Chapter 2 Corps des nombres réels

2.1 Structures

Exercice 2.1

Relier chacune des assertions suivantes à la propriété utilisée.

- 1. $6 \cdot \frac{1}{6} = 1$.
- **2.** $7(4 \cdot 9) = (7 \cdot 4)9$.
- 3. 2(3+k) = (6+2k).
- **4.** $3 \cdot 7 = 7 \cdot 3$.
- 5. 5 + (-5) = 0.
- **6.** $18 \cdot 1 = 18$.
- 7. (3+7)+19=3+(7+19).
- **8.** 23 + 6 = 6 + 23.
- **9.** 3 + 0 = 3.
- L'addition est commutative.
- Existence d'un inverse pour la multiplication.
- La multiplication est commutative.
- L'addition est associative.
- Élément neutre de la multiplication.
- La multiplication est associative.
- Existence d'un opposé pour l'addition.
- Élément neutre de l'addition.
- La multiplication est distributive par rapport à l'addition.

Exercice 2.2

Quelles propriétés permettent de justifier les assertions suivantes.

- 1. 6(-8) = (-8)6.
- **2.** 5 + 0 = 5.
- 3. (2+3)+4=2+(3+4).
- **4.** $\frac{1}{7} \cdot 7 = 1$.
- **5.** $8(7(-3)) = (8 \cdot 7)(-3)$.

2.2 Relation d'ordre sur \mathbb{R}

Exercice 2.3

Quel est le nombre x vérifiant simultanément

$$-1 \le x \le 3$$
 et $-4 \le x \le -1$ et $-3 \le x \le 5$?

Exercice 2.4

Encadrer x + y, x - y, xy, $\frac{x}{y}$, sachant que $x \in [3, 6]$ et $y \in [-4, -2]$.

Comparer $\frac{a+n}{b+n}$ et $\frac{a}{b}$, où a, b, n sont des entiers naturels non nuls.

Exercice 2.6

Résoudre dans \mathbb{R} l'inéquation |x-1| < |x-2|. Donner une interprétation géométrique.

Exercice 2.7

Résoudre l'inéquation

$$3|x-2|-2|x-1| \ge |x-4| - \frac{1}{4}(2x-11).$$
 (E)

Exercice 2.8

Résoudre les équations

1.
$$|x + 1| = 3$$
;

2.
$$|x + 5| = |x + 7|$$
;

3.
$$|x+3| = x-1$$
;

4.
$$|x| = x - 1$$
;

5.
$$x + 4 = 3|x|$$
;

6.
$$|x^2 + x - 6| = |-x^2 - 3x + 10|$$
;
7. $|1 - x| = x - 1$.

7.
$$|1 - x| = x - 1$$

Exercice 2.9

Trouver *n*, entier naturel, pour que $\frac{n}{13} < \frac{110}{17} < \frac{n+1}{13}$.

Y a-t-il d'autres rationnels de la forme $\frac{110}{n}$ compris entre les rationnels trouvés.

Exercice 2.10

Déterminer une fraction de dénominateur 113 qui a même valeur décimale approchée par défaut à l'ordre 6 que π .

On rappelle que $\pi = 3.1415926535897932384626433832795028841971...$

Exercice 2.11

1. Soit x et y deux réels. Montrer que

$$|x| + |y| \le |x + y| \le |x| + |y| + 1.$$

- **2.** Trouver deux réels x et y tels que |x| + |y| = |x + y|.
- 3. Trouver deux réels x et y tels que |x + y| = |x| + |y| + 1.

Exercice 2.12

Soit $k \in]0, +\infty[$, résoudre dans \mathbb{R} l'équation

$$\left\lfloor \frac{x}{1 - kx} \right\rfloor = 2. \tag{2.1}$$

Exercice 2.13

Soit $x \in \mathbb{R}$, montrer que

$$\left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor = \lfloor x \rfloor.$$

Exercice 2.14

Soit $x \in \mathbb{R}$, montrer que

$$\left\lfloor \frac{1}{2} \lfloor 2x \rfloor \right\rfloor = \lfloor x \rfloor.$$

Exercice 2.15

Il paraît peu vraisemblable que N, sous-ensemble de R, soit majoré. Et pourtant, voici une démonstration forcement fausse, de ce que N est majoré.

Quel que soit $n \in \mathbb{N}$, l'entier naturel n+1 majore n; puisque chaque élément de \mathbb{N} est majoré, nous pouvons conclure que N est majoré.

