

Module IN 2018

Introduction to Augmented Reality

Prof. Gudrun Klinker

Markerless Optical Tracking and Feature Detection SS 2018

Literature

- Parallel Tracking and Mapping for Small AR
 Workspaces, G. Klein and D. Murray, ISMAR 2007.
- Parallel Tracking and Mapping on a Camera Phone, G.
 Klein and D. Murray, ISMAR 2009.
- MonoSLAM: Real-Time Single Camera SLAM, A.J.
 Davison, I. Reid, N. Molton and O. Stasse, IEEE Trans.

 PAMI 2007 29(6): 1052-1067 (2007).

Agenda

- → 1. Motivation
 - 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
 - 3. PTAM: System Overview
 - 4. Feature Map
 - 5. Tracking
 - 6. Mapping
 - 7. Results

niversität München

1. Motivation

Typical situation in Augmented Reality

- Mobile user
 - Local (inside-out) tracker (here: camera in user's hand or on HMD)
 - Fast, erratic motions (esp. rotations)
- Unprepared environment:
 - No markers
 - No 3D scene description (3D model)
 - No external (outside-in) observing system
- Even worse:
 - Moving (changing) objects
 - Changing illumination
 - Very large area
- Need for "Extensible Tracking"

Agenda

- 1. Motivation
- 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
- 3. PTAM: System Overview
- 4. Feature Map
- 5. Tracking
- 6. Mapping
- 7. Results

Similar situation in robotics (mobile vehicle with camera)

 SLAM algorithm (Simultaneous Localization And Map-Building) with a single camera: [Davison 1998] http://www.doc.ic.ac.uk/~ajd/publications.html

General idea

- Two separate issues
 - Localization
 - By some sensors
 - By a camera if a scene model (map) is available
 - Map-building: 3D scene reconstruction
 - By generalized stereo
 - By a single, moving camera if motion is known
- If only a single camera is used and no external scene description is available, both problems need to be solved simultaneously (chicken-and-egg problem).

$$\begin{bmatrix} X_{ij}/Z_{ij} \\ Y_{ij}/Z_{ij} \\ 1 \\ 1/Z_{ij} \end{bmatrix} \approx \begin{bmatrix} X_{ij} \\ Y_{ij} \\ Z_{ij} \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix}$$

Image formation equation: $\overrightarrow{P_{i,i}} = K_i [R_i | t_i] \overrightarrow{p_i}$

$$\overrightarrow{P_{ij}} = K_j [R_j | t_j] \overrightarrow{p_i}$$

Unknowns

- Position (x_i, y_i, z_i) of every point $\overrightarrow{p_i}$, with i ε {0..M-1}
- Camera pose $C_i = [R_i | t_i]$ with j ε {0..N-1} = $f(tx_i, ty_i, tz_i, rx_i, ry_i, rz_i)$

(assume: intrinsic parameters K_i to be known)

Givens (for points that are seen in all images)

Image position $\overrightarrow{P_{ij}} = (X_{ii}, Y_{ij})$ of Point $\overrightarrow{p_i}$ in camera image C_j

 \rightarrow 3M + 6N

 \rightarrow 2MN

Required points and images for an over-determined system of equations

$$2MN \ge 3M + 6N$$

$$N \ge \frac{3M}{2M - 6}$$

Also known as "Structure from Motion" problem

1	
M points	N images
4	6
5	4
6	3
7	3

- Offline solutions
 - Structure from motion (computer vision)
 - Bundle adjustment (photogrammetry)
- Online solution: SLAM
 - Incremental map-building
 - Maintenance of a "system state" that changes over time (Kalman)
 - Explicit models of measurement uncertainty and process noise (both for camera and object poses)

Agenda

- 1. Motivation
- 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
- 3. PTAM: System Overview
 - 4. Feature Map
 - 5. Tracking
 - 6. Mapping
 - 7. Results

3. PTAM: System Overview

Parallel Tracking and Mapping

Georg Klein and David Murray (Oxford University). http://www.robots.ox.ac.uk/~gk/

