

BLOCKCHAIN DIE DATA PLATTFORM PERSPEKTIVE

Christoph Seck | KI Group

INTRODUCING KI group

KI group

EVERYTHING IS ABOUT DATA

K performance K analytics

BUSINESS MODELLS ARE CHANGING

KI capital KI mobility KI finance KI retail

CONTENT IS CRUCIAL

qi quesminc qi quesminc 🚕

KI capital

HUMAN RESOURCES ARE THE LARGEST CAPITAL

K professionals K academy K connect

KI performance KI labs KI decentralized

MobiLab

KI group Facts & Figures

>125 Employees

approx. 200 Projects

KI group

Locations

Colc

Stuttgart

Berlin

Munich

Segments

©2017 - Introducina KI arou

KI performance Core Offerings

KI analytics Core Offerings

KI group Partners (Extract)

Microsoft Partner

Gold Data Analytics
Silver Collaboration and Content
Silver Application Development
Cloud

Analytics, Data Collaboration, Cloud

SAP Linkage

Workflows in SharePoint, Outlook SharePoint

Algorithms Skalierung

Frontend

Crossbeat – Digital Agency NYC

Data Mining, Dashboards

Planning, Consolidation

On Shelf Availability

real-time information Discovery

Qualitative Data Analytics & Visualization

Social Media Analytics

Camera Analytics, Heat maps products

Containerization, Microservices as solutions for the scale-out

Intensive four-month program for young Al companies in New York

Collaborative Coding, Largest open source platform worldwide

ахіом

KI group References (Extract)

KI group Investments

KI group

0100 1011 0100

Agenda

(Introduction

Block Chain Basics

Anonym versus Pseudonym

Getting Data: The one and the many

Getting Data: Doing the Power BI

Agenda

Unzählige weitere Use Cases vorstellbar Abstimmungsergebnisse Non-Profit-Aufzeichnungen Paketzustellung (Schlüssel für Regierungs- / Non-Profit-Buchhaltung Währung Lieferfirma und Empfänger) Private Equity Wett-Aufzeichnungen Public Equity Fantasy Sports Aufzeichnungen Anleihen Verträge • Derivate (Futures, Forwards, Swaps, Unterschriften Optionen und komplexere Varianten) Testamente Gutscheine Stimmrechte Stiftungen Coupons Rohstoffen Treuhand Reservierungen (Restaurants, Verwendung der Haushaltsmitte GPS Spuren (persönlich) Hotels, Warteschlangen, etc.) Handelsaufzeichnungen Kinokarten Hypotheken- / Patente Darlehensaufzeichnungen Abschluss Urheberrechte Wartungsaufzeichnungen Zertifizierungen Marken Crowdfunding Lernerfolge Software-Lizenzen Micro-Finance Noten Videospiel-Lizenzen Micro-Charity HR Aufzeichnungen (Gehalt, Musik / Film / Buch-Lizenzen Leistungsbeurteilungen) Domain Namen Krankenakten Online-Identitäten Landrechte Rechnungsunterlagen Urheber- / Stand der Technik Fahrzeugregister Geschäftsabschlussaufzeichnungen Nachweis Geschäftslizenz Erbgutdaten Geschäftsaufnahme/ -auflösung GPS Spuren (institutionelle) Geschäftseigentümerverzeichnisse Zustellungsbestätigung Regulatorische Aufzeichnungen Aufzeichnungen (Fotos, Audio Schlichtung Strafregister Video) Reisepässe Datensätze (Sportergebnisse, Geburtsurkunden Temperatur, etc.) Heim- / Wohnungsschlüssel Sterbeurkunden Sim-Karten Ferienhaus- / Teilzeitnutzungsschlüssel Wähler-ID GPS-Netzwerkidentität Hotelzimmer Schlüssel Wahlen Pistolen Entsperrungscodes Autoschlüssel • Gesundheit / Sicherheitsinspektionen Waffen Entsperrungscodes Mietauto Schlüssel Baugenehmigung Nuklear Start-Codes · Leasingauto Schlüssel Waffenscheine · Spam-Kontrolle (Mikrozahlungen Spind Schlüssel · forensische Beweise für die Buchung) Safe Schlüssel Gerichtsakten

Data Plattform?

