Generated on 2014-10-27 16:05:29 by gEcon version 0.7.0 (2014-10-27) Model name: rbc_mc

1 CONSUMER

1.1 Optimization problem

$$\max_{C_t, L_s^t} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

$$C_t P_t^{\text{FIN}} = \pi_t + \pi_t^{\text{ps}} + L_t^s W_t \quad (\lambda_t^c)$$
(1.2)

1.2 First order conditions

$$\beta - \lambda_t^U = 0 \quad (U_t) \tag{1.3}$$

$$-\lambda_t^c P_t^{\text{FIN}} + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.4)

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.5)

INTERMEDIATE FIRM 2

2.1 Optimization problem

$$\max_{K_t, L_t^d, Y_t, I_t, \pi_t} \Pi_t = \pi_t + \lambda_t^{c-1} \mathcal{E}_t \left[\lambda_{t+1}^c \lambda_{t+1}^U \Pi_{t+1} \right]$$
(2.1)

$$\pi_{t} = -I_{t} - L_{t}^{d}W_{t} + P_{t}Y_{t} \quad (\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{1}}})$$

$$Y_{t} = K_{t-1}^{\alpha} (L_{t}^{d}Z_{t})^{1-\alpha} \quad (\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{2}}})$$

$$K_{t} = I_{t} + K_{t-1} (1-\delta) \quad (\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{3}}})$$

$$(2.2)$$

$$Y_t = K_{t-1}{}^{\alpha} \left(L_t^d Z_t \right)^{1-\alpha} \quad \left(\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} \right) \tag{2.3}$$

$$K_t = I_t + K_{t-1} (1 - \delta) \quad (\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^3}})$$
(2.4)

2.2First order conditions

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} + \lambda_{t-1}^c^{-1} \lambda_t^c \lambda_t^U = 0 \quad (\Pi_t)$$
 (2.5)

$$-\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} + \lambda_{t-1}^{c}^{-1}\lambda_{t}^{c}\lambda_{t}^{U} = 0 \quad (\Pi_{t})$$

$$-\lambda_{t}^{\text{INTERMEDIATE}^{\text{FIRM}^{3}}} + \mathbf{E}_{t} \left[\lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} \left(\lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{3}}} (1 - \delta) + \alpha \lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{2}}} K_{t}^{-1 + \alpha} \left(L_{t+1}^{d} Z_{t+1} \right)^{1 - \alpha} \right) \right] = 0$$

$$(2.6)$$

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} W_t + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} Z_t (1 - \alpha) K_{t-1}^{\alpha} (L_t^d Z_t)^{-\alpha} = 0 \quad (L_t^d)$$
(2.7)

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} P_t = 0 \quad (Y_t)$$

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^3}} = 0 \quad (I_t)$$
(2.8)

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^3}} = 0 \quad (I_t)$$
 (2.9)

$$1 - \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^1}} = 0 \quad (\pi_t)$$
 (2.10)

First order conditions after reduction

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} + \lambda_{t-1}^c^{-1} \lambda_t^c \lambda_t^U = 0 \quad (\Pi_t)$$
 (2.11)

$$-1 + \mathcal{E}_t \left[\lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^{\Pi}}} \left(1 - \delta + \alpha \lambda_{t+1}^{\text{INTERMEDIATE}^{\text{FIRM}^2}} K_t^{-1+\alpha} \left(L_{t+1}^d Z_{t+1} \right)^{1-\alpha} \right) \right] = 0 \quad (K_t)$$
 (2.12)

$$-W_t + \lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} Z_t (1 - \alpha) K_{t-1}^{\alpha} (L_t^d Z_t)^{-\alpha} = 0 \quad (L_t^d)$$
(2.13)

$$-\lambda_t^{\text{INTERMEDIATE}^{\text{FIRM}^2}} + P_t = 0 \quad (Y_t)$$
 (2.14)

3 PRICE SETTING

3.1 Optimization problem

$$\max_{\pi_t^{\text{ps}}, Y_t^{\text{MON}}, P_t^{\text{MON}}} \Pi_t^{\text{PS}} = \pi_t^{\text{ps}}$$
(3.1)

$$\pi_t^{\text{ps}} = Y_t^{\text{MON}} \left(-P_t + P_t^{\text{MON}} \right) \quad \left(\lambda_t^{\text{PRICE}^{\text{SETTING}^1}} \right)$$
(3.2)

$$Y_t^{\text{MON}} = Y_t^{\text{FIN}} \left(P_t^{\text{FIN}-1} P_t^{\text{MON}} \right)^{-\rho} \quad (\lambda_t^{\text{PRICE}^{\text{SETTING}^2}})$$
(3.3)

