

Advanced Game Physics

Stoffsimulation

Prof-Dr. Günther Greiner,
Matteo Colaianni M.Sc., Benjamin Keinert M.Sc.
Darius Rückert B.Sc.

Lehrstuhl für Graphische Datenverarbeitung

Wintersemester 2015/16

Einführung

- Masse-Feder-Systeme
- Masse-Feder-Netzwerke
- Position-Based-Dynamics

Einführung

- Masse-Feder-Systeme (Mass Spring Systems, kurz: MSS) zur darstellung deformierbarer Geometrie
- Die meisten Cloth-Simulationen gehen auf MSS zurück
- Anwendung finden sie auch in anderen Gebieten (z.B. Parameterisierung)

Entwicklung Stoffsimulation

Masse-Feder System

Aufbau

- Ein Federsystem besteht aus Massepartikeln der Masse m
- ... und sie verbindende Federn mit Federhärte k und Ruhelänge l_0

Dynamik

- Wird eine Feder aus ihrer Ruhelänge gebracht, entsteht eine Federkraft $\overrightarrow{F_s}$
- Diese ist so gerichtet, daß sie der die deformation verursachenden Kraft entgegen wirkt.

Masse-Feder System

- Gesetz von Hooke
 - Die Kraft, die durch eine gestreckte/gestauchte Feder verursacht wird
 - Ist linear zur Deformation
 - Wirkt in die Richtung der Feder gegen die deformierende Kraft

$$\overrightarrow{F_s} = -\frac{(\overrightarrow{p_1} - \overrightarrow{p_0})}{\|\overrightarrow{p_1} - \overrightarrow{p_0}\|} k \cdot \Delta l$$

Masse-Feder System

Simulation durch lösen der Differenzialgleichung

$$v(t) = \dot{x}(t)$$
$$a(t) = \ddot{x}(t)$$

$$p(t + \Delta t) = p(t) + \Delta t \cdot F_S(t)$$

$$v(t + \Delta t) = \frac{p(t + \Delta t)}{m}$$

$$x(t + \Delta t) = x(t) + \Delta t \cdot v(t + \Delta t)$$

Aufbau eines Masse-Feder-Netzwerkes (MFN)

Dynamik eines deformierten MFN

Simulation

Fehler der Integration

- Die DLG wird explizit gelöst
- Der Fehler hängt vom Zeitschritt Δt ab
- Die Simulation wird unstabil f
 ür hohe Zeitschritte

- Das lineare Verhalten der Federn führt zu gummiartigen Resultaten
- Erhöhen der Federhärte nicht unbegrenzt möglich (vergl. [Provot96])

$$T_0 \approx \pi \sqrt{\frac{m}{k}} \Rightarrow \mathbf{k}_{\mathrm{krit}} \approx m \frac{\Delta t^2}{\pi^2}$$

Stoff-Simulation mit MFN

- Datenstruktur
 - Auf einem Gitter angeordnete Massepartikel; es gilt

$$m_{gesamt} = \sum_{i} m_{i}$$

Federn, durch welche die Stoffbewegung beschränkt wird

Biegefedern

Stoff-Simulation mit MFN

Ablauf

Probleme mit MFN

- Stark unrobust f
 ür grosse Zeitschritte (numerische Stabilit
 ät!)
- Nur begrenzt konfigurierbar, da Federhärten begrenzt sind (Eigenperiode!)

Ansatz

 Statt eine DGL 2. Ordnung zu lösen, wird ein System gelöst, dass direkt für die Positionen der Partikel löst → Position Based Dynamics

[Mueller07]

- Analog zu Masse-Feder-Netzwerken
 - Ein Massepartikel bestehen aus
 - Position: x_i
 - Geschätzte Position: p_i
 - Inverse Masse: w_i
 - Geschwindigkeit: v_i

- Analog zu Masse-Feder-Netzwerken
 - Federn werden durch Constraints (engl. Bedingung) ersetzt
 - Ein Constraint c_i besteht aus
 - Kardinalität: n_i
 - Kostenfunktion: C_i : $\mathbb{R}^{3n_j} \to \mathbb{R}$
 - Gewicht (stiffness): k_i
 - Typ: Gleichung oder Ungleichung
 - Ziel ist es nun, alle Constraints bestmöglich zu erfüllen, d.h. die Kosten zu minimieren.

Algorithmus

```
forall vertices i
            initialize \mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i
(2)
(3)
        endfor
(4)
        loop
            forall vertices i do \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)
(5)
            dampVelocities(\mathbf{v}_1, \dots, \mathbf{v}_N)
(6)
             forall vertices i do \mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i
(7)
(8)
             forall vertices i do generateCollisionConstraints(\mathbf{x}_i \rightarrow \mathbf{p}_i)
             loop solverIterations times
(9)
                 projectConstraints(C_1, \ldots, C_{M+M_{coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N)
(10)
            endloop
(11)
            forall vertices i
(12)
(13)
           \mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i)/\Delta t
(14)
                \mathbf{x}_i \leftarrow \mathbf{p}_i
            endfor
(15)
            velocityUpdate(\mathbf{v}_1, \dots, \mathbf{v}_N)
(16)
(17) endloop
```


Algorithmus

```
forall vertices i
             initialize \mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i
(2)
(3)
        endfor
(4)
        loop
            forall vertices i do \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)
(5)
             dampVelocities(\mathbf{v}_1, \dots, \mathbf{v}_N)
(6)
             forall vertices i do \mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i
(7)
(8)
             forall vertices i do generateCollisionConstraints(\mathbf{x}_i \rightarrow \mathbf{p}_i)
             loop solverIterations times
(9)
(10)
                 projectConstraints(C_1, \ldots, C_{M+M_{coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N)
            endloop
(11)
            forall vertices i
(12)
(13)
           \mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i)/\Delta t
(14)
                \mathbf{x}_i \leftarrow \mathbf{p}_i
            endfor
(15)
            velocityUpdate(\mathbf{v}_1, \dots, \mathbf{v}_N)
(16)
(17) endloop
```

