

Tema 2. Biología Celular

2.2 Ultraestructura de las células

Germán Tenorio Biología NS-Diploma BI

Curso 2016-2018

Idea Fundamental: Los eucariotas poseen una estructura celular mucho más compleja que los procariotas.

EXCHANGE

¿Qué vamos a aprender?

- Importancia del desarrollo del microscopio electrónico.
- Ultraestructura de la célula procarita.
- Los distintos componentes de la célula procariota llevan a cabo diferentes funciones.
- Los distintos componentes de la célula eucariota llevan a cabo diferentes funciones.
- Las células eucariotas animales son diferentes a las vegetales.

Las células que están especializadas en funciones concretas, pueden ser reconocidas al microscopio.

EXHKXXXXXX

NATURALEZA CIENCIAS: Mejora en equipos y aparatos conllevan avances científicos

- Tanto las células procariotas como las eucariotas tienene un tamaño microscópico, por lo que se hace necesario el uso del microscopio para su observación.
- El microscopio óptico no puede producir imágenes claras de estructuras inferiores a 1 μm, que son la mayoría de los componentes celulares, por lo que la invención de los microscopios electrónicos condujo a una mejor comprensión de la estructura celular.
- El microscopio electrónico fue inventado en Alemania a comienzos del siglo XX, usándose en la investigación científica a mediados de siglo.

(a) Radiolarian under light microscope

(b) Radiolarian under electron microscope

El microscpio electrónico permite observar estructuras de hasta 0.001 μm, es decir, mil veces más pequeñas que con el óptico.

EXXXXXXXX

NATURALEZA CIENCIAS: Mejora en equipos y aparatos conllevan avances científicos

El microscopio electrónico permitió demostrar que la estructura celular era mucho más compleja de lo que en un principio se había pensado, permitiendo distinguir la crestas mitocondriales y las granas en las mitocondrias y cloroplastos, respectivamente, no visibles al micrioscopio

óptico.

El microscopio electrónico permitió revelar la ultraestructura de las células, lo cual queda ilustrado con el descurbimiento de los ribosomas, lisosomas y retículo endoplásmico a partir del desarrollo del microscopio electrónico.

KYYHYKKIK)

Resolución de los microscopios

- El ojo humano no puede distinguir dos objetos como separados si poseen un tamaño inferior a 0.1 mm (100 μm). Para ello, deben usar el microscopio.
- Se denomina **resolución** a la capacidad delo ojo de distinguir dos objetos como seprados. La máxima resolución del microscopio óptico es de 0.2 um, dado que está limitadno por la longitud de onda de la luz blanca.
- Los microscopios electrónicos tienen una resolución mucho mayor que los microscopios ópticos, dado que el haz de elctrones tiene una longitud de onda mucho menor que la del visible (400-700nm).
- Su resolución es de 0.001 μm, permitiendo visualizar la ultraestructura de las células y a los virus.

EXHYXXXXXX

Ultrastructura de célula procariota

- Los procariotas presentan una estructura celular simple, sin compartimentacion.
- La ultraestructura de las bacterias sólo es visible al microscopio electrónico, distinguiéndose hacia el interior:
 - **Pared celular**: Responsable de la rigidez de la célula, la protege de una rotura osmótica en medios acuosos.
 - **Membrana plasmática**: Al igual que la de células eucariotas, está formada por una bicapa lipídica, pero a diferencia de las eucariotas, carece de esteroles.

Ultraestructura de célula procariota

- **Invaginaciones de la membrana**: Son zonas donde la membrana se repliega, aumentando su superficie, lo que permite una mayor actividad metabólica. Por ejemplo, en las bacterias fotosintéticas, esos repliegues contienen los enzimas fotosintéticos. Las principales invaginaciones son:
 - * **Pili**: Apéndices huecos semejantes a las fimbrias, pero más anchos y largos que intervienen en el intercambio de ADN durante la conjugación.

EXHYXXXXXXX

Ultraestructura de la célula procariota

* **Flagelos**: Apéndice largos y finos que realizan un movimiento de rotación para permitir el desplazamiento de la bacteria por el medio. Están formados por muchas unidades de la proteína **flagelina**, que en la base se anclan al citoplasma mediante un ensanchamiento llamado corpúsculo basal.

