САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и технологий Высшая школа программной инженерии

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Вычислительная математика»

Вариант 6

Студент гр. № 23531/21: Терехин А.В.

Преподаватель: Воскобойников С.П.

Санкт-Петербург 2018

Постановка задачи

ВАРИАНТ N6

Решить систему дифференциальных уравнений:

$$\begin{split} \frac{d_{X_1}}{dt} &= -310\,\chi_1 - 3000\,\chi_2 + 1\,/\,(10\,t^2 + 1); \qquad \frac{d_{X_2}}{dt} = \chi_1 + e^{-2t}; \\ \chi_1(0) &= 0, \qquad \chi_2(0) = 1; \qquad t \in [0, \ 0.4] \end{split}$$

следующими способами с одним и тем же шагом печати $h_{print} = 0.02$:

- I) по программе RKF45 с EPS=0.0001;
- II) методом Рунге-Кутты 4-й степени точности

$$z_{n+1} = z_n + (k_1 + 3k_2 + 3k_3 + k_4) / 8;$$

$$k_1 = hf(t_n, z_n);$$
 $k_2 = hf(t_n + h / 3, z_n + k_1 / 3);$

$$k_3 = hf(t_n + 2h / 3, z_n - k_1 / 3 + k_2);$$
 $k_4 = hf(t_n + h, z_n + k_1 - k_2 + k_3);$

с двумя постоянными шагами интегрирования:

- a) $h_{int} = 0.01$
- б) любой другой, позволяющий получить качественно верное решение. Сравнить результаты.

Исходный код программы на языке FORTRAN

```
program Lab3
 integer, parameter :: NEQN = 2
 REAL:: T=0.0,Y(NEQN),TOUT =0.0,RELERR=0.1E-07,ABSERR=0.00
 REAL :: TFINAL=0.4,TPRINT=0.02,WORK(27)
 INTEGER :: IWORK(5),IFLAG
 Y(1)=0
 Y(2)=1
 IFLAG=1
 IFLAG=1
 write(*,*) "RKF45 с шагом 0,02"
 write(*,*)
 do i = 1, 21
  call RKF45(F,NEQN,Y,T,TOUT,RELERR,ABSERR,IFLAG,WORK,IWORK)
  print 111, TOUT, Y(1), Y(2)
  tout = tout + tprint
 end do
 111
      FORMAT(' T: ',F7.4,2X,'|| OutVal(1): ',F15.6,2X,'|| OutVal(2): ',F15.6)
 write(*,*) "Метод Рунге-Кутты 4-й степени с шагом 0,01"
 write(*,*)
 call RungeKutta(0.01)
 IFLAG=1
 write(*,*) "Метод Рунге-Кутты 4-й степени с шагом 0,001"
 write(*,*)
 call RungeKutta(0.001)
contains
 subroutine RungeKutta(h)
 REAL :: K1(NEQN),K2(NEQN),K3(NEQN),K4(NEQN),YN(NEQN),Ytmp(NEQN),Y(NEQN)
 REAL :: t=0.0
 integer :: counter=0
  T=0.0
  Y(1) = 0.0
  Y(2) = 1.0
157 Ytmp=Y
  call F(t, Ytmp, YN)
  K1 = h*YN
  Ytmp = Y + (K1/3)
  call F(t+(h/3.0),Ytmp,YN)
  K2= h*YN
  Ytmp = Y - (K1/3) + K2
  call F(t+((2*h)/3.0),Ytmp,YN)
  K3 = h*YN
```

```
Ytmp = Y + K1 - K2 + K3
   call F(t+h,Ytmp,YN)
   K4 = h*YN
   Ytmp = Y + (K4)
   YN = Y + 1.0/8.0*(K1+3*K2+3*K3+K4)
   Y =YN
   T=h+T
   counter = counter + 1
   11 FORMAT(' T: ', F7.4,2X, '|| OutVal(1): ', F15.6,2X, '|| OutVal(2): ', F15.6)
   12 FORMAT(' T: ', F7.4,2X, '|| OutVal(1): ', F15.6,2X, '|| OutVal(2): ', F15.6)
   IF ((h.LE.0.001).and. mod(counter,20).eq.0) PRINT 11, T,YN(1),YN(2)
   IF ((h.GE.0.01)) PRINT 12, T,YN(1),YN(2)
   IF(T.LT.0.4-h) GO TO 157
end subroutine RungeKutta
subroutine F(t, Y, YP)
  Real t, Y(NEQN), YP(NEQN)
  YP(1) = -310*Y(1)-3000*Y(2)+1/(10*t*t+1)
  YP(2) = Y(1) + exp(-2*t)
end subroutine F
end program Lab3
```

