HE 18.5 .A37

DOT-

TSC-

UMTA-

72-5

T NO. DOT-TSC-UMTA-72-5

Ettester

MAY 22, 1976

ORT ON SUBWAY TUNNELING NEEDS 13 SELECTED U.S. CITIES, 1971-75

WILLIAM VAN DYKE TRANSPORTATION SYSTEMS CENTER 55 BROADWAY CAMBRIDGE, MA. 02142

JUNE 1972 TECHNICAL REPORT

Approved for Urban Mass Transportation Administration only. Transmittal of this document outside must have prior approval of the TSC UM204 Program Manager.

Prepared for:

DEPARTMENT OF TRANSPORTATION URBAN MASS TRANSPORTATION ADMINISTRATION WASHINGTON, D.C. 20590

The contents of this report reflect the views of the Transportation Systems Center which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

18,5 137 no. DoT

no. DOT TSC-UMTA 72-5

15. Supplementory Notes

Lancon .		The second secon
1. Report No. DOT-TSC-UMTA-72-5.	2. Government Accession No.	3. Recipient's Catalag No.
4. Little and Subtitle REPORT ON SUBWAY T	UNNELING NEEDS OF	5. Report Dote June 15, 1972
13 SELECTED U.S. C	ITIES, 1971-75。	6. Performing Organization Code
7. Author(s) William Van Dyke		8. Performing Organization Report No.
9. Performing Organization Name and a Department, of Tran		10. Work Unit No. R-2722
Transportation Sys	tems Center,	11. Controct or Grant No. UM 2 0 4
55 Broadway, Cambr 12 Sponsoring Agency Name and Addres Department of Tran	333	13. Type of Report and Period Covered Technical Report
Urban Mass Transpo Administration Washington, D.C.		14. Sponsoring Agency Code

This report establishes proposed subway tunneling construction needs for thirteen selected U.S. cities during 1971-75 as given by the transit authorities. This information will be used to estimate the demand for subway tunnel construction. This demand estimate is an important criterion in the generation of an UMTA R&D program in tunneling. With the knowledge of the estimated demand in dollars as a function of the various types of construction e.g., hard rock, soft ground, cut and cover, (including a breakdown of cost by function, i.e. excavation, mucking, etc.) research requirements will be established.

17. Key Words	18. Distribution	Statement	The state of the s
Tunnels, Subway	Administration document out approval of the	Urban Mass Transport on only, Transmittal o side must have prior ne TSC UM204 Progran	f this
19. Security Clossif. (of this report) Unclassified	20. Security Clossif. (of this page) Unclassified		22. Price

TABLE OF CONTENTS

Pag	ſе
INTRODUCTION	
SUMMARY OF RESULTS	
GLOSSARY OF TERMS 6	
REFERENCES	

LIST OF ILLUSTRATIONS

F	igur	<u>e</u>	Page
	1.	Metropolitan Atlanta Rapid Transit System	7
	2.	Proposed Rapid Transit Routes for St. Louis	8
	3.	Adopted Regional System and General Location Rapid Transit Study Sections for Washington, D.C	9

LIST OF TABLES

<u>Table</u>		Page
1.	Planned Rail Rapid Transit Construction	10
2.	Summary of Planned Subway Construction	12
3.	Planned Rock Tunnel	14
4.	Planned Soft Ground Tunnel	15
5.	Planned Cut & Cover Tunnels	16
6.	Planned Underground Stations	17
7.	Subway Tunnel Cost by Function Cut & Cover	19
8.	Subway Tunnel Cost by Function Rock Tunnel	20
9.	Subway Tunnel Cost by Function Soft Ground Tunnel.	21
10.	Subway Station Cost by Function	22
11.	Transit Planning Authorities	23
12.	Location Construction Factors	24
13.	Construction Inflation Factors U.S. 20 Cities ENR Average	25
14.	BART Subways Average Cost per Linear Foot per Track	26
15.	WMATA Subway Construction Costs	27
16.	WMATA Subway Construction Costs	28
17.	WMATA Subway Construction Costs	29
18.	WMATA Subway Construction Costs	30
19.	WMATA Subway Construction Costs	31

INTRODUCTION

This report reflects the current (1971) subway tunneling requirements of 13 selected U.S. cities that are either planning a completely new rail rapid transit system or extensions to an existing system. The 13 cities have performed, as a minimum, preliminary investigations or feasibility studies on rail rapid transit systems. The data on subway tunneling demand presented here represents the instantaneous demand in 1971 and in that sense does not provide information to predict the total future demand. For instance, Detroit and Baltimore are each planning one branch of a system composed of four or five branch lines that will constitute their total integrated plan. Consequently, their future requirements for subway tunnel are not completely shown. Also, this analysis does not take into account other cities that may initiate subway construction within the next 5-15 years.

The thirteen U.S. cities surveyed for this report were:

Atlanta
Baltimore
Boston
Buffalo
Cleveland
Detroit
Los Angeles
New York
Philadelphia
St. Louis
San Francisco
Seattle
Washington

The data was obtained from personal contacts with the transit planners in each city and from the individual engineering reports prepared for each system. The transit plans are at different stages of completion for each city. Washington and San Francisco are well into the construction phase. Los Angeles, Baltimore and Atlanta are set to begin final engineering so that they can begin construction in 1973 or 1974. St. Louis has completed the feasability study on its proposed system, and Detroit has only completed the project definition report for a single line of subway.

The cost estimate for each system is expressed in 1970 dollars using the Engineering News Record Construction Cost Index (Tables 12 and 13). The three sources for unit cost prices are estimates by the transit planners, low bid price data from BART (Table 14) and the Washington METRO (Tables 15-19), and bid price data from tunnel construction with geological conditions similar to those found in several of the cities. The tunneling costs only include heavy construction costs, not including such items as track, electrification, train control, right of way, engineering financing and administrative costs. Likewise, the station costs include only the cost of "shell" construction and exclude architectural finish, most electrical and mechanical installations and operating equipment.

As of this time, no information has been received from New York City, so that the final results do not reflect New York's proposed subway construction.

SUMMARY OF RESULTS

Table 1 shows a tabulation of the planned rail rapid transit construction in the 13 cities surveyed. The locations of rapid transit and tunnel construction for each city are:

- Atlanta: The 56 mile transit plan, with 3.6 miles of tunnel construction along Peachtree Street in downtown Atlanta, includes four main lines extending radially from the central business district with three branch lines (Fig. 1). For additional information see Reference 1.
- Baltimore: The initial plans are for two lines serving the northwest and the southern corridors of the city. The Northwest Line begins in central Baltimore and terminates at Owings Mills. The Southern Line extends from downtown to Marley with a short extension serving Friendship Airport. The 9.6 miles of tunnel run from the proposed Leadenhal Station to a point beyond Mondawmin Station. For additional information see Reference 2.
- Boston: The two mile tunnel for Boston represents the contemplated extension from Harvard Square to Route 2 at Alewife Parkway.
- Buffalo: The initial phase of the transit will extend northwest along the Buffalo-Amherst Corridor from downtown Buffalo to the campus of Erie Community College. The 3.9 mile tunnel segment will be constructed along Main Street in the central city. For additional information see Reference 3.
- Detroit: The route will follow Woodward Avenue from downtown

 Detroit to the northern side of Pontiac. The tunnel portion of the route will extend from downtown Detroit, to the Eleven Mile Road Station. For additional information see Reference 4.
- Los Angeles: Plans prepared by the Southern California Rapid
 Transit District include construction along four main
 corridors. The Wilshire Corridor extends from Union
 Station westward to MacArthur Park then along Wilshire
 Boulevard to its western terminus just east of the San
 Diego Freeway. The line will be entirely subway construction.

