41. Мера на многообразии. Интеграл первого рода на многообразии. Частные случаи интеграла I рода на многообразии: криволинейный и поверхностный, вычислительные формулы для них

Мера на многообразии μ_M

Пусть $M \in M_{kn}^{(1)}$, $E \in A_M$.

- 1. Если E малое, U- стандартная окрестность, $E\subset U$, arphi- параметризация U, то $\mu_M E=\int_{arphi^{-1}(E)}\sqrt{D_arphi}d\mu_k.$
- 2. Если $E=\bigcup_{
 u}E_{
 u}$ (дизъюнктные малые измеримые множества), то $\mu_M E=\sum_{
 u}\mu_M E_{
 u}.$

Функция μ_M называется мерой на многообразии M.

Криволинейный интеграл первого рода

Пусть Γ — гладкая кривая (k=1), заданная параметризацией $x=\gamma(t)$, $t\in\langle a,b\rangle$. Тогда:

• Мера (длина) кривой:

$$\mu\Gamma=\int_a^b|\gamma'(t)|dt.$$

• Криволинейный интеграл первого рода:

$$\int_{\Gamma}fd\mu_{\Gamma}=\int_{a}^{b}(f\circ\gamma)(t)\cdot|\gamma'(t)|dt.$$

Классическое обозначение: $\int_{\Gamma} f ds$, где ds — элемент длины дуги.

Поверхностный интеграл первого рода

Пусть S- гладкая поверхность (k=n-1), заданная параметризацией $\varphi:G\subset\mathbb{R}^{n-1}\to\mathbb{R}^n$. По формуле Вине–Коши:

$$\sqrt{D_{arphi}} = \sqrt{\sum_{j=1}^n (\det arphi_j')^2} = |\mathcal{N}_{arphi}|,$$

где \mathcal{N}_{arphi} — вектор нормали к поверхности. Тогда:

• Мера (площадь) поверхности:

$$\mu S = \int_G |\mathcal{N}_{\varphi}| d\mu_{n-1}.$$

• Поверхностный интеграл первого рода: $\int_S f d\mu_S = \int_G (f\circ arphi) \cdot |\mathcal{N}_arphi| d\mu_{n-1}.$

42. Ориентация многообразий. Понятия: одинаково ориентирующие параметризации, ориентация окрестностей, согласованные ориентации окрестностей, ориентированное многообразие, ориентируемое многообразие. Возможное количество ориентаций связного многообразия

Одинаково ориентирующие параметризации

Две параметризации φ и ψ стандартной окрестности U многообразия M называются согласованными (или одинаково ориентирующими), если для перехода $L:\Pi\to\Pi$ между ними якобиан $\det L'>0$ на всей области Π . Если $\det L'<0$, параметризации называются противоположно ориентирующими.

Ориентация окрестностей

Ориентация окрестности U — это выбор класса эквивалентности параметризаций, для которых переходы имеют положительный якобиан. Параметризации этого класса называются положительно ориентирующими, а остальные — отрицательно ориентирующими.

Согласованные ориентации окрестностей

Две ориентированные окрестности U и V называются согласованными, если либо их пересечение пусто, либо для любых положительно ориентирующих параметризаций φ (для U) и ψ (для V) переход L между ними имеет $\det L'>0$ в области пересечения.

Ориентированное многообразие

Многообразие M называется ориентированным, если существует набор попарно согласованных ориентаций всех его стандартных окрестностей. Такой набор называется ориентацией многообразия.

Ориентируемое многообразие

Многообразие M называется ориентируемым, если существует хотя бы одна его ориентация (т.е. если его можно превратить в ориентированное многообразие выбором подходящих локальных ориентаций).

Количество ориентаций связного многообразия

Если многообразие M связно и ориентируемо, то оно имеет ровно две ориентации: исходную и противоположную (где во всех окрестностях выбран "обратный" класс параметризаций).

43. Понятие направления, лемма о существовании направлений

Кривая как одномерное многообразие

При k=1 гладкое многообразие M в \mathbb{R}^n называется кривой. Это означает, что локально кривая устроена как интервал числовой прямой.