Метод для вычисления системы дифференциальных уравнений

```
subroutine F(t, Y, YP) 
Real t, Y(NEQN), YP(NEQN) 
YP(1) = -310*Y(1)-3000*Y(2)+1/(10*t*t+1) 
YP(2) = Y(1)+exp(-2*t) 
end subroutine F
```

Метод для вычисления системы методом Рунге-Кутты 4-й степени точности

```
subroutine RungeKutta(h)
  REAL :: K1(NEQN), K2(NEQN), K3(NEQN), K4(NEQN), YN(NEQN), Ytmp(NEQN), Y(NEQN)
  REAL :: t=0.0
  integer :: counter=0
   T=0.0
   Y(1) = 0.0
   Y(2) = 1.0
157 Ytmp=Y
   call F(t, Ytmp, YN)
   K1 = h*YN
   Ytmp = Y + (K1/3)
   call F(t+(h/3.0), Ytmp, YN)
   K2 = h*YN
   Ytmp = Y - (K1/3) + K2
   call F(t+((2*h)/3.0), Ytmp, YN)
   K3 = h*YN
   Ytmp = Y + K1 - K2 + K3
   call F(t+h,Ytmp,YN)
   K4 = h*YN
   Ytmp = Y + (K4)
   YN = Y + 1.0/8.0*(K1+3*K2+3*K3+K4)
   Y = YN
   T=h+T
   counter = counter + 1
   11 FORMAT('T: ', F7.4,2X, '|| OutVal(1): ', F15.6,2X, '|| OutVal(2): ', F15.6)
   12 FORMAT('T: ', F7.4,2X, '|| OutVal(1): ', F15.6,2X, '|| OutVal(2): ', F15.6)
   IF ((h.LE.0.001).and. mod(counter,20).eq.0) PRINT 11, T,YN(1),YN(2)
   IF ((h.GE.0.01)) PRINT 12, T,YN(1),YN(2)
   IF(T.LT.0.4-h) GO TO 157
```

end subroutine RungeKutta

Результаты выполнения программы

______ RKF45 с шагом 0,02 T: 0.0000 || OutVal(1): 0.000000 || OutVal(2): 1.000000 0.865187 0.726118 0.611497 0.516987 0.438969 0.374478 0.321086 0.276803 0.240002 T: 0.2000 || OutVal(1): -2.068566 || OutVal(2): 0.209346 -1.813551 || OutVal(2): T: 0.2200 || OutVal(1): 0.183743 T: 0.2400 || OutVal(1): -1.813551 || OutVal(2): -1.0.2400 || OutVal(1): -1.600061 || OutVal(2): -1.420751 || OutVal(2): -1.420751 || OutVal(2): -1.269602 || OutVal(2): -1.269602 || OutVal(2): -1.269602 || OutVal(2): -1.0.3000 || OutVal(1): -1.141678 || OutVal(2): -1.0.3200 || OutVal(1): -1.032934 || OutVal(2): -1.0.3400 || OutVal(1): -0.940049 || OutVal(2): -0.3600 || OutVal(1): -0.860298 || OutVal(2): -0.3800 || OutVal(1): -0.791447 || OutVal(2): -0.791447 || OutVal(2): -0.791447 || OutVal(2): -0.731660 || OutVal(2): 0.162296 0.144271 0.129066 0.116187 0.105229 0.095861 0.087810 0.080852 T: 0.4000 || OutVal(1): -0.731660 || OutVal(2): 0.074803

