A Multi-phase Backtracking Approach to Solving Scope-Resolved MRS

Eric Zinda

Demo

An Example World: A File System

- Individuals are files and folders
- Folders can contain files or other folders
- A user is in a "current folder"
- Individuals can be copied or deleted

What Might Be Said?

- Propositions and Yes/No Questions
 - Files are large.
 - Is a file in this folder not large?
- WH-Questions
 - Which files are in this folder?
 - What folder am I in?
- Commands
 - Delete <file>.
 - Copy <file> in <folder>.

• First: Find a solution to a scope-resolved MRS

- First: Find a solution to a scope-resolved MRS
- Propositions and Yes/No Questions: "Files are large"
 - True: "Yes, I agree!"
 - False: "No, that isn't true"

- First: Find a solution to a scope-resolved MRS
- Propositions and Yes/No Questions: "Files are large"
 - True: "Yes, I agree!"
 - False: "No, that isn't true"
- WH-Questions: "Which files are in this folder?"
 - Find the variable scoped by which_q(x, RSTR, BODY)
 - Print the values of x from the (arbitrarily first) solution

- First: Find a solution to a scope-resolved MRS
- Propositions and Yes/No Questions: "Files are large"
 - True: "Yes, I agree!"
 - False: "No, that isn't true"
- WH-Questions: "Which files are in this folder?"
 - Find the variable scoped by which_q(x, RSTR, BODY)
 - Print the values of x from the (arbitrarily first) solution
- Commands: "Delete <file>"
 - Perform operations* generated from the (arbitrarily first) solution

^{* &}quot;operations" are extra data added to state by action verbs

Choosing the "Right" Solution

Heuristic: Respond using first solution that is found ... If no solution, respond with first failure

Solutions to Scope-Resolved MRS

"Which students are lifting a table together?"

- X variables always contain sets
- E variables are always a dictionary (name/value pairs)
- Scopal arguments form the shape of the tree

Solutions to Scope-Resolved MRS

"Which students are lifting a table together?"

- X variables always contain sets
- E variables are always a dictionary (name/value pairs)
- Scopal arguments form the shape of the tree

Solution		
x3	[Amir, Wan]	
x9	[table1]	
e14	["together":T]	

```
_student_n_of([Amir, Wan],i8)
_which_q([Amir, Wan],RSTR,BODY)
                                                   _____ _table_n_1([table1])
                                _a_q([table1],RSTR,BODY) __ _together_p_state(e14,["together":T])
                                                      \sqsubseteq and (0,1)
 Individuals
                 Facts
                                                                 lift v_cause(["together":T],[Amir, Wan],[table1])
 Amir
                 Amir and
                 Wan are
 Wan
                 lifting table1
                                                              e SF: ques TENSE: pres
 table1
                 at the same
                                                                MOOD: indicative PROG: +
                time
```

Solutions to Scope-Resolved MRS:

"Which students are lifting a table?"

Solution	
x3	[Amir]
x9	[table1]

```
Individuals

Amir

Wan

table1

Table1

Table1

Table1

Table1

Table2

Table3

Table3

Table3

Table3

Table3

Table4

Table5

Table6

Table7

Table8

Table8
```


Solutions to Scope-Resolved MRS:

"Which students are lifting a table?"


```
Individuals

Amir

Wan

table1

Facts

Amir and

Wan are
lifting table1

at the same
```

time

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

Quantifiers try every individual in their scoped variable iteratively

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

- Quantifiers try every individual in their scoped variable iteratively
- Failures backtrack to the nearest quantifier and retry next individual

Finding Solutions to Scope-Resolved MRS: A Multi-phase Backtracking Approach

- Quantifiers try every individual in their scoped variable iteratively
- Failures backtrack to the nearest quantifier and retry next individual
- When all predications are true, we have a solution

Finding Solutions to Scope-Resolved MRS:

A Multi-phase Backtracking Approach

- Quantifiers try every individual in their scoped variable iteratively
- Failures backtrack to the nearest quantifier and retry next individual
- When all predications are true: a **solution**
- Global semantics (like plural counting) done in a second phase: a solution group

^{*}many optimizations are available, but this is the base model

State

```
udef_q(x9,RSTR,B0DY)
```

$$\sqsubseteq$$
 _in_p_loc(e2,x3,x9)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	THEZ.CXC

x3 [x PERS: 3 NUM: pl IND: +] x9 [x PERS: 3 NUM: sg IND: +]

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

	All Individuals	Facts
>	mydocuments	mydocuments contains
	File1.txt	File1.txt and File2.txt
	File2.txt	THE Z.C.C.

