AMENDMENTS

In the Claims

Ţ

Please amend the claims as indicated below. A complete set of all claims previously submitted, including the status for each claim, immediately follows below.

1. - 44. Cancelled

45. (New) A method of preventing diabetes in animals comprising administering to animals at risk of developing diabetes a pharmaceutically effective amount of a compound of formula 1:

$$\begin{array}{c|c}
O & A \\
R^1O - P - X - N & N \\
R^1O & V & N
\end{array}$$

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂ R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of –H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, –CN, and –NR⁷₂;

X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene, heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;

Y is selected from the group consisting of –H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, –C(O)R³, –S(O)₂ R³, –C(O)–OR³, –CONHR³, –NR²₂, and –OR³, all except H are optionally substituted;

 R^1 is independently selected from the group consisting of –H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , -NR 2 -C(O)-R 3 , -C(R 2)₂ -OC(O)R 3 , -C(R 2)₂ -O-C(O)OR 3 , -C(R 2)₂ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

$$\stackrel{\mathsf{V}}{\underset{\mathsf{W}}{\longrightarrow}}$$
z

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of $-CH_2$ OH, $-CH_2$ OCOR³, $-CH_2$ OC(O)SR³, $-CH_2$ OCO₂ R³, $-SR^3$, $-S(O)R^3$, $-CH_2$ NR₂, $-CH_2$ NR₂, $-CH_2$ Ar, -CH(Ar)OH, $-CH(CH=CR^2$ R²)OH, $-CH(C\equiv CR^2)OH$, and $-R^2$;

with the provisos that:

a) V, Z, W are not all -H; and

- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;
- R² is selected from the group consisting of R³ and -H;
- R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;
- R⁴ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;
- R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower alicyclic, and lower heteroalicyclic;
 - R⁶ is independently selected from the group consisting of –H, and lower alkyl;
- R^7 is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and –C(O) R^{10} ;
- R^8 is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, $-C(O)R^{10}$, or together said R^8 groups form a bidendate alkylene;
 - R⁹ is selected from the group consisting of alkyl, aralkyl, alicyclic, and heteroalicyclic;
- R¹⁰ is selected from the group consisting of –H, lower alkyl, –NH₂, lower aryl, and lower perhaloalkyl;
- R^{11} is selected from the group consisting of alkyl, aryl, -OH, $-NH_2$ and $-OR^3$; and pharmaceutically acceptable prodrugs and salts thereof.
- 46. (New) A method of treating impaired glucose tolerance comprising administering to patients in need thereof a pharmaceutically effective amount of an FBPase inhibitor of formula 1:

$$\begin{array}{c|c}
0 & A \\
R^1O - P - X - N & N \\
R^1O & V \\
\end{array}$$

wherein

A is selected from the group consisting of $-NR^8_2$, $-NHSO_2$ R^3 , $-OR^5$, $-SR^5$, halo, lower alkyl, $-CON(R^4)_2$, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of –H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, –CN, and –NR⁷₂;

X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene, heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;

Y is selected from the group consisting of –H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, –C(O)R³, –S(O)₂ R³, –C(O)–OR³, –CONHR³, –NR²₂, and –OR³, all except H are optionally substituted;

 R^1 is independently selected from the group consisting of -H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , $-NR^2$ -C(O)- R^3 , -C(R 2)₂ -OC(O)R 3 , -C(R 2)₂ -O-C(O)OR 3 , -C(R 2)₂ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R^1 and R^1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R^1 and R^1 are

$$\times$$
 $-$ z

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and $-R^9$; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of $-CH_2$ OH, $-CH_2$ OCOR³, $-CH_2$ OC(O)SR³, $-CH_2$ OCO₂ R³, $-SR^3$, $-S(O)R^3$, $-CH_2$ N₃, $-CH_2$ NR²₂, $-CH_2$ Ar, -CH(Ar)OH, $-CH(CH=CR^2$ R²)OH, $-CH(C=CR^2)OH$, and $-R^2$;

with the provisos that:

- a) V, Z, W are not all -H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower alicyclic, and lower heteroalicyclic;

R⁶ is independently selected from the group consisting of –H, and lower alkyl;

 R^7 is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and –C(O) R^{10} ;

 R^8 is independently selected from the group consisting of –H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, –C(O) R^{10} , or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, alicyclic, and heteroalicyclic;

R¹⁰ is selected from the group consisting of –H, lower alkyl, –NH₂, lower aryl, and lower perhaloalkyl;

 R^{11} is selected from the group consisting of alkyl, aryl, -OH, $-NH_2$ and $-OR^3$; and pharmaceutically acceptable prodrugs and salts thereof.

