

COMSATS University Islamabad Department of Computer Science Course Description Form (CDF)

Course Information

Course Code: AIC365 Course Title: Natural Language Processing

Credit Hours: **3(2,1)**Lab Hours/Week: **2**Lab Hours/Week: **3**Pre-Requisites: **None**

Course Objectives

• To discuss the basic concepts of Natural Language Processing (NLP);

• To discuss the different algorithms and techniques in NLP;

• To present NLP problem, students should be able to analyse, assess and justify which algorithms are most appropriate for solving the problem;

• To identify the suitable evaluation measures for a given problem.

Course Content

Overview; Approaches to NLP; NLP Pipeline; Zipf'law; Collocations; Text Representation; Accessing Text Corpora & Lexical Resources; Processing Raw Text; Categorizing & Tagging Words; Text Classification;; N-grams Models; Word Sense Disambiguation; Hidden Markov Model & Word Guessing; Maximum Entropy; Part-of-Speech Tagging; Natural Language Parsing; Building Feature-Based Grammars; Natural Language Generation; Statistical Approaches; Text Alignment & Machine Translation; Information Retrieval & Information Extraction; Deep Learning for NLP; Applications of NLP.

Unit wise Major Topics:

Unit	Торіс	No. of Teaching Hours			
1.	Overview; Approaches to NLP; NLP Pipeline; Collocations; Concept of	f			
	Linguistic Resources; Corpora & Lexical Resources; Vocabulary; and	3			
	Zipf'law.				
2	Text Representation; Accessing Text; Processing Raw Text; Categorizing				
	& Tagging Words; Text Normalization & its Importance;				
	Tokenization Issues: Regular Expressions, Basic Patterns in Regular	3			
	Expressions, Writing a Tokenizer using Regular Expressions;	3			
	Minimum Edit Distance Algorithm; Stemming; Sentence				
	Segmentation; and Word Sense Disambiguation.				
	N-gram Language Models; Evaluation of Language Models;	3			
3	Concept of Data Sparseness; Smoothing: Add-one Smoothing, Add-				
3	k Smoothing Back-off & Interpolation, and Kneaser-Ney	3			
	Smoothing.				
4.	Text Classification: Text classification using Naïve Bayes Classifier,				
	Evaluation of a Classifier by using Precision, Recall & F1- measure;				
	Sigmoid Function & Logistic Regression for Text Classification;				
	Sentiment analysis; Part of Speech Tagging: HMM Tagger & Viterbi				
	Algorithm, and Named Entity Recognition.				

	Natural Language Parsing; Building Feature-Based Grammars; Context			
5.	Free Grammar; Grammar Equivalence & Normal Form; and CKY	3		
	Parsing.			
	Lexical semantics, vector semantics, vector representation of words,			
6.	Cosine similarity, TF-IDF, PMI, WordNet, Word2Vec, learning	3		
	classifier, skip-gram embedding, and Visualization of Embedding.			
	Deep Learning for NLP; RNNs as Language Models: Managing			
7.	Context in RNN using LSTM, The Encoder-Decoder Model with	4.5		
	RNNs, and Attention Mechanism.			
8.	Language Generation; Statistical Approaches; Self-Attention			
	Networks; Transformers as Language Models; BERT; Fine-tuning	4.5		
	of Large Language Models; Natural Text Alignment & Machine			
	Translation; and Information Retrieval & Information Extraction.			
Total Co	ntact Hours	30		

Mapping of CLOs and GAs

Sr.#	Unit #	Course Learning Outcomes	Blooms Taxonomy Learning Level	GA			
CLO's for Theory							
CLO-1	1-2	Describe fundamental concepts of Natural Language Processing.	Understanding	2			
CLO-2	3-4	Apply the concept of language modelling to solve a given problem.	Applying	3-4			
CLO-3	5-6	Apply different Natural Language Processing techniques to evaluate syntax and semantics of the text.	Applying	3-4			
CLO-4	7-8	Analyze the working of large language models.	Analyzing	2-4			
CLO's for Lab							
CLO-5	1-8	Build an NLP application using a large language model.	Creating	2-5			

CLO Assessment Mechanism

Assessment Tools	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5
Quizzes	Quiz 1	Quiz 2	Quiz 3	Quiz 4	-
Assignments	Assignment 1	Assignment 2	Assignment 3	Assignment 4	-
Mid Term	Mid Term	Mid Term			Lab Mid
Exam	Exam	Exam Exam		-	Term Exam
		Project/ Lab			
Final Term Exam		Final Term			
		Exam			

Text and Reference Books

Textbook:

1. Speech and Language Processing, Jurafsky & Martin, 2023.

Reference Books:

- 2. Natural Language Processing in Action: Understanding, analyzing, and generating text with Python, Lane H, Hapke H, Howard C, Manning Publications, 2019.
- 3. Natural Language Processing with Python, Steven Bird, Ewan Klein, Edward Loper Analyzing Text with the Natural Language Toolkit (O'Reilly 2009, website 2018).