On the stability of periodic billiard paths in triangles

11 May 2006

W. Patrick Hooper

- A periodic billiard path $\hat{\gamma}$ in a triangle gives rise to the bi-infinite periodic sequence of marked edges it hits.
- We call this sequence the **symbolic** dynamics of $\widehat{\gamma}$ and denote it by $s_{\widehat{\gamma}}$.

A periodic billiard path $\widehat{\gamma}$ with symbolic dynamics $s_{\widehat{\gamma}} = \overline{123123}$.

- ullet Let ${\mathcal T}$ be the space of marked triangles up to similarity.
- A periodic billiard path $\widehat{\gamma}$ in a triangle $\Delta \in \mathcal{T}$ is **stable** if there is an open set $U \subset \mathcal{T}$ containing Δ , so that every $\Delta' \in U$ has a periodic billiard path $\widehat{\gamma}'$ with the same symbolic dynamics $(s_{\widehat{\gamma}} = s_{\widehat{\gamma}'})$.

Why do we care about stable periodic billiard paths in triangles?

Open Question. Does every triangle have a periodic billiard path?

Open sets are useful for covering \mathcal{T} . Furthermore,

Proposition. If the angles (in radians) of the triangle Δ are linearly independent over the integers, then all periodic billiard paths in Δ are stable.

For proof see

- Tabachnikov's book Billiards (1995),
- Vorobets, Gal'perin, and Stëpin's article Periodic billiard trajectories in polygons: generating mechanisms (1991), or
- my thesis

The **tile** of a periodic billiard path $\widehat{\gamma}$ is the subset $tile(\widehat{\gamma}) \subset \mathcal{T}$ consisting of all triangles $\Delta \in \mathcal{T}$ with periodic billiard paths $\widehat{\eta}$ with the same symbolic dynamics as $\widehat{\gamma}$ $(s_{\widehat{\gamma}} = s_{\widehat{\eta}})$.

Open Question. Which triangles admit stable periodic billiard paths?

Theorem (Fagnano). Each acute triangle has a stable periodic billiard path $\hat{\gamma}$ with $s_{\hat{\gamma}} = \overline{123}$.

Theorem (Schwartz). Obtuse triangles with largest angle less than 100 degrees have stable periodic billiard paths.

- **Theorem (H (thesis)).** All but countably many isosceles triangles have stable periodic billiard paths. $(\frac{\pi}{2n}, \frac{\pi}{2n}, \frac{(n-1)\pi}{n})$
 - There exist countably many isosceles triangles with no stable periodic billiard paths. $(\frac{\pi}{2^{k+1}}, \frac{\pi}{2^{k+1}}, \frac{(2^k-1)\pi}{2^k})$

What about right triangles?

In their article *Periodic billiard trajectories in polygons: generating mechanisms*, Vorobets, Gal'perin, and Stëpin asked:

Question. "Does there exist at least one right-angled triangle containing stable trajectories?"

Short Answer. No right triangle has stable periodic billiard paths.

The long answer

- Parameterize the space of marked triangles \mathcal{T} by the angles of the triangle.
- The right triangles consist of three lines ℓ_1 , ℓ_2 , and ℓ_3 in this space.

Theorem (Main theorem). If $\hat{\gamma}$ is a stable periodic billiard path in a triangle, then tile($\hat{\gamma}$) is contained in one of the four components of $\mathcal{T} \setminus (\ell_1 \cup \ell_2 \cup \ell_3)$.

Vague idea of proof

- You are given a stable periodic billiard path $\hat{\gamma}$ in a triangle Δ_1 .
- We define a subset $UF(\widehat{\gamma}) \subset \mathcal{T}$, which is the collection of all triangles Δ where we can find certain "topological obstructions" to the existence of a periodic billiard path with symbolic dynamics $s_{\widehat{\gamma}}$.

Theorem. $UF(\widehat{\gamma})$ is a finite union of lines in \mathcal{T} .

Theorem (Bounding box). $tile(\widehat{\gamma})$ lies in one component of $\mathcal{T} \setminus UF(\widehat{\gamma})$.

Lemma. Every right triangle lies in $UF(\hat{\gamma})$.

What about unstable periodic billiard paths?

By similar triangles, this periodic billiard path can only exist in isosceles triangles. In fact, it exists in all isosceles triangles.

A deeper look

Given a triangle Δ we can build a Euclidean cone surface \mathcal{D}_{Δ} by doubling the triangle across its boundary. Let Σ denote the collection of cone singularities on \mathcal{D}_{Δ} .

