Report for GEO1001 Homework 01

DONG Haoyang

5302501 H.Dong-2@student.tudelft.nl

Part I

Introduction

This is a report for GEO1001.2020 homework 01, the code files and other files can be find in: HaoyangDong's Github Repository: GEO1001.2020-hw01

The dataset [1] used in this work is posted on 24.08.2020 by Daniela Maiullari, Clara Garcia Sanchez.

Part II

A1

1 A11

Question:

Compute mean statistics (mean, variance and standard deviation for each of the sensors variables), what do you observe from the results?

Answer:

Statistics can be found in Table 1.1.

From the results, we can find the mean, variance, and standard deviation values of the measurement item like Temperature, Relative Humidity, and Global Temperature for all the sensors are similar, which may show that these sensors are set nearby and at similar altitude. Also, I found that the mean of Wind Speed of Sensor D is the highest.

Measurement item	Device	Mean	Variance	Standard deviation
Wind Direction	A	209.406	10104.858	100.523
Wind Direction	В	183.412	9973.188	99.866
Wind Direction	C	183.589	7700.249	87.751
Wind Direction	D	198.327	8130.602	90.17
Wind Direction	E	223.956	9304.524	96.46
Wind Speed	A	1.29	1.251	1.118
Wind Speed	В	1.242	1.301	1.141
Wind Speed	C	1.371	1.43	1.196
Wind Speed	D	1.582	1.739	1.319
Wind Speed	E	0.596	0.511	0.715
Crosswind Speed	Α	0.965	0.926	0.962

Crosswind Speed	В	0.836	0.878	0.937
Crosswind Speed	C	0.963	1.042	1.021
Crosswind Speed	D	1.211	1.451	1.205
Crosswind Speed	E	0.439	0.316	0.562
Headwind Speed	A	0.164	1.035	1.017
Headwind Speed	В	-0.13	1.256	1.121
Headwind Speed	Č	-0.263	1.271	1.127
Headwind Speed	D	-0.301	1.232	1.11
Headwind Speed	E	0.195	0.319	0.565
Temperature	A	17.969	15.858	3.982
Temperature	В	18.065	16.622	4.077
Temperature	C	17.913	16.098	4.012
Temperature	D	17.996	16.099	4.012
Temperature	E	18.354	19.035	4.363
Globe Temperature	A	21.545	68.164	8.256
Globe Temperature	В	21.799	66.023	8.125
Globe Temperature	C	21.587	67.914	8.241
Globe Temperature	D	21.359	61.178	7.822
Globe Temperature	E	21.176	63.19	7.949
Wind Chill	A	17.838	16.258	4.032
Wind Chill	В	17.946	17.029	4.127
	C			
Wind Chill		17.773	16.534	4.066
Wind Chill	D	17.835	16.55	4.068
Wind Chill	E	18.294	19.129	4.374
Relative Humidity	A	78.185	375.858	19.387
Relative Humidity	В	77.878	408.458	20.21
•	Č	77.963		19.351
Relative Humidity			374.471	
Relative Humidity	D	77.942	389.698	19.741
Relative Humidity	E	76.793	406.33	20.158
Heat Stress Index	Α	17.9	14.991	3.872
Heat Stress Index	В	18.004	15.433	3.928
Heat Stress Index	Č	17.828	15.35	3.918
Heat Stress Index	D	17.922	15.112	3.887
Heat Stress Index	E	18.286	18.468	4.297
Dew Point	Α	13.554	9.72	3.118
Dew Point	В	13.531	9.633	3.104
Dew Point	C	13.458	10.08	3.175
	D			
Dew Point		13.509	10.068	3.173
Dew Point	E	13.559	9.419	3.069
Psychro Wet Bulb Temperature	A	15.271	6.941	2.635
Psychro Wet Bulb Temperature	В	15.296	6.768	2.601
Psychro Wet Bulb Temperature	C	15.197	7.236	2.69
Psychro Wet Bulb Temperature	Ď	15.26	7.042	2.654
Psychro Wet Bulb Temperature	E	15.407	6.995	2.645
Station Pressure	A	1016.168	38.456	6.201
Station Pressure	В	1016.657	36.827	6.069
Station Pressure	C	1016.689	37.676	6.138
Station Pressure	D	1016.728	34.974	5.914
Station Pressure				
	E	1016.166	38.924	6.239
Barometric Pressure	Α	1016.128	38.452	6.201
Barometric Pressure	В	1016.616	36.814	6.067
Barometric Pressure	C	1016.652	37.66	6.137
Barometric Pressure	Ď	1016.689	34.938	5.911
Barometric Pressure	E			
		1016.128	38.919	6.239
Altitude	A	-25.987	2662.565	51.6
Altitude	В	-30.058	2544.68	50.445
Altitude	C	-30.339	2607.48	51.063
Altitude	Ď	-30.653	2418.746	49.181
Altitude	E	-25.961	2691.266	51.877
Aittude	L	23.701	2071.200	51.077

