STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit

Lecture #10

Scribe: Chuchu Wang and Gan Wu

1 Admissibility of Minimax Estimator

Recall: δ^M is minimax if its maximum risk is minimal:

$$\inf_{\delta} \sup_{\theta \in \Omega} R(\theta, \delta) = \sup_{\theta \in \Omega} R(\theta, \delta^M)$$

Admissibility implies maximaxity: if δ is admissible with constant risk, then δ is also minimax.

Proof 1 (**Argument**) Let the constant risk of δ be r, then r is also the worst case risk of δ , as the risk is constant. Now if we assume that δ is not minimax, there exists a different estimator, say δ' , such that it is minimax (with the corresponding risk as r' < r). But since this is the worst case risk of δ' , it implies that the risk of δ' is lower than r throughout, and thus δ' dominates δ . This is a contradiction, as δ is admissible, which implies that δ is minimax.

Note, however, that minimaxity does not guarantee admissibility (need to check case-by-case).

Example 1 Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$, where σ^2 is known, and the parameter θ is the estimand. The minimax estimator is \bar{X} under the squared error loss function.

Question: is \bar{X} admissible?

[A more general question: when is $aar X+b,a,b\in\mathbb{R}$ (any affine function of ar X) admissible?]

Case 1 0 < a < 1:

Observe that $a\bar{X}+b$ is a convex combination of \bar{X} and b. It is a Bayes estimator with respect to some Gaussian prior on θ . Since we are considering the squared error loss function, which is strictly convex, the Bayes estimator is unique. By Theorem 5.2.4 (TPE), $a\bar{X}+b$ is therefore admissible.

Case 2 a = 0:

In this case, b is also a unique Bayes estimator with respect to a degenerate prior distribution with unit mass at $\theta = b$. ($\Lambda(\theta) = N(b, 0^2)$). So by Theorem 5.2.4, b is admissible.

Case 3 $a = 1, b \neq 0$:

In this case, $\bar{X} + b$ is not admissible, because it is dominated by \bar{X} because \bar{X} has the same variance as $\bar{X} + b$, but is has a strictly smaller bias.

Case 4 a > 1:

Risk of
$$a\bar{X} + b = \mathbb{E}[(a\bar{X} + b - \theta)^2] = \mathbb{E}[(a(\bar{X} - \theta) + b + \theta(a - 1))^2] = \frac{a^2\sigma^2}{n} + (b + \theta(a - 1))^2$$

So, when a > 1,

$$\mathbb{E}[(a\bar{X} + b - \theta)^2] \ge \frac{a^2 \sigma^2}{n} > \frac{\sigma^2}{n} = R(\theta, \bar{X})$$

Hence, \bar{X} dominates $a\bar{X} + b$ when a > 1, and so in this case $a\bar{X} + b$ is inadmissible.

Case 5 a < 0:

$$\mathbb{E}[(a\bar{X} + b - \theta)^2] > (b + \theta(a - 1))^2 = (a - 1)^2(\theta + \frac{b}{a - 1})^2 > (\theta + \frac{b}{a - 1})^2$$

and this is the risk of predicting the constant $-\frac{b}{a-1}$. So $-\frac{b}{a-1}$ dominates $a\bar{X}+b$. Hence, $a\bar{X}+b$ is inadmissible.

Case 6 a = 1, b = 0:

We use a limiting Bayes argument. Suppose \bar{X} is inadmissible. WLOG, we assume that $\sigma^2=1$, and have

$$R(\theta, \bar{X}) = \frac{1}{n}$$

By our hypothesis, there must exist an estimator δ' such that $R(\theta, \delta') \leq \frac{1}{n}$ for all θ , and $R(\theta', \delta') < \frac{1}{n}$ for some $\theta' \in \Omega$ [at least one]. Because $R(\theta, \delta)$ is continuous in θ , there must exist $\epsilon > 0$ and an interval (θ_0, θ_1) containing θ' such that

$$R(\theta, \delta') < \frac{1}{n} - \epsilon, \forall \theta \in (\theta_0, \theta_1)$$
 (*)

Let r'_{τ} be the average risk of δ' with respect to the prior distribution $N(0, \tau^2)$ on θ . Let r_{τ} be the average risk of a Bayes estimator δ_{τ} under the same prior.

