CS 460 Programming Language Design

Midterm Exam 03/10/15

REVIEW QUESTIONS

(closed book, closed note)			
Student Name:			

1.	How does an OS get started?
2.	How can the CPU give the control back to the Kernel?
3.	What happens if we don't have user and kernel modes?
4.	How does a program in user mode invoke operations in kernel mode?

5.	Draw and describe roles of each component in the address space of a process?
6.	Thread versus process, kernel-level vs. user-level threads
7.	Memory-footprint (address space) for two kernel-level threads versus two user-level threads

8.	What is the difference between preemptive and non-preemptive scheduling?
9.	What causes the scheduler to run?
10.	Execution models a. CPU-bound vs. I/O bound
11.	Scheduling goals

13.	Avoid starvation
	a. Aging
	b. Lottery
	c. Promotion/demotion techniques
1/1	Hyper threading
17.	Tryper threating
15.	Sharing -> critical section
	a. Mutual exclusion
	b. Progress (overall)
	c. Bounded waiting (individual)

12. FCFS, RR, SJF, SRTF, Priority-based, Multi-queue

16.	Lock, p	ros and cons of each implentation
	a.	Disable interrupt
	b.	Test-and-set
	С.	Spinning lock
	d.	Blocking lock -> queue (semaphore)

17. Semaphore

- a. Binary semaphore lock
- b. Mutual exclusion + ordering

- 18. Monitor/conditional variable
 - a. More than data, block of code to be mutually excluded
 - b. Allow waiting within monitor
 - i. Wait/notify/notifyall

- 19. Solving classic synchronization problems (more next lecture)
- 20. Apply to solve specific problems in scheduling/synchronization (more next lecture)