Exploring The American Recovery and Reinvestment Act's Impact on Federal Grant Funding & Renewable Energy Patenting

May 3rd, 2022

Research team: Anthony Chen, Yuehang Chen, Trevor Mattos, Bowen Li, Francisco Pineda, Hanyu Tian, Dingrui Zhang

01

BACKGROUND & THEORY OF CHANGE

02

DATA & EMPIRICAL APPROACH

3

03

RESULTS & ANALYSIS

04

CONCLUSION

01 **BACKGROUND & THEORY OF CHANGE**

Motivation For This Research Topic

- Climate change poses a significant threat to our environment and to our well-being (Pörtner et al. 2022):
 - Sea level rise
 - Heat waves
 - Wildfires
 - Food supply chains
 - Air quality
 - Migration

ARRA Background

- American Recovery and Reinvestment Act of 2009
- Signed into law by President Barack Obama
- Areas of investment: Infrastructure, education, health, and renewable energy

RESEARCH QUESTION

Did federal R&D investments in basic research through the American Recovery and Reinvestment Act (ARRA) lead to an increase in renewable energy technology?

THEORY OF CHANGE

INPUTS

- Hardware, software, lab space used to conduct research
- Research and administrative staff, and their scientific expertise and human capital.

ACTIVITIES

- · Hiring researchers.
- Collaboration between PIs and Universities or firms.
- Performance of related research.
- Drafting and submission of articles for publication.

OUTPUTS

- Unique findings, innovations, and discoveries that result from funded research activities
- Published research articles
- Patent applications

OUTCOMES

- Patents related to different types of renewable energy
- New insights into which type of renewable energy is most R&D investment-worthy.

FINAL OUTCOMES

- Innovative technologies are further developed, possibly commercialized and brought to market.
- With more people or companies who use these renewable technologies, they will be adopted widely and emissions will decline worldwide.

DATA & METHODS

Data:

CSV files from subsets of Federal Reporter grants & PatentsView databases

ARRA funding was between 2009 to 2013, so we expect patents to lag by several years, but we expect a spike in renewable energy patents going forward. And the lag in patents may have been minimized by the USPTO Green Tech Pilot Program from 2009 to 2012.

Methods:

- Explore & analyze as separate group entities, compare the time periods of ARRA funding and post-ARRA funding and the results: Grants (2009-2013 vs 2014-2018) and Patents (2012-2016 vs 2017-2018*)
- After EDA, the most prevalent Renewable Energy (RE) types: Solar, Wind, Biomass & Biofuel, Geothermal
- Use the RE types to filter our data to then identify, measure, and visualize the relationship between grants and patents
- Unsupervised ML: k-means clustering approach on grants
- Topic modeling for more specific patent abstracts

^{*}Lack of provided patent data beyond 2018

KEY MEASURES

From 2009-2018:

Filtered on Renewable Energy types: Solar, Wind, Biomass & Biofuel, Geothermal

- Grant dollars per PI for each renewable energy
- Total patents for each specific renewable energy type across time periods

Most Renewable Energy Projects Last 2.5 to 5 Years

Source: FedReporter Grants Database

Solar and Biomass & Biofuel Had The Most Consistent Grant Funding Per

Source: FedReporter Grants Database

Renewable Energy Patents Have Increased 2.5x Since 2010

Source: PatentsView Database

Text Analysis on Patent Abstracts Shows that RE Topics Didn't Change Much After Time Period Comparisons

After ARRA funding, patent topics:

0 plural, plural of, to, assembl, wind
1 biomass, and, of, process, in
2 solar cell, cell, layer, first, second
3 power, system, may, solar, or

Source: PatentsView Database

After Post ARRA funding, patent topics:

0 power, wind, turbin, system, wind turbin
1 biomass, and, to, of, in
2 cell, solar cell, layer, substrat, metal
3 first, second, panel, solar, solar panel

Source: PatentsView Database

Top PIs with Patents in Both Time Periods:

	first_name	last_name	number of patents after ARRA	number of patents after post-ARRA
0	Joseph Broun	Powell	36	17
1	Marshall	Medoff	24	20

Source: PatentsView Database

^{*}Post ARRA Time Period only used 2017-2018 PatentsView Data

Limitations & Biases

- 1. The uncertainty of the time lag
- 2. Unable to link the grants and patents records
- 3. The lack of ranking in both data subjects
- 4. Systematic lack of data
- 5. Confidentiality issue with the Department of Energy

Recommendations For Future Research

- 1. ARRA as a model? Where to follow ARRA, or where to make adjustments?
- 2. Conduct cross-sectional analysis between the current sample set and DOE data
- 3. Explore relationship between grant data from DOE and patent data
- 4. Linking the data might allow researchers to leverage supervised machine learning methods to predict which grant projects lead to patents
- 5. Develop some measurements and evaluations rubric to investigate whether renewable energy patents ultimately lead to lower emissions

REFERENCES

Lim, Taekyoung, et al 2021. "The Impact of Intergovernmental Grants on Innovation in Clean Energy and Energy Conservation: Evidence from the American Recovery and Reinvestment Act." *Energy Policy*, Elsevier, 16 Oct. 2020,

https://www.sciencedirect.com/science/article/abs/pii/S03014215 20306340#fn7.

Mundaca, L, & Luth Richter, J. 2015. "Assessing 'green energy economy' stimulus packages: Evidence from the US programs targeting renewable energy." Renewable and Sustainable Energy Reviews, Elsevier, February 2015,

https://www.sciencedirect.com/science/article/pii/S1364032114008855#bib71.

Pörtner, H., et al. 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability, Summary for Policymakers. Working Group II contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change:

https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_SummaryForPolicymakers.pdf.

