Galois Theory notes

arnaucube

2025

Abstract

Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" [1].

Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

1	Recap on the degree of field extensions Tools						
2							
	2.1	De Moivre's Theorem and Euler's formula					
	2.2	Einsenstein's Criterion					
	2.3	Elementary symmetric polynomials					
	2.4	Cyclotomic polynomials					
	2.5	Lemma 1.42 from J.S.Milne's book					
	2.6	Dihedral groups - Groups of symmetries					
3	ercises						
	3.1	Galois groups					
		3.1.1 t6-7					

1 Recap on the degree of field extensions

(Definitions, theorems, lemmas, corollaries and examples enumeration follows from Ian Stewart's book [1]).

Definition 4.10. A *simple extension* is L:K such that $L=K(\alpha)$ for some $\alpha \in L$.

Example 4.11. Beware, $L = \mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i + \sqrt{5}).$

Definition 5.5. Let L: K, suppose $\alpha \in L$ is algebraic over K. Then, the *minimal polynomial* of α over K is the unique monic polynomial m over K, $m(t) \in K[t]$, of smallest degree such that $m(\alpha) = 0$.

eg.: $i \in \mathbb{C}$ is algebraic over \mathbb{R} . The minimal polynomial of i over \mathbb{R} is $m(t) = t^2 + 1$, so that m(i) = 0.

Lemma 5.9. Every polynomial $a \in K[t]$ is congruent modulo m to a unique polynomial of degree $< \delta m$.

Proof. Divide a/m with remainder, a=qm+r, with $q,r\in K[t]$ and $\delta r<\delta m$. Then, a-r=qm, so $a\equiv r\pmod m$.

It remains to prove uniqueness.

Suppose $\exists r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$. Then, r - s is divisible by m, but has smaller degree than m.

Therefore, r - s = 0, so r = s, proving uniqueness.

Lemma 5.14. Let $K(\alpha): K$ be a simple algebraic extension, let m be the minimal polynomial of α over K, let $\delta m = n$.

Then $\{1,\alpha,\alpha^2,\ldots,\alpha^{n-1}\}$ is a basis for $K(\alpha)$ over K. In particular, $[K(\alpha):K]=n$.

Definition 6.2. The degree [L:K] of a field extension L:K is the dimension of L considered as a vector space over K.

Equivalently, the dimension of L as a vector space over K is the number of terms in the expression for a general element of L using coefficients from K.

- **Example 6.3.** 1. \mathbb{C} elements are 2-dimensional over \mathbb{R} $(p+qi\in\mathbb{C}, \text{ with } p,q\in\mathbb{R})$, because a basis is $\{1,i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$.
 - 2. $[\mathbb{Q}(i,\sqrt{5}):\mathbb{Q}]=4$, since the elements $\{1,\sqrt{5},i,i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i,\sqrt{5})$ over \mathbb{Q} .

Theorem 6.4. (Short Tower Law) If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K] = [M:L] \cdot [L:K]$.

Proof. Let $(x_i)_{i\in I}$ be a basis for L over K, let $(y_j)_{j\in J}$ be a basis for M over L. $\forall i\in I, j\in J$, we have $x_i\in L, u_j\in M$.

Want to show that $(x_iy_j)_{i\in I, j\in J}$ is a basis for M over K.

i. prove linear independence:

Suppose that

$$\sum_{ij} k_{ij} x_i y_j = 0 \ (k_{ij} \in K)$$

rearrange

$$\sum_{j} (\underbrace{\sum_{i} k_{ij} x_{i}}) y_{j} = 0 \ (k_{ij} \in K)$$

Since $\sum_{i} k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over L, then $\sum_{i} k_{ij} x_i = 0$.