- Paper: Parallel Tracking and Mapping for Small AR Workspaces, G. Klein and D. Murray, ISMAR 2007.
- Free source code.
- Winner of first ISMAR Tracking Contest 2008
 http://ismar08.org/wiki/doku.php?id=program-competition
 (Using Robert Castle's multiple map approach).
- Paper: Parallel Tracking and Mapping on a Camera Phone, G. Klein and D. Murray, ISMAR 2009. http://www.youtube.com/watch?v=pBI5HwitBX4

3. PTAM: System Overview

Requirements for AR-related tracking and 3D reconstruction

- Fast
- Accurate
- Robust

Tracking a hand-held camera is more difficult than tracking a robot because

- Robots often have odometry
- Robots can be arbitrarily slow

Problems with SLAM

- Potential data association errors (wrong matches) due to high speeds
 - Not robust enough because tracking is tied to map-building (too slow for tracking, too fast for high-quality map-building)
- Does not exploit dual-core facilities
- Sparse map of high-quality features vs. dense map of low-quality features (key frames)

3. PTAM: System Overview

Assumptions

- Mostly static scene (Not many moving or deformable objects)
- Small (User spends most time in the same space)

Main concepts

- Tracking and Mapping separated (two parallel threads)
- Mapping based on keyframes (processed using offline techniques: bundle adjustment)
- Map densely initialized from a stereo pair (5-point algorithm)
- New points initialized via epipolar search
- Thousands of points

Agenda

- 1. Motivation
- 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
- 3. PTAM: System Overview
- → 4. Feature Map
 - 5. Tracking
 - 6. Mapping
 - 7. Results

4. Feature Map

- → 4.1 Knowledge Representation
 - 4.2 Image Pyramids
 - 4.3 Keyframes

4. Feature Map

4.1 Feature Representation

- M point features $p_{jw} = (x_{jw}, y_{jw}, z_{jw}, 1)$ (in some world coordinate system W)
 - Assume: locally planar surface patch with normal n_{iw}
 - Associated with 8x8 pixel patch in some keyframe at some level
- N keyframes (specially selected images of the moving camera)
 - Associated local coordinate system K_i
 - 4-level image pyramid
- Typical feature map contains:
 - M=2000..6000 points
 - N=40..120 keyframes

4. Feature Map

- 4.1 Knowledge Representation
- → 4.2 Image Pyramids
 - 4.3 Keyframes

4. Feature Map

4.2 Image Pyramids

- Pyramid of recursively smoothed and reduced representations of the original image
 - Requires less than twice the amount of space
 - Fast to compute
 - Increases robustness
 - Maintains accuracy

• Exponentially reduced image sizes at increasing levels I:

$$w_l = \frac{w}{2^l} \qquad h_l = \frac{h}{2^l}$$

Level 0: 640 x 480 pixels

Level 1: 320 x 240 pixels

Level 2: 160 x 120 pixels

Level 3: 80 x 60 pixels

4. Feature Map

4.2 Image Pyramids

 8x8 patches on all levels, representing areas of increasing sizes at level 0

> 8x8 patch at level 3: 64x64 pixels at level 0 8x8 patch at level 2: 32x32 pixels at level 0 8x8 patch at level 1: 16x16 pixels at level 0 8x8 patch at level 0: 8x 8 pixels at level 0

- Patch at coarse level = approximate description of large image area
 - Overview: only dominant image content (LF)
 - For fast wide-area search (correlation)
 (Redetection after fast camera movements)
- Patch a fine-grained level = precise description of small image area
 - Detail: very specific image data (HF)
 - For high-precision local-area search

4.2 SRG (Spatial Relationship Graph)

4. Feature Map

- 4.1 Knowledge Representation
- 4.2 Image Pyramids
- → 4.3 Keyframes

4. Feature Map

4.3 Keyframes

Wide baseline (distance) between cameras (views) important

4. Feature Map

4.3 Keyframes

Wide baseline (distance) between cameras (views) important

The wider the baseline the better the depth estimation

- Skip images from nearly the same viewpoint
 - Poor accuracy
 - Waste of space
 - Waste of time

Agenda

- 1. Motivation
- 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
- 3. PTAM: System Overview
- 4. Feature Map
- → 5. Tracking
 - 6. Mapping
 - 7. Results

