ESTATÍSTICA PARA CIÊNCIA DE DADOS E MACHINE LEARNING

Parte 1 – População e amostra • Técnicas de amostragem • Subamostragem e sobreamostragem	Parte 2 – Dados relativos e absolutos Percentuais Índices, coeficientes e taxas	Parte 3 – Distribuição de frequência Cálculos passo a passo Aplicação em regras de associação
Parte 4 – Medidas de posição e dispersão Média, moda e mediana Quartis e percentis Variância e desvio padrão Avaliação de algoritmos de classificação	Parte 5 — Distribuições estatísticas Distribuição normal Distribuições não normais Naïve Bayes Multinomial e Bernoulli Padronização (z-score) Pesos em redes neurais artificiais	Parte 6 — Probabilidade Probabilidade básica Distribuições de probabilidade Probabilidade e machine learning
Parte 7 – Intervalos de confiança e testes de hipóteses Cálculos passo a passo Distribuição T Student ANOVA e Qui Quadrado Seleção de atributos Avaliação de algoritmos Estatística paramétrica e não paramétrica	Parte 8 – Correlação e regressão Cálculos passo a passo Regressão linear simples e múltipla	Parte 9 – Visualização • Gráficos • Mapas com latitude e longitude

CONTEÚDO

- População e amostra
- Tabela de números aleatórios
- Amostragem aleatória simples
- Amostragem sistemática
- Amostragem por grupos
- Amostragem estratificada
- Amostragem de reservatório
- Dados desbalanceados
 - Classificação
 - Naïve bayes
 - Subamostragem (undersampling)
 - Sobreamostragem (oversampling)

POPULAÇÃO E AMOSTRA

A amostra é sempre menor que a população Mais rápido para processar

Menor tempo para analisar

Os números que são obtidos da amostra são as estatísticas

A amostra precisa ser **randômica** e **representativa**

TIPOS DE AMOSTRAGEM

AMOSTRAGEM – TABELA DE NÚMEROS ALEATÓRIOS

População: 80

Amostra: 5

14, 15, 65, 35, 79

População: 400

Amostra: 5

122, 272, 188, 274, 237

AMOSTRAGEM SISTEMÁTICA

População: 28 casas 28 / 5 = 5,6 (arredondamos para 6)

Amostra: 5 casas

AMOSTRAGEM POR GRUPOS

População: 28 casas Selecionar randomicamente um dos grupos 4 grupos

AMOSTRA ESTRATIFICADA

- População: 90 pessoas
- 54 mulheres e 36 homens
- Amostra de 10% da população: 9 pessoas
- Mulheres representam 60% da população
- Homens representam 40% da população
- Quantidade de mulheres
 - 54 * 10 / 100 = 5,4 (arrendamos para 5)
- Quantidade de homens
 - 36 * 10 / 100 = 3,6 (arredondamos para 4)
- Cálculos para saber quantos elementos de cada grupo devem ser selecionados. Utilizar na sequência outra técnica para seleção das amostras

AMOSTRA DE RESERVATÓRIO

- **Data stream** de itens com tamanho desconhecido que pode ser acessado somente uma vez
- Algoritmo para sortear um item do stream, porém, cada item deve possuir a mesma probabilidade de seleção
- Exemplo dos chapéus: https://www.youtube.com/watch?v=A1iwzSew5QY

SUBAMOSTRAGEM E SOBREAMOSTRAGEM

Fonte: https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets #t100% and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies are strategies and the strategies are strategies and the strategies are strategies are strategies and the strategies are strategies and the strategies are strategies are strategies are strategies and the strategies are strategies and the strategies are strategies are strategies are strategies and the strategies are strategies are strategies are strategies are strategies and the strategies are strategies are

SUBAMOSTRAGEM – TOMEK LINKS

SOBREAMOSTRAGEM – SMOTE

DADOS ABSOLUTOS E RELATIVOS

- Dados absolutos:
 - Coleta direta da fonte sem nenhum outro tipo de manipulação (somente contagem, ordenação)
- Dados relativos
 - Fácil entendimento para ajudar nas comparações entre quantidades
- Porcentagem
- Índices
- Coeficientes
- Taxas

DADOS ABSOLUTOS E RELATIVOS – PORCENTAGEM

• Destacar a participação da "parte no todo" – comparativos

Emprego	Nova Jersey	Florida	% Nova Jersey	% Florida
Administrador de banco de dados	97.350	77.140	33.30	36.56
Programador	82.080	71.540	28.08	33.90
Arquiteto de redes	112.840	62.310	38.62	29.54
Total	292.270	210.990	100	100

DADOS ABSOLUTOS E RELATIVOS – ÍNDICES

- Razões entre duas grandezas
- Resumir em um só número o comportamento geral de uma variável
- Índice cefálico = $\frac{largura\ x\ comprimento}{100}$
- Densidade demográfica = $\frac{população \ x \ superfície}{100}$
- Produção per capita = $\frac{valor total da produção}{população}$
- Renda per capita = $\frac{renda}{população}$
- Índice Bovespa: https://blog.magnetis.com.br/o-que-e-indice-bovespa/

DADOS ABSOLUTOS E RELATIVOS – COEFICIENTES E TAXAS

- Razões entre o número de ocorrências e o número total
- Taxa: coeficientes multiplicados por uma potência de 10 (10, 100, 1000)
- Coeficiente de natalidade = $\frac{número de nascimentos}{população}$
- Taxa de natalidade = coeficiente de natalidade x 1000
- Coeficiente de mortalidade $=\frac{número de óbitos}{população}$
- $Taxa\ de\ mortalidade = coeficiente\ de\ mortalidade\ x\ 1000$
- Coeficiente de evasão = $\frac{número de alunos evadidos}{número inicial de matrículas}$
- Taxa de evasão = coeficiente de evasão x 100

