- A 2000 kg spacecraft is in a 480 \times 800 km Earth orbit ①
- (a) find the Δv at perigee A to place the spacecraft in a 480 × 16000 km transfer ellipse ②
- (b) find the Δv at apogee B to establish a circular orbit of 16000 km $_{\odot}$
- (c) find the total amount of propellent if the specific impulse is 300 s
 Hohmann transfer ellipse

- Each impulsive maneuver results in change of Δv in velocity.
- Change in the magnitude (pumping) direction (cranking)
- The magnitude of Δv is related the mass propellant consumed Δm

Mass rate of fuel consumption