First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L1: Entry 1 of 4

File: JPAB

Aug 19, 1997

PUB-NO: JP409217062A

DOCUMENT-IDENTIFIER: JP 09217062 A

TITLE: LIQUID CRYSTAL COMPOSITION AND LIQUID CRYSTAL DISPLAYING ELEMENT

PUBN-DATE: August 19, 1997

INVENTOR - INFORMATION:

NAME

COUNTRY

SEKIGUCHI, YASUKO MURAKI, KATSUYUKI TAKESHITA, FUSAYUKI MATSUSHITA, TETSUYA NAKAGAWA, ETSUO

INT-CL (IPC): $\underline{\text{C09}}$ $\underline{\text{K}}$ $\underline{\text{19}}/\underline{\text{02}}$; $\underline{\text{C09}}$ $\underline{\text{K}}$ $\underline{\text{19}}/\underline{\text{42}}$; $\underline{\text{G02}}$ $\underline{\text{F}}$ $\underline{\text{1}}/\underline{\text{13}}$

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a chiral nematic liquid crystal composition excellent in rapid responding property and low temperature miscibility, capable of being driven by an electric voltage in a wide temperature range and low in temperature dependence of pitch thereof by containing a specific optically active compound in a specific liquid crystal composition and adjusting at a specific helical pitch.

SOLUTION: This liquid crystal composition contains (A) a liquid crystal compound such as a compound of formula I [R1 is a 1-10C alkyl; Q1 is H or F; (m) is 0, 1] or formula II [R2 is R1, etc.; Al is trans-1, 4-cyclohexylene(x), etc.; Zl is CH2CH2 or a single bond], (B) a compound of formula III (R6, R7 are each R2; B is A1, etc.; C is A1; Z5 is Z1, etc.), formula IV (R8 is R2; R9 is R1, etc.; D is X, etc.; E is X, etc.; G is X, etc.; Z6 is Z1, Z7 is $C \equiv C$, etc.) or a formula V (R10 is R2; R11 is R9; Q2 is Q1), and (C) an optically active compound having \geq 0.15m (µm.wt.%)-1 helical twisting force at 25°C and adjusted to have ≤4µm helical pitch thereof.

COPYRIGHT: (C) 1997, JPO

Previous Doc

Next Doc

Go to Doc#

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-217062

(43)公開日 平成9年(1997)8月19日

(51) Int.CL.6		識別記号	庁内整理番号	ΡI			技術表示箇所
C09K	19/02			C09K	19/02		
	19/42				19/42		
G 0 2 F	1/13	500		G 0 2 F	1/13	500	
			•				

審査請求 未請求 請求項の数9 FD (全 24 頁)

(21)出顧番号	特顯平 8-48111	(71)出顧人 000002071
		チッソ株式会社
(22)出廣日	平成8年(1996)2月9日	大阪府大阪市北区中之島 3 丁目 6 番32号
		(72)発明者 関口 靖子
		千葉県市原市松ヶ島641-1
	•	(72)発明者 村城 勝之
		千葉県市原市五井東1丁目11番4号
		(72)発明者 竹下 房幸
		千葉県君津市中富939番地5号
		(72)発明者 松下 哲也
		千葉県袖ヶ浦市長浦駅前6丁目10番11号
		(72)発明者 中川 悦男
		千葉県市原市五井8890番地
		(74)代理人 弁理士 野中 克彦

(54) 【発明の名称】 被晶組成物および被晶表示素子

(57)【要約】

【課題】双安定スイッチング液晶表示素子に求められる 種々の特性を満たしながら、高速応答性に対応するため に低粘度であり、さらに低温相溶性に優れ、電圧駆動可 能な温度範囲を大きくし、またピッチの温度依存性の小 さいカイラルーネマチック液晶組成物を提供する。

【解決手段】ピリミジン系やベンゾニトリル系等の液晶性化合物を含有する液晶成分にH. T. P. (Herical Twisting Power: らせんねじり力)が0.15(μm・wt%)-1以上である光学活性化合物を1種以上含有させ、且つねじれのピッチが4μm以下に調整されていることを特徴とするカイラルネマチック液晶組成物。

【効果】双安定スイッチング液晶表示素子に求められる 種々の特性を満たしながら、高速応答性に対応するため に低粘度であり、さらに低温相溶性に優れ、電圧駆動可 能な温度範囲を大きくし、またピッチの温度依存性の小 さいカイラルーネマチック液晶組成物を提供することが できる。 . 1

【特許請求の範囲】

*(II-a)、(II-b)または(II-c)

【請求項1】(1)第1成分として、一般式(I)、

$$R^{1}-\left\langle \bigcirc \right\rangle -\left(-\left\langle \bigcirc \right\rangle -\right) _{m}-\left\langle \bigcirc \right\rangle -F \qquad (0)$$

(式中、R1は炭素数1~10のアルキル基を示し、Q1 はHまたはFを示し、mはOまたは1を示す。)

(II-a)

(II-b)

$$\mathbb{R}^3$$
-(\mathbb{A}^2)---(\mathbb{A}^3)--- \mathbb{Z}^2 ---(\mathbb{O})---CN

$$R^4$$
— $(A^4)_1$ - Z^3 — (A^5) - Z^4 — O
 CN
 Q^1

(式中、R2、R3、R4およびR5は各々独立して炭素数 ル基を示す。 いずれにおいても基中の任意の1つまたは 相隣接しない2つのメチレン基 (-CH2-) は酸素原 子 (-O-) によって置換されても良い。 $A^1 \setminus A^2 \setminus A$ 3およびA4は各々独立してトランス-1, 4-シクロへ キシレンまたは1,4-フェニレンを示し、A5はトラ ンス-1, 4-シクロヘキシレンまたは側位の1つのH★

 $R^6-(B)-Z^5-(C)-R^7$

★がFで置換されても良い1、4ーフェニレンを示す。Z 1~1 0のアルキル基または炭素数2~1 0のアルケニ 20 ¹、Z²およびZ゚は各々独立して、-CH₂CH₂-また は単結合を示す。Z¹は-COO-、-CH2CH2-ま たは単結合を示し、Q2はHまたはFを示し、iはOま たは1を示す。)で表される化合物群から選択される化 合物を少なくとも1種含有し、(2)第2成分として一 般式 (III) 、 (IV) または (V)

> 【化3】 (III)

(式中、R6およびR7は各々独立して炭素数1~10の アルキル基または炭素数2~8のアルケニル基を示す。 いずれにおいても基中の任意の1つまたは相隣接しない 2つ以上のメチレン基 (-CH2-) は酸素原子によっ て置換されても良い。Bはトランス-1,4-シクロへ キシレン、ピリミジンー2,5-ジイルまたは1,4-☆ $R^8-(D)-Z^6-(E)-Z^7-(G)-R^9$

(式中、R8は炭素数1~10のアルキル基または炭素 数2~10のアルケニル基を示す。 いずれにおいても基 中の任意の1つまたは相隣接しない2つ以上のメチレン 基 (-CH2-) は酸素原子 (-O-) によって置換さ れても良い。R9は炭素数1~10のアルキル基、アル コキシ基またはアルコキシメチル基を示し、Dはトラン スー1,4-シクロヘキシレンまたはピリミジンー2. 5-ジイルを示し、Eはトランス-1, 4-シクロヘキ シレンまたは側位の1つのHがFで置換されても良い 1, 4-フェニレンを示し、Gはトランス-1, 4-シ クロヘキシレンまたは1, 4-フェニレンを示し、Z6 は一CH2CH2ーまたは単結合を示し、Z7は一C≡C ー、-COO-、-CH=CH-または単結合を示し、 Q3はHまたはFを示す。)

