

#### Walchand College of Engineering, Sangli

(An Government Aided Institute)



## **Department of Information Technology**

# Gravitational Search Algorithm for Optimization of Engineering Problem







#### Walchand College of Engineering, Sangli

(An Government Aided Institute)



## **Department of Information Technology**

Miss. Shrutika Patil(22610015) Miss. Vaishnavi Patil (22610049) Mr. Vighnesh More (22610086)

Under the Guidance of Mrs. M.S.Mane





# **Agenda**



- > Introduction
- Objectives
- > Flow Chart
- > Pseudo code
- > Two step
- > Problem Statement
- Result and Graphs
- > Conclusion
- > References

## Introduction



The Gravitational Search Algorithm (GSA) is an optimization method inspired by gravity, where solutions are treated as masses that attract each other based on their weight and distance. Heavier solutions exert stronger forces, guiding the search towards optimal solutions. GSA balances exploration and exploitation, making it effective for solving complex global optimization problems.

## **Objectives**



- > To Study Gravitational Search Algorithms for optimization.
- To implement the algorithm for solving optimization problems.
- To compare the performance of the algorithms with other algorithms.

## **Flowchart:**





## **GSA Formulae:**



1) Calculate the mass of each agent: For each agent i, calculate its mass:

$$M_{ai} = M_{pi} = M_{ii} = M_i, \quad i = 1, 2, \dots, N,$$
  $m_i(t) = \frac{fit_i(t) - worst(t)}{best(t) - worst(t)},$   $M_i(t) = \frac{m_i(t)}{\sum_{j=1}^{N} m_j(t)},$ 

2) Update the gravitational constant G(t):

$$G(t) = G(t_0) imes \left(\frac{t_0}{t}\right)^{\beta}, \quad \beta < 1,$$

## **GSA Formulae:**



3) Calculate total force acting on each agent: For each agent i, calculate the force in each dimension d:

$$F_{ij}^d(t) = G(t) \frac{M_{pi}(t) \times M_{aj}(t)}{R_{ij}(t) + \varepsilon} (x_j^d(t) - x_i^d(t)),$$

4) Calculate acceleration and velocity of each agent: For each agent i, calculate acceleration in each dimension d:

$$a_i^d(t) = \frac{F_i^d(t)}{M_{ii}(t)},$$

## Pseudo code (GSA):



#### **1.Search Space Identification:**

Define the bounds for the search space: lower bound (lb) and upper bound (ub). MaxIter (maximum iterations), PopSize (population size), and problem dimensions.

#### 2.Randomized Initialization:

Initialize a population of solutions Xi randomly within the search space [lb, ub]. Initialize the velocity of each agent as zero.

#### **3.Fitness Evaluation of Agents:**

For each solution Xi in the population:

Evaluate the fitness of the solution using the objective function.

#### 4. Update Parameters (G(t), best(t), worst(t), and Mi(t)):

Update gravitational constant G(t) based on the current iteration t.

Identify the best solution best(t) and the worst solution worst(t) based on fitness values. Calculate the mass Mi(t) for each agent using their fitness relative to the best and worst solutions.

## Pseudo code (GSA):



#### **5.**Calculation of Total Force:

For each solution Xi, calculate the total gravitational force acting on it due to all other solutions Xj in the population.

#### **6.**Calculation of Acceleration and Velocity:

Calculate the acceleration of each solution based on the total force acting on it.

Update the velocity of each solution based on the calculated acceleration.

#### 7. Updating Agents' Position:

Update the position of each agent Xi using its velocity.

Ensure that the new position remains within the search space bounds [lb, ub].

#### 8. Repeat Steps 3 to 7:

Continue updating fitness, force, acceleration, velocity, and position until the stop criteria (e.g., MaxIter iterations) is reached.

#### **9.End**:

Output the best solution found during the optimization process.

## **Problem Statements:**



#### **Sphere Function:**

Used as a benchmark problem in optimization.

$$Min F(X) = \sum_{i=0}^{n} Xi^2$$

#### **Gear Train Optimization:**

Designing a gear train to achieve a specific gear ratio while minimizing the overall size, weight, or cost of the gears.

Minimize 
$$f(x) = \left[\frac{1}{6.931} - \frac{x_1 x_2}{x_3 x_4}\right]^2$$

#### **Pressure Vessel Design:**

Designing a cylindrical pressure vessel with hemispherical ends to minimize the cost. This includes material, welding and forming costs subject to various constraints.

$$Min f(x) = 0.6224 x_1 x_2 x_3 + 1.7781x_3 x_1^2 + 3.1661x_4^2 x_2 + 19.84x_1^2 x_4$$

## **Problem 1:Sphere Function**



Objective Function:

$$Min F(X) = \sum_{i=0}^{n} Xi^{2}$$
Range -100 \le Xi < 100

Consider the population

| X <sub>1</sub> | X <sub>2</sub> | F(x)      |
|----------------|----------------|-----------|
| 62.8907        | 25.6857        | 4614.9951 |
| 62.5171        | -96.4914       | 131218.68 |
| -89.1315       | 71.0286        | 12989.49  |
| -29.2615       | -89.49         | 8864.713  |
| 22.0788        | 0.4925         | 487.7159  |

