Two Sigma Connect: Rental Listing Inquiries

Хинензон Евгений Чуркин Никита

План

- 1. Описание и особенности задачи.
- 2. Обзор данных
- 3. Feature engineering
- 4. Кросс-валидация
- 5. Модели
- 6. Лик в данных
- 7. Работа с изображениями
- 8. Результаты

Описание и особенности задачи

- 1. Имеются данные объявлений по аренде недвижимости в США с сайта <u>renthop.com</u>. Каждому объявлению сопоставлен ответ «уровень интереса»: low, medium или high.
- 2. Необходимо предсказать уровень интереса для тестового множества объявлений. Метрика качества multi-class loss.
- 3. Данные очень разнообразны и разнородны: содержат текст, числовые переменные, изображения и т.д.

Мотивировка

- Можно ли автоматизировать для покупателя процесс выбора объекта недвижимости?
- Можно ли исключить менеджера-посредника из следующей цепочки (пример: турагентства в России постепенно замещаются)

Обзор данных

- Числовые: количество санузлов, количество спален, цена
- Гео-данные: широта и долгота, полный адрес (display address), адрес без номера дома адрес улицы (street address)
- Текстовые: список из ключевых слов (features), блок описания объекта (description)
- Id-шники: manager_id (id менеджера-агента), building_id (id здания), listing_id (id объявления, уникальный номер объявления).
- Изображения: фотографии объектов, ссылки на изображения
- Дата создания объявления

Количество объектов в train и test

Что такое «interest level»?

- Количество кликов?
- Количество обращений к менеджеру через форму «check availability»?
- «Kagglers will predict the number of inquiries a new listing receives based on the listing's creation date and other features» из description конкурса.

Pаспределение interest level в train

Report Listing

Менеджер и форма отклика (в профиле менеджера указаны его объявления + отзывы)

Studio at Washington street

Financial District, Downtown Manhattan, Manhattan

St. dio 1 Bath Impediate Move-In Listing Posted 26 prins ago Per Month HopScore

100

Цена

re-In

\$2,631

Количество санузлов

One month free and no broker fee for a limited time!

Will not last long at this price, contact me today to view!

The apartment features:

Description

Описание объекта

Ключевые слова (features)

Features & Amenities ✓ No Fee ✓ Featured ✓ Cats Allowed ✓ Dogs Allowed ✓ Dogs Allowed ✓ Doorman ✓ Elevator ✓ Fitness Center ✓ Laundry In Building ✓ Common Outdoor space ✓ Storage Facility ✓ One month rent free on a 13 ✓ no broker fee! month lease

Сравнение по цене

Плюсы и минусы _____ Объявления (видимо, по ним вычисляется HopScore)

Price Comparison

Comparing this listing against median prices for Studio / 1BA apartments in Financial District with Doorman, Elevator.

The price of this apartment is \$6 more expensive than the median price.

HopScore Breakdown

This listing has a HopScore of 100 and was posted 26 mins ago. The listing quality and manager score is outstanding. Some of the contributing factors to the HopScore are listed below.

GOOD	Listing is featured						
GOOD	This manager has a VIP Account subscription						
GOOD	Manager has registered with RentHop						
GOOD	Manager is from a reputable firm						
GOOD	Manager has great inventory and availability						

NEUTRAL	Street number not provided
NEUTRAL	Manager does not yet have user reviews

Цена, санузлы и спальни I

0. В данных есть ошибки: нулевые цены, гигантское кол-во спален в некоторых листингах и т.д.

«Плохих» строчек не очень много — спальни и санузлы исправляем руками по логике (22 спальни -> 2 спальни и т.д.), цену с помощью медианной цены.

1. Цену можно прологарифмировать для симметричности (асимметрия > 100 -> асимметрия ~1).

Цена, санузлы и спальни II

2. Разные осмысленные комбинации bedrooms, bathrooms, price, полученные с помощью арифметических операций +, -, *, /, Пример: price / (bathrooms + bedrooms) — «цена за комнату»

3. Есть дробные санузлы, видимо, это означает наличие туалета без ванной или душа (bathrooms == 2.5) -> (есть 2 полных санузла и 1 отдельный туалет).

