

An Empirical Comparison of the RISC-V and AArch64 Instruction Sets

Daniel Weaver & Simon McIntosh-Smith University of Bristol

Motivation

11/28/2023

A Fair Comparison

- Power, Performance, Area
- Feature sets
 - Armv8-a+nosimd vs rv64g
- Compilers
- Benchmarks

Problem Definition

 $Program\ Execution\ Time = Path\ Length \times CPI \times Time\ per\ Cycle$

The Workloads

- STREAM
 - Sustained memory bandwidth
 - 4 simple kernels
- CloverLeaf_Serial
 - High energy physics simulation on 2D cartesian grid
 - Many kernels each working over entire grid
- miniBUDE
 - Approximation of molecular docking simulation
- Lattice Boltzmann
 - Computational fluid dynamics
 - d2q9-bgk serial code
- minisweep
 - Radiation transportation mini app

The Compilers

GCC 9.2 GCC 12.2

-march=armv8-a+nosimd -mtune=cortex-a55 -static

-march=rv64g -mtune=sifive-7-series -static

SimEng

- CPU microarchitecture simulator
- Open source
- Fast
- Easily modifiable
- Accurate
- Supported ARMv8
- RISC-V support added

Path Length

- Benchmark source code modified to add instrumentation – NOPs around kernels
- Modified SimEng emulation core

 $Program\ Execution\ Time = Path\ Length \times CPI \times Time\ per\ Cycle$

STREAM Analysis

```
ldr d1, [x22, x0, lsl #3]

str d1, [x19, x0, lsl #3]

add x0, x0, #1

cmp x0, x20

b.ne 0x400abc <main+0x248>
```

```
fld fa5,0(a5)
fsd fa5,0(a4)
add a5,a5,8
add a4,a4,8
bne a5,s0,10c58 <main+0x25c>
```

Ideal CPI

- Ideal processor
 - Execute entire instruction in 1 cycle
 - Execute any number of instructions in 1 cycle
 - Perfect branch prediction
 - MUST obey RAW (true) dependencies between instructions
- How many cycles to complete a program? The longest chain of true dependencies
- Critical path (CP)
- Another modified SimEng emulation core

Critical Path Length

Instruction level
 parallelism (ILP)
 measure of no.
 instructions
 required to be
 executed per cycle
 to achieve ideal CPI

Table 1: Critical Paths and ILP per Benchmark

	STREAM					CloverLeaf					
	GCC 9.2			GCC 12.2			GCC 9.2			GCC 12.2	
	AArch64	RISC-V	AArch	54 RIS	C-V	AArc	h64	RISC-V	AArch6	4 RISC-V	
Path Length	3,350,107,615	3,110,150,35	58 2,930,114	,073 3,110,	139,144	12,832	,452 14	4,553,390	12,647,0	61 13,481,49	
CP	10,000,234	10,005,341	10,000,2	34 10,00	4,815	46,9	33	191,538	46,658	228,036	
ILP	335	311	293	3	11	273	3	76	271	59	
2GHz Run time (ms)	5.00	5.00	5.00	5	00	0.0235		0.0958	0.0233	0.114	
	LBM					miniBUDE					
	GCC 9.2		GCC	GCC 12.2		GCC 9.2		south.	GCC 12.2		
	AArch64	RISC-V	AArch64	RISC-V	AAı	rch64	RISC	-V A	Arch64	RISC-V	
Path Length	380,391,346	463,305,683	376,329,390	412,979,829	137,2	80,541	115,064	,988 13	7,183,536	114,897,049	
CP	10,910,427	5,196,321	4,660,144	4,873,467	196	,357	197,2	85 1	196,331	196,722	
ILP	35	89	81	85	6	99	583	1	699	584	
2GHz Run time (ms)	5.46	2.60	2.33	2.44	0.0	982	0.098	36	0.0982	0.0984	
	minisweep										
		8-	GCC 9.2			GCC 12.2					
		_	AArch64	RISC-V		Arch64	R	ISC-V	-		

	minisweep							
	GCC	C 9.2	GCC 12.2					
	AArch64	RISC-V	AArch64	RISC-V				
Path Length	2,162,866,809	2,332,356,452	1,934,709,957	1,894,737,614				
CP	263,120	263,327	280,567	272,444				
ILP	8,220	8,857	6,896	6,955				
2GHz Run time (ms)	0.132	0.132	0.140	0.136				