【化5】

☆フェニレンを示し、Cはトランス-1, 4-シクロヘキ 30 シレンまたは1,4-フェニレンを示し、Z⁵は-C≡ C-, -COO-, $-CH_2CH_2-$, -CH=CH-, -CF=CF-または単結合を示す。) 【化4】

$$R^{10}$$
 Q^2 Q^2 Q^2 Q^2 Q^2 Q^2

(式中、R10は炭素数1~10のアルキル基または炭素 40 数2~10のアルケニル基を示す。いずれにおいても基 中の任意の1つまたは相隣接しない2つ以上のメチレン 基(-CH2-)は酸素原子(-O-)によって置換さ れても良い。R11は炭素数1~10のアルキル基、アル コキシ基またはアルコキシメチル基を示し、Q3はHま たはFを示す。) で表される化合物群から選択される少 なくとも1種の化合物を含有し、(3)第3成分として 25℃におけるH. T. P. (Herical Twisting Pow er: らせんねじり力) が0.15 (μm·wt%) -1以 上である光学活性化合物を1種以上含有し、且つらせん ◆50 のピッチが4μm以下に調整されていることを特徴とす

【化6】

3

るカイラルネマチック液晶組成物。

【請求項2】25℃におけるH. T. P. が0. 150

(μm·wt%) -1以上である光学活性化合物が、下記*

$$R^{12}$$
-(K)-COO-+CH-O-Y
 C_2H_5
(VI-a)

(式中R12は炭素数1~10のアルキル基またはアルコ キシ基を示し、Kはトランス-1, 4-シクロヘキシレ ンまたは1,4-フェニレンを示し、Yは水素原子また 20 ルネマチック液晶組成物。 は炭素数1~10のアルキル基を示す。)で表される光 学活性化合物群から選択されることを特徴とする、請求 項1に記載の液晶組成物。

【請求項3】液晶組成物の全重量に対して

(1)第1成分が10~65重量%、

※(2)第2成分が35~90重量%

*式(VI-a)、(VI-b)または(VI-c)

であること特徴とする請求項1または2に記載のカイラ

【請求項4】請求項1~3のいずれかに記載の液晶組成 物に加えて、さらに(4)第4成分として、一般式(VI

【化7】

30★液晶組成物。

(VII)

(式中、R13は炭素数1~10のアルキル基を示し、J はトランス-1, 4-シクロヘキシレンまたは側位の1 つまたは2つのHがFで置換されていても良い1, 4-フェニレンを示し、Q5はFまたはC1を示し、Q4およ びQ6は各々独立してはHまたはFを示し、Z8およびZ 9は各々独立して-COO-、-C2H4-または単結合 を示し、nは0、1または2を示す。) で表される化合 物群から選択される化合物を少なくとも 1 種含有するこ とを特徴とするカイラルネマチック液晶組成物。

【請求項5】液晶組成物の全重量に対して、第4成分の 含有量が50重量%以下であることを特徴とする請求項 40 4に記載のカイラルネマチック液晶組成物。

【請求項6】請求項1~5のいずれか1項において、一 般式 (II-a)、(II-b) および (II-c) における R1~R5が独立に炭素数1~10のアルキル基、アルコ キシ基またはアルコキシメチル基を示すことを特徴とす るカイラルネマチック液晶組成物。

【請求項7】請求項1~6のいずれか1項において、一 殷式 (III) におけるR⁶およびR⁷が各々独立して炭素 数1~10のアルキル基、アルコキシ基またはアルコキ シメチル基を示すことを特徴とするカイラルネマチック★50 てツイストネマチック (TN)方式、スーパーツイスト

【請求項8】請求項1~7のいずれか1項において、一 殷式 (IV) におけるR8が炭素数1~10のアルキル基 を示し、R9が炭素数1~10のアルキル基またはアル コキシ基を示すことを特徴とするカイラルネマチック液

【請求項9】請求項1~8のいずれかに記載のカイラル ネマチック液晶組成物を用いた液晶表示素子。

【発明の詳細な説明】

[0001]

品組成物。

【発明の属する技術分野】本発明は、透明電極を有する 2枚の基板で形成される密閉液晶表示セル中に使用され る、少なくとも1種のカイラル添加物を含むネマティッ ク液晶組成物および、該液晶組成物を用いた液晶表示素 子に関する。さらに詳しくは、2つの準安定状態のスイ ッチング(双安定スイッチング)を利用した単純マトリ ックス液晶表示素子に好適な液晶組成物および、該液晶 組成物を用いた液晶表示素子に関する。

[0002]

【従来の技術】液晶表示素子(LCD)の表示方式とし

×

ネマティック (STN) 方式、アクティブマトリックス (AM-LCD) 方式等が提案され、次々に実用化されてきた。例えば、M.Schadt andW.Helfrichによって提案された (Appl.Phys.Lett.18(1971)127) 上下の基板における液晶分子の配向を 90°ツイストさせたTN方式や T.J.Scheffer等によって提案された (Appl.Phy.Lett.,45(10),1021(1984)) 上下の基板における液晶分子の配向を 180~270°にツイストさせたSTN方式はメモリー効果を持たないために、電圧平均化法による単純マトリックス駆動法または各画素にトランジスタ等のアク 10ティブ素子を設けたアクティブマトリクス駆動法によって駆動されている。

【0003】また、特開平6-230751号公報や特 開平6-235920号公報等で双安定スイッチングを 用いる方式が提案されている。これらは、配向膜が設け られた一対の透明電極基板間にカイラルネマチック液晶 を狭持し、該カイラルネマチック液晶が初期状態におい てねじれ角々のねじれ構造を有し、該初期状態にフレデ リクス転移を生じさせる電圧を印加した後の緩和状態と ±180°)を有する液晶表示素子において、フレデリ クス転移を生じさせるために印加される電圧を初期状態 および2つの準安定状態におけるしきい値以上の電圧パ ルスとし、その後に2つの準安定状態のいずれか一方を 選択するために印加される電圧を、2つの準安定状態を 生ずる臨界値を基準として選択された電圧パルスとする 液晶表示素子である。いずれかの準安定状態に選択され た状態を維持する期間に印加される電圧を2つの準安定 状態におけるしきい値以下のパルスとしてマルチプレッ クス駆動を行うことができる。

【0004】 これらの双安定スイッチング液晶表示素子* P=1/(H.T.P.×c)

【0007】双安定スイッチング液晶表示素子に求めら れるピッチは、P<4μmと短いのが特徴的である。し たがって、このH. T. P. が小さいと、4 µm以下の 必要なピッチを得るために該カイラル成分をかなり高い 濃度で添加する必要が生じ、他の物質パラメーターに不 利な影響を及ぼしてしまう。例えばスメクチックーネマ チック相転移点Tsnが非常に高くなり、電圧駆動可能な 温度範囲が狭くなってしまう。また、カイラル成分の濃 40 度が高いために、カイラルーネマチック液晶組成物の粘 度が大きくなり、その結果、応答速度が大きくなってし まう。さらにH. T. P. の小さいカイラル成分を用い ると、温度の上昇につれてピッチの温度依存性も大きく なる傾向があり、電圧駆動可能な温度範囲が狭くなって 好ましくない。このように、液晶組成物は種々の目的に 合わせて鋭意検討されてはいるものの、常に新規な改善 を要求されているのが現状である。

[0008]

- *に用いられる液晶組成物には、以下のような特性が求め
 - (1)室温を含む広い温度範囲でネマティック液晶相を 示すこと。
 - (2) 双安定性と急峻なしきい値特性を両立させるため に、適当な誘電率異方性(Δε)をとり得ること。
 - (3) 応答時間 (で) をできるだけ小さくするために、 粘度 (n) が小さいこと。またはスプレイ弾性定数 (K 11) が大きいこと。
- (4)高コントラスト比と高透過率を両立するために適切な屈折率異方性(Δn)をとり得ること。
 - (5) 電圧駆動可能な温度範囲を広げるためにピッチ
 - (P) の温度依存性が小さいこと。

