Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

United States Department of Agriculture

Agricultural Research Service

ARS-148

October 1998

National Potato Germplasm Evaluation and Enhancement Report, 1997

Sixty-Eighth Annual Report by Cooperators

United States Department of Agriculture

Agricultural Research Service

ARS-148

October 1998

National Potato Germplasm Evaluation and Enhancement Report, 1997

Sixty-Eighth Annual Report by Cooperators

Edited by Kathleen G. Haynes

Vegetable Laboratory
Beltsville Agricultural Research Center
Agricultural Research Service
U.S. Department of Agriculture
Beltsville, MD 20705

Haynes, Kathleen G., ed. 1998. National Potato Germplasm Evaluation and Enhancement Report, 1997: Sixty-Eighth Annual Report by Cooperators. U.S. Department of Agriculture, Agricultural Research Service, ARS–148, 380 pp.

This progress report includes research results that have not yet been peer reviewed. The findings, when adequately confirmed, will be released through other appropriate channels.

This report is reproduced essentially as supplied by the authors. It received minimal publications editing and design. The author's views are their own and do not necessarily reflect those of the U.S. Department of Agriculture.

Mention of trade names in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned.

This publication reports research involving pesticides. It does not contain recommendations for their use nor does it imply that uses discussed here have been registered. All uses of pesticides must be registered by appropriate State or Federal agencies or both before they can be recommended.

While supplies last, single copies of this publication may be obtained at no cost from Kathleen G. Haynes, Vegetable Laboratory, Building 011, Greenhouse 13, BARC–West, Beltsville, MD 20705.

Copies of this publication may be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; telephone (703) 605–6000.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202–720–2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250–9410 or call 202–720–5694 (voice and TDD). USDA is an equal opportunity provider and employer.

Contents

United States Department of Agriculture,	Nebraska	185
Beltsville, MD and Presque Isle, ME1	A.D. Pavlista	
K.G. Haynes, K.O. DeLong, D. Fleck,		
M. Bragg, B. Adams, and C. Lagasse	New Jersey	191
	M.R. Henninger	
United States Department of Agriculture,		
Madison, WI26	New York, Breeding	225
R.E. Hannemann, Jr., A.J. Hamernik,	R.L. Plaisted, B.B. Brodie, D.E. Halseth,	
M. Ramon, and J.C. Kuhl	S.A. Slack, W.M. Tingey,	
	and K.D. Paddock	
North Central Regional Potato Trials		
R. Novy, B. Farnsworth, and Cooperators	New York, Long Island	228
	J.B. Sieczka, D.M. Gergela, R.C. Neese,	
Northeast Regional Potato Trials	M.L. Masierowska, and D.D. Moyer	
J.A. Sisson III and Cooperators		0.10
W. D. I. D. C. W. C. T. I.	New York, Upstate	243
Western Regional Potato Variety Trial	D.E. Halseth, W.L. Hymes, R.W. Porter,	
J.J. Pavek, D.L. Corsini, and Cooperators	and R.L. MacLaury	
California80	North Carolina	269
R. Voss, H. Phillips, J. Nunez, D. Kirby,	G.C. Yencho and W. Hines	20)
F. Laemmlen, R. Mullen, R. Smith,	ore, renend and vv. rames	
J. Valencia, and M. Jimenez	North Dakota	295
	R. Novy, B. Farnsworth, M. Schwalbe,	2>0
Colorado	N. Balbyshev, N. Gudmestad, E. Holm,	
D.G. Holm and J.D. Wick	J. Lorenzen, R. Lund, P. Orr, D. Preston,	
	G. Secor, J. Sowokinos, and B. Brummond	
Idaho	2. 2. 2	
S. Love, J. Pavek, D. Corsini, P. Bain,	Ohio	309
M. Ruby, J. Stimpson, D. Inglis,	R. Hassell, D.M. Kelly, E.C. Wittmeyer,	
and M. Powelson	and J. Elliott	
Maine 115	Oregon	321
G.A. Porter, J.A. Sisson, B. Bradbury,	A. Mosley, D. Hane, S. James, K. Rykbost,	521
B. MacFarline, and P. Wardwell	C. Shock, B. Charlton, and E. Eldredge	
Maine, Breeding	Pennsylvania	338
A.F. Reeves, G.S. Grounds, and N. Huston	B.J. Christ, M.W. Peck, and D.M. Petrunak	
Michigan 140	Texas	342
D.S. Douches, R.W. Chase, K. Jastrzebski,	J.C. Miller, Jr., D.C. Scheuring, and J.W. Koym	5 12
R. Hammerschmidt, W. Kirk,	s.c. winer, st., b.c. beneating, and s. w. Roym	
C. Long, K. Walters, and J. Coombs	Virginia	351
c. Zong, an it and by and it coomes	S.B. Sterrett and C.P. Savage, Jr.	551
Minnesota		
C.A. Thill, R.L. Wenkel, D.K. Wildung,	Wisconsin	362
V.A. Fritz, N.A. Anderson, R.K. Jones,	H. Groza, B. Bowen, and J. Jiang	
D.W. Ragsdale, E.B. Radcliffe,	,,	
and C.A. Longtine		
O		

United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, and Presque Isle, Maine

K.G. Haynes, K.O. DeLong, D. Fleck, M. Bragg, B. Adams, and C. Lagasse

Objectives: The USDA potato breeding program at Beltsville has four main objectives: (1) to develop improved pestresistant germplasm and varieties; (2) to develop improved germplasm and varieties for processing directly out of cold storage; (3) to enhance germplasm for specific characteristics relating to pest resistance, yield, environmental stress, human nutrition and consumer acceptance; and, (4) to develop statistical genetic models for some of the new breeding strategies.

Breeding: Hybridizations in the greenhouse at BARC in early 1997 were made among tetraploid S. tuberosum selections and varieties possessing processing ability or fresh market potential, and late blight, soft rot, or scab resistance; between tetraploid S. tuberosum and tetraploid wild-species hybrids for cold temperature chipping ability; between tetraploid S. tuberosum and diploid S. phureja-S. stenotomum hybrids with high specific gravity; between S. phureja-S. stenotomum hybrids and haploidspecies hybrids for high specific gravity and processing ability; and, among S. phureja-S. stenotomum selections for late blight resistance. In all, 560 tetraploid, 23 tetraploid x diploid, and 197 diploid crosses were successful.

Processing Evaluations: Yield trials for round whites (Tables 1-4), russets (Table 5), and specialty market types (Table 6) were conducted at Echo Lake. These were

planted in a randomized complete block design with four replications of 25 hills on May 28-29, 1997. Plants were spaced 9 inches within the row for all trials except the russet trial, in which plants were spaced 12 inches within the row. After harvest, September 16-19, tubers from each plot were graded, specific gravity was determined by the weight in air and weight in water method, and the ten largest tubers from each plot were cut to determine the presence of hollow heart. Tuber samples were stored at 40°F, 45°F, and 50°F. Tubers were processed out of 40°F, 45°F, and 50°F, and following a three week reconditioning period of 70°F from 40°F storage during January and February for the round white and russet trials. Selections in the specialty market trial were processed out of 50°F on December 5, 1997. For each combination of storage temperature and processing date, five tubers per sample from each plot were processed (20 samples per clone).

Tuber samples from all yield trials except the russets were processed into potato chips by taking 1/16-inch slices from the cross section of each tuber. Slices were rinsed in water and placed on paper towels to remove exceess moisture. Chips were then fried at 340°F in Primex vegetable shortening until bubbling ceased.

Among the most advanced round, white-skinned selections in the program B0178-34, B0564-8, B0564-9, B0766-3, and B1240-1 show promise for the chipping industry, while B1065-61 (a 4x-2x hybrid) looks promising as a fresh market type (Table 1). Among the more recent round, white-skinned selections B1414-6, B1415-5, B1415-7, B1429A-3, B1440-10, B1440-18, B1445-7, B1449-1, B1338-27, B1452-23, and B1477-5 all processed well in January out of the two warmer storage temperatures,

however, with the exception of B1477-5, the yields of these selections were significantly less than that of Atlantic (Tables 2-4). Tubers of B1463-12 were long and particularly attractive. This clone may have some fresh market potential.

Among the specialty market selections in the program, B0811-4 shows promise as a fairly high yielder of small, red skin, yellow flesh potatoes. Heavy skin netting continues to be a major concern in B0811-13. B1491-17 is another red skin, yellow flesh selection with a fairly good yield of attractive tubers (Table 6).

Tuber samples from the russet yield trial were processed into french fries. A 3/8-inch diameter plug was cut from the cross section of each tuber, rinsed, dried, and fried at 365°F for five minutes.

Among the russet selections in the program B9922-11 still shows a lot of promise for either fresh market or processing. Tubers of B1004-8 and B1482-6 were attractive, but yields were very low (Table 5).

This year 75 varieties maintained in our variety collection were evaluated in yield trials with the standard varieties Atlantic and Superior (Tables 7-9) following the procedures used in the specialty market yield trials, with the exception that the last trial was planted on Aroostook Farm instead of Echo Lake. The yield, specific gravity, and chip color out of 50°F storage in December for Grand Falls and Trent were as good as Atlantic. Hollow heart was a severe problem in Red Kote.

The following selections are established in tissue culture and available for distribution to state certification agencies upon written request to K.G. Haynes: B9922-11, B0178-34, B0564-8, and B0564-9.

BARC Table 1. Yield, tuber size distribution, and quality characteristics of round whites havested 116 days after planting at Echo Lake in 1997.

					% Tuber	% Tuber Size Distribution	tion			
		Mkt								
Pedigree	% Stand1	CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	>4"	SG ²	HIH
Atlantic	67	361	95	3.3	19.0	58.7	17.8	1.2	77	2
B0178-34	96	320	94	6.1	28.7	52.8	12.4	0.0	77	10
B0564-8	100	284	90	8.3	29.8	53.8	6.7	1.5	75	0
B0564-9	100	358	95	4.3	20.4	50.8	23.7	0.7	75	0
B0766-3	94	263	92	9.9	24.3	53.4	14.5	1.3	70	_
B1065-51	95	259	95	4.3	15.9	57.5	21.6	0.7	89	0
B1066-51	76	315	06	8.6	35.3	53.4	1.6	0.0	75	0
B1066-73	76	334	91	9.4	26.6	58.2	5.8	0.0	72	4
B1070-88	94	272	82	17.5	54.2	28.3	0.0	0.0	79	_
B1072-21	93	312	97	2.9	18.0	68.1	11.0	0.0	63	0
B1083-51	86	271	94	6.2	34.6	56.5	2.7	0.0	92	0
B1088-37	96	340	89	4.6	16.8	45.6	27.0	0.9	65	7
B1110-11	76	246	98	13.9	37.9	44.6	3.5	0.0	75	7
B1206-10	94	252	91	4.8	23.8	53.3	14.4	3.7	89	7
B1214-7	97	364	91	2.9	10.2	47.2	34.2	5.6	9	0
B1240-1	94	337	93	7.2	30.0	56.0	8.9	0.0	72	0
Monona	76	225	06	6.6	43.4	45.0	1.7	0.0	64	0
Snowden	66	315	93	7.4	37.6	50.1	5.0	0.0	79	0
LSD (.05)		69							03	

¹ Stand count on June 30, 1997

² 1.0 omitted

³ Number of tubers with hollow heart out of 40

BARC Table 1. Continued

edigree	Shape ⁴	Eye Depth ⁵	Sgré	GC,	SS	HS ₉	GR^{10}	SB
Atlantic	7	5	6	7	00	6	6	6
B0178-34	3	9	6	6	7	6	6	6
B0564-8	7	5	6	7	7	6	6	6
B0564-9	7	5	6	7	7	6	6	6
B0766-3	7	5	6	7	7	6	6	6
B1065-51	2	7	6	7	7	6	6	6
B1066-51	3	7	5	7	5	6	6	6
B1066-73	7	5	7	\$	00	6	6	6
B1070-88	4	7	7	7	7	6	6	6
B1072-21	2	5	6	6	7	6	6	2
B1083-51	2	5	6	6	7	6	6	6
B1088-37	2	5	6	7	7	6	6	3
B11110-111	2	5	6	7	7	6	6	6
B1206-10	3	5	7	5	00	6	7	6
B1214-7	2	5	7	7	5	6	6	7
B1240-1	2	7	. 6	6	7	6	6	6
Monona	3	7	6	∞	00	6	6	6
Snowden	2	5	6	6	7	6	6	6

NE-184 rating scale	77	"	>>	22	27	"	>>	
1 Tuber shape	⁵ Eye depth	Second growth	7 Growth cracks	8 Silver scurf	9 Heat sprouts	¹⁰ Greening	11 Scab	,

BARC Table 1. Continued

Temperature	50°F	°F	45	Ĥ	40	لتر ا	40°-7	70°F	50°	Ŧ	45°]	[T	40°I	[T .	40°-70°F	0°F
Date	1,	/5	1/	1/6	1/7	7	1/.	26	2/2	2	2/3	3	2/4	4	2/	17
Pedigree	Chip ¹²	Spt ¹³	Chip	Spt	Chip	Spt	Chip	Chip Spt	Chip	Spt	Chip	Spt	Chip	Spt	Chip	ip Spt
Atlantic	2.6	S	2.9	S	5.0	0	3.6	J	2.8	VL	3.3	M	5.0	S	3.1	J
B0178-34	1.0	S	1.0	S	3.8	0	2.6	S	1.8	VL	1.2	VL	4.0	S	2.5	\mathbb{Z}
B0564-8	1.6	S	1.7	S	4.4	0	3.5	\mathbb{Z}	2.1	VL	2.0	VL	4.3	S	3.1	K
B0564-9	2.0	S	2.3	S	5.0	0	3.0	\mathbb{Z}	2.8	Γ	2.9	Z	4.8	S	3.0	П
B0766-3	1.1	\mathbb{Z}	1.0	Σ	4.2	0	1.8	Γ	1.9	VL	1.4	Z	4.0	S	2.5	Z
B1065-51	4.4	S	4.0	\boxtimes	5.0	0	4.6	\mathbb{Z}	3.8	VL	4.1	VL	4.9	S	4.7	Π
B1066-51	3.8	\mathbb{Z}	3.7	\mathbb{Z}	5.0	0	4.6	\mathbb{Z}	3.2	VL	4.0	ΛL	5.0	S	3.9	Z
B1066-73	3.4	\mathbb{Z}	3.5	S	5.0	0	4.3	S	3.7	VL	3.5	ΛL	5.0	S	4.4	\mathbb{Z}
B1070-88	3.8	VL	3.1	VL	5.0	0	4.8	VL	3.6	VL	3.7	Z	5.0	\mathbb{Z}	4.5	Z
B1072-21	2.7	S	3.0	0	5.0	0	4.0	S	2.7	\mathbb{Z}	2.3	Γ	5.0	0	3.9	S
B1083-51	2.5	S	2.4	S	5.0	0	3.8	S	2.8	S	2.2	S	5.0	0	3.7	\mathbb{Z}
B1088-37	4.0	S	4.3	\mathbb{Z}	4.9	0	4.8	\mathbb{Z}	4.0	VL	3.8	VL	5.0	S	4.4	Π
B1110-11	1.8	S	2.5	Z	4.8	0	3.2	\boxtimes	2.7	VL	2.4	ΛĽ	4.7	S	3.1	\boxtimes
B1206-10	2.7	J	2.5	VL	4.9	0	3.8	\mathbb{Z}	3.2	VL	3.1	VL	4.7	S	4.2	L
B1214-7	4.9	S	4.8	S	5.0	0	5.0	S	4.0	J	4.1	Γ	5.0	S	4.9	J
B1240-1	2.2	S	2.2	S	5.0	0	3.2	S	2.2	\mathbb{Z}	2.0	Γ	4.7	S	2.7	\boxtimes
Monona	2.0	S	1.1	S	4.7	0	2.2	S	2.3	J	1.7	ΛΓ	4.1	S	2.7	\boxtimes
Snowden	1.0	S	1.0	S	4.3	0	2.3	\mathbb{Z}	1.4	Γ	1.3	J	4.0	S	1.9	Z

Chips 1-2 = satisfactory, 3 = marginal 3 Sprout 0 = no sprouts S = <0.5" M = 0.5" - 1.5" L = 1.5" - 2.5" VL = >2.5"

BARC Table 2. Yield, tuber size distribution, and quality characteristics of round whites harvested 113 days after planting at Echo Lake in 1997.

					% Tuber Size I	Size Distributi	ou			
Pedigree	% Stand1	Mkt CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	×4"	SG ²	H
, .	9	250	01	4	176	55.9	17.9	5.1	78	9
Atlantic	100	559	71		0.70	54.0	9 6	0.0	82	4
B1240-14	100	291	76	/ · /	6.17	7: 1:	, -		17	<u> </u>
B1248-5	100	256	98	13.5	44.0	41.3	1.2	0.0	1 /	> 0
R1321-21	86	272	06	7.1	25.5	53.7	10.6	3.1	69	× ·
B1414-6	06	286	95	4.5	14.0	64.6	16.8	0.0	72	_
D1414-0	100	206	98	13.9	44.3	39.3	2.4	0.0	78	0
B1415-5	201	240	0 0	o v	12.0	69.2	12.9	0.0	71	4
B1415-/	76	240	r (0.0	17.7	60.7	17.0	3.7	64	3
Kennepec	1.6	310	76	5.7	1+.				77	
Superior	66	265	94	6.5	38.5	51.1	5.9	0.0	† 4	>
LSD (.05)		48							0	

1-13 See BARC Table 1

BARC Table 2. Continued.

)	$Shape^4$	Eye Depth ⁵	Sgr^6	GC,	SS	HS	GR	SB
	,		c	c	٢	0	0	6
Atlantic	7	^	7	7	_	Λ .	` '	\ (
R1240-14	2	7	6	7	7	6	6	6
B1248-5	1 6	7	6	6	7	6	7	6
B1371_71	1 0	7	6	7	5	6	7	6
B1414-6	1 0		. 6	6	5	6	6	6
D1414-0	1 0	. •	6	6	7	6	6	6
D1412-3	1 C	. [-	6	7	5	6	6	6
D1413=7	1 4	· V	۰ ٥	6	5	6	6	6
Nennepec .	n (7 V	\ C	\ 0	7	. 6	6	6
Superior	7	r	^			\		

BARC Table 2. Continued

Temperature	50	50°F	4,4	5°F	40,	H	40°-7	.0°F	50°F	Ţ	45°]	[<u>T</u>	40°F		40°-70°F	°F
Date	T	/5		9/1	1/7	7	1/27	7	2/2		2/3		2/4		2/17	7
	Chip ¹² Spt ¹³	Spt ¹³	Chip	Spt	Chip Spt	Spt	Chip Spt	Spt	Chip Spt	Spt	Chip Spt	Spt	Chip	Spt	Chip	Spt
•	¢	4	1	4	(,										
Atlantic	2.5	S	3.0	S	5.0	0	3.3	Σ	3.1	T	2.8	VL	5.0	S	3.2	VL
B1240-14	2.2	VL	2.0	VL	5.0	0	4.2	\mathbb{Z}	2.9	VL	2.7	VL	5.0	S	3.1	Γ
B1248-5	3.4	T	3.6	VL	5.0	0	4.9	\mathbb{Z}	3.8	VL	3.9	VL	4.9	S	4.4	Γ
B1321-21	3.4	\mathbb{Z}	3.5	S	5.0	0	4.9	\boxtimes	3.9	VL	3.9	VL	5.0	S	4.4	VL
B1414-6	1.8	S	1.5	S	5.0	0	3.4	S	2.4	Σ	2.0	\boxtimes	4.4	0	3.4	S
B1415-5	1.9	S	1.7	Z	4.7	0	4.1	\mathbb{Z}	2.4	VL	1.7	VL	4.2	0	3.2	Γ
B1415-7	1.7	S	1.9	S	4.6	0	3.2	S	3.0	Σ	2.5	Γ	4.3	0	2.1	\mathbf{Z}
Kennebec	2.1	S	2.2	S	5.0	0	4.0	S	3.1	\mathbb{Z}	2.9	J	5.0	S	3.7	Ξ
Superior	2.6	Г	2.2	Γ	5.0	0	4.5	Σ	2.9	VL	2.9	VL	5.0	S	3.9	Γ

BARC Table 3. Yield, tuber size distribution, and quality characteristics of round white harvested 112 days after planting at Echo lake in 1997.

					% Tuber Size	Size Distribution	tion			
		Mkt								
Pedigree	% Stand ¹	CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	*4<	SG2	HIH3
Atlantic	100	355	94	3.9	22.8	54.8	16.0	2.6	80	4
B1429A-3	100	265	91	8.6	39.0	48.3	4.1	0.0	9/	0
B1440-10	66	217	77	22.9	59.2	17.1	0.8	0.0	71	0
B1440-18	100	213	80	19.7	56.0	24.3	0.0	0.0	99	0
B1445-7	100	240	92	7.6	37.8	48.8	5.8	0.0	80	0
B1449-1	96	263	95	5.0	26.5	63.5	4.9	0.0	71	0
B1450-10	100	129	41	59.2	37.1	3.7	0.0	0.0	71	0
B1450-20	66	200	68	31.8	55.6	12.5	0.0	0.0	61	9
B1450-25	100	202	99	33.7	57.9	8.5	0.0	0.0	99	4
B1450-26	91	12	11	89.1	10.9	0.0	0.0	0.0	89	0
B1452-16	100	229	85	14.6	58.2	26.2	1.0	0.0	69	
B1452-9	100	240	87	13.2	41.0	42.3	3.5	0.0	99	0
Coastal Chip	100	257	88	12.0	40.2	39.2	8.5	0.0	74	0
Irish Cobbler	100	216	85	15.2	49.4	32.1	3.3	0.0	70	-
LSD (.05)		09							2	

1-13 See BARC Table 1

BARC Table 3. Continued

Pedigree	Shape ⁴	Eye Depth ⁵	Sgr ⁶	GC,	SS®	HS ₉	GR 10	SB ¹¹
Atlantic	2	m	6	6	7	6	6	6
B1429A-3	2	7	6	6	7	6	7	6
B1440-10	∞	7	6	6	7	6	6	6
B1440-18	2	7	6	6	7	6	6	6
B1445-7	3	7	6	6	7	6	6	7
B1449-1	5	7	6	7	7	6	6	6
B1450-10	2	7	7	6	7	6	7	6
B1450-20	7	ν,	7	6	5	6	7	7
B1450-25	9	7	7	6	7	6	6	7
B1450-26	∞	∞	6	6	7	6	7	6
B1452-16	3	7	6	6	7	6	6	6
B1452-9	2	ς.	6	6	7	6	7	6
Coastal Chip	3	\$	6	6	7	6	6	6
Irish Cobbler	2	3	6	6	7	6	6	6

BARC Table 3. Continued

Temperature	50°F	F	45	냬	40°]	T	40°-70)°F	50°	H	45°F	Į (τ.	40°F		40°-70°F	0°F
Date	1,	/5	1/	9/1	1/6	1/6	1/27	7	2/2	2	2/3	3	2/4	-	2/	17
Pedigree	Chip ¹²	Chip ¹² Spt ¹³	Chip	Spt	Chip	Spt	Chip	Spt	Chip	Spt	Chip	Spt	Chip	Spt	Chip	Spt
Atlantic	2.1	S	2.1	S	5.0	0	3.2	\geq	2.1	L	1.8	M	4.7	S	2.9	7
B1429A-3	2.1	S	2.1	S	5.0	0	2.9	\mathbb{Z}	2.4	VL	2.6	VL	5.0	0	2.8	J
B1440-10	1.5	S	1.0	S	4.5	0	2.9	\mathbb{Z}	1.6	Γ	1.6	l	4.0	S	3.0	VL.
B1440-18	1.1	S	1.0	S	2.4	0	1.8	S	1.0	L	1.3	Н	2.8	S	2.0	\vdash
B1445-7	1.1	S	1.3	S	4.0	0	3.3	S	1.8	Г	1.3	VL.	3.8	S	2.9	J
B1449-1	1.0	0	1.0	S	4.8	0	4.0	S	1.5	S	1.6	S	4.5	0	4.0	S
B1450-10	3.0	Γ	2.7	\mathbb{Z}	5.0	0	4.6	\mathbb{Z}	2.8	Z	3.2	VL	5.0	S	3.9	\mathbb{Z}
B1450-20	4.0	S	3.9	S	5.0	0	4.6	S	3.9	L	4.0	J	5.0	S	4.3	口
B1450-25	3.9	S	3.8	S	5.0	0	4.5	\mathbb{Z}	3.5	L	4.1	J	5.0	S	4.1	口
B1450-26	2.7	Z	2.2	\mathbb{Z}	4.6	0	4.3	\mathbb{Z}	2.7	L	3.0	J	5.0	S	4.0	\mathbb{Z}
B1452-16	3.6	S	2.7	\boxtimes	5.0	0	4.5	\boxtimes	3.2	VL.	3.3	Z	5.0	S	4.1	-
B1452-9	3.5	S	2.8	S	5.0	0	4.3	S	2.9	L	3.3	Z	5.0	S	3.9	Ц
Coastal Chip	1.5	\boxtimes	1.5	\mathbb{Z}	4.5	0	2.6	\mathbb{Z}	1.7	VL	1.6	VL.	3.8	S	2.6	口
Irish Cobbler	3.5	S	3.1	S	5.0	0	3.9	S	2.9	Ξ	3.2	M	5.0	S	3.7	\boxtimes

BARC Table 4. Yield, tuber size distribution, and quality characteristics of round whites harvested 112 days after planting at Echo Lake in 1997.

					% Tuber Siz	% Tuber Size Distribution				
		Mkt	•							
Pedigree	% Stand1	CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	>4"	SG ²	HH3
Atlantic	100	317	94	5.2	29.1	53.7	11.1	6.0	81	_
B1338-27	100	253	87	12.9	53.2	33.9	0.0	0.0	73	0
B1452-18	76	344	92	7.8	27.8	58.1	6.3	0.0	99	0
B1452-19	100	187	70	29.6	47.7	22.8	0.0	0.0	71	0
B1452-20	86	265	95	5.2	23.4	66.3	5.1	0.0	09	7
B1452-21	66	190	87	10.8	26.3	47.2	13.2	2.6	62	
B1452-23	66	246	85	15.0	50.9	33.4	0.7	0.0	62	0
B1452-25	66	252	80	19.6	56.5	23.9	0.0	0.0	62	0
B1463-12	100	279	87	12.8	53.1	34.1	0.0	0.0	89	0
B1477-5	66	332	94	5.8	28.3	59.7	6.3	0.0	75	0
B1478-8	100	303	93	6.5	22.9	63.5	7.1	0.0	71	0
B1479-4	94	228	88	11.5	45.0	42.7	8.0	0.0	73	-
Katahdin	66	303	93	7.0	36.4	55.1	1.5	0.0	99	0
Oceania	100	262	68	11.5	36.6	45.2	6.7	0.0	63	_
Ontario	100	347	92	8.5	34.5	47.8	9.2	0.0	28	_
Suncrisp	100	313	91	9.5	40.6	47.5	2.5	0.0	84	0
LSD (.05)		55							04	

1-13 See BARC Table 1

BARC Table 4. Continued.

Leuigice	Shape	Eye Depth	Sgr	, GC,	SS	HS	GK	SB
Atlantic	2	5	7	6	7	6	6	6
B1338-27	1 72	7	7	6	5	6	6	6
1452-18	3	5	7	6	7	6	6	6
\$1452-19	7	5	7	6	7	6	6	6
B1452-20	8	5	6	6	7	6	6	6
1452-21	2	5	7	6	5	6	6	6
\$1452-23	9	5	7	6	5	6	6	6
\$1452-25	3	5	7	6	7	6	6	6
1463-12	∞	7	6	6	7	6	6	6
11477-5	m	5	7	6	7	6	6	6
1478-8	m	7	6	6	5	6	6	6
B1479-4	7	7	6	6	7	6	7	6
Katahdin	7	5	7	6	5	6	6	6
Oceania	7	7	6	6	7	6	7	6
Ontario	3	3	7	6	5	6	6	6
Suncrisp	7	3	7	6	7	6	6	6

BARC Table 4. Continued.

Date 1/5 1/5 1/6 1/27 2/2 2/3 Pedigree Chip Spt Chip Spt<	Temperature		50°F	4	5°F	40	H	40°-7	.0°F	50°	H	45°	[L]	40°F		40°-70°F	H.
2.9 S 2.4 S 4.9 O 2.9 M 2.5 VL 1.6 S 2.0 O 4.9 O 3.2 M 2.3 L 4.0 M 4.1 M 5.0 O 4.9 S 3.2 M 2.3 L 4.1 S 3.9 S 5.0 O 4.9 S 4.1 M 4.1 S 3.9 S 5.0 O 4.3 M 4.1 L 3.0 S 3.1 O 5.0 O 4.3 M 2.4 VL 4.0 S 4.4 S 5.0 O 5.0 S 3.5 S 2.0 S 5.0 O 4.5 L 3.3 M 3.4 S 5.0 O 5.0 S 0 S 3.5 S 3.3 M 5.4 S 5.0 O 5.0 S 0 S 3.5 S 3.3 M 5.4 S 5.0 O 5.0 S 0 S 3.5 S 3.3 M 5.4 S 5.0 O 5.0 S 0 S 0 S 0 S 3.3 M 5.4 S 5.0 O 5.0 S 0 S 0 S 0 S 3.3 M 5.4 S 5.0 O 5.0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S	Date		1/5		/5	1/	9	1/2	7	2/2	•)	2/2	3	2/4		2/17	_
2.9 S 2.4 S 4.9 O 2.9 M 2.5 VL 4.0 M 4.1 M 5.0 O 4.9 S 3.2 M 2.3 L 4.1 M 5.0 O 4.9 S 3.2 M 2.3 L 4.1 M 5.0 O 4.9 S 3.9 VL 3.8 S 5.0 O 4.9 S 3.9 VL 3.0 S 3.1 O 5.0 O 5.0 S 3.5 S 5.0 O 5.0 S 5.0	Pedigree	Chip ^L	2 Spt ¹³	Chip	Spt	Chip	Spt	Chip	Spt	Chip	Spt	Chip	Spt	- 1	Spt	Chip	Spt
1.6 S 2.0 O 4.9 O 3.2 M 2.3 L 4.0 M 4.1 M 5.0 O 4.9 S 3.9 VL 3.8 O 3.8 S 5.0 O 4.9 S 4.1 M 4.1 S 3.9 S 5.0 O 4.3 M 4.1 L 3.0 S 2.5 S 5.0 O 5.0 S 3.5 S 2.0 S 2.5 S 5.0 O 3.4 M 2.4 VL 4.0 S 4.4 S 5.0 O 5.0 S 3.5 S 3.3 M 3.4 S 5.0 O 5.0 S 0 3.7 VL 1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 M 5.0 O 3.9 M 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 2.0 M 3.4 M 5.0 O 4.8 M 3.6 VL 2.0 M 2.0 M 4.1 O 2.8 M 2.4 VL	Atlantic	2.9	S	2.4	S	4.9	0	2.9	\boxtimes	2.5	VL	2.3	VL	4.6	S	3.2	J
4.0 M 4.1 M 5.0 O 4.9 S 3.9 VL 3.8 S 5.0 O 4.9 S 4.1 M 4.1 S 3.9 S 5.0 O 4.3 M 4.1 L 3.0 S 3.1 O 5.0 O 5.0 S 3.5 S 2.0 S 2.5 S 5.0 O 5.0 S 3.5 S 4.0 VL 4.0 S 4.4 S 5.0 O 5.0 S 3.5 VL 1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 M 5.0 O 3.9 S 3.6 VL 4.2 M 5.0 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.6 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 3.7 S 3.8 S 5.0 O 2.8 M 2.4 VL	B1338-27	1.6	S	2.0	0	4.9	0	3.2	\mathbb{Z}	2.3	Τ	1.7	VL	4.3	S	3.4	П
3.8 O 3.8 S 5.0 O 4.9 S 4.1 M 4.1 S 3.9 S 5.0 O 4.3 M 4.1 L 3.0 S 3.1 O 5.0 O 5.0 S 3.5 S 2.0 S 2.5 S 5.0 O 3.4 M 2.4 VL 4.0 S 4.4 S 5.0 O 5.0 S 4.0 VL 3.3 M 3.4 S 5.0 O 4.5 L 3.7 VL 1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 L 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 2.0 M 3.4 M 5.0 O 4.8 M 3.6 VL 2.0 M 3.4 M 5.0 O 2.8 M 2.4 VL	B1452-18	4.0	\mathbb{Z}	4.1	Σ	5.0	0	4.9	S	3.9	VL	4.3	VL	5.0	S	4.1	\mathbb{Z}
4.1 S 3.9 S 5.0 O 4.3 M 4.1 L 3.0 S 2.5 S 5.0 O 5.0 S 3.5 S 2.0 S 4.4 S 5.0 O 5.0 S 4.0 VL 4.0 S 4.4 S 5.0 O 5.0 S 4.0 VL 1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 M 5.0 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.6 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 2.0 M 4.1 O 2.8 M 2.4 VL 2.4 VL	B1452-19	3.8	0	3.8	S	5.0	0	4.9	S	4.1	\mathbb{Z}	4.0	Γ	5.0	0	4.8	\mathbf{Z}
3.0 S 3.1 O 5.0 O 5.0 S 3.5 S 5.0 S 2.5 S 5.0 O 3.4 M 2.4 VL 4.0 S 4.4 S 5.0 O 5.0 S 4.0 VL 3.3 M 3.4 S 5.0 O 4.5 L 3.7 VL 1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 L 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 2.0 M 4.1 O 2.8 M 2.4 VL 2.9 M 3.6 VL 3.5 M 3.4 M 5.0 O 3.8 M 2.4 VL	B1452-20	4.1	S	3.9	S	5.0	0	4.3	\mathbb{Z}	4.1	J	3.8	VL	5.0	S	4.3	\mathbb{Z}
2.0 S 2.5 S 5.0 O 3.4 M 2.4 VL 4.0 S 4.4 S 5.0 O 5.0 S 4.0 VL 3.3 M 3.4 S 5.0 O 4.5 L 3.7 VL 4.2 M 2.9 M 5.0 O 3.9 M 2.3 VL 4.2 M 2.9 L 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 4.8 M 3.6 VL 3.5 M 3.4 M 5.0 O 4.8 M 3.6 VL 2.0 M 4.1 O 2.8 M 2.4 VL	B1452-21	3.0	S	3.1	0	5.0	0	5.0	S	3.5	S	3.1	S	5.0	S	4.0	\boxtimes
4.0 S 4.4 S 5.0 O 5.0 S 4.0 VL 3.3 M 3.4 S 5.0 O 4.5 L 3.7 VL 1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 L 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.5 M 3.4 M 5.0 O 2.8 M 2.4 VL 2.0 M 4.1 O 2.8 M 2.4 VL	B1452-23	2.0	S	2.5	S	5.0	0	3.4	\mathbb{Z}	2.4	VL	1.9	VL	4.8	S	2.9	\vdash
3.3 M 3.4 S 5.0 O 4.5 L 3.7 VL 4.2 M 2.9 M 5.0 O 3.9 M 3.6 VL 4.2 M 5.0 O 3.9 M 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.2 M 5.0 O M 4.1 O 2.8 M 2.4 VL	B1452-25	4.0	S	4.4	S	5.0	0	5.0	S	4.0	VL	4.3	VL	5.0	S	4.8	П
1.9 L 1.4 L 4.5 O 2.9 M 2.3 VL 4.2 M 2.9 L 4.9 O 3.9 M 3.6 VL 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.5 M 5.0 O 4.8 M 3.6 VL 2.0 M 4.1 O 2.8 M 2.4 VL	B1463-12	3.3	\mathbb{Z}	3.4	S	5.0	0	4.5	Γ	3.7	VL	3.8	VL	5.0	0	4.1	VL
4.2 M 2.9 M 5.0 O 3.9 M 3.6 VL 3.2 M 2.9 L 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.5 M 5.0 O 4.8 M 3.6 VL 2.0 M 1.0 M 4.1 O 2.8 M 2.4 VL	B1477-5	1.9	Γ	1.4	П	4.5	0	2.9	Ξ	2.3	VL	2.4	VL	4.4	S	2.9	ļ
3.2 M 2.9 L 4.9 O 3.9 S 3.6 VL 4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.5 M 5.0 O 4.8 M 3.6 VL 2.0 M 1.0 M 4.1 O 2.8 M 2.4 VL	B1478-8	4.2	\mathbb{Z}	2.9	\mathbb{Z}	5.0	0	3.9	Ξ	3.6	VL	4.1	VL	5.0	S	3.3	VL
4.0 M 3.6 M 5.0 O 3.9 S 3.5 VL 3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.5 M 3.4 M 5.0 O 4.8 M 3.6 VL 2.0 M 1.0 M 4.1 O 2.8 M 2.4 VL	B1479-4	3.2	\mathbb{Z}	2.9	Γ	4.9	0	3.9	S	3.6	VL	3.0	VL	4.7	S	3.3	Ξ
3.7 S 3.8 S 5.0 O 3.5 M 3.2 M 3.5 M 3.4 M 5.0 O 4.8 M 3.6 VL 2.0 M 1.0 M 4.1 O 2.8 M 2.4 VL	Katahdin	4.0	\boxtimes	3.6	\mathbb{Z}	5.0	0	3.9	S	3.5	VL	3.8	VL	5.0	0	3.6	Ξ
3.5 M 3.4 M 5.0 O 4.8 M 3.6 VL 2.0 M 1.0 M 4.1 O 2.8 M 2.4 VL	Oceania	3.7	S	3.8	S	5.0	0	3.5	\mathbb{Z}	3.2	Σ	3.9	Γ	5.0	S	4.0	П
2.0 M 1.0 M 4.1 O 2.8 M 2.4 VL	Ontario	3.5	\boxtimes	3.4	\mathbb{Z}	5.0	0	4.8	Σ	3.6	VL	3.8	VL	5.0	S	4.8	Γ
	Suncrisp	2.0	\mathbb{Z}	1.0	\mathbb{Z}	4.1	0	2.8	\mathbb{Z}	2.4	VL	1.7	Λ	4.0	S	3.0	Π

BARC Table 5. Yield, tuber size distribution, and quality characteristics of russets harvested 110 days after planting at Echo Lake in 1997.

		Mkt							
Pedigree	% Stand ¹	CWT/A	%Mkt	<2 oz	26 oz	6-10 oz	10-16 oz	SG ²	HH3
B0835-11	100	252	94	6.3	34.0	59.8	0.0	69	2
B1004-8	86	225	06	10.4	50.5	39.1	0.0	73	0
B1409-2	100	313	95	5.4	35.3	57.6	1.7	79	0
B1450-12	66	172	65	35.5	50.0	14.6	0.0	29	6
B1452-10	100	211	84	15.6	53.1	30.7	9.0	73	0
B1452-27	100	208	81	19.1	53.0	27.9	0.0	61	0
B1452-3	66	223	83	17.3	44.9	36.8	1.1	9	0
B1463-1	100	253	93	6.5	37.6	50.5	5.4	71	0
B1466-12	95	215	95	5.3	28.7	65.4	0.7	69	0
B1469-14	94	190	81	18.7	61.5	19.4	0.4	74	0
B1469-2	97	227	92	7.9	55.7	35.0	1.4	77	0
B1482-10	100	185	94	5.8	32.5	56.4	5.4	99	0
B1482-6	66	216	93	6.7	32.9	60.4	0.0	71	7
B9922-11	100	311	96	3.9	13.0	65.6	17.5	74	4
Russet Burbank	66 3	219	79	20.8	54.1	23.8	1.4	99	0
Russette	100	271	94	6.3	38.2	55.0	0.1	81	0
LSD (.05)		39						03	

1-11,13 See BARC Table 1

BARC Table 5. Continued

r cargine	Shape ⁴	Eye Depth ⁵	Sgr^6	GC,	SS	HS	GR	SB
B0835-11	7	7	6	6	2	6	6	7
B1004-8	9	7	6	6	7	6	6	6
B1409-2	7	7	6	6	5	6	6	2
B1450-12	∞	7	2	7	3	6	7	7
B1452-10	7	7	7	6	7	6	6	3
B1452-27	∞	7	6	6	7	6	6	6
B1452-3	7	7	7	6	7	6	6	7
B1463-1	7	7	6	7	7	6	6	7
B1466-12	7	7	6	7	7	6	6	6
B1469-14	∞	7	6	6	7	6	6	7
B1469-2	ς,	7	6	6	5	6	7	3
B1482-10	7	7	6	7	7	6	6	6
B1482-6	∞	7	6	6	7	6	6	6
B9922-11	3	7	7	5	7	6	6	6
Russet Burbank	00	5	2	7	2	6	6	6
Russette	3	7	6	5	7	6	6	6

BARC Table 5. Continued.

Temperature	50°F	F.	45°	Ä	40	Ĥ,	40°-	70°F	50°	Ŧ	45°]	[T.	40°]	Œ	40°-7	0°F
Date	1/	7	1/12	7	1/13	3	1/	1/26	2/	2/4	2/5		2/5	2/5	2/17	7
Pedigree	Fry ¹² Spt ¹³	Spt ¹³	Fry	Spt	Fry Spi	Spt	Fry	Spt	Fry	Spt	Fry	Spt	Fry	Spt	Fry	Spt
B0835_11	2	<u> </u>	0 0	C	4	C	C 4	V.	3.0	V.	2	V.	4.5	0	4.6	S
B1004-8	, c) 0	2 5) _U	0.4) 0	۲. ا) V	23) V.	4	Σ	4.5	· 02	2.6	\geq
B1409-2	1.6) V	1.7		4.3	· 0	3.9	\ \sigma	1.5	Σ	1.5	S	3.9	0	3.0	Σ
B1450-12	3.2	Σ	3.2	Σ	5.0	S	4.1	\boxtimes	3.0	T	3.1	T	4.6	S	4.1	\boxtimes
B1452-10	1.5	\mathbb{Z}	1.0	\mathbb{Z}	3.8	0	3.4	S	1.0	VL	1.6	VL	3.3	0	3.0	\mathbb{Z}
B1452-27	2.1	S	2.5	S	5.0	0	4.5	S	2.8	Σ	2.3	Γ	4.6	0	4.7	\mathbb{Z}
B1452-3	2.0	S	2.0	S	4.1	S	3.5	S	2.5	\mathbb{Z}	1.3	Γ	3.5	0	3.6	\mathbb{Z}
B1463-1	2.3	\boxtimes	1.9	\mathbb{Z}	4.4	S	3.8	\mathbb{Z}	2.7	VL	2.6	VL	3.7	S	3.6	ļ
B1466-12	3.7	S	3.7	S	4.9	0	4.9	Σ	3.6	\mathbb{Z}	3.4	Γ	4.5	0	4.8	\mathbb{Z}
B1469-14	3.0	\boxtimes	2.1	\mathbb{Z}	4.6	S	3.0	\mathbb{Z}	2.8	VL	2.8	VL	3.9	S	3.3	J
B1469-2	1.9	S	2.1	S	4.0	0	3.0	\mathbb{Z}	2.3	\boxtimes	1.9	VL	3.1	0	2.3	\mathbb{Z}
B1482-10	2.7	\mathbb{Z}	2.7	T	4.6	S	3.3	Z	3.0	VL	2.7	VL	4.0	S	3.7	\mathbb{Z}
B1482-6	1.1	S	1.3	S	2.8	0	2.6	\mathbb{Z}	1.3	S	1.3	\boxtimes	2.8	0	2.2	\mathbb{Z}
B9922-11	2.3	S	2.1	S	4.5	0	3.1	S	2.0	Σ	1.8	Σ	4.3	S	2.8	\boxtimes
Russet Burbank	3.3	0	3.1	0	4.9	0	3.8	S	3.0	S	2.9	0	4.4	S	4.0	S
Russette	3.0	S	3.0	S	4.6	0	3.6	\mathbb{Z}	2.6	\mathbb{Z}	3.0	Γ	4.3	S	2.8	\mathbb{Z}

¹² Fry 1-3 = satisfactory

BARC Table 6. Yield, tuber size distribution, and quality characteristics of specialty types of potatoes harvested 113 days after planting at Echo Lake in 1997.

					% Tuber S	% Tuber Size Distribution	ion			
		Mkt								
Pedigree	% Stand ¹	CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	× ×	SG ²	HH
B0811-13	100	334	91	7.3	32.4	54.1	4.9	1.3	99	0
B0811-4	100	273	98	14.0	55.3	30.7	0.0	0.0	77	0
B0852-7	100	339	94	6.4	23.3	65.0	5.3	0.0	89	1
B0967-11	86	386	96	4.2	20.9	67.5	7.3	0.0	71	0
B0984-1	100	309	89	11.0	25.1	50.9	12.9	0.0	74	0
B0985-1	76	205	83	17.5	54.2	27.7	9.0	0.0	65	0
B1102-3	100	156	89	32.4	51.0	16.6	0.0	0.0	64	0
B1145-2	100	199	80	20.2	56.2	22.8	0.8	0.0	99	0
B1425-9	100	404	06	8.6	28.8	56.5	4.9	0.0	84	1
B1491-10	100	291	85	14.6	45.6	38.7	1.0	0.0	53	0
B1491-17	66	316	85	15.2	46.9	34.6	3.3	0.0	64	0
B1491-20	100	1111	53	46.8	47.3	5.9	0.0	0.0	99	0
B1491-4	66	302	84	15.7	43.0	40.7	9.0	0.0	99	0
B1491-5	100	297	82	17.5	56.9	24.8	0.8	0.0	29	0
B1492-10	66	174	99	34.1	52.7	13.2	0.0	0.0	69	0
B1492-12	100	256	9/	24.3	49.7	23.8	2.2	0.0	72	-
B1492-15	100	332	89	10.7	49.9	36.5	2.9	0.0	64	0
B1492-6	100	338	88	11.7	49.6	38.8	0.0	0.0	82	0
B1493-1	100	238	72	28.0	53.6	18.5	0.0	0.0	73	0
B1493-2	86	390	95	3.5	23.5	59.6	12.1	1.3	62	0
B1493-3	66	236	82	17.6	54.0	27.9	0.5	0.0	75	
B1495-15	100	348	94	6.5	38.1	55.4	0.0	0.0	71	_
B1495-6	100	253	87	12.8	50.8	36.4	0.0	0.0	29	0
Reddale	86	343	92	3.7	8.5	47.4	35.7	4.7	29	4
Red LaSoda	66	382	94	5.7	21.8	61.6	10.9	0.0	61	2
Yukon Gold	66	342	96	3.8	18.7	61.5	16.0	0.0	78	0
LSD (.05)		53							04	

1-11,13 See BARC Table 1

BARC Table 6. Continued

23222222222222222222222222222222222222									
23252525232532535555555555555555555555									
23 25 25 25 25 25 25 25 25 25 25 25 25 25	\$	6	7		6	6	3.5	0	red skin, yf
23 25 25 25 25 25 25 25 25 25 25 25 25 25	3	6	6	6	6	6	2.6	0	red skin, yf
23 25 25 25 25 25 25 25 25 25 25 25 25 25	7	7	7 5	6	6	7	4.5	0	purple skin
23 25 25 25 25 25 25 25 25 25 25 25 25 25	7	7	9	6	6	6	3.8	0	purple skin
23 25 25 25 25 25 25 25 25 25 25 25 25 25	ν.	6	7	6	6	6	2.8	0	red skin
23 2 2 2 2 3 3 2 5 2 7 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5	7	3	6	6	6	2.5	0	red skin
23 25 25 25 25 25 25 25 25 25 25 25 25 25	5	6	7	6	6	6	3.5	0	red skin
22 23 25 27 20 30 30 30 30 30 30 30 30 30 30 30 30 30	\$	6	6	6	6	6	3.0	0	red skin
22 23 25 27 27 27 27 27 27 27 27 27 27 27 27 27	2	6	6	6	6	7	2.4	S	yf
22 33 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7	7	3	6	6	6	4.0	0	red skin
22 25 55 57 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ς.	6	9	6	6	6	3.9	0	red skin, yf
3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7	7	6	6	6	6	1.6	S	red skin
2 3 3 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7	S	3			6	2	3.6	0	red skin, yf
2 2 2 2 5 5 5 5 7 7 9 9 9 7 7 7 7 7 7 7 7 7 7 7	ς,	6			6	6	4.1	0	red skin
3 2 2 2 5 5 5 7 9 9 9 7 7 9 7 7 9 7 7 7 7 7 7 7	8	6	9	6	6	6	3.0	0	red skin, yf
2 5 5 9 9 2 2 2 5 5 9 9 9 2 2 5 5 9 9 9 9	2	7			6	6	2.2	0	red skin
2 5 5 7 9 9 2 2 5 5 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7	ς.	6			6	6	3.1	0	red skin, yf
2 5 7 9 2 2 5 5 7 9 3 5 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7	ς,	6			6	6	2.4	0	red skin, yf
2 5 7 9 2 5 9 7 3 5 9 7 2 3 7 7 7	\$	7			6	6	3.7	0	red skin
2 5 9 7 2 5 9 7 3 5 9 7 2 3 7 7	ς,	7		6	6	6	3.9	0	red skin, yf
2 5 9 7 3 5 9 7 2 3 7 7 7	ς.	6			6	6	2.3	0	red skin. yf
3 5 9 7 2 3 7 7	ς.	6			6	6	2.1	0	purple skin
2 3 7	ς,	6			6	6	3.2	0	red skin
	3	7	7	6	6	6	4.8	0	red skin
3 9	3	6	7 7	6	6	6	4.4	0	red skin
7	7	6	6	6	6	7	4.1	0	yf

¹² Chipped out of 50°F December 5, 1997: 1-2 = satisfactory, 3 = marginal

BARC Table 7. Yield, tuber size distribution, and quality characteristics of varieties harvested 112 days after planting at Echo Lake in 1997.

					% Tuber	% Tuber Size Distribution	ıtion			
		Mkt								
Pedigree	% Stand ¹	CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	>4"	SG ²	HIH
Alamo	86	309	94	4.9	27.7	57.4	9.3	9.0	64	_
Anoka	97	317	95	4.9	22.3	65.0	7.8	0.0	69	
Aracy	100	237	74	26.0	50.2	22.0	1.7	0.0	78	0
Atlantic	86	287	93	5.1	29.9	54.0	9.6	1.5	73	1
Belle Isle	66	258	89	11.3	37.4	48.0	3.4	0.0	62	0
Boone	86	322	94	4.7	19.9	56.2	18.4	6.0	63	0
Buckskin	100	321	06	9.6	39.2	45.7	5.6	0.0	72	_
Canoga	100	295	98	13.6	52.2	33.1	1.1	0.0	29	0
Caribe	100	318	95	4.6	22.2	63.0	10.2	0.0	29	1
Cariboo	100	239	81	18.7	46.0	31.8	3.4	0.0	79	0
Cascade	100	382	95	5.4	26.6	53.0	15.0	0.0	29	0
Climax	66	332	89	10.5	41.3	47.1	1.0	0.0	63	0
Dakchip	100	354	94	5.0	20.9	60.2	12.8	1.1	29	0
Dazoc	100	221	87	12.9	42.7	41.1	3.4	0.0	62	0
Desota	100	297	89	11.1	46.0	40.7	2.1	0.0	63	7
Eigenheimer	100	158	49	51.1	40.0	8.9	0.0	0.0	82	0
Emmet	66	291	93	8.9	31.3	57.1	4.8	0.0	71	1
Erie	100	232	87	12.6	44.7	42.0	0.7	0.0	63	0
Essex	100	435	95	5.2	24.7	64.8	5.4	0.0	63	-
Fundy	100	289	93	3.9	19.5	57.6	15.4	3.6	70	0
Golden	100	294	84	16.0	40.5	41.2	2.3	0.0	63	0
Grand Falls	96	300	94	4.9	19.3	66.3	80.	0.7	74	-
High Plains	100	241	88	11.8	50.3	35.4	2.5	0.0	63	0
Haig	100	237	84	16.4	49.7	33.9	0.0	0.0	64	0
Highlat	66	190	87	12.9	44.3	41.2	1.6	0.0	64	0
Houma	100	289	06	10.4	45.0	44.6	0.0	0.0	99	0
Superior	100	279	95	5.0	36.8	49.8	8.4	0.0	72	0
LSD (.05)		63							02	

1-11,13 See BARC Table 1

BARC Table 7. Continued

redigree	Snape	Eye Depin	Sgr	3	22	CH	- K	28	Cnip-	ıdc
	ď		c	ľ	ľ	c	c	C	0	
Alamo	7	0	ע	_	_	Λ	Λ	λ)
Anoka	2	5	6	7	7	6	6	6	3.8	0
Aracv	2	2	6	6	2	6	6	6	3.2	0
Alantic	7	5	6	6	7	6	6	6	2.4	0
Belle Isle	2	5	6	6	2	6	6	6	3.0	0
Boone	2	8	6	6	n	6	6	6	5.0	0
Buckskin	2	٧.	6	2	2	6	6	7	2.8	0
Canoga	7	m	6	6	2	6	6	7	4.3	S
Caribe	3	7	6	7	2	6	6	6	2.1	0
Cariboo	2	2	6	6	2	6	6	6	2.4	0
Cascade	σ.	7	6	6	2	6	6	6	4.7	0
Climax	2	\$	m	6	7	6	6	6	5.0	S
Dakchip	7	. 5	6	6	2	6	6	6	2.2	S
)azoc Î	7	8	6	6	7	6	6	6	2.8	0
Desota	7	3	7	6	2	6	6	6	4.2	0
Eigenheimer	7	5	7	6	7	6	6	6	3.5	S
Emmet	7	7	6	2	2	6	6	7	3.8	0
Erie	7	т	6	6	3	6	6	6	3.4	0
Essex	7	5	6	6	2	6	6	6	5.0	0
Fundy	2	2	6	2	7	6	6	6	3.7	0
Golden	7	8	6	6	2	6	6	6	4.1	Γ
Grand Falls	3	2	7	2	7	6	7	7	2.2	S
High Plains	2	7	7	6	n	6	6	6	2.8	0
Haig	7	5	6	6	7	6	6	6	2.5	S
Highlat	7	5	6	6	7	6	6	7	3.9	0
Houma	7	8	6	6	2	6	6	2	4.3	0
Superior	C	4	7	c	7	0	0	6	2.4	V.

¹² Chipped out of 50°F December 11, 1997: 1-2 = satisfactory, 3 = marginal

BARC Table 8. Yield, tuber size distribution, and quality characteristics of varieties harvested 109 days after planting at Echo Lake in 1997.

		•			% Tuber	% Tuber Size Distribution	tion			
Pedigree	% Stand1	Mkt CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	***	SG ²	HIF
Atlantic	100	374	96	2.9	22.3	53.9	20.3	0.7	79	3
Huron	66	230	83	16.7	45.9	37.5	0.0	0.0	89	0
Iopride	100	271	94	0.9	32.9	55.0	6.1	0.0	29	0
Islander	66	277	92	7.8	37.8	51.8	2.6	0.0	74	0
Jemseg	92	236	93	4.4	21.4	50.2	21.6	2.3	70	7
Kasota	100	261	85	14.6	48.8	35.4	1.2	0.0	65	0
Keswick	97	288	76	2.3	14.4	48.1	34.2	6.0	71	_
LaSalle	100	305	91	9.1	30.9	49.7	10.3	0.0	99	0
LaSoda	86	368	94	5.6	23.0	59.5	11.8	0.0	29	
Majestic	100	180	65	34.9	48.3	16.8	0.0	0.0	89	0
Maris Piper	86	228	73	27.1	57.9	14.5	0.5	0.0	9/	0
Menominee	100	305	94	6.4	30.3	59.5	3.7	0.0	65	0
Mirton Pearl	76	316	93	5.8	24.3	56.5	11.9	1.5	9/	0
Navajo	86	253	87	12.5	32.9	50.0	4.6	0.0	78	0
New Norchip	100	289	84	15.7	46.3	35.8	2.3	0.0	74	0
Norchief	100	291	88	12.0	44.0	41.6	2.3	0.0	99	0
Nordak	100	221	88	11.8	49.7	38.1	0.4	0.0	70	0
Norgleam	86	236	94	6.3	20.1	56.8	16.8	0.0	69	0
Norking	87	209	06	10.0	40.0	50.0	0.0	0.0	75	0
Ona	95	221	06	6.6	37.0	47.8	5.3	0.0	69	0
Onaway	100	309	93	2.1	17.9	49.9	24.8	5.2	29	0
Osseo	88	217	94	4.1	11.1	51.5	31.0	2.3	99	_
Pawnee	100	213	88	12.0	39.3	48.6	0.0	0.0	69	0
Pennchief	100	348	93	6.7	35.2	50.9	7.2	0.0	29	7
Penn 71	66	348	76	3.3	14.0	65.7	17.0	0.0	89	0
Pioneer	96	308	93	8.9	31.6	57.9	3.7	0.0	73	0
Superior	100	296	95	4.3	26.2	62.9	6.2	0.4	73	0
LSD (.05)		58							4	

BARC Table 8. Continued

Atlantic 2 5 9 9 7 9 9 16 Huron 2 5 9 9 7 9 9 9 16 Huron 2 5 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Pedigree	Shape ⁴	Eye Depth ⁵	Sgr ⁶	GC,	SS8	HS	GR^{10}	SB ¹¹	Chip ¹²	Spt ¹³
2 2 2 2 2 3 3 2 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7											
2 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Atlantic	7	5	6	6	7	6	6	6	1.6	0
2 2 2 2 3 2 5 3 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Huron	7	\$	6	6	7	6	6	6		0
2 2 2 2 3 3 2 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	Iopride	7	7	6	6	7	6	6	6		0
2 2 2 3	Islander	2	7	7	7	7	6	6	6	1.1	0
4 4	Jemseg	7	7	7	7	7	6	6	7	3.3	0
2	Kasota	7	3	6	6	2	6	6	6	4.2	0
22 28 28 28 28 28 28 28 28 28 28 28 28 2	Keswick	8	5	6	6	5	6	6	7	4.6	0
22 23 23 23 24 28 25 25 25 25 25 25 25 25 25 25 25 25 25	LaSalle	7	5	6	7	3	6	6	6	4.2	0
22 23 33 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	LaSoda	7	3	6	6	5	6	6	6		0
22	Majestic	00	5	3	7	2	6	6	7	4.0	0
22	Maris Piper	7	5	7	6	7	6	6	7	2.7	0
22	Menominee	7	5	6	6	2	6	6	7		0
22	Mirton Pearl	æ	3	7	6	5	6	6	7		0
22	Navajo	2	5	7	7	2	6	6	6	-	0
2 5 9 9 3 9 9 3 9 9 3 9 9 9 3 9 9 9 9 9 9	New Norchip	2	5	6	6	7	6	6	6	1.0	0
3	Norchief	7	5	6	6	8	6	6	6		0
2	Nordak	8	7	6	6	7	6	6	2		S
3	Norgleam	7	7	6	6	5	6	6	6		0
2 3 9 7 9 9 9 4. 2 3 9 9 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Norking	8	7	6	6	5	6	6	6		0
2 3 9 7 5 9 9 9 4. 2 5 9 9 9 5 3. 2 5 9 9 9 9 3. 2 5 9 9 9 9 9 3. 7 7 7 9 9 9 9 9 9 7 7 2. 2 5 9 9 9 9 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	Ona	7	5	7	6	7	6	6	6		0
2	Onaway	7	3	6	7	2	6	6	6		0
2 5 9 9 7 9 9 3. 2 5 9 9 5 9 9 2. 2 5 7 9 5 9 9 7 7 7 7 9 9 9 3. 2 5 9 7 9 9 3.	Osseo	7	3	6	5	5	6	6	2		0
2 5 9 9 5 9 9 2. 2 5 7 9 5 9 9 7 2. 7 7 7 9 7 9 9 9 3. 2 5 9 7 7 9 9 9 2.	Pawnee	2	5	6	6	7	6	6	6		0
2 5 7 9 5 9 9 7 2. 7 7 7 9 7 9 9 9 3. 2 5 9 7 7 9 9 9 2.	Penchief	2	5	6	6	5	6	6	6	2.1	0
7 7 7 9 7 9 9 3. I 2 5 9 7 7 9 9 9 2.	Penn 71	2	5	7	6	5	6	6	7		0
r 2 5 9 7 7 9 9 9 2.	Pioneer	7	7	7	6	7	6	6	6		0
	Superior	2	5	6	7	7	6	6	6		0

¹² Chipped out of 50°F December 5, 1997: 1-2 = satisfactory, 3 = marginal

BARC Table 9. Yield, tuber size distribution, and quality characteristics of varieties harvested 105 days after planting on Aroostook Farm in 1997.

					% Tuber	% Tuber Size Distribution	ion			
		Mkt								
Pedigree	% Stand1	CWT/A	%Mkt	<17/8"	17/8-21/4"	21/4-31/4"	31/4-4"	>4"	SG2	HH3
Atlantic	94	315	95	4.0	23.0	63.5	8.9	9.0	77	0
Purple Norland	94	281	96	3.7	22.7	66.5	7.1	0.0	62	0
Platte	77	222	93	5.4	28.2	63.1	2.1	1.2	09	_
Plymouth	06	266	95	4.9	28.4	62.2	4.4	0.0	89	_
Potomac	91	362	95	4.0	11.8	49.3	33.5	1.3	61	0
Raritan	86	226	94	0.9	24.8	64.0	5.2	0.0	81	7
Record	92	254	78	22.4	50.5	27.1	0.0	0.0	81	2
Red Burt	83	318	96	4.0	20.2	59.7	16.2	0.0	65	2
Red Glo	91	263	68	11.4	42.7	37.9	8.0	0.0	99	0
Red Kote	76	222	91	8.5	39.5	48.6	3.3	0.0	99	17
Red Warba	81	260	94	5.9	25.8	62.9	5.4	0.0	69	0
Redskin	86	336	95	2.4	8.3	55.8	30.8	2.8	61	6
Reliance	06	361	95	5.0	19.1	56.9	19.0	0.0	64	0
Rural New Yorker	63	214	96	4.3	22.1	61.5	12.1	0.0	89	∞
Rushmore	35	260	94	5.7	25.2	67.7	1.3	0.0	65	0
Sable	89	254	26	3.1	15.1	65.8	15.9	0.0	63	4
Satapa	91	299	95	3.8	22.2	66.1	7.2	0.7	64	0
Saturna	86	209	74	26.2	61.5	12.3	0.0	0.0	82	1
Shurchip	87	273	94	5.7	31.5	59.7	3.1	0.0	64	0
Snowflake	79	258	93	8.9	25.5	61.8	5.9	0.0	89	0
Spaulding Rose	26	284	94	6.1	27.6	60.7	5.6	0.0	64	0
Superior	94	292	96	4.4	27.3	63.0	5.3	0.0	74	0
Teton	91	260	96	4.3	26.0	63.0	6.7	0.0	29	3
Trent	92	272	94	6.2	28.3	61.3	4.2	0.0	85	0
Triumph	26	285	94	6.2	32.5	58.2	3.1	0.0	64	0
Viking	65	164	86	2.1	13.4	60.1	24.4	0.0	9	0
Yampa	77	333	96	3.9	19.7	64.8	11.6	0.0	99	0
LSD (.05)		29							4	

BARC Table 9. Continued

Atlantic 2 5 9 9 5 9 9 7 9 9 9 2.7 Platte 2 5 9 9 9 7 9 9 9 9 2.7 Platte 2 5 9 9 9 7 9 9 9 9 3.0 Platte 2 5 9 9 9 7 9 9 9 9 3.0 Platte 2 9 9 9 7 9 9 9 9 3.0 Platte 2 9 9 9 7 9 9 9 9 3.0 Platten 2 9 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Pedigree	Shape⁴	Eye Depth ⁵	Sgr ⁶	GC,	SS	HS ₉	GR^{10}	SB ¹¹	Chip ¹²	Spt ¹³
Norland 2								,	1		(
Norland 2 7 9 8 7 9 9 9 3.2 tth 2 9 9 9 7 9 9 9 3.7 ic 2 3 7 7 7 5 9 9 9 9 3.7 it 3 3 5 9 9 7 9 9 9 9 3.7 it 3 3 9 9 9 5 9 9 9 9 3.1 arba 2 3 9 9 9 5 9 9 9 9 9 9.7 arba 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Atlantic	7	5	6	6	2	6	6	6		0
th 2 5 5 9 9 7 9 9 7 9 9 9 3.0 In 2 2 3 7 7 7 7 5 9 9 9 5 3.7 In 3 3 3 9 9 9 5 9 9 9 5 9 9 9 9 9 9 9 9 9	Purple Norland	7	7	6	∞	7	6	6	6		0
tth 2 3 3 7 7 7 5 9 9 5 5.0 1	Platte	7	5	6	6	7	6	6	6		0
tr	Plymouth	7	6	6	3	2	6	6	2		0
1	Potomac	7	3	7	7	5	6	6	6	5.0	0
Tr. 3 3 9 8 9 7 9 3.1 Tr. 3 3 9 9 9 5 9 9 3 4.8 Tr. 2 3 9 9 5 9 9 9 4.5 Tr. 3 9 9 9 5 9 9 9 4.5 Tr. 3 9 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Raritan	3	5	6	7	7	0	6	5	4.4	0
tre 3 3 3 9 9 9 5 9 9 3 4.8 other 2 7 8 7 5 9 9 9 45 arba 2 3 7 8 7 5 9 9 9 9 4.5 arba 2 3 7 5 8 9 9 9 9 4.7 1	Record	7	2	3	6	∞	6	7	6	3.1	S
te 2 3 9 9 5 9 9 4.5 arba 2 3 7 8 7 5 9 9 9 9 4.5 arba 2 3 7 5 8 9 9 9 9 3.2 le EW Yorker 2 3 9 9 7 7 7 9 9 9 9 4.0 ore Rew Yorker 2 3 9 9 9 9 9 4.0 ore Rew Yorker 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Red Burt	8	3	6	6	5	6	6	3	4.8	0
tre 2 7 8 7 5 9 9 9 3.2 arba 2 3 7 5 8 9 9 9 3.4 1 2 3 9 7 7 9 9 9 4.7 e 5 8 5 7 9 9 9 4.1 few Yorker 2 3 9 9 9 5 9 4.8 the Yorker 2 3 9 9 9 9 9 9 4.0 ore 8 5 7 9 9 9 9 4.0 the 2 3 9 9 7 7 7 9 9 9 9 9 9 9.0 ing Rose 3 3 9 7 5 9 9 9 9 9 9.0 tr 2 5 9 9 7 5 9 9 9 9 9 9.0 tr 2 6 9 9 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Red Glo	7	3	6	6	5	6	6	6	4.5	S
arba 2 3 7 5 8 9 9 5 47 e 2 3 9 7 7 7 9 9 9 441 e 4.1 e 5 8 5 7 9 9 9 441 ore 2 3 9 9 7 7 7 9 9 9 441 ore 3 3 9 7 7 5 9 9 9 9 441 t 2 3 9 9 7 8 5 9 9 9 9 3.5 ore 3 9 9 7 5 9 9 9 9 10 ore 3 9 9 7 5 9 9 9 9 10 ore 4.1 t 2 5 9 9 7 5 9 9 9 9 10 ore 4.1 ore 4.1 ore 4.1 ore 4.1 ore 4.1 ore 5 9 9 9 9 10 ore 6.1 ore	Red Kote	7	7	∞	7	5	6	6	6	3.2	0
le 2 3 9 7 7 7 9 9 3 4.1 le 4.8 lew Yorker 2 5 8 5 7 9 9 9 4.8 lew Yorker 2 5 8 5 7 9 9 9 9 4.8 lew Yorker 2 3 9 9 9 5 9 9 9 9 4.0 lew Yorker 2 3 9 9 9 5 9 9 9 9 4.0 lev Yorker 2 3 9 9 9 7 5 9 9 9 9 5.0 lev Yorker 2 3 9 9 7 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Red Warba	7	3	7	2	00	6	6	5	4.7	S
e 2 5 8 5 7 9 9 4.8 Tew Yorker 2 3 9 9 5 9 9 4.0 ore 8 5 9 9 9 4.0 ore 2 7 9 5 9 9 4.0 in 2 3 9 7 9 9 9 5.0 ip 2 5 9 9 9 9 9 4.0 ake 2 3 9 7 9 9 9 2.0 ip 2 3 9 7 9 9 9 4.0 ake 2 3 9 7 9 9 9 4.0 nr 2 7 9 7 9 9 9 9 9 r 2 3 7 9 9 9	Redskin	7	3	6	7	7	6	6	3	4.1	0
Tew Yorker 2 3 9 9 5 9 9 4.0 ore 8 5 7 9 5 9 9 9 4.0 ore 2 7 9 8 5 9 9 9 3.5 ip 2 3 9 7 5 9 9 9 5.0 ip 2 5 9 7 9	Reliance	2	5	∞	2	7	6	6	6		0
ore 8 5 7 9 5 9 9 3.5 1 2 7 9 8 5 9 9 9 3.5 1 2 3 9 7 5 9 9 9 5.0 ip 2 5 9 9 9 9 9 9 2.0 ake 2 3 9 7 9 9 9 9 4.0 ng Rose 3 3 5 9 7 9 9 9 4.0 or 2 7 9 9 7 9 9 9 2.4 or 2 7 9 9 7 9 9 9 2.4 or 2 7 9 9 7 9 9 9 9 2.4 n 2 7 9 8 7 9 9 9 9 9 h 2 7 9 8 7 9 9 9 9 9 n 2 7 9 9 9 9 9 9 9 9<	Rural New Yorker	2	3	6	6	2	6	6	6		0
2 7 9 8 5 9 9 5.0 1 2 3 9 7 5 9 9 9 5.0 ip 2 5 9 9 7 5 9 9 9 2.0 ake 2 3 3 9 7 5 9 9 9 2.0 ng Rose 3 9 7 5 9 7 9 9 4.0 or 2 7 9 9 7 9 9 9 2.4 h 2 3 7 9 7 9 9 9 1.8 h 2 3 7 9 7 9 9 9 1.8 3 5 9 5 7 9 9 9 4.7	Rushmore	∞	5	7	6	2	6	6	6		0
10 2 3 9 7 5 9 9 3 4.1 sake 2 5 9 9 7 5 9 9 9 3.5 ake 2 3 9 7 5 9 9 9 9 2.0 ake 2 3 9 9 7 5 9 9 9 9 2.0 ake 3 3 3 6 9 7 6 9 9 7 9 9 9 3.4 arg and a second and a	Sable	7	7	6	00	2	6	6	6		0
h ake 2 5 9 9 8 9 2 0 3 3 8 9 7 9 9 9 2.0 3.5 ake ng Rose 3 3 5 9 7 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 9 1.8 h 2 7 9 9 7 9 9 7 9 9 9 1.8 h 2 7 9 9 7 9 9 9 9 1.8 h	Satapa	7	8	6	7	2	6	6	3		0
ake 2 3 9 9 5 9 9 3.5 ake 2 3 9 7 5 9 9 7 9 4.0 ng Rose 3 5 9 7 9 9 9 4.0 or 2 7 9 9 7 9 9 9 3.4 or 2 7 9 8 7 9 9 9 1.8 h 2 3 7 9 7 9 9 9 1.8 h 2 3 7 9 5 5 9 9 9 4.7 3 5 9 5 7 9 9 9 4.7	Saturna	7	2	8	6	∞	6	6	6		0
ake 2 3 9 7 5 9 7 9 4.0 ng Rose 3 3 5 9 7 9 9 9 3.4 or 2 7 9 9 7 9 9 2.4 2 7 9 9 7 9 9 2.4 b 2 5 9 8 7 9 9 9 1.8 h 2 3 7 9 7 9 9 9 5.0 3 5 9 5 7 9 9 9 4.7	Shurchip	2	5	6	6	2	6	6	6		S
ng Rose 3 3 5 9 7 9 9 3.4 Nr 2 7 9 9 7 9 9 2.4 2 7 9 9 7 9 9 2.4 2 5 9 8 7 9 9 1.8 h 2 3 7 9 9 9 1.8 h 2 7 9 9 9 5.0 3 5 9 5 9 9 4.7 3 5 9 5 7 9 9 4.7	Snowflake	7	3	6	7	S	6	7	6		0
h 2 7 9 9 7 9 9 2.4 2 7 9 9 7 9 9 2.4 2 5 9 9 3 3.9 h 2 3 7 9 9 9 1.8 h 2 7 9 9 9 5.0 3 5 9 5 7 9 9 4.7	Spaulding Rose	8	3	2	6	7	6	6	6		0
2 7 9 5 5 9 9 3 3.9 h 2 3 7 9 9 9 1.8 2 7 9 7 9 9 1.8 2 7 9 5 5 9 9 9 4.7 3 5 9 5 7 9 9 4.7	Superior	7	7	6	6	7	6	6	6		0
h 2 3 7 9 9 9 1.8 2 7 9 7 9 9 5.0 2 7 9 5 5 9 9 9 4.7 3 5 9 5 7 9 9 9 4.1	Teton	7	7	6	2	2	6	6	3	3.9	0
h 2 3 7 9 7 9 9 5.0 2 7 9 5 5 9 9 9 4.7 3 5 9 5 7 9 9 4.1	Trent	2	5	6	∞	7	6	6	6	1.8	0
2 7 9 5 5 9 9 4.7 3 5 9 5 7 9 9 9 4.1	Triumph	2	3	7	6	7	6	6	6	5.0	0
3 5 9 5 7 9 9 9 4.1	Viking	2	7	6	2	5	6	6	6	4.7	0
	Yampa	3	5	6	2	7	6	6	6	4.1	0

¹² Chipped out of 50°F December 11, 1997: 1-2 = satisfactory, 3 = marginal

U.S. DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE

Potato Genetics and Enhancement Project - Madison, Wisconsin

R.E. Hannemann, Jr., A.J. Hamernik, M. Ramon, and J.C. Kuhl

Introgression of resistance to late blight and Colorado potato beetle from wild species to cultivated potato.

Efforts to generate hybrids between 2x(2EBN) Solanum tuberosum haploids and 2x(1EBN) Mexican diploid species via embryo rescue and mentor pollen were conducted during the summers of 1995 and 1996. In 1995, 3,077 pollinations were made resulting in 31 seedlings. However, none of the plants were the desired hybrid (Table 1). The failure in obtaining true hybrids was attributed to embryo rescue being performed too late. The approach was repeated during 1996 when 3,288 pollinations were made, resulting in 184 fruits. Embryo rescue was performed between 14 and 20 days after pollination (DAP) and resulted in 3,343 embryos of which 530 developed into seedlings (Table 2). In January of 1997, a unique hybrid was discovered in the population. This diploid hybrid resulted from the cross between the haploid US-W 13089 (Sebago) and S. pinnatisectum (Pl 275233). Its hybridity has been confirmed through morphology, chromosome number and RAPD analysis. resistance to late blight was tested in an unsprayed replicated experiment at UW Agricultural Research Station at Hancock during the 1997 summer where the results indicate a high level of field resistance to the disease (Table 3). At the same time, a second approach using S. berthaultii, a 2x(2EBN) species, was conducted. The hybrids obtained with S. tuberosum haploids were tested for field resistance to late blight and showed a wide range of reaction from highly resistant to susceptible (Table 3).

The Colorado potato beetle (CPB) experiments were initiated during 1995 when 3,625 pollinations were conducted between *S. tuberosum* haploids and 2x(2EBN) species such as *S. buksovii*, *S. chacoense*, *S. raphanifolium*, *S. sparsipilum*, *S. tarijense and S. tuberosum*. During the summer of 1997, 21 families, one backcross, nine PIs, 11 PIs, six controls and one cultivar were tested for CPB resistance in the field using a 7x7 lattice where the "Norland" was used as a spreader. Individual plants were scored weekly for the

number of egg masses, larvae, and adults and percent defoliation. Only those hybrids with *S. chacoense* parents showed high resistance to the insect. However, a wide range of reaction was observed within and between families, especially some individuals with *S. tarijense* parentage tolerate the insect. The defoliation results for 20 of the families and their parents are presented in Table 4. Only defoliation values per families are shown. Although some of them reflect high values for insect attack, some individuals within the family could behave as resistant to the CPB.

Resistance to *Phytophthora unfastens* in Mexican 2x (1EBN) wild Potato Species

The focus of this study is on Mexican diploid 1EBN wild potato species. 1EBN species were selected because to date no known research has specifically addressed the resistance to Phytophthora infestans known to be present in these Mexican derived species. Additionally, the diploid nature of the species will allow for a relatively straight forward evaluation of resistant genotypes as compared to working at a higher ploidy level. Two Solanum species were initially selected for this study, Solanum cardiophyllum subsp. cardiophyllum (cph) and Solanum pinnatisectum (pnt), based on PI evaluations for susceptibility and resistance, respectively. Selection was also based on flowering characteristics and the ability to cross and obtain viable seed. S. cardiophyllum subsp. cardiophyllum P1s were selected from available plants in the field during early Fall 1996, at the UW Lelah Starks Potato Breeding Farm. S. pinnatisectum PIs were selected from previously screened individuals from which tubers were available. Two PIs were selected for S. cardiophyllum subsp. cardiophyllum (5 plants each) and seven PIs were selected for S. pinnatisectum (5 plants per P1).

Detached leaf tests were chosen for the initial determination of resistant/susceptible phenotypes. This decision was based the available resources and the flexibility of being able to screen a large number of individuals in replicated trials over a short period while maintaining the screened plant. Results could later be compared to field trials and/or whole plant evaluations. Initial work with *Phytophthora infestans* included two pathotypes, WI94-1 and ME93-2A, US1-A1 and US8-A2, respectively. The US1 pathotype was included as a control in working out the inoculation protocol previously used. Difficulties arose in implementation of detached leaf protocol such that few or no lesions

were obtained on the susceptible control, Green Mountain. More favorable results were achieved with use of Rye A media for the culturing *P. infestans* and the addition of a cold shock treatment of the inoculum prior to application. Furthermore, four additional pathotypes were obtained from Dr. Ken Deahl, USDA, ARS, Beltsville, including: MSU96 (US8-A2), Colorado-C (US8-A1), 94-31 (US1-A1) and SA96-44 (US1-A1). Screening with detached leaves was delayed during summer field trials.

Reciprocal crosses of the above PIs were generated between S. cardiophyllum and S. pinnatisectum. A total of 2,601 cph x pnt and 801 pnt x cph crosses were completed. One fruit with 4 seeds were recovered from the cph x pnt crosses. A total of 64 fruit and 1882 seeds were recovered from the pnt x cph crosses. It is hoped that by crossing an established resistant individual with a susceptible individual that a segregating population will be generated. Unfortunately until resistant and susceptible individuals can be established, phenotypes are uncertain. Currently one third of the seed from each fruit is being allowed to germinate allowing for the evaluation of seed viability. The recovered plants are being grown in the greenhouse for detached leaf evaluation this fall.

Field tests with naturally occurring inoculum were conducted this past summer at the Hancock field station to determine resistant/susceptible phenotypes to P. infestans of all parental plants, as well as several additional species/PIs that have previously been identified as having susceptibility or resistance to P. infestans. Several complicating factors led to inconclusive results, and the inability to establish the specific responses to *P. infestans*. In particular, the late arrival of P. infestans and the heavy infestation of Alternaria solani (early blight) was such that defoliation data were collected regardless of the causal agent. Results were further complicated with early occurrence of blackleg, leading to significant plant reduction in some treatments, in particular one of the PIs of S. cardiophyllum. The inability to distinguish defoliation specifically caused by P. infestans resulted in observations that reflect total defoliation. Table 5 presents the observed results for those PIs that have been used in crosses to date. From the table it would appear that PI 347759 shows signs of susceptibility, however, this same PI lost many plants to blackleg early in the season. As a result of the inconclusive data, detached leaf tests need to be conducted to determine the resistance/susceptible phenotypes of parental plants.

Once phenotypic characterization of selected individuals can be established molecular mapping techniques can be applied to identify the resistant genotype and compared to previously established resistance on chromosomes 5, 8 and 11. The diploid nature of the selected species will greatly simplify genetic analysis for resistant loci in a segregating population. To date, DNA has been isolated from all plants used in crosses. Forty-seven tomato genomic probes from Tanksley have been selected for use in screening. The selected probes have previously been characterized as having a low number of polymorphic bands and evenly distributed over the twelve chromosomes. Initial screens indicate polymorphisms between and within S. cardiophyllum subsp. cardiophyllum and S. pinnatisectum species/PIs. Once the phenotypes have been established, the parents and eventually the F₁ progeny can be screened for polymorphisms, leading to a molecular characterization of the resistance to *P. infestans* in *S. pinnatisectum*.

Imperative for further progress on this project is the determination of phenotypic response to P. infestans. It must be established that the PIs and specifically the individuals that are being worked with are indeed resistant and susceptible. Once individual phenotypes are characterized a guided approach to crossing will be initiated generating more F_1s , as well as beginning test crosses. Additionally, a more systematic approach may be applied to the collection of RFLP data, focusing on compatible resistant/susceptible parents that have produced viable seed.

Evaluation of Parental Materials and Enhancement Selections for Resistance to Late Blight, *Verticillium* Wilt and Colorado Potato Beetle in Field Tests

To aid us in identification of useful parents and enhancement selections as a part of our joint National Cooperative Enhancement Project effort, we have begun to evaluate our materials in unsprayed plots for resistance to late blight, Colorado potato beetle, and *Verticillium* wilt in an infected field. These tests augment our routine evaluations for yield, chipping, specific gravity, adaptation, etc. which are done at various stages in the development of our materials. The following is a summary of our field data taken on materials entered in these plots this past year at the UW Agricultural Research Station at Hancock.

<u>Late Blight</u>. Six hundred and sixty-five clones were tested for their reaction to natural late blight infection in the field at the University of Wisconsin's

Agricultural Research Station at Hancock. This was a large unreplicated trial, near Dr. Stevenson's (UW Dept of Plant Pathology) late blight trials. Included among these were 118 foreign varieties, 89 foreign breeding stocks, 95 haploid-species hybrids, 25 late blight differentials and 317 enhancement selections (Table 6). Table 7 presents some of the diversity in reaction to late blight observed. In general the check variety, Ranger Russet, was killed by the second reading, August 29. Varying degrees of resistance/susceptibility were expressed over the four readings. By the last reading on September 12, essentially all materials were killed, except for foreign breeding stocks CEX-69-1 (20%), PI 517317 (30%), and the bacterial wilt line MS 35.9 (10%). Heavy early blight infection confounded the readings in this plot. No attempt was made to separate damage from early blight from that of late blight.

In a second field at this location, a number of species (Table 8) were evaluated for field resistance to late blight, as well as hybrid families with potential late blight resistance (Table 9). A sample of the PIs are listed. Excellent resistance is noted for a number of the Mexican species. A sample of some of the clones from the families is also listed. Varying degrees of resistance/susceptibility are indicated, but among these are some excellent resistance responses, with only 20-30 % defoliation at the end of the season.

The information gathered from the late blight differentials (Table 10) indicates only one 1521C (3) showed resistance at the end of the season. Most were heavily infected by the second reading. Again these results are confounded with the response to early blight.

A comparison of late blight readings between 1996 and 1997 was made using the same clones (Table 11). In general, 1997 was a more severe year. Again CEX-69-1 proved to be the most resistant among these lines as did PI 527315. The first readings seem to be correlated between years, but the lack of correlation was evident with the second reading. This may in part be due to confounding with early blight, but could also indicate a different genotype of the fungus was present.

<u>Verticillium</u> wilt. An unreplicated evaluation for <u>Verticillium</u> wilt resistance was planted at the UW Agricultural Research Station at Hancock. Tubers were planted into a field used by Dr. Rouse (UW, Dept of Plant Pathology) for early dying studies and has high levels of the pathogen in it. Six hundred and thirty

clones were tested (Table 6). Only visual symptoms were evaluated. Table 12 lists some of the most resistant materials. These will need to be screened a second year in replicated trials and evaluated more closely to determine their true resistance. Flava, Nevkij and HET 1278-2 showed no visual symptoms of *Verticillium* wilt, early or late blight. Again, early and late blight had a confounding effect on the plot.

Colorado Potato Beetle. Six hundred and thirty-five clones were evaluated for resistance to Colorado potato beetle in unsprayed plots at the UW Agricultural Research Station at Hancock in two unreplicated plots (Table 6). One was near Dr. Wyman's (UW Dept of Entomology) Colorado potato beetle plots. Very little resistance was found in these materials (Tables 13,14). All essentially were defoliated by the beetles by the end of the season, though some held up with 10-30% defoliation until the next to the last reading. High levels of resistance were noted among some families (Tables 15, 16), whose wild species parent had been reported to be resistant to Colorado potato beetle. The species/PIs showing these resistance were S. chacoense or S. tarijense. The best resistance was noted for S. chacoense PI 217451 and for PI 473243.

From this work, we can see that there are some promising late blight, *Verticillium* wilt and Colorado potato beetle resistant materials in the pipeline among enhancement selections and parental materials. These will provide new and augment existing sources of resistance in our cooperative national enhancement effort.

Acknowledgements

We wish to thank University of Wisconsin Agricultural Research Stations for their support at the Hancock Agricultural Research Station and the UW Lelah Starks Potato Breeding Farm at Rhinelander, and the superintendents of those stations, Mr. C. J. Kostichka and Mr. B. D. Bowen, respectively, for their support and for the technical assistance of Mr. A. J. Hamernik, all of whom made this work possible.

Enhancement Project Table 1. Results for 1995 pollinations between 2x(2EBN) Mexican species and *S. tuberosum* haploids using double pollinations and embryo rescue.

Species	Use	No. Pollinations	No. <u>Fruits</u>	No. <u>Embryos</u>	No. <u>Plants</u>
S. bulbocastanum	Female	634	0	0	0
	Male	400	8	85	21
S. pinnatisectum	Female	1127	7	16	0
•	Male	642	10	24	9
S. trifidum	Female .	189	1	0	0
•	Male	85	3	1	1
Total		3077	29	126	31

Enhancement Project Table 2. Results for 1996 pollinations between 2x(2EBN) Mexican species and S. tuberosum haploids using double pollinations and embryo rescue.

		No.	No.	No.	No.
Species	<u>Use</u>	<u>Pollinations</u>	<u>Fruits</u>	Embryos	<u>Plants</u>
S. bulbocastanum	Female	147	0	0	0
	Male	219	33	508	74
S. pinnatisectum	Female	556	3	244	0
	Male	757	50	686	202
S. trifidum	Female	253	17	540	59
-	Male	1356	81	1365	195
Total		3288	184	3343	530

Enhancement Project Table 3. Summary of the 1997 late blight field test at Hancock.

Category	Percentage	% Defoliation
F1	MPI 62526/5 x ber 473331	23
Species	ber 473331	10
F1	US-W 13089 (Sebago) x pnt 275233	1
Species	pnt 275233	1
Haploid	US-W 2900	95
Fl	US-W 2900 (Merrimack) x ber 265858	38
Species	ber 265858	8
Haploid	US-W 551	100
Fl	US-W 551 (Chippewa) x ber 265858	70
Species	ber 265858	8
Control	Snowden	100
Haploid	US-W 1818	100
Control	Ranger Russet	100
Control	Russet Burbank	100
Haploid	US-W 2685	100
Control	Atlantic	100

Enhancement Project Table 4. Percent defoliation for the 1997 Colorado potato beetle field test at Hancock.

Category	Percentage	% Defoliation
Haploid	PI 285168 (MPI 62.526/5)	100.0
F1	PI 285168 x buk 265876	100.0
Species	buk 265876	100.0
Haploid	US-W 493 (adg)	100.0
Fl	US-W 493 x buk 265876	97.7
Species	buk 265876	100.0
Haploid	US-W 2668 (Chippewa)	100.0
F1	US-W 2668 x chc (133123)	51.7
Species	chc 133123	7.0
Haploid	US-W 518 (Chippewa)	100.0
F1	US-W 518 x chc 265576	36.7
Species	chc 265576	23.3
Haploid	G-65 (MPI 44.1016/10)	80.0
Ė1	G 65 x chc 473402	93.3
Species	chc 473402	5.0
Haploid	US-W 2668 (Chippewa)	100.0
Ė1	US-W 2668 x chc 473405	21.7
Species	chc 473405	0.3
Haploid	US-W 13030 (adg Pl 347773.16)	100.0
F1	US-W 13030 x chc 473405	91.7
Species	chc 473405	0.3
Haploid	US-W 730 (Wis Ag 231)	100.0
F1	US-W 730 x rap 473528	90.0
Species	rap 473528	99.7
Haploid	US-W 3773 (Merrimack)	99.7
F1	US -W 3773 x rap 473528	100.0
Species	rap 473528	99.7
Haploid	US-W 2850 (Wis Ag 231)	100.0
F1	US-W 2850 x rap 473528	71.3
Species	rap 473528	99.7
Haploid	US-W 2850 (Wis Ag 231)	100.0
F1	US-W 2850 x spl 473504	100.0
Species	spl 473504	98.0
Haploid	US-W 3458 (Merrimack)	100.0
F1	US-W 3458 x spl 473504	98.3
Species	spl 473504	98.0

Category	Percentage	% Defoliation
Haploid	G-65 (MPI 44.1016/10)	80.0
F1	G 65 x spl 473504	100.0
Species	spl 473504	98.0
Haploid	US-W 13030 (adg PI 347773.16)	100.0
F1	US-W 13030 x spl 473504	60.0
Species	spl 473504	98.0
Haploid	US-W 730 (Wis Ag 231)	100.0
F1	US-W 730 x spl 473504	98.3
Species	spl 473504	98.0
Haploid	US-W 2850 (Wis Ag 231)	100.0
F1	US-W 2850 x tar 414148	93.3
Species	tar 414148	35.0
Haploid	US-W 13030 (adg PI 347773.16)	100.0
F1	US-W 13030 x tar 414148	99.7
Species	tar 414148	35.0
Haploid	US-W 73 (Merrimack)	100.0
F1	US-W 73 x tbr 473255	86.7
Species	tbr 473255	100.0
Haploid	US-W 518 (Chippewa)	100.0
F1	US-W 518 x tbr 473255	91.7
Species	tbr 473255	100.0
Cultivar	W 1005	77.0
Backcross	W 1005 x F1#5	93.3
F1	US-W 493 x chc 265576	36.7
Control	Atlantic	98.3
Control	Katahdin	98.0
Control	Norland	100.0
Control	Ranger Russet	98.3
Control	Russet Burbank	100.0
Control	Snowden	100.0
Cultivar	W 1005	77.0

Enhancement Project Table 5. Parental evaluation: Average percentage defoliation.

becies PI R/S* 7/28/97 8/5/97 8/11/97 8/18/97 8/27/97 9/3/97 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Avera</th> <th>Average Percent Defoliation by PI</th> <th>Defoliation b</th> <th>y PI</th> <th></th> <th></th>						Avera	Average Percent Defoliation by PI	Defoliation b	y PI		
subsp. cardiophyllum 283062 R 0 3 0 3 5 13/97 9/10/97 subsp. cardiophyllum 283062 R 0 3 0 3 5 13 53 subsp. cardiophyllum 347759 - 26 35 21 34 43 97 95 186553 R 0 0 0 0 4 43 97 95 190115 - 0 0 0 0 4 57 77 253214 - 0 4 0 9 4 57 77 275234 R 0 0 0 0 4 56 67 275234 R 0 0 0 0 7 16 41 68 184764 R 0 0 0 0 7 55 99 100 pewa) 1 1 1											
1 subsp. cardiophyllum 283062 R 0 3 5 13 53 1 subsp. cardiophyllum 347759 - 26 35 21 34 43 97 95 1 subsp. cardiophyllum 186553 R 0 0 0 4 57 77 95 1 90115 - 0 0 0 4 57 78 78 77 78 </th <th>Species</th> <th>PI</th> <th>R/S+</th> <th>7/28/97</th> <th>8/5/97</th> <th>8/11/97</th> <th>8/18/97</th> <th>8/27/97</th> <th>9/3/97</th> <th>9/10/97</th> <th>9/16/97</th>	Species	PI	R/S+	7/28/97	8/5/97	8/11/97	8/18/97	8/27/97	9/3/97	9/10/97	9/16/97
subsp. cardiophyllum 347759 - 26 35 21 34 43 97 95 186553 R 0 0 0 18 6 40 73 190115 - 0 0 0 0 4 57 77 253214 - 0 0 0 0 9 4 57 77 275234 R 0 0 0 0 12 23 54 82 347766 - 0 0 0 12 23 54 82 184764 R 0 0 0 1 1 36 99 100 pewa) pewa)	S. cardiophyllum subsp. cardiophyllum	283062	R	0	3	0	3	ς.	13	53	83
186553 R 0 0 18 6 40 73 190115 - 0 0 0 4 57 77 253214 - 0 0 0 4 57 77 275234 R 0 0 0 4 26 67 347766 - 0 0 0 12 23 54 82 347766 - 0 0 0 1 41 68 184764 R 0 0 0 7 16 41 68 pewa) 0 0 0 0 7 55 99 100 pewa) 0 0 0 0 7 55 99 100 pewa) 0 0 0 0 0 9 100 0 pewa) 0 0 0 0 0 0 0	S. cardiophyllum subsp. cardiophyllum	347759	•	26	35	21	34	43	26	95	100
190115 - 0 0 0 4 57 77 253214 - 0 4 0 30 37 67 86 275234 R 0 0 0 9 4 26 67 86 347766 - 0 0 0 12 23 54 82 67 100	S. pinnatisectum	186553	R	0	0	0	18	9	40	73	92
253214 - 0 4 0 30 37 67 86 275234 R 0 0 0 9 4 26 67 347766 - 0 0 0 12 23 54 82 184764 R 0 0 0 7 16 41 68 184764 R 0 0 0 7 55 99 100 100 0 0 0 0 7 55 99 100 100 0 0 0 0 13 63 100 100 0 0 0 53 99 100 100 0 0 3 64 100 25 0 0 0 0 57 56 72	S. pinnatisectum	190115	1	0	0	0	0	4	57	77	98
275234 R 0 0 9 4 26 67 347766 - 0 0 0 12 23 54 82 184764 R 0 0 0 7 16 41 68 pewa) 0 0 0 1 36 99 100 pewa) 0 0 0 0 7 55 99 100 0 0 0 0 13 63 100 100 0 0 0 0 53 99 100 0 0 0 3 64 100 3e 6 10 4 16 27 56 72	S. pinnatisectum	253214	•	0	4	0	30	37	29	98	95
pewa) 347766 - 0 0 0 12 23 54 82 184764 R 0 0 0 7 16 41 68 0 0 0 0 1 36 99 100 0 0 0 0 7 55 99 100 0 0 0 0 13 63 100 0 0 0 0 53 99 100 0 0 0 0 3 64 100 3e 6 10 4 16 27 56 72	S. pinnatisectum	275234	R	0	0	0	6	4	56	29	88
ppewa) ppewa)	S. pinnatisectum	347766	1	0	0	0	12	23	54	82	94
0 0 0 1 36 99 100 0 0 0 7 55 99 100 0 0 0 13 63 100 0 0 0 53 99 100 0 0 0 3 64 100 e 10 4 16 27 56 72	S. pinnatisectum	184764	K	0	0	0	7	16	41	89	92
(Chippewa) 0 0 0 7 55 99 100 (Chippewa) 0 0 0 13 63 100 set 0 0 0 53 99 100 set 0 0 3 64 100 Average 6 10 4 16 27 56 72	Bintje			0	0	0	_	36	66	100	
uippewa) 0 0 0 13 63 100 0 0 0 0 53 99 100 0 0 0 3 64 100 rage 6 10 4 16 27 56 72	Green Mtn.			0	0	0	7	55	66	100	
0 0 0 53 99 100 0 0 0 3 64 100 rage 6 10 4 16 27 56 72	USW 1818 (Chippewa)			0	0	0	13	63	100		
1	Norland			0	0	0	53	66	100		
rage 6 10 4 16 27 56 72	Ranger Russet			0	0	0	3	64	100		
	Grand Average			9	10	4	16	27	99	72	06

+ 1986 Inventory for late blight

Enhancement Project Table 6. List of materials included in the Colorado potato beetle, late blight and *Verticillium* wilt tests at Hancock in 1997.

	Late Blight	CPB	Vert
Foreign Varieties	118	117	117
Late Blight Differentials	25	-	-
Rowe Selections	7	7	7
DH Selections	31	31	31
Varieties x BP	2	2	2
Sp/Hap Tuberosum	8	6	6
Bacterial Wilt	11	11	11
Foreign Breeding Stocks	89	89	88
DH Series	58	58	57
HET Rhinelander	10	8	6
HVS Rhinelander	6	6	6
HET Diallel	2	2	2
HP Series	19	19	19
Enhancement Selections	7	7	7
90 Enhancement Selections	5	5	5
91 Enhancement Hybrids	32	32	32
92 Enhancement Hybrids	42	42	42
93 Enhancement Hybrids	193	193	192
	665	635	$\frac{630}{630}$

Enhancement Project Table 7. 1997 late blight evaluation based on percent defoliation at Hancock (2nd field).

Line	August 22	August 29	September 5	September 12
Check				
Ranger Russet	20	100	100	100
Foreign Varieties				
Ackersegen	10	15	30	90
Alpha	10 d	30d	90	100
Bevelander	10 d	40d	100	100
Bzura	20	30	90	100
Capella	10d	10 d	20d	100
Capiro	5 d	10 d	30	95
Cosima	10 d	50	90	100
Caulin Alto	<5d	30	95	100
Flava	<5d	20	95	100
Kufri Jeevan	10 d	20	90	100
Kufri Jyoti	20	40	95	100
Libertas	10	30	95	100
Maris Piper	10d	50	100	100
Noordeling	5	10	100	100
Vekaro	<5d	5	90	100
Victor	10d	30	95	100
San	10	40	90	100
Stobrawa	10	50	100	100
Foreign Breeding Stocks				
KOM D542	10d	60	100	100
CEBECO 60238-25	10	10	40	90
Des B-53	20	60	80	100
CIP-M India 1062	<5	10	20	100
N503-1	10	30	95	100
PI 499999	<5	20	40	100
CEX-69-1	0	<5	10	20
PI 517317	<5	15	15	30
V-2 (CIP 375335.1)	0	20	80	95
PI 527315	0	15	40	80
BL 1-10	10	20	90	100
S. tbr (CIP 702867)	5d	10	70	95
CFS 69.1 (CIP 676005)	10	40	60	80
Late Blight Differentials	10		00	
1521C (3)	<5d	20	30	90
Bacterial Wilt	\Ju	20	30	70
BR 63.74	20	60	90	95
MS 35.9	10	10d	10d	10d
HET Series	10	100	104	104
1278-2 US-W 4056(Merr) x chc	<5	10	70	100
1278-2 US-W 4036(Merr) x chc	10d	20	100	100
1278-8 US-W 4036(Merr) x chc	10d 10d	50	100	100
	IUU	20	100	100
1278-9 US-W 4056(Merr) x chc	20	40	100	100

Species	_ PI	% Defoliation	Species	PI	% Defoliation
S. tuberosum	243361	100	S. hjertingii	283103	100
S. brachycarpum	230459	70-100	S. microdontum	473171	20-100
"	239402	95	S. phureja	225678	95-100
S. bulbocastanum	243504	0-10	"	225681	100
"	243505	0-10	"	243468	50-100
"	243506	10-50	"	320363	70-100
"	243508	5-90	S. polyadenium	275238	0-70
"	243509	5-90	"	310963	10-80
"	243510	0-20	"	320342	30-70
"	243511	0-10	S. pinnatisectum	186553	90-100
"	243512	0-10	"	230489	90-100
"	275192	0-10	"	275230	10-90
S. brachistotrichum	279244	100	"	275231	90-100
"	320265	90-100	"	275232	100
S. cardiophyllum	283062	100	"	275233	10-90
"	283063	100	"	275234	90-95
S. demissum	160220	10-100	"	275235	100
"	160221	10-50	"	275236	30-100
"	161169	10-100	S. stoloniferum	161178	70-100
"	161366	5-50	"	195166	90-100
"	175404	10-50	"	205510	90-100
"	205517	40-100	"	230490	90-100
"	218047	10-100	"	239410	100
"	230487	10-20	S. magistacrolobum	195210	100
"	275208	10-100	S. trifidum	283064	10-100
"	275209	20-100	"	283065	90-100
S. fendleri	225661	95-100	n	283104	70-95
"	161727	10-30	S. verrucosum	161174	100
			"	275256	50-100

Line	PI/Cross	Aug. 29	Sept. 3	Sept. 12	Sept. 19	Sept. 26
3-19	1584C (10) x Kenn	<5	5	10	30	100
3-23	11	0	5	5	20	60
5-4 (R 8)	1584C (10) x W231	<5	10	10	90	100
5-1 (R 19)	11 11	10	20	60	95	100
5-3 (R 19)	" "	10	10	5	70	50
5-4 (R 19)	11 11	5	60	70	80	100
5-17 (R 19)	11 11	0	<5	<5	10	40
5-22 (R 19)	11 11	5	5	5	30	80
5-29 (R 19)	11 11	10	10	20	95	100
5-33 (R 19)	ff ft	10	10	5	20	90
5-38 (R 19)	11 11	5	10	10	20	80
5-1 (R 20)	11 11	5	10	10	90	100
9-12 (R 22)	215618 (R1R2R3R4) x W1005	10	30	30	70	95
11-3 (R 24)	303151 x Kat	5	10	20	90	95
11-4 (R 24)	# #	5	10	20	30	100
11-5 (R 24)	ft t	5	10	10	30	90
12-2 (R 24)	W870 x tbr 583331	5	10	10	30	95
12-25 (R 24)	11	<5	5	10	90	100
12-26 (R 24)	11	<5	5	10	100	100
12-27 (R 24)	11 11	<5	10	20	95	100
12-8 (R 25)	11	10	5	10	80	100
12-9 (R 25)	11	<5	10	10	90	100
12-22 (R 25)	Ħ Ħ	<5	10	30	100	100
12-25 (R 25)	11 11	<5	10	70	95	100
12-36 (R 25)	11	<5	5	10	60	95
12-37 (R 25)	11 11	<5	10	20	100	100
12-6 (R 26)	**	5	5	20	100	100
12-12 (R 26)	11 11	5	5	60	100	100
12-24 (R 26)	11 11	<5	5	10	40	99
12-3 (R 27)	11	10	20	20	100	100
12-13 (R 27)	11 11	5	10	20	90	100
12-33 (R 27)	н н	5	5	40	100	95
12-34 (R 27)	11	0	5	10	70	95
13-3 (R 28)	W870 x tbr 583334 (CIP 391021)	0	5	10	70	100
13-18 (R 28)	" "	0	5	10	30	95
13-22 (R 28)	tt tt	0	5	10	90	100
13-29 (R 28)	11	10	<5	5	20	100
13-1 (R 29)	11 11	0	10	20	100	100
13-2 (R 29)	11	5	10	20	90	95
14-10 (R 31)	W870 x tbr 583341 (CIP 391137)	<5	10	30	80	90
15-13 (R 31)	W231 x tbr 583331 (CIP 391013)	<5	10	20	30	70
15-15 (R 31)	" "	5	20	60	95	100
15-21 (R 31)	" "	5	20	30	100	100
15-1 (R 32)	11 11	<5	10	20	100	100

Line _	PI/C	ross	Aug. 29	Sept. 3	Sept. 12	Sept. 19	Sept. 26
15-2 (R 32)	W231 x tbr 583	331 (CIP 391013)	0	5	10	95	100
15-9 (R 32)	**	11	0	5	10	10	60
15-10 (R 32)	**	11	5	10	30	90	100
15-38 (R 32)	"	11	5	10	30	90	99
15-9 (R 33)	**	11	0	10	20	90	95
15-11 (R 33)	**	11	<5	5	10	20	70
15-15 (R 33)	**	"	0	5	5	100	100
15-16 (R 33)	**	**	<5	10	20	100	100
15-29 (R 33)	***	**	<5	10	20	90	100
15-35 (R 33)	**	**	5	10	30	95	100
15-39 (R 33)	**	***	5	10	10	80	100
15-1 (R 34)	11	11	5	10	20	100	100
16-19 (R 34	W231 x tbr 5833	334 (CIP 391021)	5	10	10	10	20
16-13 (R 34)	**	81	5	20	20	95	100
16-15 (R 34)	***	**	-	-	5	10	90
16-12 (R 35)	**	"	0	5	5	10	20
16-19 (R 35)	#1	"	10	5	10	40	100
16-22 (R 35)	11	"	10	5	20	100	100
16-35 (R 35)	11	"	<5	5	30	100	100
16-36 (R 35)	11	11	<5	5	20	100	100
16-16 (R 36)	11	"	<5	10	50	100	100
17-1 (R 37)	W231 x tbr 5833	341 (C1P 391137)	<5	10	20	90	100
17-13 (R 37)	**	"	5	5	10	80	100
17-24 (R 38)	**	**	5	20	70	70	70
17-31 (R 38)	**	**	10	10	10	10	30
Check							
Ranger Russet			35	100	100	100	100

Enhancement Project Table 10. Late blight differential response at Hancock in 1997.

Clone	Genotype	Aug. 22	Aug. 29	Sept. 5	Sept. 12
201401	R1	20	100	100	100
423651	R1	20	100	100	100
834 C (29)	R1	90	100	100	100
201402	R2	30	100	100	100
203905	R2	100	100	100	100
3RC-8	R2	50	100	100	100
423653	R3	50	100	100	100
201404	R4	20	90	100	100
203900	R4	100	100	100	100
423654	R4	100	100	100	100
303148	R7	30	100	100	100
423655	R7	30	100	100	100
303149	R8	30	90	100	100
423656	R10	40	100	100	100
203901	R1R2	20	100	100	100
423657	R1R2	10	100	100	100
201407	R2R3	10	90	100	100
2070 AB (31)	R2R4	20	95	100	100
1584C (10)	R3R4	10	80	100	100
215622	R1R2R3	100	100	100	100
215620	R2R3R4	30	100	100	100
215618	R1R2R3R4	<5d	95	100	100
303151	multigenic	10	90	100	100
1521C (3)		<5d	20	30	90
Ranger Russet		25	100	100	100

Enhancement Project Table 11. Comparison of late blight resistance among selections based on percent defoliation in 1996 and 1997.

Selections	8/5/96	8/22/97	8/8/96	<u>8/29/97</u>	8/19/96	9/5/97	8/26/96	9/12/97	9/3/96
Libertas	5	10	10	30	15	95	25	100	90
Talukdarii	15	40	60	100	98	100	100	100	100
KOM D 149	10	10	10	90	60	100	75	100	100
PB sn	5	<5d	5	95	25	100	75	100	100
PI 227680	5	20	10	95	25	100	85	100	100
PI 230659	<5	30	5	95	20	100	60	100	100
Dee 133.5	5	60	10	100	50	100	100	100	100
PI 257346.1	20	30	90	100	100	100	100	100	100
IAC 2	<5	10	<5	80	10	100	40	100	90
PI 257538	10	20	20	100	50	100	95	100	100
CEX 69-1	<5	0	1	<5	< 5	10	15	20	60
V-2	5	0	5	20	25	80	50	95	90
PI 527315	1	0	1	15	<5	40	10	80	60
PI 527316	<5	20	1	95	15	100	40	100	90
CFS 69.1	5	10	1	40	25	60	80	80	99
PI 423654	40	100	60	100	100	100	100	100	100
SSRPB 2182 ef (7)	5	30	20	100	60	100	100	100	100
1584C (10)	1	10	1	80	10	100	75	100	99
SSRPB 2424a (5)	<5	30	10	90	20	100	70	100	100
PI 423656	<5	40	5	100	10	100	70	100	100
Ranger Russet	15	20	60	100	100	100	100	100	100

Enhancement Project Table 12. *Verticillium* wilt resistant parents and enhancement selections based on preliminary evaluations at Hancock in 1997.

Foreign Varieties	Breeding Stocks	Bacterial Wilt	Species-haploid	HET	Enhancement
Capella Capiro Flava** Greta Hokkai Izstades Libertas Nevikij** Pirola Quemchi #16 Razvarsitiyji Sulev Talukdarii Vekaro Victor Pilica San Ruta CISA 537030	MPI 44.335/128 MPI 49.747/31 KOM D 149 KOM D 542 KOM F 558 KOM F 754 MPI 44.1016/10 PI 227680 IAC 2 IAC 705 MPI 55.957/96 MPI 50.140/5 PI 321614 Des B-53 LT-1 CEX-69-1 PI 527315 BL 1-10 79V100-40 79V106-18 S. tbr (CIP 702867) CFS 69.1 (CIP 676005) CIP 379706.27 CIP 379706.34 96-10095	BR 63.74 PI 527319 8-5 8-43 T-12 BR 63.65 MS 35.9	1081-4R 1267-2R 1275-1R	1278-2** 1278-6 1278-8 96-10231 96-10232	93-1300-7 93-2630 93-2957 94-4073-1 94-4199-11 94-4296-17 94-4338-1 94-4354-1

^{**} No symptoms of wilt, early or late blight

Clone	July 7	July 14	July 21	July 28
Rowe Selections				
12373-75-3	90	90	95	100
12378-1	50	50	50	95
12380-9	25	50	90	100
Bacterial Wilt				
BR 44.7	30	60	90	95
8-5	30	20	20	95
HP & HET Series				
79 HP 29-2	5	10	75	100
1278-2	30	30	40	90
1278-6	40	30	50	95
Enhancement Selections	S			
96-10244	5	10	70	100
96-10235	20	30	100	100
96-10455-6	10	10	40	95
90 DH 1-1	20	100	100	100
90 DH 30-1	95	100	100	100
90 DH 127-1	30	90	100	100
93-1140-7	15	50	100	100
93-1224	30	100	100	100
93-2612	30	85	100	100
Check				
Norland	55	75	95	100

Enhancement Project Table 14. Colorado potato beetle resistance of selected clones at Hancock (Field 2).

Clone	July 7	July 14	July 21	<u>July 28</u>	August 14
Foreign Varieties					
Advira	5	5	20	50	95
Bzura	5	25	40	30	90
Carmikavskij	5	5	5	10	95
Ottar	10	10	10	30	100
Primicia Inta	5	5	5	30	100
Troll	0	5	10	10	100
Voran	0	<5	5	10	100
Provost	0	5	20	40	100
Foreign Breeding Stocks					
CIP-M India 1018	0	15	90	90	100
N 503-1	10	20	20	30	100
PI 499999	0	20	30	40	100
PI 527316	0	5	70	80	100
79V106-18	0	10	40	70	95
GL76B/103	0	<5	40	50	100
DHSeries					
US-W 9231.13	5	5	30	100	100
Check					
Norland	5	20	25	30	100

Family/Clone	July 7	July 14	July 21	July 28	August 14	August 22
CPB 7-1	0	0	0	0	0	0
-2	0	0	0	0	10	10
-3	0	0	0	0	20	20
-4	0	0	<5	0	20	30
-5	0	0	0	0	40	50
-6	0	0	0	0	30	40
-7	0	0	0	0	30	50
-8	0	0	0	10	10	10
-9	0	0	0	0	0	0
-10	0	0	0	0	5	<5
-11	0	0	0	0	10	20
-1a	0	0	0	0	0	0
-2a	0	0	0	0	0	0
CPB 8-1	0	0	5	5	90	99
-2	0	0	10	15	80	95
-3	0	0	10	30	90	100
-4	0	0	5	10	80	95
-5	-	-	-	-	-	-
-6	0	0	0	5	80	95
-7	. 0	<5	0	0	80	99
-8	0	0	0	0	70	90
- 9	0	0	0	<5	50	60
-10	0	5	10	5	60	95
-11	5	5	5	<5	60	99
-1a	0	5	10	10	70	90
-2a	0	<5	0	0	80	95
-3a	0	0	0	0	80	99
-4a	0	<5	0	0	90	95
-5a	0	<5	0	0	90	95
-6a	0	0	0	0	90	95
-7a	0	5	5	0	80	90
-8a	0	0	10	0	80	90
-9a	0	<5	0	0	50	30
-10a	0	5	5	<5	50	50
-11a	5	30	20	10	60	70
CPB 11-1	0	0	0	0	60	90
-2	0	0	0	<5	80	85
-3	0	<5	5	5	70	95
-4	0	20	5	5	50	90
-5	0	0	0	0	60	90
-6	0	0	5	5	50	90
-7	0	0	0	0	40	90
-8	0	0	10	20	20	20

Family/Clone	July 7	July 14	July 21	<u>July 28</u>	August 14	August 22
CPB 11-9	0	0	0	5	60	80
-10	0	0	0	0	50	80
-11	0	0	0	<5	40	80
-1a	-	-	-	-	-	-
-2a	0	<5	5	<5	30	50
-3a	0	0	15	0	60	90
-4a	0	0	<5	0	60	95
CPB 12-1		-	-	-	•	•
-2	0	0	<5	<5	30	90
-3	0	0	0	<5	40	100
-4	-	-	-	-	-	-
-5	0	0	5	5	40	60
-6	0	0	0	0	30	30
-7	-	-	-	-	-	-
-8	0	0	0	0	20	10
-9	0	<5	20	5	10	10
-10	0	<5	0	5	15	30
-11	-	-	-	-	•	•
Checks						
Norland	0	5	15	-	75	100

Note: CPB 7 = US-W 357 (Merr) x chc 217451 CPB 8 = US-W 482 (Merr) x tar 412148 CPB 11 = US-W 482 (Merr) x tar 473242 CPB 12 = US-W 482 (Merr) x tar 473243

<u>Family</u>	% Defoliation
CPB 7 -1	0
-2	10
-3	20
-4	30
-5	50
-6	40
-7	50
-8	0
-9	0
-10	<5
-11	20
CPB 8-9	60
-9a	30
10	50
-11	70
CPB 11-8	20
-8a	60
-2	50
CPB 12-5	60
-6	30
-8	10
-9	10
-10	30

Note: CPB 7 = US-W 357 (Merr) x chc 217451

CPB 8 = US-W 482 (Merr) x tar 414148

CPB 11 = US-W 482 (Merr) x tar 473242

CPB 12 = US-W 482 (Merr) x tar 473243

NORTH CENTRAL REGIONAL POTATO TRIALS Richard Novy, Assistant Professor and Bryce Farnsworth, Research Specialist, Plant Sciences Dept., North Dakota State University and Cooperators

Cooperators in 1997:

Iowa, Dr. Bill Summers; Louisiana, Dr. Charlie Johnson and Mr.Gil Barker; Michigan, Dr. Dave Douches; Minnesota, Dr. Christian Thill; Nebraska, Dr. Alexander D. Pavlista; Ohio, Dr. Richard Hassell; Wisconsin, Dr. Jiming Jiang, Dr. Horia Groza, and Mr. Bryan Bowen. Technical assistance from Michael Schwalbe in North Dakota is appreciated.

Eight states participated in the North Central Regional Trials in 1997. The Canadian provinces of Alberta and Manitoba will again participate in the trials in 1998.

Cooperating States 1997

		Т	OTAL DAYS	S
STATE OR	DATE	DATE	ТО	
PROVINCE	PLANTED	HARVESTED	HARVEST	I/D^1
Iowa	6/3	9/4	93	I
Louisiana	-	-	-	D
Michigan	5/6	9/23	140	I
Minnesota	4/23	9/15	145	I
Nebraska	5/14	9/26	135	I
North Dako	ta 5/30	10/6	129	D
Ohio	5/22	9/17	118	D
Wisconsin	4/22	9/15	146	I

¹ I = Irrigated (most irrigation was supplemental to rainfall); D = Dryland

Trial conditions: The overall objective of the trial is to test the performance of advanced selections for uniformity over a wide variety of locations and environments. In most cases, rainfall was supplemented with irrigation. but three sites were dryland (ND, OH, LA). Adverse growing conditions in Iowa and North Dakota (flooding of trial) dramatically lowered yields and did not allow for an effective evaluation of the entries' merits. Their trial results have been included in all tables, but regional averages for Tables 1, 2 and 3, do not include Iowa or North Dakota. Louisiana's trial was flooded early in the growing season with subsequent seed rot. No harvest data was obtained from that site.

Entries: Twelve advanced selections were received from Michigan, Minnesota, North Dakota, and Wisconsin. Seed of the check varieties Norchip, Atlantic, Snowden, Red Norland, Red Pontiac, Russet Burbank, and Russet Norkotah were supplied by North Dakota in order to

ensure a standard seed source. The selections, number of years in the trial (YIT), and descriptions are given below:

Selection	YIT	<u>Description</u>
MN16180	2	pale, yellow fleshed tablestock
MN16489	2	pink-eyed white chipper
MN16966	1	processor with white skin, yellow-flesh
MSB073-2	1	chipper with netted skin
MSB076-2	3	white chipper
MSB106-7	2	russet tablestock
ND2225-1F	2 3	red tablestock
ND2676-10	2	white chipper
ND3828-15	1	white chipper
W1151rus	2	russet tablestock
W1313	2	white chipper
W1348rus	1	russet

Total and US No. 1 Yield: MN16966 (403 cwt/A) MN16489 (396 cwt/A), and MSB0106-7 (394 cwt/A) had the highest total yield across the four irrigated sites. Under dryland conditions at the Ohio site, Red Pontiac (300 cwt/A), MN16966 (291 cwt/A), and MSB106-7 (261 cwt/A) were the top three entries for total yield. MN16489 (354 cwt/A), W1313 (352 cwt/A), and MSB106-7 (349 cwt/A) were the top three entries for U.S. No. 1 yield under irrigation. Under dryland conditions (Ohio), Red Pontiac (246 cwt/A), MSB106-7 (193 cwt/A) and Red Norland (191 cwt/A) were the top three entries for U.S. No. 1 yield. (North Central Regional Trial Tables 1 and 2).

Percent U.S. No. 1: The range for percent U.S. No. 1 was 67% (Russet Burbank) to 93% (Red Norland). Of the selections, MN16489 had the highest percentage of U.S. No. 1 at 87%, followed closely by MSB076-2 and W1313 at 86%. (North Central Regional Trial Table 3).

Maturity: Red Norland was the earliest maturing entry while Russet Burbank was the latest maturing. Among selections, ND2676-10 was the earliest maturing and MN16489 the latest. (North Central Regional Trial

Specific Gravities: W1313 had the highest specific gravity at 1.091, followed closely by MSB076-2 at 1.089. As expected, the lowest specific gravities were observed in the red cultivars and selections (1.060-62). Russet tablestock selections Wll51rus and MSB106-7 had the next lowest gravities at 1.067. (North Central Regional Trial Table 5).

Scab Reaction: Scab ratings were taken and reported from six sites. Minnesota reported the most severe incidence with respect to area and type. The percentage of tubers displaying scab symptoms was highest in the red cultivars and selection with Red Norland at 21.5%, Red Pontiac at 19.8%, and ND2225-1R at 18.2%. A high incidence of scab also was reported for MN16489 (15.8%) and W1313 (16.5%). Scab incidence was lowest in MSB106-7 (0.6%) and W1348rus (0.3%). (North Central Regional Trial Table 6 and Scab column in North Central Regional Trial Table 7).

Summary of Grade Defects: Freedom from external defects ranged from a low of 60.7% (Russet Burbank) to 94.3% (Russet Norkotah), while freedom from internal defects ranged from 66.5% (Atlantic) to 95.0% (MSB073-2) (North Central Regional Trial Table 7).

Chip Color: Chip color results are reported as Agtron values or PCII Color Chart values. Tubers were chipped shortly after harvest. All chipping entries performed as well as Atlantic, Norchip and Snowden. As noted in 1996, MN16180 (classified as a tablestock entry) chipped well and could have potential as a dual-purpose cultivar. (North Central Regional Trial Table 8).

Overall Merit Ratings: The following summary shows the top five entries from 1997 and indicates the total points based on merit rating for these entries over the previous two years. (North Central Regional Trial Table 9).

Selection	1995	1996	1997
W1313	NE	7	13
R. Norkotah	NE	4	12
ND2225-1R	14	6	12
MSB076-2	8	15	10
MN16489	NE	8	9
W1151rus	NE	0	7

^{*}Not Entered

Summary of 3-year performance: MSB076-2 and ND2225-1R had their last trial year in 1997. For merit ratings during the three years, ND2225-1R ranked 5th, 6th (tied), and 2nd (tied), in 1995, 1996, and 1997 respectively. MSB076-2 during the same trials years ranked 6th, 1st, and 3rd. Yield comparisons of the two entries with check cultivars during the three years are shown in North Central Regional Trial Table 10.

North Central Regional Trial Table 1. Total Yield (cwt/acre) - 1997

Cultivar or Selection	MI ^{1/}	MN ^{1/}	NE¹′	OH ^{2/}	WI ^{1/}	Ave.3/	IA ^{2/}	ND ^{2/}
Atlantic	302	368	204	152	423	290	152	101
Norchip	260	339	270	179	322	274	155	96
Red Norland	197	315	363	204	370	290	108	80
Red Pontiac	288	379	410	300	430	361	106	161
Russet Burbank	225	500	168	161	355	282	100	80
Russet Norkotah	203	375	312	184	264	268	55	95
Snowden	247	488	262	135	441	315	117	123
MN16180	232	462	347	217	379	327	174	107
MN16489	301	584	313	203	384	357	60	119
MN16966	313	613	213	291	474	381	178	103
MSB073-2	254	299	203	221	396	275	66	102
MSB076-2	314	363	329	221	423	330	88	98
MSB106-7	258	527	396	261	394	367	149	101
ND2225-1R	172	393	243	141	295	249	87	99
ND2676-10	249	373	287	223	344	295	130	104
ND3828-15	231	392	376	159	424	316	158	91
W1151rus	207	392	216	122	312	250	122	109
W1313	349	515	287	247	392	358	151	100
W1348rus	225	560	242	226	413	333	106	108
Average	254	434	287	203	382	311	119	104

Irrigated
 Dryland
 IA and ND are not included in average

North Central Regional Trial Table 2. U.S. No. 1 Yield (cwt/acre) - 1997

Cultivar or Selection	MI	MN	NE	ОН	WI	Ave.1/	IA	ND
Atlantic	277	324	197	111	387	259	114	71
Norchip	209	303	258	133	266	234	86	48
Red Norland	172	295	346	191	342	269	32	44
Red Pontiac	256	353	394	246	364	323	53	110
Russet Burbank	131	473	142	24	289	232	8	30
Russet Norkotah	127	343	303	138	228	228	25	58
Snowden	192	439	252	115	401	280	37	88
MN16180	148	410	326	180	343	281	76	49
MN16489	265	529	291	160	332	315	3	70
MN16966	238	567	187	169	401	312	57	48
MSB073-2	172	208	165	168	356	214	30	50
MSB076-2	244	317	310	177	380	286	38	59
MSB106-7	186	504	371	193	335	318	62	67
ND2225-1R	100	305	203	104	260	194	4	60
ND2676-10	181	305	262	187	320	251	72	52
ND3828-15	173	368	359	121	357	276	88	45
W1151rus	136	366	184	81	272	208	45	74
W1313	313	466	268	163	359	314	60	66
W1348rus	124	518	223	156	357	276	53	52
Average	192	389	265	148	335	267	50	60

^{1/} IA and ND not included in average.

North Central Regional Trial Table 3. Average Percent U.S. No. 1 (over 2" Dia) - 1997

Cultivar or Selection	MI	MN	NE	ОН	WI	Ave.1/	IA	ND
Atlantic	92	88	97	73	91	88	75	70
Norchip	81	89	96	74	83	85	55	50
Red Norland	87	94	95	94	93	93	30	55
Red Pontiac	89	93	96	82	85	89	50	68
Russet Burbank	58	94	85	15	81	67	8	38
Russet Norkotah	63	91	97	75	86	82	46	61
Snowden	78	.90	96	85	91	88	31	72
MN16180	64	88	94	83	91	84	44	46
MN16489	88	91	93	79	86	87	5	59
MN16966	76	92	88	58	85	80	32	47
MSB073-2	68	70	81	76	90	77	45	49
MSB076-2	78	88	94	80	90	86	43	60
MSB106-7	72	96	94	74	85	84	42	66
ND2225-1R	58	77	83	74	88	76	5	61
ND2676-10	73	81	91	84	93	84	55,	50
ND3828-15	75	94	95	76	84	85	56	50
W1151rus	65	93	85	66	87	79	37	68
W1313	90	90	93	66	92	86	40	66
W1348rus	55	93	92	69	86	79	50	48
Average	74	89	92	73	88	83	39	57

^{1/} IA and ND not included in average.

North Central Regional Trial Table 4. Maturity Classification 1/ - 1997

Cultivar or Selection	IA	MI	MN	NE	ND	ОН	WI	Average
Atlantic	3.0	ND	3.5	2.5	4.3	4.0	3.0	3.4
Norchip	2.0	ND	3.0	3.0	3.8	3.5	2.5	3.0
Red Norland	1.0	ND	2.9	1.0	3.0	1.0	1.0	1.7
Red Pontiac	3.0	ND	3.0	4.0	4.3	4.0	4.0	3.7
Russet Burbank	5.0	ND	4.1	4.0	5.0	5.0	3.8	4.5
Russet Norkotah	4.0	ND	3.5	1.5	4.0	2.0	2.8	3.6
Snowden	2.5	ND	3.8	4,0	4.8	5.0	3.3	3.9
MN16180	2.0	ND	3.6	1.0	3.3	3.5	3.5	3.4
MN16489	5.0	ND	3.3	4.0	4.0	5.0	3.3	4.1
MN16966	2.0	ND	4.1	2.0	4.8	4.0	4.5	3.6
MSB073-2	4.0	ND	3.6	4.0	3.8	4.0	3.0	3.7
MSB076-2	2.5	ND	3.6	4.0	3.5	4.0	4.0	3.6
MSB106-7	3.0	ND	2.8	1.0	3.5	3.0	3.0	2.7
ND2225-1R	2.0	ND	2.8	1.5	3.8	4.0	1.5	2.6
ND2676-10	2.0	ND	2.5	1.0	3.3	3.0	2.5	2.4
ND3828-15	4.0	ND	3.5	2.0	4.0	3.0	2.8	2.7
W1151rus	3.0	ND	3.5	3.0	4.3	5.0	3.3	3.7
W1313	2.0	ND	4.1	3.0	5.0	5.0	3.5	2.9
W1348rus	4.0	ND	3.5	3.0	4.8	5.0	2.5	3.8
Average	2.9	ND	3.4	2.6	4.1	3.8	3.0	3.3

Very Early - Irish Cobbler Maturity
 Early - Norland Maturity

^{3.} Medium - Red Pontiac Maturity

Late - Katahdin Maturity

Very late - Russet Burbank Maturity

North Central Regional Trial Table 5. Specific Gravities - $1997^{1/}$

Cultivar or Selection	IA	MI	MN	NE	ND	ОН	WI	Average
Atlantic	72	89	7.8	85	88	75	84	82
Norchip	71	75	72	75	90	73	70	75
Red Norland	55	55	57	60	79	65	54	61
Red Pontiac	62	61	61	60	70	63	56	62
Russet Burbank	77	73	86	70	83	64	72	75
Russet Norkotah	64	66	67	70	79	65	62	68
Snowden	72	84	83	85	91	68	75	80
MN16180	67	65	67	70	87	70	76	72
MN16489	73	77	79	90	88	71	72	79
MN16966	75	87	79	75	86	70	79	79
MSB073-2	87	85	84	85	86	74	81	83
MSB076-2	85	94	84	100	94	80	85	89
MSB106-7	64	59	68	70	82	65	62	67
ND2225-1R	56	56	55	60	78	62	54	60
ND2676-10	71	74	70	75	87	69	73	74
ND3828-15	77	65	65	80	83	61	68	71
W1151rus	64	64	72	70	78	63	56	67
W1313	85	94	96	90	98	88	83	91
W1348rus	62	75	83	75	89	79	74	77
Average	70	74	74	76	85	70	70	74

 $^{^{\}mbox{\scriptsize 1/}}$ "88" is abbreviation for a specific gravity value of 1.088

North Central Regional Trial Table 6. Scab Reaction Report - Most Representative Scab (Area/type)^{1/} - 1997

Cultivar or Selection	IA	MI	MN	NE	ND	ОН	WI
Atlantic	0-0	ND	1-4	1-4	T-3	0-0	T-3
Norchip	T-1	ND	1-4	-	T-1	0-0	T-1
Red Norland	3-5	ND	1-3	T-1	T-5	T-1	T-1
Red Pontiac	1-3	ND	2-5	1-3	T-1	0-0	1-3
Russet Burbank	0-0	ND	1-4	+	0-0	0-0	T-1
Russet Norkotah	T-1	ND	2-4	-	0-0	0-0	T-1
Snowden	0-0	ND	4-3	1-4	T-1	5-1	T-1
MN16180	0-0	ND	1-2	_	T-2	0-0	0-0
MN16489	T-1	ND	3-1		T-1	T-2	T-1
MN16966	0-0	ND	1-3	-	3-1	0-0	T-1
MSB073-2	T-1	ND	1-2	2-5	2-1	0-0	T-1
MSB076-2	T-1	ND	3-2	_	T-3	0-0	T-1
MSB106-7	0-0	ND	T-1		0-0	0-0	T-1
ND2225-1R	3-2	ND	1-4	T-1	2-3	0-0	T-2
ND2676-10	T-1	ND	1-1	1-4	T-1	T-1	0-0
ND3828-15	T-1	ND	1-3		T-1	0-0	T-1
W1151rus	2-2	ND	1-3		3-3	T-1	T-1
W1313	0-0	ND	2-4	1-4	T-3	2-1	T-4
W1348rus	0-0	ND	T-1		0-0	0-0	T-1

Area

T = less than 1%

1 = 1-20%

2 = 21-40%

3 = 41-60%

4 = 61-80% 5 = 80-100% Type

1 = Small, superficial

2 = Larger, superficial

3 = Larger, rough pustules

4 = Larger pustules, shallow eyes

5 = Very large pustules, deep holes

0	
1997	I
=	
efects	
2	
Ę	
_	
<u>e</u>	
ad	
Ä	
G	
4	
0	
1	
Ë	į
\overline{z}	
S	
•	
I Table	
0	
ূল	
3	
÷	
nal Trial Table 7.	
ব	
Ē	
.2	
90	
~	
7	
H	
en	
Cen	
h Cen	
rth Cen	
orth Cen	
North Cen	
North Cen	

			H	External1/					Internal"	
Cultivar or Selection	Scab2/	Growth Cracks	Off Shape & Second Growth	Tuber Rot	Sun Green	Total Free of External Defects ³⁷	Hollow Heart	Internal Necrosis	Vascular Discoloration	Total Free of Internal Defects4"
Atlantic	11.4	8.0	3.7	0.2	6.2	7.06	26.3	2.9	4.6	66.5
Norchip	7.5	% %	14.5	0.2	8.2	78.7	4.6	6.1	0.6	80.5
Red Norland	21.5	6.3	4.7	0.0	1.7	88.8	5.7	8.1	4.3	83.5
Red Pontiac	19.8	5.8	10.5	0.0	1.8	84.2	9.6	1.4	5.1	83.9
Russet Burbank	2.5	3.8	35.0	0.0	1.5	60.7	12.1	5.3	2.9	78.7
Russet Norkotah	7.0	1.2	7.7	0.3	1.0	94.3	13.3	1.0	6.9	79.2
Snowden	9.4	0.3	4.7	0.2	7.0	88.7	6.6	2.3	16.1	71.7
MN16180	4.9	0.5	10.8	0.0	6.7	83.8	0.9	0.0	8.4	84.1
MN16489	15.8	2.5	4.8	0.0	5.8	90.5	6.9	0.4	2.6	90.3
MN16966	8.3	2.2	10.8	1.3	1.3	85.8	1.9	4.3	4.9	89.2
MSB073-2	8.9	3.0	2.8	0.0	4.0	91.8	1.0	0.1	4.0	95.0
MSB076-2	10.1	2.8	2.8	0.2	3.8	91.3	15.1	2.6	1.3	81.0
MSB106-7	9.0	7.0	7.6	0.0	3.8	79.7	2.4	4.7	6.6	84.7
ND2225-1R	18.2	0.3	2.5	0.0	1.0	89.8	0.7	1.6	7.8	88.9
ND2676-10	5.4	1.7	2.2	2.5	6.2	90.3	1.4	9.8	12.1	78.6
ND3828-15	6.3	8.9	4.5	0.2	6.7	83.7	9.4	6.7	11.9	72.3
W1151rus	11.2	3.3	6.7	1.0	3.3	84.5	11.0	9.0	11.9	7.97
W1313	16.5	1.0	1.8	0.5	3.8	91.2	7.1	3.0	4.1	84.5
W1348rus	0.3	1.7	13.8	0.0	3.3	82.7	8.4	1.1	2.6	88.7
Average	7.6	3.2	8.3	4.0	4.1	85.9	8.0	3.2	6.9	82.0

Based on four 25 tuber samples (one from each replication). Percentage based on number of tubers. 7/

Number of tubers with scab of 100 tubers rated. Does not count in external defects.

Tubers free from any external defect of any sort. % 4

Percentage of normal tubers showing no internal defects. Individual tubers may have more than one type of internal defect.

:						(į	
Cultivar or Selection	IA	$\mathbf{MI}^{1\prime}$	MIN	NE1/	$ND^{2/}$	OH Chart	H Agtron	WI1	Chart Average	Agtron Average
Atlantic	ON	1.5	N ON	1.0	47	1.0	57.0	3.0	1.6	52.0
Norchip	N Q	1.5	ND	1.0	58	2.5	47.2	3.8	2.2	52.6
Red Norland	ON N	3.0	ND	3.0	47	2.0	47.1	4.8	3.2	47.1
Red Pontiac	N	3.0	QN QN	4.0	35	4.0	33.3	6.3	4.3	34.2
Russet Burbank	N ON	2.0	QN	3.0	52	5.0	23.5	4.8	3.7	37.8
Russet Norkotah	ND QN	3.0	S	2.0	40	3.0	40.5	4.4	3.1	40.3
Snowden	S	1.0	N Q	1.0	99	4.0	32.7	2.8	2.2	44.4
MN16180	S	2.0	ND	1.0	09	2.0	50.0	3.2	2.1	55.0
MN16489	ND	1.0	N N	1.0	9	2.0	54.1	3.7	1.9	9.69
MN16966	N ON	1.5	N N	2.0	43	2.0	51.2	4.2	2.4	47.1
MSB073-2	ON	1.5	QN QN	2.0	09	1.0	56.3	3.7	2.1	44.0
MSB076-2	N Q	1.5	N N	1.0	09	4.0	31.0	3.2	2.4	45.5
MSB106-7	QN	3.0	ND	2.0	52	3.0	48.3	5.6	3.4	50.2
ND2225-1R	ND	3.0	ND	4.0	34	2.0	47.2	5.4	3.6	40.6
ND2676-10	N	1.0	N	1.0	9	4.0	31.3	3.1	2.0	48.2
ND3828-15	ND	1.5	ND	1.0	99	4.0	33.7	2.8	2.3	49.9
W1151rus	ND	3.0	ND	2.0	40	3.0	46.6	5.2	3.3	43.3
W1313	N	1.5	ND	1.0	58	1.0	57.1	3.3	1.7	57.6
W1348rus	Q	2.0	ND	2.0	53	1.0	51.9	4.1	2.3	52.5
Average	ND	2.0	ND	1.8	52	2.7	44.2	4.1	2.6	47.5

PCII Color Chart (1 = lightest; 10 = darkest)
 Agtron (Highest number lightest)

North Central Regional Trial Table 9. General Merit Rating 1/ Points - 1997

Cultivar or Selection	IA	MI	MN	NE	ND	WI	Total Points
Atlantic		3					3
Norchip							
Red Norland				3			3
Red Pontiac							
Russet Burbank							
Russet Norkotah			2	2	5	3	12
Snowden			4				4
MN16180				1		4	5
MN16489		5		4			9
MN16966	1	1					2
MSB073-2							
MSB076-2		4		5	1		10
MSB106-7	5			1			6
ND2225-1R			3		4	5	12
ND2676-10			1		3	1	5
ND3828-15							
W1151rus	2		3		2		7
W1313	4	2	5			2	13
W1348rus	3						3

1/	Merit Ratings _	Rating	Points	1.	W1313 - 13 points
		1	5	2.	Russet Norkotah - 12 points
		2	4	2.	ND2225-1R - 12 points
		3	3	3.	MSB076-2 - 10 points
		4	2	4.	MN 16489 - 9 points
		5	1	5.	W1151rus - 7 points

North Central Regional Trial Table 10. Three-year summary of the yield and specific gravity of A. ND2225-1R and B. MSB076-2 relative to check cultivars in the North Central Regional Potato Variety Trial (1995-97).

Α.		19951			1996			1997		
Variety	U.S. #1 (cwt/acre)	% % Total U.S. #1 Solids	% Total Solids	U.S. #1 (cwt/acre)	% U.S. #1	% Total Solids	U.S. #1 (cwt/acre)	% U.S. #1	Specific Gravity	Average U.S. #1
ND2225-1R	235	74	15.8	232	78	1.066	194	92	1.060	220
Norland ²	279	85	20.2	287	06	1.062	269	93	1.061	278
Red Pontiac	352	87	20.2	337	84	1.062	323	68	1.062	337

B.		19953			1996			1997		
Variety	U.S. #1 (cwt/acre)	% U.S. #1	% Total Solids	U.S. #1 (cwt/acre)	% U.S. #1	Specific Gravity	U.S. #1 (cwt/acre)	% U.S. #1	Specific Gravity	Average U.S. #1
MSB076-2	280	82	20.3	334	84	1.089	286	98	1.089	300
Norchip	265	85	17.9	234	81	1.078	234	85	1.075	244
Atlantic	333	85	20.0	317	91	1.088	259	88	1.082	303
Snowden	331	88	19.3	282	74	1.083	280	88	1.080	298

¹1995 Yield data for ND2225-1R and check cultivars does not include the ND site.

²Dark Red Norland was used in 1995 and 1996; Red Norland was used in 1997.

³1995 Yield data for MSB076-2 and check cultivars is derived from MI, NE, and OH sites.

NORTHEAST REGIONAL POTATO TRIALS

Jonathan A. Sisson III, Assistant Scientist, University of Maine Agricultural and Forest Experiment Station, Presque Isle, ME.

Cooperators in 1997: Delaware, Ed Kee; Maine, Gregory Porter; New Brunswick, Henry DeJong; North Carolina, Craig Yencho; New Jersey, Mel Henninger; Long Island, New York, Joe Sieczka; Upstate New York, Don Halseth; Ohio, Richard Hassell; Pennsylvania, William Lamont Jr.; Prince Edward Island, Walter Arsensault and Peter Scott; Quebec, Pierre Turcotte; and Virginia, Rikki Sterrett.

Twenty-three trials were conducted in eight states and three Canadian Provinces. Twenty-three named varieties and 21 numbered clones were available to the cooperators. Seed for all clones and varieties were grown by the Maine State Seed Potato Board at Porter Farm. Seedpieces were prepared, cut, and suberized by the staff at the University of Maine Agricultural and Forest Experiment Station in Presque Isle, Maine. Seed was distributed to cooperating locations according to requests received from individual cooperators. Cultural practices were generally similar to those used by commercial growers near each location.

Objectives: The objectives of this regional project are (1) to develop pest-resistant, early maturing, long-dormant varieties that will process from cold storage; (2) to evaluate new and specialty varieties developed in the Northeast; (3) to determine climatic effects on performance to develop predictive models for potato improvement; and (4) determine heritability/linkage relationships and improve the genetic base of tetraploid cultivated varieties.

