■ Chapitre 13 ■

Espaces vectoriels préhilbertiens réels

- $\blacksquare E$ désigne un \mathbb{R} -espace vectoriel.
- I. Produit scalaire
- I.1 Définitions

Définition 1 (Produit scalaire).

Une application $f: E \times E \to \mathbb{R}$ définit un produit scalaire si f est

(i). une forme bilinéaire symétrique : pour tous $(u, v, w) \in E^3$, $\lambda \in \mathbb{R}$,

$$\begin{array}{ll} f(u,v) &= f(v,u). \\ f(u+\lambda v,w) &= f(u,w) + \lambda f(v,w). \end{array}$$

(ii). définie positive : $\forall u \in E, f(u, u) \ge 0$ avec égalité si et seulement si $u = 0_E$.

Notation.

■ Le produit scalaire de deux éléments $u, v \in E$ sera noté $\langle u, v \rangle$, $u \cdot v$ ou (u|v).

Exercice 1.

- **1.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Donner une condition nécessaire et suffisante sur A pour que l'application $\varphi : \mathcal{M}_{n,1}(\mathbb{R}) \times \mathcal{M}_{n,1}(\mathbb{R}) \to \mathbb{R}$, $(X,Y) \mapsto {}^t X A Y$ soit une forme bilinéaire symétrique.
- **2.** Donner des exemples de produits scalaires sur \mathbb{R}^n , $\mathscr{C}([a,b],\mathbb{R})$, $\mathscr{M}_n(\mathbb{R})$.
- **3.** Montrer que $\varphi : \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}, (P,Q) \mapsto \int_0^1 P(t)Q(t) dt$ est un produit scalaire.
- **4.** Soit $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 6 & 2 \\ 1 & 2 & 3 \end{pmatrix}$. Montrer que $(X,Y) \mapsto {}^t XAY$ définit un produit scalaire.

Définition 2 (Espace vectoriel préhilbertien / euclidien).

- (i). Un espace préhilbertien réel est un R-espace vectoriel muni d'un produit scalaire.
- (ii). Un espace vectoriel euclidien est un \mathbb{R} -espace vectoriel de dimension finie muni d'un produit scalaire.

I.2 Inégalités

Proposition 1 (Inégalité de CAUCHY-SCHWARZ).

Pour tous vecteurs $u, v \in E$,

$$|\langle u, v \rangle| \leqslant \sqrt{\langle u, u \rangle} \sqrt{\langle v, v \rangle},$$

avec égalité si et seulement si u et v sont colinéaires.

Exercice 2. Montrer que $|\operatorname{Tr}(A)| \leq \sqrt{n\operatorname{Tr}(A^tA)}$.

Proposition 2 (Inégalité de MINKOWSKI).

Pour tous vecteurs $u, v \in E$,

$$\sqrt{\langle u+v,u+v\rangle} \leqslant \sqrt{\langle u,u\rangle} + \sqrt{\langle v,v\rangle}$$

I.3 Norme & Distance euclidiennes

Théorème 1 (Norme euclidienne).

Soit E un espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. L'application $\| \cdot \| : E \to \mathbb{R}_+, u \mapsto \sqrt{\langle u, u \rangle}$ est une norme sur E. C'est la norme euclidienne issue du produit scalaire. Si $u \in E$ est tel que $\|u\| = 1$, le vecteur u est normé ou unitaire.

Notation.

■ $\|\cdot\|$ désignera la norme associée au produit scalaire $\langle\cdot,\cdot\rangle$.

Exercice 3. Donner des exemples de normes euclidiennes sur \mathbb{R}^n , $\mathscr{C}([a,b],\mathbb{R})$ et $\mathscr{M}_n(\mathbb{R})$.

Propriété 3 (Identités de polarisation).

Soient $u, v \in E$.

