MACHINE DESIGN

1975 ANNUAL INDEX

Volume 47—January to December

Including 24 regular issues of MACHINE DESIGN plus five special issues—The Materials Reference Issue, Electric Motors & Controls Reference Issue, Mechanical Drives, Bearings & Seals Reference Issue, Fluid Power Reference Issue, Fastening & Joining Reference Issue. Only articles and editorial items one-half page or larger are indexed.

AUTHOR INDEX

Abraham, R. G. & N. Yaroshuk—"Coming—robots that see and feel," July 10, p. 90

Agrawal, G. K.
"Minimum weight springs," June 26, p. 55
"Minimum volume springs," Nov. 13, p. 147

Agrawal, Hari N.—"A Simple Way To Visualize Torsional Stress," Sept. 18, p. 98

Altemeyer, Stanley—"Multi-Part PM," May 15, p. 80

Andersen, Dennis A —"Predicting Was to Plantic Beauting in the stanley of the stanley

Altemeyer, Stanley—"Multi-Part PM," May 15, p. 80
Andersen, Dennis A.—"Predicting Wear in Plastic Bearings," July 10,

p. 85
Anderson, W. D.—"Getting The Most From Cantilever Shafts," Jan. 23, p. 92
"Chicago Simulation." July 10, p. 74

Anderson, W. D.—"Getting The Most From Cantilever Shaits, San. 23, p. 92

Appel, Arthur—"Digital Simulation," July 10, p. 74

Apple, Howard P. and Sherman K. Grinnell—"When Two Bosses Are Better than One," Jan. 9, p. 84

Arkles, Barry and Stephen Gerakaris—"Powder Coatings that Fight Heat and Chemicals," June 12, p. 103

Arkles, Barry, John E. Theberge and Peter Cloud
"Comparing High-Temperature Plastics," Feb. 6, p. 73
"Choosing Plastics for Chemical Resistance," Feb. 20, p. 103
"How Time and Heat Affect Properties of Plastics," Mar. 20, p. 79

Aronson. Robert B.

"How Time and Heat Affect Properties of Plastics," Mar. 20, p. 79 Aronson, Robert B.
"Two New Compacts Join The VW Family," Mar. 6, p. 25
"Preventing A "Towering Inferno," Mar. 20, p. 18
"Fiber Optics: New Developments Bring New Appeal," Apr. 17, p. 81
"Another Try for a New Tank," May 29, p. 20
"Emergency Rescue Equipment," June 12, p. 28
"Outboard Overview," July 24, p. 16
"What's Happening with Electric Vehicles," Oct. 2, p. 20
"No-Meit Welding," Oct. 16, p. 128
"Satellite Solar-Power Stations," Nov. 27, p. 18
"Let the Robot Do It," Nov. 27, p. 54
Atland, George—"Circuits for Controlling Hydraulic Actuator Speed," April 3, p. 152

Babcock, Daniel L.—"Alternative of the MBA," Feb. 20, p. 89
Badawy, M. K.
"Easing The Switch From Engineer To Manager," May 15, p. 66
"Motivating Engineers: A Little Psychology Goes A Long Way,"
Oct. 16, p. 120
Batson, Robert E. and Joseph G. Tokarski—"Keeping Fasteners Tight,"
Sept. 18, p. 86
Baumeister, H. K. and R. A. Sebrosky—"Critical Buckling Loads For
Tapered Columns," Nov. 27, p. 70
Beling, T. E.—"Driving inertial loads with stepper motors," Aug. 7,
p. 85
Bennett, J. T.—"Die Casting Stand-ins for Prototype and Short-Run

p. 50 Bennett, J. T.—"Die Casting Stand-ins for Prototype and Short-Run Parts," July 24, p. 46

Blake, Alexander

"Design of Welded Brackets," Jan. 23, p. 96

"Pressure distorts cylinders where you least expect it," Feb. 6, p. 92

"Coping with Stress Concentration," Nov. 13, p. 128

Blodgett, Omer W.

"How Parts React To Stress," Mar. 6, p. 87

"Refresher course in welding design," Apr. 3, p. 178

"Reeping weldment distortion under control," Oct. 16, p. 146

Booser, E. R.—"When To Grease Bearings," Aug. 21, p. 70

Boulden, Larry L.—"Controlling Aerosols with Oil-less Cylinders,"
Jan. 9, p. 95

Brockman, David E. and Richard W. Nelson—"Hall-Effect Sensors—magnetic switches that have no contacts," Oct. 16, p. 123

Brokaw, A. Paul—"Simpler tuning for wien-bridge oscillators," Sept. 4, p. 78

Bronikowski, Ray J.—"Pareto's law for managers," July 24, p. 65

Brooman, E. W. and J. E. Clifford—"Better batteries for electric vehicles," May 15, p. 89

Brynildsen, R. D.—"Helping The Engineer Plan His Career," Mar. 29, p. 66

Brynildsen, R. D.—"Helping The Engineer Plan His Career," Mar. p. 66
Bryson, Frederick E.
"Garbage Power," Jan. 9, p. 20
"What you should know about Product Recall," Jan. 23, p. 88
"Breaking the Ice Barrier," Feb. 6, p. 20
Buckingham, Ellot K.
"Taking Guesswork out of Worm-Gear Design," Mar. 20, p. 82
"Controlling Tooth Loads in Helical Gears," Oct. 16, p. 142
Byers, Robert C.—"Pushbutton trig," June 12, p. 123

C

Campbell, Thomas and Laurence E. Murch—"Gravity Feed Tracks," June 26, p. 46
Caplan, F.—"Combining decibels," Jan. 23, p. 118
Carswell, Donald D.

Caplan, F.—"Combining decibels," Jan. 23, p. 118
Carswell, Donald D.

"PV ratings for plastic bearings," Jan. 23, p. 116
"Design dimensions for plastic bearings," Feb. 20, p. 121
Chastain, Charles E.—"How much should you trust ASTM test data?"
Jan. 23, p. 107
Christian, John B.—"Supergrease Replaces Oil as a Transmission Lubricant," June 12, p. 117
Clark, T. A.—"High-pressure hydraulics," May 1, p. 89
Cleveland, Dixon—"Controls Are Getting Smarter," Aug. 7, p. 70
Clitford, J. E. and E. W. Brooman—"Better batteries for electric vehicles," May 15, p. 89
Cloud, Peter J.—"The Role of Fillers and Reinforcements in Plastics," Sept. 18, p. 94
Cloud, Peter, John E. Theberge and Barry Arkles
"Comparing High-Temperature Plastics," Feb. 6, p. 73
"Choosing Plastics for Chemical Resistance," Feb. 20 p. 103
"How Time and Heat Affect Properties of Plastics," Mar. 20, p. 79
Coleman, Wells—"Computing Efficiency for Bevel and Hypoid Gears,"
Aug. 21, p. 64 Aug. 21, p. 64

Comella, Thomas M.

"How To Manage Creativity Without Killing It," Mar. 6, p. 68

"Instruments That Think For Themselves," June 26, p. 50

"Elastomers That Conduct Electricity," Aug. 21, p. 60

"Engineering Productivity—Formulating a Pian of Attack," Dec. 11, p. 118

Constance, John D.

"The Road to Registration—The Basic Requirements 1," Sept. 4, p. 54

"The Road to Registration—Passing the Exam 2," Sept. 18 p. 82
"The Road to Registration—Passing the Exam 2," Sept. 18 p. 82
Cornford, A. S.—"Bolt Preload—how can you be sure it's right,"
Mar. 6, p. 78
Courtemanche, Jack—"New Tools for Old Tasks—Computers," Dec.

D

Dann, Richard T.

"How Much Preload for Fasteners?" Aug. 21, p. 66

"High-Torque Hydraulic Motors," Nov. 27, p. 60

Davis, J. Gordon—"Keeping Project Costs in Line," Dec. 11, p. 128

D'Entremont, Robert J.—"Avoiding interference in round parts,"
July 10, p. 88

Dransfield, Peter—"Power Bond Graphs—powerful new tool for hydraulic system design," Oct. 16, p. 134

Dransfield, Peter and Jacek S. Steck!—"Finding—and fixing—hydraulic noise sources," Nov. 13, p. 146

Dreger, Donald R.

"Hot-melt adhesives put it all together." Jan. 9, p. 88

reger. Donald R.

"Hot-melt adhesives put it all together," Jan. 9, p. 88

"Carbon Steels Join the Superplastic Metals," Apr. 3, p. 134

"Large urethane parts, faster, with Reaction-Lipection Molding," Apr. 3, p. 148

"Profile Extrusions from High-Performance Plastics," May 29, p. 42

"Plastic Parts by the Mile," Sept. 4, p. 64

"Injection Molding Moves into Metals," Oct. 2, p. 80

"Injection Molding Moves Than A Minute," Oct. 16, p. 30

"Cutting Costs of Few-of-a-Kind Castings," Nov. 13, p. 140

E

orf, R. K., R. M. Gagosz and J. P. Waters—"Adapting holography to the industrial environment," Feb. 6, p. 92

Fader. Efrom J.—"Balancing Parallel Blowers," Feb. 6, p. 86
Felstein, Milton—"Calculating new positions for rotated axes," June 26, p. 55
Ferner, Charles M.—"Wind-Up Power Sources—more energy in a smaller package," Sept. 4, p. 72
Fessett, Donald J.
"How To Test Gear Transmissions," July 24, p. 60
"Hardware for Testing Gear Transmissions," Aug. 7, p. 80
Field, G. J.—"Seals that Survive Heat," May 1, p. 76
Florio, Sam—"Electronic Ignition," Mar. 6, p. 73
Ford, Frederick—"Control Tricks with Stepping Switches," Apr. 3, p. 138 p. 138
Frostholm, Robert C.—"Miniaturizing with Timers on a Chip," July 10, p. 78 10, p. 78
The New Look in Wiring Hardware," Mar. 20, p. 70

Gagosz, R. M., R. K. Erf and J. P. Waters—"Adapting holography to the industrial environment," Feb. 6, p. 92
Ganapathy, V.—"Finding shear center," July 24, p. 66
Gerakaris, Stephen and Barry Arkles—"Powder Coatings that Fight Heat and Chemicals," June 12, p. 103
Glenn, James W.—"Machines You Can Talk To," May 1, p. 72
Gordon, Keith M.—"Estimating life of multibearing systems," Aug. 21, p. 74
Gove, John—"The Final Connection: Sockets or Solder?" June 26, p. 39
Grinnell, Sherman K. and Howard P. Apple—"When Two Bosses Are Better than One," Jan. 9, p. 84
Groesbeck, William A. and Frank L. Manning—"Flow rates for sharpedged orfices," June 12, p. 123
Gross, T. A. O.—"Safer Power-Tool Braking," May 15, p. 72

Haas, Leonard—''How To Extend Gear Life,'' May 15, p. 76
Hand, E. W.—''How To Save Money When Specifying Sheet Steel,''
July 10, p. 70
Hanley, W. Earl—''Shot Blasting Your Way to Better Finishes,'' Mar.
20, p. 74
Harker, R. J.—''A Simple Way to Use Vibration Equations,'' Feb. 6. p. 79

Harris, W. R. and R. A. Morgan

"Choosing a de-motor drive," Jan. 9, p. 113

"Choosing an ac-motor drive," Mar. 6, p. 92

Haugen, Edward B. and Paul H. Wirsching

"Probabilistic Design—Part 1," Apr. 17, p. 98

"Probabilistic Design—Part 2," May 1, p. 80

"Probabilistic Design—Part 3," May 15, p. 83

"Probabilistic Design—Part 4," May 29, p. 54

"Probabilistic Design—Part 5," June 12, p. 108

Hay, Jay K. and J. W. Martz—"Avoiding Dangerous and Costly Fan Failures," Feb. 20, p. 113

Heumann, Gerhart

"Germany's Electric Scooters," Sept. 4, p. 20

Higgins, Paul T.—"Photogrammetry," July 24, p. 50

Higgins, Paul T.—"Photogrammetry," July 24, p. 50

Hinkel, J. E.—"Hardsurfacing with an arc," Aug. 21, p. 74

Hinkle, Rolland T. and Ivan E. Morse—"Taking Guesswork out of Disc Clutch Design," Nov. 27, p. 64

Holloway, Fred M.—"What Determines Reliability in Metering Pumps?"

Sept. 4, p. 66

Hutten-Czapski, Leon

"Getting More from Spur Gears," Jan. 9, p. 106

"A Bolt That 'Blows' Like a Fuse," May 29, p. 46 Heumann, Gerhart

ı

Irani, R. and A. Morreale—"Stepper Motors Aren't All Alike," June 12, p. 120

Jackson, Theodore A.—"Transactional Analysis," Nov. 27, p. 50
Jacobson, Richard A.—"Mars-Viking: Tougher Than Apollo?" Aug. 7,

(aplan, Joseph—"Variable-Torque Brakes Take Up the Slack in Spooled Materials," Nov. 13, p. 138 cay, David—"TRANSIENT SUPPRESSION—don't make the cure worse than the disease," Feb. 6, p. 82

worse than the disease," Feb. 6, p. 52
Kearney, Avery
"Castings Without Defects," June 26, p. 42
"Castings Without Defects—Part 2," July 10, p. 82
Khol, Ronald—"Fasteners That Fight Fatigue," Feb. 20, p. 98
Koch, James—"Laser Interferometers," Feb. 20, p. 92
Kock, Ronald W.—"Designing springs for infinite life," Oct. 16, p. 148
Kosonocky, W. F.—"CCDs simplify complex electronics," Mar. 20, p. 89
Kulkarni, K. M.—"Lower Cost Titanium Parts," May 1, p. 86

LaPasso, Leonard J.—"Reducing the Risks in New-Product Planning," July 24, p. 42
Lavole, Francis
"Design Show Times," Apr. 3, p. 157
"Here Come the Technologists!" Apr. 17, p. 76
Leek, Jay W.—"Visual Standards: Shortcut to Product Quality," Sept. 4, p. 69
Leibensperger, R. I.—"Look Beyond Catalog Ratings," Apr. 3, p. 142
Leonard, Milton G.
"The Clampdown on Electrical Hazards," Jan. 9, p. 100
"Okay, let's go electronic." May 29, p. 36
"Avoiding Mistakes with Relays," July 24, p. 54
"Electronic Systems as Machine Elements," Aug. 21, p. 54
"Justifying the Shift to Electronics," Oct. 2, p. 82
"Electronic Assembly: In-House or Subcontract?" Nov. 13, p. 122
Lipinski, Thomas—"Tracking Down Elusive Causes for Failure," Apr. 3, p. 130 Japansa. Home and the first power fraction of the large state of the large state.

Japan E. and R. J. Louis—"Balancing flow forces in pneumatic valves." Jan. 9, p. 112

Louis, R. J. and E. Logan—"Balancing flow forces in pneumatic valves," Jan. 9, p. 112

M

Macfarland, Willard C.

"Straight Talk About Speed Reducers—Part 1," Sept. 18, p. 90

"Straight Talk About Speed Reducers—Part 2," Oct. 2, p. 75

Manning, Frank L. and William A. Groesbeck—"Flow rates for sharpedged orifices," June 12, p. 122

Marchett, Peter B.—"Rolling Diaphragms That Last," Nov. 27, p. 71

Marshek, Kurt M. and Max A. Rosenberg—"Designing lightweight

frames," May 15, p. 88

Martz, J. W. and Jay K. Hay—"Avoiding Dangerous and Costly Fan

Failures," Feb. 20, p. 113

Maskrey, Robert—"Analyzing Do-It-Yourself Servosystems," Apr. 17,
p. 92 p. 92 Masio, Ronald M. and Neville F. Rieger—"A New Way to Analyze Rotor Stability," Oct. 2, p. 69 McDonald, Dwight J.—"Getting a Handle on Productivity," Dec. 11, 120 p. 120 McKnight, R. A.—"Angle approximations save design time," Apr. 3, p. 179 Miller, J. Victor—"Maximizing Engineering Effectiveness," Dec. 11, p. 125 p. 125
Mirus, Ferdinand and William A. Wood—"Smoothing out cylinder loads," Mar. 6, p. 93
Morgan, R. A. and W. R. Harris
"Choosing a de-motor drive," Jan. 9, p. 113
"Choosing an ac-motor drive," Mar. 6, p. 92
Morreale, A. and R. Irani—"Stepper Motors Aren't All Alike," June 12, p. 120
Morris, Robert O., Ray Rohlfing and William H. Reichardt, "V-Belt Fibers—the strongest isn't always the best," May 29, p. 50
Morse, Ivan E. and Rolland T. Hinkle—"Taking Guesswork out of Disc Clutch Design," Nov. 27, p. 64

Laurence E. and Thomas Campbell-"Gravity Feed Tracks," June 26, p. 46

[yers. Phillip E.—"Sizing orifices for pressure reduction." Aug. 7.

N

Nelson, Richard W. and David E. Brockman—"Hail-Eff magnetic switches that have no contacts," Oct. 16, p. 123 "Hall-Effect Sensors-

Ogorklewicz, Richard M.—"New Armored Vehicle to Quell Iris Brawls," Sept. 4, p. 10 Olsen, K. E.—"Protecting against power failures," Apr. 17, p. 107 O'Sickey, L. B.
"Fundamentals of Hydraulic Line Selection," May 15, p. 69 "Selecting Hydraulic Pipe," Aug. 7, p. 78 "Selecting Hydraulic Tubing," Sept. 18, p. 102 Richard M.-"New Armored Vehicle to Quell Irish

Rao, A. C.—"Optimizing the four-bar linkage," Apr. 17, p. 106
Raudsepp, Eugene
"Teanwork: silent partner in the design group," Aug. 7, p. 62
"Comm zideating Is More Than Just Talking," Nov. 13, p. 116
Regan, Frank J.—"The Airship—Phoenix or Dodo?" Nov. 13, p. 20
Reichardt, William H., Ray Rohlfing and Robert O. Morris, "VBelt Fibers—the strongest isn't always the best," May 29, p. 50
Reichenecker, W. J.—"Stabilizing babbitt dimensions," Oct. 2, p. 89
Rieger, Neville F. and Ronald M. Maslo—"A New Way to Analyze
Rotor Stability," Oct. 2, p. 69
Rohlfing, Ray, Robert O. Morris and William H. Reichardt, "VBelt Fibers—the strongest isn't always the best," May 29, p. 50
Rondeau, Herbert F.—"The 1-3-9 Rule for Product Cost Estimation,"
Aug. 21, p. 50
Rosenberg, Max A. and Kurt M. Marshek—"Designing lightweight
frames," May 15, p. 88
Rubin, C.—"Cale program simplifies simultaneous equations," May 1,
p. 87
Rucinski, Roland—"Web-roll center distances," Oct. 2, p. 88

S

Schoutens, Jacques E.—"Stretching O-rings to the limit," Apr. 3, p. 178 Sebrosky, R. A. and H. K. Baumeister—"Critical Buckling Loads For Tapered Columns," Nov. 27, p. 70 Seshadri, T. V.—"Adapting beam equations to plates," Sept. 18, p. 106 Severinsen, John—"Gaskets That Block EMI," Aug. 7, p. 74 Shawki, G. S. A.—"A fatigue plot that shows strength tradeoffs," Feb. 20, p. 120.

