PLSC 502 – Fall 2016 Linear Regression: Model Fit

November 17, 2016

A (Simulated) Example

```
> X<-rnorm(250)
> Y1<-5+2*X+rnorm(250,mean=0,sd=sqrt(0.2))
> Y2<-5+2*X+rnorm(250,mean=0,sd=sqrt(20))
> fit < -lm(Y1^X)
> summary(fit)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.97712 0.02846 174.86 <2e-16 ***
X
            2.02529 0.02785 72.73 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4491 on 248 degrees of freedom
Multiple R-squared: 0.9552, Adjusted R-squared: 0.955
F-statistic: 5290 on 1 and 248 DF, p-value: < 2.2e-16
```

Regression of $Y_i = 5 + 2X_i + u_i$ ($R^2 = 0.95$)

Same Slope/Intercept, Different R^2

F-statistic: 62.95 on 1 and 248 DF, p-value: 7.288e-14

Regression of $Y_i = 5 + 2X_i + u_i$ ($R^2 = 0.20$)

Variation in Y

$$Var(Y) = Var(\hat{Y} + \hat{u})$$

$$= Var(\hat{Y}) + Var(\hat{u}) + 2 Cov(\hat{Y}, \hat{u})$$

$$= Var(\hat{Y}) + Var(\hat{u})$$

$$\begin{array}{lll} \textbf{TSS} & = & \textbf{MSS} & + & \textbf{RSS} \\ \textbf{("Total")} & & \textbf{("Estimated," or "Model")} & & \textbf{("Residual")} \end{array}$$

R^2 Introduced

$$R^{2} = \frac{MSS}{TSS}$$

$$= \frac{\sum (\hat{Y}_{i} - \bar{Y})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

$$= 1 - \frac{RSS}{TSS}$$

$$= 1 - \frac{\sum \hat{u}_{i}^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

R-squared:

- is "the proportion of variance explained"
- $\bullet \in [0,1]$
 - $\cdot R^2 = 1.0 \equiv a$ "perfect (linear) fit"
 - $\cdot R^2 = 0 \equiv \text{no (linear)} X Y \text{ association}$

For a single X,

$$R^{2} = \hat{\beta}_{1}^{2} \frac{\sum (X_{i} - \bar{X})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$
$$= r_{XY}^{2}$$

R^2 is Also an *Estimate...*

Luskin: Population analogue "P2":

$$P^2 = 1 - \frac{\sigma^2}{\sigma_Y^2}$$

Then $\hat{P}^2 = R^2$ has variance:

$$\widehat{\text{Var}(R^2)} = \frac{4R^2(1-R^2)^2(N-k)^2}{(N^2-1)(N+3)}$$

and standard error:

$$\widehat{\text{s.e.}(R^2)} = \sqrt{\frac{4R^2(1-R^2)^2(N-k)^2}{(N^2-1)(N+3)}}.$$

Adjusted R^2

$$R_{adj.}^2 = 1 - \frac{(1 - R^2)(N - c)}{(N - k)}$$

where c=1 if there is a constant in the model and c=0 otherwise.

$R_{adj.}^2$:

- $R_{adj.}^2 \to R^2$ as $N \to \infty$
- $R_{adj.}^2$ can be > 1, or < 0...
- $R_{adj.}^2$ increases with model "fit," but
- The extent of that increase is discounted by a factor proportional to the number of covariates.

The World's Simplest Regression

Data:

ХΥ

1 1

2 2 1

3 3 7

	X_i	Y_i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$
	1	1	-1	-2	1	4	2
	2	1	0	-2	0	4	0
	3	7	1	4	1	16	4
$\sum_{i=1}^{3}(\cdot)=$	6	9	0	0	2	24	6

The World's Simplest Regression

The World's Simplest Regression

```
> X<-c(1,2,3)
> Y<-c(1,1,7)
> WSR<-lm(Y~X)
> summary(WSR)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.000 3.742 -0.802 0.570
X 3.000 1.732 1.732 0.333
```

Residual standard error: 2.449 on 1 degrees of freedom Multiple R-squared: 0.75, Adjusted R-squared: 0.5 F-statistic: 3 on 1 and 1 DF, p-value: 0.3333

R^2 Alternatives

• Standard Error of the Estimate:

$$\mathsf{SEE} = \sqrt{\frac{\mathsf{RSS}}{N - k}}$$

- F-tests (later...)
- ROC / AUC (later...)
- Graphical methods

Caution: Different Ways to get $R^2 = 0$

