Simplex Solver

October 20, 2023

Problem

Given the following linear system and objective function, find the optimal solution.

```
 \min(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_10 + x_11 + x_12 + x_13 + x_14 + x_15 + x_16 + x_17 + x_18 + x_1   \left\{ \begin{array}{c} y_1 + 2y_2 - y_3 - y_4 + 10y_5 - 7y_6 - 10y_7 - 2y_8 - 3y_9 - 3y_10 - 9y_11 - 10y_12 - 8y_13 - 4y_14 - 3y_15 + 6y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ y_1 + 2y_2 - y_3 - y_4 + 10y_5 - 7y_6 - 10y_7 - 2y_8 - 3y_9 - 3y_10 - 9y_11 - 10y_12 - 8y_13 - 4y_14 - 3y_15 + 6y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ y_1 + 2y_2 - y_3 - y_4 + 10y_5 - 7y_6 - 10y_7 - 2y_8 - 3y_9 - 3y_10 - 9y_11 - 10y_12 - 8y_13 - 4y_14 - 3y_15 + 6y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ y_1 + 2y_2 - y_3 - y_4 + 10y_5 - 7y_6 - 10y_7 - 2y_8 - 3y_9 - 3y_10 - 9y_11 - 10y_12 - 8y_13 - 4y_14 - 3y_15 + 6y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 - 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 - 9y_11 - 10y_12 - 8y_13 - 4y_14 - 3y_15 + 6y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 - 9y_11 - 10y_12 - 8y_13 - 4y_14 - 3y_15 + 6y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 - 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 + 10y_15 + 7y_16 \\ -y_1 - 5y_2 + 2y_3 + 3y_4 - 6y_5 - 7y_6 + 7y_7 - 8y_8 + 8y_9 + 3y_10 + 9y_11 - 10y_12 + 7y_13 - 4y_14 +
```

Solution

Add slack variables to turn all inequalities to equalities.

```
y_1 - y_2 + y_3 - y_4 + y_5 - y_6 + y_7 - y_8 + y_9 - y_10 + s_1 = 1
        2y_1 - 5y_2 + 2y_3 - 5y_4 + 2y_5 - 5y_6 + 2y_7 - 5y_8 + 2y_9 - 5y_10 + s_2 = 1
          -y_1 + 2y_2 - y_3 + 2y_4 - y_5 + 2y_6 - y_7 + 2y_8 - y_9 + 2y_10 + s_3 = 1
          -y_1 + 3y_2 - y_3 + 3y_4 - y_5 + 3y_6 - y_7 + 3y_8 - y_9 + 3y_10 + s_4 = 1
    10y_1 - 6y_2 + 10y_3 - 6y_4 + 10y_5 - 6y_6 + 10y_7 - 6y_8 + 10y_9 - 6y_10 + s_5 = 1
       -7y_1 - 7y_2 - 7y_3 - 7y_4 - 7y_5 - 7y_6 - 7y_7 - 7y_8 - 7y_9 - 7y_10 + s_6 = 1
   -10y_1 + 7y_2 - 10y_3 + 7y_4 - 10y_5 + 7y_6 - 10y_7 + 7y_8 - 10y_9 + 7y_10 + s_7 = 1
      -2y_1 - 8y_2 - 2y_3 - 8y_4 - 2y_5 - 8y_6 - 2y_7 - 8y_8 - 2y_9 - 8y_10 + s_8 = 1
       -3y_1 + 8y_2 - 3y_3 + 8y_4 - 3y_5 + 8y_6 - 3y_7 + 8y_8 - 3y_9 + 8y_10 + s_9 = 1
      -3y_1 + 3y_2 - 3y_3 + 3y_4 - 3y_5 + 3y_6 - 3y_7 + 3y_8 - 3y_9 + 3y_10 + s_10 = 1
      -9y_1 + 9y_2 - 9y_3 + 9y_4 - 9y_5 + 9y_6 - 9y_7 + 9y_8 - 9y_9 + 9y_10 + s_11 = 1
-10y_1 - 10y_2 - 10y_3 - 10y_4 - 10y_5 - 10y_6 - 10y_7 - 10y_8 - 10y_9 - 10y_10 + s_12 = 1
      -8y_1 + 7y_2 - 8y_3 + 7y_4 - 8y_5 + 7y_6 - 8y_7 + 7y_8 - 8y_9 + 7y_10 + s_13 = 1
      -4y_1 - 4y_2 - 4y_3 - 4y_4 - 4y_5 - 4y_6 - 4y_7 - 4y_8 - 4y_9 - 4y_10 + s_14 = 1
   -3y_1 + 10y_2 - 3y_3 + 10y_4 - 3y_5 + 10y_6 - 3y_7 + 10y_8 - 3y_9 + 10y_10 + s_15 = 1
       6y_1 + 7y_2 + 6y_3 + 7y_4 + 6y_5 + 7y_6 + 6y_7 + 7y_8 + 6y_9 + 7y_10 + s_16 = 1
                                          s_17 = 1
      -2y_1 - 7y_2 - 2y_3 - 7y_4 - 2y_5 - 7y_6 - 2y_7 - 7y_8 - 2y_9 - 7y_10 + s_18 = 1
      -6y_1 - 8y_2 - 6y_3 - 8y_4 - 6y_5 - 8y_6 - 6y_7 - 8y_8 - 6y_9 - 8y_10 + s_19 = 1
      -4y_1 + 2y_2 - 4y_3 + 2y_4 - 4y_5 + 2y_6 - 4y_7 + 2y_8 - 4y_9 + 2y_10 + s_20 = 1
      -7y_1 - 2y_2 - 7y_3 - 2y_4 - 7y_5 - 2y_6 - 7y_7 - 2y_8 - 7y_9 - 2y_10 + s_21 = 1
          y_1 - 9y_2 + y_3 - 9y_4 + y_5 - 9y_6 + y_7 - 9y_8 + y_9 - 9y_10 + s_22 = 1
          y_1 + 4y_2 + y_3 + 4y_4 + y_5 + 4y_6 + y_7 + 4y_8 + y_9 + 4y_10 + s_23 = 1
       9y_1 + 7y_2 + 9y_3 + 7y_4 + 9y_5 + 7y_6 + 9y_7 + 7y_8 + 9y_9 + 7y_10 + s_24 = 1
```

