PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-230419

(43)Date of publication of application: 22.08.2000

(51)Int.CI.

F01N 3/24 F01N 3/08

F01N 3/20 F02D 41/14

(21)Application number: 11-030688

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

08.02.1999

(72)Inventor: HIROTA SHINYA

TANAKA TOSHIAKI

COP)

(54) EXHAUST EMISSION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

(57)Abstract:

PROBLEM TO BE SOLVED: To execute a reviving process for the SOx absorbing agent at an appropriate time in an exhaust emission control device comprising an SOx absorbing agent upstream of an NOx catalyst.

SOLUTION: An SOx sensor 24 and an NOx catalyst 20 are provided downstream of an SOx absorbing agent 17. At the time of rich spike immediately after reviving the SOx absorbing agent 17, the SOx concentration in the exhaust gas downstream of the SOx absorbing agent 17 is detected by the SOx sensor 24. Based on the size of the SOx concentration, the state (degree) of the thermal deterioration of the SOx absorbing agent 17 is judged so that frequency of reviving the SOx absorbing agent 17 is increased according to the progress of the thermal deterioration.

LEGAL STATUS

[Date of request for examination]

06.09.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3514152

[Date of registration]

23.01.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] (b) The SOx absorbent which emits SOx absorbed when the oxygen density of the exhaust gas which absorbs SOx and flows when the air-fuel ratio of the exhaust gas which is arranged in the flueway of the internal combustion engine in which lean combustion is possible, and flows is Lean was low, (b) The NOx absorbent which emits NOx absorbed when the oxygen density of the exhaust gas which absorbs NOx and flows when the air-fuel ratio of the exhaust gas which is arranged in said down-stream flueway and flows rather than said SOx absorbent is Lean was low, An exhaust air Air Fuel Ratio Control means to control the air-fuel ratio of exhaust gas that absorption and bleedoff of NOx in said NOx absorbent should be controlled, (Ha) (d) In the exhaust emission control device of the internal combustion engine having a playback means to reduce the oxygen density of exhaust gas in order to make SOx emit from said SOx absorbent and to reproduce a SOx absorbent (e) A SOx concentration detection means by which said exhaust air Air Fuel Ratio Control means detects the SOx concentration of exhaust gas [in / for the air-fuel ratio of exhaust gas / the lower stream of a river of SUTOIKI or said SOx absorbent when controlling richly], (**) A degradation judging means to judge the condition of degradation of said SOx absorbent based on the SOx concentration of the exhaust gas detected with said SOx concentration detection means, (g) Exhaust emission control device of the internal combustion engine characterized by having a playback frequency modification means to change the playback frequency of the SOx absorbent by said playback means according to the condition of degradation of the SOx absorbent judged by said degradation judging means.

[Claim 2] The degradation judging of the SOx absorbent by said degradation judging means is the exhaust emission control device of the internal combustion engine according to claim 1 characterized by performing at a stage near immediately after playback termination of a SOx absorbent.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the exhaust emission control device which can purify nitrogen oxides (NOx) from the exhaust gas discharged by the internal combustion engine in which lean combustion is possible.

[0002]

[Description of the Prior Art] As an exhaust emission control device which purifies NOx from the exhaust gas discharged by the internal combustion engine in which lean combustion is possible, there is a NOx absorbent represented by the occlusion reduction type NOx catalyst. A NOx absorbent absorbs NOx, when the air-fuel ratio of inflow exhaust gas is Lean (namely, under a hyperoxia ambient atmosphere). Emit NOx absorbed when the oxygen density of inflow exhaust gas fell, and the occlusion reduction type NOx catalyst which is a kind of this NOx absorbent It is the catalyst which emits NOx which absorbed NOx when the air-fuel ratio of inflow exhaust gas was Lean (namely, under a hyperoxia ambient atmosphere), and was absorbed when the oxygen density of inflow exhaust gas fell, and returns to N2.

[0003] If this occlusion reduction type NOx catalyst (it may only be hereafter called a catalyst or a NOx catalyst) is arranged to the flueway of the internal combustion engine in which lean combustion is possible When the exhaust gas of the Lean air-fuel ratio flows, NOx in exhaust gas is absorbed by the catalyst. When the exhaust gas of SUTOIKI (theoretical air fuel ratio) or a rich air-fuel ratio flows, NOx absorbed by the catalyst is emitted as NO2, and it is further returned to N2 by reduction components, such as HC in exhaust gas, and CO, namely, NOx is purified.

[0004] By the way, if sulfur content is contained in the fuel for an internal combustion engine and a fuel is generally burned with an internal combustion engine, the sulfur content in a fuel will burn and sulfur oxides (SOx), such as SO2 and SO3, will be generated. Since said occlusion reduction type NOx catalyst absorbs SOx in exhaust gas by the same mechanism as performing absorption of NOx, if this NOx catalyst is arranged to an internal combustion engine's flueway, not only NOx but SOx will be absorbed by this NOx catalyst.

[0005] However, SOx absorbed by said NOx catalyst is easy to tend be accumulated into a catalyst that it decomposes and is hard to be emitted under the same conditions as performing bleedoff and reduction of NOx from said NOx catalyst in order to form a stable sulfate with time amount progress. If the SOx accumulated dose within a NOx catalyst increases, the NOx absorption capacity of a catalyst will decrease, it will become impossible to fully remove NOx in exhaust gas, and NOx clarification effectiveness will fall. This is the so-called SOx poisoning.

[0006] Then, in order to continue at a long period of time and to maintain highly the NOx decontamination capacity of an occlusion reduction type NOx catalyst, the exhaust emission control device which aimed at prevention of SOx poisoning for the upstream rather than the NOx catalyst as the SOx absorbent which mainly absorbs SOx in exhaust gas is arranged and SOx did not flow into the NOx catalyst is developed. [0007] When the air-fuel ratio of inflow gas is Lean, it emits SOx which absorbed SOx, and was absorbed when the oxygen density of inflow gas was low as SO2, but since said SOx absorbent has a limitation also in the SOx absorption capacity of this SOx absorbent, before a SOx absorbent is saturated with SOx, it needs to perform the processing to which SOx is made to emit from a SOx absorbent, i.e., regeneration. [0008] About the regeneration technique of a SOx absorbent, it is indicated by the patent official report of a patent number No. 2605580, for example. In order to make SOx absorbed by the SOx absorbent emit according to this official report, it is necessary to make the air-fuel ratio of inflow exhaust gas into SUTOIKI or Rich, and to reduce an oxygen density and, and the one where the temperature of a SOx

absorbent is higher is supposed that SOx is easy to be emitted.

[0009] Although, as for playback exhaust air of a SOx absorbent, SOx concentration naturally becomes high, since this playback exhaust air is SUTOIKI or Rich at an elevated temperature, even if it passes playback exhaust air for a NOx catalyst, SOx under playback exhaust air cannot be easily absorbed by the NOx catalyst, will be bypassed as it is and will be discharged.

[0010] in addition, with the regeneration technique indicated by said official report While preparing the bypass path which branches from the exhaust pipe which connects a SOx absorbent and a NOx catalyst, and bypasses a NOx catalyst To any exhaust gas's being passed between a NOx catalyst and a bypass path and the exhaust air selector valve changed selectively are prepared. As exhaust gas is flowed to a bypass path by the exhaust air selector valve, it is made not to flow for a NOx catalyst during the regeneration activation to which SOx is made to emit from a SOx absorbent. While not performing regeneration, he is trying to prevent certainly that SOx is absorbed by the NOx catalyst by making it not flow in a bypass path, as exhaust gas is flowed for a NOx catalyst by the exhaust air selector valve.

[Problem(s) to be Solved by the Invention] Conventionally, it has judged whether it reached by addition of an internal combustion engine's operational status anyway at the playback stage, such as considering the playback stage of a SOx absorbent as the time of integrating the amount of SOx discharged by the internal combustion engine, and an integrated value turning into the set point, or considering it as the time of an internal combustion engine's operation time reaching the setup time.

[0012] However, since it is always exposed to the heat of exhaust gas, heat deterioration arises with time, and the phenomenon in which the SOx absorption capacity of a SOx absorbent decreases according to progress of this heat deterioration produces a SOx absorbent. Therefore, when heat deterioration advanced, in spite of having been the time when a SOx absorbent should have been reproduced actually, it was judged with having not reached at a playback stage, and there was a possibility that playback of a SOx absorbent might be overdue.

[0013] Moreover, it is checked by these people from the following events that SOx will consist is easy to be emitted of a SOx absorbent if the heat deterioration of a SOx absorbent advances. When the heat deterioration of a SOx absorbent is hardly progressing and only a short time makes the air-fuel ratio of exhaust gas SUTOIKI or Rich (this is hereafter called rich spike) in order to make NOx emit from a NOx catalyst (in spike), even if the exhaust gas flows to a SOx absorbent, since a very short time, SOx is not emitted from a SOx absorbent. However, when the heat deterioration of a SOx absorbent advances and the exhaust gas of said rich spike flows to a SOx absorbent also although it is called a short time even if, SOx comes to be emitted from a SOx absorbent. Consequently, there was a possibility that SOx might flow into a NOx catalyst and might produce SOx poisoning.

[0014] The technical problem which this invention is made in view of the trouble of such a Prior art, and this invention tends to solve is to perform playback of a SOx absorbent at a proper stage, and prevent SOx poisoning of a NOx adsorbent.

[0015]

[Means for Solving the Problem] This invention adopted the following means, in order to solve said technical problem. The SOx absorbent which emits SOx absorbed when the oxygen density of this invention of the exhaust gas which absorbs SOx and flows when the air-fuel ratio of the exhaust gas which is arranged in the flueway of the internal combustion engine in which (b) lean combustion is possible, and flows is Lean was low, (b) The NOx absorbent which emits NOx absorbed when the oxygen density of the exhaust gas which absorbs NOx and flows when the air-fuel ratio of the exhaust gas which is arranged in said downstream flueway and flows rather than said SOx absorbent is Lean was low, An exhaust air Air Fuel Ratio Control means to control the air-fuel ratio of exhaust gas that absorption and bleedoff of NOx in said NOx absorbent should be controlled, (Ha) (d) In the exhaust emission control device of the internal combustion engine having a playback means to reduce the oxygen density of exhaust gas in order to make SOx emit from said SOx absorbent and to reproduce a SOx absorbent (e) A SOx concentration detection means by which said exhaust air Air Fuel Ratio Control means detects the SOx concentration of exhaust gas [in / for the air-fuel ratio of exhaust gas / the lower stream of a river of SUTOIKI or said SOx absorbent when controlling richly], (**) A degradation judging means to judge the condition of degradation of said SOx absorbent based on the SOx concentration of the exhaust gas detected with said SOx concentration detection means, (g) It is characterized by having a playback frequency modification means to change the playback frequency of the SOx absorbent by said playback means according to the condition of degradation of the SOx absorbent judged by said degradation judging means.

[0016] In the exhaust emission control device of the internal combustion engine of this invention which consists of the above-mentioned configuration, while the exhaust air Air Fuel Ratio Control means is controlling the air-fuel ratio of exhaust gas to Lean, NOx in exhaust gas is absorbed by the NOx absorbent, and while the exhaust air Air Fuel Ratio Control means is reducing the oxygen density of exhaust gas SUTOIKI or by controlling richly in the air-fuel ratio of exhaust gas, NOx absorbed by the NOx absorbent is emitted. And an exhaust air Air Fuel Ratio Control means detects the air-fuel ratio of exhaust gas, SUTOIKI or while controlling richly, a SOx concentration detection means detects the SOx concentration of the exhaust gas of a SOx absorbent lower stream of a river, and based on the detected SOx concentration, a degradation judging means judges the degradation condition (degradation extent) of a SOx absorbent. Furthermore, according to the judgment result of a degradation judging means, a playback frequency modification means changes the playback frequency of a SOx absorbent, and a playback means reproduces a SOx absorbent by the playback frequency after modification. Thereby, also when the SOx absorbent carries out SOx poisoning while coming to be reproduced at a proper stage.

[0017] In the exhaust emission control device of the internal combustion engine concerning this invention, the lean burn gasoline engine and diesel power plant of the direct injection in a cylinder can be illustrated as an internal combustion engine in which lean combustion is possible.

[0018] In this invention, the air-fuel ratio of exhaust gas means the ratio of the air supplied in the flueway in the upstream rather than the engine inhalation-of-air path and the SOx absorbent, and a fuel (hydrocarbon). [0019] In the exhaust emission control device of the internal combustion engine concerning this invention, what ****(ed) at least one chosen from Copper Cu, Iron Fe, Manganese Mn, transition metals like Nickel nickel, Sodium Na, Titanium Ti, and Lithium Li as a SOx absorbent on the support which consists of an alumina can be illustrated. Moreover, in order to carry out SOx that it is easy to be absorbed in a SOx absorbent in the form of sulfate ion SO42-, it is desirable to make Platinum Pt, Palladium Pd, or Rhodium Rh **** on the support of a SOx absorbent.

[0020] In the exhaust emission control device of the internal combustion engine concerning this invention, an occlusion reduction type NOx catalyst can be illustrated as a NOx absorbent. An occlusion reduction type NOx catalyst is a catalyst which emits NOx absorbed when the air-fuel ratio of the flowing exhaust gas was Lean, NOx was absorbed and the oxygen density in the flowing exhaust gas fell, and returns to N2. This occlusion reduction type NOx catalyst can make an alumina support, and can illustrate the thing with which it comes to support at least one chosen from Potassium K, Sodium Na, Lithium Li, alkali metal like Caesium Cs, Barium Ba, an alkaline earth like Calcium calcium, Lanthanum La, and rare earth like Yttrium Y, and noble metals like Platinum Pt on this support.

[0021] In the exhaust emission control device of the internal combustion engine concerning this invention, when an internal combustion engine is a gasoline engine, a means to control the air-fuel ratio of the gaseous mixture supplied to a combustion chamber can realize an exhaust air Air Fuel Ratio Control means and a playback means. Moreover, when an internal combustion engine is a diesel power plant, a means to control the so-called subinjection which injects a fuel by the intake stroke, the expansion stroke, or the exhaust stroke, or the means which carries out supply control of the reducing agent into an upstream flueway rather than a SOx absorbent can realize an exhaust air Air Fuel Ratio Control means and a playback means. [0022] In the exhaust emission control device of the internal combustion engine concerning this invention, the judgment of the degradation condition of the SOx absorbent by the degradation judging means judges with degradation of a SOx absorbent progressing, so that the SOx concentration detected by the SOx concentration detection means is high. Since the amount of SOx emitted from a SOx absorbent is related also to the temperature of a SOx absorbent, it is desirable to make it a judgment error not arise with the temperature of a SOx absorbent. For that purpose, for example, the SOx concentration used as the criterion of the degradation condition of a SOx absorbent may be beforehand set up according to the temperature of a SOx absorbent. Or the SOx concentration used as the criterion of a degradation condition in case a SOx absorbent is a predetermined reference temperature is set up beforehand, and you may make it judge a degradation condition, after amending the SOx concentration detected by the SOx concentration detection means to the SOx concentration in reference temperature.

[0023] In the exhaust emission control device of the internal combustion engine concerning this invention, modification of the playback frequency of the SOx absorbent by the playback frequency modification means can be attained by changing the SOx absorption capacity and engine operation time used as the criterion of whether for example, the SOx absorbent reached at the playback stage. A playback frequency modification means is changed so that the playback frequency of a SOx absorbent may be made [many], as degradation

of a SOx absorbent becomes large.

[0024] As for the degradation judging of the SOx absorbent by the degradation judging means, in the exhaust emission control device of the internal combustion engine concerning this invention, it is desirable to perform at a stage near immediately after playback termination of a SOx absorbent. This is based on the following reason. Even if it is the case that the degradation condition of a SOx absorbent is the same, it becomes easy to emit SOx, so that there are many amounts of SOx absorbed by the SOx absorbent. Therefore, since there are very few amounts of SOx by which the direction which performs the degradation judging of a SOx absorbent is absorbed immediately after playback of a SOx absorbent by judgment precision becoming high when the amount of SOx absorbed by the SOx absorbent is same extent, and SOx must be hard to be emitted, the direction which performs the degradation judging of a SOx absorbent at the stage near this can judge degradation strictly.

[0025] The bypass path which branches a flueway from Hazama of a SOx absorbent and a NOx absorbent, bypasses a NOx absorbent in the exhaust emission control device of the internal combustion engine concerning this invention, and passes exhaust gas is prepared, an exhaust-air flow change means choose exhaust gas as a NOx catalyst or a bypass path, and pass it establishes, and while not reproducing the sink and the SOx absorbent to a bypass path for exhaust gas, it is possible during playback of a SOx absorbent to also pass exhaust gas to a NOx absorbent. When it does in this way, it can avoid flowing playback exhaust air of a SOx absorbent to a NOx absorbent. However, this invention is materialized even if it establishes neither a bypass path nor an exhaust air flow change means in this way.

[Embodiment of the Invention] Hereafter, the gestalt of 1 operation of the exhaust emission control device of the internal combustion engine concerning this invention is explained based on the drawing of <u>drawing 7</u> from <u>drawing 1</u>.

[0027] <u>Drawing 1</u> is drawing showing the outline configuration at the time of applying this invention to the gasoline engine for cars in which lean combustion is possible. this drawing -- setting -- a sign 1 -- an engine body and a sign 2 -- a piston and a sign 3 -- in an inlet valve and a sign 6, an inlet port and a sign 7 show an exhaust valve, and, as for a combustion chamber and a sign 4, a sign 8 shows [an ignition plug and a sign 5] an exhaust port, respectively.

[0028] An inlet port 6 is connected with a surge tank 10 through the corresponding branch pipe 9, and the fuel injection valve 11 which injects a fuel towards the inside of an inlet port 6, respectively is attached in each branch pipe 9. A surge tank 10 is connected with an air cleaner 14 through an air intake duct 12 and an air flow meter 13, and the throttle valve 15 is arranged in the air intake duct 12.

[0029] On the other hand, an exhaust port 8 is connected with the casing 18 which built in the SOx absorbent 17 through the exhaust manifold 16, and the outlet section of casing 18 is connected with the casing 21 which built in the occlusion reduction type NOx catalyst (NOx absorbent) 20 through the exhaust pipe 19. Hereafter, the occlusion reduction type NOx catalyst 20 is abbreviated to the NOx catalyst 20. This casing 21 is connected to the muffler which is not illustrated through an exhaust pipe 22.

[0030] Inlet-port section 21a of casing 21 and an exhaust pipe 22 are connected by the by-path pipe 26 which bypasses the NOx catalyst 20, and the exhaust air selector valve (exhaust air flow change means) 28 to which a valve element operates with an actuator 27 is formed in inlet-port section 21a of the casing 21 which is the tee of a by-path pipe 26. This exhaust air selector valve 28 chooses one location of the bypass open positions which close the inlet-port section to the NOx catalyst 20, and make full admission the inlet-port section of a by-path pipe 26 as the bypass closed position which closes the inlet-port section of a by-path pipe 26, and makes full admission the inlet-port section to the NOx catalyst 20 with an actuator 27 as shown by the continuous line of drawing 1 is shown by the broken line of drawing 1, and is made to operate.

[0031] The electronic control unit (ECU) 30 for engine control consists of a digital computer, and ROM (read-only memory)32, RAM (random access memory)33, CPU (central processor unit)34, the input port 35, and the output port 36 which were mutually connected by the bi-directional bus 31 are provided. An air flow meter 13 generates the output voltage proportional to an inhalation air content, and this output voltage is inputted into input port 35 through A-D converter 37.

[0032] On the other hand, the temperature sensor 23 which generates the output voltage proportional to the temperature of the exhaust gas which came out of the SOx absorbent 17 to the exhaust pipe 19 of the lower stream of a river of the SOx absorbent 17, and the SOx sensor (SOx concentration detection means) 24 which generates the output voltage proportional to the SOx concentration of the exhaust gas which came out of the SOx absorbent 17 are attached, and the output voltage of a temperature sensor 23 and the output

voltage of the SOx sensor 24 are inputted into input port 35 through A-D converters 38 and 40, respectively. Moreover, the rotational frequency sensor 41 which generates the output pulse showing an engine rotational frequency is connected to input port 35. The output port 36 is connected to the ignition plug 4 and the fuel injection valve 11, and the actuator 27 through the corresponding actuation circuit 39, respectively. [0033] In this gasoline engine, fuel injection duration TAU is computed, for example based on a degree type.

TAU=TP-K -- here, TP shows basic fuel injection duration and K shows the correction factor. The basic fuel injection duration TP shows fuel injection duration required to make into theoretical air fuel ratio the air-fuel ratio of the gaseous mixture supplied in an engine cylinder. This basic fuel injection duration TP is beforehand found by experiment, and is beforehand memorized in ROM32 in the form of a map as shown in drawing 2 as a function of engine load O/N (inhalation air content O / engine rotational frequency N) and the engine rotational frequency N. A correction factor K is a multiplier for controlling the air-fuel ratio of the gaseous mixture supplied in an engine cylinder, and if it is K= 1.0, the gaseous mixture supplied in an engine cylinder will serve as theoretical air fuel ratio. On the other hand, if the air-fuel ratio of the gaseous mixture supplied in an engine cylinder will become larger than theoretical air fuel ratio if set to K< 1.0, namely, it becomes Lean and it is set to K> 1.0, the air-fuel ratio of the gaseous mixture supplied in an engine cylinder will become smaller than theoretical air fuel ratio, namely, will become rich. [0034] In the gasoline engine of the gestalt of this operation, Lean Air Fuel Ratio Control is performed at a load operating range in engine low, the value of a correction factor K being used as a value smaller than 1.0. SUTOIKI control is performed at the time of the warm-up at the time of an engine heavy load operating range and engine start up, the value of a correction factor K being used as 1.0 at the time of acceleration and fixed-speed operation of 120 or more km/h. In an engine full load operating range, the value of a correction factor K is set up so that it may consider as a bigger value than 1.0 and rich Air Fuel Ratio Control may be performed.

[0035] in an internal combustion engine, the value of a correction factor K usually makes [in / the frequency by which load operation in low is carried out is the highest, therefore / most in an operating period] it smaller than 1.0 -- having -- Lean -- gaseous mixture is made to burn

[0036] <u>Drawing 3</u> shows roughly the concentration of the typical component in the exhaust gas discharged from a combustion chamber 3. unburnt [in the exhaust gas discharged from a combustion chamber 3 as shown in this drawing] -- the concentration of HC and CO increases, so that the air-fuel ratio of the gaseous mixture supplied in a combustion chamber 3 becomes rich, and the concentration of the oxygen O2 in the exhaust gas discharged from a combustion chamber 3 increases, so that the air-fuel ratio of the gaseous mixture supplied in a combustion chamber 3 becomes Lean.

[0037] The NOx catalyst 20 held in casing 21 makes an alumina support, and it comes to support at least one chosen from Potassium K, Sodium Na, Lithium Li, alkali metal like Caesium Cs, Barium Ba, an alkaline earth like Calcium calcium, Lanthanum La, and rare earth like Yttrium Y, and noble metals like Platinum Pt on this support. the ratio of the air supplied in the upstream flueway from the engine inhalation-of-air path and the NOx catalyst 20, and a fuel (hydrocarbon) -- the air-fuel ratio of the inflow exhaust gas to the NOx catalyst 20 -- calling (it being hereafter called for short an exhaust-air air-fuel ratio) -- this NOx catalyst 20 performs the absorption/emission action of NOx which emits NOx absorbed when an exhaust air air-fuel ratio was Lean, NOx was absorbed and the oxygen density in inflow exhaust gas fell.

[0038] in addition, when a fuel (hydrocarbon) or air is not supplied in an upstream flueway from the NOx catalyst 20. An exhaust air fired ratio is 5 therefore 1 in agreement with the air fuel ratio of the gaseous

catalyst 20 An exhaust air air-fuel ratio is [therefore] in agreement with the air-fuel ratio of the gaseous mixture supplied in a combustion chamber 3. In this case the gaseous mixture which the NOx catalyst 20 absorbs NOx when the air-fuel ratio of the gaseous mixture supplied in a combustion chamber 3 is Lean, and is supplied in a combustion chamber 3 -- NOx absorbed when the inner oxygen density fell will be emitted.

[0039] Although this NOx catalyst 20 will perform the absorption/emission action of NOx actually if the above-mentioned NOx catalyst 20 is arranged in an engine flueway, there is also ** or a part which does not come out about the detailed mechanism of this absorption/emission action. However, it is thought that this absorption/emission action is performed by the mechanism as shown in drawing 4. Next, although this mechanism is explained taking the case of the case where Platinum Pt and Barium Ba are made to support, on support, it becomes the same mechanism even if it uses other noble metals, alkali metal, an alkaline earth, and rare earth.

[0040] That is, as the oxygen density in inflow exhaust gas will increase sharply if inflow exhaust gas becomes Lean considerably, and shown in <u>drawing 4</u> (A), it is oxygen O2. It adheres to the front face of

Platinum Pt in the form of O2- or O2-. On the other hand, NO contained in inflow exhaust gas reacts with O2- or O2- on the front face of Platinum Pt, and is NO2. It becomes (2 NO+O2 ->2NO2).

[0041] Subsequently, being absorbed in the NOx catalyst 20 and combining with the barium oxide BaO oxidizing on Platinum Pt, a part of generated NO2 is diffused in the NOx catalyst 20 in the form of nitrate ion NO3-, as shown in drawing 4 (A). Thus, NOx is absorbed in the NOx catalyst 20.

[0042] As long as the oxygen density in inflow exhaust gas is high, NO2 is generated on the front face of Platinum Pt, and it is NOx of the NOx catalyst 20. Unless absorptance is saturated, NO2 is absorbed in the NOx catalyst 20, and nitrate ion NO3- is generated.

[0043] On the other hand, if the oxygen density in inflow exhaust gas falls and the amount of generation of NO2 falls, a reaction will go to hard flow (NO3-->NO2), and nitrate ion NO3- within the NOx catalyst 20 will be emitted from the NOx catalyst 20 in the form of NO2 or NO. That is, lowering of the oxygen density in inflow exhaust gas will emit NOx from the NOx catalyst 20. If the oxygen density in inflow exhaust gas will fall if the degree of Lean of inflow exhaust gas becomes low, therefore the degree of Lean of inflow exhaust gas is made low as shown in drawing 3, NOx will be emitted from the NOx catalyst 20.

[0044] the gaseous mixture supplied in a combustion chamber 3 on the other hand at this time -- SUTOIKI -- or it is made rich -- having -- an exhaust air air-fuel ratio -- SUTOIKI -- or when it becomes rich, it is shown in <u>drawing 3</u> -- as -- unburnt [from an engine / a lot of] -- HC and CO discharge -- having -- unburnt [these] -- HC and CO react with oxygen O2- on Platinum Pt, or O2-, and are made to oxidize [0045] moreover, SUTOIKI or in order [if it becomes rich,] for the oxygen density in inflow exhaust gas to foll to the degree of pole NO2 or NO is emitted for an exhaust air air-fuel ratio from the NOx catalyst 20.

fall to the degree of pole, NO2 or NO is emitted for an exhaust air air-fuel ratio from the NOx catalyst 20, and this NO2 or NO is shown in <u>drawing 4</u> (B) -- as -- unburnt -- it reacts with HC and CO, and it is made to return and is set to N2.

[0046] That is, HC in inflow exhaust gas and CO react immediately with oxygen O2- on Platinum Pt, or O2-first, and are made to oxidize, and if HC and CO still remain even if oxygen O2- or O2- on Platinum Pt is subsequently consumed, NOx discharged from NOx and the engine which were emitted from the NOx catalyst 20 will be made to return them to N2 by this HC and CO.

[0047] Thus, when NO2 or NO stops existing on the front face of Platinum Pt, NO2 or NO is emitted to a degree from a degree from the NOx catalyst 20, and it is made to return to N2 further. Therefore, when an exhaust air air-fuel ratio is made into SUTOIKI or Rich, NOx will be emitted to the inside of a short time from the NOx catalyst 20.

[0048] Thus, if an exhaust air air-fuel ratio becomes Lean, NOx will be absorbed by the NOx catalyst 20, and if an exhaust air air-fuel ratio is made into SUTOIKI or Rich, NOx will be emitted to the inside of a short time from the NOx catalyst 20, and will be returned to N2. Therefore, blowdown of NOx to the inside of atmospheric air can be prevented.

[0049] By the way, as mentioned above with the gestalt of this operation, at the time of full load running, it is supposed that the gaseous mixture supplied in a combustion chamber 3 is rich. Moreover, since gaseous mixture is made into theoretical air fuel ratio at the time of acceleration and fixed-speed operation of 120 or more km/h and gaseous mixture is made into Lean at the time of load operation in low at the time of the warm-up at the time of engine start up at the time of heavy load operation NOx in exhaust gas will be absorbed by the NOx catalyst 20 at the time of load operation in low, and NOx will be emitted and returned from the NOx catalyst 20 at the time of full load running and heavy load operation. The frequency of full load running or heavy load operation is low, and if there is much frequency of load operation in low and the operation time excels, bleedoff and reduction of NOx stop meeting the deadline, the absorptance of NOx of the NOx catalyst 20 will be saturated, and it will become impossible however, to absorb NOx.

[0050] then -- the gestalt of this operation -- Lean -- the time of performing inside low load driving, when combustion of gaseous mixture is performed -- comparatively -- alike -- a short period -- a spike ---like (short time) -- SUTOIKI -- or rich -- the air-fuel ratio of gaseous mixture is controlled so that combustion of gaseous mixture is performed, and bleedoff and reduction of NOx are performed in short period. thus, the absorption/emission of NOx sake -- an exhaust air air-fuel ratio (the gestalt of this operation air-fuel ratio of gaseous mixture) -- comparatively -- alike -- a short period -- "Lean" -- "-- by the following explanation, it calls it the Lean Ricci Spike control to control spike-SUTOIKI or rich (for this to be hereafter called rich spike)" to be repeated by turns.

[0051] On the other hand, if sulfur (S) is contained in the fuel and the sulfur in a fuel burns, sulfur oxides (SOx), such as SO2 and SO3, will be generated, and these SOx in exhaust gas will also absorb the NOx catalyst 20. It is thought that the SOx absorption mechanism of the NOx catalyst 20 is the same as a NOx absorption mechanism. Namely, if it explains taking the case of the case where Platinum Pt and Barium Ba

are made to ****, on support like the time of explaining the absorption mechanism of NOx, as mentioned above When an exhaust air air-fuel ratio is Lean, oxygen O2 has adhered to the front face of the platinum Pt of the NOx catalyst 20 in the form of O2- or O2-, and SOx in inflow exhaust gas (for example, SO2) oxidizes on the front face of Platinum Pt, and serves as SO3.

[0052] Then, generated SO3 is absorbed in the NOx catalyst 20, combines with the barium oxide BaO, oxidizing further on the front face of Platinum Pt, is diffused in the NOx catalyst 20 in the form of sulfate ion SO42-, and generates a sulfate BaSO4. This sulfate BaSO4 will remain in the NOx catalyst 20, without it being stable and decomposing, and being decomposed even if it makes the air-fuel ratio of ****** and inflow exhaust gas into Ricci. Therefore, if the amount of generation of BaSO4 within the NOx catalyst 20 increases with time amount progress, the amount of BaO which can participate in absorption of the NOx catalyst 20 will decrease, and the absorptance of NOx will decline. It is this, i.e., SOx poisoning. [0053] Then, the SOx absorbent 17 which emits SOx absorbed when the oxygen density of the exhaust gas which absorbs SOx and flows when the air-fuel ratio of the flowing exhaust gas is Lean so that SOx may not flow into the NOx absorbent 20 with the gestalt of this operation was low is arranged for the upstream rather than the NOx absorbent 20. Although this SOx absorbent 17 also absorbs NOx with SOx when the air-fuel ratio of the exhaust gas which flows into the SOx absorbent 17 is Lean, not only SOx absorbed when the air-fuel ratio of the flowing exhaust gas was made into SUTOIKI or Ricci and the oxygen density became low but NOx is emitted.

[0054] As mentioned above, even if it makes into SUTOIKI or Ricci the air-fuel ratio of the exhaust gas which the sulfate BaSO4 stabilized when SOx was absorbed is generated, consequently flows into the NOx catalyst 20, with the NOx catalyst 20, SOx is no longer emitted from the NOx catalyst 20. therefore, when the air-fuel ratio of the exhaust gas which flows into the SOx absorbent 17 is made into SUTOIKI or Ricci, in order to emit SOx from the SOx absorbent 17 Even if it makes it absorbed SOx exist in the SOx absorbent 17 in the form of sulfate ion SO42- or a sulfate BaSO4 is generated, it is necessary to make it exist in the SOx absorbent 17 in the condition that a sulfate BaSO4 is not stabilized. The SOx absorbent 17 which ****(ed) at least one chosen from Copper Cu, Iron Fe, Manganese Mn, transition metals like Nickel nickel, Sodium Na, Titanium Ti, and Lithium Li on the support which consists of an alumina as a SOx absorbent 17 which makes this possible can be used.

[0055] In this SOx absorbent 17, SO2 in exhaust gas oxidizing on the front face of the SOx absorbent 17, when the air-fuel ratio of the exhaust gas which flows into the SOx absorbent 17 is Lean, in the form of sulfate ion SO42-, it is absorbed in the SOx absorbent 17 and, subsequently to in the SOx absorbent 17, is spread. In this case, if Platinum Pt, Palladium Pd, or the rhodiums Rh are made to **** on the support of the SOx absorbent 17, SO2 will become easy to adsorb on Platinum Pt, Palladium Pd, and Rhodium Rh in the form of SO32-, and SO2 will become in this way that it is easy to be absorbed in the SOx absorbent 17 in the form of sulfate ion SO42-. Therefore, in order to promote absorption of SO2, it is desirable to make Platinum Pt, Palladium Pd, or Rhodium Rh **** on the support of the SOx absorbent 17.

[0056] If the air-fuel ratio of the exhaust gas which will flow into the SOx absorbent 17 if this SOx absorbent 17 is arranged for the upstream of the NOx catalyst 20 becomes Lean, SOx in exhaust gas will be absorbed by the SOx absorbent 17, therefore SOx stops flowing into the down-stream NOx catalyst 20, and only NOx in exhaust gas will be absorbed with the NOx catalyst 20.

[0057] SOx absorbed by the SOx absorbent 17 on the other hand as mentioned above is diffused in the SOx absorbent 17 in the form of sulfate ion SO42-, or serves as a sulfate BaSO4 in the unstable condition. Therefore, when the air-fuel ratio of the exhaust gas which flows into the SOx absorbent 17 becomes SUTOIKI or Ricci and an oxygen density falls, SOx absorbed by the SOx absorbent 17 will be easily emitted from the SOx absorbent 17.

[0058] By the way, it turned out that it is checked that heat deterioration arises with time since the SOx absorbent 17 is exposed to the heat of exhaust gas, and the following phenomena arise according to this heat deterioration. The 1st phenomenon is a problem about SOx bleedoff of the SOx absorbent 17. While heat deterioration has not arisen in the SOx absorbent 17 or heat deterioration is seldom advancing, by having passed the exhaust gas of SUTOIKI or the Ricci air-fuel ratio a short time (for example, 5 or less seconds), SOx is not emitted to the SOx absorbent 17 from the SOx absorbent 17 (if it puts in another way, when extent of heat deterioration is small). About this, these people are checking that SOx is not emitted from the SOx absorbent 17 by the duration time of Ricci Spike at the time of the Lean Ricci Spike control to which NOx is made to emit from the NOx catalyst 20 and which is performed for accumulating, while the SOx absorbent 17 is not heat-deteriorating.

[0059] However, also when the short-time style of the exhaust gas of SUTOIKI or the Ricci air-fuel ratio is

carried out to the SOx absorbent 17 (if it puts in another way, as extent of heat deterioration will become large), SOx comes to be emitted from the SOx absorbent 17, as the heat deterioration of the SOx absorbent 17 advances. And the amount of SOx emitted from the SOx absorbent 17 at this time tends to become large as progress of heat deterioration progresses.

[0060] Moreover, the 2nd phenomenon produced according to the heat deterioration of the SOx absorbent 17 is a problem about SOx absorption capacity, and the amount of SOx which can absorb the SOx absorbent 17, i.e., SOx absorption capacity, reduces it as the heat deterioration of the SOx absorbent 17 advances. Therefore, if the playback stage of the SOx absorbent 17 is brought forward and playback frequency is not made [many] as the heat deterioration of the SOx absorbent 17 advances, there is a possibility that playback of the SOx absorbent 17 may stop meeting the deadline, and the NOx catalyst 20 may carry out SOx poisoning.

[0061] So, with the gestalt of this operation, at the time of 1st Ricci Spike immediately after shifting to the Lean Ricci Spike control after playback of the SOx absorbent 17, the SOx sensor 24 detected the SOx concentration of the appearance gas of the SOx absorbent 17, based on the detected SOx concentration, the condition (extent) of the heat deterioration of the SOx absorbent 17 is judged, and the playback frequency of the SOx absorbent 17 was changed based on the condition of that heat deterioration. In addition, in the gestalt of this operation, modification of the playback frequency of the SOx absorbent 17 is realized by changing setting out of the SOx absorption capacity used as the criterion when judging whether it is the playback stage of the SOx absorbent 17.

[0062] Hereafter, this is explained in full detail. First, regeneration of the SOx absorbent 17 is explained. ECU30 integrates the amount of SOx absorbed by the SOx absorbent 17 from the hysteresis of engine operational status, and the playback stage of the SOx absorbent 17 considers it as the time of the integrated value reaching the SOx absorption capacity set up beforehand. Here, the SOx absorption capacity used as the criterion of being a playback stage can be changed based on the condition of the heat deterioration of the SOx absorbent 17, and is suitably set up from the heat deterioration judging map mentioned later. [0063] If it judges with ECU30 being the playback stage of the SOx absorbent 17, regeneration to which SOx is made to emit from the SOx absorbent 17 will be performed. It faces performing regeneration of the SOx absorbent 17. ECU30 It substitutes for exhaust gas temperature when [that] the engine operational status at that time is judged to be the engine rotational frequency N from engine load Q/N and a temperature sensor 23 detects as temperature of the SOx absorbent 17. SUTOIKI or the Ricci conditions that fuel consumption aggravation can emit SOx few most efficiently based on engine operational status and the temperature of the SOx absorbent 17, and the processing time are selected, and it performs by passing only the processing time which selected the exhaust gas of the selected air-fuel ratio conditions to the SOx absorbent 17.

[0064] Moreover, in order to make SOx emit from the SOx absorbent 17, it turns out that it is necessary to make temperature of the SOx absorbent 17 into the elevated temperature beyond predetermined temperature (for example, 550-degreeC), and during regeneration activation of the SOx absorbent 17, ECU30 performs temperature control of exhaust gas temperature, and controls the temperature of the SOx absorbent 17 by the proper means beyond said predetermined temperature (this is hereafter called SOx bleedoff temperature). [0065] A lot of SOx emitted from the SOx absorbent 17 is contained in the exhaust gas (this is hereafter called playback exhaust air) which flows out of the SOx absorbent 17 at the time of playback of the SOx absorbent 17. Although SOx under playback exhaust air cannot be easily absorbed by the NOx catalyst 20 and it should bypass as it is even if it passes this for the NOx catalyst 20 since this playback exhaust air is SUTOIKI or Ricci at an elevated temperature, there is no security of not being absorbed at all by the NOx catalyst 20. Then, in order to prevent that SOx emitted from the SOx absorbent 17 at the time of regeneration of the SOx absorbent 17 flows into the NOx catalyst 20, he is trying to draw playback exhaust air in a by-path pipe 26 with the gestalt of this operation at the time of regeneration of the SOx absorbent 17.

[0066] While carrying out absorption/emission of the NOx in exhaust gas with the NOx catalyst 20, and performing the Lean Ricci Spike control of an air-fuel ratio in order to carry out reduction clarification if it explains in full detail, the exhaust gas which was held in the bypass closed position as the exhaust air selector valve 28 showed drawing 1 as a continuous line, therefore flowed out of the SOx absorbent 17 at this time flows into the NOx catalyst 20. And SOx in exhaust gas is absorbed by the SOx absorbent 17, with the NOx catalyst 20, absorption/emission only of the NOx in exhaust gas will be carried out, and reduction clarification will be carried out.

[0067] Subsequently, when SOx should be emitted from the SOx absorbent 17 (i.e., when performing

regeneration of the SOx absorbent 17), Air Fuel Ratio Control is changed from the Lean Ricci Spike control to SUTOIKI or the Ricci control, and simultaneously, the exhaust air selector valve 28 is changed to the bypass open position shown with a broken line in <u>drawing 1</u> from a bypass closed position, and it is held. The playback exhaust air which flowed out of the SOx absorbent 17 by this does not flow in the NOx catalyst 20, but flows in a by-path pipe 26. Therefore, it can prevent certainly that the NOx catalyst 20 carries out SOx poisoning by SOx under playback exhaust air. in addition, SOx in exhaust gas (playback exhaust air) -- unburnt [in exhaust gas] -- you are made to return by HC and CO, and it is set to SO2 and emitted.

[0068] Subsequently, when regeneration of the SOx absorbent 17 should be stopped, Air Fuel Ratio Control is changed from SUTOIKI or the Ricci control to the Lean Ricci Spike control, and the exhaust air selector valve 28 is simultaneously changed from a bypass open position to the bypass closed position shown as a continuous line in drawing 1.

[0069] Since it has the activity of 3 yuan, the SOx absorbent 17 is made to purify unburnt [these / HC], and CO and NOx considerably in the SOx absorbent 17, although unburnt [HC], and CO and NOx are discharged from the engine body 1 during regeneration of the SOx absorbent 17. Therefore, there is no possibility that unburnt [these / HC], and CO and NOx may be emitted into atmospheric air. [0070] Next, the judgment procedure of the condition of the heat deterioration of the SOx absorbent 17 is explained. Drawing 5 is the air-fuel ratio (a close gas air-fuel ratio is called hereafter) of the exhaust gas which flows into the SOx absorbent 17, and drawing showing an example of the SOx concentration (appearance gas SOx concentration is called hereafter) of the exhaust gas which flowed out of the SOx absorbent 17.

