Généralités sur l'exponentielle I

Quelques calculs généraux pour commencer

Calcul 1.1 — Des fractions.

0000

Calculer, en donnant le résultat sous forme de fraction irréductible :

a)
$$2 - \frac{1}{3}$$

a)
$$2 - \frac{1}{3}$$
 b) $\frac{\frac{3}{2}}{2}$

c)
$$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$$

Calcul 1.2 — Des puissances.

Soit $n \in \mathbb{Z}$. Exprimer les nombres suivants sous la forme « 2^a » (où a est un entier dépendant de n).

a)
$$2^n + 3 \times 2^n$$
 ..

b)
$$2^n \times 4^n$$

c)
$$\frac{2^n \times 8^{-n}}{4}$$

Produits et quotients d'exponentielles

Calcul 1.3 — Des calculs de base.

Simplifier les expressions suivantes.

a)
$$\exp(5) \times \exp(-2) \times \exp(0) \dots$$

d)
$$\exp(-1) \times (\exp(-3))^2 \dots$$

b)
$$\frac{\exp(4)}{\exp(-3)}$$

e)
$$\frac{\exp(7) \times \exp(-8)}{\exp(2)} \dots$$

c)
$$\left(\exp(-1)\right)^2 \times \sqrt{\exp(4)} \dots$$

f)
$$\frac{\exp(5) \times (\exp(-2))^3}{\exp(4) \times \exp(-1)} \dots$$

Calcul 1.4 — Avec des variables (I).

Soit $x \in \mathbb{R}$. Simplifier les expressions suivantes.

a)
$$(\exp(x+1))^2 \times \exp(-2x+1)$$

b)
$$(\exp(4x-5) \times \exp(3-2x))^2$$

c)
$$\exp(3x) \times \exp(1-5x) \times (\exp(2x-1))^2$$

d)
$$\frac{\exp(4x+1)}{\exp(3-2x)}$$

Calcul 3	1.5	— Avec	\mathbf{des}	variables	(II)	١.

0000

Soit $x \in \mathbb{R}$. Simplifier les expressions suivantes.

a)
$$\frac{\exp(1) \times (\exp(4x))^3}{\exp(8x+1)}$$

b)
$$\frac{\exp(3x) \times \exp(2)}{\exp(5) \times (\exp(-x))^3}$$
.....

c)
$$\left(\frac{\exp(2x+3)\times\exp(2-3x)}{\exp(-5)}\right)^{-1}$$

d)
$$\frac{\exp(x) - 1}{\exp(x) + 1} + \frac{\exp(-x) - 1}{\exp(-x) + 1}$$

Exponentielles et identités remarquables

Calcul 1.6

0000

Soit $x \in \mathbb{R}$. Développer et réduire les expressions suivantes.

a)
$$(\exp(x) + \exp(-x))^2$$

c)
$$(3\exp(x) - \exp(-x))^2$$

b)
$$(2\exp(2x) + 3\exp(-x))^2$$

d)
$$(1 + \exp(x))(1 - \exp(x))$$

Calcul 1.7

0000

Soit $x \in \mathbb{R}$. Développer et réduire les expressions suivantes.

a)
$$-2\exp(3x) - \exp(2x)(\exp(2x) - \exp(-x))^2$$

b)
$$(\exp(x) + \exp(-x))^2 - (\exp(x) - \exp(-x))^2$$

Calcul 1.8 — Des factorisations.

Soit $x \in \mathbb{R}$. À l'aide d'une identité remarquable, factoriser les expressions suivantes.

a)
$$\exp(2x) + 4\exp(-2x) + 4$$

b)
$$\exp(6x) + 9\exp(-2x) - 6\exp(2x)$$

c)
$$16\exp(4x) - 9$$

d)
$$9\exp(2x) - 4\exp(-2x)$$

Résolutions d'équations et d'inéquations

Calcul 1.9 — Quelques équations.

0000

Donner l'ensemble des solutions, dans \mathbb{R} , des équations suivantes.

a)
$$\exp(2x) = \exp(5)$$

d)
$$\exp(3x) = \frac{\exp(x)}{\exp(-1)}$$

b)
$$\exp(x^2) = \exp(2x) \dots$$

e)
$$5 - 3\exp(4x - 1) = 2 \dots$$

c)
$$(\exp(x) - 1)(\exp(x) + 5) = 0$$
 ...

Calcul 1.10 — Quelques inéquations (I).

Résoudre dans \mathbb{R} les inéquations suivantes.

