FINAL PROJECT IN STAT 362 PRESENTED BY

- JAY SANGWOOK PARK #10176139
- BOFANSUN #20108143
- SERENA LIU # 20118930
- CHENHAO ZHU # 20112538
- CHENGFENG JIANG # 20111648
- JINGYU XU #20091627

Obesity

How serious is obesity?

- 5th leading risk for global deaths (EASO, 2020)
- 2.8 million adults die each year due to overweight and obesity

Main factors to cause obesity

- Physical factors
 - Lack of physical activity
 - Transportation
 - Unhealthy eating patterns
- Social factors
 - Lower standard of living
 - Financial or a stress from trauma
 - Lack of education regarding health or types of food choices

The impact of prevalence of obesity on economy

Larger expenditure on healthcare

- Direct medical costs
 - Preventive, diagnostic, and treatment services
- Indirect costs
 - Sickness and death, and a decrease in productivity

A lower productivity

- Inhibit economic growth
- Can this be prevented?

Knowing which factor closely relates to obesity

- Everyone has a different lifestyle
 - Meaning factors differ by person
- Find out the factor that affects obesity the most by using a dataset
- worth studying how obesity is caused because we can
 - Improve our health and lifestyle
 - Prevent obesity beforehand

Obesity levels based on eating habits and physical condition

Categorical

- Binary
 - Gender, family history with overweight,
 frequent consumption of high caloric food,
 smoke, calories consumption monitoring,
- Non-binary
 - Consumption of food between meals, consumption of alcohol, transportation used,

Numerical

 age, height, weight, frequency of vegetable consumption, number of main meals, CH2O, physical activity frequency, time using technology devices

Any observations?

Regression

Transform of each variables

- Frequent consumption of high caloric food (FAVC)
- Frequency of consumption of vegetables (FCVC)
- Number of main meals (NCP)
- Consumption of food between meals (CAEC)
- Consumption of water daily (CH20)
- Consumption of alcohol (CALC)
- Calories consumption monitoring (SCC)
- Physical activity frequency (FAF)
- Time using technology devices (TUE)
- Transportation used (MTRANS)

Dependent Variable

NObeyesdad

- Insufficient Weight
- Normal Weight
- Obesity Type I
- Obesity Type II
- Obesity Type III
- Overweight Level I
- Overweight Level II

Eating Habits

- FCVC
- FAVC
- CAEC
- CH20
- CALC
- NCP

Physical Conditions

- Smoke
- FAF
- TUE
- SCC
- MTRANS

Other Variables

- Weight
- Height
- Age
- Gender
- Family
 history with
 overweight

Independent variables

Backward Selection

But is it true?

Forward Selection

- Since forward and back ward selection are the same, and the AIC are all equal to the -3450.08
- But are the independent variables all have the siginifance influence?

```
Step: AIC=-3450.08
NObeyesdad ~ Weight + Height + family_history_with_overweight +
    Age + CAEC + FAF + MTRANS + CALC + Gender + NCP + SCC
```

Compute the correlation

- 1. Age:0.2829
- 2. Height: 0.13356
- 3. Weight: 0.91325
- 4. Family_history_with_overweight:0.5051(binary)
- 5. NCP:0.02669
- 6. CAEC:0.3293(category)
- 7. CALC:0.15175(category)

Classification For Obesity Level -- KNN

- How can we determine which Obesity Level are you?
- Applying Some Data Transformation --- Dummy Variables
- KNN --- Model to Classify Obesity Level with All Features included
- How About "Age", "Height", "Weight"?

MTRANS [‡]
Public_Transportation
Public_Transportation
Public_Transportation
Walking
Public_Transportation
Automobile
Motorbike

MTRANS_Automobile ‡	MTRANS_Bike [‡]	MTRANS_Motorbike	MTRANS_Public_Transportation	MTRANS_Walking [‡]
0	0	0	1	0
0	0	0	1	0
0	0	0	1	0
0	0	0	0	1
0	0	0	1	0
1	0	0	0	0
0	0	1	0	0

Apply Some Combinations For Height and Weight, In KNN HW1 = Height / Weight

HW2 = Weight ^2 / Height

HW3 = Height * Weight / Age ^2

The Accuracy of KNN Model with these Combinations is Better than previous

HW1, HW2, HW3

- IS "Age" Really Important?
- Maybe Not ~

Classification For Obesity Level – C5.0

- Why C5.0?
- Dataset Used
- How "height" and "weight" influence Obesity Level
- Model generated