Shawki, G. S. A.—"A fatigue plot that shows strength tradeous," Feb. 20, p. 120

Simmons, Harry—"Cale program finds nth root," Sept. 18, p. 107

Skopal, Thomas E.—"How To Interface Power Supplies," Sept. 4, p. 60

Sohlberg, Erik T.—Superaccelerators, servomotors with instant reflexes," Jan. 23, p. 101

Sperry, Albert B.—"New Tools for Old Tasks—Calculators," Dec. 11,

数

flexes,
Sperry, Albert B.—"New p. 143
p. 143
Spotts, M. F.
"Eight Easy Ways to Use Statistics," Feb. 20, p. 108
"Eight Easy Ways to Use Statistics, Part Two," Mar. 6, p. 83
"Statistics from Raw Data," July 24, p. 58
"Tolerancing Determines How Round Parts Take Shape," Oct. 16, p. 139
p. 139
TP Dimensioning," Nov. 13, p. 139
The Dimensioning, Nov. 13, p. 139
The Dimensioning, Nov. 14, p. 158
TP Dimensioning, Nov. 17, p. 66

"Tolerancing Determines How Round Parts Take Shape," Oct. 16, p. 139
"Simple Guide to TP Dimensioning," Nov. 13, p. 132
"Simple Guide to TP Dimensioning," Nov. 27, p. 66
Stecki, Jacek S. and Peter Dransfield—"Finding—and fixing—hydraulic noise sources," Nov. 13, p. 146
Strasser, Federico
"Low-cost stampings," Feb. 6, p. 91
"Keeping tool costs low for stampings," Apr. 17, p. 105
"Low-cost forming," June 26, p. 57
"Designing Parts That Are Easy to Machine." Aug. 7, p. 65
"3-D Stampings," Nov. 13, p. 143
Streit, Philip M.—"New Tools for Old Tasks—Reproduction Equipment," Dec. 11, p. 149

T

Tabakman, H. D.—"Stress Concentrations in Notched Rings," Nov. 27, p. 72
Talbot, Thomas F.—"Your Day in Court," Feb. 6, p. 68
Theberge, John E., Barry Arkles and Peter Cloud
"Comparing High-Temperature Plastics," Feb. 6, p. 73
"Choosing Plastics for Chemical Resistance," Feb. 20 p. 103
"How Time and Heat Affect Properties of Plastics," Mar. 20, p. 79
Tokarski, Joseph G. and Robert E. Batson—"Keeping Fasteners Tight,"
Sept. 18, p. 86

V

Viscio, Donald P .- "How Inserts Help Lightweight Structures," June Voss, Alvin R. and Dennis E. Young—"Shipment could be a product's most severe test," Jan. 9, p. 111

Wallace, William H.

"What to Do Before the Subpoena Comes," June 12, p. 100

"Product Liability: After the Summons," Oct. 2, p. 66

Waters, J. P., R. K. Erf and R. M. Gagosz—"Adapting holography to the industrial environment," Feb. 6, p. 92

White, John M.—"Plating with a Brush," Oct. 2, p. 72

Wireching, Paul H. and Edward B. Haugen

"Probabilistic Design—Part 1," Apr. 17, p. 98

"Probabilistic Design—Part 2," May 1, p. 80

"Probabilistic Design—Part 3," May 15, p. 83

"Probabilistic Design—Part 4," May 29, p. 54

"Probabilistic Design—Part 5," June 12, p. 108

Wise, Clare E. "Probabilistic Design.—Part 5," June 12, p. 108

Wise, Clare E.
"Downhill by Design," Feb. 20, p. 26
"The President and Technology," Apr. 3, p. 18
"GM Set For Materials Revolution," Apr. 3, p. 28
"Looking for an 'Edge' at Indy," May 15, p. 16
"Chrysler's 'Electronic' Lean-Burn Engine," July 10, p. 24
"Metrication will arrive in '75," July 10, p. 66
"F-16: First with Fly-By-Wire," Aug. 7, p. 16
"Cars Are Young and Fun Again," Sept. 18, p. 18
"Trend To Smaller Cars Continues: Chrysler Drops Imperial, Adds
Two New Compacts," Oct. 16, p. 38
Wood, William A. and Ferdinand Mirus—"Smoothing out cylinder loads," Mar. 6, p. 93
Wright, John—"Isolating Engine Vibration," Apr. 17, p. 86

Yaroshuk, N. and R. G. Abraham-"Coming-robots that see and feel," July 10, p. 90

Young, Dennis E. and Alvin R. Voss—"Shipment could be a product's most severe test," Jan. 9, p. 111

Z

Zanin, Lou—"Designing cold-headed fasteners," July 10, p. 89
Zanker, Adam—"Stresses in thick-wall cylinders," Oct. 16, p. 150
Zimmerman, Mark D.
"Controlling Nature's 'Faults,' Jan. 23, p. 20
"Living Costs Devour Salary Gains," Feb. 20 p. 20
"How Near 'Average' Is your Salary," Mar. 6, p. 20
"MIUS: Darkhorse in the Nation's Energy Future?" Apr. 17, p. 20
"Miluzing Oil-Spill Hazards," May 1, p. 16
"Training Tomorrow's Engineers," May 1, p. 68
"Is CAD-CAM Taking Off?" June 12, p. 20
"Six Issues in Engineering Manpower," June 26, p. 18
"Apollo-Soyuz," July 10, p. 16
"Agriculture's Amazing Monster Machines," Aug. 21, p. 16
"Working With Groceries In Nature," Sept. 18, p. 34
"Power to Produce Pienty," Oct. 16, p. 18
"Reaping the Wind," Nov. 13, p. 28
"Putting Data from Mars on Hold," Nov. 13, p. 36

SUBJECT INDEX

Numbers preceding the column heads refer to the Machine Design Subject Classification Systems (rear covers).

Editorial material in this section is classified according to the following system:

The Clampdown on Electrical Hazards Leonard 1/9 100 (6.0)

- 1. Title
- 2. Author's last name (see Author Index for complete name). Departments in regular issues are denoted by the following code:

NTNews/Trends DIDesign International Scan Scanning the Field for New Ideas

3. Date of issue, Machine Design Reference Issues are denoted by the following code:

> EM&C Electric Motors & Controls (Apr. 29) MD Mechanical Drives, Bearings & Seals (June 3) FPFluid Power (Sept. 30) F&J Fastening & Joining (Nov. 18)

- 4. Page Number
- 5. Number of pages in article or editorial item.

100 (6.0)

EM&C 4/24 56 (0.9)

ELECTRICAL & ELECTRONIC

11. Motors		
The Clampdown on Electrical Hazards	Leonard 1/	9
Motor Basics	Chapter	
	EM&C 4/2	4
Justifying the Shift to Electronics	Leonard 10/2	2
Choosing an AC Motor Drive	Harris &	

AC Motors Morgan Chapter EM&C 4/24 9 (4.8) AC Motor Controls Chapter EM&C 4/24 83 (2.2) Choosing A DC-Motor Drive Harris Morgan Simple Circuit Restrains DC Motor Scan

Universal Motors Chapte EM&C 4/24 26 (2.2) Gearmotors Chapter EM&C 4/24 56 (1.1) Torque Motors Chapte EM&C 4/24 60 (1.0) Lever-Arm Motor Delivers High Torque, Saves Energy Scan
Definite-Purpose Motors Chapter 6/26 28 (0.7)

12. Power Supplies

Linear-Induction Motors Chapte

Protecting Against Power Failures	Article	4/17	107	(1.0)
How To Interface Power Supplies	Skopal			(4.0)
Common Energy Pack/Recharger De-		-,-		,
signed for Cordless Tools	N/T	5/1	8	(0.5)
Better Batteries for Electric Vehicles	Article	5/15	89	(1.0)

Motor Protection Chapter EM&C 4/24 87 (2.3)

Realistic Range Achieved by Electr	ie			
Vehicle	N/T	6/26	4	(1.0)
'Luxury' Electric Car In Production		8/21	4	(1.0)
What's Happening With Electric Vehicle	es Aronson	10/2	20	(3.0)
Choosing A DC-Motor Drive	. Harris &			
	Morgan	1/9	113	(1.3)
Black-Chrome Coating Efficient Sol	ar	-,-		
Collector	N/T	4/3	22	(0.7)
Fuel Cells to Speed Rescue of Trappe		-,-		
Submariners		7/24	10	(0.8)
10-W Output From Single Solar Cell		8/7	4	(0.7)
Electronic Systems As Machine Elemen		8/21	54	(6.0)
Satellite Solar-Power Stations		11/27	18	(4.0)

13. Switches & Relays

13. Switches & Relays				
Switches	Chapter			
		C 4/24	92	(2.4)
Solid-State Switching Devices	Chapter			
		C 4/24		(8.6)
Avoiding Mistakes with Relays	Leonard	7/24	54	(4.0)
Control Tricks With Stepping Switches	Ford	4/3	138	(4.0)
Manual Switches	Chapter			
		kC 4/24		(4.6)
Buckled Spring Actuates Switch	Scan	7/24	28	(1.0)
Temperature Switches	Chapter			
	EM	C 4/24	112	(3.4)
Transistor AND Thermostat Cut Line				
Noise	Scan	5/1		(0.6)
A Gentle Squeeze Switches Mercury Relay	Scan	1/23	43	(1.0)
Sensor Types	Chapter			
		&C 4/24	110	(1.0)
Sensing Switches	Chapter			-
	EM	kC 4/24	99	(5.4)
Optical "Cam" Keeps an Eye on Shaft	_			
Position	Scan	2/6	41	(0.5)
Proximity Switches	Chapter			
	EM	kC 4/24	104	(4.2)
Hall-Effect Sensors—Magnetic Switches				
That Have No Contacts	Brockman			
	& Nelson	10/16	123	(5.0)
Stenning Switches	Chapter			

EM&C 4/24 143 (2.2)

Clutch and Brake Motors	Chapter	4/24	E0	(2.0)	How To Interface Power Supplies Laser Pulses Make Connections on IC	Skopal	9/4	60	(4.0)
Circuit Breakers	Chapter				Chips	N/T	1/9	18	(0.7)
Contactors	Chapter	4/24		(3.0)	Laser Interferometers Three Lasers in a Cane Provide Eyes for	Koch	2/20		(6.0)
AC Motor Controls	Chapter	4/24		(1.3)	the Blind	N/T	3/20		(1.3)
DC Motor Controls	Chapter	4/24		(2.2)	Laser Looks at Air to Detect Turbulence	N/T Scan	6/12		(0.5) (0.5)
Contactors	Chapter Chapter	4/24		(1.2)	Connecting Devices	Chapter EM	&C 4/24	198	(1.6)
Drive Circuits for Reed Relays	EM&C	3/20		(1.3) (2.0)	Porosity Problems Solved for Formed Electrical Contacts	N/T	1/23	8	(0.5)
Relays	Chapter EM&C	4/24	130	(5.8)	Circuit Stops Contact Bounce, Uses Less Power	Scan	5/29	32	(0.6)
NEMA Control Relays	Chapter	2 4/24		(1.4)	Laser Pulses Make Connections on IC Chips	N/T			(0.7)
Reed Switches Guard Against Overvoltage Bimetal Actuators Cut DIP Noise	Scan Scan	5/1 8/7	27	(0.5)	Selective Cladding Cuts Connector Costs	N/T	1/23		(0.5)
Snappy Wrist Action Lights Up Digital					Optical "Cam" Keeps an Eye on Shaft		2/6	41	(0.5)
Watch	Scan	10/16	98	(0.5)	Position The Final Connection: Sockets or Solder? Wrap-Around Connector Speeds Pressure	Gove	6/26	39	(3.0)
14. Instruments & Controls					Testing The New Look in Wiring Hardware	Scan Fryberger	12/11 3/20		(0.5) (4.0)
					Flexible Cable Promises New Jobs For Superconductors	N/T	5/29	8	(0.8)
Vapor Pressure Keeps a Record of Peak Temperature	Scan	3/20	38	(0.5)	How To Interface Power Supplies Record Set in Cryogenic Power Trans-	Skopal	9/4	60	(4.0)
Sensor Types	Chapter EM&	2 4/24		(1.0)	mission Optical "Cam" Keeps an Eye on Shaft	N/T	9/18		(1.0)
Current Sensor Remembers to Turn Off the Power	Scan	6/26		(0.5)	Position	Scan	2/6	41	(0.5)
No Letter Bomb Gets By New High- Speed Detector	N/T	10/2	4	(0.8)	by Dry Processing Electronic Assembly: In-House or Sub-	N/T	11/13	6	(0.8)
Laser Looks at Air to Detect Turbulence	Scan Chapter	11/13		(0.8)	contract? Flexible Cable Promises New Jobs For	Leonard	11/13	122	(6.0)
Ministrators With Timers on a Chin	EM&	7/10	150	(2.0)	Superconductors	N/T	5/29	8	(0.8)
Miniaturizing With Timers on a Chip Circuit Cuts Cost of Time Base Expansion	Frostholm Scan	7/10 8/21		(4.0) (0.6)					
Synchronous Motors	Chapter EM&	C 4/24	18	(3.0)	17. Miscellaneous Componen	ts			
Instrument Motors		C 4/24	64	(1.4)	•				
CCDs Simplify Complex Electronics Electronic Counters	Article Chapter	3/20	89	(1.0)	Magnetic Float Measures Flow Rate Lever-Arm Motor Delivers High Torque,	Scan	3/20	39	(0.5)
Electromechanical Counters	EM&	C 4/24		(0.7)	Saves Energy	Scan Severinsen	6/26 8/7	28 74	(0.7) (4.0)
Record Bit Density of FET Memory Chip	N/T EM&	C 4/24 6/26	158 12	(1.0) (0.5)	Magnetic Field Lets Plasma Torch Tackle New Jobs	Scan	10/16		(0.5)
Instruments That Think For Themselves Electronic "Cam" Gets Rid of Mechani-	Comella	6/26	50	(5.0)	Hall-Effect Sensors—Magnetic Switches That Have No Contacts	Brockman			, , ,
cal Linkages	Scan Zimmerman	10/16		(1.0) (3.0)	High-Density Magnets Cut Motor Weight,	& Nelson	10/16	123	(5.0)
Arctic Ice Flow Measurements to Tip Off Where to Locate Oil Rigs, Pipelines	N/T	12/11	8	(0.8)	Boost Performance	Scan Place	11/13 11/13		(0.7) (3.0)
Single Stylus Traces Two Signals on	Scan	12/11		(0.5)	Foil Strips Make Reliable, Inexpensive				
Chart Paper Laser Interferometers	Koch	2/20	92	(6.0)	Reyboard Powder Insulation Bids for All Magnet-	Scan N/T		42	(0.6)
Simple Circuit Watches Voltage Level Electronic Vernier Accurately Measures	Scan	3/20			Wire Coating Jobs	N/T Severinsen	1/9 8/7	10 74	(1.3) (4.0)
Frequency Simpler Tuning for Wien-Bridge Oscil-	Scan	6/12		(0.5)	Record Set in Cryogenic Power Transmis- sion	N/T	9/18	4	(1.0)
Superaccelerators: Servomotors with In-	Brokaw		78	(0.8)	New Appeal	Aronson	4/17		
stant Reflexes	Sohlberg Chapter	1/23	101	(6.0)	Fiber Optics Impresses the Air Force Magnetic Field Lets Plasma Torch Tackle	N/T	6/12	4	(1.0)
Stepper Motors	EM& Chapter	C 4/24	62	(1.0)	New Jobs	Scan	10/16	60	(0,5)
Stepper Motors Aren't All Alike	EM& Irani &	C 4/24	66	(2.0)	Energy Beam	Scan Chapter	11/27	34	(1.0)
	Morreale	6/12	120	(2.0)		EM	&C 4/24	58	(2.0)
Driving Inertial Loads With Stepper Mo-	Article	8/7	85	(0.7)	Safer Power-Tool Braking	Gross	5/15		(4.0)
Stepper Drive Counts Its Pulses for Smooth Stops	Scan	11/13	48	(1.0)	ponents—Electric Clutches	Chapter 1			(2.7)
					ponents—Electric Brakes	Chapter 1			(0.6)
1E 14 Cinamit Commonst					Slack in Spooled Materials Ignition System Approved as Explosion	Kaplan	11/13		
15, 16. Circuit Components, Connectors & Wiring					Proof Electronic Ignition	N/T Florio			(0.5) (5.0)
Connectors & Wiring	3				Superlean Auto-Engine Mixture Fired by	N/T	3/20	4	(0.7)
Transient Suppression-Don't Make The					Torch Chrysler's 'Electronic' Lean-Burn Engine	N/T	7/10	24	(3.0)
Cure Worse Than the Disease Extra Resistor Wipes Out Temperature	Kay	2/6	82	(4.0)	Dual Photosensors Keep Contactless Pot Accurate	Scan	10/2	36	(0.7)
Reading Errors	Scan	5/15	31	(0.5)					
Accurate	Scan	10/2	36	(0.7)	19. Systems & Assemblies				
Chips	N/T	1/9	18	(0.7)					
Position	Scan		41		Inexpensive Amplifier Rejects Common	Scan	1/9	42	(0.5)
Build Your Own Precision Logic Probe	Scan Article	$\frac{2}{20}$	89		Mode Noise Semiconductors Bridle DC Motors	scan	2/20		(0.5)
Solid-State Switching Devices	Chapter EM&	C 4/24	162	(8.6)	Shaft Encoder Circuit Reads in Noisy Atmospheres	Scan	4/17	38	(0.5)
Digital Control Modules	Chapter EM&	C 4/24	170	(6.3)	Machine Controllers	Chapter	A&C 4/24		(2.7)
Simple Circuit Keeps Polarity Straight. Okay, Let's Go Electronic!	Scan Leonard	5/29		(0.5) (6.0)	Okay, Let's Go Electronic!	Comella	6/26	36 50	(6.0) (5.0)
The Final Connection: Sockets or Solder? Instruments That Think For Themselves	Gove Comella	6/26	39	(3.0)	F-16: First With Fly-By-Wire	Wise	8/7	16 70	(5.0) (4.0)
Miniaturizing With Timers on a Chip Electronic Systems As Machine Elements	Frostholm Leonard	7/10 8/21	78	(4.0)	Electronic Systems As Machine Elements Electronic "Cam" Gets Rid of Mechani-	Leonard		54	(6.0)
Bucket Brigade Cuts Cost of Waveform		9/18			cal Linkages	Scan	10/16	56	(1.0)
Analysis Bargain-Priced Burn-Out Protection	Scan			(0.7)	to the No-Cash, No-Cheat Society		1/23	10	(0.6)

Instruments That Think For Themselves	Comella 6/26	50	(5.0)	Choosing an A
New Tools for Old Tasks: Calculators.	Sperry 12/11		(3.0)	Choosing an A
New Tools for Old Tasks: Computers		143	(3.0)	Power-Control
New Tools for Old Tasks; Computers	Courtemanche			Power-Control
Choosing A DC-Motor Drive	12/11	146	(3.0)	Motor Control
Choosing A DC-Motor Drive	Harris &			
	Morgan 1/9	113	(1.3)	tronics