Distributed Database

- 6000 Replica
- 500 Googles needed
- Financal Value: 39 Mrd \$
- 40.000.000 Petaflops

Core Transactional System

- International Finance
- Via Smart Contracts:
 The Master Data of our managed Interactions

Distributed Database

- 6000 Replica
- 500 Googles needed
- Financal Value: 36 Mrd \$
- 40.000.000 Petaflops

Agenda

Anonym versus Pseudonym

Getting Data: The one and the many

Getting Data: Doing the Power BI

Components

Components

Peer Network Identity (Crypt) Distrib Ledger (BlockChain)

Peer Network Identity (Crypt) Distrib Ledger Verification (BlockChain)

Peer Network Consensus Identity (Block (Crypt) Building) Distrib Ledger Verification (BlockChain)

Counterfeit?

Counterfeit?

Double Spend?

Four Eyes Prinicple

Many Eyes Prinicple

Distributed Database

<u>Distributed Database</u>

All Transactions (Spendings)

<u>Distributed Database</u> All Transactions (Spendings) *BlockChain*

Integrity?

<u>Distributed Database</u>

All Transactions (Spendings) *BlockChain*

<u>Distributed Database</u>

All Transactions (Spendings) *BlockChain*

Consensus?

Consensus

<u>Distributed Database</u> All Transactions (Spendings) <u>BlockChain</u>

Transactions and Blocks

Transactions and Blocks

Confirmed new block

Block Building Mining and Consense

Longest Chain Get Trans from Pool Build Block Find Hash (Mine)

Transmit Block

Block Building Mining and Consense

Longest Chain Get Trans from Pool Build Block Find Hash (Mine)

Transmit Block

Confirmed new block

Proof of Work

Consensus and Proof of Work

- Longest Chain wins (Most Work)
- Incentives
- Changing History is <u>very</u> expensive

Node Types

Mining Nodes:

Transaction Nodes:

Node Types

Mining Nodes:

Transaction Nodes:

- Look 4 longest Chain
- Watch
- Verify
- Send Transaction

Node Types

Mining Nodes:

- Look 4 longest Chain, ...
- Create Blocks
- Earn BitCoin

Transaction Nodes:

- Look 4 longest Chain
- Watch
- Verify
- Send Transaction

Peer Network Consensus Identity (Block (Crypt) Building) Distrib Ledger Verification (BlockChain)

Blockchain 2.0 & Smart Contracts

Code

Schema

• State

Fixed Entity • Address

Beispiel: Privater Gebrauchtwagenkauf

STATUS QUO

BLOCKCHAIN

 Abschluss Kaufvertrag als Datenblock, regelt
 Geldübergabe, Schlüssel und Eigentumsübertragung

Physische Übergabe des Autos

Regelt KFZ VersicherungKommunikation mitZulassungsstelle

A Summary of Blockchain 1.0 to 2.0 Changes

Blockchain 1.0	Blockchain 2.0	BENEFITS
Bitcoin Blockchain	Ethereum, Corda, Hyperledger, many others yet to come	Not locked into one vendor
Simple Transactions	Generic Contracts	Can handle more complex needs
One Blockchain	Multiple, Linked Blockchains	Can partition information & pick different chains for different needs (location, regulation, speed, privacy, etc.)
Public Only	Public, Private, Consortium, or Domain Specific	Solves many regulatory and privacy needs
Proof of Work Only	Different ways to reach Consensus optimized for need – Proof of Work, Stake, Identity, Vote, etc.	Overcomes some of the existing Blockchain issues such as speed and computational cost
Always Open & Distributed	User Choice	Craft blockchain solutions around the business needs

Agenda

Introduction

Block Chain Basics

Anonym versus Pseudonym

Getting Data: The one and the many

Getting Data: Doing the Power BI

Wie eine Bitcoin Adresse zustande kommt

Eine Bitcoin Transaktion

1AojPgqEh...

