		LINEAR PROGRAMMING			
	Convert the following LPP in t	he Standard form			
	Question	Ans.			
1	$Minimise z = -3x_1 + 2x_2 - x_3$	Maximise $z' = 3x_1 - 2x_2 + x_3' - x_3'' + 0s_1 + 0s_2 + 0s_3$			
	subject to $x_1 - 3x_2 + 2x_3 \ge -6$	subject to $-x_1 + 3x_2 - 2x_3' + 2x_3'' + s_1 = 6$			
	$3x_1 + 4x_3 \le 3$	$3x_1 + 4x_3' - 4x_3'' + s_2 = 3$			
	$-3x_1 + 5x_2 \le 4$	$-3x_1 + 5x_2 + s_3 = 4$			
	$x_1, x_2 \ge 0, x_3 $ unrestricted	$x_1, x_2, x_3', x_3'', s_1, s_2, s_3 \ge 0$			
2	$Maximise z = 3x_1 + 4x_2 - 2x_3$	Maximise $z = 3x_1 + 4x_2 - 2x_3' + 2x_3'' + 0s_1 + 0s_2 + 0s_3$			
	subject to $6x_1 - 4x_2 \le 5$	subject to $6x_1 - 4x_2 + s_1 = 5$			
	$3x_1 + x_2 + 4x_3 \ge 11$	$3x_1 + x_2 + 4x_3' - 4x_3'' - s_2 = 11$			
	$4x_1 + 3x_2 \le 2$	$4x_1 + 3x_2 + s_3 = 2$			
	$x_1, x_2 \ge 0$	$x_1, x_2, x_3', x_3'', s_1, s_2, s_3 \ge 0$			
	Determine all basic solutions to	o the following problem			
	Question	Ans.			
3	$Maximise z = x_1 - 2x_2 + 4x_3$	$x_1 = 1, x_2 = 3$			
	$subject \ to x_1 + 2x_2 + 3x_3 = 7$	$x_1 = 1, x_3 = 2$			
	$3x_1 + 4x_2 + 6x_3 = 15$	x_2, x_3 unbounded solution]			
4	$Maximise z = x_1 + 3x_2 + 3x_3$	$x_1 = 2, x_2 = 1$			
	subject to $x_1 + 2x_2 + 3x_3 = 4$	$x_1 = 1, x_3 = 1$			
	$2x_1 + 3x_2 + 5x_3 = 7$	$x_2 = -1, x_3 = 2$			
5	<i>Maximise</i> $z = 2x_1 - 2x_2 + 4x_3 - 5x_4$	$x_1 = 0, x_2 = 1/2, x_1 = 0, x_4 = 1/4$			
	subject to $x_1 + 4x_2 - 2x_3 + 8x_4 \le 2$	$x_1 = 8, \ x_3 = 3, \ x_2, x_4 = unbounded$			
	$-x_1 + 2x_2 + 3x_3 + 4x_4 \le 1$	$x_2 = 1/2, x_3 = 0, x_3 = 0, x_4 = 1/4$			
	$x_{1,}x_{2,}x_{3,}x_{4} \ge 0$				
	$Maximise z = x_1 + x_2 + 3x_3$	$x_1 = 3, x_2 = 3$			
6	subject to $x_1 + 2x_2 + 3x_3 = 9$	$x_1 = 27/7, \ x_3 = 12/7$			
	$3x_1 + 2x_2 + 2x_3 = 1$	$5 x_2 = 27/2, x_3 = -6$			

	Solve the following linear prog	ramming problems by Simplex method
7	Maximise $z = 5x_1 + 4x_2$ subject to $6x_1 + 4x_2 \le 24$ $x_1 + 2x_2 \le 6$ $-x_1 + x_2 \le 1$ $x_2 \le 2$	8 Maximise $z = 4x_1 + 10x_2$ subject to $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0$
	$x_1, x_2 \ge 0$ [Ans: $x_1 = 3$, $x_2 = 3/2$ $z_{\text{max}} = 21$]	[Ans: $x_1 = 0$, $x_2 = 20$ $z_{\text{max}} = 200$
