Outline

Low-rank approximation: Applications and algorithms

Ivan Markovsky

School of Electronics and Computer Science University of Southampton

Introduction

Applications

Algorithms

Introduction Applications Algorithms

What is a model?

Classic problem: Fit the points

$$d_1 = \begin{bmatrix} -2 \\ -6 \end{bmatrix}, d_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \dots, d_5 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

by a line passing through the origin.

Classic solution: Define $d_i =: col(u_i, y_i)$ and solve the least squares problem

$$col(u_1,...,u_5)x = col(y_1,...,y_5).$$

The model is the line

$$\mathscr{B} := \{ d = \operatorname{col}(u, y) \mid ux_{ls} = y \}$$

and not the equation $ux_{ls} = y$.

Introduction Applications Algorithms

Model representations

In general,

a linear static model is a subspace ${\mathscr B}$ of the data space ${\mathbb R}^q$

Representations of a linear static model $\mathscr{B} \subseteq \mathbb{R}^q$:

kernel
$$\mathscr{B} = \ker(R)$$
 := { $d \mid Rd = 0$ }

image
$$\mathscr{B} = \text{image}(P) := \{ d = Pv \mid \text{for all } v \}$$

input/output
$$\mathscr{B} = \mathscr{B}_{i/o}(X)$$
 := { $d = col(u, y) \mid Xu = y$ }

Introduction Applications Algorithms

Links among model representations

input/output kernel image
$$ux = y \iff \underbrace{\begin{bmatrix} x & -1 \end{bmatrix}}_{R} \begin{bmatrix} u \\ y \end{bmatrix} = 0 \iff \begin{bmatrix} u \\ y \end{bmatrix} = \underbrace{\begin{bmatrix} 1 \\ x \end{bmatrix}}_{R} u$$

Therefore, $\mathscr{B} = \{ d = \operatorname{col}(u, y) \mid ux = y \} = \ker(R) = \operatorname{image}(P)$

In general:

Introduction Applications Algorithms

Exact modelling

Consider a given data set

$$\mathscr{D} = \{ d_1, \ldots, d_N \} \subset \mathbb{R}^q$$

A model $\mathscr{B} \subseteq \mathbb{R}^q$ is exact for the data \mathscr{D} if $\mathscr{D} \subseteq \mathscr{B}$.

Exact data modelling problem:

Find a least complex model \mathcal{B} in a given set of models \mathcal{M} that fits the data \mathcal{D} exactly or assert that such a model doesn't exist.

Introduction Applications Algorithm

Model complexity

The dimension of \mathscr{B} , dim(\mathscr{B}) is a measure of \mathscr{B} 's "complexity". In the example,

$$dim(\mathscr{B}) = 1 = rank(P) = 2 - rank(R)$$

- $\mathcal{B} = \{0\}$ has dim(\mathcal{B}) = 0 and is the least complex model,
- \mathscr{B} = "line passing through the origin" has dim(\mathscr{B}) = 1, and
- $\mathscr{B} = \mathbb{R}^2$ has dim(\mathscr{B}) = 2 and is the most complex model.

Introduction Applications Algorithms

Notes

- The most basic (and simple) data modelling problem.
- The exact case should be considered before (more complicated) approximate and stochastic cases.
- The solution of the exact problem is useful in the solution of approximate and stochastic cases.
- A core question in all sciences. For example,
 - Kepler's laws define a model that fit exactly planetary trajectories,
 - Newtons laws of dynamics define a model that fit exactly the trajectory of any moving body

Exact linear static model

In the case, when the model class

 $\mathcal{M} = \mathsf{set} \mathsf{ of all linear static models}$

the solution of the exact modelling problem is simple.

- A solution always exists and is unique.
- It is given by $\mathcal{B} = \text{image}(D)$, where

$$D := \begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix} \in \mathbb{R}^{q \times N}$$

• The complexity of \mathcal{B} is equal to the rank of D

Generically, rank(D) = q, so \mathcal{B} is trivial model (fits everything).

Introduction Applications Algorithms

Low-rank approximation (LRA)

Let $\widehat{D} \in \mathbb{R}^{q \times N}$ be the perturbed data. We want

- 1. \widehat{D} to be as close as possible to D, e.g., $\min \|D \widehat{D}\|$
- 2. $\widehat{\mathcal{B}}$ to be an exact model for \widehat{D} , *i.e.*, $\widehat{D} \in$
- 3. $\widehat{\mathscr{B}}$ to has complexity bounded by r < q, i.e., $\dim(\widehat{\mathscr{B}}) \le r$

$$\widehat{D} \in \widehat{\mathscr{B}}$$
 and $\dim(\widehat{\mathscr{B}}) \le r$ \Longrightarrow $\operatorname{rank}(\widehat{D}) \le r$

Approximate modelling problem: Given $D \in \mathbb{R}^{q \times N}$, r, and $\|\cdot\|$, minimize over $\widehat{D} = \|D - \widehat{D}\|$ subject to $\mathrm{rank}(\widehat{D}) < r$

Introduction Applications Algorithms

Approximate modelling

In the case, when the model class

 $\mathcal{M} = \text{set of all linear static models of bounded complexity}$

a solution to the exact modelling problem may not exist.

