Von Minkowski zur Endlichkeit der Idealklassengruppe

Sei K ein Zahlkörper vom Grad n mit s Pärchen komplexer Einbettungen. Wir wollen verstehen, wieso die Idealklassengruppe Cl_K endlich ist. Genauer: wieso es endlich viele Ideale $\mathfrak{a}_1,\ldots,\mathfrak{a}_m\subseteq\mathcal{O}_K$ mit

$$\operatorname{Cl}_K = \{[\mathfrak{a}_1], \dots, [\mathfrak{a}_m]\}$$

gibt - und wie man diese Ideale bestimmen kann. Grundlegend dazu ist folgendes Resultat:

Zu jedem Element $g\in\operatorname{Cl}_K$ gibt es ein Ideal $\mathfrak{a}\subseteq\mathcal{O}_K$ mit $g=[\mathfrak{a}]$ und

$$N(\mathfrak{a}) \leq \left(\frac{4}{\pi}\right)^s \cdot \frac{n!}{n^n} \cdot \sqrt{|d_K|} =: \text{Min}_K.$$

Denn nach Definition gilt ja zunächst nur

$$Cl_K = \{[\mathfrak{a}] \mid \mathfrak{a} \subseteq K \text{ gebrochenes Ideal}\}.$$

Wegen Minkowskis Resultat kann man aber auch

$$\operatorname{Cl}_K = \{ [\mathfrak{a}] \mid \mathfrak{a} \subseteq \mathcal{O}_K \text{ Ideal mit } \mathfrak{a} \neq (0) \text{ und } N(\mathfrak{a}) \leq \operatorname{Min}_K \}$$

schreiben. Das ist eine starke Einschränkung, denn – wie wir gleich sehen werden – gibt es von diesen Idealen nur endlich viele; und mehr noch: Man kann sie finden und explizit angeben.

Dazu betrachten wir für den Moment ein beliebiges Ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ mit $\mathfrak{a} \neq (0)$ und $N(\mathfrak{a}) \leq \operatorname{Min}_K$. Welche Primideale können in der Primidealzerlegung von \mathfrak{a} nur vorkommen? Wenn wir $\mathfrak{a} = \mathfrak{p}_1^{\nu_1} \cdots \mathfrak{p}_k^{\nu_k}$ schreiben, so gilt

$$N(\mathfrak{p}_i) \leq N(\mathfrak{p}_i)^{\nu_i} = N(\mathfrak{p}_i^{\nu_i}) \leq N(\mathfrak{p}_1^{\nu_1}) \cdots N(\mathfrak{p}_k^{\nu_k}) = N(\mathfrak{p}_1^{\nu_1} \cdots \mathfrak{p}_k^{\nu_k}) = N(\mathfrak{a}) \leq \operatorname{Min}_K.$$

Ferner erkennen wir: Das Primideal \mathfrak{p}_i ist nicht irgendein Primideal. Vielmehr ist es eines der Faktoren in der Primidealzerlegung von $(p) \subseteq \mathcal{O}_K$, wobei $p \in \mathbb{Z}$ die Primzahl mit $(p) = \mathfrak{p}_i \cap \mathbb{Z} \subseteq \mathbb{Z}$ ist. Diese Primzahl ist nicht beliebig groß, denn es gilt

$$p \le p^{f_i} = N(\mathfrak{p}_i) \le \operatorname{Min}_K,$$

wenn man mit " f_i " die endliche Dimension des \mathbb{F}_p -Vektorraums $\mathcal{O}_K/\mathfrak{p}_i$ bezeichnet.

Das Fazit dieser Überlegung lautet:

Seien $\mathfrak{p}_1,\ldots,\mathfrak{p}_\ell$ die endlich vielen Primideale, die in den Primidealzerlegungen der endlich vielen Primideale $(p)\subseteq\mathcal{O}_K$, wobei $p\in\mathbb{Z}$ über alle Primzahlen mit $p\leq \mathrm{Min}_K$ läuft, vorkommen. Dann gilt

$$\operatorname{Cl}_K = \{[\mathfrak{a}] \, | \, \mathfrak{a} \subseteq \mathcal{O}_K \text{ ist ein Produkt der } \mathfrak{p}_1, \ldots, \mathfrak{p}_\ell \text{ mit } N(\mathfrak{a}) \leq \operatorname{Min}_K \}.$$

Die \mathfrak{p}_i dürfen in diesen Produkten durchaus mit Vielfachheit Null oder auch mit Vielfachheit größer als Eins auftreten.

