Misure di Volume

J. B. d'Alembert, B. Cavalieri, A. Einstein 10 novembre 2015

1 Teoria

Il **volume** di un corpo è la misura dello spazio occupato da esso.

In questa relazione andremo a misurare indirettamente il volume di alcuni oggetti; in particolare calcoleremo il volume di due cubi ed un parallelepipedo rettangolo a partire dalla misura dei loro spigoli, e di una sfera a partire dalla misura del diametro.

Per la misure di queste grandezze ci serviremo di un calibro universale a nonio, illustrato in Fig. 1. Esso è composto dalle seguenti parti:

Figura 1: Calibro universale a nonio.

- 1. **becchi esterni**: per larghezze o diametri esterni;
- 2. **becchi interni**: per larghezze o diametri interni;
- 3. **asta**: per misure di profondità;
- 4. **scala principale**: per misure millimetriche;
- 5. **nonio**: per misurare le frazioni di millimetro;
- 6. **freno**: per il bloccaggio.

Per la lettura del calibro, avendo ben posizionato l'oggetto tra i becchi esterni, si guarda quale tacca della scala principale è *immediatamente precedente* alla tacca che denota

lo 0 sul nonio. Il valore di tale tacca è la misura precisa al millimetro. In seguito si determina quale tacca del nonio corrisponde con la maggior precisione ad una tacca della scala principale; tale valore sul nonio corrisponderà alla frazione di millimetro da aggiungere alla misura precedente.

Le formule per il volume che andremo ad utilizzare saranno le seguenti:

- cubo di spigolo ℓ : $V = \ell^3$
- parallelepipedo rettangolo di spigoli a, b e c: V = abc
- sfera di raggio r e diametro d=2r: $V=\frac{4}{3}\pi r^3=\frac{1}{6}\pi d^3$

2 Misure

Tutte le misure sono state svolte utilizzando un calibro universale a nonio ventesimale, la cui sensibilità è $\sigma=0.005\,\mathrm{cm}$. I valori ottenuti sono i seguenti

solido	grandezza	misura (cm)					
C1	ℓ_1	1.245	1.255	1.250	1.255	1.250	
C2	ℓ_2	3.725	3.700	3.720	3.715	3.720	
	а	0.515	0.510	0.510	0.515	0.510	
P	b	4.325	4.320	4.330	4.335	4.320	
	c	9.750	9.750	9.750	9.750	9.750	
S	d	2.110	2.105	2.095	2.100	2.110	

3 Analisi dei dati

Calcoliamo i valori medi (\overline{x}) e gli errori assoluti (ε_x) di tutte le misure, quantificando l'errore assoluto tramite la semidispersione (s_x) , quando questa sia maggiore o uguale alla sensibilità dello strumento, oppure la sensibilità stessa. Dal momento che ci serviranno, andremo a calcolare anche gli errori relativi (e_x) , che ricordiamo essere legati agli errori assoluti dalla formula $e_x = \varepsilon_x / \overline{x}$

solido	х	\overline{x} (cm)	s_x (cm)	ε_x (cm)	e_x
C 1	ℓ_1	1.251	0.005	0.005	0.004
C2	ℓ_2	3.716	0.012	0.012	0.003
	а	0.512	0.002	0.005	0.010
P	b	4.326	0.008	0.008	0.0018
	c	9.750	0.000	0.005	0.0005
S	d	2.104	0.008	0.008	0.004

Di seguito andiamo a calcolare i volumi e propagare l'errore su di essi.

Nel caso del cubo avremo $e_V = 3 e_{\ell}$

Quindi per il primo cubo:

$$e_{V_1} = 3 e_{\ell_1} = 0.012$$

$$\overline{V_1} = \left(\overline{\ell_1}\right)^3 = (1.251 \text{ cm})^3 = 1.958 \text{ cm}^3$$

$$\varepsilon_{V_1} = \overline{V_1} \cdot e_{V_1} = \left(1.958 \text{ cm}^3\right) \cdot 0.012 = 0.02 \text{ cm}^3$$

$$V_1 = (1.96 \pm 0.02) \text{ cm}^3$$

Per il secondo cubo:

$$e_{V_2} = 3 e_{\ell_2} = 0.009$$

$$\overline{V_2} = \left(\overline{\ell_2}\right)^3 = (3.716 \text{ cm})^3 = 51.313 \text{ cm}^3$$

$$\varepsilon_{V_2} = \overline{V_2} \cdot e_{V_2} = \left(51.313 \text{ cm}^3\right) \cdot 0.009 = 0.5 \text{ cm}^3$$

$$V_2 = (51.3 \pm 0.5) \text{ cm}^3$$