Chapitre 4. Complexes.

1 L'ensemble $\mathbb C$ des nombres complexes

1.a Définition des nombres complexes, forme algébrique

Théorème-définition:

Il existe un ensemble noté \mathbb{C} , contenant \mathbb{R} , muni de lois + et \times , vérifiant les propriétés suivantes :

- Il existe un élément de \mathbb{C} , noté i, tel que $i^2 = -1$
- Tout élément z de \mathbb{C} s'écrit de manière unique sous la forme z = x + iy, où x et y sont des réels.

Autrement dit:

C'est ce qu'on appelle l'écriture algébrique du nombre complexe z.

Le réel x s'appelle la partie réelle de z, on la note Re(z).

Le réel y s'appelle la partie imaginaire de z, on la note Im(z).

On a donc
$$z = \text{Re}(z) + i\text{Im}(z)$$
.

- Les lois + et \times sur $\mathbb C$ prolongent celles de $\mathbb R$, et ont les mêmes propriétés :
 - Commutativité $de + et de \times$:

$$\forall (z, z') \in \mathbb{C}^2, \ z + z' = z' + z \text{ et } z \times z' = z' \times z.$$

— Associativité $de + et de \times$:

$$\forall (z, z', z'') \in \mathbb{C}^3, (z + z') + z'' = z + (z' + z'') \text{ et } (z \times z') \times z'' = z \times (z' \times z'').$$

— Éléments neutres :

$$\forall z \in \mathbb{C}, \ z + 0 = 0 + z = z \text{ et } z \times 1 = 1 \times z = z.$$

— Distributivité de \times par rapport à +:

$$\forall (z, z', z'') \in \mathbb{C}^3, \ z \times (z' + z'') = z \times z' + z \times z'' \text{ et } (z' + z'') \times z = z' \times z + z'' \times z.$$

— Intégrité :

$$\forall (z, z') \in \mathbb{C}^2$$
, $zz' = 0 \iff z = 0 \text{ ou } z' = 0$.

On peut donc écrire :

$$\mathbb{C} =$$

Malgré son nom, la partie imaginaire est un réel!

Vocabulaire:

• Lorsque $\operatorname{Re}(z) = 0$, on dit que z est <u>imaginaire pur</u>. Cela revient à dire qu'il est de la forme iy avec y réel. Exemples : $i, -i, 2i, \sqrt{2}i...$ L'ensemble des imaginaires purs est noté $i\mathbb{R}$. Ainsi :

$$z \in i\mathbb{R} \iff \operatorname{Re}(z) = 0.$$

De façon similaire :

$$z \in \mathbb{R} \iff \operatorname{Im}(z) = 0.$$

Conséquence de l'unicité de l'écriture algébrique d'un nombre complexe

Deux nombres complexes z et z' sont égaux si et seulement si z et z' ont même partie réelle et même partie imaginaire :

autrement dit, pour x, x', y et y' réels :

L'idée à retenir : une égalité de nombres complexes se traduit par deux égalités de nombres réels.

En particulier,
$$z=0 \Longleftrightarrow \left\{ \begin{array}{l} \operatorname{Re}(z)=0 \\ \operatorname{Im}(z)=0 \end{array} \right.$$

1.b Addition, produit, inverse

Pour x, y, x', y' réels :

- Somme: (x+iy)+(x'+iy')=(x+x')+i(y+y'), autrement dit : $\begin{cases} \operatorname{Re}(z+z')=\\ \operatorname{Im}(z+z')=\end{cases}$ Cela se généralise à des sommes de n termes :
- Produit : $(x+iy) \times (x'+iy') =$

 \triangle Re(zz') n'est donc pas égal à Re(z)Re(z')... Idem avec la partie imaginaire. Cependant :

et on constate que :
$$(x+iy)\frac{(x-iy)}{x^2+y^2} = \frac{x^2-(iy)^2}{x^2+y^2} = \frac{x^2+y^2}{x^2+y^2} = 1$$

Ainsi,
$$z^{-1} = \frac{x - iy}{x^2 + y^2}$$
.

On pourra retenir que, pour $(x, y) \neq (0, 0)$:

On calcule $\frac{1}{x+iy}$ sous forme algébrique en multipliant au numérateur et au dénominateur par (x-iy)

(cela donnera, au dénominateur, $x^2 + y^2$ puisque c'est le résultat de (x + iy)(x - iy)).

