Aula 12: Oscilações Eletromagnéticas

Curso de Física Geral III F-328

1º semestre, 2014

Oscilações eletromagnéticas (LC)

Vimos:

Circuitos RC e RL:

• q(t), i(t) e V(t): têm comportamento exponencial

Veremos:

Circuito *LC*:

- q(t), i(t) e V(t): comportamento senoidal
- Oscilações
 - campo elétrico do capacitor

Oscilações eletromagnéticas

Oscilações LC

Oscilações eletromagnéticas (LC)

Simulação dos estágios

http://www.walter-fendt.de/ph14br/osccirc br.htm

Osciladores harmônicos simples

Circuito LC

Sistema massa-mola

Elétrica:
$$U_E = \frac{1}{2} \frac{q^2}{C}$$
 (do capacitor)

Magnética:
$$U_B = \frac{1}{2}Li^2$$
 (do indutor)

$$U_{\scriptscriptstyle B} \Leftrightarrow U_{\scriptscriptstyle E}$$

Total:
$$U_E + U_B = U = cte$$

Potencial:
$$U_p = \frac{1}{2}kx^2$$
 (da mola)

Cinética:
$$U_c = \frac{1}{2}mv^2$$
 (do bloco)

$$U_c \Leftrightarrow U_p$$

Total:
$$U_p + U_c = U = cte$$

Analogia eletromecânica (massa-mola)

No sistema massa-mola, a energia total U é, em qualquer instante:

$$U = U_c + U_p$$

Se não houver atrito, U permanece constante, isto é:

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{1}{2} m v^2 + \frac{1}{2} k x^2 \right) = 0 \qquad \longleftrightarrow \qquad \frac{d^2 x}{dt^2} + \frac{k}{m} x = 0 \qquad \left(v = \frac{dx}{dt} \right)$$

Movimento
$$\omega_0 = \sqrt{\frac{k}{m}}$$
: Frequência angular natural X_m : Amplitude φ : Constante de fase

Analogia eletromecânica (oscilador LC)

Energia total oscilante :
$$U = U_B + U_E = \frac{1}{2}Li^2 + \frac{1}{2}\frac{q^2}{C}$$

Como não há resistência no circuito, temos:

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{Li^2}{2} + \frac{q^2}{2C} \right) = 0 \quad \longleftrightarrow \quad \frac{d^2q}{dt^2} + \frac{1}{LC} q = 0 \quad \left(i = \frac{dq}{dt} \right)$$

cuja solução é: $q(t) = Q\cos(\omega_0 t + \varphi)$

Oscilações eletromagnéticas
$$\begin{cases} \omega_0 = \sqrt{\frac{1}{LC}} : \text{Frequência angular natural} \\ \mathcal{Q} : \text{Amplitude} \\ \varphi : \text{Constante de fase} \end{cases}$$

Corrente:
$$i = \frac{dq}{dt} = -\omega_0 Q \operatorname{sen}(\omega_0 t + \varphi) = -I \operatorname{sen}(\omega_0 t + \varphi)$$

Analogia eletromecânica

Circuito LC

Sistema massa-mola

$$\omega_0 = \sqrt{\frac{1}{LC}}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$X_{m}$$

$$\varphi$$

$$\varphi$$

Correspondências entre os dois sistemas

$$q \rightarrow x$$

$$i \rightarrow v$$

$$L \rightarrow m$$

$$\frac{1}{C} \to k$$

A amplitude e a constante de fase são determinadas pelas condições iniciais (no circuito LC, i(0) e q(0)).

Energias elétrica e magnética

A energia elétrica armazenada no capacitor em qualquer instante t é:

$$U_E = \frac{q^2}{2C} = \frac{Q^2}{2C} \cos^2(\omega_0 t + \varphi)$$

A energia magnética armazenada no indutor é, por sua vez:

$$U_{B} = \frac{1}{2}Li^{2} = \frac{1}{2}L\omega_{0}^{2}Q^{2}\operatorname{sen}^{2}(\omega_{0}t + \varphi) \iff U_{B} = \frac{Q^{2}}{2C}\operatorname{sen}^{2}(\omega_{0}t + \varphi) \left(\omega_{0} = \sqrt{\frac{1}{LC}}\right)$$

$$U_E + U_B = \frac{Q^2}{2C}$$

Então, a soma (energia total) permanece constante.

Oscilações amortecidas (circuito RLC)

Com um resistor R no circuito, a energia eletromagnética total U do sistema não é mais constante, pois diminui com o tempo na medida em que é transformada em energia térmica no resistor $(\frac{dU}{dt} < 0)$.

$$U = \frac{1}{2}Li^2 + \frac{q^2}{2C}$$

$$\frac{dU}{dt} = -Ri^2$$

Energia eletromagnética
$$U = \frac{1}{2}Li^2 + \frac{q^2}{2C}$$
Potência dissipada $\frac{dU}{dt} = -Ri^2$

$$\longrightarrow Li \frac{di}{dt} + \frac{q}{C} \frac{dq}{dt} = -Ri^2$$

Oscilações amortecidas (circuito RLC)

Solução geral para o caso de amortecimento fraco
$$\left(R < \sqrt{\frac{4L}{C}}\right)$$
: $\longrightarrow q(t) = Q_{\text{max}}e^{-\frac{R}{2L}t}\cos(\omega t + \varphi)$ onde $\omega = \sqrt{\omega_0^2 - \left(\frac{R}{2L}\right)^2}$ ω aproxima-se da Quando $\left(\frac{R}{2L}\right)^2 << \frac{1}{LC} \longrightarrow \omega' \cong \omega_0 = \sqrt{\frac{1}{LC}} \longrightarrow \text{frequência angular natural}$

Oscilações *amortecidas*: amplitude de q(t) decai exponencialmente com o tempo.

