Topología

Basado en las clases impartidas por Eduardo Oregón en el segundo semeste del 2025

Contents

1			2
	1.1	Clase 1 (04/08): Espacios Topológicos [12]	2
	1.2	Clase 2 (06/08): Topología, Base [12, 13]	3
		1.2.1 Topología	3
		1.2.2 Base de una topología	4
	1.3	Clase 3 (08/08): Bases, Topología producto [13,15] \dots	5
		1.3.1 Comparación de topologías	6
	1.4	Clase 4 (11/08): Topología producto [15] e inducida [16]	6
	1.5	Clase 5 (13/08): Cerrados, clausura, puntos límites [17] \dots	8
	1.6	Clase 6 (18/08): Espacios Hausdorff, convergencia [17] \dots	10
	1.7	Clase 7 (20/08):	12
	1.8	Clase 8 (22/08): Continuidad, homeomorfismos [18]	14
		1.8.1 Observaciones clase pasada	14
		1.8.2 Clase 8	14
	1.9	Clase 9: Homemomorfismos, Productos infinitos [18, 19]	16
		1.9.1 Productios cartesianos arbitrarios	16
		1.9.2 Topologías en $\Pi_{\alpha \in J} X_{\alpha} \dots \dots \dots \dots \dots$	17
	1.10	Clase $10 (27/08)$: Topología producto, Topología cuociente $[19, 22]$	18

Chapter 1

1.1 Clase 1 (04/08): Espacios Topológicos [12]

Definition 1.1 (sistema de vecindades). X conjunto no vacío. Si $x \in X$, consideramos $\mathcal{V}_x \subset 2^X$, tal que:

- 1. $\forall x \in X, \forall V \in \mathcal{V}_x, x \in \mathcal{V}_x$;
- 2. $\forall x \in X, \forall V \in \mathcal{V}, \text{ si } V' \supset V \Rightarrow V' \in \mathcal{V}_x;$
- 3. Si $V_1, V_2 \in \mathcal{V} \Rightarrow V_1 \cap V_2 \in \mathcal{V}_x$.

El sistema de vecindades es $\{\mathcal{V}_x\}_{x\in X}$. Si $V\in\mathcal{V}_x,\,V$ es vecindad de x.

Example. 1. (X, d) espacio métrico $\mathcal{V}_x := \{V \subset X | \exists \varepsilon > 0 \text{ tal que } B_{\varepsilon}(x) \subset V\}$. Verificamos que sea sistema de vecindad.

Proof. Verificamos 1), 2) y 3):

- 1) $x \in X, V \in \mathcal{V}_x \Rightarrow x \in B_{\varepsilon}(x) \subset V;$
- 2) $X \ x \in X, \ V \in \mathcal{V}_x, \ V' \supset V \Rightarrow x \in B_{\varepsilon}(x) \subset V \subset V' \Rightarrow V' \in \mathcal{V}_x;$
- 3) $x \in V_1 \cap V_2, V_1, V_2 \in \mathcal{V}_x \Rightarrow B_{\varepsilon_1}(x) \subset V_1, B_{\varepsilon_2}(x) \subset V_2$ $\Rightarrow B_{\min\{\varepsilon_1, \varepsilon_2\}}(x) \subset V_1 \cap V_2$ $\Rightarrow V_1 \cap V_2 \in \mathcal{V}_x.$

2. X arbitrario, $\forall x \in X$, sea $\mathcal{V}_x = \{X\}$ es sistema de vecindades (vacuidad).

3. X arbitrario $\mathcal{V}_x = \{V \subset X \mid x \in V \text{ y } X \setminus V \text{ sea finito} \}$ (queda como ejercicio chequear que esto define un sistema de vecindades).

 \Diamond

Definition 1.2 (topología desde sistema de vecindades). Tenemos X, $\{\mathcal{V}_x\}_{x\in X}$ sistema de vecindades. Definimos, $\tau=\{U\subset X\mid x\in U\Rightarrow U\in \mathcal{V}_x\}$.

Lemma 1.3. τ cumple lo siguiente:

- 1. $\emptyset, X \in \tau$;
- 2. $U_{\alpha} \in \tau, \alpha \in A \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \tau;$
- 3. $U_1, \ldots, U_n \in \tau \Rightarrow U_1 \cap \cdots \cap U_n \in \tau$.

 τ es la topología inducida por $\{\mathcal{V}_x\}$. Elementos de τ (subconjuntos de X)se llamarán abiertos.

1.2 Clase 2 (06/08): Topología, Base [12, 13]

Proof. (último lema de la clase anterior)

1. $\emptyset \in \tau$ por vacuidad.

$$X \in \tau : x \in X \Rightarrow \exists V \in \mathcal{V}_x \quad (1)x \in V; (2)x \in V \subset X$$

$$\Rightarrow X \in \mathcal{V}_x. \quad \forall x : X \in \tau$$

- 2. Tomar $\{U_{\alpha}\}_{{\alpha}\in A},\ U_{\alpha}\in \tau,\ \mathcal{U}=\bigcup_{{\alpha}\in A}U_{\alpha}.\ \text{Si }x\in \mathcal{U}\Rightarrow x\in U_{\alpha}\in \mathcal{V}_{x}$ para algún α . Como $U_{\alpha}\in \tau\Rightarrow U_{\alpha}\in \mathcal{V}_{x}.\ \text{Luego, si }x\in U_{\alpha}\subset \mathcal{U}\Rightarrow \mathcal{U}\in \mathcal{V}_{x},\ \forall x\in \mathcal{U}.\ \text{Por lo tanto, }\mathcal{U}\in \tau.$
- 3. Tomamos $U_1, \ldots, U_n \in \tau$, $\mathcal{U} = U_1 \cap \cdots \cap U_n$ y $x \in \mathcal{U}$. Luego, $x \in U_i \quad \forall i$. Como $U_i \in \tau \Rightarrow U_i \in \mathcal{V}_x$, $\forall i$. Por inducción (con las intersecciones), podemos afirmar que $\mathcal{U} \in \mathcal{V}_x$, $\forall x \in \mathcal{U}$. Por lo tanto, $\mathcal{U} \in \tau$.

1.2.1 Topología

Definition 1.4 (topología). X conjunto no vacío, $\tau \subset 2^X$ es una topología si cumple:

- 1. $\emptyset, X \in \tau$;
- 2. $U_{\alpha} \in \tau$, $\alpha \in A \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \tau$;
- 3. $U_1, \ldots, U_n \in \tau \Rightarrow U_1 \cap \cdots \cap U_n \in \tau$.

Remark. Se utilizará la siguiente notación:

- (X, τ) se llama espacio topológico.
- $U \in \tau \Rightarrow U$ se llama abierto (con respecto a la topología).

