1 Binary Operation

def: Let A be an aribitrary set, a binary operation is a function:

$$f:A\to A$$

- remark:
 - 1. No exception: for every orderd pair (a_1, a_2) and $a_1, a_2 \in A$, there exists a corresponding element
 - Division is not a binary operation on \mathbb{R}
 - e.g. $(3,0) \in \mathbb{R} \times \mathbb{R}$, but $\frac{3}{0}$ is undefined
 - 2. No ambiguity: for every orderd pair (a_1, a_2) and $a_1, a_2 \in A$, the corresponding pair will be unique defined.
 - 3. Closed under the operation
- remark: Natural Number starts from 1

2 Power Set

def: let S be an aribitrary set. P(S) is a set consists exactly of all subsets of S (including \emptyset and S)

- e.g. if $S = \{1, 2\}$, then $P(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
- Notation: * , · , +, or nothing. We also denot *(x,y), ·(x,y), +(x,y), or (x,y)

3 Addition Properties

Axiom:

$$+: A \times A \rightarrow A$$

- 1. closed under operation
- 2. commutative
- 3. associative
- 4. there exists a neutral element, 0, s.t. x + 0 = 0 + x = x
- 5. there is an inverse s.t. x + y = y + x = 0
- remark: neutral element is always unique but may not always exists

Proof.
$$e_1 = f(e_1, e_2) = e_2$$

- **remark:** if S has a neutral element, let $x \in S$. If $y \in S$ satisfies f(x, y) = f(y, x) = e, then y is called negative of inverse, which is also unique.
- remark: Def associativity, $\forall x, y, z \in S, f(f(x, y), z) = f(x, f(y, z))$
- **remark:** Def commutativity, $\forall x, y, f(x, y) = f(y, x)$

4 Group

def: A set of G if there exists a binary operation * on G such that:

- 1. there exists a neutral element
- 2. there exists a unique inverse for every element in G
- 3. associative

5 Multiplication Axioms

- 1. there exists a neutral element other than 0, called 1
- 2. $\forall x \in \mathbb{R}, x \neq 0, \exists ! y \in \mathbb{R}$ called the inverse of x
- 3. associative
- 4. commutative
- 5. Distributive Law: Let *, +, be two operations on a set S.
 - left distributive: x * (y + z) = x * y + x * z
 - right distributive: (y+z)*x = y*x + z*x

remark: In \mathbb{R} , * is distributive to +

remark: $R^* = R \setminus \{0\}$ becomes a group under *

6 Order of Group Elements

Corollary. Let k be an element of a group G. Then ord(k) = | < k > |In other words, the order of k is equal to the order of the cyclic group generated by k

Theorem. (Structure of finite cyclic group) Let G be a cyclic group of < x > with finite order n. The following holds:

1. Every subgroup of G is cyclic and is of the shape $< x^d >$ where d > 0 and $d \mid n$

More concretely, Let $d_1, d_2, ..., d_r$ be all distinct positive divisor of n. then $\langle x^{d_1} \rangle, \langle x^{d_2} \rangle, ..., \langle x^{d_r} \rangle$ exhaust all subgroup of G.

- 2. if d and d' are both positive divisors of n, and $d \neq d'$, then $\langle x^d \rangle \neq \langle x^{d'} \rangle$
- 3. if $k \in \mathbb{Z}$, then x^k is a generator of G iff gcd(k,n) = 1
- 4. $\forall k \in \mathbb{Z}$, we have $\langle x^k \rangle = \langle x^d \rangle$, where $d = \gcd(n, k)$
- 5. $\forall k \in \mathbb{Z}, \ ord(x^k) = \frac{n}{\gcd(n,k)}$

Proof of the theorem above:

1. Proof. Take H be a subgroup of G,.

if
$$H = \{e\}$$
, then $H = \langle x^n \rangle$

if
$$H = G$$
, then $H = \langle x \rangle$

Now let $H \subseteq G$ be a nontrivial subgroup. Since $G = \{e, x^1, x^2, ..., x^{n-1}\}$, thus H contains some elements of the shape x^j , where $j \in \{1, 2, 3, ..., n-1\}$. Take $d \in \mathbb{N}$ be the smallest natural number such that $x^d \in H$.

