English translation of paragraphs (0027) to (0030)

Japanese Patent Laid-Open No. 6-284330

[0027]

20

25

Fig. 7 shows a window obtained by depicting 5 specific display contents on the basic window shown in Fig. 6. Referring to Fig. 7, reference numeral 12 denotes the display frame of map information. This frame shows a window example in which the camera installation position 16 and a boundary line indicating the photographing range 17 of the camera are displayed 10 on the map, together with the display frame 13 in which the video picture currently photographed by the camera is displayed. The video combining unit 9 executes the function of displaying a computer image such as map information and a video picture on the same window. 15 [0028]

Referring to Fig. 7, since the camera installation position 16 is displayed on the map by being registered in the arithmetic controller 3 in advance because the camera is fixed. The boundary line indicating the photographing range 17 of the camera is displayed after being calculated from information indicating the camera horizontal angle (pan), camera vertical angle (tilt), and zoom of the camera input from the camera pan head controller 5, the installation height value of the camera registered in advance, and the reduced scale of the display map. The boundary line indicating the

photographing range 17 of the camera is generated as a computer image, and displayed, together with other computer images such as map information, on the same window.

5 [0029]

Referring to Fig. 7, the operator can obtain a map picture corresponding the current direction of the camera on the map and the zoom ratio, the boundary line 17 indicating the camera photographing range, and the picture photographed by the camera on the same CRT unit 1. Fig. 7 shows a CRT window example centered on the arbitrary point 18. A case wherein the camera controlled from the arbitrary point 18 to the arbitrary point 19 will be described below.

15 [0030]

20

25

Referring to Fig. 7, when the operator designates the arbitrary point 19 on the map with the mouse 2, the arithmetic controller 3 calculates a displacement with respect to the current direction of the camera and a camera zoom ratio that allows the operator to grasp an area surrounding the arbitrary point 19 on the basis of the CRT coordinate position input from the mouse 2, and transfers them to the camera pan head controller to control the camera 6 and camera pan head 4, thereby obtaining photographed pictures at the arbitrary point 19 and in the surrounding area. At the same time, the arithmetic controller 3 searches for a map in a proper

reduced scale in accordance with the camera zoom ratio and displays it on the CRT unit 1. In addition, the arithmetic controller 3 calculates a boundary line indicating the photographing range 17 of the camera from the new camera horizontal angle (pan), camera vertical angle (tilt), and zoom information of the camera which correspond to the arbitrary point 19, the installation height value of the camera which is registered in advance, and the reduced scale of the display map, and displays it on the newly retrieved map. Fig. 8 shows a CRT window example as a result of this processing.

10

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06284330 A

(43) Date of publication of application: 07.10.94

(51) Int. CI

H04N 5/232 G05D 3/12 G08B 25/00 H04N 5/225 H04N 7/18

(21) Application number: 05069952

(71) Applicant:

MITSUBISHI ELECTRIC CORP

(22) Date of filing: 29.03.93

(72) Inventor:

IMAI NAOHARU

(54) MONITOR CAMERA CONTROLLER LINKED WITH MAP INFORMATION

(57) Abstract:

PURPOSE: To grasp a camera position on a map, to variably display the reduced scale of a map according to the zoom rate of a camera lens, and to display the area information of a camera picked up video on the same CRT

CONSTITUTION: The photographed video and object of a camera 6, and the map information in the neighborhood are displayed on a same CRT device 1, camera control is operated from the map by an area information inputting means 2, camera control information (pan, tilt, and zoom) is obtained from a camera universal head controller, the pertinent area or the map of the different reduced scale is retrieved from a storage device 8 and displayed while being linked with it, a camera photographing range is displayed on the map from the camera control information, and the specific area information is displayed on the CRT device 1 by indicating the photographed video of the camera 6 by the area information inputting means 2. The above mentioned processing is realized by constituting an arithmetic

control unit 3 as a center.

