## classification - sigmoid, Tanh, ReLV Softmax

# Regression - Lineau Activation function we use it on the o/p layer.

cost funct = 
$$\int_{i=1}^{n} (x_i - \hat{y})^2 - Batch datapoint$$

Loss function -

ANN

| classification              | Regression  |
|-----------------------------|-------------|
|                             | O MSE       |
| O Binaly Cross Entropy      | @ MAE       |
| @ categorical cross entropy | 3 Huberloss |

# Regression

#### O MSE

$$loss = (\gamma - \hat{\gamma})^2$$

cost Fun = 
$$\frac{1}{2n} \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$



Adv.

Disadv

- Onst is differentiable
- 1 Not Robust to outles.
- 1) It has one local and one global minima
- 771

3) It converg fastes

we are just penaling elsos

$$Loss = |\gamma - \hat{\gamma}|$$

$$cost = \frac{1}{2} \sum_{i=1}^{n} |\gamma_i - \hat{\gamma}|$$



Adv.

Disadv.

1) Robust to outlies Condition Oconvergen is slow

3 Hubon Loss -

Combinettion of MSE and MAE

$$costfun. = \begin{cases} \frac{1}{2} \sum_{i=1}^{n} (\gamma_i - \hat{\gamma})^2 & \text{if } |\gamma - \hat{\gamma}| \leq S \\ S|\gamma - \hat{\gamma}| - \frac{1}{2} S \end{cases}$$

when outlied is present

# Loss and cost function for classification

O Binary Cross Entropy -

Loss fin = 
$$-\gamma * log(\hat{\gamma}) - (1-\gamma) * log(1-\hat{\gamma})$$

Loss = 
$$\int -\log(1-\hat{\gamma})$$
, if  $\gamma = 0$   
 $-\log(\hat{\gamma})$ , if  $\gamma = 1$ 

It only used to find loss in Binary classification



1) Certegorical cross Entropy

$$f_1$$
  $f_2$   $f_3$   $O(p^3)^{\frac{1}{2}}$   $J=2$   $J=3$ 

Loss 
$$(x; y_i) = \sum_{j=1}^{c} y_{ij} * log(\hat{y}_{ij})$$

it used for multiclass classification

## Optimizes

### 1) Gradient Decent Optimizes



weight update tomules

10000 datapoint

$$Epoch-1$$
  $\begin{cases} 100 & FP \\ \hline 100 & BP \end{cases}$ 

Adv.

Disadr.

1) Conversion will happen

1) Require huge ram

100 Data — 1 201.

over capacity

@ SGD (Stochastic Gradient Decent)

It use epoch to town batch data as a optimizer

noise



Adv

Disadv.

1) solve Resource issure

1 Convergen will take

@ noise will get infroduce.

### 3 mini batch SGD



#### Adr.

Dis adv.

- O conversion speed will moreus
- O Noise still exist

- @ noise will be less
- 3 Efficient to resource

# 4) SGD with momentum

When = word - 
$$\eta \frac{dL}{dw_{od}}$$
 original formal bnew = bord -  $\eta \frac{dL}{db_{od}}$ 

$$w_{4} = w_{4-1} - \eta \frac{\partial L}{\partial L}$$

$$b_{4} = b_{4-1} - \eta \frac{\partial L}{\partial L}$$

## 4 Exponetial weight Average

suppose

time 
$$t$$
,  $t_2$   $t_3$   $t_4$   $t_5$  - - - -  $t_n$  value  $a$ ,  $a_2$   $a_3$   $a_4$   $a_5$  - - - -  $a_n$ 

time value 
$$V_{t_i} = a_i$$

$$Vt_2 = \beta * Vt_1 + (1-\beta) d_2$$

$$\beta = 0.95 = 0.95 * \alpha_1 + (1-0.95) d_2$$

$$Vt_3 = \beta \times Vt_2 + (1-\beta) a_3$$

Exponetial weight Average



1) Reduce the noise

D'we do not have Lynamic Jearning

2) smoother the noise

- 3 owick conversion @ working for mini batch
  - (3) Adagrad (Adaptive Gradient Decent)

$$\omega_{t} = \omega_{t-1} - \eta \frac{\partial L}{\partial \omega_{t-1}}$$

mt = mt-1 - 2 pross

n' = M denominator should not become zero

 $\alpha_t = \frac{t}{2} \left[ \frac{dL}{dw_t} \right]^2$ 

t is current time stamp

Disadr.

- 1) Initialy faster conversion after few time
- be come slow. 2 n' = possibility to be come small value ~ 0

## 6 Adadelta and Rms prop

we are bringing Exponetral weighted My.

## 7) Adam optimizes

This is combination of SGD with momentum and Rms prop

$$w_f = w_{f-1} - \gamma' V d\omega$$

 $V_{dw_{t}} = \beta \times V_{dw_{t-1}} + (1-\beta) \frac{\partial Loss}{\partial w_{t-1}}$