

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 1 of 67

FCC TEST REPORT

Client Name : Dongguan Koppo Electronics Co.,Ltd

No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village,

Address : Fenggang Town, Dongguan City, Guangdong Province,

China

Product Name : TRUE WIRELESS EARBUDS

Date : Jul. 04, 2019

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01

FCC ID: 2AG68TWS-813B

Page 2 of 67

Contents

1. Ocheral information	
1.1. Client Information	
1.2. Description of Device (EUT)	5
1.3. Auxiliary Equipment Used During Test	6
1.4. Description of Test Modes	6
1.5. List of channels	7
1.6. Description Of Test Setup	8
1.7. Test Equipment List	
1.8. Measurement Uncertainty	10
1.9. Description of Test Facility	10
2. Summary of Test Results	
3. Conducted Emission Test	12
3.1. Test Standard and Limit	12
3.1. Test Standard and Limit	
3.3. Test Procedure	12
3.4. Test Data	
4. Radiation Spurious Emission and Band Edge	
4.1. Test Standard and Limit	
4.2. Test Setup	15
4.3. Test Procedure	16
4.4. Test Data	17
5. Maximum Peak Output Power Test	25
5.1. Test Standard and Limit 5.2. Test Setup	25
5.2. Test Setup	25
5.3. Test Procedure	25
5.4. Test Data	25
6. 20DB Occupy Bandwidth Test	29
6.1. Test Standard	29
6.2. Test Setup	
6.3. Test Procedure	29
6.4. Test Data	29
6.4. Test Data	33
7.1. Test Standard and Limit	
7.2. Test Setup	33
7.3. Test Procedure	33
7.2. Test Setup	33
8. Number of Hopping Channel Test	37
8.1. Test Standard and Limit	37
nzhan Anhatak Camplianca Laboratory Limited	Code: AB-RF-05-a

Report No.: SZAWW190614004-01	FCC ID: 2AG68TWS-813B	Page 3 of 67
8.2. Test Setup		37
8.3. Test Procedure	Author Authores	37
8.4. Test Data	ek hupote kun	37
9. Dwell Time Test	And	39
9.1. Test Standard and Limit		
9.2. Test Setup	A1000	39
9.3. Test Procedure	Aug Aug	39
9.4. Test Data		39
10. 100kHz Bandwidth of Frequency B	Band Edge Requirement	43
10.2. Test Setup	atek kaba ka	43
10.3. Test Procedure	No.	43
10.4. Test Data	N	43
11. Antenna Requirement	nent	48
11.2. Antenna Connected Constru	iction	48
APPENDIX I TEST SETUP PHOTO	GRAPH	
APPENDIX II EXTERNAL PHOTOG	RAPH	51
APPENDIX III INTERNAL PHOTOG	RAPH	58

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 4 of 67

TEST REPORT

Applicant : Dongguan Koppo Electronics Co.,Ltd

Manufacturer : Dongguan Koppo Electronics Co.,Ltd

Product Name : TRUE WIRELESS EARBUDS

Model No. TWS-813B, BTH90, BTH91, TWS- XXXX(Note: "XXXX" can represent the

number "1 to 9" in arabesques or the letter "A to Z")

Trade Mark : N.A.

Rating(s) Case Input: DC 5V, 500mA(with DC 3.7V, 720 mAh Battery inside)

Single Earphone Input: DC 5V, 500mA(with DC 3.7V, 50 mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of receipt	Jun. 14, 2019
Date of Test Anbotek Anbotek	Jun. 14~27, 2019
Anbotek	botek - ster Ando ster shotek
Anbotek Product Safety	olivay larg
1 M. J. C.	And Anbor All
Prepared by *Approved*	Augo Mark Hole Aug
moter Anbus Anbus Anbors Annu	(Engineer / Oliay Yang)
	tak -tek -aboth Ann stek
	Conquist Meng,
	Snavy Mary
Reviewer	abote An An atek Anboten
ek Anbole Ann stek subolek Anbo.	(Supervisor / Snowy Meng)
	An stek Abotek Anbo Ak
	Sally Zhong
Approved & Authorized Signer	motek Ar T Ar Jake Ambotek
Ambote Ann rok mbotek Ambo K	(Manager / Sally Zhang)

