ALGORITMOS GENÉTICOS

- Técnica de *búsqueda* estocástica basada en los mecanismos de la selección natural y la genetica natural.[Goldberg,1969]
- Desarrollados por John Holland en 1970 en la Universidad de Michigan.
- Las metas iniciales para su creación:
 - Abstraer y rigurosamente explicar los procesos adaptativos de los sistemas naturales.
 - Diseñar sistemas artificiales de software que retengan los mecanismos importantes de los sistemas naturales.

ALGORITMOS GENÉTICOS

- ◆ La primera monografía sobre **AG** => Holland (1975) => *Adaptation in Natural and Artificial Systems*.
- Usan analogías de la selección natural para desarrollar mejores soluciones.
- Ampliamente utilizados en problemas de optimización no lineal y de alta dimensionalidad.

- ◆ DARWIN => Formulación del principio de la selección natural => Primer principio Evolutivo => mucho antes de descubrir los mecanismos de la genética.
- Darwin => supuso fusión o herencia ciega
 => mezcla de las cualidades de los padres
 con los fluidos líquidos => descendientes.

- G. MENDEL (1865) => descubre los principios básicos de la transferencia de factores hereditarios de los padres hacia los descendientes.
- ◆ Leyes de Mendel => conocidas por la comunidad científica después de redescubiertas en 1900 por H. Vries, K. Correns y K. Von Tschermak.

- T. Morgan(y colaboradores) => desarrollaron completamente la GENÉTICA.
- Probaron experimentalmente que:
 - Cromosomas => principales portadores de 1 información genética.
 - Genes => contienen los factores hereditarios => están contenidos en los cromosomas.
 - Otrs experimentos => mostraron que las leyes de Mendel válidas para todos los organismos de reproducción sexual.

- Leyes de Mendel y Teoría de Darwin => permanecen independientes como conceptos diferentes y opuestos.
- En 1920 Cetverikov => se prueba no son conflictivas entre sí => *TEORÍA EVOLUTIVA MODERNA*.
- * La idea de la Computación Evolutiva introducida por I. Rechenberg 1960 en el trabajo "Evolution strategies"

- * John Koza 1992 empleó A.G para desarrollar programas que hacían ciertas tareas => él las denominó "genetic programming" (GP).
- * Programas en LISP => usados ya que se podían expresar éstos en forma "parse tree" => objeto sobre el que trabaja un AG.

Ariel López Rojas

Algoritmo Genético	Significado	
Cromosomas(cadena, individuo)	Solución (código)	
Genes (bits)	Parte de la solución.	
Locus	Posición del Gene	
Aleles	Valor del Gene	
Fenotipo	Solución decodificada	
	(Apariencia Externa)	
Genotipo	Solución Codificada.	
	(Estructura Interna)	

PRINCIPALES VENTAJAS.

- No tienen muchos requerimientos matemáticos del problema de optimización.
- Debido a su naturaleza evolutiva
 buscan soluciones sin considerar específico conocimiento del problema.
- Proporcionan una gran flexibilidad para hibridizarse con heurísticas dependiente del dominio => eficientes implementaciones.

- Pueden manejar toda clase de función objetivo y restricciones definidas sobre un espacio de búsqueda discreto, continuo o mezclado.
- La estructura de los operadores los hace muy efectivos al realizar búsquedas global.

DIFERENCIAS CON MÉTODOS TRADICIONALES DE BÚSQUEDA.

1.- Inicio en una Población de Puntos

Ariel López Rojas

DIFERENCIAS CON MÉTODOS TRADICIONALES DE BÚSQUEDA.

Tradicionales

- 3.- Trabaja con los propios parámetros.
- 4.- Usa información de las derivadas u otro conocimiento adicional.
- 5.- Emplean reglas de transición deterministas.

A. G.

- 3.-Emplea codificación de los parámetros.
- 4.- Usa información de la función objetivo.
- 5.- Emplean reglas de transición probabilísticas.

ESTRUCTURA DE UN ALGORITMO GENÉTICO SIMPLE (AGS)

COMPONENTES DE UN ALGORITMO GENÉTICO SIMPLE

- Representación Genética.
- Forma de generar una población inicial de soluciones.
- Una función de Evaluación que juegue el rol del "ambiente" => ordenando las soluciones en términos de su "aptitud".
- Operadores Genéticos que alteren la composición de los "hijos".
- Valores para los parámetros que el AG utiliza: tamaño de la población, probabilidad de aplicar operadores genéticos.

