Mechatronics (ROB-GY 5103 Section A)

- Today's lecture:
 - H-bridge
 - Control
 - Miscellaneous
- (See Topics #4 and #7 from Main Text for details)

Next Week

- Final Exam (2:00 to 2:45)
 - 45 minutes for 8 written questions
 - Only on content covered after midterm

Break/Intermission (2:45 to 3:00)

Next Week

- Early presentations (3:00 onwards)
 - Presentations (~10-15 minutes followed by Q&A)
 - Must bring physical prototype to demonstrate
 - Submit your presentation files on Brightspace
 - I encourage you to present early!
 - Sign up sheet here
 - Indicate special accommodations
 - You can still submit project report on NYU Brightspace at the official deadline Dec 19.

H-Bridge

• Why is it called an H-bridge (Full-bridge)?

Full-Bridge: Version 1

- 4 BJTs, 1 voltage source, and a DC motor.
 - Switches: transistors Q1-Q4.

Full-Bridge: Version 1

- NPN transistor. Normally off. When base potential higher than emitter potential, collector-emitter pair conducts. V_c > V_e.
- PNP transistor. Normally off. When base potential is lower than emitter potential, emitter-collector pair conducts. $V_e > V_c$.

Full-Bridge: Version 1 (4 inputs)

- $V_{in1} \le V_{cc} 0.6V$ and $V_{in4} \ge 0.6$ V: Motor turns forward.
- $V_{in2} \le V_{cc} 0.6V$ and $V_{in3} \ge 0.6$ V: Motor turns backward.
- 4 inputs are being used to appropriately switch the transistors.

Full-Bridge: Version 2 (2 inputs)

• 2 inputs are being used to appropriately switch the transistors.

Full-Bridge: Version 3 (2 inputs)

- 2 inputs are being used to appropriately switch the transistors.
 - Only NPN transistors

P5	P6	Motor	Notes
Positive	Ground	Forward	
Ground	Positive	Backward	
Ground	Ground	No motion	
Positive	Positive	*	Forbidden

H-bridge: Relays

H-bridge: BJTs

 Diodes are being used to prevent BJTs being damaged by inductive kickback.

H-bridge: BJTs

- High signal enters Q3's base, Q3 conducts, which allows Q2 to conduct.
 - Current flows from +12 V supply through the motor from right to left (forward).
- To reverse the direction, remove High signal from Q3, and apply to Q4 instead.

H-bridge: MOSFETs

MOSFET H-Bridge

H-Bridge Motor Driver ICs

- Common H-Bridge solutions include:
 - National Semiconductor's LMD18200, LMD18201, LM15200
- LMD18200
 - High-current, easy-to-use H-bridge chip (3A, 12-55V).
 - TTL and CMOS compatible.
 - Comes with clamping diodes, shorted load protection, and a thermal warning interrupt output lead.
- L293D (Unitrode)
 - Very easy to use, cheaper than LMD18200
 - Can't handle as much current
 - Not many functions available.

LMD18201

Speed Control

- Apply voltage to motor:
 - Lower than the nominal voltage → motor runs slower.
 - Larger than nominal voltage → motor runs faster.

Speed Control: DC motor dynamics

Equivalent Circuit Model

$$V = E + IR$$

$$\tau = kI \qquad E = k\omega$$

k: motor (torque) constant

- E: Motional EMF or electromotive force) R: Motor Resistance
- I: Motor Current
- V: Applied Voltage (at motor terminals)

Speed Control: DC motor dynamics

Equivalent Circuit Model

$$V = E + IR$$

$$\tau = kI \qquad E = k\omega$$

Lorenz Force Faraday's law of induction

- E: Motional EMF or electromotive force) R: Motor Resistance
- I: Motor Current

- k: motor (torque) constant
- V: Applied Voltage (at motor terminals)

Speed Control: Potentiometer

- Despite the linearity of the control, don't do this. Not recommended.
- Highly inefficient:
 - Resistance wastes energy
- Use of pot as described does not allow soft start of the motor while keeping the torque constant. It leads to a hard start which may induce jerk behavior.

Speed Control: BJT

- Don't do this. Not recommended.
 - Base voltage/current changes the resistance across collector-emitter pair thus varying the current flow through the circuit connected through collector-emitter pair.
 - Now the BJT must dissipate heat.
 - Power dissipated by transistor = (voltage drop across transistor) x (current flow through the transistor)

Speed Control: Potentiometer BJT

Don't do this. Not recommended.

