FCC §2.1091 - RF Exposure Information

4.1 **Applicable Standards**

FCC §2.1091, (a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of part 1 of this chapter, in particular §1.1307(b).

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
(A) Limits for Occupational/Controlled Exposure					
0.3-1.34	614	1.63	*(100)	6	
1.34-30	1842/f	4.89/f	$*(900/f^2)$	6	
30-300	61.4	0.163	1.0	6	
300-1500	/	/	f/300	6	
1500-100,000	/	/	5	6	

f = frequency in MHz

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Downlink:

output power at antenna input terminal (dBm): 36.94	<u>1</u>
coutput power at antenna input terminal (mW): 4943.11]
<u>Prediction distance (cm):</u> 100	
<u>Prediction frequency (MHz):</u> 856.5	
Maximum Antenna Gain, typical (dBi): 0	
Maximum Antenna Gain (numeric): 1	
y of prediction frequency at 100 cm (mW/cm ²): 0.04	
d exposure at prediction frequency (mW/cm²): 2.86	E lin

^{* =} Plane-wave equivalent power density

Uplink:

Maximum peak output power at antenna input terminal (dBm): 36.78

Maximum peak output power at antenna input terminal (mW): 4764.3

Prediction distance (cm): 100

Prediction frequency (MHz): 806.0125

Maximum Antenna Gain, typical (dBi): 0

Maximum Antenna Gain (numeric): 1

Power density of prediction frequency at 100 cm (mW/cm²): 0.04

MPE limit for controlled exposure at prediction frequency (mW/cm²): 2.69

4.3 Conclusion

The device complies with the MPE requirements by providing a safe separation distance of at least 100 cm between the antenna with maximum 0 dBi gain, including any radiating structure, and any persons when normally operated.