Create the initial tableau of the new linear system.

ſ	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_10	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_10
1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0
1	2	-5	2	-5	2	-5	2	-5	2	-5	0	1	0	0	0	0	0	0	0	0
	-1	2	-1	2	-1	2	-1	2	-1	2	0	0	1	0	0	0	0	0	0	0
1	-1	3	-1	3	-1	3	-1	3	-1	3	0	0	0	1	0	0	0	0	0	0
1	10	-6	10	-6	10	-6	10	-6	10	-6	0	0	0	0	1	0	0	0	0	0
1	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	0	0	0	0	0	1	0	0	0	0
1	-10	7	-10	7	-10	7	-10	7	-10	7	0	0	0	0	0	0	1	0	0	0
1	-2	-8	-2	-8	-2	-8	-2	-8	-2	-8	0	0	0	0	0	0	0	1	0	0
1	-3	8	-3	8	-3	8	-3	8	-3	8	0	0	0	0	0	0	0	0	1	0
1	-3	3	-3	3	-3	3	-3	3	-3	3	0	0	0	0	0	0	0	0	0	1
	-9	9	-9	9	-9	9	-9	9	-9	9	0	0	0	0	0	0	0	0	0	0
1	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	0	0	0	0	0	0	0	0	0	0
1	-8	7	-8	7	-8	7	-8	7	-8	7	0	0	0	0	0	0	0	0	0	0
1	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	0	0	0	0	0	0	0	0	0	0
1	-3	10	-3	10	-3	10	-3	10	-3	10	0	0	0	0	0	0	0	0	0	0
1	6	7	6	7	6	7	6	7	6	7	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-2	-7	-2	-7	-2	-7	-2	-7	-2	-7	0	0	0	0	0	0	0	0	0	0
1	-6	-8	-6	-8	-6	-8	-6	-8	-6	-8	0	0	0	0	0	0	0	0	0	0
	-4	2	-4	2	-4	2	-4	2	-4	2	0	0	0	0	0	0	0	0	0	0
1	-7	-2	-7	-2	-7	-2	-7	-2	-7	-2	0	0	0	0	0	0	0	0	0	0
1	1	-9	1	-9	1	-9	1	-9	1	-9	0	0	0	0	0	0	0	0	0	0
	1	4	1	4	1	4	1	4	1	4	0	0	0	0	0	0	0	0	0	0
	9	7	9	7	9	7	9	7	9	7	0	0	0	0	0	0	0	0	0	0
1	$\overline{-1}$	-1	-3	3	-4	-8	2	10	5	-3	0	0	0	0	0	0	0	0	0	0

