Лекция 4

Ранг и размерност

4.1 Свойства на линейно зависимите и линейно независимите вектори

Смисълът на условието за линейна зависимост на вектори може би става по-ясен, когато го формулираме по следния начин:

Твърдение 4.1. а) Векторът x е линейно зависим тогава и само тогава, когато x = 0.

б) Векторите x_1, \ldots, x_k , $k \geq 2$, са линейно зависими тогава и само тогава, когато някой от тях е линейна комбинация на останалите.

Доказателство. a) Тъй като $1 \cdot \mathbf{0} = \mathbf{0}$, векторът $\mathbf{0}$ е линейно зависим.

Обратно, ако векторът x е линейно зависим, то съществува число $\lambda \neq 0$, такова че $\lambda x = 0$. След като умножим двете страни на това равенство с $\frac{1}{\lambda}$, получаваме x = 0.

б) Ако векторите $x_1, \dots, x_k, \ k \geq 2$, са линейно зависими, то съществуват числа $\lambda_1, \dots, \lambda_k$, не всички от които са равни на нула, такива че

$$\lambda_1 x_1 + \dots + \lambda_k x_k = \mathbf{0}.$$

Тогава $\lambda_i \neq 0$ за някой индекс $1 \leq i \leq k$. След като запишем горното равенство по следния начин:

$$\lambda_i x_i = (-\lambda_1) x_1 + \dots + (-\lambda_{i-1}) x_{i-1} + (-\lambda_{i+1}) x_{i+1} + \dots + (-\lambda_k) x_k$$

и умножим двете страни с $\frac{1}{\lambda_i}$, получаваме

$$m{x}_i = \left(-rac{\lambda_1}{\lambda_i}
ight)m{x}_1 + \dots + \left(-rac{\lambda_{i-1}}{\lambda_i}
ight)m{x}_{i-1} + \left(-rac{\lambda_{i+1}}{\lambda_i}
ight)m{x}_{i+1} + \dots + \left(-rac{\lambda_k}{\lambda_i}
ight)m{x}_k,$$

т.е. векторът $oldsymbol{x}_i$ е линейна комбинация на векторите $oldsymbol{x}_1,\dots,oldsymbol{x}_{i-1},oldsymbol{x}_{i+1},\dots,oldsymbol{x}_k$

Обратно, да предположим, че за някой индекс $1 \leq i \leq k$ векторът \boldsymbol{x}_i е линейна комбинация на векторите $\boldsymbol{x}_1,\dots,\boldsymbol{x}_{i-1},\boldsymbol{x}_{i+1},\dots,\boldsymbol{x}_k$. Тогава съществуват числа $\lambda_1,\dots,\lambda_{i-1},\lambda_{i+1},\dots,\lambda_k$, такива че

$$\mathbf{x}_i = \lambda_1 \mathbf{x}_1 + \dots + \lambda_{i-1} \mathbf{x}_{i-1} + \lambda_{i+1} \mathbf{x}_{i+1} + \dots + \lambda_k \mathbf{x}_k.$$

Следователно

$$(-\lambda_1)x_1 + \dots + (-\lambda_{i-1})x_{i-1} + 1 \cdot x_i + (-\lambda_{i+1})x_{i+1} + \dots + (-\lambda_k)x_k = 0.$$

Тъй като коефициентът на x_i в горната линейна комбинация е различен от 0, то векторите x_1, \ldots, x_k са линейно зависими.

Твърдение 4.2. Нека $S = \{x_1, \dots, x_k\}$ е система от вектори от \mathbb{R}^n . Тогава

- а) ако системата S е линейно независима, то всяка подсистема на S е също линейно независима;
- б) ако системата S е линейно зависима, то всяка система от вектори, която съдържа системата S, е също линейно зависима.

