Yakeen NEET 2.0 2026

KPP [HCV questions]

Physics By Saleem Sir Vectors

- 1. Add vectors \vec{A} , \vec{B} and \vec{C} each having magnitude of 100 unit and inclined to the *X*-axis at angles 45° , 135° and 315° respectively.
- 2. Let $\vec{a} = 4\vec{i} + 3\vec{j}$ and $\vec{b} = 3\vec{i} + 4\vec{j}$. (a) Find the magnitudes of (1) \vec{a} , (2) \vec{b} , (3) $\vec{a} + \vec{b}$ and (4) $\vec{a} \vec{b}$.
- 3. Refer to figure. Find (a) the magnitude, (b) x and y components and (c) the angle with the X-axis of the resultant of \overrightarrow{OA} , \overrightarrow{BC} and \overrightarrow{DE} .

- 4. Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.
- 5. Suppose \vec{a} is a vector of magnitude 4.5 unit due north. What is the vector (a) $3\vec{a}$, (b) $-4\vec{a}$?
- 6. Two vectors have magnitudes 2 m and 3 m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.
- 7. Let $\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ and $\vec{b} = 3\vec{i} + 4\vec{j} + 5\vec{k}$. Find the angle between them.

- **8.** Prove that $\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$.
- 9. If $\vec{A} = 2\vec{\imath} + 3\vec{\jmath} + 4\vec{k}$ and $\vec{B} = 4\vec{\imath} + 3\vec{\jmath} + 2\vec{k}$, find $\vec{A} \times \vec{B}$.
- 10. The electric current in a charging *R-C* circuit is given by $i=i_0e^{-t/RC}$ where i_0 , *R* and *C* are constant parameters of the circuit and *t* is time. Find the rate of change of current at (a) t=0, (b) t=RC, (c) t=10 RC.
- 11. The electric current in a discharging *R-C* circuit is given by $i = i_0 e^{-t/RC}$ where i_0 , *R* and *C* are constant parameters and *t* is time. Let $i_0 = 2.00$ A, $R = 6.00 \times 10^5 \Omega$ and $C = 0.500 \mu F$.
 - (a) Find the current at t = 0.3 s.
 - (b) Find the rate of change of current at t = 0.3 s.
 - (c) Find approximately the current at t = 0.31 s.
- 12. Find the area bounded under the curve $y = 3x^2 + 6x + 7$ and the *X*-axis with the ordinates at x = 5 and x = 10.
- 13. Find the area enclosed by the curve $y = \sin x$ and the *X*-axis between x = 0 and $x = \pi$.
- **14.** Find the area bounded by the curve $y = e^{-x}$, the X-axis and the Y-axis.
- 15. The changes in a function y and the independent variable x are related as $\frac{dy}{dx} = x^2$. Find y as a function of x.

Answer Key

- 1. $100 \text{ unit at } 45^{\circ} \text{ with X-axis}$
- 2. (1) 5, (2) 5, (3) $7\sqrt{2}$, (4) $\sqrt{2}$
- 3. (a) 1.6 m, (b) 0.98 m and 1.3 m respectively (c) tan⁻¹(1.32)
- 4. (a) 180°, (b) 90°, (c) 0
- 5. (a) 13.5 unit due north, (b) 18 unit due south
- 6. (a) 3 m², (b) $3\sqrt{3}$ m²
- 7. $\cos^{-1}(38/\sqrt{1450})$
- 8. $\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$
- **9.** $-6\vec{i} + 12\vec{j} 6\vec{k}$

- **10.** (a) $\frac{-i_0}{RC}$, (b) $\frac{-i_0}{RCe}$, (c) $\frac{-i_0}{RCe^{10}}$
- 11. (a) $\frac{2.00}{e}$ A, (b) $\frac{-20}{3e}$ A/s, (c) $\frac{5.8}{3e}$ A
- 12. (1135)
- 13. (2)
- 14. (1)
- **15.** $y = \frac{x^3}{3} + C$

