

Model Optimization and Tuning Phase Template

Date	12 July 2024
Team ID	SWTID1720108739
Project Title	Predicting The Energy Output Of Wind Turbine Based On Weather Condition
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

5.1 Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Random forest	[00] New Intitl do some hyperparameter tuning and making changes so as to observe improvement in occuracy, if any [07] model_name-{} **Piscore-{} **parameter_gb - { **n_estimator*: 10, # Number of boosting stages **num_depth*: 9, # Martinum depth of individual trees **num_depth*: 9, # Martinum samples required to split a mode **num_depth*: 2,# Minimum samples required at each leaf node **random_state*: 50 **parameter_ff - { **num_depth*: 0, # Martinum depth of each tree **num_depth*: 0, # Martinum depth of each tree **num_sumples_public 10, # Minimum samples required to split a mode **num_sumples_public 10, # Minimum samples required to split a mode **num_sumples_public 10, # Minimum samples required to split a mode **num_sumples_public 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required of split a mode **num_control leaf 10, # Minimum samples required 10, # Minimum sa	Model-Name R2_score RMSE
	}	3 DecisionTreeRegressor 95.203582 288.689532
Decision Tree	parameter_dt = { "criterion": Separed_erron", # function to measure the quality of a split "max_despti": 10, # function depth of the tree "min_smples_split": 7, # finitions supplies required to split a node "min_smples_led": 2, # finitions sumpler required at each teaf node "min_smples_led": 2, # finitions sumpler required at each teaf node "min_smples_led": 2, # finition finitions considered at each split "random state": Set	1 RandomForestRegressor 94,953758 296,112391 2 LinearRegression 90,605069 404,035323
Gradient Boosting	models= GradientBoostingRegressor("*parameter_gb), BandomborectEngRegressor("*parameter_ff), LinearRegression(), DecisionTreeRegressor("*parameter_ff), DecisionTreeRegressor("*parameter_ff),	GradientBoostingRegressor 84.389784 520.807213

5.2 Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric
Random forest	97.379044	94.953758
Decision Tree	95.034559	95.203582
Gradient Boosting	94.679787	84.389784
Linear regression	90.605069	90.605069

5.3 Final Model Selection Justification (2 Marks):

Reasoning
Random Forests achieve higher accuracy (97% before hyperparameter
tuning 94%) for wind turbine energy prediction due to ensemble
averaging, robust handling of non-linear relationships, feature
importance ranking, and resilience to overfitting compared to single
Decision Trees, Gradient Boosting, and linear models.