Cas des puissances de i:

$$\frac{1}{i} =$$

$$i^3 = i^4 = i^5 =$$

Pour tout $n \in \mathbb{N} : i^{2n} =$

1.c Interprétation géométrique

Définition:

Le plan \mathcal{P} muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$. Soit $z \in \mathbb{C}$ s'écrivant z = x + iy, avec x et y réels.

- Le point M de coordonnées (x,y) est appelé <u>point d'affixe z</u>, ce que l'on note : M(z).

 On dit aussi que M est le point image de z.
- _____

• Le vecteur \overrightarrow{u} de coordonnées (x,y) est appelé <u>vecteur d'affixe</u> \underline{z} , ce que l'on note : $\overrightarrow{u}(z)$.

On peut donc identifier $\mathbb C$ et $\mathcal P$ (muni d'un repère orthonormé direct).

Exemples:

Plus généralement, les points M d'affixe z réelle sont les points de l'axe des abscisses :

$$z \in \mathbb{R} \iff M(z) \in (Ox)$$

les points M d'affixe z imaginaire pur sont les points de l'axe des ordonnées :

$$z \in i\mathbb{R} \iff M(z) \in (Oy)$$

Proposition:

- Soient \overrightarrow{u} et $\overrightarrow{u'}$ des vecteurs, d'affixes respectives z et z'. Soit λ un réel. Alors l'affixe de $\overrightarrow{u} + \overrightarrow{u'}$ est z + z' et l'affixe de $\lambda . \overrightarrow{u}$ est $\lambda . z$.
- Soient A et B des points du plan, d'affixes respectives z_A et z_B . Alors l'affixe du vecteur \overrightarrow{AB} est $z_B - z_A$.

 ${\bf Remarque}$: Soit Mle point d'affixe z. Le point M' d'affixe -z est

3

Conjugué et module 2

2.a Conjugué

Définition:

Soit $z \in \mathbb{C}$, s'écrivant z = x + iy avec x et y réels. On appelle conjugué de z le complexe suivant :

Autrement dit, $\overline{z} =$

Interprétation géométrique : Si M est le point d'affixe z, alors le point M' d'affixe \overline{z} est

Proposition:

Pour tous complexes z et z':

- $\overline{z+z'}=$
- Si $z \neq 0$, $\overline{\left(\frac{1}{z}\right)} = \operatorname{et} \overline{\left(\frac{z'}{z}\right)} =$
- Pour tout $n \in \mathbb{N}$, $\overline{z^n} =$ (On peut prendre $n \in \mathbb{Z}$ si $z \neq 0$)
- (On dit que la conjugaison est une involution).

Démonstration 1

Proposition:

Pour tout complexe z, Re(z) =

$$Im(z) =$$

Démonstration 2

C'est à utiliser aussi "dans l'autre sens", c'est-à-dire :

Corollaire:

Pour tout $z \in \mathbb{C}$,

 $z \in \mathbb{R} \Longleftrightarrow$

et $z \in i\mathbb{R} \iff$

2.b Module

Définition:

Soit $z \in \mathbb{C}$, s'écrivant z = x + iy avec x et y réels.

On appelle $\underline{\text{module}}$ de z le réel positif suivant :

$$|z| =$$

On a aussi:

|z| =

En effet,

Très souvent, c'est $|z|^2$ qu'on manipule;

Remarques importantes

• Le module et le conjugué permettent de calculer l'inverse :

On retrouve bien la formule donnée pour z = x + iy avec x, y réels :

• Si z = x + iy, avec x, y réels, est un réel, alors y = 0, z = x, et $|z| = \sqrt{x^2}$: on retrouve la valeur absolue de x.

Autrement dit, le module coïncide sur $\mathbb R$ avec la valeur absolue, donc la notation |.| n'est pas ambigüe.

