

Unit 2: Boundary value problems

5. Failure of existence and

Course > and PDEs

> 4. Boundary Value Problems > uniqueness

5. Failure of existence and uniqueness

Let's continue exploring the family of homogeneous boundary value problems, one for each value of λ as in the previous page. But here we restrict our interest to the case where there are nonzero solutions.

Problem 5.1 Find all **nonzero** functions $v\left(x\right)$ on $\left[0,\pi\right]$ satisfying $\frac{d^2}{dx^2}v\left(x\right)=\lambda\,v\left(x\right)$ for a constant λ and satisfying the **boundary conditions** $v\left(0\right)=0$ and $v\left(\pi\right)=0$.

Solution to the problem: The equation $v''\left(x\right)=\lambda\,v\left(x\right)$ is a homogeneous linear ODE with characteristic polynomial $r^2-\lambda$.

Case 1: $\lambda>0$. Then the general solution is $ae^{\sqrt{\lambda}x}+be^{-\sqrt{\lambda}x}$, and the boundary conditions say

$$a + b = 0 (3.1)$$

$$ae^{\sqrt{\lambda}\pi} + be^{-\sqrt{\lambda}\pi} = 0.$$
 (3.2)

Since

$$\det\begin{pmatrix} 1 & 1 \\ e^{\sqrt{\lambda}\pi} & e^{-\sqrt{\lambda}\pi} \end{pmatrix} \neq 0, \tag{3.3}$$

the only solution to this linear system is (a,b)=(0,0). Thus there are no nonzero solutions v.

$$a = 0 ag{3.4}$$

$$a + b\pi = 0. ag{3.5}$$

Again the only solution to this linear system is (a,b)=(0,0). Thus there are no nonzero solutions v.

Case 3: $\lambda < 0$. We can write $\lambda = -\omega^2$ for some $\omega > 0$. Then the roots of the characteristic polynomial are $\pm i\omega$, and the general solution is $a\cos\omega x + b\sin\omega x$. The first boundary condition says a=0, so $v=b\sin\omega x$. The second boundary condition then says $b\sin\omega \pi = 0$. We are looking for nonzero solutions v, so we can assume that $b\neq 0$. Then $\sin\omega \pi = 0$, so ω is an integer n. It is enough to consider n>0 since $\sin\left(-\omega x\right) = -\sin\left(\omega x\right)$.

Conclusion: There exist nonzero solutions if and only if $\lambda=-n^2$ for some positive integer n; in that case, all solutions are of the form $b\sin nx$.

We will use this conclusion as one step in the solution of the Heat Equation in the next lecture.

5. Failure of existence and uniqueness

Hide Discussion

Topic: Unit 2: Boundary value problems and PDEs / 5. Failure of existence and uniqueness

Add a Post

Show all posts ✓ by recent activ	∕ity ❤
? Case 3: a=0 "The first boundary condition says a=0." I don't understand how this is determined. And if a=0, how is it that b does not equal zero? The first boundary condition is a+b=0, isn'	3
? Case 2 since it is a second order equation the solution must be of the form: y = a*e^x + b*t*e^x, how do we derive the solution of the form: a+b*x. Thank you in advance for your help.	3
Explain the conclusion If n is integer, v=0 how explain if you say nonzero solution for some positive integer n?	3