Concept	1-Categorical construction	∞ -Categorical construction	Intuition
F-Cartesian edge		$F: X \to S$ an inner fibration of simplicial sets, $f: x \to y$ an edge in X is F-cartesian if the induced	??
		map $X_{/f} \to X_{/y} \times_{S_{/F(y)}} S_{/F(f)}$ is a trivial Kan fibration. ([Lur09], Def 2.4.1.1)	
Category	Collection of objects C , set $\operatorname{Hom}(X,Y)$ for every $X,Y\in C$, associative composition and identity morphisms	Simplicial set $C: \Delta^{\text{op}} \to \mathbf{Set}$ satisfying the inner horn filling condition. ([Lur09], Def 1.1.2.4)	Category with objects C_0 , morphisms C_1 , morphisms between morphisms C_2 , etc. Inner horn filling defines a non-unique composition.
Colimit	A colimit for $F: J \to \mathcal{C}$ is an initial cone on F .	A colimit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is an initial object of $\mathcal{C}_{F/}$. ([Lur09], Def 1.2.13.4)	??
Essentially surjective functor	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every $D \in \mathcal{D}$, there exists some $C \in \mathcal{C}$ with $FC \cong D$.	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if $hF: hC \to h\mathcal{D}$ is essentially surjective. ([Lur09], Def 1.2.10.1)	Essentially surjective up to homotopy.
Faithful functor	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is injective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $hF: h\mathcal{C} \to h\mathcal{D}$ is faithful. ([Lur09], Def 1.2.10.1)	Faithful up to homotopy.
Final object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C' \to C$.	Object $C \in \mathcal{C}$ such that C is final in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C' \to C$.
Full functor	$F: \mathcal{C} \to \mathcal{D}$ is full if $\operatorname{Hom}(X, Y) \to \operatorname{Hom}(FX, FY)$ is surjective for all $X, Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is full if $hF: h\mathcal{C} \to h\mathcal{D}$ is full. ([Lur09], Def 1.2.10.1)	Full up to homotopy.
Functor	Functor.	Natural transformation of simplicial sets. ([Lur09], 1.2.7)	
Groupoid	Category whose morphisms are all invertible.	Kan complex.	Not only can you find (non-unique) 'composites', but you can also fill in diagrams like $C \xrightarrow{\mathrm{id}} C C \xrightarrow{\mathrm{id}} D$ $f \downarrow \qquad \qquad \downarrow \qquad f$ $D \qquad \qquad C$
Initial object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C \to C'$.	Object $C \in \mathcal{C}$ such that C is initial in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C \to C'$.
Join	$ \begin{array}{c} \mathcal{C}\star\mathcal{D} \text{ has objects ob}\mathcal{C}\sqcup\text{ob}\mathcal{D},\\ \text{and } \operatorname{Hom}_{\mathcal{C}\star\mathcal{D}}(X,Y) \text{ is given by:}\\ \begin{cases} \operatorname{Hom}_{\mathcal{C}}(X,Y) & X,Y\in\mathcal{C},\\ \operatorname{Hom}_{\mathcal{D}}(X,Y) & X,Y\in\mathcal{D},\\ \end{cases} & X\in\mathcal{D},Y\in\mathcal{C},\\ * & X\in\mathcal{C},Y\in\mathcal{D}.\\ ([\operatorname{Lur09}],1.2.8) \end{array} $	$\mathcal{C} \star \mathcal{D}$ has <i>n</i> -simplicies $(\mathcal{C} \star \mathcal{D}) = \mathcal{C}_n \cup \mathcal{D}_n \cup \bigcup_{i+j=n-1} \mathcal{C}_i \times \mathcal{D}_j$. ([Lur09], Def 1.2.8.1)	??
Left cone	$\mathcal{C}^{\lhd} := [0] \star \mathcal{C}.$	$\mathcal{C}^{\lhd} := \Delta^0 \star \mathcal{C}.$ ([Lur09], Not 1.2.8.4)	??