Interprétation géométrique : (toujours dans le plan \mathcal{P} muni d'un repère orthonormé direct)

Si M est le point d'affixe z, alors |z| est

Si \overrightarrow{u} est le vecteur d'affixe z, alors |z| est

Si les points A et B ont pour affixes respectives z_A et z_B ,

alors $|z_B - z_A|$ est

Par conséquent : pour r réel positif et z_A un nombre complexe, en notant A le point d'affixe z_A ,

$$\{M(z) \in \mathcal{P} / |z - z_A| = r\}$$
 est

$$\{M(z) \in \mathcal{P} / |z - z_A| \le r\}$$
 est

$$\{M(z) \in \mathcal{P} / |z - z_A| < r\}$$
 est

Proposition:

Pour tous complexes z et z':

•
$$|\overline{z}| = |z| = |-z|$$

• $|z| = 0 \Longleftrightarrow z = 0$
• $|zz'| =$

•
$$|z| = 0 \iff z = 0$$

$$\bullet$$
 $|zz'| =$

• Si
$$z \neq 0$$
, $\left| \frac{1}{z} \right| =$ et $\left| \frac{z'}{z} \right| =$

• Pour tout $n \in \mathbb{N}$, $|z^n| =$ (On peut prendre $n \in \mathbb{Z}$ si $z \neq 0$)

•
$$|z| = 1 \Longleftrightarrow \overline{z} =$$

Démonstration 3

Proposition:

- Pour tout $z \in \mathbb{C}$: $|\operatorname{Re}(z)| \le |z|$ $|\operatorname{Im}(z)| \le |z|$
- (Inégalité triangulaire) Pour tous complexes z et z':

Pour l'inégalité de droite, on a égalité si et seulement si z et z' sont positivement liés, c'est-à-dire :

$$\exists \alpha \in \mathbb{R}^+, \ z' = \alpha z \text{ ou } \exists \alpha \in \mathbb{R}^+, \ z = \alpha z'.$$

Démonstration 4

Interprétations géométriques :

Nombres complexes de module 1 3

Ensemble des nombres complexes de module 1

Définition:

On note $\mathbb U$ l'ensemble des nombres complexes de module 1 :

 $\mathbb{U} =$

Remarque importante : Comme |z| est un réel positif, $|z|=1 \Longleftrightarrow |z|^2=1$.

Premiers exemples:

Proposition:

- Pour tous éléments z et z' de \mathbb{U} , les éléments suivants sont encore dans \mathbb{U} :
- Pour tout $z \in \mathbb{U}$,

Démonstration 5

Interprétation géométrique

Soit $z \in \mathbb{C}$, de forme algébrique z = x + iy (x et y sont donc des réels).

Soit M le point d'affixe z.

$$z \in \mathbb{U} \iff$$

où \mathcal{C} est le cercle trigonométrique, c'est-à-dire le cercle de centre O et de rayon 1.

On sait aussi qu'un point M du cercle trigonométrique est déterminé par ses coordonnées $\cos\theta$ et $\sin\theta$ où θ est l'angle orienté entre \overrightarrow{i} et \overrightarrow{OM} , d'où :

Proposition:

Soit M un point du plan muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$. Notons (x, y) ses coordonnées.

> $M \in \mathcal{C} \iff$ \iff

Conséquence : Théorème-définition :

Soit
$$z \in \mathbb{C}$$
.

 $z \in \mathbb{U} \Longleftrightarrow$

Proposition:

•
$$e^{i0} = 1$$
 $e^{i\frac{\pi}{2}} = i$ $e^{i\pi} = e^{-i\pi} = -1$ $e^{-i\frac{\pi}{2}} = -i$.

$$\bullet \quad \forall \, k \in \mathbb{Z}, \, \, e^{i2k\pi} = 1$$

• Pour tous réels
$$\theta$$
 et θ' , $e^{i\theta} = e^{i\theta'} \iff \Leftrightarrow \Rightarrow$

• Pour tout réel
$$\theta$$
, $\overline{e^{i\theta}}$ =

• Pour tous réels
$$\theta$$
 et θ' , $e^{i(\theta+\theta')} =$

• Formules d'Euler :
$$\cos \theta = \sin \theta =$$

$$\forall n \in \mathbb{Z}, \forall \theta \in \mathbb{R},$$

Démonstration 6

Exemple important: On définit le nombre $j = e^{i\frac{2\pi}{3}}$

$$\overline{j} =$$

$$j^2 =$$

3.b Une application : linéarisation, "délinéarisation"

Linéarisation

Linéariser une expression polynômiale en $\sin x$ et $\cos x$ (avec des puissances, des produits et éventuellement des sommes) consiste à la transformer en somme de termes $\cos 2x$, $\cos 3x$, $\sin x$, ... sans puissances et sans produits. Cela sera extrêmement utile pour calculer des intégrales.

Il y a trois étapes :

- Étape 1 :
- Étape 2 :
- Étape 3 :

Exemples : a) Linéariser $\cos^4 x$.

b) Linéariser $\sin^2 x \cos x$.

