

TFT LCD Preliminary Specification

MODEL NO.: V216B1- LE1

Customer:
Approved by:
Note: Only for reference.

C	U	Ν	Ш	N	I	5

REVISION HISTORY	3	3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 GENERAL SPECIFICATIONS 1.4 MECHANICAL SPECIFICATION	4	_
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 TFT LCD MODULE 2.3 BACKLIGHT UNIT	5	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT		7
4. BLOCK DIAGRAM OF INTERFACE 4.1 TFT LCD MODULE	1	12
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE INPUT 5.2 BACKLIGHT UNIT 5.3 BLOCK DIAGRAM OF INTERFACE 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT	1	13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	1	18
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	2	22
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS		26
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL	2	27
10. PACKAGING 10.1 PACKING SPECIFICATIONS 10.2 PACKING METHOD	2	28
11. MECHANICAL CHARACTERISTICS	3	31

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 1.0		All	All	The Preliminary Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The V216B1-LE1 model is a 21.6 inch TFT Liquid Crystal Display module with LED Backlight and a 30-pin 1ch-LVDS interface. This module supports 1366 x 768 (16:9 wide screen) mode and displays up to 16.7 (6-bit+Hi-FRC colors) millions colors. The inverter module for backlight is not built-in.

1.2 FEATURES

- Excellent Brightness: 400nits

Contrast Ratio: 1000:1Fast Response Time: 5msColor Saturation: NTSC 68%

- WXGA (1366 x 768 pixels) Resolution

- DE (Data Enable) Only Mode

- LVDS (Low Voltage Differential Signaling) Interface

- Viewing Angle: 170(H)/160(V) (CR>10) TN Technology

- Color Reproduction (Nature Color)

1.3 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	477.417 (H) x 268.416 (V) (21.6" diagonal)	mm	
Bezel Opening Area	481.5 (H) x 272.5 (V)	mm	
Driver Element	a-si TFT active matrix	-	
Pixel Number	1366 x R.G.B. x 768	pixel	
Pixel Pitch (Sub Pixel)	0.1165 (H) x 0.3495 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	16.7 millions	color	
Display Operation Mode	Transmissive mode / Normally White	-	
Surface Treatment	Hard coating (3H), AG (Haze 25%)	-	

1.4 MECHANICAL SPECIFICATION

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	500.5	501	501.5	mm	
Module Size	Vertical(V)	296.5	297	297.5	mm	
	Depth(D)	13.1	13.6	14.1	mm	To PCB cover
Weight			2100	2150	g	

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 Preliminary

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Valu	ne	Unit	Note	
item	Symbol	Min.	Max.	Uliit	Note	
Storage Temperature	Tst	-20	+60	$^{\circ}\mathbb{C}$	(1)	
Operating Ambient Temperature	Тор	0	+50	$^{\circ}\!\mathbb{C}$	(1), (2)	
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90% RH Max. (Ta \leq 40 $^{\circ}$ C).
 - (b) Wet-bulb temperature should be 39 $^{\circ}$ C Max. (Ta > 40 $^{\circ}$ C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half-sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

2.2 TFT LCD MODULE

Itom	Symbol	Va	lue	Unit	Note
Item	Syllibol	Min.	Max.	Ullit	Note
Power Supply Voltage	Vcc	-0.3	6.0	V	(1)
Input Signal Voltage	VIN	-0.3	3.6	V	(1)

2.3 BACKLIGHT UNIT

Item	Symbol	Symbol Value			Unit	Note	
item	Symbol	Min. Typ.		Max.	Offic	Note	
LED Forward Current Per Input Pin	I _F	0	40	60	mA	(1), (2)	
LED Reverse Voltage Per Input Pin	V_{R}			70	V	Duty=100%	
LED Pulse Forward Current Per Input Pin	I _{FP}			160	mA	Pulse Width≦10msec. and Duty≦10%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 °C (Refer to 3.2 for further information).

