

10/517956
DTAB Rec'd PCT/PTO 14 DEC 2004

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Novel Screening Method

<130> 3067WOOP

<150> JP 2002-173798

<151> 2002-06-14

<150> JP 2002-205470

<151> 2002-07-15

<160> 24

<210> 1

<211> 351

<212> PRT

<213> Human

<400> 1

Val Gly Gln Asp Phe Arg Glu Arg Leu Ile His Ser Leu Pro Thr Ser
305 310 315 320
Leu Glu Arg Ala Leu Ser Glu Asp Ser Ala Pro Thr Asn Asp Thr Ala
325 330 335
Ala Asn Ser Ala Ser Pro Pro Ala Glu Thr Glu Leu Gln Ala Met
340 345 350

<210> 2
<211> 1053
<212> DNA
<213> Human

<400> 2
atggaaacca acttctccac tcctctgaat gaatatgaag aagtgtccta ttagtctgct 60
ggctacactg ttctgcggat cctcccattg gtggtgctt gggtcaccc ttgtccctcg 120
gtcctggca atgggcctgt gatctgggt gctggattcc ggatgcacacg cacagtcacc 180
accatctgtt acctgaacct gcccctggct gacttttctt tcacggccac attaccattc 240
ctcattgtct ccatggccat gggagaaaaa tggccctttt gctggttcct gtgttaaggta 300
attcacatcg tggtgacat caacctctt ggaagtgtct tcttgcattgg tttcattgca 360
ctggaccgct gcattttgtt cctgcattcca gtctgggccc agaaccacccg cactgtgagt 420
ctggccatga aggtgatcgt cgacatttgg attcttgctc tagtccttac ctggccagtt 480
ttcctttt tgactacagt aactattcca aatggggaca catactgtac ttcaacttt 540
gcattctggg gtggcacccc tgaggagagg ctgaagggtgg ccattaccat gctgacagcc 600
agagggatta tccggttgtt cattggctt agcttgcga tgcatttgt tgccatctgc 660
tatgggctca ttgcagccaa gatccacaaa aaggcatga ttaaatccag ccgtccctta 720
cgggtcctca ctgctgtgtt ggcatttttca ttcatctgtt gtttccctt tcaactggtt 780
gccctctgg gcaccgtctg gctcaaagag atgttgcattt atggcaagta caaaatcatt 840
gacatcctgg ttaacccaaac gagctccctg gccttcttca acagctgcct caaccccatg 900
cttacgtct ttgtggccca agacttccga gagagactga tccactccct gcccaccagt 960
ctggagaggg ccctgtctga ggactcagcc ccaactaatg acacggctgc caattctgct 1020
tcacccctgg cagagactga gttacaggca atg 1053

<210> 3
<211> 24
<212> PRT
<213> Human

<400> 3
Met Ala Pro Arg Gly Phe Ser Cys Leu Leu Leu Leu Thr Ser Glu Ile
1 5 10 15
Asp Leu Pro Val Lys Arg Arg Ala
20 24

<210> 4
<211> 24
<212> PRT
<213> Human

<400> 4
Met Ala Pro Arg Gly Phe Ser Cys Leu Leu Leu Leu Leu Thr Gly Glu Ile
1 5 10 15
Asp Leu Pro Val Lys Arg Arg Ala
20 24

<210> 5
<211> 24
<212> PRT
<213> Human

<400> 5
Met Ala Arg Arg Gly Phe Ser Cys Leu Leu Leu Ser Thr Thr Ala Thr
1 5 10 15
Asp Leu Pro Val Lys Arg Arg Thr
20

<210> 6
<211> 21
<212> PRT
<213> Human

<400> 6
Met Ala Pro Arg Gly Phe Ser Cys Leu Leu Leu Leu Thr Ser Glu Ile
1 5 10 15
Asp Leu Pro Val Lys
20 21

<210> 7
<211> 38
<212> PRT
<213> Rat

<400> 7
Met Ala Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile
5 10 15
Asp Leu Pro Val Lys Arg Leu Glu Ser Pro Asn Lys Thr Arg Arg Pro
20 25 30
Tyr Gly Ala Ser Ile Tyr
35 38

<210> 8
<211> 24
<212> PRT
<213> Rat

<400> 8
Met Ala Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile
5 10 15
Asp Leu Pro Val Lys Arg Leu Glu
20 24

