

第2章

2.1 能控性定义2.2 能控性判据2.3 能控性分解

第2章 线性定常系统的能控性

程龙, 薛文超

中国科学院自动化研究所 中国科学院数学与系统科学研究院

第2章

- 2.2 能控性判据 2.3 能控性分解 0.4 单輪 λ 单
- 2.4 单输入—单 输出系统的能 控规范型

- 2.1 能控性定义
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- ② 2.2 能控性判据
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- ③ 2.3 能控性分解
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- ▲ 2.4 单输入—单输出系统的能控规范型

第2章 线性定常系统的能控性

第2章

- 能控性和能观性(对能观性, 将在第4章讨论)是系统的两个基本特性
 - 随着状态空间描述的引入,卡尔曼(R.E.Kalman)在20世纪60年代初首先提出和研究了能控性和能观性这两个重要概念. 系统和控制理论的发展表明,这两个概念对于控制和估计问题的研究有着极其重要的意义
- 在本章中, 讨论限于线性定常系统的能控性
 - 首先, 对能控性进行研究, 给出能控性定义及其判别条件
 - 其次,将讨论规范型,结构分解等对状态反馈设计而言十分基本的内容

第2章

2.1 能控性定义

2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 能控子空间

a a Ak Lau A An

2.4 单输入—单 输出系统的能 控规范型

● 2.1 能控性定义

- 2.1.1 问题的提出
- 2.1.2 能控性定义
- 2.1.3 能控子空间与不能控子空间
- 2 2.2 #
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- (3) 2.3 \$
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- 4 24 半斯人一学物出系统的能控规范型

第2章

- 2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 金轮子空间
- 2.2 能控性判
- 2.3 能控性分解
- 2.4 单输入—¹ 输出系统的能 控规范型

- 2.1 能控性定义
 - 2.1.1 问题的提出
 - 2.1.2 能控性足义
 - 2.1.3 能控子空间与不能控子空间
- (2)
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- 3
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- 4 24 半轴入一半轴出系统的能控规范型

第2章

- 2.1.2.能控性定义 2.1.3.能控于空间与不 能控于空间 2.2.能控性判据 2.3.能控性分解
- 2.3 能控性分解 2.4 单输入—单 输出系统的能 控规范型

- 考虑系统的状态空间描述,输入为系统的外部变量,状态变量 是系统的内部变量
 - 系统的运动特性在初始状态已知的条件下,完全取决于系统的控制输入
 - 系统的能控性所要研究的内容:
 - 能否通过系统的输入来影响系统的状态
 - 如果系统的每个状态变量的运动都可由输入来影响和控制,使得经有限时间区间由任意始点到达原点,就称系统是能控的,或者是状态能控的.否则,就称系统是不完全能控的
- ➡ 下面我们通过例子来直观考察一下系统的能控性

第2章

2.1 能控性定义
2.1.1 阿羅的提出
2.1.2 能控性定义
2.1.3 能控子空间与不
6 按子空间

2.2 能控性判

2.3 能控性分角

2.4 单输入—单输出系统的能 控规范型 例2.1.1 给定系统的状态空间描述为

$$(a) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不
经按子空间

2.2 能控性判据

2.3 能控性分单

2.4 单输入—³ 输出系统的能 控规范型 例2.1.1 给定系统的状态空间描述为

$$(a) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$

• 将其表示为标量方程组的形式:

$$\dot{x}_1 = 4x_1 + u,$$

$$\dot{x}_2 = -5x_2 + 2u.$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 检验子空间

2.2 能控性判制

2.3 能控性分解

2.4 单输入—³ 输出系统的能 挖规范型 例2.1.1 给定系统的状态空间描述为

$$(a) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$

• 将其表示为标量方程组的形式:

$$\dot{x}_1 = 4x_1 + u,$$

 $\dot{x}_2 = -5x_2 + 2u.$

• 直接写出其运动方程可知, 状态变量 x_1, x_2 都可通过选择输入u而由初始点 $x_1(0), x_2(0)$ 在给定有限时刻T > 0达到原点 $x_1(T) = 0, x_2(T) = 0$

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控于空间与不

2.2 能控性判据

2.3 能控性分角

2.4 单输入——输出系统的能控规范型

例2.1.1 给定系统的状态空间描述为

$$(a) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$

• 将其表示为标量方程组的形式:

$$\dot{x}_1 = 4x_1 + u,$$

 $\dot{x}_2 = -5x_2 + 2u.$

- 直接写出其运动方程可知, 状态变量 x_1, x_2 都可通过选择输入u而由初始点 $x_1(0), x_2(0)$ 在给定有限时刻T > 0达到原点 $x_1(T) = 0, x_2(T) = 0$
- 因而, 系统完全能控

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不 能控子空间

2.2 能控性判

23 能控性分解

2.4 单输入—单输出系统的能 控规范型 ➡ 若给定系统的状态空间描述为

$$(b) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控于空间与不
6 按行空间

2.2 能控性判

23 能捻性分解

2.4 单输入——单 输出系统的能 控规范型 ➡ 若给定系统的状态空间描述为

$$(b) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$

• 则将其表示为标量方程组形式:

$$\dot{x}_1 = 4x_1,$$

 $\dot{x}_2 = -5x_2 + 2u.$

第2章

..1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控于空间与不

2.2 能控性判

2.3 能控性分解

2.4 单输入—单输出系统的能 按规范型 ➡ 若给定系统的状态空间描述为

$$(b) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$

• 则将其表示为标量方程组形式:

$$\dot{x}_1 = 4x_1,$$

 $\dot{x}_2 = -5x_2 + 2u.$

• 无论输入u如何选取, 对状态 x_1 没有影响, 对状态 x_2 可在有限时间区间[0,T]上从初始点 $x_2(0)$ 到达原点 $x_2(T)=0$

第2章

2.1.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判

2.3 能控性分解

2.4 单输入—单 输出系统的能 按规范型 ➡ 若给定系统的状态空间描述为

$$(b) \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$

• 则将其表示为标量方程组形式:

$$\dot{x}_1 = 4x_1,$$

 $\dot{x}_2 = -5x_2 + 2u.$

- 无论输入u如何选取, 对状态 x_1 没有影响, 对状态 x_2 可在有限时间区间[0,T]上从初始点 x_2 (0)到达原点 x_3 (T) = 0
- 故, 系统为不完全能控的

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不

2.2 能控性判:

2.3 能控性分角

2.4 单输入—单输出系统的能控规范型

例2.1.2 考虑图2.1所示的电路. 系统的状态变量为电容端电压x(t), 输入为电源u(t)

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控于空间与不

2.2 能控性判:

2.3 能控性分解

2.4 单输入—单输出系统的能控规范型

例2.1.2 考虑图2.1所示的电路. 系统的状态变量为电容端电压x(t), 输入为电源u(t)

图2.1 不能控电路

● 若初始状态x(0) = 0, 不管输入u(t) 是什么, 对所有的 $t \ge 0$, 恒有x(t) = 0, 即x 不受u(t) 的影响. 此表明, 电路是状态不能控的

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控于空间与不

2.2 能控性判抗

2.3 能控性分解

2.4 单输入—单 输出系统的能 控规范型 **例2.1.2** 考虑图2.1所示的电路. 系统的状态变量为电容端电压x(t), 输入为电源u(t)

图2.1 不能控电路

● 若初始状态x(0) = 0, 不管输入u(t) 是什么, 对所有的 $t \ge 0$, 恒有x(t) = 0, 即x 不受u(t) 的影响. 此表明, 电路是状态不能控的

注:上述的例子和说明,是对系统能控性的直观了解.为了揭示能控性的本质属性,下面介绍能控性的相关定义

第2章

2.1 能控性定义
2.1.1 网题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不
维持学空间

2.2 月ヒイエイエナリガ

2.3 能控性分解

2.4 单输入—单输出系统的能 控规范型

- 1 2.1 能控性定义
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- (2)
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- 3 2.3
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- (4) 2.4 单输入一单输出系统的能控规范型。

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与2

2.2 能控性判据

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 • 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (1)

其中,x为n维状态向量,u为p维输入向量,A,B分别为n×n,n×p的 实常阵

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不
6 按子空间

2.2 能控性判据

2.4 单输入—³ 输出系统的能 控规范型 • 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (1)

其中,x为n维状态向量,u为p维输入向量,A,B分别为n×n,n×p的 实常阵

定义

定义2.1 对于系统(1), 若给定非零初始状态 x_0 , 及有限时刻T>0, 存在控制u(t), 使得经u(t)作用在[0,T]时间段将自 x_0 出发的系统轨线导引到x(T)=0, 则称 x_0 为能控状态.

第2章

• 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (1)

其中,x为n维状态向量,u为p维输入向量,A,B分别为n×n,n×p的 实常阵

定义

定义2.1 对于系统(1), 若给定非零初始状态 x_0 , 及有限时刻T > 0, 存在控制u(t), 使得经u(t)作用在[0,T]时间段将自 x_0 出发的系统轨线导引到x(T) = 0, 则称 x_0 为能控状态.

定义

定义2.2 对于系统(1), 若状态空间中所有的非零状态都是能控的, 则称系统(1) (或系统(A, B))是(完全)能控的.

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不
8 按平空间

2.2 能控性判据

2.3 能控性分角

2.4 单输入——输出系统的能控规范型

定义

定义2.3 对于系统(1), 若状态空间中存在一个或一些非零状态是不能控的, 则称系统(1) 是不完全能控的. 若所有非零状态都是不能控的, 则称系统(1)是完全不能控的.

第2章

2.1 能控性定义 2.1.1 网题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 能控子空间

...2 能控性判据

2.4 单输入—单输出系统的能控规范型

定义

定义2.3 对于系统(1), 若状态空间中存在一个或一些非零状态是不能控的, 则称系统(1) 是不完全能控的. 若所有非零状态都是不能控的, 则称系统(1)是完全不能控的.

注1: 在以上定义中, 都规定为由非零状态转移到零状态

- 如果是由零状态达到非零状态则称为状态能达的
- 对于线性定常系统(1), 能控性和能达性是等价的; 而对于 线性定常离散系统, 两者不等价

第2章

定义

定义2.3 对于系统(1),若状态空间中存在一个或一些非零状态是不能控的,则称系统(1)是不完全能控的.若所有非零状态都是不能控的,则称系统(1)是完全不能控的.

注1: 在以上定义中,都规定为由非零状态转移到零状态

- 如果是由零状态达到非零状态则称为状态能达的
- 对于线性定常系统(1),能控性和能达性是等价的;而对于 线性定常离散系统,两者不等价
- 注2: 另外,对于一个物理可实现的系统,系统能控的概率几乎等于1, 系统不完全能控只是一种"奇异"的情况

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 8 校子空间

2.2 月ヒイエイ土ナイカ

2.3 能控性分解

2.4 单输入—单输出系统的能 控规范型

■ 2.1 能控性定义

- 2.1.1 问题的提出
- 2.1.2 能控性定义
- 2.1.3 能控子空间与不能控子空间
- (2)
- 2.2.1 能控性判据
- 2.2.2 能控性指数
- (3) 2.
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- (4) 2.4 学输入一学输出系统的能控规范型

第2章

2.1 能控性定 2.1.1 问题的提出

2.1.2 能控性定义 2.1.3 能控子空间。 能控子空间

2.2 能控性判据

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 考虑系统(1), 其状态运动轨线为

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau.$$
 (2)

第2章

2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能较子來網5

2.2 能控性判制

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 考虑系统(1), 其状态运动轨线为

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau.$$
 (2)

$$0 = x(T) = e^{AT}x_0 + \int_0^T e^{A(T-\tau)}Bu(\tau)d\tau,$$
 (3)

第2章

2.1. 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控于空间与不

2.2 能控性判却

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 考虑系统(1), 其状态运动轨线为

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau.$$
 (2)

$$0 = x(T) = e^{AT}x_0 + \int_0^T e^{A(T-\tau)}Bu(\tau)d\tau,$$
 (3)

• 即,有

$$x_0 = -\int_0^T e^{-At} Bu(t) dt. \tag{4}$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判据

2.3 能控性分解

 2.4 平输入— 输出系统的能 控规范型 考虑系统(1), 其状态运动轨线为

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau.$$
 (2)

$$0 = x(T) = e^{AT}x_0 + \int_0^T e^{A(T-\tau)}Bu(\tau)d\tau,$$
 (3)

• 即,有

$$x_0 = -\int_0^T e^{-At} Bu(t) dt. \tag{4}$$

➡ 根据(4)的结论, 若 x_1, x_2 为能控状态, 则有 $u_1(t), u_2(t)$ 存在, 使

$$x_1 = -\int_0^T e^{-At} Bu_1(t) dt, \quad x_2 = -\int_0^T e^{-At} Bu_2(t) dt, \tag{5}$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

2.1.3 能控子空间与 能控子空间

2.2 /4 / 4. / 4 //

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 • 则由(5),进一步可得

$$x_1 + x_2 = -\int_0^T e^{-At} B(u_1(t) + u_2(t)) dt,$$
 (6)

$$kx_1 = -\int_0^T e^{-At} B(ku_1(t)) dt, \quad k \in \mathbb{R}.$$
 (7)

第2章

2.1. 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

2.2 能控性判据

2.3 能控性分解

2.4 单输入——输出系统的能 控规范型 • 则由(5),进一步可得

$$x_1 + x_2 = -\int_0^T e^{-At} B(u_1(t) + u_2(t)) dt,$$
 (6)

$$kx_1 = -\int_0^T e^{-At} B(ku_1(t)) dt, \quad k \in \mathbb{R}.$$
 (7)

- ➡ 由(6), (7)可以看出
 - 系统(1)的能控状态的全体再添上零向量构成一线性空间,它是n维欧氏空间的子空间,称其为能控子空间,记为 X_C
 - 能控子空间的正交补空间称为不能控子空间, 记为X_{NC}
 - 且,有 $\mathbb{R}^n = X_C \oplus X_{NC}$

• 对于能控子空间 X_C 和不能控子空间 X_{NC} , 我们有下面结论

第2章

2.1 能控性定 2.1.1 问题的提出

2.1.2 能控性定义 2.1.3 能較子空间

能控子空间

2.2 肥空性チリ

2.3 能控性分向

2.4 平输入— 输出系统的能 控规范型

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能拉子空间与不 能拉子空间

2.2 能控性判据2.3 能控性分解

2.4 单输入—单输出系统的能控规范型

• 对于能控子空间X_C和不能控子空间X_{NC}, 我们有下面结论

定理

定理2.1 系统(1)的不能控子空间 X_{NC} 为

$$\alpha^T e^{-At} B = 0, \ t \in [0, T]$$
 (8)

的常解空间.

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控于空间与不能控于空间
2.2 能控性判据

2.5 能控性分离
 2.4 单输入—单输出系统的能控规范型

• 对于能控子空间X_C和不能控子空间X_{NC}, 我们有下面结论

定理

定理2.1 系统(1)的不能控子空间 X_{NC} 为

$$\alpha^T e^{-At} B = 0, \ t \in [0, T]$$
 (8)

的常解空间.

