

परिमेय व अपरिमेय संख्या

आपण नैसर्गिक संख्या समूह, पूर्ण संख्या समूह, पूर्णांक संख्या समूह आणि परिमेय संख्या समूह यांची ओळख करून घेतली.

नैसर्गिक संख्या समृह

पूर्ण संख्या समूह

पूर्णांक संख्या समूह

$$(0,1,2,3,4,...)$$
 $(...,-4,-3,-2,-1,0,1,2,3,...)$

परिमेय संख्या समूह

$$\frac{-25}{3}, \frac{10}{-7}, -4, 0, 3, 8, \frac{32}{3}, \frac{67}{5},$$
 इत्यादी

परिमेय संख्या समूह: $\frac{m}{n}$ या रूपातील संख्यांना परिमेय संख्या म्हणतात. येथे m व n हे पूर्णांक असतात परंतु nहा शून्य नसतो.

दोन परिमेय संख्यांच्या दरम्यान असंख्य परिमेय संख्या असतात, हे आपण पाहिले आहे.

संख्यारेषेवर परिमेय संख्या दाखवणे (To show rational numbers on a number line)

 $(\frac{7}{2}, 2, \frac{-2}{3})$ या संख्या संख्यारेषेवर कशा दाखवायच्या हे पाहू.

प्रथम एक संख्यारेषा काढू.

- 2 ही परिमेय संख्या पूर्णांकही आहे. ती संख्यारेषेवर दाखवू.
- $\frac{7}{3} = 7 \times \frac{1}{3}$, म्हणून शून्याच्या उजवीकडील प्रत्येक एककाचे तीन समान भाग करू. शून्यापासूनचा सातवा बिंदू $\frac{7}{3}$ ही संख्या दाखवेल; किंवा $\frac{7}{3} = 2 + \frac{1}{3}$, म्हणून 2 या संख्येच्या पुढील $\frac{1}{3}$ एकक अंतरावरील

बिंदू $\frac{7}{2}$ ही संख्या दाखवेल.

ullet संख्यारेषेवर $-rac{2}{3}$ ही संख्या दाखवण्यासाठी, आधी $rac{2}{3}$ ही संख्या दाखवून 0 च्या डाव्या बाजूला तेवढ्याच अंतरावर - $\frac{2}{3}$ ही संख्या दाखवता येईल.

सरावसंच 1.1

1. संख्यारेषेवर पुढील परिमेय संख्या दाखवा. प्रत्येक उदाहरणासाठी वेगळी संख्यारेषा काढा.

$$(1) \frac{3}{2}, \frac{5}{2}, -\frac{3}{2}$$

$$(1) \frac{3}{2}, \frac{5}{2}, -\frac{3}{2} \qquad (2) \frac{7}{5}, -\frac{2}{5}, -\frac{4}{5} \qquad (3) -\frac{5}{8}, \frac{11}{8} \qquad (4) \frac{13}{10}, -\frac{17}{10}$$

$$(3) -\frac{5}{8}, \frac{11}{8}$$

$$(4) \frac{13}{10}, -\frac{17}{10}$$

2. दिलेली संख्यारेषा पाहून विचारलेल्या प्रश्नांची उत्तरे लिहा.

- (1) B बिंदू हा कोणती परिमेय संख्या दर्शवतो ? (2) $1\frac{3}{4}$ ही संख्या कोणत्या बिंदूने दाखवली आहे ?
- (3) 'D या बिंदूने $\frac{5}{2}$ ही परिमेय संख्या दाखवली आहे.' हे विधान सत्य की असत्य ते लिहा.

परिमेय संख्यांतील क्रमसंबंध (लहानमोठेपणा) (Comparison of rational numbers)

संख्यारेषेवर संख्यांच्या प्रत्येक जोडीमध्ये, डावीकडील संख्या उजव्या बाजूच्या संख्येपेक्षा लहान असते हे आपल्याला माहीत आहे. तसेच परिमेय संख्येचा अंश व छेद यांना एकाच शून्येतर संख्येने गुणले तर संख्या तीच राहते किंवा तिची किंमत बदलत नाही, म्हणजे $\frac{a}{b} = \frac{ka}{kb}$, $(k \neq 0)$.

