

uswap: A Semi-microkernel for Memory Disaggregation

Sepehr Jalalian, Margo Seltzer, Alexandra Fedorova University of British Columbia

Problem

- DRAM accounts for more than 30% of datacenter server cost [1]
- Disaggregated memory improves resource utilization in datacenters
- Leveraging disaggregated memory imposes many challenges on the system software [2]

- Two main types of systems developed for memory disaggregation have architectural differences:
 - Tiered memory systems (NVM, CXL pools) [3]
 - paging systems based on swap (network, disk) [1]

Research Questions

- Do tiered memory systems and paging systems require two separate kernel subsystems?
 - Both do page migration
 - Both need page placement policies [4]
- How should system software support disaggregated memory?

Our Approach

- µswap: a semi-microkernel prototype for disaggregated memory management.
 - Enables user-level memory management in cooperation with a monolithic kernel.
 - Enables fast development and testing of memory management strategies.
 - A unifying framework for page migration that supports different types of second-tier and remote memory.

➤ Memory semi-microkernel: Inspired by the microkernel architecture, we offload memory management to a user-space server. Semi-microkernel (1) intercepts application memory requests, (2) keeps page information and (3) applies memory policies.

^[1] Weiner et al, Tmo: transparent memory offloading in datacenters. ASPLOS'22

^[2] Yizhou Shan et al. LegoOS: A disseminated, distributed OS for hardware resource disaggregation. OSDI'18