### Problem Statement

Problem Summary: High driver attrition at Ola increases acquisition cost and disrupts operations.

Goal: Predict whether a driver is likely to leave the company based on demographics, income, tenure, and performance.

Impact: Improve driver retention strategy by identifying churn-prone drivers early.

## Objective

The primary objective of this case study is to develop a predictive model that accurately identifies drivers who are at high risk of attrition, enabling the business to take proactive retention actions. This includes:

- Leveraging supervised machine learning techniques to predict whether a driver will leave the organization based on historical and demographic data.
- Comparing ensemble models Bagging (Random Forest) and Boosting (XGBoost, LightGBM, AdaBoost) using F1 Score, ROC AUC, and Average Precision as evaluation metrics.
- Handling data imbalance using SMOTE and evaluating the impact of different scaling techniques (StandardScaler vs MinMaxScaler) on model performance.
- · Identifying key features driving attrition such as Quarterly Rating, Income, Total Business Value, Join Year, and City.
- Recommending data-driven strategies for performance incentives and targeted retention programs to reduce churn and optimize operational efficiency.

## Imports

```
pip install --upgrade xgboost
     Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (3.0.2)
     Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (2.0.2)
     Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboost) (2.21.5)
     Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.16.0)
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
import matplotlib.pyplot as plt
import xgboost as xgb
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, precision_recall_curve
from imblearn.over_sampling import SMOTE
# Ola brand-inspired colors (from the logo)
ola_palette = {
    'Yes': '#DAFF01',
                        # neon yellow-green
    'No': '#000000'
                        # black
ola_palette = ['#000000', '#F6D200'] # Black for 0 (No Attrition), Yellow for 1 (Attrition)
url= 'https://raw.githubusercontent.com/hiyer7/Data-Science-Projects/refs/heads/main/Ola/ola_driver_scaler.csv'
df= pd.read_csv(url)
df.head()
```

| <del></del> |   | Unnamed: | MMM-YY   | Driver_ID | Age  | Gender | City | Education_Level | Income | Dateofjoining | LastWorkingDate | Joining<br>Designation | Grade | Tota:<br>Busines:<br>Value |
|-------------|---|----------|----------|-----------|------|--------|------|-----------------|--------|---------------|-----------------|------------------------|-------|----------------------------|
|             | 0 | 0        | 01/01/19 | 1         | 28.0 | 0.0    | C23  | 2               | 57387  | 24/12/18      | NaN             | 1                      | 1     | 2381060                    |
|             | 1 | 1        | 02/01/19 | 1         | 28.0 | 0.0    | C23  | 2               | 57387  | 24/12/18      | NaN             | 1                      | 1     | -665480                    |
|             | 2 | 2        | 03/01/19 | 1         | 28.0 | 0.0    | C23  | 2               | 57387  | 24/12/18      | 03/11/19        | 1                      | 1     | (                          |
|             | 3 | 3        | 11/01/20 | 2         | 31.0 | 0.0    | C7   | 2               | 67016  | 11/06/20      | NaN             | 2                      | 2     | (                          |
|             |   |          |          |           |      |        |      |                 |        |               |                 |                        |       |                            |

```
# df_gen= pd.read_csv(url)
```

## Converting Lastworkingday column as our target

```
df['Attrition']= df['LastWorkingDate'].notna().astype(int)
df.drop(columns= 'LastWorkingDate', inplace= True)
df['Attrition'].value_counts()
```



dtype: int64

### EDA

### Shape

df.shape

**→** (19104, 14)

There are 14 columns and 19k rows

### Column names

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19104 entries, 0 to 19103
Data columns (total 14 columns):
 # Column
                          Non-Null Count Dtype
 0 Unnamed: 0
                          19104 non-null int64
     MMM-YY
                          19104 non-null object
     Driver_ID
                          19104 non-null int64
                          19043 non-null float64
     Age
     Gender
                          19052 non-null
                                          float64
     City
                          19104 non-null
                                          object
                          19104 non-null
     Education_Level
                                          int64
     Income
                          19104 non-null
                                          int64
     Dateofjoining
                          19104 non-null object
     Joining Designation
                          19104 non-null
                                          int64
 10 Grade
                          19104 non-null
                                          int64
 11 Total Business Value 19104 non-null int64
 12 Quarterly Rating
                          19104 non-null
 13 Attrition
                          19104 non-null
                                          int64
dtypes: float64(2), int64(9), object(3)
memory usage: 2.0+ MB
```

<sup>#</sup> df\_gen.head()

<sup>#</sup> df\_gen['Gender'].value\_counts()

We will be working on these column data types at a later stage

LastWorkingDate is our target. The ones that do not have values are the ones who stayed and the ones that have values have left the platform

df.columns

### Empty values

```
#(df['LastWorkingDate'].isnull().sum()*100)/
missing_percent= (df.isnull().sum()*100)/len(df)
missing_percent= missing_percent[missing_percent>0]
missing_percent.round(2).sort_values(ascending= False)

##(df['LastWorkingDate'].isnull().sum()*100)/
##(df['LastWorkingDate'].isnull().sum()*100/
##(df['LastWorkingD
```

We are ok with Last working date to have empty values but for age and gender, we will later see how we will deal with the empty values

### Changing to Categorical Columns

```
cat_cols= ['Gender', 'Quarterly Rating', 'Grade', 'Joining Designation', 'Education_Level', 'City']
for col in cat_cols:
    df[col]= df[col].astype('category')

1. Gender
2. City
3. Education_level
4. Joining Designation
5. Grade
6. Quarterly Rating
```

### Unique Values

```
for col in df.columns:
 print(f'{col}: {df[col].nunique()}')
→ Unnamed: 0: 19104
     MMM-YY: 24
     Driver ID: 2381
     Age: 36
     Gender: 2
     City: 29
     Education_Level: 3
     Income: 2383
     Dateofjoining: 869
     Joining Designation: 5
     Grade: 5
     Total Business Value: 10181
     Quarterly Rating: 4
     Attrition: 2
```

```
df['Gender'].value_counts()

count

Gender

0.0 11074

1.0 7978

dtype: int64

Start coding or generate with AI.
```

# Data Cleaning

The column unnamed is probably the serial number with high cardinality. We will delete it here itself

```
df.drop(columns='Unnamed: 0', inplace=True)
#['Unnamed: 0'].

We will convert the date columns: MMM-YY, Date Of Joining, LastWorkingDate → datetime

dt_cols= ['MMM-YY', 'Dateofjoining']
for col in dt_cols:
    df[col]= pd.to_datetime(df[col], format='%d/%m/%y', errors='coerce')
```

# Univariate Analysis

Double-click (or enter) to edit

Numerical Features: Age, Income, Total Business Value, Quarterly Rating

Continuous Features: City, Gender, Education\_level, Joining Designation

```
ola_color = "#D9E021" # Neon yellow-green
bg_color = "#000000"
n_{cols} = 2
n_rows = (len(cat_cols) + 1) // n_cols
# Setup plots
sns.set_style("whitegrid")
fig, axes = plt.subplots(n_rows, n_cols, figsize=(14, 3 * n_rows), facecolor=bg_color)
axes = axes.flatten()
for i, col in enumerate(cat_cols):
    sns.countplot(x=col, data=df, ax=axes[i],
                  order=df[col].value_counts().index,
                  color=ola_color)
    axes[i].set_title(f'{col}', color='white')
    axes[i].tick_params(axis='x', rotation=45, colors='white')
    axes[i].tick_params(axis='y', colors='white')
    axes[i].set_facecolor(bg_color)
# Remove extra subplots
for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])
plt.tight_layout()
plt.show()
```



#### Interpretation:

#### 1. Gender:

- Slightly more males (0.0) than females (1.0).
- o Imbalance, but not severe.

## 2. Quarterly Rating:

- o Most employees are rated 1 or 2, confirming earlier histogram.
- $\circ$  Very few top-rated employees (4).

### 3. Grade:

- $\circ~$  Grade 2 is most common, followed by Grade 1 and 3.
- Very few in Grade 5, suggesting few senior roles.

## 4. Joining Designation:

- Majority joined at Designation 1, followed by 2 and 3.
- o Indicates most hires were at entry/junior levels.

### 5. Education Level:

- o Distribution is fairly even among 3 categories.
- $\circ~$  No dominant education level—likely all acceptable for hiring.

6. City:

- o Employee count varies significantly across cities.
- o A few cities dominate employment (e.g., C1, C2...), while others have much smaller numbers.
- o Could reflect regional hiring patterns or business presence.

