Jaime S. Cardoso

http://www.inescporto.pt/~jsc/VISUM/

INESC TEC and Faculdade de Engenharia, Universidade do Porto, Portugal

Introduction to Machine Learning

VISUM July 05th, 2018, Porto, Portugal

WHAT'S MACHINE LEARNING

2

Roadmap

- · What's Machine Learning
- Distinct Learning Problems
- For the same problem, different solutions
- Different solutions but with common traits
- Avoiding overfitting and data memorization
- A fair judgement of your algorithm
- Some classical ML algorithms
- Beyond the classics

2

An example*

- Problem: sorting incoming fish on a conveyor belt according to species
- Assume that we have only two kinds of fish:
 - Salmon
 - Sea bass

Picture taken with a camera

*Adapted from Duda, Hart and Stork, Pattern Classification, 2nd Ed.

An example: the problem

What humans see

0	3	2	5	4	7	6	9	8
3	0	1	2	3	4	5	6	7
2	1	0	3	2	5	4	7	6
5	2	3	0	1	2	3	4	5
4	3	2	1	0	3	2	5	4
7	4	5	2	3	0	1	2	3
6	5	4	3	2	1	0	3	2
9	6	7	4	5	2	3	0	1
8	7	6	5	4	3	2	1	0

What computers see

5

An example: decision process

- What kind of information can distinguish one species from the other?
 - Length, width, weight, number and shape of fins, tail shape, etc.
- What can cause problems during sensing?
 - Lighting conditions, position of fish on the conveyor belt, camera noise, etc.
- What are the steps in the process?
 - Capture image -> isolate fish -> take measurements -> make decision

6

An example: our system

Sensor

The camera captures an image as a new fish enters the sorting area

Preprocessing

- Adjustments for average intensity levels
- Segmentation to separate fish from background

Feature Extraction

 Assume a fisherman told us that a sea bass is generally longer than a salmon. We can use **length** as a feature and decide between sea bass and salmon according to a threshold on length.

Classification

- Collect a set of examples from both species
 - Plot a distribution of lengths for both classes
- Determine a decision boundary (threshold) that minimizes the classification error

,

An example: features

We estimate the system's probability of error and obtain a discouraging result of 40%. Can we improve this result?

An example: features

- Even though sea bass is longer than salmon on the average, there are many examples of fish where this observation does not hold
- Committed to achieve a higher recognition rate, we try a number of features
 - Width, Area, Position of the eyes w.r.t. mouth...
 - only to find out that these features contain no discriminatory information
- Finally we find a "good" feature: average intensity of the fish scales

An example: multiple features

- We can use two features in our decision:
 - lightness: x_1
 - length: \boldsymbol{x} ,
- Each fish image is now represented as a point (feature vector)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

in a two-dimensional feature space.

An example: cost of error

- We should also consider **costs of different errors** we make in our decisions.
- For example, if the fish packing company knows that:
 - Customers who buy salmon will object vigorously if they see sea bass in their cans.
 - Customers who buy sea bass will not be unhappy if they occasionally see some expensive salmon in their cans.
- How does this knowledge affect our decision?

13

An example: generalization

• The issue of generalization

- The recognition rate of our linear classifier (95.7%) met the design specifications, but we still think we can improve the performance of the system
- We then design a classifier that obtains an impressive classification rate of 99.9975% with the following decision boundary

15

An example: cost of error

Avg. scale intensity

We could intuitively shift the decision boundary to minimize an alternative cost function

ı

An example: generalization

• The issue of generalization

- Satisfied with our classifier, we integrate the system and deploy it to the fish processing plant
- A few days later the plant manager calls to complain that the system is misclassifying an average of 25% of the fish
- What went wrong?

Data Driven Design

- When to use?
 - Difficult to reason about a generic rule that solves the problem
 - Easy to collect examples (with the solution)

7

Data Driven Design

- There is little or no domain theory
- Thus the system will learn (i.e., generalize) from training data the general input-output function
 - Programming computers to use example data or past experience
- The system produces a program that implements a function that assigns the decision to any observation (and not just the input-output patterns of the training data)

9

Data Driven Design • When to use? - Difficult to reason about a generic rule that solves the problem - Easy to collect examples (with the solution)

What is Machine Learning?

Automating the Automation

Data Driven Design

- A good learning program learns something about the data beyond the specific cases that have been presented to it
 - Indeed, it is trivial to just store and retrieve the cases that have been seen in the past
 - This does not address the problem of how to handle new cases, however
- Over-fitting a model to the data means that instead of general properties of the population we learn idiosyncracies (i.e., nonrepresentative properties) of the sample.

