Languages and Computation (COMP2049/AE2LAC)

Enumerability, Decidability, and the Rest

Dr. Tianxiang Cui

tianxiang.cui@nottingham.edu.cn

The Language of A TM

- Recall, saying that a language L is accepted by a Turing machine M means that for any $x \in \Sigma^*$, $x \in L$ if and only if x is accepted by M
- This **does not** imply that if $x \notin L$, then x is rejected by M
- Two possibilities for a string x not in L(M):
- 1. M rejects x
- 2. M never halts, or loops forever, on input x
- A TM may never stop
 - · This is unlike the machines we have encountered before

The Language of A TM

• This TM accepting

$$\{a^iba^j \mid 0 \le i < j\}$$

The Language of A TM

• If we try the input string aba with the previous TM, TM will be in an infinite loop

```
q_0\Delta aba \vdash \Delta q_1aba \vdash \Delta aq_1ba \vdash \Delta abq_2a \vdash \Delta abaq_3\Delta \vdash \Delta abq_4a \vdash^* q_4\Delta aba \vdash \Delta q_5aba \vdash \Delta \Delta q_6ba \vdash \Delta \Delta bq_7a \vdash \Delta \Delta q_8b \vdash \Delta q_9\Delta b \vdash \Delta \Delta q_5b \vdash \Delta \Delta bq_{10}\Delta \vdash \Delta \Delta b\Delta q_{10}\Delta \vdash \Delta \Delta b\Delta q_{10}\Delta \vdash \Delta abaq_3\Delta
```

- But, the TM still works. Since it **does not** accept any string that **is not** in the language
- However, if we have some TM M' that will always reject a string x not in L(M), it may tell us something more about the language L(M)

Recursively Enumerable and Recursive

- Recursively enumerable languages are those that can be accepted by a TM
- Recursive languages are those that can be decided by a TM
- A TM M with input alphabet Σ accepts a language $L \subseteq \Sigma^*$ if it **accepts** the strings in L and no others
- M decides L if M computes the characteristic function $\chi_L: \Sigma^* \to \{0,1\}$ that has the value 1 at strings in L and the value 0 otherwise

Recursively Enumerable and Recursive

- Recursively enumerable languages are sometimes referred to as Turingacceptable
 - The TM will only ever tell you that it accepts that a string is a member of the language
- Recursive languages are sometimes referred to as Turing-decidable
 - The TM will decide whether or not the string is a member of the language if it isn't, it will tell you
- In both cases, the issue is whether the input string is an element of L, recursive languages may be more **informative**, as for recursively enumerable languages, it may not return an answer if the string is not in the language L

Recursively Enumerable and Recursive

- **Theorem**: Every recursive language is recursively enumerable
 - If L is recursive there is a TM M that decides L (returns 1 for strings in L, and 0 for strings not in L)
 - Given an input string x, simply execute M on input x, M will halt and produce an output
 - If output is 1, accept, otherwise reject
- Recursive languages are a **subset** of recursively enumerable languages

Undecidable Languages

- There exist languages that can be accepted by TMs but not decided
- These are the same languages that can be accepted by TMs but whose complements cannot
- They are languages that can be accepted, but only by TMs that may loop forever on some inputs that are not in the language
- These are non-recursive languages, and their existence implies that there are also languages that are not recursively enumerable

Unrestricted Grammars

- Unrestricted grammars are more general than CFG
- They correspond to **recursively enumerable languages**, in the same way that:
 - CFGs correspond to languages accepted by PDAs
 - · Regular grammars correspond to languages accepted by FA
- Recall, for CFG, the productions are of the form:

 $nonterminal \rightarrow terminals \ and \ nonterminals$

• Because they are context free, we can use any production rule regardless of context

Unrestricted Grammars

Definition

- An unrestricted grammar is a 4-tuple G=(N, T, S, P), where
 - *N* is a finite set of nonterminals
 - Or variables, and consequently sometimes it is denoted by V
 - T is a finite set of terminals
 - The terminals are the alphabet of the language defined by a context-free grammar, and for that reason the set of terminals is sometimes denoted by Σ
 - $N \cap T = \emptyset$ (N and T are disjoint finite sets)
 - $S \in N$ is the start symbol
 - *P* is a finite set of productions (or grammar rules) of the form $\alpha \to \beta$, where $\alpha, \beta \in (N \cup T)^*$ and α contains at least one variable