Параметрическое задание кривой

Кривая Γ задаётся параметризацией $\gamma \in C^{(1)}((a,b) o \mathbb{R}^n)$, где:

- 1. γ инъективна (кроме, возможно, концов для замкнутых кривых)
- 2. γ регулярна ($\gamma'(t) \neq 0$ для всех t)
- 3. $\Gamma = \gamma((a,b))$

Определение направления на кривой

Пусть Γ — гладкая кривая в \mathbb{R}^n . Отображение $au\in C(\Gamma o\mathbb{R}^n)$ называется направлением на Γ , если:

$$orall x \in \Gamma$$
 $au(x) \in T_x \Gamma$ и $| au(x)| = 1,$

где $T_x\Gamma$ — касательное пространство к Γ в точке x.

Лемма о существовании двух направлений

На связной гладкой кривой Γ , заданной параметризацией γ (соотношения (12.6)), существуют ровно два направления:

$$au_\pm = \pm rac{\gamma'}{|\gamma'|} \circ \gamma^{-1}.$$

(Для замкнутого пути γ под $\gamma^{-1}(\gamma(a))$ можно понимать как a, так и b).

44. Сторона поверхности, лемма о существовании стороны

Определение двусторонней поверхности и Стороны

Связная поверхность S в \mathbb{R}^n называется *двусторонней*, если существует непрерывное отображение $\mathcal{N} \in C(S \to \mathbb{R}^n)$ (называемое *стороной* поверхности S), такое что для всех $x \in S$:

$$\mathcal{N}(x) \perp T_x S$$
 и $|\mathcal{N}(x)| = 1$.

Лемма о связи двусторонности и ориентируемости

Для того чтобы связная поверхность S была двусторонней, необходимо и достаточно, чтобы она была ориентируемой. При этом S имеет ровно две стороны.

Построение стороны через параметризацию

Если $\varphi:G o U\subset S$ — параметризация стандартной окрестности U, то сторона U задаётся формулой:

$$\mathcal{N}_{\pm}(x) = \pm rac{\mathcal{N}_{arphi}}{|\mathcal{N}_{arphi}|} \circ arphi^{-1}(x),$$

где \mathcal{N}_{arphi} — векторное произведение частных производных:

_ _

$$\mathcal{N}_{arphi} = rac{\partial arphi}{\partial u^1} imes rac{\partial arphi}{\partial u^2} imes \cdots imes rac{\partial arphi}{\partial u^{n-1}}.$$

45. Теорема о крае многообразия и его ориентации. Понятие ориентации края, согласованной с ориентацией многообразия. Пример согласованных ориентаций на поверхности и ограничивающей кривой.

Теорема о крае многообразия

Если M-k-мерное многообразие класса $C^{(r)}$, то его край ∂M является (k-1)-мерным многообразием класса $C^{(r)}$ без края.

Если M ориентируемо, то ∂M также ориентируемо.

Понятие ориентации края, согласованной с ориентацией многообразия

Ориентация края ∂M , заданная формулой $ilde{arphi}_x(ilde{u})=arphi_x(0, ilde{u})$ (где $arphi_x$ — параметризация M и $ilde{u}\in\Pi_{k-1}$), называется индуцированной или согласованной с ориентацией M.

Пример согласованных ориентаций

Пусть $G\subset\mathbb{R}^2$ — область с гладкой границей S. Если G ориентирована естественным образом (якобиан > 0), то согласованная ориентация S задаётся касательным вектором τ , при котором G остаётся слева при обходе границы. Нормаль $\mathcal N$ направлена наружу.

Доп

 $\Pi_{k-1}=(-1,1)^{k-1}$ - это открытый (k-1)-мерный куб в пространстве параметров $\tilde{u}=(u_2,\dots,u_k)$, используемый для параметризации края ∂M .

