

Sharif University of Technology Department of Computer Engineering

Digital System Design Introduction

Siavash Bayat-Sarmadi

Syllabus

- In general
 - Verilog hardware description language (HDL)
 - A glance at FPGAs
 - ASM charts
 - Digital design techniques and considerations
 - Digital design verification (system Verilog)

Texts and Refs

- Verilog HDL: A Guide to Digital Design and Synthesis, 2nd Edition
 - By: Samir Palnitkar

http://asic-world.com/

Course Content

- Intro
- Hierarchical modeling concepts
- Basic concepts
- Module and ports
- Gate level modeling
- Dataflow modeling
- Behavioral modeling
- ASM
- Tasks and functions
- Synthesis
- FSM
- FPGA
- Metastability & CDC
- □ STA

Tools

- Modelsim
 - Mentor Graphics
 - A simulation tool
- - Xilinx
 - A synthesis tool
- VM
 - Modelsim + Ubuntu 16.04
 - A platform for verification

Evaluation

■ Midterm Exam: 20% (4 marks)

□ Practical Exams: 30% (6 marks)

□ Final Exam: 30% (6 marks)

Assignments: 20% (4 marks)

□ Total: 100%(20 marks)

□ A tentative contest +10% (2 marks)

Exam Dates and Time

■ Midterm Exam: 23 Aban 1398

□ Practical Exam 1: 7 Azar 1398

□ Practical Exam 2: 21 Azar 1398

Practical Exam 3: 12 Dey 1398

□ Final Exam: 1 Bahman 1398

Course Project

□ Learn and develop a simple 16-bit RISC processor from scratch → In 10 steps

Review and use the course topics in a real

Project

Tutorials

- Head TA:
 - Farhad Taheri(farhadtaheri@ce)
- Course Website
 - Quera (quera.ir)
 - Password: dsd-fall-98

- Tutorial Date/Time/Room (once required)
 - Tuesdays/ 12-13:30/ Room 201

Thanks!

Evolution of Digital Circuits

- Vacuum tubes
- Transistors
- Small Scale Integration (SSI)
- Medium Scale Integration (MSI)
 - 100s of transistors on a chip
- Large Scale Integration (LSI)
 - □ 1000s
- Very Large Scale Integration (VLSI)
 - **■** 10,000s
 - Computer-Aided Design (CAD)

Emergence of HDL

- To describe electronic circuits, mainly digital
 - Design
 - Simulation
 - Synthesis

Verilog HDL

- Verifying Logic
- Originated at Automated Integrated Design Systems (later renamed as Gateway Design Automation) in 1985
- Designed by Phil Moorby
- IEEE standard 1995
- Syntax based on C programming language

VHDL

- VHSIC HDL: Very High Speed Integrated Circuit Hardware Description Language
- By the U.S Department of Defense
 - to document the behavior of the ASICs
- VHDL 7.2 in 1985
- IEEE standard in 1987
- ANSI standard in 1988
- Syntax based on Ada programming language

Verilog vs. VHDL

Verilog

- Designed for hardware design
- User defined data types are not allowed
- Low level construct
- No concept of a library
- Powerful PLI
- Case-sensitive
- More popular in USA

VHDL

- Desgined for documentation
- User defined data types are allowed
- High level construct
- Library
- No PLI
- Not case-sensitive
- More popular in Europe

Verilog

Hello World!!!

```
module hello_world;
initial begin
$display(
"Hello World");
#10 $finish;
end
endmodule
```

entity hello world is end; architecture hello world of hello world is begin stimulus:process Begin assert flase report "Hello World" severity note; wait; end process stimulus; end hello world;

VHDL

www.asic-world.com

Other HDL example

- Digital: ABEL, AHDL, etc.
- Analog: Verilog-AMS, HDL-A, etc.

Level of Modelling in Verilog

- Behavioral level
 - Functionality
 - No hardware details
- Dataflow level
 - How data processed
- Gate level
 - Wiring between gates
- Switch level
 - Using transistors

RTL, a mixture of behavioral and dataflow descriptions

HDL Considerations

- Early verification
- Design hierarchy
- Independence of fabrication technology
- Concurrency
- Timing

VLSI Design Flow

