WHAT IS CLAIMED IS:

- 1. A powder coating composition comprising
 - a) an organic film-forming binder and
 - b) as stabilizer at least one compound of the benzofuran-2-one type.
- 2. A powder coating composition according to claim 1, in which component (b) is a compound of the formula I

in which, if n is 1,

 R_1 is unsubstituted or C_1 - C_4 alkyl-, C_1 - C_4 alkoxy-, C_1 - C_4 alkylthio-, hydroxyl-, halogen-, amino-, C_1 - C_4 alkylamino-, phenylamino- or di(C_1 - C_4 alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, or R_1 is a radical of the formula II

$$\begin{array}{c}
R_9 \\
R_7
\end{array}$$

$$R_{10}$$

$$R_{11}$$
(II)

and, if n is 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxyl-substituted phenylene or naphthylene; or is - R_{12} -X- R_{13} -,

 R_2 , R_3 , R_4 and R_5 independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_{25} -alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_2 -alkanoyloxy, C_1 - C_2 -alkanoyloxy, C_3 - C_2 -alkyl)amino, C_3 - C_2 -alkenoyloxy, C_3 - C_2 -alkyl)amino, C_3 - C_3 -

alkanoyloxy interrupted by oxygen, sulfur or $N-R_{14}$; C_6-C_9 cycloalkylcarbonyloxy,

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to which they are attached, form a benzo ring, R_4 is additionally -(CH₂)_p-COR₁₅ or -(CH₂)_qOH or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of the formula III

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ R_{\overline{16}} & C - R_{17} \end{array} \qquad \text{(III)}$$

in which R_1 is as defined above for n=1, R_6 is hydrogen or a radical of the formula IV

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

where R_4 is not a radical of the formula III and R_1 is as defined above for n = 1. R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, halogen, hydroxyl, C_1-C_{25} alkyl, C_2-C_{25} alkyl interrupted by oxygen, sulfur or $N-R_{14}$; C_1-C_{25} alkoxy, C_2-C_{25} alkoxy interrupted by oxygen, sulfur or N-R₁₄; C₁-C₂₅alkylthio, C₃-C₂₅alkenyl, C₃-C₂₅alkenyloxy, C3-C25alkynyl, C3-C25alkynyloxy, C7-C9phenylalkyl, C7-C9phenylalkoxy, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted phenoxy; unsubstituted or C₁-C₄alkyl-substituted C₅-C₀cycloalkyl; unsubstituted or C₁-C₄-alkyl-substituted $C_5-C_8 cycloalkoxy;\ C_1-C_4 alkylamino,\ di(C_1-C_4 alkyl) amino,\ C_1-C_{25} alkanoyl,\ C_3-C_{25} alkanoyl$ interrupted by oxygen, sulfur or $N-R_{14}$; C_1-C_{25} alkanoyloxy, C_3-C_{25} -alkanoyloxy interrupted by oxygen, sulfur or $N-R_{14}$; C_1-C_{25} alkanoylamino, C_3-C_{25} -alkenoyl, C_3-C_{25} alkenoyl interrupted by oxygen, sulfur or $N-R_{14}$; C_3-C_{25} alkenoyloxy, C_3-C_{25} alkenoyloxy interrupted by oxygen, sulfur or $N-R_{14}$; C_6-C_9 cycloalkylcarbonyl, C_8-C_9 cycloalkylcarbonyl, bonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl; benzoyloxy or C₁-C₁₂alkyl-substituted

radicals R_7 and R_8 or the radicals R_8 and R_{11} , together with the carbon atoms to which they are attached, form a benzo ring,

 R_{12} and R_{13} independently of one another are unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxyl, $\left[-O^{-}\frac{1}{r}M^{r+}\right]$, C_{1} - C_{18} alkoxy or $-N$, R_{26} ,

 R_{16} and R_{17} independently of one another are hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the C atom to which they are attached, form an unsubstituted or mono- to tri- C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkylidene ring;

 R_{18} and R_{19} independently of one another are hydrogen, $C_1\text{-}C_4$ alkyl or phenyl, R_{20} is hydrogen or $C_1\text{-}C_4$ alkyl,

 R_{21} is hydrogen, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl, C_2 - C_{25} alkyl interrupted by oxygen, sulfur or $N-R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted on the phenyl radical 1 to 3 times by C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by oxygen, sulfur or $N-R_{14}$ and which is unsubstituted or substituted on the

phenyl radical 1 to 3 times by C_1 - C_4 alkyl, or else the radicals R_{20} and R_{21} , together with the carbon atoms to which they are attached, form an unsubstituted or mono- to tri- C_1 - C_4 alkyl-substituted C_5 - C_{12} cycloalkylene ring;

