Childhood exposure to non-persistent endocrine disruptors, glucocorticosteroids, and attentional function: A study based on the parametric g-formula

Abstract

Evidence suggests that endocrine disrupting chemicals (EDCs) may perturb the hypothalamic-pituitary-adrenocortical (HPA) axis, which has a major role in brain development. We aimed to evaluate the effects of childhood exposure to organophosphate pesticides, phenols, and phthalate metabolites, on urinary glucocorticosteroids and inattention in children using data from the Human Early-Life Exposome (HE-LIX) cohort. We used the parametric g-formula to estimate effects between EDCs, glucocorticosteroids, and hit reaction time standard error (HRT-SE), a measure of inattention from the Attention Network Test (ANT), and tested for possible effect modification by sex. We observed a positive marginal contrast (MC) for exposure increases from the 10th to the 90th percentile for methyl-paraben (MC: 0.042 and 95% confidence interval (CI): (0.013, 0.071)), and the phthalate metabolites oxo-MiNP (MC: 0.023 and 95% CI: (0.003, 0.044)), oh-MiNP (MC: 0.039 and 95% CI: (0.001, 0.076)), and MEHP (MC: 0.036 and 95% CI: (0.008, 0.063)), on HRT-SE, indicating lower attention. Several EDCs were also associated with a positive MC for cortisone, cortisol, and corticosterone production. Increased levels of the glucocorticosteroids had no effect on HRT-SE, although we found a possible effect modification by sex. Our results suggest that multiple EDCs might interfere with inattention in children and with the homeostasis of the HPA axis.

The prevalence of several neurodevelopmental disorders has increased in the pediatric population (1), and multiple environmental pollutants may play a role in the increased rates of these disorders (2). Multiple endocrine disrupting chemicals (EDCs), ubiquitous chemicals present in many every-day products and diet, are capable of interfering with the endocrine system, and have shown associations with childhood neurodevelopment and behavior (3–17). Although both pregnancy and early infancy are crucial stages of (neuro)development, most of the available literature is focused on the effects of prenatal exposure to EDCs on child neurodevelopment (2).

One group of EDCs that may have a deleterious effect on neurodevelopment is the organophosphate pesticides (OP pesticides), although the few studies assessing exposure during childhood and through the use of biomarkers suffered from a series of limitations, including a small sample size (2). Exposure to phthalates and their metabolites during childhood and early adolescence has also been associated with several adverse neurodevelopmental outcomes, but these studies were limited to few phthalate metabolites and small study populations (2). The effects of exposure to bisphenol A (BPA) during childhood on cognitive functions are still unclear (2).

Moreover, little is known about the biological mechanisms of action (2). There is some toxicological evidence, however, that exposure to certain EDCs, specifically phthalates, might interfere with the hypothalamic-pituitary-adrenocortical (HPA) axis and might interact with the glucocorticoid receptor (18–20). The HPA axis, which can be activated by stress, is responsible for the production of glucocorticosteroids. The brain, and its proper functioning, is a potential target, due to the presence of receptors for these hormones (19,21). Glucocorticosteroids are necessary for brain maturation, although their under- or over-production might interfere with its normal development and ultimately lead to long-term impaired functioning (20,21).

Taken together, these results suggest that the negative influence of exposure to certain EDCs on neurodevelopmental outcomes might be mediated, at least partially, by disruption of the HPA axis' homeostasis. In the present study, we thus estimated cross-sectional associations between 1) non-persistent EDCs and attentional function, 2) non-persistent EDCs and glucocorticosteroids, and 3) glucocorticosteroids and attentional function, using the parametric g-formula and marginal contrasts (MCs), in children of a large network of cohorts in Europe.

1 Methods

1.1 Study population and design

The Human Early-Life Exposome (HELIX) project aims to characterize early-life exposures and their potential association with endogenous biomarkers and health outcomes (22). It consists of six existing population-based birth cohort studies across Europe: BiB (Born in Bradford, UK) (23), EDEN (Study of determinants of pre- and postnatal developmental, France) (24), INMA (Environment and Childhood, Spain) (25), KANC (Kaunas Cohort, Lithuania) (26), MoBa (The Norwegian Mother and

Child Cohort Study, Norway) (27), and Rhea (Mother-Child Cohort in Crete, Greece) (28). The HELIX subcohort of 1,301 mother-child pairs was fully characterized for the external and internal exposome, including exposure and omics biomarkers during childhood (29). Eligibility criteria for inclusion in the HELIX subcohort included:
a) age 6-11 years, with a preference for 7-9 years; b) availability of sufficient stored pregnancy blood and urine samples; c) availability of complete address history from first to last follow-up; d) no serious health problems, which might affect the results of the clinical testing. Ethical permission was obtained from the relevant authorities in the corresponding country.

69 1.2 Variables

1.2.1 Endocrine disrupting chemicals

Children were assessed between December 2013 and February 2016, and assessments included neurological testing and urine collection. Urine samples of the night before and the first morning void on the day of the visit were combined to provide a more reliable exposure assessment. Non-persistent EDCs assessed in the urine samples included phthalate metabolites, phenols, and organophosphate (OP) pesticide metabolites. A list of the environmental chemicals determined in urine samples and used for the present study is given in Table S1. Briefly, we analyzed a total of 7 phenols (bisphenol A (BPA), ethyl-paraben (ETPA), methyl-paraben (MEPA), n-butyl-paraben (BUPA), oxybenzone 78 (OXBE), propyl-paraben (PRPA), triclosan (TRCS)), 6 non-specific organophosphate pesticide metabolites (diethyl dithiophosphate (DEDTP), diethyl phosphate (DEP), diethyl thiophosphate (DETP), dimethyl dithiophosphate (DMDTP), dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP)), and 10 phthalate metabolites (mono benzyl 82 phthalate (MBzP), monoethyl phthalate (MEP), mono-2-ethyl 5-carboxypentyl phthalate (MECPP), mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-4-methyl-7-hydroxyoctyl phthalate (oh-MiNP), mono-4-methyl-7-oxooctyl phthalate (oxo-MiNP), mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MnBP)) originating from 6 distinct phthalate parent compounds. The laboratory protocols for the analysis are described elsewhere (30).

1.2.2 Glucocorticosteroids

Urine samples of the night before the day of the visit were used to measure levels of the glucocorticosteroids. These included glucocorticosteroids, glucocorticosteroid metabolites, glucocorticosteroid precursors, glucocorticosteroid precursor metabolites, androgens, and androgen metabolites. A list of the glucocorticosteroids determined in urine samples and used for the present study is given in Table S2.

To assess the levels of glucocorticosteroids and their metabolites, LC-MS/MS analysis was applied at the Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute). The laboratory protocols for the analysis are described elsewhere (31,32).

Three additional markers, total cortisol production, total cortisone production, and 100 total corticosterone production, were computed based on the following: cortisol 101 production as the sum of cortisol and its metabolites (20 -dihydrocortisol (20aDHF), 20 -dihydrocortisol (20bDHF), 5, 20 -cortol (5a20acortol), 5, 20 -cortol (5a20bcortol), 103 5 -tetrahydrocortisol (5aTHF), 5, 20 -cortol (5b20acortol), 5, 20 -cortol (5b20bcortol), 104 5-dihydrocortisol (5bDHF), 5-tetrahydrocortisol (5bTHF), 6-hydroxycortisol (60HF)), cortisone production as the sum of cortisone and its metabolites (20dihydrocortisone (20aDHE), 20 -dihydrocortisone (20bDHE), 5 -tetrahydrocortisone 107 (5aTHE), 5,20-cortolone (5b20acortolone), 5,20-cortolone (5b20bcortolone), 108 5-tetrahydrocortisone (5bTHE), 6-hydroxycortisone (6OHE)), and corticosterone 109 production as the sum of 11-dehydrocorticosterone (A), 17-deoxycortolone (17-DO-cortolone), 5-tetrahydrocorticosterone (5aTHB), 5-tetrahydrocorticosterone 111 (5bTHB). 112

1.2.3 Attentional function

114

115

117

118

119

121

122

124

125

128

129

130

131

132

133

136

137

Cognitive and motor function outcomes were assessed with standardized, non-linguistic, and culturally blind computer tests, including the Attention Network Test (ANT) (33), which provides a measure of efficiency of attentional function. The tests were administered in a standardized way, and with minimal interference from the field workers. Further information can be found in (29). The outcome of interest for the present study is the hit reaction time standard error (HRT-SE) (34), a measure of response speed consistency throughout the test. A high HRT-SE indicates highly variable reaction times, and is considered a measure of inattentiveness.

1.2.4 Confounders

For each research question, defined by a specific type of exposure and outcome, the minimal set of covariates for inclusion in the analyses was selected on the basis of a directed acyclic graph (DAG) built with DAGitty (35) and ggdag (36). The sets of covariates were selected to estimate the total effect of the exposure on the outcome. For effect estimation of the EDCs on glucocorticosteroids and of glucocorticosteroids on HRT-SE, these sets were also sufficient to estimate direct effects. Sample-specific creatinine values were used to adjust for possible dilution effects. Further, each minimal adjustment set was augmented with precision covariates, defined as the set of parents variable of the outcome that are not parents of the exposure. Common confounders were cohort, ethnicity, sex, age, height, weight, and head circumference of the child, consumption of fish, fruit, vegetables, organic food, and fast food, maternal tobacco consumption, family financial situation and affluence scale (FAS). Models for estimating the effects of EDCs on HRT-SE were further adjusted for child breastfeeding, prenatal maternal active and passive smoking, urine creatinine, child mood and rest before assessment, child neuropsychological diagnosis, marital status, season, and fasting time before assessment. Models for estimating the effects of EDCs on glucocorticosteroids were further adjusted for urine creatinine, season, and fasting time before assessment. Models for estimating the effects of glucocorticosteroids on HRT-SE were further

adjusted for child breastfeeding, prenatal maternal active and passive smoking, marital status, EDCs, urine creatinine, child mood and rest before assessment, and child neuropsychological diagnosis. The adjustment sets are provided in the Supplementary Material as text files compatible with DAGitty. Codebooks for the used covariates, by research question, are provided in Supplementary Tables Table S3, Table S4, Table S5.

1.3 Statistical methods

1.3.1 Data pre-processing

Concentrations of the glucocorticosteroids were classified as quantifiable, below the limit 148 of quantification (LOQ), possible interference or out of range, and not detected. For 149 each metabolite, we computed the fraction of values below the LOQ and not detected, both within each cohort and overall. We proceeded to impute these values using half 151 the value of the corresponding LOQ, for those metabolites that had less than 30% of 152 missings within each cohort and 20% of missings overall. Information about the lower limit of quantification (LLOQ) for the glucocorticosteroids is provided in Table S6. 154 The remaining missing values were imputed using kNN from the VIM R package (37), 155 for those metabolites that had less than 40% of remaining missings within each cohort 156 and 30% of remaining missings overall. We used 5 nearest neighbors. We natural log-transformed them to improve model fit, assessed with posterior predictive checks. To do so, replicated data were simulated with the fitted models and compared to 159 the observed data. We used the check predictions function from the performance 160 R package using the default arguments (38). Values of total cortisol, cortisone, and corticosterone production were expressed in nanograms per millilitre (ng/ml). 162

Concentrations of the non-persistent EDCs were classified as quantifiable, below the 163 limit of detection (LOD), possible interference or out of range, and not analysed. 164 Concentrations below the LOD were singly imputed using a quantile regression approach for the imputation of left-censored missing data, as implemented in the impute.QRILC 166 function from the imputeLCMD R package (39). Information about the lower limits 167 of detection can be found in (30). Chemicals with more than 70% of observations below the LOD were excluded from the present study. Remaining missing values were 169 imputed similarly using kNN. Values of the chemicals were expressed in μ grams per 170 litre ($\mu g/L$). 171

Missing values in the clinical outcome were imputed similarly using kNN. We natural log-transformed these to improve model fit, assessed with posterior predictive checks. Values of the clinical outcome were expressed in milliseconds (ms).

Missing values in the covariates were imputed similarly using kNN. Categorical covariates were imputed using the maxCat function, which chooses the level with the most occurrences. Creatinine values were expressed in grams per litre (g/L).

Estimation of balancing weights

To reduce the effect of measured confounders on the exposure-outcome association, stabilized balancing weights were estimated using the energy method available in the WeightIt R package (40). This method estimates weights by minimizing an energy statistic related to covariate balance (41), thus avoiding the need to specify a parametric model. Weights below the 0.1 and above the 0.9 quantiles were trimmed. Trimming might lead to decreased covariate balance and potentially change the estimand, but can also decrease the variability of the weights. Covariate balance was assessed using functionalities provided by the cobalt R package (42). Specifically, we used Love plots to visualize covariate balance before and after adjusting.

1.3.3 G-computation 188

178

180

181

184

185

190

191

192

194

195

196

198

199

212

We estimated MCs with the parametric g-formula, a method of standardization. The parametric g-formula involves the following steps: 1) fit a outcome model including both covariates and balancing weights; 2) create two new datasets identical to the original one but with the exposure shifted according to a user-specified intervention set by a deterministic function of the observed exposure levels; 3) use the outcome model to compute adjusted predictions in the two counterfactual datasets; 4) compute the difference between the means of the adjusted predictions in the counterfactual datasets. The causal parameter of interest was thus specified as the difference in the expected counterfactual outcomes under the shifted exposure levels ($\mathbb{E}[Y^{d_1}] - \mathbb{E}[Y^{d_2}]$). In order for this parameter to be identified, the usual causal identifiability conditions (no unmeasured confounding, positivity, and consistency) are required. Since these conditions are likely not satisfied, we focused on the estimation of a statistical estimand that is as close as possible to the causal parameter of interest.

We fit the outcome model using the glm function and a Gaussian family with identity 202 link from base R. The exposure variable was modeled using natural cubic splines with 203 3 degrees of freedom, to more flexibly capture the average dose-response function 204 (ADRF). 205

To estimate the MCs, we used the avg_comparisons function from the 206 marginaleffects R package (43). The two counterfactual datasets were obtained by setting the exposures levels to 90th percentile (d_1) and the 10th percentile (d_2) , for each cohort separately. The MCs were computed using the estimated balancing 209 weights above. Robust standard errors were computed with the sandwich R package, 210 using cohort as variable indicating clustering of observations (44,45). For each outcome, 211 we report the results as differences between MCs.

The R code to reproduce analyses and results is available online (https://github.com/loren-213 zoFabbri/paper-helixSC-neuro). 214

Effect-modification analysis

We further estimated separate MCs for possible effect-modification by sex. To do so, balancing weights were estimated separately for each level of the sex variable, and an interaction term between the exposure and sex was included in the outcome model. 218 Similarly, the MCs were aggregated separately for each level of sex.

Results $\mathbf{2}$ 220

215

221

227

229

232

Table 1 and Table S7 provide descriptive statistics for the outcome and covariates for the HELIX subcohort and for each cohort, respectively. Of the 1,301 children of the HELIX subcohort, 1,297 had measurements of the non-persistent EDCs. Measurements of the glucocorticosteroids were available for 1,004 children, of which 980 were matched to the HELIX subcohort. Measurements of both non-persistent EDCs and glucocorticosteroids 225 were available for 976 children of the subcohort. A flowchart describing the sample 226 size for each research question is presented in Figure S1. The sample consisted of 55% males. The median HRT-SE was 300 ms (interquartile range (IQR), 231-368), with lower median values for EDEN, MOBA, and INMA, corresponding to the cohorts with older children. At the time of visit, the median age of the children was 8.06 years. The children were mostly Caucasian (90%), and the largest minority were of Pakistani origin (6.2%).

