③ BUNDESREPUBLIK DEUTSCHLAND



DEUTSCHES
PATENT- UND
MARKENAMT

# © Offenlegungsschrift © DE 100 17 137 A 1

Aktenzeichen:

100 17 137.0 6. 4. 2000

② Anmeldetag:④ Offenlegungstag:

26. 10. 2000

# ⑤ Int. Cl.<sup>7</sup>: H 01 L 21/203

H 01 L 31/18 H 01 L 31/0392 H 01 L 21/84 C 30 B 25/18

(65) Innere Priorität:

199 16 771.0

14.04.1999

7) Anmelder:

Siemens AG, 80333 München, DE

(7) Erfinder:

Utz, Bernd, Dr., 91052 Erlangen, DE

## Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

## Prüfungsantrag gem. § 44 PatG ist gestellt

- (3) Silizium-Aufbau und Verfahren zu dessen Herstellung
- (3) Der Aufbau (2) umfasst ein Substrat (3), darauf eine Pufferschicht (4) mit einer vorbestimmten Textur sowie eine texturierte Si-Dünnschicht (5). Das chemisch und mechanisch beständige, die Textur der Pufferschicht (4) nicht beeinflussende Substrat (3) hat einen an das Si-Material angepassten thermischen Ausdehnungskoeffizienten. Die eine Diffusionsbarriere bildende Pufferschicht (4) weist eine an das Si-Material angepasste Gitterstruktur und Gitterkonstante auf. Vorzugsweise wird die Pufferschicht (4) mittels eines IBAD-Verfahrens abgeschieden und besteht aus YSZ.



### Beschreibung

Die Erfindung bezieht sich auf einen Aufbau mit einem Substrat, einer auf dem Substrat abgeschiedenen Pufferschicht sowie einer auf der Pufferschicht aufgebrachten, kristallinen, texturierten Silizium-Schicht. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Aufbaus. Ein entsprechender Aufbau sowie ein diesbezügliches Herstellungsverfahren gehen aus der US 4,661,276 A hervor

Viele technisch relevante Eigenschaften des Halbleitermaterials Silizium (Si) wie z.B. die Ladungsträgerbeweglichkeit, die Dichte tiefer Störstellen oder die Schärfe der Bandlücke hängen empfindlich von der Kristallinität des verwendeten Materials ab. Die meisten Si-Halbleiterbauelenente wie DRAM's oder Logik-Elemente werden daher zur Zeit auf Einkristallen in Form von sogenannten "Wafern" realisiert, die durch Kristallzichen hergestellt werden müssen. Dabei werden nur wenige Prozent dieses folglich teuren Materials tatsächlich für das jeweilige Bauelement genutzt. 20

Für Anwendungen wie Solarzellen oder Flachbildschirme, denen durch den Markt enge Kostengrenzen gesetzt sind, werden die Bauelemente daher bevorzugt in einer besonderen Dünnschichttechnik realisiert: Hierzu wird auf einem kostengünstigen Substrat wie z. B. Glas eine Halbleiterschicht aufgebracht, die nur die für das jeweilige Bauelement benötigte Dicke hat. Da ein solches Glassubstrat amorph ist, d. h. keine kristalline Ordnung aufweist, können auch nur amorphe Siliziumschichten aus sogenanntem "a-Si:H" erzeugt werden. Mit solchen Schichten lassen sich 30 einfache Solarzellen mit einem Wirkungsgrad von unter 10% herstellen, die z. B. als Stromversorgung in Uhren oder Taschenrechnern eingesetzt werden; höhere Wirkungsgrade sind auch hier nur mit polykristallinem oder einkristallinem Material zu erreichen (vgl. "Phys. Bl.", Bd. 53, 1997, Seiten 35 1197 bis 1202).

