	Unnamed: 0	eventid	iyear	imonth	iday	approxdate	extended	resolution	country	со
0	0	197000000001	1970	7	2	NaN	0	NaN	58	
1	1	197000000002	1970	0	0	NaN	0	NaN	130	
2	2	197001000001	1970	1	0	NaN	0	NaN	160	
3	3	197001000002	1970	1	0	NaN	0	NaN	78	
4	4	197001000003	1970	1	0	NaN	0	NaN	101	

df.columns

pd.set_option('display.max_columns',None)

df

	Unnamed:	eventid	iyear	imonth	iday	approxdate	extended	resolution	country	country_txt	region	region_txt	pro
0	0	197000000001	1970	7	2	NaN	0	NaN	58	Dominican Republic	2	Central America & Caribbean	
1	1	197000000002	1970	0	0	NaN	0	NaN	130	Mexico	1	North America	
2	2	197001000001	1970	1	0	NaN	0	NaN	160	Philippines	5	Southeast Asia	-1
3	3	197001000002	1970	1	0	NaN	0	NaN	78	Greece	8	Western Europe	-1
4	4	197001000003	1970	1	0	NaN	0	NaN	101	Japan	4	East Asia	F
•••													- 1
181686	181686	201712310022	2017	12	31	NaN	0	NaN	182	Somalia	11	Sub- Saharan Africa	S

```
selected_column=[
"success",
"suicide",
"attacktype1",
"attacktype1_txt",
"targtype1_txt",
"targsubtype1_txt",
"target1",
"natlty1_txt",
"gname",
"gsubname",
"nperps",
"weaptype1_txt",
 Saved successfully!
'nkillus'
]
len(selected_column)
# df_selected=df.loc[:,selected_column]
```

q1: How has the number of terrorist activities changed over the years? Are there certain regions where this trend is different from the global averages?

```
df.head()
```

```
Unnamed:
                      eventid iyear imonth iday approxdate extended resolution country country_txt region region_txt provstate
              0
                                                                                                                   Central
                                                                                             Dominican
              0 197000000001
     0
                               1970
                                                2
                                                        NaN
                                                                    0
                                                                             NaN
                                                                                       58
                                                                                                                America &
                                                                                                                               NaN
                                                                                                                                     D
                                                                                               Republic
                                                                                                                Caribbean
df["country_txt"].value_counts()
    Pakistan
                          14368
    Afghanistan
                          12731
    India
                          11960
    Colombia
                           8306
    International
    Wallis and Futuna
                              1
    South Vietnam
    Andorra
    Antigua and Barbuda
    Name: country txt, Length: 205, dtype: int64
import seaborn as sns
df2=df.groupby(['iyear'],as_index=False ).count()[['eventid']] # Here we learn about slice select
    <ipython-input-14-d9f64c3b9201>:1: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
      df2=df.groupby(['iyear'],as_index=False ).count()[['eventid']] # Here we learn about slice select
year=df['iyear'].unique()
# print(year)
year_count=df["iyear"].value_counts(dropna = False).sort_index()
import matplotlib.pyplot as plt
%matplotlib inline
 Saved successfully!
```


df.head(2)

Unnamed: 0	eventid	iyear	imonth	iday	approxdate	extended	resolution	country	country_txt	region	region_txt	provstate	
0 0	197000000001	1970	7	2	NaN	0	NaN	58	Dominican Republic	2	Central America & Caribbean	NaN	Dc
1 1	197000000002	1970	0	0	NaN	0	NaN	130	Mexico	1	North America	Federal	ı
													•

df5

		eventid	nkill
region_txt	iyear		
Australasia & Oceania	1970	1	0.0
	1971	1	0.0
	1972	8	1.0
	1973	1	0.0
	1974	1	0.0
Western Europe	2013	261	7.0
	2014	215	5.0
	2015	333	171.0
	2016	273	238.0
	2017	291	83.0

529 rows × 2 columns

Saved successfully! ,y='nkill',hue='region_txt')

pit.xiauei(rear)

plt.ylabel("No of terrorist attacks")

Saved successfully!

Is the number of incidents and the number of casualties correlated? Can you spot any irregularities or outliers?

