Du 22 au 25 Mai

Programme n°26

THERMODYNAMIQUE

TH1 Introduction à la thermodynamique

Cours et exercices

TH2 Le premier principe de la thermodynamique (Cours et exercices simples)

- Transformation d'un système
- Le travail des forces de pression
- Transfert thermique Définition
 - Delimition
 - Trois modes de transfert de chaleur
 - Transformation adiabatique
 - Notion de thermostat
 - Chois du modèle : adiabatique ou isotherme ?
- Le premier principe de la thermodynamique
- Rappels sur l'énergie interne
 - Le premier principe
 - Exemples d'utilisation \rightarrow Echauffement isochore d'un gaz
 - → Echauffement monobare d'un gaz
 - → Transformation isotherme d'un gaz
 - → Echauffement d'un gaz par compression

- La fonction enthalpie Définition
 - Capacité thermique à pression constante
 - Transformation monobare avec équilibre mécanique dans l'état initial et final
 - Cas d'un gaz parfait
 - Cas d'une phase condensée incompressible et indilatable
 - Enthalpie des systèmes diphasés
- → Expression de l'enthalpie pour un système diphasé
- → Enthalpie de changement d'état
- ightarrow Bilan pour un changement d'état isotherme et isobare

- Application à la calorimétrie
- Objet de la calorimétrie
- Méthode des mélanges
- Méthode électrique
- Mesure d'une enthalpie de changement d'état

3. Premier principe. Bilans d'énergie	
Premier principe de la thermodynamique : $\Delta U + \Delta Ec = Q + W$.	Définir un système fermé et établir pour ce système un bilan énergétique faisant intervenir travail W et transfert thermique Q.
	Exploiter l'extensivité de l'énergie interne.
	Distinguer le statut de la variation de l'énergie interne du statut des termes d'échange.
	Calculer le transfert thermique Q sur un chemin donné connaissant le travail W et la variation de l'énergie interne Δ U.
	Mettre en œuvre un protocole expérimental de mesure d'une grandeur thermodynamique énergétique (capacité thermique, enthalpie de fusion).
Enthalpie d'un système. Capacité thermique à pression constante dans le cas du gaz parfait et d'une phase condensée incompressible et	
indilatable.	Comprendre pourquoi l'enthalpie H _m d'une phase condensée peu compressible et peu dilatable peut être considérée comme une fonction de l'unique

variable T.

	Exprimer le premier principe sous forme de bilan d'enthalpie dans le cas d'une transformation monobare avec équilibre mécanique dans l'état initial et dans l'état final.
	Connaître l'ordre de grandeur de la capacité thermique massique de l'eau liquide.
Enthalpie associée à une transition de phase :	Exploiter l'extensivité de l'enthalpie et réaliser des

bilans énergétiques en prenant en compte des

transitions de phases.

Annexe : premier principe gaz parfait (Polycopier distribué aux élèves)

- Relations générales rappels sur le premier principe
 - Cas du gaz parfait
- Transformations particulières isochore réversible ou non

enthalpie de fusion, enthalpie de vaporisation,

- isobare réversible
- transformation entre deux états d'équilibre mécanique
- isotherme réversible
- adiabatique réversible

SOLUTIONS AQUEUSES AQ3 L'oxydoréduction

enthalpie de sublimation.

Cours et exercices

TP

Piles de concentrations : détermination d'un pK_S, d'un pK_D et de la formule d'un complexe Dosage des ions FeII par les ions CeIV dosage à la goutte et suivi potentiométrique Dosage des ions Ag⁺ par les ions Cl⁻ : potentiométrique et conductimétrique Spectrométrie - Loi de Beer-Lambert

- Détermination du pKA du BBT