LAB 1

Write a python program to import and export data using Pandas library functions.

Importing data

Algorithm(Observation book)

	donsien tree
1)	aboute a lightion Brogram to import and export data using landas Library Eunzhons
	data using landas Library Eunzlions
	landas Read CSV() Tulored Inforting data
	I all examples are in same class patric
	import fandas as pd tod still the
	" I do lot of alterbuted is end by notice
	of = pd. read csv ("lath to file")
	df. head (5)
	cheex the hex alleshorte A to Aplif on

Code

```
import pandas as pd
df=pd.read_csv("/content/austinHousingData.csv")
df.head(5)
```

Output

	zpid	city	streetAddress	zipcode	description	latitude	longitude	propertyTaxRate	garageSpaces	hasAssociation	•••
0	111373431	pflugerville	14424 Lake Victor Dr	78660	14424 Lake Victor Dr, Pflugerville, TX 78660 i	30.430632	-97.663078	1.98	2	True	***
1	120900430	pflugerville	1104 Strickling Dr	78660	Absolutely GORGEOUS 4 Bedroom home with 2 full	30.432673	-97.661697	1.98	2	True	
2	2084491383	pflugerville	1408 Fort Dessau Rd	78660	Under construction - estimated completion in A	30.409748	-97.639771	1.98	0	True	
3	120901374	pflugerville	1025 Strickling Dr	78660	Absolutely darling one story home in charming	30.432112	-97.661659	1.98	2	True	
4	60134862	pflugerville	15005 Donna Jane Loop	78660	Brimming with appeal & warm livability! Sleek	30.437368	-97.656860	1.98	0	True	

5 rows × 47 columns

Exporting data

Algorithm(Observation book)

a structured god privide a days
data
dataset disk" and obba
data set lik"
"Sepal length in om"
"Retal_length_in_cm"
"letal-wedit -in cm"
"Etal_length_in_cm" "letal_whit_in_cm" "letal_whit_in cm"
- 203
a head (5)
al. head (5) of boo mo
to as ("cleaned vris data csv")

Code

Output:

	sepal_length_in_cm	sepal_width_in_cm	petal_length_in_cm	petal_width_in_cm	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Demonstrate various data pre-processing techniques for a given dataset.

```
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
df1=pd.read_csv("/content/Data.csv")
df1.head(5)
Country Age Salary Purchased
```

Country	Age	Salary	Purchased	H
France	44.0	72000.0	No	11.
Spain	27.0	48000.0	Yes	
Germany	30.0	54000.0	No	
Spain	38.0	61000.0	No	
Germany	40.0	NaN	Yes	
	France Spain Germany Spain	France 44.0 Spain 27.0 Germany 30.0	France 44.0 72000.0 Spain 27.0 48000.0 Germany 30.0 54000.0 Spain 38.0 61000.0	Spain 27.0 48000.0 Yes Germany 30.0 54000.0 No Spain 38.0 61000.0 No

#Identifying and handling the missing values
df1.isnull().sum()

Country 0
Age 1
Salary 1
Purchased 0
dtype: int64

LAB 2

Use an appropriate dataset for building the decision tree(ID3) and apply this knowledge to classify a new sample.

Algorithm(Observation book)

	HITTIER AS BEINGE THAT
	Mk-lab2
	I da
	the an appropriate data set for building the decision tree
	decision tree
Browless	decision tree
	Algorithm
	Sandas & Carlos
طمام	TO3 (Scamples, Target Attempte)
	I D3 (Examples, Target Attendent) If all examples are in some class, retur a leaf
	rode with that class label
	If we list of altoributes is emply, new
	If all examples are in some class, the roots with that class label If the list of altributes is emply retir a leaf not with the most common class label
	the last that A to ship on
	chook the best alleibute A to split on
	Great a decisio bee mode with Attribute A
	for each hossible value V of A:
	For each possible value V of A: Add a new branch below the decision note for value
	Let Examples V be the subst of Example and value
	Let Example V be the subst of Example und value of for allubal of
	of Examples V is emply:
	Add a leaf hode with most common class label in examples be the branch
	in examples be the branch
	Else:
wan!	Recursively call ID3 (Examples V, Target Albridade
	and add the growing subtree to the branch
f.1	R. J. T. H. da L. et in
	Relian the decision tree