5. Tracking

- → 5.1 Overview
 - 5.2 Image Acquisition
 - 5.3 Camera Pose and Projection
 - 5.4 Patch Search
 - 5.5 Pose Update
 - 5.6 Two-Stage Coarse-to-Fine Tracking
 - 5.7 Tracking Quality and Failure Recovery

5.1 Overview

Assumptions

 Given: a set of 3D points, P_j, with associated 2D image features F_j in various keyframes of images {0..i-1} and across various levels I

Key steps of the algorithm

- 1. Acquire new frame \textbf{I}_{i} from a hand-held camera, generate a prior pose estimate K_{i}^{-}
- 2. Project map points into the image, according to $\, K_{i}^{\scriptscriptstyle -} \,$
- 3. Search for a small number (50) of the coarsest-scale features
- 4. Update camera pose from coarse matches
- Reproject larger number (1000) of points into the image, search for their refined location
- 6. Compute final pose estimate K_i

5.2 Image Acquisition

- Frame grabbing
- Convert to black & white
- Generate image pyramid
- Determine interesting points (corners) on each pyramid level
- Compute prior estimate of camera pose K_i^-
 - Decaying velocity model
 (Lacking new measurements, the estimated camera slows down)

5.3 Camera Pose and Projection

Transfer 3D points p_j from world coordinate system to estimated camera coordinate system K_i^- using transformation matrix \mathbf{E}_{cw}^-

$$\mathbf{p}_{\mathbf{jc}} = \mathbf{E}_{\mathbf{cw}}^{-} \mathbf{p}_{\mathbf{jw}}$$

• Project points from 3D camera frame into image using given intrinsic parameters, focal length (f_u, f_v) , principal point (u_0, v_0) , and radial distortion r':

$$\begin{pmatrix} u_j \\ v_j \end{pmatrix} = CamProj(\mathbf{p_{jc}})$$

$$CamProj(\mathbf{p_{jc}}) = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + \begin{bmatrix} f_u & 0 \\ 0 & f_v \end{bmatrix} \frac{r'}{r} \begin{pmatrix} x_{jc} / z_{jc} \\ y_{jc} / z_{jc} \end{pmatrix}$$

5.4 Patch Search

- Fixed-range image search around the predicted image location (circular region with fixed radius) of a point p_j
 - Warp the 8x8 image patch according to the orientation of its normal n_j and the current viewpoint orientation (affine warp)
 - Determine appropriate pyramid level for search from the projected patch size
 - Generate an 8x8 search template from the source level, using the warp and bilinear interpolation
 - Subtract the average intensity to discount illumination changes
 - Calculate matching quality at all interesting points (corners) in the search area (quality criterion: SSD)
 - If best score is below threshold, a match has been found
- For high pyramid levels, refine matching position to sub-pixel precision (iterative error minimization) (computationally expensive)

5.5 Pose Update

- For each of S successful observations (found patches)
 - Patch location at $(u, v)^T$ with measurement noise $\sigma^2 = 2^{2I}$
- Iterative minimzation of a robust objective function of the reprojection error vector e_i for a motion matrix M

$$\mathbf{e_{j}} = \begin{pmatrix} \mathbf{u}_{j} \\ \mathbf{v}_{j} \end{pmatrix} - CamProj(\mathbf{Mp_{jc}})$$

5.6 Two-Stage Coarse-to-Fine Tracking

Two consecutive phases of patch searching and pose update

- Phase 1:
 - Initial coarse search (50 map points) at highest pyramid level
 - Over a large search radius
 - With subpixel refinement
 - Pose update
- Phase 2:
 - Re-projection of up to 1000 of the remaining potentially visible image patches
 - Small search region
 - Refinements only for patches at highest pyramid level
 - Final frame pose from both coarse and fine image measurements

5.7 Tracking Quality, Failure Recovery

- Estimation of tracking quality as the fraction of successful feature observations
- If quality is below threshold, tracking continues, but no new keyframes are taken (in order not to degrade the 3D scene model)
- If quality is below a second threshold for more than a few frames, tracking is considered lost.
 - → Tracking recovery is initiated.

