MA 205

End-Semester Examination (September 2013)

Time allowed: 2 hours Maximum marks: 40

The symbol $\mathbb C$ stands for the set of complex numbers, and the symbol $\mathbb R$ stands for the set of real numbers. Except for Question 6, you must show some work on any part of a question to claim any credit.

Figures in square brackets indicate marks.

- 1. (a) Let f be analytic on $\mathbb{C} \setminus \{0\}$. If $|f(z)| \leq \sqrt{|z|} + \frac{1}{\sqrt{|z|}}$ for all $z \in \mathbb{C} \setminus \{0\}$, then show that f is constant. [4]
 - (b) Let $f(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$ where $n \geq 2$ and $0 \neq a_0, a_1, \dots, a_n \in \mathbb{C}$. If $\gamma(t) = Re^{it}$, $0 \leq t \leq 2\pi$, and all the zeros of f lie in $\{z \in \mathbb{C} : |z| < R\}$, then find

$$\int_{\gamma} \frac{z^2 f'(z)}{f(z)} dz.$$
 [2]

- 2. (a) Prove that the equation $z^5 + 15z + 1 = 0$ has precisely four solutions in the annulus $\{z \in \mathbb{C} : \frac{3}{2} < |z| < 2\}.$ [4.5]
 - (b) What is the nature of the singularity of $f(z) = \frac{\sin z^2}{z^5 \sin z}$ at z = 0? Justify your answer. [1.5]
- 3. (a) Evaluate

$$\int_0^{2\pi} \frac{d\theta}{1 - \cos\theta + \frac{1}{4}}$$

[3]

[3]

using the Residue Theorem.

- (b) Let G be a region, let $a \in G$, and let $f: G \to \mathbb{C}$ be analytic. If, for a postive integer m, $\lim_{z \to a} (z-a)^{-m} f(z)$ is a non-zero complex number, then show that f has a zero of multiplicity m at z=a.
- 4. (a) Evaluate

$$\int_0^\infty \frac{\cos x}{(x^2+9)(x^2+4)} dx$$

using the Residue Theorem.

(b) Let $\{f_n\}$ be a sequence of analytic functions defined on the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$ and such that $\{f_n\}$ converges uniformly to a function f on the annulus. Show that f is analytic on the annulus.

- 5. (a) Using the Maximum Modulus Theorem, prove the following:

 If f is a non-constant analytic function on a region G, then |f| cannot have a positive local minimum in G.
 - (b) Find the domain of analyticity of $f(z) = \log(\frac{1+iz}{1-iz})$ where log stands for the principal branch of the logarithm. [3]
- 6. State whether the following statements are True or False. A wrong answer will result in 1 negative mark.
 - (a) If γ is a closed piecewise smooth path in a region G such that the index $\eta(\gamma; w)$ of γ with respect to w is zero for every $w \in \mathbb{C} \setminus G$, then γ is null-homotopic. [2]
 - (b) If f is a function defined on an open set G such that f is differentiable at a point $a \in G$, then f(z) can be represented as a power series in (z-a) for z in an open disk with positive radius centered at a.
 - (c) For a function f analytic on $S = \{x + iy : x \in \mathbb{R}, y \in \mathbb{R}; |x| < 1, |y| < 1\}$ and continuous on $\bar{S} = \{x + iy : x \in \mathbb{R}, y \in \mathbb{R}; |x| \le 1, |y| \le 1\}$, and satisfying that |f| is bounded on the four sides $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ of the square \bar{S} respectively by 1, 2, 3, 4, it is possible to have |f(0)| > 2.
 - (d) It is not possible to find a sequence of points z_n such that $0 < |z_n| < 1/2$ and $z_n \sin(1/z_n) \to i$.
 - (e) There exists a continuous branch of \sqrt{z} on $\mathbb{C} \setminus \{\theta e^{i\theta} : 0 \le \theta < \infty\}$. [2]