COPYRIGHT: (C)1994,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-284330

(43)公開日 平成6年(1994)10月7日

(51)IntCL ⁵		餓別記号		庁内整理番号	FI		•		技術表示箇所
H04N	5/232	2	Z		•				
G 0 5 D	3/12		M	9179—3H 9377—5G					
G08B H04N	25/00 5/225								
		•	C			•			
•	7/18]	E						
		•			審查請求	未請求	請求項の数 6	OL	(全 13 頁)
(21)出願書号		特顧平5-69952			(71)出顧人	三菱電標	農株式会社		
(22)出願日		平成5年(1993)3月29日			(72)発明者	今井 東京都	千代田区丸の内 直治 千代田区丸の内 株式会社内		
					(74)代理人		·		
٠.									

(54) 【発明の名称】 地図情報連動監視カメラ制御装置

(57)【要約】

【構成】 カメラ6の撮影映像と対象物及びその付近の 地図情報を同一CRT装置1上に表示させ、地域情報入 力手段2により地図上からカメラ制御をおこなったり、 カメラ制御情報(パン、チルト、ズーム)をカメラ雲台 制御装置から入手しこれに連動させて該当地域や異縮尺 の地図を記憶装置8から検索表示したり、同様にカメラ 制御情報からカメラ撮影範囲を地図上に表示させたり、 カメラ6の撮影映像を地域情報入力手段2により指示す ることで特定地域情報をCRT装置1上に表示させたり することを演算制御装置3を中心とした構成で実現す

【効果】 カメラ位置が地図上で把握できると共に、カ メラレンズのズーム比に合わせて地図の縮尺を可変表示 し、カメラ撮像映像の地域情報を同一CRT上に表示で きる。

CBT設置 地域製職入力学度(マクス) 统算新聞與證

カノラ 記録装置

カメラ番台

映像合成装成

:

Ŷ

【特許請求の範囲】

【請求項1】 監視カメラと、上配監視カメラをカメラ制御情報に基づいて制御するカメラ制御装置と、地域情報と地図情報を記憶する記憶装置と、記憶装置に記憶された地域情報と地図情報に基づくコンピュータ画像を上配監視カメラの撮影映像と合成する映像合成装置と、上記映像合成装置により合成された合成画像を表示する表示装置と、地図上の特定箇所を入力する地域情報入力手段と、上配監視カメラと上記カメラ制御装置と上記表示装置と上記地域情報入力手段と上記記憶装置が接続され10た演算制御装置から構成されることを特徴とする地図情報連動監視カメラ制御装置。

【請求項2】 監視カメラと、上記監視カメラをカメラ制御情報に基づいて制御するカメラ制御装置と、地図情報を記憶する記憶装置と、上記地図情報に基づく上記監視カメラが撮影している場所の地図及び上記監視カメラの撮影映像を表示する表示装置と、地図上の特定箇所を入力する地域情報入力手段と、上記監視カメラと上記カメラ制御装置と上記表示装置と上記地域情報入力手段と上記記憶装置が接続された演算制御装置から構成され、20地図上の特定箇所を上記地域情報入力手段で指示することにより、指示された特定箇所を上記監視カメラが予め定められた撮影画面の大きさ(ズーム比)で撮影出来るように、上記演算制御装置が上記監視カメラのズーム比を演算しこれらをカメラ制御情報として上記カメラ制御装置に送信し上記監視カメラを制御することを特徴とする地図情報連動監視カメラ制御装置。

【請求項3】 上記演算制御装置は、さらに、カメラ制御情報を基に記憶装置に記憶された地図情報に基づいてズーム比に応じた適当な縮尺の地図を上記表示装置上に30表示することを特徴とする請求項1記載の地図情報連動監視カメラ制御装置。

【請求項4】 監視カメラと、上記監視カメラをカメラ 制御情報に基づいて制御するカメラ制御装置と、地図情 報を記憶する記憶装置と、上記地図情報に基づく上記監 視カメラが撮影している場所の地図及び上記監視カメラ の撮影映像を表示する表示装置と、地図上の特定箇所を 入力する地域情報入力手段と、上記監視カメラと上記カ メラ制御装置と上記表示装置と上記地域情報入力手段と 上記記憶装置が接続された演算制御装置から構成され、 40 演算制御装置は、上記監視カメラの撮影範囲を演算し、 演算された撮影範囲を示すマークを表示装置に表示され た地図上に表示することを特徴とする地図情報連動監視 カメラ制御装置。

