NCERT-discrete: 10.5.3 - 2

EE23BTECH11025 - Anantha Krishnan

I. QUESTION

Find the sums given below:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

(ii) $34 + 32 + 30 \dots + 10$

(ii)
$$34 + 3\tilde{2} + 30 \dots + 10$$

(iii)
$$-5 + -8 + -11 \dots -230$$

Solutions:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

Let " S_k " denote the sum of first k terms in a series,"a" denotes its first term and "d" denotes the common difference.

$$S_k = \frac{k}{2}(2a + (k-1)d) \tag{1}$$

For number of terms, we use

$$x(n) = x(0) + nd \tag{2}$$

Where x(n) is the $(n + 1)^{th}$ term of the series. Putting the values

$$84 = 7 + \frac{7n}{2} \tag{3}$$

$$n = 22 \tag{4}$$

Calculating S_n for $x_{1(n)}$

We now use this result for calculating S_{23}

$$S_{23} = \frac{23}{2}(14 + (22)\frac{7}{2})\tag{5}$$

Solving this yields $S_{23} = 1046.5$

We are now required to calculate $X_{1(z)}$ in terms of u_n and $x_{1(n)}$. Where $u_{(n)}$ is the unit step function.

$$x_{1(n)} = u_{(n)}(x_{1(0)} + \frac{7n}{2})$$
 (6)

Graph:1 $x_{1(n)}$ vs n

Z-Transform of $x_{1(n)}$

By the Definition of Z-transform:

$$\sum_{n=-\infty}^{\infty} Z^{-n} x(n) = X(Z) \tag{7}$$

Putting $x_{1(n)}$ in (7), we get

$$\sum_{n=-\infty}^{\infty} (x_{1(0)} + \frac{7n}{2}) u_{(n)} Z^{-n} = X_{1(z)}$$
 (8)

$$\sum_{n=-\infty}^{\infty} (7 + \frac{7n}{2}) u_{(n)} Z^{-n} = X_{1(z)}$$
 (9)

For the region of convergence

 $X_{1(z)} = \text{convergent } \forall \text{ z } \epsilon(-\infty, -1)U(1, \infty)$

This can be proved from ratio test.

We now calculate the sum (Here $(k-1)^{th}$ term is the last term and $x_{1(0)}$ is the first term).

$$7(1-z^{k})(z^{k}(1-z))^{-1} + (7(z^{k}-1)z)(2z^{k}(z-1)^{2})^{-1} - (7kz)(2z^{k+1}(z-1))^{-1} = X_{1(z)}$$
(10)

(ii)
$$34 + 32 + 30 \dots + 10$$

In this bit a=34, d=-2 Using equation (2)

$$10 = 34 - 2n$$

$$(11)$$

$$n = 12$$

For $x_{3(n)}$

$$= 12 \tag{12}$$

For $x_{2(n)}$

$$x_{2(n)} = x_{2(0)} + nd (13)$$

$$x_{2(n)} = x_{2(0)} - 2n (14)$$

Graph:2 $x_{2(n)}$ vs n

Z-Transform of $x_{2(n)}$

Using (7)

$$\sum_{n=-\infty}^{\infty} (x_{2(0)} - 2n)u_{(n)}Z^{-n} = X_{2(z)}$$
 (15)

Region of convergence does not change as the nature of the function remains the same as (i)bit For $X_{2(z)}$, we use the same process as in (i)bit.

$$32(1-z^{k})(z^{k}(1-z))^{-1} - (2(z^{k}-1)z)(z^{k}(z-1)^{2})^{-1} + (2kz)(z^{k+1}(z-1))^{-1} = X_{2(z)}$$
(16)

Calculating S_n of $x_{2(n)}$

For calculating the sum, we use (1)

$$S_{13} = \frac{13}{2}(64 + 11(-2)) \tag{17}$$

$$S_{13} = 286.$$
 (18)

Here a=-5, d=-3From (2)

$$-230 = -5 - 3n \tag{19}$$

$$n = 75 \tag{20}$$

$$x_{3(n)} = x_3(0) + nd (21)$$

$$x_{3(n)} = x_3(0) - 3n (22)$$

Graph:3 $x_{3(n)}$ vs n

Z-Transform of $x_{3(n)}$

Putting $x_{3(n)}$ in (7)

$$\sum_{n=-\infty}^{\infty} (x_{3(0)} - 3n)u_{(n)}Z^{-n} = X_{3(z)}$$
 (23)

Region of convergence does not change as the nature of the function remains the same as (i)bit For $X_{3(z)}$, we use the same process as in (i)bit

$$-5(1-z^{k})(z^{k}(1-z))^{-1} - (3(z^{k}-1)z)(z^{k}(z-1)^{2})^{-1} + (3kz)(z^{k+1}(z-1))^{-1} = X_{3(z)}$$
(24)

Calculating S_n of $x_{3(n)}$

Using (1):

$$S_{76} = \frac{76}{2}(-10 + (76 - 1)(-3)) \tag{25}$$

$$S_{76} = -8930$$
 (26)

Parameters	Description	Values
$x_{1(n)}$	Sequence labelled (i)	$x_{1(0)} + 3.5n$
$x_{2(n)}$	Sequence labelled (ii)	$x_{2(0)}$ -2n
$x_{3(n)}$	Sequence labelled (iii)	$x_{3(0)}$ -3n
$x_{1(0)}$	1^{st} term of sequence $x_{1(n)}$	7
$x_{2(0)}$	1^{st} term of sequence $x_{2(n)}$	34
$x_{3(0)}$	1^{st} term of sequence $x_{3(n)}$	-5
$X_{1(z)}$	Z-Transform of $x_{1(n)}$	$7(1-z^k)(z^k(1-z))^{-1} + (7(z^k-1)z)(2z^k(z-1)^2)^{-1} - (7kz)(2z^{k+1}(z-1))^{-1}$
$X_{2(z)}$	Z-Transform of $x_{2(n)}$	$32(1-z^k)(z^k(1-z))^{-1} - (2(z^k-1)z)(z^k(z-1)^2)^{-1} + (2kz)(z^{k+1}(z-1))^{-1}$
$X_{3(z)}$	Z-Transform of $x_{3(n)}$	$-5(1-z^k)(z^k(1-z))^{-1} - (3(z^k-1)z)(z^k(z-1)^2)^{-1} + (3kz)(z^{k+1}(z-1))^{-1}$

TABLE 1 : PARAMETERS , DESCRIPTIONS AND VALUES