Results: Total yield, marketable yield, specific gravity, tuber size, tuber defects, chip color results, boil and bake results are presented in Northeast Region Trial Tables 1-7. For round whites, AF1480-5, AF1615-1, B0766-3, NY102, NY103, Atlantic, Itasca, Katahdin, Kennebec, and Reba produced good yields in many locations. Of these ten selections, Atlantic, NY102, and B0766-3 had the highest specific gravities. Atlantic, Katahdin, Kennebec, Reba, AF1480-5, B0766-3, NY103, and Yukon Gold produced good sized tubers (2.5 to 4 inch diameter). Atlantic, AF1480-5, B0766-3 and Itasca had hollow heart problems in some locations. AF1615-1, NY103, Katahdin, and Kennebec were prone to sunburning in some trials. Reba and NY102 had few

external and internal problems.

For red clones, Chieftan produced the highest marketable yields in most trials and had the largest tubers. Cherry Red had the highest specific gravity but also had some hollow heart. Chieftain had both good boil and bake scores, while the others did not bake as well.

Century Russet yielded and sized similar to Russet Burbank in most trials. Russeting was very light or nonexistent on Century Russet tubers and it had some hollow heart problems. B1004-8 did poorly at most sites. B9922-11 produced the largest tubers in most trials and had a similar specific gravity to Russet Burbank.

MaineChip has produced the lightest chips over the years; however, the yields have been very low. ND2471-8 has chipped very well out of the field, but has done very poorly out of storage. B0564-8, NY102, NY103, Snowden, AF1427-7, AF1433-4, and NorValley have chipped well out of the field, and have usually chipped well out of warm storage. Reba has consistantly chipped well both out of the field and out of warm storage. Monona has chipped very well after reconditioning. Reba, AF1424-7, AF1433-4, and W870 have also produced light chips after reconditioning.

If you would like a copy of the 1997 Northeast Potato Trials, contact Jonathan Sisson at sisson@maine.maine.edu.

Northeast Region Trial Table 1. Total yields (cwt/acre) for 23 named varieties and 21 numbered clones grown at 15 locations in the Northeast United States and Eastern Canada.

Clone	DE	ME11	ME21	ME31	S S S	NC	NY12	NY2³	НО	PA	PEI	QU14	QU24	QU34	A V	Mean
Round Whites Atlantic	338	264	234	330	372	238	462	506	251	355	360	197	432	452	245	344
Itasca	303	168	210	409	331	242	403	588	228	472	365	184	483	434	235	349
Kennebec	5	247	287	484	433	290	388	489	244	455	415	240	533	513		372
MaineChip		198	232	2				450		328						302
Monona		179	279					418		368						327
Niska		199	222		392	234		440		373		217	432	407		324
NorValley		247	273	449		201		423	250	397		222	425	397		328
Quaggy Joe		260		458		212		531	262	435					 	360
Reba (NY87)	322	251	250	452		191	419	493	272	407					278	338
Snowden		154	229	297		201		484	263	411		177	395	351	325	299
Superior	322	150	195	484	209	236	302	470	269	401	362	227	461	392	287	318
Yukon Gold		220	253		306	195	396	367	202	398	314	204	406	393		305
AF1424-6	225									321		177	366	337		285
AF1424-7	221	173	160	273	276	173		448	168	326	286	171	376	402		266
AF1425-1					401					327		169	409	390		339
AF1426-1	295									315						305
AF1433-4	269	172	176	339		172			190	287		199	336	310		245
AF1437-1	301	203		388		260	376	437	232	362		244	471	439		338
AF1475-16	326									379		201	425	358	278	328
AF1480-5		303		434	405	222	407	491	249	481	401	226	435	407		372
AF1565-12	332	205		385		182			221	300		162	345	389		280
AF1615-1	325	303		483		208	361	428	217	486		166	441	397		346
B0564-8		250	173		309	205	323	379	218	350	320		437	402	247	301
B0766-3		200	248		356	178	425		270	443	364	228	397	346		314
B0856-4		227		333	324	271			221	327		136	336	363	305	284
ND2471-8	339					220			165	340						266
NY102		213	254	390	399	222	372	449	234	340		221	415	416	1	327
NY103	382	254	236	422	443	248	427	455	235	378	359	260	399	432	297	348
W870	305				245					340						167

Northeast Region Trial Table 1 continued.

Clone	DE	ME1	ME21	ME3 ¹	NB	NC	NY12	NY23	НО	PA	PEI	QU1⁴	QU24	QU34	VA	Mean
Reds Cherry Red Chieftain Dark Red Norland NorDonna Red Ruby B0811-13		186 262 218 218 183 209 205		391 469 459 368 360 407	338	255 274 242 262 209	371 320 280 363 338	515	206 241 162 214	392 470 323 389 389 390	307	194 222 158	419 516 452	371 456 434	256	302 395 294 298 329 309
Russets/Long Whites BelRus Century Rus. Russet Burbank Russet Norkotah Shepody B1004-8 B9922-11	139 225 119 236	283 257 222 176 240 261		337 388 343 262 345 416	376 320 339	195 395 166 218 240	366 256 336 329 314	489 460 313 351	245 207 194	447 315 293 332 291	407 270 336	192	251	369	221 294 221 221	185 357 367 274 329 246 261 304

¹Trials were contucted in three locations in Maine, Presque Isle (ME1), Exeter (ME2), and St. Agatha (ME3). The two locations in New York were Riverhead, Long Island (NY1), and Freeville (NY2). There were three trials in Quebec, Canada; Joliette (QU1), Shipshaw (QU2), and Ste-Croix (QU3).

Northeast Region Trial Table 2. Marketable yields (cwt/acre) for 23 named varieties and 21 numbered clones grown at 15 locations in the Northeast United States and Eastern Canada.

Clone	DE	ME1	ME21	ME31	SB SB	NC	NY12	NY23	НО	PA	PEI	QU1⁴	QU24	QU34	VA	Mean
Round Whites Atlantic	268	240	195	272	328	219	427	383	216	313	336	182	378	424	204	291
Itasca	0	122	190	374	285	232	335	511	170	308	257	198	300	35/	200	302
Varanciii	077	202	240	C07	226	207	207	746	188	410	403	214	200	474		314
MaineChip		157	170	353	000	0/4	1	2007	001	289	P.)	:		242
Monona	149	219					365		328						275	
Niska		162	168		355	217		319		332		183	387	375		278
NorValley		195	211	394		189		313	190	345		212	371	358		278
Quaggy Joe		227		319		961		377	212	388						287
Reba (NY87)	317	223	207	411		172	383	423	237	359					332	297
Snowden		126	206	280		188		397	224	370		137	351	320	284	262
Superior	255	127	178	431	191	226	266	437	245	360	348	186	429	369	252	287
Yukon Gold		192	215		282	172	347	302	170	361	302	184	384	343		271
AF1424-6	195									277		164	310	283		246
AF1424-7	162	153	127	245	262	159		409	141	283	261	157	326	349		233
AF1425-1					357					287		137	372	357		302
AF1426-1	123									282						202
AF1433-4	217	123	156	312		161			167	241		172	295	278		212
AF1437-1	193	177		292		238	302	387	202	307		219	436	416		288
AF1475-16	268									319		181	395	316	253	289
AF1480-5		282		389	336	197	305	344	147	440	386	206	404	383		318
AF1565-12	224	175		327		167			194	248		127	307	370		238
AF1615-1	204	272		433		193	295	306	177	437		131	387	356		290
B0564-8		231	150		278	191	267	309	168	300	288		404	351	200	261
B0766-3		180	230		341	168	395		224	394	351	202	368	318		288
B0856-4		204		307	300	246			161	279		119	293	318	254	248
ND2471-8	281					205			125	295						226
NY102		173	236	368	382	214	316	392	204	294		186	374	387		294
NY103	301	226	208	340	394	233	381	340	217	337	343	238	346	405	270	305
W870	249				222					304						258

Northeast Region Trial Table 2 continued.

Clone	DE	ME11	DE ME1' ME2' ME3'	ME31	ES S	NC	NY12	NY23	НО	PA	PEI	QU1⁴	QU24	QU34	VA	Mean
Reds Cherry Red Chieftain Dark Red Norland NorDonna Red Ruby B0811-13		163 243 194 157 178 161		289 432 434 347 299 374	325	243 261 234 249 194	338 276 225 312 283	390	183 207 123 180	350 431 279 350 331 343	292	175 204 116	393 485 419	347 443	179	271 359 258 261 280 273
Russets/Long Whites BelRus Century Russet Russet Burbank Russet Norkotah Shepody B1004-8 B9922-11	46 95 41 113	243 238 217 168 233 163		299 365 325 325 301 383	221 292 303	182 384 384 153 211 230	190 118 161 240 175	339 251 214 245	145 153 146	393 259 244 292 238	286	164	364	325	211	115 276 270 220 220 284 185 211 231

¹Trials were contucted in three locations in Maine, Presque Isle (ME1), Exeter (ME2), and St. Agatha (ME3). The two locations in New York were Riverhead, Long Island (NY1), and Freeville (NY2). There were three trials in Quebec, Canada; Joliette (QU1), Shipshaw (QU2), and Ste-Croix (QU3).

Northeast Region Trial Table 3. Specific gravities (1.0 excluded) for 23 named varieties and 21 numbered clones grown at 15 locations in the Northeast United States and Eastern Canada.

	7	MEI	MEZ.	ME31	9	NC	NY12	NY23	ЮН	PA	PEI	QU14	QU24	QU34	VA	Mean
Round Whites																
Atlantic	75	88	96	77	73	87	82	98	75	60	101	0	73	90	00	70
Itasca		71	77	49	64	77	99	74)	74		3 5	C 1	20	00	9 5
Katahdin	62	75	79	70	65	80	65	72	29	W.	8	PL.	89	0 00	23	
Kennebec		77	89	71	65	3	69	77	9 0	8 6	07	10	3 6	0.00	CO	7.0
MaineChip		92	66)	3	3	0.	2	7 80	16	0/	2	60		8/8
Monona	89	78					9		22	2					69	χ,
Niska		79	85		63	85	3	75	1	83		18	1	8	60	1
NorValley		78	83	71	3	82		78	69	£ &		79	77	8 %		V /
Quaggy Joe		89		09		7.1		63	65	89			1	3		666
Reba (NY87)	69	73	81	89		9/	71	69	72	78					77	73
Snowden		86	6	84		82		68	78	94		98	83	6	2 50	100
Superior	99	79	85	75	70	11	69	74	74	75	68	80	7.1	84	72	76
Yukon Gold		83	86		77	83	9/	80	78	84	94	78	75	91		82
AF1424-6	69									00 00		85	74	06		8
AF1424-7	74	84	91	75	92	87		91	79	98	89	68	62	83		8
AF1425-1					65					9/		77	64	77		72
AF1426-1	52									9/						64
AF1433-4	99	17	8	69		73			72	98		77	62	8		75
AF1437-1	52	64		55		29	09	62	99	64		67	57	67		62
AF1475-16	29									73		82	26	74	92	71
AF1480-5		79		73	65	79	74	11	9/	9/	91	82	64	98	*	77
AF1565-12	29	9/		64		69			78	70		77	53	72		69
AF1615-1	71	82		70		73	75	75	72	87		72	67	82		75
B0564-8		78	82		99	82	73	73	74	78	86	00	16	00	9/	78
B0766-3		83	93		69	85	74		99	87	95	85	78	06	!	82
B0856-4		75		73	70	9/			71	79		73	70	78	63	73
ND2471-8	9/					87			78	68					3	90
NY102		87	6	80	72	88	81	84	42	88		83	80	93		84
NY103	65	77	80	70	62	79	70	72	64	74	83	9/	29	08	64	72
W870	70				77					07)		0

Northeast Region Trial Table 3 continued.

Reds Reds Red 72 86 74 80 Chieffain 66 62 68 66 66 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 80 Chieffain 64 67 68 66 66 66 65 65 69 61 69 NorDonna 69 64 70 63 69 61 69 69 61 69 Red Ruby 66 64 97 75 73 73 73 73 Russets/Long Whites 81 71 69 87 87 87 87 87 Russet Burbank 81 75 72 74 74 82 69 86 80 86 80 86 80 86 80 86 80 81 89 75	Clone	DE		ME11 ME21	ME31	NB NB	NC	NY12	NY12 NY23	НО	PA	PEI	QU14	QU24	QU34	VA V	Mean
Norland S1 72 86 74	Reds Chemer, Pod		1														
Norland	Chelly ned		N N		72		98			74	80	94	79	73	87		~
Horland 64 67 68 57 65 1a 69 64 70 63 69 61 y 66 64 97 73 73 ong Whites Russet 81 65 84 79 rubank 81 71 69 84 79 richank 82 75 72 74 74 82 69 ss 73 69 58 98 64	Chiertain		99		62		9	99	99		73		99	20	77		7
1a 69 64 70 63 69 61 y 66 62 62 63 69 61 cong Whites Ausset 81 75 73 richank 81 71 69 84 79 richank 81 71 69 85 sky 79 sky 79 richank 82 75 72 74 74 82 69 sky 75 89 81 89 78 sky 75 75 72 74 74 82 69 sky 75 89 88 81 89 78	Dark Red Norland		64		19		89	57		65	65		8			20	ý Č
9 66 62 63 73 75 73 ong Whites Russet 81 65 84 79 75 73 Russet 81 76 84 79 urbank 81 71 69 81 76 85 orkotah 75 72 74 74 82 69 87 75 75 78 80 81 89 78 15 73 69 58 98 64	NorDonna		69		64		70	63	69	61	69					27	5 4
3 69 66 64 97 75 73 Long Whites Russet Russ	Red Ruby		99		62			63	3	5	9						00
83 Russet 81 65 87 87 87 88 81 71 69 85 87 87 87 87 87 87 88 88 87 87 87 88 88	B0811-13		69		99	64	26		75	73	700	98	77	57	74	70	74
83 Russet 81 65 87 Russet 81 71 69 87 72 72 74 74 82 69 88 87 75 75 75 76 86 87 88 88 88 81 89 78 88 88 88 88 88 88 88 88 88 88 88 88																	+
Russet 81 65 81 76 84 79 urbank 81 71 69 85 orkotah 75 72 74 74 82 69 87 75 75 80 81 89 78 18 73 69 58 98 64	Russets/Long Whites																
Russet 81 65 81 76 84 79 urbank 81 71 69 85 79 orkotah 75 72 74 74 82 69 82 75 75 74 74 82 69 87 75 80 81 89 78 18 73 69 58 98 64 78	BelRus					8									ľ	ć	
urbank 81 71 69 85 75 orkotah 75 72 69 85 75 82 75 72 74 74 82 69 87 75 80 81 89 78 18 73 69 58 98 64 78	Century Russet		81		65)	00	76	84	70	00					S 6	î
orkotah 75 72 69 69 78 82 75 72 74 74 82 69 78 87 75 75 80 81 89 78 78 69 58 98 64	Russet Burbank		81		71	69	5	2	500		87	90				2	× 5
82 75 72 74 74 82 69 87 75 80 81 89 78 15 69 58 98 64	Russet Norkotah		75		72			69			ò	S					9 6
82 75 72 74 74 82 69 87 75 80 81 89 78 15 73 69 58 98 64	Shepody												76	7.1	70		7/
15 87 75 80 81 89 78 15 73 69 58 98 64	B1004-8		82		75	72	74	74	82	69	86	60	5 5	7 7	0 0		7 0
73 69 58 98 64	B9922-11		87		75		80	00	68	78	0.0	1	C	000	00	76	0 0
	W1099Rus		73		69	58	86	64	6	2	75	8				0/	70
)	9					2

¹Trials were contucted in three locations in Maine, Presque Isle (ME1), Exeter (ME2), and St. Agatha (ME3).

²The two locations in New York were Riverhead, Long Island (NY1), and Freeville (NY2).

³There were three trials in Quebec, Canada; Joliette (QU1), Shipshaw (QU2), and Ste-Croix (QU3).

Northeast Region Trial Table 4. Percent of marketable yield of tubers in the 2.5 to 4 inch size range for round whites and reds, and russets greater than eight ounces for 23 named varieties and 21 numbered clones grown at 10 locations in the Northeast United States and Eastern Canada.

Clone	DE	ME11	ME21	ME31	NB NB	NY12	NY23	PA	PEI	VA	- Mean
Round Whites											1
Atlantic	41	25	63	29	99	65	09	65	29	73	26
Itasca		7	23	62	35	37	99	48			38
Katahdin	30	35	43	72	9/	99	9	72	69	73	09
Kennebec		45	99	83	64	47	89	89	71		59
MaineChip		4	35				61	09			40
Monona	10	35				59	65			45	
Niska		2	31		61		49	47			38
NorVallev		00	27	53			43	54			37
Ouaggy Joe		11		99			52	62			4
Reba (NY87)	22	15	41	89		58	61	64		69	20
Snowden		6	29	53			35	54		89	41
Superior	30	8	35	75	57	52	40	62	73	73	20
Yukon Gold		42	52	89		09	63	71	61		09
AF1424-6	51							69			09
AF1424-7	29	12	19	73	55		99	61	09		46
AF1425-1					63			99			09
AF1426-1	20							9/			48
AF1433-4	37	7	28	48				43			32
AF1437-1	23	9	09	59		39		54			40
AF1475-16	49							99		81	65
AF1480-5		48		64	58	39	9	70	99		57
AF1565-12	22	00		57				34			30
AF1615-1	10	22		54		18	40	55			33
B0564-8		17	6		46	37	43	48	40	63	36
B0766-3		11	45		71	69		89	61		54
B0856-4		17		36	50			43		63	42
ND2471-8	30							52			41
NY102		4	30	55	59	27	41	41			37
NY103	49	14	23	89	99	72	58	65	44	81	24
W870	39				47			64			20

Northeast Region Trial Table 4 continued.

Clone	ME11	ME3 ¹	NB	NY1 ²	NY23	PA	PEI	VA	Mean
Reds								·	
Cherry Red	8	58				66	55		47
Chieftain	24	69		52	63	73			56
Dark Red Norland	9	62		35		50		16	34
NorDonna	7	57		30	42	59			39
Red Ruby	5	47		32		40			31
B0811-13	4	65	57	34		56	34	51	43
Russets/Long Whites									
BelRus									
Century Russet	12	33		9	37				23
Russet Burbank	13	30			43		15		25
Russet Norkotah	6	45		4					18
Shepody									
B1004-8	4	20		3	24		4		11
B9922-11	37	65		21	42				41
W1099Rus	14	53		8			15		23

¹Trials were contucted in three locations in Maine, Presque Isle (ME1), Exeter (ME2), and St. Agatha (ME3). ²The two locations in New York were Riverhead, Long Island (NY1), and Freeville (NY2).

Average (sites x years) percent tuber defects and hollow heart, chip color, and bake and boil scores for 23 named and 21 numbered round white clones. Number of comparisons (sites x years) are in parentheses. Northeast Region Trial Table 5.

	i		% Tu	Tuber Defects	SS	0 0 0 0 0 0 0 0 0		Chip Color¹	Color¹			
Variety	Years	Total	Sun- burn	Mis- shapen	Growth	Hollow Heart	Out of field³	50-55°F storage	45°F storage	Reconditioned	Boil score²	Bake score²
Atlantic	1997	12.9(10)	5.2(9)	2.5(9)	1.2(10)	4.6(13)	3 0 0	2 4 3	0 0 3	0 0 1	7	2 0 1
Atlantic	∞	8.2(51)	3.8(49)	2.0(52)	1.4(55)	6.4(60)	20 10 6	28 9 13	4 3 12	7 4 7	12 7 6	15 5 1
Itasca	1997	5.3(5)	2.1(5)	1.8(5)	1.2(5)	5.1(7)	0 0 1	1 1 6	0 0 2		4 1 0	1 1 0
Katahdin	1997	14.3(8)	7.1(7)	1.0(7)	0.3(8)	5.0(11)	0 2 0	0 1 4	0 0 3	0 0 1	4 2 0	2 1 0
Katahdin	∞	9.1(50)	5.2(48)	1.1(48)	0.6(50)	4.4(63)	6 6 14	3 8 20	0 1 16	1 1 10	10 15 1	9 10 3
Kennebec	1997	17.6(7)	7.2(7)	3.1(7)	1.4(7)	3.3(10)	0 0 1	0 2 5	0 0 2	0 0 1	2 3 1	2 0 1
Kennebec	00	14.7(39)	6.0(39)	3.9(39)	3.1(39)	3.8(50)	4 4 15	6 11 23	1 1 15	3 1 12	12 10 4	7 11 4
MaineChip	1997	22.4(3)	5.2(3)		1.8(3)	19.0(4)		3 0 0	1 0 1	1 0 0	0 0 1	0 0 1
MaineChip	∞	8.6(30)	4.0(30)	1.7(30)	1.6(30)	7.9(29)	9 1 1	28 1 1	7 1 2	5 2 3	9	2 5 2
Monona	1997	13.1(4)	3.9(4)		0.3(4)	5.5(5)		1 1 1	0 0 1		0 1 0	1 0 0
Monona	4	10.4(12)	2.8(12)	4	1.2(12)	2.5(13)	1 0 0	5 3 2	2 0 2	10 0 1	0 3 0	_
Niska	1997	21.6(3)	2.9(3)	5.0(3)	4.0(3)	4.0(5)	1 0 0	3 2 2	0 0 3	1 0 0	0	2 0 0
Niska	2	16.1(5)	3.8(5)	3.4(5)	3.2(5)	5.0(10)	4 2 0	5 4 4	0	1 1 0	7 1 0	4 0 0
NorValley	1997	16.9(4)	5.1(4)	4.0(4)	0.7(4)	1.5(7)	2 0 0	2 2 3	0 1 1	0	0	1 0 0
NorValley	4	11.9(14)	4.8(14)	4.2(14)	0.6(14)	0.5(20)	7 2 1	13 5 5	4 2 3	2 1 3	6 4 1	3 4 0
Quaggy Joe	1997	16.1(3)	8.4(3)	2.6(3)	3.3(3)	4.2(6)	0 0 1	0 0 2	0 0 1		0 1 0	
Quaggy Joe	4	12.8(10)	7.6(10)	(1	1.6(10)	3.9(18)	0 0 10	0 3 11	0 0 8	0 0 4	4	
Reba	1997	(2)9.9	3.1(6)		0.1(7)	3.8(10)	3 0 0	3 0 0	_	0	_	
Reba	9	5.0(35)	3.1(33)		0.3(35)	4.0(44)	18 4 2	19 2 1	4 3 3	4 2 2	4 8 0	4 5 2

Northeast Region Trial Table 5 cont.

Variety	Years	Sun- Mis- Total burn shapen	Sun- burn	rr Defects Mis- shapen	Growth	Hollow Heart	Out of field³	50-55°F 45°F storage storage	olor¹ 45°F storage	Recon- ditioned ⁴	Boil score²	Bake score²
Snowden	1997	6.0(5)	2.8(4)	1.3(4)	0.7(4)	2.9(7)	3 0 0	3 1 3	0	0 1 0	0	1 0 0
Snowden	9	4.4(25)	2.3(24)	_	0.3(24)	2.4(31)	15 3 1	15 6 6	3 2 3		5 2 6	2
Superior	1997	4.9(7)	1.4(6)		0.4(7)	1.0(10)	1 1 1	1 2 5	0	0	2	2 0 1
Superior	∞	4.2(40)	0.8(38)	2.1(38)	1.0(40)	1.3(57)	12 6 17	7 7 19	0 2 14	0 2 9	11 10 5	9 9 3
Yukon Gold	1997	16.4(5)	2.1(5)	3.6(5)	0.6(5)	6.0(8)		0 1 4	0 0 2	0 0 1	3 3 0	2 1 0
Yukon Gold	∞	7.5(17)	1.5(17)	2.0(17)	1.0(17)	9.1(24)	2 0 4	1 2 11	_	0	9	\mathcal{C}
AF1424-6	1997				0.0(1)	7.5(2)		1 2 1	0 0 2	0 0 1	2 2 0	1 0 0
AF1424-6	4	7.4(5)	2.7(5)	0.6(5)	3.3(6)	5.3(8)	1 3 0	962	_		5 4 0	4 1 0
AF1424-7	1997	14.7(5)	1.7(5)	2.2(5)	0.3(6)	3.3(9)	2 0 0	6 1 2	_	_	4 2 0	0
AF1424-7	4	9.9(10)	1.5(10)	1.3(10)	1.3(12)	2.1(19)	9 1 1	15 4 5	5 1 5	3	6 4 0	5 1 1
AF1425-1	1997					5.0(1)		2	0 0 2	0 0 1	2	7
AF1425-1	4	9.5(6)	7.5(6)	0.9(6)	1.0(6)	0.8(9)	1 1 0	3 2 2	1 0 4	0	2 3 1	0 3 0
AF1426-1	1997				6.0(1)	7.5(2)		7	0 0 2		1 0 0	1 0 0
AF1426-1	5	14.8(7)	4.8(7)		4.2(9)	1.5(14)	$\overline{}$	3		1 1 2	3	3 1 0
AF1433-4	1997	17.1(3)	0.4(3)	3.6(3)	0.0(4)	0.0(7)	2 0 0	3 2 2	0 0 2	1 0 0	3 1 0	1 0 0
AF1433-4	5	6.9(15)	2.0(15)		0.6(17)	1.3(22)	2	9	7	4 0 1	\mathcal{C}	4 3 2
AF1437-1	1997	10.7(4)	1.2(4)	0.2(4)	3.2(5)	0.6(8)		_	0		_	
AF1475-16	1997	2.0(1)			1.0(1)	20.0(2)	1 0 0	0 0 1	0 0 2		2 2 0	1 0 0
AF1475-16	3	8.4(2)	10.1(1)	4.1(1)	0.4(3)	11.0(4)	1 0 1	0	0	0 0 1	3	1 1 0

	•	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	% Tube	% Tuber Defects	0 0 0 0 0 0 0 0	0	0 0 0 0 0 0 0	Chin Color!	lor!	0 0 0 0 0		
			Sun-	Mis-	Growth	Hollow	Out of	50-55°F	45°F	Recon-	Boil	Bake
Variety	Years	Total	burn	shapen	cracks	Heart	field ³	storage	storage	ditioned ⁴	score ²	score ²
AF1480-5	1997	10.775)	3 7(5)	\$ 1(5)	0.1(5)	15.0(8)	-	000	<u> </u>	_	-	-
AF1480-5	2	9.3(6)	3.4(6)	4.4(6)	0.1(6)	17.0(11)	-	7	0	0	7	7
AF1565-12	1997	6.8(2)	3.8(2)	2.2(2)	0.1(3)	1.7(6)	1 0 0	0 2 0	0 0 2	0 0 1	1 3 0	1 0 0
AF1565-12	3	9.8(7)	3.4(7)	2.0(7)	3.2(9)	2.2(15)	0	3	$\overline{}$	_	2	2
AF1615-1	1997	8.1(4)	6.5(4)	1.1(4)		2.5(8)	_	$\overline{}$	0		$\overline{}$	0
B0564-8	1997	4.09(6)	1.2(5)	0.6(5)		0.0(8)	1 2 0	3 2 2	0 0 3	0 0 1	5 0 1	2 0 1
B0564-8	\$	3.5(17)	6(16)	0.4(16)	1(17)	1.5(24)	2	7	2 0 6	1 1 3	8 2 2	7
B0766-3	1997	6.1(4)	0.6(4)	2.1(4)		7.1(7)	2 0 0	4 3 1	0 1 1		4 1 1	_
B0856-4	1997	2.3(3)	1.1(2)	0.9(2)		3.0(5)	$\overline{}$	0 2 1	0 0 2		4 1 0	2 0 0
ND2471-8	1997				0.0(1)	6.9(4)	2 0 0	0 1 0	0 0 2	0 0 1	0 1 0	0 1 0
ND2471-8	4	10.0(8)	5.8(8)	1.0(8)	1.7(9)	6.8(17)		1 4 11	3 0 5	0 1 3	3 4 0	2 3 1
NY 102	1997	7.6(5)	1.5(5)	0.9(5)	1.2(5)	1.9(8)	2 0 0	3 3 1	1 1 1	0	2 1 2	1 1 0
NY102	2	7.1(8)	2.5(8)	0.9(8)	0.9(8)	3.3(13)	0	5	1 1 3	0	7	7
NY103	1997	11.9(7)	4.8(6)	2.5(6)	0.4(7)	0.5(10)	2 1 0	2 4 2	0 0 3	0 1 0	3 1 2	2 1 0
NY103	2	13.0(10)	7.2(9)	2.4(9)	0.5(11)	1.1(16)	-	464	104		5 2 2	2
W870	1997				0.0(1)	5.0(2)		1 1 0	0 1 2	0 1 0	0	1 1 0
W870	3	9.7(4)	4.4(4)	4.4(4)		2.8(10)	4 2 3	7 4 2	2 1 4	3 3 0	5 0 1	3 2 0

¹From left-to-right, the scores are good, borderline, and poor.

²From left-to-right, the scores are good, fair, and poor.

³Out of field samples were fried three to twelve days after harvest in New Jersey, North Carolina and Virginia.

⁴Chips were reconditioned in Maine's, Upstate New York's, and New Brunswick's trials.

Average (sites x years) percent tuber defects and hollow heart, chip color, and bake and boil scores for 5 named and 1 numbered red skinned clones. Number of comparisons (sites x years) are in parentheses. Northeast Region Trial Table 6.

Years Total burn shapen Growth Hollow Out of 50-55°F 45°F Recon- Boil Bake ted 1997 9.4(3) 1.3(3) 1.6(3) 1.3(3) 6.4(3) 0.01 0.12 0.01 0.02 0.02 0.01 0.02 0.01 0.02		i		% Tube	r Defects	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 0 E		Chip Color¹	lor ¹	0 0 0 0 0		
a 1997 9.4(3) 1.3(3) 1.6(3) 1.3(3) 6.4(3) 0 0 1 0 12 0 0 1 2 11 0 0 0 0 0 0 0 0 0	Variety		Total	Sun- burn	Mis- shapen	Growth	Hollow Heart	Out of field³	50-55°F storage	45°F storage	Reconditioned ⁴	Boil score ²	Bake score²
ad 1997 9.4(3) 1.3(3) 1.6(3) 1.3(3) 6.4(3) 0 0 1 0 1 2 0 0 1 211 0 0 0 0 0 0 0 0 0													
3 3.2(20) 1.1(4) 1.9(9) 3.0(9) 9.1(15) 0 0 1 0 3 8 0 0 7 0 0 0 2 3 4 2 1 4 1 1997 6.0(4) 1.9(4) 1.1(4) 2.4(4) 2.1(6) 0 0 0 2 0 0 0 1 2 0 0 1 2 0 1 1 2 0 1 1 1 1	Cherry Red	1997	9.4(3)	1.3(3)	1.6(3)	1.3(3)		0 0 1	0 1 2	0 0 1		2 1 1	0 0 1
1997 6.0(4) 1.9(4) 1.1(4) 2.4(4) 2.1(6) 0.00 2 0.0 1 2.0 1 8 3.2(20) 1.1(19) 1.0(21) 0.9(20) 0.9(26) 1 0 2 0 2 11 0 0 0 3 1 1997 3.3(4) 1.6(4) 0.9(4) 0.2(4) 0.0(7) 0.0 1 0 0 2 0 0 1 1 3 3.1(9) 1.7(9) 0.8(9) 0.2(9) 0.9(16) 0.0 1 1 0 9 0 0 5 0 0 5 2 3.0(13) 0.5(12) 1.4(12) 0.9(12) 1.3(22) 2 1 4 1 4 5 0 0 2 2 3.0(13) 2.1(3) 3.2(3) 0.8(3) 0.6(4) 0.6(4) 0.0 2 0 0 1 1997 6.2(3) 2.1(3) 3.2(3) 0.8(3) 0.6(4) 0.0(4) 0.0 1 0 0 1 1997 2.7(5) 0.9(4) 2.2(4) 0.2(4) 0.4(7) 1 0 0 1 2 1 0 0 1 1997 2.7(5) 0.9(4) 2.2(4) 0.2(4) 0.4(7) 1 0 0 12 1 0 0 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cherry Red	8	9.2(9)	2.1(9)	1.9(9)	3.0(9)		0 0 1	0 3 8	0 0 7	0 0 2	3 4 2	1 4 1
8 3.2(20) 1.1(19) 1.0(21) 0.9(20) 0.9(26) 1 0 2 0 2 11 0 0 0 3 7 2 1 4 2 1 1997 3.3(4) 1.6(4) .09(4) 0.2(4) 0.0(7) 0 0 1 0 0 2 0 0 0 1 1 0 0 0 5 0 0 2 2 2 0 0 3 3 1.(9) 1.7(9) 0.8(9) 0.2(9) 0.9(16) 0 0 1 1 0 9 0 0 5 0 0 2 2 2 0 0 3 3 1.(9) 1.7(9) 0.8(9) 0.2(9) 0.9(16) 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1	Chieftain	1997	6.0(4)	1.9(4)	1.1(4)	2.4(4)			0 0 2			2 0 1	
1997 3.3(4) 1.6(4) .09(4) 0.2(4) 0.0(7) 0 0 1 0 0 2 0 0 1 3 3.1(9) 1.7(9) 0.8(9) 0.2(9) 0.9(16) 0 0 1 1 0 9 0 0 5 0 0 2 2 2 0 0 3 Dk Red 1997 2.1(4) 0.4(3) 1.0(3) 0.3(3) 0.0(6) 0 1 0 1 0 1 0 1 0 1 0 0 1 Dk Red 5 3.0(13) 0.5(12) 1.4(12) 0.9(12) 1.3(22) 2 1 4 1 4 5 0 0 2 1997 6.2(3) 2.1(3) 3.2(3) 0.8(3) 0.6(4) 0.6(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chieftain	∞	3.2(20)	1.1(19)	1.0(21)	0.9(20)			0 2 11	0 0 3		7 2 1	7
3 3.1(9) 1.7(9) 0.8(9) 0.2(9) 0.9(16) 0 0 1 10 9 0 0 5 0 0 2 2 2 0 0 3 Dk Red 1997 2.1(4) 0.4(3) 1.0(3) 0.3(3) 0.0(6) 0 10 0 1 0 1 0 1 0 0 1 Dk Red 1997 2.1(4) 0.5(12) 1.4(12) 0.9(12) 1.3(22) 2 1 4 1 4 5 0 0 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NorDonna	1997	3.3(4)	1.6(4)	.09(4)	0.2(4)	0.0(7)	0 0 1	0 0 2	0 0 1			
Dk Red 1997 2.1(4) 0.4(3) 1.0(3) 0.3(3) 0.0(6) 0 1 0 1 0 1 0 0 1 Dk Red 5 3.0(13) 0.5(12) 1.4(12) 0.9(12) 1.3(22) 2 1 4 1 4 5 0 0 2 1997 6.2(3) 2.1(3) 3.2(3) 0.8(3) 0.6(4) 0.0(4) 3 5.7(9) 1.4(9) 3.1(9) 1.0(9) 1.1(14) 10 0 12 1 0 0 1 1997 2.7(5) 0.9(4) 2.2(4) 0.2(4) 0.4(7) 1 0 0 1 2 1 0 0 1 3 11 0 0 0	NorDonna	3	3.1(9)	1.7(9)	0.8(9)	0.2(9)	0.9(16)	0 0 1	1 0 9	0 0 5	0 0 0 2	7	
Dk Red 5 3.0(13) 0.5(12) 1.4(12) 0.9(12) 1.3(22) 2 1 4 1 4 5 0 0 2 2 2 1 2 2 1997 6.2(3) 2.1(3) 3.2(3) 0.8(3) 0.6(4) 0.06(4) 0 0 2 0 0 1 3 5.7(9) 1.4(9) 3.1(9) 1.1(14) 1.0(14) 1.0 10 0 0 5 0 0 5 0 0 2 2 2 2 1 0 3 1997 2.7(5) 0.9(4) 2.2(4) 0.2(4) 0.4(7) 1 0 0 1 2 1 0 0 1 3 1 1 0 0	Norland, Dk Red	1997	2.1(4)	0.4(3)	1.0(3)	0.3(3)	0.0(6)	0 1 0	1 0 1	0 0 1			
1997 6.2(3) 2.1(3) 3.2(3) 0.8(3) 0.6(4) 0.06(4) 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Norland, Dk Red	2	3.0(13)	0.5(12)	1.4(12)	0.9(12)	1.3(22)	2 1 4	1 4 5	0 0 3			
3 5.7(9) 1.4(9) 3.1(9) 1.0(9) 1.1(14) 10 0 0 5 0 0 2 2 2 1 0 3 1 97 2.7(5) 0.9(4) 2.2(4) 0.2(4) 0.4(7) 1 0 0 1 2 1 0 0 1	Red Ruby	1997	6.2(3)	2.1(3)	3.2(3)	0.8(3)	0.6(4)		0 0 2				
1997 2.7(5) 0.9(4) 2.2(4) 0.2(4) 0.4(7) 1 0 0 1 2 1 0 0 1 3 1 1 0 0	Red Ruby	3	5.7(9)	1.4(9)	3.1(9)	1.0(9)	1.1(14)		1 0 10	0 0	0 0	2 2 1	0 3 2
	B0811-13	1997	2.7(5)	0.9(4)	2.2(4)	0.2(4)	0.4(7)	1 0 0	1 2 1	0 0 1		3 1 1	

From left-to-right, the scores are good, borderline, and poor.

²From left-to-right, the scores are good, fair, and poor.

³Out of field samples were fried three to twelve days after harvest in New Jersey, North Carolina and Virginia.

⁴Chips were reconditioned in Maine's, Upstate New York's, and New Brunswick's trials.

Average (sites x years) percent tuber defects and hollow heart, chip color, and bake and boil scores for 5 named and 3 numbered russet/long white clones. Number of comparisons (sites x years) are in parentheses. Northeast Region Trial Table 7.

	;		% Tuber Defects-	r Defects				Chip Color¹	lor¹			
Variety	Years	Total	Sun- burn	Mis- shapen	Growth	Hollow Heart	Out of field³	50-55°F storage	45°F storage	Recon- ditioned ⁴	Boil score²	Bake score²
BelRus	1997	2.0(1)										
BelRus	8	3.6(18)	1.3(17)	2.0(20)	0.2(18)	5.7(22)		0 1 3	0 0 4	0 0 4	1 1 0	2 0 0
Century Russet	1997	13.4(5)	3.0(4)	5.7(4)	0.5(4)	9.6(7)	0 0 1	0 1 2	0 0 3	0 0 1	0 1 0	1 0 0
Century Russet	3	10.6(9)	2.5(8)	5.0(8)	0.4(8)	8.1(13)	0 0 1	0 2 5	0 0 5	0 0 2	1 2 0	1 1 0
Russet Burbank	1997	11.9(4)	1.4(4)	9.1(4)	1.4(4)	5.5(5)		0 1 2	0 0 1	0 0 1	1 0 2	0 3 0
Russet Burbank	00	16.5(36)	1.3(36)	13.7(36)	1.3(36)	9.9(42)	0 1 0	1 3 12	0 0 10	6 0 0	10 4 3	7 10 0
Russet Norkotah	1997	5.0(3)	1.1(3)	2.3(3)	0.2(3)	1.0(3)		0 0 2	0 0 1			
Shepody	1997										3 0 0	
B1004-8	1997	7.7(5)	1.1(5)	1.1(5)	2.5(5)	0.6(8)	0 0 1	0 0 4	0 0 3		4 0 2	2 1 0
B9922-11	1997	10.1(5)	2.6(4)	4.0(4)	1.3(4)	7.1(7)	0 1 0	0 1 2	0 0 3	0 0 1	0 0 1	1 0 0
B9922-11	7	7.4(25)	1.9(23)	3.1(24)	2.0(23)	3.6(31)	0 1 0	1 3 10	0 2 9	0 0 7	4 3 6	7 3 1
W1099Rus	1997	14.2(4)	1.4(4)	2.6(4)	1.3(4)	5.0(6)		0 0 4	0 0 4	0 0 1	1 0 2	0 3 0
W1099Rus	2	10.7(6)	1.4(6)	2.3(6)	1.2(6)	6.3(10)		0 0 2	0 0 4	0 0 1	2 0 2	0 3 0

'From left-to-right, the scores are good, borderline, and poor.

²From left-to-right, the scores are good, fair, and poor.

⁴Chips were reconditioned in Maine's, Upstate New York's, and New Brunswick's trials.

³Out of field samples were fried three to twelve days after harvest in New Jersey, North Carolina and Virginia.

WESTERN REGIONAL POTATO VARIETY TRIAL

J. J. Pavek, D. L. Corsini, and Cooperators

Uniform Potato Yield Trial

The 1997 trial was grown at twelve locations for yield; disease data are from three of the locations. Eighteen entries, 14 experimental, three standard checks, and one early check, were grown. Three locations grew entries for both early and late harvest. The trial locations, dates of planting, vine killing, and harvest, and

Pavek, Breeder, and Corsini, Pathologist, USDA-ARS, Univ. of Idaho, PO Box AA, Aberdeen, ID 83210. Cooperators: California, R. Voss; Colorado, D. Holm; Idaho, S. Love; New Mexico, C. Owen, R. Baker; Oregon, A. Mosley, D. Hane, K. Rykbost, C. Shock, S. James; Texas, D. Scheuring, J. C. Miller, Jr.; Washington, R. Thornton, N. Fuller, C. Brown.

days from planting to vine-kill/harvest are shown below. Cultural practices and the use of fertilizer, herbicides, pesticides, and vine killing varied according to local needs. Trial plots at all locations were irrigated on a regular schedule throughout the entire growing season according to plant needs. The growing season was cooler and wetter than normal across the region.

Data on vines, tubers, yield, internal quality, disease reactions, merit scores, and disposition are presented in Western Tables 1 through 7. Three clones finished three years of testing, and will be tested further locally. Two clones were dropped, and the rest will continue in testing. The five Russet Norkotah strains showed much promise for fresh use; AO87277-6 was at the top for processing quality.

		Planting	Vine-Kill	Harvest	Days to Vine-Kill/
State	Location	Date	Date	Date	Harvest
California	Kern Co.	2/14		6/25	/131
4	Tulelake	5/14	9/20	9/30	129/139
Colorado	San Luis Valley	5/21	9/8	10/1	110/133
Idaho	Aberdeen	4/28	9/3	6/17	128/142
44	Kimberly-Early	4/22	8/6	8/12	106/112
64	Kimberly-Late	4/22		10/8	/169
New Mexico	Clovis	3/25	7/17	7/30	114/127
"	Farmington	4/23		10/15	/175
Oregon	Hermiston-Early	3/20	7/14	7/25	116/127
44	Hermiston-Late	4/22	9/16	10/8	147/169
44	Klamath Falls	5/19	9/2	9/29	106/133
4	Malheur	5/5	9/5	9/15	123/133
Texas	Springlake	3/25	7/6	7/27	113/124
Washington	Othello-Early	4/9	8/8	8/26	121/139
"	Othello-Late	4/16	9/3	9/30	150/167

Western Table 1. 1997 Seed source, stand, tuber and vine characteristics, and foliar and tuber diseases at Aberdeen, ID.17

	Year		Stand									Net	et			
	in	Seed	(8 loc)	Tu	Tuber	V	Vine	Vert.	Early	Early Blight	Common	Necrosis	osis	PLRV	Late Bli	Late Blight - MV
Entry	Trial	Source	%	Shape	Skin	Size	Mat	Wilt	Fol.	Tub.	Scab	Hrm	KIM	Hrm	Fol.	Tuber
RUSSET BURBANK	٠	OR	66	Г	RUS	¥	ML	S	MS	2	R	S	MS	SA	VS	MR
RANGER RUSSET		OR	86	Г	RUS	\mathbf{Z}	ML	MR	MS	MS	MS	MR	MS	S	VS	R
RUSSET NORKOTAH	8	OR	86	Г	RUS	S	山	VS	VS	2	×	MR	×	S	VS	MS
A82360-7	3	OR, ID	66	0	RUS	J	J	2	MR	2	MS	R	MR	MR	MR	×
A8792-1	2	OR	86	0	RUS	Z	Ξ	MR	MS	R	MR	NS	MS	MS	MS	S
AC87084-3	1	9	93	0	RUS	Γ	ML	MR	MR	S	R	MS	MR	MR	MS	Z
A087277-6	1	OR	76	П	RUS	\mathbb{Z}	M	S	S	×	MR	R	MR	MS	SV.	R
CO85026-4	3	OR	96	Γ	RUS	Z	ML	Z	MR	2	MS	VR	MR	MR	MS	R
CO87009-4	-	9	96	0	RUS	M	Ξ	S	S	R	R	R	MR	MS	S	R
CORN-3 ^{2/}	-	8	86	J	RUS	S	ш	S	S	R	MS	MR	MS	S	S	S
CORN-8 ^{2/}	1	8	86	T	RUS	S	ш	S	S	×	R	MR	2	MS	NS	S
NDD840-1	=	CA	96	Г	RUS	ML	ML	MS	S	2	MS	VR	1	8	S	MR
TX1385-12RU	7	OR	6	0	RUS	ML	Z	MR	S	S	MR	VR	R	MR	VS	×
TXAV657-27RU	3	OR	6	0	RUS	M	ML	S	S	2	MS	MS	MR	S	S	MR
$TXNS112^{2}$	2	ΧŢ	86	Γ	RUS	S	ш	S	S	×	R	MS	×	MR	VS	MR
$TXNS223^2$	_	ΧŢ	66	Γ	RUS	S	ш	S	S	2	R	S	MR	MS	SA	Ø
$TXNS278^{2}$	7	ΧŢ	26	L	RUS	S	ш	NS	S	2	R	MS	R	MR	S	MR
SHEPODY		OR, ID	86	0	WHT	M	M	S	S	2	NS	VS	ı		VS	MR
T Shape: L = long, 0 = oblong, R = round; Vine size: L = large, ML	blong,	R = rour	id; Vin	e size:	L = large	ML =	mediur	medium-large; M = medium.	M = m	Ι.	MS = medium-small.	lium-smal	S	all: Mat	small: Mat = maturity	

Shape: L = long, 0 = oblong, R = round; Vine size: L = large, ML = medium-large; M = medium, MS = medium-small, S = small; Mat = maturity; L = late, ML = medium-late, M = medium, ME = medium-early, E = early, Disease reaction: R = resistant, VR = very resistant, MR = moderately

resistant, MS = moderately susceptible, S = susceptible, VS = very susceptible, MV = Mount Vernon.

2 RUSSET NORKOTAH selections.

Western Table 2. 1997 Total tuber yield, cwt/acre; early harvest and late harvest.17

			Ea	Early Harvest	est							Late Harvest	rvest				
	Calif	Idaho	Calif Idaho NMex Orego	Orego	Texas	Wash		Calif	Colo	Idaho		NMex		Oregon		Wash	
Entry	Km	Kim	Clv	Hrm	Spr	Oth	Mean	Tul	SIV	Ab	Kim	Frm	Hrm	Klm	Mal	Oth	Mean
	0				,												
RUSSET BURBANK	536	429	150	453	235	612	403	442	468	485	589	431	602	260	580	685	538
RANGER RUSSET	613	362	210	439	222	526	395	582		512	559	548	829	635	529	755	009
RUSSET NORKOTAH	355	362	159	463	188	610	356	449	385	363	494	449	470	471	409	099	461
A82360-7	0		0	0	ı			685	552	632	785	675	968	663	714	716	702
A8792-1	578	399	153	445	156	576	384	718	•	534	992	533	752	663	575	529	634
AC87084-3	651	381	172	477	147	618	408	439	494	455	029	133	671	617	491	573	505
A087277-6	536	471	211	495	148	869	410	535		444	613	481	742	969	532	717	582
CO85026-4	462	260	125	301	210	501	310	473	402	264	414	215	638	512	405	562	432
CO87009-4	419	455	131	501	126	634	378	507	420	422	505	333	643	561	534	652	509
CORN-3	619	448	166	484	230	591	423	614	473	468	618	454	998	658	995	909	592
CORN-8	550	415	149	504	184	999	395	477	416	413	485	434	692	619	514	693	527
NDD840-1	515	•	0		0	ı	515	392		459	657	378	717	517	631	623	547
TX1385-12RU	470	423	216	497	225	770	433	563	369	457	533	511	737	999	648	897	586
TXAV657-27RU	614	497	175	512	271	718	464	642	466	577	537	436	731	593	536	962	590
TXNS112	0	460	167	479	275	591	394	574	433	456	551	368	732	581	511	739	550
TXNS223		389	146	522	235	609	380	ı	417	459	599	394	732	561	535	735	554
TXNS278	0	378	181	468	203	586	363	479	393	391	435	443	655	496	538	710	504
SHEPODY	0	413		499	206	575	423	•	445	0		0	0	0	٠	•	445
Location Means	534	409	167	471	204	605	402	535.5	437.5	458.3	577.1	424	703	580	544	685	548
Wrn = Kern Co Kim = Kimberly Cly = Clovic Hrm	= Kimb	erly Cl	V = Clo	vic Hrm	= Hermicton	1	Chr = Ch	Springlake Oth =	7 14 1	Othollo	T.11	Tulolobo	C1::-	Con I	Com I win Volla		

Krn = Kern. Co., Kim = Kimberly, Clv = Clovis, Hrm = Hermiston, Spr = Springlake, Oth = Othello, Tul = Tulelake, Slv = San Luis Valley,

Ab = Aberdeen, Frm = Farmington, Mal = Malheur County.

Western Table 3. 1997 U.S. No. 1's, percent of total yield for locations; overall mean, percent and cwt/acre; early and late harvest.

				Early Harvest	farvest								Lat	Late Harvest	st				
	Calif	Idaho	NMex	Calif Idaho NMex Oregon Texas	Texas	Wash	Ŭ	Mean	Calif	Colo	Idaho		NMex		Oregon		Wash	Ĭ	Mean
Entry	Km	Kim	Clv	Hrm	Spr	Oth	%	cwt/A	Tul	Slv	Ab	Kim	Frm	Hrm	Klm	Mal	Oth	%	cwt/A
RUSSET BURBANK	53	28	37	51	28	92	20	224	80	72	63	43	85	78	61	55	64	29	354
RANGER RUSSET	87	80	58	80	54	78	73	305	82		00	81	95	98	79	29	72	81	485
RUSSET NORKOTAH	95	81	54	75	48	88	74	283	90	83	84	%	91	98	96	82	77	98	393
A82360-7	•	0		ı	ı		ı	ı	81	78	82	84	93	82	77	72	89	80	559
A8792-1	88	74	61	69	55	85	72	295	00		80	82	95	80	77	64	78	80	510
AC87084-3	92	98	29	80	32	84	74	332	90	89	00	87	92	93	88	71	77	98	434
AO87277-6	89	84	57	82	63	89	77	338	83		88	74	88	88	98	9/	78	83	480
CO85026-4	91	84	61	73	57	9/	74	239	88	91	94	75	91	85	88	74	71	84	360
CO87009-4	82	9/	38	64	23	75	09	262	75	58	9/	9/	73	84	75	71	64	72	369
CORN-3	92	78	53	73	99	81	72	328	82	93	82	65	98	91	80	65	89	80	475
CORN-8	94	74	54	75	59	75	72	301	80	93	82	09	88	80	89	75	92	81	428
NDD840-1	98		0	ı	ı		98		72	ı	85	81	73	75	81	70	41	72	393
TX1385-12RU	06	83	99	98	69	81	78	350	87	85	82	98	93	92	85	62	71	83	478
TXAV657-27RU	92	92	62	81	09	79	75	366	85	74	77	73	93	89	84	9/	92	81	478
TXNS112		78	51	71	55	9/	99	276	85	91	98	74	98	87	98	92	72	83	451
TXNS223		9	52	74	50	84	65	268	1	88	84	73	83	00 00 00	87	70	73	81	445
TXNS278	•	81	61	72	09	78	70	267	84	91	81	71	00 00	96	85	74	73	82	412
SHEPODY		78	0	85	55	65	71	309	8	87			0		•	•	0	87	389
Location means	87	77	55	74	51	79	71	288	83	84	83	75	88	98	83	71	71	80	441

Western Table 4. 1997 U.S. No.1's over 12 oz, percent of total yield for locations; percent and cwt/acre for means; early and late harvest.

				Early F	Early Harvest								Late	Late Harvest	sst				
	Calif	Idaho	NMex	Calif Idaho NMex Oregon Texas	Texas	Wash	M	Mean	Calif	Colo	Idaho		NMex		Oregon		Wash	Mean	an
Entry	Km	Kim	Clv	Hrm	Spr	Oth	%	cwt/A	Tul	Slv	Ab	Kim	Frm	Hrm	Klm	Mal	Oth	%	cwt/A
THE STATE OF THE S	•	*	,	•	(;	1												
RUSSET BURBANK	14	14	_	7	0	12	7	36	10		17	14	6	15	10	11	11	12	64
RANGER RUSSET	46	34	9	24	33	33	24	117	16	0	32	49	2	46	24	26	27	28	172
RUSSET NORKOTAH	22	23	0	13	ĸ	36	16	75	18	11	14	35	~	26	35	14	30	21	101
A82360-7	6	•		0	0	0	0	•	10	12	24	19	\$	15	25	13	15	15	107
A8792-1	32	13	14	30	က	36	21	101	51	0	37	53	7	43	34	36	26	36	237
AC87084-3	36	6	=	10	0	23	13	77	28	21	51	36	14	52	25	29	23	31	166
AO87277-6	24	18	2	18	11	37	18	06	7	•	24	28	_	31	28	22	23	21	125
CO85026-4	30	12	2	12	0	23	14	54	21	25	16	43	4	40	38	26	36	28	131
CO87009-4	14	2	_	7	0	15	7	36	3	7	6	10	0	20	6	14	10	6	49
CORN-3	49	34	4	25	3	36	25	134	47	49	41	41	9	09	39	32	30	38	236
CORN-8	51	28	3	27	3	32	24	120	37	39	29	39	6	49	41	29	42	35	191
NDD840-1	14	0	1	0	0		14	71	1	•	22	37	0	24	29	18	6	17	105
TX1385-12RU	32	29	19	41	6	57	31	163	42	22	46	48	21	69	31	32	52	40	250
TXAV657-27RU	47	17	6	40	4	35	25	143	36	14	39	45	11	44	36	32	43	33	208
TXNS112	•	29		15	0	32	15	79	32	30	24	44	7	39	26	23	29	28	162
TXNS223	0	17	_	11	2	38	14	73		32	22	36	2	39	15	13	29	24	140
TXNS278	0	32	_	15	4	35	18	82	34	37	19	32	7	39	24	25	35	28	145
SHEPODY		38	0	99	-	43	34	171	•	33	0	0		•	0			33	147
Location means	32	22	7	22	3	33	19	06	25	24	27	36	7	38	28	23	28	26	152
" IIS No 1's over 3"																			

Western Table 5. 1997 Specific gravity of tubers; early and late harvest

			Early Harvest	arvest	Ŧ						La	Late Harvest	, ts			
	Calif	Idaho	Oregon	Texas	Wash		Calif	Colo	Idaho	ho	NMex		Oregon		Wash	
Entry	Km	Kim	Hrm	Spr	Oth	Mean	Tul	Slv	Ab	Kim	Frm	Hrm	Klm	Mal	Oth	Mean
RUSSET BURBANK	1.089	1.073	1.090	1.066	1.077	1.079	1.089	1.088	1.086	1.082	1.087	1.077	1.084	1.075	1.068	1.082
RANGER RUSSET	1.080	1.075	1.088	1.072	1.075	1.078	1.082	1	1.087	1.084	1.093	1.084	1.085	1.093	1.073	1.085
RUSSET NORKOTAH	1.073	1.072	1.072	1.059	1.072	1.070	1.081	1.079	1.077	1.071	1.083	1.065	1.070	1.071	1.065	1.073
A82360-7	•	•	0	0		0	1.092	1.103	1.093	1.094	1.088	1.077	1.086	1.086	1.071	1.088
A8792-1	1.087	1.079	1.092	1.066	1.082	1.081	1.094	0	1.094	1.092	1.092	1.082	1.090	1.094	1.072	1.089
AC87084-3	1.086	1.078	1.096	1.071	1.081	1.082	1.095	1.101	1.090	1.085	1.090	1.080	1.094	1.097	1.072	1.089
AO87277-6	1.091	1.080	1.091	1.069	1.082	1.083	1.093		1.091	1.084	1.093	1.083	1.089	1.091	1.072	1.087
CO85026-4	1.087	1.073	1.091	1.061	1.075	1.077	1.084	1.085	1.080	1.080	1.084	1.077	1.082	1.086	1.070	1.081
CO87009-4	1.088	1.086	1.100	1.070	1.087	1.086	1.089	1.093	1.098	1.091	1.096	1.087	1.087	1.095	1.079	1.091
CORN-3	1.077	1.073	1.087	1.065	1.071	1.075	1.077	1.085	1.078	1.074	1.086	1.068	1.076	1.076	1.063	1.076
CORN-8	1.077	1.074	1.084	1.063	1.071	1.074	1.079	1.081	1.075	1.071	1.085	1.068	1.074	1.070	1.066	1.074
NDD840-1	1.088	•	•		0	1.088	1.077		1.079	1.078	1.086	1.075	1.073	1.082	1.065	1.077
TX1385-12RU	1.077	1.073	1.084	1.062	1.072	1.074	1.081	1.089	1.082	1.072	1.091	1.072	1.076	1.082	1.067	1.079
TXAV657-27RU	1.078	1.078	1.084	1.070	1.069	1.076	1.079	1.092	1.079	1.080	1.091	1.073	1.074	1.080	1.068	1.080
TXNS112		1.073	1.079	1.061	1.070	1.071	1.072	1.077	1.076	1.072	1.082	1.068	1.069	1.071	1.065	1.072
TXNS223		1.073	1.078	1.063	1.069	1.071	ı	1.080	1.078	1.075	1.084	1.067	1.071	1.071	1.065	1.074
TXNS278	1	1.074	1.078	1.062	1.071	1.071	1.076	1.079	1.079	1.070	1.082	1.066	1.070	1.072	1.063	1.073
SHEPODY	•	1.069	1.086	1.070	1.071	1.074	•	1.082	•	0			0	ı	1	1.082
Location Means	1.082	1.075	1.086	1.066	1.075	1.076	1.084	1.088	1.084	1.080	1.088	1.075	1.080	1.082	1.069	1.081

Western Table 6. 1997 External and internal defects, french fry color, sugar ends, dextrose, vitamin C, and glycoalkaloids.

	U.S. No.2							Solids			
	& Culls	Culls	Growth	Shatter	Hollow	Black-	French	Oven	Dextrose	Vit.C	Glyco-
	>4 oz	<4 oz	Cracks	Bruise	Heart	Spot	Fry	Dry	YSI	Mg/100g	alkaloids
Entry	л %	%	(7 loc) ²	(5 loc)	κ %	(5 loc) 4/	Color ^s		% DWB "	FWB "	mg/100FWB "
RIISSET RIBRANK	21.0	14.0	3 0	4.1	15	7	16	"	0.11	21.5	2.4
RANGER RIISSET	14.0	6.0	4.7	4.7	; -	3.0	1.5	21	0.19	29.9	
RUSSET NORKOTAH	5.0	10.0	5.0	4.5	7	3.7	2.2	19	0.18	19.5	1.9
A82360-7	0.6	12.0	4.2	4.1	0	3.4	1.4	23	0.12	21.9	1.1
A8792-1	15.0	0.9	3.4	4.0	9	3.7	6.0	23	0.13	16.6	0.4
AC87084-3	7.0	7.0	4.9	3.8	00	3.2	2.1	23	0.22	24.5	6.9
A087277-6	10.0	8.0	8.4	3.6	0	4.0	1.3	24	0.08	28.8	4.9
CO85026-4	0.6	7.0	4 .00	3.3	1	3.3	3.0	20	0.30	18.7	6.0
CO87009-4	0.6	20.0	4.5	3.8	17	3.6	8.0	23	90.0	20.3	1.2
CORN-3	14.0	7.0	4.9	4.5	2	3.6	2.5	19	0.23	18.8	1.3
CORN-8	13.0	7.0	4.9	4.5	2	3.5	2.1	20	0.22	19.8	1.8
NDD840-1	3.0	16.0	5.0	3.9	∞	3.7	2.5	21	0.17	23.0	2.1
TX1385-12RU	12.0	0.9	8.4	3.3	3	3.5	1.2	20	0.05	16.5	3.4
TXAV657-27RU	11.0	8.0	4.1	3.6	2	3.3	2.1	20	0.12	16.9	3.0
TXNS112	10.0	0.6	4.9	4.5	4	4.1	2.5	20	0.22	20.5	1.8
TXNS223	10.0	11.0	4.9	4.6	4	4.1	2.5	19	0.24	20.0	1.4
TXNS278	10.0	0.6	4.9	4.6	٣	4.2	2.3	19	0.21	21.1	1.9
SHEPODY	5.0	7.0	4.7	4.8	4	4.3	3.0				
Means	11.0	10.0	4.6	4.1	5	3.7	1.9	21	0.17	21.1	2.3

 2 5.0 (none) to 1.0 (severe). Frm omitted. Late Harvest, eight locations.

Mean of 9 locations including Early Harvest, >12 oz. tubers; includes brown center.

Mean of 5 locations, (2 loc. for Shepody and NDD840-1), 1.0 (darkest) to 5.0 (lightest).

Mean of 5 locations (Slv, Ab, Hrm, Kim, Klm), out of 45 F storage, <1.0 (lightest) to 4.0 (darkest).

Mean of 5 locations (Ab, Kim, Hrm, Klm, Mal).

Aberdeen tubers only, sampled late October; DWB = dry weight basis; FWB = fresh weight basis.

Western Table 7. 1997 Merit scores, processing and fresh market, and disposition.

	Colo	Idaho	Oregon		Calif	Colo	Idaho	Oregon	Texas		
	SLV	п	Hrm	Mean	מ	SLV	מ	Hrm	Spr	Mean	Disposition 3
RUSSET BURBANK	4.0	2.7	4.0	3.6	2.2	3.0	2.0	5.0	3.3	3.1	CHECK
RANGER RUSSET		4.0	4.0	4.0	2.7	1	3.3	3.0	3.8	3.2	CHECK
RUSSET NORKOTAH	1.0	2.0	2.0	1.7	4.2	1.0	4.0	5.0	3.5	3.5	CHECK
A82360-7	5.0	3.8	3.0	3.9	2.5	5.0	2.9	2.0	ı	3.1	RTC
A8792-1		4.3	4.0	4.2	3.4	•	2.9	2.0	3.5	3.0	DROP
AC87084-3	5.0	3.2	1.0	3.1	3.5	5.0	3.4	2.0	3.3	3.4	CONT
A087277-6		4.5	5.0	8.4	3.1	ı	3.4	4.0	3.5	3.5	CONT
CO85026-4	1.0	2.8	1.0	1.6	3.4	2.0	3.4	2.0	3.3	2.8	RTC
CO87009-4	3.0	3.3	4.0	3.4	2.7	1.0	2.8	4.0	2.8	2.7	DROP
CORN-3	1.0	1.8	1.0	1.3	3.6	5.0	3.0	4.0	4.3	4.0	CONT
CORN-8	1.0	2.0	1.0	1.3	3.7	3.0	2.9	4.0	4.3	3.6	CONT
NDD840-1	0	2.3	1.0	1.7	2.5	0	3.6	3.0	ı	3.0	CONT
TX1385-12RU	2.0	3.2	2.0	2.4	2.6	1.0	2.1	1.0	3.8	2.1	CONT
TXAV657-27RU	3.0	3.5	3.0	3.2	2.6	3.0	2.0	3.0	3.8	2.9	RTC
TXNS112	1.0	2.0	1.0	1.3	5.0	4.0	3.6	4.0	4.3	4.2	CONT
TXNS223	1.0	2.2	1.0	1.4	0	3.0	3.0	5.0	4.3	3.8	CONT
TXNS278	1.0	2.0	1.0	1.3	4.0	2.0	3.3	5.0	4.3	3.7	CONT
SHEPODY	3.0	2.0	ı	2.5	•	4.0	2.8	•	3.5	3.4	CHECK
Means	2.3	2.9	2.3	2.6	3.2	3.0	3.0	3.4	3.7	3.3	

1.0 (poorest) to 5.0 (best).

² Composite scores for Ab & Kim, and for Krn & Tul early and late trials.

RTC = regional testing completed (3 yrs), CONT = continue in trial, DROP = drop from trial, CHECK = control.

CALIFORNIA

R. Voss, H. Phillips, J. Nunez, D. Kirby, F. Laemmlen, R. Mullen, R. Smith, J. Valencia, M. Jimenez

OBJECTIVES

The major objectives of the California Potato Variety Selection and Development program are 1) obtain or develop new russet, white, red, processing and specialty varieties of improved adaptability and quality, 2) demonstrate the characteristics of the many new varieties and advanced selections being developed in the U.S., Canada and Europe, 3) determine relative resistance/susceptibility of named varieties and advanced selections to common diseases, insects and environmental stresses, and 4) assess cultural requirements of advanced selections and new varieties.

SUMMARY:

Large, comprehensive evaluation trials were grown in Kern County and Tulelake Intermountain Research and Extension Center (IREC). In addition, small trials were conducted in grower cooperator fields in numerous other locations - Santa Maria, Humboldt Co., Placer Co., Salinas Valley, Kearney Ag Center, and Stanislaus Co. The trials conducted included 1) Western Regional early russet, late russet, chipping, specialty and red trials - Kern, Tulelake; 2) Snack Food Association nationwide uniform chipping trial - Kern; 3) Replicated early and late trials, with different harvest dates -Tulelake: 4) Replicated trials of commercially grown varieties - Tulelake; 5) Late Blight resistance screening at UC Cotton Research Station near Shafter - Kern: 6) Russet Norkotah seed source trials - Kern County and Tulelake; 7) Potato Virus Y

effect on Russet Norkotah growth and yield - Tulelake; 8) Six county/grower replicated trial of russets (1) chippers (1), reds and specialty (4), 9) Observation trials of 5-hill, 12-hill, 27-hill and 2X27-hill entries - Kern and Tulelake; 10) Storage evaluation trial at Tulelake, and 11) Seed increase block in Stockton Delta.

The highest rated russets were, A8792-1, AC87079-3, AC87084-3, AC87138-4, AO87277-6, CO85026-4, Legend, Russet Norkotah TXNS278, Russet Norkotah #3, Russet Norkotah #8 (both from Colorado), Russet Norkotah TXNS112, (both from Texas)

The highest rated reds were Ciklamen, DT6063-1R ('Cherry Red'), IdaRose (AD82745-1, A82705-1), Modoc, NDO2438-6, NDO2438-7, NDO2686-4, NDO2686-6, NDO4588-5, NDO4592-3, NDO4300-1, NDO5108-1.

The highest rated chippers were A8961-14, AC87340-2 ATX85404-8, Chipeta, CO87106-5, FL-1900, FL-1896, FL-1625, FL-1533, FL-1879, NY103 and Snowden.

The highest rated long whites were AD84087-1, ND2050-1 and Tejon.

The highest rated specialty types in were Agria, Albina, Dali, G742-4X, German Butterball, Granola, Latona, Vera, and Vital.

A Late Blight resistance screening trial was conducted in Kern County. Despite inoculation, no late blight disease infection occurred in any of the plots. Thus, no new information on potential resistance/tolerance was gathered at Shafter. However, in 1996, excellent results were recorded. The most "resistant" or "tolerant" of the 100 entries,

which included the USDA uniform trial. were AO84275-3, NDD840-1, B0767-2, AWN85542-1, Calrose, H5954, AO80432-1, B0718-3, H-5978, and Bzura. Pathogen type was primarily g11 (US11?). Late blight was observed, for the first recorded time. in the Tulelake area in 1997. It occurred in numerous commercial fields as well as in our variety experimental plots at IREC. Relative disease ratings were obtained on the observational plots only. Among those with no disease were five of the seven lines from the late blight breeding program at USDA -Madison, Wisconsin - J101K6A22, K101K9, J103K7, J101K27, K138A12. The others were AWN86514-2, AC91848-2, AC91814-1, A8961-14, B0718-3.

Russet Norkotah seed source trials in Kern Co and at Tulelake indicated a wide range of vield potentials, just as they did in 1996. In Kern County, 33 seed lots ranged from 305 cwt/A to 575 cwt/A of No. 1's. At Tulelake, 55 seed lots, including the same 33 as planted in Kern County, ranged from 245 cwt/A to 455 cwt/A of No. 1's. Also like 1996, of the 30 lots planted in both locations, the relative ranking of yields was not consistent. For example, several of the highest yielding lots at Kern County were among the lowest at Tulelake, and vice versa. The clonal selections from Colorado and Texas, Colorado RN #3, Colorado RN#8, Texas TXNS112 TXNS223, and Texas TXNS278, had greater vine growth, generally, higher yields than the 'standard' clone:.

Russet Norkotah Potato Virus Y Trial.

One of the possible reasons for the variable performance of Russet Norkotah is Potato Virus Y (PVY) infection. Visual symptoms are not always readily apparent in this variety, thus infection and spread can occur

before it becomes obvious. Two seed sources were identified, with 0% and 60% of the tubers infected with PVY. The two lots were mixed in different proportions to produce five levels of PVY tuber infection. Identical trials were planted at IREC (Tulelake), the Klamath Experiment Station, and at Hermiston, Oregon in the Columbia Basin. In 1996, at Tulelake, the rate of decline was approximately 1 2/3 cwt/A in total yield for each 1% increase in PVY seed infection. The rate of decline was approximately 1 1/3 cwt/A in No. 1 yield for each 1% increase in PVY infection. The experiment was duplicated in 1997.

Leaf samples were collected early, mid and late season and laboratory assayed to determine the extent of PVY spread from non-infected to infected plants. At Tulelake, in 1996, very little PVY spread had occurred by the end of June. Yields corresponded to the amount of PVY present in the seed at planting time. Total and No. 1 yields both decreased linearly as PVY infection increased. Since disease spread did not occur during the season, the yield reduction was less than in 1996 - only approximately 75 lbs/A (3/4 cwt/A) for each 1% increase in PVY in the seed. This decrease rate was equally applicable for Total and No. 1 yields. Almost all of the yield differences were reflected in large tubers, >12 oz. At Hermiston, with heavy aphid pressure, near total PVY infection occurred early in the season; the resultant effect on yield was much more dramatic than at Tulelake. At Klamath Falls, infection increase was similar to Tulelake.

New Releases

CalWhite release was formalized jointly with USDA and Univ. of Idaho.

Table 1. 1997 CALIFORNIA REPLICATED POTATO VARIETY TRIAL Summary of No. 1 Yields, Specific Gravity and Fresh Market Quality

Russets

Rentry Rem Early Late Maria from Mean SpGr Quality Quality						Adjusted		
A84118-3 266137 84 3.7 A8792-1* 506 626 110 90 3.4 AC83064-6 365 424 -9 82 3.8 AC87079-3 489 86 83 3.7 AC87084-3* 600 399 44 90 3.5 AC87138-4 356 47 79 2.5 AC87210-2 303100 66 2.3 AC88042-1 356 47 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 384 19 87 3.0 AC87277-6* 477 449 7 92 3.0 AC87277-6* 477 449 7 92 3.0 AC85026-4* 406 416 45 86 3.4 CO85026-4* 406 416 45 86 3.4 CO87009-4* 343 381 94 88 2.6 CO85036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 391 50 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank* 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 10 79 2.8 TC1406-1 376 277 81 3.0 TC1406-1 389 14 97 2.8 TXNS12* 284 495 14 73 4.5 TXNS278* 337 40532 76 4.0			IRE	EC	Santa	Deviation	1.0xx	F.M.
A86102-6 266 110 90 3.4 A8792-1* 506 626 110 90 3.4 AC83064-6 365 424 -9 82 3.8 AC87079-3 489 86 83 3.7 AC87084-3* 600 399 44 90 3.5 AC87138-4 473 70 85 4.0 AC87210-2 303100 66 2.3 AC88042-1 356 47 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 368 414 -12 101 3.4 AC88165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4* 406 416 45 86 3.4 CO87009-4* 343 381 94 88 2.6 CO87009-4* 343 381 94 88 2.6 CO89037-7 370 337 5- 3.0 Legend 422 391 50 88 3.4 NDD837-2 292 111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDD837-2 292 111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 27 81 3.0 TC1406-1 376 27 81 3.0 TC1406-1 389 14 97 2.8 TXNS278* 337 40532 76 4.0	Entry	Kern	Early	Late	Maria	from Mean	SpGr	Quality
A8792-1* 506 626 110 90 3.4 AC83064-6 365 424 -9 82 3.8 AC87079-3 489 86 83 3.7 AC87084-3* 600 399 44 90 3.5 AC87138-4 473 70 85 4.0 AC87210-2 303 -100 66 2.3 AC88042-1 356 -47 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 384 -19 87 3.0 AC889047-1 301 -102 92 2.8 AO87277-6* 477 449 7 92 3.0 CO85026-4* 406 416	A84118-3				385	-18		3.8
AC83064-6 365 424 -9 82 3.8 AC87079-3 489 86 83 3.7 AC87084-3* 600 399 44 90 3.5 AC87138-4 473 70 85 4.0 AC87210-2 303100 66 2.3 AC88042-1 368 414 -12 101 3.4 AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 416 45 86 3.4 CO87009-4* 343 381 94 88 2.6 CO89037-7 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292 111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 538 475 559 121 81 3.0 TC1406-1 376 27 81 3.0 TC1406-1 384 19 69 4.0 TX1385-12* 420 489 14 97 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	A86102-6			266		-137	84	3.7
AC87079-3 489 86 83 3.7 AC87084-3* 600 399 44 90 3.5 AC87138-4 473 70 85 4.0 AC87210-2 303100 66 2.3 AC88042-1 366 47 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 416 45 86 3.4 CO87009-4* 343 381 94 88 2.6 CO89037-7 37033 75 3.0 Legend 422 391 50 88 3.4 NDD837-2 292 111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank 280 301 356 494 -45 86 2.9 R. Norkotah-8* 571 438 499 100 76 4.0 R. Norkotah-8* 571 350 381 13 77 3.9 R. Norkotah-8* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 33 75 3.0 TC1406-1 38914 97 2.8 TND329-1 38914 97 2.8 TND329-1 38914 97 2.8 TND329-1 38914 97 2.8 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	A8792-1*	506		626		110	90	3.4
AC87084-3* 600 399 44 90 3.5 AC87138-4 473 70 85 4.0 AC87210-2 303100 66 2.3 AC88042-1 356 47 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 355 70 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 416 45 86 3.4 CO87009-4* 343 381 94 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 NDO2904-7 332 -71 4.0 R. Burbank 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1406-1 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AC83064-6			365	424	-9	82	3.8
AC87138-4 473 70 85 4.0 AC87210-2 303100 66 2.3 AC88042-1 35647 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 538 475 559 121 81 3.0 TC1406-137627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AC87079-3			489			83	3.7
AC87210-2 303100 66 2.3 AC88042-1 35647 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 381 94 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank* 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 51	AC87084-3*	600		399		44	90	3.5
AC88042-1 356 47 79 2.5 AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 381 94 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 100 76 4.0 R. Norkotah-8* 517 350 361 100 76 4.0 R. Norkotah-8* 517 350	AC87138-4			473		70	85	4.0
AC88162-4 368 414 -12 101 3.4 AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AC87210-2			303		-100	66	2.3
AC88165-3 38419 87 3.0 AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 538 475 559 121 81 3.0 TC1406-137627 81 3.0 TC1412-538914 97 2.8 TND329-138419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AC88042-1			356		-47	79	2.5
AC89047-1 301102 92 2.8 AO85165-1 417 35570 77 2.6 AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 381 94 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 391 50 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 538 475 559 121 81 3.0 TC1406-137627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AC88162-4			368	414	-12	101	3.4
AO85165-1	AC88165-3			384		-19	87	3.0
AO87277-6* 477 449 7 92 3.0 CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-137627 81 3.0 TC1412-538914 97 2.8 TND329-138419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AC89047-1			301		-102	92	2.8
CO85026-4 424 431 25 80 3.8 CO85026-4* 406 41645 86 3.4 CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah 338 265 405 306 -75 77 4.0 RANGER R. 338 265 405 306 -75 77 4.0 RANGER R. 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AO85165-1	417		355		-70	77	2.6
CO85026-4* 406 41645 86 3.4 CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank* 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah* 338 265 405 306 -75 77 4.0 RANGER R.* 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	AO87277-6*	477		449		7	92	3.0
CO87009-4* 343 38194 88 2.6 CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank* 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah* 338 265 405 306 -75 77 4.0 RANGER R.* 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	CO85026-4		424		431	25	80	3.8
CO89036-10 39310 84 2.3 CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	CO85026-4*	406		416		-45	86	3.4
CO89037-7 37033 75 3.0 Legend 422 39150 88 3.4 NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	CO87009-4*	343		381		-94	88	2.6
Legend 422 391 -50 88 3.4 NDD837-2 292 -111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah-8* 517 350 381 13 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 -376 -27 81 3.0 TC1412-5 384 -19 69 4.0 TX1385-12* 420 489 <	CO89036-10			393		-10	84	2.3
NDD837-2 292111 79 2.3 NDD840-1* 446 284 467 -4 82 3.0 NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	CO89037-7			370		-33	75	3.0
NDD840-1*	Legend	422		391		-50	88	3.4
NDO2904-7 332 -71 4.0 R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0				292		-111	79	2.3
R. Burbank * 280 301 356 494 -45 86 2.9 R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	NDD840-1*	446		284		-4	82	3.0
R. Norkotah-3* 571 438 499 100 76 4.0 R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0					332	-71		4.0
R. Norkotah-8* 517 350 381 13 77 3.9 R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0		280	301	356	494	-45	86	2.9
R. Norkotah * 338 265 405 306 -75 77 4.0 RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0		571		499		100	76	4.0
RANGER R. * 538 475 559 121 81 3.0 TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	R. Norkotah-8*			381		13	77	3.9
TC1406-1 37627 81 3.0 TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0	R. Norkotah *	338	265	405	306	-75	77	4.0
TC1412-5 38914 97 2.8 TND329-1 38419 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0		538		475	559	121	81	3.0
TND329-1 384 19 69 4.0 TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 495 -14 73 4.5 TXNS278* 337 405 -32 76 4.0				376		-27	81	
TX1385-12* 420 4891 79 2.5 TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 49514 73 4.5 TXNS278* 337 40532 76 4.0						-14		2.8
TXAV657-27* 565 545 99 79 2.5 TXNS112* 284 495 -14 73 4.5 TXNS278* 337 405 -32 76 4.0								
TXNS112* 284 495 -14 73 4.5 TXNS278* 337 405 -32 76 4.0				489			79	2.5
TXNS278* 337 40532 76 4.0		565		545		99	79	2.5
						-14		4.5
Umatilla 379 38673 88 26			337			-32		4.0
200 2.0	Umatilla	379		386		-73	88	2.6
Average 449 343 402 419 403 83 3.3	Average	449	343	402	419	403	83	3.3

Table 2. 1997 CALIFORNIA

REPLICATED POTATO VARIETY TRIAL

Summary of No. 1 Yields, Specific Gravity and Fresh Market Quality

Reds

								Adjusted		
			Santa						1.0xx	F.M.
Entry	Kern	IREC	Maria	Monterey	Stanislaus	Placer	KAC		SpGr	Qualit
A84118-3			385					87		
A88475-4		378	••					80	69	4.0
AD82706-2		373			•			75	67	4.0
AD82706-2		373	472	••	256	195	190	-1	67	3.3
AD82745-1	403	420						114	69	3.8
Cherry Red		398		175	296		154	-42	75	3.2
Chieftan				207	305			-42	••	3.0
Ciklamen	465					-		167	91	3.5
CO86142-3 *	310	300	249					-12	83	3.5
CO86218-2 *	316	281						1	77	3.1
COO86107-1R *	313	271						-6	85	3.5
Dk Rd Norland*	395	262						31	68	3.4
DT6063-1R *	484							186	80	3.5
Fontenot							201	-97		
G8160-6					345	245	260	-15		29.7
Ida Rose (AD82745-1)							192	-106		
Modoc	367	462						116	71	4.4
NDO2438-6R *	350				••			52	70	4.5
NDO2438-7		466			••			168	69	4.0
NDO2686-4	451	341		131	273	261		-6	75	16.6
NDO2686-6R *	343	406						76	81	4.0
NDO4232-1		192						-106	69	4.0
NDO4300-1	310	338	••	••				26	71	3.8
NDO4588-5	385	327						58	73	4.0
NDO4592-3	438	294						68	69	3.8
NDO5108-1	340	312						28	74	3.3
Red Chieftan						413		115		82.9
Red LaSoda*	470	390	••	173	514	286	304	58	73	14.6
Sangre*	276	265			••	••		-27	72	3.0
Average	377	342	369	172	332	280	217		74	9.9

Table 3. 1997 CALIFORNIA REPLICATED POTATO VARIETY TRIAL Summary of No. 1 Yields, Specific Gravity and Fresh Market Quality

Long Whites

				Adjusted Deviation	1.0xx	F.M.
Entry	Kem	IREC	KAC	from Mean		Quality
AD84087-1	324			-39	87	2.8
AD84087-3		372		9	84	4.0
CalWhite*		300	313	-57	82	2.8
Mondial	627			264	76	2.5
ND2050-1	575			212	80	2.8
Shepody*	325	251		-75	83	2.3
Tejon	492			129	74	2.8
White Rose	478	301		26	75	2.3
Average	470	306	313		80	2.8

Table 4. 1997 CALIFORNIA REPLICATED POTATO VARIETY TRIAL Summary of No. 1 Yields, Specific Gravity and Fresh Market Quality

Specialty

								Adjusted		
								Deviation	1.0xx	F.M.
Entry	Туре	Kern	IREC	Monterey	Stanislaus	Placer	KAC	from Mean	SpGr	Quality
Agria	Υ	539		267	413		282	10	81	3.7
Albina	Υ	559						194	96	3.5
B141	W/Pu				377		333	-10		2.4
Bintji	Υ			324	510			52		2.6
Brigus	Pu			-	416	306	241	-44		2.0
Dali	Y		567		_			202	75	4.5
Delta Gold	Υ				352	206	320	-72		2.8
Desiree	Pk/Y		409	195	374	192	245	-82	88	2.4
Fontenot	Pu			315	420			2		3.4
G742-4X	Υ			258	362	198	229	-103		3.3
German Butter Ball*	Υ	605	389	265	444	440	338	49	83	3.4
Granola*	Υ	601	393	289	398	317	354	27	74	3.5
Inca Gold	Υ	223	175					-166	78	2.6
Latona	Υ		583					218	83	4.0
NDC4069-4R/R *	R/R	467	297	322	469	394	444	34	83	3.5
Penta	Υ						246	-119		
Pimpernel*	R/Y		501					136	107	3.0
Rose Gold*	Pk/Y		425	257	470	279	275	-24	77	2.7
Russian Banana	Υ					292		-73		3.8
Vera	Υ	758						393	72	3.5
Vital	Υ	782						417	80	3.3
Yellow Finn*	Υ	417	161	298	217	240	257	-100	87	3.0
Yukon Gold*	Υ	379	368	275	379	409	185	-33	86	3.5
Average		533	391	279	400	296	288		83	3.1

Table 5.

1997 CALIFORNIA

REPLICATED POTATO VARIETY TRIAL
Summary of No. 1 Yields, Specific Gravity

Chippers

				Chip A	nalysis
			1.0xx	Color	Total
Entry	Kern	IREC	SpGr	Meter	Defect
A88431-1 *	391			64	0
A8961-14 *	595		83		3
AC87313-3	317	0101	86		0
AC87340-2	447		79	67	1
AC88357-3 *	223		90	65	1
Atlantic*	283	373	95	67	2
ATX85404-8	409		80	62	2
BCO894-2	321		79	64	0
Chipeta*	533	285	79	67	0
CO87106-5	401		90		1
FL-1291		333	90		
FL-1533		444	77		
FL-1625		466	98		
FL-1863	397	353	82		1
FL-1867	347	340	97	67	1
FL-1874	239	293	85		2
FL-1879	~-	424	85		
FL-1896	405		93	68	2
FL-1900	423			64	3
NDC4327-2 *	379		78		5
NDD840-1		231	78		
NorValley*	293	354	77		2
Snowden		373	92		
Average	385	358	87	66	1.5

COLORADO

D. G. Holm and J. D. Wick 1

Objectives

The major objectives of the Colorado breeding program are: (1) to develop new potato cultivars (russets, chippers, and reds) with increased yield, improved processing and fresh market quality, resistance to diseases and pests, and tolerance to environmental stresses; and (2) to provide a basic seed source of selections for possible seed export.

Breeding Program

Fifty-one parental clones were intercrossed in 1997. Seeds from 193 combinations were obtained. Seedlings from selected families will be produced in 1998 for initial field selection in 1999.

Another thirty-six parental clones were intercrossed in early 1998. Primary emphasis of this crossing block was specialty types (yellow fleshed reds, whites, and russets, and colored fleshed chippers).

One hundred seventeen 1996 seedling families were grown in the greenhouse producing 41,300 seedling tubers for initial field selection in 1998. Surplus tubers (second thru forth sizes) will be distributed to Idaho, Minnesota, Oregon, Texas, and Alberta, Canada.

A second, smaller planting of seedlings representing 14 families was grown in the greenhouse. These families resulted from 1994 crosses emphasizing specialty types and will also be planted for initial field selection in 1998.

Additional seedling tubers were obtained from Dr. J. J. Pavek, USDA-ARS, Aberdeen, Idaho; ; Dr. Dermot Lynch, Agriculture Canada, Lethbridge, Alberta; and Dr. J. Creighton Miller, Texas A&M University, College Station, Texas.

Selection Program

A total of 73,324 first-year seedlings were planted with 820 being selected at harvest for further observation. Another 936 clones were in 12-hill, preliminary, and intermediate stages of selection. Of these, 262 were saved at harvest for further evaluation. Twenty-five advanced selections were saved and contingent on additional evaluations, will be increased in 1998. Another 153 selections were maintained for germplasm development, breeding, other experimental purposes, or seed increases for the Texas program.

Advanced Yield Trial. Twenty-two clones, 18 advanced selections and 4 cultivars, were evaluated in the Advanced Yield Trial. Results on yield, grade, and processing characteristics are summarized in Tables 1 and 2.

Several selections had yields greater than 400 cwt/A. Clones yielding greater than 500 cwt/A were AC87138-4, AC89536-5, and CO90052-1. Avalanche was the highest yielding cultivar with 707 cwt/A.

Selections producing acceptable fry colors were AC83064-6, AC87138-4, and COO83008-1.

Two russet selections, AC88042-1 and AC88165-3, will be entered in the 1998 Western Regional Main Trials. Seed of these selections will also be released for grower trials in 1998.

Western Regional Main Trial. Eleven selections and five cultivars were entered in the Colorado Western Regional Main Trial.

The number of entries in this trial has been significantly reduced since 1995. This is due to the exclusion of all entries coming from areas where seed stocks potentially have been exposed too late blight. We are attempting to initiate tissue culture based increases of all potential entries from the various cooperating programs two years in advanced of entrance in the Western Regional Trials (Main, Chip, Red, and Specialty).

¹Holm and Wick are Professor and Research Associate, respectively, San Luis Valley Research Center - Colorado Agricultural Experiment Station, Department of Horticulture and Landscape Architecture, Colorado State University, 0249 East Road 9 North, Center, CO 81125.

Selections entered by Colorado in 1997 included AC87084-3, CO85026-4, CO87009-4 and Russet Norkotah S3 and S8. CO85026-4 graduated from the Western Regional Trial having completed three years of evaluation in 1997. Selection CO87009-4 was withdrawn and discarded from further evaluations because of poor performance overall.

The top yielding selection was A82360-7 (552 cwt/A). The 1997 production year was ideal for Russet Norkotah in San Luis Valley trials. All of the line selections still had greater total and US #1 yields compared with the standard. Russet Norkotah S3 performed better than any of the other clonal selections.

The Russet Norkotah clonal selections responded similarly in the postharvest evaluations. One notable exception was that Russet Norkotah S3 had a longer dormancy than any other selection in the trial. This observation should be validated in future studies.

Selections with acceptable fry scores were A82360-7, AC87084-3, CO87009-4, and TX1385-12RU.

Colorado will reenter AC87084-3 and Russet Norkotah S3 and S8. New entries from Colorado in 1998 will be AC88042-1 and AC88165-3.

Results of this trial are presented in the Western Regional Trial report elsewhere in the publication.

Western Regional and Advanced Chipping Trial. The Colorado Western Regional Chip Trial also included intermediate and advanced chipping selections from the selection program that were not formally entered into the regional trials. Eighteen entries, 13 selections and 5 cultivars, were included in the Colorado Western Regional Chip Trial. Trial results are presented in Tables 3 and 4.

Colorado entered AC88357-3 in the 1997 Western Regional Chip Trials. This selection was discarded from further evaluation because of poor performance overall.

The highest yielding selections were AC89653-3 and ATX85404-8. Chipeta had the overall highest total and US #1 yield of 514 and 429 cwt/A, respectively.

Several selections showed susceptibility to black spot bruising. Some of these selections have not shown

susceptibility in the past. Overall, blackspot was more severe in our 1997 trials.

Two selections, CO90217-1 and CO90217-4, have "cold" chipping potential. These selections resulted from a cross of ND2008-2 and ND1995-1.

Selection AC87340-2 will be entered in the 1998 Western Regional Chip Trials.

Colorado initially entered BC0894-2 into the Western Regional Chip Trials in 1994. This selection graduated from the trial in 1996. This selection is early maturing and continues to show potential for eventual naming. BC0894-2 was also entered into the Snack Food Association (SEA) Trials in 1995-1997. Another selection with considerable potential is Texas selection ATX85404-8. It will be entered in the SFA Trials for the third year in 1998.

Western Regional Red Trial. The Colorado Western Regional Red Trial also includes intermediate and advanced red selections from the selection program that were not formally entered into the regional trials. The Colorado trial included 13 entries, 10 selections and 3 cultivars. Trial results are summarized in Table 5.

Entries from Colorado in the Western Regional Red Trial included CO86142-3 (NDTX302-1 x Redsen), CO86218-2 (Sangre x NDTX9-1068-11R) and DT6063-1R. CO86142-3 and CO86218-2 were in the trial for a fourth year because of a lack of entries in 1997. These two selections will not be reentered in 1998. DT6063-1R completed two years of regional testing in 1997 and will be reentered in 1998. Selection CO86142-3 has been discarded due to tuber dry rot and susceptibility to PVY.

Several red selections are early maturing and have relatively high yields. Several red selections also showed susceptibility to blackspot bruising. As observed in the chip trial, blackspot bruising was more severe in 1997.

Selection CO89097-2 will be entered in the Western Regional Red Trials in 1998.

Grower Evaluations. Grower evaluations were conducted on eight russets (AC78069-17, AC83064-1, AC83064-6, AC87084-3, CO80011-5, CO81082-1, CO86026-4, and CO87009-4), two chipping

selections (ATX85404-8 and BC0894-2), and two reds (CO86218-2 and DT6063-1R).

Selections AC78069-17 and CO81082-1 were discarded after several years of grower evaluation. CO87009-4 was also discarded because several lots had mediocre yields due to a lack of tuber sizing. Comparative data for the remaining selections and standard cultivars is presented in Table 6.

Selections to be named in 1998 included CO80011-5 (Crestone Russet) and AC83064-6. DT6063-1R will be named after another year of evaluation in the Western Regional Red Trial. Selections that will continue undergoing grower evaluation are AC83064-1, CO85026-4, AC87084-3, ATX85404-8, BC0894-2, and CO86218-2.

Two new russet selections to be evaluated by growers in 1998 are AC88042-1 and AC88165-3. AC88042-1 is a medium maturing dual purpose clone with processing and fresh market potential. It was selected from a cross of Norking Russet x A81286-1. AC88165-3 is also a medium maturing fresh market clone selected from a cross of A81323-38 x Ranger Russet.

Colorado Table 1. Yield, grade, tuber shape, and skin type for Advanced Yield Trial clones - 1997.

		Yi	eld (Cw	1/A)		
			US #1			Tuber Shape
Clone	Total	Total	%	>10 oz	<4 oz	& Skin Type
AC78069-17	409	374	91.5	123	23	Ob,Ru
AC83064-1	463	403	87.1	83	55	L,Ru
AC83064-6	402	322	80.4	37	79	L,Ru
AC87079-3	428	338	78.7	57	87	Ob,Ru
AC87138-4	523	411	78.9	102	99	L,Ru
AC88042-1	357	223	62.3	2	129	L,Ru
AC88162-4	382	268	69.9	43	84	L,Ru
AC88165-3	437	355	81.2	48	73	L,Ru
AC89536-5	515	461	89.5	106	50	Ob,Ru
AC90017-2	422	353	83.6	29	61	Ob,Ru
CO80011-5	391	320	81.7	48	66	Ob,Ru
CO81082-1	415	381	91.7	136	31	L,Ru
CO89036-10	445	339	75.7	36	102	Ob,Ru
CO89037-7	360	320	88.8	60	38	Ob,Ru
CO90045-4	309	239	77.0	14	60	L,Ru
CO90052-1	543	462	85.1	111	67	L,Ru
COO83008-1	407	367	90.2	110	28	L,Ru
UCR1-18	371	333	89.8	89	34	L,Ru
Avalanche	707	576	81.6	136	111	Ob,W
Centennial Russet	390	304	77.8	12	86	Ob,Ru
Russet Norkotah	405	335	82.3	49	61	L,Ru
Russet Nugget	430	343	79.8	70	83	Ob,Ru
Mean	432	356	82.0	68	68	
LSD ² (0.05)	54	53	4.5	36	17	

 $^{^{\}mathrm{I}}$ Tuber shape & skin type: Ob=oblong; L=long; Ru=russet; W=white.

²LSD=least significant difference.

Colorado Table 2. Specific gravity, french fry color, and texture for Advanced Yield Trial clones - 1997.

		Fry	Color	Fry	Texture ²
Clone	Specific Gravity	At Harvest	3 wks 50F+ 8 wks 45F	At Harvest	3 wks 50F+ 8 wks 45F
A 6700 CO 17	1.003		•	× 0	
AC78069-17	1.083	2	3	3	3
AC83064-1	1.077	4	4	2	3
AC83064-6	1.080	2	2	3	3
AC87079-3	1.091	2	3	4	4
AC87138-4	1.093	2	2	3	3
AC88042-1	1.077	3	3	2	2
AC88162-4	1.102	4	4	2	3
AC88165-3	1.088	3	3	3	3
AC89536-5	1.086	2	3	2	2
AC90017-2	1.081	4	4	2	2
CO80011-5	1.074	4	3	2	2
CO81082-1	1.070	4	4	2	2
CO89036-10	1.089	4	4	2	3
CO89037-7	1.077	3	3	3	3
CO90045-4	1.080	3	2	4	4
CO90052-1	1.078	3	3	4	3
COO83008-1	1.093	2	2	3	4
JCR1-18	1.075	3	3	3	3
Avalanche	1.084	4	4	2	2
Centennial Russet	1.082	4	4	2	1
Russet Norkotah	1,080	3	3	2	2
Russet Nugget	1.092	2	2	5	4

¹ Fry color was rated on a 0 to 4 scale, with 0 being the lightest or best color. Color ratings of ≤2 are acceptable.

²Fry texture was rated on a 1 to 5 scale, with 5 indicating the cooked flesh was dry and mealy and 1 representing a soggy, wet texture.

Colorado Table 3. Yield, grade, tuber shape, and skin type for Western Regional and Advanced Chipping Trial clones - 1997.

		Yi	eld (Cw	rt/A)		
			US #1			Tuber Shape
Clone	Total	Total	%	>10 oz	<4 oz	& Skin Type
AC87340-2	445	308	69.3	29	137	R,W
AC88357-3	364	289	79.4	25	71	R,W
AC89653-3	476	364	76.3	21	111	R,W
AC91698-3	376	258	68.4	29	110	R,W
AC91817-5	334	206	61.7	8	126	R,W
ATX85404-8	456	358	78.4	53	94	R,W
B0717-1	442	356	80.4	18	84	R,W
BC0894-2	383	327	85.6	39	50	R,W
BC1447-1	337	307	91.0	62	29	R,W
BC1470-1	370	283	76.3	16	86	R,W
CO90217-1	384	271	70.4	25	108	R,W
CO90217-4	324	226	69.7	15	93	R,W
ND2471-8	405	328	80.9	46	75	R,W
Atlantic	390	364	93.2	143	25	R,W
Chipeta	514	429	83.7	82	59	R,W
NorValley	388	256	65.9	21	129	R,W
Snowden	456	341	75.0	34	112	R,W
Superchip	343	302	88.1	133	34	R,W
Mean	399	310	77.4	44	85	hadi oper eate eate
LSD ² (0.05)	38	42	5.5	22	20	** *** ****

¹Tuber shape & skin type: R=round; W=white.

²LSD=least significant difference.

Colorado Table 4. Chip color ¹ after various storage regimes and specific gravity of Western Regional and Advanced Chipping Trial clones - 1997.

	Specific	6 wks	6 wks/40F	6 wks	6 wks/50F
Clone	Gravity	40F	+3 wks/60F	50F	+3 wks/60F
AC87340-2	1.090	3.0	3.0	1.0	1.0
AC88357-3	1.099	3.5	2.5	3.0	1.5
AC89653-3	1.094	4.0	3.5	1.5	2.0
AC91698-3	1.091	4.0	2.5	1.5	1.5
AC91817-5	1.109	2.5	3.0	2.0	1.5
ATX85404-8	1.101	4.0	2.5	2.0	1.5
B0717-1	1.095	5.0	3.0	2.0	2.5
BC0894-2	1.087	4.0	3.0	2.0	1.5
BC1447-1	1.080	4.0	3.0	2.0	1.5
BC1470-1	1.115	4.0	2.5	2.5	2.0
CO90217-1	1.084	1.5	1.5	2.0	1.5
CO90217-4	1.096	2.5	2.0	1.0	1.5
ND2471-8	1.093	4.0	4.0	2.5	2.0
Atlantic	1.105	4.5	3.0	3.0	2.0
Chipeta	1.100	4.5	3.0	2.5	1.5
NorValley	1.088	3.5	3.5	2.5	2.0
Snowden	1.106	4.5	2.5	2.0	1.0
Superchip	1.085	3.0	2.5	2.0	1.0

¹Chip color was rated using the Snack Food Association 1-5 scale. Ratings of \leq 2.0 are acceptable.

Colorado Table 5. Yield, grade, tuber shape, and skin type for Western Regional and Advanced Red Trial clones - 1997.

			US #1			Tuber Shape
Clone	Total	Total	%	>10 oz	<4 oz	& Skin Type
AC91844-2	394	280	70.9	20	113	R,R
AC91848-1	410	361	87.8	66	48	R,R
AC91848-2	388	287	74.0	36	98	Ov,R
CO86142-3	380	295	77.6	8	80	R,R
CO86218-2	398	319	80.3	52	77	R,R
CO89097-2	499	415	83.3	69	83	R,R
COO86107-2R	379	328	86.4	42	52	R,R
DT6063-1R	449	400	89.0	98	39	Ob,R
NDC4655-1	397	280	70.2	24	111	R,R
NDO2438-6	418	340	81.2	71	71	R,R
Norland (Dark Red)	536	455	84.7	60	74	R,R
Red LaSoda	490	413	84.2	112	41	R,R
Sangre-S10	532	475	89.4	177	49	Ov,R
Mean	436	358	81.5	64	72	
LSD ² (0.05)	41	45	4.8	37	16	

¹Tuber shape & skin type: R=round; Ov=oval; Ob=oblong; R=red.

²LSD=least significant difference.

Colorado Table 6. Summary comparison of advanced selections and named cultivars for yield, grade, maturity, specific gravity, and grade defects - 1997.

Clone	Usage ^l	Loc x Years	Total Yield (Cwt/A)	% US #1	Vine Maturity ²	Specific Gravity	% External Defects	% Hollow Heart
Russets								
CO80011-5	FM	12	392	84.0	2.5	1.072	2.7	0.1
AC83064-1	FM	9	470	88.4	3.2	1.078	1.4	0.0
AC83064-6	FM/Fry	9	391	86.0	3.0	1.079	0.9	0.1
CO85026-4	FM	7	370	89.8	3.6	1.082	2.7	0.0
AC87084-3	FM/Fry	5	512	90.9	3.4	1.094	1.7	0.0
AC88042-1	FM/Fry	4	362	73.1	3.0	1.076	1.5	0.0
AC88165-3	FM	4	424	80.7	2.9	1.080	1.4	0.0
Centennial Russet	FM	35	294	77.4	3.0	1.081	0.8	0.3
Russet Norkotah	FM	22	315	83.6	1.4	1.076	1.7	0.2
Russet Nugget	FM/Fry	25	416	81.6	3.9	1.095	1.5	0.1
Chippers								
ATX85404-8	Chip	6	472	75.9	3.0	1.091	1.0	0.1
BC0894-2	Chip	6	393	85.1	1.9	1.080	0.8	0.0
Atlantic	Chip	11	411	87.8	3.3	1.097	1.4	2.4
Chipeta	Chip	12	484	84.4	3.4	1.092	3.3	0.3
Reds								
CO86218-2	FM	6	390	81.8	2.9	1.076	0.9	0.0
DT6063-1R	FM	4	442	88.3	2.7	1.081	2.3	0.5
Sangre	FM	15	438	85.6	2.8	1.075	0.9	0.3

¹FM=fresh market; Fry=french fry; FM/Fry indicates a dual purpose clone.

²Vine maturity: 1=very early; 2=early; 3=medium; 4=late; 5=very late.

 $^{^{3}\}text{Includes defects such as second growth, growth crack, misshapen, and green.}$

⁴Based on tubers greater than 10 ounces.

Idaho

S. Love, J. Pavek, D. Corsini, P. Bain, M. Ruby, J. Stimpson, D. Inglis, and M. Powelson

A major objective of the Idaho potato variety development project is to evaluate germplasm produced by the USDA/ARS potato breeding program located in Aberdeen, Idaho. These evaluations include variety trials, herbicide screening, culinary tests, and disease screening. The major emphasis is placed on developing long shaped, russet skinned varieties which have superior fresh market and french fry processing (dual purpose) quality. Some effort is also spent developing chipping varieties.

Replicated Variety Trials

Ten potato variety trials were conducted in 1997 at Rexburg, Shelley, Aberdeen, Kimberly and Parma, Idaho (Tables 1-10). Rexburg is located in the high elevation area of eastern Idaho and has the coolest, shortest season (120 days) of the four sites. Shelley and Aberdeen are located along the Snake River in eastern Idaho, are slightly warmer, and have a 130 day season. Kimberly is located in south-central Idaho and has a 140 day growing season. Parma is located in the warmer area of western Idaho and has a 160 day season. Trials at Aberdeen, Kimberly, and Parma were located on University of Idaho experiment stations, while the trials in Rexburg and Shelley were placed in growers fields. All trial sites were located within major potato producing areas.

The trials were planted between April 2 and May 16 and harvested between September 12 and October 6. Crop management practices were typical of those used in the region in which the trial was located. All trials were planted using a randomized complete block design with either four or six replications. Plots consisted of single rows, twenty feet long.

Following harvest the potatoes were weighed, graded, and sampled for internal quality evaluations. Depending on the specific objectives of the trial, samples were taken for evaluation of blackspot and shatter bruise susceptibility, presence of internal defects, specific gravity, french fry color, and dry matter yield.

Six of the ten trials were conducted to evaluate dual purpose russet or long-white, processing

selections (Tables 1-6). Two were conducted to evaluate chipping selections (Tables 7,8). Two were designed to evaluate selections for high dry matter yield with intent to identify clones superior for dehydration purposes (Tables 9,10).

The trials in Rexburg and Shelley included the most advanced russet breeding selections from the Aberdeen program (Tables 1,2). The unreleased entries had total yields equal to or higher than, and U.S. No 1 yields considerably higher than, Russet Burbank. The lowest yielding clones in these trials were Russet Norkotah and its line selection TXNS278. All of the unreleased selections in these trials had acceptable specific gravity, all but A86102-6 had acceptable french fry color, and all but COA90101-2 had low levels of internal defects.

The trial at Parma was designed to provide information on processing quality of advanced selections under the stressful growing conditions of western Idaho (Table3). All but A8495-1 and COA90101-2 had high yields at Parma. Russet Burbank, A8893-1 and COA90101-2 had high levels of hollow heart. All unreleased clones had lower levels of sugar-ends than the checks, and all but COA90101-2 had acceptable fry color.

Advanced russet selections, including clones in their fifth to fifteenth year of evaluation, were grown at Aberdeen and Kimberly (Tables 4,5). Of the thirteen selections in the trial, five had higher total yields at both locations than did Russet Burbank. All entries (except AO82611-7 at Aberdeen) had a higher percentage of U.S. No 1's, and all but two (A89384-10 and A9148-3) had a higher yield of U.S. No. 1's at both locations. Clones with a good combination of yield, specific gravity, fry color, and merit (appearance) scores included A81386-1, A8495-1, A88338-1, A9014-2, and AO82611-7.

The Tri-state trial represents the stage of evaluation beyond the advanced yield trials and includes locations in Oregon and Washington. In the Idaho location of this trial, A88338-1 and AO89128-4 were acceptable for all yield and quality parameters (Table 6). The other selections were low in yield or poor in appearance.

In the Idaho location of the Western Regional chipping trial, only the clone A88431-1 performed well enough to be considered for further evaluation. It had acceptable yield, exceptionally high specific gravity, outstanding chip color from both warm and cold storage. A8961-14 had good yield and adequate specific gravity, but show some chip color problems and frequent heat necrosis.

In the advanced selection chipping trial A88431-1 was the lowest yielding clone. (Table 8). Clones with a good combination of yield, specific gravity and chip color included A90450-16, A90467-14, A91746-8, and A91790-13.

Every clone tested in the advanced high dry matter trial produced a substantially higher yield of dry matter than did Russet Burbank (Tables 9,10). The superior dry matter yields were the result of a combination of high tuber yield and high tuber solids. The highest yield of dry matter at both Aberdeen and Kimberly was achieved by A82360-7. This is consistent with the results obtained for the past several years. Other outstanding clones were A8792-1 and A89219-7.

Sensory Evaluations

Five advanced breeding selections were compared to Russet Burbank in blind sensory evaluations of baked tubers. These evaluations were conducted by University of Idaho Extension personnel at the Bingham County Extension Office. Tubers were baked in a convection oven, then rated by trained panelists for color, texture, flavor, and overall quality. The evaluations were done twice, once within a month of harvest and again after five months of storage at 40°F.

In the fall evaluation, all five selections were similar to Russet Burbank for flavor and for overall sensory quality (Table 9). Some differences were present for the individual sensory categories. Russet Burbank had the lowest color rating, while AO82611-7 had the highest. A8495-1 and Russet Burbank had the highest texture rating of any clones in the trial. A82360-7, A8792-1, and AO82611-7 were inferior to Russet Burbank for texture.

After five months of storage, A8495-1 was the highest rated clone in every sensory category except color. This was similar to tests from 1996 when it was ranked highest in all categories following a period of storage. A8495-1 was rated best for

overall quality while the remaining selections were similar to Russet Burbank. In general the unreleased selections were better than Russet Burbank for color and similar with respect to the other categories.

Metribuzin Screening

Eight varieties and thirty breeding selections were tested for response to the herbicide metribuzin (Secor/Lexone). Estimations were made for percent foliar injury and measurements taken for vigor following a postemergence (8-10 inch plants) application of 1.0 lb a.i./A. Yield loss for each clone as a result of the application was predicted using a previously developed model which incorporates injury and vigor as inputs. Each variety or selection was assigned a relative resistance score based on yield loss in comparison with varieties of known response.

Exceptionally severe injury resulted from the metribuzin application in 1997 (Table 12). The known varieties responded in the expected fashion relative to one another, but yield loss was high. Shepody was very susceptible, and most plants died resulting in a predicted yield loss of 100%. Atlantic also showed a susceptible response. Russet Burbank was moderately resistant, and Russet Norkotah very resistant to injury. Most of the russet and longwhite selections were resistant or very resistant to injury. The two obvious exceptions were selections AC87084-3 and CO87009-4 from Colorado which both showed high levels of injury.

The chipping and red selections showed a mixed response. Of special note were ATX85404-8 and AC88357-3, which were very susceptible and susceptible, respectively. NorValley and A88431-1 were moderately susceptible to injury.

Of the red clones, NDO2686-6R was susceptible to injury, while COO86107-1R, CO86142-3, and NDO2438-6R were moderately susceptible.

Disease Screening

Potato varieties and selections were evaluated for response to several important diseases, including Verticillium wilt, early blight, common scab, soft rot, and late blight.

Verticillium wilt, early blight, common scab, and soft rot: Breeding selections and standard cultivars were evaluated for their reaction to diseases that commonly occur in Idaho. Verticillium wilt, early blight, and common scab evaluations were done in fields at the University of Idaho Research Center, Aberdeen. Trials were grown in two fields as randomized complete blocks with three replications. Natural soilborne inoculum of V. dahliae occurred at both sites, and early blight spreader rows of cv Pioneer were interplanted with plots at one site. It is expected that early blight symptoms would have been more severe if contact fungicides for late blight control had not been used. No late blight occurred in the plots. The growing season was unusually cool and wet through July. Soft rot evaluations were done by inoculating tuber samples harvested from one of the test sites in mid September using 10⁶ cells/ml Erwinia carotovora var. atroseptica. Tubers were evaluated after 5 days incubation in a mist chamber at 20°C. The least significant difference test was used to separate means.

Advanced selection A83008-8 showed the best Verticillium and early blight resistance of all clones tested, and also had good soft rot resistance. The new variety Umatilla Russet showed Verticillium wilt susceptibility similar to Russet Burbank but was slightly more susceptible to early blight. Four Russet Norkotah clonal selections, CORN*, TXNS112, TXNS223, and TXNS278 tended to have less susceptibility to early dying disease than the standard variety (not significant however at $p\!=\!0.05$).

Late blight: Arrangements were made to screen breeding material for late blight resistance in Corvallis, Oregon, and Mt. Vernon, Washington. The trials were conducted by Mary Powelson and Debra Inglis, respectively.

In both locations artificial inoculations were used to augment natural infection. Disease response was measured by monitoring disease progress and calculating Area Under the Disease Progress Curve (AUDPC). At Corvallis, the amount of tuber rot was also documented. Determinations of late blight strains were made at season's end. At Mt. Vernon two strains made up the majority of samples determined, including US11(A1) and US8(A2), while at Corvallis US8(A2) was present.

A wide range of responses to late blight were found among the clones in the trials (Tables 14,15).

All of the included named varieties commonly grown in North America were very susceptible to foliar blight at both locations. At Mt. Vernon, four named varieties had good resistance, Bzura, Brador, Alpha and Elba. (Table 14). Other clones with good resistance were A84118-3, A90586-11, AWN86524-5, and A82360-7. At Corvallis the trial included mostly clones which were a part of the western regional trials. Only the clone A88338-1 showed an appreciable amount of resistance to foliar blight. Although most clones were susceptible to foliar blight, many showed good resistance to tuber blight. These included A8792-1, A88338-1, AO82611-7, COO83008-1, and Atlantic.

Summary of Promising Breeding Selections

A81473-2: This selection will be released in 1998. It is an oblong russet with a very late vine and has performed best in the long season areas of western Idaho, Oregon, and Washington. It is the result of a cross between A75175-1 (Targhee x A67490-3) and A75188-3. A81473-2 was only grown at Parma in 1997 (Table 3) where it perfomed acceptably. It also had a higher yield and percentage of U.S. No. 1's than Russet Burbank and had higher specific gravity, less hollow heart, and fewer sugar-ends. In 1997 there were 366 acres of certified seed produced of A81473-2.

A82360-7: This oval, lightly russetted clone was developed specifically for dehydration purposes and selected for maximum dry matter yield. It is the result of a cross between A77182-1 (Atlantic x Lemhi Russet) and A75188-3. A82360-7 has shown potential for french fry production as well as dehydration. It was the highest yielding clone in every trial in which it was included in 1997, except at Rexburg, where it was second highest (Tables 1,2,9,10). In the high dry matter trial at Aberdeen, it produced 176% of the dry matter of Russet Burbank, while at Kimberly it produced 185%. This clone is currently being evaluated in commercial production trials. In 1997, there were 3 acres of certified seed produced.

A82705-1R: This red clone is a dark red, high yielding selection that has good storage characteristics. It is one of the few selections tested that competes for yield with Red LaSoda in Idaho. It is the result of a cross between Sangre and TXA218-7 (NDTX9580-6R x Viking). A82705-1R will be released in 1998 under the name IdaRose.

A8495-1: This long, russetted clone yielded similarly to Russet Burbank in all Idaho locations except Parma. It has excellent appearance combined with outstanding processing quality. It is the result of a cross between A77182-1 (Atlantic x Lemhi Russet) and Russet Norkotah. In 1997, A8495-1 had higher yields than Russet Burbank at all locations except Kimberly and Parma (Tables 1-5). In every trial, it had a higher percentage of U.S. No. 1's, fewer internal problems, and higher specific gravity. It had the best overall fry color of any russet clone tested. This selection will likely be released in late 1998. In 1997 there were 42 acres of certified seed produced.

AO82611-7: This long, russetted clone is an Oregon selection of an Aberdeen seedling. It was the result of a cross between Butte and A77268-4 (Lemhi Russet x Norchip). Oregon is currently pursuing release of this clone under the name Umatilla Russet. In 1997, it generally had high yield, good grade, high specific gravity, and showed some resistance to sugar ends (Tables 1-5). This is consistent with previous years. AO82611-7 appears to be adapted to areas with long, warm growing seasons and performed very well at Parma.

COO83008-1: This long, russetted clone is an Oregon selection of a Colorado seedling. It resulted from a cross of Century Russet and WNC672-2 (A6334-20 x Lenape). Release is currently being pursued by Oregon using the name Russet Legend. COO83008-1 had higher yield than Russet Burbank at Rexburg and Shelley (Tables 1,2). It also had a very high percentage of U.S. NO. 1's and excellent internal quality. In 1997, a persistent problem with stem end discoloration was again observed in tubers stored for more than three months. Some tendency for this problem had been seen in past years.

NDO1496-1: This round, white chipping clone is an Oregon selection of a North Dakota seedling. It is the result of a cross between ND292-1 and A77268-1 (Lemhi Russet x Norchip). Due to susceptibility to shatter bruise, Oregon researchers dropped NDO1496-1, and it is now being evaluated by the Idaho industry. In 1997, it was grown in one trial at Aberdeen where it had lower yield and smaller size than Atlantic or Chipeta (Table 8). It had specific gravity similar to Atlantic and chip color better than any of the standard varieties. NDO1496-1 has shown the ability to chip acceptably from cold storage and to recondition well. It has

performed well in processor trials and will likely be released in 1998.

IDAHO TABLE 1. Performance of russet potato selections on the farm of Gary Summers at Rexburg, Idaho, in 1997.

	Total		U.S.	. No. 1's			Culls &	Specific	Hollow Heart	Blackspot ² Shatter ³	Shatter ³	Fry 404	Fry 454
Clone	Yield	Yield	8	12 oz 6	12 oz 6 to 12 oz < 4 oz	<4 oz	U.S.No. 2 Gravity	Gravity	Brown Center	Bruise	Bruise	Color	Color
	cwt/acre	acre			- %				-%-				
Russet Burbank	416	258	62	17	32	10	28	1.086	21	4.4	4.1	3.7	1.5
Frontier Russet	376	331	00 00	29	47	9	9	1.088	0	3.6	3.2	3.8	2.8
Ranger Russet	453	376	83	34	40	33	14	1.095	0	4.9	3.6	3.3	1.6
Russet Norkotah	229	186	81	14	43	15	4	1.072	0	4.2	3.7	3.9	2.6
A82360-7	549	407	74	24	36	6	17	1.099	0	3.6	4.0	2.7	1.3
A8495-1	456	382	84	36	39	2	11	1.091	0	4.4	3.9	2.7	1.3
A86102-6	512	424	83	39	35	\$	12	1.088	0	1.6	4.6	3.9	2.9
A8792-1	554	423	9/	46	25	3	21	1.101	10	4.1	4.0	3.4	1.9
A9045-7	476	428	06	47	36	4	7	1.092	0	4.6	3.7	ю	1.9
A082611-7	407	280	69	32	29	7	24	1.091	0	4.4	4.2	3.1	2.3
COO83008-1	424	393	93	09	28	7	2	1.092	4	3.4	3.9	3.3	1.5
Mean	441	353	80	34	35	9	14	1.092	3	3.9	3.9	3.4	2.0
LSD (.05)	51	48						0.004		0.2	0.3	0.4	0.4

¹ Hollow heart/brown center was determined by cutting tubers > 12 oz.

² Blackspot bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible.

³ Shatter bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible.

⁴ USDA fry grade score with lower score indicating lighter color; potatoes stored at 40 or 45°F.

IDAHO TABLE 2. Performance of russet potato selections on the farm of Reed Searle at Shelley, Idaho, in 1997.

	Total		Ü.	U.S. No. 1's	so.		Culls &	Specific	Hollow Heart	Blackspot ² Shatter ³	Shatter ³	Fry 404 Fry 454	Fry 454
Clone	Yield	Yield	8	>12 oz 6 to 12 oz < 4 oz	to 12 oz	<4 oz	U.S.No.	U.S.No. 2 Gravity	Brown Center	Bruise	Bruise	Color	Color
	cwt	cwt/acre		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0	<i>M</i>			-%-				
Russet Burbank	326	158	48	9	25	23	29	1.083	22	4.2	4.5	3.9	1.9
Ranger Russet	463	382	83	22	48	00	10	1.094	0	4.9	4.1	3.7	1.9
Russet Norkotah	242	166	69	2	38	56	9	1.075	0	4.6	3.5	4.0	2.6
TXNS278	258	175	89	6	34	56	7	1.077	2	4.6	3.4	4.0	3.3
A82360-7	630	490	78	16	39	15	∞	1.098	2	3.6	4.0	2.7	1.5
A8495-1	400	309	77	10	43	19	4	1.093	2	4.7	4.2	2.6	1.3
A86102-6	219	417	72	19	40	12	16	1.091	0	2.5	4.4	3.9	3.3
A8792-1	529	426	81	34	38	2	14	1.099	15	3.7	4.3	3.5	2.2
A082611-7	380	226	29	7	36	16	24	1.089	0	4.3	4.1	3.5	2.3
COA90101-2	312	231	74	24	38	11	15	1.090	30	4.2	3.2	3.6	2.2
COO83008-1	399	359	06	36	4	2	ς,	1.094	7	3.2	4.1	3.2	1.4
Mean	411	303	74	18	39	14	12	1.090	7	4.0	3.9	3.5	2.2
LSD (.05)	64	70						0.004		0.3	0.3	0.3	0.4

¹ Hollow heart/brown center was determined by cutting tubers > 12 oz.

² Blackspot bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible.

³ Shatter bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible.

⁴ USDA fry grade score with lower score indicating lighter color; potatoes stored at 40 or 45°F.

IDAHO TABLE 3. Performance of russet and processing potato selections grown at Parma, Idaho, in 1997.

	Total		U.S	U.S. No. 1's			Culls &	Specific	Hollow Heart ¹	Sugar ²	Fry3	
Clone	Yield	Yield	%	>12 oz	6 to 12 oz	<4 oz	<4 oz U.S.No. 2	Gravity	Brown Center	Ends	Color	
	cwt/acre	acre			%		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		-%-			
Russet Burbank	550	441	80	32	38	7	13	1.081	41	62	2.8	
Ranger Russet	599	527	80	20	34	4	6	1.089	0	57	2.3	
Shepody	550	486	00 00	19	19	7	6	1.081	0	64	3.2	
A81473-2	538	486	06	63	25	7	00	1.086	0	21	2.4	
A82360-7	799	632	79	30	42	9	16	1.094	0	20	1.8	
A8495-1	481	447	93	35	50	9	1	1.089	0	19	2.1	
A8893-1	564	476	84	54	27	7	13	1.078	23	23	2.5	
A9045-7	609	530	87	65	19	1	111	1.086	0	19	2.6	
AO82611-7	564	444	79	35	37	9	15	1.088	8	12	2.4	
COA90101-2	471	375	80	46	27	00	12	1.077	28	10	3.4	
Mean	572	484	85	48	32	4	11	1.085	10	31	2.6	
LSD (.05)	74	62						900.0		14	0.4	

¹ Hollow heart/brown center was determined by cutting tubers > 12 oz.

² Percent of tubers producing fries with ends rated 3+ and at least 1 full point darker than the remainder of the fry.

³ USDA fry grade score with lower score indicating lighter color; potatoes stored at 45°F.

IDAHO TABLE 4. Performance of advanced russet potato selections grown at Aberdeen, Idaho, in 1997.

	Total		U.S.	U.S. No. 1's		U.S. No. 2's	o. 2's	Specific	Hollow	Blackspot ²	Frv (Fry Color	Merit ⁴
Clone	Yield	Yield	%	>12 oz	6 to 12 oz	<4 oz N	Malformed	Gravity	Heart	Bruise	40°F	45°F	Score
	cw	cwt/acre			%				-%-				
Lemhi Russet	378	306	81	23	43	17	3	1.087	32	4.7	2.2	0.7	3,3
Ranger Russet	377	332	00 00	4	09	10	2	1.089	0	4.2	3.2	0.9	4.0
Russet Burbank	306	205	29	6	31	26	7	1.080	19	3.4	3.0	0.9	2.8
A81386-1	350	301	98	11	20	14	0	1.095	12	3.9	2.0	0.7	4.0
A8495-1	339	312	92	16	56	00	0	1.083	4	4.3	1.3	0.3	3.0
A88236-6	393	334	85	17	49	11	4	1.082	3	3.5	2.7	1.2	3.0
A88338-1	361	336	93	43	44	3	3	1.091	12	3.0	2.5	0.9	4.0
A89384-10	339	281	83	20	48	10	7	1.090	29	3.1	2.4	1.6	3.5
A9014-2	354	315	86	11	58	10	0	1.089	4	3.7	1.5	0.4	3.0
A9057-7	397	353	68	29	48	6	2	1.088	17	3.9	2.6	1.2	3.8
A89244-3	377	324	98	13	58	00	2	1.089	0	4.2	3.3	1.1	4.0
A9045-7	319	236	74	00	42	14	12	1.095	29	3.0	2.9	0.8	2.8
A9148-3	298	244	82	14	52	10	00	1.085	0	3.6	2.9	1.8	3.3
A91186-6	308	249	81	9	41	16	3	1.083	0	3.9	1.7	0.4	3.3
A91325-6	375	341	91	17	55	6	0	1.086	27	2.5	1.6	0.4	3.8
A082611-7	373	239	64	2	29	34	2	1.082	0	3.8	2.2	1.0	3.0
Mean	354	294	83	15	48	13	4	1.087	13	3.7	2.4	0.9	3.5
LSD (.05)	35							0.002		0.4	9.0	0.3	0.7

¹ Hollow heart was measured by cutting tubers > 12 oz.

 2 1-5 scale with 1 = resistant, 5 = susceptible.

³ USDA fry grade score with lower score indicating lighter color; potatoes stored at 40° or 45°F until late February.

⁴ Merit Score is similar to a breeder's preference rating and is based on overall appearance and size of field run potatoes, 1-5 scale with 5 = best.

IDAHO TABLE 5. Performance of advanced russet potato selections grown at Kimberly, Idaho, in 1997.

						Culls and	and						
č	Total		U.S.]	U.S. No. 1's		U.S. I	o. 2's	Specific	Hollow ¹	Blackspot ²	Fry (Fry Color ³	Merit ⁴
Clone	Yıeld	Yield	%	> 12 oz	6 to 12 oz	<4 oz	Maltormed	Gravity	Heart	Bruise	40°F	45°F	Score
	CW	cwt/acre			····· % ····				-%-				
Lembi Russet	623	486	78	26	38	12	10	1.089	3	4.1	2.3	0.9	3.3
Ranger Russet	909	491	81	39	36	9	13	1.090	0	3.3	3.5	1.3	3.3
Russet Burbank	623	399	64	16	37	11	25	1.082	10	2.4	2.8	1.0	2.5
A81386-1	633	557	00 00	32	43	9	5	1.084	33	4.0	1.6	0.4	3.5
A8495-1	584	514	00 00	11	53	11	1	1.092	0	3.7	2.7	1.3	4.0
A88236-6	543	424	78	24	42	00	4	1.080	0	2.9	2.5	0.9	3.0
A88338-1	<i>LL</i> 19	542	80	52	45	4	15	1.083	0	2.3	2.9	2.0	3.0
A89384-10	203	382	75	16	42	11	13	1.091	33	2.4	2.8	1.1	3.0
A9014-2	503	448	88	39	39	9	5	1.088	15	2.8	1.9	1.1	3.5
A9057-7	672	591	00 00	27	48	7	5	1.087	2	3.1	2.7	1.0	3.3
A89244-3	249	445	81	16	52	6	11	1.096	11	2.5	2.6	1.1	3.3
A9045-7	632	569	06	45	37	4	7	1.088	0	3.7	3.5	1.5	4.0
A9148-3	428	342	80	31	37	12	00	1.079	3	2.8	3.1	1.6	3.0
A91186-6	522	438	84	11	52	10	9	1.084	0	2.5	2.3	1.0	3.3
A91325-6	519	462	86	14	54	10	1	1.085	3	1.5	1.9	9.0	3.3
AO82611-7	929	534	79	17	48	12	6	1.085	3	3.4	3.0	1.4	3.3
Mean	581	476	82	26	43	6	6	1.086	4	3.0	2.6	1.1	3.3
LSD (.05)	75							0.004		0.5	9.0	0.5	0.7

¹ Hollow heart was measured by cutting tubers > 12 oz.

 2 1-5 scale with 1 = resistant, 5 = susceptible.

³ USDA fry grade score with lower score indicating lighter color; potatoes stored at 40° or 45°F until late February.

⁴ Merit Score is similar to a breeder's preference rating and is based on overall appearance and size of field run potatoes, 1-5 scale with 5 = best.

IDAHO TABLE 6. Performance of russet potato selections in the Idaho location of the Tri-State (Idaho, Oregon, Washington) variety trial grown at Aberdeen, Idaho, in 1997.

	Total		D	U.S. No. 1's			Culls &	Specific	Hollow Heart ¹ Blackspot ²	Blackspot ²	Shatter ³	Fry 404	Fry 454
Clone	Yield	Yield	%	>12 oz	6 to 12 oz < 4 oz	_<4 oz	U.S.No. 2	Gravity	Brown Center	Bruise	Bruise	Color	
	cwt	cwt/acre		8 8 8 8 8 9 9	%		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		-%-				
Russet Burbank	465	345	74	11	44	11	15	1.085	61	4.1	4.0	4.0	1.6
Ranger Russet	450	387	98	23	53	2	6	1.087	0	4.3	3.7	30.00	1.7
A83008-8	325	230	71	46	22	3	26	1.093	10	4.0	2.5	3.2	1.5
A8836-5	599	456	9/	33	36	2	19	1.087	0	3.0	3.3	3.7	1.2
A88338-1	499	439	80	49	36	3	6	1.088	3	1.9	3.1	4.0	1.4
AO89128-4	437	360	82	7	52	12	9	1.094	0	2.5	3.8	3.2	0.8
Mean	463	370	80	28	41	7	14	1.089	13	3.3	3.4	3.6	1.4
LSD (.05)	100	103						0.005		0.5	0.4	0.2	0.4

¹ Hollow heart/brown center was determined by cutting tubers > 12 oz.

² Blackspot bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible.

³ Shatter bruise measured using a 1-5 scale where 1=resistant, 5=susceptible.

⁴ USDA fry grade score with lower score indicating lighter color; potatoes stored at 40 or 45°F.

IDAHO TABLE 7. Performance of chipping potato selections in the Idaho location of the Western Regional Chipping Trial grown at Aberdeen, Idaho, in 1997.

	Total			U.S. No. 1's	o. 1's		Culls &	Specific	Culls & Specific Hollow Heart	Blackspot ²	Shatter ³	Chip 40⁴	Chip 50⁴
Clone	Yield	Yield	%	>12 oz	oz 6 to 12 oz < 4 oz U.S.No. 2 Gravity	<4 oz	U.S.No. 2	Gravity	Brown Center	Bruise	Bruise	Bruise Color Color	Color
	cwt	cwt/acre			%				-%-				
Atlantic	431	390	06	27	51	5	4	1.096	18	2.5	3.9	3.8	2.3
Chipeta	586	476	81	49	28	3	16	1.088	0	2.8	4.2	3.9	1.6
A88431-1	501	427	85	13	55	11	4	1.104	3	2.3	4.1	2.0	1.0
A8961-14	604	562	93	39	47	4	3	1.083	9	1.8	4.0	3.5	2.1
AC88357-3	268	193	72	5	42	25	3	1.084	0	2.2	3.9	3.5	1.5
NorValley	410	296	72	2	46	21	9	1.080	33	2.9	4.0	3.2	1.3
MEAN	467	391	82	23	45	12	9	1.089	\$	2.4	4.0	3.3	1.6
LSD (.05)	64	64		i				0.004		0.5	0.4	0.7	0.5

¹ Hollow heart/brown center was determined by cutting tubers > 12 oz.

² Blackspot bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible. ³ Shatter bruise measured using a 1-5 scale where 1 = resistant, 5 = susceptible.

⁴ Chip color grade score with lower score indicating lighter color; potatoes stored at 40 or 50°F.

IDAHO TABLE 8. Performance of advanced chipping potato selections grown at Aberdeen, Idaho, in 1997.

						Culls and	and							
	Total		U.S.	U.S. No. 1's		U.S. No. 2's	o. 2's	Specific	Hollow	Hollow1 Blackspot2		Chip Color3		Merit ⁴
Clone	Yield	Yield	%	>12 oz	4 to 12 oz	<4 oz	< 4 oz Malformed	Gravity	Heart	Bruise	Bruise Feb45°F	Dec40°F	Feb45°F	Score
	cwt,	cwt/acre		%	%				-%-					
Chipeta	384	349	91	20	71	2	4	1.088	∞	3.8	1.6	3.9	1.0	4.0
Gemchip	347	271	78	3	75	21	0	1.086	0	3.9	2.1	3.9	1.5	3.3
A88431-1	298	238	80	7	73	70	0	1.109	0	3.3	1.2	2.6	1.3	2.3
A90450-16	436	292	<i>L</i> 9	m	64	33	0	1.101	30	2.9	1.6	2.8	1.1	3.0
A90467-14	386	282	73	4	70	56	0	1.104	25	3.4	1.0	2.3	1.0	3.5
A91746-8	398	338	85	12	73	14	1	1.095	0	3.1	1.0	2.3	1.0	4.3
A91790-13	401	297	74	4	69	56	0	1.093	0	2.3	1.1	2.4	1.0	4.0
NDO1496-1	330	221	89	0	89	32	0	1.090	0	3.1	1.1	3.4	1.0	3.0
Mean	373	287	77	7	70	22	1	1.096	7	3.2	1.3	3.0	1.1	3.4
LSD (.05)	30							0.003		0.5	0.3	0.5	0.4	0.4

¹ Hollow heart was measured by cutting tubers > 12 oz.

 2 1-5 scale with 1 = resistant, 5 = susceptible.

³ Chip color rated using the SFA color chart, 0-5 scale with 2 or less considered acceptable. Tubers stored at 40°F or 45°F. Tubers held at 40°F were also reconditioned for 3 weeks at 65°F.

⁴ Merit score is similar to a breeders' preference rating and is based on appearance and size of field-run potatoes, 1-5 scale with 5 = best.

IDAHO TABLE 9. Performance of advanced high dry matter potato selections grown at Aberdeen, Idaho, in 1997.

	Total		U.S. No	Vo. 1's		Culls &	Culls & U.S. No. 2's	Specific	Hollow1	Blackspot ²	Fry ³	Dry Matter
Clone	Yield	Yield	%	>12 oz	6 to 12 oz	<4 oz	Malformed	Gravity	Heart	Bruise		Yield
	cwt	cwt/acre			%				-%-			Ib/A
Lemhi Russet	401	333	83	14	53	12	4	1.087	37	4.7	9.0	8.910
Ranger Russet	358	290	81	ν,	53	17	2	1.088	0	4.4	0.8	8,080
Russet Burbank	317	203	64	ν,	37	21	16	1.080	42	3.4	0.8	6,650
A82360-7	495	381	77	6	43	21	1	1.094	7	3.8	0.4	11,690
A8836-5	423	351	83	17	52	14	3	1.093	0	3.6	0.5	006'6
A89219-7	462	425	92	34	51	3	5	1.090	17	3.9	0.7	10,570
A89282-2	313	269	98	20	43	10	4	1.090	7	1.7	1.3	7,210
A8792-1	421	320	92	18	46	2	18	1.098	14	3.3	0.5	10,300
A89216-11	395	304	77	18	50	oo	15	1.101	31	2.7	0.9	006.6
A91015-7	387	344	68	26	50	9	9	1.092	37	3.8	1.3	8,990
A91030-17	465	419	06	34	47	00	2	1.096	20	3.0	1.4	11,210
A91039-1	408	379	93	37	49	3	4	1.090	10	1.6	8.0	9,360
Mean	404	335	83	20	48	11	7	1.092	18	3,3	0.8	9.400
LSD (.05)	47							0.003		0.5	0.2	1,200

¹ Hollow heart was measured by cutting tubers > 12 oz.

² 1-5 rating with 1 = resistant, 5 = susceptible.

³ USDA fry grade score with lower score indicating lighter color; potatoes stored at 45°F.

IDAHO TABLE 10. Performance of advanced high dry matter potato selections grown at Kimberly, Idaho, in 1997.

Yield Yield Yield % >12 oz 6 to 12 oz cwt/acre		Cuils &	Culls & U.S. No. 2's	Specific	Hollow,	Blackspot ²	Fry	Dry Matter
556 478 86 29 561 466 83 37 551 353 64 19 869 704 81 7 559 447 80 29 655 563 86 42 541 417 77 18 639 492 77 39 602 452 75 36 582 477 82 29 609 542 89 35 609 542 89 35	% >12 oz	12 oz <4 oz	Malformed	Gravity	Heart	Bruise	_	Yield
556 478 86 29 561 466 83 37 551 353 64 19 869 704 81 7 559 447 80 29 655 563 86 42 541 417 77 18 639 492 77 39 602 452 75 36 582 477 82 29 609 542 89 35		%			- % -			Ib/A
561 466 83 37 551 353 64 19 869 704 81 7 559 447 80 29 655 563 86 42 541 417 77 18 639 492 77 39 602 452 75 36 582 477 82 29 609 542 89 35	98	7 7	7	1.089	2	3.9	0.7	12,560
551 353 64 19 869 704 81 7 559 447 80 29 655 563 86 42 541 417 77 18 639 492 77 39 602 452 75 36 582 477 82 29 609 542 89 35		5 5	13	1.086	0	3.3	0.8	12,340
869 704 81 7 559 447 80 29 655 563 86 42 541 417 77 18 639 492 77 39 1 602 452 75 36 7 609 542 89 35 7 609 542 89 35		77 11	25	1.078	0	2.7	6.0	11,300
559 447 80 29 655 563 86 42 541 417 77 18 639 492 77 39 1 602 452 75 36 7 609 542 89 35 7 609 542 89 35		5 16	8	1.096	0	3.1	9.0	20,850
655 563 86 42 541 417 77 18 639 492 77 39 1 602 452 75 36 7 609 542 89 35 7 609 542 89 35 8 563 563 563		11 8	11	1.086	0	3.0	0.7	12,350
541 417 77 18 639 492 77 39 1 602 452 75 36 2 477 82 29 7 609 542 89 35 6 563 563 563	98	9 9	6	1.084	2	3.1	1.4	14,200
639 492 77 39 1 602 452 75 36 582 477 82 29 7 609 542 89 35	77	11 11	12	1.091	0	1.0	1.6	12,510
1 602 452 75 36 582 477 82 29 7 609 542 89 35	77 39	12 4	19	1.094	10	2.6	0.7	15,080
582 477 82 29 7 609 542 89 35	75 36	13 9	16	1.098	0	1.7	1.4	14,730
609 542 89 35	82 29	7 0	11	1.088	3	2.5	6.0	13,060
503 551 003	89 35	6 0	2	1.095	0	2.5	1.3	14,530
10 66 166	93 61	29 3	4	1.085	∞	1.6	1.2	13,010
Mean 610 494 81 32 39 8	81 32		11	1.089	m	2.7	1.0	13,880
LSD (.05) 96				0.005		9.0	0.4	2,400

¹ Hollow heart was measured by cutting tubers > 12 oz.

² 1-5 rating with 1 = resistant, 5 = susceptible.

³ USDA fry grade score with lower score indicating lighter color; potatoes stored at 45°F.

IDAHO TABLE 11. Sensory evaluations of baked potatoes from breeding selections grown at Aberdeen, Idaho, in 1997.1

		At harvest	rvest			After 5 Months	After 5 Months Storage (40°F)	
Clone	Color	Texture	Flavor	Overall	Color	Texture	Flavor	Overall
Russet Burbank	6.1 d	5.9 a	5.7 ab	5.8 a	6.3 b	6.1 a	5.7 b	5.9 b
A8495-1	6.2 cd	5.9 a	6.0 a	5.9 a	6.6 ab	6.1 a	6.2 a	6.2 а
A88338-1	6.4 abc	5.7 ab	5.6 b	5.7 a	6.4 b	6.0 a	5.9 ab	6.0 ab
A82360-7	6.4 ab	5.6 b	5.6 b	5.6 a	6.7 a	5.9 а	6.0 ab	5.9 ab
A8792-1	6.2 bcd	5.4 b	5.6 b	5.6 a	6.7 a	5.9 a	6.0 ab	6.0 ab
AO82611-7	6.6 a	5.5 b	5.4 b	5.6 a	6.8 a	5.9 а	5.7 b	5.9 b

¹ Evaluations were made by trained panelists using double blind procedures. Approximately 100 tests were done on each clone. Each baked potato was rated for color, texture, flavor, and overall appeal. Ratings were made using a 1-9 scale with 9 = best. Means were separated using Duncan's Multiple Range Test, and means followed by the same letter are not significantly different.

IDAHO TABLE 12. Reaction of potato clones to the herbicide metribuzin (Sencor/Lexone) in 1997.1

Clone	Plant Injury ² 21 Days Following Application	Predicted ³ Yield Reduction Due to Injury ²	Relative ⁴ Susceptibility to Injury	
December of Laws Wileites	%)		
Russet and Long Whites	25	1.5	MD	
Russet Burbank	35	15	MR	
Frontier Russet	50	29	MS	
Russet Norkotah	13	0	VR	
Shepody	99	100	VS	
A82360-7	25	8	R	
A83008-8	5 35	0	VR	
A8495-1		15	MR VR	
A84118-3	13 10	0	VR VR	
A86102-6			VR VR	
A8792-1	13	0		
A8836-5 A88338-1	3 45	0	VR	
	99	23	MR	
AC87084-3		100	VS	
AO82611-7	15	0	R	
AO87277-6	55	33	MS	
AO89128-4	10	0	VR	
CO85026-4	35	14	MR	
CO87009-4	95	77	VS	
COO83008-1	25	8	R	
NDD840-1	3	0	VR	
TX1385-12Ru	25	6	R	
TXAV657-27Ru	5	0	VR	
Round White Chippers	9.9	63	6	
Atlantic	88	62	S	
Chipeta	15	0	VR	
NorValley	60	32	MS	
A88431-1	75	46	MS	
A8961-14	40	19	MR	
ATX85404-8	95	75	VS	
AC88357-3	80	52	S	
NDO1496-1	45	24	MR	
Reds	50	20	3.50	
Dark Red Norland	50	29	MS	
Red Lasoda	65	49	MS	
A82705-1R	40	22	MR	
CO86142-3	78	50	MS	
CO86218-2	45	23	MR	
COO86107-1R	70	41	MS	
Dt6063-1R	55	33	MS	
NDO2438-6R	45	23	MR	
NDO2686-6R	75	51	S	

¹ Metribuzin applied postemergence (8-12 inch plants) at a rate of 1.0 lb a.i./A (17.5 gpa, 30 psi).

