Note Title

23/05/2025

VF1 Se $a_n > 0$ per ogni $n \in \mathbb{N}$ e $\sqrt[n]{a_n} \to \frac{1}{a_n}$, allora di sicuro $\sum a_n$ converge

V criterio raplice

m6 - m6-2

 $\overline{\mathrm{VF2}}\,$ L'equazione $\cosh x = x + 4$ ha almeno una soluzione reale

F lim cost x = -0

VF3 $\forall M \in \mathbb{R} \ \exists K \in \mathbb{R} \ \text{tale che cosh} \ x \leq M \ \text{per ogni} \ x \leq K$

 $= 32^4 = (25)^4 = 2^{20} = 2^{20}$

VF5 La funzione $f(x) = \arctan(x^7)$, vista come $f: \mathbb{R} \to \mathbb{R}$, è iniettiva

VF6 $e^{x^3} = 1 + o(x^3) \text{ per } x \to 0$ F $e^{x^3} = 1 + x^3 + o(x^3) = 1 + x^3 + o(x^5)$

VF7 La funzione $u(t) = e^{3t}$ è una soluzione dell'equazione differenziale $u' = u^2 + e^{3t}$ $3e^{3t} = e^{9t} + e^{3t}$ VF8 Si ha che $(n + 50)^{500} \cdot 2^{-n} < 1$ definitivamente

 $\underbrace{\overline{MC1}} \int_{0}^{0} \sqrt{x+3} \, dx = \dots \quad \left[\frac{2}{3} (x+3)^{\frac{3}{2}} \right]^{0} = \frac{2}{3} 3^{\frac{3}{2}} = \frac{2}{2} \cdot 2\sqrt{3}$

(A) $\frac{2}{3^{1/3}}$ (B) $2\sqrt{3}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $+\infty$ (E) $-2\sqrt{3}$

MC2 La serie $\sum_{n=0}^{\infty} \frac{n^{\alpha} - 2000}{\sqrt{n^{12} + 3}}$ converge se e solo se ...

(B) $\alpha < 12$ (C) $\alpha < 11$ (D) $\alpha < 6$ (E) $\alpha \le 11$

 $\underbrace{\text{MC3}}_{x \to +\infty} \lim_{e^x + 8 \log x} \frac{e^x + 7 \log x}{e^x + 8 \log x} = \dots \qquad \sim \underbrace{\frac{e^x}{e^x}}_{\text{ex}} \longrightarrow 4$

(A) 1 (B) $+\infty$ (C) $\frac{7}{8}$ (D) 0 (E) $\frac{1}{8}$

 $f'(x) = \cos(\cos x) \cdot (-\sin x)$ $\boxed{\text{MC4}}$ Se $f(x) = \sin(\cos x)$, allora $f'\left(\frac{\pi}{2}\right) = \dots$

(C) $-\cos 1$ (D) $\cos 1$ (A) 0 (B) 1

MC5 | Stabilire per quale delle seguenti funzioni f(x) si ha che $f(x) \ge f(0)$ per ogni $x \in \mathbb{R}$.

(C) e^{x^3} (D) $\arctan x$

- (A) -19 (B) 18 (C) 0 (D) $-\infty$

- (E) 1

MC4 Consideriamo l'insieme $A = \{x \in \mathbb{R} : x^2 < 17\}.$

OGNOM

Determinare quale delle seguenti affermazioni sull'insieme A è vera.

- (A) $\inf A = \min A$
- (B) $\inf A = -\sqrt{17}$
- (C) $\min A = 0$
- (D) 10 ∈ A

(E) $\sup A = \max A$

 $\boxed{\text{MC5}} \int_{0}^{1} |x| \, dx = \dots$

- (A) 2 (B) 3 (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$ (E) $\frac{5}{2}$

MC6 L'integrale $\int_{0}^{2} \frac{\sin(x^{7})}{x^{\alpha}} dx$ converge se e solo se ...

- (A) $\alpha > 8$ (B) $\alpha < 1$ (C) $\alpha > 1$ (D) $\alpha < 8$
- (E) $\alpha < 7$

 $\underbrace{\text{MC7}}_{x \to +\infty} \lim_{x \to +\infty} x \sin \frac{4}{x} = \dots \qquad \times \cdot \frac{4}{\times} \longrightarrow 4$

- (A) 0 (B) $\frac{1}{4}$ (C) $+\infty$ (D) non esiste

MC8 Stabilire quali delle seguenti funzioni sono limitate inferioremente su tutto ℝ:

- $f(x) = x^3 \arctan(x^2),$ $g(x) = x^6 \cos(x^7),$ $h(x) = x^3 + \arctan(x^4).$

- (A) Solo h
- (B) Solo $g \in h$ (C) Solo g (D) Nessuna (E) Solo f