# COMP229: Introduction to Data Science Lecture 16: the normal distribution

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

### Basics of integrals and areas

**Definition 16.1**. For a "good" function  $f : \mathbb{R} \to \mathbb{R}$  (say, f > 0 for simplicity), the *integral*  $\int_a^b f(x)dx$  is the area between the graph of the function y = f(x) and the x-axis over the segment [a, b].



#### A continuous random variable

**Definition 16.2**. A continuous *random* variable X is given by a *probability density*  $f(x) \ge 0$  such that the probability that X takes values smaller than a real number b is  $P(X < b) = \int_{-\infty}^{b} f(x) dx$ .

If f(x) quickly tends to 0 when  $x \to \pm \infty$ , the area over  $(-\infty, b]$  can be computed as  $\int_{-\infty}^{b} f(x)dx$ .

When  $b \to +\infty$ , the probability P(X < b) tends to 1, so any probability density has  $\int_{-\infty}^{+\infty} f(x) dx = 1$ .

#### A uniform random variable

**Definition 16.3**. A *uniform* variable over [a, b] has

the density 
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b], \\ 0 & \text{for } x \notin [a,b]. \end{cases}$$



The rectangle with sides b-a and  $\frac{1}{b-a}$  has the area  $\int_{-\infty}^{+\infty} f(x)dx = 1$ .

For  $c \in [a, b]$ , the probability P(X < c) equals  $\frac{c-a}{b-a}$  = the area of the rectangle  $[a, c] \times [0, \frac{1}{b-a}]$ .

### A normal random variable

**Definition 16.4**. A normal variable X has the density  $\phi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ , where  $\mu$  is the mean (also the median and mode),  $\sigma$  is the standard deviation. X can be shortly introduced as  $X \sim N(\mu, \sigma^2)$ , where  $\sigma^2$  is the variance.

The standard normal variable is  $X \sim N(0,1)$ . The factor  $\frac{1}{\sqrt{2\pi}\sigma}$  implies that  $\int\limits_{-\infty}^{+\infty}\phi_{\mu,\sigma^2}(x)dx=1$ .  $\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \to 0$  quickly when  $x\to\pm\infty$ .

### Normal densities for various $\mu$ , $\sigma$



#### The central limit theorem

Claim 16.5. If  $X_1, \ldots, X_n$  are independent identically distributed variables with variance  $\sigma^2$ , mean 0, then  $\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \to N(0, \sigma^2)$  as  $n \to +\infty$ .

Informally, "in the limit any average is normal".



One often assumes that random variables that we can't control

### The 68-95-99.7 (approximate) rule

About 68% of observations are in  $[\mu - \sigma, \mu + \sigma]$ . About 95% of observations are in  $[\mu - 2\sigma, \mu + 2\sigma]$ . About 99.7% of observations are in  $[\mu - 3\sigma, \mu + 3\sigma]$ .



### The standardized *Z*-score

Claim 16.6. If a normal variable X has a mean  $\mu$  and a standard deviation  $\sigma$ , the *standardized* score  $Z = \frac{X - \mu}{\sigma}$  has the density N(0, 1).

**Problem**. Let exam marks have a normal distribution with  $\mu=60$  and  $\sigma=10$ . What proportion of the class failed the exam?

Solution. The required proportion is the probability  $P(X < 40) = P(X < \mu - 2\sigma) = 2.5\%$ .

If it's hard to express 40 via  $\mu$ ,  $\sigma$ , use the Z-score.

### Using the *Z*-score

The bound 40 of the given random variable  $X \sim N(60, 10^2)$ , for the Z-score  $Z = \frac{X-60}{10}$  becomes  $\frac{40-60}{10} = -2$ , so we need P(Z < -2) for the standard normal variable  $Z \sim N(0, 1)$ .

The probability P(Z < -2) is 2.5% from the 68-95-99.7 rule. The proportion of the students who passed is P(X > 40) = P(Z > -2) = 97.5%

Find the proportion of students with 70+ marks.



## Your questions and the quiz

P(X > 70) = P(Z > 1) = 16% by the 68% rule.

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
  e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

**Question**. Let  $X \sim N(60, 20^2)$ . Find P(X < 40).



# Answer to the quiz and summary

Answer. The bound 40 for X becomes -1 for  $Z = \frac{X - 60}{20}$ , so P(X < 40) = P(Z < -1) = 16%.

- The *normal* random variables has the probability density  $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ , where  $\mu$  is the mean,  $\sigma$  is the standard deviation
- For  $X \sim N(\mu, \sigma^2)$ , the *standardized* variable is  $Z = \frac{X \mu}{\sigma}$  whose probabilities P(Z < b) are pre-computed (in available tables online).

