1 nalen

- א. $6^3 = 216$ בעמי 1.32 בעמי 1.32 א. א. $6^3 = 216$
 - $B = \{1, 2, 3\}$ ב. ב.ה.כ (בלי הגבלת כלליות) נניח כי

בחירת פונקציה חד-חד-ערכית של B הנייל ל- A כמוה כבחירת שלישיה סדורה (!) של איברים מתוך A, כלומר חליפה של B מתוך A, כלומר חליפה של B מתוך A, כלומר חליפה של B מתוך A, כלומר הנייל הוא: $B(6,3) = 6 \cdot 5 \cdot 4 = 120$.

ג. יחס הוא רפלקסיבי מעל A אםם הוא מכיל את "האלכסון" . לכן כדי להגדיר יחס רפלקסיבי עלינו לבחור איזה זוגות עוד יהיו שייכים אליו **פרט** לאברי I_A משמע: לבחור תת-קבוצה כלשהי מתוך $6^2-6=30$ האיברים של A הוא A לפיכך מספר היחסים הרפלקסיביים מעל A הוא A

 $A = \{1,2,3,4,5,6\}$ ב.ה.כ. (בלי הגבלת כלליות) נניח ש-

. $\mid D\mid = \frac{6\cdot 7}{2}=21$ אז: $i\leq j$ המקיימים $(i,j)\in A\times A$ אזוגות כל הזוגות חהי D

רעיון הפתרון : בשביל לתאר יחס סימטרי, די לומר מיהם אברי היחס השייכים ל- D. את אברי היתון הפתרון : בשביל לתאר האיברים נקבעים מתוך כך שהיחס סימטרי. נפרט להלן. D

. $(i,j) \not\in X^{-1}$ אז $(i,j) \not\in X$ ו- $(i,j) \in D$ אם $X \subseteq D$ אז $(i,j) \notin X$ הוכחת טענת העזר מיידית מההגדרות.

A קבוצת היחסים הסימטריים מעל S_{A} תהי תהי

. $f(X)=X\cup X^{-1}$, $X\in P(D)$ לכל : קר, כך: $f:P(D)\to S_A$ הוא אכן גדיר פונקציה לפי ייתורת הקבוצותיי שאלה 2.23 בעמי 50, געם אכן אכן יחס סימטרי כלומר איבר של $.S_A$

. $X_1 \neq X_2$ ונניח ש- f - ונניח ש- הריו יהיו יהיו יהיו הד-חד-ערכית:

ב.ה.כ. נניח לכן כי קיים $(i,j) \notin X_2$ ש- $(i,j) \notin X_2$ פך ש- $(i,j) \in X_1$ ב.ה.כ. נניח לכן כי קיים $f(X_1) \neq f(X_2)$ לכן $(i,j) \in X_1 \cup X_1^{-1} = f(X_1)$ אך $(i,j) \notin X_2 \cup X_2^{-1} = f(X_2)$ משמע f היא חחייע.

 $A = \{1, 2, 3, 4, 5, 6\}$ - נניח ש- (בלי הגבלת כלליות) נניח ש-

. | L | = $\frac{6\cdot 5}{2}$ = 15 אז: i < j המקיימים המקיימים ווגות אוגות כל הזוגות המידע הבא: המידע הבא: אוגטי-סימטרי אוגטי-סימטרי או לתת את המידע הבא:

- . או לא. יש 2^6 דרכים לבחור מידע זה. (i,i) שייך ל- או לא. יש לכל $i \in A$
- R או אף אחד משניהם אינו ב-, $(i,j)\in R$ או א $(i,j)\in R$ האם המניהם אינו ב-, $(i,j)\in L$ לכל (ii) מהגדרת יחס אנטי-סימטרי, לכל $(i,j)\in L$ בדיוק אחת מ- 3 האפשרויות האלה נכונה). יש $(i,j)\in L$ דרכים לבחור מידע זה.

חלקי המידע (ii), (ii) אינם תלויים זה בזה ויש לתת את שניהם יחד כדי לבחור יחס אנטי-סימטרי. כל בחירה של שני חלקי המידע מגדירה יחס אנטי-סימטרי אחד ויחיד, וכל יחס אנטי-סימטרי מתקבל עייי בחירה של שני חלקי המידע האלה.

. $2^6 \cdot 3^{15}$ הוא אוא מספר האנטי-סימטריים מעל הוא לכן מספר היחסים האנטי

ו. לפי שאלה 3.19 בעמי 91 בכרך "תורת הקבוצות": כמספר הדרכים לסדר 6 עצמים שונים לפי שאלה 91 בעמי 91 בשורה. לפי "קומבינטוריקה", ראש עמי 23 , מספר זה הוא 6! = 720 .