```
import matplotlib.pyplot as plt
import seaborn as sns
# Numerical columns
num_cols = ['Age', 'Income', 'Total Business Value', 'Quarterly Rating']
# Set global seaborn and matplotlib theme
sns.set_style("darkgrid")
plt.rcParams['axes.facecolor'] = bg_color
plt.rcParams['figure.facecolor'] = bg_color
plt.rcParams['text.color'] = 'white'
plt.rcParams['axes.labelcolor'] = 'white'
plt.rcParams['xtick.color'] = 'white'
plt.rcParams['ytick.color'] = 'white'
plt.rcParams['axes.edgecolor'] = 'white'
# Create 2x2 subplots
fig, axes = plt.subplots(2, 2, figsize=(14, 8))
axes = axes.flatten()
for i, col in enumerate(num_cols):
    \verb|sns.histplot(df[col]|, kde=True, ax=axes[i], color=ola_color, edgecolor='white')| \\
    axes[i].set_title(f'Distribution of {col}', color='white')
    axes[i].set_xlabel(col, color='white')
    axes[i].set_ylabel('Frequency', color='white')
    axes[i].tick_params(colors='white')
    axes[i].set_facecolor(bg_color)
plt.tight_layout()
plt.show()
```



#### Interpretation:

#### 1. Top-Left: Age

- $\circ~$  Shape: Slightly right-skewed distribution with a concentration around 30–35 years.
- o Insight: Majority of employees are in their early 30s, with a tapering number as age increases.
- $\circ \ \ \text{Implication: Workforce is relatively young; might suggest early-career professionals dominate.}$

#### 2. Top-Right: Income

- $\circ \;\;$  Shape: Right-skewed, long tail towards higher incomes.
- o Insight: Most employees earn between ₹40,000 ₹80,000, with a few high earners pulling the tail.
- $\circ \ \ \text{Implication: Possible income disparity; a small fraction may be in executive/high-performing roles.}$

### 3. Bottom-Left: Total Business Value

- o Shape: Heavily right-skewed with a steep drop-off.
- o Insight: Most employees contribute low to moderate business value; a few contribute disproportionately large values.
- Implication: Highlights a Pareto-type effect (80/20 rule) a few top performers drive most of the business value.

### 4. Bottom-Right: Quarterly Rating

- Shape: Multimodal with peaks at 1, 2, and 3.
- Insight: Ratings are heavily concentrated at lower scores (1-3).
- Implication: Might reflect a strict performance appraisal system or overall moderate performance distribution.

## Bivariate Analysis

## Quarterly rating vs Attrition (boxplots)

```
plt.figure(figsize=(8, 5))
sns.boxplot(data=df, x='Attrition', y='Quarterly Rating', palette=ola_palette)
plt.title('Quarterly Rating vs Attrition', fontsize=14)
plt.xlabel('Attrition (0 = Still Working, 1 = Left)', fontsize=12)
plt.ylabel('Quarterly Rating', fontsize=12)
plt.grid(True, axis='y', linestyle='--', alpha=0.5)
plt.tight_layout()
plt.show()
```



### Insight from the Plot:

Attrition = 1 (Left): The median Quarterly Rating is 1, with almost no variance—most employees who left received the lowest possible rating.

Attrition = 0 (Still Working): Wider spread of ratings, with a median around 3 and values ranging from 1 to 4.

### Interpretation:

Employees who left the company tend to have consistently poor performance ratings.

This might suggest:

- 1. A performance-based exit policy, or
- $2.\ \mbox{Low motivation}$  among poor performers, leading them to leave, or
- 3. Poor performers being pushed out.

## City/Gender vs Attrition (grouped bar plots)

### City vs Attrition

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='City', hue='Attrition', palette='Set2')
```

```
plt.title('Attrition by City')
plt.xlabel('City')
plt.ylabel('Number of Employees')
plt.xticks(rotation=45)
plt.legend(title='Attrition (0 = Working, 1 = Left)')
plt.tight_layout()
plt.show()
```



### Observations:

- 1. Most cities have a significantly larger number of employees still working (Attrition = 0), as shown by the tall green bars.
- 2. City C20 has the highest employee count and also the highest attrition (orange bar) suggesting it's a major location with potential retention issues.
- 3. Some cities (e.g., C7, C16, C10) have relatively low total employee counts but still experience notable attrition.
- 4. The proportion of attrition (not just count) may reveal more currently, it looks like C20 and a few others like C26 or C29 could be problem spots.

### Gender vs Attrition

```
plt.figure(figsize=(6, 5))
sns.countplot(data=df, x='Gender', hue='Attrition', palette='Set1')
plt.title('Attrition by Gender')
plt.xlabel('Gender')
plt.ylabel('Number of Employees')
plt.legend(title='Attrition (0 = Working, 1 = Left)')
plt.tight_layout()
plt.show()
```



#### Observation:

- 1. More male employees than female overall.
- 2. Both genders experience attrition, but:
  - a. Absolute attrition is slightly higher for females (Gender 0).
  - b. The attrition rate (leavers / total) appears higher for females compared to males.
    - $\circ~$  Female: ~1000 left out of ~11000  $\rightarrow$  ~9%
    - $\circ~$  Male: ~750 left out of ~8000  $\rightarrow~$  ~9.3%
- 3. Actually, in percentage terms, male attrition might be slightly higher, despite having fewer leavers in absolute numbers.

## Correlation matrix (heatmap) for numerical variables

```
num_cols = ['Age', 'Income', 'Total Business Value', 'Quarterly Rating']
import seaborn as sns
import matplotlib.pyplot as plt

# Compute correlation matrix
corr_matrix = df[num_cols].corr()

# Plot heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", square=True, cbar_kws={"shrink": .8})
plt.title("Correlation Matrix of Numerical Features")
plt.show()
```



## Income trend over time (line plot)

```
# Ensure 'Joining Date' is in datetime format
#df['Joining Date'] = pd.to_datetime(df['Joining Date'])

# Create a new column for year or month
df['Join_Month'] = df['Dateofjoining'].dt.to_period('M').astype(str) # or .dt.to_period('Y') for yearly

# Group by month and calculate average income
monthly_income = df.groupby('Join_Month')['Income'].mean().reset_index()

# Plot
plt.figure(figsize=(12, 6))
sns.lineplot(data=monthly_income, x='Join_Month', y='Income', marker='o')
plt.title("Average Income Trend Over Time")
plt.xlabel("Month of Joining")
plt.ylabel("Month of Joining")
plt.ylabel("Average Income")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



#### Interpretation:

- 1. Pattern: Average income steadily declined from earlier months (starting around 2008) to recent periods.
- 2. Initial Highs: Employees who joined early (2008–2010) had higher average salaries.
- 3. Recent Lows: Post-2015, income flattens around ₹50,000-₹60,000.

#### Implications:

- 1. Indicates seniority/tenure-based income growth.
- 2. Or a change in hiring policy hiring more junior/lower-cost resources over time.
- 3. Possibly aligns with organizational cost-cutting or scale-up strategy with younger talent.

## Outlier Detection

## Boxplots of continuous features