【請求項5】 監視カメラと、上記監視カメラを制御するカメラ制御装置と、地図情報及び地図情報に関連付けされた地域情報を記憶する記憶装置と、上記地図情報に基づき上記監視カメラが撮影している場所の地図及び上記監視カメラの撮影映像を表示する表示装置と、上記地域情報を入力する地域情報入力手段と、上記監視カメラ 50

と上記カメラ制御装置と上記表示装置と上記地域情報入力手段と上記記憶装置が接続された演算制御装置から構成され、上記記憶装置に記憶された上記地域情報を上記地域情報入力手段にて入力することにより、上記演算制御装置が、入力された地域情報に基づいて、上記記憶装置から関連付けされた地図情報を検索し、検索された地図情報に基づく地図あるいは、撮影映像を上記表示装置上に表示することを特徴とする地図情報連動監視カメラ制御装置。

【請求項6】 上記地図情報連動監視カメラ制御装置は さらに、地域情報を表示装置に表示することを特徴とす る地図情報連動監視カメラ制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、公共建造物(例えば道路、ダム、河川)の監視カメラや、市街地を監視する望楼カメラにカメラ制御情報を入力する場合や、撮影画像から該当撮影場所の地図を検索する場合や、地図上にカメラ撮影範囲を示すマークを表示する場合及びカメラ撮影映像から特定地域情報を表示出力する場合等に適用される監視カメラ制御装置に関する。

[0002]

【従来の技術】図15及び図16は特開平4-1699 13号公報に示された従来のカメラ制御装置を示す構成 図及び制御アルゴリズムである。図において1は対象物 及びその付近のデジタル地図を表示するモニタ装置、2 はモニタ装置の表示面に設置され地図上の位置を指示さ れたら該当する座標信号を出力するタッチパネル、3は タッチパネルからの座標信号からカメラの指向方向を計 算するための計算器、4はカメラを支えるカメラ雲台、 5はカメラ雲台を制御するカメラ雲台制御装置、6はカ メラ、7はカメラ撮影映像表示用モニタ装置である。

【0003】次に動作について説明する。オペレータがモニタ装置1の表示面に表示されたデジタル地図を見て、表示面を押すことによりカメラを向けたい所望の位置を指定すると、タッチパネル2から座標信号が計算器3に入力される。計算器3は入力座標信号によりカメラ6の指向方向角度との偏差信号をカメラ製台制御装置5へ送る。カメラ製台制御装置5は入力に応じてカメラ製台4を制御しカメラ6を上記指定された位置に向けるように制御する。

[0004]

【発明が解決しようとする課題】従来のカメラ制御装置は以上のように構成されているのでモニタ上に表示された地図情報からカメラの指向方向(パン、チルト)を計算しカメラを制御するのみであった。この方法では常に地図からしかカメラ制御ができないため監視カメラを制御しようとしても先に肉眼で大凡の対象物位置を知る必要があり、モニタ上に表示された地図情報から対象物位置が分らなければカメラ操作ができなかった。また、地

図を表示する際、異なる縮尺地図の利用を考慮していないため、カメラ制御ではズーム機能に伴う地図連動制御ができなかった。このように、撮影画像の拡大比率に関係なく表示地図は一定縮尺であるため撮影対象物及びその付近の地図が見づらかった。また、現状のカメラ指向角度から関係する地図の表示機能を考慮していないため、カメラが地図上でどちらを撮影しているのかが不明となってしまう。また、カメラ撮影範囲や撮影映像内の特定地域の情報も得ることができず、さらに、また地図表示と撮影画像が同一CRT上でなく別々のCRTまた 10 はモニタに表示されるため見づらくなるなどの問題点があった