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01

1. General Information

1.1. Client Information

Applicant	: Dongguan Koppo Electronics Co.,Ltd
Address	: No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China
Manufacturer	: Dongguan Koppo Electronics Co.,Ltd
Address	: No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China
Factory	: Dongguan Koppo Electronics Co.,Ltd
Address	No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China

1.2. Description of Device (EUT)

Product Name	:	TRUE WIRELESS EARBUDS						
Model No.	:	TWS-813B, BTH90, BTH91, TWS- XXXX(Note: "XXXX" can represent the number "1 to 9" in arabesques or the letter "A to Z") (Note: All samples are the same except the name and the appearance, so we prepare "TWS-813B" for test only.)						
Trade Mark	:	N.A.	Tell Toll N. W. Sole And					
Test Power Supply		AC 120V, 60Hz for adapter/ DC 3.7V Battery inside						
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)						
	:	Operation Frequency:	2402MHz~2480MHz					
		Transfer Rate:	BT 5.0 EDR: 1/2/3 Mbits/s BT 5.0 BLE: 1 Mbits/s					
Product			Number of Channel:	BT 5.0 EDR: 79 Channels BT 5.0 BLE: 40 Channels				
Description		Modulation Type:	BT 5.0 EDR: GFSK, π/4-DQPSK, 8-DPSK BT 5.0 BLE: GFSK					
		Antenna Type:	PCB Antenna					
		Antenna Gain(Peak):	5.52 dBi					

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2)This report is for BT 5.0 EDR module.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 6 of 67

1.3. Auxiliary Equipment Used During Test

		(0)	V QD	140	40	P.2.
Adapter	:	Manufacturer: ZTE				200
		M/N: STC-A2050I1000USBA-C				true
		S/N: 201202102100876				P. D.
		Input: 100-240V~ 50/60Hz, 0.3A				otek
		Output: DC 5V, 1000mA				101

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

TEST MODE:

Mode 1	ak Aupates Aus patek	CH00	utek Pro	enbotek Anbotes Anto
Mode 2	GFSK	CH39	upo	Anbotek Anbote An
Mode 3	Anborek Anbox An	CH78	Ann	Anbotek Anbote
Mode 4	Aupotes Aupo Tek	CH00	Amo	K Anholek Anhol
Mode 5	π/4-DQPSK	CH39	ok No	TX+ Charging Mode/TX Only
Mode 6	k Anboten And hotek	CH78	r. br.	abolek Anbo Anbo
Mode 7	lotek Aupote Aug	CH00	lpo, stak	Anbotek Anboten Ant
Mode 8	8-DPSK	CH39	Anbo	Anbotek Anbote
Mode 9	Aupolek Aupole All	CH78	And more	k Anbotek Anbote

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 7 of 67

1.5. List of channels

Channel	Freq. (MHz)								
00	2402	17	2419	34	2436	51	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19 📉	2421	36	2438	53	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05	2408	23	2425	40	2442	57	2459	74	2476
07	2409	24	2426	41	2443	58	2460	75	2477
08	2410	25	2427	42	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	77	2479
10	2412	27	2429	44	2446	61	2463	78	2480
11	2413	28	2430	45	2447	62	2464		
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47	2449	64	2466		
14	2416	31	2433	48	2450	65	2467		
15	2417	32	2434	49	2451	66	2468		× / ×
16	2418	33	2435	50	2452	67	2469		
40.00	100.00	1000		8.83	475.76				

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

Report No.: SZAWW190614004-01

FCC ID: 2AG68TWS-813B

Page 8 of 67

1.6. Description Of Test Setup

CE

RE

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 9 of 67

1.7. Test Equipment List

100	(87)	- 900	No.	Par Par	100	Cal.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Interval
inb 1 tek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 26, 2018	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 05, 2018	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
⊚¥11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	LW	TPR-6420D	374470	Oct. 31, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Nov. 01, 2018	1 Year

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 10 of 67

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Ho	orizontal)	Do. Vek	bolek	Anbote K
		Ur = 3.8 dB (Ve	ertical)	Anbu	Anhotek	Anboro Ar
		Ar. abotek	Aupalan	Anbanotek	anbotek	Anbor
Conduction Uncertainty	:	Uc = 3.4 dB	Anboto	K And Hotek	Anbore	K Anbor

