EXPLORATORY DATA ANALYSIS ON PENGUIN DATASET

Introduction

The dataset in use is penguin dataset: the new iris. The dataset is originally published by <u>Dr.Kristen Gorman (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090081)</u>. This dataset contains penguin species and culmen and flipper measurements, body mass, sex and islands they are found at. The data used is in the file penguins_size.csv found on <u>Kaggle (https://www.kaggle.com/parulpandey/penguin-dataset-the-new-iris/data?select=penguins_size.csv)</u>

Summary

penguins size.csv: Simplified data from original penguin data sets. Contains variables:

- species : penguin species (Chinstrap, Adélie, or Gentoo)
- culmen length mm: culmen length (mm)
- culmen depth mm : culmen depth (mm)
- flipper length mm: flipper length (mm)
- body_mass_g : body mass (g)
- island: island name (Dream, Torgersen, or Biscoe) in the Palmer Archipelago (Antarctica)
- sex : penguin sex (Male, Female)

Initial Plans:

- · retrieve data
- analyse: shape, columns, groupby, visualise
- · data cleaning: remove null, check for skew, transform, scale
- visualise
- · hypothesis testing: Significance test

Data Retrieving and Analysis

```
In [ ]: import os
   import numpy as np
   import pandas as pd
```

```
filepath = "data/penguins_size.csv"
         data = pd.read_csv(filepath)
         data.head()
Out[]:
                             culmen_length_mm culmen_depth_mm flipper_length_mm
                                                                                 body_mass_g
            species
                       island
          0
              Adelie
                    Torgersen
                                          39.1
                                                            18.7
                                                                            181.0
                                                                                        3750.0
          1
              Adelie
                    Torgersen
                                          39.5
                                                            17.4
                                                                            186.0
                                                                                        3800.0
          2
              Adelie
                    Torgersen
                                          40.3
                                                            18.0
                                                                            195.0
                                                                                        3250.0
          3
              Adelie
                    Torgersen
                                          NaN
                                                            NaN
                                                                             NaN
                                                                                          NaN
                                                                            193.0
              Adelie Torgersen
                                          36.7
                                                            19.3
                                                                                        3450.0
In [ ]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 344 entries, 0 to 343
         Data columns (total 7 columns):
              Column
                                   Non-Null Count
                                                    Dtype
              -----
                                                    ----
          0
              species
                                   344 non-null
                                                    object
          1
              island
                                   344 non-null
                                                    object
          2
              culmen_length_mm
                                   342 non-null
                                                    float64
          3
              culmen depth mm
                                   342 non-null
                                                    float64
          4
              flipper length mm 342 non-null
                                                    float64
          5
              body_mass_g
                                   342 non-null
                                                    float64
          6
                                   334 non-null
                                                    object
              sex
         dtypes: float64(4), object(3)
         memory usage: 18.9+ KB
In [ ]:
         data.shape
Out[]: (344, 7)
         data.drop(["island"], axis=1, inplace=True)
         data.columns.tolist()
In [ ]:
Out[]: ['species',
          'culmen_length_mm',
          'culmen_depth_mm',
          'flipper_length_mm',
          'body_mass_g',
          'sex']
```

```
data.hist(bins=20, figsize=(8, 8))
Out[ ]: array([[<AxesSubplot:title={'center':'culmen_length_mm'}>,
                  <AxesSubplot:title={'center':'culmen_depth_mm'}>],
                 [<AxesSubplot:title={'center':'flipper_length_mm'}>,
                  <AxesSubplot:title={'center':'body_mass_g'}>]], dtype=object)
                                                         culmen_depth_mm
                    culmen_length_mm
          35
                                               30
          30
                                               25
          25
                                               20
          20
                                               15
          15
                                               10
          10
           5
                                                5
                                                0
           0
                     40
                               50
                                        60
                                                                  18
                                                      14
                                                            16
                                                                        20
                    flipper_length_mm
                                                           body_mass_g
                                               40
          40
                                               30
          30
                                               20
          20
                                               10
          10
```

Out[]: Adelie 152 Gentoo 124 Chinstrap 68

Name: species, dtype: int64

Out[]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000
range	27.500000	8.400000	59.000000	3600.000000

```
In [ ]: stats_df.loc['range'] = stats_df.loc['max'] - stats_df.loc['min']

out_fields = ['mean','25%','50%','75%', 'range']
    stats_df = stats_df.loc[out_fields]
    stats_df.rename({'50%': 'median'}, inplace=True) #renaming 50% to median
    stats_df
```

Out[]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
mean	43.92193	17.15117	200.915205	4201.754386
25%	39.22500	15.60000	190.000000	3550.000000
median	44.45000	17.30000	197.000000	4050.000000
75%	48.50000	18.70000	213.000000	4750.000000
range	27.50000	8.40000	59.000000	3600.000000

calculating for each species in a seperate dataframe.

```
data.groupby('species').mean()
Out[ ]:
                     culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g
            species
             Adelie
                             38.791391
                                                18.346358
                                                                 189.953642
                                                                              3700.662252
           Chinstrap
                             48.833824
                                                18.420588
                                                                 195.823529
                                                                              3733.088235
             Gentoo
                             47.504878
                                                14.982114
                                                                 217.186992
                                                                              5076.016260
         data.groupby('species').agg([np.mean, np.median])
Out[ ]:
                     culmen_length_mm culmen_depth_mm
                                                          flipper_length_mm
                                                                              body_mass_g
                     mean
                               median
                                       mean
                                                  median
                                                          mean
                                                                      median
                                                                              mean
                                                                                           median
            species
                     38.791391
                                 38.80 18.346358
                                                    18.40 189.953642
                                                                        190.0
                                                                              3700.662252
                                                                                            3700.0
             Adelie
```

Making a scatter plot for culmen_length vs culmen_depth

48.833824

Gentoo 47.504878

Chinstrap

```
In [ ]: import matplotlib.pyplot as plt
%matplotlib inline
```

18.45

195.823529

15.00 217.186992

196.0

3733.088235

216.0 5076.016260

3700.0

5000.0

49.55 18.420588

47.30 14.982114


```
In [ ]: data.boxplot(by='species', figsize=(8,8));
```

Boxplot grouped by species

Data Cleaning

```
In [ ]:
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 344 entries, 0 to 343
        Data columns (total 6 columns):
             Column
         #
                                 Non-Null Count
                                                  Dtype
        ---
         0
                                 344 non-null
                                                  object
             species
         1
             culmen_length_mm
                                 342 non-null
                                                  float64
         2
             culmen_depth_mm
                                 342 non-null
                                                  float64
                                                  float64
         3
             flipper_length_mm 342 non-null
         4
                                 342 non-null
                                                  float64
             body_mass_g
         5
                                 334 non-null
                                                  object
             sex
        dtypes: float64(4), object(2)
        memory usage: 16.2+ KB
        df = data.copy()
In [ ]:
```

```
one_hot_encode_cols = data.dtypes[df.dtypes == np.object] # filtering by stri
In [ ]:
         ng categoricals
         one_hot_encode_cols = one_hot_encode_cols.index.tolist() # list of categorica
         l fields
         df[one_hot_encode_cols].head().T
Out[ ]:
                     0
                             1
                                     2
                                            3
                                  Adelie Adelie
                Adelie
                         Adelie
                                                Adelie
         species
             sex MALE FEMALE FEMALE
                                         NaN FEMALE
In [ ]: df.isnull().sum()
Out[ ]: species
                               0
        culmen_length_mm
                                2
        culmen_depth_mm
                                2
        flipper_length_mm
                                2
                                2
        body_mass_g
                              10
        sex
        dtype: int64
```

- There are a lot of null values.
- · For numercial columns replacing by mean
- · For categorical columns replacing by mode.

```
In [ ]:
        for i in df.columns:
             if(df[i].isnull()).any():
                 if(df[i].dtype) == 'float64':
                     df[i] = df[i].replace(np.nan, df[i].mean())
                 if(df[i].dtype) == 'object':
                     df[i] = df[i].replace(np.nan, df[i].mode()[0])
In [ ]: | df['sex'] = df['sex'].replace('.', 'MALE')
In [ ]: | df.isnull().sum()
Out[ ]: species
                              0
        culmen length mm
                              0
        culmen_depth_mm
                              0
        flipper_length_mm
                              0
                              0
        body_mass_g
        sex
                              0
        dtype: int64
```

PairPlot for numerical columns

```
In [ ]: sns.pairplot(df, hue= 'species')
```

Out[]: <seaborn.axisgrid.PairGrid at 0x2846e0b7e80>

• PairPlots for categorical columns

```
In [ ]: sns.pairplot(df, hue= 'sex')
```

Out[]: <seaborn.axisgrid.PairGrid at 0x2846da16820>

Converting sex column to integer value by Label Encoder, Nominal to Numeric value conversion

```
In [ ]: from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
df["sex"] = lb.fit_transform(df["sex"])
```

In []: df.head()

Out[]:

	species	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	39.10000	18.70000	181.000000	3750.000000	1
1	Adelie	39.50000	17.40000	186.000000	3800.000000	0
2	Adelie	40.30000	18.00000	195.000000	3250.000000	0
3	Adelie	43.92193	17.15117	200.915205	4201.754386	1
4	Adelie	36.70000	19.30000	193.000000	3450.000000	0

Analysing the data visually.

```
In [ ]: sns.pairplot(df, hue = 'species', height=5)
```

Out[]: <seaborn.axisgrid.PairGrid at 0x2846ea20550>

observation

From above plot we can see that,

- In case of culmen length, Adelie is easily identifiable.
- In case of culmen depth, flipper length and body mass, Gentoo is easily identifiable.
- In all cases, Chinstrap remains hard to identify.