# Two step for GSA: Sphere function



## Initial population:

| x1       | X2       | F(X)      |
|----------|----------|-----------|
| 62.8907  | 25.6857  | 4614.9951 |
| 62.5171  | -96.4914 | 131218.68 |
| -89.1315 | 71.0286  | 12989.49  |
| -29.2615 | -89.49   | 8864.713  |
| 22.0788  | 0.4925   | 487.7159  |
|          |          |           |

#### Iteration I:

| X1      | X2       | F(X)       |
|---------|----------|------------|
| 61.789  | 24.859   | 4435.530   |
| 62.5171 | -96.4914 | 131218.680 |
| -88.221 | 70.311   | 12726.598  |
| -28.499 | -88.762  | 8690.7130  |
| 22.070  | 0.490    | 487.3122   |

#### Iteration II:

| X1      | X2       | F(X)       |  |
|---------|----------|------------|--|
| 60.978  | 23.902   | 4289.622   |  |
| 62.5171 | -96.4914 | 131218.680 |  |
| -87.450 | 69.599   | 12491.523  |  |
| -27.789 | -88.015  | 8519.369   |  |
| 21.961  | 0.483    | 482.518    |  |

# **Result : Sphere Function**



| Iteration No. | X1       | X2        | Best fitness |
|---------------|----------|-----------|--------------|
| 1.            | 13.02207 | 25.6742   | 828.7427     |
| 2.            | 5.09018  | 8.53178   | 98.70134     |
| 3.            | -3.09026 | 4.255626  | 27.660102    |
| 4.            | 0.19393  | 3.67610   | 13.55133     |
| 5.            | -1.1724  | -1.135607 | 2.664153     |
| 6.            | -1.1724  | -1.135607 | 2.664153     |
| 7.            | -1.1724  | -1.135607 | 2.664153     |
| 8.            | -1.1724  | -1.135607 | 2.664153     |
| 9.            | -1.1724  | -1.135607 | 2.664153     |
| 10.           | -1.1724  | -1.135607 | 2.664153     |

# **Graph: Sphere Function**





## **Problem 2:Gear Train**



Gear Train



Minimize 
$$f(x) = \left[\frac{1}{6.931} - \frac{x_1 x_2}{x_3 x_4}\right]^2$$

Four dimensional problems and all four are strictly integers. Subject to  $12 \le x_1, x_2, x_3, x_4 \le 60$ , all  $x_i$ 's are integers

Where x1=Ta, x2=Tb, x3=Tc, x4=Td

## **Results: Gear Train**



| Iteration No. | X1 | <b>X2</b> | <b>X</b> 3 | X4 | Best<br>Fitness |
|---------------|----|-----------|------------|----|-----------------|
| 1.            | 56 | 31        | 14         | 50 | 3.681E-04       |
| 2.            | 56 | 31        | 14         | 50 | 3.681E-04       |
| 3.            | 51 | 14        | 32         | 56 | 1.822E-04       |
| 4.            | 40 | 19        | 12         | 40 | 2.767E-05       |
| 5.            | 60 | 12        | 27         | 38 | 1.946E-06       |
| 6.            | 60 | 12        | 27         | 38 | 1.946E-06       |
| 7.            | 60 | 12        | 27         | 38 | 1.946E-06       |
| 8.            | 60 | 12        | 27         | 38 | 1.946E-06       |
| 9.            | 60 | 12        | 27         | 38 | 1.946E-06       |
| 10.           | 60 | 12        | 27         | 38 | 1.946E-06       |

# **Graph: Gear Train**





## **Problem 3: Pressure Vessel**



The problem is to minimize the cost of designing a pressure vessel by optimizing its dimensions



$$f(x)=0.6224 x_1x_3x_4 + 1.7781 x_3^2x_2 + 3.1661 x_1^2x_4 + 19.84 x_1^2x_3$$

$$0 \leq x_1 \leq 100$$

$$0 \le x_2 \le 100$$

$$10 \le x_3 \le 200$$

$$10 \le x_4 \le 200$$

## **Problem: Pressure Vessel**



## **Pressure Vessel Design Constraints:**

## •Radius-Shell Thickness (g1):

$$g1 = -x1 + 0.0193 \cdot x3 \le 0$$

Ensures the radius is proportionate to the shell thickness.

## •Length-Shell Thickness (g2):

$$g2 = -x2 + 0.00954 \cdot x3 \le 0$$

Controls the vessel's length relative to shell thickness.

#### •Material Volume (g3):

$$g3=1296000-(4/3)\cdot\pi\cdot x-\pi\cdot x3^2\cdot x4\leq 0$$

Limits the total material volume for cost efficiency.

#### •Head Thickness (g4):

$$g4=x4-240 \le 0g$$

Caps the maximum head thickness.

