2. Vehicle Generations in Excel

2020112921 刘欣豪

POISSON

Define the mean = 3, then the probability-distribution (Keep three decimals) is

0	1	2	3	4	5	6	7	8	9	10
0.050	0.199	0.423	0.647	0.815	0.916	0.966	0.988	0.996	0.999	1.000

I generate 1000 random numbers between 0 and 1, and choose the number what they belong to. Now results are as follows:

num	2	3	4	1	5	6	0	7	9	8
frequency	0.245	0.210	0.178	0.133	0.092	0.056	0.051	0.020	0.008	0.007

High fit

NED

Define the μ = 0.3 then the probability-distribution (Keep three decimals) is

0	1	2	3	4	5	6	7	8	9	10
0.000	0.259	0.451	0.593	0.699	0.777	0.835	0.878	0.909	0.933	0.950

I generate 1000 random numbers between 0 and 1, and choose the number

what they belong to. Now results are as follows:

num	0	1	2	3	4	5	6	7	8	9
frequency	0	256	204	132	96	79	65	45	23	23

