

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт автоматизации и робототехники

Кафедра робототехники и мехатроники

Дисциплина «Детали мехатронных модулей, роботов и их конструирование»

Пояснительная записка к курсовому проекту:

«Приводной модуль поворота звена мехатронного устройства»

Задание **№27** Вариант **№** 4

Выполнил: студент группы <u>АДБ-1</u>	<u>7-11</u>	(подпись)	Абдулзагиров $M.M$ $_{(\Phi UO)}$
Принял преподаватель:		(подпись)	<u>Егоров О.Д.</u> (ФИО)
	Оценка: _		Дата:

Оглавление

Расчёт цилиндрической прямозубой реверсивной передачи	2
Проектный расчёт передачи	3
Расчет цилиндрической зубчатой передачи на контактную выносливость	4
Проверочный расчёт зубьев на выносливость при изгибе	6
Силы в зацеплении	
Проектный расчет вала двигателя	8
Проектный расчет входного вала редуктора мехатронного модуля	9
Геометрические параметры входного вала	10
Реакции опор входного вала	11
Проектный расчет выходного (тихоходного) вала на статическую	13
прочность по текучести	13
Геометрические параметры выходного вала	12
Проверочный расчет выходного вала на статическую	16
прочность по текучести	16
Расчет на долговечность подшипников.	19
Расчет на долговечность подшипников входного вала.	19
Расчёт на долговечность подшипников выходного вала	20
Расчет шпоночных соединения	22
Расчет шпоночного соединения вала двигателя.	22
Расчет шпоночного соединения колеса	23
Расчет шпоночного соединения выходного вала	24
Список питературы	25

Расчёт цилиндрической прямозубой реверсивной передачи

Провести расчёт цилиндрической прямозубой реверсивной зубчатой передачи, если известен вращающий момент на шестерне 1 $T_1 = 11 \text{ H·m}$, частота вращения колеса n_{K_2} =86 об/мин и передаточное отношение передачи U = 2,7.

Выбираем материал шестерни 1 и колеса 2 Сталь 45 объёмной закалки с твёрдостью HRC = 48.

Допускаемое контактное напряжение для шестерни и колеса:

$$[\sigma]_{\rm H} = \frac{\sigma_{H {\rm lim}b}}{S_H} K_{HL}.$$

 $\sigma_{H \mathrm{lim} b}$ —предел контактной выносливости.

$$\sigma_{Hlimb1.2} = 17HRC + 200 = 17 \cdot 48 + 200 = 1016 \text{ M}\Pi a$$
.

Коэффициент долговечности принимаем $K_{HL} = 1$.

 S_{H} =1,2 – коэффициент безопасности.

$$[\sigma]_{\mathrm{H}} = \frac{\sigma_{H \mathrm{lim}b}}{S_H} K_{HL} = \frac{1016}{1,2} \cdot 1 = 847 \mathrm{\ M}\Pi \mathrm{a}.$$

Предельное допускаемое изгибное напряжение:

$$[\sigma]_F = \frac{\sigma_{F\lim b}}{S_F} K_{FL} K_{FC}.$$

где предел изгибной выносливости для шестерни и колеса:

$$\sigma_{F \text{lim} b}$$
 , $_{2} = 525 \text{ M}\Pi a$.

 $S_F = 1,55...1,7$ – коэффициент безопасности. Принимаем $S_F = 1.6$

 $K_{FL} = 1 -$ коэффициент долговечности.

 $K_{FC}=0.7 \dots 0.8-$ коэффициент реверсивности. Принимаем $K_{FC}=0.75$

Допускаемое изгибное напряжение для шестерни и колеса:

$$[\sigma]_{F1,2} = \frac{\sigma_{Flimb}}{S_F} \ K_{FL} K_{FC} = \frac{525}{1,6} \cdot 0,75 = 246,093 \, \mathrm{M}$$
Па

Проектный расчёт передачи

Делительный диаметр шестерни:

$$d_1 \ge K_d \sqrt[3]{\frac{T_1 K_{H\beta}(U+1)}{\psi_{bd}[\sigma]_H^2 U}} = 770 \sqrt[3]{\frac{11 \cdot 1,01(2.7+1)}{0.4 \cdot 847^2 \cdot 2.7}} = 28,93 \text{MM}$$

Принимаем d_{I} =29мм.

где $K_{H\beta}$ – коэффициент неравномерности распределения нагрузки по ширине зубчатого венца. Его определяют в зависимости от степени точности передачи по таблицам в зависимости от окружной скорости шестерни. Принимаем $K_{H\beta}=1,01$.

 $K_d = 770 \text{ M}\Pi a^{1/3} - для стальных прямозубых колес;}$

 ψ_{bd} —коэффициент ширины зубчатого венца. $\psi_{bd}=0,2...0,6$. Принимаем $\psi_{bd}=0,4$.

$$V_1 = \frac{\pi d_1 n_1}{60 \cdot 10^3} = \frac{3.14 \cdot 29 \cdot 232,2}{60 \cdot 10^3} = 0.352 \frac{M}{c}.$$

Где n_{I} — частота вращения шестерни.

$$n_1 = n_2 U = 86 \cdot 2.7 = 232.2 \frac{\text{of}}{\text{мин}}$$

Выбираем степень точности передачи СТ=7. Тогда $K_{H\beta}$ =1,03.

Делительный диаметр колеса:

$$d_2 = d_1 U = 29 \cdot 2.7 = 78.3 \text{ MM}$$

Межосевое расстояние:

$$a_w = \frac{d_1(U+1)}{2} = \frac{29(2,7+1)}{2} = 53,65 \text{ MM}.$$

Модуль зубьев из условия контактной выносливости:

$$m \ge (0.01 \dots 0.02) a_w = (0.01 \dots 0.02) 53.65 = (0.536 \dots 1.073) \text{MM}$$

Модуль зубьев из условия изгибной выносливости:

$$m \ge \frac{2K_mT_2}{d_2b_w[\sigma]_F} = \frac{2\cdot 6.8\cdot 28.512\cdot 10^3}{78.3\cdot 11.6\cdot 246.093} = 1.73$$
 мм.

Здесь T_2 - вращающий момент на колесе 2.

$$T_2 = T_1 U \eta = 11 \cdot 2.7 \cdot 0.96 = 28,512 \text{ H} \cdot \text{M} = 28,512 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

η - коэффициент полезного действия зубчатой передачи.

$$\eta = \eta_3 \eta_{\pi}^2 = 0.98 \cdot 0.99^2 = 0.96.$$

 $K_{\rm M} = 6.8$ —для прямозубых колес.

 b_w - ширина зубчатого венца.

$$b_w = \psi_{hd} d_1 = 0.4 \cdot 29 = 11.6 \text{ MM}.$$

Принимаем $b_w = 12$ мм.