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	THE ZIONE

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	, neziote

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

	All Individuals	Facts
	mydocuments	mydocuments contains
	File1.txt	File1.txt and File2.txt
	File2.txt	· noLink

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	1 1102.000

$udef_q(x9,RSTR,BODY)$

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

$udef_q(x9,RSTR,BODY)$

File1.txt and

File2.txt

File1.txt

File2.txt

 \sqsubseteq _in_p_loc(e2,x3,x9)

	State	
All Individuals	Facts	
mydocuments	mydocuments contains	

State

Х3

mydocuments

File1.txt

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

	All Individuals	Facts
	mydocuments	mydocuments contains
•	File1.txt	File1.txt and File2.txt
	File2.txt	· noLink

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

Solving a Scope-Resolved MRS: Phase 1

Solution 1!

State	
X9	mydocuments
Х3	File1.txt

$$\sqsubseteq$$
 _in_p_loc(e2,x3,x9)

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	

Solving a Scope-Resolved MRS: Phase 1

udef_q(x9,RSTR,B0DY)

udef_q(x3,RSTR,B0DY)

 \sqsubseteq _in_p_loc(e2,x3,x9)

Solution 1!

State	
Х9	mydocuments
Х3	File1.txt

Solution 2!

State	
X9	mydocuments
Х3	File2.txt

All Individuals	Facts
mydocuments	mydocuments contains
File1.txt	File1.txt and File2.txt
File2.txt	1 1102.000

Handling Plurals

- Both files (x3) and folders (x9) are plural
- Plurals, counting and other global (i.e. cross-solution) constraints are handled after solutions are found in Phase 2

All Solutions:

	X9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

Start with the full set of solutions

All Solutions:

	X9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

Group Being Tested:

	X9	Х3
Solution 1	Mydocuments	File1.txt

Examine every combination of solutions to find those that meet constraints

	X9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

	X9	X3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

	X9	Х3
Solution 1	Mydocuments	File1.txt
Solution 2	Mydocuments	File2.txt

Response to "files are in folders"

- "files are not in folders"
 - ... because "folders" is plural and no solution groups have > 1 folder
- Successful Groups
 - Create solution groups that meet the constraints
 - Solution groups are the actual solution to the scope-resolved MRS

Predication "Semantic Layers"

_this_q(x,RSTR,BODY)

Predication "Semantic Layers"

Predication "Semantic Layers"

Predications can contribute any combination of: scoping, local or global constraints

Predicate	Scoping	Local	Global
_large_a_1(e,x)	<none></none>	True for "large" x	<none></none>
udef_q(x,RSTR,BODY)	X	<none></none>	<none></none>
_a_q(x,RSTR,BODY)	X	<none></none>	Exactly 1
_the_q(x,RSTR,BODY)* * one of several meanings	x	<none></none>	1 or more Where all rstr satisfy the body
_this_q(x,RSTR,BODY)	X	True if x is "in scope"* * among other meanings	Exactly 1
_this_q(x,RSTR,BODY) card(CARG,e,x)	x <none></none>	·	Exactly 1 At least CARG
		* among other meanings	,

Phase 1: Solve After Removing Global Constraints

"The two students learned a few songs"

"student(s) learned song(s)"

```
udef_q(x3,RSTR,B0DY)
udef_q(x3,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
```

Phase 1: Solve After Removing Global Constraints

" student(s) learned song(s)"

```
udef_q(x3,RSTR,B0DY)
udef_q(x3,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
udef_q(x11,RSTR,B0DY)
L __learn_v_1(e2,x3,x11)
```

	Х3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"

Phase 2: Find Global Constraints For Variables

Phase 2: Find Global Constraints For Variables

X3 Predications	Constraints
card(2,e9,x3)	Min=2, Max=inf
_the_q(x3,RSTR,BODY)	Min=1, Max=inf and all_rstr_meet_body
x3 [NUM: pl]	Min=2, Max=inf
	Min=2, Max=inf and all_rstr_meet_body

Phase 2: Find Global Constraints For Variables

X11 Predications	Constraints
_a+few_a_1(e16,x11)	Min=3, Max=5
x11 [NUM: pl]	Min=2, Max=inf
	Min=3, Max=5

Phase 2: Find Solution Groups that Meet Constraints

"The two students learned a few songs"

	Х3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"