2 nalen

- .43 בעמי בעמי באלה 19,958,400 השוו למשל "קומבינטוריקה" שאלה $\frac{12!}{2!2!3!}$ השוו למשל
- ב. אם הרצף **הינומה** חייב להופיע, נראה אותו כתו בודד. פרט לו, יש עוד 6 תוים, מהם שני זוגות של תוים זהים (א, ו). לכן מספר הסידורים: $\frac{7!}{2!2!} = 1,260$ (כאשר **הינומה** נחשב כתו בודד אין משמעות להחלפה בין ההופעות של האות ה' בתוכו, ואין משמעות להחלפה של האות י' שמחוץ לו. כנייל גם עבור האות ו').
 - ג. מספר הסידורים בהם מופיע הרצף **טופו** (נראה אותו כתו בודד. בנוסף לו יש 8 תוים, $\frac{9!}{2!2!} = 90{,}720 : (100 \pm 100)$ מהם 2 זוגות של תוים זהים): $\frac{9!}{2!2!} = 90{,}720$

לכן מספר הסידורים בהם <u>לא מופיע</u> **טופו**: 19,958,400-90,720 = 19,867,680

3 nalen

. ב2.62 א. אבומה לגמרי ל"קומבינטוריקה" שאלה 2.28 ושאלה $\frac{12!}{(3!)^4 \cdot 4!} = 15,400$ א.

כדי לקבל מיד את הנוסחה הישירה כמו כאן (ולא מכפלה של מקדמים בינומיים שמצטמצמים), ראו בתשובה לשאלה 2.28 : "אפשר לחלק לקבוצות כך...". כדאי להתרגל לחשב בדרך זו !

ב. אם m הוא מספר הצוותים בני 2 אנשים, ו- n הוא מספר הצוותים בני 3 אנשים, אז בm אז m איז בדיקה ישירה מקבלים שהפתרונות השלמים למשוואה m אז m אז m - m . m - m - m - m . m -

(m, n) = (0,4), (3,2), (6,0)

לכל אחד מ- 3 הפתרונות האלה נתבונן בקבוצת הדרכים לחלק לצוותים בהתאם לאותו פתרון. מובן שחלוקות לפי שני פתרונות שונים – שונות זו מזו, לכן עלינו לחבר את התרומות של 3 הפתרונות.

. הפתרון (0,4) הוא מה שתואר בסעיף א, ותורם לכן (0,4) חלוקות.

. חלוקות $\frac{12!}{(2!)^6 \cdot 6!} = 10{,}395$ תורם (6,0) חלוקות.

.(2.28 תורם שוב בדומה (שוב בדומה 12! $\frac{12!}{(2!)^3 \cdot 3! \cdot (3!)^2 \cdot 2!} = 138,600$ תורם (3,2).

. 15,400 + 10,395 + 138,600 = 164,395 : בסה"כ

4 22162

$$D(4,12) = \binom{15}{3} = 455$$
 .

$$D(4,12) \cdot D(4,9) = {15 \choose 3} {12 \choose 3} = 455 \cdot 220 = 100,100$$

ניתון לכל משפחה את מה שהיא חייבת לקבל.

. $D(4,6) = \binom{9}{3} = 84$: נותרו 6 שיפודים לחלק בין 4 המשפחות, ללא מגבלות

ד. ניתֵן לכל משפחה שיפוד וסטייק. נותרו 5 סטייקים ו- 8 שיפודים, לחלק ללא מגבלות.

. $D(4,5) \cdot D(4,8) = \binom{8}{3} \binom{11}{3} = 56 \cdot 165 = 9,240$: אפי עקרון הכפל, מספר החלוקות הוא

3

5 ภอเยภ

- . $D(5,12) = \binom{16}{4} = 1,820$: א. לפי ספר הלימוד סעיף 2.4 מספר הפתרונות הוא
 - . $x_i = y_i + 1$ נציב במשוואה $1 \le i \le 5$ ב.

 $y_1+y_2+y_3+y_4+y_5+5=17$ התנאי המשוואה $0\leq y_i$ פירושו $1\leq x_i$ התנאי כלומר ללא , $y_1+y_2+y_3+y_4+y_5=12$ כלומר כלומר $y_1+y_2+y_3+y_4+y_5=12$ הגבלה. זו אותה שאלה שפתרנו בסעיף הקודם, התשובה היא אפוא 1,820

. את. את שני המשתנים השווים 10. איש בחר את שני המשתנים השווים 1. ג. ראשית נבחר את המ

 $x_1 + x_2 + x_3 = 20$ נניח שאלה שנבחרו הם x_4, x_5 , ונישאר הם אלה שנבחרו שאלה שנבחרו הם ג.ה.כ.

, (i=1,2,3) $x_i=2y_i$ משתנים האלה להיות להיות להיות להיות משתנים האלה משתנים

. הגבלה ללא טבעיים y_1, y_2, y_3 כאשר ה $y_1 + y_2 + y_3 = 10$ המשוואה ונקבל את ונקבל

. $D(3,10) = \binom{12}{2} = 66$ מספר פתרונות משוואה זו הוא

נכפול בפקטור 10 שקיבלנו בתחילת הפתרון. התוצאה הסופית: 660.

איתי הראבן