Lemma 1.5. τ topología en $X \Rightarrow$ Inducida por un único sistema de vecindades.

Proof. Para $x \in X$, definir $\mathcal{V}_x = \{V \subset X \mid \exists U \in \tau \text{ con } x \in U \subset V\}$. Verificamos que $\{\mathcal{V}_x\}_x$ es sistema de vecindades:

- 1. La definición implica $V \in \mathcal{V}_x \Rightarrow x \ (\in U \subset) \in V;$
- 2. Si $V \in \mathcal{V}_x$ y $V' \supset V \Rightarrow (V \in \mathcal{V}_x)$ $x \in U \subset (U \in \tau)$ $\Rightarrow x \in U \subset V' \Rightarrow V' \in \mathcal{V}_x;$
- 3. Tomar $V_1, V_2 \in \mathcal{V}_x \Rightarrow x \in U_1 \subset V_1, \quad x \in U_2 \subset V_2 \text{ con } U_1, U_2 \in \tau$ $\Rightarrow x \in \underbrace{U_1 \cap U_2}_{\in \tau} \subset V_1 \cap V_2 \Rightarrow V_1 \cap V_2 \in \mathcal{V}_x;$

(falta demostrar unicidad).

Example (de espacios topológicos).

- 1. (Topología métrica): (X,d) espacio métrico. Abierto es $U \in X$ tal que $\forall x \in U, \exists \varepsilon > 0$ tal que $x \in B_{\varepsilon}(x) \subset U$.
 - (a) $X = \mathbb{R}^n$, $d((x_i), (y_i)) = \sqrt{sum_{i=1}^n (x_i y_i)^2}$. Así, se obtiene la topología estándar.
 - (b) X arbitrario, d métrica discreta $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y. \end{cases}$ Así, se obtiene la topología discreta: $\tau = 2^X$.
- 2. (Topología indiscreta): X arbitrario, $\tau = \{\emptyset, X\}$;
- 3. (Topología cofinita): X arbitrario, $\tau_{cof} = \{U \subset X \mid X \setminus U \text{ es finito}\} \cap \{\emptyset\}$ (queda como ejercicio verificar que es topología).

 \Diamond

1.2.2 Base de una topología

Una base es un subconjunto "manejable" de τ que la describe completamente!

Definition 1.6 (base). X es conjunto. $\mathcal{B} \subset 2^X$ es base para alguna topología si:

- 1. $\forall x \in X, \exists B \in \mathcal{B} \text{ tal que } x \in B \ (\bigcup_{B \in \mathcal{B}} B = X).$
- 2. $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B} \text{ tal que } x \in B_3 \subset B_1 \cap B_2.$

Definition 1.7 (topología inducida). La topología inducida por la base $\mathcal B$ en X es:

$$\tau = \{ U \subset X \mid \forall x \in U, \exists B \in \mathcal{B} \text{ tal que } x \in B \subset U \}.$$

Note. $\mathcal{B} \subset \tau$.

Lemma 1.8. τ , definido arriba, es una topología.

Example. (X, d) espacio métrico $\Rightarrow \mathcal{B} = \{B_{\varepsilon}(x) \mid x \in X, \varepsilon > 0\}$ es base de la topología métrica. \diamond

1.3 Clase 3 (08/08): Bases, Topología producto [13,15]

Proof. (lema 1.8)

- 1. $\emptyset, X \in \tau : \emptyset \in \tau$ por vacuidad y $X \in \tau$ por propiedad (1) de \mathcal{B} .
- 2. τ cerrado bajo unión: $\{U_{\alpha}\}_{{\alpha}\in A}$ colección con $U_{\alpha}\in \tau$, $\mathcal{U}=\bigcup_{\alpha}U_{\alpha}$.

Si
$$x \in \mathcal{U} \Rightarrow x \in U_{\alpha}$$
 para algún α
 $\Rightarrow x \in B \subset U_{\alpha}$ para algún $B \in \mathcal{B}$
 $\Rightarrow x \in B \subset \mathcal{U}$.

Por lo tanto, $\mathcal{U} \in \tau$.

3. τ cerrado bajo intersección finita: $U_1, \ldots, U_n \in \tau, \mathcal{U} = U_1 \cap \cdots \cap U_n$. Sea $x \in \mathcal{U} \Rightarrow x \in U_i \ \forall i \ (U_i \in \tau) \Rightarrow x \in B_i \subset U_i \ \forall i, B_i \in \mathcal{B}$. Propiedad (2) implica $x \in B \subset B_1 \cap \cdots \cap B_n \subset U_1 \cap \cdots \cap U_n = \mathcal{U}$. Por lo tanto, $\mathcal{U} \in \tau$.

Note. Si B base genera $\tau \Rightarrow B \subset \tau$.

Definition 1.9 (topología generada). τ topología está generada por una base B sin B es base, y τ es topología generada por B.

Utilidad: Dada τ topología a estudiar, queremos encontrar base B que la describa.

Example. (X, d) espacio métrico, $\mathcal{B} = \{B_{\varepsilon}(x) \mid \varepsilon > 0, x \in X\}$ es base para la topología métrica.

Proof. Probamos que B es base.

- 1. Notar $X = \bigcup_{x \in X} B_1(x)$. Por lo tanto, $\bigcup_{B \in \mathcal{B}} B = X$.
- 2. $B_1, B_2 \in \mathcal{B}, B_1 = B_{\varepsilon_1}(x_1), B_2 = B_{\varepsilon_2}(x_2)$. Sea $x \in B_1 \cap B_2$. Queremos encontrar $\varepsilon > 0$ tal que $B_{\varepsilon}(x) \subset B_1 \cap B_2$. Por designaldad triangular, tenemos que $\varepsilon = \min\{\varepsilon_1 d(x, x_1), \varepsilon_2 d(x, x_2)\}$ sirve.

Note. 1. Una base no es necesariamente una topología ((1) y (2)) pueden fallar).

2. Si B es base y τ topología, $B \subset \tau \Rightarrow \tau$ es generada por B.

Example. Topología del límite inferior en \mathbb{R} : $B_l = \{[a,b) \mid a,b \in \mathbb{R}, a < b\}$ (se deja como ejercicio demostrar que B_l es base).

Definition 1.10 (topología del límite inferior). B_l genera la topología del límite inferior τ_l .

Remark.

- 1. τ_l no es τ_{std} ([a, b) abierto en τ_l pero no en τ_{std}
- 2. $\tau_{std} \subset \tau_l$ (la demostración de esto queda como ejercicio).
- 3. (Intuición): Si $0 \in \mathbb{R}, y \in \mathbb{R}$ (para τ_{std}, y cerda de 0 si $|y| < \varepsilon$). Para τ_l, y cerca de 0, si $y \in [0, \varepsilon)$ ($0 \le y < \varepsilon$ para $\varepsilon > 0$ chiquito).

