

5. Bayesian Decision Theory

See: Duda and Hart Chapter 2.

5.1 The Bayes Classifier

- Simple model:
 - No posterior knowledge (i.e. no measurements)
 - Two classes

```
\omega_1 = "sea bass" \omega_2 = "salmon"
```

- Given: $P(\omega_1)$ and $P(\omega_2)$
- Goal:
 - Minimize the number of fish that get the wrong label

How would you set up a decision rule?

Sea bass Salmon

 $P(\omega_1)$ $P(\omega_2)$

Classify every fish as

Incorrectly classified

Salmon

 $P(\omega_1)$

 $P(\omega_2)$

Classify every fish as salmon

Incorrectly classified

Sea bass

Salmon

 $P(\omega_1)$

 $P(\omega_2)$

Classify every fish as "see bass"

Smaller number of fish with wrong label

Generalization

Minimize number of wrong labels

 →pick class with highest probability

Formal notation:

$$\overline{\omega_i} = \underset{\omega_k}{\operatorname{arg\,max}} P(\omega_k)$$

Available Measurements x

- Feature vector x from measurement
- Probabilities depend on x $P(\omega_k \mid x)$
- Definition conditional probability:

$$P(\omega_k \mid x) = \frac{P(\omega_k, x)}{P(x)}$$

Bayes Decision Rule: Draft Version

Bayes decision rule

$$\omega_i = \underset{\omega_k}{\operatorname{arg\,max}} P(\omega_k \mid x)$$

Ugly: usually x is measured for a given class ω_k

Rewrite Bayes Decision Rule

$$\overline{\omega_i} = \operatorname*{arg\,max} P(\omega_k \mid x)$$

$$= \underset{\omega_k}{\operatorname{arg\,max}} \frac{P(x \mid \omega_k) P(\omega_k)}{P(x)}$$

$$= \underset{\omega_k}{\operatorname{arg\,max}} P(x \mid \omega_k) P(\omega_k)$$

Use definition of cond. probability

$$P(\omega_k \mid x) = \frac{P(\omega_k, x)}{P(x)}$$
$$= \frac{P(x \mid \omega_k)P(\omega_k)}{P(x)}$$

P(x) does not affect decision

Bayes Decision Rule

$$\omega_i = \underset{\omega_k}{\operatorname{arg\,max}} P(x \mid \omega_k) P(\omega_k)$$

Terminology

Prior: $P(\omega_k)$

Posterior: $P(\omega_k \mid x)$

Cost of Making Errors

- The fish is a "salmon"
- You classify it as a "sea bass"
- You sell it as a "sea bass"
- → angry customer

Cost Making Errors

- The fish is a "sea bass"
- You classify it as a "salmon"
- You sell it as a "salmon"
- → lost revenue

Loss Function

		Fish is a	
		Sea bass	Salmon
Sold as	Sea bass	0\$	2\$
	Salmon	1\$	0\$

Loss Function and Conditional Risk

- True classes $\{\omega_1, \omega_2, ..., \omega_c\}$
- •Actions taken $\{\alpha_1, \alpha_2, ..., \alpha_a\}$
- •Loss function $\lambda(\alpha_i \mid \omega_j)$
- •Conditional risk

$$R(\alpha_i \mid x) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$

How to include p(x) to estimate overall loss/risk?

Overall Risk

- Decision rule: map feature vector to action
 - $x \mapsto \alpha$
- Goal:

Determine decision rule that minimizes overall risk:

$$R = \int R(\alpha(x) \mid x) p(x) dx$$

 \mapsto to minimize R, pick the action that minimizes the conditional risk for a specific x

Example: two-class problem (1)

- Classes: ω_1 , ω_2
- Actions: α_1 , α_2
- For simplicity: loss: $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$
- Conditional risk:

$$R(\alpha_1 \mid x) = \lambda_{11} P(\omega_1 \mid x) + \lambda_{12} P(\omega_2 \mid x)$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

Example: two-class problem (2)

- Example actions
 - $-\alpha_1$: decide that the class is ω_1
 - $-\alpha_2$: decide that the class is ω_2
- decide that the class is ω_1 if:

$$R(\alpha_{1} \mid x) < R(\alpha_{2} \mid x) \Rightarrow$$

$$\lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x) < \lambda_{21}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x) \Rightarrow$$

$$(\lambda_{12} - \lambda_{22})P(\omega_{2} \mid x) < (\lambda_{21} - \lambda_{11})P(\omega_{1} \mid x)$$

Example: two-class problem (3)