Speed Control: PWM

Yes, please do this.
 Recommended

Pulse Width Modulator

• The output of a variable duty oscillator is fed to the control lead "base" of a power transistor.

- Here a UJT relaxation oscillator is used to generate a series of pulses that drive an SCR on and off.
- To vary the speed of the motor, the UJT oscillator's frequency is adjusted by changing the RC time constant.

UJT/SCR Control Circuit

- A pair of NAND gates make up the relaxation oscillator section, while an enchantment-type power MOSFET is used to drive the motor.
- Like the preceding circuit, the speed of the motor is controlled by the oscillator's RC time constant.

- 555 timer in astable mode to generate pulses that drive a power MOSFET.
- By inserting a diode between pins 7 and 6, as shown, the 555 timer is placed into lowduty cycle operation.
 - R₁, R₂, and C set the frequency and on/off duration of the output pulses

- 555 timer in astable mode to generate pulses that drive a power MOSFET.
- By inserting a diode between pins 7 and 6, as shown, the 555 timer is placed into lowduty cycle operation.
 - R₁, R₂, and C set the frequency and on/off duration of the output pulses

Without diode, $t_{high} = 0.693 (R_1 + R_2) C$

- Interface an N-channel MOSFET IRF511 to BS2 as shown.
- Interface the motor between the +5V of power supply and the drain of MOSFET, with MOSFET source connected to ground.
- Place a 1N4001 diode in reverse biased mode parallel to motor.
- With BS2 o/p high on P0 → MOSFET gate is driven positive relative to source of MOSFET.
 - The drain source pair of the MOSFET conducts and motor turns on.
- With BS2 o/p low on P0 → MOSFET stops conducting, a reverse voltage spike is generated in the motor which conducts through a diode.
- A low voltage (5VDC) motor is being used in this circuit.

Figure
A simple DC motor driver circuit

- BS2 drives the open collector, <u>non-inverting buffer</u> whose output is tied to 12VDC.
- When BS2 is low, 7407 buffer outputs 0V DC which drives a Pchannel MOSFET.
- The 12VDC potential difference between source-gate yields higher drive capability.
- P0 low → motor turns on
 P0 high → motor turns off.

- In this circuit: P0 low → inverting buffer is turned on → 7406 outputs 12V which appears at the gate of an N-channel MOSFET IRF511.
 - The motor is turned on.
 - With Vg Vs = 12V, the MOSFET provides high drive capability.
- With P0 high \rightarrow inverting buffer is turned off \rightarrow 7406 outputs 0V so motor turns off.

- In this circuit, an NPN BJT is used to turn on/off a low voltage, low current hobby motor.
- The current rating of BJT must be appropriately selected to provide the drive current required by the motor.

DC Motor: On-Time Control Circuit #1

- DC motor is turned on for a period of time, determined by the 500k pot and $10\mu F$ capacitor.
- When a low going pulse appears at PIN2 of the LM555 timer, the IRF511 MOSFET is turned on which turns the motor on.
- PIN2 of LM555 timer should be turned high immediately after being turned low.
- This circuit allows us to off-load the task of running the motor for a certain period and then stopping it.
- BS2 simply turns the motor on, it does not have to monitor time to turn the motor off, since LM555 takes care of the timing issue (monostable operation mode).

• Sample code:

low 0

high 0

'(rest of the code here)

DC Motor: On-Time Control Circuit #2

- To allow automatic control of ON-time duration of motor, here a digital pot is used.
- By selecting a proper setting for solid state pot, the motor ON-time duration is controlled.

Interfacing DC Motor with BS2: H-Bridge Circuit

- MOSFET-based H-bridge for the direction control of a DC motor.
- The outputs from P0 and P1 of BS2 are processed by the 7407 non-inverting buffers. The buffer outputs control two pairs of two MOSFET's each to perform direction control.

Sample Code:

loopstart:

high 0

low 1

pause 2000

low 0

high 1

pause 2000

goto loopstart

DC Motor Speed Control using PWM

- Consider DC Motor on/off control circuit #1 (reproduced below).
- We can use the PWM technique to control the speed of motor.
- Sample code shown below can be used to get:
 - Motor on at full speed (on all the time).
 - Motor on only 50% of time (slower speed compared to 100%).
 - Motor on only 25% of time (slower speed compared to 50%).
 - Motor accelerating

Sample PWM Code

```
x var word
y var word
here:
debug "This is full-on"
debug cr
high 0 'On all the time.
pause 2000
debug "This is 50% on"
debug cr
for x = 1 to 200
high 0
pause 5 'ON for 5 milliseconds
low 0
pause 5 'OFF for 5 milliseconds
next
```

```
debug "This is 25% on"
debug cr
for x = 1 to 100
high 0
pause 5 'ON for 5 milliseconds
low 0
pause 15 'OFF for
                                  15
milliseconds
next
pause 2000
debug "This is accelerating"
debuc cr
for y = 100 \text{ to } 1
high 0
pause 15
low 0
pause y
next
goto here
```

PWM Signal Produced by the Sample Code

DC Motor Challenges

• Issues: rechargeability, energy density, capacity, voltage, internal resistance, etc.

Power supply noise:

- Current demand varies as motor starts or changes direction.
- Commutator brush noise introduced due to breaking/making of contact that leads to inductive kickback.
- PWM noise which also causes motor to turn on/off leading to inductive kickback.
 - Advised to use separate power supplies or motor and microcontroller.
- Electromagnetic interference may be produced as PWM pulses current in motor coil or as motor brushes make/break contact with the power supply.

Audible noise:

- When PWM frequency matches up with one of the resonant frequencies of motor structure (in the audible range).
- Gearbox and other mechanical components.

Servomotor

- Position control rather than speed control
 - Servomechanism with feedback control
 - Example: potentiometer as angle sensor (encoder)

Parallax Standard Servo Motor

- DC motors with feedback position control
- As long as the coded signal exists on the input line, the servo will maintain the angular position of the shaft
- As the coded signal changes, the angular position of the shaft changes

Parallax Standard Servo Motor Specifications

Technical Specifications

- > Power 6vdc max
- > Speed 0 deg to 180 deg in 1.5 seconds on average
- > Weight 45.0 grams/1.59oz
- > Torque 3.40 kg-cm/47oz-in
- > Size mm (L x W x H) 40.5x20.0x38.0
- > Size in (L x W x H) 1.60x.79x1.50

Servomotor Wiring

Wiring setup

This pin can be any I/O pin

Servomotor with BS2

Board of Education Rev B

Caution: Do not connect servo here when using wall transformer or 9V battery. Servo is to be connected here only when using AA battery pack with \leq 6V.

When more than 2 servos are to be connected, need to use additional capacitors across V_{dd} and V_{ss} .

Servomotor with BS2: Code

X var byte Output 12

Here:

For X = 1 to 100

Pulsout 12, 500

Pause 10

Next

Pause 500

For X = 1 to 100 Pulsout 12, 1000 Pause 10 Next Pause 500

Goto Here

Pulsout Pin #, Duration

12 is pin number of BS2 500 means 1 millisecond

!! Caution

Fix the Duration between 500 to 1000

Servomotor with BS2: Code

Control Theory

How to ride a bike

PID Simulator

https://grauonline.de/alexwww/ardumower/pid/pid.html

Control Theory

Block diagram

PID Control

• Proportional, Derivative, Integral Control

DC Motor Block Diagram

Miscellaneous

Dead Reckoning

- Dead Reckoning: derived from deduced reckoning of sailing days
 - Establish present location by advancing over a previous known position through known course and velocity information over a given length of time
- Measure vehicle displacement:
 - Wheel rotation (odometry using pot, encoder, magnetic/inductive proximity sensor, etc.).
 - Doppler navigation (motion relative to ground)
 - Inertial navigation (accelerometers)
- Measure vehicle heading:
 - Onboard steering
 - Magnetic compass
 - Rate gyro
 - Differential odometry

Doppler Effect

Stationary Observer, moving source

$$f_{\rm rec} = f\left(\frac{s}{s \pm v_{\rm s}}\right)$$

- f: source frequency, $f_{\rm rec}$: frequency @ observer (Doppler frequency), s: speed of sound in air, v_s : velocity of source
- +/- sign: source moving away from/toward observer
- · Moving observer, stationary source

$$f_{\rm rec} = f\left(\frac{s \pm v_{\rm o}}{s}\right)$$

• v_0 : velocity of observer

 For reflected wave, instead of Doppler frequency, we consider the change in frequency (Doppler shift)

$$\Delta f = f - f_{rec} = \frac{2f v \cos \theta}{s}$$

- f: source frequency, f_{rec} : frequency received, s: speed of sound in air, v: velocity of target object, ϑ : relative angle between direction of motion and beam axis

