Math 421

Wednesday, September 17

Announcements

- Homework 2 Due Friday
- Course assistant office hours had been moved to Tuesday this week – so none tomorrow.
- Grace's drop-in hours
 - Today, 12-1 VV 311
 - Tomorrow, 9-11 VV B205

Chapter 1: Introduction

Section **3**: The Set $\mathbb R$ of Real Numbers

Real Numbers: \mathbb{R}

Axioms:

- Associative laws (A1. & M1.)
- Commutative laws (A2. & M2.)
- Existence of an identity element (A3. & M3.)
 Existence of inverse elements (A4. & M4.)
- Distributive law (DL)
- x+y eIR xy eIR Closure under addition and multiplication
- Order structure (O1.-O5.)

$$N = \{1, 2, 3, \dots \}$$

$$Z = \{\dots, -1, 0, 1, \dots \}$$

$$Q = \{\frac{P}{q} : P, q \in Z \text{ and } q \neq 0\}$$

 $\sqrt{2} = \frac{P}{\xi} \implies 2 = \frac{P^2}{g^2} \implies 2g^2 = P^2$

Example Proof: $\sqrt{2} \notin \mathbb{Q}$ (technically a proof by negation) Thm: $\sqrt{2}$ is irrational.

Use contradiction.

Proof. Assume by way of contradiction that Jz is rational. Then there exist PIGET, g = 0, such that \[\sigma = \frac{7}{9}. By

removing common factors from p and 6, we may assume pag are not both even. Then

 $\sqrt{2} = \frac{P}{g} \Rightarrow (\sqrt{2})^2 = (\frac{P}{g})^2 \Rightarrow 2 = \frac{P'}{g^2} \Rightarrow 2g^2 = P^2$

so p² is even >> p is even. So p = 2k for some $k \in \mathbb{Z}$. So $2g^2 = p^2 = (2k)^2 = 4k^2 \Rightarrow g^2 = 2k^2$. Thus g^2 is even \Rightarrow g is even. This is a condradiction. Therefore our initial assumption that UZ is rational is false.

Discussion Questions

Answer the following questions, if the answer is yes or the statement is true, you do not need to provide a proof. If the answer is no or the statement is false, you should provide a counterexample.

- Are the rational numbers closed under multiplication? Closed under addition?
- **True or False:** If x is rational and y is irrational, then x + y is irrational.
- **True or False:** if x is rational and y is irrational, then xy is irrational.

Absolute Value & Distance

Def: The absolute value function is defined by

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Notice that for all $x \in \mathbb{R}$

- -x = |x|
- $-|x| \le x \le |x|$

· Use a direct proof with cases.

Example Proof: Triangle Inequality

Thm. (The Triangle Inequality) If $x, y \in \mathbb{R}$, then $|x + y| \le |x| + |y|$. Proof.

Case 1:
$$x \ge 0$$
, $y \ge 0$. Then $x+y \ge 0$, so $|x+y| = x+y = |x|+|y| \le |x|+|y|$
Case 2: $x < 0$, $y < 0$. Then $x+y < 0$, so $|x+y| = -(x+y) = -x + -y = |x|+|y| \le |x|+|y|$

Example: Proof (cont.)

Case 3:
$$x \ge 0$$
, $y < 0$
 $3a. x + y \ge 0$
 $|x + y| = x + y = |x| + y < |x| + 0 = |x| + |y| = |x| + |y|$
 $3b: x + y < 0$.

 $|x + y| = -(x + y) = -x + -y = -x + |y|$
 $|x + y| = -(x + y) = |x| + |y|$
 $|x + y| = |x| + |y|$
 $|x + y| = |x| + |y|$

Case 4: $x < 0$, $y \ge 0$. By swapping the variables

 $|x + y| \le 0$, $|y| \ge 0$. By swapping the variables

 $|x + y| \le 0$, $|y| \ge 0$. By swapping the variables