- (i). $||u+v||^2 = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$.
- (ii). Al-Kashi. $||u v||^2 = ||u||^2 + ||v||^2 2\langle u, v \rangle$.
- (iii). Identité de polarisation. $\|u+v\|^2 \|u-v\|^2 = 4\langle u,v\rangle$.
- (iv). Identité du parallélogramme. $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$.

Exercice 4.

- 1. Retrouvez la formule de la médiane : $AB^2 + AC^2 = \frac{1}{2}BC^2 + 2AI^2$.
- **2.** Montrer que $\|\cdot\|_{\infty}$: $\mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \max\{|x|,|y|\}$ n'est pas une norme euclidienne.

II. Orthogonalité

II.1 Définitions

Définition 3 (Orthogonalité).

Soient E un \mathbb{R} -espace vectoriel muni d'un produit scalaire, u, v deux vecteurs de E, F, G deux sous-espaces vectoriels de $E, p \in \mathbb{N}^*$ et $(u_1, \ldots, u_p) \in E^p$.

- (i). Les vecteurs u et v sont orthogonaux si $\langle u, v \rangle = 0$. On note $u \perp v$.
- (ii). Les espaces F et G sont orthogonaux si \forall $(u, v) \in F \times G$, $\langle u, v \rangle = 0$.
- (iii). La famille (u_1, \ldots, u_p) est orthogonale si $\forall i, j \in [1, p], i \neq j, \langle u_i, u_j \rangle = 0$.
- (iv). La famille (u_1, \ldots, u_p) est orthonormée si $\forall i, j \in [1, p], \langle u_i, u_j \rangle = \delta_{ij}$.
- (v). L'orthogonal de F est l'espace $F^{\perp} = \{u \in E : \forall v \in F, \langle u, v \rangle = 0\}$.

Exercice 5.

- **1.** Déterminer E^{\perp} puis $\{0_E\}^{\perp}$.
- **2.** Soient F, G deux sous-espaces vectoriels de E tels que $F \subset G$. Montrer que $G^{\perp} \subset F^{\perp}$.
- **3.** Soient \mathbb{R}^3 muni du produit scalaire canonique et $D = \text{Vect}\{(1,1,1)\}$. Déterminer D^{\perp} .

Propriétés 4 (Orthogonalité & Somme directe).

Soient F, G deux sous-espaces vectoriels de E.

- (i). Si F et G sont orthogonaux, alors ils sont en somme directe.
- (ii). L'espace F^\perp est un sous-espace vectoriel de E.

Exercice 6. Dans \mathbb{R}^3 muni du produit scalaire canonique, on considère $Vect\{(1,1,2),(1,3,4)\}$. Déterminer une équation cartésienne de P puis de P^{\perp} .

Théorème 2 (Théorème de Pythagore).

- (i). Soient $u, v \in E$. Les vecteurs u et v sont orthogonaux si et seulement si $||u+v||^2 =$
- (ii). Soient $p \in \mathbb{N}^*$ et $(u_1, \ldots, u_p) \in E^p$. Si la famille (u_1, \ldots, u_p) est orthogonale, alors $\left\|\sum_{i=1}^{p} u_i\right\|^2 = \sum_{i=1}^{p} \|u_i\|^2.$

Exercice 7.

- 1. Montrer que la réciproque du (ii) est fausse.
- **2.** Soit $n \in \mathbb{N}$. Montrer que pour tout $(a_0, \ldots, a_n) \in \mathbb{R}^{n+1}$,

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{i=0}^n a_i \cos(ix) \right)^2 dx = a_0^2 + \frac{1}{2} \sum_{i=1}^n a_i^2.$$

Propriété 5 (Orthogonalité & Familles libres).

Soient $p \in \mathbb{N}^*$ et $\mathscr{F} = (u_1, \dots, u_p)$ une famille de vecteurs de E non nuls. Si \mathscr{F} est orthogonale, alors \mathscr{F} est libre.

II.2 Bases orthonormées

Théorème 3 (Procédé d'orthonormalisation de GRAM-SCHMIDT).

