Report Practical(Assignment 3)

Team members:

Fares Ben Slimane Parviz Haggi Mohammed Loukili Jorge A. Gutierrez Ortega

April 22, 2019

Abstract

This report includes our solutions to the problems of the 3rd practical assignment. It consists of three sections: In Section 1 we implement the original GAN and WGAN with gradient penalty along with some experimentation. Section 2 is about the implementation and experimentation of the VAEs. The last section (3) includes experimentation and evaluation of the generative models' ability to generate realistic-looking images. In each case, our code is uploaded to the following Github repository [1]

Problem 1

In this problem we are using a GAN discriminator to estimate the Jensen Shannon divergence (JSD) and a the Wasserstein Distance (WD). We implement the discriminator/critic using a multi-layer perceptron that we can initialize to either have an output $y \in [0,1]$ (sigmoid activation) or an output $y \in \mathbb{R}$ (no activation). The architecture consists of two hidden layers with 64 and 128 output units respectively. We use ReLU activation function in the hidden layers.

1. In this section, we implement a function to estimate the JSD. Using our MLP with sigmoid activation at the output we optimize the following objective function:

$$\arg\max_{\theta} \left\{ \log 2 + \frac{1}{2} \mathbf{E}_{x \sim p} [\log(D_{\theta}(x))] + \frac{1}{2} \mathbf{E}_{y \sim q} \log(1 - D_{\theta}(y))] \right\}$$

At its optimum, the objective function estimates the JSD between the distributions given by p and q. An overview of the implementation can be seen below. The full code is available in the file **density_estimation.py** under our github repository [1].

```
#Implementation of the JSD

optimizer.zero_grad()

p = torch.cat((p1,torch.rand(batch_size,1)),1).to(device)

q = torch.cat((phi*torch.ones(batch_size,1)),t)

orch.rand(batch_size,1)),1).to(device)

Dp = net(p)

Dq = net(q)

loss = -(math.log(2.) + (1/2.)*torch.mean(torch.log(Dp)) +
```

```
11  (1/2.)*torch.mean(torch.log(1-Dq)))  12 loss.backward() optimizer.step()
```

2. In this section, we implement a function to estimate the WD. In this case we use our MLP without activation function, so it has an output of a real valued scalar. Here we optimize the following objective function:

$$\arg\max_{\theta} \mathbf{E}_{x \sim p}[T_{\theta}(x)] - \mathbf{E}_{y \sim q}[T_{\theta}(y)] - \lambda \mathbf{E}_{z \sim r}(||\nabla_z T_{\theta}(z)||_2 - 1)^2.$$

r is the distribution over z = ax + (1 - a)y, where $x \sim p$, $y \sim q$ and $a \sim U[0, 1]$.

At it's optimum, this objective function estimates the WD between the distributions given by p and q. The following portion of the code shows the implementation of the optimization. The full code is also available in our repository [1]

```
2 #Implementation of the WD
  optimizer.zero_grad()
p = torch.cat((p1, torch.rand(batch_size, 1)), 1).to(device)
6 q = torch.cat((phi*torch.ones(batch_size,1),
                          torch.rand(batch_size,1)),1).to(device)
_{8} Dp = net(p)
p Dq = net(q)
10 # gradient penalty
11 a = torch.rand(batch_size, 1).expand(batch_size, 2).to(device)
r = a*p + (1-a)*q
13 r.requires_grad = True
Dr = net(r)
gradients = torch.autograd.grad(outputs=Dr, inputs=r,
                   {\tt grad\_outputs=torch.ones(batch\_size\ ,1).to(device)}\;,
16
                   create_graph=True, retain_graph=True, only_inputs=True)[0]
17
loss = -(torch.mean(Dp) - torch.mean(Dq) -
             \texttt{gp\_coeff*torch.mean((gradients.norm(2, dim=1) - 1) ** 2))} \\
20 loss.backward()
optimizer.step()
```

3. Here, we have trained the above neural network with 21 combinations of $p \sim U(0,Z)$, and $q \sim U(\phi,Z)$, where $Z \sim U(0,1)$ and ϕ is a value in the interval [-1,1]. The size of the distribution is 512, and the models were trained for 5000 iterations using an SGD optimizer. For every value of ϕ we generate a distribution and measure its distance to $p \sim U(0,Z)$. We implement this for WD and JSD and plot their losses.

The full code is given in the file **density_estimation.py** under our github repository [1]. The following figures show the estimated JSD for the 21 values of ϕ :

Figure 1: JSD estimation

The estimated WD for the 21 value of ϕ is shown below:

Figure 2: WD estimation

4. In this section we estimate the unknown density f_1 using the approximation $f_0(x)D(x)/(1-D(x))$ (proven in Question 5 from the theoretical part), where f_0 is a known distribution (assumed 1-dimensional standard Gaussian in this question). The full code is provided in the file **density_estimation.py** under our github repository [1].

