DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DE L'EMPLOYABILITE (**DGESE**)

Institut National Polytechnique Félix Houphouët – Boigny SERVICE DES CONCOURS

Concours A2GP session 2016

Composition: Mathématiques 5 (algèbre, analyse)

Durée : 3 Heures

EXERCICE 1

Dans IR⁴, on considère les vecteurs $v_1 = (1,1,1,2), \ v_2 = (3,2,4,7), \ v_3 = (2,1,3,m^2), \ v_4 = (5,3,7,12), \ v_5 = (2,1,4,7)$ où m est un paramètre réel. On pose S= $\{v_1, v_2, v_3, v_4\}$ et $H_m = \text{Vect}\{v_1, v_2, v_3\}$.

- 1-Déterminer le rang de la famille S suivant les valeurs du paramètre réel m.
- **2**-Donner une base du sous-espace vectoriel H_m suivant les valeurs du paramètre réel m. On suppose m=1 dans la suite.
- 3-Donner un supplémentaire G du sous-espace vectoriel H₁ dans IR⁴.
- **4**-La famille S est-elle libre ? Sinon, donner une relation de dépendance linéaire entre ses vecteurs.
- **5**-Soit p la projection de IR^4 sur H_1 parallèlement à G. Déterminer $p(v_4)$ et $p(v_5)$.

EXERCICE 2

On pose
$$M_a = \begin{pmatrix} a^2 & 1 & 0 \\ 0 & 2a & 0 \\ 0 & 0 & a+2 \end{pmatrix}$$
, $a \in IR$.

- 1-Pour quelles valeurs du réel a, la matrice Ma est-elle diagonalisable ?
- 2-Etude de M-1
- a)Déterminer les valeurs propres de M₋₁ et les sous-espaces propres associés.
- **b)**En déduire les coefficients de M_{-1}^n pour tout entier naturel n.
- **3**-Calculer les coefficients M_0^n pour tout entier naturel non nul n.

EXERCICE 3

Soit la série entière dont la somme f est définie par $f(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} x^n$.

- 1-Déterminer le rayon de convergence de la série.
- **2**-Soient les fonctions g et h définies par $g(x)=f(x^2)$ et $h(x)=f(-x^2)$. Montrer que g et h sont des sommes de séries entières dont on précisera le rayon de convergence.

3-En déduire une expression de f(x) à l'aide de fonctions usuelles. (On pourra distinguer deux cas)

4-Calculer
$$\sum_{n=0}^{+\infty} \frac{1}{(4n)!}.$$

EXERCICE 4

Soit $F(x) = \int_0^{+\infty} \frac{1}{1+t^x} dt$ où x est un réel.

- 1-Déterminer l'ensemble de définition I de F.(Il s'agit du domaine de convergence de l'intégrale)
- **2**-Calculer F(2), F(3) et F($\frac{3}{2}$) (On pourra faire le changement de variable $u=\sqrt{t}$).
- **3**-Pour tout x de I, montrer que $F(x) = \int_0^1 \frac{1 + t^{x-2}}{1 + t^x} dt$.
- **4**-Montrer que l'application F est convexe sur I. (On pourra, pour tout t fixé dans]0,1], considérer l'application $h_t: x \mapsto \frac{1+t^{x-2}}{1+t^x}$)

EXERCICE 5

Soit N l'application définie sur IR² par :pour tout (x,y) de IR² $N(x,y) = \sup_{t \in IR} \frac{|tx+y|}{1+t^2}$.

- **1**-Montrer que N est une norme sur IR².
- 2-Déterminer et tracer la boule unité fermée de N.