# Linear Regression Analysis for the Kings County's (Seattle, WA) House Market.

by Y. Kostrov

#### Contents

- Overview
- 2 Business Problem
  - 3 Data Description
  - My Python Package
- Modeling
- 6 Linear Model
  - Building the Linear Model
  - Checking Statistical Hypotheses

- Explanation of the Model
- Multiple Linear Model
  - Model
  - Explanation of the Model
- 8 Conclusions
  - Data Modeling
  - Modeling
  - Ways to improve the analysis

The purpose of this project is to analyze a data set containing data about houses sold in Kings County (Seattle, WA).

#### During the analysis:

1 will perform necessary data wrangling first.

- 1 will perform necessary data wrangling first.
- 2 I will build a Linear Regression Model with one explanatory variable.:

- 1 will perform necessary data wrangling first.
- ② I will build a Linear Regression Model with one explanatory variable.:
  - I will check statistical assumptions for the linear regression model
  - I will explain the model, including intercept, coefficient for the explanatory variable,  $R^2$ , and ANOVA

- 1 will perform necessary data wrangling first.
- 2 I will build a Linear Regression Model with one explanatory variable.:
  - I will check statistical assumptions for the linear regression model
  - I will explain the model, including intercept, coefficient for the explanatory variable,  $R^2$ , and ANOVA
- I will build a Multiple Linear Regression Model with many explanatory variables.

- 1 will perform necessary data wrangling first.
- ② I will build a Linear Regression Model with one explanatory variable.:
  - I will check statistical assumptions for the linear regression model
  - I will explain the model, including intercept, coefficient for the explanatory variable,  $R^2$ , and ANOVA
- I will build a Multiple Linear Regression Model with many explanatory variables.
  - I will check statistical assumptions for the multiple linear regression model
  - I will explain the model, including intercept, coefficients for the explanatory variables,  $R^2$ , and ANOVA

• The fair price of the house is a hard quantity to assess.

- The fair price of the house is a hard quantity to assess.
- Both sellers and buyers would like to know the best price for the house.

- The fair price of the house is a hard quantity to assess.
- Both sellers and buyers would like to know the best price for the house.
- Which features of the property would be the best predictors of the value?

- The fair price of the house is a hard quantity to assess.
- Both sellers and buyers would like to know the best price for the house.
- Which features of the property would be the best predictors of the value?
- I will build a regression model that helps predict the value of the house.

- The fair price of the house is a hard quantity to assess.
- Both sellers and buyers would like to know the best price for the house.
- Which features of the property would be the best predictors of the value?
- I will build a regression model that helps predict the value of the house.
- I will, also, check the necessary statistical assumptions for the regression model and explain the model's parameters.

### Data Description

• The file called "kc\_house\_data.csv" in the data folder of the project holds the data for this project.

### Data Description

- The file called "kc\_house\_data.csv" in the data folder of the project holds the data for this project.
- This project will use this data about Kings County's (Seattle, WA) housing market to create Linear Regression Model.

### Data Description

- The file called "kc\_house\_data.csv" in the data folder of the project holds the data for this project.
- This project will use this data about Kings County's (Seattle, WA) housing market to create Linear Regression Model.
- The data file contains numerous columns with information about properties sold such as price, size of the living area, size of the basement, number of bedrooms, etc.

• While working on this project, I have created my own Python package with helping functions.

- While working on this project, I have created my own Python package with helping functions.
- The most important function in this package is "evaluate\_model.py" (in the "src" folder). This function:

- While working on this project, I have created my own Python package with helping functions.
- The most important function in this package is "evaluate\_model.py" (in the "src" folder). This function:
  - creates the model from the data frame.

- While working on this project, I have created my own Python package with helping functions.
- The most important function in this package is "evaluate\_model.py" (in the "src" folder). This function:
  - creates the model from the data frame.
  - prints out the model summary of Linear Regression.

- While working on this project, I have created my own Python package with helping functions.
- The most important function in this package is "evaluate\_model.py" (in the "src" folder). This function:
  - creates the model from the data frame.
  - prints out the model summary of Linear Regression.
  - performs the checks for the statistical assumptions of the Linear Regression.

- While working on this project, I have created my own Python package with helping functions.
- The most important function in this package is "evaluate\_model.py" (in the "src" folder). This function:
  - creates the model from the data frame.
  - prints out the model summary of Linear Regression.
  - performs the checks for the statistical assumptions of the Linear Regression.
  - performs a lot of different visualizations.

# Modeling

• My first goal was to create linear regression model with one independent variable.

## Modeling

- My first goal was to create linear regression model with one independent variable.
- I created the correlation matrix and heat map for visualization purpose.

### Modeling

- My first goal was to create linear regression model with one independent variable.
- I created the correlation matrix and heat map for visualization purpose.



### Selection of the explanatory variable for the Linear Model

 "sqft\_living" has the highest correlation of 0.71 with the "price".

### Selection of the explanatory variable for the Linear Model

- "sqft\_living" has the highest correlation of 0.71 with the "price".
- I build a regression model for the "price" to be predicted by "sqft\_living".

