

Al-AIDED WIRELESS SYSTEMS FOR MOBILITY IN INDUSTRY AND TRAFFIC

- Research project funded by the German Ministry for Education and Research
- Consortium of 3 multinationals, 3 SMEs and 3 research institutions
 - Duration: 2020-2023
- Research goal AI/ML for predictive Quality of Service (QoS) at high mobility
 - Twofold meaning of high mobility:
 - Traffic: Connected cars
 - Industry: Automated Guided Vehicles
- More info at <u>ai4mobile.org</u>

vodafone

Fraunhofer

DATASETS

- Goal: Test ML algorithms for predictive QoS
- Extensive measurement campaigns available at IEEE Dataport
- Broad scope: Cellular/Sidelink/Campus network; Automotive/Industry

Datasats	Automotive 🚗	Highway 👭	Sensor data 🖊 🤊	Cellular 🔷			
Datasets	Industry	Urban 🛗	Campus-Net 💥	Sidelink ↔			
Berlin V2X	Berlin Vehicle to E	verything					
<u>iV2I+</u>	industrial Vehicle to Infrastructure + Sensor						
iV2V	industrial Vehicle	to Vehicle		→			

Multi-environment automotive QoS prediction with Al

Bundesministerium für Bildung und Forschung

OUTLINE

- Motivation & Challenges
- A Dataset
- A Problem Statement

Multi-environment automotive QoS prediction with Al

MOTIVATION

- Vehicle-to-everything (V2X) communication at the core of new car services
- High demands on Quality of Service (QoS) and proactive resource allocation
 - Leverage boom of ML in communication networks for QoS prediction

für Bildung und Forschung

Bundesministerium für Bildung und Forschung

Multi-environment automotive QoS prediction with Al

CHALLENGES FOR AI/ML

- Drastic changes to the radio environment → Data distribution drifts (no i.i.d.)
- Generalization across different entities (vehicles/operators) or scenarios
 - Domain adaptation techniques might be helpful

MEASUREMENT CAMPAIGN

- 2 commercial LTE mobile network operators
 - LTE frequency bands 700-2700 MHz
- V2V sidelink (3GPP Rel. 14, PC5 mode 4)
 - Out of the challenge's scope
- Simultaneous measurements from up to 4 vehicles
 - 2 vehicles per operator
 - Different drive modes: platoon vs. pair driving
 - 3 throughput profiles for diverse QoS measurements
- 17 rounds over 3 days
 - 1 round = 17 km across West Berlin
 - 45-60 minutes on a weekday
 - Diverse urban areas

10

SNR [dB]

15

20

25

© OpenStreetMap contributors

MEASUREMENT METHODOLOGY

- Full LTE stack captured with <u>MobileInsight</u> (MI)
 - (Li et al., 2016)
- Traffic exchange with a server located at HHI
 - Datarate and jitter measurements with <u>iperf</u>
 - Ping-based delay measurements
 - Target datarate according to QoS measurement
- GPS localization
- Side information via APIs
 - Weather (<u>DarkSky</u>)
 - Traffic conditions (<u>HERE</u>)

Throughput profiles	QoS measurement	Target datarate
Low throughput	UL/DL delay	400 kbps
High throughput	UL datarate	75 Mbps
High throughput	DL datarate	350 Mbps

Bundesministerium für Bildung und Forschung

CAPTURED DATA

Data category	Source		Sampling interval	Features Features Features			
		MobileInsight	10 ms	PHY: SNR, RSRP, RSRQ, RSSI			
LTE stack	In-vehicle device		20 ms	PDSCH/PUSCH: RBs, TB Size, DL MCS, UL Tx Power			
			Event-based	RRC: Cell Identity, DL/UL frequency, DL/UL bandwidth			
Quality of	In-vehicle device	ping	1 s	Delay			
Service	III-vernicie device	<u>iperf</u>	1 s	DL Datarate, Jitter			
Service	Server	<u>iperf</u>	1 s	UL Datarate, Jitter			
Position	GPS	NA	1 s	Latitude, Longitude, Altitude, Velocity, Heading			
Side		HERE API	5 min	Traffic Jam Factor, Traffic Street Name, Traffic Distance			
information	Internet database	<u>DarkSky</u>	1 hour	Cloud cover, Humidity, Precipitation Intensity & Probability, Temperature, Pressure, Wind Speed			
Metadata	NA	NA	NA	Scenario, operator, drive type, target datarate, direction			