DADOS ABSOLUTOS E RELATIVOS – COEFICIENTES E TAXAS

Ano graduação	Matrículas março	Matrículas novembro	Taxa de evasão
1 º	70	65	7.14
2 º	50	48	4.00
3 º	47	40	14.89
4 º	23	22	4.34
Total	190	175	7.89

 $\begin{array}{l} \textit{Coeficiente de evas$\tilde{a}o$} = \frac{\textit{n\'umero de alunos evadidos}}{\textit{n\'umero inicial de matr\'iculas}} \\ \textit{Taxa de evas$\tilde{a}o$} = \textit{coeficiente de evas$\tilde{a}o$} \times 100 \\ \end{array}$

- Cálculos passo a passo
- Histograma
- Regras de associação algoritmo Apriori
- Distribuição de frequência e regras de associação

Tabela primitiva

160	165	167	164	160	166	160	161	150	152
173	160	155	164	168	162	161	168	163	156
155	169	151	170	164	155	152	163	160	155
157	156	158	158	161	154	161	156	172	153

Tabela ordenada (rol)

150	151	152	152	153	154	155	155	155	155
156	156	156	157	158	158	160	160	160	160
160	161	161	161	161	162	163	163	164	164
164	165	166	167	168	168	169	170	172	173

X_{min}: 150

X_{max}: 173

Estatura (cm)	Frequência
150	1
151	1
152	2
153	1
154	1
155	4
156	3
157	1
158	2
160	5
161	4
162	1
163	2
164	3
165	1
166	1
167	1
168	2
169	1
170	1
172	1
173	1
Total	40

Estatura (cm)	Frequência
150 154	5
154 158	9
158 162	11
162 166	7
166 170	5
170 173	3
Total	40

Estatura (cm)	Frequência
150 154	5
154 158	9
158 162	11
162 166	7
166 170	5
170 173	3
Total	40

Classe: intervalos de variação da variável representados simbolicamente por i

Limite de classe

Exemplo: l1 = 150 e L2 = 158

Amplitude de um intervalo de classe (hi)

$$hi = Li - li (154 - 150 = 4)$$

Amplitude total da distribuição (AT)

$$AT = L_{(max)} - L_{(min)} = 173 - 150 = 23$$

Amplitude amostral (AA) X_{min}: 150

$$AA = X_{(max)} - X_{(min)} = 173 - 150 = 23 X_{max}$$
: 173

Ponto médio de uma classe (x_i)

$$Xi = (Li + Ii) / 2 = (158 + 154) / 2 = 156 cm$$

Frequência

 $f_2 = 9$ (número de elementos na classe 2)

Estatura (cm)	Frequência
150 154	5
154 158	9
158 162	11
162 166	7
166 170	5
170 173	3
Total	40

Determinar o número de classes

Fórmula de Sturges ($i = 1 + 3.3 \log n$)

$$1 + 3.3 * log(40)$$

Determinar a amplitude do intervalo de classe

$$23 / 6 = 3,83$$
 (arredondado = 4)

Amplitude amostral (AA)

$$AA = X_{(max)} - X_{(min)} = 173 - 150 = 23$$

MEDIDAS DE POSIÇÃO E DISPERSÃO

- Estatística descritiva descrever e sumarizar um conjunto de dados
- Média, mediana e moda
- Média aritmética, geométrica, harmônica e quadrática
- Quartis e percentis
- Variância, desvio padrão e coeficiente de variação
- Avaliação de algoritmos de machine learning
- Seleção de atributos com variância

MÉDIA ARITMÉTICA, MODA E MEDIANA – DADOS NÃO AGRUPADOS

150	151	152	152	153	154	155	155	155	155
156									
160	161	161	161	161	162	163	163	164	164
164	165	166	167	168	168	169	170	172	173

Média

$$\bar{x} = \frac{\sum x_i}{n}$$

160.375

Moda

160

Mediana (ímpar)

$$Mediana = \frac{n}{2}$$

$$Mediana = \frac{9}{2}$$

Mediana = 4,5

Mediana = 5 (arredondado)

1 152 152 153 154 155 155 15

Mediana (par)

$$m = \frac{n}{2}$$

$$m = 20$$

$$n = \frac{160 + 160}{2}$$

$$m = 160$$

MÉDIA ARITMÉTICA, MODA E MEDIANA – DADOS NÃO AGRUPADOS

150	151	152	152	153	154	155	155	155	155
156	156	156	157	158	158	160	160	160	160
160	161	161	161	161	162	163	163	164	164
164	165	166	999	168	168	900	170	172	173

Média

Moda

Mediana (par)

$$\bar{x} = \frac{\sum x_i}{n}$$

199.225

$$m = \frac{n}{2}$$

$$m = 20$$

$$m = \frac{160 + 160}{2}$$

$$m = 160$$

MÉDIA ARITMÉTICA PONDERADA

Bimestre	Nota	Peso
1 º	9	1
2 º	8	2
3 º	7	3
4 º	3	4

$$-\frac{\sum_{i} X_{i}}{n}$$

$$\frac{9+8+7+3}{4} = 6,75$$

$$M_p = \frac{p_1. x_1 + p_2. x_2 + \dots + p_n. x_n}{p_1 + p_2 + \dots + p_n}$$

$$\frac{9*1+8*2+7*3+3*4}{1+2+3+4} = 5,80$$

$$\frac{9+8+8+7+7+7+3+3+3+3}{1+2+3+4}$$

MÉDIA ARITMÉTICA, MODA E MEDIANA – DADOS AGRUPADOS

Estatura (cm)	f _i	x _i	f _i .x _i	Fi
150 154	5	152	760	5
154 158	9	156	1404	14
158 162	11	160	1760	25
162 166	7	164	1148	32
166 170	5	168	840	37
170 174	3	172	516	40
Total	40		6428	

