```
In [2]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import LabelEncoder
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import accuracy score, classification report, confusion matrix
 In [4]: # Load the car evaluation dataset
         data = pd.read csv("car evaluation.csv")
 In [6]: # Encoding all the string data
         data = data.apply(LabelEncoder().fit transform)
 In [8]: # Define the features (X) and the target variable (y)
         X = data.iloc[:, :-1] # Features (all columns except the last one)
         y = data.iloc[:, -1] # Target variable (last column)
In [10]: # Split the dataset into training and testing sets (80% train, 20% test)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
In [12]: # Create a Random Forest Classifier
         rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
In [14]: # Train the classifier on the training data
         rf_classifier.fit(X_train, y_train)
Out[14]:
                RandomForestClassifier
         RandomForestClassifier(random_state=42)
In [16]: # Make predictions on the test data
         y_pred = rf_classifier.predict(X_test)
In [18]: # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         confusion = confusion_matrix(y_test, y_pred)
         classification_rep = classification_report(y_test, y_pred)
In [20]: print(f"Accuracy: {accuracy}")
         print("\nConfusion Matrix:\n", confusion)
         print("\nClassification Report:\n", classification_rep)
```

Accuracy: 0.9624277456647399

Confusion Matrix:

[[72	1	L 3	1]
[2	10	0	3]
[1	0	236	0]
[2	0	0	15]]

Classification Report:

	precision	recall	f1-score	support
0	0.04	0.04	0.04	77
0	0.94	0.94	0.94	77
1	0.91	0.67	0.77	15
2	0.99	1.00	0.99	237
3	0.79	0.88	0.83	17
accuracy			0.96	346
macro avg	0.91	0.87	0.88	346
weighted avg	0.96	0.96	0.96	346

In []