Doppler Navigation

- Use ultrasonic sensor aimed downward at a prescribed angle to sense ground movement
- Use Doppler shift equation to determine the ground speed V_A of the vehicle as follows:

$$\Delta f = f - f_{rec} = \frac{2f V_{D}}{s}$$

$$\Rightarrow V_{D} = \frac{s \Delta f}{2f}$$

$$\Rightarrow V_{A} = \frac{V_{D}}{\cos \alpha} = \frac{s \Delta f}{2f \cos \alpha}$$

sensor

• f: transmitted frequency, Δf : Doppler shift, s: speed of sound in air, V_D : measured velocity, α : declination angle

Vehicle heading via Differential Odometry

• Displacement *D* of a differential-drive robot platform:

$$D = \frac{D_{\rm L} - D_{\rm R}}{2}$$

- D_L and D_R : displacements of left and right wheels, respectively
- D_{L} : portion of the circumference of a circle with radius d+b, $C_{L} = 2\pi(d+b)$
- D_R : portion of the circumference of a circle with radius b, $C_R = 2\pi b$
 - d: distance between left and right wheels, b: inner turn radius
- Moreover: $D_{\rm L} = \left(\frac{C_{\rm L}}{2\pi}\right)\theta \rightarrow C_{\rm L} = \frac{2\pi D_{\rm L}}{\theta} \rightarrow \theta = \frac{D_{\rm L}}{d+b}$
- Similarly, $D_{\rm R} = \left(\frac{C_{\rm R}}{2\pi}\right)\theta \rightarrow C_{\rm R} = \frac{2\pi D_{\rm R}}{\theta} \rightarrow \theta = \frac{D_{\rm R}}{b} \rightarrow b = \frac{D_{\rm R}}{\theta}$
- Finally, $\theta = \frac{D_L D_R}{d}$

Triangulation Ranging

• Basis (Law of sines): If the sides of a triangle are a, b, and c and the angles opposite to those sides are α , θ , and φ , then

- Therefore, given the length of a side and two angles of a triangle, the length of the other two sides and the third angle can be determined.
- In ranging applications, length B represents the distance to the object of interest at point P₃.
- In a passive ranging system, directional detectors can be placed at P₁ and P₂ to view the object point P₃, forming an imaginary triangle.
- Measurement of angles θ and φ along with the known orientation and lateral separation of the detectors allows the calculation of range to the object at P₃.

Time-of-Flight Ranging

Measure the round-trip time required for a pulse (burst) of emitted energy (acoustic, radio, or optical) to travel to an object and then reflect/echo back to a receiver.

Range to the object: d=v(T/2), where v is the speed of the propagated wave, T=round-trip time of travel

Ultrasonic emitter/detector pairs (transceivers) are commonly used

Common ultrasonic transducers: capacitive, electrostatic, and piezoelectric

Laser-based time-of-flight systems

Speed of sound ≈ 0.3 m/ms, speed of light ≈ 0.3 m/ns

Time of flight for 3 meters: ultrasonic system: 10ms; laser system: 10ns

→ sophisticated timing circuitry necessitated in laser-based time-of-flight ranging instruments.

Ranging by Phase Shift Measurement

- A continuous-wave (e.g., amplitude-modulated laser, RF, or acoustic) energy source is directed towards a target.
- The reflected signal that strikes back at the detector is compared to a reference signal (tapped off from the transmitted signal).
- The relative phase shift between the reference and reflected signal is measured to determine the round-trip distance from the object.
- Notation: T: period (sec), f: frequency (Hz), ω : radial frequency (radian/sec), λ : wavelength (m), $\omega = 2\pi f$, $\lambda = s/f$, s: speed of sound.

$$\sin(\omega t)$$
 $\sinh(\omega t - \varphi)$
 $\sinh(\omega t - \varphi)$

$$\phi = \omega \Delta T = 2\pi f \Delta T = 2\pi \left(\frac{s}{\lambda}\right) \Delta T$$

$$= \frac{2\pi}{\lambda} s \Delta T = \frac{2\pi (2d)}{\lambda} = \frac{4\pi d}{\lambda}$$

$$\Rightarrow d = \frac{\phi \lambda}{\Delta \pi}$$

The End