• "Dé-linéarisation" On souhaite faire l'opération inverse : passer de $\cos(nx)$ ou $\sin(nx)$ à une expression polynômiale ne contenant plus que des $\sin(x)$ et des $\cos(x)$.

Pour les petites valeurs de n (n = 2, 3...), les formules trigo peuvent suffire.

Sinon, il y a aussi une méthode générale, avec deux choses à connaître : la formule du binôme de Newton encore, et

La formule de Moivre : $\cos(nx) + i\sin(nx) = (\cos(x) + i\sin(x))^n$

Exemple: Exprimer $\cos(6x)$ comme un polynôme en $\cos(x)$.

Exprimer $\sin(6x)$ en fonction de $\cos(x)$ et de $\sin(x)$.

Écrire $\sin(6x) = \sin(x) \times f(\cos(x))$ où f est une fonction polynomiale.

3.c Technique de l'angle moitié

Calcul à savoir faire parfaitement : pour tout réels p et q,

$$e^{ip} + e^{iq} =$$

$$=$$

$$=$$

$$=$$

En particulier, pour $\theta \in \mathbb{R}$:

$$1 + e^{i\theta} = 1 - e^{i\theta} =$$

$$= =$$

Remarque: Avec les formules obtenues pour $e^{ip} + e^{iq}$ et $e^{ip} - e^{iq}$, on peut retrouver les formules trigonométriques $\cos(p) \pm \cos(q)$ et $\sin(p) \pm \sin(q)$!

3.d Une autre application: calculs de sommes

Soit
$$\theta \in \mathbb{R}$$
. Calculons, pour tout $n \in \mathbb{N}$, $C_n = \sum_{k=0}^n \cos(kt)$ et $S_n = \sum_{k=0}^n \sin(kt)$.

Démonstration 9

4 Argument et forme trigonométrique d'un nombre complexe non nul

4.a Définition

Soit
$$z \in \mathbb{C}$$
 non nul. Alors :

Définition:

Soit $z \in \mathbb{C}$ non nul. Il existe un réel θ , unique à 2π près, tel que $\frac{z}{|z|} = e^{i\theta}$.

Un tel réel θ est appelé <u>un argument</u> de z, ce qu'on note $\theta = \arg(z)$.

L'ensemble des arguments de z est alors $\{\theta + 2k\pi / k \in \mathbb{Z}\}.$

L'écriture $z = |z|e^{i\theta}$ est appelée forme trigonométrique de z.

Remarque: pour $z \neq 0$, il y a cependant un unique argument dans l'intervalle $]-\pi,\pi]$: on l'appelle l'argument principal.

Interprétation géométrique

Soit M le point du plan d'affixe $z = |z|e^{i\theta} \neq 0$. |z| est la longueur du vecteur \overrightarrow{OM} θ est l'angle entre \overrightarrow{i} et \overrightarrow{OM} $(|z|, \theta)$ forment un couple de coordonnées polaires de M(z).

Méthode

Lorsqu'on a mis un nombre complexe non nul z sous la forme $z = \rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$ alors il s'agit bien de la forme trigonométrique de $z:|z|=\rho$ et $\arg(z)=\theta[2\pi]$. En effet :

4.b Propriétés

Proposition:

Soient z et z' des complexes non nuls. $z = z' \iff$

Démonstration 10

Proposition:

Soient z et z' des complexes non nuls. Alors : et arg $\left(\frac{z}{z'}\right)$ = arg(zz') =

Démonstration 11

On a aussi : $\arg(\overline{z}) = \arg(\frac{1}{z}) = -\arg(z)[2\pi]$ et $\forall n \in \mathbb{Z}$, $\arg(z^n) = n\arg(z)[2\pi]$.

Proposition:

Soit z un complexe non nul.

$$z \in \mathbb{R} \Longleftrightarrow \arg(z) =$$

$$z \in i\mathbb{R} \Longleftrightarrow \arg(z) =$$

Comment obtenir la forme trigonométrique d'un complexe non nul? **4.c**

• Si $z = a \in \mathbb{R}^*$:

Retenir que transformer -1 (un signe "moins") en $e^{i\pi}$ peut être très utile... Et de même, il faut penser parfois à remplacer i par $e^{i\frac{\pi}{2}}...$

11

• Autres exemples :

$$z_1 = \sqrt{2}i$$
 ; $z_2 = -3i$; $z_3 = ae^{i\theta}$ avec $a \in \mathbb{R}^*$; $z_4 = 2 - 2i$; $z_5 = \frac{-3}{1 + \sqrt{3}i}$

Démonstration 12

• A-t-on une formule générale pour récupérer la forme trigonométrique $z=|z|e^{i\theta}$ à partir de la forme algébrique z=x+iy de $z\neq 0$?