### Selection of the explanatory variable for the Linear Model

- "sqft\_living" has the highest correlation of 0.71 with the "price".
- I build a regression model for the "price" to be predicted by "sqft\_living".
- The model is  $ln(price) = 11.9524 + 0.0029 \cdot sqft\_living^{0.78}$

### Checking Statistical Hypotheses:

This Linear Model satisfies all statistical assumptions of the Linear Regression, namely:

- Linearity.
- Normality.
- There is no heteroscedasticity present in the model.

### Intercept and slope

#### Our model is

$$ln(price) = 11.9524 + 0.0029 \cdot sqft\_living^{0.78}$$

- The model has the sample intercept of 11.9524 and the slope of 0.0029.
- To interpret the slope, we have to transform  $\hat{x}$  and  $\hat{y}$  towards original  $sqft\_living$  and price.

### Intercept and slope

Our model is

$$ln(price) = 11.9524 + 0.0029 \cdot sqft\_living^{0.78}$$

- The model has the sample intercept of 11.9524 and the slope of 0.0029.
- To interpret the slope, we have to transform  $\hat{x}$  and  $\hat{y}$  towards original  $sqft\_living$  and price.

To understand the change in *price* in percents we will use the following formula:

$$Gab100 imes \left[ e^{0.0029 \left( x_2^{0.78} - x_1^{0.78} \right)} - 1 \right]$$

### Example

For example, if the  $sqft_living$  is 1000ft and we increase it to 1100ft, we will get the change in price of

$$100 \times \left[ e^{0.0029(1100^{0.78}-1000^{0.78})} - 1 \right] \approx 5.02\%.$$

### Example

For example, if the  $sqft_living$  is 1000ft and we increase it to 1100ft, we will get the change in price of

$$100 \times \left[ e^{0.0029(1100^{0.78}-1000^{0.78})} - 1 \right] \approx 5.02\%.$$

In this particular example, 10% change in sqft\_living starting from  $x_1=1000ft$  forces 5.02% change in price.

• The model has  $R^2 \approx 0.45$ .

- The model has  $R^2 \approx 0.45$ .
- This means that our model explains about 45% of the variation by using *sqft\_living* as independent variable.

#### **ANOVA**

Is our model with one explanatory variable better than the model with zero explanatory variables?

- Our p-value for this model is  $p = 0.000 < 0.05 = \alpha$ .
- Since our p-value is 0, there is a 0% probability that the improvements that we are seeing with our one independent variable model are due to random chance alone.

col

# Multiple Linear Model

Now, I will build a Multiple Regression Model.

The goals for Multiple Linear Model:

- I want to improve  $R^2$ .
- I want to use more than one explanatory variable.

# Choice of Explanatory Variables

I will use the highly correlated with the price features from the correlation matrix for the Multiple Linear Model model.



# Results for Multiple Linear Regression Model

At the end of my analysis, I came up with the following formula:

# Results for Multiple Linear Regression Model

At the end of my analysis, I came up with the following formula:

$$\begin{split} & \ln(\textit{price}) = & 10.2082 + 0.3618 \cdot \text{waterfront} - 0.0160 \cdot \text{bedrooms} \\ & -0.0153 \cdot \text{bathrooms} + 0.1400 \cdot \text{sqft\_living}^{0.3} + 0.0088 \cdot \text{floors} \\ & +0.1494 \cdot \text{view}^{0.5} + 0.0105 \cdot \text{grade}^2 + 0.1187 \cdot \ln \left( \text{sqft\_living15} \right) \end{split}$$

## Check Statistical Hypotheses

This Linear Model satisfies all statistical assumptions of the Linear Regression, namely:

- Linearity.
- Normality.

The model is very close to satisfy Constant Error Variance.

#### **Overall Conclusion:**

I conclude that our model almost satisfies statistical assumptions for the regression model.

#### Model

$$\begin{split} & \ln(\textit{price}) = & 10.2082 + 0.3618 \cdot \text{waterfront} - 0.0160 \cdot \text{bedrooms} \\ & -0.0153 \cdot \text{bathrooms} + 0.1400 \cdot \text{sqft\_living}^{0.3} + 0.0088 \cdot \text{floors} \\ & +0.1494 \cdot \text{view}^{0.5} + 0.0105 \cdot \text{grade}^2 + 0.1187 \cdot \ln\left(\text{sqft\_living15}\right) \end{split}$$

## Explanation of the Model

Before I begin explain the coefficients, I notice that P > |t| for the *floors* variable is 0.155, which makes *floors* insignificant for the analysis.

### Intercept

• The model has the sample intercept of 10.2082.

#### Intercept

- The model has the sample intercept of 10.2082.
- If we assume that all explanatory variables are zeros, this would mean that the price would be  $e^{10.2082} \approx 27,124$

#### 0.3618 is the coefficient for waterfront

Waterfront is a categorical variable coded as 0 or 1.

#### 0.3618 is the coefficient for waterfront

Waterfront is a categorical variable coded as 0 or 1.