- ❖Individuo=>Cromosoma=>población=> desarrolla en iteraciones: Generación => evaluación aptitud.
- ❖Nueva Generación => producto de cruce- mutación => hijos (offspring) y /o padres mejor aptitud _ eliminar resto => tamaño población constante.
- ❖ Después de varias generaciones => el algoritmo converge hacia el mejor cromosoma => representa la solución óptima o subóptima.

```
t:=0;
Inicializar P(t);
Evaluar P(t)
While no se termine do
begin
    recombinación P(t) => C(t)
    evaluar C(t)
    seleccionar[P(t+1) de P(t) y
    C(t)
    t:=t+1;
end
```

Representación

- 1. **Cromosoma**: Cadena de símbolos.
- 2. Los símbolos usualmente son *cadenas de bits* => *representación binaria*.
- Se emplean también otros símbolos como *números de*punto flotante => problemas multidimensionales,

 problemas con alta precisión numérica.

Inicialización

- 1. Creación de una población inicial de cromosomas.
- 2. Aleatoriamente.
- Proporcionada externamente.

Evaluación

- 1. Convertir el **genotipo** del cromosoma => **fenotipo**: cadena de bits => valores reales
- 2. Evaluar la función objetivo.
- 3. Convertir el valor de la función objetivo en *aptitud*.
- 4. La *función de evaluación* => rol del "ambiente" => ordena los cromosomas en término de sus aptitudes.

Operaciones:

- 1. Genéticas: cruce y Mutación.=> emulan el proceso de herencia de los genes => crear hijos en cada generación.
- 2. Evolución: selección.=> emula evolución Darwin => crear población de una generación a otra.=> difiere de Holland => selección crea padres para recombinación.

Cruce: opera sobre 2 cromosomas => genera dos hijos combinando características => el desempeño del AG depende altamente de ésta operación.

Rata de cruce \Rightarrow p_c : número de hijos producidos cada generación/ tamaño de la población. \Rightarrow número esperado de cromosomas que se cruzaran \Rightarrow

Alta: permite mayor exploración del espacio de búsqueda => reduce la posibilidad de quedar atrapado en un óptimo local.

Muy Alta: pérdida de tiempo computacional explorando regiones no prometedoras del espacio de búsqueda.

Mutación: opera sobre 1 cromosoma => produce cambios aleatorios espontáneos en un cromosoma => exploración del espacio.

Sirve para: a) reemplazar genes perdidos en la selección y lograr que sean tratados en otro contexto; b) proveer genes no presentes en la población inicial.

Rata de Mutación => pm : % del número total de genes en la población. => controlar la tasa a la cual se introducen nuevos genes en la población.

Muy Baja: genes útiles no serán tratados.

Muy Alta: mucha perturbación aleatoria=> los hijos pierden parecido con sus padres=> algoritmo pierde habilidad de aprender del pasado.

Ariel López Rojas

- **Problema de Optimización:** Ejemplo numérico de optimización.
- Max $f(x_1, x_2) = 21.5 + x_1 sen(4\pi x_1) + sen(20\pi x_2)$
- $-3.0 \le x_1 \le 12.1$
- $4.1 \le x_2 \le 5.8$
- Representación: la cadena depende de la precisión => si el dominio de la variable x_j es $[a_j, b_j]$ y la precisión requerida es 4 dígitos después del punto decimal => rango del dominio debe ser dividido en al menos $(b_j-a_j)*10^4$ rangos de igual tamaño. Los bits requeridos (m_j) serán:

$$2^{m_j-1} < (b_i - a_i) * 10^4 \le 2^{m_j} - 1$$

Bits necesarios para $x_1 y x_2$:

Conversión de string => número real:

$$x_{j} = a_{j} + decimal(substring) * \frac{b_{j} - a_{j}}{2^{m_{j}} - 1}$$

Número Binario

Número Decimal

 X_1 000001010100101001

5417

X₂ 101111011111110

24318

$$X_1 = -3.0 + 5417*[12.1-(-3.0)]/[2^{18}-1] = -2.687969$$

$$X_2 = 4.1 + 24318*[5.8 - 4.1]/[2^{15} - 1] = 5.361653$$

Población Inicial:

