To be Greedy or not to be Greedy?

- Student's name: Tal Mizrahi
- Instructor's name: Zeev Nutov
- The Open University

Summary

- This lecture provides characterizations of the cases where the greedy algorithm produces the optimal solution.
- We'll also see that in general the use of a greedy algorithm might yield the unique worst possible solution.
- We'll demonstrate the above with the help of independent systems, matroids, and some algorithmic problems.
- Based on paper "When the greedy algorithm fails "by Jorgen Bang-Jensen.

The Greedy Algorithm

- The greedy algorithm is used in optimization problems.
- Its core principle: at each step, choose the local most optimal choice available.
- Its implementation is simple, and often has an efficient time complexity.

Why do we use the Greedy algorithm?

• There's a common belief that the Greedy often produces approximated solutions significantly better than the worst solution.

• Even when not optimal, since it's simple and efficient, it's widely used as a trade-off to an optimal, but a less simple and less efficient solution.

The Problem – a unique worst solution

 However, certain experimental results and theories cast doubt on this assumption and shows that the Greedy might yield the unique worst solution or somewhat close to it.

• We'll start by characterizing the occasions where the Greedy yields the optimal solution.

Minimum Spanning Tree (MST)

- Given a connected and weighted graph, find a minimal tree between all the nodes.
- Example:

The Greedy in MST

- Stage1: add (V,W).
- **Stage2:** add (W,U).
- **Stage3:** eliminate (V,U), the cycle creator.
- **Stage4:** add (U,D).
- Terminate since there's no edges left.

A cycle creator is eliminated from the solution!

The best environment for the greediness

- Greedy algorithm works in MST, can we characterize problems in which greediness will succeed?
- Let's define a few terms that'll answer this question.

An independent system

- An independent system (E,F) is characterized by a ground set E and independent sets F of subsets of E, $F \subseteq P(E) = 2^E$.
- Independence have two conditions:
 - 1) $\phi \in \mathsf{F}$.
 - 2) Hereditary property: If a set $S \in F$, then $\forall A \subseteq S$, $A \in F$.

Independent system structure in MST problem

- 1) The Ground Set: E, is all the edges in the graph.
- 2) Independent Sets: $F \subseteq 2^E$, where each $F \in F$ is a forest.
- 3)**Empty Set:** $\phi \in F(\text{empty forest})$.
- 4) Heredity Property: Sub-forest of a forest is a forest.

Thus, it's an independent system.

- A Matroid is an independent system with one additional property.
- Exchange property if A,B \in F and |A| < |B|, then $\exists x \in B \setminus A$ such that $A \cup \{x\} \in F$.

Matroid structure in MST problem

- 1)It's An Independent System: as shown before.
- 1) **The Ground Set:** E, is all the edges in the graph.
- 2) **Independent Sets:** $F \subseteq 2^E$, where each $F \in F$ is a forest.
- 3)**Empty Set:** $\phi \in F(\text{empty forest})$.
- 4) Heredity Property: Sub-forest of a forest is a forest.
- 2)Exchange Property: For any A,B \in F with |A| < |B|, $\exists e \in B \setminus A$ such That $A \cup \{e\} \in F$.

Proof(2): assume negatively $A \cup \{e\}$ is cyclic, then A would connect all vertices, contradicting the fact that B is a forest with more edges.

Thus, it's a matroid.

Matroid maximization

- Consider a matroid M = (E, F).
- Having a weight function $w: E \rightarrow R$.
- For a subset A: $w(A) = \sum_{a \in A} w(a)$.
- Objective finding a maximum weight independent set.

Greedy algorithm for Matroid maximization

- Initialization
 - start with $S = \phi \in F$.
- Iteratively adding elements -
 - Going through all the elements in descending order.
 - If $S \cup \{element\} \in \mathbf{F} \rightarrow S := S \cup \{element\}$
- Claim the greedy is optimal and S now is the maximum weight independent set.

Claim proof

- For contradiction, say that $\exists OPT \in \mathbf{F}$ such that w(OPT) > w(S).
- Let s_1, s_2, \dots, s_k be S's elements and o_1, \dots, o_m be OPT's elements.
- Cardinality argument (m = k)
 - if k > m, then $\exists x \in S \backslash OPT$, that by the **exchange property** can be added to OPT, contradicting O as an optimal solution. Therefore, $k \gg m$.
 - If m > k, then $\exists x \in OPT \setminus S$, that by the **exchange property** can be added to S, but the greedy algorithm should've considered such an element, therefore adding it to S will violate S independency. Therefore, $m \not > k$.
- Thus, m = k.

