Grade 10 Optics

Nature of Light

Light is a Wave.

Wave / Undulatory Theory

In the 1670s: light travels through 'ether' and reflection can be explained via waves

Huygen's Principle every point on a wavefront is a source of wavelets. These wavelets spread out in the forward direction, at the same speed as the source wave.

Huygen's Principle every point on a wavefront is a source of wavelets. These wavelets spread out in the forward direction, at the same speed as the source wave.

Huygen's Principle

every point on a wavefront is a source of wavelets. These wavelets spread out in the forward direction, at the same speed as the source wave.

1801: conducted the Double-Slit Experiment

1873:
predicted the EM waves & their speed

1887: proved Light IS an EM Wave.

Light is a Particle.

Corpuscular / Emission Theory

In the 1600s: Light is made up of particles called corpuscles

Planck's Constant (h)

Energy in photons only exists in multiples of 6.626×10⁻³⁴.

Blackbody

Theoretical object that absorbs all EM wave and emits radiation whose spectrum is based on temperature alone.

1905:

Light exists in discrete bundles of energy called Photons.

1921:

Einstein awarded Nobel Prize for the Photoelectric Effect.

Photoelectric Effect

production of electron or other free carriers when light is shone onto a material

1930:

Quantum Electrodynamics merged both.

Wave Model best describes propagation.

Particle Model for emissions and absorption.

Speed of Light

Hypothesize d that Light had speed.

First person to measure speed of light. 220M m/s

Speed of Light 2.9979 x10⁸ m/s

Sources & Propagation

Optics

Branch of Physics involving behavior of Light

Light

Being an EM wave, is a combination of Electric & Magnetic Energy

Luminous v. Non-Luminous

Luminous Objects
Emit their own light NonLuminous Objects do not.

Incandescence v. luminescence

Incandescence is light due to a hot body.

Luminescence is light due to other sources.

Types of luminescence Flourescence is light lasting < 10ns. Phosphoresence is light > 10ns.

Types of photoluminescence

Flourescence is light lasting < 10ns due to jumping of electrons from one energy state to ground.

Types of photoluminescence Phosphoresence is light lasting > 10ns due to emission of photons trapped' in a forbidden state.

Opaque v transparent v translucent

Opaque materials does not allow light to pass, Transparent materials do. Translucent straddles the two.

Umbra v. Penumbra

Umbra is the uniformly dark portion in the center of the a shadow, Penumbra is the uneven 'halo' around a shadow.

Fermat's Principle of Least Time states that light will take the most efficient path that requires the least time.

Will be discussed further this in reflection & refraction.

Photometry branch of optics which deals with measurements of light relative to human eye.

(As opposed to radiometry which deals with radiant energy (including light) on an absolute scale)

Luminous Intensity v. Luminous Flux

Luminous Intensity measure of perceived power in a particular direction. Measured using SI Unit candela (cd).

Reflection

echo:sound = reflection:light

'bouncing off' of light againsts a surface.

Reflection

Angle of incidence = angle of reflection

Reflection

Incident, reflected and surface, All on the same plane

2 Kinds of Reflection

Specular reflection when the reflecting surface is smooth and even. Diffuse reflection if rough and uneven.

Diffusion

Dispersal (splitting up and distributing in all directions) of reflected light.

Diffusion

Light Scattering

The dispersal of light due to irregularities (particles) in the medium

Reflection v Absorption v Transmission

Refraction

Bending of light as it passes from one medium to another.

Refraction

Due to changing velocity of light based on medium. The 'c' we know 3.0x10⁸ is only for a vacuum.

Index of Refraction

The ratio by which the velocity of light changes from one medium to another.

Index of Refraction

```
Air = 1.0

lce = 1..310

Diamond = 2.417

Water = 1.333
```

Index of Refraction

$$n = \frac{c}{v}$$

n = index of refraction

 $c = 3x10^8 \text{ m/s}$ (velocity of light in vacuum.)

v = velocity in medium

Angle of Incindence & Refraction

Critical Angle

the angle of incidence that produces an angle of refraction = 90°

Total Internal Reflection

Boundary acts like a perfect reflector.

Total Internal Reflection

- Angle of incidence > critical angle
- From dense
 (high n) to less
 dense (low n)

Diffraction

Bending of light around obstacles or apertures (small holes)*.

*Remember Huygens's Principle?

Interference

When waves 'overlap' they form a resultant wave.

Constructive Interference

When overlapping waves are in-phase.

Resultant Wave has higher amplitude

Constructive Interference

When overlapping waves are in antiphase.

Resultant Wave has lower (or even 0) amplitude

Thomas Young's Double Slit Inference **Experiment** Pattern **Double Slit** Single Slit Light **Destructive Interference Constructive Interference** Screen

Polarization is the 'orientation' of the vibrations in waves

Linear Polarization It can vibrate on a

It can vibrate on a single plane.*

*This is how polarized glassed in 3D Cinemas work.

*thus brightness is 50% only of original image

Circular Polarization

It can vibrate on 2 planes. 90° out of phase with each other and equal amplitudes in both.

.

Elliptical Polarization

It can vibrate on 2 planes. 90° out of phase of each other with unequal amplitudes.

.