### **GWAS Quality Control**

Randy Johnson

3/30/2017

#### Setup

#### **Quality Control**

- ▶ Aim of quality control: reduce bias in our statistics.
- Many of the methods discussed today apply to other types of analysis.

### Microarray vs NGS Technologies



Figure 1: Advantages of using microarray vs Next-Generation Sequencing (NGS) technologies (Caroline Thureau, 2010)

## Summary of How Microarrays Work: Affymetrix



Figure 2: The Affymetrix platform (image courtesy of Nickerson)

#### Summary of How Microarrays Work: Affymetrix



Figure 3: Affymetrix Workflow: Preparation of samples for Illumina chips is similar (image courtesy of Nickerson)

### Summary of How Microarrays Work: Illumina



Figure 4: DNA fragments are captured on microbeads in Illumin platform (image courtesy of Nickerson)

## Summary of How Microarrays Work: Illumina



Figure 5: Beads are randomly dispersed on a plate and later decoded. Redundancy is higher (image courtesy of Nickerson)

### Summary of How Microarrays Work: Genotype Inferrence



Figure 6: Intensities of A and B alleles are clustered to infer genoyptes.

### Genome Wide Association Studies (GWAS)



Figure 7: GWAS Findings as of 2013 (Hindorf et. al.)

#### Batch Effects: Problem

- Microarrays are tricky things
- ▶ Results can be slightly influenced (i.e. different) by processing date, lab tech, equipment used, . . .
- Every effort should be made to follow your protocol as exactly as possible, but you are still going to end up with batch effects.



Figure 8: Batch Effect Bias

#### Batch Effects: Solution

- Solution: Randomization breaks the link between disease and batch, which breaks the false association between SNP and disease.
- Alternate solution: Include batch number in your statistical model. Randomization is better, but sometimes we don't get a say in the matter.

$$disease = \beta_0 + \beta_{b1}batch_1 + \beta_{b2}batch_2 + \cdots + \beta_1 X_1 + \cdots + \beta_n X_n + \varepsilon$$

$$Disease \xrightarrow{\times} Batch \xrightarrow{\longrightarrow} SNP$$

#### **Batch Randomization**

Lets say we have 1000 samples we need to split over 10 batches of 100 each.

#### **Batch Randomization**

Again, our study will collect 1000 samples, which will need to be split into 10 batches of 100 each. This time, however, we expect the samples to be collected over a 5 year period, due to the low incidence of our disease. Also, we can't wait until the end of collection to run all the batches at once.

- Collect controls at the same time as the cases!!
- When you have collected 50 cases with their corresponding 50 controls, run a batch.
- If your technology has sub-batches (e.g. lanes) randomize the distribution of your cases and controls across those sub-batches as well.

## Genotyping Quality: Problem

- ▶ We assume that the technology is performing as it should.
- ▶ If it is performing as it should, we expect to get complete data (i.e. not very many missing values).
- ▶ If there are too many missing values, something is probably wrong with either the sample or the technology!
- Sources of "wrongness" include:
  - ► Poor DNA quality
  - Poor reagent quality
  - Contamination
  - Poor adherance to protocol

# Genotyping Quality: Solution

If there is a problem with your genotyping quality, you are really only left with two viable options:

- Redo the genotyping
- ▶ Remove the offending individuals/SNPs from the analysis

You can expect a small proportion of your SNPs to fail, and it is not uncommon to have a small proportion of your samples fail. The general rule of thumb is: there should be no more than 3-5% of your genotypes are missing for each individual, and no more than 3-5% of individuals have a missing genotype for each SNP.

- Too many missing genotypes for a SNP: Assay problem
- ► Too many missing genotypes for an individual: Sample problem

#### Genotyping Quality: Non-Solution

Fancy bioinformatics will not solve genotyping quality problems!

- If your DNA is of low quality, your data are of low quality.
- If your assay is of low quality (e.g. due to a bad lot of a reagent), your data are of low quality.

▶ If your data are of low quality, your statistics are suspect.

If your statistics are suspect, your inferences/conclusions are also suspect (i.e. they are no good)!