などを挙げることができる。

用いる方式が提案されている。これらは、配向膜が設けられた一対の透明電極基板間にカイラルネマチック液晶を狭持し、該カイラルネマチック液晶が初期状態においてねじれ角ゆのねじれ構造を有し、該初期状態にフレデリクス転移を生じさせる電圧を印加した後の緩和状態として該初期状態とは異なる2つの準安定状態(例えばゆ 20 料理 (透明点: TNI)が60℃以上、スメクチックーナ180)を有する液晶表示素子において、フレデリクス転移を生じさせるために印加される電圧を初期状態とは異なる20℃以下であることが要求される。

【0006】また、液晶組成物に光学活性物質を微量添加することにより、液晶分子の逆ツイストを抑えて液晶分子に右回りあるいは左回りのらせん構造を与え、表示品質を保つ方法は既によく知られた手段である。カイラル成分として添加する光学活性物質の有するらせんねじりカーH. T. P. (μm・wt%)-1はその添加濃度『c(wt%)』およびピッチ『P(μm)』を用いるで、下記式ので定義される。

- ※【発明が解決しようとする課題】本発明の目的は、上記 双安定スイッチング液晶表示素子に求められる種々の特性を満たしながら、高速応答性に対応するために低粘度 であり、さらに低温相溶性に優れ、電圧駆動可能な温度 範囲を大きくし、またピッチの温度依存性の小さいカイ ラルーネマチック液晶組成物を提供することにある。 【0009】
- 【課題を解決するための手段】本発明者らは、これらの 課題を解決すべく種々の液晶化合物を用いた組成物を鋭 意検討した結果、本発明の液晶組成物を双安定スイッチ ング液晶表示素子に使用する場合に、この目的を達成で きることを見いだした。以下、本発明を詳細に説明する。

【0010】本発明の第1の発明は、第1成分として、 一般式(I)、(II-a)、(II-b)または(IIc)

《【化8】

(式中、 R^1 は炭素数 $1\sim10$ のアルキル基を示し、 Q^1 *【化9】はHまたはFを示し、mは0または1を示す。) *

$$R^2$$
— (A^1) — Z^1 — O — CN (II-a)

$$R^3-(A^2)-(A^3)-Z^2-O$$
-CN (II-b)

$$R^4$$
— $(A^4)_i - Z^3$ — $(A^5) - Z^4$ — CN

(II-c)

☆

(式中、R²、R³、R⁴およびR⁵は各々独立して炭素数 1~10のアルキル基または炭素数2~10のアルケニル基を示す。いずれにおいても基中の任意の1つまたは相隣接しない2つのメチレン基(-CH2-)は酸素原子(-O-)によって置換されても良い。A¹、A²、A³およびA⁴は各々独立してトランス-1,4-シクロへキシレンまたは1,4-フェニレンを示し、A⁵はトランス-1,4-シクロヘキシレンまたは側位の1つのH※R6-(B)-Z⁵-(C)-R²

(式中、R⁶およびR⁷は各々独立して炭素数1~10の アルキル基または炭素数2~8のアルケニル基を示す。 いずれにおいても基中の任意の1つまたは相隣接しない 2つ以上のメチレン基(-CH₂-)は酸素原子によっ 30 て置換されても良い。Bはトランス-1,4-シクロへ キシレン、ピリミジン-2,5-ジイルまたは1,4-★ R⁸-(D)-Z⁶-(E)-Z⁷-(G)-R⁹

(式中、R⁸は炭素数1~10のアルキル基または炭素数2~10のアルケニル基を示す。いずれにおいても基中の任意の1つまたは相隣接しない2つ以上のメチレン基(-CH₂-)は酸素原子(-O-)によって置換されても良い。R⁹は炭素数1~10のアルキル基、アルコキシ基またはアルコキシメチル基を示し、Dはトランス-1,4-シクロヘキシレンまたはピリミジン-2,5-ジイルを示し、Eはトランス-1,4-シクロヘキシレンまたは側位の1つのHがFで置換されても良い1,4-フェニレンを示し、Gはトランス-1,4-シクロヘキシレンまたは1,4-フェニレンを示し、Z⁶は-CH₂CH₂-または単結合を示し、Z⁷は-C≡Cー、-COO-、-CH=CH-または単結合を示し、Q³はHまたはFを示す。)

【化12】

※がFで置換されても良い1、4ーフェニレンを示す。Z
1、Z²およびZ³は各々独立して、一CH2CH2ーまたは単結合を示す。Z⁴は一COO一、一CH2CH2ーま
20 たは単結合を示し、Q²はHまたはFを示し、iはOまたは1を示す。)で表される化合物群から選択される化合物を少なくとも1種含有し、第2成分として一般式(III)、(IV)および(V)
 【化10】

(III)

★フェニレンを示し、Cはトランス-1,4-シクロへキシレンまたは1,4-フェニレンを示し、Z⁵は-C≡C-、-COO-、-CH₂CH₂-、-CH=CH-、
 30 -CF=CF-または単結合を示す。)
 【化11】

 $\stackrel{\triangle}{R}^{10} - \stackrel{\bigcirc}{\bigcirc} - \stackrel{\bigcirc}{\bigcirc} - \stackrel{\bigcirc}{\bigcirc} - \stackrel{-}{\bigcirc} - R^{11} \qquad (V)$

(式中、R¹ºは炭素数1~10のアルキル基または炭素数2~10のアルケニル基を示す。いずれにおいても基中の任意の1つまたは相隣接しない2つ以上のメチレン基(-CH2~)は酸素原子(-O-)によって置換されても良い。R¹¹は炭素数1~10のアルキル基、アルコキシ基またはアルコキシメチル基を示し、Q³はHまたはFを示す。)で表される化合物群から選択される少なくとも1種の化合物を含有し、第3成分として25℃におけるH. T. P. (Herical Twisting Power:らせんねじり力)が0.15(μm・wt%)¹以上である光学活性化合物を1種以上含有し、且つらせんのピッチが4μm以下に調整されていることを特徴とするカイラルネマチック液晶組成物に関する。

50 【0011】本発明の第2の発明は、25℃における

10

$$R^{12}-(K)-COO-{}^{\bullet}CH-O-Y$$

$$C_2H_5$$
(VI-a)

(式中R¹²は炭素数1~10のアルキル基またはアルコ ※ キシ基を示し、Kはトランス-1,4-シクロヘキシレンまたは1,4-フェニレンを示し、Yは水素原子または炭素数1~10のアルキル基を示す。)で表される光 20 学活性化合物群から選択されることを特徴とする、上記第1の発明に記載の液晶組成物に関する。

【0012】本発明の第3の発明は、液晶組成物の全重※

※量に対して第1成分が10~65重量%、第2成分が3 5~90重量%であること特徴とする上記第1または第 2の発明に記載のカイラルネマチック液晶組成物に関する。

【0013】本発明の第4の発明は、さらに第4成分として、一般式 (VII)

【化14】

$$R^{13}-(-\bigcirc)_n-Z^8-(J)-Z^9-\bigcirc\bigcirc_{O^6}^{Q^4}$$
 (VII)

(式中、R¹³は炭素数1~10のアルキル基を示し、Jはトランス-1,4-シクロヘキシレンまたは側位の1つまたは2つのHがFで置換されていても良い1,4-フェニレンを示し、Q⁵はFまたはC1を示し、Q⁴およびQ⁵は各々独立してはHまたはFを示し、Z⁸およびZ⁹は各々独立して-COO-、-C2H4-または単結合を示し、nは0、1または2を示す。)で表される化合物群から選択される化合物を少なくとも1種含有することを特徴とする上記第1~第3の発明のいずれかに記載のカイラルネマチック液晶組成物に関する。

【0014】本発明の第5の発明は、液晶組成物の全重量に対して、第4成分の含有量が0~50重量%であることを特徴とする上記第1~第4の発明のいずれかに記 40載のカイラルネマチック液晶組成物に関する。

