Определение главных моментов инерции твердых тел с помощью крутильных колебаний.

Шакиров Тимур Тагирович

Декабрь 2021

Цель работы: Измерить периоды крутильных колебаний при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относительно нескольких осей для каждого тела, по ним найти главные моменты инерции тел и построить эллипсоид инерции.

В работе используются: установка для крутильных колебаний, набор твердых тел, секундомер.

Теория.

Тензор инерции—характеристика пространственного распределения массы, определяется следующим образом:

$$\begin{pmatrix} \rho \int\limits_{V} (y^2 + z^2) dV & -\rho \int\limits_{V} xy dV & -\rho \int\limits_{V} xz dV \\ -\rho \int\limits_{V} xy dV & \rho \int\limits_{V} (x^2 + z^2) dV & -\rho \int\limits_{V} yz dV \\ -\rho \int\limits_{V} xz dV & -\rho \int\limits_{V} yz dV & \rho \int\limits_{V} (x^2 + y^2) dV \end{pmatrix}$$

Правильно выбрав оси, всегда можно привести тензор к диагональному виду. Диагональные элементы J_x , J_y , J_z при этом называют главными моментами инерции тела. У тензора есть геометрическая интерпретация—эллипсоид инерции, определяемый уравнением $J_x x^2 + J_y y^2 + J_z z^2 = 1$.

Момент инерции относительно оси, проходящей через центр масс $J = \frac{1}{r^2}$, где r— расстояние от центра эллипсоида до точки пересечения оси с эллипсоидом. Рамка, фиксирующая положения тела относительно себя, способна совершать колебания.

$$(I+I_{\rm p})\frac{d^2\varphi}{dt^2} = -f\varphi$$

$$T = 2\pi\sqrt{\frac{I+I_{\rm p}}{f}} \tag{1}$$

Момент инерции относительно диагонали для прямоугольного параллелепипеда:

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2}$$

Отсюда с учетом (1) получим:

$$(a^2 + b^2 + c^2)T_d^2 = a^2T_x^2 + b^2T_y^2 + c^2T_z^2$$

Аналогично можно получить:

$$(b^{2} + c^{2})T_{E}^{2} = b^{2}T_{y}^{2} + c^{2}T_{z}^{2}$$
$$(a^{2} + c^{2})T_{P}^{2} = a^{2}T_{x}^{2} + c^{2}T_{z}^{2}$$
$$(a^{2} + b^{2})T_{M}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2}$$

Рис. 1: Оси вращения параллелепипеда

Ход работы

- 1. Убедились в работоспособности установки, научились закреплять в ней тела, убедились в малости затухания колебаний.
- 2. Для различных тел (параллелепипед, куб, цилиндр 1, цилиндр 2, рамка 1, рамка 2) промерили периоды колебаний методом рядов для n=10. Также измерили геометрические размеры параллелепипеда и проверили равенства из теоретической части. Результаты внесли в таблицу:

I	Параллелепипед							
		2		$T_{\rm cp}$				
T_x, c	3.88	3.78	3.84	3.83				
T_y, c	4.09	4.11	4.12	4.11				
T_z, c	3.23	3.25	3.22	3.23				
T_d, c	3.46	3.48	3.46	3.47				
T_E, c	3.34	3.35	3.35	3.35				
T_P, c	3.41	3.42	3.41	3.41				
T_M, c	3.85	3.85	3.84	3.85				
Куб								
T_x, c	3.03	3.06	3.05	3.05				
T_y, c	3.06	3.06	3.04	3.06				
T_z, c	3.05	3.05	3.04	3.05				
T_d, c	3.05	3.05	3.04	3.05				
T_E, c	3.04	3.07	3.06	3.06				
T_P, c	3.06	3.07	3.04	3.06				
T_M, c	3.05	3.05	3.07	3.06				
Цилиндр 1								
T_x	3.04	3.08	3.08	3.07				
T_y	3.26	3.26	3.25	3.26				
Рамка 1								
T	2.58	2.56	2.56	2.57				
Цилиндр 2								
T_x	6.80	6.80	6.80	6.80				
T_y	6.48	6.45	6.45	6.46				
Рамка 2								
T	4.46	4.44	4.44	4.45				

a, cm	10.0
b, cm	5.0
C, CM	15.0
$(a^2 + b^2 + c^2)T_d^2$, cm ² · c ²	4210
$a^2T_x^2 + b^2T_y^2 + c^2T_z^2$, cm ² · c ²	4230
$(b^2 + c^2)T_E^2$, cm ² · c ²	2800
$b^2 T_y^2 + c^2 T_z^2$, cm ² · c ²	2770
$(a^2 + c^2)T_P^2$, cm ² · c ²	3790
$a^2 T_x^2 + c^2 T_z^2$, cm ² · c ²	3810
$(a^2 + b^2)T_M^2$, cm ² · c ²	1860
$a^2 T_x^2 + b^2 T_y^2$, cm ² · c ²	1890
$(b^{2} + c^{2})T_{E}^{2}, \operatorname{cm}^{2} \cdot \operatorname{c}^{2}$ $b^{2}T_{y}^{2} + c^{2}T_{z}^{2}, \operatorname{cm}^{2} \cdot \operatorname{c}^{2}$ $(a^{2} + c^{2})T_{P}^{2}, \operatorname{cm}^{2} \cdot \operatorname{c}^{2}$ $a^{2}T_{x}^{2} + c^{2}T_{z}^{2}, \operatorname{cm}^{2} \cdot \operatorname{c}^{2}$ $(a^{2} + b^{2})T_{M}^{2}, \operatorname{cm}^{2} \cdot \operatorname{c}^{2}$	2800 2770 3790 3810 1860

3. Для построения эллипсоидов инерции вычислим величины $\frac{1}{\sqrt{T^2-T_P^2}}$:

	параллелепипед	куб	цилиндр 1	цилиндр 2
$\frac{1}{\sqrt{T_x^2-T_D^2}}$	0.352	0.609	0.595	0.194
$\frac{1}{\sqrt{T_y^2 - T_P^2}}$	0.312	0.602	0.499	0.214
$\frac{1}{\sqrt{T_z^2 - T_P^2}}$	0.511	0.609		

Сечения эллипсоидов главными плоскостями прикреплены в приложении. Эксперимент подтвердил теоретические зависимости из теоретической части отчета.

Приложение

Рис. 2: Сечения эллипсоидов параллелепипеда(1 ряд) и куба(2 ряд)

Рис. 3: сечения эллипсоидов цилиндра 1 и цилиндра 2