# **MyungHoon Jin**

# A.I researcher



Address 183-19, Munsi-ro, Osan-si, Gyeonggi-do, Phone +82) 4011-4990

Republic of Korea

GitHub https://github.com/jinmang2 Email jinmang2@gmail.com

## **Profile**

Rubato Lab에 지원하게 된 `진명훈` 이라고 합니다. 가천대에서 금융수학을 전공했으며 18년도부터 Data Science, Al에 관심을 가지고 공부했고 현재는 Persona Al에서 딥러닝 연구개발 사원으로 근무 중 입니다. 주로 Seq2Seq 기반의 자연어모델을 사용해봤고 Sequential 한 data들에 대한 연구를 하고 싶은 꿈이 있습니다. 음성 합성 또한 제가 공부하고 다뤄보고 싶은 연구였고 이번 Lib project 기회가 생겨지원했습니다. 제 이력 및 세부 사항은 아래에 기술하도록 하겠습니다.

# **Research Experience**

Sep 2019 - present

Persona A.I. R&D researcher

남부터미널

챗봇 딥러닝 연구개발 사원

- 한화손해보험 FAQ 데이터 활용 Seq2Seq 대화모델 개발 (中)
- Seq2Seq 관련 논문 리뷰
- Joint Sentiment Topic Modeling을 활용한 다중 감정 분류기 개발
- https://github.com/jinmang2/t2snet

Sep 2017 – May 2019

**Gachon Convergence Research Center** 

성남, 가천대

경영대학 장유상 교수 연구실 조교 (Panel, Sequential Data Handling)

- 국가 대도시별 미세먼지(PM2.5) 데이터를 Experience Curve 기법으로 분석
- 세계 국가별 환경 데이터 catch-up 현상 분석을 위한 convergence analysis 실시
- Panel data 분석을 위해 Stata PCSE 모델을 활용, 미세먼지 데이터 분석
- 논문 출판 `Convergence Analysis of the Sanitation Index for 158 Countries`

Sep 2018 – May 2019 성남, 가천대

# Sequential Analysis on stock market data

금융수학학부 문경숙 교수 머신러닝 프로젝트 참여

- Tree 기반 ensemble 모형 XGBoost, LightGBM을 활용
- 주식 수익률 최대화를 objective로 설정
- 이를 위해 다양한 target variable functio을 실험

$$Y_{t,n} = Step\left(\ln\left(\frac{Close_{i+t}^{S}}{\frac{1}{n}\sum_{k=0}^{n-1}Close_{i-k}^{S}}\right)\right) for \begin{cases} t \in range(1,31,3) \\ n \in range(1,89,3) \end{cases}$$

"Sequential Data Analyst"

# **Paper Reviews**

#### https://github.com/jinmang2/Paper-Review

- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
  - Seq2Seq, GRU 유닛 소개
- Neural Machine Translation by Jointly Learning to Align and Translate
  - Bahdanau Attention 제안
- Effective Approaches to Attention-based Neural Machine Translation
  - Luong Attention 제안
- A Structured Self-Attentive Sentence Embedding
  - Self-Attention 제안 (vector representation -> matrix representation)
- Attention Is All You Needs
  - Transformer, first transduction model with self-attention without recurrent and convolution
- · BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  - Transformer Encoder, Transfer Learning, MLM and NSP, fine-tune based (not a feature-based)
- Deep contextualized word representations
  - Feature-based transfer learning, ELMo. BiLM을 사용하지만 이를 독립적으로 concat
- Highway Networks
  - Residual Connection의 상위 버전. LSTM에 영감을 받음
- Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems
  - 시계열 예측을 위해 LSTM Stacked-AE 모형 제안
- Learning Spatiotemporal Features with 3D Convolutional Networks
  - 3D Convolution pre-training 모델
- Real-World Anomaly Detection in Surveillance Videos
  - 위 C3D를 활용하여 감시카메라 이상탐지 실시. Ranking loss 및 MIL 기법 활용
- Neural Machine Translation of Rare Words with Subword Units
  - BPE를 NMT에 적용! 새로운 버전으로 BPE 알고리즘을 제시
- A Neural Probabilistic Language Model
  - Bengio 교수가 제안한 neural network 기반 language model

## **Education**

Mar 2013 – Feb 2019 Gachon University

• Major: Financial Mathematics (GPA: 3.93 / 4.5)

Jun 2019 – Aug 2019 Korean Standards Association

Machine Learning & Deep Learning, National support

# **Study History**

Mar 2014 – Dec 2014 Linear Algebra

• 학부 전공으로 공부

• 교재: Elementary Linear Algebra 10th Edition

Mar 2018 – Jun 2018 **Python** 

• Mooc python 강의 – 가천대 산업경영공학과 최성철 교수

Mar 2018 – Aug 2018 Machine Learning

• 데이터 융합 전공 청강

• 교재: Hands on Machine Learning

• 최성철 교수 Machine Learning 강의

Feb 2020 – present Korean Embedding

• 자연어 처리 스터디

• 논문 리뷰 및 구현

• 교재: 이기창님 한국어 임베딩

• <a href="https://github.com/jinmang2/KoreanEmbedding">https://github.com/jinmang2/KoreanEmbedding</a>

Apr 2020 – present **Optimization** 

• 선형대수 복습 및 딥러닝 수학적 베이스를 키우기 위해 스터디

• 교재: Numerical Optimization

• <a href="https://github.com/jinmang2/optimization">https://github.com/jinmang2/optimization</a>

"Sequential Data를 주로 다루는 수학적 Base가 탄탄한" "AI Researcher가 되기 위해" "위와 같이 공부하며 시간을 보냈습니다."

# **Projects**

- NCSOFT User Churn Prediction
  - Big Contest 2019 Champions League, 1차 통과
- · Classify Default Credit Card
  - UCI 데이터를 활용, 신용 파산 예측 문제 해결
- Lion/Tiger/Leopard Classifier
  - 동물 이미지를 crawling하여 CNN으로 분류 모델 구축
- Stock recommend algorithm with precision
  - KOSPI 과거 주식 데이터를 기반으로 portfolio 제안 모델 구축
- Airbnb New User Booking
  - Kaggle의 Airbnb 다중 분류 문제를 Tree기반 모델로 해결
- Catch-up effect on EPI2016 Data Set
- · Option Pricing & Delta Hedging Portfolio
- · Portfolio Optimization with CAPM
- Hedge Strategy by Derivative (Futures)

"제가 학부 시절부터 한 프로젝트를 정리한 내용입니다." "Rubato Lab의 task와 직접적인 연관은 없지만" "제가 어떤 활동을 해왔고 지금까지의 족자를 말씀드리고자 합니다."