Using the above neural network (discriminator), we minimize the following function:

```
loss = -(torch.mean(torch.log(Dx)) + torch.mean(torch.log(1 - Dy))),
```

where Dx is the feedforward of f_1 and Dy is the feedforward of f_0 .

The following figures show the discriminator's output and the estimated density:

Figure 3: (left) Discriminator output (Right)Estimated f_1

Problem 2

A. Training VAE

We used the given architecture and ADAM with the provided learning rate. After training the model for 20 Epochs, we achieved an average value of ELBO of -93.58 on validation set. It is clearly higher than the reference value provided in question.

B.1 Evaluating log-likelihood with VAE

Here we implement the Importance Sampling procedure that takes as parameters the trained model, an array of x_i and an array of samples z_{ik} from the distribution $q(z|x_i)$. The procedure returns an array of log-likelihood $\log p(x_i)$ of the size of the mini-batches. The code snippet below demonstrates our implementation.

```
def loss_IS(model, true_x, z):

#Loop over the elements i of batch
M = true_x.shape[0]

#Save logp(x)
logp_x = np.zeros([M])

#Get mean and std from encoder
#2 Vectors of 100
mu, logvar = model.encode(true_x.to(device))
```

```
std = torch.exp(0.5*logvar)
12
13
    K = 200
14
15
    #Loop over tha batch
16
    for i in range (M):
17
      \#z_i k
18
      samples = z[i,:,:]
19
20
      #Compute the reconstructed x's from sampled z's
21
      x = model.decode(samples.to(device))
22
23
      \#Compute the p(x_i|z_ik) of x sampled from z_ik
24
      #Bernoulli dist = Apply BCE
25
      #Output an array of losses
26
      true_xi = true_x[i,:,:].view(-1, 784)
27
28
      x = x.view(-1, 784)
29
       p_x = true_xi * torch.log(x) + (1.0 - true_xi) * torch.log(1-x)
30
      p_x = torch.sum(-p_x, dim=1)
31
32
      s = std[i, :].view([std.shape[1]])
33
      m = mu[i, :]. view([std.shape[1]])
34
35
       q_z = multivariate_normal.pdf(samples.cpu().numpy(),mean=m.cpu().numpy(),
36
       cov=np.diag(s.cpu().numpy()**2))
37
      ##p(z_ik) follows a normal dist with mean 0/variance 1
38
      #(64, 100)
39
      #Normally distributed with loc=0 and scale=1
40
41
       std_1 = torch.ones(samples.shape[1])
      mu_0 = torch.zeros(samples.shape[1])
42
43
      p_z = multivariate_normal.pdf(samples.cpu().numpy(),mean=mu_0.cpu().numpy
44
       (), cov=np.diag(std_1.cpu().numpy()**2))
45
      #Multiply the probablities
46
      \#marginal\_likelihood += (p_x * p_z)/q_z
47
      #Use logsumexp trick to avoid very small prob
48
49
      \log p_x[i] = np.\log((1.0/K) * np.sum(np.exp(np.log(p_x.cpu().numpy()) + np)
50
       .\log(p_z) - np.\log(q_z)))
51
   return logp_x
```

B.2 The evaluation of the training model using the ELBO:

```
a. Validation: -93.58b. Test: -93.63
```

The evaluation of the training model using the log-likelihood:

```
a. Validation: * - 93.58
b. Test: * - 43.63
```

Below is a sample of the obtained images generated by the trained model:

Figure 4: A sample of generated images

Problem 3

We have used in this problem a similar aarchitecture for the VAE's decoder and the GAN's generator which is an MLP with 6 layers, as shown in this code snippet:

```
class Generator(nn.Module):
       def __init__(self):
           super(Generator, self).__init__()
3
4
           self.model = nn.Sequential(
               nn. Linear (latent_dim, 128),
6
               nn.ReLU()
               nn. Linear (128, 256),
               nn.ReLU()
9
10
               nn. Linear (256, 512),
               nn.ReLU()
               nn. Linear (512, 1024),
12
13
               nn.ReLU()
               nn. Linear (1024, 2048),
14
               nn.ReLU()
15
               nn.Linear(2048, int(np.prod(img_shape))),
16
17
               nn.Tanh()
18
           )
19
       def forward(self, z):
20
21
           img = self.model(z)
           img = img.view(img.shape[0], *img.shape)
22
23
           return img
```

We have decided to go with this architecture, after having tested several architectures for both models, including convolutionnal neural network. We noticed that the VAE model works

fine with a convolutional architecture whereas the GAN have not got good result with that kind of architecture.