4.d Une application

Proposition:

Soit f une fonction de \mathbb{R} dans \mathbb{R} .

$$\exists \, a,b \in \mathbb{R} \text{ tels que } (a,b) \neq (0,0), \quad \forall \, t \in \mathbb{R}, \quad f(t) = a \cos(t) + b \sin(t)$$

$$\iff \exists \, A \in \mathbb{R}_+^*, \quad \exists \, \varphi \in \mathbb{R}, \quad \forall \, t \in \mathbb{R}, \quad f(t) = A \cos(t - \varphi)$$

5 Des équations à savoir résoudre dans $\mathbb C$

5.a $z^2 = Z_0$: Racines carrées

Définition:

Soit $Z_0 \in \mathbb{C}$. On dit qu'un complexe z est une <u>racine carrée</u> de Z_0 si $z^2 = Z_0$.

 $\underline{\Lambda}$ La notation \sqrt{x} n'a de sens \underline{que} pour $x \in \mathbb{R}_+$! Cela désigne l'unique réel positif y vérifiant $y^2 = x$. En effet, $x \mapsto \sqrt{x}$ est définie comme la réciproque de $x \in \mathbb{R}_+$.

$$x \mapsto x^2$$

Trouver les racines carrées de Z_0 , c'est donc résoudre l'équation $z^2=Z_0$ d'inconnue $z\in\mathbb{C}$.

Proposition:

Tout complexe \mathbb{Z}_0 non nul possède deux racines carrées exactement, opposées l'une de l'autre.

Démonstration 14

Exemples:

- -1 a pour racines carrées
- -4 a pour racines carrées
- 2 a pour racines carrées

Généralisons : pour un réel α , les racines carrées de α sont :

La démonstration nous donne une méthode trigonométrique pour trouver les racines carrées : si la forme trigonométrique de Z_0 est $\rho e^{i\theta}$, alors les deux racines carrées de Z_0 sont $\sqrt{\rho}e^{i\frac{\theta}{2}}$ et $-\sqrt{\rho}e^{i\frac{\theta}{2}}$.

Exemple : $Z_0 = 1 + i$

Que faire quand la forme trigonométrique de Z_0 n'est pas facile à obtenir, et qu'on ne dispose que de sa forme algébrique?

On écrit $Z_0 = a + ib$ avec a, b réels.

On cherche z racine carrée de Z_0 sous la forme z = x + iy avec $x \in \mathbb{R}$, $y \in \mathbb{R}$.

Premier essai:

$$z^2 = Z_0 \iff \Longrightarrow$$

Avec seulement cela, c'est compliqué de trouver x et y! Il nous faudrait :

- une autre équation avec x^2 et y^2 , de sorte qu'on trouve les valeurs de x^2 et y^2 ;
- les signes relatifs de x et y, autrement dit le signe de xy.

Deuxième essai - la méthode algébrique :

L'astuce:

$$z^2 = Z_0 \iff$$

$$\iff$$

$$\iff$$

Exemple : déterminer les racines carrées de 4-3i.

Démonstration 15

$az^2+bz+c=0$: Trinômes du second degré à coefficients complexes

Proposition:

Soit (E) l'équation d'inconnue $z \in \mathbb{C}$ suivante : $az^2 + bz + c = 0$, avec $a, b, c \in \mathbb{C}$, $a \neq 0$.

Posons $\Delta = b^2 - 4ac$. Soit δ une racine carrée de Δ .

L'ensemble des solutions de (E) est :

En particulier, il n'y a qu'une seule solution si et seulement si

Démonstration 16

Exemple : (E) : $z^2 + (1-i)z - 1 + \frac{i}{4} = 0$

• Cas où a, b, c sont réels

On retrouve les résultats connus car $\Delta = b^2 - 4ac$ est alors un réel;

— Si
$$\Delta \geq 0$$
,

— Si
$$\Delta < 0$$
,

• Remarque importante dans le cas où a,b,c sont réels et $\Delta < 0$

Comme $\sqrt{-\Delta} \neq 0$, on a des solutions complexes non réelles.

