2023年秋季学期 微分流形期中考试 授课教师: 王作勤

问题 1 (每问 3 分, 满分 30 分)

下面是讲义中一个定理及其证明的一部分:

定理3.8.6、(正列区间形变定理)

对于 a < b, 假设 $f^{-1}([a,b])$ 是紧集, 并且每个 $c \in [a,b]$ 是 f 的正则值, 则存在 機分同胚 $\varphi: M \to M$ 使得 $\varphi(M^a) = M^b$.

证明 将 M 嵌入歐氏空间 (或者任意赋于 M 一个零曼度量 (\cdot,\cdot)),从而在每个切空间 T_pM 上 都给出一个内积、按照以下方式定义 M 上的 向量场 ∇f (称为 f 关于该度量的稳度向量场),

$$\langle \nabla f, X_p \rangle = df_p(X_p) = X_p(f), \quad \forall X_p \in T_p M.$$

因为 f 的临界点集合是闭集, 可以找到一个不舍临界点的开集 U 使得 $f^{-1}([a,b]) \subset U$.

因为 $f^{-1}([a,b])$ 是紧集,可取<u>緊支光滑鼓包函数</u> h,使得

 $supp(h) \subset U$, 并且 在 $f^{-1}([a,b])$ 上有h=1.

因为在 U 中有 $df \neq 0$, 所以在 U 中有 $\nabla f \neq 0$, 从而

$$X := \frac{h}{\langle \nabla f, \nabla f \rangle} \nabla f$$

是流形 M 上良好定义的紧支光滑向量场. ϕ_i 为 X 生成的流. 那么 f 的拉回函数 ϕ_i

- (1) 这段文字中标记了7个划线的词,即"正则值","微分同胚","向量场","临 界点","紧支光滑鼓包函数","流"以及"拉回函数".分别写出它们的定义.
- (2) 证明过程中标记了 3 个方框,分别是"将 M 嵌入欧氏空间"、"可取紧支光滑 鼓包函数 h 使得 $supp(h) \subset U$ 且在 $f^{-1}([a,b])$ 上有 h=1"以及"令 φ_t 为 X生成的流",它们为什么成立?分别写出它们背后所用的定理或命题的完整陈 水.
- (3) 该证明过程中漏证了什么事情?(写出即可得分,无需证明)

问题 2 (每问 2 分, 满分 20 分)

判断题. 请在以下正确的陈述前打勾, 错误的陈述前打叉.

) 任意连通拓扑流形都是道路连通的.
) RP ² × RP ² 是可定向流形.
) 切丛 TS^3 微分同胚于 $S^3 \times \mathbb{R}^3$.
()逆紧 (proper) 单射浸入是嵌入.
()若 $S \subset N$ 是浸入子流形, $f: M \to N$ 是光滑映射,且 $f(M) \subset S$,则 $f: M \to S$ 是光滑映射.
()设 $f:M\to M$ 是光滑映射,则它的图 $\Gamma_f=\{(x,f(x))\mid x\in M\}$ 与对角线 $\Delta=\{(x,x)\mid x\in M\}$ 横截相交当且仅当对于 f 的任意不动点 p ,映射 df_p 的特征值都不是 1 .
()对于 M 的余维数为 r 的光滑子流形 S ,一定存在光滑函数 $f \in M \to \mathbb{R}^r$ 使得 0 是 f 的正则值,且 $f^{-1}(0) = S$.
()若 m 维光滑流形 M 上存在一个只有两个临界点的 $Morse$ 函数,则 M 微分同胚于球面 S^m .
() Lie 群 G 上的任意光滑向量场都是完备的.
() m 维紧致连通可交换 Lie 群一定同构于环群 T™.
()流形 M 上完备向量场的积分曲线映射 $\gamma: \mathbb{R} \to M$ 一定是浸入.

问题 3 (15 分)

下设 $\lambda_1 < \lambda_2$ 、记 $F: \mathcal{H} \to \mathbb{R}^2$ 为 $F(A) = (\operatorname{tr}(A), \det A)$.

- (1) 证明 光是一个光滑流形,并求其维数.
- (2) 利用映射 F, 证明 $\mathcal{M}_{\lambda_1,\lambda_2}$ 是一个光滑流形,并求其维数.
- $\beta \times M_{\lambda_1,\lambda_2}$ 在对角阵 $D_{\lambda_1,\lambda_2} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ 处的切空间 (并写成 \mathcal{H} 的子空间的形式).

问题 4 (10 分)

考虑 №3 的两个向量场

$$X = y \frac{\partial}{\partial y}, \quad Y = \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial z}.$$

- (1) 计算 [X,Y].
- (2) 设 f 是 \mathbb{R}^3 上的光滑函数,且 Xf = Yf = 0. 求证: f 是常数.

问题 5 (15 分)

设 M 是嵌入 \mathbb{R}^N 的 k 维光滑流形.

- (1) 写出 Sard 定理的完整表述.
- (2) 求证:对于 d < N k, \mathbb{R}^N 中存在跟 M 不相交的 d 维货整子空罩
- (3) 当 d = N k 时结论成立吗? 证明或者举出反例.

问题 6 (15 分)

- (1) 写出光滑流形上单位分解的定义.
- (2) 证明: 任意紧流形 M 上都存在光滑向量场 X,它在任意开集上都不恒为 0.
- (3) 去掉上述结论中的紧性条件,即证明任意流形 M 上都存在光滑向量场 X,它 在任意开集上都不恒为 0.

问题 7 (20 分)

设 G,H 是连通李群,其 Lie 代数分别是 g 和 h, $\varphi:G\to H$ 是 Lie 專同意。

- (1) 证明: 若 $d\varphi$: $g \to h$ 是满射,则 φ 是满射.
- (2) 举出例子: $d\varphi: \mathfrak{g} \to \mathfrak{h}$ 是双射, 而 φ 不必是双射.
- (3) 证明: 若 $d\varphi: g \to h$ 是双射,则 φ 是复叠映射 (即: 任意 $h \in H$. 甚至 h 哲子是成 V_h 以及每个 $g \in \varphi^{-1}(h)$ 的开邻域 U_g ,使得所有这些 U_g 两两不交。且每个 φ_U , $U_g \to V_h$ 是同胚).
- (4) 在证明 (1) 的过程中,哪个条件是多余的?

河题 8 (10 分)

证明:对于任意 m 维光滑紧流形 M,存在光滑映射 $\phi: M \to \mathbb{R}^{2m-1}$,它在有限个点之外是浸入.