TD9: Transformation chimique

Exercice 1 : ÉQUILIBRER UNE RÉACTION CHIMIQUE

Équilibrer les réactions chimiques suivants :

1.
$$NH_3 + O_2 \longrightarrow NO + H_2O$$

2.
$$CO + Fe_3O_4 \longrightarrow CO_2 + Fe$$

3.
$$Cu_2S + Cu_2O \longrightarrow Cu + SO_2$$

4.
$$CH_4 + H_2O \longrightarrow CO_2 + H_2$$

5.
$$NaCl + H_2SO_4 \longrightarrow HCl + Na_2SO_4$$

Exercice 2 : ÉQUILIBRER UNE AUTRE RÉACTION CHIMIQUE

Équilibrer les réactions chimiques suivants :

1.
$$H_2SO_4 + H_2O \longrightarrow H_3O^+ + SO_4^{2-}$$

2. Fe +
$$H_3O^+ \longrightarrow Fe^{2+} + H_2 + H_2O$$

3.
$$Cu^{2+} + HO^{-} \longrightarrow Cu(OH)_{2}$$

4.
$$Ag^+ + PO_4^{3-} \longrightarrow Ag_3PO_4$$

Exercice 3 : Constante d'équilibre

Exprimer les constantes d'équilibre des réactions chimiques suivants :

1.
$$N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)}$$

2.
$$2 C_{(s)} + 3 H_{2(g)} \longrightarrow C_2 H_{6(g)}$$

3.
$$Cu_{(s)} + 2 Ag_{(aq)}^+ \longrightarrow Cu_{(aq)}^{2+} + 2 Ag_{(s)}^-$$

4.
$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)}$$

5.
$$2 H_2 O_{(1)} \longrightarrow H_3 O_{(aq)}^+ + HO_{(aq)}^-$$

Exercice 4: La constante d'équilibre est-elle constante?

Montrez que, pour la réaction d'équation $PCl_{3(g)} + Cl_{2(g)} \longrightarrow PCl_{5(g)}$ les données suivantes obtenues à l'équilibre vérifient la constance de l'expression d'un système à l'équilibre. Donner la valeur de la constante d'équilibre.

Expérience	$p(PCl_3)$ (Pa)	$p(\operatorname{Cl}_2)$ (Pa)	$p(PCl_5)$ (Pa)
I	923.7	220.9	9.2
II	602.4	1485.9	40.2
III	3975.9	1887.6	341.4
IV	14698.8	6024.1	4016.1

Exercice 5 : Détermination de l'équilibre

- 1. À 440°C, la constante d'équilibre de la réaction $H_{2(g)} + I_{2(g)} \longrightarrow 2 HI_{(g)}$ vaut 49,5. Si l'on place 0,200 mol de H_2 et 0,200 mol de I_2 dans un récipient de 1,00 ℓ et que l'on effectue la réaction à cette température, quelles seront les quantité de matière de chaque substance à l'équilibre? On rappelle que pour un constituant i, le nombre de moles n_i et la pression partielle p_i sont reliés par la loi des gaz parfaits : $p_iV = n_iRT$
- 2. Le gaz NO_2 est un polluant. Il existe en équilibre dans l'air avec $N_2O_{4(g)}$ selon l'équation ci dessous. À température ambiante, 0,625 mol de N_2O_4 sont introduites dans un récipient de 5,00 ℓ . On attend que l'équilibre s'établisse avec NO_2 . On mesure à l'équilibre une concentration de N_2O_4 de 0.075 mol ℓ^{-1} . Que vaut la constante d'équilibre K de cette réaction ?

$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$

3. On fait réagir 1,00 mol de CO_2 et 1,00 mol de H_2 dans un récipient de 5,00 ℓ selon la réaction ci-dessous. Sachant que la constante d'équilibre est K=0.771 à 750 °C, quelles seront les quantités de matière à l'équilibre de chacun des gaz ?

$$CO_{2(g)} + H_{2(g)} \Longrightarrow CO_{(g)} + H_2O_{(g)}$$

4. La constante d'équilibre K, pour la décomposition de la vapeur d'eau à 500° C, a une valeur de $6,00 \times 10^{-28}$. Si l'on place 2,00 mol d'eau dans un récipient de $5,00 \, \ell$ à 500° C, quelles seront les concentrations à l'équilibre pour les 3 gaz H_2 , O_2 et H_2 O? On résoudra la problème en faisant l'approximation que la réaction est très peu avancée, puis, en trouvant la solution exacte à l'aide de la calculatrice, on vérifiera que cette approximation est justifiée.

$$2 H_2 O_{(g)} \Longrightarrow 2 H_{2(g)} + O_{2(g)}$$

Exercice 6: Fluoration du dioxyde d'uranium

On considère la réaction :

$$UO_{2(s)} + 4HF_{(g)} = UF_{4(s)} + 2H_2O_{(g)}$$

On maintient la température égale à 700 K et la pression totale à 1 bar. La constante d'équilibre à 700 K est $K = 6.8 \times 10^4$. Chaque solide constitue une phase solide pure.

