ENZYMBASIERTE DIGITALE BIOSEN-SOREN FÜR MEDIZINISCHE ANWEN-DUNGEN

MAREN KRAFFT

UniversitÄt Passau Lehrstuhl für technische Informatik

02 08 2018

MOTIVATION

- Bietet neue Möglichkeiten in der medizinischen Anwendung
- (R)evolution des herkömmlichen Biosensors
- Mehrere Inputs können direkt verarbeitet werden
- Beispiele:
 - ▶ "Feedback Loops"
 - Sense-Act-Treat Device
 - ► Personalisierte Medikation
 - Schnelle Reaktion in Notfällen

- 1 Begriffserklärung
- 2 Konzept

Biosensoren Enzymbasierte Logikgatter Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

WICHTIGE BEGRIFFE

- Enzym = organische Verbindung
- Biosensor = Komplex zur biochemischen Analyse von Stoffen
- Trauma = Schädigung, Verletzung oder Verwundung lebenden Gewebes
- Hämorrhagischer Schock = Minderdurchblutung
- Substrat = Stoff, der durch ein Enzym umgesetzt

KONZEPT

- Begriffserklärung
- 2 Konzept

Biosensoren

Enzymbasierte Logikgatter Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

BIOSENSOREN

Aufbau:

Figure: Eigene Darstellung

- 1 Begriffserklärung
- 2 Konzept

Biosensoren

Enzymbasierte Logikgatter

Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

ENZYMBASIERTE LOGIKGATTER

Umsetzung von aus der Informatik bekannten Logikgattern mit biochemische Substanzen

- Enzyme als Logik
- Zwei oder mehr biochemische Substanzen als Input
- Reaktion mit dem Enzym produziert eine weitere biochemische Substanz
- Konzentration einer bestimmten biochemischen Substanz größer/kleiner als kritischer Wert entspricht den Booleanwerten 1 und o

ENZYMBASIERTE LOGIKGATTER - BEISPIEL 'AND'

Enzyme: Gox = Glucose-Oxidase und Cat = Katalase Inputs: Glucose und H₂O₂

Figure: Eigene Darstellung nach [2]

- 1 Begriffserklärung
- 2 Konzept

Biosensoren
Enzymbasierte Logikgatter
Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

NETZWERKE AUS ENZYMBASIERTEN LOGIKGATTERN

Durch Kombination mehrerer enzymbasierter Logikgatter ist es möglich ein Netzwerk zu erschaffen. Beispiel:

■ Enzyme: ADH (Alkoholhydrogenase), GDH (Glucose-Dehydrogenase), GOX (Glucose-Oxidase)

Figure: Eigene Darstellung nach [2]

NETZWERKE AUS ENZYMBASIERTEN LOGIKGATTERN

Figure: Eigene Darstellung nach [2]

KOMBINATION MIT EINEM SIGNALWANDLER

Durch Hinzufügen eines Signalwandlers (Transducer) zu einem Netzwerk ist es möglich, einen Biosensor zu erschaffen, der mehrere Inputs erhält und ein lesbares Signal ausgeben kann.

Figure: Eigene Darstellung nach [2]

- 1 Begriffserklärung
- 2 Konzept

Biosensoren Enzymbasierte Logikgatter Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

DESIGN FÜR MEDIZINISCHE ANWENDUNGEN

- Verletzungen und Krankheiten werden im Körper durch Konzentrationen spezifischer Stoffe angezeigt
- Enzymbasierte Biosensoren sollen diese Stoffe als Inputs verwenden, um Rückschlüsse auf den Gesundheitszustand zu erlauben
- Konzentration größer als kritischer Wert = Boolean 1;
 weniger als kritischer Wert = Boolean o
- Der Biosensor soll mehrere krankheitsspezifische Konzentrationen zeitgleich analysieren und ein ja/nein Ergebnis ausgeben

BEISPIEL HEMORRHAGISCHER SCHOCK

- Enzyme: Glucose-Dehydrogenase, Lactase-Oxidase, Meerrettich-Oxidase
- Inputs: Glucose, Lactase, Norepinephrine
- Outputs: NADH, Norepiquinone

condition	norepiquinone	NADH	glucose	lactate	norepinephrine	
traumatic brain injury	1	0	0	1	1	
hemorrhagic shock	1	1	1	1	1	

Table: Eigene Darstellung nach [2]

- 1 Begriffserklärung
- 2 Konzept

Biosensoren Enzymbasierte Logikgatter Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

