ФИО	1	
группа		

1 A	2A	3A	4A	5A	Σ	Оценка

1 зад.	2 зад.	Итог

Макс. за задачу 1 балл. Оценка $= [2\Sigma]$.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

14 июня 2017 г.

Вариант А

- **1А.** При определённых условиях электроны в тонком слое у поверхности полупроводника могут рассматриваться как двумерный идеальный газ. Вычислить относительную средне-квадратичную флуктуацию скорости электрона в такой системе.
- **2А.** Состояние некоторого неидеального газа аппроксимируется уравнением $PV = R(T+\theta)$, где $\theta = 30 \text{ K}$. Найти изменение внутренней энергии ΔU и количество подведённой теплоты Q при изотермическом расширении 1 моля газа от объёма V_0 до $V_1 = 3V_0$. Температура газа T = 270 K.
- **3А.** Закрытый сосуд объёмом V=1,0 л заполнен насыщенным водяным паром при температуре $t_1=110^{\circ}\mathrm{C}$ и давлении $P_1=1,43$ атм. Сосуд охлаждают так, что давление в нём уменьшается до $P_2=1,0$ атм. Найти массу воды $m_{\mathrm{ж}}$, сконденсировавшейся в жидкую фазу, и количество теплоты Q, отведённое от содержимого сосуда. Теплоту парообразования $\Lambda=2260~\mathrm{Дж/r}$ считать постоянной, пар считать идеальным газом.
- **4А.** Высоковакуумный баллон (ВБ) соединён капилляром через кран K_1 с форвакуумной частью установки, в которой поддерживается давление воздуха $P_{\Phi} = 10^{-2}$ торр (см. рис.). Предельное давление в баллоне при закрытом K_1 составляет $P_0 = 10^{-4}$ торр. Проводятся два опыта, в которых останавливается откачка (перекрывается K_2) и измеряется время τ , в течение которого давление возрастет от P_0 до $4P_0$. В первом опыте

кран K_1 был закрыт, и измеренное время оказалось равно $\tau_1=25$ с. Во втором опыте кран K_1 открыли одновременно с прекращением откачки, и время нарастания давления составило $\tau_2=10$ с. Определить по этим данным радиус капилляра r. Объём баллона $V_{\rm BB}=1,6$ л, длина капилляра L=70 мм, температура системы t=20°C. Принять, что интенсивность натекания воздуха из-за течей и десорбции не зависит от давления в баллоне.

5А. Ионы солей иттербия имеют спин s=7/2. Во внешнем магнитном поле B энергия иона зависит от ориентации спина и может принимать значения $E_m=m\mu B$, где μ — известная константа, и $m=-s, -s+1, \ldots, s-1, s$. Оценить изменение энтропии ΔS и количество теплоты Q, поглощаемое 1 молем соли при её квазистатическом изотермическом размагничивании от очень большого ($B_0\gg k_{\rm B}T/\mu$) до нулевого поля ($B_1=0$) при температуре T. Взаимодействием ионов между собой пренебречь.

ФИО		_	
группа			

2Б	3Б	4Б	5Б	Σ	Оценка
	2Б	25 35	26 36 46	26 36 46 56	2B 3B 4B 5B Σ

1 зад.	2 зад.	Итог

Макс. за задачу 1 балл. Оценка $= [2\Sigma]$.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

14 июня 2017 г.

Вариант \mathbf{B}

- 1Б. При определенных условиях электроны в тонком слое у поверхности полупроводника могут рассматриваться как двумерный идеальный газ. Вычислить среднеквадратичную флуктуацию кинетической энергии электрона в такой системе при температуре T.
- **2Б.** Состояние моля одноатомного неидеального газа аппроксимируется уравнением $PV=RT\left(1+\frac{\theta}{T}\right)$, где $\theta=30$ К. Найти изменение внутренней энергии ΔU и количество подведённой теплоты Q при изобарном нагревании газа от $T_0=270$ К до $T_1=300$ К.
- **3Б.** В закрытом сосуде фиксированного объёма содержится вода и её насыщенный пар при температуре $t_0=100^{\circ}\mathrm{C}$. Суммарная масса содержимого m=18 мг, причём объём жидкой фазы мал по сравнению с объёмом сосуда. Сосуд нагревают до тех пор, пока вся жидкость полностью не испарится, в результате чего давление в нём увеличивается до $P_1=2$ атм. Найти конечную температуру T_1 сосуда и изменение внутренней энергии ΔU его содержимого. Теплоту парообразования $\Lambda=40,5$ кДж/моль принять постоянной, пар считать идеальным газом.
- 4Б. Высоковакуумный баллон (ВБ) соединён капилляром через кран K_1 с форвакуумной частью установки, в которой поддерживается давление воздуха $P_{\Phi} = 5 \cdot 10^{-3}$ мбар (см. рис.). При закрытом K_1 в баллоне достигается предельное давление $P_0 = 5 \cdot 10^{-5}$ мбар. Если остановить откачку (перекрыть K_2), то наблюдается линейный рост давления в баллоне со временем по закону $P(t) = P_0 \cdot (1 + \beta_1 t)$, где $\beta_1 = 0.20$ с⁻¹. Если же

одновременно с прекращением откачки открыть кран K_1 , то давление будет расти по такому же закону, но с коэффициентом $\beta_2=0.32$ с $^{-1}$. Определить объём высоковакуумного баллона $V_{\rm BB}$. Длина капилляра L=64 мм, его диаметр d=0.9 мм, температура системы T=300 K.

5Б. Известно, что молекула H_2 имеет две модификации — параводород и ортоводород, которые в отсутствие специальных катализаторов не переходят друг в друга. Вращательная энергия молекулы определяется как $E_l = k_{\rm B}\theta l(l+1)$, где θ — константа, причём для параводорода возможны только чётные значения $l=0,2,\ldots$, а для ортоводорода — только нечётные $l=1,3,\ldots$ Число состояний молекулы с заданным значением E_l равно $n_l=(2l+1)(2s+1)$, где s — спин ядер, составляющих молекулу, равный s=0 для пара- и s=1 для ортоводорода. В термостате фиксированного объёма с малой температурой $T \ll \theta$ исходно находился 1 моль ортоводорода. После введения катализатора водород пришёл к равновесному состоянию. Оценить изменение энтропии газа ΔS и тепло Q, переданное термостату.