Table of Discrete-Time Fourier Transform Pairs:

Discrete-Time Fourier Transform :
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

Inverse Discrete-Time Fourier Transform : $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega)e^{j\Omega t} \ d\Omega$.

x[n]	$X(\Omega)$	condition
$a^n u[n]$	$\frac{1}{1 - ae^{-j\Omega}}$	a < 1
$(n+1)a^nu[n]$	$\frac{1}{(1 - ae^{-j\Omega})^2}$	a < 1
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n]$	$\frac{1}{(1 - ae^{-j\Omega})^r}$	a < 1
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\Omega n_0}$	
x[n] = 1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	
u[n]	$\frac{1}{1 - e^{-j\Omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\Omega - 2\pi k)$	
$e^{j\Omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$	
$\cos(\Omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \{\delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)\}$	
$\sin(\Omega_0 n)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \{ \delta(\Omega - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k) \}$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - \frac{2\pi k}{N}\right)$	
$x[n] = \begin{cases} 1 & , & n \le N \\ 0 & , & n > N \end{cases}$	$\frac{\sin(\Omega(N+1/2))}{\sin(\Omega/2)}$	
$\frac{\sin(Wn)}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$	$X(\Omega) = \begin{cases} 1 & , & 0 \le \Omega \le W \\ 0 & , & W < \Omega \le \pi \end{cases}$	
	$X(\Omega)$ is periodic with period 2π	

Table of Discrete-Time Fourier Transform Properties: For each property, assume

$$x[n] \overset{DTFT}{\longleftrightarrow} X(\Omega) \quad \text{and} \quad y[n] \overset{DTFT}{\longleftrightarrow} Y(\Omega)$$

Property	Time domain	DTFT domain
Linearity	Ax[n] + By[n]	$AX(\Omega) + BY(\Omega)$
Time Shifting	$x[n-n_0]$	$X(\Omega)e^{-j\Omega n_0}$
Frequency Shifting	$x[n]e^{j\Omega_0n}$	$X(\Omega - \Omega_0)$
Conjugation	$x^*[n]$	$X^*(-\Omega)$
Time Reversal	x[-n]	$X(-\Omega)$
Convolution	x[n] * y[n]	$X(\Omega)Y(\Omega)$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(\theta) Y(\Omega - \theta) d\theta$
Differencing in Time	x[n] - x[n-1]	$(1 - e^{-j\Omega})X(\Omega)$
Accumulation	$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{1 - e^{-j\Omega}} + \pi X(0) \sum_{k = -\infty}^{\infty} \delta(\Omega - 2\pi k)$
Frequency Differentiation	nx[n]	$jrac{dX(\Omega)}{d\Omega}$
Parseval's Relation for Aperiodic Signals	$\sum_{k=-\infty}^{\infty} x[k] ^2$	$\frac{1}{2\pi} \int_{2\pi} X(\Omega) ^2 d\Omega$