• Rephrase:

$$\frac{P(x \mid \omega_1)}{P(x \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

 \mapsto tune threshold θ to tune overall risk (loss)

Minimum Error Rate Classification

General case difficult to handle Important special case: minimze the number of errors

Actions:

 α_i : decide that the class is ω_i

"Zero-one-loss"-function

$$\lambda(a_i \mid \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad i, j = 1, ..., c$$

Conditional Risk for zero-one Loss Function

$$R(\alpha_i \mid x) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$

How can you simplify this?

$$= \sum_{j=1, i\neq j}^{c} P(\boldsymbol{\omega}_{j} \mid \boldsymbol{x})$$

Def. of zero-one loss function

$$=1-P(\omega_i\mid x)$$

Normalization of probability

Minimum Error Rate/ Bayes Decision Rule

• Pick i that minimizes risk:

$$R(\alpha_i \mid x) = 1 - P(\omega_i \mid x)$$

pick i that maximizes conditional probability

$$P(\omega_i \mid x)$$

→ Bayes decision rule

Example: two-class problem (3)

- Minimum error rate applied to example
- Action α_1 : decide that the class is ω_1
- Take this action if

$$(\lambda_{12} - \lambda_{22}) P(\omega_2 \mid x) < (\lambda_{21} - \lambda_{11}) P(\omega_1 \mid x) \implies P(\omega_2 \mid x) < P(\omega_1 \mid x)$$

→ Recover Bayes Decision Rule

Summary 5.1. The Bayes Classifier

Bayes classifier

$$\overline{\omega_i} = \underset{\omega_k}{\operatorname{arg\,max}} P(x \mid \omega_k) P(\omega_k)$$

- Minimizes number of classification errors
- Generalization: minimize loss ("risk")

5.2 Normal Distributions

Motivation

- Try to describe probability of (multidimensional) continuous data
- Normal distribution very often found in nature

Some Definitions from Statistics

Probability density

• Expectation value

$$\mathcal{E}[f(x)] = \int_{-\infty}^{\infty} f(x) p(x)$$

Basic Expectation Values

- Normalization $1 = \mathcal{E}[1] = \int_{-\infty}^{\infty} p(x) dx$
- Mean $\mu = \mathcal{E}[x] = \int_{-\infty}^{\infty} x \ p(x) dx$
- Variance $\sigma^2 = E[(x-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 p(x) dx$

(σ is called standard deviation)

• Entropy $H = \mathcal{E}[-\ln p(x)] = \int_{-\infty}^{\infty} [-\ln p(x)] p(x) dx = -\int_{-\infty}^{\infty} p(x) \ln p(x) dx$

One Dimensional Gaussian Density (Univariate Density)

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Terminology: "Normal Distribution" is a different term for Gaussian Densities \mapsto maple

Decision Surface in 1 Dimension (identical variance, prior)

Decision Surface in 1 Dimension: Changing the Prior

Can you think of a case with two decision boundaries?

General Case: 1 Dimension

Excursion: Reminder of Linear Algebra

Vector (column-vector)

- A vector is a kind of multidimensional arrow
- In general

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix}$$

is called an N-dimensional vector

Vector: Example

• Example
$$\vec{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 is a 2-dimensional vector

- A matrix is a rectangular scheme of numbers
- In general

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{M1} & \dots & \dots & a_{MN} \end{pmatrix}$$

is called an MxN matrix

•Very often M=N

Matrix: Example

• A 2x2 matrix

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$

Multiplication of a Matrix with a Vector

Definition:

$$\vec{A} \vec{x} = \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{pmatrix}$$

with
$$y_i = \sum_{j=1}^{N} a_{ij} x_j$$

Example

Given

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

Multiplication

$$\vec{y} = A\vec{x} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

Transposed of a vector: row vector

Given a column vector

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix}$$

we can create a row vector by transposing the column vector:

$$\vec{x} = (x_1 \quad x_2 \quad \dots \quad x_N)$$

Multiplication of a Row Vector with a 💹 Matrix

Definition:

$$\overrightarrow{x} A = \overrightarrow{y} = (y_1 \quad y_2 \quad \dots \quad y_N)$$

with
$$y_i = \sum_{j=1}^{N} x_j a_{(ji)}$$

Example

Given

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

Multiplication

$$\vec{y} = \vec{x} A = (3 - 1) \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} = (3 \ 1)$$

Inner Product of Vectors

Definition:

$$\vec{a}^t \vec{b} = \sum_{i=1}^N a_i b_i$$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix}$$

