Exercise 1

 Σ : symmetric, then Σ^{-1} is symmetric

We have $\Sigma\Sigma^{-1} = I$

$$I = I^{T}$$

$$\Sigma \Sigma^{-1} = (\Sigma \Sigma^{-1})^{T}$$

$$\Sigma \Sigma^{-1} = (\Sigma^{-1})^{T} \Sigma^{T}$$

$$\Sigma^{-1} \sigma(\Sigma^{-1}) = (\Sigma^{-1} \Sigma(\Sigma^{-1}))$$

$$\Sigma^{-1} = (\Sigma^{-1})^{T}$$

Then Σ^{-1} is symmetric

Exercise 2

A is symmetric then eigenvectors for A corresponding to different eigenvalues must be orthogonal. 2 vectors u and v are orthogonal if their dot product $(u \cdot v) = u^T v = 0$ We have $Au = \lambda_1 u$ $Av = \lambda_2 v$

$$\lambda_1(u \cdot v) = (\lambda_1 u)v = (Au) \cdot v = (Au)^T v = u^T A^T v = u^T A v = u^T (\lambda_2 v) = \lambda_2 u^T v = \lambda_2 (u \cdot v)$$
$$\lambda_1(u \cdot v) = \lambda_2(u \cdot v)$$
$$(\lambda_1 - \lambda_2)(u \cdot v) = 0$$

because $\lambda_1 ! = \lambda_2$

$$so(u \cdot v) = 0$$

Exercise 3

$$\Sigma = \sum_{i=i}^{D} \lambda_i u_i u_i^T$$
 then $\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} u_i u_i^T$

 Σ is real, symmetric matrix its eigenvalues

We have $\Sigma = \sum_{i=1}^{D} \lambda_i u_i u_i^T = USU^T$ where U is $D \times D$ matrix with eigenvector as its columns and S is a diagonal matrix with the eigenvalue λ along its diagonal

Because U is a orthogonal matrix $U^{-1} = U^T$

$$\Sigma^{-1} = (USU^{T-1}) = (U^T)^{-1}S^{-1}U^{-1} = US^{-1}U^T = \sum_{i=1}^{D} \frac{1}{\lambda_i} u_i u_i^T$$