```
import matplotlib.pyplot as plt
import seaborn as sns

# Numerical columns
num_cols = ['Age', 'Income', 'Total Business Value', 'Quarterly Rating']

# Ola color scheme
ola_color = "#D9E021"
bg_color = "#000000"

# Set global theme
sns.set_style("whitegrid")
plt.rcParams['axes.facecolor'] = bg_color
plt.rcParams['figure.facecolor'] = bg_color
plt.rcParams['text.color'] = 'white'
plt.rcParams['axes.labelcolor'] = 'white'
plt.rcParams['xtick.color'] = 'white'
plt.rcParams['ytick.color'] = 'white'
plt.rcParams['ytick.color'] = 'white'
plt.rcParams['axes.edgecolor'] = 'white'
```

```
fig, axes = plt.subplots(2, 2, figsize=(14, 8))
axes = axes.flatten()

for i, col in enumerate(num_cols):
    sns.boxplot(y=df[col], ax=axes[i], color=ola_color)
    axes[i].set_title(f'Boxplot of {col}', color='white')
    axes[i].set_ylabel(col, color='white')
    axes[i].tick_params(colors='white')
    axes[i].tick_params(colors='white')
    axes[i].set_facecolor(bg_color)

plt.tight_layout()
plt.show()
```



| Feature        | Skewed?      | Outliers Present?       | Implication                                                        |
|----------------|--------------|-------------------------|--------------------------------------------------------------------|
| Age            | Mildly right | Yes (older employees)   | Age-related attrition or senior-level insights can be investigated |
| Income         | Yes (right)  | Many (high earners)     | Look into income vs attrition, grade, or performance               |
| Business Value | Very skewed  | Yes (strong right tail) | High leverage individuals can be identified                        |
| Rating         | Slight       | Yes (0 and 4)           | Might affect attrition or promotion paths                          |

## Z-score or IQR method for outlier treatment

For tree-based models: keep outliers or cap them (robust)

For regression or distance-based models: remove or cap them

```
import numpy as np

# Step 1: Ensure numerical columns are numeric
num_cols = ['Age', 'Income', 'Total Business Value', 'Quarterly Rating']
```

```
df[num_cols] = df[num_cols].apply(pd.to_numeric, errors='coerce')
# Step 2: Initialize summary dictionary
outlier_flags = {}
# Step 3: Loop through each numerical feature and flag outliers
for col in num cols:
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    # Flag outliers: 1 for outlier, 0 otherwise
    outlier_col = f'{col}_outlier'
    df[outlier_col] = ((df[col] < lower_bound) | (df[col] > upper_bound)).astype(int)
    # Save summary
    count = df[outlier_col].sum()
    percent = 100 * count / len(df)
    outlier_flags[col] = (count, round(percent, 2))
# Step 4: Print summary
print("Outlier Summary:")
for col, (count, percent) in outlier_flags.items():
    print(f"{col:22}: {count:5} outliers ({percent:5.2f}%)")
→ Outlier Summary:
     Age
                           :
                               78 outliers ( 0.41%)
     Income
                              188 outliers ( 0.98%)
     Total Business Value : 1371 outliers ( 7.18%)
     Quarterly Rating
                                0 outliers ( 0.00%)
Start coding or generate with AI.
```

## Data Preprocessing & Feature Engineering

## Missing Value Imputation

### kNN Imputation

```
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler
# Step 1: Select numeric features for imputation (excluding IDs, targets, outlier flags)
exclude_cols = ['Driver_ID', 'target'] + [col for col in df.columns if 'outlier' in col]
num_features = [col for col in df.select_dtypes(include=['float64', 'int64']).columns if col not in exclude_cols]
# Step 2: Standardize the numeric features
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df[num_features])
# Step 3: Apply KNN Imputer
imputer = KNNImputer(n neighbors=5)
imputed_data = imputer.fit_transform(scaled_data)
# Step 4: Replace original missing values with imputed values
df[num_features] = scaler.inverse_transform(imputed_data)
# Optional: Check if any missing values remain
print("Missing values remaining:")
print(df[num_features].isnull().sum())
Missing values remaining:
                             0
     Age
     Income
                             0
     Total Business Value
                             0
     Quarterly Rating
                             0
     Attrition
     dtype: int64
```

## Aggregation

Cringeat a new DataFrame with one row per driver, containing:

- Aggregated numerical values
- · Categorical values from the latest record
- · First and last date-related fields

```
agg_funcs = {
    'Income': ['max', 'min', 'mean', 'std'],
    'Quarterly Rating': ['max', 'min', 'mean', 'std'],
    'Total Business Value': ['max', 'min', 'mean', 'std'],
    'Grade': 'last',
    'City': 'last',
    'Dateofjoining': 'first',
    'Attrition': 'max'
}

df_agg = df.groupby('Driver_ID').agg(agg_funcs)

# Flatten multi-level columns
df_agg.columns = ['_'.join(col).strip() if isinstance(col, tuple) else col for col in df_agg.columns.values]
df_agg
df_agg
```

| • | _ |  |
|---|---|--|
| Ξ | Y |  |

| Ť    | Driver_ID | Income_max | Income_min | Income_mean | Income_std | Quarterly<br>Rating_max | Quarterly<br>Rating_min | Quarterly<br>Rating_mean | Quarterly<br>Rating_std | Total<br>Business<br>Value_max | l<br>Busi<br>Valu€ |
|------|-----------|------------|------------|-------------|------------|-------------------------|-------------------------|--------------------------|-------------------------|--------------------------------|--------------------|
| 0    | 1         | 57387.0    | 57387.0    | 57387.0     | 0.0        | 2.0                     | 2.0                     | 2.000000                 | 0.000000                | 2.381060e+06                   | -6.654800          |
| 1    | 2         | 67016.0    | 67016.0    | 67016.0     | 0.0        | 1.0                     | 1.0                     | 1.000000                 | 0.000000                | 1.164153e-10                   | 1.16415            |
| 2    | 4         | 65603.0    | 65603.0    | 65603.0     | 0.0        | 1.0                     | 1.0                     | 1.000000                 | 0.000000                | 3.500000e+05                   | 1.16415            |
| 3    | 5         | 46368.0    | 46368.0    | 46368.0     | 0.0        | 1.0                     | 1.0                     | 1.000000                 | 0.000000                | 1.203600e+05                   | 1.16415            |
| 4    | 6         | 78728.0    | 78728.0    | 78728.0     | 0.0        | 2.0                     | 1.0                     | 1.600000                 | 0.547723                | 1.265000e+06                   | 1.16415            |
|      |           |            |            |             |            |                         |                         |                          |                         |                                |                    |
| 2376 | 2784      | 82815.0    | 82815.0    | 82815.0     | 0.0        | 4.0                     | 1.0                     | 2.625000                 | 1.013496                | 4.495040e+06                   | 1.16415            |
| 2377 | 2785      | 12105.0    | 12105.0    | 12105.0     | 0.0        | 1.0                     | 1.0                     | 1.000000                 | 0.000000                | 1.164153e-10                   | 1.16415            |
| 2378 | 2786      | 35370.0    | 35370.0    | 35370.0     | 0.0        | 2.0                     | 1.0                     | 1.666667                 | 0.500000                | 9.703800e+05                   | 1.16415            |
| 2379 | 2787      | 69498.0    | 69498.0    | 69498.0     | 0.0        | 2.0                     | 1.0                     | 1.500000                 | 0.547723                | 4.080900e+05                   | 1.16415            |
| 2380 | 2788      | 70254.0    | 70254.0    | 70254.0     | 0.0        | 3.0                     | 1.0                     | 2.285714                 | 0.755929                | 7.402800e+05                   | 1.16415            |

2381 rows × 17 columns

## Feature Engineering

- income\_increased: 1 if monthly income shows upward trend
- rating\_improved: 1 if rating trend increases over time
- target: 1 if LastWorkingDate is not null
- Tenure in months: last\_report\_date Date Of Joining
- · Average monthly business / average rating

### ✓ Income increased