Issued Date: Feb. 1, 2010 Model No.: V216B1 – LE1

Preliminary

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2$ °C

Parameter			Cumbal		Value	Unit	Note		
			Symbol	Min.	Тур.	Max.	Ullit	note	
Power Su	pply Voltage		V_{CC}	4.5	5.0	5.5	V	(1)	
Rush Cur	rent		I _{RUSH}	-	-	3.0	Α	(2)	
		White		-	0.40	-	Α		
Power Su	pply Current	Black	Icc	-	0.53	0.61	Α	(3)	
		Vertical Stripe		-	0.50	-	Α		
	Differential In	put High	V_{LVTH}	+100		_	mV		
	Threshold Vo	Itage		+100	-	1	IIIV		
LVDS	Differential In	put Low	V_{LVTL}			-100	mV		
Interface	Threshold Vo	Itage	V LVTL	_	_	-100	IIIV	(4)	
	Common Inp	ut Voltage	V_{LVC}	1.0	1.2	1.4	V		
	Differential input voltage		$ V_{ID} $	200	_	600	mV		
	Terminating Resistor		R_T	-	100	-	ohm		
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V		
interface	Input Low Th	reshold Voltage	V _{IL}	0	- 1	0.7	V		

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary** **②**

Vcc rising time is 470us

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta = 25 \pm 2 $^{\circ}$ C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
i didilielei	Syllibol	Min. Typ.		Max.	5	Note
LED Light Bar Input Voltage Per Input Pin	V_{PIN}	39.2	43.4	47.6	٧	(1), Duty=100%, I _{PIN} =40mA
LED Light Bar Current Per Input Pin	I _{PIN}	0	40	60	mA	(1), (2) Duty=100%
LED Life Time	L _{LED}	30000			Hrs	(3)
Power Consumption	P_{BL}		10.416	11,424	W	(1) Duty=100%, I _{PIN} =40mA

- Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:
- Note (2) $P_{BL} = I_{PIN} \times V_{PIN} \times (6)$ input pins
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= (20)mA (per chip) until the brightness becomes \leq 50% of its original value.

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE INPUT

Pin No.	Symbol	Description	Note
1	NC	No connection	(2)
2	NC	No connection	(2)
3	NC	No connection	(2)
4	GND	Ground	
5	RX0-	Negative transmission data of pixel 0	
6	RX0+	Positive transmission data of pixel 0	
7	GND	Ground	
8	RX1-	Negative transmission data of pixel 1	
9	RX1+	Positive transmission data of pixel 1	
10	GND	Ground	
11	RX2-	Negative transmission data of pixel 2	
12	RX2+	Positive transmission data of pixel 2	
13	GND	Ground	
14	RXCLK-	Negative of clock	
15	RXCLK+	Positive of clock	
16	GND	Ground	
17	RX3-	Negative transmission data of pixel 3	
18	RX3+	Positive transmission data of pixel 3	
19	GND	Ground	
20	NC	No connection	(2)
21	SELLVDS	Select LVDS data format	(3)
	(Default:VESA)	Select LVDS data format	(3)
22	NC	No connection	(2)
23	GND	Ground	
24	GND	Ground	
25	NC	No connection	(2)
26	VCC	Power supply: +5V	
27	VCC	Power supply: +5V	
28	VCC	Power supply: +5V	
29	VCC	Power supply: +5V	
30	VCC	Power supply: +5V	

Note (1) Connector part no.: Starconn 093G30-B0001A-G4 or STM MSAKT2407P30H

LVDS connector pin orderdefined as follows

Note (2) Reserved for CMO internal use, please leave it open

Note (3) Low = Connect to GND: JEIDA Format, High = connect to +3.3V or Open: VESA Format.