3.2 First order conditions

$$1 - \lambda_t^{\text{PRICE}^{\text{SETTING}^1}} = 0 \quad (\pi_t^{\text{ps}}) \tag{3.4}$$

$$1 - \lambda_t^{\text{PRICE}} = 0 \quad (\pi_t^{\text{ps}})$$

$$-\lambda_t^{\text{PRICE}} + \lambda_t^{\text{PRICE}} \left(-P_t + P_t^{\text{MON}}\right) = 0 \quad (Y_t^{\text{MON}})$$

$$(3.4)$$

$$\lambda_t^{\text{PRICE}^{\text{SETTING}^1}} Y_t^{\text{MON}} - \rho \lambda_t^{\text{PRICE}^{\text{SETTING}^2}} P_t^{\text{FIN}^{-1}} Y_t^{\text{FIN}} \left(P_t^{\text{FIN}^{-1}} P_t^{\text{MON}} \right)^{-1-\rho} = 0 \quad (P_t^{\text{MON}}) \tag{3.6}$$

First order conditions after reduction 3.3

$$Y_t^{\text{MON}} - \rho P_t^{\text{FIN}^{-1}} Y_t^{\text{FIN}} \left(-P_t + P_t^{\text{MON}} \right) \left(P_t^{\text{FIN}^{-1}} P_t^{\text{MON}} \right)^{-1-\rho} = 0 \quad (P_t^{\text{MON}})$$
(3.7)

FINAL FIRM

Identities 4.1

$$Y_t^{\text{FIN}} = Y_t^{\text{MON}} \tag{4.1}$$

EQUILIBRIUM 5

Identities 5.1

$$L_t^d = L_t^s (5.1)$$

$$P_t^{\text{FIN}} = 1 \tag{5.2}$$

$$Y_t^{\text{MON}} = Y_t \tag{5.3}$$

6 EXOG

6.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{6.1}$$

7 Equilibrium relationships

$$-1 + \lambda_t^{c-1} \mathcal{E}_t \left[\lambda_{t+1}^c \lambda_{t+1}^U \left(1 - \delta + \alpha P_{t+1} K_t^{-1+\alpha} \left(L_{t+1}^s Z_{t+1} \right)^{1-\alpha} \right) \right] = 0$$
 (7.1)

$$\beta - \lambda_t^U = 0 \tag{7.2}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
 (7.3)

$$-\pi_t^{\mathrm{ps}} + \Pi_t^{\mathrm{PS}} = 0 \tag{7.4}$$

$$-\pi_t^{\text{ps}} + Y_t \left(-P_t + P_t^{\text{MON}} \right) = 0 \tag{7.5}$$

$$-W_t + P_t Z_t (1 - \alpha) K_{t-1}{}^{\alpha} (L_t^s Z_t)^{-\alpha} = 0$$
(7.6)

$$-Y_t + Y_t P_t^{\text{MON}-\rho} = 0 \tag{7.7}$$

$$-Y_t + K_{t-1}{}^{\alpha} (L_t^s Z_t)^{1-\alpha} = 0 (7.8)$$

$$Y_t - \rho Y_t \left(-P_t + P_t^{\text{MON}} \right) P_t^{\text{MON}^{-1-\rho}} = 0 \tag{7.9}$$

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{7.10}$$

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
 (7.11)

$$-\pi_t + \Pi_t - \lambda_t^{c-1} \mathcal{E}_t \left[\lambda_{t+1}^c \lambda_{t+1}^U \Pi_{t+1} \right] = 0$$
 (7.12)

$$I_t - K_t + K_{t-1} (1 - \delta) = 0 (7.13)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
 (7.14)

$$-\pi_t - I_t - L_t^s W_t + P_t Y_t = 0 (7.15)$$

$$\pi_t + \pi_t^{\text{ps}} - C_t + L_t^s W_t = 0 (7.16)$$

8 Steady state relationships

$$-1 + \lambda_{ss}^{U} \left(1 - \delta + \alpha P_{ss} (L_{ss}^{s} Z_{ss})^{1-\alpha} K_{ss}^{-1+\alpha} \right) = 0$$
 (8.1)

$$\beta - \lambda_{\rm ss}^U = 0 \tag{8.2}$$

$$-\lambda_{\rm ss}^c + \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^s)^{1-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} = 0 \tag{8.3}$$

$$-\pi_{\rm ss}^{\rm PS} + \Pi_{\rm ss}^{\rm PS} = 0 \tag{8.4}$$

$$-\pi_{\rm ss}^{\rm ps} + Y_{\rm ss} \left(-P_{\rm ss} + P_{\rm ss}^{\rm MON} \right) = 0 \tag{8.5}$$