```
def detect_income_increase(df):
    df_sorted = df.sort_values(['Driver_ID', 'MMM-YY'])
```

```
income_trend = df_sorted.groupby('Driver_ID')['Income'].apply(
    lambda x: 1 if x.is_monotonic_increasing else 0
).reset_index(name='income_increased')
return income_trend
```

Rating Improved

```
def detect_rating_increase(df):
    df_sorted = df.sort_values(['Driver_ID', 'MMM-YY'])
    rating_trend = df_sorted.groupby('Driver_ID')['Quarterly Rating'].apply(
        lambda x: 1 if x.is_monotonic_increasing else 0
    ).reset_index(name='rating_improved')
    return rating_trend
```

Tenure in months: Difference between last report date and join date

```
#df_agg['Dateofjoining'] = pd.to_datetime(df_agg['Dateofjoining'])
latest_report_date = df['MMM-YY'].max()  # use from original dataset
df_agg['Tenure_months'] = ((latest_report_date - df_agg['Dateofjoining_first']).dt.days / 30.44).round(1)
```

Average Monthly Business / Average Rating:

```
df_agg['Business_per_rating'] = df_agg['Total Business Value_mean'] / df_agg['Quarterly Rating_mean']
```

Merging new features into the df:

```
# Detect trends from original df
income_trend = detect_income_increase(df)
rating_trend = detect_rating_increase(df)

# Merge with df_agg
df_agg = df_agg.merge(income_trend, on='Driver_ID', how='left')
df_agg = df_agg.merge(rating_trend, on='Driver_ID', how='left')
```

### Encoding

Double-click (or enter) to edit

```
df['Join_Year'] = df['Dateofjoining'].dt.year
df['Join_Month'] = df['Dateofjoining'].dt.month
# Then drop the original datetime columns
df.drop(columns=['MMM-YY', 'Dateofjoining'], inplace= True)
```

Since we have extracted meaningful information from the datetime columns, we will be dropping them

### → Gender

```
df['Gender'].value_counts()
```

```
count

Gender

0.0 11074

1.0 7978

dtype: int64

df= df[df['Gender'].isin([0.0, 1.0])]
```

These entries are not interpretable, and since the counts are low (only ~40 rows), it's safe to drop without risking model generalization.

With this we avoid introducing noise or label leakage.

One-Hot Encode: Columns:

```
*'City'

*'Joining_Designation'

*'Grade'

*'Education_Level'

Double-click (or enter) to edit

cols_to_onehot = ['City', 'Joining Designation', 'Grade', 'Education_Level']
```

df= pd.get\_dummies(df, columns=cols\_to\_onehot, drop\_first=True)

### Class Imbalance Treatment

### Checking Class Distribution of target

df['Attrition'].value\_counts(normalize=True)



dtype: float64

Since the minority class is < 30%, we will be performing the imbalance treatment

| Method        | Description                                                                 | When to Use                               |
|---------------|-----------------------------------------------------------------------------|-------------------------------------------|
| SMOTE         | Synthetic Minority Over-sampling Technique (creates new synthetic examples) | Works well for tabular numerical data     |
| ADASYN        | Similar to SMOTE but focuses more on harder-to-classify minority samples    | Good if minority class is spread unevenly |
| Class Weights | Assign higher penalty to misclassifying minority class                      | Best with models that support weighting   |

## Spliting the dataset into train and test set

```
X = df.drop('Attrition', axis=1)
y = df['Attrition']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
```

## Applying SMOTE

```
smote= SMOTE(random_state= 42)
X_train_smote, y_train_smote= smote.fit_resample(X_train, y_train)
y_train_smote.value_counts()
 <del>_</del>__
                  count
      Attrition
          0.0
                  13952
          1.0
                  13952
     dtype: int64
The data is balanced now
X_train_smote.info()
     Show hidden output
Feature Scaling
X_train_smote.columns
'Joining Designation_3', 'Joining Designation_4',
'Joining Designation_5', 'Grade_2', 'Grade_3', 'Grade_4', 'Grade_5',
'Education_Level_1', 'Education_Level_2'],
            dtype='object')
X_train_smote['Driver_ID'].dtype!= 'bool'
 → True
num_cols= []
for col in X train smote.columns:
  if X_train_smote[col].dtype!= 'bool':
    num_cols.append(col)
num_cols
 → ['Driver_ID',
       'Age',
       'Gender'
       'Income',
       'Total Business Value',
       'Quarterly Rating',
       'Join_Month',
       'Age_outlier'
       'Income_outlier',
       'Total Business Value_outlier',
       'Quarterly Rating_outlier',
       'Join_Year']
sscaler= StandardScaler()
X_train_sscaled= X_train_smote.copy()
X_test_sscaled = X_test.copy()
\label{lem:cols} X\_train\_sscaled[num\_cols] = sscaler.fit\_transform(X\_train\_sscaled[num\_cols])
X_test_sscaled[num_cols] = sscaler.transform(X_test_sscaled[num_cols])
```

```
mmscaler= MinMaxScaler()

X_train_mmscaled= X_train_smote.copy()
X_train_mmscaled[num_cols]= mmscaler.fit_transform(X_train_mmscaled[num_cols])

X_test_mmscaled = X_test.copy()
X_test_mmscaled[num_cols] = mmscaler.transform(X_test_mmscaled[num_cols])
```

| <b>→</b> |       | Driver_ID    | Age          | Gender       | Income       | Total<br>Business<br>Value | Quarterly<br>Rating | Join_Month   | Age_outlier  | Income_outlier | Value |
|----------|-------|--------------|--------------|--------------|--------------|----------------------------|---------------------|--------------|--------------|----------------|-------|
|          | count | 27904.000000 | 27904.000000 | 27904.000000 | 27904.000000 | 27904.000000               | 27904.000000        | 27904.000000 | 27904.000000 | 27904.000000   | 279   |
|          | mean  | 0.507271     | 0.351425     | 0.308809     | 0.282770     | 0.159266                   | 0.205135            | 0.505555     | 0.002043     | 0.005591       |       |
|          | std   | 0.283217     | 0.154509     | 0.462010     | 0.164736     | 0.022501                   | 0.299194            | 0.265901     | 0.045151     | 0.074562       |       |
|          | min   | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000                   | 0.000000            | 0.000000     | 0.000000     | 0.000000       |       |
|          | 25%   | 0.263007     | 0.243243     | 0.000000     | 0.163651     | 0.150952                   | 0.000000            | 0.363636     | 0.000000     | 0.000000       |       |
|          | 50%   | 0.507894     | 0.332585     | 0.000000     | 0.254898     | 0.150952                   | 0.000000            | 0.545455     | 0.000000     | 0.000000       |       |
|          | 75%   | 0.757445     | 0.442099     | 1.000000     | 0.377315     | 0.159758                   | 0.333333            | 0.727273     | 0.000000     | 0.000000       |       |
|          |       | 4 000000     | 4 000000     | 4 000000     | 4 000000     | 4 000000                   | 4 000000            | 4 000000     | 4 000000     | 4 000000       |       |

Start coding or  $\underline{\text{generate}}$  with AI.

X\_train\_mmscaled[num\_cols].describe()

# Model Building

## Bagging Model

Defining Hyperparameter Grid for RandomizedSearchCV

Initialize and run RandomizedSearchCV

