新人向けデータ分析研修

この研修のゴール・目的

- > データ分析のイメージを感じ取ってもらう
 - > データ分析を興味を持ってもらうきっかけ作り

- >簡単なデータ加工・集計・モデリングができる
 - > Pythonのプログラムを触って実体験する

- >楽しんでもらう!
 - >業務で必要不可欠な内容ではないので気楽にやりましょう!

データ分析の基礎知識

データ分析関連の職種

- >単にデータ分析といっても,多くの職種がある
 - >色々な人が協力してデータ分析を行う

職種名	BZ	DS	DE	内容
ビジネスアナリスト	***	***	***	統計的な分析を用いてビジネスの施策を導く
データサイエンティスト	***	***	***	機械学習・統計を用いたモデリング・検証・レポート
データエンジニア	***	***	***	データの集計・抽出の仕組みを作る
機械学習エンジニア	***	***	***	機械学習モデルをシステムに組み込む
プリセールス	***	***	***	抽象度の高い顧客要望をデータ分析課題に落とし込む

★はスキルが求められる頻度

BZ:ビジネス力

DS:データサイエンスカ

DE: データエンジニアリングカ

データ分析の流れ

注意:あくまで自分のイメージ,実際にはここまで綺麗に分業されていないはず

データ分析の流れ

注意:あくまで自分のイメージ,実際にはここまで綺麗に分業されていないはず

データサイエンティストの担当内容

- > どんな分析技術を使えば良いか判断して, 分析手法の実装と検証を行うことがメイン
 - >施策を考えたり、分析基盤を整えることにも参加する(はず)

- > 施策の例) 住宅販売価格をデータに基づいて, 適切な値で販売する
 - > どのようなデータが必要で、どのような加工が必要か
 - > どのような分析手法で実現するのが最適か、どのような改善策が考えらえるか
 - >実装した結果として、望むような結果が得られるか

2日間の研修のスケジュール(予定)

>1日目

- >機械学習の基礎
- > Pythonの基礎
- > データ分析ライブラリの基礎

>2日目

> データ分析コンテストのデータを使って実践してみる

機械学習の基礎知識

機械学習とは

- >目的を達成するための知識や行動を,データから機械に獲得させる技術
 - >パターンを探し出すアルゴリズムの総称
 - >自らルールを記述せずとも、プログラムがルール(パターン)を見つけてくれる
 - > データを元に何かを予測するタスクなどで使用される

人がプログラム(ルール)を記述する

機械学習がデータを元にルールを出力する

画像分類の例

- >0と1が書かれた画像をプログラムで分類することを考える
 - > どんなプログラムを書いて実現する?

自分でルールを記述する場合

```
> data_0 = [[0,1,1,1,1,0], [0,1,0,0,1,0], [...], [...], [...], [...]
```

$$> data_1 = [[0,0,0,1,0,0], [0,0,1,1,0,0], [\cdots], [\cdots], [\cdots], [\cdots]]$$

1の画像

- 1. 「行数」回ループする
 - 1. 行方向(横方向)に対して差分を計算する
 - 2. [0→1], [1→0]になった回数が4回以上なら, [count += 1]
- 2. [count > 行数/3] の場合, 0を出力する

1の画像

機械学習を使用する場合

- $> data_0 = [[0,1,1,1,1,0], [0,1,0,0,1,0], [\cdots], [\cdots], [\cdots], [\cdots]]$
- $> data_1 = [[0,0,0,1,0,0], [0,0,1,1,0,0], [\cdots], [\cdots], [\cdots], [\cdots]]$
- >dataを集めて、そのデータをモデルに渡して学習を実行する
 - > data = [data_0_1, ..., data_0_100, data_1_1, ..., data_1_100]
 - >#0,1のデータを100個ずつ集める
 - > label = $[0, 0, \dots, 0, 1, 1, \dots, 1]$
 - ># dataに対して出力して欲しい値(答え)を作る
 - > model.fit(data, label)
 - ># データを読み込ませて機械学習モデルで学習

0	0	0	1	1	0
Ο	0	1	0	1	0
O	0	1	0	1	0
O	0	1	0	1	0
O	0	1	0	1	0
0	0	1	1	1	0

1の画像

機械学習の強み

- 1. 人が言葉でうまく説明できないパターンも自分でルールを見つけられる
 - > 犬と猫の画像を分類分けするタスクも実行可能
- 2. データから勝手にパターンを覚えてくれる
 - >自分でルールを考えなくて良い
- 3. パターンが変わってもデータを変えてモデルを再作成すれば最新化出来る
 - > データから学ぶため、データを変えれば最新化される