 $V_1 = [0000010101001010011011111111110]$ $V_2 = [001110101110011000000010101001000]$ $V_3 = [111000111000001000010101001000110]$

Lo que corresponde a:

$$V_1 = [x_1, x_2] = [-2.687969, 5.361653]$$

 $V_2 = [x_1, x_2] = [0.474101, 4.170144]$
 $V_3 = [x_1, x_2] = [10.419457, 4.661461]$

Evaluación:

$$f(x_1, x_2) = 21.5 + x_1 sen(4\pi x_1) + sen(20\pi x_2)$$

$$Eval(v_1) = f(-2.687969, 5.361653) = 19.805119$$

Eval
$$(v_2)$$
 = f(0.474101, 4.170144) = 17.370896

$$Eval(v_3) = f(10.419457, 4.661461) = 9.590546$$

- 1. Convertir Genotipo en fenotipo
- 2. Evaluar la función objetivo
- 3. Convertir el valor de la función objetivo en aptitud.

Selección: Método de la Rueda de la Ruleta.

Calcular aptitud total de la población:

(ATP) =
$$\sum_{i=1}^{poblacion} Eval(\mathbf{V}_i) = 46.76656$$

Calcular probabilidad de selección para cada cromosoma p_k:

$$p_k = \frac{Eval(v_k)}{ATP};$$
 $p_1 = \frac{19.805119}{46.76656} = 0.4234888$ $p_2 = \frac{17.370896}{46.76656} = 0.3714383,$ $p_3 = \frac{9.590546}{46.76656} = 0.2050727$

Calcular probabilidad acumulada q_k de cada cromosoma:

$$q_k = \sum_{j=1}^k p_j; \qquad q_1 = 0.4234888$$

Procedimiento Selección:

Paso 1: Generar n (tamaño de la población)números aleatorios r en [0,1]

Paso 2: Si $r \le q_1 =>$ seleccionar el primer cromosoma v₁; sino seleccionar el k cromosoma tal que $q_{k-1} < r \le q_k$

$$q_1 = 0.4234888$$

$$q_2 = 0.7949271$$

$$q_3 = 1.00000000$$

Si los números generados son:

Ariel López Rojas

• Procedimiento de Cruce

```
Begin k \le 0; While (k \le n) do begin r_k \le número aleatorio6 en [0,1]; if (r_k \le p_c) then seleccione v_k como un padre; end K \le k+1; end end
```

Cruce de un Punto

•Generar número aleatorio entero entre [2,n° de bit-1] para determinar el punto de cruce para cada par de padres a cruzar.

•Si punto de cruce = 9 y se cruzan los cromosomas v_1 ' y v_3 ' quedan los hijos:

 $V_1' = [001110101|11001100000010101001000]$

 $V_3' = [000001010 \mid 100101001101111011111110]$

 V_1 "= [00111010110010100110111111110]

 V_3 "= [000001010 110011000000010101001000]

 V_2 "= [001110101110011000000010101001000] = V_2

Procedimiento de Mutación

- 1. Total de bits = n (tamaño población)*número de bits por cromosoma.
- Generar una secuencia de números aleatorios r_k (k=1...
 Total bits) en [0,1].
- 3. Si $\mathbf{r_k} < \mathbf{p_m} => \text{mutar bit } \mathbf{k}$.

Para el ejemplo es necesario generar **3*33** números aleatorios => **99**; suponiendo que luego de hacerlo queda:

pos. Bit	N° Crom.	N° bit	na
39	2	6	0.009857

=>Mutar bit 6 del cromosoma 2:

Selección: Proporciona la fuerza que maneja al algoritmos => la presión de ésta es crítica para el AG=>alta => la búsqueda termina prematuramente – baja => el progreso es más lento de lo necesario.Lo adecuado es mantener =>:

Baja Presión => inicio => amplia exploración, **Alta Presión** => al final => explotar áreas más prometedoras.

Selección: dirige a un AG en dirección a regiones prometedoras.