Approximate modelling problem:

Find a smallest (in specified sense) perturbation of the data \mathcal{D} that renders exact modelling of the perturbed data solvable.

Introduction Applications Algorithms

Relation to regression problems

The classical approach for data fitting is regression ($AX \approx B$). Regression correspond to LRA with input/output representation.

$$AX = B \implies [A \ B] \begin{bmatrix} X \\ -I \end{bmatrix} = 0 \implies \operatorname{rank}([A \ B]) \leq \operatorname{coldim}(X)$$

 \implies indeed, regression is a way to achieve low-rank approximation.

However, AX = B does not imply rank $(\begin{bmatrix} A & B \end{bmatrix}) \le \operatorname{coldim}(X)$.

existence of ill-posed regression problems.

Ill-posedness/conditioning is a consequence of imposing input/ output structure on the model that is not corroborated by the data.

Rank minimization (RM)

Approximate modeling is a trade-off between:

- fitting accuracy $(\|D \widehat{D}\|)$ and
- model complexity $(rank(\widehat{D}))$

Two possible scalarizations of the bi-objective optimization are:

LRA: maximize accuracy under a constraint on complexity

RM: minimize complexity under a constraint (\mathscr{C}) on accuracy

minimize over \widehat{D} rank (\widehat{D}) subject to $\widehat{D} \in \mathscr{C}$

RM (as well as LRA) is NP-hard, however, there are effective heuristics for RM, e.g., with $\widehat{D} = \operatorname{diag}(\widehat{d})$, rank $(\widehat{D}) = \operatorname{card}(\widehat{d})$,

 ℓ_1 heuristic: $\min_{\widehat{d}} \|\widehat{d}\|_1$ subject to $\operatorname{diag}(\widehat{d}) \in \mathscr{C}$

Introduction Applications Algorithms

Applications

- System theory
 - 1. Approximate realization
 - 2. Model reduction
 - 3. System identification
- Signal processing
 - 4. Linear prediction
 - 5. FIR modeling
 - 6. Harmonic retrieval
 - 7. Array processing
 - 8. Image deblurring
- Computer algebra
 - 9. Approximate GCD

- Machine learning
 - 10. Data compression
 - 11. Natural language proc.
 - 12. Psychometrics
 - 13. Recommender systems
- Computer vision
 - 14. Structure from motion
- Chemometrics
 - 15. Multivariate calibration

Introduction Applications Algorithms

Generalizations

Cost functions

weighted norms

$$\|\Delta\| = \mathsf{vec}^{\top}(\Delta) W \mathsf{vec}(\Delta)$$

information criteria

$$\|\Delta\| \leftrightarrow \mathsf{logdet}(\Delta)$$

• Constraints on \widehat{D}

- structured, e.g., Hankel, Sylvester, sparse
- nonnegative
- exact elements

• Data D

- tensors
- categorical data
- missing data

Introduction Applications Algorithms

Data compression

For
$$r \ll \max(q, N)$$
, $qN \gg (q + N)r \implies \text{data compression}$

Consider N documents, involving q terms and r concepts.

 d_{ii} — frequency of *i*th term in *j*th document

 ℓ_{kj} — relevance of kth concepts to jth document

 p_{ik} — frequency of *i*th term in a document of *k*th concept only

$$d_{j} = \begin{bmatrix} d_{1j} \\ \vdots \\ d_{qj} \end{bmatrix} \in \mathbb{R}^{q}, \qquad p_{k} = \begin{bmatrix} p_{1k} \\ \vdots \\ p_{qk} \end{bmatrix} \in \mathbb{R}^{q}, \qquad \ell_{k} = \begin{bmatrix} \ell_{1j} \\ \vdots \\ \ell_{rN} \end{bmatrix} \in \mathbb{R}^{r}$$

Latent semantic analysis model:

$$\underbrace{\begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix}}_{D} = \underbrace{\begin{bmatrix} p_1 & \cdots & p_r \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \ell_1 & \cdots & \ell_N \end{bmatrix}}_{L}$$

Introduction Applications Algorithms

Approximate latent semantic analysis

The LSA model does not hold exactly because

- the notion of (small number of) concepts is an idealization
- linearity assumption D = PL is not likely to hold in practice

LRA is used to find a few concepts explaining the data approx.

