desi	mos
------	-----

Science Mom Lesson 49

Unit A1.5, Lesson 8: Supplement

Name

Line Zapper #1

$$3x + 4y = 3$$
$$-3x + 3y = 18$$

Line Zapper #2

$$y = 2x - 4$$
$$y = 0.5x + 5$$

Line Zapper #3

$$y = 3x + 6$$
$$2x + 2y = 20$$
$$x - y = 10$$

Unit A1.5, Lesson 8: Supplement

Repeated Challenges

Use additional paper as needed.

Cool-Down

Your Pattern: Part 1

1. Draw your pattern in the space below.

- 2. Describe what about your pattern is changing and what is staying the same.
- 3. Draw the pattern for when s = 4.

4. How many tiles will there be when s = 10? Draw a picture if it helps with your thinking.

desmos

Unit A1.7, Lessons 1–2: Supplement

Your Pattern: Part 2

- 1. Write an equation that represents your pattern.
- 2. Explain how you see each term of your equation represented in the pattern.

3. How many tiles will there be when s = 15? Show or explain your thinking.

Gallery Walk

- 1. What features of your classmates' work helped you understand their thinking?
- 2. Now that you've seen the work of other groups, what would you have done differently if you had more time?

desn	nos
------	-----

Science Mom Lesson 63

Unit A1.7, Lesson 5: Supplement

Name _____

Tables

Screens 4 and 5

Time (seconds)	Height (meters)
0	0
1	45
2	80

Screen 6

Time (seconds)	Height (meters)
0	20
1	45
2	60

Screen 9

Height (feet)
0
128
224
288

Screen 10

Time (seconds)	Height (meters)
0	0
1	52
2	94
3	126

Screen 11

Time (seconds)	Height (feet)	
0	0	
1	112	
2	192	
3	240	

Unit A1.7, Lesson 8: What's My Graph?

Activity 1: Coordinate Co-Op

As a group, make a graph of each function by following the instructions on the projection sheet. Use this worksheet to show all of your thinking.

1.
$$f(x) = x^2 - 2x - 6$$

х	x^2	-2 <i>x</i>	-6	x^2-2x-6

2.
$$g(x) = (x + 4)(x - 2)$$

x	(x + 4)	(x - 2)	(x+4)(x-2)

Reflection: Describe a strategy that someone in your group used that you want to celebrate! 3.

Explore

Plot more points on the graph of each function. Try to plot points that no one else will!

Unit A1.7, Lesson 8: What's My Graph?

Name			

Activity 2: Fix It!

Three students were working on graphing parabolas. Part of their work is correct. Part is incorrect.

Amir's First Draft

x	$2x^2$	х	1	$2x^2 + x + 1$
5	100	5	1	106

The point (5, 106) is on the graph!

What they did correctly:

Their mistake:

Second Draft

Brielle's First Draft

x	$-x^2$	-5 <i>x</i>	3	$-x^2 - 5x + 3$
-2	4	10	3	17

The point (-2, 17) is on the graph!

What they did correctly:

Their mistake:

Second Draft

Juliana's First Draft

x	(2x+6)	(x+10)	(2x+6)(x+10)
-უ	0	7	7

The point (-3, 7) is on the graph!

What they did correctly:

Their mistake:

Second Draft

Reflection: Which of these is your favorite mistake? Why?

Unit A1.7, Lesson 8: What's My Graph?

Name _____

Lesson Synthesis

How can using a table help you graph quadratic functions?

X	$-x^2$	-2	2x	3	$-x^2-2x+3$
-3	-9	(3	3	0
x	(2x+	-4)	(x	(z-3)	(2x+4)(x-3)
-3	-2			-6	12

Cool-Down

Here are three statements about the graph of h(x) = (2x - 1)(x + 3).

One of the statements is a lie. Which is it?

- A. The point (-2, -5) is on the graph.
- B. The point (0, -3) is on the graph.
- C. The point (2,8) is on the graph.