² Plant injury was recorded as the percentage of foliage from an average plant in each plot that showed typical metribuzin symptoms (chlorosis, necrosis, vein clearing, etc.)

³ Predicted yield reduction is expressed as percent loss compared to untreated plots and was calculated using the following equation: Yield reduction = [1-(1.142 + 0.176 (Log (plant height treated/plant height untreated))-0.00796 (plant injury)] x 100.

⁴ VR = very resistant, R = resistant, MR = moderately resistant, MS = moderately susceptible, S = susceptible, VS = very susceptible.

IDAHO TABLE 13. Evaluation of potato cultivars and breeding selections for resistance to field diseases and soft rot, in 1997.

	Cultivars or Selections	Verticillium Wilt ¹	Early Blight ²	Common Scab ³	Erwinia Soft Rot ⁴
NAMED CULTIVARS	A8495-1 A81473-2. AO82611-7 (Umatilla) COO83008-1 (Legend) Atlantic Ranger Russet Red LaSoda Russet Burbank Russet Norkotah Shepody	1.8 6.2 2.7 6.7 3.7 5.5 5.7	4.7 3.2 5.9 3.9 6.2 4.0 6.2 4.7 8.3 6.7	1.3 0.0 0.0 0.0 2.0 2.0 3.7 0.0 0.0	2.4 1.6 - 3.6 2.8 3.7 3.6 3.9 4.3
WESTERN REGIONAL TRIAL ENTRIES	A82360-7. A8792-1 AC87084-3. AO87277-6 CO85026-4. COO87009-4 CORN8. NDD840-1 TX1385-12Ru TXAV657-27Ru TXNS112 TXNS223 TXNS278	2.5 3.9 3.8 5.7 2.2 6.5 7.4 4.8 4.0 5.2 7.4	3.5 4.3 4.0 5.4 3.3 6.4 6.9 5.2 6.7 5.5 6.7 6.8 7.3	2.0 1.0 0.3 0.7 1.7 0.0 0.0 1.0 0.7 2.0 0.0 0.0	3.1 3.5 3.2 4.6 3.2 3.3 4.1 4.5 3.5 3.9 3.6 3.8 3.3
TRI STATE TRIAL ENTRIES	A83008-8. A8836-5. A88338-1. AO89128-4	2.7 2.2	2.4 3.8 3.3 4.8	0.3 0.3 0.0 1.7	1.9 3.3 2.2 2.8
CHIP TRIAL ENTRIES	A88431-1	2.2	4.7 3.3 8.0	3.7 4.7 2.3	3.7 2.7 4.5

Verticillium wilt 0 to 9 scale: 0 = none; 9 = 90% stems dead or dying with typical Verticillium wilt symptoms.

² Early blight 0 to 9 scale: 0 = none; 9 = 90% leaflets with severe blight lesions or necrosis due to early

³ Common scab 0 to 5 scale; 0 = none; TR = Trace; 5 = all tubers unmarketable due to scab. ⁴ Erwinia soft rot 0 to 5 scale; 0 = no rot; 5 = all tubers >50% decayed.

IDAHO TABLE 14. Evaluation of varieties, advanced selections, and resistant germplasm for foliar late blight at Mt. Vernon, Washington, in 1997.

Clone	Average AUDPC ¹	Clone	Average AUDPC ¹
Standards		Regional Trial Entries	
Bzura	602 abc	A82360-7	981 b-f
Brador	856 a-e	A8792-1	1134 c-h
Alpha	789 a-d	AC87084-3	1304 d-j
Elba	887 а-е	AO87277-6	2049 l-p
COO83008-1	1250 c-i	CO85026-4	1099 c-g
Kennebec	1483 e-l	CO87009-4	1573 f-m
Russet Burbank	2111 l-p	CORN-3	1769 g-n
Ranger Russet	1941 j-o	CORN-8	2307 пор
Shepody	2214 m-p	NDD840-1	1640 f-n
White Rose	1961 j-o	TX1385-12Ru	2706 p
Norchip	2544 op	TXAV657-27Ru	1919 i-o
Russet Norkotah	2141 l-p	TXNS112	2236 m-p
Red LaSoda	1953 ј-о	TXNS223	2542 ор
		TXNS278	1790 h-n
Aberdeen Program Entrie	3		
A8495-1	2006 1-o	Regional Chipping Entries	3
A84118-3	664 a-d	Atlantic	1987 k-o
A90586-11	359 ab	Chipeta	1833 I-n
AWN86524-5	304 a	A88431-1	1480 e-l
		A8961-14	1726 g-n
Tri-State Trial Entries		AC88357-3	1920 i-o
A83008-8	2225 m-p		
A8836-5	2119 l-p		
A88338-1	1329 d-k		
AO89128-4	1925 ј-о		
AO82611-7	2204 m-p		

 $^{^{1}}$ AUDPC = Area under the disease progress curve. Clone means followed by the same letter are not significantly (p=.05) different.

IDAHO TABLE 15. Response to late blight pressure at Corvallis, Oregon, 1997.

Entry	Foliar Rating ¹	% Tuber Infect ²	Relative Tuber Rot Susceptibility	Rot Index ³
Russet Burbank	93.8	10.0	MR	1.8
Ranger Russet	95.0	42.5	VS	4.8
Russet Norkotah	97.5	27.5	S	4.8
A82360-7	96.3	10.0	MR	1.0
A8495-1	77.5	17.5	MS	1.8
A8792-1	96.3	2.5	R	1.0
A88338-1	52.0	0.0	R	0.5
A8836-5	86.3	35.0	S	4.8
AC87084-3	94.8	17.5	MS	1.8
AO82611-7	100.0	2.5	R	0.5
AO87277-6	97.5	35.0	S	5.0
AO89128-4	100.0	35.0	S	6.8
CO85026-4	75.0	15.0	MS	2.8
CO87009-4	97.5	37.5	S	4.8
COO83008-1	86.0	5.0	R	0.8
CORN-3	96.3	17.5	MS	3.0
CORN-8	96.3	27.5	S	4.0
NDD840-1	97.5	32.5	S	6.0
TXAV657-27	90.0	15.0	MS	1.8
TX1385-12	97.3	52.5	VS	7.0
TXNS-112	100.0	37.5	S	6.0
TXNS-223	96.3	20.0	S	2.8
TXNS-278	90.0	17.5	MS	2.3
Atlantic	90.0	7.5	MR	1.3
Chipeta	92.5	32.5	S	5.3
FL-1625	93.5	12.5	MR	2.0
FL-1851	100.0	10.0	MR	1.8
Mean	92.0	21.3		3.2
CV (%)	9.9	63.9		77.9
LSD (0.05)	12.9	19.2		3.5

 $^{^{1}}$ 0 = 0% of leaf surface infected; 50 = 50% of leaf surface involved; 100 = 100% of leaf surface necrotic on

² Percent of tubers showing late blight infection based on 10 randomly selected tubers/plot.

³ Rot severity rating (includes secondary infection): 1 = healthy tubers; 10 = uncontrollable decay.

Maine

G.A. Porter, J.A. Sisson, B. Bradbury, B. MacFarline, and P. Wardwell University of Maine; Orono, ME 04469

Introduction: Potato variety trials were conducted at three locations in Maine as part of the NE184 Regional Project (Development of New Potato Clones for Environmental and Economic Sustainability in the Northeast). Thirty-eight potato varieties and clones were tested at Aroostook Research Farm, Presque Isle, Maine. Eighteen NE184 varieties and lines were tested on a commercial farm in East Corinth (central Maine), while thirty varieties and lines were tested on a commercial farm in St. Agatha (northern Maine). The primary objective of all of the Maine trials is to determine performance, quality, and storage characteristics of promising potato clones and new varieties in Maine.

Methods: Single-row plots, 25 feet long, were utilized for the NE184 trials. All trials were hand planted using randomized complete block designs and four replications. The seedpiece spacing used for each line is listed in subsequent tables. Details of important management practices are presented in Maine Table 1. At the Presque Isle site the varieties were grouped so that separate tests could be vinekilled and harvested based on maturity classification. Remaining cultural practices were similar to those used on commercial farms in the area. Specific gravity was determined at harvest using the weight-inair/weight-in-water method. Hollow heart ratings indicate the number of hollow tubers observed per 40 large tubers examined. Unless noted otherwise chip color evaluations were conducted during December following storage at 50°F. Chips were fried at 350°F for three minutes and evaluated using an Agtron M35, calibrated with the black "0" disk = 0 and the white "90" disk = 90. Chips were crushed and reported values are means from four replicates per variety. Each sample was read three times with thorough mixing between readings.

Results:

Rainfall, General Growth, and Plant Stands.
Rainfall by month and location is listed in Maine Table 2.
Plant growth was generally very vigorous at the northern
Aroostook County site. Yields were much higher at this site
than the other two. Early-dying problems were observed at
the central Maine and Aroostook Research Farm sites.
Plant stand equaled or exceeded 90% of targets for most
lines. Exceptions at Aroostook Research Farm were:
Katahdin (82%), Kennebec (79%), NorDonna (84%), and
Yukon Gold (76%). Exceptions at East Corinth were:
Katahdin (89%), Yukon Gold (84%), and AF1424-7
(87%). Exceptions at St. Agatha were: Katahdin (89%)
and NorDonna (86%).

Aroostook Research Farm NE184 Regional Potato Variety Trials. Many of the lines in the early and midseason tests died early due to early-dying disorder and/or other stresses. We received negligible rainfall over a onemonth period beginning July 10. Dark Red Norland, Superior, AF1424-7, and AF1565-12 were particularly early maturing in the early trial. Only Quaggy Joe exceeded Atlantic in total and U.S.#1 yields (Maine Table 3). U.S. #1 yields of Itasca, Monona, NorDonna, Superior, and AF1424-7 were significantly lower than Atlantic. Atlantic, Cherry Red, and AF1424-7 had relatively high specific gravities. All lines sized poorly; however, Atlantic, Chieftain, and Kennebec sized better than the remaining lines. Tubers of Atlantic, Cherry Red, Dark Red Norland, Quaggy Joe, Superior, and AF1437-1 were rated particularly attractive (Maine Table 4). There were relatively few external tuber defects in this trial and no hollow heart was detected. Atlantic, Itasca, Kennebec, Monona, Superior, and AF1424-7 had very good chip color scores. Although Quaggy Joe stood above the others in yield, none of the test lines performed exceptionally in this

In the mid-season test, AF1433-4 died very early. Niska and NY87 were also quite early maturing. None of the lines exceeded Atlantic in total or U.S.#1 yields (Maine Table 5). Kennebec, NorValley, B0564-8, NY87, and NY103 yields were equal to those of Atlantic, while Snowden, and AF1433-4 were very low yielding. All lines sized poorly; however, Kennebec sized better than the remaining lines. MaineChip, Niska, NorValley, Snowden, AF1433-4, and NY102 had particularly small tubers. Atlantic, MaineChip, Snowden, B0766-3, and NY102 specific gravities exceeded 1.080. There were relatively few external tuber defects and little hollow heart was detected in this trial (Maine Table 6). Scab was the major tuber defect in Kennebec. Misshapen tubers were prevalent in NorValley and NY103. Growth cracks were common in NY102. Most lines had significantly better chip color scores than Atlantic; however, Kennebec and B0564-8 scores were equal to Atlantic. Considering all attributes, the best performing lines in this test were NorValley, B0564-8, NY87, and NY103.

In the late maturity trial, Yukon Gold and B0856-4 senesced relatively early. Lines with particularly high U.S.#1 yields were AF1480-5, and AF1615-1 (Maine Table 7). AF1480-5 had the best tuber size for tablestock use. All of the test lines had specific gravities that equaled or exceeded those of Katahdin. Tubers of Yukon Gold, AF1480-5, and AF1615-1 were rated particularly attractive (Maine Table 8). Yukon Gold had more than 5% misshapen tubers. Relatively little hollow heart was

detected in the test. The best tablestock prospects in this test were AF1480-5 and AF1615-1.

In the russet or long-type variety test, growth was vigorous for most of the lines. B1004-8 had relatively small tops. Russet Burbank and Century Russet were late maturing, while the remainder had mid-season maturity. None of the lines produced total yields which exceeded Russet Burbank (Maine Table 7). Most of the test lines, produced U.S. #1 yields which were similar to those of Russet Burbank; however, B1004-8 and W1099Rus had significantly lower U.S. #1 yields. B9922-11 sized very well. Although most lines had lower specific gravities than Russet Burbank, Century Russet and B1004-8 were equal and B9922-11 had higher specific gravity. Tubers of Century Russet and B9922-11 were particularly attractive (Maine Table 8). W1099Rus had severe blackheart problems. Russet Norkotah and W1099Rus had significantly poorer chip color scores than Russet Burbank. Overall, Century Russet and B9922-11 were the best prospects in this trial.

Central Maine NE184 Regional Potato Variety Trial. Many of the lines in this test died early due to earlydying disorder and/or other stresses. This was especially true for Superior, AF1424-7, AF1433-4, and B0564-8. Katahdin, Kennebec, and Monona total yields were significantly higher than Atlantic (Maine Table 9). U.S.#1 vields of Katahdin, Kennebec, B0766-3, and NY102 were significantly higher than Atlantic. AF1424-7, AF1433-4, and B0564-9 were significantly lower yielding than Atlantic. Atlantic, MaineChip, Snowden, AF1424-7, B0766-3, and NY102 specific gravities exceeded 1.090. Scab was the major tuber defect in the trial and most lines had greater than 10% of yield affected by scab (Maine Table 10). Lines with less than 10% scab were Itasca, Snowden, Superior, and B0564-8. Atlantic, Katahdin, NorValley, and AF1424-7 had greater than 3% hollow heart out of 40 large tubers examined. MaineChip, Niska, NorValley, Snowden, AF1433-4, B0766-3, and NY87 had significantly better chip color scores than Atlantic. Considering all attributes, the best performing chipping lines in this test were Snowden, NorValley, B0766-3, NY87, and NY102.

Northern Aroostook County NE184 Regional Potato Variety Trials. Well-distributed rainfall and good soil conditions resulted in vigorous growth for most lines; however, AF1424-7 and AF1565-12 had relatively small tops. AF1565-12 was the earliest maturing line in the test, while Kennebec, AF1480-5, and AF1615-1 were quite late maturing. Lines with particularly high U.S.#1 yields were Chieftain, Dark Red Norland, Itasca, Kennebec, NorValley, Superior, AF1480-5, AF1615-1, B0811-13, and NY87 (Maine Table 11). Most of the test lines had specific gravities that equaled those of Katahdin; however, Chieftain, NorDonna, Quaggy Joe, Red Ruby, AF1437-1, AF1565-12, and B0811-13 were significantly lower. Most

lines sized well; however, NorValley, Snowden, AF1433-4, AF1565-12, B0856-4, and Red Ruby were smaller than most. Tubers of NorDonna, Dark Red Norland, AF1424-7, AF1480-5, B0811-13, NY87 and NY102 were rated particularly attractive (Maine Table 12). Katahdin, Cherry Red, AF1437-1, and NY103 had more than 5% scab. Quaggy Joe and AF1437-1 had more than 5% growth-cracked tubers. AF1480-5 and NY102 had greater than 5% hollow heart out of 40 large tubers examined. The best tablestock prospects in this test were Itasca, AF1615-1, B0811-13, and NY87.

In the russet or long-type variety test, growth was vigorous for most of the lines. Russet Burbank and Century Russet were very late maturing, while the remainder had mid-season maturity. Most of the test lines, produced yields which were similar to those of the standard lines; however, B1004-8 was significantly lower yielding (Maine Table 13). W1099Rus had particularly high U.S. #1 yields. B9922-11 and W1099Rus sized very well. B1004-8 and B9922-11 had higher specific gravity than Russet Burbank. Tubers of B9922-11 were particularly attractive (Maine Table 14). B9922-11 had significantly better chip color scores than Russet Burbank. Overall, W1099Rus and B9922-11 were the best prospects in this trial.

French Fry Processing from the 1996 Aroostook Research Farm Test. French fry color and texture of ten NE184 lines were evaluated under simulated processing conditions (Maine Table 15). Overall, none of the test lines produced french fries that were equal to Russet Burbank in quality. Krantz, Russet Burbank, AF1426-1, B9922-11, and W1099Rus had the best fry colors. Only B0493-8 had significantly poorer texture ratings than Russet Burbank.

Aroostook Research Farm Small-scale Storage Evaluations. Limited data on storage and processing characteristics were collected from 52 NE184 varieties and clones during the 1996-97 storage season (Maine Table 16). Chip colors from 50°F storage in February were acceptable for many lines with anticipated chipping potential. Lines with outstanding chip color from 50°F February storage were: AF1424-6 and AF1424-7 (early test); MaineChip, NorValley, AF1433-4, NY102, and W870 (medium trial); Niska (late trial). MaineChip, NY102, and W870 also produced very good chips directly from 45°F storage. None of the lines produced acceptable chips directly out of 38°F storage; however, MaineChip, Niska, Snowden, AF1424-7, AF1433-4, NY102, NY103, and W870 reconditioned well from 38°F storage.

After-cooking darkening scores are presented in Maine Table 16. Century Russet, Cherry Red, Krantz, Russet Norkotah, AF1455-9, AF1475-16, AF1565-12, ND2471-8, NY103, W870, and W1099Rus received poor color scores. Sloughing was observed in Atlantic, MaineChip, Snowden, and ND2471-8. Washed appearance

ratings were particularly outstanding for Cherry Red, Katahdin, Niska, Quaggy Joe, Red Ruby, Russet Burbank, Yukon Gold, B0493-8, B9922-11, and NY103.

Tuber dormancy was exceptionally short and early sprout growth was rapid for Krantz, NorValley, AF1433-4, AF1455-9, AF1475-16, AF1565-12, and B0564-9. Kennebec, Russet Burbank, AF1426-1, NY102, and NY103 required more than 195 days to reach the one-halfinch sprout stage. Selections with very low weight loss (2.5% or less) from 38°F storage were: Krantz, Russet Burbank, Yukon Gold, AF1433-4, and B9922-11. Selections with very low weight loss (9% or less) from 50°F storage were: Katahdin, Kennebec, NorDonna, Russet Burbank, Russet Norkotah, Yukon Gold, AF1426-1, ND2471-8, and NY103. Selections with high weight loss (18.5% or more) from 50°F storage were: Atlantic, Cherry Red, Dark Red Norland, MaineChip, NorValley, AF1433-4, AF1455-9, AF1475-16, AF1480-5, AF1481-4, AF1565-12, B0564-8, and NY87.

Promising Selections in the 1997 NE184 Regional Variety Trials. Selections that performed particularly well in the 1997 regional trials were AF1437-1 (early maturing, table line); Quaggy Joe (mid-season, tablestock round-white); B0811-13 (red-skinned, yellow-fleshed table line); NorValley, B0766-3 and NY102 (mid-season chipstock lines); NY87 and NY103 (mid-season table lines with some chipping potential); AF1615-1 (late-season table line); Century Russet (very late maturing, table russet); and B9922-11 (late maturing, dual-purpose, russet).

 $\underline{\text{Maine Table 1.}}$ Trials sites and management practices for the 1997 potato variety trials.

Site information and/or Mgt. Practices	Aroostook Research Farm	Central Maine	Northern Aroostook County
Location:	Presque Isle	East Corinth	St. Agatha
Grower Cooperator:	n/a	Crane Bros.	Labrie Farms
Soil Test Results:			
рН	5.6	6.0	5.6
P (lbs/A)	18.6 MH	11.0	19.6 MH
K "	168(3.9%)M	321(7.1%)	255 (5.8%) MH
Mg "	444 (33.6%) VH	257 (18.0)	
			200(14.3%)MH
Ca "	1259 (57.6%) MH	1760 (74.8%)	1716 (74.5%) M
			H
CEC meq/100g	5.4	5.8	5.7
OM %	4.0	4.8	5.4
Previous Crop:	clover/timothy	corn	oats
Fall Tillage:	plow	soil-saver	plow
Spring Tillage:	disk/harrow	soil-saver	soil-
		finish harrow	finisher
Planting Date:	May 28	May 27	June 2
At-planting Insectic.:	imidacloprid	imidacloprid	imidacloprid
	1 pt/A	1 pt/A	1 pt/A
At-plant Fertilization:	140-140-140	130-150-144	168-168-168
Other Fertilization:	none	50 lbs N per acre	
		topdressed	topdressed
Herbicide Program:	1.0 linuron, PE	0.56 metrib.,PE	0.016
	0.023 rimsulf., EPOST	0.023 rimsul., EPOST	EPOST
Irrigation:	No	Yes (2X)	No
Vine Desiccation:	Sept. 3 (E/ME)	Sept. 8	Sept. 11
(initial applic.)	Sept. 8 (meds.) Sept. 19 (lates +	-	
Harvest:	russets) Sept. 18 (E/ME) Sept. 26 (meds.) Oct. 3 (lates + russets)	Sept. 25	Oct. 7

Maine Table 2. 1997 Rainfall Summary.

Month	Rainfall by I	Location and Month	(inches)
	Presque	East	St.
	Isle	Corinth ¹	Agatha
May	5.44	n/a	n/a
June	2.42	3.90	3.75
July	2.92	2.85	2.50
August	4.43	3.90	2.51
Sept.	2.50	n/a	1.20
Total	17.71	n/a	n/a
Total (June 1 to August 31)	9.77	n/a	8.76

¹Rainfall data for the East Corinth site were from June 18 to August 24. This site also received two supplemental irrigation applications, once each during July and August.

Maine Table 3. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for 15 early- and medium-early-maturing, white- and red-skinned varieties grown at Presque Isle, Maine 1997. (NE184 Regional Potato Variety Trials)

	Total	US#1	US#1 Yield	$(cwt/A)^{1}$	ک ₁ %	20%		Size		strib	utio	n by C	Distribution by Class 3(%)		
	Yield	>17/8	>17/8" % of	>21/4"	Stand	Emerg.						17/8	21/4	21/2	Spec.
Variety	cwt/A		std.		(spacing) ²	Date	Н	7	m	41	5	to 4	" to 4	" to 4	" Grav.
Early/Medium-early Test	rly Test	- 98 days	days												
Round-whites:															
Atlantic (std)	206	184	100	117	98(10)	6-18	ω	36	37	18	1 0	O	26	19	1.082
Itasca	168	122	99	29	86(10)	6-23	25	22	16			75	17	7	1.071
Kennebec	196	166	90	127	79(8)	6-19	7	22	42	29 (0 0	93	7.1	29	1.074
Monona	179	149	81	7.9	95(10)	6-19	13	41	36	10 (ω	46	10	1.068
Quaggy Joe	260	227	123	129	97 (10)	6-18	11	39	39	11 (0	89	51	11	1.068
Superior	150	127	69	52	94(10)	6-19	11	52	34	3		89	37	٣	1.079
AF1424-7	173	153	83	84	91(10)	6-24	σ	42	37	12 (Q	49	12	1.084
AF1437-1	203	177	96	77	97 (10)	6-23	11	51	32	9		8	38	9	1.064
AF1565-12	202	175	95	84	96(10)	6-17	11	46	35	8	0 0	89	43	ω	1.076
Reds :															
Chieftain (std)	262	243	100	177	92(10)	6-21	9	26	45	24 (0 0	94	89	24	1.066
Cherry Red	186	163	67	75	98(10)	6-21	11	20	32	8	0 0	00	40	ω	1.081
Norland, DR	218	194	80	98	94(10)	6-17	Ø	46	35	6	0 0	91	45	6	1.064
NorDonna	183	157	65	77	84(10)	6-24	14	45	34	7 (0 0	œ	41	7	1.069
Red Ruby	209	178	73	69	97 (10)	6-21	13	54	28	2	0	∞	33	Ŋ	1.066
B0811-13	202	161	99	09	93(10)	6-21	18	51	27	4	0 0	82	31	4	1.069
W. Duncan LSD	27	2.7		28								~	11	7	0000

 1 U.S.#1 yield = yield 17/8 to 4" excluding external defects.

Inches between seedpieces noted within parentheses.

 3 Size classes: $1=1^{1/2}$ to $1^{7/8}$; $2=1^{7/8}$ to $2^{1/4}$; $3=2^{1/4}$ to $2^{1/2}$; $4=2^{1/2}$ to $3^{1/4}$; $5=3^{1/4}$ to 4^{11} ; 6=over 4^{11} .

Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip colors for 15 early- and medium-early-maturing, white- and red-skinned varieties grown at Presque Isle, Maine 1997. (NE184 Regional Potato Variety Trials) Maine Table 4.

		Plant Data ¹)ata¹	Tr	Tuber Data1	ta1		Tuk	ber Def	Tuber Defects (%)		H.	Hollow	
Variety	Size Vine	Vine	Matur.	Skin		Appear-		Sun- M	Mis- G	Growth		He	Heart (Chip
•	7-24 M	Matur.	at	Tex-	Shape	ance		ourn sha	pen cra	Total burn shapen cracks Scab	b Rot		Rating ² Color	clor3
		8-20	Vinekill	11 ture	re									
Early/Medium-early Test - 98 days	arly Tes	+ - 98	dava											
Round-whites:														
Atlantic (std)	7	Ŋ	ω. Θ.	2,	10	7	3.8	1.2	1.4	1.2	0.0	0.0	0	67
Itasca	Ŋ	Ŋ	2.8	ω	8	1	3.6	0.1	2.5	0.4	0.0	0.0	0	89
Kennebec	7	Ŋ	ო ო	w	80	9	9.1	1.7	3.9	9.0	2.8	0.0	0	66dr
Monona	2	4	ო	w	8	1 5	4.6	6.0	1.5	0.0	2.2	0.0	0	89
Quaddy Joe	7	9	т. М	w		2 8	2.3	1.3	0.8	0.0	0.2	0.0	0	50dr
Superior	9	ന	1.8			2 7	5.0	0.2	4.8	0.0	0.0	0.0	0	99
AF1424-7	9	ന	3.0	w			3.6	0.2	2.5	0.0	1.2	0.0	0	69
AF1437-1	9	Ŋ	3.0			1 7	2.5	0.2	0.4	1.8	0.0	0.0	0	61dr
AF1565-12	Ŋ	2	2.5	ω	80		3.9	0.3	3.3	0.2	0.1	0.0	0	09
Reds:														
Chieftain	ω	9	4.0	b ~	7	2 5	pr 1.0	0.0	1.0	0.0	0.0	0.0	0	45dr
Cherry Red	9	4	3.0		10	1 7	dr 2.9	0.5	2.4	0.0	0.0	0.0	0	61
Norland, DR	7	ന	1.5		7.0	ŏ Z	dr 2.3	0.1	2.1		0.0	0.0	0	63
NorDonna	9	7	4.3		7	1 6	6br 0.8	0.1	0.7	0.0	0.0	0.0	0	53dr
Red Ruby	7	9	3.3	ω	80	2 61	br 3.0	0.0	2.9	0.1	0.0	0.0	0	40
B0811-13	7	9	a.a		5yf i	ر آ	5dr 4.3	0.3	4.0	0.0	0.0	0.0	0	63

'See standard NE184 rating system for key to codes. Yf=yellow fleshed; br=bright red skin; dr=dark red skin; pr=pale red skin.

 3 Chip color from 50F -- Agtron M35 (higher values indicate lighter color): >60 acceptable; dr = dark vascular ring. The chipping date was December 10, 1997. Waller Duncan LSD (K=100) for chip color = 4. Hollow heart rating equals the number of hollow tubers found per 40 large tubers cut and examined. ring.

1997. (NE184 Regional Potato Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity Maine for 12 medium-maturing, chipping varieties grown at Presque Isle, Variety Trials) Maine Table 5.

	Total	US#1 Yield	- 1	$(cwt/A)^1$	%	20%		Siz	D D	stri	butic	d nc	istribution by Class 3 (%	(%) (%)		
	Yield	>17/8"	>17/8" % of	>21/4"	Stand	Emerg.						H	17/8	21/4	21/2	Spec.
Variety	cwt/A		std.		(spacing) ²	Date	Н	7	m	4	Ŋ	9	to 4"	to 4"	to 4"	Grav.
Medium Test- 103	03 days															
Atlantic (std)	264	240	100	166	91(10)	6-18	7	34	34	21	4	0	93	59	25	1.088
Kennebec	247	211	80	175	79(8)	6-19	4	18	33	43	7	0	96	7.8	45	1.077
MaineChip	198	157	65	65	96(10)	6-22	20	20	26	4	0	0	80	30	4	1.092
Niska	199	162	8 9	53	91(10)	6-18	14	28	26	2			98	28	2	1.079
NorValley	247	195	81	92	96(10)	6-18	14	46	31	∞	0		86	40	œ	1.078
Snowden	154	126	52	20	99(10)	6-19	16	52	24	თ			84	32	თ	1.089
AF1433-4	172	123	51	27	98(10)	6-19	23	09	14	2			77	16	2	1.077
B0564-8	250	231	96	146	97 (10)	6-17	7	36	41	17		0	93	57	17	1.078
B0766-3	200	180	7.5	103	96(10)	6-20	7	40	43	11		0	93	53	11	1.083
NY87	251	223	6	134	94(10)	6-19	œ	39	38	15		0	92	53	15	1.073
NY102	213	173	72	62	93 (10)	6-22	14	26	25	4	0	0	98	29	4	1.087
NY103	254	226	94	152	91(10)	6-22	4	33	20	14	0	0	96	64	14	1.077
Waller Duncan																
LSD (k=100)	20	53		26									00	17	σ	0.004

 $^1\mathrm{U.S.} \# 1$ yield = yield 1% to 4" excluding external defects. ²Inches between seedpieces noted within parentheses.

 3 Size classes: $1=1^{1/2}$ to $1^{7/8}$; $2=1^{7/8}$ to $2^{1/4}$; $3=2^{1/4}$ to $2^{1/2}$; $4=2^{1/2}$ to $3^{1/4}$; $5=3^{1/4}$ to 4^{11} ; 6=over 4^{11} .

122

Maine Table 6. Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip color scores for 12 medium-maturing, chipping varieties grown at Presque Isle, Maine - 1997. (NE184 Regional Potato Variety Trials)

		Plant Data	Data1	Tuk	Tuber Data ¹	p ₁		Tu	Tuber Defects (%	acts (&			Hollow	MC
Variety	Size	Vine	Matur.	Skin	•	Appear-		Sun-	Mis- G	Growth			Heart	Chip
1	7-24	Matur.	a t	Tex-	Shape	ance	Total b	urn sl	Total burn shapen cracks Scab Rot	acks S	cab R		Rating ²	Color
		8-20	Vinekill	ture										
Medium Test- 103 days	days													
Atlantic (std)	7	5	5.3	ເດ	ᆔ	7	3.1	0.8	1.1	0.5	0.7	0.0	ᆏ	64dr
Kennebec	00	9	4.0	7	2	00	10.7	5.6	1.6	0.5	5.9	0.0	0	65
MaineChip	Ŋ	ഗ	5.5	9	Н	9	3.9	0.8	2.8	0.3	0.0	0.0	0	71
Niska	7	4	3.8	9	П	9	5.3	0.3	2.8	0.0	2.5	0.0	0	70
NorVallev	9	9	5.5	9	2	9	& &	1.5	6.5	0.0	0.8	0.0	0	69
Snowden	Ŋ	Ŋ	ა. ი.	S	2	4	3.4	1.0	1.0	0.5	6.0	0.1	0	29
AF1433-4	9	ന	2.0	9	1	4	7.3	0.3	4.4	0.0	5.6	0.0	0	69
B0564-8	9	Ŋ	3.5	ស	2	7	1.5	0.3	0.0	0.5	0.7	0.0	0	64
B0766-3	4	9	.5 5	9	2	7	3.0	0.1	2.5	0.0	0.3	0.0	0	70
NY87	9	4	4.0	9	П	7	4.2	1.3	1.7	0.0	1.2	0.0	0	70
NY102	7	Ŋ	4.8	9	2	9	5.9	0.2	0.7	5.0	0.0	0.0	0	20
NY103	9	9	4.5	9	7	7	7.9	1.0	5.3	1.4	0.2	0.0	0	68dr

Chip color from 50F -- Agtron M35 (higher values indicate lighter color): >60 acceptable; dr = dark vascular ²Hollow heart rating equals the number of hollow tubers found per 40 large tubers cut and examined. ring. The chipping date was December 12, 1997. Waller Duncan LSD (K=100) for chip color = 3. 'See standard NE184 rating system for key to codes. Yf=yellow fleshed.

Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity 1997. (NE184 at Presque Isle, Maine grown five late-maturing and six russeted/processing varieties Regional Potato Variety Trials) Maine Table 7.

3 3 4 5 5 4 5 5 4 5 5 4 5 5		Total	US#1	US#1 Yield	(cwt/A)1	1 1 %	%02		Siz	Φ	stri	buti	on l	Distribution by Class 3 (%)	s³ (%)		
Cwt/A Std.		Yield	>17/8"	% 0 ft	>21/4"		Emerg.							17/8	21/4	21/2	Spec
14 days 14 days 15 16 18 18 18 18 18 18 18	Variety	cwt/A		std.		(spacing) ²		Н	7	m	4	Ŋ	9	4	4	4	Grav
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114	days															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Katahdin (std.)	237	208	100	9	2 (7	9			34	П	0		73		0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Yukon Gold	220	192	92	IJ) 9	-2	9	17		40	Н	0	94			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AF1480-5	303	282	136	4	8 (1	\Box	m	12		47	П	0				
227 204 98 137 92(10) 6-21 9 31 43 17 0 0 91 60 17 1. 4 9 8 13 7 92(10) 6-21 9 31 43 17 0 0 91 60 17 1 0. Sing Test - 114 days td) 257 238 100 158 96(16) 6-18 34 53 12 1 0 13 1 58 36 1. 222 217 92 153 100(14) 6-21 29 59 11 1 0 12 1 62 30 1. 176 168 71 108 90(16) 6-22 36 59 4 0 6 6 0 6 1 32 1. 240 233 98 211 92(16) 6-21 39 54 29 7 1 37 8 74 50 1. 241 253 240 233 98 211 92(16) 6-21 32 54 12 0 1 14 1 59 36 1. 241 251 252 255 255 255 255 255 255 255 25	AF1615-1	303	272	131	S	ത	-2	7			22	0	0				1.082
# 40 # 46 # 5 # 5 # 1 # 10 # 10 # 10 # 10 # 10 #	30856-4	227	204	8	ന	2 (1	-2	თ			17	0	0			17	1.075
sing Test - 114 days * by wt. * by wt. * by wt. * by length td) 257 238 100 158 96(16) 6-18 34 53 12 1 0 13 1 58 36 1 t 283 243 102 173 98(16) 6-18 29 59 11 1 0 12 1 62 30 11 1 0 12 1 62 30 11 1 0 12 1 62 30 11 1 0 1 1 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 1 </td <td>W. Duncan LSD</td> <td>40</td> <td></td> <td>4</td> <td>თ</td> <td>11</td> <td>0.</td>	W. Duncan LSD	40												4	თ	11	0.
sing Test - 114 days * by Wet. * by Length td) 257 238 100 158 96(16) 6-18 34 53 12 1 0 13 1 58 36 1. t 283 243 102 173 98(16) 6-18 29 59 11 1 0 12 1 62 30 1. 222 217 92 153 100(14) 6-21 29 65 6 0 6 0 6 0 61 32 1. 240 233 98 211 92(16) 6-22 36 54 29 7 1 37 8 74 50 1. 240 233 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49 100(16) 6-16 32 54 12 0 1 14 1 59 36 1.													(
sing Test - 114 days td) Secretary and the secretary states and the secretary states are single secretary as a secretary secr													%°	DY WE.	% DA	Tendt	디
td) 257 238 100 158 96(16) 6-18 34 53 12 1 0 13 1 58 36 1. t 283 243 102 173 98(16) 6-18 29 59 11 1 0 12 1 62 30 1. 222 217 92 153 100(14) 6-21 29 65 6 0 6 6 0 61 32 1. 176 168 71 108 90(16) 6-22 36 59 4 0 6 6 0 61 27 1. 240 233 98 211 92(16) 6-21 9 54 29 7 1 37 8 74 50 1. 261 163 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49 0 6-18 13 14 0.	Russet/Processin	ig Test	- 114	days								. •	>80z	.>12oz	2	>31/2"	
t 283 243 102 173 98(16) 6-18 29 59 11 1 0 12 1 62 30 1. 222 217 92 153 100(14) 6-21 29 65 6 0 0 6 0 6 13 2 1. 176 168 71 108 90(16) 6-22 36 59 4 0 0 4 0 61 27 1. 240 233 98 211 92(16) 6-21 9 54 29 7 1 37 8 74 50 1. 261 163 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49	R. Burbank (std)		238	100	2	9	\dashv			12	Н	0	Н			36	
222 217 92 153 100(14) 6-21 29 65 6 0 0 6 0 61 32 1. 176 168 71 108 90(16) 6-22 36 59 4 0 0 4 0 61 27 1. 240 233 98 211 92(16) 6-21 9 54 29 7 1 37 8 74 50 1. 261 163 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49	Century Russet	283	243	102	173	∞	6-18				П	0	Н		62	30	1.081
176 168 71 108 90(16) 6-22 36 59 4 0 0 4 0 61 27 1. 240 233 98 211 92(16) 6-21 9 54 29 7 1 37 8 74 50 1. 261 163 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49	R. Norkotah	222	\vdash	92	Ŋ	100(14)	-2		65	9	0	0			61	32	1.075
240 233 98 211 92(16) 6-21 9 54 29 7 1 37 8 74 50 1. 261 163 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49 13 14 0.	31004-8	176	168	7.1	0	0	-2			4	0	0				27	1.082
261 163 68 109 100(16) 6-16 32 54 12 0 1 14 1 59 36 1. 37 61 49	39922-11	240	ന	8	\vdash	2 (1	-2	თ		29	7	Н	m	7		20	1.087
37 61 49 9 4 13 14 0.	W1099Rus	261	163	89	0	100(16)	Τ-			12	0	Н	Н	4			1.073
	W. Duncan LSD	3.7	61													14	

 $^1\mathrm{U.S.} \#1$ yield of late varieties = yield from diameter listed to 4", excluding external defects. U.S.#1 yield categories for the russet/proc. varieties = yield > 1-1/2", excluding external defects, and yield > 4 oz. tubers, excluding external defects, respectively.

tubers, excluding external defects, respectively. Inches between seedpieces noted within parentheses. 3 Size classes for late varieties: $1=1^{1/2}$ to $1^{7/8}$ "; $2=1^{7/8}$ to $2^{1/4}$ "; $3=2^{1/4}$ to $2^{1/2}$ "; $4=2^{1/2}$ to $3^{1/4}$ "; $5=3^{1/4}$ to 4^{11} ; 6=over 4^{11} . Size classes for russeted/processing varieties: 1=<4 oz; 2=4 to 8 oz.; 3=8 to 12 oz.; 4=12 to 16 oz.; 5= >16 oz.

Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip colors for five late-maturing and six russeted/processing varieties grown at Presque Isle, Maine - 1997. (NE184 Regional Potato Variety Trials) Maine Table 8.

		Plant Data	Data¹	Tub	Tuber Data	P 1		Tube	Tuber Defects (%)	cts (%	(1		Hollow	
Variety	Size 7-24	Vine Matur.	Matur.	Skin Tex-	Shape	Appear-	Total	Sun- M burn sh	Sun- Mis- Growth burn shapen cracks		Scab F	Rot	Heart Rating	Heart Chip Rating ² Color³
		9-4	kill	ture	4				4					
Late Test- 114 days	avs													
Katahdin (std)	9	9	3.8	7	•-1	9	6.5		1.7	0.1	2.3	0.0		59dr
Yukon Gold	7	4	1.0	6v£	2	7	7.8	1.3	5.6	0.0	0.9	0.0	0	54dr, ds
AF1480-5	7	7	5.8	່ທ	2	80	4.4		3.9	0.3	0.0	0.0	-	54dr, ds
AF1615-1	9	9	5.0	9	H	7	3.7		2.3	0.1	0.0	0.0	0	51dr, ds
B0856-4	9	Ŋ	2.0	Ŋ	m	4	1.7	0.3	1.5	0.0	0.0	0.0	0	53dr, ds
Busen / Dronesan name and Anna	0 E-	114	o o											
R. Burbank (std)	7	00	5.0	4	7	M	7.3		5.4	1.8	0.0	0.0	H	47dr, ds
Century Russet	7	7	5	4	00	7	13.3	0.2	9.9	9.0	0.9	0.0		46dr,ds
R. Norkotah	Ŋ	S	2.5	ന	9	9	2.6	0.1	1.9	0.2	0.3	0.0	0	37ds
B1004-8	4	S	2.8	2	Ŋ	4	5.2	0.0	0.8	4.4	0.0	0.0		48ds
B9922-11	9	9	4.5	2	9	00	2.9	0.4	2.5	0.0	0.0	0.0		45dr
W1099Rus	9	Ŋ	2.8	ന	7	m	37.2	0.2	2.4	0.9	1.4	32.2	2	27dr, ds

'See standard NE184 rating system for key to codes. Yf=yellow fleshed.

ring; ds=dark stem end. The chipping dates were December 11 and 18 for the lates and russets, respectively. Chip color from 50F -- Agtron M35 (higher values indicate lighter color): >60 acceptable; dr=dark ²Hollow heart rating equals the number of hollow tubers found per 40 large tubers cut and examined. Waller Duncan LSD (K=100) for chip color = 5 (late test) and 4 (russet/processing test).

as rot during "W1099Rus developed severe blackheart problems prior to grading and this disorder was recorded the grading process.

Maine Table 9. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for 18 varieties and lines grown at East Corinth, Maine - 1997. (NE184 Regional Potato Variety Trial)

riety rai ME Regional Test- 106 days ntic (std) 234 195 100 169 94(1) ca 210 190 97 127 91(1) abec 287 246 126 205 89(echip 287 240 123 213 92(echip 273 219 112 172 98(1) a 222 168 86 119 95(1) alley 273 211 108 161 97(1) den 229 206 106 150 100(1) rior 195 178 91 141 98(1) rior 195 178 91 141 98(1) 33-4 176 156 80 115 97(1) 4-8 173 150 77 70 95(1) 4-8 250 207 106 167 98(1) 2 254 236 121 173 94(1) er Duncan		Total	118#1	TIS#1 Vield	(CWT/A)	ole ole				Size	11	trib	Distribution by Class ³ (%)	v Clas	383 (%)		
E Regional Test- 106 days (std) 234 195 100 169 94(10) 3 13 2 210 190 97 127 91(10) 7 31 3 2287 246 126 205 89(8) 4 16 3 2287 240 123 213 92(8) 3 11 2 222 168 86 119 95(10) 6 22 3 273 211 108 161 97(10) 5 22 3 273 211 108 161 97(10) 5 22 3 273 211 108 161 97(10) 5 22 3 273 215 110 184 84(8) 3 14 2 253 215 110 184 84(8) 3 14 2 248 230 118 187 97(10) 5 25 4 256 207 106 167 98(10) 5 25 4 257 208 107 158 91(10) 6 25 3 258 207 106 167 98(10) 6 25 3 259 207 106 167 98(10) 6 25 3 250 207 106 167 98(10) 6 25 3 250 207 106 167 98(10) 6 23 4 251 236 208 107 158 91(10) 4 23 4		Yield	>17/8	" % of	>21/4"	Stand							17/8	21/4	21/2		Spec.
E Regional Test- 106 days (std) 234 195 100 169 94(10) 3 13 2 210 190 97 127 91(10) 7 31 3 287 246 126 205 89(8) 4 16 3 287 240 123 213 92(8) 3 11 2 279 219 112 172 98(10) 6 27 3 273 211 108 161 97(10) 5 22 3 273 211 108 161 97(10) 5 22 3 274 91 141 98(10) 3 21 4 253 215 110 184 84(8) 3 14 2 248 230 118 187 97(10) 6 18 3 254 236 121 173 94(10) 5 26 3 254 236 107 158 91(10) 4 18 3 256 208 107 158 91(10) 6 25 26 3	Variety	cwt/A		, g	!		Н	2	6	4	2	9	to 4"	to	4" to	4 "	Grav.
(std) 234 195 100 169 94(10) 3 13 2 210 190 97 127 91(10) 7 31 3 287 246 126 205 89(8) 4 16 3 287 240 123 213 92(8) 4 16 3 287 240 123 213 92(8) 3 11 2 232 170 87 138 95(10) 4 18 3 222 168 86 119 95(10) 5 21 3 223 211 108 161 97(10) 5 22 3 229 206 106 150 100(14) 5 26 4 195 178 91 141 98(10) 3 21 4 2 d 253 215 110 184 84(8) 3 14 2 160 127 65 68 87(10) 11 41 2 173 150 77 70 95(10) 5 25 4 173 150 77 70 95(10) 6 25 25 250 207 106 167 98(10) 5 26 3 254 236 121 173 94(10) 5 26 3 236 208 107 158 91(10) 4 23 4			106	days													
210 190 97 127 91(10) 7 31 3 287 246 126 205 89(8) 4 16 3 287 240 123 213 92(8) 4 16 3 287 240 123 213 92(8) 4 16 3 232 170 87 138 95(10) 4 18 3 222 168 86 119 95(10) 5 21 3 223 211 108 161 97(10) 5 22 3 229 206 106 150 100(14) 5 26 4 195 178 91 141 98(10) 3 21 4 2 160 127 65 68 87(10) 11 41 2 176 156 80 115 97(10) 5 25 4 173 150 77 70 95(10) 6 25 26 250 207 106 167 98(10) 5 26 3 254 236 121 173 94(10) 5 26 3 236 208 107 158 91(10) 4 23 4	Atlantic (std)	234		100	169	7	ന	13	20	20	13	Н	96	83	9	m	60.
287 246 126 205 89(8) 4 16 3 287 240 123 213 92(8) 3 11 2 232 170 87 138 95(10) 4 18 3 279 219 112 172 98(10) 5 21 3 222 168 86 119 95(10) 6 27 3 223 206 106 150 100(14) 5 22 3 229 206 106 150 100(14) 5 26 4 195 178 91 141 98(10) 3 21 4 2 160 127 65 68 87(10) 11 41 2 176 156 80 115 97(10) 5 25 4 173 150 77 70 95(10) 4 18 3 250 207 106 167 98(10) 5 26 3 254 236 121 173 94(10) 5 26 3 236 208 107 158 91(10) 4 23 4	Itasca	210		97	127	40	7	31	38	23	0	0	93	62	0	m	.07
287 240 123 213 92(8) 3 11 2 232 170 87 138 95(10) 4 18 3 279 219 112 172 98(10) 5 21 3 222 168 86 119 95(10) 8 27 3 273 211 108 161 97(10) 5 22 3 229 206 106 150 100(14) 5 22 3 195 178 91 141 98(10) 5 26 4 160 127 65 68 87(10) 11 41 2 176 156 80 115 97(10) 5 25 4 173 150 77 70 95(10) 4 18 3 254 236 121 173 94(10) 5 26 3 236 208 107 158 91(10) 4 23 4	Katahdin	287	246	126	205	-	4	16	32	38	9	0	92	92	4	m	.07
232 170 87 138 95(10) 4 18 3 279 219 112 172 98(10) 5 21 3 222 168 86 119 95(10) 8 27 3 223 206 106 150 100(14) 5 22 3 229 206 106 150 100(14) 5 22 3 195 178 91 141 98(10) 3 21 4 253 215 110 184 84(8) 3 14 2 160 127 65 68 87(10) 11 41 2 176 156 80 115 97(10) 5 25 4 173 150 77 70 95(10) 6 25 4 250 207 106 167 98(10) 5 19 3 254 236 121 173 94(10) 5 26 3 236 208 107 158 91(10) 4 23 4	Kennebec	287	240	123	213	_	m	1	29	20	7	-	26	82	5	9	.08
279 219 112 172 98(10) 5 21 3 222 168 86 119 95(10) 8 27 3 222 168 119 95(10) 8 27 3 223 206 106 150 100(14) 5 22 3 195 178 91 141 98(10) 5 26 4 160 127 65 68 87(10) 11 41 2 176 156 80 115 97(10) 5 25 4 173 150 77 70 95(10) 12 48 3 250 207 106 167 98(10) 5 26 3 254 236 121 173 94(10) 5 26 3 236 208 107 158 91(10) 4 23 4	MaineChip	232	170	87	138	2	4	18	35	33	7	0	88	20	m	S 2	1.099
ley 222 168 86 119 95(10) 8 27 3 1	Monona	279	219	112	172	8	വ	21	31	33	7	0	87	99	m	2	.07
alley 273 211 108 161 97(10) 5 22 3 den 229 206 106 150 100(14) 5 26 4 rior 195 178 91 141 98(10) 3 21 4 n Gold 253 215 110 184 84(8) 3 14 2 24-7 160 127 65 68 87(10) 11 41 2 33-4 176 156 80 115 97(10) 5 25 4 4-8 173 150 77 70 95(10) 12 48 3 6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 26 3 2 254 236 121 173 94(10) 5 26 3 er Duncan	Ni ska	222	168	98	119	2	00	27	31	28	0	0	68	62	m	⊣	.08
den 229 206 106 150 100(14) 5 26 4 rior 195 178 91 141 98(10) 3 21 4 n Gold 253 215 110 184 84(8) 3 14 2 24-7 160 127 65 68 87(10) 11 41 2 33-4 176 156 80 115 97(10) 5 25 4 4-8 173 150 77 70 95(10) 12 48 3 6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 19 3 2 254 236 121 173 94(10) 5 26 3 er Duncan	NorVallev	273	211	108	161	1	2	22	37	26	Н	Н	87	64	2	7	1.083
rior 195 178 91 141 98(10) 3 21 4 and Gold 253 215 110 184 84(8) 3 14 2 24-7 160 127 65 68 87(10) 11 41 2 33-4 176 156 80 115 97(10) 5 25 4 4-8 173 150 77 70 95(10) 12 48 3 6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 19 3 25 254 236 121 173 94(10) 5 26 3 3 er Duncan	Spowden	22.9	206	106	150	100(14)	2	26	40	27	Н	0	95	69	2	6	1.097
Gold 253 215 110 184 84 (8) 3 14 2 24-7 160 127 65 68 87 (10) 11 41 2 33-4 176 156 80 115 97 (10) 5 25 4 4-8 173 150 77 70 95 (10) 12 48 3 6-3 248 230 118 187 97 (10) 4 18 3 250 207 106 167 98 (10) 5 19 3 2 254 236 107 158 91 (10) 4 23 4 er Duncan	Superior	195	178	91	141	98 (10)	ന	21	41	32	ო	0	26	92	m	2	
24-7 160 127 65 68 87(10) 11 41 2 33-4 176 156 80 115 97(10) 5 25 4 4-8 173 150 77 70 95(10) 12 48 3 6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 19 3 2 254 236 121 173 94(10) 5 26 3 er Duncan	Yukon Gold	253	215	110	184	84 (8)	m	14	25	46	5	0	91	77	2	7	1.089
33-4 176 156 80 115 97(10) 5 25 4 4-8 173 150 77 70 95(10) 12 48 3 6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 19 3 2 254 236 121 173 94(10) 5 26 3 er Duncan	AF1424-7	160	127	65	89	_	11	41	28	17	0	0	87	46	Т	0	1.091
4-8 173 150 77 70 95(10) 12 48 3 6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 19 3 254 236 121 173 94(10) 5 26 3 er Duncan	AF1433-4	176	156	80	115	_	Ŋ	25	42	27	Н	0	95	70	7	ω	1.081
6-3 248 230 118 187 97(10) 4 18 3 250 207 106 167 98(10) 5 19 3 2 254 236 121 173 94(10) 5 26 3 3 236 208 107 158 91(10) 4 23 4 23 4	B0564-8	173	150	77	70	5	12	48	32	∞	Н	0	88	41		6	00
250 207 106 167 98(10) 5 19 3 254 236 121 173 94(10) 5 26 3 3 236 208 107 158 91(10) 4 23 4 er Duncan	B0766-3	248	230	118	187	7	4		33	40	5	0	96	78	4	ري ا	1.093
2 254 236 121 173 94(10) 5 26 3 3 236 208 107 158 91(10) 4 23 4 er Duncan	NY87	250	207	106	9	_	2			37	4	0	93	74	4		1.081
3 236 208 107 158 91(10) 4 23 4 er Duncan	NY102	254	236	121	173	_	S			28	Н	0	95	69	m		
er Duncan	NY103	236	208	107	158	_	4			23	0	0	91	68	0	m	1.080
	Waller Duncan															(0
(k=100) 42 27	LSD (k=100)	42	27		27								ยน	12		0.1	0.004

Tubers with scab were not excluded from U.S.#1 yield during 1997 because most scabby tubers had <5% of surface with the defect. $^1\mathrm{U.S.}$ #1 yield = yield 17% to 4" excluding external defects.

 3 Size classes: $1=1\frac{1}{2}$ to $1\frac{7}{8}$ "; $2=1\frac{7}{8}$ to $2\frac{1}{4}$ "; $3=2\frac{1}{4}$ to $2\frac{1}{2}$ "; $4=2\frac{1}{2}$ to $3\frac{1}{4}$ "; $5=3\frac{1}{4}$ to 4"; 6=over 4". ²Inches between seedpieces noted within parentheses.

Maine Table 10. Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip color scores for 18 varieties and lines grown at East Corinth, Maine - 1997. (NE184 Regional Potato Variety Variety Trial)

		Plant Data ¹	Data1	Tuber	er Data¹			Tub	Tuber Defects (%	octs (8)	H	Hollow	
Variety	Size 7-28	Vine Matu	Matur. r. at Vinekill	Skin Tex-	Al	Appear- ance	Sun- Total burn		Mis- G shapen	Growth cracks		Rot	Heart Scab Rot Rating ²	Chip Color³
Central ME Regional Test- 106 days	onal Te	est- 10	06 days											
Atlantic (std)	9	2	4.3	5	ന	9	53.0	5.7	7.3	0.8	39.5		ന	58dr
Itasca	4	4	1.5	7	2	9	3.6	1.0	1.8	0.0	0.8	0.0	Н	53dr
Katahdin	7	9	4.8	7	m	9	34.8	4.0	1.6	0.2	24.9	4.1	6	42dr
Kennebec	7	9	3.0	ω	S	9	39.4	6.9	5.8	0.5	26.1	0.0	0	52dr
MaineChip	9	Ŋ	3.8	œ	2	7	47.7	4.6	5.0	2.8	27.3	8.0	0	65
Monona	Ŋ	Ŋ	3.0	ω	m	4	30.2	3.0	4.8	0.0	14.1	8.2	0	59dr
Niska	7	4	2.3	7	٣	m	38.6	4.1	9.6	0.9	20.9	3.0	0	64
NorValley	7	4	2.3	7	e	വ	34.2	3.7		0.1	17.3		4	64dr
Snowden	9	S	3.0	Ŋ	m	Ŋ	13.5	1.4	3.2	0.7	8.2	۰	0	65
Superior	9	7	1.0	9	m	4	0.6	0.1	5.2	0.0			П	56dr
Yukon Gold	9	Ω	2.3	œ	٣	9	48.9	1.9		0.0	38.1		-	43dr
AF1424-7	S	m	1.0	80	2	9	55.7	1.0		1.2	45.0	2.2	9	58
AF1433-4	S	7	1.0	7	2	4	39.6	9.0	6.1	0.0	32.9		0	66dr
B0564-8	9	2	1.3	2	2	Ŋ	6.6	0.7	1.6	0.0	7.6		0	63
B0766-3	9	9	4.3	9	2	Ŋ	16.9	1.2		0.0		0.1	0	64
NY87	9	4	2.0	7	ന	7	24.0	4.6	5.7	0.0	11.7		0	65dr
NY102	7	9	3.8	80	2	7	21.0	1.0	1.0	0.0	19.0	0.0	0	62dr
NY103	Ŋ	ស	2.5	80	ത	9	24.7	1.0	1.4	0.1	17.2	4.9	0	60dr

¹See standard NE184 rating system for key to codes. ²Hollow heart rating equals the number of hollow tubers found per 40 large tubers cut and examined. ³Chip color from 50F -- Agtron M35 (higher values indicate lighter color): >60 acceptable; dr = vascular ring. The chipping date was December 8, 1997. Waller Duncan LSD (K=100) for chip color =

dr = dark

Maine Table 11. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity for 24 round-white and red-skinned NE-184 regional trial lines grown at St. Agatha, Maine - 1997.

National Scripps		Total	US#1 Yiel	ਰ	(cwt/A)	s St	tand			Size		Distribution by	tion	by	Class3((8)		
Name		Yield	>17/8"	44	>21/4"	(spe	cing	1)2							17/8	21/4		Spe
Std NE-184 Round-whites and Reds - 101 days Std St	Variety	cwt/A		std.			1	_	Н	2	33	4	വ	9	4	0 4	4	- 1
(std) 330 272 100 246 92 99 (10) 3 11 23 56 6 0 97 86 67 1.07 409 374 138 330 95 (10) 3 11 23 56 6 0 97 85 62 1.00 484 408 150 387 96 94 (8) 1 5 10 54 29 1 98 93 1.07 484 408 150 387 96 94 (8) 1 5 10 54 29 1 98 93 1.07 y 484 408 150 387 96 94 (8) 1 5 10 54 29 1 98 93 1.07 oe 485 319 117 287 96 96 (10) 4 13 29 47 6 0 95 82 53 1.07 297 280 103 285 91 94 (10) 2 13 2 9 4 1 1 0 98 83 1.07 288 292 107 265 99 95 (10) 2 11 28 48 11 0 98 87 66 1.06 388 292 107 265 91 94 (10) 2 11 28 48 11 0 98 87 60 1.06 388 292 107 265 91 94 (10) 2 11 28 58 6 0 98 87 60 1.06 388 337 307 113 248 95 98 (10) 2 11 22 58 6 0 98 86 64 1.07 483 483 493 159 380 97 98 (10) 2 12 25 53 0 96 86 1.06 bark Red 459 434 100 389 98 100 (10) 2 12 35 54 1 97 97 87 81 1.07 bark Red 459 47 80 304 75 86 (10) 3 12 28 48 9 0 97 88 62 1.06 bark Red 459 47 80 304 75 86 (10) 3 12 28 48 9 0 97 88 62 1.06 bark Red 459 47 80 304 75 86 (10) 3 12 28 48 9 0 97 88 62 1.06 bark Red 459 47 80 304 75 86 (10) 3 12 28 48 9 0 97 87 85 1.06 bark Red 459 47 80 304 75 86 (10) 3 12 28 48 9 0 97 85 1.06 bark Red 459 47 80 304 75 86 (10) 3 12 28 48 9 0 97 85 1.06 column (std) 46 63 63 63 64 100 100 100 2 10 23 52 12 0 94 79 87 85 1.06 column (std) 46 63 63 64 100 100 100 2 10 23 52 12 0 94 79 87 85 1.06 column (std) 46 63 63 64 100 100 100 2 10 23 52 12 0 94 79 87 85 1.06 column (std) 46 63 63 64 75 86 (10) 64 15 31 45 20 94 79 87 85 1.06 column (std) 46 63 63 64 75 86 (10) 64 15 31 45 20 94 79 87 100 column (std) 46 63 63 64 63 64 63 64 63 64 64 79 65 1.06 column (std) 46 63 64 75 86 (10) 64 15 31 45 20 84 79 67 100 column (std) 46 63 64 63 64 63 64 63 64 64 79 64 79 64 100 column (std) 46 63 64 63 64 64 63 64 64 79 64 79 64 100 column (std) 46 63 64 63 64 64 63 64 64 64 64 64 64 64 64 64 64 64 64 64	Agatha NE-18		te	and	1	01	avs											
409 374 138 330 93 95 (10) 3 11 23 56 6 0 97 85 62 1.06 414 283 104 260 88 89 (8) 4 15 15 29 1 94 17 21 07 444 42 18 150 387 96 94 (10) 4 13 29 47 6 0 95 82 1.07 449 394 145 339 94 95 (10) 4 13 29 47 6 0 95 82 53 1.07 484 431 158 408 99 99 (10) 4 13 32 47 6 0 95 85 66 1.06 484 431 158 408 99 99 (10) 1 5 16 58 17 0 98 85 1.07 273 245 90 225 91 94 (10) 2 11 22 58 6 1 0 94 81 10 10 434 389 143 245 90 225 91 94 (10) 2 11 22 58 6 1 0 98 87 10 434 389 143 344 99 99 (10) 2 11 22 58 6 0 98 87 10 443 389 327 120 285 96 10) 2 11 22 58 6 0 98 87 60 1.05 445 411 151 382 98 100 10 10 10 17 2 12 25 14 1 97 98 10 647 419 394 100 394 100 10 10 10 2 10 2 12 35 14 1 97 91 658 347 80 304 75 86 (10) 3 12 28 48 9 10 97 88 10 658 347 80 304 75 86 (10) 3 12 28 48 9 10 9 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	antic	330	272	00	ᄛ	92	66		m	6	19	49		7	95	98	29	.07
414 283 104 260 88 89 (8) 4 8 15 53 19 1 94 87 72 1.07 484 408 150 387 96 96 (10) 4 13 29 47 70 98 93 1.07 ve 458 319 117 287 96 96 (10) 4 13 29 47 7 0 98 85 53 1.07 297 280 103 243 99 99 (10) 1 5 16 58 17 2 97 95 53 1.08 298 299 100 1 1 5 16 88 99 (14) 2 13 32 47 7 0 98 85 53 1.08 299 20 1	Itasca	409	374	138	ന	93	95		m		23	26		0	26	85	62	0.
y 484 408 150 387 96 94 (8) 1 5 10 54 29 1 98 93 83 1.07 oe 449 394 145 339 94 16 1 5 10 54 29 1 6 96 1.07 oe 456 394 145 39 96 (10) 4 13 29 47 7 6 95 65 1.00 297 280 103 243 99 (10) 1 5 16 58 17 6 95 95 1.00 339 245 90 20 (10) 2 11 2 47 7 0 96 97 1.00 339 245 90 90 (10) 2 11 2 11 2 11 2 11 2 11 2 12	Katahdin	414	283	104	9	88	89		4	00	15	53	19	Н	94	87	72	.07
Yee 449 394 145 339 94 95 (10) 4 13 29 47 6 0 95 82 53 1.07 297 248 219 117 287 96 96 (10) 4 10 19 48 18 1 95 85 66 1.06 484 431 158 408 99 99 (10) 1 5 16 58 17 2 97 97 92 75 1.07 273 245 90 225 91 94 (10) 2 11 28 48 11 0 98 87 1.07 288 252 107 262 91 94 (10) 2 11 28 48 11 0 98 87 67 1.06 388 327 120 285 96 96 (10) 2 11 22 58 6 0 98 87 60 1.05 483 433 159 380 97 98 (10) 2 11 25 48 9 1 94 10 0 96 87 1.06 483 433 159 380 97 98 (10) 2 11 25 58 6 0 98 87 60 1.06 484 463 459 432 159 380 97 98 (10) 2 12 25 48 10 0 96 85 54 1.07 485 422 340 125 319 90 91 (10) 2 12 32 52 3 0 96 85 51 100 Dark Red 459 434 100 394 100 100 (10) 2 10 29 56 50 0 97 88 51 100 Bark Red 459 434 100 394 100 100 (10) 3 12 28 48 9 0 97 87 88 100 368 347 86 344 87 35 98 99 (10) 2 12 28 48 9 0 97 87 88 100 368 347 86 344 87 35 98 99 (10) 2 10 23 52 12 0 97 87 85 100 368 347 86 344 87 335 98 99 (10) 2 10 23 52 12 0 97 87 88 100 369 480 480 480 480 480 480 480 480 480 480	Kennebec	484	408	150	∞	96	94	(8)	П	ហ	10	54	29	\vdash	86	93	83	.07
96 458 319 117 287 96 96 (10) 4 10 19 48 18 1 95 85 66 1.06 297 280 103 243 93 98 (14) 2 13 32 47 7 0 98 85 53 1.08 484 431 158 408 99 99 (10) 1 5 16 58 17 2 97 92 75 1.07 273 245 90 225 91 94 (10) 2 11 28 48 11 0 98 87 60 1.05 386 292 107 262 91 98 (10) 2 11 28 48 11 0 98 87 60 1.05 385 327 120 285 96 99 (10) 2 11 22 58 6 0 98 86 64 1.07 454 431 333 307 113 248 95 98 (10) 4 18 41 36 1 0 96 85 54 1.07 452 411 151 382 98 (10) 2 7 21 53 16 2 96 96 10 452 340 459 434 100 389 98 (10) 2 12 32 55 14 1 97 91 68 1.07 90	NorValley	끽	394	145	ന	94	95	(10)	4		29	47	9	0	95	82	53	.07
297 280 103 243 93 98 (14) 2 13 32 47 7 0 98 85 53 1.08 484 431 158 408 99 99 (10) 1 5 16 58 17 2 97 92 75 1.07 339 312 115 265 89 99 (10) 2 11 28 48 11 0 98 81 60 1.05 434 389 143 344 99 99 (10) 2 11 22 58 6 0 98 86 64 1.07 385 327 120 285 96 98 (10) 2 11 22 58 6 0 98 86 64 1.07 452 411 151 382 98 100 (10) 2 12 25 48 9 1 94 82 57 1.08 390 368 135 324 96 98 (10) 2 12 32 52 3 0 98 86 65 1.08 422 340 125 319 90 90 (10) 2 12 32 52 3 0 98 86 65 1.08 6d a) bark Red 459 434 100 389 98 100 (10) 2 10 29 56 2 0 97 88 62 1.07 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 89 70 80 10 b) c(k=100) 48 63 64 35 35 98 99 (10) 2 10 23 52 12 0 94 79 89 70 10 c(k=100) 48 63 347 80 394 100 100 (10) 2 12 28 48 9 0 97 88 65 100 c(k=100) 48 63 347 80 394 75 86 (10) 3 12 28 48 9 0 97 88 65 100 c(k=100) 48 63 63 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60		458	\vdash	117	∞	96	96	(10)	4		19	48		\vdash	95	85	99	90.
484 431 158 408 99 99 (10) 1 5 16 58 17 2 97 92 75 1.07 273 245 90 225 91 94 (10) 2 11 50 98 17 60 13 0 98 90 73 1.07 339 312 115 265 89 95 (10) 4 15 33 45 3 1 96 81 48 1.00 2 386 327 120 285 99 (10) 2 11 22 58 6 0 98 86 64 1.07 483 433 327 120 285 99 (10) 5 12 25 48 9 1 94 82 57 1.06 333 307 113 248 95 98 (10) 4 12 30 52 3 0 96 85 64 1.07 452 411 151 382 98 100 (10) 2 12 32 52 3 0 96 85 100 422 411 151 382 98 100 (10) 2 12 32 52 14 1 97 422 340 425 434 100 389 98 (10) 3 10 29 56 2 0 97 88 65 100 Dark Red 459 434 100 384 100 100 (10) 2 12 28 48 9 10 97 88 65 100 50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 5	297	∞	103	킥	93	98	(14)	2		32	47		0	86	85	53	.08
273 245 90 225 91 94 (10) 2 8 17 60 13 0 98 90 73 1.07 388 292 107 262 91 98 (10) 2 11 28 48 11 0 98 87 60 1.05 388 292 107 262 91 98 (10) 2 11 22 58 6 0 98 87 60 1.05 385 327 120 285 96 910) 2 11 22 58 6 0 98 86 64 1.07 434 389 143 344 99 99 (10) 5 12 25 48 9 1 94 82 57 1.06 452 411 151 382 98 100 (10) 2 7 21 53 16 2 96 85 10 88 1.07 390 368 135 324 96 98 (10) 2 12 32 52 3 0 98 86 51 1.07 422 340 125 319 90 910) 2 12 32 52 3 0 98 86 55 1.08 boark Red 459 434 100 389 98 (10) 3 10 27 5 15 0 97 88 62 1.06 Dark Red 459 69 69 250 98 (10) 3 12 28 58 14 1 97 81 62 1.06 0 (k=100) 48 63 51 63 59 98 (10) 2 10 23 52 12 0 94 77 1.06 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Superior	484	ന	158	0	66	66	(10)	П	Ŋ	16	58	17	7	26	92	75	.07
339 312 115 265 89 95 (10) 4 15 33 45 3 1 96 81 48 1.06 434 389 143 344 99 99 (10) 2 11 28 48 11 0 98 87 60 1.05 2 385 327 120 285 96 98 (10) 2 11 22 58 6 0 98 86 64 1.07 483 483 433 159 380 97 98 (10) 4 18 41 36 1 0 96 85 54 1.07 483 333 307 113 248 95 98 (10) 4 18 41 36 1 0 96 85 54 1.07 5 12 25 48 9 1 0 96 85 11 0 96 81 1.07 422 411 151 382 98 100 (10) 2 12 32 52 3 0 98 86 55 11.08 a	AF1424-7	7	귝	90	N	91	94	(10)	2	00	17	9	13	0	86	06	73	.07
388 292 107 262 91 98 (10) 2 11 28 48 11 0 98 87 60 1.05 434 389 143 344 99 99 (10) 2 11 22 58 6 0 98 86 64 1.07 483 433 159 380 97 98 (10) 5 12 25 48 9 1 94 82 57 1.06 333 307 113 248 95 98 (10) 4 12 30 52 3 0 96 85 54 1.07 452 411 151 382 98 (10) 4 18 41 36 1 0 96 78 36 1.06 422 340 125 319 90 910 10) 2 7 21 25 5 14 1 97 91 68 1.06 6d 424 459 432 100 389 98 (10) 3 10 2 55 14 1 97 91 68 1.07 6d Dark Red 459 434 100 394 100 (10) 3 10 2 56 5 6 0 97 88 62 1.06 360 299 69 250 98 80 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 6d Ck=100 48 63 63 64 63 64 63 64 63 64 63 64 63 64 64 65 6	AF1433-4	339	\vdash	115	9	89	95	(10)	4		33	45	m	\vdash	96	81	48	90.
2 385 327 120 285 96 99 (10) 2 11 22 58 6 0 98 86 64 1.07 483 433 159 380 97 98 (10) 4 12 30 52 3 0 96 85 57 1.06 483 433 159 380 97 98 (10) 4 12 30 52 3 0 96 85 54 1.07 452 411 151 382 98 100 (10) 2 7 21 53 16 2 96 90 68 1.06 a (std) 469 432 100 389 98 (10) 2 12 28 58 14 1 97 91 68 1.07 bark Red 459 434 100 384 100 100 (10) 3 10 29 56 5 14 1 97 88 62 1.06 bark Red 459 69 250 98 98 (10) 6 15 31 45 2 0 97 88 62 1.06 bark Red 459 434 100 384 100 100 (10) 3 12 28 48 9 0 97 88 62 1.06 column 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 bark Red 58 60 304 75 86 (10) 2 10 23 52 12 0 98 87 65 1.06 column 36 7 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 column 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 column 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 column 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 column 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06	AF1437-1	388	292	107	9	91	98	(10)	2		28	48	11	0	86	87	09	. 05
2 385 327 120 285 96 98 (10) 5 12 25 48 9 1 94 82 57 1.06 483 433 159 380 97 98 (10) 4 12 30 52 3 0 96 85 54 1.07 333 307 113 248 95 98 (10) 4 18 41 36 1 0 96 78 36 1.07 452 411 151 382 98 100 (10) 2 7 21 53 16 2 96 90 68 1.06 422 340 125 319 90 93 (10) 2 12 32 52 3 0 98 86 55 1.08 ed 424 459 432 100 389 98 99 (10) 3 10 29 56 2 0 97 87 58 1.07 Dark Red 459 434 100 394 100 100 (10) 2 12 28 48 9 0 97 87 58 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 40 (k=100) 48 63 63 64 63 64 63 64 63 64 63 64 64 63 64 64 64 64 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 64 64 64 64 64 64 64 64 64 64 64	AF1480-5	434	389	143	킥	66	66	(10)	2		22	58	9	0	86	98	64	.07
483 433 159 380 97 98 (10) 4 12 30 52 3 0 96 85 54 1.07 333 307 113 248 95 98 (10) 4 18 41 36 1 0 96 78 36 1.07 452 411 151 382 98 100 (10) 2 7 21 53 16 2 96 90 68 1.06 390 368 135 324 96 98 (10) 2 12 32 52 3 0 98 86 55 1.08 422 340 125 319 90 93 (10) 2 12 55 14 1 97 91 68 1.07 ed Dark Red 459 434 100 394 100 (10) 3 12 28 48 9 0 97 87 58 1.07 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 99 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 63 63 63 64 63 64 63 64 63 65 65 65 65 65 65 65 65 65 65 65 65 65		385	327	120	00	96	98	(10)	Ŋ		25	48	0	\vdash	94	82	57	90.
333 307 113 248 95 98 (10) 4 18 41 36 1 0 96 78 36 1.07 452 411 151 382 98 100 (10) 2 7 21 53 16 2 96 90 68 1.06 390 368 135 324 96 98 (10) 2 12 32 52 3 0 98 86 55 1.08 422 340 125 319 90 93 (10) 2 12 55 14 1 97 91 68 1.07 n (std) 469 432 100 389 98 (10) 3 10 29 56 2 0 97 87 69 1.06 ad 391 289 67 260 98 100 (10) 3 10 29 56 2 0 97 87 58 1.07 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 63 61	AF1615-1	483	433	159	∞	97	98	(10)	4		30	52	m	0	96	85	54	.07
452 411 151 382 98 100 (10) 2 7 21 53 16 2 96 90 68 1.06 390 368 135 324 96 98 (10) 2 12 32 52 3 0 98 86 55 1.08 422 340 125 319 90 93 (10) 2 12 32 55 14 1 97 91 68 1.07 n (std) 469 432 100 389 98 100 (10) 3 10 29 56 2 0 97 87 69 1.06 ed Dark Red 459 434 100 394 100 100 (10) 3 12 28 48 9 0 97 86 62 1.06 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 (10) 6 15 31 45 2 0 94 79 47 1.06 40 40 48 48 63 44 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 40 48 63 63 44 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 40 48 63 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 64 63 64 64 63 64 64 64 64 64 64 64 64 64 64 64 64 64	B0856-4	333	307	113	₽.	95		(10)	4		41	36	Н	0	96	78	36	.07
390 368 135 324 96 98 (10) 2 12 32 52 3 0 98 86 55 1.08 422 340 125 319 90 93 (10) 2 6 22 55 14 1 97 91 68 1.07 n (std) 469 432 100 389 98 99 (10) 3 10 17 55 15 0 96 87 69 1.06 Dark Red 459 434 100 394 100 100 (10) 3 12 28 48 9 0 97 88 62 1.06 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 63 63 61 61 61 61 61 61 61 61 61 61 61 61 61	NY87	452	\vdash	151	00	98		(10)	2	7	21	53		7	96	06	89	90.
A 22 340 125 319 90 93 (10) 2 6 22 55 14 1 97 91 68 1.07 n (std) 469 432 100 389 98 99 (10) 3 10 17 55 15 0 96 87 69 1.06 ed Dark Red 459 434 100 394 100 100 (10) 3 12 28 48 9 0 97 88 62 1.06 36 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 36 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 40 7 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 7 000 60 63 63 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 63 64 64 63 64 63 64 64 63 64 64 64 64 64 64 64 64 64 64 64 64 64	NY102	390	9	135	N	96		(10)	2		32	52	ന	0	86	98	52	0.
n (std) 469 432 100 389 98 99 (10) 3 10 17 55 15 0 96 87 69 1.06 ed Dark Red 459 434 100 394 100 100 (10) 3 12 28 48 9 0 97 88 62 1.06 36 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61	NY103	422	₽.	125	\vdash			(10)	2	9	22	52		\vdash	26	91	89	.07
n (std) 469 432 100 389 98 99 (10) 3 10 17 55 15 0 96 87 69 1.06 ed 391 289 67 260 98 100 (10) 3 10 29 56 2 0 97 87 58 1.07 Dark Red 459 434 100 394 100 100 (10) 2 9 26 56 6 0 97 88 62 1.06 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61	Reds:																	
ed 391 289 67 260 98 100 (10) 3 10 29 56 2 0 97 87 58 1.07 Dark Red 459 434 100 394 100 100 (10) 2 9 26 56 6 0 97 88 62 1.06 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61		469	3		∞				m					0	96	87	69	0.
Dark Red 459 434 100 394 100 100 (10) 2 9 26 56 6 0 97 88 62 1.06 368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61	Cherry Red	391	α	67	9		0		m				7	0	26	87	58	.07
368 347 80 304 75 86 (10) 3 12 28 48 9 0 97 85 57 1.06 360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61			ന	100	0	0	0		7				9	0	97	88	62	90.
360 299 69 250 98 98 (10) 6 15 31 45 2 0 94 79 47 1.06 407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61	NorDonna	368	4	80	0	7	Θ		m				0	0	97	85	57	0.
407 374 87 335 98 99 (10) 2 10 23 52 12 0 98 87 65 1.06 D (k=100) 48 63 61	Red Ruby	360	0		S				9				8	0	94	79	47	90.
D. LSD (k=100) 48 63 61 8 0.00	B0811-13	407	7		ന				2					0	86	87	65	90.
	D. LSD	48	9		9										m	Ŋ	œ	0.

1,2,3See Maine Table 3 for footnote information.

Plant size, maturity, tuber shape, tuber defects, hollow heart ratings, and chip color scores for 24 round-whites and red-skinned NE-184 regional trial lines grown at St. Agatha, Maine - 1997. Maine Table 12.

		Plant Data ¹	ata¹	Tube	Tuber Data ¹			Tuber	Tuber Defects (%)	ts (%)			Hollow	
Variety	Size 8-20	Vine Matur. 8-20	Matur. at Vinekill	Skin Tex- ture	Shape	Appear- ance	Total	Sun- burn s	Mis- shapen	Growth	s Scab	Rot	Heart Rating ²	Color ³
St. Adatha NE-184	1	Round-whites	s and Red	ls - 10	1 davs									
tla	1	7	6.8		1	7	12.9	6.3	1.1	2.1	3.2	0.2	Н	43
•	9	9	7.0	7	2	7		3.0		1.8		0.0	0	38
Katahdin	7	7	8.9	α	2	9	27.2	6.2	1.0		19.0	0.5	0	!
Kennebec	0	0	8.0	ω	4	9	13.9	11.4		0.5		0.2	0	35
NorValley	9	9	6.3	9	2	9		6.8	0.3	0.3	0.2		0	57
Quadqey Joe	7	7	6.3	∞	m	9	26.3	11.0	3.1				(7)	-
	ស	9	6.5	വ	Н	9	3.5	1.0		9.0		0.0	0	26
Superior	9	വ	5.5	9	2	7	7.8	4.4	1.6	1.1		0.0	0	1
AF1424-7	4	9	5.5	7	2	ω	8.2	4.2					0	99
AF1433-4	Ŋ	Ŋ		9	П	9	4.4	0.4	0.3	0.2	3.5	0.0	0	63
AF1437-1	9	Ŋ	5.0	Ŋ	Н	Ŋ	22.5	1.1		8.5			0	1
AF1480-5	ω	∞	7.0	9	m	œ	8.2	2.1	2.1	0.1	4.0		വ	-
AF1565-12	4	ന	4.0	9	7	7		7.2				0.3	0	-
AF1615-1	ω	ω	7.5	9	e	9	6.8	4.4				0.0	0	l
B0856-4	9	Ŋ	5.3	4	9	Ŋ	4.2	1.9	0.2	0.5	1.6		7	1
NY87	7	9	5.0	9	Н	ω			0.5	0.7	0.8	0.1	0	-
NY102	ω	7	8.9	7	П	ω	3.4	1.0			1.4		(C)	
NY103	7	9	6.5	9	2	7	16.5	4.3	3.4	1.0	7.7	0.0	0	!
Reds:														
Chieftain (std.)	00	7	6.8	9	2	7pr		0.8	1.4	2.0	0.4	0.2	7	
Cherry Red	7	7	8.9	9	e	7dr	23.8	3.1	1.6	3.6	15.5	0.0	Н	1
NorDonna	7	7	7.0	S	Н	8dr			1.0	0.0	9.0		0	-
Norland, Dark Red	2 1	9	4.0	9	2	8br	3.1	1.2					0	!
Red Ruby	Ŋ	9	5.5	Ŋ	2	5br		5.2	3.6	2.4	0.5	0.0	П	!
B0811-13	7	7	0.9	5yf		8dr	5.8	3.1		0.8			⊣	1

1,2,3See Maine Table 4 for footnote information. Yf=yellow fleshed; br=bright red skin; dr=dark red skin; Waller Duncan LSD (K=100) for chip color = 6. pr=pale red skin. The chipping date was December 10, 1997.

Maine Table 13. Yield, marketable yield, percentage of yield by grade size distribution, and specific gravity Agatha, for six russet/processing (long-tuber-type) varieties and NE-184 regional trial lines grown at St. 1997. (NE184 Regional Potato Variety Trials) Maine -

	Total	US#1	Yield	US#1 Yield (cwt/A) % Stand	-l /0	Stand		N	ze D.	ISUL	חחר	CH 110.	SIZE DISCLIDUCTON DY CIGES 10/	2		1
	Yield	>11/2"	>11/2" % of	^	(spacing) ²	ing) 2						٨	٨	by	by length	Spec.
Variety	cwt/A		std.	4 02.	7-2	7-11	П	7	ю	4	2	8 02	12 oz.		>3" >31/2"	" Grav.
prissonny topoid bot aw editor to	10000	90044		Test- 10	101 days	70										
R Burbank (std)	388	365	1	287	66	99 (16)	22	48	23	9	Н	3.0	7	65	46	1.071
Century Russet	337	299	82	262	66	100(16)	12	54	24	9	٣	33	თ	80	51	1.065
P Morkotah	343	325	68	286	66	100(14)	12	42	31	10	41	45	14	83	69	1.072
E1004-8	262	245	67	194	80	98(16)	21	59	19	П	0	20	1	74	52	1.075
DIO02-0 B0922-11	3 45 5	301	. 60	286	8	99(16)	2	30	34	16	15	65	31	8	83	1.075
W1099Rus	416	383	105	357	100	100(16)	7	40	37	11	2	53	16	87	74	1.069
Waller Duncan												,		1	(0
T.SD (k=100)	76	86		97								ത	7	I.	Т3	0.003

 $^1\mathrm{U.S.}$ #1 yield = yield >1% " excluding external defects. $^2\mathrm{Inches}$ between seedpieces noted within parentheses.

 3 Size classes: 1= <4 oz; 2=4 to 8 oz.; 3=8 to 12 oz.; 4=12 to 16 oz.; 5= >16 oz.

Plant size, maturity at vinekill, tuber shape, tuber defects, hollow heart ratings, and chip color scores for six russet/processing (long-tuber-type) varieties and NE-184 regional trial lines grown at St. Agatha, Maine - 1997. (NE184 Regional Potato Variety Trials)

Variety	Size 8-20	Size Vine Matu 8-20 Matur. at 9-5 Vinel	Plant Data ¹ Vine Matur. Matur. at 9-5 Vinekill	Skin Tex tur	Tuber Data Appe - Shape ar e	Appear-	Sun- Mis- (Total burn shapen	ırn sh	Mis-Gashapen	Mis- Growth shapen cracks Sc	Scab	Heart Ch Scab Rot Rating ² <u>Color</u> ³ 45F 50	Heart	Chip 10E ³ F 50F
St. Agatha NE-184 Russet/processing Test- 101 days R. Burbank (std) 8 8 8.0 6 5 Century R 8 8 8.3 6 5 R. Norkotah 6 5 6.0 3 6 B1004-8 7 5 5.3 2 7 B9922-11 7 6 5.8 2 6 W1099Rus 7 5 5.5 3 7	184 Russ 3) 8 6 7 7	set/pro	00000000000000000000000000000000000000	est- 10 6 6 3 2 2 3	11 days 6 5 7 7 7	787207	0.0 11.7 5.5 6.2 8.1	0.00.00.00.00.00.00.00.00.00.00.00.00.0	64244 646 6.0087	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	0.00	000000	27 30 20 23 119 20 24 26 29 33 27 30

Chip color from 45 and 50F -- Agtron M35 (higher values indicate lighter color): >60 acceptable; All varieties had dark vascular ring defects in the chips. The chipping date was January 5, 1998. Waller Duncan LSD (K=100) *Hollow heart rating equals the number of hollow tubers found per 40 large tubers cut and examined. for chip color = 3 (for both storage temperatures). 'See standard NE184 rating system for key to codes.

Maine Table 15. French fry color and texture of selected potato clones and varieties under simulated processing conditions1. All varieties were grown at Presque Isle, Maine, during 1996.

Variety	Color Grade ² Rating Index	<u>Grade²</u> Index	Grayness³ Index	Mealiness ⁴ Index	Comments ⁵	Overall Rating ⁶
Russet Burbank (std)	0-00	1.50	4.0	3.52	Ω	
Century Russet	00-1	2.50	4.0	2.99	Ir	ı
Krantz	00	1.05	4.0	3.60	U, Sh	ı
Russet Norkotah	00-1	1.92	4.0	2.90	Be, Ir, Sh	ı
AF1426-1	00	1.00	4.0	3.19	Bc, Sh	1
AF1481-4	0-00	1.75	4.0	2.96	Ir, Sh	ı
B0493-8	0-1	2.42	4.0	2.54	Be, Ir	ı
B9922-11	0-00	1.25	4.0	3.08	Ir, Sh	1
W1099Rus	00	1.00	4.0	3.59	U, Sh	1
Waller Duncan LSD (k=100)		0.80	SZ	0.75		

blanched for 8 minutes at 170°F, par-fried at 375°F for 80 seconds, and quick frozen at -30°C in plastic bags. evaluation, samples were finish-fried at 360°F for 2-1/2 minutes on March 12, 1997, blotted dry with a paper Processing and evaluations were done by T. Work of the Department of Food Science, University of Maine, Orono, ME. All tuber samples were stored at 50°F, 85% R.H. from harvest until The slices were rinsed in cool water, such replications were processed on March 3, 1997 and held at -15°F until raw tuber slices were cut from each of ten tubers. towel, and cooled for 6 minutes. processing.

Color Grades are from USDA color standards chart #64-1, third edition.

graying; 4 = noGrayness indices represent weighted means derived from the following evaluation scale: 2 = moderate graying; 1 = intense graying. 3 = slight graying; Mealiness indices represent weighted means derived from the following evaluation scale: 5 = dry, mealy;

= french fries were irregular in color; dark blotches detracted from appearance of product; Be = Dark blotches on ends of many fries; Bc = Dark blotches in centers of many mealy. fries; Bl = general blotchy appearance of fries; Sh = Short fries from small and/or round tubers. 4 = mod. mealy, sl. moist; 3 = sl. mealy, mod. moist; 2 = soggy, not mealy; 1 = very soggy, not = uniform fried color; Ir Þ Comments:

Overall rating: quality rated better (+), not different (0), or poorer (-) than Russet Burbank.

Chip color from 38°F, 45°F, and 50°F storage, reconditioning potential, washed appearance ratings, days to sprout formation, and storage weight losses at 38% and 50% for 43 potato varieties grown at Presque Isle, Maine, during 1996 and stored during the 1996-1997 storage season. Maine Table 16.

Trial: 1	Variety	Chip	Color	from	Storage	After- Cooking	Washed Appearance	Days to Indic. Sprout Length ⁵	to Indic		Storage Wt Loss %
rior day		50°F1	41	ω	Recond.2	Darkening³	Index ⁴	PIP	1/2"	ر س	50°F
rior 45 24 17 36 7.7 14(1) PC.M.GC.M.S. 99 157 3.5 9.2 na 6 39 27 52 8.2 61/M.C.M.S.B.GC.M.S.B. 99 157 3.5 9.2 44-6 44 36 54 8.4 8.2 13/M.C.B.B.B.B. 85 148 3.9 16.7 24-6 64 51 36 54 8.4 8.2 13/M.C.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.	Early Trial:										
National N	Superior			17	36	7.7	14 (1) PC, M, GC, RS				
31-2 27 9.0 9.0 <th< td=""><td>Monona</td><td>09</td><td></td><td></td><td></td><td></td><td>3</td><td>85</td><td>194</td><td></td><td>i.</td></th<>	Monona	09					3	85	194		i.
24-6 64 44 36 54 84 36 54 8.4 80.5 p.c. s.	AF1331-2	27					31 (3) PC, M, SB, GC, RS, BS	85	178		
24-7 64 51 35 60 8.0syl 43(3) ^{8,cc,cs,sz} 85 157 4.9 13.1 strans. 25-12 32 18 13 25 7.4 63(6) ^{5s,ss,sz} 85 157 4.9 13.1 strans. 25 18 13 25 7.4 63(6) ^{5s,ss,sz} 85 113 4.5 18.9 strans. 25 18 13 25 7.4 64 64 64 64 64 64 64 64 64 64 64 64 64	AF1424-6	64	44		54		$^{\circ}$	92	148		
Part Decretary 15 18 13 25 14 4 5 6 6 6 6 6 6 6 6 6	AF1424-7	64	51			8.0syl	ന	85	157		ω.
mm Chipping Trial: 4 26 46 8.5 67(6) PC.58.BS.B 93 198 3.8 8.2 sbec 53 44 26 46 8.5 67(6) PC.58.BS.B 93 198 3.8 8.2 chic 54 49 25 56 8.481,pc 8(5) PC.85 8 142 2.8 19.2 achic 52 43 64 8.281,syl 70(5) RC.85.SZ 72 142 3.8 19.2 achic 60 58 30 60 8.081,syl 76(5) PC.85.SZ 72 142 3.8 19.5 den 60 58 30 60 8.081,syl 76(5) PC.85.SZ,SZ 72 142 2.9 11.6 4-8 59 50 80 8.081,syl 79(5) PC.85.SZ,SZ 72 142 2.9 11.6 2.9 4-9 50 40 80 80 80 80 80 80 80 80	AF1565-12	32	18				m	85	113	•	ω.
mm Chipping Trial: 46 8.5 67 (6) PC.5B.BS.B 93 198 3.8 8.2 abbed 53 49 25 56 8.451,pc 84(5) PC.BS 86 149 2.8 19.2 achip 62 63 43 64 8.251,syl 70(5) PC.BS.BS 72 142 3.8 77.3 alley 64 58 35 55 7.9 73(3) PC.BS.BS 72 142 3.8 77.3 16.2 den 60 58 30 60 8.0s1,syl 76(5) PC.SB.BS 72 142 2.8 19.0 33-4 66 57 32 65 8.8 72 16.2 17.2 16.2 4-8 59 50 30 46 8.0syl 76(5) PC.SB.SS 72 142 2.9 15.4 4-9 52 45 30 46 8.6 8.0syl 77.5sl,pc.SB.SS.SS 72 142 2.9 17.5sl,			9	3	9						
bec 53 44 26 46 8.5 67(6) PC, SP, SP, SP, SP, SP, SP, SP, SP, SP, SP	Medium Chipping	Trial									
ntic 54 49 25 56 8.451,pc 84(5) PC.BS 8 145 2.8 149 2.8 19.2 eChip 62 63 43 64 8.251,syl 70(5) PC.BS.BS 72 142 3.8 19.5 alley 64 58 35 55 7.9 73(3) PC.M.SB.SZ 72 142 3.8 19.5 den 60 58 30 60 8.051,syl 76(5) PC.BS.SZ 72 162 3.8 19.0 33-4 66 57 32 65 8.0 79(5) PC.SB.SZ 72 142 3.8 19.0 4-9 59 50 30 48 8.0 8.0 70(5) PC.SB.SZ.SZ 72 142 2.9 11.2 4-9 50 49 30 46 8.0 8.0 46(4) PC.SB.SZ.SZ 72 142 2.9 13.6 51-8 50 50 26 54 7.751,pc <td>cennebec</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(6) PC, SB, BS,</td> <td></td> <td>σ</td> <td></td> <td>•</td>	cennebec						(6) PC, SB, BS,		σ		•
echip 62 63 43 64 8.281,syl 70(5) Sb. B. SZ 72 142 3.8 27.3 alley 64 58 35 55 7.9 73(3) PC. M. SB. SZ 72 142 3.8 27.3 den 60 58 30 60 8.081, syl 76(5) PC. SB. SS. SZ 72 167 2.8 19.5 33-4 66 57 32 65 8.8 79(5) PC. SB. SS. SZ 72 142 2.5 19.0 4-8 59 50 30 48 8.2 79(5) PC. SB. SS. SZ 72 142 2.5 19.0 4-9 52 45 28 50 8.0 8.0 70(5) PC. SB. SS. SZ 72 142 2.9 11.5 5-5 49 30 46 8.6 60(4) PC. SB. SS. SZ 72 121 3.6 18.4 9.7 71-8 59 50 50 54 8.0 7.9 SY.	tlantic	54					84 (5) PC, BS	86	149		9
alley 64 58 35 55 7.9 73(3) PC.M.SB.SZ 72 107 2.8 19.5 den 60 58 30 60 8.0 Sl, syl 76(5) PC.SB.BS 72 163 2.7 16.2 den 33-4 66 57 32 65 8.8 79(3) PC.M.SS.SZ 72 142 2.9 19.0 den 8.2 86(5) PC.SB.RS.SZ 72 144 2.5 19.0 den 8.2 86(5) PC.SS.SZ 72 142 2.9 21.5 den 8.2 86(5) PC.SS.SZ 72 142 2.9 21.5 den 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	laineChip	62	63		64	.2sl,	70(5) ^{SB,B,SZ}	72	142	•	7.3
den 60 58 30 60 8.0sl,syl 76(5) PC,SB,BS 72 163 2.7 16 33-4 66 57 32 65 8.8 79(3) PC,RS,SS,SZ 72 114 2.5 19. 4-8 59 50 30 48 8.0 8(5) PC,SB,RS,SZ 72 142 2.9 21 5-5 49 30 46 8.0 8.0 60(4) PC,SB,SS,BS,BS 72 121 3.6 18. 71-8 59 50 26 54 7.7 Sl,pc 46(4) PC,SB,SS,BS,BS 72 170 3.9 8.0 2 48 29 59 8.0 8.0 83(6) SB,SS,SZ 79 156 2.9 20 2 64 63 39 64 7.9 syl 81(6) PC,SB,SS,SZ 72 128 10 3 60 58 37 60 7.8 74(7) SB,B 72 128 74 9	TorValley	64				0.	$^{\circ}$	72	107		9.5
33-4 66 57 32 65 8.8 79(3) PC, RS, SS, SZ 4-8 4-8 59 50 30 48 8.2 86(5) PC, SS, SZ 4-9 52 45 28 50 8.0 8.0 8.0 79(6) PC, SB, RS, SZ 5-5 45 28 50 8.0 8.0 8.0 60(4) PC, SB, RS, BS, BS 71-8 59 50 26 54 7.7 \$1,pc 46(4) PC, SB, SS, BS, BS, SZ 71-8 50 48 29 59 8.0 83(6) SB, SS, SZ 72 121 3.6 18. 2 64 63 39 64 7.9 \$29 8.0 81(6) PC, SB, SS, SZ 3 60 58 37 60 7.8 74(7) SB, B 54 60 38 60 7.8 73(6) SB, B, BR 55 50 50 50 50 50 50 50 50 50 50 50 50 5	nowden	09	28	30	09		9		163		9
4-8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 1	99	57				9	72	114		9
4-9 52 45 28 50 8.0syl 79(6) FC, SB, RS, SZ 72 121 3.6 18. 5-5 58 49 30 46 8.6 60(4) PC, SB, SS, BS, BS 8 156 4.0 15. 71-8 59 50 26 54 7.7sl, pc 46(4) PC, SB, GC, SS, BS, B, SZ 7 170 3.9 8. 60 48 29 59 8.0 83(6) SB, SS, SZ 7 79 156 2.9 20. 2 64 63 39 64 7.9syl 81(6) PC, SB, SS, SZ 7 72 205 4.2 10. 3 60 58 37 60 7.8 74(7) SB, B 72 158 2.7 5. 64 60 38 60 7.8 73(6) SB, BR, RR 93 163 4.4 9. 65 50 50 50 50 50 50 50 50 50 50 50 50 50	- 1	59	50		48		86 (5) PC, SS, SZ	72	142		i.
5-5 5 6 49 30 46 8.6 60(4) PC, SB, SS, BS, B 93 156 4.0 15. 71-8 59 50 26 54 7.7sl, pc 46(4) PC, SB, GC, SS, BS, B, SZ 72 170 3.9 8.0 2 64 63 39 64 7.9syl 81(6) PC, SB, SS, SZ 72 205 4.2 10. 3 60 58 37 60 7.8 74(7) SB, B 60 7.8 73(6) SB, B, PR 93 163 4.4 9.	B0564-9	52	45		50				121		ω.
71-8 59 50 26 54 7.7sl,pc 46(4) PC,SB,GC,SS,BS,B,SZ 72 170 3.9 8. 8. 8. 60 48 29 59 8.0 83(6) SB,SS,SZ 79 156 2.9 20. 9. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	B0585-5	28			46		0	66	156		5
2 64 63 39 64 7.9syl 81(6) PC,5B,5S,5Z 79 156 2.9 20. 3 64 63 39 64 7.9syl 81(6) PC,5B,5S,5Z 72 205 4.2 10. 3 60 58 37 60 7.8 74(7) SB,B 73(6) SB,B,R 93 163 4.4 9. er Duncan LSD 4 4 4 4 4 4 9	ND2471-8	59	20		54		9		170		
2 64 63 39 64 7.9syl 81(6) ^{FC,SB,SS,SZ} 72 205 4.2 10. 3 60 58 37 60 7.8 74(7) ^{SB,B} 72 198 2.7 5. 64 60 38 60 7.8 73(6) ^{SB,B,PR} 93 163 4.4 9.	NY87	09	48		59	0	3 (6)		156		0
3 60 58 37 60 7.8 74(7) ^{SB,B} 72 198 2.7 5. 64 60 38 60 7.8 73(6) ^{SB,B,PR} 93 163 4.4 9. er Duncan LSD 4 4 4 4	NY102	64			64		81 (6) PC, SB, SS, SZ		0		0
64 60 38 60 7.8 73(6) ^{SB,B,PR} 93 163 4.4 9.	NY103	09			09		74(7)SB,B		9		0
Duncan LSD 4 4 4	W870	64			09		$^{\circ}$		9	•	
			4	4	4						

Maine Table 16 cont.

Variety	Chip 50°F¹	COLOE	Chip Color from 50°F¹ 45°F¹ 38°F¹	Storage Recond. ²	After- Cooking Darkening ³	Washed Appearance Index ⁴	Days t	Days to Indic. Sprout Length ⁵ PIP %"	'm	Storage Wt Loss %6 8°F 50°F
Medium Table Tria	a]:									
Kennebec	53	80	26	4.2	0					
Atlantic				i (C				177	4.2	11.9
Cherry Red	37)	† I	•	75/50/55 (C) 70	66	128		13.3
Chieftain	31	!	-	;) A	0	72	135		23.38
Dark Red Norland	40	!	;	;	- C	√	72	163		10.0
NorDonna	32	-	;	-) L(98	128		24.58
Quaggy Joe	24	-	1	-	8. 4sv.		72	121		ω 4.
Red Ruby	29	1	-	-	1 2 C	r o		142		17.4
AF1425-1	52	33	19	3.4	6.7	ο α	6	163		14.1
AF1475-16	39	26	17	. co	7.400	80 (S) SB; SS; B8	98	163		Ξ.
Waller Duncan LSD	3	41	4	41	, Ži	1	72	100	ო თ•	18.98
Late Trial:										
Katahdin	45	26	21	51	8.	91 (7) PC, RS, B, FL		,		
Niska	62	46	27	63		71 (7) SB, B		TOT		
St. Johns	35	1	1	1		77 (A) PC, SS, BS	500	44 1		4
Yukon Gold	35	-	19	43	8.4	82 (7) PC, SS, B		154		0
AF1455-9	44	28	17	45	200.7	04 (F) PC. SB. SS. PU				
AF1480-5	54	40	26	9	24 2	r α			•	0
Waller Duncan LSD	44	4	т	7)	50	L33	5.7	21.0s
Russet/Processing	Trial	**								
Russet Burbank	45	33	20	45	7.9	72 (7) SB,B	Č	0	(
Century Russet	27	19	16	24	8 7	ZS (3) 00	xo 1	203	2.2	9
Krantz	57	42	21	8 4 8	20.00	ZS:35(3)32	07.	189	•	4.
R. Norkotah	41	32	18	000)	72 (A) SR SC 57	63	8	•	17.5
AF1426-1	56	40	27	. 44 . 44	•	((() () () () () () () () ()	7.7	182	•	6.3
			I	e e		03 (4) 22/22/23	84	203	2.6r	2.5

Maine Table 16 cont.

Russet/Processing	d Trial	$\overline{}$	continued	: (
AF1481-4	44	26	17	38	8.4	77 (3) ^{GC, SZ}	77	133	3.6	20.3
B0493-8	37	19	14	27	8.0syl	94 (8) ^B	77	126	2.6	16.8
B9922-11	49	33	19	44	7.9	90 (7) œ	63	175	0.6	13.8
W1099Rus	56	36	32	59	7.5	83 (5) sz	63	168	, e,	18.0
Waller Duncan LS	Ü 4	Ŋ	m	4						

'Stored at 38°F, 45°F, or 50°F, 85% R.H. from harvest until February 10 to March 5, 1997 Chip color scores are from an Agtron Model M-35 Process Analyzer (Agtron, Inc., Sparks, Nevada; calibrated with black disk Chips were crushed and reported values are means from four replicate Each sample was read three times and was thoroughly mixed between readings. Higher numbers = 0 and white disk "90" = 90).

Reconditioned samples were taken from 38% and placed at 70% for a 3-week period starting on January 22, See Agtron description under footnote #1.

Tubers were diced and then blanched for 5 min, cooled to 120°F, and then rated after 30 min. Higher indices indicate lighter color. Key to codes: sl-sloughing was Samples were stored at 45°F and 85% R.H. from harvest until March 21, 1997. They were then warmed to 65°F a defect in this sample; syl=slightly yellow; yl=yellow; pc=unusually poor overall color. with a Munsel Neutral Color Scale. for five days.

cracks, CS=common scab, SS=silver scurf, RS=russet scab, DR=dry rot, SR=soft rot, BS=black scurf, LE=enlarged in parentheses indicate subjective appearance of the sample using standard NE107 codes. Codes indicate major lenticles, B=bruises, BD=blackdot, PW=powdery scab, RA=red areas, PU=purple areas on seed end, SZ=small tuber 'Unreplicated samples weighing approximately 7500 grams were stored at 45°F and 85% R.H. until January 7, First number indicates % U.S. #1 grade tubers in sample. external defects as follows: M=misshapen, NR=nonuniform russeting, PC=poor color, SB=sunburn, 1996. Tubers were then washed and graded. size, FL=flat tubers, PR=pear shaped.

Tubers were stored at 45°F, 85% R.H.

Codes "s" or "r" indicate heavily sprouted or samples with more than Percentage sprout and weight loss following storage from harvest until March 31 to April 3, 1997, at indicated temperature and 85% R.H. spoiled tubers, respectively.

MAINE

Alvin F. Reeves, Garland S. Grounds, and Nena Huston.

University of Maine Potato Breeding Project

Objectives: The development of new potato varieties of three types:

1. high-yielding, round, white, fresh market varieties with good table qualities and resistance to scab; 2. round white chipping varieties with high dry matter and low sugars, especially after long term cold storage; and 3. russet varieties with high yield and high dry matter suitable for french fry processing and fresh market.

Seed and seedling production. A total of 57 parent plants were intercrossed in 140 different combinations (54 russet, 47 segregating for resistance to late blight, 51 with tablestock potential, and 14 with chipping potential) to produce 112,150 seeds. An additional 2,010,975 seeds were obtained from 69 field plantings. Greenhouse plantings of 60,500 true seeds yielded 23,031 seedlings from which 15,542 first tubers were harvested. Second tubers were harvested from 4,143 seedlings and planted in disease screening plots. Round tubers harvested in russet combinations were discarded; misshapen tubers were discarded from all combinations.

Seedling selection. A total of 613 (2.2%) new selections were saved from 27,791 single hills. From the 252 12-hill plots, 68 (27%) were saved for further testing. Fortytwo of 49 60-hill plots were selected, and 156 advanced selections were maintained and tested.

Disease tests. In cooperation with Drs. David Lambert, Gary Sewell, Bill Brodie, Robert Goth, Pete Weingartner, and Modesto Olanya, a number of selections were tested for disease resistances. All tests were inoculated either directly or on spreader rows within the plots.

Results were as follows: 3 of 8 were resistant to corky ring spot; 13/68 to acid scab; 38/105 to common scab; 27/71 to verticillium; 28/58 to golden nematode; 28/144 to late blight; 14/45 to leafroll; and 100/105 to net necrosis.

Physiological disorders. Additional tests for physiological disorders showed 11 of 52 resistant to hollow heart; 20/47 to blackspot bruising; and 15/31 to shatter bruising.

Chip tests. After processing in December and February, from five storage temperatures, fifteen entries had better average chip color than Monona (5.9): AF 1668-60 (4.1), AF 1424-7 (4.45), CS 7232-4 (4.5), Snowden (4.75), MaineChip (4.85), AF 1668-62 (4.9), AF 1433-4 (4.95), Somerset (5.0), ATX 85404-8 (5.05), NY 102 (5.1), ND 860-2 (5.35), NY 87 (5.4), NorValley (5.7), TX 1385-12Ru (5.7), and AF 1898-1 (5.8).

Commercial Trials. Along with MaineChip, Mainestay, Quaggy Joe and St.Johns, two numbered selections were grown on commercial farms in 1997: AF 1438-6 and AF 1481-4. They will be dropped because of growth cracks and low yields respectively.

Advanced Selections

Chipping selections:

MaineChip (AF 875-16; AF 186-2 x AF 84-4) was named in 1991. It is a high dry matter, cold-chipping variety, with yields of marketable size, specific gravity and chip color equal to Snowden. Commercial seed is not being produced even though one or two chip growers have had success with this variety.

AF 875-15, a sibling of MaineChip, has better yields than MaineChip and equal dry matter, but is not as good after cold storage. It is a good chipper from the field and does not show the heat necrosis that Atlantic does. Hollow heart is very rare, but growth cracks have been a problem in commercial fields.

AF 1668-60 (CS 7232-4 open pollinated) has excellent chip color from cold storage, with adequate gravity and yield. It is resistant to net necrosis and early maturing with moderate resistance to verticillium.

AF 1856-1 (CF 80247-1 x EB 8109-1) also has excellent chip color from storage and adequate gravity and yield. It is resistant to net necrosis, scab, and verticillium.

Round white table varieties:

Mainestay (AF 1060-2; AF 431-9 open pollinated) is slightly higher yielding than St.Johns, but is more susceptible to scab. It developed purple streaks in 1996, but this was not a problem in 1997. It is difficult to kill, and if dug green can give problems in storage. High yields and good size are its best qualities.

Quaggy Joe (AF 1470-17; CS 7589-8 x Portage) is a very high-yielding variety with good appearance and table quality. Problems seen so far have been hollow heart, purple streaks (not as many as in Mainestay), and pressure bruising. These problems were not prevalent in 1996 and 1997 commercial plantings.

St.Johns (AF 828-5; BR 6317-21 x CC 14-3a) is a late maturing variety with high yields and good disease reactions. It is resistant to golden nematode and the corky ring spot virus,

and does well all along the east coast. Two commercial growers have had trouble storing it, but yields and quality were good. It has a good washed appearance.

AF 1437-1 (AF 686-3 x B 7168-10) is a pretty round white with very high yields at early or mid-season harvest. Growth cracks may be a problem.

AF 1470-6 (CS 7589-8 x Portage) is very high-yielding at early harvest. It is resistant to net necrosis and verticillium. Low specific gravity and growth cracks may be problems.

AF 1565-12 (AF 303-5 x Sunrise) is a round white table variety with good size, appearance and yields. It is early maturing and resistant to golden nematode, verticillium and scab. Specific gravity is low and cooked texture is rated low, but overall ratings equal Superior.

AF 1569-2 (Portage x Sunrise) has high yields at early harvest in several locations. It is resistant to net necrosis, but susceptible to scab and growth cracks.

AF 1615-1 (SA 8211-6 x Sunrise) is a high-yielding medium-late maturing selection with resistance to net necrosis, golden nematode, verticillium, and scab. It has high specific gravity but does not give good chip color after storage.

Russets and Long Whites:

AF 1156-14 (Goldrus x Penobscot) has high yields and specific gravity with excellent french fry qualities. It is resistant to net necrosis, leafroll, and verticillium.

AF 1753-16 (CS 7981-7 x CF 7608-19) is a long russet with good shape, high yields, and fair processing quality.

Maine Breeding Table 1. Performance of some round white varieties grown at Presque Isle, Maine, 1997

Appearance 6/	3 t 3 t t t 3 d d d d d d d d d d d d d
Specific Gravity	1.063 1.059 1.073 1.074 1.078 1.072 1.072 1.081
Days <u>5</u> /	91 91 94 110 110 91 94
/ / I#SN%	98.9 98.7 98.7 97.2 96.8 97.2 97.1
A\range Cwt\A Total	457 453 472 430 557 434 321 342 291
A\jwO .blaiY \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	452 463 463 418 548 428 312 332 282
Maturity 3/	H H H H H H H H H H H H H H H H H H H
Shape <u>2</u> /	R R(0) R(0) R(0) R RO, f1 R0
Color <u>1</u> /	WN W W W W W W W W W W W W W W W W W W
Pedigree	AF 1437-1 AF 1470-6 AF 1565-12 AF 1569-2 AF 1615-1 Katahdin Kennebec Kennebec Superior Superior

W = White, N = Netted, C = Cream, R = Russet, () = light, - = heavy. 11/1 | 17/1 | 19/

R = Round, O = Oblong, L = Large, fl = flat.

E = Early, M = Medium, L = Late.

US#1 = 71-7/8 inches diameter.

Number of days from planting to first killing spray.

Scale l = poor to 5 = excellent.

Performance of some chipping and processing varieties grown at Presque Isle, Maine, 1997 Maine Breeding Table 2.

	results 9/	
50°		6660
Chip Color .	5.0 4.1 3.7 8.1 5.7 6.7 8.8 6.8 7.6 6.5 4.5 4.8 French fry processing	6.0
Ch. 41°	5.0 8.1 8.8 6.5 French	0.000
Appearance 6/	7 7 8 9 9 7 7	7 + H 3 - H 1 - H
Specific Gravity	1.087 1.075 1.074 1.089 1.089	1.087 1.087 1.085 1.078
\ <u>2</u> sysd	94 100 94 100 96 94	110 110 110 110
/ 7 [#SN%	98.5 99.5 97.2 97.9 96.9	86.0 93.0 68.0 76.0
Yield, Cwt/A Total	342 397 321 380 331 291	455 608 546 448
Yield, Cwt/A \frac{4}{\pi}	337 395 312 372 282	447 599 518 432
Maturity <u>3</u> /	E E E E E E E E E E E E E E E E E E E	ML ME ME
/ <u>7</u> ədeqg	R R0 R(0) R	(L) (L) (L)
Color <u>1</u> /	CN W W W (N) C	R R Nk R WN
Pedigree	AF 1668-60 AF 1856-1 Kennebec Kennebec MaineChip Superior	AF 1156-4 AF 1753-16 Russet Burbank Shepody

1/-6/ See Maine Breeding Table 1.

From Potato Chip Institute International chart where 1 = very light and 10 = very dark; less than 5 is acceptable. five tubers each. Data are averages of December and February cooking dates, four replications,

Percent over $3\frac{1}{2}$ inches in length. 9/ Scale 1-9, where 1-4 = poor, not acc

Scale 1-9, where 1-4 = poor, not acceptable; 5 = fair, acceptable; and 6-9 = good.

Michigan Potato Variety Evaluations

D.S. Douches, R.W. Chase, K. Jastrzebski, R. Hammerschmidt, W. Kirk, C. Long, K. Walters and J. Coombs

The objectives of the evaluations are to identify superior varieties for fresh market or for processing and to develop recommendations for the growing of those varieties. The varieties were compared in groups according to the tuber type and skin color and to the advancement in selection. Each season, total and marketable yields, specific gravity, tuber appearance, incidence of external and internal defects, chip color (from field, 42 and 50 F storage), dormancy (at 50F), as well as susceptibilities to late blight, common scab, Fusarium dry rot, Erwinia soft rot, and blackspot bruising are determined.

Six field experiments were conducted at the Montcalm Research Farm in Entrican, MI. They were planted in randomized complete block design with four replications. The plots were 23 feet long and spacing between plants was 12 inches. Inter-row spacing was 34 inches. Supplemental irrigation was applied as needed.

Both round and long variety groups were harvested at two dates. They are referred to as the Date-of-Harvest trials. The other two field experiments were the North Central Regional and European trials. In each of these trials the yield was graded into four size classes, incidence of external and internal defects in > 3.25 in. diameter or 10 oz. potatoes were recorded, and samples for specific gravity, chipping, dormancy, disease tests, bruising, and cooking tests were taken. Chip quality was assessed on 25-tuber samples, taking two slices from each tuber. Chips were fried at 365°F. The color was measured visually with the SFA 1-5 color chart. Tuber samples were also stored at 42 or 50°F for chipprocessing out of storage in January and March.

Round White Varieties

Six varieties and 19 breeding lines were compared at two harvest dates. Atlantic, Snowden, Pike, and Onaway were used as checks. Entries were subject to early dying. As a result, the plot yields were below average. The results are presented in Tables 1 and 2. In the early harvest trial (95 days), NY101, Onaway, MSE228-9, MSE228-11, NY103, Atlantic, and Atlantic NewLeaf had the highest yields of the 25 entries. At the later harvest (127 days), NY101 and

Douches is an associate professor, Chase is a professor emeritus, Jastrzebski is a visiting scholar, Long is a research technician, and Walters and Coombs are graduate assistants in the Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824. Hammerschmidt is a professor in the Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI 48824.

MSE228-11 were still the top yielders. The MSU advanced seedlings MSE018-1 and MSB107-1 were also high yielding. These two lines were also the top yielding MSU selections in the on-farm trials in 1997. Internal brown spot and hollow heart incidence were low within the trial, however vascular discoloration was more prevalent than in previous years.

Variety characteristics:

Atlantic NewLeaf - a selection from NatureMark which expresses the CryIII-Bt gene for beetle control. It performs similar to Atlantic.

NY103 - a chip-processing/fresh market selection from New York which has high yield potential, excellent internal quality, and smooth, bright appearance, but the specific gravity is too low for chip-processing. NY103 is equivalent to Atlantic for scab reaction. This selection has had excellent yield potential in on-farm trials. It is expected to be named by New York.

NY101 - a light-yellow-fleshed selection from New York. This line has an excellent shape, with netted tubers and very high yield potential. It is resistant to scab. In general, internal defects are low, but in 1995 we observed IBS in the oversize tubers.

Pike - an average yielding selection from New York. It chip-processes well and is resistant to scab similar to Superior. At times it has shown IBS in the tubers.

MSA091-1 - an MSU selection for chip-processing with scab resistance. Yields have been variable, but it has performed well in other states, and the late blight trials indicate a reduced susceptibility to late blight.

MSB076-2 - this MSU selection has high yield potential, has very high specific gravity, acceptable chip quality, and is resistant to scab. It is between Atlantic and Snowden in maturity, and we observed, in some instances, a tendency for hollow heart in oversize tubers. It has a large and upright vine type. This selection had the highest overall merit rating in the 1996 and 1997 North Central Regional Trials.

MSB107-1 - an MSU selection for the tablestock market. It is bright-skinned with large, round tubers with excellent internal quality. This selection performed well in grower trials in 1996 and 1997.

MSC103-2 - an MSU selection for the tablestock market. It performed well in the 1996 and 1997 on-farm trials. Its maturity is late, scab tolerance is intermediate, and it has reduced susceptibility to late blight.

MSE018-1 - an MSU chip-processing selection with high yield potential. It was an outstanding yielder in the 1997 onfarm trials. Specific gravity is high and it has a good general

appearance. Scab tolerance is intermediate and it has a reduced susceptibility to late blight. This line is targeted for the 1998 SFA Trials.

MSE221-1 - an MSU tablestock selection. It has high yield potential, but it did not perform well in the 1997 MRF trials due to early dying. General appearance is good and has strong resistance to scab.

MSE228-9 - an MSU selection for the tablestock/chip-processing market. Yield potential is above average, maturity is mid-season, and scab tolerance is good. It was in the 1997 on-farm trials.

MSE228-11 - an MSU selection for the tablestock/chip-processing market. It has high yield potential, mid-season maturity, and good scab tolerance. It was in the 1997 onfarm trials.

MSNT-1 - an MSU chip-processing selection. It has above average yield potential, excellent chip quality, and strong resistance to scab. It is targeted for the 1998 SFA trials.

Long Varieties

Five varieties and seven breeding lines were tested. Russet Burbank and Shepody were grown as check varieties. The first date-of-harvest trial was dug 120 days from planting rather than 95 days to give the trial greater time for tuber bulking. Most of the entries in the long-type trial were late maturing resulting in low yields and small tuber size at the first date-of-harvest (Table 3). At the second harvest on September 18 (136 days), yields for all entries had not changed due to potato early dying (Table 4). Yields were below average. Among the 12 long-type entries, Umatilla Russet (AO82611-7), Century Russet, and Shepody produced the highest yields at both harvest dates. Internal defects were not significant.

Variety characteristics:

Century Russet - a russet variety from Oregon/USDA-Aberdeen with high yield potential. It has excellent internal quality and bulks early despite a late vine maturity. It is susceptible to scab.

JS111-28 - provided by J.R. Simplot. JS111-28 has high yield potential with good general appearance, good russeting, and shallow eyes. It is a somaclonal derivative of Lemhi Russet selected for lower incidence of blackspot bruise. It is also highly scab resistant.

A7961-1 - is an USDA-Aberdeen entry with above average yield. It has uniform appearance, heavier russeting than Russet Burbank, and minimal internal defects. It can be used for frozen-processing.

Umatilla Russet (AO82611-7) - this selection was the top

performing line in 1997, but was below average in 1996. It is reported to have some resistance to early dying. Tuber shape is long but tuber width is narrow.

Newleaf Russet Burbank - a variety from NatureMark which expresses the Bt gene for beetle control. Yield was below average this year despite good vine growth.

MSE202-3Rus - an MSU selection with strong scab resistance. It has good appearance and may be suitable for tablestock or processing. Yield was low in 1997.

North Central Regional Trial

The North Central Trial is conducted in a wide range of environments, in 9 states to provide adaptability data for the release of new varieties from North Dakota, Minnesota, Wisconsin, and Michigan. Twelve breeding lines and seven varieties were tested in Michigan. The results are presented in Table 5. The range of yields was wide. The MSU selections, MSB076-2 and MSB106-7, performed well in 1996 and 1997. W1313, a Wisconsin seedling, had the highest yield but had over 50% of its oversize tubers with hollow heart and was the most bruise susceptible line in all the trials. The Minnesota selection, MN16489, had a high overall merit in the trial, but it has a blush skin which may limit its marketability. The North Dakota seedling, ND2676-10, has a nice appearance, some scab resistance, and a good chip score, but it had a below average yield and a specific gravity under the industry standards.

European/Yellow Trial

Five European varieties and advanced selections were tested along with three yellow-fleshed MSU seedlings. Snowden, Yukon Gold, Michigold, and Saginaw Gold were used as checks. The results are summarized in Table 6. Typically, most of the European selections and varieties are late to very-late in maturity, but in 1997, the vines died early and yields were down considerably. The best performing lines in 1997 were MSE222-5Y, MSE048-2Y, MSE149-5Y, and MSE226-4Y. MSE149-5Y is a light yellow-fleshed selection which will be advanced to the date-of-harvest round white trial in 1998 because of its processing potential. Pickouts were high in Latona, Obelix, Dali, MSA097-1Y, and MSA222-5Y.

Potato Scab Evaluation

Each year a replicated field trial at the MSU Soils Farm is conducted to assess resistance to common and pitted scab. The varieties are ranked on a 1-5 scale based upon a combined score for scab coverage and lesion severity. Usually examining one year's data does not indicate which varieties are resistant but it should begin to identify ones that can be classified as susceptible to scab. Our goal is to evaluate important advanced selections and varieties in the study at least three years to obtain a valid estimate of the

level of resistance in each line. We now have had four years of good scab trials (i.e. high levels of infection in susceptible lines).

Table 7A categorizes many of the varieties and advanced selections tested. Scab results are also found in the Trial Summaries (Tables 2, 4, 5, and 6). Table 7B summarizes the 1994-6 scab trial results for the lines in these trials. Many russet lines showed resistance to scab infection with Century Russet an exception to this trend. The MSU lines MSE192-8Rus and MSE202-3Rus, showed some resistance to scab in 1996 and 1997. Some round white tablestock clones have resistance such as Superior, Onaway, MSB040-3, MSE228-9, MSE228-11, and MSE221-1. Yellow-fleshed selections with resistance are NY101, MSE226-4Y, MSE226-5Y, MSC120-1Y, and MSA097-1Y. Scab resistance was also identified in the chip-processing clones Pike and MSU selections MSB076-2, MSA091-1, MSB073-2, MSNT-1, MSE230-6, MSF014-9, MSF313-3, and MSG227-2.

Blackspot Susceptibility

Increased evaluations of advanced seedlings and new varieties for their susceptibility to blackspot bruising has been implemented in the variety evaluation program. Check samples of 25 tubers were collected (a composite of 4 reps) from each cultivar at the time of grading. A second 25 tuber sample was similarly collected and was placed in a hexagon plywood drum and tumbled 10 times to provide a simulated bruise. Both samples were peeled in an abrasive peeler in October and individual tubers were assessed for the number of blackspot bruises on each potato. These data are shown in Tables 8A and 8B.

Table 8A summarizes the data for the samples receiving the simulated bruise and Table 8B, the check samples. The bruise data are represented in two ways: percentage of bruise free potatoes and average number of bruises per tuber. A high percentage of bruise-free potatoes is the desired goal; however, the numbers of blackspot bruises per potato is also important. Cultivars which show blackspot incidence of 3 or more spots per tuber from the simulated bruise are approaching the bruise-susceptible rating. In addition, the data is grouped by trial, since the bruise levels can vary between trials. These results become more meaningful when evaluated over 3 years which reflects different growing seasons and harvest conditions. Bruising was more severe in 1996 than in 1997 and 1995.

Late Blight Trial

In 1997 a late blight trial was conducted at the Muck Soils Research Farm. Over 175 entries were evaluated in replicated plots. The field was inoculated on July 22 and ratings were taken during July and August. Most lines were highly susceptible to the US-8 genotype of late blight. Lines with the least infection were AWN86514-1, B0767-2, B0718-3, and MSG274-3. The good agronomic qualities of

MSG274-3 makes this selection a strong candidate for commercial testing when enough seed is produced. Foliar susceptibility of all the lines tested against the US-8 genotype of late blight is summarized in Table 9.

Post-harvest Disease Evaluation: Fusarium Dry Rot

As part of the postharvest evaluation, resistance to *Fusarium sambucinum* (fusarium dry rot) was assessed by inoculating 8 whole tubers post-harvest from each line in the variety trials. The tubers were held at 20°C for approximately three weeks and then scored for dry rot infection depth and width. These data are summarized in Table 10. The clones in this table are grouped according to infection levels (low: < 8mm infection depth, moderate: 8-16mm infection depth, high: > 16mm infection depth). Few clones have low levels of infection. The best lines in this experiment were Snowden, B1004-8, MSG236-1, MSE030-4, and MSF105-10. The results of this experiment continue to support the low dry rot infection levels observed in Snowden and that the low infection level can be transmitted to progeny such as MSG236-1, MSE030-4, and MSF105-10.

Michigan Table 1. ROUND WHITES: EARLY HARVEST MONTCALM RESEARCH FARM "AUGUST 8, 1997" (95 DAYS)

				-			1						v s?	TOTAL -	3-YR AV
		WT/A	-			TOT								TOTAL	US#1
LINE	US#1	TOTAL	US#1	Bs	As	OV	PO	SP GR	SFA†	HH	VD	IBS	BC	CUT	CWT/A
NY101	186	235	79	20	77	2	1	1.084	1.5	0	0	0	0	24	288
ATLANTIC	160	199	80	17	73	7	3	1.094	1.5	1	2	0	0	24	263
ONAWAY	149	206	73	26	69	4	1	1.069	4.0	0	3	0	0	24	259
MSE228-9	149	189	79	20	77	2	1	1.089	1.0	0	0	0	0	24	-
ATL NEWLEAF	139	173	80	20	79	1	0	1.094	1.0	0	3	0	2	24	-
NY103	139	192	73	26	73	0	2	1.076	2.5	0	0	0	0	24	254
MSE228-11	139	239	58	41	58	0	0	1.088	2.0	0	4	0	0	24	-
MSE221-1	132	182	73	25	71	2	2	1.071	2.5	0	4	0	0	24	-
FL1833	132	167	79	20	76	3	1	1.088	1.5	1	14	0	0	24	236
FL1879	121	161	75	24	71	4	1	1.084	2.0	0	8	0	0	24	-
MSNT-1	117	187	62	38	62	0	0	1.090	1.0	0	0	0	0	24	-
SNOWDEN	95	192	50	50	48	1	0	1.089	1.0	0	6	0	0	24	167
MSC103-2	93	112	83	16	80	3	1	1.071	3.0	0	4	0	0	24	-
PIKE	88	134	66	34	66	0	0	1.084	1.0	0	0	0	0	24	167
FL1831	83	136	61	33	60	1	6	1.095	1.0	1	0	0	0	24	-
REBA (NY87)	83	137	60	39	60	0	0	1.074	2.0	0	1	0	0	24	-
MSE018-1	82	147	56	44	56	0	0	1.093	2.0	0	2	0	0	24	-
MSB057-2	79	141	56	44	56	. 0	0	1.084	1.5	0	4	0	0	24	-
MSC148-A	75	160	47	52	47	0	1	1.081	2.0	0	5	2	0	24	-
FL1869	73	149	49	50	49	0	1	1.087	1.0	0	2	0	0	24	-
MSA091-1	71	152	47	51	47	0	2	1.084	1.0	0	3	0	0	24	136*
MSB107-1	67	107	63	37	62	1	1	1.074	2.5	0	1	0	0	24	153
MSB040-3	64	134	48	50	48	0	2	1.075	2.5	0	1	0	0	24	-
MSB076-2	56	148	38	62	36	2	0	1.086	2.0	1	1	0	0	24	193
MSB073-2	31	135	23	76	23	0	1	1.092	2.0	0	2	0	0	24	
MEAN	104	165						1.084							
LSD(0.05)	29	31													

¹SIZE

²OUALITY

B: < 2" A: 2 - 3.25"

HH: HOLLOW HEART BC: BROWN CENTER

OV: > 3.25" VD: VASCULAR DISCOLORATION
PO: PICKOUTS IBS: INTERNAL BROWN SPOT

†SNACK FOOD ASSOCIATION CHIP SCORE

OUT OF THE FIELD RATINGS: 1 - 5 1: EXCELLENT

5: POOR

* TWO-YEAR AVERAGE PLANTED MAY 5, 1997

Michigan Table 2. ROUND WHITES: LATE HARVEST MONTCALM RESEARCH FARM SEPTEMBER 9, 1997 (127 DAYS)

												BER	_			3-YR AVG
		T/A	PER									LITY		TOTAL		US#1
LINE	US#1	TOTAL	US#1	Bs		OV	PO	SP GR	SFA†	HH		IBS	BC	CUT	SCAB ³	CWT/A
NY101	276	312	89	11	86	2	0	1.077	1.5	0	8	0	0	40	1.0	448
MSE228-11	252	337	75	24	73	1	1	1.086	2.0	0	13	0	0	40	1.5	278*
MSE018-1	248	295	84	15	76	8	1	1.110	1.5	2	4	0	0	40	2.6	407*
MSB107-1	224	254	88	11	80	9	0	1.080	1.0	1	2	0	0	40	1.8	332
FL1833	217	241	90	9	75	15	1	1.083	1.5	1	13	1	0	40	1.7	369
ATLANTIC	211	252	84	14	74	10	3	1.089	1.5	3	5	0	1	40	3.3	352
ATL NEWLEAF	199	232	86	14	79	7	0	1.088	1.5	3	10	3	2	40	-	-
MSE228-9	197	231	86	14	82	3	1	1.082	1.5	0	3	0	0	40	1.8	233*
ONAWAY	192	238	80	19	75	6	1	1.062	3.5	0	10	0	1	40	1.0	315
REBA (NY87)	183	219	83	17	74	9	0	1.076	1.0	0	1	1	0	40	2.3	-
MSA091-1	178	231	77	21	75	2	2	1.083	1.5	0	8	0	0	40	1.8	247*
MSNT-1	171	236	73	27	73	0	1	1.085	1.0	1	0	1	0	40	1.0	252*
MSE221-1	165	202	82	13	74	8	5	1.066	3.0	0	5	2	0	40	1.0	284*
MSC103-2	164	180	91	7	78	13	2	1.076	3.0	0	5	0	0	40	1.8	264*
NY103	162	197	82	18	82	0	0	1.069	1.5	0	2	1	0	40	2.5	356
FL1879	157	187	84	16	78	5	0	1.078	1.5	4	7	1	0	40	3.0	-
SNOWDEN	141	221	64	36	63	1	0	1.083	1.0	0	15	0	0	40	2.5	296
MSB057-2	139	195	71	29	69	2	0	1.081	2.0	0	10	0	0	40	4.1	246*
MSB073-2	132	217	61	39	61	0	0	1.084	1.0	0	7	0	0	40	1.8	241*
FL1831	131	183	72	23	72	0	5	1.091	1.0	0	9	2	0	40	1.5	_
PIKE	125	171	73	27	73	0	0	1.081	1.0	0	1	0	0	40	1.7	214*
MSB076-2	113	193	59	41	59	0	0	1.085	1.5	0	2	1	1	40	1.8	301
MSB040-3	88	151	58	41	58	0	0	1.058	1.5	0	2	0	0	20	1.8	188*
FL1869	87	149	58	40	58	0	2	1.078	1.0	1	0	0	0	40	1.3	-
MSC148-A	67	166	40	58	39	11	1	1.075	1.0	1	0	1	0	10	2.4	146*
MEAN	169	220						1.080								
LSD(0.05)	38	36						0.005								

¹SIZE B: < 2" A: 2 - 3.25" OV: > 3.25" PO: PICKOUTS ²OUALITY

HH: HOLLOW HEART BC: BROWN CENTER

VD: VASCULAR DISCOLORATION 5: HIGHLY SUSCEPTIBLE

IBS: INTERNAL BROWN SPOT

3SCAB DISEASE RATING

1: NO INFECTION

3: INTERMEDIATE

†SNACK FOOD ASSOCIATION CHIP SCORE

OUT OF THE FIELD RATINGS: 1 - 5 1: EXCELLENT

5: POOR

^{*} TWO-YEAR AVERAGE PLANTED MAY 5, 1997

Michigan Table 3. LONG TYPES: EARLY HARVEST MONTCALM RESEARCH FARM SEPTEMBER 2, 1997 (120 DAYS)

										TUI	BER			3-YR AVG
	CW	/T/A	PE	RCE	VT OF	TOTA	ΔL ¹	_		QUA	LITY	12	TOTAL	US#1
LINE	US#1	TOTAL	US#1	Bs	As	OV	PO	SP GR	HH	VD	IBS	BC	CUT	CWT/A
UMATILLA R. (A082611-7)	222	345	65	34	59	6	2	1.084	1	0	0	0	16	234
CENTURY RUSSET	192	287	67	33	63	4	1	1.082	2	1	0	0	7	284*
SHEPODY	188	250	75	24	67	8	1	1.075	2	2	0	0	15	221
A84118-3	130	222	59	41	57	2	0	1.086	2	0	0	0	4	122
RUSSET BURBANK	111	197	56	41	55	1	3	1.073	0	1	0	0	2	177
A8495-1	106	245	43	56	43	0	0	1.084	0	0	0	0	0	85*
MSE192-8RUS	96	208	46	50	44	2	4	1.067	0	0	0	0	2	-
JS111-28	92	177	52	47	52	0	1	1.074	0	0	0	0	0	178
P88-13-4	91	292	31	69	31	0	0	1.087	0	0	0	0	1	-
RB NEWLEAF	90	197	46	52	46	0	2	1.071	0	0	0	0	0	127*
MSB106-7	88	188	47	53	47	0	0	1.057	0	0	0	0	0	-
A7961-1	77	218	36	64	35	1	0	1.085	0	0	0	0	2	203
MEAN	124	235						1.077						
LSD(0.05)	27	29						0.003						

HH: HOLLOW HEART BC: BROWN CENTER

VD: VASCULAR DISCOLORATION IBS: INTERNAL BROWN SPOT

* TWO-YEAR AVERAGE PLANTED MAY 5, 1997

A: 4 - 10 oz. OV: > 10 oz.

