Contents

Ac	Acknowledgments		vii
Notation			ix
1	Intro 1.1 1.2	Who Should Read This Book?	1 8 11
Ι	Appl	ied Math and Machine Learning Basics	26
2	Line	ar Algebra	28
	2.1	Scalars, Vectors, Matrices and Tensors	28
	2.2	Multiplying Matrices and Vectors	30
	2.3	Identity and Inverse Matrices	32
	2.4	Linear Dependence and Span	33
	2.5	Norms	35
	2.6	Special Kinds of Matrices and Vectors	36
	2.7	Eigendecomposition	37
	2.8	Singular Value Decomposition	40
	2.9	The Moore-Penrose Pseudoinverse	41
	2.10	The Trace Operator	42
	2.11	Determinant	43
	2.12	Example: Principal Components Analysis	43
3	Probability and Information Theory		
	3.1	Why Probability?	48
	3.2	Random Variables	51
	3.3	Probability Distributions	51
	3.4	Marginal Probability	53
	3.5	Conditional Probability	53

	3.6	The Chain Rule of Conditional Probabilities	54		
	3.7	Independence and Conditional Independence	54		
	3.8	Expectation, Variance and Covariance	55		
	3.9	Information Theory	56		
	3.10	Common Probability Distributions	59		
	3.11	Useful Properties of Common Functions	65		
	3.12	Bayes' Rule	67		
	3.13	Technical Details of Continuous Variables	67		
	3.14	Structured Probabilistic Models	69		
	3.15	Example: Naive Bayes	71		
4	Numerical Computation 75				
	4.1	Overflow and Underflow	75		
	4.2	Poor Conditioning	76		
	4.3	Gradient-Based Optimization	77		
	4.4	Constrained Optimization	86		
	4.5	Example: Linear Least Squares	88		
5	Machine Learning Basics 90				
	5.1	Learning Algorithms	90		
	5.2	Example: Linear Regression			
	5.3				
	5.4	• • • •	110		
	5.5	Estimators, Bias and Variance	111		
	5.6	Maximum Likelihood Estimation			
	5.7	Bayesian Statistics			
	5.8	Supervised Learning Algorithms	131		
	5.9	Unsupervised Learning Algorithms	136		
	5.10	Weakly Supervised Learning			
	5.11	Building a Machine Learning Algorithm			
	5.12	The Curse of Dimensionality and Statistical Limitations of Local			
		Generalization	141		
II	Dee	p Networks: Modern Practices	151		
6	Feedforward Deep Networks				
	6.1	MLPs from the 1980's	154		
	6.2	Estimating Conditional Statistics	158		
	6.3	Parametrizing a Learned Predictor	158		
	6.4	Computational Graphs and Back-Propagation	170		

	6.5	Back-propagation through Random Operations and Graphical Models	183
	6.6	Universal Approximation Properties and Depth	187
	6.7	Feature / Representation Learning	
	6.8	Piecewise Linear Hidden Units	193
	6.9	Historical Notes	
7	Regu	ularization of Deep or Distributed Models	197
	7.1	Regularization from a Bayesian Perspective	199
	7.2	Classical Regularization: Parameter Norm Penalty	200
	7.3	Classical Regularization as Constrained Optimization	207
	7.4	Regularization and Under-Constrained Problems	209
	7.5	Dataset Augmentation	210
	7.6	Classical Regularization as Noise Robustness	212
	7.7	Early Stopping as a Form of Regularization	216
	7.8	Parameter Tying and Parameter Sharing	222
	7.9	Sparse Representations	224
	7.10	Bagging and Other Ensemble Methods	225
	7.11	Dropout	228
	7.12	Multi-Task Learning	231
	7.13	Adversarial Training	233
8	Optimization for Training Deep Models 23		
	8.1	Optimization for Model Training	236
	8.2	Challenges in Neural Network Optimization	241
	8.3	Basic Algorithms	253
	8.4	Algorithms with Adaptive Learning Rates	259
	8.5	Approximate Second-Order Methods	265
	8.6	Natural Gradient Methods	274
	8.7	Optimization Strategies and Meta-Algorithms	277
9	Con	volutional Networks	290
	9.1	The Convolution Operation	291
	9.2	Motivation	294
	9.3	Pooling	300
	9.4	Convolution and Pooling as an Infinitely Strong Prior	302
	9.5	Variants of the Basic Convolution Function	304
	9.6	Structured Outputs	310
	9.7	Data Types	311
	9.8	Efficient Convolution Algorithms	313
	0.0	Random or Unsupervised Features	21/

	9.10	The Neuroscientific Basis for Convolutional Networks	315
	9.11	Convolutional Networks and the History of Deep Learning $\ . \ . \ .$	321
10	Sequ	nence Modeling: Recurrent and Recursive Nets	323
	10.1	Unfolding Computational Graphs and Sharing Parameters	324
	10.2	Recurrent Neural Networks	326
	10.3	Bidirectional RNNs	340
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	341
	10.5	Deep Recurrent Networks	343
	10.6	Recursive Neural Networks	345
	10.7	The Challenge of Long-Term Dependencies	347
11	Prac	etical methodology	364
	11.1	Default Baseline Models	366
	11.2	Selecting Hyperparameters	367
	11.3	Debugging Strategies	
12	Applications 38		
	12.1	Large Scale Deep Learning	381
	12.2	Computer Vision	
	12.3	Speech Recognition	
	12.4	Natural Language Processing and Neural Language Models	
	12.5	Structured Outputs	
	12.6	Other Applications	413
III	\mathbf{De}	ep Learning Research	422
13		ar Factor Models and Autoencoders	425
	13.1	Regularized Autoencoders	
	13.2	Representational Power, Layer Size and Depth	
	13.3	Reconstruction Distribution	
	13.4	Linear Factor Models	
	13.5	Probabilistic PCA and Factor Analysis	
	13.6	Reconstruction Error as Log-Likelihood	
	13.7	Sparse Representations	
	13.8	Denoising Autoencoders	
	13.9	Contractive Autoencoders	447
14	_	resentation Learning	450
	14.1	Greedy Layerwise Unsupervised Pretraining	
	14.2	Transfer Learning and Domain Adaptation	455

	14.3	Semi-Supervised Learning	459
	14.4	Semi-Supervised Disentangling of Causal Factors	461
	14.5	Assumption of Underlying Factors and Distributed Representation	464
	14.6	Exponential Gain in Representational Efficiency from Distributed	
		Representations	465
	14.7	Exponential Gain in Representational Efficiency from Depth	
	14.8	Priors regarding the Underlying Factors	
15	The	Manifold Perspective on Representation Learning	473
	15.1	Manifold Interpretation of Linear Autoencoders	479
	15.2	Manifold Interpretation of Sparse Coding	483
	15.3	The Entropy Bias from Maximum Likelihood	483
	15.4	Manifold Learning via Regularized Autoencoders	484
	15.5	Tangent Distance, Tangent-Prop, and Manifold Tangent Classifier	485
16	Stru	ctured Probabilistic Models for Deep Learning	489
	16.1	The Challenge of Unstructured Modeling	490
	16.2	Using Graphs to Describe Model Structure	494
	16.3	Advantages of Structured Modeling	509
	16.4	Learning about Dependencies	509
	16.5	Inference and Approximate Inference over Latent Variables	511
	16.6	The Deep Learning Approach to Structured Probabilistic Models	512
17	Mon	te Carlo Methods	516
	17.1	Sampling and Monte Carlo Methods	516
	17.2	Markov Chain Monte Carlo Methods	516
	17.3	Metropolis-Hastings and Gibbs Sampling	518
	17.4	The Difficulty of Mixing between Well-Separated Modes	520
18	Confronting the Partition Function 52		521
	18.1	The Log-Likelihood Gradient of Unnormalized Models	
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	
	18.3	Pseudolikelihood	
	18.4	Score Matching and Ratio Matching	
	18.5	Denoising Score Matching	
	18.6	Noise-Contrastive Estimation	535
	18.7	Estimating the Partition Function	538
19		roximate inference	545
	19.1	Inference as Optimization	545
	19.2	Expectation Maximization	548

	19.3	MAP Inference: Sparse Coding as a Probabilistic Model	549
	19.4	Combining Neural Networks and Search	550
	19.5	Variational Inference and Learning	552
	19.6	Stochastic Inference	557
	19.7	Learned Approximate Inference	557
20	Deep	Generative Models	559
	20.1	Boltzmann Machines	559
	20.2	Restricted Boltzmann Machines	562
	20.3	Training Restricted Boltzmann Machines	565
	20.4	Deep Belief Networks	569
	20.5	Deep Boltzmann Machines	571
	20.6	Boltzmann Machines for Real-Valued Data	584
	20.7	Convolutional Boltzmann Machines	586
	20.8	Other Boltzmann Machines	587
	20.9	Directed Generative Nets	587
	20.10	Auto-Regressive Networks	594
	20.11	Generative Views of Autoencoders	599
	20.12	Generative Stochastic Networks	602
	20.13	Methodological Notes	604
Bil	oliogra	aphy	609
Inc	Index 656		

Bibliography

- Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. *Cognitive Science*, **9**, 147–169. 559
- Alain, G. and Bengio, Y. (2012). What regularized auto-encoders learn from the data generating distribution. Technical Report Arxiv report 1211.4246, Université de Montréal. 445
- Alain, G. and Bengio, Y. (2013). What regularized auto-encoders learn from the data generating distribution. In *ICLR'2013*. also arXiv report 1211.4246. 429, 445, 447
- Anderson, E. (1935). The Irises of the Gaspe Peninsula. Bulletin of the American Iris Society, 59, 2–5. 18
- Ba, J., Mnih, V., and Kavukcuoglu, K. (2014). Multiple object recognition with visual attention. arXiv:1412.7755. 187
- Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. Technical report, arXiv:1409.0473. 22, 92, 343, 358, 401, 410, 411
- Bahl, L. R., Brown, P., de Souza, P. V., and Mercer, R. L. (1987). Speech recognition with continuous-parameter hidden Markov models. Computer, Speech and Language, 2, 219–234. 65
- Baldi, P. and Brunak, S. (1998). Bioinformatics, the Machine Learning Approach. MIT Press. 550
- Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning from examples without local minima. *Neural Networks*, **2**, 53–58. 244
- Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. *Bioinformatics*, **15**(11), 937–946. 341
- Baldi, P., Sadowski, P., and Whiteson, D. (2014). Searching for exotic particles in high-energy physics with deep learning. *Nature communications*, **5**. 22

- Barron, A. E. (1993). Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Trans. on Information Theory*, **39**, 930–945. 188
- Bartholomew, D. J. (1987). Latent variable models and factor analysis. Oxford University Press. 433
- Basilevsky, A. (1994). Statistical Factor Analysis and Related Methods: Theory and Applications. Wiley. 433
- Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop. 76, 182, 384
- Basu, S. and Christensen, J. (2013). Teaching classification boundaries to humans. In AAAI'2013. 289
- Baxter, J. (1995). Learning internal representations. In *Proceedings of the 8th International Conference on Computational Learning Theory (COLT'95)*, pages 311–320, Santa Cruz, California. ACM Press. 233
- Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2015). Automatic differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767. 180
- Bayer, J. and Osendorfer, C. (2014). Learning stochastic recurrent networks. arXiv preprint arXiv:1411.7610. 230
- Becker, S. and Hinton, G. (1992). A self-organizing neural network that discovers surfaces in random-dot stereograms. *Nature*, **355**, 161–163. 471
- Behnke, S. (2001). Learning iterative image reconstruction in the neural abstraction pyramid. *Int. J. Computational Intelligence and Applications*, **1**(4), 427–438. 442
- Beiu, V., Quintana, J. M., and Avedillo, M. J. (2003). Vlsi implementations of threshold logic-a comprehensive survey. *Neural Networks, IEEE Transactions on*, **14**(5), 1217–1243. 388
- Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS'01, Cambridge, MA. MIT Press. 459
- Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Computation*, **15**(6), 1373–1396. 149, 477
- Bengio, S. and Bengio, Y. (2000a). Taking on the curse of dimensionality in joint distributions using neural networks. *IEEE Transactions on Neural Networks, special issue on Data Mining and Knowledge Discovery*, **11**(3), 550–557. 596
- Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence prediction with recurrent neural networks. Technical report, arXiv:1506.03099. 330
- Bengio, Y. (1991). Artificial Neural Networks and their Application to Sequence Recognition. Ph.D. thesis, McGill University, (Computer Science), Montreal, Canada. 350, 550

