

UNIVERSITÀ DEGLI STUDI DI TRENTO

DIPARTIMENTO DI INGEGNERIA CIVILE, AMBIENTALE E MECCANICA Corso di Laurea in Ingegneria Civile

RELAZIONE DI MECCANICA COMPUTAZIONALE DELLE STRUTTURE 1

Risoluzione di una struttura iperstatica tramite diversi metodi di calcolo Risoluzione di una lastra soggetta ad una tensione assiale

DOCENTI Massimo Penasa Andrea Piccolroaz Matteo Tommaselli STUDENTI Angelica Lenzi 173852 Nicola Meoli 186100

Indice

El	enco	delle tabelle	3
El	enco	delle figure	3
1	Rela	azione strutturale	4
2	Tra	ve P13-P18-Ascensore – Piano primo	5
	2.1	Analisi dei carichi trave	5
		2.1.1 Peso proprio trave	5
		2.1.2 Terrazzo	5
		2.1.3 Interno	7
		2.1.4 Pareti perimetrali	8
	2.2	Totale carichi agenti sulla trave	8
	2.3	Combinazioni di carico	9
	2.4	Calcolo azioni sulla trave	11
	2.5	Criteri adottati	11
	2.6	Momento unitario	11
	2.7	Taglio unitario	11
3	Pila	astro P27	17
	3.1	Analisi dei carichi	17
		3.1.1 Piano terra	17
		3.1.2 Piano primo	17
		3.1.3 Piano secondo	17
		3.1.4 Copertura	17
	3.2	Aree di influenza	18
	3.3	Totale carichi agenti sul pilastro	18
	3.4	Combinazioni di carico	20
	3.5	Totale agente sul pilastro	21
4	Pila	astro P36	23
	4.1	Analisi dei carichi	23
A	Cod	lice risoluzione trave	24

Elenco delle tabelle

2.1 2.2	boh boh	15 16
$\mathrm{El}\epsilon$	enco delle figure	
2.1	Nomenclatura struttura	5
2.2	Disposizione dei carichi sfavorevoli e favorevoli	12
2.3	Diagrammi dei momenti applicando di volta in volta un carico unitario nelle campate e la	
	somma nel diagramma del momento unitario totale	13
2.4		
	somma nel diagramma del taglio unitario totale	14
2.5	SLU	15
2.6	SLU	16

Relazione strutturale

Trave P13-P18-Ascensore – Piano primo

Figura 2.1: Nomenclatura struttura

2.1 Analisi dei carichi trave

2.1.1 Peso proprio trave

La trave è di sezione rettangolare $30 \times 50\,\mathrm{cm}$ in calcestruzzo armato. La normativa in Tab. 3.1.II suggerisce di utilizzare un peso specifico γ_{CLS} pari a $25,0\,\mathrm{kN\,m^{-3}}$ per il calcestruzzo armato. Pertanto il carico lineare risulta

$$G_1^{trave} = 0.3 \cdot 0.5 \cdot 25 = 3{,}75 \,\mathrm{kN} \,\mathrm{m}^{-1}$$

2.1.2 Terrazzo

Carichi permanenti G1 Come da progetto il peso del solaio ultimato in travetti tralicciati in latero cemento è pari a $g_1^{ter.} = 3,20 \,\mathrm{kN}\,\mathrm{m}^{-2}$.

Carichi permanenti non strutturali G2 Il carico distribuito su superficie permanente non strutturale agente sul terrazzo è la somma dei singoli carichi degli strati che compongono la stratigrafia presente.

Strato	Peso specifico $\left[\mathrm{kN}\mathrm{m}^{-3}\right]$	Spessore [m]	$\begin{bmatrix} g_{2,k} \\ \text{kN m}^{-2} \end{bmatrix}$
Isolante	0,5	$0,\!15$	0,075
Massetto calcestruzzo	24,0	0,06	1,44
Pavimento			0,50
Intonaco intradosso	20,0	0,01	0,20
Totale $g_2^{ter.} =$			2,215

Categoria B - balconi Si è supposto che la funzione del terrazzo sia equiparabile strutturalmente a quella di un balcone. La Tab. 3.1.II delle NTC2018 prevede per i balconi un carico distribuito pari a $4,00\,\mathrm{kN\,m^{-2}}$

Neve L'edificio è ubicato in zona 1 ad una quota superiore a 200 m pertanto il valore di riferimento del carico della neve al suolo risulta pari a

$$q_{sk} = 1.39 \left[1 + (a_s/728)^2 \right] = 1,626 \,\mathrm{kN}\,\mathrm{m}^{-2}$$

Si assume che l'edificio sia in zona normale di vento. Pertanto C_E risulta pari a 1. Si assume un coefficiente termico $C_t = 1$ in quanto è assente uno specifico studio riguardo la perdita di calore della costruzione.

Per il calcolo del coefficiente di forma μ_i la CIRCOLARE in Fig. C.3.4.5 (riportata a pagina 6) prevede due possibili casi dovuti alla vicinanza della copertura a costruzioni più alte in quanto si genera un accumolo di neve. Il primo caso prevede $\mu_1 = 0.8$ ed è costante data la copertura piana. Nel secondo

Figura C.3.4.5 - Coefficiente di forma per il carico neve – Coperture adiacenti a costruzioni più alte

caso μ_2 è la somma tra il contributo μ_s dello scivolamento della neve dalla copertura al piano superiore e pertanto è nullo essendo piana anch'essa. E il contributo μ_w dovuto al vento che redistribuisce la neve. Questo vale $\mu_w = \frac{b_1 + b_2}{2h}$: si hanno quindi due casi dovuti alla diversa dimensione di b_2 che vale 6,00 e 3,50 m rispettivamente tra le zone indicate in FIGURA DA METTERE. Gli altri termini invece valgono $b_1 = 18,00 \,\mathrm{m}$ e $h = 6,20 \,\mathrm{m}$. Si ottiene $\mu_w^1 = 1.935$ e $\mu_w^2 = 1.734$.