Levels of unprocessed non-persistent EDCs, after imputation of values below the LOD, 233 and glucocorticosteroids, are presented in Table 2, Table 3, and Table S8. Supplementary 234 Figure S2 and Figure S3 provide information on the measurement classification 235 of the EDCs and glucocorticosteroids by cohort, respectively. 236

The effective sample sizes before and after balancing weights estimation are presented in 237 Supplementary Tables Table S9, Table S10, Table S11, while basic summary statistics of the estimated balancing weights are presented in Supplementary Tables Table S12, 239 Table S13, Table S14. As expected, the median value of the weights for each exposure 240 was close to 1.00. 241

Figure 1 presents the forest plot for the MCs on the logarithmic scale of the nonpersistent EDCs on HRT-SE. For most EDCs, a cohort-specific increase in the levels 243 of the exposures from the 10th to the 90th percentiles was associated with a positive MC, indicating an increase in the values of HRT-SE and thus lower attention. Most of the confidence intervals (CIs) included the null effect, though. Significant effects were observed for the paraben MEPA (MC: 0.042 and 95% CI: (0.013, 0.071)), and the 247 phthalate metabolites oxo-MiNP (MC: 0.023 and 95% CI: (0.003, 0.044)), oh-MiNP 248 (MC: 0.039 and 95% CI: (0.001, 0.076)), and MEHP (MC: 0.036 and 95% CI: (0.008, 0.063)). The organophosphate pesticide (OP pesticide) DETP was negatively associated 250 with HRT-SE (MC: -0.026 and 95% CI: (-0.054, 0.001)). 251

Figure 2 presents the forest plot for the MCs on the logarithmic scale of the nonpersistent EDCs on total cortisone, cortisol, and corticosterone production. For most EDCs, a cohort-specific increase in the levels of the exposures from the 10th to the
90th percentiles was associated with a positive MC, indicating an increase in the total
production of these metabolites. Exceptions were BUPA, which was associated with
negative MCs for all three outcomes, and MiBP, which was associated with a negative
MC for total cortisone production only. The majority of the effects for the phenols
and phthalate metabolites included the null. The phenol BPA showed the largest MCs
across all three outcomes (cortisone production, MC: 0.263 and 95% CI: (0.131, 0.394);
cortisol production, MC: 0.274 and 95% CI: (0.107, 0.441); corticosterone production,
MC: 0.285 and 95% CI: (0.106, 0.464)).

Figure 3 presents the forest plot for the MCs on the logarithmic scale of the gluco-corticosteroids on HRT-SE. All MCs included the null, with no clear indication of directionality of the effect.

2.1 Effect modification by sex

263

265

266

268

269

288

291

Basic summary statistics of the estimated balancing weights for effect modification are presented in Supplementary Tables Table S15, Table S16, Table S17. As expected, the median value of the weights for each exposure was close to 1.00.

Table 4 presents the results of the difference between estimates of the MCs on the logarithmic scale for females and males, for the EDCs on the glucocorticosteroids and 271 HRT-SE. For HRT-SE, significant differences were present for the phenol OXBE (MC: 272 0.032 and 95% CI: (0.004, 0.061)) and the phthalate metabolites MEP (MC: -0.053273 and 95% CI: (-0.138, 0.033)) and MbZP (MC: -0.066 and 95% CI: (-0.126, -0.007)). For the glucocorticosteroids, significant differences were present across all three classes 275 of EDCs and for all outcomes. The largest differences were attributable to the OP 276 pesticides DMTP (cortisol production, MC: -0.21 and 95% CI: (-0.326, -0.094)) and 277 DETP (corticosterone production, (MC: -0.16 and 95% CI: (-0.332, 0.011)); cortisone 278 production, (MC: -0.097 and 95% CI: (-0.269, 0.076))). The forest plots of the individual MCs are presented in Supplementary Figures Figure S4 and Figure S5. 280

Table 5 presents the results of the difference between estimates of the MCs on the logarithmic scale for females and males, for the glucocorticosteroids on HRT-SE. Significant differences were present for cortisone production (MC: 0.14 and 95% CI: (0.019, 0.261)) and corticosterone production (MC: 0.126 and 95% CI: (0.009, 0.243)). Furthermore, for all exposures, the MCs had opposite sign (positive for males and negative for females). The forest plot of the individual MCs is presented in Figure S6.

3 Discussion

The impact of exposure to EDCs on human health has attracted considerable research interest. While research in this area has mainly investigated the effects of prenatal exposure on child neurodevelopment (2), little is still known about childhood exposure. In this study, consisting of 1,297 children from 6 European birth cohorts, we observed that short-term childhood exposure to certain non-persistent EDCs was associated with

attentional function (MEPA, MEHP, oh-MiNP, and oxo-MiNP), and with total production of cortisol, cortisone, and corticosterone (DEP, DMP, DMTP, BPA, ETPA, MEPA, MEHP, oh-MiNP, and oxo-MiNP). Increased production of these glucocorticosteroids did not seem to affect attentional function. Some of these effects differed for females and males, including significant differences for the effects of increased production of cortisone and corticosterone on HRT-SE. Specifically, an increased production of these glucocorticosteroids was associated with lower values of HRT-SE for females, and higher values for males. Taken together, these results suggest that these non-persistent EDCs might be responsible for perturbations of the HPA axis' homeostasis, and that higher levels of these glucocorticosteroids might interfere with different functions of attention in a sex-specific manner.

293

294

296

297

300

301

302

304

305

307

308

309

311

312

313

314

315

316

317

318

319

320

321

323

324

325

326

327

330

331

332

334

335

To the best of our knowledge, no other study has investigated the effects of childhood exposure to multiple classes of non-persistent EDCs in relation to attentional function. More generally, the literature on non-persistent EDCs and neurodevelopment in children has mostly focused on OP pesticides (3,4,6,8), phthalate metabolites (5,9,10,15,17,46-48), and BPA (7,13,14). González-Alzaga et al. and Cartier et al. evaluated cross-sectional associations between dialkylphosphate (DAP) metabolites and subtests of the Wechsler Intelligence Scale for Children (49) in European children with ages between 6 and 11 years. Higher levels of DAP metabolites (DMP, DMTP, DMDTP, DEP, DETP, and DEDTP) were associated with lower scores of intelligence quotient (IQ) and verbal comprehension, especially in boys (4), while higher levels of diethylphosphate metabolites (DEP, DETP, DEDTP) were associated with lower working memory scores (6). There is also preliminary evidence of a possible association between exposure to certain OP pesticides and Attention-Deficit / Hyperactivity Disorder (ADHD) in children (3,8). Specifically, Bouchard et al. found evidence of a cross-sectional association between dimethyl alkylphosphate metabolites (DMP, DMTP, and DMDTP) and ADHD in children aged 8 to 15 years from National Health and Nutrition Examination Survey (NHANES), while Yu et al. found a dose-response relationship between DMP and ADHD in Taiwanese children aged 4 to 15 years. Preliminary evidence is also available for several phthalate metabolites in relation to cognitive development in childhood. Higher levels of di(2-ethylhexyl) phthalate metabolites (including MEHP, MEHHP, and MEOHP) were associated with lower intelligence scores in children aged 2 to 12 years (5), lower scores of IQ and verbal intelligence, more omission errors (a measure of inattention), and higher scores of response time variability (a measure of sustained attention) in 6-year old Korean children (10), poorer fine motor skills in preadolescent boys (47), and lower intelligence scores in 7-year old children (17). Further associations were found for MEOHP with lower scores of IQ (5) and verbal intelligence in Taiwanese children aged 6 to 12 years (9), and for dibutyl phthalate metabolites (MnBP and MiBP) with impaired verbal intelligence (9). There is further preliminary evidence that associations between certain phthalate metabolites and cognitive abilities vary by timing of exposure assessment (46). Among phenols, some studies provide preliminary evidence of an association between BPA and ADHD in children aged 8 to 15 years (7) and in a case-control study of children aged 6 to 12 years (13), especially in boys. Except for working memory, there does not seem to be evidence of an association

between BPA and cognitive abilities in Spanish boys aged 9 to 11 years (14). Few studies have looked into different classes of non-persistent EDCs. Shoaff et al., for instance, investigated cross-sectional associations between multiple EDCs and ADHDrelated behaviors in 15-year old adolescents, finding a higher risk of ADHD-related behavior problems with higher levels of antiandrogenic phthalate metabolites (MEHP, MEHHP, MEOHP, MECPP, MnBP, MiBP, MBzP, monohydroxyisobutyl phthalate (MHiBP), monocarboxyoctyl phthalate (MCOP), monoisononyl phthalate (MNP), and monohydroxybutyl phthalate (MHBP)), especially in boys (15).

345

346

347

348

351

352

353

355

356

359

360

361

362

363

364

366

368

370

371

372

We are not aware of other epidemiological studies investigating childhood exposure to phthalates metabolites, phenols, and OP pesticides, in relation to urinary glucocorticosteroid levels in childhood. Prior epidemiological research provides preliminary evidence for an association between certain non-persistent EDCs with higher levels of glucocorticoids (18-20). Repeated measures up to 15 months of age of the phthalate metabolites MEHHP, MEOHP, MiBP, and MnBP showed positive associations with free cortisol in Korean children, with no effect modification by sex (18). In a cohort of Chinese pregnant women, phthalate metabolites were measured at 14, 24, and 36 weeks of gestation, and the glucocorticoids cortisol and cortisone were measured in cord blood. Third-trimester levels of MEHP were positively associated with cortisol, while MECPP and MEOHP were negatively associated with cortisone (19). Time- and chemicaldependent sex differences were also found: during the third trimester, MEHHP and MEOHP were positively associated with cortisol in females, while negatively associated in males (19). In a longitudinal study, a mixture of several phthalate metabolites, driven by MEP, MiBP, and MBzP, measured in childhood, showed a positive association with hair cortisol measured at 12 years of age (20). While in the present study we did find positive MCs between some phthalate metabolites (MEHP, oh-MiNP, and oxo-MiNP) and the glucocorticosteroids, there are important differences with the previous studies. First, exposure assessment was performed during gestation (19) or the first 15 months of life (18), not during childhood. Second, the glucocorticosteroids were measured in other matrices, specifically in cord blood (19) or hair (20). Finally, (20) investigated mixture effects. Contrary to these studies (18,20), we did find effect modification by

Adding to these epidemiological studies, previous toxicological research provide evidence for the inhibition by phthalates of human 11β -hydroxysteroid dehydrogenase 2 (11β -HSD2) activity, responsible for the conversion of active cortisol into inactive cortisone (50,51). There is also *in silico* evidence suggesting that BPA, a phenol, and Triazophos (TAP), a organophosphorus insecticide, can bind to the human glucocorticoid receptor (52,53).

We are also not aware of prior epidemiological studies specifically investigating the effects of elevated levels of glucocorticosteroids in relation to attentional function, although there is evidence that under- or over-production of glucocorticosteroids interfere with the normal development of the brain (21). While we did find sex-specific evidence of an effect, their clinical relevance is questionable.

Our findings should be interpreted in light of the following limitations and strengths.

Limitations include the cross-sectional design of the present study. Importantly, the non-persistent EDCs were measured in a pool of night and morning urine samples before the clinical visit, to represent exposure over the previous day, whereas the glucocorticosteroids were measured in the night urine sample. Although we included a wide range of confounders there is the possibility, as with other observational studies, of residual confounding, which might lead to a bias away from the null. Some of the confounders indicated in the adjustment sets had to be removed due to large fractions of missing values. There is further the possibility of misspecification of the outcome model, although we included a spline of the exposure to relax some of the linearity assumptions. The use of more data-adaptive learners was excluded due to the relatively small sample size. We finally acknowledge the possibility that some of chemicals might not act independently (mixture effect). Further research is thus warranted.

Strengths of the present study include the use of pooled urine samples for chemical assessment to obtain more representative long-term exposures, since it is known that these specific EDCs have very short half-lives (54,55). We decided to model both the *treatment* mechanisms, for the estimation of balancing weights, and the outcomes, with traditional covariates adjustment, to try to obtain *doubly robust* effect estimates. Finally, we decided not to interpret our results by focusing on the estimated coefficients of possibly misspecified regression models, but by making use of the g-computation procedure and estimate MCs.

In conclusion, in a study of 1,297 children from 6 European birth cohorts, we observed that (i) exposure to non-persistent EDCs in childhood might have short-term effects on HRT-SE in childhood, (ii) exposure to non-persistent EDCs in childhood might disrupt the HPA axis in childhood, and (iii) disruption of the HPA axis in childhood might have short-term, sex-specific effects on HRT-SE. Future studies should investigate how glucocorticosteroids might mediate the adverse effects of exposure to non-persistent EDCs on childhood neurodevelopment (too broad) in larger populations.

Neferences

- Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–338.
- 409 2. Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, et al. Role of endocrine disrupting chemicals in children's neurodevelopment. *Environmental Research* [electronic article]. 2022;203:111890. (https://www.sciencedirect.com/science/article/pii/S0013935121011853). (Accessed January 31, 2023)
- Bouchard MF, Bellinger DC, Wright RO, et al. Attention-Deficit/Hyperactivity Disorder and Urinary Metabolites of Organophosphate Pesticides. *Pediatrics* [electronic article]. 2010;125(6):e1270–e1277. (https://doi.org/10.1542/peds. 2009-3058). (Accessed December 29, 2023)
- 4.1 González-Alzaga B, Hernández AF, Rodríguez-Barranco M, et al. Pre- and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain. *Environment International* [electronic article]. 2015;85:229–237. (https://www.sciencedirect.com/science/article/pii/S0160412015300593). (Accessed December 29, 2023)
- Huang H-B, Chen H-Y, Su P-H, et al. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive Function in Children Up to 12 Years of Age: Taiwanese Maternal and Infant Cohort Study. *PLOS ONE* [electronic article]. 2015;10(6):e0131910. (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131910). (Accessed December 29, 2023)
- 6. Cartier C, Warembourg C, Le Maner-Idrissi G, et al. Organophosphate Insecticide Metabolites in Prenatal and Childhood Urine Samples and Intelligence Scores at 6 Years of Age: Results from the Mother-Child PELAGIE Cohort (France). Environmental Health Perspectives [electronic article]. 2016;124(5):674-680. (https://ehp.niehs.nih.gov/doi/10.1289/ehp.1409472). (Accessed December 29, 2023)
- 7. Tewar S, Auinger P, Braun JM, et al. Association of Bisphenol A exposure and Attention-Deficit/Hyperactivity Disorder in a national sample of U.S. children. Environmental Research [electronic article]. 2016;150:112–118. (https://www.sciencedirect.com/science/article/pii/S0013935116302110). (Accessed December 29, 2023)

- Yu C-J, Du J-C, Chiou H-C, et al. Increased risk of attention-deficit/hyperactivity disorder associated with exposure to organophosphate pesticide in Taiwanese children. *Andrology* [electronic article]. 2016;4(4):695–705. (https://onlinelibrary.wiley.com/doi/abs/10.1111/andr.12183). (Accessed December 29, 2023)
- Huang P-C, Tsai C-H, Chen C-C, et al. Intellectual evaluation of children exposed to phthalate-tainted products after the 2011 Taiwan phthalate episode. Environmental Research [electronic article]. 2017;156:158–166. (https://www.sciencedirect.com/science/article/pii/S0013935116309112). (Accessed December 29, 2023)
- Kim JI, Hong Y-C, Shin CH, et al. The effects of maternal and children phthalate exposure on the neurocognitive function of 6-year-old children. *Environmental Research* [electronic article]. 2017;156:519–525. (https://www.sciencedirect.com/science/article/pii/S0013935116312828). (Accessed December 29, 2023)
- Furlong MA, Herring A, Buckley JP, et al. Prenatal exposure to organophosphorus pesticides and childhood neurodevelopmental phenotypes. *Environmental Research* [electronic article]. 2017;158:737–747. (https://www.sciencedirect.com/science/article/pii/S0013935117301044). (Accessed January 31, 2023)
- Braun JM. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. *Nat Rev Endocrinol* [electronic article]. 2017;13(3, 3):161–173. (https://www.nature.com/articles/nrendo.2016.186). (Accessed December 19, 2023)
- 420 13. Li Y, Zhang H, Kuang H, et al. Relationship between bisphenol A exposure and attention-deficit/ hyperactivity disorder: A case-control study for primary school children in Guangzhou, China. *Environmental Pollution* [electronic article]. 2018;235:141–149. (https://www.sciencedirect.com/science/article/pii/S0269749117327884). (Accessed December 29, 2023)
- 421 14. Rodríguez-Carrillo A, Mustieles V, Pérez-Lobato R, et al. Bisphenol A and cognitive function in school-age boys: Is BPA predominantly related to behavior? NeuroToxicology [electronic article]. 2019;74:162–171. (https://www.sciencedirect.com/science/article/pii/S0161813X19300543). (Accessed December 29, 2023)
- Shoaff JR, Coull B, Weuve J, et al. Association of Exposure to Endocrine-Disrupting Chemicals During Adolescence With Attention-Deficit/Hyperactivity Disorder–Related Behaviors. *JAMA Network Open* [electronic article]. 2020;3(8):e2015041. (https://doi.org/10.1001/jamanetworkopen.2020.15041). (Accessed December 29, 2023)

- Oh J, Kim K, Kannan K, et al. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. Res Sq. 2023;rs.3.rs-2565914.
- Vilmand M, Beck IH, Bilenberg N, et al. Prenatal and current phthalate exposure and cognitive development in 7-year-old children from the Odense child cohort.

