

Modulhandbuch

für B.Sc. Wirtschaftsingenieurwesen ET/IT ab WiSe 20/21 (BPO 2020)

Der Bachelorstudiengang Wirtschaftsingenieurwesen umfasst 180 Kreditpunkte (CP). Dieses Handbuch enthält Modulbeschreibungen und -übersichten sowie den Studienverlaufsplan.

Druckdatum: 06.05.2021

Studienverlaufsplan – "Wirtschaftsingenieurwesen Elektrotechnik und Informationstechnik" (Vollfach) (BPO 2020)

Der Studienverlaufsplan stellt eine Empfehlung für den Ablauf des Studiums dar. Module können von den Studierenden in einer anderen Reihen-

folge besucht werden.

	Pflichtmodule, 126 CP				Wahlpflichtmodule, 36 CP		Pflichtmodul 15 CP	,	Wahlmo- dule, 3 CP	∑ 180			
		agen Elektrotech mationstechnik,			gen Ma- k und In- k, 24 CP	Grund Betriek schafts 39	swirt- slehre,	Module SP BWL ge- mäß § 2 Ab- satz 3	Bachelorar- beit, 12 CP	General Stu	udies Bo 8 CP	ereich,	СР
1. Sem.	GWN Gleich- und Wech- selstrom-netz- werke, 6 CP	GDTW Grundlagen der Digitaltechnik, 6 CP		HM 1 Höhere Mathemati 9 CP	k 1,	ABWL I Rechnungsv -abschluss, 9 CP	vesen und						30
2. Sem.	EM Elektrische Messtechnik, 6 CP			HM 2 Höhere Mathe- matik 2, 9 CP	GdI1 Grundla- gen der In- formatik 1, 6 CP	ABWL IV Produktion und Logistik, 6 CP	ABWL II Marke- ting, 6 CP						33
3. Sem.	EmF Elektrische und magnetische Felder, 6 CP	SysTh Systemtheorie, 6 CP	GLabW Grundlagenlabor ET für Wilng, 3 CP			FinWi Finanzwirtso 6 CP	chaft,			AnWiDat Analyse von Wirt- schaftsdaten, 3 CP	GS ET/IT, 3 CP		27
4. Sem.	EmE Elektromagneti- sche Energie- umwandlung, 6 CP	HauS Halbleiterbau- elemente und Schaltungen 6 CP						SP BWL Modul 1, 12 CP		Statistik, 9 CP			33
5. Sem.	GEATW Grundlagen der Energie- und Auto- matisierungs-tech- nik für Wilng, 6 CP	GITW Grundlagen der Informations- technik für Wilng, 6 CP	GMMW Grundlagen der Mikrosystemtech- nik und Mikroelekt- ronik für Wilng, 6 CP					SP BWL Projekt oder Modul 2, 12 CP					30
6. Sem.						InnoMan Innova- tionsma- nagement, 6 CP	FEGBWL Fachliche Ergän- zung BWL, 6 CP		ThsBScWa Modul Bachelor- arbeit oder ThsBScWb Modul Bachelor- arbeit (inklusive Kolloquium), 12 CP			Facher- gänzende Studien, 3 CP	27

CP = Credit Points, Sem. = Semester; BWL = Betriebswirtschaftslehre, ET/IT = Elektrotechnik und Informationstechnik, SP = Schwerpunkt, Wilng: Wirtschaftsingenieurwesen, GS = General Studies .

Bereich BWL- Übersicht der Module und Lehrveranstaltungen Bachelor Wirtschaftsingenieurwesen Elektrotechnik & Informationstechnik

Die Modulbeschreibungen der nachstehenden Module können dem aktuellen Modulhandbuch des Bachelorstudiengangs Betriebswirtschaftslehre entnommen werden:

Bitte nutzen Sie das neueste Modulhandbuch für das jeweils laufende Semester, verfügbar auf https://www.uni-bremen.de/wiwi/studium/downloads

Download Modulhandbuch SoSe2021

Modul-Kürzel	Modul	Lehrveranstaltung (bei Bedarf)		
Grundlagen Betriebsw	virtschaftslehre			
ABWL I	Rechnungswesen & Abschluss			
ABWL IV	Produktion & Logistik			
ABWL II	Marketing			
FinWi	Finanzwirtschaft			
InnoMan	Innovationsmanagement			
FEGBWL	Fachliche Ergänzung BWL	Mikroökonomie		
		Industrial Economics		
		Recht		
Module SP BWL	·			
SPBWL-IEMM-1	Modul 1 Schwerpunkt IEMM	International Management		
		Markenmanagement		
		Gründungsmanagement I		
		Management gewerblicher		
		Schutzrechte		
		Customer Relationship		
ODDWI JEMM O	Mandad O Calanza mandad IENANA	Management		
SPBWL-IEMM-2	Modul 2 Schwerpunkt IEMM	Strategisches Management		
		Personal & Organisation Gründungsmanagement II		
		International Business		
		Environment		
		Strategic Consumer Insights		
		Dienstleistungsmanagement		
		Social Media Analytics		
SPBWL-IEMM-P	Projektmodul Schwerpunkt IEMM	Projekt IEM² I -		
	·	Gründungsmanagement		
		Projekt IEM ² II -		
		Markenmanagement		
		Projekt IEM ² III - International Management		
		Projekt IEM² IV - E-Commerce		
		& Digital Marketing		
		Projekt IEM ² VI – Digitale		
		Innovationsprojekt der Praxis -		
		Digilab		

Modul-Kürzel	Modul	Lehrveranstaltung (bei Bedarf)
SPBWL-FiR-1	Modul 1 Schwerpunkt FiR	Controlling I
		Digitalisierung im
		Rechnungswesen
SPBWL-FiR-2	Modul 2 Schwerpunkt FiR	Investments
		Behavioral Finance
SPBWL-FiR-P	Projektmodul Schwerpunkt FiR	Projekt FiRSt I –
		Finanzwirtschaft
		Projekt VIII – Einführung in die
		empirische
		Rechnungswesenforschung
SPBWL-Log-1	Modul 1 Log	Distributionslogistik
		Beschaffungs- und
		Produktionslogistik
SPBWL-Log-2	Modul 2 Log	Supply Chain Operations
		Management
		Verkehrswirtschaft
SPBWL-Log-P	Projektmodul Schwerpunkt Log	Projekt Logistik I – Logistik und
		SCM
		Projekt Logistik IV
		Projekt Logistik V
General Studies (Pflichtr	nodule)	
AnWiDat	Analyse von Wirtschaftsdaten	
Statistik	Statistik	

In den Schwerpunkten sind die Module 2 nur für Studierende wählbar, die gemäß der BPO vom 10. Juni 2020 ihr Studium absolvieren.

Stand: Sommersemester 2021

Übersicht nach Modulgruppen

1.	Grun	dlagen	ET/IT
----	------	--------	-------

Die Grundlagenmodule ET/IT sind Pflichtmodule; es sind 63 CP zu erbringen. Die empfohlene Reihenfolge der Module ergibt sich aus dem Studienverlaufsplan auf S. 2.

