

Slotted Random-Access Wireless Network

TOMMASO BURLON
FRANCESCO IEMMA
OLGERTI XHANEJ

Modelling

General Assumptions

- Transmission at the beginning
- Constant Packet Size
- No Propagation Error
- Unbounded Queues
- Tx/Rx Synchronization
- Collisions and Channel Choice

Factors

- N: Transmitter/Receiver Couples
- C: Number of Channels
- p: Sending Probability

- 1/λ: Mean Inter-Arrival Time
- T_{slot} : Time Slot Duration

Verification (1)

Tests Performed

- Continuity Test
- Consistency Test
- Degeneracy Test
- Binomial Model
- Collision Model

Binomial Model

N=1; C=1;
$$1/\lambda = 1s$$
; $p = \{0.05, 0.1, 0.15, 0.2, 0.4, 0.5, 0.6, 0.8\}$

Mean Value (Binomial Verification)

Verification (2)

Collision Model

The probability of a successfull transmission is equal to the probability that only one tx transmit, i.e.:

$$P\{"only one tx transmit"\} = N \cdot p \cdot (1-p)^{N-1}$$

The latter can be seen as the mean throughput of the system in the single channel case:

$$Tp (slot) = \frac{N_p}{N_t} = \frac{N_t \cdot P\{"successful transmission"\}}{N_t}$$

Response Time Limits

Scenario Calibration

WARMUP:

250s

SIMULATION DURATION:

5000s

Standard Scenario:

$$N = [5, 30];$$
 $C = [6, 100];$ $1/\lambda = [125ms, 500ms];$ $p = [0.1, 0.5];$ $T_{slot} = 5ms;$

Response Time Explosion Scenario:

$$N = [5, 30];$$
 $C = [6, 100];$ $1/\lambda = [25ms, 55ms];$ $p = [0.1, 1];$ $T_{slot} = 5ms;$

Response Time Explosion Scenario

Most Relevant Factors for Throughput

(Change Channel if Collision vs NoChange)

- Number Of Couples **N**
 - 55.93% vs 53%
 - $q_A = 1.064 \text{ vs } q_A = 1.032$
- Send Probability **p** (simple to tune)
 - 4.684% vs 4.207%
 - $q_C = 0.308 \text{ vs } q_C = 0.290$

Standard Scenario - Throughput

Most Relevant Factors for Throughput

- Number of Couples
 - 48.44% of variability
 - $q_A = 0.3125$
- Mean Inter-Arrival Time
 - 34.15% of variability
 - $q_D = -0.2624$
- Jointly effect of Couples and $\frac{1}{\lambda}$
 - 17.39% of variability
 - $q_{AD} = -0.1872$

High Traffic Scenario

$$N = 30; C = 6; p = 0.1$$

Low Traffic Scenario

$$N = 30;$$
 $C = 6;$ $p = 0.1$ $N = 5;$ $C = 100;$ $p=0.1$

Standard Scenario – Response Time

Most Relevant Factors for Response Time

- Send Probability
 - 65.67% of variability
 - $q_C = -0.0339$
- Mean Inter-Arrival Time
 - 9.57% of variability
 - $q_D = -0.0129$

High Traffic Scenario: N = 30; C = 6; $1/\lambda = 125$ ms

Low Traffic Scenario: N = 5; C = 100; $1/\lambda = 125$ ms

Conclusions

- 1. General: an high **Send Probability** is better in both scenarios
- 2. Response Time Explosion Scenario: No-Change of Channel has worst throughput
- 3. Limited Response Time Scenario: the **Throughput** increases with the increasing of **N** and the decreasing of $\frac{1}{\lambda}$
- 4. Limited Response Time Scenario: the **Response Time** decreases with the decreasing of **N**