# **Results : Pressure Vessel(GSA)**



| Iteration No. | X1     | X2      | X3      | x4       | <b>Best Fitness</b> |
|---------------|--------|---------|---------|----------|---------------------|
| 1.            | 5.9900 | 11.2705 | 88.2955 | 122.186  | 273194.59           |
| 2.            | 5.9900 | 11.2705 | 88.2955 | 122.186  | 273194.59           |
| 3.            | 5.9900 | 11.2705 | 88.2955 | 122.186  | 273194.59           |
| 4.            | 5.9900 | 11.2705 | 88.2955 | 122.186  | 273194.59           |
| 5.            | 5.9900 | 11.2705 | 88.2955 | 122.186  | 273194.59           |
| 6.            | 3.2720 | 14.6954 | 83.6849 | 98.7694  | 220744.02           |
| 7.            | 1.8207 | 15.6855 | 83.9451 | 98.7043  | 212485.58           |
| 8.            | 5.2059 | 0.6243  | 55.5541 | 109.3241 | 62357.25            |
| 9.            | 5.2059 | 0.6243  | 55.5541 | 109.3241 | 62357.25            |
| 10.           | 5.2059 | 0.6243  | 55.5541 | 109.3241 | 62357.25            |

# **Graph:Pressure Vessel**





# **Comparison Study: Sphere Function**



| Iteration No. | GSA      | PSO      | CFO      |
|---------------|----------|----------|----------|
| 1.            | 487.7159 | 178.7396 | 487.7159 |
| 2.            | 487.7159 | 178.7396 | 13.60771 |
| 3.            | 156.087  | 172.2776 | 13.60771 |
| 4.            | 156.087  | 53.0352  | 13.60771 |
| 5.            | 109.8577 | 53.0352  | 13.60771 |
| 6.            | 16.1193  | 25.0171  | 13.60771 |
| 7.            | 3.4749   | 25.0171  | 13.60771 |
| 8.            | 3.4749   | 1.5974   | 13.60771 |
| 9.            | 3.4749   | 1.5974   | 13.60771 |
| 10.           | 3.4749   | 1.5974   | 13.60771 |

# **Comparison Graph of Sphere Function:**





# **Comparison Study: Gear Train**



| Iteration No. | GSA     | PSO          | CFO     |
|---------------|---------|--------------|---------|
| 1.            | 0.07012 | 0.06634      | 0.03875 |
| 2.            | 0.07012 | 0.06161      | 0.03875 |
| 3.            | 0.05839 | 0.05087      | 0.03774 |
| 4.            | 0.00752 | 0.01851      | 0.03638 |
| 5.            | 0.00310 | 2.96244 e-05 | 0.03638 |
| 6.            | 0.00310 | 3.22279 e-06 | 0.03638 |
| 7.            | 0.00066 | 3.22279 e-06 | 0.03638 |
| 8.            | 1.38114 | 3.22279 e-06 | 0.03638 |
| 9.            | 1.38114 | 3.22279 e-06 | 0.03638 |
| 10.           | 1.38114 | 3.10691      | 0.03638 |

# **Comparison Graph of Gear Train:**





# **Comparison Study: Pressure Vessel**



| Iteration No. | GSA        | PSO           | CFO                                     |
|---------------|------------|---------------|-----------------------------------------|
| 1.            | 302474.304 | 10000000000.0 | 100000000000000000000000000000000000000 |
| 2.            | 302474.304 | 10000000000.0 | 100000000000000000000000000000000000000 |
| 3.            | 302474.304 | 10000000000.0 | 100000000000000000000000000000000000000 |
| 4.            | 302474.304 | 10000000000.0 | 100000000000000000000000000000000000000 |
| 5.            | 302474.304 | 10000000000.0 | 100000000000000000000000000000000000000 |
| 6.            | 302474.304 | 10000000000.0 | 100000000000000000000000000000000000000 |
| 7.            | 302474.304 | 453646.94     | 100000000000000000000000000000000000000 |
| 8.            | 302474.304 | 376187.11     | 100000000000000000000000000000000000000 |
| 9.            | 302474.304 | 260031.15     | 100000000000000000000000000000000000000 |
| 10.           | 302474.304 | 260031.15     | 100000000000000000000000000000000000000 |

## **Comparison Graph of Pressure Vessel:**





# **Conclusion of comparative study:**



- 1. CFO converges the fastest, reaching optimal fitness by the first iteration and remaining stable throughout.
- 2. PSO converges more slowly, stabilizing around the fifth iteration.
- 3. GSA starts with the highest fitness value and converges at a similar rate to PSO, stabilizing around the fourth iteration.
- 4. All three algorithms eventually achieve similar optimal fitness values.
- 5. CFO is the most efficient in terms of speed, outperforming both PSO and GSA in convergence time.

## **References:**



- ➤ [1] Badr, A. Fahmy, A proof of convergence for ant algorithms, Information Sciences 160 (2004) 267–279.
- ➤ [2] Z. Baojiang, L. Shiyong, Ant colony optimization algorithm and its application to neuro-fuzzy controller design, Journal of Systems Engineering and Electronics 18 (2007) 603–610.
- ➤ [3] F.V.D. Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences 176 (2006) 937–971.



# Thank You