D'où vient cet apparent paradoxe ?

Exercice 2.16

Les parties suivantes de R sont-elles majorées, minorées? Ont-elles un plus grand élément, un plus petit élément?

3.
$$[3, +\infty[$$
.

7.
$$\{x \in \mathbb{R}, x^2 \le 2\}$$
.
8. $[0, \pi] \cap \mathbb{Q}$.

8.
$$[0,\pi] \cap \mathbb{Q}$$
.

9.
$$]0,\pi[\cap \mathbb{Q}]$$

2.3 Petits systèmes

Exercice 2.17

Résoudre les systèmes suivants.

1.
$$\begin{cases} 2x + y = 9 \\ x - y = 3 \end{cases}$$

$$2. \begin{cases} x - 2y = 3 \\ 3x - 6y = 9 \end{cases}$$

$$3. \begin{cases} 4x + 7y = 52 \\ 28x + 49y = 0 \end{cases}$$

3.
$$\begin{cases} 4x + 7y = 52 \\ 28x + 49y = 0 \end{cases}$$
4.
$$\begin{cases} x + 3y = 11 \\ 5y = 68 + 3(x - 1) \end{cases}$$

Exercice 2.18

Déterminer pour quelle(s) valeur(s) du paramètre réel m les systèmes suivants sont impossibles ou indéterminés.

$$1. \begin{cases} mx + y = 5 \\ x - y = 3 \end{cases}.$$

2.
$$\begin{cases} 2x + (m-5)y = 5\\ 4x - 3my = 5m \end{cases}$$

3.
$$\begin{cases} (m-1)x - 3y = 1\\ mx + y = 0 \end{cases}$$

4.
$$\begin{cases} mx - y = 1 \\ 10x - 2y = m - 3 \end{cases}$$

Exercice 2.19

Résoudre et discuter les systèmes suivants, d'inconnues x et y, en fonction du paramètre réel m.

$$1. \begin{cases} mx - y = m \\ x + y = 5 \end{cases}.$$

$$2. \begin{cases} mx + my = m \\ mx + m^2y = m \end{cases}$$

2.4 Puissances, racines

Exercice 2.20

Écrire chacun des produits suivants en utilisant des puissances.

1.
$$\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$$
.

3.
$$a \cdot a \cdot a \cdot b \cdot b$$
.

4.
$$7 \cdot x \cdot x \cdot y \cdot y$$
.

5.
$$5c \cdot 5c \cdot 5c \cdot 5c \cdot 5c$$
.

$$\mathbf{6.} \ \ 3 \cdot w \cdot z \cdot z \cdot z \cdot z \cdot z \cdot z$$

7.
$$8 \cdot y \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$$

6.
$$3 \cdot w \cdot z \cdot z \cdot z \cdot z \cdot z$$
.
7. $8 \cdot y \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$.
8. $\frac{2}{3}t \cdot \frac{2}{3}t \cdot \frac{2}{3}t$.

Exercice 2.21

Développer chaque expression afin de supprimer les puissances.

1.
$$x^3$$
.

2.
$$v^4$$
.

3.
$$(2b)^3$$
.

4.
$$(8c)^2$$
.

5.
$$10y^5$$

6.
$$x^2v^3$$

8.
$$3a^3b$$

Exercice 2.22

Simplifier les expressions suivantes.

1.
$$5^2$$
.

3.
$$\left(\frac{1}{7}\right)^2$$
.

4.
$$\left(\frac{1}{2}\right)^5$$
.

5.
$$(0.25)^3$$
.

6.
$$(0.8)^2$$
.

Exercice 2.23

Simplifier les racines carrées suivantes.

1.
$$\sqrt{81}$$
.

2.
$$\sqrt{64}$$
.

3.
$$\sqrt{4}$$
.

4.
$$\sqrt{9}$$
.

5.
$$\sqrt{100}$$
.

6.
$$\sqrt{49}$$
.

7.
$$\sqrt{16}$$

8.
$$\sqrt{36}$$

9.
$$\sqrt{\frac{1}{9}}$$

10.
$$\sqrt{\frac{1}{64}}$$

11.
$$\sqrt{\frac{25}{81}}$$

12. $\sqrt{\frac{49}{100}}$.

Exercice 2.24

Déterminer m paramètre réel pour que l'équation suivante ait deux racines inférieures ou égales à 1 :

$$(2m-1)x^2 + 2(m+1)x + m + 3 = 0.$$

Exercice 2.25

Effectuer les calculs indiqués.