機械学習の弱み

- 1. 入力に対する出力を得る過程がブラックボックス化している
 - >何を元に出力を決定しているか分かりにくい → 倫理面の問題とか
- 2. 100%を作りにくい
 - >明示的にルールを記述しないので、ある条件下の時に必ず1と出力させるのは難しい
 - >ルールが分かっているなら、If文で記述するべき
- 3. データがないと無力
 - >データから学ぶため、データがないと無力

機械学習の種類

機械学習

教師あり学習

分類問題

回帰問題

説明変数 + 目的変数の組み合わせを使って 学習するモデル

教師なし学習

クラスタリング 次元削減

自動生成

説明変数のみを使用して 学習するモデル

強化学習

詳しくないです…

次の行動が複数パターンある状態において 最適となる手を予測できるよう学習するモデル

機械学習の種類

機械学習 教師なし学習 教師あり学習 強化学習 分類問題 回帰問題 実際に手を動かして演習するところ (具体的なモデルのロジックには触れません) 説明変数 + 目的変数の組み合わせを使って 説明変数のみを使用して 次の行動が複数パターンある状態において 学習するモデル 最適となる手を予測できるよう学習するモデル 学習するモデル

教師あり学習

- >説明変数と目的変数の組み合わせを使用して学習するモデル
 - > 説明変数(入力)から, 目的変数(答え)を予測する
 - >画像の例も教師あり学習「ピクセル値が説明変数」「0,1が目的変数」

- >y = f(x)のイメージ
 - >目的変数 = f(説明変数)

教師あり学習の例

>例) 住宅価格の予測

説明変数

- 目的変数
- > やりたいこと: 立地や広さなどのデータから住宅価格を予測したい
 - >住宅価格の予測値 = f(立地などのデータ)

教師あり学習の例

目的変数を予測するため に使用する値

予測したい値

>例) 住宅価格の予測

説明変数

目的変数

教師あり学習の種類

- >大きく分けると分類と回帰に分けられる
 - >分類:クラス分けを予測する
 - >例) 0,1の画像の予測 (0クラス,1クラス)
 - >回帰:連続値を予測する
 - >例) 住宅価格の予測 (7.56とか6.98とか)

教師あり学習の代表的なモデル

分類 回帰 Random forest (classifier) Random forest (regressor) ロジスティック回帰 单回帰分析 SVM(SVC) SVM(SVR) MLP MLP

教師なし学習

- >目的関数を必要とせずに学習できるモデル
 - >説明変数のみで学習する
 - >出力の様式は様々(答えがなくともできそうなタスク)
 - >グループ分けしてくれたり、学習時のデータとそっくりなデータを生成してくれたり
 - >統計の範囲と被っているように感じる

教師なし学習の例

- >例)異常値の除去
- > やりたいこと:入力値の中から異常値を見つけたい
 - >説明変数のみから学習して、異常値か推定する
 - >(目的変数を必要としない)

このデータだけでも異常値 は見つけられそうじゃない?

教師なし学習の代表的なモデル

- > 異常値検出: Random cut forestなど
- >クラスタリング: k-means, dbscanなど
- >次元削減: PCA, umap, t-sneなど
- > 生成モデル: VAE, GANなど

強化学習

- > あまり詳しくないのと、専門用語多めなので説明割愛
 - >概念だけなら難しくない
 - >alfa goとか, 将棋のAlとか

機械学習の種類

説明変数 + 目的変数の組み合わせを使って

学習するモデル

機械学習

教師あり学習

分類問題

回帰問題

教師なし学習

クラスタリング 次元削減

自動生成

説明変数のみを使用して 学習するモデル

強化学習

詳しくないです…

次の行動が複数パターンある状態において 最適となる手を予測できるよう学習するモデル

分野(AI·機械学習·DL)

分野(統計・AI・機械学習・DL)

Al			統計			
	機械学習		線形回帰	t検定	カイニ乗検定	
Random Forest 勾配ブースティング SVM		وا ۱۷ استا ۱۷ داره				
		K-means	分散分析	因子分析		
	ディープラーニング(DL)		PCA	バスケット分析		
		GAN CNN				
		MLP RNN	t-sne			
		seq2seq				

JupyterAF

Jupyter入門

> Jupyter入門資料を使う

Python入門

Python入門

> Jupyter上で動かす

> AWS Sagemakerのノートブックインスタンスにアクセスしてもらう

> Pythonは人気なので、いくらでも勉強用の資料やサイトがある

> https://sites.google.com/view/ut-python/resource/%E6%95%99%E6%9D%90%E8%AC%9B%E7%BE%A9%E5%8B%95%E7%94%BB

データ分析コンテストの紹介

データ分析コンテストの紹介

>部会発表資料を使う

データ分析コンテストに挑戦

データ分析コンテストに挑戦

- > Jupyter上で手を動かす
 - > AWS Sagemakerのノートブックインスタンスにアクセスしてもらう