Solution

1. $100 \text{ unit at } 45^{\circ} \text{ with X-axis}$

Sol.

x component of $\vec{A} = 100 \cos 45^\circ = \frac{100}{\sqrt{2}}$ unit x component of $\vec{B} = 100 \cos 135^\circ = \frac{100}{\sqrt{2}}$ x component of $\vec{C} = 100 \cos 315^\circ = \frac{100}{\sqrt{2}}$ Resultant x component $= \frac{100}{\sqrt{2}} - \frac{100}{\sqrt{2}} + \frac{100}{\sqrt{2}} = \frac{100}{\sqrt{2}}$ y component of $\vec{A} = 100 \sin 45^\circ = 100/\sqrt{2}$ unit y component of $\vec{B} = 100 \sin 315^\circ = 100/\sqrt{2}$ y component of $\vec{C} = 100 \sin 315^\circ = -100/\sqrt{2}$ Resultant y component $= \frac{100}{\sqrt{2}} + \frac{100}{\sqrt{2}} - \frac{100}{\sqrt{2}} = \frac{100}{\sqrt{2}}$ Resultant = 100 Tan $\alpha = \frac{y \text{ component}}{x \text{ component}} = 1$ $\Rightarrow \alpha = \tan^{-1}(1) = 45^\circ$

The resultant is 100 unit at 45° with x-axis.

2. (1) 5, (2) 5, (3)
$$7\sqrt{2}$$
, (4) $\sqrt{2}$

Sol. (1)
$$\vec{a} = 4\hat{i} + 3\hat{j}$$

Calculate its magnitude:

$$|\vec{a}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$

(2).
$$\vec{b} = 3\hat{i} + 4\hat{j}$$

Calculate its magnitude:

$$|\vec{b}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

(3). Find
$$\vec{a} + \vec{b}$$
:
 $\vec{a} + \vec{b} = (4\hat{i} + 3\hat{j}) + (3\hat{i} + 4\hat{j})$
 $= (4+3)\hat{i} + (3+4)\hat{j} = 7\hat{i} + 7\hat{j}$
Calculate its magnitude:
 $|\vec{a} + \vec{b}| = \sqrt{7^2 + 7^2}$

$$=\sqrt{49+49}=\sqrt{98}=7\sqrt{2}$$

(4). Find $\vec{a} - \vec{b}$:

$$\vec{a} - \vec{b} = (4\hat{i} + 3\hat{j}) - (3\hat{i} + 4\hat{j})$$
$$= (4 - 3)\hat{i} + (3 - 4)\hat{j} = 1\hat{i} - 1\hat{j}$$

Calculate its magnitude:

$$|\vec{a} - \vec{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{1+1} = \sqrt{2}$$

- (a) 1.6 m, (b) 0.98 m and 1.3 m respectively
 (c) tan⁻¹(1.32)
- **Sol.** x component of $\overrightarrow{OA} = 2 \cos 30^{\circ} = \sqrt{3}$ x component of $\overrightarrow{BC} = 1.5 \cos 120^{\circ} = -0.75$ x component of $\overrightarrow{DE} = 1 \cos 270^{\circ} = 0$
 - y component of $\overrightarrow{OA} = 2 \sin 30^{\circ} = 1$
 - y component of $\overrightarrow{BC} = 1.5 \sin 120^{\circ} = 1.3$
 - y component of $\overrightarrow{DE} = 1 \sin 270^{\circ} = -1$

