Wayra Tupuy

Sistema de Monitoreo de Calidad del Aire Interior

Fecha: Septiembre - Diciembre 2025

Equipo Interdisciplinario

Verenisse Quispitongo León

Líder del Proyecto

Coordinación y visión estratégica

Josue Sayago Moran

Investigación

Análisis científico y validación

Antony Zuñiga Vásquez

Diseño

Desarrollo del prototipo

César Apcho Meneses

Programación

Desarrollo tecnológico y modelado

"Un equipo interdisciplinario para un aire más visible"

En Lima Norte, cada respiración trae consigo contaminantes invisibles

Un equipo interdisciplinario de UPCH en Ingeniería Ambiental e Informática presenta una solución para visibilizar el aire que respiramos.

En Lima Norte, los niveles de PM10 superan 80 μg/m³ diarios con picos de 160 μg/m³.

En aulas y oficinas, el CO₂ alcanza 1024 ppm cuando el límite recomendado es 1000 ppm.

Impacto: problemas respiratorios, fatiga y menor rendimiento académico.

Contaminación vs. Límites Recomendados

Fuentes: Solis Teran et al., 2025; Quispe Izquierdo, 2020

Nuestra Solución

Detecta PM2.5, CO₂, NO₂ en tiempo real.

Dashboard Inteligente

Acceso inmediato a datos con alertas y recomendaciones.

Portabilidad Total

Dispositivo compacto adaptado para aulas, oficinas y espacios comunitarios.

Modelo de Negocio Escalable

Venta de Dispositivos

Instituciones educativas y municipalidades como clientes principales.

Servicios de Datos

Suscripción mensual para visualización avanzada y análisis predictivo.

Escalable de un aula a una ciudad entera.

Tracción y Oportunidad

Logros Actuales

- Revisión de patentes internacionales validada
- Justificación científica con estudios de Lima
- Prototipo en desarrollo (UPCH)

+2 millones de habitantes en Lima Norte necesitan aire más limpio. (imagen referencial)

PATENTE CLAVE 1/3

Monitor Individual Calibrable en Tiempo Real

Esta patente aborda la necesidad de medir la exposición personal a contaminantes con precisión y en tiempo real, un componente fundamental para evaluar el impacto real de la calidad del aire en la salud.

Título y Origen

Calibratable real-time individual monitor for human body exposure (Monitor individual calibrable en tiempo real para exposición del cuerpo humano)

2022 | Fudan University (China)

Innovación Principal

Monitor portátil que mide la exposición personal a CO₂, NO₂, PM2.5 y VOC. Utiliza sensores electroquímicos de alta sensibilidad y transmisión de datos vía 4G/5G con GPS integrado.

Aplicación Wayra Tupuy

Establece la base tecnológica para el **monitoreo individual y móvil** de la calidad del aire. Es crucial para el desarrollo de dispositivos de exposición personal.

Clasificación Internacional (CIP)

GO1N15/06 (Muestreo de Partículas); GO1N27/417 (Sensores de Gas); GO1S19/42 (GPS/Navegación); GO8C17/O2 (Transmisión Inalámbrica).

Fuente: Fudan University. Año de publicación: 2022.

Aparato Integrado para Condiciones Atmosféricas y Meteorológicas

Detalles de la Patente

Apparatus for measuring integrated weather and atmosphere condition

2022 | SEO IN YOUNG (Corea del Sur)

Características Técnicas

Sistema compacto para medir **polvo fino** (PM2.5/PM10) y NO₂. Incluye sensores meteorológicos (temperatura, humedad) y una fuente de alimentación integrada y eficiente.

Impacto en Wayra Tupuy

Proporciona un modelo para combinar la medición de contaminantes y el clima ambiental en una única unidad, mejorando la robustez y la portabilidad de los nodos de Wayra Tupuy.

CIP: GO1N15/OO (Partículas); GO1N15/O2 (Dispersión); GO1N21/25 (Análisis Óptico); GO1W1/O2 (Meteorología).