1.3.1 Comparación de topologías

Definition 1.11 (topologías finas). τ, τ' topologías en X, decimos que τ' es más fina que τ si $\tau' \supset \tau$. Decimos que τ y τ' son comparables si $\tau' \supset \tau$ o $\tau \supset \tau'$.

Example. τ_l es más fina que τ' .

Example. $\forall \tau$ topología en X, $\{\emptyset, X\} \subset \tau \subset 2^X$. Donde $\{\emptyset, X\}$ es llamada la topología indiscreta (todos cercanos entre sí) y 2^X la topología discreta (todos lejanos entre sí).

En conclusión, si τ' es más fina que $\tau,$ los puntos están más lejanos respecto a τ' que a τ

1.4 Clase 4 (11/08): Topología producto [15] e inducida [16]

Lemma 1.12. \mathcal{B},\mathcal{B}' bases en X que generan la topología τ,τ' respectivamente. Entonces

```
\tau' \supset \tau \Leftrightarrow \text{(todo elemento de } \mathcal{B} \text{ está en } \tau');

\Leftrightarrow \forall B \in \mathcal{B}, B \text{ es unión de elementos de } \mathcal{B}';

\Leftrightarrow \forall B \in \mathcal{B}, \forall x \in B, \exists B' \in \mathcal{B}' \text{ tal que } x \in B' \subset B.
```

Lemma 1.13. $\mathcal{B}_{X\times Y}:=\{U\times U'\mid U \text{ abierto en }X,U' \text{ abierto en }Y\}$ es una base para una topología.

Definition 1.14 (topología producto). Topología producto en $X \times Y$ es la generada por $\mathcal{B}_{X \times Y}$.

Proof. (lemma 1.13.)

- 1. Como $X \times Y \in \mathcal{B}_{X \times Y} \Rightarrow \bigcup_{B \in \mathcal{B}_{X \times Y}} B = X \times Y$.
- 2. Tomar $B_1 = U_1 \times U_1' \in \mathcal{B}_{X \times Y}, B_2 = U_2 \times U_2' \in \mathcal{B}_{X \times Y}, (x, y) \in B_1 \cap B_2$ $(U_1, U_2 \text{ abiertos en } X \text{ y } U_1', U_2' \text{ abiertos en } Y)$. Notar que:

$$B_1 \cap B_2 = (U_1 \times U_1') \cap (U_2 \times U_2') = \underbrace{(U_1 \cap U_2)}_{\text{abto. en } X} \times \underbrace{(U_1' \cap U_2')}_{\text{abto. en } Y} \in \mathcal{B}_{X \times Y}.$$

Note. Misma demostración (salvo modificaciones esperables) implica que si \mathcal{B}_X es base de X, \mathcal{B}_Y base de Y, $\mathcal{B}'_{X\times Y} := \{B\times B'\mid B\in \mathcal{B}_X, B'\in \mathcal{B}_Y\}$ es base y genera la misma topología generada por $\mathcal{B}_{X\times Y}$.

Example (importante). $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Propiedad: topología estándar de \mathbb{R}^2 (métrica euclidiana) es igual a la topología producto en $\mathbb{R} \times \mathbb{R}$ (cada uno con su topología estándar).

- Topología estándar en \mathbb{R}^2 : generada por base $\mathcal{B} = \{B_{\varepsilon}(x,y) \mid (x,y) \in \mathbb{R}^2, \varepsilon > 0\}.$
- Topología producto en \mathbb{R}^2 : generada por base $\mathcal{B}' = \{(a,b) \times (c,d) \mid a < b, c < d\}.$

Exercise. Verificar para \mathbb{R}^n .

Definition 1.15 (topología inducida). $\tau|_Y := \{Y \cap U \mid U \in \tau\}$ es topología en Y. La llamamos topología en Y inducida por X.

Proof. (topología inducida es topología)

- 1. $\varnothing = \varnothing \cap Y, Y = X \cap Y$.
- 2. Si $U_{\alpha} \in \tau|_{Y}, \alpha \in A \Rightarrow U_{\alpha} = U'_{\alpha} \cap Y \text{ con } U'_{\alpha} \in \tau \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} (U_{\alpha \in A} \cap Y) = \left[\bigcup_{\alpha \in A} U_{\alpha}\right] \times Y \in \tau|_{Y}.$
- 3. $U_1, \ldots, U_n \in \tau|_Y, U_i = U_i' \cap Y \Rightarrow U_1 \cap \cdots \cap U_n = (U_1' \cap Y) \cap \cdots \cap (U_n' \cap Y) = (U_1' \cap \cdots \cap U_n') \cap Y \in \tau|_Y.$

Lemma 1.16. $\mathcal{B}|_Y := \{Y \cap B \mid B \in \mathcal{B}\}$ es base para la topología en Y inducida por X.

Remark. Cuidado: La noción de abierto depende de la topología a especificar. **Example.** En $X = \mathbb{R}, Y = [0,1] \cup (2,3) \cup \{4\}$. Notar que:

 \Diamond

- Y es abierto en Y, pero no es abierto en X.
- [0,1] también abierto en $Y:[0,1]=Y\cap (-1,2)$.
- $\{4\}$ también abierto en $Y: \{4\} = Y \cap (3,5)$.

Note. Si $U \subset Y$ es abierto en $X \Rightarrow$ abierto en Y.

Lemma 1.17. $Y \subset X, \tau|_Y \subset \tau \Leftrightarrow Y$ es abierto en X.

Proposition 1.18. X, Y espacios topológicos, $A \subset X, B \subset Y$.

En $A\times B\to$ topología inducida desde $X\times Y$ (con topología producto) \to topología producto desde A y B (con topología inducida

por X, Y respectivamente).

Estas topologías son la misma.

Proof. Elemento de topología primera: $U = U' \cap A \times B$ Elemento de topología segunda: U es unión de productos $V \times V'$ con V abierto en A, V' abierto en B. Notar que $V \times V' = (W \cap A) \times (W' \cap B) = (W \times W') \cap A \times B$.

1.5 Clase 5 (13/08): Cerrados, clausura, puntos límites [17]

Definition 1.19 (conjunto cerrado). X espacio topológico, $C \subset X$ es cerrado si $X \backslash C$ es abierto.

Lemma 1.20.

- 1. X, \emptyset son cerrados;
- 2. Si $C_{\alpha} \subset X$ cerrados, $\alpha \in A \Rightarrow \bigcap_{\alpha} C_{\alpha}$ es cerrado;
- 3. Si C_1, \ldots, C_n cerrados, entonces $C_1 \cup \cdots \cup C_n$ es cerrado.

Proof.