Repeating the argument inside $L \longrightarrow k_{ij} = 0 \ \forall i \in I, j \in J$. So the elements $x_i y_j$ are linearly independent over K.

ii. prove that x_iy_j span M over K:

Any $x \in M$ can be written $x = \sum_{j} \lambda_{j} y_{j}$ for $\lambda_{j} \in L$, because y_{j} spans M over L. Similarly, $\forall j \in J$, $\lambda_{j} = \sum_{i} \lambda_{ij} x_{i} y_{j}$ for $\lambda_{ij} \in K$. Putting the pieces together, $x = \sum_{ij} \lambda_{ij} x_{i} y_{j}$ as required.

Lemma 6.6. (Tower Law)

If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of \mathbb{C} , then

$$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1:K_0]$$

Proof. From 6.4. \Box

[...]

2 Tools

This section contains tools that I found useful to solve Galois Theory related problems, and that don't appear in Stewart's book.

2.1 De Moivre's Theorem and Euler's formula

Useful for finding all the roots of a polynomial.

Euler's formula:

$$e^{i\psi} = \cos\psi + i \cdot \sin\psi$$

The n-th roots of a complex number $z=x+iy=r(cos\theta+i\cdot sin\theta)$ are given by

$$z_k = \sqrt[n]{r} \cdot \left(cos(\frac{\theta + 2k\pi}{n}) + i \cdot sin(\frac{\theta + 2k\pi}{n}) \right)$$

for k = 0, ..., n - 1.

So, by Euler's formula:

$$z_k = \sqrt[n]{r} \cdot e^{i(\frac{\theta + 2k\pi}{n})}$$

2.2 Einsenstein's Criterion

reference: Stewart's book

Let $f(t) = a_0 + a_1 t + \ldots + a_n t^n$, suppose there is a prime q such that

- 1. $q \nmid a_n$
- 2. $q|a_i \text{ for } i = 0, \dots, n-1$
- 3. $q^2 \nmid a_0$

Then, f is irreducible over \mathbb{Q} .

TODO proof & Gauss lemma.

2.3 Elementary symmetric polynomials

TODO from orange notebook, page 36

2.4 Cyclotomic polynomials

TODO theory from brown muji notebook, page 82 Examples:

$$\Phi_n(x) = x^{n-1} + x^{n-2} + \dots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i$$

$$\Phi_{2p}(x) = x^{p-1} + \ldots + x^2 - x + 1 = \sum_{i=0}^{p-1} (-x)^i$$

$$\Phi_m(x) = x^{m/2} + 1$$
, when m is a power of 2

2.5 Lemma 1.42 from J.S.Milne's book

TODO add reference to Milne's book

Useful for when dealing with $x^p - 1$ with p prime.

Observe that

$$x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \dots + 1)$$

Notice that

$$\Phi_{n}(x) = x^{p-1} + x^{p-2} + \dots + 1$$

is the p-th Cyclotomic polynomial.

Lemma 1.42. If p prime, then $x^{p-1} + \ldots + 1$ is irreducible; hence $\mathbb{Q}[e^{2\pi i/p}]$ has degree p-1 over \mathbb{Q} .

Proof. Let $f(x) = (x^p - 1)/(x - 1) = x^{p-1} + \ldots + 1$ then

$$f(x+1) = \frac{(x+1)^p - 1}{x+1-1} = \frac{(x+1)^p - 1}{x} = x^{p-1} + \dots + a_i x^i + \dots + p$$

with
$$a_i = \left(i + 1\right)$$
.

We know that $p|a_i$ for $i=1,\ldots,p-2$, therefore f(x+1) is irreducibe by Einsenstein's Criterion.

This implies that f(x) is irreducible.

2.6 Dihedral groups - Groups of symmetries

Source: Wikipedia and [2].

