

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева

К работе допущен	
• —	(дата, подпись преподавателя)
Работа выполнена	
	(дата, подпись преподавателя)
Отчет принят	
1	(дата, подпись преподавателя)
	Работа выполнена

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № K-4

Изучение абсолютно черного тела

Нарисуйте с	хема установки.	

1.	Запишите цель проводимого эксперимента:	
2.	Что такое тепловое излучение?	
3.	Что называется абсолютно черным телом? Как оно реализуется на практике?	
4.	Запишите название и формулы законов теплового излучения, рассматриваем работе. Укажите название и размерность каждой буквы, входящей в формулу.	ых в
	Законы теплового излучения Физические величины и константы	
1.	Законы теплового излучения Физические величины и константы	
1.	Законы теплового излучения Физические величины и константы	
1.	Законы теплового излучения Физические величины и константы	
1.	Законы теплового излучения Физические величины и константы	
1. 2.	Законы теплового излучения Физические величины и константы	
2	Законы теплового излучения Физические величины и константы	
2	Законы теплового излучения Физические величины и константы	
2.	Нарисуйте модель абсолютно черного тела.	
2.		
2.		

6. В чем заключается принцип измерения температуры тела с помощью пирометра

	энергетической светимости от температуры.
7.	Какое значение температуры нельзя превышать при выполнении работы?

8. Заполните таблицу измерений в лаборатории.

Снимите показания напряжения на термостолбике при повышении и при понижении температуры печи. Результаты занесите в таблицу 1.

Таблица 1

№	Показания индикатора температуры	Напряжение на термостолбике U (мВ)		Температура излучателя $T = t + 273 + \Delta T (K)$	T^4 $(10^{11} K^4)$
	t (°C)	при ↑ <i>t</i>	при $\downarrow t$, ,	
1	300				
2	350				
3	400				
4	450				
5	500				
6	550				
7	600				
8	650				
9	700				
	α=				

Дата и подпись преподавателя

Обработка результатов измерений

1. Вычислите температуру излучателя в кельвинах и запишите в таблицу 1.

$$T = t + 273 + \Delta T$$
.

- 2. Рассчитайте T^4 . Данные занести в таблицу 1.
- 3. Постройте графики зависимости U от T^4 при подъёме и при спаде температуры (рис. 1).

U, 10⁻³B

T-4, 10⁻¹K

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

Рис. 1. Экспериментальная зависимость $U(T^4)$.

4. Определите коэффициенты наклона каждой прямой и занесите в таблицу 2.

$$k_{1} = \frac{\Delta U}{\Delta (T^{4})} =$$

$$k_{2} = \frac{\Delta U}{\Delta (T^{4})} =$$

Таблииа 2

	_	Тиолици 2		
	k	52		
b_2	b_1	b_2		
1	Δk_2			
	σ_2			
σ	ср			
$\delta\sigma_1 = \delta k_1$		$\delta\sigma_2 = \delta k_2$		
$\Delta\sigma_1$		$\Delta\sigma_2$		
Δ	ισ			
	δk_1	b_2 b_1 1 Δ $\sigma_{\rm cp}$ δk_1 $\delta \sigma_{2^2}$		

5. Оцените погрешность коэффициентов наклона экспериментальных прямых Δk_1 и Δk_2 и запишите результат в таблицу 2.

$$\Delta k_1 = \frac{b_2 - b_1}{\sqrt{n}} = b_2 - b_1$$

$$\Delta k_2 = \frac{b_2 - b_1}{\sqrt{n}} =$$

6. По коэффициентам наклона прямых k рассчитайте для обоих случаев постоянную Стефана — Больцмана σ .

$$\sigma_1 = \alpha k_1 =$$

$$\sigma_2 = \alpha k_2 =$$

7. Рассчитайте среднее значение постоянной Стефана-Больцмана.

$$\sigma_{cp} = \frac{\sigma_1 + \sigma_2}{2} =$$

8. Определите относительную погрешность постоянных Стефана-Больцмана для каждой прямой $\delta \sigma_1$ и $\delta \sigma_2$, которые будут равны соответственно относительным погрешностям коэффициентов наклона каждой прямой δk_1 и δk_2 .

$$\delta\sigma_1 = \delta k_1 = \frac{\Delta k_1}{k_1} =$$

$$\delta\sigma_2 = \delta k_2 = \frac{\Delta k_2}{k_2} =$$

9. Определите абсолютную погрешность постоянных Стефана-Больцмана для каждой прямой $\Delta \sigma_1$ и $\Delta \sigma_2$ и запишите в таблицу 2.

$$\Delta\sigma_1 = \delta\sigma_1 \cdot \sigma_1 =$$

$$\Delta\sigma_2 = \delta\sigma_2 \cdot \sigma_2 =$$

9. Определите абсолютную ошибку измерений $\Delta \sigma$ и запишите в таблицу 2.

$$\Delta \sigma = \frac{\Delta \sigma_1 + \Delta \sigma_2}{2} =$$

10. Запишите окончательный результат измерений в виде:

$$\sigma = \sigma_{cp} + \Delta \sigma =$$

11. Сравните полученное значение σ с учётом ошибки измерений с табличным значением постоянной Стефана — Больцмана $\sigma = 5,67\cdot 10^{-8}~{\rm Br/(m^2\cdot K^4)}$.