

## DEBER DE ECUACIONES DIFERENCIALES UNIDAD 1 DOCENTE: ING. ANGEL FERNANDO SOTO S. **GRUPO 4** FECHA DE ENTREGA: 19 de Abril del 2018

Encuentre la Solución de las siguientes Ecuaciones Diferenciales Ordinarias

1. 
$$e^{2x} \frac{dy}{dx} = y - ye^{3x}$$
;  $y(0) = 1$ 

2. 
$$\frac{dy}{dx} - y - y^3 e^{2x} = 0$$

2. 
$$\frac{dy}{dx} - y - y^3 e^{2x} = 0$$
  
3.  $(x^2 + 3xy + y^2)dx - x^2 dy = 0$ ;  $y(1) = 1$   
4.  $\frac{dK}{dx} - 3 e^{2x} y^2 - 5y$   
17.  $y^2 dx + (xy - x^3) dy = 0$   
18.  $(y^3 + 2e^x y)dx + (e^x + 3y^2)dy = 0$   
19.  $(x^2 - xy - y^2) dx + x^2 dy = 0$ 

4. 
$$\frac{dK}{dt} = 3e^{2t}K^2 - 5K$$

$$5. \ dx + \left(\frac{x}{y} - \sin y\right) dy = 0$$

6. 
$$\frac{dy}{dx} + \frac{1}{3}y - \frac{1}{3}(1 - 2x)y^4 = 0$$

7. 
$$xydx + (x^2 + y^2)dy = 0$$
 23.  $\frac{dy}{dx} = \frac{y^2 + 2xy}{x^2}$ 

8. 
$$vdx + (3x - xy + 2)dy = 0$$

9. 
$$vdx - xdy + \ln xdx = 0$$

$$10. \qquad y' + \frac{1}{x}y = \frac{\cos x}{x}$$

11. 
$$y' = e^{\frac{y}{x}} + \frac{y}{x}$$

12. 
$$x\sqrt{1-y^2} + yy'\sqrt{1-x^2} = 0$$

13. 
$$\frac{dy}{dx} = \frac{1}{e^y - x}$$

14. 
$$dx + \left(\frac{x}{y} - \operatorname{sen} y\right) dy = 0$$

15. 
$$\frac{dx}{dy} = \frac{x \sec^2 y}{\sec(2x) - \lg y}$$
;  $y(\pi) = \frac{\pi}{4}$ 

16. 
$$y + (3 + 3x - y)\frac{dy}{dx} = 0$$

17. 
$$y^2 dx + (xy - x^3) dy = 0$$

18. 
$$(y^3 + 2e^x y)dx + (e^x + 3y^2)dy = 0$$

19. 
$$(x^2 - xy - y^2) dx + x^2 dy = 0$$

20. 
$$\frac{dy}{dx} = \frac{y}{x} + \frac{y^2}{x^2}$$
;  $y(1) = 1$ 

21. 
$$\frac{dy}{dx} = \frac{3y^2 \cot x + \sin x \cos x}{2y}$$

22. 
$$(3xy + y^2) + (x^2 + xy)\frac{dy}{dx} = 0$$

$$23. \quad \frac{dy}{dx} = \frac{y^2 + 2xy}{x^2}$$

24. 
$$y^2 dx + (xy - x^3) dy = 0$$

24. 
$$y^{2}dx + (xy - x^{3})dy = 0$$
  
25.  $\frac{dy}{dx} = \frac{y}{2x + y^{3} \operatorname{sen} 3y}$ 

26. 
$$y' = \sqrt{y + x}$$

27. 
$$x^2y' + 2xy - y^3 = 0$$

28. 
$$(2x^3 - y)dx + xdy = 0$$
;  $y(1) = 2$ 

29. 
$$\frac{dy}{dx} = xy^3(1+x^2)^{-1/2}$$
;  $y(0) = 1$ 

30. 
$$\frac{x}{\left(x^2 + y^2\right)^{\frac{3}{2}}} dx + \frac{y}{\left(x^2 + y^2\right)^{\frac{3}{2}}} dy = 0$$