Code

```
# Importing the required libraries
import pandas as pd
import numpy as np
import math
data = pd.read_csv('/content/PlayTennis.csv')
```

```
def highlight(cell value):
    1.1.1
    Highlight yes / no values in the dataframe
    color 1 = 'background-color: pink;'
    color 2 = 'background-color: lightgreen;'
    if cell value == 'no':
        return color 1
    elif cell value == 'yes':
        return color 2
data.style.applymap(highlight) \
    .set properties(subset=data.columns, **{'width': '100px'})\
    .set table styles([{'selector': 'th', 'props': [('background-
color', 'lightgray'), ('border', 'lpx solid gray'),
                                                     ('font-weight',
'bold')]},
     {'selector': 'tr:hover', 'props': [('background-color', 'white'),
('border', '1.5px solid black')]}])
```

	outlook	temp	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
2	overcast	hot	high	False	yes
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
6	overcast	cool	normal	True	yes
7	sunny	mild	high	False	no
8	sunny	cool	normal	False	yes
9	rainy	mild	normal	False	yes
10	sunny	mild	normal	True	yes
11	overcast	mild	high	True	yes
12	overcast	hot	normal	False	yes
13	rainy	mild	high	True	no

```
def find entropy(data):
    Returns the entropy of the class or features
    formula: -\sum P(X) \log P(X)
    entropy = 0
    for i in range(data.nunique()):
        x = data.value counts()[i]/data.shape[0]
        entropy += (-x * math.log(x,2))
    return round (entropy, 3)
def information gain(data, data):
    11 11 11
    Returns the information gain of the features
    info = 0
    for i in range(data .nunique()):
        df = data[data == data .unique()[i]]
        w avg = df.shape[0]/data.shape[0]
        entropy = find entropy(df.play)
        x = w \text{ avg } * \text{ entropy}
        info += x
    ig = find entropy(data.play) - info
    return round(ig, 3)
def entropy and infogain(datax, feature):
    Grouping features with the same class and computing their
    entropy and information gain for splitting
    for i in range(data[feature].nunique()):
        df = datax[datax[feature] == data[feature].unique()[i]]
        if df.shape[0] < 1:
            continue
        display(df[[feature, 'play']].style.applymap(highlight)\
                .set properties(subset=[feature, 'play'], **{'width':
'80px'})\
                .set table styles([{'selector': 'th', 'props':
[('background-color', 'lightgray'),
                                                                   ('borde
r', '1px solid gray'),
                                                                   ('font-
weight', 'bold')]},
                                    {'selector': 'td', 'props':
[('border', '1px solid gray')]},
                                    {'selector': 'tr:hover', 'props':
[('background-color', 'white'),
```

```
'border', '1.5px solid black')]}]))

    print(f'Entropy of {feature} - {data[feature].unique()[i]} =
{find_entropy(df.play)}')
    print(f'Information Gain for {feature} = {information_gain(datax, datax[feature])}')

#Computing entropy for the entire dataset
print(f'Entropy of the entire dataset: {find_entropy(data.play)}')

Entropy of the entire dataset: 0.94

#Calculate the Information Gain for each feature.
#Outlook
entropy_and_infogain(data, 'outlook')

Outlook
play
outlook
play
outlook
play
```

	outlook	play
0	sunny	no
1	sunny	no
7	sunny	no
8	sunny	yes
10	sunny	yes

Entropy of outlook - sunny = 0.971

	outlook	play
2	overcast	yes
6	overcast	yes
11	overcast	yes
12	overcast	yes

Entropy of outlook - overcast = 0.0

	outlook	play
3	rainy	yes
4	rainy	yes
5	rainy	no
9	rainy	yes
13	rainy	no

Entropy of outlook - rainy = 0.971 Information Gain for outlook = 0.246

#Temp entropy_and_infogain(data, 'temp')