Soit (e_1, \ldots, e_p) une famille libre de E. Il existe une famille orthonormée $(\varepsilon_1, \ldots, \varepsilon_p)$ telle que pour tout $i \in [1, p]$, $\text{Vect}\{e_1, \ldots, e_i\} = \text{Vect}\{\varepsilon_1, \ldots, \varepsilon_i\}$.

- **1.** On munit $\mathbb{R}_2[X]$ du produit scalaire $\langle P,Q\rangle = \int_0^1 P(t)Q(t) dt$. Orthonormaliser la base
- 2. Proposer un algorithme en Python qui permette d'orthonormaliser des familles libres.

Théorème 4 (Base orthonormée incomplète).

Toute famille orthonormée d'un espace vectoriel euclidien E peut être complétée en une base orthonormée. En particulier, tout espace vectoriel euclidien non réduit à son élément neutre possède une base orthonormée.

Théorème 5 (Isomorphisme canonique).

Soient $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormée de E et u, v des vecteurs de E. On note $x = \sum_{i=1}^{n} x_i e_i$ et $y = \sum_{i=1}^{n} y_i e_i$. Alors, pour tout $i \in [1, n]$,

$$\langle x, e_i \rangle = x_i, \ \langle x, y \rangle = \sum_{i=1}^n x_i y_i, \ ||x|| = \sqrt{\sum_{i=1}^n x_i^2}.$$

Si
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, alors $\langle x, y \rangle = {}^t\!Y X$ et $||x|| = \sqrt{{}^t\!X X}$.

Exercice 9. Soient $f \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E. Notons $A = (a_{i,j})$ la matrice de f dans la base \mathscr{B} . Exprimer $a_{i,j}$ en fonction des $(f(e_k))_k$.

III. Géométrie

III.1 Orthogonal d'un sous-espace vectoriel

Théorème 6 (Unicité du supplémentaire orthogonal).

Soit F un sous-espace vectoriel de dimension r de E.

- (i). F et F^{\perp} sont supplémentaires dans E.
- (ii). Soit G un supplémentaire de F. Si $G\perp F,$ alors $G=F^\perp.$

De plus, si E est de dimension finie n, alors dim $F^{\perp} = n - \dim F$.

Exercice 10.

- 1. Soit F un sous-espace vectoriel de dimension finie de E. Montrer que $(F^{\perp})^{\perp} = F$.
- 2. $\mathbb{R}[X]$ est muni du produit scalaire tel que la base canonique soit orthonormée. On pose F= $\left\{\sum_{k=0}^n a_k X^k \in \mathbb{R}[X] ; \sum_{k=0}^n a_k = 0\right\}$. Déterminer F^{\perp} et $(F^{\perp})^{\perp}$.

Définition 4 (Projection / Symétrie orthogonale).

- (i). Une projection orthogonale de E est une projection p telle que Ker p et Im p soient orthogonaux.
- (ii). Une symétrie orthogonale de E est une symétrie s telle que $Ker(s+Id_E)$ et $Ker(s-Id_E)$ soient orthogonaux.

Exercice 11.

- **1.** Soient r un entier naturel non nul et $(\varepsilon_1, \ldots, \varepsilon_r)$ une base orthonormée de Im p. Pour tout vecteur x de E, exprimer p(x) en fonction des $(\varepsilon_i)_{i \in [1,r]}$.
- 2. Pour tout entier naturel n, déterminer la projection orthogonale du polynôme X^n sur $\mathbb{R}_1[X]$ pour le produit scalaire $(P,Q) \mapsto \int_{a}^{1} P(t)Q(t) dt$.

Propriété 6 (Inégalité de Bessel).

Soient $x \in E$ et p un projecteur orthogonal. Alors, $||p(x)|| \leq ||x||$.

III.2 Distances

Théorème 7 (Distance à un sev).