Filament

Hook

Peptidoglycan layer
Periplasmic space
Plasma membrane
(b)

* **Fimbrias**: Filamentos proteicos más cortos y numerosos que los flagelos y que no intervienen en el movimiento, sino que favorecen la adherencia a otras células o superficies.

EXHYXXXXXX

Ultraestructura de la célula procariota

- **Citoplasma**: Matriz compuesta de agua (70%) y proteínas en la que ocurren la mayor parte de las reacciones vitales. Carece de orgánulos limitados por mebrana, pero contiene:

- * **Nucleoide**: Zona que contiene el ADN bacteriano, constituido por una molécula de ácido nucleico de doble cadena desnudo (no asociado a proteínas histonas).
- * **Plásmidos**: ADN circular portador de genes no esenciales, como la resistencia a antibióticos. Se replican independientemente del cromosoma bacteriano. No todas las bacterias lo poseen.

WHIKKELK)

HABILIDAD: Dibujo ultraestructura procariotas según micrografía electrónica

- * **Ribosomas 70S**: Pequeños orgánulos formados por dos subunidades (30S + 50S) responsables de la síntesis de proteínas.
- * **Inclusiones**: Gran variedad de gránulos que son depósitos de sustancias de reserva, como polisacáridos o lípidos.

HABILIDAD: Dibujo ultraestructura procariotas según micrografía electrónica

APLICACIÓN: Reproducción asexual en procariotas

Chromosome
 replication begins.
 Soon thereafter,
 one copy of the origin
 moves rapidly toward

the other end of the cell.

Replication continues. One copy of the origin is now at each end of the cell.

3 Replication finishes. The plasma membrane grows inward, and new cell wall is deposited.

Two daughter cells result.

Los procariotas se dividen por bipartición o fisión binaria, una vez ocurrida la replicación del ADN.

La membrana plasmática se invagina y la pared bacteriana crece hasta formar un tabique transversal que divide a las dos bacterias.

En condiciones normales pueden dividirse cada 20 minutos, lo que les permite adaptarse rápidamente a cambios en el ambiente.

Ultraestructura de la célula eucariota

- Excepto el reino Moneras (bacterias y arqueobacterias), el resto de los seres vivos (los demás reinos) presentan una organización celular eucariota.
- Los eucariotas presentan una estructura celular compartimentada. Varias son las ventajas de esta compartimentalización:
 - Las enzimas y los sustratos para un proceso en particular pueden estar mucho más concentrados que si estuvieran esparcidos por todo el citoplasma.
 - Las condiciones ideales para un determinado proceso, como el pH, pueden ser mantenidas constantes y diferentes.

 Las sustancias que puedan causar daño a la célula, como las enzimas hidrolíticas de los lisosomas, están controladas dentro de un orgánulo rodeado de una membrana.

Ultraestructura de la célula eucariota

- Hay dos tipos principales de células eucariotas: la célula animal y la vegetal, pero ambos se caracterizan por poseer:
 - **Citoplasma celular**, que contiene los orgánulos, enzimas y solutos en disolución, y que está formado por un entramado de filamentos proteicos (citoesqueleto).
 - Complejo sistema interno de membranas constituido por el retículo endoplásmico, conectado con la doble membrana nuclear, y el complejo de Golgi. Otros orgánulos membranosos son las vacuolas, los lisosomas, las mitocondrias y los cloroplastos.
 - **Núcleo** delimitado por una doble membrana con ADN en su interior asociado a proteínas histonas.

Ultraestructura de la célula eucariota

A continuación se recogen los principales orgánulos eucariotas así como su principal función.