9	Maximise $z = 6x_1 - 2x_2 + 3x_3$ subject to $2x_1 - x_2 + 2x_3 \le 2$ $x_1 + 4x_3 \le 4$ $x_1, x_2, x_3 \ge 0$ Ans: $x_1 = 4$, $x_2 = 6$, $x_3 = 0$ $z_{max} = 12$	10. Maximise $z = 3x_1 + 2x_2$ subject to $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 3$, $x_2 = 1$ $z_{max} = 11$]
11	Maximise $z = 3x_1 + 2x_2 + 5x_3$ subject to $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$ $x_1, x_2, x_3 \ge 0$ Ans: $x_1 = 0, x_2 = 100, x_3 = 230 \ z_{\text{max}} = 1350$	12. Minimise $z = x_1 - 3x_2 + 3x_3$ subject to $3x_1 - x_2 + 2x_3 \le 7$ $2x_1 - 4x_2 \ge -12$ $-4x_1 + 3x_2 + 8x_3 \le 10$ $x_1, x_2, x_3 \ge 0$ Ans: $x_1 = 4$, $x_2 = 5$, $x_3 = 0$ $z_{\min} = -z'_{\max} = -11$]
13	Maximise $z = 100x_1 + 50x_2 + 50x_3$ subject to $4x_1 + 3x_2 + 2x_3 \le 10$ $3x_1 + 8x_2 + x_3 \le 8$ $4x_1 + 2x_2 + x_3 \le 6$ $x_1, x_2, x_3 \ge 0$ Ans: $x_1 = 1/2, x_2 = 0, x_3 = 4 \ z_{max} = 250$	14. Maximise $z = 3x_1 + 2x_2 + 5x_3$ subject to $x_1 + x_2 + x_3 \le 9$ $2x_1 + 3x_2 + 5x_3 \le 30$ $2x_1 - x_2 - x_3 \le 8$ $x_1, x_2, x_3 \ge 0$ Ans: $x_1 = 5, x_2 = 0, x_3 = 4, z_{max} = 3200/3$

15	$Maximise z = 4x_1 + 3x_2 + 6x_3$	$Maximise z = 4x_1 + 10x_2$
	subject to $2x_1 + 3x_2 + 2x_3 \le 440$	subject to $2x_1 + x_2 \le 10$
	$4x_1 + 3x_3 \le 470$	$2x_1 + 5x_2 \le 20$
	$2x_1 + 5x_2 \le 430$	$2x_1 + 3x_2 \le 18$
	$x_1, x_2, x_3 \ge 0$	$x_1, x_2 \ge 0$
	Ans. $x_1 = 0, x_2 = 380/9, x_3 = 470/3$	Ans $x_1 = 15/4$, $x_2 = 5/2$, $z_{\text{max}} = 40$
	$z_{\text{max}} = 3200/3$	
17	<i>Maximise</i> $z = 4x_1 + x_2 + 3x_3 + 5x_4$	18.
	subject to $-4x_1 + 6x_2 + 5x_3 + 4x_4$	$\leq 20^{Maximise}$ $z = 107x_1 + x_2 + 2x_3$
	$-3x_1 - 2x_2 + 4x_3 + x_4 \le$	
	$-8x_1 - 3x_2 + 3x_3 + 2x_4$	$\leq 20 \qquad 16x_1 + (1/2)x_2 - 6x_3 \leq 5$
	$x_1, x_2, x_3, x_4 \ge 0$	$3x_1 - x_2 - x_3 \le 0$
	Ans: unbounded solution	$x_1, x_2, x_3, x_4 \ge 0$
		Ans: unbounded solution
19	$Maximise z = 100x_1 + 40x_2$	$\begin{array}{c} 20 \\ Maximisa z = 3x + 5x + 4x \end{array}$
	$subject to 10x_1 + 4x_2 \le 2000$	$Maximise z = 3x_1 + 5x_2 + 4x_3$
	$3x_1 + 2x_2 \le 900$	subject to $2x_1 + 3x_2 \le 8$
	$6x_1 + 12x_2 \le 3000$	$2x_2 + 5x_3 \le 10$
	$x_1, x_2 \ge 0$	$3x_1 + 2x_2 + 4x_3 \le 15$
	Has it an alternative optima? [Ans:	$x_1, x_2, x_3 \ge 0$
	$x_1 = 200, x_2 = 0, z_{\text{max}} = 2000$	$x_1 = 89/41, \ x_2 = 50/41, \ x_3 = 62/41$ Ans.
	alternate optima $x_1 = 125$, $x_2 = 187$.	
