Discrete Mathematics

topic	
Sets	week 1
Functions	week 2
Counting	week 3
Relations	week 4
Sequences	week 5
odular Arithmetic	week 6
ymptotic Notation	week 7
Orders	week 8

Jonathan Barrett

jonathan.barrett@cs.ox.ac.uk

Material by Andrew Ker
University of Oxford
Department of Computer Science

Discrete Mathematics

Jonathan Barrett

jonathan.barrett@cs.ox.ac.uk

Material by Andrew Ker
University of Oxford
Department of Computer Science

Chapter 4: Relations

Definition

A **relation** on A is a subset of $A \times A$.

Relations are usually written **infix**: a R b instead of $(a, b) \in R$

 $a \not R b$ instead of $(a, b) \notin R$

Definition

A **relation** on A is a subset of $A \times A$.

Relations are usually written **infix**: a R b instead of $(a, b) \in R$ $a \not R b$ instead of $(a, b) \notin R$

More generally, we say that a relation from A to B is a subset of $A \times B$.

Even more generally, a relation can be a subset on any cartesian product, e.g. a ternary relation between A, B and C is a subset of $A \times B \times C$.

Properties of Relations

Let R be a relation on A.

We say that R is

- reflexive if a R a for all $a \in A$
- symmetric if $a R b \Rightarrow b R a$ for all $a, b \in A$
- antisymmetric if a R b and $b R a \Rightarrow a = b$ for all $a, b \in A$
- **transitive** if a R b and $b R c \Rightarrow a R c$ for all $a, b, c \in A$

Properties of Relations

Let R be a relation on A.

We say that R is

- •reflexive if aRa
- •symmetric if $a R b \Rightarrow b R a$
- •antisymmetric if a R b and $b R a \Rightarrow a = b$
- •transitive if a R b and $b R c \Rightarrow a R c$

- for all $a \in A$
- for all $a, b \in A$
- for all $a, b \in A$
- for all $a, b, c \in A$

•irreflexive if $a \not \! R a$

- for all $a \in A$
- •serial if for every $a \in A$ there is some $b \in A$ with a R b

Properties of Relations

Let R be a relation on A.

We say that R is

•	reflexive if	a R a	for all a	$\iota \in A$
---	--------------	-------	-----------	---------------

• **symmetric** if
$$a R b \Rightarrow b R a$$
 for all $a, b \in A$

• antisymmetric if
$$a R b$$
 and $b R a \Rightarrow a = b$ for all $a, b \in A$

• transitive if
$$a R b$$
 and $b R c \Rightarrow a R c$ for all $a, b, c \in A$

• irreflexive if $a \not R a$ for all $a \in A$

• serial if for every $a \in A$ there is some $b \in A$ with a R b

NB: "not reflexive" and "irreflexive" do not mean the same thing.

NB: "not symmetric" and "antisymmetric" do not mean the same thing.

The Divides Relation

We write

 $m \mid n$

if n is an integer multiple of m. This is a relation on \mathbb{N}_+ (can be extended to \mathbb{Z}).

Equivalence Relations

An equivalence relation on A is a relation which is reflexive, symmetric, and transitive

$$a\stackrel{1}{R}a$$
 $a\stackrel{1}{R}b\Rightarrow b\stackrel{1}{R}a$ $a\stackrel{1}{R}b$ and $b\stackrel{1}{R}c\Rightarrow a\stackrel{1}{R}c$

If \sim is an equivalence relation on A then for each $a \in A$ we write

$$[a] = \{a' \in A \mid a' \sim a\}$$

This called the **equivalence class** of a.

Partitions

A **partition** of a set A is a collection of subsets $\{B_i \mid i \in I\} \subseteq \mathcal{P}(A)$ satisfying

i.
$$\bigcup_{i \in I} B_i = A$$

ii.
$$B_i \cap B_j = \emptyset$$
 for $i \neq j$

iii.
$$B_i \neq \emptyset$$
 for any i

Partitions

A **partition** of a set A is a collection of subsets $\{B_i \mid i \in I\} \subseteq \mathcal{P}(A)$ satisfying

i.
$$\bigcup_{i \in I} B_i = A$$
 The B_i cover A

Partitions

A **partition** of a set A is a collection of subsets $\{B_i \mid i \in I\} \subseteq \mathcal{P}(A)$ satisfying

<u>Claim</u> If \sim is an equivalence relation on A then:

- (a) the equivalence classes form a partition of A;
- (b) any partition of A defines an equivalence relation;
- (c) different equivalence relations correspond to different partitions.

