

Solar SURFER: Solar Surfing Revieited Government

Arya Kazemnia & Mateo Otero-Diaz CubeSat Developers Workshop 2025

Pohns Hopkins University * Applied

Who are we?

What is Solar Sailing?

- Uses photons' momentum by reflecting them off a surface
 - Like a sailboat but with light instead of wind
- Sail size is directly proportional to the thrust generated
 - Bigger is better!

Overview Of Mission

- Apply and demonstrate the feasibility of solar sail propulsion.
- Innovate deployment procedure for the sails.
- Demonstrate the feasibility of High Gain Antenna (HGA) sail.

Concept of Operations

Phase 1: Launch
Satellite is launched into
Low Earth Orbit

Phase 2: **Deployment**Satellite detumbles and deploys its sail

Phase 3: Orbit Raising
Satellite begins to raise
its orbit and collects
imagery of the surface of
the Earth

<u>Phase 4:</u> **High Gain Antenna Testing** Satellite begins operating its HGA

Phase 5: End of Life
Satellite will either turn
sail to fall into Earth's
atmosphere or drift
away until it cannot
communicate

SølarSURFER Module Design

- Dedicated 4U volume for solar sail.
 - Actual volume will be approximately 200cm³ less due to deployment systems, electrical
 - wiring, fasteners, and detonators.
- 1U of the remaining 2U will be utilized for "life essentials".
 - Battery pack, OBC, ADCS kit, transceivers
- Last 1U will house scientific instrumentation.
 - Hyperspectral imaging sensors, fiber-optic cabling,
- Tuna-can pod volume 1 will be utilized for horn extension mechanism (3 nitinol wires)
- Tuna-can pod volume 2 will be utilized for a 9cm lens for hyperspectral imaging

Deployment

Separate from Launcher

Detumble

Open Panels

Open Solar Sail

Average Operations

- SolarSURFER uses the ADCS system to orient the cubesat towards the observation target
- Hyperspectral Imaging takes pictures of the surface
- SolarSURFER reorients itself towards the sun to continue propulsion
- Over JHU we downlink our collected data
 - Battery Health and Charge
 - Photos
 - IMU Data
 - Orientation Data
- We uplink commands and analyse data
- Repeat!

Sail Experiments

Sail Composition

- What is the reflectivity and emissivity of our material?
- What's the best layer configuration?

Communications

- How does folding the sail affect signal strength?
- Test different reflectarray shapes and sizes

Deployment

How do we extend the sail?

Material Selection

- Backbone: CP1 or Kapton films
 - Optimal thermal stability, tensile strength, and resistance to UV radiation and atomic oxygen

protective layer	Au coating	gold couting (0.5 mm) protect Al, enhances IR reflectivity
reflective layer	Al coating	Al coating (2.5 jum) high reflectivity for propulsion
base layer	CP1/Kapton	(P1/Kapton film (2.5-4, um) thermal stability and tensile strength

Folding Techniques Overview

- Miura-Ori Fold: A single-degree-of-freedom pattern, allowing rapid and reliable deployment with high packing efficiency.
- Box Pleated Fold: A rigid and structured fold, distributing stress evenly and providing better material control during deployment.

Deployment

- 20m x 20m Sail needs to be unfurled from the 4U compartment
- Deployment will be carried out through a backbone of SMA
- Booms will be initially deployed through Induction Heating through a PWM circuit
- Passive heating from Sun prevents booms from losing their shape

Sail High Gain Antenna

- Sail will be fitted with an array of patches to create a reflectarray
- Building on previous reflectarray designs, we seek to build a flexible one
- Array simulation on HFSS dictates a concentric pattern

Sail High Gain Antenna

- Normal horn design requires too much heating and deployment
- Reflector design allows for everything to fit in the 6U form factor
- Horn can be minimized saving space
- Reflector is deployed and adjusted by a nitinol network

