Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 EC3CO08 Engineering Electromagnetics

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 (MCQs) should be written in full inste	ead of only a, b	, c or d.		
Q.1	i.	Dot product of a _x Cartesian gives-	coordinate wit	h a _r spherical coordinate	-	
		(a) $\sin\Theta\cos\Phi$	(b) sinθ sinΦ			
		(c) $\cos\Theta\cos\Phi$	(d) - sinΦ cos	θ		
	ii.	∇ . (∇ X \overrightarrow{A}) is equal to-			1	
		(a) $\nabla X \nabla \vec{A}$ (b) $\nabla^2 \vec{A}$	(c) 0	(d) 1		
	iii.	A spherical shell of charge	Q and radius	R is centered at origin,	-	
		electric field inside the spherical shell of radius a, where a <r< td=""></r<>				
		(a) $\frac{Q}{4\pi\varepsilon R^2}$ (b) $\frac{Q}{4\pi\varepsilon a^2}$	(c) 0	(d) None of these		
	iv.	Equipotential surface is a-			-	
		(a) Real surface	(b) Complex	surface		
V.		(c) Imaginary surface	(d) Not existing	ng surface		
	v.	What is the magnetic field in	tensity \overline{H} for in	nfinite sheet placed on Z-	-	
		constant plane carrying surface current $\overline{K} = K_y a_y$				
		(a) $-K_y a_y$ (b) $\frac{1}{2} K_y a_y$	(c) $\frac{1}{2}$ K _y a _x	(d) Zero		

(a) 15.6mH (b) 36.5mH (c) 20.8mH (d) 72.8mH

vii. Which Maxwell's equation will be true, for free space condition? 1

Find the inductance when the energy is given by 2 Joule with a 1

(a) $\nabla X \vec{B} = 0$ (b) $\nabla \cdot \vec{B} = 0$ (c) $\vec{B} = \nabla \cdot \vec{D}$ (d) $\vec{D} = \nabla X \vec{B}$

viii. The Poynting vector $\overline{P} = \overline{E} \times \overline{H}$ has the dimension of-

(a) Power / Unit area

current of 16A.

(b) Volts

(c) Power

(d) Volt / Unit length

P.T.O.

1

- ix. In the uniform plan wave, the value of |E|/ |H| is- $(a)\sqrt{\mu/\varepsilon} \qquad (b) \sqrt{\varepsilon/\mu} \qquad (c) 1/\sqrt{\mu\varepsilon} \qquad (d) \sqrt{\mu\varepsilon}$
- x. In which direction is the plane wave $\bar{E} = 50 \sin (10^6 \text{ t} + 2\text{z}) \text{ ay V/m.}$ 1 Travelling?
 - (a) Along y-direction. (b) Along -ve y-direction.
 - (c) Along z-direction (d) Along –ve z-direction.
- Q.2 i. Given three vectors $\vec{A} = 2 a_x + a_y$; $\vec{B} = 2 a_x + 2 a_y 2 a_z$; $\vec{C} = 2 a_y + 2$ 2 a_z find \vec{A} . ($\vec{B} \times \vec{C}$).
 - ii. Show that the field, \vec{F} (ρ , Φ , z) = $\left(\frac{150}{\rho^2}\right) a_{\rho} + 10 a_{\Phi}$ (cylindrical 3 coordinate) is rotational and non-solenoidal.
 - iii. If \vec{G} (r, Θ , Φ) = 5 r sin² Θ cos² Φ a_r, evaluate both sides of the divergence theorem for the region $r \le 2$, $0 < \Theta \le \pi$, $0 < \Phi \le 2\pi$
- OR iv. A vector field is given by \vec{A} (ρ , Φ , z) = ρ cos Φ a_{ρ} + ρ z sin Φ a_z, transform this vector into rectangular co-ordinates and calculate its magnitude at P (1,0,1).
- Q.3 i. Determine the one-dimensional solution of Laplace equation in 2 cylindrical coordinate system for $V = f(\rho)$ only.
 - ii. Derive the expression for energy density stored in electrostatic field. 3
 - iii. Charge is distributed throughout the volume of a spherical conductor 5 of radius 'a'. Find:
 - (a) \vec{E} and V everywhere i.e. r < a, r = a, r > a
 - (b) Sketch E versus r
- OR iv. A line charge density 24 nC/m is located in free space on the line 5 lies y=1, z=2 find,
 - (a) Find E at P (6, -1, 3).
 - (b) What point charge should be located at (-3, 4, 1) to cause y component of E to be zero at P?
- Q.4 i. State Biot –Savart's law and write its formula in vector form.
 - ii. When the vector magnetic potential is given by $\vec{A}(r, \Theta, \Phi) = \frac{1}{r^3}$ 3 (2cos Θ a_r + sin Θ a_{Θ}), find the magnetic flux density.