Choosing an AC Motor Drive	Harris & Morgan	3/6	92	(1.6)
Power-Control Modules	Chapter	0/0	0.4	(1.0)
rower-Control Modules	EM&C	4/24	178	(1.6)
Motor Control Package Simplifies Elec-				
tronics	Scan	7/10	37	(0.7)
Germany's Electric Scooters	Heumann	9/4	20	(1.5)
Analyzing Do-It-Yourself Servosyst ms	Maskrev	4/17	92	(6.0)

FLUID POWER

21, 22, 23. Fluids, Fluid Conditioners, Fluid Conductors

Fluids, Conductors, and Conditioners:				
Finding the Right Hydraulic Fluid Controlling Aerosols With Oil-less Cyl-	Chapter	FP 9/11	86	(2.0)
inders	Boulden	1/9	95	(5.0)
Solution	N/T	8/21	10	(0.7)
How Seals Act At High Temperatures	Chapter	FP 9/11		(1.0)
Pressure Distorts Cylinders Where You				
Least Expect It The Truth About Reservoirs	Blake	2/6	90	(1.4)
Bump and Shake Keeps Filter Tube on	Chapter	FP 9/11	10	(1.0)
the Job	Scan	3/6	38	(0.6)
Explosion Shocks Dirt Off Filter	Scan	5/29	31	(0.7)
Hydraulic and Pneumatic Filters Elements and Housings of Hydraulic	Chapter	FP 9/11		(1.5)
Filters	Chapter	FP 9/11		(0.6)
ing in Auto Turbines	N/T	2/6	10	(0.7)
Conditioner	N/T	2/20	4	(0.5)
Makers	N/T	3/6	10	(1.2)
Readied for Generating Plants	N/T	7/10	28	(0.5)
Heat Exchangers for Hydraulic Systems	Chapter	FP 9/11	100	(1.0)
Which Type of Heat Exchanger?	Chapter	FP 9/11		(0.7)
High-Pressure Hydraulics	Article	5/1	89	(1.3)
Fuel Vaporizer Cuts Auto Emissions Keeping the Water Out of Pneumatic	Scan	7/24	30	(0.5)
Components	Chapter	FP 9/11		(1.0)
Fundamentals of Hydraulic Line Selection Designing Lightweight Frames	O'Sickey Marshek		68	(3.0)
	Rosenber		88	(1.0)
Pipe and Tubing	Chapter	FP 9/11	97	(0.7)
Tubing Fittings	Chapter	FP 9/11	97	(0.7)
Guidelines for Selecting Hydraulic Tubing	O'Sickey	9/18		(4.0)
Selecting Hydraulic Hose	Chapter	FP 9/11	90	(0.7)
Alaskan Pipeline	N/T	4/3	8	(0.7)
Fundamentals of Hydraulic Line Selection	O'Sickey	5/15	68	(3.0)
Guidelines for Selecting Hydraulic Pipe	O'Sickey	8/7	78	(2.0)
Pipe and Tubing	Chapter	FP 9/11	97	(0.7)
Finding the Right Hose Fitting	Chapter	FP 9/11	91	(0.9)
Tubing Fittings	Chapter	FP 9/11	97	(0.7)
Cone Solves Material Problem Mechanical Systems: Driveline Com-	Scan	4/17	40	(0.5)
ponents-Couplings	Chapter	MD 6/19	41	(3.0)
Quick-Disconnect Couplings	Chapter	FP 9/11	92	(0.7)
Faults	Scan	10/16	61	(0.5)
High-Pressure Hydraulics	Article	5/1	89	(1.3)
Noise Pulsed Air Checks Back-Flow in Meter-	Scan	5/15	28	(0.5)

24. Linear Devices

Scan	4/3	47	(0.6)
Scan	1/9	42	(0.5)
Boulden			(5.0)
Chapter	FP 9/11	138	(1.5)
Chapter	FP 9/11	140	(0.8)
Chapter			(1.2)
			(0.6)
			(0.8)
Chapter	FP 9/11	177	(0.5)
Scan	3/6	37	(0.6)
Chapter	FP 9/11	14	(0.6)
Chapter	FP 9/11	18	(1.0)
Chapter	FP 9/11	20	(0.9)
Altland	4/3	152	(3.0)
Chapter	FP 9/11	45	(0.7)
Chapter	FP 9/11	144	(1.0)
Chapter	FP 9/11	22	(0.6)
	Scan Boulden Chapter Chapter Chapter Chapter Chapter Chapter Chapter Scan Chapter Chapter Altiand Chapter Chapter	Scan 1/9	Scan 1/9 42

25. Rotary Devices

Mini Sales Power Energy Converter	Scan	4/17	36	(1.0)
Geothermal Pump To Tap Deep, Hot Brine Whirling Discs Pump Abrasives Without	N/T	5/29	12	(0.6)
Wear	Scan	8/21	30	(1.0)
Pumps?	Holloway	9/4	66	(3.0)
Power Input and Storage Devices Positive-Displacement Pumps—Which One	Chapter	FP 9/11	7	(3.8)
For You?	Chapter	FP 9/11	208	(1.0)
How Handling Pumps Work	Chapter	FP 9/11	209	(1.0)
The Ins and Outs of Centrifugal Pumps Water Pressure Powers Pump in Emer-	Chapter	FP 9/11	210	(0.5)
gencies	Scan	11/13	49	(0.6)
Bouncing Gear Powers Hydraulic Motor	Scan	1/9	36	(1.0)
Which Type of Fluid Motor?	Chapter	FP 9/11	150	(2.0)
High-Torque Hydraulic Motors	Dann	11/27	60	(4.0)
Mini Sales Power Energy Converter	Scan	4/17	36	(1.0)
Mini Sales Power Energy Converter Flapping Vanes Deliver High Flows From	Scan	4/17	36	(1.0)
Small Compressor	Scan	6/12	38	(1.0)
Two Years in a Compressor	N/T	9/4	18	(0.5)
How Compressors Work	Chapter	FP 9/11	21	(1.1)
The Circuit Chooses the Valve	Chapter	FP 9/11	45	(0.7)
tuators	Chapter	FP 9/11	144	(1.0)
The Ins and Outs of Centrifugal Pumps	Chapter	FP 9/11	210	(0.5)

26. Seals

Learning the Language of Fluid Seals	Chapter	FP 9/11	174	(0.5)
How Seals Work in Cylinders	Chapter	FP 9/11	177	(0.5)
Stretching O-Rings to the Limit	Schoutens	4/3	178	(0.6)
O-Ring and Other Solid Section Seals	Chapter	FP 9/11	175	(0.7)
Tests Determine One Aircraft Fuel Seal	N/T	11/13	34	(0.5)
Seal's Permanent Wave Saves Shaft Wear	Scan	2/20	45	(0.5)
Radial Shaft Seal Stops Leakage	Scan	4/17	38	(0.5)
Seals that Survive Heat	Field	5/1	76	(4.0)
Mechanical Systems: Seals	Chapter	MD 6/19	252	(12.0)
Integral Support Rings Prevent Seal Ex-				
trusion	Scan	7/10	39	(0.5)
Pressure-Energized Seals	Chapter	FP 9/11	176	(1.0)
Flat Spring Loads Seal in Two Directions	Scan	12/11	45	(0.5)
Mechanical Systems: Seals-Nonmetallic				
Gaskets	Chapter	MD 6/19	280	(4.2)
Gaskets That Block EMI	Severinse	n 8/7	74	(4.0)
Mechanical Systems: Seals-Split Ring				
Seals	Chapter	MD 6/19	274	(1.0)
Mechanical Systems: Seals-Compression				
Packings	Chapter	MD 6/19	275	(6.0)
Compression Packings and Seals	Chapter	FP 9/11	175	(0.8)
Groovy Shaft Oils Fan Bearing	Scan	1/23	47	(0.6)
Sweeping Action Keeps Rupture Disc				
Clean	Scan	9/4	36	(0.5)
Rolling Diaphragms That Last	Marchetti	11/27	71	(1.2)

27. Valves

Fluid-Handling Valves	Chapter	FP	9/11	216	(2.0)
Power Modulation and Control Devices:					
What's Important in Selecting Direc-	-				
tion-Control Valves?	Chapter	FP S	9/11	38	(1.7)
Valves	Logan &				
Tatros	Louis		1/0	112	(1.0)
Hair-Trigger Safety Valve Stops Flow	230(23)		1/0	110	(1.0)
Quickly	Scan		3/12	39	(0.7)
Ball Valve Saves Its Seals	Scan				(0.6)
Controlling Flow in Hydraulic Circuits	Chapter	FP	9/11	44	(1.3)
Eccentric Disc Mount Makes Valve Seal	_				
Last Longer	Scan	13	1/13	53	(0.5)
The Specialized Functions of Hydraulic Pressure Valves	Chapter	EVD (9/11	40	(1.0)
Controlling Air Pressure			9/11		
Election Weight Controls Water Descript					(0.7)
Floating Weight Controls Water Pressure	Scan				(0.5)
Servovalves For Ultimate Accuracy	Chapter	FP !	9/11	46	(1.3)
Modular Manifolds Compete With Con- ventional Conductors	Chapter	ED (2/11	98	(0.5)
Two-Stage Nozzle Adjusts Suction to	Chapter	FF	9/11	170	(0.0)
Fluid Bulk	Scan	2	2/20	44	(1.0)
Flow Rates For Sharp-Edged Orifices	Groesbeck		,		(2.0)
•	& Manning	: 6	3/12	122	(1.5)
Sizing Orifices for Pressure Reduction	Myers		8/7	84	(1.3)

MECHANICAL

28. Instruments & Controls

Backward Pinch Valve Keeps an Eye on Pressure	Scan	3/20	36	(0.5)
Magnetic Float Measures Flow Rate	Scan	3/20	39	(0.5)
Measure Flowrate With Pressure Oscilla-				
tions	Scan	4/3	48	(0.5)
Gaging Fluid System Performance	Chapter	FP 9/11	48	(2.0)
Tailor the Cylinder to the Gage	Chapter	FP 9/11	142	(0.6)
Controlling Flow in Hydraulic Circuits	Chapter	FP 9/11	44	(1.3)
Controlling Air Pressure	Chapter	FP 9/11	46	(0.7)
Floating Weight Controls Water Pressure	Scan	10/2	38	(0.5)
Which Type of MPL?	Chapter	FP 9/11	226	(2.0)
Shifting Winds for Fluidics	Chapter	FP 9/11	228	(1.0)
Simple Circuits for Logic Functions	Chapter	FP 9/11	229	(1.5)
Heat Tracer Automatically Controls Out-				
put	Scan	6/26	30	(0.5)

29. Systems & Assemblies

High-Pressure Hydraulics	Article	5/1	89	(1.3)
Finding—and Fixing—Hydraulic Noise	Stecki &			
Sources	Dransfield	1 11/13	146	(1.2)
Internal Feedback Kills Positioner Dead-	Diamstick	11/10	110	(2.2)
band	Scan	2/6	40	(1.0)
Hydrostatic Drives	Chapter	FP 9/11		(1.0)
Record Set in Cryogenic Power Trans-		,		(
mission	N/T	9/18	4	(1.0)
Controlling Aerosols With Oil-less Cyl-				
inders	Boulden	1/9	95	(5.0)
Oiler-With-A-Brain Adjusts Flow to Bear-				
ing Temperature	Scan	3/20	36	(0.5)
Mechanical Systems: Bearings — Lubri-				(B A)
cating Systems	Chapter	MD 6/19		(3.0)
Lubricating Pneumatic Components	Chapter	FP 9/11		(0.5)
Bearings Promised Lifetime Lubrication	N/T	9/18	6	(0.7)
A New Way to Analyze Rotor Stability	Maslo &			
	Rieger	10/2	69	(3.0)
New Motor Heralded as Major Advance-				
ment	N/T	10/16	6	(0.5)
Power Units Put It All Together	Chapter	FP 9/11	12	(0.7)

31. Power Sources

Mechanical Systems 1975	Chapter	MD 6/19	2	(6.0)
Justifying the Shift to Electronics	Leonard	10/2	82	(6.0)
RamJet Test Flight Impressive	N/T	1/9	8	(0.5)
Isolating Engine Vibration	Wright.	4/17	87	(5.0)
Inlet Redesign Will Help Silence Big Jets	N/T	7 10/16	10	(0.6)
Present Technology Meets '77 Auto-		,		
Emissions Standards	N/T	2/6	8	(0.7)
Superlean Auto-Engine Mixture Fired by		-		
Torch	N/T	3/20	4	(0.7)
"New" Pollutant Forces EPA To Revise				
Auto-Emission Standards	N/T	4/3	4	(0.8)
Mechanical Systems: Driveline Com-				
ponents-Engines	Chapter	MD 6/19	62	(2.0)
Axial Valve Assembly Helps Optimize				
Engine Performance	Scan	6/26	32	(0.5)
NRC Has Its Say on Auto Emissions and				
Air Pollution	N/T	7/24	12	(0.7)
Outboard Overview	N/T	7/24	16	(4.0)
New Truck Burns Much Less Fuel	N/T	8/7	12	(0.5)
Exhaust-Gas Turbocharger Boosts Engine				
Power	Scan	8/7	32	(0.7)
Diesel Option Offered For Light Ameri-				
can Vehicles	N/T	9/4	4	(0.7)
Brayton, Stirling Engines To Compete As				
Automotive Powerplants of the Fu-				
ture	N/T	10/2	12	(0.8)
New Motor Heralded as Major Advance-			-	
ment	N/T	10/16	6	(0.5)
GM Getting Ready For Diesel Auto	N/T	10/16	6	(0.5)
Improved Regenerators Ready for Testing	AT 100	0.10		
in Auto Turbines	N/T	2/6	10	(0.7)
Marine-Turbine Fuel	3.7 /FD	0.77	24	(0.0)
Brayton, Stirling Engines To Compete As	N/T	8/7	34	(0.6)
Automotive Powerplants of the Fu-				
	N/T	10/2	12	(0.9)
Big Water-Cooled Gas Turbine To Op-	14/1	10/2	12	(0.8)
erate at 2,800 F	N/T	11/27	10	(0.8)
Nuclear War Not Likely To Wipe Out	14/1	11/21	10	(0.0)
Life	N/T	11/27	12	(0.5)
Ion Engine Nearly Ready for Work in	24/ 2	11/41	1.0	(0.0)
Space	N/T	7/10	6	(0.7)
'Friendly Enemy' To Receive Tailored	44/ 4	1/10		(0.1)
Probes	N/T	10/16	12	(0.6)
Garbage Power	Bryson	1/9	20	(6.0)
Oil Shale and Tar Sands Very Much In	251 3 5011	2,0		(0.0)
Energy Ballgame	N/T	2/6	26	(0.8)
Sun-Powered Air Conditioner Studied for	, -	2,0	20	(5.0)
New Skyscraper	N/T	4/3	10	(0.7)
		-, -		

Minimizing Oil-Spill Hazards New Truck Burns Much Less Fuel	Zimmerman N/T	5/1	16 12	(5.0) (0.5)
Bunker C Becoming More Acceptable	14/1	0/1	14	(0.5)
Marine-Turbine Fuel	N/T	8/7	34	(0.6)
No Letter Bomb Gets By New High-				
Speed Detector	N/T	10/2	4	(0.8)
Converts Them Into Fish Food	N/T	10/16	4	(1.0)
Courtesy Cars Testing Fuels and Oil	N/T	10/16	8	(0.5)
Hydride Storage Key to Hydrogen-	/-	20,20	-	(0.0)
Powered Vehicles	N/T	11/13	4	(1.0)
Accidental Explosions Now Being Typed	N/T	11/13	18	(0.6)
Coming: 50% Less Fuel Consumption by				
Civil Aircraft?	N/T	11/13	30	(0.8)
Arctic Ice Flow Measurements to Tip Off				
Where to Locate Oil Rigs, Pipelines	N/T	12/11	8	(0.8)
Steam To Power Taxi for the Handi-			-	
capped	N/T	4/17	6	(0.7)
Solar-Energy Collector Teams With Heat	N/T	# 10		/4 P)
Pump for Home Heating/Cooling Wind Generator Makes a Comeback	Scan	1/9 3/20		(1.5)
Black-Chrome Coating Efficient Solar	scan	3/20	31	(0,7)
Collector	N/T	4/3	22	(0.7)
New Solar-Energy Absorber Holds Its	74/ 7	1/0	22	(0.1)
Heat	N/T	4/3	24	(0.6)
Building Model Provides Answers On	/-	-,-		(0.0)
Solar-Energy Utilization	N/T	4/3	34	(0.5)
Little Energy Input Needed by Solar				
House	N/T	5/15	4	(0.7)
Geothermal Pump To Tap Deep, Hot				
Brine	N/T	5/29	12	(0.6)
Ocean-Energy Tappers Judged Feasible	N/T	6/12	18	(0.5)
Cost Answers Sought to Harnessing the			_	
Wind	N/T	6/26	8	(0.5)
Efficiency Doubled for Solar-Energy Col-	37.77	F/40	10	(A F)
lector	N/T		12 28	(0.7)
Reaping the Wind	Zimmerman			(2.0)
Satellite Solar-Power Stations	Aronson	11/27	18	(4.0)

32, 33, 34. Drives, Transmissions, Drive Components

-			
			(0.6)
			(4.0)
			(4.0)
ressett	8/1	80	(4.0)
Manthaga	0/10	00	(4.0)
MacFarland	8/19	80	(4.0)
MacFerland	10/2	75	(5.0)
Macrariand	10/2	10	(0.0)
Chanter MT	6/10		(5.0)
			(4.0)
			(4.0)
Fessett		80	(4.0)
2 000010	0, 1	-	,
Chapter MI	6/19	22	(1.0)
N/T	5/1	6	(0.5)

Chapter MI		20	(2.0)
Scan	7/24	30	(0.5)
N/T	2/6	12	(0.5)
Reichardt	5/29	50	(4.0)
	6/19	23	(3.0)
			(5.0)
DI	1/23	37	(0.5)
The state at a sec	0 (00	-00	/F 01
Buckingnam	3/20	82	(5.0)
Coon	W 19	20	(1.0)
Maan			(4.0)
naas	0/10	10	(4.0)
Chapter MT	8/10	12	(7.0)
			(4.0)
T. COBCCC	0/22	UL	(2.0)
Coleman	8/21	64	(2.0)
			(4.0)
To do o transferon	20/20	~ ***	(410)
Scan	5/29	30	(0.7)
Rucinski	10/2		(1.0)
	11/27	34	(0.6)
	MacFarland Chapter MD Haas Fessett Fessett Chapter MD Scan N/T Rohlfing, Morris & Reichardt Chapter MI Hutten Czapski DI Buckingham Scan Haas Chapter MT Fessett Coleman Buckingham Scan Scan	Haas 5/15 Fessett 7/24 Fessett	Haas 5/15 76 Fessett 7/24 61 Fessett 8/7 80 MacFarland 9/18 90 MacFarland 10/2 75 Chapter MD 6/19 8 Haas 7/24 61 Fessett 8/7 80 Chapter MD 6/19 23 Chapter MD 6/19 20 Chapter MD 6/19 20 Chapter MD 6/19 20 Rohlfing, Morris & Reichardt 5/29 50 Chapter MD 6/19 23 Rohlfing, Morris & Reichardt 5/29 50 Chapter MD 6/19 23 Hutten-Czapski 1/9 106 DI 1/23 37 Buckingham 3/20 82 Scan 5/15 76 Chapter MD 6/19 13 Fessett 7/24 61 Coleman S/21 64 Scan 5/29 30

