Chapter 4

Pranav Tikkawar

October 4, 2024

9/3

Chapter 4

Markov Property

If the probability of the nest state only depends on the current state, it satisfies the "Markov Property".

Drunkards walk example

$$\mathbb{P}(x_{i+1} = x_i \pm 1) = \frac{1}{2} \mathbb{P}(x_{i+1} \neq x_i \pm 1) = 0$$

$$\mathbb{P}(x_{i+1} = x + 1 | x_i = x) = 1/2$$

$$\mathbb{P}(x_{i+1} = x - 1 | x_i = x) = 1/2$$

Formal Definition

Let $\{X_n, n \in \mathbb{N}\}$ be a stochastic process that takes discrete time values. Suppose $\mathbb{P}(X_{n+1} = j | X_n = i_n ... X_0 = i_0) = P_{i,j}$ Such a stochastic process is called a Markov Chain. P_{ij} is the transition probability from state i to state j.

Transition Probability Matrix

Let $i, j \in \mathbb{N}$ be possible states of the Markov Chain. The matrix $P = [P_{ij}]$ is called the transition probability matrix of the Markov Chain. Where $P_{ij} = \mathbb{P}(x_{n+1} = j | x_n = i)$. **Ex 4.1**

 $\mathbb{P}(\text{rain tomorrow}|\text{rain today}) = \alpha$

 $\mathbb{P}(\text{rain tomorrow}|\text{no rain today}) = \beta$

Let
$$\begin{cases} 0 = rain \\ 1 = no \ rain \end{cases}$$

$$P = \begin{bmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{bmatrix}$$

Ex 4.4 Suppose whether it rains tomorrow or not depends on both todays and yesterdays weather.

Today's Weather	Yesterdays's Weather	Value
Rain	Rain	0
Rain	No Rain	1
No Rain	Rain	2
No Rain	No Rain	3

Suppose:

 $\mathbb{P}(\text{rain tomorrow}|\text{rain today, rain yesterday}) = .7$

 $\mathbb{P}(\text{rain tomorrow}|\text{rain today, no rain yesterday}) = .5$

 $\mathbb{P}(\text{rain tomorrow}|\text{no rain today, rain yesterday}) = .4$

 $\mathbb{P}(\text{rain tomorrow}|\text{no rain today, no rain yesterday}) = .2$

$$P = \begin{bmatrix} .7 & 0 & .3 & 0 \\ .5 & 0 & .5 & 0 \\ 0 & .4 & 0 & .6 \\ 0 & .2 & 0 & .8 \end{bmatrix}$$

4.2 Chapman-Kolmogorov Theorem

 P_{ij} = probability of going from state i to state j

 $P_{ij}^{(n)} = \text{probability of going from state i to state j in n steps.}$ $P_{ij}^{(n+m)} = \sum_{k} P_{ik}^{(n)} P_{kj}^{(m)} \text{ (pg.197)}$ **Look at example 4.10 for next class**

$$P_{ij}^{(n+m)} = \sum_{k} P_{ik}^{(n)} P_{kj}^{(m)} \text{ (pg.197)}$$

9/8

Proof of Chapman-Kolmogorov Theorem

Equation: $P_{ij}^{(n+m)} = \sum_k P_{ik}^{(n)} P_{kj}^{(m)}$ We can visualize this as a graph with n+m steps and we consider all the paths $i \rightarrow j$ and sum them with the law of total probability.

Proof:

$$\begin{split} P_{ij}^{(n+m)} &= \mathbb{P}(X_{n+m} = j | X_0 = i) \\ &= \sum_k \mathbb{P}(X_{n+m} = j, X_n = k | X_0 = i) \\ &= \sum_k \mathbb{P}(X_{n+m} = j | X_n = k, X_0 = i) \mathbb{P}(X_n = k | X_0 = i) \end{split}$$

Note that this is the probabilty of going from k to j in m steps(which doesn't depend on $x_0 = i$ due to the Markov Property) and from i to k in n steps. Homogeneity of a Markov Chain.

Example 4.10 An urn always contains 2 balls. Possible ball colors are red and

blue. Each stage of the process we pick a ball and randomly replace it with another ball. Replacement of the same color is .8 and replacement of a different color is .2.