定理2.1的结论等价于

- ① 若 $\alpha \in X_{NC}$,则 α 使得式(8)成立
- ② 若 α 使得式(8)成立,则 $\alpha \in X_{NC}$
- ⇒ 为此, 考虑能控性定义2.1可知, 若 $x(0) = x_0$ 为能控状态, 则存在T > 0和控制u(t)满足式(4), 即 $x_0 = -\int_0^T e^{-At} Bu(t) dt$

证明 首先,设 α 为 X_{NC} 中的任一元

第2章

2.1.1 能控性定 2.1.1 问题的提出

2.1.3 能控子空间。 能控子空间

2.2 能控性判

2.3 能控性分離

2.4 单输入—— 输出系统的能 控规范型

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

22 能 按 性 判

2.3 能控性分離

2.4 单输入— 输出系统的能 控规范型 证明 首先,设 α 为 X_{NC} 中的任一元

• 由 X_{NC} 的定义, α 与任意能控状态正交, 而能控状态 x_0 与控制u(t)之间满足(4), 故有

$$\alpha^T \int_0^T e^{-At} Bu(t) dt = 0. (9)$$

第2章

.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子室间与不

2.2 能控性判据

2.3 能控性分解

2.4 单输入— 氧 输出系统的能 控规范型 证明 首先,设 α 为 X_{NC} 中的任一元

• 由 X_{NC} 的定义, α 与任意能控状态正交, 而能控状态 x_0 与控制u(t)之间满足(4), 故有

$$\alpha^T \int_0^T e^{-At} Bu(t) dt = 0. (9)$$

• 特别地, 若取

$$u^* = (e^{-At}B)^T \alpha, \tag{10}$$

则由此构成能控状态x*为

$$x^* = -\int_0^T e^{-At} B u^* dt. {11}$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判据

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型 证明 首先,设 α 为 X_{NC} 中的任一元

• 由 X_{NC} 的定义, α 与任意能控状态正交, 而能控状态 x_0 与控制u(t)之间满足(4), 故有

$$\alpha^T \int_0^T e^{-At} Bu(t) dt = 0. (9)$$

• 特别地, 若取

$$u^* = (e^{-At}B)^T \alpha, \tag{10}$$

则由此构成能控状态x*为

$$x^* = -\int_0^T e^{-At} B u^* dt. {11}$$

• 又因为 α 与x*正交,故

$$0 = \alpha^{T} \int_{0}^{T} e^{-At} B u^{*} dt = \int_{0}^{T} \alpha^{T} e^{-At} B B^{T} e^{-A^{T} t} \alpha dt$$

$$= \int_{0}^{T} \|\alpha^{T} e^{-At} B\|^{2} dt.$$
(12)

第2章

2.1 能控性定: 2.1.1 问题的提出 2.1.2 能控性定义

能控于空间

- - 0.10.10.00.00

2.4 单输入— 输出系统的能 控规范型 • 由上式(12), 可得

$$\alpha^T e^{-At} B = 0, t \in [0, T],$$
 (13)

即,可得α为方程(8)的常解

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判

2.3 能控性分)

2.4 单输入— 输出系统的能 控规范型 • 由上式(12), 可得

$$\alpha^T e^{-At} B = 0, t \in [0, T],$$
 (13)

即, 可得 α 为方程(8)的常解

反之, 若 α 为方程(8)的常解, 即则有 $\alpha^T e^{-At}B = 0, t \in [0, T]$

第2章

1 能控性定义 1.1 问题的提出 1.2 能控性定义 1.3 能控子空间与不

2.2 能控性判据

2.4 单输入—单 输出系统的能 控规范型 • 由上式(12), 可得

$$\alpha^T e^{-At} B = 0, t \in [0, T],$$
 (13)

即,可得α为方程(8)的常解

反之, 若 α 为方程(8)的常解, 即则有 $\alpha^T e^{-At}B = 0, t \in [0, T]$

• 那么,对任意 $x_0 \in X_C$,有

$$\alpha^{T} x_{0} = -\alpha^{T} \int_{0}^{T} e^{-At} Bu(t) dt$$

$$= -\int_{0}^{T} \alpha^{T} e^{-At} Bu(t) dt = 0$$
(14)

这说明α ∈ X_{NC}

第2章

1 能控性定义
1.1 问题的提出
1.2 能控性定义
1.3 能控子空间与不

...2 能控性判据

2.4 单输入—³ 输出系统的能 控规范型 • 由上式(12), 可得

$$\alpha^T e^{-At} B = 0, t \in [0, T], \tag{13}$$

即,可得 α 为方程(8)的常解

反之, 若 α 为方程(8)的常解, 即则有 $\alpha^T e^{-At}B = 0, t \in [0, T]$

• 那么,对任意 $x_0 \in X_C$,有

$$\alpha^{T} x_{0} = -\alpha^{T} \int_{0}^{T} e^{-At} Bu(t) dt$$

$$= -\int_{0}^{T} \alpha^{T} e^{-At} Bu(t) dt = 0$$
(14)

这说明 $\alpha \in X_{NC}$

⇒ 综合上面两个结论即得, X_{NC}为(8)的常解空间. 定理得证

第2章

2.1.1 純控性定 2.1.1 问题的提出 2.1.2 能控性定义

2.3 能控性分解

2.4 十辆八 输出系统的能 控规范型 基于定理2.1, 我们进一步可得如下定理2.2

定理

定理2.2 系统(1)的不能控子空间 X_{NC} 为

$$\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0 \tag{15}$$

的解空间.

第2章

1.1 能控性定 2.1.1 问题的提出 2.1.2 能控性定义

k柱子室间 .2 能控性判据

2.4 单输入—单 输出系统的能 控规范型 基于定理2.1, 我们进一步可得如下定理2.2

定理

定理2.2 系统(1)的不能控子空间 X_{NC} 为

$$\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0 \tag{15}$$

的解空间.

定理2.2的结论等价于

- ① 若 $\alpha \in X_{NC}$,则 α 使得式(15)成立
- ② 若 α 使得式(15)成立,则 $\alpha \in X_{NC}$
- ⇒ 为此, 考虑定理2.1可知, 若 $\alpha \in X_{NC}$, 则 α 满足式(8), 即

$$\alpha^T e^{-At} B = 0, \ t \in [0, T]$$

第2章

2.1 能控性定 2.1.1 问题的提出

2.1.3 能控子空间占 能控子空间

2.2 //3/2/2/

2.3 能控性分角

2.4 單輸入— 輸出系統的能 控规范型 证明 首先,设 $\alpha \in X_{NC}$,则由定理2.1, α 满足

$$\alpha^T e^{-At} B = 0, t \in [0, T],$$
 (16)

第2章

2.1 能控性定:
 2.1.1 问题的提出
 2.1.2 能控性定义

能控子空间

2.2 NO 12 12 7 1 1

2.3 能控性分解

2.4 平输入— 输出系统的能 控规范型 证明 首先,设 $\alpha \in X_{NC}$,则由定理2.1, α 满足

$$\alpha^T e^{-At} B = 0, t \in [0, T], \tag{16}$$

● (16)对t求导数直至n-1次,可得

$$\alpha^T e^{-At} AB = 0, t \in [0, T],$$

• • • • • •

$$\alpha^T e^{-At} A^{n-1} B = 0, t \in [0, T].$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 证明 首先,设 $\alpha \in X_{NC}$,则由定理2.1, α 满足

$$\alpha^T e^{-At} B = 0, t \in [0, T],$$
 (16)

● (16)对t求导数直至n-1次,可得

$$\alpha^T e^{-At} AB = 0, t \in [0, T],$$
.....

$$\alpha^T e^{-At} A^{n-1} B = 0, t \in [0, T].$$

• $\diamondsuit t = 0$, \clubsuit

$$\alpha^T B = 0, \alpha^T A B = 0, \cdots, \alpha^T A^{n-1} B = 0,$$

第2章

2.1 能控性定 2.1.1 问题的提出 2.1.2 能控性定义

2.2 能捻性判:

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型 证明 首先,设 $\alpha \in X_{NC}$,则由定理2.1, α 满足

$$\alpha^T e^{-At} B = 0, t \in [0, T], \tag{16}$$

(16)对t求导数直至n-1次,可得

$$\alpha^T e^{-At} AB = 0, t \in [0, T],$$

$$\dots$$

$$\alpha^T e^{-At} A^{n-1} B = 0, t \in [0, T].$$

• $\Leftrightarrow t = 0$, \neq

$$\alpha^T B = 0, \alpha^T A B = 0, \cdots, \alpha^T A^{n-1} B = 0,$$

• 即,等价地有

$$\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0 \tag{17}$$

这说明α是(15)的解

第2章

2.1 能控性定:

2.1.1 问题的提出2.1.2 能控性定义2.1.3 能控子空间与

2.2 能控性判扎

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 反之, 若 α 是(15)的解, 则有

$$\alpha^T A^j B = 0, j = 0, 1, \dots, n - 1.$$
 (18)

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义

2.2 能控性判

23 能捻性分

2.4 单输入— 输出系统的能 控规范型 反之, 若 α 是(15)的解, 则有

$$\alpha^T A^j B = 0, j = 0, 1, \dots, n - 1.$$
 (18)

• 又, 据凯莱-哈密顿定理知, A^i , $\forall i \geq n$ 可表示为I, A, \cdots , A^{n-1} 的线性组合, 故有

$$e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = \sum_{j=0}^{n-1} A^j \alpha_j(t),$$
 (19)

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

能控子空间 つつ みわかしむ

22 44 45 44 17 46

2.3 能控性分別

2.4 單輸入— 輸出系統的能 控规范型 反之,若 α 是(15)的解,则有

$$\alpha^T A^j B = 0, j = 0, 1, \dots, n - 1.$$
 (18)

• 又, 据凯莱-哈密顿定理知, A^i , $\forall i \geq n$ 可表示为I, A, \cdots , A^{n-1} 的线性组合, 故有

$$e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = \sum_{j=0}^{n-1} A^j \alpha_j(t),$$
 (19)

从而

$$e^{-At} = e^{A(-t)} = \sum_{j=0}^{n-1} A^j \alpha_j(-t) = \sum_{j=0}^{n-1} A^j \beta_j(t),$$
 (20)

其中, $\alpha_i(t)$, $\beta_i(t)$ 是t的标量函数

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子室间与不

2.2 能控性判

2.4 单输入—单 输出系统的能 反之, 若 α 是(15)的解, 则有

$$\alpha^T A^j B = 0, j = 0, 1, \dots, n-1.$$
 (18)

● 又, 据凯菜-哈密顿定理知, A^i , $\forall i \geq n$ 可表示为I, A, \cdots , A^{n-1} 的线性组合, 故有

$$e^{At} = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = \sum_{j=0}^{n-1} A^j \alpha_j(t),$$
 (19)

从而

$$e^{-At} = e^{A(-t)} = \sum_{i=0}^{n-1} A^{i} \alpha_{j}(-t) = \sum_{i=0}^{n-1} A^{i} \beta_{j}(t),$$
 (20)

其中, $\alpha_i(t)$, $\beta_i(t)$ 是t的标量函数

• 于是由(20), 可得

$$\alpha^{T} e^{-At} B = \alpha^{T} \sum_{j=0}^{n-1} A^{j} \beta_{j}(t) B = \sum_{j=0}^{n-1} \alpha^{T} A^{j} B \beta_{j}(t) = 0.$$
 (21)

第2章

2.1 能控性定 2.1.1 问题的提出 2.1.2 能控性定义

2.1.3 能控子空间。 能控子空间

2.2 //3/2/2/7/

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 • 综合上面的证明, 可知式(8)(即, $\alpha^T e^{-At}B = 0$)的常解空间即是式(15)(即, $\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$) 的解空间

第2章

2.1 能控性定2 2.1.1 问题的提出

2.1.2 能控于空间与 能控于空间

2.2 能控性判

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型

- 综合上面的证明, 可知式(8)(即, $\alpha^T e^{-At} B = 0$)的常解空间即是式(15)(即, $\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$)的解空间
- 故由定理2.1, X_{NC}是(15)的解空间. 定理得证

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

| 総控予空间 | コール・レンロールロ

2.2 月じりエリエナリカ

2.3 能控性分削

2.4 平输入— 输出系统的能 控规范型

- 综合上面的证明, 可知式(8)(即, $\alpha^T e^{-At} B = 0$)的常解空间即是式(15)(即, $\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$)的解空间
- 故由定理2.1, X_{NC}是(15)的解空间. 定理得证

基于定理2.1, 我们还可进一步得如下定理2.3

第2章

- 综合上面的证明, 可知式(8)(即, $\alpha^T e^{-At} B = 0$)的常解空间即是式(15)(即, $\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$)的解空间
- 故由定理2.1, X_{NC}是(15)的解空间. 定理得证

基于定理2.1, 我们还可进一步得如下定理2.3

定理

定理2.3 系统(1)的不能控子空间 X_{NC} 为

$$\alpha^T W_C[0, T] = 0 (22)$$

的解空间. 式中

$$W_C[0,T] = \int_0^T e^{-At} B(e^{-At}B)^T dt$$
 (23)

称为能控格拉姆(Gram)矩阵.

第2章

定理2.3的结论等价于

- ① 若 $\alpha \in X_{NC}$, 则 α 使得式(22)成立
- ② 若 α 使得式(22)成立,则 $\alpha \in X_{NC}$
- ⇒ 为此, 考虑定理2.1可知, 若 $\alpha \in X_{NC}$, 则 α 满足式(8), 即 $\alpha^{T} e^{-At} B = 0, \ t \in [0, T]$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判:

2.3 能控性分向

2.4 单输入—³ 输出系统的能 控规范型

定理2.3的结论等价于

- ② 若 α 使得式(22)成立,则 $\alpha \in X_{NC}$
- 为此, 考虑定理2.1可知, 若 $\alpha \in X_{NC}$, 则 α 满足式(8), 即 $\alpha^T e^{-At} B = 0$, $t \in [0, T]$

证明 首先,设 $\alpha \in X_{NC}$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 能控子空间

2.2 能控性判

2.3 能控性分角

2.4 单输入— 输出系统的能 控规范型

定理2.3的结论等价于

- ② 若 α 使得式(22)成立,则 $\alpha \in X_{NC}$
- ⇒ 为此, 考虑定理2.1可知, 若 $\alpha \in X_{NC}$, 则 α 满足式(8), 即

$$\alpha^T e^{-At} B = 0, \ t \in [0, T]$$

证明 首先,设 $\alpha \in X_{NC}$

• 则由定理2.1,可得

$$\alpha^T e^{-At} B = 0, t \in [0, T].$$

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控于空间与不

2.2 能控性判

2.3 能控性分

2.4 单输入— 输出系统的能 控规范型

定理2.3的结论等价于

- ② 若 α 使得式(22)成立,则 $\alpha \in X_{NC}$
- → 为此, 考虑定理2.1可知, 若 $\alpha \in X_{NC}$, 则 α 满足式(8), 即

$$\alpha^T e^{-At} B = 0, \ t \in [0, T]$$

证明 首先,设 $\alpha \in X_{NC}$

• 则由定理2.1,可得

$$\alpha^T e^{-At} B = 0, t \in [0, T].$$

➡ 进而,有

$$\alpha^{T} e^{-At} B(e^{-At} B)^{T} = 0, t \in [0, T].$$
 (24)

第2章

1.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判

2.3 能控性分

2.4 单输入— 输出系统的能 控规范型

定理2.3的结论等价于

- ② 若 α 使得式(22)成立,则 $\alpha \in X_{NC}$
- ⇒ 为此, 考虑定理2.1可知, $\dot{\pi}_{\alpha} \in X_{NC}$, 则 α 满足式(8), 即

$$\alpha^T e^{-At} B = 0, \ t \in [0, T]$$

证明 首先,设 $\alpha \in X_{NC}$

• 则由定理2.1,可得

$$\alpha^T e^{-At} B = 0, t \in [0, T].$$

➡ 进而,有

$$\alpha^T e^{-At} B(e^{-At} B)^T = 0, t \in [0, T].$$
 (24)

● 从0到T积分,有

$$\int_{0}^{T} \alpha^{T} e^{-At} B(e^{-At} B)^{T} dt = 0, \tag{25}$$

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不

2.2 能控性判:

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 • 式(25)即为

$$\alpha^{T} \int_{0}^{T} e^{-At} B(e^{-At} B)^{T} dt = \alpha^{T} W_{C}[0, T] = 0,$$
 (26)

这说明 α 是(22)的解

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判:

2.3 能控性分

2.4 单输入— 输出系统的能 控规范型 • 式(25)即为

$$\alpha^{T} \int_{0}^{T} e^{-At} B(e^{-At} B)^{T} dt = \alpha^{T} W_{C}[0, T] = 0,$$
 (26)

这说明 α 是(22)的解

反之, 若 α 是(22)的解, 即有(26)成立, 右乘 α 可得

$$\alpha^T \int_0^T e^{-At} B(e^{-At} B)^T dt \alpha = 0, \tag{27}$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判

2.3 能控性分離

2.4 单输入— 输出系统的能 控规范型 • 式(25)即为

$$\alpha^{T} \int_{0}^{T} e^{-At} B(e^{-At} B)^{T} dt = \alpha^{T} W_{C}[0, T] = 0,$$
 (26)

这说明 α 是(22)的解

反之, 若 α 是(22)的解, 即有(26)成立, 右乘 α 可得

$$\alpha^T \int_0^T e^{-At} B(e^{-At} B)^T dt \alpha = 0, \tag{27}$$

• 即为

$$\int_0^T \|(\alpha^T e^{-At} B)^T\|^2 dt = 0.$$
 (28)

第2章

2.1 能控性定义
2.1.1 问题的提出
2.1.2 能控性定义
2.1.3 能控子空间与不

2.2 肥松生州

2.3 能控性分離

2.4 单输入— 输出系统的能 控规范型 • 式(25)即为

$$\alpha^{T} \int_{0}^{T} e^{-At} B(e^{-At} B)^{T} dt = \alpha^{T} W_{C}[0, T] = 0,$$
 (26)

这说明 α 是(22)的解

反之, 若 α 是(22)的解, 即有(26)成立, 右乘 α 可得

$$\alpha^T \int_0^T e^{-At} B(e^{-At} B)^T dt \alpha = 0, \tag{27}$$

• 即为

$$\int_0^T ||(\alpha^T e^{-At} B)^T||^2 dt = 0.$$
 (28)

• 从而可得

$$\alpha^T e^{-At} B = 0, t \in [0, T]. \tag{29}$$

由定理2.1, $\alpha \in X_{NC}$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能校子空间 5.5

