

Format-3

IIMTU-NEP IMPLEMENTATION

Second Year/ IV Semester

Programme: Certificate		Year: Second
Class: BCA		Semester: Fourth
Credits Theory:4Cr	Subject: Data Mining	
Course Code: BCA-NEP-404	Title: Data Mining	

Course Objectives:

CO1: To introduce students to basic applications, concepts, and techniques of data mining.

CO2: To develop skills for using recent data mining software to solve practical problems in a variety of disciplines.

CO3: To extract knowledge from data repository for data analysis, frequent pattern, classification and prediction.

CO4: Understand and implement classical models and algorithms in data warehouses and data mining

CO5: Master data mining techniques in various applications like social, scientific and environmental context.

Nature of Paper: Discipline Specific Elective

Minimum Passing Marks/Credits: 40 (ISE +ESE)

L:4

T:0

P:4(In Hours/Week)

Theory - 1 Hr. = 1 Credit

Practical- 2 Hrs.=1Credit(4Hrs./Week=4Credits)

Unit	Contents	No. of
		Lectures
		Allotted
I	Introduction: Data Mining - Overview, Motivation, Definition &	12
	Functionalities, Major issues in Data Mining, Integration of Data	
	Mining System with Data Warehouse System.	
	Data Preprocessing: Descriptive Data Summarization, Data	
	Cleaning-Missing Values, Noisy Data, Data Integration and	
	Transformation, Data Reduction-Data Cube Aggregation,	
	Attribute Subset Selection, Dimensionality Reduction,	
	Numerosity Reduction, Discretization and Concept Hierarchy.	

II	Association Rules: Introduction, Frequent Itemsets, Closed Itemsets, Methods to Discover Association Rules, Apriori Algorithm, Multilevel Association Rule Mining, and Rule Evaluation Metrics.	12
III	Classification and Prediction: Classification Techniques- Decision Tree, Rule-Based Classification, Bayesian Classification, k-Nearest-Neighbor Classifier, Linear Regression, Accuracy and Error Measures	12
IV	Cluster Analysis: Introduction, Types of Data, Partitioning Methods- k-Means and k-Medoids, Hierarchical Clustering- Chameleon, Density Based Methods-DBSCAN, OPTICS. Grid Based Methods- STING, Model Based Methods- Neural Network Approach, Outlier Analysis.	12
V	Recent Trends and Applications: Web Mining, Spatial Data Mining, Text Mining, Multimedia Data Mining, Applications of data mining in finance, business, social networks.	12

Text Books:

1. Jiawei Han, Jian Pei, Micheline Kamber, "Data Mining: Concepts and Techniques", Elsevier.

Reference

- 1. Margaret H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- 2. Arun K. Pujari, "Data Mining Techniques", Universities Press
- 3. Pieter Adriaans&DolfZantinge, "Data Mining", Pearson Education

Evaluation/Assessment Methodology

Max. Marks 100

Transforming Education System, Transforming Lives	
1) Class tasks/ Sessional Examination	15
2) Presentations /Seminar	
3)Assignments	10
4)Research Project Report	
Seminar On Research Project Report	
5) ESE	75
Total:	100

Prerequisites for the course: DBMS

Course Learning Outcomes:

CO1: Understand the functionality of the various data mining and data warehousing component.

CO2: Appreciate the strengths and limitations of various data mining and data warehousing models.

 $CO3\colon \textsc{Explain}$ the analyzing techniques of various data

CO4: Describe different methodologies used in data mining and data ware housing.

CO5: Compare different approaches of data ware housing and data mining with various

technologies.

Dr. Deepa Sharma Chairperson- CBCS Committee