【0005】本発明は上記のような問題点を解消するためになされたものでカメラ位置が地図上で把握できると共に、カメラレンズのズーム比に合わせて地図の縮尺を可変表示し、1台のCRTモニタ上にカメラ位置を記した地図表示とカメラの撮影映像を同時表示し、カメラ撮影映像を地域情報からCRT上に表示できる装置を得ることを目的としている。

[0006]

【課題を解決するための手段】本発明に係わる地図情報連動カメラ制御装置は、監視カメラと、上配カメラの指向方向(パン、チルト)及びズームレンズのズーム比、フォーカスなどを制御するカメラ雲台制御装置と、コンピュータ画像とカメラ撮影映像とを合成する映像合成装置と、同一表示面上に上配監視カメラの対象物及びその付近の地図及び上記監視カメラの撮影映像を同時表示するCRT装置、地域情報を入力する手段、異なる縮尺の地図情報及び地域情報を入力する手段、異なる縮尺の地図情報及び地域情報を記憶・蓄積・再生する記憶装置、上記監視カメラと上記カメラ雲台制御装置と上記映30像合成装置と上記CRT装置が上記映像合成装置により、合成された上記CRT装置が上記映像合成装置により、合成された合成映像を表示することを特徴とする。

【0007】また、上配CRT装置上に表示された地図上の特定箇所を上記地域情報入力手段で指示することにより上記CRT装置上の指示位置から実際の上記監視カメラの指向方向(パン、チルト)と予め定められた撮影画面の大きさ(ズーム比)で撮影が出来るように上記監視カメラのズーム比やフォーカス値を演算しこれらをカ40メラ制御情報(パン、チルト、ズーム比など)として上記カメラ雲台制御装置に送信し上記監視カメラを制御することを特徴とする。

【0008】また、上記カメラ雲台制御装置から受信したカメラ制御情報 (パン、チルト、ズーム比など)を基に現在撮影されている対象物及びその付近の地図でズーム比に応じた適当な縮尺の地図情報を上記記憶装置から検索し上記CRT装置上に表示することを特徴とする。

【0009】また、上記監視カメラの撮影範囲を示すマークを地図情報上に表示することを特徴とする。

【0010】また、上配CRT装置上に表示された上記監視カメラ撮影映像の特定箇所あるいは地域情報を上記地域情報入力手段にて指示することにより、上配演算制御装置が、指示された地域情報に基づいて、上配配憶装置から関連付けされた地図情報を検索し、検索された地図情報に基づく地図あるいは撮影映像を上配表示装置上に表示することを特徴とする。

【0011】また、指示された箇所の地域情報を上記C RT装置上に表示することを特徴とする。

[0012]

【作用】この発明に係る地図情報連動監視力メラ制御装置は、映像合成装置により地図情報とカメラ撮影映像を合成し、カメラ制御情報(パン、チルト、ズームレンズ比等)を基に地図情報とカメラ撮影映像を1台のCRT装置上に表示する。また、地図上での指示位置に応じてカメラの指向方向、ズームレンズ比を制御する。また、地図表示に際しては配憶手段が配憶された地図情報に基づきズームレンズ比に合わせて最適な縮尺の地図情報を検索して表示する。また、地図上にカメラの撮影範囲を20表示する。また、カメラ撮影映像の特定位置あるいは、住所及び電話番号等の地域情報を入力することにより、指定された場所の地図を表示する。また、地図の表示に加えて特定地域情報を表示する。

[0013]

【実施例】実施例1.以下、本発明の一実施例を図について説明する。図1においては図15の対応する部分には同一符号を付しており、機能的に同程度であるものは説明を省略する。

【0014】図1において、2はCRT装置1上の地図表示やカメラ撮影映像の特定位置を入力する地域情報入力手段であり、本実施例ではマウス、3はカメラ6の制御値を計算したり、カメラ6の現在指向角度やズームレンズ比から該当する地図情報を検索表示したり、特定地域情報の検索表示を行う演算制御装置、6はズームレンズ付きのカメラ、8は異なる縮尺の地図情報データや特定地域情報を蓄積した配憶装置、9は地図情報等のコンピュータ画像とカメラ撮影映像を同一画面上に表示させる映像合成装置である。

