WHAT IS CLAIMED IS:

	CV	
	1 ℃	1. A method of manufacturing an ink jet printing module comprising:
	Ź	injection molding a precursor into a mold to form a stiffened piezoelectric
	3	element; and
	4	positioning the piezoelectric element over an ink chamber to subject ink
	5	within the chamber to a jetting pressure upon applying a jetting voltage.
	1	2. The method of claim 1, wherein the stiffened piezoelectric element has a curved
	2	surface over the ink chamber.
=L	1	3. The method of claim 2, wherein the curved surface is concave relative to the ink
The thirt than the task	2	chamber.
	1	4. The method of claim 2, wherein the curved surface has a substantially constant
	2	radius of curvature.
4 1	1	5. The method of claim 1, wherein the piezoelectric element includes lead zirconium
	2	titanate.
i.	1	6. The method of claim 1, wherein the jetting voltage is less than 60 volts.
	1	7. The method of claim 2, wherein the curved surface has a radius of curvature of
	2	less than 5 millimeters.
	1	8. The method of claim 2, wherein the curved surface has a radius of curvature of
	2	less than 3 millimeters.
	1	9. The method of claim 1, further comprising placing a first electrode and a second

electrode on a surface of the piezoelectric element.

2

•	V 33
2	than 50 mic
1	11.
2	contact the
1	12.
2	
3	
4	face of a st
<u>L</u> 5	pressure, th
nj 1	13.
C) 2	surface ove
*a.[1 ■	14.
H 2	chamber.
 - l:	
1 C)	15.
<u>L</u> 2	radius of cu
1	16.
2	zirconium
1	17.

1

2

Och (10)	The method of claim 1, wherein the piezoelectric element has a thickness of less
than 50 mic	crons.

- 11. The method of claim 1, further comprising orienting a wall of the chamber to contact the stiffened piezoelectric element at an angle of greater than ninety degrees.
 - 12. A method of depositing ink comprising:

delivering ink to an ink chamber; and

applying a jetting voltage across a first electrode and a second electrode on a face of a stiffened piezoelectric element to subject ink within the chamber to a jetting pressure, thereby depositing ink from an exit orifice of the ink chamber.

- 13. The method of claim 12, wherein the stiffened piezoelectric element has a curved surface over the ink chamber.
- 14. The method of claim 13, wherein the curved surface is concave relative to the ink chamber.
- 15. The method of claim 13, wherein the curved surface has a substantially constant radius of curvature.
- 16. The method of claim 13, wherein the piezoelectric element includes lead zirconium titanate.
 - 17. The method of claim 13, wherein the jetting voltage is less than 60 volts.
- 18. The method of claim 14, wherein the curved surface has a radius of curvature of less than 5 millimeters.
- 1 19. An ink jet printing module comprising:
- 2 an ink chamber;
- a stiffened piezoelectric element having a region exposed to the ink chamber, the

to 1000 microns.

2

1

2

3

2

1

2

- 1 29. The ink jet printing module of claim 19, wherein the chamber has a width of 100 to 800 microns.
 - 30. The ink jet printing module of claim 20, wherein the curved surface has a radius of curvature of 500 to 3000 microns.
 - 31. The ink jet printing module of claim 20, wherein the curved surface has a radius of curvature of 1000 to 2800 microns.
 - 32. The ink jet printing module of claim 20, wherein the curved surface has a radius of curvature of 1500 to 2600 microns.
 - 33. The ink jet printing module of claim 19, wherein the electrodes are configured to apply a voltage of less than 60 volts.
 - 34. The ink jet printing module of claim 19, further comprising a series of chambers.
 - 35. The ink jet printing module of claim 34, wherein each of the chambers is covered by a single piezoelectric element.
 - 36. The ink jet printing module of claim 19, wherein the chamber includes a wall contacting the piezoelectric element exposed to the ink chamber at an angle of greater than ninety degrees.