^{*}All other single solution groups fail for the same reason, not shown

Phase 2: Find Solution Groups that Meet Constraints

"The two students learned a few songs"

	Х3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"

^{*}All other double solution groups fail for various reasons, not shown

Phase 2: Find Solution Groups that Meet Constraints

"The two students learned a few songs"

	Х3	X11
Solution 1	Diya	"Words Get in the Way"
Solution 2	Diya	"More than Words"
Solution 3	Wan	"Ten Thousand Words"

Collective, Distributive, Cumulative

- This solution group is a cumulative reading
- Phase 2 checks the constraints for all three types of readings

	X3: Min=2, Max=inf and all_rstr_meet_body	X11: Min=3, Max=5		
	Х3	X11		
Solution 1	Diya	"Words Get in the Way"		
Solution 2	Diya	"More than Words"		
Solution 3	Wan	"Ten Thousand Words"		

Collective, Distributive, Cumulative Math

- Variables have an order due to forward and reverse readings
- Count this variable per the previous variable
- How to count depends on type
- First variable always counted the same (since no previous variable)

Distributive: "The two students sang a few songs"

- Students: must be grouped distributively into subgroups:
 - More than one subgroup
 - The total of students across the subgroups must add up to two
- Songs: Each student subgroup must be singing a few songs

	Х3	X3: Min=2, Max=inf and all rstr meet body	X11	X11: Min=3, Max	=5
Solution	[Diya]	all_isti_fileet_body	["Words Get in the Way"]	Distributive Counting	σ:
Solution	[Diya]	First Variable Counting:	["More than Words"]	3-5 x11 individuals	5.
Solution	[Diya]	Count unique individuals	["Ten Thousand Words"]	per x3 <i>set value</i>	
Solution	[Wan]	across all x3 values	["Word Up"]		
Solution	[Wan]		["Paperback Writer"]		
Solution	[Wan]		["Unwritten"]		

Collective: "The two students sang a few songs"

- Students must be grouped collectively:
 - Exactly 1 "subgroup" that contains the entire set of students
- Songs: Each student subgroup must be singing a few songs

	Х3	X3: Min=2, Max=inf and	X11	X11: Min=3, Max=5
Solution	[Diya, Wan]	all rstr meet body	["Words Get in the Way"]	Collective Counting:
Solution	[Diya, Wan]	,	["More than Words"]	- exactly one x3 set
Solution	[Diya, Wan]	First Variable	["Ten Thousand Words"]	- 3-5 x11 individuals
		Counting: Count unique individuals		for the one x3 <i>set</i>
	Х3	across all x3 values	X11	
Solution	[Diya, Wan]		["Words Get in the Way", "M	ore than Words"]
Solution	[Diya, Wan]		["Ten Thousand Words"]	
	Х3		X11	
Solution	[Diya, Wan]		["Words Get in the Way", "More than Words", "Ten Thousand Words"]	

Cumulative: "The two students sang a few songs"

- Students: must be grouped distributively into subgroups, which means:
 - More than one subgroup
 - The total of students across the subgroups must add up to two
- Songs: The total of songs across all subgroups must be a few

	Х3	X3: Min=2, Max=inf	X11	X11: Min=3, Max=5
		and		
Solution	[Diya]	all rstr meet body	["Words Get in the Way"]	Cumulative
Solution	[Diya]	,	["More than Words"]	Counting:
Solution	[Wan]	First Variable	["Ten Thousand Words"]	3-5 x11 individuals
		Counting: Count		across all x3
	Х3	unique individuals	X11	subgroups
Solution	[Diya]	across all x3 values	["Words Get in the Way",	"More than Words"]
Solution	[Wan]		["Ten Thousand Words"]	

Summary

- Phase 0: Generate MRS and scope-resolved MRS
- Phase 1: Find solutions using scope-resolved MRS minus global constraints
- Phase 2: Find solution groups using global constraints
- Phase 3: Respond using the first solution group (or error)
 - If no solutions: "<error>"
 - Propositions and Yes/No Questions: "Files are large"
 - "Yes, I agree!"
 - WH-Questions: "Which files are in this folder?"
 - Find the variable scoped by which_q(x, RSTR, BODY)
 - Respond with the values of x from the solution group
 - Commands: "Delete <file>"
 - Perform operations* generated from the solution group

^{* &}quot;operations" are extra data added to state by action verbs

^{*}optimization: Individual solutions are pulled through the phases in a pipeline

Questions?