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Report No.: SZAWW190614004-01 Page 11 of 67

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 12 of 67

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.2	07 Anbotte Anos	
	Fraguese	Maximum RF L	ine Voltage (dBuV)
Test Limit	Frequency	Quasi-peak Level	Average Level
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	60 Marie 1	50

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked

3.4. Test Data

During the test, pre-scan the GFSK, $\pi/4QPSK$, 8DPSK modulation, and found the GFSK modulation Low channel(TX+Charging Mode) which is the worst case, only the worst case is recorded in the report. Please to see the following pages.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 13 of 67

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 22.1℃ Hum.: 49%

	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	1	0.1660	17.12	19.90	37.02	55.15	-18.13	AVG	
	2	0.1700	35.75	19.90	55.65	64.96	-9.31	QP	
	3	0.2620	10.10	19.89	29.99	51.36	-21.37	AVG	
	4	0.3460	20.97	19.91	40.88	59.06	-18.18	QP	
	5	0.4220	3.52	19.94	23.46	47.41	-23.95	AVG	
	6	0.5940	1.08	20.01	21.09	46.00	-24.91	AVG	
	7	0.6820	15.38	20.03	35.41	56.00	-20.59	QP	
. [8	0.9460	-0.41	20.11	19.70	46.00	-26.30	AVG	
	9	1.0140	13.94	20.12	34.06	56.00	-21.94	QP	
	10	1.3140	0.10	20.13	20.23	46.00	-25.77	AVG	
	11	1.5339	12.69	20.13	32.82	56.00	-23.18	QP	
	12	1.9740	12.19	20.14	32.33	56.00	-23.67	QP	

Code: AB-RF-05-a

www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 14 of 67

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.1℃ Hum.: 49%

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 15 of 67

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15	5.209 and 15.205	Anu.	Anbotek	Anbore A
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	abotek- An	oto. Pup	300
	0.490MHz-1.705MHz	24000/F(kHz)	Na Napolak	Aupoton A	30
	1.705MHz-30MHz	30	Por Oporak	Ambolo	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3 3
	216MHz~960MHz	200	46.0	Quasi-peak	3
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Above 1000MUz	500	54.0	Average	3
	Above 1000MHz	Anbotak - Anbota	74.0	Peak	Anba 3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 16 of 67

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 17 of 67

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation Middle channel(TX Only) which is the worst case, only the worst case is recorded in the report

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 18 of 67

Test Results (30~1000MHz)

Job No.: SZAWW190614004-01 Temp.(℃)/Hum.(%RH): 23.7℃/51%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Mode 2 Polarization: Horizontal

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	44.4308	31.44	-17.54	13.90	40.00	-26.10	QP	300	360	
2	85.5977	41.36	-23.15	18.21	40.00	-21.79	QP	300	214	
3	169.0054	40.25	-21.64	18.61	43.50	-24.89	QP	300	256	
4	203.5228	40.80	-20.77	20.03	43.50	-23.47	QP	300	230	
5	362.9844	33.87	-14.73	19.14	46.00	-26.86	QP	300	197	
6	719.1995	32.99	-8.98	24.01	46.00	-21.99	QP	300	99	

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 19 of 67

Test Results (30~1000MHz)

SZAWW190614004-01 Job No.: Temp.(°C)/Hum.(%RH): 23.7°C/51%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Mode 2 Vertical Polarization:

Report No.: SZAWW190614004-01 Page 20 of 67

Test Results (1GHz-25GHz)