GWN : Gleich- und Wechselstromnetzwerke (6 CP, 5 SWS)	5
GDTW : Grundlagen der Digitaltechnik (6 CP, 4 SWS)	7
EM : Elektrische Messtechnik (6 CP, 4 SWS)	. 10
EmF : Elektrische und magnetische Felder (6 CP, 5 SWS)	. 12
SysTh(a): Systemtheorie (6 CP, 4 SWS)	14
GLabW : Grundlagenlabor Elektrotechnik für Wirtschaftsingenieurwesen (3 CP, 2 SWS)	. 16
EmE : Elektromagnetische Energiewandlung (6 CP, 5 SWS)	. 18
HauS : Halbleiterbauelemente und Schaltungen (6 CP, 4 SWS)	. 20
GEATW : Grundlagen der Energie- und Automatisierungstechnik für Wirtschaftsingenieurwesen (6 CP, 6 SWS)	
GITW : Grundlagen der Informationstechnik für Wirtschaftsingenieurwesen (6 CP, 4 SWS)	. 25
GMMW : Grundlagen der Mikrosystemtechnik und Mikroelektronik für Wirtschaftsingenieurwesen (6 CF 4 SWS)	
2. Grundlagen Mathematik + Informatik	
Die Module dieses Bereichs sind Pflichtmodule. Sie sind für die Fachsemester 1 und 2 empfohlen.	
HM1 : Höhere Mathematik 1 (9 CP, 8 SWS)	30
HM2 : Höhere Mathematik 2 (9 CP, 8 SWS)	32
GdI1 : Grundlagen der Informatik 1 (6 CP, 3 SWS)	. 34
3. Pflicht- und Wahlpflichtmodule Betriebswirtschaftslehre	
Modulbereiche Grundlagen Betriebswirtschaftslehre, Schwerpunkt Betriebswirtschaftslerhe (SP BWL) und General Studies BWL Die Module aus dem Bereich BWL sowie die für Wirtschaftsingenieurwesen ET/IT zulässigen Lehrveranstaltungen sind auf den Seiten 3 und 4 und gelistet. Die Beschreibungen sind dem für das jeweilige Semester gültigen Modulhandbuch Betriebswirtschaftslehre zu entnehmen. Download von der Seite www.uni-bremen.de/wiwi > Studium > Downloads	
FinWi : Finanzwirtschaft (6 CP)	36
4. General Studies ET/IT Wirtschaftsingenieurwesen	
Im Bereich GS ET/IT sind 3 CP zu erbringen. Es ist eines der beiden hier gelisteten Fächer zu belegen	١.
GDTPW : Praktikum Grundlagen der Digitaltechnik für Wilng (3 CP, 2 SWS)	. 37

Gdl2 : Grundlagen der Informatik 2 (3 CP, 2 SWS)39
Odiz : Ordinalagen der miormatik z (5 or , 2 ovvo)
5. Fachergänzende Studien Wirtschaftsingenieurwesen
In diesem Bereich sind 3 CP zu erbringen. Es kann aus dem Angebot der General Studies/ Fachergänzenden Studien der Universität Bremen oder aus dem Angebot des FB1 oder des FB7 gemäß Veranstaltungsverzeichnis für das jeweilige Semester gewählt werden.
6. Modul Bachelorarbeit
Die Bachelorarbeit umfasst 12 Leistungspunkte. Voraussetzung für die Anmeldung der Bachelorarbeit sind der Nachweis von 120 Leistungspunkten sowie der Nachweis von Englischkenntnissen auf dem Niveau B2 (GER). Die Bachelorarbeit kann am Fachbereich 7 Wirtschaftswissenschaft als Modul ThsBScWa oder am Fachbereich 1 Physik/Elektrotechnik als ThsBscWb inkl. Kolloquium belegt werden.
ThsBScWa: Bachelorarbeit im Schwerpunkt Betriebswirtschaftslehre (12 CP)41

ThsBScWb: Bachelorarbeit im Schwerpunkt Elektrotechnik und Informationstechnik (12 CP)......42

Alphabetische Modulliste

01-15-04 EM: Elektrische Messtechnik	10
01-15-04 EmE : Elektromagnetische Energiewandlung	18
01-15-04 EmF : Elektrische und magnetische Felder	12
01-15-04 GWN : Gleich- und Wechselstromnetzwerke	5
01-15-04 HM1 : Höhere Mathematik 1	30
01-15-04 HM2 : Höhere Mathematik 2	32
01-15-04 HauS : Halbleiterbauelemente und Schaltungen	20
01-15-04 SysTh(a): Systemtheorie	14
01-17-04 GDTPW : Praktikum Grundlagen der Digitaltechnik für Wilng	37
01-17-04 GDTW : Grundlagen der Digitaltechnik	7
01-17-04 GEATW : Grundlagen der Energie- und Automatisierungstechnik für Wirtschaftsingenieurwesen	22
01-17-04 GITW : Grundlagen der Informationstechnik für Wirtschaftsingenieurwesen	25
01-17-04 GLabW : Grundlagenlabor Elektrotechnik für Wirtschaftsingenieurwesen	16
01-17-04 GMMW : Grundlagen der Mikrosystemtechnik und Mikroelektronik für Wirtschaftsingenieurwesen	27
01-17-04 GdI1 : Grundlagen der Informatik 1	34
01-17-04 Gdl2 : Grundlagen der Informatik 2	39
01-17-04 ThsBScWa: Bachelorarbeit im Schwerpunkt Betriebswirtschaftslehre	41
01-17-04 ThsBScWb: Bachelorarbeit im Schwerpunkt Elektrotechnik und Informationstechnik	42
FinWi:Finanzwirtschaft	36

Modul 01-15-04 GWN: Gleich- und Wechselstromnetzwerke DC and AC Networks

BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:		
Grundlagen ET/IT	keine		

Lerninhalte:

Gleichstromlehre:

- Einheiten und Gleichungen: Einheitensysteme, Schreibweise von Gleichungen
- Grundlegende Begriffe: Ladung, Strom, Spannung, Widerstände, Energie und Leistung
- Ströme und Spannungen in elektrischen Netzen: Ohm'sches Gesetz, Parallel- und Reihenschaltung, Strom- und Spannungsmessung, lineare Zweipole, nichtlineare Zweipole, Stern-Dreieck-Transformation, Wirkungsgrad, Leistungsanpassung
- Berechnung linearer Netzwerke: Überlagerungssatz, Ersatzzweipole, Knotenpotenzial- und Maschenstromanalyse linearer Netze, gesteuerte Quellen.

Wechselstromlehre:

- Zeitabhängige Ströme und Spannungen
- Eingeschwungene Sinusströme und -spannungen in linearen RLC-Netzen
- Einfache Wechselstromschaltungen, Zeigerdiagramme, äquivalente Zweipole
- Ortskurventheorie
- · Einfache Filterschaltungen
- · Resonanz in RLC-Netzwerken
- Leistung eingeschwungener Wechselströme und -spannungen

Literatur zum Modul wird in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- die Grundgleichungen der Elektrotechnik anwenden,
- Ströme und Spannungen an linearen und nichtlinearen Zweipolen berechnen,
- Gleichstrom- und Wechselstromnetzwerke berechnen,
- einfache Filterschaltungen und Schwingkreise analysieren und auslegen.

Workloadberechnung:

Das Modul besteht aus 2 Veranstaltungen.