Essendo $l_s = 2 h > b_2$ in entrambi i casi, il coefficiente μ deve essere interpolato in base alla lunghezza b_2 . Usando la similitudine dei triangoli come mostrato in FIGURA DA METTERE si ottiene l'altezza del triangolo a distanza b_2 dall'edificio e che sommato al valore dell'altezza μ_1 del rettangolo porta al valore del caso 2 cercato

$$\mu_2^1 = \mu_1 + \frac{(l_s - b_2^1) \cdot (\mu_w^1 - \mu_1)}{l_s} = 1.386$$

$$\mu_2^2 = \mu_1 + \frac{(l_s - b_2^2) \cdot (\mu_w^2 - \mu_1)}{l_s} = 1.470$$

Per semplicità si assume ora un valore unico del coefficiente tra i valori delle altezze del trapezio del caso 2 e pari alla media tra μ_2 e μ_w ottenendo $\mu^1 = 1.661$ e $\mu^2 = 1.602$ e costante.

Il carico dovuto alla neve sul terrazzo risulta infine pari a

$$q_s^1 = q_{sk} \cdot C_E \cdot C_t \cdot \mu^1 = 1,626 \cdot 1 \cdot 1 \cdot 1.661 = 2,700 \,\mathrm{kN \, m^{-2}}$$
(2.1)

$$q_s^1 = q_{sk} \cdot C_E \cdot C_t \cdot \mu^1 = 1,626 \cdot 1 \cdot 1 \cdot 1.661 = 2,700 \,\mathrm{kN} \,\mathrm{m}^{-2}$$

$$q_s^2 = q_{sk} \cdot C_E \cdot C_t \cdot \mu^2 = 1,626 \cdot 1 \cdot 1 \cdot 1.602 = 2,605 \,\mathrm{kN} \,\mathrm{m}^{-2}$$
(2.1)

Vento La velocità base di riferimento V_b è data dalla 3.3.1 delle NTC2018 e dalla relativa Tab. 3.3.1 nel quale il coefficiente di altitudine c_a vale 1 perché la quota è inferiorie ad a_0 e $V_{b,o}=25\,\mathrm{m\,s^{-1}}$. Il coefficiente di ritorno c_r della formula 3.3.2 è pari a 1 nel caso di un tempo pari a 50 anni. Pertanto la velocità di riferimento $V_r=25\,\mathrm{m\,s^{-1}}$. Assumendo una densità dell'aria ρ come consigliato nel §3.3.6, la pressione cinetica di riferimento vale $q_r = 1/2 \rho V_r^2 = 0.39 \,\mathrm{kN} \,\mathrm{m}^{-2}$.

L'edificio è ubicato in provincia di Trento pertanto è in zona urbana ad una quota inferiore a 500 m ed ad una distanza maggiore di 30 km dal mare. Risulta quindi dalla Tab. 3.3.III una classe di rugosità del terreno A e dalla Fig. 3.3.2 una classe di esposizione V del sito. Pertanto dalla Tab. 3.3.II si ha

$$k_r = 0.23$$
 $z_0 = 0.70 \,\mathrm{m}$ $z_{min} = 12 \,\mathrm{m}$

Il coefficiente di topografia c_t è assunto pari a 1. La quota del terrazzo in cui si sta calcolando l'azione del vento è pari a 3,50 m. Il coefficiente di esposizione risulta pari alla formula 3.3.7

$$c_e(z) = c_e(z_{min}) = k_t^2 \cdot c_t \cdot \ln(z/z_0) \cdot [7 + c_t \cdot \ln(z/z_0)] = 1.48$$

Per il calcolo del coefficiente di pressione c_p si è preso come riferimento il §C3.3.8.1.2 riguardante le coperture piane non essendo elencati nelle normative casi specifici per i terrazzi.

Si sono utilizzati i coefficienti globali in quanto si vuole calcolare la pressione o depressione complessiva esercitata dalla forza del vento. Si avranno due valori di pressione positivi e negativi e che verranno usati per ottenere poi (nel paragrafo 2.3) i valori sfavorevoli e favorevoli.

Per il calcolo del coefficiente C_{pe} la CIRCOLARE propone la distinzione di due zone A e B, la prima avente dimensione $\min\{b/2\,;\,h\}$ che nel caso in esame è pari a $\min\{\frac{33,65\,\mathrm{m}}{2}\,;\,3,50\,\mathrm{m}\}=3,50\,\mathrm{m}$. Essendo quindi il terrazzo delimitato da entrambe le zone e non volendo calcolare la forza totale del vento ma il carico su superficie, si è considerato nel caso di pressione il coefficiente positivo $C_{pe,B}=+0.2$ da usare nel caso sfavorevole e il coefficiente negativo $C_{pe,B}=-0.20$ da usare nel caso favorevole di depressione. Quest'ultimo in realtà a favore di sicurezza in quanto sarebbe da considerare anche il coefficiente $C_{pe,A}=-0.80$.

Il coefficiente dinamico c_d è preso pari ad 1 come suggerito nel capitolo §3.3.9 Pertanto il carico dovuto al vento è pari a

$$q_w = q_r \cdot c_e \cdot c_p \cdot c_d = 0.39 \,\mathrm{kN} \,\mathrm{m}^{-2} \cdot 1.48 \cdot \pm 0.20 \cdot 1 = \pm 0.1154 \,\mathrm{kN} \,\mathrm{m}^{-2}$$

2.1.3 Interno

Carichi permanenti strutturali G1 È presente il medesimo solaio strutturale del terrazzo, pertanto $g_1^{sol.} = 3.20 \,\mathrm{kN}\,\mathrm{m}^{-2}$.

Carichi permanenti non strutturali G2 Sono costituiti dal pacchetto non strutturale della stratigrafia del solaio e dalle pareti divisorie interne. Per quanto riguarda le pareti divisorie interne il §3.1.3 delle NTC2018 permette di spalmare il peso delle pareti interne in un carico distribuito su tutta la superficie.

Strato	Peso specifico $\left[\mathrm{kN}\mathrm{m}^{-3}\right]$	Spessore [m]	$\frac{g_{2,k}}{\left[\text{kN m}^{-2}\right]}$
Tramezze in laterizio	8,00	0,08	0,64
Intonaco interno	20,0	0,01	0,2
Intonaco esterno	20,0	0,01	0,2
Totale =			1,04

L'altezza delle pareti corrisponde all'altezza di interpiano meno lo spessore del solaio, il che risulta $3,10-0,25=2,85\,\mathrm{m}$. Il carico lineare delle pareti interne diviene quindi $2,964\,\mathrm{kN}\,\mathrm{m}^{-1}$. Utilizzando la normativa si ottiene così un carico di $1,20\,\mathrm{kN}\,\mathrm{m}^{-2}$.