The San Gabriel Valley Corridor begins at the eastern terminus of the Wilshire Corridor and extends eastward in

the median of the San Bernadino Freeway to Baldwin Avenue where it leaves the expressway and continues to El Monte. The subway portion of the line is about 3/4 mile from the junction with the Wilshire Corridor to the Macy Street Yard.

The San Fernando Valley Corridor extends northeastward from its connection with the Wilshire Corridor at Wilton Place through the Santa Monica Mountains to its terminus at Tampa Avenue. The tunnel portion of this corridor consists of a 3/4 mile segment of tunnel from the intersection with the Wilshire Corridor, almost 2 miles of subway along Selma Avenue in Hollywood, and a 3 mile tunnel through the Santa Monica Mountains.

The Long Beach Corridor extends from Ninth and Broadway in Los Angeles south to its terminus in Long Beach near Long Beach Avenue. The tunnel portion consists of a 14 mile subway along Broadway and a 1 mile subway along Ocean Boulevard to the terminus in Long Beach.

For additional information see References 8, 9, and 10.

- Philadelphia: The tunnel extensions to Philadelphia's subway system consist of a short extension to the South Broad Street Subway to Snyder Street and a 6.5 mile Northeast extension to the Broad Street Subway.
- St. Louis: The plan has five radial lines extending from the downtown area and two circumferential lines to the west (Fig. 2). The majority of the lines will be tunnel except for the river crossings and the portions of the lines in the less densely populated areas near the suburban terminals. For additional information see Reference 13.
- San Francisco: Present plans are to extend the Daly City route underground to a point just beyond the San Francisco International Airport.
- Washington: The Washington Metro will extend their original 25 mile ABS route with eleven separate radial extensions. (Fig. 3). The tunnel portion of the route occurs within downtown Washington; the suburban extensions are either elevated or at grade. For additional information see References 19 and 20.

Table 2 indicates that the transit authorities contacted spend over \$3.1 billion on subway construction if the required financing is available.

Tables 3-6 give the breakdown of the major types of subway construction, e.g., rock tunnel, soft ground tunnel, cut and cover tunnel, and stations, for each city.

It is to be noted that of the 60.1 miles of planned rock tunnel, St. Louis alone accounted for 47.2 miles of this total, but the remainder of the data indicates that soft ground tunneling predominates in the metropolitan areas covered in this report.

The average cost per mile of a double track subway varies from about \$12 million in rock, about \$13 million for cut and cover construction to about \$25 million for soft ground tunnels. The cost of a 600' station (suitable for eight car trains) is about \$5 million.

Tables 7-10 show a breakdown of the type of tunnel construction by function for the entire project. It must be noted that tunnel construction is very site dependent and in a place like Washington, D.C. the site work, i.e., utilities, underpinning, dewatering, etc. can account for 25-30% of the total subway construction cost.

Table 11 lists the cities visited, the principal individual contacted, and the agency responsible for transit planning in each city. Tables 12 and 13 contain both construction cost index factors for 20 U.S. cities and construction cost inflation factors averaged for 20 cities. This information was compiled by Engineering News Record and was used to derive costs for construction projects completed at different times in different cities. For instance, in St. Louis no cost estimate was available for soft ground tunnel, so costs from San Francisco's soft ground tunneling were used, but because the San Francisco bid prices were 1966 or 1967 prices they were multiplied by the inflation factor to determine the cost in terms of 1970 prices. That price was then multiplied by the ratio of the cost indices for the two cities to arrive at an estimated cost for St. Louis.

Table 14 contains a compilation of itemized bid prices from contracts for BART subway stations and subway tunnel construction.

Tables 15-19 include a cost breakdown compiled by the author from WMATA bid price data on some of their early contracts. It is to be noted that the WMATA contracts include both station and subway in a single contract, so that an item such as mobilization, utilities or adjacent structure protection may refer to the amount for that item on the entire contract.

GLOSSARY OF TERMS

- Cut and Cover the process of excavating a trench from the surface, building the structure, back filling, and then restoring the surface to its original condition
- Drill and Blast A method of excavating rock tunnels with explosives using a cyclic operation of drilling, blasting and mucking
- Lining the structure used to support both the short-term erection loads and the long-term earth loads on a tunnel
- Mechanical Excavators refers to a variety of machines used in both soft ground and rock tunnels to disengage the material at the face of the excavation, they are commonly referred to as "moles"
- Muck sand, clay, mud or rock that is excavated from the tunnel face and removed from the tunnel
- Rate of Advance the rate (usually expressed in feet/day) at which the tunnel face is excavated
- Rock Tunnel tunnel excavated in rock that requires blasting or equivalent energy to break it, where the opening can stand unsupported until permanent supports are installed
- Soft Ground Tunnel tunnel excavated through soil in which the excavation is in immediate danger of collapse
- Supports ground control by stabilization of the face including underpinning

Figure 1. Metropolitan Atlanta Rapid Transit System

Figure 2. Proposed Rapid Transit Routes for St. Louis

Figure 3. Adopted Regional System and General Location Rapid Transit Study Sections for Washington, D.C.

TABLE 1. PLANNED RAIL RAPID TRANSIT CONSTRUCTION

Remarks	Preliminary engineering has been completed. Detailed Engineering being started.	Includes only Phase I plan for one transit corridor. Other possible transit corridors have been identified but preliminary engineering has not yet begun.	Two possible routes exist for the tunnel. The tunnel section may be constructed using boring machines, but present plans call for cut and cover construction.	Preliminary engineering complete. Detailed engineering in process. 12.5 mile route is first line that will be constructed. Other routes are anticipated, but no studies have begun.	No definite plans are available on possible extensions.	Project definition report completed in August, 1971 on the Woodward Avenue line. Detailed engineering studies will soon begin. Other possible transit corridors have been identified, but no current studies have begun on other possible lines.	Preliminary engineering complete on complete 5 corridor system.	Information not yet received.
Anticipated Start of Construction	1974	1974	1974	1974	NA	1974	1974	
Future Tunnel Construction (Route miles including stations)	3.6	9.6	2.0	3.9	None	10.5	22.2	
Future Construction	56 mile rail rapid transit	28 mile rail rapid transit	Surface extensions of existing lines with one tunnel section	New 12.5 mile rail rapid transit	Surface extensions of existing lines	25 mile rail rapid transit	89 mile rail rapid transit	
Existing Rail Rapid Transit	No	ON	Yes	NO	Yes	O _Z	ON	Yes
City	Atlanta	Baltimore	Boston	Buffalo	Cleveland	Detroit	Los Angeles	New York

NA = NOT AVAILABLE

PLANNED RAIL RAPID TRANSIT CONSTRUCTION (CONTINUED) TABLE 1.

City	Existing Rail Rapid Transit	Future Construction	Future Tunnel Construction (Route miles including stations)	Anticipated Start of Construction	Remarks
Phila- delphia	Yes	Several extensions of existing lines	8.6	NA	
St. Louis	No	100 mile rail rapid transit	8.89	NA	Feasability study on 5 transit corridors without detailed engineering analysis
San Francisco	Yes	10.6 mile extension to existing lines	4.1	NA	Recommended plan for possible airport extension.
Seattle	0 Z	None	None	1	No present plans for rail rapid transit. A comprehensive rapid transit plan was completed in 1970 that included in its recommendations a 46.5 mile rail system. For the present Seattle has opted to invest transit money in upgrading their bus system.
Washing- ton	O N	72 mile rail rapid transit	32.4	1973	72 mile Adopted Regional Lines to be added to 25 mile adopted Basic System. Presently being constructed.