	Solve the following linear	programming problems by Penalty (Big-M)
	method	programming problems by remains (big-in)
21	$Maximise z = 3x_1 - x_2$	22
	subject to $2x_1 + x_2 \ge 2$	$Maximise z = 3x_1 - x_2$
	$x_1 + 3x_2 \le 3$	subject to $2x_1 + x_2 \le 2$
	$x_2 \le 4$	$x_1 + 3x_2 \ge 3$
	$x_1, x_2 \ge 0$	$x_2 \le 4$
	[Ans: $x_1 = 3$, $x_2 = 0$ $z_{\text{max}} = 9$]	$x_1, x_2 \ge 0$
	. 2 11867	[Ans: $x_1 = 3/5$, $x_2 = 4/5$ $z_{\text{max}} = 1$

23	<i>Maximise</i> $z = 5x_1 - 2x_2 + 3x_3$	24
	subject to $2x_1 + 2x_2 - x_3 \ge 2$	$Minimise z = x_1 + 2x_2 + x_3$
	$3x_1 - 4x_2 \le 3$	subject to $x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 \le 1$
	$x_2 + 3x_3 \le 5$	subject to $x_1 + \frac{-x_2}{2} + \frac{-x_3}{2} \le 1$
	$x_2 + 5x_3 = 5$ $x_1, x_2, x_3 \ge 0$	$\frac{3}{2}x_1 + 2x_2 + x_3 \ge 8$
	Ans:	2
	$x_1 = 23/3, \ x_2 = 5, \ x_3 = 0 \ z_{\text{max}} = 85/3$	$x_1, x_2, x_3 \ge 0$
		[Ans: No feasible solution
25	$Minimise z = 4x_1 + x_2$	$Maximise z = 10x_1 + 3x_2$
	subject to $3x_1 + x_2 = 3$	subject to $x_1 + 2x_2 \ge 3$
	$4x_1 + 3x_2 \ge 6$	
	$x_1 + 2x_2 \le 4$	$x_1 + 4x_2 \ge 4$
	$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$
	Ans: $x_1 = 2/5, x_2 = 9/5$ $z_{min} = 17/5$	Ans: $x_1 = 0$, $x_2 = 3/2$ $z_{min} = 9/2$
27	$Minimise z = 2x_1 + x_2$	28 <i>Minimina</i>
	subject to $3x_1 + x_2 = 3$	$Minimise z = 2x_1 + 3x_2$
	$4x_1 + 3x_2 \ge 6$	subject to $x_1 + x_2 \ge 5$
	$x_1 + 2x_2 \le 3$	$x_1 + 2x_2 \ge 6$
	$x_1, x_2 \ge 0$	$x_1, x_2 \ge 0$
	Ans:	Ans: $x_1 = 4$, $x_2 = 1$ $z_{min} = 11$
29	$x_1 = 3/5$, $x_2 = 6/5$ $z_{min} = 12/5$	30
2)	Minimise $z = x_1 - 3x_2 - 2x_3$	Maximise $z = 4x_1 + 5x_2 + 2x_3$
	subject to $3x_1 - x_2 + 2x_3 \ge 7$	subject to $2x_1 + x_2 + x_3 \le 10$
	$-2x_1 + 4x_2 \le 12$	$x_1 + 3x_2 + x_3 \le 12$
	$-4x_1 + 3x_2 + 8x_3 \le 10$	$x_1 + x_2 + x_3 = 6$
	$x_1, x_2, x_3 \ge 0$ [Ans:	$x_1, x_2, x_3 \ge 0$
		[Ans: $x_1 = 3$, $x_2 = 3$, $x_3 = 0$ $z_{max} = 27$]
	$z_{\min} = -319/25$	- 1 . 2 . 3
	- 1 1 1 1	
31	$Maximise z = 6x_1 + 4x_2$	
	subject to $2x_1 + 3x_2 \le 30$	
	$3x_1 + 2x_2 \le 24$	
	$x_1 + x_2 \ge 3$	
	$x_1, x_2 \ge 0$	
	Is the solution unique? If not, find another	solution.