Unendo tutti i contributi si ha

Strato	Peso specifico $\left[\mathrm{kN}\mathrm{m}^{-3}\right]$	Spessore [m]	$\begin{bmatrix} g_{2,k} \\ \text{kN m}^{-2} \end{bmatrix}$
Sottofondo CLS alleggerito	16,0	0,08	1,28
Massetto allettamento	24,0	0,06	1,44
Pavimento ceramica			0,50
Intonaco intradosso	20,0	0,01	0,20
Pareti interne distribuite			1,20
Totale $g_2^{sol.} =$			4,62

Categoria B - Uffici La Tab. 3.1.II prevede un carico variabile di 3,00 kN m⁻² per la categoria uffici.

2.1.4 Pareti perimetrali

Sono agenti direttamente con un carico lineare al di sopra della trave e si estendono per una altezza pari a quella di interpiano meno la trave. Ovvero $3{,}10-0{,}5=2{,}60\,\mathrm{m}$.

Strato	Peso specifico $\left[\mathrm{kN}\mathrm{m}^{-3}\right]$	Spessore [m]	$\begin{bmatrix} g_{2,k} \\ [\text{kN m}^{-2}] \end{bmatrix}$
Muratura in laterizio	10	0,30	3
Intonaco interno	20,0	0,01	0,2
Cappotto esterno	0,20	$0,\!12$	0,024
Totale =			3,224

$$G_2^{pareti} = 3{,}224\,\mathrm{kN\,m^{-2}\cdot 2,}60\,\mathrm{m} = 8{,}382\,\mathrm{kN\,m^{-1}}$$

2.2 Totale carichi agenti sulla trave

Vengono ora moltiplicati i risultati appena trovati per le relative lunghezze di influenza. Si è diviso il problema in tre zone: A, B e C come mostrato in FIGURA DA METTERE. Nella zona A e B si ha una zona esterna dell'edificio e una zona interna. Pertanto si considera il carico gravante sulla trave in oggetto di calcolo spalmato sui 5/8 della luce nella zona verso l'esterno e alla metà della luce nella zona sottostante. Diviene rispettivamente pari a

$$\begin{array}{ll} {\rm A:} & \quad L^{ter.} = \frac{5}{8} \cdot 6,00 \, {\rm m} = 3,75 \, {\rm m} & \quad L^{sol.} \frac{1}{2} \cdot 5,00 \, {\rm m} = 2,50 \, {\rm m} \\ \\ {\rm B:} & \quad L^{ter.} = \frac{5}{8} \cdot 3,50 \, {\rm m} = 2,19 \, {\rm m} & \quad L^{sol.} \frac{1}{2} \cdot 5,00 \, {\rm m} = 2,50 \, {\rm m} \end{array}$$

Nella zona C invece l'orditura del solaio del terrazzo al primo piano è nell'altra direzioni. A tal proposito si considera una lunghezza di influenza del terrazzo simbolica di 1,00 m. Nella parte sottostante è uguale a quella delle altre zone.

C:
$$L^{ter.} = 1,00 \,\text{m}$$
 $L^{sol.} \frac{1}{2} \cdot 5,00 \,\text{m} = 2,50 \,\text{m}$

I carichi a metro lineare sotto riportati tenendo conto di tali lunghezze e sono stati combinati con le relativi azioni agenti sulla trave.

Nel caso dei sovraccarichi variabili si è assunta l'ipotesi che essi agiscano sempre insieme. Ovvero quando è possibile che avvenga il valore caratteristico nel terrazzo, questo avverrà anche nel solaio interno.

Zona A

$$\begin{split} G_1^A &= g_1^{ter.} \cdot L^{ter.} + g_1^{sol.} \cdot L^{sol.} + G_1^{trave} \\ &= 3.20 \, \mathrm{kN \, m^{-2}} \cdot 3.75 \, \mathrm{m} + 3.20 \, \mathrm{kN \, m^{-2}} \cdot 2.50 \, \mathrm{m} + 3.75 \, \mathrm{kN \, m^{-1}} \\ &= 23.75 \, \mathrm{kN \, m^{-1}} \\ G_2^A &= g_2^{ter.} \cdot L^{ter.} + g_2^{sol.} \cdot L^{sol.} + G_2^{pareti} \\ &= 2.215 \, \mathrm{kN \, m^{-2}} \cdot 3.75 \, \mathrm{m} + 4.62 \, \mathrm{kN \, m^{-2}} \cdot 2.50 \, \mathrm{m} + 8.382 \, \mathrm{kN \, m^{-1}} \\ &= 28.24 \, \mathrm{kN \, m^{-1}} \\ Q_{cat.B}^A &= q_{cat.B}^{ter.} \cdot L^{ter.} + q_{cat.B}^{sol.} \cdot L^{sol.} \\ &= 4.00 \, \mathrm{kN \, m^{-2}} \cdot 3.75 \, \mathrm{m} + 3.00 \, \mathrm{kN \, m^{-2}} \cdot 2.50 \, \mathrm{m} \\ &= 22.50 \, \mathrm{kN \, m^{-1}} \\ Q_{neve}^A &= q_s \cdot L^{ter.} = 2.700 \, \mathrm{kN \, m^{-2}} \cdot 3.75 \, \mathrm{m} = 10.13 \, \mathrm{kN \, m^{-1}} \\ Q_{vento}^A &= q_w \cdot L^{ter.} = \pm 0.1154 \, \mathrm{kN \, m^{-2}} \cdot 3.75 \, \mathrm{m} = \pm 0.4328 \, \mathrm{kN \, m^{-1}} \end{split}$$

Zona B I carichi su superficie sono gli stessi della zona A ma cambiano le lunghezze di riferimento e il carico della neve q_s come visto nella (2.2). Si ha perciò

$$\begin{split} G_1^B &= 18,76\,\mathrm{kN\,m^{-1}} \\ G_2^B &= 24,78\,\mathrm{kN\,m^{-1}} \\ Q_{cat.B}^B &= 16,26\,\mathrm{kN\,m^{-1}} \\ Q_{neve}^B &= 5,705\,\mathrm{kN\,m^{-1}} \\ Q_{vento}^B &= \pm 0,2527\,\mathrm{kN\,m^{-1}} \end{split}$$

