Impact of Economic Growth in Nigeria on Regional Air Quality

Eloïse Marais

D. J. Jacob, K. Wecht, C. Lerot, T. P. Kurosu, K. Chance

Geography of Nigeria

Region of interest

Population:

170 million (2.6% yr⁻¹)

GDP:

USD 273 billion (7% yr⁻¹)

Squandered Resources

	Crude Oil	Natural Gas
Produced	2.1 million bbl/d	28 billion m ³
Wasted	0.1-0.4 million bbl/d	70% flared

Pipeline sabotages (1999-2008)

[Anifowose et al., 2012]

AATSR flare hotspots

[Casadio et al., 2012]

Illegal Oil Refining

A Country in the Dark

Nigeria's Energy Mix (2010)

Crude exported: **81%**Refined petroleum
imported: **49%**

Air Quality in Nigeria

Air Quality in Nigeria

AMMA Aircraft Observations 8 August 2006 (15h00-17h00) [Hopkins et al., 2009]

GEOS-Chem with RETRO NMVOC and EDGAR NO_x emissions before and after emissions scaling.

benzene/toluene = **0.6**; **>1**, & **0.5**

Oxidation product **HCHO** increases

Very low NO_x: 1.3 ± 1.3 ppbv

OMI HCHO/NO₂ (Ratio)

Ratio > 2 \rightarrow NO_x-limited

Ratio < 1 → NO_x-saturated

Lagos Ratio = 4-5

United States

Nigeria's Prosperous Future (2050)

	TODAY	2050	Comments
Energy per capita [GJ/capita]	30	76	China's 2012 value is 76 GJ/capita
Population [millions]	170	390	World Bank and UN projections
NO _x Emissions [Tg NO _x]	0.3	10	Energy from coal, oil & gas

GEOS-Chem ΔO_3 [ppbv]

(July 2006)

600 hPa (African Easterly Jet)

200 hPa (Tropical Easterly Jet)

Concluding Remarks

- Nigeria has an unusual anthropogenic emissions mix: high NMVOCs, low NO_x (inefficient combustion; oil and gas leaks; inadequate power supply).
- O₃ in NO_x-limited Nigeria is sensitive to changes in NO_x emissions
- A prosperous Nigeria would require an efficient and reliable fuel source, leading to an increase in NO_x emissions.
- Impact of future NO_x emissions on surface O_3 is low in southern Nigeria (well ventilated) and high in northern Nigeria (pollutant transport with onshore winds)
- Mid- and upper-tropospheric enhancement in O_3 is transported with the African Easterly Jet and Tropical Easterly Jet, respectively.

Synoptic-scale Meteorology

The West African Monsoon over Nigeria in August