Note that $\delta_{\tau} \neq \delta'$ because $R(\theta, \delta_{\tau}) \to \infty$ as $\theta \to \infty$, which is not consistent with $R(\theta, \delta') \leq \frac{1}{n}$ for all $\theta \in \Omega = \mathbb{R}$. So, $r_{\tau} < r'_{\tau}$ because the Bayes estimator is unique almost surely w.r.t. the marginal distribution of θ .

$$\frac{\frac{1}{n} - r_{\tau}'}{\frac{1}{n} - r_{\tau}} = \frac{\frac{1}{\sqrt{2\pi\tau^2}} \int_{-\infty}^{\infty} \left\{ \frac{1}{n} - R(\theta, \delta') \right\} \exp(-\frac{\theta^2}{2\tau^2}) d\theta}{\frac{1}{n} - \frac{1}{n + \frac{1}{\tau^2}}} \tag{\#}$$

By (*), we can simplify (#) as follows

$$\frac{\frac{1}{n} - r_{\tau}'}{\frac{1}{n} - r_{\tau}} \ge \frac{\frac{1}{\sqrt{2\pi\tau^2}} \int_{\theta_0}^{\theta_1} \epsilon e^{-\frac{\theta^2}{2\tau^2}} d\theta}{\frac{1}{n(1+n\tau^2)}} = \frac{n(1+n\tau^2)}{\tau\sqrt{2\pi}} \epsilon \int_{\theta_0}^{\theta_1} e^{-\frac{\theta^2}{2\tau^2}} d\theta$$

As $\tau \to \infty$, the first expression $\frac{n(1+n\tau^2)\epsilon}{\tau\sqrt{2\pi}} \to \infty$, and since the integrand converges monotonically to 1, Lebesgue's monotone convergence theorem ensures that the integrand approaches to the quantity $\theta_1 - \theta_0$. So, for sufficiently large τ , we must have

$$\frac{\frac{1}{n} - r_{\tau}'}{\frac{1}{n} - r_{\tau}} > 1$$

This means that $r'_{\tau} < r_{\tau}$. But this is a contradiction because r_{τ} is the optimal average risk. So our assumption that there was a dominating estimator is incorrect, in which case $a\bar{X} + b = \bar{X}$ is admissible.

James-Stein (JS) Estimator (empirical Bayes)

Reference: TPE 5.4 - 5.5, simultaneous estimation

Let X_1, \ldots, X_n with $X_i \sim N(\theta_i, \sigma^2)$ for $1 \leq i \leq n$. Our goal is to estimate $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_n)^T$ under the loss function

$$L(\boldsymbol{\theta}, \boldsymbol{d}) = \sum_{i=1}^{n} (d_i - \theta_i)^2$$

Then,

$$\delta_i(\boldsymbol{X}) = \max\left(1 - \frac{p-2}{\|\boldsymbol{X}\|_2^2}, 0\right) X_i$$

"OPTIMAL" INFERENCE (no uniform optimality) \iff Decision Theory

Considered in finite sample case.

2 Testing of Statistical Hypotheses

2.1 Another decision problem: hypothesis testing

We assumme that the data is sampled according to $X \sim P_{\theta}$, where $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$. Two disjoint subclasses of θ (hypotheses):

$$H_0: \theta \in \Omega_0 \subset \Omega \ \text{(null hypothesis)}$$

 $H_1(\text{or } H_a): \theta \in \Omega_1 = \Omega/\Omega_0 \ \text{(alternative hypothesis)}$

Decision space $\mathcal{D} = \{ \text{Reject } H_0, \text{ not to reject } H_0 \text{ (or accept } H_0) \}.$

e.g. H_0 : no change in infection rate (default).

 H_1 : improvements in lowering infection rate.

Truth Decision	$\theta \in \Omega_0$	$\theta \in \Omega_1$
Reject H_0	1 Type I error (More severe)	0 (Good)
Accept H_0	0 (Good)	1 Type II error

Terminologies

* Test function/critical function : $\phi(x) \in [0,1]$

$$\phi(x) = P\left(\delta_{\phi}(x, u) = \text{Reject } H_0|x\right)$$

where u is a uniform random variable independent of X.

* Power function of a test ϕ is $\beta(\theta) = \mathbb{E}_{\theta}(\phi(X)) = P_{\theta}(\text{Reject } H_0)$.