•Example:
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{pmatrix} \qquad \vec{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_N \end{pmatrix}$$

Hence:

$$(\vec{x} - \vec{\mu})^t (\vec{x} - \vec{\mu}) = \sum_{i=1}^N (x_i - \mu_i)^2$$
 (Euclidian Distance)

Multiplication of two Matrices

$$C = AB = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & \dots & \dots & a_{NN} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1N} \\ b_{21} & b_{22} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ b_{N1} & \dots & \dots & b_{NN} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1N} \\ c_{21} & c_{22} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & \dots & \dots & c_{NN} \end{pmatrix}$$

with
$$c_{ij} = \sum_{k=1}^{N} a_{ik} b_{ki}$$

Note: in general $AB \neq BA$

Unit Matrix/Inverse of a Matrix/Determinant

Unit Matrix

$$1 = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \dots & \dots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$
 Inverse satisfies

Inverse: matrix A⁻¹ that satisfies

$$AA^{-1} = 1$$

Determinant |A|: kind of an absolute value for matrices

More Examples

-> maple

Multi Dimensional Gaussian Density (Multivariate Density)

→ blackboard

5.3.1 Discriminant Functions for Normal Distributions

Decision Boundaries in 2d

-> maple script

Discriminant Functions for the Normal Density

• We saw that the minimum error-rate classification can be achieved by the discriminant function

$$g_i(x) = \ln P(x / \omega_i) + \ln P(\omega_i)$$

Case of multivariate normal

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t} \sum_{i=1}^{-1} (x - \mu_{i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(\omega_{i})$$

Decision Surface in 2+3 Dimensions for identical and uniform variance (Σ_i

$$=\sigma^2 1$$

Can drop covariance term from all discriminant functions

 $g_i(x) = w_i^t x + w_{i0}$ (linear discriminant function) where:

$$w_{i} = \frac{\mu_{i}}{\sigma^{2}}; \ w_{i0} = -\frac{1}{2\sigma^{2}}\mu_{i}^{t}\mu_{i} + \ln P(\omega_{i})$$

(ω_{i0} is called the threshold for the ith category!)

Terminology "linear machine"

• A classifier that uses linear discriminant functions is called "a linear machine"

• The decision surfaces for a linear machine are pieces of hyperplanes defined by:

$$g_i(x) = g_j(x)$$

Decision Boundary

• The hyperplane separating R_i and R_j

$$x_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\sigma^{2}}{\|\mu_{i} - \mu_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mu_{i} - \mu_{j})$$

always orthogonal to the line linking the means!

if
$$P(\omega_i) = P(\omega_j)$$
 then $x_0 = \frac{1}{2}(\mu_i + \mu_j)$

(identical and uniform variance, identical prior)

Decision Surface in 3 Dimensions (identical and uniform variance,

identical prior)

Decision Surface in 2 Dimensions: Changing the Prior

Decision Surface in 3 Dimensions: Changing the Prior

Covariance of all classes are identical but arbitrary! $(\Sigma_i = \Sigma)$

• Hyperplane separating R_i and R_i

$$x_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\ln[P(\omega_{i})/P(\omega_{j})]}{(\mu_{i} - \mu_{j})^{t} \Sigma^{-1}(\mu_{i} - \mu_{j})}.(\mu_{i} - \mu_{j})$$

(the hyperplane separating R_i and R_i is generally not orthogonal to the line between the means!)

Arbitrary Variance; Identical for all Gaussians

Arbitrary Variance; Identical for all Gaussians

where:

Covariance matrices are different for each category (Σ_i = arbitrary)

 $g_{i}(x) = x^{t}W_{i}x + w_{i}^{t}x = w_{i0}$

 $W_{i0} = -\frac{1}{2}\mu_i^t \Sigma_i^{-1} \mu_i - \frac{1}{2} ln |\Sigma_i| + ln P(\omega_i)$

ere:
$$W_i = -\frac{1}{2} \Sigma_i^{-1}$$

$$w_i = \Sigma_i^{-1} \mu_i$$

Quadrics in 3 Dimensions

Quadrics in 3 Dimensions

ā_I

parabolic cylinder

hyperbolic paraboloid

hyperbolic cylinder

elliptic paraboloid

elliptic cylinder

ellipsoid

General Case: 2 Dimensions

General Case: 2 Dimensions

General Case: 2 Dimensions

General Case: 3 Dimensions

General Case: 3 Dimensions

General Case: 2 Dimensions; many Classes

Summary

- Decision boundaries for normal distributions:
 - Lines
 - Planes
 - Other quadrics