【0015】図2は図16に相当するカメラ制御アルゴリズムである。

【0016】図3はカメラの撮影映像から撮影地点の位置を特定する方法を説明する参考図であり、カメラ装置を水平方向から見た図である。

【0017】図4はカメラの撮影映像から撮影地点の位置を特定する方法を説明する参考図であり、カメラ装置を鉛直方向から見た図である。

【0018】図5はカメラの撮影映像から特定地域情報を検索するためのアルゴリズムである。

【0019】また図6、図7、図8、図9は本発明の詳 細を説明する図であり、これらの図において図6はC.R

30

T装置1の基本画面であり、11は表示枠、12は地図 情報の表示枠、13はカメラ撮影映像の表示枠、14は 地域情報の表示枠、15はカメラの制御表示枠、16は 地図表示上のカメラ設置位置、17は地図表示上のカメ ラの撮影範囲を示す境界線、18、29、20は地図表 示またはカメラ撮影映像上でマウス2で指示された位置 を示す。

【0020】次に動作について説明する。カメラ6はカ メラ雲台と一体化して固定設置されており、外部からの 指令により一般に下記のような各種制御が可能となって 10 いる。カメラ水平角度(パン)、カメラ垂直角度(チル **ト)、ズーム等。尚カメラにはその他に焦点、絞り、結** 露防止ヒータ、ワイパー等の制御も可能であるが、本発 明と無関係のためこれらの説明を省略する。

【0021】図2は、この実施例に基づくカメラ制御ア ルゴリズムを示すフローチャートである。この実施例に おいては演算制御装置3はカメラ雲台制御装置5から、 定期的にカメラの状態を入力する。 演算制御装置 3 はカ メラを制御するためにカメラ制御情報(パン、チルト、 ズーム比など)を演算してカメラ雲台制御装置5に送信20 することにより、カメラを制御することが可能である が、カメラ自身及びカメラ袰台制御装置自身がカメラ制 御情報を発生したり、あるいは演算制御装置3から送ら れたカメラ制御情報に基づいて動作するという場合が存 在する。従って、カメラ制御装置3はカメラ雲台制御装 置5から定期的にあるいは任意の時間でカメラ雲台制御 装置からカメラの現在の状態をチェックする。図2に示 したフローチャートは演算制御装置がカメラ雲台制御装 置からカメラの状態を入力するたびに実行されるもので ある。

【0022】先ずS1において、カメラ雲台制御装置5 からカメラの現在の指向方向及びズームレンズ比の数値 を演算制御装置3が入力する。次に演算制御装置3はS 2において、マウス等の地域情報入力手段2を用いてオ ペレーターがCRT装置値に表示された地図上からのカ メラ制御指示があるかどうかをチェックする。 もし、マ ウス等により地図上の特定箇所が指定された場合には、 S3において、指定された特定箇所に基づく制御指示の 値と、S1においてカメラ雲台制御装置5から入力した カメラの現在の指向方向、及びズームレンズ比の偏差数 40 値を演算する。

【0023】次にS4においては、演算制御装置3は、 演算して求められた偏差数値に基づきカメラの指向方向 及びズームレンズ比の移動量をカメラ雲台制御装置5に 送出する。カメラ雲台制御装置5は演算制御装置3から これらのカメラ制御情報を受信し、指定された状態にカ メラを制御する。前述した52において、マウス等から カメラ制御指示がなかった場合には、S5において演算 制御装置3は予め記憶しておいた前回のカメラの指向方 向及びズームレンズ比の数値と今回の数値との変化をチ 50

エックする。前回の数値と今回の数値に変化がある場合 には、S6において、指向方向とズームレンズ比の偏差 数値を演算する。そしてS7において、演算された偏差 数値を基に、記憶装置に記憶された地図情報を検索し、 検索した地図情報から地図をCRT装置に表示する。

【0024】このようにS5からS7のステップを経る ことにより、CRT装置にはカメラが撮影している最新 の映像に関する地図情報が表示されることになる。

【0025】前述したS5において、前回の数値と今回 の数値に変化がない場合には、カメラは同一場所を撮影 していることになるため、S8においてCRT装置の表 示内容はそのままであり、同一地図情報が表示され続け る.