1. Scatter Plot for culmen_depth vs culmen_length

Out[]: <seaborn.axisgrid.FacetGrid at 0x28471fac220>

2. Scatter Plot for culmen_depth vs Flipper_length

Out[]: <seaborn.axisgrid.FacetGrid at 0x2847200bf40>

3. Scatter Plot for Flipper_Length vs body_mass

```
In [ ]: sns.set_context("notebook", font_scale=1.1)
    sns.FacetGrid(df, hue="species", height=5) \
        .map(plt.scatter,"flipper_length_mm", "body_mass_g") \
        .add_legend()
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x28471e0b370>

Covariance and Correlation

Covariance

```
df.cov()
In [ ]:
Out[ ]:
                              culmen_length_mm
                                                  culmen_depth_mm flipper_length_mm
                                                                                         body_mass_g
           culmen_length_mm
                                       29.633252
                                                           -2.519457
                                                                             50.082029
                                                                                          2590.398957
           culmen_depth_mm
                                        -2.519457
                                                            3.877069
                                                                             -16.118414
                                                                                           -743.012250
            flipper_length_mm
                                       50.082029
                                                          -16.118414
                                                                            196.578837
                                                                                          9767.130837
                body_mass_g
                                     2590.398957
                                                         -743.012250
                                                                           9767.130837
                                                                                        639381.041890
                                                                                                       16
                                                            0.349105
                                                                                            163.307503
                                        0.877896
                                                                              1.708480
                         sex
```

Correlation

```
In [ ]: df.corr()
```

Out[]:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	
culmen_length_mm	1.000000	-0.235053	0.656181	0.595110	0.0
culmen_depth_mm	-0.235053	1.000000	-0.583851	-0.471916	0.0
flipper_length_mm	0.656181	-0.583851	1.000000	0.871202	0.2
body_mass_g	0.595110	-0.471916	0.871202	1.000000	0.4
sex	0.322338	0.354374	0.243556	0.408210	1.0
4					•

In []: plt.figure(figsize=(8,8))
 sns.heatmap(df.corr(), cmap="YlGnBu", annot=True)

Out[]: <AxesSubplot:>

Observations

from the above heatmap we can determine the following:

• The flipper length is highly correlated to body mass with a value of 0.87 conclusion: The heavier penguins have longer flippers.

Outliers Detection

plotting the Box Plot.

```
In [ ]: plt.figure(figsize = (10,5))
    sns.boxplot(data = df.drop(['sex'], axis = 1), palette = "Set2")
Out[ ]: <AxesSubplot:>

6000
    5000
    4000
    3000
    2000
    1000
```

culmen_depth_mm

flipper_length_mm

body_mass_g

Scaling data for handling outliers

culmen_length_mm

```
In [ ]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

In [ ]: for i in df.columns:
    if df[i].dtype == 'float64':
        a = np.asarray(df[i])
        a = a.reshape(-1, 1)
        df[i] = sc.fit_transform(a)
```

```
In [ ]: plt.figure(figsize=(10,5))
    sns.boxplot(data = df.drop(['sex'], axis = 1), palette = "Set2")
```

Out[]: <AxesSubplot:>

Hypothesis testing

· to be completed

key Findings

- In case of culmen length, Adelie is easily identifiable.
- In case of culmen depth, flipper length and body mass, Gentoo is easily identifiable.
- In all cases, Chinstrap remains hard to identify.
- The heavier penguins have longer flippers.

Steps Summarised:

- Data was cleaned for missing values by one_hot_encoding method and filling with mean and mode values for numeric and categorical columns respectively.
- There was no significant deviation but there were a few outliers which were handled after standard Scaling.
- One coloumn was dropped as it was outside the scope of this study that was performed.
- One of the categorical column was Encoded to yeild numeric value by label encoding method.
- One significant Correlation was found as observed in heat map.
- Each of the above step is accompanied by visual plots and their observations respectively.

Data Summary

The given dataset is clean with minimal skewness and insignificant outliers. Can be used further for training the machine.