	Jnnamed: 0	eventid	iyear	imonth	iday	approxdate	extended	resolution
0	0	197000000001	1970	7	2	NaN	0	NaN
1	1	197000000002	1970	0	0	NaN	0	NaN
2	2	197001000001	1970	1	0	NaN	0	NaN
3	3	197001000002	1970	1	0	NaN	0	NaN
4	4	197001000003	1970	1	0	NaN	0	NaN
181686	181686	201712310022	2017	12	31	NaN	0	NaN
181687	181687	201712310029	2017	12	31	NaN	0	NaN
ved successf	ully!	×						
181688	181688	201712310030	2017	12	31	NaN	0	NaN
181689	181689	201712310031	2017	12	31	NaN	0	NaN
181690	181690	201712310032	2017	12	31	NaN	0	NaN
181691 rov	/s × 136 cc	olumns						,
		= df[['iyear '', 'imonth',						
.figure(f: relation_r rint(corre	natrix =	columns_of_	intere	st.corr	()			

NOW WE ARE GOINF TO FIND OUTLIER IN THE "NKILL" COLUMN

df.describe()

	Unnamed: 0	eventid	iyear	imonth	iday	extended	country	region	latitude
count	181691.000000	1.816910e+05	181691.000000	181691.000000	181691.000000	181691.000000	181691.000000	181691.000000	177135.000000
mean	90845.000000	2.002705e+11	2002.638997	6.467277	15.505644	0.045346	131.968501	7.160938	23.498343
std	52449.818217	1.325957e+09	13.259430	3.388303	8.814045	0.208063	112.414535	2.933408	18.569242
min	0.000000	1.970000e+11	1970.000000	0.000000	0.000000	0.000000	4.000000	1.000000	-53.154613
25%	45422.500000	1.991021e+11	1991.000000	4.000000	8.000000	0.000000	78.000000	5.000000	11.510046
50%	90845.000000	2.009022e+11	2009.000000	6.000000	15.000000	0.000000	98.000000	6.000000	31.467463
75%	136267.500000	2.014081e+11	2014.000000	9.000000	23.000000	0.000000	160.000000	10.000000	34.685087
max	181690.000000	2.017123e+11	2017.000000	12.000000	31.000000	1.000000	1004.000000	12.000000	74.633553
4									•

df['nkill'].describe()

count 171378.000000
mean 2.403272
std 11.545741
min 0.000000
25% 0.000000
50% 0.000000
75% 2.000000
max 1570 000000

Saved successfully!

sns.scatterplot(data=df,x=df['nkill'],y=df['nkill'].mean())

<Axes: xlabel='nkill'>


```
def find_outliers_IQR(df):
```

q1=df.quantile(0.25)

q3=df.quantile(0.75)

IQR=q3-q1

```
outliers = df[((df<(q1-1.5*IQR)) | (df>(q3+1.5*IQR)))]
   return outliers
outlier=find_outliers_IQR(df['nkill'])
def drop_outlier(df):
 q1=df.quantile(0.25)
 q3=df.quantile(0.75)
  iqr=q3-q1
 non_outlier=df[\sim((df<(q1-1.5*iqr)) | (df>(q3+1.5*iqr)))]
 return non_outlier
df['nkill']=drop_outlier(df['nkill'])
df['nkill'].dropna()
    1
              0.0
    2
              1.0
    5
              0.0
              0.0
    181686
              1.0
    181687
              2.0
    181688
              0.0
    181689
              0.0
    181690
    Name: nkill, Length: 155136, dtype: float64
 Saved successfully!
    5.0
sns.scatterplot(data=df,x=df['nkill'],y=df['nkill'].mean())
    <Axes: xlabel='nkill'>
     0.85
     0.84
     0.83
     0.82
     0.81 -
     0.80
     0.79
     0.78
     0.77
             o
                                              3
                                       nkill
df['nkill'].describe()
             155136.000000
    count
                 0.810598
```

```
min 0.000000
25% 0.000000
50% 0.000000
75% 1.000000
max 5.000000
Name: nkill, dtype: float64
```

What are the most common methods of attacks? Does it differ in various regions or in time?

