回帰分析

回帰モデルの考え方と推定

村田 昇

講義の内容

・ 第1回:回帰モデルの考え方と推定

• 第2回:モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の例

ボルドーワインの価格と気候の関係

_\	/INT	LPRICE2	WRAIN	DEGREES	HRAIN	TIME_SV
	1952	-0.99868	600	17.1167	160	31
	1953	-0.45440	690	16.7333	80	30
	1954	NA	430	15.3833	180	29
	1955	-0.80796	502	17.1500	130	28
	1956	NA	440	15.6500	140	27
	1957	-1.50926	420	16.1333	110	26
	1958	-1.71655	582	16.4167	187	25
	1959	-0.41800	485	17.4833	187	24
	1960	-1.97491	763	16.4167	290	23
	1961	0.00000	830	17.3333	38	22
	1962	-1.10572	697	16.3000	52	21
	1963	-1.78098	608	15.7167	155	20
	1964	-1.18435	402	17.2667	96	19
	1965	-2.24194	602	15.3667	267	18
	1966	-0.74943	819	16.5333	86	17
	1967	-1.65388	714	16.2333	118	16
	1968	-2.25018	610	16.2000	292	15
	1969	-2.14784	575	16.5500	244	14
	1970	-0.90544	622	16.6667	89	13
	1971	-1.30031	551	16.7667	112	12
	1972	-2.28879	536	14.9833	158	11
	1973	-1.85700	376	17.0667	123	10
	1974	-2.19958	574	16.3000	184	9
	1975	-1.20168	572	16.9500	171	8
	1976	-1.37264	418	17.6500	247	7

1977	-2.23503	821	15.5833	87	6
1978	-1.30769	763	15.8167	51	5
1979	-1.53960	717	16.1667	122	4
1980	-1.99582	578	16.0000	74	3
1981	NA	535	16.9667	111	2
1982	NA	712	17.4000	162	1
1983	NA	845	17.3833	119	0
1984	NA	591	16.5000	119	-1
1985	NA	744	16.8000	38	-2
1986	NA	563	16.2833	171	-3
1987	NA	452	16.9833	115	-4
1988	NA	808	17.1000	59	-5
1989	NA	443	NA	82	-6

Figure 1: 価格と気候の散布図

• 回帰式

 $\mathsf{LPRICE2} = \beta_0 + \beta_1 \times \mathsf{WRAIN} + \beta_2 \times \mathsf{DEGREES} + \beta_3 \times \mathsf{HRAIN} + \beta_4 \times \mathsf{TIME} \; \mathsf{SV}$

Characteristic	Beta	95% CI ¹	p-value		
(Intercept)	-12.15	-15.65, -8.644	< 0.001		
WRAIN	0.0012	0.0002, 0.0022	0.024		
DEGREES	0.6164	0.4190, 0.8138	< 0.001		
HRAIN	-0.0039	-0.0055, -0.0022	< 0.001		

TIME_SV

0.0238

0.0090, 0.0387

0.003

¹CI = Confidence Interval

 $R^2 = 0.828$; Adjusted $R^2 = 0.796$; Statistic = 26.4; p-value = <0.001

回帰分析の考え方

回帰分析

- ある変量を別の変量で説明する関係式を構成する
- 関係式: 回帰式 (regression equation)
 - 説明される側:目的変数,被説明変数,従属変数,応答変数
 - 説明する側:説明変数,独立変数,共変量
- 説明変数の数による分類
 - 一つの場合: **単回帰** (simple regression)
 - 複数の場合: **重回帰** (multiple regression)

一般の回帰の枠組

- 説明変数: $x_1, ..., x_p$ (p 次元)
- 目的変数: y(1次元)
- 回帰式: y を $x_1,...,x_p$ で説明するための関係式

$$y = f(x_1, \ldots, x_p)$$

• 観測データ: n 個の $(y, x_1, ..., x_n)$ の組

$$\{(y_i, x_{i1}, \dots, x_{ip})\}_{i=1}^n$$

線形回帰

- 任意の f では一般的すぎて分析に不向き
- f として 1 次関数 を考える

ある定数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた式:

$$f(x_1,\ldots,x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- 1 次関数の場合: 線形回帰 (linear regression)
- 一般の場合: 非線形回帰 (nonlinear regression)
- 非線形関係は新たな説明変数の導入で対応可能
 - 適切な多項式: $x_i^2, x_j x_k, x_j x_k x_l, \ldots$
 - その他の非線形変換: $\log x_j, x_i^{\alpha}, \dots$
 - 全ての非線形関係ではないことに注意