			-	
∃		temp	play	
	0	hot	no	
	1	hot	no	
	2	hot	yes	
	12	hot	yes	
	Ent	ropy of temp	- hot = 1.0	
		temp	play	
	3	mild	yes	
	7	mild	no	
	9	mild	yes	
	10	mild	yes	
	11	mild	yes	
	13	mild		
	Ent	opy of temp	- mild = 0.91	18
		temp	play	
	4	cool	yes	
	5	cool	no	

Entropy of temp - cool = 0.811
Information Gain for temp = 0.029

cool

cool

#Humidity
entropy_and_infogain(data, 'humidity')

yes

yes

0		humidity	play
∃	0	high	no
	1	high	no
	2	high	yes
	3	high	yes
	7	high	no
	11	high	yes

13

Entropy of humidity - high = 0.985

no

high

	humidity	play
4	normal	yes
5	normal	no
6	normal	yes
8	normal	yes
9	normal	yes
10	normal	yes
12	normal	yes

Entropy of humidity - normal = 0.592 Information Gain for humidity = 0.151

#Windy
entropy and infogain(data, 'windy')

	windy	play
0	False	no
2	False	yes
3	False	yes
4	False	yes
7	False	no
8	False	yes
9	False	yes
12	False	yes
ntr	opy of windy	- False = 0.
	windy	play
1	True	no
5	True	no
6	True	yes
10	True	yes
11	True	yes
	True	no

#Make a decision tree node using the feature with the maximum Information Gain.

outlook humidity temp windy play 0 False sunny hot high no True 1 sunny hot high no 7 mild False sunny high no 8 cool normal False sunny yes 10 mild normal True sunny yes

```
print(f'Entropy of the Sunny dataset: {find_entropy(sunny.play)}')
    Entropy of the Sunny dataset: 0.971
```

#temp
entropy and infogain(sunny, 'temp')

	temp	play
0	hot	no
1	hot	no

Entropy of temp - hot = 0.0

	- 67	٠.	P	 •••
			temp	play
7			mild	no
10			mild	yes

Entropy of temp - mild = 1.0

	temp	play
8	cool	yes

Entropy of temp - cool = 0.0 Information Gain for temp = 0.571

#Humidity

entropy and infogain(sunny, 'humidity')

	humidity	play
0	high	no
1	high	no
7	high	no

Entropy of humidity - high = 0.0

	1.2	,
	humidity	play
8	normal	yes
10	normal	yes

Entropy of humidity - normal = 0.0 Information Gain for humidity = 0.971

#Windy

entropy and infogain(sunny, 'windy')

	windy	play
0	False	no
7	False	no
8	False	yes

Entropy of windy - False = 0.918

	windy	play
1	True	no
10	True	yes

Entropy of windy - True = 1.0 Information Gain for windy = 0.02 #Making a decision tree node using the feature which has the maximum Information Gain

 \Box

	outlook	temp	humidity	windy	play
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
9	rainy	mild	normal	False	yes
13	rainy	mild	high	True	no

print(f'Entropy of the Rainy dataset: {find_entropy(rainy.play)}')

Entropy of the Rainy dataset: 0.971

#temp

entropy_and_infogain(rainy, 'temp')

	temp	play
3	mild	yes
9	mild	yes
13	mild	no

Entropy of temp - mild = 0.918

	temp	play
4	cool	yes
5	cool	no

Entropy of temp - cool = 1.0 Information Gain for temp = 0.02

#Humidity

entropy_and_infogain(rainy, 'humidity')

	humidity	play
3	high	yes
13	high	no

Entropy of humidity - high = 1.0

	humidity	play
4	normal	yes
5	normal	no
9	normal	yes

Entropy of humidity - normal = 0.918 Information Gain for humidity = 0.02

	windy	play
3	False	yes
4	False	yes
9	False	yes

Entropy of windy - False = 0.0

	windy	play
5	True	no
13	True	no

Entropy of windy - True = 0.0 Information Gain for windy = 0.971

#Making a decision tree node using the feature which has the maximum Information Gain.

