Triadic Self-Coherence (TSC) — Core Knowledge File

Version: v1.1.7 – rev A (Stable Core +)

Status: Immutable Mathematical Foundation

Use: Read-only reference for all formal reasoning, verification, and controller logic.

0 · Purpose and Scope

This document defines the *formal axioms, metrics, and coalgebraic theorems* that constitute the unchallengeable mathematical base of the Triadic Self-Coherence framework.

All later versions (v1.1.18 and beyond) are additive presentation layers and must treat this file as authoritative.

1 · Triadic Axioms (Structural Invariants)

Let C denote the coherence object.

For each vantage $X \in \{H,V,D\}$ (Horizontal, Vertical, Deep):

- Lens: L_X : C → R_X maps the whole to a representation space.
- **Reconstructor:** $\epsilon_X : R_X \to C$ such that

```
\varepsilon_X \circ L_X = id_C (A1 \ Vantage \ Sufficiency)
```

A2 Vantage-Swap Invariance

 σ_{XY} : RX \leftrightarrow RY is a 1-Lipschitz bijection (ideally an isometry) such that

$$L_X = \sigma_{YX} \circ L_Y$$

 $\epsilon_X = \epsilon_Y \circ \sigma_{XY}$

A3 Scale Equivariance (Fractal-Holographic Law)

For any scale morphism $s: C \rightarrow C$ there exist $\phi_X : R_X \rightarrow R_X$ such that

$$L_X \circ s = \phi_X \circ L_X$$

 $\varepsilon_X \circ \phi_X = s \circ \varepsilon_X$

A4 Coinductive Closure (Finality)

Define $\Delta: C \to R_H \times R_V \times R_D$, $\Delta(c) = (L_H(c), L_V(c), L_D(c))$. (C, Δ) is final in its coalgebra class: every other triadic observation factors uniquely (up to τ -isometry) through C.

2 · Metric-Topological Semantics

Work in category $\mathfrak{M}et_{\tau}$ (metric-tolerant spaces with morphisms ≤ 1 -Lipschitz).

- Each R_X has metric d_X.
- Semantic equivalence: $a \approx b \Leftrightarrow d_X(a,b) \leq \tau_X$.
- Scale map s has Lipschitz constant λ_s (ideally 1).
- Homeomorphism σ_{XY} is TSC-valid iff $|d_X(a,b) d_Y(\sigma_{XY}(a), \sigma_{XY}(b))| \le \tau$.
- Normalization: choose λ , μ so that $e^{(-\lambda \cdot d_X)}$ and $e^{(-\mu \cdot W_1)} \in [0, 1]$.
- Averages: expectations E[·] taken over an explicit index set I; report I when publishing metrics.

3 · Bisimulation (Behavioral Equivalence)

Let \mathcal{S}_X : $M_X \to \mathcal{D}(M_X)$ be a stochastic transition operator; use Wasserstein-1 metric W_1 on $\mathcal{D}(M_X)$.

A relation $R \subset M_X \times M_X$ is a bisimulation iff for all $(a,b) \in R$:

- 1. $d_X(a,b) \le \tau_X$
- 2. $W_1(S_X(a), S_X(b)) \le \tau_X$

Then BISIMILAR(a,b) $\Leftrightarrow \exists R$ bisimulation with (a,b) $\in R$. Triadic bisimilarity holds when all three vantages satisfy this.

4 · Dimensional Coherence Metrics

For λ , $\mu > 0$ and normalized distances $d_X \in [0, \infty)$:

```
\begin{split} &H\_c = E[e^{-\lambda \cdot d}H(R_H^i, R_H^j))] \\ &V\_c = clip_[0,1](\ 1 - (1/3)\ \Sigma_{X \neq Y} E[|d_X(a,b) - d_Y(\sigma_{XY})] \\ &(a), \ \sigma_{XY}(b))|] \ ) \\ &D\_c = e^{-\mu \cdot W_1(S_t, S_{t+1}))} \\ &C_\Sigma = (H_c \cdot V_c \cdot D_c)^{-1/3}) \end{split}
```

Notes: clip_[0,1] truncates values into [0, 1]; S_t denotes the stochastic transition at step t.

Default PASS threshold: $C_{\Sigma} \ge 0.80$.