【0015】本発明の第6の発明は、第1~5の発明のいずれかにおいて、一般式(II-a)、(II-b)および(II-c)におけるR¹~R⁵が独立に炭素数1~10のアルキル基、アルコキシ基またはアルコキシメチル基を示すことを特徴とするカイラルネマチック液晶組成物に関する。

【0016】本発明の第7の発明は、第1~6の発明のいずれかにおいて、一般式 (III) におけるR⁶およびR 7が各々独立して炭素数1~10のアルキル基、アルコ ★50

- ★キシ基またはアルコキシメチル基を示すことを特徴とす ・るカイラルネマチック液晶組成物に関する。
- 30 【0017】本発明の第8の発明は、第1~7の発明のいずれかにおいて、一般式 (IV) におけるR®が炭素数1~10のアルキル基を示し、R®が炭素数1~10のアルキル基またはアルコキシ基を示すことを特徴とするカイラルネマチック液晶組成物に関する。

【0018】本発明の第9の発明は、上記第1~第8の発明のいずれかに記載のカイラルネマチック液晶組成物を用いた液晶表示素子に関する。

【0019】以下、本発明の液晶組成物を構成する液晶 化合物について説明する。本発明の第1成分である、一 0 般式(I)および/または(II-a)~(II-c)で表 される化合物としては、好ましくは以下の化合物を挙げ ることができる。

【化15】

1 1

【化16】 (I-1)

(I-2)

(I-3)

R-()-(C)

(İJ-**a-**1)

10 (11-2-2)

R-(O)--(O)-CN

(II-a-3)

ROR'O-O-CN

(II-a-4)

(II-2-5)

(II-b-1)

(II-b-2)

R-{O}-{O}-CN

20

 $R-\hspace{-1.5cm}\longleftarrow\hspace{-1.5cm}-\hspace{-1.5cm}CH_2CH_2\hspace{-1.5cm}\bigcirc\hspace{-1.5cm}-\hspace{-1.5cm}CN$

(II-b-3) (II-b-4)

(II-c-1)

(II-c-2)

$$R - \bigcirc - \cos \bigcirc - \operatorname{CN} \qquad (II \leftarrow 3)$$

$$R - \bigcirc - \cos \bigcirc - \operatorname{CN} \qquad (II \leftarrow 4)$$

$$R - \bigcirc - \operatorname{COO} \bigcirc - \operatorname{CN} \qquad (II \leftarrow 5)$$

$$R - \bigcirc - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 6)$$

$$R - \bigcirc - \operatorname{CH}_{2}\operatorname{CH}_{2} \bigcirc - \operatorname{CN} \qquad (II \leftarrow 7)$$

$$R - \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 8)$$

$$R - \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 10)$$

$$R - \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 11)$$

$$R - \bigcirc - \operatorname{CH}_{2}\operatorname{CH}_{2} - \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 11)$$

$$R - \bigcirc - \operatorname{CH}_{2}\operatorname{CH}_{2} - \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 12)$$

$$R - \bigcirc - \operatorname{CH}_{2}\operatorname{CH}_{2} - \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 13)$$

$$R - \bigcirc - \operatorname{COO} \bigcirc - \operatorname{CN} \qquad (II \leftarrow 13)$$

$$R - \bigcirc - \operatorname{COO} \bigcirc - \operatorname{COO} - \bigcirc - \operatorname{CN} \qquad (II \leftarrow 14)$$

(Rはアルキル基またはアルケニル基、R' はアルカン ジイルまたはアルケンジイルを示す。)

【0020】これらの第1成分の化合物のなかでは、式 (I-1)、(I-2)、(I-3)、(II-a-1)、(II-a-2)、(II-a-3)、(II-b-

1) (II-c-1) (II-c-5) (II-c-

6)、(II-c-11)または(II-c-13)で表される化合物が本発明において特に好ましく用いられる。

【0021】これら第1成分の化合物は誘電率異方性が*

*正の化合物で特にその値が大きく、主としてしきい値電 圧を小さくする目的およびSTN特性として重要な急峻 性を改善する目的で使用される。低電圧駆動を行うため には誘電率異方性の大きいこれらの化合物は不可欠な成 分となる。

【0022】第2成分の、一般式 (III)、 (IV) および (V) で表される化合物として、好ましくは以下の化合物を挙げることができる。

【化17】

15 (III-1) (III-2) (III-3) (III-4) (III-5) (III-6) R - COO - O - R'(III-7) R-_\-\OO-\O\-OR' (B-III) $R-\bigcirc -COO-\bigcirc -R$ (111-9) RO-(O)-COO-(O)-R' (LTI-10) $R - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc C_2H_4OR$ (III-11) $R - CH_2CH_2CO - OC_2H_4OR'$ (III-12) $R-\bigcirc -C \equiv C-\bigcirc -R'$ (III-13) $R-\bigcirc$ -C\equiv C\equiv O\equiv OR' (III-14) $R - \bigcirc - C \equiv C - \bigcirc - OC_2H_4OR'$ (111-15) 【化18】 $R-\bigcirc-CH=CH-\bigcirc-R'$ (III-16) R-O-CH=CH-O-OR (111-17) (III-18)(III-19)

【化19】

17 18 (TV-1) (IV-2) (IV-3) (TV-4) (IV-5) (IV-6) (IV-7) (IV-8) (TV-9) (IV-10) (TV-11) (TV-12) (TV-13) 【化20】 O}-CH=CH-{O}-K. (TV-14) (IV-15) (IV-16) (V-1) (V-2) (V-3)

(RおよびR'は各々独立してアルキル基またはアルケニル基を示す。)

【0023】これらの中で、式(III)で表される化合物としては、式(III-1)、(III-4)、(III-6)、(III-7)、(III-8)、(III-10)、(III-13)、(III-14)、(III-18)または(III-19)で表される化合物が本発明において特に好ま

*ては、式(IV-2)、(IV-5)、(IV-6)、(IV-8)、(IV-11)、(IV-12)または(IV-14)で表される化合物が本発明において特に好ましく用いられる。式(V)で表される化合物としては(V-2)で表される化合物が本発明において特に好ましく用いられる。

I−19)で表される化合物が本発明において特に好ま 【0024】第2成分の、一般式 (III)、 (IV) およしく用いられる。また、式 (IV) で表される化合物とし*50 び (V) の化合物は、誘電率異方性が負かまたは弱い正

* 0. 150 (μm·wt%) -1以上の光学活性化合物の

内、式 (VI-a)、 (VI-b) または (VI-c) で表さ

れる光学活性化合物として、好ましくは以下の光学活性

化合物を挙げることができる。

【化21】

の化合物である。一般式 (III) の化合物は主として粘度低下および/または Δ n調整の目的で使用される。また、一般式 (IV) の化合物は透明点を高くする等のネマチックレンジを広げる目的および/または Δ n調整、粘度調整の目的で使用される。

【0025】本発明の第3成分である、H. T. P. が*

【化22】

(式中R、R'はそれぞれ炭素数 $1\sim 1~0$ のアルキル基 30*a) \sim (VI -c) の光学活性化合物は、カイラル成分とを示す。) してらせんのピッチ長を調整するために用いられる。

【0026】これらの化合物の中では、式 (VI-a-1)、 (VI-a-7)、 (VI-b-2)、 (VI-b-3) および (VI-c-3) の化合物が本発明において特に好ましく用いられる。第3成分である、一般式 (VI-*

してらせんのピッチ長を調整するために用いられる。 【0027】本発明の第4成分である一般式(VII)で 表される化合物として、好ましくは以下の化合物を挙げ ることができる。

【化23】

R-{ }-coo-{)-F

(VII-1)

 $R-\bigcirc -\bigcirc -\bigcirc -F$

(VII-2)

R-(-)-coo-(-)-F

(VII-3)

R-(0)-coo(0)-F

(VII-4)

R-()-()-F

(VII-5)

 $R- \bigcirc -\bigcirc -\bigcirc -P$

(VII-6)