Left Kan extension	Given a commutative diagram	Given a commutative diagram	??
(along the inclusion	$\mathcal{C}^0 \xrightarrow{F_0} \mathcal{D}$	$\mathcal{C}^0 \xrightarrow{F_0} \mathcal{D}$	
of a full subcategory)	, F is a left Kan ex-	$ \downarrow \downarrow \qquad \qquad F $, F is a left Kan ex-	
	tension of F_0 along ι if there is a	tension of F_0 along ι if for all	
	natural transformation $\eta: F_0 \to$	$C \in \mathcal{C}$, the induced diagram	
	$F\iota$ such that for any other pair		
	$(G: \mathcal{C} \to \mathcal{D}, \gamma: F_0 \to G\iota)$, there	$ \begin{array}{c c} C_{/C}^{0} & \xrightarrow{F_{C}} \mathcal{D} \\ & & \text{exhibits } FC \text{ as} \end{array} $	
	exists a unique natural transfor-	exhibits FC as	
	mation $\alpha: F \to G$ such that	$(\mathcal{C}_{/C}^0)^{\triangleright}$	
	$\gamma = (\alpha * \iota) \circ \eta. \text{ ([Rie16], Def 6.1.1)}$	a colimit of F_C . ([Lur09], Def	
T,		4.3.2.2)	??
Limit	A limit for $F: J \to \mathcal{C}$ is a terminal cone on F .	A limit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is a	11
	cone on F.	final object of $C_{/F}$. ([Lur09], Def	
		1.2.13.4)	
Opposite category	$\mathcal{C}^{\mathrm{op}}$ has the same objects as \mathcal{C} , and	$C_n^{\text{op}} = C([n]^{\text{op}}), \text{ where } \{0 < 1 < 1 < 1 < 1\}$	A map $x \to y$ is an edge $\Delta^1 \to \mathcal{C}$
	$\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(Y,X).$	$ \dots < n \}^{\text{op}} = \{0 > 1 > \dots > n \}.$	where $0 \mapsto x$ and $1 \mapsto y$. In \mathcal{C}^{op}
		([Lur09], 1.2.1)	0 and 1 swap roles, so we instead
Overcategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{/C}$ sat-	For $f: S \to \mathcal{C}$, S a simplicial	get a map $y \to x$.
Overcasegory	isfies the following universal prop-	set and \mathcal{C} an ∞ -category, the ∞ -	
	erty: for any category \mathcal{D} , there is	category $\mathcal{C}_{/f}$ satisfies the following	
	a bijection	universal property: for any simpli-	
	H(D, C,) H (D, [0], C)	cial set X , there is a bijection	
	$\operatorname{Hom}(\mathcal{D}, \mathcal{C}_{/C}) \simeq \operatorname{Hom}_C(\mathcal{D} \star [0], \mathcal{C}),$	$\operatorname{Hom}(X, \mathcal{C}_{/f}) \simeq \operatorname{Hom}_f(X \star S, \mathcal{C}),$	
	where the subscript on the right	$\prod_{i=1}^{n} \operatorname{Hom}_{i}(X, \mathcal{C}/f) = \operatorname{Hom}_{f}(X \wedge \mathcal{C}, \mathcal{C}),$	
	indicates that we consider only	where the subscript on the right	
	those functors $\mathcal{D} \star [0] \to \mathcal{C}$ whose	indicates that we consider only	
	restriction to $[0]$ consides with C . $([Lur09], 1.2.9)$	those functors $X \star S \to \mathcal{C}$ whose restriction to S consides with f .	
	([Lui09], 1.2.9)	([Lur09], Prop 1.2.9.2)	
Right cone	$\mathcal{C}^{\triangleright} := \mathcal{C} \star [0].$	$\mathcal{C}^{\triangleright} := \mathcal{C} \star \Delta^{0}.$ ([Lur09], Not	??
		1.2.8.4)	
Subcategory	Subcategory $C' \subseteq C$.	Subsimplicial set $C' \subseteq C$ arising as	??
		$C' \longrightarrow C$	
		a pullback	
		$N(h\mathcal{C})' \longrightarrow N(h\mathcal{C})$	
		where $(hC)' \subseteq hC$ is a subcategory. ([Lur09], 1.2.11)	
Undercategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{C/}$ sat-	For $f: S \to \mathcal{C}$, S a simplicial	??
	isfies the following universal property: for any category \mathcal{D} , there is	set and \mathcal{C} an ∞ -category, the ∞ -	
	a bijection \mathcal{D} , there is	category $C_{f/}$ satisfies the following universal property: for any simpli-	
		cial set X , there is a bijection	
	$\operatorname{Hom}(\mathcal{D}, \mathcal{C}_{C/}) \simeq \operatorname{Hom}_{C}([0] \star \mathcal{D}, \mathcal{C}),$		
	where the subscript on the right	$\operatorname{Hom}(X, \mathcal{C}_{f/}) \simeq \operatorname{Hom}_f(S \star X, \mathcal{C}),$	
	indicates that we consider only	where the subscript on the right	
	those functors $[0] \star \mathcal{D} \to \mathcal{C}$ whose	indicates that we consider only	
	restriction to $[0]$ consides with C .	those functors $S \star X \to \mathcal{C}$ whose	
	([Lur09], 1.2.9)	restriction to S consides with f .	
		([Lur09], Prop 1.2.9.2)	

Equivalences		
Name	Between	Definition
Strong equivalence	Topological categories \mathcal{C}, \mathcal{D}	$\mathcal{C} \to \mathcal{D}$ is an equivalnce in the sense of enriched
		category theory. ([Lur09], Def 1.1.3.1)
(Weak) equivalence	Topological categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equiva-
		lence of \mathcal{H} -enriched categories. ([Lur09], Def
		1.1.3.6)
Categorical equivalence	Simplicial sets X, S	The induced functor $hX \to hS$ is an equiva-
		lence of \mathcal{H} -enriched categories. ([Lur09], Def
		1.1.5.14)
Weak homotopy equivalence	Simplicial sets X, S	The induced map $ X \rightarrow S $ is a weak
		homotopy equivalence of topological spaces.
		([Lur09], 1.1.4)
Equivalence	Simplicial categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equiva-
		lence of \mathcal{H} -enriched categories. ([Lur09], Def
		1.1.4.4)