Test Mode:	CH00			Test	channel: Lov	vest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	40.62	34.04	6.58	34.09	47.15	74.00	-26.85	V
7206.00	34.03	37.11	7.73	34.50	44.37	74.00	-29.63	V
9608.00	33.42	39.31	9.23	34.79	47.17	74.00	-26.83	V
12010.00	* 1000	161	nbotek	Anbolo	Kin otek	74.00	Anbo	V
14412.00	iboleh * A	upo rek	Pa abolek	Vupore.	n billio	74.00	Anhor	V
4804.00	45.58	34.04	6.58	34.09	52.11	74.00	-21.89	H
7206.00	36.08	37.11	7.73	34.50	46.42	74.00	-27.58	H
9608.00	33.16	39.31	9.23	34.79	46.91	74.00	-27.09	PUPO
12010.00	ek * anbo	Toy. V.	000 P	-potek	Anbole	74.00	- nbolek	HS
14412.00	* Metor	boten	Aupor	Pro Polek	Anhotes	74.00	anbote	Н
			Av	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	28.80	34.04	6.58	34.09	35.33	54.00	-18.67	V
7206.00	22.34	37.11	7.73	34.50	32.68	54.00	-21.32	V
9608.00	21.21	39.31	9.23	34.79	34.96	54.00	-19.04	V
12010.00	Aupotak	Anbou	by "polek	anbate.	FUE	54.00	OK NURS	V
14412.00	*Up*lek	Milpon	10 M	ak panb	No. Yup,	54.00	Pojek bi	V
4804.00	33.40	34.04	6.58	34.09	39.93	54.00	-14.07	PUA.
7206.00	24.73	37.11	7.73	34.50	35.07	54.00	-18.93	Ħ
9608.00	21.21	39.31	9.23	34.79	34.96	54.00	-19.04	Н
12010.00	*	vupatek	Aupor	Vu.	Anbolek	54.00	8 × × × × × × × × × × × × × × × × × × ×	OK H
14412.00	Anbu *tek	anbotek	Allbora	X Man	lek pubo	54.00	16/r	Pole

Code: AB-RF-05-a

www.anbotek.com

Report No.: SZAWW190614004-01 Page 21 of 67

Test Results (1GHz-25GHz)

Test Mode:	CH39			Test	channel: Mid	dle		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	40.71	34.38	6.69	34.09	47.69	74.00	-26.31	V
7323.00	34.09	37.22	7.78	34.53	44.56	74.00	-29.44	V
9764.00	33.48	39.46	9.35	34.80	47.49	74.00	-26.51	V
12205.00	* And	161	nbotek	Anboro	Kun notek	74.00	Anho	V
14646.00	ipole* * A	Upo.	Par abolek	Aupore	N 5700	74.00	Anhor	V
4882.00	45.69	34.38	6.69	34.09	52.67	74.00	-21.33	H
7323.00	36.14	37.22	7.78	34.53	46.61	74.00	-27.39	H
9764.00	33.22	39.46	9.35	34.80	47.23	74.00	-26.77	PUPO
12205.00	ek * anbo	Toy. V.	1000 P	-botok	Anbole	74.00	* upolek	H
14646.00	* Neton	boten	Vupos esk	Pro-polek	Anhorse	74.00	anbote!	Н
			Av	erage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	28.91	34.38	6.69	34.09	35.89	54.00	-18.11	V
7323.00	22.41	37.22	7.78	34.53	32.88	54.00	-21.12	V
9764.00	21.27	39.46	9.35	34.80	35.28	54.00	-18.72	V
12205.00	Anbotok	Anbor	by apolek	bupate,	Anba	54.00	COK MURO	V
14646.00	*	Mupo	ok	arbi	Van. Vup.	54.00	Polek by	V
4882.00	33.52	34.38	6.69	34.09	40.50	54.00	-13.50	VUA.
7323.00	24.81	37.22	7.78	34.53	35.28	54.00	-18.72	H ₂
9764.00	21.29	39.46	9.35	34.80	35.30	54.00	-18.70	Н
12205.00	notel*	Vupatek	Aupor	bu. Posek	Anbotek	54.00	9.K "400,	OK H
14646.00	Anb. *ek	anbotek	Allborn	K = 0	lek pubo	54.00	16/4	Polek

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 22 of 67

Test Results (1GHz-25GHz)