Доказателство. a) Нека $1 \le l \le k$ и нека $\lambda_1 x_1 + \cdots + \lambda_l x_l = \mathbf{0}$. Тогава

$$\lambda_1 \boldsymbol{x}_1 + \dots + \lambda_l \boldsymbol{x}_l + 0 \cdot \boldsymbol{x}_{l+1} + \dots + 0 \cdot \boldsymbol{x}_k = \boldsymbol{0}.$$

Тъй като векторите x_1, \ldots, x_k са линейно независими, то $\lambda_1 = 0, \ldots, \lambda_l = 0$. б) Следва непосредствено от подточка а).

Твърдение 4.3. Всяка система от вектори S, която съдържа нулевия вектор $\mathbf{0}$, е линейно зависима.

Доказателство. Ако S се състои от само от нулевия вектор $\mathbf{0}$, то както вече видяхме, S е линейно зависима система. Общият случай следва от подточка б) на Твърдение 4.2, защото S съдържа линейно зависимата система $\{\mathbf{0}\}$.

Твърдение 4.4. Нека $S = \{x, x_1, \dots, x_k\}$ е линейно зависима система от вектори. Ако векторите x_1, \dots, x_k са линейно независими, векторът x е линейна комбинация на векторите x_1, \dots, x_k .

Доказателство. Тъй като векторите x, x_1, \ldots, x_k са линейно зависими, съществуват числа $\lambda, \lambda_1, \ldots, \lambda_k$, не всички от които са равни на 0, такива че

$$(4.1) \lambda x + \lambda_1 x_1 + \dots + \lambda_k x_k = 0.$$

Да се убедим, че $\lambda \neq 0$: ако $\lambda = 0$, то $\lambda_1 x_1 + \dots + \lambda_k x_k = \mathbf{0}$, откъдето следва, че $\lambda_1 = 0, \dots, \lambda_k = 0$, защото векторите x_1, \dots, x_k са линейно независими. Но това е невъзможно, защото поне един от коефициентите $\lambda, \lambda_1, \dots, \lambda_k$ трябва да е различен от 0. Следователно $\lambda \neq 0$ и от (4.1) получаваме

$$oldsymbol{x} = \left(-rac{\lambda_1}{\lambda}
ight)oldsymbol{x}_1 + \dots + \left(-rac{\lambda_k}{\lambda}
ight)oldsymbol{x}_k,$$

т.е. векторът x е линейна комбинация на векторите x_1, \ldots, x_k .

4.2 Ранг на система от вектори

Определение 4.1 (Максимална линейно независима подсистема на система от вектори). Нека S е система от вектори от \mathbb{R}^n . Казваме, че системата от вектори $\{x_1,\ldots,x_r\}\subseteq S$ е максимална линейно независима подсистема на системата S, когато $\{x_1,\ldots,x_r\}$ изпълнява следните условия:

- ullet системата $\{x_1,\ldots,x_r\}$ е линейно независима;
- ullet за всеки вектор $oldsymbol{x}$ от S, системата $\{oldsymbol{x}, oldsymbol{x}_1, \dots, oldsymbol{x}_r\}$ е линейно зависима.

Да забележим, че всяка система от вектори $S \subseteq \mathbb{R}^n$ съдържа поне една максимална линейно независима подсистема. Наистина, тъй като всеки n+1 вектора от \mathbb{R}^n са линейно зависими (Теорема 3.6), то съществува число $r \leq n$, което удовлетворява следните две условия

- ullet S съдържа r линейно независими вектора $oldsymbol{x}_1,\ldots,oldsymbol{x}_r.$
- ullet Всеки r+1 вектора от S са линейно зависими.

Тогава $\{x_1, \ldots, x_r\}$ ще бъде максимална линейно независима подсистема на системата S.

Пример 4.1. Нека e_1, e_2, \ldots, e_n са следните вектори от \mathbb{R}^n :

$$\begin{array}{rcl} {\boldsymbol{e}}_1 &=& (1,0,\dots,0), \\ {\boldsymbol{e}}_2 &=& (0,1,\dots,0), \\ \dots \dots \dots \dots \dots \dots \\ {\boldsymbol{e}}_n &=& (0,0,\dots,1). \end{array}$$

Тогава $\{e_1, e_2, \dots, e_n\}$ е максимална линейно независима подсистема на \mathbb{R}^n , защото векторите e_1, e_2, \dots, e_n са линейно независими, а всеки n+1 вектора от \mathbb{R}^n са линейно зависими.