- Bengio, Y. (1999). Markovian models for sequential data. *Neural Computing Surveys*, **2**, 129–162. 550
- Bengio, Y. (2000). Gradient-based optimization of hyperparameters. *Neural Computation*, **12**(8), 1889–1900. 375
- Bengio, Y. (2002). New distributed probabilistic language models. Technical Report 1215, Dept. IRO, Université de Montréal. 403
- Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers. 146, 190
- Bengio, Y. (2013a). Deep learning of representations: looking forward. In *Statistical Language and Speech Processing*, volume 7978 of *Lecture Notes in Computer Science*, pages 1–37. Springer, also in arXiv at http://arxiv.org/abs/1305.0445. 386
- Bengio, Y. (2013b). Estimating or propagating gradients through stochastic neurons. Technical Report arXiv:1305.2982, Universite de Montreal. 512
- Bengio, Y. and Bengio, S. (2000b). Modeling high-dimensional discrete data with multilayer neural networks. In NIPS'99, pages 400–406. MIT Press. 594, 596, 597, 598
- Bengio, Y. and Delalleau, O. (2009). Justifying and generalizing contrastive divergence. Neural Computation, 21(6), 1601–1621. 445, 526, 568
- Bengio, Y. and Frasconi, P. (1996). Input/Output HMMs for sequence processing. *IEEE Transactions on Neural Networks*, **7**(5), 1231–1249. 550
- Bengio, Y. and Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation. In NIPS'03, Cambridge, MA. MIT Press, Cambridge. 111
- Bengio, Y. and LeCun, Y. (2007a). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, *Large Scale Kernel Machines*. MIT Press. 16, 193
- Bengio, Y. and LeCun, Y. (2007b). Scaling learning algorithms towards AI. In *Large Scale Kernel Machines*. 146
- Bengio, Y. and Monperrus, M. (2005). Non-local manifold tangent learning. In NIPS'04, pages 129–136. MIT Press. 147, 478
- Bengio, Y. and Sénécal, J.-S. (2003). Quick training of probabilistic neural nets by importance sampling. In *Proceedings of AISTATS 2003*. 406
- Bengio, Y. and Sénécal, J.-S. (2008). Adaptive importance sampling to accelerate training of a neural probabilistic language model. *IEEE Trans. Neural Networks*, **19**(4), 713–722. 406
- Bengio, Y., De Mori, R., Flammia, G., and Kompe, R. (1991). Phonetically motivated acoustic parameters for continuous speech recognition using artificial neural networks. In *Proceedings of EuroSpeech'91*. 24, 395

- Bengio, Y., De Mori, R., Flammia, G., and Kompe, R. (1992a). Global optimization of a neural network-hidden Markov model hybrid. *IEEE Transactions on Neural Networks*, **3**(2), 252–259. 550
- Bengio, Y., De Mori, R., Flammia, G., and Kompe, R. (1992b). Neural network gaussian mixture hybrid for speech recognition or density estimation. In NIPS 4, pages 175–182. Morgan Kaufmann. 395
- Bengio, Y., Frasconi, P., and Simard, P. (1993). The problem of learning long-term dependencies in recurrent networks. In *IEEE International Conference on Neural Networks*, pages 1183–1195, San Francisco. IEEE Press. (invited paper). 250, 359
- Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. *IEEE Tr. Neural Nets.* 250, 251, 252, 347, 355, 359
- Bengio, Y., LeCun, Y., Nohl, C., and Burges, C. (1995). Lerec: A NN/HMM hybrid for on-line handwriting recognition. *Neural Computation*, **7**(6), 1289–1303. 550
- Bengio, Y., Latendresse, S., and Dugas, C. (1999). Gradient-based learning of hyper-parameters. Learning Conference, Snowbird. 375
- Bengio, Y., Ducharme, R., and Vincent, P. (2001a). A neural probabilistic language model. In NIPS'00, pages 932–938. MIT Press. 15, 385, 402
- Bengio, Y., Ducharme, R., and Vincent, P. (2001b). A neural probabilistic language model. In NIPS'2000, pages 932–938. 397, 408, 418
- Bengio, Y., Ducharme, R., and Vincent, P. (2001c). A neural probabilistic language model. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, NIPS'2000, pages 932–938. MIT Press. 479
- Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003a). A neural probabilistic language model. *JMLR*, **3**, 1137–1155. 397, 402, 408
- Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003b). A neural probabilistic language model. *Journal of Machine Learning Research*, 3, 1137–1155. 479
- Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O., and Marcotte, P. (2006a). Convex neural networks. In NIPS'2005, pages 123–130. 228
- Bengio, Y., Delalleau, O., and Le Roux, N. (2006b). The curse of highly variable functions for local kernel machines. In NIPS'2005. 146
- Bengio, Y., Larochelle, H., and Vincent, P. (2006c). Non-local manifold Parzen windows. In NIPS'2005. MIT Press. 147, 478
- Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007a). Greedy layer-wise training of deep networks. In NIPS'2006. 16, 452, 454
- Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007b). Greedy layer-wise training of deep networks. In NIPS 19, pages 153–160. MIT Press. 190, 283, 284

- Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In *ICML'09*. 288
- Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013a). Better mixing via deep representations. In *ICML'2013*. 520
- Bengio, Y., Léonard, N., and Courville, A. (2013b). Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv:1308.3432. 185, 187, 386, 512
- Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013c). Generalized denoising autoencoders as generative models. In *NIPS'2013*. 447, 599, 601
- Bengio, Y., Courville, A., and Vincent, P. (2013d). Representation learning: A review and new perspectives. *IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI)*, **35**(8), 1798–1828. 470, 590
- Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014a). Deep generative stochastic networks trainable by backprop. Technical Report arXiv:1306.1091. 512
- Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014b). Deep generative stochastic networks trainable by backprop. In *ICML'2014*. 512, 600, 601, 602, 603
- Bennett, C. (1976). Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics, 22(2), 245–268. 543
- Berger, A. L., Della Pietra, V. J., and Della Pietra, S. A. (1996). A maximum entropy approach to natural language processing. *Computational Linquistics*, **22**, 39–71. 409
- Berglund, M. and Raiko, T. (2013). Stochastic gradient estimate variance in contrastive divergence and persistent contrastive divergence. CoRR, abs/1312.6002. 530
- Bergstra, J. (2011). Incorporating Complex Cells into Neural Networks for Pattern Classification. Ph.D. thesis, Université de Montréal. 225, 428
- Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. *J. Machine Learning Res.*, **13**, 281–305. 374
- Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010a). Theano: a CPU and GPU math expression compiler. In *Proceedings of the Python for Scientific Computing Conference (SciPy)*. Oral Presentation. 76, 384
- Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010b). Theano: a CPU and GPU math expression compiler. In *Proc. SciPy*. 182, 183
- Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimization. In NIPS'2011. 375

- Bertsekas, D. P. (2004). Nonlinear programming. Athena Scientific, 2 edition. 254
- Bertsekas, D. P. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific. 97
- Besag, J. (1975). Statistical analysis of non-lattice data. *The Statistician*, **24**(3), 179–195.
- Bishop, C. M. (1994). Mixture density networks. 167
- Bishop, C. M. (1995a). Regularization and complexity control in feed-forward networks. In *Proceedings International Conference on Artificial Neural Networks ICANN'95*, volume 1, page 141–148. 212, 220
- Bishop, C. M. (1995b). Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7(1), 108–116. 212
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. 90, 136
- Blum, A. L. and Rivest, R. L. (1992). Training a 3-node neural network is np-complete. 252
- Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989). Learnability and the vapnik-chervonenkis dimension. *Journal of the ACM*, **36**(4), 929—865. 104
- Bonnet, G. (1964). Transformations des signaux aléatoires à travers les systèmes non linéaires sans mémoire. Annales des Télécommunications, 19(9–10), 203–220. 184, 512
- Bordes, A., Weston, J., Collobert, R., and Bengio, Y. (2011). Learning structured embeddings of knowledge bases. In AAAI 2011. 420
- Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2012). Joint learning of words and meaning representations for open-text semantic parsing. *AISTATS* '2012. 347, 420, 421
- Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2013a). A semantic matching energy function for learning with multi-relational data. *Machine Learning: Special Issue on Learning Semantics*. 420
- Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013b). Translating embeddings for modeling multi-relational data. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, *Advances in Neural Information Processing Systems* 26, pages 2787–2795. Curran Associates, Inc. 420
- Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In *COLT '92: Proceedings of the fifth annual workshop on Computational learning theory*, pages 144–152, New York, NY, USA. ACM. 15, 132, 160
- Bottou, L. (1991). Une approche théorique de l'apprentissage connexioniste; applications à la reconnaissance de la parole. Ph.D. thesis, Université de Paris XI. 550

- Bottou, L. (1998). Online algorithms and stochastic approximations. In D. Saad, editor, Online Learning in Neural Networks. Cambridge University Press, Cambridge, UK. 255
- Bottou, L. (2011). From machine learning to machine reasoning. Technical report, arXiv.1102.1808. 345, 347
- Bottou, L. (2015). Multilayer neural networks. Deep Learning Summer School. 379
- Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In NIPS'2008. 241, 254, 256
- Bottou, L., Fogelman-Soulié, F., Blanchet, P., and Lienard, J. S. (1990). Speaker independent isolated digit recognition: multilayer perceptrons vs dynamic time warping. *Neural Networks*, **3**, 453–465. 550
- Bottou, L., Bengio, Y., and LeCun, Y. (1997). Global training of document processing systems using graph transformer networks. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'97)*, pages 490–494, Puerto Rico. IEEE. 550, 551
- Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In *ICML'12*. 412
- Boureau, Y., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of feature pooling in vision algorithms. In *Proc. International Conference on Machine learning (ICML'10)*. 302
- Boureau, Y., Le Roux, N., Bach, F., Ponce, J., and LeCun, Y. (2011). Ask the locals: multi-way local pooling for image recognition. In *Proc. International Conference on Computer Vision (ICCV'11)*. IEEE. 302
- Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. *Biological Cybernetics*, **59**, 291–294. 425
- Bourlard, H. and Morgan, N. (1993). Connectionist Speech Recognition. A Hybrid Approach, volume 247 of The Kluwer international series in engineering and computer science. Kluwer Academic Publishers, Boston. 550
- Bourlard, H. and Wellekens, C. (1989). Speech pattern discrimination and multi-layered perceptrons. Computer Speech and Language, 3, 1–19. 395
- Bourlard, H. and Wellekens, C. (1990). Links between hidden Markov models and multilayer perceptrons. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12, 1167–1178. 550
- Boyd, S. and Vandenberghe, L. (2004). *Convex Optimization*. Cambridge University Press, New York, NY, USA. 86

- Brady, M. L., Raghavan, R., and Slawny, J. (1989). Back-propagation fails to separate where perceptrons succeed. *IEEE Transactions on Circuits and Systems*, **36**, 665–674. 243
- Brand, M. (2003). Charting a manifold. In NIPS'2002, pages 961–968. MIT Press. 149, 477
- Breiman, L. (1994). Bagging predictors. Machine Learning, 24(2), 123–140. 225
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, CA. 136
- Bridle, J. S. (1990). Alphanets: a recurrent 'neural' network architecture with a hidden Markov model interpretation. *Speech Communication*, **9**(1), 83–92. 163
- Briggman, K., Denk, W., Seung, S., Helmstaedter, M. N., and Turaga, S. C. (2009). Maximin affinity learning of image segmentation. In *NIPS'2009*, pages 1865–1873. 311
- Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D.,
 Mercer, R. L., and Roossin, P. S. (1990). A statistical approach to machine translation.
 Computational linguistics, 16(2), 79–85.
- Brown, P. F., Pietra, V. J. D., DeSouza, P. V., Lai, J. C., and Mercer, R. L. (1992). Class-based n-gram models of natural language. *Computational Linguistics*, **18**, 467–479. 400
- Bryson, A. and Ho, Y. (1969). Applied optimal control: optimization, estimation, and control. Blaisdell Pub. Co. 196
- Bryson, Jr., A. E. and Denham, W. F. (1961). A steepest-ascent method for solving optimum programming problems. Technical Report BR-1303, Raytheon Company, Missle and Space Division. 196
- Buchberger, B., Collins, G. E., Loos, R., and Albrecht, R. (1983). *Computer Algebra*. Springer-Verlag. 183
- Buciluă, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 535–541. ACM. 385
- Cai, M., Shi, Y., and Liu, J. (2013). Deep maxout neural networks for speech recognition. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on, pages 291–296. IEEE. 195
- Carreira-Perpiñan, M. A. and Hinton, G. E. (2005). On contrastive divergence learning. In R. G. Cowell and Z. Ghahramani, editors, AISTATS'2005, pages 33–40. Society for Artificial Intelligence and Statistics. 526, 568
- Caruana, R. (1993). Multitask connectionist learning. In *Proc. 1993 Connectionist Models Summer School*, pages 372–379. 231

