ES413 - Classificador de Estilos Musicais

João Marcelo de Souza Ferreira - jmsf3 Victor Pessoa Diniz - vpd

April 3, 2025

1 Introdução

Este relatório apresenta o desenvolvimento de um classificador de estilos musicais utilizando técnicas de processamento de sinais e aprendizado de máquina. O objetivo do projeto é extrair características relevantes de arquivos de áudio e treinar um modelo capaz de identificar automaticamente o estilo musical de uma música. O dataset utilizado é o GTZAN, composto por músicas de 10 gêneros diferentes.

2 Metodologia

2.1 Pré-processamento

No pré-processamento, o sinal de áudio é dividido em pequenos segmentos chamados *frames*, que permitem capturar a evolução temporal do áudio e facilitar a extração de características.

2.2 Extração de Características

Foram escolhidas características em três domínios distintos: tempo, frequência e tempo-frequência. Essas características foram selecionadas por parecerem significativas para os áudios analisados.

2.2.1 Domínio do Tempo

- Amplitude Enveloping: Captura as variações globais da amplitude do sinal de áudio ao longo do tempo, representando a "forma" do áudio.
- Signal Energy (RMS): Representa a amplitude média do sinal, útil para identificar variações de intensidade ao longo do áudio.
- Zero-Crossing Rate (ZCR): Mede quantas vezes o sinal muda de polaridade (positivo para negativo ou vice-versa), indicando a percussividade do áudio.

2.2.2 Domínio da Frequência (Espectrais)

- Spectral Centroid: Indica o "centro de gravidade" do espectro de frequências, relacionado ao "brilho" do som.
- Spectral Bandwidth: Mede a dispersão das frequências ao redor do centroide, ajudando a diferenciar sons concentrados de sons mais espalhados.
- Spectral Contrast: Quantifica a diferença entre os picos e os vales no espectro de um sinal de áudio. Captura a variação de energia entre componentes harmônicos e não harmônicos.
- Spectral Flatness: Quantifica quão "tonal" ou "ruidoso" é o sinal. Valores próximos a 1 indicam sons parecidos com ruído, enquanto valores baixos sugerem tonalidades puras.
- Spectral Rolloff: Identifica a frequência abaixo da qual está concentrada 85% da energia do sinal, detectando a predominância de graves ou agudos.
- Band Energy Ratio: Quantifica a distribuição relativa de energia entre duas regiões de frequência de um sinal de áudio, divididas por uma frequência de corte.

2.2.3 Domínio do Tempo-Frequência

 Coeficientes MFCC: Simulam a percepção humana de som usando uma escala logarítmica (Mel). Os primeiros coeficientes capturam informações gerais de energia, enquanto os demais representam detalhes espectrais mais refinados.

2.3 Modelo de Classificação

Foram testados diferentes modelos para a classificação dos estilos musicais, incluindo:

- Regressão Logística
- Random Forest
- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)
- Gradient Boosting

Foram testados Regressão Logística, Random Forest, SVM, KNN e Gradient Boosting. O modelo SVM foi escolhido por maximizar a margem entre as classes e lidar bem com dados de alta dimensionalidade.

3 Resultados e Discussão

Os dois melhores modelos foram **SVM** e **Random Forest**, cujas acurácias são apresentadas na Tabela 1.

O SVM apresentou melhor desempenho devido à sua habilidade de encontrar hiperplanos ótimos de separação. A matriz de confusão, ilustrada na Figura 1, indica os erros mais comuns entre gêneros.

Modelo	Acurácia
SVM	78%
Random Forest	69%

Table 1: Acurácias dos modelos testados.

Figure 1: Matriz de confusão do classificador SVM.

4 Conclusão

O classificador de estilos musicais utilizou características extraídas de sinais de áudio para treinar modelos de aprendizado de máquina. O SVM obteve a melhor acurácia (78%), seguido pelo Random Forest (69%).

Os principais desafios foram a escolha de características e a limitação do dataset. Trabalhos futuros podem explorar redes neurais profundas e técnicas avançadas de engenharia de características para melhorar a precisão do modelo.