PATENTE CLAVE 3/3

Modelado Predictivo de Partículas en Entornos Urbanos

Method for determining temporal and spatial distribution of particulate matter contents in urban air

Método para determinar la distribución temporal y espacial del contenido de material particulado en el aire urbano.

2018 | Beijing Institute of Technology (China)
CIP GO1N15/O6(Medición de partículas suspendidas en el aire)

→ Variables Clave

Integra múltiples variables ambientales como CO₂, temperatura, humedad, presión y velocidad/dirección del viento para refinar la precisión del modelo predictivo.

→ Relevancia Wayra Tupuy

Soporta la fase de **análisis predictivo y planificación** de la red de sensores.

Permite optimizar la ubicación de los dispositivos y comprender los patrones de dispersión de contaminantes.

Artículos Científicos

Fuentes Móviles y Urbanas

Romero et al. (2020) y Sánchez-Ccoyllo et al. (2022) establecen el transporte vehicular como la principal fuente de PM_{2·5}, CO y NO_x en Lima, demostrando la necesidad de control de tráfico y monitoreo urbano.

Urgencia

El reporte de la AAP (2023) confirmó que Lima ocupa el tercer lugar en niveles de PM_{2.5} en Lationoamerica, lo que resalta la necesidad de acciones urgentes contra la contaminación urbana.

- Romero Y, Chicchon N, Duarte F, Noel J, Ratti C, Nyhan M. Quantifying and spatial disaggregation of air pollution emissions from ground transportation in a developing country context: Case study for the Lima Metropolitan Area in Peru. Sci Total Environ. 2020; 698:134313.
- Sánchez-Ccoyllo OR, Llacza A, Ayma-Choque E, Alonso M, Castesana P, Andrade MDF. Evaluating the Impact of Vehicular Aerosol Emissions on Particulate Matter (PM2.5) Formation Using Modeling Study. Atmosphere. 2022;13(11):1816.
- De La Cruz LM. RESPIRAR EN PERÚ ES UN RIESGO: CONTAMINACIÓN TRIPLICA EL LÍMITE RECOMENDADO POR LA OMS [Internet]. Asociación Automotriz del Perú. 2025 [citado el 8 de octubre de 2025]. Disponible en: https://aap.org.pe/respirar-en-peru-es-un-riesgo-contaminacion-supera-tres-veces-niveles-recomendados-por-la-oms/

Artículos Científicos

Riesgo en Interiores (CO₂)

Quispe Izquierdo (2020) alertó sobre concentraciones de ${\rm CO_2}$ en espacios cerrados que superan los límites (hasta 1024 ppm), señalando la falta de ventilación adecuada en entornos críticos como aulas y oficinas.

Modelado y Variables Meteorológicas

Solís Terán et al. (2025) y Carrasco & Cano (2023) evidencian que en Lima Norte, zonas como San Martín de Porres registran niveles elevados de PM_{10} , agravados por condiciones meteorológicas como altas temperaturas y baja velocidad del viento, que favorecen la acumulación de O_3 y NO_2 .

- Quispe Izquierdo AO. Calidad de aire en interiores por dióxido de carbono y su relación con la ventilación de las oficinas de la Municipalidad Provincial de Tocache [Tesis de licenciatura]. Tarapoto: Universidad Peruana Unión; 2020. Disponible en: https://repositorio.upeu.edu.pe/bitstreams/f1e65ff0-bd48-4a27-b124-1efd140f71fe/download
- Solis Teran MA, Leite Coelho Da Silva F, Torres Armas EA, Carbo-Bustinza N, López-Gonzales JL. *Modeling Air Pollution in Metropolitan Lima: A Statistical and Artificial Neural Network Approach*. Environments. 2025;12(6):196.
- Carrasco Suasaca CM, Cano Delgadillo XY. Evaluación de las concentraciones de Ozono Troposférico y su relación con el agente formador NO2 en la ciudad de Lima Metropolitana 2020 2021. Repositorio UPeU. 2023. Disponible en: https://repositorio.upeu.edu.pe/bitstreams/36e09d61-067b-4a18-8078-3ea389c15d65/download

PRODCUTO COMERCIAL 1:

TSI AirAssure 8144-6

- •Se conecta a un software para su gestión y visualización.
- •Muestra imagenes del dispositivo y del dashboard del software.