Use the table if it helps with your thinking.

x	(2x-1)	(x + 3)	(2x-1)(x+3)

Coordinate Co-Op Cards

Distribute these cards so each person has at least two *x*-values.

$$x = -3$$

$$x = -2$$

$$x = -1$$

$$x = 0$$

$$x = 1$$

$$x = 2$$

$$x = 3$$

Distribute these cards so each person has at least two x-values.

$$x = -3$$

$$x = -2$$

$$x = -1$$

$$x = 0$$

$$x = 1$$

$$x = 2$$

$$x = 3$$

Name

Coordinate Co-Op

Graph #1

$$f(x) = x^2 - 2x - 6$$

Name

Coordinate Co-Op

Graph #2

$$g(x) = (x+4)(x-2)$$

Warm-Up

Match each expression in factored form with its equivalent expression in standard form.

Factored Form

1.
$$(5x + 6)(x - 3)$$

2.
$$(5x - 3)(x + 6)$$

3.
$$(5x - 2)(x + 9)$$

4.
$$(5x + 2)(x - 9)$$

Standard Form

A.
$$5x^2 + 43x - 18$$

B.
$$5x^2 - 9x - 18$$

C.
$$5x^2 - 43x - 18$$

D.
$$5x^2 + 27x - 18$$

Activity 1: Diagram Puzzles

Complete each diagram puzzle, standard-form expression, and factored-form expression.

	Diagram	Standard Form	Factored Form
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 15	(3x - 5)(4x)
2	$ \begin{array}{c cc} 2x & 3 \\ \hline 4x^2 & 6x \\ \hline & -9 \end{array} $	4x ²	(2x + 3)()
3	$ \begin{array}{c c} -3 \\ \hline 2x^2 & -3x \\ \hline 8x \end{array} $	$2x^2 + 5x$	

•	Diagram	Standard Form	Footored Form
4	Diagram $3x^2 4x$ $15x 20$	Standard Form	Factored Form
5	$ \begin{array}{c c} x \\ x^2 \\ \hline & -10 \end{array} $	$x^2 - 3x - 10$	
6	$3x^2$ 1	$3x^2 + 4x + 1$	
7		$x^2 + 9x + 20$	
8		$6x^2 + 7x + 2$	

Activity 2: Next Steps

Tameeka is trying to factor $2x^2 + 9x + 7$.

- 1. Discuss with a partner:
 - How can you tell Tameeka's work is incorrect?
 - What did Tameeka do well?
 - What could she try next?

	2x	1
X	2x ²	x
7	14x	7

Sneha is trying to factor $2x^2 + 23x - 12$. She started by creating this diagram.

2.1 List pairs of constants Sneha could try in order to complete the outside of the diagram.

	2×	
x	2x ²	
		-12

Sneha tried the numbers -6 and 2.

- 2.2 Discuss with a partner:
 - How can you tell Sneha's work is incorrect?
 - What did Sneha do well?
 - What could she try next?

2.3 Rewrite $2x^2 + 23x - 12$ in factored form. Use the diagram supplement if it helps with your thinking.

Ariana is trying to factor $10x^2 - 7x - 12$. She starts by creating this diagram.

3.1 Ariana says: I have to use factors of 10. I also need to use factors of -12.

What do you think she means?

10x ²	
	-12

3.2 Rewrite $10x^2 - 7x - 12$ in factored form.

Here are three other expressions with a c-value of -12. Rewrite each expression in factored form.

$$4.1 \quad x^2 + x - 12$$

$$4.1 \quad x^{2} + x - 12$$

$$4.2 \quad 3x^{2} - 16x - 12$$

$$4.3 \quad 6x^{2} - 1x - 12$$

$$4.3 6x^2 - 1x - 12$$

Unit A1.8, Lesson 3: X-Factor

Lesson Synthesis

Describe how to rewrite a standard-form expression in factored form.

Use the example if it helps with your thinking.

$$5x^2 - 31x - 28$$

Cool-Down

Rewrite $x^2 + 3x - 28$ in factored form.

