Visualization (Marks and Encoding)

Peter Ganong and Maggie Shi

October 7, 2024

Global Health Data

Introducing global health data

- ▶ We will be visualizing global health and population data for a number of countries, over the time period of 1955 to 2005.
- ▶ The data was collected by the Gapminder Foundation and shared in Hans Rosling's fantastic TED talk.
- If you haven't seen the talk, we encourage you to watch it first!
- Roadmap: load data and review first five rows

Load data

```
Let's first load the dataset from the vega-datasets collection into a Pandas data frame.

RendererRegistry.enable('png')

(682, 6)
```

$head() + \underline{summary}$

	year	country	cluster	pop	life_expect	fertility
0	1955	Afghanistan	0	7971931	43.88	7.42
1	1960	Afghanistan	0	8622466	45.03	7.38
2	1965	Afghanistan	0	9565147	46.13	7.35
3	1970	Afghanistan	0	10752971	47.08	7.40
4	1975	Afghanistan	0	12157386	47.55	7.54

For each country and year (in 5-year intervals), we have

- fertility in terms of the number of children per woman (fertility)
- ▶ life expectancy in years (life_expect)
- total population (pop)
- mysterious cluster what might this represent? We'll try and solve this mystery as we visualize the data!

6 / 66

Data types

Data types: roadmap

Pandas data frames come with types. When loading data not from pandas, explicitly name:

- ▶ 'N' indicates a *nominal* type (unordered, categorical data),
- ▶ '0' indicates an *ordinal* type (rank-ordered data),
- □ 'Q' indicates a quantitative type (numerical data with meaningful magnitudes), and
- ▶ 'T' indicates a temporal type (date/time data)

Nominal (N)

- Nominal data (also called categorical data) consist of category names.
- Ask is value A the same or different than value B? (A = B), supporting statements like "A is equal to B" or "A is not equal to B".
 - In the dataset above, the country field is Nominal.
- When visualizing nominal data we should readily be able to see if values are the same or different: position, color hue (blue, red, green), and shape can help.
 - Remark: using a size channel to encode nominal data might mislead us, suggesting rank-order or magnitude differences among values that do not exist!

Ordinal (O)

- Ordinal data consist of values that have a specific ordering.
- Ask: does value A come before or after value B? (A < B), supporting statements like "A is less than B" or "A is greater than B".
 - In the dataset above, we can treat the year field as Ordinal.
- When visualizing ordinal data, we should perceive a sense of rank-order. Position, size, or color value (brightness) might be appropriate.
 - ▶ Remark: color hue (which is not perceptually ordered) would be less appropriate.

Quantitative (Q)

- ▶ With *quantitative* data we can measure numerical differences among values.
 - There are multiple sub-types of quantitative data:
 - ▶ With *interval* data ask: *what is the distance to value A from value B?* (A B), supporting statements such as "A is 12 units away from B".
 - With ratio data can also ask:
 - how many are there of value A? supporting statements such as "how many babies per parent?"
 - value A is what proportion of value B? (A / B), supporting statements such as "A is 10% of B" or "B is 7 times larger than A".
 - In the dataset above, year is a quantitative interval field (depending on whose history of the world you prefer, there are many choices for the year "zero"), whereas fertility and life_expect are quantitative ratio fields (zero is meaningful for calculating proportions).
- ▶ Vega-Lite represents quantitative data, but does not make a distinction between interval and ratio types.

Quantitative (Q), continued

- recap
 - with interval data ask: what is the distance to value A from value B? (A B)
 - With ratio data can also ask:
 - how many are there of value A?
 - value A is what proportion of value B? (A / B),
- ► Textbook: "An axis with a zero baseline is essential for proportional comparisons of ratio values, but can be safely omitted for interval comparisons."
- ▶ Discussion question Why is it so important to include zeros for ratio data? Can you give a counter-example where omitting zeros on the plot would lead the reader to misleading conclusions?