R₂₂ is hydrogen or C₁-C₄alkyl,

 R_{23} is hydrogen, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl interrupted by oxygen, sulfur or $N-R_{14}$; C_2 - C_{25} alkanoyl substituted by a di(C_1 - C_6 alkyl)phosphonate group; C_6 - C_9 cyc-

loalkylcarbonyl, thenoyl, furoyl, benzoyl or C1-C12alkyl-substituted benzoyl;

R₂₄ and R₂₅ independently of one another are hydrogen or C₁-C₁₈alkyl,

R₂₆ is hydrogen or C₁-C₈alkyl,

R₂₇ is a direct bond, C₁-C₁₈alkylene, C₂-C₁₈alkylene interrupted by oxygen, sulfur or

lene, C7-C8bicycloalkylene, unsubstituted or C1-C4alkyl-substituted phenylene,

$$\sqrt{s}$$
 or \sqrt{s} ,

$$R_{28}$$
 is hydroxyl, $\left[-O^{-\frac{1}{r}}M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{26} ,

$$R_{29}$$
 is oxygen, -NH- or $N-C-NH-R_{30}$,

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

X is a direct bond, oxygen, sulfur or -NR₃₁-,

n is 1 or 2,

p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2.

3. A powder coating composition according to claim 1, in which component (b) is a compound of the formula V

in which

R₂ is hydrogen or C₁-C₆alkyl,

R₃ is hydrogen,

 R_4 is hydrogen, $C_1\text{-}C_6$ alkyl or a radical of the formula IIIa

$$R_{2}$$

$$R_{16}$$

$$R_{17}$$

$$R_{18}$$

$$R_{17}$$

$$R_{18}$$

$$R_{11}$$

$$R_{11}$$

$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

$$R_{15}$$

$$R_{15}$$

$$R_{17}$$

$$R_{18}$$

$$R_{11}$$

$$R_{11}$$

R₅ is hydrogen,

 R_7 , R_8 , R_9 and R_{10} independently of one another are hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

the proviso that at least two of the radicals R_7 , R_8 , R_9 , R_{10} and R_{11} are hydrogen; R_{16} and R_{17} , together with the C atom to which they are attached, form an unsubstituted or mono- to tri- C_1 - C_4 alkyl-substituted cyclohexylidene ring,

 $R_{20},\,R_{21}$ and R_{22} are hydrogen, and

R₂₃ is C₂-C₁₈alkanoyl.

4. A powder coating composition according to claim 1, in which component (b) is a compound of the formula V

in which

R₂ is tert-butyl,

R₃ is hydrogen,

R4 tert-butyl or a radical of the formula Illa

$$R_{2}$$

$$R_{10}$$

$$R_{16}$$

$$R_{17}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{1}$$

$$R_{1}$$

R₅ is hydrogen,

 R_7 , R_8 , R_9 and R_{10} independently of one another are hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

$$R_{11}$$
 is hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy, C_2 - C_8 alkanoyloxy or $-C_1$ - C_2 - C_3 , with C_1 - C_4

the proviso that at least two of the radicals R_7 , R_8 , R_9 , R_{10} and R_{11} are hydrogen; R_{16} and R_{17} , together with the C atom to which they are attached, form a cyclohexylidene ring,

 R_{20} , R_{21} and R_{22} are hydrogen, and R_{23} is C_2 - C_{18} alkanoyl.

5. A powder coating composition according to claim 1, in which component (a) is an epoxy resin, a polyester-hydroxyalkylamide, a polyester-glycoluril, an epoxy-polyester resin, a

polyester-triglycidyl isocyanurate, a hydroxy-functional polyester-blocked polyisocyanate, a hydroxy-functional polyester-uretdione, an acrylat resin with hardener or a mixture of such resins.

- 6. A powder coating composition according to claim 1, comprising further additives in addition to components (a) and (b).
- 7. A powder coating composition according to claim 6, comprising as further additives, in addition, one or more components from the group consisting of pigments, dyes, fillers, levelling assistants, devolatilizing agents, charge control agents, optical brighteners, adhesion promoters, antioxidants, light stabilizers, curing catalysts, photoinitiators, wetting auxiliaries or corrosion protection agents.
- 8. A powder coating composition according to claim 6, comprising as further additives phenolic antioxidants, sterically hindered amines, organic phosphites or phosphonites; and/or thiosynergists.
- 9. A powder coating composition according to claim 1, in which component (b) is present in an amount of from 0.001 to 10% based on the weight of component (a).
- 10. A powder coating composition comprising components (a) and (b) according to claim 1 which in the course of curing is in contact with nitrogen oxides originating from combustion gases.
- 11. A process for reducing the discoloration of heat-curable powder coating compositions, which comprises incorporating into or applying to these compositions at least one component (b) according to claim 1.
- 12. A process for curing powder coating compositions comprising components (a) and (b) according to claim 1, wherein curing is conducted in a gas oven.
- 13. A coating film applied and cured by a process according to claim 11 or 12.