

The Entity-Relationship Model

Chapter 2

ine

Database Models

Determine how data can be stored, organized and manipulated in a database system

Common Models?

•

Database Models

Determine how data can be stored, organized and manipulated in a database system

Common Models:

- Entity Relationship Model
 - Useful for end-users and database designers
- Relational Model
 - Implemented in databases
- Network Model
- Object Model

•

Learning Objective

Textual Database requirements

Entity-Relationship Model

Requirements:

Instructors teach 0 or more courses.

Each course can be taught by 0 or more instructors

Instructors have attributes of first name and last name

Courses have attributes Name and credits

Teaching relationship is valid for a specific term and year.

TODAY

We will cover:

- Database design
 - High-level description of data to be stored
- ER modeling
 - Basic constructs (e.g. entities, relationships)
 - Additional constructs (e.g. hierarchies)
 - Integrity constraints : capture real-world properties of the data

ODA

Tradeoffs among Designs

sie!

Relational Database

 Entities and (most) relationships are translated into Tables

Columns (Fields) (Attributes)

	Attribute 1	Attribute 2	Attribute 3						
Rows									
(Records) (Tuples)									
(Tuples)									

sier

Translation from ER Diagrams to Relations

Scenario 1

- Create IMDb (Internet Movie Database)
 - i.e., a database to store information about movies, casts, directors, ratings, ...

ER Diagram

'Actor' and 'Movie'

• <>> Relationships

'Acts In'

• Attributes

- Entity sets: Collection of entity instances e.g., set of Actors or set of Movies
- Relationship set: e.g. Acts_In: {(a1, m1), (a1, m2), (a2, m3), ...}

- Actor Acts In Movie
- Movie Directed by Director

Scenario 1: Update

- Create IMDB (Internet Movie Database)
 - i.e., a database to store information about the movies,
 cast, directors, ...
- Constraint (they ask you to impose it)
 - A movie can have AT MOST one director
 - A director can direct MULTIPLE movies

ER Diagram: Relationship Types

- Many-to-Many
- One-to-Many (or Many-to-One)
- One-to-One

Scenario 1: Update

- Create IMDB (Internet Movie Database)
 - i.e., a database to store information about the movies,
 cast, directors, ...
- Constraint (they ask you to impose it)
 - A movie can have AT MOST one director
 - A director can direct MULTIPLE movies

Types of relationships?

Acts In:

 An actor can act in multiple movies and a movie can have multiple actors

Directed by:

- A movie has at most one director
- Arrow: indicates Key Constraint on directed-by relationship: a movie in the relationship must be unique

Types of relationships?

- Acts In: Many-to-Many
 - An actor can act in multiple movies and a movie can have multiple actors
- Directed by: Many-to-1
 - A movie has at most one director
 - Arrow: indicates Key Constraint on directed-by relationship: a movie in the relationship must be unique

Scenario 1: Update (2)

- Create IMDB (Internet Movie Database)
 - i.e., a database to store information about the movies, cast, directors,
 ...
- Constraint 1
 - A movie can have AT MOST one director
 - A director can direct MULTIPLE movies
- Constraint 2
 - Every Movie entity must participate in a relationship with an Actor
 - i.e., every movie must have *at least* one actor

Participation constraints

Heavy line

 Every Entity-1 entity must participate in a relationship with an Entity-2 entity.

Light line

An Entity-2 can be related to ≥ 0 Entity-1 entities.

Final ER diagram

- Participation Constraint
 - Every Movie entity must participate in a relationship with an Actor
 - i.e., every movie must have *at least* one actor

- An Actor can participate in ≥ 0 movies.
- There can be actors who never act in movies.

Child and Birth Mother

- **Key** Constraint:
 - A child has at most one birth mother but a birth mother may bear several children.
- Participation Constraint:
 - Each child must have at least one birth mother
- Net Result: Every child has exactly one birth mother.

Scenario 1: Update (3)

- Create IMDB (Internet Movie Database)
 - i.e., a database to store information about the movies, cast, directors, ...
- Constraint 1 (they ask you to impose it)
 - A movie can have AT MOST one director
 - A director can direct MULTIPLE movies
- Constraint 2
 - Every Movie entity must participate in a relationship with an Actor
 - i.e., every movie must have *at least* one actor
- Actors & directors have attributes: ID, Name, DOB
- Movies have attributes: ID, title, year, type

ER Diagram: Attributes

Keys

Key: A minimal set of one or more attributes that has unique value for each record.