Please refer to 5.2 LVDS INTERFACE

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

5.2 BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN1: Entery,7083K-F12N-00L

		CN1
Pin	Symbol	Description
1.	NC	No connection
2.	CH1	Light-bar Feedback Channel 1
3.	CH2	Light-bar Feedback Channel 2
4.	CH3	Light-bar Feedback Channel 3
5.	NC	No connection
6.	V_{L}	LED Light-bar Input Power
7.	V_L	LED Light-bar Input Power
8.	NC	No connection
9.	CH4	Light-bar Feedback Channel 4
10.	CH5	Light-bar Feedback Channel 5
11.	CH6	Light-bar Feedback Channel 6
12.	NC	No connection

5.3 BLOCK DIAGRAM OF INTERFACE

R0~R7 : Pixel R Data G0~G7 : Pixel G Data B0~B7 : Pixel B Data DE : Data enable signal DCLK : Data clock signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

5.4 LVDS INTERFACE

VESA Format : SELLVDS = H or Open

JEIDA Format : SELLVDS = L

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or ("L" or OPEN)

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

	<u> </u>	Data Signal																													
	Color		Red						Green						Blue																
		R9	R8	R7	R6		R4		R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0		B8	B7	B6	B5	B4	B3	B2	B1	B0
	Black Red	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	i	1	Ιi	i.	1	i	1	1	1	
Colors	Magenta	1	1	1	1	1	1	1	1	1	1	Ö	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	0	1	i	Ιi	1	i	1	i	1	1	i
	Yellow	1	i	i	i	i	l i	i	1	i	1	1	1	1	1	1	1	1	1	1	1	0	0	o	ò	Ö	Ö	0	Ö	0	o l
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: (:	: 1	:	:	:	:	:	:	:	:
Of	:	١.		:	:	:	1 :	:	:	:	:	:	:	:	:	:	:	:	:	:	: \	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1022)	1		1	1	1	1		1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)		1	1		1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		0		0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	1	1:	:	:	1:	:	:	:	:	1 :	1 :	1 :	1	:\		l : .	y:	:	1:	1 :	:	1:	:	:	1 :	1	:	:	:
Of	Green (1021)	0	0	0	0	0	0	0	:	0	:	1	1	1	-	1	;	1	1	0	1	:	0	0	0	0	:	:	: 0	:	0
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	i	1		1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	i	li	1	i	i	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	ő	0	ő	0	0	Ö	Ö	0	Ö	0	Ö	0	0	0	0	0	0	Ö	0	ő	0	0	ő	Ö	0	Ö	0	Ö	0	1
	Blue (2)	Ö	Ö	ő	ő	ő	ő	Ö	0	Ö	0	ŏ	Ö	Ö	Ö	0	0	Ö	ő	ő	Ö	Ö	Ô	Ô	ő	ő	ő	ő	Ö	1	o l
Gray	:	:	:	:	:	:	:	:	:	:	:		· .	Ŀ	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:		:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1
Blue	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

The input signal timing specifications are shown as the following table and timing diagram.										
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note			
	Frequency	F _{clkin} (=1/TC)	60	76	82	MHz				
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)			
Receiver Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)			
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(4)			
LVDS Receiver	Setup Time	Tlvsu	600	_	-	ps	(5)			
Data	Hold Time	Tlvhd	600	-	-	ps	(5)			
	Frame Rate	F_{r5}	47	50	53	Hz				
Vertical	Traine riate	F _{r6}	57	60	63	Hz				
Active Display	Total	Tv	778	806	1050	Th	Tv=Tvd+Tvb			
Term	Display	Tvd	768	768	768	Th	_			
	Blank	Tvb	10	38	282	Th	_			
Horizontal	Total	Th	1442	1560	1936	Тс	Th=Thd+Thb			
Active Display	Display	Thd	1366	1366	1366	Тс	_			
Term	Blank	Thb	76	194	570	Тс	_			

[&]quot;Enlarging Vtotal from Max 888Th to 1050Th is OK, provided that both pixel clock & Htotal are within the specified range in the spec."