 $\psi_{bd}=0.2\dots0.6$ — коэффициент ширины зубчатого венца. Принимаем $\psi_{bd}=0.4$ Окончательно выбираем модуль по стандарту m =1.5 мм.

Вычисляем число зубьев шестерни:

$$z_1 = \frac{d_1}{m} = \frac{29}{1,5} = 19,33;$$

Принимаем $z_1 = 19$.

$$z_1 = 19 \ge z_{min} = 17.$$

Округляем полученное значение до целого числа и уточняем значение делительного диаметра:

$$d_1 = mz_1 = 1,5 \cdot 19 = 28,5$$
 мм.

Находим число зубьев колеса:

$$z_2 = z_1 U = 19 \cdot 2.7 = 51,3.$$

Принимаем $z_2 = 52$.

Округляем до целого значения и уточняем величину его делительного диаметра:

$$d_2 = mz_2 = 1,5 \cdot 52 = 78$$
 мм.

Вычисляем новое значение межосевого расстояния:

$$a_w = \frac{d_1 + d_2}{2} = \frac{28,5 + 78}{2} = 53,25$$
 mm.

и действительное значение передаточного отношения:

$$U_{\text{A}} = \frac{z_2}{z_1} = \frac{52}{19} = 2,736.$$

$$\Delta U = \frac{U_{\text{A}} - U}{U} \cdot 100\% = \frac{2.736 - 2.7}{2.7} \cdot 100\% = 1,36\% < [\Delta U] = 4\%.$$

Коэффициент торцевого перекрытия:

$$\varepsilon_{\alpha} = 1.88 - 3.2 \left(\frac{1}{z_1} + \frac{1}{z_2} \right) = 1.88 - 3.2 \left(\frac{1}{19} + \frac{1}{52} \right) = 1.65$$

Расчет цилиндрической зубчатой передачи на контактную выносливость.

Условие контактной выносливости:

$$\sigma_H = Z_H Z_M Z_{\varepsilon} \sqrt{\frac{W_{Ht}(U+1)}{d_1 U}} \leq [\sigma]_H.$$

Где Z_H =1,76 –коэффициент, учитывающий форму сопряженных поверхностей зубьев;

$$Z_H = 1.76 \cdot \cos \beta = 1.76 \cdot \cos 0^\circ = 1.76.$$

 $Z_M = 275 {\rm M}\Pi {\rm a}^{1/2}$ — коэффициент, учитывающий механические свойства материалов колес; $Z_{m \epsilon}$ — коэффициент, учитывающий суммарную длину контактных линии.

Для прямозубых колёс:

$$Z_{\varepsilon} = \sqrt{\frac{4 - \varepsilon_a}{3}} = \sqrt{\frac{4 - 1.65}{3}} = 0.885.$$

Удельная расчетная окружная сила:

$$W_{\mathrm{H}t} = \frac{F_t}{b_w} K_{H\alpha} K_{H\beta} K_{H\nu} = \frac{2 \cdot 10^3 T_1}{b_w d_1} K_{H\alpha} K_{H\beta} K_{H\nu} = \frac{2 \cdot 10^3 \cdot 11}{12 \cdot 28,5} 1 \cdot 1,01 \cdot 1,04 = 67,569 \frac{\mathrm{H}}{\mathrm{MM}}.$$

 $K_{H\alpha}$, $K_{H\beta}$, $K_{H\nu}$ — находим по таблицам для 7 степени точности:

 $K_{H\alpha}$ —коэффициент распределения нагрузки между зубьями;

$$K_{H\alpha} = 1$$
 —для прямозубых колес.

 $K_{H\beta} = 1,01$ — коэффициент, учитывающий неравномерность распределения нагрузки по длине зуба.

 K_{Hv} –коэффициент динамической нагрузки;

$$K_{Hv} = 1,04$$
 — для прямозубых колёс.

Вычисляем контактное напряжение:

$$\sigma_H = Z_H Z_M Z_{\mathcal{E}} \sqrt{\frac{W_{Ht}(U+1)}{d_1 U}} = 1,76 \cdot 275 \cdot 0.885 \sqrt{\frac{67,569(2.7+1)}{28,5 \cdot 2.7}} = 772,074 \text{ M}\Pi a.$$

$$\sigma_H = 772,074 \text{ M}\Pi a < [\sigma]_H = 847 \text{ M}\Pi a.$$

Условие контактной выносливости выполняется.

Проверочный расчёт зубьев на выносливость при изгибе.

Условие изгибной выносливости:

$$\sigma_F = Y_F Y_{\varepsilon} Y_{\beta} \frac{W_{Ft}}{m} \leq [\sigma]_F$$
.

По таблице выбираем значение коэффициентов форма зуба:

$$Y_{F1} = 4.07.$$
 $Y_{F2} = 3.65.$

 Y_{ε} — коэффициент, учитывающий перекрытие зубьев.

$$Y_{\varepsilon} = \frac{1}{K_{\varepsilon} \varepsilon_{\alpha}}.$$

для прямозубых колёс $Y_{\varepsilon}=1$.

Υ_β – коэффициент, учитывающий наклон зубьев.

$$Y_{\beta} = 1 - \frac{\beta^0}{140} = 1.$$

Вычисляем удельную расчётную окружную силу:

$$W_{Ft} = \frac{F_t}{b_w} K_{F\alpha} K_{F\beta} K_{Fv} = \frac{2 \cdot 10^3 T_1}{b_w d_1} K_{H\alpha} K_{H\beta} K_{Hv} = \frac{2 \cdot 10^3 \cdot 11}{12 \cdot 28,5} 1 \cdot 1,03 \cdot 1,08 = 71,557 \frac{H}{MM}.$$

Где F_t — окружная сила;

 $K_{F\alpha}$ — коэффициент неравномерности распределения нагрузки между зубьями;

$$K_{F\alpha} = 1$$
 —для прямозубых колёс;

Коэффициенты $K_{F\beta}$ и $K_{F\upsilon}$ находим по таблице.