	[30]		[24]	
If the requirement vector	24	is changed to	30	is the solution still optimal?
	3_		3	

Ans:
$$x_1 = 8$$
, $x_2 = 0$, $z_{\text{max}} = 48$

The alternate optimal basic feasible solution is $x_1 = 12/5$, $x_2 = 42/5$, $z_{\text{max}} = 48$

	Construc	t the Dual of the follow	wing LPP	
	Question		Ans.	
2	Minimise	$z = x_2 + 3x_3$	Maxi	$mise w = -3y_1 + 5y + 2y_3$
	subject to	$2x_1 + x_2 \le 3$	subje	ct to $-2y_1 + y_2 - y_3 \le 0$
		$x_1 + 2x_2 + 6x_3 \ge 5$		$-y_1 + 2y_2 + y_3 \le 1$
		$-x_1 + x_2 + 2x_3 = 2$		$6y_2 + 2y_3 \le 3$
		$x_1, x_2, x_3 \ge 0$		$y_1, y_2 \ge 0, y_3 $ unrestricted]
3	Minimise	$z = 3x_1 - 2x_2 + x_3$	Maximise	$w = -5y_1 + 9y + 8y_3$
	subject to	$2x_1 - 3x_2 + x_3 \le 5$	subject to	$-2y_1 + 4y_2 - 8y_3 \le 3$
		$4x_1 - 2x_2 \ge 9$:	$3y_1 - 2y_2 + 4y_3 \le -2$
		$-8x_1 + 4x_2 + 3x_3 = 8$		$-y_1 + 3y_3 = 1$
		$x_1, x_2 \ge 0, x_3 $ unrestricted		$y_1, y_2 \ge 0, y_3 $ unrestricted]
4	Maximise	$z = 3x_1 + 17x_2 + 9x_3$	Minimise	$w = -3y_1 + y_2 + y_3$
	subject to	$-x_2 + x_3 \ge 3$	subject to	$-y_1 - 3y_2 + 2y_3 \ge 3$
		$-3x_1 + 2x_3 \le 1$		$y_1 + y_3 \ge 17$
		$2x_1 + x_2 - 5x_3 = 1$		$-y_1 + 2y_2 - 5y_3 \ge 19$
		$x_1, x_2, x_3 \ge 0$		$y_1, y_2 \ge 0, y_3 $ unrestricted]
5	Maximise	$z = 2x_1 - x_2 + 3x_3$	Minimise	$w = -4y_1 + 10y_2 + 20y_3$
	subject to	$x_1 - 2x_2 + x_3 \ge 4$	subject to	$-y_1 + 2y_2 + y_3 \ge 2$
		$2x_1 + x_3 \le 10$		$2y_1 + y_3 = -1$
		$x_1 + x_2 + 3x_3 = 20$		$-y_1 + y_2 + 3y_3 \ge 3$
		$x_1, x_3 \ge 0, x_2$ unrestricted		$y_1, y_2 \ge 0, y_3 \text{ unrestricted } $

36	Minimise	$z = x_1 - 3x_2 - 2x_3$	Maximise $w = -7y_1 + 12y_2 + 10y_3$
	subject to	$3x_1 - x_2 + 2x_3 \le 7$	subject to $-3y_1 + 2y_2 - 4y_3 \le 1$
		$2x_1 - 4x_2 \ge 12$	$y_1 - 4y_2 + 3y_3 \le -3$
		$-4x_1 + 3x_2 + 8x_3 = 10$	$-2y_1 + 8y_3 = -2$
		$x_1, x_2 \ge 0, x_3 $ unrestricted	$y_1, y_2 \ge 0, y_3 $ unrestricted]
37	Maximise	$z = 2x_1 + x_2 + x_3$	<i>Minimise</i> $w = -6y_1 + 3y_2 + 10y_3$
	subject to	$x_1 + x_2 + x_3 \ge 6$	subject to $-y_1 + 3y_2 - 4y_3 \ge 2$
		$3x_1 - 2x_2 + 3x_3 = 3$	$-y_1 - 2y_2 = 1$
		$-4x_1 + x_3 \le 10$	$-y_1 + 3y_2 + y_3 \ge 1$
		$x_1, x_3 \ge 0, x_2 $ unrestricted	$y_1, y_3 \ge 0, y_2 \text{ unrestricted } $
38	Maximise	$z = 2x_1 + 9x_2 + 11x_3$	<i>Minimise</i> $w = -3y_1 + y_2 + y_3$
	subject to	$x_1 - x_2 + x_3 \ge 3$	<i>subject to</i> $-y_1 - 3y_2 + 4y_3 \ge 2$
		$-3x_1 + 2x_3 \le 1$	$y_1 + y_2 \ge 9$
		$2x_1 + x_2 - 5x_3 = 1$	$-y_1 + 2y_2 - 5y_3 \ge 11$
		$x_1, x_2, x_3 \ge 0$	$y_1, y_2 \ge 0, y_3 $ unrestricted]