46. Полилинейные формы, кососимметрические формы - определения и элементарные свойства,

внешнее произведение форм

Полилинейные формы

Пусть X,Y — векторные пространства над полем $K,p\in\mathbb{N}$. Отображение $F:X^p\to Y$ называется p-линейным, если оно линейно по каждому аргументу. Если Y=K, то F называется p-формой на X. Множество всех p-форм обозначается $\mathcal{F}_p(X)$. При p=0 под 0 -формами понимаются элементы Y.

Разложение по базису

Если $\dim X = n < +\infty$ и e^1, \ldots, e^n — базис X, то для $F \in \mathcal{F}_p(X)$:

$$F = \sum_{i_1,\ldots,i_p=1}^n a_{i_1,\ldots,i_p} \pi_{i_1} \otimes \ldots \otimes \pi_{i_p},$$

где π_i — проектор на i-ю координату, а коэффициенты $a_{i_1,\ldots,i_p}=F(e^{i_1},\ldots,e^{i_p}).$

Кососимметрические формы

Форма $F \in \mathcal{F}_p(X)$ называется кососимметрической, если для любых двух аргументов:

$$F(x^1,\ldots,x^i,\ldots,x^j,\ldots,x^p) = -F(x^1,\ldots,x^j,\ldots,x^i,\ldots,x^p).$$

Множество таких форм обозначается $\mathcal{E}_p(X)$. При p>n все формы нулевые.

Базис в $\mathcal{E}_p(X)$

Для $p \leq n$ форма F раскладывается как:

$$F = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1,\ldots,i_p} \pi_{i_1} \wedge \ldots \wedge \pi_{i_p},$$

где \wedge — внешнее произведение, а $\pi_{i_1} \wedge \ldots \wedge \pi_{i_p}$ вычисляется через определитель матрицы из координат векторов.

Внешнее произведение форм

Для $F\in\mathcal{E}_p(X)$ и $G\in\mathcal{E}_q(X)$ их внешнее произведение $F\wedge G\in\mathcal{E}_{p+q}(X)$ определяется на базисных формах как:

$$(\pi_{i_1}\wedge\ldots\wedge\pi_{i_p})\wedge(\pi_{j_1}\wedge\ldots\wedge\pi_{j_q})=\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q},$$

а затем продолжается по линейности.

Формула для коэффициентов

Если F и G заданы в виде (12.19), то:

$$F\wedge G=\sum_{1\leq i(j)_1<\ldots< i(j)_p\leq n}a_{i_1,\ldots,i_p}b_{j_1,\ldots,j_q}\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q}.$$

47. Дифференциальные формы; координатное представление дифференциальных форм. Внешнее дифференциальных форм

Определение дифференциальной формы

Пусть $G\subset\mathbb{R}^n$, $p\in\mathbb{N}$. Дифференциальной формой степени p (p-формой) на G называется функция $\omega:G\times(\mathbb{R}^n)^p\to\mathbb{R}$, такая что для всех $x\in G$ функция $\omega(x;\cdot)$ принадлежит пространству $\mathcal{E}_p(\mathbb{R}^n)$ (является кососимметрической p-линейной формой). 0-формой называется функция $f:G\to\mathbb{R}$.

Координатное представление дифференциальных форм

Пусть $p\in\mathbb{N}$. Дифференциальная p-форма ω в открытом множестве $G\subset\mathbb{R}^n$ может быть записана в виде:

$$\omega = \sum_{1 \leq i_1 < \dots < i_p \leq n} a_{i_1 \dots i_p}(x) dx_{i_1} \wedge \dots \wedge dx_{i_p},$$

где $a_{i_1\dots i_p}:G o\mathbb{R}$ — коэффициенты формы, а $dx_{i_1}\wedge\dots\wedge dx_{i_p}$ — базисные внешние

произведения дифференциалов координат. Для p=n форма имеет вид $\omega=a(x)dx_1\wedge\ldots\wedge dx_n$.