$$-W_{\rm ss} + P_{\rm ss} Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\alpha} (L_{\rm ss}^{s} Z_{\rm ss})^{-\alpha} = 0$$
(8.6)

$$-Y_{\rm ss} + Y_{\rm ss} P_{\rm ss}^{\rm MON^{-\rho}} = 0 (8.7)$$

$$-Y_{\rm ss} + K_{\rm ss}{}^{\alpha} (L_{\rm ss}^s Z_{\rm ss})^{1-\alpha} = 0 \tag{8.8}$$

$$Y_{\rm ss} - \rho Y_{\rm ss} \left(-P_{\rm ss} + P_{\rm ss}^{\rm MON} \right) P_{\rm ss}^{\rm MON^{-1-\rho}} = 0$$
 (8.9)

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{8.10}$$

$$\lambda_{\rm ss}^c W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\mu} (1 - L_{\rm ss}^s)^{-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^s)^{1-\mu} \right)^{-\eta} = 0$$
 (8.11)

$$-\pi_{\rm ss} + \Pi_{\rm ss} - \lambda_{\rm ss}^U \Pi_{\rm ss} = 0 \tag{8.12}$$

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} (1 - \delta) = 0$$
 (8.13)

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\ s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{8.14}$$

$$-\pi_{\rm ss} - I_{\rm ss} - L_{\rm ss}^s W_{\rm ss} + P_{\rm ss} Y_{\rm ss} = 0 \tag{8.15}$$

$$\pi_{\rm ss} + \pi_{\rm ss}^{\rm ps} - C_{\rm ss} + L_{\rm ss}^s W_{\rm ss} = 0$$
 (8.16)

9 Parameter settings

$$\alpha = 0.33 \tag{9.1}$$

$$\beta = 0.99 \tag{9.2}$$

$$\delta = 0.025 \tag{9.3}$$

$$\eta = 2 \tag{9.4}$$

$$\mu = 0.3 \tag{9.5}$$

$$\phi = 0.95 \tag{9.6}$$

$$\rho = 11 \tag{9.7}$$

10 Steady state values

	Steady state values
λ^c	0.7723
λ^U	0.99
π	0.0619
π^{ps}	0.0652
C	0.5638
I	0.1532
K	6.1285
L^s	0.2492
P	0.9091
P^{MON}	1
П	6.1904
Π^{PS}	0.0652
U	-145.144
W	1.7524
Y	0.7171
Z	1

11 The solution of the perturbation

11.1 P

$$\begin{array}{ccc}
K_{t-1} & Z_{t-1} \\
K & 0.958 & 0.0744 \\
Z & 0 & 0.95
\end{array}$$

11.2 Q

$$\begin{array}{c} \epsilon^Z \\ K \left(\begin{array}{c} 0.0783 \\ I \end{array} \right) \end{array}$$

11.3 R

$$\begin{array}{c} & K_{t-1} & Z_{t-1} \\ \lambda^c \\ \lambda^U & \begin{pmatrix} -0.6272 & -0.3684 \\ 0 & 0 \\ 0 & 0 \\ 2.4086 & -4.1777 \\ 0.2085 & 0.9179 \\ 0.45 & 0.3585 \\ I & -0.6804 & 2.9768 \\ L^s & -0.1813 & 0.42 \\ P & 0 & 0 \\ P^{\text{MON}} & 0 & 0 \\ \Pi & 0.9725 & 0.0319 \\ \Pi^{\text{PS}} & 0.2085 & 0.9179 \\ U & -0.0343 & -0.0442 \\ W & 0.3898 & 0.4979 \\ Y & 0.2085 & 0.9179 \\ \end{array}$$

11.4 S

	ϵ^Z
λ^c	(-0.3878)
λ^U	0
π	-4.3976
π^{ps}	0.9662
C	0.3773
I	3.1334
L^s	0.4421
P	0
P^{MON}	0
Π	0.0336
Π^{PS}	0.9662
U	-0.0465
W	0.5241
Y	\setminus 0.9662 /

12 Statistics of the model

12.1 Moments

	Steady state value	Std. dev.	Variance	Loglinear
C	0.5638	0.5188	0.2691	Y
I	0.1532	4.0905	16.732	Y
K	6.1285	0.3617	0.1308	Y
L^s	0.2492	0.5797	0.336	Y
U	-145.144	0.0619	0.0038	Y
W	1.7524	0.6982	0.4875	Y
Y	0.7171	1.262	1.5927	Y
Z	1	1.3034	1.699	Y