Dihedral groups (\mathbb{D}_n) represent the symmetries of a regular n-gon. Properties:

- are non-abelian (for n > 2), ie. $rs \neq sr$
- \bullet order 2n
- ullet generated by a rotation r and a reflextion s
- $r^n = s^2 = id$, $(rs)^2 = id$

Subgroups of \mathbb{D}_n :

- rotation form a cyclic subgroup of order n, denoted as < r >
- for each d such that $d|n, \exists \mathbb{D}_d$ with order 2d
- normal subgroups
 - for n odd: \mathbb{D}_n and $\langle r^d \rangle$ for every d|n
 - for n even: 2 additional normal subgroups
- Klein four-groups: $\mathbb{Z}_2 \times \mathbb{Z}_2$, of order 4

Total number of subgroups in \mathbb{D}_n : d(n) + s(n), where d(n) is the number of positive disivors of n, and s(n) is the sum of those divisors.

Example . For \mathbb{D}_6 , we have $\{1, 2, 3, 6\} | 6$, so d(n) = d(6) = 4, and s(6) = 1 + 2 + 3 + 6 = 12; henceforth, the total amount of subgroups is d(n) + s(n) = 4 + 12 = 16.

For $n \geq 3$, $\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry group).

3 Exercises

3.1 Galois groups

3.1.1 $t^6 - 7 \in \mathbb{Q}$

This exercise comes from a combination of exercises 12.4 and 13.7 from [1].

First let's find the roots. By De Moivre's Theorem (2.1), $t_k = \sqrt[6]{7} \cdot e^{\frac{1}{2} \frac{2\pi k}{6}}$.

From which we denote $\alpha = \sqrt[6]{7}$, and $\zeta = e^{\frac{2\pi i}{6}}$, so that the roots of the polynomial are $\{\alpha, \alpha\zeta^2, \alpha\zeta^3, \alpha\zeta^4, \alpha\zeta^5\}$, ie. $\{\alpha\zeta^k\}_0^5$.

Hence the *splitting field* is $\mathbb{Q}(\alpha, \zeta)$.

Degree of the extension

In order to find $[\mathbb{Q}(\alpha,\zeta):\mathbb{Q}]$, we're going to split it in tow parts. By the Tower Law (6.6),

$$[\mathbb{Q}(\alpha,\zeta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\zeta):\mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha):\mathbb{Q}]$$

To find each degree, we will find the minimal polynomial of the adjoined term over the base field of the extension:

i. minimal polynomial of α over \mathbb{Q}

By Einsenstein's Criterion (2.2), with q = 7 we have that $q \nmid 1, 7 \mid -7, 0, 0, \ldots$, and $7^2 \nmid -7$, hence f(t) is irreducible over \mathbb{Q} , thus is the minimal polynomial

$$m_i(t) = f(t) = t^6 - 7$$

which has roots $\{\alpha \zeta^k\}_0^5$.

ii. minimal polynomial of ζ over $\mathbb{Q}(\alpha)$

Since ζ is the primitive 6th root of unity, we know that the minimal polynomial will be the 6th cyclotomic polynomial (2.4):

$$m_{ii}(t) = \Phi_6(t) = t^2 - t + 1$$

which has roots ζ , $-\zeta$.

Since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and the roots of $\Phi_6(t) = t^2 - t + 1$ are in \mathbb{C} , $\Phi_6(t)$ remains irreducible over $\mathbb{Q}(\alpha)$.

Therefore, by the tower of law,

$$[\mathbb{Q}(\alpha,\zeta):\mathbb{Q}] = \deg \Phi_6(t) \cdot \deg f(t) = 2 \cdot 6 = 12$$

and by the Fundamental Theorem of Galois Theory, we know that

$$|\Gamma(\mathbb{Q}(\alpha,\zeta):\mathbb{Q})| = [\mathbb{Q}(\alpha,\zeta):\mathbb{Q}] = 12$$

which tells us that there exist 12 Q-automorphisms of the Galois group.

Let's find the 12 Q-automorphisms. Start by defining σ which fixes ζ and acts on α , sending it to another of the roots of the minimal polynomial of α over \mathbb{Q} , f(t), choose $\alpha \zeta$.