 $K_{F\beta}$ =1,03 — коэффициент неравномерности распределения нагрузки по длине зуба;

 K_{Fv} — коэффициент динамической нагрузки.

$$K_{Fv} = 1,08$$
 —для прямозубых колёс;

Вычисляем изгибное напряжение:

-для шестерни

$$\sigma_{F1} = Y_{F1}Y_{\varepsilon}Y_{\beta}\frac{W_{Ft}}{m} = 4,07 \cdot 1 \cdot 1\frac{71,557}{1,5} = 194,157 \text{ M}\Pi a.$$

-для колеса

$$\sigma_{F2} = Y_{F2}Y_{\varepsilon}Y_{\beta}\frac{W_{Ft}}{m} = 3.65 \cdot 1 \cdot 1\frac{74,025}{1.5} = 174,122 \text{ M}\Pi a.$$

$$\sigma_{F1} = 194$$
,157 МПа $< [\sigma]_{F1} = 328$ МПа

$$\sigma_{F2} = 174,122 \,\mathrm{M}\Pi \mathrm{a} < [G]_{F2} = 328 \,\mathrm{M}\Pi \mathrm{a}$$

Условия выполняются.

Силы в зацеплении

Силы в зацеплении двух прямозубых цилиндрических колёс 1 и 2:

-окружная сила:

$$F_t = \frac{2T_1}{d_1} = \frac{2 \cdot 10^3 \cdot 11}{28,5} = 771,93 \text{ H}$$

-радиальная сила:

$$F_r = F_t t g \alpha_w = 771,93 \cdot t g 20^\circ = 280.96 \text{ H}$$

-нормальная сила:

$$F_n = \frac{F_t}{\cos \alpha_w} = 771,93 \cdot tg20^\circ = 821.47 \text{ H}$$

При нарезании зубьев инструментальной рейкой без смещения $\alpha_w = \alpha = 20^\circ$.

Проектный расчет вала двигателя

Определяем предполагаемый диаметр $d_{\text{дв}}$ вала двигателя, изготовленного из стали 45 ОЗ с пределом текучести при изгибе σ_T =750 МПа и соответственно с пределом текучести при кручении τ_T =(0,5...0,6) σ_T =0,55*750=412,5 МПа, нагруженного вращающим моментом T_1 =11 Н*м (берём из расчёта зубчатой передачи), из условия прочности при кручении

$$d_{\mathrm{AB}} \ge \sqrt[3]{\frac{T_1 \cdot 10^3}{0.2[\tau]}} = \sqrt[3]{\frac{11 \cdot 10^3}{0.2 \cdot 206.25}} = 6.436 \ \mathrm{mm},$$

где [т] – допускаемое касательное напряжение при кручении

$$[\tau] = \frac{\tau_T}{n} = \frac{412.5}{2} = 206.25 \text{M}\Pi a.$$

Здесь n=(2...2,5) – коэффициент запаса прочности при кручении.

Принимаем диаметр вала двигателя по ГОСТ 6636-69 $d_{дв}$ =8 мм.

Проверяем диаметр вала двигателя на прочность при кручении с учетом наличия в нем шпоночной канавки

$$\tau = \frac{T_1 \cdot 10^3}{W_{PH}} \le [\tau],$$

где $W_{P.H.}$ – полярный момент сопротивления поперечного сечения вала двигателя по шпоночной канавке.

$$W_{P.H.} = 0.2 d_{\rm AB}^3 - \frac{b t_1 \big(d_{\rm AB} - t_1\big)^2}{2 d_{\rm AB}} = 0.2 \cdot 8^3 - \frac{2 \cdot 1.2 (8 - 1.2)^2}{2 \cdot 8} = 95.464 \ {\rm mm}^3.$$

Здесь b и t_1 – соответственно ширина и глубина шпоночной канавки.

Для диаметра $d_{\text{дв}} = 8\,$ мм по ГОСТ 23360-78 $b = 2\,$ мм, $t_1 = 1,2\,$ мм.

Вычисляем касательное напряжение:

$$\tau = \frac{11 \cdot 10^3}{95.464} = 115,227 \, \text{M}\Pi a.$$

Следовательно,

$$\tau = 115,227 \text{ M}\Pi a < [\tau] = 206,25 \text{ M}\Pi a.$$

Условие статической прочности вала выполняется.

Проектный расчет входного вала редуктора мехатронного модуля

Определяем наружный диаметр d_1 входного вала редуктора, изготовленного из стали 45 ОЗ с пределом текучести при изгибе σ_T =750 МПа

$$d_1 = (1.6 \dots 1.8) d_0 = 1.6 \cdot 8 = 12.8 \text{ MM}.$$

Где $d_0 = d_{\rm дв} = 8$ мм.

Принимаем $d_1 = 13$ мм — наружный диаметр входного вала редуктора.

Проверяем его на прочность по текучести при кручении с учетом, что он пустотелый и имеет шпоночную канавку

$$\tau = \frac{T_1 \cdot 10^3}{W_{BH}} \le [\tau],$$

 Γ де $W_{P.H.}$ – полярный момент сопротивления поперечного сечения входного вала по шпоночной канавке

$$\begin{split} W_{P.H.} &= 0.2 d_1^3 \left[1 - \left(\frac{d_0}{d_1} \right)^4 \right] - \frac{b t_2 (d_0 - t_2)^2}{d_0} = \\ &= 0.2 \cdot 13^3 \left[1 - \left(\frac{8}{13} \right)^4 \right] - \frac{2 \cdot 1(8 - 1)^2}{8} = 364,135 \text{ mm}^3. \end{split}$$

Здесь b и t₂ – соответственно ширина и глубина шпоночной канавки входного отверстия d_0 вала редуктора мехатронного модуля.

Для $d_0 = 8$ мм имеем по ГОСТ 23360-78:

$$b = 2 \text{ MM}, h = 2 \text{ MM}, t_1 = 1,2 \text{ MM}, t_2 = 1 \text{ MM}.$$

Вычисляем касательное напряжение при кручении
$$\tau = \frac{T_1 \cdot 10^3}{W_{P.H.}} = \frac{11 \cdot 10^3}{364{,}135} = 30{,}209 \text{ МПа.}$$

Определяем предел текучести материала вала при кручении

$$\tau_T = 0.55 \sigma_T = 0.55*750 = 412.5 \text{ M}\Pi a$$

Находим допускаемое касательное напряжение

$$[\tau] = \frac{\tau_T}{n} = \frac{412.5}{2} = 206.25 \text{ M}\Pi a.$$

Таким образом

$$\tau = 30,209 \text{ M}\Pi a < [\tau] = 206,25 \text{ M}\Pi a.$$

Условие статической прочности входного вала редуктора по текучести при кручении обеспечено.

