

Homework 11 Solutions

Weihao Li Fudan University

Problem 1

Let

$$A = egin{bmatrix} 1 & 2 & -2 \ 1 & 1 & 1 \ 2 & 2 & 1 \end{bmatrix},$$

then $\rho(D^{-1}(L+U))=0$ and $\rho((D-L)^{-1}U)=2$, hence Jacobi method converges while Gauss–Seidel method diverges. \square

Problem 2

Let

$$A = egin{bmatrix} 2 & -1 & 1 \ 1 & 1 & 1 \ 1 & 1 & -2 \end{bmatrix},$$

then $\rho(D^{-1}(L+U))=\frac{5}{4}$ and $\rho((D-L)^{-1}U)=\frac{1}{2}$, hence Gauss–Seidel method converges while Jacobi method diverges. \square

Problem 3

Let the exact solution be x_{sol} , and the error $y^{(k)} = x^{(k)} - x_{sol}$. Then

$$y^{(k+1)} = By^{(k)}, k = 0, 1, \dots$$

and $B^n=O$ since ho(B)=0, hence $y^{(n)}=B^ny^{(0)}=0$, and $x^{(n)}=x_{sol}$. \Box

Problem 4

For every eigenpair (λ,v) of B, we have

$$egin{aligned} v^*Mv &> 0 \ v^*(M-B^*MB)v &= v^*Mv - (Bv)^*MBv \ &= v^*Mv(1-|\lambda|^2) > 0, \end{aligned}$$

hence $|\lambda|<1$, and $\rho(B)<1$, hence the iterative scheme converges to a solution for any initial guess. \Box

Problem 5

see prob05.py.