NA = NOT AVAILABLE

TABLE 2. SUMMARY OF PLANNED SUBWAY CONSTRUCTION

	Information not received	Based on 18'4" sewer	through limestone in Chicago Estimate based upon WMARTA bid prices for similar constructio		Estimate of \$15-20 mill for tunnel by Baltimore	Estimate of by Detroit	Estimate by	Estimate based for former wor	Estimate based of prices for soft	Estimate based upon WMATA prices for similar type of construction		Estimate by MARTD	Estimate by Metropolitan Authority	Estimate based on cover bid prices	Estimate by Niagara Frontier Authority	Estimate based on cover bid prices
19.2			177.4	858.4	76.2	97.1	165.1	9.66	379.6	130.4	948.0	52.2	87.1	25.3	45.0	112.8
1350	L	2620	3500		3800	2000	7930	5100	5100	3250		3300	3300	2400	2750	2400
2.7 miles	.	.6 m	9.6 miles	60.1 miles	3.8 miles	9.2 miles	16.2 miles	3.7 miles	14.1 miles	7.6 miles	54.6 miles	4 1		2.0 miles	3.1 miles	8.9 miles
Los Angeles	New York	Philadelphi St. Louis	Washington	TOTALS	Baltimore	Detroit	Los Angeles	San Francisco	st. Louis	Washington H	TOTALS	Atlanta		Boston F	Buffalo	O Philadelphia G
	Los Angeles 2.7 miles 1350 19.	Los Angeles 2.7 miles 1350 19.	Los Angeles2.7 miles1350New YorkPhiladelphia0.6 miles2750St. Louis47.2 miles2620	Los Angeles2.7 miles1350New YorkPhiladelphia0.6 miles2750St. Louis47.2 miles2620Washington9.6 miles3500	Los Angeles 2.7 miles 1350 New York Philadelphia 0.6 miles 2750 St. Louis 47.2 miles 2620 Washington 9.6 miles 3500 TOTALS 60.1 miles	Los Angeles 2.7 miles 1350 New York Philadelphia 0.6 miles 2750 St. Louis 47.2 miles 2620 Washington 9.6 miles 3500 TOTALS 60.1 miles 3800	Los Angeles 2.7 miles 1350 New York	Los Angeles 2.7 miles 1350	Los Angeles 2.7 miles 1350	Los Angeles 2.7 miles 1350 New York 2750 Philadelphia 0.6 miles 2750 St. Louis 47.2 miles 2620 Mashington 9.6 miles 3500 TOTALS 60.1 miles 3800 Baltimore 3.8 miles 2000 Los Angeles 16.2 miles 7930 San Francisco 3.7 miles 5100 St. Louis 14.1 miles 5100	Los Angeles 2.7 miles 1350	Color Angeles 2.7 miles 1350 2.8 miles 2750 2.5 miles 2750 2.5 miles 2620 6.5 miles 2620 6.5 miles 2620 6.5 miles 3.8 miles 3800 2.5 miles 2000 2.5 miles 2.5 m	Cos Angeles 2.7 miles 1350	Color Angeles 2.7 miles 1350 1350 136	Color Angeles 2.7 miles 1350 1350 136w York 136w York 1360	Company Comp

SUMMARY OF PLANNED SUBWAY CONSTRUCTION (CONTINUED) TABLE 2.

Remarks	,	Estimate based upon BARTD bid brices for similar construction		Estimate by MARTD	1 2	ρΛ		bas	Philadelphia will build 5 subway stations. This estimate based on 600' per station	Estimate based on BARTD average	Estimate based upon WMATA bid	Estimate based on BARTD average bid prices	Estimate based on bid prices for	Similar Stations on WMAKIA Estimate based on bid prices for BARTD	
st	\$ Million	134.3	456.7	6.6	38.3	20.6	63.5	149.5	22.8	19.1	152.8	127.5	62.7	124.9	791.6
Cost E: \$/LF of	Double Track	2400		3000	8500	5150	8820	8500	7600	8500	9800	8500	0086	0069	
Length (Double Track)		10.6 miles	32.6	3300 LF	4500 LF	4000	7200	17600	3000	2250	15600 LF (rock)	15000 LF (soft ground C&C)	6400 LF	(soft ground	C&C) 95850
City		Washington	TOTALS	Atlanta	Baltimore	Buffalo	Detroit	Los Angeles	Philadelphia	San Francisco	St. Louis		Washington		TOTALS
(p,	quoე) D3	၁		sts	20	T	euur	osts		ιττο	eds Ye	mqns		

TABLE 3. PLANNED ROCK TUNNEL

		T		
Remarks	Tunnel through Santa Monica Mountains			Does not include tunnels under construction in Adopted Basic System
Probable Tunnel Liner	Mechanical Steel ribs excavator with con- crete	Steel ribs with poured concrete	Shotcrete	Rock bolts and shot- crete in- competent bedrock. Ribs and logging with poured concrete in weathered weathered weathered rock.
Probable Probab Excavation Tunnel Technique Liner		Drill & Blast	Generally Mechanical 50'-70' Excavator 120' maximum	Drill & Blast
Depth (Top of Rail to Surface)	Varies- rock tun- nel thru mountains	50.	Generally 50'-70' 120' maximum	65' to 160' generally > 100'
Hydrological Conditions	Medium hard Significant granite and seepage at gandstone geological fault lines	Ground water about 30' below ground surface	NA	Ground water level about 25' below the ground surface
Geological		Decomposed Mica Schist	Medium hard Limestone	Generally Ground was bedrock 1 evel abou Ghiess with 25' below some con
Tunnel Size & Configuration	2 single track tubes 16'6" in- side diameter	NA	2 single track tube 15' inside diameter	2 track tunnel with vertical sidewalls
Length (miles of dbl. trk excluding stations)	2.7 miles	0.6 miles	47.2 miles	9.6 miles
City	Los Angeles	Philadelphia	St. Louis	Washington

NA = NOT AVAILABLE

TABLE 4. PLANNED SOFT GROUND TUNNEL

			,			
Remarks				Based on tentative route to airport. No detailed studies undertaken yet.		Does not include tunnel under construction in Adopted Basic System
Probable Tunnel Liner	Mechanical Precast concrete Excavator or cast iron segments	Prefabricated steel segments	Precast con- crete segments	Prefabricated steel segments	NA	Steel ribs and &lagging with cast-in-place concrete
Probable Excavation Technique	Mechanical Excavator	Mechanical Excavator	Mechanical Excavator	Approx. Mechanical 50' Excavator	Mechanical Excavator	Mechanical Excavator hand mıning
Depth (Top of rail to Surface	25' to 100'	AN A	35'-	Approx.	NA A	- 109
Hydrological Conditions	Construction below ground water level	NA	rer n	NA	Ground water generally 25' below surface	Clayey sand Ground water with some about 20'25' gravel. below surface Some tunnel through
Geological	Silty sand with some decomposed rock	Stiff homo- geneous clay	Silty, Ground wat clayey sand generally with some 25 from boulders surface by up to 50' in some places	NA.	River de- posits silt &	Clayey sand with some gravel. Some tun-nel through plastic clay
Tunnel Size & Configuration	2 single track Silty sand tubes 16'6" in with some side diameter decomposed rock	2 single track tubes 19'0" diameter tun- nel bore	2 single track Silty, tubes 16'6" clayey interior with s diameter boulde	2 single track tubes 16'6" interior dia- meter	2 single track River de- tubes 15' in- posits terior diameter silt & sand	2 single track tubes 16'6" interior diameter
Length (miles of double track excluding stations)	3.8	9.2	16.2	3.7	14.1	7.6
City	Baltimore	Detroit	Los Angeles	San Francisco	St. Louis	Washington

