Лекция 10

Вычислимость и сложность

10.1 Вычислимость

Определение 10.1. Обозначим через M(x) результат работы машины M на входе x, если она останавливается; если же M не останавливается, будем писать $M(x) = \infty$.

В дальнейшем мы будем рассматривать языки и массовые задачи в некотором конечном алфавите (необязательно $\{0,1\}$), но соответствующие обозначения будем опускать (будем просто писать «для любой строки x», подразумевая «для любой строки x в данном алфавите»).

Определение 10.2. Язык $L \subseteq \Sigma^* - pекурсивно-перечислимый, если существует РАМ <math>M$, такая, что $\forall x \in \Sigma^* \ (x \in L \Leftrightarrow M(x) = 1)$.

Определение 10.3. Язык $L\subseteq \Sigma^*-$ peкурсивный, если существует РАМ M, такая, что $\forall x\in \Sigma^*\; ((x\in L\Leftrightarrow M(x)=1)\land (x\notin L\Leftrightarrow M(x)=0)).$

Заметим, что рекурсивные языки — в точности те, для которых проблема принадлежности разрешима.

Теорема 10.1. Существует язык, являющийся рекурсивно-перечислимым, но не рекурсивным.

Лемма 10.1. Существует универсальная РАМ U: в начальный момент времени в первый регистр U подается описание машины T, во второй регистр — вход, а выдает она то, что выдала бы машина T на данном входе (в частности, зациклится, если T зацикливалась). Более того, время работы U полиномиально зависит от времени работы T.

Упражнение 10.1. Доказать лемму 10.1.

Доказательство теоремы. Определим язык L так: $(M, x) \in L \Leftrightarrow M(x) = 1$. Он, очевидно, рекурсивно-перечислимый. Покажем, что он не рекурсивный.

Пусть он все же рекурсивный. Тогда существует машина A, такая, что $A((M,x))=1 \Leftrightarrow M(x)=1,$ $A((M,x))=0 \Leftrightarrow M(x)\neq 1.$

Построим еще одну машину, D, на вход которой подается описание машины R: D(R) = 0, если A((R,R)) = 1;

$$D(R) = 1$$
, если $A((R, R)) = 0$

(чтобы построить ее, воспользуемся леммой 10.1: считаем R и запишем (R,R) во второй регистр; запишем описание A в первый регистр; применим U к A с входом (R,R), предварительно поменяв в ее программе все операторы WRITE 0 на WRITE 1, и наоборот).

Чему равно D(D)? Если D(D)=1, то A((D,D))=0, т.е. $D(D)\neq 1$ (противоречие). Если же D(D)=0, то A((D,D))=1, т.е. D(D)=1 (противоречие). По построению не может быть и $D(D)=+\infty$, т.е. машины D (а вместе с ней — и машины A) не существует.

10.2 Элементы теории сложности

10.2.1 Классы Р и NP

Пусть Σ — конечный алфавит. Напомним, что массовая задача M есть некоторое множество индивидуальных задач — пар (u,s) (где $u,s \in \Sigma^*$, u — условие, s — решение).

Определение 10.4. $M \in \widetilde{\mathbf{NP}}$, если

- 1. M *полиномиально ограничена*, т.е. существует многочлен p, такой, что для любого условия u, если существует хотя бы одно такое s, что $(u,s) \in M$, то существует и s' длины не более p(|u|), такое что $(u,s') \in M$.
- 2. М полиномиально проверяема, т.е. существует многочлен p, существует алгоритм A, такие, что $\forall u, s \in \Sigma^*((u, s) \in M \Leftrightarrow A(u, s) = 1)$ и при этом A заканчивает свою работу за время, не превосходящее p(|u| + |s|).

Пример 10.1.
$$\{(N, m) \mid N : m, 1 < m < N\}$$
.