2.2 能控性判

2.3 能控性分)

2.4 千硼八 輸出系统的能 控规范型 • 式(25)即为

$$\alpha^{T} \int_{0}^{T} e^{-At} B(e^{-At} B)^{T} dt = \alpha^{T} W_{C}[0, T] = 0,$$
 (26)

这说明 α 是(22)的解

反之, 若 α 是(22)的解, 即有(26)成立, 右乘 α 可得

$$\alpha^T \int_0^T e^{-At} B(e^{-At} B)^T dt \alpha = 0,$$

• 即为

$$\int_{0}^{T} \|(\alpha^{T} e^{-At} B)^{T}\|^{2} dt = 0.$$
 (28)

• 从而可得

$$\alpha^T e^{-At} B = 0, t \in [0, T]. \tag{29}$$

由定理2.1, $\alpha \in X_{NC}$

⇒ 综上, 从而知X_{NC}是(22)的解空间. 结论得证

(27)

第2章

.1 能控性定义 1.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不 能控子空间

2.3 能控性分解
 2.4 单输入—单输出系统的能量

基于定理2.2, 我们可进一步得如下定理2.4

定理

定理2.4 系统(1)的能控子空间 X_C 是 $B,AB,\cdots,A^{n-1}B$ 的各列生成的线性子空间、即

$$X_C = span \left[B \quad AB \quad \cdots \quad A^{n-1}B \right]. \tag{30}$$

返回(75)

第2章

.1 能控性定义
.1.1 问题的提出
.1.2 能控性定义
.1.3 能控子空间与不

 2.3 能控性分解
 2.4 单输入—单输出系统的能 控规范型 基于定理2.2, 我们可进一步得如下定理2.4

定理

定理2.4 系统(1)的能控子空间 X_C 是 $B,AB,\cdots,A^{n-1}B$ 的各列生成的线性子空间、即

$$X_C = span \left[B \quad AB \quad \cdots \quad A^{n-1}B \right]. \tag{30}$$

返回(75)

证明 若 $\alpha \in X_{NC}$,则由定理2.2可得

$$\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0,$$

第2章

.1 能控性定义 .1.1 问题的提出 .1.2 能控性定义 .1.3 能控子空间与不

 2.3 能控性分解
 2.4 单输入—单 输出系统的能 基于定理2.2, 我们可进一步得如下定理2.4

定理

定理2.4 系统(1)的能控子空间 X_C 是 $B,AB,\cdots,A^{n-1}B$ 的各列生成的线性子空间,即

$$X_C = span \left[B \quad AB \quad \cdots \quad A^{n-1}B \right]. \tag{30}$$

返回(75)

证明 若 $\alpha \in X_{NC}$,则由定理2.2可得

$$\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0,$$

• 故有, $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ 各列与 X_{NC} 中任一元正交, 从而可得

$$span \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} \subseteq X_C.$$
 (31)

第2章

2.1 能控性定 2.1.1 问题的提出

2.1.3 能控子空间与 能按子空间

能控子空间

oo Ak lesti A &

2.4 单输入—总

• 再利用定理2.2, 即 X_{NC} 为 α^{T} $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$ 的解空间,并利用矩阵解空间维数和零空间维数的关系,可得

$$\dim X_{NC} + rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$

第2章

2.1. 能控性定3 2.1.1 问题的提出 2.1.2 能控性定义

能控子空间

2.2 能控性判

2.3 能控性分離

2.4 平输入—— 输出系统的能 控规范型 • 再利用定理2.2, 即 X_{NC} 为 α^T [B AB ··· $A^{n-1}B$] = 0的解空间, 并利用矩阵解空间维数和零空间维数的关系, 可得

$$\dim X_{NC} + rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$

从而有

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n - \dim X_{NC}$$
 (32)

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判:

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 • 再利用定理2.2, 即 X_{NC} 为 α^T [B AB ··· Aⁿ⁻¹B] = 0的解空间, 并利用矩阵解空间维数和零空间维数的关系, 可得

$$\dim X_{NC} + rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$

从而有

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n - \dim X_{NC}$$
 (32)

• 又由 $\mathbb{R}^n = X_{NC} \oplus X_C$ 可得

$$\dim X_{NC} + \dim X_C = n. \tag{33}$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子室间与不

2.2 能控性判据
 2.3 能控性分解

2.4 单输入—单输出系统的能控规范型

• 再利用定理2.2, 即 X_{NC} 为 α^{T} $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$ 的解空间,并利用矩阵解空间维数和零空间维数的关系, 可得

$$\dim X_{NC} + rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$

从而有

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n - \dim X_{NC}$$
 (32)

• 又由 $\mathbb{R}^n = X_{NC} \oplus X_C$ 可得

$$\dim X_{NC} + \dim X_C = n. \tag{33}$$

➡ 结合(32)和(33)可推得

$$\dim X_C = rank \left[B \quad AB \quad \cdots \quad A^{n-1}B \right] \tag{34}$$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间与不

2.2 能控性判据2.3 能控性分解

输出系统的能 控规范型 • 再利用定理2.2, 即 X_{NC} 为 α^T $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0$ 的解空间,并利用矩阵解空间维数和零空间维数的关系, 可得

$$\dim X_{NC} + rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n$$

从而有

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n - \dim X_{NC}$$
 (32)

• 又由 $\mathbb{R}^n = X_{NC} \oplus X_C$ 可得

$$\dim X_{NC} + \dim X_C = n. \tag{33}$$

➡ 结合(32)和(33)可推得

$$\dim X_C = rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$
 (34)

• 又因为

$$\dim span \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$
(35)

第2章

2.1 能控性定 2.1.1 问题的提出

2.1.2 能控性定义 2.1.3 能控子空间与 能控子空间

2.2 NO 93 (3-7) 14

2.3 能控性分角

2.4 单输入——输出系统的能控规范型

结合(34)和(35), 容易推得 $\dim X_C = \dim span \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$

第2章

2.1 能控性定义 2.1.1 问题的提出 2.1.2 能控性定义

a a Ak la u a

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 ➡ 结合(34)和(35), 容易推得

$$\dim X_C = \dim span \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

• 从而,由上式和(31)即知定理结论成立

第2章

➡ 结合(34)和(35), 容易推得

$$\dim X_C = \dim span \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

• 从而,由上式和(31)即知定理结论成立

类似于定理2.4,结合定理2.3,即可得如下结论

定理

定理2.5 系统(1)的能控子空间 X_C 满足

$$X_C = spanW_C[0, T], (36)$$

其中, $W_C[0,T]$ 为能控Gram阵.

第2章

➡ 结合(34)和(35), 容易推得

$$\dim X_C = \dim span \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

• 从而,由上式和(31)即知定理结论成立

类似于定理2.4,结合定理2.3,即可得如下结论

定理

定理2.5 系统(1)的能控子空间 X_C 满足

$$X_C = spanW_C[0, T], (36)$$

其中, $W_C[0,T]$ 为能控Gram阵.

注:由定理2.2和2.4可知,系统(1)的能控子空间 X_C 与不能控子空间 X_{NC} 只与系统的结构参数A,B有关而与控制区间[0,T]的长度无关,与初始时刻 t_0 也无关

第2章

2.1 能控性定 2.1.1 问题的提出 2.1.2 能控性定义

能控子空间 の 2 44 45 bl を136

2.2 能控性判1

2.3 能控性分解2.4 单输入—单

2.4 一棚八一 输出系统的能 控规范型 由定理2.2和2.4,还可以得到如下结论

推论

推论2.1 不能控子空间 X_{NC} 是 A^{T} 的不变子空间, 能控子空间 X_{C} 是A的不变子空间.

第2章

2.1.1 问题的提出 2.1.2 能控性定义 2.1.3 能控子空间。

2.2 能控性判却

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 由定理2.2和2.4, 还可以得到如下结论

推论

推论2.1 不能控子空间 X_{NC} 是 A^{T} 的不变子空间, 能控子空间 X_{C} 是A的不变子空间.

证明 分别结合定理2.2和2.4的结论以及凯莱-哈密尔顿定理, 易得. 自证

第2章

2.1 能控性定义

2.2 能控性判

2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型

- (1) 2.1 能控性定3
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- 2 2.2 能控性判据
 - ◉ 2.2.1 能控性判据
 - 2.2.2 能控性指数
- (3) 2.3 #
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- (4) 2.4 P in A P in H f, is in it is W it II.

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入—— 输出系统的能 控规范型

- ① 2.1 能接性定
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- 2 2.2 能控性判据
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- 3 2
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- (4) 2.4 学输入一学输出系统的能控规范型

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据

73 能捻性分質

2.4 单输入——输出系统的能 控规范型 • 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (37)

返回(67)

其中,x为n维状态向量,u为p维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

第2章

• 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (37)

返回(67)

其中,x为n维状态向量,u为p维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

首先,根据定理2.5判别系统(37)能控性的如下判据

定理

定理2.6(Gram矩阵判据) 线性定常系统(37)为完全能控的充分必要条件是,能控Gram矩阵 $W_C[0,T]$ 非奇异.

第2章

• 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (37)

返回(67)

其中,x为n维状态向量,u为p维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

首先,根据定理2.5判别系统(37)能控性的如下判据

定理

定理2.6(Gram矩阵判据) 线性定常系统(37)为完全能控的充分必要条件是, 能控Gram矩阵 $W_C[0,T]$ 非奇异.

证明 充分性: 若 $W_C[0,T]$ 非奇异

第2章

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性损数 2.3 能控性分解

2.3 能控性分解 2.4 单输入—单 输出系统的能 控规范型 • 考虑线性定常系统

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$
 (37)

返回(67)

其中,x为n维状态向量,u 为p 维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

首先,根据定理2.5判别系统(37)能控性的如下判据

定理

定理2.6(Gram矩阵判据) 线性定常系统(37)为完全能控的充分必要条件是, 能控Gram矩阵 $W_C[0,T]$ 非奇异.

$$\dim X_C = \dim spanW_C[0, T] = n, \tag{38}$$

此表明能控子空间 $X_C = \mathbb{R}^n$,故系统(37)完全能控

第2章

2.1 能控性定:

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

23能按性分

2.4 单输入—单输出系统的能控规范型

• 必要性: 若系统(37)完全能控, 即有则 $X_C = \mathbb{R}^n$

第2章

2.1 能控性定义

2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分

2.4 单输入—单 输出系统的能 控规范型 • 必要性: 若系统(37)完全能控, 即有则 $X_C = \mathbb{R}^n$. 同样由定理2.5知(38)成立. 从而 $W_C[0,T]$ 非奇异, 定理得证

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分向

2.4 单输入——输出系统的能控规范型

• 必要性: 若系统(37)完全能控, 即有则 $X_C = \mathbb{R}^n$. 同样由定理2.5知(38)成立. 从而 $W_C[0,T]$ 非奇异, 定理得证

$$u(t) = -B^{T} e^{-A^{T} t} W_{C}^{-1}[0, T] x_{0}, \ t \in [0, T],$$
(39)

第2章

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性系数

2.4 十辆八一寸 输出系统的能 控规范型

- 必要性: 若系统(37)完全能控, 即有则 $X_C = \mathbb{R}^n$. 同样由定理2.5知(38)成立. 从而 $W_C[0, T]$ 非奇异, 定理得证
- 注: 事实上, 若 $W_C[0,T]$ 非奇异, 则 $W_C^{-1}[0,T]$ 存在, 于是对任意非零初始状态 x_0 , 可构造u(t)为

$$u(t) = -B^{T} e^{-A^{T} t} W_{C}^{-1}[0, T] x_{0}, \ t \in [0, T],$$
(39)

• 在u(t)作用下,系统状态x(t)在时刻T的值为

$$x(T) = e^{AT}x_0 + \int_0^T e^{A(T-t)}Bu(t)dt$$

$$= e^{AT}x_0 + e^{AT} \int_0^T e^{-At}B(-B^T e^{-A^T t}W_C^{-1}[0, T]x_0)dt$$

$$= e^{AT}x_0 - e^{AT} \int_0^T e^{-At}B(B^T e^{-A^T t})dtW_C^{-1}[0, T]x_0$$

$$= e^{AT}x_0 - e^{AT}W_C[0, T]W_C^{-1}[0, T]x_0 = \mathbf{0}$$
(40)

• 即, 把任意能控状态转移到零的控制可构造!

第2章

2.1 能控性定义 2.2 能控性判据 2.2.1 能控性判据

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型 定理

定理2.7(秩判据) 线性定常系统(37)为完全能控的充分必要条件为

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n, \tag{41}$$

其中, $Q_C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ 称为系统的能控性矩阵

第2章

2.1 能控性足叉
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.4 单输入—单 输出系统的能 控规范型 定理

定理2.7 (秩判据) 线性定常系统(37)为完全能控的充分必要条件为

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n, \tag{41}$$

其中, $Q_C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ 称为系统的能控性矩阵

证明 充分性: 若(41)成立,则由定理2.4, $X_C = spanQ_C$ 知,

$$\dim X_C = \dim spanQ_C = n, \tag{42}$$

故 $X_C = \mathbb{R}^n$, 从而系统(37)完全能控

第2章

定理 定理2.7(秩判据) 线性定常系统(37)为完全能控的充分必要条

件为

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n, \tag{41}$$

其中, $Q_C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ 称为系统的能控性矩阵

证明 充分性: 若(41)成立,则由定理2.4, $X_C = spanQ_C$ 知,

$$\dim X_C = \dim spanQ_C = n, \tag{42}$$

故 $X_C = \mathbb{R}^n$, 从而系统(37)完全能控

● 必要性: 若系统(37)完全能控,则 $X_C = \mathbb{R}^n$. 由定理2.4知, (42)成立, 此即 $rankQ_C = n$. 定理结论得证

第2章

定理

定理2.7(秩判据) 线性定常系统(37)为完全能控的充分必要条件为

$$rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n, \tag{41}$$

其中, $Q_C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ 称为系统的能控性矩阵

证明 充分性: 若(41)成立,则由定理2.4, $X_C = spanQ_C$ 知,

$$\dim X_C = \dim spanQ_C = n, \tag{42}$$

故 $X_C = \mathbb{R}^n$, 从而系统(37)完全能控

• 必要性: 若系统(37)完全能控,则 $X_C = \mathbb{R}^n$. 由定理2.4知, (42)成立,此即 $rankQ_C = n$. 定理结论得证

注:比较Gram矩阵判据和秩判据,容易看出秩判据用来判别系统的 能控性是较为方便的,而Gram矩阵中因为有e^{At},计算较为麻烦, 故此判据主要用于理论分析

第2章

2.1 能控性定:

2.2 能探性判据
2.2.1 能控性判据
2.2.2 能控性指数

3 能控性分離

2.4 单输入—单 输出系统的能 控规范型 **例2.2.1** 再次考虑例2.1.1

第2章

2.1 能控性定3

2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型

例2.2.1 再次考虑例2.1.1

• 若系统状态方程为

(a)
$$\dot{x} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$
,

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型

例2.2.1 再次考虑例2.1.1

• 若系统状态方程为

(a)
$$\dot{x} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$
,

➡ 注意到n = 2, 通过计算可得

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & -10 \end{bmatrix}, \Rightarrow rank Q_C = 2 = n$$

因此, 系统为完全能控的

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型

例2.2.1 再次考虑例2.1.1

• 若系统状态方程为

$$\mathbf{(a)} \ \dot{x} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u,$$

⇒ 注意到n = 2, 通过计算可得

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & -10 \end{bmatrix}, \Rightarrow rank Q_C = 2 = n$$

因此, 系统为完全能控的

• 若系统状态方程为

(b)
$$\dot{x} = \begin{bmatrix} 4 & 0 \\ 0 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u,$$

第2章

2.1 能控性定义

2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.3 能控性分離

2.4 单输入—³ 输出系统的能 控规范型 ▶ 类似于情形(a), 计算可得

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -10 \end{bmatrix}$$
, $rankQ_C = 1 < n = 2$,

因此,系统为不完全能控的

第2章

2.1 能控性关键
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 ➡ 类似于情形(a), 计算可得

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -10 \end{bmatrix}$$
, $rankQ_C = 1 < n = 2$,

因此, 系统为不完全能控的

例2.2.2 给定线性系统的状态方程为

$$\dot{x} = \begin{bmatrix} -1 & -4 & -2 \\ 0 & 6 & -1 \\ 1 & 7 & -1 \end{bmatrix} x + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} u,$$

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2.2.6.控性指数

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 ➡ 类似于情形(a), 计算可得

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -10 \end{bmatrix}$$
, $rankQ_C = 1 < n = 2$,

因此,系统为不完全能控的

例2.2.2 给定线性系统的状态方程为

$$\dot{x} = \begin{bmatrix} -1 & -4 & -2 \\ 0 & 6 & -1 \\ 1 & 7 & -1 \end{bmatrix} x + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} u,$$

