

الامتدان الوطني الموحد للبكالوريا

المسالك الدولية – خيار فرنسية الدورة الاستدراكية 2016

- الموضوع - RS22F

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)	الشعبة أو المسلك

INSTRUCTIONS GENERALES

- Nombre de pages : 4 (La première page contient des instructions générales et les composantes du sujet ; les trois autres pages contiennent le sujet de l'examen);
- L'utilisation de la calculatrice non programmable est autorisée;
- Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter ;
- Certaines notations sont utilisées dans différents exercices, toutefois chaque notation ne concerne que l'exercice où elle est utilisée et ne dépend ni des exercices précédents ni des exercices suivants.

COMPOSANTES DU SUJET

- L'épreuve est composée de quatre exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Suites numériques	3 points
Exercice 2	Géométrie dans l'espace	3 points
Exercice 3	Nombres complexes	3 points
Exercice 4	Calcul de probabilités	3 points
Problème	Etude d'une fonction numérique et calcul intégral	8 points

- Concernant le problème, In désigne la fonction logarithme népérien.

Exercice 1 (3 points)

On considère la suite numérique (u_n) définie par :

$$u_0=2$$
 et $u_{n+1}=\frac{1}{16}\,u_n+\frac{15}{16}$ pour tout entier naturel n

- 0.5 1)a) Montrer par récurrence que $u_n > 1$ pour tout entier naturel n
- b) Vérifier que $u_{n+1} u_n = -\frac{15}{16}(u_n 1)$ pour tout entier naturel n puis montrer que la suite (u_n) est décroissante.
- 0.25 c) En déduire que la suite (u_n) est convergente.
 - 2)Soit (v_n) la suite numérique telle que : $v_n = u_n 1$ pour tout entier naturel n
- a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{16}$ puis écrire v_n en fonction de n
- b) Montrer que $u_n = 1 + \left(\frac{1}{16}\right)^n$ pour tout entier naturel n, puis déterminer la limite de la suite (u_n)

Exercice 2 (3 points)

0.5

Dans l'espace rapporté à un repère orthonormé direct $\left(O, \vec{i}, \vec{j}, \vec{k}\right)$, on considère les points

$$A(1,3,4)$$
 et $B(0,1,2)$

- 0.5 1) a) Montrer que $\overrightarrow{OA} \wedge \overrightarrow{OB} = 2\overrightarrow{i} 2\overrightarrow{j} + \overrightarrow{k}$
 - b) Montrer que 2x-2y+z=0 est une équation cartésienne du plan(OAB)
- 0.5 2)Soit (S) la sphère d'équation : $x^2 + y^2 + z^2 6x + 6y 6z + 2 = 0$ Montrer que (S) a pour centre le point $\Omega(3, -3, 3)$ et pour rayon 5
- 0.75 3) a) Montrer que le plan (OAB) est tangent à la sphère (S)
- 0.75 b) Déterminer les coordonnées du point de contact H du plan(OAB) et de la sphère(S)

0.75

0.75

0.75

0.75

Exercice 3 (3 points)

- 1) Résoudre dans l'ensemble des nombres complexes C l'équation : $z^2 8z + 41 = 0$
 - 2) Dans le plan complexe rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$, on considère les points A, B, C et Ω d'affixes respectives a, b, c et ω telles que a=4+5i, b=3+4i, c=6+7i et $\omega=4+7i$
- a) Calculer $\frac{c-b}{a-b}$ puis en déduire que les points A , B et C sont alignés
 - b)Soit z l'affixe d'un point M du plan et z' l'affixe du point M' , image de M par la rotation R de centre Ω et d'angle $-\frac{\pi}{2}$

Montrer que z' = -i z - 3 + 11 i

c) Déterminer l'image du point C par la rotation R puis donner une forme trigonométrique du nombre complexe $\frac{a-\omega}{c-\omega}$

Exercice 4 (3 points)

Une urne contient 10 boules portant les nombres 1 ; 2 ; 2 ; 3 ; 3 ; 4 ; 4 ; 4 ; 4 ; 4 (Les boules sont indiscernables au toucher)

On considère l'expérience suivante : on tire au hasard , successivement et sans remise , deux boules de l'urne .

1) Soit A l'évènement :" Obtenir deux boules portant deux nombres pairs".

Montrer que $p(A) = \frac{1}{3}$

2 2) On répète l'expérience précédente trois fois de suite, en remettant dans l'urne les deux boules tirées après chaque expérience.

Soit X la variable aléatoire égale au nombre de fois où l'évènement A est réalisé.

Montrer que $p(X=1) = \frac{4}{9}$ puis déterminer la loi de probabilité de la variable aléatoire X

Problème (8 points)

I-Soit g la fonction numérique définie sur $\left]0,+\infty\right[$ par : $g(x)=\frac{2}{x}-1+2\ln x$

On considère ci-contre le tableau de variations de la fonction g sur $]0,+\infty[$

0.25 | 1) Calculer g(1)

0.75

0.5

2) En déduire à partir du tableau que g(x) > 0 pour tout x appartenant à $\left[0, +\infty\right[$

II-On considère la fonction numérique f définie sur $]0,+\infty[$ par : $f(x)=3-3x+2(x+1)\ln x$ Soit (C) la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) (unité : $2\ cm$)

0.75 1) Montrer que $\lim_{x\to 0} f(x) = -\infty$ et interpréter géométriquement ce résultat.