Fibrations and anodyne morphisms		
Name	Describes	Definition
Acyclic Kan fibration	$ f: X \to S \text{ map of simplicial sets} $	see: trivial Kan fibration. ([nLa23])
Cartesian fibration	$f: X \to S$ map of simplicial sets	F is an inner fibration such that for every edge
		$g: x \to y$ of S and every vertex \tilde{y} of X with
		$f(\tilde{y}) = y$, there exists an f-cartesian edge \tilde{g} :
		$\tilde{x} \to \tilde{y} \text{ with } f(\tilde{g}) = g. \text{ ([Lur09], Def } 2.4.2.1)$
Cofibration	$f: X \to S$ map of simplicial sets	f is a monomorphism. ([Lur09], A.2.7)
Inner anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ an inner fibration,
		$X \longrightarrow Y$
		$ \begin{array}{ccc} & X & \longrightarrow & Y \\ & \downarrow & & \downarrow & p \\ & & & & \downarrow & T \end{array} $
		\downarrow
		$S \longrightarrow T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Inner Fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
	j . 21 / 5 map of simplicial sees	0 < i < n,
		$\Lambda_i^n \longrightarrow X$ $\downarrow f$
		$\Delta^n \longrightarrow S$
		there exists a dotted lift.
Isofibration	$F: \mathcal{C} \to \mathcal{D}$ map of ∞ -categories	F is an inner fibration such that for all $C \in \mathcal{C}$
		and every isomorphism $u:D\to FC$ in \mathcal{D}
		(i.e. $[u]$ is an isomorphism in $h\mathcal{D}$) there exists
		an isomorphism $\overline{u}:\overline{D}\to C$ in $\mathcal C$ such that
(IZ) C1		$F(\overline{u}) = u.$ [Lur25, Def 01EN]
(Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$0 \le i \le n,$
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \end{array} $
		\downarrow \downarrow f
		$\Delta^n \xrightarrow{\cdot} S$
		there exists a dotted lift. ([Lur09], A.2.7)
	II	onere exists a dotted int. ([Lutos], A.2.1)

Left anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p: Y \to T$ a left fibration,
		$X \longrightarrow Y$ $f \downarrow \qquad \qquad \downarrow p$ $S \longrightarrow T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Left fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i < n$,
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Right anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p: Y \to T$ a right fibration,
		$X \xrightarrow{X} Y$ $f \downarrow \qquad \qquad \downarrow p$ $S \xrightarrow{X} T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Right fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 < i \le n$,
		$egin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ & & & \downarrow^f \\ \Delta^n & \longrightarrow S \end{array}$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Serre fibration	$f: Y \to Z$ map of topological spaces	For every solid arrow diagram as below,
		$ \begin{cases} 0\} \times \Delta^n & \longrightarrow Y \\ \downarrow & \downarrow f \\ [0,1] \times \Delta^n & \longrightarrow Z \end{cases} $
		there exists a dotted lift. [Lur25, Def 021R]
Trivial Kan fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i \le n$,
		$ \begin{array}{ccc} \partial \Delta^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
		there exists a dotted lift. [Lur25, Def 006W]

Nerves		
Name	Domain object	Definition
Nerve	Category \mathcal{C}	$(NC)_n = \{n\text{-composable strings of morphisms in } C\}.$
Simplicial nerve	Simplicial category $\mathcal C$	$(NC)_n = \operatorname{Hom}_{\mathbf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^n], \mathcal{C}), \text{ where } \mathfrak{C}[\Delta^n] \text{ is }$ the category whose objects are the same as $[n]$, and $\operatorname{Hom}_{\mathfrak{C}[\Delta^n]}(i,j) = \emptyset$ for $i < j$ and $N(P_{ij})$ for $i \geq j$ (where $P_{ij} = \{I \subseteq [n] : (i,j \in I) \land (\forall k \in I, i \leq k \leq j)\}$).
Topological nerve	Topological category \mathcal{C}	The simplicial nerve of Sing \mathcal{C} .

Homotopy categories		
Domain object	Definition	
∞ -Category \mathcal{C}	The objects of hC are the vertices of C , and	
	$\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(X,Y)$ is the set of homotopy classes of edges	
	$X \to Y \text{ in } \mathcal{C}. \ ([Lur09], Prop 1.2.3.9)$	
Simplicial category \mathcal{C}	h C . ([Lur09], 1.1.4)	
Topological category \mathcal{C}	hC has the same objects as C , and $Hom_{hC}(X,Y) =$	
	$[Hom_{\mathcal{C}}(X,Y)].$ ($[Lur09], 1.1.3$)	

References

- [Lur09] Jacob Lurie. Higher Topos Theory. 2009.
- [Lur25] Jacob Lurie. Kerodon. https://kerodon.net. 2025.
- [nLa23] nLab (Urs Schreiber). acyclic Kan fibration. https://ncatlab.org/nlab/show/acyclic+Kan+fibration. revision 5. 2023.
- [Rie16] Emily Riehl. Category Theory in Context. 2016. URL: https://emilyriehl.github.io/files/context.pdf.