

Coding The Future

Algorithm

Agenda

- 1. วิทยาการคอมพิวเตอร์คืออะไร
- 2. ใบนารี
- 3. การแสดงผลข้อมูล
- 4. อัลกอริทึม
- 5. รหัสเทียม (Pseudo code)
- 6. สแคช (Scratch)
- 7. คำจำกัดความของเทคโนโลยี
- 8. ทฤษฎี และการออกแบบ อัลกอริทึม

อัลกอริทึม รู้ไปทำไม?

หากรู้/เขียนอัลกอริทึม (Algorithm)
จะทำให้ผู้พัฒนาโปรแกรมเห็นและเข้าใจขั้นตอน
การเขียนโปรแกรมอย่างง่ายขึ้น
โดยขั้นตอน ก็คือ ลำดับการประมวลผล
ในการแก้ปัญหาใดปัญหาหนึ่ง

อัลกอริทึม

 เมื่อเราจะทำงานใดๆ ให้เริ่มจาก คิดถึง Input Output ก่อน แล้วค่อยคิด กล่องดำตรงกลางๆ - กล่องดำตรงกลาง นั่นแหละคือ Algorithms

สมมติว่าเราต้องการหาเพื่อนชื่อ Mike Smith ในสมุดโทรศัพท์

Mike Smith

Output

- ที่อยู่
 - เบอร์โทร

สร้างอัลกอริทึม เพื่อหา mike กันเถอะ !

สมมติว่าเราต้องการหาเพื่อนชื่อ Mike Smith ในสมุดโทรศัพท์

- วิธีที่ 1 พลิกดูหนังสือทีละหน้าจนกว่าเราจะพบ Mike Smith หรือจนถึงหนังสือหน้า สุดท้าย
- วิ่ธีที่ 2 เราสามารถพลิกหน้าได้ครั้งละสองหน้า แต่ถ้าพลิกเกินเราจะต้องรู้ว่าจะต้อง ย้อนกลับหน้า (เร็วขึ้นมาหน่อย)
- วิธีที่ 3 วิธีที่มีประสิทธิภาพที่สุด คือ การเปิดสมุดโทรศัพท์ตรงกลางตัดสินใจว่าไมค์ จะ อยู่ในครึ่งซ้าย หรือครึ่งขวาของหนังสือ (เพราะสมุดโทรศัพท์เรียงลำดับตามตัวอักษร) และทิ้งครึ่งหนึ่งของปัญหาทันที เราสามารถทำสิ่งนี้ซ้ำ โดยแบ่งปัญหาออกเป็นสองส่วน ในแต่ละครั้ง

ทำเว็บไซต์แนะนำประวัติตนเอง

Input

- ประวัติการศึกษา
- ประวัติการทำงาน
- ชื่อ นามสกุล
- email

Output

- เว็บไซต์

Algorithm ของการทำเว็บไซต์

- เขียน Requirement ว่าต้องการให้เว็บไซต์มีอะไรบ้าง
- ออกแบบเว็บไซต์
- เขียน HTML ทุกหน้า
- เขียน Code NodeJS ส่วนเรียกการทำงาน
- เรียก Database
- แสดงผลข้อมูล

ประสิทธิภาพของอัลกอริทึม

- วิธีที่ 1 (พลิกทีละหน้า)ของเราทีละหน้าก็เหมือนเส้นสีแดง: เวลาของเราในการแก้ปัญหาเพิ่มขึ้นเป็นเส้นตรงตามขนาดของ ปัญหาที่เพิ่มขึ้น
- 🖣 วิธีที่ 2 (พลิกครั้งละสองหน้า) เป็นเหมือนเส้นสีเหลือง: ความลาดชันของเราน้อยกว่าที่ลาดชัน แต่ยังคง เป็นแบบเชิงเส้น
- วิธีที่ 3 ก็เหมือนเส้นสีเขียว: ลอการิทึมเนื่องจากเวลาของเราในการแก้ปัญหาเพิ่มขึ้นช้าลงเมื่อขนาดของ ปัญหาเพิ่มขึ้น กล่าวอีกนัยหนึ่งถ้าสมุดโทรศัพท์