Zona C Si hanno gli stessi carichi della zona A con la relativa lunghezza di riferimento

$$\begin{split} G_1^C &= 14{,}95\,\mathrm{kN\,m^{-1}} \\ G_2^C &= 22{,}15\,\mathrm{kN\,m^{-1}} \\ Q_{cat.B}^C &= 11{,}50\,\mathrm{kN\,m^{-1}} \\ Q_{neve}^C &= 2{,}700\,\mathrm{kN\,m^{-1}} \\ Q_{vento}^C &= \pm 0{,}1554\,\mathrm{kN\,m^{-1}} \end{split}$$

2.3 Combinazioni di carico

Al fine di trovare le azioni più incisive nel caso di carico massimo e di carico minimo, si sono valutate le azioni sfavorevoli e favorevoli con diverse disposizione nelle campate. Si elencheranno qui le diverse possibili combinazioni di carico agli stati limite ultimi e di esercizio.

Zona A

$$SLU_{\text{cat. B}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{cat.B} \cdot Q_{cat.B} + \gamma_{neve} \cdot Q_{neve} \cdot \psi_{02} + \gamma_{vento} \cdot Q_{vento} \cdot \psi_{03}$$

$$= 1.3 \cdot 23,75 + 1.5 \cdot 28,24 + 1.5 \cdot 22,50 + 1.5 \cdot 10,13 \cdot 0.5 + 1.5 \cdot 0,4328 \cdot 0.6$$

$$= 115,0 \text{ kN m}^{-1}$$
(2.3)

$$SLU_{\text{neve}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{neve} \cdot Q_{neve} + \gamma_{cat.B} \cdot Q_{cat.B} \cdot \psi_{02} + \gamma_{vento} \cdot Q_{vento} \cdot \psi_{03}$$

$$= 1.3 \cdot 23,75 + 1.5 \cdot 28,24 + 1.5 \cdot 10,13 + 1.5 \cdot 22,50 \cdot 0.7 + 1.5 \cdot 0,4328 \cdot 0.6 \qquad (2.4)$$

$$= 112.4 \,\text{kN m}^{-1}$$

$$SLU_{\text{vento}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{vento} \cdot Q_{vento} + \gamma_{cat.B} \cdot Q_{cat.B} \cdot \psi_{02} + \gamma_{neve} \cdot Q_{neve} \cdot \psi_{03}$$

$$= 1.3 \cdot 23,75 + 1.5 \cdot 28,24 + 1.5 \cdot 0,4328 + 1.5 \cdot 22,50 \cdot 0.7 + 1.5 \cdot 10,13 \cdot 0.5$$

$$= 105,1 \text{ kN m}^{-1}$$
(2.5)

$$SLU^{\text{fav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \varnothing$$

$$= 1.0 \cdot 23,75 + 0.8 \cdot 28,24$$

$$= 46.34 \text{ kN m}^{-1}$$
(2.6)

$$SLE_{\text{cat. B}}^{\text{rara}} = G_1 + G_2 + Q_{cat.B} + \psi_{02} \cdot Q_{neve} + \psi_{03} \cdot Q_{vento}$$

$$= 23,75 + 28,24 + 22,50 + 0.5 \cdot 10,13 + 0.6 \cdot 0,4328$$

$$= 79,81 \,\text{kN m}^{-1}$$
(2.7)

$$SLE_{\text{neve}}^{\text{rara}} = G_1 + G_2 + Q_{neve} + \psi_{02} \cdot Q_{cat.B} + \psi_{03} \cdot Q_{vento}$$

$$= 23,75 + 28,24 + 10,13 + 0.7 \cdot 22,50 + 0.6 \cdot 0,4328$$

$$= 78,13 \text{ kN m}^{-1}$$
(2.8)

$$SLE_{\text{vento}}^{\text{rara}} = G_1 + G_2 + Q_{vento} + \psi_{02} \cdot Q_{cat.B} + \psi_{03} \cdot Q_{neve}$$

$$= 23,75 + 28,24 + 0,4328 + 0.7 \cdot 22,50 + 0.6 \cdot 10,13$$

$$= 74,25 \,\text{kN m}^{-1}$$
(2.9)

$$SLE_{\text{cat. B}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{cat.B} + \psi_{22} \cdot Q_{neve} + \psi_{23} \cdot Q_{vento}$$

$$= 23,75 + 28,24 + 0.5 \cdot 22,50 + \varnothing + \varnothing$$

$$= 63,24 \text{ kN m}^{-1}$$

$$SLE_{\text{neve}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{neve} + \psi_{22} \cdot Q_{cat.B} + \psi_{23} \cdot Q_{vento}$$

$$= 23,75 + 28,24 + 0.2 \cdot 10,13 + 0.3 \cdot 22,50 + \varnothing$$

$$= 60,77 \text{ kN m}^{-1}$$

$$SLE_{\text{vento}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{vento} + \psi_{22} \cdot Q_{cat.B} + \psi_{23} \cdot Q_{neve}$$

$$= 23,75 + 28,24 + 0.2 \cdot 0,4328 + 0.3 \cdot 22,50 + \varnothing$$

$$= 58,83 \text{ kN m}^{-1}$$

$$SLE_{\text{cat. B}}^{\text{quasi perm.}} = G_1 + G_2 + \psi_{21} \cdot Q_{cat.B} + \psi_{22} \cdot Q_{neve} + \psi_{23} \cdot Q_{vento}$$

$$= 23,75 + 28,24 + 0.3 \cdot 22,50 + \varnothing + \varnothing$$

$$= 23,75 + 28,24 + 0.3 \cdot 22,50 + \varnothing + \varnothing$$

$$= 58,74 \text{ kN m}^{-1}$$

$$(2.13)$$

Zona B Analogamente

$$\begin{split} SLU_{\rm cat.~B}^{\rm sfav} &= 90,23\,{\rm kN\,m^{-1}} \\ SLU_{\rm neve}^{\rm sfav} &= 87,42\,{\rm kN\,m^{-1}} \\ SLU_{\rm vento}^{\rm sfav} &= 83,29\,{\rm kN\,m^{-1}} \\ SLU_{\rm vento}^{\rm fav} &= 38,58\,{\rm kN\,m^{-1}} \\ SLE_{\rm cat.~B}^{\rm rara} &= 62,80\,{\rm kN\,m^{-1}} \\ SLE_{\rm neve}^{\rm rara} &= 60,78\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm rara} &= 58,60\,{\rm kN\,m^{-1}} \\ SLE_{\rm cat.~B}^{\rm frequente} &= 51,67\,{\rm kN\,m^{-1}} \\ SLE_{\rm neve}^{\rm frequente} &= 49,56\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm frequente} &= 48,47\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm frequente} &= 48,47\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm quasi~perm.} &= 48,42\,{\rm kN\,m^{-1}} \\ \end{split}$$

