Skript zur Vorlesung Algebra

Prof. Dr. Roman Sauer

Wintersemester 2023/24

Inhaltsverzeichnis

	0.1	Motivation	2
	0.2	Grundlegende Definitionen aus EAZ und LA	3
	0.3	Grundlegende Resultate aus EAZ und LA	3
1	Einfache & Auflösbare Gruppen		
	1.1	Einfache Gruppen	5
	1.2	Normal- und Kompositionsreihen	6
	1.3	Auflösbare Gruppen	8
2	Körpererweiterungen		10
	2.1	Irreduzible Polynome	10
	2.2	Körpererweiterungen	12
	2.3	Algebraische Körpererweiterungen	13
	2.4	\overline{K} -Homomorphismen	15
	2.5	Zerfallskörper	17
	2.6	Serperable Erweiterungen	18
	2.7	Endliche Körper	21
3	Galoistheorie		24
	3.1	Hauptsatz der Galoistheorie	24
	3.2	Kreisteilungskörper und Einheitswurzeln	27
	3.3	Charaktere und Normalbasen	29
	3.4	Auflösbarkeit von Gleichungen	32
	3.5	Spur und Norm	36
	3.6	Anwendungen der Galoistheorie	37

Einführung

§0.1 Motivation

TODO

• Für quadratische Gleichungen der Form $x^2 + bx + c = 0$, $b, c \in \mathbb{C}$, sind die einzigen Lösungen explizit gegeben durch

$$x_{12} = -\frac{b}{2} \pm \sqrt{\frac{b^2}{4} - c} \tag{1}$$

Erstmals systematisch behandelt wurden solche Gleichungen von al Khwarizmi (\sim 800 n. Ch.).

• Für kubische Gleichungen der Form

$$x^{3} + ax^{2} + bx + c = 0, a, b, c \in \mathbb{C}$$
 (2)

haben Tartaglia und Cardano im 16. Jh. eine explizite Lösungsformel aufgestellt:

1. Sei o.B.d.A. $x = y - \frac{a}{3}$ für $y \in \mathbb{C}$. Substituiere dies in eq. (2), so dass jetzt mit $p := b - \frac{a^2}{3} \in \mathbb{C}$, $q := c + \frac{2a^3 - 9ba}{27} \in \mathbb{C}$ zu lösen ist:

$$y^3 + py + q \tag{3}$$

2. Substituiere nun y = u + v, so dass $y^3 = u^3 + v^3 + 3uv(u + v) = u^3 + v^3 + 3uvy$. Dies ähnelt der Gleichung eq. (3), wenn $u^3 + v^3 = -q$ und 3uv = -p gesetzt wird. Versuche nun also,

$$u^3 + v^3 = -q \tag{4}$$

$$3uv = -p \Leftrightarrow u^3v^3 = \frac{-p^3}{27} \tag{5}$$

zu lösen. Aus eq. (4) ergibt sich, dass u^3 , v^3 die quadratische Gleichung $z^2 + qz - \frac{p^3}{27}$ lösen. Es kann nun also eq. (1) verwendet werden - man erhält die sogenannte : Beachte beim Ziehen der 3. Wurzel in der Formel von Cardano explizit, dass eq. (5) erfüllt bleibt.

Formel von Cardano

- Ähnlich funktioniert das Lösen von polynomiellen Gleichungen 4. Grades mittels Radikalen.
- Für Gleichungen höheren Grades existiert keine explizite Lösungsformel mehr:

Satz 0.1 (Abel-Ruffini, 1824). *Polynomielle Gleichungen vom Grad* \geq 5 sind im Allgemeinen nicht durch Radikale lösbar.

Kurz, nachdem dieser Satz bewiesen wurde, kam die Galois-Theorie auf, welche die algebraischen Überlegungen in Gruppentheorie überführt.

Zunächst finden sich im Folgenden noch Wiederholungen einiger gruppen- und zahlentheoretischer Begriffe aus der Linearen Algebra [LA] und Einführung in Algebra und Zahlentheorie [EAZ], die im Verlauf des Skripts eine Rolle spielen.

§0.2 Grundlegende Definitionen aus EAZ und LA

Definition 0.2 (Radikal). **TODO**

Definition 0.3. Sei (G, *) eine Gruppe und $H \le G$ eine Untergruppe. Die (Links-)Nebenklasse von $g \in G$ zu H in G ist die Menge

$$gH := \{gh \mid h \in H\}$$

Der Quotient von *H* in *G* ist die Menge der Linksnebenklassen:

$$G/H := \{ gH \mid g \in G \}$$

Die kanonische Projektion von G auf G/H ist die Abbildung $\pi: G \to G/H, g \mapsto gH$.

Definition 0.4 (Normalteiler, Quotientengruppe). Sei (G,*) eine Gruppe und $H \leq G$ eine Untergruppe. H heißt Normalteiler, wenn H konjugationsinvariant ist, also

$$\forall g \in G. \ gHg^{-1} = H$$

In diesem Fall schreibt man auch $N \subseteq G$. Genau dann, wenn $H \subseteq G$ gilt, ist die Operation $\cdot : G/H \to G/H$ mit $gH \cdot hH := (gh)H$ wohldefiniert und macht $(G/H, \cdot)$ zu einer Gruppe (der sogenannten "Quotientengruppe" von H in G). Weiter ist die kanonische Projektion von G auf H dann ein Gruppenhomomorphismus.

Beispiel 0.5 (Alternierende Gruppe A_n). Sei $n \in \mathbb{N}$, $[n] := \{1, ..., n\}$ und $S_n := \{\pi : [n] \to [n] \mid f \ bijektiv\}$ die symmetrische Gruppe auf [n]. Sei weiter $I(\pi) := \{(i,j) \in [n] \times [n] \mid i < j, \pi(i) > \pi(j)\}$, $\pi \in S_n$ die Menge der Inversionen und $sgn(\pi) := (-1)^{|I(\pi)|}$ die Signumsfunktion. Die alternierende Gruppe $A_n := \{\pi \in S_n \mid sgn(\pi) = 0\}$ ist für alle $n \in \mathbb{N}$ ein Normalteiler der symmetrischen Gruppe , also $A_n \subseteq S_n$. Gleichheit gilt nur für n = 1. Für alle $n \ge 2$ gilt $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$ und die kanonische Projektion $S_n \to S_n/A_n$ stimmt mit der Signumsabbildung überein.

§0.3 Grundlegende Resultate aus EAZ und LA

Lemma 0.6 (Chinesischer Restsatz). **TODO**

Lemma 0.7. Die alternierende Gruppe A_n wird für alle $n \ge 3$ von 3-Zykeln erzeugt.

1 Einfache & Auflösbare Gruppen

VL vom 26.10.2023:

Erinnerung 1.0. Ein Normalteiler N einer Gruppe (G,*) ist eine Untergruppe mit der Eigenschaft $\forall g \in G : gNg^{-1} = N$. Man definiert auf den Nebenklassen $G/N = \{gN \mid g \in G\}$ eine Verknüpfung $g_1N \cdot g_2N = g_1g_2N$, die aus G/N eine Gruppe macht. Weiter ist $G \to G/N, g \mapsto gN$ ein Homomorphismus. Notation $N \subseteq G$.

Z.B. Die alternierende Grruppe A_n ist ein Normalteiler der symmetrischen Gruppe S_3 .

Ansatz: Verstehe eine Gruppe G, indem man Normalteiler $\{e\} \neq N \lhd G$ und dann G/N studiert.

§1.1 Einfache Gruppen

Definition 1.1 (Einfache Gruppe). Eine Gruppe (G,*) heißt *einfach*, wenn $G \neq \{1\}$ und die trivialen Normalteiler $\{1\}$, G die einzigen Normalteiler von G sind.

Beispiel 1.2. $\mathbb{Z}/n\mathbb{Z}$ ist einfach gdw. n prim ist. Andernfalls folgt mit dem chinesischen Restsatz für alle $d \mid n$, dass $\mathbb{Z}/d\mathbb{Z} \leq \mathbb{Z}/n\mathbb{Z}$.

Wir verfolgen das Ziel, Gruppen zu verstehen, indem wir sie in einfache Normalteiler zerlegen und diese sowie deren Quotientengruppen separat untersuchen, welche hoffentlich eine simplere Struktur haben. Für endliche Gruppen haben die nichttrivialen Normalteiler bspw. echt kleinere Kardinalität.

Satz 1.3 (A_5). Die alternierende Gruppe A_n ist einfach für $n \ge 5$.

Beweis. Wir wissen, dass A_n von 3-Zykeln erzeugt wird (lemma 0.7). Weiterhin sind alle 3-Zykel in A_n konjugiert zueinander, d.h. für jeden 3-Zykel $\sigma \in A_n$ existiert $\tau \in A_n$ (nicht unbedingt ein 3-Zykel) mit $\tau \sigma \tau^{-1} = (1\ 2\ 3)^1$. Sei $N \subseteq A_n$ ein Normalteiler mit $N \neq \{1\}$. z.z. N = A. Das erreichen wir indem wir zeigen, dass N enthält einen 3-Zykel, da alle 3-Zyklen zueinander konjugiert sind und A_n erzeugen, wodurch $N = A_n$ gelten müsste. Wähle $\sigma \in N \setminus \{1\}$:

Fall 1: σ *enthält einen Zyklus der Länge* \geq 4 O.B.d.A. σ = (1 2 ... r) ρ , $\forall i \in \{1,2,3\}$: $\rho(i) = i$. Dann $\sigma^{-1}(1 \ 3 \ 2)\sigma(1 \ 2 \ 3) = (2 \ 3 \ r) \in N$.

Fall 2: σ hat als längsten Zykel einen 3-Zykel (aber ist keiner) O.B.d.A. $\sigma = (1\ 2\ 3)\rho$ mit $\forall i \in \{1,2,3\}: \rho(i) = i \text{ und } \rho(4) \neq 4.$ dann besitzt $N \ni \sigma^{-1}(2\ 3\ 4)\sigma(2\ 4\ 3) = (1\ 2\ 4\ 3\ \dots)$ (\Rightarrow Fall 1)

¹Es gibt $\tau_0 \in S_n$ mit $\tau_0 \sigma \tau_0^{-1} = (1 \ 2 \ 3)$. Falls $\tau_0 \in A_n \checkmark$, sonst betrachte $\tau = (4 \ 5)\tau$: $\tau \sigma \tau^{-1} = (4 \ 5)\tau_0 \sigma \tau_0^{-1} = (4 \ 5)(1 \ 2 \ 3)(5 \ 4) = (4 \ 5)(5 \ 4)(1 \ 2 \ 3) = (1 \ 2 \ 3)$

Fall 3: σ besteht nur aus Transpositonen(aber gerade Anzahl) O.B.d.A. $\sigma = (1\ 2)(3\ 4)\rho$, $\forall i \in \{1,2,34,\}: \rho(i) = i$. Dann ist $\sigma^{-1}(1\ 3\ 2)\sigma(1\ 2\ 3) = (1\ 4)(2\ 3) \in N$. Weiter gilt: Alle Elemente in A_n von diesen Zykeltyp sind in A_n zueinander konjugiert (vgl. oben mit $\tau = (1\ 2)\tau_0$). Also liegt auch $(1\ 2)(3\ 4)(2\ 5)(3\ 4) = (1\ 2\ 5) \in N$ (\Rightarrow Fall 2)

§1.2 Normal- und Kompositionsreihen

Definition 1.4 (Normalreihe, Kompositionsreihe). Sei G eine Gruppe. Eine Normalreihe ist eine aufsteigende Folge von Untergruppen $\{1\} = G_0 \lhd G_1 \lhd \ldots \lhd G_n = G$ sodass G_i normal in G_{i+1} ist. Die Quotienten G_{i+1}/G_i heißen Faktoren der Reihe \mathscr{G} .

Man sagt, dass eine Normalreihe \mathcal{H} von G eine Normalreihe \mathcal{G} verfeinert, wenn \mathcal{H} aus \mathcal{G} durch hinzufügen von Termen hervorgeht.

Man sagt, dass \mathscr{G} und \mathscr{H} äquivalent sind, wenn sie die gleiche Länge haben und es eine Permutation $\sigma \in S_n$ gibt mit $H_{i+1}/H_i \cong G_{\sigma(i)+1}/G_{\sigma(i)}$.

Eine Normalreihe, die keine echte Verfeinerung besitzt, heißt Kompositionsreihe.

VL vom 27.10.2023:

Beispiel 1.5 (Kompositionsreihen von $(G := (\mathbb{Z}, +))$). Alle Untergruppen von G sind Normalteiler, da es sich um eine abelsche Gruppe handelt (lemma 0.8). Weiterhin haben alle Untergruppen von G die Form $n\mathbb{Z}$ für ein $n \in \mathbb{N}_0$. Sei nun $n \in \mathbb{N}$. Dann ist

$$\mathscr{G}: \{0\} = G_0 \underset{\neq}{\triangleleft} n\mathbb{Z} \underset{\neq}{\triangleleft} \mathbb{Z} = G$$

eine Normalreihe in G mit den Faktoren

$$G_1/G_0 = \{\{k\} \mid k \in n\mathbb{Z}\} \cong n\mathbb{Z} \cong \mathbb{Z}, G/G_1 = \mathbb{Z}/n\mathbb{Z}$$

G besitzt allerdings keine Kompositionsreihe, denn für jede Normalreihe

$$\{0\} \underset{\neq}{\vartriangleleft} n\mathbb{Z} \underset{\neq}{\vartriangleleft} \dots \underset{\neq}{\vartriangleleft} \mathbb{Z} = G$$

ist für alle $1 < k \in \mathbb{N}$ eine echte Verfeinerung gegeben durch

$$\{0\} \underset{\neq}{\triangleleft} (kn)\mathbb{Z} \underset{\neq}{\triangleleft} n\mathbb{Z} \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} \mathbb{Z} = G$$

wobei $n\mathbb{Z}/(kn)\mathbb{Z} \cong k\mathbb{Z}$ **TODO**.

Satz 1.6. Es gelten die folgenden Charakterisierungen von Kompositionsreihen:

- (a) Eine Normalreihe ist genau dann eine Kompositionsreihe, wenn alle Faktoren einfach sind.
- (b) Jede endliche Gruppe besitzt eine Kompositionsreihe.

Beweis. Zu (a):

⇒ Der Beweis erfolgt durch Kontraposition. Sei dazu

$$\mathscr{G}: \{1\} = G_0 \underset{\neq}{\triangleleft} G_1 \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} G_i \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} G$$

so dass G_i/G_{i-1} nicht einfach ist. Sei weiterhin $\pi_i:G_i\to G_i/G_{i-1}$ die kanonische Projektion. Per Definition existiert dann ein nichttrivialer Normalteiler N von G_i/G_{i-1} , also $(\{G_{i-1}\}=)\{1_{G_i/G_{i-1}}\} \neq N \begin{subarray}{l} \lhd G_i/G_{i-1}. \begin{subarray}{l} Dann ist mit lemma 0.10 (beachte, dass die kanon. Projektion surjektiv ist und <math>\pi^{-1}(\{G_{i-1}\})=G_{i-1}, \ \pi^{-1}(G_i/G_{i-1})=G_i)$

$$\{1\} = G_0 \underset{\neq}{\triangleleft} G_1 \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} G_{i-1} \underset{\neq}{\triangleleft} \pi_i^{-1}(N) \underset{\neq}{\triangleleft} G_i \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} G$$

eine echte Verfeinerung von \mathcal{G} , also ist \mathcal{G} keine Kompositionsreihe.

 \Leftarrow Sei \mathscr{G} eine Normalreihe mit einfachen Faktoren und \mathscr{H} eine Verfeinerung. Z.z. $\mathscr{H} = \mathscr{G}$, d.h. $G_i = H_i$ für alle i. Beiweis durch Induktion.

IA
$$i = 0$$
: $G_0 = \{e\} = H_0 \checkmark$

IS: Es existiert j > i mit $H_i = G_{i+1}$. $G_i \subseteq H_{j-1} \triangleleft H_j = G_{i+1} \overrightarrow{\pi_i} G_{i+1} / = G_i$ einfach. Da surjektive Homomorphismen Normalteiler erhalten gilt $\pi_i(H_{j-1}) \subseteq G_{i+1}/G_i$. Wegen Ëinfachheit" $\pi_i(H_j) = \{e\}$. $\Rightarrow H_{j-1} = G_i = H_i$.