 Neurotoxicology and Teratology [electronic article]. 2023;96:107161. (https://www.sciencedirect.com/science/article/pii/S0892036223000119). (Accessed November 16, 2023)
- 425 18. Kim JH, Lee J, Moon H-B, et al. Association of phthalate exposures with urinary free cortisol and 8-hydroxy-2'-deoxyguanosine in early childhood. Science of The Total Environment [electronic article]. 2018;627:506–513. (https://www.sciencedirect.com/science/article/pii/S0048969718301475). (Accessed December 26, 2023)
- Sun X, Li J, Jin S, et al. Associations between repeated measures of maternal urinary phthalate metabolites during pregnancy and cord blood glucocorticoids. Environment International [electronic article]. 2018;121:471–479. (https://www.sciencedirect.com/science/article/pii/S0160412018315113). (Accessed November 9, 2023)
- Sears CG, Liu Y, Lanphear BP, et al. Evaluating mixtures of urinary phthalate metabolites and serum per-/polyfluoroalkyl substances in relation to adolescent hair cortisol: The HOME Study. American Journal of Epidemiology [electronic article]. 2023;kwad198. (https://doi.org/10.1093/aje/kwad198). (Accessed November 16, 2023)
- Lupien SJ, McEwen BS, Gunnar MR, et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition. *Nat Rev Neurosci* [electronic article]. 2009;10(6, 6):434–445. (https://www.nature.com/articles/nrn2639). (Accessed December 31, 2023)
- Vrijheid M, Slama R, Robinson O, et al. The human early-life exposome (HELIX): Project rationale and design. Environ Health Perspect. 2014;122(6):535–544.
- Wright J, Small N, Raynor P, et al. Cohort Profile: The Born in Bradford multiethnic family cohort study. *International Journal of Epidemiology* [electronic article]. 2013;42(4):978–991. (https://doi.org/10.1093/ije/dys112). (Accessed December 19, 2023)

- Heude B, Forhan A, Slama R, et al. Cohort Profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants of child health and development. *International Journal of Epidemiology* [electronic article]. 2016;45(2):353–363. (https://doi.org/10.1093/ije/dyv151). (Accessed November 13, 2023)
- Guxens M, Ballester F, Espada M, et al. Cohort Profile: The INMA—INfancia y Medio Ambiente—(Environment and Childhood) Project. *International Journal of Epidemiology* [electronic article]. 2012;41(4):930–940. (https://doi.org/10.1093/ije/dyr054). (Accessed November 13, 2023)
- Grazuleviciene R, Danileviciute A, Nadisauskiene R, et al. Maternal Smoking,GSTM1 and GSTT1 Polymorphism and Susceptibility to Adverse Pregnancy Outcomes. International Journal of Environmental Research and Public Health [electronic article]. 2009;6(3, 3):1282–1297. (https://www.mdpi.com/1660-4601/6/3/1282). (Accessed November 13, 2023)
- Magnus P, Irgens LM, Haug K, et al. Cohort profile: The Norwegian Mother and Child Cohort Study (MoBa). *International Journal of Epidemiology* [electronic article]. 2006;35(5):1146–1150. (https://doi.org/10.1093/ije/dyl170). (Accessed November 13, 2023)
- ⁴³⁵ 28. Chatzi L, Plana E, Daraki V, et al. Metabolic Syndrome in Early Pregnancy and Risk of Preterm Birth. *American Journal of Epidemiology* [electronic article]. 2009;170(7):829–836. (https://doi.org/10.1093/aje/kwp211). (Accessed November 13, 2023)
- 436 29. Maitre L, Bont J de, Casas M, et al. Human Early Life Exposome (HELIX) study: A European population-based exposome cohort. *BMJ Open* [electronic article]. 2018;8(9):e021311. (https://bmjopen.bmj.com/content/8/9/e021311). (Accessed November 13, 2023)
- 437 30. Haug LS, Sakhi AK, Cequier E, et al. In-utero and childhood chemical exposome in six European mother-child cohorts. *Environment International* [electronic article]. 2018;121:751–763. (https://www.sciencedirect.com/science/article/pii/S016041201831225X). (Accessed January 17, 2022)
- 438 31. Marcos J, Renau N, Casals G, et al. Investigation of endogenous corticosteroids profiles in human urine based on liquid chromatography tandem mass spectrometry. *Analytica Chimica Acta* [electronic article]. 2014;812:92–104. (https://www.sciencedirect.com/science/article/pii/S0003267013015791). (Accessed November 13, 2023)

- 439 32. Gomez-Gomez A, Pozo OJ. Determination of steroid profile in hair by liquid chromatography tandem mass spectrometry. *Journal of Chromatography A* [electronic article]. 2020;1624:461179. (https://www.sciencedirect.com/science/article/pii/S0021967320304313). (Accessed November 13, 2023)
- 440 33. Rueda MR, Fan J, McCandliss BD, et al. Development of attentional networks in childhood. *Neuropsychologia* [electronic article]. 2004;42(8):1029–1040. (https://www.sciencedirect.com/science/article/pii/S0028393204000041). (Accessed April 12, 2023)
- Sunyer J, Esnaola M, Alvarez-Pedrerol M, et al. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. *PLOS Medicine* [electronic article]. 2015;12(3):e1001792. (https://journals.plos.org/plosmedicine/article?id=10. 1371/journal.pmed.1001792). (Accessed November 21, 2023)
- Textor J, van der Zander B, Gilthorpe MS, et al. Robust causal inference using directed acyclic graphs: The R package "dagitty." *International Journal of Epidemiology* [electronic article]. 2016;45(6):1887–1894. (https://doi.org/10.1093/ije/dyw341). (Accessed September 22, 2023)
- Barrett M. Ggdag: Analyze and Create Elegant Directed Acyclic Graphs. 2023;(https://github.com/r-causal/ggdag)
- 37. Kowarik A, Templ M. Imputation with the R Package VIM. *Journal of Statistical Software* [electronic article]. 2016;74:1–16. (https://doi.org/10.18637/jss.v074.i07). (Accessed January 17, 2022)
- 445 38. Lüdecke D, Ben-Shachar MS, Patil I, et al. performance: An R package for assessment, comparison and testing of statistical models. *Journal of Open Source Software*. 2021;6(60):3139.
- 446 39. Lazar C. imputeLCMD: A collection of methods for left-censored missing data imputation. *R package, version.* 2015;2.
- 447 40. Greifer N. Cobalt: Covariate balance tables and plots. 2023.
- 41. Huling JD, Greifer N, Chen G. Independence Weights for Causal Inference with Continuous Treatments. *Journal of the American Statistical Association* [electronic article]. 2023;0(0):1–14. (https://doi.org/10.1080/01621459.2023. 2213485). (Accessed September 15, 2023)
- 449 42. Greifer N. WeightIt: Weighting for covariate balance in observational studies. 2023.

- 43. Arel-Bundock V. Marginaleffects: Predictions, comparisons, slopes, marginal means, and hypothesis tests. 2023.(https://marginaleffects.com/)
- 44. Zeileis A. Econometric computing with HC and HAC covariance matrix estimators. *Journal of Statistical Software*. 2004;11(10):1–17.
- 45. Zeileis A, Köll S, Graham N. Various versatile variances: An object-oriented implementation of clustered covariances in R. *Journal of Statistical Software*. 2020;95(1):1–36.
- 46. Li N, Papandonatos GD, Calafat AM, et al. Identifying periods of susceptibility to the impact of phthalates on children's cognitive abilities. *Environmental Research* [electronic article]. 2019;172:604–614. (https://www.sciencedirect.com/science/article/pii/S0013935119301379). (Accessed March 13, 2024)
- 47. Balalian AA, Whyatt RM, Liu X, et al. Prenatal and childhood exposure to phthalates and motor skills at age 11 years. *Environmental Research* [electronic article]. 2019;171:416–427. (https://www.sciencedirect.com/science/article/pii/S0013935119300507). (Accessed March 13, 2024)
- Jankowska A, Polańska K, Hanke W, et al. Prenatal and early postnatal phthalate exposure and child neurodevelopment at age of 7 years Polish Mother and Child Cohort. *Environmental Research* [electronic article]. 2019;177:108626. (https://www.sciencedirect.com/science/article/pii/S0013935119304232). (Accessed March 13, 2024)
- Wechsler D, Kodama H. Wechsler intelligence scale for children. Psychological corporation New York; 2003.
- ⁴⁵⁷ 50. Zhao B, Chu Y, Huang Y, et al. Structure-dependent inhibition of human and rat 11 -hydroxysteroid dehydrogenase 2 activities by phthalates. *Chemico-Biological Interactions* [electronic article]. 2010;183(1):79–84. (https://www.sciencedirect.com/science/article/pii/S0009279709003950). (Accessed February 13, 2024)
- Ma X, Lian Q-Q, Dong Q, et al. Environmental inhibitors of 11 -hydroxysteroid dehydrogenase type 2. *Toxicology* [electronic article]. 2011;285(3):83–89. (https://www.sciencedirect.com/science/article/pii/S0300483X11001466). (Accessed February 13, 2024)
- 52. Prasanth GK, Divya LM, Sadasivan C. Bisphenol-A can bind to human glucocorticoid receptor as an agonist: An in silico study. *Journal of Applied Toxicology* [electronic article]. 2010;30(8):769–774. (https://onlinelibrary.wiley.com/doi/abs/10.1002/jat.1570). (Accessed February 13, 2024)

- Yang F-W, Li Y-X, Ren F-Z, et al. Assessment of the endocrine-disrupting effects of organophosphorus pesticide triazophos and its metabolites on endocrine hormones biosynthesis, transport and receptor binding in Silico. Food and Chemical Toxicology [electronic article]. 2019;133:110759. (https://www.sciencedirect.com/science/article/pii/S0278691519305496). (Accessed February 13, 2024)
- Perrier F, Giorgis-Allemand L, Slama R, et al. Within-subject Pooling of Biological Samples to Reduce Exposure Misclassification in Biomarker-based Studies. *Epidemiology* [electronic article]. 2016;27(3):378. (https://journals.lww.com/epidem/fulltext/2016/05000/within_subject_pooling_of_biological_samples_to.12.aspx). (Accessed March 8, 2024)
- Casas M, Basagaña X, Sakhi AK, et al. Variability of urinary concentrations of non-persistent chemicals in pregnant women and school-aged children. Environ. Int. [electronic article]. 2018;121(Pt 1, Pt 1):561–573. (http://dx.doi.org/10.1016/j.envint.2018.09.046)
- Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical science: Replace confidence and significance by compatibility and surprise. *BMC Medical Research Methodology* [electronic article]. 2020;20(1):244. (https://doi.org/10.1186/s12874-020-01105-9). (Accessed March 8, 2024)

4 Tables for descriptive data

4.1 Study populations

Table 1: Participant characteristics (HELIX subcohort; 2013-2016).

Characteristic	$\mathrm{N}=1{,}297^a$	
Child age (years)	8.1 (6.5, 8.9)	
Child breastfeeding	1,093.0 (84.7%)	
Unknown	6	
Child ethnicity		
Caucasian	1,157.0 (90.0%)	
Pakistani	80.0 (6.2%)	
Asian	$21.0\ (1.6\%)$	
Other	19.0 (1.5%)	
African	7.0~(0.5%)	
Native American	2.0~(0.2%)	
White non European	0.0~(0.0%)	
Unknown	11	
Child head circumference (cm)	51.8 (50.6, 52.9)	
Unknown	3	
Child height (m)	1.3 (1.2, 1.4)	
hild neuropsychological diagnosis 95.0 (7.39)		
Child rest before assessment	,	
Yes	1,209.0 (93.3%)	
Not as well as usual	87.0 (6.7%)	
Unknown	$\stackrel{\circ}{1}$	
Child sex		
Male	710.0 (54.7%)	
Female	587.0 (45.3%)	
Child weight (kg)	26.9 (22.9, 32.6)	
Chiod mood before assessment	, , ,	
Usual	1,232.0 (95.1%)	
Not usual 64.0 (4.9%		
Unknown	1	
Cohort		
MOBA	$272.0\ (21.0\%)$	
INMA	$221.0\ (17.0\%)$	
BIB	$204.0\ (15.7\%)$	
KANC	203.0 (15.7%)	
RHEA	199.0 (15.3%)	
EDEN	198.0 (15.3%)	
Creatinine night sample (g/l)	1.7 (0.9, 3.0)	
Unknown	321	

Creatinine pooled sample (g/l)	$1.0\ (0.8,\ 1.2)$
Date of test (season)	250 0 (27 707)
Spring	358.0 (27.7%)
Winter	339.0 (26.2%)
Autumn	300.0 (23.2%)
Summer	297.0 (23.0%)
Unknown	3
Family affluence scale	(21 =04)
6	410.0 (31.7%)
5	$325.0\ (25.1\%)$
7	$248.0 \ (19.2\%)$
4	$174.0 \ (13.4\%)$
3	$92.0 \ (7.1\%)$
2	$28.0\ (2.2\%)$
1	$12.0 \ (0.9\%)$
0	6.0~(0.5%)
Unknown	2
Fast food/take away (times/week)	$0.1\ (0.1,\ 0.5)$
Unknown	7
Fasting time before visit (hours)	3.3(2.8, 4.0)
Financial situation of the parents	, , ,
Doing alright	414.0 (32.1%)
Living comfortably	412.0 (31.9%)
Getting by	331.0 (25.6%)
Finding it quite difficult	86.0 (6.7%)
Finding it very difficult	40.0 (3.1%)
Does not wish to answer	8.0 (0.6%)
Unknown	6
Fish and seafood (times/week)	$2.0\ (1.1,\ 3.5)$
Unknown	5
Fruits (times/week)	9.0 (5.9, 18.0)
Unknown	7
Hit reaction time standard error (ms)	299.6 (231.3, 368.2)
Unknown	18
Marital status	10
Living with the father	1,212.0 (94.5%)
Living alone	39.0 (3.0%)
Other situation	31.0 (2.4%)
Unknown	15
	10
Maternal tobacco consumption	691 0 (59 607)
Non-smoker and has never smoked	681.0 (52.6%)
Daily smoker	200.0 (15.5%)
Non-smoker but previously smoked daily	186.0 (14.4%)
Non-smoker but previously smoked although not daily	163.0 (12.6%)
Smoker but not daily	$64.0 \ (4.9\%)$

Unknown	3
Organic food (times/week)	$0.5\ (0.0,\ 3.0)$
Unknown	7
Pregnancy maternal active smoking	$190.0\ (15.1\%)$
Unknown	40
Pregnancy maternal passive smoking	$514.0 \ (40.3\%)$
Unknown	21
Vegetables (times/week)	6.5 (4.0, 10.0)
Unknown	6

 $^{^{}a}$ n (%); Median (IQR)

4.2 Endocrine disruptors

Table 2: Participants endocrine disruptors concentrations expressed in $\mu {\rm grams/L}$ (HELIX subcohort; 2013-2016).