[0071] In this drawing, while carrying out the Lean Ricci Spike control of the close gas air-fuel ratio, absorption/emission of NOx is performed in the NOx catalyst 20, and while carrying out elevated-temperature SUTOIKI control of the close gas air-fuel ratio, playback of the SOx absorbent 17 is performed. In addition, in this example, this is repeated by turns in the Lean Ricci Spike control, using SUTOIKI operation duration time as Ricci Spike as about 2 seconds, for example for Lean operation duration time for 40 seconds to the fixed-speed transit by 60 km/h. On the other hand, an air-fuel ratio is considered as SUTOIKI control at the time of regeneration of the SOx absorbent 17, and the duration time makes it time amount longer enough than the Ricci Spike duration time at the time of the Lean Ricci Spike control, for example, about 1 hour.

[0072] And when the SOx absorbent 17 is not heat-deteriorating, even if it is carrying out the Lean Ricci Spike control of the close gas air-fuel ratio and Ricci Spike's exhaust gas flows into the SOx absorbent 17, since it is a short time, SOx is not emitted from the SOx absorbent 17, it comes out till the next playback stage of the SOx absorbent 17, and, as for gas SOx concentration, about 0 condition continues.

[0073] However, when the heat deterioration of the SOx absorbent 17 advanced gradually, the Lean Ricci Spike control of the close gas air-fuel ratio is carried out and Ricci Spike's exhaust gas flows into the SOx absorbent 17, the exhaust gas which SOx comes to be emitted from the SOx absorbent 17, consequently contains SOx comes to flow out of the SOx absorbent 17 synchronizing with the time of Ricci Spike.

[0074] Here, appearance gas SOx concentration has the inclination for the time of the heat deterioration of the SOx absorbent 17 advancing to become high, and it tends to become high gradually as the count of peak value of the appearance gas SOx concentration at the time of each rich spike of Ricci Spike increases. So, with the gestalt of this operation, it was made the thing which detected by the SOx sensor 24 at the time of 1st Ricci Spike immediately after reproducing the SOx absorbent 17 and for which it comes out and the condition (extent of heat deterioration) of the heat deterioration of the SOx absorbent 17 is judged from the peak value of gas SOx concentration.

[0075] The reason for having considered the stage judging the condition of the heat deterioration of the SOx absorbent 17 as "the time of 1st Ricci Spike immediately after reproducing the SOx absorbent 17" is as follows. Immediately after playback of the SOx absorbent 17, there are very few amounts of SOx absorbed by the SOx absorbent 17, and SOx must be hard to be emitted. Therefore, immediately after playback being the the best for judging the heat deterioration of the SOx absorbent 17 strictly, and judging the condition of heat deterioration at the stage same each time makes judgment precision improve.

[0076] However, about the stage to judge the condition of the heat deterioration of the SOx absorbent 17, I hear that a stage near immediately after playback termination of the SOx absorbent 17 is desirable, there is, and it is not necessarily limited at "the time of 1st Ricci Spike immediately after reproducing the SOx absorbent 17." therefore, for example, a judgment stage -- "-- from immediately after reproducing the SOx absorbent 17 -- counting -- the time of n-th Ricci Spike (n is the natural number) -- " -- ** -- carrying out is

also possible. Moreover, it is also possible to count [from], to average the peak value of the appearance gas SOx concentration at the time of Ricci Spike of eye the n-th ** (n+alpha) time [-] immediately after reproducing the SOx absorbent 17, and to judge the condition of heat deterioration based on the average. [0077] With reference to the heat deterioration judging [ECU30 is beforehand remembered to be by ROM32 based on the peak value of gas SOx concentration by coming out 1 map for which it asked as mentioned above, the condition of the heat deterioration of the SOx absorbent 17 is judged. [0078] Drawing 6 shows an example of a heat deterioration judging map. In this example It judges with the condition of heat deterioration being level 1 (L1), when peak value dp is 0 <=dp<d1. It judges with the condition of heat deterioration being level 2 (L2), when peak value dp is d1 <=dp<d2. When peak value dp is d2 <=dp<d3, it judges with the condition of heat deterioration being level 3 (L3), and when peak value dp is dp>=d3, it judges with the condition of heat deterioration being level 4 (L4). In addition, peak value d is d1<d2<d3<d4 here.

[0079] And the SOx absorption capacity C which serves as a criterion of whether to have reached at the playback stage of the SOx absorbent 17 for every level of heat deterioration beforehand is set up. In C2 and the SOx absorption capacity of level 3 (L3), in this example, C3 and the SOx absorption capacity of level 4 (L4) are [the SOx absorption capacity of level 1 (L1) / C1 and the SOx absorption capacity of level 2 (L2)] C4. In addition, the SOx absorption capacity C is C1>C2>C3>C4, and the SOx absorption capacity C is small set up here as the level L of heat deterioration goes up.

[0080] And it judges whether the level of the heat deterioration judged after the level of the heat deterioration judged after this SOx absorbent playback and the last SOx absorbent playback was compared, and level changed, when the level of heat deterioration has not changed, SOx absorption capacity is not changed, but when the level of heat deterioration changes, it changes into the SOx absorption capacity corresponding to the level of the heat deterioration judged this time. That is, when the level L of heat deterioration goes up, SOx absorption capacity is made small.

[0081] In addition, it turns out that the amount of SOx emitted from the SOx absorbent 17 is related of the temperature of the SOx absorbent 17 when Ricci Spike's exhaust gas flows into the SOx absorbent 17, and SOx is easy to emit the direction when the temperature of the SOx absorbent 17 is high. Then, in order to make it an error not arise in the level judging of heat deterioration with the temperature of the SOx absorbent 17, the temperature of the SOx absorbent 17 is divided into a predetermined temperature region, the heat deterioration judging map which is equivalent to drawing 6 for every temperature region beforehand is created, and ROM32 is made to memorize.

[0082] In this case, every heat deterioration judging map is made into the same value about the SOx absorption capacity C1, C2, C3, and C4, and it is made to make different only the value of the peak value d1, d2, d3, and d4 which is a threshold which determines the level of heat deterioration for every heat deterioration judging map of each temperature region. It seems that for example, d2 in the heat deterioration judging map of the temperature region containing 450-degreeC is set to 1 ppm, d2 in the heat deterioration judging map of the temperature region containing 550-degreeC is set to 2 ppm, and d2 in the heat deterioration judging map of the temperature region containing 700-degreeC is set to 5 ppm. [0083] Next, with reference to drawing 7, the SOx absorbent regeneration running routine in the gestalt of this operation is explained. The flow chart which consists of each step which constitutes this routine is

memorized to ROM32 of ECU30, and all processings in each step of a flow chart are performed by CPU34 of ECU30. In addition, this regeneration running routine is performed for every predetermined time. [0084] <Step 101> First, in step 101, ECU30 computes the amount of SOx absorbed by the SOx absorbent 17 from the operational status of the current engine 1, and integrates the SOx absorbed amount absorbed by

the SOx absorbent 17 by current after SOx absorbent regeneration.

[0085] <Step 102>, next ECU30 progress to step 102, and judge whether it is the playback stage of the SOx absorbent 17. That is, it judges with ECU30 being the playback stage of the SOx absorbent 17, when the SOx absorbed amount computed at step 102 has reached the SOx absorption capacity which is a criterion, progresses to step 103, it judges with it not being a playback stage when the SOx absorbed amount computed at step 101 has not reached SOx absorption capacity, and progresses to a return.

[0086] In <step 103> step 103, ECU30 performs SOx absorbent playback control. That is, ECU30 performs temperature control so that exhaust gas temperature may become beyond SOx bleedoff temperature, it performs Air Fuel Ratio Control so that the air-fuel ratio of exhaust gas may serve as predetermined SUTOIKI or the Ricci conditions, and it performs change control of the exhaust air selector valve 28 so that playback exhaust air may flow to a by-path pipe 26.

[0087] And ECU30 changes the exhaust air selector valve 28 so that exhaust gas may flow for the NOx

catalyst 20, and progresses to step 104 while it ends SOx absorbent playback control and shifts Air Fuel Ratio Control of exhaust gas to the Lean Ricci Spike control, when predetermined time activation of the SOx absorbent playback control is carried out.

[0088] In step 104, the <step> 104 ECU detects SOx absorbent temperature with a temperature sensor 23 while detecting the peak value of the appearance gas SOx concentration at the time of 1st Ricci Spike immediately after SOx absorbent playback by the SOx sensor 24. [30]

[0089] <Step 105>, next ECU30 progress to step 105, and judge whether it is necessary to change the SOx absorption capacity used as the criterion of being the playback stage of the SOx absorbent 17. If it explains in full detail, ECU30 will judge [which detected at step 104] in which level it comes out and the condition of the heat deterioration of the current SOx absorbent 17 is based on the peak value of gas SOx concentration with reference to the heat deterioration judging map of the temperature region applicable to the SOx absorbent temperature detected at step 104. Furthermore, the level of the heat deterioration of the present SOx absorbent 17 judges whether it has changed with the level of the heat deterioration judged after the last SOx absorbent playback.

[0090] And when the level of heat deterioration has not changed by this time and last time, in step 105, it judges with having no need of changing SOx absorption capacity, and progresses to a return.

[0091] <Step 106> When having changed with the level of the heat deterioration the level of the heat deterioration judged this time was judged last time on the other hand to be, it judges with it being necessary to change SOx absorption capacity, and progresses to step 106, and ECU30 changes SOx absorption capacity into the SOx absorption capacity corresponding to the level of the heat deterioration judged this time, and progresses to a return. That is, when the level of heat deterioration goes up, SOx absorption capacity is made small. Consequently, when performing this routine next time, in step 102, it will be judged by making SOx absorption capacity after modification into a criterion whether it is the playback stage of the SOx absorbent 17. By this, when the condition of the heat deterioration of the SOx absorbent 17 advances, the playback frequency of the SOx absorbent 17 will increase.

[0092] The part which can call the part which performs step 105 among a series of signal processing by ECU30 in the gestalt of this operation a degradation judging means to judge the condition of degradation of the SOx absorbent 17, and performs step 106 can be called playback frequency modification means to change the playback frequency of the SOx absorbent 17.

[0093] Thus, according to the gestalt of this operation, since the playback frequency of the SOx absorbent 17 is changed according to the condition of the heat deterioration of the SOx absorbent 17, playback of the SOx absorbent 17 comes to be performed at a proper stage, and it can prevent certainly that the NOx catalyst 20 carries out SOx poisoning. Consequently, the rate of NOx clarification of the NOx catalyst 20 is maintainable in the always high condition.

[0094] Gestalt] of operation of others [[] Although the example applied to the gasoline engine explained this invention with the gestalt of operation mentioned above, of course, this invention is applicable to a diesel power plant. Since it is carried out in the Lean region farther [combustion in a combustion chamber] than SUTOIKI in the case of a diesel power plant, the air-fuel ratio of the exhaust gas which flows into the SOx absorbent 17 and the NOx catalyst 20 in the usual engine operational status is very Lean, and although absorption of SOx and NOx is performed, bleedoff of SOx and NOx is hardly performed.

[0095] Moreover, the air-fuel ratio of the exhaust gas which flows into the SOx absorbent 17 and the NOx catalyst 20 by making into SUTOIKI or Ricci gaseous mixture supplied to a combustion chamber 3 as mentioned above in the case of the gasoline engine is made into SUTOIKI or Ricci. In the case of a diesel power plant, although SOx and NOx which are absorbed by the SOx absorbent 17 and the NOx catalyst 20 can be made to emit, if gaseous mixture supplied to a combustion chamber is made into SUTOIKI or Ricci, in the case of combustion, there can be the problem of soot being generated and cannot adopt.

[0096] Therefore, in order to make the air-fuel ratio of the flowing exhaust gas into SUTOIKI or Ricci, and to obtain an engine output, it is necessary when applying this invention to a diesel power plant, to supply a reducing agent (for example, gas oil which is a fuel) into exhaust gas apart from burning a fuel. Also by subinjecting a fuel in a cylinder in an intake stroke, an expansion stroke, or an exhaust stroke, supply of the reducing agent to exhaust gas is possible, or possible also by supplying a reducing agent in the flueway of the upstream of the SOx absorbent 17.

[0097] In addition, even if it is a diesel power plant, when it has exhaust-gas-recirculation equipment (the so-called EGR equipment), it is possible by introducing exhaust-gas-recirculation gas into a combustion chamber so much to make the air-fuel ratio of exhaust gas into SUTOIKI or Ricci. [0098]

[Effect of the Invention] The SOx absorbent which emits SOx absorbed when the oxygen density of the exhaust gas which according to the exhaust emission control device of the internal combustion engine concerning this invention absorbs SOx and flows when the air-fuel ratio of the exhaust gas which is arranged in the flueway of the internal combustion engine in which (b) lean combustion is possible, and flows is Lean was low, (b) The NOx absorbent which emits NOx absorbed when the oxygen density of the exhaust gas which absorbs NOx and flows when the air-fuel ratio of the exhaust gas which is arranged in said down-stream flueway and flows rather than said SOx absorbent is Lean was low, An exhaust air Air Fuel Ratio Control means to control the air-fuel ratio of exhaust gas that absorption and bleedoff of NOx in said NOx absorbent should be controlled, (Ha) (d) A playback means to reduce the oxygen density of exhaust gas in order to make SOx emit from said SOx absorbent and to reproduce a SOx absorbent, (e) A SOx concentration detection means to detect the SOx concentration of the exhaust gas in the lower stream of a river of said SOx absorbent when controlling the air-fuel ratio of exhaust gas by said exhaust air Air Fuel Ratio Control means to SUTOIKI or Ricci, (**) A degradation judging means to judge the condition of degradation of said SOx absorbent based on the SOx concentration of the exhaust gas detected with said SOx concentration detection means, (g) by having a playback frequency modification means to change the playback frequency of the SOx absorbent by said playback means according to the condition of degradation of the SOx absorbent judged by said degradation judging means The outstanding effectiveness that it can prevent certainly is done [that can perform playback of a SOx absorbent now at a proper stage, consequently a NOx absorbent carries out SOx poisoning, and] so.

[0099] Moreover, in the exhaust emission control device of said internal combustion engine concerning this invention, when the degradation judging of the SOx absorbent by said degradation judging means is made to be performed at a stage near immediately after playback termination of a SOx absorbent, it is effective in the ability to raise the judgment precision of the degradation condition of a SOx absorbent.

