Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform

Foundations of Digital Signal Processing

Outline

- Review of Sampling
- The Nyquist-Shannon Sampling Theorem
- Continuous-time Reconstruction / Interpolation
- Aliasing and anti-Aliasing
- Deriving Transforms from the Fourier Transform
 - Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series
- The Discrete Fourier Transform

News

- Homework #5
 - Due <u>this week</u>
 - Submit via canvas
- Coding Problem #4
 - Due <u>this week</u>
 - Submit via canvas

Exam 1 Grades

The class did exceedingly well

Mean: 89.3

Median: 91.5

Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform

Foundations of Digital Signal Processing

Outline

- Review of Sampling
- The Nyquist-Shannon Sampling Theorem
- Continuous-time Reconstruction / Interpolation
- Aliasing and anti-Aliasing
- Deriving Transforms from the Fourier Transform
 - Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series
- The Discrete Fourier Transform

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform

Example: Consider the DTFT signal

$$X(\omega) = e^{-\frac{j\omega\pi}{8}} \sum_{k=-\infty}^{\infty} u\left(\omega + \frac{\pi}{2} - 2\pi k\right) - u\left(\omega + \frac{\pi}{4} - 2\pi k\right) + u\left(\omega - \frac{\pi}{2} - 2\pi k\right) - u\left(\omega - \frac{\pi}{4} - 2\pi k\right)$$

• Sketch the magnitude of $X(\omega)$.

Discrete-Time Fourier Transform

Example: Consider the DTFT signal

$$X(\omega) = e^{-\frac{j\omega\pi}{8}} \sum_{k=-\infty}^{\infty} u\left(\omega + \frac{\pi}{2} - 2\pi k\right) - u\left(\omega + \frac{\pi}{4} - 2\pi k\right) + u\left(\omega - \frac{\pi}{2} - 2\pi k\right) - u\left(\omega - \frac{\pi}{4} - 2\pi k\right)$$

• Sketch the phase of $X(\omega)$.

$$\delta_{T_s}(t)$$

$$\frac{2\pi}{T_s}\delta_{\Omega_s}(\Omega)$$

$$\delta_{T_s}(t) \qquad \frac{2\pi}{T_s} \delta_{\Omega_s}(\Omega)$$

$$x[n]\delta_{T_s}(t) \qquad \frac{1}{2\pi} X(\Omega) * \left[\frac{2\pi}{T_s} \delta_{\Omega_s}(\Omega)\right]$$

Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform

Foundations of Digital Signal Processing

Outline

- Review of Sampling
- The Nyquist-Shannon Sampling Theorem
- Continuous-time Reconstruction / Interpolation
- Aliasing and anti-Aliasing
- Deriving Transforms from the Fourier Transform
 - Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series
- The Discrete Fourier Transform

- Question: Can I preserve all information when I sample?
 - Yes!

Question: How fast do I sample to preserve information?

- Question: How fast do I sample to preserve information?
 - We need to sample twice as fast as the maximum frequency

$$\Omega_{\rm s} > 2\Omega_{\rm max}$$

Question: How fast do I sample to preserve information?

We need to sample twice as fast as the maximum frequency

$$\begin{split} &\Omega_{\text{S}} > 2\Omega_{\text{max}} & \text{Nyquist-Shannon} \\ &f_{\text{S}} > 2f_{\text{max}} & \text{Sampling Theorem} \end{split}$$

Question: How fast do I sample to preserve information?

We need to sample twice as fast as the maximum frequency

$$\Omega_{s}>2\Omega_{max}$$
 Nyquist-Shannon
$$f_{s}>2f_{max}$$
 Sampling Theorem
$$\Omega_{N}=2\Omega_{max}<\text{--Nyquist Rate}$$

Example

- **Example: Consider the signal** $x(t) = \cos(5\pi t)$.
 - What is the Nyquist rate?
 - Sketch the Fourier transform $X_S(\Omega)$ of the sampled signal when $\Omega_S=12\pi$

Example

Example: Consider the frequency signal

$$X(\Omega) = u(\omega + 5\pi) - u(\omega - 5\pi)$$

- What is the Nyquist rate?
- Sketch the Fourier transform $X_{S}(\Omega)$ of the sampled signal when $\Omega_{\rm S}=20\pi$

Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform

Foundations of Digital Signal Processing

Outline

- Review of Sampling
- The Nyquist-Shannon Sampling Theorem
- Continuous-time Reconstruction / Interpolation
- Aliasing and anti-Aliasing
- Deriving Transforms from the Fourier Transform
 - Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series
- The Discrete Fourier Transform

Question: How do I return to continuous—time?