उदा. (1) $\frac{5}{4}$ व $\frac{2}{3}$ यांचा लहानमोठेपणा ठरवा. <, =, > यांपैकी योग्य चिन्हाचा उपयोग करून लिहा.

उकल :
$$\frac{5}{4} = \frac{5 \times 3}{4 \times 3} = \frac{15}{12}$$
 $\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$

$$\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$$

$$\frac{15}{12} > \frac{8}{12}$$

$$\frac{15}{12} > \frac{8}{12}$$
 $\therefore \frac{5}{4} > \frac{2}{3}$

उदा. (2) $\frac{-7}{9}$, $\frac{4}{5}$ या परिमेय संख्यांची तुलना करा.

उकल : ऋण संख्या नेहमी धन संख्येपेक्षा लहान असते. म्हणून $-\frac{7}{9} < \frac{4}{5}$.

दोन ऋण संख्यांची तुलना करण्यासाठी

a,b या धन संख्या असून जर a < b, तर -a > -b याचा अनुभव घेऊ.

$$2 < 3 \ \text{पण} -2 > -3$$
 $\frac{5}{4} < \frac{7}{4} \ \text{पण} \ \frac{-5}{4} > \frac{-7}{4}$ यांचा संख्यारेषेवर पडताळा घ्या.

उदा. (3) $\frac{-7}{3}$, $\frac{-5}{2}$ यांची तुलना करा.

उकल : प्रथम $\frac{7}{3}$ आणि $\frac{5}{2}$ यांची तुलना करू.

$$\frac{7}{3} = \frac{7 \times 2}{3 \times 2} = \frac{14}{6}, \quad \frac{5}{2} = \frac{5 \times 3}{2 \times 3} = \frac{15}{6} \quad \boxed{9} \quad \frac{14}{6} < \frac{15}{6}$$

$$\therefore \frac{7}{3} < \frac{5}{2} \qquad \therefore \frac{-7}{3} > \frac{-5}{2}$$

उदा. (4) $\frac{3}{5}$ व $\frac{6}{10}$ या परिमेय संख्या आहेत. त्यांची तुलना करा.

उकल :
$$\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}$$
 : $\frac{3}{5} = \frac{6}{10}$

परिमेय संख्यांची तुलना करताना खालील नियम उपयोगी पडतात.

 $\frac{a}{b}$ व $\frac{c}{d}$ या परिमेय संख्यांमध्ये जर b आणि d धन असतील तर, आणि

(1) जर
$$a \times d < b \times c$$
 तर $\frac{a}{b} < \frac{c}{d}$

(2) जर
$$a \times d = b \times c$$
 तर $\frac{a}{b} = \frac{c}{d}$

(3) जर
$$a \times d > b \times c$$
 तर $\frac{a}{b} > \frac{c}{d}$

सरावसंच 1.2

1. खालील संख्यांमधील लहानमोठेपणा ठरवा.

$$(1)$$
 -7, -2

(2) 0,
$$\frac{-9}{5}$$

$$(3) \frac{8}{7}, 0$$

$$(4) \frac{-5}{4}, \frac{1}{4}$$

(2)
$$0, \frac{-9}{5}$$
 (3) $\frac{8}{7}, 0$ (4) $\frac{-5}{4}, \frac{1}{4}$ (5) $\frac{40}{29}, \frac{141}{29}$

$$(6) -\frac{17}{20}, \frac{-13}{20} \qquad (7) \frac{15}{12}, \frac{7}{16} \qquad (8) \frac{-25}{8}, \frac{-9}{4} \qquad (9) \frac{12}{15}, \frac{3}{5} \qquad (10) \frac{-7}{11}, \frac{-3}{4}$$

$$(7) \frac{15}{12}, \frac{7}{16}$$

$$(8) \frac{-25}{8}, \frac{-9}{4}$$

$$(9) \frac{12}{15}, \frac{3}{5}$$

$$(10) \frac{-7}{11}, \frac{-3}{4}$$

परिमेय संख्यांचे दशांश रूप (Decimal representation of rational numbers)

परिमेय संख्येच्या अंशाला छेदाने भागताना दशांश अपूर्णांकांचा उपयोग केला तर त्या संख्येचे दशांशरूप मिळते. उदाहरणार्थ, $\frac{7}{4} = 1.75$, येथे 7 ला 4 ने भागल्यावर बाकी शून्य आली. भागाकाराची क्रिया पूर्ण झाली.

