1 Notas de aula

Vamos considerar o seguinte cálculo de Hilbert. Todas as fórmulas da forma seguinte são axiomas:

(A1)
$$(\phi \to \psi \to \chi) \to (\phi \to \psi) \to (\phi \to \chi)$$

(A2)
$$\phi \to \psi \to \phi \land \psi$$

(A3)
$$\phi \wedge \psi \rightarrow \phi$$

(A4)
$$\phi \wedge \psi \rightarrow \psi$$

(A5)
$$(\phi \to \neg \psi) \to (\psi \to \neg \phi)$$

Modus Ponens. Trabalhamos na base $\{\neg, \land\}$.

Usamos a definição $\phi \to \psi := \neg(\phi \land \neg \psi)$

Lema 1:

(a)
$$\Phi \vdash \phi \to \neg \psi$$

$$\Phi \models \psi \rightarrow \neg \phi$$
 (através do Modus Ponens)

$$\Phi \vdash (\phi \to \neg \psi) \to (\psi \to \neg \phi) \text{ por (A5)}.$$

Por hipótese, $\Phi \vdash \phi \to \psi$. MP resulta em $\Phi \models \psi \to \neg \phi$.

(b)
$$\vdash \phi \to \psi \to \phi$$
.

Por (A4),
$$\vdash \psi \land \neg \phi \to \neg \phi$$
.

Por (a),
$$\vdash \phi \rightarrow \neg(\psi \land \neg \phi) \ (= \phi \rightarrow \psi \rightarrow \phi)$$

(c)
$$\vdash \phi \rightarrow \phi$$

(c)
$$\vdash \phi \to \phi$$

 $\vdash (\phi \to (\phi \to \phi) \to \phi) \to (\phi \to \phi \to \phi) \to \phi \to \phi \text{ por (A1)}$

Usando (b) e modus ponens duas vezes obtemos:

(d)
$$\vdash \phi \rightarrow \neg \neg \phi$$

Por (c) $\vdash \neg \phi$ \tag{Conforms (c) $\vdash \phi$ \tag{Por (c) $\vdash \phi} \ \tag{Por$

Por (c),
$$\vdash \neg \phi \rightarrow \neg \phi$$
. Conforme (a), $\vdash \phi \rightarrow \neg \neg \phi$.

(e)
$$\vdash \psi \rightarrow (\neg \psi \rightarrow \phi)$$

Temos que
$$\vdash \neg \psi \land \neg \phi \rightarrow \neg \psi$$
 (A3). Aplicando (a) obtemos:

$$\vdash \psi \to \neg(\neg\psi \land \phi) \ (= \psi \to \neg\psi \to \phi).$$