Sensitivity Study of the Icelandic Atlantis Model

Erla Sturludottir University of Iceland

ICES WGSAM 2017

Introduction

 Sensitivity analysis can give insight into what parameters contribute to uncertainty in the output.

 It can also be helpful in understanding behaviour and functioning of the system.

Recruitment Parameters

- Maximum recruitment
 (α) in the Beverton Holt function was
 altered by ±20%
- The change in actual recruitment can become >20%.

$$Rec = \frac{\alpha * SSB}{\beta + SSB}$$

Growth Parameters

- The maximum growth rate (mum) in Holling II was altered by ±20% for Zooplankton.
- Growth rate for phytoplankton altered by ±20%.
- Interactions between
 ZL, PS and PL studied.

$$Cons = \frac{C \cdot B}{1 + \frac{C}{mum}[B \cdot E]}$$

Interactions for the growth parameters

Model runs	PS	PL	ZL
Psb_Plb_Zlb	0.70	0.40	0.80
Psb_Plb_Zld	0.70	0.40	0.64
Psb_Plb_Zli	0.70	0.40	0.96
Psb_Pld_Zlb	0.70	0.32	0.80
Psb_Pld_Zld	0.70	0.32	0.64
Psb_Pld_Zli	0.70	0.32	0.96
Psb_Pli_Zlb	0.70	0.48	0.80
Psb_Pli_Zld	0.70	0.48	0.64
Psb_Pli_Zli	0.70	0.48	0.96
Psd_Plb_Zlb	0.56	0.40	0.80
<u>:</u>	:	:	<u>:</u>

Measure of sensitivity

Sensitivity of recruitment parameters measured with:

$$S_{ij} = \frac{V_i(1.2\alpha_j) - V_i(0.8\alpha_j)}{0.4V_i(\alpha_j)}$$

 Sensitivity of growth parameters and their interactions measured with percentage change in biomass.

S for fish groups

S for plankton groups

% for growth

							_						•																
	PicoPhytopl	10	10	17	15	25	-23	-45	-34	84	-85	-84	-85	-85	-85	-95	-95	-95	312	351	334	349	329	361	260	289	294	1	
	Diatom	7	-5	12	12	4	28	10	29	3	3	15	18	22	19	5	10	9	-19	-32	-19	-34	-28	-32	-20	-27	-23	1	
	Gelat Zoo	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	MacroZoo	1	-1	-35	-34	-34	116	140	113	51	50	51	32	32	32	118	124	110	5	5	6	-21	-21	-20	49	51	48	1	
	MicroZoo	4	0	-12	-17	-11	-15	-20	-10	02	506	498	505	499	502	399	410	395	-20	-6	-26	-13	-16	-16	-9	3	-24	1	
	Zoo	0	-1	13	11	13	-28	-27	-28	41	41	42	49	49	48	10	11	8	28	24	23	29	30	32	13	11	8	1	
	Small pelagic	1	0	-25	-24	-2	47	62	43	22	21	22	-2	-2	-3	77	73	63	27	29	29	8	9	9	51	54	50	1	
	Large pelagic	0	0	-11	-11	-1	26	34	24	26	25	26	12	12	12	34	45	39	87	38	38	29	30	30	47	48	46	1	
	Long Lived Demersal	0	0	-1	-1	-1	3	3	3	2	2	2	0	0	0	4	4	4	3	3	3	1	1	1	5	5	5	%	
S	Sandeel Fish	0	0	-29	-29	-3	44	27	49	19	-19	-18	-48	-48	-49	57	25	38	19	-18	-16	-49	-50	-50	17	18	20		100
Groups	Demersal O Fish	0	0	-3	-3	-3	5	5	5	2	2	2	-1	-1	-1	6	6	6	2	2	2	0	0	0	4	4	4		50
	Demersal Commerical	0	0	-1	-1	-1	3	4	3	2	2	2	0	1	1	4	4	4	2	2	2	1	1	1	3	4	3		0
	Other Codfish	0	0	-5	-6	-5	3	4	3	3	3	3	-2	-2	-2	6	6	5	4	3	4	1	1	1	5	6	5		
	Mackerel	3	2	12	11	10	-44	-78	-44	26	22	26	27	29	27	-48	-35	-36	9	74	72	89	90	90	60	62	64		-50
	Blue whiting	0	-1	-7	-7	-7	-22	-14	-23	15	15	15	10	11	10	-25	-13	-23	16	46	49	50	52	49	28	30	24		-100
	Capelin	0	-1	-13	-19	-13	24	26	22	51	50	50	20	20	20	55	53	48	59	59	58	43	43	44	78	79	75	1	
	Herring	-3	3	-6	-6	-7	2	-10	1	0	0	-1	-12	-12	-13	0	-10	2	6	-8	-4	-19	-18	-19	8	1	10	1	
	Flatfish	1	0	-8	-9	-7	3	7	2	9	9	9	9	11	11	12	13	7	6	16	16	25	26	26	10	11	9	1	
	Greenland Halibut	0	0	-7	-8	-7	17	19	16	10	10	10	3	3	3	23	24	22	9	9	9	5	5	5	16	17	17	1	
	Redfish	1	0	-33	-33	-32	64	78	60	20	19	21	-7	-7	-8	84	91	83	22	24	23	-6	-6	-5	54	59	53	1	
	Saithe	0	0	-11	-10	-11	15	13	15	5	4	5	-11	-11	-12	16	16	17	4	4	5	-14	-14	-14	20	21	20	l	
	Haddock	0	0	0	0	0	-7	-9	-6	-3	-3	-4	-4	-4	-4	-5	-8	-7	4	-5	-3	-4	-4	-5	-5	-5	-4	l	
	Cod	0	0	-5	-5	-5	3	2	3	2	2	2	-5	-5	-5	4	3	4	1	1	1	-5	-5	-5	5	5	5	1	
		ZLd	ZLi	ZLb	ZLd		ZLb	ZLd	71 ;	ZLb	ZLi	ZLd	ZLb	ZLd	7 :	ZLb	ZLd	ZLi	ZLb	ZLi	71 d	ZLb	ZLd	71	ZLb	ZLd	ZLi		
						_	-			4	0	1 . 4		1						_	1 ,				1		1	1	
		PLb	PLb	PLd	PLd	d	PLi	PL:	Ы	7,5	PLb	PLb	PLd	PLd	d	PLi	_ :I	PLi	PLb	PLb	– Plb	PLd	PLd	i d	PLi	PLi	PLi	l	
			`I					1		<u> </u>	0	.d.								l								1	
		PSb	PSb	PSb	PSb	0	PSb	PSb	D.G	PSd PLb	PSd	PSd	PSd	PSd	Sd	PSd	PSd	PSd	PSi	PSi	PSi	PSi	PSi	PSi	PSi	PSi	ď		
						ı	-			J			Mo	ode	el r	un			J		_			•					

% change in Biomass for growth paramaters

Acknowledgement

This project has received funding from the European Union's Seventh Framework Programme for research, technological developement and demonstration under grant agreement no. 613571 and from the European Commission's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 634495 for the project Science, Technology, and Society Initiative to minimize Unwanted Catches in European Fisheries (MINOUW)