- Vorlesung, Übung: 70 Arbeitsstunden (5 SWS x 14 Wochen)
- Vor- und Nachbereitung der Veranstaltungen, Übungsaufgaben: 42 Arbeitsstunden (3 h/Woche x 14 Wochen)
- Prüfungsvorbereitung: 68 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:		
Deutsch	Prof. DrIng. Karl-Ludwig Krieger		

Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 5 Stunden

Modulprüfungen

Prüfungstyp: Modulprüfung				
Prüfungsform:	Prüfungsleistung als e-Klausur oder schriftliche			
Klausur	Klausur gemäß der Ankündigung zu Semesterbeginn			

Lehrveranstaltung:	01-15-04-GWN Gleich- und Wechselstromnetzwerke
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Krieger, Karl-Ludwig, Prof. DrIng.
Lehrform(en): Vorlesung Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-17-04 GDTW: Grundlagen der Digitaltechnik

Digital Technology Fundamentals BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	keine

Lerninhalte:

Einführung in die Digitaltechnik

Grundlagen der Boole'schen- und Schaltalgebra

- Operationen, Axiome, Theoreme
- Schaltfunktionen
- · Kanonische Formen von Schaltfunktionen
- Auflösung von Systemen Boole'scher Gleichungen
- Vektor- und Matrizendarstellung Boole'scher Funktionen

Minimierung Boole'scher Funktionen und Logiksynthese

- Definition und Ermittlung von Primtermen unter Anwendung der Axiome und Theoreme
- Karnaugh-Tafeln, Don't-Care-Bedingungen
- Quine-McCluskey-Methode, Petrick-Algorithmus
- Minimierung von Funktionsbündeln
- · Logiksynthese

Sequentielle Schaltungen

- · Logische Funktionen von Flipflops
- · Zustandssteuerung von Flipflops
- Automaten
- Definition und Darstellung als Boole'scher Algorithmus
- Entwurf von sequentiellen Schaltungen

Realisierung von Digitalschaltungen

- Technische Realisierung von Digitalschaltungen
- · Logikfamilien, Kenndaten
- · Spezielle Bausteine mittlerer Komplexität
- · Programmierbare Logikbausteine

Literatur zum Modul wird in den jeweiligen Veranstaltungen bekanntgegeben.

z.B.: "Digitaltechnik - Eine praxisnahe Einführung" Autoren: Biere, A., Kröning, D., Weissenbacher, G., Wintersteiger, C.M.

"Lehrbuch Digitaltechnik: Eine Einführung mit VHDL" J. Reichardt

Lernergebnisse / Kompetenzen:

Die Studierenden erwerben Grundwissen zur Realisierung funktionsspezifischer digitaler, kombinatorischer und einfacher sequentieller Schaltungen entsprechend dem Stand der Technik.

Sie beherrschen die algebraischen Methoden der Digitaltechnik, der Boole'schen Algebra und ihrer Schaltungsreduktionsmethoden.

Sie erwerben Kenntnisse über digitale Grundschaltungen und deren Einsatz in elektronischen Systemen.

Die Studierenden können kombinatorische und einfache sequenzielle Schaltungen entwerfen, minimieren und auf Gatterebene realisieren. Sie gewinnen erste Eindrücke von der Komplexität hochintegrierter digitaler Systeme und deren Entwurfsmethoden.

Die Studierenden können das Grundwissen zur Realisierung funktionsspezifischer digitaler kombinatorischer und einfacher sequentieller Schaltungen entsprechend dem Stand der Technik anwenden.

Die Studierenden gewinnen erste Eindrücke über die Komplexität hochintegrierter digitaler Systeme und deren Entwurfsmethoden.

Workloadberechnung:

Das Modul besteht aus 2 Veranstaltungen:

- Vorlesung und Übung: 56 Arbeitsstunden (4 SWS x 14 Wochen)
- Vor- und Nachbereitung der Veranstaltungen, Übungsaufgaben: 56 Arbeitsstunden (4 h/Woche x 14 Wochen)
- Prüfungsvorbereitung: 68 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof. DrIng. Alberto Garcia-Ortiz
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 4 Stunden

Prüfungstyp: Modulprüfung	
Prüfungsform:	Prüfungsleistung
Klausur	

Lehrveranstaltung:	01-05-04-GDT-V Grundlagen der Digitaltechnik
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Garcia-Ortiz, Alberto, Prof. DrIng.
Lehrform(en): Vorlesung Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-15-04 EM: Elektrische Messtechnik

Electric Measurement BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	keine

Lerninhalte:

- · Messung von Strom und Spannung
- · Messung von Impedanzen
- Analoge Messverstärker
- · Digitale Messtechnik

Literatur zum Modul: Lehrbücher elektrische Messtechnik, z.B. Elmar Schrüfer: Elektrische Messtechnik, Hanser Verlag.

Das Skript zur Vorlesung ist auf Stud.IP verfügbar.

Lernergebnisse / Kompetenzen:

- Bewerten, ob eine Messanordnung für eine Aufgabe geeignet ist,
- Für eine gegebene Messaufgabe eine Messanordnung entwerfen sowie die Messungen planen, durchführen und bewerten.

Workloadberechnung:

- Präsenzzeit: 56 h (4 SWS x 14 Wochen)
- Vor- und Nachbereitung: 28 h (2 h/Woche x 14 Wochen.)
- Bearbeitung von Übungsblättern: 36 h (3 h/Wo. x 12 Wo.)
- Prüfungsvorbereitung: Prüfung: 60 h

Gesamtarbeitszeit: 180 h

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	Prof. DrIng. Walter Lang
Häufigkeit:	Dauer:
SoSe	1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 20/21	-
ECTS-Punkte / Arbeitsaufwand:	sws:
6 / 180 Stunden	4 Stunden

Prüfungstyp: Modulprüfung	
Prüfungsform:	Prüfungsleistung
Klausur	

Lehrveranstaltung:	01-15-04-EM-V Elektrische Messtechnik
Häufigkeit: SoSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Lang, Walter, Prof. DrIng.
Lehrform(en): Vorlesung Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-15-04 EmF: Elektrische und magnetische Felder

Electric and Magnetic Fields BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	Höhere Mathematik I und II

Lerninhalte:

- Elektrostatische Felder: Grundlagen der Berechnung vektorieller Feldgrößen, Coulomb'sches Gesetz, Elektrische Feldstärke, Potential, Felder einfacher Ladungsverteilungen, Elektrische Verschiebungsdichte, Kondensator und Kapazität, Arbeit und Energie, Elektrostatische Kräfte, Kondensatorschaltungen, Schaltvorgänge
- Stationäre elektrische Strömungsfelder: Feldgleichungen, Leistungsdichte, Berechnungen von Feldern einfacher Symmetrie, Ableitung der Kirchhoff'schen Regeln aus den Feldgleichungen
- Stationäre Magnetfelder: Magnetische Feldgrößen, Kraftwirkung, Drehmoment, Durchflutungsgesetz, Magnetischer Fluss, Satz vom Hüllenfluss, Materie im Magnetfeld, magnetischer Kreis
- Zeitlich veränderliche Magnetfelder: Induktionsgesetz, Selbstinduktion, Induktivität, Gegeninduktivität, Energie im Magnetfeld, Schaltvorgänge

Literatur zum Modul wird in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- elektrische Felder, Kapazität, Energie und Arbeit für ausgewählte Geometrien berechnen,
- stationäre Strömungsfelder für ausgewählte Geometrien berechnen,
- stationäre magnetische Felder und einfache magnetische Kreise berechnen,
- Induktivität, Gegeninduktivität und die magnetische Energie einfacher Anordnungen berechnen und das Induktionsgesetz anwenden.

