# Optimizing Loan Approvals and Revenue: A Data-Driven Approach to Lender Matching

#### **Overview:**

- 1) Analyzing variables related to loan approval
  - Exploratory EDA into approval rates
- 2) Understanding lender-specific approval rates
  - Exploratory EDA into approval rates based on the lender
- 3) Identifying strategies to match customers with lenders for maximum bounty
  - Developing a model to predict which lender a customer should apply to

#### Background

- **Context:** Bankrate, a leader in financial guidance, specializes in matching consumers with optimal personal loan options
- Challenge: Match customers with one of three lending partners (A, B, and C) to maximize loan approval rates and revenue
- **Objective:** Enhance matching strategy to increase revenue per application and improve customer satisfaction

**Understanding Approval Rates** 

# Customer who are approved for loans tend to have higher credit scores and greater gross income

| Approved                | No          | Yes         |
|-------------------------|-------------|-------------|
| Loan Amount             | \$45,638.42 | \$41,957.00 |
| FICO Score              | 621         | 697         |
| Monthly Gross Income    | \$5,698.00  | \$7,282.38  |
| Monthly Housing Payment | \$1,655.73  | \$1,600.76  |
| Bankrupt/Foreclose Rate | 2.4%        | 0.7%        |

# Customers with higher credit scores and customers that are employed have chance to be approved





# Reasonings and employment sector did not show any significant differences for loan approval rates



#### Understanding Lenders

# Most customers have been applying to lender A, whereas lender C has the highest rate of approvals



# A majority of the people with low credit scores are applying to lender A and B instead of C





# Lender C is the most lenient whereas lender B is stricter based on customer's employment status





# Lenders show a consistent pattern on who they approve when it comes to income brackets



### **Predicting Lenders from Customer Information**

### Significant variables from Chi-square and ANOVA tests when grouping by lenders

| Variable                     | Chi-square<br>d Value | p-value           |
|------------------------------|-----------------------|-------------------|
| Fico_Score_group             | 312.741997            | 7.972857e-63      |
| Employment_Status            | 8172.50945            | 0.00000e+00       |
| Employment_Sector            | 17.116521             | 6.453950e-01      |
| Reason                       | 6.903158              | 7.345547e-01      |
| Every_Bankrupt_or _Foreclose | 506.329948            | 1.126805e-11<br>0 |

| Variable                 | F-statistic | p-value      |
|--------------------------|-------------|--------------|
| Monthly_Gross_Income     | 406.568950  | 1.391180e-18 |
| Loan_Amount              | 0.054356    | 9.470948e-01 |
| Monthly_Housing_Paym ent | 1456.393213 | 0.00000e+00  |
| FICO_score               | 20.009297   | 2.050270e-09 |
| Money_Interaction        | 485.073276  | 2.242331e-21 |

<sup>\*</sup> Money\_Interaction = Monthly\_Gross\_Income x Loan\_Amount x Monthly\_Housing\_Payment

### Constructed a model for each lender to predict the probability a customer gets approved by each on test data

|          | Lender A | Lender B | Lender C |
|----------|----------|----------|----------|
| Accuracy | 88.89%   | 92.52%   | 83.95%   |
| AUC-ROC  | 0.754    | 0.866    | 0.739    |

### Model predicts that most customers should apply with lender C rather than A to maximize bounty returns





#### Customer trends with new suggested lenders

| Suggested<br>Lender | Loan<br>Amount<br>(mean) | FICO<br>Score<br>(mean) | Monthly<br>Gross<br>Income<br>(mean) | Monthly<br>Housing<br>Payment<br>(mean) | Bankrupt/<br>Foreclose<br>Rate<br>(mean) | Reason<br>(mode)            | Employmen<br>t Status<br>(mode) | Employmen<br>t Sector<br>(mode |
|---------------------|--------------------------|-------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------|---------------------------------|--------------------------------|
| A                   | \$44,763                 | 655                     | \$7,000                              | \$2,018                                 | 3.67%                                    | credit_card_<br>refinancing | full_time                       | information_<br>technology     |
| В                   | \$45,472                 | 759                     | \$8,209                              | \$1,560                                 | 0.06%                                    | debt_conslid<br>ation       | full_time                       | information_<br>technology     |
| С                   | \$45,312                 | 601                     | \$5,192                              | \$1,573                                 | 2.26%                                    | debt_conslid<br>ation       | full_time                       | information_<br>technology     |

