Exerice 2

$$f_n(x) = \frac{x}{x+n}$$
• Soit $x \in \mathbb{R}_+$
$$\frac{x}{x+n} \xrightarrow{n \to \infty} 0$$

Donc f_n converge simplement vers la fonction 0

•
$$f_n(x)' = \frac{x+n-x}{(x+n)^2} = \frac{n}{(x+n)^2}$$

Or $n \ge 0$ et $(x+n)^2 \ge 0$ donc $f_n(x)' \ge 0$

$$f_n(0) = \frac{0}{0+n} = 0$$

$$f_n(x) \underset{x \to \infty}{\longrightarrow} = 1$$

x	0 ∞
$f_n(x)'$	+
$f_n(x)$	0

$$||f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{R}_+} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}_+} f_n(x) = 1$$

Donc $||f_n(x) - f(x)||_{\infty} \neq 0$ donc la suite (f_n) ne converge pas uniformement vers 0

Soit
$$a \in \mathbb{R}$$
 on a que $\sup_{x \in [a,\infty[} = f_n(a) = \frac{a}{a+n} \underset{n \to \infty}{\longrightarrow} 0$
Donc on a bien $||f_n(x) - f(x)||_{\infty} = 0$ sur $[a,\infty[$

La suite converge uniformement vers 0 sur $[a, \infty[$