35. Rotational Components

When Selecting a Bearing-Look Beyond			
Catalog Ratings	Liebensperger	4/3 142	(6.0)
Mechanical Systems: Bearings	Chapter MD	6/19 152	(4.0)

Mechanical Systems: Bearings—Rolling-	Chanton	360 6/40			Balancing Parallel Blowers	Fader	2/6	86	(4.0)
Element Bearings	Cnapter	MD 6/19	169	(13.0)	Failures	Hay &			
Bearings	Chapter	MD 6/19	194	(10.0)		Martz	2/20		
Estimating Life of Multibearing Systems	Gordon			(0.7)	Flywheel in Auto To Replace Gasoline?	N/T	8/7	12	(0.5)
Bearings Promised Lifetime Lubrication	N/T			(0.7)					
New Motor Heralded as Major Advance-				(01.)					
ment	N/T	10/16	6	(0.5)	36, 37. Mechanisms, Control	•			
PV Ratings For Plastic Bearings	Carswell			(1.4)	Jo, Jr. Mcchambing, Comiton	•			
Design Dimensions for Plastic Bearings	Carswell	2/20	121	(1.3)					
Injected Liner Improves Bearing Per-				(210)	3-D Stampings	Strasser	44/49	149	(1.4)
formance	Scan	5/15	30	(0.5)	Smoothing Out Cylinder Loads	Wood &	11/13	149	(1.4)
Concentric Grooves Stabilize and Stiffen		-,	-	(0.0)	Smoothing Out Cynnder Loads	Mirus	210	00	/* **
Bearing	Scan	6/12	42	(0.5)	Outlining the House Don Yinhams	Rao	3/6		(1.4)
Mechanical Systems: Bearings	Chapter	MD 6/19			Optimizing the Four-Bar Linkage		4/17		(1.0)
Mechanical Systems: Bearings-Plain and		0/10	102	(4.0)	Crank Smoothes Cylinder Loads	Chapter	FP 9/11		(0.8)
Premounted Sleeve Bearings	Chapter	MD 6/19	156	(7.0)	NC Positioning Without the Tape	Scan	4/17	40	(0.5)
Mechanical Systems: Bearings-Sliding-	ome prov	3410	100	(1.0)	Rope Ladder Inspires Linear Actuator				
Bearing Materials	Chapter	MD 6/19	163	(6.0)	Design	Scan	5/15	26	(1.0)
Predicting Wear in Plastic Bearings	Anderser				Actuator Shuts Itself Off When It Meets	_			
When To Grease Bearings	Booser	8/21			an Obstruction	Scan	6/12	41	(0.5)
Stabilizing Babbitt Dimensions		cker 10/2			Piezoelectric Positioner Imitates Earth-				
Plastic Socket Makes Ball Joint Easy to	- sololiono	01101 10/2	00	(1.0)	worm	Scan	9/18	44	(0.7)
Assemble	Scan	19/11	49	(0.5)	Wind-Up Power Sources-More Energy in	_			
Mechanical Systems: Driveline Compo-	Dours	14/11	*0	(0.0)	a Smaller Package	Ferner	9/4	72	(5.0)
nents—Couplings	Chanten	MD 6/19	41	(2.0)	Jack-In-The-Box Light Unrolls Its Own	-			
Mechanical Systems: Driveline Compo-	Chapter	MD 0/19	41	(3.0)	Mast	Scan	3/6		(1.0)
nents-Universal Joints	Chanter	MD 6/19	40	(2.0)	Robot With a Soft Touch	DI	1/23		(0.5)
Mechanical Systems: Driveline Compo-	Chapter	MID 0/10	40	(2.0)	Trochoid Bearing Shakes As It Spins	Scan	2/6	44	(0.6)
nents—Auxiliary Components	Chanter	MD 6/19	20	(1.0)	Gravity Feed Tracks	Murch &			
	Anderson					Campbell	6/26		(4.0)
Getting The Most From Cantilever Shafts	Anderson	1/23	92	(4.0)	Coming-Robots That See and Feel	Article	7/10		(0.6)
Shear Forces Strengthen High-Density	Gaan	11/07	20	(0.5)	Let The Robot Do It	Aronson	11/27	54	(6.0)
PM Parts	Scan	11/21	30	(0.5)	Measuring Platform Does a Lot of Leg-				
Brake Material Survives Fire and Brim-	Coom	1/9	38	(0 E)	work	Scan	10/16	55	(1.0)
stone	Scan	1/8	35	(0.5)	Electromechanical Counters	Chapter			
Mechanical Systems: Driveline Compo-	Chanten	300 0 HO	07	(1 0)		E	#&C 4/24	158	(1.0)
nents-Clutches and Brakes	Chapter	MD 6/19	21	(1.0)	Mechanical Counter Taps Machine for				
Mechanical Systems: Driveline Compo-	m	350 140		(4.0)	Power	Scan		33	
nents-Mechanical Brakes	Chapter	MD 0/19	37	(1.0)	Press Protector Detects Die Defects	Scan	8/7	28	(1.0)
Wavy Wires Provide Controlled Break-	-								
Away	Scan	9/18	42	(1.0)					
Variable-Torque Brakes Take Up the					40 Suctome				
Slack in Spooled Materials	Kaplan	11/13	136	(4.0)	40. Systems				
Taking Guesswork Out of Disc Clutch									
Design	Morse &					Cilonole .		W.C.	14.65
	Hinkle	11/27	64	(2.0)	Controls Are Getting Smarter	Cleveland	8/7	70	(4.0)

ASSEMBLY COMPONENTS

41,	42,	43.	Fasteners, Sp Devices, Misc		&	Isolation
-----	-----	-----	--------------------------------	--	---	-----------

Fasteners That Fight Fatigue	Khol		2/20	98	(5.0)
How Much Preload for Fasteners?	Dann		8/21	66	(4.0)
Keeping Fasteners Tight	Baston &		-,		,,
	Tokarski		9/18	86	(4.0)
The Move To Metric-1975: Standards			0,20	-	(=)
O.K. Gives Industry the Go-Ahead	Chapter	EI	11/20	2	(2.0)
Special-Purpose Fasteners: Self-Sealing	Chapter	1.0	11/20	_	(2.0)
Fasteners	Chapter	TOT	11/20	02	(1.0)
How Inserts Help Lightweight Structures	Viscio	L J	6/12		(4.0)
Split-Ring Fastener Speeds Up Monkey	VISCIO		0/14	119	(2.0)
	Scan		10/16	59	(0.5)
Bar Assembly					
Threaded Fasteners: Nuts and Inserts.	Chapter		11/20		(5.8)
Non-Threaded Fasteners: Pins	Chapter	FJ	11/20	68	(1.5)
Special-Purpose Fasteners: Quick-Operat-	-				
ing Fasteners	Chapter	FJ	11/20	94	(1.7)
Keyway Design Reduces Shaft Stress	Scan		4/17	37	(0.5)
Non-Threaded Fasteners: Retaining Rings	Chapter		11/20	70	(3.1)
Non-Threaded Fasteners: Rivets	Chapter	$_{\rm FJ}$	11/20	66	(2.5)
Tightening System Stops Broken Bolts	Scan		1/23	44	(0.6)
Bolt Preload—How Can You Be Sure It's					
Right?	Cornford		3/6	78	(5.0)
A Bolt That "Blows" Like A Fuse	Hutten-				
	Czapski		5/29	46	(4.0)
Threaded Fasteners: Bolts, Screws, and			-,		
Studs	Chapter	T.T	11/20	4	(5.6)
Non-Threaded Fasteners: Washers	Chapter		11/20	81	(1.0)
Hook-Up Block Takes the Hazards Out of	Citapeti		11/20	O.	(1.0)
Trawling	Scan		10/16	57	(0.7)
Special-Purpose Fasteners: Plastic Fas-	Dougl		10/10	01	(0.1)
teners	Chapter	TOT	11/20	88	(2.6)
teners	Chapter	L.J	11/20	68	(2.0)

Chapter F	J 11/20	90	(1.7)
Agrawal	6/26	55	(0.7)
Kock	10/16	148	(2.0)
Agrawal	11/13	147	(0.8)
37 /00	0.00	40	(0.0)
			(0.9)
			(0.5)
			(1.0)
Scan	8/21	32	(0.7)
N/T	11/27	12	(0.5)
N/T	2/6	4	(0.5)
	-,-	_	(0.0)
Rosenberg	5/15	88	(1.0)
Heumann	2/6	30	(3.0)
N/T	7/24	6	(0.5)
Lipp	9/4	77	(1.1)
N/T	11/12	24	(0.5)
			(0.9)
	11/20	-	(0.0)
	E /45	00	(1.0)
Rosemberg	0/10	00	(1.0)
	Agrawal Kock Agrawal N/T DI Scan Scan N/T N/T Marshek & Rosenberg Heumann N/T	Agrawal Kock 10/16 Agrawal 11/13 N/T 6/26 DJ 1/23 Scan 7/24 Scan 8/21 N/T 11/27 Marshek & Rosenberg Heumann N/T 2/6 Heumann N/T 17/24 Lipp 9/4 N/T 11/13	Agrawal Kock 10/16 148 Agrawal 11/13 147 N/T 6/25 10 DI 1/23 36 Scan 7/24 28 Scan 8/21 32 N/T 11/27 12 N/T 2/6 4 Marshek & Rosenberg 14/6 80 Heumann N/T 7/24 6 Lipp 9/4 7 N/T 11/13 34 N/T 11/13 34 N/T 11/27 4

Tightening System Stops Broken Bolts.	Scan	1/23	44	(0.6
Flexure Beams Weigh Off-Center Loads Swinging Blade Tests Resilience of Pre-	Scan	4/3	46	(1.0
Stressed Materials	Scan	11/27	36	(0.5
Digital Eyepiece Doesn't Need to Know Magnification Range	Scan	12/11	46	(0.6

MATERIALS

51, 52. Ferrous, Nonferrous Metals

 Materials 1975—Shortages and Uncertain Supply
 Chapter
 M 3/13
 2
 (1.0)

Materials 1975-Steels Fight Back With				
New Technology	Chapter	M 3/13	6	(2.0)
Ferrous Metals-How Atoms Are Ar-				
ranged in Metals and Alloys	Chapter	M 3/13		
GM Set for Materials Revolution	Wise	4/3	28	(4.0)