Note (1) Please make sure the range of pixel clock has follow the below equation:

$$\text{Fclkin(max)} \, \geq \, \text{Fr6} \, \times \, \text{Tv} \, \times \, \text{Th}$$

$$Fr5 \times Tv \times Th \ge Fclkin(min)$$

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	$^{\circ}$				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	Vcc	5.0	V				
Input Signal	According to typical	value in "3. ELECTRICAL C	CHARACTERISTICS"				
LED Light Bar Input Current Per Input Pin	I _{PIN}	20 ± 0.6	mA _{DC}				
PWM Duty Ratio	D	100	%				
LED Light Bar Test Converter	CMO 27-D041745 + 轉接板						

7.2 OPTICAL SPECIFICATIONS

LOII IOATIC									
m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
	CR		700	1000		-	(2)		
Response Time				1.3	2.2	ma	(2)		
				3.7	5.8	IIIS	(3)		
ance of White	L _C		250	300			(4)		
า	δW				(1.3)	-	(7)		
	CT				4	%	(5)		
Dod	Rx	$\theta_{v}=0^{\circ}, \theta_{v}=0^{\circ}$		(0.638)	Typ. +0.03	1			
neu	Ry	Viewing Angle at		(0.337)		-			
Croon	Gx	Normal Direction		(0.309)		-			
Green	Gy		Typ. -0.03	(0.605)		-	(6)		
Blue	Bx			(0.151)		-	(6)		
	Ву			(0.060)		-			
\\/hita	Wx			0.285		-			
vvriite	Wy			0.293		-			
Color Gamut	CG		68			%	NTSC Ratio		
Horizontal	$\theta_{x^+} + \theta_{x^-}$	OD. 10	150	170		Dag	(1) (0)		
Vertical	$\theta_{Y} + \theta_{Y}$	UH>10	140	160		Deg.	(1), (6)		
Horizontal	$\theta_{x^+} + \theta_{x^-}$	CD. F	160	178		Dog	(1) (6)		
Vertical	$\theta_{Y} + \theta_{Y}$	UN> 5	150	170		Deg.	(1), (6)		
	e ance of White n Red Green Blue White Color Gamut Horizontal Vertical Horizontal	$\begin{array}{c c} m & Symbol \\ CR \\ T_R \\ T_F \\ Ince of White \\ L_C \\ In & \delta W \\ CT \\ Red & Rx \\ Ry \\ Gx \\ Gy \\ Blue & Bx \\ By \\ White & Wx \\ Wy \\ Color Gamut & CG \\ Horizontal & \theta_x++\theta_x-Vertical & \theta_y++\theta_y-Vertical & \theta_y++\theta_y-Vertica$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mSymbolConditionMin.CR e T_R T_F 700e T_R T_F 250ince of White L_C δW 250n δW CT $\theta_x=0^\circ, \theta_Y=0^\circ$ Viewing Angle at Normal DirectionGreen G_X G_Y Typ0.03Blue B_X B_Y W_X W_Y Color Gamut C_X C_X C_X C_X Vertical $\theta_{Y++}\theta_{Y^-}$ $\theta_{Y++}\theta_{Y^-}$ C_X 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5),

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

 $L_{C} = L(5)$

L(X) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100$$
 (%)

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] When storing modules as spares for a long time, the following precaution is necessary.
 - [9.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [9.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V216B1-LE1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1,2002=2,2003=3,2004=4...2010=0,2011=1,2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Issued Date: Feb. 1, 2010 Model No.: V216B1 - LE1 **Preliminary**

10. PACKAGING

10.1 PACKING SPECIFICATIONS

- 15 LCD TV modules / 1 Box (1)
- (2) Box dimensions: 563(L) X 417 (W) X 375 (H) mm
- (3)Weight: approximately 33Kg (13 modules per box)

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

Figure.10-1 packing method

Sea / Land Transportation (40ft Container)

Air Transportation

Sea / Land Transportation (40ft HQ Container)

Figure.10-2 packing method

11. MECHANICAL CHARACTERISTICS

