PLP - 33

TOPIC 33—INJECTIONS, SURJECTIONS AND BIJECTIONS

Demirbaş & Rechnitzer

INJECTIONS, SURJECTIONS AND BIJECTIONS

INJECTIONS — DIFFERENT MAPS TO DIFFERENT

DEFINITION:

Let f:A o B be a function.

The function f is **injective** when for all $a_1, a_2 \in A$

$$(a_1
eq a_2) \implies f(a_1)
eq f(a_2)$$

Equivalently (by the contrapositive)

$$f(a_1)=f(a_2) \implies a_1=a_2$$

Injections are also called one-to-one functions.

Note: if f is injective then for every $b \in B, |f^{-1}(\{b\})| \leq 1$.

This is consistent with $|A| \leq |B|$

INJECTION EXAMPLE

PROPOSITION:

The function $f:\mathbb{R} o\mathbb{R}$ defined by f(x)=7x-3 is injective

Use $f(a_1)=f(a_2) \implies a_1=a_2$ to prove — equalities easier than inequalities.

PROOF.

Let $x,z\in\mathbb{R}$ and assume that f(x)=f(z). Then we know that

$$7x-3=7z-3$$
 $7x=7z$ $x=z$

and hence the function is injective.

SURJECTIONS — EVERYTHING IS MAPPED TO BY SOMETHING

DEFINITION:

Let $g:A\to B$ be a function.

The function g is surjective when

$$orall b \in B, \exists a \in A ext{ s.t. } g(a) = b$$

Surjections are also called onto functions.

Note: if g is surjective then for every $b \in B, |g^{-1}(\{b\})| \geq 1$.

This is consistent with $|A| \geq |B|$

SURJECTION EXAMPLE

PROPOSITION:

The function $f:\mathbb{R} o\mathbb{R}$ defined by f(x)=7x-3 is surjective

Given $y \in \mathbb{R}$, we need to find $x \in \mathbb{R}$ so that f(x) = y:

$$y=7x-3$$
 so $y+3=7x$ so $x=rac{y+3}{7}$.

PROOF.

Let $y \in \mathbb{R}$ and set $x = rac{y+3}{7} \in \mathbb{R}$. Then

$$f(x) = 7x - 3 = 7 \cdot \frac{y+3}{7} - 3 = y + 3 - 3 = y$$

as required. Hence the function is surjective.

A NON-EXAMPLE

PROPOSITION:

The function $f:\mathbb{R} o\mathbb{R}$ defined by $f(x)=x^2$ is neither injective nor surjective.

not injective
$$\equiv \exists x_1, x_2 \in A$$
 s.t. $(x_1 \neq x_2) \land (f(x_1) = f(x_2))$ not surjective $\equiv \exists b \in B$ s.t. $\forall a \in A, f(a) \neq b$

PROOF.

We prove each claim in turn.

- Now let x=1, z=-1. Then since f(x)=1=f(z), the function is not an injection.
- Let y=-1. For any $x\in\mathbb{R}$ we know $f(x)=x^2\geq 0$, so there is no $x\in\mathbb{R}$ so that f(x)=y. So f is not a surjection.

BIJECTIONS — INJECTIVE AND SURJECTIVE

DEFINITION:

Let $h:A\to B$ be a function. The function h is bijective when it is both injective and surjective.

Bijections are also called one-to-one correspondences.

Note: if *h* is bijective then

- ullet since h is injective we know that for every $b\in B, |h^{-1}(\{b\})|\leq 1$
- since h is surjective we know that for every $b \in B, |h^{-1}(\{b\})| \ge 1$ and so for every $b \in B, |h^{-1}(\{b\})| = 1$.

This is consistent with |A|=|B|

From work above $f:\mathbb{R} o\mathbb{R}$ defined by $\overline{f(x)}=7x-3$ is bijective.

ANOTHER x^2 EXAMPLE

Consider the 4 functions

$$egin{aligned} f: \mathbb{R} &
ightarrow \mathbb{R} & f(x) = x^2 \ g: \mathbb{R} &
ightarrow [0, \infty) & g(x) = x^2 \ h: [0, \infty) &
ightarrow \mathbb{R} & g(x) = x^2 \
ho: [0, \infty) &
ightarrow [0, \infty) &
ho(x) = x^2 \end{aligned}$$

Then

- f is neither injective nor surjective
- g is surjective but not injective
- *h* is injective but not surjective
- ρ is both injective and surjective

Let's prove the last one carefully.

INJECTIVE AND SURJECTIVE

$$ho:[0,\infty) o [0,\infty)$$
 with $ho(x)=x^2$ is injective and surjective

PROOF.

We prove each in turn.

- Injection: Let $x,z\in[0,\infty)$ with ho(x)=
 ho(z). Then we know that $x^2=z^2$ and hence $x=\pm z$. But since $x,z\geq 0$ we must have x=z as required.
- Surjection: Let $y\geq 0$ and then set $x=\sqrt{y}$. Since $y\geq 0$, we know that $x\in\mathbb{R}$. Then $ho(x)=x^2=(\sqrt{y})^2=y$.

8n+8y=8
 3n+6y=8 × FF n=1, then y ≠ ≥

$$Quiz 10.2$$

$$f(n) = 9m(n)$$

$$g(n) = |n|$$

$$f(n) = 9m(n)$$

$$f(n) = 1 = 1$$

$$f(n) = 1 = 1$$

$$f(n) = 9m(n)$$

$$f(n) = 9m$$