【0026】操作者は演算制御装置3に接続されるマウ ス2とCRT1を使用して操作を行う。図6はCRT装 置1の基本画面であり、各種表示枠はそれに該当する機 能が必要なときに表示されこの表示制御は演算制御装置 3により行われる。

【0027】図7は図6の基本画面に具体的な表示内容 を記した画面である。図7において12は地図情報の表 示枠であり、地図上にはカメラ設置位置16やカメラの 撮影範囲17を示す境界線、これに現在のカメラが撮影 しているビデオ映像が表示された表示枠13が表示され た画面例である。同一画面上に地図情報等のコンピュー 夕画像とビデオ映像を表示する機能は映像合成装置9に て行っている。

【0028】この図においてカメラ設置位置16はカメ ラが固定設置であるため、予め演算制御装置3に登録す ることにより地図上表示を行う。またカメラの撮影範囲 17を示す境界線はカメラのカメラ水平角度(パン)、 カメラ垂直角度(チルト)、ズーム、を示す情報をカメ ラ袰台制御装置5から入力し、これと予め登録されてい るカメラの設置高度値及び表示地図の縮尺から計算し表 示を行う。このカメラの撮影範囲17を示す境界線はコ ンピュータ画像として生成され、映像合成装置9にて他 の地図情報等のコンピュータ画像とともに同一画面上に 表示される。

【0029】図7において操作者は、地図上で現在のカ メラの指向方向とズーム比に応じた地図表示及びカメラ 撮影範囲を示す境界線17及びカメラ撮影映像を同一C RT装置1上に得ることができる。図7は任意地点18 を中心にしたCRT画面例であるため、任意地点18か ら任意地点19にカメラ制御する場合について以下に説 明する。

【0030】図7において、マウス2により地図上の任 意位置19を指示することにより、演算制御装置3で は、マウス2から入力されるCRT座標位置をもとに力 メラの現在指向方向との偏位及び任意位置19の周辺が 把握できるようなカメラズーム比を計算し、これをカメ ラ雲台制御装置に渡しカメラ6及びカメラ雲台4を制御

し任意位置19及びその周辺の撮影映像が得られるようにする。同時にカメラズーム比により適当な縮尺の地図を検索しCRT装置1上に表示させる。また新しく任意地点19に対応したカメラのカメラ水平角度(パン)、カメラ垂直角度(チルト)、ズーム情報及びこれと予め登録されているカメラの設置高度値及び表示地図の縮尺からカメラの撮影範囲17を示す境界線を計算し新しく検索表示した地図上に表示させる。これの処理を行った結果のCRT画面例が図8である。

【0031】図8はカメラの制御表示枠15も同時表示 10 された例である。このカメラの制御表示枠15を利用してカメラ6を地図位置を指示することなく制御することも可能である。例えばカメラの制御表示枠15のパンの「左」をマウス2で指示することにより、演算制御装置3ではカメラ6を左方向に回転させる制御信号をカメラ雲台制御装置5に渡す。その他のカメラ設置位置16やカメラの撮影範囲17を示す境界線は前配に説明した通りである。このとき、カメラの撮影範囲が現在表示中の地図上に表示できなくなれば、記憶装置3から適当な地図情報を検索表示しこの地図上でカメラ設置位置16や20カメラの撮影範囲17を再計算し表示する。