Agenda

- 1. Motivation
- 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
- 3. PTAM: System Overview
- 4. Feature Map
- 5. Tracking
- → 6. Mapping
 - 7. Results

6. Mapping

- → 6.1 Overview
 - 6.2 Stereo Initialization
 - 6.3 Keyframe Insertion
 - 6.4 Bundle Adjustment
 - 6.5 Data Association Refinement
 - 6.6 General Remarks

6.1 Overview

Assumptions

Given: A set of previous keyframes
 K₀..K_{i-1} with 2D image features F_j
 in various levels I, associated
 3D points, P_i.

Key aspects of the algorithm:

- 1. Stereo Initialization
- 2. Keyframe insertion (and epipolar search)
- 3. Bundle adjustment
- 4. Data association refinement

6.2 Stereo Initialization

At startup

- User-initiated initialization with two images (key frames)
 - User positions the camera above the work space and presses a key
 - → First image (keyframe) is captured
 - 1000 image patches (interesting points) are automatically selected in the lowest pyramid level
 - User moves the camera by some amount (e.g., 10 cm) and presses a key
 - → Second image (keyframe) is captured
 - · During the camera motion, the features were already tracked
 - Second keyframe has patches related to first keyframe
- Relative pose estimation and 3D reconstruction using stereo computer vision
- Refinement through bundle adjustment
- Scaled to metric units by assuming that the camera moved by approx. 10 cm.

6. Mapping

6.3 Keyframe Insertion

- New keyframes are added whenever:
 - Tracking quality is good
 - At least 20 frames since last keyframe have passed
 - New keyframe has a minimum distance to all previous keyframes (minimum distance threshold depends on mean depth of observed features)
- Existing feature points that may have been ignored by the tracking system are updated
- Interesting (salient) new features are computed in each pyramid level, filtered and added to the feature map.
- The depth of the new features is determined by mapping them to the closest already existing keyframe.

6.4 Bundle Adjustment

- Global bundle adjustment is very time-consuming; its time demand is dominated by the number of keyframes (currently not feasible in real-time for more than 50 keyframes).
- Local bundle adjustment:
 - Adjust only a small set X of keyframes (the current plus the four closest neighbors)
 - The current set of map points Z consists of all those points that have been detected in any of those five keyframes.
 - Extend the set of keyframes to the set Y of all frames in which the map points of Z have been seen (yet, the pose of these additional keyframes is not part of the adjustment process).

6.5 Data Association Refinement

- "Luxury routine": executed when there is spare time (on the non-tracking thread)
- Make new measurements in old keyframes:
 Measure newly created map features from new frames also in older frames
 - Measure newly created map features in older keyframes
 - Re-measure outlier measurements
- Issues addressed
 - Problems with repetitive features (patterns)

6. Mapping

6. Mapping

6.6 General Remarks

Some aspects of the current implementation could be improved

- Simple set of heuristics to remove outliers from the map
- Patches are initialized with a normal vector parallel to the viewing axis
- Two-stage approach can lead to increased tracking jitter

Agenda

- 1. Motivation
- 2. Introduction to "Simultaneous Localization-And-Mapping" (SLAM)
- 3. PTAM: System Overview
- 4. Feature Map
- 5. Tracking
- 6. Mapping
- → 7. Results

7. Results

Video of live demonstration

Cluttered desk with immediate surroundings

racking time (ms)

- Over 1656 frames (55.2 seconds), 57 keyframes, 4997 point features
- Distribution across pyramid levels: L0: 51%, L1: 33%, L2: 9%, L3: 7%

Map size and procesing time for the 'desk' video

Demos:

- Scale change
- Lens simulation: camera as input device, camera-centered lens to scorch the environment
- Ewok rampage: camera used to aim Darth Vader's laser pistol. Movement is controlled with the keyboard.

Frame number

7. Results

7. Results

More demos:

PTAM at ISMAR 2007 in Nara, Japan

Tracking Contest 2008

PTAM on iPhone, ISMAR 2009
 http://www.youtube.com/watch?v=pBI5HwitBX4

Thank you!