If initially both the first balls are red, what is the probability that the 5th ball is red?

$$P = \begin{bmatrix} .8 & .2 & 0 \\ .1 & .8 & .1 \\ 0 & .2 & .8 \end{bmatrix}$$

Note: for a set up where the probability of changing colors is invariant of the color of the ball, the transition matrix will be visually "radially" symmetric***.

$$\mathbb{P}(X_5 = \text{red}) = P_{22}^{(4)} + \frac{1}{2}P_{21}^{(4)} + 0P_{12}^{(4)}$$
$$= 0.7048$$

Ask what are other Properties of stochastic matrix

$$a_{i,j} = an - i, n - j$$

Example 4.11

In a sequence of independent flips of a fair coint, let N denote the number of flips until there is a run of 3 heads.

Find (a)
$$P(N \le 8)$$
 (b) $P(N = 8)$

Consider 4 states: 0,1,2,3. given by n = the number of consecutive heads

$$P = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) =
$$P_{03}^{(8)}$$

(b) = $\frac{1}{2}P_{02}^{(7)}$

4.3 Classification of States

Definition: State j of is accessible from state i if $P_{ij}^{(n)} > 0$ for some $n \ge 0$. If the states are accessible from each other, they are said to communicate.

Communication is an equivalence relation.

Reflexive and symmetric are obvious.

Transitive is proven by the Chapman-Kolmogorov Theorem.

This relation divides the states into classes.

Reccurent and Transient States

Definition: A given state i of a Markov Chain let f_i denote the probability that the chain will eventually return to state i.

A state is called **Recurrent** if $f_i = 1$ and **Transient** if $f_i < 1$.

The expected number of revisits to a recurrent state is infinite.

For a transient state the probability of being in state i for exactly n times period is $f_i^n(1-f_i)$: Note that this is Geometric distribution

Lets notice state properties:

$$f_i = \mathbb{P}(x_{n+N} = i | X_n = i)$$
$$= \mathbb{P}(x_N = i | X_0 = i)$$

A Recurrent state is revisited infinitely often after it is visited once it will be revisited by the markov properties, and it repeats.

A Transient state is revisited only a finite number of times.

Proof of Transitive state finite recurrence:

The probability a transient state is revisited exactly n times is $f_i^{n-1}(1-f_i)$

$$E(n) = \sum_{n=1}^{\infty} n f_i^{n-1} (1 - f_i)$$

$$= (1 - f_i) \sum_{n=1}^{\infty} \frac{d}{df_i} f_i^n$$

$$= (1 - f_i) \frac{d}{df_i} \sum_{n=1}^{\infty} f_i^n$$

$$= (1 - f_i) \frac{d}{df_i} \frac{f_i}{1 - f_i}$$

$$= \frac{1}{(1 - f_i)}$$

Proposition 4.1

A state is is

- 1. Recurrent if $\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$
- 2. Transient if $\sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$

Proof:

Define
$$I_n = \begin{cases} 1 & \text{if } X_n = i \\ 0 & \text{otherwise} \end{cases}$$

The number of times period the process is in state i is $\sum_{n=0}^{\infty} I_n$

The expected value of the number of times the process is in state i is

$$\mathbb{E}(\sum_{n=0}^{\infty} I_n) = \sum_{n=0}^{\infty} \mathbb{E}(I_n)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(x_n = i | x_0 = i)$$

$$= \sum_{n=0}^{\infty} P_{ii}^{(n)}$$

Corallary 4.2 (pg 207)

If i is recurrent and i communicates with j, then j is recurrent.

Proof:

$$i \leftrightarrow j \rightarrow \exists k \text{ s.t. } P_{ij}^k > 0 \text{ and } P_{ji}^k$$

For any n,

$$\begin{split} P_{ij}^{(m+n+k)} &\geq P_{ji}^{m} P_{ii}^{n} P_{ij}^{k} \\ &\sum_{n=1}^{\infty} P_{ij}^{(m+n+k)} \geq \sum_{n=1}^{\infty} P_{ji}^{m} P_{ii}^{n} P_{ij}^{k} \\ &\sum_{n=1}^{\infty} P_{jj}^{t} \geq \sum_{n=1}^{\infty} P_{ij}^{(m+n+k)} \geq P_{ji}^{m} P_{ij}^{k} sum_{n=1}^{\infty} P_{ii}^{n} \geq \infty \end{split}$$

Thus if i is recurrent and i communicates with j, then j is recurrent.