${\bf Characteristic}$	$\mathbf{N}=1,\!297^a$	$\mathbf{N}=1,297^{b}$
OP pesticide met	abolites	
DEP	1.8 (0.4, 4.6)	2.0(0.2)
DETP	$0.1 \ (0.1, \ 1.7)$	21.0(1.6)
DMP	$0.4\ (0.3,\ 4.6)$	6.0 (0.5)
DMTP	$2.8 \ (1.2, 6.3)$	1.0(0.1)
Phenols		
BPA	3.8 (2.3, 7.0)	12.0 (0.9)
BUPA	$0.1\ (0.0,\ 0.1)$	$5.0\ (0.4)$
ETPA	0.7(0.4, 1.2)	$3.0\ (0.2)$
MEPA	6.3(3.1, 24.1)	2.0(0.2)
OXBE	$2.0\ (0.8,\ 6.6)$	0.0(0.0)
PRPA	$0.2\ (0.0,\ 1.6)$	$17.0\ (1.3)$
TRCS	$0.6 \ (0.3, \ 1.5)$	0.0(0.0)
Phthalate metabo	olites	
MBzP	4.8 (2.7, 8.7)	1.0 (0.1)
MECPP	32.8 (19.9, 57.6)	1.0(0.1)
MEHHP	19.3 (11.4, 33.1)	3.0(0.2)
MEHP	2.8(1.6, 5.1)	41.0(3.2)
MEOHP	$12.2\ (7.1,\ 20.4)$	1.0(0.1)
MEP	32.5 (15.0, 79.2)	0.0(0.0)
MiBP	$40.2\ (24.5,\ 71.1)$	0.0(0.0)
MnBP	22.7 (14.5, 38.8)	0.0(0.0)
oh-MiNP	5.0 (3.1, 9.3)	0.0 (0.0)

^aMedian (IQR)

4.3 Glucocorticosteroids

Table 3: Participants derived glucocorticosteroids concentrations expressed in ng/ml (HELIX subcohort; 2013-2016).

Characteristic	$\mathrm{N}=1{,}004^a$	$\mathbf{N}=976^{a,b}$
cortisol production	4,607.9 (2,860.5, 6,787.6); 18.0 (1.8)	4,559.5 (2,834.5, 6,731.7); 17.0 (1.7)
cortisone production	4,608.1 (2,920.8, 6,843.9); 19.0 (1.9)	4,580.7 (2,899.3, 6,800.5); 18.0 (1.8)
corticosterone production	257.8 (157.9, 410.5); 3.0 (0.3)	256.7 (157.5, 409.7); 3.0 (0.3)

^aMedian (IQR); N missing (% missing)

Tables for other analyses

5.1 Marginal hypotheses for effect modification

Table 4: Pairwise differences between marginal contrasts on the logarithmic scale of males and females, for the effect of a increase from the 10th to the 90th percentile of endocrine disrupting chemicals (EDCs) on hit reaction time standard error (HRT-SE), expressed in ms, and on the glucocorticosteroids, expressed in ng/ml (HELIX subcohort; 2013-2016).

	$HRT-SE^a$	corticosterone production a	cortisol production a	cortisone producti
OP pesticid	le metabolites			
DEP	0.019 (-0.022, 0.061)	-0.082 (-0.276, 0.113)	-0.139 (-0.374, 0.096)	-0.104 (-0.312, 0.1
DETP	0.025 (-0.054, 0.104)	-0.16 (-0.332, 0.011)	-0.071 (-0.264, 0.123)	-0.097 (-0.269, 0.0
DMP	-0.034 (-0.093, 0.025)	0.007 (-0.217, 0.231)	-0.031 (-0.119, 0.057)	-0.069 (-0.207, 0.0
DMTP	0.005 (-0.095, 0.106)	$-0.014 \ (-0.165, \ 0.137)$	-0.21 (-0.326, -0.094)	-0.166 (-0.353, 0.0
Phenols				
BPA	0.032 (-0.026, 0.09)	-0.153 (-0.291, -0.015)	-0.125 (-0.269, 0.018)	-0.085 (-0.216, 0.0
BUPA	-0.022 (-0.067, 0.024)	-0.117 (-0.247, 0.012)	-0.129 (-0.209, -0.048)	-0.013 (-0.112, 0.0
ETPA	0.012 (-0.021, 0.045)	-0.254 (-0.416, -0.092)	-0.184 (-0.39, 0.022)	-0.219 (-0.472, 0.0
MEPA	-0.001 (-0.061, 0.058)	-0.129 (-0.271, 0.013)	-0.127 (-0.258, 0.004)	-0.144 (-0.257, -0.
OXBE	0.032 (0.004, 0.061)	-0.213 (-0.486, 0.059)	-0.077 (-0.306, 0.153)	-0.064 (-0.274, 0.1
PRPA	0.015 (-0.045, 0.074)	-0.12 (-0.262, 0.022)	-0.043 (-0.238, 0.151)	-0.102 (-0.223, 0.0

 $^{^{}b}$ N missing (% missing)

 $^{^{}b}$ Measurements available for the HELIX subcohort.

TRCS	-0.017 (-0.076, 0.042)	-0.142 (-0.251, -0.034)	-0.13 (-0.248, -0.012)	-0.152 (-0.207, -0.0
Phthalate n	metabolites			
MBzP	-0.066 (-0.126, -0.007)	-0.026 (-0.098, 0.047)	-0.018 (-0.143, 0.108)	-0.079 (-0.174, 0.0
MECPP	0.008 (-0.076, 0.092)	-0.014 (-0.165, 0.136)	-0.043 (-0.084, -0.002)	0.017 (-0.055, 0.0
MEHHP	0.028 (-0.075, 0.131)	-0.052 (-0.264, 0.161)	-0.091 (-0.208, 0.026)	-0.006 (-0.087, 0.0
MEHP	0.017 (-0.082, 0.115)	-0.165 (-0.259, -0.071)	-0.221 (-0.289, -0.153)	-0.177 (-0.298, -0.0
MEOHP	0.02 (-0.068, 0.107)	-0.061 (-0.232, 0.111)	-0.075 (-0.157, 0.006)	0.009 (-0.063, 0.0
MEP	-0.053 (-0.138, 0.033)	-0.05 (-0.408, 0.308)	-0.083 (-0.384, 0.218)	-0.119 (-0.338, 0.
MiBP	-0.02 (-0.138, 0.098)	0.037 (-0.175, 0.249)	-0.041 (-0.267, 0.184)	-0.021 (-0.162, 0.1
MnBP	-0.035 (-0.11, 0.041)	0.029 (-0.186, 0.243)	0.063 (-0.134, 0.26)	0.017 (-0.076, 0.1
oh-MiNP	0.046 (-0.009, 0.102)	-0.127 (-0.335, 0.08)	-0.181 (-0.33, -0.033)	-0.164 (-0.304, -0.0
oxo-MiNP	-0.026 (-0.059, 0.008)	-0.12 (-0.315, 0.076)	-0.146 (-0.303, 0.011)	-0.127 (-0.238, -0.0

 $[^]a\mathrm{Estimate}$ and 95% CI.

Table 5: Pairwise differences between marginal contrasts on the logarithmic scale of males and females, for the effect of a increase from the 10th to the 90th percentile of the glucocorticosteroids on hit reaction time standard error (HRT-SE) expressed in ms (HELIX subcohort; 2013-2016).

	HRT - SE^a
Glucocorticosteroids	
corticosterone production cortisol production cortisone production	0.126 (0.009, 0.243) 0.097 (-0.045, 0.238) 0.14 (0.019, 0.261)

 $[^]a\mathrm{Estimate}$ and 95% CI.

- $_{475}$ 6 Figures for main results
- 476 6.1 Marginal contrasts

Figure 1: Marginal contrasts on the logarithmic scale for the effect of a increase from the 10th to the 90th percentile of the endocrine disrupting chemicals (EDCs) on hit reaction time standard error (HRT-SE) expressed in ms (HELIX subcohort; 2013-2016). Circles indicate effect estimates. Solid lines indicate the 95% CI. The size of the circles represents the S value of the effect estimate (56).

Figure 2: Marginal contrasts on the logarithmic scale for the effect of a increase from the 10th to the 90th percentile of the endocrine disrupting chemicals (EDCs) on the glucocorticosteroids expressed in ng/ml (HELIX subcohort; 2013-2016). Circles, triangles, and squares indicate effect estimates. Solid lines indicate the 95% CI. The size of the circles represents the S value of the effect estimate (56).

Figure 3: Marginal contrasts on the logarithmic scale for the effect of a increase from the 10th to the 90th percentile of the glucocorticosteroids on hit reaction time standard error (HRT-SE) expressed in ms (HELIX subcohort; 2013-2016). Circles indicate effect estimates. Solid lines indicate the 95% CI. The size of the circles represents the S value of the effect estimate (56). Abbreviations: cortisone production (cortisone prod.); cortisol production (cortisol prod.); corticost. prod. (corticosterone production).