- The billiard flow on Δ lifts to the geodesic flow on $\mathcal{D}_{\Delta} \setminus \Sigma$.
- Loops invariant under the billiard flow correspond to loops invariant under the geodesic flow on $T_1(\mathcal{D}_{\Delta} \setminus \Sigma)$.

A trivial obstruction

The closed 1-form $d\theta$ on $T_1\mathbb{R}^2$ is invariant under the action of $Isom_+(\mathbb{R}^2)$.

It pulls back to closed 1-form on the unit tangent bundle of any locally Euclidean surface.

A homological obstruction: If the homology class $x \in H_1\big(T_1(\mathcal{D}_\Delta \setminus \Sigma), \mathbb{Z}\big)$ contains a loop invariant under the geodesic flow then

$$\int_x d\theta_\Delta = 0$$

This is our example lifted to \mathcal{D}_{Δ} .

An algebraic interpretation of stability

Theorem. A periodic billiard path $\widehat{\gamma}$ in Δ is stable iff the corresponding loop γ is null-homologous on $T_1(\mathcal{D}_{\Delta} \setminus \Sigma)$.

Theorem. If $\widehat{\gamma}$ is unstable, then $tile(\widehat{\gamma})$ is contained in the rational line

$$\{\Delta \in \mathcal{T} \text{ such that } \int_{\gamma} d\theta_{\Delta} = 0\}$$

Remark: If the angles of the triangle Δ are $(\alpha_1, \alpha_2, \alpha_3)$ then

$$\int_x d\theta_\Delta = 2n_1\alpha_1 + 2n_2\alpha_2 + 2n_3\alpha_3$$

for $n_1, n_2, n_3 \in \mathbb{Z}$ depending on the homology class $x \in H_1(T_1(\mathcal{D}_{\Delta} \setminus \Sigma))$.

The argument in action

Here is a **stable** periodic billiard path in a slightly acute triangle.

Let's prove that a periodic billiard path with the same symbolic dynamics can not appear in a right or obtuse triangle.

The proof follows from the "general principle" that intersections between geodesics on locally Euclidean surfaces are "essential."

$$a=-\int_{\eta}d heta_{\Delta}=2lpha_{3}$$

For all $\Delta \in tile(\widehat{\gamma})$, $0 < -\int_{\eta} d\theta_{\Delta} < \pi$

Iterating over all intersections gives a convex bounding box for the tile.

Let γ be a loop which is invariant under the geodesic flow in $T_1(\mathcal{D}_{\Delta_1} \setminus \Sigma)$.

For each self-intersection of $p(\gamma)$, we get a surgered loop η on $T_1(\mathcal{D}_{\Delta_1} \setminus \Sigma)$ and an obstruction to the existence of a geodesic flow invariant loop in the homotopy class $[\gamma]$ on Δ_2 . Namely, we need

$$0<\int_{\eta}d heta_{\Delta_2}<\pi$$

The proof of the main theorem, that stable periodic billiard paths in acute and obtuse triangles never have the same symbolic dynamics, would follow if we could prove that:

"Let γ be any null-homologous geodesic on $T_1(\mathcal{D}_{\Delta_1} \setminus \Sigma)$ for any triangle Δ_1 . For all right triangles Δ_2 , we can find an intersection of $p(\gamma)$ so that the surgered curve η satisfies

$$\int_{\eta} d\theta_{\Delta_2} \equiv 0 \pmod{\pi}$$

What happens when

$$\int_{\eta} \mathbf{d}\theta_{\Delta_2} \equiv 0 \pmod{\pi}?$$

The minimal translation surface cover, MT_{Δ} , of $\mathcal{D}_{\Delta} \setminus \Sigma$ is the cover chosen so that a loop ζ on $T_1(\mathcal{D}_{\Delta} \setminus \Sigma)$ lifts to $T_1(MT_{\Delta} \setminus \Sigma)$ iff

$$\int_{\zeta} d\theta \equiv 0 \pmod{2\pi}$$

Translation Surfaces

Definition. A translation surface TS is a Euclidean cone surface, where all cone angles are integer multiples of 2π . We also allow infinite cone angles.

All cone surfaces can be built out of pieces of \mathbb{R}^2 glued together by translations.

So the notion of direction on \mathbb{R}^2 (the map $\theta: T_1\mathbb{R}^2 \to \mathbb{R}/2\pi\mathbb{Z}$) pulls back to a translation surface.