หลักการเขียนอัลกอริทึม

- 1. กระบวนการสำคัญเริ่มต้นที่จุดจุดเดียว (ถ้าการมีจุดเริ่มต้นหลายที่ จะทำให้กระบวนการวิธีสับสน จนในที่สุดอาจทำให้ผลลัพธ์ที่ได้ไม่ ตรงกับความต้องการ หรืออาจทำให้อัลกอริทึมนั้น ไม่สามารถทำ งานได้เลย)
- 2. กำหนดการทำงานเป็นขั้นเป็นตอนอย่างชัดเจน (การกำหนด อัลกอริทึมที่ดี ควรมีขั้นตอนที่<mark>ชัดเจนไม่คลุมเครือ</mark> เสร็จจากขั้นตอนหนึ่ง ไป ยังขั้นตอนที่สองมีเงื่อนไข การทำงานอย่างไร ควรกำหนดให้ชัดเจน)

หลักการเขียนอัลกอริทึม (ต่อ)

- 3. การทำงานแต่ละขั้นตอนควรสั้นกระชับ เพราะการกำหนดขั้นตอนการทำ งานให้สั้นกระชับนอกจาก จะทำให้โปรแกรมทำงานได้รวดเร็วแล้ว ยังเป็น ประโยชน์ต่อผู้อื่นที่มาพัฒนาโปรแกรมต่อด้วย เพราะสามารถศึกษาอัลกอรทึม จากโปรแกรมที่เขียนไว้ได้ง่าย
- 4. ผลลัพธ์ในแต่ละขั้นตอนควรต่อเนื่องกัน การออกแบบขั้นตอนที่ดีนั้น ผลลัพธ์ จากขั้นตอนแรกควรเป็นข้อมูลสำหรับนำเข้า ให้กับข้อมูลในขั้นต่อไป ต่อเนื่องกันไปจนกระทั่ง ได้ผลลัพธ์ตามที่ต้องการ

หลักการเขียนอัลกอริทึม (ต่อ)

5. การออกแบบอัลกอริทึมที่ดีควรออกแบบให้ ครอบคลุมการทำงานในหลายรูปแบบ เช่น การออก แบบโดยคิดไว้ล่วงหน้าว่าหากผู้ใช้โปรแกรมป้อนข้อมูล เข้าผิดประเภท โปรแกรมจะมีการเตือนว่าผู้ใช้งานมีการ ใส่ข้อมูลที่ผิดประเภทโดยโปรแกรมจะไม่รับข้อมูลนั้น เพื่อให้ใส่ข้อมูลใหม่อีกครั้ง เพื่อป้องกันการเกิดจุด บกพร่องของโปรแกรมได้

ปรับแก้ให้ครอบคลุมเงื่อนไขที่มากขึ้น

สัญลักษณ์ Flow Chart

สัญลักษณ์ในการเขียน Flow Chart เบื้องต้น

ภาพสัญสักษณ์	ความหมาย
	เริ่มต้องชื่นสุด,
Stan End Symbol	การเริ่มด้าเครือการองท้าย
Connection Symbol	จุดเชื่อมต่อในหน้าเดียวกัน
Connection Symbol	จุดเชื่อมค่อคนละหน้า
Monitor	sonnuaren
	การประมวลผลทั่วไป
	ยกเว็นการอำนจ้อมูลและ
Processing	การแสดงขอด้าเริ่
	รับหรือแสดงข้อมูต
Input Output Data	โดยไม่ระบุชนิดภูปกรณ์
-	การคัดสินใจ การเปรียบเทียบ
\Diamond	(จะมีที่สหางออก 2 ที่สหาง
Decision Symbol	คือกรณีใหลดรวจสอบเงื่อนไขเป็นเพิ่งและเป็นจริง)
	การรับข้อมูล
Manual input	เข้าทางแบ้นกินท์
	ienansilanana,
Document Output	การแสดงของกาแครื่องพิมพ์
	ใช้กำหนดคำต่างๆตัวงหน้า
$\overline{}$	ซึ่งเป็นการทำงาน
Preparation	ภายในช่วงหนึ่งที่ซ้ำๆกัน
Flow line	เต็นแสดงอำศับกิจกรรม

