

Ens: Prof. Marco Picasso Analyse numérique et optimisation 3 July 2021 de 16h15 à 19h15 1

Student One

SCIPER: **111111**

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- \bullet Pour les questions à ${f choix}$ ${f multiple}$ il y a une ou plusieurs réponses correctes. On comptera :
 - +1/N points si vous cochez une réponse correcte, où N est le nombre de réponses correctes, 0 point si vous ne cochez rien,
 - -1/M point si vous cochez une réponse incorrecte, où M est le nombre de réponses incorrectes.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Il y a 29 questions à choix multiple et 17 points répartis sur deux questions à rédiger.
- Aucune page supplémentaire ne pourra être ajoutée à ce document.

Respectez les consignes suiva	ntes Observe this guidelines Beachten Sie bitt	e die unten stehenden Richtlinien
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

Questions à choix multiple et vrai-faux

Pour chaque question mettez une croix dans les cases correspondant à des réponses correctes sans faire de ratures.

On considère le problème suivant : étant donné la fonction $f:[0,1]\to\mathbb{R}$, trouver la fonction $u:[0,1]\to\mathbb{R}$ telle que

$$\begin{cases} -u''(x) + x(1 + \sin(u(x))) = f(x), & 0 < x < 1, \\ u(0) = 0, \\ u(1) = 0. \end{cases}$$

Question 1 Si $f(x) = 4\pi^2 \sin(2\pi x) + x(1 + \sin(\sin(2\pi x)))$, la solution de ce problème est donnée par

- $u(x) = \sin(2\pi x)$
- $u(x) = -\cos(2\pi x)$

On utilise une méthode de différences finies centrées pour approcher u et la méthode de Newton pour résoudre le système non linéaire obtenu. Le fichier exam1.m donné ci-dessous implémente cette méthode.

Question 2 A la ligne a(i)=2*coeff+????, il faut remplacer ??? par:

- 1+sin(u(i))
- i*h*(1+sin(u(i)))
- cos(u(i))
- i*h*cos(u(i))

Question 3 A la ligne b(i)=coeff*(2*u(i)-u(i-1)-u(i+1))+????-f(i*h);, il faut remplacer???? par:

- i*h*(1+sin(u(i)))
- 1+sin(u(i))
- i*h*cos(u(i))
- cos(u(i))

Question 4 A la ligne c(i)=????;, il faut remplacer ???? par:

- c(i)/a(i)
- a(i)/c(i)
- a(i+1)/c(i)
- c(i)/a(i+1)

Question 5 A la ligne a(i+1)=sqrt(a(i+1)-????);, il faut remplacer ???? par:

- a(i)*a(i)
- c(i)*c(i)
- c(i)*a(i+1)
- c(i)*a(i)

```
Question 6
              A la ligne b(i+1)=(b(i+1)-c(i)*b(i))/????;, il faut remplacer ???? par:
  a(i+1)
    c(i)
     a(i)
    c(i+1)
Question 7
              A la ligne b(i)=(b(i)-c(i)*b(i+1))/????;, il faut remplacer ???? par:
 c(i+1)
    a(i)
   c(i)
 a(i+1)
Question 8
              A la ligne u(i)=u(i)-????;, il faut remplacer ???? par:
    a(i)
     u(i)
     c(i)
    b(i)
Question 9
              Après avoir complété le fichier, les résultats obtenus sont les suivantes:
                                  >> err = exam1(9);
                                  iter=1, stop = 1.649725e+00
                                  iter=2, stop = 2.511976e-02
                                  iter=3, stop = 7.045653e-06
                                  iter=4, stop = 6.851657e-13
                                  err = 0.031974
                                 >> err = exam1(19);
                                  iter=1, stop = 1.704753e+00
                                  iter=2, stop = 2.564039e-02
                                  iter=3, stop = 6.913912e-06
                                  iter=4, stop = 6.217630e-13
                                  err = 0.0082731
                                  >> err = exam1(39);
                                  iter=1, stop = 1.725976e+00
                                  iter=2, stop = 2.577019e-02
                                  iter=3, stop = 6.880664e-06
                                  iter=4, stop = 6.025330e-13
                                  err = 0.0020607
On déduit de ces résultats que :
    L'erreur est divisée par 2 si N est multiplié par 2
    La méthode de Newton converge quadratriquement pour ce point de départ.
    La méthode de Newton converge quel que soit le point de départ.
    L'erreur est divisée par 4 si N est multiplié par 2.
```