Zona C Analogamente

$$\begin{split} SLU_{\rm cat.~B}^{\rm sfav} &= 71,94\,{\rm kN\,m^{-1}} \\ SLU_{\rm neve}^{\rm sfav} &= 68,92\,{\rm kN\,m^{-1}} \\ SLU_{\rm vento}^{\rm sfav} &= 66,99\,{\rm kN\,m^{-1}} \\ SLU_{\rm vento}^{\rm fav} &= 32,67\,{\rm kN\,m^{-1}} \\ SLE_{\rm cat.~B}^{\rm rara} &= 50,04\,{\rm kN\,m^{-1}} \\ SLE_{\rm neve}^{\rm rara} &= 47,94\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm rara} &= 46,93\,{\rm kN\,m^{-1}} \\ SLE_{\rm cat.~B}^{\rm frequente} &= 42,85\,{\rm kN\,m^{-1}} \\ SLE_{\rm neve}^{\rm frequente} &= 41,09\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm frequente} &= 40,58\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm frequente} &= 40,58\,{\rm kN\,m^{-1}} \\ SLE_{\rm vento}^{\rm quasi~perm.} &= 40,55\,{\rm kN\,m^{-1}} \\ \end{split}$$

- 2.4 Calcolo azioni sulla trave
- 2.5 Criteri adottati
- 2.6 Momento unitario
- 2.7 Taglio unitario

Figura 2.2: Disposizione dei carichi sfavorevoli e favorevoli

Figura 2.3: Diagrammi dei momenti applicando di volta in volta un carico unitario nelle campate e la somma nel diagramma del momento unitario totale

Figura 2.4: Diagrammi del taglio applicando di volta in volta un carico unitario nelle campate e la somma nel diagramma del taglio unitario totale

Figura 2.5: SLU

999,99 999,99 $_{1}^{N}$ 999,99 999,99 N_1 999,99 999,99 \mathbf{N} 999,99 999,99 \underline{N} 999,99 999,99 \underline{N} 999,99 999,99 N_1 999,99 999,99 N_1 999,99 999,99 N_1 999,99 999,99 N_1 999,99 999,99 \underline{N} 999,99 999,99 $_{\rm I}$ 999,99 999,99 N_1

 M^{-}

Tabella 2.1: boh

999,99 999,99

 N_1

Figura 2.6: SLU

Tabella 2.2: boh

N1	999,99	999,99
N1	66,666	66,666
N1	66,666	999,99
N1	999,99	999,99
N1	999,99	999,99
N1	66,666	999,99
N1	66,666	999,99
N1	999,99	999,99
N1	66,666	66,666
N1	66'666	66,666
N1	999,99	999,99
N1	999,99	999,99
N1	66,666	66,666
	-M	M^+

Pilastro P27

Si vede ora il calcolo dello sforzo normale per il pilastro P27, analizzando i carichi agenti nei vari piani ed elencate le aree di influenza operanti su tale pilastro.

Nella suddivisione dei piani adottata si intende in riferimento all'intradosso del piano in questione a cui è compreso il contributo del pilastro sopra.

Il peso proprio è calcolato considerando un peso specifico γ_{CLS} pari a 25,0 kN m⁻³ moltiplicato per i lati di 30 cm e le altezze di interpiano riportate nella sezione.

3.1 Analisi dei carichi

Si ha a che fare con un pilastro interno perciò come carico variabile nei solai interni si ha soltanto quello della propria categoria. In copertura si ha in aggiunta il carico della neve e del vento.

3.1.1 Piano terra

G1 È presente il solaio a lastre Predalle con peso ultimato pari a $g_1^{PT}=3,60\,\mathrm{kN\,m^{-2}}$

G2 È presente lo stesso solaio visto nel paragrafo a pagina 7 con la differenza che l'altezza di interpiano di $3,50\,\mathrm{m}$ è tale per cui occorre considerare un carico distribuito per le pareti interne pari a $1,60\,\mathrm{kN}\,\mathrm{m}^{-2}$. Si ottiene pertanto

Strato	Peso specifico $\left[\mathrm{kN}\mathrm{m}^{-3}\right]$	Spessore [m]	$\begin{bmatrix} g_{2,k} \\ \left[\text{kN m}^{-2} \right] \end{bmatrix}$
Sottofondo CLS alleggerito	16,0	0,08	1,28
Massetto allettamento	24,0	0,06	1,44
Pavimento ceramica			$0,\!50$
Intonaco intradosso	20,0	0,01	0,20
Pareti interne distribuite			1,60
Totale $g_2^{PT} =$			5,02

Categoria D1 - Negozi La Tab. 3.1.II prevede un carico di 4,00 kN m⁻² per la categoria negozi.

3.1.2 Piano primo

Sono presenti gli stessi carichi visti per la trave nella parte di solaio interno. Ovvero:

$$g_1^{P1} = 3,20 \,\mathrm{kN} \,\mathrm{m}^{-2}$$

 $g_2^{P1} = 4,62 \,\mathrm{kN} \,\mathrm{m}^{-2}$
 $g_{cat,B}^{P1} = 3,00 \,\mathrm{kN} \,\mathrm{m}^{-2}$

3.1.3 Piano secondo

G1 È presente medesimo solaio del piano primo, quindi $g_1^{P2}=3{,}20\,\mathrm{kN}\,\mathrm{m}^{-2}.$

G2 Anche in questo caso l'altezza di interpiano permette di considerare le pareti interne gravanti con $1,20\,\mathrm{kN\,m^{-2}}$ ottenendo il medesimo carico del piano primo. Ovvero $g_2^{P2}=4,62\,\mathrm{kN\,m^{-2}}$

Categoria A - Ambienti ad uso residenziale $\,$ Si considera $2,00\,\mathrm{kN}\,\mathrm{m}^{-2}$

3.1.4 Copertura

G1 È presente il solaio a lastre Predalle già visto per il piano terra, per cui $g_1^{PC} = 3,60 \,\mathrm{kN}\,\mathrm{m}^{-2}$

G2 La copertura ha come carico non strutturale la seguente stratigrafia, al quale non va sommato il contributo di pareti divisorie interne.