Test Mode:	CH78			Test	channel: Hig	hest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	39.39	34.72	6.79	34.09	46.81	74.00	-27.19	V
7440.00	33.21	37.34	7.82	34.57	43.80	74.00	-30.20	V
9920.00	32.70	39.62	9.46	34.81	46.97	74.00	-27.03	V
12400.00	Cek * And	16K	abotek.	Anboro	Kup	74.00	Anbow	V
14880.00	ipolek * P	Upo.	Par aboley	Anbore	V.Up.	74.00	Pupor	V
4960.00	44.10	34.72	6.79	34.09	51.52	74.00	-22.48	H
7440.00	35.15	37.34	7.82	34.57	45.74	74.00	-28.26	H dan
9920.00	32.32	39.62	9.46	34.81	46.59	74.00	-27.41	MAGA
12400.00	ek * Mapo	TON VI	ODE P	Hotek	Anbotek	74.00	- nbolek	Hup
14880.00	otek *	lpotek	Aupor	Pur Polek	Anhotell	74.00	a dote	Н
			Av	erage Valu	e		10.3	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	27.96	34.72	6.79	34.09	35.38	54.00	-18.62	V
7440.00	21.76	37.34	7.82	34.57	32.35	54.00	-21.65	V
9920.00	20.70	39.62	9.46	34.81	34.97	54.00	-19.03	V
12400.00	Wapatek	Anbou	by "polek	Vupa _{fa}	Anto	54.00	ak bup.	V
14880.00	Anb*lek	Bupon	10 M	ARb'	Me, Vup.	54.00	Pofek b	V V
4960.00	32.44	34.72	6.79	34.09	39.86	54.00	-14.14	VUA die
7440.00	24.09	37.34	7.82	34.57	34.68	54.00	-19.32	$H_{D_{c}}$
9920.00	20.62	39.62	9.46	34.81	34.89	54.00	-19.11	Ηр
12400.00	*	vupatek	Aupor	bur nosek	Anbotek	54.00	% "AQ	COK H
14880.00	*	abotek	Allboro	× × × × × × × × × × × × × × × × × × ×	lek pubo	54.00	19/4 Pro-	Helon

Remark:

- 1. During the test, pre-scan the GFSK, π /4QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 23 of 67

Radiated Band Edge:

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 24 of 67

Remark:

- 1. During the test, pre-scan the GFSK, π /4QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 25 of 67

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C	FCC Part15 C Section 15.247 (b)(3)			abotek	Aupoto, K	50
Test Limit	125mW	Pit.	Mpolar	Aubo	h. upotek	Anhole	No.

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.4. Test Data

Test Item : Max. peak output power : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 22.7° C Test Result : PASS Humidity : 51%RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results	Modulation
2402	0.246	20.96	PASS	BDR
2441	2.183	20.96	PASS	BDR
2480	1.518	20.96	PASS	BDR
2402	3.764	20.96	PASS	EDR MINI
2441	4.581	20.96	PASS	EDR
2480	2.920	20.96	PASS	EDR

Remark: The EDR was tested on $(\pi/4QPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 26 of 67

Test Mode: BDR---Low

Test Mode: BDR---Middle

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 27 of 67

Test Mode: BDR---High

Test Mode: EDR---Low

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 28 of 67

Test Mode: EDR---Middle

Test Mode: EDR---High

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 29 of 67

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

Test Standard	FCC Part15 C Section 15.247 (a)(1)	Ann.	*botek	Anboro A
	187			

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 22.7 °C Test Result : PASS Humidity : 51%RH

Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode		
Low	2402	1030	BDR		
Middle	2441	1026	BDR		
High	2480	1030	BDR		
Low	2402	1388	EDR		
Middle	2441	1410	EDR		
High High	2480	1401	EDR		

Remark: The EDR was tested on $(\pi/4QPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 30 of 67

Test Mode: BDR---Low

Test Mode: BDR---Middle

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 31 of 67

Test Mode: BDR---High

Test Mode: EDR---Low

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 32 of 67

Test Mode: EDR---Middle

Test Mode: EDR---High

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 33 of 67

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(1)	anbotek	Pupor	50
Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	anbotek	Vupor.	i.

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Result

Middle

High

Test Item	:	Frequency Separation	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	22.7 ℃

	Channel	Frequency	Separation Read	Limit	Modulation
		(MHz)	Value (kHz)	(kHz)	Mode
in.	Low	2402	1000	686.7	BDR
	Middle	2441	1000	684.0	BDR
	High	2480	1000	686.7	BDR
	Low	2402	1000	925.3	EDR

1000

1000

Humidity

: 51%RH

940.0

934.0

Remark: 1. The EDR was tested on $(\pi/4QPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

