## 多项式回归模型在氢网络中对关键单元设备建模的应用

## 1 问题背景

炼油业是氢气消耗的最大终端市场。炼油厂可以利用深加工技术,消耗氢气将原油转变为更加清洁、更有价值的产品油。炼油厂氢气网络优化这个课题也引起了学术界和工业界的广泛注意。在氢气网络优化的过程中,最重要的就是对其中的关键单元设备,如反应器、闪蒸罐模型的建模。一方面,目前研究采用的是对其进行简化处理,比如固定闪蒸罐的气液平衡常数以及固定反应器氢耗等,但是在实际生产过程中,这些参数是不断变化的,固定这些参数会导致计算最优解于实际最优解存在偏差。另一方面,利用设备模型的第一原理模型对关键单元设备建模,会导致后续的氢气网络优化计算变得高度非线性、难以求解。为了兼顾模型的简单性和准确性,这里可以利用回归分析法建立关键单元设备的模型,后续可以运集成到氢气网络优化计算中。

## 2 问题描述

图 1 是氢气网络中一个加氢精制单元流程示意图,该单元包括两个关键单元设备:反应器和闪蒸罐。本案例分析的主要目的是利用回归模型建立关键单元设备的模型。



图 1 加氢精制单元流程图

## 3 方法与结果

首先,根据需求选择输入输出变量。对于反应器模型,本案例选取 6 个输入变量:温度 $T^r$ 、进口硫含量 $Y^{ri}_s$ 、进口多环芳烃含量 $Y^{ri}_{3+R}$ 、进口油流量 $F^{ri}_{oil}$ 、氢气分压 $P^{ri}_{H_2}$ 和进口气体流量 $F^{ri}_{gas}$ ;8 个输出变量:出口硫含量 $Y^{ro}_s$ 、出口轻烃流量

 $F_{C1}^{ro} \sim F_{C5}^{ro}$ 、出口硫化氢流量 $F_{H_2}^{ro}$ 和氢气消耗量 $F_{H_2}^{rc}$ ,如下图所示。



图 2 反应器回归模型的输入输出变量示意图

对于闪蒸罐模型,本案例选取 8 个输入变量:温度 $T^f$ 、压力 $P^f$ 、进口油流量 $F^{fi}_{oil}$ 、进口氢流量 $F^{fi}_{H_2}$ 、进口轻烃流量 $F^{fi}_{C1}\sim F^{fi}_{C5}$ 、进口硫化氢流量 $F^{fi}_{H_2S}$ ; 8 个输出变量:出口氢气流量 $F^{fo}_{H_2}$ 、出口轻烃流量 $F^{fo}_{C1}\sim F^{fo}_{C5}$ 、出口硫化氢流量 $F^{fo}_{H_2S}$ 和出口气体流量 $F^{vap}$ ,如图 3 所示。



图 3 闪蒸罐回归模型的输入输出变量示意图

其次,准备数据集。选择每个输入变量的变化范围(表1),并在其中分别均匀地采500个样本点,通过Python调用反应器和闪蒸罐的机理模型,生成与输入变量对应的输出变量值。

| 反应器输入变量                       | 下限  | 上限  | 闪蒸罐输入变量                       | 下限   | 上限  |
|-------------------------------|-----|-----|-------------------------------|------|-----|
| <b>T</b> <sup>r</sup> (K)     | 610 | 640 | $T^f$ (K)                     | 318  | 328 |
| $Y_{s}^{ri}$ (wt%)            | 1.5 | 2.0 | $P^f$ (bar)                   | 15   | 20  |
| $Y^{ri}_{\mathbf{3+R}}$ (wt%) | 3.0 | 3.5 | $F_{oil}^{fi}$ (t/h)          | 5    | 20  |
| $m{F_{oil}^{ri}}$ (t/h)       | 300 | 400 | $F_{H_2}^{fi}$ (t/h)          | 300  | 400 |
| $m{P_{H_2}^{ri}}$ (bar)       | 42  | 52  | $F_{\mathcal{C}1}^{fi}$ (t/h) | 15   | 25  |
| $m{F_{gas}^{ri}}$ (t/h)       | 45  | 55  | $F_{C2}^{fi}$ (t/h)           | 0.01 | 5   |
|                               |     |     | $F_{C3}^{fi}$ (t/h)           | 0.08 | 5   |
|                               |     |     | $F_{C4}^{fi}$ (t/h)           | 0.06 | 1   |
|                               |     |     | $F_{C5}^{fi}$ (t/h)           | 0.02 | 1   |
|                               |     |     | $F_{H_2S}^{fi}$ (t/h)         | 30   | 60  |

