

Arquitetura de Computadores

Unidade 2 – Organização Funcional dos Sistemas de Computação – tópico 2.2 - Barramentos

Prof. Dr. Eng. Fred Sauer

http://www.fredsauer.com.br

fsauer@gmail.com

Unidade 2

- Conteúdo Programático
 - Componentes de um Sistema de Computação
 - Descrição e Funções Básicas
 - Interligação por Barramentos. Características
 - Cálculos com barramento e memória
- Motivações
 - Um computador é como um jogo de montar: as peças combinam entre si
 - Sistemas e aplicações dependem da correta escolha do HW para operar adequadamente

Revisão: GRANDEZAS na Computação

Grandezas Usadas para Abreviar Valores de volumes de dados em Computação

Nome da unidade	Valor em potência de 2	Valor em unidades
1K (1 quilo)	210	1024
1M (1 mega)	$1024K = 2^{20}$	1.048.576
1G (1 giga)	$1024M = 2^{30}$	1.073.741.824
1T (1 tera)	240	1.099.511.627.776
1P (1 peta)	250	1.125.899.906.843.624
1Ex (1 exa)	260	1.152.921.504.607.870.976
1Z (1 zeta)	270	1.180.591.620.718.458.879.424
1Y (1 yotta)	280	1.208.925.819.615.701.892.530.176

(Atenção aos valores representados em potência de 2 e em potência de 10)

Unidades de Medida de Espaço e Tempo Pequenos

Unidade	Descrição
Mícron Nanômetro (nm)	10 ⁻³ mm (1 milésimo do milímetro) 10 ⁻⁶ mm (1 milionésimo do milímetro) ou 1 milésimo do mícron
Angström	10 nanômetros

Unidade	Descrição
Milissegundo	10^{-3} do segundo
Microssegundo	10 ⁻⁶ do segundo
Nanossegundo	10 ⁻⁹ do segundo
Picossegundo	10 ⁻¹² do segundo

A unidade de velocidade de barramentos Hz é medida no sistema decimal, de modo que:

 $1 \text{ MHz} = 10^6 \text{ Hz} \text{ e } 1 \text{ GHz} = 10^9 \text{ Hz}$

- Vias de comunicação entre os componentes do computador
 - Seriais ou paralelos
 - No paralelo (mais comum), o número de fios é a LARGURA do barramento

- Apesar de ser único, é dividido em três conjuntos:
 - BD Barramento de Dados
 - BE Barramento de Endereços
 - BC Barramento de Controle

FUNÇÕES DE CADA BARRAMENTO - CADA GRUPOS DE FIOS

Em uma operação de transferência ou acesso (seja para leitura ou para escrita), o barramento é ÚNICO, embora DIVIDIDO EM GRUPOS DE FIOS que realizam funções diferentes, a saber:

Barramentos de Dados (BD) — são bidirecionais - transportam bits de dados. Entre processador e outro componente e vice-versa.

Barramento de Endereços (BE) – são unidirecionais - transportam bits de um endereço de acesso, do processador para o controlador do barramento.

Barramento de Controle (BC) – possuem fios que enviam sinais específicos de controle e comunicação durante uma determinada operação.

TIPOS DE BARRAMENTOS

- Interno ou via de dados (data path)
- Externos

Paralelos

Do sistema (system bus) – FSB (Intel); Hyper Transport (AMD)

** de E/S: ISA - PCI - AGP

Seriais (E/S)

USB – PCI Express – Fireware

Comunicação via BUS

LEGENDA:

INT - interrogação

ACK - OK

L - Sinal de leitura (read)

E - Sinal de escrita (write)

BD-75

Sinais em um BC

- Cada fio transporta um sinal específico de uma determinada ação, evento ou para garantir uma operação.
- Exemplos:
 - * para sinalizar operação de escrita;
 - * para sinalizar operação de leitura;
 - * para passar voltagem de alimentação;
 - * fio terra;
 - * sinal do relógio;
 - * sinal de controle de acesso de endereço de coluna;
 - * sinal de controle de acesso endereço de linha;
 - * sinal de estabilização de dados no BD;
 - * sinal de solicitação de acesso ao barramento;