- Question: How do I return to continuous—time?
 - Filter: Low pass filter to keep $\Omega_s/2 \leq \Omega \leq \Omega_s/2$
 - Amplify: Amplify signal by T_S

Question: How do I return to continuous—time?

- Apply a low-pass reconstruction filter
 - Cut-off frequency: $\Omega_s/2$
 - Gain: T_S

Question: How do I return to continuous—time?

- Apply a low-pass reconstruction filter
 - Cut-off frequency: $\Omega_s/2$
 - \diamond Gain: T_S

Question: How do I return to continuous—time?

- Apply a low-pass reconstruction filter
 - Cut-off frequency: $\Omega_s/2$
 - \diamond Gain: T_S

$$X(\Omega)[T_s[u(\Omega + \Omega_s/2) - u(\Omega - \Omega_s/2)]]$$

$$X(\Omega)\left[T_SX(\Omega)\operatorname{rect}\left(\frac{\Omega}{\Omega_S}\right)\right]$$

$$T_s X(\Omega) \operatorname{rect}\left(\frac{\Omega}{2(\Omega_s/2)}\right)$$

$$x[n] * \frac{T_S(\Omega_S/2)}{\pi} \operatorname{sinc}((\Omega_S/2)t) = x[n] * \operatorname{sinc}((\Omega_S/2)t)$$

Question: What is happening when I multiply in frequency?

t

Question: What is happening when I multiply in frequency?

$$x[n] * \operatorname{sinc}((\Omega_s/2)t)$$

t

Reconstruction

Consider a cosine

-10

5

-5

10

■ Consider a cosine – Sampled at $T_s = 1$

■ Consider a cosine – Low pass filter to keep $-\Omega_s/2$ to $\Omega_s/2$

Reconstruction Filter

■ Consider a cosine – After the reconstruction filter

Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform

Foundations of Digital Signal Processing

Outline

- Review of Sampling
- The Nyquist-Shannon Sampling Theorem
- Continuous-time Reconstruction / Interpolation
- Aliasing and anti-Aliasing
- Deriving Transforms from the Fourier Transform
 - Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series
- The Discrete Fourier Transform

Sampling

- Aliasing occurs when we do not satisfy the sampling theorem
- Question: What can happen when there is aliasing?

Example 1

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=8\pi$
 - What is the Nyquist rate?
 - What is the cutoff frequency for the low-pass filter?

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=8\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=4\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=8\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=4\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=8\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=4\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=8\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=4\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=8\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=4\pi$
 - Reconstructed Signal: $x(t) = \cos(2\pi t)$

Example 2

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\scriptscriptstyle S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_S=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$

- **Example: Consider** $x(t) = \cos(2\pi t)$
 - Sample this at a rate of $\Omega_S=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$
 - Reconstructed Signal: $x(t) = \cos(\pi t)$

Example 3

- **Consider** $x(t) = \sin(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$

- **Consider** $x(t) = \sin(2\pi t)$
 - Sample this at a rate of $\Omega_S=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\rm S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$

- **Consider** $x(t) = \sin(2\pi t)$
 - Sample this at a rate of $\Omega_S=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{\scriptscriptstyle S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$

- **Consider** $x(t) = \sin(2\pi t)$
 - Sample this at a rate of $\Omega_{\scriptscriptstyle S}=3\pi$
 - \diamond What is the Nyquist rate? $\Omega_{S} > 4\pi$
 - \diamond What is the cutoff frequency for the low-pass filter? $\Omega_c=1.5\pi$
 - Reconstructed Signal: $x(t) = \sin(-\pi t) = -\sin(\pi t)$