NA = NOT AVAILABLE

TABLE 5. PLANNED CUT & COVER TUNNELS

City	Length (miles of doubltrack excluding stations)	Size & double Configuration uding	Geological Conditions	Hydrological Conditions	Depth (Top of rail to surface)	Remarks
Atlanta	3.0	Double track concrete box 17'X35' interior dimensions	Silty sand	Ground water level 25'-30' below the surface	Generally 35'	Tunnel on central line. This is the only line with extensive tunnel although other lines may include short portions of cut & cover tunnel
Baltimore	5.0	Double track concrete box	Sandy soil with some weathered rock	Construction below water table	25' to 100'	Includes only Phase I. Other possible transit corridors will be planned at a future date.
Boston	2.0	Double track box	Sandy clay with some boulders	NA	Approx. 30'	May change design to 2-single track tubes.
Buffalo	3.1	Double track concrete box 13'6"X29'0" interior di-	Silty sand & gravel	Ground water 10'-20' be- 1ow the sur- face	About 20'	
New York						Information not yet received.
Philadelphia	6.8	Double track concrete box 13'6"X30'0" interior di- mensions	Clay,silty clay and mixed fill material	Ground water 15'-40' be- low surface, generally about 30'	30'-40'	
Washington	10.6	10.1 miles double track box 12'X29' interior di- mensions 0.5 miles (double track)	Clayey sand, plastic clay with some gravel. One segment through weathered rock	Clayey sand, Ground water plastic clay level about with some 25' below gravel. One the surthrough face through	Generally 30' to 40' 20' minimum 100' maximum	Docs not include tunnels under con- struction for Adobted Basic System
		VOC				

NA = NOT AVAILABLE

TABLE 6. PLANNED UNDERGROUND STATIONS

city	Configuration	Number	Construction Technique	Total Length (linear feet) of Double Track	Geological Conditions	Hydrological Conditions	Depth	Remarks
Atlanta	Two level transfer station - 4 tracks	1	Cut & Cover	550	Silty sand with some rock (granite)	Ground water level 25'-30' below the surface	About 50'	
	Single level 2 tracks	2	Cut & Cover	2,750	Silty sand with some rock	Ground water level 25'-30' below the surface	About 50'	
Baltimore	Two level transfer station - 4 tracks	1	Cut & Cover	450	Silty sand	Construction below water table	About 50'	
	Single level 2 tracks	6	Cut & Cover	4,050	1-soft clay 4-sand 4-decomposed rock	Construction below water table	43' to 75'	
Boston	NA	NA	NA	NA	NA	NA	NA	Future plans may include 1 or 2 stations but plans are only in conceptual stage
Buffalo	Single level two tracks	8	Cut & Cover	4,000	Silty sand and gravel	Ground water 10'-20' below surface	30'-40'	
Detroit	Single level two tracks	12	Cut & Cover	7,200	Stiff clay	NA	NA	
Los Angeles	Single level two tracks	22	Cut & Cover	17,600	Silty clay & silty sand	Ground water gen- erally <25' from sourface, but in some places is from 25' to 50' deep	en ur	Consultants recommend cut 6 cover construction; however, transit officials may try modified construction using muning techniques with 75'775' cut 6 cover opening at each end
New York								Information not yet available
Philadelphia	Single level two tracks	2	Cut & Cover	NA	Clay, silty clay and mixed fill	Clay, silty clay Ground water about and mixed fill 30' below surface	Varies 20'-30'	

NA = NOT AVAILABLE

PLANNED UNDERGROUND STATIONS (CONTINUED) TABLE 6.

Remarks								
Depth	About 40'	50' minimum	50' minimum	varies	varies	50'-70'	50,-70,	100'-120'
Hydrological Conditions	NA	NA	NA	NA	NA	Ground water level about 25' below surface	Ground water level about 25' below surface	Ground water level about 25' below surface
Geological Conditions	NA	River deposits Glacial till	River deposits sand and silt	Medium hard limestone	Medium hard limestone	Silty sand	Silty clay Clay Silty sand	Bedrock - schistose gniess
Total Length (linear fect) of Double Track	2,400	1,800	13,200	1,200	14,400	2,400	15,700	6,400
Construction Technique	Cut & Cover	Cut & Cover	Cut & Cover	Drill & Blast	Drill & Blast	Cut & Cover	Cut & Cover	Drill & Blast
Number	ю	е	22	2	24	3	19	8
Configuration	Single level two tracks	Double level 4 tracks	Single level 2 tracks	Double level 4 tracks	Single level 2 tracks	Double level 4 tracks	Single level 2 tracks	Single level 2 tracks
City	San Francisco Single level	St. Louis				Washington		

NA = NOT AVAILABLE

SUBWAY TUNNEL COST BY FUNCTION, CUT & COVER TABLE 7.

TOTAL MILL. \$	52.2	87.1	25.3	45.0	112.8	134.3	456.7
ELECTRICAL	1.4	2.3	0.7	1.2	2.9	3.5	12.0
MECHANICAL & DRAINAGE	0.5	8.0	0.2	0.4	1.0	1.2	4.1
STRUCTURES	27.6	46.0	13.4	23.8	59.6	70.9	241.3
BACKFILL	1.4	2.3	0.7	1.2	2.9	3.5	12.0
EXCAVATION & MUCKING	13.1	21.8	6.3	11.3	28.2	33.6	114.3
UTILITIES	2.2	3.7	1.1	1.9	4.8	5.6	19.3
MAINTENANCE OF TRAFFIC	2.2	3.7	1.1	1.9	4.8	9*5	19.3
SITEWORK	4.0	6.7	1.9	3,5	8.7	10.3	35.1
CITY	ATLANTA	BALTIMORE	BOSTON	BUFFALO	PHILADELPHIA	WASHINGTON	TOTAL MILL. \$

SUBWAY TUNNEL COST BY FUNCTION, ROCK TUNNEL TABLE 8.

CITY	SITEWORK	EXCAVATION* MUCKING* LINING STRUCTURES MECHANICAL	MUCKING*	LINING	STRUCTURES	MECHANICAL	ELECTRICAL	MISCEL.	TOTAL MILL. \$
LOS ANGELES	0.7	6.4	6.4	4.3	0.4	0.3	0.2	0.4	19.2
PHILADELPHIA	0.3	2.9	2.9	1.9	0.2	0.2	0.1	0.2	8.7
ST. LOUIS	24.8	217.8	217.8	145.0	13.1	11.8	8.5	14.4	653.1
WASHINGTON	6.7	59.1	59.1	39.4	3.5	3.2	2.3	3.9	177.4
TOTAL MILL. \$	32.5	286.2	286.2	190.6	17.2	15.5	11.1	18.9	858.4

*Because of the many unknown site dependent constraints, the excavation and mucking function costs were arbitrarily assumed to be equal.

SUBWAY TUNNEL COST BY FUNCTION, SOFT GROUND TUNNEL TABLE 9.