R-()-()-F

(VII-7)

(VII-8)

(VII-9)

(VII-10)

(VII-11)

$$R-\bigcirc -\bigcirc -\bigcirc -\bigcirc -F$$

(VII-12)

【化24】

30

【化25】

		(1)	,	197017 2	17002
2 7 R-CH ₂ CH ₂ -O-CI	(VII-24)		R-CH2CH2CH2	2 8 ⟨ ⊙ ⟩ -a	(VII-36)
$R-CH_2CH_2-CO-CI$	(VII-25)		R-CH ₂ CH ₂ C	<obbody>G</obbody>	(VII-37)
$R - CH_2CH_2 - CO$ F	(VII-26)		R-CH2CH2	⊘ Fa	(VII-38)
R-CH ₂ CH ₂ CO-F	(VIJ-27)		R - CH ₂ CH ₂ O	⊘ _F	(VII-39)
$R-CH_2CH_2 \bigcirc F$	(VII-28)	10	R-CH2CH2CO	⊘ F F	(VII-40)
$R - CH_2CH_2 \bigcirc F$	(VII-29)		R-CH ₂ CH ₂ CO	ÂF F	(VII-41)
R- CH ₂ CH ₂ CO-CI	(VII-30)		R-(-)-CH ₂ CH ₂ (O)-	⊘ -a	(VII-42)
R-CH2CH2OFCI	(VII-31)		R-CH2CH2CO	⊘ Fa •	(VII-43)
$R CH_2CH_2$ CH_2CH_2 CH_2 CH	(VII-32)	20	R-CH ₂ CH ₂ CO	F F	(VII-44)
R-CH ₂ CH ₂ CH ₂	(VIL-33)		$R CH_2CH_2$		(VII-45)
R-CH ₂ CH ₂ F	(VII-34)		p. C. Cu.cu.	F F	
$R-CH_2CH_2$ F	(VII-35)		R-()(CH ₂ CH ₂ ·	-____\\\\\\\\\\\\\\\\\\\\\\\\\\	(VII-46)
【化26】		30	R-\	F F	(VII-47)
			R	(OFF) F	(VII-48)
		40	(Rはアルキル基を示す 【0028】一般式(VII 6)、(VII-7)、(V -10)、(VII-11) 5)、(VII-16)、 8)、(VII-19)、 2)、(VII-29)、 5)、(VII-37)、 5)、(VII-46)、 8)で表される化合物が らの中で、(VII-1)、 (VII-8)、(VII-9 2)、(VII-15)、	I)で表される第4点 L)、(VII-5)、 II-8)、(VII-5)、 (VII-1 2)、 (VII-1 7)、(VI (VII-2 0)、(VI (VII-3 4)、(VI (VII-4 1)、(VI (VII-4 7)または 好ましく用いられ、 (VII-5)、(VI)、(VII-1 1)、	(VII- 9)、(VII-1 1-1 1-2 1-3 1-4 (VII-4 さらにこれ I-7)、
		50	または(VII-29)で表	長される化合物が本列	き明におい

て特に好ましく用いられる。一般式 (VII) の化合物は 誘電率異方性が正の化合物であり、特にしきい値電圧を 小さくする目的やその温度依存性を改善する目的で使用 される。また、粘度調整、Δn調整、透明点を高くする 等のネマチックレンジを広げる目的にも使用される。

【0029】本発明で使用される第1成分の混合割合 は、液晶組成物の全重量に対して10~65%が好まし い。より好ましくは15~60%である。第2成分の混 合割合は35~90%が好ましい。より好ましくは40 ~85%である。第4成分の混合割合は0~50%が好 10 ましい。

【0030】本発明の液晶組成物は使用される液晶表示 素子の目的に応じて、上記一般式(I)~(VII)で表 される化合物の他、しきい値電圧、ネマティックレン ジ、△n、誘電率異方性、粘度等を調整する目的で、他 の化合物を本発明の目的を害さない範囲で適当量含有す ることができる。

【0031】本発明の液晶組成物は、それ自体慣用な方 法で調整される。一般には、種々の成分を高い温度で互 晶材料は、適当な添加物によって意図する用途に応じた 改良がなされ、最適化される。このような添加物は当業 者によく知られており、文献等に詳細に記載されてい

30

る。また、本発明の液晶組成物は、メロシアニン系、ス チリル系、アゾ系、アゾメチン系、アゾキシ系、キノフ タロン系、アントラキノン系およびテトラジン系等の二 色性色素を添加してゲストホスト (GH) モード用の液 晶組成物としても使用できる。あるいは、ネマチック液 晶をマイクロカプセル化して作製したNCAPや液晶中 に三次元網目状高分子を作製したポリマーネットワーク 液晶表示素子(PNLCD)に代表されるポリマー分散 型液晶表示素子(PNLCD)用の液晶組成物としても 使用できる。その他、複屈折制御(ECB)モードや動 的散乱(DS)モード用の液晶組成物としても使用でき る。

[0032]

【実施例】以下、実施例により本発明を詳細に説明する が、本発明はこれらの実施例に限定されるものではな い。また、比較例、実施例に使用した液晶化合物は「表 1」に基づいて記号で表し、光学活性化合物は「表2」 に示した略号で表し、それらの組成比は液晶成分につい ては全て重量%で示す。ただし、第3成分である光学活 いに溶解させる方法がとられている。また、本発明の液 20 性化合物については、光学活性化合物以外の液晶組成物 100重量部に対する重量部で示す。

【表1】

31

表1 記号を用いた化合物の表記方法

$$R - (A_1) - Z_1 - Z_n - (A_n) - X$$

1) 左末端基 R-	記号		3) 結合基 -Z1-, -Zn	- 記号
CnH2n+1	n —		—CH ₂ CH ₂ —	2
$C_nH_{2n+1}O-$ nO—				_
C ₀ H _{2n+1} OC _m H _{2m}	$C_nH_{2n+1}OC_mH_{2n}$ nOm-			E
CH ₂ =CHC _n H _{2n}	vn		—c≡c—	т
C _n H _{2n+1} CH = CHC _n H _{2n} —	nVm-		—сн= с н—	v
C ₂ H ₂₂₊₁ CH-CHC ₂ H ₂₂₂ CH-CHC ₄ H	_{zk} nvmv	/k	—cr ₂ o—	CF2O
			—OCF ₂ —	OCF2
2) 環構造—{A1}—, —{As}—	記号	4) 右	末端基 一X	記号
-(6)-	В		_F	— F
F			- c 1	_a_
-	B(F)		-CN	<u></u> -с
F	•		-CF ₃	—CF3
- ⟨ \)	B(F,F)		-OCF ₃	OCF3
F	н		−OCF ₂ H	— OCF2H
	п		—C _n H _{2n+1}	—n
-⟨o;}-	Py		— OС _п Н _{2n+1} — СООСН ₃	On EMe
	D		−C ₂ H ₂₀ CH=CH ₂	— n V
	D		$-C_mH_{2m}CH=CHC_nH_{2m+1}$	v m∨n
-⟨ ⟩-	Ch		- <u>11 - 11 - 11 - 11 - 11 - 11 - 11 - 1</u>	
		ļ		
5) 記号例				
例 1 3-H2B(F,F)B(F)-F	:	例3	1V2-BEB(F,F)-C	F
C ₁ H ₂ -CH ₂ CH ₂ -CF		CH	CH=CHCH2CH2-O-COO	-€ -€ -€ -€ -€ -€ -€ -€ -€ -€ -€ -€ -€ -
例2 3-HB(F)TB-2				
C ₃ H ₇ -{\rightarrow}-{\righ	}−C₂H₅			

	mfr 🖂
構造式	略号
C ₈ H ₁₇ O-(O)(O)-COO-*CH-(O)	8OBBE1*(Et)B
C ₂ H ₅	
C ₅ H ₁₁ ()(0)+CH(0)	STOREST
	5HBE1*(Et)B
C ₂ H ₅	
C ₈ H ₁₇ O-(O)(O)-COO~*CH-(O)	8OBBE1(Me)B
CH ₃	•
C_6H_{13} \bigcirc	CDDE14/MaND2
	6BBE1*(Me)B2
CH ₃	<u> </u>
C ₆ H ₁₃ -(O)-(O)-COO-+CH-(O)	6BBE1*(t-Bu)B
an chair	/
CH₃ CH₃ CH₃	
C ₂ H ₅ -*CH·CH ₂ O-(O)-CN	
	21*(Me)1OBBC
CH ₃	
C_2H_5 —•CH-CH ₂ — $\langle \bigcirc \rangle$ — $\langle \bigcirc \rangle$ -CN	21*(Me)1BBC
СН3	,
C ₆ H ₁₃ -(O)-COO-(O)-COO-*CH-C ₆ H ₁₃	CDEDE12/May
	6BEBE1*(Me)6
CH ₃	
CH _{3,ℓ,} CH ₃	
CH ₃ CH ₃	
CH ₃ H	CN
H H	
C ₈ H ₁₇ -COO	

