2

Limites e Derivadas

Para encontrar as tangentes a uma curva ou a velocidade de um objeto, vamos voltar nossa atenção para os limites em geral e para os métodos de calculá-los.

Vamos analisar o comportamento da função f definida por $f(x) = x^2 - x + 2$ para valores de x próximos de 2.

A tabela a seguir fornece os valores de f(x) para valores de x próximos de 2, mas não iguais a 2.

х	f(x)	х	f(x)
1,0	2,000000	3,0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001

Da tabela e do gráfico de f (uma parábola) mostrado na Figura 1, vemos que quando x está próxmo de 2 (em qualquer lado de 2), f(x) tenderá a 4.

Figura 1

De fato, parece que podemos tornar os valores de f(x) tão próximos de 4, quanto quisermos, ao tornar x suficientemente próximo de 2.

Expressamos isso dizendo que "o limite da função $f(x) = x^2 - x + 2$ quando x tende a 2 é igual a 4."

A notação para isso é
$$\lim_{x\to 2} (x^2 - x + 2) = 4$$

Em geral, usamos a seguinte notação.

Definição Suponha que f(x) seja definido quando está próximo ao número a. (Isso significa que f é definido em algum intervalo aberto que contenha a, exceto possivelmente no próprio a.) Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos

"o limite de f(x), quando x tende a a, é igual a L"

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

Grosso modo, isso significa que os valores de f(x) tendem a L quando x tende a. Em outras palavras, os valores de f(x) tendem a ficar cada vez mais próximos do número L à medida que x tende ao número a (por qualquer lado de a), mas $x \neq a$.

Uma notação alternativa para

$$\lim_{x \to a} f(x) = L$$

$$\acute{e}$$
 $f(x) \rightarrow L$ como $x \rightarrow a$

que geralmente é lida como "f(x) tende a L quando x tende a a."

Observe a frase "mas $x \neq a$ " na definição de limite. Isso significa que ao procurar o limite de f(x) quando x tende a a, nunca consideramos x = a. Na verdade, f(x) não precisas sequer estar definida quando x = a. A única coisa que importa é como f está definida próximo de a.

A Figura 2 mostra os gráficos de três funções. Note que, na parte (c), f(a) não está definida e, na parte (b), $f(a) \neq L$.

Mas em cada caso, não importando o que acontece em a, é verdade que $\lim_{x\to a} f(x) = L$.

 $\lim_{x \to a} f(x) = L$ nos três casos

Figura 2

Exemplo 1

Estime o valor de
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$
.

Solução: Observe que a função $f(x) = (x - 1)/(x^2 - 1)$ não está definida quando x = 1, mas isso não importa, pois a definição de $\lim_{x\to a} f(x)$ diz que devemos considerar valores de x que estão próximos de a, mas não iguais a a.

Exemplo 1 – Solução

As tabelas à esquerda dão os valores de f(x) (com precisão de seis casas decimais) para os valores de x que tendem a 1 (mas não são iguais a 1).

x < 1	f(x)
0,5	0,666667
0,9	0,526316
0,99	0,502513
0,999	0,500250
0,9999	0,500025

x > 1	f(x)
1,5	0,400000
1,1	0,476190
1,01	0,497512
1,001	0,499750
1,0001	0,499975

Com base nesses valores, podemos conjecturar que

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0.5.$$

O Exemplo 1 está ilustrado pelo gráfico de f na Figura 3. Agora vamos mudar ligeiramente f definindo seu valor como 2 quando x = 1 e chamando a função resultante de g:

$$g(x) = \begin{cases} \frac{x-1}{x^2 - 1} & \text{se } x \neq 1 \\ 2 & \text{se } x = 1 \end{cases}$$

Figura 3

Essa nova função *g* tem o mesmo limite quando *x* tende a 1 (veja a Figura 4).

Figura 4

A função de heaviside *H*, é definida por

$$H(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

H(t) tende a 0 quando t tende a 0 pela esquerda, e H(t) tende a 1 quando t tende a 0 pela direita. Indicamos essa situação simbolicamente escrevendo

$$\lim_{t \to 0^{-}} H(t) = 0$$
 e $\lim_{t \to 0^{+}} H(t) = 1$

O símbolo " $t \rightarrow 0^{-}$ " indica que considerando somente valores de t que 0.

Da mesma forma, " $t \rightarrow 0^+$ " indica que estamos considerando somente valores de t maiores que 0.

2 Definição Escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

e dizemos que o limite à esquerda de f(x) quando x tende a a [ou o limite d ef (x) quando x tende a a pela esquerda] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x menor que a.

Perceba que a Definição 2 difere da Definição 1 somente por necessitarmos que *x* seja menor que *a*.

De maneira semelhante, se exigirmos que *x* seja maior que *a*, obtemos "o **limite a direita de** *f*(*x*) **quando** *x* **tende a** *a* e é igual a obtemos *L*" e escrevemos

$$\lim_{x \to a^+} f(x) = L$$

Dessa forma, o símbolo " $x \rightarrow a^+$ " indica que estamos considerando somente x > a. Essas definições estão ilustradas na Figura 9.