Ebenso können aus a-Si:H auch Dünnschichttransistoren, sogenannte "TFT", hergestellt werden, die zum Beispiel zur aktiven Ansteuerung von Bildpunkten in LCD-Flachbildschirmen verwendet werden. Durch die geringe Ladungsträ- 40 gerbeweglichkeit in a-Si:H ist jedoch die Schaltgeschwindigkeit zu gering, um eine hochfrequente Bilddarstellung zu ermöglichen. Auch hier kann die Geschwindigkeit nur durch polykristallines Si, dessen Ladungsträgerbeweglichkeit etwa 200 mal größer ist, wesentlich gesteigert werden 45 (vgl. "Industr. Phys.", Nr. 12, 1997, Seiten 10 bis 13). Um die Eigenschaften der genannten Bauelemente zu verbessern, insbesondere eine höhere Schaltgeschwindigkeit bei Dünnschichttransistoren und einen besseren Wirkungsgrad bei Solarzellen zu erreichen, kann man die zunächst amor- 50 phen Si-Schichten z. B. durch Zonenschmelzprozesse rekristallisieren (vgl. "MRS Bulletin", Vol. 21, No. 3, 1996, Seiten 35 bis 38). Entsprechende Verfahren sind jedoch kostenintensiv, da die Rekristallisation langsam erfolgen muss und den Einsatz von besonderen Heizvorrichtungen wie Lasern 55 oder Zonenöfen erforden. Zudem sind speziell die Laserverfahren nur für kleine Flächen geeignet, so dass man bei deren auf größere Flächen erweiterten Anwendung mit Inhomogenitäten der Schichtqualität und/oder sehr langen Prozesszeiten rechnen muss. Zudem erzeugen die bekannten 60 Verfahren polykristalline Schichten mit meist regellos orientierten Körnern, die zwar qualitativ besser sind als ein amorphes Material, aber an die Qualität von einkristallinem Material noch nicht heranreichen (vgl. "MRS Bulletin", Vol. 21, No. 3, 1996, Sciten 39 bis 48). Aus den genannten Gründen 65 wird an Verfahren zu Verbesserungen sowohl auf dem Gebiet der Solarzellen als auch der Dünnschichttransistoren für aktive LCDs weltweit intensiv gearbeitet.

Aus der eingangs genannten US-A-Schrift ist ein Verfahren zu entnehmen, mit dem auf isolierenden Substraten epitaktisch Si-Filme zu erzeugen sind. Als Substratmaterial ist hierfür kubisches Zirkonoxid vorgesehen, das mit Yttrium stabilisiert ist (sogenanntes "YSZ"). Entsprechende Substrate haben jedoch einen thermischen Ausdehnungskoeffizienten, der deutlich verschieden von dem des Si ist, so dass eine darauf abgeschiedene Si-Schicht nach Abkühlung von der Beschichtungstemperatur unter einer unerwünschten Druckspannung stehen kann. Aus diesem Grunde kann die Schichtspannung dadurch reduziert werden, dass vor der Abkühlung an der Grenzfläche zum Substrat Silizium durch Zufuhr von Sauerstoff durch das Substrat hindurch in amorphes SiO<sub>x</sub> überführt wird.

Aus der US 4,447,497 A geht ebenfalls ein Verfahren zur Herstellung einer monokristallinen Si-Dünnschicht auf einem einkristallinen, kubischen YSZ-Substrat hervor. Das Substrat wird hierbei vor der Abscheidung der Si-Dünnschicht einer Sauerstoff entziehenden Behandlung unterzogen.

Einkristalline YSZ-Substrate und deren Vorbehandlungen als Träger für einkristalline Si-Dünnschichten sind relativ kostenintensiv. Außerdem stehen entsprechende Substrate im allgemeinen nur mit verhältnismäßig geringen Abmessungen (bis 4 Zoll) zur Verfügung.

Aufgabe der vorliegenden Erfindung ist es deshalb, einen vergleichsweise kostengünstigeren Aufbau mit einer Si-Dünnschicht anzugeben, der die Verwendung preiswerterer Substrate ermöglicht, ohne dass auf die geforderte Kristallinität und Textur der Si-Schicht verzichtet werden muss. Außerdem soll ein Verfahren angegeben werden, mit dem ein derartiger Aufbau besonders sicher zu gewährleisten ist.

Diese Aufgabe wird hinsichtlich des Aufbaus mit den in Anspruch 1 angegebenen Maßnahmen und hinsichtlich des Verfahrens zur Herstellung dieses Aufbaus mit den in Anspruch 11 angegebenen Maßnahmen gelöst.