Внешнее дифференцирование дифференциальных форм

Пусть G открыто в \mathbb{R}^n , $p\in\mathbb{Z}_+$, $r\in\mathbb{N}\cup\{\infty\}$. Внешнее дифференцирование — это оператор $d:\Omega_p^{(r)}(G) o\Omega_{p+1}^{(r-1)}(G)$, определяемый так:

1. Для 0-формы $\omega=f\in C^{(r)}(G)$:

$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} dx_i.$$

2. Для p-формы $\omega = \sum_I a_I(x) dx_I$ (где $I = (i_1 < \cdots < i_p)$):

$$d\omega = \sum_I da_I \wedge dx_I = \sum_I \left(\sum_{j=1}^n rac{\partial a_I}{\partial x_j} dx_j
ight) \wedge dx_I.$$

Свойства:

- 1. d линейно.
- 2. $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^{\deg \omega} \omega \wedge d\lambda$ для форм ω, λ .
- 3. $d^2\omega = d(d\omega) = 0$.

48. Перенос дифференциальных форм. Теорема о свойствах переноса форм

Определение переноса дифференциальных форм

Пусть G — открытое множество в \mathbb{R}^n , U — открытое множество в \mathbb{R}^m , $p\in\mathbb{Z}_+$, $\omega\in\Omega_p(G)$, $T\in C^{(1)}(U\to G)$. Перенесённая форма $T^*\omega$ определяется равенством:

$$(T^*\omega)(u;du^1,\ldots,du^p)=\omega(T(u);T'(u)du^1,\ldots,T'(u)du^p),$$

где $u\in U, du^1,\dots, du^p\in\mathbb{R}^m$. Отображение T^* называется переносом форм или заменой переменных.

Свойства переноса форм

- 1. Линейность: $T^*(\alpha\omega+\beta\lambda)=\alpha T^*\omega+\beta T^*\lambda$.
- 2. Умножение на функцию: $T^*(f\omega)=(f\circ T)T^*\omega$ для $f\in C^{(r)}(G)$.
- 3. Внешнее произведение: $T^*(\omega\wedge\lambda)=T^*\omega\wedge T^*\lambda$ для $\lambda\in\Omega_q^{(r)}.$
- 4. Дифференциал: $T^*d\omega=dT^*\omega$ при $r\geq 1.$
- 5. Явная формула: Для $\omega = \sum a_{i_1,\ldots,i_p} dx_{i_1} \wedge \ldots \wedge dx_{i_p}$,

$$T^*\omega = \sum (a_{i_1,\ldots,i_p}\circ T)\cdot \det\left(rac{\partial T_{i_k}}{\partial u_{j_l}}
ight)du_{j_1}\wedge\ldots\wedge du_{j_p}.$$

6. Композиция: $(T\circ S)^\omega=S^(T^*\omega)$, если V открыто в $\mathbb{R}^i,S\in C^{(1)}(V o U)$.

49 Поверхностный интеграл второго рода. Выражением поверхностного интеграла второго рода через поверхностный интеграл первого рода. Выражения для интеграла 2го рода в случае размерностей многообразия 1 и 2. Примеры. Лемма Пуанкаре в общем случае (без док-ва)

Определение интеграла второго рода

Пусть G открыто в \mathbb{R}^n , $M\subset G$ — ориентированное k-мерное многообразие класса $\mathbb{M}^{(1)}_{k,n}$, $\omega\in\Omega_k(G)$ — дифференциальная форма степени k, $E\in\mathbb{A}_M$ — малое измеримое множество. Тогда интеграл второго рода определяется как:

$$\int_E \omega = \int_{arphi^{-1}(E)} \widehat{arphi^*\omega} \, d\mu_k,$$

где φ — положительно ориентирующая параметризация стандартной окрестности U, содержащей E, а $\varphi^*\omega$ — pullback формы ω .

Связь с интегралом первого рода

Для малого множества E и формы $\omega = \sum a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$ интеграл второго рода выражается через интеграл первого рода:

$$\int_E \omega = \int_E \left\langle a, rac{\det arphi'}{\sqrt{\mathcal{D}_arphi}} \circ arphi^{-1}
ight
angle d\mu_M,$$

где $\mathcal{D}_{arphi} = \sum (\det arphi'_{j_1 \dots j_k})^2$ — грамиан параметризации.