Remark: If the state i is transient and if the state j communicates with i, then j is transient.

Proof: Assume the if, Suppose j is not transient. Then j is recurrent. Then i is recurrent. This is a contradiction. Thus j is transient.

Remark: Transience and Recurrence are class properties.

Remark: Suppose we have a Markov Chain with a finite number of states. Then at least one state is recurrent.

A Markov Chain with exactly one communication class is called irreducible.

A finite state irreducible Markov Chain must have all states recurrent.

Example 4.18 Consider a Markov Chain with 5 states.

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 & 0 \\ .5 & .5 & 0 & 0 & 0 \\ 0 & 0 & .5 & .5 & 0 \\ 0 & 0 & .5 & .5 & 0 \\ .25 & .25 & 0 & 0 & .5 \end{bmatrix}$$

Find the equivalence classes, classify them as reccurent or transient.

Solution:

The equivalence classes are $\{0,1\}$ and $\{2,3\}$ and $\{4\}$

4 is its own class due to the fact the communication between 0 and 1 is not

symmetric.

Does number of nonzero eigenvectors equal the number of equivalence classes?

Example 4.19

Markov Chain wih states $(0, \pm 1...)$

$$P_{i,i+1} = p$$
 and $P_{i,i-1} = 1 - p$

pg 209-211

A random walk is symmetric if p = 1/2

Can prove that the random walk recurrent in that case **Remark:**

Definition of Reccurence:

 $f_i = P(\text{Ever coming back to state i} - \text{starting at state i})$

$$f_i = P(\sum_n (x_n = i) | x_0 = i)$$

Random Walk

State space is \mathcal{Z}

TRansition probabilities are: $P_{i,i+1} = p$ and $P_{i,i-1} = 1 - p$

Note: when there is only one equivalence class, the Markov Chain is irreducible.

Find $f_0 = \beta = P(\text{ever returning to } 0 - \text{starting at } 0)$

Condition the probability β on the next transition.

$$\beta = (p)P(\text{ever returns to } 0|x_1 = 1) + (1-p)P(\text{returns to } 0|x_1 = -1)$$

Let $\alpha = P(\text{ever returns to } 0 | x_1 = 1)$

 $\alpha=(p)P(\text{ever returns to }0|x_1=1,x_2=2)+(1-p)P(\text{ever returns to }0|x_1=1,x_2=0)$

$$\alpha = 1 - p + p\alpha^2$$

Solving gives

$$\alpha = \frac{1-p}{p}$$

If the random walk is symetric then $\alpha=1$ is the only Solution. Substitution in equation with beta gives $f_0=1$

4.4 Long Run Proportions and Limiting Probability

Let $i \neq j$ be states of a Markov Chain.

Define f_{ij} as the probability that the Markov chain, starting in state i, will ever reach state j.

$$f_{ij} = \sum_{n=1}^{\infty} P_{ij}^{(n)}$$

Proposition 4.3

If the state i is reccurent and i communicates with j, then probability of eventually reaching j is 1, $f_{ij} = 1$.

Proof:

$$i \leftrightarrow j \rightarrow \exists n > 0 \text{ s.t. } P_{ij}^{(n)} > 0$$

Assume n is the minimum such integer.

Since i is recurrent, the infinite sequence $0 = k_0 < k_1 < k_2 < ...$ exists such that $X_{k_r} = i \text{ for } r = 0, 1, 2, 3, \dots$

Define $z = min(r > 0, X_{k_r+n} = j)$

Then $P(Z=z) = P_{ij}^n (1 - P_{ij}^{(n)})^{z-1}$ Thus $f_{ij} = 1$ by sandwich Theorem

Assume j is a recurrent state.

Define $N_j = min(n > 0 | X_n = j)$

Let $m_j = E[N_j | x_0 = j]$

It is the expextected number of steps to return to j.

Since we know that $P(N_i < \infty | x_0 = j) = 1$

Still it may happen that $m_j = E[N_j | x_0 = j] = \infty$

Definition: if $m_j < \infty$ then j is positive recurrent.