A. Qualitative Evaluations

1. Visual samples We have generated differents samples from both models as we can see below in Figures 5 and 6. We notice that the images generated by the VAE model are very clear but a little blurry, whereas the images generated by the GAN model are more deversified, and seem more realistic.

Figure 5: Samples generated with VAE

@FARRIS PUT HERE SOME SAMPLES

Figure 6: Samples generated with GAN.

2. Learning the disentangled representation in the latent space The following figures show how the GAN has learned a desentagled representation:

Figure 7: Samples by perturbating dimensions 6 and 96

Figure 8: Samples by perturbating dimensions 25 and 75

TO BE CONTINUED BY FARRIS FOR VAE

3. Interpolation in the data space and in the latent space:

TBD BY JORGE FOR GAN AND FARRIS FOR VAE

B. Quantitative Evaluations

1. We have used the provided functions to extract the representations of the images. We compute the Frechet Inception Distance by estimating the mean and covariance of the generator's/decoder's distribution. The calculation steps are explained in the following code snippet:

```
def calculate_fid_score(sample_feature_iterator)
                            testset_feature_iterator):
       gen_features = np.array([])
       test_features = np.array([])
5
6
       print("Extracting the features ...")
      #sample_feature_iterator is a generator of a minibatch of features
      images
      #that is the last conv2d layer of the classifier of 512 features
9
      #For generated images
10
11
       for i in sample_feature_iterator: #iterate over minibatch images
12
          #Now let's get the activation of the images
13
           gen\_features = np.vstack([gen\_features, i.reshape(1,512)]) 
14
15
           if gen_features.size else i.reshape(1,512)
           gen_size+=1
           if gen_size==1000: break
17
       gen_features = gen_features.T
18
19
      #For test images
20
21
       t e s t _s i z e = 0
       for i in testset_feature_iterator: #iterate over test images
22
           test_features = np.vstack([test_features,i.reshape(1,512)])
23
24
           t e s t _s i z e +=1
           if test_size == 1000: break
25
```

```
test_features = test_features.T
27
       print ("Estimating the mean ...")
28
       #Estimating the mean of the generated images
29
       mu_gen = np.mean(gen_features,axis=1).reshape(512,1)
30
31
       #Estimating the mean of the test images
32
       mu_test = np.mean(test_features, axis=1).reshape(512,1)
33
34
       print("Estimating the variance ...")
35
       # We use the unbiased variance estimate which
36
37
       \#is given by (X-mu)(X-mu)^T/(n-1)
       gen_centered = gen_features - mu_gen
38
       test\_centered = test\_features - mu\_test
39
40
       sigma\_gen = np.matmul(gen\_centered, gen\_centered.T) / (gen\_size - 1)
41
42
       sigma_test = np.matmul(test_centered, test_centered.T) / (test_size
       -1)
43
       print("Calculating the sqrt of cov matrices product ...")
       # The sqrt of a matrix A needs A to be symetric, but if A, and B
45
       # are sysmetric A.B is not symetric necessarly.
46
       # To solve that we use this trick:
47
       \# \ \operatorname{sqrt} (\operatorname{sigma1} \ \operatorname{sigma2}) = \operatorname{sqrt} (A \ \operatorname{sigma2} \ A), \ \operatorname{where} \ A = \operatorname{sqrt} (\operatorname{sigma1})
48
       # the covariance matrix are by definition symetric
49
50
51
       # to prevent negative values in the cov product
52
       eps = np.eye(512) * 1e-5
       root_sigma_gen = linalg.sqrtm(sigma_gen + eps)
54
55
       sigmas_prod = np.matmul(root_sigma_gen,np.matmul(sigma_test,
       root_sigma_gen))
56
       # given np.matmul(root_sigma_gen,np.matmul(sigma_test,
       root_sigma_gen)) is symetric:
       root_sigmas_prod = linalg.sqrtm(sigmas_prod + eps)
57
58
       print ("Calculating the FID score ...")
59
       # Calculating the trace
60
       trace = np.trace(sigma_test + sigma_gen - 2.0 * root_sigmas_prod)
61
62
       # Calculate the squared norm between means
63
       squared_norm = np.sum((mu_test - mu_gen)**2)
64
65
       # Calculate the fid score
66
       fid = squared_norm + trace
67
68
       return fid
```

- 2. We sampled 1000 images from each generative models and calculate the FID-score as instructed. The results are:
 - For the GAN, the FID score is: 29526.37
 - $-\,$ For the VAE, the FID score is: 51355.12

This metric confirms our ascertainment that the GAN is more realistic than the VAE, given the ground truth given by the provided classifier.

References

[1] Github repository for assignment 3 https://github.com/faresbs/Representation-Learning.git