Примеры для размерностей 1 и 2:

- Для k=1 (кривая): $\int_E \omega = \int_E \langle a, au
 angle d\mu_1$, где au единичный касательный вектор.
- Для k=2, n=3 (поверхность):

$$\int_S \omega = \int_S \langle F, N
angle d\mu_S, \quad F = (P,Q,R), \, N$$
 — единичная нормаль.

Теорема Пуанкаре (без доказательства):

Если G — звездная область в \mathbb{R}^n и ω — замкнутая форма ($d\omega=0$), то ω точна ($\exists \eta:\omega=d\eta$). Для форм класса C^r первообразная также C^r .

50. Общая формула Стокса. Частные случаи и следствия общей формулы Стокса: формула Ньютона-Лейбница для криволинейных интегралов, формула Грина, классическая формула Стокса, формула Гаусса-Остроградского

Общая формула Стокса для многообразий

Пусть $M\in \mathbb{M}_{kn}^{(2)}$ — компактное u ориентированное многообразие, G — открытое множество в \mathbb{R}^n , $M\subset G$, $\omega\in \Omega_{k-1}^{(1)}(G)$. Тогда:

$$\int_M d\omega = \int_{\partial M} \omega.$$

Формула Грина

Пусть D — ограниченная область в \mathbb{R}^2 с гладкой границей ∂D , G открыто в \mathbb{R}^2 , $\overline{D}\subset G$, $P,Q\in C^{(1)}(G)$. Тогда:

$$\iint_D (Q_x'-P_y')\,dx\,dy = \int_{\partial D} P\,dx + Q\,dy.$$

Классическая формула Стокса

Пусть S — компактная ориентированная поверхность класса $C^{(2)}$ в \mathbb{R}^3 с краем ∂S , G открыто в \mathbb{R}^3 , $S\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iint_S (R_y'-Q_z')dy\wedge dz + (P_z'-R_x')dz\wedge dx + (Q_x'-P_y')dx\wedge dy = \int_{\partial S} P\,dx + Q\,dy + R\,dz.$$

Формула Гаусса-Остроградского

Пусть V — ограниченная область в \mathbb{R}^3 с гладкой границей ∂V , G открыто в \mathbb{R}^3 , $V\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iiint_V (P'_x + Q'_y + R'_z) \, dx \, dy \, dz = \iint_{\partial V} P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy.$$

51: Неравенства Минковского и Гёльдера, существенный супремум, пространства $L_p(X,\mu)$

Теорема (Неравенство Гёльдера):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы на E, существует $\int_E fg\,d\mu$, $1< p<+\infty$, $\frac{1}{p}+\frac{1}{q}=1$. Тогда:

$$\left|\int_E fg\,d\mu
ight| \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} \left(\int_E |g|^q\,d\mu
ight)^{1/q}.$$

Неравенство Минковского для интегралов

Теорема (Неравенство Минковского):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы, конечны почти

везде на E, $1 \leq p < +\infty$. Тогда:

$$\left(\int_E |f+g|^p\,d\mu
ight)^{1/p} \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} + \left(\int_E |g|^p\,d\mu
ight)^{1/p}.$$

Существенный супремум функции

Для измеримой функции $f:E o\overline{\mathbb{R}}$ почти везде на пространстве с мерой (X,\mathbb{A},μ) существенный супремум:

$$\operatorname{ess\,sup}_{x\in E}f(x)=\inf\{A\in\mathbb{R}:f(x)\leq A$$
 почти везде на $E\}.$

(Если таких A нет, полагаем $+\infty$.)