Получаем фичу: является ли bathrooms целым числом?

Цена, санузлы и спальни III

4. Восстанавливаем фичу:

Price comparison.

Используем KNNRegressor

Comparing this listing against median prices for Studio / 1BA apartments in Financial District with Doorman, Elevator.

The price of this apartment is \$6 more expensive than the median price.

для предсказания цены в листинге на основе только широты или долготы. Истинную цену делим на получившуюся предсказанную цену – получаем «переоценку» данного объявления. Это и будет аналогом «price comparison».

Гео-данные

Гео-данные І

- 0. В координатах ошибки: порядка 39 некорректных. Эти координаты легко восстановить по адресу.
- 1. В условии соревнования сказано, что все объекты в данных из Нью-Йорка. Однако, есть (и в train, и в test) объекты из других городов.
- 2. Посчитаем расстояние от здания объявления до медианных координат.
- 3. Расстояние от здания объявления до Центрального Парка.

3Means и 50Means

Гео-данные II

- 4. Метки полученных кластеров новый признак.
- 5. Посчитаем по каждому кластеру всевозможные характеристики: медианную цену внутри кластера, частотность кластера в данных, количество уникальных зданий в кластере, количество менеджеров, работающих в данном кластере, среднее значение целевой переменной в кластере.
- 6. Хочется кластеризовать локации получше и проделать пункты 4-5 с новой кластеризацией.

HDBSCAN (разные min_cluster_size)

http://hdbscan.readthedocs.io/en/latest/index.html

Гео-данные III

7. В данных есть два вида адреса: с номером дома и без. Вычислим расстояние Левенштейна (количество исправлений, требующихся для приведения одной строки к другой) между этими двумя адресами.

Для большинства объектов это расстояние лежит в интервале 4-6, есть объекты с расстоянием 120 и более: обычно в одном из адресов в этом случае находится не адрес, а реклама или посторонние данные.

Гео-данные IV

8. Адреса без номеров дома приводим к одному виду: приводим слова к нижнему регистру, удаляем пунктуацию, трансформируем слова следующим образом:

Str -> st, street -> st, avenue -> av, boulevard -> blvd и т.п.

- 9. Делаем one-hot encoding по улице.
- 10. Вычисляем медианную цену по улице, кол-во зданий и т.д.

Текстовые признаки I

- 0. Считаем количество ключевых слов, т.е. слов в features.
- 1. Слова из features приводим к нижнему регистру и удаляем похожие словосочетания, «дубликаты», например:
- Wifi_in_building -> wifi, wifi -> wifi_available -> wifi и т.д.
- 2. Считаем ключевые слова с помощью CountVectorizer (берем 75 самых частотных слов).

Features & Amenities ✓ Floorplans Available ✓ No Fee Featured Exclusive ✓ Doorman Elevator Common Areas Fitness Center Wifi In Building Outdoor Areas ✓ Storage ✓ Valet ✓ Swimming Pool Dishwasher Wheelchair Accessible ✓ Floor To Ceiling Windows ✓ Sun Deck Credit Card Payment Accepted (fee Applies) Concierge Services Electronic Rent Payment ✓ On-site Management (ach) Cats Allowed ✓ Dogs Allowed

Текстовые признаки II

- 0. В блоке description удаляем пунктуацию, приводим слова к нижнему регистру.
- 1. Вычисляем длину description и количество слов в description.
- 2. Считаем кол-во слов, написанных CAPSom.
- 3. Определяем, если в описании телефон или e-mail менеджера.
- 4. Вручную формируем несколько тематических словарей, например:
- transportation = ['subway', 'bus', 'taxi', 'train', 'railroad', 'railway', 'transport'] и считаем, сколько слов в описании из каждого словаря.