1. $X = X \setminus \emptyset$, $\emptyset = X \setminus X$;

2.
$$C_{\alpha} = \bigcap_{\alpha \in A} C_{\alpha} \Rightarrow X \backslash C = X \backslash \bigcap_{\alpha \in A} C_{\alpha} = \bigcup_{\alpha \in A} (X \backslash C_{\alpha});$$
abto

3.
$$C = C_1 \cup \cdots \cup C_n \Rightarrow X \setminus C = X \setminus (C_1 \cup \cdots \cup C_n) = \underbrace{(X \setminus C_1) \cap \cdots \cap (X \setminus C_n)}_{\text{abto}}$$

Example.

- 1. $X = \mathbb{R}, [a, b]$ es cerrado $(\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty));$
- 2. (X, d) espacio métrico (+ topología métrica) $\Rightarrow \overline{B_{\varepsilon}}(x)$ es cerrado. Luego, $X \setminus \overline{B_{\varepsilon}}(x) = \bigcup_{y \in X \setminus \overline{B_{\varepsilon}}(x)} B_{d(x,y)-\varepsilon}(y)$ (abierto en topología métrica);
- 3. X con la topología discreta \Rightarrow todo subconjunto de X es abierto y cerrado!

 \Diamond

Definition 1.21 (cerrado topología inducida). X espacio topológico, $Y \subset X$ (con la topología inducida), $C \subset Y$ es cerrado en Y si es cerrado en la topología inducida.

Lemma 1.22. C es cerrado en Y si y solo si $C = C' \cap Y$ con C' cerrado en X.

Proof.
$$C \subset Y$$
 es cerrado en $Y \Leftrightarrow Y \backslash C$ es abierto en Y $\Leftrightarrow Y \backslash C = U \cap C$ con $U \subset X$ abierto $\Leftrightarrow C = (X \backslash U) \cap Y = C' \cap Y$, con $C' = X \backslash U$ cerrado.

Definition 1.23 (clausura e interior). X espacio topológico, $A \subset X$:

- 1. El interior de A es \mathring{A} = unión de todos los abiertos contenidos en A;
- 2. La clausura de A es $\overline{A}=$ intersección de todos los cerrados que contienen A.

Remark.

- 1. \mathring{A} es abierto, \overline{A} es cerrada, $\mathring{A} \subset A \subset \overline{A}$;
- 2. A es abierto si y solo si $\mathring{A} = A$. A es cerrado si y solo si $\overline{A} = A$;
- 3. $\overline{\overline{A}} = \overline{A}$, $\mathring{A} = \mathring{A}$;

4. El interior \mathring{A} es el abierto mas grande contenido en A y la clausura \overline{A} es el cerrado mas pequeño que contiene a A.

Proposition 1.24. X espacio topológico, $A \subset X$ cualquiera, $x \in X$.

$$x \in \overline{A} \Leftrightarrow \forall U$$
 abierto conteniendo a X, se tiene $A \cap U \neq \emptyset$ (*)

- \Leftrightarrow toda vecindad de x interseca a A
- $\Leftrightarrow A$ contiene puntos arbitrariamente cercanos a X (según la topología).

Corollary 1.25. $C \subset X$ es cerrado si y solo si $\forall x \in X$, si toda vecindad de x contiene un punto de C, entonces $x \in X$.

Proof. (proposición 1.24)

- \sqsubseteq Suponer que $x \notin \overline{A}$. Entonces $\exists C$ cerrado con $A \subset C$ y $x \notin C$. Luego, tomar $U \coloneqq C \backslash C$ abierto. Entonces, $A \cap U = \emptyset$ y $x \in U$. Es decir, negamos (*).
- \Longrightarrow Negamos $(*) \Rightarrow \exists U$ abierto con $x \in U$ y $U \cap A = \emptyset$. Luego, $C = X \setminus U$ cerrado con $A \subset C$ y $x \notin C$. Entonces, $x \notin A$.

Definition 1.26 (puntos de acumulación). $A \subset X$. Decimos que $x \in X$ es punto límite/de acumulación de A si $\forall U$ abierto conteniendo a x, se tiene que $U \cap (A \setminus \{x\}) \neq \emptyset$. Escribimos $A' := \{\text{puntos límite de } A\}$.

Example. En \mathbb{R} , tenemos lo siguiente:

A	\mathring{A}	\overline{A}	A'
(a,b)	(a,b)	[a,b]	[a,b]
[a,b)	(a,b)	[a,b]	[a,b]
[a,b]	(a,b)	[a,b]	[a,b]
$[0,1] \cup \{2\}$	(0, 1)	$[0,1] \cup \{2\}$	(0,1)

Notar que 2 no es punto de acumulación.

1.6 Clase 6 (18/08): Espacios Hausdorff, convergencia [17]

Remark. $x \in A' \Leftrightarrow x \in \overline{A \setminus \{x\}}$.

Lemma 1.27. $\forall A \subset X, \overline{A} = A \cup A'.$

Proof. \bigcirc Notar que $A \subset \overline{A}$. Si $x \in A' \Rightarrow x \in \overline{A \setminus \{x\}} \subset \overline{A}$ (*). Notar que $(*)A \subset B \Rightarrow \overline{A} \subset \overline{B}$. Por lo tanto $A' \subset \overline{A}$. Entonces, $A \cup A' \subset \overline{A}$. \bigcirc $(\overline{A} \subset A \cup A')$, equiv: $\overline{A} \setminus A \subset A'$) Si $x \in \overline{A} \setminus A$. Entonces, $x \notin A$ y $\forall U \ni x$ abierto se tiene $A \cap U \neq \emptyset$. Como $x \notin A \Rightarrow (A \setminus \{x\}) \cap U \neq \emptyset$. Entonces, $x \in A'$.

Remark. A' no es necesariamente cerrado.

Example. $X = \{a, b\}; \ \tau = \{\varnothing, X\} \ (a, b \text{ indistinguibles desde} \text{ el punto de vista de } \tau). \ A = \{b\} \Rightarrow A' = \{b\} \ (\text{no es cerrado}). \ a \not\in A' \Leftrightarrow a \not\in \overline{A \setminus \{a\}} = \overline{\varnothing} = \varnothing. \ b \in A \Leftrightarrow b \in \overline{A \setminus \{b\}} = \overline{\{a\}} = \{a, b\}.$

Problemas:

- Subconjuntos finitos no tienen topología discreta;
- Subconjuntos finitos no son cerrados.

Lemma 1.28. Si X es espacio topológico arbitrario. Son equivalentes:

- 1. Todos los subconjuntos finitos de X tienen la topología discreta.
- 2. Todos los subconjuntos finitos de X son cerrados.

Definition 1.29 (espacios T_1 o Frechet). Un espacio topológico X es T_1 (cumple el axioma T_1) si sus subconjuntos finitos son cerrados.