[Translation done.]

* NOTIČES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 3]

[Drawing 7]

[Translation done.]

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000230419 A

(43) Date of publication of application: 22.08.00

(51) Int. CI

F01N 3/24

F01N 3/08 F01N 3/20 F02D 41/14

(21) Application number: 11030688

(22) Date of filing: 08.02.99

(71) Applicant:

TOYOTA MOTOR CORP

(72) Inventor:

HIROTA SHINYA TANAKA TOSHIAKI

(54) EXHAUST EMISSION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

(57) Abstract:

PROBLEM TO BE SOLVED: To execute a reviving process for the SOx absorbing agent at an appropriate time in an exhaust emission control device comprising an SOx absorbing agent upstream of an NOx catalyst.

SOLUTION: An SOx sensor 24 and an NOx catalyst 20 are provided downstream of an SOx absorbing agent 17. At the time of rich spike immediately after reviving the SOx absorbing agent 17, the SOx concentration in the exhaust gas downstream of the SOx absorbing agent 17 is detected by the SOx sensor 24. Based on the size of the SOx concentration, the state (degree) of the thermal deterioration of the SOx absorbing agent 17 is judged so that frequency of reviving the SOx absorbing agent 17 is increased according to the progress of the thermal deterioration.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出題公開番号 特開2000-230419 (P2000-230419A)

(43)公開日 平成12年8月22日(2000.8.22)

(51) Int.Cl. ⁷		識別記号	F I						รี	テーマコード(参考)	
F01N	3/24			F0	1 N	3/24			R	3G091	
	3/08					3/08			Α	3 G 3 O 1	
	3/20					3/20			E		
			•						С		
						•			В		
		•	審査請求	未請求	旅館	項の数 2	OL	(全	13 頁)	最終頁に続く	
(21)出願番号		特願平11-30688		(71)	出願人	. 000003	207				
						トヨタ	自動車	株式会	社		
(22)出顧日		平成11年2月8日(1999.			愛知県	豊田市	トヨタ	町1番	地		
				(72)	発明者	· 広田	信也				
		•				愛知県	费田市	トヨタ	7町1番	地 トヨタ自動	
						車株式	会社内		•		
				(72)	発明者	田中	俊明				
	•					愛知県	费田市	トヨタ	7町1番	地 トヨタ自動	
		•				車株式	会社内			· .	
			•	(74)	代理人	100089	244				
						弁理士	山 遠	勉	(外3	名)	
	•										
									•		
•							•			最終頁に続く	

(54) 【発明の名称】 内燃機関の排気浄化装置

(57)【要約】

【課題】 NOx触媒の上流にSOx吸収剤を備えた排気 浄化装置において、SOx吸収剤の再生処理を適正な時 期に実行できるようにする。

【解決手段】 SOx吸収剤17の下流にSOxセンサ24とNOx触媒20を設け、SOx吸収剤17を再生した直後のリッチスパイク時に、SOxセンサ24によってSOx吸収剤17の下流における排気ガスのSOxの濃度を検出し、そのSOx濃度の大きさに基づいてSOx吸収剤17の熱劣化の状態(程度)を判定し、熱劣化の進行に応じてSOx吸収剤17の再生頻度を多くする。

【特許請求の範囲】

【請求項1】 (イ)希薄燃焼可能な内燃機関の排気通路に配置され流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、(ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを放出するNOx吸収剤と、(ハ)前記NOx吸収剤におけるNOxの吸収・放出を制御すべく排気ガスの空燃比を制御する排気空燃比制御手段と、(ニ)前記SOx吸収剤からSOxを放出させてSOx吸収剤を再生させるべく排気ガスの酸素濃度を低減する再生手段と、を備える内燃機関の排気浄化装置において、

(ホ)前記排気空燃比制御手段により排気ガスの空燃比をストイキまたはリッチに制御したときの前記SOx吸収剤の下流における排気ガスのSOx濃度を検出するSOx濃度検出手段と、(へ)前記SOx濃度検出手段で検出した排気ガスのSOx濃度に基づいて前記SOx吸収剤の劣化の状態を判定する劣化判定手段と、(ト)前記劣化判定手段により判定されたSOx吸収剤の劣化の状態に応じて前記再生手段によるSOx吸収剤の再生頻度を変更する再生頻度変更手段と、を備えることを特徴とする内燃機関の排気浄化装置。

【請求項2】 前記劣化判定手段によるSOx吸収剤の 劣化判定は、SOx吸収剤の再生終了直後に近い時期に 実行することを特徴とする請求項1に記載の内燃機関の 排気浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、希薄燃焼可能な内燃機関より排出される排気ガスから窒素酸化物(NOx)を浄化することができる排気浄化装置に関するものである。

[0002]

【従来の技術】希薄燃焼可能な内燃機関より排出される排気ガスからNOxを浄化する排気浄化装置として、吸蔵還元型NOx触媒に代表されるNOx吸収剤がある。NOx吸収剤は、流入排気ガスの空燃比がリーン(即ち、酸素過剰雰囲気下)のときにNOxを吸収し、流入排気ガスの酸素濃度が低下したときに吸収したNOxを放出するものであり、とのNOx吸収剤の一種である吸蔵還元型NOx触媒は、流入排気ガスの空燃比がリーン(即ち、酸素過剰雰囲気下)のときにNOxを吸収し、流入排気ガスの酸素濃度が低下したときに吸収したNOxを放出しNxに還元する触媒である。

【0003】との吸蔵還元型NOx触媒(以下、単に触媒あるいはNOx触媒ということもある)を希薄燃焼可能な内燃機関の排気通路に配置すると、リーン空燃比の排気ガスが流れたときには排気ガス中のNOxが触媒に

2

吸収され、ストイキ(理論空燃比)あるいはリッチ空燃 比の排気ガスが流れたときに触媒に吸収されていたNO がNO、として放出され、さらに排気ガス中のHCやC Oなどの還元成分によってN、に還元され、即ちNOxが 浄化される。

【0004】ところで、一般に、内燃機関の燃料には硫黄分が含まれており、内燃機関で燃料を燃焼すると、燃料中の硫黄分が燃焼してSO、やSO、などの硫黄酸化物(SOx)が発生する。前記吸蔵還元型NOx触媒は、NOxの吸収作用を行うのと同じメカニズムで排気ガス中のSOxの吸収を行うので、内燃機関の排気通路にこのNOҳ触媒を配置すると、このNOҳ触媒にはNOxのみならずSOxも吸収される。

【0005】ところが、前記NOx触媒に吸収されたSOxは時間経過とともに安定な硫酸塩を形成するため、前記NOx触媒からNOxの放出・還元を行うのと同じ条件下では、分解、放出されにくく触媒内に蓄積され易い傾向がある。NOx触媒内のSOx蓄積量が増大すると、触媒のNOx吸収容量が減少して排気ガス中のNOxの除去を十分に行うことができなくなりNOx浄化効率が低下する。これが所謂SOx被毒である。

【0006】そこで、吸蔵還元型NOx触媒のNOx浄化能を長期に亘って高く維持するために、NOx触媒よりも上流に、排気ガス中のSOxを主に吸収するSOx吸収剤を配置し、NOx触媒にSOxが流れ込まないようにしてSOx被毒の防止を図った排気浄化装置が開発されている。

【0007】前記SOx吸収剤は、流入ガスの空燃比が リーンのときにSOxを吸収し、流入ガスの酸素濃度が 30 低いときに吸収したSOxをSO、として放出するもので あるが、このSOx吸収剤のSOx吸収容量にも限りがあ るため、SOx吸収剤がSOxで飽和する前にSOx吸収 剤からSOxを放出させる処理、即ち再生処理を実行す る必要がある。

【0008】SOx吸収剤の再生処理技術については、例えば特許番号第2605580号の特許公報に開示されている。この公報によれば、SOx吸収剤に吸収されたSOxを放出させるには、流入排気ガスの空燃比をストイキまたはリッチにして酸素濃度を低下させる必要があり、また、SOx吸収剤の温度が高い方がSOxが放出され易いとされている。

【0009】SOx吸収剤の再生排気は当然にSOx濃度が高くなるが、この再生排気は高温でストイキまたはリッチであるので、再生排気をNOx触媒に流しても再生排気中のSOxはNOx触媒に吸収されにくく、そのまま素通りして排出されることとなる。

【0010】なお、前記公報に開示された再生処理技術では、SOx吸収剤とNOx触媒とを接続する排気管から分岐してNOx触媒を迂回するバイバス通路を設けると50 ともに、排気ガスをNOx触媒とバイバス通路のいずれ

20

50

るととを特徴とする。

に流すか選択的に切り替える排気切替弁を設け、SOx吸収剤からSOxを放出させる再生処理実行中は排気切替弁により排気ガスをバイパス通路に流れるようにしてNOx触媒には流れないようにし、再生処理を実行していない時には排気切替弁により排気ガスをNOx触媒に流れるようにしてバイパス通路には流れないようにすることによって、NOx触媒にSOxが吸収されるのを確実に防止するようにしている。

[0011]

【発明が解決しようとする課題】従来、SOx吸収剤の再生時期は、内燃機関から排出されるSOx量を積算して積算値が設定値になったときとしたり、あるいは内燃機関の運転時間が設定時間に達したときとするなど、いずれにしても内燃機関の運転状態の積算によって再生時期に達したか否かを判定している。

【0012】しかしながら、SOx吸収剤は常に排気ガスの熱に晒されるため経時的に熱劣化が生じ、この熱劣化の進行によってSOx吸収剤のSOx吸収容量が減少していくという現象が生じる。そのため、熱劣化が進行した場合に、実際にはSOx吸収剤を再生すべき時であるにもかかわらず再生時期に達していないと判定されて、SOx吸収剤の再生が遅れる虞れがあった。

【0013】また、SOx吸収剤の熱劣化が進行するとSOx吸収剤からSOxが放出され易くなることが、以下の事象から本出願人により確認されている。SOx吸収剤の熱劣化が殆ど進んでいない場合には、NOx触媒からNOxを放出させるために排気ガスの空燃比を短時間だけ(スパイク的に)ストイキまたはリッチ(以下、これをリッチスパイクという)にしたときに、その排気ガスがSOx吸収剤に流れても極めて短時間なためSOx吸収剤からSOxは放出されない。しかしながら、SOx吸収剤の熱劣化が進行した場合には、たとえ短時間といえども前記リッチスパイクの排気ガスがSOx吸収剤に流れたときに、SOx吸収剤からSOxが放出されるようになる。その結果、SOxがNOx触媒に流れ込んでSOx被毒を生じさせる虞れがあった。

【0014】本発明はこのような従来の技術の問題点に鑑みてなされたものであり、本発明が解決しようとする課題は、SOx吸収剤の再生を適正な時期に実行して、NOx吸着剤のSOx被毒を防止することにある。 【0015】

【課題を解決するための手段】本発明は前記課題を解決するために、以下の手段を採用した。本発明は、(イ)希薄燃焼可能な内燃機関の排気通路に配置され流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、(ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを放出するNOx吸酸素濃度が低いときに吸収したNOxを放出するNOx吸

収剤と、(ハ)前記NOx吸収剤におけるNOxの吸収・放出を制御すべく排気ガスの空燃比を制御する排気空燃比制御手段と、(ニ)前記SOx吸収剤からSOxを放出させてSOx吸収剤を再生させるべく排気ガスの酸素濃度を低減する再生手段と、を備える内燃機関の排気浄化装置において、(ホ)前記排気空燃比制御手段により排気ガスの空燃比をストイキまたはリッチに制御したときの前記SOx吸収剤の下流における排気ガスのSOx濃度を検出するSOx濃度検出手段と、(へ)前記SOx濃度検出手段で検出した排気ガスのSOx濃度に基づいて前記SOx吸収剤の劣化の状態を判定する劣化判定手段と、(ト)前記劣化判定手段により判定されたSOx吸収剤の劣化の状態に応じて前記再生手段によるSOx吸収剤の再生頻度を変更する再生頻度変更手段と、を備え

【0016】上述構成からなる本発明の内燃機関の排気 浄化装置では、排気空燃比制御手段が排気ガスの空燃比 をリーンに制御しているときに排気ガス中のNOxがN Ox吸収剤に吸収され、排気空燃比制御手段が排気ガス の空燃比をストイキまたはリッチに制御することにより 排気ガスの酸素濃度を低下させているときに、NOx吸 収剤に吸収されたNOxが放出される。そして、排気空 燃比制御手段が排気ガスの空燃比をストイキまたはリッ チに制御しているときに、SOx濃度検出手段がSOx吸 収剤下流の排気ガスのSOx濃度を検出し、検出された SOx濃度に基づいて劣化判定手段がSOx吸収剤の劣化 状態(劣化程度)を判定する。さらに、劣化判定手段の 判定結果に応じて再生頻度変更手段がSOx吸収剤の再 生頻度を変更し、再生手段は変更後の再生頻度でSOx 吸収剤を再生する。これにより、SOx吸収剤のSOx吸 収容量が劣化によって低下した場合にも、SOx吸収剤 は適正な時期に再生されるようになるとともに、NOx 吸収剤がSOx被毒するのを防止することができる。

【0017】本発明に係る内燃機関の排気浄化装置において、希薄燃焼可能な内燃機関としては、筒内直接噴射式のリーンバーンガソリンエンジンやディーゼルエンジンを例示することができる。

【0018】本発明において、排気ガスの空燃比とは、機関吸気通路及びSOx吸収剤よりも上流での排気通路 内に供給された空気及び燃料(炭化水素)の比をいう。 【0019】本発明に係る内燃機関の排気浄化装置において、SOx吸収剤としては、アルミナからなる担体上に銅Cu、鉄Fe、マンガンMn、ニッケルNiのような遷移金属、ナトリウムNa、チタンTiおよびリチウムLiから選ばれた少なくとも一つを坦持したものを例示することができる。また、SOxを硫酸イオンSO.**の形でSOx吸収剤内に吸収され易くするために、SOx吸収剤の担体上に、白金Pt、バラジウムPd、ロジウムRhのいずれかを坦持させるのが好ましい。