【0033】尚、透明点 (ネマティックーアイソトロピ 40*℃におけるらせんピッチ長をP25 [μm]、式のに基づ ック転移点) をTnI [℃]、スメクティックーネマティ ック転移点 (またはネマチック相の下限) をTsn [℃] (Tsnは、0℃、-10℃、-20℃、-30℃の各々 のフリーザー中に30日間放置した後の液晶相で判断し た)、20℃における粘度をn20 [mPa·s]、25*

【数1】 1 0 0 $2 (P_{20} - P_{50})$ 20 - 50P 20 + P 80

きP25と光学活性化合物の添加量から導かれるらせんね じり力をH. T. P. [μm⁻¹·wt%⁻¹]で示し、ら せんピッチ長の温度依存性&Pを示すパラメーターとし て、式②を定義する。

ここで、P20およびP50は各々20℃、50℃における※50※らせんピッチ長 [µm] を示し、δ Pの値は0に近い程

35				36			
好ましい。				2-BTB-1	7.	0%	
【0034】比較例1				2-BTB-3	4.	0%	
次に示す組成の液晶組成物を調製した。				2-H2BTB-2	4.	0%	
3-HB-C	24.	0%		2-H2BTB-3	4.	0%	
5-HB-C	36.	0%		2-H2BTB-4		0%	
7-HB-C		0%		3-H2BTB-2		0%	
5-HBB-C		0%				0%	
80BBE1* (Et) B						0%	
この液晶組成物の諸物性値は次の通りであっ				3-HB (F) TB-2		0%	
$T_{NI} = 70.5 [C]$			10	2-PyB-2		3%	
T _{SN} ≤-20 [°C]				3-PyB-2		4%	
$\eta_{20} = 36.4 [\text{mPa} \cdot \text{s}]$				4-PyB-2		3%	
$P_{25}=3.9 [\mu m]$				2-PyBH-3		0%	
H. T. P. = 0. 256 [μ m ⁻¹ ·wt?	6-1]			80BBE1* (Me) B		0部	
$\delta P = 0.09$	0 ,			この液晶組成物の諸物性値は次の通りであった		Оцр	
【0035】比較例2				Tni = 78. 9 [°C]	-•		
次に示す組成の液晶組成物を調製した。				$Tsn \leq -30 \ [\mathfrak{C}]$			
3-HB-C	24	0%					
5-HB-C	36.						
7-HB-C				H. T. P. = 0. 200 [μ m ⁻¹ ·wt%	1 7		
	15.		20	$\delta P = 0.21$.]		
	20.			上記の液晶組成物は、比較例に較べて、TNIな	くしき	3-1-2	
この液晶組成物の諸物性値は次の通りであっ		O pp		一方、TSNが低下してネマティック液晶範囲が			
Thi = 63. 1 [$^{\circ}$]	,,c.			大された。また、粘度も著しく低下し、比較的			
$T_{SN} \leq 0 \ [C]$				較べて る Pも優れている。	9	⊅ •∟	
$\eta_{20} = 40. \ 2 \left[\text{mPa} \cdot \text{s} \right]$				【0038】実施例2			
$P_{25}=3.6 [\mu m]$				次に示す組成の液晶組成物を調製した。			
H. T. P. =0. 014 [μ m ⁻¹ ·wt9	∠-1]				2	0%	
$\delta P = 0.92$	0]					0%	
【0036】比較例3			30	3-HB-C		0%	
次に示す組成の液晶組成物を調製した。	•		<i>5</i> 0	2-ННВ-С		0%	
3-HB-C	24	0%		3-HHB-C		0%	
5-HB-C		0%		4-HHB-C		0%	
7-HB-C		0%		5-HHB-C		0%	
5-HBB-C							
6OBEBE1* (Me) 6						0%	
この液晶組成物の諸物性値は次の通りであっ		Հ որ		3-H2BTB-2		0%	
$T_{NI} = 69.8 [\%]$	<i>,,</i> ,,			3-H2BTB-2 3-H2BTB-3		0%	
$T_{SN} \leq -10 \ [C]$						0%	
$\eta_{20} = 42.5 [\text{mPa} \cdot \text{s}]$			40	3-H2BTB-4		0%	
$P_{25}=3.9 [\mu m]$			40	3-HB (F) TB-2		0%	
H. T. P. = 0. 117 [μ m ⁻¹ ·wt9	/-17			6BBE1*(t-Bu)B		つ部	
$\delta P = 0.31$	6 · J			この液晶組成物の諸物性値は次の通りであった	ć.		
				$T_{NI} = 108.8 [\%]$			
【0037】実施例1				$Tsn \leq -30 \ [\mathfrak{C}]$			
次に示す組成の液晶組成物を調製した。	1.2	0.04		$\eta_{20} = 30.9 \text{ [mPa·s]}$			
V2-HB-C		0%					
1 V 2 - H B - C		0%			٠)		
3-HB-C				δP=0.18		•	
101-нн-3		0%		上記の液晶組成物は、比較例に較べて、TNIは			
3-HH-4	13.	υ%	50	一方、TSNが低下してネマティック液晶範囲な	遊尾	が拡	