#### Sample output with old and new suggested lenders

| ID   | Reason                    | FICO<br>Score | Employm<br>ent<br>Status | Monthly<br>Gross<br>Income | Monthly<br>Housing<br>Payment | Bankrupt<br>/Foreclos<br>ure? | Original<br>Lender | Appr<br>oved | Sugges<br>ted<br>Lender |
|------|---------------------------|---------------|--------------------------|----------------------------|-------------------------------|-------------------------------|--------------------|--------------|-------------------------|
| 5a35 | cover_an_une xpected_cost | 669           | full_time                | 5024                       | 927                           | 0                             | В                  | 0            | С                       |
| cb1f | other                     | 565           | full_time                | 8061                       | 658                           | 0                             | С                  | 0            | С                       |
| dadd | other                     | 691           | full_time                | 5103                       | 1289                          | 0                             | А                  | 1            | С                       |
| 83eb | major_purcha<br>se        | 537           | full_time                | 5367                       | 2731                          | 0                             | В                  | 0            | С                       |
| a788 | other                     | 724           | full_time                | 5800                       | 1460                          | 0                             | A                  | 0            | В                       |

### Sample output with probabilities and expected values for new suggested lenders

| ID   | Original<br>Lender | Approved | Suggested<br>Lender | P(A)  | P(B)  | P(C)  | Expected<br>Value A | Expected<br>Value B | Expected<br>Value C |
|------|--------------------|----------|---------------------|-------|-------|-------|---------------------|---------------------|---------------------|
| 5a35 | В                  | 0        | С                   | 10.9% | 7.1%  | 29.4% | \$27                | \$25                | \$44                |
| cb1f | С                  | 0        | С                   | 5.1%  | 1.0%  | 12.7% | \$13                | \$4                 | \$19                |
| dadd | A                  | 1        | С                   | 14.4% | 8.4%  | 27.3% | \$36                | \$30                | \$41                |
| 83eb | В                  | 0        | С                   | 2.8%  | 0.4%  | 6.7%  | \$7                 | \$1                 | \$10                |
| a788 | А                  | 0        | В                   | 20.4% | 14.9% | 33.0% | \$51                | \$52                | \$50                |

#### **Potential Incremental Revenue**

| Suggested Lender | Lost Revenue (Sum) | Lost Revenue (Avg) |
|------------------|--------------------|--------------------|
| A                | \$114,634          | \$6                |
| В                | \$304,701          | \$25               |
| С                | \$516,348          | \$7                |
| Total            | \$935,683          | \$9                |

#### **Real Time Considerations**

- Technological infrastructure should be able to quickly process the data especially as user numbers grow
- Compliance with data privacy regulations since working with sensitive customer data
- Continuously monitor the system's performance and regularly test model to make sure it is the most optimal

#### **Appendix**

Linear Model to Predict Revenue

### Logistic Regression Models to predict the probability of getting approved for their respective lender

#### Model A Coefficients:

|                                | Coefficient | Model B Coefficients:                                      |                      |
|--------------------------------|-------------|------------------------------------------------------------|----------------------|
| FICO_score                     | 0.975605    |                                                            | Coefficient          |
| Monthly_Gross_Income           | 0.236956    | FICO_score                                                 | 1.743350             |
| Monthly Housing Payment        | -0.003865   | Monthly_Gross_Income                                       | 0.143109             |
| Employment Status part time    | -0.215634   | Monthly_Housing_Payment                                    | -0.156599            |
| Employment Status unemployed   | 0.269352    | Employment_Status_part_time                                | -0.568005            |
| Reason credit card refinancing | 0.080156    | Employment_Status_unemployed                               | -1.760496            |
| Reason_debt_conslidation       | -0.041216   | Reason_credit_card_refinancing<br>Reason debt conslidation | 0.034552<br>0.032915 |
| Reason_home_improvement        | 0.015602    | Reason home improvement                                    | -0.055903            |
| Reason_major_purchase          | -0.014626   | Reason_major_purchase                                      | -0.009849            |
| Reason_other                   | 0.074695    | Reason_other                                               | -0.158099            |
| Ever_Bankrupt_or_Foreclose_1   | -1.303941   | <pre>Ever_Bankrupt_or_Foreclose_1</pre>                    | -1.981312            |
| Intercept                      | -2.473902   | Intercept                                                  | -3.490824            |

#### Logistic Regression Models cont...

#### Model C Coefficients:

|                                | Coefficient |
|--------------------------------|-------------|
| FICO_score                     | 0.824254    |
| Monthly_Gross_Income           | 0.045147    |
| Monthly_Housing_Payment        | -0.173811   |
| Employment_Status_part_time    | -0.519309   |
| Employment_Status_unemployed   | -1.297491   |
| Reason_credit_card_refinancing | -0.124124   |
| Reason_debt_conslidation       | -0.010395   |
| Reason_home_improvement        | -0.086545   |
| Reason_major_purchase          | -0.032936   |
| Reason_other                   | -0.208831   |
| Ever_Bankrupt_or_Foreclose_1   | -0.668067   |
| Intercept                      | -1.430821   |