Fichier exam1.m:

```
function err = exam1(N)
% Resolution de l'equation -u''(x)+x(1+\sin(u(x)))=f(x)
% par une methode de differences finies
% et une methode de Newton
% Etant donne u, trouver u^{n+1}
% \text{ tel que } DF(u^n)(u^n-u^{n+1}) = F(u^n)
% En pratique on construit A=DF(u^n), b=F(u^n)
% on resout Ay=b (decomposition LL^T de A) et on pose u^{n+1}=u^n-y
%
% parametres
%
%
  N
            : nombre d inconnues du systeme non lineaire
%
            : N-vecteur, diagonale de A, puis diagonale de L telle que A=LL^T
%
            : (N-1)-vecteur, sous-diagonale de A, puis sous-diagonale de L
%
            : N-vecteur, second membre de Ay=b, puis solution de Ay=b
% x
            : N-vecteur, contient u^n puis u^{n+1}
%
for i=1:N
    u(i) = 1;
end
h=1/(N+1);
coeff=(N+1)*(N+1);
stop=1;
iter=0;
while stop>1e-10
    iter=iter+1;
    for i=1:N
        a(i) = 2*coeff+????;
    end
    for i=1:N-1
        c(i) = -coeff;
    end
    b(1) = 2*coeff + ????;
    for i=2:N-1
        b(i) = coeff*(2*u(i)-u(i-1)-u(i+1))+????-f(i*h);
    end
    b(N) = ????;
    % Decomposition de Cholesky de la matrice A
    a(1) = sqrt(a(1));
    for i=1:N-1
        c(i) = ????;
        a(i+1) = sqrt(a(i+1)-????);
    end
    % Resolution du systeme lineaire Lz = b
    b(1)=b(1)/a(1);
    for i=1:N-1
        b(i+1) = (b(i+1)-c(i)*b(i))/????;
```

end

```
% resolution du systeme lineaire L^T y = z
   b(N)=b(N)/a(N);
   for i=N-1:-1:1
        b(i) = (b(i)-c(i)*b(i+1))/????;
   end
   u^{n+1} = u^n - y
   for i=1:N
        u(i) = u(i) - ????;
    end
   % calcul de ||b||/||u||
   stop=norm(b)/norm(u);
   fprintf('iter=%i, stop = %e \n',iter,stop)
end
err=0;
for i=1:N
    err=max(err,abs(u(i)-uex(i*h)));
end
end
% second membre de l'equation -u''(x)+x(1+\sin(u(x)))=f(x)
function f=f(x)
   f=4*pi*pi*sin(2*pi*x)+x*(1+sin(sin(2*pi*x)));
% solution de l'equation -u''(x)+x(1+\sin(u(x)))=f(x)
function uex=uex(x)
   uex=????;
end
```


Question 10 Cocher les affirmations vraies

$$\forall u \in \mathcal{C}^5[-2, 2], \exists C > 0, \forall 0 < h \le 1 \text{ on a}$$

$$|u'(0) - \frac{-u(2h) + 6u(h) - 6u(-h) + u(-2h)}{10h}| \le Ch^4$$

$$\exists C > 0$$
, tel que $\forall u \in \mathcal{C}^5[-2, \ 2], \ \forall \ 0 < h < 1$, on a

$$|u'(0) - \frac{-u(2h) + 6u(h) - 6u(-h) + u(-2h)}{10h}| \le Ch^4 \max_{-2 \le x \le 2} |u^{(5)}(x)|.$$

$$\forall u \in C^{5}[-2, 2], \exists C > 0, \forall 0 < h \le 1 \text{ on a}$$

$$|u'(0) - \frac{-u(2h) + 8u(h) - 8u(-h) + u(-2h)}{12h}| \le Ch^4$$

$$|u'(0) - \frac{-u(2h) + 6u(h) - 6u(-h) + u(-2h)}{10h}| \le Ch^4 \max_{-2 \le x \le 2} |u^{(5)}(x)|.$$

$$\exists C > 0$$
, tel que $\forall u \in \mathcal{C}^5[-2, 2], \forall 0 < h < 1$, on a

$$|u'(0) - \frac{-u(2h) + 8u(h) - 8u(-h) + u(-2h)}{12h}| \le Ch^4 \max_{-2 \le x \le 2} |u^{(5)}(x)|.$$