		1, 2, 3	J1772 773
	Using Du	1 2 3	-
39		1 2 3	ng linear programming problem
39	Minimise	uality Solve the followi	ng linear programming problem $\begin{array}{c} 40 \\ Minimise \end{array} z = 5x_1 + 8x_2 \end{array}$
39	Minimise	vality Solve the following $z = 4x_1 + 3x_2 + 6x_3$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$
39	Minimise	vality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$
39	Minimise subject to	vality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$
39	Minimise subject to [Ans:	It is a second contained by the following con	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$
39	Minimise subject to [Ans:	vality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$ $x_2 \le 4$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$
39	Minimise subject to $[Ans: x_1 = 0, x_2 = 0]$	It is a second contained by the following con	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 0$, $x_2 = 0$ $z_{min} = 0$]
	Minimise subject to $[Ans: x_1 = 0, x_2 = Minimise]$	Itality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$ $x_2 \le 4$ $x_1, x_2, x_3 \ge 0$ $x_3 = 2$ $x_2 = 3$ $x_3 = 2$ $x_3 = 2$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 0$, $x_2 = 0$ $z_{min} = 0$]
	Minimise subject to $[Ans: x_1 = 0, x_2 = Minimise]$	Tality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$ $x_2 \le 4$ $x_1, x_2, x_3 \ge 0$ $x_3 = 2$, $x_{min} = 21$ $x_1 = 430x_1 + 460x_2 + 420x_3$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 0$, $x_2 = 0$ $z_{min} = 0$] 42 Maximise $z = 2x_1 + x_2$ subject to $2x_1 - x_2 \le 2$
	Minimise subject to $[Ans: x_1 = 0, x_2 = Minimise]$	Tality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$ $x_2 \le 4$ $x_1, x_2, x_3 \ge 0$ $x_3 = 2$, $x_{min} = 21$ $x_1 = 430x_1 + 460x_2 + 420x_3$ $x_1 + 3x_2 + 4x_3 \ge 3$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 0$, $x_2 = 0$ $z_{min} = 0$] 42 Maximise $z = 2x_1 + x_2$ subject to $2x_1 - x_2 \le 2$ $x_1 + x_2 \le 4$
	Minimise subject to $[Ans: x_1 = 0, x_2 = Minimise]$	Tality Solve the following $z = 4x_1 + 3x_2 + 6x_3$ $x_1 + x_3 \ge 2$ $x_2 + x_3 \ge 5$ $x_2 \le 4$ $x_1, x_2, x_3 \ge 0$ $x_1 = 3x_2 = 2$ $x_2 = 430x_1 + 460x_2 + 420x_3$ $x_1 + 3x_2 + 4x_3 \ge 3$ $x_1 + 4x_3 \ge 2$	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 0$, $x_2 = 0$ $z_{min} = 0$] 42 Maximise $z = 2x_1 + x_2$ subject to $2x_1 - x_2 \le 2$ $x_1 + x_2 \le 4$ $x_1 \le 3$
