Лабораторная работа 4.4.4 Интерферометр Фабри—Перо

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится измерение длины волны жёлтых линий ртути, жёлтого дублета натрия, а также определение спектральных характеристик интерферометра Фабри—Перо.

2 Теоретические сведения

Интерферометр Фабри–Перо состоит из двух стеклянных или кварцевых пластин с хорошо отполированными поверхностями. На одну поверхность каждой пластины нанесены отражающие свет покрытия. Интерферометр можно рассматривать как плоскопараллельную пластину, в которой происходят многократные отражения и интерференция световых волн (рис. 1).

Найдём условие возникновения интерференционной картины для световой волны с длиной λ . Выразим разность хода двух интерферирующих волн, падающих на интерферометр под углом θ :

$$\delta = 2L\cos\theta$$
,

где через δ обозначена разность хода двух волн, а через L – база интерферометра. Отсюда условие максимума интенсивности интерферирующих волн:

$$2L\cos\theta_m = m\lambda.$$

Оно же является условием резонанса, при выполнении которого интерферометр просветляется для данной длины волны λ .

Для малых углов и больших порядков спектра угловая дисперсия определяется соотношением:

$$D = \frac{d\theta}{d\lambda} = -\frac{m}{2m\sin\theta_m} \approx -\frac{1}{\lambda\theta_m}.$$

Разрешающая способность для порядка спектра $m \approx \frac{2L}{\lambda}$:

$$R = \frac{\lambda}{\Delta \lambda} = \frac{\pi \sqrt{r}m}{(1 - r)}$$

3 Оборудование и инструментальные погрешности

Экспериментальная установка, применяемая в данном опыте, схематически изображена на рис. 3. Свет от лампы, пройдя через линзу и светофильтр, попадает на интерферометр Фабри—Перо. Линза Π_0 служит для формирования пучка лучей (слегка сходящегося или слегка расходящегося). Интерференционные кольца наблюдаются в фокальной плоскости линзы Π через зрительную трубу, сфокусированную на фокальную плоскость. Диаметры колец измеряются с помощью микроскопа катетометра.

Интерферометр Фабри—Перо: L = 0.1 мм

Линзы: f = 110 мм**Светофильтры**

Ртутная и натриевая лампы Катетометр КН-6: $\Delta = \pm 0.001 \; \text{мм}$

4 Результаты измерений и обработка данных

Все измерения и расчёты в СИ.

Рис. 1: Прохождение волны через интерферометр Фабри-Перо

Рис. 2: а) Наблюдаемая интерференционная картина; б) Зависимость интенсивности света от угла θ

Рис. 3: Схема экспериментальной установки

Рис. 4: График $D^2(n)$

4.1 Ртутная лампа

Зелёный светофильтр Измерим координаты колец (табл. 1).

	~	_	D
n	$a_{ m Bepx}$	$a_{\scriptscriptstyle \mathrm{H}\hspace{1em} \scriptscriptstyle \mathrm{H}\hspace{1em} \scriptscriptstyle \mathrm{H}\hspace{1em}^{\scriptscriptstyle \mathrm{S}}}$	ע
1	190.42	175.51	14.91
2	193.75	172.37	21.38
3	196.1	169.54	26.56
4	198.08	167.77	30.31
5	199.74	166.37	33.37

Таблица 1: Координаты максимумов колец для зелёного светофильтра

По ней построим график $D^2(n)$ на рис. 4.

По углу наклона $k=\lambda/L=224\pm 6$ найдём базу интерферометра:

$$L=\frac{4f^2\lambda}{k}=0.12\pm0.01~\mathrm{mm},$$

что неплохо согласуется с фактическим значением.