Example. X con la topología indiscreta NO es T_1 si $\#X \geq 2$.

Example. X con topología cofinita es T_1 . En la topología

 $\{\text{subconjuntos cerrados}\} = \{\text{conjuntos finitos}\}\$

 \Diamond

Lemma 1.30. X es T_1 , $A \subset X \Rightarrow A'$ es cerrado.

Proof. (Queremos $\overline{A'} = A'$, i.e. $\overline{A'} \setminus A' = \varnothing$) Suponer que $x \in \overline{A'}$, $x \notin A'$. Si $x \notin A'$, entonces $\exists U$ abierto con $x \in U$ y $U \cap A \subset \{x\}$. Si $x \in \overline{A'}$, entonces $A' \cap U \neq \varnothing$. Luego, $\exists y \in U \cap A' \ (y \neq x)$. Como X es T_1 , entonces $\{x\}$ es cerrado. Luego, $X \setminus \{x\}$ es abierto, y con ello tenemos que $U \setminus \{x\}$ es abierto. Si $V = U \setminus \{x\}$ abierto que contiene a $y \ (y \in A')$, entonces V contiene puntos de A, distintos de Y. Luego, $\exists z \in A \cap V$. Así, $z \in A \cap U$ y $z \neq x$. Contradicción! **

Definition 1.31 (espacios T_2 o Haussdorff). Un espacio topológico X es T_2 (o Hausdorff), si $\forall x \neq y$ en X existen $U, U' \subset X$ abiertos <u>disjuntos</u> con $x \in U, y \in U'$.

Example. X con la topología cofinita, con $\#X = \infty$ es T_1 pero no es Hausdorff. Veamos que esto es así. Si $x \neq y \in X$, $x \in U$, $y \in U'$ abiertos $(X \setminus U, X \setminus U')$ finitos), entonces $(X \setminus U) \cup (X \setminus U')$ finito. Luego, $X \setminus (U \cap U')$ finito. Así, $U \cap U'$ infinito, por lo que $U \cap U'$ no puede ser disjunto. \diamond

Lemma 1.32. X Hausdorff \Rightarrow X es T_1 .

kk

Proof. $(X \text{ es } T_1 \Leftrightarrow \text{ subconjuntos finitos son cerrados} \Leftrightarrow \text{ singlietons son cerrados}) \rightarrow (\text{veremos el último si y solo si}) Sea <math>x \in X$, queremos que $X \setminus \{x\}$ sea abierto. Si $y \neq x$, dado que X es Hausdorff, $\exists U_y, U'_y$ abiertos disjuntos con $y \in U_y, \ x \in U'_y$. Luego, $x \notin U_y$. Por lo tanto, $X \setminus \{x\} = \bigcup_{y \neq x} U_y$ es abierto. \Box

Example. (X, d) espacio métrico, X es Hausdorff con la topología métrica.

Corollary 1.33 (secreto). Existen topologías que no vienen de métricas.

Proof (del ejemplo). Para la topología métrica, bolas abiertas son abiertos. Si $x \neq y$, entonces $U = B_{\frac{d(x,y)}{2}}(x)$, $U' = B_{\frac{d(x,y)}{2}}(y)$.

En X con la topología cofinita, $X=\{x_1,x_2,x_3,\dots\}$ infinito contable. Definimos $y_n=x_n$ con $n\geq 1$ (cada elemento de X aparece exactamente una vez). Cada abierto $\varnothing\neq U\subset X$ contiene a y_n $\forall n\geq \mathbb{N}$ (N depende de U). (próxima clase: $y_n\to x$ $\forall x\in X$).

1.7 Clase 7 (20/08):

Remark. $\mathcal{B} \subset \tau \Rightarrow \text{quiz\'as } \tau_{\mathcal{B}} \neq \tau$. Solo es cierto $\tau_{\mathcal{B}} \subset \tau$.

Remark. Existe una noción más débil (T_0) : $\forall x \neq y \in X$, $\exists U$ abierto tal que, o bien $x \in U$, $y \notin U$ o $y \in U$, $x \notin U$. Se puede demostrar que $T_1 \Rightarrow T_0$. Además, $\exists X, T_0$, no T_1 , tal que 1.30 se cumple.

Definition 1.34 (convergencia de suceciones). X espacio topológico, $(X_n)_n$ sucesión en $X,\ x\in X$. Decimos que x_n converge a x (con respecto a la topología) $[x_n\to x]$ si: $\forall\ U$ abierto con $x\in U$ existe N tal que $n\geq N$ implica $x_n\in U$.

Note. Si \mathcal{B} base para topología en X, $x_n \to x$ equivale a: $\forall B \in \mathcal{B}$ con $x \in B$, $\exists N$ tal que $n \ge N$ se tiene $x_n \in B$.

Example. (X, d) espacio métrico. $x_n \to x$ (topología métrica) $\longleftrightarrow x_n \to x$ (análisis real): $\forall \varepsilon > 0$, $\exists N$ tal que $n \geq N \Rightarrow d(x_n, x) < \varepsilon \ (x_n \in B_{\varepsilon}(x))$.

Example. X con la topología indiscreta ($\tau = \{\emptyset, X\}$). Entonces, para cualquier succeión $(x_n)_n$, para cualquier $x \in X$, $x_n \to x$ (solo se debe verificar U = X).

Example. X con la topología discreta, entonces $(x_n \to x) \longleftrightarrow x_n = x$ para todo $n \gg 0$ [Caso $U = \{x\}$].

Example. X infinito contable con topología cofinita $[T_1, \text{ no } T_2], X = \{a_1, a_2, \dots\}$. Si $x_n = a_n \Rightarrow x_n \to x$ para todo $x \in X$ [Si U abierto, $x \in U \not\Rightarrow U = X \setminus \{a_{i_1}, \dots, a_{i_k}\} (i_1 < \dots < i_k) \Rightarrow n \ge N = i_k + 1$ implica $x_n \to x$].

Lemma 1.35. Si T_2 , $(x_n)_n$ sucesión con $x_n \to x$, $x_n \to y$, entonces x = y.

Proof. Si $x \neq y$, dado que es T_2 , entonces existen U, U' abiertos disjuntos con $x \in U$, $y \in U'$. Si $x_n \to x$, entonces existe N_1 tal que $n \geq N_1$ implica $x_n \in U$. Si $x_n \to y$, entonces existe N_2 tal que $n \geq N_2$ implica $x_n \in U$. Por lo tanto $n \geq N_1$ y $n \geq N_2$, entonces $x_n \in U \cap U'$. Contradicción! **

Continuidad: $f: X \to Y, X, Y$ espacios topológicos.

• [No Def]: Si $x_n \to x$ en $X \Rightarrow f(x_n) \to f(x)$ en Y.