Preprocessing

- Raw measurements as <u>parquet</u> files in <u>IEEE</u>
 <u>Dataport</u> (sources)
- Preprocessing code in <u>GitHub</u> under <u>preprocess</u>
 - Downsample to 1s
 - Extract relevant LTE params from MI (merge_mi_*.ipynb).
 - Merge on device, cell, and timestamp (merge_mi_all.ipynb)
 - Concatenate values for primary and secondary cells (carrier aggregation)
 - Merge all data on timestamp and device (merge_cellular.ipynb)
 - Select QoS data from server/device
 - Label with measurement metadata

PREPROCESSING

• Excerpt of cellular_dataframe.parquet

timestamp	device	PCell_RSSI _max	PCell_Cell _ldentity	SCell_RSSI _max	SCell_Cell _ldentity		ping_ms	datarate	Latitude	Longitude	temperature	Traffic Jam Factor	measured_ qos	drive_mode	target_ datarate	direction	operator	area
2021-06-22 14:34:10	pc4	-47.118750	29127680.0	-52.660625	29127683.0		2238.0	37700000.0	52.514862	13.322625	21.57	2.53887	datarate	platoon	350000000	downlink	1	Avenue
2021-06-22 14:34:10	рс3	-58.760000	51447562.0	-69.550000	51447567.0		47.7	403000.0	52.515300	13.323007	21.62	2.53887	delay	platoon	400000	downlink	2	Avenue
2021-06-22 14:34:11	рс3	-61.433125	51447562.0	-75.035625	51447567.0		41.9	403000.0	52.515213	13.322935	21.62	2.53887	delay	platoon	400000	downlink	2	Avenue
2021-06-22 14:34:11	pc2	-93.064375	51447562.0	-92.653750	NaN		35.9	403000.0	52.514997	13.322730	21.57	2.53887	delay	platoon	400000	downlink	2	Avenue
2021-06-22 14:34:12	pc2	-92.622500	51447562.0	-92.585625	NaN		44.9	403000.0	52.514923	13.322672	21.57	2.53887	delay	platoon	400000	downlink	2	Avenue
2021-06-22 14:34:12	pc3	-62.138125	51447562.0	-74.110000	51447567.0		40.7	394000.0	52.515130	13.322865	21.62	2.53887	delay	platoon	400000	downlink	2	Avenue
2021-06-22 14:34:13	рс3	-60.440625	51447562.0	-74.069375	51447567.0		38.8	413000.0	52.515048	13.322798	21.62	2.53887	delay	platoon	400000	downlink	2	Avenue
									■ (1) (1) (1) (2) (1)			\ • _ /						

RESOURCES

- Data on IEEE Dataport: https://ieee-dataport.org/open-access/berlin-v2x
- Code on GitHub: https://github.com/fraunhoferhhi/BerlinV2X
- Documentation
 - Readme on GitHub and IEEE Dataport
 - Hernangómez, R. et al. (2023) 'Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies', in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy. Preprint available at: https://doi.org/10.48550/arXiv.2212.10343.

