METODY NUMERYCZNE – LABORATORIUM

Zadanie 5 – metoda aproksymacja oparta o wielomiany Czebyszewa

Opis rozwiązania

Celem tego zadania było zaimplementowanie metody aproksymacji funkcji przy użyciu wielomianów Czebyszewa.

Aproksymacja jest to przybliżanie funkcji aproksymowanej pewną funkcją aproksymującą.

Przybliżenie funkcji aproksymującej:

$$f(x) \approx \frac{1}{2}c_0 + \sum_{j=1}^{n} c_j T_j(x),$$

gdzie:

$$c_{j} = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x)T_{j}(x)}{\sqrt{1-x^{2}}} dx,$$

$$T_{i}(x) = 2x \cdot T_{i-1}(x) - T_{i-2}(x),$$

$$T_{0}(x) = 1, \qquad T_{1}(x) = x$$

 $T_i(x)$ to wielomiany Czebyszewa, które w odróżnieniu od potęg x zachowują się równomiernie i oczekiwany błąd jest rozłożony bardziej równomiernie.

Ze względu na charakter całki aproksymacja odbywa się na przedziale [-1; 1].

Wyniki

Poniżej przedstawiliśmy wyniki działania naszego programu w postaci wykresów funkcji aproksymującej porównanej z funkcją aproksymowaną.

 $Tabela\ 1 - Przypadki\ aproksymacji\ funkcji\ o\ zadanych\ parametrach\ przy\ obliczaniu.$

Funkcja	Stopień wielomianu aproksymującego	Ilość węzłów dla całkowania	Bląd aproksymacji
2x + 1	2	2	0
	6	6	4,1415E - 30

Rysunek 1 - Funkcja aproksymowana i aproksymacyjna kolejno dla przypadków z tabeli 1.

Tabela 2 - Przypadki aproksymacji funkcji o zadanych parametrach przy obliczaniu.

Funkcja	Stopień wielomianu aproksymującego	Ilość węzłów dla całkowania	Błąd aproksymacji
x3 - 2x - 5	4	4	3,1554E - 30
	8	8	7,1786 <i>E</i> – 29

Rysunek 2 - Funkcja aproksymowana i aproksymacyjna kolejno dla przypadków z tabeli 2.

Tabela 3 - Przypadki aproksymacji funkcji o zadanych parametrach przy obliczaniu.

Funkcja	Stopień wielomianu aproksymującego	Ilość węzłów dla całkowania	Błąd aproksymacji
sin(x)	3	3	0,008665
	7	7	5,8E - 11

Rysunek 3 - Funkcja aproksymowana i aproksymacyjna kolejno dla przypadków z tabeli 3.

Tabela 4 - Przypadki aproksymacji funkcji o zadanych parametrach przy obliczaniu.

Funkcja	Stopień wielomianu aproksymującego	Ilość węzłów dla całkowania	Błąd aproksymacji
x	3	3	0,2496
	9	9	0,01442

Rysunek 4 - Funkcja aproksymowana i aproksymacyjna kolejno dla przypadków z tabeli 4.

Tabela 5 - Przypadki aproksymacji funkcji o zadanych parametrach przy obliczaniu.

Funkcja	Stopień wielomianu aproksymującego	Ilość węzłów dla całkowania	Bląd aproksymacji
cos(x3 + x - 2)	6	6	0,03261
	20	20	0,002144

Rysunek 5 - Funkcja aproksymowana i aproksymacyjna kolejno dla przypadków z tabeli 5.

Wnioski

- 1. Błąd aproksymacji w większości przypadków funkcji maleje wraz ze wzrostem stopnia funkcji aproksymacyjnej, wyjątkiem jest funkcja liniowa.
- 2. Minimalny stopień w przypadku aproksymowania wielomianów wynosi n + 1.