Лабораторная работа №5

ИНТЕРПОЛИРОВАНИЕ АЛГЕБРАИЧЕСКИМИ МНОГОЧЛЕНАМИ.

1. Постановка задачи.

Пусть $x \in [a,b]$ и заданы точки x_k , k = 0,1,...,n (узлы интерполирования), в которых известны значения функции f(x). Задача интерполирования состоит в том, чтобы построить многочлен:

$$P_n(x) = a_0 + a_1x + ... + a_nx^n$$

степени n, значения которого в заданных точках \mathcal{X}_k , совпадают со значениями функции f(x) в этих точках. Такой полином существует и единственен.

Интерполяционный многочлен $L_n(x)$ степени не выше n по системе алгебраических многочленов $l, x, x^2, ..., x^n$ можно задать по формуле Лагранжа:

(Ф)
$$L_n(x) = \sum_{k=0}^n \frac{\omega(x)f(x_k)}{(x-x_k)\omega'(x_k)}$$
,где $\omega(x) = \prod_{k=0}^n (x-x_k)$,

$$\omega'(x) = \prod_{i=0}^{n} (x_k - x_j).$$

$$i \neq k$$

Обозначая
$$A_k = \frac{1}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

получим "барицентрический" вид многочлена Лагранжа:

$$L_{n}(x) = \frac{\sum_{k=0}^{n} \frac{A_{k} f(x_{k})}{x - x_{k}}}{\sum_{k=0}^{n} \frac{A_{k}}{x - x_{k}}}$$

2. Интерполяционная формула Ньютона.

Формула Ньютона является разностным аналогом формулы Тейлора и имеет

вид:(1.1)

$$\begin{split} P_n(x) &= f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (x - x_1) f(x_0, x_1, x_2) + \dots \\ \dots &+ (x - x_0) (x - x_1) \dots (x - x_{n-1}) f(x_0, x_1, \dots, x_n), \end{split}$$

где
$$f(x_i,x_j) = \frac{f(x_j)-f(x_i)}{x_j-x_i}$$
, i,j=0,1,...,n,

і≠ј –разделенные разности первого порядка,

$$f(x_i, x_j, x_k) = \frac{f(x_j, x_k) - f(x_i, x_j)}{x_k - x_i},$$
 i,j,k=0,1,...,n,

 $i\neq j\neq k$ – разделенные разности второго порядка,

$$f(x_j, x_{j+1}, ..., x_{j+k}) = \frac{f(x_{j+1}, x_{j+2}, ..., x_{j+k}) - f(x_j, x_{j+1}, ..., x_{j+k-1})}{x_{j+k} - x_j}$$

- разделенные разности **k**-го порядка.

При выводе формулы Ньютона не накладывается ограничений на порядок узлов Хо,Х1,...,Хп, поэтому множество интерполяционных формул можно получить из (1.1) перенумерацией узлов.

3. Погрешность интерполирования.

Заменяя функцию f(x) интерполяционным многочленом $L_n(x)$, мы допускаем погрешность:

$$r_n(x)=f(x)-L_n(x)$$
,

которая называется погрешностью интерполирования или остаточным членом интерполяционной формулы. Если функция f(x) имеет непрерывную (**n**+**1**)-ю производную, то имеет место следующая оценка остаточного члена:

$$|r_n(x)| \leq \frac{M_{n+1}|\omega(x)|}{(n+1)!},$$
 где $\omega(x) = \prod_{k=0}^n (x-x_k), \quad M_{n+1} = \sup_{x \in [a,b]} |f^{(n+1)}(x)|.$

Погрешность интерполирования можно представить также через разделенную разность следующим образом:

$$r_n(x) = \omega(x) f(x, x_0, \dots, x_n).$$

4. Минимизация остаточного члена интерполирования.

Из формулы (1.3) следует, что для данной функции f(x) погрешность интерполирования зависит от выбора узлов $\mathcal{X}_0, \mathcal{X}_1, \dots, \mathcal{X}_n$ на отрезке [a,b]. Величину $|\omega(x)|$ можно минимизировать за счет выбора узлов интерполирования $x_i \in [a,b]$, i=0,1,...,n.

Такими оптимальными узлами для отрезка [1,-1] являются корни многочлена Чебышева первого рода:

$$T_{n+1}(x) = \frac{\cos((n+1)\arccos x)}{2^n},$$

которые вычисляются по формуле:

$$x_k = \cos \frac{(2k+1)\pi}{2(n+1)}$$
, k=0,1,...,n.