表 1 关键单元设备回归模型的输入变量范围

然后,对数据集进行预处理。本案例研究利用了 SPSS 软件中的向后逐步回归法对数据集进行敏感性分析,根据敏感性分析结果,对反应器模块选择了前 5个输入变量。

最后,对回归模型进行训练和测试。这里选择 400 个数据作为训练数据,100 个数据作为测试数据;对反应器模块选择了二次多项式回归模型 (方程 1),对 闪蒸罐模型选择了三次多项式回归模型 (方程 2)。

$$y = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \sum_{n=1}^{N} \sum_{p=1}^{N} \beta_{np} x_n x_p$$
 (1)

$$y = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \sum_{n=1}^{N} \sum_{p=1}^{N} \beta_{np} x_n x_p + \sum_{n=1}^{N} \sum_{p=1}^{N} \sum_{m=1}^{N} \beta_{npm} x_n x_p x_m$$
 (2)

其中, $\gamma$ 是输出变量;x是输入变量;N是输入变量数; $\beta$ 是模型参数。

为了更好地验证模型的准确度,性能测试指标选择 $R^2$ 、RMSE(均方根误差)和残差图,如方程(3)-(5)所示。

$$R^{2} = 1 - \frac{\sum_{n=1}^{N} (y^{(n)} - f^{(n)})^{2}}{\sum_{n=1}^{N} (y^{(n)} - \bar{y})^{2}}$$
(3)

$$RMSE = \sqrt{\frac{\sum_{n=1}^{N} (y^{(n)} - f^{(n)})^2}{N}}$$
 (4)

$$\varepsilon^{(n)} = y^{(n)} - f^{(n)} \tag{5}$$

其中, $y^{(n)}$ 是 $x_n$ 对应的输出值; $f^{(n)}$ 是 $x_n$ 对应的预测值; $\bar{y}$ 输出值的平均值; $\varepsilon^{(n)}$ 是残差。

得到的验证结果如表 2、图 4-5 所示。对于反应器, $RMSE \le 8 \times 10^{-5}$ , $R^2 = 0.9999$ ,从图 4 中可以看出残差分布均匀且随机,说明训练后的多项式模型对反应器的建模是准确的;对于闪蒸罐, $RMSE \le 0.014$ , $R^2 = 0.9999$ ,而且从图 5中可以看出残差分布均匀且随机,说明训练后的多项式模型对闪蒸罐的建模准确度在可接受范围内。

表 2 回归模型的验证结果

| wro             |                        |         |                 |                       | $R^2$  |
|-----------------|------------------------|---------|-----------------|-----------------------|--------|
| $Y_s^{ro}$      | 9. $81 \times 10^{-6}$ | 0. 9999 | $F_{H_2}^{fo}$  | 9.18×10 <sup>-5</sup> | 0. 999 |
| $F^{ro}_{C1}$   | 2. $04 \times 10^{-6}$ |         | $F_{C1}^{fo}$   | 3.78×10 <sup>-3</sup> |        |
| $F^{ro}_{C2}$   | 3. $81 \times 10^{-6}$ |         | $F_{C2}^{fo}$   | 3.20×10 <sup>-3</sup> |        |
| $F^{ro}_{C3}$   | 1. $24 \times 10^{-5}$ |         | $F_{C2}^{fo}$   | 5.24×10 <sup>-3</sup> |        |
| $F^{ro}_{C4}$   | 1. $36 \times 10^{-5}$ |         | $F_{C3}^{fo}$   | 1.12×10 <sup>-3</sup> |        |
| $F^{ro}_{C5}$   | 4. $78 \times 10^{-6}$ |         | $F_{C4}^{fo}$   | 4.85×10 <sup>-4</sup> |        |
| $F^{ro}_{H_2S}$ | 8. $26 \times 10^{-5}$ |         | $F_{C5}^{fo}$   | 1.40×10 <sup>-2</sup> |        |
| $F^{rc}_{H_2}$  | 6. $82 \times 10^{-5}$ |         | $F^{fo}_{H_2S}$ | 1.25×10 <sup>-2</sup> |        |
|                 |                        |         | $F^{vap}$       | 9.18×10 <sup>-5</sup> |        |



图 4 反应器多项式回归模型残差图



图 5 闪蒸罐多项式回归模型残差图