Use the diagram if it helps with your thinking.

desmos

Unit A1.8, Lesson 4: Form Up

desmos

Unit A1.8, Lesson 4: Form Up

\mathbf{E} $100x^2 - 9$	M $25x^2 - 64$	$u = x^2 - 36$
F $9x^2 - 1$	$x^{2} - 16$	$x^2 - 4$
\mathbf{G} $-2x^2 + 2x + 4$	$\begin{array}{c} \mathbf{O} \\ -6x^2 + 21x \end{array}$	W $15x^2 - 5x - 20$
\mathbf{H} $6x^2 - 6x - 36$	\mathbf{P} $5x^2 - 15x - 20$	\mathbf{X} $10x^2 - 60x + 80$

Name _____

Activity 1: Spotting Similarities

Here are three groups of expressions.

Group 1	Group 2	Group 3
$4x^2 - 25$	$8x^2 + 32x + 24$	$x^2 - 6x - 27$
$x^2 - 36$	$4x^2 - 8x - 32$	$x^2 + 2x - 80$
$x^2 - 100$	$10x^2 + 20x + 10$	$x^2 - 13x + 30$
$25x^2 - 49$	$2x^2 - 22x + 60$	$x^2 + 2x - 63$

Explain how the expressions in each group are alike. 1.

Group 1:

Group 2:

Group 3:

2. Factor one expression from each group.

Deiondre factored the expression $7x^2 + 28x + 21$.

3.1 Discuss with a classmate:

• Are
$$7x^2 + 28x + 21$$
 and $7(x^2 + 4x + 3)$ equivalent? How do you know?

- Why might Deiondre have written $7(x^2 + 4x + 3)$ as a first step?
- 3.2 Does Deiondre's expression belong in group 1, 2, or 3? Explain your thinking.

Deiondre's Work

$$7x^2 + 28x + 21$$

$$7(x^2 + 4x + 3)$$

$$7(x + 3)(x + 1)$$

- Yasmine factored the expression $9x^2 49$.
 - 4.1 Discuss with a classmate: Does Yasmine's expression belong in group 1, 2, or 3? Explain your thinking.
 - 4.2 Write a new expression in standard form that belongs in the same group as Yasmine's.
 - 4.3 Factor the expression you wrote in problem 4.2.

Yasmine's Work

$$(3x - 7)(3x + 7)$$

Factor each expression.

5.
$$3x^2 - 6x - 105$$

6
$$16x^2 - 49$$

$$7 4x^2 + 52x + 120$$

Name			

Activity 2: Solve and Swap

- 1. Your teacher will give you a card. Factor the expression on your card.
- 2. Find a partner and swap cards. Factor your new expression and check with your partner.
- 3. Find a new partner and repeat step 2.

Card		Card
Partner Ch	eck:	Partner Check:
Card		Card
Partner Ch	eck:	Partner Check:
Card		Card
		
Partner Ch	eck:	Partner Check:
Card		Card
Partner Ch	eck:	Partner Check:

Name _____

Lesson Synthesis

What do you think is important to remember when factoring an expression in standard form?

Use the expressions if they help with your thinking.

$$5x^2 - 18x - 8$$

$$9x^2 - 16$$

$$6x^2 - 24x - 30$$

Cool-Down

Factor the expression $2x^2 - 8x - 10$.

Science Mom Lesson 81

STudent worksheet

Unit A1.8, Lesson 13: Supplement

Name ____

Activity 2: Solution Search

Use screen 8 to guide your exploration of solutions to quadratic equations.

Here is an equation that has two integer solutions. Find two more equations. 1.1

Equation:	Equation:	Equation:
$1x^2 - 5x + 6 = 0$		
Solutions:	Solutions:	Solutions:
$x = \frac{5 \pm \sqrt{1}}{2}$		
_		

1.2 Find three equations that have one solution.

Equation:	Equation:	Equation:
Solutions:	Solutions:	Solutions:

1.3 Find three equations that have no solutions.

Equation: Equat	ion:	Equation:
Solutions: Soluti	ons:	Solutions:

2. Examine the equations and solutions you found. Discuss with your partner: What patterns do you notice?

Activity 1: Form Over Function

Here are four quadratic equations and their solutions.

Use the quadratic formula to show that the solutions are correct.

The Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.1
$$x^2 - 8x + 15 = 0$$

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(15)}}{2(1)}$$

Solutions: x = 5 and x = 3

Solutions:
$$x = -5 \pm \frac{\sqrt{28}}{2}$$

1.3
$$9x^2 - 6x = -1$$

$$1.4 \quad 2x^2 + 6x + 5 = 0$$

1.2 $x^2 + 10x + 18 = 0$

Solution: $x = \frac{1}{3}$

No solutions

2. Discuss with a partner: Do you think that the quadratic formula is the best strategy for solving each of these equations? Explain your thinking.

Unit A1.8, Lesson 14: Formula Fluency

Name(s)

Activity 2: Error Analysis

Your teacher will give you a supplement with the same equations from the previous activity. Each attempt to solve the equation contains an error.

- 1. With a partner:
 - Identify the error in each attempt. Then discuss or show how to correct the error.
 - Discuss why someone might make this error.
- 2.1 Solve the following equation using the quadratic formula, **but include an error that you think would be common**.

$$3x^2 - 6x - 1 = 0$$

2.2 Swap equations with a classmate. Identify and describe the error in each other's work.

- 3.1 Reflect: What kinds of errors do you think you are most likely to make when using the quadratic formula?
- 3.2 Write two pieces of advice that will help your future self correctly use the quadratic formula. Include examples if they help with your thinking.
 - •
 - lacktriangle

Unit A1.8, Lesson 14: Formula Fluency

Name(s) _____

Lesson Synthesis

What are some advantages of using the quadratic formula to solve quadratic equations?

What are some disadvantages?

Use the examples if they help with your thinking.

$$x^2 - 6x + 8 = 0$$

$$x^2 + 4x - 1 = 0$$

$$2x^2 + 7x - 10 = 0$$

Cool-Down

The Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Use the quadratic formula to solve the equation $2x^2 + 5x - 12 = 0$.

desmos

Unit A1.8, Lesson 14: Supplement

Error Analysis

Name(s) _____

$$x^2 - 8x + 15 = 0$$

$$a = 1, b = -8, c = 15$$

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(15)}}{2(1)}$$

$$x = \frac{8 \pm \sqrt{-64 - 60}}{2}$$

$$x = \frac{8 \pm \sqrt{-124}}{2}$$

No solutions

$$x^2 + 10x + 18 = 0$$

$$a = 1, b = 10, c = 18$$

$$x = \frac{-10 \pm \sqrt{10^2 - 4(1)(18)}}{2(1)}$$

$$x = \frac{-10 \pm \sqrt{100 - 72}}{2}$$

$$x = \frac{-10 \pm \sqrt{28}}{2}$$

$$x = -5 \pm \sqrt{14}$$

desmos

Unit A1.8, Lesson 14: Supplement

Error Analysis

Name(s)

$$9x^2 - 6x = -1$$

$$a = 9, b = -6, c = -1$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(9)(-1)}}{2(9)}$$

$$x = \frac{6 \pm \sqrt{36 + 36}}{18}$$

$$x = \frac{6 \pm \sqrt{72}}{18}$$

$$2x^2 + 6x + 5 = 0$$

$$a = 2, b = 6, c = 5$$

$$x = \frac{-6 \pm \sqrt{(6)^2 - 4(2)(5)}}{2(2)}$$

$$x = \frac{-6 \pm \sqrt{36 - 40}}{4}$$

$$x = \frac{-6 \pm \sqrt{-4}}{4}$$

$$x = \frac{-6 \pm 2}{4}$$

$$x = -2$$
 and $x = -1$

d	e s	sm	05
---	------------	----	----

Science Mom Lesson 86

Unit A1.8, Lesson 17: Supplement

Name

Shooting Stars #1

$$y = x^2 - 11$$
$$y = 5$$

Shooting Stars #2

$$y = x^2$$

$$y = -4x + 12$$

Shooting Stars #3

$$y = (x - 2)^2$$
$$y = x$$

Unit A1.8, Lesson 17: Supplement

Name

Repeated Challenges

Use additional paper as needed.

Cool-Down