#### Linear Regression

EE219: Large Scale Data Mining

Professor Roychowdhury

Jan 25, 2017

### Summary

- Review
  - ► SVM  $y_i = \sum_{j=1}^d a_j * x_i(j) + \epsilon_i = x_i^T \theta + \epsilon_i$
  - max margin
- Dual problem and optimal solution
- Nonlinear
  - ▶ lifting a vector
  - ► Gram matrix
  - kernel
- Hinge loss
- Gradient descent

## Review SVM :max margin



Figure 1: max margin calculation

### Dual problem

As stated in previous lecture, for the binary classification problem, when n samples are linear separable, it can be written as n constraints in an optimization problem.

$$y_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

For max margin classifier, it can be transformed into a minimization problem with cost function:  $\frac{1}{2}w^Tw$ . Then the whole problem can be solved through dual problem.

#### Primal problem

minimize:  $\frac{1}{2}w^Tw$ 

s.t. 
$$y_i(w^Tx_i + b) \ge 1$$
,  $i = 1, 2, ...$  s.t.  $\alpha \ge 0$  and  $y_i^T\alpha = 0$ 

#### Dual problem

maximize:  $-\frac{1}{2}\alpha^T Q\alpha + 1^T \alpha$ 

s.t. 
$$\alpha \geq 0$$
 and  $y_i' \alpha = 0$ 

#### Dual problem

- ▶ the Lagrange function for the primal problem can be written as  $L(w, b, \alpha) = \frac{1}{2}w^Tw + \sum_{i=1}^n \alpha_i(1 y_i(w^Tx_i + b))$
- $lpha\in {
  m R}^n$  is the Lagrange multiplier  $(lpha_i\geq 0)$ , we hope to minimize maximize L(w,b,lpha), the optimal value is equal to that in maximize minimize L(w,b,lpha) when it satisfies Slater's condition, which means strictly feasible in this problem.
- substitute w into  $L(w, b, \alpha)$ , we will get

$$L(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \alpha_i y_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
$$= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

### Dual problem

Let  $Q = y_i y_j x_i^T x_j$ , then  $L(w, b, \alpha) = 1^T \alpha - \frac{1}{2} \alpha^T Q \alpha$  Then the dual problem can be formulated as

maximize 
$$1^T \alpha - \frac{1}{2} \alpha^T Q \alpha$$
  
subject to  $\alpha_i \ge 0, i = 1, ..., n$ .  
 $y^T \alpha = 0$ 

### Dual problem, optimal solution

When w,b is the optimal solution for the primal problem, complementary slackness condition is satisfied:  $\alpha_i(1-y_i(w^Tx_i+b))=0$  for i=1..n.

Complementary slackness condition can be satisfied in two ways:

- $\alpha_i = 0$
- $y_i(w^Tx_i + b) = 1$
- ▶ Vectors  $x_i$  for which  $y_i(w^Tx_i + b) = 1$  are called support vectors. Support vectors lie on the margin. For each  $x_i$ , there is a corresponding  $\alpha_i > 0$ , let it be  $\alpha_i^*(i = 1..N)$ .
- $w^* = \sum_{i=1}^n \alpha_i y_i x_i = \sum_{i=1}^N \alpha_i^* y_i x_i$
- $b^* = y_j w^{*T} x_j = y_j \sum_{i=1}^{N} y_i \alpha_i^* x_i^T x_j$
- ▶ given a new  $x \in \mathbb{R}^n$ , we classify it based on decision function:  $c(x) = sgn(w^{*T}x + b^*) = sgn(\sum_{i=1}^{N} \alpha_i^* y_i x_i^T x + b^*)$

# Dual problem - with slack variable

#### Primal problem

minimize: 
$$\frac{1}{2}w^Tw + \gamma \sum_{i=1}^N \epsilon_i$$

s.t. 
$$y_i(w^Tx_i + b) \ge 1, i = 1,2,..n$$
  
 $\epsilon_i > 0, i = 1,2,..n$ 

#### Dual problem

▶ Similarly, the Lagrange function for the primal problem can be written as  $L(w, b, \alpha, \lambda) =$ 

$$\frac{1}{2}w^Tw + \sum_{i=1}^n \alpha_i(1 - y_i(w^Tx_i + b)) + \gamma 1^T\epsilon - \sum_{i=1}^n \lambda_i\epsilon_i$$

▶ 
$$\frac{\partial L}{\partial w} = 0$$
, then  $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ .  $\frac{\partial L}{\partial b} = 0$ , then  $\sum_{i=1}^{n} \alpha_i y_i = 0$ 

▶ for  $\epsilon_i \geq 0$ ,  $\frac{\partial L}{\partial \epsilon} = 0$ , then  $\gamma - \alpha_i - \lambda_i = 0$  and since  $\lambda_i \geq 0$ , it can be simplified as  $\gamma - \alpha_i \geq 0$  to remove variable  $\lambda$ 

### Nonlinear –lifting a vector

- ▶ It's important to use nonlinear classifier because sometimes the data are not linearly separable.
- ► There are several ways to lift a vector, for example, through polynomial or exponential transformation of the original vector.
- $\mathbf{v}_i \in \mathbb{R}^n \to \phi(\mathbf{x}_i) \in \mathbb{R}^m (m > n)$ 
  - ► For example, in polynomial transformation,  $x = [x_1 \ x_2 \ ... \ x_n]^T$ ,  $\phi(x) = [x_1 \ x_2 \ ... \ x_1 \ x_2 \ ... \ x_{n-1} \ x_n]^T$ ,  $(m = n + \binom{n}{2})$ , then the decision function  $c(x) = \text{sgn}(w^T \phi(x) + b)$

#### Gram matrix and kernel

- Q is called Gram matrix
- ▶ In the linear case,  $Q_{ij} = y_i y_j x_i^T x_j$
- After lifting the vector,  $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$
- ► decision function  $c(x) = sgn(w^{*T}\phi(x) + b) = sgn(\sum_{i=1}^{n} \alpha_i^* y_i \phi(x_i)^T \phi(x) + b^*)$
- ▶ Let  $k_{ij} = \phi(x_i)^T \phi(x_j)$  ,then  $k : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$  is called kernel.
  - For example, Gaussian Kernel:  $k_{ij} = \exp(-\beta \|x_i x_j\|^2)$ , then  $c(x) = sgn(\sum_{i=1}^n \alpha_i^* y_i \exp(-\beta \|x_i x\|^2) + b^*)$
  - Gaussian kernel is widely used and you can choose different kernel. Kernel method is computationally efficient.

## **SVM** regression

For  $(y_1, x_1), (y_2, x_2), ...(y_n, x_n)$  n observations. The optimization problem can be written as:



#### Gradient descent

Regularized least squared error:

$$E(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2 + \lambda \theta^T \theta$$

$$\bullet^* = \operatorname{argmin} E(\theta). \text{ How to learn } \theta?$$

- $\bullet \ \theta_{i+1} = \theta_i \eta(\frac{\partial E}{\partial \theta})$
- $\triangleright$  step size:  $\eta$ , generally the smaller the step size is, the longer it will take to get optimal choice of  $\theta$



Figure 2: Gradient descent