CITY	EXCAVATION*	MUCKING*	SUPPORTS	LINING	UTILITIES	MISCEL.	TOTAL MILL. \$
BALTIMORE	22.9	22.9	6.9	15.2	1.5	6.9	76.2
DETROIT	29.1	29.1	8.7	19.4	1.9	8.7	97.1
LOS ANGELES	49.5	49.5	14.9	33.0	т т	14.9	165.1
SAN FRANCISCO	29.9	29.9	0.6	19.9	2.0	0.6	99.66
SI. LOUIS	113.9	113.9	34.2	75.9	7.6	34.2	379.6
WASHINGTON	39.1	39.1	**11.7	26.1	2.6	11.7,	130.4
TOTAL MILL. \$	284.4	284.4	85.4	189.5	18.9	85.4	948.0

*Because of the many unknown site dependent constraints, the excavation and mucking function costs were arbitrarily assumed to be equal.

**Does not include underpinning.

TABLE 10. SUBWAY STATION COST BY FUNCTION

· s										
TOTAL MILL.	6*6	38.3	20.6	63.5	149.5	22.8	19.1	280.3	187.6	791.6
MISCEL.	τ.	0.4	0.2	8*0	1.8	0.3	0.2	3.4	2.3	9.5
ELEC- TRICAL	.2	0.7	0.4	1.1	2.7	0.4	0.3	5.0	3.4	14.2
MECHAN- ICAL	.2	0.7	0.4	1.1	2.7	0.4	0.3	5.0	3.4	14.1
TUNNEL	7.	2.5	1.3	4.1	9.7	1.5	1.2	18.2	12.2	51.4
STRUCTURE	3.4	13.2	7.1	22.0	51.6	7.9	9.9	7.96	64.7	273.2
BACKFILL	٠:	9.0	0.3	1.0	2.2	0.3	0.3	4.2	2.8	11.8
EXCAVATION & MUCKING	2.7	10.4	9.6	17.3	40.7	6.2	5.2	76.2	51.0	214.4
OTHER SITE WORK	8.	3.0	1.6	5.1	12.0	1.8	1.5	22.4	15.0	63.2
MAINTENANCE OF TRAFFIC	.5	1.9	1.0	3.1	7.3	1.1	6.0	13.7	9.2	38.5
UTILITIES	1.2	4.8	2.6	8.0	18.8	2.9	2.4	35.3	23.6	99.3
CITY	ATLANTA	BALTIMORE	BUFFALO	DETROIT	LOS ANGELES	РИІГАОЕСРИІА	SAN FRANCISCO	ST. LOUIS	WASHINGTON	TOTAL MILL. \$

22

TABLE 11. TRANSIT PLANNING AUTHORITIES

City Authority and Person Contacted Atlanta Metropolitan Atlanta Rapid Transit District (MARTD) Mr. E.W. Nelson Chief Engineer (404)524-5711 Mass Transit Administration (MTA) Baltimore Frank Hoppe (301)539-6281 Director of Engineering Massachusetts Bay Transportation Boston Authority (MBTA) George Duarte (617)722-6187 Planner Niagara Frontier Transit Authority (NFTA) Buffalo Gordon Thompson Chief Engineer (716)842-3311 Cleveland Cleveland Transit System (CTS) Bert Stone (216)781-5000 Chief Engineer Southeastern Michigan Transit Detroit Authority (SEMTA) David Chaffin Chief Engineer (313)962-9800 Southern California Rapid Transit Los Angeles District (SCRTD) Richard Gallagher Chief Engineer (213)749-6977 New York City Transit Authority (NYCTA) New York Eugene Casey Division Engineer (212)852-5000 Southeastern Pennsylvania Rapid Philadelphia Transit Authority (SEPTA) and Department of Public Property Robert Belfi (215)686-4496 St. Louis Bi-State Development Agency Col. R.E. Smyser Executive Director (314)231-1727 San Francisco Bay Area Rapid Transit District (BARTD) David Hammond Chief Engineer (415)465-4100 Seattle Municipality of Metropolitan Seattle (METRO) William Mott Transportation Planner Washington Washington Metropolitan Area Transit Authority (WMATA)

23

Director of Engineering (202)484-2750

Vernon Garret

TABLE 12. LOCATION CONSTRUCTION FACTORS

Base Index: U. S. National ENR 20 Cities Averages, September 1971

•	Construction	Building Cost
Location	Index	Index
Far West		
Los Angeles	1.03	. 96
San Francisco	1.07	1.09
Seattle	. 90	. 88
Mississippi to Rockies		
Dallas	. 78	.87
Denver	. 82	. 96
Kansas City	1.15	. 98
Minneapolis	1.07	1.01
St. Louis	1. 13	. 97
Middle West		
Chicago	1.12	1.07
Cincinnatti	1.14	1.04
Cleveland	1.20	1.13
Detroit	1.19	1. 12
South		
Atlanta	. 76	. 87
Birmingham	. 71	. 81
New Orleans	.77	. 85
Middle Atlantic		
Baltimore	. 87	1.00
New York	1, 32	1.21
Philadelphia	. 91	1.03
Pittsburgh	1. 01	1.12
New England		
Boston	1.05	1.02
Canada		
Montreal	.79	.77
Toronto	. 85	. 86

TABLE 13. CONSTRUCTION INFLATION FACTORS U.S. 20 CITIES ENR AVERAGE*

Construction Inflation Factors
U. S. 20 Cities ENR Average*

Base 1913 = 100: Labor and Materials

	Construction Cost Index	Index Using 1966 Base	Building Cost Index	Index Using 1966 Base
1966	1034	1.00	655	1.00
1967	1098	1.06	687	1.05
1968	1201	1.17	755	1.15
1969	1305	1.26	802	1.23
1970	1445	1.40	866	1.32
1971	1645	1.59	990	1.51
1972	1890	1.83	1110	1.70 Est.