【0020】本発明に係る内燃機関の排気浄化装置にお

4

いて、NOx吸収剤としては、吸蔵還元型NOx触媒を例 示することができる。吸蔵還元型NOx触媒は、流入す る排気ガスの空燃比がリーンのときにNOxを吸収し、 流入する排気ガス中の酸素濃度が低下すると吸収したN Oxを放出し、Nxに還元する触媒である。この吸蔵還元 型NOx触媒は、例えばアルミナを担体とし、この担体 上に例えばカリウムK、ナトリウムNa、リチウムL i、セシウムCsのようなアルカリ金属、バリウムB a、カルシウムCaのようなアルカリ土類、ランタンL a、イットリウムYのような希土類から選ばれた少なく とも一つと、白金Ptのような貴金属とが担持されてな るものを例示することができる。

【0021】本発明に係る内燃機関の排気浄化装置にお いて、内燃機関がガソリンエンジンの場合には、排気空 燃比制御手段および再生手段は燃焼室に供給される混合 気の空燃比を制御する手段により実現可能である。ま た、内燃機関がディーゼルエンジンの場合には、排気空 燃比制御手段および再生手段は、吸気行程または膨張行 程または排気行程で燃料を噴射する所謂副噴射を制御す る手段、あるいは、SOx吸収剤よりも上流の排気通路 内に還元剤を供給制御する手段により実現可能である。 [0022] 本発明に係る内燃機関の排気浄化装置にお いて、劣化判定手段によるSOx吸収剤の劣化状態の判 定は、SOx濃度検出手段により検出されたSOx濃度が 高いほどSOx吸収剤の劣化が進んでいると判定する。 S〇x吸収剤から放出されるSOx屋はSOx吸収剤の温 度にも関係するので、SOx吸収剤の温度によって判定 誤差が生じないようにするのが好ましい。そのために は、例えば、SOx吸収剤の劣化状態の判定基準となる SOx濃度をSOx吸収剤の温度に応じて予め設定してお 30 いてもよい。あるいは、SOx吸収剤が所定の基準温度 のときの劣化状態の判定基準となるSOx濃度を予め設 定しておき、SOx濃度検出手段により検出されたSOx 濃度を基準温度におけるSOx濃度に補正した上で劣化 状態を判定するようにしてもよい。

【0023】本発明に係る内燃機関の排気浄化装置にお いて、再生頻度変更手段によるSOx吸収剤の再生頻度 の変更は、例えば、SOx吸収剤が再生時期に達したか 否かの判定基準となるSOx吸収容量や機関運転時間を 変更することにより達成することができる。再生頻度変 40 更手段は、SOx吸収剤の劣化が大きくなるにしたがっ て、SOx吸収剤の再生頻度を多くするように変更す

【0024】本発明に係る内燃機関の排気浄化装置にお いて、劣化判定手段によるSOx吸収剤の劣化判定は、 SOx吸収剤の再生終了直後に近い時期に実行するのが 好ましい。これは次の理由による。SOx吸収剤の劣化 状態が同じ場合であっても、SOx吸収剤に吸収されて いるSOx量が多いほどSOxを放出し易くなる。したが って、SOx吸収剤に吸収されているSOx量が同じ程度 50 チュエータ27によって、図1の実線で示されるように

のときにSOx吸収剤の劣化判定を実行する方が判定精 度が高くなり、また、SOx吸収剤の再生直後は吸収さ れているSOx量が極めて少ないためSOxは放出されに くいはずであるから、これに近い時期にSOx吸収剤の 劣化判定を実行する方が、劣化を厳密に判定することが

【0025】本発明に係る内燃機関の排気浄化装置で は、SOx吸収剤とNOx吸収剤との間から排気通路を分 岐しNOx吸収剤を迂回して排気ガスを流すバイパス通 路を設け、排気ガスをNOx触媒とバイパス通路のいず れか一方に選択して流す排気流れ切替手段を設け、SO x吸収剤の再生中は排気ガスをバイバス通路に流し、S Ox吸収剤を再生していないときには排気ガスをNOx吸 収剤に流すようにすることも可能である。このようにす ると、SOx吸収剤の再生排気をNOx吸収剤に流れない ようにすることができる。ただし、このようにバイパス 通路や排気流れ切替手段を設けなくても本発明は成立す る。

[0026]

【発明の実施の形態】以下、本発明に係る内燃機関の排 気浄化装置の一実施の形態を図1から図7の図面に基い て説明する。

【0027】図1は本発明を希薄燃焼可能な車両用ガソ リンエンジンに適用した場合の概略構成を示す図であ る。との図において、符号1は機関本体、符号2はピス トン、符号3は燃焼室、符号4は点火栓、符号5は吸気 弁、符号6は吸気ポート、符号7は排気弁、符号8は排 気ポートを夫々示す。

【0028】吸気ポート6は対応する枝管9を介してサ ージタンク10に連結され、各枝管9には夫々吸気ボー ト6内に向けて燃料を噴射する燃料噴射弁11が取り付 けられている。サージタンク10は吸気ダクト12およ びエアフロメータ13を介してエアクリーナ14に連結 され、吸気ダクト12内にはスロットル弁15が配置さ れている。

【0029】一方、排気ポート8は排気マニホルド16 を介してSOx吸収剤17を内蔵したケーシング18に 連結され、ケーシング18の出口部は排気管19を介し て吸蔵還元型NOx触媒(NOx吸収剤)20を内蔵した ケーシング21に連結されている。以下、吸蔵還元型N Ox触媒20をNOx触媒20と略す。このケーシング2 1は排気管22を介して図示しないマフラーに接続され

【0030】ケーシング21の入口部21aと排気管2 2は、NOx触媒20を迂回するバイパス管26によっ て連結されており、パイパス管26の分岐部であるケー シング21の入口部21aには、アクチュエータ27に よって弁体が作動される排気切替弁(排気流れ切替手 段)28が設けられている。この排気切替弁28はアク

る。

運転領域では補正係数Kの値は1. 0 よりも大きな値とされてリッチ空燃比制御が行われるように設定してあ

バイバス管26の入口部を閉鎖し且つNOx触媒20への入口部を全開にするバイバス閉位置と、図1の破線で示されるようにNOx触媒20への入口部を閉鎖し且つバイバス管26の入口部を全開にするバイバス開位置のいずれか一方の位置を選択して作動せしめられる。

【0031】エンジンコントロール用の電子制御ユニット(ECU)30はデジタルコンピュータからなり、双方向バス31によって相互に接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(セントラルプロセッサユニット)34、入力ポート35、出力ポート36を具備する。エアフロメータ13は吸入空気量に比例した出力電圧を発生し、この出力電圧がAD変換器37を介して入力ポート35に入力される。

【0032】一方、SOx吸収剤17の下流の排気管19には、SOx吸収剤17を出た排気ガスの温度に比例した出力電圧を発生する温度センサ23と、SOx吸収剤17を出た排気ガスのSOx濃度に比例した出力電圧を発生するSOxセンサ(SOx濃度に比例した出力電圧を発生するSOxセンサ(SOx濃度検出手段)24が取り付けられており、温度センサ23の出力電圧とSOxセンサ24の出力電圧がそれぞれAD変換器38,40を介して入力ボート35に入力される。また、入力ボート35には機関回転数を表す出力バルスを発生する回転数センサ41が接続されている。出力ボート36は対応する駆動回路39を介して夫々点火栓4および燃料噴射弁11、アクチュエータ27に接続されている。

【0033】このガソリンエンジンでは、例えば次式に基づいて燃料噴射時間TAUが算出される。

$TAU = TP \cdot K$

CCで、TPは基本燃料噴射時間を示しており、Kは補 30 正係数を示している。基本燃料噴射時間TPは機関シリ ンダ内に供給される混合気の空燃比を理論空燃比とする のに必要な燃料噴射時間を示している。この基本燃料噴 射時間TPは予め実験により求められ、機関負荷Q/N (吸入空気量Q/機関回転数N) および機関回転数Nの 関数として図2に示すようなマップの形で予めROM3 2内に記憶されている。補正係数 K は機関シリンダ内に 供給される混合気の空燃比を制御するための係数であっ て、K=1.0であれば機関シリンダ内に供給される混 合気は理論空燃比となる。これに対してK<1.0にな れば機関シリンダ内に供給される混合気の空燃比は理論 空燃比よりも大きくなり、即ちリーンとなり、K>1. 0 になれば機関シリンダ内に供給される混合気の空燃比 は理論空燃比よりも小さくなり、即ちリッチとなる。 【0034】との実施の形態のガソリンエンジンでは、 機関低中負荷運転領域では補正係数Kの値が 1. 0より も小さい値とされてリーン空燃比制御が行われ、機関髙 負荷運転領域、エンジン始動時の暖機運転時、加速時、 及び120km/h以上の定速運転時には補正係数Kの

値が1.0とされてストイキ制御が行われ、機関全負荷

【0035】内燃機関では通常、低中負荷運転される頻度が最も高く、したがって運転期間中の大部分において補正係数Kの値が1.0よりも小さくされて、リーン混合気が燃焼せしめられることになる。

【0036】図3は燃焼室3から排出される排気ガス中の代表的な成分の濃度を概略的に示している。この図からわかるように、燃焼室3から排出される排気ガス中の未燃HC、COの濃度は燃焼室3内に供給される混合気の空燃比がリッチになるほど増大し、燃焼室3から排出される排気ガス中の酸素O、の濃度は燃焼室3内に供給される混合気の空燃比がリーンになるほど増大する。

【0037】ケーシング21内に収容されているNOx触媒20は、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されてなる。機関吸気通路およびNOx触媒20より上流の排気通路内に供給された空気および燃料(炭化水素)の比をNOx触媒20への流入排気ガスの空燃比と称する(以下、排気空燃比と略称する)と、このNOx触媒20は、排気空燃比がリーンのときにはNOxを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。

【0038】なお、NOx触媒20より上流の排気通路内に燃料(炭化水素)あるいは空気が供給されない場合には、排気空燃比は燃焼室3内に供給される混合気の空燃比に一致し、したがってこの場合には、NOx触媒20は燃焼室3内に供給される混合気の空燃比がリーンのときにはNOxを吸収し、燃焼室3内に供給される混合気中の酸素濃度が低下すると吸収したNOxを放出することになる。

【0039】上述のNOx触媒20を機関排気通路内に配置すればこのNOx触媒20は実際にNOxの吸放出作用を行うが、この吸放出作用の詳細なメカニズムについては明かでない部分もある。しかしながら、この吸放出作用は図4に示すようなメカニズムで行われているものと考えられる。次に、このメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが、他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。 【0040】即ち、流入排気ガスがかなりリーンになる

と流入排気ガス中の酸素濃度が大巾に増大し、図4 (A) に示されるように酸素O、がO、「又はO² の形で白金P t の表面に付着する。一方、流入排気ガスに含まれるNOは、白金P t の表面上でO、「又はO² と反応

30

し、NO, となる (2NO+O, →2NO,)。

【0041】次いで、生成されたNO2の一部は、白金Pt上で酸化されつつNOx触媒20内に吸収されて酸化バリウムBaOと結合しながら、図4(A)に示されるように硝酸イオンNO2の形でNOx触媒20内に拡散する。このようにしてNOxがNOx触媒20内に吸収される。

【0042】流入排気ガス中の酸素濃度が高い限り白金 Ptの表面でNO、が生成され、NOx触媒20のNOx 吸収能力が飽和しない限り、NO、がNOx触媒20内に 10 吸収されて硝酸イオンNO、が生成される。

【0043】 これに対して、流入排気ガス中の酸素濃度が低下してNO」の生成量が低下すると反応が逆方向(NO」→NO」)に進み、NOx触媒20内の硝酸イオンNO」がNO」またはNOの形でNOx触媒20から放出される。即ち、流入排気ガス中の酸素濃度が低下すると、NOx触媒20からNOxが放出されることになる。図3に示されるように、流入排気ガスのリーンの度合いが低くなれば流入排気ガス中の酸素濃度が低下し、したがって流入排気ガスのリーンの度合いを低くすればNOx触媒20からNOxが放出されることとなる。

【0044】一方、このとき、燃焼室3内に供給される混合気がストイキまたはリッチにされて排気空燃比がストイキまたはリッチになると、図3に示されるように機関からは多量の未燃HC,COが排出され、これら未燃HC,COは、白金Pt上の酸素O, 又はO'と反応して酸化せしめられる。

【0045】また、排気空燃比がストイキまたはリッチになると流入排気ガス中の酸素濃度が極度に低下するためにNOx触媒20からNOxまたはNOが放出され、このNOxまたはNOは、図4(B)に示されるように未燃HC、COと反応して還元せしめられてNxとなる。【0046】即ち、流入排気ガス中のHC、COは、まず白金Pt上の酸素Ox-又はOx-とただちに反応して酸化せしめられ、次いで白金Pt上の酸素Ox-又はOx-が消費されてもまだHC、COが残っていれば、このHC、COによってNOx触媒20から放出されたNOxおよびエンジンから排出されたNOxがNxに還元せしめられる。

【0047】 このようにして白金Ptの表面上にNO、またはNOが存在しなくなると、NOx触媒20から次から次へとNO、またはNOが放出され、さらにN、に還元せしめられる。したがって、排気空燃比をストイキまたはリッチにすると短時間の内にNOx触媒20からNOxが放出されることになる。

【0048】 このように、排気空燃比がリーンになると NOxがNOx触媒20に吸収され、排気空燃比をストイ キあるいはリッチにするとNOxがNOx触媒20から短 時間のうちに放出され、Nxに還元される。したがっ て、大気中へのNOxの排出を阻止することができる。 【0049】ところで、この実施の形態では前述したように、全負荷運転時には燃焼室3内に供給される混合気がリッチとされ、また高負荷運転時、エンジン始動時の暖機運転時、加速時、及び120km/h以上の定速運転時には混合気が理論空燃比とされ、低中負荷運転時には混合気がリーンとされるので、低中負荷運転時に排気ガス中のNOxがNOx触媒20た吸収され、全負荷運転時及び高負荷運転時にNOx触媒20からNOxが放出され還元されることになる。しかしながら、全負荷運転あるいは高負荷運転の頻度が少なく、低中負荷運転の頻度が多くその運転時間が長ければ、NOxの放出・還元が間に合わなくなり、NOx触媒20のNOxの吸収能力が飽和してNOxを吸収できなくなってしまう。

