Learning From Data

Dhruv Rajan Chapter 1. The Learning Problem

January 2, 2018

Exercise 1.1. Express each task in the framework of *learning from data*. Specify input space \mathcal{X} , output space \mathcal{Y} , target function $f: \mathcal{X} \to \mathcal{Y}$, and dataset.

- 1. Medical diagnosis
 - \mathcal{X} : Medical history of past patients. This might include history of specific illnesses, levels of certain chemical, hereditary status for various genes/diseases, etc.
 - \mathcal{Y} : Diagnoses of past patients
- 2. Handwritten Digit Recognition
 - \mathcal{X} : Pictures of labeled digits. These may be represented as a vector of pixels, or some condensed feature representation.
 - \mathcal{Y} : Human generated labels for these digits.
- 3. Spam Email Classification
 - \mathcal{X} : User emails, spread between spam/ham. Could be represented as hot-vectors of keywords, word counts, etc.
 - \mathcal{Y} : Classifications of user emails
- 4. Predicting how an electric load varies with price, temperature, day of the week.
 - \mathcal{X} : Settings for the system, as a 3-vector: \langle price, tempereature, day of week \rangle . Should have wide spread of variation between each of these 3 features.
 - \mathcal{Y} : Measured loads for each setting

Exercise 1.2. Use perceptron to detect spam. Features include frequency of keywords; output +1 for spam.

- 1. Positive Weight promotions, medical words, save money, politics.
- 2. Negative Weight Regular words common in non-spam
- 3. The bias term directly affects how much border-line email gets classified as spam. It serves as a threshold, allowing the separating plane to shift towards conservative of liberal thresholds.

Exercise 1.3. Perceptron Learning Algorithm (PLA) update rule

a) Show that $g = y(t)\mathbf{w}^T\mathbf{x}(t) < 0$

The hypothesis h(t) is given by $h(t) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}(t))$. For a misclassified point $\mathbf{x}(t)$, we know that $\operatorname{sign}(y(t)) \neq \operatorname{sign}(h(t))$. Thus, the product g mentioned above must be negative, since exactly one of y(t) and h(t) must be negative for some misclassified $\mathbf{x}(t)$.

b) Show that $y(t)\mathbf{w}^{T}(t+1)\mathbf{x}(t) > y(t)\mathbf{w}^{T}(t)\mathbf{x}(t)$

$$y(t) [\mathbf{w}(t) + y(t)\mathbf{x}(t)] \mathbf{x}(t)$$
$$y(t) [\mathbf{w}(t)\mathbf{x}(t) + y(t)\mathbf{x}^{2}(t)]$$
$$y(t)\mathbf{w}(t)\mathbf{x}(t) + y^{2}(t)\mathbf{x}^{2}(t)$$

Since the factor $y^2(t)\mathbf{x}^2(t)$ is positive, when it is added, it can only increase the initial product h(t)y(t).

c) If the $h(t) \cdot y(t)$ becomes greater than 0, the point $\mathbf{x}(t)$ has become properly classified. Since this product is strictly increased, by the result in (b), it is a step in the right direction.

We can see this geometrically as well.

Exercise 1.4. Classify these situations as either learning or design.

- 1. Learning
- 2. Design
- 3. Learning
- 4. Design
- 5. Learning. Though one can optimize analytically for various heuristics, the heuristic has to be picked, and this is a learning problem.

Exercise 1.6. Classify these situations according to their respective learning patterns.

- 1. Supervised
- 2. Reinforcement Learning
- 3. Unsupervised
- 4. Reinforcement Learning
- 5. Supervised Learning

Problem 1.1. There are two opaque bags, A, B. A has two black balls, B has 1 black ball, 1 white ball. You pick a bag at random and select a ball from that bag (it is black). What is the probability that the second ball in the bag is also black?