Example 4

$$x(t) = \cos(10\pi t)$$
 ($T = 1/5$)

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_S = 40\pi \ (T_S = 1/20)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\scriptscriptstyle S}=40\pi \,\,\, (T_{\scriptscriptstyle S}=1/20)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_s = 30\pi \ (T_s = 1/15)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\rm S}=30\pi~(T_{\rm S}=1/15)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\scriptscriptstyle S}=20\pi~(T_{\scriptscriptstyle S}=1/10)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\scriptscriptstyle S}=20\pi~(T_{\scriptscriptstyle S}=1/10)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_s=15\pi~(T_s=2/15)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_s = 15\pi \ (T_s = 2/15)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\scriptscriptstyle S}=10\pi \ (T_{\scriptscriptstyle S}=1/5)$

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\rm S}=10\pi~(T_{\rm S}=1/5)$

Aliasing with a sinusoid

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\rm S}=5\pi$ $(T_{\rm S}=2/5)$

Aliasing with a sinusoid

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\rm S}=5\pi$ $(T_{\rm S}=2/5)$

Aliasing with a sinusoid

- $x(t) = \cos(10\pi t)$ (T = 1/5)
 - Sample with a sampling rate of $\Omega_{\rm S}=5\pi~(T_{\rm S}=2/5)$

Question: How do we reduce the effects of aliasing?

- Question: How do we reduce the effects of aliasing?
 - Apply a low-pass anti-aliasing filter
 - Cut-off frequency: $\Omega_s/2$
 - Gain: 1

- Example: Consider the following signal.
 - What is the Nyquist rate?

- Example: Consider the following signal.
 - What is the Nyquist rate? 40π

- **Example:** Consider the following signal.
 - What is the Nyquist rate? 40π
 - Sketch the Fourier transform after sampling at $\Omega_s=20\pi$.
 - Use no anti-aliasing filter

- **Example:** Consider the following signal.
 - What is the Nyquist rate? 40π
 - Sketch the Fourier transform after sampling at $\Omega_s=20\pi$.
 - Use no anti-aliasing filter

- **Example:** Consider the following signal.
 - What is the Nyquist rate? 40π
 - Sketch the Fourier transform after sampling at $\Omega_s=20\pi$.
 - Use an anti-aliasing filter

- **Example:** Consider the following signal.
 - What is the Nyquist rate? 40π
 - Sketch the Fourier transform after sampling at $\Omega_s=20\pi$.
 - Use an anti-aliasing filter

- **Example:** Consider the following signal.
 - What is the Nyquist rate? 40π
 - Sketch the Fourier transform after sampling at $\Omega_s=20\pi$.
 - Use an anti-aliasing filter

Sampling and Aliasing in Real Life

Aliasing

■ Where have we seen such effects before in real life?

Sampling

Sampling a line

We sample a continuous image at each point

Sampling

Sampling a line

We sample a continuous image at each point

Aliasing

Creates undesired high frequency information

Sampling a line

We sample a continuous image at each point

Aliasing

Creates undesired high frequency information

Anti-aliasing

Create a smooth image

Box Filter

 Convolve the continuous (high resolution) image with a box

Gaussian Filter

 Convolve the continuous (high resolution) image with a Gaussian

Sampling of lines

Sampling of lines

Anti-aliasing with a box filter

Illustrations from Cornell CS465 Spring 2006 Slides

Sampling of lines

Anti-aliasing with a Gaussian filter

Aliasing Example

A Wheel

From: https://www.youtube.com/watch?v=bl8lrqBBAXQ

Aliasing Example

Making water float

From: https://www.youtube.com/watch?v=mODqQvlrgIQ

Lecture 12: Sampling, Aliasing, and the Discrete Fourier Transform

Foundations of Digital Signal Processing

Outline

- Review of Sampling
- The Nyquist-Shannon Sampling Theorem
- Continuous-time Reconstruction / Interpolation
- Aliasing and anti-Aliasing
- Deriving Transforms from the Fourier Transform
 - Discrete-time Fourier Transform, Fourier Series, Discrete-time Fourier Series
- The Discrete Fourier Transform

- Consider the Fourier Transform....
 - What happens if we sample x(t)?