Zu (b): Induktion über die Mächtigkeit dei Gruppe |G|. IA |G| = 1: $G = \{e\}$ \checkmark . IS: Wähle maximalen Normalteiler $N \lhd G$. Dann ist G/N einfach. Wende nun IA auf N (um die Kette weiter aufzubauen) an. \Rightarrow Es entsteht eine Reihe mit einfachen Faktoren, also eine Kompositionsreihe.

Erinnerung: Sei G Gruppe, $N \subseteq G$ und $U \subseteq G$, dann ist UN = NU Untergruppe von G.

Lemma 1.7 (Schmetterlingslemma von Zassenhaus). *Sei G Gruppe, A,B* < *G Untergruppen und A*₀ \leq *A, B*₀ \leq *B. Dann*

(a)
$$A_0(A \cap B_0) \leq A_0(A \cap B)$$
 und $B_0(A_0 \cap B) \leq B_0(A \cap B)$

(b)
$$\frac{A_0(A \cap B)}{A_0(A \cap B_0)} \cong \frac{(A \cap B)}{(A_0 \cap B)(A \cap B_0)} \cong \frac{B_0(A \cap B)}{B_0(A_0 \cap B)}$$

Satz 1.8. Sind \mathcal{G} , \mathcal{H} Normalreihen von G, dann gibt es Verfeinerung $\tilde{\mathcal{G}}$, $\tilde{\mathcal{H}}$ von \mathcal{G} , \mathcal{H} , sodass sie äquivalent sind.

Satz 1.9 (Jordan Hölder). Je zwei Kompositionsreihen einer Gruppe sind äquivalent.

Beweis. Kompositionsreihen haben keine Verfeinerung & 1.8 □

Bemerkung. Gleiche Kompositionsreihen ∉ gleiche Gruppe.

- Beispiel. $\mathbb{Z}/14\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ hat Kompositionsreihen $\{0\} \lhd (\mathbb{Z}/2\mathbb{Z} \times \{0\}) \lhd \mathbb{Z}/14\mathbb{Z}$ und $\{0\} \lhd (\{0\} \times \mathbb{Z}/2\mathbb{Z}) \lhd \mathbb{Z}/14\mathbb{Z}$, aber immer die gleichen Faktoren in unterschiedlicher Reihenfolge.
 - Zu $G = \mathbb{Z}/9\mathbb{Z}$ und $H = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ haben die Kompositionsreihen $\mathscr{G} : \{0\} \lhd 3\mathbb{Z}/9\mathbb{Z} \lhd G$ und $\mathscr{H} : \{0\} \lhd Z/3\mathbb{Z} \lhd H$ die gleichen Faktoren (zweimal $Z/3\mathbb{Z}$ und damit äquivalent, aber $G \neq H$).

§1.3 Auflösbare Gruppen

Definition 1.10. Eine Gruppe (G,*) heißt auflösbar, wenn sie eine Normalreihe besitzt, deren Faktoren alle abelsch sind.

VL vom 02.11.2023:

Beispiel 1.11. a) Insbesondere ist jede abelsche Gruppe auflösbar: Für die triviale Gruppe {1} existieren keine Faktoren, ansonsten setze

$$G_0 := \{1\} \underset{\neq}{\triangleleft} G_1 := G$$

b) Sei weiterhin K ein Körper. Die Matrixgruppe

$$(B = \{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \in GL_2(\mathbb{K}) \mid a, b, c \in \mathbb{K} \}, \cdot)$$

ist nicht abelsch, aber dennoch auflösbar. Sei dafür

$$\mathbb{K}^* = \mathbb{K} \setminus \{0\}$$

und

$$\phi: B \to \mathbb{K}^* \times \mathbb{K}^*, \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \mapsto (a, b)$$

Dann ist $N = ker(\phi) = \{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \mid c \in \mathbb{K} \} \cong (\mathbb{K}, +)$ Somit ist

$$\{id\} \underset{\neq}{\triangleleft} N \underset{\neq}{\triangleleft} B$$

eine Normalreihe mit abelschen Faktoren. (Geht auch für $GL_n(K)$, Beweis komplizierter)

c) (Semidirektes Produkt von Gruppen) **TODO**

Satz 1.12 (Untergruppen und Faktorgruppen auflösbarer Gruppen). *Untergruppen und Faktorgruppen auflösbarer Gruppen sind auflösbar.*

Beweis. Sei G auflösbar mit abelscher Normalreihe (abelsche Faktoren)

$$G_0 := \{1\} \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} G_n := G$$

Sei H < G Untergruppe. Dann ist

$$H_0 := \{1\} \triangleleft ... \triangleleft H_n := H$$

mit $H_i := G_i \cap H$ eine abelsche Normalreihe von H (nach Streichen gleicher Elemente):

$$H_{i+1}/H_i < G_{i+1}/G_i$$

Satz 1.13. Sei G eine endliche Gruppe und \mathcal{G} eine Kompositionsreihe von G. Dann ist G auflösbar gdw. jeder Faktor von \mathcal{G} zyklisch von Primzahlordnung ist.

Beweis. " \Rightarrow ": Sei G auflösbar. Nach Def. von Kompositionsreihen sind dann die G_i/G_{i-1} einfach und nach theorem 1.12 auflösbar. Insbesondere existiert also eine Normalreihe von G_i/G_{i-1} . Dies impliziert, dass G_i/G_{i-1} abelsch ist, da G_i/G_{i-1} in einer solchen Normalreihe vorkommt (Begründung aus VL: da $\{1\} \preceq G_i/G_{i-1}$ die einzige Normalreihe ist - wird aber nicht benötigt?) G_i/G_{i-1} ist als endliche abelsche Gruppe isomorph zu

$$\mathbb{Z}/_{p_1^{\alpha_1}\mathbb{Z}} \times ... \times \mathbb{Z}/_{p_m^{\alpha_m}\mathbb{Z}}, \alpha_t \geq 1$$

Wegen Einfachheit gilt m=1 (ansonsten $\mathbb{Z}/_{p_1^{\alpha_1}\mathbb{Z}} \times \{0\} \times ... \times \{0\}$ nichttrivialer NT). Also $G_i/_{G_{i-1}} \cong \mathbb{Z}/_{p^{\alpha}\mathbb{Z}}$. Wieder wegen Einfachheit ist $\alpha=1$ (ansonsten $p\mathbb{Z}/_{p^{\alpha}\mathbb{Z}}$ nichttrivialer NT). " \Leftarrow ": Offensichtlich.

Definition 1.14 (Kommutator). Sei G eine Gruppe. Für $x, y \in G$ heißt $x^{-1}y^{-1}xy = [x, y]$ *Kommutator* von x und y. Die Kommutatoruntergruppe von G ist

$$D(G) = < [x, y] | x, y \in G >$$

Alternativnotation: [G, G] := D(G).

Lemma 1.15. Die Kommutatoruntergruppe D(G) einer Gruppe G ist ein NT von G. Die Faktorgruppe $G^m = G/_{D(G)}$ ist abelsch und heißt Abelisierung von G. Ist $N \subseteq G$ und $G/_N$ abelsch, dann ist $D(G) \subseteq N$ $(d.h. G/_{D(G)} - >> G/_N$ ist surjektiv)

Beweis. Es ist $g^{-1}[x,y]g = g^{-1}x^{-1}y^{-1}xyg = (g^{-1}x^{-1}g)(g^{-1}yg)(g^{-1}xg)(g^{-1}yg) = [g^{-1}xg,g^{-1}yg].$ Somit ist $g^{-1}D(G)g = \langle [g^{-1}xg,g^{-1}yg] | x,g \in G \rangle = D(G).$

Seien xD(F), $yD(G) \in G/D(G)$. Es ist dann $xyD(G) = xy[y,x]D(G) = xyy^{-1}x^{-1}yxD(G) = yxD(G)$.

Betrachte die kanonische Projektion $\pi:G->>G/N$. Dann ist $\pi([x,y])=\pi(x^{-1}y^{-1}xy)=\pi(x)^{-1}\pi(y)^{-1}\pi(x)\pi(y)=[\pi(x),\pi(y)]=N=\in G/N$ abelsch. Also $D(G)\subseteq N$.

Definition 1.16. Setze $D^0(G)=G$ und dann induktiv $D^{i+1}(G):=D(D^i(G))$. Die Reihe ... $\lhd D^2(G) \lhd D^1(G) \lhd D^0(G)=G$

(mit abelschen Faktoren nach dem vorhergehenden Lemma) heißt abgeleitete Reihe von G.

Satz 1.17. Eine Gruppe G ist auflösbar gdw. es ein $m \in \mathbb{N}$ gibt mit $D^m(G) = \{1\}$. (Dies ist nicht immer erfüllt, da es Gruppen gibt mit D(G) = G, so dass die abgeleitete Reihe konstant G ist.)

Beweis. "⇐": ist klar (good one).

"⇒": Sei G auflösbar. Dann gibt es eine abelsche Normalreihe

$$\{1\} = G_0 \underset{\neq}{\triangleleft} \dots \underset{\neq}{\triangleleft} G_n = G$$

Wir zeigen induktiv über die Länge n der Normalreihe: $D^j(G) \subseteq G_{n-j}, j \in [n]_0$. IA: n = 0. Klar: $D^0(G) = G = G_0 = G_n$ ISt: Angenommen $D^j(G) \subseteq G_{n-j}$. Dann $D^{j+1}(G) = D(D^j(G)) \subseteq D(G_{n-j}) \subseteq G_{n-j-1}$. Die letzte Inklusion folgt aus TODO

Beispiel 1.18. Sei G eine Gruppe und p eine Primzahl. Ist $|G| = p^n$, dann ist G auflösbar (und sogar nilpotent).

2 Körpererweiterungen

§2.1 Irreduzible Polynome

Definition 2.1 (Wiederholung aus EAZ). Sei K im Folgenden ein Körper. Der Polynomring K[X] ist ein Hauptidealring². Das Ideal (f) ist Primideal gdw. f=0 oder f irreduzibles Polynom ist, d.h. $f=gh\Rightarrow g\in K^*\vee h\in K^*$.

Lemma 2.2. *Ist f irreduzibel, dann ist (f) ein maximales Ideal.*

Beweis. Angenommen $(f) \subseteq (g)$. Dann f = hg für ein $h \in K[X]$ nach Def. von (g). Dann gilt

$$\begin{cases} g \in K^* \Rightarrow (g) = K[X] \\ oder \\ h \in K^* \Rightarrow (f) = (g) \end{cases}$$

Satz 2.3 (Eisensteinkriterium). Sei A ein kommutativer Ring und $P \subseteq A$ ein Primideal (e.g. $A = \mathbb{Z}$, $P = \{pn \mid n \in \mathbb{N}\}$, p prim). Sei $f \in A[X]$ mit $f = \sum_{0 \le i \le n} a_i X^i$ mit drei Eigenschaften:

- 1) $a_n \notin P$
- 2) $a_i \in P \ \forall 0 < i < n-1$
- 3) a₀ ist kein Produkt von zwei Elementen in P.

Dann lässt sich f nicht als Produkt zweier Polynome in A[X] vom Grad < n schreiben.

²nullteilerfrei, kommutativ und jedes Ideal ist Hauptideal

Beweis. EAZ Kühnlein

Definition 2.4 (Inhalt). Sei A ein Hauptidealring und K = Quot(A). Sei $f = \sum_{0 \le i \le n} a_i X^i \in A[X]$. Definiere $\tilde{c}(f) \in A$ als einen Erzeuger des Ideals $(a_0, ..., a_n) \subset A$ (eindeutig bis auf Multiplikation mit Einheiten/inv. Elemente in A). Die Assoziiertenklasse $c(f) = \tilde{c}(f)A^* \subset A/A^*$ [A^* invertierbare Elemente in A] heißt *Inhalt* von f. Sei $f \in K[X]$. Wähle $a \in A \setminus \{0\}$ mit $af \in A[X]$. Definiere $\tilde{c}(f) = c(af)a^{-1} \in K$ und $c(f) = \tilde{c}(f)A^* \in K/A^*$ (Übung: Def. unabh. von der Wahl von a).

Beispiel. $A = \mathbb{Z}, K = \mathbb{Q}$. Dann

$$f(x) := \frac{2}{5}x^7 - 2x^3 + \frac{8}{3} = \frac{1}{15}(6x^7 - 30x^3 + 40)$$

also
$$\tilde{c}(f) = \frac{ggT(6,30,49)}{15} = \frac{2}{15}$$
.

Lemma 2.5. *Seien* A, K *wie oben und* $f, g \in K[X]$. *Dann gilt*

a) Für
$$f \neq 0$$
 gilt $\tilde{c}(f)^{-1} f \in A[X]$.

b)
$$c(fg) = c(f)c(g)$$
 (Gauß)

Beweis. Kühnlein EAZ

Lemma 2.6. A Hauptidealring, K = Quot(A), $f \in A[X]$ nicht-konstantes Polynom. Falls f sich nicht als Produkt f = gh mit $g, h \in A[X], \deg(g), \deg(h) < \deg(f)$ schreiben lässen, dann ist auch $f \in K[X]$ irreduzibel.

Beweis. Ang. $f = g_0 h_0$ mit $g_0, h_0 \in K[X]$. Setze

$$g = \tilde{c}(g_0)^{-1}g_0 \in A[X]$$

und

$$h := \tilde{c}(g_0)\tilde{c}(h_0)\tilde{c}(h_0)^{-1}h_0 = \tilde{c}(g_0h_0)a\tilde{c}(h_0)^{-1}h_0$$

für geeignetes $a \in A^*$. Somit ist auch $h \in A[X]$. Weiter ist f = gh. Dann ist $degg_0 = degg = degf$ oder $degh_0 = degh = degf$.

Satz 2.7 (Eisensteinkriterium für Irreduzibilität). Sei A ein Hauptidealring, $P \subset A$ Primideal und $f \in A[X]$. Erfüllt f die Bedingungen i), ii), iii) des Eisensteinkriteriums, dann ist f irreduzibel in K[X] (K = Quot(A)).

Beispiel 2.8. $A = \mathbb{Z}, K = \mathbb{Q}$.

1. $f = X^m - a, a \in \mathbb{Z}$. Falls $a = \prod_{1 \le i \le r} p_i^{\alpha_i}$ mit verschiedenen Primzahlen p_i und es ein $j \in \{1, ..., r\}$ mit $\alpha_i = 1$ gibt, dann ist f irreduzibel in K[X].

2. Sei p eine Primzahl. Das Polynom $\Phi_p = X^{p-1} + X^{p-2} + ... + X + 1$ heißt das p-te Kreisteilungspolynom. Setze $g(X) := \Phi_p(X+1)$ (dann impliziert insb. Irreduzibilität von g auch Irreduzibilität von Φ_p ; SSubstitutionstrickfalls Eisensteinkriterium für Irreduzibilität nicht direkt anwendbar). Es ist $(X-1)\Phi_p(X) = X^p - 1$ und daher

$$g(X) = \frac{(X+1)^p - 1}{X} = \sum_{1 \le j \le p} \binom{p}{j} X^{j-1}$$

Eisenstein für p liefert nun Irreduzibilität von g (beachte $p \mid \binom{p}{j}$ für j = 1, ..., p - 1). Dann Φ_p irreduzibel. Die Nullstellen von Φ_p sind gerade die primitiven p-ten Einheitswurzeln.

§2.2 Körpererweiterungen

Definition 2.9 (Körpererweiterung). Sei $(L,+,\cdot)$ ein Körper. Sei K ein Teilkörper von L, d.h. $K \subseteq L$ und $(K,+|_K,\cdot|_K)$ ist selbst Körper. Dann bezeichnet man L als Erweiterungskörper von K. Man sagt, dass L über K eine Körpererweiterung (oder auch "K-Erweiterung") ist.

Notation: $L|K, (L-K)^T$ (**TODO Graphic with tikz?**)

Beispiel. $\mathbb{R}|\mathbb{Q}, \mathbb{C}|\mathbb{R}, \mathbb{C}|\mathbb{Q}, \mathbb{Q}(\sqrt{2})|\mathbb{Q}, \mathbb{C}(\mathbb{Z})|\mathbb{C}$

Definition 2.10 (Endliche Erweiterung). Sei L|K eine Erweiterung. Dann ist L insb. ein K-VR. Die Dimension über K von L $dim_K(L) =: [L:K]$ heißt der *Grad der Körpererweiterung* L|K. Die Erweiterung heißt *endlich*, wenn $[L:K] < \infty$.