0.5 2)a- Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ (pour le calcul de la limite on pourra utiliser l'écriture suivante $f(x) = x \left[\frac{3}{x} - 3 + 2 \left(1 + \frac{1}{x} \right) \ln x \right]$)

o.5 b- Montrer que la courbe (C) admet , au voisinage de $+\infty$, une branche parabolique dont la direction est celle de l'axe des ordonnées .

0.75 3) a-Montrer que f'(x) = g(x) pour tout x appartenant à $]0,+\infty[$

0.75 b- En déduire que f est strictement croissante sur $]0,+\infty[$ et dresser le tableau de variations de f sur $]0,+\infty[$

0.5 4)a- Montrer que I(1,0)est un point d'inflexion de la courbe (C)

b-Montrer que y = x - 1 est une équation cartésienne de la tangente (T) à la courbe (C) au point I

0.75 c-Construire , dans le même repère (O, \vec{i}, \vec{j}) , la droite (T) et la courbe (C)

5) a-Montrer que : $\int_{1}^{2} \left(1 + \frac{x}{2}\right) dx = \frac{7}{4}$

0.75 **b** - A l'aide d'une intégration par parties, montrer que $\int_{1}^{2} (x+1) \ln x \, dx = 4 \ln 2 - \frac{7}{4}$

c- Calculer, en cm^2 , l'aire du domaine plan limité par la courbe(C), l'axe des abscisses et les droites d'équations x=1 et x=2

0.5 6) Résoudre graphiquement l'inéquation : $x \in]0, +\infty[$; $(x+1)\ln x \ge \frac{3}{2}(x-1)$

الامتدان الوطني الموحد للبكالوريا

المسالك الدولية - خيار فرنسية الدورة الاستدراكية 2016 - عناصر الإجابة -

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)	الشعبة أو المسلك

On prendra en considération les différentes étapes menant à la solution . On acceptera toute autre méthode correcte .

Exercice 1 (3 points)

1.25 1)a) 0.5 b) 0.25 pour la vérification et 0.25 pour la suite décroissante c) 0.25

1.75 2)a) 0.5 pour la suite est géométrique et 0.5 pour $v_n = \left(\frac{1}{16}\right)^n$

b)0.25 pour l'égalité, 0.25 pour $\lim_{n\to+\infty} \left(\frac{1}{16}\right)^n = 0$ et 0.25 pour la limite de (u_n) est égale à 1

Exercice 2 (3 points)
1) a) 0.5

1) a) 0.5 b) 0.5

0.5 2) 0.5

1

1

3)a) 0.25 pour la formule de la distance , 0.25 pour $d(\Omega, (OAB)) = 5$ et 0.25 pour le plan est tangent à la sphère

b) 0.75 (**pour**
$$H\left(-\frac{1}{3}, \frac{1}{3}, \frac{4}{3}\right)$$
)

Exercice 3 (3 points)

1) 0.25 pour le calcul du discriminant et 0.25 pour chaque solution (on attribuera 0.75 pour toute autre méthode permettant de déterminer les deux solutions de l'équation)

2.25 2)a) 0.5 pour $\frac{c-b}{a-b} = 3$ et 0.25 pour la déduction

b) 0.5 pour l'écriture $z' - \omega = e^{-i\frac{\pi}{2}}(z - \omega)$ **et 0.25 pour** z' = -iz - 3 + 11i

c) 0.5 pour R(C) = A et 0.25 pour la forme trigonométrique

Exercice 4 (3 points)

1)1 pour le résultat

2) **0.5 pour** $p(X=1) = \frac{4}{9}$, **0.5 pour** $p(X=0) = \frac{8}{27}$, **0.5 pour** $p(X=2) = \frac{2}{9}$ et **0.5 pour** $p(X=3) = \frac{1}{27}$

الصفحة 2 2	RR22F			الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 مادة: الرياضيات - مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية - الم				
Problème (8 points)								
0.25	I-1) 0.25 pour $g(1) = 1$							
0.75	2) 0.75 pour la déduction							
0.75	II-1) 0.5 pour le calcul de la limite et 0.25 pour l'interprétation							
1	2)a)	0.5	b) 0.5					
1.5	3)a)	3)a) 0.75 b) 0.5 pour f croissante et 0.25 pour le tableau de variations						
1.5	4)a)	0.5	b)0.25	c)0.75 (voir figure ci-dessous)				
1.75	5)a) 0.25 pour une fonction primitive et 0.25 pour le résultat							
	b) 0.5 pour la technique de l'intégration par parties et 0.25 pour le résultat							
	c) 0.25 pour l'aire, en cm^2 , est $4\int_{1}^{2} f(x)dx$ et 0.25 pour l'aire est $4(8\ln 2 - 5)cm^2$							
0.5	6) 0.25 pour $f(x) \ge 0$ et 0.25 pour l'ensemble des solutions est $[1,+\infty[$							