<210> 9
<211> 21
<212> PRT
<213> Rat

<400> 9
Met Ala Lys Arg Gly Phe Asn Cys Leu Leu Leu Ser Ile Ser Glu Ile
5 10 15
Asp Leu Pro Val Lys
20 21

<210> 10
<211> 351
<212> PRT
<213> Rat

<400> 10
Met Glu Ala Asn Tyr Ser Ile Pro Leu Asn Val Ser Glu Val Val Val

5	10	15
Tyr Asp Ser Thr Ile Ser Arg Val Leu Trp Ile Leu Thr Met Val Val		
20	25	30
Leu Ser Ile Thr Phe Val Leu Gly Val Leu Gly Asn Gly Leu Val Ile		
35	40	45
Trp Val Ala Gly Phe Arg Met Val His Thr Val Thr Thr Cys Phe		
50	55	60
Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Val Thr Leu Pro Phe		
65	70	80
Phe Val Ile Ser Ile Ala Met Lys Glu Lys Trp Pro Phe Gly Trp Phe		
85	90	95
Leu Cys Lys Leu Val His Ile Val Val Asp Ile Asn Leu Phe Gly Ser		
100	105	110
Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Ile Cys Val Leu		
115	120	125
His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Arg Lys		
130	135	140
Val Val Val Gly Pro Trp Ile Leu Ala Leu Ile Leu Thr Leu Pro Ile		
145	150	160
Phe Ile Phe Met Thr Thr Val Arg Ile Pro Gly Gly Asn Val Tyr Cys		
165	170	175
Thr Phe Asn Phe Ala Ser Trp Gly Asn Thr Ala Glu Glu Leu Leu Asn		
180	185	190
Ile Ala Asn Thr Phe Val Thr Val Arg Gly Ser Ile Arg Phe Ile Ile		
195	200	205
Gly Phe Ile Met Pro Met Ser Ile Val Ala Ile Cys Tyr Gly Leu Ile		
210	215	220
Ala Val Lys Ile His Arg Arg Ala Leu Val Asn Ser Ser Arg Pro Leu		
225	230	240
Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro		
245	250	255
Phe Gln Leu Val Ala Leu Leu Gly Thr Ile Trp Phe Lys Glu Ser Leu		
260	265	270
Phe Ser Gly Arg Tyr Lys Ile Leu Asp Met Trp Val His Pro Thr Ser		
275	280	285
Ser Leu Ala Tyr Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Ala Phe		
290	295	300
Met Gly Gln Asp Phe His Glu Arg Leu Ile His Ser Leu Pro Ser Ser		
305	310	320
Leu Glu Arg Ala Leu Ser Glu Asp Ser Gly Gln Thr Ser Asp Thr Gly		
325	330	335
Ile Ser Ser Ala Leu Pro Pro Val Asn Ile Asp Ile Lys Ala Ile		
340	345	350

<210> 11
<211> 1053
<212> DNA
<213> Rat

<400> 11

atgaaagcca	actattccat	ccctctgaat	gtatcagaag	tggttgtcta	tgattctacc	60
atctccagag	ttttgtggat	cctcacaatg	gtgggtctct	ccatcacctt	tgtcctgggt	120
gtgctggta	atggactagt	gatctggta	gctggattcc	ggatggtaca	cactgtcacc	180
actacctgtt	ttctgaatct	agctttggct	gacttctctt	tcacagtgc	tctaccattc	240
tttgtcatct	caattgctat	gaaaagaaaaa	tggcctttt	gatggttcct	gtgtaaatta	300
gttcacattg	tagtagacat	aaacctcttt	ggaagtgtct	tcctgattgc	tttaattgcc	360
ttggaccgct	gcatttgtgt	cctgcatcca	gtctgggctc	agaaccacccg	cactgtgagc	420
ctgcttagga	agggtgggtgt	tgggccctgg	attttagctc	tgattctcac	tttgccttattca	480
tttattttca	tgactacagt	tagaattcct	ggaggcaatg	tgtactgtac	attcaacttc	540

