

Sensor Subsystem Design

Morris Blaustein

Sensor Subsystem Overview

	Туре	Model	Connection	Function
	GPS	Locosys LS20031	Digital	Records UTC time, latitude and longitude, mean sea level altitude, and number of satellites tracked.
andras Bresnow	Altitude & Temp Sensor	Bosch BMP085	l ² C Serial	Records altitude via non GPS and air temperature.
200	Video Camera	808 Spy Camera	Digital	Records video of the lander release

- The GPS and video camera will be used in the Carrier.
- The BMP085 will be used in both the Carrier and the Lander.

Sensor Subsystem Requirements

ID	Requirement	Rationale	Priority	Parent(s)	Child(ren)	Verification			
.5	rtoquiionic	ranonalo	1 Honey	r arom(o)	Ja(1311)	Α	1	Т	D
S-01	Cansat shall transmit UTC time every two (2) seconds	Base Mission Requirement	High	SYS-04	None			Х	Х
S-02	Cansat shall transmit latitude and longitude every two (2) seconds	Base Mission Requirement	High	SYS-04	None			X	Х
S-03	Cansat shall transmit number of satellites tracked every two (2) seconds	Base Mission Requirement	High	SYS-04	None			X	X
S-04	Cansat shall transmit altitude at accuracy of 2 m using sensor other than GPS every two (2) seconds	Base Mission Requirement	High	SYS-04	None	Х		X	X
S-05	Cansat shall transmit air temperature in Celsius every two (2) seconds	Base Mission Requirement	High	SYS-04	None			X	X
S-06	Cansat shall transmit remaining battery voltage in volts every two (2) seconds	Base Mission Requirement	High	SYS-04	EPS-05	Х		X	Х
S-07	Video camera shall record rocket in flight beginning no more than two (2) seconds before lander release	Selectable Objective Requirement	Medium	SYS-09	None			X	X

CanSat 2012 CDR: Team 1839 (Laser Wolverines)

Sensor Subsystem Requirements

ID	Requirement	Rationale	Priority	Parent(s)	Child(ren)	Verification			
			, , , , ,	(-,		Α	I	T	D
S-08	Sensors must operate at 3.3V, 3.9V, or 5V	Cansat System regulates power at 3.3V, 3.9V, and 5V	High	EPS-01/02	None		X	X	
S-09	GPS Sensor shall withstand acceleration of the rocket	Able to transmit data following deployment	High	None	None		Х	X	

Sensor Changes Since PDR

Video camera timing controlled by Arduino

Carrier GPS Summary

Device	Accuracy (m)	Operating Voltage (V)	Current (mA)	Weight (g)	Update Rate (Hz)	Cold/Hot Start (s)	Dimensions (mm)	Cost (\$)
Locosys LS20031	2.5m	3.3V	41mA	14g	5Hz	35/2s	30x30mm	49.95

Presenter: Morris Blaustein

- Low current draw
- High accuracy
- Micro battery holds data for faster satellite acquisition
- 66 Channels
- TTL serial data

GGA Fixed Data Example

\$GPGGA,053740.000,2503.6319,N,12136.0099,E, 1,08,1.1,63.8,M,15.2,M,,0000*64

GGA header UTC time Latitude N/S Longitude E/W #Satellites Altitude

Carrier Non-GPS Altitude/ Temperature Sensor Summary

Device	Operating Voltage (V)	Range (kPa)	Current (µA)	Pressure Accuracy (hPa)	Temperature Accuracy (C)	Dimensions (mm)	Cost (\$)
Bosch BMP085	1.8-3.6V	30kPa – 110kPa	0.1μΑ	1.5 hPa	2°C	16.5x16.5mm	19.95

Presenter: Morris Blaustein

- Low power consumption
- Samples pressure and temperature
- I²C Interface

For pressure to altitude conversion

$$altitude = 44330 * (1 - (p/p_0)^{1/5.255})$$

Lander Non-GPS Altitude Sensor Summary

Presenter: Morris Blaustein

We will also be using the Bosch BMP085 for the Lander Non-GPS Altitude Sensor.

