AquaBot IV

Project % Technische informatica

Project: AquaBot IV (modelvaartuig bedieningssyteem)

Leerjaar: 2

Datum: 16 mei 2022 Gelegenheid: Herkansing

Docenten: W.B. (Wouter) Volders & L. (Leon) van Dam

Contactpersoon: J.C. (Jan) Scholtens

Namen:

Bryan Chung Jia-jie Yeh Mick Vermeulen Timo de Haan Wouter van Huut

Inhoud

Inleiding	2
Voorwoord	2
Het project	2
Meetings	2
Inhoud opleverset	3
Verbinding leerdoelen in de opleverset	4
Requirementsanalyse	5
Changelog	5
Productbacklog	6
Veiligheid en privacy	8
Risicoanlyse	9
Legenda	9
Gemaakte keuzes	10
Aanbevelingen	10

Inleiding

Voorwoord

Dit project gaat over het communicatie systeem van de boot EindMaas.

De EindMaas is een water drone die over de Maas moet kunnen varen door middel van afstandsbesturing.

In dit project wordt er voor de communicatie tussen componenten in de boot gezorgd en voor het ontvangst van de informatie van de kant. Dit word door middel van smart componenten gedaan.

Als het systeem compleet is zou het volgens het "plug&play" principe het makkelijk moeten zijn om nieuwe componenten aan het systeem toe te voegen, daarnaast zal het systeem ook kunnen worden toegepast op andere aquabots in plaats van op maat gemaakte systemen die nu gebruikt worden.

Het project

We zijn vooral bezig geweest met het opzetten van een ethernet netwerk dat gebruikt wordt voor communicatie binnen de boot. Dit netwerk wordt gebruikt door de "smart componenten".

Smart componenten zijn een verzameling van componenten die zelf NMEA berichten kunnen vertalen en berichten naar andere smart componenten kunnen sturen. Smart componenten bestaan uit een slim gedeelte die NMEA informatie vertaald (microcontroller) en uit minder slimme subcomponenten.

In dit project is GPS, besturing en het roer geimplementeerd.

Meetings

Tijdens het project was er bijna elke week contact met de opdrachtgevers waarbij we soms ook een demonstratie hebben gegeven, dit was voornamelijk op donderdagen. In deze meetings kregen de gelegenheid om vragen over de opdracht te stellen en konden feedback krijgen over onze geschreven documenten en gemaakte werk.

Ook online waren de opdrachtgevers goed bereikbaar voor snelle vragen of aanvullende feedback. Daarnaast is ook een college gegeven over het maken van een functionele decompositie.

Inhoud opleverset

Naast dit document zijn er nog een paar mappen met documenten: Code

Hier staan de platformIO projecten voor elk component.

Onderzoeken

In deze map staan de onderzoeken die gemaakt zijn voor dit project.

Literatuur onderzoek: In dit onderzoek hebben wordt duidelijk welke microcontrollers het beste passen bij de implentmentatie van componenten binnen het project.

Experimenteel onderzoek: In dit onderzoek wordt de latency van berichten tussen de microcontrollers bekeken bij verschillende communicatie protocollen.

Gebruikers onderzoek: In dit onderzoek staan de wensen en feedback van de eindgebruikers (PO's) verwerkt.

Functionele decompositie: In dit document worden de functies en opbouw van het project beschreven.

Testrapport: Hierin staan de verschillende testen van componenten beschreven.

Ontwerpen

In deze mappen staan de verschillende ontwerpen:

Elektrische schema's

Mechanische ontwerpen

Software flowdiagram's

Mechatronisch systeem

Een van de leerdoelen was het maken van een mechatronisch ontwerp. Voor dit project hebben we concept componenten gemaakt om het communicatie systeem te testen. Hierbij zijn er elektrische schema's en software diagrammen gemaakt, maar geen mechatronisch systeem omdat de echte componenten pas door een vervolg groep gemaakt zullen worden.

Werkdocumenten

Deze documenten zijn van ondergeschikt belang voor school,

Notulen

Hier staan de notulen van de PO meetings.

De handleiding is een korte uitleg over hoe er een nieuw component gemaakt kan worden.