ÜBERLEGUNGEN

OBERFLÄCHENFIXIERUNG

- Bisher: Experimente mit Lösungen in Petrischalen
- Problem: keine Struktur = keine medizinische Anwendung
- Herausforderung: Physische Fixierung und Trennung der einzelnen Reagenzschichten
- Ziel: Vermeidung von Querreaktionen und Kombinierbarkeit

ÜBERTRAGUNGSKOMPLEXITÄT

- Bisher: Reagenzschichten und Signalwandler können nur wenige Inputs verarbeiten
- Problem: Komplexere Netzwerke erfordern leistungsfähigere Reagenzschichten und Signalwandler

DEFINITION DER BOOLEANWERTE 1 UND O

- Bisher: Häufig willkürliche 1 und 0 Booleanwerte ohne medizinische Relevanz
- Herausforderung: o als Normalkonzentration und 1 als medizinisch kritischer Wert
- Ziel: Experimente und enzymbasierte Biosensoren mit medizinischer Relevanz

19

SKALIERBARKEIT

- Bisher: Experimente mit sehr spezifischem Ansatz
- Problem: Begrenzte Netzwerkgröße; nicht abstrahierbar
- Ziel: Kombinierbarkeit von Elementen

WAHL RELEVANTER INPUTS

- Bisher: Konzepte arbeiten mit medizinisch irrelevanten Stoffen
- Problem: Kein praktischer Nutzen
- Ziel: Anwendung des Konzepts auf medizinisch relevante Stoffe

MEDIKATION

- Problem: Aktuelle Experimente noch als "Proof Of Concept"
- Herausforderung: Entwicklungsreife für autonome "Sense-Act-Treat" Geräte

- 1 Begriffserklärung
- 2 Konzept

Biosensoren Enzymbasierte Logikgatter Enzymbasierte Biosensoren

- 3 Medizinische Anwendungen
- 4 Überlegungen
- 5 Fazit

FAZIT

FAZIT

- Konzept "steckt noch in den Kinderschuhen"
- Bisher ausschließlich "Proof Of Concept"-Experimente
- Großes Potential für medizinische Anwendungen
- Zusammenarbeit von Biochemiker, Informatikern und Ingenieuren nötig
- Noch viele Entwicklungsschritte notwendig, aber verspricht großartigen Nutzen

QUELLEN I

IEREMY W. CANNON.

HEMORRHAGIC SHOCK.

The New York Journal of Medicine, pages 403–422, 2018.

JOSEPH WANG EVGENY KATZ.

DIGITAL BIOSENSORS WITH BUILD-IN LOGIC FOR BIOMEDICAL APPLICATIONS - BIOSENSORS BASED ON A BIOCOMPUTING CONCEPT. Anal. Bioanal. Chem., pages 1591–1603, 2010.

KM Manesh Evgeny Katz, Joseph Wang et al.

FNZYMF LOGIC GATES FOR THE DIGITAL ANALYSIS OF PHYSIOLOGICAL LEVEL UPON INJURY.

Biosensors and Bioelectronics, 2009.

MARIE PELLISSIER FREDERIC BARRIÃLRE, DÃŞNAL LEECH.

POWERING FUEL CELLS THROUGH BIOCATALYSIS.

Electrochemical Sensors, Biosensors and their Biomedical Applications, pages 403-422, 2008.

QUELLEN II

FVGFNY KATZ.

ENZYME-BASED LOGIC GATES AND NETWORKS WITH OUTOUT SIGNALS ANALYZED BY VARIOUS METHODS.

ChemPhysChem 16, pages 1688-1713, 2017.

KLARA TOTH GEORGE S. WILSON RICHARD A. DURST, DANIEL R. THEVENOT.

ELECTROCHEMICAL BIOSENSORS: RECOMMENDED DEFINITIONS AND CLASSIFICATIONS.

Biosensors and Bioelectronics, pages 121–131, 2001.

WENDONG ZHANG SHENGBO SANG AND YUAN ZHAO.

STATE OF THE ART IN BIOSENSORS.

State of the Art in Biosensors, pages 89-110, 2013.

ALFRED PÜHLER (EDITORS) UWE BORNSCHEUER.

RÖMPP-KOMPAKT-LEXIKON BIOCHEMIE UND MOLEKULARBIOLOGIE. Thieme-Verlag, Stuttgart, 2000.

VIELEN DANK FÜR IHRE

AUFMERKSAMKEIT