(This question continues on the following page)

B2. This question is in two parts. Part 1 is about momentum and Part 2 is about thermal physics.

Part	1	Momentum	
(a)	State	e the law of conservation of linear momentum.	[2]

(Question B2, part 1 continued)

(b) A toy rocket of mass 0.12kg contains 0.59kg of water as shown in the diagram below.

The space above the water contains high-pressure air. The nozzle of the rocket has a circular cross-section of radius $1.4 \,\mathrm{mm}$. When the nozzle is opened, water emerges from the nozzle at a **constant speed** of $18 \,\mathrm{m\,s^{-1}}$. The density of water is $1000 \,\mathrm{kg\,m^{-3}}$.

(i)	Deduce that the volume of water ejected per second through the nozzle is 1.1×10^{-4} m ³ .	[2]
(ii)	Deduce that the upward force that the ejected water exerts on the rocket is approximately 2.0 N. Explain your working by reference to Newton's laws of motion.	[4]
(iii)	State why the rocket does not lift off at the instant that the nozzle is opened.	[1]

(This question continues on the following page)