Workloadberechnung:

Das Modul besteht aus 2 Veranstaltungen

- Vorlesung, Übung: 70 Arbeitsstunden (5 SWS x 14 Wochen)
- Vor- und Nachbereitung der Veranstaltungen, Übungsaufgaben: 42 Arbeitsstunden (3 h/Woche x 14 Wochen)
- Prüfungsvorbereitung: 68 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof. DrIng. Karl-Ludwig Krieger
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 5 Stunden

Modulprüfungen

Prüfungstyp: Modulprüfung	
Prüfungsform:	Prüfungsleistung als e-Klausur oder schriftliche
Bekanntgabe zu Beginn des Semesters	Klausur gemäß der Ankündigung zu Semesterbeginn

Lehrveranstaltung:	01-15-04-EmF-V Elektrische und magnetische Felder
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Krieger, Karl-Ludwig, Prof. DrIng.
Lehrform(en): Vorlesung Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-15-04 SysTh(a): Systemtheorie

System Theory BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	keine

Lerninhalte:

- Elementare Signale
- Fourier-, Laplace-Transformation, Grundgesetze der Transformationen, Eigenschaften, Anwendungen
- Diskrete Fouriertransformation, z-Transformation, Grundgesetze der Transformationen, Eigenschaften, Anwendungen
- · Zeitkontinuierliche LTI Systeme mit Beschreibung im Zeit- und Frequenzbereich
- Impulsantwort, Stabilität, Übertragungsverhalten, Übertragungsfunktion
- Zeitdiskrete LTI Systeme im Zeit- und Frequenzbereich
- Zustandsraummodelle im Zeit- und Frequenzbereich,
- Ähnlichkeitstransformation, kanonische Normalformen
- Anwendung der Programmiersprache Python zur Modellierung und Berechnung von Systemen

Literatur zum Modul wird zu Semesterbeginn in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

- Formulierung von verschiedenen Systembeschreibungen physikalischer Systeme
- Signalanalyse durch Anwendung von Signaltransformationen
- Berechnung des Übertragungsverhaltens von Systemen durch Auswahl passender Analyseverfahren

Workloadberechnung:

- Präsenzzeit: 56 h (4 SWS x 14 Wochen)
- Vor- und Nachbereitung: 56 h (4/Woche x 14 Wochen)
- Prüfungsvorbereitung: 68

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof. DrIng. Steffen Paul
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 4 Stunden

Prüfungstyp: Modulprüfung	
Prüfungsform: 180 min.	
Klausur	

Lehrveranstaltung:	01-15-04-SysTh-V Systemtheorie
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Paul, Steffen, Prof. DrIng.
Lehrform(en): Vorlesung mit Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-17-04 GLabW: Grundlagenlabor Elektrotechnik für Wirtschaftsingenieurwesen

Electrical Engineering Practical BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	Grundlagenvorlesungen der Elektrotechnik aus den
	Semestern 1-2

Lerninhalte:

Im Labor werden die Vorlesungsinhalte des Modulbereichs Grundlagen Elektrotechnik anhand einschlägiger Versuche praktisch veranschaulicht und gefestigt.

- Elektrischer Gleichstrom
- · Gleichstromnetzwerke
- · Berechnung elektrischer Netzwerke
- Elektrisches Feld
- · Stationäres Strömungsfeld
- · Magnetisches Feld stationärer Ströme
- Zeitlich veränderliche Felder
- Berechnung komplexer Wechselstromschaltungen
- · Wechselstromnetzwerke

Die Studierenden lernen die Handhabung der gängigsten Messgeräte kennen und werden darüber hinaus mit Netzwerksimulatoren vertraut gemacht.

Lernergebnisse / Kompetenzen:

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- mit den standardmäßig in der Elektrotechnik eingesetzten Messgeräten gut umgehen,
- selbstständig Experimentieren und die Ergebnisse von Experimenten unter der Berücksichtigung von Fehlerquellen auswerten,
- die Netzwerksimulation als Werkzeug bei der Schaltungsentwicklung einsetzen,
- sich eigenständig physikalisch-theoretische und experimentell-technische Inhalte erarbeiten,
- ihr Zeit- und Terminmanagement eigenverantwortlich und selbstorganisiert im Hinblick auf Fristen durchführen.

Workloadberechnung:

Das Modul ist im 3. Semester zu belegen und besteht aus 1 Veranstaltung zu 2 SWS:

- Experimentelle Praktika im Grundlagenlabor: 28 Arbeitsstunden (2 SWS x 14 Wochen)
- Vor- und Nachbereitung der Veranstaltung: 42 Arbeitsstunden (3h/Woche x 14 Wochen)
- · Vorbereitung auf den Abschlussversuch: 20 Arbeitsstunden

Insgesamt: 90 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	DrIng. Dagmar Peters-Drolshagen
Häufigkeit:	Dauer:
WiSe	1 Semester

Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand:	SWS:
3 / 90 Stunden	2 Stunden

Modulprüfungen

Prüfungstyp: Modulprüfung	
Prüfungsform:	Prüfungsleistung: Versuchsdurchführungen,
Portfolio	Protokolle, Befragungen

Lehrveranstaltung:	01-17-04-GLabW-P Grundlagenlabor Elektrotechnik für Wilng
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Peters-Drolshagen, Dagmar, DrIng.
Lehrform(en): Praktikum	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-15-04 EmE: Elektromagnetische Energiewandlung

Electromagnetic Energy Conversion BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	keine

Lerninhalte:

- · Drehstromsysteme
- Einphasentransformatoren, Drehstromtransformatoren
- · Fouriersche Reihen
- · Elektromechanische Energiewandlungssysteme
- Elektromagnetische Kraftbildung
- · Berechnung magnetischer Kreise
- Erzeugung von Drehfeldern mit ruhenden Wicklungen
- Stationärer Betrieb von Gleichstrom-, Asynchron- und Synchronmaschinen

Literatur zum Modul wird in den jeweiligen Lehrveranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- einfache magnetische Kreise selbständig berechnen, elektromagnetische Kräfte in elektrischen Maschinen bestimmen,
- Drehstromsysteme im stationären Betrieb analysieren,
- anhand der stationären Betriebseigenschaften die inneren Größen von Gleichstrom-, Asynchron- und Synchronmaschinen bestimmen,
- den Betrieb einfacher elektrischer Systeme mit stationär sinusförmigen und nicht-sinusförmigen Strömungen und Spannungen analysieren.

Workloadberechnung:

- Präsenzzeit: 70 h (5 SWS x 14 Wochen)
- Vor- und Nachbereitung: 42 h (3 h/Woche x 14 Wochen)
- Übungen: 21 h (1,5 h/Woche x 14 Wochen)
- Prüfungsvorbereitung: 47 h

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	Prof. DrIng. Bernd Orlik
Häufigkeit: SoSe	Dauer: 1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 20/21 ECTS-Punkte / Arbeitsaufwand:	sws:
6 / 180 Stunden	5 Stunden

Modulprüfungen

Prüfungstyp: Modulprüfung	
Prüfungsform: Prüfungsleistung Klausur	

Lehrveranstaltung:	01-15-04-EmEV Elektromagnetische Energiewandlung
Häufigkeit: SoSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Orlik, Bernd, Prof. DrIng.
Lehrform(en): Vorlesung Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-15-04 HauS: Halbleiterbauelemente und Schaltungen

Semiconductor Devices and Circuits BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	keine

Lerninhalte:

Teil 1 Halbleiterbauelemente:

- · Bändermodell von Halbleitern, Fermi-Verteilung
- Dotierung von Halbleitern
- · Generations- und Rekombinationsmechanismen
- Ursachen elektrischer Ströme (Feldstrom, Diffusionsstrom)
- Bedingungen für ohmsches Verhalten, Einstein-Relation
- Halbleiterübergänge
- · Dioden (pn, Schottky), Ersatzschaltung
- Bipolar-Transistoren, statisches und dynamisches Verhalten, einfache Ersatzschaltbilder, Grundschaltungen
- Sperrschicht-Effekttransistor, MESFET, HEMT
- MOSFET: Strukturen, statisches und dynamisches Verhalten
- Opto-elektronische Bauelemente
- Solarzellen
- kurze Erläuterung zu Heterostrukturen und "Quantum-Well"-Bauelementen

Teil 2 Schaltungstechnik:

- Wiederholung: Grundschaltungen der Transistoren
- einfache Verstärkerschaltungen
- Gegenkopplung
- Darlington-Schaltung, Kaskode, Stromspiegel
- · Differenzverstärker
- · komplementärer Emitterfolger (Gegentaktschaltung)
- elementare Einführung in CMOS-Schaltungen

Literatur zum Modul wird zu Semesterbeginn in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Die Studierenden

- kennen die wichtigsten Vorgänge in Halbleitermaterialien und wie diese technologisch beeinflusst werden können,
- kennen den schematischen Aufbau und die Funktionsweise der wichtigsten Halbleiterbauelemente,
- kennen die wichtigsten Grundlagen der analogen und digitalen Schaltungstechnik,
- verstehen die besonderen Anforderungen hochfrequenter, opto-elektronischer und leistungselektronischer Schaltungstechnik.

Workloadberechnung:

Das Modul besteht aus 2 Veranstaltungen:

- Vorlesung (3SWS) und Übung (1SWS): 56 Arbeitsstunden (4 SWS x 14 Wochen)
- Vor- und Nachbereitung der beiden Veranstaltungen, Übungsaufgaben: 56 Arbeitsstunden (4 h/ Woche x 14 Wochen)
- Prüfungsvorbereitung: 68 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof. DrIng. Nando Kaminski
Häufigkeit: SoSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 4 Stunden

Modulprüfungen

Prüfungstyp: Modulprüfung	
Prüfungsform:	Prüfungsleistung
Klausur	

Lehrveranstaltung:	01-15-04-HauS-V Halbleiterbauelemente und Schaltungen
Häufigkeit: SoSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Kaminski, Nando, Prof. DrIng.
Lehrform(en): Vorlesung Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-17-04 GEATW: Grundlagen der Energie- und Automatisierungstechnik für Wirtschaftsingenieurwesen

Introduction to Energy and Automation Engineering for Electrical Engineering with Management

BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	Mathematische und elektrotechnische
	Grundlagen aus den ersten 4 Semestern der
	ingenieurwissenschaftlichen Studiengänge

Lerninhalte:

Das Modul besteht aus den Teilbereichen

- Grundlagen der Regelungstechnik
- Grundlagen der elektrischen Energietechnik

Lernhinhalte Grundlagen der Regelungstechnik:

- Grundsätzliche Einführung in die Regelungstechnik (Analyse, Modellbildung, Reglerentwurf)
- Modellbildung, einfache Übertragungsglieder
- Übertragungsfunktion
- Frequenzgangdarstellung, Bode-Diagramme
- · Stabilität linearer Systeme
- PID-Regler, Strukturerweiterungen

Lernhinhalte Grundlagen der elektrischen Energietechnik:

- Entwicklung der Elektroenergiesysteme
- · Verbundnetze Lastprofile
- Erzeugung elektrischer Energie, CO2-Problematik
- Generatoren
- Elektrische Netze und Transport
- · Leitungen
- Transformatoren
- Energiebedarf
- Aktuelle und zukünftige Entwicklung
- Verbundbetrieb
- Netzplanung
- Lastflussrechnung
- Netzanschlussregeln + EN50160
- · Kurzschlussberechnung

Literatur zum Modul:

- Zu den Grundlagen der Regelungstechnik wird vor Vorlesungsbeginn ein Manuskript in Buchform hochgeladen.
- Literatur zu den Grundlagen der Energietechnik wird in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Nach Abschluss der Vorlesung sollen die Studenten und Studentinnen

- ein regelungstechnisches Problem grundsätzlich als solches erkennen und beschreiben können,
- das Prinzip der Stabilität eines Regelkreises verinnerlicht haben,
- sämtliche Schritte ausführen können, die zum Entwurf eines einfachen Reglers erforderlich sind (Systemanalyse, formale Modellbildung, Auswahl eines geeigneten Reglers, Stabilitätsprüfung),
- die nötigen Grundlagen für alle weitergehenden regelungstechnischen Vorlesungen besitzen,
- grundlegende Eigenschaften der Bau- und Betriebsweise von Elektroenergiesystemen kennen,
- eine umfassende Übersicht der Betriebsmittel für Elektroenergiesysteme besitzen,
- die Zusammenhänge von Quellen und Netzen erkennen, vereinfachen und berechnen können,
- einfache Netz- und Betriebsmittelberechnungen in elektr. Energiesystemen ausführen können.

Workloadberechnung:

84 Arbeitsstunden (6 SWS x 14 Wochen)

- Vorlesungen und Übungen (3 +1,5 + 1,5 SWS)
- Vor- und Nachbereitung der Veranstaltungen: 42 Arbeitsstunden (3 h/Woche x 14 Wochen)
- Prüfungsvorbereitung: 27 Arbeitsstunden für Grundlagen der Regelungstechnik, 27 Arbeitsstunden für Grundlagen der elektrischen Energietechnik

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	Prof. DrIng. Kai Michels
	ProfDr. Ing. Johanna Myrzik, DrIng. Holger Groke
Häufigkeit:	Dauer:
WiSe	1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 20/21	-
ECTS-Punkte / Arbeitsaufwand:	sws:
6 / 180 Stunden	6 Stunden

-		
Prüfungstyp: Grundlagen der Regelungstechnik		
Prüfungsform: Klausur	Teilprüfung 90 min.	
Prüfungstyp: Grundlagen der Energietechnik		
Prüfungsform: Klausur	Teilprüfung 90 min.	

Lehrveranstaltung:	01-15-04-GRT-V Grundlagen der Regelungstechnik
Häufigkeit:	Gibt es parallele Veranstaltungen?
WiSe	nein
Sprache:	Dozent(en):
Deutsch	Michels, Kai, Prof. DrIng.
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung mit Übung	Grundlagen der Regelungstechnik
Lehrveranstaltung:	01-15-04-GEE-V Grundlagen der elektrischen
_	Energietechik
Häufigkeit:	Gibt es parallele Veranstaltungen?
WiSe	nein
Sprache:	Dozent(en):
Deutsch	Myrzik, Johanna, Prof. DrIng.
	Groke, Holger, DrIng.
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung mit Übung	Grundlagen der Energietechnik

Modul 01-17-04 GITW: Grundlagen der Informationstechnik für Wirtschaftsingenieurwesen

Introduction to Information Technology for Electrical Engineering with Management BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	Kenntnisse der Höheren Mathematik 1-2,
	Systemtheorie, Grundlagen der Informatik 1, Statistik

Lerninhalte:

- Grundbegriffe der Nachrichten- und Informationstechnik
- Eigenschaften von Übertragungskanälen
- Darstellung von Quellensignalen (Abtastung, PAM, PCM, Quantisierung)
- Digitale lineare Modulationen (PSK, QAM)
- Lineare Empfängerkonzepte (Matched-Filter)
- Grundlagen der Kanalcodierung
- Grundlagen von Betriebssystemen
- · Grundlagen von Kommunikationsprotokollen und Architekturen
- Grundlagen der Netzwerksicherheit
- Grundlagen des Software-Managements

Die Zusammenhänge und das Zusammenwirken obiger Themenbereiche werden anhand konkreter Systembeispiele aus der Kommunikationstechnik aufgezeigt und veranschaulicht.