	Minimise subject to $[Ans: x_1 = 0, x_2 = Minimise]$	It is a solve the following contains a solution of the following contains a soluti	ng linear programming problem 40 Minimise $z = 5x_1 + 8x_2$ subject to $x_1 + x_2 \le 2$ $x_1 + 2x_2 \ge 0$ $-x_1 + 4x_2 \le 1$ $x_1, x_2 \ge 0$ [Ans: $x_1 = 0$, $x_2 = 0$ $z_{min} = 0$] 42 Maximise $z = 2x_1 + x_2$ subject to $2x_1 - x_2 \le 2$ $x_1 + x_2 \le 4$

12	M	44
43	$Maximise z = 3x_1 + 2x_2$	Minimise $z = 4x_1 + 14x_2 + 3x_3$
	subject to $2x_1 + x_2 \le 5$	subject to $-x_1 + 3x_2 + x_3 \ge 3$
	$x_1 + x_2 \le 3$	$2x_1 + 2x_2 - x_3 \ge 2$
	$x_1, x_2 \ge 0$	$x_1, x_2, x_3 \ge 0$
	[Ans: $x_1 = 2$, $x_2 = 1$, $z_{\text{max}} = 8$]	[Ans: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $z_{min} = 14$]
		[
45	$Maximise z = 5x_1 - 2x_2 + 3x_3$	46
	subject to $2x_1 + 2x_2 - x_3 \ge 2$	$Minimise z = 2x_1 + 2x_2$
	$3x_1 - 4x_2 \le 3$	subject to $2x_1 + 4x_2 \ge 1$
	$x_2 + 3x_3 \le 5$	$x_1 + 2x_2 \ge 1$
	$x_1, x_2, x_3 \ge 0$	$x_1, x_2 \ge 0$
	[Ans:	[Ans: $x_1 = 1/3$, $x_2 = 1/3$, $z_{min} = 4/3$]
	$x_1 = 23/3, x_2 = 5, x_3 = 0, z_{\text{max}} = 85/3$	[7413. $x_1 = 173, x_2 = 173, x_{\min} = 173]$
	5	
	-	Solve the following linear programming
47	problem $Minimise z = 2x_1 + 2x_2 + 4x_3$	48
7	subject to $2x_1 + 3x_2 + 5x_3 \ge 2$	Maximise $z = -3x_1 - 2x_2$
	- 1 2 3	subject to $x_1 + x_2 \ge 1$
	$3x_1 + x_2 + 7x_3 \le 3$	$x_1 + x_2 \le 7$
	$x_1 + 4x_2 + 6x_3 \le 5$	$x_1 + 2x_2 \ge 10$
	$x_1, x_2, x_3 \ge 0$ [Ans:	$x_2 \leq 3$
	$x_1 = 0, x_2 = 2/3, x_3 = 0, z_{min} = 4/3$	$x_1, x_2 \ge 0$
	1 2 2 3 11111	[Ans: $x_1 = 4$, $x_2 = 3$ $z_{\text{max}} = -18$
49	<i>Minimise</i> $z = 6x_1 + 3x_2 + 4x_3$	50
	subject to $x_1 + 6x_2 + x_3 = 10$	$Minimise z = 6x_1 + x_2$
	$2x_1 + 3x_2 + x_3 = 15$	subject to $2x_1 + x_2 \ge 3$
	$x_1, x_2, x_3 \ge 0$	$x_1 - x_2 \ge 0$
	[Ans:	$x_1, x_2 \ge 0$
	$x_1 = 20/3, x_2 = 5/9, x_3 = 0, z_{\min} = 12$	5 (Ans: $x_1 = 1$, $x_2 = 1$, $z_{min} = 7$)
52	<i>Minimise</i> $z = 2x_1 + x_2$	53
	subject to $3x_1 + x_2 \ge 3$	
	$4x_1 + 3x_2 \ge 6$	
	· -	
	$x_1 + 2x_2 \le 3$	
	$x_1, x_2 \ge 0$	

	[Ans: $x_1 = 3/5$, $x_2 = 6/5$, $x_3 = 0$, $z_{min} = 12/5$	subject to	$2x_1 + x_2 + 5$ $5x_1 + x_1, x_2$ $x_1 = 0,$	$x_{1} + 7x_{2} + 3x_{3} + 5x_{4}$ $5x_{2} + x_{3} + x_{4} \ge 8$ $5x_{3} - 6x_{4} \ge 10$ $6x_{2} - 3x_{3} + 4x_{4} \ge 12$ $x_{3}, x_{4} \ge 0$ $x_{2} = 30/11, x_{3} = 16/11, x_{4} = 0$ $58/11$
54	Minimise $z = 3x_1 + 2x_2 + x_3 + 4x_4$ subject to $2x_1 + 4x_2 + 5x_3 + x_4 \ge 10$ $3x_1 - x_2 + 7x_3 - 2x_4 \ge 2$ $5x_1 + 2x_2 + x_3 + 6x_4 \ge 15$ $x_1, x_2, x_3, x_4 \ge 0$			
	Using the method of Lagrange	's multipli	iers, s	olve the following N.L.P.P.