21

DISTINCT LEARNING PROBLEMS

22

Taxonomy of the Learning Settings

Goals and available data dictate the type of learning problem

- Supervised Learning
 - Classification
 - Binary
 - Multiclass
 - Nomina
 - Ordinal
 - Regression
 - Ranking
 - Counting
- Semi-supervised Learning
- Unsupervised Learning
- · Reinforcement Learning

· etc

23

Classification/Regression

- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

5

Classification

 Given a collection of *labelled* examples, come up with a function that will predict the labels of new examples.

27

Regression

- Predicting house price
 - Output: price (a scalar)
 - Inputs: size, orientation, localization, distance to key services, etc.

• Given a collection of labelled examples (= houses with known price), come up with a function that will predict the price of new examples (houses).

26

Classification in computer vision

FOR THE SAME PROBLEM, DIFFERENT SOLUTIONS

Pros and Cons of the three approaches

- Generative models provide a probabilistic model of all variables that allows to synthesize new data and to do novelty detection but
 - generating all this information is computationally expensive and complex and is not needed for a simple classification decision
- Discriminative models provide a probabilistic model for the target variable (classes) conditional on the observed variables
 - this is usually sufficient for making a well-informed classification decision without the disadvantages of the simple Discriminant Functions

35

Pros and Cons of the three approaches

- Discriminant Functions are the most simple and intuitive approach to classify data, but do not allow to
 - compensate for class priors (e.g. class 1 is a very rare disease)
 - minimize risk (e.g. classifying sick person as healthy more costly than classifying healthy person as sick)
 - implement reject option (e.g. person cannot be classified as sick or healthy with a sufficiently high probability)

34

DIFFERENT SOLUTIONS BUT WITH COMMON TRAITS

Common steps

- The learning of a model from the data entails:
 - Representation
 - Evaluation
 - Optimization

7

Linear Regression

Quality

39

Linear Regression

• Optimization: finding the model that maximizes our measure of quality

Let's design a classifier

- Use the (hyper-)plane orthogonal to the line joining the means
 - project the data in the direction given by the line joining the class means

Fisher's linear discriminant

- Every algorithm has three components:
 - Representation
 - Evaluation
 - Optimization
- Representation: class of linear models
- Evaluation: find the direction **w** that maximizes $J(\mathbf{w}) = \frac{(m_2 m_1)^2}{s_1^2 + s_2^2}$ $J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$
- Optimization

$$\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

k-Nearest neighbour classifier

- For a new point, find the k closest points from training data
- Labels of the *k* points "vote" to classify

If the query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

49

What is Machine Learning? • Automating the Automation Data Computer Program (model) Output Program (model)

kNN as a classifier

Advantages:

- Simple to implement
- Flexible to feature / distance choices
- Naturally handles multi-class cases
- Can do well in practice with enough representative data

· Disadvantages:

- Large search problem to find nearest neighbors → Highly susceptible to the curse of dimensionality
- Storage of data
- Must have a meaningful distance function

50

THERE ARE SO MANY OPTION TO DESIGN A CLASSIFIER...

A FAIR JUDGEMENT OF YOUR ALGORITHM

Model assessment, selection

- How to Compare Models?
- How can we select the right complexity model?

3

Hold out / test set method

- It is simple, however
 - We waste some portion of the data
 - If we do not have much data, we may be lucky or unlucky with our test data
- With **cross-validation** we reuse the data

55

Training - general strategy

- We try to simulate the real world scenario.
- Test data is our future data. It should not be used in any design option of the classifier.
- Validation set can be our test set we use it to select our model.
- The whole aim is to estimate the models' true error on the sample data we have.

training set validation set test set

K-fold cross validation

- In 3 fold cross validation, there are 3 runs.
- In 5 fold cross validation, there are 5 runs.
- In 10 fold cross validation, there are 10 runs.

the error is averaged over all runs

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

57

Classical ML algorithms

- Top 10 algorithms in data mining (in 2007)
 - C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART

9

SOME CLASSICAL ML ALGORITHMS

58

The Classics

SUPPORT VECTOR MACHINES

Pattern Recognition

- The learning of the model entails
 - Representation: Gaussian distribution for each class (maybe with shared co-variance)
 - Evaluation: maximum likelihood estimation (MLE) - find the parameters of the distribution that maximize the probability of the data
 - Solve the optimization problem

Bayes linear classifier

- Let us assume that the class-conditional densities are Gaussian and then
 explore the resulting form for the posterior probabilities.
- Assume that all classes share the same covariance matrix, thus the density for class C_k is given by

$$p(\mathbf{x} \mid C_k) = \frac{1}{(2\pi)^{D/2} \mid \Sigma \mid^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)^T}$$

- We then model the class-conditional densities $p(\mathbf{x} \mid C_k)$ and class priors $p(C_k)$ and use these to compute **posterior probabilities** $p(C_k \mid \mathbf{x})$ through Bayes' theorem
- The maximum likelihood estimates of a Gaussian are

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \text{ and } \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{T}$$

• Assuming only 2 classes the decision boundary is linear

69

Bayesian decision theory

- Bayesian decision theory gives the optimal decision rule under the assumption that the "true" values of the probabilities are known.
- But, how can we estimate (learn) the unknown $p(x|C_i)$, j = 1, ..., K?
- Parametric models: assume that the form of the density functions is known
- Non-parametric models: no assumption about the form

1

Making a decision

• How can we make a decision after observing the value of x?