Пространства $L_p(X,\mu)$

Для $1 \leq p < +\infty$:

$$L_p(E,\mu) = \left\{ f:$$
 н.в. $E o \mathbb{R}$ измеримы, $\int_E |f|^p \, d\mu < +\infty
ight\}.$

Для $p=+\infty$:

$$L_{\infty}(E,\mu)=\{f:$$
 н.в. $E o\mathbb{R}$ измеримы, $\operatorname{ess\,sup}|f|<+\infty\}$.

Норма: $\|f\|_p = \left(\int_E |f|^p\,d\mu\right)^{1/p}$ (для $L_\infty - \operatorname{ess\,sup}|f|$).

52: Вложения пространств Лебега $L_p(X,\mu)$ и пространств ℓ_p . Несравнимость пространств L_p

Вложение $L_q \subset L_p$ при конечной мере

Если мера пространства $\mu E<+\infty$ и индексы удовлетворяют условию $1\leq p< q\leq +\infty$, то $L_q(E,\mu)\subset L_p(E,\mu)$. Более того, для любой функции $f\in L_q(E,\mu)$ выполняется неравенство:

$$\|f\|_{L_p(E,\mu)} \leq (\mu E)^{1/p-1/q} \|f\|_{L_q(E,\mu)}.$$

Несравнимость L_p при бесконечной мере

Если $\mu E=+\infty$, то пространства $L_p(E,\mu)$ могут не быть вложены друг в друга. Контрпример: $E=(0,+\infty)$ с мерой Лебега,

- $f_1(x)=rac{1}{x+1}$: $f_1\in L_2(E)$ ho $f_1
 otin L_1(E)$.
- $f_2(x) = rac{1}{\sqrt{x}} \chi_{(0,1)}(x)$: $f_2 \in L_1(E)$ но $f_2
 otin L_2(E)$.

Пространства ℓ_p и вложение периодических L_p

Пространство ℓ_p состоит из последовательностей $x=(x_k)_{k=1}^\infty$ с конечной нормой:

$$\|x\|_p = egin{cases} (\sum_{k=1}^\infty |x_k|^p)^{1/p}\,, & 1 \leq p < +\infty, \ \sup_{k \in \mathbb{N}} |x_k|, & p = +\infty. \end{cases}$$

Для 2π -периодических функций на $\mathbb R$ с мерой Лебега на $[-\pi,\pi]$ верно вложение пространств:

$$C \subset L_{\infty} \subset \ldots \subset L_2 \subset \ldots \subset L_1$$
,

где C — пространство непрерывных 2π -периодических функций с нормой $\|f\|_{\infty}=\max_{x\in[-\pi,\pi]}|f(x)|$, совпадающей с L_{∞} -нормой для непрерывных функций.

53. Полнота пространства ${\cal C}(K)$

Определение полного нормированного пространства

Нормированное пространство X называется полным (банаховым), если любая фундаментальная последовательность в X сходится к некоторому элементу из X. Последовательность $(x_n)\subset X$ фундаментальна, если $\forall \epsilon>0\ \exists N\colon \forall n,m\geq N$ выполняется $\|x_n-x_m\|_X<\epsilon.$

Пространство непрерывных функций C(K)

Пусть K — компактное топологическое пространство. Пространство C(K) состоит из всех непрерывных функций $f:K o\mathbb{C}$ (или \mathbb{R}), с нормой $\|f\|_{C(K)}=\sup_{x\in K}|f(x)|$. Обозначается

 $C_{\mathbb{C}}(K)$ или $C_{\mathbb{R}}(K)$ в зависимости от поля.

Teopeма о полноте C(K)

Пространство C(K) полно.

54. Критерий полноты нормированного пространства

Определение полного нормированного пространства (банахово пространство)

Нормированное пространство $(X,\|\cdot\|)$ называется полным, если любая фундаментальная последовательность в X сходится к элементу этого пространства. Полное нормированное пространство также называют банаховым.

