Problem 1

Solution

Symmetric
$$K(x,y) = \langle K(x,\cdot), K(y,\cdot) \rangle = \overline{\langle K(y,\cdot), K(x,\cdot) \rangle} = \overline{K(y,x)} = K(y,x).$$

Positive semi-definite For any $n \in \mathbb{N}^+$ and $x_1, x_2, \dots, x_n \in X$, construct a matrix M such that $M_{i,j} = K(x_i, x_j)$. For all $v \in \mathbb{R}^n$, we have $v^{\mathsf{T}} M v = \langle \sum_{i=1}^n v_i K(x_i, \cdot), \sum_{i=1}^n v_i K(x_i, \cdot) \rangle \geq 0$. Therefore, M is positive semi-definite.

Problem 2

Solution

- (a) For all $x, y \in X$, construct a matrix $M = \begin{bmatrix} K(x,x) & K(x,y) \\ K(x,y) & K(y,y) \end{bmatrix}$. Then, M is positive semi-definite. Thus, $\det(M) = K(x,x)K(y,y) K(x,y)^2 \ge 0$.
- (b) (1) $\langle f,g\rangle = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j K(x_i,x_j) = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j K(x_j,x_i) = \langle g,f\rangle = \overline{\langle g,f\rangle};$ (2) For all $a,b\in\mathbb{R}$ and $f=\sum_{i=1}^n \alpha_i K(x_i,\cdot),\ g=\sum_{i=1}^m \beta_i K(x_i,\cdot),\ h=\sum_{i=1}^k \gamma_i K(x_i,\cdot),\ \text{without loss of generality, suppose that } m\leq n,\ \text{and set }\beta_{m+1},\cdots,\beta_n=0.$ We have $\langle af+bg,h\rangle = \sum_{i=1}^n \sum_{j=1}^k (a\alpha_i+b\beta_i)\gamma_j K(x_i,x_j) = a\sum_{i=1}^n \sum_{j=1}^k \alpha_i \gamma_j K(x_i,x_j) + b\sum_{i=1}^m \sum_{j=1}^k \beta_i \gamma_j K(x_i,x_j) = a\langle f,h\rangle + b\langle g,h\rangle;$ (3) For all $f=\sum_{i=1}^n \alpha_i K(x_i,\cdot),\ \text{construct matrix }M$ such that $M_{i,j}=K(x_i,x_j).$ Then, $\langle f,f\rangle = \alpha^\intercal M\alpha \geq 0.$ Next, we prove $\langle f,f\rangle = 0\iff f\equiv 0.$ It is obvious that if $f\equiv 0,\ \langle f,f\rangle = 0.$ If $\langle f,f\rangle = 0,\ \text{then for all }x\in X,\ |f(x)|^2=\langle f,K(x,\cdot)\rangle^2\leq \langle f,f\rangle\langle K(x,\cdot),K(x,\cdot)\rangle = 0,\ \text{and thus }f(x)=0.$ Note that here Cauchy-Schwarz inequality holds since it doesn't rely on the property we are currently proving. (I borrowed this result from page 37 in https://www.ism.ac.jp/~fukumizu/H20_kernel/Kernel_2_elements.pdf)

Problem 3

Solution

Let S be the subspace spanned by $K(x_1,\cdot),\cdots,K(x_n,\cdot)$. Then, for all f we can decomose it into $f=f_s+v$ such that $f_s\in S$ and $v\perp f_s$. We have $||f||^2=||f_s||^2+||v||^2\geq ||f_s||^2$ and $g(||f_s||)\leq g(||f||)$. We also have, for all $x_i, f(x_i)=\langle f,K(x_i,\cdot)\rangle=\langle f_s,K(x_i,\cdot)\rangle+\langle v,K(x_i,\cdot)\rangle=\langle f_s,K(x_i,\cdot)\rangle=f_s(x_i)$. Thus, for a minimizer f^* , we must have $||v||=0,\ v=\vartheta$, and f^* can be linearly represented by $K(x_1,\cdot),\cdots,K(x_n,\cdot)$.