Verbinding leerdoelen in de opleverset

- Je kunt met de projectgroep voor het project relevante onderzoeksvragen definiëren.
 Opleverset → Onderzoeken → Literatuur onderzoek
- 2. Je kunt relevante kwaliteitseisen opstellen. Huidige document: Requirementsanalyse
- 3. Je kunt een probleem beschrijven in een requirementsdocument. Huidige document: Requirementsanalyse
- Je kunt met de projectgroep voor het project relevant literatuuronderzoek, experimenteel onderzoek en gebruikersonderzoek doen.
 Opleverset → Onderzoeken → hier bevinden zich alle onderzoeken
- 5. Je kunt een architectuurontwerp van de (huidige en) gewenste situatie opstellen van het eigen project.

Opleverset → Onderzoeken → Functionele decompositie

- 6. Je kunt bepalen welke ontwerpen voor functionaliteit, interactie, structuur en architectuur relevant zijn voor de eigen opdracht en deze ontwerpen opstellen. Opleverset → Ontwerpen → Elektrische schema's
- 7. Je kunt de werking en structuur van de code beschrijven middels een softwarediagram.

Opleverset → Ontwerpen → Software flowdiagram's

8. Je kunt een bouwtekening maken van een mechatronisch systeem.

Opleverset → Ontwerpen → Mechanisch ontwerp

Je kunt met een geschikt testplan en -rapport aantonen dat het gerealiseerde product voldoet aan de eisen volgens de zelf opgestelde requirements, inclusief de security en privacy issues.

Opleverset → Onderzoeken → Testrapport Huidige document: Veiligheid en privacy

9. Je kunt programmacode schrijven die goed gestructureerd is in functies en classes, geen herhalingen vertoont, rekening houdt met onverwachte situaties (excepties) en voorzien is van informatief commentaar.

Opleverset \rightarrow Code \rightarrow (4 type componenten) \rightarrow src

- 10. Je kunt ontwerpen omzetten in een werkend prototype. demonstatiefilmpje (los ingeleverd in praktijklink)
- 11. Je kunt een project definiëren (inclusief requirements) en waar nodig tussentijds aanpassen aan gegeven budget en tijd.

Huidige document: Product backlog

12. Je kunt een analyse maken van de algemene en project specifieke risico's. Huidige document: Risicoanalyse

Requirementsanalyse

Aquabots modelvaartuig bedieningssysteem:

Functie	Requirement	MoSco W			
F2	De componenten binnen de boot moeten maximaal met een latency van 20ms een bericht naar elkaar kunnen sturen.				
F7/F3c	Berichten die buiten de boot komen mogen een maximale latency hebben van 500ms				
F1	Alle berichten verstuurd binnen de boot moeten volgens het NMEA protocol zijn opgebouwd.	М			
F2/F3a	Alle componenten moeten zelf in staat zijn om NMEA berichten te verwerken en te sturen.	М			
F5	Componenten zijn in staat om zelf aan te geven via het netwerk wanneer ze niet meer naar behoren werken doormiddel van een status sensor.	М			
F3a	De componenten hoeven niet meer handmatig gekalibreerd worden nadat ze opnieuw stroom krijgen en opstarten.	М			
F3c	De componenten moeten op het netwerk kunnen worden aangesloten zonder handmatige kalibratie.	М			
F10	De documentatie/handleiding moet begrijpbaar voor personen uit de maritieme sector	М			
F7	Het systeem moet gemeten kunnen opslaan en bijhouden	W			
F10	Er is een functionele compositie gemaakt om alle functies te vertonen	М			
F3b	De componenten die op het netwerk zijn aangesloten kunnen de NMEA berichten die voor hun bestemd zijn op het netwerk herkennen	М			
F11	Er is een gebruikersonderzoek samengesteld om de tevredenheid van de PO's te waarborgen	М			

Changelog

Datum	Versie	Wijziging	Auteur
15-10-2021	1.0	Eerste opzet van de requirements	Mick Jia Timo
15-10-2021	1.1	Verwerking Feedback op de requirements	Mick Jia Timo
2-2-2022	2.0	Requirements omgezet in functies en op de productlog aangepast	Mick