Пример 10.2 (SAT (задача о выполнимости формулы логики высказываний)). Дана формула в конъюнктивной нормальной форме (конъюнкция конечного числа дизъюнкций, в каждую из дизъюнкций входят логические переменные либо их отрицания): например,

$$\{(x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_4 \vee \neg x_2)\}.$$

Требуется найти значения переменных, такие, что значение всего выражения — истина (в приведенном примере: x_1 — истина, x_2 — ложь). Это задача из $\widetilde{\mathbf{NP}}$: решение — не длиннее условия, и подставить мы его также можем быстро. Формула, для которой такие значения существуют, называется выполнимой.

Определение 10.5. Для каждой массовой задачи M определим язык

$$L(M) = \{u \mid \exists s \ (u,s) \in M\}.$$

Это множество всех условий, для которых существуют решения.

Определение 10.6. Язык L принадлежит классу \mathbf{NP} , если $\exists M \in \widetilde{\mathbf{NP}} : L = L(M)$.

Определение 10.7. $M \in \widetilde{\mathbf{P}}$, если существует многочлен p и существует алгоритм A (который может выдавать строку из Σ^* или останавливаться с результатом «решения нет»), такие, что A работает не дольше, чем p(размер входа), и решает задачу M, т.е.

- $A(u) = s \implies (u, s) \in M$;
- $\exists s \ (u,s) \in M \implies A(u) \neq \text{«решения нет»}.$

Определение 10.8. $L \in \mathbf{P}$, если существует многочлен p и существует алгоритм A (выдающий 0 или 1), такие, что A работает не дольше, чем p(размер входа), и $\forall u \in \Sigma^*(A(u) = 1 \Leftrightarrow u \in L)$.

Замечание 10.1. $\mathbf{P} \triangleq \mathbf{NP} -$ центральный (и нерешенный) вопрос теории сложности алгоритмов.

(Гипотеза: $\mathbf{P} \neq \mathbf{NP}$.)

Замечание 10.2. $\mathbf{P} = \mathbf{NP} \iff \widetilde{\mathbf{P}} = \widetilde{\mathbf{NP}}$ (хотя мы этого доказывать не будем).

При этом вполне может существовать массовая задача $T \in \widetilde{\mathbf{NP}}$, такая, что $T \notin \widetilde{\mathbf{P}}$, но $L(T) \in \mathbf{P}$. Возможный претендент — задача о нахождении нетривиального делителя (позже мы узнаем, что если она $\in \widetilde{\mathbf{P}}$, то криптосистему RSA можно взломать; однако, известно, что соответствующий ей язык составных чисел $\in \mathbf{P}$ — это недавний сложный результат, мы его доказывать не будем).

10.2.2 Сводимости и полнота

Заменим вопрос $\mathbf{P} \triangleq \mathbf{NP}$ на «более простой» (но эквивалентный исходному).

Определение 10.9. Язык L полиномиально сводится к языку L' (обозначим это $L \to L'$), если существует многочлен p и существует алгоритм A, работающий не дольше, чем p(длина входа), такие, что $\forall u \in \Sigma^* (A(u) \in L' \Leftrightarrow u \in L)$.

Определение 10.10. Язык называется **NP**-*трудным*, если любой другой язык из **NP** к нему сводится. Язык называется **NP**-полным, если он **NP**-трудный и при этом сам принадлежит **NP**.

Теорема 10.2. Если $L-\mathbf{NP}$ -полный и $L \in \mathbf{P}$, то $\mathbf{P}=\mathbf{NP}$.

Доказательство. Очевидно.

Теорема 10.3. SAT (язык всех выполнимых формул логики высказываний в конъюнктивной нормальной форме) — \mathbf{NP} -полный.

Доказательство. Напомним, что булева схема — это . . .

ПРОБЕЛ В КОНСПЕКТЕ.

CircuitSAT — это ...

ПРОБЕЛ В КОНСПЕКТЕ.

Сначала мы докажем, что CircuitSAT — \mathbf{NP} -полный, затем сведем \mathbf{SAT} к CircuitSAT.

ПРОБЕЛ В КОНСПЕКТЕ.

Следствие 10.1. Ecnu SAT $\in P$, mo P = NP.