Vorteilhafte Ausgestaltungen des erfindungsgemäßen Aufbaus sowie des Verfahrens zu dessen Herstellung gehen aus den jeweils abhängigen Ansprüchen hervor.

Die Erfindung geht nämlich von der Erkenntnis aus, dass es unter Einhaltung aller beanspruchten Auswahlkriterien möglich ist, auch auf den verschiedensten Substraten, die insbesondere auch ein amorphes Gefüge wie z. B. im Falle von Glas haben können, bestimmte Pufferschichten mit einer Kristallinität und besonderen Textur abgeschieden werden können, welche die Ausbildung von dünnen Schichten aus kristallinem, texturiertem Silizium ermöglichen. Hierzu muss das Substrat aus einem Material bestehen, das einen thermischen Ausdehnungskoeffizienten aufweist, der höchstens um einen Faktor 3, vorteilhaft höchstens um einen Faktor 2, vorzugsweise höchstens um einen Faktor 1,5 und insbesondere um höchstens 30% von dem des Silizium-Materials abweicht. Außerdem muss das Substrat zumindest an seiner der Silizium-Schicht zugewandten Oberfläche eine kristalline Ordnung oder ein nicht-kristallines Gefüge nachfolgend zusammengefasst als Zustandsgefüge bezeichnet - besitzen, die bzw. das die Textur der Pufferschicht zumindest weitgehend unbeeinflusst lässt. Ferner ist das Substrat so auszuwählen, dass es bezüglich der Abscheidung der Pufferschicht und der Silizium-Schicht hinreichend chemisch und mechanisch beständig ist, d. h. keine Reaktionen oder sonstige Veränderungen eingeht. Die mindestens eine Pufferschicht muss ihrerseits eine gute Textur mit einer kristallinen Achse senkrecht zur Oberfläche des Substrats aufweisen, wobei in der Pufferschichtebene eine biaxiale Textur gegeben sein soll. Außerdem muss die Pufferschicht eine Diffusionsbarriere zwischen dem Material der Silizium-Schicht und dem Material des Substrates bilden und ferner

4

eine Gitterstruktur und Gitterkonstante ihres Materials aufweisen, die an die des Silizium-Materials hinreichend gut angenasst sind

Als besonders geeignete Pufferschichtmaterialien sind oxidische Materialien wie Metalloxide, Titanate, Aluminate oder Gallate verwendbar. Aus diesen Materialgruppen kommen insbesondere in Frage: MgO, ZrO2, Y2O3, CaO, CeO2, SrTiO<sub>3</sub>, BaTiO<sub>3</sub>, LaAlO<sub>3</sub>, NdGaO<sub>3</sub>, oder ähnliche Materialien auf Basis der genannten. Alle diese oxidischen Materialien können darüber hinaus vorzugsweise mit einem Selte- 10 nen Erdmetall dotiert sein. Darunter fallen insbesondere mit Y dotiertes ZrO2, mit Ce dotiertes CaO oder Y2O3 oder mit Gd dotiertes CeO2. Entsprechende Pufferschichten lassen sich nämlich auch auf amorphen Substraten mit der geforderten Kristallinität und Textur ausbilden. Es wurde erkannt, 15 dass gerade diese Materialien zu Siliziumtechnologien kompatibel sind und eine wirksame Diffusionssperre zum Halbleitermaterial Si darstellen. Für Dünnschichthalbleiter auf einem Glasmaterial wird eine solche Diffusionssperre ohnehin benötigt, um insbesondere eine Alkalimetalldiffusion 20 aus dem Glas, zumeist durch ohnehin vorhandene SiO2-Deckschichten, zu unterbinden.

Selbstverständlich sind auch andere Substratmaterialien wie beispielsweise auf metallischer Basis geeignet, soweit mit ihnen die genannten Bedingungen zu erfüllen sind. So 25 kommen insbesondere Materialien auf Ni-Basis wegen guter Anpassung der thermischen Ausdienungskoeffizienten von Substrat und Si-Schicht in Frage.