If $m_j = \infty$ then j is null recurrent.

We define π_j to be the long run proportion of time the Markoc chain is in state j.

$$\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} I_k$$

Where $I_k = 1$ if $X_k = j$ and 0 otherwise.

Proposition 4.4:

IF the markov chain is irreducible and reccurent then any intial state x_0 will have $\pi_j = \frac{1}{m_j}$

At time $T_0 + \sum_{k=0}^{\infty} T_k$ the chain enters state j for the (n+1)th time, the proporttion of th time the chain is in state j during this is $\frac{n+1}{T_0 + \sum T_k}$

$$\pi_j = \lim_{n \to \infty} \frac{n+1}{T_0 + \sum T_k}$$

Prop 4.4 if a MC is irreducible and recurrent, then $\pi_j = \frac{1}{m_i}$

Propr 4.5 if the state i is positive recurrent and if the state i communicates with i then the state j is also positive recurrent.

Proof: $i \Leftrightarrow j \to \exists n > 0$ such that $P_{ij}^n > 0, \pi_i P_{ij}^n = \text{Proportion of times that the}$ pricess wil be in state j, n steps after it was in step i. $< \pi_j$

$$\pi_i P_{ij}^n \le \pi_j$$

 $pi_i > 0$ since it is positive reccurent. since P is also finite thus π_j is positive reccurent.

Remark: null recurrence is also a class property.

Claim: an irreducible finite state markov chain is positive recurrent.

Proof: Let m_i be the expected return time to state j.

If you have a finite MC then the there is one EC, and if one is null recurrent then all are null recurrent.

Suppose that satte i in such MC is null recurrent.

Then $\pi_j = 0$ Since null recournece is a class property and there is only one class, thus all states are null recurrent.

 $\pi_i = 0$ for all states.

 $\sum pi_i = 0$ with probability one. This is a contradiction.

Theorum 4.1 Consider a irreducible Markov Chain. If the chain is positive reccurent then the long run proportions are unique colutions of the system of equations

$$\sum_{i} \pi_i P_{ij} = \pi_j$$

and $\sum_{i} \pi_{i} = 1$

Think of it like all way the ways the π go to state j.

Similar to conservation of flow.

Matrix Intutition:

Write $\vec{\pi} = \begin{bmatrix} \pi_0 & \pi_1 & \pi_2 & \ldots \end{bmatrix}$

be the row vector with entris π_i

Then $\vec{\pi}P = \vec{\pi}$

And $\sum_{j} \pi_{j} = 1$

Example 1

Consider a two state Markov Chain with transition matrix

$$P = \begin{bmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{bmatrix}$$

Compute the long run proptions π_0 and π_1

Assume $\alpha, \beta \neq 0, 1$

$$\pi_0 P_{01} + \pi_1 P_{11} = \pi_1$$

$$\pi_0 P_{00} + \pi_1 P_{10} = \pi_0$$

$$\pi_0 + \pi_1 = 1$$

In matrix formulation we have $\begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix} \begin{bmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{bmatrix} = \begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix}$

Short cut to remember

$$\begin{bmatrix} 0 & 1 \\ 0 & P_{00} & P_{01} \\ 1 & P_{10} & P_{11} \\ \pi_0 & \pi_1 \end{bmatrix}$$

Note that $\pi_0 = \frac{\beta}{1-\alpha+\beta}$ and $\pi_1 = \frac{1-\alpha}{1-\alpha+\beta}$

Example 2

Doubly stochastic matrix. If the sum of the columns and rows are equal to 1.

If the transition matri of a Markov Chain with n-states is a doubly stochastic matrix, then the long run proportions are $\pi_j = 1/n$ for all j.

Proof:

$$[1/n, 1/n, 1/n, \dots]P = [1/n, 1/n, 1/n, \dots]$$

 $1/n \sum_{j} P_{ij} = 1/n$
 $\sum_{i} P_{ij} = 1$

Since solutions are unique as in Theorum 4.1, thus $\pi_j = 1/n$ for all j.

