

Introduction to High-Performance Computing (HPC) for RNA-seq data

Harvard Chan Bioinformatics Core

in collaboration with

HMS Research Computing

May 30 & 31, 2018

https://tinyurl.com/hbc-unix-may

Learning Objectives

- Learn what a "shell" is and become comfortable with the command line interface
 - Find your way around a UNIX filesystem
 - Work with small and large data files
 - Become more efficient when performing repetitive tasks

Learning Objectives

- Learn what a "shell" is and become comfortable with the command line interface
 - Find your way around a UNIX filesystem
 - Work with small and large data files
 - Become more efficient when performing repetitive tasks
- ✓ Understand what a computational cluster is and why we need it
 - Independently access the O2 cluster
 - Perform analysis using the cluster (run programs, pipelines, etc.)

Learning Objectives

- ✓ Describe best practices for designing an RNA-seq experiment
- ✓ Describe steps in an RNA-seq analysis workflow

We won't be covering how to perform differential gene expression analysis on count data in this workshop, since it requires a working knowledge of R.

FAS-RC's Odyssey cluster

https://www.rc.fas.harvard.edu/training/introduction-to-odyssey-online/

https://www.rc.fas.harvard.edu/resources/running-jobs/

https://portal.rc.fas.harvard.edu/apps/modules

https://www.rc.fas.harvard.edu/upcoming-training/

Survey...

http://tinyurl.com/intro-rnaseq-exit-survey

Talk to us early

Involvement in study design to optimize experiments

Questions, information?

HBC training team:

hbctraining@hsph.harvard.edu

HBC consulting:

bioinformatics@hsph.harvard.edu

HBC website:

http://bioinformatics.sph.harvard.edu

HBC twitter: @bioinfocore

Resources:

http://bioinformatics.sph.harvard.edu/resources/