Лема 4.5. Ако $\{x_1, \ldots, x_r\}$ е максимална линейно независима подсистема на системата от вектори S, то всеки вектор $x \in S$ е линейна комбинация на векторите x_1, \ldots, x_r .

Доказателство. Нека x е произволен вектор от S. Тогава системата от вектори $\{x, x_1, \ldots, x_r\}$ е линейно зависима. Тъй като системата от вектори $\{x_1, \ldots, x_r\}$ е линейно независима, то от Твърдение 4.4 следва, че векторът x е линейна комбинация на векторите x_1, \ldots, x_r .

Теорема 4.1. Ако $\{x_1, \ldots, x_r\}$ и $\{y_1, \ldots, y_s\}$ са две максимални линейно независими подсистеми на системата от вектори S, то r = s.

Доказателство. От Лема 4.5 следва, че

- всеки един от векторите y_1, \ldots, y_s е линейна комбинация на векторите x_1, \ldots, x_r ; тъй като векторите y_1, \ldots, y_s са линейно независими, от основната лема на линейната алгебра (Лема 3.5) следва, че $s \le r$;
- всеки един от векторите x_1, \ldots, x_r е линейна комбинация на векторите y_1, \ldots, y_s ; тъй като векторите x_1, \ldots, x_r са линейно независими, от основната лема на линейната алгебра (Лема 3.5) следва, че $r \leq s$.

Окончателно, от неравенствата $s \leq r$ и $r \leq s$ получаваме r = s, което трябваше да се докаже.

Теорема 4.1 показва, че следващото определение е коректно.

Определение 4.2 (Ранг на система от вектори). Нека S е система от вектори от \mathbb{R}^n . Броят на векторите във всяка максимална линейно независима подсистема на системата S се нарича нарича pane на системата S и се означава с $\mathrm{rk}(S)$.

Пример 4.2. Ако S е система от вектори от \mathbb{R}^n , то $\mathrm{rk}(S)=0$ тогава и само тогава, когато всеки вектор от S съвпада с нулевия вектор $\mathbf{0}$.

Пример 4.3. Ако S е система от вектори от \mathbb{R}^n , то $\mathrm{rk}(S)=1$ тогава и само тогава, когато S съдържа вектор $\boldsymbol{x}\neq \mathbf{0}$ и всеки вектор \boldsymbol{y} от S е пропорционален на вектора \boldsymbol{x} , т.е. $\boldsymbol{y}=\lambda \boldsymbol{x}$ за някое число λ .

Пример 4.4. Рангът на \mathbb{R}^n е равен на n, защото системата от вектори $\{e_1,e_2,\ldots,e_n\}$ от Пример 4.1 е максимална линейно независима подсистема на \mathbb{R}^n

Пример 4.5. Нека системата S се състои от векторите

$$x_1 = (4, 3, 1, 0), x_2 = (2, 1, 0, 2), x_3 = (6, 4, 1, 2).$$

Тогава системата S е линейно зависима, защото $x_3 = x_1 + x_2$. Тъй като векторите x_1 и x_2 са линейно независими, то $\mathrm{rk}(S) = 2$.

Твърдение 4.6. Ако S' е подсистема на системата от вектори S, то

$$\operatorname{rk}(S') \leq \operatorname{rk}(S)$$
.

Доказателство. Нека $\{x_1',\ldots,x_l'\}$ е максимална линейно независима подсистема на S' и нека $\{x_1,\ldots,x_k\}$ е максимална линейно независима подсистема на S. Тогава според Лема 4.5, всеки един от векторите x_1',\ldots,x_l' е линейна комбинация на векторите x_1,\ldots,x_k . Тъй като векторите x_1',\ldots,x_l' са линейно независими, от основната лема на линейната алгебра (Лема 3.5) получаваме, че $l \leq k$, т.е. $\operatorname{rk}(S') \leq \operatorname{rk}(S)$.