$$\exists C > 0$$
, tel que $\forall u \in \mathcal{C}^5[-2, 2], \forall 0 < h \leq 1$, on a

$$|u'(0) - \frac{-u(2h) + 6u(h) - 6u(-h) + u(-2h)}{10h}| \le Ch^4$$

$$\square \exists C > 0$$
, tel que $\forall u \in \mathcal{C}^5[-2,\ 2], \, \forall 0 < h \leq 1$, on a

$$|u'(0) - \frac{-u(2h) + 8u(h) - 8u(-h) + u(-2h)}{12h}| \le Ch^4$$

$$\left\{ \begin{array}{ll} -u''(x) = 1, & 0 < x < 1, \\ u'(0) = 0, u(1) = 0. \end{array} \right.$$

Question 11 La formule variationnelle (ou faible) du problème consiste à trouver $u \in V$ telle que:

$$\int_0^1 u'(x)v'(x)dx = \int_0^1 v(x)dx, \quad \forall v \in V,$$

où l'espace vectoriel V est donné par:

- $V = \{g : [0,1] \to \mathbb{R}, g \text{ continue}, g' \text{ continue par moreaux}, g(0) = 0, g(1) = 0\}$
- $V = \{g : [0,1] \to \mathbb{R}, g \text{ continue}, g' \text{ continue par morceaux}\}$
- $V = \{g : [0,1] \to \mathbb{R}, g \text{ continue}, g' \text{ continue par morceaux}, g(0) = 0\}$
- $V = \{g : [0,1] \to \mathbb{R}, g \text{ continue}, g' \text{ continue par morceaux}, g(1) = 0\}$

Question 12 On note V_1 le sous espace vectoriel de V engendré par la fonction φ_1 définie par

$$\varphi_1(x) = 1 - x, \quad 0 \le x \le 1.$$

Soit $u_1 \in V_1$ telle que

$$\int_0^1 u_1'(x)v'(x)dx = \int_0^1 v(x)dx, \quad \forall v \in V_1$$

On a $u_1 =$

- $\frac{1}{2}(1-x)$
- 2(1-x)
- \square 0

Soit n un entier positif, $\varphi_1, \ldots, \varphi_n \in \mathcal{C}^0[0,1]$, des fonctions linéairement indépendantes. On considère m points d'interpolations $0 \le x_1 < \cdots < x_m \le 1$ pour lesquels des observations y_1, \ldots, y_m sont données. On cherche $\alpha^* \in \mathbb{R}^n$ tel que

$$f(\alpha^*) \le f(\alpha) \ \forall \alpha \in \mathbb{R}^n$$

οù

$$\min_{\alpha_i} \frac{1}{2} \sum_{j=1}^m \left(\sum_{i=1}^n \alpha_i \varphi_i(x_j) - y_j \right)^2.$$

On peut montrer que α^* satisfait $A^T(A\alpha^* - b) = 0$, où $A \in \mathbb{R}^{m \times n}$ et $b \in \mathbb{R}^m$.

Question 13

Pour i = 1, ..., n et j = 1, ..., m la matrice A est définie par:

- $A_{ii} = \varphi_i(x_i)$

Le fichier exam2.m donné ci-dessous implémente cette méthode

Question 14 A la ligne mat(j,i) = basis(N,i,????);, il faut remplacer ???? par:

- ____ val(j)
- val(i)
- xinterp(j)
- ___ xinterp(i)

Question 15 A la ligne alpha=????;, il faut remplacer ???? par:

- (mat'*mat)\(mat'*val)
- (mat'*val)\(mat'*mat)
- (mat*mat')\(mat*val)
- (mat*val)\(mat*mat')

Fichier exam2.m:

```
function exam2(N,M)
% N : nb of neurons
\% M : nb of interpolation points
\% mat: the rectangular matrix corresponding to the least square problem
% val: the values at interpolation points
% alpha: vector alpha containing the values of alpha_i for i=1,...,N
xinterp=zeros(M,1);
val=zeros(M,1);
for j=1:M
    xinterp(j)=j/(M+1);
    val(j)=1+tanh(100*(xinterp(j)-0.5));
end
mat=zeros(M,N);
for i=1:N
    for j=1:M
        mat(j,i) = basis(N,i,????);
    end
end
alpha=????
% plot results
xx=zeros(100,1);
yy=zeros(100,1);
for k=1:100
    xx(k)=k/101;
    yy(k)=sumbasis(N,alpha,xx(k));
end
axis([0 1 -1 1]);
plot(xinterp,val,'o',xx,yy);
refresh();
end
function sumbasis=sumbasis(N,alpha,x)
    sumbasis=0;
    for i=1:N
        sumbasis=sumbasis+alpha(i)*basis(N,i,x);
    end
end
function basis=basis(N,i,x)
    basis=max(0,x-i/(N+1));
end
```