Ponto médio de uma classe (x_i)

$$Xi = (Li + Ii) / 2 = (158 + 154) / 2 = 156 cm$$

$$\frac{\sum f_i}{2} = \frac{40}{2} = 20$$

Média
$$\bar{x} = \frac{\sum f_i.xi}{\sum f_i}$$

$$\bar{x} = \frac{6428}{40}$$

$$\bar{x} = 160,7$$

Moda

160

$$Md = l + \frac{(\frac{\sum f_i}{2} - Fant).h}{f_i}$$
 $Md = 158 + \frac{(20 - 14).4}{11}$
 $Md = 160,18$

MÉDIA GEOMÉTRICA, HARMÔNICA E QUADRÁTICA

150	151	152	152	153	154	155	155	155	155
156	156	156	157	158	158	160	160	160	160
160	161	161	161	161	162	163	163	164	164
164	165	166	167	168	168	169	170	172	173

$$\bar{g} = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n}$$

$$\bar{h} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

 $QM = \sqrt{\frac{{X_1}^2 + {X_2}^2 + \dots + {X_n}^2}{n}}$

Aplicações na geometria, para comparar lados de prismas

Avaliar desempenho em aprendizagem de máquina

Aplicações na física

Matemática financeira que envolvem taxa percentual acumulada

Modelos de regressão

QUARTIS

Mediana (ímpar)

$$Mediana = \frac{n}{2}$$

$$Mediana = \frac{9}{2}$$

$$Mediana = 4,5$$

$$Mediana = 5 (arredondado)$$

Mediana (par)

$$m = \frac{n}{2}$$

$$m = 2$$

$$m = \frac{151 + 152}{2}$$

$$m = 151,5$$

Mediana (par)

$$m = \frac{\pi}{2}$$

$$m = 2$$

$$m = \frac{155 + 155}{2}$$

$$m = 155$$

QUARTIS – DADOS AGRUPADOS

Estatura (cm)	fi	x _i	f _i .x _i	Fi
150 154	5	152	760	5
154 158	9	156	1404	14
158 162	11	160	1760	25
162 166	7	164	1148	32
166 170	5	168	840	37
170 174	3	172	516	40
Total	40		6428	

$$\frac{\sum f_i}{4} = \frac{40}{4} = 10$$

$$\frac{3\sum f_i}{4} = \frac{120}{4} = 30$$

$$Q1 = l + \frac{(\frac{\sum f_i}{4} - Fant).h}{f_i}$$

$$Q1 = 154 + \frac{(10 - 5).4}{2}$$

$$Q1 = 156,22$$

$$Q1 = l + \frac{(\frac{\sum f_i}{4} - Fant).h}{f_i}$$

$$Q3 = l + \frac{(\frac{3\sum f_i}{4} - Fant).h}{f_i}$$

$$Q1 = 154 + \frac{(10 - 5).4}{9}$$

$$Q3 = 162 + \frac{(30 - 25).4}{7}$$

$$Q3 = 164,85$$

AMPLITUDE TOTAL E DIFERENÇA INTERQUARTIL

Amplitude total (AT)

$$AT = X_{(max)} - X_{(min)} = 155 - 150 = 5$$

Diferença interquartil

$$Q3 - Q1 = 155 - 151,5 = 3,5$$

Outliers

Cerca inferior =
$$Q1 - (1.5 * DI) = 146,25$$

Cerca superior =
$$Q3 + (1.5 * DI) = 160,25$$

VARIÂNCIA, DESVIO PADRÃO E COEFICIENTE DE VARIAÇÃO

 $2^2 = 4$ $10^2 = 100$

$$\frac{150 + 151 + 152 + 153 + 154 + 155 + 155 + 155}{n} = 153$$
Desvio = 3 2 1 1 0 1 2 2 2

 $3^2 + 2^2 + 1^2 + 1^2 + 0^2 + 1^2 + 2^2 + 2^2 + 2^2$

o quão longe os valores estão do "valor esperado"

$$9+4+1+1+0+1+4+4+4$$

Desvio padrão =
$$\sqrt{3,11} = 1,76$$
 "Erro" se substituirmos pelo valor da média

$$V = \frac{\sigma}{\bar{X}}.100$$
 $CV = \frac{1,76}{153}.100 = 1,15\%$

DESVIO PADRÃO – DADOS AGRUPADOS

Estatura (cm)	f _i	x _i	f _i .x _i	x _i ²	f _i .x _i ²	Fi
150 154	5	152	760	23104	115520	5
154 158	9	156	1404	24336	219024	14
158 162	11	160	1760	25600	281600	25
162 166	7	164	1148	26896	188272	32
166 170	5	168	840	28224	141120	37
170 174	3	172	516	29584	88752	40
Total	40		6428		1034288	

$$dp = \sqrt{\frac{\sum f_i \cdot xi^2}{\sum f_i} - \left(\frac{\sum f_i \cdot xi}{\sum f_i}\right)^2} \qquad dp = \sqrt{25857,2 - (160,7)^2}$$

$$dp = \sqrt{\frac{1034288}{40} - \left(\frac{6428}{40}\right)^2} \qquad dp = 5,71$$

$$dp = \sqrt{25857,2 - (160,7)^2}$$

$$dp = \sqrt{25857,2 - (25824,49)}$$

$$dp = 5,71$$

DISTRIBUIÇÕES ESTATÍSTICAS

- Estatística inferencial
- Como os dados estão dispostos
- Distribuições
 - Normal (padronizada)
 - Gama
 - Exponencial
 - Uniforme
 - Bernoulli
 - Binomial
 - Poisson
- Naïve Bayes (Bernoulli e Multinomial)
- Padronização + kNN
- Tratamento de dados enviesados
- Inicialização de pesos em redes neurais
- Testes de normalidade (estatística paramétrica e não paramétrica)