Геометрические параметры входного вала

Линейная база вала, т.е. расстояние между его опорами при установке вала на радиальноупорных подшипниках враспор

$$l = a + b = 20 + 20 = 40$$
 MM.

где а – длина участка вала от середины шестерни до левой опоры

$$a = \frac{b_1}{2} + C_1 + \frac{B}{2} = \frac{12}{2} + 9.5 + \frac{9}{2} = 20 \text{ mm};$$

b – длина участка вала от середины шестерни до правой опор

$$b = \frac{b_1}{2} + C_2 + \frac{B}{2} = \frac{12}{2} + 9.5 + \frac{9}{2} = 20 \text{ mm};$$

 b_1 — ширина зубчатого венца шестерни.

Берём из расчёта зубчатой передачи $b_1 = b_w = 12$ мм;

 $C_1 = 5 \dots 10$ мм — ширина упорного буртика. Принимаем $C_1 = 9,5$ мм;

 $C_2 = 5 \dots 10$ мм — ширина распорного кольца. Принимаем $C_1 = 9,5$ мм;

Здесь $d_{1\Pi}$ =15 мм – внутренний диаметр подшипника;

 $D_{I\Pi}$ = 32 мм – внешний диаметр подшипника;

B = 9 мм — ширина радиально-упорного подшипника;

Условное обозначение радиальных подшипников – 102.

Диаметральные размеры участков вала:

наружный диаметр

$$d_1 = (1.6 \dots 1.8) d_0 = 1.6 d_0 = 1.6 \cdot 8 = 12.8 \text{ MM};$$

Принимаем $d_1 = 13$ мм.

Диаметр под подшипники:

$$d_{1\Pi} = d_1 + (2 ... 5) \text{ mm} = 13 + 2 = 15 \text{ mm};$$

Диаметр упорного буртика для шестерни:

$$d_2 = d_{1\Pi} + (4 \dots 5) = 15 + 4 = 19 \text{ MM}.$$

Наружный диаметр распорной втулки входного вала 1:

$$d_3 = d_2 = 19$$
 мм.

Внутренний диаметр распорной втулки входного вала:

$$d_4 = d_{1\Pi} + 1$$
MM = 15 + 1 = 16 MM.

Реакции опор входного вала

Опоры A и B заменяем реактивными силами R_A^B и R_B^B . Их направления выбираем произвольно (вверх или вниз).

Для нахождения значений реакций составляем уравнения статики.

В вертикальной плоскости

$$\Sigma M_A^B = -R_B^B(a+b) + F_{r_1}a = 0.$$

Откуда реакция R_B^B будет равна

$$R_B^B = -\frac{F_{r_1}a}{a+b} = \frac{280,96 \cdot 20}{20+20} = 140,48 \text{ H}.$$

Где $\mathit{F_{r_1}}$ — радиальная сила, берём из расчёта зубчатой передачи $\mathit{F_r} = 280.96$

$$\Sigma \mathbf{M}_{B}^{\mathrm{B}} = R_{A}^{B}(a+b) - F_{r_{1}}b = 0.$$

Откуда реакция R_A^B будет равна

$$R_A^B = \frac{F_{r_1}b}{a+b} = \frac{280,96 \cdot 20}{20+20} = 140,48 \text{ H}.$$

Проверяем правильность нахождения реакций
$$\Sigma F_y = F_{r_1} - R_B^B - R_A^B = 280,96 - 140,48 \, -140,48 \, = 0.$$

Также составляем уравнения статики для входного вала-шестерни в горизонтальной плоскости

$$\Sigma M_{\Delta}^{\Gamma} = -R_{B}^{\Gamma}(a+b) + F_{t, \Delta}a = 0.$$

Откуда реакция опоры В равна

$$R_B^{\Gamma} = \frac{F_{t_1}a}{a+b} = \frac{771,93 \cdot 20}{20+20} = 385,965 \text{ H}.$$

Где F_{t_1} — радиальная сила, берём из расчёта зубчатой передачи $F_t = 280.96$

$$\Sigma \mathsf{M}_{B}^{\Gamma} = R_{A}^{\Gamma}(a+b) - F_{t_{1}}b = 0.$$

Откуда реакция опоры А равна

$$R_A^{\Gamma} = \frac{F_{t_1}b}{a+b} = \frac{771,93 \cdot 20}{20+20} = 385,965 \text{ H}$$

Проверяем правильность нахождения реакций

$$\Sigma F_{x} = R_{B}^{\Gamma} + R_{A}^{\Gamma} + F_{t_{1}} = 385,965 + 385,965 - 771,93 = 0.$$

Суммарные реакции в опорах А и В

$$R_{A_{\Sigma}} = \sqrt{(R_A^B)^2 + (R_A^{\Gamma})^2} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H};$$

 $R_{B_{\Sigma}} = \sqrt{(R_B^B)^2 + (R_B^{\Gamma})^2} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H};$

Найденные реакции опор будут нужны при выборе подшипников для входного вала мехатронного модуля.

Проектный расчет выходного (тихоходного) вала на статическую прочность по текучести

Материал выходного вала и его механические характеристики выбираем такие же, как и для входного вала.

Определяем диаметр выходного конца тихоходного вала из условия статической прочности по текучести при кручении для схемы вала с зубчатым колесом.

$$d_{2_{\rm B}} = \sqrt[3]{\frac{T_2 \cdot 10^3}{0.2[\tau]}} = \sqrt[3]{\frac{28,512 \cdot 10^3}{0.2 \cdot 206,25}} = 8,842 \text{ MM,}$$

Где T_2 — вращающий момент на колесе.

Берём из расчёта зубчатой передачи $T_2 = 28,512~\mathrm{H\cdot m}$

Принимаем $d_{2_{\rm B}} = 10$ мм.

Проверяем выходной конец вала на статическую прочность при кручении с учетом наличия в нем шпоночной канавки

$$\tau = \frac{T_2 \cdot 10^3}{W_{P.H.}} \le [\tau],$$

 Γ де $W_{P.H.}$ – полярный момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{P.H.} = 0.2d_{2B}^3 - \frac{bt_1(d_{2_B} - t_1)^2}{2d_{2_B}} = 0.2 \cdot 10^3 - \frac{3 \cdot 1.8(10 - 1.8)^2}{2 \cdot 10} = 181,845 \text{ mm}^3$$

Здесь b и t₁ – соответственно ширина и глубина шпоночной канавки.