Carrier Video Camera Summary

Device	Operating Voltage	Resolution (pixels)	Weight (g)	Frame Rate (FPS)	Format	Current (mA)	Dimensions (mm)	Cost (\$)
808 Spy Camera	5V	720 x 480	8 g	30 FPS	M-JPEG	100- 140mA	63x100 mm	14.26

Presenter: Morris Blaustein

- Low cost
- Light weight
- High video resolution
- Records via micro SD card
- Outer case and built-in lithium polymer battery were removed
- Video timing controlled by Arduino

Electrical Power Subsystem Design

Morris Blaustein

EPS Overview

	Model	Used For	Voltage	Purpose
	MH-9V250	Lander	9V	Supply power to Lander electronics
Batteries	Tenergy 14500	Carrier	7.4V	Supply power to Carrier electronics
	LIR2032	Lander/C arrier	10.6V	Supply power to the buzzers

EPS Changes Since PDR

- 9V battery for Lander
- 3.6V Button cell batteries for buzzers
- Added 3.9V regulator
 - Video camera runs at 3.9V, not 5V
- Transceiver powered through 3.3V regulator, not Arduino

EPS Requirements

ID	Requirement	Rationale	Priority	Parent(s)	Child(ren)	١	Verification			
	Roquiloment	Rationalo	1 Hority	i arom(s)	Jima(i cii)	Α	1	т	D	
EPS-01	Carrier battery shall output at least 5V	Arduino Uno requires 5V	High	CDH-11	S-08, EPS- 03		X	Х		
EPS-02	Lander battery shall output at least 5V	Arduino Nano requires 5V	High	CDH-12	S-08, EPS- 03		X	X		
EPS-03	Battery shall have high enough capacity to last the duration of the flight and recovery (approximately 3 hours)	Must power the system	High	None	None	X	X	X		
EPS-04	Battery shall have sufficient marginal voltage	Compensate for voltage drop	High	EPS-01, EPS- 02	None	X	Х			
EPS-05	Battery shall be light weight	Keep the system under the weight maximum	Medium	SYS-01	None		X			
EPS-06	Remaining battery voltage shall be measured	Base Mission Requirement	High	S-06	None	X		X		
EPS-07	Carrier and Lander shall have external power switch	Base Mission Requirement/Safet y/Convenience	High	SYS-05	None			X	X	

CanSat 2012 CDR: Team 1839 (Laser Wolverines)

EPS Requirements

ID	Requirement	Rationale	Priority	Parent(s)	Child(ren)	V	Verification			
						A	ı	Т	D	
EPS-08	Buzzers in Carrier and Lander shall have independent power source	Base Mission Requirement	High	S-06	None	Х		Х	X	

Carrier Electrical Block Diagram

Lander Electrical Block Diagram

- Arduino Nano has a 3.3V regulator
- ➤ LED is connected in parallel

Carrier Power Budget

Device	Voltage (V)	Current (mA)	Expected Run Cycle (min)	Uncertainty (min)	Current Consumed (mAh)
Arduino Uno	5 V	140 mA	120 min	5 min	291 mAh
GPS	3.3 V	41 mA	60 min	5 min	44 mAh
Barometer	3.3 V	0.05 mA	60 min	5 min	.06 mAh
Video Camera	5 V	150 mA	20 min	5 min	63 mAh
Servo	5 V	500 mA	0.2 min	0.1 min	2.5 mAh
Transceiver	3.3 V	250 mA	60 min	5 min	271 mAh
Voltage Regulators					10% inefficiency

Total	Available	Margin
674 mAh	800 mAh	126 mAh

Lander Power Budget

Device	Voltage (V)	Current (mA)	Expected Run Cycle (min)	Uncertainty (min)	Current Consumed (mAh)
Arduino Nano	5V	60 mA	120 min	5 min	125 mAh
Barometer	3.3 V	0.05 mA	60 min	5 min	.06 mAh

