氢氘原子光谱

王启骅 PB20020580

2022年3月30日

1 实验目的

学习光谱仪等仪器的使用。通过测量氢氘原子光谱 3、4、5、6 级谱线的波长,计算氢氘谱线的里德伯常数、氢氘核质量比和质子电子质量比。

2 实验原理

氢原子光谱在可见光区的谱线系是巴耳末系,其代表线为 H_{α} H_{β} H_{γ} H_{δ} ,这些谱线的间隔和强度都向着短波方向递减,并满足下列规律:

$$\lambda = 364.56 \frac{n^2}{n^2 - 4} \tag{1}$$

若用波数 $\tilde{\nu} = 1/\lambda$ 表示谱线,则式 (1) 可写为:

$$\nu = R_H(\frac{1}{2^2} - \frac{1}{n^2}) \tag{2}$$

根据波尔理论和量子力学对氢原子和氘原子里德伯常量的分析有:

$$R_H = \frac{R_\infty}{1 + m_e/M_H} \tag{3}$$

$$R_D = \frac{R_\infty}{1 + m_e/M_D} \tag{4}$$

$$R_{\infty} = \frac{2\pi^2 m e^4}{(4\pi\epsilon_0)^2 c h^3} \tag{5}$$

 M_h M_D 分别表示氢与氘原子核的质量。由(3)、(4)解得:

$$\frac{M_D}{M_h} = \frac{R_D/R_H}{1 - (R_D/R_H - 1)M_H/m_e} \tag{6}$$

根据氢与氘的巴耳末系公式形式相同:

$$\frac{1}{\lambda_H} = R_H (\frac{1}{2^2} - \frac{1}{n^2}) \tag{7}$$

$$\frac{1}{\lambda_D} = R_D(\frac{1}{2^2} - \frac{1}{n^2}) \tag{8}$$

可得:

$$\frac{M_D}{M_h} = \frac{m}{M_H} \cdot \frac{\lambda_H}{\lambda_D - \lambda_H + \lambda_D m / M_H} \tag{9}$$

这样实验中只要测得各谱线的 λ_H 或 λ_D ,并辨认出与各谱线对应的 n,即可算出 R_H 与 R_D 以及氢氘质量比。

同时,我们可以根据测量的波长计算氢氚谱峰波长差:

$$\Delta \lambda = (\frac{1}{R_H} - \frac{1}{R_D})/(\frac{1}{2^2} - \frac{1}{n^2}) \approx \frac{\frac{M+m}{M} - \frac{2M+m}{2M}}{1/\lambda} = \frac{m}{2M}\lambda$$
 (10)

即:

$$\frac{M}{m} \approx \frac{\lambda}{2\Delta\lambda} \tag{11}$$

3 实验仪器

控制电源、汞灯、氢氘灯、光谱仪、光电倍增管、计算机。

4 数据处理

4.1 实验数据表格

表 1: 汞灯谱线波长

汞灯谱线	字号	1	2 3	3 4	5
波长/n	m 36	4.90 368	$5.38 \mid 366$	5.22 404.	67 407.77
汞灯谱线	字号	6	7 8	3 9	
波长/n	m 43	$5.73 \mid 540$	$6.61 \mid 577$	7.67 579.	64

表 2: 氢氘灯光谱波长

能级 n	6	5	4	3
波长 λ_H/nm	410.01	433.96	486.38	657.94
波长 λ_D/nm	409.92	433.88	486.25	657.77

4.2 汞灯标准谱线和测量谱线拟合方程和拟合图

根据拟合结果得到转换关系方程: $\lambda_{stan} = \lambda_{meas} - 0.15667$

图 1: 汞灯校准拟合图

4.3 氢氘谱线校准后数据

表 3: 校准后氢氘灯光谱波长

能级 n	6	5	4	3
波长 λ_H/nm	409.85	433.80	486.22	657.78
波长 λ_D/nm	409.76	433.72	486.09	657.61