# Projects #1

#### AUG 2019-

#### **#1 NCSOFT User Churn Prediction**

present

GitHub: github.com/jinmang2/ncsoft\_predict\_churn

#### Summary

Team project

Champions League of Big Contest 2019

(3)

- Data: activity, pledge, trade, combat, payment data by characters of each user for 28 days
- Define Churn: users whose connection history has been lost for more than 7 consecutive days during 64 observation days
- · To maximize ncsoft's expected returns, forecast the followings;
  - $\checkmark \hat{T} = predicted survival time, 1~63: churn | 64: remain (fig1-1)$
  - $\checkmark \hat{R} = predicted \ daily \ amount \ spent, positive \ real \ number \ (fig 1-2)$
- Objective function:  $\hat{E}(r) = \gamma \times \hat{T} \times \hat{R} C$ ,  $\gamma$ : conversion rate, C: cost
- · Adjust 3 ideas as followings;
  - ✓ Flatten the weekly variable to make it a features (fig 1-3)
  - ✓ Calculate the count variable for each features to become robust over time (fig 1-4)
  - ✓ Change labels to form; yln(y) (fig 1-5)
- Deriving the top 30 on the Leader Board with 14,000 points
- 1st pass on Big Contest 2019

#### Role within the Team

- · Build baseline by flatten data set
- · Create unity and joyful atmosphere as a younger brother
- · Providing ideas, change labels

#### I felt these things

- · Not only sequential model, but also cross-sectional model is important
- · Importance of target distributions
- · Effect of team synergy
- Reducing user churn is important in business problems because it increases expected returns

Figure 1-1. User Churn ratio and frequency by survival time



Figure 1-2. amount spent by survival time



Figure 1-3. Flatten the weekly variable to make it a feature



Figure 1-4. Calculate count variable for each features



Figure 1-5. Equations of changing label

 $if \; \hat{T} \leq 1$ 

1,

| Survival Time                                                                                                                                                                   | Amount Spent                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| $\hat{T} = \begin{cases} (\hat{T} - 32) \times \ln(32 - \hat{T}), & \text{if } \hat{T} < 32\\ (\hat{T} - 32) \times \ln(\hat{T} - 31), & \text{if } \hat{T} \ge 32 \end{cases}$ | $\hat{R} = \hat{R} \times \ln(\hat{R} + 1)$  |
| $ \begin{pmatrix} 64, & if \hat{T} \ge 64 \\ \hat{T} = \begin{pmatrix} 1, & if \hat{T} < 1 \end{pmatrix} $                                                                      | $\hat{R} = \{\hat{R},  if \ \hat{R} \ge 0\}$ |

0. otherwise

JUL 2019-

## #2 Classify Default Credit Card (UCI Data Set)

JUL 2019

GitHub: github.com/jinmang2/KSA\_Modules/tree/master/perform\_eval/2nd Summary

Side project

KSA 2<sup>nd</sup> performance test

(1)

- Data: personal information(gender, education,, age, etc.) and past 6 months consumption and default history
- Class imbalance problem: Trying SMOTE and stratified sampling (fig 2-1)
- Propose XGB(82.29%), CNN(81.57%), Voting Classifier(81.91%)

## Do as Followings

- Do EDA for get feature vectors
- Perform test; SMOTE vs stratified sampling
- Feature selection with feature importance gained by XGB (fig 2-2)
- Solve classification problem with CNN by keras

#### I felt these things

- Use CNN, solve classification problem on cross-sectional data (fig 2-3)
- In order to solve the imbalance class problem, a strategy should be devised rather than simply applying SMOTE.

JUL 2019-

## #3 Lion/Tiger/Leopard/etc. Classification

JUL 2019

GitHub: github.com/jinmang2/animal\_classifier

## Summary

Team project

CNN project, KSA module 6

(3)

- Data: Gather lion, tiger, and leopard image from google by web crawling
- Train 1,500, valid 450, test 3,773 Image (300\*300\*3)
- Only 10% Images are directly labeled and the rest of the labeling is automatically done with binary classification CNN
- And then, quadruple classification of labeled data (fig 3-1) (Lion, Tiger, Leopard, etc.)
- Propose test accuracy 85%, recall 88%

#### Role within the Team

- Conduct and plan roles for each team member as a leader
- Leopard data collection and binary classification
- Run and test final model

- · As we gathered the data, we saw why the data collection and preprocessing took so long in machine learning projects.
- Visualize feature maps to see patterns for each animals (fig 3-2)

Figure 2-1. Ratio of Binary Target Variable



Figure 2-2. Feature Importance of XGB Classifier



Figure 2-3. CNN Structure by python-graphviz



Figure 3-1. CNN Structure on Binary & Quadruple model



Figure 3-2. Lion and 1st Conv layer Feature map image



JUN 2018-MAY 2019

## #4 Stock recommend algorithm with precision

GitHub: github.com/jinmang2/stock\_recommender

Summary

Team project

(2)

Introduce stock recommend algorithm with precision

Data: Top 16 stock by market category on KOSPI, '07.01.01~'18/06/30

 Price and technical indicator features such as MA, MACD, RSI, etc. were used.

Set 300 target variable, (t: predict period, n: time window)

$$\quad \bullet \quad Y_{t,n} = Step\left(\ln\left(\frac{Close_{i+t}^s}{\frac{1}{n}\sum_{k=0}^{n-1}Close_{i-k}^s}\right)\right) for \begin{cases} t \in range(1,31,3) \\ n \in range(1,89,3) \end{cases}$$

- · Do these following steps;
- ✓ Calculates the time window of the technical indicators with the highest correlation for each target variable
- ✓ Select t\* which has best performance on 70% train data
- ✓ For each  $n_1$ ,  $n_4 \sim n_{88}$ , the right to vote is forfeited if the precision of 90 days is smaller than 0.7 and the  $\hat{Y}_{t^*,n^*}$  is obtained by holding a vote.
- ✓ If  $\hat{Y}_{t^*,n^*} = 1$ , buy stocks with  $\frac{1}{N}$  shares (N is number of stocks which rise)
- ✓ If not, unwinding position. (result; fig(4-1))

#### Role within the Team

- · Calculate training features and target variables
- Test step 2~4 and modularize written code

### I felt these things

- · Importance of sequence and time shift in time series data
- · Pricing data is not enough to predict stocks

APR 2018-

#### **#5 Airbnb New User Bookings (Kaggle)**

JUN 2018

*GitHub*: github.com/jinmang2/airbnb\_new\_user\_bookings *Summary* 

Team project

(3)

- Multi-class problem that predicts which country the first user will travel based on data provided by Airbnb (fig 5-1)
- The random forest was used to provide 83% accuracy in predicting tests. (fig 5-2)

#### Role within the Team

- Tree-based ensemble model Hyper parameter tuning
- Responsible for introduction and model building at the final PT

- · I have studied various kernels of Kaggle.
- As my first machine learning project, I built a baseline and went through the overall process.