Claim proof continuation

- Let $OPT = \{o_1, o_2, ..., o_m\}$ and $S = \{s_1, s_2, ..., s_m\}$
- Assume that both are sorted in a decreasing order of weights, $w(o_i) \ge w(o_{i+1})$ and $w(g_i) \ge w(g_{i+1})$.
- Since $S \neq OPT$ and OPT is optimal, there must $\exists i$ such that $s_i \neq o_i$ and $w(s_i) < w(o_i)$. Find the smallest such i.

Claim proof continuation

- However, Since $(s_1, ..., s_{i-1}) = (o_1, ..., o_{i-1})$, the greedy algorithm would locally choose the highest weighted element for the ith element, hence $w(o_i) \gg w(s_i)$.
- Since OPT is the optimal solution, $w(s_i) > w(o_i)$, thus $w(s_i) = w(o_i)$.
- Repeat for every i and get S = OPT.

Matroid as a proving tool

- As proven, if a system is a Matroid → the Greedy is optimal.
- Based on the previous, a way to prove that a greedy algorithm outputs the optimal solution on some problems requires showing:
 - That the problem satisfy the properties of a matroid.
- Let's demonstrate that in the MST problem.

The Greedy preserves the independent set

- As already shown, the MST is a matroid maximization problem.
- **Greedy Choice:** At each step, the algorithm chooses the smallest edge that doesn't form a cycle with the already included edges.
- By that, the algorithm ensures that the growing set of chosen edges always remains an independent set in the matroid.
- Therefore, the greedy solution indeed is the optimal solution in this case.

Job scheduling problem

- The Job scheduling problem is another matroid maximization problem.
- Consider a set of jobs, each with its own deadline and profit.
- We have one machine that completes one job in one time unit.
- The objective is to schedule the jobs in a way that maximizes total profit, with the constraint that each job must be completed by its deadline.

Job scheduling problem – A Matroid

- Independent sets a subset of jobs is independent if all jobs can be scheduled by their deadlines ($\phi \in F$).
- Heredity property satisfaction removing jobs doesn't create collisions of time units.
- Exchange property if an independent set A is larger than B, there must be at least one job in A that can be scheduled in the slots available for B.

Job scheduling problem

- Suppose we have the following jobs sorted by profit in descending order:
 - J_1 : Deadline = 2, profit = 20.
 - J_2 : Deadline = 2, profit = 15.
 - J_3 : Deadline = 1, profit = 10.
 - J_4 : Deadline = 3, profit = 5.
 - J_5 : Deadline = 3, profit = 1.
- We also have 3 time slots in accordance with the deadlines.

Timeslots:

1 2 3

The greedy in Job scheduling problem

• The greedy algorithm will place the jobs in the time slots from the highest profit to the lowest if the time slot is available.

Matroids - a Rich World

- **Graphic Matroids** such as the MST.
- **Transversal Matroids** can be associated as bipartite graph matching. Such as the Job scheduling problem.
- There are plenty more types of matroids to explore:

Uniform matroids, Cographic matroids, Binary Matroids, Algebraic Matroids, Partition Matroids, Lattice Path Matroids, Regular Matroids, Discrete Matroids, and more ...

Some more matroid optimization problems

Maximum Weight Forest –

• The goal is to maximize the total weight of the selected edges while ensuring the subset of edges forms a forest.(generalize the MST problem)

Basis of Vector Space – algebraic matroid

- Find a base for a \mathbb{R}^n vector space.
- Greedy Adding vectors to the basis, checking that they're not linear dependent.

What about non-Matroid structures?

- As we've seen, a matroid system ensures us an optimal solution for the greedy algorithm.
- In the followings, we'll examine non-Matroid structures such as the Symmetric Traveling Salesman Problem and the Minimum Coin Problem.

Symmetric Traveling Salesman Problem(STSP)

- Given a complete graph of cities(vertices) and distances(weights) between each pair of cities.
- The task is to find the shortest possible route that visits each city exactly once and returns to the origin city(in the STSP, the distance A→B is the same as B→A).
- The STSP is a Minimization Problem.

STSP - not an independent system

- Consider independent sets as Hamilton cycles.
- Heredity Property: The subsets of a Hamilton cycle do not necessarily form Hamilton cycles themselves.
- Since the STSP is not an independent system, it is also not a matroid.