Lemma 2.11 (Grad ist multiplikativ). Sei L|K eine K-Erweiterung und sei V ein L-Vektorraum mit L-Basis $(v_i)_{i\in I} \subset V$. Sei $(e_j)_{j\in J} \subset L$ eine K-Basis von L. Dann ist $(e_j \cdot v_i)_{i\in I, j\in J}$ (VR-Multiplikation von Skalaren aus L mit Vektoren aus V) eine K-Basis von V.

Beweis. (v_i) L-Basis \Rightarrow für jedes $i \in I$ ist $\sum_j c_{ij}e_j = 0$. (c_j) K-Basis $\Rightarrow c_{ij} = 0$ für alle $i \in I, j \in J$ Erzeugendensystem: Sei $v \in V$. Dann ist $v = \sum_{i \in I} \lambda_i v_i$ mit gewissen $\lambda_i \in L$. Für jedes $i \in I$ ist $\lambda_i = \sum_{j \in J} b_i j e_j$ mit gewissen $b_i j \in K$. Also $v = \sum_{i,j} b_{ij} (e_j \cdot v_i)$.

Lemma 2.12 (Korollar). *Sind* M|L,L|K *Körpererweiterungen, dann gilt* $[M:K] = [M:L] \cdot [L:K]$ (mit den üblichen Konventionen $\infty \cdot \infty = \infty$).

Definition 2.13 (Adjungieren). Sei L|K eine Körpererweiterung. Sei $S \subset L$ eine Teilmenge. Dann bezeichnet K(S) den kleinsten Teilkörper von L, der K und S enthält. Für $S = \{\alpha\}$ schreibt man $K(\alpha) = K(\{\alpha\})$ (gesprochen "K adjungiert α "). Man nennt eine Körpererweiterung $K(\alpha)|K$ einfach.

Definition 2.14 (Algebraisch vs. Transzendent). Sei L|K eine Körpererweiterung. Sei $\alpha \in L$. Betrachte die Evaluationsabbildung $ev_{\alpha} : K[X] \to L, f \mapsto f(\alpha)$.

Falls ev_{α} injektiv ist, so nennt man α *transzendent* (dann ist $f(\alpha) \equiv 0 \Rightarrow f \equiv 0$, also ist α nicht Nullstelle eines nichttrivialen Polynoms). Es gilt $Bild(ev_{\alpha}) \cong K[X]$ und $K(X) \cong K(\alpha)$. Insb. $[K(\alpha) : K] = \infty$.

Falls dagegen ev_{α} nicht injektiv ist, nennt man α algebraisch. Dann ist $ker(ev_{\alpha}) = (m_{\alpha,K})$ Hauptideal. O.B.d.A. sei $m_{\alpha,K}$ normiert (Leitkoeffizient = 1). Wir nennen $m_{\alpha,K}$ das *Minimalpolynom* von α über K. Dann $L \supset Bild(ev_{\alpha}) \cong K[X]/(m_{\alpha,K})$ nullteilerfrei. Folglich ist $m_{\alpha,K}$ irreduzibel. Damit ist $(m_{\alpha,K})$ sogar ein maximales Ideal in K[X], also ist $Bild(ev_{\alpha}) \cong K[X]/(m_{\alpha,K})$ sogar ein Körper, also $Bild(ev_{\alpha}) = K(\alpha)$. (Schreibe auch $K[\alpha] := Bild(ev_{\alpha})$.) Es ist $[K(\alpha) : K] = deg m_{\alpha,K} < \infty$.

Beispiel 2.15. $\pi \in \mathbb{C}$ ist transzendent über \mathbb{Q} (Lindemann 1882). Es gibt in \mathbb{C} nur abzählbar viele algebraische Zahlen über \mathbb{Q} , also überabzählbar viele transzendente Zahlen.

 $d \in \mathbb{Z}$ sei quadratfrei und $d \neq 1$. Die Zahl $\sqrt{d} \in \mathbb{C}$ ist algebraisch mit Minimalpolynom $m_{\sqrt{d} \mathbb{Q}} = X^2 - d \in \mathbb{Q}[X]$. Weiter ist dann $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$.

Definition 2.16 (Algebraische K-Erweiterung). Eine K-Erweiterung $L \mid K$ ist algebraisch, wenn jedes $\alpha \in L$ algebraisch über K ist.

§2.3 Algebraische Körpererweiterungen

Satz 2.17. 1. Ist $L \mid K$ endlich, dann ist $L \mid K$ algebraisch.

- 2. Ist $L \mid K$ algebraisch und endlich erzeugt (d.h. $L = K(\alpha_1, ..., \alpha_n)$ für geeignete α_i), dann ist $L \mid K$ endlich.
- 3. Sind $M \mid L$ und $L \mid K$ algebraisch, so ist auch $M \mid K$ algebraisch.

Beweis. Zu a) Sei $\alpha \in L$. Dann gilt $[K(\alpha) : K] \leq [L : K] < \infty \Rightarrow \alpha$ algebraisch.

- Zu b) Betrachte die Zwischenkörper $L =: L_n ... L_2 := L_1(\alpha_2) = K(\alpha_1, \alpha_2) L_1 := L_0(\alpha_1) = K(\alpha_1) L_0 := K$ (also $L_i := L_{i-1}(\alpha_i)$). Da α_i algebraisch über K ist, ist α_i insb. algebraisch über L_{i-1} . Somit $[L_i, L_{i-1}] = [L_{i-1}(\alpha_i), L_{i-1}] < \infty \Rightarrow [L:K] = [L_n:L_{n-1}]...[L_1:L_0] < \infty$.
- Zu c) Sei $\alpha \in M$. Betrachte $m_{\alpha,L} = \sum_{i=0}^n c_i X^i$, $c_i \in L$, Minimalpolynom von α über L. Definiere $K_0 := K(c_0, ..., c_n) \subseteq L$. Wegen b) ist $[K_0 : K] < \infty$. Wegen $m_\alpha, L \in K_0[X]$, ist α algebraisch über K_0 . Dann $[K(\alpha) : K] \le [K_0(\alpha) : K] = [K_0(\alpha) : K_0][K_0 : K] < \infty$, also α algebraisch über K.

Bemerkung 2.18. Sei $L \mid K$ eine K-Erweiterung. Die Menge $L_{alg,K} := \{\alpha \in L \mid \alpha \text{ algebraisch """} \text{über K} \}$ ist ein Zwischenkörper $L - L_{alg,K} - K$. Diesen nennt man den algebraischen Abschluss von K in L.

Begründung: Seien $\alpha, \beta \in L_{alg,K}$.

$$[K(\alpha,\beta):K] = [K(\alpha,\beta):K(\alpha)][K(\alpha):K] \le [K(\beta):K][K(\alpha):K] < \infty$$

(Frage aus VL: Wie würde das Minimalpolynom von $\alpha + \beta$ über K aussehen?)

Wir stellen uns nun die folgenden Fragen: Sei K ein Körper und $f \in K[X]$ nicht-konstant. Gibt es einen Erweiterungskörper $L \mid K$ so, dass

- f eine Nullstelle in L hat?
- f in L[X] in Linearfaktoren zerfällt?
- jedes Polynom in L[X] in Linearfaktoren zerfällt?

Satz 2.19. Seien K ein Körper und $f \in K[X]$ irreduzibel. Dann gibt es eine algebraische K-Erweiterung mit [L:K] = deg(f), in der f eine Nullstelle besitzt.

Beweis. Setze L := K[X]/(f). Nach lemma 2.2 ist L ein Körper. Betrachte die Quotientenabbildung $\pi : K[X] \to L$ (Homomorphismus!). Setze $\alpha := \pi(X) \in L$. Dann ist

$$f(\alpha) = f(\pi(X)) = \sum_{i=0}^{n} c_i \pi(X)^i = \pi\left(\sum_{i=0}^{n} c_i X^i\right) = \pi(f) = 0 \in L$$

Also $[L:K] = [K(\alpha):K] = deg(f)$, weil f Minimal polynom von α ist. \square

Korollar 2.20. Seien K ein Körper und $f \in K[X]$ ein nicht-konstantes Polynom³. Es gibt eine endliche K-Erweiterung $L \mid K$, so dass f über L in Linearfaktoren zerfällt.

Beweis. Induktion über deg(f) =: d:

IA d = 1: Klar, da f selbst Linearfaktor ist.

ISchritt Sei $g \in K[X]$ ein irreduzibles Polynom, das f teilt. Nach dem vorhergehenden Satz (theorem 2.19) gibt es $L_1 \mid K$, in der g eine Nullstelle $\alpha \in L_1$ besitzt. Schreibe $f = (X - \alpha)\tilde{f}$ mit $\tilde{f} \in L_1[X]$. Nach I-Annahme existiert $L \mid L_1$ endlich, in der \tilde{f} in Linearfaktoren zerfällt. Weiter $[L:K] = [L:L_1][L_1:L] < \infty$.

Definition 2.21. Ein Körper K ist *algebraisch abgeschlossen*, falls jedes nicht-konstante Polynom $f \in K[X]$ eine Nullstelle in K besitzt.

Bemerkung 2.22. Ist K algebraisch abgeschlossen, dann gilt:

- Jedes $f \in K[X] \setminus K$ zerfällt in Linearfaktoren.
- Die irreduziblen Polynome über K sind von Grad 1.

Weiter gilt: Ist $L \mid K$ algebraisch, dann gilt bereits L = K, denn: Das Minimalpolynom m_{β} von $\beta \in L$ ist linear, d.h. $m_{\beta} = X - \alpha$, $\alpha \in K \Rightarrow \beta = \alpha \in K$.

Beispiel. C ist algebraisch abgeschlossen (Fundamentalsatz der Algebra).

³irreduzible Polynome sind per Definition nicht-konstant

Lemma 2.23. Sei A ein kommutativer Ring und $I \subsetneq A$ ein Ideal. Dann ex. ein maximales Ideal $m \subsetneq A$, das I enthält (Beweisidee: Lemma von Zorn).

Satz 2.24. Für jeden Körper gibt es einen algebraisch abgeschlossenen Erweiterungskörper.

Auswahlaxiom in Algebra: nur hier; Funktionale Analysis: überall/Hahn-Banach; Lineare Algebra: Existenz von Basen unendlich dim VR

Beweis. 1) Konstruiere $L_1 \mid K$, so dass jedes $f \in K[X] \setminus K =: \Omega$ eine Nullstelle in L_1 hat. Definiere $A = K[(X_f)_{f \in \Omega}]$ (Polynomring in unendlich vielen Variablen). Setze $I := (\{f(X_f) \mid f \in \Omega\}) \subseteq A$. Dann ist $I \subseteq A$. Angenommen I = A, also $1 \in I$. Dann $1 = \sum_{i=1}^r g_i f_i(X_{f_i})$ für $g_i \in A$, $f_i \in \Omega$. Sei $f = f_1...f_r$ Nach 2.20 ex. $F \mid K$, so dass f in Linearfaktoren zerfällt. Insbesondere hat jedes f_i eine Nullstelle $z_i \in F$. Definiere $\phi : A \to F$ durch $\phi \mid_K =$ Inklusion K - > F, $\phi(X_f) = 0$ für $f \in \Omega \setminus \{f_1, ..., f_r\}$, $\phi(X_{f_i}) = z_i$. Es gilt:

$$1 = \phi(1) = \sum_{i=1}^{r} \phi(g_i)\phi(f_i(X_{f_i})) = \sum_{i=1}^{r} \phi(g_i)f_i(\phi(X_{f_i})) = 0 \in F$$

Nach 2.24 ex. ein max. Ideal $m \subsetneq A$ mit $I \subseteq m$. Setze $L_1 := A/m$. Dann ist $K - > A - > > A/m = L_1$ eine Einbettung (setze $\pi : A \to A/m$). Sei $f \in K[X] \setminus K$. Setze $\gamma_f = \pi(X_f) \subseteq L_1$. Dann $f(\gamma_f) = f(\pi(X_f)) = \pi(f(X_f)) = 0$ da $f(X_f) \in I \subseteq m$.

2) Mit Schritt 1) erhalten wir eine Folge von Körpererweiterungen

$$K \subseteq L_1 \subseteq L_2 \subseteq ...$$

mit der Eigenschaft, dass jedes $f \in L_j[X] \setminus L_j$ eine Nullstelle in L_{j+1} hat. Definiere $L = \bigcup_{j \geq 1} L_j$. Sei $g \in L[X] \setminus L$. Dann hat g endlich viele Koeffizienten, die alle in einem L_m (m groß genug) liegen. Damit hat g eine Nullstelle in $L_{m+1} \subseteq L$. [Frage aus VL: Warum existiert $L = \bigcup_{j \geq 1} L_j$?]

Definition 2.25. Sei K ein Körper. Es gibt einen algebraisch abgeschlossenen Körper \overline{K} so, dass $K \subseteq \overline{K}$ und $\overline{K} \setminus K$ algebraisch ist. Man nennt \overline{K} einen *algebraischen Abschluss*.

Beweis. Sei L|K eine alg. abgeschlossene Erweiterung. Sei $\overline{K} = L_{alg,K} = \{\alpha \in L \mid \alpha \text{ algebraisch ""uber K}\}$. Z.z. \overline{K} ist alg. abgeschlossen. Sei dafür $f \in \overline{K}[X] \setminus \overline{K}$. Es gibt eine Nullstelle $\alpha \in L$ von f. Dann ist α algebraisch ""uber \overline{K} . Da \overline{K} alg. ""uber K, ist α alg. ""uber K, also $\alpha \in \overline{K}$.

§2.4 \overline{K} -Homomorphismen

Definition 2.26. Seien $L_1|K$ und $L_2|K$ K-Erweiterungen. Ein Homomorphismus $f:L_1 \to L_2$ heißt K-Homomorphismus, falls f(k)=k für alle $k \in K$. Ein K-Isomorphismus ist ein bijektiver K-Homomorphismus. Definiere $Aut(L_1|K)=\{f:L_1 \to L_2 \mid f \ K-Isom.\}$ (Gruppe der K-Automorphismen mit Verknüpfung als Operation).

Bemerkung 2.27 (Beobachtung). Sei $\phi: L_1 \to L_2$ K-Hom. Sei $f \in K[X]$, $\alpha \in L_1$ mit $f(\alpha) = 0$. Dann ist $f(\phi(\alpha)) = \phi(f(\alpha)) = \phi(0) = 0$. Folgerungen: α transzendent, ϕ K-Isom. $\Rightarrow \phi(\alpha)$ transzendent; für algebraisches α ist $m_{\alpha,K} = m_{\phi(\alpha),K}$.

Beispiel. $Aut(\mathbb{C} \mid \mathbb{R}) = \{id, \tau\}$ mit τ komplexe Konjugation. Denn: $\mathbb{C} = \mathbb{R}[i], m_{i,\mathbb{R}} = X^2 + 1$ mit Nullstellen i, -i. Jeder $\mathbb{R} - Aut$. bildet i auf i (id) oder -i (τ) ab.

Lemma 2.28. Seien K, K' zwei Körper und $\sigma: K \to K'$ ein Isomorphismus. Sei $K(\alpha) \mid K$ eine einfache algebraische K-Erweiterung. Sei $L' \mid K'$ eine K'-Erweiterung. Für jede Nullstelle $\alpha' \in L'$ von $\sigma_*(m_{\alpha,K}) \in K'[X]$ (σ_* wendet σ auf die Koeffizienten an) gibt es genau einen Homomorphismus $\phi: K(\alpha) \to L'$ mit $\phi_{\mid K} = \sigma$ und $\phi(\alpha) = \alpha'$. Dann ist ϕ Isomorphismus zwischen $K(\alpha)$ und $K'(\alpha')$.

Beweis. Kommutatives Diagramm

Bemerkung 2.29. Die Anzahl der Homomorphismen ϕ wie im vorherigen Lemma ist genau die Anzahl der Nullstellen von $\sigma_*(m_{\alpha,K})$ in L'.

Beispiel 2.30. Sei $d \neq 1$ eine quadratfreie ganze Zahl. $Aut(\mathbb{Q}(\sqrt{d}) \mid \mathbb{Q}) = \{id, \sigma\}, m_{\sqrt{d}, \mathbb{Q}} = X^2 - d \text{ mit } \sigma(\sqrt{d}) = -\sqrt{d}.$

- **Satz 2.31** (Fortsetzungssatz). (a) Sei $L \mid K$ eine alg. K-Erweiterung, M ein alg. abgeschlossener Körper und $\sigma : K \to M$ ein Homomorphismus Dann existiert $\phi : L \to M$ mit $\phi_{\mid K} = \sigma$.
 - (b) Sei $\sigma: K \to K'$ ein Isomorphismus von Körpern. Seien $\overline{K}, \overline{K'}$ alg. Abschlüsse von K bzw. K'. Dann ex. ein Isomorphismus $\phi: \overline{K} \to \overline{K'}$ mit $\phi_{|K} = \sigma$. (Je zwei algebraische Abschlüsse eines Körpers K sind isomorph.)