Translation Surface Covers

- ullet The universal cover $\widetilde{\mathcal{D}_{\Delta} \setminus \Sigma}$
- The universal abelian cover

$$AC_{\Delta} = \widetilde{\mathcal{D}_{\Delta} \setminus \Sigma}/[\pi_1(\mathcal{D}_{\Delta} \setminus \Sigma), \pi_1(\mathcal{D}_{\Delta} \setminus \Sigma)]$$

It has a cover automorphism group isomorphic to $H_1(\mathcal{D}_{\Delta}, \mathbb{Z}) = \mathbb{Z}^2$.

• The minimal translation surface cover (aka the invariant surface). It can be built as $\mathcal{D}_{\Delta} \setminus \Sigma$ modulo those elements of $\pi_1(\mathcal{D}_{\Delta} \setminus \Sigma)$ whose holonomy is a translation.

We have the following sequence of branched covers:

$$\widetilde{\mathcal{D}_{\Delta} \setminus \Sigma} \to AC_{\Delta} \to MT_{\Delta} \to \mathcal{D}_{\Delta}$$

Some minimal translation surface covers

Geodesics on Translation Surfaces

Because the direction map on a translation surface $(\theta: T_1TS \to \mathbb{R}/2\pi\mathbb{Z})$ is invariant under the geodesic flow, geodesics travel in a fixed direction.

Furthermore,

- TO-1: A geodesic has no self intersections.
- TO-2: A pair of distinct geodesics traveling in the same direction never intersect.
- TO-3: The absolute value of the algebraic intersection number between two geodesics equals the geometric intersection number.

The weaker obstruction

Recall: We had a triangle Δ_1 and a null-homologous loop γ in $T_1(\mathcal{D}_{\Delta_1} \setminus \Sigma)$ invariant under the geodesic flow. There was a self-intersection of $p(\gamma)$ making a figure-8. And a curve η in $T_1(\mathcal{D}_{\Delta_1} \setminus \Sigma)$ projecting to one loop of that figure-8. We saw that on $tile(\gamma)$,

$$0<\int_{\llbracket\eta
rbracket}d heta_{\Delta}<\pi$$

If Δ_2 is a triangle with $\int_{[\![\eta]\!]} d\theta_{\Delta_2} = 0$, then we get a topological obstruction to the existence of a geodesic on \mathcal{D}_{Δ_2} in the homotopy class $[\gamma]$. Namely, the lift of $[p(\gamma)]$ to MT_{Δ_2} has an "essential intersection" (because the whole figure-8 lifts). This violates TO-1.

If Δ_2 is a triangle with $\int_{[\![\eta]\!]} d\theta_{\Delta_2} = \pi$, then a double cover of $[\eta]$ lifts.

We can lift $[p(\gamma)]$ to two curves $[g_1]$ and $[g_2]$ on MT_{Δ_2} which differ by a Deck transformation, ρ , which rotates by π . They have two "essential intersections" with opposite algebraic signs. We get violations of both TO-2 and TO-3.

Train tracks and the more general topological obstruction

Proposition. Let $x = \{[c_1], \ldots, [c_k]\}$ be a collection homotopy classes on a translation surface TS which can be realized by geodesics all traveling in the same direction. This collection of homotopy classes is uniquely determined by its homology class $[x] = [c_1] + \ldots + [c_k] \in H_1(TS)$.

Proof: In our cases, we have a triangulation of our translation surface surface by saddle connections.

This train track argument gives us a map Ψ from $H_1(TS)$ to the set of all finite collections of homotopy classes of loops on T_1TS which can be realized as curves with no violations of TO-1, TO-2, or TO-3.

The unfriendly set

Given a null homologous γ on $T_1(\mathcal{D}_{\Delta_1} \setminus \Sigma)$ invariant under the geodesic flow, we define the **unfriendly set** $UF(\gamma) \subset \mathcal{T}$ to be the collection of triangles Δ with topological obstructions to the existence of a geodesic flow invariant loop in $[\gamma]$ on $T_1(\mathcal{D}_{\Delta} \setminus \Sigma)$.

The unfriendly set

An example unfriendly set

Some theorems

Theorem 1. For $\widehat{\gamma}$ a stable periodic billiard path, The unfriendly set $UF(\widehat{\gamma})$ is a finite union of rational lines.

Each violation of TO- \star is equivalent to some detecting curve η on $T_1(s_{\Delta} \setminus \Sigma)$ (or its double) lifting to MT_{Δ} .

Theorem 2 (Bounding Box). $tile(\widehat{\gamma})$ is contained in at most one component of $\mathcal{T} \setminus UF(\gamma)$.

Theorem 3. The right triangle lines are contained in the unfriendly set.