Пример 4.6. Нека S е система от вектори от \mathbb{R}^n . Тогава $\mathrm{rk}(S) \leq n$, защото S е подсистема на \mathbb{R}^n и $\mathrm{rk}(\mathbb{R}^n) = n$.

4.3 Базис и размерност на линейно пространство

Определение 4.3 (Базис на линейно пространство). Нека U е линейно подпространство на \mathbb{R}^n . Всяка максимална линейно независима подсистема на U се нарича $\delta asuc$ на U.

 $\mathit{Пример}$ 4.7. Нека $U \subset \mathbb{R}^2$ е пространството от решения на хомогенната линейна система

$$|x_1 - x_2| = 0.$$

Тогава векторът ${m a}_1=(1,1)$ е базис на U. Пространството от решения U има безброй много базиси, защото за всяко число $\lambda\neq 0$ векторът $\lambda {m a}_1=(\lambda,\lambda)$ също е базис на U.

Пример 4.8. Векторите

$$\begin{array}{rcl} {m e}_1 &=& (1,0,\ldots,0), \\ {m e}_2 &=& (0,1,\ldots,0), \\ &\ldots &\ldots &\ldots \\ {m e}_n &=& (0,0,\ldots,1). \end{array}$$

образуват базис на \mathbb{R}^n , защото $\{e_1, e_2, \dots, e_n\}$ е максимална линейно независима подсистема на \mathbb{R}^n .

Теорема 4.2. Нека U е линейно подпространство на \mathbb{R}^n . Системата от вектори $\{e_1, e_2, \ldots, e_k\} \subseteq U$ е базис на U тогава и само тогава, когато всеки вектор x от U се представя по единствен начин като линейна комбинация на векторите e_1, e_2, \ldots, e_k .

Доказателство. Нека $\{e_1, e_2, \dots, e_k\}$ е максимална линейно независима подсистема на U. Тогава според Лема 4.5 всеки вектор x от U е линейна комбинация на векторите e_1, e_2, \dots, e_k . Ако

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \dots + \lambda_k \mathbf{e}_k = \mathbf{x} = \mu_1 \mathbf{e}_1 + \mu_2 \mathbf{e}_2 + \dots + \mu_k \mathbf{e}_k$$

са две представяния на вектора ${m x}$ от U като линейна комбинация на векторите ${m e}_1, {m e}_2, \ldots, {m e}_k$, то

$$(\lambda_1 - \mu_1)e_1 + (\lambda_2 - \mu_2)e_2 + \dots + (\lambda_k - \mu_k)e_k = 0.$$

Тогава $\lambda_1 - \mu_1 = \lambda_2 - \mu_2 = \dots = \lambda_k - \mu_k = 0$, защото векторите e_1, e_2, \dots, e_k са линейно независими. Следователно $\lambda_1 = \mu_1, \ \lambda_2 = \mu_2, \ \dots, \ \lambda_k = \mu_k$, което показва, че векторът \boldsymbol{x} се представя по единствен начин като линейна комбинация на векторите e_1, e_2, \dots, e_k .

Обратно, нека всеки вектор x от U се представя по единствен начин като линейна комбинация на векторите e_1, e_2, \ldots, e_k . Ще докажем, че $\{e_1, e_2, \ldots, e_k\}$ е максимална линейно независима подсистема на U.

Нека първо установим, че системата $\{e_1,e_2,\ldots,e_k\}$ е линейно независима. Да забележим, че

$$\mathbf{0} = 0 \cdot \mathbf{e}_1 + 0 \cdot \mathbf{e}_2 + \dots + 0 \cdot \mathbf{e}_k$$

е представяне на нулевия вектор ${\bf 0}$ от U като линейна комбинация на векторите ${\bf e}_1, {\bf e}_2, \ldots, {\bf e}_k$. Ако числата $\lambda_1, \lambda_2, \ldots, \lambda_k$ са такива, че

$$\mathbf{0} = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \dots + \lambda_k \mathbf{e}_k,$$

то (4.2) и (4.3) трябва да съвпадат, защото нулевият вектор $\mathbf{0} \in U$ се представя по единствен начин като линейна комбинация на векторите e_1, e_2, \ldots, e_k . Следователно $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$, т.е. системата $\{e_1, e_2, \ldots, e_k\}$ е линейно независима.