- Candidate keys: potential keys
- Students in a student database have multiple potential keys (they must be unique to be a key):
 - Student ID
 - Login name
 - SSN
 - (Name, address)

Primary Key

- Primary Key: One of the candidate keys
- The primary key attribute(s) is (are) <u>underlined</u> in the ER diagram
- When you design a database, the primary key is cross-referenced in other tables to represent relationships.
 - e.g., For students, Student ID is a good primary key

 Often each Entity is assigned a unique ID, which serves as a primary key

What are the Primary Keys for Instructor? Course? Teaches?

What are the Primary Keys for Instructor? Course? Teaches?

Difference from this design?

Instructor Entities

SemID Year Term
Sem1 2009 F
Sem2 2010 W

28

Course Entities

Semester Entities

Instructor ID	First Name	Last Name	Instructor ID	Course ID	SemID	Course ID	Name	Credits
394953	John	Smith	454544	E302	Sem1	M184	Calculus	3
454544	Sara	King	394953	C210	Sem2	C210	Physics	4
439849	Alex	Dee	439849	M184	Sem3	E302	Algorithms	4
					••••			
		••••		••••				

Teaches Relationship

Practice ER Modeling Problem

Scenario 2

ER Modeling Problem

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size.
 - Citizen info: SSN, name, bday (SSN is unique)
 - Initiatives info: ID, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

- 1. Identify entities (objects), relationships between entities
- 2. Attach attributes
- 3. Keys: something that uniquely identifies an entity

ER Modeling Problem STEP 1a

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size.
 - Citizen info: SSN, name, bday (SSN is unique)
 - Initiatives info: Id, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

- 1. Identify entities (objects), relationships between entities
- 2. Attach attributes
- 3. Keys: something that uniquely identifies an entity

ER Modeling Problem STEP 1b

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size.
 - Citizen info: SSN, name, bday (SSN is unique)
 - Initiatives info: Id, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

- 1. Identify entities (objects), relationships between entities
- 2. Attach attributes
- 3. Keys: something that uniquely identifies an entity

ER Modeling Problem STEP 2

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size.
 - Citizen info: SSN, name, bday (SSN is unique)
 - Initiatives info: Id, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

- 1. Identify entities (objects) [And relationships between entities]
- 2. Attach attributes
- 3. Keys: something that uniquely identifies an attribute

ER Modeling Problem STEP 3

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size. + pid
 - Citizen info: <u>SSN</u>, name, bday (SSN is unique)
 - Initiatives info: <u>Id</u>, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

- 1. Identify entities (objects), relationships between entities
- 2. Attach attributes
- 3. Keys: something that uniquely identifies ar entity

Entities

Citizen

Initiative

Poll Stn

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size. + pid
 - Citizen info: <u>SSN</u>, name, bday (SSN is unique)
 - Initiatives info: <u>Id</u>, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

Add attributes and underline keys

- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size. + pid
 - Citizen info: SSN, name, bday (SSN is unique)
 - Initiatives info: <u>Id</u>, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

Add in the relationships

- Relationship set: $\{(e_1, e_2, ..., e_n) | e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}$ e.g., Vote: $\{(c1, p, i), (c2, p, i), ...\}$
- Entity sets: Collection of entity instances
 - e.g., set of citizens
- Citizens vote on initiatives at polling stations.
- Polling stations have a location and size. + pid
 - Citizen info: SSN, name, bday (SSN is unique)
 - Initiatives info: <u>Id</u>, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

Add in the relationships

Relationship set:

e.g. Vote: {(c1, p, i), (c2, p, i), ...}

• **Entity sets**: Collection of entity instances

e.g. set of citizens

- · Citizens vote on initiatives at polling stations.
- Polling stations have a location and size. + pid
 - Citizen info: <u>SSN</u>, name, bday (SSN is unique)
 - Initiatives info: <u>Id</u>, name, description (Id is unique)
- Citizens are represented by an elected official, who is also a citizen.

Advanced ER Modeling

Attributes on Relationships
Key Constraints
Weak Entities
IS-A hierarchy
Aggregation (Relationships with relationships)

- Suppose we want to also record when a Citizen voted.
- How should we represent that?

Attributes on Relationships

- A citizen also votes (PR-vote) for a presidential candidate.
- They can vote at most once for a presidential candidate, and we record the date of the vote.
- A presidential candidate is also a citizen and has a work address (waddr).

Note: For simplicity, we only focus on the PR-vote relationship in the next slides (and not show Vote).

Additional Requirement 2: Key Constraints

- A citizen also votes for a candidate.
- They can vote **at most once for a candidate**, and we record the date of the vote.
- A candidate is also a citizen and has a work address (waddr).

Additional Requirement 2: Key Constraints

Relationship type between Citizen & PR-Cand?