Для $d_{2_{\rm B}}=10$ мм имеем по ГОСТ 23360-78 b = 3 мм, ${\rm t_1}=1$,8 мм. Вычисляем касательное напряжение при кручении

$$au = \frac{T_2 \cdot 10^3}{W_{P.H.}} = \frac{28,512 \cdot 10^3}{181,845} = 156,793 \,\mathrm{M}\Pi\mathrm{a}.$$

Следовательно

$$\tau$$
 = 156,793 MΠa < [τ] = 206,25ΜΠa.

Условие статической прочности выходного конца тихоходного вала по текучести при кручении обеспечено.

Геометрические параметры выходного вала

Линейная база вала, т.е. расстояние между его опорами при установке вала на конических подшипниках враспор

$$l = a + b = 20 + 20 = 40$$
 MM,

Где a –длина участка вала от середины зубчатого колеса до левой опоры

$$a = \frac{l_{\text{CT}}}{2} + C_1 + \frac{B}{2} = \frac{12}{2} + 10 + \frac{8}{2} = 20 \text{ mm};$$

b –длина участка вала от середины зубчатого колеса до правой опоры

$$b = \frac{l_{\text{CT}}}{2} + C_3 + C_4 + \frac{B}{2} = \frac{12}{2} + 5 + 5 + \frac{8}{2} = 20 \text{ mm};$$

где $C_1 = (10 \dots 15)$ мм —ширина распорной втулки. Принимаем $C_1 = 10$ мм;

 $C_3 = (5 ... 10)$ мм — ширина упорного буртика для колеса. Принимаем $C_3 = 5$ мм;

 $C_4 = (5 \dots 10)$ мм — ширина упорного буртика для подшипника. Принимаем $C_4 = 5$ мм;

 $l_{\rm cr}$ – длина ступицы зубчатого колеса. Этот размер необходимо согласовать с требуемой длиной шпонки и принимать минимальным.

Принимаем $l_{cr} = b_2 = 12$ мм;

Где $b_2 = b_w = 12$ мм — берём из расчёта зубчатой передачи.

Здесь $d_{2\Pi} = 12$ мм – внутренний диаметр подшипника

 $D_{2\Pi} = 28 \text{ мм} - \text{внешний диаметр подшипника;}$

В = 8 мм - ширина радиально — упорного подшипника;

Условное обозначение радиально-упорных подшипников – 101.

Диаметральные размеры участков вала:

-под подшипники

$$d_{2\Pi} = d_{2B} + (2 ... 5) \text{ MM} = 10 + 2 = 12 \text{ MM};$$

-под зубчатым колесом

$$d_{2\kappa} = d_{2\Pi} + (4 \dots 5) \text{ mm} = 12 + 4 = 16 \text{ mm}.$$

-диаметр упорного буртика для зубчатого колеса

$$d_4 = d_{2K} + (8 \dots 10) \text{ mm} = 16 + 9 = 25 \text{ mm}.$$

-диаметр вала для упора правого подшипника, равный диаметру распорной втулки

$$d_3 = d_2 = d_{2\Pi} + (8 \dots 10) \text{ MM} = 12 + 9 = 21 \text{ MM}.$$

Проверочный расчет выходного вала на статическую прочность по текучести

Выходной вал находится под действием вращающего момент T_2 и двух изгибающих моментов в вертикальной плоскости, возникающих от действия радиальной F_{r_2} и осевой F_{a_2} сил, а также изгибающего момента в горизонтальной плоскости от окружной силы F_{t_2} . Для нахождения наиболее опасных сечений вала необходимо построить эпюры изгибающих моментов в вертикальной $M^{\text{в}}_{\text{и}}$ и горизонтальной $M^{\text{г}}_{\text{и}}$ плоскостях и крутящего момента T_2 .

Рисуем схему вала и на ней расставляем все указанные силы в соответствии с их действительным расположением на колесе. Затем рассматриваем схему вала, находящегося под действием только радиальной F_{r_2} и осевой F_{a_2} сил.

Опоры A и B заменяем реактивными силами R_A^B и R_B^B . Их направления выбираем произвольно (вверх или вниз).

Для нахождения значений реакций составляем уравнения статики:

$$\Sigma M_{A}^{B} = R_{B}^{B}(a+b) - F_{r_{2}}a = 0.$$

Откуда реакция R_B^B будет равна

$$R_B^B = \frac{F_{r_2}a}{a+b} = \frac{280,96 \cdot 20}{20+20} = 140,48 \text{ H}.$$

Где F_{r_2} — радиальная сила, берём из расчёта зубчатой передачи $\mathit{F}_r = 280.96$

$$\Sigma M_B^B = -R_A^B(a+b) + F_{r_2}b = 0.$$

Откуда реакция R_A^B будет равна

$$R_A^B = \frac{F_{r_2}b}{a+b} = \frac{280,96 \cdot 20}{20+20} = 140,48 \text{ H}.$$

Проверяем правильность нахождения реакций

$$\Sigma F_y = R_B^B + R_A^B - F_{r_2} = 140,48 + 140,48 - 280,96 = 0.$$

Определяем изгибающие моменты в вертикальной плоскости.

Записываем уравнение моментов на первом участке вала $0 \le x_1 \le a$

$$\mathsf{M}^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{\mathsf{H}_1}} = R^{\scriptscriptstyle{\mathrm{B}}}_{\scriptscriptstyle{A}} x_1.$$

Если $x_1 = 0$, то $M_{u_1}^B = 0$.

Если
$$x_1 = a$$
, то $M_{\text{H}_1}^{\text{B}} = R_A^{\text{B}} a = 140,48 \cdot 20 \cdot 10^{-3} = 2,809 \text{ H} \cdot \text{м}.$

Аналогично поступаем на втором участке вала $0 \le x_2 \le b$

$$M_{H_2}^B = R_B^B x_2$$
.

Если $x_2 = 0$, то $M_{\mu_2}^{\text{в}} = 0$.

Если
$$x_2 = b$$
, то $M_{\mu_2}^B = R_B^B b = 140,48 \cdot 20 \cdot 10^{-3} = 2,809 \text{ H} \cdot \text{м}.$

Строим эпюру изгибающих моментов в вертикальной плоскости на сжатых волокнах.

