合 肥 工 业 大 学 试 卷(A)

共 1 页第 1 页

一、填空题(每小题 4 分, 共 20 分)

(1)设
$$|\vec{a}| = 2, |\vec{b}| = 1, \vec{a}, \vec{b}$$
的夹角为 $\frac{\pi}{3}$, $\vec{c} = \vec{a} - 2\vec{b}$, 则 $|\vec{c}| =$ _______

(2)设平面 π 过点(2,-1,-1),(1,2,3),且与平面2x+3y-5z+6=0垂直,则平面 π 的方程为

(3)设函数
$$u = e^{xyz} + \int_0^{xy} t \sin t dt + \int_0^{yz} t^2 dt$$
 ,则 $gradu =$ ______

(4)设三元函数
$$u = \left(\frac{x}{y}\right)^{\frac{1}{z}}$$
,则 $du|_{(1,1,1)} = ______$

(5) 计算二次积分
$$I = \int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy =$$

二、选择题(每小题4分,共20分)

(1)设直线 L 的方程为 L:
$$\begin{cases} x+3y+2z+1=0\\ 2x-y-10z+3=0 \end{cases}$$
, 平面 $\pi:4x-2y+z=2$, 则直线 L ()

(A) L平行于 π (B) L在平面 π 上 (C) L垂直平面 π (D) L与平面 π 斜交

(2)曲线
$$\Gamma$$
: $\begin{cases} y = -x^2, \\ z = x^3, \end{cases}$ 与平面 $x + 2y + z = 4$ 平行的切线 ().

(A) 不存在 (B) 只有一条 (C) 只有两条 (D) 有三条

(3) 母线平行于
$$x$$
 轴且通过曲线
$$\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 - y^2 + z^2 = 0 \end{cases}$$
 的柱面方程是 ()

(A) $3x^2 + 2z^2 = 16$ (B) $3y^2 - z^2 = 16$ (C) $x^2 + 2y^2 = 16$ (D) $y^2 - 3z^2 = 16$

$$(4) \frac{\partial f(x,y)}{\partial x} \bigg|_{(x_0,y_0)}, \frac{\partial f(x,y)}{\partial y} \bigg|_{(x_0,y_0)}$$
 存在对于函数 $f(x,y)$ 在点 (x_0,y_0) 连续是(

(A) 充分条件 (B) 必要条件 (C) 充要条件 (D) 无关条件

(5) 曲线 L:
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
, L 的周长为 a ,则 $\oint_L (2xy + 3x^2 + 4y^2) ds = ($)

(A) 0 (B) 2a (C) 6a (D) 12a.

三、计算下列各题(每小题6分,共36分)

(1) 设函数 $z = f(2x^2 + 3y, e^{xy})$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$;

(3) 求由方程 $x^2 + y^2 + ze^z = 0$ 所确定的函数 z = z(x, y) 的极值;

(4) 计算二重积分
$$I = \iint_D |x^2 + y^2 - 1| d\sigma$$
, 其中 $D: 0 \le x \le 1, 0 \le y \le 1$;

(5) 计算三重积分 $I = \iiint_{\Omega} (y^2 \sin x + z) dv$,,其中 Ω : $z = x^2 + y^2, z = \sqrt{2 - x^2 - y^2}$ 围成;

(6) 计算 $I = \oint_L e^{\sqrt{x^2 + y^2}} ds$,其中 L 为圆周 $x^2 + y^2 = a^2 (a > 0)$ 、直线 y = x 及 y 轴在第一象限内所围成的扇形的整个边界。

四、(本题满分 10 分) 设
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 问 $f(x,y)$ 在 $(0,0)$ 处:

(1) 是否连续; (2) 偏导是否存在; (3) 是否可微.

五、(本题满分 10 分) 在椭圆 $C: x^2 + 4y^2 = 4$ 上求两点,使其到直线 L: 2x + 3y - 6 = 0 的距离分别最长和最短,并求最长和最短距离。

六、(本题满分 4 分) 设函数 f(x) 在闭区间[-1,1]上连续,且 $\Omega: x^2 + y^2 + z^2 \le 1$,证明:

$$\iiint_{\Omega} f(x)dxdydz = \pi \int_{-1}^{1} f(x)(1-x^2)dx .$$