#### Genotyping Quality: Solution

► This will remove all SNPs with more than 5% of their genotypes missing (you may also want to remove any SNPs with a very low minor allele frequency using the --maf option):

```
plink --bfile mydata --geno 0.05 --maf 0.01 --recode
```

► This will remove all individuals with more than 5% of their genotypes missing:

```
plink --bfile mydata --mind 0.05 --recode
```

► The --recode option will generate a new set of PLINK files. You can include more than one filtering command in a single call.

# Genotyping Quality: HWE

Hardy-Weinberg Equilibrium (HWE) is another indicator of poor genotyping quality.

$$\begin{array}{c|cccc} & A & a \\ \hline A & f_{AA} & f_{aA} \\ \hline a & f_{Aa} & f_{aa} \end{array}$$

$$p = f_{AA} + \frac{f_{Aa} + f_{aA}}{2}$$
$$q = f_{aa} + \frac{f_{Aa} + f_{aA}}{2}$$

### HWE: Assumption of Genetic Equilibrium

Under the assumption of genetic equilibrium in the population,

$$f_{AA} = P(A \text{ from mom } \cap A \text{ from dad})$$

$$= p^2,$$

$$f_{aa} = P(a \text{ from mom } \cap a \text{ from dad})$$

$$= q^2,$$

$$f_{Aa} = f_{aA},$$

$$f_{Aa} + f_{aA} = P(A \text{ from mom } \cap a \text{ from dad}) +$$

$$P(a \text{ from mom } \cap A \text{ from dad})$$

$$= 2pq,$$

$$p^2 + 2pq + q^2 = 1.$$

## Genotyping Quality: Testing HWE Assumption

We can test this assumption using a Chi-squared test as follows:

- $\triangleright$  Calculate p and q (sample size is n).
- Define:
  - $\triangleright$   $O_{AA} =$  Observed number of individuals with AA genotype,
  - $\triangleright$   $O_{Aa} =$  Observed number of individuals with Aa genotype,
  - $ightharpoonup O_{aa} = Observed number of individuals with aa genotype.$

$$\frac{(O_{AA} - n * p^2)^2}{n * p^2} + \frac{(O_{Aa} - n * 2pq)^2}{n * 2pq} + \frac{(O_{aa} - n * q^2)^2}{n * q^2} \sim \chi_1^2$$

- Some SNPs will not fall within HWE expectations simply as a natural result of frequency deviations
- Research indicates that most of these deviations are due to genotyping errors

$$O_{AA} = 1469$$

$$O_{Aa} = 138$$

$$O_{aa} = 5$$

$$n = 1469 + 138 + 5$$

$$= 1612$$

$$p = \frac{2 * O_{AA} + O_{Aa}}{2n}$$

$$= \frac{2 * 1469 + 138}{2 * 1612}$$

$$= 0.954$$

$$q = (1 - p)$$

$$E_{AA} = n * p^{2}$$

$$= 1612 * 0.954^{2}$$

$$= 1612 * (2 * 0.954 * 0.046)$$

$$= 141.2$$

$$E_{aa} = n * q^{2}$$

$$= 1612 * 0.046^{2}$$

$$= 3.4$$

$$= \frac{2 * 5 + 138}{2 * 1612}$$

$$= 0.046$$

$$\chi_1^2 = \frac{(1469 - 1467.4)^2}{1467.4} + \frac{(138 - 141.2)^2}{141.2} + \frac{(5 - 3.4)^2}{3.4}$$
$$= 0.001 + 0.073 + 0.756$$
$$= 0.83$$

```
pchisq(0.83, 1, lower.tail = FALSE)
```

```
## [1] 0.3622725
```

```
hwexact(1469, 138, 5)
```

```
## [1] 0.3825187
```

$$O_{AA} = 1465$$

$$O_{Aa} = 138$$

$$O_{aa} = 9$$

$$n = 1465 + 138 + 9$$

$$= 1612$$

$$p = \frac{2 * O_{AA} + O_{Aa}}{2n}$$

$$=$$

$$q = (1 - p)$$

$$E_{AA} = n * p^{2}$$

$$=$$

$$E_{Aa} = n * 2pq$$

$$=$$

$$=$$

$$E_{aa} = n * q^{2}$$

$$=$$

$$=$$

$$q = \frac{2 * O_{aa} + O_{Aa}}{2n}$$

$$=$$

$$=$$

$$q = \frac{2 * O_{aa} + O_{Aa}}{2n}$$

$$=$$

$$=$$

$$=$$

$$\chi_{1}^{2} = \sum \frac{(O - E)^{2}}{E}$$

$$ho_{\chi^2} = 
ho_{ ext{exact}} =$$

## Genotyping Quality: HWE Solution

Use the --hwe option in PLINK to filter on a specific threshold (0.001 is common),

```
plink --bfile mydata --hwe 0.001 --recode
```

