Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

7. Time series regression models

7.4 Some useful predictors

OTexts.org/fpp3/

Trend

Linear trend

$$x_t = t$$

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a dummy variable.

Variable	dummy		
Yes	1		
Yes	1		
No	0		
Yes	1		
No	0		
No	0		
Yes	1		
Yes	1		
No	0		
No	0		

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

Day	d1	d2	d3	d4
Monday	1	0	0	0
Tuesday	0	1	0	0
Wednesday	0	0	1	0
Thursday	0	0	0	1
Friday	0	0	0	0
Monday	1	0	0	0
Tuesday	0	1	0	0
Wednesday	0	0	1	0
Thursday	0	0	0	1
Friday	0	0	0	0

Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

■ If there is an outlier, you can use a dummy variable to remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

■ If there is an outlier, you can use a dummy variable to remove its effect.

Public holidays

For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Regression model

$$y_t = \beta_0 + \beta_1 t + \beta_2 d_{2,t} + \beta_3 d_{3,t} + \beta_4 d_{4,t} + \varepsilon_t$$

 $d_{i,t} = 1$ if t is quarter i and 0 otherwise.

```
fit_beer <- recent_production |> model(TSLM(Beer ~ trend() + season()))
report(fit_beer)
```

```
## Series: Beer
## Model: TSLM
## Residuals:
    Min 10 Median 30 Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
         Estimate Std. Error t value Pr(>|t|)
## (Intercept) 441.8004 3.7335 118.33 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## season()vear2 -34.6597 3.9683 -8.73 9.1e-13 ***
## season()vear3 -17.8216 4.0225 -4.43 3.4e-05 ***
## season()year4 72.7964 4.0230 18.09 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924. Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
```

```
augment(fit_beer) |>
    ggplot(aes(x = Quarter)) +
    geom_line(aes(y = Beer, colour = "Data")) +
    geom_line(aes(y = .fitted, colour = "Fitted")) +
    labs(y = "Megalitres", title = "Australian quarterly beer production") +
    scale_colour_manual(values = c(Data = "black", Fitted = "#D55E00"))
```



```
augment(fit_beer) |>
   ggplot(aes(x = Beer, y = .fitted, colour = factor(quarter(Quarter)))) +
   geom_point() +
   labs(y = "Fitted", x = "Actual values", title = "Quarterly beer production") +
   scale_colour_brewer(palette = "Dark2", name = "Quarter") +
   geom_abline(intercept = 0, slope = 1)
```



```
fit_beer |>
  forecast() |>
  autoplot(recent_production)
```


Intervention variables

Spikes

■ Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

■ Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

■ Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

■ Variables take values 0 before the intervention and values $\{1, 2, 3, ...\}$ afterwards.

Holidays

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese new year similar.

Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

```
    x<sub>1</sub> = advertising for previous month;
    x<sub>2</sub> = advertising for two months previously;
    :
    x<sub>m</sub> = advertising for m months previously.
```

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose *K* by minimizing AICc.
- Called "harmonic regression"

```
TSLM(y ~ trend() + fourier(K))
```

Harmonic regression: beer production

```
fourier_beer <- recent_production |> model(TSLM(Beer ~ trend() + fourier(K = 2)))
report(fourier_beer)
```

```
## Series: Beer
## Model: TSLM
## Residuals:
    Min 10 Median 30 Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 446.8792 2.8732 155.53 < 2e-16 ***
## trend()
               ## fourier(K = 2)C1 4 8.9108 2.0112 4.43 3.4e-05 ***
## fourier(K = 2)S1 4 -53.7281 2.0112 -26.71 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924. Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
```



```
fit <- aus_cafe |>
  model(
    K1 = TSLM(log(Turnover) ~ trend() + fourier(K = 1)),
    K2 = TSLM(log(Turnover) ~ trend() + fourier(K = 2)),
    K3 = TSLM(log(Turnover) ~ trend() + fourier(K = 3)),
    K4 = TSLM(log(Turnover) ~ trend() + fourier(K = 4)),
    K5 = TSLM(log(Turnover) ~ trend() + fourier(K = 5)),
    K6 = TSLM(log(Turnover) ~ trend() + fourier(K = 6))
)
```


Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- $K \leq m/2$
- *m* can be non-integer
- Particularly useful for large *m*.