IESB

Especialização em Inteligência Artificial

Disciplina: Fundamentos de Inteligência Artificial

Docente: Tatiana Tavares Discente: Henrique Brandão

Proposta:

Utilizando a toolbox de sua preferência, realize o treinamento de un Perceptron Multicamadas para resolver um problema de classificação hiper-parâmetros do seu modelo (número de neurônios, número de aprendizagem, função de ativação, entre outros) e discuta aspectos (porcentagem de classificaçãocorreta).

```
In [1]:
       import numpy as np
       import pandas as pd
       from random import choice
       from keras.utils import np_utils
       from keras.models import Sequential
       from keras.layers import Dense, Dropout
       from keras.backend import clear_session
       from sklearn.preprocessing import LabelEncoder
       from sklearn.model_selection import train_test_split
       from sklearn.metrics import classification_report, confusion_matrix
```

Primeiramente, vamos carregar nossos dados para a memória:

```
In [2]:
       # Dados podem ser obtidos em: https://archive.ics.uci.edu/ml/dataset
       df = pd.read_csv(filepath_or_buffer='iris.csv')
       df.shape
         (150, 5)
```

In [3]: df.head()

	sepal length	sepal width	petal length	petal width	class
0	5.1	3.5	1.4	0.2	Iris-setosa

	sepal length	sepal width	petal length	petal width	class		
	L 4.9	3.0	1.4	0.2	Iris-setosa		
	2 4.7 3 4.6	3.2 3.1	1.3 1.5	0.2	Iris-setosa Iris-setosa		
					ith, sepal width, pet		
	representam características relativas ao nossos registros enquanto categoria (classe) do registro.						
	Vamos separar os dados de entrada (features) e a classe (target) treinamento e validação (teste) para começar a construir e testar o						
У	<pre>In [4]: x = df.drop(labels=['class'], axis=1) y = df['class'] x.shape, y.shape</pre>						
		nosso dado	categórico p	ara um forr	cação com várias po nato vetorial, onde		
In [5]: 1	.abel_encoder :	= LabelEncod	ler()				
In [6]:	= label_encod	der.fit_tran	ısform(y)				
	<pre>v_vec = np_uti v_vec.shape</pre>	ls.to_catego	orical(_)				
	(150, 3)						
In [8]: ι	abel_encoder.	classes_					
	array(['Iris-seto	sa', 'Iris-vers	icolor', 'Iris-v	irginica'], dt	/pe=object)		
In [9]: x	.iloc[0], y_v	ec[0]					
	sepal width petal length		32))				
		_			l, para retorná-la ao emos fazer o seguir		

Rede Neural

Vamos criar uma rede neural simples e avaliar seu desempenho no:

```
In [12]:
    def rede_sequencial(units):
        clear_session()
        clf = Sequential()
        # entrada
        clf.add(Dense(units=units, activation='relu', input_dim=4))
        # oculta #1
        clf.add(Dense(units=units, activation='relu'))
        # oculta #2
        clf.add(Dense(units=units, activation='relu'))
        # saida
        clf.add(Dense(units=3, activation='softmax'))
        clf.compile(optimizer='adam', loss='categorical_crossentropy', material print(clf.summary())
        return clf
```

Realizando o treino da rede:

```
In [13]: nn = rede_sequencial(units=8)
```

In [14]:

Model:	"sequential"
--------	--------------

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 8)	40
dense_1 (Dense)	(None, 8)	72

```
nn.fit(x=xtrain, y=ytrain, epochs=1400, shuffle=True)
Epoch 1/1400
Epoch 2/1400
Epoch 3/1400
         =======] - Os 1ms/step - loss: 3.7160 - categorical_accurac
4/4 [======
Epoch 4/1400
Epoch 5/1400
Epoch 6/1400
4/4 [==:
           =====] - 0s 1ms/step - loss: 3.1763 - categorical_accurac
Epoch 7/1400
```

Epoch 10/1400

Epoch 8/1400

Epoch 12/1400

A [local 2 1254 categorical accurate to the state of the same and the same accurate to the s

Testando o desempenho na segunda parte dos dados:

Vamos converter os dados de saída da predição para um formato un classe vetorizada:

```
In [16]: pred_vec = [np.argmax(x) for x in pred]
    pred_vec[:5]
    [2, 1, 0, 1, 2]
```

```
In [17]:
          ytest_vec = [np.argmax(x) for x in ytest]
         ytest_vec[:5]
           [2, 1, 0, 1, 2]
In [18]:
          print(f'# Matriz de confusão:\n{confusion_matrix(y_true=ytest_vec, y_
           # Matriz de confusão:
           [[11 0 0]
            [ 0 14 0]
            [ 0 0 13]]
In [19]:
         print(f'# Relatório de classificação:\n{classification_report(y_true:
           # Relatório de classificação:
                       precision
                                   recall f1-score
                                                     support
                     0
                            1.00
                                     1.00
                                              1.00
                                                         11
                     1
                            1.00
                                     1.00
                                              1.00
                                                         14
                            1.00
                                     1.00
                                              1.00
                                                         13
              accuracy
                                              1.00
                                                         38
                                              1.00
                                                         38
             macro avg
                            1.00
                                     1.00
           weighted avg
                            1.00
                                     1.00
                                              1.00
                                                         38
```

Podemos observar que todas as métricas do nosso modelo alcança:

Contextualizar sua classificação, qual o problema a ser solucion

Dadas as medidas relativas às pétalas e sépalas das flores, vel classificá-las através de um algoritmo?

R: Sim. Podemos observar o bom desempenho desse modelo.

- Levantar as dificuldades, limitações, inconsistências e imprecisi
 - Poucos dados no dataset.
- Sugerir futuras implementações.
 - Testar o modelo em mais registros.
- Para o seu banco de dados existem outros trabalhos de classific os.

Sim, bastante. Esse dataset é comumente utilizado para inic so de aprendizado de redes neurais.

trabalho - Jupyter Notebook

In []: