Esercitazione del 7/5/2018

Esercizio 1

Si consideri una piattaforma, libera di ruotare attorno al suo asse verticale, in cui sia praticata una scanalatura passante per il suo centro O. Nella scanalatura è posta una massa m collegata al punto P mediante una molla ideale, lunghezza a riposo pari al raggio R della piattaforma; la massa è libera di oscillare lungo la scanalatura senza attrito. Quando la piattaforma è in moto con velocità angolare Ω costante, la massa si muove di moto armonico lungo la scanalatura con periodo di oscillazione T. Si calcoli il periodo di oscillazione che si osserverebbe se la piattaforma fosse in quiete.

Soluzione

Fissiamo un sistema di riferimento non inerziale solidale con la piattaforma e quindi in rotazione con velocità angolare costante Ω . In tale riferimento l'equazione dinamica per le oscillazioni della massa sotto l'azione della forza elastica $F_{\rm el}=k\,r$ e della forza apparente $F_{\rm app}=m\,\Omega^2\,r$

$$m\,\frac{d^2r}{dt^2} = -k\,r + m\,\Omega^2\,r \qquad \Rightarrow \qquad \frac{d^2r}{dt^2} = -\omega^2\,r$$

dove si è posto

$$\omega^2 = \frac{k}{m} - \Omega^2 \equiv \omega_0^2 - \Omega^2$$

L'equazione dinamica ha soluzioni armoniche con periodo $T=2\pi/\omega$ mentre il periodo di oscillazione proprio del sistema a piattaforma ferma ($\Omega=0$) vale $T_0=2\pi/\omega_0$. Risolvendo per T_0 si ottiene

$$T_0 = \frac{T}{\sqrt{1 + \frac{\Omega^2 T^2}{4 \pi^2}}}$$

Esercizio 2

Una scala di lunghezza $L=2\,m$ e massa $m=5\,kg$ è appoggiata ad una parete in modo da formare un angolo $\theta=30^\circ$ con la verticale. Se il coefficiente di attrito statico tra scala e pavimento è $\mu_s=0.5$, mentre è trascurabile quello tra scala e parete, determinare a quale altezza può salire una persona di massa $M=60\,kg$ prima che la scala incomincia scivolare.

Soluzione

Sia $\vec{p} = m \, \vec{g}$ il peso della scala, $\vec{P} = M \, \vec{g}$ il peso della persona, \vec{N}_1 la normale orizzontale esercitata dalla parete sulla scala, \vec{N}_2 la normale verticale esercitata dal pavimento sulla scala ed \vec{F}_a la forza di attrito tra scala e pavimento. Imponendo le condizioni di equilibrio per traslazione e rotazione si ottiene il sistema

$$\begin{split} \vec{N}_1 + \vec{N}_2 + \vec{P} + \vec{p} + \vec{F}_a &= 0 \ , \\ \vec{M}_{N_1} + \vec{M}_P + \vec{M}_p &= 0 \ , \end{split}$$

dove è stato scelto il polo O nel punto di contatto tra la scala e il pavimento cosicché i momenti corrispondenti a \vec{N}_2 e \vec{F}_a risultano nulli.

Dal sistema si ottien l'equazione risolvente

$$\mu_s (m+M) g L \cos \theta = \frac{L}{2} m g \sin \theta + s M g \sin \theta ,$$

da cui

$$s = \mu_s L \left(1 + \frac{m}{M} \right) \cot \theta - \frac{L}{2} \frac{m}{M} = 0.5 \cdot 2 \left(1 + \frac{5}{60} \right) \cot \frac{\pi}{6} - 1 \cdot \frac{5}{60} = 1.79 m$$
.

Esercizio 3

Si consideri il sistema nel disegno: un cilindro di massa M=2 kg e raggio R=0.1 m è tirato da una corda avvolta attorno ad esso, che passa attraverso una puleggia priva di attrito e di massa trascurabile ed è infine attaccata ad un blocco di massa m. Gli angoli sono $\alpha=\pi/3$ e $\beta=\pi/6$. C'è attrito tra il cilindro e il piano AB, ma NON c'è attrito tra il blocco e il piano BC.

