Rmarkdown-exercise-worksheet

 $Reid\ Otsuji$ 1/5/2020

Instructions:

Complete the worksheet using RStudio and Rmarkdown. Some R Packages will be necessary to complete the worksheet.

Answer all questions in this document and have fun with Rmarkdown!

Before you begin: You will need to load the GGPLOT package to use the diamonds data set. Run the code each of the following chuncks once to install and load the GGPLOT2 package.

1. Install and Load the ggplot2 package

(if you already have GGPLOT2 installed skip this code chunk.)

```
# This is an example of a code chunk to install an R package
# Run this code chunk manually if you need to install the GGPLOT2 package
# click the green arrow to the left to install the package.
install.packages("ggplot2")
```

• Run this code chunk to Load the GGPLOT2 library.

```
# load the GGPLOT2 library
library(ggplot2)
```

- 2. In the Diamonds Data Set Description text provided below, add the proper Rmarkdown formatting to each line of text. The highlighted recommendations at at the end of each line.
 - optinoal: add a link to the Diamond Data Set text below using the link formt [link text] (http://add link here) to the dataset information.
 - The 4 C's of Diamond Quality https://4cs.gia.edu/en-us/4cs-diamond-quality/

Prices of 50,000 round cut diamonds H1 heading

Description H2 heading

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are as follows: bold this line

Usage h3 heading

• diamonds bullet

Format h3 heading

A data frame with 53940 rows and 10 variables: bold

•

```
price h4 heading, bullet
  - price in US dollars ($326-$18,823) nested bullet
carat h4 heading, bullet
  - weight of the diamond (0.2-5.01) nested bullet
cut h4 heading, bullet
  - quality of the cut (Fair, Good, Very Good, Premium, Ideal) nested bullet
color h4 heading, bullet
  - diamond colour, from D (best) to J (worst) nested bullet
clarity h4 heading, bullet
  - a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF
    (best)) nested bullet
x h4 heading, bullet
  - length in mm (0-10.74) nested bullet
y h4 heading, bullet
  - width in mm (0-58.9) nested bullet
z h4 heading, bullet
  - depth in mm (0-31.8) nested bullet
depth h4 heading, bullet
  - total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43-79) nested bullet,
```

2

inline code block

table h4 heading, bullet

- width of top of diamond relative to widest point (43-95) nested bullet

For the next section you will need to load the following packages:

- knitr
- ggplot2
- kable
- pander

```
# this is an example of a code chunk
#run manually by clicking the green arrow to the left if you need to load the library
library(knitr)
```

Next, you will practice working with code chunks!

3. Adding code chunks

- On the tool bar, use the Insert button and selecting R or manually create on by typing a "code fence" 3 opening and closing backtics with {r} e.g. ```{r} at the beginning and closing with ``` to create a code chunk (see example above).
- In between the "code fence" add and run the R code summary(diamonds) to get the summary of the data set: (run the code chunk to make sure it works)
 - optional- hide the code chunk in your knitted document by adding echo=FALSE in the code chunk options

Add code chunk below:

```
##
        carat
                              cut
                                          color
                                                        clarity
##
    Min.
           :0.2000
                                : 1610
                                          D: 6775
                                                     SI1
                                                            :13065
                      Fair
                                : 4906
                                                     VS2
##
    1st Qu.:0.4000
                      Good
                                          E: 9797
                                                            :12258
##
    Median :0.7000
                      Very Good: 12082
                                          F: 9542
                                                     SI2
                                                            : 9194
##
    Mean
            :0.7979
                      Premium
                                :13791
                                          G:11292
                                                     VS1
                                                            : 8171
    3rd Qu.:1.0400
                                          H: 8304
                                                     VVS2
                                                            : 5066
##
                      Ideal
                                :21551
##
            :5.0100
                                          I: 5422
                                                     VVS1
                                                            : 3655
                                          J: 2808
                                                     (Other): 2531
##
##
        depth
                          table
                                           price
##
    Min.
            :43.00
                     Min.
                             :43.00
                                      Min.
                                              :
                                                 326
                                                        Min.
                                                               : 0.000
##
    1st Qu.:61.00
                     1st Qu.:56.00
                                      1st Qu.:
                                                 950
                                                        1st Qu.: 4.710
##
    Median :61.80
                     Median :57.00
                                      Median: 2401
                                                        Median : 5.700
           :61.75
                             :57.46
    Mean
                     Mean
                                      Mean
                                             : 3933
                                                        Mean
                                                               : 5.731
##
    3rd Qu.:62.50
                     3rd Qu.:59.00
                                       3rd Qu.: 5324
                                                        3rd Qu.: 6.540
##
    Max.
           :79.00
                     Max.
                             :95.00
                                      Max.
                                              :18823
                                                        Max.
                                                               :10.740
##
##
##
           : 0.000
                             : 0.000
    Min.
                      Min.
##
    1st Qu.: 4.720
                      1st Qu.: 2.910
##
    Median : 5.710
                      Median : 3.530
##
           : 5.735
                              : 3.539
    Mean
                      Mean
##
    3rd Qu.: 6.540
                      3rd Qu.: 4.040
##
           :58.900
    Max.
                      Max.
                              :31.800
##
```