- Cauchy, A. (1847a). Méthode générale pour la résolution de systèmes d'équations simultanées. In Compte rendu des séances de l'académie des sciences, pages 536–538. 77
- Cauchy, L. A. (1847b). Méthode générale pour la résolution des systèmes d'équations simultanées. Compte Rendu à l'Académie des Sciences. 196
- Cayton, L. (2005). Algorithms for manifold learning. Technical Report CS2008-0923, UCSD. 149, 473
- Challis, E. and Barber, D. (2012). Affine independent variational inference. In NIPS'2012. 512
- Chapelle, O., Weston, J., and Schölkopf, B. (2003). Cluster kernels for semi-supervised learning. In NIPS'02, pages 585–592, Cambridge, MA. MIT Press. 459
- Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning. MIT Press, Cambridge, MA. 459
- Chellapilla, K., Puri, S., and Simard, P. (2006). High Performance Convolutional Neural Networks for Document Processing. In Guy Lorette, editor, *Tenth International Workshop on Frontiers in Handwriting Recognition*, La Baule (France). Université de Rennes 1, Suvisoft. http://www.suvisoft.com. 21, 24, 383
- Chen, S. F. and Goodman, J. T. (1999). An empirical study of smoothing techniques for language modeling. *Computer, Speech and Language*, **13**(4), 359–393. 398, 399, 409
- Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. (2014a). Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th international conference on Architectural support for programming languages and operating systems, pages 269–284. ACM. 388
- Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N., et al. (2014b). Dadiannao: A machine-learning supercomputer. In *Microarchitecture* (MICRO), 2014 47th Annual IEEE/ACM International Symposium on, pages 609–622. IEEE. 388
- Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman, K. (2014). Project adam: Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI'14). 385
- Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y. (2014a). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In *Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014)*. 336, 343, 355, 410
- Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014b). On the properties of neural machine translation: Encoder-decoder approaches. *ArXiv e-prints*, **abs/1409.1259**. 355

- Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2014). The loss surface of multilayer networks. 243, 245
- Chorowski, J., Bahdanau, D., Cho, K., and Bengio, Y. (2014). End-to-end continuous speech recognition using attention-based recurrent nn: First results. arXiv:1412.1602. 396
- Chrupala, G., Kadar, A., and Alishahi, A. (2015). Learning language through pictures. arXiv 1506.03694. 355
- Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. NIPS'2014 Deep Learning workshop, arXiv 1412.3555. 355, 396
- Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2015). Gated feedback recurrent neural networks. In *ICML'15*. 355
- Ciresan, D., Meier, U., Masci, J., and Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification. *Neural Networks*, **32**, 333–338. 22, 190
- Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep big simple neural nets for handwritten digit recognition. *Neural Computation*, **22**, 1–14. 21, 24, 383
- Coates, A. and Ng, A. Y. (2011). The importance of encoding versus training with sparse coding and vector quantization. In *ICML'2011*. 24
- Coates, A., Lee, H., and Ng, A. Y. (2011). An analysis of single-layer networks in unsupervised feature learning. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011)*. 392
- Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., and Andrew, N. (2013). Deep learning with cots hpc systems. In S. Dasgupta and D. McAllester, editors, *Proceedings of the 30th International Conference on Machine Learning (ICML-13)*, volume 28 (3), pages 1337–1345. JMLR Workshop and Conference Proceedings. 21, 24, 315, 385
- Collobert, R. (2004). Large Scale Machine Learning. Ph.D. thesis, Université de Paris VI, LIP6. 160
- Collobert, R. (2011). Deep learning for efficient discriminative parsing. In AISTATS'2011. 93
- Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In *ICML'2008*. 407
- Collobert, R., Bengio, S., and Bengio, Y. (2001). A parallel mixture of SVMs for very large scale problems. Technical Report IDIAP-RR-01-12, IDIAP. 387
- Collobert, R., Bengio, S., and Bengio, Y. (2002). Parallel mixture of SVMs for very large scale problems. *Neural Computation*, **14**(5), 1105–1114. 387

- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011a). Natural language processing (almost) from scratch. *Journal of Machine Learning Research*, 12, 2493–2537. 288
- Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011b). Torch7: A matlab-like environment for machine learning. In *BigLearn*, *NIPS Workshop*. 384
- Comon, P. (1994). Independent component analysis a new concept? *Signal Processing*, **36**, 287–314. 434, 435
- Cortes, C. and Vapnik, V. (1995). Support vector networks. *Machine Learning*, **20**, 273–297. 15, 132
- Couprie, C., Farabet, C., Najman, L., and LeCun, Y. (2013). Indoor semantic segmentation using depth information. In *International Conference on Learning Representations* (ICLR2013). 22, 190
- Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Low precision arithmetic for deep learning. In *Arxiv:1412.7024*, *ICLR'2015 Workshop*. 389
- Courville, A., Bergstra, J., and Bengio, Y. (2011). Unsupervised models of images by spike-and-slab RBMs. In *ICML'11*. 492, 585
- Courville, A., Desjardins, G., Bergstra, J., and Bengio, Y. (2014). The spike-and-slab RBM and extensions to discrete and sparse data distributions. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, **36**(9), 1874–1887. 586
- Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd Edition. Wiley-Interscience. 56
- Cox, D. and Pinto, N. (2011). Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In *Automatic Face & Gesture Recognition* and Workshops (FG 2011), 2011 IEEE International Conference on, pages 8–15. IEEE. 314
- Cramér, H. (1946). Mathematical methods of statistics. Princeton University Press. 124, 256
- Crick, F. H. C. and Mitchison, G. (1983). The function of dream sleep. *Nature*, **304**, 111–114. 524
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems*, **2**, 303–314. 187, 468
- Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E. (2010). Phone recognition with the mean-covariance restricted Boltzmann machine. In NIPS'2010. 20
- Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. *IEEE Transactions on Audio*, Speech, and Language Processing, 20(1), 33–42. 395

- Dahl, G. E., Jaitly, N., and Salakhutdinov, R. (2014). Multi-task neural networks for QSAR predictions. arXiv:1406.1231. 22
- Dauphin, Y. and Bengio, Y. (2013). Stochastic ratio matching of RBMs for sparse high-dimensional inputs. In NIPS26. NIPS Foundation. 534
- Dauphin, Y., Glorot, X., and Bengio, Y. (2011). Large-scale learning of embeddings with reconstruction sampling. In *ICML* '2011. 406
- Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS'2014. 243, 244, 245
- Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G., Durand, F., and Freeman, W. T. (2014). The visual microphone: Passive recovery of sound from video. ACM Transactions on Graphics (Proc. SIGGRAPH), 33(4), 79:1–79:10. 389
- Dayan, P. (1990). Reinforcement comparison. In Connectionist Models: Proceedings of the 1990 Connectionist Summer School, San Mateo, CA. 187
- Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012). Large scale distributed deep networks. In NIPS'2012. 385
- Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In NIPS. 16, 189, 468
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In *CVPR09*. 18, 139
- Deng, J., Berg, A. C., Li, K., and Fei-Fei, L. (2010a). What does classifying more than 10,000 image categories tell us? In *Proceedings of the 11th European Conference on Computer Vision: Part V*, ECCV'10, pages 71–84, Berlin, Heidelberg. Springer-Verlag. 18
- Deng, L. and Yu, D. (2014). Deep learning methods and applications. Foundations and Trends in Signal Processing. 396
- Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed, A., and Hinton, G. (2010b). Binary coding of speech spectrograms using a deep auto-encoder. In *Interspeech 2010*, Makuhari, Chiba, Japan. 20
- Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. *NIPS*. 592, 593
- Desjardins, G. and Bengio, Y. (2008). Empirical evaluation of convolutional RBMs for vision. Technical Report 1327, Département d'Informatique et de Recherche Opérationnelle, Université de Montréal. 586

- Desjardins, G., Courville, A., and Bengio, Y. (2011). On tracking the partition function. In NIPS'2011. 543
- Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast and robust neural network joint models for statistical machine translation. In *Proc.* ACL'2014. 409
- Devroye, L. (2013). Non-Uniform Random Variate Generation. SpringerLink: Bücher. Springer New York. 588
- DiCarlo, J. J. (2013). Mechanisms underlying visual object recognition: Humans vs. neurons vs. machines. NIPS Tutorial. 22, 317
- Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., and Darrell, T. (2014). Long-term recurrent convolutional networks for visual recognition and description. arXiv:1411.4389. 93
- Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Technical Report 2003-08, Dept. Statistics, Stanford University. 149, 477
- Dosovitskiy, A., Tobias Springenberg, J., and Brox, T. (2015). Learning to generate chairs with convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 1538–1546. 590
- Doya, K. (1993). Bifurcations of recurrent neural networks in gradient descent learning. *IEEE Transactions on Neural Networks*, 1, 75–80. 252, 347
- Dreyfus, S. E. (1962). The numerical solution of variational problems. *Journal of Mathematical Analysis and Applications*, **5(1)**, 30–45. 196
- Dreyfus, S. E. (1973). The computational solution of optimal control problems with time lag. *IEEE Transactions on Automatic Control*, **18(4)**, 383–385. 196
- Dudik, M., Langford, J., and Li, L. (2011). Doubly robust policy evaluation and learning. In *Proceedings of the 28th International Conference on Machine learning*, ICML '11. 418
- Dugas, C., Bengio, Y., Bélisle, F., and Nadeau, C. (2001). Incorporating second-order functional knowledge for better option pricing. In *NIPS'00*, pages 472–478. MIT Press. 65, 160
- El Hihi, S. and Bengio, Y. (1996). Hierarchical recurrent neural networks for long-term dependencies. In NIPS 8. MIT Press. 344, 345, 363
- ElHihi, S. and Bengio, Y. (1996). Hierarchical recurrent neural networks for long-term dependencies. In NIPS'1995. 351
- Elkahky, A. M., Song, Y., and He, X. (2015). A multi-view deep learning approach for cross domain user modeling in recommendation systems. In *Proceedings of the 24th International Conference on World Wide Web*, pages 278–288. 417

- Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. *Cognition*, **48**, 781–799. 288
- Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. (2009). The difficulty of training deep architectures and the effect of unsupervised pre-training. In *Proceedings* of AISTATS'2009. 190
- Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P., and Bengio, S. (2010). Why does unsupervised pre-training help deep learning? *J. Machine Learning Res.* 453, 454
- Fang, H., Gupta, S., Iandola, F., Srivastava, R., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., Zitnick, C. L., and Zweig, G. (2015). From captions to visual concepts and back. arXiv:1411.4952. 93
- Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., and Talay, S. (2011).
 Large-scale FPGA-based convolutional networks. In R. Bekkerman, M. Bilenko, and J. Langford, editors, Scaling up Machine Learning: Parallel and Distributed Approaches.
 Cambridge University Press. 441
- Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013a). Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22, 190
- Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013b). Learning hierarchical features for scene labeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8), 1915–1929. 311
- Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object categories. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **28**(4), 594–611. 458
- Fischer, A. and Igel, C. (2011). Bounding the bias of contrastive divergence learning. *Neural Computation*, **23**(3), 664–73. 568
- Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7, 179–188. 18, 96
- Frasconi, P., Gori, M., and Sperduti, A. (1997). On the efficient classification of data structures by neural networks. In *Proc. Int. Joint Conf. on Artificial Intelligence*. 345, 347
- Frasconi, P., Gori, M., and Sperduti, A. (1998). A general framework for adaptive processing of data structures. *IEEE Transactions on Neural Networks*, **9**(5), 768–786. 345, 347
- Freund, Y. and Schapire, R. E. (1996a). Experiments with a new boosting algorithm. In *Machine Learning: Proceedings of Thirteenth International Conference*, pages 148–156, USA. ACM. 228

- Freund, Y. and Schapire, R. E. (1996b). Game theory, on-line prediction and boosting. In *Proceedings of the Ninth Annual Conference on Computational Learning Theory*, pages 325–332. 228
- Frey, B. J. (1998). Graphical models for machine learning and digital communication. MIT Press. 594, 595
- Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. *Biological Cybernetics*, **20**, 121–136. 452
- Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, **36**, 193–202. 13, 21, 24, 318
- Gal, Y. and Ghahramani, Z. (2015). Bayesian convolutional neural networks with bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158. 230
- Gallinari, P., LeCun, Y., Thiria, S., and Fogelman-Soulie, F. (1987). Memoires associatives distribuees. In *Proceedings of COGNITIVA 87*, Paris, La Villette. 442
- Garcia-Duran, A., Bordes, A., Usunier, N., and Grandvalet, Y. (2015). Combining two and three-way embeddings models for link prediction in knowledge bases. arXiv preprint arXiv:1506.00999. 420
- Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., and Pallett, D. S. (1993). Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1. NASA STI/Recon Technical Report N, 93, 27403. 395
- Garson, J. (1900). The metric system of identification of criminals, as used in in great britain and ireland. The Journal of the Anthropological Institute of Great Britain and Ireland, (2), 177–227. 18
- Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. *Neural computation*, **12**(10), 2451–2471. 356
- Glorot, X. and Bengio, Y. (2010a). Understanding the difficulty of training deep feedforward neural networks. In AISTATS'2010. 159, 380
- Glorot, X. and Bengio, Y. (2010b). Understanding the difficulty of training deep feedforward neural networks. In *JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010)*, volume 9, pages 249–256. 280
- Glorot, X., Bordes, A., and Bengio, Y. (2011a). Deep sparse rectifier neural networks. In AISTATS'2011. 13, 160, 440
- Glorot, X., Bordes, A., and Bengio, Y. (2011b). Deep sparse rectifier neural networks. In JMLR W&CP: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011). 194