Productbacklog

ID	Functionaliteiten	MoSCoW	User Stories	Taken	Acceptance criteria
1	Implementatie NMEA	M	Ik wil graag dat de interne communicatie via het NMEA- protocol gaat.	Onderzoek naar het NMEA , onderzoek naar informatie van actuator en sensor Onderzoek naar geschikt	Een paar voorbeelden(actuator en sensor) van hoe informatie omgezet wordt naar NMEA
2	Communicatie tussen de onderdelen(het netwerk zelf)	M	Ik wil dat de informatie van de sensor door gestuurd wordt naar het netwerk	communicatie systeem/Netwerk(SPI, UART, I2C, CAN, Ethernet) - Prototype simpele ethernet connectie met NMEA protocol realiseren	De berichten zijn volgens het NMEA-protocol, Maximale latency 20ms van het ene component naar het ander component. Dit netwerk moet robuust zijn: {stevig, spatwater overleg PO concrete eisen}
3а	componenten moet zelf acties kunnen uitvoeren	M	Ik wil dat componenten smart zijn en gegevens kunnen verwerken(gestuurde/gemeten data)	Onderzoek doen naar geschikte microcontrollers voor de componenten	Componenten moeten op dit netwerk aangesloten kunnen worden. Alle componenten moeten NMEA berichten naar het netwerk kunnen sturen en die van elkaar kunnen lezen.
3b	componenten moeten hun sensoren kunnen uitlezen	M	Ik wil graag dat de componenten de sensoren kunnen uitlezen	Onderzoek NMEA sensoren, Onderzoek PWM-signaal	De microcontroller kan de sensoren uitlezen en weergeven (Bijvoorbeeld op de laptop)
3с	componenten moeten op het netwerk aangesloten kunnen worden	M	Ik wil dat de componenten op het netwerk kunnen worden aangesloten en met elkaar kunnen communiceren	Onderzoek doen naar Netwerk verbindingen voor de microcontroller. Netwerk opstellen	Het moet een TCP verbinding zijn over Ethernet, de berichtgeving moet volgens het NMEA-protocol zijn.
4 [Datalogging	W	Ik wil graag dat de informatie opgeslagen wordt, zodat we dit later terug kunnen lezen, ik wil dat dit een los component wordt dat meeluistert op het netwerk.	Onderzoek waar we de data op kunnen slaan, onderzoek naar hoe we data snel kunnen verwerken(naar de bestuurder terug sturen)	Dit moet een component worden die op het netwerk aangesloten kan worden

5	Het systeem kan de status van componenten bijhouden	M	Ik wil dat het systeem kan aangeven of de componenten naar behoren werken of dat er defecten zijn	Zorgen dat componenten aangesloten zijn op een statussensor en dat die de juiste signalen doorgeeft bij een defect	Het component zal zelf aangeven als het niet meer werkt naar behoren.
7	Interface voor besturing	M	Ik wil dat het systeem de actuatoren kan aansturen aan de hand van binnen komende signalen van zowel binnen en buiten systeem, later zouden we dit misschien door een autopilot willen laten doen	Overleg met andere Aquabots groep. Het maken van een interface over welke/wat voor berichten er gestuurd kunnen worden voor roer en motoren.	Er moet interface zijn voor: een component dat in staat is om commando in het netwerk te sturen, (die uitgevoerd worden door actuatorcomponenten)
9	Het systeem moet verder gebouwd worden op het systeem wat al is gemaakt	M	Developer story: wij willen graag goed begrijpen wat de vorige groep gedaan heeft en hoe wij daar op verder kunnen gaan	Oplever set doorlezen en contact opnemen met de vorige projectgroep om te begrijpen wat ze allemaal hebben gedaan	We snappen de oude opleversets en kunnen hier verder op bouwen.
10	Er is een functionele compositie gemaakt om alle functies te vertonen	M	Als opdracht gever wil ik graag dat er een functioneel decompositie verslag wordt gemaakt.	Zorgen dat het document Functionele Decompositie word gemaakt waar duidelijk alle functies die van toepassing staan	Alle functies en data leveranciers/vragen zijn te vinden in de decompositie, alle vertakkingen zijn uitgewerkt zodat er duidelijk wordt waar verstoringen zitten en wat de verschillende eisen van componenten zijn
11	Er is een gebruikersonderzoek samengesteld om de tevredenheid van de PO's te waarborgen	M	-	Een gebruikersonderzoek maken en zo in kaart zetten wat de PO ervan vind	componenten zijn

Veiligheid en privacy

Het grootste beveiligingsprobleem zal zijn dat als iemand een apparaat zou installeren dat is verbonden met het lokale netwerk en de gegevens van het lokale netwerk naar een extern netwerk zou sturen. Een voordeel van het bedieningssysteem is dat het een LAN-netwerk is, je kan niet het LAN-netwerk binnenkomen tenzij je een fysieke verbinding of de inloggegevens hebt van de router of raspberry pi. Dit betekent dat je fysieke toegang nodig hebt binnen de boot.