รูปแบบของอัลกอริทึม

<u>รูปแบบของอัลกอริทึม</u>

แบบลำดับ

แบบทางเลือก

แบบทำซ้ำ

อัลกอริทึม - แบบลำดับ (Sequential)

มีลักษณะการทำงานจะเป็นไปตามขั้นตอน ก่อน-หลัง ต่อเนื่องกันไปเป็นลำดับ โดยการทำงาน แต่ละขั้นตอนต้องทำให้เสร็จก่อน แล้วจึงไปทำขั้นตอนต่อไป

อัลกอริทึม - แบบลำดับ (Sequential)

อัลกอริทึม การทอดไข่เจียว

- 1. หยิบไข่ไก่
- 2. ตอกไข่ไก่ใส่ภาชนะ
- 3. ปรุงรส ด้วยเครื่องปรุง
- 4. ตีไข่ด้วยช้อนส้อม
- 5. ตั้งกระทะบนเตา
- 6. เปิดแก๊ส และติดไฟ
- 7. ใส่น้ำมันพืช
- 8. นำไข่ที่ปรุงรสแล้วใส่ลงในกระทะที่ร้อน
- 9. ทอดจนสุก
- 10. ตักขึ้นใส่จานที่เตรียมไว้

อัลกอริทึม - แบบทางเลือก (Decision)

อัลกอริทึมรูปแบบนี้มีเงื่อนไขเป็นตัวกำหนดเส้น ทาง การทำงานของกระบวนการแก้ปัญหา โดยตัวเลือก นั้นอาจจะมีตั้งแต่ 2 ตัวขึ้นไป เช่น สอบข้อเขียน คะแนนเต็ม 50 ได้คะแนน 30 สอบผ่าน ถ้าต่ำกว่า 30 สถบไม่ผ่าน

อัลกอริทึม - แบบทางเลือก (Decision)

อัลกอริทึมตัดเกรดวิชาคอมพิวเตอร์

- 1. คะแนนสอบของนักเรียน
- 2. ตรวจสอบคะแนน (คะแนนที่สอบผ่าน 50 คะแนน)
- 3. ถ้ามากกว่า 50 คะแนน สอบผ่าน
- 4. ถ้าน้อยกว่า 50 คะแนน สอบตก
- ประกาศผล

อัลกอริทึม - แบบทำซ้ำ (Repetition)

อัลกอริทึมแบบนี้คล้ายกับแบบทางเลือก คือ มีการตรวจสอบเงื่อนไข แต่แตกต่างกันตรงที่ ถ้าการทำงานตรงตามเงื่อนไขที่กำหนด โปรแกรม จะกลับไปทำงานอีกครั้งวนการทำงานแบบนี้เรื่อยๆ จนกระทั่งไม่ตรงกับเงื่อนไขที่กำหนดไว้จึงหยุดการ ทำงานหรือทำงานในขั้นต่อไป

อัลกอริทึม - แบบทำซ้ำ (Repetition)

อัลกอริทึมการซื้อมังคุด 1 กิโลกรัม

- 1. หยิบถุงพลาสติก
- 2. หยิบมังคุดมาเลือก โดยกดที่เปลือกที่นิ่มๆ
- 3. ตรวจสอบเงื่อนไข (น้อยกว่า 1 กิโลกรัม)
- 4. ถ้าจริง เลือกมังคุดต่อ
- 5. ถ้าเท็จ หยุดเลือก
- 6. จ่ายเงินให้กับผู้ที่ขาย

