Mechanika Kwantowa 2023

Piotr Magierski, Gabriel Wlazłowski, Andrzej Makowski2023

Table of contents

0	pis przedmiotu	3
	Zaliczenie	3
	Regulamin ćwiczeń	4
	Oceny	5
1	Wykład	6
ı	Rachunek Zaburzeń	7
2	Stacjonarny	8
3	Rozpraszanie	9
4	Hartree-Fock	10
Li	teratura	11

Opis przedmiotu

Strona zawiera informacje dotyczące przedmiotu *Mechanika kwantowa II* prowadzonego na Politechnice Warszawskiej dla studentów II stopnia Wydziału Fizyki.

W rozdziale WYKŁAD znajdują się notatki do wykładu do pobrania.

Zaliczenie

Warunkiem zaliczenia ćwiczeń jest wpełnienie dwóch warunków:

- 1. zdobycie minimum 15pkt. z puli 30pkt,
- 2. w tym uzyskanie minimum 6pkt. z kolokwium, które odbędzie się na ostatnich zajęciach.

Punkty można zdobyć poprzez rozwiązanie zadań, które Studenci otrzymają na drugiej godzinie spotkań. Takich spotkań będzie sześć, a każda aktywność oceniana jest w skali 0-2pkt. Na kolokwium znajdzie się 5 zadań, z czego Student wybiera 3, których zadania się podejmuje. Każde zadanie oceniane jest w skali 0-6pkt. Tym samym łączna liczba punktów do zdobycia wynosi 30pkt., z czego 6x2pkt. za rozwiązanie zadań w trakcie zajęć oraz 3x6pkt. za rozwiązanie zadań w trakcie kolokwium.

Na koniec semestru sprawdzane jest czy Student spełnił warunki zaliczenia i wystawiana jest mu ocena zgodnie z tabelką:

Ocena	Punkty	
2.0	0 - 14	
3.0	15 - 17	
3.5	18 - 20	
4.0	21 - 23	
4.0 4.5	24 - 26	
5.0	27 - 30	

Regulamin ćwiczeń

- 1. Ćwiczenia składają się z 8 spotkań:
- Spotkanie 1 [1h]:

organizacyjne

• Spotkania 2-7 [każde po 2h]:

rozwiązywanie zadań wraz z nauczycielem. Pierwsza godzina spotkania poświęcona, jest krótkiemu wprowadzaniu do tematyki zadań, rozwiązaniu przykładowych zadań przez nauczyciela oraz dyskusji rozwiązań. Podczas drugiej godziny studenci samodzielnie rozwiązują zadanie/a przygotowane przez nauczyciela. Studenci mogą korzystać w tym czasie z materiałów (notatki, książki) oraz mogą konsultować się z nauczycielem. Materiały dla każdego spotkania będę udostępniane przez MS Teams.

• Spotkanie 8 [2h]:

kolokwium

- 2. Zadnia rozwiązywane przez studentów podczas spotkań 2-7 będę ocenie w skali 0-2pkt. Dla każdego zadania nauczyciel określi w jakiej formie powinien być przedstawiony końcowy wynik (wyprowadzenie wzoru, obliczenie wartości liczbowej, przygotowanie wykresu...). Dopuszczalne jest przedstawienie rozwiązania zadania/zadań podczas kolejnego spotkania. Przykładowo, student może przedstawić rozwiązanie problemu z zajęć 2 na zajęciach 3 i otrzymać punkty za rozwiązanie. W innym przypadku student nie otrzymuje punktów za rozwiązanie zadania. W szczególności nie jest dopuszczalne, że na ostatnich zajęciach (spotkanie 8) student przedstawia rozwiązania zaległych zadań z spotkań 2-6. Maksymalna ilość punktów jaką student może otrzymać za rozwiązywanie zadań podczas ćwiczeń to 6x2pkt.=12pkt.
- 3. Kolokwium będzie składało się z 5 zadań, z czego student wybiera 3, których rozwiązania się podejmuje. Każde zadanie oceniane jest w skali 0-6pkt. Maksymalnie z kolokwium można otrzymać 3x6pkt.=18pkt. Kolokwium uważa się za zaliczone jeśli student otrzyma co najmniej 6pkt. Podczas kolokwium student może korzystać z własnoręcznie przygotowanej karty wzorów (max strona A4).
- 4. Aby otrzymać pozytywną ocenę z ćwiczeń student musi zaliczyć kolokwium (co najmniej 6pkt.) oraz zdobyć łącznie co najmniej 15pkt.
- 5. Ocena końcowa wystawiana jest zgodnie z tabelą (z czego min 6pkt musi być zdobyte z kolokwium):

Ocena	Punkty
2.0	0 - 14
3.0	15 - 17
3.5	18 - 20
4.0 4.5	21 - 23
	24 - 26
5.0	27 - 30

Oceny

1 Wykład

Poniżej znajdują sie notatki do wykładu WYKŁAD

Part I Rachunek Zaburzeń

2 Stacjonarny

To be done!

3 Rozpraszanie

To be done!

4 Hartree-Fock

To be done!

Literatura

- L. I. Schiff Mechanika kwantowa
- D. J. Griffiths, D. F. Schroeter Wstęp do mechaniki kwantowej
- A. D. Dawydow Mechanika kwantowa
- L. Adamowicz Mechanika kwantowa. Formalizm i zastosowania
- L. Adamowicz Mechanika kwantowa na skróty od klasyki do współczesności
- J. D. Walecka Introduction to quantum mechanics
- J. B. Brojan, J. Mostowski, K. Wódkiewicz Zbiór zadań z mechaniki kwantowej
- D. J. Griffiths, D. F. Schroeter Instructors solution manual to introduction to quantum mechanics
- J. D. Walecka Introduction To Quantum Mechanics: Solutions To Problems
- E. d'Emilio, L. E. Picasso Problems in quantum mechanics with solutions
- F. Constantinescu, E. Magyari Problems in quantum mechanics
- K. Tamvakis Problems and solutions in quantum mechanics
- N. F. Mott, H. S. Massey Theory of atomic collisions
- Y-K Lim, C-K K'O Hsueh Problems and solutions on quantum mechanics