Agenda

Introduction

Block Chain Basics

Anonym versus Pseudonym

Getting Data: The one and the many

Getting Data: Doing the Power BI

Bitcoin Wallet

Wallets mit mehreren Adressen

Deterministic Wallets

BTC TX / Verwendung mehrerer Adressen

Bitcoin Adressen sollten nur ein mal verwendet werden.

Graphentheorie: Zusammenhängende Komponenten

Idee

Neo4J

Exkurs

Edges Nodes Relations Part of Data

PersonID	Name
	•••
N	Peter

IsFriend	
PersonID1	PersonID2
	•••
N	M
N	L
•••	•••

Find Peters friends ...

PersonID	Name
N	Peter

IsFriend	
PersonID1	PersonID2
N	М
N	L

- Row "Peter" (Index, O(log n))
- ID Peter (O(1))
- Rows in IsFriend with N (Index, O(log x))
- PersonID2 s(O(k))
- PersonID s (Index O(k log n))
- Names (O(k))

- Node "Peter" (Index, O(log n))
- IsFriend edges (O(k+x))
- Nodes on ends of edges(O(k))
- Names (O(k * y))

Back to Neo

Demo

Demo

MATCH (n:BLOCK) RETURN n LIMIT 10

MATCH (n:IDTY) RETURN n LIMIT 10

MATCH (n:IDTY)-[:OWNS]->(a:ADDR) where a.addr = '...' RETURN n


```
MATCH (a:ADDR)<--(txo:TXO)<--(tx:TX)<-[:VERIFIES]-(b:BLOCK)
WHERE tx.txhash = '6359f0868171b1d194cbee1af2f16ea598ae8fad666d9b012c8ed2b79a236ec4'
RETURN a, txo, tx, b
```


ADDRESS	втс	TIME
15vScfMHNrXN4QvWe54q5hwfVoYwG79CS1	-3	1293623863
1Am9UTGfdnxabvcywYG2hvzr6qK8T3oUZT	2.99	1293623863
1H8ANdafjpqYntniT3Ddxh4xPBMCSz33pj	0.01	1293623863

```
MATCH (a:ADDR)<--(txo:TXO)<-[r]-(tx:TX)<-[:VERIFIES]-(b:BLOCK)

WHERE tx.txhash = '6359f0868171b1d194cbee1af2f16ea598ae8fad666d9b012c8ed2b79a236ec4'

RETURN a.addr AS ADDRESS

, CASE WHEN TYPE(r)='CREDITS' THEN 1 ELSE -1 END * txo.value/10^8 AS BTC

, b.time AS TIME
```

Vorgehen initiale Befüllung

Vorgehen Netzwerkanalyse

```
MATCH (tx:TX)-[:SPENDS]->(:TX0)-[:ADDR]->(a:ADDR)
RETURN tx.txhash AS txhash, a.addr AS addr
```


Vorgehen Netzwerkanalyse

Vorgehen Netzwerkanalyse

Agenda

(Introduction

Block Chain Basics

Anonym versus Pseudonym

Getting Data: The one and the many

Getting Data: Doing the Power BI

{ REST }

Adapter

KI analytics

Cypher

Demo

{ REST }


```
MATCH (n:IDTY)-[:OWNS]->(a:ADDR)<-[:ADDR]-(txo:TXO)<-[:CREDITS]-(tx:TX)
, (tx)-[:SPENDS]->(:TXO)-->(u:ADDR)
, (tx)<-[:VERIFIES]-(blk:BLOCK)
WHERE n.name = 'RYZ3T4R9'
WITH n, txo, u, blk
OPTIONAL MATCH (u)--(b:IDTY)
WITH DISTINCT n.name as toi, CASE WHEN b IS NOT NULL THEN b.name ELSE u.addr END as fromi,
CASE WHEN b IS NOT NULL THEN 1 ELSE 0 END as isidty, txo.value/10^8 as BTC, blk.time as time
RETURN toi, fromi, sum(BTC), time, isidty
```


Demo