Note:

If
$$\theta_0 \in \Omega_0$$
, then $\beta(\theta_0) = R(\theta_0, \delta_\phi)$ = Type I error.

For
$$\theta_1 \in \Omega_1$$
, then $\beta(\theta_1) = 1 - R(\theta_1, \delta_{\phi}) = 1$ -Type II error.

Our "ideal" optimality goal is to minimize $\beta(\theta_0)$ uniformly for all $\theta_0 \in \Omega_0$ and maximize $\beta(\theta_1)$ uniformly for all $\theta_1 \in \Omega_1$.

Neyman-Pearson Framework

Control the level of significance

$$\sup_{\theta_0 \in \Omega_0} \mathbb{E}_{\theta_0} \phi(X) = \sup_{\theta_0 \in \Omega_0} \beta(\theta_0) \le \alpha$$

where $\sup_{\theta_0 \in \Omega_0} \beta(\theta_0)$ is called the size of the test.

Optimality Goal: Find a level α test that maximizes the power $\beta(\theta_1) = \mathbb{E}_{\theta_1}(\phi(X))$ for each $\theta_1 \in \Omega_1$. Such a test is called a uniformly powerful (UMP) test.

MP for the "simple-vs-simple" case

Definition 7 A hypothesis H_0 is called **simple** if $|\Omega_0| = 1$, otherwise it is called **composite**. This applies to H_1 as well.

Hence a simple-vs-simple test:

$$H_0: X \sim p_0 \ (p_0 = P_{\theta_0})$$

 $H_1: X \sim p_1 \ (p_1 = P_{\theta_1})$

Our goal is to find ϕ :

$$\max_{\phi} \mathbb{E}_{p_1}(\phi(X)) \quad \text{subject to } \mathbb{E}_{p_0}(\phi(X)) \leq \alpha$$

Lemma 1 (Neyman-Pearson Lemma) .

- (i) Existence. For testing $H_0: p_0$ vs $H_1: p_1$, there exists a test $\phi(X)$ and a constant k such that
 - (a) $E_{p_0}(\phi(X)) = \alpha$ (size = level)
 - (b)

$$\phi(x) = \begin{cases} 1, & \text{if } \frac{p_1(x)}{p_0(x)} > k \text{ [Rejection]} \\ 0, & \text{otherwise [Acceptance]} \end{cases}$$

such a test is called a likelihood ratio test.

- (ii) Sufficiency: If a test satisfies (a) and (b) for some constant k, it is most powerful for testing $H_0: p_0$ vs $H_1: p_1$ at level α .
- (iii) Necessity: If a test ϕ is MP at level α , then it satisfies (b) for some k, and it also satisfies (a) unless there exists a test if $size < \alpha$ with power 1.

Example 2 Let $X_1,...,X_n \stackrel{i.i.d}{\sim} N(\mu,\sigma^2)$ with σ^2 known. We want to test:

$$H_0: \mu = 0 \ vs \ H_1: \mu = \mu_1$$

where μ_1 is given. We calculate the likelihood ratio:

$$r(x) = \frac{p_1(x)}{p_0(x)} = \dots = \exp\left(\frac{1}{\sigma^2}\mu_1 \sum_{i=1}^n x_i - \frac{n\mu_1^2}{2\sigma^2}\right)$$

Suppose

$$r(x) > k \iff \mu_1 \frac{\sum_{i=1}^n x_i}{\sigma^2} - \frac{n\mu_1^2}{2\sigma^2} > \log k$$

$$\iff \mu_1 \sum_{i=1}^n x_i > k'$$

$$\iff \begin{cases} \sum_{i=1}^n x_i > k'', & \text{if } \mu_1 > 0 \\ \sum_{i=1}^n x_i < k''', & \text{if } \mu_1 < 0 \end{cases}$$

Let's focus on the case where $\mu_1 > 0$,

$$r(x) > k \iff \sum_{i=1}^{n} x_i > k''$$

 $\iff \frac{\sqrt{n}\bar{x}}{\sigma} > k''''$

To calculate k'''' (critical value), we need to evaluate

$$\mathbb{E}_{p_0}(\phi(X)) = \alpha = P_{\mu=0} \left(\frac{\bar{X}}{\sigma/\sqrt{n}} > k'''' \right)$$

where $\frac{\bar{X}}{\sigma/\sqrt{n}}$ is normally distributed with zero mean.