Замечание 10.3. Задача о неэквивалентости булевых схем является NP-полной и легко формулируется в терминах SAT.

ПРОБЕЛ В КОНСПЕКТЕ.

10.2.3 Алгоритмы, использующие случайные числа

Определение 10.11. $M \in \widetilde{\mathbf{RP}}$, если

- 1. M полиномиально ограничена.
- 2. M полиномиально проверяема.
- 3. Каждое разрешимое условие M имеет не менее половины решений, т.е.

$$\forall u((\exists t(u,t)\in M)\Rightarrow\\ |\{s\mid (u,s)\in M,\; |s|\leqslant p(|u|)\}|\geqslant\\ \frac{1}{2}\cdot \text{кол-во всех строк длины не более }p(|u|))$$

(здесь $|\dots|$ обозначает в одном случае — мощность множества, а в другом — длину строки; многочлен p — тот, что фигурирует в определении полиноми-альной ограниченности).

Определение 10.12. $L \in \mathbf{RP} \Leftrightarrow \exists M \in \widetilde{\mathbf{RP}} \ L = L(M)$.

Очевидно, для задачи из \mathbf{RP} достаточно выбрать случайную строку длины p(|u|), чтобы получить решение задачи u с вероятностью $\geqslant \frac{1}{2}$. Если повторить эту процедуру k раз, то вероятность успеха будет $1-\frac{1}{2^k}$, чего для практических целей вполне достаточно.

Теорема 10.4. Язык, состоящий из всех составных чисел, принадлежит RP.

Доказательство. В этом доказательстве все числа— неотрицательны. Для начала вспомним несколько определений.

Символ Лежандра:

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{cc} 1 & , & \text{уравнение } x^2 \equiv a \pmod{p} \text{ имеет корни} \\ -1 & , & \text{в противном случае} \end{array} \right.,$$

где p — простое, $a \neq 0$.

Символ Якоби:

$$\left(\frac{a}{N}\right) = \prod_{i} \left(\frac{a}{p_i}\right),\,$$

если $N = p_1 \cdots p_k$ — разложение N на простые множители (среди p_i могут быть одинаковые). Некоторые свойства:

$$\left(\frac{a}{N}\right) = (-1)^{\frac{N-1}{2}\frac{a-1}{2}} \left(\frac{N}{a}\right) \quad (\text{здесь } a, N \not : 2, \text{ HOД}(a, N) = 1),$$

$$\left(\frac{a}{N}\right) = \left(\frac{a'}{N}\right) \quad (\text{при } a \equiv a' (\text{mod } N)),$$

$$\left(\frac{1}{p}\right) = 1,$$

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}.$$

Упражнение 10.2. При помощи этих свойств вычислить эффективно символ Якоби

Алгоритм 10.1.

Bход: число N.

Выход: «составное» или «простое».

Если
$$N$$
:2 или $N = 1$, выдать правильный ответ; (10.1)

$$M \leftarrow random[2..N-1]; \tag{10.2}$$

if
$$(M, N) \neq 1$$
 then выдать ответ «составное» (10.3)

else if
$$\left(\frac{M}{N}\right) \not\equiv M^{\frac{N-1}{2}} \pmod{N}$$
 (10.4)

Корректность шага (10.4) доказывает следующая лемма:

Лемма 10.2.
$$N \in \mathbb{P}, N \neq 2 \implies M^{\frac{N-1}{2}} \equiv \left(\frac{M}{N}\right) \pmod{N}.$$

Доказательство.

ПРОБЕЛ В КОНСПЕКТЕ.

Лемма 10.3. Пусть N /:2, $N \neq 1$. Если для всех M, таких что (M,N) = 1, выполняется $\binom{M}{N} \equiv M^{\frac{N-1}{2}} \pmod{N}$, то N- простое.