PO: PICKOUTS

Michigan Table 4. LONG TYPES: LATE HARVEST MONTCALM RESEARCH FARM SEPTEMBER 18, 1997 (136 DAYS)

										TUI	BER				3-YR AVG
	C\	VT/A	PER	CEN	T OF	TOT	ΓAL¹			QUA	LITY	72	TOTAL		US#1
LINE	US#1	TOTAL	US#1	Bs	As	OV	PO	SP GR	HH	VD	IBS	BC	CUT	SCAB ³	CWT/A
UMATILLA R. (A082611-7)	225	320	70	24	62	9	6	1.082	5	0	0	0	40	1.0	276
CENTURY RUSSET	199	272	73	27	66	8	0	1.081	2	5	0	0	40	3.1	304*
SHEPODY	187	233	80	18	69	11	2	1.074	1	4	0	0	40	3.8	270
MSE202-3RUS	139	212	66	32	64	2	2	1.078	2	1	0	0	40	1.0	272*
A84118-3	125	216	58	42	57	1	0	1.084	7	8	0	0	40	1.0	182
A8495-1	118	224	53	47	51	2	0	1.083	4	3	0	0	40	1.0	107*
MSB106-7	115	195	59	41	56	2	1	1.057	0	8	2	0	40	1.3	270*
A7961-1	105	214	49	50	47	2	1	1.084	6	8	0	0	40	1.0	270
P88-13-4	97	248	39	61	39	0	0	1.087	0	1	0	0	40	3.0	-
RUSSET BURBANK	95	185	51	39	51	0	10	1.071	1	13	0	1	40	1.0	219
JS111-28	87	157	55	40	55	0	5	1.073	3	10	1	0	40	1.0	279
RB NEWLEAF	78	168	47	46	46	1	8	1.066	2	5	0	1	40		143*
MEAN	131	220						1.077							
LSD(0.05)	45	47						0.003							

¹SIZE B: < 4 oz.A: 4 - 10 oz. OV: > 10 oz. PO: PICKOUTS IBS: INTERNAL BROWN SPOT

²QUALITY

HH: HOLLOW HEART
BC: BROWN CENTER
VD: VASCULAR DISCOLORATION
CONTROLLED BROWN SPOT

1: NO INFECTION
3: INTERMEDIATE
5: HIGHLY SUSCEPTIBLE

³SCAB DISEASE RATING

* TWO-YEAR AVERAGE PLANTED MAY 5, 1997

Michigan Table 5. NORTH CENTRAL REGIONAL TRIAL MONTCALM RESEARCH FARM SEPTEMBER 23, 1997 (140 DAYS)

											TUI	BER				
	CV	VT/A	PERC	CEN	T OF	TOT	[AL]				QUA	LITY	r2	TOTAL		MERIT
LINE	US#1	TOTAL	US#1	Bs	As	ΟV	PO	SP GR	SFA†	ΗН	VD	IBS	BC	CUT	SCAB ³	RATING
W1313	313	349	90	9	80	10	1	1.094	1.5	23	0	2	0	40	3.0	2
ATLANTIC	277	302	92	7	72	19	1	1.089	1.5	19	2	0	0	40	3.3	4
MN16489	265	301	88	11	82	6	1	1.077	1.0	3	0	0	0	40	1.9	1
RED PONTIAC	256	288	89	5	60	29	6	1.061	3.0	30	1	0	0	40	2.6	
MSB076-2	244	314	78	22	75	2	1	1.094	1.5	3	0	0	0	40	1.8	3
MN16966	238	313	76	22	75	1	2	1.087	1.5	4	6	0	0	40	3.0	5
NORCHIP	209	260	81	14	75	6	6	1.075	1.5	0	14	0	0	40	1.8	
SNOWDEN	192	247	78	22	76	2	0	1.084	1.0	3	5	0	0	40	2.5	
MSB106-7	186	258	72	24	68	4	4	1.059	3.0	0	10	0	0	40	1.3	
ND2676-10	181	249	73	27	72	0	0	1.074	1.0	1	13	0	0	40	1.5	
ND3828-15	173	231	75	18	72	3	7	1.065	1.5	0	8	2	6	40	2.7	
RED NORLAND	172	197	87	11	83	5	2	1.055	3.0	2	3	0	0	40	1.0	
MSB073-2	172	254	68	31	67	0	2	1.085	1.5	2	4	0	0	40	1.8	
MN16180	148	232	64	36	63	1	0	1.065	2.0	0	19	0	0	40	2.3	
W1151RUS	136	207	65	34	62	3	1	1.064	3.0	9	2	0	0	40	1.3	
RUSSET BURBANK	131	225	58	28	48	11	13	1.073	2.0	16	1	1	0	40	1.0	
RUSSET NORKOTAH	127	203	63	37	54	8	0	1.066	3.0	8	6	0	2	40	1.8	
W1348RUS	124	225	55	44	52	3	1	1.075	2.0	14	0	0	0	40	1.0	
ND2225-1R	100	.172	58	41	58	0	0	1.056	3.0	0	4	0_	0	40	3.3	_
MEAN	192	254						1.074								
LSD(0.05)	55	50						0.003								

²SIZE

²QUALITY

2SIZE2QUALITY3SCAB DISEASE RATINGB: < 2</td>HH: HOLLOW HEART1: NO INFECTIONA: 2 - 3.25BC: BROWN CENTER3: INTERMEDIATEOV: > 3.25VD: VASCULAR DISCOLORATION5: HIGHLY SUSCEPTIBLE

PO: PICKOUTS IBS: INTERNAL BROWN SPOT

3SCAB DISEASE RATING

PLANTED MAY 6, 1997

†SNACK FOOD ASSOCIATION CHIP SCORE

OUT OF THE FIELD RATINGS: 1 - 5

1: EXCELLENT

5: POOR

Michigan Table 6. EUROPEAN / YELLOW TRIAL MONTCALM RESEARCH FARM SEPTEMBER 10, 1997 (128 DAYS)

	CV	VT/A	P		ENTAI	ΓOF L¹				Q		BER LITY	-2	TOTAL	,
LINE	US#1	TOTAL	US#1	Bs	As	OV	PO	SP GR	SFA†	НН	VD	IBS	BC	CUT	SCAB ³
MSE222-5Y	228	290	79	16	71	8	6	1.077	3.0	0	0	1	1	40	3.0
MSE048-2Y	217	249	87	12	81	6	2	1.087	2.0	8	1	0	0	30	2.1
MSE149-5Y	181	235	77	21	73	4	2	1.076	1.0	2	0	0	0	39	2.0
MSE226-4Y	180	242	74	23	69	5	3	1.066	2.0	1	0	0	0	40	1.9
LATONA	168	265	63	27	62	2	10	1.081	2.5	0	5	0	0	40	2.0
OBELIX	167	238	70	23	66	4	7	1.063	2.5	0	8	1	0	40	3.0
MICHIGOLD	149	211	70	29	70	0	1	1.083	1.5	0	6	0	0	40	2.8
YUKON GOLD	143	175	82	16	79	3	2	1.076	2.5	1	23	0	0	40	3.0
SAGINAW GOLD	138	213	65	34	64	1	1	1.074	1.0	0	0	0	0	40	1.5
IS. SUNSET	136	202	67	32	66	1	0	1.069	3.0	0	5	0	0	40	3.0
MSA097-1Y	129	189	68	25	68	1	7	1.079	2.0	0	1	0	0	40	1.7
MSC120-1Y	107	169	63	35	63	0	1	1.076	2.0	0	8	0	0	40	1.5
SNOWDEN	107	196	54	45	54	0	1	1.085	1.0	0	13	0	0	40	2.5
DALI	76	200	38	53	38	0	9	1.066	3.0	0	9	0	0	40	2.5
MSD029-3Y	70	124	57	42	57	0	1	1.072	-	0	5	0	0	40	2.4
MATILDA	65	201	32	68	32	0	0	1.088	2.5	0	9	0	0	35	2.3
MSD040-4RY	63	161	39	60	39	0	1	1.086	-	0	0	0	0	30	2.0
MSE048-1Y	24	99	25	75	25	0	0	1.073	-	0	0	0	0	5	3.3
MEAN	130	203						1.077							
LSD(0.05)	34	35						0.003							

¹ SIZE	² QUALITY	3SCAB DISEASE RATING
B: < 2"	HH: HOLLOW HEART	1: NO INFECTION
A: 2 - 3.25"	BC: BROWN CENTER	3: INTERMEDIATE
OV: > 3.25"	VD: VASCULAR DISCOLORATION	5: HIGHLY SUSCEPTIBLE
PO: PICKOUTS	IBS: INTERNAL BROWN SPOT	

PLANTED MAY 5, 1997

†SNACK FOOD ASSOCIATION CHIP SCORE

OUT OF THE FIELD RATINGS: 1 - 5 1: EXCELLENT

5: POOR

Michigan Table 7A. Ranking of Important Potato Varieties and Advanced Breeding Lines in Scab Trial (1997)

Whemgan rable 771.
Low Infection
A082611-7
A7961-1
A84118-3
BC0894-2
FL1833
MSA091-1
MSB040-3
MSB073-2
MSB076-2
MSB107-1
MSC103-2
MSC120-1Y
MSE009-1
MSE192-8Rus
MSE202-3Rus
MSE221-1
MSE226-4Y
MSE226-5Y
MSE228-11
MSE228-9
MSE230-13
MSE230-6
MSE245-B
MSE246-5
MSE263-10
MSF014-9
MSF015-1
MSF087-3
MSF313-3
MSG124-8P
MSG227-2
MSG236-1
MSG301-9
MSNT-1
ND2676-10
NY101
Onaway
P32-3
Q8-2
Russet Burbank
W1151

Intermediate Atlantic Century Russet FL1879 Island Sunset Michigold MSB094-1 MSC148-A MSE018-1 MSE048-2Y MSE149-5Y MSE222-5 MSE228-1 MSE230-3 MSE234-3 MSE250-2 MSF001-2 MSF002-1 MSF019-11 MSF099-3 MSF100-1 MSF105-10 MSF194-3 MSF373-8 MSG077-7Y MSG104-6 MSG135-5 MSG261-3 NY103 NY115 P63-1 Snowden W1313 Yukon

Highly Susceptible B0984-3 B1004-8 MSB054-4 MSB057-2 MSE011-10 MSE041-1 MSF165-6RY MSF349-1 MSG049-4 MSG049-7 P83-6-18 Shepody

Line Rating lating lating A082611-7 Rating A082611-7 2.5 1.0 1.0 1.0 MSE048-2Y - 1.5 2.0 2.1 A7961-1 1.0 1.0 1.0 1.0 MSE149-5Y - 1.0 2.0 2.0 A84118-3 - 1.5 1.0 1.0 MSE192-8 - 1.0 1.0 1.3 A8495-1 1.5 1.0 - 1.0 MSE202-3 - - 2.0 1.0 AF1433-4 1.0 - 3.0 1.8 MSE222-5Y - 2.0 1.0 1.0 ATLANTIC 2.5 3.0 3.5 3.3 MSE222-5Y - 2.0 - 3.0 ATX 85404-8 - - 3.0 1.6 MSE228-9 - 1.5 1.5 1.9 BC0894-2 - 1.0 1.0 - MSE228-9 - 1.5 1.5 1.5 CENTURY SUSSET 1.5 3.0		1994	1995	1996	1997		1994	1995	1996	1997
A082611-7	Line					Line	Rating	Rating	Rating	Rating
A7961-1 A84118-3 - 1.5 1.0 1.0 A84118-3 - 1.5 1.0 - 1.0 MSE192-8 - 1.0 - 1.0 A8495-1 1.5 1.0 - 1.0 MSE202-3 - 2.0 1.0 AF1433-4 ATLANTIC 2.5 3.0 3.5 3.3 MSE222-5Y - 2.0 - 3.0 ATX 85404-8 - 3.0 ATX 85404-8 - 3.0 ATX 85404-8 - 2.0 - 3.0 ATX 85404-8 - 3.0 - 3.0 ATX 85404-8 - 3.0 - 4.0 ATX 85404-8 - 4.0 ATX						MSE048-2Y	-	1.5	2.0	
A84118-3 - 1.5 1.0 1.0 MSE192-8 - 1.0 - 1.3 A8495-1 1.5 1.0 - 1.0 MSE202-3 - - 2.0 1.0 AF1433-4 1.0 - 3.0 1.8 MSE221-1 - 1.5 1.0 1.0 ATLANTIC 2.5 3.0 3.5 3.3 MSE222-5Y - 2.0 - 3.0 ATX 85404-8 - - 3.0 1.6 MSE226-4Y - 1.5 1.5 1.9 BC0894-2 - - 2.0 1.3 MSE228-1 - 2.0 - 2.7 CO03308-1 1.0 1.0 1.0 - MSE230-6 - 1.5 1.5 1.8 CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-11 - 3.5 3.0 1.5 CHALEUR 1.5 3.0 - - MSE228-11 -						MSE149-5Y	-	-	2.0	2.0
A8495-1 1.5 1.0 - 1.0 MSE202-3 - - 2.0 1.0 AF1433-4 1.0 - 3.0 1.8 MSE21-1 - 1.5 1.0 1.0 ATLANTIC 2.5 3.0 3.5 3.3 MSE222-5Y - 2.0 - 3.0 ATX 85404-8 - - 3.0 1.6 MSE226-4Y - 1.5 1.5 1.9 BC0894-2 - - 2.0 1.3 MSE228-1 - 2.0 - 2.7 C0083008-1 1.0 1.0 1.0 - MSE228-9 - 1.5 1.5 1.8 CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-11 - 3.5 3.0 1.5 FL1533 2.5 3.0 - - MSE230-6 - 2.0 - 3.2 FL1863 - 3.0 2.0 1.5 1.7 MSNT-1						MSE192-8	-	1.0	-	1.3
AF1433-4							*	_	2.0	1.0
ATLANTIC 2.5 3.0 3.5 3.3 MSE222-5Y - 2.0 - 3.0 ATX 85404-8 3.0 1.6 MSE226-4Y - 1.5 1.5 1.9 BC0894-2 2.0 1.3 MSE228-1 - 2.0 - 2.7 C0083008-1 1.0 1.0 1.0 - MSE228-9 - 1.5 1.5 1.8 CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-1 - 3.5 3.0 1.5 CHALEUR 1.5 3.0 MSE230-6 - 2.5 1.5 1.5 FL1533 2.5 3.0 MSE230-6 - 2.5 1.5 1.5 FL1833 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 - ND2225-1R - 2.0 - 3.3 FL1867 2.0 1.3 ND2676-10 - 2.5 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - 1.0 1.0 - 1.1 JS111-28 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 2.0 - NORVALLEY 3.5 3.5 3.5 - MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN68097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 MSB040-3 1.0 1.5 1.5 1.0 MSB040-3 1.0 - 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 MSB040-3 1.0 1.5 1.5 1.7 MSB057-2 3.0 4.1 PORTAGE 3.5 2.5 MSB057-2 1.0 1.5 1.8 PREMIER 1.0 1.5 1.7 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 3.5 - 3.5 1.5 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 3.5 MSB076-2 1.0 1.5 1.5 1.8 PREMIER 3.5 3.5 3.5 MSB076-2 1.0 1.5 1.5 1.8 PREMIER 3.5 3.5 3.5 MSB076-2 1.0 1.5 1.5 1.8 PREMIER 3.5 3.5 3.5 MSB076-2 1.0 1.5 1.5 1.8 PREMIER 3.5 3.5 3.5 3.5 3.5 3.0 MSB076-2 1.0 1.5 1.5 1.8 PREMIER 3.5							-	1.5		
ATX 85404-8 3.0 1.6 MSE226-4Y - 1.5 1.5 1.9 BC0894-2 2.0 1.3 MSE228-1 - 2.0 - 2.7 C0083008-1 1.0 1.0 1.0 1.0 - MSE228-9 - 1.5 1.5 1.5 1.8 CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-11 - 3.5 3.0 1.5 CHALEUR 1.5 3.0 MSE230-6 - 2.5 1.5 1.5 1.5 FL1533 2.5 3.0 MSE230-6 - 2.0 - 3.2 FL1883 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.5 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-10 1.5 1.5 1.5 I.5 ISHAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB 1.5 1.0 1.0 - ISHAND SUNSHINE 1.5 1.0 1.0 NORCHIP 1.5 - 3.0 3.0 1.8 LEMHI RUSSET 1.0 1.0 - 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - NORCHIP 1.5 1.0 1.0 MATILDA - 2.0 2.0 2.0 2.3 NY103 - 3.5 3.5 3.5 2. MICHIGOLD 2.0 - 4.0 2.8 NAWAY 1.0 1.5 1.5 1.0 MN16180 - 2.0 - 4.0 2.8 NAWAY 1.0 1.5 1.5 1.0 MN16180 - 2.0 1.9 P88-13-4 - 2.0 1.5 1.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - MSB027-1R 3.0 - 1.5 1.5 I.5 I.8 PRENTIE 1.0 1.0 1.5 1.5 I.0 MSB057-2 3.0 - 1.5 1.8 PREMIER 3.5 3.5 - 3.5 - 3.0 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5 - 3.5 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5 - 3.5 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5 - 3.0 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5 - 3.5 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5 3.5 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5 3.5 MSB057-2 1.0 1.5 1.5 1.8 PREMIER 3.5 5.5							_			
BC0894-2 - - 2.0 1.3 MSE228-1 - 2.0 - 2.7 C0083008-1 1.0 1.0 1.0 - MSE228-9 - 1.5 1.5 1.8 CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-11 - 3.5 3.0 1.5 CHALEUR 1.5 3.0 - - MSE250-2 - 2.5 1.5 1.5 FL1833 3.0 2.0 1.5 1.7 MSD7-1 3.0 - - 3.2 FL1863 - 3.0 2.0 - ND2225-1R - 2.0 3.3 FL1863 - 3.0 2.0 - ND2676-10 - - 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - -							-		1.5	
CO083008-1 1.0 1.0 1.0 - MSE228-9 - 1.5 1.5 1.8 CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-11 - 3.5 3.0 1.5 CHALEUR 1.5 3.0 - - MSE230-6 - 2.5 1.5 1.5 FL1533 2.5 3.0 - - MSE250-2 - 2.0 - 3.2 FL1863 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1867 - 3.0 2.0 - ND225-1R - - 2.0 3.3 FL1867 - - 2.0 1.3 ND2676-10 - - 1.5 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB							-			
CENTURY RUSSET 2.5 - 3.5 3.1 MSE228-11 - 3.5 3.0 1.5 CHALEUR 1.5 3.0 - - MSE230-6 - 2.5 1.5 1.5 FL1533 2.5 3.0 - - MSE250-2 - 2.0 - 3.2 FL1863 - 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 - ND2225-1R - - 2.0 3.3 FL1867 - - 2.0 1.3 ND2676-10 - - 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 NORCHIP 1.5 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>1.5</td> <td></td>							_		1.5	
CHALEUR 1.5 3.0 - - MSE230-6 - 2.5 1.5 1.5 FL1533 2.5 3.0 - - MSE250-2 - 2.0 - 3.2 FL1833 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 - ND2225-1R - - 2.0 3.3 FL1867 - - 2.0 1.3 ND2676-10 - - 1.5 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - NORVALLEY 3.5 3.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>							_			
FL1533 2.5 3.0 - - MSE250-2 - 2.0 - 3.2 FL1833 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 - ND2225-1R - - 2.0 3.3 FL1867 - - 2.0 1.3 ND2676-10 - - 1.5 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - NORVALLEY 3.5 3.5 3.5 - - M.0 1.0 N.0 N.0 N.0 N.0 N.0 N.0							_			
FL1833 3.0 2.0 1.5 1.7 MSNT-1 3.0 - 1.0 1.0 FL1863 - 3.0 2.0 - ND2225-1R - - 2.0 3.3 FL1867 - - - 2.0 1.3 ND2676-10 - - 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 3.5 - MATILDA - 2.0 2.0 2.3 NY101 1.5 1.0 1.0 1.0 MN16180 - - 3.0 2.3 P84-13-12<										
FL1863 - 3.0 2.0 - ND2225-1R - - 2.0 3.3 FL1867 - - 2.0 1.3 ND2676-10 - - 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 - MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1										
FL1867 - - 2.0 1.3 ND2676-10 - - 1.5 1.5 1.5 GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 - MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16489 - - 2.0 1.9 P88-13-4 <										
GOLDRUSH 1.5 1.0 1.0 - ND860-2 3.5 - 3.0 3.0 ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 - - - 1.0										
ISLAND SUNSHINE - 2.5 4.5 - NEWLEAF-RB - - 1.0 - JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 - MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 <										
JS111-28 - - 1.0 1.0 NORCHIP 1.5 - 3.0 1.8 LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 - MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0										
LEMHI RUSSET 1.0 1.0 - - NORVALLEY 3.5 3.5 3.5 - MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB073-2 - - 1.5 1.8 <										
MAINESTAY 4.0 3.0 4.5 - NY101 1.5 1.0 1.0 1.0 MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 1.7 MSB040-3 1.0 - 1.0 1.8 PIKE -										
MATILDA - 2.0 2.0 2.3 NY103 - 3.5 3.0 2.5 MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5										
MICHIGOLD 2.0 - 4.0 2.8 ONAWAY 1.0 1.5 1.5 1.0 MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB076-2 1.0 1.5 1.5 1.8 PREMIER -										
MN16180 - - 3.0 2.3 P84-13-12 1.0 1.5 3.0 - MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE										
MN16489 - - 2.0 1.9 P88-13-4 - 2.0 - 3.0 MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0 - -			-							1.0
MSA091-1 2.0 1.5 1.0 1.8 P88-15-1 2.5 3.5 - 3.0 MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0 - -		-	-						3.0	
MSA097-1Y 1.5 - 2.0 1.7 PENTA 3.0 4.5 - - MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0 - -	MN16489								-	
MSB027-1R 3.0 - 4.0 1.5 PICASSO - - 1.5 - MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0 - -	MSA091-1		1.5						-	3.0
MSB040-3 1.0 - 1.0 1.8 PIKE - 1.0 1.5 1.7 MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0 - -	MSA097-1Y		-				3.0	4.5	-	-
MSB057-2 3.0 - 3.0 4.1 PORTAGE 3.5 2.5 - - MSB073-2 - - 1.5 1.8 PREMIER - - 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0 - -	MSB027-1R		-	4.0			-	-	1.5	-
MSB073-2 1.5 1.8 PREMIER 3.5 - MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0	MSB040-3	1.0	-	1.0	1.8	PIKE	-	1.0	1.5	1.7
MSB076-2 1.0 1.5 1.5 1.8 PRESTILE 1.0 1.0	MSB057-2	3.0	-	3.0	4.1	PORTAGE	3.5	2.5	-	-
	MSB073-2	-	-	1.5	1.8	PREMIER	-	-	3.5	-
MSD082 1 15 25 20 D DIDDANIV 20 20 10 10	MSB076-2	1.0	1.5	1.5	1.8	PRESTILE	1.0	1.0	-	-
1.0 1.0	MSB083-1	1.5	2.5	3.0	-	R. BURBANK	2.0	2.0	1.0	1.0
MSB094-1 2.0 - 3.0 3.0 R. NORKOTAH 1.5 1.8	MSB094-1	2.0	-	3.0	3.0	R. NORKOTAH	1.5	-	-	1.8
MSB106-7 1.0 - 3.0 1.3 RED NORLAND 2.0 - 2.0 1.0	MSB106-7	1.0	_	3.0	1.3	RED NORLAND	2.0	_	2.0	1.0
MSB107-1 2.5 2.5 2.5 1.8 RED PONTIAC 5.0 2.5 4.0 2.6	MSB107-1	2.5	2.5	2.5				2.5		
MSC010-20Y - 1.5 2.0 - REDDALE 2.0 -										-
MSC098-2 2.0 - 3.5 - SAGINAW GOLD 3.0 3.0 2.5 1.5										1.5
MSC103-2 3.0 - 2.0 - SANTE 3.5 3.0			-		_					_
MSC120-1Y 1.0 - 2.5 1.5 SHEPODY - 4.5 4.0 3.8			_							3.8
MSC121-7 3.0 - 4.0 - SNOWDEN 2.0 3.5 3.0 2.5			_							
MSC122-1 1.5 - 1.5 - ST. JOHNS 3.0 3.0 4.0 -										
MCC125 0 1.0 2.0 CUREDIOD 1.0 1.5										
							1.0			
							-			
		-					-			
MSE041-1 - 3.0 3.5 4.3 YUKON GOLD - 3.5 2.0 3.0 		-	3.0	ر.ر	4.3	I OKON GOLD	-	3.3	2.0	3.0

¹SCAB RATING

^{1 =} practically no infection

^{2 =} low infection

 $^{3 = \}text{avg. susc.}$ (i.e. Atlantic)

^{4 =} susc. (high)

^{5 =} severe susc.

Michigan Table 8A. 1997 BLACKSPOT BRUISE SUSCEPTIBILITY SAMPLES

A. SIMULATED BRUISE SAMPLES

								PERCENT	
						<u>UBER</u>	TOTAL	BRUISE	AVERAGE
VARIETY	0	11	2	3	4	5+	TUBERS	FREE	SPOTS/TUBER
DATE OF HARVEST	ր։ LO ։	NG-L	ATE						
SHEPODY	24						24	100	0.000
A7961-1	23	1					24	96	0.042
CENTURY RUSSET	23	1					24	96	0.042
E202-3RUS	23	1					24	96	0.042
R. BURBANK	23	1					24	96	0.042
RB NEWLEAF	23	1					24	96	0.042
JS111-28	24	2					26	92	0.077
A84118-3	22	2					24	92	0.083
B106-7	22	2					24	92	0.083
A8495-1	21	4					25	84	0.160
P88-13-4	20	4					24	83	0.167
UMATILLA RUS.	17	6	1				24	71	0.333
DATE OF HARVEST	r: RO	UND	WHI	TES-I	LATE	4			
E221-1	24						24	100	0.000
NY103	24	1					25	96	0.040
C103-2	23	1					24	96	0.042
FL1879	23	1					24	96	0.042
B040-3	22	2					24	92	0.083
B073-2	21	3					24	88	0.125
E228-11	21	3					24	88	0.125
E228-9	21	3					24	88	0.125
NY101	21	2	1				24	88	0.167
REBA	20	4					24	83	0.167
PIKE	21	2		1			24	88	0.208
ONAWAY	20	2		1			23	87	0.217
FL1833	17	7					24	71	0.292
SNOWDEN	15	9					24	63	0.375
A091-1	15	8	1				24	63	0.417
FL1831	14	6	4				24	58	0.583
NT-1	13	7	4				24	54	0.625
B076-2	12	8	4				24	50	0.667
FL1869	15	4	3	2			24	63	0.667
C148-A	11	8	5				24	46	0.750
ATL NEWLEAF	11	10	1	1	1		24	46	0.792
B107-1	10	11	1	2			24	42	0.792
ATLANTIC	10	9	4			1	24	42	0.917
E018-1	9	6	5	4			24	38	1.167
							47		1,107

	> II	U (DEF	OF (DOT	DED T	TIDED	TOTAL	PERCENT	AVEDAGE
VARIETY	<u>NU</u>	<u> 1</u>	2	3	<u>PEK 1</u> 4	<u>UBER</u> 5+	TOTAL TUBERS	BRUISE FREE	AVERAGE SPOTS/TUBER
VARGETT		1			7		TODERS	TREE	31013/10DEN
NORTH CENTRAL	LREG	SIONA	LTR	IAL					
R. NORKOTAH	24						24	100	0.000
ND2676-10	20	2					22	91	0.091
RED NORLAND	21	3					24	88	0.125
W1151RUS	21	3					24	88	0.125
R. BURBANK	20	4					24	83	0.167
RED PONTIAC	19	5					24	79	0.208
ND2225-1R	17	5	1				23	74	0.304
MN16489	16	8					24	67	0.333
NORCHIP	16	6	1				23	70	0.348
SNOWDEN	17	6		1			24	71	0.375
B073-2	16	6	1	1			24	67	0.458
MN16180	14	5	3	1			23	61	0.609
ND3828-15	10	9	2				21	48	0.619
MN16966	11	11	1	1			24	46	0.667
B076-2	8	10	6				24	33	0.917
B106-7	8	10	5	1			24	33	0.958
W1348RUS	9	8	6			1	24	38	1.042
ATLANTIC	7	9	5	1	1	1	24	29	1.292
W1313	0	5	8	6	4	1	24	0	2.500
YELLOW FLESH &			AN TI	RIAL					
DALI	23	1					24	96	0.042
LATONA	23	1					24	96	0.042
YUKON GOLD	23	1					24	96	0.042
D029-3Y	21	3					24	88	0.125
E226-4Y	22	1	1				24	92	0.125
OBELIX	22	1	1				24	92	0.125
E222-5Y	20	4					24	83	0.167
IS. SUNSET	20	4					24	83	0.167
MICHIGOLD	20	4					24	83	0.167
E048-2Y	18	5	1				24	75	0.292
A097-1Y	13	11					24	54	0.458
E149-5Y	16	5	1	2			24	67	0.542
SAGINAW GOLD	15	6	2	1			24	63	0.542
C120-1Y	13	7	3				23	57	0.565
MATILDA	8	13	1				22	36	0.682
SNOWDEN	12	7	5				24	50	0.708
JULIANNA ROSE	8	10	4	2			24	33	1.000
MSU BREEDING L	<u>INES</u>	2 X 23	TRI	<u>AL</u>					
B094-1	20			_			20	100	0.000
A110-2	19	1					20	95	0.050
B027-1RUS	18	2					20	90	0.100
F090-1	18	2					20	90	0.100
G209-1	18	2					20	90	0.100

								PERCENT	
						UBER	TOTAL	BRUISE	AVERAGE
VARIETY	0	1	2	3	4	5+	TUBERS	FREE	SPOTS/TUBER
E033-1RD	17	3					20	85	0.150
F373-A	18	2					20	90	0.100
ND860-2	17	3					20	85	0.150
G141-3	15	4					19	79	0.211
G124-8P	14	4					18	78	0.222
YUKON GOLD	14	4					18	78	0.222
G077-7Y	17	2		1			20	85	0.250
G119-1RD	15	3	1				19	79	0.263
B054-4	16	2	2				20	80	0.300
G010-11	13	6					19	68	0.316
G104-6	13	7					20	65	0.350
G007-1	12	8					20	60	0.400
G080-1	13	6	1				20	65	0.400
G012-1RD	13	4	2				19	68	0.421
G296-3	12	7	1				20	60	0.450
ONAWAY	14	3	2	1			20	70	0.500
G050-2	13	2		1	1		17	76	0.529
G236-1	11	5	3				19	58	0.579
P84-12-7	11	5	2	1			19	58	0.632
G227-2	10	8	1	1			20	50	0.650
E215-12	8	9	2				19	42	0.684
SNOWDEN	10	6	2	1			19	53	0.684
G049-7	10	6	4				20	50	0.700
A 105-1	10	6	3	1			20	50	0.750
G0803-1RD	10	7	1	2			20	50	0.750
G274-3	8	8	2	1			19	42	0.789
G287-4	8	7	4	1			20	40	0.900
F321-5	6	8	5				19	32	0.947
G135-12	5	12	1	2			20	25	1.000
P84-9-8	7	7	4	2			20	35	1.050
F313-3	8	4	4	4			20	40	1.200
G163-1	6	10	1	1	1	1	20	30	1.200
E226-5	5	8	4	3			20	25	1.250
ATLANTIC	8	3	4	5			20	40	1.300
F327-G	7	4	5	1	2		19	37	1.316
G139-1	3	8	7	1	1		20	15	1.450
G245-2	3	9	5	2	1		20	15	1.450
G243-2 G261-3	5	9	3	3	3		23	22	1.565
G301-9	3	8	4	3	1	1	20	15	1.700
G049 - 4	0	8	4	1	2	1	15	0	1.800
		4	3	4	2		16	19	1.875
G260-4	3				2	1	20	15	1.900
G297-4RD	3	6	5	3		1	20	15	1.950
G135-5	3	6	3	5	3			15	1.950
G251-10	3	7	1	6	3		20		
G079-2	1	5	7	6	1		20	5	2.050
G295-5	3	5	5	4	2	2	21	14	2.143

0 (23 TRL) 22 20 21 19 19 18 18 17 16 15 13 15 16 12 12 15	1 4 1 5 3 6 6 6 6 7 5 8 8 5 8 8	2 1 2 1 2 1 2 3	3	4	5+	TUBERS 24 24 24 24 23 24 24 23 24 22 23 23 22 22 24	92 83 88 79 83 75 75 74 70 68 59	0.125 0.167 0.208 0.208 0.217 0.250 0.250 0.261 0.304 0.409
22 20 21 19 19 18 18 17 16 15 13 15 16 12 12	1 4 1 5 3 6 6 6 6 7 5 8 8 5 8 8	2 1 2 1 2 3	1			24 24 24 23 24 24 23 23 23 22 22	83 88 79 83 75 75 74 70 68 59	0.167 0.208 0.208 0.217 0.250 0.250 0.261 0.304 0.409 0.455
22 20 21 19 19 18 18 17 16 15 13 15 16 12 12	1 4 1 5 3 6 6 6 6 7 5 8 8 5 8 8	2 1 2 1 2 3	1			24 24 24 23 24 24 23 23 23 22 22	83 88 79 83 75 75 74 70 68 59	0.167 0.208 0.208 0.217 0.250 0.250 0.261 0.304 0.409 0.455
21 19 19 18 18 17 16 15 13 15 16 12 12	1 5 3 6 6 6 7 5 8 8 5 8	1 2 1 2 3	1			24 24 23 24 24 23 23 23 22 22	88 79 83 75 75 74 70 68 59	0.208 0.208 0.217 0.250 0.250 0.261 0.304 0.409 0.455
19 19 18 18 17 16 15 13 15 16 12 12	5 3 6 6 6 7 5 8 8 5 8 8	1 2 1 2 3	1			24 23 24 24 23 23 23 22 22	79 83 75 75 74 70 68 59	0.208 0.217 0.250 0.250 0.261 0.304 0.409 0.455
19 18 18 17 16 15 13 15 16 12 12	3 6 6 7 5 8 8 5 8	2 1 2 3	1			23 24 24 23 23 22 22	83 75 75 74 70 68 59	0.217 0.250 0.250 0.261 0.304 0.409 0.455
18 18 17 16 15 13 15 16 12 12	6 6 6 7 5 8 8 5 8	2 1 2 3	1			24 24 23 23 22 22	75 75 74 70 68 59	0.217 0.250 0.250 0.261 0.304 0.409 0.455
18 17 16 15 13 15 16 12 12	6 6 7 5 8 8 5 8	1 2 3	1			24 23 23 22 22	75 74 70 68 59	0.250 0.261 0.304 0.409 0.455
17 16 15 13 15 16 12 12	6 7 5 8 8 5 8	1 2 3	1			23 23 22 22	74 70 68 59	0.250 0.261 0.304 0.409 0.455
16 15 13 15 16 12 12	7 5 8 8 5 8	1 2 3	1			23 22 22	70 68 59	0.304 0.409 0.455
15 13 15 16 12 12	5 8 8 5 8	1 2 3	1			22 22	68 59	0.304 0.409 0.455
13 15 16 12 12	8 8 5 8	1 2 3	1			22	59	0.409 0.455
15 16 12 12 15	8 5 8 8	2 3	1					0.455
15 16 12 12 15	8 5 8 8	3	1					
16 12 12 15	5 8 8	3				24	63	0.458
12 12 15	8	3			1	24	67	0.583
15						23	52	0.609
15		3				23	52	0.609
	7	3	1			26	58	0.615
18	1	2	2	1		24	75	0.625
								0.739
								0.739
			1					0.750
			_					0.760
								0.792
			2		1			0.833
			_	1	-			0.875
								0.875
			1					0.913
				1				0.913
			2	•				1.000
								1.042
				1				1.042
				-				1.043
								1.083
				1				1.083
								1.125
				2	1			1.167
								1.417
					•			1.417
				•				1.542
				1				1.542
								1.560
								1.625
								1.792
				2				1.826
	13 12 10 10 10 12 15 10 8 10 11 6 7 12 7 8 7 12 6 7 3 3 5 2 3 4	13	13 5 3 12 7 2 10 11 2 10 11 4 12 5 7 15 3 3 10 9 4 8 11 5 10 6 6 11 5 6 6 14 2 7 12 2 12 3 6 7 11 3 8 9 5 7 8 8 12 4 4 6 9 5 7 4 10 3 8 10 3 11 5 5 6 11 2 10 8 3 8 4	13 5 3 2 12 7 2 2 10 11 2 1 10 11 4 4 12 5 7 7 15 3 3 2 10 9 4 4 8 11 5 6 6 14 2 2 7 12 2 3 12 3 6 2 7 11 2 3 8 9 5 1 7 8 8 1 12 4 4 1 6 9 5 2 7 11 2 3 8 9 5 1 7 8 8 1 12 4 4 1 6 9 5 2 7 4 10 2 3 8 10 3	13 5 3 2 12 7 2 2 10 11 2 1 10 11 4 4 12 5 7 7 15 3 3 2 10 9 4 1 8 11 5 1 10 6 6 1 11 5 6 1 11 5 6 1 11 5 6 1 11 2 3 1 7 11 2 3 7 11 3 3 8 9 5 1 1 7 8 8 1 1 7 4 10 2 1 7 4 10 2 1 3 8 10 3 1 <t< td=""><td>13 5 3 2 12 7 2 2 10 11 2 1 10 11 4 4 12 5 7 7 15 3 3 2 1 10 9 4 1 8 11 5 6 1 1 6 14 2 2 2 7 12 2 3</td><td>13 5 3 2 23 10 11 2 1 24 10 11 4 25 12 5 7 24 15 3 3 2 1 24 10 9 4 1 24 10 6 6 1 23 11 5 6 1 23 11 5 6 1 23 6 14 2 2 24 7 12 2 3 24 12 3 6 2 1 24 7 11 2 3 24 8 9 5 1 1 24 7 8 8 1 24 7 4 10 2 1 24 7 4 10 2 1 24 7 4 10 2 1 24 3 8 10</td></t<> <td>13 5 3 2 23 57 12 7 2 2 23 52 10 11 2 1 24 42 10 11 4 25 40 12 5 7 24 50 15 3 3 2 1 24 63 10 9 4 1 24 42 8 11 5 24 33 10 6 6 1 23 43 11 5 6 1 23 48 6 14 2 2 24 25 7 12 2 3 24 29 12 3 6 2 1 24 50 7 11 2 3 24 29 12 4 4 1 2 1 24 29 12 4 4 1 2 1 24 29 </td>	13 5 3 2 12 7 2 2 10 11 2 1 10 11 4 4 12 5 7 7 15 3 3 2 1 10 9 4 1 8 11 5 6 1 1 6 14 2 2 2 7 12 2 3	13 5 3 2 23 10 11 2 1 24 10 11 4 25 12 5 7 24 15 3 3 2 1 24 10 9 4 1 24 10 6 6 1 23 11 5 6 1 23 11 5 6 1 23 6 14 2 2 24 7 12 2 3 24 12 3 6 2 1 24 7 11 2 3 24 8 9 5 1 1 24 7 8 8 1 24 7 4 10 2 1 24 7 4 10 2 1 24 7 4 10 2 1 24 3 8 10	13 5 3 2 23 57 12 7 2 2 23 52 10 11 2 1 24 42 10 11 4 25 40 12 5 7 24 50 15 3 3 2 1 24 63 10 9 4 1 24 42 8 11 5 24 33 10 6 6 1 23 43 11 5 6 1 23 48 6 14 2 2 24 25 7 12 2 3 24 29 12 3 6 2 1 24 50 7 11 2 3 24 29 12 4 4 1 2 1 24 29 12 4 4 1 2 1 24 29

					-			PERCENT	
	NUN	/BER	OF SP	OT P	ER TU	JBER	TOTAL	BRUISE	AVERAGE
VARIETY	0	1	2	3	4	5+	TUBERS	FREE	SPOTS/TUBER
E246-5	5	5	5	5	3	1	24	21	1.958
E247-2	4	3	2	5	3	7	24	17	2.875
SNACK FOOD ASSO	CIAT	ION (SFA)	TRIA	L				
AF1433-3	23	2					25	92	0.080
ND2676-10	24	3					27	89	0.111
NY115	20	3	2				25	80	0.280
ATLANTIC	21	7	1				29	72	0.310
ATL NEWLEAF	14	8					22	64	0.364
NY103	15	10					25	60	0.400
SNOWDEN	16	7	2				25	64	0.440
B0564-8	14	9	1	1			25	56	0.560
BCO894-2	11	11	2	1			25	44	0.720
ATX85404-8	11	10	4				25	44	0.720

^{*} Tuber samples were collected at harvest, graded, and placed in a six-sided plywood drum and rotated ten times to produce simulated bruising. Samples were abrasive-peeled and scored on October 23, 1997.

Table is presented in descending order of average number of spots per tuber.

Michigan Table 8B. 1997 BLACKSPOT BRUISE SUSCEPTIBILITY SAMPLES

B. CHECK BRUISE SAMPLES**

VARIETY	NUM 0	BER 1	OF S	POT PI	ER TUBER 4 5+	TOTAL TUBERS	BRUISE FREE (%)	AVERAGE SPOTS/TUBER
DATE OF HARVEST:	LONG	LAT	F					
E202-3RUS	24	LJZXI				24	100	0.000
JS111-28	24					24	100	0.000
R. BURBANK	24					24	100	0.000
RB NEWLEAF	24					24	100	0.000
SHEPODY	24					24	100	0.000
A7961-1	23	1				24	96	0.042
A8495-1	23	1				24	96	0.042
P88-13-4	23	1				24	96	0.042
B106-7	22	1				23	96	0.043
UMATILLA RUS.	23	2				25	92	0.043
A84118-3	22	2				24	92	0.083
CENTURY RUSSET	21	3				24	88	0.125
CENTURI RUSSEI	21	3				24	00	0.123
DATE OF HARVEST:	ROUN	D WH	IITES	S-LAT	E			
B107-1	24					24	100	0.000
C103-2	24					24	100	0.000
B040-3	23	1				24	96	0.042
E018-1	23	1				24	96	0.042
E228-11	23	1				24	96	0.042
FL1869	23	1				24	96	0.042
NT-1	23	1				24	96	0.042
NY101	23	1				24	96	0.042
NY103	23	1				24	96	0.042
ONAWAY	23	1				24	96	0.042
REBA	23	1				24	96	0.042
E228-9	23	2				25	92	0.080
A091-1	22	2				24	92	0.083
FL1879	22	2				24	92	0.083
B073-2	21	3				24	88	0.125
B076-2	22	1		1		24	92	0.167
SNOWDEN	20	4		1		24	83	0.167
C148-A	20	3	1			24	83	0.208
FL1833	19	3	1			23	83	0.217
PIKE	15	4	1			20	75	0.300
E221-1	16	8	1			24	67	0.333
FL1831	19	2	3			24	79	0.333
ATL NEWLEAF	17	4	2	1		24	71	0.458
B057-2	14	9	1	1		24	58	0.458
ATLANTIC	13	7	2			22	59	0.500
TILITITIE	13	,	2			22	39	0.500
NORTH CENTRAL R	EGION.	AL TI	RIAL	_				
R.NORKOTAH	24					24	100	0.000
B073-2	24					24	100	0.000
RED NORLAND	24					24	100	0.000
RED PONTIAC	23	1				24	96	0.042
NORCHIP	23	1				24	96	0.042

VARIETY	NUM 0	BER 1	OF S 2	<u>POT</u> 3	PER TUBER 4 5+	TOTAL TUBERS	BRUISE FREE (%)	AVERAGE SPOTS/TUBER
ND2676-10	23	1				24	96	0.042
R. BURBANK	23	1				24	96	0.042
SNOWDEN	22	2				24	92	0.083
MN16180	22	2				24	92	0.083
W1151RUS	22	2				24	92	0.083
ND2225-1R	20	4				24	83	0.167
ND3828-15	20	4				24	83	0.167
MN16966	19	4				23	83	0.174
B106-7	20	3	1			24	83	0.208
W1313	19	5	1			24	79	0.208
MN16489	19	3	1			23	83	0.217
W1348RUS	17	6	1			24	71	0.333
B076-2	16	8	1			24	67	0.333
ATLANTIC	8	13	1	1	1	24	33	0.917
YELLOW FLESH &	FUDADI		LID I V	T				
D029-3Y	24	LAIN	INIA			24	100	0.000
DALI	23					23	100	0.000
E230-6	23					23		0.000
							100	
LATONA	24	1				24	100	0.000
E048-2Y	23	1				24	96	0.042
E226-4Y	23	1				24	96	0.042
MICHIGOLD	23	1				24	96	0.042
OBELIX	23	1				24	96	0.042
E149-5Y	22	2				24	92	0.083
SAGINAW GOLD	22	2				24	92	0.083
SNOWDEN	22	2				24	92	0.083
A097-1Y	22	1	1			24	92	0.125
E222-5Y	22	1	1			24	92	0.125
IS. SUNSET	21	3				24	88	0.125
C120-1Y	18	6				24	75	0.250
JULIANNA ROSE	17	5		1		23	74	0.348
MATILDA	12	10				22	55	0.455
MSU BREEDING LI		23 TR	IAL	-			400	
A110-2	20					20	100	0.000
G301-9	19					19	100	0.000
G012-1RD	20					20	100	0.000
F373-A	20					20	100	0.000
G050-2	18					18	100	0.000
F090-1	20					20	100	0.000
P84-12-7	19	1				20	95	0.050
G119-1RD	19	1				20	95	0.050
P84-9-8	19	1				20	95	0.050
G163-1	19	1				20	95	0.050
B027-1RUS	19	1				20	95	0.050
G010-11	19	1				20	95	0.050

VARIETY	NUM 0	BER C	OF SP 2	<u>OT</u> 3	PER TU 4	JBER 5+	TOTAL TUBERS	BRUISE FREE (%)	AVERAGE SPOTS/TUBER
SNOWDEN	19	1					20	95	0.050
G077-7Y	19	1					20	95	0.050
YUKON GOLD	17	1					18	94	0.056
G236-1	23	2					25	92	0.080
ONAWAY	18	2					20	90	0.100
G135-12	18	2					20	90	0.100
F321-5	18	2					20	90	0.100
G083-1RD	18	2					20	90	0.100
G227-2	18	2					20	90	0.100
G287-4	18	2					20	90	0.100
G141-3	17	2					19	89	0.105
B094-1	16	2					18	89	0.111
F313-3	16	2					18	89	
A105-1	18		1				20		0.111
G209-1	17	1	1					90	0.150
ND860-2		3					20	85	0.150
	17	3					20	85	0.150
G139-1	17	3					20	85	0.150
G104-6	17	3					20	85	0.150
E215-12	16	3					19	84	0.158
G007-1	16	4					20	80	0.200
B054-4	17	2	1				20	85	0.200
E033-1RD	17	2	1				20	85	0.200
F327-G	16	4					20	80	0.200
G079-2	16	4					20	80	0.200
G296-3	16	4					20	80	0.200
ATLANTIC	16	4					20	80	0.200
G080-1	15	5					20	75	0.250
E226-5	16	6					22	73	0.273
G261-3	14	6					20	70	0.300
G049-7	16	3		1			20	80	0.300
G245-2	12	7					19	63	0.368
G260-4	15	3	1	1			20	75	0.400
G049-4	12	7	1				20	60	0.450
G297-4RD	12	7		1			20	60	0.500
G135-5	13	5		2			20	65	0.550
G251-10	9		4		1		20	45	0.900
G295-5	7		1	1		1	19	37	1.000
ADAPTATION 4 X 2	3 TRIAL								
B0984-3	24						24	100	0.000
B1004-8	24						24	100	0.000
E009-1	24						24	100	0.000
E041-1	24						24	100	0.000
E228-1	24						24	100	0.000
E230-3	23						23	100	0.000
E250-2	24						24	100	0.000
F002-1	24						24	100	0.000
	27						24	100	0.000

VARIETY	<u>NUM</u> 0	BER 1	<u>OF S</u> 2	POT PER TUBER 3 4 5+	TOTAL TUBERS	BRUISE FREE (%)	AVERAGE SPOTS/TUBER
F014-9	24				24	100	0.000
F019-2	24				24	100	0.000
F019-2 F099-3	24				24	100	0.000
F165-6RY	24	1			24	100	0.000
E026-B	23	1			24	96	0.042
E234-3	23	1			24	96	0.042
E245-B	23	1			24	96	0.042
F001-2	23	1			24	96	0.042
F020-23	23	1			24	96	0.042
F349-IRY	23	1			24	96	0.042
P63-1	23	1			24	96	0.042
P83-6-18	23	1			24	96	0.042
SNOWDEN	23	1			24	96	0.042
E213-2	22	2			24	92	0.083
E 263- 3	22	2			24	92	0.083
F08 7- 3	22	2			24	92	0.083
B0856-4	21	3			24	88	0.125
F068-5	22	1	1		24	92	0.125
F194-3	21	3			24	88	0.125
ONAWAY	21	3			24	88	0.125
E263-10	20	4			24	83	0.167
F100-1	19	4			23	83	0.174
E080-4	20	3	1		24	83	0.208
F019-11	19	5			24	79	0.208
E030-4	20	4	1		25	80	0.240
P73-2	18	6	•		24	75	0.250
F105-10	17	7			24	71	0.292
F3 7 3-8	17	7			24	71	0.292
P32-3	20	2	1	1	24	83	0.292
B0915-3	17	6	1	1	24	71	0.333
F015-1	17	6			24	71	0.333
			1		18	72	0.333
F093-5	13	4	1		24	75	0.333
F88-15-1	18	4	2				
E011-10	15	7	1		23	65	0.391
E247-2	16	4	1	2	23	70	0.522
E24 6- 5	14	7	1	2	24	58	0.625
Q8-2	13	7	4		24	54	0.625
SNACK FOOD ASSOC	CIATIO	N (SF	'A) T	RIAL			
NY115	23	2			25	92	0.080
ATL NEWLEAF	23	1	1		25	92	0.120
NY 103	21	4			25	84	0.160
ND2676-10	20	5			25	80	0.200
AF1433-3	20	4		1	25	80	0.280
ATLANTIC	17	8			25	68	0.320
SNOWDEN	17	8			25	68	0.320
B0564-8	20	5			27	74	0.333

Michigan Table 8b. (Continued)

VARIETY	<u>NUM</u> 0	BER 1	OF S	<u>POT</u> 3	4	<u>UBER</u> 5+	TOTAL TUBERS	BRUISE FREE (%)	AVERAGE SPOTS/TUBER
ATX85404-8 BCO894-2	12 11	11	2				25 26	48 42	0.600 0.808

^{**} Tuber samples were collected at harvest, graded, and placed in a six-sided plywood drum and rotated ten times to produce simulated bruising. Samples were abrasive-peeled and scored on Octobe 23, 1997.

Michigan Table 9. 1997 RESULTS FROM MSU LATE BLIGHT VARIETY TRIAL(1)

Resistant (2)	Moderatel	y Resistant	1	Reduced Suscepti	bility	Susceptible (3)
AWN86514-2	A080432-1	Lily	A84118-3	MSB027-1Rus	MSF105-10	Atlantic
B0288-17	A082611-7	Matilda	Allegany	MSB040-3	MSF165-6RY	Century Russet
B0692-4	A084275-3	MSE230-6	Alpha	MSB076-2	MSF373-8	Onaway
B0718-3	B0749-2F	MSE246-5	B0811-13	MSB107-1	MSG007-1	R. Norkotah
B0767-2	B1004-8	MSG139-1	B0856-4	MSC103-2	MSG050-2	R. Burbank
Bertita	C0083008-1	MSG163-1	B0915-3	MSC120-1Y	MSG135-5	Shepody
Bzura	Dorita	NorDonna	Dali	MSE009-1	MSG297-4RD	Yukon Gold
MSG274-3	Elba	Obelix	Desiree	MSE018-1	ND2676-10	Norchip
	Greta	Ontario	FL1879	MSE222-5Y	Pike	
	Hindenburg	Pimpernel	Hampton	MSE263-10	R. Norland	
	Is. Sunshine	Robijn	Is. Sunset	MSF001-2	Russian Blue	
	Krantz	Stobrawa	MN16489	MSF015-1	Snowden	
	Latona	Zarevo	MSA091-1	MSF019-11		
	Libertas					

^{(1) 33} days after inoculation with US-8 genotype of P. infestans

⁽²⁾ RAUDPC < 0.15 = Resistant; 0.16 - 0.30 = Mod. Resistant; 0.31 - 0.45 = Reduced Susc.; > 0.45 = Susceptible (3) Only named cultivars are listed

Lo	Low Tuber Infection	tion			Moderate	Moderate Tuber Infection				High Tuber Intection	110
Clone	Avg. Width	Avg. Depth1	Clone	Avg. Width	Avg. Depth Clone	h Clone	Avg. Width	Avg. Depth	Clone	Avg. Width	Avg. Depth
B1004-8	3.6	2.3	MSF100-1	15.7	8.0	MSC120-1Y	20.2	10.6	MSB027-1R	16.9	16.2
Snowden	9.5	3.1	MN16489	13.7	8.1	MSG012-1RD	7.8	10.7	MSF014-9	30.4	16.4
MSF105-10	9.3	4.4	MSF093-5	19.6	8.3	Norchip	9.4	10.9	MSF313-3	11.5	16.4
MSG236-1	3.4	4.5	MSG104-6	12.1	8.3	A7961-1	22.1	11.0	MSE228-1	42.1	17.1
FL1833	13.8	4.6	MSB073-2	14.4	8.3	MSG301-9	0.6	11.2	MSG245-2	14.1	17.6
MSE030-4	0.6	4.8	MSE222-5Y	12.0	8.4	MSE213-2	23.0	11.3	MSE226-5	29.6	17.6
MSF194-3	8.1	5.1	MSE234-3	17.1	8.5	Red Norland	7.9	11.3	MSB054-4	12.5	17.7
MSA091-1	13.1	5.6	MSC148-A	22.8	8.5	W1313	4.9	11.5	B0984-3	12.6	17.8
P32-3	10.9	5.7	MSE247-2	23.8	8.5	MSG083-1RD	23.8	11.6	MSG287-4	9.2	18.0
Shepody	17.4	5.8	MSG049-7	16.3	8.5	Michigold	14.1	11.6	MSG251-10	13.3	18.1
MSF068-5	13.0	5.8	P84-9-8	9.2	8.6	MSG049-4	9.6	11.6	MSE250-2	25.3	18.3
MSG080-1	11.0	5.9	W1151RUS	23.8	8.6	MSG135-5	6.9	11.7	MSG274-3	32.0	18.4
MN16966	9.7	5.9	MSE230-3	14.7	8.7	MSC103-2	47.6	11.8	MSE041-1	25.3	18.5
NY101	12.5	0.9	MSE018-1	14.7	8.7	MSG163-1	9.6	11.8	MN16180	14.4	18.6
MSF087-3	12.5	6.1	MSE009-1	14.6	8.9	P88-15-1	17.4	12.1	MSG079-2	14.8	18.6
MSNT-1	9.7	6.2	MSE221-1	14.1	0.6	W1834RUS	7.4	12.1	MSB040-3	36.5	18.6
B0915-3	6.8	6.3	MSF015-1	18.3	0.6	MSE202-3RUS	16.2	12.1	MSF090-1	0.6	19.0
NY103	14.7	6.4	MSB057-2	15.9	9.1	P84-12-7	23.2	12.3	Atlantic	9.6	19.1
MSF002-1	26.9	6.5	Russet Burbank	10.8	9.1	Saginaw Gold	25.3	12.3	MSG227-2	10.3	19.4
MSE263-10	12.0	6.7	A8495-1	16.4	9.2	MSF019-11	16.3	12.5	MSA105-1	10.5	19.5
MSE080-4	13.8	7.0	MSG260-4	7.0	9.2	MSE149-5Y	18.4	12.7	MSE226-4Y	25.9	19.8
MSF373-8	10.4	7.1	MSF099-3	16.2	9.3	FL1831	24.3	12.8	MSE215-12	12.9	20.1
ND3828-15	14.4	7.2	MSF001-2	14.5	9.3	ND2225-1R	18.9	12.8	B0856-4	34.2	20.5
Latona	15.2	7.3	MSG077-7Y	5.7	9.3	MSG007-1	8.6	13.0	MSB107-1	37.8	20.7
P83-6-18	11.9	7.3	NY87-Reba	15.8	9.4	NYP73-2	18.8	13.1	Obelix	34.1	20.7
MSE263-3	17.5	7.3	Matilda	14.2	9.5	Century R.	17.6	13.1	MSG050-2	10.0	20.9
MSE246-5	14.1	7.4	FL1879	13.5	9.5	MSE245-B	16.9	13.1	MSG261-3	17.5	20.9
MSE026-B	17.5	7.4	ND2676-10	18.1	9.5	MSG135-12	8.9	13.2	MSA110-2	12.6	21.0
MSF349-1	17.0	7.5	Pike	22.2	9.6	MSB106-7	31.9	13.3	A082611-7	20.0	21.1
MSF020-23	14.2	7.5	Is. Sunset	21.4	6.7	MSF373-A	12.6	13.6	ND860-2	13.4	21.7
MSF019-2	14.1	7.7	Yukon Gold	5.3	6.6	MSE033-1RD	8.0	13.6	MSE048-2Y	58.8	21.7
MSE228-9	15.9	7.7	MSB076-2	21.2	10.0	MSD029-3Y	22.6	14.1	MSG296-3	17.7	23.7
MSF327-6	4.7	7.8	MSF165-6RY	18.8	10.0	ATL Newleaf	26.3	14.1	MSE228-11	35.9	23.7
MSA097-1Y	15.5	7.9	MSB094-1	7.6	10.1	Onaway	10.7	14.4	MSG141-3	17.5	26.0
NYP63-1	18.4	7.9	MSF321-5	6.3	10.1	MSG119-1RD	11.0	14.6	MSG010-11	27.8	33.8
			P88-13-4	17.4	10.2	Red Pontiac	15.4	14.7	MSG124-8P	36.9	37.7
			MSE011-10	20.5	10.2	RB Newleaf	20.4	14.7			
			FL1869	16.4	10.2	MSE230-6	0.6	14.8			
			MSG209-1	35.7	10.4	MSG139-1	7.3	14.9			
			A84118-3	10.2	10.4	MSG297-4RD	8.5	15.3			
			Dali	13.3	10.5	MSG295-5	6.1	15.4			
width and depth measured in mm	th measured in	ı mm									

Minnesota Potato Variety Evaluations

C.A. Thill, R.L. Wenkel, D.K. Wildung, V.A. Fritz, N.A. Anderson, R. K. Jones, D.W. Ragsdale, E.B. Radcliffe, and C.A. Longtine.

The major objectives of the University of Minnesota potato varietal breeding program are to: 1. Identify superior varieties for fresh market and for processing. 2. Screen and evaluate wild and cultivated *Solanum* germplasm useful in varietal improvement. 3. Initiate and explore new breeding methods. 4. Evaluate germplasm developed outside the Minnesota program for adaptation to Minnesota growing environments.

Field experiments were conducted at six Minnesota (Grand Rapids, Becker, Rosemount, Crookston, Hollandale, Long Prairie) and one North Dakota (Grand Forks) locations. Grand Rapids is located in North Central Minnesota, is non-irrigated, has a cool, short (100 days) growing season, and has acid fine sandy forested soils. Becker is located in Central Minnesota, is irrigated, has Hubbard sandy soils, and has a 140 day growing season. Rosemount is located 30 miles South of St. Paul, Minnesota, is nonirrigated, has silt loam soils, and a 140 day growing season. Crookston, Minnesota and Grand Forks. North Dakota are located in the Red River Valley of Minnesota and North Dakota. Both sites are nonirrigated with a 95-110 day growing season. Crookston has Fargo clay soils, while Grand Forks has heavy silt clay loamy soils. Hollandale is located in South Central Minnesota, has organic peat soils, and a 120 day growing season and Long Prairie is located in Central Minnesota, has course sand soils. and a 120 day growing season. Trials at Grand Rapids, Becker, Rosemount, and Crookston are located on Minnesota Agricultural Experiment Stations, while those at Hollandale and Long Prairie are located on grower fields. Trials at Grand Forks are located at the Potato Research Farm of the Red River Valley Potato Growers Association.

Thill is the potato breeder and an assistant professor, Wenkel is the potato project research scientist, Wildung is a professor, and Fritz is an associate professor in the Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108. Anderson is a professor, and Jones is an associate professor in the Department of Plant Pathology. Ragsdale is a professor, Radcliffe is a professor, and Longtine is a graduate student in the Department of Entomology at the University of Minnesota.

Our use of these locations is partitioned such that Grand Rapids is the primary location for maintaining and increasing our selections, Rosemount is used for disease screening, and the remaining locations are used for multiple selection environments. Typically, newer seedling selections are planted at multiple locations without replications, while preliminary advanced and advanced selections are planted at multiple locations with replications. All seedlings are evaluated for plant growth and tuber characteristics, total and marketable yield, specific gravity, the incidence of internal and external defects, and susceptibility to late blight, verticillium wilt, and common scab.

Early Generations

The winter 1996-1997 crossing program (by Interim Potato Breeder Dr. Jan E. Backlund) produced 443 hybrid families. Approximately one-half of this effort (227 hybrid families) was placed on preserving and enhancing germplasm (Genetic Series) unique to the Minnesota Potato Breeding Program and developed by Dr. Florian Lauer. The Genetic Series has both diploid and tetraploid clones developed for: 1) high protein, 17 clones; 2) chipping potential, 31 clones; 3) 2n pollen, 22 clones; 4) GPA resistance, 14 clones; 5) CPB resistance, 21 clones; 6) *S. Andigena*, 19 clones; and 7) cold chipping, 10 clones. The remaining 216 hybrids emphasized reds (50%), russets (30%), and round whites (20%) for fresh market and processing potential.

New seedling progenies (first field generation 1997) were sown and transplanted to the field at Grand Rapids, MN. Of the 35,000 seedlings transplanted, 10,000 from 206 hybrid families were selected and will be planted at Crookston, MN as 4-hill plots (second field generation) in 1998. Traditionally, selection intensity among the first year seedling progenies is mild due to being planted from transplants and having an 80-90 day growing season. The Crookston environment is severe in that it is characterized by heavy clay soils, is non-irrigated, and water drains slowly; which, tends to result in tubers exhibiting malformation and/or other defects. The selection intensity at Crookston is high; approximately 250-500 clones will be advanced. In 1997 at Crookston, 254 clones were selected for advancement from approximately 32,000 4-hill plots.

New hybrid families are being generated in our winter 1998 crossing program. Emphasis is being placed on:

- 1) Developing high yielding, high quality fresh and processing reds (30%), longs (25%), and round whites (45%).
- Broadening the genetic base of our parent population by using clones sourced nationally and internationally.
- 3) Evaluating and introgressing wild species germplasm for resistance to CPB, late blight, verticillium wilt, common scab, silver scurf, and cold-sweetening.

Intermediate Generations

Four hundred ninety four clones were evaluated at four locations, Becker, Crookston, Grand Rapids, and Grand Forks. This population can be partitioned into two groups 1) older, and 2) newer selections. The older selections (146 clones) were planted in 2 replications of 20-hill plots, while the newer selections (348 clones) were planted as non-replicated 20-hill plots.

Testing is continuing for total yield, US#1 yield, specific gravity, processing traits, agronomic and horticultural characteristics, and disease resistance. Several clones have shown moderate resistance to common scab, and verticillium wilt; none showed resistance to late blight. We expect that about one-third of these selections will be retained.

Preliminary Advanced Seedling Trials (Preliminary Replicated Trials)

Twenty-three clones were evaluated in Preliminary Replicated Trials at 3 locations, Becker (Table 1), Crookston (Table 2), and Grand Forks (Table 3). Single-row plots were planted in a Randomized Complete Block Design (RCBD) with 2 replications of 20 hills. Seed piece spacing was 12" within row and 36" between rows. Standard crop management practices were used.

Reds

Fourteen Minnesota seedling selections were compared to varieties Dark Red Norland, and Red Pontiac (Tables 1 to 4). Desired characteristics include early and late maturity, bright red colored skin that lacks fading, good skin set, and high yield. Yields tended to be highest at Becker and ranged from 239 – 677 total cwt/A. Yields were lowest at Grand Forks (21 - 152 total cwt/A). These results

can be expected; growing conditions at Grand Forks were unfavorably wet and Becker was excellent.

Twelve Minnesota seedlings at Becker, eleven at Crookston, and five at Grand Forks yielded higher than Dark Red Norland. Minnesota seedlings MN 17993, MN18370, MN18768, and MN18808 had favorable yields, good appearance ratings, and low incidence of tuber defects across the three locations. Moreover, they tended to have twice the yield of Dark Red Norland at Grand Forks.

Russet / Long

Four Minnesota seedling selections were evaluated (Tables 1 to 4). Yields were highest at Becker and lowest at Grand Forks. The seedlings performed differently across locations and specific gravity and tuber appearance are concerns. Selection NM 18710 had high yields and favorable appearance ratings, but low specific gravity. This clone will be evaluated for fresh market potential.

Round Whites

Two Minnesota seedlings were compared to Norchip (Tables 1 to 4). Though the yields at Becker were favorably high, none will be continued due to lacking desirable tuber type.

Advanced Seedling Trials (Replicated Yield Trials)

Twenty-nine clones were evaluated in Replicated Yield Trials in five environments. Single-row plots were planted in a Randomized Complete Block Design (RCBD) with 2 replications of 20 hills. One location, Becker, Minnesota had two harvest dates, an early (Table 5, 111 days) and a late (Table 6, 146 days). The other locations were Grand Forks (Table 7), Hollandale (Table 8), and Long Prairie (Table 9). Seed piece spacing was 12" within row and 36" between rows. Standard crop management practices were used.

Reds

Eight Minnesota and one Colorado seedling selections were compared to check varieties Dark Red Norland, Red LaSoda, and Red Pontiac (Tables 5 – 10). Yields tended to be highest at Becker (late) and Long Prairie, intermediate at Becker (early) and Hollandale, and lowest at Grand Forks. Two Minnesota seedlings MN 17922 (250 cwt/A) and MN

18365 (257 cwt/A) yielded comparable to Dark Red Norland (257 cwt/A) at the early Becker harvest and all nine seedlings were higher yielding than Dark Red Norland at the Becker late harvest. CO86218-2 had deep dark red skin color and was very attractive at Becker (late). Minnesota seedlings MN 17572, MN 17922, and MN 18365 had exceptional performance across locations.

Russet / Long

Two Minnesota seedlings were compared to Goldrush, Russet Burbank, and Russet Norkotah (Tables 5 – 10). Both MN 16478 and MN 18142 performed well at all locations with higher yields than cultivars at all but one location. Tuber appearance ratings are high and MN 16478 tends to be blockier in shape. Vascular discoloration seems to be one limiting internal quality.

Round Whites

Six Minnesota seedlings and one Colorado selection of a Beltsville seedling were compared to Atlantic, Itasca, Latona, and Norchip (Tables 5-10). Yields were generally as high or greater than Atlantic and Norchip. The incidence of internal defects, in general was high, but comparable to Atlantic. The specific gravity of these clones may not be high enough for efficient chip processing.

North Central Regional Potato Variety Trial

North Central breeding programs have developed many of the most widely grown varieties in the US. These account for 5 of the top 10 leading varieties and cover the breadth of market types: fresh and processing russets, reds, and round-white chippers. Our regional meeting (NCR-84) plays an important role in this success by providing a forum for collaborative research, regional varietal testing, and by facilitating exchange of germplasm and research ideas.

As part of this cooperative effort North Central potato breeders enter their most advanced seedling selections in regional trials located at eight US and two Canadian locations. Minnesota's potato breeding program entered three clones MN 16180, MN 16489, and MN16966 in 1997. Results from this trial at Becker are presented (Table 11). The three Minnesota selections were the highest yielding clones in the round white market class. Specific gravity was low and internal defects equal or lower than Atlantic,

Norchip, or Snowden. Maturity is medium-late and overall appearance ratings were favorable. Across all locations MN 16966 and MN 16489 were 1st and 2nd, respectively for total yield and MN 16489 and MN 16180 ranked 1st and 4th, respectively for general merit.

In 1998, four Minnesota clones will be entered; MN 16478, russet; MN 16966, light russet; MN 17572, red; and MN 17922, red.

Disease Screening

Scab

Each year Minnesota selections, germplasm used for special characteristics in breeding, and cultivars are assessed for resistance to common scab at Becker and Grand Rapids. Clones are evaluated for scab lesion type (0 = no scab to 5 = deep pitted scab), and scab coverage (T = trace to H = heavy). Presented in Table 12 are the scab evaluations of the 438 clones entered at Becker in 1997. Many of our promising selections are moderately resistant.

Late Blight

In 1997 our late blight trial was conducted at Rosemount. More than 500 Minnesota seedlings were evaluated in un-replicated plots, while advanced seedlings and cultivars from other US breeding programs and European varieties were evaluated from a replicated trial. The trial was planted June 9 and inoculated August 14 with the A2, US8 genotype. Foliar readings were done on weekly intervals from August 25 to September 17. A summary of the results from European varieties and clones from other US breeding programs are presented (Table 13). None of the Minnesota material showed resistance to late blight. Clones AWN 86514-2, B0692-4, B0718-3, and B767-2 had the highest levels of foliar resistance.

Verticillium Wilt

In 1997 our verticillium wilt resistance evaluations were conducted at Grand Forks. Minnesota selections and other breeding germplasm are evaluated for resistance to *V. dahliae* (Table 14a) and *V. albo-atrum* (Table 14b). Resistant selections have been identified and are being used in breeding. Germplasm showing field resistance are being evaluated in the laboratory for resistance using an assay to quantify vascular colonization.

Potato Leafhopper Resistance

Twenty-nine wild Solanum species (116 accessions) were screened for resistance to potato leafhopper at the University of Minnesota Agricultural Experiment Station, Rosemount. To facilitate subsequent utilization as breeding material, emphasis was placed on screening potato germplasm having good tuberization potential and known to be capable of producing 2n pollen. Two sources were identified: 1) twenty accessions representing 10 wild species identified as being capable of producing 2n gametes; and 2) accessions from species with dense trichomes which also possess good tuberization characteristics when introgressed into existing cultivars. Additional accessions possessing a range of leaf hair or trichome length and density were chosen from species data provided by Dr. David Spooner (University of Wisconsin). Plants were also screened for resistance to Colorado potato beetle and plant vigor. Several

species combined plant vigor and resistance to potato leafhopper and Colorado potato beetle (Table 15), e.g., S. agrinionifolium, S. berthaultii, S. candolleanum, S. chacoense, S. kurtzianum and S. pampasense. Germplasm having good tuberization potential and known to be capable of producing 2n pollen, e.g., S. canasense, S. gourlayi, S. vernei, and S verrucossum had one-third to one-half as many potato leafhoppers as Russet Burbank

Acknowledgements

Research supported by the University of Minnesota; College of Agricultural, Food, and Environmental Sciences, Minnesota Agricultural Experiment Station, Red River Valley Potato Growers Association, and Minnesota Area II Potato Research and Promotion Council.

Minnesota Table 1. - Performance of Preliminary Advanced Seedlings (Preliminary Replicated Trial) of Minnesota Selections and Cultivars at Becker, Minnesota in 1997.

										S U																		
	Comments		pink, deep eyes, lumpy	rough, purple	pink, blocky shape		too small	oval shape, smooth,pink	pink	rew, prink eyes, rong strape, red lades	smooth, oval shape	few	blocky shape	deep eyes	oval shape, pink	pink	deep eyes, pınk		blocky shape	consumer potential		slightly rough		rough, lumpy	rough off type	too small		
	<i>S</i>		1.054	1.056	1.059	1.064	1.062	1.062	1.066	1.063	1.063	1.047	1.054	1.075	1.064	1.050	1.062		1.062	1.072	1.080	1.069		1.067	1,083	1.070		
tal ⁵	B's		15.5	7.0	93	8.9	35.5	5.7	15.9	13.5	18.7	13.6	8.0	26.3	7.8	9.6	9.1		8.6	4 1	7.3	9.4		4.2	14.0	123	0	
% of Total ⁵	A'S		84.5	93.0	2.06	93.2	64.5	94.3	84.1 67.6	86.5	81.3	86 4	92.0	73.7	92.2	91.4	6.06		90.2	95.9	92.7	95.4		95.8	86.0	87.7	⁵ Tuber Size	B < 2° A: > 2°
	Total		398.8	464 0	467.6	478.5	337 1	507.5	319.0	377.0	601.8	239.3	409.6	358.9	652.5	293.6	6.77.9		406 0	616.3	496.6	547 4		598.1	543.8	4133		
OW/A	US#1		337.1	431.4	424.1	445.9	217.5	478.5	268.3	326.3	489 4	206.6	377.0	264.6	601.8	268.3	6163		366 1	6 069	460 4	522.0		572.8	467.6	362.5	(F)	ation
	Total Defects		-	٣	0	2	0	—	- ⊊	2 ←	- 0	0	က	9	2	2	7		2	3	2	2		-	7	-	Quality (10+ Tubers cut)	HH - Hollow Heart VD - Vascular Discoloration IN - Internal Necrosis
ality*	Z		0	2	0	0	0	-	0 5	t C	0	0	2	0		-	4		0	0	0	0		-	0	0	Quality (10	HH - Hollow Heart VD - Vascular Discolo IN - Internal Necrosis
Tuber Quality*	9		0	0	0	2	0	0	- «	0 0	0	0	0	0	0	0	0		0	0	2	0		0	প	0		4/-
	壬		-		0	0	0	0	0 0	> -	0	0	-	9	-	—	ო		2	ന	0	2		0	e	0		xcellent)
	App.		4	4.5	5.5	5.5	4.5	5.5	ω ζ	ر بر	വ	4.5	9	4	9	45	35		2	9	9	2		2	4	4		Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent)
	Skin Maturity		4.5	4	2	2	2	5.5	S Y	S 10	ာ ဖ	55	9	2	5.5	2	5.5		2	9	7	5.5		2	2	4.5	aracteristics	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) Size Uniformity - 1 (poor) - 9
.s3	Size Unif.		4	2	5.5	55	5.5	5.5	ر بر		55	45	7	4	9	S.	5.5		45	65	9	S		2	2	45	³ Tuber Ch	Shape - 1 Set - 1 (po Shape Unifo Size Unifo
Tuber Characteristics ³	Shape Unif.		4.5	3.5	9	5.5	9	6.5	45	י ער	ာဖ	4.5	7	4	9	4.5	4		9	5.5	9	4		2	4	5.5		
Tuber Ch	Set		3.5	4.5	2	9	9	2	45	4.4	, w	3.5	45	45	6.5	45	55		35	2	2	2		9	2	45		rigorous) 5 (late)
	Sze		m-Lg	Lg ,	Lg	Lg	٤	Lg	Lg-m	Ξ ε	E E	Lg-m	Lg .	Lg-m	Гg	Гg	Lg		Lg	Lg	Lg	Гĝ		La		m-Lg	owth	Vigor - 1 (poor) - 9 (vigorous) Maturity - 1 (early) - 5 (late)
	Shape		က	3.5	4.5	က	2	4	m <	1 4	3 1	2.5	35	3	4	က	35		φ	7	6.5	9		4	3.5	2	² Plant Growth	Vigor - 1 (Maturity -
wth ²	Matunty		3.8	3.5	2.3	က	38	က	හ න <	, c) (2.8	35	35	3.3	23	43		4.3	33	3.5	40		38	5.0	3.5		
Plant Growth ²	Vigor		∞	8.5	7	æ	7.5	7		7.5	ှိ တ	9	7	00	∞	2.5	00		8.5	8.5	ω	8.5		ω	80	00		I (146 days)
	Clone	REDS	17923	17925	17941	17993	18364	18370	18750	18758	18768	18769	18772	18773	18808	D.R. Norland	Red Pontiac	RUSSET	18153	18710	18713	18714	WHITES	18468	18653	Norchip	Location	Late - Becker, MiN (146 days)

Minnesota Table 2. Performance of Preliminary Advanced Seedlings (Preliminary Replicated Trial) of Minnesota Selections and Cultivars at Crookston, Minnesota in 1997.

Tuber Quality ⁴ Cwt/A	Total App. HH VD IN Defects Total Sp. Gr. Comments		15 0 4 0 4 1994 1077 lumpy blocky shape light set	0 0 114.2 1.079	0 3 0 3 134.1 1.083	0 2 1 3 170.4 1.084	0 0 0 0 139.6 1.078	1 4 0 5 174.0	0 8 0 8 76.1	1.089	0 8 0 8 161.3 1.087	3 2 5 101.5 1.064	0 0 0 0 81.6 1.073	0 6 0 6 152.3 1.068	2 3 11 145.0 1.082 t	0 4 1 5 132.3	6 1 7 106.9	4 4 0		1 14 0 15 139.6	1.081	8 0 8 175.8	1 10 0		2 0 0	15 0 15 1486 1.090	5 0 5 0 5 1577 1.087	Cuality (10+ Tubers cut)	franchis and franchis				,	
aristics ³	size Skın Jnıf, Matunty		5	5 25	4 5.5	6 7	55 5.5	55 7	4 5	5.5 5.5	2 9	4 4.5	5	6 5	4.5 2.5	4.5	5.5 4.5	3.5 4		5 7	55 6	5.5	6.5		4.5	4 7	4,5 4.5	³ Tuber Characteristics			Shape - 1 (round) - 9 (lon	Shape - 1 (round) - 9 (lon Set - 1 (poor) - 9 (excelle	Shape - 1 (round) - 9 (lon Set - 1 (poor) - 9 (excelle Shape Uniformity - 1 (poor	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent)
Tuber Characteristics ³	Shape Size Set Unif		55	. e	S=10	9	m 4	m-Lg 5.5	Lg 2	3.5 m 55 5	Lg-m 4	Lg 3.5	m 2.5	Lg 3	Lg 3	m-Lg 3.5	ന	Lg 3.5		35	5.5 Lg 6 4.5	m 4	m 5.5		3.5	, E	2 m 4.5 4.5	² Plant Growth			Vigor - 1 (poor) - 9 (vigorous)	Vigor - 1 (poor) - 9 (vigorous) Maturity - 1 (early) - 5 (late)	r - 1 (poor) - 9 (vigorous) urity - 1 (earty) - 5 (late)	r - 1 (poor) - 9 (vigorous) urity - 1 (earty) - 5 (late)
Plant Growth ²	Vigor Matunty Sha		3.5	?; ~	1 6	3.5	2.5	8	2	4.5 2.5 3.	ო	2	_	3.5	4.5	3.5	2.5	5.0		4.5	5 40 5.	4.0	4.0		4.0	2.5	5.5 3.0 2	² Plan		•	,	,		,
	Clone	REDS	17973	17925	17941	17993	18364	18370	18750	18757	18758	18768	18769	18772	18773	18808	D.R. Norland	Red Pontiac	RUSSET	18153	18710	18713	18714	WHITES	18468	18653	Norchip	¹ Location			Crookston, MN (104 days).	Crookston, MN (1	Crookston, MN (1)	Grookston, MN (1)

Minnesota Table 3. Performance of Preliminary Advanced Seedlings (Preliminary Replicated Trial) of Minnesota Selections and Cultivars at Grand Forks, North Dakota in 1997.

			Tuber (Tuber Characteristics ²	stics ²				Tuber Quality ³	uality ³		Cwt/A	
Gone	Shape	Sze	Set	Shape Unif.	Size	Skin Maturity	App.	壬	9	Z	Total Defects	Total	Comments
REDS													
17923	2	s	3.5	9	9	2	4.5	0	0	0	0	689	smooth
17925	m	s	2	4.5	3.5	e	2.5	0	0	0	0	50.8	growth cracks
17941	3.5	s	ന	9	9	5.5	3.5	0	0	0	0	54.4	small, bright, gets points
17993	3	Lg.	4.5	5.5	9	4	9	0	0	0	0	152.3	
18364	က		9	9	9	က	9	0	0	0	0	61.6	No yield
18370	က	E	4	9	9	4.5	9	0	0	0	0	105.1	
18750	2	,	2	9	2	4	2	0	0	0	0	21.8	No yield
18757	45	s	2.5	2	က	-	1.5	0	0	0	0	61.6	small
18758	4	٤	က	5.5	5.5	55	4.5	0	0	2	2	72.5	tend to pear, smooth
18768	က	s	က	35	4.5	45	2.5	0	0	-	-	101.5	very small, deep eyes
18769	2.5	s	25	65	6.5	7	3	0	0	0	0	363	too small
18772	3.5	s	35	4.5	4.5	4	3.5	0	0	0	0	43.5	very small
18773	2	s	4	5.5	9	45	4	0	0	0	0	65.3	small, attractive
18808	3.5	٤	Ŋ	S	4.5	3.5	45	0	0	0	0	9.06	excellent
D.R. Norland	က	s	35	9	5.5	2	5.5	-	0	0	-	68.9	
Red Pontiac	က	Ε	2.5	4	52	3.5	2.5	0	0	0	0	47.1	
RUSSET													
18153	5.5	ε	က	4.5	S	9	5.5	0	0	0	0	689	points, growth cracks
18710	4	s	4	9	2	5.5	4	0	0	0	0	87.0	small, blocky for russett
18713	5.5	S	3.5	9	9	5.5	3.5	0	0	0	0	9 06	smooth
18714	2	S	2.5	4.5	S	4.5	က	0	0	0	0	43.5	pear/points, small
WHITES													
18468	4	٤	ന	3.5	4	С	2.5	0	0	2	2	94.3	points/pear, end fold bad
18653	2	S	က	9	5.5	ന	2.5	0	0	0	0	50.8	very very small
Norchip	2.5	E	3.5	3.5	9	4	35	0	0	0	0	76.1	flat, rough
¹ Location					² Tuber (² Tuber Characteristics	tics			³ Quality (1	³ Quality (10+ Tubers cut)	:ut)	
Grand Forks, ND (98 days)) (98 days).				Shape - Set - 1 (Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent)	-9 (long)			HH - Hollow Heart VD - Vascular Disc	HH - Hollow Heart VD - Vascular Discoloration	ation	
					Shape Size Un Skin Ma	Uniformity - 1 informity - 1 iturity - 1 (p		(excellent) xcellent) cellent)		IN - Intern	IN - Internal Necrosis		
					Appear	Appearance - 1 (poor)	oor) - 9 (excellent)	ellent)					

Minnesota Table 4. Mean Performance of Preliminary Advanced Seedlings (Preliminary Replicated Trial) of Minnesota Selections and Cultivars at Two Minnesota and One North Dakota Locations 1 in 1997.

	Plant Growth ²	owth ²			Tuber Char	aracteristics ³	.s.				Tuber Quality ⁴	ality*		CWUA		
Clone	Vigor	Matunty	Shape	Sze	Set	Shape Unif.	Size Unif.	Skin Maturity	App.	王	QA	<u>z</u>	Total Defects	Total	<u>છે</u>	Comments
REDS																
17923	6.3	3.6	3.0	m-La	4.2	8.	5.0	5.2	4.3	0.3	<u>6.</u>	0.0	1.7	222.3	1.066	pink, deep eyes, lumpy
17925	5.8	2.8	3.5	, g	3.2	3.7	4.5	3.2	3.5	0.7	0.0	0.7	1.3	209.6	1.068	rough, purple
17941	5.5	2.1	3.8	, g	4.0	5.0	5.2	5.3	3.8	0.0	1.0	0.0	1.0	218.7	1.071	pink, blocky shape
17993	6.3	3.3	3.0	Lg	5.5	5.5	5.8	5.3	5.7	0.0	1.3	0.3	1.7	267.0	1.074	
18364	0.9	3.1	2.5	ε	5.3	5.8	5.7	4.5	5.0	0.0	0.0	0.0	0.0	179.4	1.070	too small
18370	6.0	3.0	3.5	Lg	4.8	5.8	2.5	2.5	2.7	0.3	1.3	0.3	2.0	262.2	1.070	oval shape, smooth, pink
18750	5.0	5.9	2.5	Fg-J	2.8	4.5	4.7	4.7	3.3	0.0	3.0	0.0	3.0	139.0	1.071	pink
18757	5.8	3.3	4.0	E	4.0	4.0	4.3	4.0	3.3	0.0	4.0	1.3	5.3	163.1	1.077	few, pink eyes, long shape, red fades
18758	0.9	5.9	3.5	٤	3.8	5.3	5.5	5.8	5.5	0.3	2.7	0.7	3.7	203.6	1.075	smooth, pink
18768	6.3	2.5	3.5	E	3.8	4.3	4.7	5.0	3.8	0.0	1.0	1.0	2.0	268.3	1.064	smooth, oval shape
18769	5.0	1.9	2.3	Lg-m	2.8	5.3	5.3	6.2	3.8	0.0	0.0	0.0	0.0	119.0	1.060	few
18772	5.0	3.5	3.7	Lg	3.7	5.3	5.8	5.0	4.8	0.3	5.0	0.7	3.0	201.8	1.061	blocky shape
18773	0.9	4.0	3.0	Lg-m	3.8	4.3	8.4	4.0	4.0	4.0	0.7	1.0	5.7	189.7	1.079	deep eyes
18808	0.9	3.4	3.7	2	5.0	4.8	5.0	4.5	4.8	0.3	1.3	0.7	2.3	291.8	1.069	oval shape, pink
D.R. Norland	0.9	2.4	2.8	Lg	3.7	5.5	5.3	8.4	4.3	0.7	2.0	0.7	3.3	156.5	1.062	pink
Red Pontiac	0.9	4.6	3.3	Lg	3.8	3.5	8.4	4.3	2.8	2.3	1.3	1.3	2.0	290.0	1.069	deep eyes, pink
RUSSET																
18153	6.5	4	5.5	0	33	8	8	0.9	8	1.0	4.7	0.0	5.7	204.8	1.076	blocky shape
18710	80	3.6	5.5	ביי	5.0	5.3	5.7	5.8	5.0	1.7	1.3	0.0	3.0	293.6	1.077	consumer potential
18713	6.5	3.8	5.7	2	4.2	5.7	5.8	8.9	4.7	0.0	3.3	0.0	3.3	254.4	1.088	tough skin
18714	7.0	4.0	5.2	r 6	4.3	4.7	5.3	5.5	4.5	1.0	3.3	0.0	4.3	267.0	1.076	slightly rough
WHITES																
18468	6.3	හ. හ	4.2	9	89	4.0	4.5	4.2	4.2	1.7	0.0	1.0	2.7	269.5	1.072	rough, lumpy
18653	7.5	3.8	3.2	r c	4.0	4.3	8.4	5.0	3.2	1.0	6.3	0.0	7.3	247.7	1.087	rough, off type
Norchip	6.8	3.3	2.2	m-Lg	4.2	4.5	9.0	4.3	3.7	0:0	1.7	0.0	2.0	215.7	1.079	too small
Locations			² Plant Growth	owth		,	Tuber Cha	³ Tuber Characteristics			4-1	Quality (10	*Quality (10+ Tubers cut)	£		
Late - Becker, MN (146 days). Grand Forks, ND (98 days). Crookston, MN (104 days).	(146 days 98 days). 14 days).		Vigor - 1 (Maturity -	Vigor - 1 (poor) - 9 (vigorous) Maturity - 1 (early) - 5 (late)	rigorous) 5 (late)		Shape - 1 (Set - 1 (pox Shape Unif Size Unifox Skin Maturi Oppearance	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) Size Uniformity - 1 (poor) - 9 Skin Maturity - 1 (poor) - 9 (e	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent) Skin Maturity - 1 (poor) - 9 (excellent) Appearance - 1 (poor) - 9 (excellent)	ccellent) silent) ent)	1 <i>7</i> =	HH - Hollow Heart VD - Vascular Discold IN - Internal Necrosis	HH - Hollow Heart VD - Vascular Discoloration IN - Internal Necrosis	ation		
							:									

Minnesota Table 5. Performance of Advanced Seedlings (Replicated Yield Trial) of Minnesota Selections and Cultivars at Becker, Minnesota Early Harvest in 1997.

Growth ²		Inper	I uper Characteristics	SIICS			I uper caudilly	Jamy				500			
Clone Vigor	Shape	Size	Set	Skin Maturity	App.	壬	ΛD	Z	Total Defects	US#1	Total	A's	B's	Sp. G.	Comments
REDS															
	က	m-Lg	9	80	9	5	0	0	5	155.9	184.9	84.3	15.7	1.048	deep red, good skin, excellent skin, uniform shape
17578 6	3.5	Lg-m	3.5	9	4	5	0	0	2	148.6	170 4	87.2	12.8	1.054	light red, rough, big, blocky
7922 7.5	2	S-M	9	2	9	-	0	0	-	203.0	250.1	81.2	18.8	1.049	small, excellent color, large set, some gr cr, round shape
7986 8	4.5	S-m	4	4.5	4.5	0	0	0	0	134.1	1958	68.5	31.5	1.053	long shape, small, long
	4	s	4	5.5	4	-	0	0	_	58.0	105.1	55.2	44.8	1 053	stolons
	25	S-A	4.5	4	4	0	0	0	0	9.06	155.9	58.1	41.9	1.052	lots of small, very small
	4	E	4.5	7	4.5	2	0	0	2	181.3	199.4	6.06	9.1	1.058	
	35	m-Lg	5.5	2	6.5	5	0	0	2	224.8	257 4	87.3	12.7	1.052	nice, smooth
18-2	2	S-H-S	4	9	4.5	0	0	0	0	105.1	148.6	70.7	29.3	1.049	small, deep red, stolons, sticky
О	္က	Lg-m	2	4.5	5	-	0	0	-	228 4	257.4	88.7	11.3	1.056	good color, round shape
Red La Soda 7	3.5	Lg-s	4	4	4.5	7	0	0	7	170.4	195.8	87.0	13.0	1.052	blocky, rough
	3.5	m-Lg	3.5	4	25	0	0	0	o	134.1	174.0	77.1	22.9	1 046	rough, deep ends, bright, big, blocky, some rough
RUSSET															
16478 8.5	5.5	m-Lg	9	4.5	9	-	0	0	-	221.1	239 3	92.42	9.7	1.069	long & blocky, blocky, oval, med set
18142 8	7	Lg	2	7.5	7	2	0	0	2	192.1	203 0	94.64	5.4	1.056	uniform shape, nice, big, blocky, oval
Goldrush 7.5	7	Lg-m	2	2	9	-	0	0	-	177.6	199.4	89.09	10.9	1.056	blocky, long
R. Burbank 65	7	S	4	2	4	0	0	0	0	112.4	174.0	64.58	35 4	1.061	very small
R. Norkotah 8	7	Lg-ov	9	9	7	4	0	0	4	210.3	235.6	89.23	108	1.062	blocky, long, good skin
WHITES															
12823 7.5	2	S-M	က	ო	3.5	9	0	0	9	116	188 5	61.5	38.5	1.062	some rough, second growth
15129 8	4	m-Lg	6.5	5.5	5.5	2	0	0	2	442.3	500.3	88.4	11.6	1.055	longer, large get long, attractive
	2.5	Lg	7	9	2.5	9	0	0	ဖ	536.5	0 609	88 1	119	1.062	smooth, attractive, blocky, oval
	3.5	S-W	2	9	2	2	0	0	2	340.8	3843	88 7	11.3	1.062	oval, blocky, pink eyes, points
	2	S-TJ	52	45	4	-	0	0	-	427.8	507 5	84.3	15.7	1.062	too small, uniform shape, stolons
	3.5	Lg-m	9	2	9	0	0	0	0	580.0	652.5	88 8	11.1	1.060	blocky, nice here
	3	Lg-m	2	5.5	4	13	0	0	13	377.0	427 8	88.1	11.9	1.071	deep eyes, end folds
1-2	3.5	m-Lg	2	5.5	55	4	0	0	4	311.8	3843	81.1	18 9	1.058	uniform shape, nice here, smooth
	3.5	Lg-m	4.5	4.5	വ	_	0	0	-	3843	427.8	80 8	10.2	1.059	
Latona 7.5	က	m-Lg	5.5	6.5	4.5	ന	0	0	ო	3408	449.5	75.8		1.059	scab, tends too long, lots of stolons
Norchip 8	n	S	2	9	9	m	0	0	ന	507.5	536.5	94.6	54	1.065	some rough
¹ Location		³ Tuber Ch	³ Tuber Characteristics	SOI				*Quality (Quality (10+ Tubers cut)	cut)		⁵ Tuber Size	9		
Corly - Booker MN (111 days)	lye)	Chang. 1	Shape - 1 (round) - 9 (long)	9 (1000)				HOLLOW Head	Heart Wic			R < 2			
ally - Deckel, IMIN (111 G	des).	Set - 1 (pr	Set - 1 (poor) - 9 (excellent)	s (IOIIg) xcellent)				VD - Vasc	VD - Vascular Discoloration	ration		A > 2°			
² Plant Growth		Skin Maturity - 1 (poor) - 9 (excellent	irity - 1 (pa	Skin Maturity - 1 (poor) - 9 (excellent)	ellent)			IN - Intern	IN - Internal Necrosis						
			֡												

Minnesota Table 6. Performance of Advanced Seedlings (Replicated Yield Trial) of Minnesota Selections and Cultivars at Becker, Minnesota 1 Late Harvest in 1997.

	Plant Growth ²	owth ²			Tuber (Tuber Characteristics ³	tics3				Tuber Quality*	iality ⁴		Cwd/A	<	% of Total ⁵	otal ⁵		
Clone	Vigor	Maturity	Shape	Size	Set	Shape Unif.	Size	Skin Maturity	Арр	壬	9	Z	Total Defects	US#1	Total	A's	œ. S	Sp. Gr.	Comments
REDS																			
17572	7	m	m	ε	5	S	5.5	55	5.5	0	0	0	0	420.5	478.5	87.9	12.1	1051	oval shape oval shape poor color
17578	00	3.25	55	Lg	45	5	2	2	2	0	-	-	2	420 5	445 9	943	5.7	1.057	pink
17922	8 5	3 25	က	Lg	5.5	55	55	S	S	0	0	0	0	540 1	5728	943	2.5	1.064	blocky
17986	8 2	35	35	Lg	6.5	9	55	S	55	0	-	0	-	4966	5438	913	8.7	1.064	too long, smooth, oval shape, maybe too long
17989	7.5	4	4	Lg	2	9	9	5.5	9	0	0	0	0	3553	398 8	89.1	10.9	1.074	attractive
17999	65	3.75	2.5	Lg	5 2	5	S	2	4	0	0	0	0	333 5	4350	76.7	23.3	1.058	skin scabs, pink
18049	00	2 25	4	Ov-Lg	4.5	4	4.5	35	S	0	0	0	0	427 8	464.0	92.2	7.8	1.064	
18365	00	2	3	Lg	2	7	6.5	9	9	0	0	-	-	290 0	3734	777	22 3	1 054	oval shape, smooth
CO86218-2	7.5	3.75	2	Lg-ш	5	7	7	8 5	7.5	0	0	-	2	344 4	460 4	74.8	25 2	1.068	very attractive
D R. Norland	œ	1.75	3	Lg	4	5.5	2	55	2	2	0	0	2	304 5	329 9	923	7.7	1 052	color
Red La Soda	ω ,	2.25	4 (Lg .	4 ,	4 ;	ဖွ	S I	ıçı ı	0	- 0	<u>ო</u> (4 (406.0	438.6	926	7.4	1.058	deep eyes, poor color, scabs, blocky shape
Red Pontiac	80	35	5	Гĝ	5.5	4.5	52	S.	co.	-	0	2	m	5764	6018	958	42	1 064	deep eyes, rough
RUSSET																			
16478	σ	3.25	3	0	4.5	رد در	œ	νς:	ις: (-)	C	0	c	0	4350	456.7	952	8	1 087	blacky chang too blacky for rescott
18142	000	2.25	9 9	n _) () (c	· (c	2) (c	· C		· -	10	406.9	427 7	0 70	. 4	1061	thick skip
Goldrush	ο ∞	2.75	<u></u>	اد ر) 4	2	ာ ဖ	5.5	65	0	- 0	- 0	10	362.5	3915	926	7.4	1.057	
R Burbank	7.5	4	45	٦٥	3.5	2.5	m	35	2.5	-	2	-	4	297.3	398.8	745	25.5	1 084	rough off shape rough
P. Morkotob	or	275	. ^	D 5	, -	} ~	, u) r	2 6					205.4	400.6	2 2	0.0	5 6	Toloris of States, Joseph
N. INDIANOIALI	0	613	-	rĝ	4	-	0.0	_	-	-	>	_	7	380.1	6.024	0.44.0	0.0	1.00g	blocky snape
WHITES																			
12823	00	4 25	е	Lg-m	45	4	5	4.5	4 5	0	0	2	5	380.6	427 8	89 0	11.0	1.079	
15129	80	3	ო	Lg	S	45	S	5.5	S.	2	0	0	2	4604	489 4	94 1	59	1,059	lumpy
16180	80	2.75	45	Lg	52	5	2	2	2	7	ო	0	10	464.0	511.1	8 06	9.2	1.063	too long, lumpy
16489	∞	2.75	က	Lg	S.	4 5	45	ည	4	0	0	0	0	478.5	518.4	92.3	7.7	1.077	off type
16966	∞ ∘	4 (က	m-Lg	5.5	4	5.5	55	4.5	0	0	4	4	460.4	532.9	86 4	13.6	1.074	lumpy
1/662	20 (m (ო ¦	6 .	52	6.5	ဖ ြ	ဖ	6.5	0 (0	0	0	460.4	507.5	206	6.3	1.067	oval shape
Atlantic	1 00	30	52	- Lg	4 -	0 1	ე. ე. ი	ე. ე.	ئ د د	ഹ	2 0	0 0	Q 0	395.1	4314	91.6	ω ; 7	1.083	light set, scab
1,5503	- u	2 23	2 2	Lg-III	4 n	- 4	00	ף ע	0.0	> <	> c	0 0	> c	0.102	304 5	20.7	2.4	1.00	TeW
l afona	ς α	4.75 A.25		ב ב	? «	S 4	o w		ر بر	> c	7 C	> +	7	230 S	0 000	95.7	40.5	1,012	rough
Norchip	7.5	, c) m	D _	3.5	יא כ	2 4 5	יא כי	Ç 45	7 C	7 0	– w	n «	326.3	3516	00 00 00 00 00 00	7.0	1 077	oli type, tot blocky shane
		,	•	ņ))) r	>)	•	1	0	o	0.030	-	0.70	7:1	2	ocky stable
Location			² Plant Growth	wth			Tuber Ch	Tuber Characteristics			4	Quality (10	Quality (10+ Tubers cut)	nt)		⁵ Tuber Size	a,		
Late - Becker, MN (146 days)	N (146 days)	_	Vigor - 1 (. Maturity -	Vigor - 1 (poor) - 9 (vigorous) Maturity - 1 (early) - 5 (late)	rigorous) 5 (late)	, .,	Shape - 1 Set - 1 (po Shape Uni: Size Unifor	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Unformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent)	long) sllent) soor) - 9 (ex or) - 9 (exce	ccellent) ellent)	± / =	HH - Hollow Heart VD - Vascular Discolo IN - Internal Necrosis	HH - Hollow Heart VD - Vascular Discoloration IN - Internal Necrosis	ation		B. < 2.			
							Skin Maturity Appearance	Skin Maturity - 1 (poor) - 9 (excellent Appearance - 1 (poor) - 9 (excellent)	- 1 (poor) - 9 (excellent) - 1 (poor) - 9 (excellent)	ent) nt)									
								,)	, , ,									

Minnesota Table 7. Performance of Advanced Seedlings (Replicated Yield Trial) of Minnesota Selections and Cultivars at Grand Forks, North Dakota in 1997.

								T. Hor O. celift. 3	5,4,3		7	*	9/ of Total4	41-4		
1			I uber Characteristics	teristics_				inper con	ality		CWIA	4	% 01	ıtaı		
Clone	Shape	Size	Shape Set Unif.	pe Size if. Unif.	e Skin if. Maturity	ity App.	壬	Q.	<u>z</u>	Total Defects	US#1	Total	A's	B's	Sp. Gr.	Comments
REDS																
17572							0	-	-	2	83.4	141.4	9.0	41.0	1.070	small
17578			4 5.5				0	0	0	0	50.8	9.06	26.0	44.0	1.079	
17922							0	-	-	2	63.4	87.0	72.9	27.1	1.074	
17986							0	-	0	-	38.1	54.4	20.0	30.0	1.074	small
17989							0	-	0	-	25.4	48.9	51.9	48.1	1.072	
17999							0	2	0	2	16.3	41.7	39.1	6.09	1.067	
18049							0	0	0	0	38.1	56.2	2.79	32.3	1.072	
18365							0	12	2	14	56.2	96.1	58.5	41.5	1.067	
CO86218-2							0	0	0	0	30.8	41.7	73.9	26.1	1.067	small, few
D.R. Norland							-	က	0	4	76.1	112.4	2.79	32.3	1.079	
Red La Soda	2.5	j j	3 3	3.5	2.5	en c	en c	ဖ င	0 0	Ξ <	99.7	110.6	90.2	98	1.072	
Red Pontiac							0	>	0	0	1.79	8.8	84	9.01	1.069	
RUSSET																
16478	4						0	2	0	2	902	79.8	88.4	11.6	1.089	ok
18142	4.5						0	-	-	2	68 8	92.4	74.4	25.6	1.080	blocky
Goldrush	2	s	4 3.5	3	4	2	2	0	_	ဖ	43.5	72.5	09	40	1.079	growth crack
R. Burbank	2						0	-	-	2	12.7	18.1	20.0	110.0	1.083	
R. Norkotah	ဖ						4	2	0	9	47.1	28.0	813	18.8	1.095	
WHITES																
12823				2.5	5 3		0	2	0	2	27.2	39.9	68.2	31.8	1.077	
15129							-	0	-	2	19.9	36.3	22	45	1.083	
16180					5		ω .	ς,	0	13	9.06	119.6	75.8	24.2	1.082	
16489							2	0 (O (2	29.0	43.5	7.99	33.3	1.092	pink eyes
16966							0 0	0 0	0 () (38.1	68.9	25.3	44.7	1.083	
1/662							7 0	n (> •	ი Ç	500.0	43.4	78.3	43.0	1,062	
PC0804.5	2. L		7. A.		. ה ה	r uc	n C	> «	- 0	ی د⊆	743	87.0	85.4	146	1083	
Itasca							0	4	0) 4	85.2	94.3	90.4	9.6	1.071	
Latona				5			0	2	8	5	39.9	65.3	61.1	38 9	1.091	stolons stick, growth crack
Norchip		Lg ₁m					0	0	4	4	70.7	85.2	83.0	17.0	1.082	
¹ Location				² Tub	² Tuber Characteristics	ıstics		m 1	Quality (10	Quality (10+ Tubers cut)	t)		⁴ Tuber Size	Φ.		
Grand Forks, ND (98 days).	98 days).			Shap Set -	e - 1 (round 1 (poor) - 9 e Uniformit	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) - 9 (excellent)	(excellent)	1/-	HH - Hollow Heart VD - Vascular Discold IN - Internal Necrosis	HH - Hollow Heart VD - Vascular Discoloration IN - Internal Necrosis	ation		B < 2° A > 2°			
				Size	Uniformity - Maturity - 1	Size Uniformity - 1 (poor) - 9 (excellent) Skin Maturity - 1 (poor) - 9 (excellent)	xcellent)									
				Appe	arance - 1	Appearance - 1 (poor) - 9 (excellent)	ellent)									

Minnesota Table 8. Performance of Advanced Seedlings (Replicated Yield Trial) of Minnesota Selections and Cultivars at Hollandale, Minnesota in 1997.

:																															
	Sp. Gr. Comments		1.057 good here					1.063 skins		1.053 Rhizoc	1.064 growth crack		1.064		1 069 grouph grack	1 071 growth crack			1.074		1.072 bumpy			1.080	1.073	1.080 growth crack	1.084	1.074	1.077		
ıtal ⁵	B's		27.6	36 4	9.3	17.8	22.1	27.0	313	38 5	26.7	24.8	18.7		18.0	30.7	38.2	493	27.1		44.0	38.0	18.7	63.4	40.5	21.8	37.6	34.1	52.9	9	
% of Total ⁵	A's		72.4	63.6	206	82.2	6.77	73.0	68.7	615	733	752	81.3		82.0	69.3	61.8	20.7	72.9		96.0	62.0	81.3	36.6	59.5	78.2	62 4	62.9	47.1	⁵ Tuber Size	B < 2" A > 2"
× ×	Total		190.3	179 4	2538	183.1	204.8	181.3	150 4	1649	155.9	183.1	193.9		103 9	206.6	137.8	135.9	174.0		164.9	219.3	193.9	128.7	228 4	183.1	154.1	233.8	184.9		
CWUA	US#1		137.8	114.2			159.5	132.3	1033	101.5	1142	137.8	157 7		157 7	143.2	85.2	68.9	126.9		92.4	135.9	157.7	47.1	135.9	1432	96.1	154 1	87.0	ut)	ation
	Total Defects		-	-	2		-	2	9	4	13	က	7		er.	о с о	=	9	7		2	18	80	က	2	17	en (œ	9	Quality (10+ Tubers cut)	HH - Hollow Heart VD - Vascular Discoloration IN - Internal Necrosis
uality*	Z		0	0	-	0	-	0	0	0	0	0	0		0	0	0	0	0		2	0	0	0	0	0	0	0	0	⁴ Quality (10	HH - Hollow Heart VD - Vascular Discolc IN - Internal Necrosis
Tuber Quality ⁴	9		-	-	-	6	0	2	4	4	=	-	8		er.	0 4	-	9	-		0	2	80	က	0	0	e (00	2		
	풒		0	0	0	0	0	0	2	0	2	2	4		C	· -	10	0	9		0	16	0	0	2	17	0	0	0		excellent) ccellent) ellent)
	Арр		5.5	2	7	4	9	4	2	9	9	2	3.5		7	. w	4.5	4	7		4	4	4	က	3.5	4	2	2	5	stics	- 9 (long) (excellent) - 1 (poor) - 9 (e) 1 (poor) - 9 (excepoor)
8.	Skin Maturity		5	9	9	4.5	9	က	5	6 5	9	6.5	5.5		7		45	4	7		5.5	9	9	2	4.5	5.5	5	ထ	9	haracteristi	Shape - 1 (round) - 9 (long) Sel - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent) Skin Maturity - 1 (poor) - 9 (excellent) Appearance - 1 (poor) - 9 (excellent)
Tuber Characteristics ³	Size		5.5	2	7	2	9	5	9	5.5	5.5	4.5	4.5		7	5.5	4.5	3.5	7		4	5	4	5.5	4	က	5	4.5	3.5	³ Tuber Characteri	Shape - 1 (round) Set - 1 (poor) - 9 (Shape Uniformity Size Uniformity - Skin Maturity - 1 (Appearance - 1 (F
Tuber Cha	Shape		55	4.5	9	4	9	4	5 2	5	9	45	35		7	5.5	4.5	4.5	7		35	4	4	4	3.5	4	5,	4.5	က		
	Set			9								4				9 9		2.5			4	6.5	4.5				4.5		2		Vigor - 1 (poor) - 9 (vigorous)
	e Size				Lg	Ε	Lg-π	Ε	Ε	m-Lç	Lg	Ε	Lg		_	La-A	, E	S	Lg				Lg						v	² Plant Growth	1 (poor) - (
	Shape		2.5	2.5	3	5	4	2	2	2	3	2	4		œ	^	9	7	7		2	4	3	2	2	3	2.5	3	3.5	² Plant	- Yegov
Growth ²	Vigor		5	9	9	2.5	7	4	6.5	4.5	7	2	4		7	. ~	9	6.9	9		6.5	5.5	6.5	6.5	6.5	9	ဖင့်	5.5	3.5		113 days).
	Clone	REDS	17572	17578	17922	17986	17989	17999	18049	18365	CO86218-2	D.R. Norland	Red La Soda	RUSSET	18142	Goldrush	NDL 111-28	R. Burbank	R. Norkotah	WHITES	15129	16180	16489	16966	17662	Atlantic	BC0894-2	Itasca	Latona	Location	Hollandale, MN (113 days)

Minnesota Table 9. Performance of Advanced Seedlings (Replicated Yield Trial) of Minnesota Selections and Cultivars at Long Prairie, Minnesota in 1997.

	Comments		good color, light set		stolon protrudes, stolons sticky	points, long, points, pear, oval shape	oval shape	light set, too small	good color, off shape, blocky shape	light set, oval shape, can get small	too small	deep eyes, blocky shape	lumpy				points, curves				variable, too small	rough, long, points	pink eyes	points, rough	small			oval shape	too small	small		
	Sp. Gr.		1.057	1.075	1.068	1.063	1.069	1.066	1.067	1.065	1.067	1.060	1.067		1 074	1.071	1.087	1.088	1.075		1 074	1 077	1.086	1.079	1.075	1.086	1.077	1.076	1.080	1.084		
- Total	B.s		29 4	12.9	12.5	7.7	12.6	41.5	16.0	34.3	38.6	106	8 1		8.9	7.5	8.8	16.3	6.7		24.0	17.7	16.0	38.9	12.1	6.7	11.6	18.4	32.0	15.2	ze	
% of Total ⁵	A's		20 6	87.1	87.5	923	87 4	58 5	840	2 59	614	89.4	919		93.2	92.5	912	83.7	93.3		76.0	823	840	61.1	87.9	92 1	88.4	81.6	089	84.8	⁵ Tuber Size	B < 2' A. > 2'
VA	Total		395 1	4205	464 0	282 8	402 4	384.3	2719	3915	253.8	3408	4459		445.9	435.0	409 6	377.0	3770		3625	409 6	431.4	4749	449 5	366 1	344 4	453 1	464.0	358.9		
Cwt/A	US#1		279 1	366 1	406 0	261.0	351.6	2248	228 4	257 4	155.9	3045	409 6		409 6	402.4	373 4	315 4	351.6		275.5	337.1	3625	290 0	395.1	337.1	304.5	369.8	315 4	3045	(g)	ıtion
	Total Defects		4	2	2	2	0	2	2	-	2	4	7		2	-	t8	14	7		4	2	2	೯	-	21	က	0	14	ო	Quality (10+ Tubers cut)	HH - Hollow Heart VD - Vascular Discoloration IN - Internal Necrosis
ıality ⁴	Z		0	-	0	-	0	0	0	0	0	-	3		0	0	-	8	4		-	-	-	೯	-	3	0	0	-	-	Quality (HH - Holl VD - Vas IN - Intert
Tuber Quality ⁴	9		4	0	2	4	0	2	2	-	4	೮	0		2	0	0	0	2		ന	-	-	0	0	4	೮	0	13	2		
	壬		0	-	0	0	0	0	0	0	-	0	2		0	_	17	11	-		0	0	0	0	0	14	0	0	0	0		(excellent) ccellent) ellent)
	App.		9	9	9	4	2	5.5	9	2	2	4	4		9	65	55	4.5	55		4	45	55	4	45	45	45	45	35	4		long) silent) poor) - 9 (e) oor) - 9 (exc-
	Skin Maturity		7	6.5	9	7	6.5	7	7	7	7	9	6.5		7	7	6.5	65	9		9	ဖ	9	6.5	9	9	9	6.5	9	9	³ Tuber Characteristics	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent) Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent) Skm Maturity - 1 (poor) - 9 (excellent) Appearance - 1 (poor) - 9 (excellent)
cteristics	Size Unif.		9	9	9	2	2	6.5	5.5	9	2	45	2		6.5	65	9	2	2		2	45	5.5	2	45	2	2	2	5 2	2	3Tuber C	Shape - Set - 1 (p Shape U Size Uni Skin Mat
Tuber Characteristics ³	Shape Unif		9	9	9	45	2	65	2	5.5	2	4	4		65	6.5	2	4	55		45	2	9	45	4.5	4	4.5	45	9	4		
Tul	Set		7.5	5.5	6.5	4	9	7.5	45	ω	5.5	2	7		4	65	5	45	2		65	6.5	7	80	5	3.5	2	5.5	7.5	2		(late)
	Size		S-LL	m-Lg	Lg-m	Lg	Ε	S-W	m-Lg	S-M	S-III	Lg	Lg		La	LG o	m-Ľa	s-W	Lg		v	m-La	m-Lg	S-M	E	Lg	s	m-Lg	s	E	wth	Vigor - 1 (poor) - 9 (vigorous) Maturity - 1 (early) - 5 (late)
	Shape		2	2.5	က	3.5	က	2	3	8	2	3	က		6.5	7	7.5	65	7		25	35	25	2	2.5	೮	2	3	2	2	² Plant Growth	Vigor - 1 (p Maturity - 1
th ²	Maturity		2	1 25	4	ന	ന	33	-	-	2.5	-	2.5		1.75	1 75	4	3.5	1.5		~	2.5	4	3.5	e	e	15	3	4	2		
Plant Growth ²	Vigor		6.5	7	6.5	4	9	5.5	55	7	5.5	7	7		ω	9	7.5	7.5	7		55	7.5	65	7.5	7	7.5	7	7.5	5.5	7		28 days)
	Clone	REDS	17572	17578	17922	17986	17989	17999	18049	18365	CO86218-2	D.R. Norland	Red La Soda	RUSSET	18142	Goldrush	NDL 111-28	R. Burbank	R. Norkotah	WHITES	15129	16180	16489	16966	17662	Atlantic	BC0894-2	Itasca	Latona	Norchip	¹ Location	Long Prairie, MN (128 days)

Minnesota Table 10. Mean Performance of Advanced Seedlings (Replicated Yield Trial) of Minnesota Selections and Cultivars at Five Minnesota and One North Dakota Location in 1997.

Shape Vigor Maturity Shape Set Unif	9 2.5 2.5 6.1	32 4.7	7 3.6 2.6 5.4	0 3.3 3.7 9.7	0 3.5 3.5 4.7	8 3.4 2.3 5.2	2.8 3.9	6 1.5 2.7 5.5	0.6 31 22 40	D.K. Norialio 6.6 14 2.7 47 4 Red La Soda 6.5 2.4 3.4 4.7 3	8.0 3.5 27 43	33 4.3 48 4	2.0 6.1 47 6.	2.3 6.6 5.1	7.0 3.8 6.0 3.4 3	2.1 6.8 4.4 6	4.3 2.5 3.2 3	2.5 2.9 47 4	2.0 3.4 0.1 4.	38 24 55 4.0	3.0 2.6 49 4	3.3 2.7 42 4.	- 6.6 2.4 2.8 4.7 5.	2.9 3.2 5.0 5.	4.1 2.9 5.7 4	5 2.5 2.8 4.5 4.	² Plant Growth	Early - Becker, MN (111 days) Vigor - 1 (poor) - 9 (vigorous)		Grand Forks, NIJ (98 days). Hollandale, MN (113 days). Iong Prairie, MN (128 days).
Shape Size Unif Unif.	56									9 9 9.4 9.80					3.9		6	4	di •	4 4	1	4	3 5.3	4	4	4				
Skin Maturity	5.8	ى ئى	4 . 4	0 (2.0	3	ۍ ا	. G	D (5.7	3.8	43	7.0	7.0	C. 4.	6.2	3.5	5.1	0.0	ر ب د	. <u>.</u>	5.2	5.2	5.2	5.5	5.6	³ Tuber Ch	Shape - 1	Set - 1 (po	Size Unifor
Арр.	5.6	G. A	9.0	7 4	φ ω	න <u>.</u>	4.5	9.0	5.0	9. 4 0. 0	3.2	5.0	6.1	0.0	3.0	6.3	3.5	4.3	7.0	- 00 - 00	4.7	4.4	5.3	5.0	3.5	2.0	Characteristics	- 1 (round) - 9 (lona)	(poor) -9 (excellent)	Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent) Skin Maturity - 1 (poor) - 9 (excellent)
壬										3.2					2.4				7 6.7					0.2 2				(0)	nt)	or) - 9 (excelle - 9 (excellent
N Q	2 0.2									2 2					0.5 1.8 1.0								1.8 0.4						:	ent)
Total										2.0					5.2			8 2.4					3.0				*Quality	OH - HH	VD - Va	IN - Inte
#SN	215.3	220.0	288.6	710.1	190.0	159.5	1958	186.0	1.001	248.7	259.2	262.8	265.4	225.8	161.3	226.2	174.6	258.1	312.8	2527	327.3	270.1	209.5	316.8	265.4	302.2	Quality (10+ Tubers cut)	HH - Hollow Heart	VD - Vascular Discoloration	IN - Internal Necrosis
f1 Total				6107					217.1	277.0		293.0			220.8	253.0			3/3./					367.9	354.5	333.0	cut)		ration	
A's B's	74.8	9.77	85.3	80.9	72.3	61.1	08	70.2	70.8	98.6	85.7	92.0	87.8	70.7	68.7	86.1	72.9	73.9	80.00	0.20	81.1	87.4	9.08	84.3	68.2	88.8				
B's	25.2	22.4	14 /	19.	27.7	38.0	19.3	80 0 80 0 80 0	7.87	11.5	14.3	8.0	12.2	19.3	47.3	13.9	27.1	28.1	20.2	25.3	18.9	12.6	19.4	15.7	31.8	11.2	⁵ Tuber Size	R < 2"	A: > 2"	
Sp. Gr	1.057	1.065	1.064	1,003	1.068	1.061	1.064	1.058	1.063	1.063	1.060	1.082	1.068	1.06/	1.078	1.075	1.073	1.069	1.0/1	1.076	1.071	1.081	1.072	1.070	1.077	1.077				

Minnesota Table 11. Mean Performance of Advanced Seedlings (North Central Regional Trial) Becker, Minnesota in 1997.

	Growth ²		, I	Tuber Characteristics ³	eristics ³				External	External Tuber Quality ⁴	lity ⁴		Inte	Internal Tuber Quality ⁵	Quality ⁵			CwVA		% of Total ⁶	otal ⁶	
and and	Maturity	Shane	ğ	Shape	Size	Skin Maturity	Aoo	% Knobs	Green	ჯ ბ	Scab	Scab	% 王	% S	% <u>≥</u>	Total Defects	US#1	Total	00	,v	oc Oc	Ċ S
	THE STATE OF THE S	O. C.	S																			5
REDS																						
ND 2225-1	ю	2	S	9	7	7	9	0	0	0	4	_	-	2	-	4	305	393	89	77.4	22.6	1.055
Red Pontiac	က	4	4	4	4	9	က	2	0	-	2	2	2	2	-	2	353	379	25	93.3	6.7	1.061
Red Norland	3	3	4	9	9	9	9	0	0	0	က	-	-	-	-	က	295	315	20	93.7	6.3	1.057
10000																						
NOSSEI NOSSEI																						
R. Norkotah	4	9	2	9	9	7	9	0	-	0	-	0	က	7	0	2	518	260	42	92.6	7.4	1.083
W 1151	4	7	က	9	9	7	9	ω	-	-	4	-	Ξ:	0	7	13	473	200	27	94.6	5.4	1.086
R. Burbank	4 -	1 0	ഗ	ო 1	41	1 0	41	7 7			m z	- c	4 6	4 <	0 +	2 °	366	392	3 22	93.5	6.5	1.072
VV 1346	4		٥	_				-	-	-	t	7	า	†	-	0	2	0/0	2	<u>.</u>	0.0	90.
WHITES																						
MN 16489	e	e	9	9	9	9	2	2	0	2	ო	-	n	-	4	œ	267	613	45	92.6	7.4	1.079
MN 16180	4	(C)	ĸ	ı,	Ŋ	S	ις:	-	-	2	-	ന	-	-	-	e	529	584	54	206	9.3	1.079
MN 16966	4	м	7	ဖ	9	9	വ	. 2	-	ري ا	-	0	-	- 2	. 2	· ω	504	527	24	95.5	4.5	1.068
ND 3828-15	4	က	ß	2	2	2	2	0	-	-	4	2	4	-	က	œ	466	515	49	90.5	9.5	1.096
W 1313	4	ო	9	7	9	9	7	0	-	-	ဗ	4	2	2	-	2	439	488	49	0.06	10.0	1.083
Atlantic	4	ന	S	2	2	2	2	2	-	0	2	-	7	-	0	œ	410	462	23	88.6	11.4	1.067
ND 2676-10	ന	2	2	9	9	9	9	-	-	9	က	-	7	7	2	ത	368	392	24	94.0	0.9	1.065
MSB 076-2	4	4	S	2	2	S	2	0	-	0	_	_	2	೮	4	ത	305	373	69	81.6	18.4	1.070
Norchip	ന	က	4	2	2	4	4	0	0	-	4	-	7	4	က	4	324	368	44	88.2	11.8	1.078
MSB 073-2	4	7	4	သ	ഗ	വ	ω	0	-	-	7	m	9	7	-	13	317	363	45	87.5	12.5	1.084
Snowden	4	ന	S	7	7	7	7	0	-	7	4	-	7	4	2	ω	303	339	36	89.3	10.7	1.072
MSB 106-7	ო	7	9	ഗ	9	ഗ	ഗ	0	0	-	7	-	0	0	0	0	208	299	91	69.7	30.3	1.084
¹ Location			³ Tuber Cl	³ Tuber Characteristics	82			*External G	ternal Quality (100 Tubers)) Tubers)			Internal Quality (100 Tubers cut)	ality (100	Tubers cut		Tuber Size					
Late - Becker, MN (146 days)	V (146 days).		Shape - 1 Set - 1 (p	Shape - 1 (round) - 9 (long) Set - 1 (poor) - 9 (excellent)	(long)		٠	Scab Type - 1(surface) - 5(dep pitted) Scab Coverage - 1(≤10%) - 5(>50%).	- 1(surfactrage - 1(≤1	Scab Type - 1(surface) - 5(dep pitted Scab Coverage - 1(<10%) - 5(>50%)	oitted)		HH - Hollow Heart VD - Vascular Discoloration	v Heart Iar Discolo	ration		B: < 2* A: > 2*					
² Plant Growth	ı		Shape Ut	Shape Uniformity - 1 (poor) - 9 (exceller Size Uniformity - 1 (poor) - 9 (excellent)	(poor) - S	Shape Uniformity - 1 (poor) - 9 (excellent) Size Uniformity - 1 (poor) - 9 (excellent)							IN - Internal Necrosis	Necrosis								
Maturity - 1 (early) - 5 (late)	r) - 5 (late)		Skin Matu	Skin Maturity - 1 (poor) - 9 (excellent)	or) - 9 (exi	cellent)																
			الماملين الماملين	וכפ - יוצרי	1 - 0 love	dioii,																

Commany Colore Type Coverage Color Type Color Type Coverage Color Type	Scab	on Scab		Scab	Scab		Scab Lesion	Scab		Scab Lesion	Scab		Scab Lesion	Scab		Scab Lesion	Scab
2 L (6683) 1 T (8628) 2 T (8228) 1 T (8693) 3 T (8693) 4 T (8693) 4 T (1			Type1	Coverage ²	Clone		Coverage ²	Clone	Type1	Coverage			Coverage ²		- 1	Coverage ²
1 1857 1 1857 1 1857 2 1 1857 3 1 1853 3 1 1853 4 1 1854 5 1 1847 5	2823 2	_	18468	-	⊢	19266	2	-	19328	<u>.</u>	-	19390	က	⊢	19468	2	_
1 1895 3 1 1925 3 1 1935 4 1 1935 4 1 1940 5 1 1941 5 1 1940 5 1 1940 5 1 1941 5 1 1940 5 1	5129 3	7	18574	_	⊢	19267	2	_	19329	0	0	19393	S	Σ	19469	-	—
5 H 1892 1 1832 4 1835 1 1834 1 1841	5578 1	٦	18653	೮	_	19268	೮	⊢	19334	2	—	19394	S	٦	19470	2	٦
1	5620 5	I	18699	2	⊢	19271	S	I	19335	4	F	19395	-	⊢	19471	က	_
2 1 16770 1 15275 0 0 19340 1 19477 5 2 1 16770 0 19275 2 1 19444 1 7 19477 5 2 1 16770 0 19278 2 1 19447 1 </td <td>5622 1</td> <td>⊢</td> <td>18702</td> <td>_</td> <td>⊢</td> <td>19272</td> <td>2</td> <td>⊢</td> <td>19336</td> <td>ന</td> <td>_</td> <td>19397</td> <td>2</td> <td>⊢</td> <td>19472</td> <td>_</td> <td>F</td>	5622 1	⊢	18702	_	⊢	19272	2	⊢	19336	ന	_	19397	2	⊢	19472	_	F
2 1 16770 0 19275 2 1 1934 1 1 19477 5 2 1 16774 0 19278 2 1 19443 1 1 19447 5 3 4 H 16774 0 19279 5 M 19345 2 1 19419 1 1 19480 4 4 H 16776 5 M 19346 5 1 19419 1 1 19480 4 1 19419 4 1 19480 4 1 19419 4 1 19480 4 1 19480 4 1 19480 4 1 19480 4 1 19480 4 1 19480 4 1 19480 4 1 19480 4 1 1 1 1 1 1 1 1 1 1 1 1	3180 2	⊢	18709	_	⊢	19275	0	0	19340	ന	—	19404	_	⊢	19473	2	⊢
2 L 18713 1 1 18228 2 T 18442 1 1 4413 1 1 18228 5 T 1 4413 1 1 18428 5 T 1 4413 1 1 18428 5 T 1 4417 4 1 18481 5 1 18481 1 1 18481 5 1 18442 1 1 4417 4 1 18481 1 1 18481 1 1 18481 1 1 18481 1 1 18481 1 1 18481 1 1 18481 1 1 18481 1 1 18482 2 1 18482 2 1 18482 2 1 18482 3 1 18482 3 1 18482 3 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 4 1 18482 </td <td>3191 2</td> <td>٦</td> <td>18710</td> <td>0</td> <td>0</td> <td>19276</td> <td>2</td> <td>٦</td> <td>19341</td> <td>4</td> <td>_</td> <td>19407</td> <td>_</td> <td>L</td> <td>19477</td> <td>2</td> <td>_</td>	3191 2	٦	18710	0	0	19276	2	٦	19341	4	_	19407	_	L	19477	2	_
4 H 18714 0 0 1829-9 5 M 193-45 5 I 19416 1 1 19410 1 119410 4 1 19750 5 M 193-45 5 I 19440 1 1 19481 1 19481 1 19481 1 19481 1 19481 1 19481 1 19481 1 19481 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 2 1 19482 3 1 19482 3 1 19482 3 1 19482 3 1 19482 3	201 2	٦	18713	-	⊢	19278	2	⊢	19342	2	⊢	19413	_	⊢	19478	2	_
3 H 18750 M 1988 4 187447 4 L 19481 1 3 H 18750 S M 19344 2 T 19417 4 L 19481 1 1 T 1875 S M 19284 2 L 19420 1 T 19482 4 2 T 1878 1 19284 2 T 19420 1 T 19482 1 19482 </td <td>398 4</td> <td>I</td> <td>18714</td> <td>0</td> <td>0</td> <td>19279</td> <td>2</td> <td>Σ</td> <td>19343</td> <td>Ŋ</td> <td>_</td> <td>19416</td> <td>_</td> <td>⊢</td> <td>19480</td> <td>4</td> <td>_</td>	398 4	I	18714	0	0	19279	2	Σ	19343	Ŋ	_	19416	_	⊢	19480	4	_
3 H 18757 1 T 19345 2 T 19449 1 T 19482 2 1 19420 1 T 19482 2 1 19420 1 T 19482 2 1 19482 2	3404 3	I	18750	5	Σ	19280	4	Σ	19344	2	⊢	19417	4	٦	19481	-	—
1	3447 3	I	18751	-	F	19281	2	_	19345	7	⊢	19419	_	⊢	19482	2	_
1 T 16758 1 T 18206	3462 3	⊢	18757	S	Σ	19284	2	_	19346	_	—	19420	-	⊢	19483	4	_
2 T 18786 1 T 18286 2 M 18348 5 L 19425 2 L 19485 1 3 L 18774 0 19286 1 T 19486 5 1 19425 1 19486 1 3 L 18774 0 19289 0 0 19425 1 19486 3 2 M 18774 1 1 1 1 1 19489 5 1 19426 1 19486 3 2 M 18774 1	3478 1	⊢	18758	2	_	19285	0	_	19347	2	—	19421	2	⊢	19484	က	_
1 T 18786 1 18349 5 1 18425 2 1 18446 1 2 L 18777 1	3489 2	-	18768	_	-	19286	7	Σ	15348	Ω	_	19423	2	_	19485	_	٦
3	3832 1	-	18769	4	—	19287	7	⊢	19349	2	_1	19425	7	⊢	19486	_	—
2 M 1877 1 1 19290 0 19351 0 19429 1 1 19488 3 3 4 4 1 19591 0 1 19429 1 1 1 19489 3 3 4 4 1 19489 3 1 1 1 1 19489 3 1 1 1 1 19489 3 1 1 1 1 19489 3 1 1 1 1 19489 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3966	_	18771	0	0	19288	_	—	19350	0	0	19427	_	⊢	19487	2	٦
3 M 18773 1 1 9224 0 19356 2 7 19430 3 7 19480 5 2 L 18790 2 T 19556 5 T 19431 1 19480 5 2 L 18790 2 T 19556 5 T 19431 1 19480 5 3 L 18001 4 M 19256 5 T 19432 1 19480 5 2 L 18001 4 M 19356 5 T 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440 1 19440	3988	_	18772	-	-	19290	0	0	19351	0	0	19429	_	⊢	19488	ო	Σ
2 M 18774 1 19293 0 0 19356 5 7 19430 1 1 19490 3 3 H 18090 2 L 19294 5 L 19357 5 T 19432 1 T 19490 3 1 L 19001 2 L 19287 2 L 19359 1 T 19430 1 T 19490 3 1 19440 1 19490 3 1 19440 1 19490 3 1 19440 1 19490 3 1 19440 1 19490 3 1 19440 1 19440 1 19490 3 1 19440 3 1 19490 3 1 19440 3 1 19490 3 1 19440 3 1 19490 3 1 19440 3 1 19490 4		Σ	18773	-	_	19291	0	0	19353	2	—	19430	ო	⊢	19489	S	Σ
2 1 18799 2 1 18794 4 1 19357 5 7 19432 1 19482 1 19482 1 1 19483 2 7 19484 1		Σ	18774	_	-	19293	0	0	19356	S	_	19431	-	⊢	19490	က	Σ
3 H 1900 2 L 1935 4 L 1943 2 T 1949 3 1 L 19001 2 L 1935 5 T 1943 2 T 1949 3 2 L 19001 4 M 1928 2 L 1949 3 T 1949 3 T 1949 3 T 1949 2 T 1949 2 T 1949 3 T 1949 4 L 1949 4 L 1949 4 L 1949 3 T 1949 3 T 1949 3 T 1949 4 L 1949 4 L 1949 4 L		٦	18799	2	⊢	19294	4	⊢	19357	S	—	19432	-	⊢	19492	-	-
3 L 19001 2 T 19297 2 T 19359 1 T 19436 1 T 19449 1 T 19449 1 T 19041 2 T 19449 1 T 19041 4 M 19298 3 L 1906 5 T 19449 1 T 19049 2 L 19002 6 M 19304 2 L 19360 5 T 19449 1 T 19449 2 L 19003 5 M 19304 2 L 19362 3 T 19443 1 T 19449 2 L 19049 2 L 19049 2 L 19049 2 T 19049 3 T 19449 1 T 19049 1 T 19			18808	2	_	19295	2	_	19358	4	_	19433	2	⊢	19493	ю	_
1 1 19001 4 M 19288 3 1 1950 5 T 19449 1 1 19449 1 1 19449 1 1 19449 1 1 19449 1 1 19449 1 1 19449 1 1 1 19449 1 1 1 19449 1 1 1 1 1 1 1 1 1			19001	2	⊢	19297	2	⊢	19359	-	⊢	19436	-	⊢	19494	-	—
2 L 19002 4 L 19300 2 L 19362 3 T 19440 1 T 19496 2 3 L 19003 5 M 19304 2 L 19362 3 T 19441 2 L 19496 2 2 L 19004 2 L 19367 2 T 1944 3 T 19499 4 3 L 19004 2 L 19367 3 T 19446 5 M 19690 4 1 T 1904 3 L 1937 3 L 1944 5 L 1944 5 L 1944 5 L 1944 6 L 19496 3 T 19496 7 19496 3 1 19446 5 L 1944 5 L 1944 6 L 19496 4	7664 1	_	19001	4	Σ	19298	ო	_	19360	ις	⊢	19439	ന	⊢	19495	7	_
2 L 19003 5 M 19304 2 L 19662 3 T 19441 2 L 19497 3 3 4 1 1 1 19497 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	19002	4	٦	19300	2	_	19361	Ω	—	19440	-	⊢	19496	2	٦
3 L 19004 2 L 19306 2 T 19366 3 T 19443 1 T 19488 3 4 M 19025 1 T 19306 5 T 19444 3 T 19488 3 4 M 19047 3 T 19444 5 M 19501 2 1 T 19091 3 T 19446 5 M 19501 2 1 T 19091 3 L 19372 3 T 19440 5 M 19501 2 3 L 19041 3 L 19375 1 19450 4 L 19502 2 1 1 19254 4 L 19375 1 19450 4 L 19506 3 1 1 1 19376 4 L 19506 3		_	19003	S	Σ	19304	7	_	19362	ო	⊢	19441	2	_	19497	က	_
2 L 19025 1 19307 2 T 19446 3 T 19489 4 3 T 19045 1 T 19309 5 H 19371 3 T 19446 5 M 19501 2 1 T 19047 3 T 19446 5 M 19502 2 1 19502 2 1 19502 2 1 19502 3 1 19502 4 L 19502 3 1 19450 4 L 19502 3 1 19502 2 1 19502 3 1 19502 3 1 19502 4 L 19502 3 1 19502 4 L 19502 1 19502 1 19502		_	19004	7	_	19306	2	-	19366	ന	—	19443	-	—	19498	m	_
4 M 19045 1 19379 5 H 19371 3 I 19446 5 M 19501 2 1 T 19047 3 I 19446 5 M 19502 2 5 L 19551 1 I 19374 2 I 19605 4 L 19502 2 3 L 19524 1 L 19376 5 L 1956 6 0 19505 3 2 L 19524 1 L 19376 5 L 19506 3 L 19506 0 19506 3 L 19506 3			19025	. .	- 1	19307	7 1	- :	19367	ഗ	⊢ 1	19444	m 1	⊢ :	19499	4 (ا ب
3 T 19947 3 H 19372 3 T 19447 4 L 19502 2 5 L 19551 1 19314 2 L 19375 3 T 19450 0 0 19503 3 5 L 19552 1 L 19314 5 L 19450 0 0 19503 3 1 L 19254 1 L 19315 4 L 19506 3 2 T 19254 2 L 19376 5 L 19507 2 L 19507 3 L 19506 3 3 T 19256 5 M 19378 5 L 19379 3 T 19507 5 H 19507 1 1 19507 1 1 1 19507 1 1 19507 1 1 1 1			19045	- 1	⊢ :	19309	ı, cı	I.	19371	ro (⊢ I	19446	· 2	Σ.	19501	7	– .
1 1909 3 1931 2 1937 3 1955 3 1955 3 3 3 3 3 3 3 3 3			19047	m (ΞI	19310	m (. د	19372	m (— I	19447	4 ,	. د	19502	7	
1975 1975			19091	4		19311	7 4	- +	19373	₇) (– ⊦	19450	4 (_ (19503	א כא	
1			19231	- +	2 د	19312	7 L		10075	V -		10452	o (> -	19303	t c	J F
1		•	19232		≥ =	10314	0 4	-	10376	– u		19453	4 0	-	19505	o c	- 2
1 M 19256 1 T 19378 2 T 19458 5 H 19570 3 T 19510 3 3 T 19256 1 T 19319 1 T 19458 5 H 19510 3 2 L 19258 1 T 19382 4 T 19460 1 T 19513 1 1 L 19260 0 19321 4 L 19382 4 T 19461 3 L 19514 1 1 L 19260 0 19321 4 L 19383 1 T 19462 3 L 19514 1 1 L 19260 0 19324 4 L 19463 2 T 19518 3 L 19518 3 L 19518 3 L 19518 3 L 19518 <td< td=""><td></td><td>- 1-</td><td>19255</td><td>- un</td><td>≥ ۱</td><td>19316</td><td>r sc</td><td>Σ ب</td><td>19377</td><td>) -</td><td>J F</td><td>19457</td><td>1 4</td><td>1 ≥</td><td>19508</td><td>1 1/1</td><td>Σ</td></td<>		- 1-	19255	- u n	≥ ۱	19316	r sc	Σ ب	19377) -	J F	19457	1 4	1 ≥	19508	1 1/1	Σ
3 T 1957 2 T 19318 5 L 19379 3 T 19459 5 M 1951 1 5 L 19258 1 T 19319 1 T 19460 1 T 19512 2 2 T 19259 0 0 19320 5 L 19382 4 T 19461 3 L 19513 1 1 L 19260 0 0 19321 4 L 19462 3 L 19514 1 1 L 19260 2 T 19383 1 T 19463 3 L 19519 3 1 T 19264 2 L 19385 2 T 19467 1 T 19520 1 2 L 19326 2 T 19467 1 T 19520 1 2 L 19326 2 T 19467 1 T 19520 1 <td>•</td> <td></td> <td>19256</td> <td>· -</td> <td><u> </u></td> <td>19317</td> <td>o LC</td> <td>I</td> <td>19378</td> <td>- ~</td> <td>- -</td> <td>19458</td> <td>- 40</td> <td>I</td> <td>19510</td> <td>ന</td> <td>Σ</td>	•		19256	· -	<u> </u>	19317	o LC	I	19378	- ~	- -	19458	- 40	I	19510	ന	Σ
5 L 19258 1 T 19381 1 T 19460 1 T 19512 2 2 T 19259 0 0 19320 5 L 19382 4 T 19461 3 L 19513 1 1 T 19260 0 0 19321 4 L 19383 1 T 19462 3 L 19514 1 1 L 1 T 19384 1 T 19463 2 T 19514 1 1 T 19264 2 L 19385 2 T 19464 4 L 19518 2 2 L 19326 2 T 19466 2 M 19519 3 2 L 19326 2 T 19466 2 M 19520 1 4 L 19388 3	3999	-	19257	. 0	- 1	19318	. rc	: _	19379	ı m	- -	19459	o vo	Σ	19511		<u></u>
2 T 19259 0 19320 5 L 19382 4 T 19462 3 L 19513 1 1 T 19260 0 0 19321 4 L 19383 1 T 19462 3 L 19514 1 1 L 19261 2 T 19384 1 T 19463 2 T 19518 2 1 T 19264 2 L 19385 2 T 19464 4 L 19518 2 2 L 19326 2 T 19466 2 M 19519 3 2 L 19326 2 T 19466 2 M 19520 1 4 L 19388 3 L 19467 1 T 19520 1 5 No scab T=Trace T=Trace T=Trace T=Trace <td></td> <td></td> <td>19258</td> <td>·</td> <td>· -</td> <td>19319</td> <td>· -</td> <td>ı —</td> <td>19381</td> <td>-</td> <td>—</td> <td>19460</td> <td>-</td> <td>—</td> <td>19512</td> <td>. 2</td> <td></td>			19258	·	· -	19319	· -	ı —	19381	-	—	19460	-	—	19512	. 2	
1 T 19260 0 19321 4 L 19383 1 T 19462 3 L 19514 1 1 L 19261 2 T 19384 1 T 19463 2 T 19518 0 1 T 19264 2 L 19385 2 T 19464 4 L 19518 2 2 L 19264 2 L 19386 2 T 19466 2 M 19519 3 2 L 19326 2 T 19388 3 L 19467 1 T 19520 1 6 No scab 1 = Raised lesion T = Trace T = Trace <td></td> <td>ı ⊢</td> <td>19259</td> <td>0</td> <td>0</td> <td>19320</td> <td>. rv</td> <td></td> <td>19382</td> <td>4</td> <td>-</td> <td>19461</td> <td>· ო</td> <td></td> <td>19513</td> <td>-</td> <td>-</td>		ı ⊢	19259	0	0	19320	. rv		19382	4	-	19461	· ო		19513	-	-
1 L 19261 2 T 19322 3 T 19384 1 T 19463 2 T 19515 0 1 T 19262 5 M 19385 2 T 19464 4 L 19518 2 2 L 19264 2 L 19387 2 T 19466 2 M 19519 3 2 L 19326 2 T 19467 1 T 19520 1 4 L 19388 3 L 19467 1 T 19520 1 6 = No scab T=Trace T=Trace T=Trace L=Light M=Medium M=Medium <td< td=""><td>3096</td><td>⊢</td><td>19260</td><td>0</td><td>0</td><td>19321</td><td>4</td><td>_</td><td>19383</td><td>-</td><td>⊢</td><td>19462</td><td>ო</td><td>_</td><td>19514</td><td>-</td><td>H</td></td<>	3096	⊢	19260	0	0	19321	4	_	19383	-	⊢	19462	ო	_	19514	-	H
1 T 19262 5 M 19323 5 T 19385 2 T 19464 4 L 19518 2 1 T 19264 2 L 19324 4 T 19387 2 T 19466 2 M 19519 3 2 L 19326 2 T 19467 1 T 19520 1 1 Scab Lesion Types (1-5) 2 Cacab Coverage 3 L 19467 1 T 19520 1 0= No scab T=Trace T=Trace L=Light M=Medium M=Medium M=Medium	153 1	_	19261	2	⊢	19322	೮	⊢	19384	_	-	19463	2	⊢	19515	0	0
1 T 19264 2 L 19324 4 T 19387 2 T 19466 2 M 19519 3 2 L 19265 3 L 19388 3 L 19467 1 T 19520 1 1 Scab Lesion Types (1-5) 2 Cab Coverage 1 T 19520 1 0= No scab T=Trace T=Trace L=Light M=Medium M=Medium	3364 1	-	19262	2	Σ	19323	2	⊢	19385	2	⊢	19464	4	٦	19518	2	—
2 L 19265 3 L 1936 2 T<	3365 1	⊢	19264	2	٦	19324	4	⊢	19387	2	⊢	19466	7	Σ	19519	က	_
ng periderm	3370 2	,	19265	3	٦	19326	2	⊢	19388	3	٦	19467	-	⊢	19520	1	⊢
ng periderm	Scal	Lesion Type	s (1-5)			² Scab Cove	rage										
ng periderm	N =0	o scab		1		T=Trace											
	1= R	aised lesion				L=Light											
	3=16	cion breaking	poriolorm														

77	
~	
_	
.=	
-	
=	
0	
~~	
\circ	
- *	
~	
-	
-	
Se	
=	
뎥	
63	
_	
-	
63	
-23	
Ô	
- 75	
27	
9	
=	
_	
.=	
~	

Type		Scab			Scab			Scab			Scab			Scab	
2 M 85438 5 L 86504 5 H 8610 5 H 8610 5 H 8620 5 L 86208 5 L 8610 5 H 8610 5 H 86208 5 L 86208 5	900	Lesion Tvne ¹			Lesion Tvne ¹	Scab Coverage ²	S	Lesion Tvne ¹	Scab Coverage ²		Lesion Tvne ¹	Scab Coverage ²		Lesion Tyne ¹	Scab Coverage ²
2 Residence Figure Figur	allo	adk I	- 1		1 ype	Coverage	200	1 ype	COVELEGIC	•	a Abe	Coverage	Ciole	adk -	Coverage
3 M 86448 5 L 86108 5 H 19931 2 M 19529 3 D 2 M 86458 5 L 86109 0 0 19933 2 L 80508942 2 D 2 L 86119 0 0 19933 2 D 2 C SCR518-2 D 2 C SCR518-	19521	2	_	85434	S	I	86101	2	I	19028	2	⊢	19223	7	٦
2 M 86429 5 L 86108 2 T 19022 2 T 500242 2 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5	3522	က	Σ	85438	S	_	86103	2	I	19031	2	Σ	19229	က	٦
1	9523	2	Σ	85439	Ω	_	86108	2	-	19032	7	-	BC0894-2	7	_
1 68443 5 H 66110 3 L 19942 1 D D D D D D D D D	9524	5	Σ	85452	7	_	86109	0	0	19033	က	_	CO86218-2	က	_
2 L 854469 2 L 861611 1 L 19042 1 T Latona 5 M 86475 5 M 86113 3 L 19048 1 T Ned Pontlace 5 M 86475 5 M 86114 1 L 19048 1 T Ned Pontlace 5 M 86476 5 H 86114 1 1 19059 3 M 5 M 86481 1 T 18079 3 M 18079 3 M Ned Pontlace 3 L 18079 3 M Ned Pontlace 3 M 18079 3 L Red Pontlace 3 M 18079 3 L 18079 <	9525	- -	_	85463	S	I	86110	က	_	19041	2	⊢	D.R. Norlan	7	 -
1 T 86472	9256	7	ب	85469	2	_	86111	-	_	19042	-	⊢	Latona	7	_
5 M 86113 3 L 19048 7 Red Ponting 5 M 86475 5 M 86114 3 L 19059 3 M 5 M 86477 2 M 86114 3 L 19059 3 M 5 M 86430 1 T 86116 5 L 19059 3 M 4 M 86540 1 T 86118 5 L 19089 3 T 2 L 86540 5 H 86118 5 L 19089 3 T 2 L 86549 1 L 86120 2 M 19089 1 L 2 L 86579 1 T 86122 2 M 19089 1 T 19089 1 T 19040 1 T 19050 1 19050 <td>528</td> <td>-</td> <td>-</td> <td>85472</td> <td>2</td> <td>_</td> <td>86112</td> <td>-</td> <td>٦</td> <td>19044</td> <td>-</td> <td>ı</td> <td>Norchip</td> <td>4</td> <td>_</td>	528	-	-	85472	2	_	86112	-	٦	19044	-	ı	Norchip	4	_
3 L 85476 5 H 86114 1 1 19950 2 5 M 86487 1 T 86116 5 H 19955 3 5 M 86487 1 T 86116 5 H 19055 1 5 M 86543 1 T 86116 5 L 19086 2 5 M 865517 1 H 86112 5 L 19086 1 2 L 86541 1 L 86120 3 L 19096 1 2 L 86547 1 L 86120 3 H 86120 3 H 86120 1 1 19096 1 1 19096 1 1 19096 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>530</td> <td>2</td> <td>Σ</td> <td>85475</td> <td>S</td> <td>Σ</td> <td>86113</td> <td>೮</td> <td>_</td> <td>19048</td> <td>-</td> <td>F</td> <td>Red Pontiac</td> <td>2</td> <td>_</td>	530	2	Σ	85475	S	Σ	86113	೮	_	19048	-	F	Red Pontiac	2	_
5 M 86477 2 M 66115 5 M 19055 3 5 M 85481 1 T 86116 5 M 19056 3 5 M 85481 1 T 19080 2 3 4 M 85510 5 H 86118 5 L 19073 3 4 M 85517 1 L 86122 2 M 19094 1 2 L 85549 5 M 86122 2 M 19096 1 2 L 85549 5 M 86122 2 M 19096 1 1 L 86567 1 T 86122 2 M 19096 1 1 L 86579 1 T 86122 M M 19102 2 2 L 86570 1	531	က	_	85476	2	I	86114	-	_	19050	2	Σ			
5 M 85-881 1 T 86116 3 L 19073 3 5 M 85483 1 T 86118 5 L 19088 3 5 H 85517 1 H 86118 5 L 19088 3 4 M 85547 1 L 86122 2 M 19099 1 2 L 85549 5 M 86122 2 M 19099 1 2 L 85574 1 L 86122 2 M 19099 1 2 L 85574 1 7 86122 2 M 19099 1 1 T 85677 1 7 86122 2 M 19099 1 3 L 85676 1 7 86122 2 M 19099 1 4 L	532	2	Σ	85477	2	Σ	86115	2	Σ	19055	က	Σ			
5 M 65483 1 T 86117 1 1 19087 1 5 M 85510 5 H 86118 5 L 19088 2 4 M 85547 1 L 19089 1 2 L 85548 3 T 86122 M 19099 1 2 L 85549 3 T 86122 M 19099 1 2 L 85549 3 T 86122 M 19099 1 1 T 85567 1 7 86122 M 19099 2 1 T 8557 1 86120 2 M 19099 1 1 T 8557 1 7 86120 3 M 19112 2 2 8567 1 7 86120 3 M 19113 2	533	2	Σ	85481	-	1-	86116	ო	_	19073	ю	Σ			
5 M 85510 5 H 86118 5 L 19088 2 4 M 85541 1 H 86112 2 L 19089 3 1 L 85543 1 L 86122 2 M 19089 1 2 L 85541 3 T 86122 2 M 19089 1 2 L 85561 3 T 86122 2 M 19089 1 1 L 85561 3 T 86122 2 M 19089 1 1 T 85621 1 T 86126 2 M 19089 1 3 T 86126 2 M 19089 2 1 4 L 86126 2 M 19089 2 1 1 1 1 1 1 1 1 1 <td>534</td> <td>2</td> <td>Σ</td> <td>85483</td> <td>-</td> <td>-</td> <td>86117</td> <td>-</td> <td>-</td> <td>19087</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>	534	2	Σ	85483	-	-	86117	-	-	19087	-	-			
5 H 85517 1 H 86119 3 L 19089 3 4 M 85541 1 L 86120 1 T 19089 1 2 L 85554 3 T 86122 2 M 19089 1 2 L 85554 3 T 86124 2 M 19089 1 1 T 85579 1 T 86124 2 M 19089 1 1 T 85579 1 T 86124 2 M 19089 1 1 T 85679 1 T 86126 4 L 19102 2 1 T 85674 1 T 86128 5 M 19102 2 2 M 86129 3 H 86129 5 M 19102 2 M 19102 2	535	2	Σ	85510	S	I	86118	2	ب	19088	2	-			
4 M 85541 1 L 86122 1 T 19090 1 2 L 85554 3 H 86122 2 M 19094 1 2 L 85554 3 H 86122 2 M 19094 1 1 L 85554 1 T 86125 2 M 19096 1 1 T 85557 1 T 86126 2 M 19039 2 3 T 85627 1 T 86126 2 M 19039 2 4 L 85627 1 T 86126 3 T 19102 2 3 T 85627 1 T 86126 3 T 19111 1 4 L 85634 1 T 86129 3 T 19110 2 M 19129 2	540	2	I	85517	-	I	86119	e	_	19089	Ю	_			
1 L 85549 5 M 86122 2 M 19094 1 2 L 85554 3 T 86123 3 M 19096 1 2 L 85554 3 T 86124 2 M 19096 1 1 T 85561 1 T 86126 4 L 19096 1 3 T 85579 1 T 86128 3 M 19096 1 3 T 85576 2 0 86128 3 M 19102 2 4 L 85676 2 0 86128 3 M 19113 1 5 L 86578 1 H 86129 3 M 19130 2 6 8658 4 M 86130 1 T 19170 2 7 8588 5	542	4	Σ	85541	-	: _	86120	-	ı ⊢	19090	-	ı _			
2 L 85554 3 T 86123 3 M 19096 1 1 L 85561 3 H 86124 2 M 19097 2 1 L 85567 1 T 86126 4 M 19097 2 1 L 85577 1 T 86126 3 M 19111 1 1 L 85637 1 T 86129 3 M 19160 2 1 L 85637 1 H 86132 3 M 19173 1 2 L 85634 1 L 86132 3 M 19173 2 3 L 85634 1 L 86131 1 T 19170 2 4 L 85674 5 L 18140 3 1 19140 3 5 L	545	-		85549	ιΩ	Σ	86122	2	Σ	19094	+	_			
1	553		_	85554	· (*)	!	86123	1 (*)	Σ	19096	+	ı -			
1	462	10	J _	85561	, r	. 1	86124	, 0	2	19097	٠ ,	- }-			
1	1 2	1	ı -	85567) ←	: ⊢	86125	10	. ≥	1000	10	- }-			
1	030		- -	85570	- 4-	- }-	86126	1 4	Ē -	19102	1 0				
1	5 4	- •		0000	- c		06127	t c	2 د	10102	4 (۱ ۲			
1	5.7	- r	۱ ۲	02010	V C	ى ر	0012/	o 6	۱≥	19100	V +	- ŀ			
1	/20	າ .		85521	.	ɔ :	92128	าเ	- :	19111	- ,	- 1			
1	2 2	- •	J F	85636	- L	I]	85129	n •	۶⊦	19113	- c	- ŀ			
1 85852	000		- 1	00000	0 4	≥ -	90130	- ,	- 1	1912/	4 L	- :			
3 L 85852 4 M 85132 3 M 19130 2 5 T 85873 5 L 86133 1 T 19131 2 5 T 85874 5 L 8130 1 T 19131 2 5 T 85881 5 M 18740 2 T 19147 5 1 T 85882 3 L 18756 1 T 19150 3 1 T 85884 2 T 18756 1 T 19150 3 1 T 85885 5 L 18766 5 L 19163 1 1 T 85889 5 M 18815 2 T 19163 1 1 T 85905 5 L 19005 3 T 19189 1 1 T 85912 7 19005 3 T 19189 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19226 1 1 T 85917 1 L 19026 2 L 19227 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19026 2 L 19027 1 1 T 85917 1 L 19027 1 1	000	- (90000	_	; د	15100	- (- :	67161	ი (Σ.			
2 1 85873 5 L 86133 1 1 19131 2 5 L 85874 5 L 16130 1 T 19131 2 2 T 85881 5 M 18740 2 T 19140 3 2 T 85882 3 L 18740 2 T 19140 3 4 L 85882 3 L 18750 1 T 19150 3 1 T 85882 5 L 18760 1 T 19163 1 3 T 85887 1 T 18760 5 L 19164 2 1 T 85888 5 L 18760 5 L 19164 2 1 T 85889 5 M 18815 2 T 19174 2 0 0 85889 5 M 18815 2 T 19174 2 0 0 85889 5 M 19000 1 L 19175 2 1 T 85906 5 L 19012 0 0 19199 2 1 T 85917 1 L 19013 2 L 19218 5 1 T 85917 1 L 19023 2 M 19218 2 1 T 85917 1 L 19020 2 L 19220 1 1 Scab Lesion Types (1-5)	9/8	m (۱ ر	85852	4 1	Σ.	86132	, C.	ا∑	19130	7 (. د			
5 L 85674 5 L 18130 1 T 19137 5 1 L 85881 5 M 18740 2 T 19140 3 2 T 85881 5 M 18749 2 L 19140 3 4 L 85882 3 L 18756 1 T 19150 3 1 T 85884 2 L 18766 5 L 19164 2 1 T 85885 5 L 18766 5 L 19164 2 1 T 85886 5 L 18766 5 L 19164 2 0 0 85889 5 M 18815 2 T 19164 2 0 0 85889 5 M 18815 2 T 19164 2 1 T	362	2	-	85873	ഹ	_	86133	-	-	19131	2	_			
1 L 85878 5 M 18740 2 T 19140 3 2 T 85881 5 M 18747 2 T 19147 5 4 L 85882 3 L 18752 1 T 19150 3 1 T 85884 2 T 18756 1 T 19159 2 1 T 85885 5 L 18761 1 T 19164 2 1 T 85885 5 L 18762 5 L 19164 2 0 0 85889 5 L 18765 5 L 19164 2 0 0 85889 5 M 18815 2 T 19164 2 0 0 85889 5 M 18815 2 T 19174 2 0 0 85889 5 M 18000 1 L 19174 2 1 T 85905 5 L 19005 3 T 19189 1 1 T 85912 5 L 190	364	S	_	85874	ß	_	18130	-	⊢	19137	2	⊢			
2 T 85881 5 M 18747 2 T 19147 5 1 T 85882 3 L 18749 2 L 19150 3 4 L 85884 2 T 18756 1 T 19157 3 1 T 85885 5 L 18766 5 L 19164 2 0 0 85889 5 L 18766 5 L 19164 2 0 0 85889 5 L 18766 5 L 19167 0 0 0 85889 5 M 18815 2 T 19167 0 0 0 85895 3 M 19000 1 L 19174 2 1 T 85905 5 L 19005 3 T 19189 1 1 T 85917 1 L 19025 L 19216 5 1 F <td>451</td> <td></td> <td>_</td> <td>82878</td> <td>2</td> <td>Σ</td> <td>18740</td> <td>2</td> <td>⊢</td> <td>19140</td> <td>က</td> <td>_</td> <td></td> <td></td> <td></td>	451		_	82878	2	Σ	18740	2	⊢	19140	က	_			
1 T 85882 3 L 18749 2 L 19150 3 4 L 85883 3 L 18752 1 T 19157 3 1 T 85884 2 T 18756 1 T 19159 2 3 T 85885 5 L 18766 5 L 19164 2 0 0 85889 5 L 18766 5 L 19164 2 0 0 85889 5 M 18815 2 T 19164 2 0 0 85889 5 M 18815 2 T 19174 2 0 0 85895 3 M 19000 1 19179 2 1 T 85905 5 L 19012 0 19199 1 1 T 85917 1	209	2	F	85881	S	Σ	18747	2	F	19147	2	_			
4 L 85883 3 L 18752 1 T 19157 3 1 T 85884 2 T 18756 1 T 19159 2 1 T 85885 5 L 18762 5 L 19164 2 1 T 85886 5 L 18766 5 L 19164 2 0 0 85889 5 M 18815 2 L 19167 0 0 0 85889 5 M 18815 2 T 19167 0 0 0 85889 5 M 18815 2 T 19174 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85912 3 M 19005 3 T 19189 1 2 Scab Lesion Types (1-5) 1 1 1 1 1 1 1 1 1 <	970		⊢	85882	ო	_	18749	2	_	19150	က	٦			
1 T 85884 2 T 18756 1 T 19159 2 1 T 85885 5 L 18761 1 T 19163 1 1 T 85887 1 T 19164 2 0 0 85889 5 L 19167 0 0 0 85885 3 M 18000 1 19174 2 1 T 85895 3 M 19000 1 L 19174 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85906 5 L 19012 0 0 19199 2 3 T 85912 5 L 19023 2 L 19216 5 4 Scab Lesion Types (1-5) 1 L 19026 2 L 19222 1 5 L 19023 2 L 19223 L 1922	038	4	_	85883	ო	_	18752	_	⊢	19157	ဗ	_			
1 T 85885 5 L 18761 1 T 19163 1 3 T 85887 1 T 18762 5 L 19164 2 1 T 85888 5 L 18766 5 L 19167 0 0 0 85889 5 M 18815 2 T 19174 2 0 0 0 85895 3 M 19000 1 L 19175 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85911 3 T 19013 2 L 19216 5 3 T 85917 1 L 19023 2 M 19216 5 1 Scab Lesion Types (1-5)	387	-	⊢	85884	7	⊢	18756	-	⊢	19159	2	_			
3 T 85887 1 T 18762 5 L 19164 2 1 T 85888 5 L 18766 5 L 19167 0 0 0 85889 5 M 18815 2 T 19174 2 0 0 0 85895 3 M 19000 1 L 19175 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85911 3 T 19013 2 L 19216 5 3 T 85912 5 L 19023 2 M 19216 5 1 T 85917 1 L 19026 2 L 19220 1 *Scab Lesion Types (1-5)	393	-	-	85885	S	٦	18761	-	-	19163	_	Σ			
1 T 85888 5 L 18766 5 L 19167 0 0 0 85889 5 M 18815 2 T 19174 2 0 0 85895 3 M 19000 1 L 19175 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85917 3 T 19013 2 L 19216 5 3 T 85917 1 L 19023 2 M 19216 5 4 T 85917 1 L 19026 2 L 19216 5 5 L 19023 2 M 19216 5 6 No scab 1 L 19026 2 L 19222 1 1 = Raised lesion 1 = Raised lesion 1 = Light 1 = Light	402	က	F	85887	-	-	18762	S	ب	19164	2	٦			
0 0 65889 5 M 18815 2 T 19174 2 0 0 65895 3 M 19000 1 L 19175 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85911 3 T 19012 0 0 19199 2 3 T 85912 5 L 19023 2 M 19216 5 1 T 85917 1 L 19026 2 L 19216 5 1 T 85917 1 L 19026 2 L 19216 5 2 No scab 1 L 19026 2 L 19222 1 3 = Lesion Types (1-5) 1 L 19026 2 L 19222 1 4 = Raised lesion 1 = Raised lesion 1	403	-	⊢	85888	ഗ	_	18766	2	ب	19167	0	0			
0 0 685895 3 M 19000 1 L 19175 2 1 T 85905 2 T 19005 3 T 19189 1 1 T 85906 5 L 19012 0 0 19199 2 3 T 85912 5 L 19013 2 L 19216 5 3 T 85917 1 L 19026 2 L 19218 2 4 Scab Lesion Types (1-5) 1 L 19026 2 L 19222 1 0 = No scab T = Raised lesion T = Trace T = Trace <td>406</td> <td>0</td> <td>0</td> <td>85889</td> <td>2</td> <td>Σ</td> <td>18815</td> <td>2</td> <td>-</td> <td>19174</td> <td>2</td> <td>Σ</td> <td></td> <td></td> <td></td>	406	0	0	85889	2	Σ	18815	2	-	19174	2	Σ			
1 T 85905 2 T 19005 3 T 19189 1 1 T 85906 5 L 19012 0 0 19199 2 3 T 85911 3 T 19013 2 L 19216 5 3 T 85917 1 L 19026 2 L 19218 2 3 T 85917 1 L 19026 2 L 19218 2 4 D No scab No scab No scab No scab T= Trace T= Trace T= Trace T= Trace No scab N	410	0	0	85895	က	Σ	19000	-	ب	19175	2	Σ			
1 T 85906 5 L 19012 0 0 19199 2 1 T 85911 3 T 19013 2 L 19216 5 3 T 85912 5 L 19023 2 M 19218 2 1 T 85917 1 L 19026 2 L 19218 2 0= No scab O= No scab T=Trace T=Trace T=Trace L=Light 3= Lesion breaking periderm M=Medium M=Medium M=Medium	426	-	ı	85905	7	 -	19005	က	-	19189	_	_			
1 T 85911 3 T 19013 2 L 19216 5 3 T 85912 5 L 19023 2 M 19218 2 1 T 85917 1 L 19026 2 L 19222 1 1 Scab Lesion Types (1-5) 1 L 19222 1 1 0= No scab 1= Raised lesion T=Trace L=Light 3= Lesion breaking periderm M=Medium 5- Descrit L=Light	430	-	-	85906	S	ب	19012	0	0	19199	2	Σ			
3 T 85912 5 L 19023 2 M 19218 1 T 85917 1 L 19026 2 L 19222 1 Scab Lesion Types (1-5) 0= No scab 1= Raised lesion 3= Lesion breaking periderm M=Medium 1= Appendix	431	-	 -	85911	ო	-	19013	2	ب	19216	2	٦			
T 85917 1 L 19026 2 L 19222 Scab Lesion Types (1-5) T=Trace T=Raised lesion T=Raised lesion T=Trace T=Light T=Trace T=Light T=Trace T=Light T=Trace T=Light T=Trace T=	432	ო	1-	85912	2	١	19023	7	Σ	19218	2	٦			
1Scab Lesion Types (1-5) 2Scab Coverage 0= No scab 1= Raised lesion 3= Lesion breaking periderm 6= Design the scape of the	433	-	1-	85917	-	_	19026	2	_	19222	-	_			
0= No scab 1= Raised lesion 3= Lesion breaking periderm		Scabl	esion Types (1-5)			Scab Cove	srade							
1= Raised lesion 3= Lesion breaking periderm 5= Poesin of		No o	cah				T=Trace								
3= Lesion breaking periderm	174	1 0 0 0	cab ed losion				= iaht								
	`	3= period	ou residir	aridorm			M=Madium								
		5 Deg	יין פייייסטייי שוריי				H=Heavy	_							

Minnesota Table 13. Results of Breeding Program Late Blight Trial at Rosemount, Minnesota in 19971.