Literatur zum Modul wird in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Die aus der Systemtheorie bekannten elementaren Grundlagen werden anhand ihrer Anwendung in der Nachrichtentechnik veranschaulicht. Grundsätzliche Kenntnisse der Übertragung von digitalen Signalen werden vermittelt.

Nach erfolgreichem Abschluss des Moduls

- sind die Studierenden mit den wichtigsten nachrichtentechnischen Konzepten vertraut;
- haben die Studierenden Erfahrungen im Umgang mit den mathematischen Hilfsmitteln der modernen Kommunikationstechnik gewonnen;
- besitzen die Studierenden einen Überblick über bestehende Übertragungs- und Kanalcodierungsverfahren;
- · verstehen die Studierenden Betriebssysteme und deren Prozesse;
- verstehen sie, wie ein Compiler funktioniert und können einen eigenen, einfachen Compiler schreiben;
- verstehen sie den OSI Stack und k\u00f6nnen Beispiele f\u00fcr verschiedene Kommunikationsstandards geben und deren Unterschiede erkl\u00e4ren;
- können sie einfache Kommunikationsprotokolle entwerfen und analysieren;
- · verstehen sie Grundlagen der Daten- und Netzwerksicherheit.

Anhand eines Systembeispiels aus der Kommunikationstechnik werden die Studierenden Grundkenntnisse und Kompetenzen in der Informations- und Kommunikationstechnik erlangen, von Betriebssystemen und Softwaremanagement über Kommunikationsprotokolle und Netzwerksicherheit bis zu Grundlagen von Übertragungs- und Kanalcodierungsverfahren.

Workloadberechnung:

Das Modul besteht aus drei Veranstaltungen:

- Vorlesung, Übung, Praktikum: 56 Arbeitsstunden (4 SWS x 14 Wochen)
- Vor- und Nachbereitung der Veranstaltungen, Übungsaufgaben, Protokolle: 70 Arbeitsstunden (5 h/ Woche x 14 Wochen)
- Prüfungsvorbereitung: 49 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof.DrIng. Armin Dekorsy Prof. Dr. Anna Förster
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 4 Stunden

Prüfungstyp: Kombinationsprüfung	
Prüfungsform:	Prüfungsleistung
Kombinationsprüfung	

Modul 01-17-04 GMMW: Grundlagen der Mikrosystemtechnik und Mikroelektronik für Wirtschaftsingenieurwesen

Introduction to Microsystems and Microelectronics for Electrical Engineering with Management

BPO v. 10.06.2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen ET/IT	keine

Lerninhalte:

Mikroelektronik

- Einführung in die Mikroelektronik (Aufbau und Einsatzgebiete mikroelektronischer Schaltungen, Systems-on-Chip und Entwurfsmethoden)
- Entwurfsmethodik: Von Matlab zu Hardware Architekturen
- · Prinzipien analoger integrierter Schaltungen, Digitale Schaltungen
- Implementierung dedizierter Hardware-Architekturen: Datenpfad und Kontrollfluss
- Arithmetische Einheiten: Parallel-Prefix-Architekturen
- Einführung in die Architektur von Prozessoren
- Entwurfsmethodik analoger Schaltungen
- Integrierte Operationsverstärker
- · Analoge Filter
- Datenkonverter (AD-Wandlung)

Mikrosystemtechnik

- Einführung in die Mikrosystemtechnik (Technologie: Reinraum Prozesse)
- Reinraum
- Lithografie
- Silizium
- · Schichtenabscheidung
- · Mikromachining Prozessen
- Sensoren Aufbau und MOS Transistor Aufbau

Literatur zum Modul wird in den jeweiligen Veranstaltungen bekanntgegeben. z.B.

- J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits A Design Perspective
- G. Borriello, R. Katz, Contemporary Logic Design, Prentice Hall
- S. Franssila, Introduction to Micro Fabrication, 2ndedition, Wiley

Lernergebnisse / Kompetenzen:

Mikroelektronik

- Beherrschen der systematischen Konzipierung und der Entwurf eines mikroelektronischen Systems.
- Kenntnis wesentlicher Komponenten moderner analoger integrierter Schaltungen
- Zerlegung einer Systemaufgabenstellung in Teilsysteme und Auswahl geeigneter Schaltungen für eine gegebene Spezifikation, Überprüfung des Entwurfs durch Schaltungssimulation

Mikrosystemtechnik

- Kenntnis wesentlicher Mikrosystem Technologie Prozessen
- · Kenntnis Aufbau einige Sensoren in Mikrosystemtechnik

Workloadberechnung:

Das Modul besteht aus:

- Vorlesung, Übung: 56 Arbeitsstunden (4 SWS x 14 Wochen)
- Vor- und Nachbereitung der Veranstaltungen, Übungsaufgaben, Protokolle: 56 Arbeitsstunden (6 h/ Woche x 14 Wochen)
- Prüfungsvorbereitung: 68 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof. DrIng. Michael Vellekoop Prof DrIng. Steffen Paul
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 20/21	-
ECTS-Punkte / Arbeitsaufwand:	SWS:
6 / 180 Stunden	4 Stunden

Modulprüfungen

Prüfungstyp: Modulprüfung	
Prüfungsform:	Klausur
Bekanntgabe zu Beginn des Semesters	

Lehrveranstaltung:	01-15-04-GME-V Einführung in die Mikroelektronik
Häufigkeit:	Gibt es parallele Veranstaltungen?
WiSe	nein
Sprache:	Dozent(en):
Deutsch	Paul, Steffen, Prof. DrIng.
	Garcia-Ortiz, Alberto, Prof. DrIng.
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung mit Übung	Modulprüfung

Lehrveranstaltung:	01-15-04-GMST Einführung in die Mikrosystemtechnik
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Vellekoop, Michael, Prof. DrIng.
Lehrform(en): Vorlesung mit Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-15-04 HM1: Höhere Mathematik 1

Advanced Mathematics 1 BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen Mathematik + Informatik	Inhaltlich wird ein Kenntnisstand entsprechend mind.
	guten Leistungen in einem Grundkurs Mathematik
	vorausgesetzt.