 $Program\ Execution\ Time = Path\ Length \times CPI \times Time\ per\ Cycle$

Table 2: Scaled Critical Paths and ILP per Benchmark

	STREAM					CloverLeaf			
	GCC 9.2		GCC 12.2		G	GCC 9.2		GCC 12.2	
	AArch64	RISC-V	AArch64	RISC-V	AArch	64 RISC-	V AArch	64 RISC-V	
Scaled CP	60,000,545	60,005,845	60,000,545	60,005,84	5 94,98	3 191,5	38 81,92	5 244,103	
ILP	56	52	49	52	135	76	154	55	
2GHz Run time (ms)	30.0	30.0	30.0	30.0	0.047	5 0.095	8 0.041	0.122	
		LB	М			miniF	BUDE		
	GCC 9.2		GCC 12.2		GCC	GCC 9.2		GCC 12.2	
	AArch64	RISC-V	AArch64	RISC-V	AArch64	RISC-V	AArch64	RISC-V	
CP	42,344,992	5,888,686	4,660,233	5,565,925	685,839	685,842	685,680	685,291	

	minisweep						
	GCC	C 9.2	GCC 12.2				
	AArch64	RISC-V	AArch64	RISC-V			
CP	1,577,198	1,586,189	1,592,550	1,577,099			
ILP	1,371	1,470	1,215	1,201			
2GHz Run time (ms)	0.790	0.793	0.796	0.789			

74

2.78

168

0.343

168

0.343

168

0.343

168

0.343

Scaled CPI

- Scale CP by instruction latencies
- Latencies roughly follow that of TX2
- Do not scale for loads and stores

ILP

2GHz Run time (ms)

9.0

21.2

79

2.94

81

2.33

Windowed CP

- Slide window down dynamic instruction trace
- Determine CP length per window
- Window size and stride parameterisable
- We choose values ranging from 4 – 2000
- Stride 50% of size
- GCC 12.2 only

```
4003f4 <mysecond>
fmov
     d9, d0
     x0, #0x0
                             // #0
MOV
ldr
     d1, [x22, x0, lsl #3]
     d1, [x19, x0, lsl #3]
str
     x0, x0, #0x1
add
     x0, x20
CMD
b.ne 400abc <main+0x248> // b.anv
     d1, [x22, x0, lsl #3]
ldr
     d1, [x19, x0, lsl #3]
str
add
     x0, x0, #0x1
     x0, x20
CMD
b.ne 400abc <main+0x248> // b.any
ldr
     d1, [x22, x0, lsl #3]
     d1, [x19, x0, lsl #3]
str
add x0, x0, #0x1
     x0, x20
CMD
b.ne 400abc <main+0x248> // b.any
ldr
     d1, [x22, x0, lsl #3]
     d1, [x19, x0, lsl #3]
str
add
     x0, x0, #0x1
     x0, x20
CMD
b.ne 400abc <main+0x248> // b.any
ldr
     d1, [x22, x0, lsl #3]
     d1, [x19, x0, lsl #3]
str
```

Windowed CP Results

Conclusion and Future Work

- Full OoO superscalar microarchitecture simulation
- Varying available resources
- More benchmarks
- More compilers
- More ISA extensions

16

Important Links

- Daniel Weaver <u>ra18837@bristol.ac.uk</u>
- Paper https://dl.acm.org/doi/10.1145/3624062.3624233
- Artifact https://github.com/UoB-HPC/Arm-RISCV-Empirical-Comparison-Artifact
- SimEng repository https://github.com/UoB-HPC/SimEng
- SimEng Documentation https://uob-hpc.github.io/SimEng/

11/28/2023