

Redes Generativas Algoritmos de Deep Learning

Prof. Dr. Diego Renan Bruno

Education Tech Lead na DIO

Doutor em Robótica e Machine Learning pelo ICMC-USP

Redes

Generativas

Machine Learning

Trabalhos Realizados

Laboratório de Robótica Móvel ICMC/USP - São Carlos

CARINA 1

CARINA 2

Trabalhos Realizados

Laboratório de Robótica Móvel ICMC/USP - São Carlos

Trabalhos Realizados

Laboratório de Robótica Móvel ICMC/USP - São Carlos

O mundo da IA...

IA Geral

IA Restrita

Machine Learning

ARTIFICIAL INTELLIGENCE

O que é Visão Computacional?

Sensoriamento: Imagens

Processamento De Imagens

Análise: *Machine Learning*

Reconhecimento de Pessoas

Redes Neurais Articiais

O que são Redes Neurais?

Redes Neurais

Qual a estrutura de uma RNA? Constituíntes da célula: -membrana celular citoplasma núcleo celular Diferentes partes da célula: - axônio soma (corpo da célula) dendrito g(.)

Redes Biológicas x Arficiais

dendritos / pesos

núcleo / unidade

neurônio artificial

axônio+sinapse / saída

Neurônio Artificial

Dados de entrada e saída

Redes Neurais Biológicas x

Arficiais

Entrada

Processo

Relação de entrada e saída

Dados gerados

Imagem de Entrada

Análise de Características (Features)

Diferenças entre as redes Deep...

→ Extração de *Features*:

Redes Neurais Artificiais

Dados a serem interpretados

Análise de características (features)

Caixa preta gerada no treino

Mas como são as Features?

Como são as features?

Outros Objetos

Classificação de Objetos

Classificação de objetos

Aqui temos duas classes

Dados a serem interpretados

Dados a serem interpretados

Classificação de objetos

Mnist Dataset

Aqui temos 9 classes

DATASET – Base de treino

Mas o que gera um Treinamento?

Dados de aprendizado

Pesos gerados no treinamento

Arquivos de pesos

Modelo de treinamento

Modelo de treinamento

Pesos gerados em uma rede

Algoritmo Neural

Modelo de treinamento

Relação dos pesos

Algoritmo

Importando Modelos de RNA

Classify ImageNet classes with ResNet50

```
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img to array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
```


Exemplo de RNA no COLAB

https://colab.research.google.com/github/storopoli/ciencia-de-dados/blob/master/notebooks/Aula_18_a_Redes_Neurais_com_TensorFlow.ip ynb#scrollTo=6zmMUxg8pfqE

DeepFake

Imagine que a tarefa seja gerar uma imagem inspirada no estilo artístico de Picasso. As equipes de desenvolvimento de IA podem coletar todas as pinturas de Picasso e treinar uma GAN para identificar as cores, características e pinceladas individuais representativas das obras do artista.

O sistema de imitação aplica os conhecimentos que tem para produzir milhares de novas imagens no estilo de Picasso, usando características de obras de arte existentes, enquanto outro sistema de lA avalia a semelhança entre as criações e o estilo de Picasso e gera uma classificação. Os resultados não convincentes são retornados ao sistema de imitação para serem aprimorados.

Após trocar informações milhões de vezes, o sistema de imitação fica cada vez melhor na criação de pinturas no estilo de Picasso.

As GANs vão além da simples memorização do que já foi feito: elas criam conteúdo novo. Por isso, elas são consideradas um marco importante pela comunidade de pesquisa de IA. Designers e arquitetos já exploram o potencial desses sistemas para gerar modelos 3D de carros e edifícios com base no estudo de fotos em 2D.

GANs

GANs

GANs

Problemas

- Desinformação:
- Fraude e extorsão:
- Violação de privacidade:
- Uso indevido de imagens e vozes:
- Dificuldade na detecção:

Aplicações em veículos autônomos

Segmentação

Oclusões

Gerações de imagens

Gerações de imagens

Projeto prático:

Gerações de imagens

https://colab.research.google.com/github/lexfridman/mit-deep-learning/blob/master/tutorial_gans/tutorial_gans.ipynb

Obrigado!

Machine Learning

Prof. Dr. Diego Bruno