- 1. $(-7)^2$.
- **2.** $(9)^2$.
- 3. $(-10)^3$.
- **4.** $(+8)^3$.
- 5. $(-11)^2$.
- **6.** $\left(-\frac{1}{2}\right)^2$.
- 7. $\left(\frac{1}{4}\right)^2$.
- 8. $\left(-\frac{2}{3}\right)^3$.
- **9.** $\left(-\frac{10}{3}\right)^3$.
- **10.** $\left(-\frac{1}{10}\right)^2$.

- **11.** $\left(\frac{2}{3}\right) \left(\frac{3}{4}\right)^2$.
- 12. $\left(\frac{2}{-3}\right)^2 \times \left(\frac{3}{-4}\right)^2$.
- **13.** $(-1)^3 \times \left(-\frac{7}{8}\right)^3 \times \left(-\frac{2}{7}\right)^2 \times (-7) \times \left(-\frac{1}{14}\right)$.
- **14.** $(-3)^4 \times (-3)^5$.
- 15. $\frac{(-3)^4}{(-3)^6}$.
- **16.** $((-3)^{-2})^{-1}$. **17.** $(-2)^{-1} \times (-3)^{-1} \times (-1)^{-1}$.
- **18.** $\left(\frac{1}{3}\right)^{-2} \times \left(\frac{1}{-2}\right)^{-1}$.
- 19. $77^{-1} \times 7^4 \times 11^2 \times (7 \times 11)^4 \times (7^2)^{-8} \times (7^{-8})^{-3} \times \frac{1}{(-11)^{-3}}$

Exercice 2.26

Simplifier les expressions suivantes, où $n \in \mathbb{N}^*$.

- 1. $3^{n+2} 3^{n+1} 7 \times 3^n + 5 \times 3^{n-1}$.
- 2. $\frac{6^3 \times 2^{-5}}{4^2 \times 12^{-4}}$.
- 3. $9^{n+1} + 6^n (3^n + 1)^2$

- 4. $\frac{32 \times 8^{n-1}}{2^{2n+2}-4^n}$
- $5. \ \frac{5^n \times 12^2}{10^n \times 6^4}.$
- 6. $\frac{4^{n+1}-(-2)^{2n}}{2^n}$

Exercice 2.27

Trouver x, entier relatif, satisfaisant aux égalités suivantes:

- 1. $(4^x)^x = (4^8)^2$.
- **2.** $100 \times 10^x = (1000)^{-5x} \times 100^{25}$.
- 3. $2^x + 4^x = 20$.

- **4.** $3^{x+2} + 9^{x+1} = 810$. **5.** $(4^{(2+x)})^{3-x} = 1$. **6.** $(10^{x-1})^{x-4} = 100^2$.

Exercice 2.28

On a 0 < a < 1 < b. Ranger par ordre de grandeur croissante les nombres

0; 1;
$$\sqrt{a}$$
; a ; a^2 ; a^3 ; \sqrt{b} ; b ; b^2 ; b^3 .

Exercice 2.29

Simplifier les expression suivantes.

1.
$$\sqrt{6} \times \sqrt{8} \times \sqrt{10} \times \sqrt{12}$$
.

2.
$$\sqrt{\frac{7}{5}} - \sqrt{\frac{125}{49}} + \sqrt{\frac{25}{7}}$$
.

3.
$$\sqrt{4(1-x)^2}$$
.

4.
$$\sqrt{9(1-\sqrt{3})^2}$$
.

5.
$$\sqrt{32(x+4)^2}$$

6.
$$\sqrt{3(4-2\sqrt{3})}$$
.

7.
$$\sqrt{1-2\sqrt{x}+x}$$

Exercice 2.30

Après avoir simplifié chaque radical, calculer les sommes.

1.
$$\sqrt{75} - \sqrt{12} + \sqrt{27}$$
.

2.
$$\sqrt{24} + \sqrt{54} - \sqrt{150}$$

3.
$$2\sqrt{50} - \sqrt{98} - \sqrt{18}$$
.
4. $2\sqrt{8} + 3\sqrt{32} + 2\sqrt{98}$

4.
$$2\sqrt{8} + 3\sqrt{32} + 2\sqrt{98}$$

Exercice 2.31

Soient $x \ge 0$ et $y \ge 0$. Montrer

$$\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$$
.