Decide
$$\begin{cases} C_1 & \text{if } P(C_1 \mid x) > P(C_2 \mid x) \\ C_2 & \text{otherwise} \end{cases}$$

· Rewriting the rule gives

Decide
$$\begin{cases} C_1 & \text{if } \frac{P(x|C_1)}{P(x|C_2)} > \frac{P(C_2)}{P(C_1)} \\ C_2 & \text{otherwise} \end{cases}$$

• Bayes decision rule minimizes the error of this decision

70

Bayesian decision theory

- · Parametric models
 - Density models (e.g., Gaussian)
 - Mixture models (e.g., mixture of Gaussians)
 - Hidden Markov Models
 - Bayesian Belief Networks
- Non-parametric models
 - Nearest neighbour estimation
 - Histogram-based estimation
 - Parzen window estimation

BEYOND THE CLASSICS

73

Classical Machine Learning Output Mapping from features Hand-designed program Input Input Classic Classic Classic

Limitations of the Classics

- Learning is disconnected from representation
 - It would be nice to bring learning to the beginning of the chain
- Almost only local constraints: global constraints are (almost) absent
 - Holistic structured representation
- Learning is not over time

74

Do we need deep learning?

References

- Selim Aksoy, Introduction to Pattern Recognition, Part I, http://retina.cs.bilkent.edu.tr/papers/patrec_tutorial1.pdf
- Ricardo Gutierrez-Osuna, Introduction to Pattern Recognition, http://research.cs.tamu.edu/prism/lectures/pr/pr_l1.pdf
- Pedro Domingos, Machine Learning, http://courses.cs.washington.edu/courses/cse446/14wi/
- Kristen Grauman, Discriminative classifiers for image recognition,
 - http://www.cs.utexas.edu/~grauman/courses/spring2011/slid es/lecture22_classifiers.pdf
- Victor Lavrenko and Nigel Goddard, Introductory Applied Machine Learning, http://www.inf.ed.ac.uk/teaching/courses/iaml/

References

- Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- Richard O. Duda, Peter E. Hart, David G. Stork,
 Pattern Classification, John Wiley & Sons, 2001
- Thomas Mitchell, Machine Learning, McGraw-Hill, 1997.
- P. Domingos, "A few useful things to know about machine learning," CACM, 2012
- Andrew Moore, Support Vector Machines Tutorial, http://www.autonlab.org/tutorials/svm.html

82

References

- Recognizing and Learning Object Categories http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html
- Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes, (K. Murphy, A. Torralba, W. Freeman), NIPS 2003
- Max-Margin Markov Networks , (B. taskar, C. Guestrin, D. Koller), NIPS 2004
- Large Margin Methods for Structured and Interdependent Output Variables, (I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun), JMLR, vol 6, 2005
- Learning Spatial Context: Using Stuff to Find Things, (G. heitz, D. Koller), ECCV 2008, http://ai.stanford.edu/~gaheitz/Research/TAS/
- An Empirical Study of Context in Object Detection, (S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, M. Hebert), CVPR 2009 http://www.cs.cmu.edu/~santosh/projects/context.html
- Generative Models for Visual Objects and Object Recognition via Bayesian Inference, L.
 Fai-Fai 2006
- Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities, (B. Yao, L. Fei-Fei), CVPR 2010 http://videolectures.net/cvpr2010 fei fei mmco/
- No Hype, All Hallelujah: Structured Models in Computer Vision, (S. Nowozin), NIPS 2010

References

- Graphical Models for Time Series, (D. Barker, A. T. Cemgil), IEEE Signal Processing Magazine, vol 27, 2010
- Dynamic Graphical Models, (J. Bilmes), IEEE Signal Processing Magazine, vol 27, 2010
- A Martingale Framework for Detecting Changes in Data Streams by Testing Exchangeability, (S. Ho, H. Wechsler), TPAMI 2010
- Introduction to Statistical Relational Learning, (L. Getoor, B. Taskar), The MIT Press 2007
- Combining Video and Sequential Statistical Relational Techniques to Monitor Card Games, (L. Antanas, B. Gutmann, I. Thon, K. Kersting, L. De Raedt), ICML 2010
- Relational Learning for Collective Classification of Entities in Images, (A. Chechetka, D. Dash, M. Philipose), AAAI 2010
- Grouplet: A Structured Image Representation for Recognizing Human and Object Interactions, (B. Yao, L. Fei-Fei), CVPR 2010

Thank You for Your Attention!