Soit z_0 l'une des deux solutions.

On peut l'écrire sous forme trigonométrique (car $z_0 \neq 0$ sinon z_0 serait réelle) :

$$z_0 = \rho e^{i\theta}$$
 avec $\rho > 0$ et $\theta \in \mathbb{R}$.

L'autre solution est $\overline{z_0} = \rho e^{-i\theta}$ donc $az^2 + bz + c =$

Il s'agit de la forme générale d'un trinôme du second degré :

- à coefficients réels
- sans racine réelle (i.e. $\Delta < 0$)

Sans calcul, on peut dire que les racines sont

Remarque: si on a un polynôme P(z) à coefficients complexes de degré strictement supérieur à 2, on cherche une racine "évidente" α , et on peut mettre $(z-\alpha)$ en facteur dans P(z) (comme au chapitre 1).

Relations coefficients-racines

Proposition:

Soit
$$(E)$$
: $az^2 + bz + c = 0 \ (a \neq 0)$

 z_1 et z_2 sont les deux solutions de $(E) \iff$

Démonstration 17

Bien sûr, il est très courant d'avoir a = 1: équation de la forme $z^2 + pz + q = 0$.

 z_1 et z_2 sont les deux solutions de $(E) \iff$

Le coefficient de z est alors

Le coefficient constant est alors

$z^n = Z$: Racines *n*-ièmes d'un nombre complexe

Définition:

Soit $n \in \mathbb{N}^*$ et $Z_0 \in \mathbb{C}$.

On dit qu'un complexe z est une racine nième de Z_0 si

Lorsque $Z_0 = 1$, on parle de racine nième de l'unité.

 \bigwedge Ne pas utiliser la notation $\sqrt[n]{x}$ à mauvais escient : $x \mapsto \sqrt[n]{x}$ est définie comme la réciproque de $x\mapsto x^n$, de \mathbb{R}_+ dans \mathbb{R}_+ si n est pair et de \mathbb{R} dans \mathbb{R} si n est impair.

Ainsi, $\sqrt[n]{x}$ n'a de sens que si $x \in \mathbb{R}$ voire seulement si $x \in \mathbb{R}_+$; et cela ne désigne qu'une seule des racines n-ièmes de x au sens complexe!

L'ensemble des racines nièmes de l'unité est noté \mathbb{U}_n :

$$\mathbb{U}_n =$$

Théorème:

Soit $n \in \mathbb{N}^*$. Il existe exactement n racines nièmes de l'unité, qui sont les complexes suivants :

Démonstration 18

Ainsi

$$\mathbb{U}_n =$$

Pour les petites valeurs de n, voici les racines nièmes de l'unité et leurs points images sur le cercle trigonométrique C:

n=2:

n=3:

n = 4:

 \mathcal{C} 0

Les points images forment, sur le cercle trigonométrique,

Proposition:

Soit $n\in\mathbb{N}^*$. Notons $\omega=e^{i\frac{2\pi}{n}}$. $\sum_{k=0}^{n-1}\omega^k \text{ est alors la somme des racines } n$ ièmes de l'unité, elle vaut 0:

$$\sum_{k=0}^{n-1} \omega^k = 0.$$

Démonstration 19

En particulier:

Il faut savoir manipuler les puissances des racines n-ièmes de l'unité. Par exemple, : si α est une racine 5-ième de l'unité :

$$\alpha^5 =$$

$$\alpha^6$$
 –

$$\alpha^8 =$$

$$\alpha^5 = \qquad \qquad \alpha^6 =$$

$$\alpha^{2024} =$$

$$\overline{\alpha} =$$

Exemple d'application des racines nièmes : Résoudre $(z+1)^4=z^4$. Démonstration 20

Racines nièmes de \mathbb{Z}_0 non nul :

 \bullet On écrit Z_0 sous forme trigonométrique :

$$Z_0 = \rho_0 e^{i\theta_0}, \qquad \rho_0 > 0.$$

On en tire une racine nième évidente :

• Donc:

$$z^n = Z_0 \iff$$

 \iff

 \iff

 \iff

 \iff

 \iff

On a montré :

Proposition:

Soit $n \in \mathbb{N}^*$ et $Z_0 \in \mathbb{C}^*$. Il existe exactement n racines nièmes de Z_0 , qui sont les complexes suivants :

Exemple : Trouver les racines 5 ièmes de 1+i.

