細線化アルゴリズム No. 1

• 注目画素をv₁としたとき, 3x3の8近傍を以下のように定義する.

V 9	V2	V 3
V8	V1	V4
V7	V 6	V 5

細線化アルゴリズム No. 2

- 注目画素v₁が1 (前景. 0:255なら255) の場合を考える
- v₁の周りの画素が0ではない数nを求める.
- 周りの画素v₂, v₃, ..., v₉, v₂と並べて,
 0の次に1 (0:255なら255)である数sを求める.

細線化アルゴリズム No. 3-1

- ステップ1
 - V₂, V₄, V₆のいづれかが黒 (0)
 - V₄, V₆, V₈のいづれかが黒 (0)

細線化アルゴリズム No. 3-2

- ステップ2
 - V₂, V₄, V₈のいづれかが黒 (0)
 - V₂, V₆, V₈のいづれかが黒 (0)

細線化アルゴリズムまとめ

- 1. 二値画像のコピー(出力画像)
- 2. No. 2
 - $V_1 == 1$
 - 2≤n≤6である
 - s==1である
- 3. No. 3-1
- 4. 上記1-2を満たしたら 出力画像のv₁の画素値を0に変更.

- 1. 二値画像のコピー(出力画像)
- 2. No. 2
 - $V_1 == 1$
 - 2≤n≤6である
 - s==1である
- 3. No. 3-2
- 4. 上記1-2を満たしたら 出力画像のv₁の画素値を0に変更.

ステップ1

ステップ2

nの働き

・端点および孤立点を保存する

nはOでない周囲画素の個数

n=0 (孤立点) n=1 (端点)

O	7	7
1	Vı]
1	7	1

n=7

n=8

2≦n≦6であるときv₁は削除可能性有

→左の場合は削除対象とならない

sの働き

• 通過点および分岐点を保存する

V 9	V 2	V 3
V8	V1	V4
V 7	V 6	V 5

V2	V 3	V4	V 5	V6	V7	V8	V 9	V2
----	------------	----	------------	----	----	----	------------	----

sは上の並び順でOから1に変わる回数

0	0	O
0	Vı	1
O	7	7

S==1であるときv₁は削除可能性有

$$n=3$$

$$n=3$$

→右2つは削除対象とならない

$$s=1$$

細線化アルゴリズム No. 3-1の意味

- ステップ1
 - V₂, V₄, V₆のいづれかが黒 (0)
 - V₄, V₆, V₈のいづれかが黒 (0)

例えば左上隅、

右へり、下へりに該当

V 9	V2	V 3
V8	V1	V4
V7	V 6	V 5

0	0	0
0	Vı	1
0	7	1

(2≤n≤6, s==1も満たす必要あり)

細線化アルゴリズム No. 3-2の意味

- ステップ2
 - V₂, V₄, V₈のいづれかが黒 (0)
 - V₂, V₆, V₈のいづれかが黒 (0)

例えば右下隅、

下へり、左へりに該当

V 9	V2	V 3
V8	V1	V4
V7	V 6	V 5

0	0	0
1	V ₁	7
1	1	1

O	1	1
O	V ₁	1
O	1	1

V8=0

(2≤n≤6, s==1も満たす必要あり)