网络套接字报文格式定义

通用报文结构定义 (Message)

网络套接字报文结构由三部分信息段构成,分别为:报文头(固定)、数据块(可变)、校验码(固定)。

• 成员列表:

成员	类型	预定义赋 值(0x)	描述
报文头	header type	/	唯一标识报文的服务信息段
数据块	block type[n]	/	可变序列长度的数据信息段
循环冗余检测 (校验码)	short	/	用于校验报文在传输过程中是否出错,UDP协议中使用,TCP协议中使用缺省值
		00 00	缺省值

• 成员关系:

1. 报文头 (Message Header)

用于标识服务信息的固定报文分段,在通讯请求和响应任务中都会使用。主要提供的服务信息包括:协议版本、传输类型,读写操作标识,错误码等。

• 功能:

- 。 保持通讯协议版本一致性;
- 。 验证传输方向正确;
- 。 通过动作标识实现数据信息交互操作;
- 。 验证交互操作的异常并交互。

• 成员列表:

成员	类型	预定义 赋值 (0x)	描述
起始字	short	FE FE	标识报文起始
版本号	short	00 01	标识报文协议主版本和子版本
传输 类型	char	1	标识信息传输类型
		01	客户端(机器人)至服务器(Al Box)
		10	服务器(Al Box)至客户端(机器人)
动作 标识	char	1	标识信息交互操作
		00	无动作
		01	客户端(机器人)CycleOn(检测就绪)请求,服务器(Al Box)CycleOn(检测就绪)完成
		02	客户端(机器人)CycleOff(检测终止)请求,服务器(Al Box)CycleOff(检测终止)完成
		23	客户端(机器人)当前位姿pose发送请求,服务器(Al Box)位姿接收完成
		24	客户端(机器人)寄存器位姿数据发送请求,服务器(Al Box)寄存器位姿数据接收完成
		25	客户端(机器人)容差值tolerance发送请求,服务器(Al Box)容差值接收完成
		26	客户端(机器人)发送程序索引号(程序索引号与工件对应),服务器(Al Box)返还消息如果包含索引号,表示服务器准备就绪,如果客户端回复409时,表示服务器尚未准备好
		27	客户端(机器人)发送视觉检测结果获取请求,服务器(Al Box)返还视觉检测结果码
数据 块类 型	char	/	标识数据块类型
		00	空数据块
		01	位姿数据pose
		02	检测容差值tolerance
		03	程序索引号Progldx/视觉检测结果码ResultCode

成员	类型	预定义 赋值 (0x)	描述
数据 块数 量	char	XX	标识数据块总数
数据 块长 度	short	XX XX	标识每个数据块的长度
错误 码	short	/	标识交互操作的异常类型和异常序号
		0000	无错误
		0001	Al Box的CycleOn检测未就绪
		0002	Al Box的CycleOff检测终止未正确关闭
		1001	AI Box的位姿pose数据未收到或者解析错误
		1002	AI Box的容差值tolerance数据未收到或者解析错误

注: 报文头总长度为: 2+2+1+1+1+1+2+2=12 (字节) , 为定长字节序列

• 成员关系:

报文头<header type>

+起始字: short

+版本号: short

+传输方向: char

+动作标识: char

+数据块类型: char

+数据块数量: char

+数据块长度: short

+错误码: short

2. 数据块 (Data Block, 单个定义)

用于承载数据信息的可变报文分段,在响应任务中使用。主要提供的数据信息包括:位姿数据列表及其他未来可扩展的数据列表。

• 功能:

- 。 传输确定数量的若干组数据信息。
- 成员列表:

成员	类型	预定义赋 值(0x)	描述
索引号	char	XX	标识数据的序列索引编号
机器人位姿pose	float[6]	/ (可缺 省)	标识对象在三维笛卡尔坐标系下的 位姿 x; y; z; w; p; r;
视觉检测容差值tolerance	float	/ (可缺 省)	标识对象的检测容差值
程序索引号Progldx/视觉检 测结果码ResultCode	int	/ (可缺 省)	程序索引号Progldx对应工件信息;视觉检测结果码对应结果状态

注:索引号是为了标识当前数据是第几个数据块,不可缺省值,以避免数据在传输时,数据块顺序发生错误,索引号从0x00开始,0x00代表第一个DataBlock。

程序索引号Progldx (国新项目临时定义,根据具体项目实施调整工件信息):

Progldx数值	工件信息
0	车型E131,前风挡
1	车型E131,后风挡
2	车型E311,前风挡
3	车型E311,后风挡

视觉检测结果码ResultCode:

ResultCode	结果码输 出端	状态码信息
0	客户端	客户端初始时将寄存器设置为空的结果码
1	服务器	Cycle检测判定为OK
2	服务器	Cycle检测判定为NG
202	服务器	服务器(Al Box/上位机)已经接收请求,但是尚未处理完毕
400	服务器	客户端(机器人)发送的语义有误,当前请求无法被服务器理解。
404	客户端	客户端(机器人)发送的请求未收到响应,超时退出
409	服务器	服务器 (AI Box/上位机) 被请求的资源的当前状态之间存在冲突,请求无法完成。

• 成员关系:

数据块<Data Block>

+索引号: char

+位姿pose: float[6]

+容差值tolerance: float

+程序索引号Progldx/视觉检测结果码ResultCode: int

网络套接字通讯时序

建立/断开连接:

• 建立套接字连接:

信号状态交互:

• CycleOn/Off视觉触发:

数据信息交互:

• 机器人实时位姿:

• 视觉检测容差值:

KAREL iSight程序说明(TP端-API)

