

June 18 4PMO Paper 2 Mark Scheme

Question Number	Scheme	Marks
1	$\cos A = \frac{9^2 + 8^2 - 6^2}{2 \times 9 \times 8} \text{ or } 6^2 = 9^2 + 8^2 - 2 \times 9 \times 8 \cos A$	M1
	$\cos A = \frac{109}{144}$	A1
	$A = 40.8^{\circ}$	A1 [3]
M1	Use the cosine rule, either form. If not for angle <i>BAC</i> there must be a complete method shown for obtaining <i>BAC</i>	
A1	Correct numerical expression for cos <i>BAC</i> or for sin <i>BAC</i> if a longer method used. Need not be simplified.	
A1	Correct angle as shown 40.80° scores A0 (Ignore any labelling)	
2(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\cos 2x - 2\mathrm{e}^{3x}\sin 2x$	M1B1A1 (3)
(b)	$\frac{dy}{dx} = \frac{2e^{x}(2x^{2}-1)-2e^{x} \times 4x}{(2x^{2}-1)^{2}}$	M1A1A1 (3)
ALT:	Use of product rule $y = 2e^{x} (2x^{2} - 1)^{-1}$ $\frac{dy}{dx} = 2e^{x} (2x^{2} - 1)^{-1} - 2e^{x} (4x) (2x^{2} - 1)^{-2}$	[6] M1A1A1
	NB: No simplification is required in either (a) or (b). isw any shown	
(a) M1	Use of product rule. If the rule is quoted it must be correct. 2 terms of form $ke^{3x}\cos 2x$, $k'e^{3x}\sin 2x$ added or subtracted (k, k') integers, inc 1)	
B1 A1 (b)	NB: A mark on e-PEN. Either term in their attempt at the product rule correct Fully correct	
M1	Use of quotient rule. If the rule is quoted it must be correct. Numerator to be the difference of 2 terms (either way round) of form shown $ke^{x}(2x^{2}-1)$, $k'xe^{x}$ Denominator	
A1 A1 ALT:	must be correct. One numerator term correct Fully correct numerator	
M1	Bring up denominator correctly and apply product rule. Difference of 2 terms (either way round) of form shown	
A1 A1	Either term correct Both terms correct	