- Glorot, X., Bordes, A., and Bengio, Y. (2011c). Domain adaptation for large-scale sentiment classification: A deep learning approach. In *ICML'2011*. 440, 457
- Gong, S., McKenna, S., and Psarrou, A. (2000). Dynamic Vision: From Images to Face Recognition. Imperial College Press. 477, 479
- Goodfellow, I., Le, Q., Saxe, A., and Ng, A. (2009). Measuring invariances in deep networks. In NIPS'2009, pages 646–654. 225, 428, 440
- Goodfellow, I., Koenig, N., Muja, M., Pantofaru, C., Sorokin, A., and Takayama, L. (2010). Help me help you: Interfaces for personal robots. In *Proc. of Human Robot Interaction (HRI)*, Osaka, Japan. ACM Press, ACM Press. 91
- Goodfellow, I., Courville, A., and Bengio, Y. (2012). Large-scale feature learning with spike-and-slab sparse coding. In *ICML* '2012. 436
- Goodfellow, I. J. (2010). Technical report: Multidimensional, downsampled convolution for autoencoders. Technical report, Université de Montréal. 309
- Goodfellow, I. J. (2014). On distinguishability criteria for estimating generative models. In *International Conference on Learning Representations, Workshops Track*. 537, 591
- Goodfellow, I. J., Courville, A., and Bengio, Y. (2011). Spike-and-slab sparse coding for unsupervised feature discovery. In NIPS Workshop on Challenges in Learning Hierarchical Models. 190, 457
- Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013a). Maxout networks. In S. Dasgupta and D. McAllester, editors, *ICML'13*, pages 1319–1327. 194, 230, 316, 392
- Goodfellow, I. J., Mirza, M., Courville, A., and Bengio, Y. (2013b). Multi-prediction deep Boltzmann machines. In *NIPS26*. NIPS Foundation. 92, 533, 582, 583
- Goodfellow, I. J., Courville, A., and Bengio, Y. (2013c). Scaling up spike-and-slab models for unsupervised feature learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **35**(8), 1902–1914. 586
- Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2014a). An empirical investigation of catastrophic forgeting in gradient-based neural networks. In *ICLR* '2014. 195
- Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Explaining and harnessing adversarial examples. *CoRR*, **abs/1412.6572**. 234
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014c). Generative adversarial networks. In NIPS'2014. 185, 590
- Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014d). Multi-digit number recognition from Street View imagery using deep convolutional neural networks. In *International Conference on Learning Representations*. 22, 92, 190, 191, 336, 387

- Goodfellow, I. J., Vinyals, O., and Saxe, A. M. (2015). Qualitatively characterizing neural network optimization problems. In *International Conference on Learning Representa*tions. 243, 245
- Goodman, J. (2001). Classes for fast maximum entropy training. In *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Utah. 402
- Gori, M. and Tesi, A. (1992). On the problem of local minima in backpropagation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **PAMI-14**(1), 76–86. 243
- Gosset, W. S. (1908). The probable error of a mean. *Biometrika*, **6**(1), 1–25. Originally published under the pseudonym "Student". 18
- Gouws, S., Bengio, Y., and Corrado, G. (2014). Bilbowa: Fast bilingual distributed representations without word alignments. Technical report, arXiv:1410.2455. 411, 458
- Graf, H. P. and Jackel, L. D. (1989). Analog electronic neural network circuits. *Circuits and Devices Magazine*, *IEEE*, **5**(4), 44–49. 388
- Graves, A. (2011a). Practical variational inference for neural networks. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2348–2356. Curran Associates, Inc. 212
- Graves, A. (2011b). Practical variational inference for neural networks. In NIPS'2011. 214
- Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Springer. 324, 341, 352, 355, 396
- Graves, A. (2013). Generating sequences with recurrent neural networks. Technical report, arXiv:1308.0850. 168, 352, 354, 358, 362
- Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In *ICML'2014*. 354
- Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. *Neural Networks*, **18**(5), 602–610. 341
- Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional recurrent neural networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, NIPS'2008, pages 545–552. 341
- Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In *ICML* '2006, pages 369–376, Pittsburgh, USA. 396
- Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., and Fernández, S. (2008). Unconstrained on-line handwriting recognition with recurrent neural networks. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS'2007, pages 577–584. 341

- Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., and Schmidhuber, J. (2009). A novel connectionist system for unconstrained handwriting recognition. *Pattern Analysis and Machine Intelligence*, *IEEE Transactions on*, 31(5), 855–868. 354
- Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In *ICASSP'2013*, pages 6645–6649. 341, 344, 352, 354, 355, 396
- Graves, A., Wayne, G., and Danihelka, I. (2014a). Neural Turing machines. arXiv:1410.5401. 22
- Graves, A., Wayne, G., and Danihelka, I. (2014b). Neural turing machines. arXiv preprint arXiv:1410.5401. 357
- Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2015). LSTM: a search space odyssey. arXiv preprint arXiv:1503.04069. 356
- Gregor, K. and LeCun, Y. (2010). Emergence of complex-like cells in a temporal product network with local receptive fields. Technical report, arXiv:1006.0448. 307
- Gülçehre, Ç. and Bengio, Y. (2013). Knowledge matters: Importance of prior information for optimization. In *International Conference on Learning Representations (ICLR'2013)*. 22
- Guo, H. and Gelfand, S. B. (1992). Classification trees with neural network feature extraction. *Neural Networks, IEEE Transactions on*, **3**(6), 923–933. 387
- Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). Deep learning with limited numerical precision. *CoRR*, abs/1502.02551. 389
- Gutmann, M. and Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In *Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS'10)*. 535
- Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Han, J., Muller, U., and LeCun, Y. (2007). Online learning for offroad robots: Spatial label propagation to learn long-range traversability. In *Proceedings of Robotics: Science and Systems*, Atlanta, GA, USA. 390
- Haffner, P., Franzini, M., and Waibel, A. (1991). Integrating time alignment and neural networks for high performance continuous speech recognition. In *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 105–108, Toronto. 550
- Hajnal, A., Maass, W., Pudlak, P., Szegedy, M., and Turan, G. (1993). Threshold circuits of bounded depth. J. Comput. System. Sci., 46, 129–154. 189
- Håstad, J. (1986). Almost optimal lower bounds for small depth circuits. In *Proceedings* of the 18th annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California. ACM Press. 189, 468

- Håstad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational Complexity, 1, 113–129. 189, 468
- Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning: data mining, inference and prediction. Springer Series in Statistics. Springer Verlag. 136
- He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. arXiv preprint arXiv:1502.01852. 159, 195
- Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York. 14
- Henaff, M., Jarrett, K., Kavukcuoglu, K., and LeCun, Y. (2011). Unsupervised learning of sparse features for scalable audio classification. In *ISMIR'11*. 441
- Herault, J. and Ans, B. (1984). Circuits neuronaux à synapses modifiables: Décodage de messages composites par apprentissage non supervisé. *Comptes Rendus de l'Académie des Sciences*, **299(III-13)**, 525—528. 434
- Hinton, G. (2012). Neural networks for machine learning. Coursera, video lectures. 261
- Hinton, G., Deng, L., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B. (2012a). Deep neural networks for acoustic modeling in speech recognition. *IEEE Signal Processing Magazine*, 29(6), 82–97. 20, 395
- Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. 386
- Hinton, G. E. (2000). Training products of experts by minimizing contrastive divergence. Technical Report GCNU TR 2000-004, Gatsby Unit, University College London. 525
- Hinton, G. E. and Roweis, S. (2003). Stochastic neighbor embedding. In NIPS'2002. 477
- Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313, 504–507. 413, 454
- Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. *Science*, **313**(5786), 504–507. 431, 452, 453
- Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In NIPS'1993. 425
- Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554. 16, 24, 133, 452, 453, 454, 569, 570
- Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., and Kingsbury, B. (2012b). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. *IEEE Signal Process. Mag.*, 29(6), 82–97.

- Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012c). Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580. 209
- Hinton, G. E., Vinyals, O., and Dean, J. (2014). Dark knowledge. Invited talk at the BayLearn Bay Area Machine Learning Symposium. 386
- Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, T.U. Münich. 250, 347, 359
- Hochreiter, S. and Schmidhuber, J. (1995). Simplifying neural nets by discovering flat minima. In Advances in Neural Information Processing Systems 7, pages 529–536. MIT Press. 215
- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural Computation*, **9**(8), 1735–1780. 22, 352, 355
- Hochreiter, S., Informatik, F. F., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2000).
 Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In
 J. Kolen and S. Kremer, editors, Field Guide to Dynamical Recurrent Networks. IEEE
 Press. 355
- Holi, J. L. and Hwang, J.-N. (1993). Finite precision error analysis of neural network hardware implementations. *Computers, IEEE Transactions on*, **42**(3), 281–290. 388
- Holt, J. L. and Baker, T. E. (1991). Back propagation simulations using limited precision calculations. In Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on, volume 2, pages 121–126. IEEE. 388
- Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural Networks*, **2**, 359–366. 187, 468
- Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. *Neural networks*, **3**(5), 551–560. 188
- Hsu, F.-H. (2002). Behind Deep Blue: Building the Computer That Defeated the World Chess Champion. Princeton University Press, Princeton, NJ, USA. 2
- Huang, F. and Ogata, Y. (2002). Generalized pseudo-likelihood estimates for markov random fields on lattice. Annals of the Institute of Statistical Mathematics, **54**(1), 1–18. 532
- Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. In *Proceedings of the 22nd ACM international conference on Conference on information & knowledge management*, pages 2333–2338. ACM. 417
- Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex. *Journal of Physiology (London)*, **195**, 215–243. 315

- Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's striate cortex. *Journal of Physiology*, **148**, 574–591. 315
- Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. *Journal of Physiology (London)*, 160, 106–154. 315
- Hutter, F., Hoos, H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In *LION-5*. Extended version as UBC Tech report TR-2010-10. 375
- Hyotyniemi, H. (1996). Turing machines are recurrent neural networks. In STeP'96, pages 13-24. 327
- Hyvärinen, A. (1999). Survey on independent component analysis. *Neural Computing Surveys*, **2**, 94–128. 434
- Hyvärinen, A. (2005a). Estimation of non-normalized statistical models using score matching. J. Machine Learning Res., 6. 445
- Hyvärinen, A. (2005b). Estimation of non-normalized statistical models using score matching. *Journal of Machine Learning Research*, **6**, 695–709. 533
- Hyvärinen, A. (2007a). Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. *IEEE Transactions on Neural Networks*, **18**, 1529–1531. 534
- Hyvärinen, A. (2007b). Some extensions of score matching. Computational Statistics and Data Analysis, 51, 2499–2512. 534
- Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. *Neural Networks*, **12**(3), 429–439. 435
- Hyvärinen, A., Karhunen, J., and Oja, E. (2001). *Independent Component Analysis*. Wiley-Interscience. 434
- Hyvärinen, A., Hurri, J., and Hoyer, P. O. (2009). Natural Image Statistics: A probabilistic approach to early computational vision. Springer-Verlag. 321
- Inayoshi, H. and Kurita, T. (2005). Improved generalization by adding both auto-association and hidden-layer noise to neural-network-based-classifiers. *Machine Learning for Signal Processing*, pages 141—146. 442
- Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. 20, 91, 366
- Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural networks, 1(4), 295–307. 260
- Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixture of local experts. Neural Computation, 3, 79–87. 167, 387