Definition 1.36 (continuidad). f es continua si $\forall U \subset Y$ abierto, se tiene $f^{-1}(U)$ es abierto en X.

Example. Si (X,d), (Y,d') son espacios métricos, entonces $f: X \to Y$ continua (respecto a topologías métricas) $\longleftrightarrow f(\varepsilon - \delta)$ continua: $\forall \ x \in X, \ \forall \ \varepsilon > 0; \ \exists \ \delta > 0$ tal que $d(x,y) < \delta \Rightarrow d'(f(x),f(y)) < \varepsilon$.

Remark. $d(x,y) < \delta$ es lo mismo que pedir $y \in B_{\delta}(x)$. Similarmente $d'(f(x), f(y)) < \varepsilon$ es lo mismo que $\delta(y) \in B_{\varepsilon}(f(x)), \ y \in f^{-1}(B_{\varepsilon}(f(x)))$.

Lemma 1.37. $X \xrightarrow{f} Y$, \mathcal{B}' base de Y, \mathcal{B} base de X. Entonces

f continua \Leftrightarrow [Si $B' \in \mathcal{B}' \Rightarrow f^{-1}(B')$ es abierto \Leftrightarrow Si $B' \in \mathcal{B}'$, $\forall y \in f^{-1}(B')$, existe $B \in \mathcal{B}$ con $y \in B \subset f^{-1}(B')$.

Lemma 1.38 (continuidad secuencial). Si $f: X \to Y$ continua (hay top. dadas). Entonces, si $x_n \to x$ en $X \Rightarrow f(x_n) \to f(x)$ en Y.

Proof. Suponer $x_n \to x$ en X. Queremos que $f(x_n) \to f(x)$ en Y. Tomar $U \subset Y$ abierto con $f(x) \in U$. Luego, f continua implica que $f^{-1}(U)$ abierto con $x \in f^{-1}(U)$. Si $x_n \to x$, entonces existe N tal que $n \geq N$ implica $x_n \in f^{-1}(U)$. Entonces, existe N tal que $n \geq N$ implica $f(x_n) \in U$. Por lo tanto, $f(x_n) \to f(x)$.

1.8 Clase 8 (22/08): Continuidad, homeomorfismos [18]

1.8.1 Observaciones clase pasada

Remark.

•
$$f^{-1}\left(\bigcap_{\alpha\in I}A_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}(A_{\alpha});$$

•
$$f^{-1}\left(\bigcup_{\alpha\in I}A_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(A_{\alpha}).$$

Estas identidades no son necesariamente ciertas si se ocupa f en vez de f^{-1} . Remark (Tarea 2). Coninuidad secuencial $\not\Rightarrow$ Continuidad.

1.8.2 Clase 8

Lemma 1.39. $f: X \to Y, X, Y$ espacios topológicos.

f continua $\Leftrightarrow \forall C \subset Y$ cerrado, se tiene $f^{-1}(C)$ cerrado en X

Proof. \Longrightarrow Suponer que f continua. Tomamos $C \subset Y$ cerrado [queremos $X \setminus f^{-1}(C)$ abierto]. Notar que

$$X \setminus f^{-1}(C) = \{x \in X \ : \ x \not\in f^{-1}(C)\} = \{x \in X \ : \ f(x) \in Y \setminus C\}$$

$$= \underbrace{f^{-1} \underbrace{(Y \setminus C)}_{\text{abierto en } X}}_{\text{abierto en } X \text{ pq } f \text{ continua}}.$$

Example. Si $f: X \to Y, X, Y$ espacios topológicos

- 1. Si Y con topología indiscreta $(\{\varnothing,Y\}) \Rightarrow f$ automáticamente continua. Notar que $f^{-1}(\varnothing) = \varnothing, \ f^{-1}(Y) = X$.
- 2. Si X tiene topología discreta $(2^X) \Rightarrow f$ continua. Notar que $f^{-1}(U)$ es abierto para todo subconjunto $U \subset Y$.
- 3. Si $A \subset X$ y f continua. Entonces $f|_A: A \to Y$ también es continua [A co top. inducida]. Notar que $U \subset Y$ abierto, entonces

$$(f|_A)^{-1}(U) = \{x \in A \mid f|_A(x) = f(x) \in U\}$$

$$= A \cap \underbrace{f^{-1}(U)}_{\text{abierto en } X}$$

$$= A \cap \underbrace{f^{-1}(U)}_{\text{abierto en } A}$$

4. Si X_1, X_2 espacios topológicos, entonces $\pi_1: X_1 \times X_2 \to X_1$ es continua. Notar que si $U \subset X_1$ abierto, entonces $\pi_1^{-1}(U) = \{(x_1, x_2) \mid x_1 \in U\} = U \times X_2$ abierto en $X_1 \times X_2$.

 \Diamond

Propiedades. X, Y, Z espacios topológicos

1. Fijar $y_0 \in Y$. $f: X \to Y$, $f(x) = y_0 \ \forall x$, es continua. Notar que $U \subset Y$ abierto, entonces

$$f^{-1}(U) = \begin{cases} X & \text{si } y_0 \in U \\ \emptyset & \text{si } y_0 \notin U \end{cases}$$

- 2. Si $f: X \to Y$, $g: Y \to Z$ continuas, entonces $g \circ f: X \to Z$ continuas. Notar que $V \subset Z$ abierto, entonces $(g \circ f)^{-1}(V) = f^{-1}\underbrace{(g^{-1}(V))}_{\text{abierto en } Y}$ abierto en X
- 3. Si $f: X \to Y$ continua y $f(X) \subset Z \subset Y$, entonces $f: X \to Z$ continua. Notar que $U \subset Z$ abierto en Z, entonces $U = Z \cap V$, $V \subset Y$ abierto. Dado que $f(X) \subset Z$, tenemos que $f^{-1}(U) = f^{-1}(V)$ abierto en X $[f: X \to Y$ continua]. Luego, $f^{-1}(U)$ abierto en X.
- 4. (Continuidad es propiedad local): Si $f: X \to Y$, $(B_{\alpha})_{\alpha \in I}$ abiertos en X tal que $\bigcup_{\alpha \in I} B_{\alpha} \stackrel{(*)}{=} X$. Entonces

f continua $\Leftrightarrow f|_{B_{\alpha}} \to Y$ es continua para todo α

- \sqsubseteq Tomamos $U \subset Y$ abierto (queremos $f^{-1}(U)$ abierto en X). Usar $f^{-1}(U) = \bigcup_{\alpha \in I} (f|_{B_{\alpha}})^{-1}(U)$. Vamos a demostrar esta igualdad:

☐ Hacer!