Figure 2: 重回帰による予測値と実際の価格

回帰係数

• 線形回帰式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- $-\beta_0,\beta_1,\ldots,\beta_p$: 回帰係数 (regression coefficients)
- $-\beta_0$: 定数項 / 切片 (constant term / intersection)
- 線形回帰分析 (linear regression analysis)
 - 未知の回帰係数をデータから決定する分析方法
 - 決定された回帰係数の統計的な性質を診断

回帰の確率モデル

- 回帰式の不確定性
 - データは一般に観測誤差などランダムな変動を含む
 - 回帰式がそのまま成立することは期待できない
- 確率モデル : データのばらつきを表す項 ϵ_i を追加

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

- $-\epsilon_1,\ldots,\epsilon_n$: 誤差項 / 撹乱項 (error / disturbance term)
 - * 誤差項は独立な確率変数と仮定
 - * 多くの場合,平均 0,分散 σ^2 の正規分布を仮定
- **推定** (estimation): 観測データから回帰係数を決定

回帰係数の推定

残差

• 残差 (residual): 回帰式で説明できない変動

• 回帰係数 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^\mathsf{T}$ を持つ回帰式の残差

$$e_i(\beta) = y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})$$
 $(i = 1, \dots, n)$

• 残差 $e_i(\beta)$ の絶対値が小さいほど当てはまりがよい

最小二乗法

• 残差平方和 (residual sum of squares)

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} e_i(\boldsymbol{\beta})^2$$

• 最小二乗推定量 (least squares estimator)

残差平方和 $S(\beta)$ を最小にする β

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^{\mathsf{T}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

行列の定義

• デザイン行列 (design matrix)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

ベクトルの定義

• 目的変数, 誤差, 回帰係数のベクトル

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

- y, ϵ は n 次元ベクトル

- β は p+1 次元ベクトル

行列・ベクトルによる表現

• 確率モデル

$$y = X\beta + \epsilon$$

• 残差平方和

$$S(\boldsymbol{\beta}) = (\boldsymbol{v} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{v} - X\boldsymbol{\beta})$$

解の条件

・ 解 β では残差平方和の勾配は零ベクトル

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = \left(\frac{\partial S}{\partial \beta_0}(\boldsymbol{\beta}), \frac{\partial S}{\partial \beta_1}(\boldsymbol{\beta}), \dots, \frac{\partial S}{\partial \beta_p}(\boldsymbol{\beta})\right)^{\mathsf{T}} = \mathbf{0}$$

演習

問題

• 残差平方和 $S(\beta)$ をベクトル β で微分して解の条件を求めなさい

解答例

• 残差平方和を展開しておく

$$S(\boldsymbol{\beta}) = (y - X\boldsymbol{\beta})^{\mathsf{T}} (y - X\boldsymbol{\beta})$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - (X\boldsymbol{\beta})^{\mathsf{T}} y + (X\boldsymbol{\beta})^{\mathsf{T}} X \boldsymbol{\beta}$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} y + \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{\beta}$$

• ベクトルによる微分を行うと以下のようになる

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = -(\boldsymbol{y}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}})\boldsymbol{\beta}$$
$$= -2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + 2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\beta}$$

• したがって β の満たす条件は以下となる

$$-2X^{\mathsf{T}}y + 2X^{\mathsf{T}}X\beta = 0 \quad \sharp \ \emptyset$$
$$X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

補足

• 成分ごとの計算は以下のようになる

 x_{ij} は行列 X の (i,j) 成分であることに注意

正規方程式

正規方程式

• 正規方程式 (normal equation)

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• Gram 行列 (Gram matrix)

$$X^\mathsf{T} X$$

- (p+1)×(p+1) 行列(正方行列)
- 正定対称行列(固有値が非負)

正規方程式の解

- 正規方程式の基本的な性質
 - 正規方程式は必ず解をもつ(一意に決まらない場合もある)
 - 正規方程式の解は最小二乗推定量であるための必要条件
- 解の一意性の条件
 - Gram 行列 X^TX が **正則**
 - X の列ベクトルが独立(後述)
- 正規方程式の解

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

最小二乗推定量の性質

解析の上での良い条件

- 最小二乗推定量がただ一つだけ存在する条件
 - X^TX が正則
 - X^TX の階数が p+1
 - X の階数が p+1
 - X の列ベクトルが 1 次独立

これらは同値条件

解析の上での良くない条件

- 説明変数が1次従属: **多重共線性** (multicollinearity)
- 多重共線性が強くならないように説明変数を選択
 - X の列 (説明変数) の独立性を担保する
 - 説明変数が互いに異なる情報をもつように選ぶ
 - 似た性質をもつ説明変数の重複は避ける

推定の幾何学的解釈

• あてはめ値 / 予測値 (fitted values / predicted values)