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$$

- Consider the Fourier Transform....
 - What happens if we sample x(t)?

$$X(\Omega) = \int_{-\infty}^{\infty} x(t) \delta_{T_s}(t) e^{-j\Omega t} dt$$

Consider the Fourier Transform....

• What happens if we sample x(t)?

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)\delta_{T_S}(t)e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} x(t) \left[\sum_{n=-\infty}^{\infty} \delta(t - nT_S) \right] e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x(t)\delta(t - nT_S)e^{-j\Omega t} dt$$

Consider the Fourier Transform....

• What happens if we sample x(t)?

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)\delta_{T_s}(t)e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} x(t) \left[\sum_{n=-\infty}^{\infty} \delta(t - nT_s) \right] e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x(nT_s)e^{-j\Omega nT_s}$$

Consider the Fourier Transform....

• What happens if we sample x(t)?

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)\delta_{T_S}(t)e^{-j\Omega t} dt$$

$$= \int_{-\infty}^{\infty} x(t) \left[\sum_{n=-\infty}^{\infty} \delta(t - nT_S) \right] e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x(nT_S)e^{-j\Omega nT_S} \quad \text{Choose } T_S = 1, \Omega = \omega$$

- Consider the Fourier Transform....
 - What happens if we sample x(t)?

$$X(\omega) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n}$$

The Fourier Transform becomes the DTFT

- Consider the Inverse Fourier Transform....
 - What happens if we sample $X(\Omega)$?

$$x(t) = \int_{-\infty}^{\infty} X(\Omega) e^{+j\Omega t} d\Omega$$

Consider the Inverse Fourier Transform....

• What happens if we sample $X(\Omega)$?

$$x(t) = \int_{-\infty}^{\infty} X(\Omega)e^{+j\Omega t} d\Omega$$

$$= \int_{-\infty}^{\infty} X(\Omega) \left[\sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s) \right] e^{+j\Omega t} d\Omega$$

$$= \sum_{k=-\infty}^{\infty} X(k\Omega_s)e^{+jk\Omega_s t} \qquad \text{Choose } X(k\Omega_s) = c_k$$

- Consider the Inverse Fourier Transform....
 - What happens if we sample $X(\Omega)$?

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{+jk\Omega_S t}$$

The Fourier Transform becomes the Fourier Series

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{+j\omega n} d\omega$$

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{+j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{2\pi} X(\omega) \left[2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \right] e^{+j\omega n} d\omega$$

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\omega) e^{+j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} X(\omega) \left[2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \right] e^{+j\omega n} d\omega$$

$$k\omega_s \ge 0 \qquad k\omega_s < 2\pi$$

$$k \ge 0 \qquad k < \frac{2\pi}{\omega_s}$$

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \frac{1}{2\pi} \int_{2\pi}^{2\pi} X(\omega) e^{+j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} X(\omega) \left[2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \right] e^{+j\omega n} d\omega$$

$$= \sum_{k=0}^{\frac{2\pi}{\omega_s} - 1} X(k\omega) e^{+jk\omega_s n}$$

$$= \sum_{k=0}^{\infty} X(k\omega) e^{+jk\omega_s n}$$

$$\omega_s = 2\pi/N$$

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \frac{1}{2\pi} \int_{2\pi}^{\infty} X(\omega) e^{+j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} X(\omega) \left[2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \right] e^{+j\omega n} d\omega$$

$$= \sum_{k=0}^{N-1} X(k\omega) e^{+j\frac{2\pi k}{N}n} \qquad \text{Let } 2\pi/\omega_s = K$$

$$\omega_s = 2\pi/K$$

- Consider the Inverse Discrete-Time Fourier Transform....
 - What happens if we sample $X(\omega)$?

$$x[n] = \sum_{k=0}^{N-1} X[k]e^{+j\frac{2\pi}{N}}$$
kn

The DTFT becomes the Discrete-Time Fourier Series