Cálculos

- Fundamentos importantes:
 - Barramento de Endereços
 - Largura L número de bits (fios) do BE
 - Quanto maior o L, maior a capacidade de endereçamento do HW, sendo N = 2^L, onde N é a capacidade de memória em número de endereços.
 - Barramento de Dados
 - Largura L idem, para o BD
 - Velocidade V ligada ao clock do processador, em Hz (onde 1 Hz = 1 bps)
 - T = L x V, e T é a taxa de transferência do barramento

- Se um BE possui 6 fios, quantos endereços o HW pode administrar?
 - $N = 2^{L}$, logo $N = 2^{6} = 64$ endereços (0 a 63)
- Se um processador tem 10 pinos para o BE, qual é a capacidade máxima de endereçar deste HW?
 - $N = 2^{L}$, logo $N = 2^{10} = 1024$ endereços (0 a 1023)
- Se um HW tem um BD de 10 bits e clock 100 MHz, qual é a sua capacidade de transferência?
 - T = L x V, logo $T = 10 x 100 Mbps = 10x10^2x10^6 bps = 10^9bps = 1 Gbps$

EXERCÍCIO

Um sistema de computação tem um processador de 2GHz e soquete com 204 pinos e 4GB de memória RAM, sendo interligados por um barramento com velocidade de 400 MHz.; sabe-se que o barramento de controle possui 132 fios. Calcule o valor da taxa de transferência de dados desse barramento.

SOLUÇÃO DO EXERCÍCIO

Total de pinos do processador = soma dos pinos (fios) usados pelos 3 barramentos (BE + BD + BC).

204 = 132 + BE + BD

 $2^{BE} = 4GB$. Então: BE = 32 bits (fios)

204 = 132 + 32 + BD. Assim: BD = 204 - 132 - 32 = 40 bits (fios)

Taxa de transferência (T) = velocidade (V) * largura do BD (L) Sendo V = 400 MHz (ou 400 Mbps/fio) e L = 40,

T = 400 M * 40 = 16000 Mbps ou 16 Gbps

Implementação dos Barramentos

ESTRUTURA DE BARRAMENTOS EM NÍVEIS

- •Por razões práticas, um barramento deve operar a uma velocidade fixa.
- Conectar todos os dispositivos de um computador no mesmo barramento criaria sérios problemas de desempenho e elevaria os custos de produção dos dispositivos.
- Solução: uso de barramentos independentes, operando em velocidades distintas, criando um modelo hierárquico.
- Cada dispositivo é conectado a um barramento mais adequado às suas características de velocidade de operação.

Ex.: SATA – 1,5 Gbps (clock 1,5GHz), SATA II – 3 Gbps e SATA III – 6 Gbps USB 2.0 – 480 Mbps, USB 3.0 – 4,8 Gbps (conector azul 9 pinos)

ESTRUTURA DE BARRAMENTOS EM NÍVEIS

ESTRUTURA DE BARRAMENTOS EM NÍVEIS

REPRESENTAÇÃO DAS INFORMAÇÕES

Estrutura de Informações nas Linguagens dos Humanos e nos Computadores

Linguagens dos humanos	
Caractere	
Palavra	
Frases	
Textos	
Livros	

EXERCÍCIOS PARA REVISÃO

- 1. Um barramento é organizado em 3 grupos de fios, usados para transmissão de sinais. Como eles são denominados?
- 2. Considere uma memória que possua 128 M endereços. Qual deve ser a largura, em bits, dos números que representam cada endereço?
- Um processador possui 28 pinos reservados para transmitir endereços e 40 pinos para enviar/receber dados da memória. O seu barramento opera com velocidade de 100 MHz.
 - a) qual é a máximo espaço de endereçamento (capacidade) da memória?
 - b) qual é a taxa de transferência do barramento de dados, em bps?