ALGORITMOS GENÉTICOS Selección

Elementos Básicos en la Selección

1.- Espacio Muestral:

- Regular
- Aumentado

2.- Mecanismo Muestral:

- Muestreo Estocástico.
- Muestreo Determinístico
- Muestreo Mezclado

3.- Presión Selectiva:

- Estabilizada
- Direccional
- Quebrantada.

4.- Probabilidad de Selección:

(Mecanismos de Escalamiento y Orden)

- Escalamiento Estático
- Escalamiento Dinámico
- Escalamiento Lineal
- Escalamiento Lineal Dinámico
- Escalamiento "Ley De Poder"
- Escalamiento Logarítmico
- Windowing
- Selección de Boltzmann
- Ranqueo u ordenamiento

ALGORITMOS GENÉTICOS

Selección

Espacio Muestral

Basada en espacio muestral REGULAR

Características del Espacio Muestral:

- 1.- Tamaño de la Nueva Población = Tamaño anterior población
- 2.- Ingredientes: Todos los descendientes (hijos) y solo parte de los padres.

En los AG originales (Hollan) => hijos reemplazan a los padres en lo que nacen => Reemplazo Generacional o Plan Reproductivo.

ESTRUCTURA GENERAL DE UN A.G.

Selección

Espacio Muestral

Basada en espacio muestral AUMENTADO

2.- Ingredientes: Todos los descendientes (hijos) y padres.

ESTRUCTURA GENERAL DE UN A.G. Selección

Mecanismo Muestral

- •Se refiere a la forma en que se seleccionan los cromosomas del *espacio muestral*:
- 1.- Muestreo Estocástico => La selección tiene dos fases:
 - a) Determinar el valor esperado de un cromosoma.
 - b) Convertir el valor esperado en un número de hijos.

El más conocido => Rueda de la Ruleta (Holland).

Baker => Muestreo
Estocástico
Universal=> no
duplicados => 1)

Prevenir super cromosomas, 2)

Mantener diversidad

Ariel López Rojas

ESTRUCTURA GENERAL DE UN A.G. Selección

Mecanismo Muestral

- **3.- Muestro Mezclado**: Contiene características deterministas y aleatorias:
- Selección Torneo (Goldberg)=> de un conjunto aleatorio toma el mejor. Tamaño del conjunto => torneo
- Selección Torneo Estocástica=> usando método ruleta toma un par y el mejor de ellos es insertado en la nueva población.
- **2.- Muestreo Determinístico** =>Ordena todos los cromosomas de acuerdo a su *aptitud* y selecciona los mejores como padres.
 - Selección Truncada=> T%
 mejores y reciben 100/T copias
 - Selección en Bloque=> s copias para los n/s mejores.
 - Selección Elitista => asegura que el mejor permanezca.
 - Reemplazo Generacional=>
 reemplaza todos los padres por sus
 hijos. Otra versión reemplaza los
 peores solamente.

ESTRUCTURA GENERAL DE UN A.G.

Selección

Presión Selectiva

Presión Selectiva: Según el Neo – Darwinismo los procesos de evolución pueden ser divididos en tres categorías:

- a) Selección Estabilizada o Normalizada => tiende a eliminar cromosomas con valores extremos.
- b) *Selección Direccional* => Incrementa o decrementa el valor medio de la población;
- c) *Quebrantada* => Tiende a eliminar cromosomas con valor moderado.
- ❖La mayoría de los métodos están basados en Selección Direccional

ESTRUCTURA GENERAL DE UN A.G.

Selección

Probabilidad de Selección

¿ Cómo Determinar la probabilidad de selección para cada cromosoma?

En los métodos proporcionales => es proporcional a su aptitud => tiene problemas : a) en las primeras generaciones => pocos super cromosomas dominan el proceso de selección; b) en las últimas generaciones (población ha convergido) la competencia se hace débil y se observará solo una búsqueda aleatoria como comportamiento del A.G.

- ¿ Solución a problemas?: => mecanismos de Escalamiento y Ordenamiento.
 - Escalamiento => determina la probabilidad de supervivencia de un cromosoma de acuerdo a algunos valores reales de la función objetivo.
 - •*Ordenamiento* =>Ignora los valores de la función objetivo actual y usa un ordenamiento de los cromosomas en lugar de determinar la probabilidad de supervivencia.