Интеллектуальные информационные технологии и системы

Практическое занятие 4

Разработка нечёткой системы управления тележкой мостового крана

Цель: Изучение особенностей разработки нечётких регуляторов. Синтез simulink-модели нечёткой системы управления тележкой мостового крана и её исследование.

Исходные данные:

Объектом управления является электромеханическая система, состоящая из тележки массой m_{τ} , груза с массой m_{η} на подвесе длиной L и электропривода (см. рис. 1).

Рис. 1 – Тележка мостового крана как объект управления

Данная система описывается уравнением состояния

$$\dot{\mathbf{X}} = \mathbf{A} \cdot \mathbf{X} + \mathbf{B} \cdot \mathbf{U}$$

и уравнением выхода

$$Y = C \cdot X$$
,

где **X** — вектор состояния с компонентами: $x_1 = x$ — перемещение тележки, м; $x_2 = \dot{x}_1 = V$ — скорость перемещения тележки, м/с; $x_3 = \varphi$ — угол отклонения груза на подвесе, рад; $x_4 = \dot{x}_3 = \omega$ — угловая скорость груза, рад/с;

 ${f U}-{f B}$ ектор управления. Единственным управляющим воздействием на систему является напряжение, приложенное к двигателю тележки: $u_1=u$, ${f B}$;

 ${\bf Y}$ — вектор выхода. Выходными (измеряемыми) переменными системы являются все компоненты вектора состояния.

Матрицы системы, входа и выхода имеют вид:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & a_{23} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & a_{43} & 0 \end{bmatrix}; \qquad \mathbf{B} = \begin{bmatrix} 0 \\ b_2 \\ 0 \\ b_4 \end{bmatrix}; \qquad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$a_{23} = \frac{m_n}{m_t} \cdot g$$
; $a_{43} = -\frac{(m_n + m_t)}{m_t \cdot L} \cdot g$; $b_2 = \frac{k_p}{m_t}$; $b_4 = -\frac{k_p}{m_t \cdot L}$;

 $k_{_{p}}$ — передаточный коэффициент электропривода, Н/м.

Целью управления является быстрое и точное позиционирование тележки при минимальных колебательных движениях тележки и груза.

Задание:

1. Создать simulink-модель объекта управления с параметрами, согласно варианту задания (см. табл.1., рис.2) и исследовать её реакцию на ступенчатые управляющие воздействия.

Таблица 1. Варианты заданий

Вариант	Параметры модели							
1	mt = 300.0;	mn = 600.0;	L = 10.0;	kp = 10.0;				
2	mt = 600.0;	mn = 400.0;	L = 10.0;	kp = 10.0;				
3	mt = 300.0;	mn = 400.0;	L = 30.0;	kp = 10.0;				
4	mt = 50.0;	mn = 100.0;	L = 3.0;	kp = 8.0;				
5	mt = 40.0;	mn = 50.0;	L = 100.0;	kp = 6.0;				
6	mt = 300.0;	mn = 600.0;	L = 100.0;	kp = 20.0;				
7	mt = 30.0;	mn = 6.0;	L = 50.0;	kp = 5.0;				
8	mt = 2.0;	mn = 3.0;	L = 10.0;	kp = 2.0;				
9	mt = 2.0;	mn = 3.8;	L = 30.1;	kp = 1.0;				
10	mt = 80.0;	mn = 150.0;	L = 2;	kp = 1.5;				

2. Создать simulink-модель нечёткой системы управления тележкой мостового крана (см. рис.3).

Рис. 3 – Нечёткая система управления тележкой мостового крана

Примечание. Загрузку параметров модели можно оформить в виде т-файла, который запускать всякий раз перед запуском simulink-модели. Данный т-файл может выглядеть следующим образом.

```
% FIS-управление тележкой мостового крана (LR 4 MostKran.m)
clear all % очистка памяти (leaving the workspace empty)
clc % очистка командного окна (Clear Command Window)
% Параметры модели
mt = 300.0; % [кг] масса тележки
mn = 600.0; % [кг] масса груза

Lp = 10.0; % [м] длина подвеса
kp = 10;
               % [(кг*м/с^2)/В] передаточный коэффициент привода
dT = 0.01; % [с] период дискретизации
% -----
a23 = mn*9.81/mt;
a43 = -(mt+mn)*9.81/(mt*Lp);
b2 = kp/mt;
b4 = -kp/(Lp*mt);
A = [0, 1, 0, 0; 0, 0, a23, 0; 0, 0, 0, 1; 0, 0, a43, 0];
B = [0; b2; 0; b4];
C = [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1];
D = [0; 0; 0; 0];
X0 = [0; 0; 0; 0]; % Начальные условия
% Синтез PD - FIS-регулятора положения тележки: U=FIS(Er,dEr)
% (регулятор создается в среде GUI Fuzzy Logic Toolbox
% и сохраняется на диске под именем RgMostKran.fis)
§ -----
% fuzzy
fisREG = readfis('RgMostKran');
% fuzzy(fisREG)
% Масштабирование сигналов нечёткого регулятора
KEr = 1/40;
KdE = 1/3;
KU = 40;
```

В качестве параметра блока **Fuzzy LogicController** установить имя нечёткого регулятора в рабочей области MatLab (см. рис.4).