Составляем уравнение статики

$$\Sigma \mathsf{M}_{\mathsf{A}}^{\Gamma} = R_{\mathsf{B}}^{\Gamma}(a+b) - F_{t_2}a = 0.$$

Откуда реакция опоры В равна

$$R_B^{\Gamma} = \frac{F_{t_2}a}{a+b} = \frac{771,93 \cdot 20}{20+20} = 745 \text{ H}.$$

Где F_{t_2} — радиальная сила, берём из расчёта зубчатой передачи $F_t = 771,93~\mathrm{H}$

$$\Sigma \mathbf{M}_{B}^{\Gamma} = F_{t_2} b - R_{A}^{\Gamma} (a+b) = 0.$$

Откуда реакция опоры А равна

$$R_A^{\Gamma} = \frac{F_{t_2}b}{a+b} = \frac{771,93 \cdot 20}{20+20} = 385,965 \text{ H}.$$

Проверяем правильность нахождения реакций

$$\Sigma F_x = F_{t_2} - R_B^{\Gamma} - R_A^{\Gamma} = 771,93 - 385,965 - 385,965 = 0.$$

Определяем изгибающие моменты в горизонтальной плоскости:

-На первом участке $0 \le x_1 \le a$

$$M_{\text{M}_1}^{\Gamma} = R_A^{\Gamma} x_1.$$

Если
$$x_1=0$$
, то $M_{u_1}^{\Gamma}=0$.
Если $x_1=a$, то $M_{u_1}^{\Gamma}=R_A^{\Gamma}a=385,965\cdot 20\cdot 10^{-3}=7,719\ \mathrm{H\cdot m}.$

-На втором участке вала $0 \le x_2 \le b$

$$\mathsf{M}^{\scriptscriptstyle\Gamma}_{\scriptscriptstyle\mathsf{H}_2}=R^{\scriptscriptstyle\Gamma}_Bx_2.$$

Если $x_2 = 0$, то $M_{\mu_2}^{\Gamma} = 0$.

Если
$$x_2 = b$$
, то $M_{\text{H}_2}^{\Gamma} = R_B^{\Gamma} b = 385,965 \cdot 20 \cdot 10^{-3} = 7,719 \text{ H} \cdot \text{м}.$

Строим эпюру изгибающих моментов в горизонтальной плоскости на сжатых волокнах. Вычисляем крутящий момент на валу от действия окружной силы F_{t_2}

$$T_{2\text{\tiny K}} = F_{t_2} \frac{d_{\text{\tiny K}}}{2} = 771,93 \cdot \frac{78 \cdot 10^{-3}}{2} = 30,105 \text{ H} \cdot \text{M}.$$

Где $d_{\rm K}$ — делительный диаметр колеса, берём из расчёта зубчатой передачи $d_2=78$ мм. $T_{2{\mbox{\tiny K}}}
eq T_2$, т. к. в расчёте $T_{2{\mbox{\tiny K}}}$ не учтён КПД.

Строим эпюру крутящего момента. Из эпюр видно, что наиболее опасным сечением вала является сечение под колесом, так как в этом месте на вал действуют наибольшие изгибающие моменты в двух плоскостях и крутящий момент. Действие максимальных изгибающих моментов в двух плоскостях заменяют суммарным моментом

$$M_{_{\rm H_{\Sigma}}} = \sqrt{\left(M_{_{\rm H}_{max}}^{_{\rm B}}\right)^2 + \left(M_{_{\rm H}_{max}}^{_{\rm \Gamma}}\right)^2} = \sqrt{(2,\!809)^2 + (7,\!719)^2} = 8,\!214~{\rm H\cdot m}.$$

Таким образом, вал находится под действием суммарного изгибающего момента $\, \, M_{u_{\Sigma}} \, \, и \,$ крутящего момента $T_{2\kappa}$.

Проверяем вал на статическую прочность с учетом нормальных и касательных напряжений по энергетической гипотезе прочности

$$\sigma_{\scriptscriptstyle \mathrm{9KB}} = \sqrt{\sigma_{\scriptscriptstyle \mathrm{M}_{max}}^2 + 3 au^2} \leq [\sigma]_p$$
,

Где $\sigma_{n_{max}}$ - максимальное нормальное напряжение при изгибе вала с учетом шпоночной канавки под колесом.

$$\sigma_{_{\mathrm{H}_{max}}} = \frac{\mathrm{M}_{_{\mathrm{H}_{\Sigma}}}}{W_{0.\mathrm{H.}}} = \frac{\mathrm{M}_{_{\mathrm{H}_{\Sigma}}}}{0.1d_{_{2\mathrm{K}}}^3 - \frac{bt(d_{_{2\mathrm{K}}} - t)^2}{2d_{_{2\mathrm{K}}}}} = \frac{8,214}{0.1 \cdot 16^3 - \frac{3 \cdot 1,8(16 - 1,8)^2}{2 \cdot 16}} \cdot 10^9 = 21,871 \ \mathrm{M\Pia};$$

 $W_{0.{
m H.}}$ – осевой момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{O.H.}} = 0.1d_{2\text{K}}^3 - \frac{bt(d_{2\text{K}} - t)^2}{2d_{2\text{K}}}.$$

Шпонку на валу под колесом необходимо взять такой же, как и для его выходного конца, т.е. b=3 мм, t=1,8 мм, так как с увеличением диаметра вала и геометрических параметров шпонки $W_{\text{о.н.}}$ и $W_{\text{р.н.}}$ растут, следовательно, нормальные и касательные напряжения уменьшаются;

т – касательное напряжение при кручении вала с учетом шпоночной канавки

$$\tau = \frac{T_2}{W_{\mathrm{p.H.}}} = \frac{T_2}{0.2d_{2\mathrm{K}}^3 - \frac{bt(d_{2\mathrm{K}} - t)^2}{2d_{2\mathrm{K}}}} = \frac{30,105}{0.2 \cdot 16^3 - \frac{3 \cdot 1,8(16 - 1,8)^2}{2 \cdot 16}} \cdot 10^9 = 38,342 \,\mathrm{MHz};$$

 $W_{
m p.h.}$ – полярный момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{p.H.}} = 0.2d_{2\kappa}^3 - \frac{bt(d_{2\kappa} - t)^2}{2d_{2\kappa}};$$

 $[\sigma]_p$ – допускаемое нормальное напряжение при растяжении

$$[\sigma]_p = \frac{\sigma_{\text{Tp}}}{[n]} = \frac{650}{2} = 325;$$

 $\sigma_{\rm rp} = 650~{\rm M\Pi a} - {\rm предел}$ текучести материала вала при растяжении; $[n] = 1,5 \dots 2,5 - {\rm допускаемый}$ коэффициент запаса.

$$\sigma_{\text{3KB}} = \sqrt{21,871^2 + 3 \cdot 38,342^2} = 69,919 \le 325,$$

Условие статической прочности вала по текучести обеспечено.