4.4 实验结果计算

对 $\frac{1}{\lambda}$ 关于 $\frac{1}{2^2}$ $-\frac{1}{n^2}$ 线性拟合得到斜率即为里德伯常量数值。由图 2、3 得到

$$R_H = (1.0972 \pm 0.0006) \times 10^7 m^{-1}$$

$$R_D = (1.0975 \pm 0.0006) \times 10^7 m^{-1}$$

图 2: 氢原子谱线拟合图

图 3: 氘原子谱线拟合图

带入公式(6)可得:

$$\frac{M_D}{M_H} = \frac{1.0975/1.0972}{1 - (1.0975/1.0972 - 1) \cdot 1836.1527} = 2.0088$$

对 λ 根据 $2\Delta\lambda$ 线性拟合可以得到拟合直线斜率即为质子与电子质量比

图 4: λ 关于 $2\Delta\lambda$ 线性拟合图

根据图 (4) 得到:

$$\frac{M_H}{m_e} = 2045.0 \pm 151.4$$

5 实验结果误差分析

$$\frac{U_{\frac{R_D}{R_H}}}{\frac{R_D}{R_H}} = \sqrt{(\frac{U_{R_H}}{R_H})^2 + (\frac{U_{R_D}}{R_D})^2} = \sqrt{(\frac{0.0006}{1.0972})^2 + (\frac{0.0006}{1.0975})^2} = 8 \times 10^{-4}$$

, P=0.95

$$\frac{U_{\frac{M_D}{M_H}}}{\frac{M_D}{M_H}} = \sqrt{\frac{U_{\frac{R_D}{R_H}}}{(\frac{R_D}{R_H}})^2 + (\frac{M_H/m_e U_{\frac{R_D}{R_H}}}{M_H/m_e \frac{R_D}{R_H}})^2} = \sqrt{(8 \times 10^4)^2 + (8 \times 10^4)^2} = 1.1 \times 10^{-3}$$

, P=0.95

则在 P=0.95 下, 实验结果为:

$$R_H = (1.0972 \pm 0.0006) \times 10^7 m^{-1}$$

$$R_D = (1.0975 \pm 0.0006) \times 10^7 m^{-1}$$

$$\frac{M_D}{M_H} = \frac{1.0975/1.0972}{1 - (1.0975/1.0972 - 1) \cdot 1836.1527} = 2.0088 \pm 0.0022$$

$$\frac{M_H}{m_e} = (2.05 \pm 0.15) \times 10^3$$

6 思考题和实验总结

6.1 思考题

1. 由介质中波长公式:

$$\lambda' = \lambda/n$$

得到修正公式:

$$\frac{1}{n\lambda'} = R_H(\frac{1}{2^2} - \frac{1}{n^2})$$

得到修正后 $R_H=1.0969\times 10^7m^{-1}$, $R_D=1.0972\times 10^7m^{-1}$ 与公认值 $1.0974\times 10^7m^{-1}$ 分别相差 0.046% , 0.020%

2. 由于光谱仪本身测量存在一定误差,相较于零点有一定的偏移,通过测量汞灯的光谱并与标准谱线进行对比与线性拟合,可以得到直线的截距即为光谱仪零点的偏移量。在测量数据后需要加上零点偏移的修正项,以减少误差。

方案:选取一系列单色性较好的不同波长的激光器,且需要各个激光器的波长位于氢原子光谱附近。利用光谱仪测量各个激光器的波长后根据标准波长进行线性拟合,并求出拟合直线截距,作为零点的偏移量。

3. 要求需要提高仪器的分辨率。氢原子已经是原子序数最低的原子, 随

着原子序数的提高,位移效应越小,同位素发射的光波长越接近,难以测量出不同核素的光谱。因此需要提高仪器分辨率以区分不同核素的相同能级的谱线波长。

6.2 实验总结

通过本实验学习了光谱仪等仪器的使用,测量了氢氘原子光谱并计算得到了非近似情况下的里德伯常量数值、氢氘原子核质量比,和质子电子质量比。同时,实验结果与真是值存在一定偏差,主要原因为氢氘灯较弱,且光谱仪精度不足,难以探测出精确的波长差。