Susceptible	Krantz Nordonna B 1004-8 All Minnesota Selections
Reduced Susceptibility	A 84118-3 AO 80432-1 Dorita CO 083008-1
Moderate Resistance	BO 288-17 Robijn Bzura Greta Bertita Zarevo Elba AO 84275-3 BO 749-2F Pimpernel Stobrawa BO 811-3 Libertas
Resistant	AWN 86514-2 BO 692-4 BO 718-3 BO 767-2

¹ Planted June 9, 1997. Innoculated August 14, 1997; A2, US8.

15620	86126			2	CICIO	Nathig	Clone	6	Ciolic	Kating
15622 3 16191 1 16201 1 16462 2 16832 4 D.R. Norland 1 17637 2 17664 2		4	D.R. Norland	е	16489		18756	S	19055	4
16191 1 16201 1 16462 2 16832 4 D.R. Norland 1 17637 2 17664 2	86127	ო	85567		16966	0	18757	4	19073	2
16201 1 16462 2 16832 4 D.R. Norland 1 17637 2 17664 2	86128	2	85579	4	17572	-	18758	S	D.R. Norland	ന
16462 2 16832 4 D.R. Norland 1 17637 2 17664 2	Red Pontiac	2	86101	ო	15578		18761		19087	4
16832 4 D.R. Norland 1 17637 2 17664 2 17793 1	86129	4	86108		D.R. Norland		18762	က	19088	4
D.R. Norland 1 17637 2 17664 2 17793 1	86130	4	83806	2	17923	٠	18766	0	19089	9
17637 2 17664 2 17793 1	86131	Ŋ	83835	2	17925	2	18768	က	19090	2
17664 2 17793 1	86132	4	83959	4	17939		Red Pontiac		19091	2
17793	86133	2	84078	2	17941		18769	4	19094	-
	84451	0	84362	2	17986	2	18771	2	19096	S
83007 5	85038	4	84364	S	17993		18772		19097	7
83039 4	85387	-	84509	4	17996		18773	က	19098	4
83545 5	85393	-	85873	ო	Norchip		18774	4	Norchip	2
Norchip 3	85402	-	85874	2	17999		18799		19102	4
16398 2	85403	2	D.R. Norland	ო	19001	2	18808	೮	19106	-
17861 4	85406		85878	0	18038		18815	-	19111	ഹ
16404 2	85410	-	85881	0	18068	က	19000	4	19113	2
16447	D.R. Norland	22	85882		18096	٠	D.R. Norland		19127	-
16988	85426	-	85883	2	18130	4	19001	4	19129	
17335 0	85430	_	85884	2	Red Pontiac		19002	2	19130	ო
17663	85431	-	85885	c)	18153		19003	4	Red Pontiac	4
17678 1	85432	5	85887		18364	4	19004	4	19131	ო
17716	85433	5	85888	ß	18365	2	19005	m	19137	4
17742 4	85463	5	85889		18370	0	19012	ო	19140	ო
86109 2	85469		Norchip	4	18468	-	19013	S	19147	0
D.R. Norland	85472	2	85895	4	18574		Norchip	2	19150	4
86111 4	85475	2	85852	S	18653	က	19023	2	19157	2
86112 4	Norchip	4	85434		18699	_	19025	2	19159	-
86113 3	85481		85438	2	D.R. Norland	m	19026	2	19163	ო
86114 4	85483	-	85439	က	18702	m	19028	4	19164	4
86115 3	85627	2	85452	2	18709	2	19031	2	D.R. Norland	S
86116 3	85636		85905	_	18710	-	19032	4	19167	-
86117 5	85638	S	85906	ო	18713	4	19033	က	19174	7
86118 3	84970	-	85911	ო	18714	Ψ-	19041	ო	19175	0
Norchip 4	85477	-	85912	വ	18740	က	19042	-	19189	0
86119 3	85510	2	D.R. Norland	4	18747	က	Red Pontiac	4	19199	ო
86120 2	85517	ო	85917	2	18749		19044	4	19216	ო
86122 5	85541	4	12823	0	18750	4	19045	2	19218	4
86123 5	85549	4	15129		Norchip	ღ	19047	Ω	Norchip	4
86124 3	85554	4	16180		18751		19048	2	19222	4
86125 5	85561	2	16478	ო	18752	2	19050		19223	m

0 = 0 wilt 2 = 13 - 25% wilt 4 = 51 - 75% wilt 1 = 1 - 12% wilt 3 = 26 - 50% wilt 5 = 76 - 100% wilt

181

Vert. Rating ¹		0	-	က	4																																				
Clone	19530	19531	19534	19535	19542																																				
Vert. Rating [†]	Ŋ	ო	7	ო	7	4	0	5	-	_	2	2	5	75	5	4	4	2	2	5	5	2	4	4	ო	4	2	-	7	-	4	٠	7			0		,	٠		
Clone	19461	19462	19463	19464	19466	Red Pontiac	19467	19469	19470	19472	19473	19477	19478	19481	19483	19484	Norchip	19485	19487	19488	19489	19492	19493	Red Pontiac	19495	19499	19505	19506	19507	19511	Norchip	19513	19515	19518	19521	19522	19523	19525	19526	19528	D.R. Norland
Vert. Rating ¹	5	4	2	ო	2	4	4	2	4	2	2	2	S)	ო	4	r2	ς,	ო	4	ო	5	2	4	2	4	5	4	2	4	4	5	_	4	ო	ო	ღ	ю	2	Ŋ	22	5
Clone	19349	19353	19358	Red Pontiac	19374	19375	19376	19378	19379	19394	D.R. Norland	19395	19397	19407	19416	19417	19419	19420	D.R. Norland	19423	19427	19429	19430	19431	19432	19433	19436	19439	Red Pontiac	19440	19441	19444	19446	19447	19450	19452	19453	19457	D.R. Norland	19458	19460
Vert. Rating ¹	m	2	2	4	2	2	4	3	2	2	2	2	4	5	က	2	4	4	2	2	ო	2	4	ന	2	2	2	೮	ო	2	2	2	2	ო	e	ю	2	ღ	4	4	5
Clone	19229	19252	19254	19257	19259	19260	19261	19262	19264	19265	19267	19268	Norchip	19271	19275	19278	19279	19280	19285	19286	D.R. Norland	19287	19288	19290	19291	19295	19297	19300	Red Pontiac	19311	19312	19320	19321	19324	19326	19328	Red Pontiac	19335	19341	19342	19346

	= ==
	2 = 13 - 25% wilt 3 = 26 - 50% wilt
Verticillium Rating	0 = 0 with $1 = 1 - 12%$ wilt

4 = 51 - 75% wilt 5 = 76 - 100% wilt

Clone	Ver. Rating ¹	Clone	Vert. Rating ¹	Clone	Rating ¹						
15620	-	86126	т	D.R. Norland	7	16966	-	18762	8	19127	2
5622	4	86127	က	85567		17572	4	18766	က	19129	4
16191	က	86128	က	85579	4	15578	4	18768	4	19130	4
16201	2	Red Pontiac	4	86101	ო	D.R. Norland	2	Red Pontiac	ស	Red Pontiac	ന
16462	က	86129	S	86108	4	17923	ഗ	18769	5	19131	ന
16832	က	86130	2	83806	ß	17925	2	18771	2	19137	S
D.R. Norland	7	86131	2	83835	-	17939	4	18772	-	19140	2
17637	က	86132	2	83959		17941	ß	18773	ന	19147	-
17664	4	86133	2	84078	ς,	17986	ស	18774	-	19150	ന
17793	7	84451	0	84362	4	17993	4	18799	2	19157	2
83007	S	85038	ß	84364	ιΩ	17996	ന	18808	5	19159	-
83039	S	85387	-	84509	4	Norchip	4	18815	-	19163	-
83545	S	85393	2	85873	2	17999	4	19000	ෆ	19164	ന
Norchip	4	85402	ო	85874	<u></u>	19001	ო	D.R. Norland	2	D.R. Norland	ന
16398	က	85403	4	D.R. Norland	-	18038	4	19005	ന	19167	-
17861	5	85406	2	85878	-	18096	ហ	19013	4	19174	0
16404	2	85410	-	85881	-	18153	ις	19023	ന	19175	0
6447	2	D.R. Norland	4	85882	ო	18364	4	19026	S)	19199	-
6988	က	85426	-	85883	4	18365	ស	19028	4	19216	ന
7335	၈	85430	2	85884	2	18370	4	19031	2	19218	4
17663	7	85431	-	85885	ന	18468	4	19032	4	Norchip	2
17678	-	85432	5	85887	7	18574	ო	19033	4	19222	4
17716	က	85433	5	85888	2	18653	4	19041	-	19229	ო
17742	Ŋ	85463	4	85889	2	18699	-	19042	2		
86109	2	85469	0	Norchip	2	D.R. Norland	ഗ	Red Pontiac	က		
D.R. Norland	ო	85472	5	85895	4	18702	2	19048	က		
86111	5	85475	2	85852	4	18709	S	19050	4		
86112	4	Norchip	S	85434	4	18710	2	19055	5		
86113	ო	85481	0	85438	2	18713	2	19073	4		
86114	4	85483	2	85439	-	18714	ო	19087	ស		
86115	Ŋ	85627	2	85452	ß	18740	S	19088	ഗ		
86116	ო	85636	2	85905	0	18747	2	19089	2		
86117	S	85638	ന	85906		18749	S	19090	4		
86118	4	84970	0	85911	က	18750	4	19094	-		
Norchip	4	85477	2	85912	4	Norchip	2	19096	4		
86119	ß	85510	S	85917	4	18751	0	19097	4		
86120	Ŋ	85517	2	12823	2	18752	4	19098	2		
86122	S	85541	2	15129	4	18756	S	Norchip	೮		
86123	ß	85549	4	16180	ო	18757	4	19102	S		
86124	4	85554	5	16478	ო	18758	ഗ	19106	2		
86125	S	85561	2	16489	2	18761	4	19113	-		

2 = 13 - 25% wilt 3 = 26 - 50% wilt

4 = 51 - 75% wilt 5 = 76 - 100% wilt

0 = 0 wilt 1 = 1 - 12% wilt

Minnesota Table 15. Potato leafhopper (PLH) and Colorado potato beetle (CPB) resistance of wild species.

Species	PLH nymphs per plant	PLH adults per plant	PLH per plant ^a	CPB score ^b	Size score ^c	Number accessions evaluated ^d
brc	10.5 a	2.7 c-f	13.2 a	4.4	3.4	3
RB	5.7 a-d	6.9 a	12.7 ab	NA^e	6.0	1
sto	6.0 a-c	6.4 a-c	12.4 a-c	8.0	5.1	2
scr	5.1 a- g	6.0 a-d	11.1 a-d	7.0	4.6	3
lpt	5.2 a-f	5.7 a-e	10.9 a-e	6.6	5.1	2
spl	3.9 a-h	6.8 ab	10.7 a-f	5.8	5.2	5
cur	4.8 a-h	4.8 a-f	9.5 a-g	5.7	3.6	2
adg	5.4 a-e	3.3 a-f	8.7 a-h	4.5	3.1	6
fen	4.2 a-h	3.9 a-f	8.1 a-i	7.9	3.4	4
mlt	6.1 ab	1.9 d-f	8.0 a-i	3.5	1.6	4
grl	4.5 a-h	2.9 c-f	7.3 a-i	6.5	3.5	13
buk	4.6 a-h	2.3 c-f	6.9 a-i	3.5	1.7	6
stn	3.2 a-h	3.2 b-f	6.3 a-i	5.3	3.7	3
phu	4.8 a-h	1.3 ef	6.1 b-i	4.7	3.3	1
spg	2.8 b-h	3.1 c-f	5.9 b-i	4.9	3.7	3
pm	2.3 b-h	3.2 b-f	5.5 c-i	7.6	4.8	3
cop	4.3 a-h	1.1 ef	5.4 c-i	7.0	3.3	1
vrn	1.4 b-h	3.8 a-f	5.2 d-i	5.0	4.3	11
amb	2.2 b-h	2.6 c-f	4.8 d-i	4.5	3.9	4
ktz	1.9 b-h	2.4 c-f	4.3 d-i	7.6	5.1	2
ver	1.3 c-h	2.8 c-f	4.1 e-i	6.5	4.1	5
chc	0.4 h	3.5 a-f	3.9 e-i	9.0	8.1	3
can	2.1 b-h	1.7 d-f	3.8 e-i	6.0	3.3	13
bst	3.7 a-h	0.1 f	3.8 f-i	7.5	1.0	3
snk	1.5 b-h	1.6 d-f	3.1 f-i	6.8	3.3	1
med	0.8 d-h	1.3 d-f	2.1 g-i	5.4	3.6	4
cnd	1.4 b-h	0.4 f	1.8 g-i	7.7	3.0	2
mga	0.7 e-h	1.1 ef	1.8 hi	3.6	1.3	2
agf	0.4 f-h	1.1 ef	1.5 hi	8.3	3.0	1
ber	0.4 gh	0.7 f	1.2 i	9.0	7.2	3

Means followed by the same letter within columns are not significantly different (P > 0.05); REGW-F test.

Plot design: RCBD, 4 reps, 7 plants/rep.

^dAccessions were combined within species.

^aNymphs and adults were combined following vacuum sampling of plants for PLH.

^bCPB defoliation score: 1 = susceptible and 9 = resistant.

^cSize score: 1 = smallest plants and 9 = largest plants.

Nebraska Potato Variety Trials Alexander D. Pavlista

Extension Potato Specialist University of Nebraska Panhandle Research and Extension Center 4502 Avenue I Scottsbluff, NE 69361

Introduction

In 1997, trials were conducted at Imperial, Kearney, O'Neill, and Scottsbluff. All entries were planted at Imperial and Scottsbluff, the latter also had three additional entries, while white-skinned entries were planted at Kearney and the other entries at O'Neill. There were 18 white-skinned (20 in Scottsbluff), 11 russet, 6 red (7 in Scottsbluff), and 1 yellow entries. Nebraska participated in the North Central Regional (NCR) trial having 19 entries. This trial was conducted at the Panhandle Research and Extension Center (PREC) in Scottsbluff.

Materials, Methods and Conditions

Soils were sandy loams; pHs were from 5.6 to 7.9, and organic matter content was between 1 and 2.5%. The ranges of major fertilizers were 180 to 330 lb N/ac, 90 to 180 lb P/ac, 0 to 350 lb K/ac and 0 to 80 lb S/ac. At some locations, boron, magnesium and/or zinc were also added. Seed pieces were cut, treated with TOPS MZ and stored for seven to 30 days at 55 F. Growers used their conventional practices. Insecticides were Thimet applied at planting and, depending on location, post-emergence applications of Asana, Monitor, Provado, and DiPel. Depending on location, Turbo, Prowl plus Lexone were applied pre-emergence or at hilling and Poast was applied post-emergence for grasses. At Scottsbluff, no preemergence herbicide was applied; two applications of Eptam plus Matrix were applied in June. Besides the seed treatment, Bravo, Dithane, Curzate M-8 were used for early and late blight prevention. No fungicides were used at Scottsbluff. Vines were desiccated with Diquat. In Scottsbluff, vines were allowed to die from late blight in order to take susceptibility readings.

The trial design was 20-60 foot strip plots from which a section was harvested. The North Central Regional Trial was conducted as three replicate plots of 20 seedpieces. The key growth dates for all trials are listed in Table 1. Trials were conducted under overhead sprinkler irrigation. Rainfall and relative humidity tended to be below normal except mid-July to mid-August and, in most locations at the end of May. Temperature was normal.

Yield data were taken on tubers under 1% in, between 1% and 4 in, and over 4 in size. Within two weeks after harvest, tuber defects and specific gravities on 1% to 4-

inch tubers were determined visually and using a hydrometer, respectively. Fry color of entries were measured using the SFA/PC color chart. Color was determined following curing.

Nebraska Table 1. Key dates for each trial in 1997.

	IM	KE	ON	SB
P D H	4/16 9/5 9/17	5/1 9/7 10/14	5/1 9/20 10/1	5/14 9/9 9/26
days: P to D	142	130	143	118

IM=Imperial,KE=Kearney,ON=O'Neill,SB=Scottsbluff

P=planting,D=desiccation,H=harvest.

Results and Discussion

YIELDS: The highest yields (>400 cwt/a average of three locations) were white entries: Snowden, CalWhite, ATX85404-8, Ptarmigam¹ and MN15622; russet entries: AO82-611-7 and Russet Norkotah St. #8²; red entries: Ruby Gold¹ and Dark Red Norland, and Yukon Gold¹.

SPECIFIC GRAVITY: Most white entries had average specific gravities above 1.080. W1313 averaged the highest (1.092). The high yielders, CalWhite and Ptarmigam, had relatively very low specific gravities. Among russet entries, most had a specific gravity above 1.075 with AO82-611-7 having the highest (1.084). The specific gravity among the red entries was scattered; NE8664 averaged highest (1.082). Yukon Gold's gravity was 1.081.

COOKING COLOR: Light colored chips (< 2 on chart) were produced from most white entries. Unacceptable color was observed from AF875-15, Shurchip, Ptarmigam, and CalWhite. (The latter two were high yielders.) CalWhite is probably best in the long-white, fresh market. Most russet entries' fry color was below 3. Russet Norkotah (regular) and W1151rus fried darker than Russet Burbank and were unacceptable.

TUBER DEFECTS: Entries in which the tubers had the following defects were:

Off-Shape (>10% @ 2 sites): Russet Burbank and Russet Norkotah strain #3 (CO);

Common Scab (>10% @ Scottsbluff): Atlantic, AF875-15, NE8644, and W1313 in Kearney; W1151rus; Redsen and NE8664, and Yukon Gold.

Black Scurf (>10% @ 2 sites): AF1433-4, ATX85404-8, NE8644, NE8810, and W1313; Russet Burbank and Russet Norkotah strains #3 and #8, and Yukon Gold. Hollow Heart: Nearly all entries had less than 5%; NE8644 had 8% at Imperial.

Vascular Discoloration (>9% @ 1 site): Brador¹, CalWhite, Russet Burbank, Russet Norkotah strain #3, and NE8242.

Sprouting (>10% @ Imperial): CalWhite, Shurchip, AF875-15, and MN15622.

Greening (>9% @ Kearney): NE8810, NE8812 and NE8813.

LATE BLIGHT SUSCEPTIBILITY (Table 5): Brador is the only entry that showed tolerance of late blight. This cultivar was entered due to the recommendation of the breeder in New Brunswick, Canada, as being resistant to late blight and a standard for comparison. Those entries that seemed least susceptible to late blight were CalWhite, Snowden, AF1433-4, W1313, and Allegany among the other white entries. Among russets, Russet Nugget and Russet Norkotah #3 strain were least susceptible. Temagami, a Canadian red entry, also showed less susceptibility than other entries. Note that the late blight readings were visual plot estimates.

In the North Central Trial (Table 9), entries with the least late blight susceptibility were Snowden, MSB073-2 and MSB076-2, all white chippers. The MSB entries are from Michigan. Other North Central Trial data from Nebraska are in Tables 7 and 8.

¹ Canadian cultivars ² Colorado strain

Nebraska Table 2. Imperial -- yield and tuber quality of potato entries, 1997.

Entries	Total Yield cwt/a	>2in. Yield cwt/a	Specific Gravity	Fry Color¹ SFA/PC	% Defects and Type ²
white-skinned					
Atlantic	433	415	1.090	1	6 BS, 2 CS, 4 HH, 3 OS
CalWhite	415	384	1.070	5	5 OS, 10 SP, 25 VD
Novachip	573	555	1.080	1	3 BS, 2 OS
Ptarmigam	534	519	1.070	3	3 OS
Shurchip	357	293	1.070	4	8 OS
Snowden	671	653	1.087	1	35 BS, 2 HH, 3 OS, 25 SP
AF1433-4	378	354	1.088	1	28 BS, 3 OS, 5 SP
AF875-15	427	403	1.086	3	2 OS, 12 SP
ATX85404-8	610	380	1.087	1	1 OS, 5 SP
BCO894-2	393	354	1.070	1	1 OS
MN15622	555	549	1.092	2	2 HH, 6 OS, 60 SP
NDO1496-1	567	543	1.095	1	3 GR, 1 HH, 1 OS
NE8644	458	427	1.085	1	10 BS, 7 CS, 8 HH, 4 OS
NE8810	503	458	1.085	1	10 BS, 2 OS, 8 SP
NE8812	381	354	1.095	1	1 OS
NE8813	351	311	1.080	3	1 HH, 1 OS
W1242	512	494	1.080	1	8 BS, 5 OS
W1313	305	293	1.084	1	21 BS, 6 OS
russet-skinned					,
Rus. Burbank	546	506	1.082	3	28 BS, 25 OS
Rus. Norkotah	467	439	1.080	3	8 OS
R. Norkotah #3	470	397	1.079	4	23 BS, 16 OS
R. Norkotah #8	512	488	1.077	3	4 BS, 9 OS
Rus. Nugget	281	256	1.077	3	27 BS, 3 OS
Ute Russet	217	189	1.075	3	14 BS, 10 OS
A81-386-1	540	506	1.075	2	9 OS
A81-473-2	256	244	1.080	3	2 HH, 5 OS
A84-95-1	384	366	1.080	3	3 BS, 1 OS
AO82-611-7	586	543	1.092	3	7 OS
W1151rus	573	543	1.075	4	5 OS
red-skinned					
D.Red Norland	445	433	1.060	4	5 BS, 3 OS
Redsen	424	384	1.070	2	5 BS, 5 OS
Ruby Gold	723	665	1.072	5	,
NE8237	329	299	1.065	3	6 BS, 4 OS
NE8242	430	415	1.080	3	8 BS, 8 OS, 15 SP
NE8664	336	323	1.075	3	5 BS, 2 CS, 1 OS
yellow-fleshed					
Yukon Gold	543	525	1.078	3	2 HH, 3 OS, 5 SP
site means:	459	431	1.080		

¹ Fry color: 1 = lightest (equivalent to 65 or more on Agtron index scale) to 5 = darkest (equivalent to 25-34 on Agtron index scale).

² Defect Types: BS = black scurf, CS = common scab, HH = hollow heart, OS = off-shape, SB = sunburn, SP = sprouting (heat), VD = vascular discolor.

Nebraska Table 3. Kearney & O'Neill -- yield and tuber quality of potato entries, 1997.

Entries	Total Yield cwt/a	>2in. Yield cwt/a	Specific Gravity	Fry Color¹ SFA/PC	% Defects and Type ²
white-skinned ^K Atlantic	429	405	1.088	1	6 BS, 3 CS, 1 HH, 2 OS
	678	643	1.070	5	2 CS, 5 OS, 4 VD
CalWhite		340	1.076	1	3 BS, 5 CS, 4 GR, 5 OS
Novachip	348		1.070	3	3 CS, 3 OS, 4 SP
Ptarmigam	488	475		1	15 BS, 8 OS
Shurchip	389	367	1.070	1	3 CS, 3 OS
Snowden	629	605	1.086		10 BS, 6 CS, 6 OS
AF1433-4	342	319	1.070	1	
AF875-15	405	383	1.080	2	5 BS, 2 CS, 3 GR, 2 OS
ATX85404-8	567	551	1.079	1	10 BS, 3 CS, 3 OS
BCO894-2	332	308	1.070	1	9 BS, 3 CS, 3 OS
MN15622	464	454	1.075	1	7 CS, 7 OS
NDO1496-1	432	421	1.086	1	2 BS, 1 CS, 1 OS
NE8644	338	319	1.073	1	7 BS
NE8810	424	394	1.078	1	18 BS, 6 SC, 10 GR + SP, 6 OS
NE8812	321	297	1.086	2	3 BS, 2 CS, 12 GR, 2 OS
NE8813	392	362	1.080	1	2 CS, 15 GR, 2 HH, 2 OS
W1242	378	373	1.084	1	2 CS, 2 OS
W1313	424	400	1.093	1	15 BS, 14 CS, 6 OS
russet-skinned ⁰				_	, , , ,
Rus. Burbank		464	1.082	3	26 BS, 9 OS
Rus. Norkotah	•	450	1.081	3	2 OS
R. Norkotah #3	•	247	1.079	4	15 BS, 7 OS
R. Norkotah #8	•	522	1.077	3	25 BS, 3 OS
Rus. Nugget	•	276	1.078	3	12 OS
Ute Russet	•	334	1.076	3	1 HH, 3 OS
	•	479	1.077	2	3 OS
A81-386-1	•	493	1.077	3	3 HH, 15 OS
A81-473-2	•			3	1 OS
A84-95-1	•	218	1.080		
AO82-611-7	•	667	1.084	3	1 HH, 5 OS
W1151rus	*	334	1.077	4	1 OS
red-skinned ^o		4.5.	4 0		4.00
D.Red Norland		464	1.066	4	4 OS
Redsen		290	1.077	2	2 OS
Ruby Gold		681	1.076	5	4 OS
NE8237		174	1.071	3	1 OS
NE8242	•	420	1.075	3	2 HH, 5 OS
NE8664		377	1.084	3	29 BS, 9 CS, 3 OS
yellow-fleshed o					
Yukon Gold		681	1.078	3	10 BS, 8 CS, 3 HH, 3 OS
site means:	432 ^K	412 ^K	1.078		
		421°			

¹ Fry color: 1 = lightest (equivalent to 65 or more on Agtron index scale) to 5 = darkest (equivalent to 25-34 on Agtron index scale).

² Defect Types: BS = black scurf, CS = common scab, HH = hollow heart, OS = off-shape, SB = sunburn, SP = sprouting (heat), VD = vascular discolor.

^K = at Kearney; ⁰ = at O'Neill

Nebraska Table 4. Scottsbluff -- yield and tuber quality of potato entries, 1997.

Entries	Total Yield cwt/a	>2in. Yield cwt/a	Specific Gravity	Fry Color ¹ SFA/PC	% Defects and Type ²
white-skinned	340	335	1.082	2	29 BS, 2 HH, 6 OS
Allegany Atlantic	367	351	1.082	1	19 CS, 2 HH, 2 OS
Brador	491	475	1.082	1	4 OS, 15 VD
CalWhite	535	513	1.075	3	21 BS, 5 CS, 11 OS, 7 VD
Novachip	297	281	1.082	1	5 CS, 6 OS, 10 SB
Ptarmigam	437	432	1.070	3	11 OS
Shurchip	389	367	1.070	3	1 HH, 14 OS, 1 VD
Snowden	400	389	1.080	1	7 CS, 3 OS
AF1433-4	351	335	1.080	1	5 BS, 2 CS, 3 OS, 4 VD
AF875-15	346	335	1.085	2	12 BS, 40 CS, 6 OS
ATX85404-8	346	329	1.075	1	18 BS, 6 OS, 11 SB
BCO894-2	270	259	1.070	1	8 BS, 2 CS
MN15622	313	302	1.086	2	4 CS, 8 OS
NDO1496-1	232	216	1.080	1	3 CS, 6 OS
NE8644	221	211	1.084	1	24 BS, 36 CS, 8 OS
NE8810	292	265	1.085	1	9 BS, 3 CS, 1 VD
NE8812	232	211	1.087	1	2 CS, 7 SB
NE8813	264	238	1.088	1	2 CS, 4 HH, 3 OS, 6 SB
W1242	319	313	1.085	1	5 CS, 7 OS
W1313	205	184	1.090	1	7 CS, 5 OS
russet-skinned					, 55,5 55
Rus. Burbank	232	221	1.070	3	12 BS, 16 OS, 10 VD
Rus. Norkotah	270	259	1.070	2	10 OS
R. Norkotah #3	286	275	1.070	3	15 BS, 32 OS, 10 VD
R. Norkotah #8	340	329	1.070	2	36 BS, 11 OS, 5 VD
Rus. Nugget	70	70		2	4 BS
Ute Russet	59	59		3	1 HH
A81-386-1	119	119	1.070	2	6 BS, 10 OS
A81-473-2	81	81		2	2 OS
A84-95-1	97	97	1.075	2	4 OS
AO82-611-7	216	200	1.075	2	9 OS
W1151rus	184	167	1.070	2	4 BS, 30 CS, 3 OS
red-skinned					
D.Red Norland	367	346	1.070	2	1 OS
Redsen	324	302	1.080	2	33 CS
Ruby Gold	432	416	1.075	3	5 CS
Temagamy	356	335	1.070	2	14 BS, 2 CS, 3 OS, 1 VD
NE8237	113	108	1.070	2	4 BS
NE8242	205	200	1.075	2	6 CS, 1 VD
NE8664	238	216	1.088	2	18 CS, 3 HH, 5 OS, 1 VD
yellow-fleshed					
Yukon Gold	340	329	1.082	2.	14 BS, 16 CS, 6 OS 1 VD
site means:	278	265	1.078		

¹ Fry color: 1 = lightest (equivalent to 65 or more on Agtron index scale) to 5 = darkest (equivalent to 25-34 on Agtron index scale).

² Defect Types: BS = black scurf, CS = common scab, HH = hollow heart,

OS = off-shape, SB = sunburn, SP = sprouting (heat), VD = vascular discolor.

Late Blight Readings: 0 = none, 5 = all dead

	Late Blig	tht Readings: 0 = none,	5 – ali dead
Entries	August 25	August 28	September 10
white-skinned			
Allegany	1/2	1	31/2
Atlantic	1 1/2	$2\frac{1}{2}$	41/2
Brador	0	1/2	1/2
CalWhite	0	1/2	3
Novachip	2	1	5
Ptarmigam	4	5	5
Shurchip	2	5	4
Snowden	0	1	3
AF1433-4	3	2	3
AF875-15	3	2	5
ATX85404-8	2	4	31/2
BCO894-2	31/2	4	5
MN15622	31/2	5	5
NDO1496-1	41/2	5	5
NE8644	5	5	5
NE8810	5	5	5
	5	5	5
NE8812		5	5
NE8813	4½	3½	4
W1242	1/2		3
W1313	1	21/2	3
russet-skinned	17	21/	4
Rus. Burbank	1/2	21/2	4
Rus. Norkotah	1	2	4½
R. Norkotah #3	1/2	1/2	3
R. Norkotah #8	1/2	3	3½
Rus. Nugget	2	1	21/2
Ute Russet	1/2	1 1/2	3
A81-386-1	4	5	5
A81-473-2	3	31/2	41/2
A84-95-1	3	1/2	41/2
AO82-611-7	1	3	31/2
W1151rus	1/2	1 1/2	4
red-skinned			
D.Red Norland	2	1/2	5
Redsen	4	5	5
Ruby Gold	5	5	5
Temagamy	11/2	1	31/2
NE8237	31/2	5	5
NE8242	5	5	5
NE8664	5	5	5
yellow-fleshed			
Yukon Gold	5	4	41/2

NEW JERSEY

Melvin R. Henninger

Introduction

Trials were conducted at the Rutgers Agricultural Research & Extension Center in Upper Deerfield Township and The Snyder Research & Extension Farm near Pittstown. All plots were 21' long and 3' wide. Seedpieces were spaced at 9" for round types and 12" for long types. At the Rutgers Ag Res & Ext location, part of the nitrogen and all of the P₂O₄ and K₂O were applied before planting and disked in. Additional nitrogen was topdressed 5 weeks after planting to bring the total up to 150 lb/A. At the Snyder Farm 1000 lbs./A of 15-15-15 was broadcast and disked in before planting. At both sites, Dual and Sencor were applied shortly after planting and Matrex and Lexone after hilling.

The Upper Deerfield plots were harvested with a single-row mount commercial harvester modified for bagging. No attempt was made to recover any lost tubers caused by normal harvester operation. All plots were sized with a spool sizer and specific gravities were determined by the weight in air and water method. Chip color was done by Mr. Steve Molnar of Wise Foods five days after harvest.

The Snyder Farm plots were harvested with a single-row commercial potato digger. Round types were sized with a spool sizer, the long types were sized by weight, and specific gravities were determined by the weight in air and water method.

In 1997, planting was normal and growing conditions were cool early, hot and dry after June 1st. Rainfall was supplemented by many irrigations. At the Snyder Farm location in northern New Jersey, conditions were dry but somewhat cool and growth was very good. Ozone levels were high in early July and some varieties were damaged. Insects and diseases were not a limiting factor to growth.

To simplify above information, trade names of some products are used. No endorsement is intended, nor is criticism implied of similar products not named.

Seed Tota iety Source Yiel me (2) cwt/ antic ne 393 03 ne 345 471-8 ne 345 66-3 ne 343 a ne 330 875-15 me 351	1 Market d cwt/a 343 333 308	미		CONTROL CONTROL							
me (2) cwt/ antic ne 393 03 ne 345 471-8 ne 345 ahdin ne 343 a ne 330 875-15 me 351	333 333 308	0	be	0%		ο¥ο	ογρ	Tuber	iΖ	es (3)	
antic ne 39 03 ne 36 471-8 ne 34 ahdin ne 34 66-3 ne 34 a ne 33	4000	dn	Grav.	1 7/8	2 1/2	Culls	г	7	1	4	2
03 ne 36 471-8 ne 34 ahdin ne 34 66-3 ne 34 a ne 33	000	12	.08			4	0	33		14	0
471-8 ne 34 ahdin ne 34 66-3 ne 34 a ne 33	0	138	1.068	93	44	m	7		40	Ŋ	0
ahdin ne 34 66-3 ne 34 a ne 33 875-15 me 35	(2	.08			4	00			7	0
86-3 ne 34 a ne 33 875-15 me 35	\supset	0	.07			2	7			7	0
a ne 33 875-15 me 35	9	\sim	.08			7	ω			7	0
875-15 me 35	∞	\vdash	.07			2	11			2	0
	∞	\vdash	.08		_	12	00			∞	0
allev ne 33	7	\vdash	.07		-		12			4	0
569- 2 me 31	1	Н	.07		-	S				<u>م</u>	0
ebec ne 41	266	110	1.074	87		26	13	55	27	2	0
- 1 ne 34	9	\vdash	.05				16			0	0
15-1 ne 33	9	\vdash	.07	82	13	4			13	٦	0
ne 33	9	\circ	0.7			Ç	1	29		-	C
870 ne 31	9		.08			10		49		0	0
102 ne 32	2	0	.08					71		2	0
1769-9 me 28	4	0	.07			က		61		4	0
rior n	241	100	1.072	06	24	7	10	99	22	2	0
564-8 ne 29	\sim		.07			7		62		7	0
1480- 5 ne 34	$^{\circ}$.07			25	0			2	0
AF1714-2 me 277	235	86	1.073	92	37	ω	∞	52	33	2	0
kon Gold ne 27	$^{\circ}$.07			2				4	0
1424-7 ne 30	\sim		.07			m	18			9	0
856-4 ne 28	0		.07			o				Н	0
1771-1 me 28	9		90.			23				4	0
			0	88		∞	11	56	27	5	0
CV (4)	17		.21	5	24						
LSD.05 7			00	∞		7	∞	00	<u>თ</u>	S	ns

Plots were 21' long and 3' wide with 4 reps. Commercial cultural practices were used which included irrigation. Seedpieces were spaced at 9", planted on 4/11, and harvested on 8/11. me = University of Maine Breeding Program, ne = Northeast Regional Project. Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference.

(3)

Plant and Tuber Characters, Tuber Defects, Chip Color and Overall Rating for Varieties and Seedlings Grown in Upper Deerfield, NJ 1997 (1). NJ Variety Table 2.

	<u> </u>	LUNI		LODER		TO TOUR	4114)		1	1000		21010				
	A A		Σ	S	E E	07	SD		S	ပ	H	H	H			OVER	
Variety	D			1	×			Ω	O	U	S	田	- 1	K	ည	ALL	Comments
Atlantic		_	9						0	0	0	ın		y	2	std	hh hn
03			9			` ,			0	0	6	-	_	9	4	yes	hn
71-	7	9	9	7	8		2 8	00	0	0	0	0	0		m	yes	good chipper
atahdin		_	ω						∞	7	7	0		8		std	dood
-99		_	8						7	0	7	0	0			yes	small
əba		10	9						0	O	o o	7		œ	m	yes	hh
75	9	10	9	7			9	00	∞	0	0	0		00		yes	
311			9			. ,			7	0	0	0		7		yes	low gravity
9		_	9						0	o	0	0		7	4	yes	nice
Kennebec		œ	ω		8	7	4 6		4	0	7	0	m	m		S,	knobby
43			9						Ŋ	0	0	0		ന		no	knobby
615-		~	∞			.,			7	0	0	0	0			ok	small
S		10	9			7			0	0	0	0	0		2	ok	small
7		_	7			,			7	o	0	4		ထ	2	yes	grower trial
NY102	9	3	2	9	8	•	2 5	7	0	ω	0	0	0		4	ok Sk	
176			2			` ,			7	7	0	0		8		no	some green
erio			4			,			0	0	0	0	0		2	ck	
9		_	7						7	0	0	0	0			ok	small
480-		⇔1	9			` ,			Ŋ	0	7	9	17	7	5	no	knobby hh
F1714- 2		01	2			` ,			7	0	0	0		m		no	1
0	9	4	5	2	8 7		2 7	7	7	0	7	0	H	7		ok	nice yel fl
424-			4						∞	0	0	0		ന	7	ou	low yield
0856- 4			2			•			7	0	ω	0			2	ou	
Г			נ			•			•	9	4	<					

⁽¹⁾ See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. (2) HH = No. of Hollow Heart tubers out of 40. HN = No. of Heat Necrosis tubers out of 40.

Grav. 17/8 2 1/2 Culls 1 2 3 4 4 1 10 1080 93 57 4 7 36 47 10 1084 90 629 12 44 41 8 10084 90 29 1 1 0084 90 62 12 4 4 41 18 10084 90 40 10 10 49 35 6 10 1084 90 40 10 10 49 35 6 10 1084 90 40 10 10 49 35 6 10 1084 90 41 6 10 10 49 35 6 10 1081 92 92 51 11 8 41 35 15 10 1081 92 92 51 11 8 44 37 10 1081 92 92 51 11 8 44 37 10 1081 92 92 92 92 92 92 92 92 92 92 92 92 92		Seed	Total	Varietr Rutgers Market	H O	tural Res	Ext	Center	e r	·	d, N	р П) 266	
112	Name	(2)	cwt/	wt/	d'u	T H	2/8	2 1/	% ull	ю г	2		7	2
844 ny 404 366 176 1.073 93 49 3 7 44 41 8 8 124 214 7 cf 388 326 176 1.087 99 6 29 12 1 6 61 28 1 1 10 61 28 1 1 10 61 28 1 1 10 61 28 1 1 10 61 28 1 1 10 61 28 1 1 10 61 28 1 1 10 61 28 1 1 10 61 28 1 1 1 10 61 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	YII	nv	m	00	00	.08			4	t				P
Objective Cf 396 354 170 1.087 90 29 1 10 61 28 1 101 101	∞	'n	0	9	-	.07			m	7				0
214-7 cf 388 326 157 1.084 96 62 12 4 34 43 19 1201-2 ny 353 316 152 1.074 94 62 12 4 4 7 50 39 5 1210-1 ny 332 316 152 1.077 94 55 3 6 59 6 1205-51 cf 330 300 144 1.073 95 57 4 7 50 39 46 1205-51 cf 335 298 143 1.084 90 40 10 10 49 35 6 1205-73 cf 368 297 143 1.084 90 40 10 10 49 35 6 1205-73 cf 320 270 134 1.081 92 35 3 3 17 40 43 10 1205-12 ny 333 274 132 1.082 92 51 11 8 41 35 15 1205-84 cf 296 250 120 1.074 93 60 3 3 40 20 110-11 cf 296 250 120 1.078 92 33 3 4 4 37 10 110-11 ny 265 234 112 1.078 92 37 4 8 55 33 4 1109 ny 265 234 112 1.076 84 26 7 65 27 1109 1.078 92 22 4 1 1 48 34 7 1108 12 13 31 1.066 92 22 1 1 48 34 7 1109 1.078 92 42 4 1 1 48 34 7 1109 1.078 92 42 4 1 1 48 34 7 1109 1.078 92 42 4 1 1 48 34 7 1109 1.078 92 42 4 1 1 48 34 7 1109 1.078 92 42 4 1 1 48 34 7 1108 1.087 92 42 4 1 1 48 34 7 1108 1.087 92 42 4 1 1 48 34 7 1108 1.088 92 42 6 1 1 48 34 7 1108 1.089 92 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	омде	c.F.	9	5	7	.08			Н				1	0
Pell— 2 ny 353 316 152 1.074 93 44 4 5 5 3 9 6 39 5 100 065-51 cf 330 300 144 1.073 95 57 4 5 3 7 52 5 100 065-51 cf 330 300 144 1.073 95 57 4 5 37 52 5 100 065-51 cf 330 209 144 1.084 90 40 10 10 10 40 40 5 37 52 07 3 294 141 1.084 90 5 53 3 3 7 40 49 10 08 3 27 294 141 1.089 93 53 3 3 7 40 49 10 08 3 27 294 141 1.081 92 53 3 3 7 40 49 10 08 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	214-	cf	∞	\sim	2	.08								0
110 ny 332 301 145 1.077 94 55 3 6 39 46 9 105-51 cf 330 300 144 1.073 95 57 4 5 37 52 5 106-52 cf 368 297 143 1.084 99 606-53 20 20 20 20 20 20 20 20 20 20 20 20 20	P21-	иy	2	\vdash	5	.07				7				0
Libertic ne 335 298 143 1.088 91 50 3 40 14 4 6 6 10 10 10 10 10 49 35 6 10 10 10 10 10 10 10 10 10 10 10 10 10	11	Λu	3	0	4	.07			ന	9			o	0
tlantic ne 335 298 143 1.088 91 50 3 9 41 44 6 tlo6673 cf 368 297 143 1.084 90 40 10 10 49 35 6 tlo6673 cf 368 297 143 1.089 93 53 7 40 43 10 Y E11-45 ny 337 287 141 1.089 93 53 7 40 40 Y E11-45 ny 337 287 138 1.086 87 21 35 2 8 56 30 5 Y E11-45 ny 333 274 132 1.082 92 51 11 8 41 35 15 O178-34 cf 299 270 130 1.074 93 60 3 7 33 40 20 O164-9 cf 299 270 130 1.074 93 60 3 7 33 40 20 O164-8 cf 299 270 130 1.074 92 48 7 8 44 37 10 Y O54-8 cf 299 270 130 1.078 92 33 3 8 59 31 4 O564-8 cf 296 234 112 1.076 84 26 9 5 7 65 27 2 Uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 Uperior ct 257 209 100 1.067 93 50 12 7 43 39 11 O564-8 cf 298 208 100 1.067 93 50 12 7 43 39 11 O564-8 cf 299 270 130 1.078 89 42 7 88 70 21 O564-8 cf 257 209 100 1.067 93 29 5 7 65 27 2 CV Janta Mean 316 275 1.087 89 42 8 8 34 35 7 Cr (4) 12 13 13 1.078 92 42 8 8 34 35 7 Cr (4) 12 13 13 1.078 92 42 8 8 34 35 7 Cr (4) 12 13 13 1.078 92 42 8 8 34 35 7 Cr (4) 12 13 12 1.078 92 42 8 8 8 9 9 8 9 9 8 9 9 8 9 9 9 9 9 9 9	1065-5	cf	\sim	0	4	.07			4	Ŋ			2	0
1066-73 cf 368 297 143 1.084 90 40 10 10 49 35 6 4 11 1 1.089 13 53 3 7 4 40 43 10 4 11 1.089 13 53 3 7 4 40 43 10 2 1 1 1.086 87 21 3 3 17 40 43 10 2 2 1 1 1 1.086 87 21 3 3 17 40 43 10 2 2 1 1.086 87 21 3 2 2 8 56 30 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tlanti	ne	$^{\circ}$	9	4	.08			m	0			9	0
tlantic of 327 294 141 1.089 93 53 3 7 40 43 10 Y E11-45 ny 337 287 138 1.066 87 21 3 13 67 19 2 Y E11-45 ny 337 287 138 1.066 87 21 3 13 67 19 2 X O 3-12 ny 333 274 132 1.082 92 51 11 8 41 35 15 O5648-9 of 296 250 120 1.081 92 48 7 8 44 37 10 I110-11 of 296 250 120 1.081 92 48 7 8 44 37 10 X109 ny 274 246 118 1.069 92 33 3 8 59 31 2 X115 ny 265 234 112 1.076 84 26 9 16 58 26 0 Uperior of 248 217 104 1.070 93 29 5 7 65 27 2 Uperior of 248 208 100 1.067 93 26 7 43 39 11 Grand Mean Grand Mean Grand Mean Grand Mean Grand Mean CV (4) D Bayes LSD.05 52 49 10 10 1.078 3 11 5 3 10 10 5 n	1066-7	cf	9	9	4	.08								0
Y E11-45 ny 337 287 138 1.066 87 21 3 13 67 19 2 Y Ø 3-12 ny 333 274 132 1.082 92 51 11 8 41 35 15 0178-34 cf 320 270 130 1.092 90 41 6 10 49 36 5 0164-9 cf 299 270 130 1.074 93 60 3 7 33 40 20 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 Y Ø 564-9 cf 299 270 130 1.074 93 60 3 7 33 40 20 Y Ø 564-9 cf 299 270 130 1.074 92 48 7 8 44 37 10 Y Ø 564-8 cf 299 270 130 1.078 92 37 4 8 55 33 4 O564-8 cf 290 270 112 1.076 84 26 9 16 58 26 0 Uperior cf 257 209 100 1.077 93 50 12 7 43 39 11 Uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y Ø 53-1 ny 224 192 92 1.087 89 42 42 11 48 34 7 Grand Mean CV (4) CV (4) D Bayes LSD.05 52 49 10 0.05	tlanti	cf	\sim	9	4	.08			m					Н
Y g 7 ct 310 279 134 1.081 92 35 2 8 56 30 5 Y Q 3-12 ny 333 274 132 1.082 92 51 11 8 41 35 15 1178-34 cf 299 270 130 1.092 90 41 6 10 49 36 5 1110-11 cf 296 250 120 1.081 92 48 7 33 40 20 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 Y 109 ny 274 246 118 1.069 92 33 3 8 59 31 2 Y 115 ny 265 234 112 1.076 84 26 92 50 16 58 26 0 Uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 Uperior cf 248 208 100 1.067 93 50 12 7 43 39 11 Uperior cf 248 208 100 1.067 93 26 7 65 27 2 Uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P 63- 1 ny 224 192 92 1.087 89 42 8 34 35 7 Grand Mean 316 275 3.36 CV (4) 12 13 3.36 CV (4) 20 52 49 COV (4) 15 12 13 36 COV (4) 15 52 49 COV (4) 15 52 10 10 55 10 COV (4) 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Y E11-4	иy	$^{\circ}$	∞	$^{\circ}$	90.			m				7	0
Y Q 3-12 ny 333 274 132 1.082 92 51 11 8 41 35 15 0178-34 cf 320 270 130 1.092 90 41 6 10 49 36 5 0564-9 cf 296 270 130 1.074 93 60 3 7 33 40 20 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 1110-11 cf 296 250 120 1.069 92 33 3 4 8 44 37 10 Y115 ny 274 212 1.076 93 29 5 3 4 4 8 55 33 4 Upperior cf 248 209 100 1.077 93 26 7 43 39 11	Υ 8	ct	\vdash	7	\sim	.08			2	∞			2	0
0178-34 cf 320 270 130 1.092 90 41 6 10 49 36 5 6 5 6 10 0 40 40 5 6 6 10 5 6 10 40 40 36 5 6 10 6 10 40 40 30 5 6 10 1.074 93 60 3 7 33 40 20 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 8 44 37 10 8 44 37 10 9 1 1.009	Y Q 3-1	nv	\sim	7	\sim	.08				00				\vdash
0564-9 cf 299 270 130 1.074 93 60 3 7 33 40 20 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 1110-11 cf 296 250 120 1.069 92 33 3 4 8 59 31 2 1115 ny 265 234 112 1.078 94 26 9 16 58 26 0 10564-8 cf 303 232 112 1.076 84 26 9 16 58 26 0 10 uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 10 uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 10 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 10 r 48 70 21 1 10 r 7 48 34 7 Grand Mean 316 275 1.087 89 42 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 36 20 3 11 5 5 8 10 10 5 n	0178-3	c.F.	\sim	7	$^{\circ}$.09			9					0
1110-11 cf 296 250 120 1.081 92 48 7 8 44 37 10 Y109 ny 274 246 118 1.069 92 33 3 7 4 8 59 31 2 Y115 ny 265 234 112 1.078 92 37 4 8 55 33 4 0564-8 cf 303 232 112 1.076 84 26 9 16 58 26 0 Uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 Uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 Uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 36 2 3 11 5 5 8 10 10 5 n	0564-	cf	9	7	\sim	.07			m	7				0
Y109 ny 274 246 118 1.069 92 33 3 8 59 31 2 Y115 ny 265 234 112 1.078 92 37 4 8 55 33 4 0564-8 cf 303 232 112 1.076 84 26 9 16 58 26 0 uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 t. Johns ct 257 209 100 1.067 93 50 12 7 43 39 11 uperior cf 248 208 100 1.073 90 26 7 49 25 2 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4)	1110 - 1	cf	S 1	5	2	.08			7	∞ (Η (
Y115 ny 265 234 112 1.078 92 37 4 8 55 33 4 0564-8 cf 303 232 112 1.076 84 26 9 16 58 26 0 uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 t. Johns ct 257 209 100 1.067 93 50 12 7 43 39 11 uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 .36 2 19 -D Bayes LSD.05 52 49 .005 3 11 5 n 10 5 n	Y10	ny	_	4	Η.	90.			m ·	∞ -			7	0 (
O564-8 cf 303 232 112 1.076 84 26 9 16 58 26 0 uperior ct 244 217 104 1.070 93 29 50 12 7 65 27 2 t. Johns ct 257 209 100 1.073 90 26 7 43 39 11 uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 36 26 42 5 8 34 35 7 Dayses LSD.05 52 49 3 11 5 3 10 10 5 n	Y11	ny	9	3	\vdash	.07			4	∞			4	0
uperior ct 244 217 104 1.070 93 29 5 7 65 27 2 t. Johns ct 257 209 100 1.067 93 50 12 7 43 39 11 uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 4 11 48 34 35 7 CV (4) 12 13 36 2 19 2 19 36 2 19 36 3 10 10 5 n Dayles LSD.05 52 49 .005 3 11 5 3 10 10 5 n	0564-	ÇĘ	0	\sim	\vdash	.07			0				0	0
t. Johns ct 257 209 100 1.067 93 50 12 7 43 39 11 uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 .36 2 49 .005 3 11 5 3 10 10 5 n	nper	C	4	П	0	.07			Ŋ				7	O
uperior cf 248 208 100 1.073 90 26 7 10 64 25 2 uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 36 2 19 5 3 10 10 5 n	t. John	ں بہ	2	0	0	90.				7				0
Uperior ne 218 193 93 1.066 92 22 4 8 70 21 1 Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 .36 2 19 5 3 10 10 5 n	uperior	cf	4	0	0	.07								0
Y P63-1 ny 224 192 92 1.087 89 42 4 11 48 34 7 Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 .36 2 19 5 10 10 5 n	uperio	ne	\vdash	\circ		90.			47	∞			٦	0
Grand Mean 316 275 1.078 92 42 5 8 34 35 7 CV (4) 12 13 .36 2 19 5 1 10 10 5 n Dayes LSD.05 52 49 .005 3 11 5 3 10 10 5 n	Y P63-	ny	2	9		.08			4				7	0
CV (4) 12 13 .36 2 19 -D Bayes LSD.05 52 49 .005 3 11 5 3 10 10 5 n	rand Me	ri Li	\vdash	7		.07			Ŋ	∞			7	Н
-D Bayes LSD.05 52 49 .005 3 11 5 3 10 10 5 n	CV	(1	Ч	\vdash		.36								
	-D Baye	SD.0				00	n		Ŋ	n			2	ns

Plots were 21' long and 3' wide with 4 reps. Commercial cultural practices were used which included irrigation. Seedpieces were spaced at 9", planted on 4/11, and harvested on 8/12. cf = USDA Chapman Farm, ct = Certified, ne = NE Regional Project, ny = Cornell Program. Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference.

(2) (3) (4)

Plant and Tuber Characters, Tuber Defects, Chip Color and Overall Rating for Varieties and Seedlings Grown in Upper Deerfield, NJ 1997 (1). NJ Variety Table 4.

	Д	PLANT	_	TUB	BER	CHA	CHARACTERS	ERS			IO	TUBER	DEF	DEFECTS			
•	A	A.	Σ	S .	υ,	E	ഗ .	Δ	Ø	S	ტ ,	H	田	н		OVER	
Variety	Ω	Д	4	S	4	×	q	Ω	Ω	U	ပ	S	H	Z	ပ	ALL	Comments
NY112	ω	7	ω	4	7	7	2	ω	8	0	0	0	0		Ŋ	yes	great
alem	7	9	∞	9	∞	7	m	7	7	0	0	0	0	15 7	4	yes	good fr market
nowden	7	7	ω	m	7	9	7	∞	œ	0	0	<u>ග</u>		2	m	yes	chipper only
B1214- 7	∞	ω	ω	2	8	8	7	9	9	7	7	0	0		4	yes	дþ
IY P21- 2	7	9	9	7	7	9	7	7	7	7	0	9	0		m	o k	heat sprouts
17110	9	9	7	4	∞	0	2	9	9	7	0	0	0		∞	yes	not chi
065-5	9	9	2	9	7	2	$^{\circ}$	9	7	0	7	0	0	0	9	yes	netted
lanti	9	9	9	4	7	7	7	ω	ω	7	の	o '	0			std	hn
0	۲ ,	۲,	7	ന ദ	ω ι	∞ ι	m (7	7	6	7	6	l	~- ((Ο I	no.	
Lantic	ا ک	ا و	ا 0	Ωı	- (_ (7 (∞ (Ωı	S) (<i>ک</i> ر	ט פ	വ (ე •	sta	nn
\vdash	9	9 9	9	e 2	∞ ∞	7 8	2 8	9 8	7	തത	0 0	തത	00	2 2	ਰਾ ਰਾ	ok+ yes	low gravity
Y Q 3-	5	7	9	Ŋ	7	7	2	∞	7	0	0	O	0			yes	
0178 - 3	7	9	7	5	∞	7	7	9	9	9	0	<u>ග</u>	М		m	yes	good chipper
	Ŋ	4	വ	7	8	7	7	∞	8	ω	0	0	7	8	က	yes	
1110 - 1	9	7	7	m	ω	7	m	∞	7	<u></u>	0	О	0			no	many air cr
Y10	4	m	m	∞	∞	ω	Ŋ	7	7	0	0	<u>ი</u>	0			ok+	oblong
Y11	Ω	9	4	7	ω	œ	7	7	7	0	0	0	0		m	ok	chipper
0564	9	7	9	8	7	9	2	∞	7	7	0	8	0	0	2	ok+	small
uperior	4	4	4	ω	7	9	m	9	7	9	0	<u>ი</u>	0	∞ ⊢1		std	
t. J	9	7	7	വ	∞	ത	m	9	7	7	0	<u>ග</u>	0			ok	
uper	S	വ	4	О	7	9	m	9	7	7	0	თ		80 H		std	
Superior	4	5	m	o	7	9	m	9	7	ω	0	О	0		വ	std	
7	L	L			ľ	נ	C	C	ר	<	(<	٣			1 1	La Carrier of Carrier of Land

See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. HH = No. of Hollow Heart tubers out of 40. HN = No. of Heat Necrosis tubers out of 40. (2)

			GI	dricul	tural kes.	& EXT.	Center	- Opper	חטטדדדט	ONI JOHN	10	7/ (1)
Variety Name	Seed Source (2)	Total Yield cwt/a	Market cwt/a	Yield % of Sup.	Spec. Grav.	8 0 1	v e r 2 1/2	% Culls	₩.⊢	Tuber 2	Size 3	s (3)
425-		343	301	166	00			60.0	10	57	31	mo
1321-2		2	∞	2 0	000							ω 4
1321-2		14	∞	2	000			7) O			9
1427	cf	90	7 00		L 0	ლ ი ი	63	16	70		46	17
tlantı		\supset	_	Ω	Σ .			7)	00			
1406-1	cf	\leftarrow	9	4	.07			9	œ			10
1415-	cf	9	9	4	.07			9	9			
1429-A	cf.	∞	2	4	.07			0 0				ന
1083-5	o c		ر د	7) (1	0 0			ש ת	0 T			N <
	C C	268	244	135	1.085	900	0 8 0	7.0	0 4	7 8 7 7	50	18
1344-1		∞	4	$^{\circ}$.07			Ŋ	0			4
1384-1		0	$^{\circ}$	$^{\circ}$.07			12	11			10
1408-		9	$^{\circ}$	$^{\circ}$.08				∞			
1414-		∞	2 5	α	.07			17				21
B1339-26 B1416- 2	c t	297	218	120	1.084	8 2	3 0	17	13	60 48	23 36	νm
1418-		00		-	0.7			7.				0
1415-		2	0		0.8							2 0
1342-2		4	0	\vdash	.07			2	14			m
	cf	243	194	107	1.074	89	31	11	11	58	27	4
uperio		0	∞	0	.07			m	0			0
1375-1		\sim	7		.07			œ	16			7
Grand Mean	an 4)	291	241		1.078	06	41	∞	10	49	34	7
0	LSD.05				0	4		00	4	00	10	7

included irrigation. Seedpieces were spaced at 9", planted on 4/11, and harvested on 8/11. of = USDA Chapman Farm, ct = Certified, ne = NE Regional Project. Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference.

(4)

¹⁹⁶

		fl			s s ance	s ance
	Comments	yellow sprout hh hn	()	cr nice	defect defect appear	defect appear 1
		nice hn heat	knobby hn	hn hn air hn very	many d many d hn hn poor a knobby	many smal poor smal
	OVER ALL	yes ok ves	ok std	no ok+ no no yes	ok no no ok ok	no no no std
	CC	10 W 47 47	0.10	r2 4.	m	Ŋ
CTS		200 130 1438 7		237 0888 0 08137 0	20 7 30 6 20 6 10 7	222 7 113 7 19 7 0 0
DEFE	H H	0000		000000	100000	00000
E H	il 🗷 ເഗll	on ∞ ७ on	0 7		୦୦୦୦ ୦୦	6 00000
TUB	0 U	0110	ω σ	L 80 0 L 0	~ 6 ~ 6 ~ 0	@ r o o o o
	N ()	0110	9 1	808700	010001	७ ८०∞∞०
,	A D	7888	7	0011080	0 13 10 8 10 7	1 00000
IIIC / 1	<u>Ω</u> Ω	L & O O	7	779998	776867	וממטטט
ARA		0000	2 2	0 m m m m 0	U U U U 4 U	ოოო ს ო (
CH	EH X	9977	99	878770	100118	000700
JBER		L L L 8	7	V & V & & & &	77877	878871
TOT	လ လ	7598	00	4 M W L O D	007780	R0400
1	Z t	9977	99	779998	00047	000040
PLANT	K D4	4911	6 2	979009	700723	N 0 0 N 4.
	Ø D	7700	00	700007	720002	, UOOUO
	İ					
	Variety	425- 9 321-22 321-21 240-14	27- anti	406-10 415- 7 429-A3 083-51 206-10 240- 1	344-18 384-15 408- 3 414- 6 339-26 416- 2	418-2 415-5 342-21 414-2 Perior
1	Ĭ	BBI	t し			

(1) See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. (2) HH = No. of Hollow Heart tubers out of 40. HN = No. of Heat Necrosis tubers out of 40.

1 1 1 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(2) cwt/a cwt ny 511 45	/a Sup	かでよ	7/8	-	, [)	
- 1 cf 502 459 150 1.059 94 62 - 1 cf 502 459 149 1.068 97 80 an ne 458 432 141 1.069 95 50 Ain ne 458 430 140 1.055 97 68 1- 8 cf 428 394 128 1.070 95 54 - 4 cf 428 394 128 1.056 94 53 - 5 cf 400 361 118 1.073 95 61 - 8 cf 406 355 116 1.065 95 62 - 2 cf 370 332 108 1.073 94 63 - 2 cf 370 332 108 1.073 94 63 - 3 cf 342 307 100 1.065 95 61 - 4 cf 372 293 95 1.064 94 - 5 cf 370 322 108 1.073 94 - 6 cf 370 332 108 1.073 94 - 7 cf 372 293 95 1.064 95 - 8 cf 372 293 95 1.064 95 - 9 cf 372 293 95 1.064 95 - 1 cf 372 293 95 1.064 95 - 1 cf 372 293 95 1.064 95 - 2 cf 370 100 1.062 95 - 3 cf 347 303 99 1.074 95 - 4 cf 372 293 95 1.064 95 - 5 cf 370 100 1.062 95 - 7 cf 370 100 1.062 95 - 7 cf 370 100 1.065 95 - 7 cf 370 100 1.065 95 - 8 cf 370 100 1.065 95 - 9 cf 370 1	511 45		3		1	1	П	2		4
an ne 458 434 141 1.063 96 71 1-8 ne 458 430 140 1.055 97 68 1-8 cf 434 397 129 1.070 95 54 2-9 cf 428 394 128 1.065 96 70 2-2 cf 400 361 118 1.073 95 61 2-2 cf 406 355 116 1.065 95 62 2-3 cf 370 332 108 1.065 95 61 2-4 cf 372 293 95 1.065 95 61 2-5 cf 347 303 99 1.074 95 61 2-7 cf 347 303 99 1.074 95 61 2-8 cf 347 303 99 1.074 95 61 2-9 cf 372 293 95 1.065 95 61 2-1 cor ne 342 307 100 1.065 95 61 2-1 cor ne 342 307 100 1.065 95 61 2-1 cor ne 342 307 100 1.065 95 61 2-1 cr ne 342 307 100 1.065 95 61	502	9 15	0.05			4	9 %	31	38	24
an ne 458 432 141 1.069 95 50 1-8 ne 446 405 132 1.070 95 54 - 4 cf 434 397 129 1.056 94 53 - 9 cf 428 394 128 1.065 96 70 20 ne 483 386 126 1.064 94 54 21 ne 400 361 118 1.073 95 65 - 2 cf 400 355 116 1.069 93 59 - 2 cf 370 332 108 1.065 95 62 10 ne 342 307 100 1.065 95 61 10 ne 342 307 100 1.065 95 61 20 ne 342 307 100 1.065 95 61 21 ne 347 303 99 1.074 95 63 22 ne 347 303 99 1.074 95 63 23 ne 318 287 93 1.064 91 38	700	7 -				m C) <		0	
lin ne 458 430 140 1.055 97 68 1.06 4 64 405 132 1.070 95 54 1.070 95 54 1.065 97 68 1.065 97 68 1.065 97 68 1.065 97 68 1.065 96 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 65 1.071 95 95 65 1.071 95 95 95 95 95 95 95 95 95 95 95 95 95	458 43	1 T) -	ዞ ៤ና		n 00	
1—8 ne 446 405 132 1.070 95 54 - 4 cf 434 397 129 1.056 94 53 - 9 cf 428 394 128 1.065 96 70 - 10 cf 428 394 128 1.065 96 70 - 10 cf 428 394 128 1.065 96 70 - 2 cf 402 359 117 1.069 93 59 - 2 cf 370 332 108 1.073 95 61 - 3 cf 370 332 108 1.073 94 63 - 2 cf 370 332 108 1.073 94 63 - 3 cf 347 303 99 1.074 95 61 - 3 chns ct 372 293 95 1.062 97 76 - 3 chns ct 372 293 95 1.064 91 38	ne 458 43	0	0.5			ım) (M		0 00	
- 4 cf 434 397 129 1.056 94 53 - 9 cf 428 394 128 1.065 96 70 - 9 cf 428 386 126 1.064 94 54 - 1.06	3 ne 446 40	5 13	.07			വ	ນທ		14	
- 9 cf 428 394 128 1.065 96 70 - 9 cf 483 386 126 1.071 95 65 - 10 cf 400 361 118 1.073 95 65 - 2 cf 400 355 116 1.069 93 59 - 3 ne 367 332 108 1.065 95 62 - 4 cf 370 332 108 1.065 95 61 - 5 cf 370 332 108 1.073 94 63 - 6 ct 334 313 102 1.065 95 61 - 8 ct 334 313 102 1.065 95 61 - 9 cf 370 393 99 1.074 95 63 - 10 cr ne 342 307 100 1.062 95 47 - 10 cr ne 342 307 100 1.062 95 47 - 10 cr ne 318 287 93 1.064 91 38	£ 434 39	7 12	.05			2	9		00	
Dec ne 483 386 126 1.064 94 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	£ 428 39	4 12	.06			4	4		П	
cic ne 419 386 126 1.071 95 65 -22 cf 402 351 118 1.073 95 61 -2 cf 402 359 117 1.069 93 59 -3 ne 367 332 108 1.065 95 62 ct 334 313 102 1.065 95 61 Lor ne 342 307 100 1.065 95 61 ohns ct 372 293 95 1.064 91 38 ohns ct 372 293 95 1.064 91 38	e 483 38	6 12	.06				9		5	
ne 400 361 118 1.073 95 61 -22 cf 402 359 117 1.069 93 59 - 8 cf 406 355 116 1.062 90 43 - 3 ne 367 332 108 1.065 95 62 - 2 cf 370 332 108 1.073 94 63 - 2 cf 370 332 108 1.073 94 63 - 3 cf 370 307 100 1.065 95 47 - 3 cf 347 303 99 1.074 95 63 - 3 chns ct 372 293 95 1.064 91 38	e 419 38	6 12	.07			ന	Ŋ	30	41	24
-22 cf 402 359 117 1.069 93 59 -8 cf 406 355 116 1.062 90 43 - 3 ne 367 332 108 1.065 95 62 - 2 cf 370 332 108 1.073 94 63 - 2 cf 370 102 1.065 95 61 - 34 313 102 1.062 95 47 - 34 cf 347 303 99 1.074 95 63 - 34 cf 372 293 95 1.062 97 76 1 - 35 29 3 1.064 91 38	e 400 36	1 11	.07			Ŋ	S		_	
- 8 cf 406 355 116 1.062 90 43 - 3 ne 367 332 108 1.065 95 62 - 2 cf 370 332 108 1.073 94 63 - 2 cf 334 313 102 1.065 95 61 Lor ne 342 307 100 1.062 95 47 -34 cf 347 303 99 1.074 95 63 ohns ct 372 293 95 1.062 97 76	f 402 35	9 11	.06			9	7		7	
- 3 ne 367 332 108 1.065 95 62 - 2 cf 370 332 108 1.073 94 63 - 2 cf 370 313 102 1.065 95 61 Lor ne 342 307 100 1.062 95 47 -34 cf 347 303 99 1.074 95 63 ohns ct 372 293 95 1.062 97 76 1 ne 318 287 93 1.064 91 38	f 406 35	11	90.			m	10			
- 2 cf 370 332 108 1.073 94 63 ct 334 313 102 1.065 95 61 61 lor ne 342 307 100 1.062 95 47 e34 cf 347 303 99 1.074 95 63 chns ct 372 293 95 1.062 97 76 1001 ne 318 287 93 1.064 91 38	e 367 33	10	90.			<u>ب</u>	വ			
Lor ne 342 307 100 1.062 95 61 -34 cf 347 303 99 1.074 95 63 ohns ct 372 293 95 1.062 97 76 1 ne 318 287 93 1.064 91 38	f 370 33	10	.07			o 0	© ц			8 0
34 cf 347 303 99 1.074 95 63 54 cf 372 293 95 1.062 97 76 1 55 55 55 55 55 55 55 55 55 55 55 55 55	e 342 30	10	90.			n (9	J LO	J 4.	ე თ ე ო) (()
ohns ct 372 293 95 1.062 97 76 1 ne 318 287 93 1.064 91 38	£ 347 30	0	.07			∞	Ŋ			21
ne 318 287 93 1.064 91 38	ct 372 29	0	90.				m			47
75 00 190 1 00 100 000	ne 318 28	0	.06				6			
16 06 TOO TO TOO OCC AII 6DT	ne 338 28	0	.06			œ	10			0
-10 cf 309 272 89 1.063 95 63	cf 309 27	∞	.06			7	S			23
22 272 88 1.061 89 35	e ne 322 27	00	.06			7	11	54	27	ω
1-2 me 291 256 83 1.067 94 60	me 291 25	∞	90.			7	9			9 1
Grand Mean 396 354 1.065 94 58 6	396 35	4 c	30.			9	9	36	38	21
	S TSD 05 143 14	5 (0	ım		S	m	0	œ	11

Plant and Tuber Characters, Tuber Defects, and Overall Rating for Varieties and Seedlings Grown in Upper Deerfield, NJ 1997 (1). NJ Variety Table 8.

		PLANT	H	TUB	BER	CHARA	RACII	CIERS			7.7	TOBER	727	DEFECTS	1		
Varietv	K D	Κd	Σ∔	ഗ ഗ	ນເ	₽ ×	s t	Q p	A D	ഗ ധ	დ ლ	H V	шш	H N	OVER ALL	Comments	
u u	7	ی ا	7	0	α	_	7	-	α	α	0	0	c		S G IX	good fr	西 マ マ ト ロ ナ
117	- (0 (- (١ (> 1	- () (- [) () (ו ר) (۱ د) (7	, 300 P	7 7 7
B1240- 1	∞	∞	00	∞	_	9	m	_	7	_	_	ത	ស	9 9	yes	s hn hh	
NY112	00	7	7	0	9	2	m	7	9	0	0	<u>ه</u>	\vdash	11 5	ok	hn, low gra	gravity
Snowden	00	7	7	0	7	9	7	00	00	0	0	0	0	7 5	Ves	hn	1
Katahdin	7	7	00	6	00	7	2	7	00	7	0	6		11 6	Std	hn, good	vield
ND2471-8	9	9	2	σ	∞	7	2	00	00	00	σ	. ∞	0	0	yes	nice one	}
	9	9	2	∞	∞	œ	2	7	00	0	0	0	0	0	yes		
B0564- 9	9	9	2	00	7	9	2	9	7	7	0	0	0	2 7	Ves		
Kennebec	∞	00	7	7	00	œ	2	m	4	ស	0	00	0	2 7	std	1 knobby	
-H	7	7	7	0	9	S	7	00	00	0	0	0	\vdash		std	hn t	
	7	7	7	7	00	9	2	Μ	9	0	0	0	4	5 7	ok		
B1321-22	7	9	7	0	9	2	7	∞	00	9	0	00	2		no	knobby	
1	7	9	9	0	7	2	2	œ	00	9	0	00	0	1	ok+	- small	
B0766-3	9	7	7	00	7	2	7	2	7	7	0	0	7	0	yes		
1	7	9	7	6	7	9	Μ	9	9	7	00	6	2	9 /	non	hn	
Reba	7	7	7	∞	00	7	m	7	00	0	0	0	7	0	yes		
io	S	4	4	0	7	S	m	2	7	7	0	0	0	0	std		
~	9	9	7	9	∞	7	m	9	9	7	0	0	0	7 7	yes	s low yield	
St. Johns	00	00	00	00	00	00	2	7	ro.	6	7	0	0	0	no	poor appearanc	rance
Reba	7	9	7	0	00	7	m	9	7	0	0	0	0	0	yes		
コ	7	4	S	00	00	ω	7	∞	00	∞	0	0	0	4 7	ok+	- low yield	
귝	2	9	9	0	7	9	4	9	9	∞	9	0	7	N	no	hn	
D	9	Ć,	7	œ	00	00	m	7	7	00	∞	0	0	17 6	no	hn	
AF1714- 2	2	4	9	0	00	00	m	2	N	7	7	<u>ග</u>	0	4 7	no	poor appearance	rance

⁽¹⁾ See NO Kating lable for plant and tuber characters, tubers defects and this color fatings. (2) HH = No. of Hollow Heart tubers out of 40. HN = No. of Heat Necrosis tubers out of 40.

	2	0000	0000	o su
t the 997(1)	es (3)	0400	0000	1 2
Potatoes m Soil at	Size 3	3 S 8 C 4 C	0220	10
な ひ	Tuber 2	64 53 71	64 74 74 59	10
Russet ndy Lo erfiel	o% ←I	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34 21 41	24
s ror s on a Sa Upper De	% Culls	4894	27 13 6 53	15
and Grown Center -	V @ L 8 0Z	4 0 8 7 7 7 8 8 7 8 9 8 9 9 9 9 9 9 9 9 9 9	0000	10 61 8
Sepson & Ext.	% 4 0 z 0 z	722	66 79 79 59	76
ested Mai	Spec. Grav.	1.075 1.067 1.071 1.070	1.075 1.072 1.077 1.058	1.071 .24 .004
Specifi S, Harv Agricul	Yield % of Sup.	1009 1009 85	84 78 78 53	
Varietie Rutgers	Market cwt/a	176 161 149 138	134 126 126 85	137 19 40
	Total Yield cwt/a	199 187 219 197	279 190 170 298	217 15 46
A Table	Seed J Source Y	nne	nccte	in L) LSD.05
NO VALIELY TADIE	Variety Name	B9922-11 Superior Norkotah B1004-8	Century Ranger BelRus W1099Rus	Grand Mean CV (4) W-D Bayes L

Plots were 21' long and 3' wide with 4 reps. Commercial cultural practices were used which included irrigation. Seedpieces were spaced at 12", planted on 4/11, and harvested on 8/12. cf = USDA Chapman Farm, ct = Certified, ne = NE Regional Project.

Size 1 = Under 4 oz, S2 = 4 to 8 oz, S3 = 8 to 12 oz, S4= 12 to 16 oz, and S5= Over 16 oz. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference.

Plant and Tuber Characters, Tuber Defects, and Overall Rating for Varieties and Seedlings Grown in Upper Deerfield, NJ 1997 (1). NJ Variety Table 10.

		PLANT		L	TUBER	CH.	CHARACTERS	TERS				JBER	DEF	ECT	S		
	A	A	Σ	တ	U	₽	ഗ	Ω	A	က	ļ	G H	H	Н		OVER	
Variety	0	щ	لل	S	٦	×	q	Ω	Ω	ധ	- 1	S	H	z	K	ALL	Comments
B9922-11	9	9	7	7	5	m	9	5	9	9	00	7	Н	9	7	0k+	irregular
Superior	4	2	m	7	9	9	m	9	7	∞	ω	0	0	0		std	poor superior
Russet Norkotah	9	9	2	ω	2	m	∞	9	7	7	0	7	0	\vdash	00	yes	ok for NJ
B1004-8	9	9	9	7	5	4	9	7	9	ω	Φ	ω	o	10	7	nou	hh hn
Century Russet	7	9	7	7	7	7	ω	9	4	5	O	6	Н	0		yes	no russeting
Ranger Russet	9 10	<i>پ</i> و	7	ر د	ហហ	m m	დ	7	<i>ی</i> و	ω w	90	തെത	00	27	∞ ५	y o	late
W1099Rus) (၁	9 0	. 0	. 6	υ Ω	സ) ∞	· r	**	· 🗝) 	, _	0	0	•	o u	knobby gr. cr

See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. HH = No. of Hollow Heart tubers out of 40. HN = No. of Heat Necrosis tubers out of 40.

•	2	00000	00000	00000	00000	.00000
Potato at the 1997(1	es (3)	0000	00040	00000	00010	153
hite Soil NJ -	Siz 3	39 116 21 0	108 108 108	01220	2 1 8 3 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	42 33 34 27
und W Loam eld,	Tuber 2	31 63 60 57	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	26 44 69 99	35 64 30 56	W 4 70
152 Ro Sandy Deerfi	% ~	11 32 8 32 8	20 16 11 21	3 18 24 51	51 15 11 28	100
izes for own on a contract of the contract of	% Culls	188 10 11	13 10 24 4	10 10 39	11 2 4 12 12	es es ⊣ es es
Tuber S n and Gr . Center	v e r 2 1/2	47 63 16 21 0	2 2 1 10	222 24 0	11 8 3 30 4 4	60 46 37 27
ies, an in Seas s. & Ex	8 0 1 1 1 / 8	78 79 79 57	79 47 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80	986 987 987 98	39 72 81 60 61	93 90 57 85
ic Gravit vested Ma ltural Re	Spec. Grav.	1.066 1.064 1.065 1.074	1.067 1.082 1.065 1.058	1.080 1.081 1.059 1.069	1.075 1.056 1.069 1.074	1.068 1.078 1.062 1.082 1.086
, Specifiies, Harrs S Agricui	Yield % of Sup.	168 201 68 112 46	88 97 101 146	169 139 189 92	53 31 122 107	155 131 93 119
Yields Variet Rutger	Market cwt/a	331 396 134 220 91	174 191 200 288 151	3333 27 4 15 4 180	104 60 240 211 203	305 258 184 2 34
11.	Total Yield cwt/a	427 440 170 271 159	260 257 252 413 201	35 315 2119 248 5	270 84 298 3351	328 28 4 205 111 27 5
y Tabl	Seed Source (2)	me me me	же ж	me me me me -5me	###### 0 0 0 0 0	###### 6 6 6 6 6
NJ Variety Table	Variety Name	AF1791- 1 AF1791- 1 AF1808- 9 AF1808-18	AF1826- 5 AF1828- 1 AF1838- 3 AF1845- 3 AF1852- 3	AF1856- 1 AF1857- 2 AF1864- 2 AF1864-36 AK10-57-19-	B0984- 1 B0985- 1 B1065-64 B1066-51 B1070-88	B1072-21 B1091-29 B1298-16 B1343- 5 B1343- 8

lo 00000 00000 00000 00000 00000 00000 8 d 10 0 0 0 W 7100 00844 77703 00000 4000 S Sizes 331 331 25 lm 119 118 33 48 222 15 15 34 31 50 45 26 32 32 22 33 33 33 33 39 30 27 5 Tuber 30 30 20 10 10 10 2287 40000 64 63 41 31 332 477 50 69 8 9 B B 4 111 2004w 28 28 11 00 772 25 115 110 110 12 12 7 ഗ Cull: 0/0 22 12 10 31 12 1 12 12 14 24 32 4 4.62288 4 0 6 1 17 20 7 7 1/2 339 118 118 338 60 22 12 15 42 64 64 64 58 22 34 40 40 22 22 41 36 35 58 30 36 5 Φ 2 > $\bigcirc | \infty$ 7 62 62 62 62 62 67 66 80 80 64 51 70 65 93 92 93 93 83 83 71 85 85 67 90 68 88 75 00 1.075 1.088 1.084 1.079 . 070 . 086 . 087 . 080 1.070 1.087 1.091 1.078 076 073 078 084 069 064 074 080 086 071 066 071 081 Spec. Grav. ----of Yield Sup. 90 133 100 100 1113 77 102 84 74 40000 00000 63 82 21 21 37 1010 1122 00048 90 Market Q 221 178 263 215 196 225 241 173 217 51 223 151 202 166 147 127 206 250 262 191 321 161 238 270 270 107 187 207 277 372 cwt/ Total Yield Q 311 215 336 285 319 180 241 305 295 287 333 292 260 240 64 243 218 277 188 180 02572 cwt/ 980 16 36 42 40 223 Source Seed ##### G G G G G # # # # # 0 0 0 0 ##### G G G G G G G G G G (2) B1367-12 B1370- 8 B1427- 4 B1429-A6 B1435- 9 B1435-15 B1435-23 B1435-37 B1438-21 361-10 361-11 362- 7 362- 9 363- 1 4000 02750 3000 B1344- 5 B1347- 4 B1351- 8 B1352-10 B1363-4 B1363-10 B1365-5 B1366-5 B1367-3 1354-10 1357-21 1358-7 1361-51 Variety 440-Name B1 BBI BB1 BB1 BB1

(Continued.)

11

Variety Table

NG

NJ Variety Table 11. (Continued.)

	Lacas	00000	00000	00000	00000	00000
3) 5	00000	88888	00000	00000	00000	
zes (3	0000	40900	12000	00110	0000	0004M
r 3	39 39 88	32 232 20 20 30	24 10 33 13	334 186 9	2 2 8 8 9	23 11 22 34
Tube:	\$5.04.0 \$6.00	51 57 63 56 36	4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 K R R 4 K R R 8	2	61 63 43 43 43
0/0	31 11 27	12 11 11 16	11 19 13 15	9 0 11 15	11 21 28 37	15 36 30 7
% Culls	04000	30030H	10 35 14 10 28	112 16 9 31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 11 3
v e r 2 1/2	111 30 49 8	00000 00000	36 39 135 135	36 27 19 9	26 47 88 9	23 11 7 26 37
1 7/8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80 46 77 54 75	80 82 82 78 55	98 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	844 64 51 82 80
Spec. Grav.	1.063 1.074 1.074 1.066	1.073 1.071 1.082 1.074 1.041	1.074 1.059 1.059 1.075	1.069 1.067 1.067 1.084 1.056	1.067 1.066 1.060 1.061	1.060 1.062 1.076 1.072 1.072
Yield % of Sup.	107 118 198 69	106 122 188 104	111 91 134 126	154 159 131 98	94 175 102 38	136 34 67 93 108
Market cwt/a	173 210 232 391 136	209 240 174 205	218 179 263 192 249	304 313 253 194	186 344 179 201 74	268 66 131 184 212
Total Yield cwt/a	289 326 290 411 200	241 299 241 341 315	274 391 341 440	382 420 333 353	201 427 270 339 169	318 104 2259 264
Seed Source	C C C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44444	##### 00000	##### 00000	######################################
Variety Name	B1440-8 B1440-10 B1440-12 B1440-18 B1441-3	B1445- 7 B1445- 8 B1445-11 B1449- 1 B1450-13	B1450-15 B1450-20 B1450-23 B1450-24 B1450-25	B1452- 9 B1452-16 B1452-18 B1452-19 B1452-20	B1452-21 B1452-22 B1452-23 B1452-25 B1465-25	B1466- 6 B1466-12 B1466-14 B1473-10 B1475- 1

വ 00000 00000 00000 00000 00000 00000 (3) 00000 d SOCON 00010 00000 0000 00000 e S Ň ٠, S m 23 13 10 29 13 41 30 16 0 11 11 90000 28 7 7 17 17 5 0 0 4 4 0 Tuber 60 57 47 62 65 64 67 67 12 34 51 51 54 63 63 69 69 69 2 90 0 10 41 0 10 24 15 18 14 16 32 12 13 24 20 20 26 13 32 888 888 384 144 17 44 45 25 21 777 S Cu11; φ 10 7 1000 118 27743 10 30 20 41 7 7 10 10 1/ 7 13 44 30 24 16 0 34 12 90000 Φ 2 > 0 ω 888 61 74 74 60 60 60 86 86 81 64 81 79 112 334 35 35 mommo91 71 57 86 48 44000 9/0 1.082 1.085 1.076 1.070 1.080 1.063 1.064 1.062 1.077 1.064 1.070 1.077 .064 .078 .080 .085 Spec Yield of 27 87 97 113 % of 78 90 106 93 98 89 58 118 102 55 15 15 60 39 26 53 28 31 70 120 102 64 121 50 Market Q 251 172 190 185 223 154 178 208 184 193 175 114 233 201 109 11 30 118 77 50 105 55 61 115 138 236 202 125 239 98 cwt/ Total Yield cwt/a 223 257 229 272 272 223 223 218 89 89 246 113 115 176 200 260 284 221 221 276 203 286 284 251 251 301 94 21 17 28 28 15 Source (2) Seed 555555 55555 55555 ##### B1600-12 B1601- 6 B1603-11 B1612- 2 B1621- 3 B1569- 7 B1582- 9 B1582-10 B1584-10 B1585- 1 B1585- 6 B1585-11 B1587- 6 B1587-11 B1588- 7 11247 B1591- 1 B1592-13 B1598- 4 B1599- 6 B1599- 7 Variety B1589-B1590-B1590-B1590-B1590-B1478-B1479-B1481-B1477-Name B1477

(Continued.)

11.

Variety Table

NJ

00000 00000 00000 00 (3) 40701 m0000 0 zes Si 20000 25 12 25 13 17 44 7 12 10 23 Tuber 06084 554 538 555 557 42 64 69 62 65 62 2 15 22 24 24 24 24 24 119 119 119 19 19 19 22 % Cu11: 15 124 24 24 21 25 25 34 3 11 15 3 00 23 12 27 18 19 23 2000 മ ~ > 0 ∞ 83 60 65 74 89 71 81 66 ഗ ര 00 00 1.078 1.066 1.053 1.062 1.069 1.063 1.067 1.061 1.067 1.065 1.075 1.077 .077 Spec. Grav. Sup. οĘ Yield (Continued.) 171 118 75 69 84 54 24 24 30 30 42 42 65 65 11 Market Q 66 83 129 303 178 243 138 257 337 232 149 136 cwt/ 234 282 Yield cwt/a Total 203 144 131 172 243 380 326 183 204 221 277 363 297 374 261 348 Variety Table Source Seed (2) C C C C C # # # # # 6 6 6 6 G G B1624-8 B1624-9 B1624-10 B1624-22 B1625-6 .635-11 1635-20 00000 B1628- 5 B1628- 5 B1628-10 B1629- 8 B1631- 2 Variety B1622-B1622-B1622-B1624-B1624-Name NJ B1 B1

~		
•		
ブ		
υ		
2		
=		
٦,		
≓		
7		
3		
_		
-		
-1		
ᆌ		
υl		
4 1		
51		
<u></u>		
- I		
>		
Ψ		
爿		
5		
ži l		

Variety Name	Seed Source (2)	Total Yield cwt/a	Market cwt/a	Yield % of Sup.	Spec. Grav.	8 0 1	v e r 2 1/2	% Culls	0/0	Tuber 2	Size 3	4 (3)	r.
NY P32-3 NY Q 8-2 NY R170-6	ny ny ny	252 301 310	231 268 265	117 136 134	1.082	0 8 8 0 0 10	55 52 20	H M Q	7 8 13	37 37 66	44 20 20	990	000
R17- R17-	ny ny	9 8	3	7	.05		43	11 2				0 0	00
NY R17-106 NY R17-11 NY R17-19 NY R17-20 NY R18-4	Хи Хи Хи Хи	203 203 239 324	223 185 162 201 193	113 94 102 98	1.067 1.062 1.069 1.078	9 7 6 9 1 8 8 4 8 6 0	31 52 11 17	12 1 7 22	120081	487 788 788 788	28 48 15	64610	00000
NY R18- 6 NY R19- 7 NY R19-20 NY R41-11 NY R41-18	Хи Хи Хи Хи	288 145 302 430	230 126 219 254 404	117 64 111 129 205	1.065 1.059 1.068 1.067	79 887 886 94	880 732 735	0 H O Q Q	11 8 12 15 4	31 64 22 22	532 532 535 55	11 0 17	00000
Cherry Red NorDonna Norland DR	n n n	297 232 243	245 77 151	124 39 77	1.074	83 33 62	8 0 11	1 38 21	16 29 17	74 33 51	8 0 11	000	000
Atlantic ck Superior ck	k ne k ne	356 226	326	165	1.084	91	56 28	24	10	36 58	41	14	00

included irrigation. Seedpieces were spaced at 9", planted on $4/1\hat{1}$, and harvested on 8/11. of = USDA Chapman Farm, ct = Certified, ne = NE Regional Project. Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference. (4)

Plant and Tuber Characters, Tuber Defects, Chip Color and Overall Rating for Varieties and Seedlings Grown in Upper Deerfield, NJ 1997 (1). NJ Variety Table 12.

Variety 1791- 1 1791- 1 1808- 9 1808-18 1811- 6	A D C	M		ļ												
Variety 1791- 1 1791- 1 1808- 9 1808-18 1811- 6	ع ابد	Ξ.	ഗ	υ,	⊢	ഗ ,	Ω	A	(N)	(D)	Ξ.	н:	E :	1	OVER	
1791- 1 1791- 1 1808- 9 1808-18 1811- 6 1826- 5	9	t)	co	-	×	q	D	D	.D	၂	S	E	Z Z	2	ALL	Comments
1791- 1 1808- 9 1808-18 1811- 6 1826- 5	>	9	Ŋ	∞	7	8	7	7	7	ω	0	0	0		Ves	good vield
1808-9 1808-18 1811-6 1826-5	9	9	4	9	7	7	ω	7	ω	7	0	0	0		Ves	viel
1808-18 1811- 6 1826- 5	9	9	0	ω	œ	2	m	9	თ	0	6	0	0			low vield
1811- 6 1826- 5	2	2	m	7	7	7	7	5	0	0	ω	0	0		ok	נו
1826- 5	7	4	2	9	9	2	2	9	7	7	9	0	0		no	t sprou
	4	5	2	∞	œ	9	7	9	9	S	0	0	0		no	knobbv
1828- 1	∞	8	4	7	9	9	2	2	7	7	0	0	0		no	defects
AF1838- 3 6	4	2	9	∞	00	2	9	7	S	0	ω	П	1 7		ok	some green
1845- 3	ω	00	Ŋ	ω	00	4	2	9	വ	9	9	0	0		ok	knobby
1852- 3	4	4	00	∞	0	7	ω	7	œ	0	0	0	0		no	low yield
1856-	4	7	7	∞	ω	8	œ	00	∞	0	0	0	9		no	hn
AF1857-2 6	7	7	7	ω	7	m	7	7	∞	ω	0	0	2 7		yes	ok
1864 - 2	4	Ŋ	7	∞	7	m	7	7	7	<u>ი</u>	7	0	0		no	
1864-36	2	2	S	7	9	m	7	7	7	0	0	0	0		no	low yield
10-57-19-5	7	7	7	2	7	7	7	ស	9	0	7	0	0		spec	ial E
0984- 1	9	7	m	2	7	m	7	7	0	0	6	0	0		no	air cracks
0985- 1	7	7	∞	7	7	7	7	7	9	0	7	0	0		no	knobby
1065-64	4	5	9	9	2	m	9	N	7	0	0	0	0		no	air cracks
B1066-51 8	8	0	2	∞	∞	2	2	8	2	0	4	Н	0		no	r appe
1070-88	9	7	9	7	9	9	ന	ស	9	S	6	0	0		ou	S.i
1072-2	9	7	9	7	9	2	œ	8	0	0	0	0		9	yes	nice appearance
1091-29	9	7	9	7	7	7	7	7	ω	S	<u>ი</u>	0	დ ო		o Ko	h n
9	7	9	7	8	7	7	7	7	0	0	0	П	0		no	low yield
1343- 5	7	7	4	ω	œ	7	9	ស	0	ស	o	0			no	growth cracks
1343-8	9	9	വ	ω	7	m	7	7	ω	0	o	0	1 8		ok+	ok

NJ Variety Table 12. (Continued.)

## S			PLANT		TUB	ER	CHARACTERS	CTE	RS		TUBER	П	DEFECTS	TS			
Variety P t S 1 x h p p G C S H NR CC 1344-5 1314-5 6 6 7 7 7 7 6 3 5 7 9 9 9 0 0 8 6 1334-6 6 6 7 7 7 7 6 3 5 7 9 9 9 0 0 8 6 1351-18 6 6 6 7 7 7 7 8 6 8 3 7 5 8 8 9 9 0 1 7 1 1351-18 6 6 6 7 7 7 7 8 6 8 9 9 9 0 0 1 7 1 1351-10 6 6 6 7 7 7 7 8 6 8 9 9 9 0 0 1 7 7 1 1351-10 6 6 6 7 7 7 7 8 6 8 9 9 9 0 0 1 7 7 1 1351-10 7 7 8 6 8 8 7 2 7 6 8 9 9 9 0 0 1 7 7 1 1351-10 7 7 8 6 8 8 7 2 8 6 9 9 0 0 0 1 7 7 1 1351-10 7 7 8 6 8 8 7 2 6 6 6 6 9 9 9 0 0 0 1 7 7 1 1351-10 7 7 7 8 6 8 8 7 2 6 6 6 6 9 9 9 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1			A			ပ	E	S			H		H	H		OVER	
1337-15 1337-16 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1337-17 1347-18 1357-17 1357-17 1357-18 1377-18 137	Variety	ρ	Д	ιţ	S	ᆌ	×				- 1		H	- 1	ည	ALL	Comments
1331-4	1344-	4	5	4	7	7	9	m					0	9		no	hn, air cracks
1352-10	1347-	2	7	7	2	ω	00	m					0	9 8		no	growth crack, hn
1352-10 6 6 6 7 7 7 3 6 8 7 9 9 0 0 1 7 1 3 6 8 1 3 5 4 6 6 7 1 7 1 3 6 8 7 1 9 9 0 0 1 1 7 1 3 6 1 1 3 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1351 -	9	9	9	m	∞	00	m					ന	0		no	cracks
1354-6 7 6 6 3 8 9 2 8 7 5 8 8 0 17 1355-10 6 6 7 7 7 8 8 8 3 5 6 7 7 9 0 0 17 1361-10 7 7 8 8 8 8 2 8 8 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1352-1	9	9	9	7	7	7	m					0	0		no	small
1354-10 6 6 6 7 7 7 8 8 8 3 5 6 7 7 9 0 0 4 7 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1354-	7	9	9	က	ω	o	7					0			no	knobby
1357-2 1358-7 1358-7 1358-7 1361-9 1361-9 1361-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 17 1861-10 1861-1	1354-1	9	9	2	4	_∞	œ	m					0	0		ok	defects
1361-5 6 6 9 8 8 2 8 6 8 9 9 0 0 1361-10 7 7 8 6 6 5 7 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1357-	9	7	7	7	ω	7	7					0			ok	small
1361-5 5 6 6 5 7 7 6 5 9 8 9 8 9 8 9 9 9 9 9 1361-10 7 7 8 6 7 7 8 8 8 7 6 <t< td=""><td>1358-</td><td>2</td><td>9</td><td>9</td><td>0</td><td>ω</td><td>∞</td><td>2</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td>ok</td><td>low yield</td></t<>	1358-	2	9	9	0	ω	∞	2					0	0		ok	low yield
1361-9 6 7 7 6 8 8 2 6 6 6 6 9 9 10 1361-10 7 7 8 6 8 8 2 6 8 9 9 10 1362-7 8 8 8 7 2 8 6 9 9 10 1362-9 8 8 8 7 2 8 6 9 9 10 1363-10 7 7 8 6 8 8 7 2 8 6 9 9 10 1363-10 7 7 8 6 8 8 7 2 8 6 9 9 10 1363-10 7 7 8 6 8 8 7 2 8 7 9 9 9 10 1363-10 7 7 6 5 7 7 7 9 8 8 9 9 9 10 1363-10 7 7 6 8 8 7 2 8 7 8 9 8 9 10 1365-15 5 7 7 7 6 2 7 7 9 9 9 9 0 1360-15 5 7 7 7 6 2 7 7 9 9 9 9 0 1370-18 5 7 7 7 6 2 7 7 9 9 9 9 0 1429-A6 4 6 6 7 7 7 9 9 9 9 0 1435-15 6 7 6 7 7 7 9 9 9 9 0 1435-15 6 7 6 7 7 7 9 9 9 9 0 1435-15 6 7 6 7 7 7 9 9 9 9 0 1435-15 6 7 7 7 9 9 9 9 0 1435-15 6 7 7 7 9 9 9 9 0 1435-15 6 7 7 7 9 9 9 9 0 1435-15 6 7 7 7 9 9 9 9 0	1361-	9	9	വ	7	7	9	വ					0	0		ou	irregular
1361-10 7 7 8 6 8 7 6 6 6 6 6 6 6 9 9 0 </td <td>1361-</td> <td>9</td> <td>7</td> <td>7</td> <td>9</td> <td>∞</td> <td>σ</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>H</td> <td>0</td> <td></td> <td>ok+</td> <td>knobby</td>	1361-	9	7	7	9	∞	σ	7					H	0		ok+	knobby
1361-11 7 8 5 8 8 2 6 5 9 0 0 1362-7 6 7 7 8 8 8 7 6 7 1 0 0 0 1362-7 7 6 7 7 8 8 7 9 9 0 0 0 1363-10 3 2 4 7 8 6 6 6 6 6 6 6 9 9 0 0 0 1365-5 5 5 7 7 6 5 5 6 8 9 9 0	1361-1	7	7	∞	9	œ	7	9					0	0		no	knobby
1362-7 6 7 7 3 8 7 2 8 6 7 9 7 1 0 1362-9 8 8 8 6 7 7 9 7 1 0 1363-1 1363-1 1363-1 1363-2 1363-4 6 6 6 5 7 7 7 6 7 7 9 8 8 0 0 1365-5 1366-5 1366-5 1367-1 1	1361 - 1	7	7	ω	2	ω	00	2					0	0		no	knobby
1362-9 8 8 8 6 8 7 2 8 7 9 5 9 4 0 1363-1	1362-	9	7	7	m	∞	7	7					\vdash	0		no	heat sprouts
1363-1 7 6 7 5 8 4 5 6 8 9 9 0 0 1363-10 3 2 4 7 8 6 5 5 6 8 9 9 0 0 1365-5 5 5 7 7 6 5 5 6 8 9 9 0 0 1366-5 5 5 7 7 6 5 5 6 8 9 9 0 0 1367-12 3 4 3 7 6 2 8 7 7 9 9 9 0 0 1370-8 8 9 7 7 7 9 9 9 1 7 7 1427-4 4 6 5 7 7 9 9 9 1 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	1362-	∞	ω	ω	9	ω	7	7					7	0		no	hh growth cracks
1363-4 6 6 6 6 6 7 7 6 7 7 9 8 8 9 9 0 0 1365-5 5 6 5 7 7 6 5 7 7 8 9 9 0 0 1365-5 5 7 7 6 8 7 2 7 8 9 9 0 0 0 1367-12 3 4 3 7 6 2 8 7 8 9 6 0 0 0 1367-12 3 4 3 7 6 2 8 7 7 9 9 9 0 0 1427-4 4 6 6 7 7 7 7 9 9 9 0 0 9 4 1 7 7 7 9 9 9 1 1 7 7 9 9 9 0 0 0 0 0	1363-	7	Ø	7	2	ω	œ	4					0	0		yes	nice
1363-10 3 2 4 7 8 6 5 5 6 8 9 9 0 0 0 1365-5 5 6 8 9 9 0 0 0 0 1366-5 5 7 7 6 8 7 8 9 9 0 0 0 0 0 1367-12 3 4 3 7 8 7 6 2 8 7 8 9 9 0 0 0 1429-A6 4 6 6 7 7 7 6 2 7 7 9 9 9 0 0 0 1435-15 6 7 6 3 5 7 8 8 9 6 9 0 0 0 1435-15 6 7 6 3 5 7 8 8 9 6 9 0 0 0 1435-23 1435-23 1435-37 4 5 5 5 7 8 3 6 6 7 7 7 0 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0	1363-	9	9	9	2	7	7	9					0			no	hn
1365- 5 1366- 5 1366- 5 1366- 5 1367- 3 1367- 3 1367- 3 1367- 12 1367- 3 1367- 12 1367- 3 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1367- 12 1366- 5 1777- 6 1	1363-1	c	2	な	7	∞	9	2					0	0		no	low yield
1366-5 5 7 7 6 8 7 2 7 5 9 8 9 1 7 7 1 1367-3 3 4 3 7 8 7 2 7 7 9 9 9 9 0 0 0 3 5 7 7 5 7 6 5 7 7 7 9 9 9 9 0 0 0 3 5 7 7 7 6 5 7 7 7 9 9 9 9 0 0 0 3 5 7 7 7 7 7 7 7 7 7 9 9 9 9 0 0 0 0 1435-15 6 7 6 3 5 7 2 7 7 9 9 9 6 0 0 0 1435-23 5 7 6 3 5 7 2 8 8 9 6 0 0 0 0 1435-23 5 7 6 4 6 6 7 7 7 6 5 6 6 6 7 7 0 0 0 1435-21 4 5 5 5 5 7 8 8 3 6 6 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1365-	2	9	2	2	∞	8	7					0	0		no	air cracks
1367-3 5 7 5 7 6 2 8 7 8 9 6 0 3 5 7 7 5 7 7 9 9 9 0 0 3 5 7 7 7 7 7 7 9 9 9 0 0 0 0 1427-4 4 6 6 7 7 7 7 7 9 9 9 0 0 0 9 9 1 3 5 1 9 9 9 0 0 0 9 9 0 <td< td=""><td>1366-</td><td>2</td><td>7</td><td>7</td><td>9</td><td>ω</td><td>7</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>no</td><td>poor appearance</td></td<>	1366-	2	7	7	9	ω	7	7								no	poor appearance
1367-12 3 4 3 7 8 7 2 7 7 9 9 9 0 0 1370-8 5 7 6 5 7 7 7 9 9 9 0 0 1427-4 4 6 6 7 7 6 2 7 7 9 9 9 0 0 1435-9-A6 4 6 6 3 7 6 3 5 7 9 9 9 0 0 1435-9-A6 4 6 6 3 7 6 3 5 7 9 9 9 0 0 1435-9 9 7 6 8 8 6 6 5 6 6 7 7 9 9 9 0	1367-	2	7	7	2	7	9	7					0			no	hn heat sprouts
1370-8 5 7 6 5 7 7 2 7 7 9 9 1 5 5 1427-4 6 6 7 7 6 2 7 7 9 9 0 0 1425-A 6 6 7 7 6 3 7 6 3 8 8 9 6 0 0 0 1435-15 6 7 6 3 5 7 2 8 8 9 6 9 0 0 1435-23 5 7 6 4 7 6 5 6 6 7 7 9 9 9 0 0 1438-21 4 5 5 5 7 7 9 9 9 5 5 6 7 7 9 9 9 9 5 5 6 7 7 9 9 9 9 9 9 9 9 9 9	1367-1	m	4	m	7	œ	7	2					0	0		no	small
1427-4 6 6 7 7 7 6 2 7 7 9 9 6 0 0 1435-15 6 7 7 6 3 5 7 8 9 8 0 9 4 0 0 1435-23 5 7 6 3 5 7 7 9 9 6 0 0 0 1435-23 5 7 6 4 8 7 7 6 5 6 6 6 7 7 0 0 0 1435-21 4 5 5 5 7 8 3 6 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1370-	2	7	9	2	7	7	2					-			no	hn
1429-A6 4 6 6 3 7 6 3 5 7 8 9 8 0 9 4 1435-15 6 7 6 3 5 7 2 8 8 9 6 9 0 0 1435-23 5 7 6 4 7 6 5 6 6 7 7 0 0 1438-21 4 5 5 5 7 8 3 6 6 7 9 9 9 5 5 6	1427-	9	9	7	7	7	9	2					0			ok+	heat sprouts
1435-9 7 8 7 6 6 5 7 9 4 0 0 1435-15 6 7 6 3 5 7 2 8 8 9 6 9 0 0 1435-23 5 7 6 4 7 6 5 6 6 7 7 0 0 1438-21 4 5 5 5 7 8 3 6 6 7 9 9 9 5 5 6	1429-A	4	9	9	m	7	9	m					0	9		no	
1435-15 6 7 6 3 5 7 2 8 8 9 6 9 0 0 1435-23 5 7 6 4 7 6 5 6 6 7 7 0 0 1435-37 4 5 4 8 7 7 2 7 7 9 9 9 0 0 1438-21 4 5 5 5 7 8 3 6 6 7 9 9 5 5 5 6	1435-	7	00	7	9	∞	8	9					0	0		no	heat sprouts
1435–15 6 7 6 4 7 6 5 6 6 6 7 7 0 0 1435–23 5 7 6 4 7 7 6 5 6 6 6 7 7 0 0 1435–37 4 5 4 8 7 7 2 7 7 9 9 9 0 0 0 1438–21 4 5 5 5 7 8 3 6 6 7 9 9 9 5 5 6		(ſ	(c	L	ſ	c					c	c		(4
1435-23	1433-I	ρL	- [٥	n =	ი г	~ (7 L					> 0	> <		Yes	goed yreid
1438-21 4 5 5 5 7 8 3 6 6 7 9 9 5 5 6	1435-2	ი <	- u	۶ ۵	3 " C	- r	2 [n c					> <	> <		01.5	derects
	140010	ታ <	O II	т.	οц	- [~ 0	7 0					> u			S C	۲ ۲ ۲
	143012	r () s) L	ז כ	٦ - ١	o (γ) (21	[[
1440-6 6 4 5 / / 6 4 5 6 9 9 9 0	1440-	Q	4	ဂ	_	\	Q	4					>	>		no	Small

NJ Variety Table 12. (Continued.)

		PLANT.	E	TUB	JBER	CHA	CHARACTERS	FRS			DI	TUBER	DEF	DEFECTS		Carried Man	
	A	A	1	S	U	E	လ	Ω	K	တ	ß	H	H	H		OVER	
Variety	Ω	щ	ىد	S	7	×	ц	Q	Ω	ß	O	S	H	Z	R CC	ALL	Comments
1440-	Z Z Z	ى دى دى ا	000	87.0	0000	27.0	999	913	n 9	∞ ∞ 0	000	000	000	0 11 0	00	ou ou	poor appearance small
0-1 1-1	4 rv w	0 - 0	o o m	997	~ ~ ~	~ œ œ	o w 4	o o o	o o o	တတ	သတတ	ත ග	000	000		yes	small nice yield small
1445- 1445- 1445- 1445-1 1449- 1450-1	യനവയവ	1 95757	0 11101	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	00000	87878	47856	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 0 - 4 W	000m0	00000	. തതതത 	00000	10000	r 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	air cracks knobby knobby knobby hn, heat sprouts
B1450-15 B1450-20 B1450-23 B1450-24 B1450-25	87777	20000	0000	72202	08778	78867	87278	27665	₽ 4 ₽ ₩ ₽	45000	LNU L0	m o o m 4	0000	90 m N 9	വവയവയ	0 0 0 0 0 0	hn, heat sprouts hn, knobby hn, grow cracks hn, heat sprouts hn, knobby
B1452- 9 B1452-16 B1452-18 B1452-19 B1452-20	97887	20002	91110	90000	77780	L8LLL	0 m \omega \omega \omega \omega	06575	000r m	0 8 7 9 0	00100	o r o ∞ ◀	0000◀	49448	98779	no yes ok+	hn hn yield, defects small knobby
B1452-21 B1452-22 B1452-23 B1452-25 B1465-2	00404	27208	00470	10 mm	~~~~	7 8 8 7 7	77757	୧୧୯୯୭	000 1 0	01-48	00000	ଦ ଜୟୟୟ	0000н	N 0 0 H 0	9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hn heat sprouts heat sprouts knobby heat sprouts
B1466- 6 B1466-12 B1466-14 B1473-10 B1475- 1	L 20 4 9	@ @ @ @ Q Q	04027	70 N N N N N N N N N N N N N N N N N N N	79798	97978	75988	00708	∞ № 4 % 0	തെ ന ശ യ	00000	თ თ տ ಅ თ	70007	MOH04	9 ∞ ∞	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hn no yield knobby defects late

NJ Variety Table 12. (Continued.)

		PLANT	EN	TUB	BER	CHARACTERS	ACT	RS			P	TUBER	DEFECTS	CTS			
	A	Ø	Σ		U	E	လ	Δ	A	S	O	H	H	H		OVER	
Variety	۵	Д	t)	တ	-	×	q	a	Q	ტ	U	လ	H	Z Z	ည	ALL	Comments
1477-	L.	7	7	LC.	7	Ç	4	7	7	0	σ	σ	C	7 6		0	u,
1 1 7 7 7	> <	. [. [<i>y</i>	. [· (c	۷ .	. (, LC	0	. LC	· C) (+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	י ע	- и	- и	0 0	٠ ٧	ں -	o ر	ט פ	D 14) 4	٥ د	י נ	o c	o c			
14/01	n •	n () (0 0	0 0	n (o •) L	ח נ	י פ	<i>n</i> (9 (> 0	> 0			poor appearance
1479-	4	9	9	∞	∞	∞	4	ဂ	و	_	J)	מכ	0			no	small
1481-	9	7	7	7	7	7	7	7	7	0	თ	ø	\leftarrow	8		no	heat sprouts
1569-	4	C)	4	7	9	7	2	9	9	7	0	0	0	0		no	low vield, small
1582-	9	S	0	2	00	00	2	7	9	ന	ത	ന	0	0		no	E sprout
1582 - 1	വ	9	9	7	ω	00	7	ω	ω	0	0	0	0	ص س		no	
B1584-10	7	7	7	4	00	∞	m	ω	S	Ŋ	0	9	0	0		no	knobby
1585-	7	9	9	9	9	9	7	ω	ω	0	0	0	0	10 3		no	hn
15851	נר	ľ	יר	α	00	7	cc	7	7	σ	σ	σ	C	5 7		C	low vield
15851	Δ) (ט כ	0 [α		۳ (σ	α	· σ	۰ ۸			2	
B1587- 6	r 00	ο α	ο α	- 6	0 1	7	n m	ی ۔	, _	n 01) ത	n 01	10	∞ • ⊷		ok+	
1587-1	4	9	9	m	7	7	4	9	N.	n.	7	9	0			no	hn, knobby
1588-	2	7	9	9	7	9	4	9	9	7	0	9	0	0		ou	heat sprouts
1589-	m	2	m	00	7	7	5	9	9	0	0	0	0	0		ou	
1590-	e	4	m	0	7	7	7	9	9	ω	0	6	0	0		no	
B1590- 2	5	2	2	2	7	7	7	9	9	ω	0	0	0	0		no	yie]
1590-	2	7	9	2	7	5	7	7	4	N	9	9	0	5		no	
1590-	2	7	က	ω	7	9	2	9	9	0	0	<u>م</u>	0	0		no	low yield
1591-	Ŋ	9	9	7	7	9	m	7	9	ന	0	ហ	0			no	knobbv
B1592-13	Н	Н	-	0	ω	ω	7	7	9	ω	0	0	0	1 8		no	low vield
1598-	~	ſ.	m	0	v	7	2	00	7	00	0	6	0			no	low vield
10001	1 0) L) ц) <) [- 0	10	0	٦.	ט כ	0	, 0	· -	o C) (
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	י) ר	ი ი	ΩU	3" LI	- 0	0 0	7 <	ρV	٠ ر	0 0	ח כ	ס מ	-I C	> 0		016	LOW YEAR
1088-I	n	ກ	C	n	Ö	ת	1'	٥	٥	0	ת	0	>	>		011	
1600-1	က	4	9	2	∞	œ	2	9	7	7	0	0	0	2 6		ok	hn
1601 -	4	ე	9	9	∞	7	m	9	7	<u>თ</u>	0	9	0	5		no	hn, heat sprouts
B1603-11	4	9	4	4	ω	7	က	9	വ	7	0	0	0	10 4		no	hn
1612-	2	ა	4	4	ω	ω	7	ω	œ	თ	0	თ	7			ok+	
1621 -	m	m	က	ω	7	9	2	9	ហ	7	9	ന	0	9 E		no	heat sprout, hn

heat sprouts late late yield yield yield Comments no yield small, knobby knobby knobby small, small small small small low low low hn OVER yes ok+ yes no no ou no no 엉 ou no no no ou no S 召 **6** 0 DEFECTS H Z 04040 010 H 0 0 H \neg 田田 00000 00000 00000 00 TUBER H S 0 **9 9 9** 0 00000 000047 ത ത 099799 99997 ∞ on on on 70 00 0000000 70007 00700 σ A D 9599 ~ ~ **m m** 9 79799 9 ~ CHARACTERS 0 0 m m w w w 88944 യ യ യ വ വ 4.0 SA 3772 22929 79287 22 E X 97779 77889 90 99777 (Continued.) TUBER CH 100700 000100 ∞ ∞ ∞ ∞ ∞ дε S S ~ ~ ~ ~ ~ ~ ~ 00000 Z t 42885 9 4 5 9 00 L 4 4 M 7 PLANT Variety Table 12. A A 40000 9 9 9 9 9 3 W W W W **~** 9 A D 5 m m m 4 98456 8 9 4 4 B 9 Variety B1624-8 B1624-9 B1624-10 B1624-22 B1625-6 B1625- 9 B1628- 5 B1628-10 B1629- 8 B1631- 2 B1635-11 B1635-20 18247 B1622-B1622-B1622-B1624-B1624-ŊΩ

212

NJ Variety Table 12. (Continued.)

		7 177 77 7	1	1													
	K	A	Σ	ഗ	U	Ţ	S		A	က	ß	H	H	H		OVER	æ
Variety	Ω	щ	υ	တ	-	×	,c	a	D	O	O	S	H	N	2	ALL	Comments
P32-	4	7	9	m	00	∞	2	9	8	0	0	0	0	0		yes	
8-0	9	9	7	m	7	9	2	7	7	0	0	0	0	0		Ves	lat
R170-	9	7	7	9	8	7	2	7	00	∞	6	6	0	0		0k+	
NY R17- 2	7	2	വ	7	00	00	Н	00	7	0	0	0	0	1 8		ou	air cracks
R17-	7	7	7	2	∞	7	m	00	7	0	0	6	0	0		yes	small
R17-1	7	7	00	2	œ		2	7	7	7	0	0	0	0		ok+	small, defect
R17-1	4	9	S	∞	∞	0	7	∞	ω	0	9	о О	0	0		0 k+	nice, loe
NY R17-19	S	9	2	4	∞	7	m	9	7	0	0	6	0	0		ok+	low yield
R17-2	9	9	9	9	∞	7	2	9	7	0	0	6	0	2 6		no	hn
R18-	7	7	7	2	7	9	9	2	2	∞	ന	0	0			no	growth cracks
R18-	9	9	9	9	8	7	$^{\circ}$	9	7	6	0	6	0			no	crac
19-	m	7	4	2	∞	6	2	2	9	ω	0	6	Н	3		ou	low yield
NY R19-20	4	4	4	9	∞	7	m	9	7	0	0	6	7	1 6		ou	hn
R41-1	9	7	9	7	ω	7	7	œ	ω	0	0	0	0	0		ok+	smal
R41-1	7	7	7	9	ω	7	m	œ	ω	o	0	0	Н	1		yes	hn, nice
Cherry Red	7	7	7	∞	2	9	4	9	7	∞	0	0	0	0		ò	red, netted
NorDonna	9	7	9	2	7	7	7	7	9	ന	0	7	0	0		ou	red, knobby
Norland DR	2	m	7	2	7	7	m	9	7	7	0	9	0	1 7		no	red, heat spts
Atlantic	9	9	9	m	7	Ŋ	2	_∞	00	O	0	0	ന	9		std	l hn
Superior	S	9	4	α	7	٧	~	۷	7	7	σ	σ	<u>_</u>	ς		S + C	noor wear

(1) See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. (2) HH = No. of Hollow Heart tubers out of 10. HN = No. of Heat Necrosis tubers out of 10.

ariety Source Yield % of Spec. % of cwt/a cwt/a Sup. Grav. 4 entury ne 721 447 127 1.075 7 1004-8 ne 542 427 122 1.080 8 anger ne 550 418 119 1.083 8 9922-11 ne 452 384 110 1.078 9 orkotah ne 492 346 99 1.072 7 1099Rus cf 564 277 79 1.068 7 Grand Mean 525 370 1.075 7	NJ Variety Table	13.	Yields, Varieti Snyder	Speci es, Ha Agricu	c Gravit ested La ural Res	s, an rch	and Tuber S d Grown on & Extensio	izes for a Silt Lo n Farm ne	8 Russet oam Soil	T a ti		oes NJ-1997(1)	(1).
Mean 721 447 127 1.075 7 6 8 8 8 8 8 8 120 1.080 8 8 8 8 8 8 110 1.078 9 9 1.072 7 7 9 1.072 7 7 9 1.072 7 7 9 1.072 7 7 9 1.072 7 7 9 1.072 7 7 9 1.075 7 9 1.075 7 9 1	Seed Source (2)	Total Yield cwt/a	a ke	iel % o Sup	pe	0 22	V e r 8 oz	% Culls	% . ⊢1	Tuber 2	Siz 3	es (3	5
uperior ct 463 351 100 1.070 8 orkotah ne 492 346 99 1.072 7 1401- 5 ne 420 311 89 1.072 7 1099Rus cf 564 277 79 1.068 7 Grand Mean 525 370 1.075 7	/ 8 11	2460	4010	127 122 119	0.00		4 4 4 6 6 5 8 6 5 8 6 5 6 5 6 5 6 6 6 6 6 6 6	17 13 5	26 18 10	25 36 25 25	27 29 32 31	110	12 6 14
Grand Mean 525 370 1.075 7 CV (4) 10 15 .45	V C 10 M	00000	7 1 7	0087	.07 .07 .00 .06		47 46 40	6 44 31	19 27 22 30	33 38 30 30	30 23 20 20	15 15 10	100
.05 77 84 .008	Mean 7 (4) Yes LSD.05	525 10 77			.45	79	48 16	11	21	32	27	12 ns	ω σ

included irrigation. Seedpieces were spaced at 12", planted on 4/21, and harvested on 9/29. cf = USDA Chapman Farm, ct = Certified, ne = NE Regional Project. Size 1 = Under 4 oz, S2 = 4 to 8 oz, S3 = 8 to 12 oz, S4= 12 to 16 oz, and S5= Over 16 oz. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference. Commercial cultural practices were used which Plots were 21' long and 3' wide with 4 reps. (4)

Plant and Tuber Characters, Tuber Defects, Chip Color and Overall Rating for Varieties and Seedlings Grown near Pittstown, NJ 1997 (1). NJ Variety Table 14.

		PLAN.	H	TU	UBER	CHA	RACI	CTERS				UBER	DEF	SCIS		
	K	Ø	Σ	S	U	E	ഗ	Δ	A	S		G H	Ξ	н	OVER	
Variety	Q	Д	لد	လ	7	×	q	0	Ω	O	- 1	S	Œ	N R	ALL	Comments
Century Russet	0	8	9	თ	00	∞	0	9	7	7	7	თ	m	0	ok+	little russeting
4-18	ω	00	9	S	2	4	9	9	7	ω	7	<u>ი</u>	18	9 2	no	
Ranger Russet	ω	7	7	0	2	4	8	7	9	7			0	0	ok+	dc
B9922-11	8	7	7	0	4	7	9	2	4	9	00		13	0	ok	hh irregular
Superior	9	9	4	0	7	9	4	7	ω	00	7	<u>ი</u>	0	0	std	nice
Russet Norkotah	9	9	4	0	S	m	7	7	8	7	0	0	4	۳ ا		hh
B1401- 5	9	7	4	<u>თ</u>	4	2	ß	9	Ŋ	7	7	6	9	9	no	hh hn
W1099Rus	7	7	5	ω	S	4	ω	9	ന	4	N	<u>م</u>	7	4 3	no	knobby

See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. HH = No. of Hollow Heart tubers out of 40. (7)

NJ Varie	Variety Table	17.	Yields, Varieti Snyder	Specifies, Har Agricul	ic Gravit vested La tural Res	ies, an te Seas earch &	d Tuber S on and Gr Extensio	izes for own on a n Farm ne	18 Rou Silt I ar Pit	ound Pot Loam So ittstown	tato oil a n, NJ	t the	(1).
Variety Name	Seed Source	Total Yield cwt/a	Market cwt/a	Yield % of Sup.	Spec. Grav.	8 0 1 7/8	v e r 2 1/2	% Culls	% ⊢	Tuber 2	Siz 3	es (3	5
Salem B0856- 4 Katahdin	ne ne	775 723 693	706 674 634	170 162 152	1.067	@ @ @ @ C @	73 63 79	200	200	32	38 41 42	31 22 32 32	400
B0564-8 Kennebec Atlantic	ne ny me	632 768 598	573 568 560	138 137 135	1.075	992 997 96	53 75 66	2 4 2 2	∞ n 4	30 30 30	3 7 7 7 8 9 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	17 25 21	ччω
Reba W 870 B0766- 3	ct cf	570 540 521	541 504 4 94	130 121 119	1.074 1.086 1.078	98 96 97	81 74 75	m m 0	0 4 m	17 22 22	4 4 3 4 7 4 7	34 28 28	000
B0811-13 St. Johns Superior	n n n	565 498 466	468 418 416	113 100 100	1.068 1.072 1.069	000 000	58 58 58	15	0 L 4	41 9 40	8 0 4 8 0 6	11 48 12	12 0
NorDonna Yukon Gold Norland DR	ne d ne R ne	431 408 455	388 377 376	93 91 90	1.064 1.073 1.050	80 80 80 80 80 80 80 80 80 80 80 80 80 8	3 5 8 8 4 2	4 0 4	7 14	35 41 35	24 29 29	13 10 3	000
B0852- 7 Cherry Red B0811- 4	cf cf	365 374 167	339 331 101	81 79 24	1.073 1.077 1.078	94 91 61	58 37 2	782	9 0 0 m	36 53	43 36 2	14 0	000
Grand Mean CV (4) W-D Bayes L	Mean (4) es LSD.05	530 8 52	470 8 50		1.072	9 8 2 8	0 6 9	n 2	7	33	ω ω Μ	20	0 0

included irrigation. Seedpieces were spaced at 9", planted on $4/2\hat{1}$, and harvested on 9/29. cf = USDA Chapman Farm, ct = Certified, ne = NE Regional Project, ny = Cornell Program. Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference. Commercial cultural practices were used which Plots were 21' long and 3' wide with 4 reps. (3) (4)

Plant and Tuber Characters, Tuber Defects, and Overall Rating for Varieties and Seedlings Grown near Pittstown, NJ 1997 (1). NJ Variety Table 16.