Example 3

Simple random symmetric walk. This is also reflectant at the edges. States are (0, 1, 2, ..., L)

$$P_{01} = 1, P_{L,L-1} = 1$$

 $P_{i,i-1} = 1/2$ and $P_{i,i+1} = 1/2$
Simple case: L = 2

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\pi_0 = 0, \pi_1 = 1/2, \pi_2 = 1/2$$

Case L = 3

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\pi_0 = 1/6, \pi_1 = 1/3, \pi_2 = 1/3, \pi_3 = 1/6$$

Prove that for L = n, $\pi_i = \frac{1}{n}$ for all i other than $\pi_0, \pi_L = 1/2L$.

Example

For L = 1000, what is the probability of revisiting state 0? it is 2000 as it is $\pi = 1/m$

If the system is inconsistent the MC is transient or null reccurent. $\pi_j = 0$ for all j.

Example 4.26:

MC with acceptable staus in the set A and unacceptable status A^C If $x_n \in A$ process is "up", if $x_n \in A^C$ process is "down". Find:

i: Rate at which the process goes from up to down.

ii: Average length of time process remain down when it goes down.

iii: Average length of time process remains up when it goes up.

Solution:

Let $i \in A$ and $j \in A^C$

The rate at which the process enters j from i is

$$=\pi_i P_{ij}$$

Rare ar which process enters j from any acceptable state is

$$\sum_{i \in A} \pi_i P_{ij}$$

Rate at which the process goes from $A \to A^C$ is

$$\sum_{j \in A^C} \sum_{i \in A} \pi_i P_{ij}$$

Let u be the average time process stays up. Let d be the average time process stays down. rate at which a breakdown occurs is $\frac{1}{u+d}$ Therefore

$$\frac{1}{u+d} = \sum_{j \in A^C} \sum_{i \in A} \pi_i P_{ij}$$

Proportion the process is up is

$$\frac{u}{u+d} = \sum_{i \in A} \pi_i$$

Get u and d in terms of π

$$u = \frac{\sum_{i \in A} \pi_i}{\sum_{j \in A^C} \sum_{i \in A} \pi_i P_{ij}}$$
$$d = \frac{\sum_{j \in A^C} \sum_{i \in A} \pi_i P_{ij}}{\sum_{i \in A^C} \pi_i}$$

Stationary Probability

If the intial distribution of states is chosen according to long run proportions π_j , then the future distribution of the state of the system will be the same if $P(x_0 = j) = \pi_j$ then $P(x_n = j) = \pi_j$ Using induction we can see this true for all n. (4.4)

4.4.1: Limiting probabilities: Example: Consider a two state MC with

$$P = \begin{bmatrix} .7 & .3 \\ .4 & .6 \end{bmatrix}$$

Numerical calculation show that $P^{(n)}$ converges to a limiting distribution

$$P^n = \begin{bmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{bmatrix}$$

Claim: The limiting probabilties $\lim_{n\to\infty} P(x_n=j)$ if they exist are equal to the long run proportions π_i

Proof: Assume $\alpha_j = \lim_{n \to \infty} P(x_n = j)$ exists.

Then $P(x_{n+1} = j) = \sum_{i} P(x_{n+1} = j | x_n = i) P(x_n = i)$ Gives $\lim_{n \to \infty} P(x_{n+1} = j) = \lim_{n \to \infty} \sum_{i} P_{ij} P(x_n = i)$

Thus $\alpha_j = \sum_i P_{ij} \alpha_i$ for all j

Also $\sum_{i} \alpha_{i} = 1$

Recall that pi_j are the unique solutions of the system of equations

$$\sum_{i} \pi_i P_{ij}, \sum_{i} \pi_j = 1$$

Therefore $\lim_{n\to\infty} \alpha_j = \pi_j$ if α_j exists

When do limits not exist? When $n \to \infty$ diverges or collates

A chain that can only return to a state a multiple of d > 1 times is called a periodic chain. And does not have limiting probabilties.

Definition:

An irrecucible, positive recurrent, aperiodic Markov Chain is said to be ergodic.

Branching Proess:

A branching process is a Markov Chain with time give vy generations in $0, 1, 2, 3, \ldots$ and states fiven by populations in $0, 1, 2, 3, \ldots$

Induviduals in each gen eration produce offspring

$$X_i = \#ofoffspring of individual of the (i-1)^t hyperpartitions$$

Remark

If 0 is a reccurrent state because $P_{00} = 1$

Then it is an abosrbing state.