Estatura (cm)	Frequência		
150 154	5		
154 158	9		
158 162	11		
162 166	7		
166 170	5		
170 173	3		
Total	40		
0.025 - 0.20			

TIPOS DE VARIÁVEIS

Temperatura, altura, peso, salário

Contagem de alguma coisa

finito (inteiros)

Dados não mensuráveis

Sem ordenação: cor dos olhos, gênero

Categorizado sob uma ordenação

Tamanho P, M e G

DISTRIBUIÇÃO NORMAL

18:50

፟ጰ፟፟፟ጰ፟፟፟፟ጰ፞፞፞፠፞፠

18:40

ネネ

19:10

ኢኢኢኢኢ

19:20

DISTRIBUIÇÃO NORMAL

ENVIESAMENTO

Fonte: https://becominghuman.ai/how-to-deal-with-skewed-dataset-in-machine-learning-afd2928011cc

Fonte: https://www.researchgate.net/publication/294890337_ACOUSTIC_EMISSION_TESTS_ON_THE_ANALYSIS_OF_CRACKED_SHAFTS_OF_DIFFERENT_CRACK_DEPTHS/figures?lo=1

DISTRIBUIÇÃO NORMAL PADRONIZADA

- Distribuições normais não possuem a mesma média e desvio padrão
- Difícil comparar resultados entre duas ou mais bases de dados
- Transformar a distribuição
 - Média: 0
 - Desvio padrão: 1

$$Z_{score} = \frac{x - m\acute{e}dia}{desvio \ padr\~{a}o}$$

DISTRIBUIÇÃO NORMAL PADRONIZADA

$$Z_{score} = \frac{x - m\acute{e}dia}{desvio\ padr\~{a}o}$$

$$x = \frac{60 - 38,33}{20,20} = 1,07$$

$$x = \frac{35 - 38,33}{20,20} = -0,16$$

$$x = \frac{20 - 38,33}{20,20} = -0,90$$

ld	a	d	e

60 35

20

Média = 38,33

Desvio padrão = 20,20

Idade

1,07

-0,16

-0,90

Média = 0,003

Desvio padrão = 0,995

DISTRIBUIÇÕES

PROBABILIDADE

- Básico sobre probabilidade
 - Permutação
 - Combinação
 - Interseção, união e complemento
 - Eventos dependentes e independentes
- Redes Bayesianas
- Classificador ótimo de Bayes e Naïve Bayes
- Probabilidade e distribuições
 - Normal
 - Binomial
 - Poisson

PROBABILIDADE

- São as chances de um evento ocorrer
- Representado com números entre 0 e 1

- Probabilidade de jogar uma moeda (1/2 = 0.5 = 50%)
- O ato de jogar a moeda é chamado de tentativa (trial) – experimento
- Cada jogada da moeda é independente da outra
- Probabilidade de jogar um dado
- P = 1/6 = 16%

EXPERIMENTO, EVENTO E ESPAÇO AMOSTRAL

- Cada tentativa de jogar a moeda é chamado de um experimento
- Cada resultado (cara ou coroa) é chamado de evento
- A soma de todos os possíveis eventos é chamado de espaço amostral
- Exemplo dados
 - Cada "jogada" é um experimento
 - Eventos: 1, 2, 3, 4, 5, 6
 - Espaço amostral: {E1, E2, E3, E4, E5, E6}

PROBABILIDADE – EXEMPLOS

- Calcular a probabilidade de obter o número 5
- Evento: E5 = 5 (um evento)
- Espaço amostral: {E1, E2, E3, E4, E5, E6}
- Probabilidade: $P = \frac{evento}{espaço \ amostral}$
- $\bullet P = 1 / 6$
- $\bullet P = 0.16 (16\%)$

PROBABILIDADE – EXEMPLOS

- Temos uma mala com 6 bolas: 3 vermelhas, 2 amarelas e 1 azul
- Qual a probabilidade de selecionar uma bola amarela?
- Evento = 2
- Espaço amostral = 6
- $\bullet P = 2 / 6 (33\%)$

PERMUTAÇÃO

- Arranjar objetos em uma sequência
- Quais são as permutações possíveis para as letras A,
 B e C?
- Fatorial!
- 3! = 3 x 2 x 1 = 6 (permutações)
- ABC, ACB, BAC, BCA, CAB, CBA

PERMUTAÇÃO PARA SUBCONJUNTOS

- Criar uma senha com 5 caracteres, que pode ser composto por letras e números de 0 até 9
- Números e letras não podem ser repetidos
- Evento: 5 caracteres
- Espaço amostral: 26 letras + 10 dígitos = 36

$$\bullet P_{(nr)} = \frac{n!}{(n-r)!}$$

•
$$P_{(nr)} = \frac{36!}{(36-5)!} = 45.239.040$$

PERMUTAÇÃO PARA SUBCONJUNTOS

- Criar uma senha com 5 caracteres, que pode ser composto por letras e números de 0 até 9
- Números e letras PODEM ser repetidos
- Evento: 5 caracteres
- Espaço amostral: 26 letras + 10 dígitos = 36
- $n^r = 36^5 = 60.466.176$