- iii. An infinite sheet of current is placed at z =0. The surface current 5 density of the current sheet is K. The current is flowing in the positive y direction. Find the magnetic field intensity due to this infinite current sheet by using Ampere's circuital law.
- OR iv. Derive magnetic boundary conditions for normal and tangential 5 component.
- Q.5 i. Define Lorentz force and write its formula for moving charge in 2 presence of both electric and magnetic fields.
 - ii. What is displacement current? Derive its formula using point form 3 of Ampere's circuital law.
 - iii. Derive four Maxwell's equation in point form and integral form for 5 Harmonically varying fields.
- OR iv. State and prove Poynting theorem also show that average power 5 $P_{avg} = \frac{1}{2} \frac{E_m}{\eta} \; (\frac{Watt}{m^2}).$
- Q.6 i. What is Polarization of wave? Write three differences between 4 Linear, Elliptical and Circular polarization.
 - ii. Derive the reflection co-efficient for a parallel (vertically) polarized **6** wave incident obliquely at the interface of two dielectric, also find the Brewster angle.
- OR iii. A 9375 MHz uniform plane wave propagates in polystyrene ($\varepsilon_r = 6$ 2.56, $\mu_r = 1$). If amplitude of electric field intensity is 20 V/m and material is assumed to be lossless, find
 - (a) Phase constant
 - (b) Wavelength
 - (c) Velocity of propagation
 - (d) Intrinsic impedance
 - (e) Propagation constant
 - (f) Amplitude of magnetic field intensity.

Marking Scheme EC3CO08 Engineering Electromagnetics

Q.1	i.	Dot product of a _x Cartesian coordinate with a _r spherical coordinate gives-	1
		(a) $\sin\Theta\cos\Phi$	
	ii.	$\nabla \cdot \dot{\epsilon}$) is equal to-	1
	111.	(c) 0	1
	iii.	A spherical shell of charge Q and radius R is centered at origin,	1
	111•	electric field inside the spherical shell of radius a, where a <r (c)="" 0<="" td=""><td>1</td></r>	1
	:		1
	iv.	Equipotential surface is a-	1
		(c) Imaginary surface	
	v.	What is the magnetic field intensity \overline{H} for infinite sheet placed on Z-constant plane carrying surface current $\overline{K} = K_y$ a _y	1
		(b) $\frac{1}{2}$ K _y a _y	
		2	1
	vi.	Find the inductance when the energy is given by 2 Joule with a	1
		current of 16A.	
		(a) 15.6mH	
	vii.	Which Maxwell's equation will be true, for free space condition?	1
		(b) $\nabla \cdot \vec{B} = 0$	
	viii.	The Poynting vector $\overline{P} = \overline{E} \times \overline{H}$ has the dimension of-	1
		(a) Power / Unit area	
	ix.	In the uniform plan wave, the value of E / H is-	1
		$(a)\sqrt{\mu/\varepsilon}$	
	X.	In which direction is the plane wave \overline{E} = 50 sin (10 ⁶ t + 2z) a_y V/m.	1
		Travelling?	
		(d) Along –ve z-direction.	
0.2			•
Q.2	1.	Given three vectors $\vec{A} = 2 a_x + a_y$; $\vec{B} = 2 a_x + 2a_y - 2 a_z$; $\vec{C} = 2a_y + 2 a_z$	2
		find \vec{A} . ($\vec{B} \times \vec{C}$). 2 Marks	
	ii.	Rotational 1.5 Marks	3
		Non-solenoidal. 1.5 Marks	
	iii.	Evaluate both sides of the divergence theorem (2.5)	5
		Marks*2)	
OR	iv.	Transform this vector into rectangular co-ordinates and calculate its	5
		magnitude at P $(1,0,1)$. (2.5)	
		Marks*2)	

Q.3	i.	Determine the one-dimensional solution of Laplace equation (As per explanation)		
	ii. iii.	Derive the expression for energy density stored in electrostatic field. (a) \vec{E} and V everywhere i.e. $r < a$, $r = a$, $r > a$ 2.5 Marks (b) Sketch E versus r 2.5 Marks	3 5	
OR	iv.	(a) Find E at P (6, -1, 3). (b) What point charge should be located at (-3, 4, 1) to cause y component of E to be zero at P? 2.5 Marks 2.5 Marks	5	
Q.4	i. ii.	State Biot –Savart's law its formula in vector form. Marks Magnetic flux density. 1 Marks (As per explanation)	2	
	iii.	Find the magnetic field intensity due to this infinite current sheet by using Ampere's circuital law. (As per explanation)	5	
OR	iv.	Derive magnetic boundary conditions for normal and tangential component. (As per explanation)	5	
Q.5	i.	Define Lorentz force 1 Mark write its formula 1 Mark	2	
	ii.	What is displacement current 1 Mark Derive its formula. 2 Marks	3	
	iii.	Derive its formula: Derive four Maxwell's equation in point form and integral form for Harmonically varying fields. Marks*4) (1.25)	5	
OR	iv.	State and prove Poynting theorem Show that average power $P_{avg} = \frac{1}{2} \frac{E_m}{\eta} \left(\frac{Watt}{m^2} \right).$ 2.5 Marks Marks	5	
Q.6	i.	What is Polarization of wave 1 Mark Write three differences between Linear, Elliptical and Circular polarization. 3 Marks	4	
	ii.	Derive the reflection co-efficient 4 Marks find the Brewster angle. 2	6	
OR	iii.	Marks (a) Phase constant (b) Wavelength 1 Mark 1 Mark	6	

(c) Velocity of propagation1 Mark(d) Intrinsic impedance1 Mark(e) Propagation constant1 Mark(f) Amplitude of magnetic field intensity.1 Mark