Total	Available	Margin
126 mAh	250mAh	124 mAh

Buzzer Power Budget

Device	Voltage (V)	Current (mA)	Expected Run Cycle (min)	Uncertainty (min)	Current Consumed (mAh)	
Buzzer	10.6V	1 mA	180 min	60 min	4 mAh	

Total	Available	Margin
4 mAh	40 mAh	36 mAh

Power Source Summary

	Battery	Used For	Туре	Voltage (V)	Weight (g)	Dimensio ns (mm)	Capacity (mAh)	Quantity	Price
+ HI-MH BATTERY - 90 ZSOWAH	MH- 9V250	Lander	NiMH	9V	19g	48 x 26 mm	250mAh	1	\$4.60
The state of the s	Tenergy 14500	Carrier	Lithium	3.7V	21g	14 x 49 mm	800 mAh	2, series	\$3.79
LIR2032 ETHOM ION BET	LIR2032	Buzzers	Li-lon	3.6V	3.1g	20 x 3 mm	40 mAh	3, series	\$3.59

We are considering switching to a 9V battery for the Carrier because
 7.4V might drop too low

Battery Voltage Measurement

Arduino ADC (Analog to Digital Conversion)

- Simple and accurate
- 10 bit resolution
- Max input for ADC is 5V.
- Voltage will be scaled with resistors

$$V_{in} = V_{bat} \frac{R_1}{(R_1 + R_2)}$$

Sensor Subsystem Testing Overview

Locosys LS20031

Sample Data

\$GPGGA,165256.000,4217.6726,N,08342.6620,W,1, 7,1.28,284.1,M,-34.0,M,,*6E \$GPGGA,165256.200,4217.6726,N,08342.6620,W,1, 7,1.28,284.1,M,-34.0,M,,*6C \$GPGGA,165256.400,4217.6726,N,08342.6620,W,1, 7,1.28,284.0,M,-34.0,M,,*6B \$GPGGA,165256.600,4217.6726,N,08342.6620,W,1, 7,1.28,284.0,M,-34.0,M,,*69

GGA header

UTC time

Latitude

N/S

Longitude

E/W #Satellites Altitude

- 7 Satellites tracked
- 284 m Altitude
 - Ann Arbor, MI (where data was aquired) is approximately 272m

Conclusion

- LS20031 is working properly
- Still need more tests

Sensor Subsystem Testing Overview

Sample Data

Temperature = 23.00 *C Pressure = 98059 Pa Altitude = 275.28 meters

Temperature = 23.00 *C Pressure = 98053 Pa Altitude = 275.71 meters

Temperature = 23.00 *C Pressure = 98061 Pa Altitude = 275.45 meters

Temperature = 23.00 *C Pressure = 98064 Pa Altitude = 275.54 meters

Bosch BMP085

- 275.28 m Altitude verifies GPS accuracy (284 m)
- Temperature is highly accurate
 - Thermometer also showed 23° C

Conclusion

- BMP085 is working properly
- Still need more tests
 - Match altitude with GPS
- Consider appropriate placement in Cansat

Imaging / Video Camera Testing Overview

Wires soldered to power and mode button give video control to Arduino Buttons activated based on 3.9V (high) or 0V (low)

Imaging / Video Camera Testing Overview

Current status of testing

- Video resolution is acceptable
- Video camera works on external power source (3.9V)
- Features of power/mode button not yet determined
 - To allow for Arduino control

Screenshot of Video

EPS Testing Overview

EPS testing when all circuits are complete

- Monitor average current consumption
 - Verify if 7.4V is sufficient for carrier
 - Account for regulator inefficiencies
- Arduino ADC voltage measurement
 - Compare with voltmeter
- Verify that power switch and LED work as expected
- Verify that transistor works as expected