7 Supplementary information

7.1 Directed Acyclic Graphs

```
dag {
   age_child
481 biomarker
482 breastfeeding
483 bw
484 characteristics_child
485 chemical [exposure]
486 child_diet
487 child_smoking
   cohort
   creatinine
490 envFactors_visit
491 ethnicity_child
492 ethnicity_mother
493 familySEP
494 gestational_age
495 maternalAlcohol_preg
496 maternalDiet_preg
497 maternalSEP_preg
498 maternalSmoking_preg
499 neuropsychologicalDiagnosis_child
outcome [outcome]
501 paternalSEP_preg
502 season_visit
503 sex_child
   time_lastMeal
   type_sample
506 age_child -> biomarker
507 age_child -> characteristics_child
   age_child -> creatinine
   age_child -> outcome
510 age_child -> type_sample
   biomarker -> outcome
   breastfeeding -> neuropsychologicalDiagnosis_child
_{513} breastfeeding -> outcome
514 bw -> characteristics_child
515 bw -> neuropsychologicalDiagnosis_child
516 characteristics_child -> biomarker
517 characteristics child -> chemical
518 characteristics_child -> creatinine
519 characteristics_child -> outcome
```

```
520 chemical -> biomarker
521 chemical -> outcome
522 child_diet -> biomarker
523 child_diet -> characteristics_child
524 child_diet -> chemical
525 child_diet -> outcome
   child_smoking -> biomarker
   child_smoking -> characteristics_child
_{528} child_smoking -> creatinine
529 child_smoking -> outcome
530 cohort -> biomarker
531 cohort -> bw
532 cohort -> characteristics_child
_{533} cohort -> chemical
534 cohort -> child_diet
535 cohort -> creatinine
536 cohort -> outcome
537 creatinine -> biomarker
538 creatinine -> chemical
539 creatinine -> outcome
540 envFactors_visit -> outcome
   ethnicity_child -> biomarker
   ethnicity_child -> bw
   ethnicity_child -> characteristics_child
544 ethnicity_child -> chemical
545 ethnicity_child -> child_diet
546 ethnicity_child -> child_smoking
547 ethnicity_child -> creatinine
548 ethnicity_child -> neuropsychologicalDiagnosis_child
549 ethnicity_child -> outcome
550 ethnicity_mother -> biomarker
551 ethnicity_mother -> breastfeeding
552 ethnicity_mother -> bw
553 ethnicity_mother -> characteristics_child
554 ethnicity_mother -> child_diet
555 ethnicity_mother -> familySEP
   ethnicity_mother -> maternalAlcohol_preg
   ethnicity_mother -> maternalDiet_preg
   ethnicity_mother -> maternalSEP_preg
   ethnicity_mother -> maternalSmoking_preg
  ethnicity_mother -> neuropsychologicalDiagnosis_child
561 ethnicity_mother -> outcome
562 familySEP -> biomarker
563 familySEP -> characteristics_child
_{564} familySEP -> chemical
```

```
565 familySEP -> child_diet
566 familySEP -> child_smoking
567 familySEP -> creatinine
568 familySEP -> outcome
569 gestational_age -> bw
   gestational_age -> characteristics_child
   gestational_age -> neuropsychologicalDiagnosis_child
   maternalAlcohol_preg -> bw
   maternalAlcohol_preg -> characteristics_child
574 maternalAlcohol_preg -> neuropsychologicalDiagnosis_child
575 maternalAlcohol_preg -> outcome
576 maternalDiet_preg -> characteristics_child
577 maternalDiet_preg -> neuropsychologicalDiagnosis_child
578 maternalDiet_preg -> outcome
_{579} maternalSEP_preg -> breastfeeding
580 maternalSEP_preg -> bw
581 maternalSEP_preg -> characteristics_child
582 maternalSEP_preg -> familySEP
583 maternalSEP_preg -> maternalAlcohol_preg
   maternalSEP_preg -> maternalDiet_preg
   maternalSEP_preg -> maternalSmoking_preg
   maternalSEP_preg -> neuropsychologicalDiagnosis_child
   maternalSEP_preg -> outcome
   maternalSmoking_preg -> bw
   maternalSmoking_preg -> characteristics_child
   maternalSmoking_preg -> neuropsychologicalDiagnosis_child
591 maternalSmoking_preg -> outcome
592 neuropsychologicalDiagnosis child -> outcome
_{593} paternalSEP_preg -> breastfeeding
   paternalSEP_preg -> bw
   paternalSEP_preg -> characteristics_child
596 paternalSEP_preg -> familySEP
597 paternalSEP_preg -> maternalAlcohol_preg
598 paternalSEP_preg -> maternalDiet_preg
599 paternalSEP_preg -> maternalSmoking_preg
paternalSEP_preg -> neuropsychologicalDiagnosis_child
   paternalSEP_preg -> outcome
   season_visit -> biomarker
   season_visit -> chemical
   sex_child -> biomarker
605 sex_child -> characteristics_child
606 sex_child -> chemical
607 sex_child -> child_diet
608 sex_child -> child_smoking
609 sex_child -> creatinine
```

```
610 sex_child -> neuropsychologicalDiagnosis_child
611 sex_child -> outcome
612 sex_child -> type_sample
613 time_lastMeal -> biomarker
614 time_lastMeal -> chemical
   type_sample -> chemical
615
   type_sample -> creatinine
617
618 dag {
619 age_child
620 biomarker [outcome]
621 breastfeeding
622 bw
623 characteristics_child
624 chemical [exposure]
625 child_diet
626 child_smoking
627 cohort
628 creatinine
629 envFactors_visit
630 ethnicity_child
631 ethnicity_mother
632 familySEP
633 gestational_age
634 maternalAlcohol_preg
635 maternalDiet_preg
636 maternalSEP_preg
637 maternalSmoking_preg
   neuropsychologicalDiagnosis_child
   outcome
640 paternalSEP_preg
641 season_visit
642 sex_child
643 time_lastMeal
644 type_sample
age_child -> biomarker
646 age_child -> characteristics_child
647 age_child -> creatinine
648 age_child -> outcome
649 age_child -> type_sample
650 biomarker -> outcome
breastfeeding -> neuropsychologicalDiagnosis_child
652 breastfeeding -> outcome
653 bw -> characteristics_child
```

```
bw -> neuropsychologicalDiagnosis_child
655 characteristics_child -> biomarker
656 characteristics_child -> chemical
   characteristics_child -> creatinine
   characteristics_child -> outcome
   chemical -> biomarker
   chemical -> outcome
   child_diet -> biomarker
662 child_diet -> characteristics_child
663 child_diet -> chemical
664 child_diet -> outcome
665 child_smoking -> biomarker
666 child_smoking -> characteristics_child
667 child_smoking -> creatinine
668 child_smoking -> outcome
669 cohort -> biomarker
670 cohort -> bw
671 cohort -> characteristics_child
672 cohort -> chemical
673 cohort -> child_diet
674 cohort -> creatinine
675 cohort -> outcome
   creatinine -> biomarker
677 creatinine -> chemical
678 creatinine -> outcome
679 envFactors_visit -> outcome
680 ethnicity_child -> biomarker
681 ethnicity child -> bw
682 ethnicity_child -> characteristics_child
683 ethnicity_child -> chemical
684 ethnicity_child -> child_diet
ethnicity_child -> child_smoking
686 ethnicity_child -> creatinine
ethnicity_child -> neuropsychologicalDiagnosis_child
688 ethnicity_child -> outcome
689 ethnicity_mother -> biomarker
   ethnicity_mother -> breastfeeding
   ethnicity_mother -> bw
   ethnicity_mother -> characteristics_child
   ethnicity_mother -> child_diet
   ethnicity_mother -> familySEP
   ethnicity_mother -> maternalAlcohol_preg
696 ethnicity_mother -> maternalDiet_preg
697 ethnicity_mother -> maternalSEP_preg
698 ethnicity_mother -> maternalSmoking_preg
```

```
699 ethnicity_mother -> neuropsychologicalDiagnosis_child
700 ethnicity_mother -> outcome
701 familySEP -> biomarker
702 familySEP -> characteristics_child
703 familySEP -> chemical
704 familySEP -> child_diet
   familySEP -> child_smoking
   familySEP -> creatinine
707 familySEP -> outcome
708 gestational_age -> bw
  gestational_age -> characteristics_child
710 gestational_age -> neuropsychologicalDiagnosis_child
711 maternalAlcohol_preg -> bw
712 maternalAlcohol_preg -> characteristics_child
713 maternalAlcohol_preg -> neuropsychologicalDiagnosis_child
714 maternalAlcohol_preg -> outcome
715 maternalDiet_preg -> characteristics_child
716 maternalDiet_preg -> neuropsychologicalDiagnosis_child
717 maternalDiet_preg -> outcome
   maternalSEP_preg -> breastfeeding
718
   maternalSEP_preg -> bw
719
   maternalSEP_preg -> characteristics_child
   maternalSEP_preg -> familySEP
   maternalSEP_preg -> maternalAlcohol_preg
723 maternalSEP_preg -> maternalDiet_preg
724 maternalSEP_preg -> maternalSmoking_preg
725 maternalSEP_preg -> neuropsychologicalDiagnosis_child
726 maternalSEP_preg -> outcome
727 maternalSmoking_preg -> bw
728 maternalSmoking_preg -> characteristics_child
729 maternalSmoking_preg -> neuropsychologicalDiagnosis_child
730 maternalSmoking_preg -> outcome
neuropsychologicalDiagnosis_child -> outcome
732 paternalSEP_preg -> breastfeeding
733 paternalSEP_preg -> bw
734 paternalSEP_preg -> characteristics_child
  paternalSEP_preg -> familySEP
   paternalSEP_preg -> maternalAlcohol_preg
   paternalSEP_preg -> maternalDiet_preg
   paternalSEP_preg -> maternalSmoking_preg
   paternalSEP_preg -> neuropsychologicalDiagnosis_child
740 paternalSEP_preg -> outcome
741 season_visit -> biomarker
742 season_visit -> chemical
743 sex_child -> biomarker
```

```
744 sex_child -> characteristics_child
_{745} sex_child -> chemical
746 sex_child -> child_diet
747 sex_child -> child_smoking
748 sex_child -> creatinine
749 sex_child -> neuropsychologicalDiagnosis_child
   sex_child -> outcome
751 sex_child -> type_sample
752 time_lastMeal -> biomarker
753 time_lastMeal -> chemical
754 type_sample -> chemical
  type_sample -> creatinine
756 }
757 dag {
758 age_child
759 biomarker [exposure]
760 breastfeeding
761 bw
762 characteristics_child
763 chemical
764 child_diet
765 child_smoking
766 cohort
767 creatinine
768 envFactors_visit
769 ethnicity_child
770 ethnicity_mother
771 familySEP
772 gestational_age
773 maternalAlcohol_preg
774 maternalDiet_preg
775 maternalSEP_preg
776 maternalSmoking_preg
neuropsychologicalDiagnosis_child
778 outcome [outcome]
779 paternalSEP_preg
780 season_visit
781 sex_child
782 time_lastMeal
783 type_sample
784 age_child -> biomarker
785 age_child -> characteristics_child
786 age_child -> creatinine
787 age_child -> outcome
```

```
788 age_child -> type_sample
789 biomarker -> outcome
790 breastfeeding -> neuropsychologicalDiagnosis_child
  breastfeeding -> outcome
   bw -> characteristics child
   bw -> neuropsychologicalDiagnosis_child
   characteristics_child -> biomarker
   characteristics_child -> chemical
   characteristics_child -> creatinine
   characteristics_child -> outcome
   chemical -> biomarker
799 chemical -> outcome
800 child_diet -> biomarker
801 child_diet -> characteristics_child
802 child_diet -> chemical
803 child diet -> outcome
804 child_smoking -> biomarker
805 child_smoking -> characteristics_child
806 child_smoking -> creatinine
   child_smoking -> outcome
807
808 cohort -> biomarker
   cohort -> bw
   cohort -> characteristics_child
_{811} cohort -> chemical
812 cohort -> child_diet
813 cohort -> creatinine
814 cohort -> outcome
815 creatinine -> biomarker
816 creatinine -> chemical
817 creatinine -> outcome
818 envFactors_visit -> outcome
819 ethnicity_child -> biomarker
820 ethnicity_child -> bw
821 ethnicity_child -> characteristics_child
822 ethnicity_child -> chemical
823 ethnicity_child -> child_diet
   ethnicity_child -> child_smoking
   ethnicity_child -> creatinine
   ethnicity_child -> neuropsychologicalDiagnosis_child
   ethnicity_child -> outcome
   ethnicity_mother -> biomarker
ethnicity_mother -> breastfeeding
830 ethnicity_mother -> bw
831 ethnicity_mother -> characteristics_child
832 ethnicity_mother -> child_diet
```

```
ethnicity_mother -> familySEP
   ethnicity_mother -> maternalAlcohol_preg
   ethnicity_mother -> maternalDiet_preg
   ethnicity_mother -> maternalSEP_preg
   ethnicity_mother -> maternalSmoking_preg
   ethnicity_mother -> neuropsychologicalDiagnosis_child
   ethnicity_mother -> outcome
   familySEP -> biomarker
841 familySEP -> characteristics_child
842 familySEP -> chemical
843 familySEP -> child_diet
844 familySEP -> child_smoking
845 familySEP -> creatinine
846 familySEP -> outcome
   gestational_age -> bw
   gestational_age -> characteristics_child
gestational_age -> neuropsychologicalDiagnosis_child
850 maternalAlcohol_preg -> bw
maternalAlcohol_preg -> characteristics_child
   maternalAlcohol_preg -> neuropsychologicalDiagnosis_child
   maternalAlcohol_preg -> outcome
   maternalDiet_preg -> characteristics_child
   maternalDiet_preg -> neuropsychologicalDiagnosis_child
   maternalDiet_preg -> outcome
   maternalSEP_preg -> breastfeeding
   maternalSEP_preg -> bw
  maternalSEP_preg -> characteristics_child
860 maternalSEP_preg -> familySEP
861 maternalSEP_preg -> maternalAlcohol_preg
  maternalSEP_preg -> maternalDiet_preg
   maternalSEP_preg -> maternalSmoking_preg
   maternalSEP_preg -> neuropsychologicalDiagnosis_child
865 maternalSEP_preg -> outcome
866 maternalSmoking_preg -> bw
867 maternalSmoking_preg -> characteristics_child
   maternalSmoking_preg -> neuropsychologicalDiagnosis_child
   maternalSmoking_preg -> outcome
   neuropsychologicalDiagnosis_child -> outcome
   paternalSEP_preg -> breastfeeding
   paternalSEP_preg -> bw
   paternalSEP_preg -> characteristics_child
   paternalSEP_preg -> familySEP
   paternalSEP_preg -> maternalAlcohol_preg
   paternalSEP_preg -> maternalDiet_preg
   paternalSEP_preg -> maternalSmoking_preg
```

```
paternalSEP_preg -> neuropsychologicalDiagnosis_child
   paternalSEP_preg -> outcome
   season_visit -> biomarker
   season_visit -> chemical
   sex_child -> biomarker
   sex_child -> characteristics_child
   sex_child -> chemical
   sex_child -> child_diet
   sex_child -> child_smoking
886
  sex_child -> creatinine
   sex_child -> neuropsychologicalDiagnosis_child
  sex_child -> outcome
  sex_child -> type_sample
   time_lastMeal -> biomarker
   time_lastMeal -> chemical
   type_sample -> chemical
   type_sample -> creatinine
```

8 Supplementary tables

- 8.1 Tables for descriptive data
- 8.1.1 Information about the endocrine disruptors
- 899 8.1.2 Information about the glucocorticosteroids
- 900 8.1.3 Codebooks
- 901 8.1.4 Lower limits of quantification of the glucocorticosteroids
- 902 8.1.5 Study populations
- 903 8.1.6 Concentrations of the glucocorticosteroids
- 904 8.2 Tables for main results
- 905 8.2.1 Balancing weights: sample sizes
- 906 8.2.2 Balancing weights: summary statistics
- 8.3 Tables for other results
- 8.3.1 Balancing weights for effect modification: summary statistics

9 Supplementary figures

- 9.1 Figures for descriptive data
- 911 9.1.1 Study populations
- 912 9.1.2 Description of endocrine disruptors
- 9.1.3 Description of glucocorticosteroids
- 9.2 Figures for other results
- 9.2.1 Marginal contrasts for effect modification

Compound	Symbol	Variable name	PubChem CID	Parental compoun
OP pesticide metabolites				
diethyl dithiophosphate	DEDTP	dedtp	9274	
diethyl phosphate	DEP	dep	654	
diethyl thiophosphate	DETP	detp	3683036	
dimethyl dithiophosphate	DMDTP	dmdtp		
dimethyl phosphate	DMP	dmp	13134	
dimethyl thiophosphate	DMTP	dmtp	168140	
Phenols				
bisphenol A	BPA	bpa	6623	
n-butyl-paraben	BUPA	bupa	7184	
ethyl-paraben	ETPA	etpa	8434	
methyl-paraben	MEPA	mepa	7456	
oxybenzone	OXBE	oxbe	4632	
propyl-paraben	PRPA	prpa	7175	
triclosan	TRCS	trcs	5564	
Phthalate metabolites				
mono benzyl phthalate	MBzP	mbzp	31736	BBzP
mono-2-ethyl 5-carboxypentyl phthalate	MECPP	mecpp	148386	DEHP
mono-2-ethyl-5-hydroxyhexyl phthalate	MEHHP	mehhp	170295	DEHP
mono-2-ethylhexyl phthalate	MEHP	mehp	21924291	DEHP
mono-2-ethyl-5-oxohexyl phthalate	MEOHP	meohp	119096	DEHP
monoethyl phthalate	MEP	mep	75318	DEP
mono-iso-butyl phthalate	MiBP	mibp	92272	DiBP
mono-n-butyl phthalate	MnBP	mnbp	8575	DnBP
mono-4-methyl-7-hydroxyoctyl phthalate	oh-MiNP	ohminp	102401880	MiNP
mono-4-methyl-7-oxooctyl phthalate	oxo-MiNP	oxominp	102401881	MiNP

Table S1: Information about non-persistent endocrine disrupting chemicals (EDCs), including the full compound name, the standard symbol, the used variable name, the identifier from PubChem, and the parental compound.

Metabolite	Symbol	HMDB ID	CAS number
Androgen			
Androsternedione	AED	HMDB0000053	63-05-8
Testosterone	T	${\rm HMDB0000234}$	58-22-0
Androgen metabolite			
Androsterone	Andros	HMDB0000031	53-41-8
Etiocholanolone	Etio	HMDB0000490	53-42-9
Glucocorticosteroid			
11-dehydrocorticosterone	A	HMDB0004029	72-23-1
Corticosterone	В	HMDB0001547	50-22-6
Cortisol	F	HMDB0000063	50-23-7
Cortisone	E	HMDB0002802	53-06-5
Glucocorticosteroid metabol	ite		
11 -hydroxyandrosterone	11OHAndros	HMDB0002984	57-61-4
17-deoxycortolone	17-DO-cortolone	NA	NA
20 -dihydrocortisol	20aDHF	NA	NA
20 -dihydrocortisone	20aDHE	NA	NA
20 -dihydrocortisol	20bDHF	NA	NA
20 -dihydrocortisone	20bDHE	NA	NA
5 ,20 -cortol	5a20acortol	HMDB0003180	516-38-1
5,20 -cortol	5a20bcortol	HMDB0005821	667-65-2
5 -tetrahydrocorticosterone	5aTHB	HMDB0000449	600-63-5
5 -tetrahydrocortisol	5aTHF	HMDB0000526	302-91-0
5 -tetrahydrocortisone	$5 \mathrm{aTHE}$	NA	NA
5 ,20 -cortol	5b20acortol	HMDB0003180	516-38-1
5,20 -cortolone	5b20acortolone	HMDB0003128	516-42-7
5 ,20 -cortol	5b20bcortol	HMDB0005821	667-65-2
5,20 -cortolone	5b20bcortolone	NA	NA
5 -dihydrocortisol	5bDHF	HMDB0003259	1482-50-4
5 -tetrahydrocorticosterone	5bTHB	HMDB0000268	68-42-8
5 -tetrahydrocortisol	5bTHF	HMDB0000949	1953-02-01
5 -tetrahydrocortisone	5bTHE	NA	NA
6 -hydroxycortisol	6OHF	HMDB0247074	
6 -hydroxycortisone	6OHE	NA	NA
Glucocorticosteroid precurso	or		
17-hydroxyprogesterone	17OHP	HMDB0000374	68-96-2
Cortexolone	\mathbf{S}	HMDB0000015	152-58-9
Deoxycorticosterone	DOC	HMDB0000016	64-85-7
Glucocorticosteroid precurso	r metabolite		
17-hydroxypregnanolone	17HP	HMDB0000363	387-79-1
5 -dihydrocortexolone	5bDHS	NA	NA
5 -tetrahydrocortexolone	5bTHS	NA	NA
Pregnantriol	PT 40	NA	1098-45-9
Tetrahydrocortexolone	THS	HMDB0005972	68-60-0

Abbreviations: Human Metabolome Database (HMDB); Chemical Abstracts Service (CAS).

