Algoritmos e Estruturas de Dados

Recursividade

Autores:

Carlos Urbano Catarina Reis José Magno Marco Ferreira

Indução Matemática

- O Método de Indução Matemática é uma metodologia de demonstração baseada no Princípio de Indução Finita, através dos passos seguintes:
 - Base de indução: Estabelecer a propriedade para o primeiro número natural, ou seja, o número 1

 Passo de indução: Estabelecer que caso a propriedade se verifique para um número natural n (Hipótese de Indução) então ela também é verificada para o número natural seguinte, n + 1

Indução Matemática

- Assim para demonstrarmos que uma propriedade
 - P(n) é verdadeira $\forall_n \in \mathbb{N}$,

devemos provar que:

- P(1) é verdadeira
- $P(n) \Rightarrow P(n+1)$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$

Por observação geométrica


```
n=1
1
2x1-1
```

1²

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \cdots + (2n 1) = \sum_{k=1}^n (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}, i_n = n^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^n (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$
- Assim, por Indução Matemática temos que:
 - P(1) é verdadeira, pois $1 = 1^2$

- Números Quadrados de Pitágoras
 - Sendo $i_n = 1 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1), \forall_n \in \mathbb{N}$
 - Pretende-se demonstrar que $\forall_n \in \mathbb{N}$, $i_n = n^2$
- Assim, por Indução Matemática temos que:
 - P(1) é verdadeira, pois $1 = 1^2$
 - Supondo que P(n): $i_n = n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1} = (n+1)^2$

• Supondo que P(n) : $i_n=n^2$ é verdadeira, vamos provar que P(n+1) : $i_{n+1}=(n+1)^2$

• Supondo que P(n) : $i_n = n^2$ é verdadeira, vamos provar que P(n+1) : $i_{n+1} = (n+1)^2$ $i_{n+1} = 1 + \dots + (2n-1) + (2(n+1)-1)$

• Supondo que P(n): $i_n = n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1} = (n+1)^2$ $i_{n+1} = 1 + \dots + (2n-1) + (2(n+1)-1)$ $= i_n + (2(n+1)-1)$

• Supondo que P(n): $i_n=n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1}=(n+1)^2$ $i_{n+1}=1+\dots+(2n-1)+(2(n+1)-1)$ $=i_n+(2(n+1)-1)$

 $=i_n+(2n+2-1)$

• Supondo que P(n): $i_n=n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1}=(n+1)^2$ $i_{n+1}=1+\dots+(2n-1)+(2(n+1)-1)$ $=i_n+(2(n+1)-1)$ $=i_n+(2n+2-1)$

 $= i_n + 2n + 1$

• Supondo que P(n): $i_n = n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1} = (n+1)^2$

$$i_{n+1} = 1 + \dots + (2n-1) + (2(n+1)-1)$$

= $i_n + (2(n+1)-1)$
= $i_n + (2n+2-1)$
= $i_n + 2n + 1$

Usando a hipótese de indução P(n)

$$= n^2 + 2n + 1$$

• Supondo que P(n): $i_n = n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1} = (n+1)^2$

$$i_{n+1} = 1 + \dots + (2n-1) + (2(n+1)-1)$$

= $i_n + (2(n+1)-1)$
= $i_n + (2n+2-1)$
= $i_n + 2n + 1$

Usando a hipótese de indução P(n)

$$= n^2 + 2n + 1$$
$$= (n+1)^2$$

• Supondo que P(n): $i_n = n^2$ é verdadeira, vamos provar que P(n+1): $i_{n+1} = (n+1)^2$

$$i_{n+1} = 1 + \dots + (2n-1) + (2(n+1)-1)$$

= $i_n + (2(n+1)-1)$
= $i_n + (2n+2-1)$
= $i_n + 2n + 1$

Usando a hipótese de indução P(n)

$$= n^2 + 2n + 1$$
$$= (n+1)^2$$

Logo
$$P(n) \Rightarrow P(n+1)$$

Indução Matemática - Exercícios

Provar por indução matemática que:

- $9^n 1$ é múltiplo de 8, $\forall_n \in \mathbb{N}$
- $2^{3n} 1$ é múltiplo de 7, $\forall_n \in \mathbb{N}$

Indução Matemática - Exercícios

- Como se sabe, uma das maneiras de alcançar repetições é através de ciclos como for ou while
- Outro modo, é recorrendo à recursividade
 - Ocorre quando uma função se chama a si própria, direta ou indiretamente

- Exemplo: cálculo do fatorial
 - Definição:
 - O fatorial de um inteiro positivo n denota-se por n!, sendo definido pelo produto dos inteiros de 1 a n
 - Se n = 0 então , por convenção, 0! é definido pelo valor 1
 - Mais formalmente:

$$n! = \begin{cases} 1 & \Leftarrow n = 0 \\ n(n-1)(n-2) \dots 3*2*1 & \Leftarrow n \in \mathbb{N} \end{cases}$$

- Exemplo: cálculo do fatorial
 - A função fatorial pode ser definida de maneira a sugerir uma formulação recursiva. Vejamos,
 - fatorial(5) = 5*(4*3*2*1) = 5 * fatorial(4)
 - Pode, assim, definir-se o fatorial(5) em termos do fatorial(4)
 - De uma forma geral, para um inteiro positivo n
 - fatorial(n) = n * fatorial(n-1)
 - Originando a seguinte definição recursiva

$$fatorial(n) = \begin{cases} 1 & \Leftarrow n = 0 \\ n * fatorial(n-1) & \Leftarrow n \in \mathbb{N} \end{cases}$$

- Um dos aspetos importantes numa definição recursiva é a indicação dos chamados casos base. São definidos de forma não-recursiva em termos de um valor fixo
- Existem também os casos recursivos, recorrendo à definição da função a ser definida de modo a convergir para um dos casos base evitando, assim, a recursividade infinita
- No exemplo da função fatorial,
 - o caso base é n = 0
 - no caso recursivo, cada vez que a função fatorial é invocada, o seu argumento n é decrementado de uma unidade, convergindo, assim, para o caso base n = 0

Implementação da função fatorial

```
public int fatorial(int n) {
  if (n == 0) {
    return 1; //caso base
  }
  return n * fatorial(n - 1); //caso recursivo
}
```


- Tipos de recursividade direta
 - Recursividade linear
 - Apenas uma chamada recursiva ao método
 - Ex: função fatorial
 - Recursividade binária
 - Duas chamadas recursivas ao método
 - Ex: funções nas árvores binárias
 - [sempre que um problema se pode dividir em 2 "metades"]
 - Recursividade múltipla
 - Diversas chamadas recursivas ao método
 - Ex: funções para preenchimento de polígonos (cima, baixo, esquerda, direita)

- Conclusões
 - Vantagens
 - Código de fácil leitura e compreensão
 - Código mais compacto
 - Desvantagens
 - A chamada de métodos é uma operação "cara" que envolve uma certa sobrecarga
 - Implica transferir o controlo para outro local
 - Implica guardar os argumentos do método e o endereço para retornar, colocando-os numa pilha interna
 - É necessário ocupar memória para guardar os argumentos intermédios e os valores de retorno
 - => Pouco eficiente para problemas envolvendo grandes quantidades de dados

Recursividade - Exercícios

Implemente funções recursivas para:

- somar (int n) que efetue a soma dos inteiros de 1 a n, $\forall n \in \mathbb{N}$
- potenciaDe2 (int n) que calcule 2^n , $\forall n \in \mathbb{N}_0$

Recursividade - Exercícios