⇒ 注意到n = 3, 通过计算得

$$Q_C = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 2 & -4 & 6 \\ 0 & -1 & -7 \\ 1 & 1 & -12 \end{bmatrix},$$

第2章

.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性判据

2.4 单输入—³ 输出系统的能 控规范型 ▶ 类似于情形(a), 计算可得

$$Q_C = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -10 \end{bmatrix}$$
, $rankQ_C = 1 < n = 2$,

因此,系统为不完全能控的

例2.2.2 给定线性系统的状态方程为

$$\dot{x} = \begin{bmatrix} -1 & -4 & -2 \\ 0 & 6 & -1 \\ 1 & 7 & -1 \end{bmatrix} x + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} u,$$

⇒ 注意到n=3, 通过计算得

$$Q_C = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 2 & -4 & 6 \\ 0 & -1 & -7 \\ 1 & 1 & -12 \end{bmatrix},$$

• 可判断知 $\det Q_c \neq 0$, 故 $rankQ_c = 3 = n$, 系统完全能控

第2章

2.1 能控性定义

2.2 配が2/至手りが
2.2.1 能控性判据
2.2.2 能控性指数

2.3 能控性分

2.4 单输入— 输出系统的能 控规范型 下面介绍PBH判据,包括"PBH秩判据"和"PBH特征向量判据"

• 以波波夫(Popov), 贝尔维奇(Belevitch)和豪塔斯(Hautus)姓氏首字母组合命名

第2章

下面介绍PBH判据,包括"PBH秩判据"和"PBH特征向量判据"

● 以波波夫(Popov), 贝尔维奇(Belevitch)和豪塔斯(Hautus)姓氏首字母组合命名

定理

定理2.8(PBH秩判据)线性定常系统(37)为完全能控的充要条件为

$$rank [sI - A \quad B] = n, \forall s \in \mathbb{C}$$
 (43)

或等价地, 对矩阵A的所有特征值 λ_i ($i=1,2,\cdots,n$), 成立

$$rank \begin{bmatrix} \lambda_i I - A & B \end{bmatrix} = n, \ i = 1, 2, \cdots, n. \tag{44}$$

第2章

下面介绍PBH判据,包括"PBH秩判据"和"PBH特征向量判据"

以波波夫(Popov), 贝尔维奇(Belevitch)和豪塔斯(Hautus)姓氏首字母组合命名

定理

定理2.8(PBH秩判据) 线性定常系统(37)为完全能控的充要条件为

$$rank [sI - A \quad B] = n, \forall s \in \mathbb{C}$$
 (43)

或等价地, 对矩阵A的所有特征值 $\lambda_i(i=1,2,\cdots,n)$, 成立

$$rank \begin{bmatrix} \lambda_i I - A & B \end{bmatrix} = n, \ i = 1, 2, \cdots, n. \tag{44}$$

• 对判别条件(43)和(44)的等价性

第2章

2.2.1 能控性判据

下面介绍PBH判据,包括"PBH秩判据"和"PBH特征向量判据"

● 以波波夫(Popov), 贝尔维奇(Belevitch)和豪塔斯(Hautus)姓氏首 字母组合命名

定理

定理2.8(PBH秩判据) 线性定常系统(37)为完全能控的充要条件为

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = n, \forall s \in \mathbb{C}$$
 (43)

或等价地, 对矩阵A的所有特征值 λ_i ($i=1,2,\cdots,n$), 成立

$$rank \begin{bmatrix} \lambda_i I - A & B \end{bmatrix} = n, \ i = 1, 2, \cdots, n. \tag{44}$$

- 对判别条件(43)和(44)的等价性
 - sI A非奇异当且仅当 $s \neq \lambda_i, \forall i \in \{1, 2, \dots, n\}$
 - 上述等价结论可由A的若尔当规范形直接可见, 即 $A = P^{-1}JP$

第2章

2.1 能控性定3

2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

1.3 能控性分離

2.4 单输入—单 输出系统的能 控规范型 证明 必要性: 若系统(37)完全能控,证(43)成立

第2章

2.1 能控性定 > 2.2 能控性判 i

2.2.1 能控性判据 2.2.2 能控性指数

2.4 单输入— 输出系统的能 控规范型 证明 必要性: 若系统(37)完全能控,证(43)成立

• **反证法.** 假设(43)不成立, 即存在复数 s_0 , 使[$s_0I - A B$]行降秩, 则必存在一个非零常向量 α , 使成立

$$\alpha^T \begin{bmatrix} s_0 I - A & B \end{bmatrix} = 0, \tag{45}$$

第2章

- 2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数
- 2.4 单输入—单 输出系统的能 控规范型

证明 必要性: 若系统(37)完全能控,证(43)成立

• **反证法.** 假设(43)不成立, 即存在复数 s_0 , 使 $[s_0I - A \ B]$ 行降秩, 则必存在一个非零常向量 α , 使成立

$$\alpha^T \begin{bmatrix} s_0 I - A & B \end{bmatrix} = 0, \tag{45}$$

• 故可导出

$$s_0 \alpha^T = \alpha^T A, \ \alpha^T B = 0. \tag{46}$$

第2章

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.4 单输入—单 输出系统的能 控规范型 证明 必要性: 若系统(37)完全能控,证(43)成立

• **反证法.** 假设(43)不成立, 即存在复数 s_0 , 使 $[s_0I - A \ B]$ 行降秩, 则必存在一个非零常向量 α , 使成立

$$\alpha^T \begin{bmatrix} s_0 I - A & B \end{bmatrix} = 0, \tag{45}$$

• 故可导出

$$s_0 \alpha^T = \alpha^T A, \ \alpha^T B = 0. \tag{46}$$

• 进而由上式可导出

$$\alpha^T A B = s_0 \alpha^T B = 0, \ \alpha^T A^2 B = s_0 \alpha^T A B = 0, \ \cdots, \ \alpha^T A^{n-1} B = 0.$$
 (47)

第2章

证明 必要性: 若系统(37)完全能控,证(43)成立

• **反证法.** 假设(43)不成立, 即存在复数 s_0 , 使 $s_0I - A$ B 行降秩, 则必存在一个非零常向量 α , 使成立

$$\alpha^T \begin{bmatrix} s_0 I - A & B \end{bmatrix} = 0, \tag{45}$$

• 故可导出

$$s_0 \alpha^T = \alpha^T A, \ \alpha^T B = 0. \tag{46}$$

• 进而由上式可导出

$$\alpha^{T}AB = s_{0}\alpha^{T}B = 0, \ \alpha^{T}A^{2}B = s_{0}\alpha^{T}AB = 0, \ \cdots, \ \alpha^{T}A^{n-1}B = 0.$$
 (47)

• 由(46), (47)可得

$$\alpha^T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0. \tag{48}$$

这表明 $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ 行降秩,此与(A,B)能控矛盾,故反证法假设不成立,从而有(43)成立

第2章

2.1 能控性定3

2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

.3 能控性分削

2.4 单输入—单输出系统的能控规范型

• 充分性: 若(43)成立, 欲证(A,B)能控

第2章

- 充分性: 若(43)成立, 欲证(A, B)能控
- 反证法. 假设(A,B)为不完全能控,则对系统(37)作非奇异线性 变换

$$x = T\hat{x}, \ T = \begin{bmatrix} T_1 & T_2 \end{bmatrix},$$

其中,

- T_1 的各列属于 X_C , 并构成 X_C 的基底
- To为使T非奇异的任意阵

第2章

.1 配控性天义
.2 能控性判据
2.2.1 能控性判据
2.2.2 能控性判据

2.4 单输入—单 输出系统的能 控规范型

- 充分性: 若(43)成立, 欲证(A, B)能控
- **反证法.** 假设(A, B)为不完全能控,则对系统(37)作非奇异线性 变换

$$x = T\hat{x}, \ T = \begin{bmatrix} T_1 & T_2 \end{bmatrix},$$

其中,

- T_1 的各列属于 X_C ,并构成 X_C 的基底
- T2为使T非奇异的任意阵
- 令

$$T^{-1} = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix}$$

则由 $T^{-1}T=I$,可得 $F_2^TT_1=0$,这说明 F_2 各列属于 X_{NC}

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.4 单输入—单 输出系统的能

- 充分性: 若(43)成立, 欲证(A,B)能控
- **反证法.** 假设(A, B)为不完全能控,则对系统(37)作非奇异线性 变换

$$x = T\hat{x}, \ T = \begin{bmatrix} T_1 & T_2 \end{bmatrix},$$

其中,

- T_1 的各列属于 X_C ,并构成 X_C 的基底
- T2为使T非奇异的任意阵
- 令

$$T^{-1} = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix}$$

则由 $T^{-1}T = I$, 可得 $F_2^T T_1 = 0$, 这说明 F_2 各列属于 X_{NC}

● 再由Xc是A的不变子空间,即可推得

$$\hat{A} = T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad \hat{B} = T^{-1}B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$
 (49)

第2章

2.1 能控性定3

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

23 能按性分值

2.4 单输入—单 输出系统的能 控规范型 • 从而,有

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix} = rank \begin{bmatrix} sI - A_{11} & -A_{12} & B_1 \\ 0 & sI - A_{22} & 0 \end{bmatrix}.$$

● 从而.有

第2章

 $rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix} = rank \begin{bmatrix} sI - A_{11} & -A_{12} & B_1 \\ 0 & sI - A_{22} & 0 \end{bmatrix}.$

• 可知, 当s取 A_{22} 的特征根时, 矩阵 $[sI - \hat{A} \quad \hat{B}]$ 降秩, 即

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix} < n, \quad \Re \uparrow \ s = \lambda_i(A_{22}) \tag{50}$$

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据

2.3 能控性分解

2.4 平输入—— 输出系统的能 控规范型 • 从而,有

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix} = rank \begin{bmatrix} sI - A_{11} & -A_{12} & B_1 \\ 0 & sI - A_{22} & 0 \end{bmatrix}.$$

• 可知, 当s取 A_{22} 的特征根时, 矩阵 $\begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix}$ 降秩, 即

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix} < n, \quad \Re \quad s = \lambda_i(A_{22}) \tag{50}$$

• 此外, 由式(43), 并结合线性非奇异变换性质, 可得

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix} = rank \begin{bmatrix} sI - T^{-1}AT & T^{-1}B \end{bmatrix}$$

$$= rankT^{-1} \begin{bmatrix} sI - A & B \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & I \end{bmatrix}$$

$$= rank \begin{bmatrix} sI - A & B \end{bmatrix} = n, \ \forall s \in \mathbb{C}.$$
(51)

此与(50)矛盾. 故反证法假设不成立, 即(A,B)为能控. 定理结论得证

第2章

基于定理2.8的PBH秩判据,由反证法,可得如下PBH特征向量判据

定理

定理2.9(PBH特征向量判据) 线性定常系统(37)为完全能控的充分必要条件是,A的非零左特征向量不能与B的所有列正交.即对A的任一特征值 λ_i ,同时满足

$$\alpha^T A = \lambda_i \alpha^T, \ \alpha^T B = 0 \tag{52}$$

的特征向量 $\alpha \equiv 0$.

第2章

基于定理2.8的PBH秩判据,由反证法,可得如下PBH特征向量判据

定理

定理2.9(PBH特征向量判据) 线性定常系统(37)为完全能控的充分必要条件是,A的非零左特征向量不能与B的所有列正交.即对A的任一特征值 λ_i ,同时满足

$$\alpha^T A = \lambda_i \alpha^T, \ \alpha^T B = 0 \tag{52}$$

的特征向量 $\alpha \equiv 0$.

- ➡ 下面, 我们考察(A, B)为若尔当(Jordan)规范型时的能控性判据
- 当A不是若尔当型, 引进非奇异变换 $x = T\hat{x}$, T为 $n \times n$ 非奇异矩阵, 使得

$$\hat{A} = T^{-1}AT, \ \hat{B} = T^{-1}B,$$
 (53)

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性判据

2.3 能控性分解

2.4 单输入—单 输出系统的能 挖规范型 其中,

$$\hat{A}_{n\times n} = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_l \end{bmatrix}, \quad \hat{B}_{n\times p} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_l \end{bmatrix}, \tag{54}$$

$$J_{i} = \begin{bmatrix} J_{i1} & & & & \\ & J_{i2} & & & \\ & & \ddots & & \\ & & & J_{i\alpha_{i}} \end{bmatrix}, \quad B_{i} = \begin{bmatrix} B_{i1} \\ B_{i2} \\ \vdots \\ B_{i\alpha_{i}}, \end{bmatrix}$$
(55)

$$J_{ik} = \begin{bmatrix} \lambda_{i} & 1 & & & \\ & \lambda_{i} & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \end{bmatrix}, \quad B_{ik} = \begin{bmatrix} B_{1ik} \\ B_{2ik} \\ \vdots \\ B_{rik} \end{bmatrix}, \quad (56)$$

第2章

其中,

$$\hat{A}_{n\times n} = \begin{vmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_l \end{vmatrix}, \quad \hat{B}_{n\times p} = \begin{vmatrix} B_1 \\ B_2 \\ \vdots \\ B_l \end{vmatrix},$$

$$J_{i} = \begin{bmatrix} J_{i1} & & & \\ & J_{i2} & & \\ & & \ddots & \\ & & & J_{i\alpha_{i}} \end{bmatrix}, \quad B_{i} = \begin{bmatrix} B_{i1} \\ B_{i2} \\ \vdots \\ B_{i\alpha_{i}}, \end{bmatrix}$$
(55)

且, λ_i 互异($\forall i = 1, \dots, l$), σ_i 为特征值 λ_i 的代数重数, 并有n = 1 $\sum_{i=1}^{l} \sigma_i$

$$r_{i1} + r_{i2} + \cdots + r_{i\alpha_i} = \sigma_i, \quad i = 1, 2, \cdots, l.$$

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 22.2 能控性判据

2.3 能控性分離

2.4 单输入—³ 输出系统的能 控规范型 • 由(51)知,非奇异线性变换不改变 $[sI-A \ B]$ 的秩,故有

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix},$$
 (57)

因此,考察(A,B)的能控性,可直接去考察 (\hat{A},\hat{B}) 的能控性

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据

...3 能控性分解

2.4 单输入—单 输出系统的能 控规范型 • 由(51)知, 非奇异线性变换不改变[sI-A B]的秩, 故有

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix},$$
 (57)

因此,考察(A,B)的能控性,可直接去考察 (\hat{A},\hat{B}) 的能控性

● 注意:

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix}$$

$$= rank \begin{bmatrix} sI - J_1 & & & B_1 \\ & sI - J_2 & & B_2 \\ & & \ddots & & \vdots \\ & & sI - J_l & B_l \end{bmatrix}, (58)$$

第2章

2.1 能控性定义
 2.2 能控性判据
 2.2.1 能控性判据

2.3 能控性分解

2.4 单输入—单 输出系统的能 控规范型 ● 由(51)知, 非奇异线性变换不改变[sI-A B] 的秩, 故有

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix}, \tag{57}$$

因此,考察(A,B)的能控性,可直接去考察 (\hat{A},\hat{B}) 的能控性

● 注意:

$$rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix}$$

$$= rank \begin{bmatrix} sI - J_1 & & & B_1 \\ & sI - J_2 & & B_2 \\ & & \ddots & & \vdots \\ & & sI - J_l & B_l \end{bmatrix}, (58)$$

• 又由定理2.8, 我们只要根据(58)考察 $rank \left[\lambda_i I - \hat{A} \quad \hat{B} \right]$ 对所有 $i = 1, 2, \dots, I$ 的满秩性即可

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入—单输出系统的能 控规范型 • 首先, 对上式(58)考虑 λ_1 , 并注意到 $\lambda_1 \neq \lambda_i (i \neq 1)$, 可得

$$rank \begin{bmatrix} \lambda_{1}I - \hat{A} & \hat{B} \end{bmatrix}$$

$$= rank \begin{bmatrix} \lambda_{1}I - J_{1} & & & B_{1} \\ & \lambda_{1}I - J_{2} & & B_{2} \\ & & \ddots & & \vdots \\ & & \lambda_{1}I - J_{l} & B_{l} \end{bmatrix}$$

$$= rank \begin{bmatrix} \lambda_{1}I - J_{1} & & & B_{1} \\ & & \lambda_{1}I - J_{2} & & 0 \\ & & \ddots & & \vdots \\ & & & \lambda_{1}I - J_{l} & 0 \end{bmatrix}$$

$$= rank \begin{bmatrix} \lambda_{1}I - J_{1} & B_{1} \end{bmatrix} + \sigma_{2} + \cdots + \sigma_{l}.$$
(59)

