

Data Science & ML Course Lesson #19 Logistic Regression

Ivanovitch Silva December, 2018

Update from repository

git clone https://github.com/ivanovitchm/datascience2machinelearning.git

Or

git pull

Agenda

- 1. Classification
- 2. Binary Classification
- 3. Decision Boundary
- 4. Cost Function
- 5. Multiclass Classification
- 6. Regularization
- 7. Hands on Scikit

Classification Problem

SPAM CLASSIFIER MODEL

Student 2 Test: 3/10 🔀 Grades: 4/10

Student 3 Test: 7/10 😰 Grades: 6/10

NOT SPAM

SPAM

Binary Classification Problem

- Email = {spam, not spam}
- Medical model = {healthy, sick}
- Fraudulent operation = {yes, not}
- Academic acceptance = {success, fail}
- Movie review = {good, bad}

$$Y \in \{0,1\}$$
 0: negative class 1: positive class

Binary Classification Problem (observation #1)

Threshold classifier output as $h_{\theta}(x)$:

- If $h_{\theta}(x) \ge 0.5$, predict y = 1If $h_{\theta}(x) < 0.5$, predict y = 0

Binary Classification Problem (observation #2)

- Y assume only two values: 0 or 1.
- In linear case, $h_{\theta}(x) > 1$ and $h_{\theta}(x) < 0$ can occur.

Logistic Regression - Hypothesis Representation

Target $\rightarrow 0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = \theta^T x$$
 (doesn't work)

$$h_{ heta}(x) = g(z)$$
 ,where $z = \theta^T x$

$$g(z)=rac{1}{1+e^{-z}}$$

Sigmoid function or logistic function

Suppose:

Predict y = 1 if $h_{\theta}(x) \ge 0.5$

$$g(z) \ge 0.5$$
 when $z \ge 0$

Suppose:

Predict y = 0 if $h_{\theta}(x) < 0.5$

$$g(z) < 0.5$$
 when $z < 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

$$z = -3 + x_1 + x_2$$

Suppose:

Predict y = 1 if $h_{\theta}(x) \ge 0.5$

$$-3 + x_1 + x_2 \ge 0$$

$$x_1 + x_2 \ge 3$$

Predict y = 0 if $h_{\theta}(x) < 0.5$

$$-3 + x_1 + x_2 < 0$$

$$x_1 + x_2 < 3$$

Consider logistic regression with two features x_1 and x_2 . Suppose $\Theta_0 = 5$, $\Theta_1 = -1$ and $\Theta_2 = 0$, so that $h_{\Theta}(x) = g(5 - x_1)$.

Which of these shows the decision boundary of $h_{\Theta}(x)$?

Consider logistic regression with two features x_1 and x_2 . Suppose $\Theta_0 = 6$, $\Theta_1 = 0$ and $\Theta_2 = -1$, so that $h_{\Theta}(x) = g(\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2)$.

Which of these shows the decision boundary of $h_{\Theta}(x)$?

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):

Our estimate for $P(y = 0|x; \theta)$ is 0.4.

Our estimate for $P(y = 0|x; \theta)$ is 0.6.

Our estimate for $P(y = 1|x; \theta)$ is 0.4.

Our estimate for $P(y = 1|x; \theta)$ is 0.6.

RECAP

f(x) cost function

Training Set: $\{(x^1, y^1), (x^2, y^2), ..., (x^m, y^m)\}$ m examples

$$x \in egin{bmatrix} x_0 \ x_1 \ dots \ x_n \end{bmatrix}, x_0 = 1, y \in \{0,1\}$$
 $h_ heta(x) = rac{1}{1 + e^{- heta^T x}}$

How to fit the parameter θ ?

Cost Function

$$J(heta) = rac{1}{m} \sum_{i=1}^m rac{1}{2} (h_ heta(x^i) - y^i)^2 \qquad cost(h_ heta(x), y)$$

Logistic Regression Cost Function

$$cost(h_{ heta}(x),y) = egin{cases} -log(h_{ heta}(x)) & ext{if y=1} \ -log(1-h_{ heta}(x)) & ext{if y=0} \end{cases}$$

Logistic Regression Cost Function

$$cost(h_{ heta}(x),y) = egin{cases} -log(h_{ heta}(x)) & ext{if y=1} \ -log(1-h_{ heta}(x)) & ext{if y=0} \end{cases}$$

Simplified Cost Function & Gradient Descent

Logistic Regression Cost Function

$$egin{aligned} cost(h_{ heta}(x),y) &= egin{cases} -log(h_{ heta}(x)) & ext{if y=1} \ -log(1-h_{ heta}(x)) & ext{if y=0} \end{cases} \ cost(h_{ heta}(x),y) &= -y \ log(h_{ heta}(x)) - (1-y) log(1-h_{ heta}(x)) \end{aligned}$$

 $J(heta) = -rac{1}{m} \sum [y^{(i)} \log(h_{ heta}(x^{(i)})) + (1-y^{(i)}) \log(1-h_{ heta}(x^{(i)}))]$