Example of a potentially misleading plot by omitting zeros

Figure 1: USAToday

Temporal (T)

- ➤ Temporal values measure time points or intervals. This type is a special case of quantitative values (timestamps) with rich semantics and conventions (i.e., the Gregorian calendar).
- Example temporal values include date strings such as "2019-01-04" and "Jan 04 2019", as well as standardized date-times such as the ISO date-time format: "2019-01-04T17:50:35.643Z".
- ▶ There are no temporal values in our global development dataset above, as the year field is simply encoded as an integer.

Discussion question I

What are examples of variables that are

- Nominal
- Ordinal
- Quantitative

Let's try to come up with at least three examples of each. For each example, state the comparison in a sentence.

Discussion question II

Suppose we have a dataset of ages (10 years old, 20 years old, 10 years old, 30 years old). What would it mean for these data to be

- Nominal
- Ordinal
- Quantitative

What comparisons are feasible with each data type?

Revisit plot from beginning of prior lecture

In-class exercises

What happens when...

- Make precipitation ordinal
- Revert. then make date temporal. There's a consequential but subtle change relative to the original plot. What is it?

In-class exercises: solution precipitation ordinal

In-class exercises: solution date temporal

data types: summary

A single data series can have multiple meanings depending on data type

- ▶ 'N' indicates a *nominal* type (unordered, categorical data),
- ▶ '0' indicates an *ordinal* type (rank-ordered data),
- □ 'Q' indicates a quantitative type (numerical data with meaningful magnitudes), and
- ▶ 'T' indicates a temporal type (date/time data)

Explicitly specify the data type so that Altair/Vega know how to interpret it. If you don't specify a data type (as was the case in Lecture 1), Vega will guess. This can lead to undesired results!

Visual encoding

Visual encoding roadmap

- Seven types of visual encoding
- More on color

Seven ways of visual encoding I

Source: Jacques Bertin in Semiology of Graphics (1967), via source Within the plane a mark can be at the top or the bottom, to the right or the left. The eye perceives two independent dimensions along X and Y, which are distinguished orthogonally. A variation in light energy produces a third dimension in Z, which is independent of X and Y...

Seven ways of visual encoding II. In the eye is sensitive, along the Z dimension, to 6 independent visual variables, which can be superimposed on the planar figures:

the size of the marks

Seven ways of visual encoding II. The eye is sensitive, along the Z dimension, to 6 independent visual variables, which can be superimposed on the planar figures:

- the size of the marks
- their value [brightness]

Seven ways of visual encoding II. In eye is sensitive, along the Z dimension, to 6 independent visual variables, which can be superimposed on the planar figures:

- the size of the marks
- their value [brightness]
- texture

Seven ways of visual encoding II dimension, to 6 independent visual variables, which can be superimposed on the planar figures:

- the size of the marks
- their value [brightness]
- texture
- color [hue]

Seven ways of visual encoding II dimension, to 6 independent visual variables, which can be superimposed on the planar figures:

- the size of the marks
- their value [brightness]
- texture
- color [hue]
- orientation

Seven ways of visual encoding II. If the eye is sensitive, along the Z dimension, to 6 independent visual variables, which can be superimposed on the planar figures:

- the size of the marks
- their value [brightness]
- texture
- color [hue]
- orientation
- hape.
 They can represent differences (), similarities (), a quantified order (Q), or a nonquantified order (O), and can express groups, hierarchies, or vertical movements

Seven ways of visual encoding in one image

Figure 2: Visual encoding

More depth on color

Language note: by color, we mean both brightness (which Bertin calls "value") and hue (which Bertin calls "color")

Why choose color deliberately?

- Using any software's default color palette is kind of like using comic sans font on a resume
- Choosing the "right" colors will make it easier for you to convey meaning

Color palettes and their use cases

Toggle back and forth to the schemes page:

step 1 Am I working with Nominal, unordered data or with ordered data (either Ordinal or Quantitative)?