COMBINAÇÃO

- Número possível de arranjos em uma coleção (a ordem não importa como na permutação)
- Quantas combinações de 2 letras podem ser feitas com ABCDEF?
- Sem considerar repetições

$$\bullet C_{(nr)} = \frac{n!}{r!(n-r)!}$$

•
$$C_{(nr)} = \frac{n!}{r!(n-r)!}$$
• $C_{(nr)} = \frac{6!}{2!(6-2)!} = 15$

COMBINAÇÃO

- Número possível de arranjos em uma coleção (a ordem não importa como na permutação)
- Quantas combinações de 2 letras podem ser feitas com ABCDEF?
- Considerando repetições

$$\bullet C_{(nr)} = \frac{(n+r-1)!}{r!(n-1)!}$$

•
$$C_{(nr)} = \frac{(n+r-1)!}{r!(n-1)!}$$

• $C_{(nr)} = \frac{(6+2-1)!}{2!(6-2)!} = 105$

INTERSEÇÃO

- $A \cap B$
- $B \cap A$
- $P(A \cap B) = 4 / 9 = 0,44 (44\%)$

UNIÃO

- *A* ∪ *B*
- *B* ∪ *A*
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) = 8/9 + 5/9 4/9$
- $P(A \cup B) = 0.88 + 0.55 0.44$
- $P(A \cup B) = 0.99$

Fonte: https://www.gilsonleite.com.br/blog/conjuntos-uniao-interseccao-diferenca-e-complementar/

COMPLEMENTO

- Estão em um conjunto mas não estão em outro
- Complementar de B em relação A é A − B
- \bullet A-B
- $P(\bar{A}) = 1 P(A)$
- $P(\bar{A}) = 1 8/9$
- $P(\bar{A}) = 0.12$
- $P(\bar{B}) = 1 P(B)$
- $P(\bar{B}) = 1 5/9$
- $P(\bar{B}) = 0.45$

EVENTOS INDEPENDENTES

- O resultado de um evento não influencia na resposta de outro evento
- Jogar uma moeda 2 vezes (as chances são independentes)
- Calcular a probabilidade de obter dois "coroas" em duas tentativas

$$\bullet P = \frac{1}{2} \cdot \frac{1}{2}$$

$$P = \frac{1}{2} \cdot \frac{1}{2}$$

$$P = \frac{1}{4} = 0.25 (25\%)$$

EVENTOS DEPENDENTES

- O resultado do primeiro evento influencia no resultado do segundo evento
- Um baralho possui 52 cartas e 13 dessas são de "espada"
- Qual a probabilidade de tirar 2 cartas de espada?

•
$$P = \frac{13}{52} \cdot \frac{12}{51}$$

$$\bullet P = \frac{156}{2652} = 0.05 (5,88\%)$$

PROBABILIDADE CONDICIONAL

- Calcular a probabilidade do evento A, dado que o evento B ocorreu
- P(a|b) = x, pode ser lido como: "Dado o evento b, a probabilidade do evento a é x"
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- P(a|b) = P(a|b) / P(b), ou P(a|b)P(b) = P(a,b). P(a,b) é a probabilidade do evento conjunto do evento $a \land b$
- Exemplo
 - P(Cárie | Dor) = 0.8, indica que caso um paciente esteja com dor (de dente) e nenhuma outra informação esteja disponível, então, a probabilidade do paciente ter uma cárie é de 0.8

PROBABILIDADE CONDICIONAL

• Em um grupo de 90 pessoas, 40 compraram o livro de Python, 30 compraram o livro de Java e 20 compraram o livro de Python e de Java. Se escolhermos uma pessoa que comprou o livro de Python, qual a probabilidade desta pessoa ter comprado o livro de Java?

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

• $P(B|A) = \frac{20}{40} = 0.5 (50\%)$

PROBABILIDADE CONDICIONAL – ADIÇÃO

- Se selecionarmos um elemento randomicamente, qual a probabilidade de comprar o livro de Python ou de Java?
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

•
$$P(A \cup B) = \frac{40}{90} + \frac{30}{90} - \frac{20}{90}$$

•
$$P(A \cup B) = 0.4 + 0.3 - 0.2$$

•
$$P(A \cup B) = 0.5$$

REDES BAYESIANAS

- Probabilidade condicional
 - P(a|b) = x, pode ser lido como: "Dado o evento b, a probabilidade do evento a é x"
- Regra fundamental
 - P(a|b) = P(a,b)/P(b), ou P(a|b)P(b) = P(a,b). P(a,b) é a probabilidade do evento conjunto do evento $a \land b$
- Exemplo 1
 - P(Cárie | Dor) = 0.8, indica que caso um paciente esteja com dor (de dente) e nenhuma outra informação esteja disponível, então, a probabilidade do paciente ter uma cárie é de 0.8

REDES BAYESIANAS

- Exemplo 2
 - Um médico sabe que a meningite causa torcicolo em 50% dos casos.
 Porém, o médico também conhece algumas probabilidades incondicionais que dizem que, um caso de meningite atinge 1/50000 pessoas e, a probabilidade de alguém ter torcicolo é de 1/20."
- *T* e *M*, é probabilidade incondicional de um paciente ter torcicolo e a probabilidade incondicional de um paciente ter meningite
 - P(T|M) = 0.5 (probabilidade de ter torcicolo tendo meningite)
 - P(M) = 1/50000
 - P(T) = 1/20
- Aplicando a fórmula
 - $P(M|T) = (P(T|M)P(M))/P(T) = (0.5 \times 1/50000)/(1/20) = 0.0002$

REDES BAYESIANAS – PROBLEMA DO ALARME

Você possui um novo alarme contra ladrões em casa. Este alarme é muito confiável na detecção de ladrões, entretanto, ele também pode disparar caso ocorra um terremoto. Você tem dois vizinhos, João e Maria, os quais prometeram telefonar-lhe no trabalho caso o alarme dispare. João sempre liga quando ouve o alarme, entretanto, algumas vezes confunde o alarme com o telefone e também liga nestes casos. Maria, por outro lado, gosta de ouvir música alta e às vezes não escuta o alarme