Жёлтый светофильтр Для жёлтого компонента спектра ртути замерили координаты 5 колец. Результаты в табл. 2. По этим данным построим график на рис 5. Систематическая погрешность значений не более 1% — пренебрегаем.

n	$a_{ m верх}^{{ m \tiny T\"e}{MH}}$	$a_{\scriptscriptstyle \mathrm{H}^{\scriptscriptstyle \mathrm{H}}^{\scriptscriptstyle \mathrm{H}}}^{\scriptscriptstyle \mathrm{T}^{\scriptscriptstyle \mathrm{E}}_{\scriptscriptstyle \mathrm{M}}{\scriptscriptstyle \mathrm{H}}}$	$a_{ m sepx}^{ m \scriptscriptstyle CBETЛ}$	асветл	$1/\Delta D$	\overline{D}
1	189.53	178.32	186.78	180.85	0.18939	8.57
2	193.65	173.98	192.53	175.22	0.42373	18.49
3	196.61	171.27	195.64	171.99	0.59172	24.495
4	198.84	168.74	198.13	169.47	0.69444	29.38
5	201.1	166.71	200.28	167.19	0.76923	33.74

Таблица 2: Координаты максимумов колец для «тёмного» и «светлого» жёлтых светофильтров

Рис. 5: График зависимости $\overline{\Delta D}(\frac{1}{D})$

Из графика найдём $\Delta \lambda$ – разность длин волн жёлтой пары ртути.

$$\Delta\lambda = \frac{\lambda\overline{D}\Delta D}{4f^2} = \frac{\lambda k}{4f^2} = (4.9 \pm 0.2) \; \text{Å}$$

Здесь погрешность получена из относительной погрешности k.

Оценим максимальный порядок интерференции m для желтой линии ртути:

$$m_{\mathrm{жёл}} = \frac{2L\cos\theta}{\lambda} pprox \frac{2L}{\lambda} = 345$$

Кроме того, оценим дисперсионную область:

$$\Delta \lambda_{\text{жёл}} = \frac{\lambda^2}{2L} = 149 \text{ Å}.$$

Найдём разрешающую способность прибора:

$$\delta r = (0.8 \pm 0.01) \; \text{mm}$$

$$R = \frac{4f^2}{D\delta r} = 5040 \pm 100$$

Погрешность определяется по соответствующей формуле для сложения инструментальных погрешностей. Найдём добротность:

$$Q = \frac{2\pi L}{\lambda (1 - r)} = 7600 \pm 300$$

при r = 0.85

Отсюда число интерферирующих лучей:

$$N = \frac{Q}{m} = 21$$

4.2 Натриевая лампа

Аналогично, построим графики $D^2(n)$ и $\overline{D}(1/\Delta D)$ на рис. 6 и рис. 7 соответственно. Так же найдём базу интерферометра:

$$L = 0.13 \pm 0.01$$
 mm.

n	D^2	\overline{D}	$1/\Delta D$
1	80	8.96	0.50251
2	299	17.299	1.02145
3	519	22.776	1.35135
4	725	26.925	1.47059
5	938	30.6215	1.82648
6	1142	33.795	1.8018

Таблица 3: Данные для построения графиков 6, 7 (Натрий)

Рис. 6: График зависимости $D^2(n)$

Найдём разность длин волн:

$$\Delta \lambda = \frac{\lambda k}{4f^2} = 5.6 \pm 0.3 \text{ Å}$$

Следует заметить, что одна из точек графика 7 не ложится на прямую – видимо, дрогнула рука – поэтому эту точку пришлось не учитывать.

Оценим линейную дисперсию интерферометра для n=5 для ртути:

$$D^*_{\text{9KCH}} = \frac{\Delta D}{2\Delta \lambda} = 0.54 \pm 0.08 \; \text{mm/Å}; \quad D^*_{\text{Teop}} = \frac{2f^2}{\lambda D} = 0.44 \; \text{mm/Å}$$

5 Вывод

По результатам проведённых опытов, определили характеристики интерферометра Фабри—Перо, а также исследовали спектры ртути и натрия, в частности длины волн жёлтых линий ртути и жёлтого дублета натрия; определили для них разность длин волн.

Рис. 7: График зависимости $\overline{D}(1/\Delta D)$

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н. А. Принципы оптики, 2014
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 2. Оптика: учебное пособие под ред. А. В. Максимычева