Mechanical Systems: Bearings-Sliding-	Charter	35D 0/40		/A A1	Largest Fiberglass Ship Resulted from				
Bearing Materials	Chapter Chapter			(6.0) (2.3)	Tooling Idea Elastomers That Conduct Electricity	N/T Comella	8/21	18 60	(4.0)
Ferrous Metals-Introduction to Ferrous					The Pola of Fillers and Reinforcements				
Metallurgy How To Save Money When Specifying	Chapter	$M \ 3/13$	8	(1.2)	Materials 1975—Soft Bumpers, Friendly	Cloud	9/18	94	(4.0)
Sheet Steel	Hand	7/10	70	(4.0)	Fenders, and RIM	Chapter	M 3/13	5	(1.0)
Ferrous Metals: Cast Iron-Ductile.	Chapter	35 9/19	10	(2.0)	Elastomers: Thermoset Elastomers	Chapter	M 3/13		(3.9)
White, and Gray	Chapter	M 3/13 M 3/13	12	(2.0) (0.8)	Elastomers: Thermoplastic Elastomers. Reaction-Injection Molding	Chapter Dreger	M 3/13 4/3		(1.1) (4.0)
Ferrous Metals: Carbon Steel	Chapter	M 3/13	12	(1.8)	Seals that Survive Heat	Field	5/1	76	(4.0)
Ferrous Metals: Alloy Steel Ferrous Metals: Stainless Steel	Chapter	M 3/13 M 3/13		(2.0) (1.3)	Elastomers That Conduct Electricity Coming: Implanted Artificial Muscles	Comella N/T	8/21 10/2	8	(4.0) (0.7)
Ferrous Metals: Tool Steel	Chapter	M 3/13	19	(1.3)	Elastomer in Wheels Silences Streetcars	N/T	11/27	4	(0.9)
Ferrous Metals: HSLA Steel	Chapter	M 3/13	21	(1.8)			/		
Carbon Steels Join the Superplastic Metals	Dreger	4/3	134	(4.0)					
Ferrous Metals: Iron-Based Superalloys	Chapter	M 3/13	22	(1.0)	55, 56. Joining Materials,				
Nonferrous Metals—Introduction To Non- Ferrous Metallurgy	Chapter	M 3/13	50	(3.0)	oo, oo. ooming materials,				
Nonferrous Metals: Aluminum	Chapter	M 3/13		(2.1)	Other Nonmetals				
Nonferrous Metals: Temper Designations									
For Aluminum Alloys	Chapter	M 3/13	90	(0.5)	Hot-Melt Adhesives Put It All Together	Dreger	1/0	00	(T A)
Garbage	N/T	10/2		(0.6)	Only Ultraviolet Cures New Adhesive	N/T	1/9 3/20		(7.0) (0.6)
Nonferrous Metals: Copper Nonferrous Metals: Magnesium	Chapter	M 3/13 M 3/13	56 59	(2.3) (1.0)	Mechanical Systems: Seals—Sealants	Chapter	MD 6/19	287	(2.0)
Nonferrous Metals: Nickel	Chapter	M 3/13		(2.0)	Joining Techniques: Adhesives Finally! A Brazing Alloy for PM Parts	Chapter Scan	FJ 11/20 4/17		(1.8) (0.5)
Iron Replaces Some Nickel in Decorative					Finally! A Brazing Alloy for PM Parts Other Engineering Materials—Carbon	Chapter	M3/13	220	(1.0)
Plating	N/T Chapter	5/29 M 3/13	64	(0.7) (1.1)	Materials First Claimed For Trident	Amttala	10/0	10	(2.0)
Lower Cost Titanium Parts	Kulkarni	5/1		(3.0)	Missile Other Engineering Materials—Ceramics	Article Chapter	10/2 M 3/13	221	(2.0) (1.6)
Superplastic Forming Wins Nod for Ti- tanium Aircraft Structures	N/T	12/11	4	(0.7)	Other Engineering Materials—Ceramics Other Engineering Materials—Glass	Chapter	M 3/13	223	(1.2)
Nonferrous Metals: Zinc	Chapter	M 3/13		(1.0)	Largest Fused-Silica Windows Going into Space Shuttle	N/T	4/17	4	(0.7)
Nonferrous Metals: Refractory Metals	Chapter	M 3/13		(0.7)	Injection Molding Moves Into Metals	Dreger	10/2		(2.0)
New Solar-Energy Absorber Holds Its Heat	N/T	4/3	24	(0.6)	Piezoelectric Ceramics Show Promise as			-	
Nonferrous Metals: Precious Metals	Chapter	M 3/13	62	(0.8)	Prosthetic Bones	N/T Place	11/13 11/13	119	(0.7) (3.0)
Nonferrous Metals: Beryllium	Chapter	M 3/13	55	(1.0)	Other Engineering Materials-Fibers	Chapter	M 3/13		
Nonferrous Metals: Tin	Chapter	M 3/13	63	(1.0)	V-Belt Fibers—The Strongest Isn't Al- ways The Best	Rohlfing,			
					ways and best	Morris &			
					Fingiomers That Conduct Bloomists	Reichard			(4.0)
					Elastomers That Conduct Electricity The Role of Fillers and Reinforcements	Comelia	8/21	60	(4.0)
					in Plastics	Cloud	9/18	94	(4.0)
53, 54. Plastics, Rubber & E	lastome	er			Two Tractor Cabs Beat Inside-Noise Record	NT /FF	2/8	4	(0.5)
••••					Insulation Installers Readied for Trans-	N/T	2/6	•	(0.5)
PV Ratings For Plastic Bearings	Carswell	1/23	116	(1.4)	Alaskan Pipeline	N/T	4/3	8	(0.7)
Comparing High-Temperature Plastics	Theberge				New Motor Heralded as Major Advance-			6	(0.5)
					ment	N/T	10/16		
	Arkles, &	t	73	(5.0)	ment Improved Regenerators Ready for Test-	N/T	10/16		
Choosing Plastics for Chemical Resistance	Arkles, & Cloud Theberge	2/6	73	(5.0)	Improved Regenerators Ready for Test- ing in Auto Turbines	N/T	2/6	10	(0.7)
Choosing Plastics for Chemical Resistance	Arkles, & Cloud Theberge Arkles, &	2/6			ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brim-			10 87	(0.7) (5.0)
	Arkles, & Cloud Theberge	2/6		(5.0) (5.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress	N/T	2/6	10 87	(0.7) (5.0)
Plastics—Introduction to Polymer Chemistry	Arkles, & Cloud Theberge Arkles, & Cloud Chapter	2/6 2/20 M 3/13	103 122	(5.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brim-	N/T Blodgett	2/6 3/6	10 87	(0.7) (5.0)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter	2/6 2/20 M 3/13 M 3/13	103 122 125	(5.0) (3.0) (1.0)	ment Improved Regenerators Ready for Test- ing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brim- stone	N/T Blodgett Scan	2/6 3/6	10 87	(0.7) (5.0)
Plastics—Introduction to Polymer Chem- istry	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter	2/6 2/20 M 3/13 M 3/13	103 122 125	(5.0) (3.0) (1.0)	ment Improved Regenerators Ready for Test- ing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brim- stone	N/T Blodgett Scan	2/6 3/6	10 87	(0.7) (5.0)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge	2/6 2/20 M 3/13 M 3/13 M 3/13	103 122 125	(5.0) (3.0) (1.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brim-	N/T Blodgett Scan	2/6 3/6	10 87	(0.7) (5.0)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter	2/6 2/20 M 3/13 M 3/13 M 3/13	103 122 125 158	(5.0) (3.0) (1.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric	N/T Blodgett Scan	2/6 3/6	10 87	(0.7) (5.0)
Plastics—Introduction to Polymer Chem- istry	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud	2/6 2/20 M 3/13 M 3/13 M 3/13	103 122 125 158	(5.0) (3.0) (1.0) (1.9)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut	N/T Blodgett Scan	2/6 3/6 1/9	10 87 38	(0.7) (5.0) (0.5)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Arkles &	2/6 2/20 M 3/13 M 3/13 M 3/13	103 122 125 158	(5.0) (3.0) (1.0) (1.9)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything	N/T Blodgett Scan	2/6 3/6 1/9	10 87 38	(0.7) (5.0) (0.5)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fas- teners	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan	2/6 2/20 M 3/13 M 3/13 M 3/13	103 122 125 158 79 81	(5.0) (3.0) (1.0) (1.9)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and	N/T Blodgett Scan	2/6 3/6 1/9	10 87 38	(0.7) (5.0) (0.5)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fas- teners How Much Should You Trust ASTM Test	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20	103 122 125 158 79 81 83	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals	N/T Blodgett Scan Cants Scan N/T Arkles & Gerakaris	2/6 3/6 1/9 9/18 3/6	10 87 38 48 6	(0.7) (5.0) (0.5) (0.5)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fas- teners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter Chapter Chapter Chapter	2/6 2/20 M 3/13 M 3/13 M 3/13 M 3/13 5, 3/20 4/3 FJ 11/20 1/23 2/20	103 122 125 158 79 51 83 107 121	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and	N/T Blodgett Scan Scan Scan N/T Arkles &	2/6 3/6 1/9 9/18 3/6	10 87 38	(0.7) (5.0) (0.5) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasteners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter Chastain Carswell Chapter	2/8 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Uith Oil-less Cylinders	N/T Blodgett Scan Cants Scan N/T Arkles & Gerakaris	2/6 3/6 1/9 9/18 3/6	10 87 38 48 6	(0.7) (5.0) (0.5) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter Chapter Chapter Chapter	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. ith Oil-less Cylinders Synthesized Motor Oil Faces Tough	N/T Blodgett Scan Scan Scan N/T Arkles & Gerakaris N/T Boulden	2/6 3/6 1/9 9/18 3/6 6/12 10/16	10 87 38 48 6	(0.7) (5.0) (0.5) (0.5) (0.7) (5.0) (5.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Cellulostcs	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 2/20 M 3/13 M 3/13 M 3/13 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Cax Testing Oil Analysis Reveals NC Design Tips	N/T Blodgett Scan Cants Scan N/T Actes & Gerakaris N/T Boulden N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20	10 87 38 48 6	(0.7) (5.0) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7)
Plastics—Introduction to Polymer Chem- lstry	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter Chastain Carswell Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 135	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil sa a Trans-	N/T Blodgett Sean Cants Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20	10 87 38 48 6 103 8 95 8	(0.7) (5.0) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fas- teners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Acetal Plastics: Fuoroplastics Plastics: Fluoroplastics Plastics: Phenylene Oxide	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13 M 3/13 M 3/13 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 135 137 140	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (1.3) (1.1) (2.5) (1.2)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant	N/T Blodgett Scan Cants Scan N/T Actes & Gerakaris N/T Boulden N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20	10 87 38 48 6 103 8 95 8	(0.7) (5.0) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Nylon Plastics: Phenylene Oxide Plastics: Phenylene Oxide Plastics: Polycarbonate	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 135 137 140	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.3) (1.1) (2.5) (1.2) (0.8)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12	10 87 38 48 6 103 8 95 8 32	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Pasceners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Nylon Plastics: Phenylene Oxide Plastics: Polyograponate Plastics: Polyograponate Plastics: Polyograponate Plastics: Polyofins	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 135 140 141 144 145	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.5) (1.1) (1.1) (2.1) (2.2)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Folice-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12 MD 6/19 8/21	10 87 38 48 6 103 8 95 8 32 117 211 70	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: ABS Plastics: Acrylic Plastics: Acrylic Plastics: Pluoroplastics Plastics: Polyplene Oxide Plastics: Polyplefins Plastics: Polyplefins Plastics: Polyplefins Plastics: Polyplefins Plastics: Polyplefins Plastics: Polyplefins	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter Chastain Carswell Chapter Chapte	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 M 3/13 M 3/13 M 3/13 M 3/13 M 3/13 M 3/13 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 135 137 141 144 145 148	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (1.3) (1.1) (1.2.5) (1.2.6)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19	10 87 38 48 6 103 8 95 8 32 117 211 70	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 132 132 137 140 141 144 145 148	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.1) (1.3) (1.1) (1.2) (0.8) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Vith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil Courtesy Cars Testing Fuels and Oil	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12 MD 6/19 8/21	10 87 38 48 6 103 8 95 8 32 117 211 70	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Pasceners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Cellulosics Plastics: Plastics: Plastics Plastics: Plastics Plastics: Polyopenside Plastics: Polyoperside	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 128 132 137 140 141 144 145 148 148 149 150	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.1) (1.3) (1.1) (1.2) (0.8) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Folice-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12 MD 6/19 8/21	10 87 38 48 6 103 8 95 8 32 117 211 70	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Ployopens Plastics: Polyopens Plastics: Polyurehane Plastics: Polysulfone Plastics: Polyurethane Plastics: Polyurethane Plastics: Polyurethane	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/20 M 3/13 M 3/13 M 3/13 M 3/13 3/20 4/3 FJ 11/20 1/23 2/20 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 127 140 141 144 145 148 148 149 150	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (1.3) (1.1) (2.5) (1.2) (0.8) (1.1) (2.9) (0.7) (1.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Vith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil Courtesy Cars Testing Fuels and Oil	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12 MD 6/19 8/21	10 87 38 48 6 103 8 95 8 32 117 211 70	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Fluoroplastics Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvlefins Plastics: Polyvlefins Plastics: Polyvlefins Plastics: Polyvlefine Sulfide Plastics: Polyvlefine Plastics: Polyvlefine Plastics: Polyvlefine Plastics: Polyvrene Plastics: Polyvrene Plastics: Polyvrene Plastics: Polyvrene Plastics: Reinforced Thermoplastics Eliastomers: Thermoplastics Elastomers	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 137 137 141 144 148 148 148 149 150 151	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.1) (1.3) (1.1) (1.2) (0.8) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Vith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12 MD 6/19 8/21	10 87 38 48 6 103 8 95 8 32 117 211 70	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 135 137 140 141 144 145 148 149 150 207	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.1) (1.3) (1.1) (1.3) (1.1) (1.1) (1.1) (1.0) (1.0) (1.0) (1.0) (1.0) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 2/20 6/12 MD 6/12 10/16	10 87 38 48 6 103 8 95 8 32 117 70 8	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.5) (5.0) (0.7) (1.0) (3.0) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasceners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Ployener Oxide Plastics: Polyolefins Plastics: Polyolefins Plastics: Polyolefins Plastics: Polyolefins Plastics: Polyphenylene Sulfide Plastics: Polysulfone Plastics: Polysulfone Plastics: Polyurethane Plastics: Polyurethane Plastics: Reinforced Thermoplastics Elastomers: Thermoplastic Elastomers Now: Profile Extrusions From High- Performance Plastics:	Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 141 143 144 148 148 149 150 151 153 207	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (2.5) (1.3) (1.1) (2.1) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Uith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Cax Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19 8/21 10/16	10 87 38 48 6 103 8 95 8 32 117 211 70 8	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.7) (1.0) (3.0) (4.0) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasceners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Ployoplastics Plastics: Polyoplastics Plastics: Polyoplastics Plastics: Polyolefins Plastics: Polyolefins Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyurethane Plastics: Polyurethane Plastics: Reinforced Thermoplastics Elastomers: Thermoplastic Elastomers Now: Profile Extrusions From High- Performance Plastics Plastics: Alkyd Plastics: Alkyd Plastics: Alkyde	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 141 144 145 148 149 150 151 153 207	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (2.5) (1.3) (1.1) (2.1) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile	N/T Blodgett Sean Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19 8/21 10/16	10 87 38 48 6 103 8 95 8 32 117 211 70 8	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.7) (1.0) (3.0) (3.0) (4.0) (4.0) (0.5)
Plastics—Introduction to Polymer Chem- istry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fas- teners How Much Should You Trust ASTM Test Datta? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Fluoroplastics Plastics: Fluoroplastics Plastics: Ploylongiastics Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvlard Plastics: Reinforced Thermoplastics Elastomers: Thermoplastic Elastomers Now: Profile Extrusions From High- Performance Plastics Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkylic Plastics: Almono	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 135 137 140 141 144 148 148 149 150 151 153 22 135 140 141 141 142 143 143 144 145 148 148 148 148 148 148 148 148 148 148	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (1.3) (1.1) (1.1) (1.0) (1.6) (1.7) (1.1) (4.0) (0.8) (0.8) (0.8)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19 8/21 10/16	10 87 38 48 6 103 8 95 8 32 117 70 8	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (5.0) (0.7) (1.0) (3.0) (4.0) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasceners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Ployoplastics Plastics: Polyoplastics Plastics: Polyoplastics Plastics: Polyolefins Plastics: Polyolefins Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyulifone Plastics: Polyurethane Plastics: Polyurethane Plastics: Reinforced Thermoplastics Elastomers: Thermoplastic Elastomers Now: Profile Extrusions From High- Performance Plastics Plastics: Alkyd Plastics: Alkyd Plastics: Alkyde	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 51 83 107 121 128 132 137 140 141 144 145 148 149 150 151 153 22 129 130 131 133 133 141 141 141 141 141 141 141	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.9) (1.1) (2.9) (1.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Uith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Cax Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Touch New Composites: Plastics Faced	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16	10 87 38 48 6 103 8 95 8 32 117 70 8 70 16 4	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (0.5) (4.0) (2.0) (0.7)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasceners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Plylon Plastics: Polycarbonate Plastics: Polyulofen Plastics: Reinforced Thermoplastics Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Allylic Plastics: Epoxy Plastics: Polyester	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 51 83 107 121 126 127 128 135 137 140 141 144 148 150 207 42 22 129 130 131 133 131 133 131 133 131 133 134 133 133	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.1) (2.5) (0.6) (1.2) (0.7) (0.7) (0.7) (1.7) (1.1) (1.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics Structural Foam	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16 7/10 10/2 4/17 6/13 MD 6/19 3/21	100 87 38 48 6 103 8 95 8 32 117 271 70 8 16 4 10 157	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (2.0) (0.7) (0.7) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: ABS Plastics: Acrylic Plastics: Acrylic Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Polyvarbonate Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Polywarbonate Plast	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 128 132 137 140 141 144 145 148 149 150 151 153 1207 42 129 130 131 133 131 133	(5.0) (3.0) (1.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.9) (1.1) (2.9) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet With Glass Microsheet	N/T Blodgett Sean Scan N/T Arkles & Gerakaris N/T Boulden N/T N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16 7/10 10/2 4/17 6/13 MD 6/19 3/21	10 87 38 48 6 103 8 95 8 32 117 211 70 8 70 16 4 10	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (2.0) (0.7) (0.7) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: ABS Plastics: Acrylic Plastics: Acrylic Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvarbonate Plastics: Polyvinide Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Polywinide Plastics: Silicone	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 83 107 121 128 132 132 131 144 149 150 151 153 207 42 129 130 131 133 139 142 150 151	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.9) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics Structural Foam	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16 7/10 10/2 4/17 6/13 MD 6/19 3/21	100 87 38 48 6 103 8 95 8 32 117 271 70 8 16 4 10 157	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (2.0) (0.7) (0.7) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Passeners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Polyender Plastics: Polyender Plastics: Polyender Plastics: Polyender Plastics: Polyender Plastics: Polyender Plastics: Polyphenylene Sulfide Plastics: Polyurethane Plastics: Polyurethane Plastics: Polyurethane Plastics: Reinforced Thermoplastics Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Polywithe Plastics: Alkyd Plastics: Polyenter Plastics: Polyenter Plastics: Alkyd Plastics: Alkyd Plastics: Polyenter Plastics: Polyen	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/6 2/20 M 3/13	103 122 125 158 79 51 120 121 126 132 135 137 140 141 145 148 148 148 149 150 151 133 139 130 131 133 139 142 144 155 152 154	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.1) (1.3) (1.1) (2.5) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Uith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics: Structural Foam Reaction-Injection Moiding	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16 7/10 10/2 4/17 6/13 MD 6/19 3/21	100 87 38 48 6 103 8 95 8 32 117 271 70 8 16 4 10 157	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (2.0) (0.7) (0.7) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasieners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: ACTylic Plastics: Actylic Plastics: Actylic Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Pluoroplastics Plastics: Polyvarbonate Plastics: Reinforced Thermoplastics Elastomers: Alkylic Plastics: Alkyd Plastics: Alkylic Plastics: Alkylic Plastics: Polywarbonate Plastics: Polywethane Plastics: Polywethane Plastics: Polywethane Plastics: Polywethane Plastics: Polywarbane Plastics: Reinforced Thermosets Elastomers: Thermogest Elastomers	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chapter Theberge Arkles & Cloud Scan Chapter	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 128 132 135 137 140 141 144 148 148 148 149 150 131 131 131 131 131 131 141 150 151 153	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.1) (1.3) (1.1) (2.5) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.ith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics Structural Foam	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16 7/10 10/2 4/17 6/13 MD 6/19 3/21	100 87 38 48 6 103 8 95 8 32 117 271 70 8 16 4 10 157	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (2.0) (0.7) (0.7) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasceners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Fluoroplastics Plastics: Fluoroplastics Plastics: Polycarbonate Plastics: Polycarbonate Plastics: Polycarbonate Plastics: Polyurehne Oxide Plastics: Polyurehne Sulfide Plastics: Polyurehne Sulfide Plastics: Polysulfone Plastics: Polyurethane Plastics: Polyurethane Plastics: Polyurethane Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Almino Plastics: Polyuside Plastics: Polyurethane Plastics: Almino Plastics: Polyurethane Plastics: Phenolic Plastics: Polyurethane Plastics: Polyurethane Plastics: Polyurethane Plastics: Almino Plastics: Polyurethane Plastics: Reinforced Thermosets Elastomers: Thermoset Elastomers Predicting Wear in Plastic Bearings Materials First Claimed For Trident	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chap	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 132 135 137 140 141 144 145 150 131 133 133 131 131 133 132 142 150 151 153 138 148 149 150 151 153 153 153 153 153 153 153 153 153	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (3.0) (3.0)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Uith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics: Structural Foam Reaction-Injection Molding	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 2/20 6/12 10/16 7/10 10/2 4/17 6/13 MD 6/19 3/21	100 87 38 48 6 103 8 95 8 32 117 271 70 8 16 4 10 157	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (2.0) (0.7) (0.7) (0.5)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Passeners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Ployoplastics Plastics: Ployoplastics Plastics: Polyoplastics Plastics: Polyoplenylene Plastics: Polyoplenylene Sulfide Plastics: Polyoplenylene Plastics Elastomers: Thermoplastic Elastomers Now: Profile Extrusions From High- Plastics: Alivid Plastics: Alivid Plastics: Alivid Plastics: Polyopetre Plastic	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chap	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 132 135 137 140 141 144 145 150 131 133 133 131 131 133 132 142 150 151 153 138 148 149 150 151 153 153 153 153 153 153 153 153 153	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (2.9) (1.1) (3.9)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V. th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics Structural Foam Reaction-Injection Molding	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Arkies & Gerakaris N/T Christian Chapter Booser N/T Hand Article N/T N/T Chapter Dreger	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19 8/21 10/16 7/10 10/2 4/17 6/12 M 3/13 4/3	10 87 38 48 6 103 8 95 8 32 117 70 8 70 16 4 10 157 148	(0.7) (5.0) (0.5) (0.5) (0.7) (5.0) (0.7) (1.0) (3.0) (4.0) (0.5) (4.0) (2.0) (0.7) (4.0) (2.0) (0.7) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Pasceners: Plastic Fasteners How Much Should You Trust ASTM Test Data? Design Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acrylic Plastics: Cellulosics Plastics: Fluoroplastics Plastics: Phenylene Oxide Plastics: Polyearbonate Plastics: Polyelefins Plastics: Reinforced Thermoplastics Elastomers: Thermoplastic Elastomers Now: Profile Extrusions From High- Plastics: Allyld Plastics: Allyld Plastics: Allyld Plastics: Polyenter Plastics: Pol	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chap	2/6 2/20 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/	103 122 125 158 79 51 83 107 121 126 127 128 132 137 141 144 145 148 149 150 131 133 207 42 129 130 131 133 139 142 144 145 151 153 139 142 144 156 156 156 156 166 30	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (1.3) (1.1) (1.1) (1.0) (1.1) (1.1) (1.0) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols V.th Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Design Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Fused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics: Structural Foam Reaction-Injection Molding 59. General	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Boulden N/T Christian Chapter Booser N/T Hand Article N/T N/T	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19 8/21 10/16 7/10 10/2 4/17 6/12 M 3/13 4/3	100 87 38 48 6 103 8 95 8 32 117 271 70 8 16 4 10 157	(0.7) (5.0) (0.5) (0.5) (0.7) (5.0) (0.7) (1.0) (3.0) (4.0) (0.5) (4.0) (2.0) (0.7) (4.0) (2.0) (0.7) (4.0)
Plastics—Introduction to Polymer Chemistry Plastics: Designing with Plastics Plastics: High-Temperature Plastics How Time and Heat Affect Properties of Plastics Double-Tooth Extruder Mixes and Melts At the Same Time Special-Purpose Fasceners: Plastic Fasceners How Much Should You Trust ASTM Test Data? Plastics: Dimensions for Plastic Bearings Plastics: ABS Plastics: Acetal Plastics: Acetal Plastics: Acrylic Plastics: Fluoroplastics Plastics: Fluoroplastics Plastics: Polycarbonate Plastics: Polycarbonate Plastics: Polycarbonate Plastics: Polyolefins Plastics: Polyloefins Plastics: Polyloefins Plastics: Polyloefins Plastics: Polysulfone Plastics: Polysulfone Plastics: Polysulfone Plastics: Polywethane Plastics: Polyurethane Plastics: Polyurethane Plastics: Alkyd Plastics: Alkyd Plastics: Alkyd Plastics: Almino Plastics: Polyester Plastics: Reinforced Thermosets Elastomers: Thermoset Elastomers Predicting Wear in Plastic Bearings Materials First Claimed For Trident Missile Thick Plastic Parts in Less Than a	Arkles, & Cloud Theberge Arkles, & Cloud Theberge Arkles, & Cloud Chapter Chap	2/20 M 3/13 M 3/13 M 3/13 M 3/13 FJ 11/20 1/23 2/20 M 3/13 M 3/13	103 122 125 158 79 51 83 107 121 126 127 128 132 132 133 131 144 145 148 148 148 149 150 131 133 131 133 131 133 142 150 151 153 16 30 151	(5.0) (3.0) (1.9) (3.0) (0.5) (2.6) (5.0) (1.3) (1.1) (1.3) (1.1) (2.5) (1.2) (0.6) (0.7) (1.0) (1.7) (1.0) (1.7) (1.0) (1.7) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.0) (1.1) (1.1) (1.0) (1.1)	ment Improved Regenerators Ready for Testing in Auto Turbines How Parts React to Stress Brake Material Survives Fire and Brimstone 57. Finishes, Coatings, Lubric Mercury Coating Makes Hard Materials Easy To Cut One Paint Covers Almost Anything Powder Coatings That Fight Heat and Chemicals New Gel Coat Proves Better for Boats. Controlling Aerosols Uith Oil-less Cylinders Synthesized Motor Oil Faces Tough Police-Car Testing Oil Analysis Reveals NC Decign Tips Supergrease Replaces Oil as a Transmission Lubricant Mechanical Systems: Bearings—Lubricants When To Grease Bearings Courtesy Cars Testing Fuels and Oil 58. Prefabricated Forms How To Save Money When Specifying Sheet Steel Materials First Claimed For Trident Missile Largest Pused-Silica Windows Going into Space Shuttle Tough New Composites: Plastics Faced With Glass Microsheet Plastics: Structural Foam Reaction-Injection Molding 59. General	N/T Biodgett Scan Scan N/T Arkies & Gerakaris N/T Arkies & Gerakaris N/T Christian Chapter Booser N/T Hand Article N/T N/T Chapter Dreger	2/6 3/6 1/9 9/18 3/6 6/12 10/16 1/9 2/20 6/12 MD 6/19 8/21 10/16 7/10 10/2 4/17 6/12 M 3/13 4/3	10 87 38 48 6 103 8 95 8 32 117 211 70 8 16 4 10 157 148	(0.7) (5.0) (0.5) (0.5) (0.5) (0.7) (1.0) (3.0) (4.0) (4.0) (2.0) (0.7) (4.0) (2.0) (0.7) (4.0)