- Jaeger, H. (2003). Adaptive nonlinear system identification with echo state networks. In Advances in Neural Information Processing Systems 15. 347, 348, 349
- Jaeger, H. (2007a). Discovering multiscale dynamical features with hierarchical echo state networks. Technical report, Jacobs University. 344
- Jaeger, H. (2007b). Echo state network. Scholarpedia, 2(9), 2330. 347
- Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. *Science*, **304**(5667), 78–80. 24, 347
- Jaeger, H., Lukosevicius, M., Popovici, D., and Siewert, U. (2007). Optimization and applications of echo state networks with leaky- integrator neurons. *Neural Networks*, **20**(3), 335–352. 351
- Jain, V., Murray, J. F., Roth, F., Turaga, S., Zhigulin, V., Briggman, K. L., Helmstaedter, M. N., Denk, W., and Seung, H. S. (2007). Supervised learning of image restoration with convolutional networks. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8. IEEE. 311
- Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J. M., and Schölkopf, B. (2012). On causal and anticausal learning. In *ICML'2012*, pages 1255–1262. 463
- Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009a). What is the best multi-stage architecture for object recognition? In *ICCV'09*. 14, 160, 441
- Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009b). What is the best multi-stage architecture for object recognition? In Proc. International Conference on Computer Vision (ICCV'09), pages 2146–2153. IEEE. 21, 24, 193, 194, 314, 315
- Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. *Phys. Rev. Lett.*, **78**, 2690–2693. 542
- Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press. 48
- Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). On using very large target vocabulary for neural machine translation. arXiv:1412.2007. 336, 410
- Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of markov source parameters from sparse data. In E. S. Gelsema and L. N. Kanal, editors, *Pattern Recognition in Practice*. North-Holland, Amsterdam. 398, 408
- Jia, Y., Huang, C., and Darrell, T. (2012). Beyond spatial pyramids: Receptive field learning for pooled image features. In *Computer Vision and Pattern Recognition* (CVPR), 2012 IEEE Conference on, pages 3370–3377. IEEE. 302
- Jim, K.-C., Giles, C. L., and Horne, B. G. (1996). An analysis of noise in recurrent neural networks: convergence and generalization. *IEEE Transactions on Neural Networks*, 7(6), 1424–1438. 212, 214

- Jordan, M. I. (1998). Learning in Graphical Models. Kluwer, Dordrecht, Netherlands. 15
- Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015a). An empirical evaluation of recurrent network architectures. In ICML'2015. 356
- Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015b). An empirical exploration of recurrent network architectures. In *Proceedings of The 32nd International Conference* on Machine Learning, pages 2342–2350. 282, 355
- Judd, J. S. (1989). Neural Network Design and the Complexity of Learning. MIT press. 252
- Jutten, C. and Herault, J. (1991). Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1–10. 434
- Kahou, S. E., Pal, C., Bouthillier, X., Froumenty, P., Gülçehre, c., Memisevic, R., Vincent, P., Courville, A., Bengio, Y., Ferrari, R. C., Mirza, M., Jean, S., Carrier, P.-L., Dauphin, Y., Boulanger-Lewandowski, N., Aggarwal, A., Zumer, J., Lamblin, P., Raymond, J.-P., Desjardins, G., Pascanu, R., Warde-Farley, D., Torabi, A., Sharma, A., Bengio, E., Côté, M., Konda, K. R., and Wu, Z. (2013). Combining modality specific deep neural networks for emotion recognition in video. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction. 190
- Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In *EMNLP'2013*. 336, 410
- Kamyshanska, H. and Memisevic, R. (2015). The potential energy of an autoencoder. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 447, 599
- Karpathy, A. and Li, F.-F. (2015). Deep visual-semantic alignments for generating image descriptions. In CVPR'2015. arXiv:1412.2306. 93
- Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In *CVPR*. 18
- Karush, W. (1939). Minima of Functions of Several Variables with Inequalities as Side Constraints. Master's thesis, Dept.~of Mathematics, Univ.~of Chicago. 88
- Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model component of a speech recognizer. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, ASSP-35(3), 400–401. 398, 409
- Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2008a). Fast inference in sparse coding algorithms with applications to object recognition. CBLL-TR-2008-12-01, NYU. 428
- Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2008b). Fast inference in sparse coding algorithms with applications to object recognition. Technical report, Computational and Biological Learning Lab, Courant Institute, NYU. Tech Report CBLL-TR-2008-12-01. 441

- Kavukcuoglu, K., Ranzato, M.-A., Fergus, R., and LeCun, Y. (2009). Learning invariant features through topographic filter maps. In *CVPR'2009*. 441
- Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., and LeCun, Y. (2010a). Learning convolutional feature hierarchies for visual recognition. In Advances in Neural Information Processing Systems 23 (NIPS'10), pages 1090–1098. 315
- Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., and LeCun, Y. (2010b). Learning convolutional feature hierarchies for visual recognition. In *NIPS'2010*. 441
- Kelley, H. J. (1960). Gradient theory of optimal flight paths. ARS Journal, 30(10), 947–954. 196
- Khan, F., Zhu, X., and Mutlu, B. (2011). How do humans teach: On curriculum learning and teaching dimension. In *Advances in Neural Information Processing Systems* 24 (NIPS'11), pages 1449–1457. 288
- Kim, S. K., McAfee, L. C., McMahon, P. L., and Olukotun, K. (2009). A highly scalable restricted Boltzmann machine FPGA implementation. In *Field Programmable Logic* and Applications, 2009. FPL 2009. International Conference on, pages 367–372. IEEE. 388
- Kindermann, R. (1980). Markov Random Fields and Their Applications (Contemporary Mathematics; V. 1). American Mathematical Society. 496
- Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 261
- Kingma, D. and LeCun, Y. (2010a). Regularized estimation of image statistics by score matching. In NIPS'2010. 445
- Kingma, D. and LeCun, Y. (2010b). Regularized estimation of image statistics by score matching. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1126–1134. 535
- Kingma, D., Rezende, D., Mohamed, S., and Welling, M. (2014). Semi-supervised learning with deep generative models. In NIPS'2014. 367, 512
- Kingma, D. P. (2013). Fast gradient-based inference with continuous latent variable models in auxiliary form. Technical report, arxiv:1306.0733. 185, 512
- Kingma, D. P. and Welling, M. (2014a). Auto-encoding variational bayes. In Proceedings of the International Conference on Learning Representations (ICLR). 185, 479, 480, 512
- Kingma, D. P. and Welling, M. (2014b). Efficient gradient-based inference through transformations between bayes nets and neural nets. Technical report, arxiv:1402.0480. 185, 511, 512

- Kirkpatrick, S., Jr., C. D. G., and Vecchi, M. P. (1983). Optimization by simulated annealing. *Science*, **220**, 671–680. 287
- Kiros, R., Salakhutdinov, R., and Zemel, R. (2014a). Multimodal neural language models. In ICML'2014. 93
- Kiros, R., Salakhutdinov, R., and Zemel, R. (2014b). Unifying visual-semantic embeddings with multimodal neural language models. arXiv:1411.2539 [cs.LG]. 93, 354
- Klementiev, A., Titov, I., and Bhattarai, B. (2012). Inducing crosslingual distributed representations of words. In *Proceedings of COLING 2012*. 411, 458
- Knowles-Barley, S., Jones, T. R., Morgan, J., Lee, D., Kasthuri, N., Lichtman, J. W., and Pfister, H. (2014). Deep learning for the connectome. *GPU Technology Conference*. 22
- Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press. 510, 516
- Konig, Y., Bourlard, H., and Morgan, N. (1996). REMAP: Recursive estimation and maximization of A posteriori probabilities application to transition-based connectionist speech recognition. In *NIPS'95*. MIT Press, Cambridge, MA. 395
- Koren, Y. (2009). 1 the bellkor solution to the netflix grand prize. 228, 416
- Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A clockwork RNN. In *ICML'2014*. 345, 363
- Kočiský, T., Hermann, K. M., and Blunsom, P. (2014). Learning Bilingual Word Representations by Marginalizing Alignments. In *Proceedings of ACL*. 411
- Krause, O., Fischer, A., Glasmachers, T., and Igel, C. (2013). Approximation properties of DBNs with binary hidden units and real-valued visible units. In *ICML'2013*. 468
- Krizhevsky, A. (2010). Convolutional deep belief networks on CIFAR-10. Technical report, University of Toronto. Unpublished Manuscript: http://www.cs.utoronto.ca/kriz/convcifar10-aug2010.pdf. 384
- Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto. 18, 492
- Krizhevsky, A., Sutskever, I., and Hinton, G. (2012a). ImageNet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems* 25 (NIPS'2012). 21, 24, 91, 322, 390, 394
- Krizhevsky, A., Sutskever, I., and Hinton, G. (2012b). ImageNet classification with deep convolutional neural networks. In NIPS'2012. 20, 190, 440
- Krueger, K. A. and Dayan, P. (2009). Flexible shaping: how learning in small steps helps. Cognition, 110, 380–394. 288

- Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492, Berkeley, Calif. University of California Press. 88
- Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., Ondruska, P., Iyyer, M., Gulrajani, I., and Socher, R. (2015). Ask me anything: Dynamic memory networks for natural language processing. arXiv:1506.07285. 421
- Kumar, M. P., Packer, B., and Koller, D. (2010). Self-paced learning for latent variable models. In NIPS'2010. 288
- Lang, K. J. and Hinton, G. E. (1988). The development of the time-delay neural network architecture for speech recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon University. 318, 323, 350
- Langford, J. and Zhang, T. (2008). The epoch-greedy algorithm for contextual multi-armed bandits. In NIPS'2008, pages 1096—1103. 417
- Lappalainen, H., Giannakopoulos, X., Honkela, A., and Karhunen, J. (2000). Nonlinear independent component analysis using ensemble learning: Experiments and discussion. In *Proc. ICA*. Citeseer. 435
- Larochelle, H. and Bengio, Y. (2008a). Classification using discriminative restricted Boltzmann machines. In *ICML'2008*. 225, 428, 603
- Larochelle, H. and Bengio, Y. (2008b). Classification using discriminative restricted Boltzmann machines. In *ICML'08*, pages 536–543. ACM. 461
- Larochelle, H. and Murray, I. (2011). The Neural Autoregressive Distribution Estimator. In AISTATS'2011. 594, 597
- Larochelle, H., Erhan, D., and Bengio, Y. (2008). Zero-data learning of new tasks. In AAAI Conference on Artificial Intelligence. 458
- Lasserre, J. A., Bishop, C. M., and Minka, T. P. (2006). Principled hybrids of generative and discriminative models. In *Proceedings of the Computer Vision and Pattern Recognition* Conference (CVPR'06), pages 87–94, Washington, DC, USA. IEEE Computer Society. 223, 459
- Le, Q., Ngiam, J., Chen, Z., hao Chia, D. J., Koh, P. W., and Ng, A. (2010). Tiled convolutional neural networks. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23 (NIPS'10), pages 1279–1287. 307
- Le, Q., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. (2011). On optimization methods for deep learning. In Proc. ICML'2011. ACM. 272
- Le, Q., Ranzato, M., Monga, R., Devin, M., Corrado, G., Chen, K., Dean, J., and Ng, A. (2012). Building high-level features using large scale unsupervised learning. In ICML'2012. 21, 24

- Le Roux, N. and Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. *Neural Computation*, **20**(6), 1631–1649. 561
- Le Roux, N. and Bengio, Y. (2010). Deep belief networks are compact universal approximators. *Neural Computation*, **22**(8), 2192–2207. 468
- LeCun, Y. (1985). Une procédure d'apprentissage pour Réseau à seuil assymétrique. In Cognitiva 85: A la Frontière de l'Intelligence Artificielle, des Sciences de la Connaissance et des Neurosciences, pages 599–604, Paris 1985. CESTA, Paris. 196
- LeCun, Y. (1987). Modèles connexionistes de l'apprentissage. Ph.D. thesis, Université de Paris VI. 15, 425, 442
- LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., Henderson, D., Howard, R. E., and Hubbard, W. (1989). Handwritten digit recognition: Applications of neural network chips and automatic learning. *IEEE Communications Magazine*, 27(11), 41–46. 318
- LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998a). Efficient backprop. In Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science LNCS 1524. Springer Verlag. 369
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998b). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, **86**(11), 2278–2324. 13, 24, 394
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998c). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, **86**(11), 2278–2324. 15, 18, 396, 551
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient based learning applied to document recognition. *Proc. IEEE*. 322
- LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional networks and applications in vision. In *Circuits and Systems (ISCAS)*, *Proceedings of 2010 IEEE International Symposium on*, pages 253–256. IEEE. 322
- L'Ecuyer, P. (1994). Efficiency improvement and variance reduction. In *Proceedings of the 1994 Winter Simulation Conference*, pages 122—132. 186
- Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2014). Deeply-supervised nets. arXiv preprint arXiv:1409.5185. 286
- Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). Difference target propagation. In A. Appice, P. P. Rodrigues, V. Santos Costa, C. Soares, J. Gama, and A. Jorge, editors, *Machine Learning and Knowledge Discovery in Databases*, volume 9284 of *Lecture Notes in Computer Science*, pages 498–515. Springer International Publishing.
- Lee, H., Ekanadham, C., and Ng, A. (2008). Sparse deep belief net model for visual area V2. In NIPS'07. 225, 428

- Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In L. Bottou and M. Littman, editors, *ICML* 2009. ACM, Montreal, Canada. 314, 586, 587
- Lee, Y. J. and Grauman, K. (2011). Learning the easy things first: self-paced visual category discovery. In CVPR'2011. 288
- Leibniz, G. W. (1676). Memoir using the chain rule. (Cited in TMME 7:2&3 p 321-332, 2010). 196
- Lenat, D. B. and Guha, R. V. (1989). Building large knowledge-based systems; representation and inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc.
- Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. *Neural Networks*, **6**, 861—867. 188, 189
- Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, II(2), 164–168. 268
- L'Hôpital, G. F. A. (1696). Analyse des infiniment petits, pour l'intelligence des lignes courbes. Paris: L'Imprimerie Royale. 196
- Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996). Learning long-term dependencies is not as difficult with NARX recurrent neural networks. *IEEE Transactions on Neural Networks*, **7**(6), 1329–1338. 350
- Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015). Learning entity and relation embeddings for knowledge graph completion. In *Proc. AAAI'15*. 420
- Linde, N. (1992). The machine that changed the world, episode 3. Documentary miniseries. 2
- Lindsey, C. and Lindblad, T. (1994). Review of hardware neural networks: a user's perspective. In *Proc. Third Workshop on Neural Networks: From Biology to High Energy Physics*, pages 195—202, Isola d'Elba, Italy. 388
- Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. *BIT Numerical Mathematics*, **16**(2), 146–160. 196
- Long, P. M. and Servedio, R. A. (2010). Restricted Boltzmann machines are hard to approximately evaluate or simulate. In *Proceedings of the 27th International Conference* on Machine Learning (ICML'10). 563
- Lovelace, A. (1842). Notes upon L. F. Menabrea's "Sketch of the Analytical Engine invented by Charles Babbage". 1
- Lowerre, B. (1976). The Harpy Speech Recognition System. Ph.D. thesis. 552

- Lu, T., Pál, D., and Pál, M. (2010). Contextual multi-armed bandits. In *International Conference on Artificial Intelligence and Statistics*, pages 485–492. 417
- Luenberger, D. G. (1984). Linear and Nonlinear Programming. Addison Wesley. 273
- Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. *Computer Science Review*, **3**(3), 127–149. 348
- Luo, H., Carrier, P.-L., Courville, A., and Bengio, Y. (2013). Texture modeling with convolutional spike-and-slab RBMs and deep extensions. In AISTATS'2013. 93
- Lyness, J. N. and Moler, C. B. (1967). Numerical differentiation of analytic functions. SIAM J.Numer. Anal., 4, 202—210. 180
- Lyu, S. (2009). Interpretation and generalization of score matching. In UAI'09. 534
- Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In *ICML Workshop on Deep Learning for Audio*, Speech, and Language Processing. 159, 195
- Maass, W. (1992). Bounds for the computational power and learning complexity of analog neural nets (extended abstract). In *Proc. of the 25th ACM Symp. Theory of Computing*, pages 335–344. 189
- Maass, W., Schnitger, G., and Sontag, E. D. (1994). A comparison of the computational power of sigmoid and boolean threshold circuits. *Theoretical Advances in Neural Computation and Learning*, pages 127–151. 189
- Maass, W., Natschlaeger, T., and Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. *Neural Computation*, **14**(11), 2531–2560. 347
- MacKay, D. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. 56
- Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Gradient-based hyperparameter optimization through reversible learning. arXiv preprint arXiv:1502.03492. 375
- Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. L. (2015). Deep captioning with multimodal recurrent neural networks. In *ICLR* '2015. arXiv:1410.1090. 93
- Marcotte, P. and Savard, G. (1992). Novel approaches to the discrimination problem. Zeitschrift für Operations Research (Theory), 36, 517–545. 237
- Marlin, B., Swersky, K., Chen, B., and de Freitas, N. (2010). Inductive principles for restricted Boltzmann machine learning. In *Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS'10)*, volume 9, pages 509–516. 529, 534, 565

- Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2), 431–441. 268
- Marr, D. and Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194. 318
- Martens, J. (2010). Deep learning via Hessian-free optimization. In L. Bottou and M. Littman, editors, *Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML-10)*, pages 735–742. ACM. 281
- Martens, J. and Medabalimi, V. (2014). On the expressive efficiency of sum product networks. arXiv:1411.7717. 189, 468
- Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free optimization. In *Proc. ICML'2011*. ACM. 359
- Martens, J., Chattopadhyay, A., Pitassi, T., and Zemel, R. (2013). On the representational efficiency of restricted Boltzmann machines. In NIPS'2013. 188
- Mase, S. (1995). Consistency of the maximum pseudo-likelihood estimator of continuous state space Gibbsian processes. *The Annals of Applied Probability*, **5**(3), pp. 603–612. 532
- Matan, O., Burges, C. J. C., LeCun, Y., and Denker, J. S. (1992). Multi-digit recognition using a space displacement neural network. In *NIPS'91*, pages 488–495, San Mateo CA. Morgan Kaufmann. 550
- McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, London. 162
- McCulloch, W. S. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. *Bulletin of Mathematical Biophysics*, **5**, 115–133. 12
- Mead, C. and Ismail, M. (2012). Analog VLSI implementation of neural systems, volume 80. Springer Science & Business Media. 388
- Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., Lavoie, E.,
 Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P., Courville, A., and Bergstra,
 J. (2011). Unsupervised and transfer learning challenge: a deep learning approach. In
 JMLR W&CP: Proc. Unsupervised and Transfer Learning, volume 7. 190, 457
- Mesnil, G., Rifai, S., Dauphin, Y., Bengio, Y., and Vincent, P. (2012). Surfing on the manifold. Learning Workshop, Snowbird. 599
- Miikkulainen, R. and Dyer, M. G. (1991). Natural language processing with modular PDP networks and distributed lexicon. *Cognitive Science*, **15**, 343–399. 397
- Mikolov, T. (2012). Statistical Language Models based on Neural Networks. Ph.D. thesis, Brno University of Technology. 168, 361

- Mikolov, T., Deoras, A., Kombrink, S., Burget, L., and Cernocky, J. (2011a). Empirical evaluation and combination of advanced language modeling techniques. In *Proc. 12th annual conference of the international speech communication association (INTERSPEECH 2011)*. 408
- Mikolov, T., Deoras, A., Povey, D., Burget, L., and Cernocky, J. (2011b). Strategies for training large scale neural network language models. In *Proc. ASRU'2011*. 288, 408
- Mikolov, T., Le, Q. V., and Sutskever, I. (2013). Exploiting similarities among languages for machine translation. Technical report, arXiv:1309.4168. 458
- Minka, T. (2005). Divergence measures and message passing. *Microsoft Research Cambridge UK Tech Rep MSRTR2005173*, **72**(TR-2005-173). 539
- Minsky, M. L. and Papert, S. A. (1969). Perceptrons. MIT Press, Cambridge. 13
- Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. 592
- Misra, J. and Saha, I. (2010). Artificial neural networks in hardware: A survey of two decades of progress. *Neurocomputing*, **74**(1), 239–255. 388
- Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. 90
- Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks. In *ICML* '2014. 187
- Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, *Advances in Neural Information Processing Systems* 26, pages 2265–2273. Curran Associates, Inc. 407, 537
- Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models. In *ICML'2012*, pages 1751–1758. 407
- Mnih, V. and Hinton, G. (2010). Learning to detect roads in high-resolution aerial images. In *Proceedings of the 11th European Conference on Computer Vision (ECCV)*. 93
- Mnih, V., Heess, N., Graves, A., and kavukcuoglu, k. (2014). Recurrent models of visual attention. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, NIPS'2014, pages 2204–2212. 187
- Mobahi, H. and Fisher III, J. W. (2015). A theoretical analysis of optimization by gaussian continuation. In AAAI'2015. 287
- Mohamed, A., Dahl, G., and Hinton, G. (2012). Acoustic modeling using deep belief networks. *IEEE Trans. on Audio, Speech and Language Processing*, **20**(1), 14–22. 395
- Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6, 525–533. 272

- Montúfar, G. (2014). Universal approximation depth and errors of narrow belief networks with discrete units. *Neural Computation*, **26**. 468
- Montúfar, G. and Ay, N. (2011). Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. *Neural Computation*, **23**(5), 1306–1319. 468
- Montufar, G. and Morton, J. (2014). When does a mixture of products contain a product of mixtures? SIAM Journal on Discrete Mathematics, 29(1), 321–347. 467
- Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear regions of deep neural networks. In NIPS'2014. 16, 189, 468, 469
- Mor-Yosef, S., Samueloff, A., Modan, B., Navot, D., and Schenker, J. G. (1990). Ranking the risk factors for cesarean: logistic regression analysis of a nationwide study. *Obstet Gynecol*, **75**(6), 944–7. 2
- Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In AISTATS'2005. 403, 405
- Mozer, M. C. (1992). The induction of multiscale temporal structure. In NIPS'91, pages 275–282, San Mateo, CA. Morgan Kaufmann. 351, 352, 363
- Murphy, K. P. (2012). *Machine Learning: a Probabilistic Perspective*. MIT Press, Cambridge, MA, USA. 90, 136
- Murray, B. U. I. and Larochelle, H. (2014). A deep and tractable density estimator. In *ICML'2014*. 168, 598
- Nair, V. and Hinton, G. (2010a). Rectified linear units improve restricted Boltzmann machines. In *ICML* '2010. 160
- Nair, V. and Hinton, G. E. (2010b). Rectified linear units improve restricted Boltzmann machines. In L. Bottou and M. Littman, editors, *Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML-10)*, pages 807–814. ACM. 13
- Narayanan, H. and Mitter, S. (2010). Sample complexity of testing the manifold hypothesis. In NIPS'2010. 149, 473
- Navigli, R. and Velardi, P. (2005). Structural semantic interconnections: a knowledge-based approach to word sense disambiguation. *IEEE Trans. Pattern Analysis and Machine Intelligence*, **27**(7), 1075—1086. 421
- Neal, R. M. (1992). Connectionist learning of belief networks. *Artificial Intelligence*, **56**, 71–113. 588
- Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer. 231
- Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11(2), 125–139. 541, 542

- Neal, R. M. (2005). Estimating ratios of normalizing constants using linked importance sampling. 543
- Nedic, A. and Bertsekas, D. (2000). Convergence rate of incremental subgradient algorithms. In *Stochastic Optimization: Algorithms and Applications*, pages 263–304. Kluwer. 256
- Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$. Doklady AN SSSR (translated as Soviet. Math. Docl.), **269**, 543–547. 255, 259
- Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature learning. Deep Learning and Unsupervised Feature Learning Workshop, NIPS. 18
- Ney, H. and Kneser, R. (1993). Improved clustering techniques for class-based statistical language modelling. In *European Conference on Speech Communication and Technology (Eurospeech)*, pages 973–976, Berlin. 400
- Ng, A. (2015). Advice for applying machine learning. https://see.stanford.edu/materials/aimlcs229/ML-advice.pdf. 364
- Niesler, T. R., Whittaker, E. W. D., and Woodland, P. C. (1998). Comparison of part-of-speech and automatically derived category-based language models for speech recognition. In *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 177–180. 400
- Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., and Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. *Image Processing*, *IEEE Transactions on*, **14**(9), 1360–1371. 311
- Niranjan, M. and Fallside, F. (1990). Neural networks and radial basis functions in classifying static speech patterns. *Computer Speech and Language*, **4**, 275–289. 160
- Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer. 83, 88
- Norouzi, M. and Fleet, D. J. (2011). Minimal loss hashing for compact binary codes. In *ICML'2011*. 414
- Nowlan, S. J. (1990). Competing experts: An experimental investigation of associative mixture models. Technical Report CRG-TR-90-5, University of Toronto. 387
- Olshausen, B. and Field, D. J. (2005). How close are we to understanding V1? Neural Computation, 17, 1665–1699. 13
- Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, **381**, 607–609. 225, 320, 427, 428, 471
- Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: a strategy employed by V1? *Vision Research*, **37**, 3311–3325. 439