Proof is somewhat trivial using matrix multiplication.

Remark 2

Define $P_0 = P[\text{An individual produces 0 offspring}]$

If $P_0 > 0$ then all the states other than 0 are transient.

Proof:

Consider P_{i0}

it is th probability for going from state i to 0.

= P[EachoneoftheiIndividualsproduces0offspring]

$$= P_0^i$$
$$= P_0^i > 0$$

Thus the state i is transient for $i \neq 0$

Remark 3 If $P_0 > 0$ then the population eventually either becomes extinct or grows indefinitely.

Note:

We do not use transient probabilities to study branching processes. We mostly use the probability distribution of the number of offspring produced by an individuals.

Let $P_j = P[An individual produces j offspring]$ Compute the mean and variance of X_n

Mean

 $X_0 = 1$

$$\mathbb{E}(X_n) = \mu = \sum_{j} j P_j$$

$$\mathbb{E}(X_n) = \mathbb{E}[\mathbb{E}[X_n|X_{n-1}]]$$

write z_i , i = 1, 2, 3, ... for the number of offspring of the x_{n-1} individuals in the $(n-1)^t h$ generation.

Then $X_n = \sum_{i=1}^{X_{n-1}} Z_i$

$$\mathbb{E}(X_n) = \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{X_{n-1}} Z_i | X_{n-1}\right]\right]$$
$$\mu = z_i | X_{n-1}$$
$$E[X_n] = \mathbb{E}(\mu X_{n-1})$$
$$E[X_n] = \mu \mathbb{E}(X_{n-1})$$

Since $X_0 = 1$

Thus $\mathbb{E}[X_n] = \mu^n$

Variance

$$Var(X_n) = \sigma^2 = \sum_{j} j^2 P_j - \mathbb{E}(X_n)^2$$

We can also note that

$$var(X_n) = \sigma^2(\mu^{n-1} + \mu^n + ... + \mu^{2n-2})$$

$$var(X_n) = \begin{cases} \sigma^2 \mu^{n-1} \frac{1-\mu^{n-1}}{1-\mu} & \text{if } \mu \neq 1\\ n\sigma^2 & \text{if } \mu = 1 \end{cases}$$

Probability of extinction (of a population)

 $\pi_0 = P[\text{Population becomes extinct}]$

$$\pi_0 = \lim_{n \to \infty} P(X_n = 0 | X_0 = 1)$$

Case 1: if $\mu < 1$ then $\pi_0 = 1$

Proof:

We can see this that for each generation the population decreases.

Thus the long run proportion of the population being 0 is 1.

Case 2: if $\mu > 1$ then $\pi_0 < 1$

Proof:

This follows since the population grows indefinitely.

The equation for π_0 is

 $\pi_0 =$ Population dies out

$$= \sum_{j=0}^{\infty} P(\text{Population dies out}|x_1 = j)P_j$$

$$=\sum_{j=0}^{\infty}\pi_0^j P_j$$

For $\mu > 1$ it can be shown that π_0 is the smallest solution to the equation $\pi_0 = \sum_{j=0}^{\infty} \pi_0^j P_j$

Example 4.34

Suppose $P_0 = 1/2, P_1 = 1/4, P_2 = 1/4$

Compute π_0 .

Find $\mu = 0(1/2) + 1(1/4) + 2(1/4) = .75$

Since $\mu < 1$ then $\pi_0 = 1$

Example 4.35

Suppose $P_0 = 1/4, P_1 = 1/4, P_2 = 1/2$

4.8 Time Reversible Markov Chains

Detour:

Better understand the concept of a stationary M.C.

It has a stationary distribution $\vec{\pi} = [\pi_1, \dots, \pi_n]$ that satisfies $\vec{\pi}P = \vec{\pi}$

Commsider a time series that is states at a time, as it propogrates, it reaches a stationary distribution. This implies that the distribution of the states at time n is the same as the distribution at time n+1

Example: MC with TPM:

$$P = \begin{bmatrix} 1/3 & 2/3 \\ 1/2 & 1/2 \end{bmatrix}$$

We can calc the stationary distribution by solving the system of equations:

$$\pi_1 = \frac{1}{3}\pi_1 + \frac{1}{2}\pi_2$$

$$\pi_2 = \frac{2}{3}\pi_1 + \frac{1}{2}\pi_2$$

$$\pi_1 + \pi_2 = 1$$

This gives $\pi_1 = 3/7$ and $\pi_2 = 4/7$

Suppose at time t = 0 the probability distribution is:

$$P(x_0 = 0) = 3/7$$
 and $P(x_0 = 1) = 4/7$

Then at time t=1 the distribution is the same as at time t=0

Time Reversible Markov Chains

Consider an ergodic MC that has been running for a long time.

