DSZOB, cvičenie 2.

Zadanie:

Úloha 1 – Základné generovanie signálov

Vygenerujte a vhodne vizualizujte nasledovné signály (vzorkovacia frekvencia 44.1 kHz, časový úsek 3 sekundy):

- 1. Sínusový signál s frekvenciou zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou = 0,6.
- 2. Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,2:0,5>.
- 3. Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,1:0,4>.
- 4. Generujte zložený signál ako súčet z predchádzajúcich vygenerovaných signálov.
- 5. K zloženému signálu aditívne pripočítajte šum s magnitúdou z rozsahu <0,01:0,05>.

(pomôcka: funkcia rand() alebo randn())

Vygenerované signály si vypočujte po sebe v poradí generovania (zložený signál na záver).

Vygenerované signály vizualizujte!

Pozn.: Môžete sa pokúsit o akord (vid tab. dole)

Tab. Temperované ladenie - frekvencie

	0	1	2	3	4	5	6	7	8	9
С	16,35	32,7	65, 4	130,8	261,6	523,2	1046,4	2092,8	4185,6	8371,2
cis	17,32	34,64	69, 29	138,58	277,16	554,31	1108,62	2217,24	4434,49	8868,98
d	18,35	36,7	73, 41	148,82	293,64	587,27	1174,54	2349,09	4698,18	9396,35
dis	19,44	38,89	77,77	155,55	311,1	622,19	1244,39	2488,77	4977,55	9955,09
e	20,6	41,2	82,4	164,8	329,6	659,19	1318,38	2636,76	5273,53	10547,05
f	21,82	43,65	87,3	174,6	349,19	698,39	1396,78	2793,55	5587,11	11174,21
fis	23,12	46, 24	92, 49	184,98	369,96	739,92	1479,83	2959,67	5919,33	11838,68
g	24,5	48,99	97,99	195,98	391,96	783,91	1567,83	3135,66	6271,31	12542,63
gis	25,95	51,91	103,82	207,63	415,26	830,53	1661,06	3322,11	6844,23	13288,45
a	27,5	54,99	109,99	219,98	440,00	879,91	1759,83	3519,66	7039,31	14078,62
ais	29,13	58, 26	116,53	233,06	466,12	932,24	1864,47	3728,95	7457,89	14915,78
h	30,88	61,73	123,46	248,92	493,84	987,67	1975,34	3950,68	7901,36	15802,72

Príklady akordov / Tóny, z ktorých sa skladá:

- Cdur / C, E, G
- Gdur / G, H, D
- · Amoll / A, C, E

Postup vhodne dokumentuje (Code/Text bloky)!

Riešenie:

```
% Solution
clear
% Values from table
c0 = 16.35;
cis0 = 17.32;
d0 = 18.35;

t = 3; % Measured time span
samp = 44100; % Sampling rate 44.1kHz

mag1 = .6;
freq1 = (c0*2*pi);

%First signal
x1 = [0:1/samp:t];
y1 = mag1 * sin(x1 * freq1);
```

```
%Second signal
mag2 = .2 + mod(rand(), (.5 -.2));  %Vector with random numbers from given
magnitude range (0.2, 0.5)
freq2 = (2*pi*cis0);
y2 = mag2 .* sin(x1 * freq2);  %We use x1 again because we are always checking 3
second time span
```

```
%Third signal
mag3 = .1 + mod(rand(), (.4 -.1)); %Vector with random numbers from given
magnitude range (0.2, 0.4)
freq3 = (2*pi*d0);
y3 = mag2 .* sin(x1 * freq3);
```

```
%Summed signal
sum_sig = y1 + y2 + y3;
plot(x1,sum_sig);
xlim([0,0.05])
xlabel('Time(s)');
ylabel('Magnitude');
title("Composite signal");
```



```
%Generating noise vector
noise = 0.01 + mod(rand(1,length(x1)), 0.05 - 0.01);
sum_sig = sum_sig + noise;
plot(x1,sum_sig);
xlim([0,.05])  % Zoom onto a section to show noise
xlabel('Time(s)');
ylabel('Magnitude');
title("Composite signal with noise");
```


Úloha 2

Znížte vzorkovaciu frekvenciu u Vami vygenerovaného signálu:

- na polovicu
- na štvrtinu
- na hranicu danú Nyquistovým teorémom
- a aj s porušením Nyquistovho teorému.

Vizualizujte dané signály v jednom grafe. Signál si vypočujte a vyhodnoťte kvalitu.

Pomôcky : funkcia: downsample()

```
% Riesenie / Solution
halved_x = downsample(x1, 2);
halved_y = downsample(sum_sig, 2);

plot(halved_x, halved_y, "red");
xlabel('Time(s)');
ylabel('Magnitude');
title("Signal with changed sampling rate");
hold on

quartered_x = downsample(x1, 4);
quartered_y = downsample(sum_sig, 4);
```

```
plot(quartered_x, quartered_y, "green");
hold on

edge_sample = 2*round(samp/(max([freq1, freq2,freq3])));
edge_x = downsample(x1, edge_sample);
edge_y= downsample(sum_sig, edge_sample);

plot(edge_x, edge_y, "blue");
hold on

break_x = downsample(x1, round(edge_sample*2));
break_y = downsample(sum_sig, round(edge_sample*2));

plot(break_x, break_y, "magenta")
legend('Halved', 'Quartered', 'On the edge of nquist theorem', 'Breaking nquist theorem');
xlim([0,.3])
```