Дата и время

- 0. Получаем год/месяц/день недели/час появления пулбикации на сайте и т.д.
- 1. Считаем количество прошедших секунд с самой ранней даты из train/test до текущей даты объявления.
- 2. listing_id оказался полезной фичой, т.к. имелась связь между датой и listing_id

Building_id и manager_id I

- 0. Building_id и manager_id числа в шестнадцатеричной системе счисления.
- 1. manager_id уникальные идентификаторы, а в building_id есть id 0, который встречается у разных зданий.
- 2. Для каждого менеджера/здания посчитаем число зданий/менеджеров, которые он обслуживает.
- 3. Медианная цена объявлений данного менеджера/здания.
- 4. Средняя длина описания и среднее количество ключевых слов у листингов данного менеджера.

Building_id и manager_id II

- 5. Для каждого менеджера/здания определяем частотность его появлений.
- 6. Вычисляем, сколько секунд прошло с предыдущего листинга с данным менеджером/зданием.
- 7. То же самое, что в п.6, но смотрятся листинги лишь с ответом high.
- 8. Уровень интереса предыдущего листинга данного менеджера/здания.
- 9. Кодируем id зданий/менеджеров средним таргетом.
- 10. «Скорость» менеджера log(1 + Сумма «преодоленного пути»/ интервал активности).
- 11. One-hot encodi'м менеджеров и здания.

Кластеризация менеджеров

«Listings were all created by either an independent landlord, a professional real estate marketing company, a New York licensed real estate agent, or a NYC brokerage firm» - из description соревнования.

Согласно описанию, есть 4 типа посредников.

Возьмем данные по менеджерам, рассказанные на предыдущих слайдах и используем 4Means для кластеризации менеджеров на 4 группы.

Модели

Использовались следующие модели: KNN, DT, ET, LR, SVC, RF, XGB, LGBM.

Лучшая модель – lgbm (!) - 0.504 CV, 0.509 LB

Схема решения

- 0. Всего было около 30 моделей первого уровня, модели обучались на разных признаковых пространствах.
- 1. На втором уровне выбирались несколько самых лучших признаков и все модели первого уровня, рассчитывались стандартные характеристики по матрицам.
- 2. Используем LGBM для финальной модели.

Выбор гиперпараметров

Все модели оптимизируем с помощью BayesianOpt:

https://github.com/fmfn/BayesianOptimization

Связь CV и LB

Изображения

78.5GB данных

В общем датасете представлены ссылками на каждый listing_id

Изображения II

0. Была замечена проблема, в некоторых папках содержались дубликаты фотографий.

Для нахождения количества уникальных фотографий по listing_id искалось среднее значение серого цвета для каждой фотографии (с точностью до 10 знака) — некое уникальное значение для картинки. Фотографии с одинаковым значением удалялись

• Фича – количество уникальных фотографий по каждому listing_id

Изображения III

1. В некоторых листингах с одним building_id было замечено много повторяющихся изображений. Могли содержаться одна или две уникальные фотографии.

Снова использовалось среднее значение серого для нахождения уникальных.

• Фича — количество уникальных фотографий по building_id

Изображения IV

2. В немногих листингах содержались планировки квартир. Для нахождения считалось количество белых пикселей, если это значение было больше 60%, то данная картинка считалась планировкой.

• Фича: наличие планировки

Изображения V

3. Было видно, что качество фотографий сильно отличалось. Хотелось получить более подробную информацию о изображении и камере, например производитель камеры, модель, дата и время съёмки и тд. Проверил все изображения на наличие Exif данных. Их оказалось мало порядка 6 000. Поэтому взял только наличие/отсутствие метаинформации.

• Фича: Наличие exif данных

Изображения VI

4. Были получены некоторые ключевые характеристики изображений — средняя яркость, средний тон, средняя насыщенность. Предполагалось, что яркие и светлые фотографии более нравятся больше. Для этого изображение переводилось в цветовую модель HSV и находилось среднее по каждому каналу.

Фичи: средняя яркость, средний тон, средняя насыщенность.

Изображения V

Требовалось выбрать, по какому из изображений находить предыдущие фичи. Было сделано предположение, что самая ранняя фотография из листинга закреплялась первой на превью на сайте и по ней судили об объявлении.

Для нахождения времени создания фотографий использовали архиватор 7zip. Он позволяет получить список файлов с датой создания.