```
rf= RandomForestClassifier(random_state= 42, class_weight= 'balanced')
rf_random_st= RandomizedSearchCV(estimator= rf,
                              param_distributions = param_grid,
                              n_iter= 20,
                              cv= 5,
                              verbose= 2,
                              n_jobs= -1,
                              scoring= 'f1')
rf_random_mm= RandomizedSearchCV(estimator= rf,
                              param_distributions = param_grid,
                              n_iter= 20,
                              cv= 5,
                              verbose= 2,
                              n_jobs= -1,
                              scoring= 'f1')
rf_random_st.fit(X_train_sscaled, y_train_smote)
rf_random_mm.fit(X_train_mmscaled, y_train_smote)
```

Fitting 5 folds for each of 20 candidates, totalling 100 fits

Fitting 5 folds for each of 20 candidates, totalling 100 fits

RandomizedSearchCV

best\_estimator\_:
RandomForestClassifier

RandomForestClassifier

#### Best Estimator and Evaluation

```
best_rf_st= rf_random_st.best_estimator_
y_pred_rf_st= best_rf_st.predict(X_train_sscaled)
print('Confusion Matrix')
print(confusion_matrix(y_train_smote, y_pred_rf_st))
print("\nClassification Report: ")
print(classification_report(y_train_smote, y_pred_rf_st))

→ Confusion Matrix
     [[13764
              188]
      [ 668 13284]]
     Classification Report:
                                recall f1-score
                   precision
                                                    support
              0.0
                        0.95
                                   0.99
                                             0.97
                                                      13952
                                                      13952
              1.0
                        0.99
                                             0.97
                                   0.95
                                             0.97
                                                      27904
         accuracy
                        0.97
                                   0.97
                                                      27904
        macro avg
                                             0.97
                                                      27904
                        0.97
                                   0.97
                                             0.97
     weighted avg
best_rf_mm= rf_random_mm.best_estimator_
y_pred_rf_mm= best_rf_mm.predict(X_train_mmscaled)
print('Confusion Matrix')
print(confusion_matrix(y_train_smote, y_pred_rf_mm))
print("\nClassification Report: ")
print(classification_report(y_train_smote, y_pred_rf_mm))
→ Confusion Matrix
     [[13788 164]
      [ 481 13471]]
     Classification Report:
                   precision
                                recall f1-score
                                                    support
              0.0
                        0.97
                                   0.99
                                             0.98
                                                      13952
              1.0
                        0.99
                                   0.97
                                             0.98
                                                      13952
                                             0.98
                                                      27904
         accuracy
                        0.98
                                   0.98
                                             0.98
                                                      27904
        macro avg
     weighted avg
                        0.98
                                   0.98
                                             0.98
                                                      27904
```

## Feature Importance Plot

```
import matplotlib.pyplot as plt
import seaborn as sns

importance_st= best_rf_st.feature_importances_
feature_names_st= X_train_sscaled.columns

importance_mm= best_rf_mm.feature_importances_
feature_names_mm= X_train_mmscaled.columns

feat_imp_df_st= pd.DataFrame({'Feature': feature_names_st, 'Importance': importance_st})
feat_imp_df_st= feat_imp_df_st.sort_values(by= 'Importance', ascending= False)
```

```
feat_imp_df_mm= pd.DataFrame({'Feature': feature_names_mm, 'Importance': importance_mm})
feat_imp_df_mm= feat_imp_df_mm.sort_values(by= 'Importance', ascending= False)

# Top 20 for both
top_feats_st = feat_imp_df_st.head(20)
top_feats_mm = feat_imp_df_mm.head(20)

# Plot side by side
fig, axes = plt.subplots(1, 2, figsize=(18, 8), sharey=True)

# Standard Scaled
sns.barplot(ax=axes[0], x='Importance', y='Feature', data=top_feats_st, palette='Greens_d')
axes[0].set_title('Top 20 Features - Standard Scaler')

# Min-Max Scaled
sns.barplot(ax=axes[1], x='Importance', y='Feature', data=top_feats_mm, palette='Blues_d')
axes[1].set_title('Top 20 Features - Min-Max Scaler')

plt.tight_layout()
plt.show()
```



#### Inference:

This means scaling didn't distort feature importance in Random Forest (which is scale-invariant).

The feature importance chart displays the top 20 predictors contributing to the Random Forest model's decision-making process. Here's the interpretation:

#### Top Influencers:

- 1. Quarterly Rating and Total Business Value are by far the most significant predictors, with combined importance exceeding 40%. This suggests that driver performance and revenue contribution are strong indicators of the target variable.
- 2. Join\_Year also has a notable impact, indicating the year of joining is correlated with the outcome potentially reflecting experience or policy changes over time.

Secondary Influencers:

- 1. Income, Age, and Driver\_ID form the next tier of importance. This implies that socio-demographic characteristics and unique identifiers might indirectly capture behavior or engagement trends.
- 2. Join\_Month, Education\_Level\_2, and Gender also add moderate predictive power.

#### Categorical Feature Impact:

- 3. Education\_Level\_1, Joining\_Designation\_2/3, and Grade\_2/3/4 have relatively lower importance but still contribute meaningfully. The model benefits from including detailed role and designation info.
- 4. Some city dummies like City\_C20, City\_C2, City\_C23, and City\_C26 appear, though with minimal influence individually.

#### **Outlier Impact:**

1. The presence of Total Business Value\_outlier indicates that detecting extreme values in business contribution has predictive value, albeit smaller.

#### Summary:

The Random Forest model is heavily influenced by performance metrics (Quarterly Rating), revenue (Total Business Value), and temporal factors (Join\_Year). Demographics and designation-level categories play a secondary role. These insights could be valuable for:

- · Designing retention strategies
- · Segmenting drivers
- · Prioritizing features for simplified models

### Model Evaluation

```
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, f1_score, average_precision_score
# Predict labels and probabilities
y_pred_st = best_rf_st.predict(X_test_sscaled)
y_proba_st = best_rf_st.predict_proba(X_test_sscaled)[:, 1]
y_pred_mm = best_rf_mm.predict(X_test_mmscaled)
y_proba_mm = best_rf_mm.predict_proba(X_test_mmscaled)[:, 1]
# Metrics
f1_st = f1_score(y_test, y_pred_st)
f1_mm = f1_score(y_test, y_pred_mm)
roc_auc_st = roc_auc_score(y_test, y_proba_st)
roc_auc_mm = roc_auc_score(y_test, y_proba_mm)
avg_precision_st = average_precision_score(y_test, y_proba_st)
avg_precision_mm = average_precision_score(y_test, y_proba_mm)
# Print results
print("Random Forest Performance Comparison:\n")
print(f"Standard Scaler - F1 Score: {f1_st:.4f}, ROC AUC: {roc_auc_st:.4f}, Average Precision: {avg_precision_st:.4f}")
print(f"MinMax Scaler - F1 Score: {f1_mm:.4f}, ROC AUC: {roc_auc_mm:.4f}, Average Precision: {avg_precision_mm:.4f}")
Random Forest Performance Comparison:
     Standard Scaler - F1 Score: 0.2049, ROC AUC: 0.7773, Average Precision: 0.2046
     MinMax Scaler - F1 Score: 0.1856, ROC AUC: 0.7646, Average Precision: 0.1898
```

### ROC Curve Comparison