Нека сега покажем, че системата от вектори $\{x, e_1, e_2, \ldots, e_k\}$ е линейно зависима за всеки вектор x от U. Наистина, тъй като векторът x се представя като линейна комбинация на векторите e_1, e_2, \ldots, e_k , то от Твърдение 4.1 следва, че векторите x, e_1, e_2, \ldots, e_k са линейно зависими.

Тъй като системата от вектори $\{e_1,e_2,\ldots,e_k\}$ е линейно независима и тъй като за всеки вектор x от U системата от вектори $\{x,e_1,e_2,\ldots,e_k\}$ е линейно зависима, то $\{e_1,e_2,\ldots,e_k\}$ е максимална линейно независима подсистема на линейното подпространство U.

Пример 4.9. Нека a_1, a_2, \ldots, a_k е фундаментална система решения на хомогенна система от линейни уравнения A. Тогава системата от вектори $\{a_1, a_2, \ldots, a_k\}$ е базис на пространството от решения на A, защото всяко решение на A се записва по единствен начин като линейна комбинация на решенията a_1, a_2, \ldots, a_k .

Определение 4.4 (Размерност на линейно пространство). Нека U е линейно подпространство на \mathbb{R}^n . Броят на векторите във всеки базис на U се нарича размерност на U и се означава с $\dim U$.

Пример 4.10. Нека $U\subset\mathbb{R}^2$ е пространството от решения на хомогенната линейна система

$$|x_1 - x_2| = 0.$$

Тогава размерността на U е равна на 1, защото U има базис, който се състои от един вектор $\mathbf{a}_1=(1,1).$

Пример 4.11. Размерността на \mathbb{R}^n е равна на n, защото векторите

$$egin{array}{lll} m{e}_1 &=& (1,0,\ldots,0), \\ m{e}_2 &=& (0,1,\ldots,0), \\ &\ldots & & & \\ m{e}_n &=& (0,0,\ldots,1). \end{array}$$

образуват базис на \mathbb{R}^n .

Твърдение 4.7. Нека U е линейно подпространство на \mathbb{R}^n с размерност k. Тогава всеки k+1 вектора от U са линейно зависими.

Доказателство. Нека системата от вектори $\{e_1,e_2,\ldots,e_k\}$ е базис на U. Тогава $U=l(e_1,e_2,\ldots,e_k)$ и от основната лема на линейната алгебра (Лема 3.5) следва, че всеки k+1 вектора от U са линейно зависими.

Твърдение 4.8. Нека W и U са линейни подпространства на \mathbb{R}^n , такива че W се съдържа в U. Тогава

- a) $\dim W \leq \dim U$;
- б) ако $\dim W = \dim U$, то W съвпада c U.

 \mathcal{L} оказателство. a) \mathcal{L} а забележим, че $\dim W = \mathrm{rk}(W)$ и $\dim U = \mathrm{rk}(U)$. Тъй като W е подсистема на U, то Твърдение 4.6 показва, че $\dim W \leqq \dim U$.

б) Да предположим, че $\dim W = \dim U = k$. За да установим, че W = U, ще покажем, че всеки вектор \boldsymbol{u} от U принадлежи на W. Нека $\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k$ е базис на W и нека \boldsymbol{u} е произволен вектор от U. Тъй като $\dim U = k$, от Твърдение 4.7 следва, че векторите $\boldsymbol{u},\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k$, които са k+1 на брой, са линейно зависими. Сега от линейната независимост на векторите $\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k$ получаваме, че векторът \boldsymbol{u} е линейна комбинация на векторите $\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k$ (Твърдение 4.4). Следователно векторът \boldsymbol{u} принадлежи на W, защото според Твърдение 3.3, всяка линейна комбинация на вектори от линейното подпространство W се съдържа във W. Сега можем да заключим, че W съвпада с U, защото всеки вектор \boldsymbol{u} от U принадлежи на W.