Рис. 4 – Задание параметров блока Fuzzy LogicController

3. Разработать систему нечёткого вывода, реализующую требуемый закон регулирования и сохранить её на диске компьютера, например под именем RgMostKran.fis. (Вызов FISредактора осуществляется при помощи функции **fuzzy**).

Лингвистические правила нечёткого регулятора могут быть представлены в следующем виде (см. табл.2).

Таблица 2. Лингвистические правила нечётких продукций регулятора

170 1 1 1									
dEr	Er								
	NB	NM	NS	ZR	PS	PM	PB		
NB	NB	NB	NB	NB	NM	NS	ZR		
NM	NB	NB	NB	NM	NS	ZR	PS		
NS	NB	NB	NM	NS	ZR	PS	PM		
ZR	NB	NM	NS	ZR	PS	PM	PB		
PS	NM	NS	ZR	PS	PM	PB	PB		
PM	NS	ZR	PS	PM	PB	PB	PB		
PB	ZR	PS	PM	PB	PB	PB	PB		

На рис. 5 приведены функции принадлежности термов входных и выходной лингвистических переменных нечёткого регулятора, а также поверхность «входы-выход» синтезированной системы.

Рис. 5 — Функции принадлежности термов лингвистических переменных и поверхность «входы-выход» нечёткого регулятора

Примечание. Для корректной работы регулятора необходимо, что бы функции принадлежности крайних левых и крайних правых термов входных лингвистических переменных имели соответственно Z-образную и S-образную формы.

Перед началом моделирования система нечёткого вывода должна быть загружена в рабочую область MatLab при помощи функции fisREG = readfis('RgMostKran').

После каждой коррекции параметров нечёткого регулятора и модели системы управления необходимо обновлять соответствующие значения переменных в рабочей области MatLab.

- **4.** Оценить адекватность функционирования полученной системы нечёткого вывода при помощи просмотрщиков правил системы нечёткого вывода (Rule Viewer) и поверхности «входы-выход» (Surface Viewer).
- **5**. Настроить блок **Signal Builder** для выдачи требуемого задающего воздействия (см. рис. 6).

Рис. 6 – Задающее воздействие нечёткой системы управления тележкой мостового крана

- **6.** Запустить simulink-модель и оценить качество переходного процесса при ступенчатом задающем воздействии (см. рис. 7).
- 7. Исследовать влияние характера лингвистических правил нечётких продукций, весовых коэффициентов правил, типа и параметров функций принадлежности термов входных и выходных переменных, масштабирующих коэффициентов КЕr, КdE, КU на характер поверхности «входы-выход» нечёткого регулятора и качество переходного процесса системы управления.

Примечание. При составлении или коррекции таблицы лингвистических правил предпочтительно, что бы лингвистические значения управляющего воздействия, расположенные в соседних по вертикали и горизонтали клетках, соответствовали их «естественному» порядку в принятом терм-множестве. Тогда переходные процессы, возникающие в системе при переключении управляющего воздействия с одного значения на другое, будут наиболее плавными.

Функции принадлежности термов для входных переменных регулятора предпочтительно выбирать так, что бы они перекрывались, а сумма ординат двух соседних функций принадлежности при определённом аргументе была равна единице.

Смещение центров промежуточных термов входных лингвистических переменных «Ошибка управления» в сторону нуля часто приводит к уменьшению времени переходного процесса.

- 8. Сделать выводы по проделанной работе.
- 9. Подготовить отчёт по лабораторной работе в виде pdf-файла с именем:

LR4_Календарный Γ од_Фамилия Mсполнителя.pdf

(Фамилия исполнителя в имени файла отчёта приводится в латинской транскрипции).

Содержание отчёта:

- 1. Фамилия, имя и отчество студента, выполнившего работу;
- 2. Номер учебной группы;
- 3. Дата выполнения работы;
- 4. Название работы;
- 5. Цель работы;
- 6. Структурная схема исследуемой системы управления;
- 7. Уравнения динамики объекта управления в развёрнутом виде:

$$\frac{dV}{dt} = f(\varphi, \mathbf{u}), \quad \frac{d\omega}{dt} = f(\varphi, \mathbf{u});$$

- **8.** Графики функций принадлежности термов входных и выходных переменных нечёткого регулятора, которые соответствуют наилучшему качеству переходного процесса;
- **9.** База правил нечётких продукций, реализующая исследуемый алгоритм управления, которая соответствуют наилучшему качеству переходного процесса;
 - 10. Поверхность «входы-выход» нечёткого регулятора;
- **11**. Графики переходного процесса нечёткой системы управления тележкой мостового крана (задающее воздействие, регулируемая координата, ошибка регулирования, управляющее воздействие)
 - 12. Численные значения показателей качества переходного процесса;
 - 13. Выводы по работе.