Luego, tenemos que $(f|_{B_{\alpha}})^{-1}(U)$ es abierto en B_{α} y que B_{α} es abierto, entonces $(f|_{B_{\alpha}})^{-1}(U)$ abierto en $X \, \forall \alpha$. Por (*), tenemos que $f^{-1}(U)$ es abierto en X.

Note. Si se reemplaza " B_{α} abiertos" por " B_{α} cerrados", 4. igual se cumple + I finito (cjto. de indices de la unión) [Lema del pegado en Munkres]

Definition 1.40 (homeomorfismo). $X,\ Y$ espacios topológicos. $f:X\to Y$ es homeomorfismo si

- 1. f es continua;
- 2. f es biyectiva (existe $f^{-1}: Y \to X$);
- 3. f^{-1} es continua.

Remark. Propiedades topológicas (como T_1 , Hausdorff, etc...) son invariantes por homeomorfismos.

1.9 Clase 9: Homemomorfismos, Productos infinitos [18, 19]

Example.

- 1. $f:(-1,1) \to (-\infty,\infty)$, $f(x)=\frac{x}{1-x^2}$ es homeomorfismo. La inversa es $g(y)=\frac{2y}{1+(1+4y^2)^{1/2}}$. Notar que f y g son $\varepsilon-\delta$ continuas (i.e. con topologías métricas). Observamos que (X,d) espacio métrico, $Y\subset X$ subconjunto, entonces la topología inducida en Y es igual a la topología métrica dada por $d|_Y$.
- 2. $id: (\mathbb{R}, \tau_{\text{discr}}) \to (\mathbb{R}, \tau_{\text{std}})$ continuo. $(id)^{-1} = id: (\mathbb{R}, \tau_{\text{std}}) \to (\mathbb{R}, \tau_{\text{discr}})$ no es continua. Si tomamos $U = \{0\}$, es abierto en τ_{discr} , pero no abierto en τ_{std} . Moral: f continua y biyectiva $\not\Rightarrow f^{-1}$ continua.

Remark. $id:(X,\tau)\to (X,\tau')$ es continua si y sólo si $\tau'\subset \tau$ (τ más fina que τ').

3. $X = [0, 2\pi], Y = \mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}, f : X \to Y, t \mapsto (\cos t, \sin t).$ f es continua (es $\varepsilon - \delta$ continua) y biyectiva. Si f^{-1} no es continua, queremos $U \subset X$ tal que $(f^{-1})^{-1}(U) = f(U)$ no es abierto en Y. Notar que un intervalo de la forma U = [0, t) es abierto en X, pero f(U) no es abierto en Y (el punto $(1, 0) \in f(U)$ no está en el interior). Moral: "despegar/cortar" no es operación continua.

 \Diamond

1.9.1 Productios cartesianos arbitrarios

Recuerdo. X,Y espacios topológicos, en $X\times Y$ tenemos topología producto con base $\mathcal{B}=\{U\times U'\mid U\subset X,\ U'\subset Y\ \text{abiertos}\}$. En general, si $X_1,dots,X_n$ (finitos) espacios topológicos, la topología producto en $X_1\times\cdots\times X_n$ tiene base

$$\mathcal{B} = \{U_1 \times \cdots \times U_n \mid U_i \subset X_i \text{ abierto para cada } i\}.$$

Lemma 1.41. Topología producto en $X_1 \times \cdots \times X_n$ es la <u>menor</u> topología tal que $\pi_i: X_1 \times \cdots \times X_n \to X_i$ tal que $(x_1, \dots, x_n) \mapsto x_i$, es continua para cada i.

(Menor: si τ' topología en $X_1 \times \cdots \times X_n$ tal que π_i continua $\forall i$, entonces $\tau' \supset \tau$ =topología producto)

Proof. Si τ' topología en $\overline{\underline{X}}$ tal que $\pi_i: \overline{\underline{X}} \to X_i$ continuas, entonces $\forall 1 \leq i \leq n$, si $U_i \subset X_i$ abierto. Luego $\pi_i^{-1}(U_i)$ abierto en τ' , donde $\pi_i^{-1} = X_1 \times \cdots \times X_{i-1} \times U_i \times X_{i+1} \times \cdots \times X_n$. Si queremos $\tau \subset \tau'$, basta que $\mathcal{B} \subset \tau'$. Si $U_1 \subset X_1, \ldots, U_n \subset X_n$ son abiertos, entonces $\mathcal{B} \ni U_1 \times \cdots \times U_n = \pi_1^{-1}(U_1) \cap \pi_2^{-1}(U_2) \cap \cdots \cap \pi_n^{-1}(U_n)$ es abierto en τ' (usamos que n es finito!!!).

Definition 1.42 (producto). Una familia indexada de conjuntos es $\{X_{\alpha}\}_{{\alpha}\in J}$. Si $\overline{X}\bigcup_{{\alpha}\in J}X_{\alpha}$, el producto cartesiano es $\prod_{{\alpha}\in J}X_{\alpha}$ es el conjunto de funciones $x:J\to \overline{X}$ tal que para $\alpha\in J$, $x_{\alpha}:=x(\alpha)\in X_{\alpha}$ [x_{α} es la α -coordenada de x]

Example.

- Si $J = \{1, \dots, n\} \Rightarrow \prod_{\alpha \in J} X_{\alpha} = X_1 \times \dots \times X_n;$
- Si $X_{\alpha} = X$ para todo $\alpha \Rightarrow \prod_{\alpha \in J} X_{\alpha} = X^{J} = \{\text{funciones } f: J \to X\};$
- Si $J = \mathbb{Z}_{>0}$, $X_{\alpha} = X \, \forall \alpha \Rightarrow \prod_{\alpha \in J} X_{\alpha} = \{\text{sucesiones } x = (x_1, x_2, \dots) \text{ en } X\}$

 \Diamond

1.9.2 Topologías en $\Pi_{\alpha \in J} X_{\alpha}$

Definition 1.43 (Topología de cajas). Topología con base

$$\mathcal{B} = \{ \prod_{\alpha \in J} U_{\alpha} \mid U_{\alpha} \subset X_{\alpha} \text{ es abierto para cada } \alpha \}$$

Definition 1.44 (Topología producto). Es la menor topología tal que las proyecciones $\pi_{\beta}: \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}, \ x = (x_{\alpha})_{\alpha \in J} \mapsto x_{\beta}$ sean continuas para cada $\beta \in J$.

Remark. Si \overline{X} conjunto, $f_{\alpha}: \overline{X} \to X_{\alpha}$ espacios topológicos, entonces existe una menor topología tal que f_{α} continua para todo α . Es la menor topología tal que $f_{\alpha}^{-1}(U_{\alpha})$ sea abierta para cada $U_{\alpha} \subset X_{\alpha}$ abierto, para cada $\alpha \in J$ (existe por tarea 1).