Document classification:

similarity of documents is evaluated in the concepts space

Synonym discovery:

terms are clustered in the concepts space

Documents search by keywords:

translate first the keywords to a vector in the concepts space and then finding a cluster of documents nearby this vector Introduction Applications Algorithms

Exact latent semantic analysis

Assuming

- · fewer concepts than terms or documents,
- independent concepts, *i.e.*, p_1, \dots, p_r linearly independent,
- independent relevance vectors ℓ_1, \dots, ℓ_r

rank(D) = the number of concepts related to the documents.

In a rank revealing factorization D = PL,

- P indicate relevance of the concepts to the documents
- L indicate the term frequencies related to the concepts

ntroduction Applications Algorithms Algorithms

Psychometrics

The data D consists of test scores of a group of people

Psychometrics tries to explain the data as a result of a few underlying abilities.

 d_{ij} — score in *i*th test of *j*th person

 ℓ_{ki} — amount of kth ability in jth person

 p_{ik} — score in *i*th test of a person with kth ability only

Factor analysis model:

$$\underbrace{\begin{bmatrix} d_1 & \cdots & d_N \end{bmatrix}}_{D} = \underbrace{\begin{bmatrix} p_1 & \cdots & p_r \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \ell_1 & \cdots & \ell_N \end{bmatrix}}_{L}$$

 \implies rank(D) = # of abilities relevant for the tests.

verbal, quantitative, and analytical ability, are believed to be most important in explaining one's academic performance.

Outline

Introduction

Applications

Algorithms

Introduction Applications Algorithms

The basic LRA problem is an exception: other approx. criteria and extra constraints lead to NP-hard problems.

Double minimization nature of LRA:

$$\min_{\widehat{\mathcal{B}} \in \mathscr{M}} \left(\min_{\widehat{D}} \|D - \widehat{D}\|_{\mathrm{F}} \quad \text{subject to} \quad \widehat{D} \in \widehat{\mathscr{B}} \right) \tag{*}$$

If $\widehat{\mathscr{B}}$ is linear, the inner minimization has analytic solution. It gives the distance of the data to the model $\widehat{\mathscr{B}}$.

Using an image representation of the model:

$$\min_{P \in \mathbb{R}^{q \times r}} \left(\min_{L \in \mathbb{R}^{r \times N}} \|D - PL\|_{F} \right) = \min_{L \in \mathbb{R}^{r \times N}} \left(\min_{P \in \mathbb{R}^{q \times r}} \|D - PL\|_{F} \right) \quad (**)$$

For fixed *P* the problem is linear in *L* and vice verse.

Introduction Applications Algorithms

Basic low-rank approximation problem

$$\widehat{D}^* := \underset{\widehat{D}}{\operatorname{arg\,min}} \|D - \widehat{D}\|_{\operatorname{F}} \quad \operatorname{subject\ to} \quad \operatorname{rank}(\widehat{D}) \leq r$$

Theorem (closed form solution)

Let $D = U\Sigma V^{\top}$ be the SVD of D and define

$$U =: \begin{bmatrix} V_1 & V_2 \end{bmatrix} \quad m \quad , \quad \Sigma =: \begin{bmatrix} V_1 & 0 \\ 0 & V_2 \end{bmatrix} \quad \begin{matrix} r & V =: \begin{bmatrix} V_1 & V_2 \end{bmatrix} \quad m \end{matrix}$$

An optimal low-rank approximation solution is

$$\widehat{\mathbf{D}}^* = \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^{\top}, \qquad (\widehat{\mathscr{B}}^* = \ker(\mathbf{U}_2^{\top}) = \operatorname{colspan}(\mathbf{U}_1)).$$

It is unique if and only if $\sigma_r \neq \sigma_{r+1}$.

Introduction Applications Algorithms

Variable projection vs. alternating projections

Two ways to approach the double minimization:

- Variable projections (VARPRO):
 solve the inner minimization of (*) analytically
 nonlinear least squares problem for the model parameters
- Alternating projections (AP):
 Alternate between the least squares problems, resulting from (**) with fixed P and L, respectively

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.

ntroduction Applications Algorithms Introduction Applications Algorithms

Summary

- Linear static models = subspaces. Can be represented as image or kernel of matrix, or graph of map (input/output)
- Exact modeling is not practical but is conceptually useful.
- Approximate modeling is a bi-objective optimization: accuracy vs complexity trade-off.
- LRA approximate modeling with complexity bound.
 Regression is special case when input/output is used.
- Most LRA problems have no analytic solution.
 Two basic solution approaches: VARPRO and AP

Thank you