Strato	Peso specifico $\left[\mathrm{kN}\mathrm{m}^{-3}\right]$	Spessore [m]	$\begin{bmatrix} g_{2,k} \\ [kN m^{-2}] \end{bmatrix}$
Isolante	0,30	0,20	0,06
Massetto CLS alleggerito	18	0,06	1,08
Ghiaino	15	0,10	1,50
Intonaco intradosso	20	0,01	0,20
Totale $g_2^{PC} =$			2,84

Categoria H - Copertura Agisce il carico per coperture accessibili per sola manutenzione e riparazione quindi $q_{cat.H}^{PC} = 0.50 \, \text{kN m}^{-2}$

Neve La copertura è piana per cui il coefficiente di forma μ_i è unico e costante pari a $\mu_1 = 0.8$ come riportato in Tab. 3.4.II delle NTC2018. Gli altri coefficienti sono gli stessi già visti. Il carico neve a superficie risulta perciò

$$q_s^{PC} = q_{sk} \cdot C_E \cdot C_t \cdot \mu_1 = 1,626 \cdot 1 \cdot 1 \cdot 0.8 = 1,301 \,\mathrm{kN} \,\mathrm{m}^{-2}$$

Vento La quota della copertura è $z=9,70\,\mathrm{m}$ che rimane inferiore al z_{min} visto per il carico vento del terrazzo a pagina 6, pertanto si considerano gli stessi coefficienti già calcolati. Per quanto riguarda il coefficiente di pressione C_{pe} viene utilizzato il valore che genera pressione $C_{pe,B}=+0.20$ perché si vuole trovare il massimo carico assiale agente sul pilastro. Si ottiene infine

$$q_w^{PC} = q_r \cdot c_e \cdot c_p \cdot c_d = 0.39 \,\mathrm{kN} \,\mathrm{m}^{-2} \cdot 1.48 \cdot 0.20 \cdot 1 = 0.1154 \,\mathrm{kN} \,\mathrm{m}^{-2}$$

3.2 Aree di influenza

In FIGURA DA METTERE vengono riportate schematicamente le aree di influenza agenti sul pilastro suddivise per ogni piano e con le relative quote. Si è considerato una lunghezza dimezzata nel caso la trave gravante sul pilastro fosse una trave interna, mentre una ripartizione di 3/8 e 5/8 nel caso di trave perimetrale. Si è considerato inoltre una striscia di influenza pari a 1 m quando il solaio non fosse direttamente agente sulla trave ma parallelo ad essa. Sebbene ci siano delle aree sovrapposte si è voluto mantenerle a favore di sicurezza. Si riporta infine i FIGURA DA METTERE la nomenclatura utilizzata per distinguere le quattro diverse aree e che viene utilizzata nei calcoli presenti nelle tabelle del paragrafo successivo.

3.3 Totale carichi agenti sul pilastro

Nelle tabelle sottostanti si riportano i carichi assiali ottenuti moltiplicando le estensioni delle aree i-esime per i relativi carichi di superficie appena trovati che sono agenti su di esse, sommati poi al peso proprio del pilastro relativo a quel piano ed eventualmente alle pareti perimetrali se presenti. I valori di carico infine riportati sono quelli che verranno usati nel paragrafo successivo per la determinazione delle combinazioni di carico.

Piano interrato
$$G_1^{PI} = G_1^{pil.} = 6{,}188 \,\mathrm{kN}$$

Piano terra

Area n.	Estensione $[m^2]$	$G_{1,k}^{PT}$ [kN]	$G_{2,k}^{PT}$ [kN]	$\begin{array}{c}Q_{cat.D1,k}^{PT}\\ \text{[kN]}\end{array}$
1	5,63	$20,\!25$	28,24	22,50
2	7,06	$25,\!43$	35,45	$28,\!25$
3	4,50	16,20	$22,\!59$	18,00
4	$5,\!65$	$20,\!34$	$28,\!36$	$22,\!60$
Totale =		82,22	114,6	91,35

Sommando il peso proprio del pilastro relativo al piano terra considerando l'altezza di interpiano di $3,50\,\mathrm{msi}$ ha

$$\begin{split} G_1^{PT} &= G_1^{pil.} + G_1^{sol.} = 7,875 + 82,22 = 90,09\,\mathrm{kN} \\ G_2^{PT} &= 114,6\,\mathrm{kN} \\ Q_{cat.D1}^{PT} &= 91,35\,\mathrm{kN} \end{split}$$

Piano primo

Area n.	Estensione $[m^2]$	$G_{1,k}^{P1}$ [kN]	$\begin{array}{c}G_{2,k}^{P1}\\ [\mathrm{kN}]\end{array}$	$\begin{array}{c}Q_{cat.B,k}^{P1}\\ [\mathrm{kN}]\end{array}$
1	5,63	18,00	25,99	16,88
2	7,06	22,60	$32,\!63$	21,19
3	4,50	14,40	20,79	$13,\!50$
4	$5,\!65$	18,08	$26,\!10$	16,95
То	tale =	73,08	105,5	68,51

Sommando il peso proprio del pilastro relativo al piano terra con un'altezza di interpiano di $3,10\,\mathrm{m}$ si ha

$$\begin{split} G_1^{P1} &= G_1^{pil.} + G_1^{sol.} = 6,975 + 73,08 = 80,06\,\mathrm{kN} \\ G_2^{P1} &= 105,51\,\mathrm{kN} \\ Q_{cat.H}^{P1} &= 68,51\,\mathrm{kN} \end{split}$$

