Formas Indeterminadas e Regra de l'Hôpital

Priscila Bemm

UEM

Objetivo

• Calcular limites indeterminados usando a regra de L'Hôpital.

Suponha que estejamos tentando analisar o comportamento da função

$$F(x) = \frac{\ln x}{x - 1}$$

Apesar de F não estar definida em x=1, precisamos saber como F se comporta próximo a 1. Em particular, gostaríamos de saber o valor do limite

$$\lim_{x \to 1} F(x) = \lim_{x \to 1} \frac{\ln x}{x - 1}$$

No cálculo desse limite não podemos aplicar a propriedade dos limites (o limite de um quociente é o quociente dos limites), pois o limite do denominador é 0. De fato, embora o limite em exista, seu valor não é óbvio, porque tanto o numerador como o denominador tendem a 0 e $\frac{0}{0}$ não está definido.

Em geral, se tivermos um limite da forma

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

em que $f(x) \to 0$ e $g(x) \to 0$ quando $x \to a$, então o limite pode ou não existir, e é chamado forma indeterminada do tipo $\frac{0}{0}$.

Em geral, se tivermos um limite da forma

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

em que $f(x) \to \infty$ ou $(-\infty)$ e $g(x) \to \infty$ ou $(-\infty)$, quando $x \to a$, então o limite pode ou não existir, e é chamado forma indeterminada do tipo $\frac{\infty}{\infty}$.

Em geral, se tivermos um limite da forma

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

em que $f(x) \to \infty$ ou $(-\infty)$ e $g(x) \to \infty$ ou $(-\infty)$, quando $x \to a$, então o limite pode ou não existir, e é chamado forma indeterminada do tipo $\frac{\infty}{\infty}$.

Esse tipo de limite pode ser calculado para certas funções — incluindo aquelas racionais — dividindo o numerador e o denominador pela potência mais alta de x que ocorre no denominador. Esse método não funciona para um limite como , mas a Regra de l'Hôpital aplica-se também a esse tipo de forma indeterminada.

Regra de l'Hôpital

Regra de l'Hôpital

Suponha que f e t sejam deriváveis e em um intervalo aberto I que contém a (exceto possivelmente em a). Suponha que

$$\lim_{x \to a} f(x) = 0 \quad \mathsf{e} \quad \lim_{x \to a} g(x) = 0$$

ou que
$$\lim_{x \to a} f(x) = \pm \infty$$
 e $\lim_{x \to a} g(x) = \pm \infty$

(Em outras palavras, temos uma forma indeterminada do tipo $\frac{0}{0}$ ou $\stackrel{\infty}{\infty}$.) Então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Regra de l'Hôpital

Observação

Regra de l'Hôpital é válida também para os limites laterais e para os limites no infinito ou no infinito negativo; isto é, " $x \to a$ " pode ser substituído por quaisquer símbolos a seguir:

- $\bullet x \rightarrow a^+$
- \bullet $x \rightarrow a^{-}$.
- \bullet $x \to \infty$ ou
- $\bullet x \to -\infty$.

Encontre $\lim_{x\to 1} \frac{\ln x}{x-1}$.

Encontre
$$\lim_{x\to 1} \frac{\ln x}{x-1}$$
.

Uma vez que

$$\lim_{x\to 1} \ln x = \ln 1 = 0 \quad \mathrm{e} \quad \lim_{x\to 1} (x-1) = 0,$$

podemos aplicar a Regra de l'Hôpital:

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x - 1)} = \lim_{x \to 1} \frac{1/x}{1} = \lim_{x \to 1} \frac{1}{x} = 1.$$

Calcule $\lim_{x\to\infty}\frac{e^x}{x^2}$.

Calcule $\lim_{x\to\infty} \frac{e^x}{x^2}$.

Temos $\lim_{x\to\infty} e^x = \infty$ e $\lim_{x\to\infty} x^2 = \infty$; logo, a Regra de l'Hôpital fornece:

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}.$$

Uma vez que $e^x \to \infty$ e $2x \to \infty$ quando $x \to \infty$, o limite do lado direito também é indeterminado, mas uma segunda aplicação da Regra de l'Hôpital fornece:

$$\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(2x)} = \lim_{x \to \infty} \frac{e^x}{2} = \infty.$$

Calcule $\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$.

Calcule $\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$.

Uma vez que $\ln x \to \infty$ e $\sqrt[3]{x} \to \infty$ quando $x \to \infty$, a Regra de l'Hôpital pode ser aplicada:

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \lim_{x \to \infty} \frac{1/x}{\frac{1}{2}x^{-2/3}} = \lim_{x \to \infty} \frac{1}{x} \cdot \frac{3}{x^{-2/3}} = \lim_{x \to \infty} \frac{3}{x^{1-2/3}} = \lim_{x \to \infty} \frac{3}{x^{1/3}} = 0.$$

Encontre
$$\lim_{x \to \pi^-} \frac{\sin x}{1 - \cos x}$$
.

Encontre
$$\lim_{x\to\pi^-} \frac{\sin x}{1-\cos x}$$
.