Claim: $\langle x^d \rangle = H$.

1. Since H is a subgroup of G containing x^d . By definition $\langle x^d \rangle$ is the smallest subgroup of G containing x^d . Thus

$$< x^d > \subseteq H$$

2. Take $y \in H \Rightarrow y \in G \Rightarrow y = x^m$, where $m = \{0, 1, ..., n-1\}$ By definition using Division Algorithm:

$$\exists ! q, r \in \mathbb{Z}$$

such that $m = qd + r, 0 \le r < d$

$$x^r = x^{m-qd} = x^m (x^d)^{-q} \Rightarrow x^m = y \in H, (x^d)^{-q} \in H \Rightarrow x^r \in H$$

If r > 0, then r is a natural number strictly smaller than d, also $x_r \in H$, which contradicts the minimality of d. Thus,

$$r = 0 \Rightarrow H \subseteq \langle x^d \rangle$$

Above all, we know $H = \langle x^d \rangle$

Then show that d|n

Again, use Division Algorithm:

$$\exists !q', r'$$

such that $n = q'd + r', 0 \le r' < d$.

$$x^{r'} = x^n x - q' d = e(x^d)^{-q'} \in \langle x^d \rangle$$

so it contradicts with the minimality of d. Therefore r'=0

2.

7 Study of Symmetric Group and Permutation Group

Def. Symmetric Group: Let A be a non-empty set. Then a symmetric group of A is the group consists of all bijective maps from A to itself under the usual compositions of functions.

Notation: sym(A)

Def. Symmetric Group: Let A be a non-empty set. Then a permutation group of A is a group G whose elements are bijective maps from A to itself under usual compositions of functions

Remark. Symmetric group is unique, because it contains **all** of the bijective maps from A to itself.

Permutation group is not unique, because it contains some of the bijective maps from A to itself.

A permutation group is a subgroup of symmetric group

Prop. Let S_n be a permutation group, then

$$|S_n| = n!$$

Def. Cauchy's two line notation:

e.g. Consider $\sigma \in S_3$

$$\sigma(1) = 2, \sigma(2) = 3, \sigma(3) = 1$$

Notation:

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

Theorem. Cayley's theorem

Every group is isomorphic to permutation group of a certain set.

Proof. Let A be the underlying set of G.

Goal: construct a monomorphism $T: G \to sym(A)$

 $\forall g \in G$, define: $T_g: A \to A$ such that $T_g(a) = ga$

claim: T_q is injective:

Let
$$a_1, a_2 \in A$$
 with $T_g(a_1) = T_g(a_1)$, so $ga_1 = ga_2 \Rightarrow a_1 = a_2$

claim: T_g is surjective:

Let $b \in A$, it suffices to find some $a \in A$, such that $T_g(a) = b$. Thus, $ga = b \Rightarrow a = g^{-1}b \in A$

Thus, we define the map $T: G \to sym(A)$ to be $T(g) = T_q$

claim: T is injective:

Let $g_1, g_2 \in G$

$$T(g_1) = T(g_2) \iff T_{g_1} = T_{g_2}$$

$$T_{g_1}: A \to A \iff T_{g_2}: A \to A$$

as bijective map from A to itself.

$$\iff T_{g_1}(a) = T_{g_2}(a), \forall a \in A$$

Take
$$a=e_G\Rightarrow T_{g_1}(e_G)=T_{g_2}(e_G)\Rightarrow g_1e_G=g_2e_G\Rightarrow g_1=g_2$$

claim: T preserves the group operation:

it suffices to show $\forall g_1,g_2 \in G, \hat{T(g_1,g_2)} = T(g_1) \circ T(g_2) \iff T_{g_1g_2} = T_{g_1} \circ T_{g_2}$

$$\forall a \in A, T_{g_1}] \circ T_{g_2}(a) = T_{g_1}(g_2 a) = g_1 g_2 a$$

$$Tg_1g_2(a) = g_1g_2a$$

Thus, $T_{g_1g_2} = T_{g_1} \circ T_{g_2}$.

Therefore, we have a $T: G \to sym(A)$. G is isomorphic to T(G) which is a subgroup of sym(A), which is a permutation group.