Figura 9

Comparando a Definição 1 com as definições de limites laterais, vemos ser verdadeiro o que segue.

$$\lim_{x \to a} f(x) = L \quad \text{se e somente se} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{e} \quad \lim_{x \to a^{+}} f(x) = L$$

Exemplo 7

O gráfico de uma função *g* é apresentado na Figura 10. Use-o para estabelecer os valores (caso existam) dos seguintes limites:

(a)
$$\lim_{x \to 2^{-}} g(x)$$

(b)
$$\lim_{x \to 2^+} g(x)$$

(c)
$$\lim_{x\to 2} g(x)$$

(d)
$$\lim_{x \to 5^-} g(x)$$

(e)
$$\lim_{x \to 5^+} g(x)$$

(f)
$$\lim_{x\to 5} g(x)$$

Figura 10

Exemplo 7 – Solução

A partir do gráfico, vemos que os valores de *g*(*x*) tendem a 3 à medida que os de *x* tendem a 2 pela esquerda, mas tendem a 1 quando *x* tende a 2 pela direita. Logo

(a)
$$\lim_{x \to 2^{-}} g(x) = 3$$
 e (b) $\lim_{x \to 2^{+}} g(x) = 1$

(c) Uma vez que são diferentes os limites à esquerda e à direita, concluímos de $\boxed{3}$ $\lim_{x\to 2} g(x)$ não existe.

Exemplo 7 – Solução

O gráfico mostra também que

(d)
$$\lim_{x \to 5^{-}} g(x) = 2$$
 e (e) $\lim_{x \to 5^{+}} g(x) = 2$

(f) Agora, os limites à esquerda e à direita são iguais; assim, de 3, temos

$$\lim_{x \to 5} g(x) = 2$$

Apesar desse fato, observe que $g(5) \neq 2$.

4 Definição Seja f uma função definida em ambos os lados de a, exceto possivelmente no próprio a. Então

$$\lim_{x \to a} f(x) = \infty$$

significa que podemos fazer os valores de f(x) ficarem arbitrariamente grandes (tão grandes quanto quisermos) tornando x suficientemente próximo de a, mas não igual a a.

Outra notação para $\lim_{x\to a} f(x) = \infty$ é

$$f(x) \to \infty$$
 quando $x \to a$

Novamente, o símbolo ∞ não é um número; todavia, a expressão $\lim_{x\to a} f(x) = \infty$ é usualmente lida como

"o limite de f(x), quando tende a a, é infinito"

ou "f(x) se torna infinito x quando tende a a"

ou "f(x) aumenta ilimitadamente quando x tende a a"

Essa definição está ilustrada na Figura 12.

$$\lim_{x \to a} f(x) = \infty$$

Figura 12

Um tipo análogo de limite, para funções que se tornam grandes em valor absoluto, porém negativas, quando *x* tende a *a*, cujo significado está na Definição 5, é ilustrado na Figura 13.

Figura 13

Definição Seja f definida em ambos os lados de a, exceto possivelmente no próprio a. Então

$$\lim_{x \to a} f(x) = -\infty$$

significa que os valores de f(x) podem ser arbitrariamente grandes, porém negativos, ao tornarmos x suficientemente próximo de a, mas não igual a a.

O símbolo $\lim_{x\to a} f(x) = -\infty$ pode ser lido das seguintes fromas "o limite de f(x), quando tende a a, menos é infinito" ou "f(x) decresce ilimitadamente quando x tende a a." Como exemplo, temos

$$\lim_{x \to 0} \left(-\frac{1}{x^2} \right) = -\infty$$

Definições similares podem ser dadas no caso de limites laterais

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

lembrando que " $x \rightarrow a^-$ " significa considerar somente os valores de x menores que a, ao passo que " $x \rightarrow a^+$ " significa considerar somente x > a.

Ilustrações desses quatro casos são dados na Figura 14.

(a)
$$\lim_{x \to a^{-}} f(x) = \infty$$

(c) $\lim_{x \to a^{-}} f(x) = -\infty$

(d) $\lim_{x \to a^+} f(x) = -\infty$

Figura 14 30

6 Definição A reta x = a é chamada assíntota vertical da curva y = f(x) se pelo menos uma das seguintes condições estiver satisfeita:

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Exemplo 10

Encontre as assíntotas verticais de $f(x) = \tan x$.

Solução: Como

$$\tan x = \frac{\sin x}{\cos x}$$

existem assíntotas verticais em potencial nos pontos nos quais $\cos x = 0$.

De fato, como cos $x \to 0^+$ quando $x \to (\pi/2)^-$ e cos $x \to 0^-$ quando $x \to (\pi/2)^+$, enquanto sen x é positivo quando x está próximo de $\pi/2$, temos

$$\lim_{x \to (\pi/2)^{-}} \operatorname{tg} x = \infty \qquad \text{e} \qquad \lim_{x \to (\pi/2)^{+}} \operatorname{tg} x = -\infty.$$

Exemplo 10 – Solução

Isso mostra que a reta $x = \pi/2$ é uma assíntota vertical. Um raciocínio similar mostra que as retas $x = (2n + 1)\pi/2$, onde n é um número inteiro, são todas assíntotas verticais de $f(x) = \tan x$. O gráfico da Figura 16 confirma isso.

Figura 16