Table S2: Information about the glucocorticosteroids, including the full metabolite name, the standard symbol, the identifier from the HMDB, and the CAS number.

creatinine hs_creatinine_cg numerical Creatinine pooled sample envFactors_visit hs_mood categorical kest before assessment 1,2 hs_rest_nth categorical categorical categorical line line		type	description	coding
breastfeeding bs bf	age_child			
	hs_age_years	numerical	Age	
characteristics_child hs_c_height hs_c_height hs_c_height hs_head_circ hild_shead_circ hild_diet hs_fastfood hs_ford_food hs_ford_food hs_total_finits hs_total_finits hs_total_finits hs_total_finits hs_total_weight hs_total_weight hs_total_weight hs_total_finits hs_total_weight hs_total_weight hs_total_weight hs_total_finits hs_total_weight hs_tota	breastfeeding			
bs c height bs c weight numerical bs c weight numerical Height numerical bs head circ numerical Head circumference child_diet bs fastfood numerical prish and scafood numerical bs total_fish numerical prish and scafood numerical bs_total_fish numerical prish and scafood numerical cohort cohort character Cohort SAB_EDEN_BIB_RHE_cohort cohort character Cohort SAB_EDEN_BIB_RHE_cohort cohort character Cohort SAB_EDEN_BIB_RHE_cohort creatinine sample categorical Mood before assessment 1,2 sh mood categorical Rest before assessment 1,2 ethnicity_child categorical Rest before assessment 1,2 ethnicity_mother h_ethnicity 1,2,3,4,5,6,7 familySEP FAS_score character Child ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical categorical Family Affluence Scale sh finance categorical Alcool during pregnancy numerical numerical Alcool during pregnancy numerical Alcool during pregnancy numerical numerical Alcool during pregnancy numerical numerical Alcool during pregnancy numerical Alcool during pregnancy numerical numerical Alcool during pregnancy numerica	hs_bf	categorical	Child breastfeeding	0,1
bs. c. weight hes head_circ numerical Head circumference	characteristics_child			
hs head circ numerical Head circumference child_diet	hs_c_height	numerical	Height	
child_diet Sat factor Sat food numerical Sat food/take away Organic food Sat fact Sish and seafood Fruits Sat food Sat fact Sat fac			•	
hs_fastfood hs_org_food numerical hs_total_fish numerical hs_total_fish numerical bs_total_fish numerical hs_total_fish numerical hs_total_fish numerical bs_total_fish numerical hs_total_veg numerical h_fish_preg numerical h_meat_preg numerical h_meat_pre		numerical	Head circumference	
Institute Inst				
hs. total_fish numerical Fish and seafood Fruits numerical numerical				
hs_total_fruits hs_total_veg mumerical hs_total_veg mumerical vegetables Second to total_total_total_total_veg mumerical hs_total_veg mumerical hs_total_veg mumerical hs_total_veg mumerical hs_total_veg preg mumerical hs_total_veg preg maternalSEP_preg e3_asmotyn_p maternalSmoking_preg e3_asmotyn_p cohort categorical hs_total_veg total_total_veg total_total_veg total_total_veg total_total_veg total_veg	_	1		
Namerical Vegetables		1		
Institute		numerical	Vegetables	
cohort character Cohort SAB,EDEN,BIB,RHEZ creatinine hs_creatinine_cg numerical Creatinine pooled sample envFactors_visit hs_mood categorical Rest before assessment 1,2 ethnicity_child 1,2,3,4,5,6,7 ethnicity_mother 1,2,3,4,5,6,7 h_ethnicity_m integer Mother ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical Family Affluence Scale Financial situation 1,2,3,4,5,6 maternalAlcohol_preg numerical Alcool during pregnancy h_careal_preg numerical Dairy consumption during pregnancy h_fish_preg numerical The fish_preg numerical Legume_preg Neat_consumption during pregnancy Legume_preg Neat_preg Neat_consumption during pregnancy Neat_consumption during pregnancy Neat_consumption during pregnancy Neat_consumption during pregnancy Neat_pregnancy Neat_consumption during pregnancy Neat_pregnancy Neat_consumption during pregnancy Neat_consumption du	child_smoking			
cohort character Cohort SAB,EDEN,BIB,RHEZ creatinine hs_creatinine cg numerical Creatinine pooled sample envFactors_visit hs_mood categorical Rest before assessment 1,2 hs_trest_nth categorical Rest before assessment 1,2 ethnicity_child h_ethnicity_c character Child ethnicity 1,2,3,4,5,6,7 ethnicity_mother h_ethnicity_m integer Mother ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical Family Affluence Scale Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy MaternalDiet_preg h_cereal_preg numerical Dairy consumption during pregnancy Affect of consumption during pregnancy Fish consumption during pregnancy Frist consumption during pregnancy Heat of con	hs_tob	categorical	Tobacco consumption	1,2,3,4,5
creatinine hs_creatinine_cg numerical Creatinine pooled sample envFactors_visit hs_mood categorical kest before assessment 1,2 hs_rest_nth categorical categorical categorical line line	cohort			
Institute	cohort	character	Cohort	SAB,EDEN,BIB,RHE
envFactors_visit hs_mood	creatinine	1		
envFactors_visit hs_mood	hs creatinine cg	numerical	Creatinine pooled sample	
hs_mood categorical Rest before assessment 1,2 hs_rest_nth categorical Rest before assessment 1,2 ethnicity_child h_ethnicity_c character Child ethnicity 1,2,3,4,5,6,7 ethnicity_mother h_ethnicity_m integer Mother ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical Family Affluence Scale hs_finance categorical Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy h_dairy_preg numerical fastfood_preg fastf		1		
hs_rest_nth categorical Rest before assessment 1,2 ethnicity_child h_ethnicity_c character Child ethnicity 1,2,3,4,5,6,7 ethnicity_mother h_ethnicity_m integer Mother ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical Family Affluence Scale hs_finance categorical Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy numerical numerical numerical h_dairy_preg numerical hfish_preg hfish_preg numerical hfish_preg hf		categorical	Mood before assessment	1 2
h_ethnicity_c character Child ethnicity 1,2,3,4,5,6,7 thnicity_mother h_ethnicity_m integer Mother ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical Family Affluence Scale hs_finance categorical Financial situation 1,2,3,4,5,6 maternalAlcohol_preg categorical Financial situation 1,2,3,4,5,6 maternalDiet_preg numerical Alcool during pregnancy h_dairy_preg numerical numerical numerical numerical numerical h_fish_preg numerical numerical h_fruit_preg numerical numerical numerical numerical h_meat_preg numerical numeric		_		
thnicity_mother h_ethnicity_m integer Mother ethnicity 1,2,3,4,5,6,7 familySEP FAS_score numerical Family Affluence Scale Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy maternalDiet_preg h_cereal_preg numerical numerical numerical numerical numerical numerical numerical fish_preg numerical numerical fish_preg numerical numerical numerical numerical numerical fish_preg numerical Legume_preg numerical Legume consumption during pregnancy h_legume_preg numerical Legume consumption during pregnancy numerical Meat consumption during pregnancy numerical Negative consumption during pregnancy Negative consumption during pregnancy	ethnicity_child			
h_ethnicity_m integer Mother ethnicity	h_ethnicity_c	character	Child ethnicity	1,2,3,4,5,6,7
familySEP FAS_score numerical Family Affluence Scale hs_finance categorical Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy maternalDiet_preg numerical Cereal consumption during pregnancy Dairy consumption during pregnancy H_fastfood_preg numerical Tish consumption during pregnancy Fish consumption during pregnancy Fish consumption during pregnancy N_fruit_preg numerical numerical Legume_preg numerical Legume consumption during pregnancy N_meat_preg numerical Legume consumption during pregnancy N_veg_preg numerical Vegetables consumption during pregnancy N_veg_preg numerical Maternal education 0,1,2 e3_ses categorical Categorical Pregnancy maternal active smoking 0,1	ethnicity_mother			
FAS_score hs_finance naternalAlcohol_preg e3_alcpreg_g numerical and are real preg numerical numerical pairy consumption during pregnancy h_dairy_preg numerical numerical pairy consumption during pregnancy h_fastfood_preg numerical preg numerical pairy consumption during pregnancy h_fish_preg numerical preg numerical pairy consumption during pregnancy h_fish_preg numerical price price pair pregnancy h_fruit_preg numerical price price price price pair price price pair pregnancy h_legume_preg numerical price pregnancy pregnancy h_weg_preg numerical pregnancy preg	h_ethnicity_m	integer	Mother ethnicity	1,2,3,4,5,6,7
hs_finance categorical Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy h_cereal_preg numerical Dairy consumption during pregnancy numerical Afast food consumption during pregnancy numerical Fish consumption during pregnancy numerical Fish consumption during pregnancy numerical Fruit_preg numerical Fruit_consumption during pregnancy numerical Legume_preg numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy Narital status 0,1,2	familySEP			
hs_finance categorical Financial situation 1,2,3,4,5,6 maternalAlcohol_preg e3_alcpreg_g numerical Alcool during pregnancy h_cereal_preg numerical Dairy consumption during pregnancy numerical Afast food consumption during pregnancy numerical Fish consumption during pregnancy numerical Fish consumption during pregnancy numerical Fruit_preg numerical Fruit_consumption during pregnancy numerical Legume_preg numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy Narital status 0,1,2	FAS score	numerical	Family Affluence Scale	
e3_alcpreg_g numerical Alcool during pregnancy maternalDiet_preg numerical Cereal consumption during pregnancy h_dairy_preg numerical Dairy consumption during pregnancy h_fastfood_preg numerical AFast food consumption during pregnancy h_fish_preg numerical Fish consumption during pregnancy h_fruit_preg numerical Fruit consumption during pregnancy h_legume_preg numerical Legume consumption during pregnancy h_meat_preg numerical Meat consumption during pregnancy h_veg_preg numerical Vegetables consumption during pregnancy maternalSEP_preg e3_edum categorical Maternal education 0,1,2 e3_marital categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1		categorical	*	1,2,3,4,5,6
maternalDiet_preg h_cereal_preg numerical Dairy consumption during pregnancy numerical Dairy consumption during pregnancy numerical AFast food consumption during pregnancy numerical Fish consumption during pregnancy numerical Fish consumption during pregnancy numerical Fruit consumption during pregnancy numerical Legume consumption during pregnancy numerical Legume consumption during pregnancy numerical Meat consumption during pregnancy numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy numerical Vegetables consumption during pregnancy numerical Vegetables consumption during pregnancy numerical Seamont Seamo	maternalAlcohol_preg			
h_cereal_preg numerical Dairy consumption during pregnancy numerical Dairy consumption during pregnancy numerical Affast food consumption during pregnancy numerical Affast food consumption during pregnancy numerical Fish consumption during pregnancy numerical Fruit consumption during pregnancy numerical Legume consumption during pregnancy numerical Meat consumption during pregnancy numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy numerical Near Consumption during pregnancy n	e3_alcpreg_g	numerical	Alcool during pregnancy	
h_dairy_preg numerical Dairy consumption during pregnancy h_fastfood_preg numerical Fish consumption during pregnancy h_fish_preg numerical Fish consumption during pregnancy h_fruit_preg numerical Fruit consumption during pregnancy h_legume_preg numerical Legume consumption during pregnancy h_meat_preg numerical Meat consumption during pregnancy h_veg_preg numerical Vegetables consumption during pregnancy maternalSEP_preg e3_edum categorical Maternal education 0,1,2 e3_ses categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg categorical Pregnancy maternal active smoking 0,1	maternalDiet_preg			
h_fastfood_preg	h_cereal_preg	numerical	Cereal consumption during pregnancy	
h_fish_preg	h_dairy_preg	numerical	Dairy consumption during pregnancy	
h_fruit_preg numerical Fruit consumption during pregnancy numerical Legume consumption during pregnancy numerical Legume consumption during pregnancy numerical Meat consumption during pregnancy numerical Vegetables consumption during pregnancy 0,1,2 e3_edum categorical Maternal education 0,1,2 e3_marital categorical Socioeconomic status of the parents 1,2,3 numerical vegetables consumption during pregnancy 0,1,2 e3_edum vegetables consumption during pregnancy vegetables consumption during pregnancy 0,1,2 e3_edum vegetables consumption during pregnancy 0,1,2 e3_edum vegetables consumption during pregnancy vegetables vegetables vegetables vegetables vegeta				
h_legume_preg numerical Legume consumption during pregnancy numerical numerical Meat consumption during pregnancy numerical vegetables consumption during pregnancy 0,1,2 e3_edum o,1,2 categorical vegetables consumption during pregnancy 0,1,2 e3_edum o,1,2 e3_edum o,1,2				
h_meat_preg numerical Meat consumption during pregnancy Vegetables consumption during pregnancy maternalSEP_preg e3_edum categorical Maternal education 0,1,2 e3_marital categorical Marital status 0,1,2 e3_ses categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1				
h_veg_preg numerical Vegetables consumption during pregnancy maternalSEP_preg e3_edum categorical Maternal education 0,1,2 e3_marital categorical Marital status 0,1,2 e3_ses categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1				
e3_edum categorical Maternal education 0,1,2 e3_marital categorical Marital status 0,1,2 e3_ses categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg categorical Pregnancy maternal active smoking 0,1		numerical		
e3_marital categorical Marital status 0,1,2 e3_ses categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1	maternalSEP_preg			
e3_marital categorical Marital status 0,1,2 e3_ses categorical Socioeconomic status of the parents 1,2,3 maternalSmoking_preg e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1	e3_edum	categorical	Maternal education	0,1,2
maternalSmoking_preg e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1	e3_marital	categorical		0,1,2
e3_asmokyn_p categorical Pregnancy maternal active smoking 0,1	e3_ses	categorical	Socioeconomic status of the parents	1,2,3
	maternalSmoking_preg			
	e3_asmokyn_p	categorical	Pregnancy maternal passive smoking	0,1

	type	description	coding
age_child			-
hs_age_years	numerical	Age	
characteristics_child	•		
hs_c_height hs_c_weight hs_head_circ	numerical numerical numerical	Height Weight Head circumference	
child_diet			
hs_fastfood hs_org_food hs_total_fish hs_total_fruits hs_total_veg	numerical numerical numerical numerical numerical	Fast food/take away Organic food Fish and seafood Fruits Vegetables	
child_smoking			
hs_tob	categorical	Tobacco consumption	1,2,3,4,5
cohort			
cohort	character	Cohort	$SAB,\!EDEN,\!BIB,\!RHEA,\!KANC,\!MOBA$
creatinine			
creatinine_to_helix hs_creatinine_cg	numerical numerical	Creatinine night sample Creatinine pooled sample	
ethnicity_child			
h_ethnicity_c	character	Child ethnicity	1,2,3,4,5,6,7
ethnicity_mother			
h_ethnicity_m	integer	Mother ethnicity	1,2,3,4,5,6,7
familySEP			
FAS_score hs_finance	numerical categorical	Family Affluence Scale Financial situation	1,2,3,4,5,6
season_visit			
hs_date_neu	date	Date of test	
sex_child			
e3_sex	categorical	Sex	0,1
time_lastMeal			
hs_dift_mealblood_imp	numerical	Fasting time	
^a Percentage of confounders	included in the	he models: 95%.	