47. (New) A method of treating insulin resistance comprising administering to patients in need thereof a pharmaceutically effective amount of an FBPase inhibitor of formula 1:

$$R^{1}O - P - X - N \longrightarrow N$$

$$R^{1}O \longrightarrow N \longrightarrow N$$

$$R^{1}O \longrightarrow N \longrightarrow N$$

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂ R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and $-NR^{7}_{2}$;

X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene, heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;

Y is selected from the group consisting of –H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, –C(O)R³, –S(O)₂ R³, –C(O)–OR³, –CONHR³, –NR²₂, and –OR³, all except H are optionally substituted;

 R^1 is independently selected from the group consisting of –H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , -NR 2 -C(O)-R 3 , -C(R 2)₂ -OC(O)R 3 , -C(R 2)₂ -O-C(O)OR 3 , -C(R 2)₂ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

$$\times$$
 z

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and $-R^9$; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy,

or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of $-CH_2$ OH, $-CH_2$ OCOR³, $-CH_2$ OC(O)SR³, $-CH_2$ OCO₂ R³, $-SR^3$, $-S(O)R^3$, $-CH_2$ NR²₂, $-CH_2$ Ar, -CH(Ar)OH, $-CH(CH=CR^2$ R²)OH, $-CH(C \equiv CR^2)OH$, and $-R^2$;

with the provisos that:

- a) V, Z, W are not all -H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower alicyclic, and lower heteroalicyclic;

R⁶ is independently selected from the group consisting of –H, and lower alkyl;

 R^7 is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and –C(O) R^{10} ;

 R^8 is independently selected from the group consisting of –H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, –C(O) R^{10} , or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, alicyclic, and heteroalicyclic;

R¹⁰ is selected from the group consisting of –H, lower alkyl, –NH₂, lower aryl, and lower perhaloalkyl;

 R^{11} is selected from the group consisting of alkyl, aryl, -OH, $-NH_2$ and $-OR^3$; and pharmaceutically acceptable prodrugs and salts thereof.

48. (New) The method of claim 1 wherein said animals at risk of developing diabetes have a disease or condition selected from the group consisting of impaired glucose tolerance, insulin resistance, hyperglycemia, obesity, accelerated gluconeogenesis, and increased hepatic glucose output.

49. (New) A method of treating or preventing a disease or condition selected from the group consisting of hyperlipidemia, atherosclerosis, ischemic injury, and hypercholesterolemia which comprises administering to an animal in need thereof a pharmaceutically effective amount of an FBPase inhibitor of formula 1:

$$R^{1}O - P - X - \sqrt[N]{\prod_{N = 1}^{A} N} E$$

wherein

A is selected from the group consisting of $-NR^8_2$, $-NHSO_2$ R^3 , $-OR^5$, $-SR^5$, halo, lower alkyl, $-CON(R^4)_2$, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of –H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, –CN, and –NR $^{7}_{2}$;

X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene,

heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;

Y is selected from the group consisting of –H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, $-C(O)R^3$, $-S(O)_2R^3$, $-C(O)-OR^3$, $-CONHR^3$, $-NR^2$, and $-OR^3$, all except H are optionally substituted;

 R^1 is independently selected from the group consisting of –H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR 2 , -NR 2 -C(O)-R 3 , -C(R 2)₂ -OC(O)R 3 , -C(R 2)₂ -O-C(O)OR 3 , -C(R 2)₂ OC(O)SR 3 , -alk-S-C(O)R 3 , -alk-S-S-alkylhydroxy, and -alk-S-S-alkylhydroxy, or together R 1 and R 1 are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R 1 and R 1 are

$$\bigvee_{W}^{V}$$

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and $-R^9$; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl,

or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of $-CH_2$ OH, $-CH_2$ OCOR³, $-CH_2$ OC(O)SR³, $-CH_2$ OCO₂ R³, $-SR^3$, $-S(O)R^3$, $-CH_2$ NR²₂, $-CH_2$ Ar, -CH(Ar)OH, $-CH(CH=CR^2$ R²)OH, $-CH(C \equiv CR^2)OH$, and $-R^2$;

with the provisos that:

- a) V, Z, W are not all -H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower alicyclic, and lower heteroalicyclic;

R⁶ is independently selected from the group consisting of –H, and lower alkyl;

R⁷ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and –C(O)R¹⁰;

 R^8 is independently selected from the group consisting of –H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, –C(O) R^{10} , or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, alicyclic, and heteroalicyclic;

R¹⁰ is selected from the group consisting of -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl;

 R^{11} is selected from the group consisting of alkyl, aryl, -OH, $-NH_2$ and $-OR^3$; and pharmaceutically acceptable prodrugs and salts thereof.