Se tentarmos usar cegamente a Regra de l'Hôpital, obteremos:

$$\lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos x} = \lim_{x \to \pi^{-}} \frac{\cos x}{\sin x} = -\infty.$$

Isso está **errado!** Embora o numerador $\sin x \to 0$ quando $x \to \pi^-$, perceba que o denominador $1 - \cos x$ não tende a zero; logo, não podemos aplicar aqui a Regra de l'Hôpital.

O limite pedido é na verdade fácil de ser encontrado, pois a função é contínua em π e o denominador é diferente de zero:

$$\lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos x} = \frac{\sin \pi}{1 - \cos \pi} = \frac{0}{1 - (-1)} = 0.$$

Produto Indeterminado

Se $\lim_{x\to a} f(x) = 0$ e $\lim_{x\to a} g(x) = \infty$ (ou $-\infty$), então não está claro que valor de $\lim_{x\to a} [f(x)g(x)]$, se houver algum. Há uma disputa entre f e g. Se f ganhar, a resposta é 0; se g vencer, a resposta será ∞ (ou $-\infty$). Ou pode haver um equilíbrio, e então a resposta é um número finito diferente de zero.

Esse tipo de limite é chamado forma indeterminada do tipo $0 \cdot \infty$. Podemos lidar com ela escrevendo o produto fg como um quociente:

$$fg = \frac{f}{1/g}$$
 ou $fg = \frac{g}{1/f}$

Isso converte o limite dado na forma indeterminada do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$, de modo que podemos usar a Regra de l'Hôpital.

Calcule $\lim_{x\to 0^+} x \ln x$.

Calcule $\lim_{x\to 0^+} x \ln x$.

O limite dado é indeterminado, pois, como $x \to 0^+$, o primeiro fator (x) tende a 0, enquanto o segundo fator $(\ln x)$ tende a $-\infty$.

Escrevendo x=1/(1/x) temos $1/x\to\infty$ quando $x\to 0^+$; logo, a Regra de l'Hôpital fornece:

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0.$$

Diferença Indeterminada

Se $\lim_{x\to a} f(x) = \infty$ e $\lim_{x\to a} g(x) = \infty$, então o limite

$$\lim_{x \to a} [f(x) - g(x)]$$

é chamado **forma indeterminada do tipo** $\infty - \infty$. De novo, há uma disputa entre f e g. A resposta será ∞ (se f ganhar) ou será $-\infty$ (se g ganhar), ou haverá entre eles um equilíbrio, resultando um número finito.

Para descobrirmos, tentamos converter a diferença em um quociente (usando um denominador comum ou racionalização, ou pondo em evidência um fator em comum, por exemplo), de maneira a termos uma forma indeterminada do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$.

Calcule $\lim_{x\to(\pi/2)^-} (\sec x - \operatorname{tg} x)$.

Calcule $\lim_{x\to(\pi/2)^-}(\sec x - \operatorname{tg} x)$.

Observe primeiro que $\sec x \to \infty$ e $\tan x \to \infty$ quando $\tan x \to \left(\frac{\pi}{2}\right)^-$; logo, o limite é indeterminado. Aqui usamos um denominador comum:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \lg x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$
$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x} = \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x} = 0$$

Observe que o uso da Regra de l'Hôpital é justificado, pois $1 - \sin x \to 0$ e $\cos x \to 0$ quando $x \to \left(\frac{\pi}{2}\right)^-$.

Potências Indeterminadas

Várias formas indeterminadas surgem do limite

$$\lim_{x \to a} [f(x)]^{g(x)}$$

- ② $\lim_{x\to a} f(x) = \infty$ e $\lim_{x\to a} g(x) = 0$, tipo ∞^0 ,

Cada um dos três casos pode ser tratado tanto tomando o logaritmo natural:

seja
$$y = [f(x)]^{g(x)}$$
, então $\ln y = g(x) \ln f(x)$

quanto escrevendo a função como uma exponencial:

$$[f(x)]^{g(x)} = e^{g(x)\ln f(x)}$$

Calcule $\lim_{x\to 0^+} (1+\sin 4x)^{\cot x}$.

Calcule $\lim_{x\to 0^+} (1+\sin 4x)^{\cot x}$.

Observe primeiro que, quando $x \to 0^+$, temos $1 + \sin 4x \to 1$ e $\cot x \to \infty$, assim, o limite dado é indeterminado. Considere

$$y = (1 + \sin 4x)^{\cot x}$$

Então

$$\ln y = \ln[(1 + \sin 4x)^{\cot x}] = \cot x \cdot \ln(1 + \sin 4x)$$

e logo, a Regra de l'Hôpital fornece:

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln(1 + \sin 4x)}{\operatorname{tg} x} = \lim_{x \to 0^+} \frac{\frac{4 \cos 4x}{1 + \sin 4x}}{\sec^2 x} = 4.$$

Até agora calculamos o limite de $\ln y$, mas o que realmente queremos é o limite de y. Para achá-lo usamos o fato de que $y=e^{\ln y}$:

$$\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} = \lim_{x \to 0^+} y = \lim_{x \to 0^+} e^{\ln y} = e^4.$$

Dúvidas?