Density Altitude	A	137.317	26499.338	162.786
Density Altitude	В	135.581	26852.461	163.867
Density Altitude	C	129.623	26975.695	164.243
Density Altitude	D	132.411	26505.408	162.805
Density Altitude	E	150.84	29702.921	172.345
NA Wet Bulb Temperature	A	15.982	10.008	3.164
NA Wet Bulb Temperature	В	15.997	9.805	3.131
NA Wet Bulb Temperature	C	15.934	10.476	3.237
NA Wet Bulb Temperature	D	15.916	9.983	3.16
NA Wet Bulb Temperature	E	15.937	9.428	3.071
WBGT	A	17.254	16.129	4.016
WBGT	В	17.322	15.829	3.979
WBGT	C	17.225	16.54	4.067
WBGT	D	17.177	15.501	3.937
WBGT	E	17.186	15.484	3.935
TWL	A	301.393	814.437	28.538
TWL	В	299.452	789.75	28.102
TWL	C	301.9	766.224	27.681
TWL	D	305.255	615.761	24.815
TWL	E	284.115	1289.392	35.908
Direction Mag	A	208.905	10101.596	100.507
Direction Mag	В	183.217	9971.418	99.857
Direction Mag	C	183.084	7701.506	87.758
Direction Mag	D	197.826	8132.027	90.178
Direction Mag	E	223.897	9264.263	96.251

Table 1.1: mean, variance and standard deviation for each of the sensors variables

2 A12

Question:

Create 1 plot that contains histograms for the 5 sensors Temperature values. Compare histograms with 5 and 50 bins, why is the number of bins important?

Answer:

The plots show in Figure 2.1

The proper number of bins for a histogram is important. If the number of bins used is too small, the histogram cannot describe the data well. If there are have too many bins, the histogram will look like a broken comb, which will not give people a sense of distribution.

3 A13

Question:

Create 1 plot where frequency poligons for the 5 sensors Temperature values overlap in different colors with a legend.

Answer:

The plot shows in Figure 3.1.

4 A14

Question:

Generate 3 plots that include the 5 sensors boxplot for: Wind Speed, Wind Direction and Temperature.

Figure 2.1: Histograms for the 5 sensors Temperature values. Compare histograms with 5 and 50 bins 4

Figure 3.1: Frequency poligons for the 5 sensors Temperature values overlap in different colors with a legend

Figure 4.1: The 5 sensors boxplot for: Wind Speed, Wind Direction and Temperature

Answer:

The plot shows in Figure 4.1.

Part III

A2

5 A21

Question:

Plot PMF, PDF and CDF for the 5 sensors Temperature values in independent plots (or subplots). Describe the behaviour of the distributions, are they all similar? what about their tails?

Answer:

The plot shows in Figure 5.1.

Since the CDF, cumulative distribution function, maps from a value to its percentile rank, it looks quiet different from other plots. A PDF or KDE shows density rather than probability but a KDE discribes the Temperature values better than a normal PDF. Also the normal PDF has thinner tails

Figure 5.1: PMF, CDF, normal PDF, and KDE for the 5 sensors Temperature values

than the PMF and KDE. The PMF and KDE look similar the main difference is that the y-axis of PMF means probability whille that of KDE means density.

6 A22

Question:

For the Wind Speed values, plot the pdf and the kernel density estimation. Comment the differences.

Answer:

The plot shows in Figure 6.1.