परिमेय संख्यांच्या अशा दशांशरूपाला खंडित दशांशरूप म्हणतात.

आपल्याला माहीत आहे की प्रत्येक परिमेय संख्या अखंड आवर्ती दशांश रूपात लिहिता येते.

उदाहरणार्थ, (1)
$$\frac{7}{6}$$
 = 1.1666... = 1.16

$$(2) \frac{5}{6} = 0.8333... = 0.83$$

(3)
$$\frac{-5}{3} = -1.666... = -1.6$$

(4)
$$\frac{22}{7} = 3.142857142857... = 3.\overline{142857}$$
 (5) $\frac{23}{99} = 0.2323... = 0.\overline{23}$

तसेच $\frac{7}{4}$ = 1.75 = 1.75000... = 1.75 $\overset{\bullet}{0}$ याप्रमाणे शून्याचा उपयोग करून खंडित रूपही अखंड आवर्ती दशांश रूपात लिहिता येते.

सरावसंच 1.3

1. खालील परिमेय संख्या दशांश रूपात लिहा.

$$(1) \frac{9}{37}$$

$$(2) \frac{18}{42}$$

$$(3) \frac{9}{14}$$

(1)
$$\frac{9}{37}$$
 (2) $\frac{18}{42}$ (3) $\frac{9}{14}$ (4) $\frac{-103}{5}$ (5) $-\frac{11}{13}$

$$(5) -\frac{11}{13}$$

अपरिमेय संख्या (Irrational numbers)

परिमेय संख्यांच्या व्यतिरिक्त आणखी अनेक संख्या संख्यारेषेवर असतात. त्या परिमेय नसतात, म्हणजेच अपरिमेय असतात. $\sqrt{2}$ ही अशी एक अपरिमेय संख्या आहे.

आपण $\sqrt{2}$ ही संख्या संख्यारेषेवर दाखवू.

- संख्यारेषेवर A हा बिंदू 1 ही संख्या दाखवतो. संख्यारेषेला बिंदू A मधून रेषा l लंब काढा. रेषा l वर बिंद् P असा घ्या, की OA = AP = 1 एकक असेल.
- रेख OP काढा. $\Delta \operatorname{OAP}$ हा काटकोन त्रिकोण तयार झाला.

पायथागोरसच्या प्रमेयानुसार,

$$OP^2 = OA^2 + AP^2$$

= $1^2 + 1^2 = 1 + 1 = 2$
 $OP^2 = 2$

 \therefore OP = $\sqrt{2}$...(दोन्ही बाजूंची वर्गमुळे घेऊन)

आता ○ केंद्र व ○P एवढी त्रिज्या घेऊन एक कंस
काढा. तो कंस संख्यारेषेला जेथे छेदतो त्या बिंदूला
○ नाव द्या. ○○ हे अंतरही √2 आहे.

म्हणजे $\sqrt{2}$ ही संख्या संख्यारेषेवर Q या बिंद्ने दर्शवली आहे.

OQ एवढेच अंतर कंपासमध्ये घेऊन O च्या डावीकडे R हा बिंदू स्थापन केला तर त्या बिंदूने दर्शवलेली संख्या $-\sqrt{2}$ असेल.

 $\sqrt{2}$ ही संख्या अपरिमेय आहे हे आपण पुढील इयत्तेत सिद्ध करू. अपरिमेय संख्येचे दशांशरूप अखंड आणि अनावर्ती असते हेही आपण पुढील इयत्तेत पाहू.

लक्षात घ्या की -

मागील इयत्तेत आपण π ही संख्या परिमेय नाही हे शिकलो आहोत. म्हणजेच ती संख्या अपरिमेय संख्या आहे. आपण व्यवहारात सोयीसाठी π च्या खूप जवळची किंमत $\frac{22}{7}$ किंवा 3.14 ही π साठी घेतो. परंतु $\frac{22}{7}$ व 3.14 या संख्या परिमेय आहेत.