Figure 4-1. Returns and Accuracy for 16 stocks

| KB 금용-0.48%-8.87%33.33%56.85%LG-4.39%-6.96%88.57%56.43%LG 생활건강23.37%33.96%84.62%45.64%LG 화학44.45%13.63%70.00%68.46%NAVER4.30%-9.38%28.00%52.28%SK-3.29%-7.08%28.57%51.04%SK 이노베이션21.66%24.25%85.71%65.56%SK 텔레콤5.17%-13.25%60.47%56.85%SK 하이닉스27.77%24.02%54.12%48.55%삼성정명20.42%-17.31%47.73%68.88%삼성중공업26.33%-44.27%61.76%66.39%실한지주11.24%-12.98%70.37%69.71%현대권설51.65%22.21%25.64%48.96%현대글로비스18.58%-30.70%56.25%63.49%                                                                                                                                                  | 並 3.16   | 개 수식에   | 대한 구익   | 불싸 평가시 | 1 丑    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|--------|--------|
| LG -4.39% -6.96% 88.57% 56.43% LG 생활건강 23.37% 33.96% 84.62% 45.64% LG 화확 44.45% 13.63% 70.00% 68.46% NAVER 4.30% -9.38% 28.00% 52.28% SK -3.29% -7.08% 28.57% 51.04% SK 이노베이션 21.66% 24.25% 85.71% 65.56% SK 텔레콤 5.17% -13.25% 60.47% 56.85% SK 하이닉스 27.77% 24.02% 54.12% 48.55% 삼성생명 20.42% -17.31% 47.73% 68.88% 삼성전자 18.70% -1.89% 61.25% 63.45% 삼성증공업 26.33% -44.27% 61.76% 66.39% 셀트라온 109.21% 98.94% 79.05% 64.32% 신한지주 11.24% -12.98% 70.37% 69.71% 현대건설 51.65% 22.21% 25.64% 48.96%                                                                                |          | 수익휼     |         | 정밀도    | 정확도    |
| LG 생활건강 23.37% 33.96% 84.62% 45.64% LG 화학 44.45% 13.63% 70.00% 68.46% NAVER 4.30% -9.38% 28.00% 52.28% SK -3.29% -7.08% 28.57% 51.04% SK 이노베이션 21.66% 24.25% 85.71% 65.56% SK 텔레콤 5.17% -13.25% 60.47% 56.85% SK 하이닉스 27.77% 24.02% 54.12% 48.55% 삼성생명 20.42% -17.31% 47.73% 68.88% 삼성전자 18.70% -1.89% 61.25% 63.45% 삼성증공업 26.33% -44.27% 61.76% 66.39% 셑트리온 109.21% 98.94% 79.05% 64.32% 신한지주 11.24% -12.98% 70.37% 69.71% 현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                               | KB 금융    | -0.48%  | -8.87%  | 33.33% | 56.85% |
| LG 화학 44.45% 13.63% 70.00% 68.46%  NAVER 4.30% -9.38% 28.00% 52.28%  SK -3.29% -7.08% 28.57% 51.04%  SK 이노베이션 21.66% 24.25% 85.71% 65.56%  SK 텔레콤 5.17% -13.25% 60.47% 56.85%  SK 하이닉스 27.77% 24.02% 54.12% 48.55%  삼성생명 20.42% -17.31% 47.73% 68.88%  삼성전자 18.70% -1.89% 61.25% 63.45%  삼성증공업 26.33% -44.27% 61.76% 66.39%  셀트리온 109.21% 98.94% 79.05% 64.32%  신한지주 11.24% -12.98% 70.37% 69.71%  현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                        | LG       | -4.39%  | -6.96%  | 88.57% | 56.43% |
| NAVER 4.30% -9.38% 28.00% 52.28% SK -3.29% -7.08% 28.57% 51.04% SK 이노베이션 21.66% 24.25% 85.71% 65.56% SK 텔레콤 5.17% -13.25% 60.47% 56.85% SK 하이닉스 27.77% 24.02% 54.12% 48.55% 삼성생명 20.42% -17.31% 47.73% 68.88% 삼성전자 18.70% -1.89% 61.25% 63.45% 삼성증공업 26.33% -44.27% 61.76% 66.39% 셀트리온 109.21% 98.94% 79.05% 64.32% 신한지주 11.24% -12.98% 70.37% 69.71% 현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                     | LG 생활건강  | 23.37%  | 33.96%  | 84.62% | 45.64% |
| SK     -3.29%     -7.08%     28.57%     51.04%       SK이노베이션     21.66%     24.25%     85.71%     65.56%       SK 텔레콤     5.17%     -13.25%     60.47%     56.85%       SK 하이닉스     27.77%     24.02%     54.12%     48.55%       삼성생명     20.42%     -17.31%     47.73%     68.88%       삼성전자     18.70%     -1.89%     61.25%     63.45%       삼성증공업     26.33%     -44.27%     61.76%     66.39%       셀트리온     109.21%     98.94%     79.05%     64.32%       신한지주     11.24%     -12.98%     70.37%     69.71%       현대건설     51.65%     22.21%     25.64%     48.96% | LG 화학    | 44.45%  | 13.63%  | 70.00% | 68.46% |
| SK 이노베이션     21.66%     24.25%     85.71%     65.56%       SK 텔레콤     5.17%     -13.25%     60.47%     56.85%       SK 하이닉스     27.77%     24.02%     54.12%     48.55%       삼성생명     20.42%     -17.31%     47.73%     68.88%       삼성전자     18.70%     -1.89%     61.25%     63.45%       삼성증공업     26.33%     -44.27%     61.76%     66.39%       셀트리온     109.21%     98.94%     79.05%     64.32%       신한지주     11.24%     -12.98%     70.37%     69.71%       현대건설     51.65%     22.21%     25.64%     48.96%                                                     | NAVER    | 4.30%   | -9.38%  | 28.00% | 52.28% |
| SK 텔레콤     5.17%     -13.25%     60.47%     56.85%       SK 하이닉스     27.77%     24.02%     54.12%     48.55%       삼성생명     20.42%     -17.31%     47.73%     68.88%       삼성전자     18.70%     -1.89%     61.25%     63.45%       삼성증공업     26.33%     -44.27%     61.76%     66.39%       셀트리온     109.21%     98.94%     79.05%     64.32%       신한지주     11.24%     -12.98%     70.37%     69.71%       현대건설     51.65%     22.21%     25.64%     48.96%                                                                                                                | SK       | -3.29%  | -7.08%  | 28.57% | 51.04% |
| SK 하이닉스     27.77%     24.02%     54.12%     48.55%       삼성생명     20.42%     -17.31%     47.73%     68.88%       삼성전자     18.70%     -1.89%     61.25%     63.45%       삼성증공업     26.33%     -44.27%     61.76%     66.39%       셀트리온     109.21%     98.94%     79.05%     64.32%       신한지주     11.24%     -12.98%     70.37%     69.71%       현대건설     51.65%     22.21%     25.64%     48.96%                                                                                                                                                                         | SK 이노베이션 | 21.66%  | 24.25%  | 85.71% | 65.56% |
| 삼성생명 20.42% -17.31% 47.73% 68.88%<br>삼성전자 18.70% -1.89% 61.25% 63.45%<br>삼성증공업 26.33% -44.27% 61.76% 66.39%<br>셀트리온 109.21% 98.94% 79.05% 64.32%<br>신한지주 11.24% -12.98% 70.37% 69.71%<br>현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                                                                                                                                                                                  | SK 텔레콤   | 5.17%   | -13.25% | 60.47% | 56.85% |
| 삼성전자 18.70% -1.89% 61.25% 63.45%<br>삼성증공업 26.33% -44.27% 61.76% 66.39%<br>셀트리온 109.21% 98.94% 79.05% 64.32%<br>신한지주 11.24% -12.98% 70.37% 69.71%<br>현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                                                                                                                                                                                                                       | SK 하이닉스  | 27.77%  | 24.02%  | 54.12% | 48.55% |
| 삼성증공업 26.33% -44.27% 61.76% 66.39% 셀트리온 109.21% 98.94% 79.05% 64.32% 신한지주 11.24% -12.98% 70.37% 69.71% 현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                                                                                                                                                                                                                                                                    | 삼성생명     | 20.42%  | -17.31% | 47.73% | 68.88% |
| 셀트리온 109.21% 98.94% 79.05% 64.32%<br>신한지주 11.24% -12.98% 70.37% 69.71%<br>현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 삼성전자     | 18.70%  | -1.89%  | 61.25% | 63.45% |
| 신한지주 11.24% -12.98% 70.37% 69.71%<br>현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 삼성중공업    | 26.33%  | -44.27% | 61.76% | 66.39% |
| 현대건설 51.65% 22.21% 25.64% 48.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 셀트리온     | 109.21% | 98.94%  | 79.05% | 64.32% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 신한지주     | 11.24%  | -12.98% | 70.37% | 69.71% |
| 현대글로비스 18.58% -30.70% 56.25% 63.49%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 현대건설     | 51.65%  | 22.21%  | 25.64% | 48.96% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 현대글로비스   | 18.58%  | -30.70% | 56.25% | 63.49% |

