Polynomial Regression

- Polynomial Regression
 - Overfitting and Underfitting
 - Underfitting
 - Fixing Underfitting
 - Overfitting
 - Fixing Overfitting
 - Effect of model complexity
 - Effect of training size
 - <u>Regularization</u>
 - Ridge (Tikhonov) Regression
 - Regularized Normal Equation
 - Lasso Regression
 - Elastic Net

Overfitting and Underfitting

Further explained from Chapter 2

Underfitting

- Over-simplified
- Not sufficiently expressive
- a.k.a high bias problem (assuming it to be linear when it is actually quadratic)

Fixing Underfitting

- Generate additional feautres (non-linear terms) from existing feature set (polynomial transformation)
- Add more useful features
- Adding new samples won't help

Overfitting

- Model too complex (e.g 3000 degree model)
- a.k.a **high variance problem** (model fits too specifically to tranining set, cannot adapt to unseen data)
- Excessively sensitive to small variations of training data (too many curves and turns)

Fixing Overfitting

- Reduce number of feautres
 - Manually select which features to keep
 - Model selection algorithm
- Regularization
 - Keep all features, but reduce magnitude/values of parameters θ_i
 - Works well when there is alot of features as each feature contributes a bit to predict y
- Adding more samples

Fixed data size

Effect of training size

Refer Slide 18 🔍

Regularization

- Impose some **constraints** (e.g make param θ values smaller, not feature values!)
- To simplify model
- Reduce overfitting

Ridge (Tikhonov) Regression

Strategy : Enforce parameters θ to **prefer smaller values**

We add a regularization term to the cost function to penalize parameters with big values

$$j(\theta) = MSE(\theta) + lpha rac{1}{2} \sum_{i=1}^n heta_i^2$$
 (non-vectorized)

$$j(heta) = MSE(heta) + lpha rac{1}{2} heta^T heta$$
 (vectorized)

Note : We don't regularize $heta_0$

Regularization Strength, α : Hyperparam.

 $\alpha=0$, no reg.

 $\alpha > 0$, strong reg.

lpha Value	Errors
Set Properly	Train Error = Low, Val Error = Low
Too Small (no reg.)	Train Error = Low, Val Error = High (Overfitting)
Too large (strong reg.)	Train Error = High, Val Error = High

Regularized Normal Equation

Original Normal Equation:

$$\hat{\theta} = (X^T X)^{-1} X^T \cdot y$$

Regularized Normal Equation:

$$\hat{ heta} = (X^T X + \alpha A)^{-1} X^T \cdot y$$

n: # features m: # samples Size of **X**: (m, n+1) Size of **y**: (m,) Size of θ: (n+1,)

A: an $(n+1) \times (n+1)$ identity matrix except with a 0 on the top-left cell, corresponding to the bias term

 α : regularization strength

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \end{bmatrix}$$

Lasso Regression

Lasso means Least Absolute Shrinkage and Selection Operator Regression

$$J(\theta) = MSE(\theta) + \alpha \sum_{i=1}^{n} |\theta_i|$$

- Generate solution that is **sparse** (most of weights are full of zeros)
- Eliminates the weights of the least important features (set them to 0)
 - This is an auto perform **feature selection**

Elastic Net

The middle ground between Ridge Regression and Lasso Regression

$$J(\theta) = MSE(\theta) + r\alpha \sum_{i=1}^{n} |\theta_i| + (1-r)\alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

r=0: Elastic Net becomes Ridge Regression

r=1: Elastic Net becomes Lasso Regression