Beweis. a) Sei

$$\mathscr{U} = \{(F, \tau) \mid K \subseteq F \subseteq L \text{ Zwischenk\"orper und } \tau : F \to M \text{ Hom. mit } \tau|_K = \sigma\}$$

Die Menge W ist partiell geordnet via

$$(F_1, \tau_1) \leq (F_2, \tau_2) :\Leftrightarrow F_1 \subseteq F_2 \text{ und } \tau_2|_{F_1} = \tau_1$$

 (\mathscr{U}, \leq) ist induktiv, d.h jede Kette in (\mathscr{U}, \leq) (total geordnete Teilmenge) besitzt eine obere Schranke. Sei C eine Kette. Setze $F_0 := \bigcup_{(F,\tau) \in C} F \subseteq L$. Für $x \in F_0$ definiere man $\tau_0(x) := \tau_F(x)$, falls $x \in F$. Da C eine Kette ist, ist die Definition von $\tau_0(x)$ unabhängig von der konkreten Wahl von F, also wohldefiniert. Dann ist (F_0, τ_0) eine obere Schranke von C. Lemma von Zorn impliziert die Existenz eines max. Elementes $(F_1, \tau_1) \in \mathscr{U}$. Wir behaupten nun, dass $F_1 = L$. Falls nicht, also $F_1 \subsetneq L$, sei $\alpha \in L \setminus F_1$. Dann ist α algebraisch über K, insb. algebraisch über F_1 . Definiere $F_2 := F_1(\alpha)$. Nach 2.28 ex. $\tau_2 : F_2 \to M$ mit $\tau_2|_{F_1} = \tau_1$, also $(F_2, \tau_2) > (F_1, \tau_1)$ - Widerspruch.

b) Nach a) gibt es $\phi : \overline{K} \to \overline{K'}$ mit $\phi_{|K} = \sigma$. Z.z. $\phi(\overline{K}) = K'$.

Das Bild $\phi(\overline{K})$ ist ein alg. abgeschlossener Körper, da ϕ injektiv und damit $\phi(\overline{K})$ isomorph zu \overline{K} . **TODO Abbildung** Wegen remark 2.22 und der Algebraizität von $\overline{K'}|\phi(\overline{K})|$ folgt $\phi(\overline{K}) = \overline{K'}$.

VL vom 13.11.2023:

§2.5 Zerfallskörper

Definition 2.32. Sei K ein Körper und $\Omega \subseteq K[X]$ ene Teilmenge von nicht konstanten Polynomen. Ein Erweiterungskörper L von K heißt $Zerf\"{allungsk\"{o}rper}$ von Ω , falls gilt

- 1. Jedes $f \in \Omega$ zerfällt in L[X] in Linearfaktoren
- 2. L = K(S), wobei $S = \{x \in L \mid \exists f \in \Omega : f(x) = 0\}$

Eine Körpererweiterung L|K heißt *normal*, falls sie ein Zerfällungskörper für eine Menge $\Omega \subseteq K[X] \setminus K$ ist.

Bemerkung 2.33. Ist L ein Zerfällungskörper von $f \in K[X] \setminus K$ mit $\deg(f) = m$. Dann ist $L = K(\alpha_1, \ldots, \alpha_r)$, wobei $\alpha_1, \ldots, \alpha_r$ Nullstellen von f in L sind $(r \le m)$. Es gilt $[L : K] < m^r$. Tatsächlich gilt $[L : K] \le m!$ (Übung). Natürlich **TODO graphik** und $[K(\alpha_1, \ldots, \alpha_i) : K(\alpha_1, \ldots, \alpha_{i-1})] \le [K(\alpha_i) : K] \le m$.

Beispiel 2.34. a) $f = X^4 - 2 \in \mathbb{Q}[X]$ irreduzibel nach Eisensteinkriterium mit p = 2 und Nullstellen $\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2}$

$$L = \mathbb{Q}(\sqrt[4]{2}) \cong \mathbb{Q}[X]/(f)$$
 hat Grad 4 über \mathbb{Q}

 $\mathbb{C} \subseteq \mathbb{Q}[\sqrt[4]{2}] = \{ \sum_{j=0}^{3} a_j (\sqrt[4]{2})^j \mid a_j \in \mathbb{Q} \} \not\ni \pm i \sqrt[4]{2}$

daher ist L kein Zerfällungskörper von f.

Dagegen ist $\mathbb{Q}(\sqrt{2})$ ein Zerfällungskörper von $X^2 \in \mathbb{Q}[X]$.

b) $f = X^4 - 2 \in \mathbb{F}_5[X]$ irreduzibel.

Beweis. Angenommen f = gh: Wenn $\deg(g) = 1$, hat f eine Nullstelle in \mathbb{F}_5 , aber $X^4 \equiv 1 \mod 5$ nach Satz von Euler⁴ und damit $\forall x \in \mathbb{F}_5 \setminus \{0\}$: $f(x) = X^4 - 2 = 1 - 2 = 4 \neq 0$. Wenn $\deg(g) = 2 = \deg(f)$ **TODO was soll das für eine begründung sein?**

Sei $\alpha \in \overline{\mathbb{F}}_5$ eine Nullstelle von f. $\overline{\mathbb{F}}_5$ algebraischer Abschuss von \mathbb{F}_5 . Dann ist $E = \mathbb{F}_5(\alpha) \cong \mathbb{F}_5[X]/(f)$ ein Zerfällungskörper von f, weil: f hat die Nullstellen $\alpha, 2\alpha, 3\alpha, 4\alpha \in E$, da $b^4 \equiv 1 \mod 5$ nach Euler für b = 2, 3, 4 und damit $(b\alpha)^4 = b^4\alpha^4 = \alpha^4$.

In E[X] gilt: $f = \prod_{i=1}^4 (X - i\alpha) \in E[X]$.

Satz 2.35. *Sei K Körper und* $\Omega \subseteq K[X] \setminus K$

a) Jeder alg. Abschluss von K enhält genau einen Zerfällungskörper von Ω .

⁴Satz von Euler: $X^{p-1} \equiv 1 \mod p$

b) Je zwei Zerfällungskörper von Ω sind K-Isomorph

Beweis. TODO

Satz 2.36 (Charackterisung von normalen Erweiterungen). *Sei K Körper mit alg. Abschluss* \overline{K} . Für einen Zwischenkörper $K \subseteq L \subseteq \overline{K}$ sind folgende Aussagen äquivalent:

- 1. L|K ist normal
- 2. *Ist* $\phi: L \to \overline{K}$ *ein* K-Homomorphismus, dann ist $\phi(L) = L$
- 3. Jedes irreduzible $f \in K[X]$, dass in L eine Nullstelle besitzt, zerfällt in L[X] in Linear-faktoren

Beweis. TODO

Satz 2.37. Sei L|K eine normale K-Erweiterung

- a) Für jeden Zwischenkörper M gilt L|M ist normal.
- b) Sind $\alpha, \beta \in L$, dann gibt es $\sigma \in Aut(L|K)$ mit $\sigma(\alpha) = \beta$ gdw $m_{\alpha,K} = m_{\beta,K}$

Beweis. TODO

VL vom 13.11.2023:

§2.6 Serperable Erweiterungen

Definition 2.38. Ein irreduzibles Polynom in K[X] heißt *separabel*, wenn es im \overline{K} nur einfache Nullstellen hat. (allg. heizt ein allg. Polynom separabel, wenn alle irreduzieblen Faktoren separabel sind)

Definition 2.39. Die *K*-lineare Abbildung $D: K[X] \to K[X], \sum a_i x^i \mapsto \sum i a_i X^{i-1}$ heißt (*formal*) *Ableitung*. Es gilt die Leibnizregel D(fg) = D(f)g + fD(g).⁵

Satz 2.40. Ein irreduzibles Polynom f ist genau dann separabel, wenn $D(f) \neq 0$.

(Die mehrfache Nullstellen eines bel. Polynoms f sind die gemeinsamen Nullstellen von f und D(f))

Beispiel 2.41. $K = \mathbb{F}_p(T) = Quot(\mathbb{F}_p[T])$ (rationaler Funktionenkörper) Betrachte $f = X^p - T \in K[X]$. Nach Eisenstein ist f irreduzibel. Es ist $D(f) = pX^{p-1} = 0$. Also ist f nicht separabel.

Sei $a = \sqrt[p]{T} \in \overline{K}$ eine Nullstelle von f. Dann gilt $(X - a)^p = f$.

Beweis zu 2.40.

⁵Präziser $\sum a_i x^i \mapsto \sum \pi(i) a_i X^{i-1}$ mit $\pi: \mathbb{Z} \to K$ definiert durch $1 \mapsto 1_K$. Daher ist die Char(K) auch relevant.

Bemerkung. Schreibe $f=c\Pi_{j=1}^d(X-a_j)\in \overline{K}[X]$ mit $0\neq c,\,a_1,\ldots,a_d\in \overline{K}$. Dann ist $D(f)=c\sum_{j=1}^d\Pi_{i\neq j}(X-a_i)$ (Leibnizregel).

Damit folgt $D(f)(a_k) = c\Pi_{i\neq k}(a_k - a_i)$.

- "⇒" Durch Kontraposition: Sei D(f) = 0. Dann $D(f)(a_1) = 0$. Dann $\exists i \neq 1 : a_i = a_1$, was f sep.
- " \Leftarrow " Sei $D(f) \neq 0$. Wegen $\deg(D(f)) < \deg(f)$ und f irreduzibel, sind D(f) und f teilerfremd. Es gibt also $g, k \in K[X]$ mit 1 = gf + hD(f).

Sei a_k eine der Nullstellen von f in \overline{K} . Dann ist

$$1 = g(a_k)f(a_k) + h(a_k)D(f)(a_k)$$

$$\parallel \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow$$

Wegen (*) muss die Nullstelle a_k einfach sein.

Bemerkung 2.42. Ist Char(K) = 0, dann ist jedes irreduzible Polynom separabel.⁶

Definition 2.43. Sei L|K eine algebraische K-Erweiterung. Ein Element $a \in L$ ist separabel, wenn $m_{a,K}$ separabel ist. Sind alle $a \in L$ separabel, dann nennt man L|K separabel.

Lemma 2.44. *Ist* L|K *separabel und* $K \subseteq M \subseteq L$ *ein Zwischenkörper, dann ist* L|M *und* M|K *separabel.*

Beweis. M|K: Sei $a \in M$. Die Minimalpolynome über K von a als Element von M und L sind gleich. Also ist a separabel.

L|M: Sei $a \in L$. Dann ist $m_{a,M}$ ein Teiler von $m_{a,K}$ in $\overline{K}[X]$. daher hat auch $m_{a,M}$ nur einfache Nullstellen.

Definition 2.45. Sei L|K eine alg. K-Erweiterung. Der *Separabititätsgrad* $[L:K]_S$ über K ist definiert als $|Hom_K(L,\overline{K})|$. Ist L|K normal, dann ist $[L:K]_S = |Aut(L|K)|^{.7}$

Lemma 2.46.

a) Sind M|L und L|K alg. Erweiterungen, dann ist

$$[M:K]_S = [M:L]_S \cdot [L:K]_S$$

b) Ist L: K endlich, so ist $[L:K]_S \leq [L:K]$

⁶Editor's remark: Char(K) = 0 verhindert, dass die Faktor i in der Ableitung 0 werden kann und damit D(f) = 0 werden könnte.

⁷Nach theorem 2.35 b)

Beweis. Wir betten K, M, L in einen gemeinsamen alg. Abschluss \overline{K} ein. Seien $(\sigma_i)_{i\in I}$ die paarweise verschiedenen K-Homomorphismen $L \to \overline{K}$. Seien $(\tau_j)_{j\in J}$ die paarweise verschiedenen L-Homomorphismen $M \to \overline{K}$. Also $|I| = [L:K]_S$ and $|J| = [M:L]_S$. Die K-Homomorphismen $\overline{\sigma_i} \circ \tau_j = f_{ij}$ sind genau die paarweise verschiedenen K-Homom. $M \to \overline{K}$, wobei $\overline{\sigma_i}$ eine Fortsetzung von σ_i zu einem K-Homomorphismus $\overline{K} \to \overline{K}$ ist (Fortsetzungssatz theorem 2.31). Angenommen $\overline{\sigma_i} \circ \tau_j = \overline{\sigma_s} \circ \tau_r$, dann ist $\overline{\sigma_i}_{|L} = (\overline{\sigma_i} \circ \tau_j)_{|L} = (\overline{\sigma_s} \circ \tau_s)_{|L} = \sigma_s$, also i = s. Da $\overline{\sigma_i}$, $\overline{\sigma_s}$ automatisch inj. sind⁸, ist $\tau_i = \tau_r$ also j = r. Damit ist a) bewiesen.

Zu b) Es gilt $L = K(a_1, ..., a_n)$ für gewisse $a_i \in L$. Wegen a) wird der Gradformel lemma 2.12 genügt es L = K(a) zu betrachten. Nach lemma 2.28 ist $[K(a):K]_S = \left| \{b \in \overline{K} \mid m_{a,k}(b) = 0\} \right| \le \deg(m_{a,K}) = [K(a):K]$

Satz 2.47 (Char. separabler Erweiterungen). *Sei* L|K *eine endliche Erweiterung. Dann sind äquivalent:*

- (i) L|K separabel
- (ii) $L = K(a_1, ..., a_n)$ für über K separable Elemente $a_1, ..., a_n \in L$
- (iii) $[L:K]_S = [L:K]$

Beweis.

- (i) \rightarrow (ii) $[L:K] < \infty$, dann gilt $a_1, \ldots, a_n \in L$ mit $L = K(a_1, \ldots, a_n)$. Diese Elemente sind (nach Definition separabler Körpererweiterungen definition 2.43) automatisch separabel.
- (ii) \rightarrow (iii) Wegen lemma 2.46 a) and lemma 2.12 reicht es (iii) für den Fall L = K(a) zu zeigen.

$$[K(a):K]_S = |\{b \in \overline{K} \mid m_{a,K}(b) = 0\}| \stackrel{\text{a sep.}}{=} \deg(m_{a,K}) = [K(a):K]$$

(iii) \rightarrow (i) Sei $a \in L$. Dann gilt

$$[L:K] = [L:K]_S = [L:K(a)]_S \cdot [K(a):K]_S$$

 $\leq [L:K(a)] \cdot [K(a):K]$
 $= [L:K]$

Damit ist $[K(a):K]_S = [K(a):K]$ und a ist separabel.

Korollar 2.48. *Ist* $f \in K[X] \setminus K$ *ein separables Polynom, so ist der Zerällungskörper von f separabel*

VL vom 23.11.2023:

⁸Alle Körperhomomorphismen sind 0 oder injektiv. Wäre $\phi(a) = 0$, dann $0 = \phi(a) = \phi(a)\phi(a^{-1}) = \phi(1) = 1$

§2.7 Endliche Körper

Ziel: Konstruktion eines Körpers \mathbb{F}_q , $q=p^n$, p prim mit q Elementen. Nicht zu verwechseln mit $\mathbb{Z}/q\mathbb{Z}$, der für n>1 Nullteiler besitzt.

Lemma 2.49. Es sei \mathbb{F} ein endlicher Körper. Dann gilt $p = char(\mathbb{F}) > 0$. Somit $|\mathbb{F}| = q := p^n$ für $[\mathbb{F} : \mathbb{F}_p] = n$. Es ist \mathbb{F} der Zerfällungskörper des Polynoms $X^q - X$ über \mathbb{F}_p . Insbesondere ist die Erweiterung über \mathbb{F}/\mathbb{F}_p normal.

Beweis. Mit \mathbb{F} ist auch der Primkörper⁹ endlich, also von der Form \mathbb{F}_p . Daher $|\mathbb{F}| = |\mathbb{F}_p|^{[\mathbb{F}:\mathbb{F}_p]} = p^n$.

