

MAR 01, 2024

OPEN ACCESS

Protocol Citation: Renuka Ravi Gupta, Nona Farbehi, hendersa, Vikram Khurana, Gist Croft, Lorenz Studer, Joseph Powell 2024. LENTIVIRAL TITRATION FOR EARLY POST- MITOTIC DOPAMINERGIC NEURONS. protocols.io

https://protocols.io/view/lentiviraltitration-for-early-post-mitoticdopami-c9wvz7e6

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development We are still developing and optimizing this protocol

Created: Feb 29, 2024

Last Modified: Mar 01, 2024

♠ LENTIVIRAL TITRATION FOR EARLY POST- MITOTIC DOPAMINERGIC NEURONS

Renuka Ravi Gupta^{1,2,3,4}, Nona Farbehi^{1,2,3,5}, hendersa^{3,6}, Vikram Khurana^{3,7}, Gist Croft^{3,8}, Lorenz Studer^{3,6}, Joseph Powell^{1,2,3,4}

¹Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;

²Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA:

⁴School of Medical Science, University of New South Wales, Sydney, NSW, 2052, Australia;

⁵Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia;

⁶The Centre for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA;

⁷Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA;

⁸The New York Stem Cell Foundation Research Institute, New York, NY, USA

Renuka Ravi Gupta

ABSTRACT

iPSCs- derived neurons are particularly challenging cells for genetic screening. Hence we develop a protocol for lentiviral titration of mDA neurons where mDA neuronal cell suspension combined with concentrated lentiviral supernatant are added at different dilutions in 48 well plates. Subsequent centrifugation (spinfection) was performed to achieve high efficiency transduction. The transduction efficiency is determined as a percentage of BFP- positive cells through FACS (Fluorescence Activated Cell Sorting).

ATTACHMENTS

LENTIVIRAL TITRATION
FOR EARLY POSTMITOTIC DOPAMINERGIC
NEURONS.docx

PROTOCOL integer ID: 95925

MATERIALS

Keywords: ASAPCRN, Lentiviral

Production, CRISPRi, dopaminergic neuron differentiation, Perturb-Seq

Funders Acknowledgement:

ASAP

Grant ID: ASAP-000472

		1	
A	В	С	
MATERIAL	COMPANY	CATALOG	
48 well TC treated plate	Falcon	353078	
15ml polypropylene centrifuge tubes	Falcon	352096	
5ml serological pipettes	Corning	4487	
10ml serological pipettes	Corning	4488	
DNA Low-bind tubes 1.5ml	Eppendorf	022431021	
P1000 tip	Neptune	BT1250	
FBS	Bovogen	2008A	
DPBS	ThermoFisher Scientific	14040133	
Hank's Balanced Salt Solution (HBSS)	ThermoFisher Scientific	14175-095	
Neuronal Isolation Neuronal Enzyme (with Papain)	ThermoFisher Scientific	88285	
Neurobasal Media	ThermoFisher Scientific	21103049	
B27 w/o vit A	ThermoFisher Scientific	12587-010	
L-glutamine	ThermoFisher Scientific	L3000015	
Pen-Strep	ThermoFisher Scientific	12260	
BDNF (Brain Derived Neurotrophic Factor)	R&D	248-BDB	
GDNF (Glial Cell line Derived Neurotrophic Factor)	Peprotech	450-10	
Ascorbic Acid	Sigma	4034	
cAMP	Sigma	D0627	

		A	В	С
		TGF-B (Transforming Growth Factor - b)	R&D	243-B3
		DAPT	Tocris	2634
		Polyornithine (P0)	Sigma	P3655
i	$\overline{}$			

REAGENT COMPOSITION

Cultrex Mouse Laminin I

Fibronectin

A	В
MEDIA 2	
REAGENT	VOLUME IN ML
Neurobasal Media	480
B27 without Vit A (10x)	10
Pen-Strep	5
L-Glutamine	5

R&D

Corning

3400-010-1

FAL356008

A	В	С	D
MATURATION			
REAGENT STOCK SOLUTION		WORKING SOLUTION	VOLUME IN ul
Media 2	-	-	24796
BDNF	10 ug/ml	20ng/ml	50
GDNF	10 ug/ml	20 ng/ml	50
AA	100mM	200uM	50
cAMP	100mM	200uM	50
DAPT	100mM	10uM	2.5
TGF-B	20 ug/ml	1ng/ml	1.25

A	В
FACS BUFFER (PBS	5 +2% FBS)
REAGENT	VOLUME IN mL
PBS	49
FBS	1

3

BEFORE START INSTRUCTIONS

hESC CRISPRi dCAS9 are differentiated to D25 according to the following protocol:

CITATION

Tae Wan Kim, Jinghua Piao, So Yeon Koo, Sonja Kriks, Sun Young Chung, Doron Betel, Nicholas D. Socci, Se Joon Choi, Susan Zabierowski, Brittany N. Dubose, Ellen J. Hill, Eugene V. Mosharov, Stefan Irion, Mark J. Tomishima, Viviane Tabar, Lorenz Studer. Biphasic Activation of WNT Signaling Facilitates the Derivation of Midbrain Dopamine Neurons from hESCs for Translational Use. protocols.io.

