L:6 Signaling via small G-proteins

Objectives:

- Understand fundamental properties of small G-proteins
- Understand the role of GEF and GAP in small G-protein signaling
- Describe cellular signaling pathways mediated by Ras GTPases: MAP kinases and PI3 kinase
- Describe physiological roles of Ras/Raf/MEK/ERK and Ras/PI3K/Akt/mTOR signaling

Small G-protein (Monomeric G-protein)

Small G-protein

https://en.wikipedia.org/wiki/Ras_subfamily#/media/File:Hras_secondary_structure_ribbon.png

... Heterotrimeric G-protein

https://en.wikipedia.org/wiki/G protein#/media/File:1b9x opm.png

- Small G-proteins are typically between 20-25 kDa (about one half of the average size of the α subunits of heterotrimeric G-proteins).
- Serve as a molecular switch by cycling between the inactive GDP-bound form and active GTP-bound form.

Monomeric GTPases

Family	members	Functions	
Ras	K-Ras, H-Ras, N-Ras	Relay signals from RTKs	
	Rheb	mTOR signaling	
	Rap1	Activate cAMP-dependent GEF: cell adhesion	
Rho	Rho, Rac, Cdc42	Relay signals from surface receptor to cytoskeleton	
Rab	Rab1-60	Regulate intracellular vesicle traffic	
Ran	Ran	Regulates mitotic spindle assembly and nuclear transport	
ARF	ARF1-ARF6	Regulate assembly of protein coats on intracellular vesicles	

Ras oncogenes

Table 1 Activation of RAS signalling pathways in different tumours				
Defect or mutation	Tumour type	Frequency (%)		
RAS mutation	Pancreas	90 (K)		
	Lung adenocarcinoma (non-small-cell)	35 (K)		
	Colorectal	45 (K)		
	Thyroid (Follicular)	55 (H, K, N)		
	Thyroid (Undifferentiated papillary)	60 (H, K, N)		
	Seminoma	45 (K, N)		
	Melanoma	15 (N)		
	Bladder	10 (H)		
	Liver	30 (N)		
	Kidney	10 (H)		
	Myelodysplastic syndrome	40 (N, K)		
	Acute myelogenous leukaemia	30 (N)		
BRAF mutation	Melanoma	66		
	Colorectal	12		
EGFR overexpression	Most carcinomas	>50		
ERBB2 amplification	Breast	30		
PTEN loss	Glioblastoma multiforme	20-30		
	Prostate	20		
	Pancreas	40		
AKT2 amplification	Ovarian	12		
	Pancreas	10		
PI3K amplification	Ovarian	40		

EGFR, epidermal-growth-factor receptor; PI3K, phosphatidylinositol 3-kinase. H, K and N refer to HRAS, KRAS and NRAS, respectively.

Nature Reviews Cancer 3, 11-22 (January 2003)

RTK signaling via Ras: Grb2 (Ras-GEF)

(2): Sos (Ras-GEF) promotes disassociation of GDP from Ras; GTP binds and Sos dissociates from active Ras

Figure 15-47 Molecular Biology of the Cell 6e (© Garland Science 2015)

(1) Grb2 (Growth factor receptor-bound protein 2) binds to a specific phosphorylated tyrosine by mean of SH2 domain (Src homology domain 2) and recruits Sos (Son of Sevenless) by mean of SH3 domains (Src homology domain 3)

Cycling of Ras proteins

GDP GTP

Step 1: Guanine Step 2: GTP binds nucleotide- exchange spontaneously, and GEF Ras GDP factors (GEF) facilitates dissociates yielding the dissociation of GDP from active Ras Ras. ONWARD Inactive Active **TRANSMISSION** form **OF SIGNAL** Steps 3and 4: Hydrolysis of the bound GTP is accelerated

(GAP).

by GTPase-activating proteins

Ras/Raf/Mek/Erk signaling pathways Mitogen-Activated Protein Kinase (MAPK)

Raf (MAP3K) activation

ERK increases gene transcription

Ras/MAPK cascade and cancer

Targeting Ras/MAPK pathway in cancer treatment

AstraZeneca

Phosphoinosotide 3-kinase (PI3K) signaling

Figure 15-55 Molecular Biology of the Cell 6e (© Garland Science 2015)

PI3K: Lipid kinase

Figure 15-52 Molecular Biology of the Cell 6e (© Garland Science 2015)

PI3K

Ras/PI3K/mTOR pathway

PI 3K/mTOR signaling promotes cell survival

Figure 15-53 Molecular Biology of the Cell 6e (© Garland Science 2015)

Targeting PI3K in lung and breast cancers