Die multiplikative Gruppe \mathbb{F}^{\times} hat die Ordnung q-1, daher ist jedes Element in \mathbb{F}^* Nullstelle von $X^{q-1}-1$. Also ist jedes Element von \mathbb{F} Nullstelle von X^q-X . Insbesondere ist \mathbb{F} Zerfällungskörper von X^q-X .

Satz 2.50. Es sei p eine Primzahl. Dann existiert zu jedem $n \in \mathbb{N}$ eine Erweiterung $\mathbb{F}_q | \mathbb{F}_p$ mit $q = p^n$ Elementen. Es ist \mathbb{F}_q bis auf Isomophie der eindeutige Zerfällungskörper von $X^q - X \in \mathbb{F}_p[X]$. Es besteht \mathbb{F}_q genau aus den Nullstellen von $X^q - X$. Jeder endliche Körper ist bis auf Isomorphie ein Körper des Typs \mathbb{F}_q .

Beweis. Die Eindeutigkeitsaussagen folgen aus dem Lemma. Sie $f := X^q - X$. Wegen D(f) = -1 hat das Polynom nur einfache Nullstellen, also q einfache Nullstellen in einem algebraischen Abschluss $\overline{\mathbb{F}}_p$ von \mathbb{F}_p . Diese Nullstellen bilden einen Teilkörper von $\overline{\mathbb{F}}_p$:

Sei $a,b\in\overline{\mathbb{F}}_p$ Nullstellen. Dann $(a\pm b)^q=\sum_{i=0}^q\binom{q}{i}a^ib^{q-i}\stackrel{char=p}{=}a^q\pm b^q$ also ist $a\pm b$ wieder eine Nullstelle.

 $(ab^{-1})^q = a^q(b^q)^{-1} = ab^{-1}$ also ist ab^{-1} wieder eine Nullstelle. D.h. die Nullstellen von f sind der Zerfällungskörper von f. Er hat q Elemente.

Bemerkung 2.51. Sei K ein Körper der Charakteristik p > 0. Das Argument des letzten Beweises impliziert, dass

$$\{x^{p^n}\mid x\in K\}$$

ein Teilkörper von K ist.

Korollar 2.52. Man bette die Körper \mathbb{F}_q , $q=p^n$ in einen algebraischen Abschluss $\overline{\mathbb{F}}_p$ von \mathbb{F}_p ein. Es ist $\mathbb{F}_q \subseteq \mathbb{F}_{q'}$, $(q=p^n,q'=p^{n'})$ genau dann, wenn n|n'. Die Erweiterung $\mathbb{F}_{q'}|\mathbb{F}_q$ sind bis auf Isomorphie die einzigen Erweiterungen zwischen endlichen Körpern der Charackteristik p.

Beweis. Es gelte $\mathbb{F}_q \subseteq \mathbb{F}_{q'}$. Sei $m := [\mathbb{F}_{q'} : \mathbb{F}_q]$. Dann $p^{n'} = |\mathbb{F}_{q'}| = |\mathbb{F}_q|^m = (p^n)^m = p^{n \cdot m}$, also n | n'. Gilt umgekehrt $n' = n \cdot m$, so folgt für $a \in \overline{\mathbb{F}}_p$ aus $a^q = a$ stets $a^{q'} = a^{q^m} = a$. Wegen des Fortsetzungssatzes kann man jede Erweiterung $L | \mathbb{F}$ von endlichen Köpern der Char. p

⁹Kleinster Teilkörper eines Körpers. Er wird von 0 und 1 durch Abschluss von Multiplikation, Addition und der Inversen erzeugt. Er ist isomorph zu \mathbb{Q} , wenn char(K) = 0, oder zu $\mathbb{F}_{char(K)}$, wenn char(K) > 0.

in $\overline{\mathbb{F}}_p$ realisiert werden. Die Eindeutigkeit folgt dann mit dem schon Gezeigten and dem vorherigen Satz.

Ein Körper K ist *perfekt*, wenn jede alg. Erweiterung von K separabel ist.

- 1. char(K) = 0, d.h. $\mathbb{Q} \subseteq K$. Dann ist K perfekt, weil jedes irreduzible Polynom f über K separabel ist. (denn D(f) = 0) Es gibt aber alg., nicht normale Erweiterungen von \mathbb{Q} (Bsp. theorem 2.36 **TODO** does this reference make sense???)
- 2. $\mathbb{F}_p(t)$ ist nicht perfekt. Die Erweiterung $\mathbb{F}_p(t)[t^{\frac{1}{p}}] = \mathbb{F}_p(t^{\frac{1}{p}})$ ist normal aber nicht separabel. (Bsp. 2.41) Sei p=5. Betrachte die alg. Erweiterung **TODO bild** Warum ist $\mathbb{F}_5(t^{1/15})|\mathbb{F}(t)$ nicht normal? Ansonsten wären alle Nullstellen von $X^3-t^{1/5}$ in $\mathbb{F}_5(t^{1/15}).^{10}$ Somit auch alle Nullstellen von $X^3-1=(X-1)(X^2+X+1)$. Jedes Element von $\mathbb{F}_p(t^{1/15})$ ist von der Form $\frac{p(t^{1/15})}{q(t^{1/15})}$ mit $p,q\in\mathbb{F}_5[X]$ teilerfremde Polynome. Da $t^{1/15}$ transzendent über \mathbb{F} , ist die Evaluationsabbildung

$$\mathbb{F}_5[Y] \stackrel{ev}{\to} \mathbb{F}_5(t^{1/15})$$

injektiv, erwertert sich also auf den Quotientenkörper

$$\mathbb{F}_5(Y) \to \mathbb{F}_5(t^{F/15})$$

injektiv. Also muss es ein $f \in \mathbb{F}_5(Y)$ geben mit $f^2 + f + 1 = 0$. Sei $g = f - 2 \in \mathbb{F}_5(Y)$. Dann $0 = (g+2)^2 + (g+2) + 1 = g^2 + 4g + 4 + g + 2 + 1 = g^2 + 2$ also $g^2 = -2 = 3$ undn $g \in \mathbb{F}_5$. Das ist ein Wiederspruch: 3 ist kein Quadrat mod 5.

Korollar 2.53. Jede algebraische Erweiterung eines endlichen Körpers ist normal und separabel. Insbesondere ist jeder endliche Körper perfekt.

Beweis. Sei $K|\mathbb{F}$ eine alg. Erweiterung von \mathbb{F} endlicher Körper mit Char p > 0. Sei zunächst $K|\mathbb{F}$ endlich. Da $f = X^q - X$ seprabel und K Zerfällungskörper von f über \mathbb{F}_p füre ein $q = p^n$ ist, ist $K|\mathbb{F}_p$, insb auch $K|\mathbb{F}$, normal und separabel.

Allgemein lässt sich K durch endliche Erweiterungen ausschöpfen.

Satz 2.54. $Aut(\mathbb{F}_{p^n}|\mathbb{F}_p)$ ist zyklisch von Ordung n. Sie wird erzeugt vom Frobenius-Automorphismus:

$$Fr: \mathbb{F}_{p^n} \stackrel{\cong}{\to} \mathbb{F}_{p^n}$$
$$x \mapsto x^p$$

Beweis. Fr ist Homomorphismus Fr injektiv, also bijektiv, weil \mathbb{F}_{p^n} endlich ist. Fr Erzeuger: Angenommen $Fr^m = id$ für $1 \le m < n$. Dann $X^{p^m} = X$ für alle $X \in \mathbb{F}_{p^n}$. Dann hätte $X^{p^m} - X$ mehr als p^m Nullstellen. (Wiederspruch) Fr hat Ordnung n: $|\mathbb{F}_{p^n}|\mathbb{F}_p| = [\mathbb{F}_{p^n} : \mathbb{F}_p]_s = [\mathbb{F}_p]_s = [\mathbb$

¹⁰man bekommt die dritten Einheitswurzeln aus den nullstellen raus

Satz 2.55. Eine endliche Untergruppe der multiplikativen Gruppe eines beliebigen Körpers ist zyklisch.

Beweis. Sei $H \leq K^*$ eine endliche Untergruppe. Sei $a \in H$ ein Element maximaler Ordnung m in H. Sei $H_m := \{b \in H \mid ord(b) | m\} \subseteq H$. Die Elemente von H_m sind Nullstellen des Polynoms $X^m - 1 \in K[X]$. Somit $|H_m| \leq m$. Wegen $a \in H_m$, somit $\langle a \rangle \subseteq H_m$, ist $|H_m| = m$. Ang. es gibt $b \in H \setminus H_m$. D.h. $ord(b) \nmid m$. Dann gilt ord(ab) = kgV(ord(b), m) > m. f zur Maximalität von a.

Satz 2.56 (Satz vom primitiven Element). *Sei* L|K *eine endliche und separabel Körpererweiterung. Dann existiert ein* $a \in L$ *mit* L = K(a).

Beweis.

1.Fall: K ist ein Endlicher Körper Dann ist auch L endlich. Nach theorem 2.55 ist L^* zyklisch, d.h. $L^* = \langle a \rangle$. Somit L = K(a).

2. Fall K ist unendlich Schreibe $L=K(a_1,\ldots,a_n)$. Durch eine Induktion über n reicht es den Fall n=2 zu zeigen. Sei $L=K(a_1,a_2)$ und $\phi_1,\ldots,\phi_m:L\to \overline{K}$ seien die verschiedenen K-Einbettungen $L\to \overline{K}$, wobei $m=[L:K]_S=[L:K]$ weil separabel. Das Polynom

$$g = \prod_{i < j} \left(\left(\phi_i\left(a_1\right) - \phi_j\left(a_1\right) \right) \cdot X + \left(\phi_i\left(a_2\right) - \phi_j\left(a_2\right) \right) \right) \in \overline{K}[X]$$

Für i < j ist $\phi_i(a_1) \neq \phi_j(a_1)$ oder $\phi_i(a_2) \neq \phi_j(a_2)$. Somit $g \neq 0$. Da K unendlich, gibt es ein $c \in K$ mit $g(c) \neq 0$. Also $(\phi_i(a_1) - \phi_j(a_1)) \cdot c + (\phi_i(a_2) - \phi_j(a_2)) \neq 0$ für alle i < j. Das ist $\phi_i(a_1 \cdot c + a_2) - \phi_j(a_1 \cdot c + a_2) \neq 0$ und $\phi_i(a) \neq \phi_j(a)$ mit $a := a_1c + a_2 \in L$ für i < j. Damit sind $\phi_1(a), \ldots, \phi_m(a)$ sind verschiedene Nullstellen von $m_{a,k}$. Damit $[L:K] \geq [K(a):K] = \deg(m_{a,K}) \geq = m = [L:K]$, also [L:K] = [K(a):K] und L = K(a)

Beispiel 2.57. Die Separabilität im Satz theorem 2.56 ist essenziell. $K = \mathbb{F}_p(s,t)$ rationaler Funktionenkörper in zwei Variablen. $L = K(\sqrt[p]{s}, \sqrt[p]{t})$ und damit $[L:K] = p^2$. **TODO Graphik** Sei $a \in L$. Schreibe $a = \sum_{l,k} = a_{l,k}(\sqrt[p]{s})^l(\sqrt[p]{t})^k$ mit $a_{l,k} \in K$. Dann ist $a^p = \sum_{l,k} a_{l,k}^p s^l t^k = c \in K$, da $(*)^p$ eine Homomorphismus ist. Somit ist a Nullstelle von $X^p - c \in K[X]$ und $\deg(m_{a,K}) leq p$. Damit ist $K(a) \subset L$.

3 Galoistheorie

Definition 3.1. Eine algebraische Körpererweiterung L|K heißt *Galoiserweiterung* (oder galois'sch), wenn L|K normal und separabel ist. Man nennt dann $Gal(L|K) = Aut_K(L)$ die *Galoisgruppe* von L|K.

Sei F ein Körper und $H \le Aut(F)$ eine Untergruppe. dann ist $F^H = \{x \in F \mid \forall \sigma \in H : \sigma(x) = x\}$ ein Teilkörper von F, genannt *Fixkörper* von H.

§3.1 Hauptsatz der Galoistheorie

Lemma 3.2. Sei L|K Galoiserweiterung. Dann ist $L^{Gal(L|K)} = K$.

Beweis.

"⊃" klar

" \subseteq " (Durch Kontraposition) Sei $a \in L \setminus K$. Das Minimalpolynom $m_{a,K}$ hat Grad ≥ 2 .

- L|k normal => $m_{a,K}$ zerfällt in L[X] in Linearfaktoren.
- L|K separabel => $m_{a,k}$ hat keine mehrfach Nullstelle.

Also gibt es eine weitere Nullstelle b von $m_{a,K}$ mit $b \neq a$. Nach Satz theorem 2.37 existiert eine $\sigma \in Gal(L|K)$ mit $\sigma(a) = b$. $\Rightarrow a \notin L^{Gal(L|K)}$

Satz 3.3. Seien L ein Körper und $H \leq Aut(L)$ eine endliche Untergruppe. Dann ist

- 1. $L|L^H$ galois'sch
- 2. $[L:L^H] = |H|$
- 3. $Gal(L|L^H) = H$

Beweis. Sei $a \in L$. Betrachte die H-Bahn von a.

$$H \cdot a = {\sigma(a) \mid \sigma \in H} = {a_1, \dots, a_n} \subseteq L$$

Betrachte Polynom $f_a = \prod_{i=1}^n (X - a_i)$. Für $\sigma \in H$ ist $\sigma_*(f) = \prod_{i=1}^n (X - \sigma(a_i)) = \prod_{i=1}^n (X - a_i)$. ¹¹ Da f_a also fix unter $\sigma \in H$ ist, müssen die Koeffizienten von f_a in L^H liegen und damit $f_a \in L^H[X]$. Weil alle Nullstellen von f_a auch Nullstelle von m_{a,L^H} sind, muss schon $f_a = m_{a,L^H}$ sein. ¹² Nach Konstruktion hat f_a nur einfache Nullstellen, ist also separabel. \Rightarrow

we shalb jedes a_i auf ein anderes Element in $H \cdot a \subseteq L$ abgebildet.

¹¹Zu jedem a_i existiert ein $\tau \in H$ mit $\tau(a) = a_i$. Dann ist $\sigma(a_i) = \sigma(\tau(a)) = \underbrace{(\sigma \circ \tau)}_{\in H}(a) \in H \cdot a$. σ is bijektiv,

 $^{^{12}}m_{a,L^H}$ teilt $f_a \in L^H[X]$, weil a Nullstelle von f_a

a separabel. $\stackrel{a \text{ beliebig}}{\Rightarrow} L|L^H \text{ separabel}$. Weiter zerfällt $f_a = m_{a,L^H}$ in Linearfaktoren $\Rightarrow L|L^H \text{ normal and damit galois'sch.}$

Wegen $H \subseteq Gal(L|L^H)$ gilt $|H| \le |Gal(L|L^H)| = [L:L^H]_S$ theorem 2.47 $[L:L^H]$. Angenommen $|H| < [L:L^H] \le \infty$. Dann finden wir ein L_0 mit $L^H \subseteq L_0 \subseteq L$ mit $|H| \le [L_0:L^H] < \infty$. Der Satz vom primitiven Element liefert ein $a \in L_0$ mit $L_0 = L^H(a)$. Aber $f_a = m_{a,L^H}$ hat $Grad \le |H| = |L_0:L^H| = \deg(m_{a,L^K}) \le |H| \ne \infty$

Also ist
$$[L:L^H] = |H| = |Gal(L|L^H)| \Longrightarrow H = Gal(L|L^H).$$

VL vom 30.11.2023:

Satz 3.4 (Hauptsatz). L|K endliche Galoiserweiterung.

$$U := \{ H \le Gal(L|K) \mid H \text{ Untergruppe} \}$$
$$Z := \{ E \subset L \mid K \subseteq E \subseteq L \text{ Zwischenk\"orper} \}$$

a) Die Zuordnungen Fix: $U \to Z, H \mapsto L^H$ und $\Gamma: Z \to U, E \mapsto Gal(L|E)$ sind zueinander inverse Bijektionen:

$$U \longleftrightarrow Z$$

$$H \longmapsto L^{H} = Fix(H)$$

$$\Gamma(E) = Gal(L|E) \longleftrightarrow E$$

Fix und Γ *sind enthaltungsumkehrend:*

$$H_1 \le H_2 \Rightarrow Fix(H_1) \supseteq Fix(H_2)$$

 $E_1 \subset E_2 \Rightarrow \Gamma(E_1) \ge \Gamma(E_2)$

b) Sei $E \in \mathbb{Z}$, dann ist E|K normal g.d.w. Gal(L|E) ein Normalteiler von Gal(L|K) ist.

$$Gal(E|K) \cong Gal(L|K)/Gal(L|E)$$

Beweis.