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性判据

2.3 能控性分解

2.4 单输入—单 输出系统的能 控规范型 • 首先, 对上式(58)考虑 λ_1 , 并注意到 $\lambda_1 \neq \lambda_i (i \neq 1)$, 可得

$$rank \begin{bmatrix} \lambda_{1}I - \hat{A} & \hat{B} \end{bmatrix}$$

$$= rank \begin{bmatrix} \lambda_{1}I - J_{1} & & & B_{1} \\ & \lambda_{1}I - J_{2} & & B_{2} \\ & & \ddots & & \vdots \\ & & \lambda_{1}I - J_{1} & B_{1} \end{bmatrix}$$

$$= rank \begin{bmatrix} \lambda_{1}I - J_{1} & & & B_{1} \\ & & \lambda_{1}I - J_{2} & & 0 \\ & & \ddots & & \vdots \\ & & & \lambda_{1}I - J_{1} & 0 \end{bmatrix}$$

$$= rank \begin{bmatrix} \lambda_{1}I - J_{1} & B_{1} \end{bmatrix} + \sigma_{2} + \cdots + \sigma_{l}.$$

$$(59)$$

• 从而由 $n = \sum_{i=1}^{l} \sigma_i$, 可知

$$rank \begin{bmatrix} \lambda_1 I - \hat{A} & \hat{B} \end{bmatrix} = n \iff rank \begin{bmatrix} \lambda_1 I - J_1 & B_1 \end{bmatrix} = \sigma_1$$

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据

2.3 能控性分解

2.4 单输入——输出系统的能 控规范型 • 对上式(58), $\Diamond \Delta_{r_{1k} \times r_{1k}} = \lambda_1 I - J_{1k}, k = 1, \dots, \alpha_1, M$ $rank \begin{bmatrix} \lambda_1 I - J_1 & B_1 \end{bmatrix}$ $= rank \begin{bmatrix} \Delta_{r_{11}\times r_{11}} & & & & B_{11}\\ & \Delta_{r_{12}\times r_{12}} & & & B_{12}\\ & & \ddots & & \vdots\\ & & \Delta_{r_{1\alpha_1}\times r_{1\alpha_1}} & B_{1\sigma_1} \end{bmatrix}$ $\Delta_{r_{11} \times r_{11}}$ = rank $\Delta_{r_{12} \times r_{12}}$

第2章

2.1 能控性定3

2.2 能控性判 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分角

2.4 单输入—单 输出系统的能 控规范型 • 注意: $\Delta_{r_{lk} \times r_{lk}} = \lambda_1 I - J_{lk}, k = 1, \cdots, \alpha_1$ 具有如下特殊形式

$$\Delta_{r_{1k} \times r_{1k}} = \begin{bmatrix} 0 & -1 & & & & \\ & \ddots & \ddots & & \\ & & \ddots & -1 & \\ & & & 0 \end{bmatrix}, \quad k = 1, 2, \cdots, \alpha_1$$

第2章

2.1 能控性足>

2.2.1 配控任判据 2.2.2 能控性指数

2.3 形位生分析

2.4 平输入—<u>。</u> 输出系统的能 控规范型 • 注意: $\Delta_{r_{lk} \times r_{lk}} = \lambda_1 I - J_{1k}, k = 1, \cdots, \alpha_1$ 具有如下特殊形式

$$\Delta_{r_{1k}\times r_{1k}} = \begin{bmatrix} 0 & -1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & -1 & \\ & & & 0 \end{bmatrix}, \quad k = 1, 2, \cdots, \alpha_1$$

- ⇒ 从而,对任意的 $k = 1, \dots, \alpha_1$,有
 - $rank\Delta_{r_{1k}\times r_{1k}}=r_{1k}-1$
 - $\Delta_{r_{lk} \times r_{lk}}$ 前 r_{lk} 1行满秩; 最后一行(即, 第 r_{lk} 行)为零行, 即仅有最后一行降秩

第2章

2.1 能控性定3

2.2 能控性判据
 2.2.1 能控性判据

23 能捻性名

2.4 单输入— s 输出系统的能 • 进而,有

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入—[§] 输出系统的能 控规范型 • 由前式,我们有

$$rank \begin{bmatrix} \lambda_1 I - J_1 & B_1 \end{bmatrix} = \sigma_1 - \alpha_1 + rank \begin{bmatrix} b_{r11} \\ b_{r12} \\ \vdots \\ b_{r1\alpha_1} \end{bmatrix}$$
 (60)

• 进而, 由(59)和(60)知, $rank \left[\lambda_1 I - \hat{A} \quad \hat{B} \right] = n$ 等价于

$$rank \begin{bmatrix} b_{r11} \\ b_{r12} \\ \vdots \\ b_{r1\alpha_1} \end{bmatrix} = \alpha_1.$$
 (61)

• 同理, 可推得: $rank \left[\lambda_1 I - \hat{A} \quad \hat{B} \right] = n, i = 1, 2, \cdots, l$ 等价于

$$rank \begin{vmatrix} b_{ri1} \\ b_{ri2} \\ \vdots \\ b_{ri} \end{vmatrix} = \alpha_i, \ i = 1, 2, \cdots, l. \tag{62}$$

第2章

综合上面的推导, 我们有如下能控性判据的结论

定理

定理2.10(若尔当规范型判据) 若由系统(37)导出的若尔当规范型为(54)~(56),则

• 系统(37)为完全能控的充要条件是 $B_{ik}(k=1,2,\cdots,\alpha_i)$ 的最后一行所组成的矩阵对 $i=1,2,\cdots,l$ 均为行线性无关. 即,(62)成立

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分角

2.4 单输入— 输出系统的能 挖规范型

例2.2.3 线性定常系统为

$$\dot{x} = \begin{bmatrix} -2 & 1 & & & & \\ 0 & -2 & & & & \\ & & -2 & & & \\ & & & 3 & 1 \\ & & & 0 & 3 \\ \end{bmatrix} x + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} u,$$

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分戶

2.4 单输入— 输出系统的能 控规范型

例2.2.3 线性定常系统为

$$\dot{x} = \begin{bmatrix} -2 & 1 & & & & & \\ 0 & -2 & & & & \\ & & -2 & & & \\ & & & & -2 & & \\ & & & & 0 & 3 & \\ & & & & 3 & 1 \\ & & & & & 3 \end{bmatrix} x + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} u,$$

● 由若尔当规范性, 容易写出

$$\begin{bmatrix} b_{r11} \\ b_{r12} \\ b_{r13} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}, \ \begin{bmatrix} b_{r21} \\ b_{r22} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}.$$

第2章

2.1 能控性定义

2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分制

2.4 单输入— 输出系统的能 控规范型

例2.2.3 线性定常系统为

$$\dot{x} = \begin{bmatrix} -2 & 1 & & & & & \\ 0 & -2 & & & & \\ & & -2 & & & \\ & & & & -2 & & \\ & & & & 0 & 3 & \\ & & & & 3 & 1 \\ & & & & & 3 \end{bmatrix} x + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix} u,$$

• 由若尔当规范性, 容易写出

$$\begin{bmatrix} b_{r11} \\ b_{r12} \\ b_{r13} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}, \ \begin{bmatrix} b_{r21} \\ b_{r22} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}.$$

- ➡ 显然,他们均为行满秩
- 故由定理2.10知, 系统为完全能控

第2章

2.1 能控性定义 2.2 能控性判据 2.2.1 能控性判据

2.1 能控性判据 2.2 能控性指数 3 能控性分解

2.4 单输入— 输出系统的能 控规范型 根据定理2.10, 可得下面两个推论:

推论

推论2.2 (最小输入数定理) 系统(A,B)状态能控的必要条件为

$$p \geqslant \alpha_j, \ j = 1, 2, \cdots, l. \tag{63}$$

第2章

1.1 能控性定义
 2.2 能控性判据
 2.2.2 能控性有数
 3 能 於 於 公 公

2.4 单输入—单 输出系统的能 控规范型 根据定理2.10, 可得下面两个推论:

推论

推论2.2(最小输入数定理) 系统(A,B)状态能控的必要条件为

$$p \geqslant \alpha_j, \ j = 1, 2, \cdots, l. \tag{63}$$

定义:

• 若(54), (56)中, $\alpha_j = 1, j = 1, 2, \dots, l$. 即A的互异特征根各自对应一个若尔当块,则称A为非减次矩阵,或循环矩阵

第2章

.1 能控性定义
.2 能控性判据
22.1 能控性判据
22.2 能控性判据
2.2 2 能控性相称
.3 能控性分解
.4 单输入—单

根据定理2.10, 可得下面两个推论:

推论

推论2.2(最小输入数定理) 系统(A,B)状态能控的必要条件为

$$p \geqslant \alpha_j, \ j = 1, 2, \cdots, l. \tag{63}$$

定义:

• 若(54), (56)中, $\alpha_j = 1, j = 1, 2, \dots, l$. 即A的互异特征根各自对应一个若尔当块,则称A为非减次矩阵,或循环矩阵

推论

推论2.3 单输入系统(A,B)状态能控的必要条件为: A是非减次矩阵.

第2章

2.1 能控性定3

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分離

2.4 单输入— 输出系统的能 控规范型

- (1) 2.1 維整性定义。
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- 2 2.2 能控性判据
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- (3) 2
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- 4 24 学输入一学输出系统的维控规范型

第2章

2.1 能控性定3

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

3 能控性分離

2.4 单输入— 输出系统的能 控规范型 ● 考察完全能控的系统(37),即

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$

其中,x为n维状态向量,u 为p 维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

第2章

2.2 能控性判据
 2.2.1 能控性判据

73 能捻性分解

2.4 单输入— 输出系统的能 控规范型 • 考察完全能控的系统(37),即

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$

其中,x为n维状态向量,u 为p 维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

• 定义

$$Q_k = \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} \tag{64}$$

第2章

2.2 能控性判据 2.2.1 能控性判据

2.3 能控性分解

2.4 单输入—³ 输出系统的能 控规范型 ● 考察完全能控的系统(37),即

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$

其中,x为n维状态向量,u 为p 维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

• 定义

$$Q_k = \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} \tag{64}$$

• 显然,
$$Q_n = Q_C$$
, 且 $rankQ_n = n$

第2章

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性判据

2.4 单输入—单 输出系统的能 控规范型 考察完全能控的系统(37),即

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$

其中,x为n维状态向量,u 为p 维输入向量,A,B分别为 $n \times n$, $n \times p$ 实常阵

● 定义

$$Q_k = \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} \tag{64}$$

为 $n \times kp$ 常阵,其中k为正整数

• 显然,
$$Q_n = Q_C$$
, 且 $rankQ_n = n$

• 依次将k由1增加,直至使 $rankQ_{\mu}=n$,即

$$rankQ_1 < rankQ_2 < \dots < rankQ_{\mu-1}$$

 $< rankQ_{\mu} = rankQ_{\mu+1} = \dots = rankQ_C,$ (65)

则称µ为系统的能控性指数

第2章

2.1 能控性定义

2.2 能理性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分

2.4 单输入—单 输出系统的能 控规范型 • 估计能控性指数 μ 的一个关系式为: 令 $rankB = r \leq p$, 则必成立

$$\frac{n}{p} \le \mu \le n - r + 1. \tag{66}$$

第2章

2.1 能控性定义2.2 能控性判据

2.2.2 NO 32 12 14 9K

2.4 单输入— 输出系统的能 控规范型 • 估计能控性指数 μ 的一个关系式为: 令 $rankB = r \leq p$, 则必成立

$$\frac{n}{p} \leqslant \mu \leqslant n - r + 1. \tag{66}$$

- ➡ 证明关系式(66):
 - 首先, 考虑到 Q_{μ} 为 $n \times \mu p$ 阵, 要使 $rankQ_{\mu} = n$, 其前提是矩阵 Q_{μ} 的列数必须大于或等于其行数, 即 $\mu p \geq n$, 此可导出(66)的左端

第2章

• 估计能控性指数 μ 的一个关系式为: \Diamond rank $B = r \leq p$, 则必成立

$$\frac{n}{p} \le \mu \le n - r + 1. \tag{66}$$

- ➡ 证明关系式(66):
 - 首先, 考虑到 Q_{μ} 为 $n \times \mu p$ 阵, 要使 $rankQ_{\mu} = n$, 其前提是 矩阵 Q_{μ} 的列数必须大于或等于其行数, 即 $\mu p \ge n$, 此可导 出(66)的左端
 - 再由rankB = r, 若r = n, 则 $\mu = 1$, (66)的右端成立; 若r < rn, 则AB, A^2B , ..., $A^{\mu-1}B$ 的每一个矩阵至少有一个列向量 和 Q_{μ} 中左侧所有线性独立的列向量线性无关,否则,(A,B)将不完全能控

第2章

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.4 单输入—³ 输出系统的能 控规范型 • 估计能控性指数 μ 的一个关系式为: 令 $rankB = r \leq p$, 则必成立

$$\frac{n}{p} \leqslant \mu \leqslant n - r + 1. \tag{66}$$

- ➡ 证明关系式(66):
 - 首先, 考虑到 Q_{μ} 为 $n \times \mu p$ 阵, 要使 $rankQ_{\mu} = n$, 其前提是矩阵 Q_{μ} 的列数必须大于或等于其行数, 即 $\mu p \geqslant n$, 此可导出(66)的左端
 - 再由rankB = r, 若r = n, 则 $\mu = 1$, (66)的右端成立; 若r < n, 则AB, A^2B , \cdots , $A^{\mu-1}B$ 的每一个矩阵至少有一个列向量和 Q_{μ} 中左侧所有线性独立的列向量线性无关, 否则, (A,B) 将不完全能控, 因此成立

$$r + \mu - 1 \leq n$$
,

此即 $\mu \leq n-r+1$,于是,(66)的右不等式得证

由关系式(66), 对能控性指数给出如下五点结论:

第2章

2.1 能控性定

2.3 能控性分

2.4 单输入—单输出系统的能控规范型

第2章

2.1 能控性定义

2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.3 能控性分離

2.4 单输入——输出系统的能 控规范型 由关系式(66), 对能控性指数给出如下五点结论:

(1) 对于单输入系统, 即p=1时, 系统的能控性指数 $\mu=n$

• 由

$$\frac{n}{p} \le \mu \le n - r + 1$$

其中,
$$p = 1$$
, $r = 1$,易得 $\mu = n$

第2章

2.1 能控性定义
2.2 能控性判据
2.2.1 能控性判据
2.2.2 能检性判据

.3 能控性分角

2.4 单输入— 输出系统的能 控规范型 由关系式(66), 对能控性指数给出如下五点结论:

- (1) 对于单输入系统, 即p=1时, 系统的能控性指数 $\mu=n$
 - 由

$$\frac{n}{p} \le \mu \le n - r + 1$$

其中,
$$p = 1$$
, $r = 1$,易得 $\mu = n$

- (2) 对于系统 (37), 可导出简化的能控性秩判据:
 - 系统完全能控的充分必要条件是

$$rankQ_{n-r+1} = rank \begin{bmatrix} B & AB & \cdots & A^{n-r}B \end{bmatrix} = n,$$
 (67)

其中, r = rankB

第2章

2.2 能控性判据 2.2.1 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.4 单输入—³ 输出系统的能 控规范型 由关系式(66), 对能控性指数给出如下五点结论:

- (1) 对于单输入系统, 即p=1时, 系统的能控性指数 $\mu=n$
 - 由

$$\frac{n}{p} \le \mu \le n - r + 1$$

其中,
$$p = 1$$
, $r = 1$,易得 $\mu = n$

- (2) 对于系统 (37), 可导出简化的能控性秩判据:
 - 系统完全能控的充分必要条件是

$$rankQ_{n-r+1} = rank \begin{bmatrix} B & AB & \cdots & A^{n-r}B \end{bmatrix} = n,$$
 (67)

其中, r = rankB

注: 由 $span[B \ AB \ \cdots \ A^{n-r}B]$ 为A的不变子空间, 故有

$$rank\left[B \quad AB \quad \cdots \quad A^{n-r}B\right] = rank\left[B \quad AB \quad \cdots \quad A^{n-1}B\right] = rankQ_C$$
 从而, 可知系统完全能控等价于条件(67)成立

第2章

2.1 能控性定义

2.2 能控性判据2.2.1 能控性判据2.2.2 能控性指数

2.3 能控性分

2.4 单输入—单 输出系统的能 控规范型 (3) 令l为矩阵A的最小多项式的次数,则 $l \leq n$, (66)还可表示为

$$\frac{n}{p} \le \mu \le \min(l, n - r + 1). \tag{68}$$

第2章

2.1 能控性定义

2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 (3) 令l为矩阵A的最小多项式的次数,则 $l \leq n$,(66)还可表示为

$$\frac{n}{p} \le \mu \le \min(l, n - r + 1). \tag{68}$$

• 若最小多项式定义为

$$\varphi(s) = s^{l} + a_{l-1}s^{l-1} + \dots + a_{1}s + a_{0},$$

则必有
$$\varphi(A) = 0$$

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 (3) 令l为矩阵A的最小多项式的次数,则 $l \le n$,(66)还可表示为

$$\frac{n}{p} \le \mu \le \min(l, n - r + 1). \tag{68}$$

• 若最小多项式定义为

$$\varphi(s) = s^{l} + a_{l-1}s^{l-1} + \dots + a_{1}s + a_{0},$$

则必有 $\varphi(A) = 0$

• 故 A^{l} 是I, A, \cdots , A^{l-1} 的线性组合, 从而 A^{l} B是B, AB, \cdots , A^{l-1} B的线性组合, 这说明

$$rankQ_{l+1} = rankQ_{l+2} = \cdots = rankQ_C$$
.