Unrestricted Grammars

- For context free grammars, production rules have to **be a variable** (non-terminal) on the left hand side
- For unrestricted grammars, production rules must have at least one variable on the left hand side
 - So we can have multiple variables
 - And we can have terminals
- This is much less restrictive than CFG rules

Unrestricted Grammars: Example

A Grammar Generating
$$\{a^{2^k} \mid k \in \mathcal{N}\}$$

$$S \to LaR \qquad L \to LD \qquad Da \to aaD \qquad DR \to R \qquad L \to \Lambda \qquad R \to \Lambda$$

• So if we have the input string aaaa, the derivation is

$$S \Rightarrow LaR \Rightarrow LDaR \Rightarrow LaaDR \Rightarrow LaaR \Rightarrow LDaaR$$

 $\Rightarrow LaaDaR \Rightarrow LaaaaDR \Rightarrow LaaaaR \Rightarrow aaaaR \Rightarrow aaaa$

• Use variable D to act as a "doubling operator". D replaces each a with two a's using production $Da \rightarrow aaD$. D is introduced on the left of the string and each application moves past an a, doubling it each time

Unrestricted Grammars And TMs

- Every recursively enumerable language can be generated by an unrestricted grammar
- **Theorem**: For every unrestricted grammar G, there is a Turing machine M with L(M) = L(G)
 - For every unrestricted grammar, *G*, there is a Turing machine that accepts it
- **Theorem**: For every TM M with input alphabet Σ , there is an unrestricted grammar generating the language $L(M) \subseteq \Sigma^*$
 - For every Turing Machine, M, there is an unstructured grammar G that generates the language of M

Chomsky Hierarchy

Recursively
enumerable
languages are
generated by
unrestricted
grammars and
accepted by
Turing Machines

Context-Sensitive Grammar (CSG)

- **Definition**: A **context-sensitive grammar** (**CSG**) is an unrestricted grammar in which no production is length-decreasing
 - In other words, every production is of the form $\alpha \to \beta$, where $|\beta| \ge |\alpha|$
- CFG has an additional restriction over unrestricted grammar:
 - Length of RHS of production must be greater than or equal to the length of LHS
- A language is a **context-sensitive language** (**CSL**) if it can be generated by a CSG
- CSGs cannot have ε-productions, and CSLs cannot include ε
- We think of CSLs as a generalization of CFLs

Linear-Bounded Automata (LBA)

- **Definition**: A linear-bounded automaton (LBA) is a nondeterministic TM with this exception:
 - There are two extra tape symbols, [and]
 - The initial configuration of M corresponding to input x is $q_{\theta}[x]$
 - During its computation, M is not permitted to replace either of these brackets or to move its tape head to the left of the "[" or to the right of the "]"
- **Theorem**: If $L \subseteq \Sigma^*$ is a CSL, then there is an LBA that accepts L
- A LBA can simulate the computation of a TM, provided the proportion of the tape used by the TM is bounded by some linear function of input length
 - Since the tape is bounded, LBA will always halt

The Chomsky Hierarchy

the traditional Chomsky hierarchy

Chomsky Hierarchy

Туре	Languages (Grammars)	Form of Productions	Accepting Device
3	Regular	$A \rightarrow aB, A \rightarrow \Lambda$	Finite
			Automaton
2	Context-free	$A \rightarrow \alpha$	Pushdown
			Automaton
1	Context-	$\alpha \rightarrow \beta$	LBA
	sensitive	with $ \beta \ge \alpha $	
0	Unrestricted	$\alpha \rightarrow \beta$	Turing
			machine

Concluding Remarks

- Recursively enumerable languages and Recursive languages
- Unrestricted grammar
- Context-sensitive grammar
- Linear-bounded automata