MANUFACTURING PROCESSES

61, 62, 63. Metals Casting,	Shaping	, For	nin	3	Hydraulic Band Saw Solves Cutting Problem	N/T	8/7	6	(0.6
Castings Without Defects-Part 1	Kearney	6/26	42	(4.0)	// Matal Taxables				
Castings Without Defects-Part 2	Kearney	7/10		(3.0)	66. Metal Treating				
Cutting Costs of Few-of-a-Kind Castings	Dreger	11/13	140	(3.0)					
asting Technique Promises New Econo-									
mies	N/T	6/12	12	(0.5)	Ferrous Metals: Guide to Common Heat-				
Die Casting Stand-Ins	Bennett	7/24	46	(4.0)	Treating Processes	Chapter	M 3/13	15	(0.6
Lower Cost Titanium Parts	Kulkarni	5/1		(3.0)	Shot Blasting Your Way to Better				
Designing Cold-Headed Fasteners	Zanin	7/10		(1.3)	Finishes	Hanley	3/20	74	(5.0
shear Forces Strengthen High-Density	-	.,				-	-		
PM Parts	Scan	11/27	36	(0.5)					
finally! A Brazing Alloy for PM Parts	Scan	4/17			67, 68. Finishing, Plastics &	Pubbor	Proce		
Multi-Part PM: When Two Parts Are		-,	٠.	(or, oo. rimining, ridatics &	Kuppei	11000	336	
Better Than One	Altemeyer	5/15	80	(3.0)					
injection Molding Moves Into Metals	Dreger	10/2		(2.0)	Tues Deplease Come Michel in Decembles				
ow-Cost Forming	Strasser	6/26		(1.0)	Iron Replaces Some Nickel in Decorative	3.T (FF)	F 100		
Low-Cost Stampings	Strasser			(1.4)	Plating	N/T	5/29	6	(0.7
Keeping Tool Costs Low for Stampings.	Strasser			(1.0)	Plating With a Brush	White	10/2	72	(3.0
Superplastic Forming Wins Nod for Ti-	2014222	-,		(/	Hardsurfacing With an Arc	Hinkel	8/21	14	(1.3
tanium Aircraft Structures	N/T	12/11	4	(0.7)	30,000 Plastic Parts Molded Accurately	3.T /III	4 10		/A P
William Anciait Structures	14/1	10/11	-	(0,	Each Hour	N/T	1/9	6	(0.5)
					Materials 1975—Soft Bumpers, Friendly	Ch 4	30 0 40	-	11 0
					Fenders, and RIM	Chapter	M 3/13	5	(1.0
64, 65. Metal Joining, Remo	val				Reaction-Injection Molding	Dreger	4/3		(4.0
					Forged Plastic Wheels May Replace Steel	N/T	7/24	6	(0.5
-					Plastic Parts By The Mile	Dreger	9/4		
Design of Welded Brackets	Blake	1/23	96	(5.0)	Injection Molding Moves Into Metals	Dreger Dreger	10/2		
	Blake Blodgett		96 177		Injection Molding Moves Into Metals Thick Plastic Parts in Less Than a	Dreger	10/2	80	(2.0
Refresher Course in Welding Design		4/3	177	(1.5)	Injection Molding Moves Into Metals Thick Plastic Parts in Less Than a Minute			80	(2.0
Refresher Course in Welding Design Hardsurfacing With an Arc	Blodgett	4/3 8/21	177 74		Injection Molding Moves Into Metals Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts	Dreger Dreger	10/2 10/16	80 30	(3.0
Refresher Course in Welding Design Hardsurfacing With an Arc Joining Techniques: Welding Processes	Blodgett Hinkel	4/3 8/21	177 74	(1.5) (1.3)	Injection Molding Moves Into Metals	Dreger	10/2	80 30	(3.0
Refresher Course in Welding Design Hardsurfacing With an Arc Joining Techniques: Welding Processes Keeping Weldment Distortion Under Con-	Blodgett Hinkel	4/3 8/21	177 74 110	(1.5) (1.3) (2.2)	Injection Molding Moves Into Metals Thick Plastic Parts in Less Than a Minute	Dreger Dreger Scan	10/2 10/16 4/3	30 51	(2.0 (3.0 (0.5
Refresher Course in Welding Design Hardsurfacing With an Arc Joining Techniques: Welding Processes. Keeping Weldment Distortion Under Control	Blodgett Hinkel Chapter Blodgett	4/3 8/21 FJ 11/20	177 74 110 146	(1.5) (1.3) (2.2)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics	Dreger Dreger Scan Dreger	10/2 10/16 4/3 5/29	30 51 42	(2.0 (3.0 (0.5 (4.0
Refresher Course in Welding Design Hardsurfacing With an Arc Joining Techniques: Welding Processes Keeping Weldment Distortion Under Con-	Blodgett Hinkel Chapter Blodgett	4/3 8/21 FJ 11/20 10/16	177 74 110 146 24	(1.5) (1.3) (2.2) (2.0)	Injection Molding Moves Into Metals . Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(3.0 (0.5 (4.0 (1.4
Refresher Course in Welding Design Hardsurfacing With an Are Joining Techniques: Welding Processes. Keeping Weldment Distortion Under Control Threaded Fasteners: Welded Fasteners. No-Melt Welding	Blodgett Hinkel Chapter Blodgett Chapter	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16	177 74 110 146 24 128	(1.5) (1.3) (2.2) (2.0) (2.3)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics	Dreger Dreger Scan Dreger	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(3.0 (0.5 (4.0 (1.4
Refresher Course in Welding Design Hardsurfacing With an Arc Joining Techniques: Welding Processes. Keeping Weldment Distortion Under Control Threaded Fasteners: Welded Fasteners.	Blodgett Hinkel Chapter Blodgett Chapter Aronson	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16	177 74 110 146 24 128 112	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0)	Injection Molding Moves Into Metals . Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(2.0 (3.0 (0.5 (4.0 (1.4
Refresher Course in Welding Design Hardsurfacing With an Arc folning Techniques: Welding Processes. Keeping Weldment Distortion Under Con- trol Trol Trol Welding Techniques: Welded Fasteners. No-Melt Welding Techniques: Brazing Processes. The Final Connection: Sockets or Solder?	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26	177 74 110 146 24 128 112 39	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics Joining Techniques: Plastic Joining	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(2.0 (2.0 (3.0 (0.5 (4.0 (1.4 (2.0
Refresher Course in Welding Design Hardsurfacing With an Arc Joining Techniques: Welding Processes. Keeping Weldment Distortion Under Control Threaded Fasteners: Welded Fasteners. No-Melt Welding Joining Techniques: Brazing Processes.	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter Gove	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26	177 74 110 146 24 128 112 39 119	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1) (3.0)	Injection Molding Moves Into Metals . Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(2.0 (3.0 (0.5 (4.0 (1.4
Refresher Course in Welding Design Hardsurfacing With an Are folning Techniques: Welding Processes. Keeping Weldment Distortion Under Con- trol Keeping Weldment Distortion Under Con- trol No-Melt Welding Ioining Techniques: Brazing Processes. The Final Connection: Sockets or Solder? Joining Techniques: Soldering Processes. Deverstressed Materials Cry Out in Pain	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter Gove Chapter	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26 FJ 11/20	177 74 110 146 24 128 112 39 119	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1) (3.0) (2.0)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics Joining Techniques: Plastic Joining	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(2.0 (3.0 (0.5 (4.0 (1.4
Refresher Course in Welding Design Hardsurfacing With an Are Joining Techniques: Welding Processes. Geeping Weldment Distortion Under Con- trol Trol Weldment Distortion Under Con- trol Geometric Welded Fasteners. Joining Techniques: Brazing Processes. The Final Connection: Sockets or Solder? Joining Techniques: Soldering Processes. Joverstressed Materials Cry Out in Pain Joilt Preload—How Can You Be Sure It's Right?	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter Gove Chapter	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26 FJ 11/20 7/10	177 74 110 146 24 128 112 39 119 36	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1) (3.0) (2.0)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics Joining Techniques: Plastic Joining	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(3.0 (0.5 (4.0 (1.4
tefresher Course in Welding Design iardsurfacing With an Are oining Techniques: Welding Processes. Geeping Weldment Distortion Under Con- trol trol trol Gemeine Weldment Distortion Under Con- trol Gemeine Weldment Distortion Under Con- trol Gemeine Weldment Distortion Under Con- trol The Head Connection: Sockets or Solder's Oining Techniques: Soldering Processes. Verstressed Materials Cry Out in Pain Solt Preload—How Can You Be Sure It's Right?	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter Gove Chapter Scan	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26 FJ 11/20 7/10	177 74 110 146 24 128 112 39 119 36	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1) (3.0) (2.0) (1.0)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics Joining Techniques: Plastic Joining	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	30 51 42 155	(2.0 (3.0 (0.5 (4.0 (1.4
Refresher Course in Welding Design Hardsurfacing With an Are folning Techniques: Welding Processes. Keeping Weldment Distortion Under Con- trol Trol Weldment Distortion Under Con- trol Welden Fasteners: Welded Fasteners. Welded	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter Gove Chapter Scan	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26 FJ 11/20 7/10	177 74 110 146 24 128 112 39 119 36	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1) (3.0) (2.0) (1.0)	Injection Moiding Moves Into Metals Thick Plastic Parts in Less Than a Minute	Dreger Dreger Scan Dreger Chapter	10/2 10/16 4/3 5/29 M 3/13	80 30 51 42 155 128	(2.0 (3.0 (0.5 (4.0 (1.4 (2.0
Refresher Course in Welding Design Hardsurfacing With an Aro Joining Techniques: Welding Processes. Keeping Weldment Distortion Under Control Threaded Fasteners: Welded Fasteners. No-Melt Welding Joining Techniques: Brazing Processes. The Final Connection: Sockets or Solder; Joining Techniques: Soldering Processes. Dverstressed Materials Cry Out in Pain Bolt Preload—How Can You Be Sure It's Right? Designing Parts That Are Easy To Ma-	Blodgett Hinkel Chapter Blodgett Chapter Aronson Chapter Gove Chapter Scan Cornford	4/3 8/21 FJ 11/20 10/16 FJ 11/20 10/16 FJ 11/20 6/26 FJ 11/20 7/10	177 74 110 146 24 128 112 39 119 36	(1.5) (1.3) (2.2) (2.0) (2.3) (6.0) (2.1) (3.0) (2.0) (1.0) (5.0)	Injection Moiding Moves Into Metals. Thick Plastic Parts in Less Than a Minute Double-Tooth Extruder Mixes and Melts At the Same Time Now: Profile Extrusions From High- Performance Plastics Plastics: Laminated Plastics Joining Techniques: Plastic Joining 69. General	Dreger Dreger Scan Dreger Chapter Chapter	10/2 10/16 4/3 5/29 M 3/13 FJ 11/20	80 30 51 42 155 128	(2.0 (3.0 (0.5 (4.0 (1.4

DESIGN THEORY & TECHNIQUES

71, 72, 73. Mechanics, Streng Parts	ths of Mo	ateri	als	and	Pendulum Action Tests Navy's Cable A Bolt That "Blows" Like A Fuse	N/T Hutten- Czapski	5/1 5/29		(4.0)
rarrs					Estimating Life of Multibearing Systems	Gordon	8/21		(0.7
					Swinging Blade Tests Resilience of Pre- Stressed Materials	Scan	11/27	36	(0.5
Shipment Could Be A Product's Most					Radioactive Line Keeps an Eye on Ma-	Boult	11/21	00	(0.0
Severe Test	Voss &				chinery Wear	Scan	1/23	48	(0.5
201010 1020 111111111111111111111111111	Young	1/9	111	(1.5)	Predicting Wear in Plastic Bearings	Andersen	7/10		(3.0
A Simple Way To Use Vibration Equa		-/0		(2.0)	PPS Pistons Show No Visible Wear After	Athaersen	1/10	00	(0.0
tions	Harker	2/6	78	(4.0)	Two Years in a Compressor	N/T	9/4	18	(0.5
Avoiding Dangerous and Costly Fan	22011101	2/0	10	(4.0)	A Bolt That "Blows" Like A Fuse	Hutten-	0/1	10	(0.0
Failures	Hay &				A Boit That Blows Like A Puse	Czapski	5/29	46	(4.0
	Martz	2/20	112	(7.0)	Getting The Most From Cantilever Shafts	Anderson	1/23		(4.0
Isolating Engine Vibration	Wright	4/17		(5.0)	The Penalty For Breaking Hooke's Law	Polma	1/23		(4.0
Analyzing Do-It-Yourself Servosystems	Maskrey	4/17		(6.0)	Bolt Preload—How Can You Be Sure	1 Ollia	1/40	114	(4.0
Simpler Tuning for Wien-Bridge Oscilla-	and the control of	-/	52	(0.0)	It's Right?	Cornford	3/6	78	(5.0
tors	Brokaw	9/4	78	(0.8)	How Parts React to Stress	Blodgett	3/7		(5.0
Dynamic Tester Hammers Out Structural	Dionan	0/2	10	(0.0)		Lipp	9/4		(1.1
Defects	Scan	1/9	38	(0.5)	Ring Equations for Evenly Spaced Loads	Blake	11/13		(4.0
Shipment Could Be A Product's Most	Dours	1/0	00	(0.0)	Coping With Stress Concentration	Spotts	11/13		(4.0
Severe Test	Voss &				Simple Guide to TP Dimensioning Design of Welded Brackets	Blake	1/23		(5.0
Devote lest	Young	1/0	111	(1.5)		Theberge.	1/23	90	(5.0
Controlling Nature's 'Faults'	Zimmerman			(8.0)	Choosing Plastics for Chemical Resistance	Arkles, &			
Combining Decibels	Caplan	1/23		(1.0)		Cloud	2/20	102	(5.0
Machines You Can Talk To	Glenn		72	(4.0)	How Time and Heat Affect Properties of	Cloud	2/20	103	(0.0
Overstressed Materials Cry Out in Pain	Scan	7/10		(1.0)		PRIs a banesa			
Inlet Redesign Will Help Silence Big Jets	N/T	10/16		(0.6)	Plastics	Theberge.			
Finding — and Fixing — Hydraulic Noise	Stecki &	10/10	10	(0.0)		Arkles &	0.000	-	
Sources	Dransfield	11/13	146	(1.2)	Whales Chase Contes	Cloud	3/20		(3.0
Pressure Distorts Cylinders Where You	271111111111111111111111111111111111111	24/20	110	(1.2)	Finding Shear Center	Ganapathy	7/24		(0.8
Least Expect It	Blake	2/6	90	(1.4)	Adapting Beam Equations to Plates	Seshardi	9/18		(1.3
Overstressed Materials Cry Out in Pain	Scan	7/10		(1.0)	How Much Preload for Fasteners?	Dann	8/21	66	(4.0
Stress Concentrations in Notched Rings.	Tabakman	11/27		(1.4)	A Simple Way To Visualize Torsional	A	0.140	-	
How Much Should You Trust ASTM Test	Lubuninan	11/41	12	(1.1)	Stress	Agrawal	9/18	98	(4.0
Data?	Chastain	1/23	107	(5.0)	Pressure Distorts Cylinders Where You	Di-I		-	
The Penalty For Breaking Hooke's Law	Polma	1/23		(4.0)	Least Expect It	Blake Wood &	2/6	90	(1.4
Ferrous Metals: Steels for Strength		M 3/13		(0.5)	Smoothing Out Cylinder Loads		210	0.0	
Fasteners That Fight Fatigue	Khol	2/20		(5.0)	Seeman Summerica Wights Will	Mirus Scan	3/6	93 27	(1.4)
Avoiding Dangerous and Costly Fan	Hay &	2/20	00	(0.0)	Scanner Suspension Fights Tilt				
Failures	Martz	2/20	112	(7.0)	Stresses In Thick-Wall Cylinders	Zanker	10/16	100	(1.0
A Fatigue Plot That Shows Strength		2/20		(1.0)	Critical Buckling Loads for Tapered	Danmalatan			
Tradeoffs	Shawki	2/20	120	(1.7)	Columns	Baumeister & Sebrosky	11/07	70	/4 K
	DIA WAL	2/20	120	(1.1)		or seprosky	11/24	10	(1.0

