Assignment 2

SUB-SET SUM

Matjaž Mav (63130148)

May 3, 2020

1 DYN

This approach has time complexity of $\mathcal{O}(nk)$ and space complexity of $\mathcal{O}(k)$. It is greatly effected by the size of array \boldsymbol{A} and/or targeted sum \boldsymbol{k} . If we introduce big numbers this problem becomes really hard for this approach. Example of such problem would be:

2 EXH

This approach has time and space complexity of $\mathcal{O}(2^n)$. The worst case scenario is when the input is a long array \mathbf{A} of some relatively small numbers and some really big targeted sum \mathbf{k} . If the targeted sum \mathbf{k} is greater or equal then sum of the whole array \mathbf{A} , this approach will perform exhaustive search without any kind of pruning. Example of such problem would be:

3 GREEDY

This approach has time complexity of $\mathcal{O}(n \log n)$ and space complexity of $\mathcal{O}(n)$. In the worst case this algorithm returns at most 2 times worse result. Example of such problem would be:

In this case optimal result is 1000000 but the algorithm would return 500001. The result is almost 2 times worse then the optimal $(500001 \approx 1000000/2)$.

4 FPTAS

This is ϵ -approximation. Its execution time is greatly effected by the parameter ϵ . We have compared how the ϵ parameter effect the execution time of this algorithm. We have generated random inputs using code listed in the Listing 1. We observed (Figure 1) that with smaller values of ϵ this algorithm performs slower and has higher standard deviation.

Figure 1: Execution time compared to the parameter $\boldsymbol{\epsilon}$

Listing 1: Random problem generator