Zu a) Beachte: $E \in \mathbb{Z}$, dann L|E nach theorem 2.37 a) normal und nach lemma 2.44 separabel und damit galoissch

Fix und Γ sind inverse Bijektionen:

$$Fix \circ \Gamma = id$$
 Für jedes $E \in Z$ gilt $Fix(\Gamma(E)) = Fix(Gal(L|E)) = L^{Gal(L|E)} \stackrel{3.2}{=} E$
 $\Gamma \circ Fix = id$ Für jedes $H \in U$ gilt $\Gamma(Fix(H)) = \Gamma(L^H) = Gal(L|L^H) \stackrel{3.3}{=} H$

Fix und Γ sind enthaltungsumkehrend

• Sei $H_1 \le H_2$. Für jedes $x \in L^{H_2}$ gilt per Definition $\forall \sigma \in H_2$: $\sigma(x) = x$, was damit auch insbesondere für jedes $\sigma \in H_1 \subseteq H_2$ gilt. $\Rightarrow x \in L^{H_1}$ $\Rightarrow Fix(H_2) = L^{H_2} \subseteq L^{H_1} = Fix(H_1)$

• Sei $E_1 \subseteq E_2$. $\sigma \in \Gamma(E_2) = Gal(L|E_2) \le Gal(L|E_1) = \Gamma(E_1)$

Bemerkung. Für $\sigma \in Gal(L|K)$ und $H \in U$, dann $\sigma(L^H) = L^{\sigma H \sigma^{-1}}$, denn für $x \in L^{\sigma H \sigma^{-1}} \Leftrightarrow \forall \tau \in H \colon \sigma \tau \sigma^{-1}(x) = x \Leftrightarrow \forall \tau \in H \colon \tau \sigma^{-1}(x) = \sigma^{-1}(x) \Leftrightarrow \sigma^{-1}x \in L^H \Leftrightarrow x \in \sigma(L^H)$

Zu b)

"⇒" Ist E|K normal, so gilt $\sigma(E)=E$ für alle $\sigma\in Gal(L|K)$ nach theorem 2.35 b). $E=L^{Gal(L|E)}\overset{\sigma\Gamma(\cdot)\sigma^{-1}}{\Longrightarrow}\sigma Gal(L|E)\sigma^{-1}=\sigma\Gamma(E)\sigma^{-1}=Gal(L|E)$ für alle $\sigma\in Gal(L|K)$. Damit ist $Gal(L|E)=\Gamma(E)$ normal, also $Gal(L|E)\unlhd Gal(L|K)$.

"
$$\Leftarrow$$
" $Gal(L|E) \subseteq Gal(L|K)$, d.h. $\forall \sigma \in Gal(L|K)$ gilt $\sigma(E) = \sigma(L^{Gal(L|E)}) = L^{\sigma Gal(L|E)}\sigma^{-1} = L^{Gal(L|E)} = E$. Nach theorem 2.35 (ii) ist $E|K$ normal.

Sei E|K normal. Die Restriktionsabbildung $r_E: Gal(L|K) \to Gal(E|K), \sigma \mapsto \sigma_{|E}$ ist Gruppenhomomorphismus mit $\ker(r_E) = Gal(L|E)$. r_E ist surjektiv: Für $\tau \in Gal(E|K)$ findet man dank Fortsetzungssatz (2.31) ein $\sigma \in Gal(L|K)$ sodass $\sigma_{|E} = \tau$. Mit Homomorphiesatz folgt die Behauptung.

Bemerkung 3.5. L|K endliche Galoiserweiterung $H \leq Gal(L|K)$

•
$$[L:L^H] = |H|$$

•
$$[L^H:K] = [L:K]/[L:L^H] = \frac{|Gal(L|K)|}{|H|} = [Gal(L|K):H]$$

Beispiel 3.6. Wie bei (theorem 2.36 a) L Zerfällungskörper von X^4-2 über \mathbb{Q} . $L=\mathbb{Q}(a,ia,-a,-ia)=\mathbb{Q}(a,i)$ mit $a=\sqrt[4]{2}$. Damit ist $[L:\mathbb{Q}]=8$. $L|\mathbb{Q}$ ist Galois Gruppe. $\sigma\in Gal(L|\mathbb{Q})$ eindeutig bestimmt durch $\sigma(a)\in\{a,ia,-a,-ia\}$, $\sigma(i)\in\{i,-i\}$. Da $|Gal(L|\mathbb{Q})|=8$ sind alle Kombinationen möglich. **TODO Graphik** $Gal(L|\mathbb{Q})=\{id,\rho,\rho^2,\rho^3,\tau,\rho\tau,\rho^2\tau,\rho^3\tau\}$ $\tau\rho^{-1}=\rho\tau=\rho\tau^3$ Isomorph zu der Diedergruppe: $D_4=\langle x,y\mid x^4=1,y^2=1,xy=yx^3>$ **TODO Andere Graphik und mehr...**

VL vom 1.12.2023:

Satz 3.7 (Produktsatz). Sei K Körper $L_1, L_2 \subset \overline{K}$ zwei Teilkörper sodass $(L_1|K)$ und $(L_2|K)$ endlich und galois'sch. Dann ist das Kompositum L_1L_2 eine Galois-Erweiterung von K. Die Zuordnung

$$\Phi \colon Gal(L_1L_2|K)) \to Gal(L_1|K) \times Gal(L_2|K)$$
$$\sigma \mapsto (\sigma_{|L_1}, \sigma_{|L_2})$$

ist ein injektiver Gruppenhomomorphismus. Falls $L_1 \cap L_2 = K$, so ist Φ ein Isomorphismus.

Beweis. Damit L_1L_2 galois ist, muss es normal und separabel sein:

normal L_i ist Zerfällungskörper von $w_i \subset K[X] \setminus K$ $(i \in \{1,2\}) => L_1L_2$ ist Zerfällungskörper von $w_1 \cup w_2 => (L_1L_2|K)$ ist normal.

separabel Nach Satz ?? gilt $L_1 = K(a_1)$, $L_2 = K(a_2)$ mit $a_i \in L_i$. Sie sind separabel über $K = L_1L_2 = K(a_1, a_2)$ ist separabel über K (nach 2.47)

 Φ ist injektiv, denn für $\sigma \in \ker(\Phi)$ gilt $\sigma_{|L_1} = id$, $\sigma_{|L_2} = id$ und damit $\sigma = id$, da L_1L_2 erzeugt wird von $L_1 \cup L_2$.

Surjektivität von Φ im Fall $K = L_1 \cap L_2$:

 $(L_1L_2|L_1), (L_1L_2|L_2)$ sind Galoiserweiterungen.

$$\Phi_1: Gal(L_1L_2|L_2) \to Gal(L_1|K)$$
 $\sigma \mapsto \sigma_{|L_1}$

ist injektiv, denn für $\sigma \in \ker(\Phi_1)$ gilt $\sigma_{|L_1} = id$. Außerdem ist $\sigma_{|L_2} = id$, da σ L_2 -Homomorphismus. $\Rightarrow \sigma = id$

 Φ_1 ist surjektiv (falls $K = L_1 \cap L_2$): Sei $H = Bild(\Phi_1) \leq Gal(L_1|K)$.

$$L_{1}^{H} = \{x \in L_{1} \mid \forall \sigma \in Gal(L_{1}L_{2}|L_{2}) : \sigma_{|L_{1}}(x) = x\}$$

$$= L_{1} \cap (L_{1}L_{2})^{Gal(L_{1}L_{2}|L_{2})}$$

$$= L_{1} \cap L_{2}$$

$$= L_{1}^{Gal(L_{1}|L_{1} \cap L_{2})}$$

 $\Rightarrow H = Gal(L_1|L_1 \cap L_2)$

Analog mit $Phi_2: Gal(L_1L_2|L_1) \to Gal(L_2|K), \sigma \mapsto \sigma_{|L_2|}$

 $Gal(L_1L_2|K) \ge Gal(L_1L_2|L_i) \Longrightarrow \Phi$ ist surjektiv

Beispiel 3.8. $L_1 = \mathbb{Q}(\sqrt[4]{2}, i) L_2 = \mathbb{Q}(\sqrt{11})$ Zerfällungskörper von $X^2 - 11$. $L_1 \cdot L_2 = \mathbb{Q}(\sqrt[4]{2}, i, \sqrt{11})$ $L_1 \cap L_2 = \mathbb{Q}$ Damit gilt $Gal(L|\mathbb{Q}) \cong \underbrace{Gal(L_1|\mathbb{Q})}_{=D_4} \times \underbrace{Gal(L_2|\mathbb{Q})}_{=\mathbb{Z}/2\mathbb{Q}}$

§3.2 Kreisteilungskörper und Einheitswurzeln

Definition 3.9. Sei K Körper und $n \in \mathbb{N}$. Ein Element $\xi \in K^{\times}$ mit $\xi^n = 1$ heißt n-te Ein-heitswulzel (EW). Hat ξ die Ordnung n, so nennt man ξ primitive n-te EW. $\mu_n(K) := \{$ n-te EW in $K\} \le K^{\times}$ zyklische Untergruppe. $|\mu_n(K)| \le n \mu_n^*(K) := \{$ primitive n-te EW in $K\}$

Beispiel. $\mu_n(\mathbb{C}) = \{exp(2\pi i \frac{k}{n}) \mid k = 0, \dots, n-1\} \ exp(2\pi i \frac{2}{4} = exp(2\pi i \frac{1}{2}) \ \xi \in \mu_n(\mathbb{C}) \ \text{ist primitiv} \Leftrightarrow ggT(k,n) = 1$

thet $a \in \mu_n(K) \setminus \{1\} \Rightarrow (X^n - 1)/(X - 1) = X^{n-1} + X^{n-2} + \dots + X + 1$ hat ξ als Nullstelle **TODO bild**

Definition: K Körper, $n \in \mathbb{N}$ K_n ist definiert als Zerfällungskörper von $X^n - 1$ über K.

Satz 3.10. *K Körper,* $n \in \mathbb{N}$ *, char*(K) $\nmid n$

- a) $(K_n|K)$ ist Galoiserweiterung, $|\mu_n(K_n)| = n$, $\phi_n := |\mu_n^*(K_n)| = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ und $K_n = K(\xi)$ für $\xi \in \mu_n^*(K_n)$
- b) $Gal(K_n|K)$ ist isomorph zu einer Untergruppe von $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Beweis. Zu a) $(K_n|K)$ ist normal als Zerfällungskörper. Es ist $D(X^n-1)=nX^{n-1}$, d.h. X^n-1 und $D(X^n-1)$ haben keine gemeinsamen NS d.h. X^n-1 ist separabel $\stackrel{2.48}{\Rightarrow} K_n|K$ ist separabel. Insbesondere hat X^n-1 n verschiedene NS, d.h. $|\mu_n(K_n)|=n$. Gruppe der n-ten EW ist zyklisch (mit Argument wie in 2.49), also $|\mu_n^*(K_n)|=|\mathbb{Z}/n\mathbb{Z}|$

Zu b) $\sigma \in Gal(K_n|K)$, thet $a \in \mu_n^*(K_n)$ $\sigma(\xi) = \xi^m$ für m teilerfremd zu n. σ ist durch m eindeutig bestimmt. $\Phi : Gal(K_n|K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$, $\sigma \mapsto m + n\mathbb{Z}$ ist ein injektiver Gruppenhomomorphismus.

Definition 3.11. Der Körper $\mathbb{Q}(\xi_n)$ für $\xi_n \in \mu_n^*(\mathbb{C})$ heißt n-ter Kreisteilungskörper. Das Polynom $\phi_n = \prod_{\xi \in \mu_n^*(\mathbb{C})} (X - \xi)$ heißt n-tes Kreisteilungspolynom

Lemma 3.12. $\phi_n \in \mathbb{Z}[X]$

Beweis. Beweis mit Induktion über n: IA: $\phi_1 = X - 1 \ \sqrt{n} \ge 2$: Wir verwenden, dass für $d < n \ \phi_d \in \mathbb{Z}[X]$. Es ist $\mu_n(\mathbb{C}) = \bigcup_{d \mid n} \mu_d^*(\mathbb{C})$ (disjukt). $X^n - 1 = \prod_{\xi \in \mu_n(\mathbb{C})} (X - \xi) = \prod_{d \mid n} \prod_{\substack{\xi \in \mu_d^*(\mathbb{C}) \\ = \phi_d}} (X - \xi)$ Setze $f = \prod_{d \mid n, d < n} \phi_d \overset{(IV)}{\in} \mathbb{Z}[X]$, f ist normiert. $X^n - 1 = qf + r$ mit

$$q, r \in \mathbb{Z}[X]$$
, $\deg(r) < \deg(f)$. In $\mathbb{C}[X]$ $X^n - 1 = \phi_n f$, d.h. $r = (q - \phi_n) f$. Da $\deg(r) < \deg(f)$ gilt $\phi_n = q \in \mathbb{Z}[X]$

Bemerkung 3.13. Rekursive Bestimmung der Kreisteilungspolynome mittels $X^n-1=\prod_{d\mid n}\phi_d$. Wenn n=p prim: $\phi_p\cdot\phi_1=X^p-1$ -> $\phi_p=\sum_{k=0}^{p-1}X^k$.

$$\phi_2 = X + 1$$
, $\phi_3 = X^2 + X + 1$ $\phi_4 \cdot \phi_2 \cdot \phi_1 = X^4 - 1$ $\Rightarrow \phi_4 = X^2 + 1$. $\phi_6 \cdot \phi_3 \cdot \phi_2 \cdot \phi_1 \Rightarrow \phi_6 = X^2 - X + 1$.

Für $p \in \mathbb{N}$ Primzahl und $\alpha \in \mathbb{N}$ gilt

$$X^{p^{lpha}}-1=\prod_{d\mid p^{lpha}}\phi_d=\phi_{p^{lpha}}\prod_{\substack{d\mid p^{lpha-1}-1}}\phi_d=\phi_{p^{lpha}}(X^{p^{lpha-1}})$$

$$\phi_{p^{\alpha}} = \phi_p(X^{p^{\alpha-1}}) = \sum_{k=0}^{p-1} (X^{p^{\alpha-1}})^k$$

VL vom 7.12.2023:

Satz 3.14. Das n-te Kreisteilungspolynom ϕ_n ist irreduzibel in $\mathbb{Q}[X]$, d.h. $\phi_n = m_{\xi,\mathbb{Q}}$ für $\xi \in \mu_n^*(\mathbb{C})$

Beweis. Sei $\xi \in \mu_n^*(\mathbb{C})$. Sei $f := m_{\xi,\mathbb{Q}} \in \mathbb{Q}[X]$. Wir zeigen, dass jede primitive n-te EW eine Nullstelle von f ist. Dies imliziert $\phi_n|f$ und somit $\phi_n = f$ irreduzibel.

Da ξ Nullstelle von X^n-1 ist, existiert ein $h \in \mathbb{Q}[X]$ mit $X^n-1=f \cdot h$. Weiter gilt, dass $f,h \in \mathbb{Z}[X]$ aus folgendem Grund:

Erinnerung (Gauß-Lemma 2.5 b).

$$c(f) \cdot c(h) = c(f \cdot h) = c(X^n - 1) = 1$$

Weiter ist
$$c(f) = c(a \cdot f)a^{-1}$$
, $c(h) \in \{\frac{1}{k} \mid k \in \mathbb{N}\}$. Also folgt $c(f) = c(h) = 1$. $\Rightarrow f, g \in \mathbb{Z}[X]$

Sei p eine Primzahl, die n nicht teilt. Dann ist ξ^p auch eine primimtive n-te EW. Wir behaupten, dass ξ^p eine Nullstelle von f ist.

Ist das nicht der Fall, dann ist $h(\xi^p) = 0$, also ist xi eine Nullstelle von $h(X^p)$. Somit $f|h(X^p)$. Es existiert $g \in \mathbb{Q}[X]$ mit $h(X^p) = f \cdot g$. Ähnlich wie oben ist sogar $g \in \mathbb{Z}[X]$. Betrachte die Reduktion mod p:

$$\mathbb{Z}[X] \to \mathbb{F}_p[X], \sum_i c_i X^i \mapsto \sum_i \overline{c}_i X^i$$

. Dann ist $\overline{h}^p = \overline{h}^p(X^p) = \overline{f} \cdot \overline{g}$, weil p-te Potenz Homomorphismus in char = p und nach Euler?? $c^p \equiv c \mod p$. Somit sind f und h nicht teilerfremd $\mod p$. Dann ist $X^n - 1 = \overline{f} \cdot \overline{h} \in \mathbb{F}_p[X]$ nicht separabel im Widerspruch zu $D(X^n - 1) = nX^{n-1} \neq 0$. Somit ist ξ^p Nullstelle von f.