Now define τ which fixes α and acts on ζ , sending it into another root of the minimal polynomial of ζ over $\mathbb{Q}(\alpha)$, choose $-\zeta$.

$$\begin{split} \sigma: \alpha \mapsto \alpha \zeta &\quad \tau: \alpha \mapsto \alpha \\ \zeta \mapsto \zeta &\qquad \zeta \mapsto -\zeta = \zeta^{-1} \end{split}$$

 $\zeta\mapsto \zeta \qquad \zeta\mapsto -\zeta=\zeta^{-1}$ In other words, we have 12 $\mathbb Q$ -automorphisms, which are the combination of σ and τ :

$$\sigma^k \tau^j : \alpha \mapsto \alpha \zeta^k$$
$$\zeta \mapsto \zeta^j$$

for $0 \le k \le 5$ and $j = \pm 1$.

 $TODO\ diagram$

Observe, that Γ is generated by the combination of σ and τ , and it is isomorphic to the group of symmetries of order 12, the dihedral group (2.6) of order 12, \mathbb{D}_6 , ie. $\Gamma \cong \mathbb{D}_6$.

Let's find the subgroups of Γ , and the fixed fields of $\mathbb{Q}(\alpha,\zeta)$.

We know that $\Gamma \cong \mathbb{D}_6$, and we know from the properties of the dihedral group (2.6) that the number of subgroups of \mathbb{D}_6 will be d(6) + s(6) = 4 + 12 = 16subgroups.

