

AP1 – Projeto de Machine Learning

Dataset: Red Wine Quality | Dupla: Rafael Lima e André Silveira

- 1. Escolha e apresentação do dataset
- Dataset escolhido: Red Wine Quality;
- Acesso para o dataset (Kaggle): https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009;
- Número de registros e variáveis: 1599 observações e 12 variáveis, além da criação de uma variável extra (quality_bin);
- Justificativa da escolha: O dataset apresenta características de vinhos tintos e suas respectivas notas de qualidade, tornando-se ideal para:
 - Regressão linear simples: Predição da qualidade do vinho, que pode ser uma nota entre 3 e 8;
 - Regressão logística: Classificação da qualidade em categorias binárias (ex: qualidade inferior vs. Superior), através da aplicação de feature engineering na variável quality.
- Objetivo da análise: Entender a influência do teor alcoólico do vinho em sua qualidade.
- 2. Pré-processamento e análise exploratória
- Tratamento de dados:
 - O dataset não apresenta valores ausentes;
 - O dataset apresenta 240 valores duplicados e que foram mantidos porque o modelo precisa aprender inclusive com repetições, e que elas representam variações reais na produção ou amostragem;
 - Criamos a variável binária quality bin para classificação:
 - Qualidade superior (nota ≥ 6);
 - Qualidade inferior (nota < 6);

Observação: A separação do tipo de qualidade no valor 6 se deve ao fato de criar uma classe balanceada, sendo o ponto de equilíbrio no conjunto de dados e uma separação lógica entre a qualidade inferior e superior.

• Análise descritiva e visual:

 Variáveis como quality, alcohol, density, pH, fixed.acidity foram analisadas;

Figura 1 - Conforme o nível de álcool sobe, o nível de densidade tende a diminuir

 Geramos histogramas, boxplots e gráficos de dispersão com linhas de regressão, sendo que a relação que mais nos chamou atenção foi a do álcool com qualidade, devido a sua reta com forte inclinação:

Figura 2 - Estatística descritiva básica das variáveis numéricas

Estatísticas:

- Teor alcoólico varia de 8.4% a 14.9%;
- A qualidade varia de 3 a 8;

Figura 3 - Vinho de qualidade inferior tendem a ter menos álcool

 quality_bin: 744 registros de "Qualidade inferior" e 855 de "Qualidade superior", conforme mencionada a divisão das qualidades na nota 6 é uma forma de deixar variável balanceada.

Figura 4 - Histogramas de todas as variáveis numéricas

Figura 5 - A grande maioria dos registros ficam entre com a avaliação entre 5 e 6

Figura 6 - Grande parte dos valores de álcool ficam entre 9 e 10

3. Testes de Normalidade

- Teste aplicado: Shapiro-Wilk (amostra reduzida, com menos de 2000 observações);
- Variáveis testadas:

o alcohol: W = 0.92884, p < 2.2e-16

o quality: W = 0.85759, p < 2.2e-16

o density: W = 0.99087, p = 1.936e-08

o fixed.acidity: W = 0.94203, p < 2.2e-16

- De modo geral, além das variáveis mencionadas acima, todas as restantes também retornaram p-valores muito baixos, indicando que nenhuma segue a distribuição normal;
- Interpretação: Todos os testes retornaram p-valores muito baixos, rejeitando a hipótese nula de normalidade. Apesar disso, a regressão linear ainda pode ser aplicada, pois o método é robusto a desvios de normalidade, principalmente com grandes amostras como esta.

4. Coeficiente de Correlação

Correlação entre:

o alcohol e quality: r = 0.476;

o alcohol e density: r = -0.496.

Interpretação:

- A correlação entre alcohol e quality é moderada e positiva, indicando que vinhos com maior teor alcoólico tendem a ter melhor qualidade;
- A correlação entre alcohol e density é moderada e negativa, sugerindo que vinhos com maior teor alcoólico tendem a ter menor densidade.

Figura 7 - Matriz de correlação entre as variáveis

5. Regressão Linear Simples (predição)

Modelo ajustado: quality ~ alcohol

· Resumo dos resultados:

o Intercepto: 1.875

- Coeficiente de inclinação (alcohol): 0.361 → indica que a cada aumento de 1% no teor alcoólico, a qualidade média do vinho tende a aumentar em 0.361 pontos.
- Ambos os coeficientes s\u00e3o estatisticamente significativos (p < 2e-16).

Métricas de avaliação:

- R² = 0.2267 → cerca de 22,7% da variação da variável quality é explicada pelo teor alcoólico.
- Erro absoluto padrão (MAE) = 0.562 → indica que o modelo erra, em média, meio ponto na nota de qualidade;
- o Erro padrão residual (RMSE) = 0.7104 → representa o desvio médio das previsões em relação aos valores reais da qualidade.

Visualização:

 Geramos um gráfico de dispersão com os pontos reais e a linha de regressão ajustada, reforçando a tendência positiva entre álcool e qualidade.

Figura 8 - Gráfico da regressão linear

6. Regressão Logística (classificação)

- Variável-alvo: quality_bin (binária), com as classes "Qualidade inferior" e
 "Qualidade superior";
- Variável preditora: alcohol (teor alcoólico).
- Modelo ajustado:
 - Treinamos um modelo de regressão logística com a variável alcohol como única preditora. O modelo estima a probabilidade de um vinho ser classificado como de qualidade superior;
 - o **Coeficiente de alcohol:** 1.0556 (p < 0.001):
 - → Um aumento no teor alcoólico está positivamente associado à chance de o vinho ser de qualidade superior;
 - Intercepto: -10.7630;
 - Deviance residual: 1865 (redução em relação à null deviance de 2209);
 - o **AIC:** 1869.
- Avaliação do modelo:
 - Matriz de confusão:

PREDITO / REAL	QUALIDADE INFERIOR	QUALIDADE SUPERIOR
QUALIDADE INFERIOR	533	263
QUALIDADE SUPERIOR	211	592

o **Acurácia:** 70,11%.

Interpretação: O modelo apresentou um desempenho consistente, com acurácia de 70,11% utilizando apenas o teor alcoólico como preditor. O coeficiente significativo e positivo de alcohol confirma sua importância na previsão da qualidade do vinho. Apesar da simplicidade do modelo, os resultados indicam uma boa separabilidade entre as classes, sugerindo que o teor alcoólico é um fator relevante para distinguir vinhos de qualidade superior.