

Parcours Data Scientist

Projet N°7 : Implémentez un modèle de scoring

Sommaire

Rappel de la problématique

Data Scientist au sein de la société "**Prêt à dépenser**", qui propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

- 1. Mettre en œuvre un outil de « scoring crédit »
- 2. Classifier la demande en crédit accordé ou refusé à partir de :
- → données comportementales
- → données provenant d'autres institutions financières,
- \rightarrow etc

L'intention de ce projet est de réaliser un projet de bout en bout jusqu'à sa mise en production.

Points importants:

- → Transparence de la décision de crédit
- → Dashboard interactif avec informations personnelles du client

Partie I – Base de données et Analyse

Image: facilogi.com

Home Credit Default Risk

7 bases de données

- application_train/test
- bureau
- bureau_balance
- Previous application
- POS_CASH_balance
- Instalments_payments
- credit_card_balance

Home Credit Default Risk

Focus sur application_train + (HomeCredit_columns_descriptions)

Information personnelles:

- Profession,
- Famille,
- Possessions immobilières
- etc

application_{train|test}.csv

- Main tables our train and test samples
- Target (binary)
- Info about loan and loan applicant at application time

	attribu	s valeurs_manquantes	type	Com
76	COMMONAREA_MEDI	69.872297	float64	Normalized information about building where the client lives, What is average (_AVG suffix), modus (_MODE suffix), median (_MEDI suffix) apartment size, common area, living area, age of building, number of elevators, number of entrances, state of the building, number of floor
48	COMMONAREA_AVG	69.872297	float64	Normalized information about building where the client lives, What is average (_AVG suffix), modus (_MODE suffix), median (_MEDI suffix) apartment size, common area, living area, age of building, number of elevators, number of entrances, state of the building, number of floor
62	COMMONAREA_MODE	69.872297	float64	Normalized information about building where the client lives, What is average (_AVG suffix), modus (_MODE suffix), median (_MEDI suffix) apartment size, common area, living area, age of building, number of elevators, number of entrances, state of the building, number of floor
70	NONLIVINGAPARTMENTS_MODE	69.432963	float64	Normalized information about building where the client lives, What is average (_AVG suffix), modus (_MODE suffix), median (_MEDI suffix) apartment size, common area, living area, age of building, number of elevators, number of entrances, state of the building, number of floor
56	NONLIVINGAPARTMENTS_AVG	69.432963	float64	Normalized information about building where the client lives, What is average (_AVG suffix), modus (_MODE suffix), median (_MEDI suffix) apartment size, common area, living area, age of building, number of elevators, number of entrances, state of the building, number of floor

I – Analyse de donnée

Restriction à la base de donnée application_train.csv (307511, 122)

Unbalanced values (+ de 90% de la classe 0)

Analyse du jeu de données (Inspiré du kaggle de <u>Will Koehrsen</u>)

Feature engeniering

Missing values (itérative Imputer)

Train / Test dataframe (307507, 94)

Partie II - Choix du modèle et du score d'évaluation

Image : <u>canstockphoto</u>

II – Score d'évaluation

ROC AUC > f1 (receiver operating characteristic > accuracy)

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Score:

100 % de 0

→ *accuracy* globale : 91,2 %

→ *accuracy* classe majoritaire : 100 %

→ accuracy classe minoritaire : 0 %

II – Score d'évaluation

ROC AUC > f1

(receiver operating characteristic > accuracy)

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$FPR = \frac{FP}{FP + TN} \qquad precision \ (TPR) = \frac{TP}{TP + FP} \qquad recall = \frac{TP}{TP + FN} \qquad F_{\beta} = \frac{(1 + \beta^2) * precision * recall}{(\beta^2 * precision) + recall}$$

II - Score d'évaluation

ROC AUC > f1

(receiver operating characteristic > accuracy)

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

(DummyClassifier())

II – Modèles et traitement du déséquilibre

Data prepation

Pipeline (StandardScaler(), MinMaxScaler(), {SMOTE}, model())

Type of models

- Algorithmes linéaires
- Algorithmes non-linéaires
- Algorithmes ensemblistes

Gestion du déséquilibre

- Rien
- class_weight (« cost sensitive »)
- SMOTE (Synthetic Minority Oversampling Technique)