2. The limit is 2/3 of 20dB BW.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

EDR

EDR

2441

2480

PASS

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 34 of 67

Test Mode: BDR---Low

Test Mode: BDR---Middle

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190614004-01

FCC ID: 2AG68TWS-813B

Page 35 of 67

Test Mode: BDR---High

Test Mode: EDR---Low

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 36 of 67

Test Mode: EDR---Middle

Test Mode: EDR---High

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 37 of 67

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

Test Standard	FCC Part15 C S	Section 15.2	247 (a)(1)	Ann Lotek	Anbotek	Anbore A
Test Limit	>15 channels	- abotek	Vupotar.	Ann wotek	anbotek	Aupor

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Number of Hopping Frequency Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside : Temperature : 22.7° C Test Result : PASS : Humidity : 51° RH

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel	
2402-2480MHz	79 ₁₀₀ 100 Anto	>15	

Remark: The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

FCC ID: 2AG68TWS-813B

Page 38 of 67

BDR Mode

EDR Mode

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 39 of 67

9. Dwell Time Test

9.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	247 (a)(1)	And	Anbotek	Author W
Test Limit	0.4 sec	A. abotek	Aupota	Ann	anbotek	Anbor

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Item : Time of Occupancy Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside : Temperature : 22.7° C Test Result : PASS : Humidity : 51%RH

Package Type	Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
DH1	0.378	time slot length *1600/2 /79 * 31.6	120.96	0.4	BDR
DH3	1.635	time slot length *1600/4 /79 * 31.6	261.60	0.4	BDR
DH5	2.888	time slot length *1600/6 /79 * 31.6	308.05	0.4	BDR
3DH1	0.386	time slot length *1600/2 /79 * 31.6	123.52	0.4	ole*EDR and
3DH3	1.635	time slot length *1600/4 /79 * 31.6	261.60	0.4	EDR
3DH5	2.888	time slot length *1600/6 /79 * 31.6	308.05	0.4	EDR

Remark: The EDR was tested on $(\pi/4QPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Code:AB-RF-05-a

Hotline

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 40 of 67

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 41 of 67

Test Mode: BDR---DH5

Test Mode: EDR---3DH1

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 42 of 67

Test Mode: EDR---3DH3

Test Mode: EDR---3DH5

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190614004-01 Page 43 of 67 FCC ID: 2AG68TWS-813B

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- Allow trace to fully stabilize.

10.4. Test Data

Test Item Band edge Test Mode CH Low ~ CH High

Test Voltage DC 3.7V Battery inside Temperature **22**.7℃ Test Result 51%RH **PASS** Humidity

Remark: The EDR was tested on $(\pi/4QPSK, 8DPSK)$ modes, only the worst data of $(\pi/4DQPSK)$ is attached in the following pages.

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500

FCC ID: 2AG68TWS-813B

Page 44 of 67

For Hopping Mode

BDR mode

EDR mode

FCC ID: 2AG68TWS-813B

Page 45 of 67

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

FCC ID: 2AG68TWS-813B

Page 46 of 67

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

FCC ID: 2AG68TWS-813B

Page 47 of 67

Conducted Emission Method

Start Freq 30.000000 MHz

Ref 20.00 dBr

Test Mode: BDR---Low

PNO: Fast Trig: Free Run

0.612 dBn -61.812 dBn

Avg Type: Log-Pwr Avg[Held: 6/100

1 2.480 GH 0.612 dBr

Test Mode: BDR---Mid

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Mid

Test Mode: EDR---High

Code: AB-RF-05-a

Report No.: SZAWW190614004-01 Page 48 of 6

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna

11.2. Antenna Connected Construction

The antenna is PCB Antenna which permanently attached, and the best case gain of the antenna is 5.52 dBi. It complies with the standard requirement.

Code: AB-RF-05-a

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 49 of 67

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 50 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 51 of 67

APPENDIX II -- EXTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 52 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 53 of 67

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 54 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 55 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 56 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 57 of 67

Code: AB-RF-05-a

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 58 of 67

APPENDIX III -- INTERNAL PHOTOGRAPH

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 59 of 67

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Page 60 of 67 Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 61 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 62 of 67

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a Hotline

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 63 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 64 of 67

Page 65 of 67 Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 66 of 67

Report No.: SZAWW190614004-01 FCC ID: 2AG68TWS-813B Page 67 of 67

----- End of Report ------