Variety p P P P P P P P P P P P P P P P P P P		Σ +		١.	U									
em 7 56- 4 6 ahdin 8 64- 8 6 nebec 8 antic 6		ı	S	+ ×	n ط	D	A D	თ თ	ပ ပ	щS	шш	N H	OVER	Comments
1.000 800 800 800 800 800 800 800 800 800		ω и	000	r- 0	2.0	ωα	ω α	∞ α	000	00	00	7	Yes	great yield
Lic 688					1 7	70	20	0 1	0 00	n 01	0 0	00	std	good yield
ric control of the co					2 1	ω (∞ =	0 1	O H	000	0 0	00	yes	ize here
(r		0 0	n on	70	0 0	ρ ∞	# co	n o	ი თ	ກດ	ე Վ	12 5	std	poor appearance hh hn
<i>ر</i> ٠			თ (m (9 (∞ 1	O 1	0	0 0	-		yes	
		- 1	90	- 9	n 0	nω	∩ ∞	~ &	ກດ	ກ ໑	m 0	7 0	ok Yes	poor appearance nice
-13 6					2	00	7	9	0	6	0	0	ou	heavy net red
St. Johns 7 8 Superior 5 6	20.1 C	യഹ	7 8 7	00 00	m m	9	7	9 8	7	0 0	00	00	nostd	defects
	_				m	2	7	7	0	7	0	0	0 k +	red, deep eyes
Yukon Gold 6 6 Norland DR 6 2	10.0:	210	00 00	∞ ∞	3 N	7	7	7 8	တထ	0 0	0 1	00	std	nice
	10.1	7	800	100	2.0	L 1	L 1	000	000	000	00	9	0 k+	nice purple, rot
	o				7 0	- ∞	7	o 0	n 01	0 [00	00	yes	small red yel fl

See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. HN = No. of Heat Necrosis tubers out of 40. HH = No. of Hollow Heart tubers out of 40. (1)

NJ Variet	Variety Table	e 17.	Yields, Varieti Snyder	, Specifies, Har	ic Gravi vested L tural Re	ties, and are search & E	Tuber S and Gr xtensio	izes for own on a n Farm ne	18 Rus Silt L ar Pit	set P oam S tstow	otato oil al n, NJ	t the -1997	(1).
Variety Name	Seed Source	Total Yield cwt/a	Market cwt/a	Yield % of Sup.	Spec. Grav.	8 O 1 7/8	v e r 2 1/2	8 Culls	₩ -	Tuber 2	Size	es (3)	N
AF1808-18 B1409- 2 B1409- 2 B1452- 3	a c c c c c c c c c c c c c c c c c c c	324 451 597 414	254 346 2556 84	72 98 158 81	1.073 1.077 1.081 1.075	77 77 93 60	44 47 22 22	13 14 13	02 01	29 30 18 46	22 31 28 19	21 15 11	23377
B1452-27 B1453- 7 B1463- 1 B1463- 2	#### 0 0 0 0	742 660 286 542	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	144 159 105	1.057 1.092 1.068	68 71 68	3 4 4 7 7	8 9 21	24 13 21	33 32 21	25 23 27	10 13 13	1087
B1463-12 B1469- 2 B1469- 2 B1469-14	#### 0 0 0 0	669 390 503 503	456 344 441 408	130 98 126 116	1.077 1.077 1.080 1.079	88 88 84 81	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	28 4 21 15	32 32 32	22 34 28 17	114 22	13 26 10
B1482- 6 B1482-10 B1639- 5 B1639- 5	#### 0 0 0 0	561 283 418 624	464 302 305 530	132 58 87 151	1.073 1.068 1.076	83 71 85	0 0 0 4 0 0 0 0	13 12 5	118 115 110	1 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25 28 29	29 14 14 14	14 0 0 3
Belrus R Burbank	cf	361 807	277 401	79	1.077	77 50	23 35	37	17	54 15	15	11	00

Plots were 21' long and 3' wide with 4 reps. Commercial cultural practices were used which included irrigation. Seedpieces were spaced at 9", planted on 4/21, and harvested on 9/29. cf = USDA Chapman Farm, me = Maine, ne = NE Regional Project.

Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4. CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference. (4)

Plant and Tuber Characters, Tuber Defects, Chip Color and Overall Rating for Varieties and Seedlings Grown near Pittstown, NJ 1997 (1). NJ Variety Table 18.

Ariety A M S C T S D A S G H H N R CC ALL Comments Ariety B 6 8 6 7 8 5 5 7 8 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			PLANT	F	ΩĪ	BER	CHA	CHARACTERS	ERS			TUI	TUBER	DEF	DEFECTS		
108-18		K	A	Σ	S		H	S	D	K	က	ဖ	H	E	E	OVER	
108-18	Variety	Q	Д	ل	လ	П	×	Ę	۵	۵	ഗ	O	S	I	- 1		Comments
99-2 7 8 4 9 6 4 6 5 5 8 7 9 0 0 0 yes good yield no growth cracks 32-27 7 8 5 9 6 4 4 6 5 7 7 9 9 5 0 0 0 0 0 ock heat sprouts 53-27 7 8 5 9 6 6 4 3 6 9 9 5 0 0 0 0 0 ck heat sprouts 53-1 6 6 7 9 9 6 5 8 5 5 7 7 9 5 1 6 0 0 ck heat sprouts 53-1 6 6 6 7 9 9 6 6 6 8 6 6 6 8 8 6 9 0 0 0 ck heat sprouts 53-1 6 6 7 9 9 7 6 6 6 6 6 6 9 9 0 0 0 ck heat sprouts 67 7 7 6 9 7 6 6 6 6 6 6 6 9 9 0 0 0 ck heat sprouts 69-2 6 7 4 9 7 5 8 6 6 7 9 9 0 0 0 ck heat sprouts 69-2 6 7 4 9 7 5 8 6 6 6 6 8 8 6 9 0 0 0 ck heat sprouts 69-2 6 7 7 7 7 6 9 9 6 6 7 9 9 0 0 0 ck heat sprouts 69-2 6 7 7 7 7 9 4 2 8 6 6 7 9 9 0 0 0 ck heat sprouts 67 7 7 7 9 4 2 8 6 6 7 9 9 0 0 0 ck heat sprouts 67 7 7 7 9 4 2 8 6 6 7 6 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 8 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 0 0 ck heat sprouts 67 8 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1808-1	9	∞	9	7	9	Ŋ	ω	ហ	ស	7	∞	0	\vdash	0	no	
19-2 6 7 7 9 7 5 9 7 5 6 5 5 9 7 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1409-	7	ω	4	0	9	4	9	9	2	ω	7	0	0	0	yes	
52-27 7 8 5 9 6 6 4 3 6 9 9 5 0 0 0 0 0 0 dr heat sprouts 52-27 7 8 5 9 6 6 6 4 3 6 9 9 5 0 0 0 0 0 0 dr heat sprouts 53-7 9 9 8 7 9 6 6 6 8 6 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1409-	9	7	7	6	7	D	9	2	N)	တ	9	7	0	0	no	appearanc
53-27 7 8 8 7 9 6 6 6 4 3 6 9 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1452-	∞	7	Ŋ	0	2	4	4	9	ហ	7	N.	0	0	0	ou	T)
53-7 9 8 7 9 6 5 8 5 5 7 7 9 5 1 6 0k hh 53-12 6 6 7 9 9 6 5 8 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1452-2	7	တ	5	6	9	9	4	m	9	0	0	2	0	0	ok+	sprout
63-1 6 7 5 9 7 4 7 6 6 8 6 9 0 0 8 6 9 0 0 0 0 0 0 0 no growth cracks 63-2 6 6 7 9 6 6 6 6 6 6 9 9 0 0 14 0 0 0 0 0 no knobby 63-12 7 7 6 9 9 0 0 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1453-	0	ω	7	0	9	Ŋ	ω	2	Ŋ	7	7	0	Ŋ		 Š	
63-2 6 6 6 7 9 6 6 6 6 6 6 9 9 0 0 0 0 knobby 63-12 7 7 6 9 7 6 6 6 6 6 6 9 9 0 0 14 ok hn 69-2 8 7 6 9 6 6 7 9 9 0 14 ok hn 69-2 8 7 6 9 6 6 7 6 8 6 9 2 1 6 ok good yield 69-14 6 5 5 9 4 3 6 6 6 8 8 9 2 1 6 ok good size 69-14 6 5 5 9 4 2 8 6 6 7 6 9 6 7 3 no hh hn 82-10 3 4 4 9 5 4 8 5 5 9 1 0 no poor appearan 83-5 8 8 6 9 0 3 5 no hh hn 83-7 7 7 9 9 5 4 8 6 5 5 5 7 7 9 1 0 ok poor appearan 84-8 6 9 5 4 8 6 5 5 5 7 7 9 1 0 ok poor appearan 84-8 6 7 8 8 8 9 0 3 6 0	1463-	9	7	Ŋ	0	7	4	7	9	9	∞	9	0	0	0	no	crack
82-12 7 7 6 9 7 6 6 6 6 6 6 9 9 0 0 0 0 0 0 0 0 0 0 0 0	1463-	9	9	7	o	9	9	ω	9	9	N	ω	7	2	0	ou	knobby
69-2 6 7 4 9 7 5 8 6 6 7 9 9 0 1 4 0k hn 69-2 8 7 6 9 6 6 7 6 6 8 8 9 2 1 6 0k good size 69-14 6 5 5 9 4 3 6 6 6 8 8 9 2 0 0 k air cracks 82-6 7 7 7 9 4 2 8 6 6 7 6 9 6 7 3 no hh hn 82-10 3 4 4 9 5 4 8 5 5 8 6 9 0 3 5 no hh hn 82-10 3 4 4 9 5 4 8 6 5 7 6 9 1 0 no poor appearan 83-5 7 7 6 9 5 4 8 6 5 7 7 9 1 0 ok poor appearan 84-8 6 9 5 4 8 6 5 7 7 9 1 0 ok poor appearan 85-10 8 8 8 6 9 5 4 8 6 2 1 5 9 1 0 ok hn 85-10 8 8 8 9 5 3 8 7 6 8 8 9 0 3 6 ok hn 86-10 8 8 8 9 5 4 8 6 2 1 5 9 1 0 no very knobby	1463-1	7	7	9	6	7	9	9	9	9	9	0	O	0	0	ok	yiel
69-2 8 7 6 9 6 6 7 6 6 8 6 9 2 1 6 0k good size 69-14 6 5 5 9 4 3 6 6 6 8 8 9 2 1 6 0k air cracks 82-6 7 7 7 9 4 2 8 6 6 7 6 9 6 7 3 no hh hn 82-10 3 4 4 9 5 4 8 5 5 7 6 9 1 0 no poor appearan 89-5 7 7 6 9 5 4 8 6 5 7 7 9 1 0 no poor appearan 89-5 8 8 6 9 5 4 8 6 5 7 7 9 1 0 ok poor appearan 84 8 9 5 3 8 7 6 8 8 9 0 3 6 0k hn Rus Rus Rus Rus Rus Rus Rus Ru	1469-	9	7	4	0	7	2	ω	9	9	7	0	0	0	1 4	 o K	
82-6 7 7 7 9 4 2 8 6 6 7 6 9 6 7 3 no hh hn 82-10 3 4 4 9 5 4 8 6 5 7 6 9 1 0 no poor appearan 39-5 8 6 9 5 4 8 6 5 7 7 9 1 0 no poor appearan 39-5 8 6 9 5 4 8 6 5 7 7 9 1 0 no poor appearan 89-5 8 8 6 9 6 7 7 7 9 1 0 no poor appearan set Burbank 8 8 8 9 5 4 8 6 2 1 5 9 1 0 no very knobby	1469-	∞	7	9	0	9	9	7	9	9	∞	9	0	7	1 6	 0 k	
82-6 7 7 7 7 9 4 2 8 6 6 7 6 9 6 7 3 no hh hn 82-10 3 4 4 9 5 4 8 5 5 8 6 9 0 3 5 no hh, poor appearan 39-5 7 7 6 9 5 4 8 6 5 7 7 9 1 0 no poor appearan 39-5 8 8 6 9 5 4 5 5 5 7 7 9 1 0 ok poor appearan 88 8 8 9 5 4 8 6 2 1 5 9 1 0 no very knobby	1469-1	9	2	S	0	4	n	9	9	9	∞	ω	<u>ග</u>	7	0	0 k	ıra
82-10 3 4 4 9 5 4 8 5 5 8 6 9 0 3 5 no hn, poor appearan 39-5 7 7 6 9 1 0 no poor appearan 39-5 8 8 6 9 5 4 5 5 5 7 7 9 1 0 ok poor appearan 89-8 8 9 5 3 8 7 6 8 8 9 0 3 6 ok hn set Burbank 8 8 8 9 5 4 8 6 2 1 5 9 1 0 no very knobby	1482-	7	7	7	6	4	2	∞	9	9	7	9	O	9		no	
39-5 7 7 6 9 5 4 8 6 5 7 6 9 1 0 no poor appearan 39-5 8 8 6 9 5 4 5 5 5 7 7 9 1 0 ok poor appearan set Burbank 8 8 8 9 5 4 8 6 2 1 5 9 1 0 no very knobby	1482-1	m	4	4	<u>م</u>	വ	4	ω	2	2	ω	9	0	0		no	poor
39-5 8 6 9 5 4 5 5 5 7 7 9 1 0 0 3 6 9 0 3 6 0 3 6 0 3 6 0 3 6 0 4 0 0 3 6 0 4 0 0 3 6 0	1639-	7	7	9	<u>ი</u>	S	4	ω	9	S	7	9	0	Н	0	no	١
Rus 6 7 4 9 5 3 8 7 6 8 8 9 0 3 6 ok hn set Burbank 8 8 8 9 5 4 8 6 2 1 5 9 1 0 no very	1639-	∞	ω	9	o	2	4	2	2	iO.	7	7	0	H	0	0 k	appearan
set Burbank 8 8 8 9 5 4 8 6 2 1 5 9 1 0 no very	BelRus	9	7	4	o	5	m	ω	7	9	∞	∞	0	0		 ok	hn
	set	∞	œ	ω	0	2	4	ω	9	7	-	ហ	0	Н	0	no	very knobby

See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. HH = No. of Hollow Heart tubers out of 40.

(1).	rs.	00070	00100	047 40	00000	00000
he 1997	es (3)	27 20 52 26	22 28 15 27 27	32 32 0	23 22 5	1310
otato l at t NJ -	Siz	38 11 26 32	44844 38844 3818	0.441 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2 3 3 4 3 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
d P Soi	Tuber 2	2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	213 20 24 24	10 04 000 000 000	0448 040 040	62 62 50 24
53 Round t Loam S Pittstow	0,0	25 13 13 3	0 m 0 4 0	W 27 H 42 4	N 00 L 0 L 0	12 14 18 37 4
izes for on a Sil arm near	% Culls	18 15 14 14	04V00	0 0 0 0 4 4	9 3 40	2 10 7 3 36
Tuber S nd Grown ension F	v e r 2 1/2	65 111 58 58	68 73 70 71	76 76 70 38	61 62 58 58 58	224 114 37
es, and eason an h & Ext	8 0 1	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	98899 98897 94	90 90 90 90 90 90	0000 001 24 11	87 76 75 60
ic Graviti ted Late S al Researc	Spec. Grav.	88 60 60 60	71 77 73 81	6 4 6 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 5 6 0 5 0 0 0 1	74 58 70 79
Specif Harves icultur	Yield % of Sup.	106 106 144 1033	82 100 136 112 65	88 101 79 161 55	65 59 122 86	65 85 116 42 91
Yields, arieties, nyder Agri	Market cwt/a	175 443 183 604 431	344 421 571 272	369 422 330 675 232	271 249 402 510 362	272 355 485 174 380
19. V S	Total Yield cwt/a	308 529 214 6 32 519	374 455 667 538 288	403 440 503 731 281	294 274 435 559 666	314 464 643 288 632
y Table	Seed Source (2)	-5me cf cf	##### 00000	4 4 4 4 4 0 0 0 0 0	###### 0 0 0 0 0	0 0 0 0 0 0 0 U
NJ Variety	Variety Name	AK10-57-19 B0984- 1 B0985- 1 B1072-21	B1088-37 B1206-10 B1321-22 B1344- 5 B1352-10	B1354- 6 B1362- 7 B1362- 9 B1363- 6 B1363-10	B1365- 5 B1367-12 B1473-10 B1477- 1	B1491- 5 B1491-10 B1491-17 B1491-20 B1492- 6

	20	0000н	000000	00011	010000	00000н
	tes (3	333	E47002	35 20 25 25 4	1 211 100004	116 120 20 20
	Siz	20 20 43 18 35	26 33 10 17	888 888 988	248344 88882119	040844 08644 74
	Tuber 2	51 30 60 22	44 61 111 50	20000	3324 3325 11	8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8
	o% ←I	17 17 15 15	115 883 283 283	00000	L L & C 4 4	040146
	% Culls	110 111 6	14 0 0 3	00059	027779	27 1 2 1 6
	v e r 2 1/2	21 21 22 23 66	28 28 26 10 10	74 75 75 75	39 74 83 90 90 90 90	25 71 72 72
	8 0	71 73 88 88 88	73 89 11 17 69	0 0 0 0 0 0 0 4 4 0	0000000	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Spec. Grav.	40 40 40 40 40 40 40 40 40 40 40 40 40 4	17 47 69 18 7	C 8 8 8 C C 8 0 8 L	65 7 7 7 8 8 7 7 2 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	C 0 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C
nued.)	Yield % of Sup.	67 133 95 86 129	1 39 24 1 39 2 2 8 8 5 9 8 5 9 8 5 9 8 5 9 9 9 9 9 9 9 9	160 118 118 132	76 154 161 130 131	102 102 71 150 162
(Conti	Market cwt/a	282 398 362 541	3312 5884 211 231 246 546	671 493 641 554	317 646 674 546 585 50	440 2044 2040 7080 7080 8080
e 19.	Total Yield cwt/a	398 765 469 613	4425 646 2000 3505 75	6829 6835 683	343 706 738 564 516	640 319 425 744
/ Table	Seed Source (2)	######################################	######################################	Хи 10 10 10 10 10 10 10 10 10 10 10 10 10	70 07 07 07 07	70 07 07 07 07
NJ Variety Table	Variety S Name	B1492-10 B1492-12 B1492-15 B1493- 1	B1493- 3 B1495- 6 B1495-15 BD113- 3 BD146- 2 BD173- 1	NY P21- 2 NY P32- 3 NY P63- 1 NY Q 8- 2 NY R170-6	NY R17- 2 NY R17- 7 NY R17-106 NY R17-11 NY R17-19 NY R17-20	NY R18- 4 NY R18- 6 NY R19- 7 NY R19-20 NY R41-11 NY R41-18

which 9/29. 4 included irrigation. Seedpieces were spaced at 9", planted on $4/2\bar{1}$, and harvested on 9/29. cf = USDA Chapman Farm, ne = NE Regional Project, ny = Cornell Program. Size 1= Under 1 7/8, S2= 1 7/8 TO 2 1/2, S3= 2 1/2 to 3 1/4, S4= 3 1/4 TO 4, and S5= Over 4 CV=Coef of Variation; W-D Bayes LSD.05=Waller Duncan Test For Least Significant Difference. Commercial cultural practices were used Plots were 21' long and 3' wide with 4 reps. E 336

Plant and Tuber Characters, Tuber Defects, and Overall Rating for Varieties and Seedlings Grown near Pittstown, NJ 1997 (1). NJ Variety Table 20.

		PLANT	L	LO	BER	CE	CHARACTER	FRS			H	TUBER	DEF	ECIS				
Variety	A D	A G	Z t	လ လ	υп	₽×	ਲ ਖ਼	Ω Q	KΩ	လ ပ	ပ ပ	E S	шш	ΕZ	K	OVER		Comments
0-57	7	9	7	0	2	7	9	7	เก	7	ın	<u></u>	0	0		no	red,	grow cracks
0984- 1	7	9	7	0	2	00	9	9	ın	9	IN	0	2	0		no	red,	(1)
B0985- 1	m	m	2	0	2	∞	2	7	00	0	0	0	0	0		, y	nice,	low v
1072-2	∞	8	7	ω	00	7	2	7	ស	0	0	0	\leftarrow	-	9	ok	DOOR	ପ
1088-3	9	9	4	6	00	7	2	9	9	0	9	0	0	0		no	growt	1
1088-3	9	2	5	0	00	7	2	9	9	0	Ŋ	0	0	0		no	growth	th cracks
206-1	9	7	9	6	7	9	2	9	9	7	9	0	0	~	9	no	hn	
B1321-22	7	∞	S	0	7	9	2	9	7	9	7	0	0	0		ok	knobby	Уq
1344-	9	7	4	∞	7	7	2	S	2	ത	0	<u>თ</u>	0	7	ហ	ou		poor appear
1352-1	m	9	4	o	7	7	n	7	9	0	0	0	0	0		ou	low	70
1354-	9	7	5	0	7	7	2	9	9	∞	7	0	0	0		ou	low	yield
1362-	7	9	9	7	∞	7	7	7	7	0	0	0	0	0		yes	•	
B1362- 9	∞ (ω (<u>_</u>	ത (∞ (7	7 (7	9 1	တ ၊	ന	o (❤ (0		ou	hh,	grow cracks
1363-	œ	∞	_	אכ	00	χ	2	ბ	_	_	שכ	שכ	0	0		yes		
1363-1	m	4	വ	0	7	2	4	m	9	7	7	0	0	0		ou	LOW	yield
1365-	9	00	9	6	00	œ	2	7	7	7	7	7	0	0		ou	defects	
81367-12	4	4	4	6	∞	7	n	9	7	ത	თ	0	0	8	9	no	hn	low yield
1473-1	9	7	m	0	∞	7	7	9	9	<u>თ</u>	0	<u>თ</u>	0	0		٥ķ		
1477-	Ŋ	9	9	0	7	9	m	9	9	00	0	<u>ი</u>	0	7	7	ok+	good	yield
491-	7	∞	Ŋ	0	7	œ	7	7	4	-	7	ო	0	0		ou	red,	
1491-	4	4	m	0	2	9	2	7	7	0	0	0	0	0		ok+	red,	small
1491-1	4	m	4	0	7	9	2	7	7	9	7	<u>ი</u>	0	0		ok+	red,	knobby
B1491-17	7	9	2	0	7	7	2	9	9	7	თ	<u>თ</u>	0	0		ok+	red	
1491 - 2	ო	ო	4	0	7	9	7	9	9	9	თ	7	0	0		no	red,	low yield
1492-	٧	7	7	7	C	٢	ц	ľ	r	C	V	O	c	C		2	200	ndon't bronk

NJ Variety Table 20. (Continued.)

	-	TOTA		7	4	נוני נוני	CHARACIERS	343			1	LODER	7177	したいいしょう				
Variety	Ø D	전	Σψ	လ လ	υH	E⊢×	s d	ДΩ	A D	ഗ വ	ပ ပ	ıπ ω	шш	H Z	ည	OVER ALL	Comments	(0)
1492-1	9	2	4	0	2	7	2	4	9	0	0	0	0	0		no	red, small	11
1492-1	0	8	∞	0	7	ω	7	9	9	S	7	9	0	0		no	red, knobby	ydo
1492 - 1	9	5	4	<u>ი</u>	7	9	m	7	9	7	ហ	<u>ი</u>	0	0		ou		w cracks
B1493- 1	9	9	9	6	7	9	m	9	9	7	ത	0	0	0		ok	eq	red
1493-	9	9	S	о	7	7	m	7	ហ	9	0	0	0	0		no	red, poor	r appear
1493-	5	5	4	0	8	9	m	7	7	7	0	0	0	0		ok	red, netted	red
1495 -	9	9	Ŋ	0	7	9	7	m	7	0	0	0	0	0		yes	red, nice	a)
1495-1	80	9	9	7	П	9	7	7	7	ω	0	0	0	0		yes		big
D113-	2	2	7	0	ω	7	7	7	ന	0	0	ហ	0	0		o k		lesh
BD146- 2	ហ	ഗ	ന ദ	<u>ග</u>	9	91	9 .	7	ന 1	91	o (ഥ	0	0 (ou .		(I)
D173-	7	_	_	თ	∞	_	4	7	ر ا	2	S)	_	0	0		ok+	yellow fl	lesh
P21-	8	∞	9	0		9	2	9	7	0	0	0	0	0		yes	nice, big	מ
P32-	9	7	2	ω	∞	∞	7	2	7	0	0	0	0	0		yes		
P63-	7	7	7	o .	7	9	7	7	7	o .	o .	o .	0	0		yes	0)	
NY Q 8- 2	1 00	<u>_</u> c	6	ത ദ	<u>_</u> ι	6	m	<u>ه</u> ر	7	თ c	න ෦	ത ദ	0 0	00		yes	good yield,	ld, big
K1/0-	_	χo.	۱ م	י עכ	- 1	۰ ۵	η,	۱ و	ا ۵	י ע	,	י ע	> () ·		y o		
R17-	7	9	വ	0	∞	o o	7	9	7	o o	0	0	0	0		o <mark>k</mark>	low yield	75
17-	7	7	7	0	∞	9	8	7	7	0	7	0	0	0		Ves	good vie	1d
R17-1	7	7	7	6	7	9	2	9	7	0	0	0	0	0		ves	good vield	Γď
R17-11	7	7	7	. ∞	7	7	8	7	00	, o	_	<u>.</u> ග	0	0		Ves	nice app	appearance
R17-1	9	9	2	0	ω	8	8	9	7	О	0	o	0	0		ok+		
NY R17-20	9	7	9	6	7	9	2	9	9	ω	0	0	0	0		ok	pink rot	
18-	7	7	9	o	7	9	4	9	9	∞	ന	0	0	0		no	growth c	cracks
R18-	7	5	5	0	∞	7	m	7	9	0	9	0	0	0		ok		
R19-	4	4	m	0	ω	7	m	7	7	ത	0	<u>თ</u>	0	0		no	low yield	づ
R19-2	വ	9	4	0	ω	7	7	7	9	ത	0	<u>ග</u>	0	0		no		T
NY R41-11	9	9	2	0	ω	7	7	∞	00	∞	0	0	0	0		yes	m	appearance
D/11_1	נ	c	J	c	a	_	C	1	Ų	С	Y	C	C	c		٢,	0 4 to 0 to 0	いんりでんり

(1) See NJ Rating Table for plant and tuber characters, tubers defects and chip color ratings. (2) HH = No. of Hollow Heart tubers out of 10. HN = No. of Heat Necrosis tubers out of 10.

NJ Rating Table. Rating Codes For Plant and Tuber Characters, Tuber Defects, and Chip Color Ratings.

Rating	Texture (Tx) 1. part russet 2. hev. russet 3. mod. russet 4. lgt. russet 5. net 6. slight net 7. mod. smooth 8. smooth 9. very smooth	Heat Necrosis Rating (R) 1. 2. very bad 3. 4. 5. unacceptable 6. borderline 7. 8. slight 9. none
= Hollow Heart = Heat Necrosis = Heat Necrosis Ra = Chip Color	Tuber Color (C1) 1. purple 2. red 3. pink 4. dark brown 5. brown 6. tan 7. buff 8. white 9. bright white	Wise Foods Chip Color (CC) 1. paper white 2. 3. 4. acceptable 5. borderline 6. unacceptable 7. 8.
arance HH nd Growth HN th Crack R Sprouts CC	Tuber Skin Set (SS) 1. very poor 2. 3. poor 4. 5. fair 6. 7. good 8. excellent	Tuber Disease Rating (SG, GC, HS, HN) 1. very severe 2. 3. severe 4. moderate 6. borderline 7. slight 8. very slight 9. none
AP SGC GCC HS	Vine Maturity (Mt) 1. very early 2. 3. early 4. 5. medium 6. 7. late 8.	at
Cl = Color Tx = Texture Sh = Shape Dp = Depth	Foliar Disease Rating (AP) 1. dead 2. very severe 3. severe 4. 5. moderate 6. 7. slight 8. very slight 9. none	Tuber Depth (Dp) 1. very fl 2. 3. flat 4. 5. ok 6. 7. good 8.
Ap = Appearance AP = Air Pollution Mt = Vine Maturity SS = Tuber Skin Set	Plant & Tuber Appearance (Ap) 1. very poor 2. 3. poor 4. 5. fair 6. 7. good 8. 9. excellent	Tuber Shape (Sh) 1. very round 2. mostly round 3. round to oblong 4. mostly oblong 5. oblong 6. mostly oblong 7. oblong to long 8. mostly long 9. very long

New York

R.L. Plaisted, B.B. Brodie, D.E. Halseth, S.A. Slack, W.M. Tingey and K.D. Paddock

Early Generations

The crossing program produced 87 round white combinations with chipping and tablestock potential, 3 red combinations, 39 trichome hybrids, 23 segregating for resistance to late and 39 combinations segregating for resistance to two or more races of Globodera rostochiensis.

Seeds produced in 1995 (V's) were sown and the seedlings were transplanted to six inch pots. Four tubers were saved from each, after selecting for tuber color in the trichome and red progenies. There were 8283 round whites, 3678 <u>Globodera</u> race Ro2 resistant, 1997 with late blight resistance and 4340 with trichomes.

The four hill seedling populations (U's) started with 7385 round whites. At harvest 461 were selected for tuber type, then stored at 45° for one month prior to chipping and testing for resistance to the golden nematode. The 756 reds were selected for shape and tuber color, then golden nematode resistance, and 27 saved. There were 356 selections from 3601 segregating for resistance to the Ro2 race of golden nematode.

The 3804 trichome clones were selected for tuber type at harvest, then for chip color and resistance to the golden nematode. 205 were saved. The 2092 clones bred for resistance to Pratylenchus penetrans produced 126 selections.

The third year generation (T's) consisted of 1289 clones in 24 hill plots. At harvest 345 were saved and the following winter evaluations were made for chip color, specific gravity and golden nematode resistance.

Intermediate Generations

The fourth year selections (S's) were grown as 100 hill plots for seed production and selection and in two row by 20-foot plots for observation and chip samples. From the 345 that were grown, 47 have survived the fall selection and post harvest tests.

The fifth generation (R's) were grown in 400 hill seed plots and a replicated yield trial. The 17 at this stage of selection were reduced to 6 and are being introduced to virus—free in vitro production. All are round white clones.

Advanced Generations

A summary of the performance of the most advanced clones is as follows:

NY101 = K7-1 = Steuben x Norwis (1986).Mid-late season tablestock. Pale yellow flesh. Scurfy skin. Exceptionally high yields of large round tubers. Yield at Mt. Pleasant and Ellis Hollow for seven seasons has been 110% of Atlantic. At four sites in 1995, NY101 yielded 114% of Atlantic and at two sites was 151% of Katahdin. At four sites in 1996, the yield was 124% of Atlantic. At six sites in 1997, the yield was 123% of Atlantic. The average for 14 trials was 121% of Atlantic. Early sizing. Large tuber size. Very round. Very few pickouts. Internal necrosis has been observed frequently in Long Island trials, in two Ithaca trials in 1995 and in the Harford trial in 1997. Scab resistance like Superior. Specific gravity like Katahdin. Very nice vine growth and appearance. Resistant to nematode. The excellent yield, tuber shape, and eating quality of this clone merit its evaluation for markets which will accept the pale yellow flesh.

NY103 = K88-24 = Steuben x (Neotbr x tbr) (1986). Midseason table and chipstock. Yield of US #1 relative to Atlantic was 91% at five upstate sites in 1993 and was 118% at seven

upstate sites in 1994, 114% at six sites in 1995, 110% at six sites in 1996, and 96% at six sites in 1997. The average of 30 tests was In four years at Riverhead, NY103 vielded 108% of Katahdin. Outstanding tuber appearance. Very bright, blemish-free skin. Round shape. Shallow eyes. Medium sized tubers. Almost free of pickouts and internal defects. Scab resistance like Monona. Tuber dormancy seven weeks longer than Katahdin and Monona. Nice vine type. Specific gravity is .013 less than Atlantic (33 trials, 5 years). Chip color is like Monona. In 1994, after 450 storage the Agtron for NY103 was 54 compared with 55 for Monona. In 1995, the Agtron for NY103 and Snowden were both 60. In 1996, the Agtron score for NY103 was 49, Monona was 40. and Snowden was 53. Resistant to the golden nematode, PVX, and PVY. May not perform as well on muck soils as upland soils. This is a unique clone with exceptional tablestock and good chipping qualities, deserving special attention.

NY110 = M28-3 = Pike x Q155-3 (1988).Tablestock. Late season maturity, early sizing. Full season marketable yields in upstate trials in four years have been 91% of Atlantic. On Long Island full season yields in three years have been 114% of Katahdin. Early season yields in four years have been 115% of Superior. It has been exceptionally free of internal defects at Riverhead and upstate. Tuber size is very large. Bright skin. Specific gravity in six years has been .011 less than Atlantic. Scab resistance is similar to Monona. Tuber dormancy is five weeks longer than Atlantic. The bright skin, freedom from internal defects, and early sizing make this of particular interest for Long Island. Medium plant size, rugose leaflets. Resistant to the golden nematode.

NY112 (P7-19) = Atlantic x Q155-3 (1990) Late maturity chipstock. Very scurfy skin texture, but attractive round shape. Outstanding yield: marketable yields in four years at Ithaca 115% of Atlantic. In five upstate trials in 1996, the marketable yield was 128% of Atlantic. In six upstate trials in 1997, the marketable yield was 117% of Atlantic. In two years, the early season yield was 106% of Superior. Good chip color from 45° storage in 1996. Specific gravity is .007 less than Atlantic (14 trials), .012 greater than Monona. Tuber size is like Atlantic. Few pickouts, but hollow heart may be a problem in the larger tubers. Large vines. White flowers. Golden nematode resistant. Scab resistance between Monona and Superior.

NY115 (P23-31) = Pike x NY88 (1990)Medium maturity chipstock and tablestock. Large tuber size. Early sizing. Attractive, very bright tubers. Marketable yields in upstate trials in four years were 93% of Atlantic. Early harvest yields in two years were 108% of Superior. Few pickouts and internal defects. Scab resistance like Atlantic. Golden nematode resistant. White flowers. Attractive vine. Specific gravity is .010 less than Atlantic. Outstanding chip color in 1995 and 1996. The tuber appearance and chip color have been very favorable, but the yield has been marginal, so special spacing and fertilizer trials are needed

 $NY118 (P49-19R) = D191-103 \times Chieftain$ (1990). Late season, light red tablestock. Marketable yields at Ellis Hollow and Harford in 1996 and 1997 were 91% of Chieftain. At Freeville in 1997, the yield was 101% of Chieftain. Tuber set and size of NY118 and Chieftain are similar. Few misshapen tubers and free of internal defects. Attractive, oval shape. Skin is slightly textured and resists skinning. Eyes are sparse and very shallow. The intensity of color is similar to that of Chieftain. Flesh color is bright white before and after boiling. Specific gravity is .005 less than Chieftain. Tuber dormancy is 4 weeks longer than Chieftain. Better scab resistance than Chieftain. Resistant to race Rol of the golden nematode. The overall appearance of

this clone merits its evaluation as an alternative to Chieftain.

 $NY119 (P63-1) = E57-13 \times NY91 (1990)$ Midseason chipstock. Marketable yields at Ellis Hollow and Harford in 1996 and 1997 were 98% of Atlantic. In three other NY trials in 1997 the yield was 90% of Atlantic. Early harvest yield in 1997 was 103% of Superior. Tuber set is greater than Atlantic and tuber size in less. Few pickouts, but hollow heart has been a problem in 6 of 10 trials. Specific gravity is .002 greater than Atlantic (9 trials). Chip color from 45° storage has been brighter than Monona. Slight after cooking darkening and severe sloughing after boiling. Tuber dormancy 5 weeks longer than Atlantic. Good vine type. Scab resistance like Superior. Resistant to race Ro1 of golden nematode. Susceptible to midseason Sencor application. Looks promising for chipstock if hollow heart can be controlled.

 $NY120 (Q8-2) = Kanona \times AF186-2 (1991)$ Mid-late season chipstock. Marketable yields at Ellis Hollow and Harford in 1996 and 1997 were 104% of Atlantic. In three other NY trials in 1997, the yield was 123% of Atlantic. Early harvest yield in 1997 was 106% of Superior. In three trials in 1997, Q8-2 averaged 6.3 tubers per foot compared to 7.3 for Atlantic and weighed 7.8 oz. compared to 6.7 for Atlantic. A small proportion of misshapen pickouts. Generally free of internal necrosis and hollow heart. Very nice vine type. Tubers have a very scurfy skin texture. Specific gravity is .002 less than Atlantic (9 trials). Chip color from 45° has been better than Monona. Tuber dormancy has been two weeks shorter than Atlantic. Scab resistance has been like that of Monona. Resistant to race Rol of the golden nematode. Looks promising for chipstock. Needs spacing and fertility trials in 1998. Limited nitrogen and closer spacing may improve yield, size and chip color.

NY121 (Q237-25) = N43-288 x E74-7 (1991) Mid-late season tablestock. Bright white skin. This clone has resistance to late blight, and to four races of the cyst nematode Ro1, Ro2, P4A, and P5A. It appears to be resistant to PVY and scab. In a single trial in Ellis Hollow in 1997 it produced a marketable yield 87% of Atlantic. Tuber size is smaller than Atlantic. It had no internal or external defects. The specific gravity was .007 less than Atlantic. Scab reaction is like Monona.

NY122 (R3-14) N42-10 x Pratyl Bulk (1992) Medium maturity tablestock. Bright white skin. Oblong shape. This clone is resistant to four races of the cyst nematode, Ro1, Ro2, P4A, and P5A. It may be resistant to PVY. In a single trial in Ellis Hollow in 1997, it produced a marketable yield 103% of Atlantic. Tuber size was similar to Atlantic. The loss from misshapen tubers was greater than Atlantic, but it had fewer internal defects. The specific gravity was .016 less than Atlantic. This clone has potential use by tabelstock growers who need to grow an Ro2 resistant variety. Scab reaction is similar to Katahin.

 $NY123 (R127-19) = M504-2 \times L227-243$ (1992). Medium-late maturity tablestock. Bright white skin. This clone combines good trichome features with attractive tuber shape and good agronomic performance. In a single trial in Ellis Hollow in 1997, it produced a marketable yield 99% of Atlantic. There were few pickouts and no internal defects. The specific gravity is .005 less than Atlantic. At Freeville, in plots protected by insecticide, NY123 yielded 95% of Allegany. In adjacent plots without protection from insecticides NY123 suffered only 14% yield reduction whereas Allegany suffered 70% yield reduction. Three year's data show only 11% yield reduction due to Colorado potato beetles in unprotected plots and no visible leaf hopper damage. This clone is resistant to race Rol of the golden nematode and probably to PVY. Scab resistance is like Atlantic.

Long Island, New York

J. B. Sieczka, D. M. Gergela, R. C. Neese, M. L. Masierowska and D. D. Moyer

Introduction: Experiments conducted in 1997 are part of an ongoing program evaluating promising potato clones under Long Island conditions. Fifty-three potato clones were evaluated in replicated experiments conducted at the Long Island Horticultural Research Laboratory (LIHRL). In addition, fifty-eight clones were included in an observation trial.

Methods: The randomized complete block design with four replications was used in all the experiments. Variety plot size was 2 rows by 12 feet. Fertilizer was applied at a rate of 1,000 lbs/A of 10-20-20 in bands at time of planting (4/15-16/97). additional 60 lbs N/A were applied when plants were 4 to 6 inches tall. Vines in the early experiment were rated for maturity on 8/16/97, plants were roto-cut on 8/11/97 and yield data were collected on 8/20/97. Vines in other variety evaluation experiments were vine killed on 9/12/97 and were harvested on 9/23/97. Specific gravity was determined by the hydrometer method. Internal defects were determined on 10 tubers per replication in the 3.25 to 4 inch or 12 to 16 oz. categories for round and russet experiments, respectively. Tables summarize maturity ratings, tuber appearance and shape.

Experiments to determine the effect of nitrogen rate and spacing on vigor and yield of NY103, NY109 and B9922-11 were established on 4/23/97. Plot size was 3 rows x 15 feet long with the center row x 12 feet used for data. All plots were fertilized at a rate of 1,000 lbs/A of 10-20-20 in bands at planting. Sidedress nitrogen treatments of 0, 50, and 100 lbs/A were applied on 6/4/97. Spacing treatments were 6 and 9 inches. Plants were vine killed on 9/12/97 and harvested on 10/7/97.

Early White-skinned Clones: There were no significant differences in total yield and marketable yield between Andover, Superior N1 (standard Superior obtained from Nature Mark), AF1470-6, AF1475-20, Reba (NY87), NY109 and NY110 (Tables 2 & 3). The best appearing lines were Andover, Reba, NY109, and NY110. Tubers of AF1475-20 and NY110 had the highest specific gravity. Tubers of AF1437-1 and AF1470-6 had low specific gravity. Internal necrosis was observed in tubers of AF1470-6, AF1475-20 and NY109.

NE184 White-skinned Clones: The marketable yields of Katahdin, Atlantic and B0766-3 were not significantly different from each other (Tables 4 & 5). NY103 tubers were the most attractive and AF1615-12 and Reba tubers had good appearance. Specific gravity of Atlantic and NY102 tubers was high. Internal defects were severe in Atlantic, Yukon Gold, and AF1480-5.

White-Skinned University of Maine and USDA Seedlings: AF1714-2 and B1240-14 produced marketable yields significantly lower than Katahdin (Tables 6 & 7). All other entries produced marketable yields not significantly different from Katahdin. The specific gravity of B1240-14 tubers was considerably higher than the others. The best looking lines were B0564-9, B1240-12 and B1429A-6. Severe internal defects were noted in tubers of AF1773-1, B1240-14 and B1429A-6.

White-skinned Cornell Clones: Allegany, Norwis, NY103 and NY109 produced the best marketable yields (Tables 8 & 9). Norwis, NY103, and Q3-12 tubers were the largest in the experiment. Entries that had specific gravity readings greater than 1.080 were: Allegany, P32-3, P63-1, P73-2, Q3-12

and Q8-2. NY103 and NY115 had the best tuber appearance. Other lines with attractive tuber type were NY109, NY110, P32-3 and Q3-12.

Red-skinned Clones: Chieftain, Redsen and Red Ruby produced similar marketable yields (Tables 10 & 11). Redsen had the most intense red color and the best appearance. Tubers of B0811-4 are very small, have a pink smooth skin and yellow flesh. This line could fit a niche market even though its yield is very low. Other lines that may fit niche markets are B0811-13 (red netted skin with yellow flesh), R174-1 (purple skin and mottled purple flesh) and R174-2 (smooth red skin with pink mottled flesh).

Russet-skinned Clones: The yield of tubers greater than eight ounces was poor for all entries (Tables 12 & 13). The performance of Century Russet was disappointing. The best yielding russet was B9922-11. This line has golden nematode resistance. Tubers are oblong to long, heavily netted and have a high specific gravity. Although not a major problem in this experiment, hollow heart has been a concern in a cultural practice experiment this year and other experiments in the past.

Observation Trial: Data from a non-replication trial on yield, appearance, specific gravity and internal defects of early selection clones and recently released varieties are presented in (Table 14).

Clone X N Rate X Spacing: NY103. The highest total and marketable yields were produced at the six inch spacing and sidedress rate of 100 lbs N/A (Tables 15 & 16). However, the only significant effect was that of spacing on total yield. Size distribution and specific gravity were not affected by treatment.

NY109. Total and marketable yields were highest at the 100 lbs N/A sidedress rate and six inch spacing but the yields at 0 and 50 lbs N/A sidedress rates were nearly identical (Tables 17 & 18). The nine inch spacing resulted in a higher percentage of tubers greater than 2.5 inches than the six inch spacing. Specific gravity was not affected by treatment.

B9922-11. Total and marketable yields increased when sidedress nitrogen was applied but the 50 and 100 lbs N/A rates produced similar yields (Tables 19 & 20). Yields were not affected by spacing. There was no hollow heart at the six inch spacing and no sidedress. The amount of hollow heart was greatest at the nine inch spacing.

<u>Storage Results:</u> After-cooking darkening and blackspot ratings for clones grown in 1996 are given in (Table 21).

Acknowledgments: Seed was provided by R.L. Plaisted, Cornell University; K.G. Haynes, USDA; G.A. Porter, University of Maine; Childstock Farm, Malone, N.Y. The assistance of Bennett Orlowski, Rod Zeltmann, Mark Sisson, Sandra Mulvaney and Carole Brush is greatly appreciated.

Long Island Table 1. Tuber characteristics of potato clones grown on Long Island, N.Y.

Long Island Labr	c 1. Tuber					Eye Dep		Appear	Sidild, 14. 1.
CLONE	Table	Color	Texture	Shape	Depth	Lateral	Apical	ance	Comments
Allegany	8,9	Bu	SN-N	R	R	S	MD-VD	6	irreg, very deep AE
Andover	2,3	Bu	N-SN	R-O	MT-R	S	MD	7	okay, some lenticels
Atlantic	4,5	Bu	N	R	R	MS	MD	6	sl irreg
Caesar	8,9	Y	RS	O	R-MT	S	S	6	irreg shape, small
Century Russet	12,13	T	RS	LVL	R	MS	MS	5	irreg shape
Chieftain	10,11	Pi	S-RS	O-R	MT	MS	MS-MD	6	skinning, stolons
Dark Red Norland	10,11	LR	RS	O-R	MT	MS	MS-MD	6	sl irreg
ltasca	4,5	W	RS	O-L	R	MS	MS	6	irreg shape
Katahdin	4,5,6,7,8,9	W	RS	R-O	SF-MT	S	MD	6	sl irreg, stolons, scab
Kennebec	4,5	W	RS-SN	O	SF	S-MS	MS	5	pinkeye, nema, sl irreg
VorDonna	10,11	DR	<u>s</u>	R-O	R	MS-MD	MD	5	irreg shape
Vorwis	8,9	W	S	O	MT	MD-D	D-VD	5	irreg shape, nice skin
Reba (NY87)	2,3,4,5	W-Bu	S-SN	O-R	MT	S-MS	MD	7	sl irreg, scab and rhizoc.
Red Ruby	10,11	MR	RS-SN	R-O	MT	MS-MD	MD	5	irreg shape
Redsen	10,11	DR	S	R	R	MS	MS	7	okay, some skinning
Rideau	10,11	Pi	RS	O-R	MT-SF	MS	MS-MD	5	irreg, GC, skinning
Russet Norkotah	12,13	В	HR	L	R-MT	S	S	6	irreg shape
Superior	2,3	Bu	N-SN	R-O	MT	MD-D	MD-D	5	irreg shape, pinkeye
Superior SPBT 02-05		Bu-W	N-SN	O-L	MT	MD-D	MD-D	4	pinkeye, irreg shape
W1099Rus	12,13	В	HR	L	MT	S	S	7	okay
Yukon Gold	4,5	- Y	<u>RS</u>	-ō-R	<u>M</u> T	<u></u>	<u></u>	6	irreg, scab, pink buds,y flesh
AF1437-1	2,3	Bu	SN	R	MT	S	S-MD	6	
AF1457-1 AF1470-6	2,3	W	RS-SN	R	MT-R	S	S-MD	6	scab, irreg shape
AF1475-20		Bu	SN	R	MT-K	MD	MD-D		sl irreg shape okay, some skinning
	2,3		SN	O-R			MD-D	6	
\F1480-5	$\frac{4.5}{6.7}$	Bu W-Bu	$-\frac{SN}{SN}$	- O-R -	MT R-MT	MS-MD S	$-\frac{MD}{MD}$	$-\frac{5}{5}$	irreg shape, knobs on AE
AF1606-8									irreg, chain tubers
AF1615-12	4,5	W	RS	R-O	R	S	MS	7	okay but small
AF1714-2	6,7	W	RS	O-R	MT	S-MS	MS	6	sl irreg shape
AF1764-9	6,7	W	RS	0	MT	MS-MD	MD	5	irreg shape
AF1773-1	6,7	W	RS	0	MT-SF	<u> </u>	MS	5	irreg, pear shape at SE
30564-8	2,3,6,7	Bu	S-SN	R	R-MT	S	MS-MD	6	lenticels, sl irreg, star crack
30564-9	6,7	Bu	N	R	R	S	MS	7	okay, netted
30766-3	4,5,6,7	Bu-W	SN-N	R	MT	S-MS	MD	6	irreg shape, sprouts, bl scurf
30811-13	10,11	DR	N	R	R-MT	MD-D	MD-D	5	irreg, yellow flesh, deep eyes
30811-4	10,11	Pi	<u> </u>	R	R	MS-MD	MD	6	small, yellow flesh, VD
30915-3	12,13	B	HR	L	MT	S	S	6	white eyes, scab
30967-11	10,11	Pu	RS	O	R-MT	MS	MD	5	irreg, scab
31004-8	12,13	В	M-HR	L	MT	S	S	6	scab
31214-7	6,7	W-Bu	RS	O	MT	MD	MD-D	4	irreg, scab, lenticels, pinkeye
31240-12	6,7	W	SN	R-O	MT	S	MS	7	scab, pinkeye, sl irreg
31240-14	6,7	Bu	SN-N	R	R-MT	S	MS-MD	6	irreg, scab
31429A-6	6,7	Bu	SN-N	R	R	S	MS-MD	7	okay, netted
39922-11	12,13	В	HR	L-O	MT	S	S	6	sl irreg shape
JY102	4,5	Bu	SN	R	MT	MS	MD	6	irreg shape, small
VY103	_4,5,8,9	W	RS	O-R	MT	S-MS	MS	8	okay, some pear shape
VY109	2,3,8,9	W-Bu	RS	Ō-R	R-MT	<u>s</u>	S-MS	7	okay but lenticels
1Y110	2,3,8,9	W	S-RS	R-O	MT	S	MD	7	sl irreg shape, scab
JY115	8,9	W-Bu	S	O	MT	S	S-MS	8	nice appearance
21-2	8,9	Bu	SN	R-O	MT	MS-D	D-VD	5	irreg, very deep AE
32-3	8,9	W	RS-S	R-O	MT	S-MS	MS	7	Sl irreg
P63-1	8,9	Bu	<u>N</u>	R	MT	S-MS	MS	6	irreg, blotchy, not nice
273-2	8,9	W	RS	O-L	R-MT	MS-MD	MS	6	irreg shape
							MS-MD	7	
	8.9	Bu	S-SN	()-K	MI				OKAV
23-12	8,9 8,9	Bu Bu	S-SN N	O-R R	MT R-MT	S S-MS			okay brown, blotchy, not table
	8,9 8,9 10,11	Bu Bu Pu	S-SN N RS-SN	R O	R-MT MT	S-MS MS	MS-MD MS-MD	5 5	brown, blotchy, not table irreg, SS, mottled pur flesh

COLOR: B=brown, Bu=buff, Pi=pink, Pu=purple, R=red, T=tan, W=white. Modifiers: L=light, M=medium, D=dark. TEXTURE: N=netted, R=russet, S=smooth. Modifiers: H=heavy, M=moderate, R=Relatively, S=Slightly. SHAPE: L=long, O=oblong, R=round. EYE DEPTH: D=deep, M=moderate, S=shallow. TUBER DEPTH: MT=medium thick, R=round, F=flattened, SF=slightly flattened. COMMENTS: AE = apical eyes, BL = black leg L=prominent lenticels, lrr=irregular, Kn=knobs, Sc=scab, SE = stem end, Sk=skinned, Sl=slightly, Sm=small, Sp=sprouts, St=stolons, SS=Silver scurf, F=flesh, Pi=pink, VD = vascular discoloration Y=Yellow, W=white.

Long Island Table 2. Yield, marketable yield, size distribution and specific gravity of early white-skinned clones grown at Riverhead, N.Y.

	Total	Marketa	ble Yield	Siz	e Distr	bution	(%)	
	Yield		percent		2 to	2.5 to	3.25 to	Specific 1
Clone	cwt/A	cwt/A	of stnd.	< 2"	2.5"	3.25"	4"	Gravity
Season-118 days					•			
Superior	302	266	100	12	48	40	0	69
Andover	369	344	130	7	29	57	6	76
Reba (NY87)	385	340	128	12	42	45	2	72
Superior N1	373	329	124	12	37	51	1	68
Superior SPBT 02-05	311	263	99	15	50	34	0	72
AF1437-1	376	302	114	20	41	38	0	60
AF1470-6	412	355	134	14	37	46	3	61
AF1475-20	411	367	138	11	33	52	4	77
B0564-8	323	267	101	<u>1</u> 7	46	37	0	73
NY109	388	340	128	12	26	56	6	67
NY110	351	318	120	10	37	51	2	78
Waller–Duncan								
LSD (0.05)	(45)	(43)						(3)

Planted on 4/15/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, rotocut on 8/11/97, harvested on 8/20/97.

Long Island Table 3. External and internal defects of early white-skinned clones grown at Riverhead, N.Y.

		Tul	oer Defe	cts (%)			Perc	entag	e	
		Sun-	Mis-	Growth		Hollow	Brown	Inte	mal Ne	crosis
Clone	Total	burn	shapen	cracks	Other 1	heart	center	S1.	Mod.	Sev.
Season-118 days										
Superior	4	1	2	0	1	0	0	0	0	0
Andover	2	1	0	0	1	5	0	0	0	0
Reba (NY87)	3	2	0	0	1	0	0	0	0	0
Superior N1	4	1	1	0	2	0	0	0	0	0
Superior SPBT 02-05	6-	_I -	4-	0-	0	0	0	0	0	0
AF1437-1	11	2	0	1	9 (Sc)	0	0	0	0	0
AF1470-6	7	2	0	2	3	0	0	13	5	0
AF1475-20	3	3	0	0	0	0	0	10	3	0
B0564-8	<u></u> 5	<u>I</u>	0-	0-	3		0	0	 5	0-
NY109	7	4	1	1	1	0	0	10	5	0
NY110	2	1	0	0	1	0	0	3	0	0

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No. 1 grade, primary defects listed in (). Mechanical defects were not scored.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 4. Yield, marketable yield, size distribution and specific gravity of NE 184 white-skinned clones grown at Riverhead, N.Y

	Total	Marketa	ble Yield	Siz	e Distr	ibution ((%)	
	Yield		percent		2 to	2.5 to	3.25 to	Specific ¹
Clone	cwt/A	cwt/A	of stnd.	< 2"	2.5"	3.25"	4"	Gravity
Season-150 days								
Katahdin	444	385	100	13	30	52	4	65
Atlantic	462	427	111	8	27	57	8	82
Itasca	403	335	87	17	46	36	1	66
Kennebec	388	304	79	22	32	43	33	69
Reba (NY87)	419	383	99	9	34	52	6	71
Yukon Gold	396	347	90	12	28	53	7	76
AF1480-5	407	305	79	25	36	38	1	74
AF1615-12	361	295	77	18	64	18	00	75
B0766-3	425	395	102	7	24	61	8	74
NY102	372	316	82	15	58	27	0	81
NY103	427	381	99	11	17	58	14	70
Waller–Duncan								
LSD (0.05)	(44)	(42)						(3)

Planted on 4/15/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, vine killed on 9/12/97, harvested on 9/23/97.

Long Island Table 5. External and internal defects of NE 184 white-skinned clones grown at Riverhead, N.Y.

		Tuber	Defects (%)			Perc	entag	ge	
		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
Clone	Total	burn	shapen	cracks	Other 1	heart	center .	S1.	Mod.	Sev.
Season-150 days										
Katahdin	6	2	1	0	3	0	0	8	0	0
Atlantic	2	1	1	0	0	0	0	23	13	10
Itasca	7	1	3	3	1	3	0	0	0	0
Kennebec	12	3	4	0	4	0	0	0	0	0
Reba (NY87)	2	1-	0	0	0	0	0	5	0	0
Yukon Gold	7	1	2	1	3	18	0	8	3	3
AF1480-5	18	0	15	0	3	3	0	15	15	0
AF1615-12	1	1	0	0	0	0	0	0	0	0
B0766-3	3	· 1	2	0	0	0	0	-0	0	0
NY102	3	1	2	0	0	0	0	8	0	0
NY103	7	3	3	0	1	0	0	0	0	0

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No. 1 grade, primary defects listed in (). Mechanical defects were not scored.

¹-1.0 is excluded from specific gravity readings.

Long Island Table 6. Yield, marketable yield, size distribution and specific gravity of main season USDA and University of Maine white-skinned clones grown at Riverhead, N.Y.

	Total	Marke	table Yield	Siz	e Distr	ibution ((%)	
	Yield		percentage		2 to	2.5 to	3.25 to	Specific 1
Clone	cwt/A	cwt/A	of standard	< 2"	2.5"	3.25"	4"	Gravity
Season-150 days								
Katahdin	407	335	100	18	32	44	6	67
AF1606-8	381	324	97	15	44	40	0	74
AF1714-2	223	198	59	11	35	45	9	75
AF1764-9	380	338	101	11	36	52	1	71
AF1773-1	386	310	93	20	18	50	13	69
B0564-8	344	294	88	14	41	43	1	74
B0564-9	381	346	103	9	22	52	16	70
B0766-3	374	346	103	8	26	58	8	77
B1214-7	398	349	104	12	<u>1</u> 7	61	10	76
B1240-12	328	260	78	21	32	45	2	76
B1240-14	424	307	92	28	19	47	6	86
B1429A-6	351	318	95	9	30	56	4	74
Waller–Duncan								
LSD (0.05)	(57)	(60)						(2)

Planted on 4/15/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, vine killed on 9/12/97, harvested on 9/23/97.

Long Island Table 7. External and internal defects of main season USDA and University of Maine white-skinned clones grown at Riverhead, N.Y.

		Tuber	Defects ((%)			Perc	entag	e	
		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
Clone	Total	burn	shapen	cracks	Other 1	heart	center	S1.	Mod.	Sev.
Season-150 days							- '- · · · ·			
Katahdin	11	2	1	0	8	()	0	5	0	()
AF1606-8	5	1	2	2	1	0	0	3	0	0
AF1714-2	3	1	0	0	2	0	()	0	5	0
AF1764-9	4	0	3	0	0	0	0	0	0	0
ĀF1773-1	15	2 -	12	1	<u>1</u>	0	()	15	15	10
B0564-8	6	()	1	()	6	()	0	()	0	()
B0564-9	3	0	1	1	2	8	()	0	0	0
B0766-3	3	0	1	0	1	3	()	()	0	0
B1214-7	10	<u> </u>	 5	0	 4	()	()	0	0	0
B1240-12	14	0	2	0	12 (Pe)	3	0	0	0	0
B1240-14	24	1	2	0	21 (Sc)	38	0	13	5	0
B1429A-6	3	0	0	0	3	0	0	25	3	3

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No. 1 grade, primary defects listed in (). Mechanical defects were not scored.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 8. Yield, marketable yield, size distribution and specific gravity of main season

Cornell University white-skinned clones grown at Riverhead, N.Y.

	Total	Marketa	ble Yield		Size D	istributi	on (%))	
	Yield		percent		2 to	2.5 to 3	3.25 to)	Specific 1
Clone	cwt/A	cwt/A	of stnd.	< 2"	2.5"	3.25"	4"	> 4"	Gravity
Season-150 days									
Katahdin	371	323	100	13	25	56	6	0	67
Allegany	357	333	103	7	27	54	11	0	81
Caesar	310	256	7 9	18	55	28	0	0	74
Norwis	385	352	109	5	_12_	55	24	4	65
NY103	396	369	114	6	20	60	14	1	70
NY109	361	338	105	6	25	63	6	0	67
NY110	343	324	100	5	23	64	7	0	78
NY115	297	279	86	6	33	54	7	0	72
P21-2	347	321	100	7	24	60	8	0	70
P32-3	309	277	86	10	32	51	6	0	80
P63-1	292	264	82	10	40	46	4	0	85
P73-2	313	265	82	15	52	33	0	0	81
Q3-12	312	292	91	6	24	55	15	1	82
Q8-2	323	296	92	8	25	58	9	1	81
Waller–Duncan									
LSD (0.05)	(35)	(37)	200.44						(3)

Planted on 4/15/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, vine killed on 9/12/97, harvested on 9/23/97.

Long Island Table 9. External and internal defects of main season Cornell University white-skinned clones grown at Riverhead, N.Y.

		Tuber	Defects ((%)			Pe	rcent	age	
		Sun-	Mis-	Growth		Hollow	Brown	In	iernal Ne	ecrosis
Clone	Total	burn	shapen	cracks	Other 1	heart	center	S1.	Mod.	Sev.
Season-150 days										
Katahdin	7	3	1	0	1	0	0	0	0	0
Allegany	3	1	1	()	0	0	0	0	0	0
Caesar	7	0	5	0	1	0	0	0	0	0
Norwis	3	0	2	()	0	0	0	10	0	0
NY 103	3	<u>-</u>	2	<u></u> 0-	0	3	 3	-8	3	0
NY109	3	2	0	0	1	0	0	8	0	3
NY110	2	1	0	0	1	0	0	0	0	0
NY115	1	0	1	0	0	0	0	8	3	0
P21-2	3	0	2	0-	1	0	0	-0	0	0
P32-3	4	0	1	0	3	3	0	3	0	0
P63-1	1	0	0	0	1	0	3	0	3	0
P73-2	3	1	3	0	0	3	0	0	0	0
Q3-12	2	- I	0	0-	<u>l</u>	0	0	5	0	-0
Q8-2	3	0	1	0	2	0	0	0	0	0

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No. 1grade, primary defects listed in (). Mechanical defects were not scored.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 10. Yield, marketable yield, size distribution and specific gravity of

red-skinned clones grown at Riverhead, N.Y.

	Total	Marketa	ble Yield	Siz	e Distr	ibution	(%)	
	Yield		percent		2 to	2.5 to	3.25 to	Specific ¹
Clone	cwt/A	cwt/A	of stnd.	< 2"	2.5"	3.25"	4"	Gravity
Season-149 days						· · ·		
Chieftain	371	338	100	9	39	51	1	66
NorDonna	280	225	67	20	51	29	0	63
Dark Red Norland	320	276	81	14	52	34	1	57
Redsen	316	287	85	9	47	42	2	63
Red Ruby	363	312	92	14	54	31	0	63
Rideau	411	352	104	14	23	56	6	72
B0811-4	122	68	20	44	51	6	0	80
B0811-13 (NE 184)	338	283	84	16	50	33	1	75
B0811-13 (USDA)	305	266	7 9	13	39	46	2	74
B0967-11	331	270	80	18	20	55	7	74
R174-1	324	265	78	18	53	26	2	74
R174-2	242	180	53	26	56	18	0	76
Waller–Duncan								
LSD (0.05)	(44)	(40)						(3)

Planted on 4/16/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, vine killed on 9/12/97, harvested on 10/1/97.

Long Island Table 11. External and internal defects of red-skinned clones grown at Riverhead, N.Y.

at Kiverneau, N. 1.										
		Tı	ıber Defe	ects (%)			Perc	entag	ge	
		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
Clone	Total	burn	shapen	cracks	Other ¹	heart	center	S1.	Mod.	Sev.
Season-149 days						One of the last				
Chieftain	2	0	1	0	1	0	0	10	0	0
NorDonna	3	0	1	0	1	0	0	0	0	0
Dark Red Norland	1	0	0	0	0	0	0	0	3	0
Redsen	1	1	0	0	0	0	0	0	0	0
Red Ruby	4-	l	3	0	0	0	0	0	0	0
Rideau	11	1	2	7	1	0	0	0	0	0
B0811-4	0	0	0	0	0	0	3	0	0	0
B0811-13 (NE 184)	3	0	3	0	0	0	0	0	0	0
B0811-13 (USDA)	3	0	2	0	0	0	3	3	0	0
B0967-11	15	0	1	1	13 (Sc)	0	0	0	5	0
R174-1	9	0	7	2	1	0	0	0	0	0
R174-2	7	0	4	1	2	0	0	0	0	0

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No. 1 grade, primary defects listed in (). Mechanical defects were not scored.

¹-1.0 is excluded from specific gravity readings.

Long Island Table 12. Yield, marketable yield, size distribution and specific gravity of russet-skinned clones grown at Riverhead, N.Y.

	Total	Marketa	ble Yield	Siz	e Distri	bution	(%)	
	Yield		percent		4 to	8 to	12 to	Specific ¹
Clone	cwt/A	cwt/A	of stnd.	<4	8	12	16	Gravity
Season-149 days								
Century Russet	366	190	100	48	43	7	2	76
Russet Norkotah	256	118	62	54	42	4	0	69
B0915-3	320	199	105	37	43	16	3	67
B1004-8 (NE 184)	336	161	85	52	45	3	0	74
B1004-8 (USDA)	314	158	83	50	4 3-	7	0	72
B9922-11 (NE 184)	329	240	127	25	52	15	6	81
B9922-11 (USDA)	329	233	123	29	54	15	2	83
W1099Rus	314	175	92	44	48	7	0	64
Waller-Duncan								
LSD (0.05)	(34)	(27)						(2)

Planted on 4/16/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, vine killed on 9/12/97, harvested on 10/1/97.

Long Island Table 13. External and internal defects of russet-skinned clones grown at Riverhead, N.Y.

		Tu	ber Defe	ects (%)			Perc	entag	ge	
		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
Clone	Total	burn	shapen	cracks	Other ²	heart	center	S1.	Mod.	Sev.
Season-149 days						-				
Century Russet	20	0	9	0	10 (JER)	0	0	0	0	0
Russet Norkotah	7	0	3	0	4	3	5	5	0	0
B0915-3	16	1	11	2	2	8	8	20	0	0
B1004-8 (NE 184)	16	1	0	0	15 (Sc)	0	0	3	0	0
B1004-8 (USDA)	19	0	1		18 (Sc)	0	0	3	0	0
B9922-11 (NE 184)	3	1	1	1	0	5	0	5	0	0
B9922-11 (USDA)	5	1	2	2	0	()	0	5	0	0
W1099Rus	8	1	4	2	1	0	0	0	0	0

Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No. 1 grade, primary defects listed in (). Mechanical defects were not scored.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 14. Yield and quality of early selection lines and recently named varieties in a non-replicated observation trial.

			Jo %				% Inte	% Internal Defects	stects									
	Yield (Yield (cwt/A)	standard	%	Spec. 1		'	Interna	Internal Necrosis	Sis					Eye Depth		Appear-	
Clone	Total	2-4"	2 to 4"	Def.	Grav.	HH	BC	SI.	Σ	S	Color Texture	cture S	Shape Depth		Lateral Apical		ance	Comments 2
Season - 146 days	S						į.											
White-skinned lines	nes																	
Katahdin	332	588	100	6	29	0	0	10	0	0	Bu			SF		MD	9	okay, some VD
Katahdin	364	292	101	12	65	0	0	0	0	. 0	W	S	R-O N	MT]	MS N	MD	5	sp, VD
Superior	310	276	95	2		0	0	0	0		Bu	SN	0	MT	D	D	5	irreg, some long
B1072-21	466	407	141	10	89	0	0	0	0	0	W					D	4	Norwis #2, Sc,
B1240-1	483	424	147	1 6 1	85	 0 	0 	202	0	! ! !	 	SNI	R-0 N	MT	MD	VD-	14	irreg
B1414-6	438	390	135	10	80	0	0	0	0	0	Bu			MT 1	MS I	MS	7	2 VD
B1415-7	440	377	131	13	78	0	0	10	10	0	Bu	SN	R-O N	MT	MS N	MD	7	Sc, sl irreg
B1429A-3	394	306	106	12	9/	0	0	0	0							4D		okay, VD
R17-11	346	324	112		72	 0 	 0 	i 	10	l 	! ! !	SNI	W W	SF]	MS	MD	7	
R17-19	418	364	126	3	65	0	0	0	0		W F	SS	0	SF		MS	00	okay
R17-2	332	298	103	3	70	0	0	0	0	0	W	S	R-O N	MT	S	MD	7	PE type in 2 tubers
R17-7	524	439	152	4	72	0	0	0	0	0			R-0 S			MD	7	okay
R18-6	436	394	137	5	65	0	0	101		 	i i	N N N N N N N N N N	l I _	SF I	MS	Ω Ω	5 -	sl irreg, DAE
R19-20	459	414	143	4	9/	0	0	10	0	0	W	RS	8	SF		D	9	DSE
R19-7	411	392	136	2	70	10	0	0	0	0	W	S	R-0	SF	S	D	9	okay for large tubers
Red/Purple-skinned	ned			 					 	 	 		 	! ! !	 	 	 	
Chieftain	380	327	100	3	99	0	0	10	0		Pi F	RS (O-R N	MT	MS N	MD	9	
Chieftain	426	364	1111	3	69	0	0	10	0		Pi F		, ,	MT	MS N	MD	9	irreg, sk
B0852-7	360	323	66	1	75	0	0	0	0		Pu F	RS I	R-0	R	MS N	MS	7	Wh flesh
B1145-2	193	106	33	5	63	0	0	0	0			RS				S		irreg, sm
B1491-10	264	193	59	9	57			101		1 0	LR	RS	I	! 	MS	MS	5 -	irreg
B1491-5	279	207	63	0	69	0	0	30	0		LR	SN	X	SF N	MD	MD	2	irreg, Y flesh, VD
B1495-6	196	163	50	0	64	0	0	0	0			SN			MS I	MS	4	irreg
S45-1	257	207	63	10	69	0	10	0	0			Z				MS	4	irreg, Kn, mottled Pu
S45-2	354	288	 && &	-	69	0				1	Pu	I I I I			MS	MS	5 -	wh cortex, mottled pu
S45-8	450	420	128	П	69	0	0	0	0		Pu I	RS	0	SF	MS I	MS	4	pur flesh, wh core
S45-9	408	350	107	∞	65	0	0	0	0		DR	S	0	SF		S	∞	Att, pi flesh
S45-10	285	199	61	7	75	0	0	0	0	0	Pu	RS	0	R	MS I	MS	9	deep mottled Pu

Long Island Table 14 continued. Yield and quality of early selection lines and recently named varieties in a non-replicated observation trial.

Clone Total 24" Standard % Spec Internal Necrosis Tyteld (cwt/A) Standard cont Season 146 days Tyteld (cwt/A) Standard cont Saeson 146 days Tyteld (cwt/A) Standard cont Total 24" 210 4" Def. Grav. HH BC SI, M S Color Texture Shape Depth Lateral Appeal ance Comments Season 148 days Saeson			% of				% Inte	% Internal Defects	efects										
Total 2-4" 210 4" Def. Grav. HH BC St. M S Color Texture Shape Depth Lateral Apical ance		Yield (cw	/t/A)	standard	%	Spec. 1		·	Intern	al Necr	osis				'	Eye D	epth	Appear	
Name of the color Name	Clone	Total	2-4"	2 to 4"	Def.	Grav.	HH	BC	SI.	\boxtimes		Color T	exture	Shape	Depth	Lateral	Apical	ance	
unple-skinned conf. 305 262 80 2 65 0 0 0 DPu S S 6 305 266 80 2 65 0 0 0 DPu S S 6 332 326 93 3 6 0 0 0 DPu S R-O MT MS MS MD 6 430 385 118 0 70 0 0 0 DPu SN R-O MT MS MS MD MD 6 430 385 339 103 5 61 0 0 0 DPu SN R-O MT MS MS S 7 425 365 112 8 62 0 0 0 DPu RS N MT MS N S S 7 425 360	Season - 146 day	S,																	
365 262 80 2 65 65 6 6 6 6 6 6 7 8 6 6 6 6 6 6 6 6 6	Red/Purple-skin	ned cont.																	
278 226 69 9 70 9 9 9 9 9 9 9 9 9	S46-3	305	262	80	7	65	0	20	0	0	0	R	RS	0	SF	S	S	9	L, sl irreg, deep pink
332 365 93 3 62 0 0 0 0 DPu RS R-O MT MS MD 6 333 301 92 2 73 0 0 0 0 0 DPu RS R-O MT MS MD 5 335 330 301 92 2 73 0 0 0 0 0 DPu RS R-O MT MS MD 5 335 330 13 5 61 0 0 0 0 0 R S O SF S S S 425 365 112 8 62 0 0 0 0 DR RS R-O MT MS MS S 332 366 94 3 74 0 0 0 0 DR RS R-O MT RS R 332 366 94 3 74 0 0 0 0 DR RS RS R R MS MS 332 260 79 8 77 0 0 0 DR RS RS RS RS RS RS RS	S46-5	278	226	69	0	70	0	0	0	0	0	D Pu	S	R-0	MT	MS	MS	9	sl irreg, mottled pur flesh
Harmonia S46-6	332	305	93	3	62	0	0	0	0	0	D Pu	RS	R-0	MT	MS	MD	9	sl irreg, dark pur flesh	
333 301 92 2 73 0 0 0 0 0 0 0 0 0	S48-1	430	385	118	0	70	0	0	10	0	0	D Pu	SN	R-0	MT	MS	MD	5	light lavender
385 339 103 5 61 0 0 0 0 R S 0 0 SF S S S S S S S S	S48-3	333	301	92	7	73	 0 	i 0 	0		 0	Pu	RS	 22 	MT	S	MS	5.	SS, sl irreg, R-Bl-P flesh
425 365 112 8 62 0 0 0 0 DR RS R R MD MD 5 1 1 1 1 1 1 1 1 2 1 1	S48-5	385	339	103	5	61	0	0	10	0	0	R	S	0	SF	S	S	00	light, mottled
372 306 94 3 74 0 0 0 0 0 0 0 0 0	S48-6	425	365	112	00	62	0	0	0	0	0	DR	S	0	MT	S	S	7	sl irreg, mottled pink
teskinned 327 365 93 1 59 0 0 0 LR N R R S MS 7 deep pur, montled teskinned 332 260 79 8 77 0 0 0 LR N R R S MS 5 irreg, light Pi teskinned 442 264 100 17 75 0 0 0 LO R S S 5 irreg, light Pi -5 309 249 94 1 71 0 0 0 B MR O-L R S S 7 Incg, light Pi -5 309 249 94 1 71 0 0 D B MR O-L R S S 7 Incg, light Pi -6 B1338-27 B1416-2 B0811-4 B1492-6 S45-5 B1409-2 B1490-1 B1492-1	S49-2	372	306	94	3	74	0	0	0	0	0	DR	RS	R	×	MD	MD	5	irreg, sm, light Pi
432 260 79 8 77 0 0 0 LR N R R S MS 5 t-skinned 442 264 100 17 75 0 0 0 D R R R S MS 4 -5 309 249 94 1 71 0 0 0 0 0 R R R R S 5 7 -skinned lines with poor yield and/or appearance. R1416-2 R64-skinned R64-skinned R64-skinned R64-skinned R45-5 R1450-12 R1450	S49-3	327	305	93		59	0	i 0 			 0	Pu	RS	10	MT	MS	MS	7 - 1	deep pur, mottled
t-skinned L-skinned N L-O R S S 6 t-skinned Try Russet 442 264 100 17 75 0 0 0 T RS L R MS A Skinned lines with poor yield and/or appearance. B1416-2 B1416-2 B0811-4 B1492-6 S45-5 A Russet-skinned A A A A A A A A A B1492-6 B1493-1 B1493-1 B1490-2 B1409-2 B1409-2 <t< td=""><td>S50-1</td><td>332</td><td>260</td><td>79</td><td>00</td><td>77</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>LR</td><td>z</td><td>R</td><td>×</td><td>S</td><td>MS</td><td>S</td><td>irreg, Sc, light Pi</td></t<>	S50-1	332	260	79	00	77	0	0	0	0	0	LR	z	R	×	S	MS	S	irreg, Sc, light Pi
75 0 0 0 T RS L R MS 4 71 0 0 0 0 B MR O-L R S 7 Red-skinned B0811-4 B1492-6 S45-5 B1450-12 B1450-12 B1450-12 B1450-12 B1490-2 B1490-2 B1490-2 B1490-2 B1490-2 B1490-2 B1490-1 S45-1 S46-1	S51-1	231	122	37	0	64	0	0	0	0	0	LR	z	L-0	×	S	S	9	irreg, light Pi
75 0 0 0 T RS L R MS A 71 0 0 0 0 B MR O-L R MS 4 Red-skinned Rosst-skinned B1491-17 B1493-6 S45-5 B1450-12 B1450-12 B1491-20 B1493-2 S45-7 B1490-2 B1490-2 B1492-10 S45-11 S46-1 S46-1 B1492-12 S45-3 S47-1 B1492-15 S45-4 S48-2	Russet-skinned																		
71 0 0 0 0 B MR O-L R S S Red-skinned B1492-6 S45-5 B1450-12 B1450-12 B1450-12 B1491-7 B1493-1 S45-7 B1409-2 B1409-2 B1491-4 B1493-3 S46-1 S46-1 B1492-10 S45-11 S46-7 B1492-12 S45-3 S47-1 B1492-15 S45-4 S48-2	Century Russet	442	264	100	17	75	0	0	0	0	0	[-	RS	Ţ	×	MS	MS	4	JER
Red-skinned B0811-4 B1492-6 \$45-5 B1491-17 B1493-1 \$45-6 B1491-20 B1493-2 \$45-7 B1491-4 B1493-3 \$46-1 B1492-10 \$45-11 \$46-7 B1492-12 \$45-3 \$47-1 B1492-15 \$45-4 \$48-2	B1401-5	309	249	94	_	71	0	0	0	0	0	В	MR	0-L	R	S	S	7	
B1338-27 B1416-2 B0811-4 B1492-6 S45-5 B1342-21 R17-106 B1491-17 B1493-1 S45-6 B1344-18 R17-20 B1491-20 B1493-2 S45-7 B1375-14 R170-6 B1491-4 B1493-3 S46-1 B1394-4 R18-4 B1492-10 S45-11 S46-7 B1408-3 R41-11 B1492-12 S45-3 S47-1 B1414-2 R41-18 B1492-15 S45-4 S48-2	White-skinned lir	es with poor	yield ar	nd/or appe	arance.	-	Red-s	kinnec							Russet-	skinned			
B1342-21 R17-106 B1491-17 B1493-1 S45-6 B1344-18 R17-20 B1491-20 B1493-2 S45-7 B1375-14 R170-6 B1491-4 B1493-3 S46-1 B1394-4 R18-4 B1492-10 S45-11 S46-7 B1408-3 R41-11 B1492-12 S45-3 S47-1 B1414-2 R41-18 B1492-15 S45-4 S48-2	AF1826-5	B1338-27		B1416-2			B081	1-4		B1492-		545-5		, —	31450-	12			
B1344-18 R17-20 B1491-20 B1493-2 B1375-14 R170-6 B1491-4 B1493-3 B1394-4 R18-4 B1492-10 S45-11 B1408-3 R41-11 B1492-12 S45-3 B1414-2 R41-18 B1492-15 S45-4	AF1845-6	B1342-21		R17-106			B149	1-17		B1493-		345-6			31409-	2			
B1375-14 R170-6 B1491-4 B1493-3 B1394-4 R18-4 B1492-10 S45-11 B1408-3 R41-11 B1492-12 S45-3 B1414-2 R41-18 B1492-15 S45-4	AF1846-2	B1344-18		R17-20			B149	1-20		B1493-		545-7							
B1394-4 R18-4 B1492-10 S45-11 B1408-3 R41-11 B1492-12 S45-3 B1414-2 R41-18 B1492-15 S45-4	B1283-2	B1375-14		R170-6			B149	1-4		B1493-		546-1							
B1408-3 R41-11 B1492-12 S45-3 B1414-2 R41-18 B1492-15 S45-4	B1307-27	B1394-4		R18-4			B149	2-10		\$45-11		546-7							
B1414-2 R41-18 B1492-15 S45-4	B1315-31	B1408-3		R41-11			B149	2-12		\$45-3		547-1							
	B1321-22	B1414-2		R41-18			B149	2-15		S45-4		548-2							

¹-1.0 is excluded from specific gravity readings.

Planted on 4/19/97, fertilizer rate was 100-200-200/A plus 60 lb N/A sidedressed, vine killed on 9/12/97, harvested on 10/1/97. Katahdin and Chieftain were replicated two times.

²-See footnotes in Table 1.

Long Island Table 15. The effect of N sidedress rate and spacing on yield and quality of NY 103 grown at Riverhead, N.Y.

		Total	Marketa	ble Yield	Siz	e Distr	ibution	(%)	
Spacing	Sidedress	Yield		percent		2 to	2.5 to	3.25 to	Specific 1
(inches)	(lb N/A)	cwt/A	cwt/A	of stnd.	< 2"	2.5"	3.25"	4"	Gravity
Season	-142 days								
6"	0	384	327	100	15	26	53	6	69
6"	50	389	347	106	11	30	55	5	73
6"	100	442	386	118	13	26	56	5	72
9"	0	367	331	101	10	23	61	6	71
9"	50	376	328	100	13	28	52	7	69
9"	100	383	324	99	15	24	54	7	72

Significant effects: Spacing on total yield <0.05; Spacing x N rate on specific gravity <0.05.

Planted on 4/23/97, fertilizer rate was 100-200-200/A, sidedress nitrogen applied on 6/4/97, vine killed on 9/12/97, harvested on 10/7/97.

Long Island Table 16. External and internal defects of NY 103 grown at Riverhead, N.Y.

			Tuber	Defects ((%)			Perc	entag	ge	
Spacing	Sidedress		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
(inches)	(lb N/A)	Total	burn	shapen	cracks	Other 1	heart	center	S1.	Mod.	Sev.
Season-	-142 days										
6"	0	8	3	3	0	2	0	3	3	0	3
6"	50	5	1	2	0	2	0	0	5	0	0
6"	100	7	2	3	0	2	0	0	8	0	0
9"	0	5	1	3	0	1	0	0	-0-	0	0
9"	50	7	1	3	0	3	0	0	5	0	0
9"	100	11	2	4	0	4	00	0	3	0	0

Other defects were scab and pink eye.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 17. The effect of N sidedress rate and spacing on yield and quality of NY 109 grown at Riverhead, N.Y.

		Total	Marketa	ble Yield	Siz	e Distr	ibution ((%)	
Spacing	Sidedress	Yield		percent		2 to	2.5 to	3.25 to	Specific 1
(inches)	(lb N/A)	cwt/A	cwt/A	of stnd.	< 2"	2.5"	3.25"	4"	Gravity
Season	-142 days								
6"	0	418	378	109	10	27	60	3	67
6"	50	413	359	104	13	31	55	1	66
6"	100	512	454	131	11	28	54	6	67
9"	0	404	353	102	13	$-\bar{2}\bar{2}$	58	7	68
9"	50	399	346	100	13	20	56	11	67
9"	100	434	386	111	11	24	60	5	67

Significant effects: Spacing on total and marketable yield <0.05

Significant effects: N rate on total and marketable yield <0.01

Planted on 4/23/97, fertilizer rate was 100-200-200/A, sidedress nitrogen applied on 6/4/97, vine killed on 9/12/97, harvested on 10/7/97.

Long Island Table 18. External and internal defects of NY 109 grown at Riverhead, N.Y.

			Tuber	Defects (%)			Perc	entag	e	
Spacing	Sidedress		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
	(lb N/A)	Total	burn	shapen	cracks	Other ¹	heart	center	S1.	Mod.	Sev.
Season-	-142 days										
6"	0	4	2	1	0	1	0	3	15	5	0
6"	50	7	3	1	0	2	0	0	8	3	0
6"	100	6	4	0	0	1	0	0	8	0	5
9"	0	8	6	Ī	0	1	0	0	18	5	3
9"	50	9	6	1	0	2	0	0	20	0	3
9"	100	7	3	1	0	3	0	0	20	13	3

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S. No.1 grade, primary defects listed in (). Mechanical defects were not scored.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 19. The effect of N sidedress rate and spacing on yield and quality of B9922-11 grown at Riverhead, N.Y

	-	Total	Marketa	ble Yield	Siz	e Distri	bution	(%)	-
Spacing	Sidedress	Yield		percent		4 to	8 to	12 to	Specific 1
(inches)	(lb N/A)	cwt/A	cwt/A	of stnd.	< 4	8	12	16	Gravity
Season	-142 days					-			
6"	0	342	211	106	38	56	5	1	85
6"	50	387	230	115	41	49	10	0	85
6"	100	363	228	115	37	54	9	0	84
9"	0	312	199	100	36	56	7-	1	86
9"	50	344	231	116	33	54	13	0	85
9"	100	371	244	123	34	55	10	1	84

Significant effects: N rate on total yield <0.05; N rate on marketable yield <0.01.

Planted on 4/23/97, fertilizer rate was 100-200-200/A, sidedress nitrogen was applied on 6/4/97, vine killed on 9/12/97, harvested on 10/7/97.

Long Island Table 20. External and internal defects of B9922-11 grown at Riverhead, N.Y.

			Tuber	Defects ((%)			Perc	entag	ge	
Spacing	Sidedress		Sun-	Mis-	Growth		Hollow	Brown	Inte	rnal Ne	crosis
(inches)	(lb N/A)	Total	burn	shapen	cracks	Other ²	heart	center	S1.	Mod.	Sev.
Season	-142 days							- -			
6"	0	1	0	1	1	0	0	0	0	0	0
6"	50	3	1	1	1	0	8	0	0	0	0
6"	100	2	1	0	1	0	10	0	0	0	0
9"		$\overline{1}$	0	1	1	0	18	0	3	0	_0_
9"	50	4	1	1	1	1	18	0	0	0	3
9"	100	2	1	0	1	0	15	0	0	0	0

¹ -Other includes defects such as rhizoctonia, prominent lenticels, pink eye, decay and other defects scorable against a U.S.No.1 grade, primary defects listed in (). Mechanical defects were not scored.

¹ -1.0 is excluded from specific gravity readings.

Long Island Table 21. After-cooking darkening and blacksnot ratings of clones grown in 1996

LUITE ISTAIL I AUT	7 .17	202-1217	שוווה שוווים שווח שוווים	Mary	JI Laung	Long Island 1 and 21. Atter-counting darkening and diachapter family of civiles grown in 1770.					
NE107 White			White			Red			Russet		
1996 Tables 4-5			1996 Tables 6-7			1996 Tables 8-9			1996 Tables 10-11	1	
Clone	ACD	BS	Clone	ACD	BS	Clone	ACD	BS	Clone	ACD	BS
Katahdin	4.7	0.9	Katahdin	4.9	0.9	Chieftain	5.0	5.9	Belrus	5.0	5.9
Atlantic	4.3	0.9	Superior	4.5	5.8	Dark Red Norland (ME)	4.0	0.9	Century Russet	5.0	5.9
Niska	4.9	0.9	Norwis	5.0	0.9	Dark Red Norland (NE)	4.6	0.9	Russet Norkotah	4.7	0.9
Snowden	5.0	5.9	AF1763-2	4.5	0.9	Redsen	4.0	0.9	B0835-11	4.9	0.9
AF1331-2	5.0	5.9	B0564-9	5.0	5.9	B0811-13	4.9	5.9	B1004-8	4.3	5.6
AF1438-5	5.0	5.9	B0766-3	4.7	5.8	B0852-7	4.9	0.9	B9922-11	4.9	0.9
AF1455-9	3.9	5.9	B0856-4	4.9	0.9	B0967-11	5.0	0.9			
B0564-8	4.8	0.9	B0972-10	5.0	0.9	B0984-1	4.8	5.9			
B0564-9	4.9	5.9	NY103	4.4	0.9						
NY87	4.7	0.9	NY108	4.6	0.9						
NY99	3.2	5.9	NY109	4.7	0.9						
NY102	4.9	5.8	NY110	4.8	0.9						
NY103	4.5	5.9	NY113	4.2	0.9						
W870	4.8	5.9	NY114	4.7	0.9						
			NY115	4.5	0.9						
			NY117	4.8	5.8						
Fisher's Protected	Page 1										
LSD (0.05)	(0.5)	SN		(0.4) (0.1)	(0.1)		(0.3)	SN		(0.3)	SN

autoclave for 7 minutes and rated after 20 minutes. Blackspot (BS) determinations are based on approximately ten tubers per replication. Tubers impact. Each tuber received a blow in each of two locations about 1 to 2 cm from the stem end. The bruising was done by dropping a 175 gram were stored at 40° F and bruised between 1/27/97 and 2/4/97 and then stored at 55° F. Bruised areas were peeled and evaluated two days after After-cooking darkening (ACD) rating based on a scale of 1 to 5; 1 = severe darkening, 5 = no after-cooking darkening. Five tubers rated per weight a distance of 30 cm. The point of impact was marked by inking the base of the weight. Ratings are based on a scale of 1 to 6 with 1 = replication, four replications in each experiment. Tubers were peeled and dipped in a 0.5% solution of sodium bisulfite and cooked in an severe discoloration and 6 = no discoloration. New York - Upstate D.E. Halseth, W.L. Hymes R.W. Porter, R.L. MacLaury

Program Scope:

Potato variety yield trials were conducted in four counties in upstate New York in 1997 in which a total of 27 named and 98 numbered clones were evaluated. Eight replicated yield trials were conducted at the Thompson Vegetable Research Farm at Freeville in Tompkins County on a Howard gravelly loam soil. Grower trials were conducted on mineral soils near Arkport (Steuben County) and Gainesville (Wyoming County) and on muck soil near Savannah (Wayne County). Trials at Freeville and Gainesville were irrigated, and all trials were grown using standard commercial cultural practices. As evaluation of potato lines with golden nematode (GN) resistance is of high priority, 8 named and 43 numbered entries in these trials have GN resistance. Marketable yield, tuber quality and appearance, maturity, storage life and chip processing potential are among the important characteristics which are evaluated.

Research Farm Results:

In the early maturity trial Andover yielded as well as the GN susceptible Superior, our industry standard for earliness. Andover also had fewer internal defects and much better tuber appearance ratings. AF1470-6 had the highest yield and lowest specific gravity. The medium maturity trial with 12 entries had 9 GN resistant clones and varieties with marketable yield above 300 cwt. per acre. Advanced Cornell clones NY102, NY109, and NY115 had marketable

yield above 350 cwt. per acre while B0564-9 and NY119 (P63-1) exceeded 400 cwt. per acre. NY115 had the fewest internal and external defects and the best tuber appearance. Itasca had the highest yield while MaineChip again the highest specific gravity. Of 15 entries in the medium-late trial, all 6 GN lines had marketable yields above 300 cwt. per acre, and NY101 topped out at 475 cwt. per acre. University of Maine-developed Quaggy Joe and AF1773-1 had the highest total yields and the lowest specific gravity. Atlantic and Snowden had the highest specific gravity, NY101 and Snowden the highest tuber set, and NY103 the best tuber appearance. The late maturity trial had 8 GN lines with marketable yield above 300 cwt. per acre, with NY112 reaching 456 cwt. per acre. Atlantic had the highest specific gravity, Lili the most external and internal defects and Allegany the best tuber appearance. In the advanced Cornell clone trial there were 12 new entries with excellent yield potential, ranging from 350 to 515 cwt. per acre marketable yield. All were lower than Atlantic in specific gravity and percentage of defects (except for R41-18) and higher in marketable yield. There are few GN resistant red-skinned clones currently available. NY118 (P49-19R) from the Cornell program and B0811-13 from the USDA were the only GN resistant red-skinned lines tested at Freeville in 1997. Both had very good marketable yields, as good as Chieftain (GN susceptible), which currently is the highest yielding red in the potato industry. NY118 has very attractive, uniform tubers, a very low percentage of defects, and a medium-red color similar to Chieftain. NorDonna had a dark red skin color similar to Redsen, but its marketable yield was 47 cwt. per acre higher. Only one GN russet-skinned clone was available for our russet yield trial. This clone, B9922-11, in the past has frequently

out-yielded the industry standard Russet Burbank in marketable yield, but this season was about equal in yield. It had the highest specific gravity and was ranked as the best in tuber appearance for the russets. Century Russet and Russet Norkotah continue to have higher marketable yields than Russet Burbank. There were 10 advanced "B" clones in the USDA trial compared to Atlantic and Monona. Seven clones had higher marketable yield than Atlantic, and one, B1240-14, had specific gravity reading of two units above Atlantic. B1240-14 and B1408-3 had significant hollow heart problems while B0856-4 and B1240-12 had the best tuber appearance ratings.

Grower County Trial Results:

Round red and white tablestock selections were grown in the muck soil grower trial in Wayne County. Yields were extremely high, with round white clones NY101, NY112 and Reba producing marketable yields above 400 cwt. per acre. Atlantic had the highest specific gravity, and NY109 the lowest. Again NY101 had the highest average tuber number (11.7 per foot of row) and Q3-12 the highest tuber weight (7.1 ounces). The red-skinned trial had a much broader range in marketable yield, from 172 cwt. to 512 cwt. per acre. While Chieftain typically had the highest total and marketable yields, clone NY118 was a close second in both catgories. Redsen (GN susceptible) still produces the brightest red color which is demanded by the tablestock trade. The Steuben and Wyoming County chip processing trials were on mineral soils and had 11 GN clones (3 varieties and 8 breeding lines) yielding above 300 cwt. per acre marketable yield at both sites. The yellow-fleshed tablestock clone NY101 was included in these trials for dicing studies and had the highest yield at both sites, producing 534 cwt. per acre in the Wyoming County trial. B0178-34, Pike and Snowden had the highest specific gravity reaching 1.090 or higher at both trial sites. Snowden had hollow heart problems at both processing trial locations while NorValley (ND2417-6) had knobs and internal defects.

Table Heading Explanations:

Marketable yield in cwt/a was calculated from total yield less: external defects; undersize tubers (smaller than 1 7/8 inches); and oversize tubers (over 4 inch diameter).

Percent marketable yield represents the percentage that each entry's marketable yield is of that of a specified standard variety in that trial.

Size distribution percentage is the weight of a specific size category divided by total yield (including defects).

Specific gravity was taken by potato hydrometer.

Vine maturity ratings were on a nine point scale:

- 1 = all plants completely dead (very early maturity)
- 9 = all plants full green (very late maturity)

Tuber shape was classified using the code:

- 1 = round
- 2 = mostly round
- 3 =round to oblong
- 4 = mostly oblong
- 5 = oblong
- 6 = oblong to long
- 7 = mostly long

8 = long

9 = cylindrical

Tuber appearance was subjectively evaluated using the scale:

1 = extremely rough or otherwise unattractive9 = very uniform and attractive

External defects were rated on all material graded. Internal defects were made on a subset of tubers, usually 10 per replication, taken from size categories 3 and 4.

Acknowledgements:

Cooperative Extension Agents Carl Albers, Steve Childs, and Carol MacNeil coordinated grower trials.

Special thanks is given to grower-cooperators: Murray Mahany and family, Bob Martens and Jim McCormick.

Seed of new clones was provided by: Robert Plaisted, Cornell University; Alvin Reeves, University of Maine; Kathleen Haynes, USDA; and Gregory Porter, NE184 Project. Donation of seed by Gary Pryputniewicz and Kent Farms, Inc. is greatly appreciated.

The Freeville crew is acknowledged for their excellent cooperation in maintaining the research farm plots.

Upstate New York Table 1. Yield, marketable yield, grade size distribution, tuber number per foot and weight, and specific gravity for the early maturity trial grown at Freeville, New York - 1997.

	Total	Mkt. Yield	/ield	STZ	e U1s	trib.	Size Distrib. by Class	ass	Size Distrib. (%)	trib.(%)			
	Yield		% of	%)		total	of total yield)		1 7/8	2 1/2	Mean	Mean Tuber	Spec.
Variety/Clone	cwt/A	cwt/A	std		2	3	4	5	to 4 in.		#/ft	Wt(0Z)	Grav.
Andover	480	413	95	2	26	51	17	4	94	89	7.2	6.9	79
AF1424-7	448	409	94	2	38	48	7	0	94	99	8.6	5.4	81
AF1437-1	437	387	88	4	36	51	6		95	59	7.9	5.7	62
AF1470-6	524	448	102	2	18	20	24	9	92	74	7.5	7.3	09
AF1475-20	363	320	73	2	30	48	18	2	96	99	6.1	6.2	74
AF1714-2	396	317	73	5	36	43	12	3	92	55	7.6	5.4	72
AF1764-9	475	414	95	3	45	45	2	2	96	51	9.3	5.3	9/
Superior (std)	470	437	100	က	45	49	က	0	26	52	9.7	5.1	74
Waller-Duncan	AA	17									α	1	-
	; (7 (0.0	` (- (E
(%)	S	(8)									S	(8)	(T)

Harvest Date: August 26

Vine-Kill Date (mowed): August 25

Plant Date: May 1

Upstate New York Table 2. Plant maturity, tuber shape and appearance, and external and internal tuber defects for the early maturity trial grown at Freeville, New York - 1997

	Plant ¹			Ext	ernal	uber De	External Tuber Defects (%)		Int. Tu	Int. Tuber Defects (cts (%) ²
	Mat. At	Tuber	Tuber Data ¹		Sun-	Mis-	Growth		Ho11.	Vasc.	Int.
Variety/Clone	Vinekill	Shape	Shape Appear.	Total	Green	shapen	shapen Cracks	Rot	Heart	Disc.	Nec.
Andover	5.1	1.0	8.0	8.2	9.9	1.0	9.0	0.0	0.0	0.0	0.0
AF1424-7	5.5	1.0	7.5	3.0	2.3	0.5	0.2	0.0	0.0	7.5	0.0
AF1437-1	9.9	1.0	6.4	9.9	1.4	0.3	4.9	0.0	0.0	0.0	5.0
AF1470-6	4.6	1.0	7.3	6.3	3.5	9.0	1.7	0.5	0.0	0.0	0.0
AF1475-20	7.3	1.0	6.9	7.6	4.7	1.6	1.3	0.0	2.5	2.5	0.0
AF1714-2	5.5	1.0	5.5	11.6	5.4	1.0	3.9	1.4	7.5	2.5	7.5
AF1764.9 Superior (Std)	5.0	1.0	6.5	8.4	3.1	2.3	2.8	0.2	0.0	0.0	5.0
Superior (Sta)	7.1	1.0	5.4	4.5	2.3	 8.	0.4		0.0		2.5

 $^{1}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

²Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4.

and weight, and specific gravity for the medium maturity trial grown at Freeville, New York - 1997. Upstate New York Table 3. Yield, marketable yield, grade size distribution, tuber number per foot

	lota!	MKL. TIEIU	ם פ	2126	s Distrib.	ביים.	of total viold)	222	Size Distrib.(%)	0.10	X	Most Tibor	Č
	rheld		% OT			רטרמו	אוטוא		1 //8	2/1/2	ומסו	iagai	Spec.
Variety/Clone	cwt/A	cwt/A	std	П	2	က	4	2	to 4 in.	to 4 in.	#/ft	wt(0Z)	Grav
Andover	444	376	86	က	21	54	17	9	91	71	6.8	6.8	78
Atlantic (std)	206	383	100	2	28	47	13	7	88	09	8.8	0.9	86
B0564-9	477	413	108	4	25	22	12	က	92	29	8.2	6.1	9/
Itasca	588	511	133	4	38	48	ω	2	94	99	11.1	5.5	74
MaineChip	450	353	95	4	33	51	10	2	94	61	8.3	5.7	91
Monona	418	365	92	4	34	49	10	2	94	59	8.0	5.5	65
NY102	449	392	102	7	51	37	4	\vdash	92	41	10.1	4.6	84
NY109	477	358	93	က	20	44	22	12	85	65	7.1	7.0	62
NY115	416	373	97	9	35	48	10	2	93	58	8.0	5.4	72
NY119 (P63-1)	483	409	107	10	42	42	2	0	06	48	10.7	4.7	86
P32-3	345	308	80	4	35	52	00	1	95	09	6.4	5.6	78
Reba (NY87)	493	423	111	4	31	20	П	4	92	61	8.8	5.8	69
Waller-Duncan													
LSD (k=100)	39	52									0.7	0.5	က
C.V. (%)	(9)	(10)									(9)	(9)	(2)

Harvest Date: September 8

Vine-Kill Date: August 27

Plant Date: May 2

Upstate New York Table 4. Plant maturity, tuber shape and appearance, and external and internal tuber defects for the medium maturity trial grown at Freeville, New York - 1997

	Plant ¹			Ext	ernal	uber De	External Tuber Defects (%)		Int. Tu	ber Defe	Int. Tuber Defects (%) ²
Variety/Clone	Mat. At Vinekill	<u>Tuber</u> Shape	Tuber Data ¹ hape Appear.	Total	Sun- Green	Mis- shapen	Mis- Growth shapen Cracks	Rot	Holl. Heart	Vasc. Disc.	Int. Nec.
Andover	3.4	1.0	7.5	6.8	3.1	1.9	1.8	0.1	5.0	0.0	0.0
Atlantic (std)	7.4	1.0	0.9	13.0	8.4	2.4	1.1	1.1	5.0	7.5	7.5
B0564-9	2.9	2.0	7.1	5.6	4.0	1.0	0.0	9.0	20.0	2.5	0.0
Itasca	4.6	3.0	7.0	7.5	5.6	1.0	0.7	0.2	0.0	12.5	7.5
MaineChip	6.4	1.0	6.1	15.6	10.1	5.6	2.4	9.0	0.0	7.5	0.0
Monona	5.0	2.0	5.8	6.3	4.2	1.2	1.0	0.0	7.5	0.0	0.0
NY102	4.6	1.0	0.9	4.7	4.2	0.1	0.3	0.2	2.5	2.5	0.0
NY109	5.4	3.0	8.0	10.6	8.9	0.7	2.1	1.0	2.5	5.0	0.0
NY115	0.9	1.0	8.5	2.8	2.3	0.5	0.0	0.0	0.0	2.5	0.0
NY119 (P63-1)	5.0	1.0	6.4	5.6	4.2	0.5	0.1	0.8	20.0	2.5	0.0
P32-3	5.1	2.0	9.9	5.6	5.0	0.3	0.4	0.0	20.0	2.5	7.5
Reba	3.9	3.0	6.4	6.4	5.9	0.1	0.3	0.1	2.5	2.5	0.0

 $^{1}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

²Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4.

and weight, and specific gravity for the medium-late maturity trial grown at Freeville, New York - 1997. Upstate New York Table 5. Yield, marketable yield, grade size distribution, tuber number per foot

		Total	Mkt. Y	Yield	Size		Distrib.	by Class ¹	ass	Size Distrib.(%)	trib.(%)			
Ey/Clone cwt/A cwt/A std 1 2 3 4 5 to 4 in. to 4 in. #/ft wt(oz) 5-8 491 34 99 4 29 46 16 6 91 61 7.9 6.5 5-8 455 397 114 5 42 48 5 0 94 53 8.6 5.5 5-1 428 306 88 8 5 0 94 53 8.6 5.5 5-1 428 306 88 8 5 9 40 9 4 9 4 9 9 4 9 4 9		Yield		% Of			total	yield		1 7/8	2 1/2	Mean	Tuber	Spec.
1.5 491 344 99 4 29 46 16 6 91 61 7.9 6.5 5.8 455 397 114 5 42 48 5 0 94 53 8.6 5.5 5.1 428 306 88 8 52 38 2 0 92 40 9.8 4.5 5.1 573 399 115 3 24 41 20 11 85 61 8.6 6.9 5.1 144 8 319 92 4 26 53 12 5 90 64 7.8 6.0 5.1 144 8 319 92 4 45 38 11 1 94 49 8.5 6.1 5.2 489 266 77 3 23 44 24 6 92 69 7.3 7.0 5.3 44 240 319 92 4 45 38 11 1 94 49 8.5 6.1 5.8 40 319 92 4 45 38 11 1 94 49 8.5 6.0 5.8 40 319 92 4 45 38 11 1 1 94 49 8.5 6.0 5.8 58	Variety/Clone	cwt/A	cwt/A	std	П	2	8	4	2	4	4	#/ft	Wt(OZ)	Grav.
5-8 455 397 114 5 42 48 5 0 94 55 85 6.5 5.5 5.1 4.2 8 8 5 2 8 9 92 40 9.8 4.5 5.1 4.2 8 8 8 2 9 9 92 40 9.8 4.5 5.1 4.2 8 8 8 2 9 9 92 40 9.8 4.5 5.1 4.2 8 9 92 8 92 8 92 8 92 8 92 8 92 8 92	AF1480-5	491	344	66	4	29	46	16	9	91	61	7.9	6.5	77
5-1 428 306 88 8 52 38 2 0 92 40 9.8 4.5 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.9 4.0 5.0 5.1 4.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	AF1606-8	455	397	114	5	42	48	5	0	94	53	8.6	5.5	73
3.1 573 399 115 3 24 41 20 11 85 61 8.6 6.0 stic (std) 480 348 100 4 32 43 14 7 89 58 8.2 6.1 stin 448 319 92 4 26 53 12 5 90 64 7.8 6.1 sec 480 266 77 3 23 44 24 6 92 69 7.3 7.0 sec 440 319 92 4 45 38 11 1 94 49 8.5 5.4 90 42 90 4.2 90 4.2 90 4.2 90 4.9 <	AF1615-1	428	306	88	∞	52	38	2	0	92	40	8.6		2/
Fric (std) 480 348 100 4 32 43 14 7 89 58 8.2 6.1 fin 448 319 92 4 26 53 12 5 90 64 7.8 6.0 bec 489 266 77 3 23 44 24 6 92 69 7.3 7.0 bec 480 266 77 3 23 44 24 6 92 69 7.3 7.0 ley (ND2417-6) 423 313 90 6 47 31 12 4 90 42 90 42 9.0 for 40 319 92 4 45 38 11 1 94 90 42 9.0 for 40 319 92 4 4 5 12 2 93 61 10.4 5.8 for 80-2 340 98 4 36 50 8 2 94 58 81 5.8 for 80-2 340 98 4 36 36 12 2 94 58 81 5.8 for 80-3 340 98 4 36 36 18 2 94 58 59 5.9 for 90-4 30 42 10 3 91 52 94 65 5.9 for 90-4 30 42 10 3 91 52 94 65 10.7 4.7 for 80-1 377 108 7 39 42 10 3 91 52 94 64 61 6.1 for 90-4 30 42 31 48 15 2 94 64 61 6.1 for 90-4 30 42 31 48 15 2 1/2" to 3 1/4" to 4", 5 = 1 for 90-4 30 41 1/8", 2 = 1 7/8" to 2 1/2", 3 = 2 1/2" to 3 1/4" to 4", 5 = 1 for 90-4 30 43 44 50 44 1/4", 4 = 3 1/4" to 4", 5 = 1 for 90-4 50 50 50 50 50 50 50 50 50 50 50 50 50	AF1773-1	573	399	115	က	24	41	20	11	85	61			64
tin 448 319 92 4 26 53 12 5 90 64 7.8 6.0 octoor become 489 266 77 3 23 44 24 6 92 69 7.3 7.0 octoor 440 319 92 4 45 38 11 1 94 49 8.5 5.4 lley (ND2417-6) 423 313 90 6 47 31 12 4 90 42 99 61 7.3 7.0 octoor 455 340 98 4 36 50 8 2 94 58 81 5.8 (08-2) 430 334 96 2 19 48 16 15 84 65 5.9 95 5.0 octoor 6-10 oct	Atlantic (std)	480	348	100	4	32	43	14	7	89	28		6.1	89
bec 489 266 77 3 23 44 24 6 92 69 73 7.0 1ley (ND2417-6) 420 319 92 4 45 38 11 1 94 49 7.3 7.0 1ley (ND2417-6) 423 313 90 6 47 31 12 4 90 42 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.9 90 4.7 90 4.0 90 4.0 90 4.0 90 4.0 90 4.0 90 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	Katahdin	448	319	95	4	26	53	12	2	06	64		0.9	72
11 1 1 94 49 8.5 5.4 45 38 11 1 94 49 8.5 5.4 4.9 11 1 94 49 8.5 5.4 11 1 94 90 4.2 9.0 4.9 9.0 4.9 9.0 4.9 9.0 4.9 9.0 4.9 9.0 4.9 9.0 4.9 9.0 4.9 9.0 4.9 9.0	Kennebec	489	566	77	3	23	44	24	9	95	69	7.3	7.0	77
1 2 3 3 3 3 3 3 3 4 3 3	Niska	440	319	95	4	45	38	11	П	94	49	8.5	5.4	75
455 475 136 5 32 48 12 2 93 61 10.4 5.8 (08-2) 455 340 98 4 36 60 8 1 58 81 5.8 (08-2) 430 34 96 2 19 48 16 15 84 65 7.6 50 531 377 108 7 39 42 10 3 91 52 9.9 5.6 80 484 397 114 7 56 30 5 1 92 35 10.7 4.7 Gold 367 36 4 31 48 15 2 94 64 6.1 6.3 ***Color 7 4 31 48 15 2 94 64 6.1 6.3 ***Color 3 7 4 31 48 15 2 9	NorValley (ND2417-6)		313	06	9	47	31	12	4	06	42	0.6		78
(08-2) 455 340 98 4 36 50 8 2 94 58 8.1 5.8 (08-2) 430 334 96 2 19 48 16 15 84 65 7.6 7 Joe 531 377 108 7 39 42 10 3 91 52 9.9 5.6 80 dold 367 302 87 4 31 48 15 2 94 64 6.1 6.3 Duncan 601 367 36 3 48 15 2 94 64 6.1 6.3 Duncan 66 74 3 48 15 2 94 64 6.1 6.3 (3) 4 3 4 3 4 3 4 6.1 6.3 6.1 6.3 6.1 6.3 6.1 6.3 6.1 6.1 6.3 6.1 <td>NY101</td> <td>585</td> <td>475</td> <td>136</td> <td>2</td> <td>32</td> <td>48</td> <td>12</td> <td>2</td> <td>93</td> <td>61</td> <td></td> <td>5.8</td> <td>73</td>	NY101	585	475	136	2	32	48	12	2	93	61		5.8	73
(08-2) 430 334 96 2 19 48 16 15 84 65 5.9 7.6 7 Joe 8 Jan 9 Ja	NY103	455	340	86	4	36	90	∞	2	94	28	8.1	5.8	72
Figure 531 377 108 7 39 42 10 3 91 52 9.9 5.6 and a single bound of the sentember 3 and a single bound of the single bound of the sentember 3 and a single bound of the single b	NY120 (Q8-2)	430	334	96	2	19	48	16	15	84	99	5.9	7.6	98
Gold 367 302 87 4 31 48 15 2 94 64 6.1 6.3Duncan (=100) 66 74 (10) (14) Classes: 1 = 1" to 1 7/8", 2 = 1 7/8" to 2 1/2", 3 = 2 1/2" to 3 1/4", 4 = 3 1/4" to 4", 5 = Date: May 6 Date: May 6 Gold 58 5 10.7 4.7 4.7 56 10.7 4.7 56 10.7 4.7 6.3 1/4" to 4.7 6.3 1/4" to 4", 5 = Date: May 6	Quaggy Joe	531	377	108	7	39	42	10	က	91	52	6.6	5.6	63
Gold 367 302 87 4 31 48 15 2 94 64 6.1 6.3 6.3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Snowden	484	397	114	7	99	30	2		95	35	10.7	4.7	89
c=100) 66 74 1.1 0.8 (10) (14) (10) (14) (10) (10) (10) (10) (10) (10) (10) (10	Yukon Gold	367	302	87	4	31	48	15	2	94	64	6.1		80
(=100) 66 74 (10) (14) (10) (14) (10) (17)8", 2 = 1 7/8" to 2 1/2", 3 = 2 1/2" to 3 1/4", 4 = 3 1/4" to 4", 5 = Date: May 6 Vine-Kill Date: Sentember 3 Harvest Date: Sentember 3	Waller-Duncan													
(3) (10) (14) (10) (10) (10) (10) (10) (10) (10) (10	LSD (k=100)	99	74									1.1	8.0	2
classes: 1 = 1" to 1 7/8", 2 = 1 7/8" to 2 1/2", 3 = 2 1/2" to 3 1/4", 4 = 3 1/4" to 4", 5 = Date: May 6 Vine-Kill Date: Sentember 3 Harvest Date: Sentember	C.V. (%)	(10)	(14)									(10)	(10)	(2)
6 Vine-Kill Date: September 3 Harvest Date: September	classes: 1 =	" to 1		= 1	1	2	/2",	11		to 3	, 4 = 3	2	, 5 =	over 4"
0 Vine-Kill Date: September 3	Dant Date Man				5	- 1		- 11				- 1		ŕ
יייני ייייניינ	Plant Date: May 6			וhe-Kז/	i I I Di		Septer				Harvest		September	15

Plant maturity, tuber shape and appearance, and external and internal tuber defects for the medium-late maturity trial grown at Freeville, New York - 1997 Upstate New York Table 6.

	$Plant^1$			Ext	ernal	uber De	External Tuber Defects (%)		Int. Tu	ber Defe	Int. Tuber Defects (%) ²
Varietv/Clone	Mat. At Vinekill	Tuber	Data ¹	Total	Sun-	Mis-	Growth	PO4	Holl.	Vasc.	Int.
		Simpo	uppcai .	0.00	מוכבו	Suapen	CI acks	NOL	ובמו ר	חואר.	אבר.
AF1480-5	5.1	0.9	5.3	20.5	15.5	3.1	0.3	1.6	25.0	2.5	5.0
AF1606-8	3.1	2.8	6.4	7.0	5.3	0.5	1.0	0.3	0.0	7.5	0.0
AF1615-1	5.5	3.0	6.1	20.6	19.3	0.8	0.2	0.3	0.0	10.0	0.0
AF1773-1	7.1	4.0	7.1	15.5	11.6	1.8	1.8	0.2	0.0	5.0	0.0
Atlantic (std)	4.6	2.0	6.3	16.9	10.2	3.9	2.0	8.0	2.5	7.5	0.0
Katahdin	5.3	2.0	5.8	19.7	18.3	0.3	9.0	0.5	0.0	7.5	0.0
Kennebec	2.5	0.9	4.1	37.3	24.5	4.9	7.4	0.5	2.5	5.0	5.0
Niska	2.3	0.9	5.1	20.9	7.4	2.5	11.0	0.0	0.0	10.0	0.0
NorValley (ND2417-6)	3.7	1.0	6.7	16.2	8.4	3.5	2.4	1.9	0.0	6.7	0.0
NY101	6.4	1.0	6.9	11.2	10.9	0.3	0.0	0.0	0.0	5.0	5.0
NY103	3.5	1.0	8.0	19.4	17.7	1.2	0.4	0.0	0.0	2.5	2.5
NY120 (Q8-2)	5.4	1.0	5.5	8.9	4.3	1.5	9.0	0.3	0.0	27.5	0.0
Quaggy Joe	1.9	3.0	9.9	19.7	13.0	4.0	2.3	0.4	0.0	5.0	2.5
Snowden	3.3	1.0	4.5	9.5	9.7	6.0	8.0	0.2	5.0	10.0	0.0
Yukon Gold	2.4	3.0	6.8	12.2	5,3	3.2	1.8	2.0	7.5	2.5	2.5

 $^{1}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

²Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4.

Upstate New York Table 7. Yield, marketable yield, grade size distribution, tuber number per foot and weight, and specific gravity for the late maturity trial grown at Freeville, New York - 1997.

	Total	Mkt. Yield	/ie]d	Size	e Dis	Distrib.	by Class	ass	Size Distrib.(%)	trib.(%)_			
	Yield		% of	7	(% of	total	yield)	()	1 7/8	2 1/2	Mean	Tuber	Spec.
Variety/Clone	cwt/A	cwt/A	std	1	2	3	4	2	to 4 in.	to 4 in.	#/ft	Wt(OZ)	Grav.
Allegany	522	386	120	5	41	44	6	2	94	53	6.6	5.5	80
Atlantic (std)	464	322	100	22	29	44	16	7	88	09	7.9	6.1	83
B0564-8	379	309	96	10	46	39	4	П	88	43	8.4	4.7	73
Katahdin	463	347	108	4	27	49	16	က	93	99	7.6	6.3	72
Lili	528	353	110	10	48	37	5	0	06	42	12.3	4.4	9/
Monona	393	316	98	4	34	20	∞	4	92	27	7.3	5.6	64
NY110	404	371	115	2	29	24	10	2	96	29	9.9	6.4	9/
NY112	510	456	142	4	32	54	∞	2	94	62	8.9	0.9	79
Pike	488	401	124	9	52	37	3	2	92	40	10.0	5.1	86
P21-2	443	394	122	2	43	41	6	\vdash	94	20	8.9	5.2	74
P73-2	419	335	104	9	42	42	6	I	93	51	8.6	5.1	83
03-12	359	270	84	3	23	44	15	14	83	59	5.3	7.0	79
Snowden	462	364	113	9	43	39	10	က	91	48	8.9	5.4	87
SW 88113	533	404	125	10	48	35	9	П	88	40	12.1	4.6	72
Waller-Duncan	!												
LSD (k=100)	44	51									6.0	9.0	2
C.V. (%)	(7)	(10)									(8)	(8)	(2)

Harvest Date: September 22

Vine-Kill Date: September 10

Plant Date: May 6

<u>Upstate New York Table 8.</u> Plant maturity, tuber shape and appearance, and external and internal tuber defects for the late maturity trial grown at Freeville, New York - 1997

	$Plant^1$			Ext	ernal	uber De	External Tuber Defects (%)		Int. Tu	ber Defe	Int. Tuber Defects (%) ²
	Mat. At	Tuber	Tuber Data ¹		Sun-	Mis-	Growth		Holl.	Vasc.	Int.
Variety/Clone	Vinekill	Shape	Appear.	Total	Green	shapen	shapen Cracks	Rot	Heart	Disc.	Nec.
Allegany	3.5	1.0	7.0	19.8	15.2	9.0	2.9	1.0	0.0	2.5	0.0
Atlantic (std)	3.8	1.0	6.3	19.1	11.6	3.2	2.7	1.6	5.0	10.0	0.0
B0564-8	1.0	1.0	9.9	9.7	3.7	1.2	0.5	2.2	0.0	2.5	5.0
Katahdin	3.4	2.3	5.1	17.6	16.1	0.7	0.4	0.4	2.5	7.5	0.0
Lili	4.8	0.9	5.0	23.2	11.8	7.2	4.1	0.1	0.0	17.5	2.5
Monona	1.3	4.0	5.0	11.3	7.3	3.7	0.3	0.0	5.0	10.0	0.0
NY110	1.5	3.0	0.9	4.4	1.9	2.5	0.0	0.0	0.0	7.5	0.0
NY112	5.6	1.3	6.9	4.5	3.8	0.4	0.0	0.3	0.0	2.5	2.5
P21-2	1.9	2.0	5.6	5.0	1.2	2.1	1.7	0.0	0.0	7.5	0.0
P73-2	1.6	0.9	5.5	13.4	8.6	4.2	0.1	0.5	0.0	10.0	2.5
Pike	4.0	1.0	8.9	9.8	6.2	3.3	0.1	0.2	0.0	5.0	0.0
03-12	3.4	2.9	6.5	8.9	4.1	0.8	1.4	0.5	0.0	2.5	0.0
Snowden	4.8	1.0	4.0	12.6	8.6	3.3	0.3	0.4	0.0	15.0	0.0
SW 88113	1.0	2.0	5.9	12.3	8.2	3.0	0.9	0.2	2.5	7.5	0.0

 $^{1}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

²Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4.

1007 Upstate New York Table 9. Yield, marketable yield, grade size distribution, tuber number per foot and weight and specific gravity for the Cornell advanced clones trial grown at Freeville. New York

	Total	Mkt. Y	Yield	Size		Distrib.	by CI	Class ¹	Size Dist	Distrib. (%)			
	Yield		% of	7	% of	total	yield	0	1 7/8	2 1/2	Mean	Tuber	Spec.
Variety/Clone	cwt/A	cwt/A	std	1	2	3	4	2	to 4 in.	to 4 in.	#/ft	Wt(0Z)	Grav.
Allegany	464	331	66	3	22	51	18	7	06	69	6.9	7.0	75
Atlantic (std)	463	334	100	4	24	44	19	8	88	63	7.0	6.9	06
Kanona	414	287	98	4	23	45	19	6	87	64	6.5	9.9	74
R17-2	373	352	105	3	37	54	9	0	97	09	6.9	5.7	71
R17-7	598	202	152	8	45	39	7	2	91	46	12.5	5.0	71
R17-11	404	372	111	3	37	49	6	2	92	58	7.2	5.9	99
R17-19	392	350	105	4	35	49	10	2	93	58	7.2	5.7	29
R17-20	424	377	113	9	09	31	3	0	94	34	9.5	4.6	79
R17-106	209	515	154	8	46	42	3	0	95	45	13.4	4.7	69
R18-4	426	360	108	10	52	33	2	0	06	36	9.8	4.5	80
R18-6	404	368	110	4	41	45	œ	2	94	53	7.6	5.6	89
R19-20	446	384	115	4	32	54	6	Н	92	63	7.6	6.1	78
R41-11	539	497	149	2	48	44	3	П	94	46	11.1	5.1	69
R41-18	529	390	117	က	22	52	16	9	06	89	8.4	6.9	89
R170-6	499	444	133	4	41	48	2	2	94	54	9.4	5.5	74
Waller-Duncan													
LSD (k=100)	40	43									6.0	9.0	2
C.V. (%)	(7)	(8)									(8)	(8)	(2)
¹ Size classes:	1 = 1"	to 1 7/8"	/8", 2	= 1	1/8"	to 2	1/2",	3 = 2	2 1/2" to 3	1/4", 4 = 3	3 1/4" to	0 4", 5 =	over 4"

Plant maturity, tuber shape and appearance, and external and internal tuber defects for the Cornell advanced clones trial grown at Freeville, New York - 1997 Upstate New York Table 10.

	right			LVI	יבו וומ ו	unei ne	External luber Delects (%)		Inc. iu	ner nere	Int. luber Defects (%)
	Mat. At	Tuber	Tuber Data¹		Sun-	Mis-	Growth		Holl.	Vasc.	Int.
Variety/Clone	Vinekill	Shape	Appear.	Total	Green	shapen	Cracks	Rot	Heart	Disc.	Nec.
Allegany	8.9	1.0	7.8	18.9	15.2	0.5	3.2	0.0	0.0	0.0	0.0
Atlantic (std)	9.9	1.0	0.9	15.5	9.1	1.9	3.2	1.3	7.5	5.0	5.0
Kanona	4.8	1.0	6.5	17.7	12.3	0.3	1.7	3.4	2.5	10.0	5.0
R17-2	5.3	1.0	6.4	2.4	1.5	0.0	0.2	9.0	0.0	5.0	2.5
317-7	4.1	1.0	7.3	6.2	5.7	0.1	0.2	0.2	0.0	12.5	5.0
217-11	5.1	1.0	7.5	3.2	1.2	0.0	1.9	0.1	2.5	5.0	2.5
R17-19	3.9	2.0	8.9	4.3	3.6	0.7	0.0	0.0	0.0	2.5	0.0
317-20	4.0	1.0	7.0	4.6	4.3	0.2	0.1	0.0	0.0	2.5	0.0
317-106	4.9	1.0	7.4	7.0	6.5	0.3	0.1	0.2	0.0	7.5	2.5
R18-4	2.9	1.0	7.4	5.8	3.2	0.9	1.4	0.2	0.0	5.0	0.0
R18-6	1.5	1.0	9.9	2.4	0.8	9.0	8.0	0.3	0.0	2.5	0.0
R19-20	4.4	1.0	7.0	0.6	4.6	1.4	2.7	0.4	0.0	5.0	0.0
R41-11	1.6	1.0	7.4	2.1	1.6	0.1	0.1	0.4	5.0	7.5	7.5
R41-18	3.1	1.0	7.0	20.4	13.9	1.1	4.6	0.8	2.5	17.5	2.5
R170-6	3.3	1.0	6.3	5.4	4.2	1.0	0.2	0.0	0.0	5.0	2.5

 $^{1}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

 $^{^2}$ Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4.

and weight, and specific gravity for the red-skinned variety trial grown at Freeville, New York - 1997. Upstate New York Table 11. Yield, marketable yield, grade size distribution, tuber number per foot

	Total	Mkt. Yield	/ield	Size (%	Dist	crib.	Size Distrib. by Class ¹ (% of total vield)	ass ¹	Size Distrib.(%)	trib.(%)	Mean	Mean Tuber	
Variety/Clone	cwt/A	cwt/A			2	3	4	5	to 4 in.	to 4 in.	#/ft	wt(02)	Grav.
B0811-4	273	224	27	16	78	2	0	0	84	5	9.8	3.3	81
B0811-13	436	399	102	9	54	37	က	0	94	40	9.6	4.7	70
Chieftain (std)	515	390	100	4	59	45	18	4	92	63	8.9	0.9	99
NorDonna	445	377	97	6	49	39	က	0	91	42	10.1	4.6	69
NY118 (P49-19R)	474	394	101	9	33	44	15	2	92	59	8.9	5.5	63
Redsen	373	330	85	∞	51	35	7	0	92	42	9.8	4.5	64
Waller-Duncan LSD (k=100)	44	45				ļ					N.S.	0.4	2
C.V. (%)	(8)	(6)									(11)	(9)	(2)
¹ Size classes: 1	П	1" to 1 7/8"	, 2	= 1 7	7/8" to	2	1/2",	3 = 2	1/2" to	3 1/4", 4 = 3	3 1/4" t	to 4", 5 =	over 4"
DI ATOM STATE	-		77	7	11	(7.0					
Plant Date: May	_		١	ne-K1	II Da	te: A	Vine-Kill Date: August 27	27		Harvest	Date: S	Harvest Date: September	6

Plant maturity, tuber shape and appearance, and external and internal tuber defects for the red-skinned variety trial grown at Freeville, New York · 1997 Upstate New York Table 12.

	Plant ¹			Ext	ernal	uber De	External Tuber Defects (%)		Int. Tu	ber Defe	Int. Tuber Defects (%) ²
/ / / / / / / / / / / / / / / / / / /	Mat. At	Tuber	Tuber Data ¹		Sun-	Mis-	Mis- Growth	-	Holl.	Vasc.	Int.
var rety/clone	VINEKIII	Sriabe	Snape Appear.	lotal	areen	snapen	ureen snapen cracks Kot	Kot	Heart	D1SC.	Nec.
B0811-4	1.0	2.0	4.0	1.6	9.0	6.0	0.1	0.0	0.0	12.5	0.0
B0811-13	5.6	1.0	4.3	2.7	6.0	1.3	0.5	0.0	0.0	2.5	2.5
Chieftain (Std)	5.3	2.0	7.0	16.1	6.9		7.6	0.5	2.5	2.5	2.5
NorDonna	8.9	1.0	7.8	6.1	4.7	6.0	9.0	0.0	0.0	5.0	0.0
NY118 (P49-19R)	8.9	3.0	7.9	ω ∞	0.9	1.3	1.6	0.0	0.0	0.0	0.0
Redsen	1.4	1.0	8.0	3.6	2.0	0.3	6.0	0.3	0.0	10.0	0.0

The tubers were taken from size categories 3 and 4. $^{\mathrm{1}}\mathrm{See}$ the standard NE184 rating system for a key to these ratings. ²Based on a 10-tuber sample from each replication.

Upstate New York Table 13. Yield, marketable yield, grade size distribution, tuber number per foot and weight, and specific gravity for the russet variety trial grown at Freeville, New York - 1997.

/Clone cwt/A cwt/A 379 223)		31Ze	SIZe UISTrID.(%)	D. (%)			
/Clone cwt/A cwt/A 379 223	0 T	%)	of t	otal	of total yield)		4 to	over	over	Mean	Mean Tuber	Spec.
379 223	std	\vdash	2	3	4	5	12 oz	8 oz	12 oz	#/ft	wt(0Z)	Grav.
	68	6	36	34	15	9	70	22	21	5.4	7.3	78
81004-8 313 214	85	23	54	21	က	0	75	24	8	6.9	4.7	82
B9922-11 351 245	86	12	46	30	∞	4	9/	43	13	6.1	5.9	88
Century Russet 489 339 1	135	16	47	26	6	2	73	37	11	0.6	5.7	84
Rus. Burbank (std) 460 251 1	100	14	43	59	10	4	72	43	14	8.2	5.8	85
Russet Norkotah 382 258 1	103	25	53	16	5	\vdash	69	23	9	8.3	4.8	73
Waller-Duncan LSD (k=100) 31 53										0.7	0.3	2
C.V. (%) (6) (14)										(7)	(4)	(2)
asses: 1 = under 4 oz, 2	= 4 to	9 8 oz.	<u>س</u>	= 8 to	12	oz, 4	= 12 to	16	oz, 5 = 0	9	Z0	

Upstate New York Table 14. Plant maturity, tuber shape and appearance, and external and internal tuber defects for the russet variety trial grown at Freeville, New York - 1997

	Plant ¹			Ext	ernal T	uber De	External Tuber Defects (%)		Int. Tul	oer Defe	Int. Tuber Defects (%) ²
Varietv/Clone	Mat. At Vinekill	Tuber	Tuber Data ¹	Total	Sun- Green		Mis- Growth shanen Cracks	Rot	Holl. Heart	Vasc.	Int.
00016 2	C						1 2	2 .	1 2		
5-CT609	۲.5 د	0.0	5. C	6.62	5.9	2.7	17.7	L.5	ç. /	0.0	2.5
81004.8	3.3	0.9	7.1	9.4	3.7	0.7	5.0	0.0	0.0	0.0	2.5
89922-11	2.9	5.0	7.6	14.2	4.4	7.5	1.5	6.0	7.5	0.0	0.0
Century Russet	5.3	0.9	4.3	13.2	6.4	5.6	0.0	1.2	2.5	0.0	0.0
Rus. Burbank (std)	5.0	7.0	5.0	27.8	4.2	21.0	2.5	0.1	5.0	0.0	0.0
Russet Norkotah	1.1	7.0	6.4	6.9	2.9	3.6	0.3	0.0	5.0	0.0	2.5

²Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4. $^{\mathrm{1}}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

and weight, and specific gravity for the USDA advanced clone trial grown at Freeville, New York - 1997. Upstate New York Table 15. Yield, marketable yield, grade size distribution, tuber number per foot

	local	MKL.	rield	217	e DIS	Size Distrib.	Dy Class	dSS	Size Distrib.(%)	trib. (%)			
	Yield		% of	%)	0 f	total	(bleid	()	1 7/8	2 1/2	Mean	Mean Tuber	Spec.
Variety/Clone	cwt/A	cwt/A	std	П	2	3	4	2	to 4 in.	to 4 in.	#/ft	wt(oz)	Grav.
Atlantic (std)	398	292	100	3	31	41	16	8	68	58	6.3	9.9	88
B0766-3	393	334	114	4	37	20	6	T	95	59	7.2	5.7	82
B0856-4	547	431	148	က	21	20	18	6	68	89	7.8	7.3	71
B1206-10	370	238	81	$^{\circ}$	27	42	18	10	87	09	5.8	6.7	74
B1214-7	491	279	96	П	14	33	25	27	72	58	5.5	9.3	98
B1240-12	338	296	101	9	48	39	7	0	94	46	7.2	4.9	84
B1240-14	427	363	124	2	41	46	7	\vdash	95	53	8.2	5.4	91
B1248-5	493	429	147	2	41	45	∞	□	94	53	9.4	5.4	78
B1375-14	252	208	71	10	22	30	3	0	06	33	6.3	4.1	82
B1408-3	407	310	106	က	28	54	11	3	93	65	6.7	6.3	87
B1429A-6	403	361	124	2	20	43	П	\vdash	94	44	8.6	4.9	80
Monona	362	284	97	3	27	47	15	7	06	63	6.2	6.1	29
Waller-Duncan													
LSD (k=100)	38	42									0.8	0.5	2
C.V. (%)	(/)	(10)									(8)	(7)	(2)

Upstate New York Table 16. Plant maturity, tuber shape and appearance, and external and internal tuber defects for the USDA advanced clone trial grown at Freeville, New York - 1997

	Plant ¹			Ext	ernal	uber De	External Tuber Defects (%)		Int. Tu	ber Defe	Int. Tuber Defects $(\$)^2$
	Mat. At	Tuber	Tuber Data ¹		Sun-	Mis-	Growth		Ho]].	Vasc.	Int.
Variety/Clone	Vinekill	Shape	Appear.	Total	Green	shapen	shapen Cracks	Rot	Heart	Disc.	Nec.
Atlantic (std)	6.5	1.0	6.4	15.6	12.3	0.3	2.2	0.7	5.0	2.5	2.5
B0766-3	2.4	2.0	5.0	10.5	6.9	0.5	3.1	0.0	7.5	5.0	10.0
B0856-4	2.9	1.0	7.9	9.8	7.7	0.3	1.5	0.2	0.0	0.0	0.0
B1206-10	2.9	1.0	5.1	22.2	8.7	2.3	11.1	0.3	5.0	2.5	2.5
B1214-7	6.1	3.0	4.3	14.8	9.7	2.4	1.6	1.1	0.0	0.0	0.0
B1240-12	4.1	1.0	7.9	6.2	4.7	9.0	1.0	0.0	0.0	10.0	10.0
B1240-14	5.8	1.0	7.4	9.5	7.1	1.4	0.4	0.7	30.0	0.0	0.0
B1248-5	1.4	1.0	7.8	7.2	5.9	0.4	0.7	0.2	0.0	2.5	0.0
B1375-14	1.4	1.0	0.9	7.2	4.3	9.0	1.7	9.0	0.0	7.5	2.5
B1408-3	7.5	1.0	6.8	17.4	13.1	6.0	2.7	0.7	45.0	2.5	7.5
B1429A-6	2.5	1.0	7.5	4.8	3.9	0.3	0.0	9.0	10.0	0.0	2.5
Monona	2.9	3.0	4.8	11.6	6.3	1.4	3.0	6.0	0.0	10.0	0.0

 $^{\mathrm{1}}\mathrm{See}$ the standard NE184 rating system for a key to these ratings.

 2 Based on a 10-tuber sample from each replication. The tubers were taken from size categories 3 and 4.

weight, external and internal defects, and specific gravity for white-skinned varieties grown on muck soil Upstate New York Table 17a. Yield, marketable yield, grade size distribution, tuber number per foot and in Wayne County near Savannah, New York - 1997

	Total	Total Mkt. Yield	<u>Yield</u>	Size	e Dist	Distrib. ¹			Pct.	Ext	Pct. External ²	12	Pct.	Inte	Pct. Internal ³	
	Yield		% of	(% of	f tot.	yld.)	Mean	Tuber	Tube	er De	Tuber Defects	S	Tubel	r Def	Tuber Defects	Spec.
Variety/Clone	cwt/A	cwt/A std	std	П	2	က	#/ft	wt(0Z)	S	\times	G	~	ェ	>	z	Grav.
Andover	400	356	94	7	06	က	8.1	5.2	П	0	0	0	5	0	0	9/
Atlantic	426	353	93	9	98	7	6.9	6.5	2	П	0	0	5	0	0	79
Katahdin (std)	433	379	100	5	93	2	7.9	5.7	9	0	0	0	0	0	0	69
Monona	402	346	91	4	91	5	6.5	6.4	4	\vdash	0	0	0	0	0	92
NY101	539	484	128	7	93	\vdash	11.7	4.8	3	0	0	0	0	0	0	69
NY103	363	295	78	10	88	2	8.0	4.8	5	\leftarrow	\leftarrow	0	0	0	0	74
NY109	397	327	98	4	87	6	6.5	6.3	4	\vdash	0	0	0	0	0	64
NY110	421	389	103	5	93	2	8.4	5.2	0	0	0	0	0	0	0	73
NY112	524	444	117	9	95	2	10.2	5.4	5	2	0	0	5	0	0	73
NY115	306	257	89	11	88	0	6.9	4.6	4	\leftarrow	0	0	0	0	0	74
P21-2	470	396	104	5	85	10	7.6	6.4	0	0	0	0	0	0	0	70
P32-3	320	274	72	7	95	 1	7.0	4.7	9	0	0	0	0	0	0	78
Penta	461	372	86	12	88	0	11.2	4.3	2	5	0	0	0	0	0	71
03-12	386	312	82	4	83	13	5.7	7.1	2	0	0	0	0	0	0	74
Quaggy Joe	388	298	79	6	84	7	8.0	5.1	2	2	0	0	0	0	0	65

(Continued on Next Page)

- CONT. - Yield, marketable yield, grade size distribution, tuber number per foot and weight, external and internal defects, and specific gravity for white-skinned varieties grown on muck soil in Wayne County near Savannah, New York - 1997 Upstate New York Table 17a.

	F - 4 - F	Mr+ Viol	רס:/	C.i. 20	Siza Dictrih ¹	rih 1			Pct	FX	Pct External ²		Pct. Internal ³	Intel	rna1 ³	
	lotal Yield	177		% of	tot.	(% of tot. yld.)	Mean Tuber	Tuber	Tubi	er De	Tuber Defects		Tuber	Def	ects	Tuber Defects Spec.
Variety/Clone	cwt/A	cwt/A cwt/A std	1		1 2 3	3	#/ft	#/ft wt(oz) S K G R	S	\prec	5		エ	>	z	H V N Grav.
4	766	138	116	~	90	·	α 	0 9	0	C	C	C	С	0 0 0	0	71
Sante	400	330	87		88	7 2	10.1	4.4	1 W	9	· —	0	0	10	0	74
Superior	372	335	83	5	92	2	7.3	5.3		 l	0	0	0	0	0	73

¹Size classes: 1 = under 2", 2 = 2.4", 3 = over 4"

²S = Sun-green, K = Knobby/Misshapen, G = Growth Crack, R = Rot

Based on a 10-tuber sample per plot. 3H = Hollow Heart, V = Vascular Discoloration, N = Internal Necrosis.

NOTE: This trial had two replications

Vinekill Dates : August 30 and September 7 Plant Date: May 12

Harvest Date: September 26

Fertilizer: 700 lb/A 7.95N-7.8P₂O₅-30.5K₂O-1.89Mg-7.05S-0.49Mn applied at planting.

Side-dressed 500 lb/A 22-0-20.

Vinekill: 1 pt/A Diquat on August 30; 1 qt/A Gramoxone on September 7.

Upstate New York Table 17b. Yield, marketable yield, grade size distribution, tuber number per foot and weight, external and internal defects, and specific gravity for red-skinned varieties grown on muck soil in Wayne County near Savannah, New York - 1997

	Total	Mkt. Yield	ield	Size	Size Distrib	rib.1			Pct.	Ext	Pct. External ²	12	Pct.	Inte	Pct. Internal ³	
	Yield		% of	(% of	f tot.	yld.)	Mean	Mean Tuber	Tub	er De	Tuber Defects	S	Tuber	r De1	Tuber Defects	Spec.
Variety/Clone	cwt/A	cwt/A	std	Π	2	3	#/ft	Wt(0Z)	S	\leq	5	~	工	>	z	Grav.
B1491-5	394	296	58	21	79	0	5.8	7.1	3	П	0	0	0	0	0	74
B1491-10	359	260	51	22	78	0	12.5	3.0	3	2	0	0	0	0	0	99
B1492-12	275	172	34	36	64	0	12.0	2.4	П	0	0	0	0	0	0	72
B1495-6	296	237	46	17	83	0	9.1	3.4	2	0	0	0	0	0	0	70
B1522-1	202	379	74	10	06	0	10.2	5.2	\vdash	13	\vdash	0	0	0	0	99
B1522-5	251	227	44	6	91	0	9.6	4.7	0	0	0	0	0	0	0	61
B1523-4	455	393	77	8	88	4	8.6	4.8	2	0	0	0	0	0	0	89
Chieftain (std)	585	512	100	2	95	П	10.7	5.7	4	□	\vdash	0	0	5	0	29
Dk. Red Norland	448	383	75	ω	95	0	11.2	4.2	4	2	0	0	0	0	0	92
NorDonna	437	355	69	6	91	0	4.3	10.5	7	3	\vdash	0	0	0	0	29
NY118 (P49-19R)	523	448	87	∞	91	1	11.4	4.8	4	\vdash	0	0	0	0	0	99
Redsen	398	296	28	17	85	1	11.5	3.6	4	3	0	0	0	0	0	64

¹Size classes: 1 = under 2", 2 = 2.4", 3 = over 4"

²S = Sun-green, K = Knobby/Misshapen, G = Growth Crack, R = Rot

Based on a 10-tuber sample per plot. N = Internal Necrosis. ^{3}H = Hollow Heart, V = Vascular Discoloration,

NOTE: This trial had two replications, except there was only one plot of B1491-5, B1491-10, B1492-12, B1495-6. Harvest Date: September 26 Fertilizer: 700 lb/A 7.95N-7.8P₂O₅-30.5K₂O-1.89Mg-7.05S-0.49Mg applied at planting. Vinekill Dates : August 30 and September 7 Plant Date: May 12

Vinekill: 1 pt/A Diquat on August 30; 1 qt/A Gramoxone on September 7 Side-dressed 500 lb/A 22-0-20.

