- 21 Compute the divergence, $\nabla \cdot \mathbf{A}$, of the following vector fields:
 - (a) $\mathbf{A}(x, y, z) = yz\mathbf{e_1} + xz\mathbf{e_2} + xy\mathbf{e_3},$
 - (b) $\mathbf{A}(x, y, z) = (x^2 + y^2 + z^2)(3\mathbf{e_1} + 4\mathbf{e_2} + 5\mathbf{e_3}),$
 - (c) $\mathbf{A}(x, y, z) = (x + y)\mathbf{e_1} + (y + z)\mathbf{e_2} + (z + x)\mathbf{e_3}.$
- 22 Compute the curl, $\nabla \times \mathbf{A}$, of each of the vector fields, \mathbf{A} , in the previous question.
- 23 If f(r) is a differentiable function of $r = |\mathbf{x}|$, for $\mathbf{x} \in \mathbb{R}^n$, $r \neq 0$, show that
 - (a) grad $f(r) = f'(r) \mathbf{x} / r$,
 - (b) $\operatorname{curl}[f(r)\mathbf{x}] = 0$, where now we let n = 3.
- 24 Let x be the position vector in three dimensions, with $r = |\mathbf{x}|$, and let a be a constant vector. Show that
 - (a) $\operatorname{div} \mathbf{x} = 3$,
 - (b) $\operatorname{curl} \mathbf{x} = 0$,
 - (c) $\operatorname{grad} r = \mathbf{x}/r$,
 - $(d) \qquad \operatorname{div}(r^n \mathbf{x}) = (n+3) r^n,$
 - (e) $\operatorname{grad}(\mathbf{a} \cdot \mathbf{x}) = \mathbf{a}$,
 - (f) $\operatorname{div}(\mathbf{a} \times \mathbf{x}) = 0,$
 - (g) $\operatorname{curl}(\mathbf{a} \times \mathbf{x}) = 2\mathbf{a}$,
 - (h) $\operatorname{curl}(r^2\mathbf{a}) = 2(\mathbf{x} \times \mathbf{a}),$
 - (i) $\nabla^2(1/r) = 0$, if $r \neq 0$,
 - (j) $\nabla^2(\log r) = 1/r^2, \quad \text{if } r \neq 0,$
 - (k) $\operatorname{div}[(\mathbf{a} \cdot \mathbf{x})\mathbf{x}] = 4\mathbf{a} \cdot \mathbf{x},$
 - (1) $\operatorname{div}\left[\mathbf{x}\times(\mathbf{x}\times\mathbf{a})\right]=2\,\mathbf{a}\cdot\mathbf{x},$
 - (m) curl $(\mathbf{a} \times \mathbf{x}/r^3) = 3(\mathbf{a} \cdot \mathbf{x})\mathbf{x}/r^5 \mathbf{a}/r^3$,
 - (n) Exam question June 2002 (Section A): calculate the curl of $(\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$.
- 25 If x is the position vector, $\mathbf{x} = x\mathbf{e_1} + y\mathbf{e_2} + z\mathbf{e_3}$, a is a constant vector, $\mathbf{F} = (\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$ and $\mathbf{G} = r^2\mathbf{a}$, (with $r = |\mathbf{x}|$), show that
 - (a) $\operatorname{div} \mathbf{F} = 2 \operatorname{div} \mathbf{G} = 4 \mathbf{a} \cdot \mathbf{x}$,
 - (b) $\operatorname{curl} \mathbf{G} = -2 \operatorname{curl} \mathbf{F} = 2 \mathbf{x} \times \mathbf{a},$
 - (c) $\operatorname{div} \operatorname{curl} \mathbf{F} = \operatorname{div} \operatorname{curl} \mathbf{G} = 0$,
 - (d) $\operatorname{curl} \operatorname{curl} \mathbf{G} = -2 \operatorname{curl} \operatorname{curl} \mathbf{F} = -4 \mathbf{a}.$
- 26 Exam question June 2001 (Section A):
 - (a) Give a representation of the vector function $\mathbf{A}(x,y) = y\mathbf{e_1}$ as a collection of arrows in the region of the (x,y)-plane bounded by $(x_1,y_1) = (-2,2), (x_2,y_2) = (2,2), (x_3,y_3) = (2,-2), (x_4,y_4) = (-2,-2).$

- (b) Calculate the curl of the vector field $\mathbf{A}(x,y) = (-y\mathbf{e_1} + x\mathbf{e_2})/(x^2 + y^2)$ defined everywhere in the (x,y)-plane except at the origin. (You can consider \mathbf{A} to be embedded in three dimensions, independent of z and with zero z component.)
- (c) Give the unit vector normal to the surface of equation ax + by = cz, where a, b, c, are three real constants.
- (d) (Slightly modified from exam) Let \mathbf{x} be the position vector in 3-dimensions and \mathbf{a} be a constant vector. Use the result $\mathbf{x} \times (\mathbf{x} \times \mathbf{a}) = \mathbf{x} (\mathbf{x} \cdot \mathbf{a}) \mathbf{a} (\mathbf{x} \cdot \mathbf{x})$ to show that $\operatorname{div} \left[\mathbf{x} \times (\mathbf{x} \times \mathbf{a}) \right] = 2\mathbf{a} \cdot \mathbf{x}$.
- 27 Let $\underline{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field. Prove the vector identity

$$v \times (\nabla \times v) = \nabla(|v|^2/2) - (v \cdot \nabla)v.$$