Figure 5-1. Training Destination Distribution by Gender



Figure 5-2. Confusion Matrix of Final Model

| predict | ΑU  | CA   | DE  | ES   | FR   | GB   | IT   | NDF    | NL  | PT  | US    | other |
|---------|-----|------|-----|------|------|------|------|--------|-----|-----|-------|-------|
| actual  |     |      |     |      |      |      |      |        |     |     |       |       |
| AU      | 488 | 0    | 0   | 0    | 2    | 0    | 0    | 41     | 0   | 0   | 8     | 0     |
| CA      | 0   | 1211 | 0   | 2    | 4    | 1    | 1    | 176    | 1   | 1   | 27    | 4     |
| DE      | 0   | 1    | 933 | 0    | 0    | 0    | 2    | 98     | 0   | 0   | 25    | 2     |
| ES      | 0   | 1    | 0   | 1926 | 1    | 0    | 1    | 266    | 0   | 0   | 51    | 3     |
| FR      | 1   | 1    | 0   | 5    | 4294 | 1    | 2    | 590    | 3   | 0   | 116   | 10    |
| GB      | 0   | 2    | 1   | 0    | 0    | 1972 | 0    | 287    | 0   | 0   | 56    | 6     |
| IT      | 0   | 1    | 0   | 2    | 2    | 4    | 2347 | 395    | 1   | 0   | 75    | 8     |
| NDF     | 7   | 17   | 6   | 28   | 68   | 33   | 47   | 122574 | 10  | 3   | 1579  | 171   |
| NL      | 0   | 0    | 0   | 0    | 2    | 0    | 0    | 88     | 653 | 0   | 16    | 3     |
| PT      | 0   | 0    | 0   | 0    | 0    | 2    | 0    | 23     | 0   | 186 | 5     | 1     |
| US      | 6   | 7    | 9   | 24   | 43   | 24   | 27   | 6303   | 8   | 2   | 55816 | 107   |
| other   | 1   | 2    | 3   | 6    | 15   | 2    | 7    | 1353   | 3   | 0   | 274   | 8428  |

# **Projects #6, #7 №**

SEP 2017-

## #6 Catch-up effect on EPI2016 Data Set

**DEC 2017** 

GitHub: github.com/jinmang2/gachon\_research

Summary

Side project

(1)

- Projects conducted by Gachon Convergence Research Center
- Studying whether developing countries catch up with developed countries on the environmental indexes provided by Environmental Performance Index 2016. (fig 6-1)
- Do convergence analysis with sigma ang gamma Indexes (fig 6-2, 6-3)

## Do as Followings

- Subgroup analysis by income and region
- Create figure and table for article
- T-test and chi-squared statistical tests.

