9/11/22		STUDENTS	ADVISOR
Mechanical Engineering IIT Bombay	Akshat K. Gupta 200100017	Purushottam Mani 20D180025	Prof. Soham Majumdar
	Amritaansh Narain 200100022	Omkar D. Patil 200100111	

Smartphone Goniometer

Table of Contents

		Page
I	Research Background & Motivation	3
II	Experimental Methodology	4
III	Research Results	6
IV	Observations & Analysis	7
V	Conclusion & Discussions	8
VI	Future Work & Development Prospects	9

I Research Background & Motivation

- Goniometer setups are bulky and expensive
- Our aim is to make use merely a smartphone to measure the interfacial contact angle

Objectives:

- Understanding the influence of surface tension and contact angle between interfaces in material design
- Developing the CAD model of the device
- Developing software in-house
- Comparison of results with standard equipment

This project was the appropriate junction between our interests and area of knowledge

Goniometer (PG Lab, IITB)

Nike GORE-TEX

II Methodology

	VCA System	Our Prototype
Cost	\$10,000 - \$20,000	\$200-\$500
Compact	×	✓
Weight	×	✓
Accuracy	1 degree	8 degree

Existing Setup

Our Prototype

Comparison

II Methodology

Software Development

GUI

Algorithm

- We first take the raw image or video as input
- Then we select our reference frame and crop out the required area
- We need to select the threshold parameters
- Then we select corresponding black pixels by scanning the image laterally and using the slope to determine the contact angle

III Research Results

Software Implementation on different images

Standard goniometer

Smartphone camera

Raw image (shot on iPhone 13)

Processed image

V Observations & Analysis

Observations

From Standard Goniometer		From our Goniometer		
Contact angle (left)	Contact angle (right)	Contact angle (left) Contact angle (right)		Error %
Material1:				
61.2	67.3	45	47	28.40466926
61.4	63.05	42	47	28.48533548
Material2:				
120.7	121.4	120	147	10.2850062
120.2	120.85	135	142	14.91391827
			Mean:	20.5222323

From Standard Goniometer		From our Goniometer			
Contact angle (left)	Contact angle (right)	Contact angle (left)	Contact angle (right)	Error %	Source
Material1:					
111.95	111.46	114	114	2.054518598	YT
111.86	111.36	109	109	2.338500134	YT
Material2:					YT
23	20	16	23	9.302325581	YT
Material3:					YT
41.56	41.4	45	45	8.486017358	YT
47	48	45	45	5.263157895	YT

Source: Standard Images

Source: YouTube

V Conclusion & Discussions

Error in standard images

We obtained a 5.48 percent error in measurement

Error in smartphone images

We obtained a 12.9 per cent error in measurement

- We can improve image clarity using lenses which provide appropriate focus
- As standarad images have better resolution and clarity we have lower error percentage
- We can improve by using better thresholding techniques

VI Future work & development prospects

Adjustable Lens

- We do not need to manually adjust the phone itself to adjust the focus
- Different types of lenses would provide high functionality at minimal cost (₹250-₹3000)

Software improvements

 Usage of neural networks for cropping, thresholding and predictions

Smartphone app

- Since the code is light, it can easily be ported to a smartphone
- The need for a PC can be completely eliminated

9/11/22		STUDENTS	ADVISOR
Mechanical Engineering IIT Bombay	Akshat K. Gupta 200100017	Purushottam Mani 20D180025	Prof. Soham Majumdar
	Amritaansh Narain	Omkar D. Patil	
	200100022	200100111	

Thank you for listening!