Заметки из решения с 0,5 LB

Использовалась 3-х уровневая модель: первый уровень — 20 моделей (микс из xgb, LightGBM, keras, RF и тд), второй уровень 4 модели и третий уровень - среднее арифметическое с сабмитов второго уровня

Каждая модель из первого уровня использовала примерно 200 фичей. (Не использовалась конвертация категориальных переменных в числовые для избегания лика).

По мнению Силограма, отличием между его решением и решениями в районе 0,51 был создание признакового пространства. И в частности, он говорит о какой-то «магической» фиче, которая еще не была описана на форуме. Силограм, счел нечестным раскрыть эту фичу в тот момент.

Основные выводы:

Методы GBM работают лучше, когда данные в соревновании не однородные

LightGBM – очень хорошо, точность близкая к XGB, но намного быстрее работает

Для стекинга, очень важно использовать модели результаты которых сильно отличаются, даже слабые модели могут пригодится.

Magic или Leak

- Казанова(занявший 11 место), был не согласен с Силограмом, и выложил на форуме «магическую» фичу. Он считал это ликом.
- Лик заключался в известном времени создания каждой папки изображений в миллисекундах, то есть легко было получить зависимость от времени всех данных.
- Фича дала +0.015 к LB
- Фича была получена архиватором 7zip, функцией вывода файлов архива с датой их создания.
- Стоит отметить, что фичу можно было получить только скачав изображения с торрента, а не напрямую с сайта.

Результаты на LB — Топ 2% из 2488

• Public LB

54 —	Evgeny Khinenzon	9	0.50366	33	1mo
61 —	Nikita Churkin		0.50400	71	1mo

Private LB

46 —	Evgeny Khinenzon	9	0.50260	33	1mo
49 —	Nikita Churkin	9	0.50298	71	1mo

Другие решения и что можно было сделать

- 0. Решения многих топовых участников очень похожи.
- 1. Можно было превратить задачу классификации в задачу регрессии и увеличить количество моделей для второго уровня в 2 раза.
- 2. Попробовать StackNet (https://github.com/kaz-Anova/StackNet)
- 3. Получше поработать с объектами не из Нью-Йорка.
- 4. При target-кодировании попробовать комбинации признаков.
- 5. Можно было восстановить нулевые building_id по координатам, адресам и т.д.

6. В данных были «почти» повторяющиеся строчки, стоящие рядом во времени: они образовывали группы объявлений, отличавшихся лишь ценой или ключевыми словами. Можно было придумать множество признаков на основе этих групп.