II – LogisticRegression unbalanced treatment

Evaluation des modèles cross_val_score(RepeatedStratifiedKFold(n_splits=10, n_repeats=3)

	model	scoring	score_trains	std_trains	fitting_time	std_fit	predict_time	score_test	TPR	FNR
0	LR	roc_auc	0.500798	0.038979	16.081664	0.404100	(14.007, sec)	0.918865	0.999383	0.080618
1	LR_weight	roc_auc	0.672930	0.018072	14.453520	0.186147	(12.42, sec)	0.596369	0.590039	0.046950
2	LR_SMOTE	roc_auc	0.685561	0.002308	714.738109	8.851074	(1823.383, sec)	0.577305	0.570291	0.050062
3	LR	make_scorer(fbeta_score, beta=2)	0.001620	0.000882	15.905251	0.384689	(14.018, sec)	0.918865	0.999383	0.080618
4	LR_weight	make_scorer(fbeta_score, beta=2)	0.352641	0.017613	13.732434	0.181817	(12.523, sec)	0.596369	0.590039	0.046950
5	LR_SMOTE	make_scorer(fbeta_score, beta=2)	0.365627	0.005887	710.028121	10.947881	(1807.287, sec)	0.598241	0.590780	0.044897
6	LR	make_scorer(fonction_metier)	-0.998679	0.000728	15.653084	0.390384	(15.175, sec)	0.918865	0.999383	0.080618
7	LR_weight	make_scorer(fonction_metier)	-0.372375	0.032243	13.468927	0.186016	(12.817, sec)	0.596369	0.590039	0.046950
8	LR_SMOTE	make_scorer(fonction_metier)	-0.340377	0.001971	685.754411	15.263532	(1905.344, sec)	0.577929	0.567761	0.045148

Evaluation des modèles

cross_val_score(RepeatedStratifiedKFold(n_splits=10, n_repeats=3)

LR_B : Basic Logistic Regression

All the other models include a pipeline with SMOTE

LR : Logistic Regression

SVM: support vecteur machine cost sensitive

BAG: bagging

RF: Random Forest

GBM: Gradient boosting

LGB_B : Light gradient boosting

Evaluation des modèles

cross_val_score(RepeatedStratifiedKFold(n_splits=10, n_repeats=3)

Score: custom

LR_B : Basic Logistic Regression

All the other models include a pipeline with SMOTE

LR : Logistic Regression

SVM: support vecteur machine cost sensitive

BAG : bagging

RF: Random Forest

GBM : **Gradient boosting**

LGB_B : Light gradient boosting

Evaluation des modèles

cross_val_score(RepeatedStratifiedKFold(n_splits=10, n_repeats=3)

Score: fbeta

LR_B : Basic Logistic Regression

All the other models include a pipeline with SMOTE

LR : Logistic Regression

SVM: support vecteur machine cost sensitive

BAG : bagging

RF: Random Forest

GBM: Gradient boosting

LGB_B : Light gradient boosting

II – Réglages des Hyperparamètres

Evaluation des modèlesGridSearchCV(model(), parameters)

II – Fonction coût et retours métier

- 1. Fonction coût métier : $(\frac{TP}{FN+TP} 33 * \frac{FN}{FN+TP})/32$
- 2. Optimisation des hyperparamètres
- 3. Choix du seuil

II – Feature importance

SHAP (Shapley Additive exPlanations)

II – Interprétation du modèle

LGBM

Partie III - Présentation du Dashboard

Image: managersenmission

III – Gestions du Dashboard

Stockage

Chargé clientèle

predict/SHAP

III – Présentation du Dashboard

III – Note méthodologique

- La méthodologie d'entraînement du modèle
- La fonction coût métier, l'algorithme d'optimisation et la métrique d'évaluation
- L'interprétabilité globale et locale du modèle
- Les limites et les améliorations possibles

- Réalisation d'un dashbord interactif et d'une API de prédiction
- Avec De multiples pistes d'amélioration
 - Inclusion de toutes les BDD
 - Plus de modèles de ML à tester
 - Prétraitement spécifiques à chaque modèle
 - Approfondissement des techniques SMOTE
 - Retours métiers

Merci de votre attention!

II – Interprétation du modèle

Logistic Reg

II – Réglages des Hyperparamètres