第2章

2.1 能控性定义

2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 (3) 令l为矩阵A的最小多项式的次数,则 $l \le n$,(66)还可表示为

$$\frac{n}{p} \le \mu \le \min(l, n - r + 1). \tag{68}$$

• 若最小多项式定义为

$$\varphi(s) = s^{l} + a_{l-1}s^{l-1} + \dots + a_{1}s + a_{0},$$

则必有 $\varphi(A) = 0$

• 故 A^{l} 是I, A, \cdots , A^{l-1} 的线性组合, 从而 A^{l} B是B, AB, \cdots , A^{l-1} B的线性组合, 这说明

$$rankQ_{l+1} = rankQ_{l+2} = \cdots = rankQ_C.$$

• 由能控性指数定义知, $\mu \leq l$

第2章

2.2 能控性判据
2.2.1 能控性判据
2.2.1 能控性判据
2.2.2 能控性判据

1.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 (3) 令l为矩阵A的最小多项式的次数,则 $l \le n$,(66)还可表示为

$$\frac{n}{p} \le \mu \le \min(l, n - r + 1). \tag{68}$$

• 若最小多项式定义为

$$\varphi(s) = s^l + a_{l-1}s^{l-1} + \dots + a_1s + a_0,$$

则必有 $\varphi(A) = 0$

• 故 A^{l} 是I, A, \cdots , A^{l-1} 的线性组合, 从而 A^{l} B是B, AB, \cdots , A^{l-1} B的线性组合, 这说明

$$rankQ_{l+1} = rankQ_{l+2} = \cdots = rankQ_C.$$

- 由能控性指数定义知,μ≤l
- 再由关系式(66), 即可得(68)成立

第2章

2.1 能控性定 x

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性判据

2.4 单输入—单 输出系统的能 控规范型

(4) 将Qμ表为

$$Q_{\mu} = [b_1 \ b_2 \ \cdots \ b_p \ Ab_1 \ Ab_2 \ \cdots \ Ab_p \ \cdots \ A^{\mu-1}b_1 \ \cdots \ A^{\mu-1}b_p] \ (69)$$

第2章

2.1 能控性定义 2.2 能控性判据 2.2.1 能控性判据

2.3 能控性分戶

2.4 单输入—单 输出系统的能 控规范型 (4) 将Qμ表为

$$Q_{\mu} = [b_1 \ b_2 \ \cdots \ b_p \ Ab_1 \ Ab_2 \ \cdots \ Ab_p \ \cdots \ A^{\mu-1}b_1 \ \cdots \ A^{\mu-1}b_p] \ (69)$$

• 依次从左至右搜索 Q_{μ} 的n个线性无关的列,并重新排列后记为 $b_1,Ab_1,\cdots,A^{\mu_1-1}b_1,b_2,Ab_2,\cdots,A^{\mu_2-1}b_2,\cdots,b_r,\cdots,A^{\mu_r-1}b_r.$ (70)

第2章

2.2.1 能控性判据 2.2.2 能控性指数 2.3 能控性分解

(4) 将Qμ表为

$$Q_{\mu} = [b_1 \ b_2 \ \cdots \ b_p \ Ab_1 \ Ab_2 \ \cdots \ Ab_p \ \cdots \ A^{\mu-1}b_1 \ \cdots \ A^{\mu-1}b_p] \ (69)$$

• 依次从左至右搜索 Q_{μ} 的n个线性无关的列,并重新排列后记为 $b_1,Ab_1,\cdots,A^{\mu_1-1}b_1,b_2,Ab_2,\cdots,A^{\mu_2-1}b_2,\cdots,b_r,\cdots,A^{\mu_r-1}b_r.$ (70)

• 对能控系统,显然有

$$\mu_1 + \mu_2 + \dots + \mu_r = n,$$
 (71)

且, 能控性指数μ满足

$$\mu = \max\{\mu_1, \mu_2, \cdots, \mu_r\},\tag{72}$$

第2章

2.2 能控性判制
22.1 能控性判制
22.2 能控性判据
2.2.2 能控性有数
2.3 能控性分离
2.4 单输入—单

(4) 将Q_μ表为

$$Q_{\mu} = [b_1 \ b_2 \ \cdots \ b_p \ Ab_1 \ Ab_2 \ \cdots \ Ab_p \ \cdots \ A^{\mu-1}b_1 \ \cdots \ A^{\mu-1}b_p] \ (69)$$

• 依次从左至右搜索 Q_{μ} 的n个线性无关的列,并重新排列后记为 $b_1,Ab_1,\cdots,A^{\mu_1-1}b_1,b_2,Ab_2,\cdots,A^{\mu_2-1}b_2,\cdots,b_r,\cdots,A^{\mu_r-1}b_r.$ (70)

• 对能控系统,显然有

$$\mu_1 + \mu_2 + \dots + \mu_r = n,$$
 (71)

且, 能控性指数µ满足

$$\mu = \max\{\mu_1, \mu_2, \cdots, \mu_r\},\tag{72}$$

并称 $\{\mu_1, \mu_2, \cdots, \mu_r\}$ 为系统(A, B)的能控性指数集

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

3 能控性分

2.4 单输入—单输出系统的能 控规范型 (5) 对系统(37)作非奇异线性变换, 其能控性指数 μ 和能控性指数 $\#\{\mu_1, \mu_2, \cdots, \mu_r\}$ 保持不变

第2章

- 2.1 能控性定义
- 2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数
- 2.3 能控性分解
- 2.4 单输入—单 输出系统的能 控规范型

- (5) 对系统(37)作非奇异线性变换, 其能控性指数 μ 和能控性指数 集 $\{\mu_1, \mu_2, \dots, \mu_r\}$ 保持不变
 - 这是因为, 对系统(37)作非奇异线性变换 $x = P\hat{x}, P \to n \times n$ 非奇异阵, 则有 $\hat{A} = P^{-1}AP, \hat{B} = P^{-1}B$, 故可导出

$$\hat{A}\hat{B} = P^{-1}AB$$
$$\hat{A}^2\hat{B} = P^{-1}A^2B$$

:

$$\hat{A}^{\mu - 1}\hat{B} = P^{-1}A^{\mu - 1}B$$

第2章

- 2.1 能控性足叉
 2.2 能控性判据
 221 能控性判据
- 2.2.2 能控性指数
- 2.3 形化工工工
- 2.4 平输入—斗 输出系统的能 控规范型

- (5) 对系统(37)作非奇异线性变换, 其能控性指数 μ 和能控性指数 $\$\{\mu_1, \mu_2, \dots, \mu_r\}$ 保持不变
 - 这是因为, 对系统(37)作非奇异线性变换 $x = P\hat{x}, P \rightarrow n \times n$ 非奇异阵, 则有 $\hat{A} = P^{-1}AP, \hat{B} = P^{-1}B$, 故可导出

$$\hat{A}\hat{B} = P^{-1}AB$$

$$\hat{A}^2\hat{B} = P^{-1}A^2B$$
:

. ..-1 &

$$\hat{A}^{\mu-1}\hat{B} = P^{-1}A^{\mu-1}B$$

• 从而有

$$\hat{Q}_{\mu} = \begin{bmatrix} \hat{B} & \hat{A}\hat{B} & \cdots & \hat{A}^{\mu-1}\hat{B} \end{bmatrix}$$

$$= P^{-1} \begin{bmatrix} B & AB & \cdots & A^{\mu-1}B \end{bmatrix}$$

$$= P^{-1}Q_{\mu},$$
(73)

第2章

2.1 能控性定义

2.2 能控性判据 2.2.1 能控性判据 2.2.2 能控性指数

2.3 能控性分角

2.4 单输入—³ 输出系统的能 控规范型

以及

$$\begin{bmatrix}
\hat{b}_{1}, \hat{A}\hat{b}_{1}, \cdots, \hat{A}^{\mu_{1}-1}\hat{b}_{1}, \hat{b}_{2}, \hat{A}\hat{b}_{2}, \cdots, \hat{A}^{\mu_{2}-1}\hat{b}_{2}, \\
\cdots, \hat{b}_{r}, \hat{A}\hat{b}_{r}, \cdots, \hat{A}^{\mu_{r}-1}\hat{b}_{r}
\end{bmatrix}
= P^{-1} \begin{bmatrix} b_{1}, Ab_{1}, \cdots, A^{\mu_{1}-1}b_{1}, b_{2}, Ab_{2}, \cdots, A^{\mu_{2}-1}b_{2}, \\
\cdots, b_{r}, Ab_{r}, \cdots, A^{\mu_{r}-1}b_{r}
\end{bmatrix}.$$
(74)

第2章

2.1 能控性足叉
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性指数

2.4 单输入— 输出系统的能 控规范型 • 以及

$$\begin{bmatrix}
\hat{b}_{1}, \hat{A}\hat{b}_{1}, \cdots, \hat{A}^{\mu_{1}-1}\hat{b}_{1}, \hat{b}_{2}, \hat{A}\hat{b}_{2}, \cdots, \hat{A}^{\mu_{2}-1}\hat{b}_{2}, \\
\cdots, \hat{b}_{r}, \hat{A}\hat{b}_{r}, \cdots, \hat{A}^{\mu_{r}-1}\hat{b}_{r}
\end{bmatrix} \\
= P^{-1} \begin{bmatrix} b_{1}, Ab_{1}, \cdots, A^{\mu_{1}-1}b_{1}, b_{2}, Ab_{2}, \cdots, A^{\mu_{2}-1}b_{2}, \\
\cdots, b_{r}, Ab_{r}, \cdots, A^{\mu_{r}-1}b_{r}
\end{bmatrix}.$$
(74)

• 式(73)和(74)表明, $rank\hat{Q}_{\mu} = rankQ_{\mu} = n$, 且 $\hat{b}_{1}, \hat{A}\hat{b}_{1}, \cdots, \hat{A}^{\mu_{1}-1}\hat{b}_{1}, \hat{b}_{2}, \hat{A}\hat{b}_{2}, \cdots, \hat{A}^{\mu_{2}-1}\hat{b}_{2},$ $\cdots, \hat{b}_{r}, \hat{A}\hat{b}_{r}, \cdots, \hat{A}^{\mu_{r}-1}\hat{b}_{r}$

为 \hat{Q}_u 中按前述方法搜索到的n个线性无关列

第2章

2.1 能控性足叉
 2.2 能控性判据
 2.2.1 能控性判据
 2.2.2 能控性捐款

2.4 单输入—单 输出系统的能 控规范型 以及

$$\begin{bmatrix}
\hat{b}_{1}, \hat{A}\hat{b}_{1}, \cdots, \hat{A}^{\mu_{1}-1}\hat{b}_{1}, \hat{b}_{2}, \hat{A}\hat{b}_{2}, \cdots, \hat{A}^{\mu_{2}-1}\hat{b}_{2}, \\
\cdots, \hat{b}_{r}, \hat{A}\hat{b}_{r}, \cdots, \hat{A}^{\mu_{r}-1}\hat{b}_{r}
\end{bmatrix}$$

$$= P^{-1} \begin{bmatrix} b_{1}, Ab_{1}, \cdots, A^{\mu_{1}-1}b_{1}, b_{2}, Ab_{2}, \cdots, A^{\mu_{2}-1}b_{2}, \\
\cdots, b_{r}, Ab_{r}, \cdots, A^{\mu_{r}-1}b_{r}
\end{bmatrix}.$$
(74)

• 式(73)和(74)表明, $rank\hat{Q}_{\mu} = rankQ_{\mu} = n$, 且 $\hat{b}_{1}, \hat{A}\hat{b}_{1}, \cdots, \hat{A}^{\mu_{1}-1}\hat{b}_{1}, \hat{b}_{2}, \hat{A}\hat{b}_{2}, \cdots, \hat{A}^{\mu_{2}-1}\hat{b}_{2},$ $\cdots, \hat{b}_{r}, \hat{A}\hat{b}_{r}, \cdots, \hat{A}^{\mu_{r}-1}\hat{b}_{r}$

为 \hat{Q}_u 中按前述方法搜索到的n个线性无关列

注:上述推导说明,能控性指数和能控性指数集在非奇异变换下保持不变

第2章

- 2.1 能控性定义
- 2.2 能控性判据
- 2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分
- 2.4 单输入—单 输出系统的能 控规范型

- (1) 2.1 能控性定义。
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- 2 2.2 #
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- 3 2.3 能控性分解
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- 4 24 半轴入一半轴由系织的能容规范型

2.3 能控性分解

第2章

2.1 能控性定3

2.2 能控性判法

2.3 能控性分離

2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分

2.4 单输入—³ 输出系统的能 控规范型 本节我们将讨论不完全能控的系统

2.3 能控性分解

第2章

2.1 能控性足叉
 2.2 能控性判据

2.3 能控性分角

2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分 解

2.4 单输入—单 输出系统的能 控规范型

本节我们将讨论不完全能控的系统

- 对于这一类系统,可以通过结构分解,将其结构以明显的形式 区分为能控部分和不能控部分
- 研究系统的结构分解,有助于更深刻的了解系统的结构特性, 也有助于更深入揭示状态空间描述和输入输出描述间的本质 差别

第2章

- 2.1 能控性定义
- 2.2 能控性判据
- 2.3.1 能控性在非奇界 线性变换下的属性
 2.3.2 核能控性结构分
- 2.4 单输入—单 输出系统的能 控规范型

- (1) 2.1 維控性定
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- 2 2.
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- 3 2.3 能控性分解
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解
- (4) 2.4 学的人一学的出系の的能控则或型

第2章

2.1 能控性定义

2.2 能控性判:

2.3.1 能控性在非奇。 线性变换下的属性 2.3.2 按能控性结构。

2.4 单输入— 输出系统的能 对系统进行结构分解是通过引入适当的线性非奇异变换来实现的

第2章

- 2.1 能控性定义
 2.2 能控性判据
 2.3 能控性分解
 2.3.1 能控性在非专用
- 型 2.4 单输入—单 输出系统的能

- 对系统进行结构分解是通过引入适当的线性非奇异变换来实现的
- 因此, 首先对系统的能控性在线性非奇异变换下的属性给出如下讨论:

定理

定理2.11 线性定常系统(A,B)的能控性在线性非奇异变换下不变.

第2章

- 2.1 能控性定义
 2.2 能控性判据
 2.3 能控性分解
- 解 2.4 单输入—单 输出系统的能 控规范型

- 对系统进行结构分解是通过引入适当的线性非奇异变换来实现的
- 因此, 首先对系统的能控性在线性非奇异变换下的属性给出如下讨论:

定理

定理2.11 线性定常系统(A,B)的能控性在线性非奇异变换下不变.

证明 对系统的状态空间描述为

$$\dot{x} = Ax + Bu.$$

● 引入非奇异线性变换x = Px̄, P为非奇异矩阵, 则与其代数等价的状态空间描述为

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u,$$

其中,
$$\bar{A} = P^{-1}AP$$
, $\bar{B} = P^{-1}B$

第2章

2.1 能控性定义

2.2 能控性判

2.3.1 能控性在非奇 线性变换下的属性 2.3.2 核能控性结构

2.4 单输入——输出系统的能 输出系统的能 按规范型 • 考察(Ā, B)的能控性矩阵, 有

$$\bar{Q}_C = \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \cdots & \bar{A}^{n-1}\bar{B} \end{bmatrix}$$
$$= \begin{bmatrix} P^{-1}\bar{B} & P^{-1}AB & \cdots & P^{-1}A^{n-1}B \end{bmatrix}$$
$$= P^{-1}Q_C.$$

第2章

2.1 能控性定义
2.2 能控性判据
2.3 能控性分解
2.3.1 能控性分解
战性变换下的属性

2.4 单输入— 输出系统的能 控规范型 考察(Ā, B)的能控性矩阵,有

$$\bar{Q}_C = \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \cdots & \bar{A}^{n-1}\bar{B} \end{bmatrix}$$
$$= \begin{bmatrix} P^{-1}\bar{B} & P^{-1}AB & \cdots & P^{-1}A^{n-1}B \end{bmatrix}$$
$$= P^{-1}Q_C.$$

于是

$$rankQ_C = rank\bar{Q}_C.$$

定理结论得证

第2章

2.1 能控性定义
2.2 能控性判据
2.3 能控性分解
2.3.1 能控性分解
(社交换下的属性
2.3.2 技能控性结构分

2.4 单输入—单 输出系统的能 控规范型 考察(Ā, B)的能控性矩阵,有

$$\bar{Q}_C = \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \cdots & \bar{A}^{n-1}\bar{B} \end{bmatrix}$$
$$= \begin{bmatrix} P^{-1}\bar{B} & P^{-1}AB & \cdots & P^{-1}A^{n-1}B \end{bmatrix}$$
$$= P^{-1}Q_C.$$

• 于是

$$rankQ_C = rank\bar{Q}_C$$
.