Besonders vorteilhaft lässt sich ein entsprechender Aufbau dadurch herstellen, dass man die mindestens eine Puf- 30 ferschicht mittels eines deren biaxiale Texturierung fördernden Beschichtungsprozesses auf das Substrat aufbringt. Als Beschichtungsprozess kommt insbesondere ein Sputtern, eine Laserablation, ein thermisches Verdampfen, ein Elektronenstrahlverdampfen oder ein Ionenstrahlsputtern in 35 Frage. Dabei hat es sich als besonders vorteilhaft erwiesen, wenn man während des Beschichtungsprozesses auf das Substrat einen Ionenstrahl unter einem vorbestimmten Einfallswinkel richtet. Ein solcher ionenstrahlunterstützter Beschichtungsprozess wird auch als IBAD-("Ion Beam Assi- 40 sted Deposition")-Verfahren bezeichnet (vgl. z. B. " Journ. Appl. Phys.", Vol. 51, No. 1, Jan. 1984, Seiten 235 bis 242, oder Vol. 71, No. 5, März 1992, Seiten 2380 bis 2386). Es wurde nämlich erkannt, dass gerade mit einem derartigen Prozess gut biaxial texturierte polykristalline Schichten aus 45 den genannten Pufferschichtmaterialien insbesondere auch auf amorphen Substraten wie z. B. aus Glas bei Raumternperatur erzeugt werden können. Dieses Verfahren ist außerdem vorteilhaft gerade zur Beschichtung von Substraten mit großen Flächen geeignet.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Aufbaus und des Verfahrens zu seiner Herstellung gehen aus den übrigen Ansprüchen hervor.

Die Erfindung wird nachfolgend unter Bezugnahme auf die schematische Zeichnung anhand von Ausführungsbeispielen noch weiter erläutert. Dabei zeigt die Fig. 1 der Zeichnung einen Querschnitt durch einen Aufbau nach der Erfindung. Aus Fig. 2 geht eine Vorrichtung zur Abscheidung der mindestens einen Pufferschicht für einen erfindungsgemäßen Aufbau im Querschnitt hervor.

In Fig. 1 sind bezeichnet mit

- 2 der Aufbau allgemein,
- 3 ein Substrat.
- 4 eine Pufferschicht.
- 5 eine Silizium(Si)-Schicht,
- d1 die Dicke des Substrates.
- d2 die Dicke der Pufferschicht und

d3 die Dicke der Si-Schicht.

Damit auf dem aus Substrat 3 und Pufferschicht 4 gebildeten Träger eine kristalline und biaxial texturierte Si-Schicht 5 hergestellt werden kann, deren Körner insbesondere eine größere Korngröße aufweisen als die üblichen mikrokristallinen Schichten auf amorphen Substraten, und damit außerdem eine kristallographische Ausrichtung dieser Körner erreicht wird, sind sowohl an das Material des Substrats 3 als auch an die Pufferschicht 4 eine Reihe von Anforderungen zu stellen:

## A) Anforderungen an das Material des Substrats 3

- Das Substratmaterial muss ein amorphes und/oder kristallines Zustandsgefüge aufweisen, das eine geforderte Textur der Pufferschicht 4 zumindest weitgehend unbeeinflusst lässt. Häufig wird das Substratmaterial amorph sein wie insbesondere im Falle von Gläsern. Bei dem Glasmaterial kann es sich beispielsweise um ein spezielles Silikatglas wie ein Boro- oder Aluminosilikatglas handeln. Ein entsprechendes Material wäre das unter dem Handelsnamen Pyrex (Firma Corning Glass Co., Corning, NY (USA), Type 7740) bekannte Glasmaterial. Auch Glas-Keramiken, z. B. eine Magnesium-Aluminosilikat-Glaskeramik US 5,204,289 A), kommen in Frage. Falls ein kristallines Substrat wie z. B. aus einem metallischen Werkstoff insbesondere auf Ni-Basis verwendet werden soll, ist zu gewährleisten, dass die kristalline Ordnung des Substrates bei der Abscheidung der Pufferschicht 4 nicht in Konkurrenz zur Texturierungsmaßnahme bezüglich dieser Pufferschicht tritt. Metallische Substrate auf Ni-Basis weisen besonders gut angepasste thermische Ausdehnungskoeffizienten auf.