Orgánulo	Función	Célula
NUCLEO	Dirige la actividad celular, ya que contiene el material genético (ADN), que dirige el desarrollo y funcionamiento de la célula.	Animal y vegetal
MEMBRANA CELULAR	Controla el contenido químico de la célula, manteniendo el medio interno separado del externo.	Animal y vegetal
MITOCONDRIA	La principal función de las mitocondrias es la oxidación de metabolitos para la obtención de ATP.	Animal y vegetal
RETICULO ENDOPLASMICO	La síntesis de lípidos de membrana (liso) y de proteínas que tienen que trasladarse a la membrana plasmática o ser secretadas.	Animal y vegetal
CLOROPLASTO	Llevar a cabo fotosíntesis y proveer un espacio para el almacenar almidón.	Vegetal
APARATO DE GOLGI	Transporte, maduración, acumulación y secreción de proteínas procedentes del R.E.	Animal y vegetal
CENTRIOLO	Es la formación y organización de los filamentos que constituyen el huso acromático cuando ocurre la división del núcleo celular.	Animal
VACUOLAS	Eliminar el exceso de agua. Desintegración de macromoléculas y el reciclaje de sus componentes dentro de la célula.	Animal y vegetal
LISOSOMAS	Eliminación de sustancias. Participación en los procesos de endocitosis en el interior de la célula.	Animal
PARED CELULAR	Regular el volumen celular y determinar la forma celular.	Vegetal
CITOPLASMA	Conserva en flotación a los orgánulos celulares y ayuda en sus movimientos.	Animal y vegetal
RIBOSOMAS	Elabora proteínas de la información leída del ARN en el proceso de traducción.	Animal y vegetal
CITOESQUELETO	Estabilizar la estructura de la célula, organizar el citoplasma con todos sus organelos y producir movimiento.	Animal y vegetal

とどれたたたまれ

HABILIDAD: Dibujo ultraestructura eucariotas según micrografía electrónica

HABILIDAD: Dibujo ultraestructura eucariotas según micrografía electrónica

EVERTERIA

HABILIDAD: Dibujo ultraestructura eucariotas según micrografía electrónica

XIMM NAND

Comparación célula procariota y eucariota

Característica	Célula procariota	Célula eucariota
Núcleo	No	Sí (membrana nuclear doble)
Organismos	Moneras (bacterias y arqueobacterias)	Protoctistas, hongos, vegetales y animales
Tamaño célula	1-10 μm	10-100 μm
ADN	Único circular no asociado a histonas + plásmidos	Lineal en varias moléculas asociado a histonas y organizado en cromosomas
ARN y proteínas	Ambos sintetizados en citoplasma	ARN sintetizado en núcleo y proteínas en citoplasma
Orgánulos membranosos	No	Sí
Ribosomas	70S (50S + 30S)	80S (60S + 40S)
Pared celular	Sí (con peptidoglucano)	Sí en algunos protistas, en vegetales (celulosa) y hongos (quitina)
División celular	Bipartición	Mitosis
Organización celular	unicelular	Principalmente pluricelular

Animación1

Célula eucariota animal

EXHARRIA

Célula eucariota vegetal

EXTEXXXXXXX

Comparación célula animal y vegetal

	Célula vegetal	Célula animal
	Morfología rectangular fija	Morfología redondeada variable
	Presenta cloroplastos	Sin cloroplastos
	Pared celular de celulosa	Sin pared celular
	Sin centriolos	Presenta centriolos
	Citocinesis con pared celular formada por Golgi	Citocinesis con surco de división por estrangulamiento
	Sin colesterol en su membrana	Presentan colesterol en su membrana
0	Sistema vacuolar muy desarrollado (una gran vacuola central)	Sistema vacuolar poco desarrollado
	Sin cilios ni flagelos	Pueden tener cilios y flagelos

たとうしてんなん人

APLICACIÓN: Estructura y función de los orgánulos de células pancreáticas y del mesófilo en empalizada

La estructura y función de los orgánulos se pondrá de manifiesto usando como ejemplo los de las células de glándulas exocrinas del páncreas y de las células del mésofilo en empalizada de las hojas.

 En el páncreas existen dos tipos de células glandulares, las endocrinas, que secretan hormonas a la sangre, y las exocrinas, que secretan enzimas

digestivas al interior del tubo digestivo.

enzimas Las son proteínas que deben sintetizarse v liberarse celular exterior atravesando membrana, por lo que las células exocrinas deben poseer todos los orgánulos necesarios, el núcleo, como son mitocondria, RER, Golgi, vesículas y membrana plasmática. IMAGEN:intranet.tdmu.edu.ua

APLICACIÓN: Estructura y función de los orgánulos de células pancreáticas y del mesófilo en empalizada

La fotosíntesis se realiza en las hojas, pero no todas las células de la hoja la realizan. La fotosíntesis va a ser realizada mayoritariamente por las células del mesófilo en empalizada.

EVYHYXXXXXX

HABILIDAD: Función de células especializadas

cada una?

Se pueden interpretar micrografías electrónicas para identificar orgánulos y deducir la función de células especializadas.

Las siguientes células están especializadas en la fabricación de proteínas, la obtención de energía, realización de la fotosíntesis y en la secreción. ¿Cuál es