If Nominal, unordered data, use categorical palettes. Otherwise, proceed.

step 2

Palette type	Use case			
Sequential Single-Hue				
Sequential Multi-Hue	Use for higher contrast, but harder to			
	judge quantitative proximity			
Diverging	Use if there is a midpoint (e.g. voting for			
	redblue)			
Cyclical	Use if circular (e.g. time of day, month)			

More advice on color choices

- ▶ Use colorbrewer2.org to choose your color palettes. Click through to site. Options include subsetting to colors that are
 - colorblind safe
 - black and white printer (aka photocopy) safe
- Harmonization
 - Within reports You rarely produce a single plot in isolation. You usually produce several plots as part of a memo, a website, etc. Use consistent colors across plots.
 - Across reports Many organizations have official palettes and plot templates. Good to ask if you are working for a big org if they have one.

Visual encoding: summary

- ▶ Bertin proposes seven different ways to encode visual information. His chart is a handy reference to what visual elements can encode different types of information.
- ➤ Color is one of the easiest ways to convey meaning. Choose your palette based on whether you want to convey unordered or ordered data, whether you have a midpoint, and whether your ordered series is cyclical

Encoding channels

Encoding channels: roadmap

- x
- у
- > size
- color
- opacity
- shape
- column
- row

Caveat: this section has a ton of slides. but each is simple.

In-class exercise: what happens if you swap the Q and the O types?

Do not require zero on axis range

Discussion question: which plot do you prefer (and why?)

Observations about whether to include zero

- If you include zero, there is a lot of wasted white space. The data are compressed into a small area. This is best if the message you want to send is that fertility varies by a factor of nearly 8 from the highest to lowest while life expectancy varies much less (from 80 to 50)
- If you exclude zero, it is much easier to see the negative relationship between life expectancy and fertility. This is best if that is the message you want to send.

size

size with 1000 pixels for largest dot

add color and size with filled=True

opacity

column

adjust aspect ratio, move pop legend, remove color legend

in-class exercise

The plot faceted by column doesn't fit on the page. Redo it instead faceted by row.

Bonus: It still looks bad. What further change is needed?

in-class exercise: solution

- > substitute Row for Column
- delete orient='bottom'

Encoding channels: summary

- x: Horizontal (x-axis) position of the mark.
- y: Vertical (y-axis) position of the mark.
- ▶ size: Size of the mark. May correspond to area or length, depending on the mark type.
- color: Mark color, specified as a legal CSS color.
- opacity: Mark opacity, ranging from 0 (fully transparent) to 1 (fully opaque).
- shape: Plotting symbol shape for point marks.
- column: Facet the data into horizontally-aligned subplots.
- row: Facet the data into vertically-aligned subplots.

Graphical marks

Graphical marks: roadmap

Prior section used only mark_point(). Now will cover

- mark_point()
 mark_circle()
 - mark_square()
 - mark_tick()
- mark bar()
- mark_line()
- mark_area()

Caveats:

there are a ton of slides in this section.

mark point(): add information using alt.Shape()

mark_point(): format points using arguments

mark_circle() wrapper for mark_point(filled=True)

mark_square()

mark tick()

- Useful for comparing values along a single dimension with minimal overlap.
- A dot plot drawn with tick marks is sometimes referred to as a strip plot.

mark_bar()

use alt.Color() for a stacked bar plot

X2() to show intervals

mark_line() country Kenya 8 Nigeria Rwanda South Africa 6 fertillity 3 2

how many lines? Tooltip instead of legend

textbook advocates for having a plot with many more lines, no legend, and instead using alt.Tooltip('country:N'). This is technologically feasible but a bad idea. (Discuss: why?)

mark_line() with cosmetic adjustments

mark_line() with cosmetic adjustments

mark_area()

mark_area() with stacking

mark_area() with no stacking and opacity

mark_area() to show range

Syntax: mark_area() swap axes

Graphical marks: summary

Covered today

- mark point() Scatter plot points with configurable shapes.
 - mark_circle() Scatter plot points as filled circles.
 - mark_square() Scatter plot points as filled squares.
 - mark_tick() Vertical or horizontal tick marks.
- mark_bar() Rectangular bars.
- mark_line() Connected line segments.
- mark_area() Filled areas defined by a top-line and a baseline.

Not covered in lecture

mark_rect() - Filled rectangles, useful for heatmaps.