

2.º Teste de Introdução à Arquitetura de Computadores

1.º Semestre 2017/2018 Duração: 60 minutos

IST – LEIC-Taguspark 11 dezembro 2017

NOME	NÚMERO	

1. (1 + 1 + 3 + 1 valores) Considere o seguinte programa em linguagem *assembly* do PEPE-16, que usa duas interrupções. Para facilitar, fornece-se a descrição interna das instruções CALL e RET e uma descrição sumária do mecanismo das interrupções.

CALL Etiqueta	SP ← SP-2 M[SP]←PC PC ← Endereço da Etiqueta
RET	$PC \leftarrow M[SP]$ $SP \leftarrow SP+2$

de rotina de	Guarda endereço de retorno Guarda registo de estado (RE) Salta para rotina de interrupção
DEE	Repõe registo de estado (RE) Repõe endereço de retorno no PC

- a) Preencha os <u>endereços que faltam</u> na coluna "Endereços" (preencha apenas as linhas em que tal faça sentido) e <u>as instruções (ou parte delas) que faltam no programa</u>. Considera-se que cada MOV com uma constante <u>ocupa apenas uma palavra</u>;
- b) Na coluna mais à esquerda, "Int", coloque um "X" <u>apenas</u> nas linhas das instruções em que o PEPE, <u>em vez de executar logo</u> essa instrução, <u>pode ir atender primeiro</u> uma interrupção, se esta tiver entretanto sido pedida (num dos pinos relevantes) mas ainda não tiver sido atendida;

c) Acabe de preencher a tabela com informação sobre a sequência de todos os acessos de dados à memória feitos pelo programa, de leitura (L) ou escrita (E), assumindo que todos os pinos de interrupção do PEPE são ativados (passam de 0 para 1) durante a instrução MOV R1, Z.

Ignoram-se os acessos de busca de instrução. Use apenas as linhas que necessitar.

Quando o valor lido ou escrito (coluna da direita) for o registo de estado, use apenas RE como valor (uma vez que é difícil determinar o valor de todos os bits de estado).

Endereço da instrução ou n.º da interrupção que causa o acesso	Endereço acedido	L ou E	Valor lido ou escrito

	d) Indique	os valores (hexadecimal	, 16 bit	s) de R0	e R1 no f	im do pro	grama.	I	
		R0		Н	R1		Н			
2.	gasta 20% do se	u tempo em), em que a de 80% e 55	CPU e 80% a CPU e a GP 5%, respetiva	em GP U são mente,	U (proces 20% e 45 do tempo	ssador gr % mais r o que den	ráfico). De rápidas que noravam a	cide comprar u e no seu portátil	l antigo. Ou seja,	
					2					
					2					

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a informação em falta sobre o descodificador e cada dispositivo (<u>bits de endereço</u> a que liga, <u>capacidade</u>, <u>saída do descodificador</u> a que deve ligar e o <u>endereço de fim</u> da gama de endereços em que esse dispositivo está ativo, <u>não considerando endereços de acesso repetido</u> - espelhos).

Bits de endereço a o descodificador deve ligar

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Saída do descodificador	Início (hexadecimal)	Fim (hexadecimal)
ROM	A0-A8			3000H	
RAM 1		1 K		1000H	
RAM 2		2 K		0000Н	
Periférico	A0-A6			2000Н	

4. (2 valores) Considere a seguinte a tabela de Karnaugh, relativa a uma função de quatro entradas e uma saída. Preencha a tabela de verdade que lhe deu origem e simplifique a respetiva função, escrevendo no retângulo a expressão algébrica mais simplificada que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

			C	D	
		00	01	11	10
	00		1	1	
AB	01			1	1
AD	11		1	1	1
	10	1	1	1	1

5. (1,5 + 0,5 valores) Pretende-se construir um circuito microprogramado que compare dois números binários, X e Y. O algoritmo de comparação é simples: comparam-se os bits 0 (menor peso) de cada um, seguido de um deslocamento de um bit à direita, repetindo-se estes dois passos até os registos serem zero. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem os dois números a comparar. Cada registo tem uma saída que vale 1 quando o registo tem o valor zero. Os bits 0 de cada registo entram numa equivalência (ou-exclusivo negado), que faz EQ = 1 quando os dois bits são iguais. Quando o algoritmo termina (deteção de bits diferentes ou ambos os registos ficam a zero), a saída FEITO deve ficar ativa e a saída IGUAIS deve ficar ativa se os números forem iguais, inativa se forem diferentes.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais ativos em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	LOAD_R1	SHR_R1	LOAD_R2	SHR_R2	FEITO	IGUAIS	SEL_MICRO _SALTO	MICRO_ SALTO
1 ()	$R1 \leftarrow X$ $R2 \leftarrow Y$								
1	$(R1(0) == R2(0)): MPC \leftarrow 3$								
2	FEITO $\leftarrow 1$ IGUAIS $\leftarrow 0$ MPC $\leftarrow 2$								
3	$R1 \leftarrow R1 \gg 1$								
	$R2 \leftarrow R2 >> 1$								
5	(R1 != 0 ou R2 != 0): MPC ← 1								
	FEITO ← 1 IGUAIS ← 1 MPC ← 6								

b)	Quantos bits deve ter no mínimo o sinal SEL_MICRO_SALTO?	

6. (1,5 + 1,5 valores) Considere uma cache de dados de mapeamento direto, com blocos de 8 palavras cada, 4 bits de etiqueta, num processador com 16 bits de endereço com <u>endereçamento de byte</u> (uma palavra = dois endereços).

a)	Quantos blocos tem esta cache?	
----	--------------------------------	--

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 4 ns e 30 ns, respetivamente. Se o tempo médio de acesso for 9,2 ns, qual é a *hit rate* média?

|--|

7. (2 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 00000H até FFFFH, enquanto o espaço de endereçamento físico vai de 0000H até FFFFH. As páginas virtuais têm uma dimensão de 100H bytes. A TLB é totalmente associativa de 8 entradas e tem atualmente o conteúdo da tabela seguinte (algumas posições estão vazias, isto é, não inicializadas).

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	0F
1	1	207	31
2	0	2A0	3E
3	1	1EF	F1
4	1	3B9	03
5	0	0C3	1D
6	1	2A0	1B
7	0	A25	0C

Preencha a tabela seguinte para este computador e para este conteúdo da TLB.

Dimensão do espaço virtual (em bytes)	
Dimensão do espaço físico (em bytes)	
N.º páginas físicas	
Endereço virtual que corresponde ao endereço físico F103H	
Endereço físico que corresponde ao endereço virtual 3B90FH	