gcatcctggg gtaacactgc tgaagaacta ttgaacatag ctaacactt tgtaacagtt 600
 agaggagca tcaggttcat tattggcttc ataatgccta tgtccattgt tgccatctgc 660
 tatggactca tcgctgtcaa gatccacaga agagcacttg ttaattccag ccgtccatta 720
 agagtcccta cagcagttgt gggttccttc tttatctgtt gggttcctt tcaactggtg 780
 gcccttttag gtacaatctg gtttaaagag tcattgtta gtggtcgtt caaaaattctt 840
 gacatgtggg ttcacccaac cagctcatttgccttca atagttgcct caatccaaatg 900
 ctctatgctt tcatgggcca ggactttcat gaaagactga ttcattccct gccttccagt 960
 ctggagagag ccctgaatgtga ggactctggc caaaccaggatg atacaggcat cagttctgct 1020
 ttacccctgtaaacattgtataaaaagca ata 1053

<210> 12
 <211> 351
 <212> PRT
 <213> Mouse

<400> 12
 Met Glu Ser Asn Tyr Ser Ile His Leu Asn Gly Ser Glu Val Val Val
 5 10 15
 Tyr Asp Ser Thr Ile Ser Arg Val Leu Trp Ile Leu Ser Met Val Val
 20 25 30
 Val Ser Ile Thr Phe Phe Leu Gly Val Leu Gly Asn Gly Leu Val Ile
 35 40 45
 Trp Val Ala Gly Phe Arg Met Pro His Thr Val Thr Thr Ile Trp Tyr
 50 55 60
 Leu Asn Leu Ala Leu Ala Asp Phe Ser Phe Thr Ala Thr Leu Pro Phe
 65 70 75 80
 Leu Leu Val Glu Met Ala Met Lys Glu Lys Trp Pro Phe Gly Trp Phe
 85 90 95
 Leu Cys Lys Leu Val His Ile Val Val Asp Val Asn Leu Phe Gly Ser
 100 105 110
 Val Phe Leu Ile Ala Leu Ile Ala Leu Asp Arg Cys Ile Cys Val Leu
 115 120 125
 His Pro Val Trp Ala Gln Asn His Arg Thr Val Ser Leu Ala Arg Lys
 130 135 140
 Val Val Val Gly Pro Trp Ile Phe Ala Leu Ile Leu Thr Leu Pro Ile
 145 150 155 160
 Phe Ile Phe Leu Thr Thr Val Arg Ile Pro Gly Gly Asp Val Tyr Cys
 165 170 175
 Thr Phe Asn Phe Gly Ser Trp Ala Gln Thr Asp Glu Glu Lys Leu Asn
 180 185 190
 Thr Ala Ile Thr Phe Val Thr Thr Arg Gly Ile Ile Arg Phe Leu Ile
 195 200 205
 Gly Phe Ser Met Pro Met Ser Ile Val Ala Val Cys Tyr Gly Leu Ile
 210 215 220
 Ala Val Lys Ile Asn Arg Arg Asn Leu Val Asn Ser Ser Arg Pro Leu
 225 230 235 240
 Arg Val Leu Thr Ala Val Val Ala Ser Phe Phe Ile Cys Trp Phe Pro
 245 250 255
 Phe Gln Leu Val Ala Leu Leu Gly Thr Val Trp Phe Lys Glu Thr Leu
 260 265 270
 Leu Ser Gly Ser Tyr Lys Ile Leu Asp Met Phe Val Asn Pro Thr Ser
 275 280 285
 Ser Leu Ala Tyr Phe Asn Ser Cys Leu Asn Pro Met Leu Tyr Val Phe
 290 295 300
 Met Gly Gln Asp Phe Arg Glu Arg Phe Ile His Ser Leu Pro Tyr Ser
 305 310 315 320
 Leu Glu Arg Ala Leu Ser Glu Asp Ser Gly Gln Thr Ser Asp Ser Ser
 325 330 335
 Thr Ser Ser Thr Ser Pro Pro Ala Asp Ile Glu Leu Lys Ala Pro