On donnera l'ensemble des solutions sous la forme d'un intervalle.

a)
$$\exp(5x) - 1 > 0$$

b)
$$\exp(x^2) < \exp(x)$$

Calcul 1.11 — Quelques inéquations (II).

Résoudre dans $\mathbb R$ les inéquations suivantes.

On donnera l'ensemble des solutions sous la forme d'un intervalle ou d'une union d'intervalles.

a)
$$\exp(x^2 - 1) \ge e$$

c)
$$\exp(6x^2) > \exp(2-x)$$

b)
$$12 - 4\exp(5x + 1) \ge 8 \dots$$

Calcul 1.12 — Avec des changements de variables.

À l'aide d'un changement de variable, résoudre dans \mathbb{R} les équations suivantes.

a)
$$\exp(2x) + 3\exp(x) = 4$$

On fera le changement de variable « $X = \exp(x)$ »

b)
$$\exp(2x) - (1+e)\exp(x) + e = 0$$

On fera le changement de variable « $X = \exp(x)$ »

c)
$$\exp(x^2) + \frac{e}{\exp(x^2)} = 1 + e$$

On fera le changement de variable « $X = \exp(x^2)$ »

Une parité

Entraînement 1.13

La fonction
$$\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto \frac{\exp(t) - 1}{\exp(t) + 1} \end{cases}$$
 est :

- (c) ni l'un, ni l'autre

Calculs plus avancés

On appelle fonction cosinus hyperbolique, notée cosh, la fonction définie par :

$$\cosh: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow [1, +\infty[\\ x \longmapsto \frac{\exp(x) + \exp(-x)}{2}. \end{array} \right.$$

De même, on appelle fonction sinus hyperbolique, notée sinh, la fonction définie par :

$$\sinh: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{\exp(x) - \exp(-x)}{2}. \end{array} \right.$$

Calcul 1.14 — Une relation?

0000

Soit $x \in \mathbb{R}$. A-t-on $\cosh^2(x) - \sinh^2(x) = 1$?

Calcul 1.15 — Des relations.

0000

Soit $x \in \mathbb{R}$.

- a) Exprimer $\cosh(2x)$ en fonction de $\cosh(x)$
- En déduire l'expression de $\cosh(2x)$ en fonction de $\sinh(x)$

Calcul 1.16

Soient $x, y \in \mathbb{R}$. On a $\cosh(x+y) - \cosh(x-y) = \cdots$

- (a) $2\sinh(x)\cosh(y)$ (b) $2\cosh(x)\sinh(y)$ (c) $2\sinh(x)\sinh(y)$

Calcul 1.17

0000

Soient $x, y \in \mathbb{R}$. On a $sinh(x + y) + sinh(x - y) = \cdots$

- (a) $2\sinh(x)\sinh(y)$ (b) $2\cosh(x)\sinh(y)$ (c) $2\sinh(x)\cosh(y)$

Calcul 1.18 — Une équation.

0000

Résoudre dans \mathbb{R} l'équation $\cosh(2x) = 1$.

(On pourra penser à un changement de variable)

Calcul 1.19 — Calcul de sommes.

Soit $x \in \mathbb{R}^*$ et soit $n \in \mathbb{N}$. Calculer les sommes suivantes.

a)
$$\sum_{k=0}^{n} \exp(kx) \dots$$

b)
$$\sum_{k=1}^{n} (\exp(kx))^2$$

Réponses mélangées

$$(3e^{-x} - e^{3x})^2 \quad \frac{3}{4} \quad \exp(6x - 2) \quad 1 \quad \left\{ \frac{1}{4} \right\} \quad \text{\textcircled{c}} \quad \left\{ -1, 0, 1 \right\} \quad \frac{3}{8}$$

$$\left[-\infty, -\sqrt{2} \right] \cup \left[\sqrt{2}, +\infty \right[\quad 4 \quad \exp(2x - 1) \quad \left\{ 0, 2 \right\} \quad -1 - \exp(6x) \right]$$

$$\exp(3) \quad 2^{n+2} \quad \left] 0, 1 \left[\quad \exp(x - 10) \quad \left\{ \frac{5}{2} \right\} \quad \left(2e^{-x} + e^x \right)^2 \quad \text{\textcircled{c}} \right]$$

$$\left[-\infty, -\frac{2}{3} \left[\cup \right] \frac{1}{2}, +\infty \left[\quad 0 \quad \left] 0, +\infty \left[\quad (4e^{2x} - 3)(4e^{2x} + 3) \quad \exp(6x - 3) \right] \right]$$