Soit $f(x) = \frac{1}{2}x^TAx - b^Tx$ où $b \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ symétrique définie positive et soit $\Omega = \{x \in \mathbb{R}^n \text{ tel que } -c_i \leq x_i \leq c_i, i = 1, \ldots, n\}$ où $c \in \mathbb{R}^n$ est donné. On cherche $x^* \in \Omega$ tel que $f(x^*) \leq f(x)$, $\forall x \in \Omega$. Soit \mathcal{L} le lagrangien définit par

$$\mathcal{L}(x, \lambda_1, \lambda_2) = f(x) - \sum_{i=1}^{n} (\lambda_1)_i (x_i + c_i) - \sum_{i=1}^{n} (\lambda_2)_i (-x_i + c_i).$$

Les conditions KKT s'écrivent: $\exists~\lambda_1^*,\lambda_2^* \in \mathbb{R}^n$ tels que

$$\begin{cases}
Ax^* - b ????? &= 0 \\
x^* + c &\geq 0 \\
-x^* + c &\geq 0 \\
\lambda_1^* &\geq 0 \\
\lambda_2^* &\geq 0 \\
(\lambda_1^*)_i(????) &= 0, i = 1, \dots, n \\
(\lambda_2^*)_i(????) &= 0, i = 1, \dots, n.
\end{cases}$$
(1)

Question 16 A la 1ère ligne de (1) il faut remplacer ???? par

- $+\lambda_1^* \lambda_2^*$
- $-\lambda_1^* + \lambda_2^*$
- $-\lambda_1^* \lambda_2^*$

Question 17 A la 6^{ème} ligne de (1) il faut remplacer ???? par

- $x_i^* c_i$
- $-x_i^*-c_i$
- $-x_i^* + c_i$
- $x_i^* + c_i$

Question 18 A la 7^{ème} ligne de (1) il faut remplacer ???? par

- $x_i^* + c_i$
- $-x_i^* + c_i$
- $-x_i^*-c_i$

On considère la méthode des points intérieurs pour approcher la solution de (1). On introduit $s_1 = x^* + c$ et $s_2 = -x^* + c$ et on écrit les lignes 1,2,3,6 et 7 de (1) sous la forme

$$F(x^*, \lambda_1^*, \lambda_2^*, s_1, s_2) = 0.$$

 $\forall x, \lambda_1, \lambda_2, s_1, s_2 \in \mathbb{R}^n$ la matrice jacobienne $DF(x, \lambda_1, \lambda_2, s_1, s_2)$ est donnée par

$$DF(x, \lambda_1, \lambda_2, s_1, s_2) = \begin{pmatrix} A & ????? & ????? & 0 & 0 \\ I & 0 & 0 & -I & 0 \\ 0 & -I & 0 & 0 & -I \\ 0 & ???? & 0 & ???? & 0 \\ 0 & 0 & ???? & 0 & ???? \end{pmatrix}.$$

On note diag λ_1 la matrice $n \times n$ diagonale, de coefficients diagonaux $(\lambda_1)_i$.

Question 19	Le bloc 1,2 de la matrice jacobienne est donné par
$igcup_1 \operatorname{diag} \lambda_1$ $igcup_2 \operatorname{diag} s_2$ $igcup_1 -I$ $igcup_1 I$ $igcup_2 \operatorname{diag} s_1$	
Question 20	Le bloc 1,3 de la matrice jacobienne est donné par
I \exists diag s_1 \exists diag s_2 \exists diag λ_1 \exists $-I$ \exists diag λ_2	
Question 21	Le bloc 4,2 de la matrice jacobienne est donné par
$\begin{array}{c c} \operatorname{diag}\lambda_1 \\ \hline I \\ \hline \operatorname{diag}\lambda_2 \\ \hline -I \\ \hline \operatorname{diag}s_2 \\ \hline \end{array}$	
	Le bloc 4,4 de la matrice jacobienne est donné par

Soit $c \in \mathbb{R}^m$, $B \in \mathbb{R}^{m \times n}$ donnés, soit $\Omega = \{q \in \mathbb{R}^n \text{ tel que } Bq = c\}$, soit $f(q) = \frac{1}{2}||q||^2$, on cherche

$$q^* \in \Omega$$
 tel que $f(q^*) \le f(q) \quad \forall \ q \in \Omega$.