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = \hat{\beta}_0 X_{\widehat{\mathfrak{A}} \ 0 \ \widehat{\mathfrak{I}} \ 1} + \dots + \hat{\beta}_p X_{\widehat{\mathfrak{A}} \ p \ \widehat{\mathfrak{I}} \ 1}$$

Figure 3: n = 3, p + 1 = 2 の場合の最小二乗法による推定

- 最小二乗推定量 ŷ の幾何学的性質
 - L[X]: X の列ベクトルが張る \mathbb{R}^n の線形部分空間
 - -X の階数が p+1 ならば L[X] の次元は p+1 (解の一意性)
 - ŷ は y の L[X] への直交射影
 - 残差 (residuals) $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} に直交

$$\hat{\epsilon} \cdot \hat{y} = 0$$

線形回帰式と標本平均

- $x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}}$: i 番目の観測データの説明変数
- 説明変数および目的変数の標本平均

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$

• $\hat{\beta}$ が最小二乗推定量のとき以下が成立

$$\bar{\mathbf{v}} = (1, \bar{\mathbf{x}}^{\mathsf{T}}) \hat{\boldsymbol{\beta}}$$

演習

問題

- 最小二乗推定量について以下を示しなさい
 - 残差の標本平均が0となる

目的変数や残差のベクトルについて以下を示せばよい

$$\mathbf{1}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \mathbf{1}^{\mathsf{T}}\hat{\boldsymbol{\epsilon}} = 0$$

ただし $\mathbf{1} = (1, \dots, 1)^{\mathsf{T}}$ とする

- 回帰式が標本平均を通る

$$\bar{\mathbf{y}} = (1, \bar{\mathbf{x}}^\mathsf{T}) \hat{\boldsymbol{\beta}}$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - \hat{y} = y - X\hat{\beta}$$
$$= y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

左から X^T を乗じる

$$X^{\mathsf{T}}\mathbf{y} - X^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y} = X^{\mathsf{T}}\mathbf{y} - X^{\mathsf{T}}\mathbf{y} = 0$$

- 行列 X の 1 列目が 1 であることより明らか
- 説明変数の標本平均をデザイン行列で表す

$$\mathbf{1}^{\mathsf{T}}X = n(1, \bar{\boldsymbol{x}}^{\mathsf{T}})$$

• したがって以下が成立する

$$n(1, \bar{\mathbf{x}}^{\mathsf{T}})\hat{\boldsymbol{\beta}} = \mathbf{1}^{\mathsf{T}} X \hat{\boldsymbol{\beta}}$$
$$= \mathbf{1}^{\mathsf{T}} \hat{\mathbf{y}} = \mathbf{1}^{\mathsf{T}} \mathbf{y}$$
$$= n\bar{\mathbf{y}}$$

残差の分解

最小二乗推定量の残差

• 観測値と推定値 β による予測値の差

$$\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_D x_{iD}) \quad (i = 1, \dots, n)$$

- 誤差項 $\epsilon_1, \ldots, \epsilon_n$ の推定値
- 全てができるだけ小さいほど良い
- 予測値とは独立に偏りがないほど良い
- 残差ベクトル

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{y} - \hat{\boldsymbol{y}} = (\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_n)^{\mathsf{T}}$$

平方和の分解

- $\bar{\mathbf{y}} = \bar{\mathbf{y}}\mathbf{1} = (\bar{\mathbf{y}}, \bar{\mathbf{y}}, \dots, \bar{\mathbf{y}})^{\mathsf{T}}$: 標本平均のベクトル
- いろいろなばらつき

-
$$S_v = (y - \bar{y})^T (y - \bar{y})$$
: 目的変数のばらつき

-
$$S = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) : 残差のばらつき (\hat{\boldsymbol{\epsilon}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}})$$

-
$$S_r = (\hat{\mathbf{y}} - \bar{\mathbf{y}})^\mathsf{T} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$
: あてはめ値(回帰)のばらつき

• 3 つのばらつき (平方和) の関係

$$(y - \bar{y})^{\mathsf{T}}(y - \bar{y}) = (y - \hat{y})^{\mathsf{T}}(y - \hat{y}) + (\hat{y} - \bar{y})^{\mathsf{T}}(\hat{y} - \bar{y})$$

$$S_{v} = S + S_{r}$$

演習

問題

- 以下の関係式を示しなさい
 - あてはめ値と残差のベクトルが直交する

$$\hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = 0$$

- 残差平方和の分解が成り立つ

$$S_v = S + S_r$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$
$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})y$$

左からŷを乗じる

$$\hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = \hat{\boldsymbol{\beta}}^{\mathsf{T}} X^{\mathsf{T}} (I - X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}} X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}}) \mathbf{y} = 0$$

• 以下の関係を用いて展開すればよい

$$y-ar{y}=y-\hat{y}+\hat{y}-ar{y}$$
ただし $ar{y}=ar{y}1$

• このとき以下の項は0になる

$$(\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) - \bar{\mathbf{y}} \mathbf{1}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = 0$$

決定係数

回帰式の寄与

• ばらつきの分解

$$S_v$$
 (目的変数) = S (残差) + S_r (あてはめ値)

• 回帰式で説明できるばらつきの比率

(回帰式の寄与率) =
$$\frac{S_r}{S_v}$$
 = $1 - \frac{S}{S_v}$

• 回帰式のあてはまり具合を評価する代表的な指標

決定係数 $(R^2$ 値)

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^n \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2}$$

- 不偏分散で補正している

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - $\tilde{\mathcal{T}}$ - \mathcal{P} https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

気温に影響を与える要因の分析

	日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-09	9-01	29.2	0.0	24.01	0	SSE	4.3	1012.1	71	2.0
2023-09	9-02	29.6	0.0	22.07	0	SSE	3.1	1010.3	72	8.0
2023-09	9-03	29.1	3.5	18.64	0	ENE	2.8	1010.6	74	9.3
2023-09	9-04	26.1	34.0	7.48	0	N	2.6	1007.5	96	10.0
2023-09	9-05	29.3	0.0	22.58	0	S	3.5	1005.2	77	3.5
2023-09	9-06	27.5	0.5	13.17	0	SSW	2.6	1003.6	79	10.0
2023-09	9-07	27.0	0.5	11.01	0	ENE	2.5	1007.9	72	10.0

2023-09-08	21.9	107.5	2.10	0	NW	3.4	1007.8	98	10.0
2023-09-09	24.8	1.0	8.81	0	S	2.2	1006.8	93	7.5
2023-09-10	27.8	0.0	17.57	0	S	3.1	1009.1	83	6.3
2023-09-11	28.1	0.0	17.19	0	SSE	3.1	1010.1	79	9.0
2023-09-12	27.7	0.0	20.02	0	SSE	2.8	1010.0	76	4.8
2023-09-13	28.0	0.0	22.00	0	SE	2.4	1010.9	74	4.5
2023-09-14	28.2	0.0	14.54	0	SSE	2.8	1009.9	80	7.0
2023-09-15	27.4	10.5	9.21	0	NE	2.0	1010.9	88	8.5
2023-09-16	27.9	0.0	11.78	0	SSE	2.0	1011.5	86	10.0
2023-09-17	28.7	0.0	14.84	0	S	3.2	1011.5	80	4.0
2023-09-18	28.9	0.0	19.59	0	S	4.2	1011.6	74	1.8
2023-09-19	29.0	0.0	19.93	0	S	3.3	1010.1	72	2.3
2023-09-20	27.2	6.0	10.65	0	N	1.9	1009.3	82	8.3
2023-09-21	26.7	2.0	6.65	0	S	4.1	1006.7	87	9.5
2023-09-22	24.8	59.5	6.83	0	ENE	2.5	1008.1	93	10.0
2023-09-23	22.1	4.0	4.48	0	NE	2.6	1012.5	89	10.0
2023-09-24	22.2	0.0	15.81	0	N	3.0	1017.2	67	7.0
2023-09-25	22.4	0.0	15.49	0	N	2.5	1017.1	69	6.5
2023-09-26	24.6	0.0	16.08	0	NNW	2.0	1012.7	71	6.0
2023-09-27	25.3	0.0	11.59	0	SSE	1.9	1008.1	81	9.0
2023-09-28	27.4	0.0	14.03	0	ESE	1.9	1004.7	79	5.8
2023-09-29	26.3	0.0	10.11	0	SSE	3.0	1009.0	75	8.5
2023-09-30	25.6	0.0	7.98	0	S	2.5	1007.5	77	7.0

- 気温を説明する5種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 (R², Adjusted R²)

Figure 4: 散布図

Figure 5: モデル 1

Figure 6: モデル 2

Figure 7: モデル 3

Figure 8: モデルの比較

モデル 1		·ル1	モデル2 モデル3		モデル 4		モデル 5			
Characteristic	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}
<u></u> 気圧	-0.21	0.135			-0.36	0.090	-0.32	0.098	-0.36	0.092
日射			0.25	0.057	0.30	0.048	0.35	0.069	0.32	0.069
湿度							0.05	0.052		
雲量									0.05	0.151
\mathbb{R}^2	0.082		0.414		0.632		0.644		0.633	
Adjusted R ²	0.049		0.393		0.604		0.603		0.591	

 $^{^{}I}$ SE = Standard Error

次回の予定

• 第1回:回帰モデルの考え方と推定

• 第2回:モデルの評価

・ 第3回: モデルによる予測と発展的なモデル