Student Name:	Student ID:
Section 1: Fill in the Bla	anks [34 marks]
Q 1.1 [3 marks] What are the a lot in this course?	three basic components in a computer system that has been emphasized
	conversion between two number systems. Suppose $(123)_5 = (x3)_y$, where less than 10. Then the value of x is
Q 1.3 [3 marks] Let Boolean $f(f(x+y,y),z)$ is	function $f(A, B)$ be $f(A, B) = A' + B$. Then the simplified expression for
	1 1010 and B = 0000 1010 be two integers in 2's complement form. Let C hen, the decimal value of C is; the 2's complement form
Q 1.5 [3 marks] The simplified	ed form of the expression $f(A, B, C, D) = \sum (1, 4, 5, 9, 11, 12)$ is
Q 1.6. [3 marks] Assume the	e Array is defined as shown below:
Array: .word 10,	11, 12, 13, 14
The content of register \$t0 (in 0x	in hexadecimal) after executing the following sequence of instructions is
	ad symbolic address into register ad word: lw \$register, offset (base address)
in \$s0 is rotated to the right bits are shifted to the left most	instruction ror \$s0, \$s0, 4 implements the following function: the content by 4 bits and stored in \$s0. Note: right rotation means that the right most positions. ctions to implement ror \$s0, \$s0, 4.
sll \$t0, \$s0,	# shift right logic
	instruction neg \$s2, \$s1 (\$s2 is computed as the negative value of \$s1) can MIPS instruction subu as
\$s2, respectively. Complete th	and y are negative integers stored in 2's complement form in registers \$s1 and the following MIPS assembly instructions that will store $x+y$ in a register y , branch to a symbolic address overflow.
add, \$s1, \$s2 slt \$t0,, bne \$t0,, overflo	#shift left logic ow #branch if not equal
	the circuit in Fig. 1 consisting of two D-Flip-Flops. The state is denoted as state is 00 . Then, the states at time $(t+1)$ and $(t+2)$ should be

Fig. 1. Circuit for Q 1.10.

Section 2: MIPS [26 marks]

Q 2.1. [16 marks] Translate the C++ program into MIPS program. The skeleton code of MIPS program is provided. You are required to fill in the blanks.

In the MIPS program, a1 = address of array a[], a2 = address of array a[], and a3 = address of array a2 = address of array a3 = address

C++ program code:

```
for (i=0; i!= n; i++) {
  int cnt = 0;
  for (j=0; j!=n; j++) {
  if (a[i] == b[j]) cnt = cnt +1;
  }
  c[i] = cnt;
}
```

MIPS program code to be completed:

```
li $t0,0
                   \# set $t0 = i = 0
for1:
                       # outer for loop
li $t1, 0
                   \# cnt = 0
li $t2, 0
                   # $t2 = j = 0
                   \# load \$t3 = a[i]
lw $t3, 0($a1)
move $t4, $a2
                   # $t4 = address of b
for2:
                        # inner for loop
lw $t5, 0($t4)
                   \#load \$t5 = b[j]
___ $t3, $t5, skip
addiu $t1, ___, __ # add two registers, and store result in $t1
skip:
addiu $t4, ___, ___
addiu $t2, ___, ___
bne $t2, __, __
sw $t1, 0($a3)
               # store c[i] = cnt
addiu $a1, ___, ___
addiu $a3, ___, __
addiu $t0, $t0, 1 # i++
bne $t0, ___, ___
```

Q 2.2. [10 marks] Understand the following MIPS program. The input to this program is an unsigned integer in binary form, which is stored in \$a0. The result will be stored in \$v0.

Question: What function does this program implement? [5 marks] Give a simple example to explain your answer. [5 marks]

li \$v0, 0 # \$v0 = 0
li \$t0, 10 # \$t0 = 10

loop:
divu \$a0, \$t0 # divide by 10
mfhi \$t1 # \$t1 = remainder
mflo \$a0 # \$a0 = quotient

MIPS program code:

add \$v0, \$v0, \$t1 bne \$a0, \$0, loop

Section 3: Digital Logic [40 marks]

- **Q 3.1.** [10 marks] Design a combinational circuit with three inputs $X_3X_2X_1$ and two outputs Y_1Y_0 to implement the following function. The output value Y_1Y_0 specifies the **highest index** of the inputs that have value 0. For example, if the inputs are $X_3X_2X_1 = 011$, the highest index is 3 since $X_3 = 0$; thus we set Y_1Y_0 as 11. If the inputs are $X_3X_2X_1 = 101$, the highest index is 2 since $X_2 = 0$; thus we set Y_1Y_0 as 10. Note, if there is no 0 in the inputs, set $Y_1Y_0 = 00$.
 - Write out the truth table of this combinational circuit. [5 marks]
 - Derive the outputs Y_1 and Y_0 as functions of $X_3X_2X_1$. Use K-map to obtain the simplified SOP form. [5 marks]
- **Q 3.2**. [15 marks] Consider a new type of flip-flop called X-Y flip-flip. It has two inputs X and Y and two outputs Q and \bar{Q} . Let Q_t be the current state of this X-Y flip-flop at time t and Q_{t+1} be the next state. Its characteristic table is given as follows:

X	Y	Q_{t+1}
0	0	0
0	1	Q'_t
1	0	Q_t
1	1	1

- 1) Derive the characteristic function $Q_{t+1} = f(Q_t, X, Y)$ of this X-Y Flip-Flop in simplified SOP form using Karnaugh map.
 - **Requirement**: First, construct a truth table with Q_t, X, Y as input and Q_{t+1} as output; [3 pts] Second, draw a Karnaugh map to get the simplified $Q_{t+1} = f(Q_t, X, Y)$ in SOP form. [3 pts]
- 2) What are the values of the inputs X and Y that will transit the current $Q_t = 1$ to the next state $Q_{t+1} = 0$? [3 pts]
- 3) Suppose that you are given a J-K flip-flop, show how you can build the above X-Y flip-flop using J-K flip-flop and other simple logic gates.

Hint: First, compare the characteristic tables of both flip-flops. What are the relation between J and Y, between K and X? Write J and K as functions of Y and X, respectively. [3 pts] Then, draw a circuit diagram to implement X-Y flip-flop . [3 pts]

- **Q 3.3**. [15 marks] Examine the combination circuit in Fig. 2. The data lines of a 4 to 1 MUX are denoted as D_0 , D_1 , D_2 , and D_3 , respectively (corresponding to '0', '1', '2', '3' in the figure). The data select lines S_1S_0 will select the corresponding data line as output. For example, when $S_1S_0 = 01$, D_1 is selected.
- (a) Write the output A as a function of $D_0, D_1, D_2, D_3, S_0, S_1$. [3 marks]
- (b) Write the outputs A and B as sums of minterms of inputs x, y, z, assuming z is the least significant bit. For example, the minterm m_1 or 1 corresponds to x'y'z. [8 marks]
- (c) The circuit implements a commonly used **arithmetic operation**. What does this circuit implement? What are the meanings of output A and B? [4 marks]

Fig. 2. Combinational circuit for Q 3.3.