#### I felt these things

- Not only big-data but also small data on data analysis
- Importance of organize results into table and presentation

OCT 2017-

## **#7 Option Pricing & Delta Hedging Portfolio**

**DEC 2017** 

GitHub: github.com/jinmang2/option\_valuation

Summary

Team project (2)

- Build a delta hedging portfolio by KOSPI200 (Nov 17) call / put index option & futures and analyzes P&L with Greeks
- Since we predicted a low volatility market, we configured our portfolio as follows: (fig 7-1)
  - ✓ Short C330, C340, P322.5, P330; 676:1692:676:676 contracts
  - ✓ Long C335, C345; 1692:676 contracts
- Since gamma<0, portfolio is showed overall short gamma position.
- In addition, long positions were taken to compensate for fluctuations in the market.
- But geopolitical risks, such as washing machine tubes raising base rate, Table 7-1. Cumulative P&L our portfolio have maximized market volatility and loss on 11/27, 11/30, 12/4, 12/6.
- Fortunately, nothing happened on Quadruple Witching Day, so we benefited from theta's time value, totaling ₩ 11,125,000 (fig 7-2)

#### Role within the Team

- Calculate daily P&L and Greeks change
- Analyze causes of portfolio's P&L by Greeks (Use taylor expansion)

- Impact of geopolitical risks on portfolio
- Importance of unit. For instance, vega and theta (adjust business day)
- P&L analysis by applying Black-Scholes formula

Figure 6-1. Averaged Sanitation Indexes



Figure 6-2. Normalized Sigma Indexes on Sanitation



Figure 6-3, Normalized Gamma Indexes on Sanitation



Figure 7-1. Pay-off graph for our option portfolio



| Date       |    | Daily P&L   | Cu | mulative P&L | (  | Greeks P&L  |
|------------|----|-------------|----|--------------|----|-------------|
| 2017.11.10 | ₩  | -           | ₩  | -            | ₩  | -           |
| 2017.11.13 | -₩ | 14,765,000  | -₩ | 14,765,000   | -₩ | 34,608,194  |
| 2017.11.14 | ₩  | 81,245,000  | ₩  | 66,480,000   | ₩  | 26,019,513  |
| 2017.11.15 | -₩ | 80,402,500  | -₩ | 13,922,500   | -₩ | 31,046,395  |
| 2017.11.16 | ₩  | 70,465,000  | ₩  | 56,542,500   | ₩  | 67,685,166  |
| 2017.11.17 | ₩  | 15,345,000  | ₩  | 71,887,500   | ₩  | 16,564,104  |
| 2017.11.20 | ₩  | 5,055,000   | ₩  | 76,942,500   | -₩ | 24,045,784  |
| 2017.11.21 | ₩  | 38,090,000  | ₩  | 115,032,500  | ₩  | 33,704,130  |
| 2017.11.22 | ₩  | 1,260,000   | ₩  | 116,292,500  | -₩ | 34,860      |
| 2017.11.23 | -₩ | 9,725,000   | ₩  | 106,567,500  | ₩  | 6,713,021   |
| 2017.11.24 | ₩  | 1,490,000   | ₩  | 108,057,500  | ₩  | 19,131,648  |
| 2017.11.27 | -₩ | 161,100,000 | -₩ | 53,042,500   | -₩ | 153,700,556 |
| 2017.11.28 | ₩  | 23,350,000  | -₩ | 29,692,500   | ₩  | 39,512,040  |
| 2017.11.29 | ₩  | 9,290,000   | -₩ | 20,402,500   | -₩ | 972,604     |
| 2017.11.30 | -₩ | 228,332,500 | -₩ | 247,372,500  | -₩ | 212,058,608 |
| 2017.12.01 | ₩  | 73,240,000  | -₩ | 174,132,500  | ₩  | 36,710,446  |
| 2017.12.04 | -₩ | 72,145,000  | -₩ | 246,277,500  | -₩ | 91,702,825  |
| 2017.12.05 | ₩  | 17,240,000  | -₩ | 229,037,500  | ₩  | 35,155,877  |
| 2017.12.06 | -₩ | 151,307,500 | -₩ | 380,345,000  | -₩ | 193,376,626 |
| 2017.12.07 | ₩  | 44,430,000  | -₩ | 335,915,000  | ₩  | 44,407,402  |
| 2017.12.08 | ₩  | 90,250,000  | -₩ | 245,665,000  | ₩  | 83,326,125  |
| 2017.12.11 | ₩  | 72,375,000  | -₩ | 173,290,000  | ₩  | 73,917,259  |
| 2017.12.12 | ₩  | 57,725,000  | -₩ | 115,565,000  | ₩  | 37,645,121  |
| 2017.12.13 | ₩  | 45,220,000  | -₩ | 70,345,000   | -₩ | 6,910,066   |
| 2017.12.14 | ₩  | 81,470,000  | ₩  | 11,125,000   | ₩  | 13,545,040  |

# **Projects #8, #9**

OCT 2017-

## #8 Portfolio Optimization with CAPM

**DEC 2017** 

GitHub: github.com/jinmang2/portfolio\_optimization

Summary

Team project (4)

- Use Markowitz's portfolio optimization theory and CAPM to build a portfolio that maximizes CAL slope as a KOSPI stock and provide quantitative and qualitative reasons
- Proposal Portfolio: Foosung (093370), Asiana airline (020560), S-Oil
   Corp (010950) (fig 8-1, fig 8-2)
- Expected returns: 20.7% / yr
- Operating income: 3.5% / 22 Days = 40.15% / yr (fig 8-3)

#### Role within the Team

- · build an overall process as a leader
- Validate number of various cases with excel to find argmax<sub>s</sub> CAL

## I felt these things

- I was fascinated by the way the portfolio was optimized through statistical methods such as standard deviation, expected value, etc.
- Felt limited in finding argmax<sub>s</sub> CAL with excel and the needs to learn other programming languages

OCT 2017-

### **#9 Hedge Strategy by Derivative (Futures)**

**DEC 2017** 

GitHub: github.com/jinmang2/portfolio\_optimization

Summary

Team project (4)

- Set a strategy to maximize return on risk by composing a portfolio of stocks that have a negative correlation with foreign commodity futures
- Proposal portfolio (take long position on futures): (fig 9-1)
  - 1. 25%; Carbon Emission Futures (CFI2Z9) in ICE
  - 2. 40%; Yanzhou Coal Mining Co Ltd (600188, SH)
  - 3. 35%; Vestas Wind Systems A/S (VWS)
- Carbon emission is negative correlated with two stocks.
- Propose expected return: 6.0% / 1yr
- Team project 1<sup>st</sup> on 6 teams

#### Role within the Team

- Propose carbon emission futures and investigate price variables
- Suggest qualitative content to explain quantitative figures of selected portfolio and test case study. (fig 9-2)
- · Investigate relation of carbon emission, fossil and renewable energy

- · Improving the quality of the content and presenting it to the client
- See how mathematics is used in risk management