To understand the change in *price* in percents, if we switch from the house with no waterfront to the house with waterfront while keeping all other variables the same, will use the following formula:

$$100 \times \left[ e^{0.3618} - 1 \right] \approx 43.59\%$$

#### 0.3618 is the coefficient for waterfront

Waterfront is a categorical variable coded as 0 or 1.

To understand the change in *price* in percents, if we switch from the house with no waterfront to the house with waterfront while keeping all other variables the same, will use the following formula:

$$100 \times \left[e^{0.3618} - 1\right] \approx 43.59\%$$

Switching from the house with no waterfront to the house with waterfront while keeping all other explanatory variables fixed, will increase the price by 43.59%.

## 0.1400 is the coefficient for sqft\_living

If we increase the *sqft\_living* from 1000 ft to 1100 ft while keeping the other variables fixed, we will get the following change in price in percents:

$$100 \times \left[ e^{0.1400 \left( 1100^{0.3} - 1000^{0.3} \right)} - 1 \right] \approx 3.28\%$$

• If the *sqft\_living* is 1000ft and we increase it to 1100ft while keeping the other variables fixed, we will get the change in price of 3.28%.

## 0.1400 is the coefficient for sqft\_living

If we increase the  $sqft\_living$  from 1000ft to 1100ft while keeping the other variables fixed, we will get the following change in price in percents:

$$100 \times \left[ e^{0.1400 \left(1100^{0.3} - 1000^{0.3}\right)} - 1 \right] \approx 3.28\%$$

- If the sqft\_living is 1000ft and we increase it to 1100ft while keeping the other variables fixed, we will get the change in price of 3.28%.
- In this particular example 10% change in *sqft\_living* starting from 1000*ft* forces 3.28% change in price.

#### 0.1494 is the coefficient for the view

The coefficient for the *view* has the same explanation as the *sqft\_living*.

#### 0.1494 is the coefficient for the view

The coefficient for the *view* has the same explanation as the *sqft\_living*.

If we increase the *view* by 1 unit from 2 to 3 while keeping the other variables fixed, we will get the following:

$$100 \times \left\lceil e^{0.1494 \left(3^{0.5} - 2^{0.5}\right)} - 1 \right\rceil \approx 4.86\%$$

In this particular example if the  $\emph{view}$  will increase from 2 to 3, the price will increase by 4.86%.

## 0.0105 is the coefficient for the grade

The coefficient for the grade has the same explanation as the  $sqft\_living$ .

## 0.0105 is the coefficient for the grade

The coefficient for the *grade* has the same explanation as the  $sqft\_living$ .

If we increase the *grade* by 1 unit from 2 to 3 while keeping the other variables fixed, we will get the following:

$$100 \times \left[ e^{0.0105 \left( 3^2 - 2^2 \right)} - 1 \right] \approx 5.39\%$$

In this particular example if the grade will increase from 2 to 3 while other variables stay the same, the price will increase by 5.39%.

## 0.1187 is the coefficient for the sqft\_living15

The change in price in percent will be:

$$100 \times \left[ \left( \frac{\mathsf{price}\ 2}{\mathsf{price}\ 1} \right)^{0.1187} - 1 \right]$$

In this particular example, if we increase the  $sqft\_living15$  by 100 units from 1000 to 1100 while keeping the other variables fixed, we will get the following:

$$100 \times \left\lceil e^{0.1187} \times \frac{1100}{1000} - 1 \right\rceil \approx 1.14\%$$

Thus, 10% increase in  $sqft\_living15$  will lead to 1.14% increase in price.

• The model has  $R^2 \approx 0.5$ .

- The model has  $R^2 \approx 0.5$ .
- This means that our model explains about 50% of the variation by using *sqft\_living* as independent variable.

#### **ANOVA**

Is our model with many explanatory variable better than the model with zero explanatory variables?

- Our p-value for this model is  $p = 0.000 < 0.05 = \alpha$ .
- We conclude that the Test tells us, that at least one of the coefficients is not 0.
- Since our p-value is 0, there is a 0% probability that the improvements that we are seeing with our independent variables model are due to random chance alone.

## Conclusions: Data Modeling

I used the following steps during data modeling:

- Dropped 2376 rows where waterfront has no value.
- Dropped 63 rows where view is has no value.
- Dropped 3842 rows where yr\_renovated has no value.
- I converted *sqft\_basement* string format into numeric values.
- During modeling I dropped very large and very small values when necessary.

# Conclusions: Modeling

- I built two models:
  - Linear Regression Model
  - Multiple Linear Regression Model
- I checked whether the models satisfy statistical assumptions of Linear Regression
- I explained the models.
- Models can be used for interpolation given the data about a particular property.

## Conclusions: Ways to Improve the Analysis

- More data wrangling is need to remove *heteroscedasticity* from the Multiple Linear Regression Model.
- Include more explanatory variables.
- Scrape webpages for more data such as school grade, crime rate, etc. for properties.

# THE END THANK YOU!