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is y_6 and the departing variable is s_15 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

$\lceil \rfloor$	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_10	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8
-	7/10	0	7/10	0	7/10	0	7/10	0	7/10	0	1	0	0	0	0	0	0	0
	1/2	0	1/2	0	1/2	0	1/2	0	1/2	0	0	1	0	0	0	0	0	0
	-2/5	0	-2/5	0	-2/5	0	-2/5	0	-2/5	0	0	0	1	0	0	0	0	0
	-1/10	0	-1/10	0	-1/10	0	-1/10	0	-1/10	0	0	0	0	1	0	0	0	0
	41/5	0	41/5	0	41/5	0	41/5	0	41/5	0	0	0	0	0	1	0	0	0
	-91/10	0	-91/10	0	-91/10	0	-91/10	0	-91/10	0	0	0	0	0	0	1	0	0
	-79/10	0	-79/10	0	-79/10	0	-79/10	0	-79/10	0	0	0	0	0	0	0	1	0
	-22/5	0	-22/5	0	-22/5	0	-22/5	0	-22/5	0	0	0	0	0	0	0	0	1
	-3/5	0	-3/5	0	-3/5	0	-3/5	0	-3/5	0	0	0	0	0	0	0	0	0
	-21/10	0	-21/10	0	-21/10	0	-21/10	0	-21/10	0	0	0	0	0	0	0	0	0
	-63/10	0	-63/10	0	-63/10	0	-63/10	0	-63/10	0	0	0	0	0	0	0	0	0
	-13	0	-13	0	-13	0	-13	0	-13	0	0	0	0	0	0	0	0	0
	-59/10	0	-59/10	0	-59/10	0	-59/10	0	-59/10	0	0	0	0	0	0	0	0	0
	-26/5	0	-26/5	0	-26/5	0	-26/5	0	-26/5	0	0	0	0	0	0	0	0	0
	-3/10	1	-3/10	1	-3/10	1	-3/10	1	-3/10	1	0	0	0	0	0	0	0	0
	81/10	0	81/10	0	81/10	0	81/10	0	81/10	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-41/10	0	-41/10	0	-41/10	0	-41/10	0	-41/10	0	0	0	0	0	0	0	0	0
	-42/5	0	-42/5	0	-42/5	0	-42/5	0	-42/5	0	0	0	0	0	0	0	0	0
	-17/5	0	-17/5	0	-17/5	0	-17/5	0	-17/5	0	0	0	0	0	0	0	0	0
	-38/5	0	-38/5	0	-38/5	0	-38/5	0	-38/5	0	0	0	0	0	0	0	0	0
	-17/10	0	-17/10	0	-17/10	0	-17/10	0	-17/10	0	0	0	0	0	0	0	0	0
	11/5	0	11/5	0	11/5	0	11/5	0	11/5	0	0	0	0	0	0	0	0	0
	111/10	0	111/10	0	111/10	0	111/10	0	111/10	0	0	0	0	0	0	0	0	0
	-17/5	7	-27/5	11	-32/5	0	-2/5	18	13/5	5	0	0	0	0	0	0	0	0

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is y_5 and the departing variable is s_24 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

Γ	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_10	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_10	s_11	s_12	s_13
	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
l	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	3	7	1	11	0	0	6	18	9	5	0	0	0	0	0	0	0	0	0	0	0	0	0

There are no negative elements in the bottom row, so we know the solution is optimal. Thus, the solution is:

$$s_1 = \frac{40}{37}, s_10 = \frac{28}{37}, s_11 = \frac{10}{37}, s_12 = \frac{87}{37}, s_13 = \frac{17}{37}, s_14 = \frac{57}{37}, s_15 = 0, s_16 = \frac{3}{37}, s_17 = 1, s_18 = \frac{67}{37}, s_19 = \frac{75}{37}, s_29 = \frac{75}{37}, s_39 = \frac{75}{37}, s_49 = \frac{7$$