The Divides Relation

We write

$$m \mid n$$

if n is an integer multiple of m. This is a relation on \mathbb{N}_+ (can be extended to \mathbb{Z}).

Modular Congruence

Fix a positive integer n. We can define an equivalence relation \equiv on \mathbb{Z} by

$$x \equiv y \pmod{n}$$
 if $n \mid (x - y)$

 $x \equiv y \pmod{n}$ an be understood as "x and y have the same remainder when divided by n."

Observational Equivalence

Define a relation on **programs** (in some fixed language) by

$$P_1 \approx P_2$$

If, given the same inputs, P_1 and P_2 always give the same outputs. It is an equivalence relation.

This is "equality" in functional programs if we take an <u>extensional</u> view.

Converse & Composition

If R is a relation on A then we define the **converse** relation by

$$a R^{-1}b$$
 if $b R a$.

If R and S are both relations on A then we define their composition $S \circ R$ by $a(S \circ R) b$ if there is some $x \in A$ such that aRx and xSb.

There are close connections with functional inverse and composition.

Transitive Closure

If R is a relation on A then we define the **transitive closure** of R, by $a R^+ b$

if there is some sequence $x_0, x_1, \ldots, x_n \in A$ with $n \ge 1$ such that $a = x_0, \quad x_0 R x_1, \quad x_1 R x_2, \quad \ldots, \quad x_{n-1} R x_n, \quad x_n = b$

Transitive Closure

If R is a relation on A then we define the **transitive closure** of R, by $a R^+ b$

if there is some sequence $x_0, x_1, \ldots, x_n \in A$ with $n \geq 1$ such that

$$a = x_0, \quad x_0 R x_1, \quad x_1 R x_2, \quad \dots, \quad x_{n-1} R x_n, \quad x_n = b$$

If R is a relation on A then we define the **reflexive transitive closure** of R, by

$$a R^* b$$

if there is some sequence $x_0, x_1, \ldots, x_n \in A$ with $n \geq 0$ such that

$$a = x_0, \quad x_0 R x_1, \quad x_1 R x_2, \quad \dots, \quad x_{n-1} R x_n, \quad x_n = b$$

 $a\,R^+$ b means that you can get from a to b by "doing" R at least once. $a\,R^*$ b means that you can get from a to b by "doing" R zero or more times.

Directed Graphs

A **directed graph** consists of a set of **nodes** N and a set of **edges** $E \subseteq N \times N$. We say that there is an edge from n_1 to n_2 if $(n_1, n_2) \in E$.

Digraphs are depicted by drawing the nodes, as labelled points in the plane, and an arrow from n_1 to n_2 whenever $(n_1, n_2) \in E$.

Directed Graphs

A **directed graph** consists of a set of **nodes** N and a set of **edges** $E \subseteq N \times N$. We say that there is an edge from n_1 to n_2 if $(n_1, n_2) \in E$.

Digraphs are depicted by drawing the nodes, as labelled points in the plane, and an arrow from n_1 to n_2 whenever $(n_1, n_2) \in E$.

This is the same as a relation on N.

It is rather common, in mathematics and computer science, to see the same definition given different terminology in different applications.

Example If |A| = n, how many relations are there, on A?

Example If |A| = n, how many relations are there, on A?

Answer 2^{n^2}

Example If |A| = n, how many relations are there, on A?

Answer 2^{n^2}

Example If |A| = n, how many **symmetric** relations are there, on A?

Example If |A| = n, how many relations are there, on A?

Answer 2^{n^2}

Example If |A| = n, how many **symmetric** relations are there, on A?

Answer $2^{\frac{n(n+1)}{2}}$

It is also quite easy to count <u>reflexive</u> relations, <u>antisymmetric</u> relations, and any combinations of these properties.

It is much harder to count the number of <u>transitive</u> relations.

The number of <u>equivalence relations</u> equals the number of partitions.

Discrete Mathematics

Jonathan Barrett

jonathan.barrett@cs.ox.ac.uk

Material by Andrew Ker
University of Oxford
Department of Computer Science

End of Chapter 4