- Die Abscheidung des Siliziums erfolgt nach bekannten physikalischen (PVD-) oder chemischen (CVD-)Verfahren. Die hierfür erforderlichen Temperaturen können verhältnismäßig hoch liegen und im Falle der CVD-Verfahren z. B. 1000 bis 1400°C betragen. Es muss deshalb gewährleistet sein, dass dann das Substrat bezüglich dieser Abscheidetemperaturen chemisch beständig ist und über die nötige mechanische Stabilität verfügt.

Um defektarme und speziell nicht-reißende Si-Schichten 5 zu erhalten, muss darüber hinaus der lineare thermische Ausdehnungskoeffizient des Substrats 3 an den des Si-Materials der Schicht 5 hinreichend gut angepasst sein. D. h., der thermische Ausdehnungskoeffizient des Substrates darf bei den Abscheidetemperaturen und bei der Betriebstemperatur des Aufbaus höchstens um einen Faktor 3, vorteilhaft um nicht mehr als einen Faktor 2, von dem des Si-Materials abweichen. Besonders günstig ist es, wenn die entsprechende Abweichung noch geringer ist und höchstens einen Faktor 1,5, insbesondere höchstens einen Faktor 1,3 ausmacht. Dabei sei für das Si von folgenden Werten des mittleren thermischen Ausdehnungskoeffizienten  $\beta$  [in °C<sup>-1</sup>] ausgegangen:  $\beta = 1.95 \times$  $10^{-6}$  (bei  $100^{\circ}$ C) bzw.  $\beta = 3.2 \times 10^{-6}$  (bei  $1000^{\circ}$ C). Für die Auswahl der Substratmaterialien sei ein Mittelwert von  $\beta = 2.6 \times 10^{-60} \text{ C}^{-1}$  zugrundegelegt (x = Multiplikationszeichen).

 Die Dicke d1 des Substrats 3 ist an sich beliebig und liegt im allgemeinen über 0,3 mm. Die Substratoberfläche muss einen Politurgrad aufweisen, der die Abscheidung einer texturierten Pufferschicht 4 erlaubt. Im allgemeinen ist eine Restrauhigkeit (maximale Rauhtiefe

65

б

R<sub>d</sub>) von höchstens 100 nm akzeptabel. Die Rauhtiefe ist dabei durch die nach DIN 4762 (Entwurf 1978) zu messende Oberflächenrauhigkeit bestimmt.

#### B) Anforderungen an die biaxial texturierte Pufferschicht 4 5

- Die Pufferschicht 4, deren Dicke d2 im allgemeinen zwischen 0,01 und 2 μm liegt, muss nicht nur eine Textur mit einer kristallinen Achse senkrecht zur Oberfläche des Substrats 3 aufweisen. D. h., sie soll kristallographisch so ausgerichtet sein, dass genau eine Kristallachse in Richtung der Substratnormalen zeigt. Zusätzlich ist zu gewährleisten, dass die Ausrichtung der verbleibenden zwei (restlichen, anderen) Kristallachsen in der Substrat- bzw. Pufferschichtebene derart ist, 15 dass eine als biaxial anzusehende Textur gegeben ist. Mit dieser so bestehenden eine Ausrichtung der Kristallachsen in der Schichtebene und senkrecht dazu lässt sich dann vorteilhaft eine zumindest nahezu einkristalline Pufferschicht erzeugen.
- Über die Texturierung hinaus wirkt die Pufferschicht 4 generell auch als eine Diffusionssperre, um eine Diffusion von Si in das Substratmaterial und/oder umgekehrt von Bestandteilen des Substrats in das Si zu unterbinden. Diese Aufgabe erfüllt die Pufferschicht um 25 so besser, je weniger Korngrenzen diese Schicht enthält. D. h., sowohl die Qualität der Textur als auch die Korngrößen in der Pufferschicht haben somit Einfluss auf die Sperrwirkung der Schicht.
- Die Pufferschicht 4 ist mittels eines deren Texturierung fördernden Prozesses auf das Substrat aufzubringen. Als Texturierungsverfahren kommen sowohl Beschichtungen unter gleichzeitigem Beschuss mit Ionen in Frage als auch Techniken, die einen Texturierungseinfluss durch hohe Abscheideraten erzielen.