A New Way to Analyze Rotor Stability	Maslo & Rieger	10/2	69	(3.0)	Probabilistic Design—Part 1	Haugen & Wirsching	4/17	98	(7.0)
74. Human-Factors Engineeri		,-			Probabilistic Design—Part 2	Haugen & Wirsching	5/1		(6.0)
74. Human-ractors Engineeri	ng				Probabilistic Design—Part 3	Haugen & Wirsching		83	(5.0)
Machines You Can Talk To	Glenn	5/1	72	(4.0)	Probabilistic Design—Part 4	Haugen & Wirsching	5/20	54	(5.0)
Emergency Rescue Equipment	Aronson	6/12	28	(3.0)	Probabilistic Design—Part 5	· Haugen &			
'80s Lap Plus Shoulder Belts Equal Zero Auto	N/T	7/10	28	(0.5)	Pattern Recognition Techniques Provide	Wirsching	6/12		(5.0)
Deaths Controlling Aerosols With Oil-less Cyl-	N/T	2/6	12	(0.5)	Powerful Quality-Control Tools What Determines Reliability in Metering	N/T	9/4	6	(0.6)
inders	Boulden Leonard	1/9		(5.0)	Pumps?	Holloway	9/4	66	(3.0)
Controlling Nature's 'Faults'	Zimmerman	1/9 1/23	20	(6.0) (8.0)	Environment Photogrammetry: Getting A Bead On	Article	2/6	92	(1.1)
What You Should Know About Product Recall	Bryson	1/23	88	(4.0)	Hard-To-Measure Objects	Higgins	7/24	50	(4.0)
Design for Disaster: High-Rise Fires— Preventing a "Towering Inferno"	Aronson	3/20	18	(7.0)	Quality	Leek	9/4	69	(3.0)
Safety Radar Promising for Vehicles New Head Adds Realism to Crash	N/T	4/3		(0.6)	Scissors-Wing Aircraft Nears Design Stage	N/T	1/23	4	(0.8)
Dummy Air-Cushion Restraints Called Unproven,	N/T	5/1	4	(0.6)	Living Costs Devour Salary Gains	Zimmerman	2/20	20	(4.0)
Unpopular, and Too Expensive Step Taken Toward Research Safety Ve-	N/T	6/26	10	(0.9)	76. Basic Sciences & Fields				
hicle	N/T	7/10	4	(0.8)	76. Dusic Sciences & Fields				
Car-Impact Study Promises New Hope for Pedestrians	N/T	8/21	8	(1.0)	Gaskets That Block EMI	Severinsen	7/7	74	(4.0)
Firefighters to Start Wearing Aerospace- Technology Breathing System	N/T	11/13	32	(0.8)	Serendipity Revisted: Lead - Poisoning Test Falls Out from Wire-Insulation				
Three Lasers in a Cane Provide Eyes for the Blind	N/T	3/20	10	(1.3)	Studies Three Lasers in a Cane Provide Eyes for	N/T	2/20	12	(0.7)
Measuring Platform Does a Lot of Leg- work	Scan	10/16		(1.0)	the Blind	N/T	3/20	10	(1.3)
Coming: Implanted Artificial Muscles	N/T	10/2	8	(0.7)	New Head Adds Realism to Crash Dummy	N/T	5/1	4	(0.6)
Piezoelectric Ceramics Show Promise as Prosthetic Bones	N/T	11/13	8	(0.7)	Help Plan Life-Sciences Program for the	N/T	7/10	28	(0.5)
					Coming: Implanted Artificial Muscles Blanket Soaks Up Oil Spills; Microbe	N/T	10/2	8	(0.7)
75. Design Analysis & Synth	esis				Converts Them Into Fish Food Technology Fights Famine: Power To	N/T	10/16	4	(1.0)
ron boong ramanyono ar oyana					Produce Plenty Measuring Platform Does a Lot of Leg-	Zimmerman	10/16	18	(6.0)
Power Bond Graphs—Powerful New Tool For Hydraulic System Design	Dransfield	10/10	194	(F.O)	work Piezoelectric Ceramics Show Promise as	Scan	10/16	55	(1.0)
Superaccelerators: Servomotors with In-		10/16			Prosthetic Bones	N/T	11/13	8	(0.7)
A Simple Way To Use Vibration Equa-	Sohlberg	1/23		(6.0)	Milwaukee To Reclaim Its Solid Waste	Bryson N/T	$\frac{1/9}{2/20}$	20 18	(6.0) (1.0)
tions Eight Easy Ways to Use Statistics—	Harker	2/6		(4.0)	MIUS: Darkhorse in the Nation's Energy Future?	Zimmerman			(5.0)
Part 1 Eight Easy Ways to Use Statistics—	Spotts	2/20	108	(5.0)	Minimizing Oil-Spill Hazards Two Magnets 'Push' Aluminum Out of	Zimmerman	5/1	16	(5.0)
Part 2 Tracking Down Elusive Causes for Fail-	Spotts	3/6	83	(4.0)	Garbage	N/T	10/2	10	(0.6)
ure Angle Approximations Save Design Time	Lipinski McKnight		130 179	(4.0) (0.8)	Converts Them Into Fish Food Low-Cost Breakwater Formed with Old	N/T	10/16	4	(1.0)
Probabilistic Design—Part 1	Haugen &				Tires	N/T Bryson	11/13 2/6		(0.5) (5.0)
Probabilistic Design—Part 2	Wirsching Haugen &	4/17		(7.0)	Comparing High-Temperature Plastics	Theberge, Arkles, &	2/0	20	(0.0)
Cale Program Simplifies Simultaneous	Wirsching		80	(6.0)		Cloud	2/6	73	(5.0)
Equations	Rubin Haugen &	5/1	89	(0.7)	Choosing Plastics for Chemical Resistance	Theberge, Arkles, &			
Probabilistic Design-Part 4	Wirsching Haugen &	5/15	83	(5.0)	Plastics: High-Temperature Plastics	Cloud Chapter	2/20 M 3/13		(5.0) (1.9)
Probabilistic Design—Part 5	Wirsching Haugen &	5/29	54	(5.0)	How Time and Heat Affect Properties of Plastics	Theberge,			
Pushbutton Trig	Wirsching	6/12		(5.0) (0.5)		Arkles, & Cloud	3/20	79	(3.0)
Calculating New Positions For Rotated	Byers			(1.3)	How Seals Act At High Temperatures	Chapter F	P 9/11		(1.0)
Statistics From Raw Data	Felstein Spotts	6/26 7/24	58	(3.0)	78. Environmental Design				
Calc Program finds nth Root	Simmons	9/18		(0.7)	, o. Lavironmenta, besign				
Shapes Smoothing Out Cylinder Loads	Paulsen Wood &			(1.6)	Apollo-Soyuz: Timely Union for Co-op				**
Pattern Recognition Techniques Provide	Mirus	3/6		(1.4)	Technology Mars-Viking: Tougher Than Apollo?	Zimmerman Article	8/7	8	(4.0) (3.0)
Powerful Quality-Control Tools Geometric Properties of Axisymmetric	N/T	9/4	6	(0.6)	Putting Data from Mars on 'HOLD' TFB: A Better Breakwater Put to the	Zimmerman	11/13	36	(3.0)
Shapes	Paulsen Blodgett			(1.6) (5.0)	Test	N/T	7/10	10	(0.7)
New Head Adds Realism to Crash Dummy	N/T	5/1		(0.6)	Submariners Present Technology Meets '77 Auto-	N/T	7/24	10	(0.8)
Digital Simulation	Appel	7/10			Emissions Standards	N/T	2/6	8	(0.7)
Test Pit Provides Real Construction- Machine Data	N/T	9/4	24	(1.0)	'New' Pollutant Forces EPA To Revise Auto-Emission Standards	N/T	4/3		(0.8)
A New Way to Analyze Rotor Stability	Maslow & Rieger	10/2	69	(3.0)	Minimizing Oll-Spill Hazards	Zimmerman			(5.0)
Transaction Telephone: One Step Closer to the No-Cash, No-Cheat Society	N/T	1/23	10	(0.6)	Air Pollution Design Dimensions for Plastic Bearings	N/T Carswell	$\frac{7/24}{2/20}$	121	(0.7) (1.3)
Machines Vou Can Talk To	Glenn Zimmerman	5/1	72	(4.0) (4.0)	Avoiding Interference in Round Parts Tolerancing Determines How Round Parts	D'Entremon			(1.0)
Is CAD-CAM Taking Off? Chrysler's 'Electronic' Lean-Burn Engine Pattern Recognition Techniques Provide	N/T	7/10		(3.0)	Take Shape	Spotts Spotts	$\frac{10/16}{11/27}$		(3.0) (4.0)
Powerful Quality-Control Tools	N/T	9/4	6	(0.6)	3-Year Report on 'No-Fault, No-Ques- tions-Asked' Guarantee	N/T	4/3		
What You Should Know About Product Recall	Bryson	1/23	88	(4.0)	Pareto's Law for Managers	Bronikowski	7/24	65	(0.5) (1.0)

ENGINEERING MANAGEMENT & OPERATION

81. Engineering Department Operations

The state of the Section of the Section of the section of				
Engineering Productivity: Formulating a Plan of Attack	Comella	12/11	118	(2.0)
Six Current Issues in Engineering Man-	Comona	/		(2.0)
power	Zimmerman	6/26	18	(5.0)
Motivating Engineers: A Little Psychol-				
ogy Goes A Long Way	Badawy	10/16		(3.0)
Running the Department	Samaras	12/11	139	(4.0)
When Two Bosses Are Better Than One	Grinnell			
	& Apple	1/9		(4.0)
Providing Technical Support The 1-3-9 Rule for Product Cost Estima-	Price	12/11	134	(5.0)
tion	Rondeau -	8/21	50	(4.0)
Keeping Project Costs in Line	Davis	12/11	128	(6.0)
Transactional Analysis—A New Way To	-			
Prevent People Problems	Jackson	11/27	50	(4.0)
Training Tomorrow's Engineers	Zimmerman		68	(4.0)
Providing Technical Support	Price	12/11	134	(5.0)
Alternative to the MBA	Babcock	2/20	88	(4.0)
How To Manage Creativity Without Kill-				
ing It	Comella	3/6	68	(5.0)
Easing The Switch From Engineer to	Badawy	5/15	66	(3.0)
Manager Teamwork: Silent Partner In The Design	Dauawy	0/10	00	(3.0)
Group	Raudsepp	8/7	62	(3.0)
Transactional Analysis-A New Way To	- Tanada Sepp	٠, .	-	(0.0)
Prevent People Problems	Jackson	19 /27	50	(4.0)
Living Costs Devour Salary Gains	Zimmermaa	2/20	20	(4.0)
How Near 'Average' Is Your Salary?	Zimmerman		20	(2.0)
Communicating Is More Than Just Talk-	Zimmerman	3/0	20	(2.0)
ing	Raudsepp	11/13	116	(3.0)
Transactional Analysis-A New Way To	Popp	/ 20	-20	(5.0)
	Jackson	11/27	50	(4.0)

82, 83. New Product Development, Drafting & Reproduction

U. S. To Spend \$35.6 Billion for R&D				
in '75	N/T	1/23	18	(0.5)
Reducing the Risks in New-Product Plan- ning	LaPasso	7/24	42	(4.0)
Motivating Engineers: A Little Psychology Goes A Long Way	Badawy	10/16		(3.0)
Getting a Handle on Productivity New Tools For Old Tasks: Reproduction	McDonald	12/11	120	(5.0)
Equipment	Streit	12/11	149	(3.0)

84. Laboratory & Testing

Dynamic Tester Hammers Out Structural Defects	Scan	1/9	38	(0.5)
How Much Should You Trust ASTM Test Data?	Chastain	1/23	107	(5.0)
Improved Regenerators Ready for Testing in Auto Turbines	N/T	2/6	10	(0.7)
Adapting Holography to the Industrial Environment	Article	2/6	92	(1.1)
Synthesized Motor Oil Faces Tough Police-Car Testing	N/T	2/20	8	(0.7)
Serendipity Revisited: Lead - Poisoning Test Falls Out from Wire-Insulation Studies Oil Analysis Reveals NC Design Tips	N/T N/T	2/20 2/20		(0.7) (1.0)
How Time and Heat Affect Properties of Plastics	Theberge, Arkles, & Cloud	3/20	79	(3.0)
Taking Guesswork Out of Worm-Gear		-,		,,
Design Tracking Down Elusive Causes for Fail-	Buckingham			(5.0)
ure	Lipinski	4/3	130	(4.0)

Math Model Predicts Characteristics of	N/T	4/17		(0.0)
Head-On Car Crashes			8	(0.6)
Isolating Engine Vibration	Wright	4/17	87	(5.0)
Analyzing Do-It-Yourself Servosystems.	Maskrey	4/17	92	(6.0)
Pendulum Action Tests Navy's Cable	N/T	5/1	6	(0.5)
Step Taken Toward Research Safety Ve-	B.W. 1495			
hicle	N/T	7/10	4	(0.8)
How To Test Gear Transmissions	Fessett	7/24	61	(4.0)
Hardware for Testing Gear Transmissions	Fessett	8/7	80	(4.0)
Car-Impact Study Promises New Hope for Pedestrians	N/T	8/21	8	(1.0)
Test Pit Provides Real Construction-				
Machine Data	N/T	9/4	24	(1.0)
Courtesy Cars Testing Fuels and Oil	N/T	10/16	8	(0.5)
Inlet Redesign Will Help Silence Big Jets	N/T	10/16	10	(0.6)
Electronic Assembly: In-House or Sub-	_			
contract?	Leonard	11/13	122	(6.0)
Swinging Blade Tests Resilience of Pre-				
Stressed Materials	Scan	11/27	36	(0.5)
Stress Concentrations in Notched Rings Two Frequencies Minimize Errors in	Tabakman	11/27	72	(1.4)
Eddy-Current Tester	Scan	12/11	44	(1.0)

85. Technical Information

Write A Better Instruction Manual	Article	1/23	117	(0.6)
Product Publications: Wrapping Up The Paperwork	Pohs	6/26	36	(3.0)
Half-Scale Car Presented Driver-Packag- ing Problem	N/T	3/6	4	(1.0)
How Much Should You Trust ASTM Test Data?	Chastain	1/23	107	(5.0)
Present Technology Meets '77 Auto- Emissions Standards	N/T	2/6	8	(0.7)
Design for Disaster: High-Rise Fires— Preventing a "Towering Inferno"	Aronson	3/20	18	(7.0)
NEMA Control Relays	Chapter	M&C 4/24		
Metrication Will Arrive in '75 Visual Standards: Shortcut to Product	Wise	7/10		(4.0)
Quality	Leek	9/4	69	(3.0)
The Move To Metric—1975: Standards O.K. Gives Industry the Go-Ahead.	Chapter	FJ 11/20	2	(2.0)
Visual Standards: Shortcut to Product Quality	Leek	9/4	69	(3.0)

86, 87. Patents & Patent Law, Personal & Professional

gy Goes A Long Way	Badawy	10/16		(3.0)
Maximizing Engineering Effectiveness	Miller	12/11	125	(3.0)
How To Manage Creativity Without Kill- ing It	Comella.	3/6	68	(5.0)
The Road to Registration—1: The Basic	Comena	3/0	00	(0.0)
Requirements	Constance	9/4	54	(6.0)
The Road to Registration-2: Passing the		-,-		,,
Exam	Constance	9/18	82	(4.0)
Alternative to the MBA	Babcock	2/20	88	(4.0)
Helping The Engineer Plan His Career	Brynildsen	3/20	66	(4.0)
Furn On the Boob-Tube; Learn About				
Microprocessors	N/T	4/3	6	(0.6)
Here Come the Technologists!	Lavoie	4/17		(5.0)
Training Tomorrow's Engineers	Zimmerman	5/1	68	(4.0)
Your Day In Court	Talbot	2/6		(5.0)
What To Do Before The Subpoena Comes	Wallace	6/12		(3.0)
Product Liability: After the Summons	Wallace	10/2	66	(3.0)

88. Outside Services

The	President	and	Technology	 Article	4/3	18	(4.0)

COMPLETE MACHINES

911. Ordnance

Fully Stabilized Gun Turret	DI	1/9	30	(0.5)
Another Try For a New Tank		5/29	20	(3.0)
New Armored Vehicle to Quel Irish Brawls 'Friendly Enemy' To Receive Tailored			10	(1.0)
Probes	N/T	10/16	12	(0.6)
Nuclear War Not Likely To Wipe Out	N/T	11/27	12	(0.5)

912. Machinery

Breaking the Ice Barrier	Bryson	2/6	20	(5.0)
Gravity Feed Tracks	Murch &			
	Campbell	6/26	46	(4.0)
Field - Going Factories: Agriculture's		-,		,
Amazing Monster Machines	Zimmerman	8/21	16	(6.0)
Test Pit Provides Real Construction-Ma-				,
ohine Date	TAT / PTS	0.74	04	/4 01

Technology Fights Famine: Working With					Apollo-Soyuz: Timely Union for Co-op				
Groceries in Nature	Zimmerman	9/18	34	(6.0)	Technology	Zimmerman	7/10	16	(4.0)
Technology Fights Famine: Power To					Mars-Viking: Tougher Than Apollo?	Article	8/7	8	(3.0)
Produce Plenty	Zimmerman	10/16	18	(6.0)	New Truck Burns Much Less Fuel	N/T	8/7	12	(0.5)
		,			F-16: First With Fly-By-Wire	Wise	8/7	16	
					'Luxury' Electric Car In Production	N/T	8/21	4	(1.0)
012 Electrical Machinery					Car-Impact Study Promises New Hope		-,	_	(,
913. Electrical Machinery					for Pedestrians	N/T	8/21	8	(1.0)
					Diesel Option Offered For Light Ameri-		0,	-	(210)
					can Vehicles	N/T	9/4	4	(0.7)
The Clampdown on Electrical Hazards	Leonard	1/9	100	(6.0)	Germany's Electric Scooters	Heumann	9/4	20	(1.5)
Turn On the Boob-Tube; Learn About					Clamp-On Sail Replaces Oars	N/T	9/4	22	(0.5)
Microprocessors	N/T	4/3		(0.6)	1976 New-Model Preview: Cars Are	14/1	0/3	22	(0.0)
Safety Radar Promising for Vehicles	N/T	4/3		(0.6)	Young and Fun Again	Wise	9/18	18	(8.0)
Satellite Solar-Power Stations	Aronson	11/27	18	(4.0)				20	(3.0)
					What's Happening With Electric Vehicles	Aronson	10/2	20	(3.0)
					Chrysler Drops Imperial, Adds Two New	****		-	/W 03
914. Transportation					Compacts	Wise	10/16	38	(5.0)
714. Transportation					Hydride Storage Key to Hydrogen-				** **
					Powered Vehicles	N/T	11/13	4	(1.0)
					The Airship-Phoenix or Dodo?	Regan	11/13	20	(4.0)
Scissors-Wing Aircraft Nears Design					New Design/Redesign, 1975	Wise	12/11	20	(9.0)
Stage	N/T	1/23		(0.8)					
Two New '75s Offer Overdrive	N/T	1/23	6	(0.7)					
Lap Plus Shoulder Belts Equal Zero					915. Instruments				
Auto Deaths	N/T	2/6	12	(0.5)	713. Instruments				
Half-Scale Car Presented Driver-Packag-									
ing Problem	N/T	3/6	4	(1.0)	Wandson for Montley Con Managedone	Wester	0.19	00	(4.0)
Two New Compacts Join the VW Family	Aronson	3/6	25	(3.0)	Hardware for Testing Gear Transmissions	Fessett	8/7	80	(4.0)
GM Set for Materials Revolution	Wise	4/3	28	(4.0)					
Steam To Power Taxi for the Handi-						-			
capped	N/T	4/17	6	(0.7)	916. Fabricated Metal Produ	ıcts			
Cadillac's Small Car	Wise	4/17	10	(2.0)					
Largest Fiberglass Ship Resulted from	******	-/		(=,					
Tooling Idea	N/T	4/17	18	(0.5)	Common Energy Pack/Recharger De-				
Looking for an 'Edge' at Indy	Wise	5/15			signed for Cordless Tools	BT /TD	5/1	8	(0.5)
Realistic Range Achieved by Electric Ve-	** 100	0/10	10	(0.0)	signed for Cordiess 100is	14/1	3/1	0	(0.0)
hicle	N/T	6/26	4	(1.0)					
Cosworth Vega Performs Like a Corvette	N/T	6/26			ATT 1 1 1 11 11				
Air-Cushion Restraints Called Unproven,	44/1	0/20	G	(0.0)	917. Leisure and Hobby				
	N/T	0/00	10	(0.9)					
Unpopular, and Too Expensive	N/T	0/20	10	(0.9)					
From Europe's Automakers: New Hatch-	77	0 /00	0.0	(2.0)	Downhill By Design	Wise	2/20	26	(3.0)
backs and New Ideas	DI	6/26	26	(2.0)	Balloon-Lifted Manned Sphere To Cross		2/20	20	(0.0)
Step Taken Toward Research Safety Ve-	****			(0.0)	Atlantie	N/T	1/0	12	(0.7)
hicle	N/T	7/10	4	(0.8)	APPRILITY	44/ 4	1/0	1.4	(0.1)

The classification system provides nine major (one-digit) classifications, each of which has up to nine (two-digit) sub-classifications. These, in turn, are divided into ten (three-digit) indexing classifications.

Indexing classifications ending in 0 (General) are used to index material concerning several or all indexing classifications ending in 1 through 8. Classifications ending in 9 (Other) are used for material falling within the sub-classification but not within any of the items 1 through 8.