В случае произвольного отрезка [a,b] из этого равенства получим формулу для оптимальных узлов:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos \frac{(2k+1)\pi}{2(n+1)},$$
 k=0,1,...,n.

При этом оценка (1.3) примет вид:

$$\max_{x \in [a,b]} |\omega(x)| = \frac{(b-a)^{n+1}}{2^{2n+1}}, \quad \text{if} \quad |r_n(x)| \le \frac{M_{n+1}(b-a)^{n+1}}{2^{2n+1}(n+1)!}.$$

5. Интерполирование по равноотстоящим узлам.

Приведем некоторые интерполяционные формулы для случая равноотстоящих узлов.

Пусть на отрезке [a,b] задана равномерная сетка $x_k = x_0 + kn$, k=0,1,...,n и значения функции $f(x_k)=f_k$, h>0.

Пусть $x=x_0+th$ -- точка интерполирования. Тогда, используя (1.1), получаем первую интерполяционную формулу Ньютона:

$$P_n(x) = P_n(x_0 + th) = f_0 + \frac{t}{1!} \Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n f_0,$$

где
$$\Delta^0 f_i = f_i$$
, $\Delta^{n+1} f_i = \Delta^n f_{i+1} - \Delta^n f_i$, $i = 0, 1, ..., k$ - n

конечные разности.

Положив $x=x_n+th$, получаем вторую интерполяционную формулу

$$P_n(x) = P_n(x_n + th) = f_n + \frac{t}{1!} \Delta f_{n-1} + \frac{t(t+1)}{2!} \Delta^2 f_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!} \Delta^n f_0$$

Для двух последних интерполяционных формул оценка погрешности интерполирования имеет вид:

$$|r_n(x)| \le \frac{h^{n+1}M_{n+1}}{(n+1)!} |t(t-1)...(t-n)|,$$

$$M_{n+1} = \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)|.$$

При малых значениях h и при условии непрерывности $f^{n+1}(x)$ можно приближенно считать:

$$M_{n+1} pprox \frac{\Delta^{n+1} f}{h^{n+1}},$$
 где $\Delta^{n+1} f = \max_{0 \le m \le n} \left| \Delta^{n+1} f_m \right|.$

Тогда оценка остаточных членов первой и второй интерполяционных формул Ньютона имеет вид:

(1.4)
$$|r_n(x)| \approx \frac{|t(t-1)...(t-n)|}{(n+1)!} \Delta^{n+1} f$$
.

Формула (1.4) удобна тем, что позволяет делать оценку ошибки интерполирования без исследования (n+1)-й производной функции f(x). На окончательную погрешность интерполирования, разумеется, влияет и вычислительная погрешность, поэтому при вычислении интерполяционных многочленов желательно сводить число арифметических операций к минимуму.

6. Примеры:

1) Построить многочлен наименьшей степени, принимающий в данных точках следующие значения:

X	0	1	2	5
У	2	3	12	147

Вычислить в точке х=3 приближенное значение функции.

Решение: Воспользуемся формулой Лагранжа:

$$L_n(x) = \sum_{k=0}^n \frac{\omega(x) f(x_k)}{(x - x_k) \omega'(x_k)},$$

где $\omega(x) = \prod_{k=0}^n (x - x_k),$
 $\omega'(x) = \prod_{k,i=0}^n (x_k - x_i), \quad k \neq i$ получим:

$$P_{3}(x) = \frac{2x(x-1)(x-2)(x-5)}{-10x} + \frac{3x(x-1)(x-2)(x-5)}{4(x-1)} + \frac{12x(x-1)(x-2)(x-5)}{-6(x-2)} + \frac{147x(x-1)(x-2)(x-5)}{60(x-5)} = x^{3} + x^{2} - x + 2$$

$$f(3) \approx P_{3}(3) = 35$$

2) С какой точностью можно вычислить по формуле Лагранжа ln 100,5 по известным значениям ln 100, ln 101, ln 102, ln 103, ln 104?

Решение: Согласно формуле для остатка $r_4(x) = \frac{M_5}{5!}$.