50. (New) A pharmaceutical composition comprising a pharmaceutically effective amount of an FBPase inhibitor of formula 1:

$$R^{1}O - P - X - N + N + E$$

wherein

A is selected from the group consisting of -NR⁸₂, -NHSO₂ R³, -OR⁵, -SR⁵, halo, lower alkyl, -CON(R⁴)₂, guanidino, amidino, -H, and perhaloalkyl;

E is selected from the group consisting of –H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, –CN, and –NR⁷₂;

X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene, heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;

Y is selected from the group consisting of –H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, $-C(O)R^3$, $-S(O)_2R^3$, $-C(O)-OR^3$, $-CONHR^3$, $-NR^2_2$, and $-OR^3$, all except H are optionally substituted;

 R^1 is independently selected from the group consisting of –H, alkyl, aryl, heteroalicyclic where the cyclic moiety contains a carbonate or thiocarbonate, $-C(R^2)_2$ -aryl, -alk-aryl, $-C(R^2)_2$ OC(O)NR²₂, -NR² -C(O)-R³, -C(R²)₂ -OC(O)R³, -C(R²)₂ -O-C(O)OR³, -C(R²)₂

 $OC(O)SR^3$, -alk-S-C(O)R³, -alk-S-S-alkylhydroxy, and -alk-S-S-S-alkylhydroxy, or together R¹ and R¹ are -alk-S-S-alk- to form a cyclic group, wherein each "alk" is an independently selected alkylene, or together R¹ and R¹ are

$$\times$$
Z

wherein

V and W are independently selected from the group consisting of hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, 1-alkynyl, and -R⁹; or

together V and Z are connected via a chain of 3-5 atoms, only one of which can be a heteroatom, to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus; or

together V and W are connected via a chain of 3 carbon atoms to form part of a cyclic group substituted with hydroxy, acyloxy, alkoxycarboxy, alkylthiocarboxy, hydroxymethyl, or aryloxycarboxy attached to a carbon atom that is three atoms from an oxygen attached to the phosphorus;

Z is selected from the group consisting of $-CH_2$ OH, $-CH_2$ OCOR³, $-CH_2$ OC(O)SR³, $-CH_2$ OCO₂ R³, $-SR^3$, $-S(O)R^3$, $-CH_2$ NR₂, $-CH_2$ NR₂, $-CH_2$ Ar, -CH(Ar)OH, $-CH(CH=CR^2$ R²)OH, $-CH(C\equiv CR^2)OH$, and $-R^2$:

with the provisos that:

- a) V, Z, W are not all -H; and
- b) when Z is $-R^2$, then at least one of V and W is not -H or $-R^9$;

R² is selected from the group consisting of R³ and -H;

R³ is selected from the group consisting of alkyl, aryl, alicyclic, heteroalicyclic, and aralkyl;

R⁴ is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, and lower aryl;

R⁵ is selected from the group consisting of lower alkyl, lower aryl, lower aralkyl, lower alicyclic, and lower heteroalicyclic;

R⁶ is independently selected from the group consisting of –H, and lower alkyl;

 R^7 is independently selected from the group consisting of –H, lower alkyl, lower alicyclic, lower heteroalicyclic, lower aralkyl, lower aryl, and –C(O) R^{10} ;

 R^8 is independently selected from the group consisting of -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, $-C(O)R^{10}$, or together said R^8 groups form a bidendate alkylene;

R⁹ is selected from the group consisting of alkyl, aralkyl, alicyclic, and heteroalicyclic;

R¹⁰ is selected from the group consisting of –H, lower alkyl, –NH₂, lower aryl, and lower perhaloalkyl;

R¹¹ is selected from the group consisting of alkyl, aryl, -OH, -NH₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

Remarks

Support for the new claims can be found throughout the specification. For instance, p. 6, lines 17-20, 23-25, p. 61, lines 15-16, p. 61, line 27 - p. 62, line 4, as well as in original claims 35-37, and 41.