- Original dataset without dummy variables
- Add a new variable "BMI" --- measure of how height and weight influence obesity level together
- Model with only Height, Weight, BMI calculated by height and weight and response NObeyesdad.

```
'data.frame': 2111 obs. of 18 variables:
$ Gender
                              : chr "Female" "Female" "Male" "Male" ...
$ Age
                              : num 21 21 23 27 22 29 23 22 24 22 ...
$ Height
                              : num 1.62 1.52 1.8 1.8 1.78 1.62 1.5 1.64 1.78 1.72 ...
$ Weiaht
                              : num 64 56 77 87 89.8 53 55 53 64 68 ...
$ family_history_with_overweight: chr
                                    "yes" "yes" "yes" "no" ...
$ FAVC
                              : chr "no" "no" "no" "no" ...
$ FCVC
                              : num 2 3 2 3 2 2 3 2 3 2 ...
$ NCP
                              : num 3 3 3 3 1 3 3 3 3 3 ...
$ CAEC
                              : chr "Sometimes" "Sometimes" "Sometimes" ...
                              : chr "no" "yes" "no" "no" ...
$ SMOKE
$ CH20
                              : num 23222222...
                              : chr "no" "yes" "no" "no" ...
$ SCC
$ FAF
                              : num 0 3 2 2 0 0 1 3 1 1 ...
$ TUE
                              : num 1010000011...
$ CALC
                              : chr "no" "Sometimes" "Frequently" "Frequently" ...
$ MTRANS
                              : chr "Public_Transportation" "Public_Transportation" "Public_Transportation" "Walking" ...
                              : chr "Normal_Weight" "Normal_Weight" "Overweight_Level_I" ...
$ NObeyesdad
$ MassBodyIndex
                              : num 24.4 24.2 23.8 26.9 28.3 ...
```

Apply some combinations of Weight and Height to calculate BMI

Model Performance BMI = Weight / Height

BMI = Weight / Height^2

BMI = Weight / Height^3

Decision Tree

- "1" -- Insufficient_Weight
- "2" -- Normal_Weight
- "3" -- Obesity_Type_I

- "4" -- Obesity_Type_II
- "5" -- Obesity_Type_III
- "6" -- Overweight_Level_I
- "7" -- Overweight_Level_II

Model with All Attributes

Decision Tree:

- Pros
- > Better performance
- > Higher Accuracy

- Cons
- > Overfit
- Some Attributes are only used for a few times

```
MassBodyIndex > 29.85973:
:...MassBodyIndex > 35.17109:
  :...Gender = Male: Obesity_Type_II (190)
   : Gender = Female: Obesity_Type_III (239/1)
   MassBodyIndex <= 35.17109:
   :...Weight > 111.6355:
        :...TUE <= 0.869238: Obesity_Type_II (15)
        : TUE > 0.869238: Obesity_Type_I (11)
        Weight <= 111.6355:
        :...MassBodyIndex <= 34.94793:
            :...MassBodyIndex > 30.0153: Obesity_Type_I (231)
                MassBodyIndex <= 30.0153:
               :...Gender = Male: Overweight_Level_II (2)
                    Gender = Female: Obesity_Type_I (2)
            MassBodyIndex > 34.94793:
            :...NCP <= 2.948721: Obesity_Type_II (2)
                NCP > 2.948721:
                :...CAEC in {Sometimes,no,Frequently}: Obesity_Type_I (3)
                    CAEC = Always: Obesity_Type_II (1)
MassBodyIndex <= 29.85973:
:...MassBodyIndex <= 24.91349:
    :...MassBodyIndex <= 18.47774: Insufficient_Weight (192)
       MassBodyIndex > 18.47774:
       :...Height <= 1.53777:
            :...SCC = no: Normal_Weight (3)
            : SCC = yes: Overweight_Level_I (4)
            Height > 1.53777:
            :...Age > 16.9505: Normal_Weight (191/4)
                Age \leq 16.9505:
                :...Age <= 16.09323: Normal_Weight (4)
                   Age > 16.09323: Overweight_Level_I (2)
    MassBodyIndex > 24.91349:
    :...MassBodyIndex <= 26.95702:
        :...FAVC = yes: Overweight_Level_I (191/1)
          FAVC = no:
           :...MassBodyIndex <= 26.17867: Overweight_Level_I (9)
               MassBodyIndex > 26.17867:
                :...Height <= 1.722884: Overweight_Level_II (5)
                   Height > 1.722884: Overweight_Level_I (2)
        MassBodyIndex > 26.95702:
        :...SCC = yes:
            :...Gender = Male: Overweight_Level_II (3)
            : Gender = Female: Overweight_Level_I (2)
           SCC = no:
            :...Gender = Male: Overweight_Level_II (129)
                Gender = Female:
                :...CALC in {no,Frequently,Always}: Overweight_Level_II (51)
                   CALC = Sometimes:
                   :...Age <= 27.56243: Overweight_Level_II (11)
                       Age > 27.56243: Overweight_Level_I (5)
```

