Group Members

Tevin Achong - 816000026

Jimmel Greer - 816000045

Course Code: COMP3602

Course Title: Theory of Computing

Assignment: 2

November 21, 2019

1.

•
$$L = \{1^n 0^{\frac{n}{2}} \mid n \ge 2, \text{ n is even}\}$$

 $G = (\{S\}, \{0, 1\}, P, S)$
where P is:
 $S \to 11S0 \mid 110$

- $\{+w + w^R + \mid w \in \{0, 1\}^+\}$ $G = (\{S, W\}, \{+, 0, 1\}, P, S)$ where P is: $S \to +W+$ $W \to 1W1 \mid 0W0 \mid 1+1 \mid 0+0$
- $\begin{array}{l} \bullet \ \, \{w+v \mid w,v \in \{0,1\}^*,\, w^R \text{ is the prefix of } v\} \\ G = (\{\mathrm{S},\, \mathrm{W},\, \mathrm{V}\},\, \{+,\, 0,\, 1,\, \epsilon\},\, \mathrm{P},\, \mathrm{S}) \\ \text{where } P \text{ is:} \\ \mathrm{S} \to \mathrm{WV} \mid \epsilon + \epsilon \\ \mathrm{W} \to 1\mathrm{W1} \mid 0\mathrm{W0} \mid 1{+}1 \mid 0{+}0 \\ \mathrm{V} \to 0\mathrm{V} \mid 1\mathrm{V} \mid \epsilon \\ \end{array}$

2.

• $\{1^n0^{\frac{n}{2}} \mid n \ge 2, \text{ n is even}\}$

• $\{+w+w^R+\mid w\in\{0,1\}^+\}$

 $\bullet \quad \{w+v \mid w,v \in \{0,1\}^*,\, w^R \text{ is the prefix of } v\}$

3. If L_1 and L_2 are any context-free languages, $L_1 \cup L_2$ is also context free.

Proof by Construction:

If L_1 and L_2 are context free, then, by definition, there exist grammars $G_1 = (V_1, \Sigma_1, S_1, P_1)$ and $G_2 = (V_2, \Sigma_2, S_2, P_2)$ with $L(G_1) = L_1$ and $L(G_1) = L_1$. We can assume that V_1 and V_2 are disjoint. Now consider the grammar $G = (V, \Sigma, S, P)$, where S is a new nonterminal symbol and

$$V = V_1 \cup V_2 \cup \{S\},$$

$$\Sigma = \Sigma_1 \cup \Sigma_2, \text{ and}$$

$$P = P_1 \cup P_2 \cup \{(S \to S_1), (S \to S_2)\}$$

Clearly $L(G) = L_1 \cup L_2$, so $L_1 \cup L_2$ is a regular language.

4. If L is any context-free language, L^* is also context free.

Proof by Construction:

If L is context free then, by definition, there exists a grammar $G = (V, \Sigma, S, P)$ with L(G) = L. Now consider the grammar $G' = (V', \Sigma', S', P')$, where S' is a new nonterminal symbol and

$$V' = V \cup \{S'\}, \text{ and } P' = P \cup \{(S' \to SS'), (S' \to \epsilon)\}$$

Now $L(G') = L^*$, so L^* is a context-free language.

- 5. (a) Non-terminals: R, S, T, X
 - (b) **Terminals:** a, b, ϵ

(c) Parse Tree for abb

(d) **Derivation of** bba: $R \Rightarrow S \Rightarrow bTa \Rightarrow bXa \Rightarrow bba$