LINK

https://protocols.io/view/biphasic-activation-of-wnt-signaling-facilitates-t-bu7znzp6

At D25, the cells were sorted by MACs sorting to obtain pure population dopaminergic mDA neurons.

CITATION

Tae Wan Kim. Dopamine neuron enrichment using MACS. protocols.io.

https://protocols.io/view/dopamine-neuron-enrichment-using-macs-cyrfxv3n

Day -1: Coating wells with Poly - L ornithine(PO)

- 1 Coat 500 ul per well in a 48-well plate with 15 ug/ml PO in DPBS.
- 2 Incubate the plate overnight at 37°C with 5% CO2 and 20.9% O2.

Day 0: Coating wells with Laminin and Fibronectin

- 3 Thaw Fibronectin and Laminin on ice.
- 4 Aspirate 250ul of coated PO from each well of the 48 well plate and wash the wells with 1 ml of DPBS. Repeat two more times for a total of 3 x DPBS washes.

Note

Do not let the wells dry out.

5 Aspirate DPBS and add 500 ul of 2ug/ml Fibronectin and 1ug/ml Laminin in cold DPBS.

Day 1: Titration of D25 midbrain dopaminergic neurons(mDA neurons) wit...

- **6** Thaw the viral stock on ice.
- 7 Prepare 15 ml tubes with 200000 D25 pure population mDA neuronal suspension (CD49 neg) with concentrated lentiviral supernatants in serial dilutions in the 48 well plate in the following manner.

Note

Make sure to mix well by gentle pipetting. Change tips after making up each dilution. Titration was done in triplicates.

A	В	С	D	E	F	G	Н	I	J	K
DILUTION	٧									
	1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	1/512	1/1024
Cell+M M media	600ul									

A	В	С	D	E	F	G	Н	I	J	K
Viral superna tant	600ul	600ul of 1/2	600ul of 1/4	600ul of 1/8	600ul of 1/16	600ul of 1/32	600ul of 1/64	600ul of 1/128	600ul of 1/256	600ul of 1/512

Table: 1 Serial dilution of concentrated lentiviral supernatant to determine lentiviral titer in TU/mL

- 8 Aspirate the fibronectin/laminin coating and proceed immediately to the next step.
- 9 Add 200 ul/well for each viral dilution with the cells.
- To increase the transduction efficiency, centrifuge the plate at 300g for 20 minutes at 25 C.
- 11 Incubate the cells at 37°C with 5% CO2 and 20.9% O2 for 16-18 hours.

Day 2: Replace media

- 12 Aspirate the viral supernatant media gently and immediately add maturation media.
- Return the plate back to the incubator.

Day 4: FACs Analysis

14	Aspirate the spent media.
15	Wash the cells 10 times with DPBS to remove the viral particles from the mDA neurons.
16	Note: The neurons are sturdy and do not lift off during the washes. However look under the microscope during the washes to avoid the neurons lifting off.
17	Add 100ul HBSS +papain and incubate the neurons for 45 mins in the incubator.
	Note
	Ideally the neurons should dissociate as single cells.
18	Neutralize the papain with maturation media and collect the cells into 1.5ml eppendorf tubes.
	Note
	If the neurons are still present as a sheet or have clumps, use a P1000 tip, pipette the cells up and down to break them into single cell suspension.
19	Centrifuge the cells at 300 g for 5 minutes.
19 20	Centrifuge the cells at 300 g for 5 minutes. Aspirate the spent media gently without disturbing the pellet.

22	Tranafar tha	aalla with the	· CACa buffar	into FACs tubes
//	Hansiei me	cens with the	· FAUS DUHEL	IIIIO FAUS IIIDES

- Analyze the cells through flow cytometry to determine BFP positive cells.
- 24 The MOI for CRISPRi screen was quantified as the 10%-30% of BFP-positive cells to ensure one gRNA enters one cell.

Calculating the Lentiviral Titer in TU/ml

25 Method 1: Calculating using dilution Factor

T= (NXFXD)/Vt

Where

T= Titer, (TU/mL)

N=Number of cells transduced

F= Fraction of cells with fluorescence

D=Dilution Factor

Vt=Transduction volume in mL

Method 2: Calculating using volume of virus

T = (NxF)/Vv

Where,

T= Titer, (TU/mL)

N=Number of cells transduced

F= Fraction of cells with fluorescence

Vv=Virus volume

Detailed protocol for lentiviral titration for the virus can be found in the following link:

https://www.addgene.org/protocols/fluorescence-titering-assay/

Calculating Virus volume for required MOI

- For Perturb seq, to restrict the viral integration in such a way that one virus infects one cell, we keep the MOI between 0.1-0.3.
- 27 Calculating the virus volume, for MOI (0.1-0.3). $MOI=(T \times VV)/N$

Where,

T= Titer, (TU/mL)

N=Number of cells transduced

Vv=Virus volume

Detailed protocol for calculating MOI can be found in the following link:

https://info.abmgood.com/multiplicity-of-infection-moi