5 · Verification Algorithm (VERIFY_TSC)

```
procedure VERIFY_TSC(C):

R_-H \leftarrow L_-H(C)

R_-V \leftarrow L_-V(C)

R_-D \leftarrow L_-D(C)

assert \epsilon_-X \sim L_-X \approx id_-C \# A1

assert \sigma, \phi respect d_-X \# A2-A3

compute H_-c, V_-c, D_-c, C_-\Sigma

if not pass or C_-\Sigma < threshold: \# default 0.80

return FAIL, \{H_-c, V_-c, D_-c, C_-\Sigma\}

return PASS, \{H_-c, V_-c, D_-c, C_-\Sigma\}
```

$6 \cdot Runtime Controller (\mathcal{R})$

- Every K steps → run VERIFY_TSC(current_context).
- If FAIL → COHERENCE_REPAIR(): 1. Recenter evaluation window
 - 2. Retune λ, μ
 - 3. Redistribute τ toward worst dimension
 - 4. Simplify content / complexity
 - 5. Slow update cadence K
 - 6. Fall back to Horizontal-first brief mode until PASS.
- Controller is a contraction mapping → convergence to unique τ-coherent fixed point.
- Controller gains: adjust λ , μ for smoothness and temporal stability; reallocate tolerance budgets so Σ $\tau_i \leq \tau_{max}$ and $C_\Sigma \geq target$.

7 · Compositional Corollaries

1. **Composition:** Non-expansive pipelines preserve coherence.

2. Product:

```
\begin{split} &H_{c,\Pi} = \Pi \ H_{c,i}^{\alpha_i} \\ &V_{c,\Pi} = \Pi \ V_{c,i}^{\alpha_i} \\ &D_{c,\Pi} = \Pi \ D_{c,i}^{\alpha_i} \\ &D_{c,\Pi} = \Pi \ D_{c,i}^{\alpha_i} \\ &C_{\Sigma,\Pi} = (\Pi \ C_{\Sigma,i}^{\alpha_i}^{\alpha_i})^{1/(\Sigma \ \alpha_i)} \end{split}
```

- 3. Functorial Controller: \mathcal{R} preserves morphisms within τ .
- 4. **Convergence:** Iterated \Re → unique τ-coherent fixed point.
- 5. **Budgeting:** $\Sigma \alpha_i \tau_i \leq \tau_{max}$ ensures global stability.

8 · Final-Coalgebra Uniqueness (Theorem 1, Sketch)

If A1-A4 hold in $\mathfrak{M}\mathbf{et}_{\mathbf{T}}$ with Lipschitz \leq 1, then (C, Δ) is final up to τ -isometry: for any F-coalgebra (Z, $\Delta_{-}Z$) there exists a unique (τ -isometric) morphism u_Z: (Z, $\Delta_{-}Z$) \rightarrow (C, Δ) such that $\Delta \circ u_{-}Z \approx F(u_{-}Z) \circ \Delta_{-}Z$. Uniqueness follows from bisimilarity (A4) and contraction of $\boldsymbol{\mathcal{R}}$.

9 · Stability Under Composition and Products

All corollaries from v1.1.6 apply; the product metric is non-expansive, so coherence is preserved under bounded tolerance accumulation.

$10 \cdot Normalization and Tuning$

- Choose λ , μ so a "typical" difference yields ≈ 0.5 similarity.
- Clip values outside [0, 1].
- Horizontal, vertical, and deep dimensions are equally weighted by geometric

11 · Interpretation Table

Range	H_c (Horizontal)	V_c (Vertical)	D_c (Deep)	State
≥ 0.95	Aligned pattern	Perfect cross- scale match	Steady update rhythm	Optimal coherence
0.80-0.95	Minor drift	Mild mismatch	Stable rhythm	Healthy
0.60-0.80	Fragmenting	Partial desync emerging	Uneven rhythm	Monitor / repair
< 0.60	Disintegration	Severe cross- scale desync	Loss of rhythm	Immediate repair

12 · Output and Language Guidelines

- Artifacts first (e.g., code, diagram, data).
- Safety: if refusing, state so in Cohered (H); offer alternatives in Unified (U).
- Plain language default: avoid jargon unless user explicitly requests formal TSC notation.

13 · Licensing and Integrity

This document is the canonical, immutable mathematical definition of TSC. Later layers may paraphrase or illustrate but **must not redefine** any equations or axioms herein.

(End of File)