Contaminantes que detecta:

SO₂, O₃, NO₂, CO, CO₂, COVs y Partículas PM.

Datos Ambientales

Integración de T, H y Presión atmosférica.

PRODUCTO COMERCIAL 2:

uHoo Smart Air Monitor

Diseño y Versatilidad

Un diseño moderno y compacto que mide simultáneamente hasta **nueve parámetros** clave de la calidad del aire:

- PM_{2.5},
- CO₂
- NO₂
- O₃}
- COVs
- Temperatura
- Humedad
- Presión
- CO

Conectividad Inteligente

Conexión Wi-Fi, aplicación móvil intuitiva con alertas personalizadas y consejos, y compatibilidad con sistemas de hogar inteligente.

PurpleAir Touch

Monitor diseñado para el interior con un sistema de sensores dual que ofrece datos de alta precisión y visibilidad inmediata.

- Sensores Láser PMS-1003: Medición detallada de PM₁, PM_{2·5} y PM₁₀.
- Sensor Bosch BME688: Monitoreo de Presión, T, Humedad y Gases (COVs).
- Anillo LED AQI: Indicación visual e instantánea del Índice de Calidad del Aire (AQI) basado en la EPA.

Análisis Competitivo y Diferenciación

Competencia Directa

- **Ejemplos:** Kusisett (particulado), Improtek (CO_2) , Tipsac (NO_2) .
- Foco: Venta simple de dispositivos de medición específicos.
- Debilidad Mayor: No ofrecen servicio postventa, integración de datos locales ni alertas inteligentes personalizadas. Solo venden el hardware.

Competencia Indirecta

- **Ejemplos:** Purificadores de aire de marcas como Xiaomi o Philips.
- Foco: Mejorar la calidad general del aire a través de filtración.
 - **Debilidad Mayor:** Purifican el aire, pero no miden ni reportan contaminantes específicos (CO₂, NO₂, etc.). Falta de visibilidad y control.

Productos Referenciales

Ejemplos de la oferta actual en el mercado que carecen de nuestra capa de servicio.

Medidor de CO₂ 3 en 1 (SELTEL) (1)

S/ 179 soles

Medidor PM2.5, CO₂, Humedad (YEM-4S-W)(2)

S/797 soles

Alternativas Existentes

- Ejemplos: Datos públicos (SENAMHI), ventilación natural (abrir ventanas) o uso de plantas.
- Foco: Acciones reactivas o información agregada.
 - Debilidad Mayor: No ofrecen data en tiempo real ni información precisa del aire interior (donde pasamos el 90% del tiempo). Inefectivas y no medibles.

El modelo Lean Canvas

Propuesta tecnológica para abordar la mala calidad del aire exterior e interior en San Martín de Porres (Lima, Perú).

Problema Crítico

Mala calidad del aire exterior y infiltración de contaminantes.
Consecuencias: enfermedades respiratorias y bajo rendimiento académico.

Clientes Clave

- Escuelas y Universidades.
- Empresas
 Particulares.
- Hogares con riesgo respiratorio.

Propuesta de Valor Única

Solución integrada que monitoriea y permite tomar medidas para proteger la salud y el rendimiento humano.

Diferenciador:

Monitoreo de CO₂, NO₂ y PM con alertas en tiempo real.

Solución

Dispositivo medidor de calidad del aire (CO₂, NO₂, PM). Portátil, ergonómico y fácil de usar.

Plataforma Digital

Panel de control y alertas automáticas para el cliente. Suscripción SaaS como flujo de ingresos clave.