- (a) Quale valore di *m* permette al sistema di rimanere in equilibrio?
- (b) Supponiamo ora di sostituire il blocco con un altro, di massa M = 2 kg. Si calcoli l'accelerazione del blocco (nel caso di puro rotolamento).
- (c) Nello stesso caso in cui la massa del blocco è M = 2 kg, trovare il minimo valore del coefficiente di attrito statico μ_s che permette al cilindro di rotolare senza strisciare.

Soluzione

Il sistema cilindro+cubo si muove (quando si muove) lungo una traiettoria nota, che consiste in 2 segmenti inclinati AB e BC. Assumiamo come sistema di riferimento quello con coordinate intrinseche lungo questi due segmenti con origine in A e verso positivo da A a C. Lungo la traiettoria, le forze sono: (componente della) forza di gravità su entrambi i corpi, attrito col piano inclinato e tensione della corda sul cilindro. Lungo la coordinata radiale (il raggio di curvatura è infinito in questo caso) agiscono l'altra componente della forza di gravità e le forze normali dei piani sui due corpi. Applicando le equazioni cardinali per i centri di massa dei due corpi (per la seconda equazione cardinale è sufficiente la componente lungo l'asse z) abbiamo:

$$m \cdot \dot{\mathbf{s}}_1 = -T + mg \cdot \sin \beta$$

 $M \cdot \dot{\mathbf{s}} = T - Mg \cdot \sin \alpha + F_s$,
 $I \cdot \dot{\omega} = R \cdot (T - F_s)$

e, nel caso di puro rotolamento,

$$2 \cdot \ddot{\mathbf{s}} = \ddot{\mathbf{s}}$$

$$R \cdot \dot{\omega} = \ddot{s}$$

dove s è la coordinata del CM del cilindro e s₁ è quella del cubo.

a) In equilibrio statico tutti i punti sono in quiete e l'attrito è statico. Nel sistema di equazioni precedente abbiamo assunto \vec{F}_s essere positiva nel verso positivo dell'asse su cui agisce. Tutte le accelerazioni sono nulle, per cui:

$$0 = -T + mg \cdot \sin \beta \qquad T = mg \cdot \sin \beta$$

$$0 = T - Mg \cdot \sin \alpha + F_s \Rightarrow T + F_s = Mg \cdot \sin \alpha \Rightarrow$$

$$0 = R \cdot (T - F_s) \qquad T = F_s$$

$$m = \frac{M \cdot \sin \alpha}{2 \cdot \sin \beta} \approx 1.732 [kg]$$

b) se m = M, sicuramente il cilindro non rimane in equilibrio: all'inizio l'attrito è statico e le accelerazioni (lineare e angolare) non sono nulle e sono date dalle equazioni:

$$m \cdot \ddot{\mathbf{s}} = -T + mg \cdot \sin \beta$$

 $M \cdot \ddot{\mathbf{s}} = T - Mg \cdot \sin \alpha + F_s$
 $I \cdot \dot{\omega} = R \cdot (T - F_s)$

Sostituendo $\ddot{\mathbf{s}} = 2\ddot{\mathbf{s}}$ e sommando membro a membro

$$(4 \cdot m + M + I/R^2) \ddot{\mathbf{s}} = 2mg \cdot \sin \beta - Mg \cdot \sin \alpha$$

$$(M - I/R^2) \cdot \ddot{\mathbf{s}} + Mg \cdot \sin \alpha = 2F_s \qquad \Rightarrow$$

$$(M + I/R^2) \cdot \ddot{\mathbf{s}} + Mg \cdot \sin \alpha = 2T$$

si trova

$$\ddot{\mathbf{s}} = \frac{2mg \cdot \sin \beta - Mg \cdot \sin \alpha}{4 \cdot m + M + I/R^2} \approx 0.238[m/s^2]$$

$$((M - I/R^2) \cdot \ddot{\mathbf{s}} + Mg \cdot \sin \alpha)/2 = F_s \approx 8.6[N]$$

$$(M + I/R^2) \cdot \ddot{\mathbf{s}} + Mg \cdot \sin \alpha = 2T$$

in cui i valori numerici sono stati ottenuti imponendo m = M.

c) La forza di attrito statico deve soddisfare la condizione:

$$\mu_{s} \cdot Mg \cdot \cos \alpha \ge F_{s} \Rightarrow \mu_{smin} = \frac{F_{s}}{Mg \cdot \cos \alpha} \approx 0.8782$$