 $R_x = x$ component of resultant

$$=\sqrt{3}-0.75+0=0.98 \text{ m}$$

 R_y = resultant y component = 1 + 1.3 - 1

= 1.3 m

So, R = Resultant = 1.6 m

If it makes and angle α with positive x-axis

Tan
$$\alpha = \frac{y \text{ component}}{x \text{ component}} = 1.32$$

 $\Rightarrow \alpha = \tan^{-1} 1.32$

- 4. (a) 180° , (b) 90° , (c) 0
- **Sol.** $|\vec{a}| = 3m|\vec{b}| = 4$
 - (a) If R = 1 unit $\Rightarrow \sqrt{3^2 + 4^2 + 2 \cdot 3 \cdot 4 \cdot \cos \theta} = 1$ $\theta = 180^{\circ}$
 - (b) $\sqrt{3^2 + 4^2 + 2 \cdot 3 \cdot 4 \cdot \cos \theta} = 5$ $\theta = 90^{\circ}$ (c) $\sqrt{3^2 + 4^2 + 2 \cdot 3 \cdot 4 \cdot \cos \theta} = 7$

(c)
$$\sqrt{3^2 + 4^2 + 2 \cdot 3 \cdot 4 \cdot \cos \theta} = 7$$

 $\theta = 0^\circ$

Angle between them is 0° .

5. (a) 13.5 unit due north, (b) 18 unit due south

Sol. \vec{a} is a vector of magnitude 4.5 unit due north (a) $3|\vec{a}| = 3 \times 4.5 = 13.5, 3|\vec{a}|$ is along north

having magnitude 13.5 units.

(b)
$$-4|\vec{a}| = -4 \times 4.5 = 18$$
 units

 $-4\vec{a}$ is a vector of magnitude 18 units due south.

6. (a)
$$3 \text{ m}^2$$
, (b) $3\sqrt{3} \text{ m}^2$

Sol.
$$|\vec{a}| = 2 \text{ m}, |\vec{b}| = 3 \text{ m}$$
 angle between them $\theta = 60^{\circ}$

(a)
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos 60^\circ = 2 \times 3 \times \frac{1}{2} = 3 \text{ m}^2$$

(b)
$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin 60^\circ = 2 \times 3 \times \sqrt{\frac{3}{2}} = 3\sqrt{3} \text{ m}^2$$
.

7.
$$\cos^{-1}(38/\sqrt{1450})$$

$$\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$$

$$\vec{b} = 3\vec{i} + 4\vec{j} + 5\vec{k}$$

Using scalar product, we can find the angle between vectors \vec{a} and \vec{b} . i.e.,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

So,
$$\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}\right)$$

$$= \cos^{-1} \left(\frac{2 \times 3 + 3 \times 4 + 4 \times 5}{\sqrt{(2^2 + 3^2 + 4^2)} \sqrt{(3^2 + 4^2 + 5^2)}} \right)$$

$$=\cos^{-1}\left(\frac{38}{\sqrt{29}\sqrt{50}}=\cos^{-1}\frac{38}{\sqrt{1450}}\right)$$

 \therefore The required angle is $\cos^{-1} \frac{38}{\sqrt{1450}}$.

8.
$$\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$$

Sol.
$$\vec{A}(\vec{A} \times \vec{B}) = 0$$
 (claim)

As $\vec{A} \times \vec{B} = AB\sin \theta \hat{n} < br >$ is a vector which is perpendicular to the place containing \vec{A} and $\vec{B} < br >$ this implies that it is also perpendicular to \vec{A} . As dot product of two perpendicular vector is zero. $\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$.

9.
$$-6\vec{i} + 12\vec{j} - 6\vec{k}$$

Sol. The cross product $\vec{A} \times \vec{B}$ can be found using a determinant.

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Substitute the components of \vec{A} and \vec{B} .

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 4 \\ 4 & 3 & 2 \end{vmatrix}$$

Expand along the first row.

$$\vec{A} \times \vec{B} = \vec{i} \begin{vmatrix} 3 & 4 \\ 3 & 2 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & 4 \\ 4 & 2 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & 3 \\ 4 & 3 \end{vmatrix}$$

For the \vec{i} component: (3)(2) - (4)(3) = 6 - 12 = -6.

For the \vec{j} component: (2)(2) - (4)(4) = 4 - 16= -12.