Критерий полноты через абсолютную сходимость ряда

Нормированное пространство X полно тогда и только тогда, когда любой абсолютно сходящийся ряд в X сходится, то есть:

$$x_k \in X, \sum_{n=1}^\infty \|x_k\| < +\infty \implies \sum_{n=1}^\infty x_k$$
 сходится в $X.$

55 Полнота пространств $L^p(X,\mu)$ при $p\in [1,+\infty]$

Определение пространства $L^p(X,\mu)$

Пусть (X,\mathcal{A},μ) — пространство с мерой, $p\in[1,+\infty]$. Пространство $L^p(X,\mu)$ - полное, состоит из измеримых функций $f:X\to\mathbb{R}$ (или \mathbb{C}), для которых конечна норма:

$$ullet$$
 при $p<+\infty$: $\|f\|_p=\left(\int_X|f|^p\,d\mu
ight)^{1/p}$,

• при $p = +\infty$: $||f||_{\infty} = \operatorname{ess sup}_{x \in X} |f(x)|$.

Критерий полноты пространства ${\cal L}^p$

Пространство $L^p(X,\mu)$ полно при $p\in [1,+\infty]$, то есть любая фундаментальная последовательность $\{f_n\}\subset L^p$ сходится к некоторой функции $f\in L^p$ по норме $\|\cdot\|_p$.

Теорема Рисса-Фишера

Любое нормированное пространство $L^p(X,\mu)$ при $p\in [1,+\infty]$ является банаховым (полным). В частности, если $\{f_n\}$ — фундаментальна в L^p , то существует $f\in L^p$, такая что $\|f_n-f\|_p\to 0$.

56. Плотность ступенчатых функций в L^p

Определение плотного множества в метрическом пространстве

Подмножество K_0 метрического пространства (X,d) называется **плотным** в X, если его замыкание совпадает с X:

$$\overline{K_0}=X.$$

Определение ступенчатой функции

Функция $g:X o\mathbb{R}$ называется ступенчатой (обозначается $g\in \mathrm{step}(X,\mu)$), если она представима в виде:

$$g=\sum_{k=1}^n c_k\cdot \chi_{E_k},$$
 где $\mu(E_k)<\infty,$ $c_k\in \mathbb{R}.$

Теорема о плотности в L^p для $1 \leq p < \infty$

Пусть (X,\mathcal{A},μ) — пространство с мерой, и $1\leq p<\infty$. Тогда для любой $f\in L^p(X,\mu)$ и $\varepsilon>0$ существует ступенчатая функция $g\in \mathrm{step}(X,\mu)$ такая, что:

$$\|f-g\|_p где $\|h\|_p=\left(\int_X|h|^pd\mu
ight)^{1/p}.$$$

57. Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$, плотность $C_{2\pi}$ в $L^p_{2\pi}$

Аппроксимация характеристических функций ограниченных множеств

Для ограниченного измеримого множества $E\subset \mathbb{R}^n$ с $\lambda_n(E)<\infty$ и $\chi_E\in L^p(\mathbb{R}^n)$ ($1\leq p<\infty$), существует функция $g\in C_0(\mathbb{R}^n)$ такая, что:

$$\|\chi_E - g\|_p \leq 2\epsilon.$$

Конструкция:

$$g(x) = 1 - rac{d(x, \mathbb{R}^n \setminus U)}{d(x, \mathbb{R}^n \setminus U) + d(x, E)},$$

где $U\supset E$ — открытое множество с $\lambda_n(U\setminus E)<\epsilon$.

Аппроксимация простых функций

Любая простая функция $f=\sum_{k=1}^N c_k\chi_{E_k}$ с $\lambda_n(E_k)<\infty$ аппроксимируется функцией $g\in C_0(\mathbb{R}^n)$:

$$\|f-g\|_p < \epsilon,$$
 где $g = \sum_{k=1}^N c_k g_k,$

и для каждого k: $\|\chi_{E_k} - g_k\|_p < rac{\epsilon}{N \cdot \max(|c_k|)}.$

Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$ и $C_{2\pi}$ в $L^p_{2\pi}$

- ullet Для $L^p(\mathbb{R}^n)$: $orall f\in L^p(\mathbb{R}^n)$ и $\epsilon>0$ $\exists g\in C_0(\mathbb{R}^n): \|f-g\|_p<\epsilon.$
- Для $L^p_{2\pi}$ (периодические функции): $\forall f \in L^p_{2\pi} \ \exists g \in C_{2\pi} : \|f-g\|_{L^p_{2\pi}} < \epsilon$, где $C_{2\pi}$ непрерывные 2π -периодические функции.