We want P(other ball from same bag is black|first ball is black). Bayes rule gives us that

$$P[A \cap B] = P[A|B] \cdot P[B] = P[B|A] \cdot P[A] \tag{1}$$

$$\begin{split} P[\text{1st black}|\text{2nd black}] &= P[\text{2nd black}|\text{1st black}] \cdot P[\text{1st black}] \\ P[\text{2nd black}|\text{1st black}] &= \frac{P[\text{1st black} \cap \text{2nd black}]}{P[\text{1st black}]} \\ &= \frac{0.5}{0.75} \\ &= \left[\frac{2}{3}\right] \end{split}$$

Problem 1.2. Consider the two-dimensional perceptron $h(x) = \text{sign}(\mathbf{w}^T \mathbf{x})$.

a) Show that the regions on the plaine where h(x) = +1 and h(x) = -1 are separated by a line. Express this in slope-intercept form. The hypothesis is given by

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

The boundary line is given by:

$$0 = \mathbf{w}^T \mathbf{x}$$
$$= w_0 + w_1 \cdot x_1 + w_2 \cdot x_2$$

This is a linear equation in two variables. Thus, the boundary must be linear. To find the equation of this line in slope intercept form, we can solve for x_2 in terms of x_1 .

$$x_2 = \frac{-w_1}{w_2} \cdot x_1 - \frac{w_0}{w_2}$$

b) Line for w = [1, 2, 3] is $x_2 = -\frac{2}{3} \cdot x_1 - \frac{1}{3}$. Line for w = [-1, -2, -3] is $x_2 = -\frac{2}{3} - \frac{1}{3}$.

Problem 1.3. Prove that the PLA eventually converges to a linear separator for separable data. Assume $\mathbf{w}(0) = 0$.

- a) Let $\rho = \min_{1 \le n \le N} y_n(\mathbf{w}^{*T}\mathbf{x}_n)$. Show that $\rho > 0$. We know that \mathbf{w}^* correctly classifies all points. Thus, the sign of the product $\mathbf{w}^{*T}\mathbf{x}_n$ must match the sign of y_n . When any two quantities of the same sign are multiplied, the resulting value is postive, so $\rho > 0$.
- b) Show that $\mathbf{w}(t)\mathbf{w}^* \geq \mathbf{w}^T(t-1)\mathbf{w}^* + \rho$, and conclude that $\mathbf{w}(t)\mathbf{w}^* \geq t\rho$. The update rule is as follows:

$$\mathbf{w}(t) = \mathbf{w}(t-1) + y(t)\mathbf{x}(t)$$

We can use this to reduce the left hand of the inequality:

$$\mathbf{w}(t)\mathbf{w}^* = \mathbf{w}^* \cdot [\mathbf{w}(t-1) + y(t)\mathbf{x}(t)]$$

= $\mathbf{w}^*\mathbf{w}(t-1) + \underbrace{\mathbf{w}^*y(t)\mathbf{x}(t)}_{\text{call this term } s}$

The term s must be $\geq \rho$ since ρ specifies the minimum possible value (over all t) of this quantity. Since $s \geq \rho$, the statement must remain true if we substitute ρ for s, and thus, we have the first inequality.

Next, we want to show that $\mathbf{w}(t)\mathbf{w}^* \geq t\rho$. We show this by induction. At time t=0:

$$\mathbf{w}^{\mathrm{T}} \cdot \mathbf{w}^{*} = 0 > 0 \cdot \rho \quad \checkmark$$

Given that $\mathbf{w}(t)\mathbf{w}^* \geq t\rho$, we need to show this holds for time t+1. From the previous result, we have that

$$\mathbf{w}(t+1)\mathbf{w}^* \ge \mathbf{w}(t)\mathbf{w}^* + \rho$$
$$\ge t\rho + \rho$$
$$\ge (t+1)\rho$$

c) Show that $\|\mathbf{w}(t)\|^2 \le \|\mathbf{w}(t-1)\|^2 + \|\mathbf{x}(t-1)\|^2$.

This is a restatement of the triangle inequality.

d) Show that $\|\mathbf{w}(t)\|^2 \le tR^2$ where $R = \max_{1 \le n \le N} \|x_n\|$ At time t = 0

$$\|\mathbf{w}(t)\|^2 = 0 \le 0 \cdot R^2 \quad \checkmark$$

Given $\|\mathbf{w}(t)\|^2 \le t \cdot R^2$, we need this to hold for time t+1.

$$\|\mathbf{w}(t+1)\|^2 \le \|\mathbf{w}(t)\|^2 + \|\mathbf{x}(t)\|$$

 $\le tR^2 + \|\mathbf{x}(t)\|$

It is necessarily the case that $R >= \|\mathbf{x}(t)\|$, since R is the maximum (over all t) of this quantity. Thus, we can substitute R or R^2 in place of this expression.

$$\|\mathbf{w}(t+1)\|^2 \le tR^2 + R^2$$

 $\le (t+1)R^2$