	Question			Ans.
55	Optimise $z = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x$ subject to $x_1 + x_2 + x_3 = 7$ $x_1, x_2, x_3 \ge 0$	$\frac{1}{2} - 4x_3$		[Ans: $x_1 = 4$, $x_2 = 2$, $x_3 = 1$, $z_{min} = -35$]
56	Optimise $z = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1$ subject to $x_1 + x_2 + x_3 = 11$ $x_1, x_2, x_3 \ge 0$	$-8x_2 - 12x_3$	+ 260	[Ans: $x_1 = 6, x_2 = 2, x_3 = 3, z_{min} = 162$]
57	Optimise $z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + $ subject to $x_1 + x_2 + x_3 = 20$ $x_1, x_2, x_3 \ge 0$	$8x_2 + 6x_3 - 1$	100	[Ans: $x_1 = 5, x_2 = 11, x_3 = 4, z_{min} = 281$] (M.U. 2004,
				06,13)

70	2 2 2	ΓΔ
58	<i>Optimise</i> $z = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$	[Ans: $x_1 = 5, x_2 = 3, x_3 = 2, z_{max} = 35$]
	$subject \ to x_1 + x_2 + x_3 = 10$	$[x_1 - 3, x_2 - 3, x_3 - 2, x_{max} - 33]$
	$x_1, x_2, x_3 \ge 0$	
<u> </u>		I A many
59	Maximise $z = 6x_1 + 8x_2 - x_1^2 - x_2^2$	[Ans: $x_1 = 35/11, x_2 = 12/11, z_{max} = 16.50$
	subject to $4x_1 + 3x_2 = 16$	$\lambda_1 = 33/11, \ \lambda_2 = 12/11, \ \lambda_{\text{max}} = 10.30$
	$3x_1 + 5x_2 = 15$	
	$x_1, x_2 \ge 0$)
	$m_1, m_2 = 0$	
60	Optimise $z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$	[Ans:
	subject to $x_1 + x_2 + x_3 = 15$	$x_1 = 33/9, x_2 = 10/9, x_3 = 8$
	$2x_1 - 5x_2 + 2x_3 = 20$	$\lambda_1 = 40/9, \lambda_2 = 52/9$ $z_{min} = 820/9$
	$x_1, x_2, x_3 \ge 0$	$\mathcal{L}_{\text{min}} = 3207$
	17 27 3	
61	Optimise $z = x_1^2 + x_2^2 + x_3^2$	[Ans:
	1 2 3	F. mos
	$subject \ to x_1 + x_2 + 3x_3 = 2$	$x_1 = 37/46, x_2 = 16/46, x_3 = 13/46$
	$5x_1 + 2x_2 + x_3 = 5$	$\lambda_1 = 2/23, \lambda_2 = 7/23 z_{\text{min}} = 0.8476$
	$x_1, x_2, x_3 \ge 0$	
62	<i>Optimise</i> $z = 2x_1^2 + 3x_2^2 + x_3^2$	[Ans:
	<i>subject to</i> $x_1 + x_2 + 2x_3 = 13$	$x_1 = 2, x_2 = 1, x_3 = 5, \lambda_1 = 4, \lambda_2 = 2$
	$2x_1 + x_2 + x_3 = 10$	$z_{\min} = 36$
	$x_1, x_2, x_3 \ge 0$	
63	<i>Optimise</i> $z = 4x_1^2 - x_2^2 - x_3^2 - 4x_1x_2$	[Ans:
	$subject \ to x_1 + x_2 + x_3 = 15$	$x_1 = 5095, x_2 = 3033, x_3 = 5.71$
	$2x_1 - x_2 + 2x_3 = 20$	$z_{\min} = 83.87$
	$x_1, x_2, x_3 \ge 0$	
	Hoine the Kulon Tuelsen genelitiens to selve	the following N.L.D.D.