340

345

350

<210> 13
<211> 1053
<212> DNA
<213> Mouse

<400> 13

atgaaatcca	actactccat	ccatctgaat	ggatcagaag	tggtggtta	tgattctacc	60
atctccagag	ttctgtggat	cctctcaatg	gtgggtgtct	ccatcacttt	cttccttgg	120
gtgctggca	atggactagt	gatttggta	gctggattcc	ggatgccaca	cactgtcacc	180
actatcttgt	atctgaatct	agcattggct	gactttctt	tcacagcaac	tctaccattc	240
cttcttgtt	aatggctat	gaaaagaaaaa	tggcctttt	gctgggttcc	gtgtaaatta	300
gttcacattt	ttgtagatgt	aaacctgttt	ggaagtgtct	tcttgattgc	tctcattgcc	360
ttggaccgct	gcatttgtt	tctgcatcca	gtctgggctc	agaaccacccg	cactgtgagc	420
ctggcttagga	agggtgtt	tggcccttgg	atttttgc	tgattctcac	tttgcattt	480
tttattttct	tgactactgt	tagaattcct	ggaggagatg	tgtattgtac	attcaacttt	540
ggatcctggg	ctcaaactga	tgaagaaaaag	ttgaacacag	ctatcacttt	tgtacaacaact	600
agagggatca	tcaggttcct	tattggttt	agcatgccc	tgtcaattgt	tgctgtttgc	660
tatggactca	ttgctgtcaa	gatcaacaga	agaaacctt	ttaattccag	ccgtccttta	720
cgagtcctta	cagcagttt	ggcttcctt	tttatctgt	ggtttccctt	tcaagctgt	780
gcccttttgg	gcacagtctg	gtttaaagag	acattgctt	gtggtagtta	taaaattctt	840
gacatgtttt	ttaacccaa	aagcttattt	gcttacttca	atagttgtct	caatccgatg	900
ctctatgttt	tcatgggeca	ggacttctgt	gagagattt	ttcattccct	gccttatagt	960
cttggagagag	ccctgagtga	ggattctgtt	caaaccagt	attcaagcac	cagttctact	1020
tcacctcctg	cagacattga	gttaaaggcc	cca			1053

<210> 14
<211> 353
<212> PRT
<213> Human

<400> 14

Met	Glu	Thr	Asn	Phe	Ser	Ile	Pro	Leu	Asn	Glu	Thr	Glu	Glu	Val	Leu
							5			10					15
Pro	Glu	Pro	Ala	Gly	His	Thr	Val	Leu	Trp	Ile	Phe	Ser	Leu	Leu	Val
							20			25					30
His	Gly	Val	Thr	Phe	Val	Phe	Gly	Val	Leu	Gly	Asn	Gly	Leu	Val	Ile
							35			40					45
Trp	Val	Ala	Gly	Phe	Arg	Met	Thr	Arg	Thr	Val	Asn	Thr	Ile	Cys	Tyr
						50			55						60
Leu	Asn	Leu	Ala	Leu	Ala	Asp	Phe	Ser	Phe	Ser	Ala	Ile	Leu	Pro	Phe
						65			70						80
Arg	Met	Val	Ser	Val	Ala	Met	Arg	Glu	Lys	Trp	Pro	Phe	Ala	Ser	Phe
						85			90						95
Leu	Cys	Lys	Leu	Val	His	Val	Met	Ile	Asp	Ile	Asn	Leu	Phe	Val	Ser
						100			105						110
Val	Tyr	Leu	Ile	Thr	Ile	Ile	Ala	Leu	Asp	Arg	Cys	Ile	Cys	Val	Leu
						115			120						125
His	Pro	Ala	Trp	Ala	Gln	Asn	His	Arg	Thr	Met	Ser	Leu	Ala	Lys	Arg
						130			135						140
Val	Met	Thr	Gly	Leu	Trp	Ile	Phe	Thr	Ile	Val	Leu	Thr	Leu	Pro	Asn
						145			150						160
Phe	Ile	Phe	Trp	Thr	Thr	Ile	Ser	Thr	Thr	Asn	Gly	Asp	Thr	Tyr	Cys
						165			170						175
Ile	Phe	Asn	Phe	Ala	Phe	Trp	Gly	Asp	Thr	Ala	Val	Glu	Arg	Leu	Asn
						180			185						190
Val	Phe	Ile	Thr	Met	Ala	Lys	Val	Phe	Leu	Ile	Leu	His	Phe	Ile	Ile
						195			200						205