T:	0.0100	OutVa	al(1):	4.7	50977	$ \cdot $	OutVal(2):	0.	898453
T:	0.0200	OutVa	al(1):	10.8	68881	Π	OutVal(2):	0.	800319
T:	0.0300	OutVa	al(1):	18.9	05048		OutVal(2):	0.	703006
T:	0.0400	OutVa	al(1):	29.6	13873	\Box	OutVal(2):	0.	603316
T:	0.0500	OutVa	al(1):	44.0	29339	11	OutVal(2):	0.	497185
T:	0.0600	OutVa	al(1):	63.5	70141	Π	OutVal(2):	0.	379323
T:	0.0700	OutVa	al(1):	90.1	84326		OutVal(2):	0.	242733
T:	0.0800	OutVa	al(1):	126.5	47913	Π	OutVal(2):	0.	078034
T:	0.0900	OutVa	al(1):	176.3	38226	Π	OutVal(2):	-0.	127445
T:	0.1000	OutVa	al(1):	244.6	09558		OutVal(2):	-0.	390926
T:	0.1100	OutVa	al(1):	338.3	09875	\Box	OutVal(2):	-0.	735911
T:	0.1200	OutVa	al(1):	466.9	90784	Π	OutVal(2):	-1.	194543
T:	0.1300	OutVa	al(1):	643.7	84607	П	OutVal(2):	-1.	810876
T:	0.1400	OutVa	al(1):	886.7	46399	П	OutVal(2):	-2.	645344
T:	0.1500	OutVa	al(1):	1220.7	00439	Ħ	OutVal(2):	-3.	780925
T:	0.1600	OutVa	al(1):	1679.7	80273	ΪÌ	OutVal(2):	-5.	331600
T:	0.1700	OutVa	al(1):	2310.9	16992	П	OutVal(2):	-7.	453997
T:	0.1800	OutVa	al(1):	3178.6	42090	Ш	OutVal(2):	-10.	363386
T:	0.1900	OutVa	al(1):	4371.6	81152	ΪÌ	OutVal(2):	-14.	355679
T:	0.2000	OutVa	al(1):	6012.0	34668	11	OutVal(2):	-19.	837673
T:	0.2100	OutVa	al(1):	8267.4	57031	П	OutVal(2):	-27.	368671
T:	0.2200	OutVa	al(1):	11368.5	99609		OutVal(2):	-37.	717648
T:	0.2300	OutVa	al(1):	15632.6	15234	Π	OutVal(2):	-51.	941860
T:	0.2400	OutVa	al(1):	21495.5	80078	Π	OutVal(2):	-71.	494995
T:	0.2500	OutVa	al(1):	29557.1	23047	Π	OutVal(2):	-98	375885
T:	0.2600	OutVa	al(1):	40641.6	79688	\Box	OutVal(2):	-135	332733
T:	0.2700	OutVa	al(1):	55882.9	29688	11	OutVal(2):	-186	144562
T:	0.2800	OutVa	al(1):	76839.5	85938		OutVal(2):	-256	007050
T:	0.2900	OutVa	al(1):	105654.9	76562		OutVal(2):	-352	064911
T:	0.3000	OutVa	al(1):	145276.0	93750	Π	OutVal(2):	-484	141388
T:	0.3100	OutVa	al(1):	199755.0	62500	11	OutVal(2):	-665	743652
T:	0.3200	OutVa	al(1):	274663.6	25000	Π	OutVal(2):	-915.	444092
T:	0.3300	OutVa	al(1):	377662.8	12500		OutVal(2):	-1258.	779297
T:	0.3400	OutVa	al(1):	519286.9	37500	Π	OutVal(2):	-1730.	863770
T:	0.3500	OutVa	al(1):	714019.9	37500	Π	OutVal(2):	-2379	977539
T:	0.3600	OutVa	al(1):	981777.5	62500		OutVal(2):	-3272	505371
T:	0.3700	OutVa	al(1):	1349944.2	50000	H	OutVal(2):	-4499.	731934
T:	0.3800	OutVa	al(1):	1856173.2	50000	Ħ	OutVal(2):	-6187	165527
T:	0.3900	OutVa	al(1):	2552237.7	50000	Ϊİ	OutVal(2):	-8507	386719
T:	0.4000	OutVa	al(1):	3509326.7	50000	Ϊİ	OutVal(2):	-11697.	687500