Upstate New York Table 18. Yield, marketable yield, grade size distribution, tuber number per foot and weight, external and internal defects, and specific gravity for the Steuben County mineral soil variety trial grown near Arkport, New York - 1997

	Total	Mkt. Yield	rield	Size	Distrib.	$rib.^1$			Pct	Ext	Pct. External ²		Pct.	Inte	Internal ³	
	Yield		% of	(% of	tot.	yld.)	Mean	Tuber	Tub	er De	Tuber Defects	S	Tuber Defects	, Def		Spec.
Variety/Clone	cwt/A	cwt/A	std	П	2	3	#/ft	wt(oz)	S	\prec	5	~	ェ	>	z	Grav.
Atlantic (std)	403	289	100	3	9/	21	5.7	7.8	2	\leftarrow	0	0	2	0	0	87
B0178-34	393	344	119	7	91	2	8.5	5.1	2	2	0	0	0	0	0	66
B0564-8	389	347	120	6	91	0	9.5	4.5	П	0	0	0	0	0	0	98
Kanona	437	344	119	3	84	13	7.1	8.9	2	0	0	0	0	0	0	82
NorValley (ND2417-6)	414	324	112	13	85	2	11.2	4.1	2	5	0	0	10	0	0	9/
NY101	909	406	140	2	85	10	8.7	6.4	က	П	0	0	0	0	0	73
NY102	428	389	135	4	94	2	8.5	5.6	2	\vdash	0	0	0	0	0	87
NY103	426	384	133	2	93	2	7.8	0.9	2	1	0	0	0	0	0	79
NY112	461	386	134	9	98	ω	8.2	6.2	2	0	0	0	0	0	0	98
NY115	369	279	97	5	82	13	5.6	7.3	2	П	0	0	0	0	0	85
NY119 (P63-1)	339	285	66	9	88	5	8.9	5.5	4	0	0	0	0	0	0	89
NY120 (Q8-2)	438	383	133	3	06	7	8.9	7.1	П	1	0	0	0	0	0	88
P32-3	321	238	82	4	82	14	5.1	7.0	9	\vdash	0	0	20	0	0	88
P73-2	347	298	103	11	88	1	8.1	4.7	П	1	0	0	0	0	0	85
03-12	401	317	110	3	81	16	6.3	7.0	2	0	0	0	0	0	0	81

(Continued on Next Page)

- CONT. - Yield, marketable yield, grade size distribution, tuber number per foot and weight, external and internal defects, and specific gravity for the Steuben County mineral soil variety trial grown near Arkport, New York - 1997 Upstate New York Table 18.

	Total	Mkt. Yield	/ield	Size	Size Distrib. ¹	rib.¹			Pct.	Ext	Pct. External ²		Pct.	Inte	Pct. Internal ³	
	Yield		% of	(% of	tot.	(% of tot. yld.)	Mean	Mean Tuber	Tub	er De	Tuber Defects	S	Tubel	r Def	Tuber Defects	Spec.
Variety/Clone	cwt/A	cwt/A cwt/A std	std	П	1 2 3	3	#/ft	#/ft wt(oz) S K G R	S	\prec	5		N / H	>		Grav.
Pike	400	359	124	6	06	\vdash	10.3	4.3	П	0	0	0	0	0	0	95
Reba	445	388	134	က	89	8	7.8	6.3	2	0	0	0	0	0	0	83
Snowden	439	404	140	2	94	\vdash	9.3	5.2	П	0	0	0	15	0	0	94

¹Size classes: 1 = under 2", 2 = 2.4", 3 = over 4"

NOTE: This trial had two replications, except only one plot was harvested of Atlantic, B0178-34, B0564-8,

Kanona, NorValley (ND2417-6), NY101, NY103, NY115, P32-3, NY119 (P63-1), and Q3-12.

Harvest Date: October 6 Vinekill Date : September 9, 15 Plant Date: May 23

Fertilizer: 1500 lb/A 8-16-8 at planting. 100 lb/A ammonium nitrate sidedressed on June 28

Vinekill: Two applications of Diquat 1 pt/A (September 9 and 15)

 $^{^2}$ S = Sun-green, K = Knobby/Misshapen, G = Growth Crack, R = Rot

Based on a 10-tuber sample per plot. $^3 H = Hollow Heart, V = Vascular Discoloration, N = Internal Necrosis.$

Upstate New York Table 19. Yield, marketable yield, grade size distribution, tuber number per foot and weight, external and internal defects, and specific gravity for the Wyoming County mineral soil variety trial grown near Gainesville, New York - 1997

	Total	Mkt. Yield	/ield	Size		Distrib. ¹			Pct	Pct. External ²	ernal		Pct.	Inte	Pct. Internal ³	
	Yield		% of	(% of	tot.	yld.)	Mean	Mean Tuber	Tub	Tuber Defects	fect	(0)	Tuber	Def	Defects	Spec.
Variety/Clone	cwt/A	cwt/A std	std	П	2	3	#/ft	wt(0Z)	S	\vee	G	~	=	>	z	Grav.
Atlantic (std)	437	350	100	7	88	9	7.9	6.1	4	4	0	0	0	0	0	93
B0178-34	425	378	108	4	95	4	7.4	6.3	2	0	1	0	0	0	0	90
B0564-8	414	367	105	11	88	0	7.7	5.9	1	0	0	0	0	0	0	82
Kanona	458	370	106	3	83	14	6.5	7.8	2	0	\vdash	0	0	0	0	82
NorValley (ND2417-6)	429	366	105	6	91	0	9.6	4.9	4	3	0	0	0	10	0	79
NY101	584	534	152	2	93	2	9.7	9.9	2	0	0	0	0	0	0	79
NY102	448	414	118	9	94	0	0.6	5.5	2	0	0	0	0	0	0	91
NY103	457	397	114	9	93	П	9.8	5.9	4	2	0	0	0	0	0	80
NY112	573	208	145	4	06	9	9.6	9.9	_	0	0	0	0	0	0	98
NY115	377	314	90	9	88	9	7.0	6.0	4	\vdash	0	0	0	0	0	85
NY119 (P63-1)	394	338	6	10	89	2	9.1	4.8	3	0	0	0	2	0	0	93
NY120 (Q8-2)	481	395	113	2	83	15	6.1	8.8	П	0	0	0	0	0	0	88
P32-3	327	288	82	7	95	2	6.7	5.4	\vdash	0	2	0	0	0	0	98
P73-2	410	346	66	11	88	1	9.5	4.8	က	П	0	0	0	0	0	89
03-12	433	331	95	4	82	14	9.9	7.3	9	0	0	0	0	0	0	85

(Continued on Next Page)

- CONT. - Yield, marketable yield, grade size distribution, tuber number per foot and weight, external and internal defects, and specific gravity for the Wyoming County mineral soil variety trial grown near Gainesville, New York - 1997 Upstate New York Table 19.

	Total	Mkt. Yield	Yield	Size	Dist	Size Distrib. $^{\mathrm{1}}$			Pct	. Ext	Pct. External ²	12	Pct.	Inte	Pct. Internal ³	
	Yield		% Of	0 %)	f tot.	(% of tot. yld.)	Mean	Mean Tuber	Tub	er D	Tuber Defects	S	Tube	r De	Tuber Defects	Spec.
Variety/Clone	cwt/A	cwt/A cwt/A std	std	\vdash	1 2 3	3	#/ft	#/ft wt(oz) S K G R	S	\prec	5		N / H	>	z	Grav.
Pike	425	397	113	9	94	0	8.7	5.4	\vdash	0	0	0	0	0	0	65
Reba	476	402	115	3	88	œ	7.9	9.9	4	0	0	0	0	0	0	77
Snowden	505	439	125	5	91	4	9.3	5.9	c		0	0	15	0	0	06

¹Size classes: 1 = under 2", 2 = 2.4", 3 = over 4"

 2 S = Sun-green, K = Knobby/Misshapen, G = Growth Crack, R = Rot

Based on a 10-tuber sample per plot. $^3 H = Hollow Heart, V = Vascular Discoloration, N = Internal Necrosis.$

NOTE: This trial had two replications, except only one plot was planted of B0178-34, B0564-8,

NorValley (ND2417-6), and P32-3.

Plant Date: May 7

Vinekill Dates : September 13,18,22

Harvest Date: October 3

Fertilizer: 690 lb/A 13.7-0-21.5 broadcast before planting. 896 lb/A 8-20-8-2Mg-2Zn liquid applied at

planting. Top-dressed 60 lb/A N at hilling/cultivation.

Vine-kill: 1 qt Desicate on September 13; 1 pt Diquat on both September 18 and 22.

North Carolina

G. Craig Yencho and William Hines1

Introduction

This work is part of a continuing project designed to evaluate new potato cultivars and advanced clones for potential use by the North Carolina potato industry.

Cooperating Breeding Projects

Dr. Dave Douches, Michigan State University, East Lansing, MI

Dr. Kathleen Haynes, USDA/ARS Beltsville, MD Dr. Richard Novy, North Dakota State University, Fargo, ND

Dr. Robert Plaisted, Cornell University, Ithaca, NY Dr. Al Reeves, University of Maine, Presque Isle, ME

Cooperating NC Agricultural Extension Agents Tom Campbell, Elizabeth City, Pasquotank Co. Fred May, Bayboro, Pamlico Co. Richard Rhodes, Columbia, Tyrrell Co.

NC Research Station and On-farm Cooperators and Locations

Bright Farms, Weeksville, NC, Pasquotank Co. Durwood Cooper Farms, Gumneck, NC, Tyrrell Co. McCotter Farms, Vandemere, NC, Pamlico Co. Tidewater Research Station (NC Dept. Agric.)/Vernon G. James Research and Extension Center, (NCSU), Plymouth, NC, Washington Co. (TRS/VGJREC)
Upper Mountain Research Station (NCDA), Laurel

Upper Mountain Research Station (NCDA), Laurel Springs, NC, Ashe Co. (UMRS)

Industry Cooperators

Hettema Seed Potatoes, Fredericton, N.B. Canada Frito Lays Inc., Rhinelander, WI Wise Foods Inc., Berwick, PA

Methods

Eastern tests were planted in March and harvested in June and July with growing days between 106 and 110 days depending on location and crop status. The western trial was planted in May and harvested in August with 113 growing days. All entries were planted in a randomized complete block design with 4 replications (i.e. 4 plots per entry), excepting the unreplicated, preliminary evaluation trial, which had only one plot per clone. Each plot consisted of 1 row with 28 hills spaced 9 inches apart. Spacing between rows was 38-inches at all sites, except UMRS which was 45 inches. Fertilizer, weed and pest control practices were in accordance with those practiced by the cooperators. Plots were dug using a single row digger and hand harvested. Grower trials were graded using a portable Lockwood Grader which sorts 2 grades; 1's = >1 7/8" and 2's = >7/8" to 1 7/8" which are roughly equivalent to USDA sizes A and B grouped together, and USDA size C, respectively. At the TRS/VGJREC, potatoes were graded to three classes: $1's = \ge 17/8$ ", 2's = 11/2" to 1 7/8 " and 3's = \leq 1 1/2" roughly equivalent to USDA A's, B's and C's, respectively. Culls were weighed separately in all trials. After grading and weighing plots, 40 marketable tubers (10 tubers/replication) were sampled randomly from each entry. The tubers were cut and scored for the presence or absence of hollow heart, heat necrosis and any other internal defects. Subsamples of marketable tubers were also taken from each plot and bulked by entry for specific gravity readings and chipping tests. Specific gravity was determined using the weight-in-air/weight-in-water method, and chip colors were provided by Wise Foods, Berwick, PA.

Results

The season began with warmer, drier weather than normal for most potato production areas in eastern NC. The favorable warm February-March conditions were counterbalanced, however, by abnormally cool and dry growing conditions during April to May.

A total of 143 clones were evaluated this year. The data for each trial are summarized in Tables 1-8. Each table has two parts, the first being devoted to yield and specific gravity information (a), and the second relating potato plant and tuber quality parameters and chip color score (b). For each clone evaluated, tuber quality and appearance comments were made during harvest and grading, and while specific gravity measurements were being made. These notes are contained in the second table and a

^{1.} Assistant Professor and Research Technician, respectively. Department of Horticultural Science, Vernon G. James Research and Extension Center, North Carolina State University, 207 Research Station Road, Plymouth, NC 27962

description of the rating scales is given in Appendix 1. It should be noted that the Carlita and Adora entries arrived late and were planted later than the other entries in the McCotter Farm trial (7 days late) and the Bright Farm trial (2 days late).

Comments on some of the more promising clones, which have been evaluated for more than two years in at least three locations in NC, are provided below. Please note, however, that many other clones may have performed well in 1998 (see individual tables). If they are not specifically mentioned below, it most likely indicates that, as of yet, there is not sufficient information to comment on them.

Comments on promising, newly released varieties and advanced clones grown in NC's environment

Andover was recently released from the Cornell University, New York breeding program where it was tested as NY E55-44. It is an early to medium maturity, slightly netted, buff-skinned, very round variety. It produces uniform, medium-sized potatoes that are very nice in appearance with good skin and few defects. Over four trials in 1996 its average marketable yield was 150% of Atlantic, while in five trials in 1995 its marketable yield was 85% of Atlantic. In 1997, its marketable yield was 63% of Atlantic, and over all trials (11) its marketable yield has been 116% of 'Superior'. It chipped very well at all sites with chip scores of 2-3. Its gravity is only slightly lower than that of Atlantic. Heat necrosis and hollow heart are not problems. It is resistant to golden nematode and common scab. Andover is a very promising chipping variety, but adverse (drought and severe heat stress) growing conditions may significantly impact its yield in some years. This tendency has also been noted in NJ, NY, PA and VA. We plan to evaluate this clone next year at three sites, and would be interested in having a few growers try it out on a limited basis in 1998-1999.

Quaggy Joe was recently released by the University of Maine breeding program. It was evaluated in NC as AF1470-17. Quaggy Joe is a medium maturing, white-skinned, round, tablestock selection with shallow, pink eyes and white flesh. It does not chip. It produces medium to large-sized potatoes that are nice in appearance. Its average marketable yield in NC over three years was 108% of Atlantic. It is resistant to net necrosis, blackspot and shatter bruising, and shows a moderate reaction to early blight, *Verticillium* wilt, and *Fusarium* tuber rot. It is susceptible to scab and hollow heart, and is

metribuzin sensitive. Unless requested, we will not be evaluating this variety in 1998.

Reba was recently released from the Cornell University, New York breeding program where it was tested as NY 87. Reba is a medium to late season, round, white, smooth-skinned chipstock and tablestock potato. Over seven trials from 1995-1997 at four sites its average marketable yield was 83% of Atlantic. It chipped very well at all sites with scores of 3-4, and its gravity is slightly lower than Atlantic. We have seen heat necrosis in this clone at one site in NC in one year (1997), but we have not seen any hollow heart. It is resistant to the golden nematode. We will be testing this clone again in 1998.

Salem was recently released from the Cornell University, New York breeding program where it was tested as NY 84. Salem is a medium to late season, mostly round, white, slightly netted tablestock potato with white flesh. Over nine trials from 1995-1997 at four sites, its average marketable yield was 103% of Atlantic. In 1997, we chipped it at one trial and it yielded a score of 4, so it might chip directly from the field in NC. Its gravity is only slightly lower than Atlantic. Hollow heart or heat necrosis do not seem to be a problem with this clone in NC. It is resistant to the golden nematode and has very good scab resistance. We will be testing this clone again in 1998.

AF1424-7 is a medium maturing, bright, white-skinned, round selection with shallow eyes. We've tested it in NC over three years at three sites (9 trials) and it has yielded 83% of Atlantic. It chipped well at all sites with scores of 3-4. Its gravity is only slightly lower than that of Atlantic. At one site this clone had some rhizoctonia and a few growth cracks. At the research station in 1996 we noted the presence of pitted scab, but this was not noted in 1997. We plan to evaluate this clone in 1998 at three sites.

AF1433-4 is a medium maturing, white-skinned, round selection. It produces a uniform, medium-sized potato that is nice in appearance with good skin. This clone has been tested in NC over three years at three sites in 11 trials and it has yielded 85% of Atlantic. It chipped well at all sites with scores of 2-4. Its gravity is lower than that of Atlantic. In 1997, it showed weak internal necrosis symptoms. We plan to evaluate this clone in 1998 at three sites.

AF875-15 is a medium maturing, smooth, white-skinned, round selection. In eleven trials in NC over

the last three years its average marketable yield was 107% of Atlantic. Its gravity is slightly less than Atlantic. It does get very slight heat necrosis, but probably not enough to interfere with the quality of chips. Hollow heart is not a problem. Growth cracks have been the major defects in some years in NJ, PA and ME, and we have seen some in NC, too. It is resistant to *Verticillium* and net necrosis. Chip color is about the same as Atlantic. It will be tested at two sites in 1998.

B0178-34 is an medium to late maturity, slightly netted, buff-skinned, round to oblong variety. It produces medium to large-sized potatoes that are nice in appearance with good skin and few defects. Over five trials in 1995-1997, its average marketable yield was 99% of Atlantic. It chipped very well at all sites with chip scores of 3. Its gravity is equal or greater than that of Atlantic. Heat necrosis and hollow heart are not problems. It is resistant to golden nematode, net necrosis and PVX, but susceptible to scab. It has a short dormancy period. We plan to evaluate this clone next year at three sites, and would be interested in having a few growers try it out on a limited basis in 1998-1999.

B0564-8 is a medium maturing, round, white-skinned selection. We've tested it in NC over three years in 10 trials and it has yielded 117% of Atlantic. It produces a nice crop of potatoes with good size distribution for chipping. It chipped well at all sites with scores of 3-4 and its gravity is comparable to that of Atlantic. At one site this clone had some *Rhizoctonia* and a few growth cracks. At the research station in 1996 we noted the presence of deep-pitted scab, but we didn't find scab in this clone at all in 1997. We plan to evaluate this clone next year at four sites.

B0564-9 is a medium maturing, round, whiteskinned selection. We've tested it in NC over three years in 8 trials and it has yielded 130% of Atlantic. In three trials in 1996 its average marketable yield was 147% of Atlantic. In two trials in 1997, its average marketable yield was 107% of Atlantic. Its gravity is only slightly lower than that of Atlantic. Its chip scores (generally 4's and 5's) are not as good as those of B0564-8, but B0564-9 produces larger tubers with a nicer appearance, and a nice size distribution. This clone possesses moderate levels of resistance to Verticillium wilt, but is susceptible to common scab. Heat necrosis and hollow heart do not appear to be problems in either B0564-8 or B0564-9. We plan to evaluate this clone next year at three sites, and would be interested in having a few growers try it out on a limited basis in 1998-1999.

NY103 is a medium maturing, round, smooth, bright white-skinned, chipstock and tablestock selection. We've tested it in NC over three years at four sites (5 trials) and it has yielded 91% of Atlantic. It chipped very well at all sites with scores of 2-4. Its gravity is ca. .008 lower than that of Atlantic. Heat necrosis and hollow heart do not appear to be problems. We have seen some soft rot in this clone in our higher organic soil trials, but we are not sure if this will be a serious problem. We plan on evaluating this clone in again 1998 in at least two trials.

Acknowledgements

Without the assistance of the growers, county extension agents and NCDA Tidewater Research Station and Upper Mountain Research Station staff, this work could not be conducted. We are grateful for their continued support and assistance. Wise Foods, Berwick, PA is also gratefully acknowledged for conducting chip tests, and for helping to harvest and grade trials. Frito Lays, Inc. and Hettema Seed Potatoes provided unrestricted gifts which benefited the project. This project is partially funded by The North Carolina Potato Growers Association. Their continued support is much appreciated.

				Size I	Size Distribution by Class ³	SS ³	Stock D
	Total Yield	Marketabl	e X		(70 UI IOIAI YICIU)		abreille -
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	Culls	Gravity
Adora	322	300	132	93	9	0.7	1.070
AF1480-5	260	226	101	87	13	8.0	1.085
AF1565-12	267	235	103	88	10	1.7	1.072
Andover	213	175	77	82	16	1.6	1.077
Atlantic	262	233	100	68	11	0.8	1.094
B0564-8	248	225	101	91	00	1.5	1.087
B0564-9	287	271	121	95	5	0.4	1.086
B0811-13	261	228	100	87	11	1.6	1.082
Carlita	246	223	97	91	7	2.5	1.072
Cherry Red	275	230	100	83	15	1.3	1.087
FL1831	195	162	70	82	16	1.4	1.098
FL1867	218	194	85	68	10	1.9	1.097
FL1889	212	189	82	68	10	1.1	1.089
FL1900	214	197	85	92	7	1.2	1.098
FL1923	183	149	64	82	15	3.3	1.101
ND2224-5R	179	124	56	69	30	0.7	1.068
NY103	183	162	71	88	10	1.4	1.078
Salem (NY84)	233	215	96	93	9	1.1	1.074
Reba (NY87)	192	154	89	80	20	0.3	1.078
Pike	226	180	81	80	20	0.4	1.090
Quaggy Joe	267	227	66	85	14	1.0	1.080
Red Gold	293	240	106	81	18	0.7	1.077
Snowden	233	172	75	74	26	9.0	1.096
Simerior	235	200	91	00 00	10	1.6	1.081

¹ Total 1's.
² Standard = Atlantic

Standard = Atlantic.

3. Size classes: 1's = 2 1 7/8"; 2's = 7/8" to 17/8"; culls = all defective potatoes.

NORTH CAROLINA Table 1b. Potato Variety Trial, Bright Farm, Pasquotank Co.	VA Table	1b. P	otato V	ariety Tr	ial, Brigh	t Farm,	Pasque	otank Co.	P	Planted 3-11-97	1-97	Harvested 6-25-97 106 (DAP)
		Plant	Plant Data'			T	Tuber Data'	ata ¹	Tuber Defects ²	efects ²		
		Dis.	Poll.						Internal	Hollow	Chip	
CLONE	Type	Rx.	Rx.b	Mat.	Color	Shape	App.	Size	Necrosis	Heart	Color	Comments
Adora	7	6	9	5	7	5	6	VL	0	0	1	yellow flesh, nice skin but post-harvest bruising
AF1480-5	6	6	9	7	6	3	7	\mathbb{Z}	0	0	4	nice skin, uniform, some flats
AF1565-12	9	6	7	3	00	3	7	M-L	0	0	3	nice skin, some flats
Andover	7	00	5	4	7	3	6	\mathbb{Z}	0	0	4	very nice skin, uniform
Atlantic	6	00	6	9	7	7	2	\mathbb{Z}	0	0	4	lots of skins, growth cracks
B0564-8	∞	6	6	5	6	_	6	M-L	0	0	3	nice skin, uniform
B0564-9	6	6	7	9	7	_	6	M-L	0	0	3	Irgr than and skins more than B0564-8, uniform
B0811-13	6	6	6	5	7	1	7	S-M	0	0	1	dark red, heavy netting, yellow flesh
Carlita	7	6	00	9	∞	3	6	VL	4	0	,	nice skin, yellow flesh
Cherry Red	6	6	6	9	7	3	6	\mathbb{Z}	0	0	•	nice dark red skin, raised lenticels, uniform
FL1831	00	00	5	9	6	3	7	S-M	0	0	4	some skins, some flats, nice skin
FL1867	6	6	6	5	7	2	2	S-M	0	0	n	growth cracks, lots of skins
FL1889	00	6	6	7	7	3	7	M-L	0	0	4	nice skin, some flats, blocky
FL1900	6	6	6	00	7	3	7	\mathbb{Z}	0	0	3	some flats & skins, blocky
FL1923	00	6	6	6	7	3	2	S-M	0	0	4	growth cracks, lots of skins
ND2224-5R	9	6	7	_	7	2	9	\mathbb{Z}	0	0	ı	bright red, lots rhizoctonia
NY103	00	6	9	7	6	3	6	S-M	0	0	c	prom lents, vasc ring, skins, lots post hvst bruising
Salem (NY84)	00	6	6	7	7	n	7	M-L	0	0	4	nice skin, some flats
Reba (NY87)	∞	6	6	5	6	_	7	S-M	0	0	3	some skins, similar to Pike but larger
Pike	6	6	6	7	7	_	6	S-M	0	0	3	very uniform
Quaggy Joe	6	6	9	9	6	4	7	M-L	0	7	١	nice size mix, some flats, some skins
Red Gold	2/9	6	9	4	7	ü	7	Z	0	0	•	red/orange skin, yellow flesh
Snowden	6	6	7	∞	7	_	7	\mathbb{Z}	0	0	4	uniform, small
Superior	∞	6	6	3	7	1	7	\mathbb{Z}	0	0	4	prominent lenticels

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.
² Number per 40 tubers - 10 tubers per replicate.
³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

			-	Size	Size Distribution by Class ³	1SS ³	3,000
	Total Yield	Marketal	Marketable Yield'		(% of total yield)		obecuic
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	Culls	Gravity
AF1424-7	288	271	73	94	3.9	2.1	1.074
AF1433-4	318	300	81	94	3.2	2.5	1.064
AF1565-12	200	137	37	69	8.3	22.9	1.057
AF1569-2	370	335	06	06	5.1	5.3	1.063
AF1668-60	229	215	58	94	3.7	2.1	1.068
AF875-15	380	334	91	88	7.8	4.5	1.075
Andover	212	187	51	68	8.7	2.7	1.070
Atlantic	388	371	100	96	3.2	1.2	1.082
B0178-34	402	384	104	95	3.4	1.3	1.082
B0564-8	363	333	06	92	7.5	1.1	1.074
B0564-9	365	346	93	95	3.5	2.0	1.077
B0766-3	371	340	92	92	3.5	4.8	1.076
B0811-13	234	205	56	88	11.2	1.2	1.066
ND2224-5R	217	154	42	70	27.6	2.2	1.061
Norvalley (ND2417-6)	346	312	84	90	7.4	2.6	1.075
ND2471-8	348	319	98	91	8.9	1.7	1.073
NorDonna	337	312	84	93	5.9	1.5	1.060
NY103	357	337	91	94	2.5	3.3	1.067
Salem (NY84)	428	404	109	94	3.6	2.1	1.062
Reba (NY87)	359	344	94	96	3.7	0.7	1.067
Pike	352	333	06	94	5.1	9.0	1.083
Snowden	397	377	102	95	4.3	6.0	1.076
Superior	311	297	81	95	2.5	2.2	1.070
Video Cold	7,00	300	95	87	~ ~	4.9	1.070

Total 1's.

^{2.} Standard = Atlantic. 3. Size classes: 1's = $\ge 1.7/8$ "; 2's = 7/8" to 1.7/8"; culls = all defective potatoes.

Harvested 7-8-97 (109 DAP)			Comments	flats, growth cracks, lots of skins, sprouts, greens	skins, soft rot, scab	sprouts, secondary tubers	some flats	sticky stolons, lots of skins, flats	lots of greens, sprouts, some scab, flats	nice skin, poor yield	nice size distribution	some flats, skins	some soft rot, nice skin, flesh whiter than -9	skins, larger than -8, some greens, sprouts	sprouts, skins, lots of skins, lots of flats	lots of skins, heavy netting, yellow flesh	sticky stolons, good skin set, prominent brow	some points, flats, growth cracks, sprouts	susceptible to scab & soft rot	sprouts, sticky stolons	some skins, soft rot, scab, flats	lots of flats, some growth cracks, heat sprouts	flats, greens	some flats, skins	some skins	some skins, blocky, flats	lots of BH, lots of skins, sprouts
Ha		0.		flats	skin	spro	som	stic	lots	nice	nice	som	som	skin	spro	lots	stic	som	snsc	spro	som	lots	flats	som	som	som	lots
		Chip	Color	4	n	1	1	3	m	7	5	3	3	2	3	1	ı	3	m	1	C	ı	3	3	n	4	1
3-21-97	efects ²	Hollow	Heart	0	0	1	0	0	_	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	1
Planted 3-21-97	Tuber Defects ²	Internal	Necrosis	0	1	3	-	0	0	0	17	0	1	1	0	0	7	-	1	0	0	0	2	5	0	0	∞
	ata¹		Size	M-L	M-L	S-M	M-L	M-L	M-L	Σ	M-L	M-L	M-L	M-L	M-L	\mathbb{Z}	M	M-L	Σ	M-L	M-L	Γ	M-L	M	M	M-L	M-L
ell Co.	Tuber Data ¹		App.	7	2	7	2	2	2	7	7	5	6	7	2	2	7	7	2	7	2	7	7	7	2	7	2
n, Tyrr	T		Shape	3	2	7	9	4	7	7	7	9	7	2	4	3	7	4	7	7	2	3	7	7	7	9	4
ooper Fari			Color	7	7	7	7	7	7	7	7	7	7	7	7	7	7	∞	6	7	7	∞	7	7	7	7	7
Trial, C			Mat.	5	5	3	2	4	9	3	7	00	9	9	∞	4	_	9	5	2	7	7	5	∞	00	3	2
/arriety)ata	Poll.	Rx.b	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	6	7	6	6	7	6	2	6	9
otato	Plant Data	Dis.	Rx.ª	6	6	00	6	6	6	6	6	6	6	∞	6	∞	∞	6	6	∞	6	6	6	6	6	6	6
e 2b. P			Type	∞	∞	7	∞	7	6	%	6	6	00	00	∞	00	00	6	00	6	6	∞	∞	∞	6	00	00
NORTH CAROLINA Table 2b. Potato Variety Trial, Cooper Farm, Tyrrell Co.			CLONE	AF1424-7	AF1433-4	AF1565-12	AF1569-2	AF1668-60	AF875-15	Andover	Atlantic	B0178-34	B0564-8	B0564-9	B0766-3	B0811-13	ND2224-5R	Norvalley (ND2417-6)	ND2471-8	NorDonna	NY103	Salem (NY84)	Reba (NY87)	Pike	Snowden	Superior	Yukon Gold

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.

² Number per 40 tubers - 10 tubers per replicate.

³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

				Size	Size Distribution by Class3	ass ³	
	Total Yield	Marketa	Marketable Yield ¹		(% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	Culls	Gravity
Adora	241	226	800	93.5	9.9	0.0	1.074
AF1424-7	245	214	84	87.3	8.6	4.2	1.089
AF1433-4	225	202	80	89.1	10.3	0.7	1.078
AF1480-5	315	278	109	87.8	10.1	2.1	1.082
AF1565-12	249	218	85	87.4	9.5	3.1	1.071
Andover	173	151	09	87.4	11.7	8.0	1.085
Atlantic	280	255	100	91.0	6.1	3.0	1.095
B0564-8	286	243	96	85.1	12.9	2.1	1.086
B0766-3	259	224	68	86.5	12.0	1.5	1.094
B0811-13	255	218	98	84.3	15.0	8.0	1.080
B1004-8	214	171	29	80.1	19.4	9.0	1.083
Carlita	258	245	96	94.8	4.7	9.0	1.070
Cherry Red	307	265	105	85.8	11.2	3.0	1.087
ND2224-5R	178	127	50	71.3	24.3	4.4	1.072
Norvalley (ND2417-6)	275	232	91	82.2	16.6	1.3	1.087
ND2471-8	269	229	91	84.4	11.2	4.5	1.088
NY103	281	260	102	92.2	6.2	1.6	1.082
Reba (NY87)	227	196	77	86.2	12.8	1.0	1.082
Pike	239	218	98	8.06	0.6	0.2	1.092
Quaggy Joe	375	316	125	83.9	11.6	4.5	1.077
Red Gold	297	238	94	79.8	17.7	2.6	1.085
Snowden	303	261	103	85.8	11.6	2.6	1.086
Superior	273	252	66	92.1	6.4	1.6	1.078
77.1		(0	40	1 002

¹. Total 1's.

^{2.} Standard=Atlantic

³. Size classes: 1's = $\ge 1.7/8$ "; 2's = 7/8" to 1.7/8"; culls = all defective potatoes.

Harvested 6-24-97 (110 DAP)			Comments	some scab, smooth skin, yellow flesh, large	mixed large & medium, lots of skins, misshapes	very round, nice skin, some scab	nixed large & medium, some flats, some VN	mixed small & medium, some flats, good skin	small, nice skin	skins, mixed sizes, soft rot	nice skin, mixed medium & large	some flats, some skins, lots of bruising	heavy netting, deep apical eyes, lots of skins	good skin set, small, medium to heavy russet	yellow flesh, nice smooth skin, large, blocky	good skin set, heavy net, some rhizoctonia	some scab and soft rot, lots of rhizoctonia	mixed small & medium, smaller than ND2471-8	nice size, susceptible to scab	some scab, lots of skins	some flats	arger than NY87, some skins	nice skin, blocky, eyes with light blush, weak IN	orange/pink, good skin set, dk rd eyes, lots VN	nice skin	
H		Chip	Color ³ Con	- som	4 mix	2 very	- mix	- mix	3 sma	3 skin	4 nice	2 som	- hear	- goo	6 yell	- 800	- som	4 mix	5 nice	2 som	3 som	3 larg	- nice	- orar	2 nice	
-6-97	١	Hollow C	Heart Co	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Planted 3-6-97	Tuber Defects	Internal Ho	Necrosis F	0	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	(
		In			1		Γ	M			Γ	M						M	i,	ب	M	M	T	M	i,	
ico Co)ata¹		Size	口	M-L	Σ	Ä	S-J	S	Σ	Ä	S-J	Σ	S		Σ	Σ	S-M	Ä	M-L	S-S	S-J	M-L	S-J	M-L	
, Paml	Tuber Data		App.	7	2	7	2	9	6	5	6	2	3	7	6	5	2	7	7	5	5	6	6	7	6	
r's Farm	L		Shape	3	3	_	3	3	2	_	_	1	_	5	3	3	3	3	П	3	3	3	3	3	1	
McCotte			Color	7	∞	7	7	7	7	7	7	∞	7	4	∞	7	7	6	00	00	6	6	6	3	7	
Trial,			Mat.	9	9	5	9	4	3	7	9	7	5	9	5	5	7	5	5	7	2	00	5	5	00	•
Variety)ata'	Poll.	Rx.b	6	00	6	2	7	6	6	6	9	6	6	6	9	7	00	9	9	6	6	6	9	2	(
otato	Plant Data	Dis.	Rx.ª	00	6	00	6	00	00	00	00	00	6	6	6	6	00	7	6	6	6	6	6	6	00	(
e 3b. F			Type]	5	9	3	00	7	9	7	6	7	00	5	5	6	3	7	9	9	2	3	1/7	4	6	
NORTH CAROLINA Table 3b. Potato Variety Trial, McCotter's Farm, Pamlico Co.	•		CLONE	Adora	AF1424-7	AF1433-4	AF1480-5	AF1565-12	Andover	Atlantic	B0564-8	B0766-3	B0811-13	B1004-8	Carlita	Cherry Red	ND2224-5R	Norvalley (ND2417-6)	ND2471-8	NY103	Reba (NY87)	Pike	Quaggy Joe	Red Gold	Snowden	

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.
² Number per 40 tubers - 10 tubers per replicate.
³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

	Total Yield	Marketable	Total Yield Marketable Yield ¹		Size Distribution by Class ³ (% of total yield)	ı by Class³ yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	3's	Culls	Gravity
AF1424-7	173	159	77	75	17	2.9	5.8	1.087
AF1433-4	172	161	73	71	23	5.0	1.0	1.073
AF1437-1	260	238	109	61	30	6.9	1.7	1.067
AF1480-5	222	197	91	63	26	4.3	6.7	1.079
AF1565-12	182	167	92	71	21	3.4	5.0	1.069
AF1615-1	208	193	91	56	37	6.1	1.0	1.073
AF1668-60	162	153	73	78	16	3.0	2.7	1.076
AF1726-9	249	229	107	69	23	3.8	4.3	1.076
AF1763-2	222	209	100	73	21	3.6	2.3	1.062
AF1774-2	199	184	84	61	31	5.5	2.3	1.073
AF875-15	232	216	102	71	22	4.1	3.0	1.087
Andover	147	139	64	69	26	3.7	1.4	1.084
Atlantic	238	219	100	77	15	3.3	4.9	1.087
B0564-8	205	191	06	69	24	5.1	1.8	1.082
B0766-3	178	168	77	69	25	4.9	1.3	1.085
B0856-4	271	246	118	71	20	3.4	5.6	1.076
B1065-51	182	174	82	88	7	1.8	2.6	1.078
B1065-64	167	153	72	63	29	5.0	3.4	1.078
B1240-12	113	104	48	77	15	4.3	3.2	1.075
D1240 14	001	110	0.4	0.3	10	1 0	7 1	1 082

Total 1's and 2's. 2 Standard = Atlantic. 3 Size classes: 1's = $\ge 1.7/8$ "; 2's = 1.7/8"; 3's = $\le 1.1/2$ "; culls = all defective potatoes.

					Size Distribution by Class	by Class		
	Total Yield	Marketable	le Yield ¹		(% of total yield)	ield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	3's	Culls	Gravity
B1342-21	151	144	89	79	16	4.1	8.0	1.085
B1406-10	170	158	74	65	28	5.4	1.7	1.082
B1429A-3	198	187	88	89	27	4.8	9.0	1.082
Itasca (MN12567)	242	232	109	76	20	2.8	1.3	1.077
Katahdin	209	200	95	75	20	3.0	2.0	1.080
Kennebec	290	276	127	83	12	2.0	2.7	1.083
ND2417-6	201	189	85	64	30	4.9	1.3	1.082
ND2471-8	220	205	95	99	26	4.4	2.8	1.087
Niska	234	217	102	61	32	5.2	1.7	1.085
NorValley	171	156	72	52	39	6.9	2.1	1.083
NY102	222	214	101	72	25	3.7	0.2	1.088
NY103 (ME)	248	233	110	77	17	2.5	3.4	1.079
NY103 (NY)	149	132	62	64	25	5.9	5.5	1.080
NY84(Salem)	253	237	111	81	13	3.2	2.9	1.070
NY87	191	172	82	99	24	5.5	5.0	1.076
Pike	169	159	74	74	20	3.4	2.7	1.089
Quaggy Joe	212	196	92	73	20	3.5	4.1	1.071
Snowden	201	188	87	89	26	3.4	3.1	1.082
Superior	236	226	105	85	111	1.4	2.8	1.077
Virton Gold	(7	ī	ŗ	~	7 7	0 7	1 002

Total 1's and 2's 2 Standard = Atlantic. 3 Size classes: 1's = $\ge 1.7/8$ "; 2's = 1.1/2" to 1.7/8"; 3's = $\le 1.1/2$ "; culls = all defective potatoes.

		Plant	Plant Datal			Ţ	Tuber Data ¹	ta ¹	Tuber Defects ²	efects ²		
		Dis.	Poll						Internal	Hollow	Chip	
CLONE	Type			Mat.	Color	Shape	App.	Size	Necrosis	Heart	Color	³ Comments
AF1424-7	2	6	6	9	6	2	2	\mathbb{Z}	0	0	3	some vascular ring, skins, soft rot, scab, rhizoctonia
AF1433-4	5	00	6	4	7	2	2	\mathbb{Z}	2	0	3	soft rot, rhizoctonia
AF1437-1	7	6	6	5	7	2	6	S-M	2	0	١	uniform, nice skin set, blocky
AF1480-5	9	6	∞	9	7	3	2	\mathbb{Z}	7	0	ı	lots of soft rot
AF1565-12	3	9	6	3	∞	2	3	M-L	0	0	•	lots of rhizoctonia, soft rot
AF1615-1	9	6	6	4	00	5	7	S-M	1	0	ı	nice bright skin
AF1668-60	2	7	6	5	7	2	7	S-M	0	0	3	lots of vascular ring, skins
AF1726-9	9	00	6	4	7	3	7	S-M	0	0	3	soft rot, growth cracks, nice skin set
AF1763-2	4	6	6	5	7	ϵ	7	M-L	0	0	1	some flats, uniform
AF1774-2	3	00	6	5	6	3	2	S-M	1	0	ı	most culls were misshapes
AF875-15	7	00	6	4	7	7	7	\mathbb{Z}	0	0	4	some vasc ring, rhizoct., deep apical eyes, short dorm
Andover	4	7	00	3	7	ϵ	7	S-M	1	0	3	some rhizoctonia, blocky
Atlantic	∞	00	00	9	7	2	2	M-L	11	0	3	soft rot
B0564-8	7	6	6	9	7	2	6	Σ	0	0	3	rhizoctonia, netting comparable to Atlantic
B0766-3	4	6	6	7	7	ϵ	7	Σ	3	0	3	skins
B0856-4	7	00	7	5	6	2	2	M-L	1	0	ı	scab, lots of soft rot, deep apical eyes, short dorm
B1065-51	9	00	6	5	7	3	6	M-L	3	0	1	uniform, heavy net
B1065-64	2	7	6	4	7	ϵ	7	S-M	2	0	3	medium, buff netted
B1240-12	3	00	6	4	∞	2	2	M-L	9	0	4	some flats, soft rot, blocky
B1240-14	"	o	0	V	٥	r	7	TY	-	-		lote of nitted scab lots of rhizoctonia lots of soft rot

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.

² Number per 40 tubers - 10 tubers per replicate.
³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

NORTH CAROLINA Table 4b (Cont'd.). NE184 Variety Trial, Washington Co	Table	4b (Co	nt'd.).	NE18	4 Variet	y Trial, V	Vashin	gton Co.		Planted	Planted 3-17,18-97	8-97 Harvested 7-1,2-97 (106 DAP)
		Plant Data	Data1			Tul	Tuber Data	a¹	Tuber Defects ²	efects ²		
		Dis.	Poll.						Internal	Hollow	Chip	
CLONE	Type	Rx.ª	Rx. ^b	Mat.	Color	Shape	App.	Size	Necrosis	Heart	Color	Color³ Comments
B1342-21	5	6	6	5	7	3	7	\mathbb{Z}	5	0	ı	lots of vascular ring, scab
B1406-10	6	∞	6	9	7	2	5	S-M	2	0	ı	lots of vascular ring, lots of skins
B1429A-3	3	7	6	5	7	2	7	S-M	3	0	2	some vascular ring, scab, nice skin
Itasca (MN12567)	∞	9	6	∞	8	3	7	\mathbb{Z}	0	0	7	some vascular ring, uniform, too flat?
Katahdin	9	∞	6	5	∞	3	5	\mathbb{Z}	2	0	ı	scab
Kennebec	∞	6	6	00	6	5	5	Γ	2	0	ı	scab
ND2417-6	9	6	6	9	7	2	5	\mathbb{Z}	_	0	3	lots of vascular ring, some flats
ND2471-8	7	6	6	7	7	2	5	S-M	-	1	3	lots of vascular ring, scab & soft rot; 1 w/black center
Niska	4	6	∞	7	∞	2	2	S-M	0	0	4	blocky, prominent brows, medium
Norvalley	9	7	6	9	7	2	7	S-M	0	0	2	some vascular ring,
NY102	«	∞	~	9	6	3	7	S-M	—	0	4	lots vasc ring, scab, blocky, flats, sm - med, prom lent
NY103 (ME)	7	6	6	9	7	3	7	M-L	-	0	2	lots of vascular ring, soft rot
NY103 (NY)	4	∞	∞	2	7	3	7	\mathbb{Z}	-	0	4	lots of soft rot, scab, some flats
NY84(Salem)	3	∞	6	9	∞	5	6	M-L	—	0		nice skin, some flats, most culls were misshapes, large
NY87	3	∞	6	2	6	2	2	\mathbb{Z}	0	0	3	scab, rhizoctonia, soft rot, blocky
Pike	4	6	6	∞	∞	3	6	S-M	2	0	4	rhizoctonia
Quaggy Joe	00	00	6	5	6	3	5	M-L	-	0	ı	scab, rhizoctonia
Snowden	7	6	9	7	7	2	2	\boxtimes	0	0	2	rhizoctonia, lots of skins, deep apical eyes
Superior	4	00	6	4	00	2	2	\mathbb{Z}	0	0	9	some soft rot
Yukon Gold	6	6	7	4	7	33	5	\mathbb{Z}	2	0	ı	scab, soft rot, rhizoctonia

See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.

² Number per 40 tubers - 10 tubers per replicate.

³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

				Siz	Size Distribution by Class3	ass³	
	Total Yield	Marketal	Marketable Yield ¹		(% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	Culls	Gravity
90245.1	117	66	48	83.8	8.6	6.4	1.079
90295.1	149	116	58	75.7	10.2	14.1	1.087
AF1424-7	138	119	09	86.4	4.8	8.8	1.081
AF1433-4	195	162	80	82.6	7.3	10.0	1.078
AF1565-12	81	89	33	81.2	3.9	14.9	1.077
AF875-15	138	105	51	75.3	4.7	20.0	1.090
Atlantic	239	203	100	85.0	4.7	10.3	1.090
B9922-11	192	164	81	84.6	4.2	11.3	1.088
Batavia	232	169	88	72.3	11.2	16.5	1.075
BelRus	125	94	47	75.1	14.2	10.8	1.087
Chieftain	219	193	86	88.5	5.9	5.6	1.075
Dk Rd Norland	157	120	09	75.9	9.3	14.8	1.071
Katahdin	205	133	19	64.2	7.8	28.0	1
Kennebec	264	200	66	75.6	6.2	18.2	1.082
MSB073-2	214	180	88	82.5	9.3	8.2	1.094
MSC120-1Y	170	135	65	78.5	8.0	13.5	1.086
MSC148-A	215	175	85	80.5	13.6	5.9	1.085
ND2224-5R	168	117	58	8.89	12.5	18.7	1.062
Nishiyutaka	206	142	71	68.7	14.9	16.4	1.075
NY103 (NY)	161	134	70	82.9	7.4	9.7	1.082
NY84 (Salem)	228	188	76	81.9	8.9	11.3	1.078
NY87 (Reba)	173	134	29	78.2	9.2	12.5	1.084
Snowden	251	207	104	81.7	0.6	9.4	1.095
Superior	213	193	86	90.5	3.6	5.8	1.073
VirtonGold	70	0.1	C	9 03	0 4	386	1 081

¹ Total 1's.

² Standard = Atlantic. ³ Size classes: 1's = ≥ 1 7/8"; 2's = 7/8" to 1 7/8"; culls = all defective potatoes.

		Plan	Plant Data ¹			Tuber Data	ata		Tul	Tuber Defects ²	fects ²
		Dis.	Poll.						Internal	Hollow	
CLONE	Type	e Rx.ª	Rx.b	Mat.	Color	Shape	App.	Size	Necrosis	Heart	Comments
90245.1	6	∞	6	1	7	5	5	M-L	0	0	points, netting, skins, mixed large & small
90295.1	6	00	6	1	7	3	3	\mathbb{Z}	2	0	flats, secondary tubers, skins, greens, misshapes
AF1424-7	2	9	9	,	7	2	5	\boxtimes	0	0	secondary tubers, skins, flats, netting, blocky
AF1433-4	3	9	5	1	7	2	∞	Γ	0	0	netting, blocky, misshapes, wireworm
AF1565-12	2	7	∞	1	7	3	5	Ţ	2	0	points, flats, mixed large & small, alligator skin, nice
AF875-15	3	7	7	ı	7	3	3	Ţ	0	0	secondary sprouting, secondary tubers, flats, skins
Atlantic	4	∞	∞	ı	7	2	∞	Ţ	0	0	skins, flats, lots of smalls, blocky
B9922-11	4	5	5	1	5	5	∞	\mathbb{Z}	0	0	blocky, misshapes, nice russet, flats, skins
Batavia	7	00	∞	1	∞	2	5	\mathbb{Z}	0	0	nice skin, secondary sprouting, secondary tubers
BelRus	3	9	9	ı	5	5	5	\mathbb{Z}	0	0	skins, lots of misshapes
Chieftain	3	9	7	٠	2	3	3	M-S	0	0	secondary sprouting, flats, skins, pink skin
Dk Rd Norland	2	9	∞		2	2	5	\mathbb{Z}	0	0	nice skin, points, flat, mixed large & small
Katahdin	9	∞	7	,	∞	2	∞	\mathbb{Z}	0	0	greens, flats, skins, lots of wireworm, misshapes
Kennebec	∞	∞	∞	1	∞	5	5	Ţ	1	0	most culls misshapes or greens, skins, flats
MSB073-2	5	∞	6	,	7	2	000	M-S	0	0	skins, mixed sizes, uniform
MSC120-1Y	3	7	∞	,	7	3	00	M-L	0	0	misshapes, smalls, wireworm, yellow flesh, pink blush
MSC148-A	4	7	000	,	7	2	7	M-L	0	0	flats, skins, lots of smalls, some scab
ND2224-5R	2	5	7	,	7	3	00	M-L	0	0	dark red, smalls, wireworm, some Rhizoctonia
Nishiyutaka	7	7	9	,	7	3	5	Γ	0	0	nice skin, skins, flats, secondary tubers
NY103 (NY)	3	∞	8	ı	∞	2	∞	M-L	2	0	very round, nice, some Rhizoctonia
NY84 (Salem)	9	7	6	,	∞	3	5	ļ	5	0	skins, flats, blocky, mixed sizes
NY87 (Reba)	7	00	∞	1	∞	2	5	\boxtimes	2	0	flats, blocky, meddeep eyes
Snowden	8	∞	7	à	∞	2	3	M-S	0	0	misshapes, growth cracks, skins
Superior	2	7	∞	ı	∞	3	∞	M-L	0	0	flats, blocky, skins
Yukon Gold	3	7	00	,	∞	7	3	ļ	0	0	skins, mixed sizes

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.
² Number per 40 tubers - 10 tubers per replicate.
³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

					Size Distribu	Size Distribution by Class ³		
	Total Yield	Marketable Yield ¹	ble Yield ¹		(% of tc	(% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	3's	Culls	Gravity
B0811-13	209	194	98	99	26	5.7	1.9	1.097
B0811-4	156	139	62	45	44	10.6	8.0	1.092
B0852-7	147	136	09	73	19	2.5	5.1	1.082
B0985-1	102	91	41	54	35	7.4	3.4	1.068
Cherry Red	255	243	108	81	14	2.4	2.3	1.086
Chieftain	274	261	115	84	11	3.0	1.9	1.068
Dk Rd Norland	242	231	102	80	15	2.8	2.1	1.068
ND2224-5R	191	172	77	57	33	8.3	1.7	1.067
ND2225-1R	183	164	73	51	38	8.6	1.7	1.071
NorDonna	262	249	110	83	12	2.7	2.4	1.070
Red Gold	246	224	66	70	21	3.9	5.0	1.084
Red LaSoda	241	229	102	98	6	1.5	3.6	1.065

Total 1's and 2's. 2's and 2's. Standard = Superior. Size classes: 1's = $\ge 1.7/8$ "; 2's = 1.1/2" to 1.7/8"; 3's = 1.1/2"; culls = all defective potatoes.

Dis. Poll. Poll. Internal Hollow			Plant	Plant Data¹			Tu	Tuber Data	ta 1	Tuber Defects ²	efects2	
Type Rx* Rxb Mat. Color Shape App. Size Necrosis Heart 5 8 8 4 2 1 7 5 M 0 0 4 4 7 4 2 1 7 5 M 0 6 7 7 7 2 2 1 3 M 17 0 1and 8 9 9 6 2 5 1 3 M 17 0 R 9 8 8 7 3 5 M 0 0 R 9 9 6 5 5 5 9 0 R 9 8 8 7 3 5 0 0 R 9 8 8 7 3 0 0 0 R 9 9 6 2 5 5 3 0 0 R 9 9 6 2 5 5 3 M 0 R 9 8 8 7 3 5 0 0 R 9 9 6 2 5 5 3 M 0 R 9 8 8 7 3 5 M 0 R 9 9 4 2 5 5 M 0 M 17 0 0 M 17 0 0 M 18 0 3 3 5 M 17 0 M 19 0 0 M 10			Dis.	Poll.						Internal	Hollow	
5 8 8 4 2 1 7 S-M 0 0 0 4 4 7 4 2 1 7 S-M 0 0 0 d 8 8 4 1 3 M-L 3 0 0 0 d 8 9 9 6 2 2 5 3 M 17 0 R 3 7 8 3 5 5 M 0 0 0 R 3 7 8 3 5 5 M 0 0 0 R 5 8 8 5 2 1 7 M 0 0 0 d 4 8 9 4 2 3 7 M 1 0 0	CLONE	Type		Rx.b	Mat.	Color	Shape	Арр.	Size	Necrosis	Heart	Comments
5 8 4 7 4 7 4 7 5 M 0 0 4 4 7 4 2 1 7 S 0 0 4 4 7 4 1 3 M 1 3 0 0 6 7 7 2 2 1 3 M 0 0 0 d 8 9 6 2 2 3 M 0 0 0 land 3 6 2 5 3 M 17 0 R 9 8 7 3 5 M 0 0 R 3 6 3 2 5 M 0 0 R 9 4 2 3 7 M 1 0 8 9 4 2 3 7 M <td></td>												
4 4 7 4 2 1 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B0811-13	5	8	8	4	2	-	7	S-M	0	0	dark red. yellow flesh, heavy netting, rhizoctonia, sca
3 8 4 1 3 M—L 3 0 d 8 9 9 6 2 5 3 M—L 3 0 cland 8 9 9 6 2 5 3 M 17 0 R 9 8 7 3 5 M 17 0 0 R 3 8 7 M 0 0 0 0 0 0 0 0 R 2 7 3 4 8 5 M 0	80811-4	4	4	7	4	2	-	7	S	0	0	good skin set, flsh drkr yellow than B0811-13, small
d 8 9 9 6 2 5 3 M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10852-7	3	8	8	4	-	ಬ	ಚ	M-L	3	0	purple, white flesh, sticky stolons, scurf
d 8 9 9 6 2 5 3 S-M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80985 - 1	9	~	7	2	2	1	3	M	0	0	dark red, white flesh, soft rot, alligator skin, scurf
Hand 3 7 8 8 7 3 5 3 M 17 0 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cherry Red	8	6	6	9	2	5	3	S-M	0	0	dark red, soft rot, rhizoctonia, heavy alligator skin
Hand 3 7 8 3 5 5 M 0 0 0 R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hieftain	6	80	8	7	ಣ	5	ಚ	M	17	0	lots of skins
R 2 7 2 2 5 7 M 0 0 0 R 5 5 7 M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	k Rd Norland	3	~	8	ಬ	3	5	5	M	0	0	growth cracks, skins
R 2 7 9 3 2 5 M 0 0 0 1 2 5 8 W 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D2224-5R	3	8	7	2	2	5	~	M	0	0	dark red
5 8 8 5 2 1 7 M—L 1 0 1 4 8 9 4 2 3 7 M 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0	VD2225-1R	2	7	6	ಣ	2	5	5	M	0	0	too much netting, good skin set
4 8 9 4 2 3 7 M 1 0 1 3 7 8 4 3 3 5 M 2 0 1	NorDonna	5	8	8	5	2	_	~	M-L	-	0	heavy alligator skin
3 7 8 4 3 3 5 M 2 0	Red Gold	4	8	6	4	2	ಚ	~	M		0	Lots of vascular ring, scabby, sunscald, yellow flesh
	Red LaSoda	3	~	8	4	က	ಣ	2	M	2	0	lots of soft rot, scab, lumpy

(106 DAP)

Harvested 7-1,2-97

Planted 3-17,18-97

NORTH CAROLINA Table 6b. Red Potato Variety Trial, TRS/VGJREC, Washington Co.

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.
² Number per 40 tubers - 10 tubers per replicate.

	Total Yield	Marketable Yield¹	le Yield¹		Size Distribution by U (% of total yield)	oize Distribution by class (% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std.²	1's	2's	3's	Culls	Gravity
81004-8	166.1	153.4	89	58.1	34.1	7.8	0.0	1.0742
39922-11	217.9	211.4	94	9.88	8.5	1.5	1.4	1.0800
BelRus	195.2	182.1	81	64.3	29.0	3.4	3.3	1.0834
Century Russet	394.9	384.2	170	70.5	26.8	2.3	0.3	1.0812
Joastal Rus	181.8	165.8	73	65.3	26.5	8.2	0.0	1.0693
/1099Rus	239.6	229.8	102	68.1	27.7	3.4	0.7	1.0975

² Standard = Superior. ³ Size classes: 1's => 1 7/8"; 2's = 1 1/2" to 1 7/8"; 3's \leq 1 1/2"; culls = all defective potatoes. 'Total I's and 2s.

NORTH CAROLINA Table 7b. Russet Potato Variety Trial,	able 7b.	Russet	Potato	Variety '	Trial, TRS/	/VGJREC	Washing	ton Co.	Plant	ed 3-17,18	-97	TRS/VGJREC, Washington Co. Planted 3-17,18-97 Harvested 7-1,2-97 (106 DAP)	(106 DAP)
		Plant	Plant Data ¹				Tuber Data¹	ıta 1		Tuber	Tuber Defects ²		
CLONE	Type	Dis. Rx.ª	Dis. Poll. Type Rx. ^a Rx. ^b	Mat.	Color	TXT.	Color TXT. Shape App. Size	App.	Size	Internal Hollow Necrosis Heart	Hollow Heart	Internal Hollow Necrosis Heart Comments	
B1004-8	5	6	6	8	5	2	89	5	ţ	1	0	heavy russet	
B9922-11	9	∞	6	5	5	2	8	~	I	2	0	heavy russet, uniform, nice, but small	nice, but small
BelRus	5	80	6	9	5	2	8	3	I	-	0	lots of soft rot, patchy russeting	y russeting
Continu Duggot	0	0	0	0	15	_	α	5	I		C	heavy russet long hest of russets tested	at of russets tested

neavy russel, long, best of russels tested growth cracks, patchy russeting small 0 0 2 0 n n ∞ 2 2 2 2 60 ∞ 20 6 3 Century Russet Coastal Rus W1099Rus

1. See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.

² Number per 40 tubers – 10 tubers per replicate.

					Size Distribution by Class ³	tion by Class ³		
	Total Yield	Marketable	ble Yield¹		(% of to	(% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std.²	1's	2's	3's	Culls	Gravity
8800.1	204	191	87	71	22	5.6	0.8	1.062
90245.1	210	195	68	64	29	7.0	0.0	1.080
90295.1	172	156	71	56	34	9.5	0.0	1.082
AF1838-3	177	162	74	58	33	6.5	1.8	1.082
AF1845-3	296	285	130	79	18	3.3	9.0	1.083
AF1845-7	216	207	94	71	24	3.0	1.5	1.070
AF1852-1	319	301	137	98	∞	3.1	2.6	1.072
AF1852-3	150	125	57	31	52	15.3	1.1	1.085
AF1856-1	240	230	105	88	∞	1.4	2.7	1.082
AF1864-22	167	155	71	51	42	6.9	0.0	1.080
B0984-1	251	243	1111	98	10	1.3	2.0	1.082
B1072-21	241	231	105	92	4	1.4	2.7	1.074
B1075-26	188	173	79	73	19	3.5	4.3	1.081
B1088-37	285	282	129	93	9	9.0	9.0	1.071
B1091-29	234	214	86	72	20	4.2	4.2	1.081
B1102-3	139	121	55	99	31	12.9	0.0	1.082
B1145-2	149	139	64	61	33	5.5	1.1	1.058
B1206-10	235	214	86	81	10	0.7	8.3	1.073
B1214-7	239	221	101	87	5	2.1	5.5	1.080
B1240-1	279	269	123	91	5	1.2	2.3	1.081

	Total Yield	Marketable	ole Yield"		Size Distribut (% of tot	Size Distribution by Class ³ (% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	3's	Culls	Gravity
B1307-27	296	287	131	79	18	2.8	9:0	1.083
B1315-31	220	205	94	70	24	6.7	0.0	1.080
B1321-21	286	271	124	82	13	2.3	2.9	1.081
B1321-22	267	246	112	72	20	4.3	3.7	1.078
B1338-27	212	195	68	44	48	7.7	0.0	1.077
B1344-18	241	225	103	89	25	5.4	1.4	1.080
B1375-14	183	170	77	65	28	5.4	1.8	1.082
B1399-4	280	272	124	87	10	1.2	1.7	1.083
B1401-5	208	197	06	65	30	2.4	3.1	1.086
B1408-3	244	234	107	85	11	3.4	0.7	1.089
B1409-2	214	206	94	29	29	3.8	0.0	1.090
B1414-2	212	202	92	87	∞	1.5	3.1	1.082
B1415-7	275	271	124	93	9	1.2	0.0	1.076
B1418-2	192	178	81	78	15	3.4	3.4	1.079
B1425-9	271	256	117	75	19	4.2	1.2	1.093
B1429A-6	225	218	100	85	12	2.2	0.7	1.083
B1452-10	202	194	68	75	21	2.4	1.6	1.086
B1452-22	280	262	120	81	13	4.1	2.3	1.070
B1452-9	232	218	66	77	17	4.2	2.1	1.077
01476.0	•	1	()	,		,	,	

			•		Size Distribu	Size Distribution by Class		(
	Total Yield	Marketa	Marketable Yield ¹		(% of to	(% of total yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	3,8	Culls	Gravity
B1469-2	75	70	32	70	24	2.2	4.3	1.082
B1473-10	66	95	44	83	13	3.3	0.0	1.077
B1475-1	220	202	92	73	19	5.2	3.0	1.077
B1477-1	225	212	76	77	17	2.9	2.9	1.084
B1477-5	216	203	93	76	18	4.5	1.5	1.081
B1479-4	158	151	69	69	27	4.1	0.0	1.081
B1481-2	165	152	69	80	12	0.9	2.0	1.082
B1491-20	141	126	58	59	30	9.3	1.2	1.073
B1491-5	173	157	72	49	42	9.4	0.0	1.077
B1492-15	181	168	77	77	15	4.5	2.7	1.067
B1493-2	232	225	103	06	7	1.4	1.4	1.068
B7200-33	239	216	86	58	33	4.8	4.8	1.075
Batavia	261	240	110	89	24	5.6	2.5	1.059
ND2470-27	322	309	141	81	15	2.5	1.5	1.084
ND2676-10	185	175	80	64	31	5.3	0.0	1.080
ND3574-5R	210	193	88	58	34	6.2	1.6	1.063
ND3647-6	281	246	113	59	29	6.4	5.8	1.071
ND3828-15	275	267	122	80	17	2.4	9.0	1.075
ND4778-2	148	133	61	09	30	9.9	3.3	1.062
Nishiyutaka	203	188	98	29	26	6.4	8.0	1.071

NORTH CAROLINA Table 8a (Cont'd.). Unreplicated Potato Trial, TRS/VGJREC, Washington Co. Planted 3-17,18-97 Harvested 7-1,2-97 (106 DAP)

					Size Distribution by Class ³	ion by Class ³		
	Total Yield	Marketa	Marketable Yield ¹		(% of total yield)	al yield)		Specific
CLONE	cwt/A	cwt/A	% Std. ²	1's	2's	3's	Culls	Gravity
NYP21-2	303	290	132	98	10	3.2	1.1	1.073
NYP32-3	186	181	83	74	24	2.6	0.0	1.096
NYP63-1	227	206	94	78	13	6.5	2.9	1.089
NYP73-2	196	185	84	50	44	5.0	0.8	1.088
NYQ3-12	218	208	95	79	16	3.0	1.5	1.083
NYQ8-2	260	242	111	77	16	3.1	3.8	1.083
NYR17-11	239	233	106	98	11	2.7	0.0	1.070
NYR17-19	180	163	75	55	36	6.4	2.7	1.079
NYR17-2	255	242	110	82	13	2.6	2.6	1.070
NYR17-20	221	205	94	92	17	3.0	4.4	1.079
NYR17-7	302	286	130	78	16	3.2	2.2	1.076
NYR170-6	259	246	112	59	36	5.1	0.0	1.076
NYR18-4	261	239	109	65	26	6.3	2.5	1.077
NYR18-6	213	201	92	29	28	3.8	1.5	1.073
NYR19-20	246	229	104	64	29	3.2	4.0	1.081
NYR19-7	188	173	79	83	6	2.6	5.2	1.072
NYR41-11	317	304	139	92	20	4.1	0.0	1.074
NYR41-18	236	231	105	77	21	1.4	0.7	1.076

Total 1's and 2's

² Standard = Atlantic.

³ Size classes: 1's = 2 + 17/8''; 2's = 1 + 1/2'' to 1 + 7/8''; 3 = 4 + 1/2''; culls = all defective potatoes.

NORTH CAROLINA Table 8b. Unreplicated Potato Trial TRS/VGJREC, Washington Co.	A Table	8b. Uı	nreplica	ated Pots	ato Trial	TRS/V	GJREC	C, Washin	igton Co.	Planted 3-17,18-97	3-17,1	8-97 Harvested 7-1,2-97 (106 DAP)
		Plant	Plant Data1			Tu	Tuber Data1	ıta'	Tuber Defects ²	efects ²		
		Dis.	Poll.						Internal	Hollow	Chip	
CLONE	Type	Rx.ª	Rx.b	Mat.	Color	Shape	App.	Size	Necrosis	Heart	Color ³	Comments
8800.1	3	4	6	2	∞	4	2	M-L	0	0	•	short dormancy
90245.1	6	∞	6	9	5	5	2	\mathbb{Z}	0	0	ı	
90295.1	5	7	6	7	7	2	6	S	1	0	ı	light red?
AF1838-3	5	4	3	4	7	5	3	\mathbb{Z}	_	1	1	
AF1845-3	6	6	6	∞	∞	3	7	\mathbb{Z}	0	0	4	blocky, uniform, bright white, too many smalls?
AF1845-7	Э	00	00	3	00	2	5	\mathbb{Z}	0	0	1	
AF1852-1	9	6	∞	5	∞	ю	6	M-L	3	_	7	uniform, very nice
AF1852-3	3	00	6	8	7	_	2	S	0	0	•	yield off
AF1856-1	2	6	7	9	∞	3	6	M-L	п	0	7	blocky, nice size distribution
AF1864-22	6	00	6	4	7	_	6	S	1	0	ı	
B0984-1	3	00	6	4	2	_	6	\mathbb{Z}	0	0	•	white flesh
B1072-21	2	00	6	2	∞	7	6	M-L	0	0	4	very uniform, eyes with pink blush
B1075-26	2	9	9	4	∞	3	7	\mathbb{M}	1	0	•	lenticels obvious
B1088-37	3	00	6	4	7	3	2	Γ	0	0	2	uniform, nice skin, large
B1091-29	3	7	6	5	7	_	6	\mathbb{Z}	0	0	1	some scab, blotchy netting (russet background?)
B1102-3	2	00	00	3	7	_	2	S-M	0	0	ı	medium-small, prominent eyebrows, white flesh
B1145-2	2	7	6	1	2	_	2	\mathbb{Z}	0	0	1	some silver scurf
B1206-10	5	7	6	5	7	2	6	\mathbb{Z}	7	1	ı	growth cracks, misshapes
B1214-7	2	6	6	5	7	_	2	Г	0	0	2	good size, shape
B1240-1	7	∞	6	6	7	3	2	M-L	_	0	n	nice size dist., skins, oblong

NORTH CAROLINA Table 8b (Cont'd.). Unreplicated Potato Trial, TRS/VGJREC, Washington Co. Planted 3-17,18-97 Harvested 7-1,2-97 (106 DAP)

		Plant	Plant Data ¹			Tut	Luber Data'	'a'	I uber Defects*	efects*		
		Dis.	Poll.						Internal	Hollow	Chip	
CLONE	Type	Rx.ª	RX.b	Mat.	Color	Shape	App.	Size	Necrosis	Heart	Color³	Color³ Comments
B1307-27	2	00	6	∞	7	5	7	\mathbb{Z}	9	0	1	
B1315-31	5	4	2	5	6	1	2	S-M	0	0	1	some scab
B1321-21	9	6	6	7	7	_	7	Σ	0	0	4	nice size distribution, medium
B1321-22	3	6	6	2	7	1	2	M-L	1	0	3	lots of smalls
B1338-27	5	7	6	2	7	3	2	S	0	0		
B1344-18	9	6	6	4	7	3	7	M-L	0	0	4	flats, blocky, lots of smalls
B1375-14	2	9	6	3	7	2	3	S-M	0	0	٠	lots of soft rot
B1399-4	2	∞	6	2	7	3	7	\mathbb{Z}	0	0	2	blocky, nice appearance
B1401-5	8	7	6	9	3	∞	6	\mathbb{Z}	0	0	١	lots of misshapes, blocky
B1408-3	5	6	6	∞	7	1	2	M-L	2	0	4	nice size mix, heavy net, buff
B1409-2	2	∞	6	7	2	5	7	S-M	0	2	•	russet, cracks, lots of smalls
B1414-2	2	6	6	9	6	2	7	\boxtimes	0	0	3	lots of soft rot, nice size distribution
B1415-7	5	00	6	7	7	1	6	M-L	0	0	3	nice size dist.
B1418-2	∞	6	7	9	7	1	3	\boxtimes	0	0	٠	soft rot, lots of skins, rhizoctonia
B1425-9	5	00	6	2	7	1	7	\mathbb{Z}	2	0	4	deep eyes
B1429A-6	2	00	00	4	∞	1	7	\boxtimes	0	0	3	uniform
B1452-10	5	2	00	9	2	5	7	S	1	1	•	
B1452-22	3	00	∞	5	7	1	2	M-L	0	0	ı	some smalls flats
B1452-9	2	∞	6	2	7	_	2	M-L	0	0	1	flattish, nice skin
B1465-2	2	9	000	4	7	1	6	S-M	0	0	•	

		Plant	Plant Data ¹			Tu	Tuber Data ¹	ıta¹	Tuber Defects ²	efects ²		
		Dis.	Poll.						Internal	Hollow	Chip	
CLONE	Type	RX.ª	RX.	Mat.	Color	Shape	App.	Size	Necrosis	Heart	Color	³ Comments
B1469-2	4	7	6	5	∞	∞	3	Σ	4	0	ı	no yield, blotchy russeting
B1473-10	7	00	6	7	7	_	5	Σ	0	0	1	flats
B1475-1	5	6	6	6	7	3	5	Σ	4	0	9	
B1477-1	7	00	6	5	7	7	7	Σ	0	0	4	nice size distribution, short dormancy
B1477-5	5	00	6	2	∞	1	7	Σ	_	0	•	flattish, scab
B1479-4	1	00	6	2	∞	4	5	\mathbb{Z}	0	0	٠	flats
B1481-2	2	∞	6	7	7	1	3	S-M	2	0	1	poor skin
B1491-20	5	00	6	7	2	1	5	M	0	0	•	low yield
B1491-5	9	00	4	7	2	П	7	S-M		0	1	sticky stolons, good skin set, white flesh
B1492-15	2	7	000	2	4	+-1	7	M-L	0	0	1	cream colored flesh, dark red skin
B1493-2	2	00	6	9	2	1	2	M-L	0	0	,	skins, netting too heavy?, white flesh,
B7200-33	2	6	7	2	00	9	7	\mathbb{M}	0	0	•	nice skin, longish, won't fit our needs
Batavia	9	00	000	2	7	П	2	\mathbb{Z}	0	0	١	white flesh
ND2470-27	3	6	6	9	00	1	2	Σ	71	0	ŀ	points, irregulars
ND2676-10	3	00	6	5	6	_	7	S-M	0	0	1	low yield
ND3574-5R	2	5	6	7	2	3	2	\mathbb{Z}	0	0	1	prominent eye brows, smooth skin
ND3647-6	9	00	6	7	8	_	2	M	4	0	ı	lots of skins, growth cracks, flat
ND3828-15	3	6	7	4	00	П	2	\mathbb{Z}	0	0	1	nice skin
ND4778-2	3	4	6	_	6	_	2	\mathbb{Z}	0	0	1	soft rot, low yield
Nichivataka	0	9	0	4	_	-	7	\geq	0	0	ı	blotchy netting, nice size distribution

106 DAP)			
Harvested 7-1,2-97			
Planted 3-17,18-97		Chip	Necrosis Heart Color ³ Comments
gton Co.	fects ²	Hollow	Heart
EC, Washing	Tuber Defects ²	Internal Hollow Chip	Necrosis
licated Potato Trial, TRS/VGJR	Tuber Data'		Color Shape App. Size
NORTH CAROLINA Table 8b (Cont'd.). Unreplicated Potato Trial, TRS/VGJREC, Washington Co. Planted 3-17,18-97 Harvested 7-1,2-97 106 DAP)	Plant Data'	Dis. Poll.	Type Rx. ^a Rx. ^b Mat.
NORTH CARO			CLONE

NYP21-2	6	7	∞	7	7	_	5	\mathbb{M}	0	0	2	medium size, blocky
NYP32-3	7	6	6	9	00	4	7	M	0	0	1	lots of smalls, nice skin, too flat
NYP63-1	6	6	6	7	7	7	2	S-M	0	0	1	skins
NYP73-2	5	7	6	9	6	3	7	S-M	33	0	1	flats
NYQ3-12	5	00	6	4	8	_	5	S-M	0	1	3	lots of smalls
NYQ8-2	5	6	6	∞	7	3	3	\mathbb{Z}	0	0	1	skins, bruising, infected lenticels
NYR17-11	2	6	6	5	6	_	7	\mathbb{Z}	0	0	1	nice shape & size distribution
NYR17-19	7	6	6	5	~	4	2	S-M	0	0	ı	too many oblongs
NYR17-2	6	2	6	4	∞	_	5	M	2	0	1	lots of greens
NYR17-20	5	6	6	000	«	_	2	\mathbb{M}	0	0	1	mixed sizes, growth cracks
NYR17-7	3	6	00	7	00	3	6	\mathbb{Z}	0	0	7	nice skin, some flats and points
NYR170-6	5	00	∞	∞	∞	_	5	S-M	3	0	١	prominent lenticels, too small
NYR18-4	9	00	6	∞	7	3	2	S	0	0	1	growth crack, flat
NYR18-6	5	00	7	5	6	3	7	S-M	1	0	1	BV nice skin, too small, pts
NYR19-20	6	6	6	7	7	7	7	S-M	1	0	1	blocky
NYR19-7	9	00	6	5	7	5	6	M-L	4	0	1	soft rot, lots of skins, bruises
NYR41-11	9	6	6	∞	∞	2	6	M	0	0	7	good crop!, nice skin, too small?
NYR41-18	5	6	6	7	7	_	6	\mathbb{Z}	4	0	1	spongy

¹ See the standard NE-184 rating system for key to codes: a) disease reaction, b) pollution reaction.
² Number per 40 tubers - 10 tubers per replicate.
³ Chip color supplied by Wise Foods. 1 = paper white; 4 = acceptable; 5 = barely acceptable; 6 = unacceptable; 9 = black chip.

NORTH DAKOTA POTATO VARIETY TRIALS AND BREEDING REPORT Richard Novy¹, Bryce Farnsworth¹, and Mike Schwalbe¹ in collaboration with Nikolay Balbyshev¹, Neil Gudmestad², Edna Holm³, Jim Lorenzen¹, Roald Lund¹, Paul Orr⁴, Duane Preston⁵, Gary Secor², Joe Sowokinos⁶, Brad Brummond⁷.

Crossing and Seedling Production

In 1997, a total of 2,601 crosses were made in the greenhouse resulting in the production of 424 Thirty percent of the families had one or families. more parents that were identified as having late blight resistance. During the summer of 1997, 123,414 seedlings were grown for minituber production--a 33% increase since 1996. The increase in seedling numbers reflects the breeding program's efforts to develop late blight resistant cultivars. Twenty-two percent of the potato families planted for seedling tuber production in 1997 had one or more parents that were identified as having late blight resistance. In collaboration with Drs. Gudmestad and Secor, approximately 7,000 potato seedlings were screened for late blight resistance using a detached leaf assay this past summer. These evaluations provide the breeeding program with valuable data on late blight resistance within a family at a very early stage of the breeding program.

1st Year Selections

Approximately 84,500 red and white-skinned seedlings were grown at the Langdon Agricultural

Department of Plant Sciences;
 Department of Plant Pathology;
 Department of Food and Nutrition, all at North Dakota State University;
 USDA/ARS;
 Ext. Service, NDSU/UMN;
 UMN;
 Walsh Co. Ext. Service, NDSU.

Technical assistance of the following people is gratefully acknowledged:

Dean Peterson, Myron Thoreson, Galen
Thompson, Anne Erickson, and Louise Heinz.
Special thanks to Carl Hoverson and Brian
Vculek for the use of their land and the maintenance of the irrigated trials during the 1997 growing season.

Financial support of the breeding program by the Red River Valley Potato Growers Association is gratefully acknowledged. Experiment Station, and an additional 8,200 russet seedlings were grown and evaluated at the Horticulture Research Farm at Absaraka. The russet selections were moved to Absaraka (with its associated warmer soil temperature) to improve the expression of russeting on the tubers. However, the presence of the russet seedlings at Absaraka has utilized land that could be used for the evaluation of a greater number of second year selections. Rather than be limited at this critical stage of the breeding program, the decision was made to move the russet seedlings back up to Langdon in 1998. Seedlings were planted on June 6th at Absaraka and on May 20th and 21st at Langdon. Evaluation and harvesting was conducted September 8-10 at Langdon and October 26th at Absaraka.

Advanced Selections

Replicated plantings of 1,072 second year selections from the 1996 seedling crop were planted at Grand Forks and Absaraka. A total of two hundred and twenty-two second-year selections were saved at harvest from both sites. Of the advanced material (>2 year material), 389 selections were planted and 162 were saved at harvest. Third year and older selections were planted at the Casselton Agronomy Seed Farm for clean seed stock production.

Cultivar and Advanced Selection Yield Trials Trials were conducted under dryland conditions at Grand Forks (Potato Research Farm) and at Park River, ND. In addition, two irrigated trials were established on growers' fields near Oakes and McCanna, ND. Spacing, fertility, planting and harvest dates are listed in Table 1. The four trials, with a few entry differences, were replicates of one another. They consisted of standard and newly released varieties, and advanced NDSU, Idaho and Oregon selections. The replication across sites allowed for the assessment of the potato selections and cultivars under both dryland and irrigated conditions. The Grand Forks site also consisted of two additional trials -- a Secondary trial consisting of additional ND selections, and an Out-Of-State trial consisting primarily of entries from Texas and Europe.

Plots in the dryland and irrigated trials consisted of four replications of 25 and 20 hills respectively. A randomized complete block design was used at McCanna, Park River and Grand Forks, while a completely randomized design was used at Oakes.

Irrigated Sites

McCanna: The average total yield of the 35 entries at the McCanna site was 450 cwt/A. Average U.S. No. 1 yield was 396 cwt/A. Lili, a potential cultivar for fry production with yellow flesh and skin was the the highest yielding with a U.S. No. 1 yield (cwt/Acre) of 566 (Table 2). ND860-2 was the lowest yielding entry at 247. ND5084-3R was the highest-yielding red at 502, outyielding Red Pontiac at 479. The size distribution between ND5084-3R and Red Pontiac was quite different however, with Red Pontiac having a much larger percentage of tubers in the >3" category (42% -vs- 12%). ND2470-27 was the highest yielding white-skinned chipping variety at 513, significantly outyielding the standard chipping cultivars Snowden (370), and Norchip (350). ND2470-27 also had no incidence of internal defects among 48 tubers examined. Again, for the second year, the highest yielding russet in the McCanna trial was the Idaho selection A79180-10 at 487, which significantly outyielded Russet Burbank at 326. A79180-10 was rated quite highly for french fry production in 1995, but received lower but acceptable ratings in 1996 (Table 9).

Oakes: The average total yield of the 34 entries evaluated at this site was 317 cwt/A. Average U.S. No. 1 yield was 248 cwt/A. The Idaho russet selection, A79180-10, was the highest yielding entry for U.S. No. 1's at 381, significantly outyielding the standard fry cultivars Russet Burbank (200) and Shepody (229) (Table 3). ND860-2, as at McCanna, was the lowest yielding entry at 208. ND2470-27, a white-skinned chipping cultivar was tied with Red Pontiac for the second-highest vielding entry at 346. As noted in the McCanna trial, ND2470-27 had a low incidence of internal defects at Oakes. ND5084-3R, the highest yielding red in the McCanna trial was the second-highest yielding red after Red Pontiac at 320. ND3574-5R was also worthy of mention, closely following ND5084-3R at 303. Both ND5084-3R and ND3574-5R had a lower incidence of hollow heart than Red Pontiac.

Non-Irrigated Sites

Park River: Last used as a test site in 1994, a trial was again established at Park River in collaboration with Brad Brummond, Walsh County Extension Agent. Average total yield of all entries at the site was 233 cwt/A. Average U.S. No. 1 yield at the site was 164 cwt/A. The highest yielding entry was Red Pontiac at 281 followed closely by NorValley at

278 (**Table 4**). Both *NorValley* and *Red Pontiac* significantly outyielded all other entries in the trial. Again, A79180-10 was the highest yielding russet entry at 215.

Grand Forks: Three trials were conducted under dryland conditions at the Potato Research Farm. These trials (State, Secondary, and Out-of-state) looked good up to the end of June into early July when approximately 4.5" of rain fell during an 11 day period. Flooding of the trials occurred with the impact being extremely low yields. The data from the trials has been summarized for this report (Tables 5, 6, and 7), but the relative merit of the entries in these trials cannot be effectively assessed due to the impact the flooding had on yields. Nonetheless, this yield data does provide an assessment of performance in water-saturated soil. Worthy of mention was ND5822C-7 (Table 6), with a high (89%) U.S. No. 1 percentage resulting in a U.S. No. 1 yield of 143 cwt/A.

Summary: The performance of the entries at the Oakes, McCanna, and Park River sites have been summarized in Table 8. The Grand Forks trial has not been included due to the poor yields obtained.

Processing Trials

French Fries: Samples were tested for french fry quality by the Food and Nutrition Department using a taste panel. Sensory characteristics evaluated were fry color, flavor and texture (Table 9). All clones evaluated had acceptable scores with the exception of clone ATX84378-1Ru which rated poorly for both color and texture.

Baking, Boiling and Microwaving: Tubers of 25 potato clones that had been grown at both Grand Forks (dryland) and McCanna (irrigated) in 1996 were evaluated for the following sensory characteristics in each of three cooking categories:

<u>Boiling</u>: Characteristics examined were color immediately and four hours after cooking, mealiness, and flavor.

<u>Baking</u>: Mealiness, color, and flavor were evaluated.

<u>Microwaving</u>: Mealiness, color, and flavor were evaluated.

The summation of scores across all three cooking categories at both sites identified the following top 10 cultivars and advanced selections: *Shepody*,

ND2470-27, ND4027-4Russ, A79180-10, ND2471-8, *Atlantic*, *Russet Burbank*, I426, ND2676-10, and N8-14.

Among eight European cultivars grown at the Carrington site in 1996, *Asterix* and *Disco* received the highest ratings.

Chipping: The flooding at Grand Forks last year adversely affected chipping quality, with no selections or cultivars chipping acceptably from 43°F storage (with or without reconditioning).

<u>Promising Selections and Cultivars--Summary for</u> 1997

White Chippers

NorValley, a white chipping cultivar with coldchipping properties and a low incidence of internal defects, significantly out-yielded all other white selections/cultivars under dryland conditions at the Park River site. In the irrigated trials, its average U.S. No. 1 yield was 314 cwt/A--very similar to Snowden at 318 cwt/A and less than that of Atlantic at 388 cwt/A.

ND2676-10 also has cold chipping properties and was entered in the North Central Regional Potato Variety Trial (NCRPVT) for the second year in 1997. In the 1996 NCRPVT, (6 trial sites) its average U.S. No. 1 yield was 248 cwt/A compared to *Snowden* at 282 cwt/A, *Norchip* at 234 cwt/A, and *Atlantic* at 317 cwt/A. Its average U.S. No. 1 yield under irrigated conditions was 368 cwt/A. At Park River it yielded 152 cwt/A. In the past it had been noted for erratic yields that were thought to be due to poor quality seed. Higher quality seed has since been used with an associated better performance.

One of the highest yielding chippers in the irrigated trials in 1996, ND2470-27 again was outstanding in 1997. It was the highest-yielding white chipper at both Oakes and McCanna. Average U.S. No. 1 yield across the two irrigated sites in 1997 was 430 cwt/A. At Park River it also was among the top three yielding white chippers at 190 cwt/A. It also has cold chipping properties and could be used as tablestock with high sensory ratings for boiling, baking, and microwaving in 1995 - 1997.

Other white chippers that performed well in 1997 were ND4778-2 and N8-14. ND3828-15 was entered in the NCRPVT in 1997--a decision as to

carry it forward another year will be made based on its performance in the NCRPVT.

Red Selections

Among the red selections, ND3574-5R and ND5084-3R were the top yielders in 1997. Both have a deeper red color than *Red Norland* from the field. U.S. No. 1 yields of ND5084-3R, ND3574-5R, and *Red Pontiac* averaged across Oakes, McCanna, and Park River were 343, 300, and 368 cwt/A, respectively. ND5084-3R and ND3574-5R tend to have a smaller percentage of oversize tubers than does *Red Pontiac*. A potential weakness of ND3574-5R is a short tuber dormancy. This may be negated by the use of sprout inhibitors. ND5084-3R has been noted as having a problem with stolon attachment. Increasing the time between vine kill and harvest may allow the stolons to separate more cleanly from the tubers.

With a yield and maturity similar to *Red Norland*, ND3196-1R has very nice tuber type and a darker skin color than *Red Norland*. For the first time this year, growth cracks were observed very early in the development of tubers at the Park River site. *Red Norland* also showed this same problem at the site, and cullage was high in both ND3196-1R and *Red Norland*. This problem was not observed at the other sites, or in other trials in the past. Growers in the immediate area also commented on an increased incidence of growth cracks in the red cultivars. The environmental conditions responsible for the increased incidence of tuber cracking are not known.

ND2225-1R has entered its third year year in the NCRPVT. Based on the results of this year's trials, a decision will be made regarding its release as a cultivar. Its main weakness is the development of russeted skin or "buckskin" under certain field conditions (thought to be heavier soils). This year, it was noted that a high percentage of seed pieces developed what appeared to be soft rot soon after cutting. This had a negative impact on stand establishment and subsequent yields in the 1997 trials.

Russets

The most promising russet selection in 1997 was A79180-10. This Idaho selection was the highest yielding russet at McCanna in 1996 and at McCanna, Oakes, and Park River in 1997. Its U.S. No. 1 yield across all three sites in 1997 was 361 cwt/A as compared to *Shepody* at 292 cwt/A, and *Russet Burbank* at 217 cwt/A. In 1995 it had

excellent french fry evaluation score--somewhat lower but acceptable in 1996. It also has scored well for sensory qualities and could be a dual-purpose selection. However, its lightly-russeted skin, may limit its use for tablestock.

Other promising russet selections are ND4093-4Russ and ND4027-4Russ. While not as high yielding as A79180-10, these russet selections compare favorably with *Russet Burbank*. ND4093-4Russ has a nice tuber type with excellent russeting. In sensory evaluations it compared favorably with *Russet Burbank* for fry color, taste, and texture. However, its lower specific gravity may limit its use for processing. ND4027-4Russ, with favorable sensory ratings for boiling, baking, and microwaving, has a higher specific gravity than ND4093-4Russ and could be used as a dual-purpose russet.

Germplasm Enhancement Update

A major objective of the NDSU program is the incorporation of resistance to the newer genotypes of *Phytophthora infestans*, such as the US-8 genotype that predominates in North Dakota. Crosses utilizing parents with genetic resistance continued this past winter and their progeny were grown in the greenhouse this past summer. Field selections were also made within late blight resistant families this Fall. These clonal selections will be grown in the greenhouse this winter and evaluated for late blight resistance in collaboration with Drs. Gary Secor and Neil Gudmestad of the Plant Pathology Department at NDSU.

Early in 1996, the breeding program requested and received late blight resistant germplasm from the USDA potato breeding programs at Beltsville, MD and Aberdeen, ID. The material was received as both sexual seed and as single minitubers. These clones (when extra seed became available) as well as selected potato cultivars were included in the late blight plots at Prosper, ND in 1997. In the Fall, hills of the resistant clones were dug and evaluated and those with the best agronomic properties selected. Table 10 provides information on the foliar resistance of the cultivars and the selected blight-resistant clones. The cultivars displayed a range of resistance, with some showing susceptibility while others showed moderate resistance. Tubers of the selected experimental clones are also currently being tested for resistance to tuber blight. The selected clones and those

cultivars with moderate resistance to foliar blight will be incorporated into our crossing block this coming winter.

The breeding program is also incorporating genetic resistance to *Verticillium* wilt, early blight, silver scurf, PLRV, PVY, green peach aphid and Colorado potato beetle into commercially-acceptable clones. ND5822C-7 is an example of our efforts in this area. Identified as resistant to Colorado potato beetle in preliminary screenings by Drs. Lorenzen and Balbyshev, ND5822C-7 is also notable for its yield and tuber-type under the stressful growing conditions at the Grand Forks site in 1997 (**Table 6**).

Table 1. Spacing, Fertilizer, Soil Type, Planting and Harvest Dates of the 1997 North Dakota Potato Variety Trials.

	Spa	Spacing	1			
Location	Row	Plant	Fertilizer Applied	Soil Types	Planting Date	Harvest
Park River	38"	12"	40-10-10 @ 250 lbs/A	Glyndon silt loam	5-10	9-4
Grand Forks	38"	12"	50 lbs N, 29 lbs P, 15 lbs K, 0.5 lbs Boron, 4 lbs Zn / Acre	Bearden clay loam	5-30	10-6
McCanna	38"	12"	46-0-0 (urea) @ 241 lbs/A	Sandy loam	5-2	9-22
Oakes	38"	12"	105 lbs/A of N (Total with soil nitrogen=145 lbs/A), 30 lbs/A of P ₂ 0,, 25 lbs/A of K ₂ 0	Hecla fine sandy loam	5-7	67-6

Note: The North Dakota advanced selections described in these trials can be distinguished as russet, red, or white-skinned by: ND5555-5 = white

= red ND5555-5R

ND5555-5Russ = russet

	Yield (cwt/acre)	acre)	% U.S.	Tuber	er Categories as	s % of T	otal Yield		Specific	1 %	Internal De)efects ^b	Tuber Number
Variety/Selection	U.S.# 1ª	Total	No. 1	Cullage	Undersize (<2")	2 - 2.5 "	2.5 - 3" >	3",	Gravity	HH	VD	IBS	per Hill
	566 a	902	80	6		28	20	3	1.076	.2	0	2	15 cm 2 cm 15 cm 2 cm
Picasso	545 ab	610	88	2	7	23	20	16	1.074	4	0	2	2
ND2470-27	513 abc	548	94	2	4	22	61	1	1.085	0	0	0	-12
ND5084-3R	502 abcd	536	94	_	7	26	55	12	1.066	0	9	0	12
ND2676-10	488 abcde	529	92	_	7	41	20		1.083	ω	4	œ	15
A79180-10	487 abcde	515	92	2	4	20	99	o	1.093	2	2	2	11
Red Pontiac	479 abcdef	523	92	7	2	ဝ	40	42	1.068	4	0	4	6
ND3647-6	476 abcdef	563	82	വ	1	40	43	2	1.088	15	2	0	10
Shepody	467 abcdefg	535	87	Φ	2	24	47	16	1.085	ω	0	2	2
Atlantic	447 bcdefgh	496	06	9	Ŋ	23	20	17	1.093	2	4	4	œ
SW88109	438 bcdefgh	523	84	œ	8	31	47	ဖ	1.068	0	2	0	7.
ND3574-5R	422 bcdefghi	449	94		ນ	32	56	7	1.060	0	2	0	17
Red Norland	419 bcdefghi	444	94	က	3	25	62	7	1.067	0	0	0	10
ND4778-2	409 cdefghij	438	93	_	9	30	61	7	1.080	4	2	2	80
NorDonna	405 cdefghij	451	06	4	9	25	53	7	1.068	0	21	0	
A82119-3	391 cdefghij	418	94	_	9	33	52	ω	1.083	15	2	0	_∞
Russet Norkotah	389 cdefghij	428	91		6	41	45	2	1.079	4	9	0	8
NDO1496-1	387 cdefghij	415	93	က	4	22	99	5	1.090	0	0	0	7
NorValley	386 cdefghij	439	88	4	8	30	50	ω	1.079	2	9	0	Ţ
Romano	375 defghijk	443	82	2	10	39	44	_	1.082	ဖ	10	0	6
ND3828-15	374 defghijk	430	.87	റ	4	200	58	-	1.080	2	2	4	9
Snowden	370 defghijk	403	92	0	0	43	47	-	1.098	0	2	0	
N8-14	356 efghijk	417	85	3	12	49	36	0	1.079	2	0	2	Į. Į.
ND3196-1R	353 efghijk	390	91	က	7	33	54	က	1.079	9	0	0	ω
Norchip	350 fghijk	443	79		10	37	41	Ţ	1.086	0	0	4	12
1 426	349 fghijk	376	93	က	4	22	63	o	1.077	0	0	. 2	2
ND5104-1Russ	334 ghijk	368	91	2	8	46	43	0	1.071	0	0	0	æ
ND2225-1R	332 ghijk	423	62	2	16	46	31	2	1.070	0	2	∞	14
Russet Burbank	326 hijk	433	75	14	10	42	31	က	1.087	52	0	7	0)
Goldrush	319 hijk	351	91	2	ಬ	28	55	7	1.072	80	10	2	10
ND4027-4Russ	317 hijk	368	98		-13	45	40	<u> </u>	1.087	ω	0	4	
ND3636-1	287 jik	366	78	4	19	46	31	0	1.085	4	0	2	18
ND4093-4Russ	276 jk	323	86		14	47	37	-	1.074	10	0	0	8
ND5104-2Russ	274 jk	347	79	_	21	52	26	-	1.073	0	0	0	13
ND860-2	247 K	290	85		16	46	35	7	1.083	0	4	2	7
9 17: -1-1	11 - 1 17		10000		4 33; F 11		-						

^a Yield means with the same letter are not considered significantly different from one another based on Duncan's Multiple Range Test with an alpha value of 0.05. ^b Internal Defects abbreviations: HH = Hollow Heart, VD = Vascular Discoloration, and IBS = Internal Brown Spot.

Values represent the percentage of 48 tubers (2.5-3" in size) that had the internal defect

300

Table 3. Performance of Potato Cultivars and Advanced Selections Under Irrigated Conditions at Oakes, ND--1997

	Yield (cwt/acre)	acre)	% U.S.	Tuber	er Categories a	s % of 7	Total Yield	þ	Specific	In	nternal Defo	l Defects ^b
Variety/Selection	U.S.# 1ª	Total	No. 1	Cullage	Undersize (<2")	2 - 2.5	2.5 - 3"	>3"	Gravity	王	ΛD	IBS
A79180-10	381 a	459	83	တ	7	20	25	7	1.082	21	0	0
ND2470-27	346 ab	387	89	4	7	24	29	2	1.076	0	.2	0
Red Pontiac	346 ab	410	84	တ	9	19	54	12	1.065	17	0	0
Atlantic	328 abc	382	98	5	6	27	51	7	1.085	13	0	0
ND5084-3R	320 abcd	368	87	2	11	28	51	∞	1.061	9	0	2
Sante	317 abcd	430	74	7	19	45	29	0	1.086	0	0	8
ND3574-5R	303 abcde	341	88	2	6	27	59	က	1.057	2	2	2
1426	293 abcdef	345	85	4	10	33	48	2	1.070	0	0	0
Goldrush	283 abcdefg	356	79	∞	13	43	34	2	1.062	10	0	2
Snowden	266 bcdefgh	293	91	-	8	37	54		1.087	15	0	2
N8-14	258 bcdefgh	318	81	က	16	46	32	2	1.073	0	4	0
NDO1496-1	251 bcdefgh	275	91	3	9	34	52	4	1.080	0	2	0
ND2676-10	247 bcdefgh	295	84	2	15	43	40	0	1.078	13	0	8
NorValley	241 bcdefgh	294	82	9	13	29	46	9	1.073	0	0	0
ND5104-1Russ	238 bcdefgh	265	90	2	8	51	39	0	1.060	0	9	0
Fianna	237 bcdefgh	394	- 60	15	25	44	15	Ŧ	1.087	0.	0	9
Russet Norkotah	237 bcdefgh	288	83	4	14	49	33	-	1.070	10	0	4
ND4093-4Russ	236 bcdefgh	284	83	2	91	43	39	Ē	-1.070	œ	0	0
NDL128-11	232 bcdefgh	325	71	7	22	52	16	0	1.085	52	0	2
NorDonna	230 bcdefgh	309	74			46	26	Ξ	1.068	0	10	0
Shepody	229 bcdefgh	318	72	14	15	43	28	-	1.079	23	4	0
Agria	228 bcdefgh	354	64	13	24	45	19	0	1.078	21	0	0
ND3196-1R	224 cdefgh	296	76	4	20	50	27	0	1.064	0	0	2
ND4778-2	220 cdefgh	261	84	က	13	39	45	0	1.077	4.	0	2
ND3828-15	217 cdefgh	299	73	15	13	33	38	_	1.075	2	0	2
ND3647-6	216 cdefgh	375	58	27	15	37	20	0	1.081	10	2	œ
Red Norland	209 cdefgh	263	79	7	15	38	37	4	1.054	2	0	0
ND2225-1R	207 defah	296	69	1	24	42	27		1.062	0	0	2
Russet Burbank	200 defgh	327	61	25	17	39	17	2	1.081	œ	0	4
A82119-3	187 efgh	242	7	က	2	49	26	0	1.078	23	0	0
ND3636-1	181 fgh	262	69	က	28	49	20	0	1.077	2	0	0
ND4027-4Russ	180 fgh	235	77	ì	28	47	24	0	1.076	9	0	0
ND5104-2Russ	165 gh	218	76	4	21	20	26	0	1.064	9	0	0
ND860-2	160 h	208	77	4	19	49	28	0	1.074	0	9	0
								Annual Control				

^a Yield means with the same letter are not significantly different from one another based on Duncan's Multiple Range Test with an alpha value of 0.05. ^b Internal Defects abbreviations: HH = Hollow Heart, VD = Vascular Discoloration, and IBS = Internal Brown Spot.

Table 4. Performance of Potato Cultivars and Advanced Selections Under Non-Irrigated Conditions at Park River, ND--1997

	Yield (cwt/acre)		% U.S.	Tub	Tuber Categories a	as % of T	of Total Yield	ъ	Specific	- %	% Internal Defects ^b	fects ^D	
Variety/Selection	U.S.# 1ª	Total	No. 1	Cullage	Undersize (<2")	H	2.5 - 3"	>3"	Gravity	壬	ΛD	IBS	Maturity
Red Pontiac 2	281 a	315	89	2	9	19	102	-	1.072	17	0	0	4
(1)	278 a	338	82	4	4	4	39	2	1.081	2	2	0	4
A79180-10 2	215 b	252	85	ო		31	54	0	1.099	ω	0	0	4
ND5084-3R 2	208 bc	254	82	က	15	22	28	2	1.062	4	0	0	S
ND3828-15 2	201 bcd	290	69	19	1	24	44	-	1.081	0	0	0	က
NorDonna 1	198 bcd	255	78	-	23	38	38	0	1.073	0	4	0	4
ND2470-27	190 bcd	237	80	∞	12	31	49	_	1.095	4	0	0	က
4	190 bcd	258	74	15		28	46	0	1.091	31	0	0	က
ND4778-2 1	183 bcde	282	65	25	10	20	45	—	1.087	17	0	0	က
_	181 bcde	246	74	∞	0	4	32	0	1.084	∞	2	0	4
_	179 bcdef	236	92	10	15	35	40	0	1.094	0	0	0	4
- Amm	178 bcdef	238	22	10	15	30	44	0	1.083	2	0	4	က
ND3574-5R	175 bcdef	242	72	12	16	30	42	0	1.069	0	0	0	2
Snowden 1	169 bcdefg	209	81	2	18	41	40	0	1.098	4	2	0	4
NDO1496-1	164 bcdefgh	220	75	တ	17	37	36	_	1.095	4	0	0	က
Russet Norkotah 1	159 bcdefgh	213	75	7	19	34	39	7	1.085	15	0	0	က
_	153 bcdefghi	225	89	က	30	43	24	0	1.079	0	2	0	က
ND2676-10 1	152 bcdefghi	228	99	တ	25	39	27	0	1.090	4	2	0	က
ND3647-6	151 cdefghi	256	59	14	30	33	23	0	1.086	œ	2	10	4
A82119-3	145 cdefghi	209	69	4	26	43	26	0	1,084	21	0	0	Ω.
NDL128-11	142 defghij	226	63	9	31	43	9	0	1.091	21	0	0	4
dum	126 efghij	208	61	∞	32	37	23	0	1.084	2	∞	0	က
Russet Burbank 1	124 efghij	203	61	16	23	38	23	0	1.082	4	2	0	2
ND4093-4Russ 1	116 fghij	175	99	2	34	46	18	0	1.083	13	0	0	2
ND3636-1	112 ghij	193	58	_	43	40	16	0	1.091	œ	0	0	2
ND3196-1R	105 hij	221	48	31	22	32	15	0	1.078	2	0	0	2
Red Norland 9	92 ij	198	46	36	19	30	15	_	1.068	2	0	0	2
ND4027-4Russ 9	92 ij	175	53	4	43	37	15	0	1.093	2	2	0	4
ND2225-1R 8	83 j	143	58	14	30	35	21	0	1.069	7	0	0	7

^a Yield means with the same letter are not significantly different from one another based on Duncan's Multiple Range Test with an alpha value of 0.05. ^b Internal Defects abbreviations: HH = Hollow Heart, VD = Vascular Discoloration, and IBS=Internal Brown Spot.

Values represent the percentage of 48 tubers (2.5-3" in size) that had the internal defect.

Table 5. 1997 State Trial: Performance of Potato Cultivars and Advanced Selections Under Non-Irrigated Conditions at Grand Forks, ND

Variety or Selection	U.S. #1 Yield (Cwt/Acre)	Total Yield (Cwt/Acre)	% U.S. #1 of Total Yield	Specific Gravity	Maturity
Russet Norkotah	116	148	78	1.081	4
ND5084-3R	110	123	89	1.066	5.0
NorValley	98	128	77	1.079	3
Atlantic	95	119	80	1.090	4
NDO1496-1	95	125	76	1.094	5
NorDonna	90	1114	79	1.080	4
Snowden	86	114	75	1.089	5
ND4778-2	86	106	81	1.083	44
ND5104-1Russ	84	107	79	1.076	3
Red Pontiac	83	117	71	1.067	14
A79180-10	78	97	80	1.090	5
ND3828-15	78	118	66	1.084	4
ND3196-1R	76	98	78	1.079	3
NDL128-11	71	114	56	1.093	5
ND3647-6	70	113	62	1.083	4
I426	64	95	67	1.080	4
ND3574-5R	64	95	67	1.067	3
ND2225-1R	63	85	74	1.082	3
Shepody	62	115	54	1.090	4
ND4093-4Russ	61	103	59	1.083	4
Goldrush	59	93	63	1.083	3
Norchip	58	101	57	1.089	3/5
Red Norland	58	81	72	1.075	2
ND2470-27	56	71	79	1,086	4
ND860-2	54	94	57	1.088	3
A82119-3	54	85	64	1.082	5
ND4027-4Russ	54	95	57	1.089	3
N8-14	54	90	60	1.080	. 3
ND2676-10	44	81	54	1.086	3
ND3636-1	34	64	53	1.088	3
Russet Burbank	28	69	41	1.080	5

Table 6. 1997 Secondary Trial: Performance of Potato Cultivars and Advanced Selections Under Non-Irrigated Conditions at Grand Forks, ND

	U.S. #1 Yield	Total Yield	% U.S. #1 of Total	Specific	
Cultivar or Selection	(Cwt/Acre)	(Cwt/Acre)	Yield	Gravity	Maturity
ND5822C-7	143	161	89	1.090	5
Russet Norkotah	105	143	73	1.082	4
ND5775-3	102	142	72	1.095	4
ND4240-9Russ	99	134	80	1.082	4
Red Norland	97	122	80	1.074	2
ND4219-14Russ	96	136	71/5	1.082	41
Goldrush	94	136	69	1.078	4
ND5289-1R	93	136	68	1.086	3
ND5256-7R	92	129	71	1.083	3
TXAU657-27Russ	88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-119	74	1.087	5
TX1229-2Russ	87	129	67	1.082	4
ND4233-1Russ	54 - 82	127	65	1.089	4
ND5324-4	80	120	67	1.095	3
Norchip	80	124	65	1.093	3
ND2676-12	79	120	66	1.092	3
Pike	76	101	75	1.094	5
ND5002-3R	76	111	69	1.076	4
C0083008-1	65	99	66	1,091	5
ND4519-12	62	100	62	1.085	3
NDO2438-6R	61	72	85	1.067	+4-5
Russet Burbank	58	132	36	1.084	5
NDO2438-7R	56	76	74	1.076	5
ND4621-5R	56	100	56	1.078	3
DT6063-1R	55	88	63	1.085	3
NDT8-731-1R	54	69	78	1.070	4

Table 7. 1997 Out-Of-State: Performance of Potato Cultivars and Advanced Selections Under Non-Irrigated Conditions at Grand Forks, ND

Cultivar or Selection	U.S. #1 Yield (cwt/A)	Total Yield (cwt/A)	% US #1 of Total Yield	Specific Gravity	Maturity
TXNS278	137	194	71	81	4
NDTX4930-5	125	159	79	86	2 2 2 5 - 4 A
Russet Norkotah	115	177	65	80	4
ATX85404-8	109	149	89	84	5
TXNS112	100	166	73	78	4
Disco	98	168	58	98	5
TXNS223	96	153	63	77	4
Red Norland	95	139	68	73	3
Norchip	93	149	62	92	3
NDO4588-5R	92	132	70	67	FATER 4 A.A.P.
NDO4592-3R	92	128	72	77	4
TX1385-12Russ	89	125	71	80 1	5
Dali	81	132	69	79	4
ND05108-1R	79	114	69	80	47
NDO4300-1R	79	118	67	80	3
NDO4438-1R	77	138	56	78	4
NDO4323-2R	75	101	74	84	3
Asterix	73	172	42	87	
Fianna	71	113	63	86	5
Diamant	69	133	52	93	4
NDA2031-2	69	101	68	84	5
NDO3994-2R	56	86	65	71	5
Russet Burbank	45	144	31	87	5
SW91102	45	85	53	103	5
Rikea	44	121	36	80	4
Aziza	43	91	47	84	4

Table 8. Summary of U.S. No. 1 Yields (cwt/A) Across All Sites

		rrigated Sites		Non-Irrigated	Average Yield Across
Clone	Oakes	McCanna	Average	Park River	All Entered Sites
ND2225-1R	207	332	270	83	208
ND2470-27	346	513	430	190	350
ND2676-10	247	488	368	152	296
ND3196-1R	224	353	289	105	227
ND3574-5R	303	422	363	175	300
ND3636-1	181	287	234	112	193
ND3647-6	216	476	346	151	281
ND3828-15	217	374	296	201	264
ND4027-4Russ	180	317	249	92	196
ND4093-4Russ	236	276	256	116	209
ND4778-2	220	409	315	183	271
ND5084-3R	320	502	411	208	343
ND5104-1Russ	238	334	286	not entered	286
ND5104-2Russ	165	274	220	not entered	220
ND860-2	160	247	204	179	195
A79180-10	381	487	434	215	361
A82119-3	187	391	289	145	241
Agria	228	not entered	228	not entered	228
Atlantic	328	447	388	190	322
Fianna	237	not entered	237	not entered	237
Goldrush	283	319	301	153	251
1426	293	349	321	178	273
N8-14	258	356	307	126	247
NDL128-11	232	not entered	232	142	187
NDO1496-1	251	387	319	164	267
NorDonna	230	405	318	198	278
NorValley	241	386	314	278	302
Russet Burbank	200	326	263	124	217
Russet Norkotah	237	389	313	159	261
Red Norland	209	419	314	92	240
Red Pontiac	346	479	413	281	368
Sante	317	not entered	317	not entered	317
Shepody	229	467	348	181	292
Snowden	266	370	318	169	268
Norchip	not entered	350	350	not entered	350
Lili	not entered	566	566	not entered	566
Picasso	not entered	545	545	not entered	545
Romano	not entered	375	375	not entered	375
SW88109	not entered	438	438	not entered	438
Average U.S. No.1					
Yield At Sites:	248	396		164	

Table 9. Average French Fry Evaluation Scores for 1996 Season.*

Cultivar or Selection	Color	Texture	Flavor	
Grand Forks Site				
Russet Burbank	6.1	5.6	5.6	
Norking Russet	5.9	6,5	6.3	
Goldrush	6.6	6.5	6.3	
Norqueen Russet	5.6	5.9	6.3	
Shepody	7.2	5.7	5.2	
A081775-3	6.3	6.2	6.1	
A81478-1Russ	7.7	6.2	6.5	
A79180-10	5.8	5.1	5.3	
A81286-1	6.1	5.0	5.5	
A82119-3	6.5	6.9	6.6	
A8390-3	6.6	6.0	6.3	
ATX84378-1Ru	4.9	4.6	5.6	
ATX84706-2Ru	6.8	6.3	6.4	
C0083008-1	6.7	6.1	6.4	
ND3455-1Russ	5.6	5.3	5.4	
ND4027-4Russ	6.3	6.1	6.1	
ND4093-4Russ	6.6	6.1	6.4	
ND4219-14Russ	6,6	6.4	6.5	
ND4233-1Russ	6.4	6.3	6.4	
ND4240-9Russ	5.9	6.1	6.2	
TXAV657-27	6.2	6.3	6.2	
Carrington Site				
Russet Burbank	7.4	6.8	6.7	
Asterix	6.5	6.4	6.2	
Felsina	6.1	6.6	6.3	
Shepody	7.4	6.8	6.8	
Aziza	6.4	6.1	6.2	
Morene	6.6	5,8	6.0	
Premier	5.2	5.6	5.9	
Agria	5.7	6.0	5.7	
Lili	7.2	6.2	6.3	
Disco	6.8	6.3	61	

^{*}All scores are based on 3 and 6 separate evaluations of each cultivar for Grand Forks and Carrington, respectively. Six panelists participated in each evaluation for a total of 18 and 36 individual evaluations. The only exception was the Grand Forks' *Russet Burbank* control/reference sample for which there were 300 individual evaluations.

Rating Guide

7-9 Good

5-6 Fair, and acceptable

1-4 Poor, not acceptable

Table 10. Late blight reaction of Selections and Cultivars at the Prosper Research Station, 1997. Basilio Salas, Gary Secor and Neil Gudmestad*

The second secon	Necrotic tissue (%)					
Clone (Parentage)	Aug-1	Aug-8	Aug-15	Aug-22		
AND1-1 (J101K6 x A84118-3)	0	30	35	35		
AND1-2 (J101K6 x A84118-3)	0	0	15	25		
AND2-1 (J103K7 x A84118-3)	0	0	0	0		
AND2-2 (J103K7 x A84118-3)	0	0	20	22		
AND2-4 (J103K7 x A84118-3)	0	0	0	0		
AND2-8 (J103K7 x A84118-3)	0	1	10	12		
AND3-5 (J138A4 x A84118-3)	0	7	10	13		
AND3-8 (J138A4 x A84118-3)	0	1	25	30		
AND3-9 (J138A4 x A84118-3)	0	1	15	16		
AND8-7 (AWN86514-4 x A084275-3)	0	5	35	41		
BND1849-2 (J138A12 x B1419-6)	0	5	10	14		
Dali	12	25	35	50		
Diamant	32	60	85	100		
Picasso	28	40	60	70		
Rikea	25	45	60	82		
Asterix	4	30	50	66		
Sante	8	40	45	61		
Aziza	2	15	35	46		
Disco	1	15	50	48		
SW91102	0	15	40	54		
Romano	0	15	50	82		
Agria	5	10	35	47		
Fianna	6	30	50	57		
Pike	1	30	65	97		
Lili	2	25	45	47		
Rosamunda	0	10	55	91		
Red LaSoda	22	40	90	100		

^{*}Plants infected with US8 (A2) were transplanted into plots to act as inoculum source in mid-July. No fungicides were applied during the growing season. Due to space limitations and a limited amount of experimental clonal seed, plots were unreplicated and consisted of between 2-10 hills / clone.

OHIO

Richard Hassell, David M. Kelly, E.C. Wittmeyer, John Elliott

Introduction to NE184 Trial

Twenty-eight varieties and clones from the NE184 Regional project were evaluated in replicated field trials located at the Ohio Agricultural Research and Development Center, Wooster, Ohio.

Methods

The seed samples when received from the NE184 project nursery were stored under recommended temperature and humidity conditions. A randomized complete block design with four replications was used.

The soil type is a well-drained Wooster silt loam with a pH 6.7, a phosphorus level of 112 lbs/A and a potassium level of 206 lbs/A, according to the analytical procedures of the Research and Extension Analytical Laboratory at the Ohio Agricultural Research and Development Center.

Fertilization consisted of 600 lbs/A of 10-20-20 disked in prior to planting and 600 lbs/A 10-20-20 banded at planting.

Following harvest on September 18, samples for chip quality evaluation were taken to the Pilot Plant, The Ohio State University, Columbus, Ohio, where the samples were held at ambient temperatures until early October (approximately 20 days) when chipping and specific gravity determinations were made. In addition, other samples were graded for market quality. At the time 10 tubers were taken at random from each replicate and checked for hollow heart and internal necrosis ratings (see Table 2).

Weather Conditions

Rainfall during the growing season (May-September) was 14.76 inches, 3 inches below the long-term average for Wooster.

Results:

This trial yielded several cultivars and selections that showed promise and may be included in the 1998 trial: NorDonna, BO 766-3, NY 103, Snowden, Cherry Red, and AF 1565-12.

Specific comments follow below.

Atlantic: Round to oval tubers--irregular surface--poor appearance. Round to slightly oval, heavy netting, tendency for tubers to be flattish. Wide range in size. Heavy yielder.

NorDonna: Round to slight oval shaped tubers with medium red color. Trace of second growth. Tubers are small to medium size. Appears to have better surface texture (marketability) than B0811-13. Promising-try again.

B0766-3: Round to slightly oval tuber with buff appearance. Some tubers have irregular surface, trace of second growth, trace of misshapened tubers. Appears to have sizing ability. Try again. Promising.

B0564-8: Round to slightly oblong tubers with cream colored appearance. Many small tubers. Large tubers have an irregular surface. No future.

Yukon Gold: Round tubers with cream colored skin. Wide range in size. Eyes redpink. Irregular surface on larger tubers. No future.

Quaggy Joe: Round to oval tubers with light buff appearance, smooth surface. Excessive greening. Too much irregular surface. Too many tubers have an irregular surface. No future.

Katahdin: Round to slightly oval tubers with buff appearance. Most large tubers have irregular surface. Many misshapened tubers. Wide range in size. Doubtful future.

Kennebec: Round to oval tubers with light buff appearance. Severe irregular surface. Many tubers are misshapened. Second growth is serious. No future.

BO811-13: Round to oval tubers, dark red surface. Tubers tend to have irregular surface. Small to medium size. Biggest problemrough appearance of surface. Doubtful.

B9922-11: Round to oval to oblong russet-type tubers with medium to heavy netting. No second growth. Major problems; irregular surface and misshapened. No future.

NY103: Round tubers with light tan-buff appearance, some tubers have irregular surface. Fairly uniform size. Trace of surface scab. Poor yield. Try again.

NY102: Round tubers with buff appearance and light netting. Apical end (on some tubers) tend to be recessed. Tuber size tends to be small. Larger tubers tend to have irregular surface.

Snowden: Round tubers with heavy netting. Apical end tends to be deep. Stem end is deeply recessed. Tubers have pink tinge.

Larger tubers have irregular surface. May have yield ability. No future fresh market (appearance)--may be ok for processing.

Cherry Red: Round to oval shaped tubers with light to medium red appearance. Surface tends to have netted skin. Smooth surface. Try again.

NY87 (**Reba**): Round tuber with buff appearance, light netting, larger tubers tend to have irregular surface. Trace of second growth and trace of greening. No future.

AF1480-5: Round to oval shaped tubers with light buff appearance. Second growth and misshapened are problems. No future.

AF1437-1: Round tubers with buff appearance, some netting. Shallow eyes. Apical end and stolon end tends to be indented. Too much variability in size/shape. No future.

ND2417-6 (NorValley): Round to oval shaped tubers with buff appearance. Major problem is irregular surface. Small size. No future.

AF1565-12: Round tubers with light-almost white surface. Medium size tubers are quite uniform. Some tubers tend to have irregular surface. Promising--fresh market.

AF1615-1: Round to slightly oval tubers with buff appearance. Some tubers have irregular surface. Second growth could be problem. May have yielding ability, but small tuber size. No future.

Dk Red Norland: Round to slightly oval tubers with light red appearance. Larger tubers tend to have an irregular surface. Color is too light for present market.

ND2471-8: Round to oval tubers. Major problems: second growth, small size, misshapened, poor appearance. No future.

AF1424-7: Round to slightly oval tubers with buff to nearly white appearance. Shallow eyes. Major problems: irregular surface and misshapened. Poor appearance. No future.

Century Russet: Round to oval to oblong tubers. Wide range in tuber size. Wide range in russetting--from netting to fairly heavy russetting. Second growth. Poor appearance. No future.

Superior: Round to oval shaped tubers with light cream appearance. Apical end tends to be deep. No uniform size. Some netting, trace of second growth. May have sizing ability, but poor appearance. No future. Larger tubers have irregular surface.

AF1433-4: Round tubers with buff appearance. Pitted scab could be problem. Larger tubers have irregular surface. Very little second growth. Trace of scab. No future.

B0856-4: Oval shaped tubers, almost russet-type. Medium netting to heavy russetting. Major problem: irregular surface and misshapened. Poor appearance. No future.

B1004-8: Oval to slightly oblong tubers, medium russetting. No second growth. Small size. Larger tubers have irregular surface. No size.

Introduction to Observational Trials

Seventy-seven entries from various parts of the country were evaluated in a replicated field trial located at the Ohio Agricultural Research and Development Center, Wooster, Ohio.

Methods

The seed samples when received were stored under recommended temperatures and humidity conditions. A randomized complete block design with at least two replications of each entry was used. Soil type was a welldrained Wooster silt loam with a pH 6.7 and phosphorus level of 112 lb/A and potassium level of 206 lb/A according to the analytical procedures of the Research and Extension Analytical Laboratory at the Ohio Agricultural Development Research and Center. Fertilization consisted of 600 lb/A of 10-20-20 disked in prior to planting and 600 lbs/A 10-20-20 banded at planting.

Following harvest on September 18, samples for chip quality evaluation only on those that we felt might have potential for Ohio were then taken to the pilot plant at The Ohio State University, Columbus, OH. Samples were held at ambient temperatures until early October (approximately 20 days) when chipping and specific gravity determinations were made. In addition, other samples were graded for market quality. At the time, 10 tubers were taken at random from each replicate and checked for hollow heart and other internal defects.

Results

This year conditions were ideal for making firm decisions on a number of cultivars. Out of the seventy-seven entries, only 20 entries were accepted for further evaluation (Tables 4, 5, 6). The reason for the dismissal of the other fifty-five entries are found in Table 7.

Specific comments on promising cultivars and selections follow below:

B1240-12: Round tubers with medium buff appearance, shallow eyes, shallow apical end. Holds shape quite well, may have surface scab problem. Keep--promising.

B1145-2: Round tubers with medium red appearance. Smooth tuber surface. Shallow eyes and shallow apical end. Fairly uniform tubers. Good skin texture. Promising.

B1492-10: Round tubers with medium to dark red appearance. Medium to small size. Promising. Fairly uniform. Try again.

B1091-29: Round tubers with netted appearance. Some tubers have an irregular surface. Deep apical end. Some tubers have an irregular surface. Try again.

B1344-18: Round to slightly oval tubers with smooth surface. Attractive appearance. Try again.

B1415-7: Round tubers, fairly smooth texture, shallow eyes. Attractive appearance promising. Keep. Try again.

B1416-2: Medium size tubers with fairly smooth surface, but wide range in size. Promising. Keep.

B1321-21: Round tubers with fairly smooth surface. Uniform netting. Field sprouting is present. Trace of second growth. Keep for processing.

B1206-10: Round to slightly oval, light to medium netting. Appears to hold shape quite well. Promising--keep. Try again.

B1083-51: Round to slightly oval tuber with shallow eyes and shallow apical end. Attractive tubers. Promising. Try again.

R19-20: Fairly rough tuber shape, but wide range in size. Relatively smooth surface. Promising. Try again.

R41-11: Round, with slightly netted surface. Eyes tend to be indented. May be ok for processing. Try again.

R170-66: Round tubers with some netting. Wide range in irregular surface. Surface tends to have "flaky" appearance. Try for processing. Save.

R19-7: Round tubers with smooth surface. Shallow eyes. Uniform size and shape. Promising.

CF7523-1: Round to slightly oval tubers with a creamy white appearance. Eyes tend to be slightly deep. Appears to yield well. May have tendency for second growth.

Q3-12: Round to slightly oval tubers. Many with irregular surface. Severe scab problem. Second growth is present.

B0985-1: Round to oval, fairly smooth, dark red, shallow eyes. Wide range in size. Tuber tends to have irregular surface. Medium red appearance.

B0811-4: Medium red. Fairly uniform but small. Some tubers have an irregular shape.

BO564-9: Round to slightly oval tubers with heavy netting. Bud and apical ends are shallow. Promising. Processing.

B1004-8: Wide range in shape--oval to oblong. Light to medium surface. Second growth could be problem. Larger tubers tend to have rough appearance. Keep and try again.

Ohio Table 1. Yield, marketable yield, percent of yield by grade size distribution and specific gravity for varieties grown at Wooster, Ohio - 1997.

		Marketable Yield		% of Total Yield			_	
Cultivar	Total yield cwt/A	U.S. #1 cwt/A	% STD	U.S. #1 (>1-7/8")	B Size	Culls	Specific Gravity	
Adlantia	251	216	121	86	6	0	1.075	
Atlantic NorDonna	162	123	69	76	6 19	8 5	1.073	
BO 766-3	270	224	126	83	13	4	1.066	
BO 564-8	218	168	94	77	19	4	1.000	
Yukon Gold	202	170	94 96	84	8	8	1.074	
Quaggy Joe	262	212	119	81	15	4	1.065	
	202	178	100	78	17	5	1.063	
Katahdin (std) Kennebec	244	188	106	77	13	10	1.070	
B0811-13	214	180	101	84	13	3	1.073	
В 9922-11	194	146	82	75	9	16	1.073	
NY 103	235	217	122	92	7	1	1.064	
NY 103	234	204	115	87	12	1	1.079	
Snowden	263	224	126	85	11	4	1.078	
Cherry Red	203	183	103	89	9	2	1.074	
NY 87	272	237	133	87	10	3	1.074	
AF 1480-5	249	147	83	59	15	26	1.072	
AF 1480-3 AF 1437-1	232	202	113	87	10	3	1.066	
ND 2417-6	252	190	107	76	22	2	1.069	
AF 1565-12	221	194	107	88	11	1	1.078	
AF 1615-1	217	177	99	82	18	0	1.073	
DK. R. Norland	241	207	116	86	12	2	1.065	
ND 2471-8	165	125	70	76	19	5	1.078	
ND 2471-8 AF 14244-7	168	141	70 79	84	12	4	1.078	
Century Russet	245	141	81	59	24	17	1.079	
Superior	269	245	138	91	5	4	1.074	
AF 1433-4	190	167	94	88	9	3	1.074	
BO 856-4	221	161	90	73	13	14	1.072	
B1004-8	207	153	86	74	18	8	1.069	

Ohio Table 2. Tuber shape and appearance, hollow heart ratings, internal necrosis ratings and chip color for varieties grown at Wooster, Ohio - 1997.

Cultivar	Plant ¹ Maturity	Tuber ¹ Shape	Appearance	Hollow Heart %	Internal Necrosis %	Chip ² Color
Atlantic	8	2.0	4.0	0	0	1
NorDonna	8	2.5	6.5	0	0	3
BO 766-3	8	2.0	7.0	0	0	1
BO 564-8	5	2.0	5.0	0	0	2
Yukon Gold	8	2.0	4.0	0	0	3
Quaggy Joe	8	3.0	4.0	0	0	3
Katahdin (std)	8	3.0	5.0	0	0	2
Kennebec	8	4.0	2.5	0	0	3
BO 811-13	8	3.0	4.0	0	0	1
B 9922-11	8	4.0	3.0	0	0	2
NY 103	8	3.0	7.0	0	0	2
NY 102	8	2.5	4.0	0	0	1
Snowden	8	2.0	3.5	0	0	1
Cherry Red	8	2.5	7.0	1	0	3
NY 87	5	3.0	5.0	0	0	1
AF 1480-5	8	4.0	2.0	0	0	2
AF 1437-1	8	2.0	3.5	0	0	1
ND 1417-6	8	2.5	2.0	0	0	1
AF 1565-12	5	2.5	3.5	0	0	1
AF 1615-1	5	2.0	4.5	0	0	2
DK. R. Norland	8	3.0	6.0	0	0	2
ND 2471-8	5	2.5	4.5	0	0	1
AF 14244-7	5	3.0	4.5	0	0	1
Century Russet	9	7.0	1.5	0	0	3
Superior	5	2.5	4.0	0	0	2
AF 1433-4	5	2.5	3.5	0	0	1
BO 856-4	8	4.0	3.0	0	1	2
B1004-8	8	4.5	6.5	0	0	3

¹ See Standard NE 184 Rating System ² PC/SFA Standards

Ohio Table 3. Plant stand, percent blister, agtron readings, and additional tuber data for varieties grown at Wooster, Ohio - 1997.

					Tuber Da	ta ²
Cultivar	Stand %	Chip ¹ Blister %	Agtron E-5F	Skin Texture	Eye Depth	Skin Color
Atlantic	87	0	57.5	5.5	3.0	5.0
NorDonna	51	10	49.3	7.5	6.0	2.0
BO 766-3	84	0	59.0	6.5	6.5	7.0
BO 564-8	86	20	52.0	5.5	6.5	7.0
Yukon Gold	62	20	46.9	6.0	6.0	7.0
Quaggy Joe	73	0	48.1	7.0	5.5	6.5
Katahdin (std)	83	20	52.0	6.5	7.0	7.0
Kennebec	79	10	41.8	6.0	6.5	7.0
BO811-13	89	10	60.1	5.0	5.0	2.0
B 9922-11	76	10	50.2	3.5	7.0	4.5
NY 103	68	0	51.6	7.0	7.5	7.0
NY 102	84	0	56.0	6.5	5.5	7.0
Snowden	91	10	54.5	5.0	3.0	5.0
Cherry Red	89	0	41.6	7.0	7.0	2.0
NY 87	85	20	52.2	6.0	5.5	6.5
AF 1480-5	74	0	51.7	6.0	5.0	7.0
AF 1437-1	72	10	57.2	5.5	6.5	6.0
ND 2417-6	83	20	58.9	6.5	6.5	7.0
AF 1565-12	71	10	60.0	6.0	7.0	6.5
AF 1615-1	88	20	51.0	6.5	6.5	7.0
DK. R. Norland	81	10	57.3	7.0	6.0	2.0
ND 2471-8	69	0	59.5	7.0	5.5	7.0
AF 14244-7	64	0	60.8	6.5	7.0	6.5
Century Russet	88	0	50.4	5.0	7.0	5.0
Superior	87	0	52.1	5.0	5.0	6.0
AF 1433-4	81	10	60.4	6.0	5.5	6.5
BO 856-4	71	1	53.3	4.5	6.0	5.0
B 1004-8	74	0	40.6	4.0	8.0	4.0

¹ Percentage of chips that develop blishers greater than 20 mm in diameter during the frying process. ² See standard NE 184 rating system.

Ohio Table 4. 1997 Observation Trial Yield Data.

Cultivar	Stand %	Maturity Scale	Total cwt/a	US No. 1 cwt/a	US No. 1 %	B's %	Culls %
B 1240-12	92	mid	263	239	91	7	2
B 1145-2	82	early	261	201	77	18	5
B 1492-10	85	mid	196	137	70	26	4
B 1091-29	89	mid	268	228	85	12	3
B 1344-18	87	m.late	256	220	86	7	7
B 1415-7	75	v.late	228	201	88	6	6
B 1416-2	94	late	307	249	81	11	8
B 1321-21	90	v.late	240	185	77	18	5
B 1206-10	87	late	265	225	85	8	7
B 1083-51	80	m.late	286	217	76	11	13
R 19-20	83	mid	240	190	79	15	6
R 41-11	75	late	281	256	91	6	3
R 170-6	87	late	266	221	83	9	8
R 19-7	68	mid	169	145	86	5	9
CF 7523-1	87	late	398	318	80	14	6
Q 3-12	49	late	128	101	79	8	13
B 0985-1	84	late	156	108	69	25	6
B 0811-4	74	v.late	95	62	65	32	3
В 0564-9	90	late	233	198	85	11	4
B 1004-8	74	mid	201	181	90	9	1

Ohio Table 5. 1997 Observation Trial Tuber Ratings.

	Skin¹	Skin ¹	Tuber ¹	Eye¹	Overall ¹
Cultivar	Color	Texture	Shape	Depth	Appearance
B 1240-12	7	7	2	7	8
B 1145-2	2	6	2	6	6
B 1492-10	2	5	2	5	4
B 1091-29	6	6	2	6	7
B 1344-18	7	7	2	5	7
B 1415-7	7	6	3	5	6
B 1416-2	6	6	2	6	7
B 1321-2	6	6	2	7	8
B 1206-10	5	5	2	6	7
B 1083-51	7	7	3	7	5
R 19-20	7	8	2	7	6
R 41-11	6	6	2	6	7
R 170-6	7	6	2	6	7
R 19-7	7	7	2	7	7
CF 7523-1	7	7	2	7	5
Q 3-12	6	7	2	7	5
B 0985-1	2	6	3	6	4
B 0811-4	2	6	2	5	5
B 0564-9	7	6	2	8	7
B 1004-8	5	5	3	7	6

¹ See standard NE 184 rating system.

Ohio Table 6. 1997 Observation Trial Internal Tuber Ratings

Cultivar	Specific Gravity	Chip ¹ Color	Agtron ²	Blisters ³	Hollow Heart ³	Internal ⁴ Brown Spot	Internal Discolor	Necrosis ⁴	Stem-end ⁴ Discolor	Vascular Discolor
B 1240-12	1.073	2.5	51.9	0	0	0	0	0	0	1
B 1145-2	1.069	4	38.7	10	0	0	0	0	0	0
B 1492-10	1.068	4	29.0	10	0	0	0	0	0	0
B 1091-29	1.079	1	57.8	0	0	0	0	1	0	0
B 1344-18	1.072	2	50.1	0	0	0	0	0	0	0
B 1415-7	1.073	2	53.7	20	0	0	0	0	0	0
B 1416-2	1.081	3	46.3	0	ì	0	0	0	0	0
B 1321-22	1.082	2	53.7	20	0	0	0	0	0	0
B 1206-10	1.070	2	55.8	0	0	0	0	0	0	0
B 1083-51	1.079	3	40.3	10	0	0	0	0	0	0
R 19-20	1.076	5	23.2	0	0	0	0	0	0	0
R 41-11	1.064	2	53.3	0	0	0	0	0	0	0
R 170-6	1.066	4	25.8	10	0	0	0	0	0	0
R 19-7	1.070	3	51.8	20	0	0	0	0	0	0
CF 7523-1	1.066	2	53.9	40	0	0	0	0	0	0
Q 3-12	1.072	4	31.1	0	0	0	0	1	0	0
B 0985-1	1.066	2	54.0	10	0	0	0	0	0	0
B 0811-4	1.067	2	54.3	10	0	0	0	0	0	0
B 0564-9	1.073	3	46.4	0	0	0	0	0	0	0
B 1004-8	1.073	2	55.8	10	0	0	0	0	0	0

¹ PC/SFA Standard

Agtron E-5F
 Percentage of chips that develop blisters greater than 20 mm in diameter during the frying process.
 Based on 10 tubers per sample (average of two replications).

Ohio Table 7: 1997 Observation trial comments on breeding lines that won't make it under Ohio conditions.

Cultivar	Stand %	Maturity Scale	Total cwt/a	Comments
В 1401-5	80	late	256	Round to slightly oval tubers, tendency for growth cracks and irregular surface. Stolons are attached.
B 1481-2	77	late	223	Round to oval shaped tubers, tendency to be somewhat flattish. Medium buff appearance. Irregular surface. Surface scab could be problem.
В 1466-12	35	m.late	535	Many misshapened tubers. Too few to evaluate.
B 1482-6	80	m.late	200	Many misshapened tubers. Too few to evaluate.
B 1394-4	100	late	221	Round to oval shaped tubers with light buff surface. Severe second growth. Surface scab.
B 1408-3	39	v.late	117	No yield. Round to slightly oval tubers. Surface scab could be problem. Tubers have irregular surface.
B 1425-9	93	late	256	Round tubers with netted appearance. Medium size tubers tend to be smooth. Larger tubers have irregular surface.
B 1066-37	88	m.early	176	Round to oval shaped tubers. Surface scab is problem. Wide range in size.
B 1398-5	85	v.late	217	Round to oval shaped tubers (some netting) with buff appearance. Surface scab is present. Poor uniformity. Field sprouting.
B 1065-64	65	mid	192	Round tuber with netted appearance, dark buff surface. Irregular surface.
B 1072-21	90	v.late	217	Round to oval shaped tubers with irregular surface and second growth.
B 1214-7	72	v.late	226	Major problems: irregular surface, poor appearance, and second growth.
B 1321-22	80	v.late	249	Round tubers with deep apical end, irregular surface, wide range in size.
B 1066-73	99	v.late	280	Fairly white surface appearance. Second growth, wide range in size.
AF 1455-20	55	late	114	Irregular shape. Severe second growth.
AF 1714-2	70	mid	174	Round to slightly oval tubers with irregular surface, surface scab, and misshapened.
AF 1753-1	82	m.early	240	No future. Round to oval tubers, no uniform shape, second growth is problem. Misshapened.
AF 1758-7	78	v.late	241	Round to oval to oblong tubers. Field sprouting. Second growth is problem.
AF 1753-2	80	late	257	Oval to oblong tubers. Some second growth and some surface scab.
AF 1775-2	72	v.late	280	Round to slightly oval tubers. Major problem is the irregular surface. Field sprouting is present.
AF 1606-8	90	mid	252	Irregular surface and second growth. Surface varies from smooth to heavy netting
AF 1455 - 9	80	late	170	Round tubers, small size, stolons attached.
AF 1611-6	50	mid	54	Very low yield. "Dumbbell" shaped tubers. Irregular shape.
AF 1773-1	55	v.late	173	Tubers tend to be small. Trace of second growth. Misshapened.
AF 1753-12	83	late	269	Round to slightly oval tubers, almost oblong, with some second growth, irregula surface, misshapened. Surface in numerous tubers resembles "alligator skin."
AF 1764-9	69	mid	272	Major "rough" tubers with irregular surface.
R 41-18	74	late	245	Round to oval tubers; many have irregular surface. Tuber surface varies from smooth to netted.
R 17-2	75	m.late	156	Irregular surface, apical end tends to be deep. Surface scab is present.
R 17-20	70	late	218	Fairly uniform tubers. Tendency for tubers to have irregular surface.
R 18-4	90	mid	239	Round tubers with deep apical end. Wide range in size. Trace of misshapened tubers.
R 17-19	58	m.late	160	Small tuber size. Poor set. Inadequate sample.
R 17-7	34	late	247	Round to oval tubers. Major problems: irregular surface second growth, and surface scab.
R 17-11	79	late	203	Round to oval tubers. Surface scab could be problem.
R 18-4	90	mid	239	Wide range in size and shape. Many tubers have an irregular shape and irregular surface.
R 18-6	75	mid	200	Wide range in size and shape. Many tubers have an irregular shape and irregular surface.

Ohio Table 7: 1997 Observation trial comments on breeding lines that won't make it under Ohio conditions. (Continued)

Cultivar	Stand %	Maturity Scale	Total cwt/a	Comments
P 61-3	68	late	172	Round to slightly oval tubers. Many tubers have an irregular surface. Wide range in size.
Q 3-12	48	late	115	Round to oval shaped tubers with light to medium netting. Irregular surface.
P 73-2	63	late	146	Round to oval tubers, many with irregular shape and second growth.
BO178-34	71	late	222	Round to oval shaped tubers with buff appearance. Many tubers have irregular surface. Second growth and surface scab could be problem.
B 1004-8	89	late	269	Round to oblong tubers. Russettingsome with variable netting. Poor shape.
B 0984-3	54	mid	137	Mostly round tubers with buff appearance and light netting. Wide range in size.
B 0984-1	71	late	184	Medium red tubers. Tubers have irregular surface. The color does not appear to be scabby.
В 9922-11	96	late	218	Round to oval shaped tubers with fairly heavy russetting. Irregular surface and irregular shape are major defects.
В 0766-3	89	mid	201	Round to oval tubers with netted surface. Tends to have an irregular surface. May be scab susceptible.
B 1240-14	73	late	199	Round tuber with buff appearance and some netting. Apical end tends to be deep. Major problems: irregular surface and second growth.
BO811-13	71	late	148	Medium tuber size with medium red appearance. Tubers tend to have "rough" appearance. Second growth is present.
AZIZA	86	late	153	Round to slightly oval tubers, small size. Irregular surface. Second growth.
MIRIAN	91	late	224	Round to oval to oblong tubers. Second growth is a problem. Field sprouting is appearing. Small size.
DISCO	97	v.late	235	Round to oval tubers with light cream color. Small size. Many tubers with irregular surface.
ROMINA	84	v.late	214	Round tubers, cream colored surface. Major problems: second growth, much greening, and irregular surface.
PICASSO	67	v.late	185	Round to slightly oval tubers with cream colored surface containing some red blotches. Field sprouting is present. Second growth.
ISLAND SUNSHINE	66	v.late	144	Round tubers with cream colored surface. Small size. Much second growth. Irregular surface.

Oregon

A.Mosley, D. Hane, S. James, K. Rykbost, C. Shock, B. Charlton and E. Eldredge

Introduction

Russets, chippers, reds, and specialty varieties were compared on sandy loam in field trials at Corvallis. Area soils are typically wet through early May. Most crops are harvested in mid-September to avoid fall rains. Growing seasons are relatively short and yields are low compared to most eastern Oregon sites.

Late blight is a perennial problem in the Willamette Valley because of heavy dew and cool, overcast, humid weather. Some of the entries in the Corvallis variety trials showed decay despite a fairly rigid spray program. Late blight will decimate area potato crops in the absence of a good preventative program. Results of 1997 late blight resistance screening trials effectively illustrate this point.

The Oregon Statewide Trial is conducted on branch stations at Hermiston, Klamath Falls, Madras and Ontario and reflects most conditions encountered by Pacific Northwest growers farming east of the Cascades. Entries are typically compared in the Statewide for two years before advancement to the Tri-state Trial for two years and finally to the Western Regional Trial for two or more years.

Methods

Corvallis Performance Trials

The Statewide trial was grown using commercially acceptable methods common to the four production areas.