64	Using the Kuhn-Tucker conditions to solve	
0-	Maximise $z = 2x_1^2 - 7x_2^2 + 12x_1x_2$	[Ans: $x_1 = 44$, $x_2 = 2$, $z_{\text{max}} = 4900$]
	$subject \ to 2x_1 + 5x_2 \le 98$	
	$x_1, x_2 \ge 0$	

(5	2 2	[Anai
65	Maximise $z = 8x_1 + 10x_2 - x_1^2 - x_2^2$	[Ans: $x_1 = 4/13, x_2 = 33/13, z_{max} = 21.3$]
	subject to $3x_1 + 2x_2 \le 6$	$x_1 - 4/13, x_2 - 33/13, z_{\text{max}} - 21.3$
	$x_1, x_2 \ge 0$	
66	<i>Maximise</i> $z = 2x_1 + x_2 - x_1^2$	[Ans: $x_1 = 2/3, x_2 = 14/9, z_{max} = 22/9$]
	subject to $2x_1 + 3x_2 \le 6$	$[x_1 - 2/3, x_2 - 14/9, z_{\text{max}} - 22/9]$
	$2x_1 + x_2 \le 4$	
	$x_1, x_2 \ge 0$	
67	<i>Maximise</i> $z = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$	[Ans: $x_1 = , x_2 = , z_{\text{max}} =]$
	subject to $2x_1 + 3x_2 \le 6$	
	$5x_1 + 2x_2 \le 10$	
	$x_1, x_2 \ge 0$	
68	Maximise $z = 4x_1 + 6x_2 - x_1^2 - x_2^2 - x_3^2$	[Ans:
	subject to $x_1 + x_2 \le 2$	$x_1 = 1/2, x_2 = 3/2, x_3 = 0, z_{\text{max}} = 17/2$
	$2x_1 + 3x_2 \le 12$	
	$x_1, x_2, x_3 \ge 0$	
69	<i>Maximise</i> $z = 2x_1 + 3x_2 - x_1^2 - x_2^2$	[Ans:
	subject to $x_1 + x_2 \le 1$	$x_1 = 1/4, x_2 = 3/4, \lambda_1 = 3/2, \lambda_2 = 0$
	$2x_1 + 3x_2 \le 6$	$z_{\text{max}} = 17/8$
	$x_1, x_2 \ge 0$	IIIIA -
70	<i>Minimise</i> $z = 7x_1^2 + 5x_2^2 - 6x_1$	[Ans:
	subject to $x_1 + 2x_2 \le 10$	
	$x_1 + 3x_2 \le 9$	
	$x_1, x_2 \ge 0$	
	solve the following N.L.P.P.	
71	Find the relative maximum or minimum of the function	X1=3, x2=5, x3=7, zmax=20
	$z = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 10x_2 - 14x_3 + 103$	N4 4 0 5 0 0
72	Find the relative maximum or minimum of the fund	X1=4, x2=5, x3=6, zmax=23
73	$z = x_1^2 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_3 + 100$ Obtain the relative maximum or minimum if any of the function	X1=1/4, x2=2/9, x3=4/9, zmax=19/12
	Obtain the relative maximum or minimum, if any, of the function $z = 2x_1 + 6x_3 + 9x_2x_3 - 4x_1^2 - 9x_2^2 - 9x_3^2$, , ,
74	Obtain the relative maximum or minimum, if any, of the function	X1=1, x2=1/9, x3=2/9, zmax=18
	$z = 2x_1 + x_3 + 3x_2x_3 - {x_1}^2 - 3{x_2}^2 - 3{x_3}^2 + 17$	