REDES BAYESIANAS – PROBLEMA DO ALARME

Ladrão	Terremoto	P(Alarme Ladrão,Terremoto)		
		Verdadeiro	Falso	
Verdadeiro	Verdadeiro	0.95	0.050	
Verdadeiro	Falso	0.95	0.050	
Falso	Verdadeiro	0.29	0.71	
Falso	Falso	0.001	0.999	

REDES BAYESIANAS – PROBLEMA DO ALARME

REDES BAYESIANAS

• Considere que se deseja calcular a probabilidade do alarme ter tocado, mas, nem um ladrão nem um terremoto aconteceram, e ambos, João e Maria ligaram, ou $P(J \land M \land A \land \neg L \land \neg T)$.

•
$$P(J \land M \land A \land \neg L \land \neg T) = P(J|A)P(M|A)P(A|\neg L \land \neg T)P(\neg L)P(\neg T)$$

- \bullet = 0.9 x 0.7 x 0.001 x 0.999 x 0.998
- = 0.00062

PROBABILIDADE – EXERCÍCIOS

- Dado o lançamento de um dado
- Probabilidade de obter um número par
 - Evento = 2, 4 e 6 (3)
 - Espaço amostral = 1, 2, 3, 4, 5, 6
 - P = 3 / 6 = 0.5 (50%)

- Probabilidade de obter um número menor do que 6
 - Evento = 1, 2, 3, 4 e 5 (5)
 - Espaço amostral = 1, 2, 3, 4, 5, 6
 - \bullet P = 5 / 6 = 0,83 (83%)

PROBABILIDADE – EXERCÍCIOS

 Um baralho possui 52 cartas e 13 dessas são de "espada". Qual a probabilidade de tirar 5 cartas de espadas sem reposição?

•
$$P = \frac{13}{52} \cdot \frac{12}{51} \cdot \frac{11}{50} \cdot \frac{10}{49} \cdot \frac{9}{48} = 0,0005 (0,05\%)$$

• Evento dependente

PROBABILIDADE – EXERCÍCIOS

• Em um grupo de 90 pessoas, 40 compraram o livro de Python, 30 compraram o livro de Java e 20 compraram o livro de Python e de Java. Se escolhermos uma pessoa que comprou o livro de Java, qual a probabilidade desta pessoa ter comprado o livro de Python?

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• $P(B|A) = \frac{20}{30} = 0.66 (66\%)$

NAÏVE BAYES

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado
Desconhecida	Baixa	Nenhuma	< 15.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Nenhuma	< 15.000	Alto
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderado
Boa	Alta	Nenhuma	> 35.0000	Baixo
Ruim	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto

História = Boa Dívida = Alta Garantias = Nenhuma Renda = > 35

Soma: 0,0079 + 0,0052 + 0,0514 = **0,0645**

$$P(Alto) = 0,0079$$

$$P(Moderado) = 0,0052$$

$$P(Baixo) = 0.0514$$

História do crédito		Dívida		Garantias		Renda anual				
Risco de crédito	Boa 5	Desconhecida 5	Ruim 4	Alta 7	Baixa 7	Nenhuma 11	Adequada 3	< 15000 3	>= 15000 <= 35000 4	> 35000 7
Alto 6/14	1/6	2/6	3/6	4/6	2/6	6/6	0	3/6	2/6	1/6
Moderado 3/14	1/3	1/3	1/3	1/3	2/3	2/3	1/3	0	2/3	1/3
Baixo 5/14	3/5	2/5	0	2/5	3/5	3/5	2/5	0	0	5/5

CLASSIFICADOR ÓTIMO DE BAYES

História do crédito	Dívida	Garantias	Renda anual	Risco
Ruim	Alta	Nenhuma	< 15.000	Alto
Desconhecida	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto
Desconhecida	Baixa	Nenhuma	>= 15.000 a <= 35.000	Moderado
Desconhecida	Baixa	Nenhuma	< 15.000	Alto
Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
Desconhecida	Baixa	Adequada	> 35.000	Baixo
Ruim	Baixa	Nenhuma	< 15.000	Alto
Ruim	Baixa	Adequada	> 35.000	Moderado
Boa	Baixa	Nenhuma	> 35.000	Baixo
Boa	Alta	Adequada	> 35.000	Baixo
Boa	Alta	Nenhuma	< 15.000	Alto
Boa	Alta	Nenhuma	>= 15.000 a <= 35.000	Moderado
Boa	Alta	Nenhuma	> 35.0000	Baixo
Ruim	Alta	Nenhuma	>= 15.000 a <= 35.000	Alto

$$x_t = \langle História = Boa, Dívida = Alta, Garantias = Nenhuma, Renda = $\rangle 35 \rangle$$$

$$P(c_j|x_t) = \frac{P(x_t|c_j).P(cj)}{P(x_t)}$$
Probabilidade

a posteriori

Probabilidades a priori das classes

$$P_{(alto)} = \frac{6}{14} = 0,43 (43\%)$$
 $P_{(moderado)} = \frac{3}{14} = 0,22 (22\%)$
 $P_{(baixo)} = \frac{5}{14} = 0,35 (35\%)$

Probabilidades condicionais

$$P(x_t|_{alto}) P(x_t|_{moderado}) P(x_t|_{baixo})$$

$$3 \times (3 \times 2 \times 2 \times 3) = 108$$
 probabilidades condicionais!