- 1. Si on part de 1.0 mol de dioxyde d'uranium UO_2 et de 1.0 mol de fluorure d'hydrogène HF, quelle sera la composition finale du système?
- 2. Même question en partant de 0.10 mol de dioxyde d'uranium et de 1.0 mol de fluorure d'hydrogène.

Exercice 7 : Acide éthanoïque et ions fluorure

On s'intéresse à une solution aqueuse obtenue à 298K par mélange d'acide éthanoïque CH₃COOH (concentration après mélange $c_1=0.10\,\mathrm{mol}\,\mathrm{L}^{-1}$) et d'ions florure F (concentration après mélange $c_2=0.05\,\mathrm{mol}\,\mathrm{L}^{-1}$). La réaction (1) susceptible de se produire s'écrit :

$$CH_{3}COOH_{(aq)} + F_{(aq)}^{-} \rightleftharpoons CH_{3}COO_{(aq)}^{-} + HF_{(aq)}$$

$$\tag{1}$$

On donne les constantes d'équilibre K_2 et K_3 relatives aux équilibres (2) et (3) suivants à 298 K :

$$CH_3COOH_{(aq)} + H_2O \Longrightarrow CH_3COO_{(aq)}^- + H_3O_{(aq)}^+ \qquad K_2 = 10^{-4.8}$$
 (2)

$$HF_{(aq)} + H_2O \rightleftharpoons F_{(aq)}^- + H_3O_{(aq)}^+ \qquad K_3 = 10^{-3.2}$$
 (3)

- 1. Calculer la constante d'équilibre à 298K, notée K_1 relative à l'équilibre (1) étudié (réaction entre l'acide éthanoïque et les ions fluorure).
- 2. Déterminer l'état d'équilibre (état final) de la solution issue du mélange de l'acide éthanoïque et des ions fluorure.

Exercice 8 : LE BÉTON

On étudie quelques constituants du béton. L'hydroxyde de calcium $Ca(OH)_{2(s)}$ confère au béton ses proprétés basiques. Il se dissout en solution aqueuse selon la réaction (1):

$$Ca(OH)_{2(s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2HO^{-}_{(aq)} \qquad K_1 = 10^{-5.2} \text{ à } T = 298K$$
 (1)

1. On introduit en solution aqueuse un net excès d'hydroxyde de calcium (la phase solide est présente en fin d'évolution). Calculer les concentrations de chacun des ions présents à l'équilibre.

Dans certains cas, la pollution urbaine liée à l'humidité entraîne la dissolution du dioxyde de carbone atmosphérique dans l'eau à l'intérieur du béton (sous forme H_2CO_3), provoquant la carbonatation du béton (formation de carbonate de calcium $CaCO_{3(s)}$ par réaction de l'hydroxyde de calcium $Ca(OH)_{2(s)}$ avec la forme H_2CO_3).

TSI1 – Physique-chimie

2. Écrire la réaction (6) mise en jeu dans la carbonatation du béton et calculer sa constante d'équilibre K_5 à 298K. On donne à 298K les constantes d'équilibre des réactions suivantes :

$$CaCO_{3(s)} \rightleftharpoons Ca_{(aq)}^{2+} + CO_3^{2-}{}_{(aq)} \qquad K_2 = 10^{-8.4}$$
 (2)

$$H_2CO_{3(aq)} + H_2O \Longrightarrow HCO_3^{-}_{(aq)} + H_3O_{(aq)}^{+} \qquad K_3 = 10^{-6.4}$$
 (3)

$$HCO_3^-_{(aq)} + H_2O \rightleftharpoons CO_3^{2-}_{(aq)} + H_3O_{(aq)}^+ K_4 = 10^{-10.3}$$
 (4)

$$2 H_2 O \Longrightarrow HO_{(aq)}^- + H_3 O_{(aq)}^+ \qquad K_5 = 10^{-14}$$
 (5)

En présence de $H_2CO_3^-$, le carbonate de calcium évolue par formation d'ions Ca^{2+} et d'ions hydrogénocarbonate HCO_3^- . Cette évolution n'est pas étudiée ici.

2018–2019 page 2/2