Exemplo 1

Um circuito RLC série possui indutância L=12 mH, capacitância C=1,6 µF, e resistência R=1,5 Ω .

a) em que instante *t* a amplitude das oscilações da carga no circuito será 50% do seu valor original?

Queremos que:
$$Q_{\text{max}} e^{-\frac{R}{2L}t} = 0.5 Q_{\text{max}} \Rightarrow -\frac{Rt}{2L} = \ln 0.5$$

daí: $t = -\frac{2L}{R} \ln 0.5 \Rightarrow t = 0.011s$

b) quantas oscilações foram completadas neste intervalo de tempo?

O tempo para uma oscilação completa é o período $T = \frac{2\pi}{\omega'}$.

Neste caso, como
$$\left(\frac{R}{2L}\right)^2 << \omega_0^2$$
, $\omega' \cong \omega_0$. Ou seja:
 $nT = t \Rightarrow n = \frac{t}{2\pi\sqrt{LC}}$ ou $n = \frac{0,011}{2\pi\left(12.10^{-3} \times 1,6.10^{-6}\right)^{\frac{1}{2}}} \cong 13$

Oscilações forçadas (RLC com fem) :

As oscilações de um circuito *RLC* não serão totalmente amortecidas se um dispositivo de *fem* externo fornecer energia suficiente para compensar a energia térmica dissipada no resistor.

Oscilações eletromagnéticas

Gerador de tensão alternada (fem ca): $\varepsilon = \varepsilon_m \operatorname{sen}(\omega t)$

 ω : frequência angular propulsora

Oscilações forçadas $(q(t), i(t) \in V(t))$:

- Frequência: Qualquer que seja ω_0 (natural), essas grandezas oscilam com ω (frequência propulsora)
- Corrente: $i(t) = I \operatorname{sen}(\omega t \varphi)$

Circuito resistivo (R)

Um resistor ligado ao gerador de fem alternada:

$$\varepsilon = v_R = \varepsilon_m \operatorname{sen}(\omega t) = V_R \operatorname{sen}(\omega t)$$

Corrente i_R no resistor: $i_R = \frac{v_R}{R} = \frac{V_R}{R} \operatorname{sen}(\omega t)$

Por associação com a forma geral da corrente ac:

$$i_R = I_R \operatorname{sen}(\omega t - \varphi)$$

• Relação entre as amplitudes da corrente e da tensão no resistor:

$$I_R = \frac{V_R}{R} \qquad \qquad \bigvee_R = I_R R$$

• Corrente e tensão (ddp) estão em fase no resistor:

$$\varphi = 0$$

Circuito capacitivo (C)

Tensão: $v_C = \varepsilon_m \operatorname{sen}(\omega t) = V_C \operatorname{sen}(\omega t)$

Carga: $q_C = C v_C = C V_C \operatorname{sen}(\omega t)$

Corrente: $i_C = \omega C V_C \cos(\omega t) = \omega C V_C \sin(\omega t + \frac{\pi}{2})$

Introduzindo a reatância capacitiva

$$i_C = \frac{V_C}{X_C} \operatorname{sen}(\omega t + \frac{\pi}{2})$$

• Relação entre as amplitudes da corrente e da tensão no capacitor:

$$V_C = I_C X_C$$

• Corrente está *adiantada* de $\frac{\pi}{2}$ em relação à tensão:

$$\varphi = -\frac{\pi}{2}$$

Circuito indutivo (L)

 $X_I = \omega L$

Tensão:
$$v_L = \varepsilon_m \operatorname{sen}(\omega t) = V_L \operatorname{sen}(\omega t) = L \frac{a l_L}{dt}$$

Corrente:
$$i_L = \frac{V_L}{L} \int \text{sen}(\omega t) dt = -\frac{V_L}{\omega L} \cos(\omega t)$$

Introduzindo a reatância indutiva

• Relação entre as amplitudes da corrente e da tensão no capacitor:

$$V_L = I_L X_L$$

• Corrente está *atrasada* de $\frac{\pi}{2}$ em relação à tensão:

$$\varphi = \frac{\pi}{2}$$

Simulações dos três circuitos simples

http://www.walter-fendt.de/ph14br/accircuit br.htm

Pontos essenciais

Conservação da energia

Em circuitos *RLC* com corrente alternada:

- Dissipação: R WV–
- Troca de forma entre magnética (L) \longrightarrow e elétrica (C) \bigcirc —

Impedância Z

Grau de oposição à circulação da corrente alternada

Lista de exercícios do capítulo 31

Os exercícios sobre Oscilações Eletromagnéticas estão na página da disciplina : (http://www.ifi.unicamp.br).

Consultar: Graduação → Disciplinas → F 328 Física Geral III

Aulas gravadas:

http://lampiao.ic.unicamp.br/weblectures (Prof. Roversi)

UnivespTV e Youtube (Prof. Luiz Marco Brescansin)