【0050】そとで、この実施の形態では、リーン混合気の燃焼が行われている場合、即ち中低負荷運転を行っているときには、比較的に短い周期でスパイク的(短時間)にストイキまたはリッチ混合気の燃焼が行われるように混合気の空燃比を制御し、短周期的にNOxの放出・還元を行っている。このようにNOxの吸放出のために、排気空燃比(この実施の形態では混合気の空燃比)が比較的に短い周期で「リーン」と「スパイク的なストイキまたはリッチ(以下、これをリッチスパイクという)」を交互に繰り返されるように制御することを、以下の説明ではリーン・リッチスパイク制御と称す。

【0051】一方、燃料には硫黄(S)が含まれており、燃料中の硫黄が燃焼するとSO、やSO、などの硫黄酸化物(SOx)が発生し、NOx触媒20は排気ガス中のこれらSOxも吸収する。NOx触媒20のSOx吸収メカニズムはNOx吸収メカニズムと同じであると考えられる。即ち、NOxの吸収メカニズムを説明したときと同様に担体上に白金PtおよびバリウムBaを坦持させた場合を例にとって説明すると、前述したように、排気空燃比がリーンのときには、酸素O、がO、「又はO、O形でNOx触媒20の白金Ptの表面に付着しており、流入排気ガス中のSOx(例えばSO、)は白金Ptの表面上で酸化されてSO。となる。

【0052】その後、生成されたSO。は、白金Ptの表面で更に酸化されながらNOx触媒20内に吸収されて酸化バリウムBaOと結合し、硫酸イオンSO。一の形でNOx触媒20内に拡散し硫酸塩BaSO。を生成する。この硫酸塩BaSO。は安定していて分解しずらく、流入排気ガスの空燃比をリッチにしても分解されずにNOx触媒20内に残ってしまう。したがって、時間経過に伴いNOx触媒20内のBaSO。の生成量が増大するとNOx触媒20の吸収に関与できるBaOの童が減少してNOxの吸収能力が低下してしまう。これが即ちSOx被毒である。

【0053】そこで、との実施の形態ではNOx吸収剤 20にSOxが流入しないように、流入する排気ガスの 50 空燃比がリーンのときにSOxを吸収し流入する排気ガ

30

11

スの酸素濃度が低いときに吸収したSOxを放出するS Ox吸収剤17を、NOx吸収剤20よりも上流に配置し ているのである。とのSOx吸収剤17は、SOx吸収剤 17に流入する排気ガスの空燃比がリーンのときにはS Oxと共にNOxも吸収するが、流入する排気ガスの空燃 比をストイキまたはリッチにし酸素濃度が低くなると吸 収したSOxばかりでなくNOxも放出する。

【0054】前述したように、NOx触媒20ではSOx が吸収されると安定した硫酸塩BaSO、が生成され、 その結果、NOx触媒20に流入する排気ガスの空燃比 をストイキまたはリッチにしてもSOxがNOx触媒20 から放出されなくなる。したがって、SOx吸収剤17 に流入する排気ガスの空燃比をストイキまたはリッチに したときにSOx吸収剤17からSOxが放出されるよう にするためには、吸収したSOxが硫酸イオンSO,2-の 形でSOx吸収剤17内に存在するようにするか、ある いは、硫酸塩BaSO、が生成されたとしても硫酸塩B aSO、が安定しない状態でSOx吸収剤17に存在する ようにすることが必要となる。これを可能とするSOx 吸収剤17としては、アルミナからなる担体上に銅C u、鉄Fe、マンガンMn、ニッケルNiのような遷移 金属、ナトリウムNa、チタンTiおよびリチウムLi から選ばれた少なくとも一つを坦持したSOx吸収剤1 7を用いることができる。

【0055】とのSOx吸収剤17では、SOx吸収剤1 7に流入する排気ガスの空燃比がリーンのときに排気ガ ス中のSO₂がSOx吸収剤17の表面で酸化されつつ硫 酸イオンSOパーの形でSOx吸収剤17内に吸収され、 次いでSOx吸収剤17内に拡散される。この場合、S Ox吸収剤17の担体上に白金Pt、パラジウムPd、 ロジウムRhのうちのいずれかを坦持させておくとSO zがSO_x²⁻の形で白金Pt、パラジウムPd、ロジウム Rh上に吸着し易くなり、かくしてSOzは硫酸イオン SO,2-の形でSOx吸収剤17内に吸収され易くなる。 したがって、SOIの吸収を促進するためにはSOx吸収 剤17の担体上に白金Pt、パラジウムPd、ロジウム Rhのいずれかを坦持させることが好ましい。

【0056】とのSOx吸収剤17をNOx触媒20の上 流に配置すると、SOx吸収剤17に流入する排気ガス の空燃比がリーンになると排気ガス中のSOxがSOx吸 40 収剤17に吸収され、したがって、下流のNOx触媒2 0にはSOxが流れ込まなくなり、NOx触媒20では排 気ガス中のNOxのみが吸収されることになる。

【0057】一方、前述したようにSOx吸収剤17に 吸収されたSOxは硫酸イオンSO、1-の形でSOx吸収 剤17に拡散しているか、あるいは不安定な状態で硫酸 塩BaSO、となっている。したがって、SOx吸収剤1 7に流入する排気ガスの空燃比がストイキまたはリッチ になって酸素濃度が低下するとSOx吸収剤17に吸収 されているSOxがSOx吸収剤17から容易に放出され 50 達したときとする。ここで、再生時期か否かの判定基準

ることになる。

【0058】ところで、SOx吸収剤17は排気ガスの 熱に晒されるため経時的に熱劣化が生じることが確認さ れており、この熱劣化によって次のような現象が生じる ことがわかった。その第1の現象は、SOx吸収剤17 のSOx放出に関する問題である。SOx吸収剤17に熱 劣化が生じていないか、熱劣化が余り進行していないと き(換言すれば、熱劣化の程度が小さいとき)には、S Ox吸収剤17にストイキまたはリッチ空燃比の排気ガ スを短時間(例えば5秒以下)流したのではSOx吸収 剤17からSOxは放出されない。これについては、本 出願人は、SOx吸収剤17が熱劣化していないとき に、NOx触媒20からNOxを放出させるために行うリ ーン・リッチスパイク制御のときのリッチスパイクの継 続時間ではSOx吸収剤17からSOxが放出されないこ とを確認している。

【0059】しかしながら、SOx吸収剤17の熱劣化 が進行するにしたがって(換言すると、熱劣化の程度が 大きくなるにしたがって)、SOx吸収剤17にストイ キまたはリッチ空燃比の排気ガスを短時間流した場合に もSOx吸収剤17からSOxが放出されるようになる。 しかも、このときにSOx吸収剤17から放出されるS Oxの量は、熱劣化の進行が進むにしたがって大きくな る傾向がある。

【0060】また、SOx吸収剤17の熱劣化によって 生じる第2の現象は、SOx吸収容量に関する問題であ り、SOx吸収剤17の熱劣化が進行するにしたがっ て、SOx吸収剤17が吸収可能なSOx量、即ちSOx 吸収容量が低減していく。そのため、SOx吸収剤17 の熱劣化が進行するにしたかってSOx吸収剤17の再 生時期を早め、再生頻度を多くしていかないと、SOx 吸収剤17の再生が間に合わなくなり、NOx触媒20 がSOx被毒する虞れがある。

【0061】そとで、との実施の形態では、SOx吸収 剤17の再生後にリーン・リッチスパイク制御に移行し た直後の第1回目のリッチスパイク時に、SOx吸収剤 17の出ガスのSOx濃度をSOxセンサ24によって検 出し、検出されたSOx濃度に基づいてSOx吸収剤17 の熱劣化の状態(程度)を判定し、その熱劣化の状態に 基づいてSOx吸収剤17の再生頻度を変更するように した。尚、との実施の形態においては、SOx吸収剤1 7の再生頻度の変更は、SOx吸収剤17の再生時期か 否かを判定するときの判定基準となるSOx吸収容量の 設定を変更することにより実現する。

【0062】以下、これについて詳述する。まず、SO x吸収剤17の再生処理について説明する。SOx吸収剤 17の再生時期は、ECU30が、エンジンの運転状態 の履歴からSOx吸収剤17に吸収されたSOx量を積算 し、その積算値が予め設定しておいたSOx吸収容量に

となるSOx吸収容量は、SOx吸収剤17の熱劣化の状態に基づいて変更し得るものであり、後述する熱劣化判定マップから適宜設定される。

13

【0063】ECU30は、SOx吸収剤17の再生時期であると判定すると、SOx吸収剤17からSOxを放出させる再生処理を実行する。SOx吸収剤17の再生処理を実行するに際し、ECU30は、機関回転数Nと機関負荷Q/Nからその時の機関運転状態を判断し、また、温度センサ23で検出したその時の排気ガス温度をSOx吸収剤17の温度として代用して、機関運転状態とSOx吸収剤17の温度に基づき燃費悪化が少なく最も効率的にSOxを放出できるストイキまたはリッチ条件および処理時間を選定し、選定した空燃比条件の排気ガスを選定した処理時間だけSOx吸収剤17に流すことにより実行する。

【0064】また、SOx吸収剤17からSOxを放出さ せるには、SOx吸収剤17の温度を所定温度(例え ば、550 C)以上の高温にする必要があることがわ かっており、ECU30は、SOx吸収剤17の再生処 理実行中、適宜の手段によって排気ガス温度の温度制御 20 を行い、SOx吸収剤17の温度を前記所定温度(以 下、これをSOx放出温度という)以上に制御する。 【0065】SOx吸収剤17の再生時にSOx吸収剤1 7から流出する排気ガス(以下、これを再生排気とい う)にはSOx吸収剤17から放出された多量のSOxが 含まれている。この再生排気は高温でストイキまたはリ ッチであるため、これをNOx触媒20に流しても再生 排気中のSOxはNOx触媒20に吸収されにくく、その まま素通りするはずであるが、NOx触媒20に全く吸 収されないという保障はない。そこで、この実施の形態 30 では、SOx吸収剤17の再生処理時にSOx吸収剤17 から放出されたSOxがNOx触媒20に流入するのを阻 止するために、SOx吸収剤17の再生処理時には再生 排気をバイパス管26内に導くようにしている。

【0066】詳述すると、排気ガス中のNOxをNOx触媒20で吸放出し還元浄化するために空燃比のリーン・リッチスパイク制御を実行しているときには、排気切替弁28が図1において実線で示すようにパイパス閉位置に保持され、したがって、このときにはSOx吸収剤17から流出した排気ガスはNOx触媒20に流入する。そして、排気ガス中のSOxはSOx吸収剤17に吸収され、排気ガス中のNOxのみがNOx触媒20で吸放出されて、還元浄化されることになる。

【0067】次いで、SOx吸収剤17からSOxを放出すべきとき、即ちSOx吸収剤17の再生処理を実行するときには、空燃比制御はリーン・リッチスパイク制御からストイキまたはリッチ制御に切り替えられ、同時に排気切替弁28がバイパス閉位置から図1において破線で示すバイパス開位置に切り替えられ保持される。これによりSOx吸収剤17から流出した再生排気はNOx触50

媒20内には流入せず、バイバス管26内に流入する。したがって、NOx触媒20が再生排気中のSOxによってSOx被毒するのを確実に阻止することができる。 尚、排気ガス(再生排気)中のSOxは排気ガス中の未燃HC、COによって還元せしめられ、SOzとなって放出される。

【0068】次いで、SOx吸収剤17の再生処理を停止すべきときには、空燃比制御がストイキまたはリッチ制御からリーン・リッチスパイク制御に切り替えられ、同時に、排気切替弁28がパイパス開位置から図1において実線で示すパイパス閉位置に切り替えられる。【0069】SOx吸収剤17の再生処理中には、機関本体1から未燃HC、COおよびNOxが排出されるが、SOx吸収剤17は三元活性を有しているのでこれら未燃HC、COおよびNOxはSOx吸収剤17においてかなり浄化せしめられる。したがって、これら未燃HC、COおよびNOxが大気中に放出される虞れがない。

【0070】次に、SOx吸収剤17の熱劣化の状態の判定手順について説明する。図5は、SOx吸収剤17に流入する排気ガスの空燃比(以下、入ガス空燃比と称す)と、SOx吸収剤17から流出した排気ガスのSOx濃度(以下、出ガスSOx濃度と称す)の一例を示す図である。

【0071】 この図において、入ガス空燃比をリーン・リッチスパイク制御しているときにNOx触媒20においてNOxの吸放出が行われ、入ガス空燃比を高温ストイキ制御しているときにSOx吸収剤17の再生が行われる。尚、この例では、リーン・リッチスパイク制御においては、例えば60km/hでの定速走行でリーン運転継続時間を40秒、リッチスパイクとしてのストイキ運転継続時間を2秒程度としてこれを交互に繰り返す。一方、SOx吸収剤17の再生処理時は空燃比をストイキ制御とし、その継続時間はリーン・リッチスパイク制御の時のリッチスパイク継続時間よりも十分に長い時間、例えば約1時間としている。

【0072】そして、SOx吸収剤17が熱劣化していない場合には、入ガス空燃比をリーン・リッチスパイク制御していてSOx吸収剤17にリッチスパイクの排気ガスが流入しても、短時間であるためSOx吸収剤17からSOxが放出されることがなく、SOx吸収剤17の次回再生時期まで出ガスSOx濃度はほぼ零の状態が続く

【0073】しかしながら、SOx吸収剤17の熱劣化が徐々に進行してくると、入ガス空燃比をリーン・リッチスパイク制御していてSOx吸収剤17にリッチスパイクの排気ガスが流入したときに、SOx吸収剤17からSOxが放出されるようになり、その結果、SOxを含む排気ガスがリッチスパイク時に同期してSOx吸収剤17から流出するようになる。

【0074】ととで、出ガスSOx濃度は、SOx吸収剤 17の熱劣化が進行しているときほど高くなる傾向があ り、また、各リッチスパイク時における出ガスSOx濃 度のピーク値は、リッチスパイクの回数が増えるにした がって徐々に高くなる傾向がある。そこで、この実施の 形態では、SOx吸収剤17を再生した直後の第1回目 のリッチスパイク時にSOxセンサ24によって検出し た出ガスSOx濃度のピーク値からSOx吸収剤17の熱 劣化の状態(熱劣化の程度)を判定することにした。 【0075】SOx吸収剤17の熱劣化の状態を判定す

