

Review

- Wire contributes to delay, especially in modern technology
- We can use RC model to capture wire delays
- Energy becomes an increasingly important optimization goal
 - Dynamic energy
 - Static energy

EECS151 L17 ADDERS

Nikolić Fall 2021

2 Berkeley @@@@

Charging and Discharging a Capacitor

- When the gate output rises
 - Energy stored in capacitor is $E_C = \frac{1}{2} C_L V_{DD}^2$
 - But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt} V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$

- ullet Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- When the gate output transitions HL
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the NMOS transistor

EECS151 L17 ADDERS

Dynamic Power Reduction

How can we limit switching power?

- Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

 $P_{\text{switching}} = \alpha C V_{DD}^{2} f$

EECS151 L17 ADDERS

Nikolić Fall 202

Berkeley @@&@

5

Reduce Activity Factor

 $P_{\text{switching}} = \alpha C V_{DD}^2 f$ or

- Clock gating
- The best way to reduce the activity is to turn off the clock to registers in inactive blocks
 - Saves clock activity (clock a = 1)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used

EECS151 L17 ADDERS

Reduce Capacitance

 $P_{\text{switching}} = \alpha C V_{DD}^2 f$ or

- Gate capacitance
 - Fewer stages of logic
 - Smaller gate sizes
- Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other

EECS151 L17 ADDER

Nikolić Fall 2021

Berkeley @@&@

7

Reduce Voltage/Frequency

 $P_{\text{switching}} = \alpha C V_{DD}^2 f$

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage domains
 - Provide separate supplies to different blocks
- Dynamic voltage/frequency scaling
 - \bullet Adjust V_{DD} and f according to workload

EECS151 L17 ADDERS

Nikolić Fall 2021

8 Berkeley @@@@

Administrivia

- Homework 7 due this week
 - No new homework next week
- All labs need to be checked off by this week!
- Projects (ASIC and FPGA) started
- Midterm 2 is on November 4 at 7pm
 - Review session this Wednesday at 7pm

EECS151 L17 ADDERS

Nikolić Fall 202

Berkeley © © © ©

13

Express Sum and Carry as a function of P, G, D

- Define generate, propagate and delete as functions of A, B
 - Will use two at a time

Generate (G) = AB Propagate (P) = A + B (or A \oplus B) Delete = \overline{A} \overline{B}

C -	ΛPι	R Ci i	Λ Ci _	G + PC	`
\cup_{\sim} –	H D T	. D Cl 4	- A UI –	· U + r U	<i>,</i> :

Α	В	C _{in}	G	P	К	C _o	S
0	0	0	0	0	1	0	0
		1				0	1
0	1	0	0	1	0	0	1
		1				1	0
1	0	0	0	1	0	0	1
		1				1	0
1	1	0	1	Х	0	1	0
		1				1	1

Can also derive expressions for C_{o} based on D and P

EECS151 L17 ADDERS

Nikolić Fall 202

19 Berkeley @@S

19

The Ripple-Carry Adder

• 4-bit adder

Worst case delay linear with the number of bits

$$t_d = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

EECS151 L17 ADDERS

Nikolić Fall 2021

20 Berkeley @ 30

The Mirror Adder

- •The NMOS and PMOS chains are completely symmetrical.

 A maximum of two series transistors in the carry-generation stack.
- •Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be smaller.
- ${}^{\bullet} \text{The transistors}$ connected to \textit{C}_{i} are placed closest to the output.
- •Minimize the capacitance at node C_0 .

EECS151 L17 ADDERS

Nikolić Fall 2021

Berkeley @ @ @

25

Carry-Bypass Adder

• Also called 'carry skip'

• Also called 'carry skip' $C_{1,0}$ F_{1} $C_{1,0}$ F_{2} F_{3} F_{4} F_{4} F_{5} $F_$

Faster Carry-Bypass

BECS151 L17 ADDERS

Nikolic Fall 2021

32 Berkeley

DOSSE

Carry-Select Adder

Setup

"0" \rightarrow "0" Carry Propagation

"1" \rightarrow "1" Carry Propagation

Co,k-1 \rightarrow Multiplexer

Sum Generation

34

EECS151 L17 ADDERS

Berkeley @000

Nikolić Fall 2021

Linear Carry Select Bit 0-3 Bit 4-7 Bit 8-11 Bit 12-15 Setup Setup Setup \prod "1" Carry "1" Carry "1" Carry "1" Carry 5) 1 (5) 1 **1** (5) **1** (5) IJ⁽⁵⁾ IJ Multiplexer Multiplexer Multiplexer Multiplexer Sum Generation Sum Generation Sum Generation um Generation S₁₂₋₁₅ (10) $t_{add} = t_{setup} + \left(\frac{N}{M}\right) t_{carry} + M t_{mux} + t_{sum}$ 36 Berkeley @000 EECS151 L17 ADDERS Nikolić Fall 2021

36

Summary

- Binary adders are a common building block of digital systems
- Carry is in the critical path
- Mirror adders cells are commonly found in libraries
- Ripple-carry adder is the least complex, lowest energy
- Carry-bypass, carry-select are usually faster than ripple-carry for bitwidths > 8

EECS151 L17 ADDERS

Nikolić Fall 202

39 Berkeley 6000