Estimating the global satellitederived surface NH3 concentration

Zhenqi Luo 2020.11

Estimation of surface NH3 concentration

- Important in modelling the dry deposition of NH3
 - Soil acidification
 - Aquatic ecosystem eutrophication
 - Drinking water contamination
 - Form ammonium salt——particulate matters (PM)
 - Air quality
 - Human health
- National monitoring programs: 2014
 - NNDMN (2014~): China
 - AMoN-China (2015~)
 - AMoN-US: US
 - EMEP: Europe
- Satellite instruments
 - IASI: 2008-2016
 - daytime (09:30)
 - processed into 0.25°×0.25° (arithmetic averaging method)
 - AIRS
 - CrIS
 - TES
- Chemistry transport models (CTMs)——GEOS-Chem (vertical profile and monthly averages): 2014
 - Daily average and 9-10am average
 - $2^{\circ} \times 2.5^{\circ} \times 47$ level
 - Meteorological filed data: GEOS-FP
 - Emissions: EDGAR
 - East Asia: MIX
 - Europe: EMEP
 - US: NEI
 - Canada: CAC
 - Biomass burning: FINNv1 (agricultural fires, wildfire and pre-scribed burning)

Atmospheric N deposition to the South China Sea

(Kim et al., 2014)

(+)

soil seed bank depletion by **N** pollution (Basto et al., 2015)

Estimation of surface NH3 concentration

- Step1: fit NH3 profile at each grid box——Gaussian function
 - $\rho = \sum_{i=1}^{n} \rho_{max,i} e^{-(\frac{z-z_{0,i}}{\sigma_i})^2}$
 - ρ : NH3 concentrations at the layer height z
 - $ho_{max,i}$: the maximum NH3 concentrations at the height $z_{0,i}$
 - σ_i : an indicator for the spread or thickness of the NH3 concentrations
- Step2: Extrapolate NH3 concentrations at any height—— $G_{GEOS-Chem}$
- Step3: Aggregated the IASI NH3 columns $\Omega IASI$ (0.25°×0.25°) to the GEOS-Chem grid size $\Omega IASI$ (2°× 2.5°)—averaging method
 - $\overline{G_{AS/9-10}} = \frac{G_{GEOS-Chem}}{\Omega_{GEOS-Chem}} \times \overline{\Omega_{AS/9-10}}$
 - $\overline{G_{IASI_{9-10}}}$: the satellite-derived surface NH3 concentrations at a GEOS-Chem grid size at 9-10am
 - $\frac{G_{GEOS-Chem}}{\Omega_{GEOS-Chem}}$: surface NH3 concentrations to NH3 columns calculated from GEOS-Chem
- Step4: Downscale—satellite-derived scaling factor
 - $G_{IASI_{9-10}} = \overline{G_{IASI_{9-10}}} \times \frac{\Omega IASI}{\Omega IASI}$
 - GIASI₉₋₁₀: the satellite-derived surface NH3 concentrations at a satellite IASI grid size (0.25°×0.25°) at 9-10am
 - $\frac{\Omega IASI}{\Omega IASI}$: scaling factor
- Step5: Convert the instantaneous to daily average
 - $G_{IASI}^* = \frac{G_{GEOS-Chem}^{1-24}}{G_{GEOS-Chem}^{9-10}} \times G_{IASI_{9-10}}$
 - G_{LASI}^* : daily average surface NH3 concentrations
 - $\frac{G_{GEOS-Chem}}{G_{GEOS-Chem}}$: the GEOS-Chem surface NH3 concentrations at the daily average to the average of 9-10 am.

Results—satellite-derived surface NH3

- NH3 vertical profiles from GEOS-Chem
 - 60°N and 55°S can be well modelled
- Validation
 - capture the general spatial pattern fairly well
 - IASI-derived surface NH3 concentrations had better consistency than GEOS-Chem

 Surface NH3 concentrations in this study
 - China
 - the US
 - Europe
- Spatial distributions
 - China—croplands (R²=0.65)
 - eastern China
 - Sichuan Basin
 - northwestern Xinjiang
 - US—croplands, livestock (SJV) (R²=0.30)
 - Central US
 - Eastern US
 - Western coastal
 - Europe——croplands (R²=0.17)
 - Western

0.9

Results—satellite-derived surface NH3

(Liu et al., 2019)

- China (ECH/SCH/GD)——Spring and summer (3-8)
 - N fertilizer/manure application
 - temperature in warm months
- Eastern US (EUS)——3-8, maximum in 5
 - higher temperature
 - emissions in vast croplands
- Western Europe——3-6
 - higher temperature
 - frequent N fertilization
- the relationship with biomass burning
 - CH1: crop straw burning
 - CH2: the wetter climate and more frequent precipitation events
 - US1: the forest fires or anthropogenic biomass burning
 - US2: potential mineral N fertilization and anthropogenic biomass burning or forest fires
 - EU1: the biomass burning and the agricultural fertilizations
 - EU2: the biomass burning
- Trends

Questions?