Практическая работа №3

Примаченко Павел Николаевич Гр.7872

3 декабря 2017 г.

Нахождение касательной функции $x^3 - 7x + 6 = 0$ с помощью итерационального численного метода нахождения корня(метод Ньютона) В точке x_0 уравнение касательной к $F(x) = x^3 - 7x + 6$ имеет вид: $y_0 = F(x_0) + F'(x_0)(x - x_0)$.

Пусть $x_0 = 4$.

Вычислим производную: $F'(x) = 3x^2 - 7$.

Значение производной в x_0 будет: $F'(x_0) = 41$, значение функции в той же точке: $F(x_0) = 42$. Подставим значения функции и её производной в уравнение касательной: $y_0 = 41x - 122$.

Найдем точку пересечения y_0 с осью абсцисс, прировняв y_0 к нулю. Получим $x_1=2.9756$. Посчитаем значения функции и её производной в точке x_1 : $F(x_1)=11.5173$ и $F'(x_1)=19.5625$. Подставив эти значения в уравнение касательной, получим $y_1=11.5173+19.5625(x-2.9756)$. Прировняем к нулю y_1 и получим $x_2=2.38$. x_2 является приближенным значением одного из корней уравнения $x^3-7x+6=0$. Для подтверждения проведу аналогичную процедуру. Посчитаем значения функции и её призводной в точке $x_2:F(x_2)=2.82$ и $F'(x_2)=9.99$. Подставим эти же значения в уравнение касательной, получим $y_2=99.9x-20.96$. $x_3=2.098$, является приближенным значением одного из корней уравнения $x^3-7x+6=0$.

