Diabetes Prediction

Mini Project - Week 7

Lara Castanheira

First Steps

- Understand the data set
- Define the dependent variable (target) and the independent variables (features)
- Data cleaning
 - Check for null values and drop
 - Check for duplicates and drop
- Convert categorical variables into dummy variables

Variables

Independent (features)

Gender

Age

Hypertension

Heart disease

Smoking history

BMI

Glycated hemoglobin Blood glucose level Dependent (target)

Diabetes

Dichotomic:

0 - No diabetes

1 - Diabetes

Model - Logistic Regression

- Division of data 80% for training and 20% for testing
- Data normalisation
- Train the model with normalised data
- Make predictions on the test set
- ► Evaluate the accuracy of the model (0.959) When the model is used to make predictions, approximately 95.9% of these predictions are correct
- Check if the model is overfitting (accuracy 0.958 = 0.001)

Model - Logistic Regression

▶ ROC Curve: is a graphical tool used to evaluate the performance of a binary classification model

Model - Logistic Regression

► Confusion Matrix

Predicted

Observed		0	1
	0	True Negative - 1053	False Postive - 169
	1	False Negative - 615	True Positive - 17393

► The model performs well overall, but it needs improvement, especially in its ability to correctly identify **positive cases**

Model - Logistic Regression - Conclusions

- Precision: ≈0.86 → indicates a high proportion of cases correctly identified as positive
- ▶ Recall: ≈0.63 → suggests that the model may be missing some positive instances
- ► F1-score: ≈0.72 → shows a good balance between precision and recall
- ► Error rate: ≈0.04 → requires more investigation to identify and correct possible flaws in the model

Next Steps

- Detailed descriptive statistics
- Bivariate analysis
- ► Hosmer & Lemeshow test
- Wald test
 - Odds ratio

Thank you!