Ótimo de Bayes: características condicionalmente dependentes Naïve Bayes: características condicionalmente independentes

PROBABILIDADE – DISTRIBUIÇÃO NORMAL

DISTRIBUIÇÃO NORMAL

PROBABILIDADE – DISTRIBUIÇÃO BINOMIAL

- Respostas sucesso ou fracasso e experimentos independentes
- Moedas e baralho?
- Probabilidade de selecionar "coroa" 5 vezes
- Parâmetros
 - X = 5 (número de sucessos)
 - p = 0,5 (probabilidade de sucesso)
 - n = 10 (quantidade de tentativas trials)

$$P(X=x) = \frac{n!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

PROBABILIDADE – DISTRIBUIÇÃO DE POISSON

Ocorrência de eventos no decorrer do tempo (não considera o número de experimentos)

- Os eventos devem ser independentes
- Considera o número de "sucessos" baseado no tempo
- Parâmetros da fórmula
 - X: número de eventos calculados
 - Número de Euler (2.71828)
 - Número médio de eventos

- X = 14
- Média: 10

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

INTERVALOS DE CONFIANÇA E TESTES DE HIPÓTESES

- Intervalos de confiança cálculos passo a passo
- Distribuição T Student
- Intervalos de confiança em machine learning
- Testes de hipóteses
 - Teste Z
 - Teste T
 - Qui quadrado
 - ANOVA
 - Qui quadrado e ANOVA para seleção de atributos
- Testes de Wilcoxon, Friedman e Nemenyi
- Aplicações para avaliação de algoritmos/trabalhos científicos

INTERVALOS DE CONFIANÇA

Nível de confiança: 95%

Indica que os experimentos estarão dentro do intervalo de confiança com certeza de 95%. Em 95% dos casos, a população "real" estará neste intervalo

INTERVALOS DE CONFIANÇA – CÁLCULOS

•
$$[\bar{x} - Za_{/2} \frac{\sigma}{\sqrt{n}}]$$

•
$$\left[\bar{x} + Za_{/2} \frac{\sigma}{\sqrt{n}}\right]$$

- Parâmetros da fórmula
 - Média: 159,25
 - Desvio padrão: 13,65
 - n: quantidade de números
 - alpha: 1 confiança (1 0.95 = 0.05)

•
$$\frac{a}{2} = \frac{0.05}{2} = 0.025, 1 - 0.025 = 0.975$$

•
$$[159,25 - 1.96 \frac{13,65}{\sqrt{100}}]$$
, $[159,25 + 1.96 \frac{13,65}{\sqrt{100}}]$ = $[156,57 \ 161,92]$

• Diferença: 2,67 (159,25 – 156,57 ou 161,92 – 159,57)

INTERVALOS DE CONFIANÇA

Nível de confiança	Alpha	Z -score
90%	10% (0,10)	1.645
95%	5% (0,05)	1.96
98%	2% (0,02)	2.33
99%	1% (0,01)	2.575

DISTRIBUIÇÃO T STUDENT

- Poucos dados e variação não conhecida (30 números)
- Maior dispersão dos dados
- Graus de liberdade

Fonte: https://andyjconnelly.wordpress.com/2017/05/16/uncertainty-and-repeats/

DISTRIBUIÇÃO T STUDENT

•
$$[\bar{x} - t_{n-1,a/2} \frac{S}{\sqrt{n}}]$$

•
$$[\bar{x} - t_{n-1,a/2} \frac{S}{\sqrt{n}}]$$

• $[\bar{x} + t_{n-1,a/2} \frac{S}{\sqrt{n}}]$

- Parâmetros da fórmula
 - Média: 161,77
 - Desvio padrão da amostra (S): 12,78
 - n: quantidade de números
 - alpha: 1 confiança (1 0.95 = 0,05)

•
$$t_n$$
 1 = 8

•
$$\frac{a}{2} = \frac{0.05}{2} = 0.025 = 2.306$$
 (consultar tabela)

- $[161,77 2,306 \frac{12,78}{\sqrt{9}}]$, $[161,77 + 2,306 \frac{12,78}{\sqrt{9}}]$ = [151,94 171,59]
- Diferença: 9,83 (161,77 151,94 ou 171,59 161,77)

- 147
- 189
- 175
- 168
- 156
- 160
- 152

TESTES DE HIPÓTESES

- Resposta sim ou não, para confirmar ou rejeitar uma afirmação
- Hipótese: ideia a ser testada
- Hipótese nula (H0)
 - Afirmação que já existia
 - Presumir que é verdadeira até que se prove o contrário
- Hipótese alternativa (H1)
 - O que está tentando provar (tudo o que é diferente da nula)
- Alpha
 - Probabilidade de rejeitar a hipótese nula, quanto menor mais seguro é o resultado (nível de significância) em geral 0,01 ou 0,05

15

- 5% de chances de concluir que existe uma diferença quando não há diferença real
- Valor de p (p-value)
 - p-value >= alpha: não rejeita H0 (não temos evidências)
 - p-value < alpha: rejeita H0 (temos evidência)
- Erro Tipo I: rejeitar a hipótese nula quando não deveria
- Erro Tipo II: não rejeitar nula quando deveria ter rejeitado

TESTE DE HIPÓTESE Z

•
$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- Parâmetros da fórmula
 - Média H1: 164,02
 - Média H0: 159,25
 - Desvio padrão H1: 14,05
 - n: quantidade de números
 - alpha: 0,05

•
$$Z = \frac{164,02-159,25}{\frac{14,05}{\sqrt{100}}}$$

•
$$Z = \frac{4,77}{1,4} = 3,39$$

- Z = 0,999 (buscar na tabela)
- Valor de p = 1 0.999 = 0.001

Valor de p é menor que alpha, o que indica que rejeitamos a hipótese nula (H0) e aceitamos a hipótese H1