A normal PDF in this case can not discribe the data very well. Meanwhile, the KDE shows more details and the skewness also shows more apparent in the KDE plot.

Figure 6.1: The normal PDF and the KDE for the Wind Speed

Part IV

A3

7 A31

Question:

Compute the correlations between all the sensors for the variables: Temperature, Wet Bulb Globe Temperature (WBGT), Crosswind Speed. Perform correlation between sensors with the same variable, not between two different variables; for example, correlate Temperature time series between sensor A and B. Use Pearsons and Spearmanns rank coefficients. Make a scatter plot with both coefficients with the 3 variables.

Answer:

The plot shows in Figure 7.1.

8 A32

Question:

What can you say about the sensors correlations?

Answer:

In Figure 7.1, we can find that, all the sensors show strong correlation in Temperature and WBGT and for the Crosswind Speed, the C and D show strong correlation but B and E show poor correlation. In fact, all the combinations of E show poor correlation in Crosswind Speed.

9 A33

Question:

Figure 7.1: Scatter plots of Pearsons and Spearmanns rank coefficients between all the sensors

If we told you that that the sensors are located as follows, hypothesize which location would you assign to each sensor and reason your hypothesis using the correlations.

Answer:

For all the combinations of E show poor correlation in Crosswind Speed and Wind Direction, E should be the most isolated one. C and D show strong correlations in both Crosswind Speed and Wind Direction. Meanwhile, B and C show strong correlations in Wind Direction, and A and E have almost zero correlations.

So the location of each sensors should be like Figure 9.1.

Part V

A4

10 A41

Question:

Plot the CDF for all the sensors and for variables Temperature and Wind Speed, then compute the 95% confidence intervals for variables Temperature and Wind Speed for all the sensors and save them in a table (txt or csv form).

Figure 9.1: Locations of the sensors

Answer:

The plot shows in Figure 10.1. The csv form can be found in: HaoyangDong's Github Repository: GEO1001.2020-hw01

11 A42

Question:

Test the hypothesis: the time series for Temperature and Wind Speed are the same for sensors:

- 1) E, D;
- 2) D, C;
- 3) C, B;
- 4) B, A.

Answer:

Temperature same hypothesis for E and D: Statistics=3.000, p= $0.003 \rightarrow$ Different distributions (reject H0)

Wind Speed same hypothesis for E and D: Statistics=-32.673, p=0.000 \rightarrow Different distributions (reject H0)

Figure 10.1: The CDF for all the sensors and for variables Temperature and Wind Speed

Temperature same hypothesis for D and C: Statistics=0.729, p=0.466 \rightarrow Same distributions (fail to reject H0)

Wind Speed same hypothesis for D and C: Statistics=5.871, p= $0.000 \rightarrow$ Different distributions (reject H0)

Temperature same hypothesis for C and B: Statistics=-1.324, p=0.185 \rightarrow Same distributions (fail to reject H0)

Wind Speed same hypothesis for C and B: Statistics=3.893, p=0.000 \rightarrow Different distributions (reject H0)

Temperature same hypothesis for B and A: Statistics=0.841, p=0.400 \rightarrow Same distributions (fail to reject H0)

Wind Speed same hypothesis for B and A: Statistics=-1.501, p=0.134 \rightarrow Same distributions (fail to reject H0)

12 A42

Question:

What could you conclude from the p-values?

Answer:

The time series for Temperature and Wind Speed are the same for sensors A and B. The time series for Temperature are the same for C and D and C and B. The time series for Temperature and Wind Speed are the different for sensors D and E.

Part VI

Bonus question

Question:

Your employer wants to estimate the day of maximum and minimum potential energy consumption due to air conditioning usage. To hypothesize regarding those days, you are asked to identify the hottest and coolest day of the measurement time series provided. How would you do that? Reason and program the python rutine that would allow you to identify those days.

Answer:

By summing up the temperature values for all sensors in the same day and computering the mean temperature, then sort these mean values and find the min and max.

The hotest day: 2020/06/26 The coldest day: 2020/06/10

References

[1] D. Maiullari and C. G. Sanchez, "Measured climate data in rijsenhout," 2020. [Online]. Available: https://data.4tu.nl/articles/dataset/Measured_Climate_Data_in_Rijsenhout/12833918/1