$$\left\{ 0, 1 \right\} \quad e^{2x} + e^{-2x} + 2 \quad 2^{3n} \quad \left\{ 0 \right\} \quad 2\cosh^2(x) - 1 \quad 2\sinh^2(x) + 1$$

$$\left[-\infty, -\frac{1}{5} \right] \quad \exp(7) \quad \left\{ 0 \right\} \quad \left(3e^x - 2e^{-x} \right) \left(3e^x + 2e^{-x} \right) \quad \left\{ 0 \right\} \quad \text{oui} \quad \frac{1 - e^{(n+1)x}}{1 - e^x}$$

$$\exp(4x) \quad 4e^{4x} + 9e^{-2x} + 12e^x \quad \textcircled{b} \quad \exp(4x - 4) \quad \exp(-3) \quad \frac{e^{2x}(1 - e^{2nx})}{1 - e^{2x}}$$

$$9e^{2x} + e^{-2x} - 6 \quad 1 - e^{2x} \quad \frac{5}{3} \quad \exp(-4) \quad \exp(-7) \quad 2^{-2n-2} \quad \exp(3) \quad \left\{ \frac{1}{2} \right\}$$

► Réponses et corrigés page 6

Fiche nº 1. Généralités sur l'exponentielle I

Réponses

1.1 a) $\boxed{\frac{5}{3}}$	1.7 b)
	1.8 a)
1.1 b) $ \frac{3}{4} $	1.8 b) $(3e^{-x} - e^{3x})^2$
1.1 c)	1.8 c)
1.2 a)	1.8 d) $(3e^x - 2e^{-x})(3e^x + 2e^{-x})$
1.2 b)	1.9 a)
1.2 c)	
1.3 a)	1.9 b)
1.3 b)	1.9 c)
1.3 c)	1.9 d)
1.3 d) $\exp(-7)$	
1.3 e)	1.9 e)
1.3 f) exp(-4)	1.10 a)
1.4 a)	1.10 b)
1.4 b) $\exp(4x-4)$	1.11 a) $\boxed{]-\infty, -\sqrt{2}] \cup \left[\sqrt{2}, +\infty \right[}$
1.4 c) $\exp(2x-1)$	
1.4 d) $\exp(6x-2)$	1.11 b) $\left[-\infty, -\frac{1}{5} \right]$
1.5 a) $exp(4x)$	1.11 c)
1.5 b) $\exp(6x-3)$	
1.5 c) $\exp(x-10)$	1.12 a)
1.5 d)	1.12 b)
1.6 a)	1.12 c)
1.6 b) $4e^{4x} + 9e^{-2x} + 12e^x$	1.13
1.6 c)	1.14oui
1.6 d)	1.15 a) $2 \cosh^2(x) - 1$
1.7 a)	1.15 b) $2 \sinh^2(x) + 1$

1.16
$$1.19 \text{ a}$$
 $\frac{1 - e^{(n+1)x}}{1 - e^x}$... $1.18 \dots$ $\{0\}$

Corrigés

1.2 c) On a
$$\frac{2^n \times 8^{-n}}{4} = \frac{2^n \times (2^3)^{-n}}{2^2} = \frac{2^{n-3n}}{2^2} = 2^{-2n-2}$$
.

1.9 a) On a
$$\exp(2x) = \exp(5) \iff 2x = 5 \iff x = \frac{5}{2}$$
.

1.12 a) On pose $X = e^x$. L'équation devient alors $X^2 + 3X - 4 = 0$, dont le discriminant est égal à 25. Les solutions de cette équation d'inconnue X sont : $X_1 = \frac{-3 - \sqrt{25}}{2} = -4$ et $X_2 = \frac{-3 - \sqrt{25}}{2} = 1$.

Les solutions de l'équation d'inconnue x sont donc les solutions des équations « $\exp(x) = -4$ » et « $\exp(x) = 1$ ». La première équation n'a pas de solution car pour tout x réel, $\exp(x) > 0$ et la deuxième équation a pour solution x = 0. L'ensemble des solutions est donc $\{0\}$.

1.12 b) On pose
$$X = \exp(x)$$
.

