Notes

January 21, 2015

homework from previous week collected on friday, given to grader on monday. late homework isn't a big deal. get back next monday.

1.2 no 15

converse direction is easy (add in a vertex adjacent to appropriate edges or appropriate vertices)

forward direction not like thm 1.10. hint in book is find contradiction (too many edges, not enough edges)

hints page 536

1.3 connected graphs and distance

walk a sequence of vertices v_1, \ldots, v_r such that $v_i v_{i+1}$ is and edge item[length of walk] the number of edges encountered (including repetitions) along the walk

 $v_1v_2v_3v_4v_1v_4v_3$ is a walk of length 6

 $v_1v_2v_3v_1$ is not a walk

open walk $v_1 \neq v_r$

closed walk $v_1 = v_r$

trail no edges are repeated

path no vertices are repeated

distance length of shortest path between two vertices denoted d(v, u)

what if there is no path? they are not connected? assign ∞ because distance from vertex to itself is 0. this covers loop case

cycle a closed trail

girth length of the smallest cycle denoted g(G)

connected if $\forall u, v \in V(G), \exists$ a path from u to v (written u - v path)

adjacency matrix of G

$$A = A(G) = [a_{ij}]$$
 such that $a_{ij} = \begin{cases} 0 & (v_i, v_j) \in E(G) \\ 1 & \text{else} \end{cases}$

example

$$G = 3$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

repeated edges break adjacency matrix. can just change the 1 to the number of edges

questions

- 1. find $d(v_i, v_j)$ minimum k such that $a_{ij}^{(k)} \neq 0$
- 2. g(G) minimum $\{2k|a_{ii}^{(2k)} \neq 0\} \leq g(G) \leq \min\{2k+1|a_{ii}^{(2k+1)} \neq 0\}$
- 3. $deg(v_i)$ the sum of the row(or column)
- 4. if G connected

also, what can A(G) tell us about paths in G? hint: raise A to powers for 1 and 4

homework

1.3 1,2,3,9,13

notation

the a_{ij} entry of A^k is $a_{ij}^{(k)}$

\mathbf{thm}

for a finite simple graph G and an integer $k \in \mathbb{N}$ $a_{ij}^(k)$ is the number of paths from v_i to v_j of length k.