การออกแบบอัลกอริทึม

ในการเขียนอธิบายอัลกอริทึมนั้น เราสามารถคิด อัลกอริทึม เพื่อมาแก้ปัญหาได้หลายแบบ ซึ่งใน แต่ละแบบเครื่องคอมพิวเตอร์ก็จะใช้ในหน่วยความจำ และเวลาในการประมวลผลไม่เท่ากัน ดังนั้น การจะเปรียบเทียบว่าโปรแกรมคอมพิวเตอร์ ใครเก่งกว่ากันนั้นจึงใช้การเปรียบเทียบ และประสิทธิภาพของอัลกอริทึมนั่นเอง

อัลกอริทึมของใครใช้เวลาในการประมวลผลและหน่วยความจำน้อยกว่า ถือว่าอัลกอริทึมนั้นฉลาดกว่า

ประสิทธิภาพของอัลกอริทึม

พิจารณาอยู่ 2 ส่วนหลักๆ ดังนี้

หน่วยความจำ (Memory)
 ที่ต้องใช้ในการประมวลผล

• เวลา(Time)ที่ใช้ในการประมวลผล

อัลกอริทึมที่ดีต้องมีความถูกต้อง (Correctness)

อัลกอริทึมที่ดีต้องง่ายต่อการอ่าน (Readability)

อัลกอริทึมที่ดีต้องสามารถ ปรับปรุงได้ง่ายต่ออนาคต (Ease of Modification)

อัลกอริทึมที่ดีต้องสามารถนำกลับมาใช้ใหม่ได้(Reusability)

อัลกอริทึมที่ดีต้องมีประสิทธิภาพ (Efficiency)

Ex. อัลกอริทึมเพื่อทำการบวกราคาโดยใช้เครื่องคิดเลข

คิดพร้อมๆ กัน

- 1. Input + Output คืออะไร ?
- 2. Flowchart หน้าตาเป็นอย่างไร ?

เฉลย Input + output

- 1. วิเคราะห์ผลลัพธ์ : ยอดรวมราคา (Output)
- 2. กำหนดข้อมูลเข้า : ยอดเงิน (Input)

เฉลย Algorithm

- 1. เปิดเครื่องคิดเลข
- 2. พิมพ์ยอดเงิน
- 3. กดเครื่องหมาย (+)
- 4. กลับไปที่ข้อ 2 ท่ำจนกระทั่งราคาทั้งหมด ถูกพิมพ์เข้าเครื่องและกดเครื่องหมาย =
- 1. เขียนยอดรวมราคา
- 2. ปิดเครื่องคิดเลข

อัลกอริทึม

- 1. วิเคราะห์ผลลัพธ์ : ยอดรวมราคา (Output)
- 2. กำหนดข้อมูลเข้า : ยอดเงิน (Input)
- 3. การประมวลผล
 - 1 เปิดเครื่องคิดเลข
 - 2. พิมพ์ยอดเงิน
 - 3. กดเครื่องหมาย (+)
 - 4. กลับไปที่ข้อ 2 ท้ำจนกระทั่งราคาทั้งหมดถูกพิมพ์เข้าเครื่องและกดเครื่องหมาย =
 - 5. เขียนยอดรวมราคา
 - 6. ปิดเครื่องคิดเลข

้อัลกอริทึม

ตัวอย่างเพิ่มเติม ผังงานแสดงการเดินข้าม ถนน ที่มีสัญญาณไฟจราจร

อัลกอริทึม

ตัวอย่างเพิ่มเติม ผังงานพิจารณาการใช้ยาตามฉลากยา ที่ปิดข้างขวดแยกตามขนาดการใช้ดังนี้

- อายุต่ำกว่า 5 ปี ห้ามรับประหาน
- อายุ 5-7 ปี ครั้งละ 1 เม็ด
- อายุ 8-14 ปี ครั้งละ 2 เม็ด
- อายุ์ 15 ปีขึ้นไป ครั้งละ 3 เม็ด

โปรแกรมช่วยเขียนผังงาน

Microsoft Visio

โปรแกรมช่วยเขียนผังงาน

SmartDraw

โปรแกรมช่วยเขียนผังงาน

draw.io