Метод Рунге-Кутты 4-й степени с шагом 0,001

```
T:
   0.0200 || OutVal(1):
                               -8.591598 || OutVal(2):
                                                              0.865187
                                          || OutVal(2):
   0.0400 || OutVal(1):
                               -7.226857
T:
                                                              0.726118
T:
   0.0600
          || OutVal(1):
                               -6.081978
                                         || OutVal(2):
                                                              0.611497
   0.0800
                               -5.138126
                                         || OutVal(2):
                                                              0.516987
T:
          || OutVal(1):
T: 0.1000 || OutVal(1):
                               -4.359166
                                                              0.438969
                                         || OutVal(2):
   0.1200 || OutVal(1):
                               -3.715447
                                         || OutVal(2):
                                                              0.374478
   0.1400 || OutVal(1):
T:
                               -3.182686
                                         || OutVal(2):
                                                              0.321086
   0.1600 || OutVal(1):
T:
                               -2.740990
                                          || OutVal(2):
                                                              0.276803
                                         || OutVal(2):
T: 0.1800 || OutVal(1):
                               -2.374066
                                                              0.240002
T: 0.2000 || OutVal(1):
                               -2.068566
                                         || OutVal(2):
                                                              0.209346
T:
   0.2200 || OutVal(1):
                               -1.813550
                                         || OutVal(2):
                                                              0.183743
T:
   0.2400
          || OutVal(1):
                                          || OutVal(2):
                                                              0.162296
                               -1.600060
T:
   0.2600 || OutVal(1):
                               -1.420750
                                         || OutVal(2):
                                                              0.144271
T: 0.2800 || OutVal(1):
                               -1.269601
                                         || OutVal(2):
                                                              0.129066
                                         || OutVal(2):
   0.3000 || OutVal(1):
                               -1.141679
                                                              0.116187
   0.3200 || OutVal(1):
T:
                               -1.032934
                                         || OutVal(2):
                                                              0.105229
   0.3400 || OutVal(1):
                               -0.940049
T:
                                          || OutVal(2):
                                                              0.095861
T: 0.3600 || OutVal(1):
                               -0.860299
                                         || OutVal(2):
                                                              0.087810
T: 0.3800 || OutVal(1):
                               -0.791448
                                         || OutVal(2):
                                                              0.080852
   0.4000 || OutVal(1):
                               -0.731660
                                         || OutVal(2):
                                                              0.074803
```

Вывод

Исходя из результатов работы программы, при достаточно большом шаге интегрирования h=0.01 метод Рунге-Кутта 4-й степени точности расходится, при этом разница между точным значением и полученным увеличивается. Это приводит к не точному решению системы. При использовании меньшего шага интегрирования h=0.001 метод Рунге-Кутта 4-й степени точности начинает сходиться. Значения, полученные при шаге интегрирования h=0.001 получены достаточно точно.

Если оценивать шаг через собственные числа матрицы можно вычислить оптимальную границу шага интегрирования. Выше этой границы метод будет неустойчив, результат некорректен:

$$\begin{pmatrix} -310 - \alpha & -3000 \\ 1 & -\alpha \end{pmatrix}$$

$$(-310-\alpha)^*(-\alpha) = -3000$$

$$310\alpha + \alpha^2 + 3000 = 0$$

$$D = 96100 - 12000 = 84100$$

$$X = \frac{-310 \pm 290}{2}$$

$$X1 = -300 \qquad X2 = -10$$

$$h = 0.0033$$

Таким образом, при шаге большем чем 0.0033 решение методом Рунге-Кутта будет неустойчивым.