Lecture9: MOSFET, triode/saturation

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Triode mode

- Equation
 - A differential equation for V(x)

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$

- Solution
 - Potential

$$V(x) = V_G - V_{TH} - \sqrt{(V_G - V_{TH})^2 - \frac{2I_D}{\mu_n C_{ox} W}} x$$

Current

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Saturation mode

- Current usually increases as the voltage increases...
- Recall (6.3).

$$Q_{elec} = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (6.3)

- What happens when $V(x) = V_G - V_{TH}$?

← Instead, the current is saturated. (Red lines)

IEDM 2017

- C. Auth et al. (Intel)
 - (Intentionally streched for visibility)
 - Slight increase of I_D in the satruation region

Homework#5 (1)

- Due: 09:00, April 9
- Write a program, which reads a netlist file.
 - Construct a square matrix, whose size is $N \times N$. The matrix is related with the vector in Homework#4.
 - Each row of the matrix represents an equation.
 - In this program, the matrix describes a system:
 - For every element terminal, the terminal current vanishes.
 - For every element terminal, the terminal voltage is equal to the circuit node voltage.
 - For the GND node, the node voltage is zero.
 - For all other circuut nodes, the KCL is applied.

Homework#5 (2)

(Continued)

- For example, consider the example in Homework#4. A voltage source and a resistor are found.
- The matrix is explicitly shown below.

		_	•	•		_	•	_	•	•		I_1^{\prime}		_	
Currents	Γ1	0	0	0	0	0	0	0	0	0 7		I_2^V		Ծղ	
	0	1	0	0	0	0	0	0	0	0		-∠ 17V		0	
Voltages	0	0	1	0	0	0	0	0	0	-1		<i>v</i> ₁		0	
	0	0	0	1	0	0	0	0	- 1	0		V_2^V		0	
Currents	0	0	0	0	1	0	0	0	0	0		I_1^R	_	0	
	0	0	0	0	0	1	0	0	0	0	$ \times $	I_2^R	=	0	
Voltages	0	0	0	0	0	0	1	0	0	-1		V_1^R		0	
	0	0	0	0	0	0	0	1	-1	0		, T		0	
GND	0	0	0	0	0	0	0	0	1	0		V_2^R		0	
KCL	L_1	0	0	0	1	0	0	0	0	0 -		V_0	j L	ر0.	İ
												$\lfloor V_{in} floor$			

$$\begin{bmatrix} I_1^V \\ I_2^V \\ V_1^V \\ V_2^V \\ I_1^R \\ I_2^R \\ V_1^R \\ V_2^R \\ V_0 \\ V_{in} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Homework#5 (3)

- Solve the following problems of the mid-term exam in 2017.
 - P25
 - P26
 - P27
 - P28
 - P29
 - P30
 - P31
 - P32
 - P33