Figure 8-1. Optima Portfolio



Figure 8-2. Efficient Frontier of 3 stocks and 6 weights point



Figure 8-3. Cumulative Returns for 6 portfolio weights



Figure 9-1. Bar Chart of portfolio weight ratio



Figure 9-2. Analyze Case study of tail risk

|         | 브렉시트( 2016/6/23 |            |
|---------|-----------------|------------|
| 베스타스    | 연주석탄            | 탄소         |
| -1%     | 16%             | -14%       |
| 헤지된 수익률 |                 |            |
| 3%      |                 |            |
| 베스      | 타스 급락시(2016/9   | )/18~12/8) |
| 베스타스    | 연주석탄            | 탄소         |
| -24%    | -5%             | 40%        |
| 헤지된 수익률 |                 |            |
| -1%     |                 |            |
| 연       | 주 급락시 (2015/8/  | 19-8/24)   |
| 베스타스    | 연주석탄            | 탄소         |
| -16%    | -20%            | 3%         |
| 헤지된 수익률 |                 |            |
| -13%    |                 |            |

Figure 1-1. User Churn ratio and frequency by survival time



Figure 1-2. amount spent by survival time



Figure 1-3. Flatten the weekly variable to make it a feature



Figure 1-4. Calculate count variable for each features

| acc_id | day | X        | Υ        |        |        |        |          |         |
|--------|-----|----------|----------|--------|--------|--------|----------|---------|
|        | 1   | 0.0011   | 0.0023   |        |        |        |          |         |
|        | 2   | NaN or 0 | 0.4591   |        |        |        |          |         |
|        | 3   | 0.0320   | 0.3336   |        |        |        |          |         |
|        | 5   | 0.0220   | NaN or 0 | acc_id | Avg(X) | Avg(Y) | Count(X) | Count(Y |
|        | 7   | 0.1400   | NaN or 0 | а      | 0.3936 | 0.3932 | 8 / 10   | 5 / 10  |
| a      | 9   | 1.2780   | 0.4802   |        |        |        |          |         |
|        | 16  | NaN or 0 | 0.6911   |        |        |        |          |         |
|        | 21  | 0.9000   | NaN or 0 |        |        |        |          |         |
|        | 26  | 0.5000   | NaN or 0 |        |        |        |          |         |
|        | 28  | 0.2760   | NaN or 0 |        |        |        |          |         |

Figure 2-2. Feature Importance of XGB Classifier



Figure 2-3. CNN Structure by python-graphviz



Figure 3-1. CNN Structure on Binary & Quadruple model

# **Binary**

(is animal or not)



# Quadruple

(is lion/tiger/leopard/etc.)



Figure 3-2. Origin Lion and 1st , 4th , 6th Conv layer Feature map image



Figure 5-1. Training Destination Distribution by Gender



Figure 5-2. Confusion Matrix of Baseline(Decision Tree) and Final Model(Random Forest)



Figure 6-1. Averaged Sanitation Indexes for Total and Four Income Subgroups of 158 Countries (1990-2015)



Figure 6-2. Equation of Sigma and Normalized Sigma Indexes for Four Income Subgroups (1990-2015)



Figure 6-3. Equation of Gamma and Normalized Gamma Indexes for Four Income Subgroups (1990-2015)



# **Appendix**

Table 6-1. Normalized Sigma and Gamma Sanitation Indexes of Total and Four Income Subgroups (1990-2015)

|          | All Countries (158) High (58) |           | n (58)   | Upper M   | iddle (43) | Lower M   | Iiddle (34) | Low (23)  |        |           |
|----------|-------------------------------|-----------|----------|-----------|------------|-----------|-------------|-----------|--------|-----------|
| Year     | Sigma                         | Gamma     | Sigma    | Gamma     | Sigma      | Gamma     | Sigma       | Gamma     | Sigma  | Gamma     |
| 1990     | 1.0000                        | 1.0000    | 1.0000   | 1.0000    | 1.0000     | 1.0000    | 1.0000      | 1.0000    | 1.0000 | 1.0000    |
| 1991     | 0.9901                        | 0.9997*** | 0.9834   | 1.0000*** | 0.9732     | 0.9998*** | 0.9900      | 0.9997*** | 0.9815 | 1.0000*** |
| 1992     | 0.9806                        | 0.9990*** | 0.9672   | 0.9996*** | 0.9500     | 0.9975*** | 0.9794      | 0.9956*** | 0.9635 | 0.9851*** |
| 1993     | 0.9693                        | 0.9988*** | 0.9503   | 0.9996*** | 0.9276     | 0.9962*** | 0.9610      | 0.9972*** | 0.9470 | 0.9677*** |
| 1994     | 0.9568                        | 0.9989*** | 0.9359   | 0.9979*** | 0.9042     | 0.9971*** | 0.9378      | 0.9934*** | 0.9315 | 0.9671*** |
| 1995     | 0.9444                        | 0.9991*** | 0.9191   | 0.9980*** | 0.8792     | 1.0001*** | 0.9183      | 0.9953*** | 0.9155 | 0.9671*** |
| 1996     | 0.9324                        | 0.9988*** | 0.9034   | 0.9979*** | 0.8564     | 0.9939*** | 0.8991      | 0.9937*** | 0.9013 | 0.9595*** |
| 1997     | 0.9199                        | 0.9983*** | 0.8877   | 0.9966*** | 0.8343     | 0.9960*** | 0.8814      | 0.9917*** | 0.8787 | 0.9426*** |
| 1998     | 0.9082                        | 0.9989*** | 0.8728   | 0.9950*** | 0.8135     | 0.9895*** | 0.8649      | 0.9904*** | 0.8597 | 0.9432*** |
| 1999     | 0.8966                        | 0.9977*** | 0.8584   | 0.9955*** | 0.7933     | 0.9830*** | 0.8489      | 0.9878*** | 0.8410 | 0.9345*** |
| 2000     | 0.8855                        | 0.9968*** | 0.8443   | 0.9918*** | 0.7757     | 0.9789*** | 0.8341      | 0.9858*** | 0.8243 | 0.9167*** |
| 2001     | 0.8747                        | 0.9971*** | 0.8322   | 0.9935*** | 0.7587*    | 0.9713*** | 0.8203      | 0.9862*** | 0.8097 | 0.8990*** |
| 2002     | 0.8643                        | 0.9970*** | 0.8194   | 0.9928*** | 0.7438*    | 0.9688*** | 0.8067      | 0.9763*** | 0.7961 | 0.9012*** |
| 2003     | 0.8543*                       | 0.9954*** | 0.8076   | 0.9885*** | 0.7302*    | 0.9574*** | 0.7944      | 0.9719*** | 0.7828 | 0.8864*** |
| 2004     | 0.8446*                       | 0.9922*** | 0.7960*  | 0.9838*** | 0.7180**   | 0.9312*** | 0.7830      | 0.9667*** | 0.7707 | 0.8673*** |
| 2005     | 0.8354*                       | 0.9910*** | 0.7861*  | 0.9822*** | 0.7060**   | 0.9176*** | 0.7729      | 0.9650*** | 0.7599 | 0.8706*** |
| 2006     | 0.8263**                      | 0.9892*** | 0.7761*  | 0.9774*** | 0.6939**   | 0.9094*** | 0.7631      | 0.9583*** | 0.7507 | 0.8594*** |
| 2007     | 0.8175**                      | 0.9859*** | 0.7677** | 0.9760*** | 0.6822**   | 0.8994*** | 0.7542      | 0.9502*** | 0.7410 | 0.8379*** |
| 2008     | 0.8086**                      | 0.9864*** | 0.7590** | 0.9720*** | 0.6696**   | 0.8929*** | 0.7446      | 0.9481*** | 0.7329 | 0.8436*** |
| 2009     | 0.8001**                      | 0.9848*** | 0.7511** | 0.9691*** | 0.6584**   | 0.8858*** | 0.7354      | 0.9406*** | 0.7254 | 0.8439*** |
| 2010     | 0.7918**                      | 0.9827*** | 0.7443** | 0.9662*** | 0.6476***  | 0.8682*** | 0.7264      | 0.9365*** | 0.7175 | 0.8315*** |
| 2011     | 0.7838***                     | 0.9835*** | 0.7377** | 0.9691*** | 0.6364***  | 0.8572*** | 0.7181      | 0.9259*** | 0.7117 | 0.8080*** |
| 2012     | 0.7757***                     | 0.9824*** | 0.7318** | 0.9633*** | 0.6251***  | 0.8559*** | 0.7094      | 0.9199*** | 0.7064 | 0.8083*** |
| 2013     | 0.7686***                     | 0.9812*** | 0.7298** | 0.9620*** | 0.6137***  | 0.8532*** | 0.7027      | 0.9173*** | 0.7021 | 0.7991*** |
| 2014     | 0.7628***                     | 0.9804*** | 0.7280** | 0.9608*** | 0.6070***  | 0.8450*** | 0.6979*     | 0.9110*** | 0.6992 | 0.8034*** |
| 2015     | 0.7586***                     | 0.9802*** | 0.7270** | 0.9583*** | 0.6007***  | 0.8437*** | 0.6947*     | 0.9112*** | 0.6991 | 0.7917*** |
| CAGR (%) | -1.10%                        | -0.08%    | -1.27%   | -0.17%    | -2.02%     | -0.68%    | -1.45%      | -0.37%    | -1.42% | -0.93%    |