Lerninhalte:

- · Zahlen und Zahlsysteme
- · Matrizenrechnung, lineare Gleichungssysteme
- Vektorräume, lineare Abbildungen, Koordinatentransformationen
- · Folgen und Reihen, Konvergenz und Grenzwerte
- Stetige Funktionen
- · Differentialrechnung für skalare Funktionen
- Approximation von Funktionen

Literatur zum Modul wird zu Semesterbeginn in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

- Sichere Kenntnis der vermittelten mathematischen und numerischen Methoden
- Souveräner Umgang mit diesen Methoden und Kalkülen, auch bei der Lösung elektrotechnischer Probleme
- Analytisches und strukturiertes Denken zur kreativen Bearbeitung konkreter Aufgaben
- · Algorithmisches Vorgehen, Nutzung mathematischer Software als Werkzeug

Workloadberechnung:

Das Modul besteht aus 2 bzw. 3 Veranstaltungen:

- Vorlesung 4 SWS und Übung 2SWS (zzgl. für ET/IT 2SWS Seminar; zzgl. für Physik 2 SWS Übungsaufgaben)
- Individuelle Vor- und Nachbereitung des Stoffes, Bearbeitung der Übungsaufgaben: (ca. 7 h/Woche x 14 Wochen)
- Prüfungsvorbereitung:ca. 60 Arbeitsstunden

Insgesamt: 270 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	Dr. Jun Zhao
	Dr. Arsen Narimanyan; Studiendekanat FB3,
	Studiendekanat FB1
Häufigkeit:	Dauer:
WiSe	1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 20/21	-
ECTS-Punkte / Arbeitsaufwand:	sws:
9 / 270 Stunden	8 Stunden

Modulprüfungen		
Prüfungstyp: Höhere Mathematik 1		
Prüfungsform: Klausur	Teilprüfung	
Prüfungstyp: Studienleistung		
Prüfungsform: Bekanntgabe zu Beginn des Semesters	Teilprüfung	

Lehrveranstaltung:	HM1-V Höhere Mathamatik 1
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Zhao, Jun, Dr.
Lehrform(en): Vorlesung	Zugeordnete Modulprüfung: Höhere Mathematik 1

Lehrveranstaltung:	HM1-Ü Höhere Mathematik
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen?
Sprache: Deutsch	Dozent(en): Zhao, Jun, Dr.
Lehrform(en): Übung	Zugeordnete Modulprüfung: Studienleistung

Lehrveranstaltung:	HM1-S Höhere Mathematik 1 (für ET/IT und Wilng)
Häufigkeit:	Gibt es parallele Veranstaltungen?
WiSe	nein
Sprache:	Dozent(en):
Deutsch	Zhao, Jun, Dr.
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	

Modul 01-15-04 HM2: Höhere Mathematik 2

Advanced Mathematics 2 BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen Mathematik + Informatik	Inhaltlich wird ein Kenntnisstand entsprechend
	dem Modul Höhere Mathematik 1 sowie mind.
	guten Leistungen in einem Grundkurs Mathematik
	vorausgesetzt.

Lerninhalte:

- · Lineare Ausgleichsrechnung
- Integralrechnung für skalare Funktionen
- · Eigenwerte und Eigenvektoren
- · Gewöhnliche Differentialgleichungen
- Differentialrechnung mehrerer reeller Variabler

Literatur zum Modul wird zu Semesterbeginn in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

- Sichere Kenntnis der vermittelten mathematischen und numerischen Methoden
- Souveräner Umgang mit diesen Methoden und Kalkülen, auch bei der Lösung elektrotechnischer Probleme
- Anwendung mathematischer Methoden zur Modellierung elektrotechnischer Prozesse und Phänomene
- · Analytisches und strukturiertes Denken zur kreativen Bearbeitung konkreter Aufgaben
- · Algorithmisches Vorgehen, Nutzung mathematischer Software als Werkzeug

Workloadberechnung:

Das Modul besteht aus 2 bzw. 3 Veranstaltungen:

- Vorlesung 4 SWS und Übung 2SWS (zzgl. für ET/IT 2SWS Seminar; zzgl. für Physik 2 SWS Übungsaufgaben)
- Individuelle Vor- und Nachbereitung des Stoffes, Bearbeitung der Übungsaufgaben: (ca. 7 h/Woche x 14 Wochen)
- Prüfungsvorbereitung:ca. 60 Arbeitsstunden

Insgesamt: 270 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	Dr. Jun Zhao
	Dr. Arsen Narimanyan, Studiendekanat FB3,
	Studiendekanat FB1
Häufigkeit:	Dauer:
SoSe	1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
VVIOC 20/21	

ECTS-Punkte / Arbeitsaufwand:	sws:
9 / 270 Stunden	8 Stunden

Modulprüfungen

Prüfungstyp: Höhere Mathematik 2	
Prüfungsform: Klausur	Teilprüfung
Prüfungstyp: Studienleistung	

Prüfungstyp: Studienleistung	
Prüfungsform:	Teilprüfung
Bekanntgabe zu Beginn des Semesters	

Lehrveranstaltung:	HM2-V Höhere Mathematik 2
Häufigkeit: SoSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Zhao, Jun, Dr.
Lehrform(en): Vorlesung	Zugeordnete Modulprüfung: Höhere Mathematik 2

Lehrveranstaltung:	HM2-Ü Höhere Mathematik 2
Häufigkeit: SoSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Zhao, Jun, Dr.
Lehrform(en): Übung	Zugeordnete Modulprüfung: Studienleistung

Lehrveranstaltung:	HM2-S Höhere Mathematik 2 Seminar (für ET/IT und Wilng)
Häufigkeit: SoSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Zhao, Jun, Dr.
Lehrform(en): Seminar	Zugeordnete Modulprüfung:

Modul 01-17-04 Gdl1: Grundlagen der Informatik 1

Fundamentals in Computer Science 1

BPO v. 10.06.2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Grundlagen Mathematik + Informatik	Digitaltechnik

Lerninhalte:

- Grundlagen der Programmierung
- Einführung in eine Programmiersprache
- · Zustandsautomaten und Programmiertechniken
- · Abstrakte Datentypen und Algorithmik
- · Prozesse, Kommunikation und Protokolle

Literatur zum Modul wird zu Semesterbeginn in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Nach erfolgreicher Teilnahme an diesem Modul können die Studierenden Programme in einer Programmiersprache selbstständig entwerfen und programmieren. Sie beherrschen grundlegende Programmier-Techniken und haben Basis-Wissen über Datenstrukturen und Algorithmen. Im Fokus dieser Veranstaltung steht der praktische Umgang mit dem Computer und das selbstständige und professionelle Lösen von Programmieraufgaben.

Workloadberechnung:

Das Modul ist im 2. Semester zu belegen und wird nach dem "Inverted Classroom"-Konzept gelehrt.

- Selbstständige Vorbereitung von Programmier-Präsenzübungen (Hackathons) mithilfe von Online-Materialien: 108 Arbeitsstunden (18 h/ Hackathon x 6 Hackathons)
- Programmier-Präsenzübungen (Hackathons), inkl. Vor- und Nachbereitung: 36 Arbeitsstunden (6 SWS x 6 Wochen)
- Klausurvorbereitung: 36 Arbeitsstunden

Insgesamt: 180 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: Prof. Dr. Anna Förster
Häufigkeit: SoSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden	SWS: 3 Stunden

Prüfungstyp: Modulprüfung	
Prüfungsform:	Prüfungsleistung: Online-Aufgaben, Programmier-
Portfolio	Präsenzübungen (Hackathons) und e-Klausur

Lehrveranstaltung:	01-15-04-Gdl1-V Grundlagen der Informatik 1
Häufigkeit:	Gibt es parallele Veranstaltungen?
SoSe	nein
Sprache:	Dozent(en):
Deutsch	Förster, Anna, Prof. Dr.
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung mit Übung	Modulprüfung

Modul FinWi: Finanzwirtschaft BPO 2020 Modulzuordnung: **Empfohlene inhaltliche Voraussetzungen:** • Pflicht- und Wahlpflichtmodule keine Betriebswirtschaftslehre Lerninhalte: Lernergebnisse / Kompetenzen: keine Workloadberechnung: Unterrichtsprache(n): Modulverantwortliche[r]: Deutsch N.N. Häufigkeit: Dauer: Modul gültig seit: Modul gültig bis: WiSe 20/21 ECTS-Punkte / Arbeitsaufwand: SWS: 6 / 180 Stunden Modulprüfungen Prüfungstyp: Modulprüfung Prüfungsform: Prüfungsleistung Bekanntgabe zu Beginn des Semesters

Modul 01-17-04 GDTPW: Praktikum Grundlagen der Digitaltechnik für Wilng

Basic Digital Engineering Laboratory BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
General Studies ET/IT	keine
Wirtschaftsingenieurwesen	

Lerninhalte:

Die Inhalte orientieren sich an den Inhalten der Vorlesung Grundlagen der Digitaltechnik.

