

System Identification & Control Design of a 2DOF Hover

DDMaC Lab

Supervising Professor : Alireza Karimi

Supervising TA: Mert Eyuboglu

 School of Engineering IEM DDMaC

Outline

obec

- Introduction
- Project Overview
- Methods
- Results

Introduction

$$\begin{cases} \theta = G_{11}V_0 + G_{12}V_1 \\ \psi = G_{21}V_0 + G_{22}V_1 \end{cases}$$

Project Overview

What are the main steps of the project?

Speaker

Project Overview

Data Acquisition

Project Overview

System Identification of Different Models through Different Methods

Structures without noise model (OE, FIR)

Assumption: noise is independent from input

$$y(k) = G_0(q^{-1})u(k) + n(k)$$

OE:
$$G_0(q^{-1}) = \frac{B_0(q^{-1})}{A_0(q^{-1})}$$
 FIR: $G_0(q^{-1}) = B_0(q^{-1})$

Structures with noise model (ARX, ARMAX, BJ)

Assumption: noise can be modeled by a filtered white noise

$$y(k) = \frac{B_0(q^{-1})}{A_0(q^{-1})}u(k) + H_0(q^{-1})e(k)$$

$$\mathbf{ARX}: \quad H_0(q^{-1}) = \frac{1}{A_0(q^{-1})} \quad ; \quad \mathbf{ARMAX}: \quad H_0(q^{-1}) = \frac{C_0(q^{-1})}{A_0(q^{-1})}$$

BJ:
$$H_0(q^{-1}) = \frac{C_0(q^{-1})}{D_0(q^{-1})}$$

Methods

Zoom into the Methods

Methods

System Identification of Pitch Models : Classical System Identification

Frequency Response Identification : Spectral & Fourier Analysis

$$G(e^{j\omega}) = \frac{\phi_{yu}(\omega)}{\phi_{uu}(\omega)}$$

 If input and output are periodic signals by Ignoring the Randomness of the Measurement Noise

$$G(e^{j\omega}) = \frac{\phi_{yu}(\omega)}{\phi_{yu}(\omega)} = \frac{Y(e^{j\omega})U(e^{-j\omega})}{U(e^{j\omega})U(e^{-j\omega})} = \frac{Y(e^{j\omega})}{U(e^{j\omega})}.$$

State-space representation

An LTI discrete-time can be represented in state-space form :

$$x(k+1) = Ax(k) + Bu(k) + w(k)$$
$$y(k) = Cx(k) + Du(k) + e(k)$$

where w(k) and e(k) are state and output noise with the covariance :

$$\mathbb{E}\left\{\left[\begin{array}{c} w(k) \\ e(k) \end{array}\right] \left[w(k) \quad e(k)\right]\right\} = \left[\begin{array}{cc} Q & S \\ S^T & R \end{array}\right]$$

Methods

System Identification of Yaw : Different Approaches

Speal

Results

G11 Identification – Input and Output Analysis

G11 Identification – Frequency Response Identification

G11 Identification – Order & Structure Estimation

EPFL

Results

G11 Identification – Order & Structure Estimation

G11 Identification – Order & Structure Estimation

G11 Identification – Parametric Models Identification & Comparisons

- G11 Identification Parametric Models Identification & Comparisons
 - Comparison with Fourier Method

Comparison with Spectral Method

G11 Identification – Parametric Models Identification & Comparisons

G12 Identification – Input & Output Measurements

Speaker

EPFL

Results

G12 Identification – Order & Structure Estimation

G12 Identification – Parametric Models Identification & Comaprisons

G12 Identification – Parametric Models Identification & Comparisons

Comparison with Fourier Method

Comparison with Spectral Method

EPFL

Results

G12 Identification – Parametric Models Identification & Comparisons

G22 Identification – Directly Fitting on Data with Drift

G22 Identification – Directly Fitting on Data with Drift

G22 Identification – Directly Fitting on Data with Drift

Speaker

Results

Speaker

Results

Speaker

Results

G22 Identification – Closed-Loop System Identification

EPFL

Results

G22 Identification – Closed-Loop System Identification

G22 Identification – Closed-Loop System Identification

o D

Summary & Conclusion

References

- Preliminary One DOF Dual Rotor System Identification URP Summer 2020 Presentation. (n.d. https://www.youtube.com/watch?v=BPdglZsFnvM
- A. Karimi, System Identification Lecture Notes, EPFL, 2023.
- A. Karimi, System Identification Course Notes, EPFL, 2023.