So können spezielle Pufferschichten texturiert hergestellt werden, indem während der Beschichtung durch Sputtern, Laserablation, thermisches Verdampfen, Elektronenstrahlverdampfen oder Ionenstrahlsputtern ein Ionenstrahl unter geeignetem Winkel auf das Substrat gerichtet wird. Ein derartiger Beschichtungsprozess wird auch als IBAD-Verfahren bezeichnet.

Ebenso kann mit verhältnismäßig hohen Abscheideraten eine texturierte Pufferschicht durch Beschichtung eines unter einem geeigneten Winkel schräggestellten 45 Substrats mittels Laserablation oder Verdampfung hergestellt werden.

- Für ein epitaktisches Wachstum von Si auf der Pufferschicht 4 ist es erforderlich, dass die Gitterstruktur und Gitterkonstante des Pufferschichtmaterials an das Gitter von Si hinreichend gut angepasst ist. Ein Pufferschichtmaterial mit kubischem Gitter ist somit besonders vorteilhaft. Bei einem epitaktischen Wachstum überträgt sich nämlich die Textur der Pufferschicht auf das Si. Je besser also die Textur in einer Pufferschicht 55 ist, desto besser ist somit auch die Si-Schicht ausgerichtet. Dabei hängt es von den jeweiligen Anwendungsfällen ab, welches Maß an Ausrichtung tatsächlich gefordert ist; danach richtet sich also die Anforderung an die Texturgüte des Pufferschichtmaterials.
- Selbstverständlich muss die Oberfläche der Pufferschicht 4 hinreichend glatt sein, um eine Epitaxie von Si zu ermöglichen. Eine Restrauhigkeit wie im Falle des Substrats ist als ausreichend anzusehen.
- Pufferschichtmaterialien, mit denen die genannten 65 Anforderungen zu erfüllen sind, sind insbesondere oxidische Materialien. Hierbei kann es sich um reine Oxide wie MgO, CaO, CeO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub> oder ZrO<sub>2</sub> handeln.

Daneben sind auch oxidische Verbindungen wie Titanate, Aluminate, Gallate geeignet. Entsprechende Beispiele sind SrTiO<sub>3</sub>, BaTiO<sub>3</sub>, LaAlO<sub>3</sub> oder NdGaO<sub>3</sub>. Allen diesen Materialien können in an sich bekannter Weise noch weitere Elemente hinzugefügt sein, so dass diese Materialien dann als Basismaterialien für die weiteren Elemente anzusehen sind. Ein entsprechendes Beispiel wäre das (Ba, Sr)TiO3. Ferner sind mit Seltenen Erden dotierte oxidische Materialien besonders vorteilhaft. Hierunter fällt mit Y dotiertes ZrO2, sogenanntes YSZ, das vorzugsweise vollstabilisiert und damit kubisch ist (bei einem Y-Gehalt von 8 Mol-%). Darüber hinaus ist mit Gd dotiertes CeO2 geeignet. Ferner kommen mit Ce dotierte Stoffe wie z. B. Ce in CaO oder in Y<sub>2</sub>O<sub>3</sub> in Frage (vgl. "Gmelin Handbook", RE Main Vol. E1, 1992, Kapitel 1.3.3).

Statt einer einzigen Pufferschicht können gegebenenfalls auch mehrere Pufferschichten vorgesehen werden. So lässt sich beispielsweise – insbesondere im Falle Ni-haltiger Substrate – eine Puffer-Doppelschicht YSZ/CeO<sub>2</sub> aufbringen.