Cost Function - Vectorized Implementation

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(x^{(i)}))]$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_k \end{bmatrix} \qquad h = g(X\theta)$$

$$I(\theta) = \frac{1}{m} \cdot \left(-y^T \log(h) - (1 - y)^T \log(1 - h) \right)$$

$$[1;m] \times [m;1] = \text{scalar}$$

General Form of Gradient Descent

Repeat { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$

Vectorized Implementation

$$heta := heta - rac{lpha}{m} X^T (g(X heta) - ec{y})$$

Repeat {

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Multiclass Classification: One vs All

Multiclass Classification

- Email foldering/tagging: work, ad, family, friends, hobby
- Medical diagrams: not ill, cold, flu
- Weather: sunny, cloudy, rain, snow

Binary vs Multiclass Classification

Multiclass Classification (One vs All)

Class 1: △ Class 2: □

Class 3: X

Multiclass Classification (One vs All)

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i:

$$h^i_ heta(x) = P(y=i|x; heta)$$

On a new input x, to make a prediction, pick the class i that maximizes:

$$\max_{i} h_{\theta}^{(i)}(x)$$

overfitting problem

Logistic Regression

Underfit

Overfit

Addressing Overfitting

- 1. Reduce number of features
 - a. Manually select which feature to keep
- 2. Regularization
 - a. Keep all the features, but reduce magnitude/values of parameters Θ_i
 - b. Works well when we have a lot of features, each of which contributes a bit to predicting y.

Intuition - Regularized Linear Regression

$$min_{ heta} \; rac{1}{2m} \; \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n heta_j^2$$

Regularization Parameter

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make Θ_3 and Θ_4 very small

$$min_{ heta} \; rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2 + 1000 \cdot heta_3^2 + 1000 \cdot heta_4^2$$

Intuition - Gradient Descent

Repeat {
$$\theta_0 := \theta_0 - \alpha \, \frac{1}{m} \, \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \, \left[\left(\frac{1}{m} \, \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right) + \frac{\lambda}{m} \, \theta_j \right]$$
 $j \in \{1, 2...n\}$ }

 $heta_{i} := heta_{i}(1 - lpha rac{\lambda}{m}) - lpha rac{1}{m} \sum_{i=1}^{m} (h_{ heta}(x^{(i)}) - y^{(i)}) x_{i}^{(i)}$

Intuition - Regularized Logistic Regression

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right]$$

Intuition - Regularized Logistic Regression

Cost function:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \; \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \; \log(1-h_ heta(x^{(i)}))
ight] + \left(rac{\lambda}{2m} \sum_{j=1}^n heta_j^2
ight)$$

Binary Classification

admit	gpa	gre				
0	3.177277	594.102992				
0	3.412655	631.528607				
0	2.728097	553.714399				
0	3.093559	551.089985				
0	3.141923	537.184894				

Logistic Regression Model (fit, predict prob.)

Logistic Regression Model (fit, predict class)

Evaluating Binary Classifiers

Prediction	Observation	
	Admitted (1)	Rejected (0)
Admitted (1)	True Positive (TP)	False Positive (FP)
Rejected (0)	False Negative (FN)	True Negative (TN)

$$Accuracy = \frac{\text{#correct predictions}}{\text{#observations}}$$

$$TPR = \frac{\text{#true positives}}{\text{#true positives} + \text{#false negatives}}$$

$$TNR = \frac{\text{#true negatives}}{\text{#true negatives} + \text{#false positives}}$$

Multiclass Classification

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
0	18.0	8	307.0	130.0	3504.0	12.0	70	1
1	15.0	8	350.0	165.0	3693.0	11.5	70	1
2	18.0	8	318.0	150.0	3436.0	11.0	70	1
3	16.0	8	304.0	150.0	3433.0	12.0	70	1
4	17.0	8	302.0	140.0	3449.0	10.5	70	1

origin -- Integer and Categorical. 1: North America, 2: Europe, 3: Asia.

Dummy Variables

```
        cyl_3
        cyl_4
        cyl_5
        cyl_6
        cyl_8

        0
        0
        0
        1

        0
        0
        0
        1

        0
        0
        0
        1

        0
        0
        0
        1

        0
        0
        0
        1

        0
        0
        0
        1
```

year_70	year_71	year_72	year_73	year_74	year_75	year_76	year_77	year_78	year_79	year_80	year_81	year_82
1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0

Training a Multiclass Logistic Regression Model

```
from sklearn.linear model import LogisticRegression
unique origins = cars["origin"].unique()
unique origins.sort()
models = \{\}
features = [c for c in train.columns
            if c.startswith("cyl") or c.startswith("year")]
for origin in unique origins:
   model = LogisticRegression()
    X train = train[features]
    y train = train["origin"] == origin
   model.fit(X train, y train)
    models[origin] = model
```


Testing (One vs All)

	1	2	3
0	0.613723	0.131164	0.262305
1	0.536781	0.226177	0.236130
2	0.613723	0.131164	0.262305
3	0.678392	0.174871	0.154612
4	0.616443	0.226177	0.162931