Démonstration 21

Exponentielle complexe 6

Définition:

Soit $z \in \mathbb{C}$, de forme algébrique z = x + iy (x et y réels).

$$e^z = e^x e^{iy}$$

C'est un nombre complexe non nul.

Il est écrit directement sous forme trigonométrique :

 e^x est un réel strictement positif, e^{iy} est un nombre complexe de module 1.

En résumé:

Proposition:

Soient z et z' des complexes.

- $\bullet \quad e^{z+z'} = e^z e^{z'}.$
- $\frac{1}{e^z} = e^{-z}$. $\forall n \in \mathbb{Z}, (e^z)^n = e^{nz}$.
- $e^z = e^{z'} \iff$

Démonstration 22

Exemple: Résoudre $e^z = \sqrt{3} + i$.

Démonstration 23

Applications à la géométrie

On se place dans le plan \mathcal{P} muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$.

Traduction de l'alignement et de l'orthogonalité

Proposition:

• Soient \overrightarrow{u} et \overrightarrow{u}' des vecteurs non nuls, d'affixes respectives z et z'. Alors :

$$(\overrightarrow{u}, \overrightarrow{u}') =$$

Soient A, B, C, D des points d'affixes respectives a, b, c, d, avec $A \neq B$ et $C \neq D$. Alors:

$$\left(\overrightarrow{AB},\overrightarrow{CD}\right) =$$

Démonstration 24

On dit que deux vecteurs \overrightarrow{u} et \overrightarrow{u}' sont colinéaires s'il existe un réel k tel que $\overrightarrow{u}=k\overrightarrow{u}'$ ou bien tel que $\overrightarrow{u'} = k \overrightarrow{u}$.

Proposition:

(Colinéarité et orthogonalité)

Soient \overrightarrow{u} et \overrightarrow{u}' des vecteurs non nuls, d'affixes respectives z et z'

- Les vecteurs \overrightarrow{u} et \overrightarrow{u}' sont <u>colinéaires</u> si et seulement si $\left|\frac{z'}{z} \in \mathbb{R}\right|$.
- Les vecteurs \overrightarrow{u} et \overrightarrow{u}' sont $\underline{\text{orthogonaux}}$ si et seulement si

Démonstration 25

En fait, cela marque aussi si z' = 0.

Soient A, B, C des points d'affixes respectives a, b, c. Dire qu'ils sont alignés revient à dire que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} (par exemple) sont colinéaires. On en tire que, si $a \neq b$:

$$A,\ B,\ C \ \text{align\'es} \ \Longleftrightarrow \frac{c-a}{b-a} \in \mathbb{R}.$$

Quelques transformations élémentaires du plan

On identifie \mathbb{C} et \mathcal{P} , autrement dit on identifie z et le point M d'affixe z.

• La transformation $\mathbb{C} \to \mathbb{C}$

• La transformation $\mathbb{C} \to \mathbb{C}$

• Soit $b \in \mathbb{C}$. La transformation $\mathbb{C} \to \mathbb{C}$

• Soit $k \in \mathbb{R}^*$. La transformation $\mathbb{C} \to \mathbb{C}$ est

$$z \mapsto kz$$

• Soit $\theta \in \mathbb{R}$. La transformation $\mathbb{C} \to \mathbb{C}$ est

$$z \mapsto e^{i\theta}z$$

De façon plus générale, si $\alpha \in \mathbb{C}^*$, on peut s'intéresser à l'application $f: \mathbb{C} \to \mathbb{C}$. En écrivant α

sous forme trigonométrique $\rho e^{i\theta}$, avec $\rho \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$, on peut noter :

- h l'homothétie de centre O et de rapport ρ
- r la rotation de centre O et d'angle θ .

On a alors, pour tout $z \in \mathbb{C}$:

$$f(z) = \rho \times e^{i\theta} \times z = h \circ r(z)$$
$$= e^{i\theta} \times \rho \times z = r \circ h(z)$$

f est appelée similitude de centre O, de rapport ρ et d'angle $\theta.$

Exemple

Soit $f:\mathbb{C}\to\mathbb{C}$. Construire géométriquement f(2+i). Vérifier par le calcul.

$$z \mapsto 3iz$$

8 Fonctions à valeurs complexes

Soit I un intervalle de \mathbb{R} . On peut définir des fonctions définies sur I à valeurs dans \mathbb{C} , par exemple :

$$f: \mathbb{R}_+^* \to \mathbb{C}$$

 $x \mapsto \ln(x) + ix^2.$

On peut alors considérer les parties réelles et imaginaires de f(x) pour tout $x \in I$, ce qui définit des fonctions Re(f) et Im(f) qui, elles, sont à valeurs dans \mathbb{R} .