Расчет на долговечность подшипников.

Расчет на долговечность подшипников входного вала.

Исходя из ГОСТ 8338-75 «Подшипники однорядные шариковые радиальный» выбираем однорядный шариковый радиальный подшипник лёгкой серии с диаметром внутреннего кольца 15 мм.

Подшипник 102 (d = 15 мм, D = 32 мм, b = 9 мм, $C_r = 5.6$ кH, $C_{0r} = 2.5$ кH).

Зададим коэффициенты:

V = 1 – при вращении внутреннего кольца;

 $K_{\delta} = 1.6$ – коэффициент безопасности;

 K_T = 1 – температурный коэффициент (t ≤ 100°C).

Определяем суммарные радиальные реакции подшипников R_A и R_B:

$$R_A = \sqrt{{R_A^B}^2 + {R_A^\Gamma}^2} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H};$$

$$R_B = \sqrt{R_B^{B^2} + R_B^{\Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H}.$$

Определяем соотношение:

$$\frac{F_a}{C_{or}} = \frac{0}{2500} = 0,$$

Где F_a – осевая сила на шестерне [H];

 C_{or} – статическая грузоподъёмность [H].

По таблице определяем коэффициенты радиальной X и осевой Y нагрузок:

$$X_{I} = 1$$

$$Y_1 = 0$$

Определяем эквивалентную нагрузку:

$$P = V \cdot X \cdot R_{\Sigma} \cdot K_{\delta} \cdot K_{T}$$

Где V = 1 – коэффициент вращения (при вращении внутреннего кольца);

 $K_{\delta} = 1,3 \dots 1,8 -$ коэффициент безопасности (при умеренных толчках),

Принимаем $K_{\delta} = 1.8$

 $K_T = 1$ — температурный коэффициент (при $t \le 100$ °C).

$$P_1 = X_1 V R_4 K_5 K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,8 \cdot 1 = 739,323 \text{ H};$$

$$P_2 = X_2 V R_B K_{\delta} K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,8 \cdot 1 = 739,323 \text{ H};$$

Определяем расчетную долговечность подшипников:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C_r}{p}\right)^m \ge [L]_h;$$

Где $[L]_h = (2 \dots 40) \cdot 10^3$ – допускаемая долговечность подшипника.

Принимаем $[L]_h = 30 \cdot 10^3$,

m = 3 – коэффициент учитывающий тип подшипников (шариковые),

n =232,2 об/мин — частота вращения входного вала.

$$n = n_{\text{BMX}} \cdot U = 86 \cdot 2.7 = 232.2 \frac{\text{of}}{\text{MMH}}.$$

$$L_h = \frac{10^6}{60 \cdot n_{\text{BMV}}} \left(\frac{C_r}{p}\right)^m = \frac{10^6}{60 \cdot 232.2} \left(\frac{5600}{739.323}\right)^3 \approx 31192.3 \text{ y};$$

 $L_h = 31192,3 \text{ ч} > [L]_h = 30000 \text{ ч} - \text{условие выполняется.}$

Тип менее нагруженного подшипника принимаем таким же, как и более нагруженный подшипник.

Выбираем аналогичный подшипник и для опоры В

Расчёт на долговечность подшипников выходного вала.

Выбираем подшипники шариковые радиальные однорядные средней серии, исходя из ГОСТ 8338-75.

Подшипник 101 (d = 12 мм, D = 28 мм, b = 8 мм, $C_r = 5,07$ кH, $C_{or} = 2,24$ кH)

Определяем суммарные реакции подшипников:

$$R_A = \sqrt{R_A^{\rm B^2} + R_A^{\rm \Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H};$$

$$R_B = \sqrt{R_B^{B^2} + R_B^{\Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H}.$$

Определяем соотношение:

$$\frac{F_a}{C_{or}} = \frac{0}{2240} = 0,$$

где F_a – осевая сила на шестерне [H];

 C_{or} – статическая грузоподъёмность [H].

Определяем коэффициенты радиальной и осевой нагрузки:

$$X_1 = 1;$$

$$Y_1 = 0.$$

Эквивалентная нагрузка

$$P = V \cdot X \cdot R_{\Sigma} \cdot K_{\delta} \cdot K_{T},$$

Где V=1 – коэффициент вращения (при вращении внутреннего кольца); $K_{\delta}=1$,3 ... 1,8 — коэффициент безопасности (при умеренных толчках), Принимаем $K_{\delta}=1$,6

 $K_T = 1$ — температурный коэффициент (при $t \le 100$ °C).

$$P_1 = X_1 V R_A K_\delta K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,6 \cdot 1 = 657,176 \text{ H};$$

 $P_2 = X_2 V R_B K_\delta K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,6 \cdot 1 = 657,176 \text{ H};$

Определяем расчётную долговечность подшипников:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C_r}{P}\right)^m \ge [L_h],$$

где $[L_h] = (2 \dots 40) \cdot 10^3$ ч — допускаемая долговечность подшипников.

Принимаем $[L_h] = 30 \cdot 10^3$ ч.

m = 3 — коэффициент, учитывающий тип подшипника(шариковый).

n = 86 об/мин — частота вращения выходного вала.

Вычисляем расчётную долговечность подшипников:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C_r}{P}\right)^m = \frac{10^6}{60 \cdot 86} \left(\frac{5070}{657,176}\right)^3 = 32958,3 \text{ y};$$

 $L_h = 32958,3 \text{ ч} > [L_h] = 30 \cdot 10^3 \text{ ч}.$ — условие выполняется.

Расчет шпоночных соединений.

Расчет шпоночного соединения вала двигателя.

Исходя из ГОСТ 23360-78 «Соединения с призматическими обыкновенными шпонками» выбираем шпонку под диаметр $d_0 = 8$ мм.