BMI and Obesity Level

Best BMI Formula Found

BMI = weight / height ^ 2

```
• Insufficient_Weight BMI <= 18.5
```

Hypothesis Test

- try to figure out which attributes influence BMI and which is not
- U1 = means of the BMI in the smoking group
- U2 = mean of the BMI in non-smoking group,

- H0 : U1 = U2
- H1: U1 is not equal to U2
- SMOKE: p- values of t-test is: 0.9639
- The p-value is > 0.05, we conclude that the means are same
- Won't influence BMI
- Could also test categorical variables:
- Recall: CAEC has responses with
- "no", "Sometimes", "Frequently", and "Always"

CAEC: Do you eat any food between meals?

The p-value is large only when we compare {never
, always}. This result shows that BMI will not be influenced
by either never eat any food, or always eat between meals.

• Most of the test results have the smaller p values, which implies influence BMI. But we couldn't order the importance levels by the hypothesis test.

Continues regression based on BMI

- 1.why using BMI?
- 2. Which variables have more effect on BMI?

- Create BodyMassIndex(BMI) as new response y instead of NObeyesdad.
- Remodel by using stepwise method: Backward and forward
- Further improving
- correlation
- ggplot

```
Step: AIC=7615.79
BodyMassIndex ~ family_history_with_overweight + FCVC + CAEC +
    CALC + FAF + FAVC + SCC + MTRANS + TUE + CH2O + NCP + Gender
        Df Sum of Sq
                      76901 7615.8
<none>
+ SMOKE 1
               6.598 76894 7617.6
call:
lm(formula = BodyMassIndex ~ family_history_with_overweight +
    FCVC + CAEC + CALC + FAF + FAVC + SCC + MTRANS + TUE + CH2O +
    NCP + Gender. data = data2)
Coefficients:
                                 family_history_with_overweight
                   (Intercept)
                        15.4392
                                                          8.2850
                           FCVC
                                                            CAEC
                         3.5301
                                                         -3.7714
                           CALC
                                                             FAF
                         1.9722
                                                         -1.1592
                           FAVC
                                                             SCC
                         2.5854
                                                         -3.0651
                         MTRANS
                                                             TUE
                        -0.7897
                                                         -1.1157
                           CH20
                                                             NCP
                         0.5901
                                                          0.3824
                         Gender
                        -0.5135
Step: AIC=7615.79
BodyMassIndex ~ Gender + family_history_with_overweight + FAVC +
    FCVC + NCP + CAEC + CH2O + SCC + FAF + TUE + CALC + MTRANS
                                  Df Sum of Sq
                                                  RSS
                                                         AIC
                                                76901 7615.8
<none>
                                          116.2 77017 7617.0
- Gender
- NCP
                                          177.2 77078 7618.6
- CH20
                                          250.1 77151 7620.6
                                         795.7 77696 7635.5
- scc
                                         917.4 77818 7638.8
- TUE
- MTRANS
                                          925.2 77826 7639.0
                                        1301.6 78202 7649.2

    FAVC

                                        1820.1 78721 7663.2
- FAF
- CALC
                                        2081.1 78982 7670.2
                                        6019.9 82921 7772.9
- CAEC
- FCVC
                                        6640.3 83541 7788.6

    family_history_with_overweight

                                       18860.1 95761 8076.8
```

Correlation

Find the higher correlation

```
> prediction
                                        Cor
                                 0.25355200
CAEC
                                 0.18529270
SCC
FAVC
                                 0.23330410
                                 0.15451500
FAF
                                 0.30666330
FCVC
                                 0.11520120
TUE
                                 0.09182304
MTRANS
                                 0.03100506
NCP
                                 0.12186500
CALC
family_history_with_overweight 0.48300450
CH2o
                                 0.48300450
```

CH2o, family_history_with_overweight,FCVC,CAEC have a higher correlation=more influences on BMI?

Visualize the regression using ggplot()

- Boxplot and lineplot
- Covariates as continuous(1) or discrete(2) since BMI is continuous
- CH2o: y is mean of BMI, x=CH2o
- fmaily_history_with_overweight:y is BMI,x is family_history_with_overweight

Limitation and improvement

Limitation(potential problem):

- Covariates: binary /categorical/continuous
- It will have lack of accuracy since doing the linear regression

EX: family_history_overweight be binary(0,1) when doing stepwise, it will result at weakness

Improvement:

Use the ggplot() to improve

- Change family_history_overweight to a discrete variables such as (no,yes)
- for CH2o. Assume x between(0,1) be low consumption,(1,2) be median...

Conclusion

- Regression and Classification
- Height and Weight shows great influence on Obesity Level
- BMI is a measure to indicate Obesity Level, but not perfect.