For the \vec{k} component: (2)(3) - (3)(4) = 6 - 12= -6

Substitute the calculated values back into the expanded form.

$$\vec{A} \times \vec{B} = -6\vec{i} - (-12)\vec{j} + (-6)\vec{k}$$
$$\vec{A} \times \vec{B} = -6\vec{i} + 12\vec{j} - 6\vec{k}$$

10. (a)
$$\frac{-i_0}{RC}$$
, (b) $\frac{-i_0}{RCe}$, (c) $\frac{-i_0}{RCe^{10}}$

Sol. The rate of change of current is Given that, $i = i_0 e^{-t/RC}$

$$\therefore \text{ Rate of change of current } = \frac{di}{dt} = \frac{d}{dt} i_0 e^{-i/RC}$$

$$= i_0 \frac{d}{dt} e^{-t/RC} = \frac{-i_0}{RC} \times e^{-t/RC}$$

When

(a)
$$t = 0$$
, $\frac{di}{dt} = \frac{-i_0}{RC}$

(b) when
$$t = RC$$
, $\frac{di}{dt} = \frac{-i_0}{RCe}$

(c) when
$$t = 10RC$$
, $\frac{di}{dt} = \frac{-i_0}{RCe^{10}}$

11. (a)
$$\frac{2.00}{e}$$
 A, (b) $\frac{-20}{3e}$ A/s, (c) $\frac{5.8}{3e}$ A

Sol. Equation
$$i = i_0 \cdot e^{-\frac{t}{RC}}$$
, where $i_0 = 2 \text{ A}$, $R = 6 \times 10^5 \text{ ohm}$ $C = 0.0500 \times 10^{-6} \text{ F}$ $= 5 \times 10^{-7} \text{ F}$ $i = 2.0e^{-\frac{t}{0.3}}$

(a)
$$i = 2 \times xe^{(-1)} = \frac{2}{e}$$
 amp

(b)
$$\frac{di}{dt} = \frac{(-i_0)}{RC} \cdot e^{\left(-\frac{t}{RC}\right)}$$

when t = 0.3sec, then di/dt = 2/

$$(0.3)e^{\wedge}(-0.3)/(0.3) = \frac{-20}{3e}$$
 amp/sec

(c) At
$$t = 0.31$$
 st

$$i = 2e((-0.3)/0.3), \frac{5.8}{3e}$$
 amp (approx)

12. 1135

Sol.

The area bounded by the curve and the X-axis with coordinates $x_1 = 5$ and $x_2 = 10$ is given by:

$$\int_{x_1}^{x_2} y dx = \int_{5}^{10} \left(3x^2 + 6x + 7\right) dx = \left[\frac{3x^3}{3} + \frac{6x^2}{2} + 7x\right]_{5}^{10}$$
$$= 1000 - 125 + 300 - 75 + 70 - 35$$
$$= 1370 - 235$$

13. 2

Sol. Area =
$$\int_{-\infty}^{x_2} -(x_1)ydx = \int_{-\infty}^{\pi} -0\sin xdx < br >$$

= $[\cos x]^{\pi} -0 < br > = -\cos \pi - (-\cos 0)$
 $< br > = +1+1=2$

14.

Sol. The given function is $y = e^{-x}$.

When x = 0, $y = e^{-0} = 1$

When x increases, the value of y decrease. Also, only when $x = \infty$, y = 0

So, the required area can be determined by integrating the function from 0 to ∞ .

$$\therefore \text{ Area } = \int_0^\infty e^{-x} dx = -\left[e^{-x}\right]_0^\infty$$
$$= -\left[0 - 1\right] = 1 \text{ sq. unit}$$

15.
$$y = \frac{x^3}{3} + C$$

Sol. Change in a functin of y and the independent variable x are related as $\frac{dy}{dx} = x^2 \langle br \rangle \rightarrow dy = x^2 dx$ Taking integration of both sides we get $\int dy = \int x^2 dx \langle br \rangle \rightarrow y = \frac{x^3}{3} + c \langle br \rangle y \quad \text{as} \quad \text{a}$ function of x is represented b

$$y = \frac{x^3}{3} + \epsilon$$