Geschwindigkeiten integrieren

Algorithmus

```
forall vertices i
             initialize \mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i
(2)
(3)
        endfor
(4)
        loop
             forall vertices i do \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)
(5)
             dampVelocities(\mathbf{v}_1, \dots, \mathbf{v}_N)
(6)
             forall vertices i do \mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i
(7)
             forall vertices i do generateCollisionConstraints(\mathbf{x}_i \rightarrow \mathbf{p}_i)
(8)
             loop solverIterations times
(9)
(10)
                 projectConstraints(C_1, \ldots, C_{M+M_{coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N)
             endloop
(11)
            forall vertices i
(12)
(13)
           \mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i)/\Delta t
(14)
                \mathbf{x}_i \leftarrow \mathbf{p}_i
             endfor
(15)
             velocityUpdate(\mathbf{v}_1, \dots, \mathbf{v}_N)
(16)
(17) endloop
```

Positionen schätzen

Algorithmus

```
forall vertices i
            initialize \mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i
(2)
(3)
        endfor
(4)
        loop
            forall vertices i do \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)
(5)
            dampVelocities(\mathbf{v}_1, \dots, \mathbf{v}_N)
(6)
             forall vertices i do \mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i
(7)
             forall vertices i do generateCollisionConstraints(\mathbf{x}_i \rightarrow \mathbf{p}_i)
(8)
            loop solverIterations times
(9)
                 projectConstraints(C_1, \ldots, C_{M+M_{coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N)
(10)
(11)
            endloop
            forall vertices i
(12)
             \mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i)/\Delta t
(13)
(14)
                \mathbf{x}_i \leftarrow \mathbf{p}_i
            endfor
(15)
(16)
             velocityUpdate(\mathbf{v}_1, \dots, \mathbf{v}_N)
(17) endloop
```

Positionsschätzungen
Aktualisieren
→ Constraints lösen

Algorithmus

```
forall vertices i
            initialize \mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i
(2)
(3)
        endfor
(4)
        loop
            forall vertices i do \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)
(5)
            dampVelocities(\mathbf{v}_1, \dots, \mathbf{v}_N)
(6)
            forall vertices i do \mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i
(7)
(8)
            forall vertices i do generateCollisionConstraints(\mathbf{x}_i \rightarrow \mathbf{p}_i)
            loop solverIterations times
(9)
(10)
                projectConstraints(C_1, \ldots, C_{M+M_{coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N)
            endloop
(11)
            forall vertices i
                                                                                                                                    Geschw. update
(12)
(13)
                \mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i)/\Delta t
                                                                                                                               und Positionen setzen
(14)
                \mathbf{x}_i \leftarrow \mathbf{p}_i
(15)
            endfor
            velocityUpdate(\mathbf{v}_1, \dots, \mathbf{v}_N)
(16)
(17) endloop
```


- Distanz-Constraint (distance)
 - Modellierung einer Feder (lineare "Kosten" abhängig vom Abstand)

$$C(\mathbf{p}_1, \mathbf{p}_2) = |\mathbf{p}_1 - \mathbf{p}_2| - d$$

Projektion des Constraint:

$$\Delta \mathbf{p}_{1} = -\frac{w_{1}}{w_{1} + w_{2}} (|\mathbf{p}_{1} - \mathbf{p}_{2}| - d) \frac{\mathbf{p}_{1} - \mathbf{p}_{2}}{|\mathbf{p}_{1} - \mathbf{p}_{2}|}$$

$$\Delta \mathbf{p}_{2} = +\frac{w_{2}}{w_{1} + w_{2}} (|\mathbf{p}_{1} - \mathbf{p}_{2}| - d) \frac{\mathbf{p}_{1} - \mathbf{p}_{2}}{|\mathbf{p}_{1} - \mathbf{p}_{2}|}$$

- Biege-Constraint (bending)
 - Modellierung der Festigkeit des Materials

$$C(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) = \arccos(\mathbf{n}_1 \cdot \mathbf{n}_2) - \varphi_0$$

Projektion des Constraint (Siehe [Müller07], Appendix A):

$$\begin{split} q_3 &= \frac{p_2 \times n_2 + (n_1 \times p_2)d}{|p_2 \times p_3|} \\ q_4 &= \frac{p_2 \times n_1 + (n_2 \times p_2)d}{|p_2 \times p_4|} \\ q_2 &= -\frac{p_3 \times n_2 + (n_1 \times p_3)d}{|p_2 \times p_3|} - \frac{p_4 \times n_1 + (n_2 \times p_4)d}{|p_2 \times p_4|} \\ q_1 &= -q_2 - q_3 - q_4 \end{split}$$

$$\Delta \mathbf{p}_i = -\frac{w_i \sqrt{1 - d^2} (\arccos(d) - \varphi_0)}{\sum_j w_j |\mathbf{q}_j|^2} \mathbf{q}_i$$

Kollisions-Konstraint

$$C(\mathbf{p}) = (\mathbf{p} - \mathbf{q}_s) \cdot \mathbf{n}_s + \mathbf{h}$$

- Projektion des Constraint:
 - Siehe Kollisionsantwort aus den Vergangenen Vorlesungen
 - Die Geschwindigkeit muss gesondert beachtet werden