Consider the revise process X_n, X_{n-1}, \dots, X_0 starting for some large n.

It satisfies the markov property, future given the present is independent of the past.

The Transition probabilities of the rversed chain are given by $Q_{ij} = P(X_{n-1} = j|X_n = i) = P(X_m = j|X_{m+1} = i)$

We can find it out using bayes formula

$$Q_{ij} = \frac{P(X_m = j)P(X_{m+1} = i | X_m = j)}{P(X_{m+1} = i)}$$
$$Q_{ij} = \frac{\pi_j P_{ji}}{\pi_i}$$

Definition: A Markov Chain is time reversible if $Q_{ij} = P_{ij}$

If the MC is time reversible

$$P_{ij} = \frac{\pi_j P_{ji}}{\pi_i}$$
$$\pi_i P_{ij} = \pi_j P_{ji}$$

This is saying the rate you go from i to j is the same as j to i Verify reversible by computing $\vec{\pi} =$ and checking if $Q_{ij} = P_{ij}$ But more efficielty we can fin $x_i > 0$ such that $\sum x_i = 1$ and $x_i P_{ij} = x_j P_{ji}$ **Proof:**

$$\sum_{i} x_{i} P_{ij} = \sum_{i} x_{j} P_{ji}$$
$$\sum_{i} x_{i} P_{ij} = x_{j} \sum_{i} P_{ji}$$
$$\sum_{i} x_{i} P_{ij} = x_{j}$$

and $\sum x_i = 1$

By theorem 4.1 the solutions fo this sysmen are unique and are $\vec{\pi}$

Example 4.38

Consider an aribitrary connected graph accociate with a (+ve) number w_{ij} for each edge. Conside a particle moving from node to node such that the particle will move from node i to node j with probability $P_{ij} = \frac{w_{ij}}{d_i}$ where $d_i = \sum_j w_{ij}$ The TPM is:

$$P = \begin{bmatrix} w_{11}/d_1 & w_{12}/d_1 & \dots \\ w_{21}/d_2 & w_{22}/d_2 & \dots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

For this example the TPM is:

$$P = \begin{bmatrix} 0 & 1/2 & 0 & 1/6 & 1/3 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1/5 & 0 & 0 & 0 & 4/5 \\ 1/6 & 0 & 1/6 & 2/3 & 0 \end{bmatrix}$$

Time reversibility for such an MC is given by:

$$\pi_i P_{ij} = \pi_j P_{ji}$$

$$\pi_i \frac{w_{ij}}{d_i} = \pi_j \frac{w_{ji}}{d_j}$$

$$\frac{\pi_i}{d_i} = \frac{\pi_j}{d_j} = c$$

$$\pi_i = cd_i$$

$$c = \frac{1}{\sum_i \sum_j w_{ij}}$$

Thus

Note you need to calc twice for ij and ji

Note if we pick all the w_{ij} to be the same we get a random walk on a graph Consider the MC with TPM: 2/3 going clockwise and 1/3 going counter clockwise with 3 states.

 $\pi_i = \frac{\sum_j w_{ij}}{\sum_i \sum_j w_{ij}}$

$$P = \begin{bmatrix} 1/3 & 2/3 & 0\\ 0 & 1/3 & 2/3\\ 2/3 & 0 & 1/3 \end{bmatrix}$$

This is doubly stochastic.

Argue that Q is the same as P^T

Then show $Q \neq P$ because P is not symmetric.