		sorted by group and time					=2500-2400=100 =2495-2400=-95							
1	A	B group 1	C	D	E	F	G	Н	I		K	L	M	
1	manager_id	building_id	display_address	street_address	latitude	longitude	price	Price+1 p	rice 1	created	bedrooms b	athroom: nu	ım_desci	
194	02e17b21a1814fb10336b2ee8ceb3e79	0c239739ea5fb30514f5968285259b58	W 86 St.	41 W 86 St.	40.7863	-73.971	2255	0	915	09/04/2016 03:14	0	1	86	
195	02e17b21a1814fb10336b2ee8ceb3e79	0c239739ea5fb30514f5968285259b58	W 86 St.	41 W 86 St.	40.7863	-73.971	2255	1540	0	30/04/2016 04:04	0	1	86	
196	02e17b21a1814fb10336b2ee8ceb3e79	1ade20f96090c7b55e32056fd0de1339	W 110 St.	501 W 110 St.	40.8033	-73.9641	3795	-1300	1540	13/06/2016 02:42	3	1	142	
197	02e17b21a1814fb10336b2ee8ceb3e79	1dbb2d7119b8365b5371e1e12690a032	Amsterdam Ave.	926 Amsterdam Ave.	40.8002	-73.9663	2495	-95	-1300	10/05/2016 03:13	1	1	143	
198	02e17b21a1814fb10336b2ee8ceb3e79	1dbb2d7119b8365b5371e1e12690a032	Amsterdam Ave.	926 Amsterdam Ave.	40.8002	-73.9663	2400	100	-95	20/05/2016 03:06	1	1	143	
199	02e17b21a1814fb10336b2ee8ceb3e79	1dbb2d7119b8365b5371e1e12690a032	Amsterdam Ave.	926 Amsterdam Ave.	40.8002	-73.9663	2500	0	100	16/06/2016 02:36	1	1	143	
200	02e17b21a1814fb10336b2ee8ceb3e79	1dbb2d7119b8365b5371e1e12690a032	Amsterdam Ave.	926 Amsterdam Ave.	40.8002	-73.9663	2500	700	0	23/06/2016 02:24	1	1	145	
201	02e17b21a1814fb10336b2ee8ceb3e79	1e09d0cbacfe873404701d134f282dde	w 56 St. w 58 St.	401 W 56 St.	40.7676	-73.9866	3200	-200	700	24/06/2016 02:26	2	1	106	
202	02e17b21a1814fb10336b2ee8ceb3e79	24f3dbb6ae6adc23a0b3220ce67d0a01	W 58 St.	330 W 58 St.	40.7677	-73.9836	3000	0	-200	20/06/2016 18:28	2	1	103	
203	02e17b21a1814fb10336b2ee8ceb3e79	251544637b2e1e915f5d287090d15130	W 105 St. group	2120 W 105 St.	40.7988	-73.9644	3000	0	0	09/04/2016 04:41	2	1	103	
204	02e17b21a1814fb10336b2ee8ceb3e79	251544637b2e1e915f5d287090d15130	W 105 St. group	120 W 105 St.	40.7988	-73.9644	3000	395	0	21/04/2016 03:31	2	1	103	
205	02e17b21a1814fb10336b2ee8ceb3e79	251544637b2e1e915f5d287090d15130	W 105 St.	120 W 105 St.	40.7988	-73.9644	3395	-295	395	06/05/2016 03:13	2	1	103	
206	02e17b21a1814fb10336b2ee8ceb3e79	251544637b2e1e915f5d287090d15130	W 105 St.	120 W 105 St.	40.7988	-73.9644	3100	230	-295	03/06/2016 03:42	2	1	103	
207	02e17b21a1814fb10336b2ee8ceb3e79	263285dadae1eb73351df8edca92ff0a	Columbus Ave.	792 Columbus Ave.	40.7953	-73.9667	3330	765	230	18/04/2016 02:57	2	1	123	
208	02e17b21a1814fb10336b2ee8ceb3e79	263285dadae1eb73351df8edca92ff0a	Columbus Ave.	792 Columbus Ave.	40.7953	-73.9667	4095	-895	765	06/05/2016 02:28	2	1	123	
209	02e17b21a1814fb10336b2ee8ceb3e79	35784800ca930a77ea64d2e67f001b33	w.57 St. 910	792 Columbus Ave. UD 4 315 W 57 St.	40.7674	-73.9838	3200	-350	-895	13/06/2016 02:55	2	1	104	
210	02e17b21a1814fb10336b2ee8ceb3e79	3a956bd42c50f06ac84cf072fc514f5f	W 42 St.	650 W 42 St.	40.761	-74.0002	2850	150	-350	20/05/2016 03:47	1	1	87	
21:	02e17b21a1814fb10336b2ee8ceb3e79	3a956bd42c50f06ac84cf072fc514f5f	W 42 St.	650 W 42 St.	40.761	-74.0002	3000	-605	150	27/05/2016 04:57	1	1	87	
212	02e17b21a1814fb10336b2ee8ceb3e79	3cd0a4201a90325df0b5214db5a09051	W 58 St.	117 W 58 St.	40.7655	-73.9772	2395	0	-605	03/05/2016 02:55	1	1	83	
213	02e17b21a1814fb10336b2ee8ceb3e79	3cd0a4201a90325df0b5214db5a09051	w 58 St. group 5	117 W 58 St.	40.7655	-73.9772	2395	805	0	13/06/2016 02:24	1	1	83	
214	02e17b21a1814fb10336b2ee8ceb3e79	47eabdf0346864a6b77b630008efe56d	W 60 St.	200 W 60 St.	40.771	-73.9876	3200	0	805	10/05/2016 02:59	1	1	100	

Спасибо за внимание

<u>jenia.khinenzon@gmail.com</u> – Евгений Хинензон <u>nikita1994175@yandex.ru</u> – Никита Чуркин