

Лабораторная работа №3

«Исследование характеристик полевого транзистора»

Цель работы — углубленное изучение полевых транзисторов, снятие вольтамперных характеристик полевого транзистора, расчет усилительного каскада с общим истоком, моделирование усилительного каскада в LtSpice.

Входная (передаточная) характеристика полевого транзистора (зависимость тока стока от напряжения затвор-исток) [1]

Технические характеристики AONR66406:

- Ток стока $I_C = 30 A (I_D)$;
- Напряжение сток-исток $U_{\rm CH} = 40~{
 m B}~(U_{DS})$
- Пороговое напряжение затвора $U_{
 m nop}=1$,5 ... 2,5 В $\left(V_{GS(th)}
 ight)$ Gate Threshold Voltage
- Рассеиваемая мощность $P = 27 \; {\rm Bt} \; (P_D)$

Передаточная характеристика

Семейство выходных ВАХ — зависимость тока стока от напряжения между стоком и истоком при постоянном значении напряжения затвор-исток

Добавим линию максимальной мощности

Сравним результаты с паспортными данными

Выберем рабочую точку (А)

$$U_{\rm CH_0} = 2.5 \, \rm B;$$

$$I_{C_0} = 4 \text{ A};$$

$$U_{\rm 3H_0} = 2,95 \; \rm B$$

Зная ток короткого замыкания определяем значение сопротивления резистора в цепи стока

$$R_C = \frac{E_k}{I_{K3}} = \frac{5}{8} = 0,625 \text{ Om}$$

Рассчитаем делитель напряжения R_1 и R_2 Задаваясь значением $R_1 \parallel R_2 = (0,1\dots 10) {\rm MOm}$,

$$R_1 = rac{U_\Pi}{U_{3 \mathrm{H} 0}} (0, 1 \dots 10) \mathrm{Mom}$$
 $R_2 = rac{U_{3 \mathrm{H} 0}}{U_\Pi - U_{3 \mathrm{H} 0}} R_1.$

$$R_1$$
=8,77 МОм и $R_2 = 11,63$ МОм.

Проводим исследование разработанной схемы

Передаточная характеристика полевого транзистора AONR66406 при различных напряжениях сток-исток

$$U_{\Pi OP} - ???$$

Выберем значение напряжение источника питания в пределах

$$E_K = (0.5...0.9)U_{\text{CM}_{max}} = 24 \text{ B}$$

$$I_{\rm C_{K3}} = rac{E_K}{R_{
m M} + R_{
m C}}$$
 $I_{
m C_{K3}}$ =4,2 A
 $R_{
m M} + R_{
m C} = rac{24}{4.2} = 5,71$ Om

Обычно выбирают величину падения напряжения на $R_{\rm H}$ порядка (0,1...0,3) E_{K} . Т.о. зададим $R_{\rm C}$ =5 Ом, $R_{\rm H}$ =0,5 Ом.

Если внутреннее сопротивление транзистора R_i известно, то значение $R_{\mathbb{C}}$ можно выбрать в соответствии с соотношением $R_{\mathbb{C}}$ = (0,05...0,15) R_i

Точка покоя (режим работы по постоянному току):

$$I_{C_{\Pi}} = 2,16 \text{ A}$$
 $U_{C_{\Pi}} = 11,56 \text{ B}$
 $U_{3_{\Pi}} = 2,72 \text{ B}$

Расчет делителя напряжения

$$U_{3} = \frac{R_{3}E_{K}}{R_{1} + R_{3}}$$

$$U_{3} = U_{3\mathsf{M}_{\Pi}} + U_{\mathsf{C}\mathsf{M}_{\Pi}} = U_{3\mathsf{M}_{\Pi}} + I_{\mathsf{C}_{\Pi}}R_{\mathsf{M}}$$

$$\frac{R_{3}E_{K}}{R_{1} + R_{3}} = U_{3\mathsf{M}_{\Pi}} + I_{\mathsf{C}_{\Pi}}R_{\mathsf{M}}$$

$$\frac{R_{3}}{R_{1} + R_{3}} = \frac{U_{3\mathsf{M}_{\Pi}} + I_{\mathsf{C}_{\Pi}}R_{\mathsf{M}}}{E_{K}}$$

Откуда можно найти R_1 и R_3 , например задав $R_1 = 1 \dots 2 \ \mathrm{MOm}$

Тогда
$$R_3 = 0.28 \, \mathrm{MOm}$$

$$K_U - ???$$

Практическое исследование

- 1. После сборки схемы проверить режим работы по постоянному току.
- 2. Исследовать работу схемы при подаче гармонического входного сигнала, частота 1...10 кГц.
- 3. Снять осциллограмму максимального по амплитуде неискаженного выходного сигнала.
- 4. Исследовать влияние величины емкости разделительного и шунтирующего конденсаторов на работу схемы.
- 5. Рассчитать коэффициенты усиления по напряжению.
- 6. Снять амплитудно-частотную характеристику усилительного каскада.

Отчет

1. Принципиальные электрические схемы исследуемых устройств.

- 2. Расчеты элементов схем.
- 3. Таблицы расчетных значений и результатов измерений.
- 4. Экспериментальные характеристики
- 5. Выводы.

Список использованных источников

- **1. Титце У., Шенк К.** Полупроводниковая схемотехника. 12е изд. Том І: Пер. с нем. М.: ДМК Пресс, 2008. 832 с.: ил.
- Забродин Юрий Сергеевич. Промышленная электроника: учебник для ВУЗов. М.: Высш. школа, 1982.
- 3. Асмолов Геннадий Иванович, Рожков Валентин Михайлович, Лобов Олег Павлович. Усилительные схемы в системах транспортной телематики. М.: МАДИ, 2015.
- 4. Ежков Ю. С. Справочник по схемотехнике усилителей //М.: ИП РадиоСофт. 2002.

Спасибо за внимание!

ITSMOre than a UNIVERSITY