke harshly and harassed women. Thanks"

Label Target

Dinas Sosial (Dinsos) Kota Bandung Satuan Polisi Pamong Praja (Satpol PP) Kota Bandung

Related work

Previous research

Fauzan and M. L. Khodra, "Automatic Multilabel Categorization using Learning to Rank Framework for Complaint Text on Bandung Government," in *International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)*, Bandung, 2014.

Use LAPOR dataset (consists of complaints data)

Best performer: Label PowerSet (LP) with SMO weak classifier

Problem : Did not handle imbalanced dataset.

Related work (2)

Previous research

Syaripudin and Khodra states adaptive boosting is able to handle imbalanced dataset, especially for single-label categorization.^[1]

[1] A. Syaripudin and M. L. Khodra, "A Comparison for Handling Imbalanced Datasets," in *International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)*, Bandung, 2014.

Objectives

- 1. Compares between **handling imbalanced dataset techniques** with **baseline results**
- 2. Improves multi-label text classification performance

Architecture

Methods

1. Text Processing Techniques

2. Multi-label Text Categorization Problem transformation techniques

- Binary Relevance (BR)
- Label PowerSet (LP)

Methods (2)

3. Imbalanced Dataset Handling Algorithm

a. Adaptive Boosting (AdaBoost.MH)

an algorithm to find highly accurate classification rule by combining many weak hypotheses^[1]

b. Bagging (Bagging.ML)

an algorithm for generating multiple bootstraps and use the aggregation average over all bootstraps to predict a class.^[2]

Source: Ensembles: Boosting, Prof. Alexander Ihler

^[1] R. E. Schapire and Y. Singer, "BoosTexter: A Boosting-based System for Text Categorization," *Machine Learning Volume 39 Issue 2-3*, vol. 39, no. 2-3, pp. 135-168, 2000.

^[2] L. Breiman, "Bagging Predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

Metric Evaluation

- 1. Hamming Loss
- 2. Subset Accuracy
- 3. Example-based Accuracy
- 4. Micro-averaged F-measure

$$hamming_loss(h) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{Q} |h(\mathbf{x_i}) \Delta \mathcal{Y}_i|$$

$$subset_accuracy(h) = \frac{1}{N} \sum_{i=1}^{N} I(h(\mathbf{x_i}) = \mathcal{Y}_i)$$

$$accuracy(h) = \frac{1}{N} \sum_{i=1}^{N} \frac{|h(\mathbf{x_i}) \cap \mathcal{Y}_i|}{|h(\mathbf{x_i}) \bigcup \mathcal{Y}_i|}$$

$$micro_F_1 = \frac{2 \times micro_precision \times micro_recall}{micro_precision + micro_recall}$$

$$micro_precision = \frac{\sum_{j=1}^{Q} tp_j}{\sum_{j=1}^{Q} tp_j + \sum_{j=1}^{Q} fp_j} \quad micro_recall = \frac{\sum_{j=1}^{Q} tp_j}{\sum_{j=1}^{Q} tp_j + \sum_{j=1}^{Q} fn_j}$$

Results

Hamming Loss

Weak classifier	Baseline		AdaBoost.MH	Bagging.ML	Bagging.ML
	BR	LP		(BR)	(LP)
Decision Stump	0.0152	0.0247	0.0197	N/A	0.0250
J48	0.0133	0.0188	0.0131	0.0150	0.0170
Random Forest	0.0132	0.0179	0.0146	N/A	N/A
Naive Bayes	0.0420	0.0159	0.0327	N/A	N/A
SMO	0.0144	0.0148	0.0197	0.0150	0.0150

Results (2)

Subset Accuracy

Weak classifier	Baseline		AdaBoost.MH	Bagging.ML	Bagging.ML
	BR	LP		(BR)	(LP)
Decision Stump	0.3346	0.2318	0.0039	N/A	0.2320
J48	0.4074	0.4016	0.4277	0.3750	0.3800
Random Forest	0.4103	0.3986	0.3337	N/A	N/A
Naive Bayes	0.2144	0.4219	0.0145	N/A	N/A
SMO	0.4200	0.4588	0.0039	0.4000	0.4490

Results (3)

Example-based Accuracy

Weak classifier	Baseline		AdaBoost.MH	Bagging.ML	Bagging.ML
	BR	LP		(BR)	(LP)
Decision Stump	0.4123	0.2726	0.0039	N/A	0.2730
J48	0.5151	0.5034	0.5301	0.5520	0.5400
Random Forest	0.5080	0.4907	0.3847	N/A	N/A
Naive Bayes	0.4098	0.5570	0.0417	N/A	N/A
SMO	0.5556	0.5821	0.0039	0.5740	0.5850

Results (4)

Micro-averaged F-measure

Weak classifier	Baseline		AdaBoost.MH	Bagging.ML	Bagging.ML
	BR	LP		(BR)	(LP)
Decision Stump	0.4919	0.2716	0	N/A	0.2720
J48	0.5950	0.5055	0.6044	0.6240	0.5700
Random Forest	0.5839	0.4988	0.4704	N/A	N/A
Naive Bayes	0.3889	0.5801	0.1094	N/A	N/A
SMO	0.6095	0.5977	0	0.6270	0.6040

Results (5)

AdaBoost.MH-J48 with BR-J48

Bagging.ML-LP-SMO with LP-SMO

Results (6)

Bagging.ML-LP (SMO)

AdaBoost.MH (J48)

Bagging.ML-BR (SMO)

Subset accuracy

0.4490

Example-based accuracy

0.5850

Hamming loss

0.0131

Micro-averaged F-measure

0.6270

Conclusion

- 1. Handling imbalanced dataset improves **categorization performance** for particular **weak classifiers**. J48 for AdaBoost.MH and SMO for Bagging.ML.
- AdaBoost.MH and Bagging.ML increases majority label accuracy.
 Adaptive Boosting only increases one minority label and bagging boosts most of minority labels.