Table S4: Codebook for the covariates used in the estimation of the marginal comparisons of endocrine disrupting phemicals (EDCs) on the glucocorticosteroids.

	type	description	coding
age_child	· / I ~	r · · ·	· · · · · · · · · · · · · · · · · · ·
	· 1	A	
hs_age_years	numerical	Age	
breastfeeding			
hs_bf	categorical	Child breastfeeding	0,1
characteristics_child			
hs_c_height	numerical	Height	
hs_c_weight	numerical	Weight	
hs_head_circ	numerical	Head circumference	
chemical			
hs_bpa_c	numerical	Bisphenol A (BPA)	
hs_bupa_c	numerical	N-Butyl paraben (BUPA)	
hs_dedtp_cadj	numerical	Diethyl dithiophosphate (DEDTP) adjusted for creatinine	
hs_dep_c	numerical	Diethyl phosphate (DEP)	
hs_detp_c	numerical	Diethyl thiophosphate (DETP)	
hs_dmdtp_craw hs_dmp_c	numerical numerical	Dimethyl dithiophosphate (DMDTP) Dimethyl phosphate (DMP)	
hs_dmtp_c	numerical	Dimethyl thiophosphate (DMTP)	
hs_etpa_c	numerical	Ethyl paraben (ETPA)	
hs_mbzp_c	numerical	Mono benzyl phthalate (MbzP)	
hs_mecpp_c	numerical	Mono-2-ethyl 5-carboxypentyl phthalate (MECPP)	
hs_mehhp_c	numerical	Mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP)	
hs_mehp_c	numerical	Mono-2-ethylhexyl phthalate (MEHP)	
hs_meohp_c hs_mep_c	numerical numerical	Mono-2-ethyl-5-oxohexyl phthalate (MEOHP) Monoethyl phthalate (MEP)	
hs_mep_c hs_mepa_c	numerical	Methyl paraben (MEPA)	
hs_mibp_c	numerical	Mono-iso-butyl phthalate (MiBP)	
hs_mnbp_c	numerical	Mono-n-butyl phthalate (MnBP)	
hs_ohminp_c	numerical	Mono-4-methyl-7-hydroxyoctyl phthalate (OHMiNP)	
hs_oxbe_c	numerical	Oxybenzone (OXBE)	
hs_oxominp_c	numerical	Mono-4-methyl-7-oxooctyl phthalate (OXOMiNP)	
hs_prpa_c hs_trcs_c	numerical numerical	Propyl paraben (PRPA) Triclosan (TRCS)	
	numericai	THOSAII (TROS)	
_child_diet			
hs_fastfood	numerical	Fast food/take away	
hs_org_food	numerical	Organic food	
hs_total_fish hs_total_fruits	numerical numerical	Fish and seafood Fruits	
hs_total_veg	numerical	Vegetables	
child smoking	1	5 - 12 - 12	
hs tob	categorical	Tobacco consumption	1,2,3,4,5
	categorical	-	1,2,3,4,0
cohort	l 1 .	43	OAR PRE
cohort	character	Cohort	SAB,EDEN
creatinine			
$_creatinine_to_helix$	numerical	Creatinine night sample	
envFactors_visit			
hs mood	categorical	Mood before assessment	1,2
hs_rest_nth	categorical	Rest before assessment	1,2
ethnicity_child			·
h ethnicity c	character	Child ethnicity	1,2,3,4,5,6,7
	Character	Cinia connecty	1,2,3,4,3,0,7
ethnicity_mother			
h ethnicity m	integer	Mother ethnicity	1.2.3.4.5.6.7

Metabolite	LLOQ
5aTHF	5.00
5bTHE	5.00
5b20acortolone	5.00
5b20bcortolone	5.00
5a20acortol	2.50
5a20bcortol	2.50
5b20acortol	2.50
5b20bcortol	2.50
11OHAndros	2.00
17HP	2.00
PT	2.00
$20 \mathrm{bDHF}$	0.50
5bTHF	0.50
6OHF	0.50
E	0.50
20aDHE	0.50
20bDHE	0.50
$5 \mathrm{aTHE}$	0.50
6OHE	0.50
$5 \mathrm{aTHB}$	0.50
5bTHB	0.50
17DOcortolone	0.50
5bTHS	0.50
Andros	0.50
Etio	0.50
F	0.25
20aDHF	0.25
5bDHF	0.10
A	0.10
S	0.10
5bDHS	0.10
${ m T}$	0.10
AED	0.10

Abbreviations: lower limit of $\overline{\text{quantification (LLOQ)}}$.

Table S6: Lower limits of quantification expressed in ng/ml for the glucocorticosteroids (HELIX subcohort; 2013-2016).

44

Characteristic		Overall, $N = 1,297^a$	$BIB, N = 204^a \qquad E$
Child age (years)		8.1 (6.5, 8.9)	6.6 (6.5, 6.8)
Child breastfeeding		1,093.0 (84.7%)	147.0 (72.4%)
Unknown		6	1
Child ethnicity			!
Caucasian		1,157.0 (90.0%)	87.0 (42.6%)
Pakistani		80.0 (6.2%)	80.0 (39.2%)
Asian		21.0 (1.6%)	$13.0 \ (6.4\%)$
Other		19.0 (1.5%)	17.0 (8.3%)
African		7.0 (0.5%)	7.0 (3.4%)
Native American		2.0 (0.2%)	0.0 (0.0%)
White non European		$0.0 \ (0.0\%)$	0.0~(0.0%)
Unknown Child hand circumforance (cm)		11 51 8 (50 6 52 0)	0 51 4 (50 3 52 3)
Child head circumference (cm)		51.8 (50.6, 52.9)	51.4 (50.3, 52.3)
Unknown Child height (m)		1.3 (1.2, 1.4)	$0 \\ 1.2 (1.2, 1.2)$
Child neuropsychological diagnosis		95.0 (7.3%)	$3.0 \ (1.5\%)$
Child rest before assessment		00.0 (1.0/0)	0.0 (1.0/0)
Yes		1,209.0 (93.3%)	192.0 (94.1%)
Not as well as usual		87.0 (6.7%)	12.0 (54.170) $12.0 (5.9%)$
Unknown		1	0
Child sex			!
Male		710.0~(54.7%)	112.0 (54.9%)
Female		587.0 (45.3%)	92.0 (45.1%)
Child weight (kg)		$26.9 \ (22.9, \ 32.6)$	$22.3 \ (20.3, \ 25.0)$
Chiod mood before assessment		, ,	, ,
Usual		$1,232.0 \ (95.1\%)$	198.0 (97.1%)
Not usual		64.0 (4.9%)	6.0 (2.9%)
Unknown		1	0
Creatinine night sample (g/l)		1.7 (0.9, 3.0)	$0.8 \ (0.6, \ 1.1)$
Unknown		321	72
Creatinine pooled sample (g/l)		$1.0 \ (0.8, \ 1.2)$	$1.0 \ (0.8, \ 1.2)$
Date of test (season)		250 U (07 504)	40 0 (00 FO/)
Spring Winter		358.0 (27.7%) 339.0 (26.2%)	48.0 (23.5%)
Winter Autumn		339.0 (26.2%) 300.0 (23.2%)	40.0 (19.6%) 49.0 (24.0%)
Autumn Summer		297.0 (23.0%)	49.0 (24.0%) 67.0 (32.8%)
Unknown		297.0 (23.0%) 3	07.0 (32.8%)
Family affluence scale		U	· ·
6		410.0 (31.7%)	34.0 (16.7%)
5		325.0 (25.1%)	48.0 (23.5%)
7		248.0 (19.2%)	26.0 (12.7%)
4		174.0 (13.4%)	40.0 (19.6%)
3		92.0 (7.1%)	34.0 (16.7%)
2		$28.0\ (2.2\%)$	16.0 (7.8%)
1		$12.0\ (0.9\%)$	$4.0\ (2.0\%)$
0	45	$6.0\ (0.5\%)$	2.0~(1.0%)
Unknown		2	0
Fast food/take away (times/week)		$0.1\ (0.1,\ 0.5)$	0.5 (0.1, 1.0)
Unknown		7	0
Fasting time before visit (hours)		3.3 (2.8, 4.0)	$3.3\ (2.8,\ 4.1)$
Financial situation of the parents		14 1 0 100 100	H 0.0 (0= 004)
Doing alright		414.0 (32.1%)	73.0 (35.8%)
Living comfortably		412.0 (31.9%)	59.0 (28.9%)
Getting by		331.0 (25.6%)	59.0 (28.9%)
Finding it quite difficult		86.0 (6.7%)	8.0 (3.9%)
Finding it very difficult		40.0 (3.1%)	5.0 (2.5%)
Does not wish to answer		8.0~(0.6%)	$0.0 \; (0.0\%)$
Unknown		6	0
Fish and seafood (times/week)		$2.0\ (1.1,\ 3.5)$	$2.0\ (1.0,\ 3.1)$

Characteristic	Overall, $N = 1,004^a$	$BIB, N = 154^a$	$EDEN, N = 137^a$	INI
Glucocorticosteroio	d			
A Unknown	4.3 (2.4, 8.2) 1	4.8 (2.8, 9.0)	$5.1\ (2.6,\ 9.1)$	3
E F	22.9 (13.1, 38.5) 5.5 (3.2, 9.5)	25.7 (14.5, 41.4) 6.3 (4.2, 10.4)	28.6 (14.1, 42.0) 7.8 (4.2, 11.4)	17.
Unknown	2	0	0	
Glucocorticosteroio	d metabolite			
11OHAndros Unknown	$234.2\ (130.3,\ 390.5)\\3$	$259.7 \ (151.9,\ 375.0) \\ 0$	$413.0\ (221.7,\ 617.0)\\0$	256.
17-DO-cortolone Unknown	57.5 (29.1, 101.7)	56.1 (32.8, 100.6) 0	76.5 (46.0, 137.6) 0	61.
20aDHE Unknown	16.6 (9.7, 27.5) 11	$14.2\ (7.0,\ 25.8)$	$25.8\ (15.1,\ 37.8)\\0$	15.
20aDHF Unknown	$6.6\ (3.3,\ 13.3)$	7.2 (3.8, 14.0)	$10.0 (5.7, 19.5) \\ 0$	5
20bDHE Unknown	9.5 (6.2, 14.3) 17	8.7 (4.8, 14.8) 14	$13.2 (9.7, 17.3) \\ 0$	9.
20bDHF	15.2 (9.1, 24.8)	16.5 (10.8, 26.5)	19.9 (12.0, 32.0)	13
5a20acortol Unknown	88.9 (52.1, 141.6) 9	109.8 (61.7, 177.3) 9	$103.0 \ (58.0, \ 153.8) \\ 0$	83.0
5a20bcortol Unknown	122.4 (70.4, 185.0) 5	131.0 (66.3, 182.3) 5	148.8 (108.8, 226.1) 0	124.
5aTHB	133.1 (76.1, 222.4)	159.8 (101.7, 241.3)	144.2 (87.9, 255.3)	115.
5aTHE Unknown	73.9 (39.7, 124.0) 1	$82.0 \ (52.1, 145.7)$	83.9 (41.5, 132.7) 0	62.
5aTHF	2,870.0 (1,663.7, 4,389.0)	3,394.6 (2,288.1, 5,308.1)	3,474.2 (1,856.1, 5,253.4)	2,756.9
5b20acortol Unknown	147.7 (83.5, 225.8) 11	177.4 (98.9, 302.3) 11	$169.7 (91.1, 252.9) \\ 0$	141.
5b20acortolone	$641.9 \ (366.0, 983.1)$	$638.3 \ (385.0, 1,028.2)$	903.7 (574.5, 1,296.1)	654.0
5b20bcortol Unknown	$195.7\ (120.1,\ 302.4)$	$242.7 \ (152.0,\ 356.8)$	$225.2\ (142.1,\ 371.5)\\0$	199.
5b 20 bcortolone	$546.9 \ (336.3,\ 837.1)$	$561.3 \ (331.3,\ 889.9)$	$682.3 \ (452.0, \ 1,031.1)$	534.
5bDHF	$1.4\ (0.9,\ 2.0)$	1.4 (0.9, 2.2)	1.8 (1.3, 2.6)	1
Unknown	2	0	0 0 (240 045)	F 0
5bTHB Unknown	$49.3\ (28.0,\ 82.7)$ 1	$53.3 \ (27.5, 98.3)$	60.9 (34.9, 94.5) 0	50.
5bTHE	3,138.3 (1,889.5, 4,694.0)	3,552.8 (2,335.3, 4,797.4)	3,649.6 (2,293.5, 5,317.1)	2,911.6
5bTHF	906.5 (548.0, 1,416.1)	1,116.2 (660.8, 1,644.8)	1,238.6 (743.1, 1,578.3)	882.9
Unknown	2	2	0	
6OHE 6OHF	11.9 (6.5, 18.4) 42.8 (22.5, 76.7)	13.2 (7.6, 20.6) 51.9 (29.8, 93.9)	12.2 (6.1, 17.4) 55.8 (29.8, 82.3)	$\frac{9}{32}$
Glucocorticosteroio		91.9 (29.0, 99.9)	99.0 (23.0, 02.9)	52.
S	0.4 (0.3, 0.8)	0.5 (0.3, 0.9)	0.4 (0.3, 0.7)	0
Unknown	94 46	6	5	0
Glucocorticosteroio	d precursor metabolite			
17HP	22.3 (15.1, 33.5)	17.0 (11.1, 27.6)	33.2 (23.5, 44.0)	20.
Unknown 5bDHS	$ \begin{array}{c} 1\\0.3\ (0.2,\ 0.4) \end{array} $	$0 \\ 0.3 \ (0.2, \ 0.4)$	$0 \\ 0.3 \ (0.2, \ 0.5)$	0
Unknown	132	5	20	O
5bTHS Unknown	30.7 (18.5, 50.5)	35.7 (20.7, 59.2)	34.5 (19.8, 52.1)	27.
PT	200.6 (112.8, 342.0)	149.1 (87.6, 246.3)	378.8 (230.8, 542.8)	253.
Androgen				
AED	$0.2 \ (0.2, \ 0.3)$	$0.2 \ (0.2, \ 0.3)$	$0.3 \ (0.2, \ 0.5)$	0
Unknown	407	0	34	_

Exposure	Unadjusted	${\rm Adjusted}^a$		
Phenols				
PRPA	1,297	1,297		
ETPA	1,297	1,289		
OXBE	1,297	1,277		
BUPA	1,297	1,276		
MEPA	1,297	1,266		
TRCS	1,297	1,255		
BPA	1,297	1,137		
OP pesticio	le metabolites			
DETP	1,297	1,222		
DEP	1,297	1,222		
DMTP	1,297	1,219		
DMP	1,297	1,172		
Phthalate metabolites				
oxo-MiNP	1,297	1,199		
oh-MiNP	1,297	1,171		
MBzP	1,297	1,114		
MEHP	1,297	1,090		
MEP	1,297	1,054		
MnBP	1,297	1,035		
MEHHP	1,297	1,010		
MEOHP	1,297	1,000		
MECPP	1,297	980.4		
MiBP	1,297	927.3		

 $[^]a\mathrm{Truncated}$ weights.

Table S9: Effective sample size before and after balancing weights estimation (exposures: endocrine disrupting chemicals (EDCs); outcome: hit reaction time standard error (HRT-SE)) (HELIX subcohort; 2013-2016).

Exposure	Unadjusted	$Adjusted^a$
Phenols		
OXBE	976.0	960.1
PRPA	976.0	956.0
MEPA	976.0	953.7
BUPA	976.0	952.3
ETPA	976.0	951.7
TRCS	976.0	942.4
BPA	976.0	856.4
OP pesticid	le metabolites	
DEP	976.0	922.1
DETP	976.0	922.1
DMTP	976.0	907.3
DMP	976.0	893.3
Phthalate n	netabolites	
oh-MiNP	976.0	877.9
oxo-MiNP	976.0	873.6
MBzP	976.0	828.8
MEHP	976.0	827.3
MEP	976.0	796.3
MEHHP	976.0	784.8
MECPP	976.0	768.1
MEOHP	976.0	761.5
MnBP	976.0	745.7
MiBP	976.0	690.9

 $[^]a\mathrm{Truncated}$ weights.