## C) Anforderungen an den Silizium-Beschichtungsprozess

Bei der Siliziumbeschichtung muss vermieden werden, dass das Si durch Reaktion mit Sauerstoff aus der Pufferschicht 4 oxidiert und so eine amorphe SiO-Schicht gebildet wird. Damit wäre nämlich eine Epitaxie des Si nicht mehr möglich. Dies kann unter anderem dadurch sichergestellt werden, dass man die Oberfläche der Pufferschicht einem Temperschritt in reduzierender Atmosphäre unterzieht, um so den Oberflächenbereich an Sauerstoff zu verarmen. Selbstverständlich ist auch eine andere Prozessführung möglich, die zu einem epitaktischem Wachstum von Si führt. Auf jeden Fall nimmt das epitaktisch wachsende Si die kristalline Ordnung und Orientierung des darunterliegenden Korns wie z. B. aus YSZ an. Ohne weitere Rekristallisationsschritte ergibt sich dann vorteilhaft eine polykristalline Si-Schicht, in der die einzelnen Körnern (100)-texturiert als auch mit mindestens einer weiteren Kristallachse in der Filmebene ausgerichtet sind. Dann betragen in der Filmebene die Korngrenzenwinkel weniger als 20° und es sind in der Regel praktisch nur noch Kleinwinkelkorngrenzen vor-

Die Dicke d3 der Si-Schicht 5 liegt im allgemeinen zwischen 0,2 und 50 μm, beispielsweise zwischen 2 und 20 μm. Selbstverständlich ist es möglich, dass auf der Si-Schicht 5 noch weitere, in der Fig. 1 nicht dargestellte Schichten aufgebracht werden.

Gemäß einem konkreten Ausführungsbeispiel wird ein für Prozesstemperaturen bis 700°C verwendbares Glas, beispielsweise ein Silikatslachglas, als Substrat 3 bei Raumtemperatur in einem IBAD-Prozess mit einer YSZ-Pufferschicht 4 der Dicke d2 von etwa 100 nm texturiert beschichtet. Danach wird z. B. mittels eines CVD-Verfahrens auf diese YSZ-Pufferschicht 4 eine Si-Schicht 5 abgeschieden. Bei Temperaturen von etwa 700°C wächst dabei das Si epitaktisch auf den YSZ-Körnern auf und übernimmt dabei dessen Kristallinität und Ausrichtung. Das Resultat ist ein biaxial texturierter, polykristalliner Si-Film beispielsweise mit einer Dicke d3 von etwa 5 µm. Der Film kann vorteilhaft zur Herstellung entsprechender Halbleiterbauelemente verwendet werden. Der hierfür angegebene Prozess ist vorteilhaft großstächig möglich.

Zur Beschichtung des Glassubstrates mit der YSZ-Pufferschicht im Rahmen des vorgenannten Ausführungsbeispieles wurde eine IBAD-Vorrichtung eingesetzt, die schematisch in Fig. 2 als Querschnitt veranschaulicht ist. Diese all-

45

7

gemein mit 10 bezeichnete Vorrichtung ist prinzipiell bekannt. Sie enthält innerhalb einer auf Erdpotential liegenden Vakuumkammer 11 eine entsprechend ausgeführte Ionenquelle 12. Diese Ionenquelle erzeugt einen Strahl von Ionen 13 z. B. mit einer Energie von 1000 bis 1500 eV. Die Ionen treffen schräg auf ein Target 14 aus dem Targetmaterial YSZ auf und lösen dort aus dessen Oberfläche Teilchen des Targetmaterials heraus bzw. sputtern diese Teilchen ab. Das so zerstäubte Targetmaterial 15 scheidet sich dann auf einem Substrat 3 aus dem gewählten Glasmaterial ab, das gegenüber dem Target 14 angeordnet ist. Das Substrat ist an einer Halterung 17 befestigt, die gegebenenfalls kühlbar ist und so das Substrat z. B. auf einer Temperatur unterhalb von 200°C halten kann.

Während der Abscheidung des abgetragenen bzw. abgesputterten Targetmaterials 15 auf dem Substrat 3 wird dieses vorteilhaft einem Beschuss durch einen weiteren Strahl von Ionen 18 mit vergleichsweise niedrigerer Energie ausgesetzt. Diese Ionen werden von einer besonderen, ebenfalls in der Vakuumkammer 11 untergebrachten Ionenquelle 19 erzeugt und treffen unter einem vorbestimmten Einfallswinkel  $\alpha$  auf die Substratoberfläche auf. Der Winkel  $\alpha$  liegt dabei im allgemeinen zwischen 30 und  $60^{\circ}$ .