15

る時期を「SOx吸収剤17を再生した直後の第1回目 のリッチスパイク時」とした理由は次の通りである。S Ox吸収剤17の再生直後は、SOx吸収剤17に吸収さ れているSOx量が極めて少なく、SOxは放出されにく いはずである。したがって、SOx吸収剤17の熱劣化 を厳密に判定するには再生直後が一番最適であり、毎回 同じ時期に熱劣化の状態を判定するのが判定精度を向上 させることになる。

【0076】ただし、SOx吸収剤17の熱劣化の状態 を判定する時期については、SOx吸収剤17の再生終 了直後に近い時期が好ましいということであって、必ず しも「SOx吸収剤17を再生した直後の第1回目のリ ッチスパイク時」に限定されるものではない。したがっ て、例えば、判定時期を「SOx吸収剤17を再生した 直後から数えて第n回目のリッチスパイク時(nは自然 数)」とすることも可能である。また、SOx吸収剤1 7を再生した直後から数えて第n回目~第 $(n+\alpha)$ 回 目のリッチスパイク時の出ガスSOx濃度のピーク値を 平均し、その平均値に基づいて熱劣化の状態を判定する ことも可能である。

【0077】前述のようにして求めた出ガスSOx濃度 のピーク値に基づいて、ECU30は、予めROM32 に記憶されている熱劣化判定マップを参照して、SOx 吸収剤17の熱劣化の状態を判定する。

【0078】図6は、熱劣化判定マップの一例を示して おり、この例では、ピーク値dpが0≤dp<d1のとき には熱劣化の状態がレベル1(L1)であると判定し、 ピーク値 d pが d 1≦ d p< d 2のときには熱劣化の状態が レベル2 (L2) であると判定し、ピーク値 d pが d 2≦ dp<d3のときには熱劣化の状態がレベル3(L3)で あると判定し、ピーク値dpがdp≥d3のときには熱劣 化の状態がレベル4(L4)であると判定する。尚、C とで、ピーク値dは、d1<d2<d3<d4である。

【0079】そして、予め、熱劣化のレベル毎に、SO x吸収剤17の再生時期に達したか否かの判定基準とな るSOx吸収容量Cを設定しておく。この例では、レベ ル1 (L1) のSOx吸収容量はC1 レベル2 (L2) の SO×吸収容量はC2、レベル3(L3)のSO×吸収容量 はC3、レベル4(L4)のSOx吸収容量はC4になって いる。尚、ととで、SOx吸収容量Cは、C1>C2>C3 50 て、ECU30は、SOx吸収剤再生制御を実行する。

>C4であり、熱劣化のレベルLが上がるにしたがっ て、SOx吸収容量Cは小さく設定されている。

【0080】そして、今回のSOx吸収剤再生後に判定 された熱劣化のレベルと前回のSOx吸収剤再生後に判 定された熱劣化のレベルとを比較してレベルが変わった か否かを判定し、熱劣化のレベルが変わっていないとき にはSOx吸収容量を変更せず、熱劣化のレベルが変わ ったときには、今回判定された熱劣化のレベルに対応し たSOx吸収容量に変更する。即ち、熱劣化のレベルし 10 が上がったときにはSOx吸収容量を小さくする。

【0.081】なお、リッチスパイクの排気ガスがSOx 吸収剤17に流入したときにSOx吸収剤17から放出 されるSOx量はSOx吸収剤17の温度とも関係があ り、SOx吸収剤17の温度が高い時の方がSOxが放出 され易いことがわかっている。そこで、SOx吸収剤1 7の温度によって熱劣化のレベル判定に誤差が生じない ようにするために、SOx吸収剤17の温度を所定の温 度域に分割し、予め各温度域ごとに図6に相当する熱劣 化判定マップを作成しROM32に記憶させておく。

【0082】Cの場合、SOx吸収容量C1, C2, C3, C4についてはどの熱劣化判定マップでも同じ値とし、 熱劣化のレベルを決定するしきい値であるピーク値d 1. d 2, d 3, d 4の値だけを各温度域の熱劣化判定マップ プ毎に相違させるようにする。例えば、450°Cを含 む温度域の熱劣化判定マップにおけるd2を1ppmとし、 550°Cを含む温度域の熱劣化判定マップにおけるd 2を2 ppmとし、700°Cを含む温度域の熱劣化判定マ ップにおけるd2を5ppmとする如くである。

【0083】次に、図7を参照して、この実施の形態に おけるSOx吸収剤再生処理実行ルーチンを説明する。 とのルーチンを構成する各ステップからなるフローチャ ートはECU30のROM32に記憶してあり、フロー チャートの各ステップにおける処理は総てECU30の CPU34によって実行される。なお、この再生処理実 行ルーチンは所定時間毎に実行される。

【0084】<ステップ101>まず、ECU30は、 ステップ101において、現在のエンジン1の運転状態 からSOx吸収剤17に吸収されるSOx置を算出し、S Ox吸収剤再生処理後から現在までにSOx吸収剤17に 吸収されたSOx吸収量を積算する。

【0085】<ステップ102>次に、ECU30は、 ステップ102に進み、SOx吸収剤17の再生時期か 否かを判定する。即ち、ステップ102で算出したSO x吸収量が判定基準であるSOx吸収容量に達している場 合には、ECU30は、SOx吸収剤17の再生時期で あると判定してステップ103に進み、ステップ101 で算出したSOx吸収量がSOx吸収容量に達していない 場合には再生時期ではないと判定してリターンに進む。 【0086】 <ステップ103>ステップ103におい

即ち、ECU30は、排気ガス温度がSOx放出温度以上になるように温度制御を実行し、排気ガスの空燃比が所定のストイキまたはリッチ条件となるように空燃比制御を実行し、再生排気がバイバス管26に流れるように排気切替弁28の切り替え制御を実行する。

【0087】そして、ECU30は、SOx吸収剤再生制御を所定時間実行したときにSOx吸収剤再生制御を終了して、排気ガスの空燃比制御をリーン・リッチスパイク制御に移行するとともに、排気ガスがNOx触媒20に流れるように排気切替弁28を切り替えて、ステップ104に進む。

【0088】<ステップ104>ECU30は、ステップ104において、SOxセンサ24によってSOx吸収 剤再生直後の第1回目のリッチスパイク時の出ガスSOx 機度のピーク値を検出するとともに、温度センサ23によってSOx吸収剤温度を検出する。

【0089】<ステップ105>次に、ECU30は、ステップ105に進み、SOx吸収剤17の再生時期か否かの判定基準となるSOx吸収容量を変更する必要があるか否かを判定する。詳述すると、ECU30は、ステップ104で検出したSOx吸収剤温度に該当する温度域の熱劣化判定マップを参照して、ステップ104で検出した出ガスSOx濃度のピーク値に基づいて、現在のSOx吸収剤17の熱劣化のレベルにあるかを判定する。さらに、現在のSOx吸収剤17の熱劣化のレベルが、前回のSOx吸収剤再生後に判定した熱劣化のレベルと変わっているか否かを判定する。

【0090】そして、今回と前回で熱劣化のレベルが変わっていない場合には、ステップ105において、SOx吸収容量を変更する必要なしと判定してリターンに進む。

【0091】<ステップ106>一方、今回判定された 熱劣化のレベルが前回判定された熱劣化のレベルと変わっている場合には、SOx吸収容量を変更する必要があると判定してステップ106に進み、ECU30は、SOx吸収容量を今回判定された熱劣化のレベルに対応するSOx吸収容量に変更してリターンに進む。即ち、熱劣化のレベルが上がったときにはSOx吸収容量を小さくする。その結果、次回本ルーチンを実行するときには、ステップ102において変更後のSOx吸収容量を判定基準としてSOx吸収剤17の再生時期か否かが判定されることになる。これにより、SOx吸収剤17の再生頻度が多くなることになる。

【0092】との実施の形態においてECU30による一連の信号処理のうちステップ105を実行する部分は、SOx吸収剤17の劣化の状態を判定する劣化判定手段ということができ、ステップ106を実行する部分は、SOx吸収剤17の再生頻度を変更する再生頻度変更手段ということができる。

【0093】このように、この実施の形態によれば、SOx吸収剤17の熱劣化の状態に応じてSOx吸収剤17の再生頻度を変更するので、SOx吸収剤17の再生が適正な時期に実行されるようになり、NOx触媒20がSOx被毒するのを確実に阻止することができる。その結果、NOx触媒20のNOx浄化率を常に高い状態に維持することができる。

【0094】〔他の実施の形態〕前述した実施の形態では本発明をガソリンエンジンに適用した例で説明したの、本発明をディーゼルエンジンに適用することができることは勿論である。ディーゼルエンジンの場合は、燃焼室での燃焼がストイキよりもはるかにリーン域で行われるので、通常の機関運転状態ではSOx吸収剤17およびNOx触媒20に流入する排気ガスの空燃比は非常にリーンであり、SOxおよびNOxの吸収は行われるものの、SOxおよびNOxの放出が行われることは殆どない。

【0095】また、ガソリンエンジンの場合には、前述したように燃焼室3に供給する混合気をストイキあるいはリッチにすることによりSOx吸収剤17およびNOx触媒20に流入する排気ガスの空燃比をストイキあるいはリッチにし、SOx吸収剤17やNOx触媒20に吸収されているSOxやNOxを放出させることができるが、ディーゼルエンジンの場合には、燃焼室に供給する混合気をストイキあるいはリッチにすると燃焼の際に煤が発生するなどの問題があり採用することはできない。

【0096】したがって、本発明をディーゼルエンジンに適用する場合、流入する排気ガスの空燃比をストイキあるいはリッチにするためには、機関出力を得るために30燃料を燃焼するのとは別に、還元剤(例えば燃料である軽油)を排気ガス中に供給する必要がある。排気ガスへの還元剤の供給は、吸気行程や膨張行程や排気行程において気筒内に燃料を副噴射することによっても可能であるし、あるいは、SOx吸収剤17の上流の排気通路内に還元剤を供給することによっても可能である。

[0097]尚、ディーゼルエンジンであっても排気再循環装置(所謂、EGR装置)を備えている場合には、排気再循環ガスを多量に燃焼室に導入することによって、排気ガスの空燃比をストイキまたはリッチにすることが可能である。

[0098]

【発明の効果】本発明に係る内燃機関の排気浄化装置によれば、(イ)希薄燃焼可能な内燃機関の排気通路に配置され流入する排気ガスの空燃比がリーンのときにSOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したSOxを放出するSOx吸収剤と、(ロ)前記SOx吸収剤よりも下流の前記排気通路に配置され流入する排気ガスの空燃比がリーンのときにNOxを吸収し流入する排気ガスの酸素濃度が低いときに吸収したNOxを50 放出するNOx吸収剤と、(ハ)前記NOx吸収剤におけ

るNOxの吸収・放出を制御すべく排気ガスの空燃比を 制御する排気空燃比制御手段と、(ニ)前記SOx吸収 剤からSOxを放出させてSOx吸収剤を再生させるべく 排気ガスの酸素濃度を低減する再生手段と、(ホ)前記 排気空燃比制御手段により排気ガスの空燃比をストイキ またはリッチに制御したときの前記SOx吸収剤の下流 における排気ガスのSOx濃度を検出するSOx濃度検出 手段と、(へ)前記SOx濃度検出手段で検出した排気 ガスのSOx濃度に基づいて前記SOx吸収剤の劣化の状 態を判定する劣化判定手段と、(ト)前記劣化判定手段 10 により判定されたSOx吸収剤の劣化の状態に応じて前 記再生手段によるSOx吸収剤の再生頻度を変更する再 生頻度変更手段と、を備えることにより、SOx吸収剤 の再生を適正な時期に実行することができるようにな り、その結果、NOx吸収剤がSOx被毒するのを確実に 防止することができるという優れた効果が奏される。

【0099】また、本発明に係る前記内燃機関の排気浄化装置において、前記劣化判定手段によるSOx吸収剤の劣化判定を、SOx吸収剤の再生終了直後に近い時期に実行するようにした場合には、SOx吸収剤の劣化状態の判定精度を高めることができるという効果がある。【図面の簡単な説明】

[図1] 本発明に係る内燃機関の排気浄化装置の一実施の形態の概略構成図である。

【図2】 基本燃料噴射時間のマップの一例を示す図で*

*ある。

【図3】 機関から排出される排気ガス中の未燃HC, COおよび酸素の濃度を概略的に示す線図である。

20

【図4】 吸蔵還元型NOx触媒のNOx吸放出作用を説明するための図である。

【図5】 前記実施の形態におけるSOx吸収剤出ガスSOx機度の変化の一例を示す図である。

【図6】 前記実施の形態における熱劣化判定マップの 一例を示す図である。

) 【図7】 前記実施の形態のSOx吸収剤再生処理実行 ルーチンである。

【符号の説明】

- 1 機関本体(内燃機関)
- 3 燃焼室
- 4 点火栓
- 11 燃料噴射弁
- 16,22 排気管(排気通路)
- 17 SOx吸収剤
- 20 吸蔵還元型NOx触媒(NOx吸収剤)
- 20 23 温度センサ
 - 24 SOxセンサ (SOx濃度検出手段)
 - 26 バイパス管
 - 28 排気切替弁
 - 30 ECU

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

機劣化料定マップ (SO×吸収剤温度域T1 ~T2 ℃)

【図7】

フロントページの続き

(51) Int.C7.7

識別記号

330

F02D 41/14

FΙ

F02D 41/14

テーマコート'(参考)

3 3 0 Z

Fターム(参考) 3G091 AA12 AA18 AA24 AB06 AB08

BA11 BA33 CA12 CA13 CA16

CB02 CB03 DA02 DB10 DB11

EA01 EA05 EA17 EA19 EA33

FB10 FB12 FC01 GB01Y

GB02W GB03W GB04W GB05W

GB05Y GB06W GB06Y GB07Y

GB10X GB17X HA37

3G301 HA01 HA02 HA04 HA15 JA15

JA21 JA25 JA33 KA00 NA08

NE13 PD01Z

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.