Choosing the greedy route - initialization

Each iteration, the greedy algorithm will choose the nearest city from the current position.

Initializing 'S' as the source node

Node/ Distance to	S(start))	А	В	С	S(end)
S(end)	∞		1	2	2	_
Α	1	1	∞	2	1	_
В	2	2	2	∞	10	_
С	2	2	1	10	∞	_

$$R = 0$$

$$I(R) = \{u(S,A), u(S,B), u(S,C), u(A,B)$$

$$u(A,C), u(B,C)\}$$

Choosing the greedy route - iterations

$$d(S \rightarrow A) = u(S,A) = 1$$

$$d(A \rightarrow C) = u(A,C) = 1$$

$$d(C \rightarrow B) = u(C,B) = 10$$

$$d(B \rightarrow S) = u(B,S) = 2$$

Terminate.

Node/ Distance to	S(sta	rt)		A		В		С	S(end)
S(end)	∞			1		2		2	+
А		1	∞			2		1	+
В		2		2	ox	9		10	+
С		2		1		10	∞		+

$$R = u(S,A) + u(A,C) + u(C,B) + u(B,S).$$

 $I(R) = \{u(S,C),u(A,B)\}.$

Greedy Vs. Optimal

The Greedy total route is u(S,A) + u(A,C) + u(C,B) + u(B,S) = 1 + 1 + 10 + 2 = 14. Can we find a better route?

The Optimal total route is 2+2+1+2=7.

Conclusions of the executions

- The greedy algorithm provided the unique worst solution.
- Therefore, in the STSP, the greedy algorithm may yield the unique worst solution.
- What would've happened if the bottom edge will be replaced with a weight of 9^{99} instead of 10?

Theorem 1:

When will the greedy algorithm never find the worst solution in STSP?

• Conditions: $n \ge 4$ and $|W| \le \left\lfloor \frac{n-1}{2} \right\rfloor$.

Start of Proof

- Assume $B = \{x_1, ..., x_n\}$ is the unique worst solution of edges chosen by the greedy algorithm in a sequence given by their indices.
- Since there's only $\left\lfloor \frac{n-1}{2} \right\rfloor$ different weights, by induction, there most exist two edges in B, x_i , x_j , weighted as 'k', without any common nodes.
- Let x_i be the edge $\{uv\}$, and x_j be the edge $\{xy\}$.

Continuation of proof

- Since the graph is a clique, let another solution $B' = B \cup \{uy, vx\} \{uv, xy\}$.
- Both other edges must have a weight greater than 'k' since otherwise, the greedy algorithm would have chosen one of these edges instead of x_i or x_j in the step just before the first pick of x_i , x_j .

Conclusion of Proof

- Thus, $w(B') \ge w(B)$, a contradiction. Therefore, the greedy algorithm will never produce the unique worst possible solution under the restricted conditions.
- To conclude, these conditions ensure that there is always at least one locally optimal choice available, preventing the greedy from being trapped in the unique worst solution.

The coin problem – multiplication factor

- We already know that if a system is a matroid → the greedy algorithm is optimal. But is the other direction also true?
- The goal is to pay for an item with a minimum number of coins possible.
 The ground set is the values of the coins.
- Multiplication Factor in a coin system says that each denomination is a multiple of the previous.
- The Greedy (chooses the largest coin every iteration) works optimally with a set of coins which applies the **Multiplication Factor**, such as $\{1,5,10,25\}$.

The coin problem – multiplication factor

- However, for a set of coins without the multiplication factor such as {1,3,4}, the greedy solution will fail.
- For example, summing 6 with a greedy would use $|\{4,1,1\}| = 3$ while the optimal solution is $|\{3,3\}| = 2$.
- If this was a matroid maximization problem, the greedy solution would've been optimal for every possible ground set independently on other factors.
- Therefore, the greedy algorithm is optimal \neq a system is a matroid.

Based on the paper "Canonical Coin Systems For Change-Making Problems" by Xuan Cai.

Conclusions and open problems

- We introduced the notion of the greedy algorithm on non-independent systems, and Matroids.
- Matroids are a rich world, and as much as it's rich, the much problems that can be solved optimally with a greedy algorithm.
- It's still investigated when the greedy algorithm will succeed or might produce the unique worst solution for 100% certainty.
- If a system isn't a matroid, we should take extra caution implementing the greedy algorithm.