1. Identify the number of nodes and meshes in the circuit below.

COLLEGE OF ENGINEERING

Resistors and Kirchhoff's Laws

- Learning Objectives:
 - Understand the i-v characteristic across a resistor.
 - o Apply Ohm's Law.

Apply Kirchhoff's current and voltage.
 laws to simple electric circuits.

Resistance

- Wires are typically made of metal (silver, copper, gold).
 - High conductivity (σ)
 - Low resistivity (ρ)

electrons can move easily between conduction bands

 In circuits: resistance is the ability to resist flow of electric current.

Resistors

- Typical Resistor: "wire-wound"
 - wire wrapped around ceramic core.
 - more wraps = more length = higher resistance

- Variable Resistor: potentiometer or rheostat
 - turn a knob and changes the effective length

© 2023 I. Fernandez

Resistors

Ohm's Law:

- Linear relationship does not apply over large ranges of voltage or current.
- Empirical relationship given by:

$$v = iR$$

Recall that:

$$R = \frac{v}{i} = \left[\frac{V}{A}\right] = [\Omega]$$

Kirchhoff's Current Law (KCL)

The sum of the currents at a node must equal zero.

$$\sum_{\ell=1}^{N} i_{\ell} = 0$$

Principle: charge cannot be created but must be conserved.

Pick a convention:

- in = positive and out = negative.
- in = negative and out = positive.

$$\sum i_{in} = \sum i_{out}$$

Test Your Knowledge

How many nodes can you identify in the circuit below? KCL on node 3?

Voltage Rise and Voltage Drop

Assume that $v_A > v_B$

• Moving: $A \rightarrow B$ is a voltage drop

Kirchhoff's Voltage Law (KVL)

$$\sum_{\ell=1}^{N} v_{\ell} = 0$$

Principle: no energy is lost or created in an electric circuit.

Pick a convention:

$$V_{5} - V_{1} - V_{2} - V_{3} = 0$$

$$V_1 + V_2 + V_3 - V_5 = \emptyset$$

rise = negative and drop = positive.

$$\sum v_{rise} = \sum v_{drop}$$

Test Your Knowledge

How many meshes can you identify in the circuit below? KVL on mesh 2?

$$KUL 2$$
 $V_3 + V_4 + V_5 - V_2 = 0$

Calculate v and i_x in the circuit below

$$i_{12} = \frac{6}{12} = 0.5A$$