Gly	Phe	Thr	Val	Pro	Met	Ser	Ile	Ile	Thr	Val	Cys	Tyr	Gly	Ile	Ile
210					215					220					
Ala	Ala	Lys	Ile	His	Arg	Asn	His	Met	Ile	Lys	Ser	Ser	Arg	Pro	Leu
225					230					235					240
Arg	Val	Phe	Ala	Ala	Val	Val	Ala	Ser	Phe	Phe	Ile	Cys	Trp	Phe	Pro
					245				250					255	
Tyr	Glu	Leu	Ile	Gly	Ile	Leu	Met	Ala	Val	Trp	Leu	Lys	Glu	Met	Leu
					260				265				270		
Leu	Asn	Gly	Lys	Tyr	Lys	Ile	Ile	Leu	Val	Leu	Ile	Asn	Pro	Thr	Ser
					275				280				285		
Ser	Leu	Ala	Phe	Phe	Asn	Ser	Cys	Leu	Asn	Pro	Ile	Leu	Tyr	Val	Phe
					290			295			300				
Met	Gly	Arg	Asn	Phe	Gln	Glu	Arg	Leu	Ile	Arg	Ser	Leu	Pro	Thr	Ser
					305	310				315					320
Leu	Glu	Arg	Ala	Leu	Thr	Glu	Val	Pro	Asp	Ser	Ala	Gln	Thr	Ser	Asn
					325				330					335	
Thr	His	Thr	Thr	Ser	Ala	Ser	Pro	Pro	Glu	Glu	Thr	Glu	Leu	Gln	Ala
					340				345					350	

Met

<210> 15
<211> 1059
<212> DNA
<213> Human

<400> 15

atggaaacca	acttctccat	tcctctgaat	gaaaactgagg	aggtgtctcc	tgagcctgct	60
ggccacaccg	ttctgtggat	cttctcattg	ctagtccacg	gagtcaccc	tgtcttcggg	120
gtcctggca	atgggcttgt	gatctgggtg	gctggattcc	ggatgacacg	cacagtcAAC	180
accatctgtt	acctgaacct	ggccctagct	gacttcttct	tcagtgccat	cctaccatc	240
cgaatggtct	cagtcgccat	gagagaaaaa	tggcctttt	cgtcattcct	atgttaagtta	300
gttcatgtta	tgatagacat	caacctgttt	gtcagtgct	acctgatcac	catcattgct	360
ctggaccgct	gtatTTgtgt	cctgcatacc	gcctggggcc	agaaccatcg	caccatgagt	420
ctggccaaga	gggtgatgac	gggactctgg	atTTTcacca	tagtccttac	cttaccaaata	480
ttcatcttct	ggactacaat	aagtactacg	aatggggaca	cataactgtat	tttcaacttt	540
gcattctggg	gtgacactgc	tgttagagagg	ttgaacgtgt	tcattaccat	ggccaaggc	600
tttctgatcc	tccacttcat	tattggcttc	acggtgcc	tgtccatcat	cacagtctgc	660
tatggatca	tcgctgccaa	aattcacaga	aaccacatga	ttaaatccag	ccgtccctta	720
cgtgtcttcg	ctgctgtgg	ggcttcttc	ttcatctgtt	ggttccctta	tgaactaatt	780
ggcattctaa	tggcagtc	gctcaaagag	atgttgtta	atggcaata	caaaatcatt	840
cttgcctga	ttaacccaaac	aagctcc	gccttttta	acagctgcct	caacccaaatt	900
ctctacgtct	ttatgggtcg	taacttccaa	gaaagactga	ttcgctt	gcccactagt	960
ttggagaggg	ccctgactga	ggtccctgac	tcagcccaga	ccagcaacac	acacaccact	1020
tctgcttcac	ctccqqaqq	qacqqaqtta	caaqcaatq			1059

```
<210> 16
<211> 42
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Primer

<400> 16
aaacagtcga ccaccatgg a atccaaactac tccatccatc tg 42

<210> 17
<211> 33
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 17
ctttcttagat catggggcct ttaactcaat gtc 33

<210> 18
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 18
atctgggtag ctggattccg gatg 24

<210> 19
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 19
tcttcatga aagtccctggc ccatgaa 27

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 20
aggaaattcta actgttagtca tgaa 24

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 21
acagtttagag ggagcatcag gttc 24

<210> 22
<211> 43
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 22
ataaaagtcga ccaccatgga agccaaactat tccatccctc tga 43

<210> 23
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 23
aaatcttagat catattgctt ttatatcaat gtttaca 37

<210> 24
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Primer

<400> 24
Trp Lys Tyr Met Val Met
1 5