Soient z un vecteur de E préhilbertien et F un sous-espace vectoriel de dimension finie de E. La distance de z à F, notée d(z,F), est le réel $d(z,F) = \min_{x \in F} ||z - x||$. En notant p la projection orthogonale sur F, le vecteur p(z) est l'unique vecteur de F tel que

d(z, F) = ||z - p(z)||.

Exercice 12. Déterminer $\inf_{(a,b)\in\mathbb{R}^2}\int_0^1(x^2-ax-b)^2\,\mathrm{d}x.$

Corollaire 8 (Expression dans une base orthonormée).

Soient E un espace préhilbertien, F un sous-espace vectoriel de dimension finie r et $(\varepsilon_1, \ldots, \varepsilon_r)$ une base orthonormée de F. Notons p la projection orthogonale sur F. Pour tout vecteur $x \in E$,

(i).
$$p(x) = \sum_{i=1}^{r} \langle x, \varepsilon_i \rangle \varepsilon_i$$
. (ii). $d(x, F) = \left\| x - \sum_{i=1}^{r} \langle x, \varepsilon_i \rangle \varepsilon_i \right\|$.

De plus, si E est de dimension finie n et $(\varepsilon_1,\ldots,\varepsilon_n)$ est une base orthonormée de E, alors

$$d(x,F) = \sqrt{\sum_{i=r+1}^{n} \langle x, e_i \rangle^2}.$$

Exercice 13. On munit \mathbb{R}^4 du produit scalaire usuel. On note $F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 ; x_1 + x_2 + x_3 + x_4 \}$ $x_2+x_3+x_4=0$ ET $x_1+2x_2+3x_3+4x_4=0$. Déterminer la matrice de la projection orthogonale sur F dans la base canonique.

III.3 Hyperplans

On suppose dans cette partie que E est un espace vectoriel euclidien.

Théorème 9 (Représentation des formes linéaires).

Pour tout forme linéaire $f \in E^*$, il existe un unique vecteur $a \in E$ tel que $f : x \mapsto \langle a, x \rangle$.

Exercice 14.

1. Soit φ une forme linéaire sur $\mathscr{M}_n(\mathbb{R})$. Montrer qu'il existe une unique matrice $A \in \mathscr{M}_n(\mathbb{R})$ telle que : $\forall M \in \mathcal{M}_n(\mathbb{R}), \, \varphi(M) = \text{Tr}(AM).$

2. On munit $\mathbb{R}[X]$ du produit scalaire $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$. Existe-t-il un polynôme $A \in \mathbb{R}[X]$ tel que pour tout $P \in \mathbb{R}[X]$, $\langle P, A \rangle = P(0)$?

Théorème 10 (Normale).

Soit H un hyperplan de E. L'espace vectoriel H^{\perp} est une droite appelée normale à l'hyperplan H. Si $\mathscr{B} = (e_1, \ldots, e_n)$ est une base orthonormée de E et H a pour équation cartésienne $\sum_{i=1}^{n} a_i x_i = 0 \text{ dans cette base, alors } H^{\perp} = \text{Vect} \left\{ \sum_{i=1}^{n} a_i e_i \right\}.$

Exercice 15.

- **1.** Illustrer le théorème dans \mathbb{R}^2 et \mathbb{R}^3 .
- **2. Ligne de niveau.** Soient \overrightarrow{n} un vecteur non nul de $E, \lambda \in \mathbb{R}$ et $A \in E$. Décrire l'ensemble des points M tels que $\langle \overrightarrow{AM}, \overrightarrow{n} \rangle = \lambda$

Théorème 11 (Distance à un hyperplan).

Soient H un hyperplan de E, de vecteur normal unitaire \overrightarrow{n} et u un vecteur de E. Alors, $d(u, H) = |\langle u, \overrightarrow{n} \rangle|.$

Exercice 16.

- 1. En dimension 2, exprimer la distance d'un point M de coordonnées (x_0, y_0) à la droite d'équation ax + by + c = 0.
- **2.** En dimension 3, exprimer la distance d'un point M de coordonnées (x_0, y_0, z_0) au plan d'équation ax + by + cz + d = 0.