```
fpr_st, tpr_st, _ = roc_curve(y_test, y_proba_st)
fpr_mm, tpr_mm, _ = roc_curve(y_test, y_proba_mm)

plt.figure(figsize=(8, 6))
plt.plot(fpr_st, tpr_st, label=f'Standard Scaler (AUC = {roc_auc_st:.2f})', color='green')
plt.plot(fpr_mm, tpr_mm, label=f'Min-Max Scaler (AUC = {roc_auc_mm:.2f})', color='blue')
plt.plot([0, 1], [0, 1], 'k--') # baseline

plt.xlabel("False Positive Rate")
```

```
plt.ylabel("True Positive Rate")
plt.title("ROC Curve Comparison - Random Forest")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```



## Precision Recall Curve Comparison

```
from sklearn.metrics import precision_recall_curve, average_precision_score
import matplotlib.pyplot as plt
# Compute precision-recall for Standard Scaled
precision_st, recall_st, _ = precision_recall_curve(y_test, y_proba_st)
avg_precision_st = average_precision_score(y_test, y_proba_st)
# Compute precision-recall for MinMax Scaled
precision_mm, recall_mm, _ = precision_recall_curve(y_test, y_proba_mm)
avg_precision_mm = average_precision_score(y_test, y_proba_mm)
# Plot both PR curves
plt.figure(figsize=(8, 6))
plt.plot(recall_st, precision_st, label=f'Standard Scaler (AP = {avg_precision_st:.2f})', color='green')
plt.plot(recall_mm, precision_mm, label=f'MinMax Scaler (AP = {avg_precision_mm:.2f})', color='blue')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve Comparison - Random Forest')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```



#### Inference:

- 1. Overall Performance The Random Forest model trained on Standard Scaled data slightly outperforms the one trained on Min-Max Scaled data in both F1 Score and ROC AUC.
  - While F1 scores are low (~0.18), indicating difficulty in correctly identifying the minority class (attrition),
  - The ROC AUC ~0.78 suggests the model does a reasonably good job at ranking positive cases higher than negative ones.
- 2. Impact of Scaling on Tree-Based Models
  - o As expected, Random Forest is relatively scale-invariant, so the choice of scaling method does not drastically affect performance.
  - · However, slight differences in hyperparameter search outcomes and SMOTE-based oversampling may cause small metric shifts.
- 3. Class Imbalance Challenge
  - o The low F1 score indicates a challenge with class imbalance, where precision or recall for the minority class is suboptimal.
  - Future improvement can be explored with:
    - · Feature engineering
    - Advanced imbalance-handling (e.g., SMOTE+Tomek, class weights)
    - Model ensembles or stacking
- 4. Standard Scaler Preferred
  - Given better performance on both F1 and ROC AUC, Standard Scaler is preferred in this case for preprocessing.

## **Boosting Model**

### ✓ 1. XGBoost

```
from xgboost import XGBClassifier

xgb_clf = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)

xgb_param_grid = {
    'n_estimators': [100, 150, 200],
    'max_depth': [3, 5, 7],
```

```
'learning_rate': [0.01, 0.05, 0.1],
    'subsample': [0.7, 0.8, 1.0],
    'colsample_bytree': [0.6, 0.8, 1.0]
}
search_xgb_st = RandomizedSearchCV(
    estimator=xgb_clf,
    param_distributions=xgb_param_grid,
    scoring='f1',
    n_iter=20,
    cv=5,
    verbose=2,
    random_state=42,
    n_jobs=-1
search xgb mm = RandomizedSearchCV(
    estimator=xgb_clf,
    \verb"param_distributions=xgb_param_grid",
    scoring='f1',
    n_iter=20,
    cv=5,
    verbose=2,
    random state=42,
    n_jobs=-1
)
# For Standard Scaled
search_xgb_st.fit(X_train_sscaled, y_train_smote)
best_xgb_st = search_xgb_st.best_estimator_
# For MinMax Scaled
search_xgb_mm.fit(X_train_mmscaled, y_train_smote)
best_xgb_mm = search_xgb_mm.best_estimator_
     Fitting 5 folds for each of 20 candidates, totalling 100 fits
     Fitting 5 folds for each of 20 candidates, totalling 100 fits
```

### Model Evaluation

```
from sklearn.metrics import f1_score, roc_auc_score, average_precision_score
# Example: For best_xgb_st
y_pred_st = best_xgb_st.predict(X_test_sscaled)
y_proba_st = best_xgb_st.predict_proba(X_test_sscaled)[:, 1]
f1_st_xg = f1_score(y_test, y_pred_st)
roc_st_xg = roc_auc_score(y_test, y_proba_st)
avg_precision_st_xg = average_precision_score(y_test, y_proba_st)
print(f"[XGBM - Standard]F1 Score: {f1_st_xg:.4f}, ROC AUC: {roc_st_xg:.4f}, Average Precision: {avg_precision_st_xg:.4f}")
print('Confusion Matrix')
print(confusion_matrix(y_test, y_pred_st))
# Example: For best_xgb_mm
y_pred_mm = search_xgb_mm.predict(X_test_mmscaled)
y_proba_mm = search_xgb_mm.predict_proba(X_test_mmscaled)[:, 1]
f1_mm_xg = f1_score(y_test, y_pred_mm)
roc_mm_xg = roc_auc_score(y_test, y_proba_mm)
avg_precision_mm_xg = average_precision_score(y_test, y_proba_mm)
print(f"[XGBM - MinMax]F1 Score: {f1_mm_xg:.4f}, ROC AUC: {roc_mm_xg:.4f}, Average Precision: {avg_precision_mm_xg:.4f}")
print('Confusion Matrix')
print(confusion_matrix(y_test, y_pred_mm))
[XGBM - Standard]F1 Score: 0.3138, ROC AUC: 0.8310, Average Precision: 0.2698
     Confusion Matrix
     [[3322 167]
      [ 231 91]]
     [XGBM - MinMax]F1 Score: 0.3138, ROC AUC: 0.8310, Average Precision: 0.2698
     Confusion Matrix
     [[3322 167]
      [ 231 91]]
```

### 2. LightGB

```
from lightgbm import LGBMClassifier
# Model
lgbm_clf = LGBMClassifier(random_state=42)
# Hyperparameter grid
lgbm_param_grid = {
    'n_estimators': [100, 200],
    'max_depth': [-1, 5, 10],
    'learning_rate': [0.01, 0.05, 0.1],
    'num_leaves': [31, 50, 100],
    'subsample': [0.7, 0.8, 1.0]
}
# RandomizedSearchCV for Standard Scaled
search_lgbm_st = RandomizedSearchCV(
    estimator=lgbm_clf,
    param_distributions=lgbm_param_grid,
    scoring='f1',
    n_iter=20,
    cv=5,
    verbose=2,
    random_state=42,
    n_jobs=-1
)
# RandomizedSearchCV for MinMax Scaled
search_lgbm_mm = RandomizedSearchCV(
    estimator=lgbm_clf,
    param_distributions=lgbm_param_grid,
    scoring='f1',
    n_iter=20,
    cv=5,
    verbose=2,
    random_state=42,
    n_jobs=-1
)
# Fit
search_lgbm_st.fit(X_train_sscaled, y_train_smote)
best_lgbm_st = search_lgbm_st.best_estimator_
search_lgbm_mm.fit(X_train_mmscaled, y_train_smote)
best_lgbm_mm = search_lgbm_mm.best_estimator_
from sklearn.metrics import f1_score, roc_auc_score, average_precision_score
# Standard
y_pred_st = best_lgbm_st.predict(X_test_sscaled)
y_proba_st = best_lgbm_st.predict_proba(X_test_sscaled)[:, 1]
f1_st_lgbm = f1_score(y_test, y_pred_st)
roc_st_lgbm = roc_auc_score(y_test, y_proba_st)
avg_precision_st_lgbm = average_precision_score(y_test, y_proba_st)
print(f"[LGBM - Standard] F1 Score: {f1_st_lgbm:.4f}, ROC AUC: {roc_st_lgbm:.4f}, Avg Precision: {avg_precision_st_lgbm:.4f}")
print('Confusion Matrix')
print(confusion_matrix(y_test, y_pred_st))
# MinMax
y_pred_mm = best_lgbm_mm.predict(X_test_mmscaled)
y_proba_mm = best_lgbm_mm.predict_proba(X_test_mmscaled)[:, 1]
f1_mm_lgbm = f1_score(y_test, y_pred_mm)
roc_mm_lgbm = roc_auc_score(y_test, y_proba_mm)
avg_precision_mm_lgbm = average_precision_score(y_test, y_proba_mm)
print(f"[LGBM - MinMax] F1 Score: {f1_mm_lgbm:.4f}, ROC AUC: {roc_mm_lgbm:.4f}, Avg Precision: {avg_precision_mm_lgbm:.4f}")
print('Confusion Matrix')
print(confusion_matrix(y_test, y_pred_mm))
```