Key Constraints: Generalize

- Each voter votes at most once (for one candidate) and at a polling location.
- A given citizen can appear at most once in (citizen, polling station, candidate) sets

Key Constraints: Generalize

- Each voter votes at most once (for one candidate) and at a polling location.
- A given citizen can appear at most once in (citizen, polling station, candidate) sets

- Every citizen MUST vote for a candidate
- Each candidate belongs to a party. Parties have a name and address
- Each party has exactly one candidate

- Every citizen MUST vote for a candidate
- Each candidate belongs to a party. Parties have a name and address
- Each party has exactly one candidate

- Every citizen MUST vote for a candidate
- Each candidate belongs to a party. Parties have a name and address
- Each party has exactly one candidate

- Every citizen MUST vote for a candidate
- Each candidate belongs to a party. Parties have a name and address
- Each party has exactly one candidate

- **Example**: Candidates have experts on their staff, identified by their name.
- Experts should be modeled as weak entities
- Expert names are not globally unique. To identify an expert, we need candidate's ID + expert's name.

Weak Entities

 A weak entity can be identified uniquely only by considering some of its attributes in conjunction with the primary key of the another entity (identifying owner)

Rules:

- Weak entity has a single owner (one-to-many relationship)
- Weak entity must have total participation in the above identifying relationship set.

ISA ('is a') Hierarchies

- Attributes are inherited (as in C++)
- ✓If A ISA B, every A entity is also a B entity
- Specialize superclass (top-down design)
- Generalize subclasses (bottom-up design)

Example

- Superclass: Citizen
- Subclasses: PR-Cand,
 President

Correcting Slide 44 using ISA

ISA ('is a') Hierarchies

- Do not overuse them!
- Constraint types:
 - Overlap: Can >=2 subclasses contain the same entity?
 - Overlapping vs. Disjoint (default)
 - Covering: Do the entities in the subclasses include ALL the entities in the superclass?

i.e., union of subclass entities = the set of superclass entities?

Total vs. Partial (default)

Example

Superclass: Citizen

Subclasses: PR-Cand, President

ISA Overlap and Covering Constraints: Example

ISA Overlap and Covering Constraints: Example 1

ISA Overlap and Covering Constraints: Example 2

Covering + disjoint

58

Relationship with relationships

 Each Project must be sponsored by at least one Department

 Each sponsoring relationship must be monitored by exactly one manager

Monitors

Treating a relationship as an entity for another relationship is called aggregation.

Aggregation

started_on

Projects

pid

- More complete example
- Each sponsoring relationship must be monitored by exactly one manager

Choosing among available ER concepts

Conceptual Design Using the ER Model

- Design choices:
 - 1. Model a concept as an **entity** or an **attribute**?
 - Model a concept as an entity or a relationship?
 - 3. Binary or ternary relationship? Aggregation?

Entity vs. Attribute

- Address of a Party: entity or attribute?
- Go with entity IF you want to:
 - Store several addresses per Party
 - Encode the structure of address (city, street, etc.)

Entity vs. Attribute

 Can employee work in a given dept. for two or more periods?

Entity vs. Relationship

 Manager (also an employee) gets a separate discretionary budget for each dept.

- What if we want Manager to get a discretionary budget that covers all managed depts?
 - Redundancy of dbudget, in each Manages2 relationship.
 - Misleading: suggests dbudget tied to relationship, not mngr

One Solution

There is another way to do this. Left as an exercise.

 What if we want Manager to get a discretionary budget that covers all managed depts?

Participation constraint in a ternary relationship?

 A citizen votes at most once and at only one polling location (on a specific date)

Try it out!

- 1. An insurance policy cannot be owned by multiple employees
- 2. Every policy must be owned by an employee
- 3. Dependents is a weak entity set, identified by the conjunction of pname with policyid.

Incorrect Design Example

- 1. An insurance policy cannot be owned by multiple employees
- 2. Every policy must be owned by an employee
- 3. Dependents is a weak entity set, identified by the conjunction of pname with policyid.

Incorrect Design Example

- 1. An insurance policy cannot be owned by multiple employees
- 2. Every policy must be owned by an employee

Each dependent can be covered by

several policies

3. Dependents is a weak entity set, identified by the conjunction of pname with policyid.

70

Incorrect Design Example

- An insurance policy cannot be owned by multiple employees
- Every policy must be owned by an employee
- 3. Dependents is a weak entity set, identified by the conjunction of pname with policyid.

Each dependent can be covered by several policies

employee

Better Design

- 1. An insurance policy cannot be owned by multiple employees
- 2. Every policy must be owned by an employee
- 3. Dependents is a weak entity set, identified by the conjunction of pname with policyid.

Summary of Conceptual Design

- High-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive and natural
 - Basic constructs: entities, relationships, and attributes (of entities and relationships).
 - Additional constructs: weak entities, ISA, aggregation.
 - Integrity constraints: key constraints and participation constraints.
- Note: There are many variations on ER model
- ER designing is subjective!