- 4. Create a new code chunk to add a basic scatter plot to your document that shows the price as a function of carat weight:
 - Use this code plot(price ~ carat, data=diamonds) Add code chunk below:

```
plot(price ~ carat, data=diamonds)
```


5. Create a basic R table that shows the count for the diamonds cut and clarity following these steps:

- 1. Create a code chunk
- 2. Hide the code chunk in the knitted document output using echo=FALSE
- 3. Use this code table(diamonds\$cut, diamonds\$clarity) to generate the table

Add code chunk below:

```
##
##
                            SI1
                                 VS2
                                       VS1 VVS2 VVS1
                                                        IF
##
     Fair
                 210
                      466
                            408
                                 261
                                       170
                                                   17
                                                         9
##
                  96 1081 1560
                                 978
                                       648
                                                        71
##
     Very Good
                  84 2100 3240 2591 1775 1235
                                                  789
                                                       268
                 205 2949 3575 3357 1989
##
     Premium
                                            870
                                                       230
     Ideal
                 146 2598 4282 5071 3589 2606 2047 1212
```

Next, improve to formatting of this table by using the knitr package function kable:

- 1. Use kable to imporve the look of the default table
- 2. Create a new code chunk with the option echo=FALSE
- 3. Use this code kable(table(diamonds\$cut, diamonds\$clarity)) to gernerate the table

• if you receive an error message, make sure the knitr library is enabled. run library(knitr) before you run the kable code.

Add code chunk below:

	I1	SI2	SI1	VS2	VS1	VVS2	VVS1	IF
Fair	210	466	408	261	170	69	17	9
Good	96	1081	1560	978	648	286	186	71
Very Good	84	2100	3240	2591	1775	1235	789	268
Premium	205	2949	3575	3357	1989	870	616	230
Ideal	146	2598	4282	5071	3589	2606	2047	1212

6. Create a publication style table using the pander package

- 1. Install pander package using: install.packages("pander") run this code chunk if you need to install the pander package.
- 2. Load the pander package using: library(pander)

library(pander)

- 3. Run an simple anova (analysis of variance model) to model price as a function of carat.
 - Run this code to add the ANOVA to the variable model1:

```
model1 <- aov(price ~ cut, data=diamonds)
summary(model1)</pre>
```

- 4. Gereate the table using the pander package.
 - Create a new code chunk with the option echo=FALSE
 - Generate the markdown output using pander
 - Use the code pander(model1)

Add code chunk below:

Table 2: Analysis of Variance Model

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	Pr(>F)
cut Residuals	4 53935	1.104e+10 8.474e+11	$\begin{array}{c} 2.76\mathrm{e}{+09} \\ 15712087 \end{array}$	175.7 NA	8.428e-150 NA

7. Add a lnked image to your document.

- 1. Use the image format ! [image title] (image link) to embed a web linked image in the document.
 - Use the sample image link to add an image to this document: https://bit.ly/2ZQAIcg Note: knitting a document with web linked images will only work when knitting to HTML. Web linked images will produce a LaTex error when knitting to PDF.

Add Rmarkdown code below:

- 8. Knit your exercise worksheet to HTML or PDF output formats.
 - Use the knit button in the tool bar to knit to the default setting
 - Use the small chevron next to knit to select optional output formats.

Congratulations! You're on your way to making great documents using RStudio and Rmarkdown!