Доказательство. Будем доказывать от противного:

1. Пусть N не содержит квадратов: $N = p_1 \cdots p_k$, $p_i \neq p_j \in \mathbb{P}$. Фиксируем r такое, что $\left(\frac{r}{p_1}\right) = -1$ (такое есть: пересчитаем все квадраты mod $p_i \dots$). По китайской теореме об остатках можно выбрать такое M, что

$$M \equiv r \pmod{p_1},$$
 $M \equiv 1 \pmod{p_i}$ при $i \neq 1.$

С одной стороны,

$$\left(\frac{M}{N}\right) = \left(\frac{M}{p_1}\right) \cdot \prod_{i \neq 1} \left(\frac{M}{p_i}\right) = -1.$$

С другой стороны,

$$M^{\frac{N-1}{2}} \equiv 1 \pmod{p_2} \not\equiv -1 \pmod{N}.$$

Противоречие.

2. Пусть N содержит квадраты: $N = p^2 n, p \in \mathbb{P}$. Пусть r — первообразный корень по модулю p^2 . По предположению,

$$r^{N-1} \equiv (r^{(N-1)/2})^2 \equiv \left(\frac{r}{N}\right)^2 \equiv 1 \pmod{N},$$

а значит, и (mod p^2). Т.е., одновременно N-1:p(p-1) и N:p, т.е., два последовательных числа делятся на p. Противоречие.

Лемма 10.4. Если $N \notin \mathbb{P}$, то для более чем половины всех $M \in [2..N-1]$, взаимно простых с N, $\binom{M}{N} \not\equiv M^{\frac{N-1}{2}} \pmod{N}$.

Доказательство. По лемме 10.3 существует такое число a, взаимно простое с N, что $\left(\frac{a}{N}\right) \not\equiv a^{\frac{N-1}{2}} \pmod{N}$. Пусть b_1, b_2, \ldots, b_k — это все остатки, для которых выполнено сравнение $\left(\frac{M}{N}\right) \equiv M^{\frac{N-1}{2}} \pmod{N}$.

Рассмотрим $ab_1, ab_2, \ldots, ab_k \pmod{N}$. Они все различны, так как если $ab_i \equiv ab_j \pmod{N}$, то $b_i \equiv b_j \pmod{N}$ (ведь (a, N) = 1). Значит, их не менее k. При этом для них сравнение не выполняется:

$$\left(\frac{ab_i}{N}\right) = \left(\frac{a}{N}\right)\left(\frac{b_i}{N}\right) = \left(\frac{a}{N}\right) \cdot b_i^{\frac{N-1}{2}} \not\equiv (ab_i)^{\frac{N-1}{2}}.$$

Тем самым, вероятность ошибки нашего алгоритма не превосходит 1/2.

 ^{1}a называется первообразным корнем по модулю n, если $a^{\phi(n)} \equiv 1 \pmod{n}$ и $\forall k \in [1..\phi(n)-1]$ $a^{k} \not\equiv 1 \pmod{n}$. Известно, что первообразные корни по модулю p^{2} существуют.

10.3 Нижняя оценка на время работы алгоритмов для задачи о принадлежности языку

Определение 10.13. $L \in \mathbf{DTime}_R(f)$, если существует РАМ A, такая, что

- $\forall x \ A(x) = 1 \iff x \in L$,
- $\forall x \ A(x)$ работает время, не превосходящее f(|x|).

ПРОБЕЛ В КОНСПЕКТЕ.

Следствие 10.2. $P \neq EXP$.

Определение 10.14. $L \in \mathbf{PSPACE}$, если существует РАМ A, такая, что

- $\forall x \ A(x) = 1 \iff x \in L$,
- $\forall x \ A(x)$ использует полиномиальное количество памяти (то есть на каждом шаге исполнения программы суммарная длина всех регистров с ненулевым значением, а также их номеров, не превосходит некоторого полинома от длины битового представления x).

Замечание 10.4. Несложно доказать², что

$$P \subseteq RP \subseteq NP \subseteq PSPACE \subseteq EXP$$
,

при этом $\mathbf{P} \neq \mathbf{EXP}$, но в каком именно из включений (\subseteq) из этой цепочки имеет место неравенство, мы не знаем!

²На лекции было пояснено; в конспекте — пробел.