- Opper, M. and Archambeau, C. (2009). The variational gaussian approximation revisited. Neural computation, 21(3), 786–792. 185, 512
- Paccanaro, A. and Hinton, G. E. (2000). Extracting distributed representations of concepts and relations from positive and negative propositions. In *International Joint Conference on Neural Networks (IJCNN)*, Como, Italy. IEEE, New York. 420
- Parker, D. B. (1985). Learning-logic. Technical Report TR-47, Center for Comp. Research in Economics and Management Sci., MIT. 196
- Pascanu, R. (2014). On recurrent and deep networks. Ph.D. thesis, Universit\u00e9 de Montr\u00e9al. 246
- Pascanu, R. and Bengio, Y. (2012). On the difficulty of training recurrent neural networks. Technical Report arXiv:1211.5063, Universite de Montreal. 168
- Pascanu, R., Mikolov, T., and Bengio, Y. (2013a). On the difficulty of training recurrent neural networks. In *ICML'2013*. 168, 252, 347, 352, 361, 363
- Pascanu, R., Montufar, G., and Bengio, Y. (2013b). On the number of inference regions of deep feed forward networks with piece-wise linear activations. Technical report, U. Montreal, arXiv:1312.6098. 189
- Pascanu, R., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014a). How to construct deep recurrent neural networks. In *ICLR* '2014. 16, 230, 344, 345, 354, 396, 468, 469
- Pascanu, R., Montufar, G., and Bengio, Y. (2014b). On the number of inference regions of deep feed forward networks with piece-wise linear activations. In *ICLR* '2014. 466
- Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In *Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine*, pages 329–334. 494
- Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann. 49
- Petersen, K. B. and Pedersen, M. S. (2006). The matrix cookbook. Version 20051003. 28
- Peterson, G. B. (2004). A day of great illumination: B. F. Skinner's discovery of shaping. Journal of the Experimental Analysis of Behavior, 82(3), 317–328. 288
- Pham, P.-H., Jelaca, D., Farabet, C., Martini, B., LeCun, Y., and Culurciello, E. (2012). Neuflow: dataflow vision processing system-on-a-chip. In *Circuits and Systems (MWS-CAS)*, 2012 IEEE 55th International Midwest Symposium on, pages 1044–1047. IEEE. 388
- Pinheiro, P. H. O. and Collobert, R. (2014). Recurrent convolutional neural networks for scene labeling. In *ICML'2014*. 311

- Pinheiro, P. H. O. and Collobert, R. (2015). From image-level to pixel-level labeling with convolutional networks. In *Conference on Computer Vision and Pattern Recognition (CVPR)*. 311
- Pinto, N., Cox, D. D., and DiCarlo, J. J. (2008). Why is real-world visual object recognition hard? PLoS Comput Biol, 4. 393, 587
- Pinto, N., Stone, Z., Zickler, T., and Cox, D. (2011). Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on, pages 35–42. IEEE. 314
- Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1), 77–105. 345
- Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17. 256
- Poole, B., Sohl-Dickstein, J., and Ganguli, S. (2014). Analyzing noise in autoencoders and deep networks. *CoRR*, **abs/1406.1831**. 211
- Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In *UAI'2011*, Barcelona, Spain. 189, 468
- Poundstone, W. (2005). Fortune's Formula: The untold story of the scientific betting system that beat the casinos and Wall Street. Macmillan. 57
- Powell, M. (1987). Radial basis functions for multivariable interpolation: A review. 160
- Presley, R. K. and Haggard, R. L. (1994). A fixed point implementation of the backpropagation learning algorithm. In *Southeastcon'94*. Creative Technology Transfer-A Global Affair., Proceedings of the 1994 IEEE, pages 136–138. IEEE. 388
- Price, R. (1958). A useful theorem for nonlinear devices having gaussian inputs. *IEEE Transactions on Information Theory*, **4**(2), 69–72. 184, 512
- Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant visual representation by single neurons in the human brain. *Nature*, **435**(7045), 1102–1107. 316
- Raiko, T., Yao, L., Cho, K., and Bengio, Y. (2014). Iterative neural autoregressive distribution estimator (NADE-k). Technical report, arXiv:1406.1485. 597
- Raina, R., Madhavan, A., and Ng, A. Y. (2009). Large-scale deep unsupervised learning using graphics processors. In L. Bottou and M. Littman, editors, *ICML* 2009, pages 873–880, New York, NY, USA. ACM. 24, 383
- Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science 120, Springer. 180

- Ramsey, F. P. (1926). Truth and probability. In R. B. Braithwaite, editor, *The Foundations of Mathematics and other Logical Essays*, chapter 7, pages 156–198. McMaster University Archive for the History of Economic Thought. 50
- Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2007a). Efficient learning of sparse representations with an energy-based model. In NIPS'2006. 16, 439, 452, 453, 454
- Ranzato, M., Huang, F., Boureau, Y., and LeCun, Y. (2007b). Unsupervised learning of invariant feature hierarchies with applications to object recognition. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'07)*. IEEE Press. 315
- Ranzato, M., Boureau, Y., and LeCun, Y. (2008). Sparse feature learning for deep belief networks. In NIPS'2007. 439
- Rao, C. (1945). Information and the accuracy attainable in the estimation of statistical parameters. *Bulletin of the Calcutta Mathematical Society*, **37**, 81–89. 124, 256
- Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-supervised learning with ladder network. arXiv preprint arXiv:1507.02672. 367
- Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In NIPS'2011. 385
- Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In *ICML'2014*. 185, 511, 512
- Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011a). Contractive auto-encoders: Explicit invariance during feature extraction. In *ICML'2011*. 447, 448, 476
- Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011b). Higher order contractive auto-encoder. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). 428
- Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011c). Higher order contractive auto-encoder. In *ECML PKDD*. 447, 448
- Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., and Muller, X. (2011d). The manifold tangent classifier. In NIPS'2011. 486, 488
- Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for sampling contractive auto-encoders. In *ICML'2012*. 599
- Ringach, D. and Shapley, R. (2004). Reverse correlation in neurophysiology. *Cognitive Science*, **28**(2), 147–166. 319
- Roberts, S. and Everson, R. (2001). *Independent component analysis: principles and practice*. Cambridge University Press. 435

- Robinson, A. J. and Fallside, F. (1991). A recurrent error propagation network speech recognition system. *Computer Speech and Language*, **5**(3), 259–274. 24, 395
- Rockafellar, R. T. (1997). Convex analysis. princeton landmarks in mathematics. 86
- Romero, A., Ballas, N., Ebrahimi Kahou, S., Chassang, A., Gatta, C., and Bengio, Y. (2015). Fitnets: Hints for thin deep nets. In *ICLR'2015*, arXiv:1412.6550. 284
- Rosen, J. B. (1960). The gradient projection method for nonlinear programming. part i. linear constraints. *Journal of the Society for Industrial and Applied Mathematics*, **8**(1), pp. 181–217. 86
- Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, **65**, 386–408. 12, 24
- Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York. 12, 24
- Roweis, S. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. *Science*, **290**(5500). 149, 150, 477
- Rumelhart, D., Hinton, G., and Williams, R. (1986a). Learning representations by back-propagating errors. *Nature*, **323**, 533–536. 15, 20, 196, 397, 418
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, *Parallel Distributed Processing*, volume 1, chapter 8, pages 318–362. MIT Press, Cambridge. 18, 24, 196
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986c). Learning representations by back-propagating errors. *Nature*, **323**, 533–536. 154, 323
- Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986d). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge. 14, 196
- Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986e). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1. MIT Press, Cambridge. 154
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2014a). ImageNet Large Scale Visual Recognition Challenge. 18
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2014b). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. 25
- Rust, N., Schwartz, O., Movshon, J. A., and Simoncelli, E. (2005). Spatiotemporal elements of macaque V1 receptive fields. *Neuron*, **46**(6), 945–956. 318

- Sainath, T., rahman Mohamed, A., Kingsbury, B., and Ramabhadran, B. (2013). Deep convolutional neural networks for LVCSR. In *ICASSP 2013*. 396
- Salakhutdinov, R. and Hinton, G. (2009a). Deep Boltzmann machines. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, volume 5, pages 448–455. 21, 24, 453, 571, 575, 580, 582
- Salakhutdinov, R. and Hinton, G. (2009b). Deep Boltzmann machines. In *Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009)*, volume 8, 578, 584
- Salakhutdinov, R. and Hinton, G. E. (2007). Semantic hashing. In SIGIR'2007. 413, 414
- Salakhutdinov, R. and Hinton, G. E. (2008). Using deep belief nets to learn covariance kernels for Gaussian processes. In NIPS'07, pages 1249–1256, Cambridge, MA. MIT Press. 461
- Salakhutdinov, R. and Larochelle, H. (2010). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), JMLR W&CP, volume 9, pages 693–700. 558
- Salakhutdinov, R. and Mnih, A. (2008). Probabilistic matrix factorization. In NIPS'2008. 416
- Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep belief networks. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, *ICML 2008*, volume 25, pages 872–879. ACM. 542, 571
- Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted Boltzmann machines for collaborative filtering. In *ICML*. 416
- Salimans, T. and Knowles, D. A. (2013). Fixed-form variational posterior approximation through stochastic linear regression. *Bayesian Analysis*, 8(4), 837–882. 512
- Sanger, T. D. (1994). Neural network learning control of robot manipulators using gradually increasing task difficulty. *IEEE Transactions on Robotics and Automation*, **10**(3). 288
- Saul, L. K., Jaakkola, T., and Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61–76. 24
- Savich, A. W., Moussa, M., and Areibi, S. (2007). The impact of arithmetic representation on implementing mlp-bp on fpgas: A study. *Neural Networks, IEEE Transactions on*, **18**(1), 240–252. 388
- Saxe, A. M., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., and Ng, A. (2011). On random weights and unsupervised feature learning. In *Proc. ICML'2011*. ACM. 314
- Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In *ICLR*. 243, 244, 280

- Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history compression. *Neural Computation*, **4**(2), 234–242. 344
- Schmidhuber, J. (1996). Sequential neural text compression. *IEEE Transactions on Neural Networks*, **7**(1), 142–146. 397
- Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, **10**, 1299–1319. 149, 477
- Schölkopf, B., Burges, C. J. C., and Smola, A. J. (1999). Advances in Kernel Methods Support Vector Learning. MIT Press, Cambridge, MA. 15, 160, 192
- Schulz, H. and Behnke, S. (2012). Learning two-layer contractive encodings. In *ICANN'2012*, pages 620–628. 448
- Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. *IEEE Transactions on Signal Processing*, **45**(11), 2673–2681. 341
- Schwenk, H. (2007). Continuous space language models. Computer speech and language, 21, 492–518. 398, 402
- Schwenk, H. (2010). Continuous space language models for statistical machine translation. The Prague Bulletin of Mathematical Linguistics, 93, 137–146. 398, 408
- Schwenk, H. (2014). Cleaned subset of wmt '14 dataset. 18
- Schwenk, H. and Bengio, Y. (1998). Training methods for adaptive boosting of neural networks. In NIPS'97, pages 647–653. MIT Press. 228
- Schwenk, H. and Gauvain, J.-L. (2002a). Connectionist language modeling for large vocabulary continuous speech recognition. In *International Conference on Acoustics*, Speech and Signal Processing (ICASSP), volume 1, pages 765–768. 398
- Schwenk, H. and Gauvain, J.-L. (2002b). Connectionist language modeling for large vocabulary continuous speech recognition. In *International Conference on Acoustics*, Speech and Signal Processing (ICASSP), pages 765–768, Orlando, Florida. 402
- Schwenk, H. and Gauvain, J.-L. (2005). Building continuous space language models for transcribing european languages. In *Interspeech*, pages 737–740. 398
- Schwenk, H., Costa-jussà, M. R., and Fonollosa, J. A. R. (2006). Continuous space language models for the iwslt 2006 task. In *International Workshop on Spoken Language Translation*, pages 166–173. 398, 408
- Seide, F., Li, G., and Yu, D. (2011). Conversational speech transcription using context-dependent deep neural networks. In *Interspeech 2011*, pages 437–440. 20
- Sermanet, P., Chintala, S., and LeCun, Y. (2012). Convolutional neural networks applied to house numbers digit classification. *CoRR*, **abs/1204.3968**. 393

- Sermanet, P., Kavukcuoglu, K., Chintala, S., and LeCun, Y. (2013). Pedestrian detection with unsupervised multi-stage feature learning. In *Proc. International Conference on Computer Vision and Pattern Recognition (CVPR'13)*. IEEE. 22, 190
- Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, **27**(3), 379—-423. 57
- Shannon, C. E. (1949). Communication in the presence of noise. *Proceedings of the Institute of Radio Engineers*, **37**(1), 10–21. 57
- Shilov, G. (1977). *Linear Algebra*. Dover Books on Mathematics Series. Dover Publications. 28
- Siegelmann, H. (1995). Computation beyond the Turing limit. Science, 268(5210), 545–548. 327
- Siegelmann, H. and Sontag, E. (1991). Turing computability with neural nets. *Applied Mathematics Letters*, **4**(6), 77–80. 327
- Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural nets. Journal of Computer and Systems Sciences, **50**(1), 132–150. 252, 327
- Simard, D., Steinkraus, P. Y., and Platt, J. C. (2003). Best practices for convolutional neural networks. In *ICDAR* '2003. 322
- Simard, P. and Graf, H. P. (1994). Backpropagation without multiplication. In *Advances in Neural Information Processing Systems*, pages 232–239. 388
- Simard, P., Victorri, B., LeCun, Y., and Denker, J. (1992). Tangent prop A formalism for specifying selected invariances in an adaptive network. In NIPS'1991. 485, 486, 488
- Simard, P. Y., LeCun, Y., and Denker, J. (1993). Efficient pattern recognition using a new transformation distance. In NIPS'92. 485
- Simard, P. Y., LeCun, Y. A., Denker, J. S., and Victorri, B. (1998). Transformation invariance in pattern recognition tangent distance and tangent propagation. *Lecture Notes in Computer Science*, **1524**. 485
- Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In ICLR. 283
- Sjöberg, J. and Ljung, L. (1995). Overtraining, regularization and searching for a minimum, with application to neural networks. *International Journal of Control*, **62**(6), 1391–1407. 220
- Skinner, B. F. (1958). Reinforcement today. American Psychologist, 13, 94–99. 288
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart and J. L. McClelland, editors, *Parallel Distributed Processing*, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge. 501, 514, 562

- Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In NIPS'2012. 375
- Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D. (2011a). Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In *NIPS'2011*. 345
- Socher, R., Manning, C., and Ng, A. Y. (2011b). Parsing natural scenes and natural language with recursive neural networks. In *Proceedings of the Twenty-Eighth International Conference on Machine Learning (ICML'2011)*. 345
- Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011c). Semi-supervised recursive autoencoders for predicting sentiment distributions. In EMNLP'2011. 345
- Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013a). Recursive deep models for semantic compositionality over a sentiment treebank. In *EMNLP'2013*. 345, 347
- Socher, R., Ganjoo, M., Manning, C. D., and Ng, A. Y. (2013b). Zero-shot learning through cross-modal transfer. In 27th Annual Conference on Neural Information Processing Systems (NIPS 2013). 458
- Solla, S. A., Levin, E., and Fleisher, M. (1988). Accelerated learning in layered neural networks. *Complex Systems*, **2**, 625–639. 164
- Solomonoff, R. J. (1989). A system for incremental learning based on algorithmic probability. 288
- Sontag, E. D. and Sussman, H. J. (1989). Backpropagation can give rise to spurious local minima even for networks without hidden layers. *Complex Systems*, **3**, 91–106. 243
- Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Simonsen, J., and Nie, J.-Y. (2015). A hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In *Proc. of CIKM*. 414
- Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. *IEEE Transactions on Automatic Control*, **37**, 332–341. 180
- Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2010). From baby steps to leapfrog: how "less is more" in unsupervised dependency parsing. In *HLT'10*. 288
- Squire, W. and Trapp, G. (1998). Using complex variables to estimate derivatives of real functions. SIAM Rev., 40(1), 110—112. 379
- Srivastava, N. and Salakhutdinov, R. (2012). Multimodal learning with deep Boltzmann machines. In NIPS'2012. 459

- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, **15**, 1929–1958. 228, 230, 231, 582
- Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. arXiv:1505.00387. 286
- Steinkrau, D., Simard, P. Y., and Buck, I. (2005). Using gpus for machine learning algorithms. 2013 12th International Conference on Document Analysis and Recognition, **0**, 1115–1119. 383
- Supancic, J. and Ramanan, D. (2013). Self-paced learning for long-term tracking. In CVPR'2013. 288
- Sussillo, D. (2014). Random walks: Training very deep nonlinear feed-forward networks with smart initialization. *CoRR*, **abs/1412.6558**. 280, 282
- Sutskever, I. (2012). Training Recurrent Neural Networks. Ph.D. thesis, Department of computer science, University of Toronto. 349, 350, 360
- Sutskever, I. and Tieleman, T. (2010). On the Convergence Properties of Contrastive Divergence. In Y. W. Teh and M. Titterington, editors, *Proc. of the International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 9, pages 789–795. 528
- Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In *ICML*. 258, 349, 350, 360
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014a). Sequence to sequence learning with neural networks. Technical report, arXiv:1409.3215. 22, 92, 352, 354, 355
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014b). Sequence to sequence learning with neural networks. In NIPS'2014. 336, 343, 410
- Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press. 97
- Sutton, R. S., Mcallester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In *NIPS'1999*, pages 1057—1063. MIT Press. 187
- Swersky, K. (2010). Inductive Principles for Learning Restricted Boltzmann Machines. Master's thesis, University of British Columbia. 445
- Swersky, K., Ranzato, M., Buchman, D., Marlin, B., and de Freitas, N. (2011). On autoencoders and score matching for energy based models. In *ICML'2011*. ACM. 535
- Swersky, K., Snoek, J., and Adams, R. P. (2014). Freeze-thaw bayesian optimization. arXiv preprint arXiv:1406.3896. 376

- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014a). Going deeper with convolutions. Technical report, arXiv:1409.4842. 20, 21, 24, 190, 234, 286, 303
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R. (2014b). Intriguing properties of neural networks. *ICLR*, **abs/1312.6199**. 233
- Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In CVPR'2014. 91
- Tang, Y. and Eliasmith, C. (2010). Deep networks for robust visual recognition. In Proceedings of the 27th International Conference on Machine Learning, June 21-24, 2010, Haifa, Israel. 211
- Taylor, G. and Hinton, G. (2009). Factored conditional restricted Boltzmann machines for modeling motion style. In L. Bottou and M. Littman, editors, *ICML* 2009, pages 1025–1032. ACM. 412
- Taylor, G., Hinton, G. E., and Roweis, S. (2007). Modeling human motion using binary latent variables. In NIPS'06, pages 1345–1352. MIT Press, Cambridge, MA. 412, 413
- Tenenbaum, J., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *Science*, **290**(5500), 2319–2323. 149, 150, 477
- Thompson, J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS'2014. 311
- Thrun, S. (1995). Learning to play the game of chess. In NIPS'1994. 486
- Tibshirani, R. J. (1995). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society B*, **58**, 267–288. 206
- Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 1064–1071. ACM. 528, 568
- Tieleman, T. and Hinton, G. (2009). Using fast weights to improve persistent contrastive divergence. In L. Bottou and M. Littman, editors, ICML 2009, pages 1033–1040. ACM. 530
- Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal components analysis. Journal of the Royal Statistical Society B, 61(3), 611–622. 434
- Tom Schaul, Ioannis Antonoglou, D. S. (2014). Unit tests for stochastic optimization. In International Conference on Learning Representations. 264
- Torabi, A., Pal, C., Larochelle, H., and Courville, A. (2015). Using descriptive video services to create a large data source for video annotation research. arXiv preprint arXiv: 1503.01070. 139

- Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and large databases for recognition. In *Proceedings of the Computer Vision and Pattern Recognition Conference* (CVPR'08), pages 1–8. 413, 414
- Tu, K. and Honavar, V. (2011). On the utility of curricula in unsupervised learning of probabilistic grammars. In IJCAI'2011. 288
- Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., Denk, W., and Seung, H. S. (2010). Convolutional networks can learn to generate affinity graphs for image segmentation. *Neural Computation*, 22(2), 511–538. 311
- Töscher, A., Jahrer, M., and Bell, R. M. (2009). The bigchaos solution to the netflix grand prize. 416
- Uria, B., Murray, I., and Larochelle, H. (2013). Rnade: The real-valued neural autoregressive density-estimator. In NIPS'2013. 597, 598
- van den Oörd, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. In NIPS'2013. 417
- van der Maaten, L. and Hinton, G. E. (2008). Visualizing data using t-SNE. J. Machine Learning Res., 9. 397, 477
- Vanhoucke, V., Senior, A., and Mao, M. Z. (2011). Improving the speed of neural networks on cpus. In *Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop*. 382, 389
- Vapnik, V. N. (1982). Estimation of Dependences Based on Empirical Data. Springer-Verlag, Berlin. 104
- Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer, New York. 104
- Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. *Theory of Probability and Its Applications*, **16**, 264–280. 104
- Vincent, P. (2011a). A connection between score matching and denoising autoencoders. Neural Computation, 23(7). 445, 447, 599
- Vincent, P. (2011b). A connection between score matching and denoising autoencoders. Neural Computation, 23(7), 1661–1674. 535, 600
- Vincent, P. and Bengio, Y. (2003). Manifold Parzen windows. In NIPS'2002. MIT Press. 478
- Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In *ICML 2008*. 211, 442

- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Machine Learning Res., 11. 442
- Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2014a). Grammar as a foreign language. Technical report, arXiv:1412.7449. 354
- Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2014b). Show and tell: a neural image caption generator. arXiv 1411.4555. 354
- Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: a neural image caption generator. In *CVPR*'2015. arXiv:1411.4555. 93
- Viola, P. and Jones, M. (2001). Robust real-time object detection. In *International Journal of Computer Vision*. 387
- Von Melchner, L., Pallas, S. L., and Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. *Nature*, **404**(6780), 871–876. 13
- Waibel, A., Hanazawa, T., Hinton, G. E., Shikano, K., and Lang, K. (1989). Phoneme recognition using time-delay neural networks. *IEEE Transactions on Acoustics, Speech*, and Signal Processing, 37, 328–339. 323, 390, 395
- Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of neural networks using dropconnect. In ICML'2013. 231
- Wang, S. and Manning, C. (2013). Fast dropout training. In ICML'2013. 231
- Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014a). Knowledge graph and text jointly embedding. In *Proc. EMNLP'2014*. 420
- Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014b). Knowledge graph embedding by translating on hyperplanes. In *Proc. AAAI'2014*. 420
- Warde-Farley, D., Goodfellow, I. J., Lamblin, P., Desjardins, G., Bastien, F., and Bengio, Y. (2011). pylearn2. http://deeplearning.net/software/pylearn2. 384
- Wawrzynek, J., Asanovic, K., Kingsbury, B., Johnson, D., Beck, J., and Morgan, N. (1996). Spert-ii: A vector microprocessor system. *Computer*, **29**(3), 79–86. 388
- Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based reinforcement learning. In *Proc. UAI'2001*, pages 538–545. 187
- Weinberger, K. Q. and Saul, L. K. (2004). Unsupervised learning of image manifolds by semidefinite programming. In CVPR'2004, pages 988–995. 149, 477
- Weiss, Y., Torralba, A., and Fergus, R. (2008). Spectral hashing. In NIPS, pages 1753–1760. 414
- Werbos, P. J. (1981). Applications of advances in nonlinear sensitivity analysis. In *Proceedings of the 10th IFIP Conference*, 31.8 4.9, NYC, pages 762–770. 196

- Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, *ICML 2008*, pages 1168–1175, New York, NY, USA. ACM. 461
- Weston, J., Bengio, S., and Usunier, N. (2010). Large scale image annotation: learning to rank with joint word-image embeddings. *Machine Learning*, 81(1), 21–35. 347
- Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. arXiv preprint arXiv:1410.3916. 357, 421
- Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In 1960 IRE WESCON Convention Record, volume 4, pages 96–104. IRE, New York. 12, 18, 21, 24
- Wikipedia (2015). List of animals by number of neurons wikipedia, the free encyclopedia. [Online; accessed 4-March-2015]. 21, 24
- Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression. In NIPS'95, pages 514–520. MIT Press, Cambridge, MA. 192
- Williams, R. J. (1992). Simple statistical gradient-following algorithms connectionist reinforcement learning. *Machine Learning*, **8**, 229–256. 184, 185, 358, 512
- Wilson, J. R. (1984). Variance reduction techniques for digital simulation. American Journal of Mathematical and Management Sciences, 4(3), 277—312. 186
- Wolpert, D. and MacReady, W. (1997). No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1, 67–82. 252
- Wolpert, D. H. (1996). The lack of a priori distinction between learning algorithms. *Neural Computation*, 8(7), 1341–1390. 106
- Wu, R., Yan, S., Shan, Y., Dang, Q., and Sun, G. (2015). Deep image: Scaling up image recognition. arXiv:1501.02876. 20, 385
- Wu, Z. (1997). Global continuation for distance geometry problems. SIAM Journal of Optimization, 7, 814–836. 287
- Xiong, H. Y., Barash, Y., and Frey, B. J. (2011). Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context. *Bioinformatics*, **27**(18), 2554–2562. 231
- Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., and Bengio, Y. (2015a). Show, attend and tell: Neural image caption generation with visual attention. In *ICML* '2015. 93, 187
- Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., and Bengio, Y. (2015b). Show, attend and tell: Neural image caption generation with visual attention. arXiv:1502.03044. 354
- Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural networks? In NIPS'2014. 284

- Younes, L. (1998). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. In Stochastics and Stochastics Models, pages 177–228. 528, 568
- Yu, D., Wang, S., and Deng, L. (2010). Sequential labeling using deep-structured conditional random fields. *IEEE Journal of Selected Topics in Signal Processing*. 283
- Zaremba, W. and Sutskever, I. (2014). Learning to execute. arXiv 1410.4615. 289
- Zaremba, W. and Sutskever, I. (2015). Reinforcement learning neural turing machines. arXiv:1505.00521. 358
- Zaslavsky, T. (1975). Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes. Number no. 154 in Memoirs of the American Mathematical Society. American Mathematical Society. 466
- Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV'14. 6
- Zhou, J. and Troyanskaya, O. G. (2014). Deep supervised and convolutional generative stochastic network for protein secondary structure prediction. In *ICML'2014*. 603
- Zöhrer, M. and Pernkopf, F. (2014). General stochastic networks for classification. In NIPS'2014. 603