Ist ξ' eine andere primitive n-te EW, dann ist $\xi' = \xi^m$ mit (m,n) = 1 und man erhält ξ' durch wiederholtes Bilden von Primpotenzen von ξ , wobei die Primexponenten zu n teilerfremd sind. Durch Wiederholhung des obigen Alguments bekommt man $f(\xi) = 0$.

Korollar 3.15. Sei
$$\xi \in \mu_n^*(\mathbb{C})$$
. Dann ist $[\mathbb{Q}(\xi) : \mathbb{Q}] = \phi(n)$ und $Gal(\mathbb{Q}(\xi)|\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$

Bemerkung (Satz von Kronecker-Weber ('Kroneckers Jugendtraum')). Jede endliche abelsche Erweiterung¹³ von Q in einem Kreisteilungskörper enthalten. **TODO Optional: Ausblick über dessen Konsequenzen (inc Graphik)**

§3.3 Charaktere und Normalbasen

Definition 3.16. Sei Γ eine Gruppe, K ein Körper. Ein *Charakter* (von Γ nach K) ist ein Homomorphismus $\Gamma \to K^{\times}$.

Für jede Menge M ist die Menge Abb(M,K) der Abbildungen von M nach K ein K-Vektorraum bezüglich punktweiser Addition und skalarer Multiplikation.

¹³Erweiterung mit abelscher Galoisgruppe

Lemma 3.17. K, Γ wie zuvor. Paarweise verschiedene Charakterer χ_1, \ldots, χ_n von Γ nach K sind in $Abb(\Gamma, K)$ linear unabhängig.

Beweis. Durch Induktion über n.

IA (n = 1) $\chi = \chi_1 \neq 0$, da χ Werte in K^{\times} annimmt

IS $n \ge 2$ Annahme: Je n-1 verschiedene Charaktere sind linear unabhängig. Angenommen $\sum_{i=1}^{n} c_i \chi_i = 0$, wobei nicht alle c_i Null sind (Sei O.B.d.A.insbesondere $c_2 \ne 0$). Sei $\mu \in \Gamma$ mit $\chi_1(\mu) \ne \chi_2(\mu)$. Dann gilt für alle $\gamma \in \Gamma$:

$$(1): \quad 0 = \sum_{i=1}^{n} c_{i} \chi_{i}(\mu \gamma) = \sum_{i=1}^{n} c_{i} \chi_{i}(\mu) \chi_{i}(\gamma)$$

$$(2): \quad 0 = \chi_{1}(\mu) \sum_{i=1}^{n} c_{i} \chi_{i}(\gamma) = \sum_{i=1}^{n} c_{i} \chi_{1}(\mu) \chi_{i}(\gamma)$$

$$(1) - (2): \quad 0 = \sum_{i=1}^{n} c_{i} (\underbrace{\chi_{i}(\mu) - \chi_{1}(\mu)}_{=0 \text{ für } i=1}) \cdot \chi_{i}(\gamma)$$

$$= \sum_{i=2}^{n} c_{i} (\underbrace{\chi_{i}(\mu) - \chi_{1}(\mu)}_{\neq 0 \text{ für } i=2}) \cdot \chi_{i}(\gamma)$$

Damit sind χ_2, \dots, χ_n linear abhängig. \mathcal{F} Widerspruch zu I-Annahme.

Korollar 3.18. Paarweise verschiedene Automorphismen eines Körpers K sind linear unabhängig in Abb(K,K)

Beweis. Sei $\sigma_1, \ldots, \sigma_n \in Aut(K)$. Dann wende lemma 3.17 auf $\sigma_{1|K^{\times}}, \ldots, \sigma_{n|K^{\times}}$ an.

Lemma 3.19. Sei L|K endliche und separabel. Sei n = [L:K]. Seien $\sigma_1, \ldots, \sigma_n: L \to \overline{K}$ paarweise verschiedene K-Homomorphismen. Dann sind äquivalent:

- (i) $v_1, \ldots, v_n \in L$ bilden eine K-Basis von L
- (ii) $\det((\sigma_i(v_i))_{ij}) \neq 0$

Beweis.

- (ii) \Rightarrow (i) Durch Kontraposition: Sei v_1, \ldots, v_n also keine Basis. Wenn sie kein Erzeugendensystem sind, ist auch die lineare Unabhängigkeit verletzt, da n = [L:K]. v_1, \ldots, v_n ist also nicht linear unabhängig. Sei dann $\sum_{j=1}^n \lambda_i v_i = 0$, wobei nicht alle $\lambda_j \in K$ Null sind. Dann ist $0 = \sigma(0) = \sigma(\sum_{j=1}^n \lambda_i v_i) = \sum_{j=1}^n \lambda_j \sigma_i(v_j)$ für alle i. D.h. die Spalte von $(\sigma_i(v_j))_{ij}$ sind linear abhängig.
- (i) \Rightarrow (ii) Durch Kontraposition: Sei det = 0. Dann gibt es $\mu_1, \ldots, \mu_n \in \overline{K}$ mit $\sum_{i=1}^n \mu_i \sigma_i(v_j) = 0$ für alle j (Zeilen lin. abh). Nach lemma 3.17 sind $\sigma_{1|L^{\times}}, \ldots, \sigma_{n|L^{\times}}$ linear unabhängig. Falls $\langle \{v_1, \ldots, v_n\} \rangle = L$, dann gilt $\sum_{i=1}^n \mu_i \sigma_i = 0$ im Widerspruch zur linearen Unabhängigkeit. Also ist $v_1, \ldots v_n$ keine Basis.

Satz 3.20 (Satz von der Normalbasis). Sei L|K eine endliche Galois-Erweiterung. Sei n = [L:K] und $Gal(L|K) = \{\sigma_1, \ldots, \sigma_n\}$. Es existiert ein $a \in L$, sodass $\sigma_1(a), \ldots, \sigma_n(a)$ eine

K-Basis von L bilden. Eine solche Basis nennen wir Normalbasis von L|K.

Beweis für unendliche Körper. Gemäß 3.19 reicht es ein Element $a \in L$ zu finden, mit $\det(\sigma_i(\sigma_j(a)))_{ij} \neq 0$. Nach dem Satz vom primitiven Element (2.56) gibt es ein $b \in L$ mit K(b) = L. Dann sind $b_i := \sigma_i(b)$ die paarweise verschiedenen Nullstellen von $f := m_{b,K} = \prod_{i=1}^n (X - \sigma_i(b)) \in K[X]$. Es ist $b_1 := b$ und $b_i := \sigma_i(b)$. Setze

$$g_j = \prod_{i \neq j} \frac{X - b_i}{b_j - b_i} \in L[X] \quad \text{womit } g_j(b_k) = \delta_{jk} = \begin{cases} 1 & \text{, wenn } j = k \\ 0 & \text{, wenn } j \neq k \end{cases}$$

Weiter ist

(1)
$$g_1 + \cdots + g_n = 1$$

, weil die linke Seite Grad $\leq n-1$ hat und beide Seiten für b_1, \ldots, b_n übereinstimmen.

(2)
$$\sigma_{j_*}(g_1) = \sigma_{j_*}\left(\prod_{i \neq 1} \frac{X - b_i}{b_1 - b_i}\right) = \prod_{i \neq 1} \frac{X - \sigma_{j_*}(b_i)}{b_j - \sigma_{j_*}(b_i)} = \prod_{i \neq j} \frac{X - b_i}{b_j - b_i} = g_j$$

Betrachte die Matrix

$$A = (\sigma_{i*}(g_j))_{ij} \in M_n(L[X])$$

Beh: $det(A) \neq 0 \in L[X]$

- Für jedes b_k ist $(g_i \cdot g_j)(b_k) = \delta_{ik} * \delta_{jk} = 0$ falls $i \neq j$. \Rightarrow Für $i \neq j$ gilt $f = m_{b,K} | (g_i \cdot g_j)$. (smile)
- Multipliziere (1) mit g_i . Dann ergibt sich, dass $g_i^2 \equiv g_i \mod f \cdot L[X]$. (*)

Sei $B = AA^T = (\beta_{ij})_{ij} \in M_n(L[X])$. Dann gilt

$$\beta_{ij} = \sum_{k=1}^{n} \sigma_{i*}(g_k) \sigma_{j_*}(g_k)$$

$$\stackrel{(2)}{=} \sum_{k=1}^{n} \sigma_{i*}(\sigma_{k*}(g_1)) \sigma_{j_*}(\sigma_{k*}(g_1))$$

$$= \sum_{k=1}^{n} \underbrace{(\sigma_i \circ \sigma_k)_*(g_1) \cdot (\sigma_j \circ \sigma_k)_*(g_1)}_{\sigma_{m(i,k)}} (g_1)$$

mit einer passenden Abbildung $m: [n] \times [n] \rightarrow [n]$.

$$i = j \ \beta_{ii} = \sum_{k=1}^{n} (\sigma_{m(i,k)}(g_1))^2 = \sum_{k=1}^{n} g_k^2 \stackrel{(*)}{\equiv} \sum_{k=1}^{n} g_k \stackrel{(1)}{\equiv} 1 \ \text{mod } f \cdot L[X]$$

 $i \neq j \ m(i,k) \neq m(j,k)$ für alle k. Wegen (smile) also $\beta_{ij} \equiv 0 \mod f \cdot L[X]$.

 $\Rightarrow B \equiv I_n \mod f \cdot L[X] \Rightarrow \det(A)^2 = \det(B) \equiv 1 \mod f \cdot L[X]$. Insbesondere ist $\det(A) \neq 0$.

Weil K unendlich ist existiert ein $u \in K$ so, dass $p(u) \neq 0$, wobei $p := det(A) \in L[X]$. Definiere $a := g_1(u)$.

Dann folgt:

$$0 \neq p(u) = \det \left(\left(\sigma_{i*} \left(g_j \right) (u) \right)_{ij} \right)$$

$$= \det \left(\left(\left(\sigma_i \circ \sigma_j \right)_* g_j (u) \right)_{ij} \right)$$

$$= \det \left(\left(\left(\sigma_i \circ \sigma_j \right) (a) \right)_{ij} \right)$$

$$= \det \left(\left(\sigma_i (\sigma_j (a)) \right)_{ij} \right)$$

§3.4 Auflösbarkeit von Gleichungen

Definition 3.21. Sei K eine Körper, $a \in K$. Eine Nullstelle von $X^n - a$ nennt man Radikal von a.

Die Nullstellen von $X^n - a$ in \overline{K} sind

$$\{\xi \cdot \sqrt[n]{a} \mid \xi \in \mu_n(\overline{K})\}$$

. Der Zerfällungskörper ist $K(\xi, \sqrt[n]{a})$, wobei ξ eine primitive n-te EW ist.

Satz 3.22. *Sei* K *ein* $K\ddot{o}$ *rper,* $n \in \mathbb{N}$ *mit* $char(K) \nmid n$. ¹⁴ Es *enthalte* K *eine primitive* n-*te* $EW \notin S$

- (a) $K(\sqrt[n]{a})|K$ eine endliche Galois-Erweiterung. Die Galoisgruppe $Gal(K(\sqrt[n]{a})|K)$ ist zyklisch und ihre Ordnung teit n.
- (b) Ist L|K eine endliche Galois-Erweiterung mit [L:K]=n und zyklischer Galoisgruppe, dann ist $L=K(\sqrt[n]{a})$ für ein $a \in K$.

Beweis.

a) $K(\sqrt[n]{a})|K$ ist galois'sch, weil $K(\sqrt[n]{a})$ Zerfällungskörper des separablen Polynoms X^n-a ist. Sei $\sigma\in Gal(K(\sqrt[n]{a})|K)$. Dann ist $\sigma(\sqrt[n]{a})=w_\sigma\cdot\sqrt[n]{a}$, wobei $\omega_\sigma=\xi^{m_\sigma}$ eine n-te EW ist. Die Abbildung $\psi:Gal(K(\sqrt[n]{a})|K)\to\mu_n(K), \sigma\mapsto\omega_\sigma=\frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}$ ist eine injektiver Gruppenhomomorphismus:

Gruppenhomomorphismus

$$\psi(\sigma\tau) = \frac{\sigma(\tau(\sqrt[n]{a}))}{\sqrt[n]{a}} = \frac{\sigma(\omega_\tau \cdot \sqrt[n]{a})}{\sqrt[n]{a}} = \omega_\tau \cdot \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}} = \omega_\tau \cdot \omega_\sigma = \psi(\tau)\psi(\sigma)$$

¹⁴0 teilt keine Zahl

injektiv , weil σ durch ω_{σ} eindeutig feistgelegt wird, da $\sqrt[n]{a}$ prim Element von $K(\sqrt[n]{a})$. Wegen $\mu_n(K) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ nach 3.10 a) ist $Gal(K(\sqrt[n]{a}|K))$ auch zyklisch

b) L|K Galois mit $Gal(L|K) = \langle \sigma \rangle$. Langrange-Resolvente: $\phi = \sum_{i=0}^{n-1} \xi^{-i} \cdot \sigma^i \in Abb(L, L)$ Nach 3.18 sind $\sigma^0, ..., \sigma^{n-1}$ linear unabhängig in Abb(L, L). Somit ist $\phi \neq 0$. Also existiert ein $c \in L$ mit $b := \phi(c) \neq 0$. Es gilt $\sigma(b) = \sum_{i=0}^{n-1} \xi^{-i} \cdot \sigma^{i+1}(c) = \xi \sum_{i=0}^{n-1} \xi^{-(i+1)} \cdot \sigma^{i+1} = \xi \cdot b$, weil $\xi^{-((n-1)+1)} = \xi^{-n} = \xi^0$ und $\sigma^{(n-1)+1} = \sigma^0$. Das Minimalpolynom von b hat die Nullstellen $b, \xi \cdot b, \xi^2 \cdot b, ..., \xi^{n-1} \cdot b$ und Grad $\leq n$. Also $m_{b,K} = \prod_{i=0}^{n-1} (X - \xi^i \cdot b) = X^n - b^n \in K[X]$. Wähle $a = b^n$.

Definition 3.23.

- (i) man sagt eine K-Erweiterung L|K sei *durch Radikale auflösbar*, wenn ein Turm von endlichen K-Erweiterungen gibt $K = K_0 \subseteq K_1 \subseteq K_2 \cdots \subseteq K_r$, sodass
 - Für alle *i* ist $K_i = K_{i-1}(u_i)$ mit $u_i^{m_i} \in K_{i-1}$ für $m_i \in \mathbb{N}$
 - $L \subseteq K_r$
- (ii) Wir nennen ein Polynom $f \in K[X] \setminus K$ durch Radikale auflösbar, wenn der Zerfällungskörper von f über K durch Radikale auflösbar ist.

Bedeutung: Die Nullstellen von f lassen sich mittels Körperoperationen (+ and *) und (iterierte) Wurzeln schreiben.