eventid attacktype1_txt region_txt 51 **Armed Assault** Australasia & Oceania Central America & Caribbean 4361 Central Asia 116 East Asia 117 Eastern Europe 1274 Saved successfully! merica 754 South Asia 2021 Southeast Asia 433 Sub-Saharan Africa 1355 Western Europe 265 108 rows × 1 columns

q3.unstack(level=-1)

eventid

region_txt	Australasia & Oceania	Central America & Caribbean	Central Asia	East Asia	Eastern Europe	Middle East & North Africa	North America	South America	South Asia	Southeast Asia	Sub- Saharan Africa	Western Europe
attacktype1_txt												
Armed Assault	51	4361	116	117	1274	9273	448	3875	11404	4022	6004	1724
Assassination	36	1254	115	55	400	4206	255	2745	4301	1369	1638	2938
Bombing/Explosion	75	3239	235	330	2766	30908	1534	9039	21246	4818	5557	8508
Facility/Infrastructure Attack	71	403	20	200	260	1115	906	803	2189	948	810	2631
Hijacking	3	26	8	18	26	138	18	67	93	59	136	67
Hostage Taking (Barricade Incident)	6	187	2	3	21	100	67	234	120	67	95	89
Hostage Taking (Kidnapping)	13	501	45	14	220	2666	123	1414	3277	744	1872	269

plt.figure(figsize=(20,18))
sns.lineplot(data=q3,x='region_txt',y='eventid',hue='attacktype1_txt')

q31=df.groupby(["iyear","attacktype1_txt"]).agg({'eventid':'count'})

q31

eventid

iyear	attacktype1_txt	
1970	Armed Assault	61
	Assassination	22
	Bombing/Explosion	333
	Facility/Infrastructure Attack	174
	Hijacking	11
2017	Hijacking	58
	Hostage Taking (Barricade Incident)	82
	Hostage Taking (Kidnapping)	878
	Unarmed Assault	101
	Unknown	825

416 rows × 1 columns

q31.unstack(level=0)

iyear

eventid

Armed Assault	61.0	44.0	63.0	62.0	46.0	81.0	124.0	255.0	241.0	447.0	574.0	697.0	665.0	852.0	823.0	659.0	592.
ved successfully!		× .0	265.0	164.0	158.0	181.0	204.0	146.0	263.0	526.0	618.0	405.0	361.0	360.0	443.0	311.0	371
Bombing/Explosion	333.0	239.0	188.0	149.0	285.0	370.0	419.0	635.0	644.0	1058.0	997.0	1082.0	1125.0	1246.0	1776.0	1482.0	1506
Facility/Infrastructure Attack	174.0	88.0	19.0	36.0	42.0	64.0	113.0	182.0	181.0	197.0	169.0	151.0	148.0	142.0	162.0	138.0	141
Hijacking	11.0	6.0	12.0	8.0	3.0	1.0	4.0	7.0	NaN	9.0	14.0	18.0	8.0	8.0	21.0	15.0	4
Hostage Taking (Barricade Incident)	3.0	1.0	4.0	7.0	5.0	13.0	6.0	13.0	43.0	76.0	50.0	34.0	50.0	26.0	29.0	55.0	27
Hostage Taking (Kidnapping)	38.0	20.0	16.0	43.0	37.0	27.0	45.0	67.0	97.0	146.0	140.0	122.0	105.0	124.0	77.0	116.0	96
Unarmed Assault	3.0	NaN	NaN	3.0	4.0	NaN	3.0	NaN	5.0	7.0	2.0	3.0	3.0	2.0	7.0	5.0	
Unknown	6.0	3.0	1.0	1.0	1.0	3.0	5.0	14.0	52.0	196.0	98.0	74.0	79.0	110.0	157.0	134.0	11

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

plt.figure(figsize=(20,18))

sns.lineplot(data=q31,x='iyear',y='eventid',hue='attacktype1_txt')

1984

1985

<Axes: xlabel='iyear', ylabel='eventid'>

Plot the locations of attacks on a map to visualize their regional spread

```
locations_df = df[['iyear', 'country_txt', 'region_txt', 'latitude', 'longitude', 'weaptype1_txt']]
locations_df.head(10)
```