

Timon Zimmermann, Rhicheek Petra Oracle Labs Mar, 2019

Overview

1) Background & Problem Statement

2) Healthcare Dataset & Application

3) Baseline: Architecture & Application

4) KG-RNN: Architecture & Application

5) Results

6) Concluding Remarks

Knowledge Graph

 Represent information as entities, properties and relations between entities

 Allows to **naturally** combine information from different sources

 Lot of activity and research around leveraging knowledge graphs in Machine Learning

Recurrent Neural Network

Allows to exploit the temporal dynamic behavior of a sequence

Use-Case Examples

- Stock Market Prediction
- Machine Translation

Machine Learning on Evolving Knowledge Graph

- How to learn from knowledge graph with a dynamic component?
 - → Changing Knowledge Graph structure over time
 - → Dynamic properties in entities
- Idea: Feed evolving entity to a Machine Learning model as a sequence of entity states

• Solution: Fusion of Graph Machine Learning and Recurrent Neural Network

Evolving Knowledge Graph – Example Online shop

- Entities and Properties:
 - Client (First name, Last name)
 - Category (Name)
 - Product (Name, Price, Properties)

Relationships:

- Client purchased Product
- Client follows Category
- Product belongs to Category
- Product shares property Product
- Product has similar price Product

Evolving Knowledge Graph – Example Online shop

Healthcare Dataset – Admission Point-of-View

- 4 kinds of event over time:
 - Fluids into patient
 - Fluids out of the patient
 - Lab test results
 - Drugs prescribed

 Medical codes (ICD-9) describing the diagnoses and procedures at discharge

Examples:

- Insulin, 5 ml/h
- Urine, 3ml at 10:30
- pH, 7.4 at 15:35
- Aspirin, 500mg/day

ICD-9 Codes:

- 401.0: Malignant essential hypertension
- 403.9: Unspecified hypertensive renal disease

— ...

Machine Learning in Healthcare

Problem:

Analyzing thousands of events over time is very difficult for physicians:

- Humans can only process and correlate 4 variables at the same time
- Historical information from previous admissions of other patients 12 years ago, potentially at other locations

Goal:

Predict the medical codes that will be diagnosed at discharge of the patient

MIMIC-III

Dataset: MIMIC-III, v1.4

- MIMIC is a relational database containing data of patients who stayed within the intensive care units at Beth Israel Deaconess Medical Center
- Commonly found in the scientific research & literature

• 46'520 patients

58'976 admissions

• 21'000'000 input events

• 4'500'000 output events

• 28'000'000 lab tests

4'000'000 prescriptions

Input

We consider **admissions** as our main entity composed of many **events**

Output

Multi-label multi-class classification problem:

- ~ 8'900 unique ICD-9 codes in total
- We focus on the 50 most frequent ones

MIMIC-III — Statistics

Top 50 diagnoses per admission

Distribution of diagnoses - Zoomed

MIMIC-III – Data Formation – Original

MIMIC-III – Data Formation – Step 1

Modifications

- Group events in same time interval (e.g. 3h)
- Consider each interval as a graph state or chunk

MIMIC-III – Data Formation – Step 2

Modifications

- Conversion of time-range events to one-time events
- For the same event, convert all units to same one

MIMIC-III – Data Formation – Step 3

Modifications

- Down-sample events per type and per chunk to some fixed number (K)
- Add zeros before admission's beginning to make it fixed length (N)

From MIMIC-III to an Evolving Graph

- We now have an evolving entity for each admission
- Solves many challenges inherent to healthcare:
 - Many missing values in events
 - Non-constant intervals among different events:
 - mmHg/h for blood pressure
 - mg/30min for aspirin
- More natural than existing approaches:
 - We are interested in the evolution of a patient's state
 - Not his exact vitals at every T, where T is the finest-grain event interval

Baseline

Main idea

- 1. Create a vector representation of each event (called embedding)
- 2. Aggregate events of the same type within the same chunk together
- 3. Concatenate aggregated events for each type
- 4. Feed aggregated chunks into a Recurrent Neural Network
- 5. Predict the final diagnoses from the output of the RNN

Weighted Knowledge Graph Construction

From tables and external information

Files

Entities at t = 0

Туре	Property A
Entity A	1
Entity A	5
Entity B	0
Entity C	2
	Entity A Entity A Entity B

Entities at t = T

ID	Туре	Property A
1	Entity A	29
2	Entity A	3
3	Entity B	7
4	Entity C	12

Relations

Entity 1	Entity 2	Туре	Weight
1	3	Χ	0.95
3	2	Υ	0.5
4	1	Х	1

Weighted Knowledge Graph Extraction

- From this Knowledge Graph:
 - → Extract the **M** nearest neighbors for each input entity
- Nearest: Can be any distance metric between entities
- Any graph sampling technique can be applied (weighted or not):
 - Random sampling
 - Snow-Ball sampling
 - Forest Fire sampling

— ...

