BJT Current Source Circuits BJT电流源电路

第7章 模拟集成电路

第1节 模拟集成电路中的直流偏置技术

Analog Electronic Technology

把整个电路中的元器件制作在一块硅基片上,构成特定功能的电子电路称为集成电路 P266

偏置电路:为各级放大电路设置合适的静态工作点。采用电流源电路。

输入级:前置级,多采用差分放大电路。要求 R_i 大, A_d 大, A_c 小,输入端耐压高。

中间级:主放大级,多采用共射放大电路。要求有足够的放大能力。

输出级:功率级,多采用准互补输出级。要求 R_0 小,最大不失真输出电压尽可能大。

为什么构建电流源

静态工作点怎么确定?

Analog Electronic Technology

内容

镜像 电流 源

微电 流源 高输出 阻抗电 流源

组合电流源

01

02

03

04

一、镜像电流源

 T_1 、 T_2 的参数全同

$$V_{\mathrm{BE2}} = V_{\mathrm{BE1}} \qquad I_{\mathrm{E2}} = I_{\mathrm{E1}}$$

$$I_{\rm C2} = I_{\rm C1} \approx I_{\rm REF}$$

$$= \frac{V_{\rm CC} + V_{\rm EE} - V_{\rm BE}}{R}$$

 $R_{\rm c}$ 的值在一定范围内变化时, $I_{\rm C2}$ 的电流值将保持不变,反映出 $I_{\rm C2}$ 的恒流特性。

一、镜像电流源

动态电阻

$$r_{\rm o} = \left(\frac{\partial i_{\rm C2}}{\partial v_{\rm CE2}}\right)^{-1}\Big|_{I_{\rm B2}} = r_{\rm ce}$$

一般r。在几百千欧以上

一、镜像电流源

其他形式

镜像电流源电路适用于较大工作电流(mA级)的场合,如需输出更小电流(μA 级)则需要较大R,集成电路中难以实现。

Analog Electronic Technology

内容

Analog Electronic Technology

$$I_{\rm O} = I_{\rm C2} \approx I_{\rm E2} = \frac{V_{\rm BE1} - V_{\rm BE2}}{R_{\rm e2}}$$
$$= \frac{\Delta V_{\rm BE}}{R_{\rm e2}}$$

由于 $\Delta V_{\rm BE}$ 很小,

所以 I_{C2} 也很小。

$$I_{\text{REF}} = rac{V_{\text{CC}} + V_{\text{EE}} - V_{\text{BE1}}}{R}$$

二、微电流源

Analog Electronic Technology

内容

镜像 电流 源

微电 流源 高输出 阻抗电 流源

组合 电流 源

01

02

03

Analog Electronic Technology

三、高输出阻抗电流源

$$\boldsymbol{I}_{\text{REF}} = \frac{\boldsymbol{V}_{\text{CC}} - \boldsymbol{V}_{\text{BE3}} - \boldsymbol{V}_{\text{BE2}} + \boldsymbol{V}_{\text{EE}}}{\boldsymbol{R}}$$

$$I_{\rm O} \approx I_{\rm C2} = \frac{A_3}{A_1} \cdot I_{\rm REF}$$

 A_1 和 A_3 分别是 T_1 和 T_3 的相对结面积

动态输出电阻r。远比微电流源的动态输出电阻高

Analog Electronic Technology

内容

镜像 电流 源

微电 流源 高输出 阻抗电 流源

组合电流源

01

02

03

04

Analog Electronic Technology

四、组合电流源

 T_1 、 R_1 和 T_4 支路产生基准电流 I_{REF}

 T_1 和 T_2 、 T_4 和 T_5 构成镜像电流源

 T_1 和 T_3 , T_4 和 T_6 构成了微电流源

$$I_{\text{REF}} = \frac{V_{\text{CC}} + V_{\text{EE}} - V_{\text{BE1}} - V_{\text{EB4}}}{R_1}$$