#### Patentansprüche

- 1. Aufbau (2) mit einem Substrat (3), mindestens einer auf dem Substrat abgeschiedenen, texturierten Pufferschicht (4) und einer auf der Pufferschicht aufgebrachten, kristallinen, texturierten Silizium-Dünnschicht (5), 30 wobei
  - a) das Substrat (3)
    - aus einem Material besteht, das einen thermischen Ausdehnungskoeffizienten aufweist, der höchstens um einen Faktor 3 von 35 dem des Silizium-Materials abweicht,
    - ein Zustandsgefüge besitzt, das die Textur der Pufferschicht (4) zumindest weitgehend unbeeinflusst lässt,
    - bezüglich der Abscheidung der Pufferschicht (4) und der Silizium-Schicht (5) hinreichend chemisch und mechanisch beständig ist,

und

- b) die mindestens eine Pufferschicht (4)
  - eine Textur derart aufweist, dass eine kristalline Achse senkrecht zur Oberfläche des Substrats (3) weist und dass sie durch die Ausrichtung der verbleibenden beiden kristallinen Achsen in der 50 Pufferschichtebene biaxial ist.
  - eine Diffusionsbarriere zwischen dem Material der Siliziumschicht (5) und dem Material des Substrates (3) bildet
  - eine Gitterstruktur und Gitterkonstante ihres Materials aufweist, die an die des Silizium-Materials hinreichend angepasst sind.
- 2. Aufbau nach Anspruch 1, gekennzeichnet durch ein Substratmaterial mit einem thermischen Ausdehnungskoeffizienten, der höchstens um einen Faktor 2, vorzugsweise um höchstens einen Faktor 1.5, insbesondere um höchstens 30% von dem des Silizium-Materials abweicht.
- 3. Aufbau nach Anspruch 1 oder 2, gekennzeichnet durch ein Substrat (3) aus einem Glasmaterial.
- 4. Aufbau nach Anspruch 1 oder 2. gekennzeichnet

8

- durch ein Substrat (3) aus einem metallischen Material, vorzugsweise auf Ni-Basis.
- 5. Aufbau nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Pufferschicht (4) aus einem oxidischen Material.
- 6. Aufbau nach Anspruch 5. dadurch gekennzeichnet, dass das Pufferschichtmaterial ein Metalloxid oder ein Titanat oder ein Aluminat oder ein Gallat ist.
- 7. Aufbau nach Anspruch 6, dadurch gekennzeichnet, dass das Pufferschichtmaterial ausgewählt ist aus der Gruppe MgO, ZrO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub>, CaO, CeO<sub>2</sub>, SrTiO<sub>3</sub>, Ba-TiO<sub>3</sub>, LaAlO<sub>3</sub>, NdGaO<sub>3</sub>.
- 8. Aufbau nach einem der Ansprüche 5 bis 7, gekennzeichnet durch eine Pufferschicht (4) aus einem mit einem Seltenen Erdmetall dotierten oxidischen Material.
  9. Aufbau nach Ansprüch 8, dadurch gekennzeichnet,
- Aufbau nach Anspruch 8, dadurch gekennzeichnet, dass das Pufferschichtmaterial ein mit Y dotiertes ZrO<sub>2</sub> oder ein mit Ce dotiertes CaO oder Y<sub>2</sub>O<sub>3</sub> oder ein mit Gd dotiertes CeO<sub>2</sub> ist.
- 10. Aufbau nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Dicke (d2) der mindestens einen Pufferschicht (4) zwischen 0,01 μm und 2 μm.
- 11. Verfahren zur Herstellung des Aufbaus nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Pufferschicht (4) mittels eines deren biaxiale Texturierung fördernden Beschichtungsprozesses auf das Substrat (3) aufgebracht wird.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass während des Beschichtungsprozesses auf das Substrat (3) ein Ionenstrahl (18) unter einem vorbestimmten Winkel ( $\alpha$ ) gerichtet wird.
- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass als Beschichtungsprozess ein Sputtern oder eine Laserablation oder ein thermisches Verdampfen oder ein Elektronenstrahlverdampfen oder ein Ionenstrahlsputtern vorgesehen wird.

Hierzu 1 Seite(n) Zeichnungen



