RA272746 aula4

March 23, 2024

0.1 IA376I – Tópicos em Engenharia de Computação VII

0.1.1 Tópico: Análise de Dados Visual (Visual Analytics)

Professora: Wu, Shin - Ting Aluno: Luiz Roberto Albano Junior RA: 272746

Atividade 4 - 22/03/2024

Exercício 1 Da coleção de ilusões ópticas do Museu Americano de História Natual, identifique duas ilusões ópticas que você considera mais promissoras em termos de potencial para aprimorar a visualização de dados. Justifique sua escolha.

Após avançar pela coleção de ópticas considero que as duas mais promissoras para o aprimoramento da visualização de dados sejam a seleção e cores.

A seleção como forma de manter a atenção do cérebro para o que precisa ser interpretado e identificado, sem causar confusões. Já as cores possuem papel importante na percepção de mudanças de informações.

Exercício 2 Nas seções 11.1 a 11.12 em [34], o estatístico Rafael A. Irizarry destaque 11 conjuntos de problemas que podem aparecer nos gráficos gerados pela biblioteca ggplot2 (R)/plotnine (Python) e discute, quando pertinentes, soluções em R para controná-los. Porte essas soluções em R para Python.

Resposta: Na seção 11 o autor aborda sobre alguns princípios para a visualização de dados, baseados na forma como os humanos detectam padrões e fazem comparações visuais. O autor apresenta alguns pontos-chave, como:

Codificação visual: são apresentados alguns métodos para representar os dados como posição, comprimento, ângulos, área, brilho e cor Incluir zeros: enfatiza a importância de começar as barras de gráficos em zero para evitar distorções na representação de quantidades. Não distorcer quantidades: alerta contra o uso de gráficos que distorcem a percepção das quantidades, como gráficos de área onde o tamanho não corresponde à proporção real Ordenação de categorias: sugere ordenar categorias de forma significativa, não alfabeticamente, para facilitar comparações e interpretações.

Outros pontos importantes que encontrei na leitura é a questão da escolha de cores adequadas para pessoas com daltonismo e a importância de mostrar os dados reais para permitir comparações pre-

cisas entre grupos. Também foi abordado uso de transformações, como logarítimica, para melhorar a visualização de certos tipos de dados.

Exercício 3 Na seção 11.14 em [34], o estatístico Rafael A. Irizarry explora, sob a perspectiva dos princípios de percepção e cognição, diferentes abordagens para visualizar os dados relacionados aos casos de sarampo nos estados dos Estados Unidos entre 1928 e 2011, utilizando o conjunto de dados us contagious diseases [47]. O objetivo é demonstrar a efetividade das vacinas na erradicação do sarampo. Porte as alternativas em R, apresentadas por Irizarry, para Python. Faça uma análise crítica dessas alternativas, considerando a possibilidade de outras abordagens mais eficientes e assertivas para alcançar o objetivo proposto.

Importação da base de dados

```
[7]: from plotnine import *
   import pandas as pd
   import pyreadr

result = pyreadr.read_r('us_contagious_diseases.rda')
   us_diseases = result['us_contagious_diseases']
   us_diseases
```

[7]:	disease	state	year	weeks_reporting	count	population
0	Hepatitis A	Alabama	1966.0	50.0	321.0	3345787.0
1	Hepatitis A	Alabama	1967.0	49.0	291.0	3364130.0
2	Hepatitis A	Alabama	1968.0	52.0	314.0	3386068.0
3	Hepatitis A	Alabama	1969.0	49.0	380.0	3412450.0
4	Hepatitis A	Alabama	1970.0	51.0	413.0	3444165.0
•••	•••				•••	
16060	${\tt Smallpox}$	Wyoming	1948.0	24.0	1.0	280803.0
16061	${\tt Smallpox}$	Wyoming	1949.0	0.0	0.0	285544.0
16062	${\tt Smallpox}$	Wyoming	1950.0	1.0	2.0	290529.0
16063	${\tt Smallpox}$	Wyoming	1951.0	1.0	1.0	295744.0
16064	${\tt Smallpox}$	Wyoming	1952.0	1.0	1.0	301083.0

[16065 rows x 6 columns]

Cria um DataFrame apenas com os dados sobre sarampo

```
#measles['state'] = measles.groupby('state')['temp'].transform('median')
measles.sort_values(by='state', inplace=True)
measles.drop(columns=['temp'], inplace=True)
measles
```

C:\Users\junio\AppData\Local\Temp\ipykernel_21436\1847362696.py:4:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\junio\AppData\Local\Temp\ipykernel_21436\1847362696.py:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\junio\AppData\Local\Temp\ipykernel_21436\1847362696.py:8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy C:\Users\junio\AppData\Local\Temp\ipykernel_21436\1847362696.py:9: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

[400]					_		
[186]:	disease	state	year	weeks_reporting	count	population	rate
2346	6 Measles	Alabama	1928.0	52.0	8843.0	2589923.0	34.143872
2400) Measles	Alabama	1982.0	11.0	2.0	3942588.0	0.023981
2399) Measles	Alabama	1981.0	22.0	0.0	3921581.0	0.000000
2398	8 Measles	Alabama	1980.0	46.0	22.0	3893888.0	0.063868
239	7 Measles	Alabama	1979.0	49.0	129.0	3858703.0	0.354777
•••	•••				•••	•••	
611	7 Measles	Wyoming	1949.0	49.0	558.0	285544.0	20.738074
6116	6 Measles	Wyoming	1948.0	41.0	2167.0	280803.0	97.876100
611	Measles	Wyoming	1947.0	46.0	440.0	276297.0	18.002052
6122	2 Measles	Wyoming	1954.0	44.0	1148.0	311578.0	43.543744
6170) Measles	Wyoming	2002.0	0.0	0.0	507765.0	NaN

[3675 rows x 7 columns]

Gráfico usando uma paleta sequêncial que exibe dados de todos os estados em um gráfico

Exibe o gráfico com valores por posição

```
[182]:
           year
                   us_rate
          1928.0 40.355599
      0
          1929.0 27.940243
      1
      2 1930.0 31.325340
      3
          1931.0 35.355627
      4
          1932.0 31.192597
      . .
            •••
                      •••
      70 1998.0 0.002111
      71 1999.0 0.002193
      72 2000.0
                  0.001990
      73 2001.0 0.002565
      74 2002.0 0.000487
      [75 rows x 2 columns]
[183]: import matplotlib.pyplot as plt
      import numpy as np
      filtered_measles = measles[ measles['rate'].notnull() ]
      (
          ggplot(data=filtered_measles) +
          geom_line(aes(x="year", y="rate", group="state"), color="grey",
                    show_legend=False, alpha = 0.2, size = 1) +
          geom_line(mapping = aes(x="year", y="us_rate"), data=temp, size = 1) +
          scale_y_continuous(trans="sqrt", breaks = [5, 25, 125, 300]) +
          ggtitle("Cases per 10,000 by state") +
          xlab("") + ylab("") +
          geom_text(data=pd.DataFrame({"x": [1955], "y": [50]}),
                  mapping = aes(x="x", y="y", label=["US average"]),
                  color="black") +
          geom_vline(xintercept=1963, color="blue")
      )
```

Cases per 10,000 by state