Canales y Métricas

Venta directa (instituciones). Alianzas estratégicas. Métricas: Dispositivos vendidos y uso de plataforma.

Ventaja

- Equipo Experto: Multidisciplinario

 (Ingeniería Ambiental e Informática) con
 contactos clave en San Martín de Porres.
- Datos Únicos: Servicio de manejo de datos únicos sobre la calidad del aire local recolectados a largo plazo.

Estructura Financiera

Costos

Fabricación de hardware, salarios (desarrollo/ventas), logística.

Ingresos

Venta de dispositivo, suscripción, servicios adicionales (instalación, capacitación).

Objetivos del Proyecto

Función Principal

Diseñar un sistema

Medir

NO₂

PM2.5

· CO₂

Funciones Secundarias

- · Generar alertas al llegar a límites.
- Almacenar los datos en la nube.
- Visualizar datos obtenidos
- Exportar reporte de datos

Diseño y Geometría

Especificaciones de Diseño

Dimensiones: 15 x 8 x 6 cm

Portabilidad: Diseño compacto y ligero para fácil

transporte entre espacios

Ergonomía: Cumplimiento con estándares ISO 7250

para diseño centrado en el usuario

Compacto

Optimizado para espacios reducidos

Diseño intuitivo y fácil manejo

Sistema Mecánico y Fuerzas

01 MATERIA

Aire contaminado dentro del espacio cerrado

02

FUERZAS

Peso aproximado de 400 g en total

03 CINEMÁTICA

Estático con flujo constante

Sistema Energético

Sistema de carga

· Conexión alámbrica para carga

Estado visual de batería en tiempo real

Hardware y Software

Microcontrolador

Procesador de alta eficiencia para gestión de sensores y comunicaciones en tiempo real

Hardware Electrónico

Circuitos especializados para adquisición precisa de datos de calidad del aire

Dashboard de Visualización

Interfaz intuitiva para monitoreo en tiempo real y análisis histórico de datos

Lógica de control avanzada que gestiona señales de entrada y salida, procesamiento de datos y sincronización con sistemas externos.

Comunicaciones

Comunicación por Cable

Transmisión confiable de datos entre sensores y unidad central

Comunicación Inalámbrica

Enlace con base de datos en la nube para monitoreo remoto

Manufactura y Control de Calidad

2

Materiales

Selección estratégica de componentes nacionales e importados para optimizar calidad y costos

Ensamblaje

Proceso controlado con verificación en cada etapa de construcción

Control de Calidad

Pruebas exhaustivas de funcionalidad y cumplimiento ergonómico

Proceso integral que garantiza la conformidad con especificaciones técnicas y estándares internacionales de calidad.

Mantenimiento, Transporte y Costos

Mantenimiento

- Acceso fácil a componentes
- Calibración de sensores
- · Limpieza de componentes

Portabilidad

- Peso reducido
- Estuche de transporte
- Instalación rápida

Estructura de Costos

- · Diseño: S/. 6,500
- Materiales: ≤ S/. 1,500

Diseño optimizado para minimizar costos operativos y maximizar la facilidad de uso en diferentes entornos de investigación.

Cronograma y Cierre

1 Septiembre

Inicio del proyecto

2 ____ Octubre

Desarrollo y diseño

3 Noviembre

Implementación y pruebas

4 Diciembre

Entrega final

~130

100%

Horas Totales

Validación UPCH

Dedicación completa del equipo

Cumplimiento de especificaciones

Wayra Tupuy representa una solución integral de monitoreo de la calidad del aire, diseñada específicamente para satisfacer las necesidades de investigación de la Universidad Peruana Cayetano Heredia.

Ayúdanos a transformar datos invisibles en decisiones visibles

Financiamiento de prototipo

Apoyo económico para desarrollo tecnológico inicial

Alianzas estratégicas

Colaboración con universidades y municipalidades

Asesoría técnica

Mentoría en escalabilidad y sostenibilidad del proyecto