On introduit le lagrangien défini $\forall q \in \mathbb{R}^n, \forall \mu \in \mathbb{R}^m$ par

$$\mathcal{L}(q,\mu) = f(q) - \mu^T (Bq - c).$$

Les conditions KKT s'écrivent

$$\begin{pmatrix} I & ????\\ ????? & 0 \end{pmatrix} \begin{pmatrix} q^* \\ \mu^* \end{pmatrix} = \begin{pmatrix} 0 \\ c \end{pmatrix}$$
 (2)

Question 23 Le bloc 1,2 de cette matrice est égal à

- \Box B
- $-B^T$
- $\square B^T$
- \Box -I
- \Box -B

Question 24 Le bloc 2,1 de cette matrice est égal à

- \Box -B
- $\Box B^T$
- B
- $\prod I$
- $\bigcap -I$
- \Box $-B^T$

Question 25 Le système linéaire (2) admet une solution unique

- \square sans condition sur B
- $\operatorname{si} \ker B^T = 0$
- si ker B=0

On suppose que $B = M^o A^{-1}$ où $M^o \in \mathbb{R}^{m \times n}$ et $A \in \mathbb{R}^{n \times n}$ est symétrique définie positive et $c = M^o(x^o - A^{-1}b)$ où x^o et $b \in \mathbb{R}^n$. Si q^* et μ^* sont solution de (2), il existe $x^* \in \mathbb{R}^n$ tel que

$$\begin{pmatrix} ????? & -I & 0 \\ 0 & A & ???? \\ M^o & 0 & 0 \end{pmatrix} \begin{pmatrix} x^* \\ q^* \\ \mu^* \end{pmatrix} = \begin{pmatrix} b \\ 0 \\ M^o x^o \end{pmatrix}$$
 (3)

Question 26 Le bloc 1,1 de cette matrice est égal à

- \Box $-M^o$
- -I
- $\prod M^o$
- $\bigcap -A$
- M^{oT}
- A
- $-M^{oT}$

Question 27 Le bloc 2,3 de cette matrice est égal à

- \square M^o
- \Box -I
- \Box -A
- M^{oT}
- $-M^{oT}$
- \Box A
- \Box $-M^o$
- \Box I

$$A\varphi_i = \lambda_i \varphi_i, \quad j = 1, \dots, n,$$

$$\varphi_j^T \varphi_i = \delta_{ji}, \quad (1 \text{ si } i = j, 0 \text{ sinon}),$$

avec $0 \le |\lambda_n| \le \cdots \le |\lambda_2| \le |\lambda_1|$.

Etant donné $x^0 \in \mathbb{R}^n$, on considère l'algorithme suivant

$$x^k = Ax^{k-1}, \quad k = 1, 2, \dots$$
 (4)

Question 28 On a

$$\square$$
 si $|\lambda_1| > |\lambda_2|$ et si $(x^0)^T \varphi_n \neq 0$ alors

$$\lim_{k \to \infty} \frac{x^k}{||x^k||} = \varphi_n.$$

si
$$|\lambda_1| > |\lambda_2|$$
 et si $(x^0)^T \varphi_1 \neq 0$ alors

$$\frac{x^k}{||x^k||} = \frac{\displaystyle\sum_{i=1}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k \varphi_i}{\left(\displaystyle\sum_{i=1}^n \alpha_i^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}\right)^{1/2}}$$

Soit m, n deux entiers $m \ge n$. Soit $B \in \mathbb{R}^{m \times n}$, on pose $B = U \Sigma V^T$ où $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ sont deux matrices orthogonales $(UU^T = U^TU = I, VV^T = V^TV = I)$ et $\Sigma \in \mathbb{R}^{m \times n}$ est une matrice diagonale de coefficients $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

On applique l'algorithme (4) avec $A = B^T B$.