Corvallis production specifics included the following:

- SEED
 Hand cut on 5/12 5/16
 Treated with Tops 2.5D (1 lb./100 lbs. seed)
- FIELD PREPARATION
 Moldboard plowed on 5/18
 Rotera (horizontally oscillating spikes
 approximately 6 inches long) on 5/20
 15-15-15 broadcast preplant (500 lbs./a) on
 5/20
 Rotera on 5/20 (incorporate)
- PLANTING DATES
 Performance trials: 5/24
 Late blight screening trial: 5/21 & 5/24 (red-skinned entries)
- TRIAL DESCRIPTIONS
 Performance Trials: Randomized Complete
 Block Design (RBCD) w/ 4 reps, 34"
 between-row spacing, 25' single-row plots, 9" in-row seed spacing.
 Late Blight Screening Trial: RCBD w/ 4 reps, 34" between-row spacing, 15' single-row plots, 9" in-row seed spacing, all plot rows bordered by R. Burbank rows
- CULTIVATION & HILLING 6/25 with two-row disc hillers
- FERTILIZATION 500 lbs./a 15-15-15-9 broadcast preplant 500 lbs./a 15-15-15-9 banded @ planting
 - PESTICIDES
 Tops 2.5D 1 lb./100 lbs. seed
 Di-syston banded @ planting 2.75 lbs. a.i./a
 Metribuzin 0.5 lb. a.i./a post-plant, preemergence on 6/2
 Bravo 720 @ 1.5 pints/a on 7/18, 8/1, 8/13,
 8/29, 9/9
 Ridomil MZ58 @ 2lbs./a on 7/25
 Diquat 1 pint/a + X-77 Spreader 8 oz./a on
 9/9
- IRRIGATION 5/24 - 9/9: 6.0 inches 11.1 (irrigation + precipitation) from planting to vine-kill [9.5" in '96 & 12.2" in '95]

13.9 inches (irrigation + precipitation) from planting to harvest [11.2" in '96 & 17.0" in '95]

- VINE REMOVAL two-row chain flailer on 9/10
- HARVEST Performance Trials: 9/24-9/25 Late Blight Screening Trial: 9/25
- WEATHER
 Growing Season
 Avg. Minimum Temperature = 51.4
 (49.9 in '96)
 Avg. Maximum Temperature = 78.7
 (80.8 in '96)
 Avg. Mean Temperature = 65.0 (65.3 in '96)

Number of Days with Temperature ≥ 90° F May = 0 (0 in '96, 2 in '95) June = 0 (1 in '96, 7 in '95) July = 1 (12 in '96, 9 in '95) Aug. = 9 (9 in '96, 9 in '95) Sept. = 1 (1 in '96, 7 in '95)

Total Rainfall

From Date of Planting to Vine-kill = 5.1 inches [1.8" in '96 & 2.5" in '95]

From Date of Planting to Harvest = 7.9 inches [3.5" in '96 & 7.3" in '95]

MISCELLANEOUS

Growing season temperatures were slightly cooler than during the previous 2 yrs. and temperature fluctuations were not as severe as in years past.

Late blight appeared about July 15 (slightly earlier than normal). Some parts of the field were severely affected. The disease was difficult to contain with our spray program. Some tuber decay occurred in storage, especially in Russet Norkotah, for example.

Harvesting conditions (soil moisture, temperature, etc.) were wetter than desirable.

Late blight resistance screening

Cultural methods for the late blight screening trial were basically identical to

those used for variety performance trials. However, the blight trial was planted almost a month later (June 21 and 24) to maximize canopy density late in August when late blight pressure was highest. Matrix was applied at recommended rates post-crop-emergence in an unsuccessful attempt to control weeds season-long. Russet Burbank was planted in every other row in order to provide a common border for all plots. Late blight infection was encouraged by withholding all fungicide sprays. Most plants were totally dead by mid-September.

Statewide performance trials

Statewide trials were grown using management practices common to each of the four producing areas.

RESULTS AND DISCUSSION:

Chipping trials

Nine chipping varieties and selections were compared at Corvallis. U.S. No. 1 yields ranged from 353 (AC88357-3) to 586 (ATX85404-8) cwt/acre (Table 1). Four entries outyielded Atlantic, the standard (421 cwt/a). AO91812-1, AO91812-2 and ATX85404-8 produced more than 500 cwt/ac of U.S. No. 1 potatoes. Poor grade-out significantly reduced No.1 yields of Chipeta and NorValley. Oversize was a major concern with Chipeta which produced No. 1 tubers averaging 9.9 oz.

Chipeta was relatively susceptible to knobbiness, growth cracking, and greening (Table 2). Hollow heart was not a factor for most entries but AO91812-2 showed about 5%. ATX85404-8, A88431-14 and Atlantic

showed lower levels of 3.4, 3.3 and 1.7%, respectively. AC88357-3 produced unacceptable levels of internal necrosis with 43.4% of the tubers affected.

Specific gravities ranged from 1.081 for Chipeta to 1.089 for Atlantic, the standard, to 1.101 for A88431-1 (Table 3). A88431-1 showed exceptionally good fry color at harvest with an Agtron reading of 46.0 compared to 43.7 for Atlantic and 38.8 for Chipeta. Chipeta seemed to produce darker fries than any other entry at harvest. However, a close examination of statistical significance in table 3 shows few differences in chip color.

Our 40°F cooler failed due to mechanical problems, so December data are limited to fry color from 50°F and sprout percentages and lengths. Interestingly, A88432-1 which fried extremely light at harvest was no better than most other entries on December 15. Only Chipeta tended to produce chips significantly darker than most others. Chipeta showed fewer, shorter sprouts on December 15 suggesting that it might be slightly later maturing and have a longer dormancy. ATX85404-8 appeared to have a very short dormancy as did NorValley.

Based on all factors, the two Oregon selections AO91812-1 and AO91812-2 appeared to have considerable promise, especially for long-season production areas. ATX85404-8 also performed well with the exception of long-term storage. We noted in previous tests that it sprouts early and severely.

Reds

Several red selections yielded well compared to the checks [Dark Red

Norland (444 cwt., U.S. No. 1), Red LaSoda (404 cwt), and Sangre (512 cwt/a) (Table 4)]. Notable selections included CO86218-2 (500 cwt/a), NDO4588-5R (531 cwt.), and NDO4300-1R (536 cwt/a). Both of the latter entries produced very few 2's and culls

External defects were minimal except for 15.8% growth cracks in CO86142-3 (Table 5). CO86218-2 showed some tendency toward hollow heart with a level of 6.7% but the two high-yielding Oregon selections, NDO4588-5R and, especially, NDO4300-1R were generally resistant to both external and internal defects. Based on these data, NDO4588-5R and NDO4300-1R appear to be especially interesting among this group of entries. CO86218-2 also shows a great deal of promise because of its excellent appearance.

Specialty varieties

Characteristics and field performance of 12 mixed gourmet types are summarized in Tables 6 and 7. Because of a broad range of shapes and sizes, grading these cultivars fairly was especially difficult. Total yields may, therefore, be more interesting to the reader than U.S. No. 1 vields. Yukon Gold remained a very good choice among round, yellowfleshed entries. German Butterball with buff skin and yellow flesh was also quite attractive. The Oregon selection AO90319-1 was promising with russeted, slightly round, yellow-fleshed tubers. NDC4069-4 was also interesting because of its red skin and flesh; however, this selection was basically eliminated by metribuzin injury. Red Gold tubers were also quite attractive.

Russets

Several Oregon selections performed well relative to Russet Burbank and Russet Norkotah (Tables 8 and 9). AO87277-6, AO88103-3 and AO91522-4 produced relatively good yields and much higher solids than Norkotah. Russet Norkotah and NDD840-1 showed a relatively high incidence of tuber decay, probably related to late-season late blight infection. AO87277-6 and AO91522-4 are probably the two most interesting selections among this group for Willamette Valley conditions. The former may hold more promise for processing because of slightly higher solids. AO88103-3 showed an unacceptably high level of hollow heart with 23.3% of the tubers affected. The two other high-yielding Oregon selections were relatively free of both external and internal defects

Late blight screening

Twenty-seven white and russet varieties were compared for foliar and tuber resistance to late blight infection in unsprayed fields at Corvallis (Table 10). By early September, most varieties showed almost total foliar death and differences in leaf loss among the entries were minimal.

However, significant differences in late blight tuber infection were evident at harvest. Tuber infection levels ranged from 0 to more than 52%. Infection levels were even higher in similar trials in 1996. Russet Burbank showed moderate resistance to infection with only 10% of the tubers showing obvious, though relatively mild decay. Among the named varieties included, Atlantic was most resistant with only 7.5% infection

(1.3 severity rating) compared to 10% for Russet Burbank, 27.5% for Russet Norkotah, 32.5% for Chipeta and 42.5% tuber infection for Ranger Russet. Ranger Russet, Russet Norkotah, and Shepody were markedly susceptible in 1996 trials as well

Breeding selections showing some resistance to late blight tuber decay include: A82360-7, 10% infection/1.0 severity rating; A8792-1, 2.5% infection/1.0 severity rating; A88338-1, 0 infection/0.5 severity rating; A082611-7, 2.5% infection/0.5 severity rating; and COO83008-1, 5.0% infection/0.8 severity rating. These results will be used by western breeders to produce blight-resistant populations for varietal development purposes.

Resistance of several reds to tuber infection was also evaluated at Corvallis. No differences in infection were evident (Table 11). CO86142-3 showed some tendency toward resistance.

Oregon Statewide Trial

Twelve of 19 entries in the Statewide Trial (Tables 12 and 13) were either retained for further state tests or advanced to the Tri-state and Western Regional Trials. AO900114-1, AO88103-3, AO92007-2, AO92016-3 and AO92017-6 appeared to have excellent multi-purpose potential, especially AO88108-3. The two chippers, AO91812-1 and AO91812-2, produced excellent yields and good chip color but were late maturing. These entries may have good potential for long season areas. AO90319-1 produced attractive russet-skinned, yellow-fleshed tubers which may be of interest to specialty growers.

Oregon Table 1. Yield, grade, and size distribution of 9 chipping varieties and selections at Corvallis, OR. 1997.

	Yield (cwt/a)	Y	ield U.S. N	lo. 1's (cwt	Yield U.S. No. 1's (cwt/a)					
Variety/Selection	Total	Total	4-6 oz	6-10 oz	> 10 oz	< 4 oz	2's & Culls	% U.S. No. 1's		
Atlantic	508.4	420.5	76.4	188.5	155.6	43.0	44.9	82.7		
Chipeta	637.4	444.6	26.6	124.5	293.5	21.9	171.0	69.7		
NorValley	588.8	417.1	121.1	200.9	95.0	132.0	39.8	70.9		
AO91812-1	630.0	548.5	58.9	226.6	263.0	41.5	40.1	87.1		
AO91812-2	642.9	536.8	63.1	228.3	245.5	37.3	68.8	83.5		
A88431-1	527.6	395.4	77.8	200.1	117.4	75.6	56.7	74.7		
A8961-14	463.7	379.2	26.4	121.3	231.5	37.8	46.8	81.9		
AC88357-3	419.4	352.8	87.1	186.5	79.2	41.5	25.1	84.2		
ATX85404-8	683.1	585.9	83.3	279.4	223.3	55.4	41.8	85.9		
Mean	566.8	453.4	68.9	195.1	189.3	54.0	59.4	80.0		
CV (%)	12.7	14.3	24.3	14.7	27.0	19.8	52.0	6.2		
LSD (0.05)	105.3	94.8	24.5	41.8	74.5	15.6	45.1	7.2		

oz/tuber = total weight per plot / total tubers per plot; i.e. average tuber weight

OregonTable 2. Quality characteristics and general descriptions of 9 chipping varieties and selections at Corvallis, OR. 1997.

			Per	cent'			
Variety/Selection	K	GC	GR	HH	VD	IN	Comments
Atlantic	0.1	1.0	7.3	1.7	0.0	0.0	Good skin set, Fairly uniform
Chipeta	4.1	5.7	11.8	0.0	3.4	1.7	Skinning, Too large, Ugly
NorValley	0.2	0.4	3.7	0.0	0.0	0.0	Smooth skin, Fairly uniform, Some pear shape
AO91812-1	0.2	0.6	6.3	0.0	3.4	1.7	Uniform size/shape, Minor skinning, Excellent
AO91812-2	0.8	0.7	7.1	5.0	1.7	0.0	Attached stolons, Some skinning, Good
A88431-1	0.4	1.2	7.1	3.3	5.0	0.0	Attached stolons, Some skinning, rot, Fair
A8961-14	0.7	0.7	7.1	0.0	1.7	0.0	Frequent rot, Big, Poor
AC88357-3	0.3	1.4	3.3	0.0	3.3	43.4	Good skin set, Minor shatter bruise. Uniform, Excellent
ATX85404-8	0.5	0.3	4.6	3.4	3.4	0.0	Uniform size/shape, Nice
Mean	0.8	1.3	6.5	1.5	2.4	5.2	
CV (%)	131.2	67.6	39.3	210.5	174.0	147.7	
LSD (0.05)	1.6	1.3	3.7	NS	NS	11.2	

¹Percentage of tubers affected by: K = Knobs; GC = Growth Cracks; GR = Sunburn; HH = Hollow Heart; VD - Vascular Discoloration; IN = Internal necrosis.

Oregon Table 3. Specific gravity, fry color, and sprouting characteristics of 9 chipping varieties and selections at Corvallis, OR. 1997.

	Specific	Chip Color ³	Chip Color ³	% Sprouted	Sp. Lgth.4
	Gravity1	10/30/97	12/15/97	12/15/97	12/15/97
Variety/Selection	10/30/97	Agtron ²	Agtron ² , 50°	50°	50°
Atlantic	1.089	43.7	40.8	21.9	0.125
Chipeta	1.081	38.8	35.8	5.8	0.075
NorValley	1.083	43.1	43.7	97.2	0.500
AO91812-1	1.091	43.7	38.0	3.6	0.150
AO91812-2	1.092	42.8	40.1	44.8	0.300
A88431-1	1.101	46.0	40.6	46.8	0.100
A8961-14	1.079	39.5	39.2	55.7	0.300
AC88357-3	1.088	40.7	42.6	20.3	0.250
ATX85404-8	1.088	42.7	40.5	90.2	0.725
Mean	1.088	42.3	40.1	42.9	0.280
CV (%)	0.3	6.7	6.4	45.7	48.1
LSD (0.05)	0.005	4.1	3.7	28.6	0.197

Air/Water Method

² Agtron reflectance value (red filter), high numbers = light color

³ To determine PC/SFA value use the following formula: PC/SFA = (-0.113 * Agtron) + 6.70984

⁴Expressed in inches (values ≤ 0.125 = peeping)

Oregon Table 4. Yield, grade, and size distribution of 12 red-skinned varieties and selections at Corvallis, OR. 1997.

Violated Selection Violates No. 1's (out/a) Violates (out/a)

	Yield (mat/a)	Yie	ld U.S. N	o. 1's (cv	vt/a)	Yield ((cwt/a)		
Variety/Selection	Total	Total	4-6 oz	6-10 oz	> 10 oz	< 4 oz	2's & Culls	% U.S. No. 1's	Spec. Grav. ¹
Dk. Red Norland	597.7	443.9	68.6	210.4	164.9	74.9	78.9	74.7	1.085
Red LaSoda	525.6	404.2	37.7	152.2	214.3	41.3	80.1	76.6	1.072
Sangre	646.3	511.7	45.2	174.2	292.2	37.6	97.1	79.7	1.079
CO86142-3	478.6	304.2	63.5	171.9	68.8	74.6	99.8	62.7	1.077
CO86218-2	613.5	500.2	50.3	194.7	255.1	59.2	54.2	81.8	1.083
COO86107-1R	449.7	363.4	51.7	181.8	129.8	49.5	36.8	80.7	1.082
DT6063-1	563.2	471.3	63.0	180.7	227.5	51.9	40.1	83.4	1.084
NDO4588-5R	603.3	531.4	80.6	235.0	215.9	57.2	14.8	88.1	1.070
NDO2686-6R	519.3	415.8	91.2	241.6	83.1	99.7	3.7	79.9	1.079
NDO4300-1R	648.6	536.4	109.9	287.3	139.1	101.4	10.9	82.3	1.068
NDO2438-6R	518.4	437.4	54.2	153.7	229.5	54.7	26.3	84.3	1.061
NDO4592-3R	491.5	392.1	61.3	173.5	157.3	57.5	41.9	79.9	1.073
Mean	554.6	442.6	64.8	196.4	181.5	63.3	48.7	79.5	1.076
CV (%)	12.2	14.3	26.6	23.4	31.1	24.8	53.0	7.1	0.5
LSD (0.05)	97.1	91.4	24.8	66.1	81.1	22.6	37.2	8.1	0.008

¹ Air/water method

Oregon Table 5. Quality characteristics and appearance ratings of 12 red-skinned varieties and selections at Corvallis, OR. 1997.

		Percent ¹		*Per	cent ²		Appearance Ratings ³			
Variety/Selection	K	GC	GR	НН	VD	Color	Eye Depth	Shape	Skinning	
Dk. Red Norland	1.5	6.0	1.6	0.0	1.7	3.6	3.4	2.0	4.5	
Red LaSoda	2.3	3.6	3.3	1.7	3.4	3.3	2.8	1.7	3.9	
Sangre	1.0	4.4	5.6	0.0	6.7	3.9	3.9	1.4	4.4	
CO86142-3	0.0	15.8	0.9	0.0	0.0	4.5	4.4	1.1	3.6	
CO86218-2	0.6	1.3	4.4	6.7	3.4	4.5	4.1	1.3	4.9	
COO86107-1R	0.0	4.9	0.8	0.0	3.4	4.1	4.4	1.4	4.0	
DT6063-1	0.2	1.7	3.2	6.7	1.7	4.1	4.3	1.5	4.9	
NDO4588-5R	0.9	0.2	0.9	0.0	3.4	4.5	3.9	1.3	3.6	
NDO2686-6R	0.2	0.2	0.3	0.0	1.7	4.0	4.9	1.1	4.4	
NDO4300-1R	0.0	0.2	1.3	0.0	0.0	4.0	4.5	1.1	4.1	
NDO2438-6R	0.5	0.4	3.8	0.0	5.0	4.6	4.4	1.1	4.3	
NDO4592-3R	1.3	2.1	1.4	0.0	0.0	3.8	4.2	1.1	3.6	
Mean	0.7	3.4	2.3	1.3	2.5				cub cub cub cub cub cub	
CV (%)	69.6	67.4	55.0	262.4	162.2			sale sale sale sale	***	
LSD (0.05)	0.7	3.3	1.8	4.7	NS	***		and and such such such		

¹K = Knobs: GC = Growth Cracks: GR = Sunburn

Skinning: 1 - severe: 5 - none

² HH = Hollow Heart, VD = Vascular Discoloration; figures based on 15 US #1 tubers per replication *Brown Center not reported (Dk. Red Norland had 3.3%, DT6063-1 had 1.7%, remaining entries had 0%)

³ Color: 1 - pale pink; 5 - dark red Eye Depth: 1 - deep; 5 - shallow Shape: 1 - round; 2 - oval

Oregon Table 6. Yield, grade, and size distribution of 12 specialty-type varieties and selections at Corvallis, OR. 1997.

	Yield (cwt/a)	Y	ield U.S. N	lo. 1's (cwt	/a)	Yield	(cwt/a)		Spec.
Variety/Selection	Total	Total	4-6 oz	6-10 oz	> 10 oz	< 4 oz	2's & Culls	% U.S. No. 1's	Grav.1
Desiree	539.4	238.8	64.0	120.4	54.5	94.6	206.1	44.3	1.088
Red Gold	392.2	220.8	97.1	92.7	31.1	150.0	21.4	55.4	1.087
Rosegold	437.9	239.7	35.6	109.2	95.0	69.0	129.2	52.6	1.086
LaRatte	312.1	86.2	60.4	25.8	0.0	177.1	48.9	27.2	1.079
NDC4069-4 ²	NA^2	NA^2	NA^2	NA^2	NA^2	NA^2	NA^2	NA^2	NA^2
AO90319-1	455.9	295.7	42.3	157.9	95.5	128.0	32.3	64.6	1.089
German Butterball	680.7	321.6	153.1	132.8	35.7	315.1	44.1	47.3	1.089
Pimpernel	640.4	366.3	143.8	196.0	26.6	242.6	31.5	57.0	1.108
Granola	517.6	393.9	108.6	196.2	89.3	94.0	29.7	76.1	1.074
Yukon Gold	403.1	338.6	61.2	153.9	123.5	44.4	20.2	83.9	1.089
Yellow Finn	486.0	361.1	100.5	165.4	95.2	80.3	44.7	74.1	1.087
All Blue	564.0	315.1	108.7	156.2	50.2	218.5	30.5	55.9	1.088
Mean	493.6	288.9	88.6	136.9	63.3	146.7	58.1	58.0	1.088
CV (%)	9.4	19.3	25.7	23.6	45.8	15.2	41.5	13.1	0.4
LSD (0.05)	66.8	80.5	33.0	46.7	41.9	32.2	34.8	11.0	0.007

¹ Air/water method ² Herbicide (metribuzin) injury

Oregon Table 7: Quality characteristics and general comments of 12 specialty-type varieties and selections at Corvallis, OR. 1997.

		Perc	cent ¹			Percent ²		
Variety/Selection	K	GC	GR	Scab	НН	BC	VD	Comments
Desiree	3.1	0.1	2.0	17.9	0.0	0.0	3.4	Scab problem, Pale red skin, Lumpy, Ugly
Red Gold	0.2	1.8	1.0	0.1	0.0	1.7	1.7	Uniform size/shape, Pale red skin, Smallish, Nice
Rosegold	2.5	4.8	6.9	5.2	0.0	1.7	8.4	Rough, Scab, Lumpy, Pale red skin, Poor
LaRatte	NA ³	NA ³	NA^3	NA ³	0.0	0.0	3.4	Fingerling w/yellow flesh, Irregular shapes, Fair
NDC4069-4 ⁴	NA^4	NA^4	NA^4	NA^4	NA^4	NA^4	NA^4	Dark red skin/flesh, Intriguing
AO90319-1	0.0	0.7	0.5	0.0	0.0	0.0	1.7	Yellow-fleshed Russet, Slightly round, Nice
German Butterball	0.3	0.1	1.5	0.0	0.0	0.0	0.0	Buff skin w/yellow flesh, Small/Round, Nice
Pimpernel	2.1	0.2	0.2	0.2	0.0	0.0	20.0	Pale purple skin, Scaly, Tuber chaining, Poor
Granola	0.4	0.2	2.3	0.2	0.0	0.0	8.3	Buff skin w/yellow flesh, Slight russeting, Good
Yukon Gold	0.3	0.3	3.4	0.7	0.0	1.7	3.4	Smooth Buff skin w/yellow flesh, Uniform, Nice
Yellow Finn	0.5	0.2	3.9	1.1	0.0	0.0	3.4	Buff skin w/yellow flesh, Lumpy, Irreg. Shape, Fair
All Blue	0.8	0.6	0.1	0.0	0.0	0.0	0.0	Dark purple skin/flesh, Lumpy, Irreg. Shape, Fair
Mean	1.0	0.9	2.2	2.5	0.0	0.5	4.9	
CV (%)	111.7	137.9	86.1	65.9	0.0	378.7	77.6	
LSD (0.05)	1.6	1.8	2.7	2.4	NS	NS	5.4	

¹ K = Knobs: GC = Growth Cracks: GR = Sunburn

²HH = Hollow Heart, BC = Brown Center, VD = Vascular Discoloration; figures based on 15 US #1 tubers per replication ³ Not available

⁴Herbicide Injury

Oregon Table 8. Yield, grade, and size distribution of 8 russet-type varieties and selections at Corvallis, OR. 1997.

	Yield (cwt/a)	Yi	ield U.S. N	lo. 1's (cwt	/a)	Yield	(cwt/a)		
Variety/Selection	Total	Total	4-6 oz	6-12 oz	> 12 oz	< 4 oz	2's & Culls	% U.S. No. 1's	Spec. Grav. ¹
Russet Burbank	529.7	298.2	65.7	158.7	73.8	154.4	77.2	56.2	1.091
Russet Norkotah	502.3	402.3	70.2	231.1	101.1	78.3	21.7	80.0	1.074
NDD840-1	569.1	357.0	41.8	195.0	120.2	127.3	84.8	62.9	1.087
AO87277-6	607.2	428.7	46.9	271.3	110.6	133.4	45.0	70.7	1.098
AO89128-4	545.2	313.0	68.9	197.1	47.1	180.5	51.7	57.5	1.103
AO88103-3	541.2	407.6	88.5	248.4	70.7	105.9	27.7	75.4	1.095
AO91522-4	596.7	401.1	35.9	204.1	161.2	81.1	114.6	67.1	1.087
AO90014-1	469.3	329.7	42.1	205.3	82.3	108.8	30.8	70.0	1.092
Mean	545.1	367.2	57.5	213.9	95.9	121.2	56.7	67.5	1.091
CV (%)	9.5	12.4	27.0	14.9	32.7	24.5	38.5	7.4	0.3
LSD (0.05)	76.0	66.9	22.8	46.9	46.1	43.7	32.1	7.3	0.004

Air/water method

Oregon Table 9. Quality characteristics and general descriptions of 8 russet-type varieties and selections at Corvallis, OR. 1997.

		Percent ¹		ŕ	Percent ²		
Variety/Selection	K	GC	GR	НН	BC	VD	Comments
Russet Burbank	2.2	0.9	1.0	1.7	1.7	0.0	Smallish, Points, Dumbbells, Lumpy, Fair
Russet Norkotah	0.0	0.2	1.4	0.0	1.7	3.4	Frequent Rot, Rough skin, Poor for Norkotah
NDD840-1	1.9	0.2	2.1	35.0	0.0	0.0	Frequent Rot, Med. Russet skin, Irregular shape, Fair
AO87277-6	0.8	0.2	1.1	5.0	0.0	0.0	Oblong, Med. Russet skin, Nice
AO89128-4	1.4	0.7	0.4	13.4	1.7	5.0	Smallish, Med. Russet skin, Good
AO88103-3	0.6	0.4	1.0	23.3	0.0	1.7	Short/Round shape, Skin slightly rough. Good
AO91522-4	3.6	1.2	4.0	0.0	0.0	1.7	Long/Blocky shape, Med. Russet skin, Excellent
AO90014-1	0.0	0.3	3.2	13.4	5.0	3.4	Oblong, Pointed bud ends, Some shatter. Good
Mean	1.3	0.5	1.7	11.5	1.3	1.9	
CV (%)	62.2	65.2	70.1	70.8	275.5	158.2	
LSD (0.05)	1.2	0.5	1.8	11.9	NS	NS	

¹ K = Knobs; GC = Growth Cracks; GR = Sunburn ² HH = Hollow Heart, BC = Brown Center, VD = Vascular Discoloration; figures based on 15 US #1 tubers per replication

Oregon Table 10. Response to late blight at Corvallis, OR. 1997.

Entry	Foliar Rating ¹	% Tuber Infect. ²	Severity Index ³
Russet Burbank	93.8	10.0	1.8
Ranger Russet	95.0	42.5	4.8
Russet Norkotah	97.5	27.5	4.8
A82360-7	96.3	10.0	1.0
A8495-1	77.5	17.5	1.8
A8792-1	96.3	2.5	1.0
A88338-1	52.0	0.0	0.5
A8836-5	86.3	35.0	4.8
AC87084-3	94.8	17.5	1.8
AO82611-7	100.0	2.5	0.5
AO87277-6	97.5	35.0	5.0
AO89128-4	100.0	35.0	6.8
CO85026-4	75.0	15.0	2.8
CO87009-4	97.5	37.5	4.8
COO83008-1	86.0	5.0	0.8
CO RN-3	96.3	17.5	3.0
CO RN-8	96.3	27.5	4.0
NDD840-1	97.5	32.5	6.0
TXAV657-27	90.0	15.0	1.8
TX1385-12	97.3	52.5	7.0
TXNS-112	100.0	37.5	6.0
TXNS-223	96.3	20.0	2.8
TXNS-278	90.0	17.5	2.3
Atlantic	90.0	7.5	1.3
Chipeta	92.5	32.5	5.3
FL-1625	93.5	12.5	2.0
FL-1851	100.0	10.0	1.8
Mean	92.0	21.3	3.2
CV (%)	9.9	63.9	77.9
LSD (0.05)	12.9	19.2	3.5

leaf surface infected; 50 = 50% of leaf surface involved; 100 = 100% of leaf surface necrotic on 9/4/97

Percent of tubers showing late blight infection based on 10 randomly selected tubers/plot

Decay severity rating (includes secondary infection): 1 = Healthy tubers; 10 =

Uncontrollable decay

Oregon Table 11. Response of 8 red-skinned varieties and selections to late blight at Corvallis, OR. 1997.

Entry	% Tuber Infect ¹	Severity Index ²
Dk. Red Norland	45.0	8.5
Red LaSoda	55.0	10.0
Sangre	45.0	8.3
CO86142-3	17.5	4.8
CO86218-2	35.0	6.5
COO86107-1R	35.0	6.3
NDO2438-6R	37.5	7.3
NDO2686-6R	32.5	5.8
Mean	37.8	7.2
CV (%)	39.0	32.4
LSD (0.05)	NS	NS

¹Percent of tubers showing infection (based on 10 randomly selected tubers/plot)

² Decay severity rating (includes secondary infection): 1 = Healthy tubers; 10 = Uncontrollable decay

Oregon Table 12. Average performance of advanced selections and varieties at four Oregon locations, 1997 Statewide Trial¹.

	Yield,	cwt/a_	Oz/	Lgth/	Spec	Fry (Color ²	SE/3		F	Perce	ent ⁴	
Entry	total	No. 1	tuber	wdth	Grav.		Chart	%	HH	BC	BS	IBS	VD
R. Burbank	521	284	4.8	1.97	1.081	34.0	1.13	5	2	0	2	4	4
Ranger R.	528	405	7.8	1.99	1.084	38.0	0.79	1	0	0	0	1	17
Shepody	476	330	9.0	1.68	1.078	33.1	1.42	11	1	0	0	1	11
Norkotah R.	372	284	5.0	1.79	1.071	31.7	1.42	7	2	1	0	0	1
Atlantic	478	372	5.4	1.00	1.092	44.4	0.15	0	8	2	6	2	1
Umatilla R.	525	360	6.5	1.85	1.084	37.9	0.89	1	1	0	4	0	2
R. Legend	497	401	8.1	1.60	1.086	38.9	0.76	4	3	3	0	1	12
AO85165-1	501	386	7.7	1.69	1.075	28.9	1.75	8	10	0	1	2	4
AO87277-6	534	428	7.1	1.84	1.086	40.5	0.55	2	1	0	3	0	9
AO89128-4	542	357	5.6	2.14	1.092	43.5	0.49	0	1	0	1	0	6
AO90114-1	466	354	5.7	1.98	1.084	44.3	0.21	1	0	2	0	1	15
AO90319-1	446	343	5.6	1.82	1.081	27.0	2.02	6	1	0	4	0	1
AO88103-3	566	409	6.3	1.75	1.084	41.2	0.61	0	5	0	3	1	4
AO91522-4	561	415	8.3	1.87	1.080	38.3	0.86	1	1	0	4	0	5
AO91812-1	624	502	6.6	0.97	1.085	44.9	0.15	0	1	0	0	1	3
AO91812-2	652	468	5.4	1.11	1.087	43.8	0.23	0	1	0	0	0	2
AO92007-2	500	380	5.9	1.99	1.082	43.9	0.17	0	1	0	1	2	4
AO92016-2	495	344	6.8	1.81	1.076	36.0	0.92	0	1	0	4	1	11
AO92016-3	460	353	6.4	1.87	1.082	38.0	0.92	1	1	0	5	2	3
AO92017-6	523	393	8.1	1.93	1.084	38.7	0.75	2	0	0	3	1	4
AO92019-13	489	389	7.5	2.03	1.087	28.8	1.76	6	3	0	5	1	9
AO92023-3	545	437	8.0	1.72	1.078	34.3	1.07	2	1	1	5	1	4
AO92056-7	366	239	6.0	2.24	1.083	39.0	0.83	1	2	0	0	0	10
AO92173-2	584	426	7.0	1.64	1.080	31.0	1.62	9	15	0	2	0	5

¹Locations--Hermiston, Klamath Falls, Madras, Ontario

²Color: reflectance, higher numbers = lighter color; chart, lower numbers = lighter color

³Sugar-end or dark-end fries

⁴HH= hollow heart; BC = brown center; BS = blackspot bruise; IBS = internal brown spot; VD = vascular discoloration

Oregon Table 13. Average tuber characteristics at four Oregon locations, 1997 Statewide Trial¹

			Tube	r^2			
Entry	Color	Rus	Sh	ED	GC	SB	Comments
R. Burbank	3.9	3.5	4.4	3.5	3.7	4.7	
Ranger R.	4.0	3.6	4.7	3.2	4.7	4.9	
Shepody	2.0	1.4	4.0	4.0	4.7	4.9	
Norkotah R.	4.5	4.0	4.0	4.0	5.0	4.8	
Atlantic	2.3	1.7	1.1	3.7	4.8	4.2	
Umatilla R.	3.9	3.8	4.4	3.8	4.3	4.0	
R. Legend	4.1	3.9	3.3	3.9	4.6	4.2	
AO85165-1	4.3	4.0	3.8	3.4	4.7	4.4	Advance to Regional
AO87277-6	4.1	3.9	3.9	3.7	4.8	4.2	Advance to Regional
AO89128-4	4.0	3.5	4.4	4.2	4.5	4.4	Test further
AO90114-1	3.7	3.2	4.4	4.1	4.9	3.5	Light, nice. To Tri-state
AO90319-1	4.3	4.3	4.3	4.6	5.0	3.7	Att. Rus; Yellow. Specialty
AO88103-3	4.3	4.3	3.7	4.0	4.4	3.9	Advance to Tri-state
AO91522-4	3.8	3.4	4.4	3.7	4.5	4.0	Discard
AO91812-1	2.0	1.1	1.2	3.7	4.6	4.3	Folded ends, late. Regional
AO91812-2	2.0	1.1	1.2	3.9	4.8	4.4	Good chipper. Regional
AO92007-2	4.2	4.2	4.4	3.9	5.0	4.7	Ranger type. Keep
AO92016-2	3.6	3.2	4.0	3.7	4.6	4.0	Drop
AO92016-3	3.9	3.4	4.1	4.4	4.8	3.9	Nice rus. Keep
AO92017-6	3.3	3.0	4.3	3.4	5.0	4.5	Keep
AO92019-13	4.0	3.8	4.3	4.3	4.5	4.0	Keep
AO92023-3	3.7	3.1	3.6	3.1	4.3	3.5	Drop
AO92056-7	4.2	4.0	4.7	4.1	4.3	4.6	Drop
AO92173-2	3.5	3.0	3.5	3.9	4.8	3.5	Drop

¹ Locations--Hermiston, Klamath Falls, Madras, Ontario

² Skin Color (1= red, 2 = white, 3 = buff, 4 = brown, 5 = dark brown); Russeting (1 = none, 5 = heavy); Shape (1 = round, 5 = long); Eye Depth (1 = deep; 5 = shallow); Growth Cracks (1 = severe; 5 = none); Shatter Bruise (1 = severe; 5 = none)

Pennsylvania

B.J. Christ, M.W. Peck, and D.M. Petrunak

The potato evaluation trial was conducted at the Russell E. Larson Agricultural Research Center at Rock Springs, PA. This trial is part of an extensive and on-going project that evaluates promising clones for yield and chip processing potential. Clones that are identified as excellent performers are then evaluated in regional trials across Pennsylvania.

Materials and Methods

The trial was planted on May 22 in single row plots as a randomized complete block design with three replications. Plots were 10 feet in length with 36 inches between rows and 8 inches between seed pieces. Fertilization was 300 lb/a of 0-0-62 (N-P-K) broadcast preplanting, 944 lb/A of 10-10-10 (N-P-K) in furrow at planting, and 1 application of 100 lb/A urea ammonium nitrate solution (30% N). The plots were vine killed on September 9 and 15 and harvested on October 8-10.

Specific gravity was determined by the weight-in-air/weight-in-water method. Tubers were held at ambient temperature until they were placed in storage. Samples were chipped five times throughout the winter. Four tubers from each clone were peeled, cut in half and sliced. Eight slices from the center of each half were used for the chip sample and were fried at 365 F. the chip samples were rated on a 1-10 scale according to a modified snack food color chart.

Results

The first seven weeks of the growing season were dry and minimum irrigation was supplied during those weeks. There was adequate moisture during the remainder of the season.

There were numerous lines with yield greater than Atlantic or Snowden. However, there were only a few clones with yield that had chip scores similar to Snowden: B0178-34, B1240-1, B1415-7, B1425-9, AF1426-6, AF1433-4, P32-3, P63-1, P73-2, Q8-2, R17-11, R17-20, NY102, NY115, Reba, MSA091-1, NorValley, ND2470-27, ND3647-6, and ND3828-15.

Of the reds evaluated for skin color, I426-Red, Norland, NorDonna, and ND2225-1R had the best color our of storage. However, the highest yielding lines were Chieftain, B0811-13, B0984-1, and NorDonna. Chieftain and Norland continued to be the best reds in boiling tests.

For tablestock use, there were several lines that out yielded Katahdin or Superior: Reba, E11-45, Salem, Itasca, NY101, NY109, NY110, AF1437-1, AF1480-5, AF1615-1, AF1758-7, and B1452-18. However, only the following lines had acceptable boiling scores: Reba, E11-45, Salem, Itasca, NY101, NY109, AF1437-1, AF1758-7, and B1452-18.

Acknowledgments

The evaluation trial was funded by the Pennsylvania Potato Research Program. We acknowledge the provision of seed by Kathleen G. Haynes, USDA-Beltsville; Robert L. Plaisted, Cornell University; Alvin F. Reeves, University of Maine; Richard G. Novy, North Dakota State University; and David S. Douches, Michigan State University.

Pennsylvania Table 1. Total and >2" yield, percentage >2", specific gravity, and chip color results from potato evaluation trial in Centre County, Pennsylvania.

Cultivar		Yield (cwt/	'A)	Specfic			Chip C	olor	
	Total	>2"	%>2"	gravity	Nov¹	Dec ²	Jan ³	Feb⁴	Jan ⁵
plicated			· · · · · · · · · · · · · · · · · · ·				·	-	
lantic	386	352	91	1.071	4	3	4	5	6
orchip	467	409	87	1.070	4	4	5	5	7
owden	426	380	89	1.074	3	3	3	3	5
tahdin	398	380	95	1.061	5	-	-	-	_
perior	485	461	95	1.063	<i>3</i>	5	7	6	7
merset	457	428	94	1.070	3	3	4	4	6
178-34	492	452	92	1.077	3	3	4	5	5
564-8	449	406	91	1.068	3	4	6	6	7
564-9	394	381	97	1.008	5	5	7	6	8
766-3	392	359	92	1.068	3	3	4	3	5
)984 - 3	312	286	91	1.057	4	3	9	9	10
964-3 065-51	503	491	98	1.064	6	6	9	7	
									8
066-37	345	326	94	1.072	5	5	6	7	7
1070-88	348	226	65 05	1.081	4	5	7	7	8
1083-51	402	382	95	1.075	5	5	7	8	8
110-11	396	328	82	1.074	4	4	5	4	6
214-7	552	537	97	1.070	6	6	8	8	9
240-1	498	476	96	1.069	3	4	5	4	6
1240-14	443	421	95	1.070	4	4	7	5	7
1248-5	413	358	87	1.068	5	6	7	7	8
1414-6	515	499	97	1.072	3	4	6	5	6
415-5	342	301	88	1.074	3	3	3	4	6
415-7	383	373	97	1.066	4	5	5	4	7
425-9§	474	415	87	1.081	4	4	4	4	6
429A-3	470	442	94	1.068	5	4	6	6	7
452-18	502	456	91	1.057	8	8	10	9	9
452-19	401	280	68	1.063	8	6	8	9	9
F1424-6	432	424	98	1.073	3	3	4	4	5
1424-7	280	257	91	1.072	3	4	3	4	4
1433-4	376	356	95	1.065	3	3	3	5	5
1437-1	495	477	96	1.052	6	6	7	7	8
F1455-20	464	439	95	1.077	4	4	5	5	6
1480-5	495	472	95	1.063	5	5	7	6	6
1565-12	383	355	93	1.065	6	7	8	7	9
F1612-8	378	327	86	1.061	7	7	8	7	7
F1615-1	552	515	93	1.066	6	5	7	6	8
F1668-60	339	327	97	1.067	3	3	3	4	4
F1668-62	336	308	91	1.066	3	3	4	5	6
F1753-12	585	551	94	1.070	7	8	9	9	9
F1758-5	497	472	95	1.060	5	4	7	6	7
1758-7	595	577	97	1.049	7	6	8	7	8
1764-9	406	381	94	1.062	6	6	8	9	8
1766-2	423	388	92	1.070	6	7	7	7	8
1771-2	513	497	97	1.063	6	7	8	6	8
1775-2	572	548	96	1.073	7	6	7	7	7
1856-1	448	438	98	1.065	6	6	6	5	7
1857-2	417	385	92	1.074	5	6	6	7	7
1864-36	449	391	87	1.069	5	6	8	7	8
1-2	492	466	95	1.063	4	5	5	7	6
2-3	388	358	92	1.074	3	5	5	4	6
53-1	417	374	90	1.054	3	3	3	4	5
3-2	349	305	87	1.069	4	4	4	5	6
-12									
	431	410	95	1.068	4	5	5	6	7

Cultivar		Yield (cw		Specfic		Color			
	Total	>2"	%>2"	gravity	Nov	Dec ²	Jan³	Feb ⁴	Jan ⁵
Q8-2	494	475	96	1.076	3	3	4	4	5
R17-2	295	269	91	1.062	3	3	3	3	4
R17-6	558	515	92	1.061	4	4	6	5	7
R17-7	532	492	92	1.054	5	6	7	6	7
R17-11	441	422	96	1.058	3	4	6	6	7
R17-19	406	370	91	1.060	4	5	7	7	7
R17-20	455	410	90	1.066	4	3	5	4	7
R17-106	571	520	91	1.057	4	5	7	7	7
R18-4	469	422	90	1.062	4	4	4	4	6
R18-6	343	317	92	1.056	3	3	5	5	7
R19-7	354	344	97	1.057	3	5	5	5	6
R41-11	530	493	93	1.058	4	4	6	6	7
R41-18	584	552	95	1.056	4	5	5	5	7
E11-45	492	463	94	1.057	4	4	5	4	6
NY101§	581	545	94	1.064	6	5	7	6	7
NY102	463	442	96	1.071	3	4	3	4	5
NY102 NY103	335	313	94	1.060	4	4	7	7	6
NY109	399	382	96	1.055	5	6	8	7	7
NY1109 NY110	445	425	96	1.064	5	4	7	5	7
NY115	402	377	94	1.063	3	3	4	4	4
		463	95	1.063	3	3	6	5	6
Reba	488		93 91	1.063	6	3 7	9	9	9
Salem	613	562				4		4	7
MSA091-1	498	459	92	1.073	3		5 8		
MSB007-1	293	234	80	1.067	6	7		10	7
MSB073-2	406	354	87	1.076	6	6	7	7	7
MSB076-2	437	362	82	1.084	4	4	4	6	6
N8-14	395	329	83	1.066	3	3	4	4	5
NorValley	480	412	85	1.067	3	5	3	4	6
ND2471-8	442	375	85	1.072	3	5	6	5	7
ND2470-27	493	448	91	1.065	3	4	5	5	5
ND2676-10	385	342	89	1.070	3	3	3	4	5
ND3636-1	282	228	81	1.070	4	3	4	4	5
ND3647-6	504	439	87	1.070	3	4	5	4	6
ND3828-15	489	455	93	1.065	3	4	3	4	4
Itasca	513	460	90	1.065	6	-	-	-	-
LSD (p = 0.05)	87	88	6						
Reds									
Norland	315	294	93	1.052	-	-	-	-	-
Chieftain	529	507	96	1.062	-	-	-	-	-
B0811-4	190	108	56	1.083	-	-	-	-	-
B0811-13	495	445	90	1.066	-	-	-	-	-
B0852-7	406	377	92	1.070	-	-	-	-	-
B0967-11	473	450	95	1.071	-	-	-	-	-
B0984-1	510	481	94	1.077	-	-	-	-	-
B0985-1	237	196	83	1.058	-	-	-	-	-
B1145-2	322	279	86	1.060	-	-	-	-	-
NorDonna	505	439	87	1.065	_	_	_	-	_
ND2225-1R	379	304	80	1.060	-	_	_	-	-
I426Red	412	372	90	1.070	-	-	-	-	-
LSD (p = 0.05)	86	91	8						

Cultivar		Yield (cwt/	A)	Specfic		C	hip Co	lor	
	Total	>2"	%>2"	gravity	Nov¹	Dec ²	Jan ³	Feb ⁴	Jan ⁵
Nonreplicated									
B1072-21	403	393	97	1.072	5	5	6	5	6
B1088-37	421	406	96	1.059	7	7	7	6	7
B1450-10	466	326	70	1.072	8	8	8	8	9
B1452-3	375	242	65	1.076	8	6	8	7	8
B1452-9	383	308	80	1.068	7	7	8	7	8
B1452-10	320	167	52	1.071	8	6	7	7	7
B1452-16	352	296	84	1.069	8	6	9	8	8
B1452-20	352	306	87	1.063	9	8	9	8	9
B1452-21	210	191	91	1.066	9	8	9	9	10
B1452-23	404	292	72	1.065	7	5	7	7	8
B1452-25	539	444	82	1.061	10	10	10	10	10
B1452-27	340	192	56	1.060	7	7	8	10	9
AF1763-2	367	308	84	1.061	8	7	8	9	8
AF1852-3	175	120	69	1.068	5	4	7	7	7
R19-20	312	271	87	1.081	4	4	6	5	7
Long White	312	271	07	1.001	7	7	O	5	,
B7200-23	329	295	89	1.062	7	7	9	9	9
Red	327	275	07	1.002	,	,			
B1102-3	210	123	58	1.072	-	-	-	-	-
Cultivar		Yield (cwt/	A)	Specfic			hip Co	100	
Cultival	Total	Mkt ⁶	% Mkt	-	Movil	Dec ²		Feb ⁴	Tom5
	Total	IVIKU	70 IVIKU	gravity	NOV	Dec	Jan	reb	Jan ⁵
Long Whites & 1	Russets								
Russet Norkotah	505	352	69	1.071	-	-	-	-	-
Krantz	447	285	64	1.074	-	-	-	-	-
Ranger Russet	568	252	44	1.077	-	-	-	-	-
Frontier Russet	493	261	53	1.071	-	-	-	-	-
Gold Rush Russet		269	52	1.065	-	-	-	-	-
Coastal Russet	415	346	82	1.064	-	-	-	-	-
Century Russet	629	405	64	1.068	-	-	-	-	-
Shepody	520	228	44	1.070	me	~	-	-	-
W1099 Russ	491	280	57	1.065	-	-	-	-	-
B0835-11	445	315	70	1.073	~	~	-	-	-
B1004-8	368	234	63	1.072	-	_	-	-	-
B1409-2	533	304	57	1.078	_	-	-		_
B9922-11	504	271	53	1.079	-	_	_	_	_
NY99	443	302	68	1.070	-	-	~	-	-
LSD (p = 0.05)	60	66	13						

¹Nov. = Stored at 55 F from November 10, 1997 and chipped on November 18, 1997.

Chip color is based on a 1-10 scale with 1 = lightest, 10 = darkest, 1-5 = acceptable chip color.

² Dec. = Stored at 55 F from November 10, 1997 and chipped on December 19, 1997.

³ Jan. = Stored at 45 F from November 13, 1997 then transferred to 55 F three weeks prior to chipping on January 28, 1998.

⁴ Feb.= Stored at 45 F from November 13, 1997 then transferred to 55 F six weeks prior to chipping on February 17, 1998.

⁵ Jan.= Stored at 45 F from November 13, 1997 and chipped on January 21, 1998.

⁶ Marketable yield = size 2-4.

Texas

J. Creighton Miller, Jr., Douglas C. Scheuring and Jeff W. Koym

Variety Development and Testing

Seedling program. In 1997, 66,226 first year seedlings, resulting from 328 different parental combinations (crosses), were grown for selection on the Barrett Farm near Springlake. Three hundred twenty nine selections were made from this material. The seedlings grown for selection in 1997 represent a substantial increase from the number grown in 1996. The 1997 first year seedlings from Texas were produced during the fall of 1996 at College Station from true seed provided by Joe Pavek in Idaho. The remainder was obtained from Joe Pavek in Idaho (11,267), David Holm in Colorado (9,015), Kathy Haynes in Beltsville, Maryland (3,570), Al Mosley in Oregon (14,631), Rich Novy in North Dakota (16,397), and Bob Hanneman USDA-ARS, Madison, Wisconsin (612).

Adaptation trials. The 1997 growing season was abnormal in several meteorological aspects. Temperatures during the first two months of the growing season were lower than normal. Rainfall and humidity were higher than the seasonal norms. Yields were much lower than normal. The variety and advanced selection trials at Springlake were planted on March 25 and harvested on July 9 (reds) and July 29 (russets).

Fifteen russet advanced selections and the check varieties Norgold-M and Russet Norkotah were tested for their adaptability to Texas High Plains conditions (Table 1). The outstanding entries considering all factors were TX1229-2Ru, TXAV657-27Ru, A84180-8, ATX84706-2Ru,

AO85165-1, COO83008-1, TX1385-12Ru, and ATX84378-6Ru. The yields of TX1385-12Ru and ATX84378-6Ru were significantly lower than in previous years.

The red trial consisted of 17 varieties or advanced selections (Table 2). The outstanding selections were NDC4438-1 and A82705-1R (soon to be named Ida Rose). NDC4438-1 is a red fleshed selection, which produces a large number of creamer (under 4 oz.) tubers. In addition to the check varieties, Viking and Red LaSoda 10, other selections deserving mention include NDTX731-1R and NDTX4271-5R. The selections NDO4323-2 and NDO3994-2 also produced a large number of creamer size tubers. The market continues to pay a premium for small red potatoes with bright red color.

The russet strip trial consisted of 14 advanced selections for which sufficient seed was available for strip plantings of 100 foot rows (Table 3). Three Russet Norkotah strain selections and the check varieties Russet Norkotah and Norgold-M were also included. Strip trials represent a more advanced phase of testing than replicated variety trials. Four random plots of each entry were harvested. The outstanding entries based on overall performance were TXNS112, ATX1385-12Ru, TXNS223, and ATX9202-3Ru. Others deserving mention include Norgold M, ATX92002-2Ru, TX13485-12Ru, and ATX84738-6Ru. As in the past, the Texas stains continue to outperform regular Russet Norkotah.

Three red advanced selections and the check varieties Red LaSoda and Viking were also grown in a strip trial for evaluation (Table 4). The outstanding entry in this trial was DT6063-1R.

Four white and/or yellow flesh advanced selections and the check variety NorValley were also grown in a strip trial for evaluation under Texas High Plains environmental conditions (Table 5). The selections NDTX4930-5W and NorValley were the outstanding entries.

Thirteen selections, selected between 1986 and 1994, and three check varieties were also evaluated for yield and quality (Table 6). The outstanding entries based on general rating were COTX90046-5Ru, ATX90480-4W, and NDTX4930-5W.

Presented in Table 7 are trial results for 18 old European yellow flesh varieties and checks, which were grown from seed maintained in our Texas nursery. None of the entries performed better than the check varieties Yukon Gold and Saginaw Gold. Most of these varieties are late in maturity.

Texas also participated in the Russet, Chipping, Red, and Specialty Western Regional Cooperative Trials. Results from these trials are reported elsewhere in this report. Ten other trials, including a Winter Red Trial in the Lower Rio Grande Valley on the Mexican border, were also conducted and are reported in the 1997 Texas Potato Breeding Report.

Texas Table 1. Total yield, yield of U. S. No. 1, average tuber weight, specific gravity, tuber type, skin type, and general rating of 17 russet potato advanced selections or varieties grown at Springlake, Texas - 1997.

		U. S. No.	1 Cwt/A					
Variety or	Total Yield	Total	>10	Average Tuber	Specific	Tuber	Skin	General
Selection	Cwt/A	Yield	oz.	Weight in oz.	Gravity	Туре	Туре	Rating
Norgold-M	282.2	166.6	14.1	4.1	1.060	Oblong	Russet	3.8
TX 1229-2Ru	241.9	186.1	44.3	5.5	1.069	Oblong	Russet	3.5
A81386-1	206.3	83.5	2.9	3.4	1.059	Oblong	Russet	3.5
TXAV657-27Ru	206.3	100.3	1.7	4.0	1.067	Oblong	Russet	3.8
A84180-8	200.0	100.3	0.0	3.8	1.061	Long	Russet	3.8
ATX84706-2Ru	190.3	145.6	40.1	5.4	1.065	Oblong	Russet	3.8
A82360-7	179.0	24.3	0.0	2.1	1.057	Oblong	Russet	2.8
Russet Norkotah	174.6	51.4	2.7	2.9	1.061	Oblong	Russet	3.0
CO85026-4	167.2	26.2	0.0	2.6	1.067	Oblong	Russet	2.8
A8495-1	165.1	46.8	0.0	2.8	1.068	Oblong	Russet	3.0
AO85165-1	162.6	53.1	0.0	2.8	1.053	Oblong	Russet	3.5
COO83008-1	158.4	119.0	9.4	4.5	1.062	Oblong	Russet	3.8
TX1385-12Ru	148.8	83.9	4.8	3.5	1.064	Oblong	Russet	3.5
A81473-2	144.6	55.8	1.0	3.4	1.058	Oblong	Russet	3.0
ATX84378-6Ru	124.3	70.8	16.5	4.2	1.057	Oblong	Russet	3.0
AO82611-7	124.0	34.2	0.0	2.6	1.070	Oblong	Russet	3.0
A8792-1	111.8	36.7	1.0	3.0	1.072	Oblong	Russet	2.8
Average	175.7	80.8	8.1	3.6	1.063		-	3.3
L.S.D. (.05)	51.5	34.1	11.6	0.5				

 $[\]frac{1}{1}$ = very poor to 5 = excellent

Texas Table 2. Total yield, yield of U. S. No. 1, average tuber weight, specific gravity, tuber type, skin type, and general rating of 17 red potato advanced selections or varieties grown at Springlake, Texas - 1997.

		U. S. No.	1 Cwt/A	··				
Variety or	Total Yield	Total	>10	Average Tuber	Specific	Tuber	Skin	General
Selection	Cwt/A	Yield	OZ.	Weight in oz.	Gravity	Type	Type	Rating
Viking	194.3	153.0	37.6	4.9	1.060	Oblong	Red	3.5
Red LaSoda	165.6	94.8	3.1	3.4	1.055	Oblong	Red	3.5
NDC4438-1	165.3	59.0	0.0	2.1	1.041	Oblong	Red	4.8
A82705-1R	163.2	83.9	0.0	2.8	1.046	Oblong	Red	4.8
Red LaSoda-10	158.6	100.3	11.3	3.6	1.066	Oblong	Red	3.8
Sangre-10	135.6	70.9	0.0	2.9	1.042	Round	Red	3.8
NDO4588-5	131.3	86.9	0.0	3.5	1.044	Oblong	Red	3.3
NDTX731-1R	128.6	89.0	0.0	3.2	1.050	Round	Red	3.8
NDO4323-2	125.3	39.9	0.0	2.0	1.065	Oblong	Red	4.3
NOO5108-1	118.5	49.1	0.0	2.7	1.058	Round	Red	4.3
NDO4300-1	110.8	38.4	0.0	2.2	1.052	Oblong	Red	3.5
NDTX4271-5R	109.5	83.3	11.8	4.1	1.050	Oblong	Red	4.3
NDO3994-2	92.9	35.7	0.0	1.8	1.027	Round	Red	4.3
NDO2438-6	80.0	37.4	0.0	2.4	1.034	Oblong	Red	3.5
NDTX4304-1R	72.8	62.5	4.0	4.5	1.053	Oblong	Red	3.3
NDO4592-3	60.8	34.8	0.0	2.5	1.063	Oblong	Red	3.8
ND2225-1R	57.7	26.9	0.0	2.5	1.039	Oblong	Red	2.3
Average	121.8	67.8	4.0	3.0	1.050			3.8
L.S.D. (.05)	35.5	27.1	11.8	0.6				

 $^{^{1}}$ 1 = very poor to 5 = excellent

Texas Table 3. Total yield, yield of U. S. No. 1, average tuber weight, specific gravity, tuber type, skin type, and general rating of 20 russet potato advanced selections or varieties grown at Springlake, Texas - 1997.

		U. S. No.	1 Cwt/A				
Variety or Selection	Total Yield Cwt/A	Total Yield	>10 oz.	Average Tuber Weight in oz.	Tuber Type	Skin Type	General Rating ¹
TTV 1000 0D	0.60.0	227.5	26.6	2.7	Ohlana	Dungat	4.0
TX 1229-2Ru	268.8	237.5	26.6	2.8	Oblong	Russet	4.0
TXNS112	242.8	155.1	4.2		Oblong	Russet	3.8
ATX84706-2Ru	236.3	218.0	56.4	2.2	Oblong	Russet	3.8
TXNS223	235.2	155.1	3.8	1.8	Oblong	Russet	3.8
Norgold-M	232.1	185.9	5.7	2.0	Oblong	Russet	4.0
ATX9202-3Ru	231.2	158.4	2.9	4.5	Oblong	Russet	4.0
ATX9202-2Ru	208.4	106.4	0.0	2.2	Oblong	Russet	3.8
CO85026-4	201.7	101.3	0.0	4.7	Oblong	Russet	3.0
TX1385-12Ru	193.5	142.3	7.5	3.2	Oblong	Russet	3.8
ATX84378-6Ru	172.3	120.2	6.3	2.2	Oblong	Russet	3.8
ATX9201-1Ru	135.1	73.9	0.0	2.1	Oblong	Russet	2.8
ATX9202-1Ru	132.0	86.4	3.4	1.4	Oblong	Russet	3.5
TXAV657-27Ru	131.3	83.1	0.8	1.4	Oblong	Russet	3.0
TXNS278	124.0	67.2	0.0	2.5	Oblong	Russet	3.8
ATX9204-2Ru	123.4	89.4	5.3	2.2	Oblong	Russet	3.0
Russet Norkotah	120.9	80.4	1.1	1.6	Oblong	Russet	2.8
ATX9289-2Ru	81.6	38.8	0.0	2.3	Oblong	Russet	2.8
ATX9201-3Ru	73.9	55.6	1.1	1.8	Oblong	Russet	3.0
ATX9328-1Ru	43.0	28.5	0.0	1.9	Oblong	Russet	1.8
ATX9312-1Ru	21.6	9.4	0.0	2.3	Oblong	Russet	1.8
Average	160.5	109.6	6.3	2.3			3.3
L.S.D. (.05)	53.6	47.6	13.0				

 $^{1 = \}text{very poor to } 5 = \text{excellent}$

Texas Table 4. Total yield, yield of U. S. No. 1, average tuber weight, specific gravity, tuber type, skin type, and general rating of 5 red potato advanced selections or varieties grown at Springlake, Texas - 1997.

		U. S. No. 1 Cwt/A					
Variety or Selection	Total Yield Cwt/A	Total Yield	>10 oz,	Average Tuber Weight in oz.	Tuber Type	Skin Type	General Rating ¹
DT6063-1R	219.9	146.0	1.7	3.7	Round	Red	3.8
Red LaSoda	152.3	115.2	7.8	4.4	Oblong	Red	4.0
NDTX731-1R	116.5	80.6	1.7	3.6	Round	Red	3.0
ND2225-1R	115.6	72.6	0.0	3.5	Oblong	Red	2.8
Viking	103.9	89.6	12.6	5.0	Oblong	Red	3.8
Average	141.6	100.8	9.8	4.0			3.5
L.S.D. (.05)	63.2	ns	6.5	0.5			

 $^{1 = \}text{very poor to } 5 = \text{excellent}$

Texas Table 5. Total yield, yield of U. S. No. 1, average tuber weight, specific gravity, tuber type, skin type, and general rating of 5 white potato advanced selections or varieties grown at Springlake, Texas - 1997.

Variety or Selection	Total Yield Cwt/A	U. S. No. 1 Cwt/A					
		Total Yield	10-18 oz.	Average Tuber Weight in oz.	Tuber Type	Skin Type	General Rating ¹
NorValley	187.2	129.7	3.2	4.1	Oblong	White	3.5
NDTX4930-5W	155.3	132.2	4.4	5.2	Oblong	White	4.5
ATX85404-8	103.0	53.1	0.0	2.9	Oblong	White	3.0
BTX1750-1W	82.3	67.8	0.0	4.0	Oblong	White	3.0
BTX1544-2W	69.5	54.8	0.0	4.7	Oblong	White	3.0
Average	119.5	87.5	1.5	4.2			3.4
L.S.D. (.05)	53.9	40.1	ns	0.7			

 $^{1 = \}text{very poor to } 5 = \text{excellent}$

Texas Table 6. Total yield, yield of U. S. No. 1, average tuber weight, specific gravity, tuber type, skin type, and general rating of 13 advanced selections or varieties grown at Springlake, Texas - 1997.

Variety or Selection	Total Yield Cwt/A	U. S. No. 1 Cwt/A						
		Total Yield	>6 oz.	Average Tuber Weight in oz.	Specific Gravity	Tuber Type	Skin Type	General Rating ¹
A.T.V.0.2.0.2. 4D-1	262.0	141.6	28.0	3.3	1.050	Oblong	Russet	3.0
ATX9203-4Ru	262.9		64.2	4.7	1.050	Round	White	3.8
COTX90046-5Ru		194.1	24.5	3.4	1.067	Oblong	Russet	3.5
ATX9202-1Ru	234.6	115.4	45.7	3.3	1.064	Oblong	White	4.0
ATX90480-4W	232.9	120.4				_		
ATX9202-3Ru	228.3	164.1	51.9	3.9	1.056	Oblong	Russet	3.5
Chipeta	205.6	141.6	60.6	3.9	1.059	Oblong	White	3.5
Russet Norkotah	204.6	140.8	46.4	3.6	1.051	Oblong	Russet	3.0
NDTX4930-5W	197.9	144.4	32.3	4.1	1.058	Oblong	White	3.5
ATX91137-1Ru	175.6	128.4	45.3	4.0	1.047	Long	Russet	3.8
NDTX4304-1R	161.4	104.3	33.8	3.0	1.045	Round	Red	3.5
NDTX4828-2R	150.5	77.9	25.8	2.6	1.046	Round	Red	3.5
Red LaSoda	148.3	94.8	35.2	3.2	1.045	Round	Red	3.8
NDTX5407-1R	119.6	32.9	1.3	2.1	1.046	Round	Red	3.0
NDTX4271-5R	109.5	78.9	31.7	3.5	1.043	Oblong	Red	3.5
COTX90046-1W	94.6	62.9	14.6	3.7	1.051	Round	White	2.8
NDTX5067-2R	70.9	20.4	6.9	1.9	1.055	Round	Red	3.0
Average	177.5	110.2	34.3	3.0	1.052			3.4
L.S.D. (.05)	47.5	45.7	23.8	0.8				

 $^{1 = \}text{very poor to } 5 = \text{excellent}$

Texas Table 7. Total yield, yield of U. S. No. 1, average tuber weight, tuber type, skin type, and general rating of 22 yellow flesh potato varieties grown at Springlake, Texas - 1997.

		U. S. No. 1 Cwt/A					
Variety or	Total Yield	Total	4-6	Average Tuber	Tuber	Skin	General
Selection	Cwt/A	Yield	oz.	Weight in oz.	Type	Туре	Rating
Fortuna	207.9	60.4	41.3	2.7	Oblong	White	2.8
Urgenta	201.0	34.4	26.7	2.8	Oblong	Pale Red	3.5
Foxton	185.7	26.0	26.0	2.2	Oblong	Pale Red	3.0
Dore	184.2	21.4	21.4	1.8	Round	White	2.8
Ottar	178.1	13.8	13.8	2.0	Oblong	Pale Red	3.0
Yukon Gold ²	170.4	116.9	43.6	4.5	Oblong	Yellow	3.8
Eerstelling	159.7	19.1	19.1	2.2	Round	White	2.5
Yukon Gold ³	154.4	118.5	14.5	4.7	Round	White	3.8
Saginaw Gold ³	133.7	72.6	48.9	3.2	Oblong	White	3.5
Ukama	131.4	44.3	42.0	2.2	Oblong	White	2.8
Eigenheimer	120.0	23.7	16.0	2.1	Oblong	White	2.5
Krasaua	115.4	19.1	10.7	1.4	Oblong	White	2.8
Primica Inta	111.6	32.1	32.1	1.4	Round	White	3.5
Carola	110.8	31.3	16.0	2.5	Oblong	White	2.5
Climax	103.2	8.4	8.4	2.2	Oblong	White	2.5
Strobrawa	102.4	9.2	9.2	1.6	Round	Red	3.0
Alpha	102.4	29.0	29.0	2.3	Oblong	White	2.5
Granola ³	97.1	18.3	18.3	1.8	Oblong	White	2.8
Rutt	71.8	12.2	12.2	1.9	Oblong	White	2.5
Yellow Finn	70.3	7.6	7.6	2.3	Round	White	2.8
Ackeregen	63.4	0.0	0.0	1.3	Oblong	White	2.5
Troll	8.4	0.0	0.0	1.4	Oblong	Pale Red	2.8
Average	126.5	32.7	20.8	2.3			2.9

^{1 1 =} very poor to 5 = excellent 2 Check variety from certified seed 3 Check variety from Texas seed

Virginia

S. B. Sterrett and C. P. Savage, Jr.

Introduction

Trials were conducted at the Eastern Shore Agricultural Research and Extension Center in Painter, Virginia. Promising clones were evaluated for yield, tuber quality and appearance, vine and tuber maturity, processing (chip) potential and freedom from internal and external tuber defects. To address potential marketing niches, red-skinned and russetted clones were also evaluated for suitability in this growing area.

Methods

All trials were planted on a Bojac sandy loam soil. Germplasm evaluation trials were planted on April 3 in single-row plots 25 feet in length with 3 feet between rows, and 12 inches between seedpieces within the row for all except the red trial that was planted at 8 inches within-row spacing. Transgenic evaluation trials were planted on April 8 in single row plots 35 feet in length, 12 inches between seedpieces for Superior and 15 inches for Snowden and bordered by a non-transgenic guard row between each plot. Trials were planted using a randomized complete block design with 4 replications except Snowden transgenic trial, which had 8 replications. Fertilizer (100 lbs. N, 43.7 lbs. P, and 83 lbs. K/A) was banded at planting with carbofuran (3 lb. ai/A) + immidacloprid (0.3 lbs. ai/A) banded in the furrow for Colorado potato beetle control. Nitrogen (50 lbs./A) was sidedressed on May 20. Linuron (0.5 lbs. ai/A) and metolachlor (1.5 lb. ai/A - germplasm; 2.0 lb. ai/A - transgenic trials) were applied at dragoff on April 26. Germplasm trials received 2.75" of irrigation and the transgenic trials received 4.0" in June and early July. Round-white and red-skinned trials were harvested July 8, russet trial on July 10, and transgenic on July 21. Specific gravity was determined by weight in air/weight in water method. Chip samples were held at ambient temperature and chipped 2 days after harvest.

Seasonal Observations

Cold, wet weather delayed planting by three weeks. Cool temperatures persisted through May. Reduced rain fall in May and June is reflected in the increased percentage of external tuber defects in some clones.

Results

Round-white Trial. Marketable yield of B1321-22 and B1425-9 was significantly greater than Superior. Marketable yield of B1206-10 was significantly lower due, in part, to severe growth cracks. Specific gravity of B1425-9 was similar to Atlantic but late vine maturity, heavy stolens, and unattractive tuber appearance precludes additional testing in this growing area.

Chip Trial. Marketable yield of several clones was significantly lower than Atlantic. Improved chip color over Atlantic was recorded for B0178-34, B0766-3, B1375-14, B1428A-3 and NYP73-2. Of these, only B0178-34 and NYP73-2 had specific gravity similar to Atlantic. Incidence and severity of internal heat necrosis (IHN) was less than Atlantic except for NY112. Attractive tubers and apparent high yield potential, and freedom of tuber defects of B1240-14 and B1429A-3 warrant additional evaluations for fresh market potential.

Commercial. Marketable yield of Carlita was significantly greater than Concurrent; Obelex, and Rikea was significantly lower than Superior. Tubers of Rikea were very susceptible to IHN, more so than any other clone evaluated in 1997. Tubers of Adora and Carlita were attractive and relatively free of internal and external defects. Both of these, particularly Adora with early tuber maturity and consistent yellow flesh color, may have potential as commercial varieties in this area.

Red-Skinned Trial. Total and marketable yield of Red LaSoda and Romano were significantly greater than B0811-4, but significantly less than Dark Red Norland. However, unattractive tubers and late skin maturity of Romano will limit grower acceptance.

Russetted-Skinned Trial. Although marketable yield of B9922-11, Century, and B1004-8 was significantly greater than BelRus, the greatest percentage of tubers over 8 oz. was noted for B9922-11. Susceptibility to growth cracks was a concern for B9922-11 and, to some extent, B1004-8.

Transgenic Trial. Emergence of SPMT15-29, SPMT15-224, SPMT15-250, SPMT15-259, and SPMT15-270 were significantly slower than the nontransgenic standard at 27 days after planting (DAP). However, the final standcount was similar for all Superior entries. In the Snowden trial, plant emergence of SDMT15-24 was significantly less than SDMT15-40 at both 34 and 41 DAP. Stem count, as well as, plant vigor and crop uniformity ratings of SDMT15-24 were significantly lower than the non-transgenic standard.

Marketable yield of all transgenic Superior clones was similar to the non-transgenic standard except SPMT15-245, which was lower. However, the size distribution of only SPMT15-270 was similar to that of the Superior standard, with a greater percentage of tubers less than 2.5" diameter reported for the other transgenic Superior clones. Average total tuber weight was also lower than the standard for all transgenic Superior clones except SPMT15-29 and SPMT15-270. Similar trends were noted for six of the transgenic clones for average marketable tuber weight.

Marketable yield of SDMT15-40 was similar to the standard Snowden. Average total and marketable tuber weights were similar to all Snowden entries.

Tuber characteristics of transgenic Superior clones were similar to the standard. Heat sprouts and second growth of most Superior entries was appreciable, reflecting the rather sudden shift in the growing season from cool and wet to hot and very dry. Tuber defects appear to less of a problem for the Snowden clones.

The appearance of all transgenic Snowden clones were significantly below that of the non-transgenic standard. All transgenic Snowden were later in tuber maturity than the standard.

Ratings

Vine and tuber ratings were completed using the rating system of the U.S. Department of Agriculture regional project NE184. For vine ratings, maturity: 1 = senesced, 9 = totally green; air pollution: 1 = defoliated, 9 = no visible symptoms. For tuber ratings, shape: 1 = round, 5 = oblong, 9 = very long (cylindrical); appearance: 1= very poor, 9 = excellent; skin maturity: 1 = totally peeled during harvest and grading, 9 = skin intact; and tuber defects: 1 = severe, 9 = none. Ratings of heat necrosis were made on 20 tubers in the size range $2\frac{1}{2}$ to $3\frac{1}{4}$.

Acknowledgments.

We thank Wise Foods, Inc., Berwick, Pennsylvania for their assistance in these evaluations and chip color determinations. We gratefully acknowledge provision of seed by Kathleen G. Haynes, USDA-Beltsville; Robert L. Plaisted, Cornell University; and Alvin F. Reeves, University of Maine. The support of this project by Can AGRICO Potato Corp., Grand Falls, New Brunswick; Global Agri Services, Inc., Fredericton, New Brunswick; and Hettema, Fredericton, New Brunswich is greatly appreciated.

Virginia Table 1. Yield, marketable yield, percentage of yield by grade size distributions, specific gravity, and chip color of advanced round-white trial grown for 95 days at Painter, Virginia, 1997.

	Yield	Marke	Marketable Yield	Size Distribution	tribution	Si	ze Dist	Size Distribution ²	n ²		
	>11/2"		Percentage	(%)	(9)		by class (%)	ss (%)		Specific	
Clone ¹	cwt/A	cwt/A	of std.	>1.88"	>2.5"		7	m	4	Gravity ³	Chip Color ⁴
Atlantic	256	220	86	98	72	13	14	59	13	1.087	4
Superior (std)	255	224	100	88	74	6	14	61	12	1.075	
AF1569-2	270	233	104	98	74	13	12	53	21	1.071	4
AF1763-2	272	207	92	9/	99	17	20	53	α	1.063	9
AF1769-9	248	213	95	98	99	14	20	99	10	1.076	ı
B1065-51	297	240	107	81	61	14	20	57	5	1.073	4
B1206-10	255	197	88	77	69	10	6	51	17	1.075	ı
B1321-22	313	252	113	80	99	17	21	51	5	1.078	4
B1425-9	319	257	115	80	64	18	17	53	10	1.088	1
B1429A-6	247	201	06	81	62	18	20	09	2	1.073	5
Waller-											
Duncan	27	27									
(K=100;											
P=0.05)											

¹ Planted April 3, harvested July 7, 1997.

² Size Distribution 1 = 1.5-1.88"; 2 = 1.88-2.5"; 3 = 2.5-3.25"; 4 = >3.25".

³Determined by weight in air/weight in water method.

⁴Unreplicated samples: 1-4 = acceptable, 5 = marginal, 6 or greater = unacceptable, chipped 2 days after harvest.

Virginia Table 2. Yield, marketable yield, percentage of yield by grade size distributions, specific gravity, and chip color of chip trial grown for 95 days at Painter, Virginia, 1997.

	Yield	Market	Marketable Yield	Size Distribution	ribution	Siz	ze Dist	Size Distribution ²	n ²		
	>11/3"		Percentage	(%)	(9		by class (%)	ss (%)		Specific	
Clone ¹	cwt/A	cwt/A	of std.	>1.88"	>2.5"	-	2	3	4	Gravity ³	Chip Color ⁴
Atlantic (std)	268	229	100	98	73	14	13	61	13	1.086	4
B0178-34	271	227	66	84	<i>L</i> 9	16	16	62	2	1.086	3
Superior	245	214	93	88	71	13	12	53	9	1.073	4
B0564-9	271	241	105	68	79	11	10	46	34	1.076	4
B0766-3	274	234	102	85	89	14	17	59	6	1.073	3
B1240-1	256	243	106	95	88	4	7	61	27	1.072	5
B1240-14	235	207	06	88	73	11	16	63	6	1.082	5
B1321-21	234	184	80	79	61	18	18	51	10	1.076	ν.
B1342-21	239	206	06	98	72	13	14	57	15	1.071	1
B1375-14	232	188	82	81	09	17	21	54	9	1.077	3
B1415-5	207	167	73	81	58	18	23	54	4	1.077	4
B1416-2	242	189	83	78	65	15	13	57	~	1.074	5
B1429A-3	309	251	110	81	55	18	27	54		1.077	2
NY112	246	213	93	98	72	12	14	09	12	1.074	9
NY115	218	178	78	82	62	16	20	54	6	1.074	4
NYP32-3	245	202	88	83	65	15	17	58	15	1.078	5
NYP63-1	231	188	82	82	65	17	17	53	12	1.078	S
NYP73-2	236	192	84	81	57	17	24	54	17	1.085	3
Waller-Duncan											
(K=100;	28	26									
P=0.05)											

¹ Planted April 3, harvested July 7, 1997.

² Size Distribution 1 = 1.5 - 1.88"; 2 = 1.88 - 2.5"; 3 = 2.5 - 3.25"; 4 = > 3.25".

³ Determined by weight in air/weight in water method.

⁴Unreplicated samples: 1-4 = acceptable, 5 = marginal, 6 or greater = unacceptable, chipped 2 days after harvest.

Virginia Table 3. Yield, marketable yield, percentage of yield by grade size distributions, specific gravity, and chip color of commercial trial grown for 96 days at Painter, Virginia, 1997.

	Yield	Market	Marketable Yield	Size Distribution	ribution	Siz	ze Dist	Size Distribution	n ²	
	>11/2"		Percentage	(%)	()		by class (%)	ss (%)		Specific
Clone ¹	cwt/A	cwt/A	of std.	>1.88"	>2.5"	-	2	8	4	Gravity ³
Adora	265	226	86	85	73	12	13	09	13	1.054
Atlantic	249	221	96	68	77	10	13	54	22	1.083
Carlita	310	569	117	84	73	14	12	47	26	1.054
Concurrent	315	198	98	63	47	15	16	43	4	1.066
Morning Gold	272	221	96	81	99	17	15	54	12	1.068
Obelix	252	167	73	99	50	20	15	45	9	1.061
Penta	242	204	68	84	74	13	11	49	25	1.059
Rikea	264	152	99	58	32	30	25	31	7	1.064
Superior (std)	263	230	100	87	9/	11	14	09	23	1.074
Symfonia	118	84	36	70	51	25	20	40	11	1.070
Waller-Duncan										
(K=100;	34	31								
P=0.05)										

¹ Planted April 3, harvested July 7, 1997.

² Size Distribution 1 = 1.5 - 1.88"; 2 = 1.88 - 2.5"; 3 = 2.5 - 3.25", 4 = > 3.25".

³Determined by weight in air/weight in water method.

Virginia Table 4. Yield, marketable yield, percentage of yield by grade size distributions, specific gravity, and chip color of red-skinned and russet-skinned trials grown for 96 and 98 days, respectively, at Painter, Virginia, 1997.

	Vield	Marke	Marketable Yield	Size Distribution	ribution	S	ize D	Size Distribution ²	ntion	2	
	>11/2"		Percentage	(%)	(9)	!	by c	by class (%)	(%)		Specific
Clone ¹	cwt/A	cwt/A	of std.	>1.88"	>2.5"	-	, 2	m	4	5	Gravity ³
			Red/pu	Red/purple-skinned trial	d trial						
Chieftan	284	248	139	87	70	13	17	59	11	1	1.063
Dark Red											
Norland (std)	256	179	100	70	16	31	29	38	7	1	1.059
Island Sunset	225	157	88	70	47	30	22	42	4	ı	1.063
Red LaSoda	316	247	137	78	65	22	14	53	12	ı	1.061
Romano	286	250	140	88	70	13	18	55	15	1	1.063
B0811-4	123	37	21	30	6	70	21	6	0	ı	1.081
B0811-13	242	180	101	75	51	26	23	46	5	ı	1.070
B0852-7	242	199	1111	83	63	18	19	55	6	1	1.070
Waller-Duncan (K=100; P=0.05)	27	29									
			Russ	Russet-skinned trial	trial						
B9922-11	221	186	159	84	39	16	44	28	10	7	1.076
BelRus (std)	221	117	100	53	5	47	48	2	0	0	1.077
Century	294	211	180	72	19	28	53	14	4	0	1.070
B1004-8	230	181	155	78	19	22	09	16	ω	0	1.072
B1401-5	156	113	26	72	27	28	46	24	7	_	1.078
Waller-Duncan (K=100; P=0.05)	37	36									

Planted April 3, harvested July 8 and 10, 1997, for red-skinned and russetted-skinned trials, respectively. Size Distribution $1 = 1.5-1.88^\circ$; $2 = 1.88-2.5^\circ$; $3 = 2.5-3.25^\circ$; $4 = >3.25^\circ$ for red-skinned trial; 1 = <4 oz.; 2 = 4-8 oz.; 3 = 8-12 oz.; 4 = 12-16 oz.; 5 = >16 oz. for russetted-skinned trials.

³ Determined by weight in air/weight in water method.

Virginia Table 5. Plant and tuber characteristics and tuber defects for round-white, red-skinned, and russet-skinned clones grown at Painter, Virginia, 1997.

									T	Tuber Defects2	S ²		
		Vine			Tuber							Heat Necrosis	ecrosis
			Air			Skin	Percentage	Heat		Second	Growth	# of	
Clone	Size	Matur.	Pollution	Shape	Appear.	Matur.	(by wt.)	Sprouts	Sunburn	Growth	Crack	Tubers	Rating
					A	\dvanced	Advanced Round White Trial	Trial					
Atlantic	7	∞	6	7	7	5	1	6	∞	6	6	2	7
Superior	2	9	6	3	9	7	n	6	∞	∞	6	0	6
AF1569-2	9	7	8	3	7	5	_	6	6	∞	6	0	6
AF1763-2	9	9	7	4	9	7	9	7	8	9	6	0	6
AF1769-9	5	9	7	3	9	5	П	6	6	6	6	0	6
B1065-51	9	7	6	3	2	2	9	6	6	5	6	0	6
B1206-10	9	7	6	3	2	4	13	6	8	6	2	_	8
B1321-22	7	∞	6	2	7	9	m	6	6	6	6	0	6
B1425-9	8	∞	6	\mathcal{C}	5	7	_	6	6	6	6	0	6
B1429A-6	9	7	6	2	7	9	_	6	6	6	6	0	6
						C	Chip Trial						
Atlantic	7	∞	6	2	9	9	0	6	6	6	6	2	9
B0178-34	9	6	6	2	9	2	_	6	∞	6	6	0	6
Superior	5	7	6	3	9	∞	_	6	6	6	6	0	6
B0564-9	7	7	9	2	9	9	0	6	6	6	6	0	6
B0766-3	8	6	8	2	2	4	_	6	6	∞	6	0	6
B1240-1	6	6	7	2	∞	9		6	6	6	6	0	6
B1240-14	∞	8	6	2	9	5	_	6	6	6	6	0	6
B1321-21	7	6	6	7	5	2	3	7	6	6	9	0	6
B1342-21	9	8	6	3	2	2	_	6	6	6	6	0	6
B1375-14	4	9	6	2	9	∞	2	6	8	7	6	0	6
B1415-5	5	7	6	2	9	7	_	6	6	6	6	0	6
B1416-2	9	6	6	2	7	\$	7	6	6	5	6	0	6
B1429A-3	7	7	6	2	7	9		6	6	6	6	0	6
NY112	7	6	6	2	9	4	_	6	7	6	6	3	9
NY115	2	7	6	7	9	9	7	6	6	6	6	_	8
NYP32-3	4	7	∞	3	9	5	3	6	6	6	6	-	7
NYP63-1	2	~	6	2	2	5	2	6	6	6	6	0	6
NYP73-2	9	8	6	7	2	5	7	6	6	6	6	0	6

Virginia Table 5. Continued.

Clone Size Matur. Pollution Skin Percentage Heat Second Growth G											Tuber Defects ²	3.5		
Size Mauur. Pollution Stape Appear. Matuur. Pollution Appear. Matuur. Pollution Appear. Appe			Vine			Tuber							Heat No	crosis
Size Matur. Pollution Shapes Appear. Matur. (by wt.) Sprouts Sunburn Growth Grack Tubers Commercial Prial Sprouts Sunburn Growth Grack Tubers Commercial Prial Sprouts				Air			Skin	Percentage	Heat		Second	Growth	Jo#	
Commercial Trial Commercial T	Clone	Size	Matur.	Pollution	Shape	Appear.	Matur.	(by wt.)	Sprouts	Sunburn	Growth	Crack	Tubers	Rating
Frent 7 7 8 9 9 4 7 7 7 3 9 9 9 7 9 9 7 9 9 8 9 9 9 9 9 9 9 9 9 9							Com	mercial Trial						
Front 7 8 9 9 3 7 4 1 1 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Adora	2	2	6	4	7	7	33	6	6	7	6	0	6
rent f f g g g g g g g g g g g g g g g g g	Atlantic	7	∞	6	3	7	4	1	6	9	6	6	5	7
From 7 7 7 9 3 6 5 22 9 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carlita	9	6	6	7	7	2	2	6	6	6	6	0	6
g 8 8 8 9 4 3 4 2 7 6 3 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Concurrent	7	7	6	3	9	2	22	6	00	6	6	0	6
From the control of t	Morning	8	∞	6	4	3	4	2	7	9	3	6	0	6
9 8 9 2 6 4 14 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Gold													
or 5 7 7 9 3 5 6 3 5 8 5 9 9 11 or 5 6 7 9 9 3 6 7 7 12 7 9 9 6 9 9 11 an 7 7 8 8 3 6 4 1 12 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Obelix	6	∞	6	7	9	4	14	6	6	6	6	0	6
or 5 6 7 9 2 7 7 12 7 9 6 9 11 nia 8 8 8 9 4 5 6 7 1 9 9 7 9 9 9 11 nn 7 7 8 8 3 6 4 4 11 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Penta	7	7	6	3	2	9	3	5	00	5	6	3	7
or 5 6 9 3 6 7 1 1 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Rikea	9	7	6	7	7	7	12	7	6	9	6	11	2
nia 8 8 8 9 4 5 6 6 5 9 9 9 9 9 9 2 Red or Purple-Skinned Trial 1 7 7 8 8 3 6 4 1 1 9 9 9 9 9 9 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Superior	5	9	6	3	9	7	1	6	7	6	6	0	6
an 7 7 7 8 3 6 4 1 9 9 9 9 3 3 6 4 1 1 9 9 9 9 9 3 4 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Symfonia	00	×	6	4	2	9	2	6	6	6	6	2	7
ted 5 4 5 2 7 8 4 1 9 9 9 9 9 3 3 6 4 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							Red or Pu	rple-Skinned	Frial					
led 5 4 5 2 7 8 2 7 9 8 7 0 9 8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chieftan	7	7	00	3	9	4	_	6	6	6	6	3	9
iSoda 6 6 6 9 3 5 5 3 9 9 8 7 0 1Soda 6 6 6 9 3 6 6 6 2 9 9 9 9 9 1 1Soda 6 6 9 3 6 6 8 0 9 9 9 9 9 1 1Soda 8 7 8 3 4 4 1 1 9 9 9 9 9 9 1 1Soda 8 7 8 2 6 8 0 9 9 9 9 9 1 1Soda 8 7 8 2 6 8 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Dark Red	5	4	5	2	7	∞	2	7	6	∞	7	0	6
1Soda 6 6 9 3 5 5 3 9 9 8 7 0 1Soda 6 6 9 3 6 6 6 2 9 9 9 9 9 1 14 4 5 8 3 4 4 1 9 9 9 9 9 9 1 15 5 6 8 3 5 7 0 9 9 9 9 9 9 1 17 6 1 9 9 9 9 9 0 18 8 8 9 7 6 1 9 9 9 9 9 0 18 8 8 9 7 6 7 6 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Norland													
Soda 6 6 9 3 6 6 2 9 9 9 9 9 1 4 4 5 8 3 4 4 1 1 9 9 9 9 9 1 13 5 6 8 8 0 9 9 9 9 9 1 13 5 6 8 8 0 9 9 9 9 9 9 1 14 4 5 8 2 6 8 0 9 9 9 9 9 9 9 9 15 6 7 6 1 9 9 9 8 8 1 16 7 9 7 6 7 2 9 9 9 9 9 9 9 9 17 8 8 9 7 6 7 2 9 9 9 9 9 9 9 9 18 6 7 9 7 6 5 5 9 9 9 9 9 9 9 9 19 7 7 6 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Island	7	7	6	3	5	5	3	6	6	∞	7	0	6
oda 6 6 9 3 6 6 2 9 9 9 9 9 1 8 7 8 3 4 4 1 9 9 9 9 9 9 1 1 4 5 8 2 6 8 0 9 9 9 9 9 1 3 5 6 8 3 7 6 1 9 9 9 9 9 9 1 1 8 8 9 7 6 7 2 9 9 9 9 8 6 0 1 8 8 9 7 6 7 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Sunset													
8 7 8 3 4 4 1 9	Red LaSoda	9	9	6	3	9	9	2	6	6	6	6		9
1 4 5 8 2 6 8 0 9 9 9 9 0 0 3 5 6 8 3 7 0 9 9 9 9 9 0 0 7 6 1 9 9 9 9 9 0 0 8 8 8 9 7 6 5 16 9 9 9 9 9 0 11 8 8 9 7 6 5 16 9 9 9 9 0 12 9 9 7 6 5 5 9 9 9 0 9 0 13 6 7 9 7 6 5 5 9 9 9 9 0 14 6 7 5 5 9 9 9 9 0	Romano	∞	7	∞	3	4	4	1	6	6	6	6	1	9
3 5 6 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 8 8 9 7 6 7 16 9 9 9 9 0 1 8 7 9 7 6 7 2 9 9 9 9 0 8 6 7 9 7 6 5 9 9 9 9 0 8 6 7 7 6 5 9 9 9 9 0 8 6 7 7 6 5 9 9 9 9 0 8 6 7 9 7 6 5 9 9 9 9 9 9 9 9 9 7 9 7 6 5 5 10 9 9 9 9 9 9	B0811-4	4	2	∞	2	9	∞	0	6	6	6	6	0	6
1 6 6 9 2 7 6 1 9 9 8 8 1 Russetted-Skinned Trial 1 8 8 9 7 6 5 16 9 9 8 6 0 7 9 7 6 7 2 9 9 9 9 0 7 9 9 7 6 5 9 9 9 0 8 6 7 9 9 7 6 5 9 9 9 0 8 6 7 9 7 7 6 5 9 9 9 9 0 8 6 7 9 7 7 6 5 9 9 9 9 0 8 7 9 9 9 9 0	B0811-13	5	9	∞	3	2	7	0	6	6	6	6	0	6
Russetted-Skinned Trial 6 5 16 9 9 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B0852-7	9	9	6	7	7	9		6	6	∞	00	1	7
11 8 8 9 7 6 5 16 9 9 8 6 0 6 7 9 7 6 7 2 9 9 9 9 0 7 9 7 7 6 5 9 9 9 0 5 5 7 6 5 9 9 9 0 5 5 7 5 5 10 9 9 9 9							Russette	d-Skinned Tr	ial					
6 7 9 7 6 7 2 9 9 9 9 0 7 9 9 7 5 5 9 9 8 7 9 0 8 6 7 9 7 7 6 5 9 9 9 7 0 5 5 7 9 7 5 5 10 9 9 9 9	B9922-11	∞	∞	6	7	9	2	16	6	6	8	9	0	6
7 9 9 7 5 5 9 9 8 7 9 0 3 6 7 7 6 5 9 9 9 7 0 5 5 7 5 5 10 9 9 9 9 0	BelRus	9	7	6	7	9	7	2	6	6	6	6	0	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Century	7	6	6	7	2	2	6	6	8	7	6	0	6
5 7 9 7 5 5 10 9 9 9 9 0	B1004-8	9	7	6	7	7	9	2	6	6	6	7	0	6
	B1401-5	2	7	6	7	2	5	10	6	6	6	6	0	6

¹Vine size, maturity, and air pollution ratings taken 85, 92, and 85 days after planting respectively. ²Twenty tubers sampled.

Virginia Table 6. Early and final stand counts, stem counts, plant growth, and vine characteristics of transgenic Superior and Snowden trials grown for 104 days at Painter, Virginia, 1997.

	Stand	Stand	Stem	Plant	Crop			
	count ¹	count	count ²	Vigor ³	Uniform- itv³		Vine	
Clone	(early)	(41 DAP)		(50 DAP)		Size	Maturity	Air Pollution
Superior	16.0	29.3	41.0	7.5	8.9	8.9	5.5	9.0
SPMT15-17	15.8	28.3	37.0	8.9	7.0	6.5	5.5	9.0
SPMT15-29	12.0	29.0	42.3	8.9	6.3	6.5	5.3	9.0
SPMT15-206	15.3	29.3	40.3	7.8	7.3	6.5	5.5	9.0
SPMT15-224	12.0	28.8	41.3	7.8	7.0	6.5	5.5	0.6
SPMT15-225	16.0	29.5	40.8	7.8	6.3	6.5	5.3	9.0
SPMT15-242	17.5	29.5	42.5	7.0	6.5	6.3	5.0	0.6
SPMT15-245	12.8	29.3	39.8	7.3	5.8	6.5	4.8	0.6
SPMT15-250	11.8	30.0	41.5	8.0	6.3	7.0	5.3	0.6
SPMT15-259	12.0	29.3	40.5	7.3	8.9	7.0	5.0	0.6
SPMT15-270	8.5	29.5	38.5	8.9	8.9	7.0	5.8	0.6
Waller Duncan								
(K=100; P=0.05)	3.4	ns	ns	ns	ns	ns	ns	ns
Snowden	17.5	21.8	39.6	8.9	9.9	7.9	×	× /
SDMT15-02	14.9	20.4	37.1	5.6	0.9	7.5	8.4	8.0
SDMT15-24	13.5	20.6	32.9	5.4	5.8	7.0	8.9	8.1
SDMT15-40	18.0	22.3	39.0	6.5	6.1	7.9	8.6	7.8
Waller-Duncan								
(K=100; P=0.05)	2.8	1.6	4.3	9.0	9.0	0.4	ns	ns

¹ Mean number of emerged plants in 30 row foot at 27 DAP for Superior or 34 DAP for Snowden.

² Mean number of stems in 30 row foot.

 3 Plant vigor: 9 = exceptional, 1 = very poor; uniformity: 9 = very consistent, 1 = broken stand.

Virginia Table 7. Yield, marketable yield, percentage of yield by grade size distributions, specific gravity, and chip color of transgenic trials grown for 104 days at Painter, Virginia, 1997.

	Yield	Market	Marketable Yield		Size Dist	Size Distribution ²			Average weight	weight
	>1.5"	> 1.88"	Percentage		by class (%)	(%) ss		Specific	per tuber	uber
Clone ¹	cwt/A	cwt/A	of std.		2	3	4	Gravity ³	Total	Market
Superior (std)	333	314	100	9	10	56	29	1.086	0.373	0.411
SPMT15-17	314	285	91	10	14	52	23	1.086	0.330	0.380
SPMT15-29	296	266	85	12	14	99	18	1.085	0.347	0.408
SPMT15-206	298	272	87	6	14	59	18	1.084	0.329	0.374
SPMT15-224	318	285	91	11	13	61	14	1.081	0.317	0.366
SPMT15-225	298	266	85	12	17	53	18	1.085	0.295	0.335
SPMT15-242	288	252	80	14	14	57	14	1.082	0.287	0.331
SPMT15-245	231	206	99	11	15	54	20	1.088	0.328	0.371
SPMT15-250	297	254	81	16	22	55	8	1.081	0.260	0.295
SPMT15-259	322	288	92	11	16	99	17	1.081	0.292	0.329
SPMT15-270	328	300	96	6	10	49	32	1.084	0.360	0.412
Waller-Duncan					Manova:					
(K=100; P=0.05)	79	69	1		Wilk's La Pillai's Tr	Wilk's Lambda: P = 0.01 Pillai's Trace: P = 0.01	01	ns	0.031	0.039
Snowden (std)	292	262	100	10	15	56	18	1.099	0.324	0.383
SDMT15-02	258	228	87	12	12	51	24	1.099	0.320	0.398
SDMT15-24	241	210	80	13	17	55	15	1.095	0.301	0.368
SDMT15-40	279	244	93	13	13	57	18	1.100	0.314	0.390
Waller-Duncan	ļ				Manova:	,				
(K=100; P=0.05)	27	25	1 1 8		Wilk's La	:: 5	02	ns	su	ns
					Pillai's Trace:	ace: $P = 0.02$	2)			

¹ Planted April 8, harvested July 21, 1997. ² Size Distribution 1 = 1.5 - 1.88"; 2 = 1.88 - 2.5"; 3 = 2.5 - 3.25"; 4 = >3.25". ³ Determined by weight in air/weight in water method.

Virginia Table 8. Tuber characteristics and tuber defects for Superior and Snowden transgenic clones grown at Painter, Virginia, 1997.

			Tuber	Tuber Characteristics ¹	tics ¹		<u>T</u> .	Tuber Defects ²	2.5	
Clone	Shape	Size	Set	Appear.	Skin Maturity	Uniformity	Percentage (by wt.)	Heat	Second Growth	Growth
Superior	3.3	7.0	7.0	7.0	6.5	6.8	4.6	8.3	7.3	8.5
SPMT15-17	3.5	8.9	7.3	6.5	0.9	7.0	8.6	8.3	8.9	0.6
SPMT15-29	3.3	5.8	6.3	6.5	6.5	6.3	9.9	8.8	7.0	8.8
SPMT15-206	3.3	6.5	7.5	7.0	8.9	7.3	4.8	8.8	7.8	8.8
SPMT15-224	3.3	0.9	7.3	7.3	5.8	7.0	4.0	7.8	7.3	0.6
SPMT15-225		5.8	7.0	0.9	8.9	6.3	8.7	8.8	6.5	0.6
SPMT15-242		5.8	6.5	0.9	8.9	6.5	11.7	0.6	6.5	9.0
SPMT15-245		6.5	5.3	6.5	6.3	5.8	6.6	8.5	6.5	8.8
SPMT15-250		5.5	7.3	0.9	5.8	6.3	13.4	7.5	5.8	0.6
SPMT15-259		5.8	7.3	8.9	5.8	8.9	5.5	9.0	7.3	9.0
SPMT15-270		8.9	8.9	8.9	5.5	8.9	6.1	8.5	7.0	8.8
Waller-Duncan										
(K=100, P=0.05)	ns	1.1	us	us	ns	su	1	ns	su	us
Snowden		6.1	7.4	6.9	5.5	9.9	8.0	8.9	0.6	0.6
SDMT15-02	2.1	5.9	6.1	5.9	4.6	0.9	0.7	8.9	0.6	0.6
SDMT15-24		5.6	9.9	0.9	4.6	5.8	2.3	0.6	8.8	0.6
SDMT15-40		5.9	9.9	6.1	4.9	6.1	2.2	0.6	8.6	8.6
Waller-Duncan										
(K=100;	0.5	ns	0.7	9.0	9.0	9.0	1	ns	ns	0.3
P=0.05)										

¹Visual observations on 4 replications of Superior, 8 replications of Snowden. Shape: 1 = very round, 9 = very long. Other variables: 1 = very poor, 9 = exceptional. 2 Visual ratings of heat sprouts, second growth, growth crack: 1 = excessive, 9 = none.

361

Wisconsin Potato Variety Trials

Horia Groza, Bryan Bowen, and Jiming Jiang.

Evaluations of the performance of the advanced selections are done within the breeding program in the fith and sixth field generations in replicated trials at two locations and seventh and eighth field generation are in the North Central Regional Trial (NCRT).

The field trials were conducted in Rhinelander, under shorter and colder season conditions, and Hancock, under longer and warmer season conditions, on irrigated sandy soil. They were planted in a randomized block design with single row plots of 20 hills/plot and 12"x36" spacing. Planting, vine killing and harvest dates: (1) in Rhinelander -5/8/97, 8/20/97 and 9/3/97; (2) in Hancock - 4/22/97, 8/25/97 and 9/15/97. The NCRT was conducted in Hancock under exactly the same conditions and dates as the previously mentioned Hancock trials.

The yield was graded into A size (>1%" diameter), B size (<1%") and culls. The vigor at the second blooming, early blight at the beginning of August and vine maturity were scored on a 1-9 scale (1 = very weak, very susceptible or very early, respectively). Common scab and Rhizoctonia attack on tubers was scored on a 1-9 scale (1 = very susceptible). The tubers were described for shape (1=round,

5=oval, 9=long) and shape uniformity (9=very uniform). Five tubers larger than 8 oz were cut lengthwise for rating internal tuber defects (hollow heart, internal brown spot and vascular discoloration). A general preference score for tuber external and internal appearance has been used (1=undesirable, 2=acceptable, 3=good, 4=very good). The specific gravity was determined by measuring the weight in air and water and the table values are expressed as $(SG - 1) \times 1000$. The chip color was scored from 1 to 10, according to the PCII Color Chart (where 1 is the lightest and 4 is the maximum accepted), for the frying time interval until "the bubbling" stops (which measures the reducing sugars factor and eliminates the solids factor). Measurements of chip color were also done with Colorquest 45/0 (a HunterLab spectrophotometer), for lightness (L) in the range black-white, where the aceptable color values are equal or over 60. The chip color for the trials including the advanced selections was determined at reversion (a month storage at 55F) and after three month storage at 40F with and without reconditioning (two weeks at 65F). For the NCRT the chip color was measured when processed freshly harvested and after 3 month storage at 40F (without reconditioning).

Experimental Line Characteristics

MN 16180 - medium late to late, vigorous haulm, medium susceptible to early blight, resistant to scab, attractive round tubers, light skin, high set, medium size, no internal defects, good solids, good chip color, good cold chipper, ranked 2nd in the NCRT in 1997.

MN 16489 - medium late to late, vigorous haulm, medium susceptible to early blight, round oval tubers of variable size, greening, slightly pink eyes, resistant to scab, medium solids, good chip color, good cold chipper.

MN 16966 - very late, vigorous vines, medium resistant to early blight, very high yield, long tubers, offshape, lenticels, good solids, acceptable chip color when processed freshly harvested, internal brown spot incidence, medium susceptible to scab.

MSB 073-2 - medium late, medium susceptible to early blight, medium susceptible to Rhizoctonia, uniform round tubers with good netting, good chip color when processed freshly harvested, good solids.

MSB 076-2 - late, very vigorous haulm, medium resistant to early blight, medium resistant to scab (pitted type), medium susceptible to Rhizoctonia, hard vine killing, fairly uniform round tubers with good netting, very good skin set, high yield, excellent solids,

good chip color.

MSB 106-7 - medium early, medium vigorous haulm, medium susceptible to early blight, fairly resistant to scab, long blocky tubers of variable size, low solids, not acceptable fry color, susceptible to blackspot.

ND 2225-1 R - medium early to early, medium vigorous haulm, susceptible to early blight, no incidence of pitted scab in 1997, excellent red color, very attractive tubers, low incidence of vascular discoloration, medium susceptible to Rhizoctonia, ranked the first in the NCRT in 1997.

ND 2676-10 - early, less vigorous haulm, susceptible to early blight, medium resistant to scab, round smooth tubers, very high incidence of vascular discoloration, medium solids, very good chip color, a good cold chipper.

ND 3828-15 - medium early, susceptible to early blight, large round-oval tubers, growth cracks, high incidence of hollow heart, medium resistant to scab, medium low solids, good chip color, a fairly good cold chipper (except when reconditioned from 3 month storage at 40F).

W 1100 R - medium early (10 days later than Dark Red Norland), medium vine vigor, susceptible to early blight but more resistant than D.R. Norland, good yield, attractive red tubers, uniform round tuber shape, good and stable color.

W 8475 R - medium late, low vine vigor, medium susceptible to early blight, 50-70% B size tubers, high set (up to 25 tubers/hill), good red color, round tubers, no internal defects, excellent for special market ("steamers" and "creamers")

W 1151 rus - medium early (10 days later than Russet Norkotah), less vigorous haulm, medium susceptible to early blight (significantly more resistant the Russet Norkotah), fairly resistant to scab, very attractive blocky medium heavy netted tubers (Norkotah type), early tuber set, sensitive to hollow heart.

W 1313 - medium late, vigorous haulm, fairly resistant to early blight, uniform round-oval tubers, shallow eyes, netting, good skin set, medium susceptible to pitted scab, susceptible to shatter bruises, excellent solids, good chip color at reversion and after 3 month 40F storage, especially under stress inducing sandy soil conditions.

W 1348 rus - medium late, vigorous vines, Russet Burbank type, dual purpose potato, higher yield and better fry color than R. Burbank, uniform long tubers with medium dark net (some tubers with variable intensity of darkness), medium resistant to common scab and Rhizoctonia.

Standard variety characteristics.

Atlantic - medium late to late, fairly resistant to early blight, very good yield, high proportion of hollow heart, high solids, good chip color from freshly harvest but not good at reversion and after 40F storage.

Snowden - medium early, medium resistant to early blight, smaller tuber size, shallow to medium eyes, occasional growth cracks, medium low incidence of vascular discoloration, good solids, excellent chip color at reversion, after 3 and 6 month 40F storage (when reconditioned).

Norchip - medium early, medium susceptible to early blight, very resistant to scab, growth cracks and offshape tubers, medium low incidence of hollow heart and vascular discoloration, very tolerant to internal defects, good solids, good chip color.

Red Pontiac - late, fairly resistant to early blight, pale red color, big size, round tubers, growth cracks, hollow heart, very susceptible to scab.

Dark Red Norland - early, susceptible to early blight, good red color which sometimes fades in the hot sandy soils of Hancock, good yield, hollow heart incidence.

Russet Norkotah - medium early, susceptible to early blight and early dying, medium susceptible to scab, extremely attractive tubers with medium dark net.

Russet Burbank - late, vigorous vines, fairly resistant to early blight and scab, light net, knobby tubers, medium good solids, acceptable fry color when processed freshly harvested, hollow heart and vascular discoloration.

Wisconsin Table 1. Advanced Selection Trial 1, Rhinelander, 1997 (104 days).

	Cw	t/A	1	Vines		Т	ubers		Inte	ernal	Def.9
Cultivar	Tot	A's	VMt	Vig	EBt	Skg	TbU	Scb	НН	VD	IBS
Atlantic	346	327	5.5	5.2	8.0	7.0	9.0	9.0	00	00	00
DRNorland		250	4.8	4.3	6.0	8.0	8.3	9.0	00	00	00
Goldrush	312	264	5.3	5.3	7.0	8.7	8.0	9.0	00	07	00
RBurbank	287	218	7.3	6.7	9.0	6.7	7.7	8.7	00	00	00
RNorkotah	n 258	192	4.7	4.7	6.7	9.0	9.0	9.0	13	00	00
Snowden	383	284	6.0	5.7	8.0	8.5	9.0	9.0	13	00	20
Superior	193	181	4.2	4.2	5.3	9.0	7.7	9.0	00	00	00
w 1519-5	321	292	5.5	5.0	7.8	8.0	8.3	9.0	33	07	00
W 1526-1	242	152	6.7	5.7	8.7	8.3	9.0	9.0	00	00	00
W 1527-3	295	246	5.8	4.7	9.0	7.8	8.0	9.0	00	00	00
W 1566-5	207	190	6.3	5.2	9.0	4.7	8.3	9.0	00	00	00
W 1568-5	275	243	5.7	5.0	8.3	4.7	8.3	8.7	07	00	00
W 1569-2	214	190	6.3	5.7	8.5	8.0	8.7	9.0	00	00	13
W 1576-7	266	255	6.8	6.8	8.7	8.0	8.3	9.0	00	00	00
W 1577-2	224	195	4.5	4.7	7.7	9.0	8.3	9.0	00	00	00
W 1583-2	259	225	6.2	5.8	8.0	5.7	8.0	9.0	07	00	00
W 1647-1	371	326	6.2	5.3	8.7	7.3	8.7	9.0	00	00	13
W 1722-1	228	156	6.0	6.3	7.7	8.0	8.0	8.0	00	00	00
W 1742-1	315	234	5.7	5.3	8.0	8.7	8.8	9.0	00	00	00
W 1754-2	286	228	5.5	5.2	9.0	8.7	8.3	9.0	00	07	00
W 1768-3	247	200	5.3	4.5	8.2	7.0	8.3	9.0	00	00	00
W 1782-8	194	160	5.7	5.7	8.3	5.7	8.7	7.7	07	00	00
W 1802-4	281	232	4.5	5.0	7.3	7.7	9.0	8.7	00	00	00
W 1806-2	216	177	5.8	5.5	8.0	6.3	8.3	9.0	00	00	00
W 1806-1	8 329	272	5.2	4.8	7.0	7.7	8.7	9.0	07	00	07
W 1806-2	5 257	236	5.8	5.5	9.0	7.7	8.3	9.0	00	00	13
W 1811-2	316	253	7.3	6.7	9.0	5.0	9.0	9.0	00	00	00
W 1816-1	3 270	233	5.3	5.2	8.7	5.7	8.0	9.0	00	00	00
W 1934-6	238	139	6.2	5.5	8.7	8.2	9.0	9.0	00	07	00
W 1935-3	333	270	6.2	5.2	8.3	7.5	8.7	9.0	00	00	00
W 1936-5	331	290	6.3	5.3	9.0	5.3	8.7	9.0	00	00	00
W 1936-8	211	170	6.0	4.7	8.3	7.5	8.7	9.0	00	00	00
W 1938-6	300	207	5.0	4.8	7.0	6.0	8.3	9.0	07	07	00
W 1946-2	298	235	6.0	5.0	8.0	7.7	9.0	9.0	00	00	00
W 1946-3	249	221	4.5	4.7	7.0	9.0	9.0	9.0	00	00	07
w 1864-4	r 275	205	6.8	6.2	8.5	8.7	8.3	9.0	00	00	00
W 1876-1	r 304	274	5.7	5.2	8.7	8.3	9.0	9.0	00	00	00
Average	275	228	5.9	5.5	8.2	7.4	8.3	8.9	04	01	02

Tot = Total yield, A's = A size (>1%" tubers) yield; VMt: Vine maturity (1=early, 9=late); Vig: Vine vigor (1=weak, 9=vigorous); EBt: Early blight (1=very attacked, 9=no attack); Skg: Skinning (9 = no skinning); TbU: Tuber shape uniformity (9=very uniform); Scb: Scab (1=very attacked, 9=no attack); HH=Hollow heart; VD=Vascular discoloration; IBS=Internal Brown Spot.

Wisconsin Table 2. Advanced Selection Trial 1, Rhinelander, 1997 (104 days).

			С	hip Col	or		
		Rev		3m	ıD	3r	nR
Cultivar	SpGv	Vis.	L	Vis.	L	Vis.	L
Atlantic	78	3.4	66.2	6.7	51.0	4.5	60.1
DRNorland	57	6.5	57.9	9.8	41.5	8.0	47.5
Goldrush	63	6.8	53.1	10.0	38.9	9.7	49.1
Rburbank	69	6.3	56.5	9.5	44.1	7.6	50.8
Rnorkotah	64	6.6	52.6	10.0	43.3	7.7	52.4
Snowden	82	3.1	68.4	4.2	61.0	2.8	69.4
Superior	70	5.3	57.2	9.8	43.4	6.4	51.9
W 1519-5	81	3.5	64.9	8.6	45.3	5.8	56.4
W 1526-1	86	3.7	67.5	7.4	50.5	5.5	57.0
W 1527-3	83	5.3	60.8	7.9	51.2	6.7	55.6
W 1566-5	75	2.0	72.7	3.7	65.0	2.9	67.3
W 1568-5	77	3.5	69.1	5.1	58.0	4.1	62.4
W 1569-2	82	2.9	70.1	3.5	63.1	3.4	66.5
W 1576-7	75	3.3	66.9	5.9	53.2	6.5	54.6
W 1577-2	75	3.0	68.6	6.0	54.2	3.9	64.7
W 1583-2	71	6.7	56.9	8.3	46.7	8.5	48.4
W 1647-1	82	3.2	67.4	5.5	56.9	4.2	63.2
W 1722-1	81	5.5	63.1	7.8	50.3	6.6	56.3
W 1742-1	76	4.3	62.4	6.8	53.3	4.7	61.2
W 1754-2	83	3.1	70.9	6.9	52.1	4.5	63.2
W 1768-3	74	3.3	68.5	6.7	51.1	5.1	59.5
W 1782-8	85	3.0	70.4	3.2	64.4	2.6	70.5
W 1802-4	84	2.4	71.3	6.2	54.2	4.7	62.4
W 1806-2	79	2.3	71.6	4.7	61.3	3.5	67.2
W 1806-18	73	3.1	68.5	4.3	51.1	3.5	61.5
W 1806-25	78	3.4	66.1	6.1	57.1	4.5	62.7
W 1811-2	79	3.1	68.9	5.5	59.4	3.1	68.8
W 1816-13	78	4.9	62.3	6.4	54.1	5.6	59.3
W 1934-6	76	3.0	68.2	4.5	59.3	3.0	70.3
W 1935-3	74	3.0	68.2	4.0	60.1	3.4	67.0
W 1936-5	67	4.0	63.0	4.9	56.0	6.3	52.0
W 1936-8	79	3.0	69.7	4.5	62.3	3.5	67.5
W 1938-6	75	3.1	67.9	4.7	59.6	4.3	63.0
W 1946-2	76	2.2	70.1	3.6	62.3	2.5	71.5
W 1946-3	74	3.1	69.6	4.0	62.8	3.0	70.5
W 1864-4rus	68	6.3		10.0	41.0	7.2	48.8
W 1876-1rus	68	4.7	64.8	8.9	45.7	7.7	49.1
Average	76	3.9	65.4	6.4	53.6	5.1	60.3

Chip Color: Rev = Reversion, 3m = 3 month storage at 40F(D=direct, R = reconditioned 14 days at 65F). Vis, visual scores in CPII scale (1=light, <math>10=dark); L, lightness readings with HunterLab Colorquest 45/0.

Wisconsin Table 3. Advanced Selection Trial 2, Rhinelander, 1997 (104 days).

	Cw	t/A	7	Jines		ŗ	Tuber	S	Inte	rnal 1	Def.%
Cultivar	Tot	A's	Vmt	Vig	Ebt	Skg	TbU	Scb	НН	VD	IBS
					0 0	7 0	0 0	0 0	0.0	0.0	0.0
Atlantic	346	327	5.5	5.2	8.0	7.0	9.0.	9.0	00	00	00
DRNorland	301	250	4.8	4.3	6.0	8.0	8.3	9.0	00	00	00
Goldrush	180	165	5.7	5.2	7.7	7.5	8.5	9.0	00	00	13
RNorkotah	237	158	4.3	4.7	5.0	8.3	9.0	9.0	07	00	07
Rburbank	226	183	7.0	6.2	9.0	6.3	7.7	9.0	00	00	13
Snowden	315	275	5.3	5.5	7.0	9.0	9.0	9.0	00	00	00
Superior	167	141	3.3	4.3	5.3	9.0	7.7	9.0	00	00	00
W 1005rus	255	155	6.5	6.3	8.7	8.0	8.3	9.0	00	00	00
W 1099rus	295	247	5.8	5.2	8.0	8.3	9.0	9.0	00	00	00
W 1151rus	190	146	6.2	5.3	8.3	7.8	9.0	9.0	00	00	20
W 1348rus	254	142*	6.8	6.3	8.7	7.7	8.7	9.0	00	00	00
W 1350	184	111	5.3	5.0	6.0	8.7	8.7	9.0	00	00	00
W 1360	226	178	4.7	5.0	6.2	9.0	8.3	9.0	07	00	00
W 1368	299	226	5.5	6.2	8.3	8.0	9.0	9.0	00	00	00
W 1371	184	122	5.5	5.0	8.3	8.5	7.7	9.0	00	00	07
W 1374	214	195	5.7	5.0	8.2	7.0	8.5	9.0	00	00	00
W 1375	217	200	6.3	5.7	8.7	4.7	8.3	9.0	00	00	00
W 1382	185	116	5.5	5.2	6.7	5.0	7.5	9.0	00	00	00
W 1386	379	336	5.8	5.2	8.3	7.0	7.0	8.7	00	00	00
W 1390	226	208	5.0	5.5	8.0	5.5	8.0	9.0	00	00	00
W 1407	200	185	6.3	5.5	8.7	4.0	8.3	8.0	07	00	00
W 1421	210	185	6.8	5.8	9.0	7.3	8.3	9.0	00	00	07
W 1431	206	178	6.7	5.2	8.7	4.3	8.3	9.0	00	00	13
W 1443	242	178	5.8	5.7	8.7	8.3	8.0	9.0	00	00	00
W 1474	297	273	5.5	5.2	7.0	8.3	8.3	7.3	07	00	00
W 1492	273	251	5.7	4.7	8.0	7.0	8.3	8.3	00	00	00
W 1100R	316	261	5.5	5.0	8.0	7.3	9.0	9.0	00	00	07
W 1101R	261	225	7.2	6.2	8.7	5.7	8.7	8.3	00	00	07
W 1143R	198	151	4.0	4.8	5.3	8.3	6.3	9.0	00	00	00
W 1267R	222	199	7.0	6.3		6.3	7.7	8.7	00	00	00
W 1280R	300	249	5.5		8.0	7.3	9.0	9.0	00	00	00
W 8475R	214	49*	4.8			7.7	8.0	9.0	00	00	00
W 1866-2R	265	243	5.7		8.0	6.0	9.0	9.0	00	00	07
Average	245	197	5.7	5.3	7.7	7.2	8.3	8.9	01	00	03

Tot = Total yield, A's = A size (>1%" tubers) yield; VMt: Vine maturity (1=early, 9=late); Vig: Vine vigor (1=weak, 9=vigorous); EBt: Early blight (1=very attacked, 9=no attack); Skg: Skinning (9 = no skinning); TbU: Tuber shape uniformity (9=very uniform); Scb: Scab (1=very attacked, 9=no attack); HH=Hollow heart; VD=Vascular discoloration; IBS=Internal Brown Spot.

^{*} Yield of B's (tubers without defects <1%") is 109 cwt/A for W 1348 rus and 163 cwt/A for W 8475 R.

Wisconsin Table 4. Advanced Selection Trial 2, Rhinelander, 1997 (104 days).

				Chip	Color			
		Rev		3mD		3mR		
Cultivar	SpGv	Vis.	L	Vis.	L	Vis.	L	
Atlantic	78	3.4	66.2	6.7	51.0	4.5	60.1	
DRNorland	57	6.5	57.9	9.8	41.5	8.0	47.5	
Goldrush	63	7.1	49.7	9.9	38.1	7.9	48.9	
Rnorkotah	66	6.6	51.7	10.0	42.3	7.0	51.8	
RBurbank	67	6.7	55.3	9.8	41.4	7.7	49.5	
Snowden	73	4.4	62.5	3.8	59.3	2.9	68.5	
Superior	69	5.1	61.5	9.1	44.3	6.4	53.5	
W 1005 rus	71	4.6	63.2	6.2	53.7	5.5	58.8	
W 1099 rus	66	7.3	51.0	10.0	38.4	8.2	45.5	
W 1151 rus	66	6.5	57.3	9.8	43.3	8.3	44.3	
W 1348 rus	72	5.6	56.8	6.6	48.7	6.0	54.3	
W 1350	77	2.6	70.5	4.1	61.8	2.9	66.6	
W 1360	81	4.5	64.4	6.0	56.4	4.9	61.3	
W 1368	79	5.7	60.8	5.9	56.0	4.8	59.0	
W 1371	77	3.3	66.9	4.8	58.1	3.5	64.7	
W 1374	78	4.4	64.1	5.1	53.5	4.8	62.8	
W 1375	80	3.7	66.5	5.3	55.1	4.5	59.7	
W 1382	73	5.5	58.9	7.0	51.9	4.3	60.1	
W 1386	75	3.3	67.8	6.1	55.4	3.7	64.8	
W 1390	72	3.8	66.9	5.6	57.2	3.5	60.1	
W 1407	76	4.0	64.5	5.7	53.2	5.0	61.1	
W 1421	75	3.8	66.4	5.6	58.7	4.0	63.7	
W 1431	71	2.9	67.7	4.7	60.9	3.4	66.1	
W 1443	71	3.5	67.1	5.9	54.2	3.7	67.5	
W 1474	76	4.7	61.7	7.1	49.5	6.1	55.0	
W 1492	76	3.3	68.1	5.8	56.7	5.0	61.4	
W 1100	65	5.9	56.6	9.3	44.3	6.6	56.4	
W 1101	67	5.1	59.7	9.7	44.9	7.9	48.8	
W 1143	55	5.4	60.8	7.2	50.8	5.5	59.5	
W 1267R	70	7.6	45.5	10.0	37.4	10.0	43.0	
W 1280R	58	-	-	9.6	42.4	8.1	47.3	
W 8475R	59	5.1	51.5	9.5	45.0	6.7	48.6	
W 1866-2R	72	6.8	53.7	9.9	44.5	8.1	47.8	
Average	71	4.9	60.7	7.3	50.0	5.7	56.	

Chip Color: Rev = Reversion, 3m = 3 month storage at 40F(D=direct, R = reconditioned 14 days at <math>65F). Vis, visual scores in CPII scale (1=light, 10=dark); L, lightness readings with HunterLab Colorquest 45/0.

	Cwt	:/A	7	Vines		Tubers					
Cultivar	Tot	A's	VMt	Vig	EBt	TbS	TbU	Scb	Rh	Pref	
Atlantic	436	398	4.3	5.5	6.7	1.0	9.0	9.0	9.0	2.8	
DRNorland	227	204	2.3	3.8	1.7	1.0	9.0	7.8	9.0	2.0	
Goldrush	388	346	4.7	4.8	3.0	7.0	8.0	9.0	9.0	1.8	
Rburbank	356	296	6.3	5.8	6.7	9.0	8.0	8.7	7.0	2.0	
Rnorkotah	323	279	3.7	4.7	3.7	7.0	9.0	7.8	8.0	2.3	
Snowden	401	375	5.0	5.5	5.3	1.0	8.7	8.7	8.0	2.0	
Superior	374	353	3.7	4.5	3.2	3.0	8.7	9.0	9.0	2.2	
W 1519-5	416	371	5.0	4.7	4.3	3.7	6.8	8.7	9.0	1.2	
W 1526-1	464	411	6.5	6.0	6.3	2.3	8.3	7.0	9.0	2.0	
W 1527-3	331	291	5.3	5.3	4.7	1.0	8.7	8.0	9.0	2.2	
W 1566-5	375	356	5.0	5.7	5.7	1.0	8.2	7.7	9.0	2.3	
W 168-5	437	393	4.3	5.0	4.8	3.0	8.3	6.7	9.0	2.2	
W 1569-2	364	347	5.7	6.0	5.7	1.0	9.0	9.0	9.0	3.0	
W 1576-7	369	357	6.7	6.3	7.8	3.7	8.7	8.5	9.0	2.2	
W 1577-2	325	283	6.5	4.7	6.5	3.0	8.0	8.5	8.0	2.0	
W 1583-2	355	291	5.7	5.2	6.0	7.0	8.7	9.0	9.0	2.8	
W 1647-1	476	420	5.7	6.3	6.7	3.0	7.7	7.7	9.0	1.8	
W 1722-1	412	368	5.3	6.5	6.0	4.0	8.5	7.7	8.0	2.3	
W 1742-1	431	386	5.0	5.7	5.8	1.0	9.0	9.0	9.0	2.7	
W 1754-2	314	270	5.3	5.3	4.7	3.3	8.7	9.0	9.0	2.3	
W 1768-3	415	360	5.0	5.2	5.0	4.3	7.5	8.3	9.0	1.8	
W 1782-8	387	365	6.0	5.5	6.7	1.0	9.0	8.5	9.0	3.3	
W 1802-4	326	189	5.0	5.0	4.3	2.7	8.0	8.5	9.0	2.0	
W 1806-2	325	286	6.0	5.5	6.0	1.7	7.3	8.3	9.0	1.8	
W 1806-18	371	312	4.7	5.0	4.3	2.3	7.7	8.5	9.0	1.8	
W 1806-25	364	328	4.7	5.2	5.0	3.3	8.7	9.0	9.0	2.3	
W 1811-2	432	403	8.7	7.3	7.7	1.0	8.3	8.3	8.0	2.7	
W 1816-13	438	398	6.7	5.5	7.3	3.3	8.3	8.5	8.0	2.3	
W 1934-6	307	248	6.3			1.0	8.3	9.0	8.0	2.0	
W 1935-3		351		5.2		4.3	7.3	8.7		1.5	
W 1936-5		367		5.2			8.7			2.3	
W 1936-8	326	301	5.0		4.7		9.0	8.8	9.0	2.2	
W 1938-6	398	329	5.3		4.7	4.3			9.0	1.3	
W 1946-2		336	4.0	5.3	5.3				9.0	1.5	
W 1946-3		338	3.3		3.7	2.3			9.0	2.2	
w 1864-4r	373	338	5.0				9.0		9.0	1.5	
W 1876-1r	395	357	4.7	5.5	5.8	7.7	8.3	8.0	9.0	2.0	
Average	378	335	5.2	5.4	5.4	-	8.3	8.4	8.8	2.1	

Tot = Total yield (cwt/A); A's: A tuber size (>1%") yield (cwt/A); VMt: Vine maturity (1=early, 9=late); Vig: Vine vigor (1=weak, 9=vigorous); EBt: Early blight (9=no attack); TbS: Tuber shape (1=round, 5=oval, 9=long); TbU: Tuber shape uniformity (9=very uniform); Scb: Scab (9=no attack); Rh: Rhizoctonia (9=no attack); Pref: Preference (1=undesirable tubers, 2=acceptable tubers, 3=good tuber traits, 4=very good tuber traits).

Wisconsin Table 6. Advanced Selection Trial 1, Hancock, 1997 (126 days).

				Chip	Color			
ultivar		Rev		3m	D	3mR		
Cultivar	SpGv	Vis.	L	Vis.	L	Vis.	L	
Atlantic	84	3.4	65.2	6.7	47.6	6.1	54.5	
DRNorland	55	6.9	54.8	10.0	31.9	10.0	27.9	
Goldrush	59	5.5	57.9	10.0	37.5	9.9	40.6	
Rburbank	78	4.0	61.7	10.0	39.3	9.5	45.0	
RNorkotah	65	5.6	58.0	10.0	38.0	9.9	41.1	
Snowden	79	3.3	68.1	6.0	52.6	4.6	58.7	
Superior	67	3.7	64.0	10.0	41.5	9.2	45.0	
W 1519-5	80	3.6	63.3	8.5	44.9	7.3	47.0	
W 1526-1	99	3.6	66.1	7.4	49.8	6.9	53.6	
W 1527-3	87	3.8	65.7	7.5	50.3	9.1	47.6	
W 1566-5	75	2.0	72.7	3.7	65.0	2.9	67.3	
W 1568-5	79	2.6	74.5	3.4	61.3	5.0	61.1	
W 1569-2	85	3.0	68.7	5.5	54.9	5.8	56.4	
W 1576-7	73	3.8	63.5	9.1	41.6	8.1	45.0	
W 1577-2	77	3.3	68.8	7.7	47.4	7.0	51.0	
W 1583-2	78	4.0	64.5	9.9	39.2	9.0	44.8	
W 1647-1	90	3.3	68.0	7.4	49.0	7.3	54.8	
W 1722-1	85	4.1	65.3	7.6	44.1	7.1	51.7	
W 1742-1	79	3.7	66.8	5.7	53.1	5.4	57.5	
W 1754-2	83	3.2	69.1	7.7	47.9	8.3	48.1	
W 1768-3	68	3.2	68.2	8.9	46.2	9.5	42.7	
W 1782-8	89	2.8	71.1	4.1	61.4	3.1	56.7	
W 1802-4	81	3.0	69.8	7.8	48.4	7.1	57.4	
W 1806-2	80	3.2	69.8	8.1	36.6	6.1	53.3	
W 1806-18	78	3.4	65.3	6.0	53.3	5.8	52.8	
W 1806-25	84	3.2	68.9	6.9	49.7	6.6	54.7	
W 1811-2	91	3.1	69.0	6.4	57.0	6.0	53.9	
W 1816-13	85	4.2	64.4	7.7	49.9	7.3	51.7	
W 1934-6	88	3.1	70.0	5.7	54.7	4.3	62.7	
W 1935-3	84	3.0	68.3	6.2	51.8	5.5	56.2	
W 1936-5	75	3.7	66.5	7.8	50.7	6.6	56.6	
W 1936-8	90	2.9	70.2	6.3	51.4	6.3	56.9	
W 1938-6	92	3.2	69.1	5.7	55.1	7.1	52.4	
W 1946-2	76	3.0	68.7	6.9	50.0	4.8	57.9	
W 1946-3	71	3.2	68.7	6.1	50.7	6.8	51.5	
W 1864-4rus	67	5.1	58.4	10.0	40.2	9.7	40.2	
W 1876-1rus	68	3.4	64.8	9.9	38.4	9.8	42.1	
Average	79	3.6	66.4	7.4	48.1	7.0	51.3	

Chip Color: Rev = Reversion, 3m = 3 month storage at 40F(D=direct, R = reconditioned 14 days at <math>65F). Vis., visual scores in CPII scale (1=light, 10=dark); L, lightness readings with HunterLab Colorquest 45/0.

Wisconsin Table 7. Advanced Selection Trial 2, Hancock, 1997 (126 days).

	Cwt	:/A	7	Vines		Tubers					
Cultivar	Tot	A's	VMt	Vig	EBt	Tbs	TbU	Scb	Rh	Pref	
Atlantic	436	398	4.3	5.5	6.7	1.0	9.0	9.0	9.0	2.8	
DRNorland	227	204	2.3	3.8	1.7	1.0	9.0	7.8	9.0	2.0	
Goldrush	388	346	4.7	4.8	3.0	8.7	8.0	9.0	9.0	2.5	
Rnorkotah	323	279	3.7	4.7	3.7	9.0	8.0	7.8	8.0	2.5	
Rburbank	323	296	6.3	5.8	6.7	8.3	8.0	8.7	7.0	2.0	
Snowden	401	375	5.0	5.5	5.3	1.7	8.7	8.7	8.0	2.5	
Superior	374	353	3.7	4.5	3.2	2.3	8.7	9.0	8.0	2.3	
W 1005rus	402	360	7.0	6.7	7.0	9.0	7.8	9.0	9.0	2.3	
W 1099rus	343	311	4.0	5.3	4.0	9.0	8.3	8.8	9.0	2.5	
W 1151rus	372	343	6.7	5.5	7.3	9.0	9.0	8.3	9.0	3.0	
W 1348rus	404	359	7.3	6.3	7.0	9.0	8.0	8.8	9.0	2.2	
W 1350	295	235	3.7	3.7	2.3	1.7	8.3	9.0	9.0	1.0	
W 1360	361	321	5.3	4.0	5.3	4.3	8.0	7.3	9.0	2.0	
W 1368	413	362	4.3	5.7	5.7	1.0	9.0	8.8	8.0	2.5	
W 1371	349	305	4.3	5.3	4.7	3.0	8.0	9.0	9.0	2.2	
W 1374	412	379	5.0	5.2	5.0	1.0	8.7	9.0	9.0	2.5	
W 1375	295	243	6.7	5.5	7.0	5.7	8.3	8.2	9.0	1.8	
W 1382	308	272	5.0	5.0	5.0	6.3	8.3	9.0	9.0	1.3	
W 1386	454	410	6.0	5.3	6.3	4.0	7.7	8.3	9.0	2.3	
W 1390	296	249	7.3	5.0	7.7	2.3	8.3	8.7	9.0	2.3	
W 1407	407	339	6.7	5.5	7.3	3.0	8.2	8.7	8.0	2.2	
W 1421	335	305	6.7	5.7	7.2	2.3	8.3	9.0	8.0	2.0	
W 1431	353	331	6.7	5.2	5.7	1.7	7.7	8.7	9.0	2.0	
W 1443	478	419	4.7	5.8	5.7	1.0	8.8	9.0	9.0	2.8	
W 1474	390	372	5.0	5.3	5.3	3.3	7.7	7.3	9.0	2.0	
W 1492	411	366	6.0	4.5	6.3	5.0	7.3	7.7	9.0	2.0	
W 1100R	353	311	4.7	5.3	3.7	7.3	9.0	7.3	9.0	2.3	
W 1101R	495	439	8.0	6.7	6.7	2.3	8.3	8.3	9.0	2.2	
W 1143R	371	335	3.7	5.5	3.7	1.0	8.7	8.8	9.0	2.5	
W 1148R	479	434	6.0	5.3	5.3	1.0	9.0	9.0	9.0	2.8	
W 1267R	392	345	5.7	5.7	5.8	4.7	8.0	7.8	9.0	2.0	
W 1280R	347	301	4.3	4.8	4.0	2.3	8.0	8.2	9.0	2.0	
W 8475R	300	227*	4.3	3.7	2.3	1.0	8.3	8.0	9.0	2.0	
Average	378	331	5.3	5.2	5.3	_	8.3	8.5	8.7	2.2	

Tot = Total yield, A's = A size (>1 7/8" tubers) yield; VMt: Vine maturity (1=early, 9=late); Vig: Vine vigor (1=weak, 9=vigorous); EBt: Early blight (1=very attacked, 9=no attack); Skg: Skinning (9 = no skinning); TbU: Tuber shape uniformity (9=very uniform); Scb: Scab (1=very attacked, 9=no attack); HH=Hollow heart; VD=Vascular discoloration; IBS=Internal Brown Spot.

^{*}Yield of B's (tubers without defects <1 7/8") is 65 cwt/A for W 8475 R.

Wisconsin Table 8. Advanced Selection Trial 2, Hancock, 1997 (126 days).

				Chip	Color			
		R	ev	3m	D	3mR		
Cultivar	ar SpGv		L	Vis.	L	Vis.	L	
Atlantic	84	3.4	65.2	6.7	47.6	6.1	54.5	
DRNorland	55	6.9	54.8	10.0	31.9	8.0	47.5	
Goldrush	58	6.4	56.0	10.0	37.1	10.0	37.3	
RNorkotah	60	5.6	59.6	10.0	36.6	8.9	40.2	
RBurbank	72	5.2	59.9	9.4	37.5	9.5	45.2	
Snowden	78	3.3	66.7	7.5	48.1	6.2	53.2	
Superior	65	4.4	62.2	10.0	35.5	9.9	37.6	
W 1005 rus	74	4.4	60.0	9.5	42.5	9.0	48.1	
W 1099 rus	59	5.8	59.9	10.0	32.9	10.0	32.9	
W 1151 rus	61	6.2	54.0	10.0	36.4	9.6	41.3	
W 1348 rus	75	4.6	62.6	7.6	46.6	8.6	47.	
W 1350	79	2.7	69.8	8.5	46.2	7.1	50.	
W 1360	81	3.0	68.5	8.1	47.1	7.4	49.0	
W 1368	88	3.2	68.2	7.3	49.6	7.1	51.9	
W 1371	78	3.2	68.7	7.6	45.2	6.9	50.2	
W 1374	75	3.2	65.4	7.7	45.7	6.3	52.3	
W 1375	79	3.9	65.3	7.2	47.1	6.7	51.3	
W 1382	84	4.1	63.8	8.5	46.7	8.2	47.8	
W 1386	79	3.1	68.3	5.3	54.2	7.3	52.4	
W 1390	79	3.9	67.8	4.2	55.4	4.6	59.(
W 1407	73	5.1	58.4	8.7	43.3	9.7	42.	
W 1421	80	3.3	67.7	7.3	47.6	6.3	53.5	
W 1431	79	3.8	66.4	5.1	53.5	4.4	60.6	
W 1443	74	3.8	63.7	8.9	45.6	7.0	49.3	
W 1474	79	3.3	67.6	8.5	45.2	7.4	48.3	
W 1492	77	3.6	64.5	5.7	51.6	6.4	52.9	
W 1100R	61	4.4	60.2	9.9	36.9	9.4	42.0	
W 1101R	64	6.8	53.2	9.7		10.0		
W 1143R	55	_	_	9.9		9.9	31.	
W 1148R	72	_	_	10.0		9.7	38.3	
W 1267R	70	-	_	9.6		9.9	37.	
W 1280R	52	_	-	10.0			34.2	
W 8475R	56	6.3	54.9		34.0		34.	
Average	71	4.4	62.9	8.4	42.5	8.1	45.	

Chip Color: Vis, visual scores in CPII scale (1=light, 10=dark); L, lightness readings with HunterLab Colorquest 45/0. Rev = Reversion, 3m = 3 month storage at 40F(D=direct, R = reconditioned 14 days at 65F).

Wisconsin Table 9. North Central Regional Trial, Hancock, 1997 (126 days).

		Chip Color										
	Cwt/A		Vines			AfHv:	st	3mD		3mR		
Cultivar	Tot	A's	VMt	Vig	EBt	SpG	Vis.	L	Vis.	L	Vis.	L
Atlantic	423	387	5.0	5.6	6.3	84	3.0	69	6.4	51	6.0	55
Snowden	441	401	5.5	5.6	6.4	75	2.8	71	5.8	52	3.2	66
Norchip	322	266	4.0	4.6	3.0	70	3.8	67	8.0	45	5.0	54
R.Pontiac	429	364	6.8	5.8	5.3	56	6.3	53	_	_	-	_
DRNorland	369	342	1.0	2.0	1.0	54	4.8	62	_	_	_	_
Rnorkotah	264	228	4.3	4.3	4.3	62	4.4	63	-	_	_	-
R.Burbank	355	289	6.3	5.1	6.5	72	4.8	60	9.6	37	8.0	46
MN 16180	378	343	5.8	5.5	5.5	76	3.2	71	4.9	54	3.0	68
MN 16489	383	332	5.5	5.9	5.0	72	3.7	68	4.3	61	3.5	66
MN 16966	473	401	8.0	6.6	7.6	79	4.2	65	5.7	52	6.0	58
MSB 073-2	395	356	5.0	5.9	5.9	81	3.7	67	9.0	42	6.8	46
MSB 076-2	423	380	6.8	6.8	6.3	85	3.2	68	4.9	56	4.4	59
MSB 106-7	394	335	5.0	5.5	4.3	62	5.6	58	_	-	-	-
ND2225-1R	295	260	2.0	2.8	1.8	54	5.4	60	_	_	_	_
ND2676-10	344	320	3.8	4.3	2.5	73	3.1	72	3.3	65	4.2	62
ND3828-15	424	357	4.3	5.1	3.4	68	2.8	71	4.4	61	5.0	55
W 1151rus	312	331	5.5	5.0	5.8	56	5.2	57	_	_	_	_
W 1313	391	359	6.3	5.4	6.5	83	3.3	71	4.1	61	3.5	63
W 1348rus	414	357	6.0	6.3	5.5	74	4.1	62	7.6	44	6.5	57
Superior	410	339	3.8	5.6	3.3	67	3.9	66	9.2	42	8.0	47
Average	382	414	5.0	5.2	4.9	70	4.0	65	6.2	51	5.2	57

Tot = Total yield, A's = A size (>1%" tubers) yield; VMt: Vine maturity (1=early, 5=late); Vig: Vine vigor (1=weak, 5=vigorous); EBt: Early blight (1=very attacked, 5=no attack); SpG: (Specific Gravity -1) x 1000. Chip color: AfHvst = freshly after harvest; 3mD and 3mR = after 3 month storage at 40F, processed directly (D) or with reconditioning (R), respectively; Vis = visual score (CPII scale: 1=light, 10=dark), L = lightness values (HunterLab Colorquest).

Wisconsin Table 10. North Central Regional Trial, Hancock, 1997 (126 days).

	External Defects %					Int					
Cultivar	Gck	Ofs	Sgn	Rot	Free	НН	IBS	VD	Norm	Scb	Rk
Atlantic	0	1	2	0	97	33	0	0	68	8.9	
Snowden	0	1	1	0	98	0	0	13	87	8.8	
Norchip	0	3	1	0	95	13	5	13	70	9.0	
R.Pontiac	2	5	1	0	92	20	5	0	75	7.5	
DRNorland	0	1	1	0	98	15	0	3	83	8.9	
Rnorkotah	0	1	0	1	98	8	0	5	88	8.4	3
R.Burbank	0	6	0	0	94	20	3	13	65	9.0	
MN 16180	0	1	1	0	98	0	0	0	100	9.0	2
MN 16489	0	2	2	0	96	5	0	3	93	8.6	
MN 16966	0	5	1	0	94	3	15	5	78	8.3	
MSB 073-2	0	0	1	0	99	3	0	3	95	8.9	
MSB 076-2	1	2	1	0	96	5	3	0	93	9.0	
MSB 106-7	3	2	2	0	93	3	13	3	83	9.0	
ND2225-1R	0	1	1	0	98	3	5	10	83	9.0	1
ND2676-10	0	1	0	0	99	0	3	40	58	9.0	5
ND3828-15	1	4	2	0	93	35	3	8	55	9.0	
W 1151rus	0	3	0	0	97	10	0	20	70	8.4	
W 1313	0	2	1	0	97	5	3	8	85	8.4	4
W 1348rus	0	4	1	0	95	5	3	8	85	9.0	
Average	0.3	2.3	1.0	0.1	96	9.8	2.9	8.1	80	8.7	

GCk: Tuber growth cracks; Ofs: Offshaped tubers; SGn: Sun green; Rot: Tuber rot; Free: Tubers free of external defects; HH=Hollow heart; VD=Vascular discoloration; IBS=Internal Brown Spot; Norm: Normal tubers (no internal defects); Scb: Scab (9=no attack); Rk: Rank - the first 5 for general merits.