Exercice 2.32

Montrer que pour tous x > 0 et y > 0,

$$\frac{x}{y} + \frac{y}{x} \ge 2.$$

Exercice 2.33

Résoudre les équations suivantes, d'inconnue réelle x.

1.
$$x^2 - 2x - 3 = 0$$
;

2.
$$2x^2 + 8x + 8 = 0$$
;

3.
$$(x-1)^2 = \frac{1}{4}$$
;

4.
$$x^2 + x + 1 = 0$$
;

5.
$$(x+1)^2 = (2x-1)^2$$

Exercice 2.34 Équation bicarrée

Résoudre les équations suivantes.

1.
$$2x^4 - 3x^2 + 1 = 0$$
.

2.
$$x^4 + 2x^2 - 3 = 0$$
.

3.
$$3x^4 + 5x^2 + 2 = 0$$
.

4.
$$3x^4 - x^2 + 5 = 0$$
.

Exercice 2.35

Résoudre dans $\mathbb R$ les équations et inéquations suivantes

1.
$$3x^2 - 12x + 9 < 0$$
.

2.
$$x^2 - 7x + 6 \le 0$$
.

3.
$$\left(x - \frac{3}{2}\right)(6 - 4x) \ge 0$$
.

4.
$$(x-3)(5-2x) > 0$$
.

5.
$$(x^2 - 3x - 9)(x^2 - 1) > 0$$
.

6.
$$(x^2 + x + 1)(x^2 - x + 1) \le 0$$
.

7.
$$\frac{x^2 - 7x + 12}{x^2 - 3x + 2} \ge 0.$$

8.
$$\frac{2x^2 - x - 1}{x^2 - 3x + 2} > 1.$$

9.
$$\frac{(x-1)(2x^2+x+1)}{x^2+x-6} \le 0.$$

Exercice 2.36

Pour quels réels x le trinome $x^2 - 8x + 15$ est-il compris entre 0 et 3 ?

Exercice 2.37

Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$x^2 - |x| - 2 = 0.$$

Exercice 2.38

Déterminer pour quelle(s) valeur(s) du paramètre réel m le trinôme

$$mx^2 + (m-1)x + m - 1$$

est négatif quel que soit $x \in \mathbb{R}$.

Exercice 2.39

Résoudre les équations suivantes d'inconnue x:

1.
$$|4 - x| = x$$
.

2.
$$|x^2 + x - 3| = |x|$$
.

3.
$$|x+2| + |3x-1| = 4$$
.

4.
$$\sqrt{1-2x} = |x-7|$$
.

5.
$$x|x| = 3x + 2$$

6.
$$x + 5 = \sqrt{x + 11}$$
.

7.
$$x = 1 + \sqrt{x^2 - 2}$$

6.
$$x + 5 = \sqrt{x + 11}$$
.
7. $x = 1 + \sqrt{x^2 - 2}$.
8. $x + |x| = \frac{2}{x}$.

Exercice 2.40

Résoudre dans \mathbb{R} l'équation $\left| \sqrt{x^2 + 1} \right| = 2$.

Exercice 2.41

Dans cet exercice, on n'utilisera pas la calculatrice et on supposera qu'on ne connaît de $\sqrt{2}$ que sa définition, i.e. que $\sqrt{2}$ est l'unique réel strictement positif dont le carré est égal à 2.

1. Montre que 1 est une valeur approchée de $\sqrt{2}$ par défaut à la précision 1/2.

2. Soit
$$(p,q) \in (\mathbb{N}^*)^2$$
 et $\epsilon > 0$. On pose $r_1 = \frac{p}{q}$ et $r_2 = \frac{p+2q}{p+q}$.

- (a) Exprimer $r_2 \sqrt{2}$ en fonction de $r_1 \sqrt{2}$.
- (b) On suppose que r_1 est une valeur approchée de $\sqrt{2}$ par excès à la précision ϵ . Montrer que r_2 est une valeur approchée de $\sqrt{2}$ par défaut à la précision $\epsilon/5$.
- (c) On suppose que r_1 est une valeur approchée de $\sqrt{2}$ par défaut à la précision ϵ . Montrer que r_2 est une valeur approchée de $\sqrt{2}$ par excès à la précision $\epsilon/2$.
- 3. En déduire une fraction qui a même valeur décimale approchée par défaut à l'ordre 2 que $\sqrt{2}$.