<sup>\*\*\*</sup> Significant at 1% level, \*\* Significant at 5% level, \* Significant at 10% level

Table 7-1. Book of delta hedging portfolio P&L with daily, cumulative, Greeks

|            | 시계 소이 |             |    |             |       | Consider Description |    |             |              |             |            |               |          |            |         |            |  |
|------------|-------|-------------|----|-------------|-------|----------------------|----|-------------|--------------|-------------|------------|---------------|----------|------------|---------|------------|--|
|            |       |             |    |             | 실제 손익 |                      |    | Greeks P    |              |             | Greeks Pro | Profit & Loss |          |            |         |            |  |
| 날짜         |       |             |    | DAILY       |       |                      |    | 누적 손익       | Daily Greeks |             | G          | amma 손익       | 1        | heta 손익    | Vega 손익 |            |  |
|            |       | 옵션 손익       |    | 선물 손익       |       | 손익                   |    |             |              |             | L          |               | <u> </u> |            |         |            |  |
| 2017.11.10 | ₩     | -           | ₩  | -           | ₩     | -                    | ₩  | -           | ₩            | •           | ₩          | -             | ₩        | -          | ₩       | -          |  |
| 2017.11.13 | -₩    | 82,940,000  | ₩  | 68,175,000  | -₩    | 14,765,000           | -₩ | 14,765,000  | -₩           | 34,608,194  | -₩         | 10,229,487    | ₩        | 35,068,449 | -₩      | 59,447,157 |  |
| 2017.11.14 | ₩     | 65,870,000  | ₩  | 15,375,000  | ₩     | 81,245,000           | ₩  | 66,480,000  | ₩            | 26,019,513  | -₩         | 2,227,956     | ₩        | 13,241,956 | ₩       | 15,005,514 |  |
| 2017.11.15 | -₩    | 224,990,000 | ₩  | 144,587,500 | -₩    | 80,402,500           | -₩ | 13,922,500  | -₩           | 31,046,395  | -₩         | 9,826,873     | ₩        | 13,966,703 | -₩      | 35,186,225 |  |
| 2017.11.16 | ₩     | 243,540,000 | -₩ | 173,075,000 | ₩     | 70,465,000           | ₩  | 56,542,500  | ₩            | 67,685,166  | -₩         | 24,871,429    | ₩        | 25,399,807 | ₩       | 67,156,789 |  |
| 2017.11.17 | -₩    | 5,130,000   | ₩  | 20,475,000  | ₩     | 15,345,000           | ₩  | 71,887,500  | ₩            | 16,564,104  | -₩         | 144,184       | ₩        | 13,473,300 | ₩       | 3,234,988  |  |
| 2017.11.20 | -₩    | 83,820,000  | ₩  | 88,875,000  | ₩     | 5,055,000            | ₩  | 76,942,500  | -₩           | 24,045,784  | -₩         | 7,188,146     | ₩        | 22,784,125 | -₩      | 39,641,763 |  |
| 2017.11.21 | ₩     | 133,640,000 | -₩ | 95,550,000  | ₩     | 38,090,000           | ₩  | 115,032,500 | ₩            | 33,704,130  | -₩         | 1,755,314     | ₩        | 15,095,750 | ₩       | 20,363,694 |  |
| 2017.11.22 | ₩     | 105,810,000 | -₩ | 104,550,000 | ₩     | 1,260,000            | ₩  | 116,292,500 | -₩           | 34,860      | -₩         | 18,887,586    | ₩        | 14,527,200 | ₩       | 4,325,526  |  |
| 2017.11.23 | -₩    | 56,750,000  | ₩  | 47,025,000  | -₩    | 9,725,000            | ₩  | 106,567,500 | ₩            | 6,713,021   | -₩         | 3,858,558     | ₩        | 12,314,900 | -₩      | 1,743,321  |  |
| 2017.11.24 | ₩     | 41,490,000  | -₩ | 40,000,000  | ₩     | 1,490,000            | ₩  | 108,057,500 | ₩            | 19,131,648  | -₩         | 3,799,212     | ₩        | 22,324,708 | ₩       | 606,152    |  |
| 2017.11.27 | -₩    | 421,450,000 | ₩  | 260,350,000 | -₩    | 161,100,000          | -₩ | 53,042,500  | -₩           | 153,700,556 | -₩         | 139,253,702   | ₩        | 36,625,950 | -₩      | 51,072,804 |  |
| 2017.11.28 | ₩     | 202,900,000 | -₩ | 179,550,000 | ₩     | 23,350,000           | -₩ | 29,692,500  | ₩            | 39,512,040  | -₩         | 14,529,471    | ₩        | 19,754,675 | ₩       | 34,286,836 |  |
| 2017.11.29 | ₩     | 9,290,000   | ₩  | _           | ₩     | 9,290,000            | -₩ | 20,402,500  | -₩           | 972,604     | -₩         | 613,317       | ₩        | 20,142,500 | -₩      | 17,261,190 |  |
| 2017.11.30 | -₩    | 684,770,000 | ₩  | 457,800,000 | -₩    | 228,332,500          | -₩ | 247,372,500 | -₩           | 212,058,608 | -₩         | 183,640,077   | ₩        | 32,800,667 | -₩      | 61,219,198 |  |
| 2017.12.01 | ₩     | 6,740,000   | ₩  | 66,500,000  | ₩     | 73,240,000           | -₩ | 174,132,500 | ₩            | 36,710,446  | -₩         | 1,939,969     | ₩        | 43,488,542 | -₩      | 4,838,127  |  |
| 2017.12.04 | ₩     | 477,530,000 | -₩ | 549,675,000 | -₩    | 72,145,000           | -₩ | 246,277,500 | -₩           | 91,702,825  | -₩         | 140,606,447   | ₩        | 46,562,375 | ₩       | 2,341,246  |  |
| 2017.12.05 | ₩     | 180,040,000 | -₩ | 162,800,000 | ₩     | 17,240,000           | -₩ | 229,037,500 | ₩            | 35,155,877  | -₩         | 5,624,660     | ₩        | 26,602,550 | ₩       | 14,177,988 |  |
| 2017.12.06 | -₩    | 580,720,000 | ₩  | 429,412,500 | -₩    | 151,307,500          | -₩ | 380,345,000 | -₩           | 193,376,626 | -₩         | 189,778,591   | ₩        | 25,339,125 | -₩      | 28,937,160 |  |
| 2017.12.07 | -₩    | 128,470,000 | ₩  | 172,900,000 | ₩     | 44,430,000           | -₩ | 335,915,000 | ₩            | 44,407,402  | -₩         | 9,294,440     | ₩        | 58,640,000 | -₩      | 4,938,158  |  |
| 2017.12.08 | ₩     | 232,350,000 | -₩ | 142,100,000 | ₩     | 90,250,000           | -₩ | 245,665,000 | ₩            | 83,326,125  | -₩         | 12,808,564    | ₩        | 61,312,792 | ₩       | 34,821,897 |  |
| 2017.12.11 | ₩     | 90,400,000  | -₩ | 18,025,000  | ₩     | 72,375,000           | -₩ | 173,290,000 | ₩            | 73,917,259  | -₩         | 1,978,877     | ₩        | 68,083,250 | ₩       | 7,812,886  |  |
| 2017.12.12 | -₩    | 127,600,000 | ₩  | 185,325,000 | ₩     | 57,725,000           | -₩ | 115,565,000 | ₩            | 37,645,121  | -₩         | 14,591,962    | ₩        | 49,476,450 | ₩       | 2,760,634  |  |
| 2017.12.13 | ₩     | 545,020,000 | -₩ | 499,800,000 | ₩     | 45,220,000           | -₩ | 70,345,000  | -₩           | 6,910,066   | -₩         | 58,916,714    | ₩        | 45,670,550 | ₩       | 6,336,098  |  |
| 2017.12.14 | ₩     | 309,270,000 | -₩ | 227,650,000 | ₩     | 81,470,000           | ₩  | 11,125,000  | ₩            | 13,545,040  | -₩         | 28,369,291    | ₩        | 44,419,300 | -₩      | 2,504,969  |  |