Bundesministerium für Bildung und Forschung

QOS PREDICTION ACROSS ENVIRONMENTS

- Automotive communication is multi-environmental in essence
 - Underlying data distributions differ across vehicles, operators, areas
 - i.i.d. assumptions are systematically violated
- Train/test data split along such environments
 - Random split is often too indulgent (Palaios et al., 2023)

(Hernangómez et al., 2023)

ITU Problem Statement

DOMAIN ADAPTATION

- Discussed as domain adaptation / transfer learning / concept drift
- Automotive QoS prediction hardly fits the "usual" learning setting

23 May 2023

ITU Problem Statement

OPEN QUESTIONS

- Which QoS parameter?
 - Focus on datarate (uplink or downlink)
- Which input features?
- How to split train/test data?
 - Areas
 - Vehicles
 - Operators
 - Uplink/downlink
- Which algorithm?
 - Base ML regressor or Neural Network
 - Fine-tuning techniques: DA/TL

Bundesministerium für Bildung und Forschung

REFERENCE EXAMPLE

- Available on GitHub
 - Focused on downlink datarate as QoS with train/test split along operators
- Improvements
 - You can define a different pQoS problem
 - Feature selection is up to you
 - The less features, the better
 - You may choose a different train/test split (along discussed environments)
 - You are free to choose your ML/DL algorithms
 - You may apply (unsupervised) domain adaptation and transfer learning techniques
 - You can create your own preprocessing pipeline
 - Upsample GPS and datarate to ms-range instead of LTE downsampling
 - Include other features from the LTE stack

23 May 2023

EVALUATION

- Weighted score
 - 1. Coefficient of determination R^2
 - Available for <u>Scikit-learn</u>, <u>PyTorch</u>, and <u>Tensorflow</u>:

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Number of used features:

$$R_{features} = (useful features - used features) = 84 - used features$$

- 3. Problem setup (qualitative)
 - The choices on predicted QoS, train and test datasets, etc.
- Submission on <u>ITU's challenge platform</u>
 - Scores.csv
 - Code deliverable
 - Brief report (2-5 pages)
 - (Optional) model and weights

team_id	predicted_qos	train_set	test_set	r2_score	used_features
REFERENCE	downlink datarate	operator 1	operator 2	0.806633	39

TIMELINE

- Competition Phase
 - Registration from 23 May 2023 to 31 August 2023
 - Submission deadline 8 September 2023
 - Evaluation of solutions: 31 October 2023
- Evaluation Phase
 - November 2023 Judges Panel evaluates the best solutions from the Competition Phase
 - 28 30 November 2023 Best solutions pitch in a 3-day event to determine the finalists
 - 13 December 2023 Grand Challenge Finale
- Winning Prize: 1000 CHF + certificates

References

- Hernangómez, R. et al. (2023) 'Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies', in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy. Available at: https://doi.org/10.48550/arXiv.2212.10343.
- Külzer, D.F. et al. (2021) 'Al4Mobile: Use Cases and Challenges of Al-based QoS Prediction for High-Mobility Scenarios', in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, pp. 1–7. Available at: https://doi.org/10.1109/VTC2021-Spring51267.2021.9449059.
- Li, Y. et al. (2016) 'MobileInsight: extracting and analyzing cellular network information on smartphones', in *Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. MobiCom'16: The 22nd Annual International Conference on Mobile Computing and Networking*, New York City New York: ACM, pp. 202–215. Available at: https://doi.org/10.1145/2973750.2973751.
- Palaios, A. et al. (2023) 'The Story of QoS Prediction in Vehicular Communication: From Radio Environment Statistics to Network-Access Throughput Prediction'. arXiv. Available at: https://doi.org/10.48550/arXiv.2302.11966.
- Redko, I. et al. (2019) Advances in Domain Adaptation Theory. Elsevier. Available at: https://doi.org/10.1016/C2016-0-05108-2.
- Xu, X. et al. (2019) 'd-SNE: Domain Adaptation Using Stochastic Neighborhood Embedding', in. Proceedings of the IEEE
 Conference on Computer Vision and Pattern Recognition, pp. 2497–2506. Available at:
 http://openaccess.thecvf.com/content_CVPR_2019/html/Xu_d-superscripts
 SNE Domain Adaptation Using Stochastic Neighborhood Embedding CVPR 2019 paper.html (Accessed: 4 May 2020).

Contact: ml5g-challenge@ai4mobile.org