	1		C 1 C 11	(1 1 0 1 0 11)
generators	order	group	fixed field	notes (check fixed field)
$\langle \rangle = \langle \sigma^6 \rangle = \langle \tau^2 \rangle$	1	id	$\mathbb{Q}(lpha,\zeta)$	
$\langle \sigma \rangle = \langle \sigma^5 \rangle$	6	\mathbb{Z}_6	$\mathbb{Q}(\zeta)$	
$\langle \sigma^2 \rangle = \langle \sigma^4 \rangle$	3	\mathbb{Z}_3	$\mathbb{Q}(\alpha^3,\zeta)$	$\sigma^{2}(\alpha^{3}) = \alpha^{3} \zeta^{3 \cdot 2} = \alpha^{3} \zeta^{6} = \alpha^{3} \cdot 1 = \alpha^{3}$
$\langle \sigma^3 \rangle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha^2,\zeta)$	$\sigma^3(\alpha^2) = (\alpha\zeta^3)^2 = \alpha^2\zeta^6 = \alpha^2$
$\langle au angle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha)$	
$\langle \sigma \tau \rangle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha + \alpha\zeta)$	$\sigma\zeta(\alpha + \alpha\zeta) = \sigma(\alpha + \alpha\zeta^{-1}) = \alpha\zeta + \alpha\zeta^{-1}\zeta = \alpha\zeta + \alpha$
$\langle \sigma^2 \tau \rangle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha + \alpha \zeta^2), \mathbb{Q}(\alpha \zeta)$	$\sigma^{2}\tau(\alpha + \alpha\zeta^{2}) = \sigma(\alpha + \alpha\zeta^{-2}) = \alpha\zeta^{2} + \alpha\zeta^{-2}\zeta^{2} = \sigma(\alpha + \alpha\zeta^{-2})$
/ 2 \	_	-	2	$\alpha \zeta^2 + \alpha$
$\langle \sigma^3 au angle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha + \alpha\zeta^3)$	$\sigma^{3}\tau(\alpha + \alpha\zeta^{3}) = \sigma(\alpha + \alpha\zeta^{-3}) = \alpha\zeta^{3} + \alpha\zeta^{-3}\zeta^{3} = \sigma(\alpha + \alpha\zeta^{-3})$
. 4 .				$\alpha \zeta^3 + \alpha$
$\langle \sigma^4 au angle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha + \alpha \zeta^4), \mathbb{Q}(\alpha \zeta^2)$	$\sigma^{4}\tau(\alpha + \alpha\zeta^{4}) = \sigma(\alpha + \alpha\zeta^{-4}) = \alpha\zeta^{4} + \alpha\zeta^{-4}\zeta^{4} = \sigma(\alpha + \alpha\zeta^{-4})$
_			_	$\alpha \zeta^4 + \alpha$
$\langle \sigma^5 au angle$	2	\mathbb{Z}_2	$\mathbb{Q}(\alpha + \alpha\zeta^5)$	$\sigma^{5}\tau(\alpha + \alpha\zeta^{5}) = \sigma(\alpha + \alpha\zeta^{-5}) = \alpha\zeta^{5} + \alpha\zeta^{-5}\zeta^{5} = \sigma(\alpha + \alpha\zeta^{-5})$
				$\alpha \zeta^5 + \alpha$
$\langle \sigma, \tau \rangle = \langle \sigma^5, \tau \rangle$	$6 \cdot 2 = 12$	\mathbb{D}_6	\mathbb{Q}	
$\langle \sigma^2, \tau \rangle = \langle \sigma^4, \tau \rangle$	$3 \cdot 2 = 6$	\mathbb{D}_3	$\mathbb{Q}(\alpha^3)$	$\sigma^2(\alpha^3) = \alpha^3 \zeta^{3 \cdot 2} = \alpha^3 \text{ and } \tau(\alpha^3) = \alpha^3$
$\langle \sigma^3, \tau \rangle$	$2 \cdot 2 = 4$	\mathbb{D}_2	$\mathbb{Q}(\alpha^2)$	$\sigma^{3}(\alpha^{2}) = \alpha^{2}\zeta^{2\cdot 2} = \alpha^{2} \text{ and } \tau(\alpha^{2}) = \alpha^{2}$
$\langle \sigma^2, \sigma \tau \rangle$	$3 \cdot 2 = 6$	\mathbb{D}_3	$\mathbb{Q}(\alpha^3 + \alpha^3 \zeta^3)$	$\sigma^2(\alpha^3 + \alpha^3\zeta^3) = \alpha^3\zeta^3 + \alpha^3\zeta^3\zeta^3 = \alpha^3\zeta^3 + \alpha^3\zeta^6 =$
				$\alpha^3 \zeta^3 + \alpha^3$
$\langle \sigma^3, \sigma \tau \rangle$	$2 \cdot 2 = 4$	$\mathbb{Z}_2 imes \mathbb{Z}_2$	$\mathbb{Q}(\alpha^2\zeta^2), \mathbb{Q}(\alpha^2 + \alpha^2\zeta^2)$	$\sigma^{3}(\alpha^{2} + \alpha^{2}\zeta^{2}) = \alpha^{2}\zeta^{2\cdot 3} + \alpha^{2}\zeta^{2\cdot 3}\zeta^{2} = \alpha^{2} + \alpha^{2}\zeta^{2}$
, , ,				and $\sigma \tau(\alpha^2 + \alpha^2 \zeta^2) = \alpha^2 \zeta^2 + \alpha^2 \zeta^{-2} \zeta^2 = \alpha^2 \zeta^2 + \alpha^2$
$\langle \sigma^3, \sigma^2 \tau \rangle$	$2 \cdot 2 = 4$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Q}(\alpha^2\zeta^4), \mathbb{Q}(\alpha^2 + \alpha^2\zeta^4)$	$\sigma^2 \zeta(\alpha^2 \zeta^4) = \alpha^2 \zeta^2 \zeta^{-4} = \alpha^2 \zeta^{-2} = \alpha^2 \zeta^4 \text{ and }$
(- , - ,)			E(22 3), E(22 1 22 3)	$\sigma^{3}(\alpha^{2}\zeta^{4}) = \alpha^{2}\zeta^{2\cdot 3}\zeta^{4} = \alpha^{2}\zeta^{4}$

References

- [1] Ian Stewart. Galois Theory, Third Edition, 2004.
- [2] Gaurab Bardhan, Palash Nath, and Himangshu Chakraborty.