Familles de polynômes orthogonaux

Exercice 17. Soient I un intervalle non vide de \mathbb{R} et $w \in \mathcal{C}(I, \mathbb{R}^*_+)$. On suppose que, pour tout entier naturel n, $\int_I |x|^n w(x) dx$ converge. On note $\mathscr{H} = \left\{ f \in \mathscr{C}(I, \mathbb{R}) ; \int_I f^2 w \text{ converge} \right\}$. Pour tout $(P,Q) \in \mathbb{R}[X]^2$, on pose $\langle P,Q \rangle = \int_I P(t)Q(t)w(t) dt$.

1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

2. Montrer qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes tels que

- * Pour tout n entier naturel, $deg(P_n) = n$;
- * Pour tout $(m,n) \in \mathbb{N}^2$, $m \neq n$, $\langle P_n, P_m \rangle = 0$.
- * Pour tout n entier naturel, P_n est unitaire

Soit n un entier naturel.

- **3.** Montrer que Vect $\{P_0,\ldots,P_n\}=\mathbb{R}_n[X]$.
- **4.** Montrer que $P_{n+1} \in \mathbb{R}_n[X]^{\perp}$.
- **5. Racines.** On note $(\alpha_i)_{1 \leq i \leq k}$ les racines de P_n qui appartiennent à I et qui sont de multiplicité impaire. On pose $Q = \prod_{i=1}^k (X \alpha_i)$.
 - a) Déterminer le degré de Q.
 - **b)** Déterminer le signe de P_nQ sur I.
 - c) En déduire que k = n et que P_n a toutes ses racines réelles et simples dans I.

6. Relation de récurrence.

a) Montrer que $(P_0, \ldots, P_{n-1}, XP_{n-1})$ forme une base de $\mathbb{R}_n[X]$.

On note
$$P_n = \sum_{k=0}^{n-1} \alpha_k P_k + \alpha_n X P_{n-1}$$
.

- **b)** Montrer que, pour tout $j \in [0, n-3]$, $\alpha_i = 0$.
- c) En déduire qu'il existe trois suites réelles (a_n) , (b_n) et (c_n) telles que

$$\forall n \in \mathbb{N}, P_{n+2} = (a_n X + b_n) P_{n+1} + c_n P_n.$$

Les exemples classiques de familles sont résumés dans le tableau suivant. Ces familles de polynômes sont utilisées, via les formules de quadrature, pour calculer des valeurs approchées d'intégrales.

Nom	I	w(x)	Relation de récurrence
Legendre	[-1, 1]	1	$(n+2)L_{n+2} = (2n+3)L_{n+1} - (n+1)L_n$
Tchebychev]-1,1[$\frac{1}{\sqrt{1-x^2}}$	$T_{n+2} = 2XT_{n+1} - T_n$
Laguerre	\mathbb{R}_{+}	e^{-x}	$(n+2)L_{n+2} = (-X+2n+3)L_{n+1} - (n+1)L_n$
Hermitte	\mathbb{R}	e^{-x^2}	$H_{n+2} = 2XH_{n+1} - 2(n+1)H_n$

↑ Programme officiel (PCSI)

Produit scalaire et espaces euclidiens (p. 29, 40)

↑ Programme officiel (PSI)

Espaces préhilbertiens réels, espaces euclidiens - A - Espaces préhilbertiens réels (p. 9, 10)

Mathématiciens

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux).

SCHWARZ Hermann (25 jan. 1843 à Hermsdorf-30 nov. 1921 à Berlin).

GRAM Jorgen Pedersen (27 juin 1850-29 avr. 1916 à Copenhague).

MINKOWSKI Hermann (22 juin 1864 à Alexotas-12 jan. 1909 à Göttingen).

SCHMIDT Erhart (13 jan. 1876 à Dorpat-16 déc. 1959 à Berlin).