- 1. Dass es überhaupt eine Primzahl $p \in \mathbb{Z}$ gibt, für die $(p) = \mathfrak{p}_i \cap \mathbb{Z}$ ist, liegt daran, dass aus ganz allgemeinen ringtheoretischen Gründen das Ideal $\mathfrak{p}_i \cap \mathbb{Z}$ ein Primideal von \mathbb{Z} ist und dass dieses Primideal nicht das Nullideal ist (das liegt an der Ganzheit von \mathcal{O}_K über \mathbb{Z}).
- 2. Aus allgemeinen ringtheoretischen Gründen folgt $(p)\subseteq \mathfrak{p}_i$. ("Idealerweiterung ist linksadjungiert zu Idealkontraktion.")
- 3. Sei $(p) = \mathfrak{q}_1 \cdots \mathfrak{q}_m \subseteq \mathcal{O}_K$ die Primidealzerlegung von (p). Da \mathfrak{p}_i ein Primideal ist, folgt aus $\mathfrak{q}_1 \cdots \mathfrak{q}_m \subseteq \mathfrak{p}_i$ schon, dass es einen Index j mit $\mathfrak{q}_j \subseteq \mathfrak{p}_i$ gibt. Da \mathfrak{q}_j wie jedes nichttriviale Primideal in einem Dedekindring maximal ist, folgt $\mathfrak{q}_j = \mathfrak{p}_i$.

¹Weiter vorne im Satz ist mit "(p)" das von p erzeugte Ideal von \mathcal{O}_K gemeint; weiter hinten das von p erzeugte Ideal in \mathbb{Z} . Die Behauptung kann man in drei Schritten einsehen:

Ein Beispiel: Die Klassengruppe von $\mathbb{Q}(\sqrt{-5})$

Sei $K=\mathbb{Q}(\sqrt{-5})$. Da $-5\equiv 3$ modulo 4, ist die Diskriminante von K gleich $4\cdot (-5)$ und die Minkowskischranke daher

$$Min_K = \left(\frac{4}{\pi}\right)^1 \cdot \frac{2!}{2^2} \cdot \sqrt{20} \approx 2.85.$$

Somit müssen wir nur die Primzahl p=2 untersuchen, um alle Elemente der Klassengruppe auflisten zu können.

Der Führer $\mathfrak{F}_{\sqrt{-5}}$ ist das Einsideal, denn $\mathcal{O}_K=\mathbb{Z}[\sqrt{-5}]$. Daher genügt es, um die Primidealzerlegung von $(2)\subseteq\mathcal{O}_K$ zu bestimmen, die Zerlegung des Minimalpolynoms X^2+5 über \mathbb{F}_2 zu bestimmen. Diese lautet $X^2+5=(X+1)^2\in\mathbb{F}_2[X]$. Daher zerlegt sich das Ideal (2) als

(2) =
$$\mathfrak{p}^2$$
 mit $\mathfrak{p} = (2, \sqrt{-5} + 1)$.

Somit folgt $\operatorname{Cl}_K=\{[\mathfrak{p}^\nu]\,|\,\nu\geq 0 \text{ mit } N(\mathfrak{p}^\nu)\leq \operatorname{Min}_K\}$. Das können wir noch aufdröseln: Es gilt $N(\mathfrak{p})=|\mathcal{O}_K/\mathfrak{p}|=|\mathbb{F}_2|=2$, also $N(\mathfrak{p}^\nu)=2^\nu$. Für ν sind daher nur die Werte 0 und 1 möglich. Somit besteht die Klassengruppe aus höchstens zwei Elementen:

$$Cl_K = \{[(1)], [\mathfrak{p}]\}.$$

Ferner ist $\mathfrak p$ kein Hauptideal, denn eine Nebenrechnung zeigt, dass die Norm eines Hauptideals stets von der Form a^2+5b^2 mit $a,b\in\mathbb Z$ ist. Daher ist $[\mathfrak p]\neq[(1)]$; die Klassengruppe besteht aus genau zwei Elementen.

Eine Warnung

Man könnte denken, dass die Abschätzung $h_K \leq \mathrm{Min}_K$ gilt. Die ist jedoch falsch. Im Fall $K = \mathbb{Q}(\sqrt{-71})$ ist $h_K = 7$ und $\mathrm{Min}_K = 2\sqrt{71}/\pi \approx 5{,}36.$