3-MECHANICAL

11	Motors General	150	General Resistors, varistors, rheostats, poten-
111	Fractional (less than 1 hp)	131	tiometers
112	Ac integral horsepower, induction	152	Capacitors
113	Dc integral horsepower		Inductors
114	Universal (dc or ac)	154	Solid-state devices: Diodes, transistors,
115	Multispeed		thyristors, SCR's, rectifiers, semiconduc-
116	Gearmotor		tors, optical couplers, integrated circuits
117	Torque	155	Tubes, cathode ray tubes
118	Definite and special purpose, pancake	156	Saturable reactors, magnetic amplifiers
119	Other: Linear, motor protectors	157	Fuses, fuse panels, protectors
12	Power Supplies	158	Lasers, masers
	General	124	Other
	Batteries, battery chargers, battery holders	16	Connectors and Wiring
	Dc generators, motor-generators	160	General
	Ac generators, motor-generators, alter-	161	Rings, brushes, commutators, rotors
	nators	162	Terminals, binding posts, terminal boards
124	Converters, inverters	163	Contacts, button
125	Transformers, voltage regulators	164	Plugs, receptacles, connectors, sockets
126	Fuel cells, solar cells, photo cells	165	Wiring, cable, cord, harness, bus bars,
127	Thermoelectric supplies		coaxial, circuits, grounding
	Antennas	166	Printed circuits, stitched circuits
129	Other	:67	Superconductors
13	Switches and Relays	168	04 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	General	199	Other: Lenses, mirrors, reticles, reflectors,
	Mechanical: Pushbutton, toggle, rotary, ac-		prisms, photosensors
	celeration	17	Miscellaneous Components
132	Thermally operated: Thermostats, thermis-		General
	tors	171	Magnets, electromagnets
133	Pressure operated	172	Chassis, control panels, keyboards
134	Limit, snap-action	173	Insulation, encapsulation, shielding, jacket-
135	Proximity, photoelectric, magnetic, Hall ef-		ing, conduit
	fect		Cooling elements
136	Stepping	175	Lamps, lighting elements, fiber optics,
137	Relays, circuit breakers	171	strobes
138	Motor starters, motor controls, contactors,	170	Heaters, heating elements, ovens
120	starting reactors Other: Reed, mercury-wetted	170	Electric clutches, electric brakes
137		179	Ignition systems Other
14	Instruments and Controls		
	General		Systems & Assemblies
141	Sensing devices, transducers, ther-		General
	mocouples	191	Amplifiers, preamps
	Solenoids, electric actuators	192	Control systems: Regulators, numerical con-
143	Timers, timing motors, delays	100	trol, digital controllers
144	Synchros	193	Electronic computers, calculators,
145	Instrument motors, synchronous	104	peripheral equipment
140	Data recorders, readouts, indicators, dis-	194	Microprocessors
147	plays, memories Meters, gages	193	Adjustable-speed drives Servomechanisms
148	Servo motors, stepping motors	197	
149	Other: Motor silencers		Packaging (electrical/electronic)
		199	Other
15	Circuit Components		

2-FLUID POWER

210	Fluids General Hydraulic fluids	256	Rotary actuators Winches Propellers (see 357)
212	Coolants, refrigerants Cleaners, solvents (see 577)	258	Centrifuges Other
214	Lubricants (see 576)		Seals General
216		261	Material seals (0-ring) Mechanical seals
218	Aerosols, pressurized liquids Other	263	Gaskets Wiper rings, piston rings
	Fluid Conditioners	265	Packings Labyrinths
221	General Fluid storage, pressure vessels, reservoirs	267	
223	Filters, strainers, screens, baffles Renovators (Note, 223 = 222 + 286 + 296)	269	Bellows, protective covers Other: Diaphragms, rolling diaphragms, clo- sures, plugs
224	Heat exchangers Coolers, radiators, heat pipes	27	Valves General
226	Heaters, burners	271	Directional control
228	Driers, evaporators Humidifiers, mixers, carburetors Other	272 273	Flow control, faucets, flow dividers Pressure control, relief vacuum breakers
	Fluid Conductors	274	Servo valves Valve blocks, manifolds
230	General Tubing (pressure) (see 587)	276	Nozzles, venturies, orifices, poppets
232	Hose, ducts, bellows	277 278	Proportional flow or pressure
233 234	Pipe Fittings		Other
235	Joints, couplings, unions, flanges, adapters		Instruments & Controls
236	Mufflers Hydrofoils	280	General
238			Test stands Control panels
239 24	Other: Applicators, dispensers, reversers Linear Devices	283	Meters, gages: Manameters, flow meters rotameters, anemometers
	General	284	Switches, liquid level
241	Cylinders, pistons, cylinder mounts Accumulators		Transducers (to hydraulic) Regulators
243	Intensifiers, boosters, rams	287	Fluid logic, fluidics, moving-part logic
244	Actuators, bellows, diaphragms	288	Other: Floats, anchors
	Pumps Motors		
247		29	Systems & Assemblies
248	Compensators	291	General Industrial hydraulic & pneumatic systems
	Other: Impellers, air guns	292	Mobile, aircraft, marine
250	Rotary Devices General	293	2 Mobile, aircraft, marine 3 Hydrodynamic drives 4 Hydrostatic drives 5 Vacuum
251	Pumps, rotary, centrifugal	29	5 Vacuum
252	Fluid motors, brakes, high-torque	290	5 Lubrication
252	low-speed	29	7 Hydraulic, pneumatic computers
	Air motors Compressors	29	B Power units 9 Other: Servo systems

03	ruckings
	Labyrinths
67	Bellows, protective covers
	Other: Diaphragms, rolling diaphragms, cla sures, plugs
7	Valves
70	General
	Directional control
72	Flow control, faucets, flow dividers
73	Pressure control, relief vacuus breakers
74	Servo valves
75	Valve blocks, manifolds
76	Nozzles, venturies, orifices, poppets
77	Proportional flow or pressure
78	
79	Other
	Instruments & Controls
8	Instruments & Controls
	General Controls
80	
80	General Test stands
80 81 82 83	General Test stands Control panels Meters, gages: Manometers, flow meter rotameters, anemometers
80 81 82 83	General Test stands Control panels Meters, gages: Manometers, flow meter rotameters, anemometers
80 81 82 83 84	General Test stands Control panels Meters, gages: Manameters, flow meter rotameters, anemometers Switches, liquid level
80 81 82 83 84 85	General Test stands Control panels Meters, gages: Manometers, flow meter rotameters, anemometers
80 81 82 83 84 85 86	General Test stands Control panels Meters, gages: Manometers, flow meter rotameters, anemometers Switches, liquid level Transducers (to hydraulic)
80 81 82 83 84 85 86	General Test stands Control panels Meters, agges: Manometers, flow meter rotameters, onemometers Switches, liquid level Transducers (to hydraulic) Regulators Fluid logic, fluidics, moving-part logic
80 81 82 83 84 85 86 87 88	General Test stands Control panels Meters, agges: Manometers, flow meter rotameters, onemometers Switches, liquid level Transducers (to hydraulic) Regulators Fluid logic, fluidics, moving-part logic

310	Power Sources General, energy	348	Other
311	Jet engines Internal combustion engines	35	Rotational Components General
314	Turbines, turbofans, turbojets Atomic, nuclear power Exotic fuel engines, rockets	351	Antifriction bearings: Ball, roller, needle, linear, thrust, pillow blocks
316	Fuels, propellants, explosives, coal, natural gas, hydrogen, fuel oil		Sleeve bearings: Gas, solid-lubricant, bush- ings, rod ends, ball joints Flexible couplings, universal joints, flexible
	Steam		shafts
	Geothermal, wind, water, solar, tidal Other	355	Torque converters, fluid couplings Shafts, axles, splines, crankshafts, spindles
	Constant-Speed Drives & Transmissions General: Speed reducers	356	Clutches, brakes, power absorbers, torque limiters
	Chain		Fans, blowers, propellers (see 257)
322	Belt		Reels, winches, hoists Other: Flywheels
323	Friction: Ball, disc, wheel, cone		
325	Gear	36	Mechanisms General
326			Cams, cam followers
327			Linkages, cranks
328 329	Other: Reversing	363	Intermittent-motion, periodic-motion, index ing, gyratory-motion, mechanical es
33	Adjustable-Speed Drives & Transmissions	364	capements, ratchets Three-dimensional
331	General: Speed reducers Chain Belt		Motion converters, leadscrews, jacks, actuators
	Friction: Ball, disc, wheel, cone	366	Spring motors
334	Gear		Telescoping members, collapsing members
335 336			Manipulators, vibrators, robots, separator Other
337		37	Controls
338			General
339	Other: Reversing		Push-pull
34	Drive Components		? Transducers (to mechanical) 3 Gyros, gyroscopes
	General	374	Mechanical counters
	Transmission chain, cable, cable fittings, cable splices, shackles	375	Safety devices, audible warning devices
	Belts, belting	377	
	Gears, gearing, racks, pinions Sprockets	378	
	Pulleys, sheaves, idlers, tensioners	3/9	Other

344 345 346	George, gearing, racks, pinions Sprockets Pulleys, sheaves, idlers, tensioners Conveyor chain, conveyor belts Conveyor screws, roller conveyors	39	Other Systems General
4	ASSEMBLY COMPONENTS		
411	Fasteners General Inserts Nuts, locknuts	427 428	Mechanical damping devices Spring-loaded devices Other: Belleville, constant force
414	Pins, dowels, staples Quick operating panel-type, latches Retaining rings, keys, collars, frictional shaft connectors, shaft-hub connectors, tolerance rings	431 432	Miscellaneous General Locks Nameplates, labels, wire markers, signs
417 418	Rivets, blind rivets Screws, bolts, studs, shear bolts Washers, grommets, eyelets, spacers, bush- ings, stand-offs Other: Spring clips, clamps, zippers, wire	434	Dials, knobs, handles, drawer pulls Shims Enclosures, housings, cabinets, cases Wheels, tires, rollers, casters, ball transfers, rings
42	ties, belt splicing, captive panel hardware, captive fasteners Springs and Isolation Devices General	438	Slides, ways Hinges, brackets Other: Razor blades, brushes, bells, knives, buzzers, chimes, bases, boots, bellows, way protectors
421 422 423 424		441 442	

51	Ferrous Metals		Reinforced, filled plastics
	General		Porous plastics
511	Cast iron, malleable iron, cast carbon, alloy		Colors for plastics
610	steels Wrought carbon, alloy steels	538	Plastic trims
	Free-machining steels		Other: Degradable
	Stainless steels, high alloys, high tempera-		
314	ture steels	54	Rubber and Elastomer
515	Specialty steels (tool, die, electrical)		General
516			Natural rubber
	High-strength low-alloys	542	Synthetic rubber Elastomeric plastics: Flexible silicones and
	Magnetic alloys	343	urethanes
214	Other	544	Hard rubber
52	Nonferrous Metals	545	
520	General	546	
	Aluminum	547	
	Copper, brass, bronze, beryllium copper	548	0.1
	Magnesium	549	Other
	Nickel	55	Joining Materials
	Titanium Zinc	550	General
	Refractory metals: Tungsten, tantalum,	551	Adhesives, sealants, encapsulants, coulk- ing, grout
520	molybdenum, columbium Precious metals		Welding rods
	Other: Tin, lead, chromium, vanadium		Brazing, soldering alloys
		554	
53	Plastics	555	
	General	556 557	
	Thermoplastic plastics (nylon, Teflon) Thermosetting plastics (epoxy, phenolic,	558	
332	filled silicones, rigid urethanes)		Other
533	Laminated plastics, vulcanized fiber	337	VIIIV.

-Materials (continued)

- Other Nonmetals General Carbon, graphite, diamonds
- 560 561 562 563 564 565 566 567 568
- Carbon, graphite, diamonds
 Glass, ceramics, quartz
 Refractory materials, mica
 Carbides, cermets
 Mineral and synthetic fibers, felt, fabrics
 Insulating materials (thermal, sound)
 Wood, cark, composition board, paper
 Chemicals, phosphors, inks
 Other: Abrosives, friction materials, synthetic crystals, heat-sensitive liquid crystals

57 Finishes, Coatings & Lubricants

- 57 Pinishes, country
 570 General
 571 Metallic coatings
 572 Chemical coatings, electrochemical coatings, photosensitive
 573 Organic finishes: Lacquers, synthetic enamels, points, varnishes

574 Porcelain enamels, vitreous coatings 575 Plastic coatings, plastic powders 576 Lubricating materials (see 214) 577 Cleaners, solvents (see 213) 578 Mechanical surface finishes 579 Other: Corrosion inhibitors

Prefabricated Forms

- General
 Film, tape, sheet, foil, plate
 Wire, wire cloth, knitted wire mesh, wire
 rope, cable rope, cable
 Patterned, perforated, expanded metals,
 textured, prefinished
- 584 Laminates
 585 Composite materials
 586 Structures: Honeycomb, foam, sandwich, isogrids, geodesic
 587 Structural shapes: Tubing, channels

6-MANUFACTURING PROCESSES

- 61 Metal Casting
 610 General
 611 Sond
 612 Shell mold
 613 Permanent mold, gravity, low-pressure 611 Sand 612 Shell mold 613 Permanent 614 Centrifugal 615 Investment

- 616 Die 617 Plaster mold 618 Continuous 619 Other

62

- Metal Shaping General 620
- 620 General
 621 Forging, cold forging
 622 Extrusion, impact extrusion
 623 Heading, upsetting, cold forming
 624 Thread, form rolling
 625 Powder metallurgy, porous metals, fiber

- 628 Hot isostatic pressing

629 Othe **Metal Forming**

- 630 631
- o.3U seneral
 631 Sheet forming, plate forming
 632 Stomping, drawing, blanking, embossing,
 coining
 633 High-velocity forming, explosive forming
 634 Spining
 635 Roll forming
 636 AG Use forming

636 637 638 639 Tube forming Wire forming Stretch and compression forming Other: Magnetic forming

- Other: Magnetic forming
 Metal Joining
 Other Seneral
 Arc welding
 Arc welding
 Arc welding
 Arc welding
 Arc welding
 Sesistance welding
 Plasma, electron
 beam, explosive bonding, ultrasonic,
 magnetic, solid state
 Selame cutting
 As Soldering, desoldering
 As Adhesive joining, bonding
 Other: Interlocking, keylock, dove-tail, sewing, bolted joints, riveting

- 65 Metal Removal
 650 General
 651 Planing, broaching
 652 Lothe turning, screw machining
 653 Milling, hobbing, gear shaping, sawing

- 654 Drilling, boring, tapping 655 Grinding, abrasive machining 656 Honing, lapping, polishing, burnishing 657 High-energy machining: Spark, laser, water
- 658 659 Other

66 660 661 Metal Treating General

- Surface treating Surface treating: Carburizing, nitriding Shot peening, surface working Chemical milling, etching, photochemical
- machining 665
- 666 667 668 669
- Other

- Finishing
 General
 General
 Wechanical, solvent cleaning
 Chemical, solvent cleaning
 Mechanical finishing, tumbling
 Conversion coating, anodizing, electro-
- 5/3 Conversion coating, anodizing, electro-polishing
 674 Electroplating, vacuum metallizing
 675 Metal spraying, flame spraying, hard fac-ing, plasma spray, plasma arc, electro-static
 676 Painting
 677 Hot stamping: Branding
 678

- 678 679 Other

- Plastics & Rubber Processes Prostrics of National Section (Notifing, injection molding, forging, rotational molding, forging, rotational molding Extrusion, pultrusion
 Sheet forming

- 685 Casting 686 Stamping, machining, fabricating, forming,
- forging
 Calendering, coating, plating
 Encapsulating
 Other: Filament winding, welding

Miscella General

- Assembly, automatic assembly, micro-assembly

692 Packaging, storage, shipping 693 Balancing rotating machines

7-Design Theory & Techniques (cont.)

Design Analysis & Synthesis

- General Mathematical methods, statistics Graphical techniques Analogs, models, simulators Computer techniques Reliability, quality control Dimensioning, tolerances

- Maintenance 758 Value analysis 759 Other

Basic Sciences & Fields General Physics

- **76** 760 761

- 761 rnysics 762 Chemistry 763 Thermal, thermodynamics, cryogenics, heat transfer, combustion 764 Radiation 765 Biosciences 766 Optics, photography, holography, photo-
- relasticity
 767 Ultrasonics
 768 Aerodynamics
 769 Other: Economics, metrology

- **Experimental Design**
- Prototypes, breadboards Testing, stress analysis
- 775 776 777
- Other

78 Environmental Design

- 780 General 781 Corrosion, rust 782 Mold, fungus 783 Outer space

- 784 Under sea 785 Pollution 786 Waste treatment, reclamation, salvage, restoration, conservation, recycling

852 Information classification, retrieval

Specifications, standards, metrication Report writing, articles, papers, oral Part numbering, part names (nomenclature)

- 788 High temperature, low temperature 789 Other

8-ENGINEERING MANAGEMENT & OPERATION

Engineering Department Operations

- General Structure, organization Costs, budgets
- Costs, budgets
 Programming, planning
 Personnel policies
 Recruiting, evaluation, training
 Managerial tolent
 Compensation, pensions
- 818 Communication 819 Other

New Product Development General

- 83 **Drafting & Reproduction**
- General Management, control systems Drafting practices, techniques Technical illustration
- Drafting equipment Reproduction equipment Furniture, drawing files
- 835 836 837

838 939 Other

- Laboratory & Testing General Nondestructive testing
- Dynamic analysis

Technical Information

- 851 Engineering libraries, files, books, museums
- Meetings, shows Contests, awards Societies Professional licensing, certification

856 Engineering records

858 Security, protection 859 Other

86 Patents & Patent Law 860 General

87 Personal & Professional Creativity, inventiveness

- Unions Education, curriculums, seminars, career planning Product litigation, expert witness Other: Women

Outside Services 88

- General Engineering design services Industrial design services
- 883 Consulting to government

9-MISCELLANEOUS

- **Complete Machines** 910 General 911 Ordnance: Tanks, missiles, rockets, ammu-
- nition (SIC 19)
 912 Machinery: Agricultural, construction, machine tools, office machines, materials handling (SIC 35)
- handling (SIC 35)
 913 Electrical machinery: Communication, radio, radar, TV, appliances, X-ray (SIC 36)
 914 Transportation: Automotive, aircraft, ships, railroad, spacecraft, undersea craft (SIC 37)
- watches (SIC 38)
 916 Fabricated metal products: Hand tools (SIC 34)

915 Instruments: Medical, dental, photographic,

917 Toys, playground equipment, sports equip-ment, recreational equipment 919 Other

99 Unclassified 990 General

7-DESIGN THEORY & TECHNIQUES

- Mechanics General Statics (at rest) Dynamics (force to create motion) Kinematics (motion in abstract) Vibration, natural frequency
- Shock
- 715 Snock 716 Noise, sound, music 717 Viscosity 718 Strain and stress 719 Other
- Strength of Material
- 72 720 721 722 723 724 725 726 727 General Elastic theory
- Plastic theory

728 Fracture 729 Other: Hardness

Fatigue, endurance
Creep
Impact stress
Thermal stress
Friction, wear

- Strength of Parts
- General Tension, compression Bending Shear, torsion
- 732 Shear, torsion
 734 Surface contact stress
 735 Plates
 736 Cylinders, columns
 737 Rotating discs, rotors
 738 Critical speed, critical flow
 739 Other
- /37 Uther

 74 Human-Factors Engineering
 740 General
 741 Styling
 742 Color
 743 Safety, comfort, protective clothing
 744 Illumination
 745 Human limitations
 746 Spare/replacement ports
 747
 748

- 748 749 Other: Tactile graphics