A média atual de alturas é de 164,02

QUI QUADRADO

Frequência observada	Visão computacional	Algoritmos de busca	Total
Homens	30	20	50
Mulheres	22	28	50
Total	52	48	100

Frequência esperada	Visão computacional	Algoritmos de busca	Total
Homens	26	24	50
Mulheres	26	24	50
Total	52	48	100

 $(52 \times 50) / 100 = 26$

Fonte dos dados: https://www.youtube.com/watch?v=4QfHVbpAoSg

QUI QUADRADO

Frequência (f _o)	Frequência esperada (f _e)	$f_{o} - f_{e}$	$(f_o - f_e)^2$	$(f_o - f_e)^2/f_e$
30	26	4	16	0,62
20	24	-4	16	0,67
22	26	-4	16	0,62
28	24	4	16	0,67

Grau liberdade =
$$(r-1)(c-1)$$

Grau liberdade = $(2-1)(2-1) = 1$

 $X^2 = 2,58$

Qui quadrado

ANOVA – ANÁLISE DE VARIAÇÃO

- Comparação entre 3 ou mais grupos (amostras independentes)
- Uma variável quantitativa e uma ou mais variáveis qualitativas
- Distribuição normal (estatística paramétrica)
- Variação entre os grupos comparando a variação dentro dos grupos
- H0: não há diferença estatística
- H1: existe diferença estatística

Fonte: https://marcelocoruja.blogspot.com/2017/04/sociologia-importancia-dos-grupos-e-das.html

ANOVA – ANÁLISE DE VARIAÇÃO

	Grupo A	Grupo B	Grupo C
	165	130	163
	152	169	158
	143	164	154
	140	143	149
	155	154	156
)	151	152	156

	Quadrado		
Grupo A	Grupo B	Grupo C	
$(151-153)^2 = 4$ $(152-153)^2 = 1$ $(156-153)^2 = 9$			
SSG (sum of squares group): 14 x 5 = 70			

Soma

Total: 14

 $F = \frac{DFG}{SSE}$ \overline{DFE} $F = \frac{70}{1506} = 0.2788$

SSG (sum of squares group): $14 \times 5 = 70$ DFG (degrees of freedom groups): 3 - 1 = 2

	155	154	156	
Média	151	152	156	SSE (sum of squares error): 150
Média (geral: 153			DFE = linhas – 1 x grupos DFE = (5 – 1) x 3 = 12
F crític	o = 3,88	(consulta	ar tabela)	
	0,2	7		
	0 Nã	ío há difere	nça estatís	3,88 Há diferença estatística

Quadrado erro				
(valor – média)²	(valor – média) ²	(valor – média)²		
$(165 - 151)^2 = 196$	$(130 - 152)^2 = 484$	$(163 - 156)^2 = 49$		
$(152 - 151)^2 = 1$	$(169 - 152)^2 = 289$	$(158 - 156)^2 = 4$		
$(143 - 151)^2 = 64$	$(164 - 152)^2 = 144$	$(154 - 156)^2 = 4$		
$(140 - 151)^2 = 121$	$(143 - 152)^2 = 81$	$(149 - 156)^2 = 49$		
$(155 - 151)^2 = 16$	$(154 - 152)^2 = 4$	$(156 - 156)^2 = 0$		
398	1002	106		

CORRELAÇÃO E REGRESSÃO

- Correlação: correspondência entre variáveis
- Regressão: previsões
- Covariância, correlação e determinação cálculos passo a passo e implementação
- Regressão linear simples e múltipla
- Métricas de erro

COVARIÂNCIA, COEFICIENTE DE CORRELAÇÃO E COEFICIENTE DE DETERMINAÇÃO

Tamanho (m²)	Preço	$x_i - \bar{x}$	$y_i - \bar{y}$	$(xi-\overline{x}) * (y_i - \overline{y})$
30	57.000	-14,5	-16.250	235.625
39	69.000	-5,5	-4.250	23.375
49	77.000	4,5	3.750	16.875
60	90.000	15,5	16.750	259.625
44,5 (média) 12,92 (dp)	73.250 (média) 13.865,42 (dp)			535.500 (soma)

$$C(x,y) = \frac{\sum (xi - \bar{x}) * (yi - \bar{y})}{n - 1} Cr(x,y) = \frac{Cov(x,y)}{Std(x) * Std(y)} Cd(x,y) = Cr^2$$

$$C(x,y) = \frac{535.500}{3} = 178500,00 Cr(x,y) = \frac{178500,00}{12,92 * 13865,42} = 0,99 Cd(x,y) = 0,98$$

> 0, variáveis se movem juntas

- < 0, variáveis se movem em direções opostas
- = 0, variáveis são independentes

variáveis explanatórias

COEFICIENTE DE CORRELAÇÃO

Correlação	Interpretação
0,00 a 0,19 ou 0,00 a -0,19	Correlação bem fraca
0,20 a 0,39 ou -0,20 a -0,39	Correlação fraca
0,40 a 0,69 ou -0,40 a -0,69	Correlação moderada
0,70 a 0,89 ou -0,70 a -0,89	Correlação forte
0,90 a 1,00 ou -0,90 a -1,00	Correlação muito forte

CORRELAÇÃO NÃO É CAUSA

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

tylervigen.com

MÉTRICAS DE ERROS

- Mean absolute error (MAE)
 - Diferenças absolutas entre as previsões e os valores reais
- Mean squared error (MSE)
 - Diferenças elevadas ao quadrado (erros penalizados)
- Root mean squared error (RMSE)
 - Interpretação facilitada

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| \qquad MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

VISUALIZAÇÃO

- Gráficos: dispersão, barra, pizza (setor), linha
- Boxplot
- Atributos categóricos
- Subgráficos
- Mapas