【0032】図9はカメラ撮影映像表示枠13の映像上 の任意地点20を指示することにより、この地点に登録 された地域情報を地域情報の表示枠14に表示した画面 例である。以下この表示機能の詳細を説明する。カメラ 撮影映像表示枠13の任意地点20はCRT装置1上の 座標で演算表示装置3に入力される。演算表示装置では カメラのパン、チルト角、ズームレンズ比から現在表示 され且つマウス2で指定した地点の座標(例えばカメラ 設置位置16を中心にした角度と距離)を図5のアルゴ 30 リズムにより求め、この座標をもとに予め登録してある 特定地域情報を検索しCRT装置1に表示させる。図5 はカメラ設置位置を中心とした角度、距離を求めること により、これを検索キーとして特定地域情報を求めるた めのアルゴリズムであり、カメラ撮影画面の中央点の地 図上での位置を演算後にマウスで指示された位置の角 度、距離を演算する方式を説明している。図3、図4は カメラ撮影画面の中央点の地図上位置を演算するための 参考図であり、カメラの設置高度、パン、チルト角、ズ ームレンズ比で中央点が演算可能であることを示してい 40 る。

【0033】次に図5のフローチャートにもとづいて、 前述した図2のS3におけるマウス等の特定箇所の指示 があった場合に行われる現在の指向方法の偏差数値の演 算方法について説明する。図5のフローチャートは偏差 数値の演算に加えて、特定地域情報を検索する方法につ いても述べており、ここで両者を合わせて説明する。

【0034】図5のS10において予め記憶装置にカメラ設置位置を起点として、距離Lと方位0ごとに特定地域情報を記録しておく。図10は記憶装置に記憶された50

特定地域情報の一例を示す図である。特定地域情報としては、町の名前、山の名前、川の名前、ピルの名前、タワーの名前等の地域情報が記録されており、これらの地域情報が存在する位置を示すために、カメラ設置位置を起点とした距離Lと方位のがそれぞれ記録されている。このように、図10に示す特定地域情報が記録装置に記録された状態で図9に示したように、任意地点20が指示された場合について説明する。

【0035】先ず、S11において、現在のカメラの画 面中央点を演算する。図11はこの動作を示す図であ り、点Bが現在のカメラの中央点であるものと仮定す る。この中央点Bは座標軸上でX1, Y1という座標を 有しているものとする。カメラのパン、チルト角からカ メラの撮影映像画面中央点の地図上での距離 L1と方位 **θ1が中央点を示す値として求められる。次にS12に** おいて、指定された任意地点の座標入力値とカメラ撮影 画面中央点の座標値偏差を演算する。図11において、 点Cをマウスにより指定された任意地点20と仮定す る。この点Cのマウス座標入力値をX2, Y2とする。 従って、マウス座標入力値とカメラ撮影画面中央点の座 **標値はそれぞれX1、Y1及びX2、Y2となり、それ** ぞれの偏差はX1-X2、及びY1-Y2により求めら れる。次にS13において、求めた座標値偏差を基にマ ウス入力された箇所とカメラ撮影画面中央点の地図上で の距離偏差PLを演算する。PLは図11(b)に示す ように、X座標の差の絶対値の2乗とY座標の差の絶対 値の2乗の平方根により求められる。次にS14におい て前述した画像画面中央点の距離L1と方位 θ 1 及び距 離偏差Ρレからマウス入力された箇所のL2と方位θ2 を演算する。次にS15において、求められた任意地点 Cの距離L2および方位θ2を基に図10に示した特定 地域情報を検索する。検索する場合には、距離L2及び 方位 6 2 に最も近い値を持つ特定地域情報が検索され、 CRT装置に表示される。例えば、図11における距離 L2及び方位 θ 2が図10における距離LA及び方位 θ Aに最も近いことが判定された場合には、図9の14に 示すように、特定地域情報として○○町付近、△△山と いう特定地域情報が表示される。

【0036】実施例2.次に、図12に他の実施例の構成を示す。図12に示される実施例は地域情報入力手段に関して図1で示したマウスの代替としてキーボードを付加したものである。キーボードからはCRT装置1上の特定位置をカーソルを移動させることで指示可能である。また地域情報例えば住所や電話番号等の文字データを演算制御装置3に入力することが可能である。実施例1では、カーソル座標位置を入力する場合を示したが、住所や電話番号等のデータからカメラの指向方向やズームを制御させることも可能である。