VL vom 15.12.2023:

Lemma 3.24. K $K\ddot{o}rper$ mit char(K) = 0

- a) Wenn L|K durch Radikale auflösbar, dann existiert ein Radikalturm $K \subseteq K_1 \subseteq \cdots \subseteq K_r$ mit $L \subseteq K_r$ und $K_r|K$ galois'sch.
- b) Sei $\xi \in \overline{K}$ eine EW, dann ist L|K durch Radikale auflösbar g.d.w. $L(\xi)|K(\xi)$ durch Radikale auflösbar ist.
- Beweis. a) Induktion über die Länge des Turms: Der Induktionsanfang mit Länge 0 ist gegeben \checkmark . Für den Induktionsschritt betrachte einen Turm $K \subseteq K_1 \subseteq \cdots \subseteq K_{n-1} \subseteq K_n$, wobei $K_n = K_{n-1}(u)$ mit $u^m \in K_{n-1}$ und $K_{n-1}|K$ galoisch ist. Nach Induktionsvorraussetzung muss ein solcher Turm existieren. Betrachte

$$f = \prod_{\sigma \in Gal(K_{n-1}|K)} (X^m - \sigma(u^m)) \in K[X]$$

. $f \in K[X]$, weil $\sigma \circ f = f$ (die Linearfaktoren werden nur permutiert) und somit alle Koeffizienten in $K_{n-1}^{Gal(K_{n-1}|K)} = K$ liegen müssen. Seien u_1, \ldots, u_t die Nullstellen von f in M, dem Zerfällungskörper von f:

$$K \subseteq K_1 \subseteq \cdots \subseteq K_{n-1} \subseteq K_{n-1}(u_1) \subseteq K_{n-1}(u_1, u_2) \subseteq \cdots \subseteq K_{n-1}(u_1, \dots, u_t) = M$$

Die zu beweisende Aussage gilt mit $K_r := M$: M|K ist normal (weil Zerfällungskörper) und separarabel (da char(K) = 0) und damit galois'sch. Offensichtlich ist auch $L \subseteq M$ und M lässt sich durch einen Radikalturm darstellen.

b)

- \Leftarrow Sei $K(\xi) \subseteq K_1 \subseteq K_r \supseteq L(\xi)$ ein Radikalturm für $L(\xi)|K(\xi)$. Erhalte neuen Turm mit $K \subseteq K(\xi) \subseteq K_1 \subseteq \cdots \subseteq K_r \supseteq L(\xi) \supseteq L$ einen neuen Radikalturm für L|K.
- ⇒ Sei $K \subseteq K_1 \subseteq \cdots \subseteq K_r \supset L$ ein Radikalturm für L|K. Dann ist $K(\xi) \subseteq K_1(\xi) \subseteq \cdots \subseteq K_r(\xi) \supseteq L(\xi)$.

Satz 3.25. *K Körper, char*(K) = 0, L|K *endliche Erweiterung. Dann sind äquivalent:*

- (i) L|K ist durch Radikale auflösbar
- (ii) Es existiert eine endliche galois'sche Erweiterung M|K mit $L \subseteq M$ und Gal(M|K) auflösbar.

Erinnerung. G Gruppe auflösbar, wenn eine Normalreihe $\{1\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_r = G$ und G_{i+1}/G_i abelsch existiert bzw. G' = [G,G] terminiert in $\{1\}$ nach endlich vielen Schritten.

Beweis.

(ii) \Rightarrow (i) Sei n = [M:K] und $\xi \in \overline{K}$ eine primitive n-te Einheitswurzel. Nach 3.24 genügt es zu zeigen, dass $M(\xi)|K(\xi)$ durch Radikale auflösbar ist. Bemerke $M(\xi)|K(\xi)$ galois'sch, da M|K bereits galois'sch nach Vorraussetzung.

$$Gal(M(\xi)|K(\xi)) \le Gal(M|K)$$

gilt, da sich Automorphismen aus $G(M(\xi)|K(\xi))$ auf Gal(M|K) eingeschränkt werden kann. Die ist möglich, da die evtl. 16 zusätzliche Nullstellen ξ^i (als Elemente in $K(\xi)$) fix gehalten werden und die Automorphismen in $Gal(M(\xi)|K(\xi))$ höchstens auf den verbleibenden Nullstellen/Elementen in M nicht-fix agieren können.

Nach theorem 1.12 sind die Untergruppen auflösbarer Gruppen auflösbar. Damit ist auch $Gal(M(\xi)|K(\xi))$ auflösbar, da Gal(M|K) nach Vorraussetzung auflösbar.

¹⁵Wenn K_{n-1} Zerfällungskörper von $W \subseteq K[X]$, dann ist M Zerfällungskörper von $W \cup \{f\}$

 $^{^{16}\}xi$ könnte bereits in M sein. In dem Fall ist $Gal(M(\xi)|K(\xi))$ die Menge der Automorphismen in Gal(M|K) ist, die xi fix halten.

Sei $\{1\} = G_0 \le G_1 \le ... \le G_r = Gal(M(\xi)|K(\xi))$ mit G_i/G_{i-1} abelsch, nach 1.13 sogar zyklisch. Definiere $K_i = M(\xi)^{G_{r-i}}$.

$$K(\xi) = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r = M(\xi)$$

Nach Haupsatz der Galoistheorie ist $M(\xi)|K_i$ galois'sch mit $Gal(M(\xi)|K_i) = G_{r-i}$. Nach 3.4 und wegen $G_{i-1} \subseteq G_i$ folgt $Gal(K_{i+1}|K_i) = G_{r-i}/G_{r-i-1}$, was zyklisch ist (siehe oben). Sei $m = [K_{i+1} : K_i]|n$ und K enthält eine primitive n-te EW. Dann gilt nach 3.22b) $K_{i+1} = K_i(\sqrt[n]{a})$ für ein $a \in K_{i-1}$

(i) \Rightarrow (ii) Beweisidee: Gruppenturm aus Körperturm umsetzen. Mit lemma 3.24 finde Radikalturm $K = K_0 \subseteq \cdots \subseteq K_r$ mit $K_r | K$ galios'sch und $K_i = K_{i-1}(u_i)$ wobei $u_i^{m_i} \in K_{i-1}$ für geeignete $m_i \in \mathbb{N}$. Sei n eine Vielfaches von m_1, \ldots, m_r und ξ eine primitive n-te EW und $M = K_r(\xi) | K$ galois'sch. Setze $G_i = Gal(M|K_{r-i}(\xi)) \leq Gal(M|K)$. $K_{r-i}(\xi)$ ist Radikalerweiterung von K_{r-i-1} . Nach 3.22 gilt/gibt es? $\{1\} = G_0 \leq G_1 \leq \ldots \leq G_r = Gal(M|K(\xi)) \leq Gal(M|K)$ Nach 3.22a) ist G_i/G_{i-1} für alle i zyklisch. Da $K(\xi) | K$ galois'sch, folg aus 3.4, dass normal Untergruppe und nach 3.10 ist die Faktorgruppe ablsch.

Korollar 3.26. K Körper mit char(K) = 0. Dann $f \in K[X] \setminus K$ auflösbar durch Radikale gdw. Galoisgruppe des Zerfällungskörper auflösbar ist.

Beweis.

- $\Leftarrow L$ Zerfällungskörper, Gal(L|K) auflösbar, setze M = L in 3.25
- \Rightarrow Sei L|K durch Radikale auflösbar. Nach 3.25 ist $K \subseteq L \subseteq M$. Da L|K galois'sch, ist $Gal(M|L) \subseteq Gal(M|K)$ und Gal(M|K)/Gal(M|K) = Gal(L|K). Nach 3.25 ist Gal(M|K) auflösbar und damit ist Gal(L|K) als dessen Faktor auch auflösbar.

- Beispiel 3.27. 1. S_5 nicht auflösbar ($A_5 \le S_5$ einfach, also nicht auflösbar). Wenn Polynom f so geartet ist, dass für dessen Zerfällungskörper M gilt $Gal(M|K) \cong S_5$, dann lassen sich die Nullstellen von f nicht durch iterierte Wurzeln sind. Z.B $f = X^5 25X + 5 \in \mathbb{Q}[X]$.
 - 2. Alle Untergruppen von S_4 , S_3 sind auflösbar.

VL vom 21.12.2023:

TODO All contants from this lecture are in dire need of formating! Proceed with caution

§3.5 Spur und Norm

Definition 3.28. Sei L|K endlich. Sei $a \in L$. Die $Spur\ Sp_{L/K}(a) \in K$ ist die Spur des K-lin. Endomorphismus $\phi_a : L \to L, \phi_a(x) = a \cdot x$. Ähnlich definiert man die $Norm\ N_{L/K}(a) \in K$ als $\det(\phi_a)$. Das char. Polynom von ϕ_a bezeichnen wir mit $X_{a,L/K} \in K[X]$.

Offensichtlich ist $Sp_{L/K}: L \to K$ K-linear. Weiter ist $N_{L/K}(a \cdot b) = N_{L/K}(a) \cdot N_{L/K}(b)$.

Beispiel 3.29. $L = \mathbb{Q}(\sqrt{3}), K = \mathbb{Q}$. Sei $a = a_1 + \sqrt{3}a_2 \in L, a_i \in \mathbb{Q}$. Die darstellende Matrix von ϕ_a bez. der \mathbb{Q} -Basis $1, \sqrt{3}$ ist.

$$a_1 3 a_2 a_2 a_1$$
 (6)

Also gilt $Sp_{L/K}(a) = 2a_1 \text{ und } N_{L/K}(a) = a_1^2 - 3a_2^2$

Lemma 3.30. Sei M ein Zwischenkörper der endlichen Körperweiterungen L|K. dann ist $\chi_{a,L/K} = \chi_{a,L/K}^{[L:M]}$ für $a \in M$.

Beweis. Wähle VR-Basen v_1, \ldots, v_n von M über K, w_1, \ldots, w_m von L über M bilden die Produkte $w_k \cdot v_i$ eine vR-Basis von L über K. Sei A die darstellende Matrix von ϕ_a bez. (v_1, \ldots, v_n) . Dann gilt

$$\chi_{a,M/L} = \det(X \cdot I_n - A)$$

´Die darstellende Martix von $\phi_a: L \to L$ bez der Basis $w_k \cdot v_i$ (k = 1, ..., m, i = 1, ..., n) ist. **TODO Matrix-bild** $\Rightarrow \chi_{a,L/K} = \chi_{M/L}^m, m = [L:M]$

Bemerkung 3.31. Unter der Vorraussetzung von 3.30 erhält man für $a \in M$, dass $Sp_{L/K}(a) = [L:M] \cdot Sp_{M/K}(a) N_{L/K}(a) = N_{M/K}(a)$

Satz 3.32. Sei L|K endlich und $a \in L$. Es sei $m_{a,K} = X^n + \alpha_{n-1}X^{n-1} + \cdots + \alpha_0$. Dann gelten

$$Sp_{L/K}(a) = -[L:K(a)]\alpha_{n-1}$$

$$N_{L/K}(a) = ((-1)^n \cdot \alpha_0)^{[L:K(a)]}$$

Beweis. Nach Lemma 3.30/3.31 reicht es den Fall L = K(a) zu betrachten. In diesem Fall hat L die Basis $1, a, \ldots, a^{n-1}$ über K. Die dazugehörige Matrix von ϕ_a lautet

$$00...0 - \alpha_0 10 \vdots 01 \vdots \vdots 0...00 \dots 1 - \alpha_{n-1}$$
 (7)

$$\Rightarrow Sp_{L/K}(a) = -\alpha_{n-1} \Rightarrow N_{L/K}(a) = (-1)^n \alpha_0$$

Bemerkung 3.33. Es gilt sogar $\chi_{a,K(a)/K} = m_{a,K}$. Cayley Hamilton: $\chi_{a,K(a)/K}(\phi_a) = 0$. Andererseits ist $0 = \chi_{a,K(a)/K}(\phi_a)(1) = \chi_{a,K(a)/K}(\underbrace{\phi_a(1)}_{=a})$. Da $\deg(\chi_{a,K(a)/K}) = \deg(m_{a,K})$ ist $m_{a,K} = \chi_{a,K(a)/K}$.

Satz 3.34. Sei L|K endlich und separabel. Sei n = [L:K] und $\{\sigma_1, \ldots, \sigma_n\} = Hom_K(L, \overline{K})$. Dann gilt $Sp_{L/K} = \sum_{i=1}^n \sigma_i(a) N_{L/K}(a) = \prod_{i=1}^n \sigma_i(a)$.

Beweis. $m_{a,K} = X^r + \alpha_{r-1}X^{r-1} + \cdots + \alpha_0$ das Minimalpolynom. Nach lemma 2.44 K(a)|K isti auch separabel. Folglich gibt es r verschiedene K-Homomorphismen τ_1, \ldots, τ_r von K(a) nach \overline{K} . Weiter ist $m_{a,K} = \prod_{i=1}^r (X - \tau_i(a)) = \sum_{i=1}^r \tau_i(a) = -\alpha_{r-1}$ (TODO why?), $\prod_{i=1}^r \tau_i(a) = (-1)^r \cdot \alpha_0$.

Es ist $\{\sigma_{1|K(a)}, \ldots, \sigma_{n|K(a)}\} = \{\tau_1, \ldots, \tau_r\}$. Für jedes i ist die Anzahl der j's mit $\sigma_{j|K(a)} = \tau_i$ gleich $[L:K(a)]_S = [L:K(a)]$ Daher folgt $\sum_{j=1}^n \sigma_j(a) = [L:K(a)] \cdot \sum_{i=1}^r \tau_i(a) = -[L:K(a)] \alpha_{r-1} \stackrel{Satz}{=} Sp_{L|K}(a)$.

Satz 3.35. Sei M ein Zwischenkörper der endlichen Erweiterung L|K. Dann gelten $Sp_{L|K} = Sp_{M|K} \circ Sp_{L|M} N_{L|K} = N_{M|K} \circ N_{L|M}$

Beweis. nur für separable Erweiterungen: Seien $hom_M(L, \overline{K}) = \{\tau_1, \dots, \tau_m\}, m = [L:M]$ $hom_K(M, \overline{K}) = \{\sigma_1, \dots, \sigma_l\}, l = [M:K].$ Dann ist $\{\overline{\sigma}_j \circ \tau_i \mid i \in \{1, \dots, m\}, j \in \{1, \dots, l\}\} = hom_K(L, \overline{K})$, wobei $\overline{\sigma}_j$ Erweiterung vorn σ_j zu $\overline{K} \to \overline{K}$ (siehe Beweis von 2.46)

$$\begin{split} Sp_{L|K}(a) &= \sum_{i,j} \overline{\sigma}_j(\tau_i(a)) \\ &= \sum_j \overline{\sigma}_j(\sum_i \tau_i(a)) \\ &= \sum_j \sigma_j(Sp_{L|M}(a)) / / \\ &= \sum_j \sigma_j(Sp_{L|M}(a)) / / \\ &= Sp_{M|K}(Sp_{L|M}(a)) \end{split}$$

Satz 3.36. *Sei* L|K *endlich und separabel.*

- 1. Es gibt ein $a \in L$ mit $Sp_{L|K}(a) \neq 0$
- 2. $Durch(v, w) := Sp_{L|K}(v \cdot w)$ wird eine symmetirsche Bilienarform des K-VR L definiert, die nicht ausgeartet ist.

Beweis. Zu a) Die Homom. $\{\tau_1, \ldots, \tau_n\} = hom_K(L|\overline{K})$ sind lin. unabhöngig als Elemente von $Abb(L^{\times}, \overline{K})$ und somit von $Hom_K(L, \overline{K})$. Da $Sp_{L|K} = \sum_{i=1}^n \tau_i$ kann $Sp_{L|K}$ nicht die Nullabbildung sein.

zu b) Sei $a \in L$ mit $Sp_{L|K}(a) \neq 0$. Dann gilt $(v, av^{-1}) = Sp_{L|K}(a) \neq 0 \Rightarrow$ nicht ausgeartet

§3.6 Anwendungen der Galoistheorie

Erinnerung (Fundamentalsatz der Algebra). C ist algebraisch abgeschlossen.

Beweis. Sei $\mathbb{R} \subseteq \mathbb{C} \subseteq L$ eine Kette von endlichen Erweiterungen. Zu zeigen: $L = \mathbb{C}$. Durch Vergrößern von L können wir annehmen, dass $L|\mathbb{R}$ eine Galoiserweiterung ist. Sei $G := Gal(L|\mathbb{R})$. Es ist $[L : \mathbb{R}] = |G| = 2^k \cdot m$ mit $2 \nmid m$. Es sei $H \leq G$ eine 2-Sylowuntergruppe

von G. TODO Bild Satz vom primitiven Element: $L^H = \mathbb{R}(\alpha)$. Da $m_{\alpha,\mathbb{R}}$ eine Nullstelle in \mathbb{R} besitzt (Zwischenwertsatz!), ist $m_{\alpha,\mathbb{R}}$ linear, also m = 1 und $L^H = \mathbb{R}$. $\Rightarrow [L : \mathbb{R}] = 2^k$, $[L : \mathbb{C}] = 2^{k-1}$

Ang. $k \ge 2$. Dann existiert $H' \le G' = Gal(L|\mathbb{C})$ mit $|H'| = 2^{k-2}$ (allg. Aussage über p-Gruppen) **TODO bild** Da jedes quadratische Polynom in C[X] zerfällt in \mathbb{C} , folgt ähnlich wie oben ein Widerspruch (bet $m_{a,\mathbb{C}}$ für die $L^H = \mathbb{C}(a)$)