58 Теорема о непрерывности сдвига

Определение Оператора Сдвига

Пусть $h \in \mathbb{R}^m$. Оператор сдвига на вектор h определяется как отображение, действующее на функцию f по правилу:

$$(\tau_h f)(x) = f(x+h).$$

Теорема о Непрерывности Сдвига в L^p

Пусть $1 \leq p < +\infty$ и $f \in L^p(\mathbb{R}^m)$. Тогда оператор сдвига непрерывен по норме пространства L^p , то есть:

$$\lim_{|h| o 0} \| au_h f - f\|_p = \lim_{|h| o 0} \left(\int_{\mathbb{R}^m} |f(x+h) - f(x)|^p dx
ight)^{1/p} = 0.$$

59. Гильбертовы пространства. Непрерывность скалярного произведения. Скалярное умножение в $L^2(X,\mu)$. Примеры ортогональных систем в $L^2(X,\mu)$

Гильбертовы пространства

Полное линейное пространство H, снабженное скалярным произведением $\langle \cdot, \cdot \rangle$, относительно нормы $\|x\| = \sqrt{\langle x, x \rangle}$.

Непрерывность скалярного произведения

Если
$$x_n o x$$
 и $y_n o y$ в H , то $\langle x_n, y_n
angle o \langle x, y
angle$.

Скалярное умножение в $L^2(X,\mu)$

Для $f,g\in L^2(X,\mu)$ скалярное произведение задается формулой:

$$\langle f,g
angle = \int_X f(x) \overline{g(x)}\, d\mu(x).$$

 \overline{g} обозначает комплексно сопряжённое значение. Например, для g=a+bi, верно $\overline{g}=a-bi$.

Ортогональные системы в $L^2(X,\mu)$

Система функций $\{\phi_k\}\subset L^2(X,\mu)$ называется ортогональной, если:

$$\langle \phi_m,\phi_n
angle=0$$
 при $m
eq n.$

Если дополнительно $\|\phi_k\|=1$ для всех k, система называется ортонормированной.

Примеры ортогональных систем в $L^2(X,\mu)$

- 1. Тригонометрическая система $\{e^{inx}\}_{n\in\mathbb{Z}}$ в $L^2([-\pi,\pi]).$
- 2. Многочлены Лежандра $\{P_n\}$ в $L^2([-1,1])$.
- 3. Функции Хаара на отрезке.

60. Теорема Пифагора для гильбертовых пространств и критерий сходимости ортогонального ряда

Лемма о почленном умножении сходящегося ряда

Пусть $\sum_{k=1}^{\infty} x_k$ — сходящийся ряд в гильбертовом пространстве \mathcal{H} . Тогда для любого вектора $y \in \mathcal{H}$ выполняется:

$$\left\langle \sum_{k=1}^{\infty} x_k, y
ight
angle = \sum_{k=1}^{\infty} \langle x_k, y
angle.$$

Критерий сходимости ортогонального ряда

Ортогональный ряд $\sum_{k=1}^\infty x_k$ в гильбертовом пространстве $\mathcal H$ сходится тогда и только тогда, когда сходится числовой ряд $\sum_{k=1}^\infty \|x_k\|^2$. При этом выполняется равенство:

$$\left\|\sum_{k=1}^\infty x_k
ight\|^2 = \sum_{k=1}^\infty \|x_k\|^2.$$

Теорема Пифагора для гильбертовых пространств

Для любого конечного набора ортогональных векторов $\{x_k\}_{k=1}^N$ в $\mathcal H$ выполняется:

$$\left\| \sum_{k=1}^N x_k
ight\|^2 = \sum_{k=1}^N \|x_k\|^2.$$