

atelier robots suiveurs de lignes

Programme

- Visite de l'ACoLab
- Montage mécanique
- Détection des lignes
- Suivi des lignes

ACoLab: atelier collaboratif

ACoLab

- Un lieu pour réaliser vos projets
- Un atelier avec des machines à dispositions des adhérents
- Des formations à l'usage des machines et des technologies
- Fonctionnement uniquement bénévole

CONNEXIONS, cultivons le numérique

Description du robot

Robot 'differential drive' : deux roues centrales indépendantes + 1 roulette

- base plexiglas, vis, écrous, roue libre
- 2 moteur + supports + roue
- 2 capteurs infrarouge + support
- carte L298N pour l'alimentation de l'arduino et le pilotage des moteurs
- carte arduino pour la programmation
- carte sensor shield v5
- pile 9V + support + connecteur
- interrupteur, câbles dupont

Soudure

ACoLab

Couper et dénuder 5 à 10 cm de câble

Souder le câble rouge du connecteur de pile sur le I de l'interrupteur

Souder le petit câble sur le O de l'interrupteur

Mettre une cosse sur le petit câble et une sur le câble noir du connecteur de pile

moteurs et roues roue libre

support de pile + interrupteur

capteurs infrarouge

Carte arduino

URF 01 +

Sensor shield V5.0

carte arduino, carte sensor shield V5 câblage capteur infrarouge sur le 2 et le 3

Carte arduino

Capteurs infrarouge

ACoLab

- alimenter l'arduino avec le cable USB
- Voir que le capteur infrarouge s'allume/s'éteint en fonction de la présence du noir/blanc

régler les potentiomètres sur le capteurs pour la détection de la

ligne

Capteurs infrarouge

- code arduino
- Examples/01.Basics/

DigitalReadSerial

```
#define pin ir droit 2
#define pin ir gauche 3
void setup() {
 Serial.begin(9600);
  pinMode(pin ir droit, INPUT);
  pinMode(pin ir gauche, INPUT);
void loop() {
  int noir a droite = digitalRead(pin ir droit);
 int noir a gauche = digitalRead(pin ir gauche);
 if (noir a droite==1){
   Serial.println("je vois du noir à droite");
 else{
   Serial.println("pas de noir à droite");
 delay(100);
```

https://passionelectronique.fr/tutoriel-l298n/

Carte L298N

ACoLab

- alimentation 5V pour la carte arduino
- 2 ponts en H pour la commande des moteurs

Carte L298N

- moteur gauche vers out2
- moteur droit vers out3
- interrupteur vers +12V
- câble noir pile + arduino vers GND et GND sur la carte capteurs
- Câble rouge de +5V vers VCC sur la carte capteurs
- 6 câbles ENA à ENB vers entrées 5 à 10 (pin V) sur la carte capteurs

Carte L298N

PWM: Pulse Width Modulation

Table de vérité L298N - Fonctionnement

Entrées de sélection

→ 1er pont (A) → 2ème pont (B)

ENA	IN1	IN2	Résultat, en sortie
NB	IN3	IN4	Résultat, en sortie
L	Х	Х	Moteur en roue libre (à l'arrêt, sans frein)
н	L	L	Blocage du moteur (arrêt rapide, freinage fort)
	L	Н	Marche arrière
	Н	L	Marche avant
	Н	Н	Blocage du moteur (arrêt rapide, freinage fort)

- X = peu importe
- L = état bas (0V, par exemple)
- H = état haut (+5V, par exemple)

Code

Faire tourner un moteur

```
#define pin ir droit
#define pin ir gauche
#define borneENA
                        10
#define borneIN1
#define borneIN2
int vitesse = 80; //entre 0 et 255
void setup() {
  Serial.begin(9600);
  pinMode(pin ir droit, INPUT);
  pinMode(pin ir gauche, INPUT);
  pinMode(borneENA, OUTPUT);
  pinMode(borneIN1, OUTPUT);
  pinMode(borneIN2, OUTPUT);
```

```
void loop() {
 int noir a droite = digitalRead(pin ir droit);
 int noir a gauche = digitalRead(pin ir gauche);
 if(noir a droite){
  // Configuration du L298N en "marche avant"
    digitalWrite(borneIN1, LOW); // L'entrée IN1 doit être au niveau haut
    digitalWrite(borneIN2, HIGH); // L'entrée IN2 doit être au niveau bas
    analogWrite(borneENA, vitesse);
   Serial.println("avance !");
  else{
    analogWrite(borneENA, 0);
   Serial.println("stop !");
  delay(100);
```

Programme de suivi de ligne

A vous de jouer

Merci d'avoir suivi cet atelier