Een ander veiligheidsprobleem zou met de gebruiker hemzelf zijn, die zou de inloggegevens van de router aan de aanvaller kunnen geven doormiddel van phishing. Dit soort aanvallen heet "social engineering". Social engineering is het extraheren van gevoelige informatie van werknemers bij een bepaald bedrijf door het gebruik van misleidende praktijken waarvan de werknemer zich niet bewust is. Deze aanvallen

vereisen sterke sociale vaardigheden om succesvol te zijn en zijn vaak zeer effectief wanneer ze correct worden uitgevoerd. Uit een onderzoek van Purplesec blijkt dat 98% van cyberaanvallen afhankelijk is van social engineering als toegangspunt tot de systemen dan een bedrijf.

Risicoanlyse

Legenda

Kans (1 t/m 5):

Een kans van 1 betekent iets dat zeer onwaarschijnlijk is. Een kans van 5 betekent iets dat zeer waarschijnlijk is.

Impact (1 t/m 5):

Een impact van 1 zal een kleine ongemakkelijkheid zijn en iets wat makkelijk op te lossen is. Een impact van 5 zal iets zijn dat grote gevolgen zal hebben voor het project, waardoor we veel tijd kwijtraken of drastische aanpassingen moeten doen.

Risico	Kans	Impact	Oplossing
Bestellingen worden te laat	2	4	We zullen opnieuw een bestelling moeten
of niet geleverd			maken en in de tussentijd aan andere
			onderdelen werken of voor alternatieven
			zorgen
School en het RDM moeten	3	3	We moeten tijdens de lockdown online moeten
sluiten vanwege een			werken en alleen in kleinere groepen moeten
lockdown			werken op een andere locatie als het echt
			nodig is
Een groepslid moet in	3	2	Het groepslid zal tijdens de quarantaine online
quarantaine vanwege covid			moeten werken
Een groepslid stopt met de	1	5	Op tijd melden de projectdocenten en het
studie			overgebleven werk onder de andere
			groepsleden verwerken
Bij het integreren van het	2	3	Nakijken of het aan het component of de
eindproduct blijkt een			manier van integreren ligt en het juiste deel
component niet te werken			aanpassen
Het lukt niet om op tijd alle	4	3	We zullen de optionele functies moeten laten
functies uit de			vallen of opnieuw op de wensen van de PO's
productbacklog te			afstemmen als de tijdsnood nog hoger is
realiseren			
Bij het testen vallen de	3	4	Zeker zijn dat de testmethode klopt of de
resultaten buiten de eisen			testopstelling aanpassen, anders in overleg
			met PO's om de criteria aan te passen
Een component blijkt defect	2	3	Het component vervangen en voor alternatief
of onbetrouwbaar te zijn			zorgen, rekening houden met eventuele
			onbetrouwbaarheid en deze opnemen in het
			eindverslag

Gemaakte keuzes

Voor de microcontrollers binnen het project is er voor een arduino-shield met Ethernet port gekozen, deze kwamen het beste uit de prijs en beschikbaarheid. Er was bezorgdheid over eventuele complicaties bij het gebruiken van shields, maar daar is tijdens het project niets van gemerkt.

Voor het communicatie protocol is er voor UDP over TCP gekozen, dit was voornamelijk voor de snelheid/latency tegenover het TCP. Aangezien er constant en heel snel dezelfde type berichten worden verstuurd naar de componenten is een check of het bericht aangekomen is niet erg belangrijk, ook is het zo dat de berichten volgens het NMEA protocol zijn wat inhoud dat gecontroleerd word of het bericht juist is overgekomen doormiddel van een checksum. Daarnaast is er ook nog een sensor ingebouwd om de status van componenten te verifiëren.

Aanbevelingen

Door met statische IP-adressen te werken is het mogelijk om de componenten met elkaar te laten communiceren met alleen een switch. Ook zou het mogelijk zijn om een router te kunnen gebruiken in plaats van een raspberry. Het is interessant om hier verder in te experimenteren.