Dans l'exemple précédent,
$$\operatorname{Re}(f): \mathbb{R}_+^* \to \mathbb{R}$$
 et $\operatorname{Im}(f): \mathbb{R}_+^* \to \mathbb{R}$
$$x \mapsto \ln(x) \qquad x \mapsto x^2.$$

Définition:

- On dit que f est continue en x_0 (respectivement sur I) si les fonctions Re(f) et Im(f) le sont
- On dit que f est dérivable en x_0 (respectivement sur I) si les fonctions Re(f) et Im(f) le sont.

Dans ce cas, on définit le nombre dérivé $f'(x_0)$ (respectivement la fonction dérivée f') comme :

$$f'(x_0) = (\operatorname{Re}(f))'(x_0) + i(\operatorname{Im}(f))'(x_0)$$
(respectivement $f' = (\operatorname{Re}(f))' + i(\operatorname{Im}(f))'$)

• Lorsque f est continue sur I, on définit, pour tout $(a, b) \in I^2$,

$$\int_a^b f(t) dt = \int_a^b \operatorname{Re} \left(f(t) \right) dt + i \int_a^b \operatorname{Im} \left(f(t) \right) dt.$$

Remarques:

- La définition de f' permet d'écrire, en cas de dérivabilité : $\begin{cases} \operatorname{Re}(f') = (\operatorname{Re}(f))' \\ \operatorname{Im}(f') = (\operatorname{Im}(f))' \end{cases}$
- Une somme, plus généralement une combinaison linéaire, un produit, un quotient de fonctions dérivables à valeurs dans C sont dérivables, et les formules habituelles sont valables.

Exemples:

- Avec la fonction f définie plus haut :
- Pour $\alpha \in \mathbb{C}$, la dérivée de $x \mapsto \alpha x$ est $x \mapsto \alpha$. Démonstration 26
- Soit $f: \mathbb{R} \to \mathbb{C}$; calculons $\int_0^{\frac{\pi}{4}} f(x) dx$.

Proposition:

Soit $\varphi: I \to \mathbb{C}$ une fonction dérivable sur I. On pose, pour tout $x \in I$, $f(x) = e^{\varphi(x)}$.

Alors, f est dérivable sur I et : $\forall x \in I, \ f'(x) =$

Ce qui se note : $(e^{\varphi})' =$

Démonstration 27

Exemple: Pour $f: \mathbb{R} \to \mathbb{C}$ où α est un complexe,

$$x \mapsto e^{\alpha x}$$

f est dérivable et pour tout $x \in \mathbb{R}$, $f'(x) = \alpha e^{\alpha x}$.

Plan du cours

1	L'ensemble $\mathbb C$ des nombres complexes		1
	1.a	Définition des nombres complexes, forme algébrique	1
	1.b	Addition, produit, inverse	2
	1.c	Interprétation géométrique	3
2	Conjugué et module		4
	2.a	Conjugué	4
	2.b	Module	5
3	Nombres complexes de module 1		7
	3.a	Ensemble des nombres complexes de module 1	7
	3.b	Une application : linéarisation, "délinéarisation"	9
	3.c	Technique de l'angle moitié	9
	3.d	Une autre application : calculs de sommes	10
4	Argument et forme trigonométrique d'un nombre complexe non nul		10
	4.a	Définition	10
	4.b	Propriétés	11
	4.c	Comment obtenir la forme trigonométrique d'un complexe non nul?	11
	4.d	Une application	12
5	Des équations à savoir résoudre dans $\mathbb C$		12
	5.a	$z^2=Z_0$: Racines carrées	12
	$5.\mathrm{b}$	$az^2 + bz + c = 0$: Trinômes du second degré à coefficients complexes	14
	5.c	$z^n=Z$: Racines n -ièmes d'un nombre complexe	16
6	Ex	ponentielle complexe	19
7	Applications à la géométrie		19
	7.a	Traduction de l'alignement et de l'orthogonalité	19
	7.b	Quelques transformations élémentaires du plan	20
8	Fo	Fonctions à valeurs complexes	