Source: Engineering News Record, March 1971

TABLE 14. BART SUBWAYS AVERAGE COST PER LINEAR FOOT PER TRACK

			6 CU	TAND	COVER	LINE	10	TUNNE	LED L	INE	2 RO	CK TUI	NELEC	LINE	13 \$1	ATION	CONT	RACTS	TRAN	S BAY
			MIN.	MAX.	AV6.	AV6. %	MIN.	MAX.	AVG	AVG %	MIN	MAX	AVG	AVG.%	MIN	MAX	AVG.	AVG. %	COST	%
	MOBILIZATION		-	\$ 72	\$ 31	4.7	\$ 40	\$365	\$ 82	4.3	\$ 16	\$ 44	\$ 22	2.1	\$135	\$450	\$186	4.8	\$ 93	3 5
	DEMOLITION AND	REMOVAL	-	30	7	1.0	-	13	3	0.2	1	ī	1	0.1	-	32	9	0.2	49	19
×	TRAFFIC MAINTENA	INCE AND CONTROL	13	55	28	4 2	-	65	19	1.0	-	-	_	-	13	570	188	4 9	_	<u> </u>
WORK	UTILITIES BY OW	NER	-	39	H	1.7	_	44	17	0.8	-	_	T —	T-		750	262	6.8	160	6 1
SITE	UTILITIES BY CO	TRACTOR	8	30	16	2.5	-	92	26	1.4	ı	14	12	12	30	580	.222	5 8	_	
S	AOJACENT STRUC	TURE PROTECTION	-	4	1	0.1	1	430	56	3 0	-	6	1	01	-	255	77	20	2	01
	SURFACE RESTOR	ATION	5	35	13	19	-	9	4	0.2	-	3	3	03	13	82	40	10		-
	SUBTOTAL		-	_	107	161		-	207	10.9	-	_	39	3 8	_	-	984	25.5	304	116
	SUBWAY EXCAVAT	ION	55	263	167	250	-	-	_	-	-	T -	-	_	189	1,920	1,044	27 2	297	112
EARTHWORK	SUBWAY BACKFIL	L	2	28	17	2 6	-	-	-	_	-	T-	-	-	2	102	56	15	⁽⁰⁾ 246	93
Ę	INSTRUMENTATIO	N	_	_	-	-	-	_	_	-	-	-	_	-	2	73	32	0 B	^(b) 76	2 9
A	SUBTOTAL		-	_	184	27 6	-	-	_	_	_	_	_	_	_	_	1,132	295	619	234
	STRUCTURAL CON	CRETE	147	269	204	30 5	-	-	_	_	-	-	-	_	185	940	614	160	558	21 2
	MISCELLANEOUS C	ONCRETE	3	38	12	18	-	-	-	_	_		-	-	2	75	31	0 8	18	0.7
1	REINFORCING STE	EL	51	90	69	103	-	_	_	_	_	-	-		100	395	191	50	143	5 5
STRUCTURE	STRUCTURAL STE	EL	_	_	-	-	_	_	_	_	_	_	_	_	_	1,450	431	11.2	575	219
IRUC	MISCELLANEOUS IR	ON ANO STEEL	6	16	9	1 3	-	_	_	_	-	_	_	_	15	79	33	0 B	9	0.3
S	WATERPROOFING		-	41	11	1.7	-	_	_	-	-	-	-	-	6	67	25	07	^(c) 189	7 2
	BEARING PILES		_	91	13	20	_		_	_	_	-	_	_	-	_	-	_	(d) 39	1.5
	SUBTOTAL	-	_	_	318	476	_	_	_	-	-	_	_	_	_	_	1,325	34 5	1,531	56 3
	TUNNEL	FREE AIR	_		_	-	247	3,630	985	52 0	645	860	683	667	_	610	172	4 4	-	
1	EXCAVATION	COMPRESSEO AIR		_	_	_	2.4	3,030	,	JE 0	_	_	_	-	_	-	_	-	1	_
	LINING			_	_	_	139	4 30	319	16 9	206	332	228	22 2	-	203	64	1.7	-	
LS.	CROSS PASSAGES		-	-	_	-	4	26	12	0 6	6	8	7	0 7	-	4	-	-	-	
TUNNELS	TERMINATIONS			_		_	_	38	12	0 6	_	_	_	-	-	40	10	. 03		-
2	INVERT CONCRETE		_	_	_	-	2	71	41	2.2	_	_	_	-	-	21	5	01	-	
	MISCELLANEOUS	RON ANO STEEL	_	_	_	_	3	2.2	- 11	06	1	9	3	0 3	_	-	-	-	_	_
	INSTRUMENTATION	l		-	_	_	_	22	9	0 5	_	4	.!	01	_	-	-	-	-	
	SUBTOTAL		_	_	1	1		_	1,389	73 4		_	922	900	-	-	251	6.5	-	-
S	DAKLANO VENTILA	TION BUILDING	_			-		_	_	_	_	_				-	-	_	57	2 2
STRUCTURES	VENTILATION SHA	FTS	_	_	_	_	_	675	47	2 5	_	44	7	0 7	-	-	_	_	-	
RUC	PORTAL STRUCTU	RES	_	38	13	1.9		370	2 5	13	_	16	13	13		_	_	_	-	_
R ST	CROSSOVERS		_	_	_	_	_	353	60	3 2	_	_	_	_	-	-	_	_	_	_
OTHER	LINE STRUCTURES	3	_	59	22	3 3	_	465	135	71	_		_	-		-	-	-	-	-
	SUBTOTAL		_	_	35	5 2	_	-	267	14.1	_	_	20	2 0		-	-	_	57	2 2
S	MECHANICAL ANO	ORA INA GE	4	15	6	0.9	3	17	10	0 5	18	27	19	1,8	17	345	70	18	38	14
FACILITIES	ELECTRICAL		10	28	17	2-6	11	31	21	Ξ	- 11	20	13	1.3	20	144	70	18	71	2.7
FACIL	ARCHITECTURAL A	NO FINISH	_	_	_	-	_	_	_	_]		14	- 11	1.1	_	122	15	0.4	101	0 4
	SUBTOTAL		_	_	23	3 5	-		31	1.6	_	_	43	4 2	_	_	155	4 0	119	4 5
	TOTAL		-	-	\$ 667	100.0	-	-	\$1,894	100.0	-		\$1,024	1000	-	— \$	3,847	100 0	2,630	1000
					Ma	ton: 1 (Santa as		in hear					ly, exclu	4					

⁽a) FOUNDATION COURSE, BACKFILL, RIP RAP PROTECTION (b) OIKES ENCLOSING DISPOSAL AREA. (c) LAUNCH, TOW, SINK, JOIN AND DEWATER JOINTS. (d) JOINTS

Notes: 1. Costs cover main heavy construction contracts only excluding tract, traction, electrification, train contral, right-of-way, engineering, financing, and administrative casts. All costs based on low bids

control, right of way, engineering, matching, solutions are clived.

2. "Station" controcts cover "shell" construction only, excluding architectural finish, most electrical and mechanical installations, and operating equipment.

3. Trans Boy Tube covers main tube contract, two ventilation buildings, mechanical and electrical work (excluding items listed in Note I), and cothodic protection.

TABLE 15. WMATA SUBWAY CONSTRUCTION COSTS

	CONTRACT NO.	B002	02	B003		B003	
	DESCRIPTION	Cut & C Tunnel	Cover	Cut & Co Tunnel	Cover	Union St Cut & Co	Station - Cover
		\$1,000	olo	\$1,000	9/0	\$1,000	сHP
Site Work	Mobilization Maintenance of Traffic Decking Utilities Adjacent Structure Protection Surface Removal & Restoration Dewatering SUBTOTAL	120.0 1315.4 1126.9 994.6 690.3 480.9	11.0 11.3 11.3 8.6 6.0 4.2	360.0 20.0 42.4 72.6 73.6 232.1 396.8 71.5	17.8 1.0 2.1 3.8 11.5 19.7 3.5	8 8 8 8 8 8 8 8 8 8 8 8	2.8
мокк Ечктр-	Subway Excavation Support of Excavation Subway Backfill SUBTOTAL	1189.8 2670.0 667.0 4526.8	10.3 23.0 5.8 39.1	219.0 68.0 363.9	3.8 10.8 3.4 18.0	283.5 486.0 124.0 893.5	9.3 15.9 4.0 29.2
Structure	Structural Concrete Miscellaneous concrete Reinforcing Steel Structural and Misc. Steel Waterproofing	1722.4 579.7 2302.1	5.0	342.5 83.0 5.7 431.2	17.0 4.1 0.3 21.4	1345.5 47.3 523.6 44.3 68.6	43.9 1.6 17.1 1.4 2.2 66.2
TənnuT	Excavation Rock Bolts Concrete Structural Steel Supports Reinforcing Steel Miscellaneous Steel						,
Facil- ities	Mechanical and Drainage Electrical Architectural and Finish SUBTOTAL	20.0	0.2	25.3	1.2	55.3	1.8
	. TOTAL Length-Feet of Double Track Bid Date Remarks	11,577.0 2400 3/25/70	100.0	2,018.8 NA 1/25/71	100.0	3,062.9 NA 1725/1	100.0