37			38			
大された。また、粘度も著しく低下し、	比較例2、3に		$\eta_{20} = 23.2 [mPa \cdot s]$			
較べてδPも優れている。			$P_{25}=3.7 [\mu m]$			
【0039】実施例3			H. T. P. = 0. 338 [$\mu m^{-1} \cdot w$	t%-1]		
次に示す組成の液晶組成物を調製した。			$\delta P = 0.15$			
V2-HB-C	11.0%		【0041】実施例5			
1 V 2 - HB - C	11.0%		次に示す組成の液晶組成物を調製した。			
3-HB-C	16.0%		301-BEB (F) -C	12.	0%	
5-HB-C	6.0%		1 V 2 - H B - C	7.	0%	
101-HB-C	4.0%		2-BTB-01	8.	0%	
2-HHB-C	4.0%	10	3-BTB-01	8.	0%	
3-ННВ-С	5.0%		4-BTB-01	8.	0%	
4-HHB-C	3.0%		4-BTB-O2	8.	0%	
3-HH-2V1	10.0%		5-BTB-O1	9.	0%	
101-HH-5	9.0%		2-H2BTB-2	4.	0%	
2-BTB-01	11.0%		2-H2BTB-3	3.	0%	
3-HB (F) VB-2	2.0%		2-H2BTB-4	3.	0%	
3-HB(F)TB-2	4.0%		3-H2BTB-2	4.	0%	
3-HB (F) TB-3	4.0%		3-H2BTB-3	4.	0%	
6BBE1* (Me) B2	1.5部		3-H2BTB-4	4.	0%	
この液晶組成物の諸物性値は次の通りで	であった。	20	3-HB (F) TB-2	6.	0%	
$T_{NI} = 78.7 \ [\%]$	•		3-HB (F) TB-3	6.	0%	
Tsn≤-30 [°C]			3-HB (F) TB-4	6.	0%	
$\eta_{20} = 29.8 [mPa \cdot s]$			この液晶組成物の諸物性値は次の通りで	あった。		
$P_{25} = 2.9 [\mu m]$			T _{NI} =88.7[℃]	-		
H. T. P. = 0. 230 [$\mu m^{-1} \cdot v$	vt%-1]		Tsn≤-30 [°C]			
$\delta P = 0.17$			$\eta_{20} = 40.8 [mPa \cdot s]$			
上記の液晶組成物は、比較例に較べて、			$P_{25}=3.3 [\mu m]$			
一方、TSNが低下してネマティック液晶	晶範囲が顕著に拡		H. T. P. = 0. 202 [μ m ⁻¹ ·w	t%-1]		
大された。また、粘度も著しく低下し、	比較例2、3に		$\delta P = -0.08$			
較べてδPも優れている。		30	【0042】実施例6			
【0040】実施例4			次に示す組成の液晶組成物を調製した。			
次に示す組成の液晶組成物を調製した。			3-PyB (F) -F	12.	0%	
V2-HB-C	13.0%		5-PyB (F) -F	7.	0%	
1 V 2 - HB - C	13.0%		3-PyBB-F	10.	0%	
3-HB-C			4-PyBB-F	10.	0%	
2-HB-C			5-PyBB-F	10.	0%	
3-HH-4			2-PyB-2	2.	6%	
2-BTB-1	10.0%		3-PyB-2	2.	7%	
2-BTB-3			4-PyB-2		7%	
2-H2BTB-2			3-HB-O2	15.	0%	
2-H2BTB-3	4.0%		3-HHB-1	8.	0%	
3-H2BTB-2	4.0%		3-HHB-O1	5.	0%	
3-H2BTB-3	4.0%		3-HHB-3	11.	0%	
3-H2BTB-4	4.0%		3-HHB-F		0%	
3-HHB-1	7.0%		80BBE1*(Et)B		0部	
3-HHB-O1	5.0%		この液晶組成物の諸物性値は次の通りで	あった。		
6BBE1*(t-Bu)B	0.8部		$T_{NI} = 84.9 [\%]$			
この液晶組成物の諸物性値は次の通りで	であった。		$T_{SN} \leq -30 \ [C]$			
$T_{NI} = 73. 7 [\%]$			$\eta_{20} = 41.9 [mPa \cdot s]$			
Tsn≤-30 [°C]		50	$P_{25}=3.9 [\mu m]$			

	,	4 1		行册于9-217062	
39				0	
H. T. P. = 0. 256 [$\mu m^{-1} \cdot w t$: %-1]		Tsn ≤-30 [C]		
$\delta P = 0.09$			$\eta_{20}=28.3$ [mPa·s	s]	
上記の液晶組成物は、比較例1と同じ光学			$P_{25}=3.8 [\mu m]$		
添加しているが、TNIが上昇する一方、T	SNが低下して		$\delta P = 0.14$		
ネマティック液晶範囲が顕著に拡大された	こ。また、TNI		【0045】実施例9		
が高い割には粘度も低く、δPも優れてい	いる。		次に示す組成の液晶組成物を	を調製した。	
【0043】実施例7			3-HB-C	16.0%	
次に示す組成の液晶組成物を調製した。			101-HB-C	10.0%	
3-PyB(F)-F	12.0%		3-HB(F)-C	5.0%	
5-PyB(F)-F	7.0%	10	3-PyBB-F	5.0%	
3-PyBB-F	10.0%		2 - BTB - 1	3.0%	
4-PyBB-F	10.0%		3-HH-4	5.0%	
5-PyBB-F	10.0%		3-HHB-1	8. 0%	
2 - PyB - 2	2.6%		3-HHB-01	2.0%	
3-PyB-2	2. 7%		3-HB (F) TB-2	3. 0%	
4 - PyB - 2	2. 7%		3-HB (F) TB-3	3.0%	
3-HB-02	15.0%		2-HHB (F)-F	12.0%	
3-HHB-1	8. 0%		3-HHB (F) -F	12.0%	
3-HHB-O1	5. 0%		5-HHB (F) -F	12.0%	
3-ННВ-3		20	3-HHB-F	4.0%	
3-HHB-F	4.0%		6BBE1* (Me) B2		
6BBE1* (Me) B2	1. 0部		この液晶組成物の諸物性値		
この液晶組成物の諸物性値は次の通りであ			TNI=89.3[°C]		
T _{NI} =84.5[℃]			Tsn≤-30 [°C]		
Tsn≤-30 [°C]			$\eta_{20} = 27.8 \text{ [mPa} \cdot \text{s}$	s l	
$\eta_{20} = 34.6 [\text{mPa} \cdot \text{s}]$			$P_{25}=1.5 [\mu m]$	~ _	
$P_{25} = 2.5 [\mu m]$			H. T. P. = 0. 222	[u m - 1 · w t % - 1]	
H. T. P. = 0. 200 [μ m ⁻¹ ·wt	:%-1]		$\delta P = 0.21$., 0,0]	
$\delta P = 0.19$,,,		【0046】実施例10		
【0044】実施例8		30	次に示す組成の液晶組成物	を調製した。	
次に示す組成の液晶組成物を調製した。		,,,	3-HB-C	10.0%	
2-HHB (F) -C	6.0%		5-HB-C	20.0%	
3-HHB (F) -C	6.0%		3-HHB-O1	5. 0%	
2-HB-C	8.0%		3-HHB-1	10.0%	
3-HB-C	8. 0%		3-HHB-3	16.0%	
2-P y B-F	14.0%		101HBBH-3	2.0%	
3-HHB-1	8.0%		5-HEB-F	13.0%	
3-HHB-3	5.5%		7-HEB-F	13. 0%	
2-PyBH-3	5.0%		3-HHEB-F	3. 0%	
3-PyBH-3	5. 0%	40	5-HHEB-F	3. 0%	
4-PyBH-3	5. 0%	40	3-HHB-F	5. 0%	
2-PyB-2	2.5%		80BBE1* (Me) B		
3-PyB-2	2.5%				
4-PyB-2			この液晶組成物の諸物性値	3人の通りであった。	
2-HHB (F) -F	2.5%		$T_{NI} = 84. \ 1 \ [\%]$ $T_{CN} \leq -3.0 \ [\%]$		
2-ннв (г) -г 3-ннв (г) -г	11.0%		$T_{SN} \leq -30 \ [\%]$. 1	
	11.0%		$\eta_{20} = 29.7 \text{ [mPa} \cdot \text{s}$	S]	
80BBE1*(Et)B	1.5部		$P_{25}=2.0 [\mu m]$	[
CN この注目相合性の音響性ははいけの深りです	0.5部		H. T. P. = 0. 200	[μm ··Wτ%-1]	
この液晶組成物の諸物性値は次の通りでは)った。		$\delta P = -0.12$		
T _{NI} =83. 3 [℃]		50	【0047】実施例11		
181-03. 3 [C]		20	【UU4/】 关肥例 1.1		

```
41
                                                    42
次に示す組成の液晶組成物を調製した。
                                     V2-HB-C
                                                                 9.0%
2-BB-C
                          12.0%
                                     3-HB-O2
                                                                 7.0%
4-BB-C
                           8.0%
                                     3-HH-4
                                                                 9.0%
5-BB-C
                           4.0%
                                     3-HHB-1
                                                                 8.0%
2-HHB-C
                           4.0%
                                     3-HHB-01
                                                                 5.0%
3-HHB-C
                           8.0%
                                     3-HHB-3
                                                                 6.0%
2-HB-C
                          10.0%
                                     3-H2BTB-2
                                                                 4.0%
5-PyB-F
                           8.0%
                                     3-H2BTB-3
                                                                 4.0%
101-HH-3
                           8.0%
                                     3-H2BTB-4
                                                                 4.0%
101-HH-5
                           8.0% 10 2-H2BTB-2
                                                                 2.0%
                           8.0%
3-HHB-1
                                     3-HHEB-F
                                                                 5.0%
3-HHB-3
                          10.0%
                                     5-HHEB-F
                                                                 5.0%
3-HHB-01
                           4.0%
                                     3-HHB-F
                                                                 4.0%
3-HHB-F
                           4.0%
                                     5HBE1* (Et) B
                                                                 0.8部
3-HBEB-F
                           4.0%
                                     この液晶組成物の諸物性値は次の通りであった。
5HBE1* (Et) B
                            1. 0部
                                     T_{NI} = 89.7 [\%]
この液晶組成物の諸物性値は次の通りであった。
                                     T_{SN} \leq -30  [°C]
T_{NI} = 80.5 [\%]
                                     \eta_{20} = 33.8 [mPa \cdot s]
Tsn≤-30 [°C]
                                     P_{25}=3.6 [\mu m]
\eta_{20} = 28.8 [mPa \cdot s]
                                  20 H. T. P. = 0. 347 [\mu m^{-1} \cdot wt\%^{-1}]
P_{25}=3.0 [\mu m]
                                     \delta P = 0.19
H. T. P. = 0. 333 [\mu m^{-1} \cdot wt\%^{-1}]
                                     【0050】実施例14
\delta P = 0.25
                                     次に示す組成の液晶組成物を調製した。
【0048】実施例12
                                     3-HB(F)EB(F)-C
                                                                 7.0%
次に示す組成の液晶組成物を調製した。
                                     3-HB(F)-C
                                                                 3.0%
3-HB-C
                          22.0%
                                     2-HHB(F)-C
                                                                 5.0%
2-HB-C
                          10.0%
                                     3-HB-02
                                                                10.0%
3-HHB-1
                           6.0%
                                     3-HH-4
                                                                10.0%
3-HHB-01
                           4.0%
                                     3-HHB-1
                                                                 5.0%
3-HHB-3
                          12. 0% 30 3-HHB-O1
                                                                 5.0%
2-HBB(F)-F
                           -6.0%
                                     3-HHB-3
                                                                 5.0%
3-HBB(F)-F
                           6.0%
                                     5-HB-CL
                                                                 4.0%
                                     7-HB-CL
5-HBB(F)-F
                          12.0%
                                                                 3.0%
3-HHEB(F, F)-F
                          10.0%
                                     2-HHB(F)-F
                                                                 5.0%
4-HHEB(F, F)-F
                            3.0%
                                     3-HHB(F)-F
                                                                 5.0%
5-HH2B(F, F)-F
                            3.0%
                                     5-HHB(F)-F
                                                                 5.0%
3-HHB(F, F)-F
                            6.0%
                                     3-HH2B(F, F)-F
                                                                10.0%
                            2. 0部
6BBE1*(t-Bu)B
                                     5-HH2B(F, F)-F
                                                                 5.0%
この液晶組成物の諸物性値は次の通りであった。
                                     3-HHB(F, F)-F
                                                                10.0%
T_{NI} = 85.5 [\%]
                                  40 3-HHB-CL
                                                                 3.0%
Tsn≤-30 [°C]
                                     80BBE1* (Et) B
                                                                 2.0部
\eta_{20} = 28.9 [mPa \cdot s]
                                     この液晶組成物の諸物性値は次の通りであった。
P_{25}=1.5[\mu m]
                                     T_{\text{NI}} = 83.1 \, [\%]
H. T. P. = 0. 333 [\mu m^{-1} \cdot wt\%^{-1}]
                                     Tsn ≤ - 30 [°C]
\delta P = 0.16
                                     \eta_{20} = 21.3 [mPa \cdot s]
【0049】実施例13
                                     P_{25} = 1.9 [\mu m]
次に示す組成の液晶組成物を調製した。
                                     H. T. P. = 0. 263 [\mu m^{-1} \cdot wt\%^{-1}]
201-BEB(F)-C
                            4.0%
                                     \delta P = 0.14
                          15.0%
301-BEB (F)-C
                                     【0051】実施例15
1V2-BEB(F, F)-C
                            9.0% 50 次に示す組成の液晶組成物を調製した。
```