Missed notes: Counting proesses

 $\{N(t), t >= 0\}$ They follow 3 properties:

- 1. $N(t) \ge 0$
- 2. N(t) is integer valued
- 3. N(t) is monotone increasing

$$N(t): R \to N$$

Monotone increasing function of t

$$N(t) - N(s) =$$
Number of events in $(t, s]$

Little o notation

A function f is said to be little o o(h) if

$$\lim_{h \to 0} \frac{f(h)}{h} = 0$$

eg: $f(h) = h^2$ is little o(h)

If u add two function in little o(h) then it is still little o(h)

Definition: A counting process $\{N(t), t \geq 0\}$ is a Poisson process if:

- 1. N(0) = 0
- 2. The number of events in disjoint intervals are independent.
- 3. $P(N(t+h) N(t) = 1) = \lambda h + o(h)$ where λ is the rate of the Poisson process. (this mean it is dependent on the length of the interval)
- 4. $P(N(t+h) N(t) \ge 2) = o(h)$

Lemma 5.1:

Let $\{N(t), t \geq 0\}$ be a Poisson process. Define $\{N_s(t), t \geq 0\}$ by $N_s(t) = N(s+t) - N(s)$

Then $\{N_s(t), t \geq 0\}$ is a Poisson process with rate λ

Proof:

$$N_s(0) = N(s+0) - N(s) = 0$$

$$(a,b) \cap (c,d) = \emptyset$$

$$P(N_s(b) - N_s(a) = x, N_s(d) - N_s(c) = y)$$

$$P(N(b-s) - N(a-s) = x, N(d-s) - N(c-s) = y)$$

$$P(N(b-s) - N(a-s) = x)P(N(d-s) - N(c-s) = y)$$

$$P(N_s(b) - N_s(a) = x)P(N_s(d) - N_s(c) = y)$$

Thus disjoint intervals are independent.

$$P(N_s(t+h) - N_s(t) = 1) = P(N(s+t+h) - N(s+t) = 1)$$

We assume N has stationary increments.

$$P(N(s+t+h) - N(s+t) = 1) = P(N(t+h) - N(t) = 1) = \lambda h + o(h)$$

Lmma 5.2:

Let $T_1 = min(t > 0 : N(t) = 1)$

it is time of arrival

 T_1 is exponentially distributed with rate λ

Proof:

$$P_0(t) = P(N(t) = 0)$$

$$P_0(t+h) = P(N(t) = 0, N(t+h) - N(t) = 0)$$

$$P_0(t+h) = P(N(t) = 0)P(N(t+h) - N(t) = 0)$$

$$P_0(t+h) = P_0(t)(1 - \lambda h - 2o(h))$$

note that -2o(h) = o(h) cuz it basically 0

$$P_0(t+h) = P_0(t) - \lambda h P_0(t) + o(h) P_0(t)$$

$$\frac{dP_0(t)}{t} = -\lambda P_0(t) + 0$$

This solves to with IC $P_0(0) = 1$

$$P_0(t) = e^{-\lambda t}$$

Define:

 $T_n forn \ge 1$ is the time between the $(n-1)^t h$ and $n^t h$ arrival.

Proposition 5.4:

 T_1, T_2, \ldots are independent and exponentially distributed with rate λ

Proof:

Rea book.

Remark:

Define $S_n = \sum_{i=1}^n T_i$ From last time, S_n has a gamma distribution with parameters n and λ

$$f_{S_n}(t) = \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!}$$

Theoremm 5.1

If $\{N(t), t \geq 0\}$ is a Poisson process with parameter λ then N(t) is a poisson random variable with parameter λt

Proof:

$$P(N(t) = n) = \int_0^\infty P(N(t) = n | S_n = t) \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!} dt$$

$$= P(T_{n+1} = t - s | T_1 + T_2 + \dots + T_n = s)$$

$$= P(T_{n+1} = t - s)$$

$$= \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

Example

Let $\{N(t), t \geq 0\}$ be a Poisson process with rate $\lambda = \frac{1}{3}$

a) P(N(5) > N(3))

This means there are > 0 events in (3, 5]

$$P(N(5) > N(3)) = 1 - P(N(5) - N(3) = 0)$$

$$= 1 - P(N(2) = 0)$$
$$= 1 - e^{-\frac{2}{3}}$$

b)
$$P({N(4) = 1}, {N(5) = 3})$$

c)
$$E(N(5)|N(3) = 2)$$

d) $E(T_b|N(3) = 4)$

d)
$$E(T_b|N(3) = 4)$$