ज्या संख्या संख्यारेषेवर बिंदूंनी दाखवता येतात त्या संख्यांना वास्तव संख्या म्हणतात. सर्व परिमेय संख्या संख्यारेषेवर दाखवता येतात हे आपण पाहिले आहे. म्हणून सर्व परिमेय संख्या वास्तव संख्या आहेत. तसेच असंख्य अपरिमेय संख्या देखील वास्तव संख्या आहेत.

 $\sqrt{2}$ ही संख्या अपिरमेय आहे. $3\sqrt{2}$, $7+\sqrt{2}$, $3-\sqrt{2}$ इत्यादी सर्व संख्या अपिरमेय आहेत हे ध्यानात घ्या. कारण जर $3\sqrt{2}$ संख्या पिरमेय असेल तर $\frac{3\sqrt{2}}{3}$ ही देखील पिरमेय संख्या असायला हवी, पण ते सत्य नाही.

परिमेय संख्या संख्यारेषेवर कशा दाखवायच्या हे आपण पाहिले. तसेच $\sqrt{2}$ ही अपरिमेय संख्या आपण संख्यारेषेवर दाखवली. त्याप्रमाणे $\sqrt{3}$, $\sqrt{5}$. . . अशा अपरिमेय संख्याही आपण संख्यारेषेवर दाखवू शकतो.

सरावसंच 1.4

 √2 ही संख्या संख्यारेषेवर दाखवली आहे. त्या आधारे √3 ही संख्या संख्यारेषेवर दाखवण्यासाठी खाली कृतीच्या पायऱ्या दिलेल्या आहेत. त्या पायऱ्यांमधील रिकाम्या जागा योग्य रीतीने भरा आणि कृती पूर्ण करा.

कृती:

संख्यारेषेवर Q हा बिंदू ही संख्या दर्शवतो.

Q बिंद्पाशी एक लंबरेषा काढली आहे. त्या रेषेवर 1 एकक लांबी दर्शवणारा बिंदू R आहे.

•
$$l(OQ) = \sqrt{2}$$
, $l(QR) = 1$

∴ पायथागोरसच्या प्रमेयावरून,

OR एवढे अंतर घेऊन काढलेला कंस संख्यारेषेला जेथे छेदतो, त्या बिंदूला C हे नाव देऊ. C हा बिंदू $\sqrt{3}$ ही संख्या दाखवतो.

संख्यारेषेवर $\sqrt{5}$ ही संख्या दाखवा. 2.

 3^* . संख्यारेषेवर $\sqrt{7}$ ही संख्या दाखवा.

kkk

उत्तरसूची

सरावसंच 1.1

2. (1)
$$\frac{-10}{4}$$

(2) C (3) सत्य

सरावसंच 1.2

$$(2) \ 0 > \frac{-9}{5}$$

(3)
$$\frac{8}{7} > 0$$

$$(4) \ \frac{-5}{4} < \frac{1}{4}$$

1. (1)
$$-7 < -2$$
 (2) $0 > \frac{-9}{5}$ (3) $\frac{8}{7} > 0$ (4) $\frac{-5}{4} < \frac{1}{4}$ (5) $\frac{40}{29} < \frac{141}{29}$

$$(6) \ \frac{-17}{20} < \frac{-13}{20}$$

$$(7) \ \frac{15}{12} > \frac{7}{16}$$

$$(6) \ \frac{-17}{20} < \frac{-13}{20} \quad (7) \ \frac{15}{12} > \frac{7}{16} \quad (8) \ \frac{-25}{8} < \frac{-9}{4} \quad (9) \ \frac{12}{15} > \frac{3}{5} \quad (10) \ \frac{-7}{11} > \frac{-3}{4}$$

$$(10) \ \frac{-7}{11} > \frac{-3}{4}$$

सरावसंच 1.3

$$(1) \ 0.\overline{243}$$

(2)
$$0.\overline{428571}$$
 (3) $0.6\overline{428571}$ (4) -20.6

$$(4) -20.6$$

$$(5) -0.8\overline{46153}$$