Literatur zum Modul wird in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Die Studierenden

- können das Grundwissen zur Realisierung funktionsspezifischer digitaler kombinatorischer und einfacher sequentieller Schaltungen entsprechend dem Stand der Technik anwenden;
- können Kenntnisse über digitale Grundschaltungen und deren Einsatz in elektronischen Systemen anwenden;
- gewinnen erste Eindrücke über die Komplexität hochintegrierter digitaler Systeme und deren Entwurfsmethoden.

Workloadberechnung:

Das Modul besteht aus einem Praktikum zu 2 SWS:

- Versuchsdurchführungen: 28 Arbeitsstunden (2 SWS x 14 Wochen): 6 Versuche à ca. 4 Stunden
- Vor- und Nachbereitung der Veranstaltung: 62 Arbeitsstunden

Insgesamt: 90 Arbeitsstunden

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	Prof. DrIng. Alberto Garcia-Ortiz
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 3 / 90 Stunden	SWS: 2 Stunden

Prüfungstyp: Modulprüfung	
Prüfungsform:	Studienleistung: Portfolio aus
Bekanntgabe zu Beginn des Semesters	Versuchsdurchführungen und Versuchsprotokollen.

Lehrveranstaltung:	01-15-04-GDT-P Praktikum Grundladen der Digitaltechnik
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen? nein
Sprache: Deutsch	Dozent(en): Garcia-Ortiz, Alberto, Prof. DrIng.
Lehrform(en): Praktikum	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-17-04 Gdl2: Grundlagen der Informatik 2

Fundamentals in Computer Science Part 2 BPO 2020

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
General Studies ET/IT	keine
Wirtschaftsingenieurwesen	

Lerninhalte:

- Einführung in eine objektorientierte Programmiersprache
- · Prinzipien der Objektorientierung
- Datenanalyse und Datenrepräsentation

Literatur zum Modul wird zu Semesterbeginn in den jeweiligen Veranstaltungen bekanntgegeben.

Lernergebnisse / Kompetenzen:

Nach erfolgreicher Teilnahme an diesem Modul können die Studierenden Programme in einer objektorientierten Programmiersprache selbstständig entwerfen und programmieren. Sie können größere Datensätze verwalten, analysieren, statistisch auswerten, effizient speichern und grafisch darstellen. Im Fokus dieser Veranstaltung steht der praktische und profesionelle Umgang mit größeren Datenmenge und deren Analyse

Workloadberechnung:

Das Modul ist im 3. Semester zu belegen und wird nach dem "Inverted Classroom" Konzept gelehrt. Worlkoad:

- Selbstständige Vorbereitung von Programmier-Präsenzübungen (Hackathons) mithilfe von Online-Materialien: 40 Arbeitsstunden (8 h/ Hackathon x 5 Hackathons)
- Programmier-Präsenzübungen (Hackathons), inkl. Vor- und Nachbereitung: 30 Arbeitsstunden (6 SWS x 5 Wochen)
- Klausurvorbereitung: 20 Arbeitsstunden

Insgesamt: 90 Arbeitsstunden

Unterrichtsprache(n): Deutsch	Modulverantwortliche[r]: N.N.
Häufigkeit: WiSe	Dauer: 1 Semester
Modul gültig seit: WiSe 20/21	Modul gültig bis:
ECTS-Punkte / Arbeitsaufwand: 3 / 90 Stunden	SWS: 2 Stunden

Prüfungstyp: Modulprüfung	
Prüfungsform:	Portfolio: Online-Aufgaben, Programmier-
Bekanntgabe zu Beginn des Semesters	Präsenzübungen (Hackathons), e-Klausur

Lehrveranstaltung:	01-15-04-Gdl2 Grundlagen der Informatik 2
Häufigkeit: WiSe	Gibt es parallele Veranstaltungen?
Sprache:	Dozent(en):
Deutsch	Förster, Anna, Prof. Dr.
Lehrform(en): Vorlesung mit Übung	Zugeordnete Modulprüfung: Modulprüfung

Modul 01-17-04 ThsBScWa: Bachelorarbeit im Schwerpunkt Betriebswirtschaftslehre

Bachelor's Thesis BPO 2012

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Modul Bachelorarbeit	Der Erwerb von 120 CP, Sprachnachweis Englisch
	B2 (GER)

Lerninhalte:

- Einarbeitung in die gegebene Aufgabenstellung und Literaturrecherche
- · Erstellung eines Arbeitsplans
- Durchführung und Auswertung der Untersuchungen
- · Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit

Lernergebnisse / Kompetenzen:

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- die Bearbeitung einer wissenschaftlichen Aufgabenstellung eigenständig strukturieren und zeitlich organisieren,
- die notwendige Literatur beschaffen und sichten,
- die erzielten Ergebnisse schriftlich darlegen und diskutieren.

Workloadberechnung:

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	N.N.
	Hochschullehrer*innen des FB7
Häufigkeit:	Dauer:
WiSe, SoSe	1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 12/13	-
ECTS-Punkte / Arbeitsaufwand:	sws:
12 / 360 Stunden	-

Prüfungstyp: Bachelorarbeit	
Prüfungsform:	
Abschlussarbeit	

Modul 01-17-04 ThsBScWb: Bachelorarbeit im Schwerpunkt Elektrotechnik und Informationstechnik

Bachelor's Thesis BPO 2012

Modulzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Modul Bachelorarbeit	Nachweis von 120 CP; Nachweis Englischkenntnisse
	B2 (GER)

Lerninhalte:

- Einarbeitung in die gegebene Aufgabenstellung und Literaturrecherche
- · Erstellung eines Arbeitsplans
- Durchführung und Auswertung der Untersuchungen
- · Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit
- · Präsentation und Verteidigung der Ergebnisse in einem Vortrag

Lernergebnisse / Kompetenzen:

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- die Bearbeitung einer technischen Aufgabenstellung eigenständig strukturieren und zeitlich organisieren,
- die notwendige Literatur beschaffen und sichten,
- · die erzielten Ergebnisse schriftlich darlegen und diskutieren,
- ihre Arbeitsergebnisse vor Fachleuten präsentieren, erläutern und verteidigen.

Workloadberechnung:

Unterrichtsprache(n):	Modulverantwortliche[r]:
Deutsch	N.N.
	Hochschullehrer*innen des FB1
Häufigkeit:	Dauer:
WiSe, SoSe	1 Semester
Modul gültig seit:	Modul gültig bis:
WiSe 12/13	-
ECTS-Punkte / Arbeitsaufwand:	sws:
12 / 360 Stunden	-

Prüfungstyp: Bachelorarbeit	
Prüfungsform: Abschlussarbeit	Bachelorarbeit
Prüfungstyp: Kolloquium	
Prüfungsform:	Kolloquium zur Bachelorarbeit