KG-RNN

Main idea

- Feed graph states sequence, focused on an entity, through the Encoder module (c.f. Baseline):
 - Input entity
 - Neighboring entities
- 2. Gather the encoded entities with the Main (c.f. next slides) module
- 3. Attach static information of entities to their encoding vector
- 4. Get the final prediction from these static information + encoding vectors

KG-RNN: Entity Encoder Predicting from graph states

KG-RNN: Main Predicting from graph states

Weighted Knowledge Graph Construction Healthcare example

- Disease
- Symptom
- Admission
- Internal Information
- External Information

Weighted Knowledge Graph Construction Healthcare example

- External information from derived Knowledge Graph:
 - Learning a Health Knowledge Graph from Electronic Medical Records (Rotmensch et al., Nature 2017)
 - They link diseases and symptoms:
 - Migraine Headache (0.384), nausea (0.316), sensitivity to light (0.223), ...
 - Each link comes with a relevance score → Edge weight
- String matching between *Internal KG* and *External KG*:
 - NGrams + TF-IDF → Cosine similarity
 - Admission Prediagnosis Disease
 - Admission Prediagnosis Symptom
 - Cosine similarity score between 0 and 1 \rightarrow Edge weight

Weighted Knowledge Graph Extraction Healthcare example

- Input entity: Admission
 - We extract 10 nearest neighbors per admission
- Distance metric:
 - Disease Symptom: Weight already defined in external KG
 - Admission Symptom/Disease: Cosine similarity score between texts
- Sampling: Importance Sampling
 - Compute Weighted Personalized PageRank score focused on input admission
 - Take top-10 admissions with respect to WPPR score

Weighted Knowledge Graph Construction Healthcare example

KG-RNN: Entity Encoder, reminder Predicting from graph states

KG-RNN: General Model

Predicting from graph states

KG-RNN: Adapted Model

Predicting from graph states

KG-RNN: Adapted Model

Predicting from graph states

Quantitative Results

Metric	Average	Model	Score
	Macro	Baseline	36.52%
F1		KG-RNN	37.90% (+1.38%)
L1	Micro	Baseline	51.55%
	IVIICIO	KG-RNN	53.47% (+1.92%)
	Macro	Baseline	85.24%
AUROC		KG-RNN	86.29% (+1.05%)
AURUC	Micro	Baseline	90.55%
	IVIICIO	KG-RNN	91.03% (+0.48%)
Accuracy	_	Baseline	92.22%
Accuracy	-	KG-RNN	92.36% (+0.14%)

Properties

3 hours per chunk200 chunks per admission

25 events per type and per chunk

10 neighbors sampled per input admission

Qualitative Results

• After training, check the closest events to a particular event in terms of embedding vectors:

Neighbors for White Blood Cells

Rank	Laboratory measure
1	WBC Alternative name
3	White Cells Alternative name
6	Immunoglobulin A Antibodies produced by white blood cells

Neighbors for **Sodium**

Rank	Prescription
1	Sodium Chloride Nasal Related prescription
2	Sodium Chloride 0.9% Flush Related prescription
5	Famotidine Often given in "Sodium Chloride 0.9%"

Qualitative Results

Take-Home Message

→ KG-RNN not only learned similar events but also intrinsically linked and correlated events

Qualitative Results

Baseline does not detect any diagnosis

 Neighbor helped pushing the confidence of KG-RNN upward for 2nd diagnosis

 Reveals how much KG-RNN relies on its neighbors

Conclusion

- Proposed a novel architecture and pipeline for processing evolving knowledge graphs
- Our enriched knowledge graph has been designed to naturally cope with many of the challenges inherent to our application
- Our solution shows significant improvement over a simple single-admission setting
- Qualitative analysis revealing interesting findings in learning behavior

ORACLE®