Table S10: Effective sample size before and after balancing weights estimation (exposures: endocrine disrupting chemicals (EDCs); outcomes: glucocorticosteroids) (HELIX subcohort; 2013-2016).

Exposure	Unadjusted	${\rm Adjusted}^a$
cortisone production	976.0	777.2
corticosterone production	976.0	757.5
cortisol production	976.0	751.5

^aTruncated weights.

Table S11: Effective sample size before and after balancing weights estimation (exposures: glucocorticosteroids; outcome: hit reaction time standard error (HRT-SE)) (HELIX subcohort; 2013-2016).

	Median (IQR)	Range
${\bf Characteristic}^a$	$\overline{\mathbf{N}=1,}297^a$	$\overline{{f N}=1,\!297^a}$
OP pesticide meta	bolites	
DMP	0.99 (0.73, 1.25)	0.49, 1.50
DMTP	1.00 (0.81, 1.20)	0.59, 1.39
DEP	1.01 (0.81, 1.19)	0.59, 1.39
DETP	0.99 (0.81, 1.18)	0.61, 1.41
Phenols		
MEPA	1.01 (0.90, 1.13)	0.74, 1.25
ETPA	1.01 (0.96, 1.07)	0.88, 1.14
PRPA	,	
2143289344	$1,297 \ (100\%)$	$1,297 \ (100\%)$
BPA	$0.99 \ (0.70, 1.27)$	0.39, 1.57
BUPA	$1.01 \ (0.91, \ 1.11)$	0.81, 1.22
OXBE	$1.01\ (0.92,\ 1.09)$	0.79, 1.21
TRCS	$1.01 \ (0.87, \ 1.13)$	0.68, 1.28
Phthalate metabol	ites	
MEP	0.93 (0.61, 1.27)	0.27, 1.77
MiBP	$0.91\ (0.46,\ 1.38)$	0.05, 1.92
MnBP	$0.98 \ (0.59, \ 1.33)$	0.20, 1.74
MBzP	$0.98 \ (0.66, 1.27)$	0.35, 1.62
MEHP	$0.98 \ (0.64, 1.28)$	0.31, 1.68
MEHHP	$0.96 \ (0.54, \ 1.35)$	0.16, 1.76
MEOHP	$0.96 \ (0.52, \ 1.35)$	0.15, 1.78
MECPP	$0.95 \ (0.50, \ 1.34)$	0.14, 1.84
oh-MiNP	$1.00 \ (0.74, \ 1.24)$	0.47, 1.51
oxo-MiNP	1.01 (0.78, 1.20)	0.52, 1.43

^aTruncated weights.

Table S12: Summary statistics of the estimated balancing weights (exposures: endocrine disrupting chemicals (EDCs); outcome: hit reaction time standard error (HRT-SE)) (HELIX subcohort; 2013-2016).

	Median (IQR)	Range	
${\bf Characteristic}^a$	$\overline{ m N=976^{\it a}}$	$\overline{{f N}=976^a}$	
OP pesticide metabolites			
DMP	0.99 (0.75, 1.23)	0.51, 1.46	
DMTP	1.00 (0.78, 1.23)	0.56, 1.41	
DEP	0.99 (0.81, 1.20)	0.64, 1.41	
DETP	0.99 (0.82, 1.18)	0.62, 1.41	
Phenols			
MEPA	1.00 (0.90, 1.13)	0.75, 1.26	
ETPA	1.02 (0.90, 1.14)	0.72, 1.24	
PRPA	1.00 (0.92, 1.12)	0.76, 1.26	
BPA	$1.00 \ (0.70, 1.26)$	0.40, 1.58	
BUPA	1.01 (0.90, 1.13)	0.75, 1.27	
OXBE	1.01 (0.92, 1.10)	0.78, 1.21	
TRCS	1.01 (0.86, 1.14)	0.68, 1.29	
Phthalate metabol	ites		
MEP	0.92 (0.60, 1.27)	0.28, 1.74	
MiBP	$0.88 \ (0.44, 1.38)$	0.09, 1.98	
MnBP	0.97 (0.52, 1.35)	0.14, 1.84	
MBzP	0.94 (0.68, 1.29)	0.35, 1.68	
MEHP	$0.98 \ (0.65, 1.29)$	0.33, 1.64	
MEHHP	$0.98 \ (0.56, 1.35)$	0.21, 1.69	
MEOHP	$0.98 \ (0.53, 1.35)$	0.18, 1.77	
MECPP	$0.96 \ (0.55, 1.36)$	0.19, 1.76	
oh-MiNP	0.99(0.73, 1.25)	0.45, 1.49	
oxo-MiNP	$1.01 \ (0.71, \ 1.25)$	0.45, 1.52	
phts.			

^aTruncated weights.

Table S13: Summary statistics of the estimated balancing weights (exposures: endocrine disrupting chemicals (EDCs); outcomes: glucocorticosteroids) (HELIX subcohort; 2013-2016).

$oxed{ ext{Characteristic}^a}$	$\frac{\text{Median (IQR)}}{\mathbf{N} = 976^a}$	$\frac{\text{Range}}{\mathbf{N} = 976^a}$
cortisol production	1.00 (0.54, 1.39)	0.14, 1.80
cortisone production	1.00 (0.59, 1.39)	0.19, 1.73
corticosterone production	0.98 (0.56, 1.39)	0.15, 1.78

 $[^]a$ Truncated weights.

Table S14: Summary statistics of the estimated balancing weights (exposures: glucocorticosteroids; outcome: hit reaction time standard error (HRT-SE)) (HELIX subcohort; 2013-2016).

	Median (IQR)		Range	
${\bf Characteristic}^a$	females, $N = 587^a$	$\mathbf{males}, \mathrm{N} = 710^{a}$	females, $N = 587^a$	$\mathbf{males}, \mathbf{N} = 710^a$
OP pesticide metabolites				
DMP	0.99 (0.74, 1.25)	1.00 (0.74, 1.25)	0.53, 1.46	0.53, 1.46
DMTP	$1.00\ (0.79,\ 1.22)$	1.01 (0.82, 1.20)	0.58, 1.38	0.58, 1.38
DEP	$1.01\ (0.82,\ 1.18)$	1.02 (0.84, 1.17)	0.64, 1.36	0.64, 1.36
DETP	$1.00 \ (0.77, \ 1.22)$	$1.01 \ (0.82, \ 1.20)$	0.57, 1.39	0.57, 1.39
Phenols				
MEPA	1.02 (0.89, 1.15)	1.02 (0.94, 1.11)	0.76, 1.23	0.76, 1.23
ETPA	$1.02 \ (0.96, 1.08)$	$1.01\ (0.97,\ 1.06)$	0.91, 1.12	0.91, 1.12
PRPA	$1.02 \ (0.92, 1.13)$	$1.02 \ (0.95, \ 1.10)$	0.82, 1.21	0.82, 1.21
BPA	$1.02 \ (0.73, \ 1.28)$	$1.02 \ (0.74, \ 1.25)$	0.42, 1.50	0.42, 1.50
BUPA	1.02 (0.95, 1.10)	$1.01 \ (0.81, \ 1.20)$	0.67, 1.29	0.67, 1.29
OXBE	$1.03 \ (0.92, \ 1.12)$	1.02 (0.94, 1.09)	0.81, 1.19	0.81, 1.19
TRCS	$1.03 \ (0.92, \ 1.13)$	$1.01 \ (0.89, \ 1.12)$	0.73, 1.25	0.73, 1.25
Phthalate metabolites				
MEP	0.96 (0.67, 1.26)	0.93 (0.62, 1.30)	0.31, 1.68	0.31, 1.68
MiBP	$0.93\ (0.51,\ 1.39)$	$0.96 \ (0.52, \ 1.40)$	0.16, 1.85	0.16, 1.85
MnBP	$1.00 \ (0.63, \ 1.33)$	$0.98 \ (0.59, \ 1.35)$	0.28, 1.68	0.28, 1.68
MBzP	$1.00 \ (0.71, \ 1.27)$	$0.99 \ (0.69, 1.27)$	0.40, 1.57	0.40, 1.57
MEHP	1.02 (0.69, 1.27)	$0.98 \ (0.62, 1.32)$	0.33, 1.62	0.33, 1.62
MEHHP	$1.01 \ (0.60, \ 1.29)$	$0.95 \ (0.56, \ 1.36)$	0.26, 1.72	0.26, 1.72
MEOHP	$1.00 \ (0.63, \ 1.29)$	$0.95 \ (0.53, \ 1.40)$	0.23, 1.74	0.23, 1.74
MECPP	$1.00 \ (0.59, \ 1.33)$	$0.95 \ (0.50, \ 1.37)$	0.23, 1.76	0.23, 1.76
oh-MiNP	$1.02 \ (0.78, \ 1.22)$	$1.00 \ (0.76, \ 1.23)$	0.51, 1.46	0.51, 1.46
oxo-MiNP	$1.02 \ (0.84, \ 1.17)$	$1.01 \ (0.76, \ 1.21)$	0.58, 1.39	0.58, 1.39

^aTruncated weights.

Table S15: Summary statistics of the estimated balancing weights for effect modification (exposures: endocrine disrupting chemicals (EDCs); outcome: hit reaction time standard error (HRT-SE); modifier: sex) (HELIX subcohort; 2013-2016).

	Median (IQR)		Range	
${\bf Characteristic}^a$	females, $N = 434^a$	$males, N = 542^a$	$\overline{\mathbf{females}, \mathbf{N} = 434^a}$	$males, N = 542^a$
OP pesticide meta	OP pesticide metabolites			
DMP	0.98 (0.77, 1.23)	1.01 (0.76, 1.21)	0.57, 1.45	0.57, 1.45
DMTP	1.03 (0.78, 1.22)	1.01 (0.79, 1.23)	0.56, 1.40	0.56, 1.40
DEP	$1.01 \ (0.85, 1.16)$	1.00 (0.84, 1.18)	0.67, 1.36	0.67, 1.36
DETP	$1.00 \ (0.77, \ 1.22)$	$1.01 \ (0.86, \ 1.17)$	0.57, 1.40	0.57, 1.40
Phenols				
MEPA	1.01 (0.88, 1.16)	1.03 (0.94, 1.11)	0.73, 1.26	0.73, 1.26
ETPA	1.04 (0.92, 1.12)	1.02 (0.91, 1.12)	0.78, 1.22	0.78, 1.22
PRPA	$1.03 \ (0.87, \ 1.16)$	$1.02 \ (0.95, \ 1.10)$	0.74, 1.24	0.74, 1.24
BPA	$1.00 \ (0.71, \ 1.28)$	$1.01\ (0.75,\ 1.24)$	0.44, 1.52	0.44, 1.52
BUPA	1.02 (0.95, 1.11)	$1.01\ (0.80,\ 1.20)$	0.64, 1.30	0.64, 1.30
OXBE	$1.03 \ (0.86, \ 1.16)$	1.02 (0.95, 1.09)	0.76, 1.22	0.76, 1.22
TRCS	$1.03 \ (0.92, \ 1.13)$	$1.01 \ (0.88, \ 1.14)$	0.73, 1.25	0.73, 1.25
Phthalate metabolites				
MEP	$0.99\ (0.70,\ 1.24)$	$0.95 \ (0.55, 1.30)$	0.31, 1.68	0.31, 1.68
MiBP	0.92 (0.46, 1.40)	$0.92\ (0.54,\ 1.39)$	0.15, 1.84	0.15, 1.84
MnBP	0.97 (0.51, 1.40)	$0.98 \ (0.57, \ 1.32)$	0.21, 1.78	0.21, 1.78
MBzP	$0.99 \ (0.70, \ 1.26)$	$0.98 \ (0.66, 1.31)$	0.38, 1.58	0.38, 1.58
MEHP	$1.01\ (0.72,\ 1.29)$	$0.98 \ (0.61, \ 1.34)$	0.36, 1.58	0.36, 1.58
MEHHP	$1.02 \ (0.65, \ 1.31)$	$1.00 \ (0.59, \ 1.35)$	0.30, 1.63	0.30, 1.63
MEOHP	$1.01\ (0.62,\ 1.32)$	$1.01 \ (0.51, \ 1.41)$	0.24, 1.68	0.24, 1.68
MECPP	$0.98 \ (0.62, \ 1.32)$	$0.98 \ (0.54, \ 1.40)$	0.29, 1.67	0.29, 1.67
oh-MiNP	$1.00 \ (0.73, \ 1.26)$	$1.00 \ (0.78, \ 1.24)$	0.49, 1.44	0.49, 1.44
oxo-MiNP	$1.03 \ (0.74, \ 1.27)$	$1.02 \ (0.76, \ 1.24)$	0.47, 1.45	0.47, 1.45

 $[\]overline{^a}$ Truncated weights.

Table S16: Summary statistics of the estimated balancing weights for effect modification (exposures: endocrine disrupting chemicals (EDCs); outcomes: glucocorticosteroids; modifier: sex) (HELIX subcohort; 2013-2016).

	Median (IQR)		Ran	ıge
${\bf Characteristic}^a$	females, $N = 434^a$	males, $N = 542^a$	females, $N = 434^a$	males, $N = 542^{\circ}$
cortisol production cortisone production corticosterone production	0.97 (0.57, 1.41) 1.00 (0.61, 1.40) 1.00 (0.60, 1.39)	1.01 (0.59, 1.35) 1.00 (0.59, 1.38) 1.03 (0.56, 1.37)	0.24, 1.71 0.27, 1.69 0.23, 1.71	0.24, 1.71 0.27, 1.69 0.23, 1.71

^aTruncated weights.

Table S17: Summary statistics of the estimated balancing weights for effect modification (exposures: glucocorticosteroids; outcome: hit reaction time standard error (HRT-SE); modifier: sex) (HELIX subcohort; 2013-2016).

Figure S1: Flowchart describing the sample size for each research question.

Figure S2: Measurement classification of endocrine disrupting chemicals (EDCs), by cohort (HELIX subcohort; 2013-2016). Coding: 1, quantifiable; 2, <LOD; 3, interference or out of range; 4. not analysed.

Figure S3: Measurement classification of the glucocorticosteroids, by cohort (HELIX subcohort; 2013-2016). Coding: 1, quantifiable; 2, <LOQ; 3, interference or out of range; 4, not detected.

Figure S4: Marginal contrasts on the logarithmic scale for effect modification by sex of a increase from the 10th to the 90th percentile of the endocrine disrupting chemicals (EDCs) on hit reaction time standard error (HRT-SE) expressed in ms (HELIX subcohort; 2013-2016). Circles and triangles indicate effect estimates. Solid lines indicate the 95% CI. The size of the circles represents the S value of the effect estimate (56).

Figure S5: Marginal contrasts on the logarithmic scale for effect modification by sex of a increase from the 10th to the 90th percentile of the endocrine disrupting chemicals (EDCs) on the glucocorticosteroids expressed in ng/ml (HELIX subcohort; 2013-2016). Circles and triangles indicate effect estimates. Solid lines indicate the 95% CI. The size of the circles represents the S value of the effect estimate (56).

Figure S6: Marginal contrasts on the logarithmic scale for effect modification by sex of a increase from the 10th to the 90th percentile of the glucocorticosteroids on hit reaction time standard error (HRT-SE) expressed in ms (HELIX subcohort; 2013-2016). Circles and triangles indicate effect estimates. Solid lines indicate the 95% CI. The size of the circles represents the S value of the effect estimate (56). Abbreviations: cortisone production (cortisone prod.); cortisol production (cortisol prod.); corticost. prod. (corticosterone production).