Problem

Let N be an NFA with k states that recognizes some language A.

- ${f a.}$ Show that if A is nonempty, A contains some string of length at most k.
- **b.** Show, by giving an example, that part (a) is not necessarily true if you replace both A's by \overline{A} .
- **c.** Show that if \overline{A} contains some string of length at most 2^k.
- d. Show that the bound given in part (c) is nearly tight; that is, for each k, demonstrate an NFA recognizing a language A_k where $\overline{A_k}$ shortest member strings are of length exponential in k. Come as close to the bound in (c) as you can.

Step-by-step solution

Step 1 of 5

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA with K states that recognizes some language A

- (a) Suppose A is non empty
- Then there must be an accept state $q \in F$ that can be reached from the start state q_0 .
- Let w be the string that can be accepted by N when traveling along the shortest path q_0 to q.
- Let *n* be the length of *w*.
- Then, the sequence of state $q_0, q_1...q$ in the shortest path from q_0 to q has length n+1.
- Note that all the states from q_1 to q in this sequence must be distinct; otherwise we would find a shorter path from q_0 to q by removing the repeated states.
- Since there are only K states in N and there are n distinct states in the shortest path from q_0 to q, we have $n \le K$.
- Clearly, w is accepted by N because q is an accept state
- So A contains a string of length at most K.

Comment

Step 2 of 5

(b) Example:

Suppose $\Sigma = \{0,1\}$ and N be the NFA with $K = \delta$ states.

Let A be the language recognized by N.

The State diagram of N is as follows

Comment

Step 3 of 5

- · Clearly N accepts the empty string.
- For any nonempty string w, N will reject w if and only if the length of w is divisible by 2 and 5.
- Thus \overline{A} consists of all non empty strings of length divisible by 10
- So \overline{A} is non-empty and the shortest string in \overline{A} has length 10 > K
- Hence we got the contradiction of part (a) when we replace A by \overline{A} .

Comment

Step 4 of 5

- (c) We know that "Every non deterministic finite automaton has an equivalent deterministic finite automaton"
- So we convert N into a DFA M that also recognizes A, where the set of states in M is the set of subsets of Q.
- Then we swap the accept and non accept states of $\it M$ to obtain a DFA $\, \bar{\it M} \,$ that recognizes $\, \bar{\it A} \,$.
- Note that $\ \overline{M}$ has $\ 2^{\kappa}$ states.
- Applying part (a) by replacing N with \overline{M} , we can conclude that if \overline{A} is non-empties, then \overline{A} contains a string of length at most 2^K .

Comment

Step 5 of 5

- (d) The idea used in part (b) can be generalized to obtain a bound close to an exponential form.
- Let $2 \le P_1 < P_2 < ... < P_n \le \sqrt{K}$ be all the primes in $\left[1, \sqrt{K}\right]$
- For each P_i , construct a DFA M_i of P_i states that rejects only strings of length divisible of P_i .
- Finally, construct an NFA M by union all these M_i machines in the following ways:
- \rightarrow create a separate starting state q_0 add an \in transition from q_0 to the starting states of each M_i , and also designate q_0 as an accepting state.
- \rightarrow This machine M will have $1+P_1+P_2+...+P_m \leq K$ states.
- ightarrow On the other hand, M rejects a string w if and only if a is non empty and |w| is divisible by $P_1P_2...P_m$.
- \rightarrow Hence, the shortest string is rejected by M has length $P_1P_2...P_m$.
- → Now coming to the analysis of the bound,

By the prime Number theorem, there are approximately $\ln n$ prime numbers in [0,n] for n sufficiently large.

$$\rightarrow$$
 Hence, $m \approx \frac{1}{2} \ln K$.

$$ightarrow$$
 Since there are about $\frac{1}{4} \ln K$ primes in $\left[0, \sqrt[4]{K}\right]$, there are about $m - \frac{1}{4} \ln K \approx \frac{1}{4} \ln K$ primes in $\left[\sqrt[4]{K}, \sqrt{K}\right]$

Thus
$$P_1 P_2 ... P_m \ge \left(\sqrt[4]{K}\right)^{\frac{1}{4} \ln K} = K^{\frac{1}{16} \ln K}$$