Piano secondo

Area n.	Estensione $[m^2]$	$G_{1,k}^{P2}$ [kN]	$\begin{array}{c}G_{2,k}^{P2}\\ [\mathrm{kN}]\end{array}$	$\begin{array}{c}Q_{cat.A,k}^{P2}\\ [\mathrm{kN}]\end{array}$
1	5,63	18,00	25,99	11,25
2	7,06	22,60	$32,\!63$	$14,\!13$
3	4,50	14,40	20,79	9,000
4	7,06	22,60	$32,\!63$	$14,\!13$
To	tale =	77,60	112,0	48,50

Sommando il peso proprio del pilastro relativo al piano terra si ha

$$\begin{split} G_1^{P2} &= G_1^{pil.} + G_1^{sol.} = 6,975 + 77,60 = 84,58\,\mathrm{kN} \\ G_2^{P2} &= 112,0\,\mathrm{kN} \\ Q_{cat.A}^{P2} &= 48,50\,\mathrm{kN} \end{split}$$

Copertura

Area n.	Estensione $[m^2]$	$G_{1,k}^{PC}$ [kN]	$G_{2,k}^{PC}$ [kN]	$\begin{array}{c}Q_{cat.H,k}^{PC}\\ [\text{kN}]\end{array}$	$\begin{array}{c}Q_{neve,k}^{PC}\\ [\mathrm{kN}]\end{array}$	$\begin{array}{c}Q_{vento,k}^{PC}\\ [\mathrm{kN}]\end{array}$
1	5,63	20,25	15,98	2,813	7,318	0,649
2	7,06	$25,\!43$	20,06	3,531	9,188	0,815
3	4,50	$16,\!20$	12,78	2,250	$5,\!855$	$0,\!519$
4	7,06	$25,\!43$	20,06	3,531	$9,\!188$	0,815
Totale = 8		87,30	68,87	12,13	31,55	2,798

In questo caso non c'è il contributo del peso proprio del pilastro, per cui i valori sono direttamente quelli riportati nel totale della tabella.

3.4 Combinazioni di carico

Per combinare i carichi si è assunta l'ipotesi di sovrapposizione delle forze. Ovvero si trova la combinazione peggiore per ciascun piano e si sommano per ottenere quella totale. A differenza della trave non ci sono casi favorevoli o sfavorevoli ma agiranno soltanto questi ultimi.

Si elencano ora tutte le possibili combinazioni per ciascun piano, infine nel paragrafo successivo si riportano in TABELLA DA METTERE quelli con valore più grande e la somma di essi. Si riporta poi in FIGURA DA METTERE una rappresentazione dell'andamento del carico assiale sul pilastro in questione.

Piano interrato Il contributo corrispondente al solo pilastro tra solaio piano interrato e solaio piano terra è

$$SLU^{\text{sfav}} = \gamma_{G1} \cdot G_1 = 1.3 \cdot 8,044 = 426,0 \text{ kN}$$

 $SLE = \gamma_{G1} \cdot G_1 = .6,188 = 6,188 \text{ kN}$

Piano Terra Essendoci un solo carico variabile si ha una sola combinazione per tipologia di stato:

$$SLU_{\text{cat. D1}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{cat.D1} \cdot Q_{cat.D1}$$

$$= 1.3 \cdot 90,09 + 1.5 \cdot 114,6 + 1.5 \cdot 91,35$$

$$= 426,0 \text{ kN}$$

$$SLE_{\text{cat. D1}}^{\text{rara}} = G_1 + G_2 + Q_{cat.D1}$$

$$= 90,09 + 114,6 + 91,35$$

$$= 296,0 \text{ kN}$$

$$SLE_{\text{cat. D1}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{cat.D1}$$

$$= 90,09 + 114,6 + 0.7 \cdot 91,35$$

$$= 268,6 \text{ kN}$$

$$(3.1)$$

$$SLE_{\text{cat. D1}}^{\text{quasi perm.}} = G_1 + G_2 + \psi_{21} \cdot Q_{cat.D1}$$

= $90,09 + 114,6 + 0.6 \cdot 91,35$
= $259,5 \text{ kN}$ (3.4)

Analogamente si ha

Piano primo

$$\begin{split} SLU_{\mathrm{cat.~B}}^{\mathrm{sfav}} &= 365,1\,\mathrm{kN} \\ SLE_{\mathrm{cat.~B}}^{\mathrm{rara}} &= 254,1\,\mathrm{kN} \\ SLE_{\mathrm{cat.~B}}^{\mathrm{requente}} &= 219,8\,\mathrm{kN} \\ SLE_{\mathrm{cat.~B}}^{\mathrm{quasi~perm.}} &= 206,1\,\mathrm{kN} \end{split}$$

Piano secondo

$$\begin{split} SLU_{\mathrm{cat.\ A}}^{\mathrm{flav}} &= 350.7\,\mathrm{kN} \\ SLE_{\mathrm{cat.\ A}}^{\mathrm{rara}} &= 245.1\,\mathrm{kN} \\ SLE_{\mathrm{cat.\ A}}^{\mathrm{frequente}} &= 220.8\,\mathrm{kN} \\ SLE_{\mathrm{cat.\ A}}^{\mathrm{quasi\ perm.}} &= 211.1\,\mathrm{kN} \end{split}$$

Copertura Per la copertura invece si sono considerati tutti e tre i carichi variali

$$SLU_{\text{cat. H}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{cat.H} \cdot Q_{cat.H} + \gamma_{neve} \cdot Q_{neve} \cdot \psi_{02} + \gamma_{vento} \cdot Q_{vento} \cdot \psi_{03}$$

$$= 1.3 \cdot 87,30 + 1.5 \cdot 68,87 + 1.5 \cdot 12,13 + 1.5 \cdot 31,55 \cdot 0.5 + 1.5 \cdot 2,798 \cdot 0.6$$

$$= 261,2 \text{ kN}$$
(3.5)

$$SLU_{\text{neve}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{neve} \cdot Q_{neve} + \gamma_{cat.H} \cdot Q_{cat.H} \cdot \psi_{02} + \gamma_{vento} \cdot Q_{vento} \cdot \psi_{03}$$

$$= 1.3 \cdot 87,30 + 1.5 \cdot 68,87 + 1.5 \cdot 31,55 + \varnothing + 1.5 \cdot 2,798 \cdot 0.6$$