KAREL iSight是用于机器人与外界通讯的程序,通过机器人编程KAREL实现,机器人TP端通过指令 CALL ISIGHT (ParamAt 1, ...), 实现对iSight程序的调用, iSight的TP-API通过参数 ParamAt 来区分程序的调用类型, 具体使用如下所示:

1. ParamAt 1 = 0 , 执行iSight对外界的通讯设置:

```
CALL ISIGHT(0, is_simulate = 0, tag = 'C1:', time_out = 1000, task_status =
1, connect_status = 1)
```

- is_simulate:使用实际机器人时为0,使用RoboGuide时为1;
- o tag: SM通讯的标签,为三个字符,如 c1:, c1 代表使用 \$HOSTC_CFG[1] 中地址;
- o time_out: SM通讯超时时间,用于请求与服务器(上位机)连接以及动作请求(不包含视觉检测结果的请求)超时未响应时间,单位ms,未响应时将R[connect_status]置为0(代表无法连接);
- task_status: 服务器输出信号位标识,服务器任务执行完成后(此时服务器可以正常连接), 机器人信号位FLAG[task_status] = ON;
- o connect_status: 机器人尝试连接服务器, 当connect_time_out超时未收到服务器连接, 将连接状态写入寄存器R[connect_status]=XX, 其中XX为具体数值, **0代表无法连接, 1代表连接正常**;
- 2. ParamAt 1 = 1, ParamAt 1 = 2, 分别执行机器人与服务器的连接与断开, **全局time_out有效**

```
CALL ISIGHT(1) # 机器人与服务器连接
CALL ISIGHT(2) # 机器人与服务器断开
```

附加接口(需要额外定义两个调用接口,实现机器人与服务器连接/断开,以便TP程序调用时更加直观):

CALL ISIGHT_CONN(5000)# isight客户端(机器人)尝试与服务器连接(conn_time_out = 5000ms超时退出)CALL ISIGHT_DISC# 客户端(机器人)与服务器断开连接

3. ParamAt 1 = 3, 机器人 (客户端) 发送动作信号, 报文头动作标识对应触发, **全局time_out有**

CALL ISIGHT(3, ActionID, ..) # 调用isight程序,发送动作任务请求

o ActionID: 代表动作任务请求的标识,以十进制标识,在调用时,需要根据报文头定义,将动作标识转化为十进制,调用iSight发送动作请求,以下是几个动作案例:

CALL ISIGHT(3, 0) # ActionID=0, 机器人发送无动作请求,服务器仍然响应,机器人信号位仍然置为FLAG[task_status] = OFF
CALL ISIGHT(3, 1) # ActionID=1, 机器人发送CycleOn请求
CALL ISIGHT(3, 2) # ActionID=2, 机器人发送CycleOff请求

 CALL ISIGHT(3, 35)
 # ActionID=35 (0x23), 机器人发送位姿pose (当前tp示教下位姿)

 CALL ISIGHT(3, 36, PR_ID)
 # ActionID=36 (0x24), 机器人发送寄存器位姿 (PR[PR_ID]

 寄存器存储的位姿)
 # ActionID=37 (0x25), 机器人发送容差值tolerance (R[R_ID]存储的值)

CALL ISIGHT(3, 38, ProgIdx) # ActionID=38 (0x26), 机器人发送当前程序号ProgIdx给AI Box, 告知工件索引号
CALL ISIGHT(3, 39, R_ID, vision_time_out = 5000) # ActionID=39 (0x27), 机器人发送视觉检测结果的请求, AI Box将检测结果码返回,并存放于寄存器R_ID中,如果在vision_time_out未收到服务器响应,客户端(机器人)将结果寄存器R_ID写为404,并且连接状态寄存器R[connect_status]=0 (无法连接)

KAREL Send_Pos_On/Off程序说明 (TP端-API)

Send_Pos_On与Send_Pos_Off是除iSight外的两个KAREL程序,用于在后台运行,以固定频率发送机器人的实时位姿数据,Send_Pos_On/Off与iSight的报文协议保持一致(发送的位姿报文仍然依据协议),使用如下:

 Run Send_Pos_On
 # 后台实时发送机器人位姿数据(状态: 开启)

 CALL Send_Pos_Off
 # 后台实时发送机器人位姿数据(状态: 关闭)

程序运行逻辑

程序依据以下逻辑运行:

```
CALL ISIGHT(0, is_simulate = 0, tag = 'C1:', time_out = 5000, task_status = 1,
connect_status = 1)  # iSight连接配置
             # iSight: 机器人与服务器连接,使用全局time_out
CALL ISIGHT(1)
CALL ISIGHT(3, 38, ProgIdx = XX) # ActionID=38 (0x26), 机器人TP告诉AI Box, 当前运
行底涂工件的程序号ProgIdx,使用全局time_out
Run Send_Pos_On
                 # Send_Pos: 后台实时发送机器人位姿数据(状态: Send_Pos连接并开启
上报轨迹)
CALL ISIGHT(3, 1) # ActionID=1, 机器人发送CycleOn请求,使用全局time_out
# ======== #
# ======= 机器人运行底涂轨迹 ======== #
# ======= #
CALL ISIGHT(3, 2)
                 # ActionID=2,机器人发送CycleOff请求,使用全局time_out
CALL Send_Pos_Off
断开连控\
                 # Send_Pos: 后台实时发送机器人位姿数据(状态: Send_Pos停止上报并
断开连接)
wait 1.0
                  # 等待1s结果
CALL ISIGHT(3, 39, R_ID = XX, vision_time_out = 5000) # ActionID=39 (0x27), 机器
人向AI Box请求视觉检测结果,存放于R_ID=XX,如果超时vision_time_out未收到响应,寄存器
R[R_ID]=404,并且连接状态寄存器R[connect_status]=0
```

iSight: 机器人与服务器断开,使用全局time_out

CALL ISIGHT(2)