Question 29 On a

$$B^TBV = V\Sigma^T\Sigma$$

$$B^T B U = U \Sigma \Sigma^T$$

$$B^T B v_i = \sigma_i^2 v_i \ i = 1, \dots, n$$
 où v_i est le i^e vecteur colonne de V

$$B^T B u_i = \sigma_i^2 u_i \ i = 1, \dots, n \text{ où } u_i \text{ est le } i^e \text{ vecteur colonne de } U.$$

Questions à rédiger

Répondre dans l'espace quadrillé dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question ouverte 1: Cette question est notée sur 10 points.

Soit $f:[a,b]\to\mathbb{R}$ continue, on veut approcher $\int_a^b f(x)dx$ à l'aide de la formule du rectangle. Soit N un entier positif destiné à être grand, on note $h=\frac{b-a}{N},\,x_i=a+ih,\,i=0,1,\ldots,N.$

(a) Montrer que

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \sum_{i=1}^{N-1} \int_{-1}^{1} f(x_i + h \frac{t+1}{2} dt).$$
 (5)

- (b) Pour $g:[-1,1]\to\mathbb{R}$ continue donnée, on approche $\int_{-1}^1 g(t)dt$ par la formule du rectangle définie par J(g)=2g(0). Définir l'approximation $L_h(f)$ de $\int_a^b f(x)dx$ obtenue en utilisant la formule du rectangle dans (5).
- (c) On suppose $f \in \mathcal{C}^2[a,b]$. Soit $i=0,1,\ldots,N-1$ fixé, soit $-1 \leq t \leq 1$, montrer que

$$f(x_i + h\frac{t+1}{2}) = p_i(t) + r_i(t)$$
 où $p_i \in \mathbb{P}_1$,

expliciter p_i et r_i .

(d) Montrer que

$$\int_{a}^{b} f(x)dx - L_{h}(f) = \frac{h}{2} \sum_{i=1}^{N-1} \int_{-1}^{1} r_{i}(t)dt.$$
 (6)

(e) Montrer que $\forall \ f \in \mathcal{C}^2[a,b], \ \exists C>0, \ \forall 0< h < b-a \ \text{on a}$

$$\left| \int_{a}^{b} f(x)dx - L_{h}(f) \right| \le Ch^{2},$$

expliciter C.

(f) Que devient le point (e) si on remplace la formule du rectangle par J(g) = 2g(-1)?

Soit $f: \mathbb{R}^n \to \mathbb{R}$ \mathcal{C}^1 et soit $x^* \in \mathbb{R}^n$ tel que $f(x^*) \le f(x) \ \forall x \in \mathbb{R}^n$.

(a) On choisit $x = x^* + sd$ où $d \in \mathbb{R}^n$ et s > 0. Montrer que

$$\nabla f(x^*)^T d > 0$$

(on rappelle que $\nabla f(x^*)^T d = \lim_{s \to 0} \frac{f(x^* + sd) - f(x^*)}{s}$). En déduire que $\nabla f(x^*) = 0$

(b) On pose $f(x) = \frac{1}{2}x^TAx - b^Tx$ où $b \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ symétrique définie positive. Pour approcher x^* on applique la méthode du gradient: étant donné $x_0 \in \mathbb{R}^n$ et $\alpha > 0$, on pose $x_{k+1} = x_k - \alpha \nabla f(x_k)$, $k = 0, 1, 2, \dots$ Montrer que

$$x^* - x_{k+1} = (I - \alpha A)(x^* - x_k).$$

(c) Soit une base orthonormée de vecteur propres de A:

$$A\varphi_j = \lambda_j \varphi_j, \quad j = 1, \dots, n$$

$$\varphi_i^T \varphi_k = \delta_{ik} \quad (1 \text{ si } k = j, 0 \text{ sinon})$$

 $A arphi_j = \lambda_j arphi_j, \quad j = 1, \dots, n,$ $arphi_j^T arphi_k = \delta_{jk} \quad (1 ext{ si } k = j, 0 ext{ sinon}),$ composer r^* avec $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$. Décomposer $x^* - x_k$ dans la base des vecteur propres et montrer que

$$||x^* - x_{k+1}|| \le \max_{1 \le i \le n} |1 - \alpha \lambda_i| ||x^* - x_k||.$$

En déduire que la méthode converge si $\alpha < \frac{2}{\lambda_n}$.