```
Fitting 5 folds for each of 20 candidates, totalling 100 fits
    [LightGBM] [Warning] Found whitespace in feature_names, replace with underlines
    [LightGBM] [Info] Number of positive: 13952, number of negative: 13952
    [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.009963 seconds.
    You can set `force_row_wise=true` to remove the overhead.
    And if memory is not enough, you can set `force_col_wise=true`.
    [LightGBM] [Info] Total Bins 1385
    [LightGBM] [Info] Number of data points in the train set: 27904, number of used features: 49
    [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000
    Fitting 5 folds for each of 20 candidates, totalling 100 fits
    [LightGBM] [Warning] Found whitespace in feature_names, replace with underlines
    [LightGBM] [Info] Number of positive: 13952, number of negative: 13952
    [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.010299 seconds.
    You can set `force_row_wise=true` to remove the overhead.
    And if memory is not enough, you can set `force_col_wise=true`.
    [LightGBM] [Info] Total Bins 1379
    [LightGBM] [Info] Number of data points in the train set: 27904, number of used features: 49
    [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000
    [LGBM - Standard] F1 Score: 0.2436, ROC AUC: 0.8217, Avg Precision: 0.2493
    Confusion Matrix
    [[3364 125]
     [ 260 62]]
    [LGBM - MinMax] F1 Score: 0.2332, ROC AUC: 0.8207, Avg Precision: 0.2463
    Confusion Matrix
    [[3364 125]
     [ 263
            59]]
```

#### 3. AdaBoost

```
from sklearn.ensemble import AdaBoostClassifier
ada_clf = AdaBoostClassifier(random_state=42)
# Param grid
ada_param_grid = {
    'n_estimators': [50, 100, 150],
    'learning_rate': [0.01, 0.05, 0.1, 1.0]
}
# RandomizedSearchCV for Standard Scaled
search ada st = RandomizedSearchCV(
    estimator=ada_clf,
    param_distributions=ada_param_grid,
    scoring='f1',
    n_iter=10,
    cv=5,
    verbose=2,
    random_state=42,
    n_jobs=-1
)
# RandomizedSearchCV for MinMax Scaled
search ada mm = RandomizedSearchCV(
    estimator=ada_clf,
    param_distributions=ada_param_grid,
    scoring='f1',
    n_iter=10,
    cv=5,
    verbose=2,
    random_state=42,
    n_jobs=-1
)
search_ada_st.fit(X_train_sscaled, y_train_smote)
best_ada_st = search_ada_st.best_estimator_
search ada mm.fit(X train mmscaled, y train smote)
best_ada_mm = search_ada_mm.best_estimator_
# Evaluation
# Standard
y_pred_st = best_ada_st.predict(X_test_sscaled)
y_proba_st = best_ada_st.predict_proba(X_test_sscaled)[:, 1]
```

```
f1_ada_st = f1_score(y_test, y_pred_st)
roc_ada_st = roc_auc_score(y_test, y_proba_st)
avg_precision_ada_st = average_precision_score(y_test, y_proba_st)
print(f"[AdaBoost - Standard] F1 Score: {f1_ada_st:.4f}, ROC AUC: {roc_ada_st:.4f}, Avg Precision: {avg_precision_ada_st:.4f}")
print('Confusion Matrix')
print(confusion_matrix(y_test, y_pred_st))
# MinMax
y_pred_mm = best_ada_mm.predict(X_test_mmscaled)
y_proba_mm = best_ada_mm.predict_proba(X_test_mmscaled)[:, 1]
f1_ada_mm = f1_score(y_test, y_pred_mm)
roc_ada_mm = roc_auc_score(y_test, y_proba_mm)
avg_precision_ada_mm = average_precision_score(y_test, y_proba_mm)
print(f"[AdaBoost - MinMax] F1 Score: {f1_ada_mm:.4f}, ROC AUC: {roc_ada_mm:.4f}, Avg Precision: {avg_precision_ada_mm:.4f}")
print('Confusion Matrix')
print(confusion_matrix(y_test, y_pred_mm))
 Fitting 5 folds for each of 10 candidates, totalling 50 fits
     Fitting 5 folds for each of 10 candidates, totalling 50 fits
     [AdaBoost - Standard] F1 Score: 0.3487, ROC AUC: 0.8271, Avg Precision: 0.2549
     Confusion Matrix
     [[2987 502]
      [ 148 174]]
     [AdaBoost - MinMax] F1 Score: 0.3487, ROC AUC: 0.8271, Avg Precision: 0.2549
     Confusion Matrix
     [[2987 502]
      [ 148 174]]
```

# Model Evaluation (Fresh)

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Replace with your actual model scores
model_scores = {
    'Model': [
        'Bagging - Std', 'Bagging - MM',
'XGBoost - Std', 'XGBoost - MM',
        'LGBM - Std', 'LGBM - MM',
        'AdaBoost - Std', 'AdaBoost - MM'
    ],
    'F1 Score': [f1_st, f1_mm, f1_st_xg, f1_mm_xg, f1_st_lgbm, f1_mm_lgbm, f1_ada_st, f1_ada_mm],
    'ROC AUC': [roc_auc_st, roc_auc_mm, roc_st_xg, roc_mm_xg, roc_st_lgbm, roc_mm_lgbm, roc_ada_st, roc_ada_mm],
    'Avg Precision': [avg_precision_st, avg_precision_mm, avg_precision_st_xg, avg_precision_mm_xg, avg_precision_st_lgbm, avg_precision_mm_l_i
df_scores = pd.DataFrame(model_scores)
# Set style
sns.set(style="whitegrid")
plt.figure(figsize=(12, 6))
# Melt for seaborn
df_melt = df_scores.melt(id_vars='Model', var_name='Metric', value_name='Score')
# Bar plot
sns.barplot(x='Model', y='Score', hue='Metric', data=df_melt)
plt.title("Boosting Model Performance Comparison (Standard vs MinMax Scaler)", fontsize=14)
plt.xticks(rotation=45)
plt.tight_layout()
plt.legend(title='Metric')
plt.show()
```



```
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
metrics = ['F1 Score', 'ROC AUC', 'Avg Precision']
for i, metric in enumerate(metrics):
    sns.barplot(x='Model', y=metric, data=df_scores, ax=axes[i])
    axes[i].set_title(metric)

    axes[i].tick_params(axis='x', rotation=45)
    axes[i].set_ylim(0, 1)

fig.suptitle("Comparison of Boosting Models on Different Scaling Techniques", fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.show()
```



#### Comparison of Boosting Models on Different Scaling Techniques



| Model   | Scaling | F1 Score | ROC AUC | Avg Precision |  |
|---------|---------|----------|---------|---------------|--|
| Bagging | Std     | 0.1818   | 0.7782  | 0.2042        |  |
|         | MM      | 0.2350   | 0.8086  | 0.2382        |  |

| Model    | Scaling | F1 Score | ROC AUC | Avg Precision |
|----------|---------|----------|---------|---------------|
| XGBoost  | Std     | 0.3091   | 0.8321  | 0.2698        |
|          | MM      | 0.3099   | 0.8316  | 0.2692        |
| LightGBM | Std     | 0.2413   | 0.8219  | 0.2442        |
|          | MM      | 0.2311   | 0.8206  | 0.2431        |
| AdaBoost | Std     | 0.3497   | 0.8246  | 0.2559        |
|          | MM      | 0.3467   | 0.8238  | 0.2563        |

#### Inference

• Best Overall Performer AdaBoost with Standard Scaler shows the highest F1 Score (0.3497) — making it best for handling imbalanced classification.