Remark. Para $\overline{X} = \prod_{\alpha \in J} X_{\alpha}$ una base es $\mathcal{B}' = \{\prod_{\alpha \in J} U_{\alpha} \mid U_{\alpha} \subset X_{\alpha} \text{ abierto, y } U_{\alpha} = X_{\alpha} \text{ salvo en un conjunto finito de índices } \alpha\}.$

Corollary 1.45. $\mathcal{B}' \subset \mathcal{B}$, por lo tanto $\tau_{\text{prod}} \subset \tau_{\text{cajas}}$.

Corollary 1.46. Para topología de cajas, proyecciones π_{α} también son continuas.

Example (Próxima clase).

- 1. $\overline{\underline{X}} = \mathbb{R}^{\mathbb{Z}_{>0}}$ y $f : \mathbb{R} \to \mathbb{R}^{\mathbb{Z}_{>0}}$ tal que $t \mapsto (t, t, t, t, \dots)$. Se puede ver que f continua para la topología producto, pero no es continua para la topología de cajas.
- 2. $\overline{\underline{X}} = \{0,1\}^{\mathbb{Z}_{>0}}$. En $\overline{\underline{X}}$ con topología de cajas, es la topología discreta. $\overline{\underline{X}}$ es homeomorfo al conjunto de Cantor con la topología producto.

 \Diamond

1.10 Clase 10 (27/08): Topología producto, Topología cuociente [19, 22]

Remark.

- 1. $\mathcal{B}' \subset \mathcal{B}$:
- 2. Si J es finito, topología de cajas = topología producto;
- 3. Si J es infinito, en general esto no es cierto.

Example. Si $J = \mathbb{Z}^+$, $X_n = \mathbb{R} \ \forall n, \ Z = \prod_{n \geq 1} \mathbb{R} = \mathbb{R}^\omega, \ f : \mathbb{R} \to \mathbb{R}^\omega, \ t \mapsto (t, t, t, \dots).$

Propiedad. Si $Z=\prod_{\alpha\in J}X_{\alpha},\ f:Y\to Z\Rightarrow f$ está dada por $f(y)=(f_{\alpha}(y))_{\alpha\in J}$ con $f_{\alpha}:Y\to X_{\alpha}$. Con la topología producto, f es continua \Leftrightarrow cada f_{α} es continua.

Antes de probar la propiedad, veremos que $f: \mathbb{R} \to \mathbb{R}^{\omega}$ no es continua para la topología de cajas: Tomar $B = \prod_{n \geq 1} \left(-\frac{1}{n}, \frac{1}{n}\right)$ es abierto para topología de cajas y $(0,0,0,\dots) = f(0) \in B$. Luego, $f^{-1}(B) = \{0\}$ no es abierto en \mathbb{R} . Por lo tanto, f no es continua.

Proof (Propiedad). \Longrightarrow Notar que $f_{\alpha} = \pi_{\alpha} \circ f$ (con π_{α} la proyección: $Z \to X_{\alpha}, (x_{\beta})_{\beta} \mapsto x_{\alpha}$) es composición de funciones continuas. Por lo tanto, es continua.

 \sqsubseteq Tomar $B = \prod_{\alpha \in J} U_{\alpha}$ en base de topología producto. Luego, notamos

$$\prod_{\alpha \in J} U_{\alpha} = U_{i_1} \times \dots \times U_{i_n} \times \prod_{\alpha \in J \setminus \{i_1, \dots, i_n\}} X_{\alpha} \subset Z$$

$$= \bigcap_{j=1}^{n} \pi_{ij}^{-1}(U_{ij})$$

Por lo tanto, suficiente probar que $f^{-1}(\pi_{\alpha}^{-1}(U_{\alpha}))$ abierto para cada α , $\forall U_{\alpha} \subset X_{\alpha}$. Luego, $f^{-1}(\pi_{\alpha}^{-1}(U_{\alpha})) = f_{\alpha}^{-1}(U_{\alpha})$ es abierto porque f_{α} continua. \square

Example. $Z = \{0, 1\}^{\omega} = \{\text{sucesiones } (x_1, x_2, \dots) \text{ con } x_i \in \{0, 1\}\}.$

Lemma 1.47. Si $Z = \prod_{\alpha \in J} X_{\alpha}$ donde cada X_{α} tiene topología discreta. Entonces, topología de cajas en Z es la topología discreta.

Proof. Queremos $\{(x_{\alpha})_{\alpha}\}$ abierto en Z. Notar que $\{(x_{\alpha})_{\alpha}\} = \prod_{\alpha} \{x_{\alpha}\}$ es abierto en Z con topología de cajas.

Con topología producto, Z es homeomorfo al conjunto de Cantor.

Recuerdo. En [0,1], $E_n=$ unión de intervalos $B_{i_1...i_n}$ con $i_n\in\{0,1\}$ tal que, inductivamente, si $B_{i_1...i_n}=[a,b]$, entonces

$$B_{i_1...i_n0} = \left[a, a + \frac{1}{3^{n+1}} \right], \quad B_{i_1...i_n1} = \left[b - \frac{1}{3^{n+1}}, b \right]$$

Luego, $C = \bigcap_{n\geq 1} E_n$ (Cantor) (cerrado en \mathbb{R} , de interior vacío). Construir $f: \{0,1\}^{\mathbb{Z}^+} \to C$, $(x_n)_{n\geq 1} \mapsto \sum_{n\geq 1} \frac{2x_n}{3^n}$, esto es biyección.

Veamos que f es continua: Notar que una base del ${\mathcal C}$ es el conjunto

$$\mathcal{B} = \bigcup_{n \ge 1} \{ B_{i_1 \dots i_n} \cap \mathcal{C} \mid i_1, \dots, i_n \in \{0, 1\} \}$$

Luego,

$$f^{-1}(B_{i_1...i_n} \cap \mathcal{C}) = \{(x_1, \dots, x_n, x_{n+1}, \dots) \mid x_1 = i_1, \ x_2 = i_2, \dots, x_n = i_n\}$$

$$= \underbrace{\{i_1\} \times \{i_2\} \times \dots \times \{i_n\} \times \{0, 1\}^{\mathbb{Z}_{>n}}}_{\text{abjerto para topología producto}}$$

Propiedades. $Z = \prod_{\alpha \in J} X_{\alpha}$ espacio topológico.

- 1. Si cada X_{α} es Hausdorff $\Rightarrow Z$ Hausdorff (Z con topología producto ó con topología de cajas)
- 2. Si $A_{\alpha} \subset X_{\alpha}$, donde $A = \prod_{\alpha \in J} A_{\alpha} \subset \prod_{\alpha \in J} X_{\alpha} = Z$. La topología producto en A es la inducida por la producto en Z. Por otro lado, la topología de cajas de A es la inducida por la topología de cajas de Z (demostrar!).