【0037】図13はこの実施例による地域情報の一例を示す図である。図13においては、特定地域情報とし

て住所、電話番号、及び氏名を用いる場合を示してい る。例えば、キーボードから住所を入力した場合には、 その住所に該当する距離Lと方位 θ が検索される。同様 に電話番号によっても、距離Lと方位θが検索出来る。 更に、氏名を用いても距離Lと方位θを検索することが できる。

【0038】又図14は地域情報の他の例を示す図であ り、特定地域情報として電柱番号を用いる場合を示して いる。例えば、電柱番号1を指定することにより、その **電柱が存在している距離しと方位θを検索することが可 10 視力メラ制御装置のブロック図である。** 能である。また、前述した実施例で示した図10のよう に、特定地域情報として町の名前を用いてもかまわな い。あるいは特定地域情報としてビルの名前、山の名前 等を用いるようにしてもかまわない。

[0039]

【発明の効果】以上のように、この発明によれば常に力 メラの撮影位置を把握することが可能で、ズームレンズ 比に応じて詳細な地図の利用が可能で、また映像上の特 定地名などを把握することが可能であるため対象とする 地図に不案内の人やカメラ操作に不慣れな人でも効果的 20 に監視カメラを利用できる等の効果がある。

【図面の簡単な説明】

【図1】この発明の一実施例による地図情報連動監視力 メラ制御装置のブロック図である。

【図2】この発明の一実施例による監視カメラの制御ア ルゴリズムを示す図である。

【図3】この発明の一実施例による監視カメラの撮影映 像から撮影地点の位置を特定する方法を説明する参考図 であり、カメラ装置を水平方向から見た図である。

【図4】この発明の一実施例による監視カメラの撮影映 30 像から撮影地点の位置を特定する方法を説明する参考図 であり、カメラ装置を鉛直方向から見た図である。

【図5】この発明の一実施例による監視カメラの撮影映 像から特定地域情報を検索するためのアルゴリズムを示 す図である。

【図6】この発明の一実施例によるCRTの基本画面図

【図7】この発明の一実施例によるCRTの画面例を示 す図である。

【図8】この発明の一実施例によるCRTの画面例を示 す図である。

【図9】この発明の一実施例によるCRTの画面例を示 す図である。

【図10】この発明の一実施例による特定地域情報の一 例を示す図である。

【図11】この発明の一実施例による特定地域情報を検 索する動作を説明するための図である。

【図12】この発明の他の実施例による地図情報連動監

【図13】この発明の他の実施例による特定地域情報を 示す図である。

【図14】この発明の他の実施例による特定地域情報を 示す図である。

【図15】従来の地図情報連動監視カメラ制御装置のブ ロック図である。

【図16】従来の地図情報連動監視カメラ制御装置の制 御アルゴリズムを示す図である。

【符号の説明】

- 1 CRT装置
- マウス
- 演算制御装置
- カメラ袰台
- カメラ雲台制御装置
- カメラ 6
- モニタ
- 記憶装置
- 映像合成装置
- 11 表示枠
- 12 地図情報の表示枠
- 13 カメラ撮影映像の表示枠
- 地域情報の表示枠
- カメラ制御表示枠
- カメラ設置位置 16
- 撮影範囲を示す境界線 17
- 18 任意位置
- 19 任意位置
- 20 任意位置

【図1】

- 1 CRT装置
- 2 地域情報入力手段(マウス)
- 3 演算制御裝置
- 4 カメラ雲台

- 5 カメラ雲台制御装置
- 6 カメラ
- 8 記憶装置
- 9 映像合成装置

[図2]

【図5】

[図8]

【図14】

[図9]

【図15】

【図10】

特定地域資程	L	θ
〇〇町付近 △△山	La	θa
OO町付近 ××山	Lb	θb
××町付近 一川	Lc	θс
××町付近 第1ビル	Ld	θd
XX町付近 東タワー	Le	Ø9
	ļ	

【図16】