TABLE 16. WMATA SUBWAY CONSTRUCTION COSTS

Cut & Cover Subway Rock Tunnel Single Rossiyn Street Track Tube		CONTRACT NO.	C005		0.0	C005	C005	
Mobilization S1,000 S S1,000 S S1,000 Waitenance of Traffic 100.8 3.9 168.6 2.1 405.3 100.8		DESCRIPTION	ω	1	Rock Tunne Track T	1 ()	sslyn	Station
Monthingerion 144.7 5.2 168.6 2.1 405.3			\$1,000	0/0	1,000	0/0	\$1,000	9/0
Adjacent Structure Protection 75.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	удс	Mobilization Maintenance of Traffic Decking Utilities	144.7 108.8 96.0 460.1	5.2 3.9 3.4 16.6	168.6	•	405.3	3.9
Subpay Execution 1980 37.1 648.4 90.0	W 9J.	Adjacent Structure Protection Surface Removal & Restoration Dewatering	5.0 73.9 .40.0	0.2 2.7 1.4			•	0.1
Subway Excavation 198.0 7.1 90.0 9	ŢS	SUBTOTAL	928.5	33.4	168.6	2.1		4.0
Structural Concrete	- t	Subway Excavation Support of Excavation	198.0	7.1				61.0
Structural Concrete		Subway Backfill SUBTOTAL	27.0 1255.0	1.0			90.0	0.8
Matchocing Steel	ә	Structural Concrete	209.6	7.6	3452.0	42.7	554.	24.1
Excavation Section S	anac	Miscellaheous Concrete Reinforcing Steel Structural and Misc Steel	250.0	0.6				8.8
Excavation Rock Bolts Concrete Grounting Grouting Structural Steel Supports 6 Structural Steel Supports 6 Structural Steel Supports 6 Structural Steel Supports 6 Structural Steel Supports Reinfording Steel Miscellaneous Steel	nząg	Waterproofing SUBTOTAL	94.7	3.4	3452.0	42.7	3626.0	
Structural Steel Supports & 10.05 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5	τ	Excavation Rock Bolts Concrete			472.1	34.2		
Reinforcing Steel	əuur	Supports			917.5	11.4	,	
Mechanical and Drainage	ıΤ	Reinforcing Steel Miscellaneous Steel			100.0	1.2		
Mechanical and Drainage		SUBTOTAL			4445.4	2		
AL 20.0 0.2 AL 2777.8 100.0 8086.0 100.0 10,589.8 Double Track 200 6/9/71 6/9/71 Excludes rock tunnel turnout \$1,519,700	Facil- ities	Mechanical and Drainage Electrical Architectural and Finish	40.0		20.0	0.2		
Double Track 200 100.0 10.589.8 Double Track 6/9/71 6/9/71 6/9/71 Excludes rock tunnel turnout \$1,519,700		SUBTOTAL	40.0	1.4	20.0	0.2	•	3
Double Track 200 6/9/71 6/9/71 Excludes rock tunnel turnout \$1,519,700		TOTAL	2777.8	100.0	8086.0	0.001	•	100.0
Excludes rock tunnel turnout \$1,519,700		Double	200 6/9/71		3689 6/9/71		11/6/9	
tunnel turnout \$1,519,700		Remarks						
		Excludes rock						

TABLE 17. WMATA SUBWAY CONSTRUCTION COSTS

CONTRACT NO. C003 C003						-
Subway		CONTRACT NO.	C003		C003	
Mobilization Maintenance of Traffic 300.0 1.8 1.8 1000.0 6.1 600.0 6.6 1.8 1000.0 6.1 1.9 1.9 1.9 1.9 1.9 1.9 1.5 1.9 1.5 1.9 1.6 1.6 1.5 1.6 1.		DESCRIPTION	1	over	Station	
Maintenance of Traffic 300.0 1.8 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 6.1 1000.0 11.9 1000.0 11.9 1000.0 11.9 1000.0 11.0 1000.0			\$1,000	%	\$1,000	olo
Subway Excavation 1669.4 10.3 1697.2 18.5		Maintenance of Traffic Decking Utilities Adjacent Structure Protection Surface Removal & Restoration	300.0 1000.0 1930.2 1150.0 663.6	1.8 6.1 11.9 7.1 4.1		
Subway Excavation 1669.4 10.3 1697.2 18.5	Sit					
Support of Excavation 2755.0 16.9 2000.0 21.9						
SUBTOTAL S167.9 31.8 4101.2 44.8	arth-	Subway Excavation Support of Excavation Subway Backfill	2755.0	16.9	2000.0	21.9
Miscellaneous Concrete Reinforcing Steel Structural and Misc. Steel Subtotal Structural and Misc. Steel Subtotal Solution Steel Subtotal Structural Steel Subtotal	田文	SUBTOTAL	5167.9	31.8	4101.2	44.8
Excavation Rock Bolts Concrete Grouting Structural Steel Supports Reinforcing Steel Miscellaneous Steel SUBTOTAL Mechanical and Drainage Electrical Architectural and Finish SUBTOTAL TOTAL Length-Feet of Double Track Bid Date Excavation Rock Bolts Concrete Grouting Structural Steel Supports Reinforcing Steel Miscellaneous Steel SUBTOTAL 100.0 10	tructure	Miscellaneous Concrete Reinforcing Steel Structural and Misc. Steel	628.6	3.9	176.0 757.3 192.9	1.9 8.3 2.1
Rock Bolts Concrete Grouting Structural Steel Supports Reinforcing Steel Miscellaneous Steel SUBTOTAL Mechanical and Drainage Electrical Architectural and Finish SUBTOTAL TOTAL Length-Feet of Double Track Bid Date Rock Bolts Concrete Grouting Structural Steel Supports Reinforcing Steel Miscellaneous Steel SUBTOTAL 100.0 100	S	SUBTOTAL	5346.5	32.8	4191.9	45.8
Electrical Architectural and Finish 50.0 0.5 SUBTOTAL 110.0 1.2 TOTAL 16,274.2 100.0 9153.1 100.0 Length-Feet of Double Track Bid Date 6/2/71 6/2/71	Tunne1	Rock Bolts Concrete Grouting Structural Steel Supports Reinforcing Steel Miscellaneous Steel				
Subtotal	1				60.0	0.7
TOTAL 16,274.2 100.0 9153.1 100.0 Length-Feet of Double Track Bid Date 2106 6/2/71 770 6/2/71	aci	Architectural and Finish				1
Length-Feet of Double Track 2106 770 6/2/71 6/2/71			16,274.2	100.0		
Remarks		Length-Feet of Double Track	2106		770	
		Remarks				