Шпонка 2x2x16 (b = 2 мм, h = 2 мм, 1 = 16 мм);

Проверка на смятие боковой поверхности:

$$\sigma_{\scriptscriptstyle{\mathrm{CM}}} = rac{4\mathrm{T}}{\mathrm{d}_0 \; h l_p} \leq [\sigma]_{\scriptscriptstyle{\mathrm{CM}}};$$
 $l_p \geq rac{4T}{\mathrm{d}_0 h [\sigma]_{\scriptscriptstyle{\mathrm{CM}}}}.$

где $[\sigma]_{cM} = (110...200)$ МПа, т.к. посадка с натягом;

принимаем [σ]_{см} = 200 МПа;

$$l_p \ge \frac{4 \cdot 11 \cdot 10^3}{8 \cdot 2 \cdot 200} = 13,75 \text{ mm};$$

Для дальнейших расчетов принимаем $l_p = 15$ мм;

$$σ_{\text{\tiny CM}} = \frac{4 \cdot 11 \cdot 10^3}{8 \cdot 2 \cdot 15} = 183,333 \text{ M}\Pi a < [σ]_{\text{\tiny CM}} = 200 \text{ M}\Pi a;$$

Условие прочности на смятие боковой поверхности выполняется.

Проверка на срез по поперечному сечению:

$$\tau_{\rm cp} = \frac{F_t}{A} = \frac{2T}{\mathrm{d}_0 b l_p} \le [\tau]_{\rm cp};$$

где $[\tau]_{cp} = (70 \dots 100)$ МПа – допускаемое напряжение на срез;

Принимаем $[\tau]_{\rm cp}=100~{\rm M}\Pi{\rm a}$

$$τ_{cp} = \frac{2 \cdot 11 \cdot 10^3}{8 \cdot 2 \cdot 15} = 91,67 \text{ M}Πa \le [τ]_{cp} = 100 \text{ M}Πa.$$

Условие прочности на срез выполняется.

Расчет шпоночного соединения колеса

Исходя из ГОСТ 23360-78 «Соединения с призматическими обыкновенными шпонками» выбираем шпонку под диаметр $d_{2\kappa} = 16$ мм.

Шпонка 5x5x14 (b = 5 мм, h = 5 мм, 1 = 10 мм);

Проверка на смятие боковой поверхности:

$$\sigma_{\text{CM}} = \frac{4T_{2\text{K}}}{d_{2\text{K}} h l_p} \leq [\sigma]_{\text{CM}};$$

$$l_p \geq \frac{4T_{2\text{K}}}{d_{2\text{K}} h [\sigma]_{\text{CM}}}.$$

где $[\sigma]_{cm} = (110...200)$ МПа, т.к. посадка с натягом;

принимаем $[\sigma]_{cM} = 200 \text{ M}\Pi a;$

$$l_p \ge \frac{4 \cdot 30,105 \cdot 10^3}{16 \cdot 5 \cdot 200} = 7,52 \text{ mm};$$

Для дальнейших расчетов принимаем $l_p = 8$ мм;

$$\sigma_{\scriptscriptstyle {\sf CM}} = rac{4 \cdot 30,\! 105 \cdot 10^3}{16 \cdot 5 \cdot 10} = 1150,\! 525 \; {\sf M} \Pi a \; < \; [\sigma]_{\scriptscriptstyle {\sf CM}} = 200 \; {\sf M} \Pi a;$$

Условие прочности на смятие боковой поверхности выполняется.

Проверка на срез по поперечному сечению:

$$\tau_{\rm cp} = \frac{F_t}{A} = \frac{2T_{\rm 2K}}{d_{\rm 2K}bl_p} \le [\tau]_{\rm cp}$$

где $[\tau]_{cp} = (70 \dots 100)$ МПа – допускаемое напряжение на срез;

Принимаем $[\tau]_{cp} = 100 \ M\Pi a$

$$τ_{cp} = \frac{2 \cdot 30,105 \cdot 10^3}{16 \cdot 5 \cdot 10} = 75,263 \text{ M}Πa \le [τ]_{cp} = 100 \text{ M}Πa.$$

Условие прочности на срез выполняется.

Расчет шпоночного соединения выходного вала

Исходя из ГОСТ 23360-78 «Соединения с призматическими обыкновенными шпонками» выбираем шпонку под диаметр $d_{2B} = 10$ мм.

Шпонка 3x3x20 (b = 3 мм, h = 3 мм, 1 = 20 мм);

Проверка на смятие боковой поверхности:

$$\sigma_{\scriptscriptstyle{\mathrm{CM}}} = rac{4\mathrm{T}}{d_{\scriptscriptstyle{\mathrm{2B}}}hl_p} \leq [\sigma]_{\scriptscriptstyle{\mathrm{CM}}};$$
 $l_p \geq rac{4T}{d_{\scriptscriptstyle{\mathrm{2B}}}h[\sigma]_{\scriptscriptstyle{\mathrm{CM}}}}.$

где $[\sigma]_{cm} = (110...200)$ МПа, т.к. посадка с натягом;

принимаем $[\sigma]_{cM} = 200 \text{ M}\Pi a;$

$$l_p \ge \frac{4 \cdot 27,048 \cdot 10^3}{10 \cdot 3 \cdot 200} = 18,032 \text{ mm};$$

Для дальнейших расчетов принимаем $l_p = 20$ мм;

$$σcM = {4 \cdot 27,048 \cdot 10^3 \over 10 \cdot 3 \cdot 20} = 180,32 \text{ M}Πa < [σ]cM = 200 MΠa;$$

Условие прочности на смятие боковой поверхности выполняется.

Проверка на срез по поперечному сечению:

$$\tau_{\rm cp} = \frac{F_t}{A} = \frac{2T}{d_{2\rm B}bl_n} \le [\tau]_{\rm cp}$$

где $[\tau]_{cp} = (70 \dots 100)$ МПа – допускаемое напряжение на срез;

Принимаем $[\tau]_{\rm cp}=100~{
m M}\Pi{
m a}$

$$τ_{cp} = \frac{2 \cdot 27,048 \cdot 10^3}{10 \cdot 3 \cdot 20} = 90,16 \text{ M} \Pi a \le [τ]_{cp} = 100 \text{ M} \Pi a.$$

Условие прочности на срез выполняется.

Список литературы

- 1. Егоров О.Д. Проектирование валов цилиндрических мехатронных модулей // М.: Φ ГБОУ ВО МГТУ «СТАНКИН», 2017.- 21c
- 2. Допуски и посадки. Справочник. В 2-х Ч./В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский, -6-у изд. перераб. и доп. –Л.: Машиностроение. Ленингр. отд-ние, 1982 г.-Ч1 583с., ил.
- 3. Допуски и посадки. Справочник. В 2-х Ч./В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский, -6-у изд. перераб. и доп. –Л.: Машиностроение. Ленингр. отд-ние, 1982 г.-Ч1 448с., ил.
- 4. Перель Л.Я. Подшипники качения: Расчет, проектирование и обслуживание опор: Справочник. М.: Машиностроение, 1983 .-543с.,ил.