Task: Iris Flower Classification

Data Information

The Data set contains 3 classes of 50 instances each, where each refers to a type of Iris plant. One class is linearly separable from the 2;the latter are NOT linearly separable from each other.

Attribute Information:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class: Iris setosa--Iris Versicolour--Iris Virginica

Importing modules

```
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading the Dataset

```
df=pd.read_csv('Iris.csv')
In [139...
            df.head()
In [140...
Out[140]:
               Id SepalLengthCm
                                    SepalWidthCm
                                                    PetalLengthCm
                                                                     PetalWidthCm
                                                                                       Species
            0
                1
                                5.1
                                                                1.4
                                                                                0.2 Iris-setosa
                                                3.5
                                4.9
                                                3.0
                                                                1.4
                                                                                0.2 Iris-setosa
            2
                3
                                4.7
                                                3.2
                                                                1.3
                                                                                0.2 Iris-setosa
            3
                                4.6
                                                3.1
                                                                1.5
                                                                                0.2 Iris-setosa
                5
                                5.0
                                                                1.4
                                                3.6
                                                                                0.2 Iris-setosa
            #delete the colums
In [141...
            df=df.drop(columns=['Id'])
            df.head()
```

Out[141]:	Sepall	engthCm Sepa	alWidthCm P	etalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
in [142	# displo	ay the summar ribe()	у			
Out[142]:	Se	epalLengthCm	SepalWidthCn	n PetalLength	Cm PetalWidth	ıCm_
	count	150.000000	150.00000	0 150.000	000 150.000	0000
	mean	5.843333	3.05400	0 3.758	667 1.198	8667
	std	0.828066	0.43359	4 1.764	420 0.763	161
	min	4.300000	2.00000	0 1.000	0.100	0000
	25%	5.100000	2.80000	0 1.600	0.300	0000
	50%	5.800000	3.00000	0 4.350	000 1.300	0000
	75%	6.400000	3.30000	0 5.100	000 1.800	0000
	max	7.900000	4.40000	0 6.900	000 2.500	0000
[143	df.shape	2				
ut[143]:	(150, 5)					
n [144	#display) basic info	about datat	уре		
	RangeInd Data col # Col	pandas.core. dex: 150 entr umns (total ! umn	ies, 0 to 14	49 unt Dtype		
	1 Sep 2 Pet 3 Pet 4 Spe dtypes:	calLengthCm :	150 non-nul 150 non-nul 150 non-nul 150 non-nul object(1)	l float64 l float64 l float64		
n [145		splay the no.cies'].value_		on each spei	ces	
Out[145]:	Iris-set Iris-ver Iris-vir Name: Sp	rsicolor 50	9			

Preprocessing the Dataset

Exploratory Data Analysis

```
In [147... #histogram plots

df['SepalLengthCm'].hist()
```

Out[147]: <Axes: >


```
In [148... df['SepalWidthCm'].hist()
```

Out[148]: <Axes: >

In [149... df['PetalLengthCm'].hist()

Out[149]: <Axes: >

In [150... df['PetalWidthCm'].hist()

Out[150]: <Axes: >


```
In [153...
for i in range(3):
    x = df[df['Species'] == species[i]]
    plt.scatter(x['PetalLengthCm'], x['PetalWidthCm'], c = colors[i], label=species
plt.xlabel("Petal Length")
plt.ylabel("Petal Width")
plt.legend()
```

Out[153]: <matplotlib.legend.Legend at 0x1bee1f1e7d0>

Out[154]: <matplotlib.legend.Legend at 0x1bee208e7d0>


```
In [156...
for i in range(3):
    x = df[df['Species'] == species[i]]
    plt.scatter(x['SepalWidthCm'], x['PetalWidthCm'], c = colors[i], label=species
plt.xlabel("Sepal Width")
plt.ylabel("Petal Width")
plt.legend()
```

Out[156]: <matplotlib.legend.Legend at 0x1bee1dcd750>

In [171... sns.pairplot(df,hue='Species')

Out[171]: <seaborn.axisgrid.PairGrid at 0x1bee3555210>

Correlation Matrix

	In [172	df.corr()
--	---------	-----------

Out[172]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954	0.782561
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544	-0.419446
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757	0.949043
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000	0.956464
Species	0.782561	-0.419446	0.949043	0.956464	1.000000

```
In [173... # display the correlation matrix using a heatmap
    corr = df.corr()
    fig, ax = plt.subplots(figsize=(5, 4))
    sns.heatmap(corr, annot=True, ax=ax, cmap='coolwarm')
```

Out[173]: <Axes: >

Model Training

```
In [174... # Split the dataset into training and testing sets
    from sklearn.model_selection import train_test_split
    X = df.drop(columns=['Species'])
    Y = df['Species']
    x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.20)
```

Model-1

```
In [175... # Logistic Regression Model
    from sklearn.linear_model import LogisticRegression
    model1 = LogisticRegression()
    model1.fit(x_train, y_train)
    accuracy_logreg = model1.score(x_test, y_test) * 100
    print("Accuracy (Logistic Regression): ", accuracy_logreg)
```

Accuracy (Logistic Regression): 96.6666666666667

Model-2

```
In [176... # K-nearest Neighbours Model (KNN)
from sklearn.neighbors import KNeighborsClassifier
model2 = KNeighborsClassifier()
model2.fit(x_train, y_train)
accuracy_knn = model2.score(x_test, y_test) * 100
print("Accuracy (KNN): ", accuracy_knn)
Accuracy (KNN): 100.0
```

Model-3

```
# Decision Tree Model
from sklearn.tree import DecisionTreeClassifier
model3 = DecisionTreeClassifier()
model3.fit(x_train, y_train)
accuracy_decision_tree = model3.score(x_test, y_test) * 100
print("Accuracy (Decision Tree): ", accuracy_decision_tree)
```

Accuracy (Decision Tree): 90.0

Report

```
# Model Comparison - Visualization
models = ['Logistic Regression', 'KNN', 'Decision Tree']
accuracies = [accuracy_logreg, accuracy_knn, accuracy_decision_tree]

plt.bar(models, accuracies, color=['blue', 'green', 'orange'])
plt.xlabel("Models")
plt.ylabel("Accuracy")
plt.title("Model Comparison - Accuracy")
plt.ylim([0, 100])
plt.show()
```


In []: