Comparison of Anti-Aliasing Techniques for Real-Time Applications

Federico Liberatore, Jacob Longazo, Stephen Pettinati, and Devin Weise

Outline

- Classes of Anti-Aliasing (AA)
- Custom Model Creator
- Super-sampling Anti-Aliasing (SSAA)
- Morphological Anti-Aliasing (MLAA)
- Geometric Post-process Anti-Aliasing (GPAA)
- Comparison of results
- Conclusion

Classes of Anti-Aliasing

- HW6 implemented super-sampling
- SSAA is a type of Full-Screen Anti-Aliasing
 - Performs AA on all areas of the screen
- Other classes perform AA selectively
 - Clean up artifacts after frame buffer gets rendered (Image Post-processing AA)
 - Use polygon information to find edges where aliasing may appear (Geometric AA)
- Implemented one from each class on top of HW6 code

Custom Model Creator

- Needed other model files to test with
 - Useful for finding scalability
- Used Maya's FBX exporter and a custom FBX parser
- Wrote secondary application to combine buffer and index files into single .asc file

Super-sampling Anti-Aliasing (SSAA)

- Implemented other formats of subsampling
 - Ordered Grid
 - Rotated Grid
 - Random Sampling
- Varying amounts of subsamples
- Gaussian Filter

Fig. 8. Super Sampling distributions: (a) Ordered Grid. (b) Rotated Grid. (c) Jittered Grid. (d) Random. (e) Poisson.

Morphological Anti-Aliasing (MLAA)

- After generating the initial image, look in FB for edges based on threshold value
 - Group edges into shapes (U, Z, or L)
- Deconstruct to L shape, then blur pixels based on approx. area covered by edge

(a) MLAA: Vertical detected edges.

(b) MLAA: Horizontal detected edges.

(c) MLAA: Overlapping vertical and horizontal edges.

Geometric Post-process Anti-Aliasing (GPAA)

- Use triangle edge information to blur silhouette edges
- Added structures to map pixels to triangle and get edges for rendered triangles.
- Remove edges shared by visible triangles

 Blend pixels based on distance from edge to pixel center

(b) GPAA: Silhouette edges, shared edges removed.

Technical Comparisons

 Rendered teapot (scene I) and dragon (scene II) and measured CPU and memory usage

AA Techn	ique CP	U Time (s.)	CPU Time (%)
No AA	0.076	609 ± 0.00758	100%
SSAA	0.133	328 ± 0.00844	175.15%
SSAA	0.243	891 ± 0.01015	320.53%
SSAA	0.524	122 ± 0.01244	688.91%
MLAA	0.079	038 ± 0.00654	107.17%
GPAA	0.079	006 ± 0.00536	103.90%

Table 3: CPU time for scene I.

AA Technique	CPU Time (s.)	CPU Time (%)
No AA	0.16902 ± 0.00952	100%
SSAA 2	0.20047 ± 0.015555	118.58%
SSAA 4	0.25531 ± 0.02014	151.02%
SSAA 9	0.38343 ± 0.02933	226.80%
MLAA	0.21531 ± 0.02006	127.36%
GPAA	0.36563 ± 0.03226	216.27%

Table 4: CPU time for scene II.

AA Technique	Memory (KB)	Memory (%)
No AA	1,992	100%
SSAA 2	$3,\!552$	178.31%
SSAA 4	5,120	257.03%
SSAA 9	9,052	454.42%
MLAA	3,284	164.86%
GPAA	2,416	121.29%

Table 1: Memory occupation for scene I.

(0-1)
(%)
%
%
%
%
%

Table 2: Memory occupation for scene II.

Visual Comparisons

No AA

OGSS

MLAA

RGSS

GPAA

Random SS

Conclusion

- SSAA can provide good results at the expense of heavy CPU and memory usage.
- MLAA is cheap and scales well with respect to triangle count, but doesn't deliver great image quality.
- GPAA can provide high-quality results, however it scales poorly as scene complexity increases.