TABLE 18. WMATA SUBWAY CONSTRUCTION COSTS

				1004		0004	
	CONTRACT NO.	A001		A001		A002	
	Description	Cut & Cover	r Tunnel	Metro Center Sta 2 level transfer station	Metro Center Station 2 level transfer station	Earth Tunnel Twin Tubes	nnel es
		\$1,000	oю	\$1,000	æ	\$1,000	dio.
	Mobilization Maintenance of Traffic	450.0	2.9			500.0	7.0
юку	Decking n+il;+ies	465.8	3.0	1436.7	6.7		
ų ə	Adjacent Structure Protection	4941.6	32.3				
) is	Surface Removal & Restoration Dewatering	631.7	1.4	1042.6	4.8	437.8	6.1
	SUBTOTAL	10,508.6	68.7	2479.3	11.5	937.8	13.1
-1	Subway Excavation	582.0	8.6	2021.3	9.4		
גג גגן	Support of Excavation Subway Backfill	349.8	2.3	458.6	2.1		
MC	SUBTOTAL	2169.5	14.2	5677.0	26.3		
тке	Structural Concrete	1822.9	11.9	8781.5	40.7		
ເຊລຖ	Miscellaneous Concrete Reinforcing Steel	377.8	2.5	3008.7	13.9		
aqe	Structural and Misc. Steel Waterproofing	224.0	1.4	683.8	3.2	4.0	0.1
3	SUBTOTAL	2424.7	15.8	12,788.0	59.2	4.0	0.1
	Excavation					4961.3	9.69
τəτ	Concrete					0	,
unL	Grouting Structural Steel Supports					731.8	10.3
	Miscellaneous Steel					329.9	4.6
	SUBTOTAL					6188.8	86.8
_	Mechanical and Drainage	24.0	0.2	10.0	0.1		
cil.		172.2	[:[635.0	2.9	2.0	ı
		196.2	1.3	645.0	3.0	2.0	1
	TOTAL	15,299.0	100.0	21,589.3	100.0	7132.6	100.0
	Length-Feet of Double Track Bid Date	1022 6/17/70		1647 6/17/70		2188	
	Depth Soil Conditions	40-45' Silty & Sandy Clay	ndy Clay	Silty & Sandy Clay	ndy Clay	Silty &	Silty & Sandy Clay
	Remarks						

TABLE 19. WMATA SUBWAY CONSTRUCTION COSTS

	CONTRACT NO.	A003		A003		A004		A004	
	Description	Cut & Cover Tunnel	over	Farragut N. Station Cut & Cover	on	Rock Tunnel	nel	DuPont Circle Station - Rock Tunnel Station	ircle Rock
		\$1,000	ø,0	\$1,000	010	\$1,000	olo.	\$1,000	ФЮ
2	Mobilization Maintenance of Traffic	250.0	2.2	740.0	7.3	600.0	13.8		
MOL)	Decking Utilities Utilities	2108.9	17.6			15.0	0.3	443.0	6.9
e i i	Adjacent Structure Fiorection Surface Removal & Restoration Dewatering	759.5	1.9	209.0	2.1	20.0	0.5	63.1	1.0
S	SUBTOTAL	5308.1	44.4	949.0	9.4	785.0	18.0	506.1	7.9
окк к ғ у-	Subway Excavation Support of Excavation Subway Backfill	1321.7 785.8 1650.0	11.1 6.6 13.8	1357.7 2150.0 463.2	13.5 21.3 4.6			251.2 62.9	3.9
	SUBTOTAL	3757.5	31.5	3970.9	39.4			314.1	4.9
ə.	Structural Concrete	2398.5	20.1	2943.1	29.2			1492.7	23.4
anao	Miscerianeous concrete Reinforcing Steel Structural and Misc. Steel	426.4	3.6	1503.8	14.9			316.8	5.0
nza		37.7	0.3	127.0	1.3	21.9	0.5		
s	SUBTOTAL	2863.3	24.0	5156.6	51.2	21.9	0.5	1852.8	29.1
1	Excavation Rock Bolts Concrete					1392.3 233.0 1490.1	32.0	3303.6	51.9
əuunı	Grouting Structural Steel Supports Reinforcing Steel Miscellaneous Steel					79.1 158.0 114.7 27.5	7 3 .6 0 .5 0 .6	384.0	0.9
	SUBTOTAL					3494.7	80.3	3687.6	57.9
Facil- ities	Mechanical and Drainage Electrical Architectural and Finish Temporary Bulkhead	17.0	0.1			20.0	1.2	10.0	0.2
	TOTAL	11,945.9	100.0	10,076.5	100.0	4351.6	100.0	6370.6	100
	Length-Feet of Double Track Bid Date Depth (Ground Surface to Top of Rail) Soil Conditions Remarks	1838		770		4000	5/11/2	770	

REFERENCES

- 1. Atlanta, Metropolitan Atlanta Rapid Transit Plan, engineering report summarizing transit plan for Atlanta by Parsons, Brinckerhoff-Tudor-Bechtel, September, 1971.
- 2. Baltimore, Phase I Rapid Transit Plan, prepared by MTA, May, 1971.
- 3. Buffalo, Appendix 4 and 6 from <u>Niagara Frontier Mass Transit Study</u>, TEI Consulting Engineers, Inc.
- 4. Detroit, <u>Woodward Rapid Transit Project Definition Report</u>, engineering report by Louis Klander, consulting engineers, August 15, 1971.
- 5. Development of a U.S. Department of Transportation R&D Program Plan for Tunneling, report on potential areas for future R&D in transportation tunneling, March, 1971.
- 6. Fenix and Scisson, A Systems Study of Soft Ground Tunneling, U.S. Department of Transportation, May, 1970.
- 7. Kuesel, T.R., "Subway Construction Costs", report on tunneling costs for BARTD prepared by Parsons, Brinckerhoff-Tudor-Bechtel, April, 1970.
- 8. Los Angeles, Appendix A of the Final Report, appendix to the final report by Kaiser Engineers, May, 1968.
- 9. Los Angeles, <u>Preliminary Foundation Investigation</u>, soils study by LeRoy Crandall & Associates, April, 1968.
- 10. Los Angeles, <u>SCRTD Final Report</u>, transit report by Kaiser Engineers, May, 1968.
- 11. Mayo, Roberts, <u>Tunneling</u> <u>The State of the Art</u>, U.S. Department of Housing and Urban Development, January, 1968.
- 12. RMC, Inc., Draft of report on transportation guideway costs, December 23, 1971.
- 13. St. Louis, Engineering report by Parsons, Brinckerhoff-Tudor-Bechtel, August, 1971.
- 14. Seattle, The Rapid Transit Plan for the Metropolitan Seattle Area-Technical Appendix, engineering report by DeLeuw, Cather and Company, March, 1970.

REFERENCES (CONTINUED)

- 15. Tunneling Cost Analysis, report with tabulated tunnel costs, by RMC Inc. for Federal Railway Administration, Office of High Speed Ground Transportation. Report No. FRA-RT-71-73, 1971.
- 16. Urban Transit Development in Twenty Major Cities, Automobile Safety Foundation, March, 1968.
- 17. Washington, Final Report, Subsurface Investigation Volumes 1-3, soils report on Authorized Basic System by Meuser, Ruteledge, Wentworth & Johnston, December, 1967.
- 18. Washington, Final Report, Subsurface Investigation,
 Volume 4 and Appendix A, soils report on Authorized
 Basic System by Meuser, Ruteledge, Wentworth & Johnston.
- 19. Washington, <u>Preliminary Design</u> and <u>Capital Costs</u>, engineering report by DeLeuw, Cather & Co. on Added Regional Lines, February, 1968.
- 20. Washington, <u>Preliminary Subsurface Investigation</u>, preliminary soils report by Meuser, Ruteledge, Wentworth & Johnston on the Added Regional Lines, February, 1969.
- 21. Washington, Bid Tabulations for Contracts 1A001, 1A0021, 1A0031, 1A0043, 1A0044, 1B0021, 1B0032, 1C0031, and 1C0051.

HE 18.5 12 Marche FORMERLY FORM D no.DOT-TSC-UMTA-72-5 BORROW