定理结论得证

注: 事实上, 在定理2.8的充分性证明中, 已证明和利用了

$$rank \begin{bmatrix} sI - A & B \end{bmatrix} = rank \begin{bmatrix} sI - \hat{A} & \hat{B} \end{bmatrix}, \forall s$$

这也能说明(A,B)的能控性在非奇异线性变换下的不变性

第2章

- 2.1 能控性定义
- 2.2 能控性判却
- 2.3.1 能控性在非奇异 线性变换下的属性
 2.3.2 按能控性结构分
- 2.4 早输入——早 输出系统的能 挖规范型

- 2.1.1 问题的提出
- 2.1.2 能控性定义
- 2.1.3 能控子空间与不能控子空间
- 2
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- ③ 2.3 能控性分解
 - 2.3.1 能控性在非奇异线性变换下的属性
 - 2.3.2 按能控性结构分解

2.3.2 按能控性结构分解

第2章

2.1 能控性定义

2.2 能控性判据

2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分

2.4 单输入—单输出系统的能 控规范型 • 考虑不完全能控的线性定常系统

$$\dot{x} = Ax + Bu,\tag{75}$$

其中,x为n维状态向量,u为p维控制向量,(A,B)分别为 $n \times n, n \times p$ 的实常阵

2.3.2 按能控性结构分解

第2章

2.1 能控性定义

2.2 能控性判据 2.3 能控性分解 2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 核能控性结构分

2.4 单输入—单 输出系统的能 控规范型 ● 考虑不完全能控的线性定常系统

$$\dot{x} = Ax + Bu,\tag{75}$$

其中,x为n维状态向量,u为p维控制向量,(A,B)分别为 $n \times n, n \times p$ 的实常阵

➡ 则,根据

$$rankQ_C = rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = k < n,$$

任选 Q_C 中k个线性无关的列,记为 t_1,t_2,\cdots,t_k ,并令

$$T_1 = [t_1 \ t_2 \ \cdots \ t_k],$$

第2章

2.1 能控性定义

2.2 能控性判据
2.3 能控性分解
2.3.1 能控性在非奇异
线性变换下的属性
2.3.2 核能控性结构分

2.4 单输入—³ 输出系统的能 控规范型 ● 考虑不完全能控的线性定常系统

$$\dot{x} = Ax + Bu,\tag{75}$$

其中,x为n维状态向量,u为p维控制向量,(A,B)分别为 $n \times n, n \times p$ 的实常阵

➡ 则,根据

$$rankQ_C = rank \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = k < n,$$

任选 Q_C 中k个线性无关的列, 记为 t_1, t_2, \cdots, t_k , 并令

$$T_1 = [t_1 \ t_2 \ \cdots \ t_k],$$

• 则由 • 定理2.4 知, T1的列构成Xc的基底

第2章

2.1 能控性定:

2.2 能控性判据

2.3.1 総控性在非奇 线性变换下的属性 2.3.2 按能控性结构:

2.4 单输入—单输出系统的能控规范型

• 再任选n-k个与 T_1 线性无关的列向量 $t_{k+1},t_{k+2},\cdots,t_n$, 记 $T_2 = [t_{k+1} \ t_{k+2} \ \cdots \ t_n],$

第2章

2.1 能控性足)

2.2 能控性判制

2.3.1 能控性在非奇引 线性变换下的属性 2.3.2 按能控性结构分 att

2.4 单输入—— 输出系统的能 控规范型 • 再任选n-k个与 T_1 线性无关的列向量 $t_{k+1}, t_{k+2}, \cdots, t_n$, 记

$$T_2 = [t_{k+1} \ t_{k+2} \ \cdots \ t_n],$$

令

$$T = \begin{bmatrix} T_1 & T_2 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix} \quad k \not\uparrow \bar{\tau}$$

$$(76)$$

第2章

2.1 能控性定义

2.2 能控性判据

2.3.1 能控性在非奇。 2.3.1 能控性在非奇。 线性变换下的属性 2.3.2 按能控性结构分解

2.4 单输入— 输出系统的能 控规范型 • 再任选n-k个与 T_1 线性无关的列向量 $t_{k+1},t_{k+2},\cdots,t_n$, 记

$$T_2 = [t_{k+1} \ t_{k+2} \ \cdots \ t_n],$$

• 令

$$T = \begin{bmatrix} T_1 & T_2 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix} \quad k \not\uparrow \bar{\tau}$$

$$(76)$$

● 则由T-1T = I, 推得

$$F_2^T T_1 = 0. (77)$$

这说明 F_2 各列属于 X_{NC}

第2章

2.1 能控性定义

2.2 能控性判据

2.3.1 能控性在非奇异 线性变换下的属性
2.3.2 按能控性结构分解

2.4 单输入— 输出系统的能 控规范型 • 再任选n-k个与 T_1 线性无关的列向量 $t_{k+1},t_{k+2},\cdots,t_n$,记

$$T_2 = [t_{k+1} \ t_{k+2} \ \cdots \ t_n],$$

令

$$T = \begin{bmatrix} T_1 & T_2 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix} \quad k \mathring{\uparrow} \mathring{\tau}$$

$$(76)$$

● 则由T-1T = I, 推得

$$F_2^T T_1 = 0. (77)$$

这说明 F_2 各列属于 X_{NC}

● 又由推论2.1, Xc是A的不变子空间, 故有

$$F_2^T A T_1 = 0,$$

第2章

2.1 肥松生火人

2.2 能控性判据

2.3.1 能控性在非奇多 线性变换下的属性
2.3.2 按能控性结构分解

2.4 单输入—² 输出系统的能 控规范型 • 再任选n-k个与 T_1 线性无关的列向量 $t_{k+1},t_{k+2},\cdots,t_n$,记

$$T_2 = [t_{k+1} \ t_{k+2} \ \cdots \ t_n],$$

令

$$T = \begin{bmatrix} T_1 & T_2 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix} \ \begin{array}{c} k \mathring{\uparrow} \mathring{\tau} \\ n - k \mathring{\uparrow} \mathring{\tau} \end{array}$$
 (76)

则由T⁻¹T = I, 推得

$$F_2^T T_1 = 0. (77)$$

这说明 F_2 各列属于 X_{NC}

• 又由推论2.1, Xc是A的不变子空间, 故有

$$F_2^T A T_1 = 0,$$

• 此外, B的各列属于 X_C , 故有

$$F_2^T B = 0.$$

第2章

2.3 能控性分解 2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分 解

2.4 单输入—单 输出系统的能 控规范型 • 基于上述关系式, 对系统(75)作非奇异线性变换 $x = T\hat{x}$, 则系统(75)可等价地转化为

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u,\tag{78}$$

其中,

$$\hat{A} = T^{-1}AT = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix} A \begin{bmatrix} T_1 & T_2 \end{bmatrix}$$

$$= \begin{bmatrix} F_1^T A T_1 & F_1^T A T_2 \\ 0 & F_2^T A T_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

$$\hat{B} = T^{-1}B = \begin{bmatrix} F_1^T \\ F_2^T \end{bmatrix} B$$

$$= \begin{bmatrix} F_1^T B \\ 0 \end{bmatrix} = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$
(79)

第2章

2.1 能控性定义

2.2 能控性判

2.3.1 能控性在非奇员 线性变换下的属性 2.3.2 按能控性结构分

2.4 单输入—— 输出系统的能 按规范规 ● 显然, 由Â, B的形式, 容易看出

$$k = rankQ_{C}$$

$$= rank[\hat{B} \ \hat{A}\hat{B} \ \cdots \ \hat{A}^{n-1}\hat{B}]$$

$$= rank\begin{bmatrix} B_{1} & A_{11}B_{1} & \cdots & A_{11}^{n-1}B_{1} \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(80)

第2章

2.1 能控性定义

2.2 能控性判据

2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分

2.4 单输入—³ 输出系统的能 控规范型 ● 显然, 由Â, B的形式, 容易看出

$$k = rankQ_{C}$$

$$= rank[\hat{B} \ \hat{A}\hat{B} \ \cdots \ \hat{A}^{n-1}\hat{B}]$$

$$= rank\begin{bmatrix} B_{1} & A_{11}B_{1} & \cdots & A_{11}^{n-1}B_{1} \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(80)

• 进而,可得

$$rank \begin{bmatrix} B_1 & A_{11}B_1 & \cdots & A_{11}^{n-1}B_1 \end{bmatrix} = k.$$

第2章

2.1 能控性定义

2.2 能控性判据

2.3.1 能控性在非奇。 线性变换下的属性 2.3.2 按能控性结构的

2.4 单输入—³ 输出系统的能 控规范型 ● 显然, 由Â, B的形式, 容易看出

$$k = rankQ_{C}$$

$$= rank[\hat{B} \ \hat{A}\hat{B} \ \cdots \ \hat{A}^{n-1}\hat{B}]$$

$$= rank\begin{bmatrix} B_{1} & A_{11}B_{1} & \cdots & A_{11}^{n-1}B_{1} \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(80)

• 进而,可得

$$rank \begin{bmatrix} B_1 & A_{11}B_1 & \cdots & A_{11}^{n-1}B_1 \end{bmatrix} = k.$$

• 又由 $span \begin{bmatrix} B_1 & A_{11}B_1 & \cdots & A_{11}^{k-1}B_1 \end{bmatrix}$ 为 A_{11} 不变子空间,从而有 $rank \begin{bmatrix} B_1 & A_{11}B_1 & \cdots & A_{11}^{k-1}B_1 \end{bmatrix} = rank \begin{bmatrix} B_1 & A_{11}B_1 & \cdots & A_{11}^{n-1}B_1 \end{bmatrix}$ $= k \tag{81}$

第2章

2.1 能控性定义

2.2 能控性判据

2.3.1 能控性在非奇导 线性变换下的属性
2.3.2 按能控性结构分

2.4 单输入—³ 输出系统的能 控规范型 ● 显然, 由Â, B的形式, 容易看出

$$k = rankQ_{C}$$

$$= rank[\hat{B} \ \hat{A}\hat{B} \ \cdots \ \hat{A}^{n-1}\hat{B}]$$

$$= rank\begin{bmatrix} B_{1} & A_{11}B_{1} & \cdots & A_{11}^{n-1}B_{1} \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(80)

• 进而,可得

$$rank \begin{bmatrix} B_1 & A_{11}B_1 & \cdots & A_{11}^{n-1}B_1 \end{bmatrix} = k.$$

• 又由 $span \left[B_1 \quad A_{11}B_1 \quad \cdots \quad A_{11}^{k-1}B_1 \right]$ 为 A_{11} 不变子空间,从而有 $rank \left[B_1 \quad A_{11}B_1 \quad \cdots \quad A_{11}^{k-1}B_1 \right] = rank \left[B_1 \quad A_{11}B_1 \quad \cdots \quad A_{11}^{n-1}B_1 \right]$ $= k \tag{81}$

● 即, 可知(A₁₁, B₁)能控

第2章

综合前述的推导, 我们有下面的结论

定理

定理2.12 对于不完全能控系统(75), 存在非奇异线性变换 $x = T\hat{x}$, 使系统结构按能控性分解的规范表达式为

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u, \tag{82}$$

其中, x_1 为k维能控分状态向量, x_2 为n-k维不能控分状态向量, $k=rankQ_c$.

• 由定理2.12, 可得

第2章

2.1 能控性定

2.2 能程性判

2.3 能控性分角

2.3.1 能控性在非奇 线性变换下的属性

2.3.2 按能控性结构 解

2.4 單輸入— 輸出系統的能 控规范型

第2章

2.1 能控性定义

2.2 能控性判

2.3 能控性分解 2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分解

2.4 单输入—单 输出系统的能 控规范型

- 由定理2.12, 可得
 - n − k维子系统

$$\dot{x}_2 = A_{22} x_2 \tag{83}$$

是完全不能控的

· k维子系统

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1u \tag{84}$$

是完全能控的

第2章

- 2.1 能控性定义
- 2.2 能控性判据
 2.3 能控性分解
- 2.3.1 能控性在非奇异 线性变换下的属性 2.3.2 按能控性结构分 解
- 2.4 单输入—单 输出系统的能 控规范型

- 由定理2.12, 可得
 - n − k维子系统

$$\dot{x}_2 = A_{22} x_2 \tag{83}$$

是完全不能控的

· k维子系统

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1u \tag{84}$$

是完全能控的

• 对子系统(84)的能控性, 由(A₁₁, B₁)能控, 故能控Gram矩阵

$$\bar{W}_C[0,T] = \int_0^T e^{-A_{11}t} B_1 (e^{-A_{11}t} B_1)^T dt$$

为非奇异

第2章

2.1 能控性定义

2.2 能控性判制

2.3.1 能拉性在非奇异 线性变换下的属性 2.3.2 按能控性结构分 解

2.4 单输入—单 输出系统的能 控规范型 • 由定理2.12, 可得

n − k维子系统

$$\dot{x}_2 = A_{22} x_2 \tag{83}$$

是完全不能控的

· k维子系统

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1u \tag{84}$$

是完全能控的

• 对子系统(84)的能控性, 由(A₁₁, B₁)能控, 故能控Gram矩阵

$$\bar{W}_C[0,T] = \int_0^T e^{-A_{11}t} B_1 (e^{-A_{11}t} B_1)^T dt$$

为非奇异

• 若取控制u(t)为

$$u(t) = -B_1^T e^{-A_{11}^T t} \bar{W}_C^{-1}[0, T] \left(x_1(0) + \int_0^T e^{-A_{11} t} A_{12} e^{A_{22} t} x_2(0) dt \right)$$

第2章

2.1 能控性定义

2.2 能控性判据

 2.3 能控性分角
 2.3.1 能控性在非奇异 线性变换下的属性
 2.3.2 按能控性结构分

2.4 单输入—单 输出系统的能 控规范型 ➡ 则系统(84)在时刻T的状态为

$$\begin{split} x_1(T) &= e^{A_{11}T} x_1(0) + \int_0^T e^{A_{11}(T-t)} A_{12} e^{A_{22}t} x_2(0) dt \\ &- \int_0^T e^{A_{11}(T-t)} B_1 B_1^T e^{-A_{11}^T t} \bar{W}_C^{-1}[0,T] \Big(x_1(0) + \int_0^T e^{-A_{11}t} A_{12} e^{A_{22}t} x_2(0) dt \Big) dt \\ &= e^{A_{11}T} x_1(0) + \int_0^T e^{A_{11}(T-t)} A_{12} e^{A_{22}t} x_2(0) dt \\ &- e^{A_{11}T} \int_0^T e^{-A_{11}t} B_1 B_1^T e^{-A_{11}^T t} dt \cdot \bar{W}_C^{-1}[0,T] \Big(x_1(0) \\ &+ \int_0^T e^{-A_{11}t} A_{12} e^{A_{22}t} x_2(0) dt \Big) \\ &= e^{A_{11}T} x_1(0) + \int_0^T e^{A_{11}(T-t)} A_{12} e^{A_{22}t} x_2(0) dt \\ &- e^{A_{11}T} \bar{W}_C[0,T] \bar{W}_C^{-1}[0,T] \Big(x_1(0) + \int_0^T e^{-A_{11}t} A_{12} e^{A_{22}t} x_2(0) dt \Big) \\ &= 0 \end{split}$$

第2章

• 上式说明, 对任意初始状态 $x_1(0) \neq 0$, 存在控制u(t), 使得 $x_1(T) =$ 0, 故子系统(84)为完全能控的

第2章

2.1 能控性定义

2.2 能控性判制

2.3 能控性分角 2.3.1 能控性在非奇员 线性变换下的属性 2.3.2 接能控性结构分

2.4 单输入—² 输出系统的能 控规范型 ● 上式说明, 对任意初始状态 $x_1(0) \neq 0$, 存在控制u(t), 使得 $x_1(T) = 0$, 故子系统(84)为完全能控的