Figure 7-2. Comparison for Greeks and Daily P&L by time



Figure : Greeks, Daily P&L 차트 Greeks P&L Daily P&L

## Figure 7-3. Equation of Greeks and Taylor Expansion

# **Greeks**

Gamma

$$\Gamma_c = \frac{\partial^2 C}{\partial S^2} = N'(d_1) \frac{\partial d_1}{\partial S} = \frac{N'(d_1)}{S\sigma\sqrt{T-t}} = \frac{\partial^2 P}{\partial S^2} = \Gamma_p$$

Theta

$$\Theta_c = \frac{\partial C}{\partial t} = -\frac{S\sigma N'(d_1)}{2\sqrt{T-t}} - r \cdot Ke^{-r(T-t)}N(d_2) < 0$$

$$\Theta_p = \frac{\partial P}{\partial t} = -\frac{S\sigma N'(d_1)}{2\sqrt{T-t}} + r \cdot Ke^{-r(T-t)}N(-d_2)$$

Vega

$$\nu_c = \frac{\partial C}{\partial \sigma} = S\sqrt{T - t}N(d_1) = \frac{\partial P}{\partial \sigma} = \nu_p > 0$$

Rho

$$\rho_c = \frac{\partial C}{\partial r} = (T - t)K^{-r(T-t)}N(d_2) > 0$$

$$\rho_p = \frac{\partial P}{\partial r} = -(T - t)K^{-r(T-t)}N(-d_2) < 0$$

# **Taylor Expansion**

$$\Delta f = \Theta \Delta t + \frac{1}{2} \Gamma(\Delta S)^2 + \nu \Delta \sigma$$

Figure 8-1. Optima Portfolio



Figure 8-2. Efficient Frontier of 3 stocks and 6 weights point



Figure 8-3. Cumulative Returns for 6 portfolio weights



Figure 9-1. Bar Chart of portfolio weight ratio



Figure 9-2. Analyze Case study of tail risk

|         | 브렉시트( 2016/6/23 |            |
|---------|-----------------|------------|
| 베스타스    | 연주석탄            | 탄소         |
| -1%     | 16%             | -14%       |
| 헤지된 수익률 |                 |            |
| 3%      | 27 - 22         |            |
| 베스      | 타스 급락시(2016/9   | )/18~12/8) |
| 베스타스    | 연주석탄            | 탄소         |
| -24%    | -5%             | 40%        |
| 헤지된 수익률 |                 |            |
| -1%     |                 |            |
| 연       | 주 급락시 (2015/8/  | 19-8/24)   |
| 베스타스    | 연주석탄            | 탄소         |
| -16%    | -20%            | 3%         |
| 헤지된 수익률 |                 |            |
| -13%    |                 |            |