Cerunay 7

(1) Commience unemecube Onn X C R" - rengembe X = { Y & R" | < Y, x > > - 1 | x & x } Com X* - beerge boryers, zonkregne u
cogephiem O Onp $X_1 \cup X_2$ by a very substrate, even $X_1^* = X_1 \cup X_2^* = X$ Onp & conoconnières, elle mp propose commisteres X ** = { X & R L (< 4, x > > - 1 } Y & X X } Sub 1. X * zaveryme, burynse u cozepneum ? 2. X** = el (couv (XU {03)) 3. $(\bigcup X_i)^* = \bigcap X_i^*$ 4 X=(c1(x))* Our Devienderenes ronces (1141 x = Sup < X,45)

11.11p - companierres lilla: q+ =1

 $\frac{V_{\text{person}}}{(B_{\text{N-N}}(0, V))^{*} - ?}$

1. < x, y>> - 11 x 11 11 4 11 x > - v 11 4 11 x Ever 11 4 11 x < t , me < x, y>> - 1 { 4 e 1 R 1 | 14 11 x < t } < (B_1. y(0, v))*

2. Even $11411 + > \frac{1}{t}$, we Beek nellet $u < 4, e > > \frac{1}{t}$ Program $x = -v \frac{e}{11e11}$ The $< x, y > = 2 - \frac{ev}{11e11} < -e, y > < \frac{v}{11e11} < -e, y > < 2 - \frac{v}{11e11} < -e, y > < -1$ $2 - \frac{v}{11e11} \cdot \frac{1}{v} = -\frac{1}{11e11} < -1$, we < x, y > < -1 u

(BN-11 (0, N)) = B11.11x (0, 1/2)

Abournberrue nonyes

4¢(B11-11(0, v))*

K

Your K = EYER (< 4, x> > 0 FXEK3

Chaucubo:

1. K* bornejsevice u zperargsuvice

2. Een K, CK2, no K2*CK+

3. Even K-Bongervin a zarekregnesin, me K* += K

Therenen K=1R" 1615 K * = {4 e R " | < X,4 > > 0 } K x = 0 } K*= { 4 = R | 14 > 03 = K Conjanièreure chejrageu Unn F: R" > R F+: R" -> R F+= Sup {< x,y>-f(x)} commenter comment ma chyringer cosemboreros, en me upertensen - o Charenta 1. F* - beorge bernegeres u zonnegeres, 2. Een F(x) bernegeres u zonnegeres, mo F* x = F 3. F - bungues u journeymes, cobenberros a) F - μ - constres bungues 8) +*- # - unwengla ma barenno Theren F(X) = < a, x > + 6 fx (4) = sup { < 4, x> - < a, x> - 6 3 = = S4p { < 4-a, x > - B3 = { -B, 4=a} where

Typewer
$$f(x) = e^{x}$$
 $f^{*}(y) = \sup \{xy - e^{x}\}$

(1) $y = 0$: 0

2) $y = 0$: 0

3) $y > 0$: $x^{*} = \log y = y^{*}(y) = y \log y - y$

Typewer $f(x) = \log (1 + e^{x})$
 $f^{*}(y) = \sup \{xy - \log (1 + e^{x})\}$

1) $y = 0$: $f^{*}(y) = \lim \{xy - \log (1 + e^{x})\}$

1) $y = 0$: $f^{*}(y) = \lim \{xy - \log (1 + e^{x})\} = 0$

2) $y = 0$: $f^{*}(y) = \lim \{xy - \log (1 + e^{x})\} = 0$

4) $y = 1$: $f^{*}(y) = \lim \{xy - \log (1 + e^{x})\} = 0$

5) $0 < y < 1$: $y - \frac{1}{1 + e^{x}} e^{x} = 0 = 0$

=) $e^{x}(1 - y) = y = 0$

-) $x = \log y - \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$
 $f^{*}(y) = y \log y - y \log (1 - y)$

Moreon f(x) = ||x|| $f^*(y) = 0$ c $dom f^* = b_{||\cdot||_*}(0,1)$ 1) $||y||_* > 1$ $\exists z$ $||z|| \le 1$ u $\angle y, z > > 1$ 1) $||y||_* > 1$ $\exists z$ $||z|| \le 1$ u $\angle y, z > > 1$ 1) $||y||_* > 1$ $\exists z$ $||z|| \le 1$ u $\angle y, z > > 1$ 2) $||y||_* \le 1$ 24, $x > - ||x|| \le 0$ 11, $||y||_*$ 24, $x > - ||x|| \le 0$ Thus x = 0 x = 0 y = 0 y = 0

House

M = {(x,4) ∈ R? | x >0, \(\frac{1}{x} \in \lambda \frac{1}{3}, \(\sigma \frac{1}{3} \) \(\frac{1}{3} \)

7: < X, Z> >0

Y= \frac{1}{\sqrt{3}} \times

Therefore
$$f(x) = may \{2x, -3x+1\}$$
 $f^*(y) = \sup \{xy - xy\} = \sum_{x} p\{xy - may \{2x, -3x+1\}\}$
 $= \sup \{xy + min \{-2x, 3x - 1\}\}$
 $= \sup \{xy + min \{x(y-2), x(y+3) - 1\}\}$
 $= \sup \{min \{x(y-2), x(y+3) - 1\}\}$