



## Análisis de redes sociales

Asignatura eLearning y Redes Sociales









Revisar los hitos más relevantes en la teoría de grafos

Explicar cómo afecta a las propiedades de la red las distintas distribuciones de grado

Caracterizar una red atendiendo a sus propiedades más relevantes

Entender cómo afectan las características de la red a sus propiedades dinámicas.







## Orígenes



Máster Oficial Universitario en Ingeniería Informática muiinf.webs.upv.es











### Puentes de Könisberg





(Euler, 1736). El problema consistía en encontrar un camino que cruzara todos los puentes una sola vez.







### Primera aplicación a personas



Empleada para estudiar a un grupo de chicas que huyeron de un correccional en Hudson (NY) en 1934. El Sociograma muestra relaciones entre las alumnas y los barracones en los que vivían







## Representación mediante grafos



Grafo y representación mediante la matriz de adyacencia















dirigido



pesado



bipartido







Camino corto  $d_{ij}$  distancia mínima entre los nodos i y jLongitud de camino media I la longitud media de todos los caminos del grafo

Diámetro D El más largo de los caminos más cortos max  $d_{ij}$  Grado  $d_i$  número de vecinos del nodo i

Clustering coefficient C número de triángulos de todos los posibles







## Redes aleatorias. Erdös-Renyi (1959)



- Se añade un nuevo enlace con prob. p.
- Emergencia de la *componente gigante* cuando  $p > \frac{1}{n}$
- red conectada después de añadir  $n \log n$  enlaces





## Componente gigante













La distribución del grado es una distrib. de Poisson.







#### Pero las redes son diferentes











# 6 grados de separación













Empieza con un grid regular y redirige enlaces al azar.
Aparece efecto small-world

- alto clustering
- caminos cortos

... pero el grado sigue aún una dist. de Poisson





#### Preferencial attachment. Barabasi

Nodos añadidos incrementalmente. Prob. de enlazar proporcional al grado del nodo.





- clustering alto
- caminos cortos
- distrib. grado como power-law  $p(k) \sim k^{-\alpha}$ ,  $2 < \alpha < 3$
- efecto Mateo











La importancia de un nodo depende de su grado

$$C_D(i) = d_i$$









El nodo central es el más cercano a cualquier otro nodo

$$C_C(i) = \frac{1}{\sum_{j \neq i} d(i,j)}$$





#### Centralidad. Betweenness



La importancia de un nodo depende de cuántos caminos pasen por él.

$$C_B(i) = \sum \frac{\# shortestpaths_{st}(i)}{\# shortestpaths_{st}}$$





### Centralidad. Valor propio



La importancia de un nodo depende de la importancia de sus vecinos

$$C_E(i) = \frac{1}{\lambda} \sum_{j \in N(i)} C_E(j)$$

y  $Av = \lambda v$ , con  $\lambda$  el mayor valor propio de la matriz A





### \*\* etsinf Centralidad de valor propio. Pagerank



Empleado por Google para medir la importancia de las páginas web

$$PR(i) = \frac{1-d}{N} + d\sum_{j \in N(i)} \frac{PR(j)}{d_j}$$

es centralidad de valor propio













- Es una medida de correlación
- positiva: nodos de grado alto conectados con nodos de grado alto
- negativa: nodos de grado alto conectado con nodos de grado bajo.











- Duncan J. Watts. Six Degrees: The Science of a Connected Age, W. W. Norton and Company. 2003.
- A.L. Barabasi. Linked: The New Science of Networks, Perseus, Cambridge, MA, 2002.
- Mark Buchanan. Nexus: Small Worlds and the Groundbreaking Theory of Networks, W. W. Norton and Company. 2003.









- Duncan J. Watts. The 'New' Science of Networks'. *Annu. Rev. Sociol.* 2004, 30:243–70.
- M.E.J. Newman. The structure and function of complex networks. SIAM Review 2003, 45:167–256.
- S. Boccaletti, et al. . Complex networks: Structure and dynamics, Phys. Rep. 2006, 424, 175.]











- BBC Six degrees of separation. http://topdocumentaryfilms.com/six-degrees-of-separation
- The RSA The Power of Networks.

  https://www.youtube.com/watch?v=nJmGrNdJ5Gw
  - BBC Sharing the beauty of networks https://www.youtube.com/watch?v=9dcdjcyA-8E









@barabasi

@alexvesp

@GuidoCaldarelli

@santo\_fortunato

@\_AlexArenas

@cosnet\_bifi

@anxosan

Laszlo Barabasi

Alexandro Vespignanii

GuidoCaldarelli

Santo Fortunato

Alex Arenas

Yamir Moreno

Anxo Sánchez









@sfiscience

@bifi instituto

@IFISC\_mallorca

Santa Fe Institute

Instituto de Biocomputación y

Física de Sistemas Complejos

Institute for Cross-Disciplinary

Physics and Complex Systems