XGBoost offers the best ROC AUC (~0.83) - excellent for overall class separability.

· Effect of Scaling Scaling slightly improves ROC AUC for Bagging, but has less impact on XGBoost or LightGBM.

F1 scores are more sensitive to scaling, especially in Bagging and AdaBoost.

· Bagging vs Boosting Boosting models consistently outperform Bagging on all three metrics.

Bagging might underfit due to less focus on hard-to-classify cases, unlike Boosting which sequentially improves.

## Model Comparison & Leaderboard Creation

```
model_results = pd.DataFrame({
    'Model': ['Bagging - Std', 'Bagging - MM', 'XGBoost - Std', 'XGBoost - MM',
              'LGBM - Std', 'LGBM - MM', 'AdaBoost - Std', 'AdaBoost - MM'],
    'F1 Score': [f1_st, f1_mm, f1_st_xg, f1_mm_xg, f1_st_lgbm, f1_mm_lgbm, f1_ada_st, f1_ada_mm],
    'ROC AUC': [roc_auc_st, roc_auc_mm, roc_st_xg, roc_mm_xg, roc_st_lgbm, roc_mm_lgbm, roc_ada_st, roc_ada_mm],
    'Avg Precision': [avg_precision_st, avg_precision_mm, avg_precision_st_xg, avg_precision_mm_xg, avg_precision_st_lgbm, avg_precision_mm_
    'False Negatives': [188, 164, 167, 167, 125, 125, 502, 502] # Extracted from confusion matrix
})
leaderboard = model_results.sort_values(by='False Negatives', ascending=True)
print(leaderboard)
₹
                Model F1 Score
                                 ROC AUC Avg Precision False Negatives
            LGBM - MM 0.233202 0.820721
                                                0.246257
                                                                      125
           LGBM - Std 0.243615 0.821678
                                                0.249309
                                                                      125
         Bagging - MM 0.185606 0.764592
                                                0.189770
                                                                      164
     2 XGBoost - Std 0.313793 0.831019
                                                0.269820
                                                                      167
         XGBoost - MM 0.313793 0.831019
                                                0.269820
                                                                      167
        Bagging - Std 0.204934 0.777290
                                                0.204583
                                                                      188
     6 AdaBoost - Std 0.348697 0.827127
                                                0.254909
     7 AdaBoost - MM 0.348697 0.827127
                                                0.254909
                                                                      502
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(12, 6))
sns.barplot(x='Model', y='F1 Score', data=leaderboard, label='F1 Score', color='skyblue')
sns.barplot(x='Model', y='ROC AUC', data=leaderboard, label='ROC AUC', color='lightgreen', alpha=0.6)
plt.xticks(rotation=45)
plt.title('Model Leaderboard by F1 & ROC AUC')
plt.legend()
plt.tight_layout()
plt.show()
```





```
{\tt from \ sklearn.metrics \ import \ precision\_recall\_curve}
plt.figure(figsize=(10, 6))
for name, model, X in [
    ('XGBoost - Std', best_xgb_st, X_{test_sscaled}),
    ('AdaBoost - Std', best_ada_st, X_test_sscaled),
    ('Bagging - MM', best_rf_mm, X_test_mmscaled)
]:
    y_scores = model.predict_proba(X)[:, 1]
    precision, recall, _ = precision_recall_curve(y_test, y_scores)
    plt.plot(recall, precision, label=name)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curves')
plt.legend()
plt.grid()
plt.tight_layout()
plt.show()
```



### Precision-Recall Curves



- AdaBoost has highest F1 score but too many false negatives (502) it's not ideal.
- XGBoost provides a strong balance:

High F1 Score (0.314)

Highest ROC AUC (0.831)

High Average Precision

Reasonable FN (167)

• LGBM gives the lowest False Negatives (125), with slightly lower F1 but decent AUC and precision.

# Insights and Recommendations

## 1. Key Drivers of Attrition (from Feature Importance)

| Top Features                           | Inference                                                                          |
|----------------------------------------|------------------------------------------------------------------------------------|
| Quarterly Rating                       | Low performance rating strongly correlates with attrition.                         |
| Total Business Value                   | Lower business contributions (revenue or delivery volume) increase attrition risk. |
| Join Year / Join Month                 | Recent joiners (likely <1 year) show higher churn.                                 |
| Income                                 | Drivers with low income are more likely to leave.                                  |
| Age                                    | Younger drivers or those near career shifts may be more volatile.                  |
| Education Level                        | Drivers with lower education levels are slightly more at risk.                     |
| Joining Designation / Grade            | Lower designation and grades (e.g., 3, 4, 5) exhibit higher attrition.             |
| City Dummies (e.g., City_C20, C2, C23) | Certain cities consistently appear as high-risk zones.                             |

# 2. Profile of High-Risk Drivers

| Profile Attribute |                  | Observation                                             |  |  |  |  |
|-------------------|------------------|---------------------------------------------------------|--|--|--|--|
|                   | Income           | Below median income (< ₹20,000/month approx, if known). |  |  |  |  |
|                   | Quarterly Rating | Rating < 2.5 out of 5.                                  |  |  |  |  |
|                   | Grade            | Mostly Grades 4 & 5.                                    |  |  |  |  |
|                   | City             | Drivers from City_C20, City_C2, and City_C23.           |  |  |  |  |
|                   | Business Value   | Monthly business value in bottom 25th percentile.       |  |  |  |  |

Profile Attribute

Observation

New Joiners

Joined in the last 6-12 months.

### 3. Business Recommendations

#### A. Performance Incentives

Dynamic Bonuses for high performance: Create a tiered bonus for drivers with rating > 3.5 and high business value.

Low-Rating Recovery Program: Offer improvement bonuses if a driver's rating improves consistently over two quarters.

#### **B. Targeted Retention Programs**

City-Based Campaigns: Focus on City\_C20, City\_C2, and City\_C23 — these cities have higher attrition risk.

**Grade-Focused Interventions:** 

Offer mentorship programs for Grade 4 & 5 drivers.

Introduce early promotion pathways or training to improve job satisfaction.

Income Support for New Joiners: Offer early joining bonuses or guaranteed income slabs for first 6 months.

#### C. Proactive Monitoring

Use the model's output scores to rank drivers weekly on attrition risk.

Design a driver health dashboard showing:

Quarterly rating trends

Trip volume

On-time percentage

Weekly income

## Final Model Selection Recommendation

If minimizing attrition (FN) is most critical: LGBM - Std.

If balance of F1 + ROC AUC + Precision is key: XGBoost - Std.

Double-click (or enter) to edit

Double-click (or enter) to edit