12.2 Correlation matrix

	C	I	K	L^s	U	W	Y	Z
λ^c	-0.9948	-0.8864	-0.6533	-0.8605	0.9761	-0.9764	-0.9354	-0.9127
λ^U	0	0	0	0	0	0	0	0
π	-0.8915	-0.9959	-0.1395	-0.9993	0.9384	-0.9379	-0.9779	-0.9886
π^{ps}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
C	1	0.9289	0.5729	0.9079	-0.9931	0.9933	0.9666	0.9495
I	0.9289	1	0.2287	0.9986	-0.9659	0.9655	0.9928	0.9982
K	0.5729	0.2287	1	0.1766	-0.4731	0.4744	0.3436	0.2868
L^s	0.9079	0.9986	0.1766	1	-0.9507	0.9503	0.985	0.9936
P	0	0	0	0	0	0	0	0
P^{MON}	0	0	0	0	0	0	0	0
П	0.4328	0.0682	0.9868	0.0151	-0.3243	0.3257	0.1871	0.1281
Π^{PS}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
U	-0.9931	-0.9659	-0.4731	-0.9507	1	-1	-0.9899	-0.9797
W	0.9933	0.9655	0.4744	0.9503	-1	1	0.9897	0.9794
Y	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
Z	0.9495	0.9982	0.2868	0.9936	-0.9797	0.9794	0.9982	1

12.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7598	0.5448	0.3569	0.1964	0.0629
I	0.7097	0.4654	0.2644	0.1031	-0.0225
K	0.9593	0.8611	0.7252	0.5682	0.403
L^s	0.708	0.4628	0.2614	0.1	-0.0253
U	0.7378	0.5101	0.3164	0.1556	0.0256
\overline{W}	0.7381	0.5105	0.3169	0.1561	0.026
Y	0.7186	0.4796	0.2809	0.1198	-0.0072
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

13 Statistics of the model

13.1 Moments

	Steady state value	Std. dev.	Variance	Loglinear
C	0.5638	0.5188	0.2691	Y
I	0.1532	4.0905	16.732	Y
K	6.1285	0.3617	0.1308	Y
L^s	0.2492	0.5797	0.336	Y
U	-145.144	0.0619	0.0038	Y
W	1.7524	0.6982	0.4875	Y
Y	0.7171	1.262	1.5927	Y
Z	1	1.3034	1.699	Y

13.2 Correlation matrix

	C	I	K	L^s	U	W	Y	Z
λ^c	-0.9948	-0.8864	-0.6533	-0.8605	0.9761	-0.9764	-0.9354	-0.9127
λ^U	0	0	0	0	0	0	0	0
π	-0.8915	-0.9959	-0.1395	-0.9993	0.9384	-0.9379	-0.9779	-0.9886
π^{ps}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
C	1	0.9289	0.5729	0.9079	-0.9931	0.9933	0.9666	0.9495
I	0.9289	1	0.2287	0.9986	-0.9659	0.9655	0.9928	0.9982
K	0.5729	0.2287	1	0.1766	-0.4731	0.4744	0.3436	0.2868
L^s	0.9079	0.9986	0.1766	1	-0.9507	0.9503	0.985	0.9936
P	0	0	0	0	0	0	0	0
P^{MON}	0	0	0	0	0	0	0	0
П	0.4328	0.0682	0.9868	0.0151	-0.3243	0.3257	0.1871	0.1281
Π^{PS}	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
U	-0.9931	-0.9659	-0.4731	-0.9507	1	-1	-0.9899	-0.9797
W	0.9933	0.9655	0.4744	0.9503	-1	1	0.9897	0.9794
Y	0.9666	0.9928	0.3436	0.985	-0.9899	0.9897	1	0.9982
\overline{Z}	0.9495	0.9982	0.2868	0.9936	-0.9797	0.9794	0.9982	1

13.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7598	0.5448	0.3569	0.1964	0.0629
I	0.7097	0.4654	0.2644	0.1031	-0.0225
K	0.9593	0.8611	0.7252	0.5682	0.403
L^s	0.708	0.4628	0.2614	0.1	-0.0253
U	0.7378	0.5101	0.3164	0.1556	0.0256
\overline{W}	0.7381	0.5105	0.3169	0.1561	0.026
Y	0.7186	0.4796	0.2809	0.1198	-0.0072
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

14 Impulse response functions

14.1 Shock ϵ^Z

Figure 1: Impulse response function for ϵ^Z shock

Figure 2: Impulse response function for ϵ^Z shock

15 Random path simulation

Figure 3: Random path simulation for 100 periods

Figure 4: Random path simulation for 100 periods