Поскольку
$$(\ln x)^{(5)} = \frac{24}{x^5}$$
, то $M_5 = \ln^{(5)}(100) = \frac{24}{100^5}$,

Вычисляя:

 $\omega(x)$ =(100.5-100)(100.5-101)(100.5-102)(100.5-103)(100.5-104)= =3.28125 . Подставляя это в формулу для остатка, получаем:

$$M_5(100,5) = \frac{24 \cdot 3.28125}{100^5 \cdot 5!} < 0.7 \cdot 10^{-10}.$$

Поэтому: $\ln 100,5 - L_n(100,5) \le 0,7.10^{-10}$

3) Найти сумму конечного ряда нечетных чисел S(p)=I+3+5+...+(2p-1)

Решение: Известно, что S(p) является некоторым многочленом относительно p. Применим интерполяционную формулу Ньютона. Составим таблицу разделенных разностей для S(p), а именно

$$S(p,p+1) = \frac{S(p+1) - S(p)}{(p+1) - p},$$

$$S(p,p+1,p+2) = \frac{S(p+1,p+2) - S(p,p+1)}{(p+2) - p},$$

$$S(p,p+1,...,p+n+1) = \frac{S(p+1,p+2,...,p+n+1) - S(p,p+1,...,p+n)}{(p+n+1) - p}$$

Таблицу составляем до тех пор, пока не получим разделенные разности, равные нулю.

P	S(p)	S(p,p+1)	S(p,p+1,p+2)	S(p,p+1,p+2,p+3)
1	<u>1</u>	<u>3</u>	<u>1</u>	<u>0</u>
2	4	5	1	0
3	9	7	1	
4	16	9		
5	25			

Поскольку разделенные разности третьего порядка равны нулю, то S(p) является многочленом второй степени. Подставим подчеркнутые члены в формулу интерполяционного многочлена Ньютона, имеем: $S(p)=1+3(p-1)+1(p-1)(p-2)=p^2$

7. Контрольные задания:

Найти многочлен наименьшей степени, принимающий в данных точках заданные значения:

Вариант-1:		Вариант-2:			Вариант-3:		
X	Y		X	y		X	Y
1,45	3,14		0	2		0	1,45
1,36	4,15		1	3		1,5	3,14
1,14	5,65		5	147		6,8	4,11

Дана таблица значений функции f(x):

X	2,0	2,3	2,5	3,0	3,5	3,8	4,0
f(x)	5,848	6,127	6,300	6,694	7,047	7,243	7,368

Пользуясь формулой Лагранжа, найти значения функции в указанных точках:

Вариант-4: 2,22; Вариант-5: 2,41; Вариант-6: 2,78; Вариант-7: 3,34; Вариант-8: 3,75; Вариант-9: 3,88.

Используя "барицентрический" вид многочлена Лагранжа, найти значения функций, заданных таблицами, в указанных точках:

Вариант-10:

	• •			
X	14	17	31	35
F(x)	68,7	64,0	44,0	39,1

Найти f(20).

Вариант-11:

X	93,0	96,2	100,0	104,2	108,7
f(x)	11,38	12,80	14,70	17,07	19,91

Найти f(102).

Вариант-12:

X		0	2	3	6	7	9
F(x))	658503	704969	729000	804357	830584	884736

Найти f(5).

Построить интерполяционные многочлены Ньютона для функции $f(x) = \lg x - \frac{x-1}{x}$ по следующим узлам:

Вариант-13: х=1, 2, 4, 8, 10;

Вариант-14: х=2, 4, 8, 10;

Вариант-15: х=4, 8, 10;

Вариант-16: x=2, 4, 8.

(Для всех этих случаев вычислить приближенное значение **lg5,25**. Получить оценку погрешности остаточного члена.)

По данным таблицам значений функций определить значение аргумента **x**, соответствующее указанным значениям **y**, пользуясь многочленом Ньютона:

Вариант-17: у=0

X	1	2	2,5	3
У	-6	-1	5,625	16

Вариант-18: y=20

X	4	6	8	10
Y	11	27	50	83

Просуммировать конечные ряды:

Вариант-19: $1^2+2^2+3^2+...+(n-1)^2+n^2$;

Вариант-20: $1^3+2^3+3^3+...+n^3$;

Вариант-21: $1^2+3^2+5^2+...+(2n-1)^2$; Вариант-22: $1^3+3^3+5^3+...+(2n-1)^3$.

Дана таблица значений функции y=shx.

X	Shx	X	Shx
1,0	1,17520	1,5	2,12928
1,1	1,33565	1,6	2,37557
1,2	1,50946	1,7	2,64563
1,3	1,69838	1,8	2,94217
1,4	1,90430		

Найти приближенные значения **shx** для следующих значений аргумента:

Вариант-23: 1,01; 1,02; 1,03; 1,11; 1,12; 1,13; (использовать первую интерполяционную формулу Ньютона)

Вариант-24: 1,75; 1,76; 1,78; 1,79. (*использовать вторую интерполяционную формулу Ньютона*)