Remainder theorem

The remainder of dividing a polynomial p(x) by another one of the form x-a, coincides with the value of p(a).

Notice that this kind of division satisfies the hypotheses of the Ruffini's rule.

Calculate the remainder of the division $\dfrac{p(x)}{q(x)}$, where $p(x)=x^4+3x^2-x+4$ and q(x)=x+2. We apply the remainder theorem. Notice that, in this case a=-2.

 $p(-2) = (-2)^4 + 3 \cdot (-2)^2 - (-2) + 4 = 16 + 3 \cdot 4 + 2 + 4 = 34$

	1	0	- 3	-1	4
-2		-2	4	-14	30
	1	-2	7	-15	34

Calculate the remainder of the division
$$\dfrac{p(x)}{q(x)}$$
, where $p(x)=x^5-2x^2+x+3$ and $q(x)=x+1$. We apply the remainder theorem. Notice that, in this case $a=-1$.

 $p(-1) = (-1)^5 - 2 \cdot (-1)^2 + (-1) + 3 = -1 - 2 - 1 + 3 = -1$

	1	0	0	-2	1	3
-1		-1	1	-1	3	-4
	1	-1	1	-3	4	-1

Factor theorem Its statement is the following one:

A polynomial p(x) is divisible by another of the form x-a if, and only if, p(a)=0. In this case, we will say that a is a root or zero of the polynomial p(x).

Calculate the remainder of the division $\dfrac{p(x)}{q(x)}$, where $p(x)=x^5+2x^4-3x^3+x^2-1$ and

$$q(x)=x-1.$$
 We apply the remainder theorem

We verify the result using Ruffini:

$$p(1) = 1^5 + 2 \cdot 1^4 - 3 \cdot 1^3 + 1^2 - 1 = 0$$
 Ruffini:

Indeed, the remainder is
$$0$$
. And so, according to the factor theorem, the division of $p(x)$ by $q(x)$ is exact.