Sales Data Analysis Project

Project Description

This Jupyter Notebook presents an analysis of sales data. The objective of this project is to gain insights into sales trends, top-selling products, and revenue metrics. We'll explore various aspects of the data, including monthly sales trends, top-selling products, city-wise sales distribution, and hourly sales patterns.

The analysis includes data cleaning, preprocessing, and visualization to provide actionable insights for business decision-making.

LinkedIn: Asad Ali Mulla (https://www.linkedin.com/in/asad-ali-mulla-044240262/)

GitHub: Asadxio (https://github.com/Asadxio)

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Load the Data

```
In [2]: df = pd.read_csv("C:/Users/Asad/Desktop/Meriskill intern/Project 1 - Sales Dat
```

Data Cleaning and Preprocessing

In [3]: df.head()

Out[3]:

	Sr no	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour
0	0	295665	Macbook Pro Laptop	1	1700.00	30- 12- 2019 00:01	136 Church St, New York City, NY 10001	12	1700.00	New York City	0
1	1	295666	LG Washing Machine	1	600.00	29- 12- 2019 07:03	562 2nd St, New York City, NY 10001	12	600.00	New York City	7
2	2	295667	USB-C Charging Cable	1	11.95	12- 12- 2019 18:21	277 Main St, New York City, NY 10001	12	11.95	New York City	18
3	3	295668	27in FHD Monitor	1	149.99	22- 12- 2019 15:13	410 6th St, San Francisco, CA 94016	12	149.99	San Francisco	15
4	4	295669	USB-C Charging Cable	1	11.95	18- 12- 2019 12:38	43 Hill St, Atlanta, GA 30301	12	11.95	Atlanta	12

In [4]: | df.tail()

Out[4]:

	Sr no	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City
185945	13617	222905	AAA Batteries (4-pack)	1	2.99	07- 06- 2019 19:02	795 Pine St, Boston, MA 02215	6	2.99	Boston
185946	13618	222906	27in FHD Monitor	1	149.99	01- 06- 2019 19:29	495 North St, New York City, NY 10001	6	149.99	New York City
185947	13619	222907	USB-C Charging Cable	1	11.95	22- 06- 2019 18:57	319 Ridge St, San Francisco, CA 94016	6	11.95	San Francisco
185948	13620	222908	USB-C Charging Cable	1	11.95	26- 06- 2019 18:35	916 Main St, San Francisco, CA 94016	6	11.95	San Francisco
185949	13621	222909	AAA Batteries (4-pack)	1	2.99	25- 06- 2019 14:33	209 11th St, Atlanta, GA 30301	6	2.99	Atlanta
4										•

```
In [5]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 185950 entries, 0 to 185949
        Data columns (total 11 columns):
             Column
                               Non-Null Count
                                                Dtype
             ----
         0
             Sr no
                               185950 non-null int64
         1
             Order ID
                               185950 non-null int64
         2
             Product
                               185950 non-null object
         3
             Quantity Ordered 185950 non-null int64
         4
             Price Each
                              185950 non-null float64
         5
             Order Date
                               185950 non-null object
             Purchase Address 185950 non-null object
         6
         7
             Month
                               185950 non-null int64
         8
             Sales
                               185950 non-null float64
         9
                               185950 non-null object
             City
         10 Hour
                               185950 non-null int64
        dtypes: float64(2), int64(5), object(4)
        memory usage: 15.6+ MB
In [6]: df.columns
Out[6]: Index(['Sr no', 'Order ID', 'Product', 'Quantity Ordered', 'Price Each',
               'Order Date', 'Purchase Address', 'Month', 'Sales', 'City', 'Hour'],
              dtype='object')
In [7]: |df.shape
Out[7]: (185950, 11)
```

Data Cleaning and Preprocessing

```
In [8]: df.drop_duplicates(inplace=True)
In [9]: df['Order Date'] = pd.to_datetime(df['Order Date'])
In [10]: df['Month'] = df['Order Date'].dt.month
In [11]: df['Sales'] = df['Quantity Ordered'] * df['Price Each']
```

Exploratory Data Analysis (EDA)

In [12]: df.describe()

Out[12]:

	Sr no	Order ID	Quantity Ordered	Price Each	Month	Sale
count	185950.000000	185950.000000	185950.000000	185950.000000	185950.00000	185950.00000
mean	8340.388475	230417.569379	1.124383	184.399735	6.86449	185.49091
std	5450.554093	51512.737110	0.442793	332.731330	3.49427	332.91977
min	0.000000	141234.000000	1.000000	2.990000	1.00000	2.99000
25%	3894.000000	185831.250000	1.000000	11.950000	4.00000	11.95000
50%	7786.000000	230367.500000	1.000000	14.950000	7.00000	14.95000
75%	11872.000000	275035.750000	1.000000	150.000000	10.00000	150.00000
max	25116.000000	319670.000000	9.000000	1700.000000	12.00000	3400.00000
4						•

In [13]: print(df.dtypes)

dtype: object

Sr no int64 Order ID int64 Product object int64 Quantity Ordered Price Each float64 Order Date datetime64[ns] Purchase Address object Month int64 Sales float64 object City Hour int64

```
In [14]: plt.hist(df['Sales'], bins=30)
    plt.xlabel('Sales')
    plt.ylabel('Count')
    plt.show()
```


Visualizations

```
In [15]: # Monthly sales trend
monthly_sales = df.groupby('Month')['Sales'].sum()
months = range(1, 13)

plt.figure(figsize=(10, 6))
plt.bar(months, monthly_sales)
plt.xlabel('Month')
plt.ylabel('Total Sales ($)')
plt.title('Monthly Sales Trend')
plt.xticks(months)
plt.show()
```



```
In [17]: # City-wise sales
city_sales = df.groupby('City')['Sales'].sum().sort_values(ascending=False)

plt.figure(figsize=(12, 6))
city_sales.plot(kind='bar')
plt.xlabel('City')
plt.ylabel('Total Sales ($)')
plt.ylabel('Total Sales ($)')
plt.title('City-Wise Sales')
plt.xticks(rotation=90)
plt.show()
```



```
In [18]: # Hourly sales distribution
hourly_sales = df.groupby('Hour')['Sales'].sum()

plt.figure(figsize=(10, 6))
plt.plot(hourly_sales.index, hourly_sales.values, marker='o')
plt.xlabel('Hour')
plt.ylabel('Total Sales ($)')
plt.title('Hourly Sales Distribution')
plt.xticks(hourly_sales.index)
plt.grid(True)
plt.show()
```


Conclusion and Recommendations

```
In [19]: print("Conclusion:")
    print("1. There is a clear monthly sales trend, with peak sales occurring in D
    print("2. The top-selling products include Product A, Product B, and Product C
    print("3. New York City and San Francisco are the top cities in terms of total
    print("4. Hourly sales show that the highest sales occur around 12 PM and 7 PM
```

Conclusion:

- 1. There is a clear monthly sales trend, with peak sales occurring in Decemb er.
- 2. The top-selling products include Product A, Product B, and Product C.
- 3. New York City and San Francisco are the top cities in terms of total sale ε
- 4. Hourly sales show that the highest sales occur around 12 PM and 7 PM.