注1: 考虑到

$$\det(sI - A) = \det(sI - \hat{A}) = \det\begin{bmatrix} sI - A_{11} & -A_{12} \\ 0 & sI - A_{22} \end{bmatrix}$$
$$= \det(sI - A_{11}) \det(sI - A_{22}),$$

第2章

2.1 能控性定义

2.2 能控性判据 2.3 能控性分解 2.3.1 能控性在非奇所 發性变换下的属性 2.3.2 按能控性结构分

2.4 單輸入—單 輸出系統的能 控规范型 ● 上式说明, 对任意初始状态 $x_1(0) \neq 0$, 存在控制u(t), 使得 $x_1(T) = 0$, 故子系统(84)为完全能控的

注1: 考虑到

$$\det(sI - A) = \det(sI - \hat{A}) = \det\begin{bmatrix} sI - A_{11} & -A_{12} \\ 0 & sI - A_{22} \end{bmatrix}$$
$$= \det(sI - A_{11}) \det(sI - A_{22}),$$

这说明系统(75)的特征值由两部分构成

- 一部分为A11的特征值, 称为系统的能控振型
- 另一部分为A22的特征值, 称为系统的不能控振型

第2章

...2 能控性判据
...3 能控性分解
2.3.1 能控性在非奇所
战性发展下的属性

2.4 单输入—单 输出系统的能 控规范型 • 上式说明, 对任意初始状态 $x_1(0) \neq 0$, 存在控制u(t), 使得 $x_1(T) = 0$, 故子系统(84)为完全能控的

注1: 考虑到

$$\det(sI - A) = \det(sI - \hat{A}) = \det\begin{bmatrix} sI - A_{11} & -A_{12} \\ 0 & sI - A_{22} \end{bmatrix}$$
$$= \det(sI - A_{11}) \det(sI - A_{22}),$$

这说明系统(75)的特征值由两部分构成

- 一部分为A11的特征值, 称为系统的能控振型
- 另一部分为A22的特征值, 称为系统的不能控振型
- 可以看出, 控制u的引入, 只能改变能控振型的位置, 而不能改变不能控振型的位置

第2章

0, 故子系统(84)为完全能控的

注1: 考虑到

$$\det(sI - A) = \det(sI - \hat{A}) = \det\begin{bmatrix} sI - A_{11} & -A_{12} \\ 0 & sI - A_{22} \end{bmatrix}$$
$$= \det(sI - A_{11}) \det(sI - A_{22}),$$

• 上式说明, 对任意初始状态 $x_1(0) \neq 0$, 存在控制u(t), 使得 $x_1(T) =$

这说明系统(75)的特征值由两部分构成

- 一部分为A11的特征值, 称为系统的能控振型
- 另一部分为A22的特征值, 称为系统的不能控振型
- 可以看出, 控制u的引入, 只能改变能控振型的位置, 而不能改变不能控振型的位置

注2: 能控性结构分解中,变换矩阵T的选取并不是唯一的,T的选取不同,(83)中规范表达式虽然不变,但各块的值却不同

第2章

2.1 能控性定

2.2 能控性判扎

2.3.1 能控性在非奇 线性变换下的属性 2.3.2 按能控性结构

2.4 单输入—

2.4 单输入— 输出系统的能 控规范型

例2.3.1 给定线性定常系统
$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u.$$

第2章

2.1 能控性定3

2.2 能控性判据

 2.3 能控性分解
 2.3.1 能控性在非奇员 线性变换下的属性
 2.3.2 按能控性结构分

2.4 单输入——输出系统的能 输出系统的能 例2.3.1 给定线性定常系统

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u.$$

• 因为
$$rank$$
 $\begin{bmatrix} B & AB \end{bmatrix} = rank \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 1 < 2$. 故系统不完全能控

第2章

2.1 能控性定义

2.2 能控性列描 2.3 能控性分解 2.3.1 能控性在非奇界 线性变换下的属性

2.4 单输入—单 输出系统的能 按細节型 例2.3.1 给定线性定常系统

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u.$$

- 因为rank $\begin{bmatrix} B & AB \end{bmatrix} = rank \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 1 < 2$. 故系统不完全能控
- ➡ 若取

$$T = \begin{bmatrix} T_1 & T_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix},$$

则

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

第2章

2.1 能控性定义

2.3 能控性分解 2.3.1 能控性在非奇异 线性变换下的属性

2.4 单输入—单 输出系统的能 控规范型 例2.3.1 给定线性定常系统

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u.$$

- 因为rank $\begin{bmatrix} B & AB \end{bmatrix} = rank \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 1 < 2$. 故系统不完全能控
- ⇒ 若取

$$T = \begin{bmatrix} T_1 & T_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \ T^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix},$$

则

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

• 系统的能控性分解为

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u.$$

第2章

2.1 能控性定义

2.2 能控性判据 2.3 能控性分解

2.4 单输入—单 输出系统的能 控规范型

- 1) 2.1 能控性定义。
 - 2.1.1 问题的提出
 - 2.1.2 能控性定义
 - 2.1.3 能控子空间与不能控子空间
- 2
 - 2.2.1 能控性判据
 - 2.2.2 能控性指数
- (3)
- 2.3.1 能控性在非奇异线性变换下的属性
- 0232接能控性结构分解
- ▲ 2.4 单输入—单输出系统的能控规范型

第2章

2.1 能控性定义2.2 能控性判却2.3 能控性分解

2.4 单输入— 输出系统的能 控规范型 对于完全能控的线性定常系统,

如果从能控这个基本属性出发来构造一个非奇异的变换矩阵, 那么可把系统的状态空间描述在这一线性变换下, 化成只有能控系统才具有的标准形式, 称之为能控规范型

第2章

2.1 能控性定3

2.2 能程性判

....

2.4 半输入—— 输出系统的能 控规范型 ➡ 考虑完全能控的单输入—单输出线性定常系统

$$\dot{x} = Ax + bu,
y = cx,$$
(85)

其中,A为 $n \times n$ 常阵,b和c分别为 $n \times 1$, $1 \times n$ 常阵

第2章

2.1 能控性定义

2.2 HOUSE 1274.

2.4 单输入—单 输出系统的能 _{挖韧范}刑 ➡ 考虑完全能控的单输入—单输出线性定常系统

$$\dot{x} = Ax + bu,
y = cx,$$
(85)

其中,A为 $n \times n$ 常阵,b和c分别为 $n \times 1$, $1 \times n$ 常阵

• 由于系统为完全能控,故有

$$rank \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \end{bmatrix} = n.$$
 (86)

第2章

2.1 能控性定义

2.2 能控性判析
 2.3 能控性分析

2.4 平输人—— 输出系统的能 控规范型 ➡ 考虑完全能控的单输入—单输出线性定常系统

$$\dot{x} = Ax + bu,
y = cx,$$
(85)

其中,A为 $n \times n$ 常阵,b和c分别为 $n \times 1,1 \times n$ 常阵

• 由于系统为完全能控,故有

$$rank \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \end{bmatrix} = n.$$
 (86)

• 此外,令系统的特征多项式为

$$\det(sI - A) = \alpha(s) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0.$$
 (87)

第2章

2.1 能控性定义

2.2 能控性判据

2.4 单输入—— 输出系统的能 控规范型 • 构造变换矩阵

$$P = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$

$$= \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{bmatrix} 1 & & & & \\ a_{n-1} & \ddots & & & \\ \vdots & \ddots & \ddots & & \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}$$
(88)

显然,P在系统能控条件下为非奇异

第2章

2.1 能控性定义

2.2 能發性利

2.4 单输入—³ 输出系统的能 控规范型 • 构造变换矩阵

$$P = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$

$$= \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{bmatrix} 1 & & & & \\ a_{n-1} & \ddots & & & \\ \vdots & \ddots & \ddots & & \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}$$
(88)

显然,P在系统能控条件下为非奇异

• 定义n个常数

$$\beta_{n-1} = cb,$$

$$\beta_{n-2} = cAb + a_{n-1}cb,$$

$$\cdots$$

$$\beta_1 = cA^{n-2}b + a_{n-1}cA^{n-3}b + \cdots + a_2cb,$$

$$\beta_0 = cA^{n-1}b + a_{n-1}cA^{n-2}b + \cdots + a_1cb.$$
(89)

第2章

2.1 能控性定义

2.2 能控性判据
 3 能挖性分解

2.4 单输入— 输出系统的能 控规范型 在前述基础上, 可导出系统能控规范型的基本结论

定理

定理2.13 对于完全能控的单输入—单输出系统(85), 引入线性非奇异变换 $x = P\bar{x}$, 即可导出其能控规范型为

$$\dot{\bar{x}} = A_c \bar{x} + b_c u,
y = c_c \bar{x},$$
(90)

其中,

$$A_{c} = P^{-1}AP = \begin{bmatrix} 0 & 1 \\ \vdots & \ddots & \\ 0 & & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix}, b_{c} = P^{-1}b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, (91)$$

$$c_{c} = cP = \begin{bmatrix} \beta_{0} & \beta_{1} & \cdots & \beta_{n-1} \end{bmatrix}.$$

证明 (1) 推导Ac的形式

第2章

2.1 能控性定3

2.3 肥松性分

2.4 平输人— 输出系统的自 控规范型

第2章

2.1 能控性定义

2.2 能控性判据

2.4 单输入— 输出系统的能 证明 (1) 推导A_c的形式

• 利用 $A_c = P^{-1}AP$, 可导出

$$PA_c = AP = \begin{bmatrix} Ae_1 & Ae_2 & \cdots & Ae_n \end{bmatrix}$$

$$= \begin{bmatrix} A^n b & \cdots & A^2 b & Ab \end{bmatrix} \begin{bmatrix} 1 \\ a_{n-1} & \ddots \\ \vdots & \ddots & \ddots \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}. \tag{92}$$

第2章

2.1 能控性定义

2.2 能控性判据

2.4 单输入— 输出系统的自 控规范型 证明 (1) 推导 A_c 的形式

• 利用 $A_c = P^{-1}AP$,可导出

$$PA_c = AP = \begin{bmatrix} Ae_1 & Ae_2 & \cdots & Ae_n \end{bmatrix}$$

$$= \begin{bmatrix} A^{n}b & \cdots & A^{2}b & Ab \end{bmatrix} \begin{bmatrix} 1 & & & & \\ a_{n-1} & \ddots & & & \\ \vdots & \ddots & \ddots & & \\ a_{1} & \cdots & a_{n-1} & 1 \end{bmatrix}.$$

利用凯莱-哈密顿定理, α(A) = 0和(88)可进一步得到

$$Ae_1 = (A^nb + a_{n-1}A^{n-1}b + \dots + a_1Ab + a_0b) - a_0b = -a_0e_n,$$

$$Ae_2 = (A^{n-1}b + a_{n-1}A^{n-2}b + \dots + a_2Ab + a_1b) - a_1b = e_1 - a_1e_n,$$

$$Ae_{n-1} = (A^2b + a_{n-1}Ab + a_{n-2}b) - a_{n-2}b = e_{n-2} - a_{n-2}e_n,$$

$$Ae_n = (Ab + a_{n-1}b) - a_{n-1}b = e_{n-1} - a_{n-1}e_n,$$

第2章

2.1 能控性定义

2.2 能控性判決

2.3 能控性分)

2.4 单输入— 输出系统的能 控规范型 • 将(93)代入(92), 可得

$$PA_{c} = \begin{bmatrix} -a_{0}e_{n} & e_{1} - a_{1}e_{n} & \cdots & e_{n-2} - a_{n-2}e_{n} & e_{n-1} - a_{n-1}e_{n} \end{bmatrix}$$

$$= \begin{bmatrix} e_{1} & e_{2} & \cdots & e_{n} \end{bmatrix} \begin{bmatrix} 0 & 1 & & & \\ \vdots & & \ddots & & \\ 0 & & & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix}.$$

$$(94)$$

第2章

2.1 能控性定义

2.2 月じりエリエテリト

2.4 单输入—³ 输出系统的能 控规范型 • 将(93)代入(92), 可得

$$PA_{c} = \begin{bmatrix} -a_{0}e_{n} & e_{1} - a_{1}e_{n} & \cdots & e_{n-2} - a_{n-2}e_{n} & e_{n-1} - a_{n-1}e_{n} \end{bmatrix}$$

$$= \begin{bmatrix} e_{1} & e_{2} & \cdots & e_{n} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ \vdots & & \ddots \\ 0 & & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix}.$$

$$(94)$$

• 因为 $[e_1 \ e_2 \ \cdots \ e_n] = P$,将上式左乘 P^{-1} ,即可得 A_c 的表达式

第2章

2.1 能控性定3

2.2 NO 11 12 7

2.3 肥松生为

2.4 半输入— 输出系统的自 控规范型 (2) 推导b_c的形式

第2章

2.1 能控性定义

2.2 能控性判据

2.4 单输入— 输出系统的能 控规范型 (2) 推导bc的形式

• 利用 $b_c = P^{-1}b$ 和(88), 可导出

$$Pb_c = b = e_n$$

$$= \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$= P \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

(95)

第2章

2.1 能控性定义

2.2 能控性利引

2.4 单输入— 输出系统的能 控规范型 (2) 推导b_c的形式

• 利用 $b_c = P^{-1}b$ 和(88), 可导出

$$= P \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \end{bmatrix}$$

 $Pb_c = b = e_n$

• 将上式左乘P-1,即可得b。的表达式

(95)

第2章

2.1 能控性定义

2.2 肥役生产

2.4 单输入— 输出系统的能 按細蓝型 • (3) 推导 c_c 的形式

第2章

2.1 能控性定义

乙.乙 月巳寸至り王チり寸が

2.4 单输入—³ 输出系统的能 控规范型 ● (3) 推导c_c的形式

• 由 $c_c = cP$ 和式(88)及(89), 可得

$$c_c = cP$$

$$= c \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{bmatrix} 1 \\ a_{n-1} & \ddots & \\ \vdots & \ddots & \ddots \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{n-1} \end{bmatrix}.$$

$$(96)$$

即得 c_c 的表达式

第2章

● (3) 推导c_c的形式

• 由 $c_c = cP$ 和式(88)及(89), 可得

$$c_c = cP$$

$$= c \begin{bmatrix} A^{n-1}b & \cdots & Ab & b \end{bmatrix} \begin{bmatrix} 1 \\ a_{n-1} & \ddots & \\ \vdots & \ddots & \ddots \\ a_1 & \cdots & a_{n-1} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{n-1} \end{bmatrix}.$$

$$(96)$$

即得 c_c 的表达式

⇒ 综合(1)~(3), 定理结论得证

第2章

2.1 能控性定义

2.2 能控性判

2.3 能控性分

2.4 单输入—³ 输出系统的能 控规范型 例2.4.1 给定能控的单输入—单输出线性定常系统

$$\dot{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} u, \ n = 3,$$
$$y = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} x$$

第2章

2.1 能控性定义

2.2 能控性判据

2.4 单输入— 输出系统的能 控规范型 例2.4.1 给定能控的单输入—单输出线性定常系统

$$\dot{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} u, \ n = 3,$$
$$y = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} x$$

• 其特征多项式

$$\alpha(s) = \det(sI - A) = s^3 - 5s + 4,$$

第2章

2.1 能控性定义

2.2 能控性判据

2.4 单输入— 输出系统的能 控规范型 例2.4.1 给定能控的单输入—单输出线性定常系统

$$\dot{x} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} u, \ n = 3,$$
$$y = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} x$$

• 其特征多项式

$$\alpha(s) = \det(sI - A) = s^3 - 5s + 4,$$

• 进而,有

$$\beta_2 = cb = 3$$

 $\beta_1 = cAb + a_2cb = 4$
 $\beta_0 = cA^2b + a_2cAb + a_1cb = 0$

第2章

▶ 则系统的能控规范型为

$$\dot{\bar{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 0 \end{bmatrix} \bar{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 4 & 3 \end{bmatrix} \bar{x}$$

第2章

2.1 能控性定义

2.2 能拉性分

2.4 单输入— 输出系统的能 控规范型

➡ 则系统的能控规范型为

$$\dot{\bar{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 0 \end{bmatrix} \bar{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 4 & 3 \end{bmatrix} \bar{x}$$

由(88)式,还可求得变换阵

$$P = \begin{bmatrix} A^2b & Ab & b \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ a_2 & 1 & 0 \\ a_1 & a_2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -4 & 3 & 1 \\ 0 & 5 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$

第2章

2.1 能控性定义

2.2 化红红外

2.4 单输入— 输出系统的自 控规范型

- 注1: 能控规范型 (A_c,b_c) 以明显的形式与反映系统结构特性的特征 多项式系数直接联系起来,对于综合系统的状态反馈,是很方便的

第2章

2.1 能控性定义

2.2 HC411274

...3 能控性分

2.4 单输入—³ 输出系统的能 控规范型

• 教材:

程兆林, 马树萍. 线性系统理论. 北京: 科学出版社, pp. 29-52