$$= 266,6 \text{ kN}$$
(3.6)

$$SLU_{\text{vento}}^{\text{sfav}} = \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{vento} \cdot Q_{vento} + \gamma_{cat.H} \cdot Q_{cat.H} \cdot \psi_{02} + \gamma_{neve} \cdot Q_{neve} \cdot \psi_{03}$$

$$= 1.3 \cdot 87,30 + 1.5 \cdot 68,87 + 1.5 \cdot 2,798 + \varnothing + 1.5 \cdot 31,55 \cdot 0.5$$

$$= 244,7 \text{ kN}$$
(3.7)

$$SLE_{\text{cat. H}}^{\text{rara}} = G_1 + G_2 + Q_{cat.H} + \psi_{02} \cdot Q_{neve} + \psi_{03} \cdot Q_{vento}$$

$$= 87,30 + 68,87 + 12,13 + 0.5 \cdot 31,55 + 0.6 \cdot 2,798$$

$$= 185,7 \text{ kN}$$
(3.8)

$$SLE_{\text{neve}}^{\text{rara}} = G_1 + G_2 + Q_{neve} + \psi_{02} \cdot Q_{cat.H} + \psi_{03} \cdot Q_{vento}$$

$$= 87,30 + 68,87 + 31,55 + \varnothing + 0.6 \cdot 2,798$$

$$= 189,4 \text{ kN}$$
(3.9)

$$SLE_{\text{vento}}^{\text{rara}} = G_1 + G_2 + Q_{vento} + \psi_{02} \cdot Q_{cat.H} + \psi_{03} \cdot Q_{neve}$$

$$= 87,30 + 68,87 + 2,798 + \emptyset + 0.6 \cdot 31,55$$

$$= 174,7 \text{ kN}$$
(3.10)

$$SLE_{\text{cat. H}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{cat.H} + \psi_{22} \cdot Q_{neve} + \psi_{23} \cdot Q_{vento}$$

$$= 87,30 + 68,87 + 0.5 \cdot 12,13 + \varnothing + \varnothing$$

$$= 156,2 \text{ kN}$$
(3.11)

$$SLE_{\text{neve}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{neve} + \psi_{22} \cdot Q_{cat.H} + \psi_{23} \cdot Q_{vento}$$

$$= 87,30 + 68,87 + 0.2 \cdot 31,55 + \varnothing + \varnothing$$

$$= 162.5 \text{ kN}$$
(3.12)

$$SLE_{\text{vento}}^{\text{frequente}} = G_1 + G_2 + \psi_{11} \cdot Q_{vento} + \psi_{22} \cdot Q_{cat.H} + \psi_{23} \cdot Q_{neve}$$

$$= 87,30 + 68,87 + 0.2 \cdot 2,798 + \varnothing + \varnothing$$

$$= 156,7 \,\text{kN}$$
(3.13)

$$SLE^{\text{quasi perm.}} = G_1 + G_2 + \psi_{21} \cdot Q_{cat.H} + \psi_{22} \cdot Q_{neve} + \psi_{23} \cdot Q_{vento}$$

$$= 87,30 + 68,87 + \varnothing + \varnothing + \varnothing$$

$$= 156.2 \text{ kN}$$
(3.14)

3.5 Totale agente sul pilastro

Prendendo il valore massimo tra le combinazioni e sommando si ottengono i massimi carichi assiali possibili sul pilastro P27.

$$SLU_{P27}^{sfav}n = 1416 \,\mathrm{kN}$$

$$\begin{split} SLE_{\mathrm{P27}}^{\mathrm{rara}} &= 990,8\,\mathrm{kN} \\ SLE_{\mathrm{P27}}^{\mathrm{frequente}} &= 878,0\,\mathrm{kN} \\ SLE_{\mathrm{P27}}^{\mathrm{quasi}\ \mathrm{perm.}} &= 839,1\,\mathrm{kN} \end{split}$$

È possibile inoltre fare un grafico l'andamento dei carichi in funzione della quota dell'edificio. Si ha infatti un valore costante nel passaggio tra un piano e l'altro e un andamento lineare crescente lungo l'altezza del pilastro dovuto al peso proprio crescente.

Confronto tra soluzione analitica e soluzione FEM per l'elemento finito CPS8

Pilastro P36

Valgono le stesse considerazioni affrontate per il pilastro P27. La suddivisione dei piani è la stessa. In aggiunta al caso precedente, il pilastro P36 ha il primo piano suddiviso in zona interna e zona terrazzo. Pertanto nel paragrafo relativo alle area di influenza saranno considerati i due contributi distinti. Verranno però poi considerati insieme nel calcolo delle combinazioni, in quanto essendo appartenenti alla stessa categoria si suppone che se il carico si massimizza in una zona, questo avverrà anche nell'altra.

Un'altra differenza nelle aree di influenza sta nel fatto che in certe parti, come si vede nelle figure che verranno riportate, sono presenti orditure parallele alla trave. In queste zone si è preso come riferimento una lunghezza di riferimento di 1 m.

Verranno ora analizzati solamente le differenze di carico rispetto al caso precedente. Infine verranno riportati i risultati finali e il grafico dell'andamento dello sforzo assiale.

4.1 Analisi dei carichi

Piano Primo - Interno

Piano Primo - Terrazzo Riassumendo si ha

Piano	$g_{1,k}^{i}$ $\left[kN^{2} m^{-1}\right]$	$\begin{bmatrix} g_{2,k}^i \\ \left[k N^2 m^{-1} \right] \end{bmatrix}$	$\begin{array}{c} q_{cat.j,k}^i \\ [\text{kN}] \end{array}$	$ \begin{array}{c} q_{neve,k}^i \\ \left[\mathrm{kN^2 m^{-1}} \right] \end{array} $	$\begin{bmatrix} Q_{vento,k}^i \\ [kN^2 m^{-1}] \end{bmatrix}$
Terra	3,60	5,02	4,00		
Primo - Interno	$25,\!43$	20,06	3,53		
Primo - Terrazzo	$16,\!20$	12,78	2,250	99,99	99,99
Secondo	3,20	4,62	2,00		
Copertura	3,60	2,84	0,50	1,301	0,1154

Codice risoluzione trave