L'équation devient alors $X^2 - (1 + e)X + e = 0$, dont le discriminant est égal à $(1 + e)^2 - 4e = (e - 1)^2$. Les solutions de cette équation d'inconnue X sont

$$X_1 = \frac{1 + \mathrm{e} - \sqrt{(\mathrm{e} - 1)^2}}{2} = \frac{1 + \mathrm{e} - \mathrm{e} + 1}{2} = 1 \qquad \text{et} \qquad X_2 = \frac{1 + \mathrm{e} + \sqrt{(\mathrm{e} - 1)^2}}{2} = \frac{1 + \mathrm{e} + \mathrm{e} - 1}{2} = \mathrm{e}.$$

Les solutions de l'équation d'inconnue x sont donc les solutions des équations : $\exp(x) = 1$ et $\exp(x) = e$ qui sont respectivement x = 0 et x = 1. L'ensemble des solutions est donc $\{0, 1\}$.

1.12 c) On pose $X = \exp(x^2)$. L'équation devient alors $X + \frac{e}{X} = 1 + e$, dont les solutions sont $X_1 = 1$ et $X_1 = e$.

Les solutions de l'équation d'inconnue x sont donc les solutions des équations « $\exp(x^2) = 1$ » et « $\exp(x^2) = e$ », donc des équations « $x^2 = 0$ » et « $x^2 = 1$ ». Finalement, l'ensemble des solutions est $\{-1,0,1\}$.

.....

1.13 La fonction f est impaire. Vérifions que pour tout $t \in \mathbb{R}$, f(-t) = -f(t). Soit $t \in \mathbb{R}$. On a

$$f(-t) = \frac{\exp(-t) - 1}{\exp(-t) + 1} = \frac{\exp(t)(\exp(-t) - 1)}{\exp(t)(\exp(-t) + 1)} = \frac{1 - \exp(t)}{1 + \exp(t)} = -\frac{\exp(t) - 1}{\exp(t) + 1} = -f(t).$$

1.14 Il suffit de développer
$$\left(\frac{\exp(x) + \exp(-x)}{2}\right)^2 + \left(\frac{\exp(x) - \exp(-x)}{2}\right)^2$$
.

1.15 a) On a

$$\cosh(2x) = \frac{\exp(2x) + \exp(-2x)}{2} = \frac{\exp(2x) + \exp(-2x) + 2 - 2}{2} = \frac{\left(\exp(x)\right)^2 + \left(\exp(-x)\right)^2 + 2 - 2}{2}.$$

On a donc
$$\cosh(2x) = \frac{\left(\exp(x) + \exp(-x)\right)^2 - 2}{2} = 2\left(\frac{\exp(x) + \exp(-x)}{2}\right)^2 - 1 = 2\cosh^2(x) - 1.$$

1.15 b) Comme $\cosh^2(x) - \sinh^2(x) = 1$, on en déduit que $\cosh(2x) = 2(1 + \sinh^2(x)) - 1 = 2\sinh^2(x) + 1$.

1.16 On a

$$\cosh(x+y) - \cosh(x-y) = \frac{\exp(x+y) + \exp(-x-y)}{2} - \frac{\exp(x-y) + \exp(-x+y)}{2}$$
$$= \frac{\exp(x) \left(\exp(y) - \exp(-y)\right)}{2} - \frac{\exp(-x) \left(\exp(y) - \exp(-y)\right)}{2}$$
$$= \exp(x) \sinh(y) - \exp(-x) \sinh(y) = 2 \sinh(x) \sinh(y).$$

1.17 On procède comme ci-dessus.

1.18 On a $cosh(2x) = \frac{exp(2x) + exp(-2x)}{2}$. Donc, l'équation à résoudre est donc équivalente à

$$\exp(2x) + \exp(-2x) = 2.$$

On effectue le changement de variable $X=\exp(2x)$ et on est amené à résoudre l'équation : $X+\frac{1}{X}=2$.

Cette équation est équivalente à $X^2 - 2X + 1 = 0$ (car $X \neq 0$) et a pour solution X = 1.

L'équation initiale est donc équivalente à $\exp(2x)=1$, dont l'unique solution est x=0.

L'ensemble des solutions est $\{0\}$.

1.19 a) On a
$$\sum_{k=0}^{n} \exp(kx) = \sum_{k=0}^{n} (\exp(x))^k = \frac{1 - (\exp(x))^{n+1}}{1 - \exp(x)} = \frac{1 - \exp((n+1)x)}{1 - \exp(x)}$$
.

1.19 b) On a

$$\sum_{k=1}^{n} (\exp(kx))^{2} = \sum_{k=1}^{n} \exp(2kx) = \sum_{k=1}^{n} (\exp(2x))^{k} = \frac{\exp(2x)(1 - (\exp(2x))^{n})}{1 - \exp(2x)}$$
$$= \frac{\exp(2x)(1 - \exp(2x))}{1 - \exp(2x)}.$$