43

2-HB-C8.0% *3-HB-C 7.0% 3-HB-C 14.0% 101-HB-C 7.0% 201-HB-C 3-PyB(F)-F12.0% 7.0% 5-PyB(F)-F8.0% 2-HHB-C6.0% 2-HHB-C4.0% 3-HHB-C6.0% 5.0% 11.0% 3-HHB-C10-BEB-2 3-PyBH-23.0% 3-HEB-04 8.3% 2-PyBH-36.0% 6.3% 4-HEB-02 3-PyBH-36.0% 5-HEB-01 6.3% 4-PyBH-36.0% 10 3-HEB-O2 4.9% 3.0% 3.9% 4-PyBB-25-HEB-02 5.0% 3-HB(F)TB-24-HEB-04 8.3% 4.0% 3-HB(F)TB-38.0% 3-HHB-13-HHB-16.0% 3-HHB-01 4.0% 3-HHB-O14.0% 3-HHB-36.0% 3-HHB-3 6.0% 6BBE1* (Me) B2 1.8部 5HBE1* (Et) B 2. 0部 この液晶組成物の諸物性値は次の通りであった。

この液晶組成物の諸物性値は次の通りであった。

 $T_{NI} = 97.8 [\%]$

 $T_{SN} \leq -30 [C]$

 $\eta_{20} = 37.7 [mPa \cdot s]$

 $P_{25}=1.5[\mu m]$

H. T. P. = 0. 333 [$\mu m^{-1} \cdot wt\%^{-1}$]

 $\delta P = 0.30$

【0052】実施例16

次に示す組成の液晶組成物を調製した。

V2-HB-C1 V 2 - H B - C 3-HB-C 5-HB-C101-HB-C 2-HHB-C3-HHB-C4-HHB-C3-HH-2V1 101-HH-5 2-BTB-01 3-HB(F)VB-23-HB (F) TB-2 3-HB(F)TB-380BBE1* (Et) B 21* (Me) 10BBC -

この液晶組成物の諸物性値は次の通りであった。

TNI=78.5 [℃]

 $T_{SN} \leq -30 [\%]$

 $\eta_{20} = 26.8 [mPa \cdot s]$

 $P_{25} = 2.2 [\mu m]$

 $\delta P = 0.19$

以上の比較例および実施例の透明点と粘度の関係を「図

1」のグラフで表した。比較例1~3に較べて実施例1※50 し、またピッチの温度依存性の小さいカイラルーネマチ

Tn1=82.6 [℃]

Tsn≦-30 [℃]

20 $\eta_{20} = 36.2 [mPa \cdot s]$

 $P_{25}=2.5 [\mu m]$

H. T. P. = 0. 222 [$\mu m^{-1} \cdot wt\%^{-1}$]

 $\delta P = 0.23$

【0053】実施例17

次に示す組成の液晶組成物を調製した。

11.0%

11.0%

16.0%

6.0%

4.0%

4.0%

5.0%

3. 0%

10.0%

9.0%

11.0%

2.0%

4.0%

4.0%

0.05部

0.50部

※~17の液晶組成物が透明点が高い割には粘度が低いことが、顕著に表れている。

[0054]

【発明の効果】実施例に示したように、双安定スイッチング液晶表示素子に求められる種々の特性を満たしながら、高速応答性に対応するために低粘度であり、さらに低温相溶性に優れ、電圧駆動可能な温度範囲を大きく

ック液晶組成物を提供することができる。 【図面の簡単な説明】 46 【図1】本発明の実施例および比較例の液晶組成物の透 明点と粘度の関係を示すグラフ。

【図1】

図1 透明点と粘度の関係