or you can get a summary of the HWE test statistics using the --hardy option,

```
plink --bfile mydata --hardy
```

which creates a file called plink.hwe with the following columns of data:

```
## SNP
                   SNP identifier
## TEST
                   Code indicating sample
## A1
                   Minor allele code
## A2
                   Major allele code
## GENO
                   Genotype counts: 11/12/22
                   Observed heterozygosity
## O(HET)
## E(HET)
                   Expected heterozygosity
## P
                   H-W p-value
```

#### Allele Flips: Problem

It is possible that you will get major alleles that are reported on different strands. In this example, we have an allele flip between sample A and sample B, which results in very different C allele frequencies.

Sample A: f<sub>C</sub> = 0.23
 Sample B: f<sub>C</sub> = 0.81

If we flip sample B to the other strand we get an allele frequency of 0.19, which is much more in line with what we would expect.

ACCTGCAGCTCTCATTTTC[C/T]ATACAGTCAGTATCAATTC
GTTCATGATCTCTGAAAAT[T/C]GCGTGACTGACGCTGGAAG

Figure 9: Picking different strands as the reference in different samples is called an allele flip

#### Allele Flips: Solution

If you aren't merging multiple samples, this shouldn't be a problem. Also, if you don't identify any allele flips in A/C or G/T SNPs while merging multiple samples, there probably aren't any allele flips in A/G or C/T SNPs (this isn't a guaruntee, though).

- ▶ If neither of those is true, you can check for allele flips using the --flip-scan module in PLINK.
- ► This works by scanning all potential allele flips (i.e. C/T and A/G SNPs) for inconsistent linkage disequilibrium between cases and controls. Thus, you may need to create a dummy case/control variable that corresponds to the sample ID for this test.

plink --bfile mydata --flip-scan

#### Allele Flips: Solution

14

14

rs10129954

rs7140455

72220454

72240734

T C

```
## CHR.
           Chromosome
## SNP
           SNP identifier for index SNP
## BP
           Base-pair position
## A1
           Minor allele code
## A2
           Major allele code
## F
           Allele frequency (A1 allele)
## POS
           Number of positive LD matches
## R POS
           Average correlation of these
## NF.G
           Number of negative LD matches
## R NEG
           Average correlation of these
## NEGSNPS The SNPs showing negative correlation
```

| CHR | SNP        | BP       | A1 | A2 | F     | POS | R_POS | NEG | R_NEG | NEGSNP |
|-----|------------|----------|----|----|-------|-----|-------|-----|-------|--------|
| 14  | rs12434442 | 72158039 | T  | C  | 0.249 | 5   | 0.515 | 1   | 0.46  | rs2240 |
| 14  | rs4899437  | 72190986 | G  | C  | 0.394 | 5   | 0.802 | 1   | 0.987 | rs2240 |
| 14  | rs2803980  | 72196284 | G  | Α  | 0.41  | 5   | 0.808 | 1   | 0.95  | rs2240 |
| 14  | rs2240344  | 72197893 | C  | G  | 0.489 | 0   | NA    | 7   | 0.807 | rs1243 |
| 14  | rs2286068  | 72198107 | C  | T  | 0.407 | 7   | 0.741 | 1   | 0.962 | rs2240 |
| 14  | rs7160830  | 72209491 | T  | C  | 0.414 | 6   | 0.801 | 1   | 0.922 | rs2240 |

C 0.413

0.469

6 0.729

0.72

0.73

0.64

rs2240

rs2240

#### Allele Flips: Solution

Any SNPs you identify that need to be flipped can be recoded as follows:

```
plink --bfile mydata --flip list.txt --recode
```

If your samples have already been merged, you can do this for just a subset of the data:

```
plink --bfile mydata --flip list.txt
    --flip-subset subsample.txt --recode
```