For full credit you must (NEATLY) show your work. Partial credit may be given for incorrect solutions if sufficient work is shown.

1. (6 pts) Use the four-step process to find f'(x) for $f(x) = x^2 + 1$.

•
$$f(x+h) = (x+h)^2 + 1$$

= $x^2 + 2xh + h^2 + 1$

•
$$f(x+h) - f(x) = x^{2} + \lambda x^{2}$$

•
$$\frac{f(x+h)-f(x)}{h} = \frac{2 \times h + h^2}{h} = 2 \times h$$

•
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - \lim_{h \to 0} \frac{\partial x}{\partial x} = \lim_{h \to 0} \frac{\partial x}{\partial x}$$

2. (2 pts) Find the equation of the tangent line to $f(x) = x^2 + 1$ at x = 3.

Point:
$$X_0 = 3$$
, $Y_0 = f(3) = 3^2 + 1 = 10$
Slope: $f'(3) = 2(3) = 6$

Eqn:
$$y-10=6(x-3)$$
 $\longleftrightarrow y=6x-8$

3. (2 pt) Use any method to evaluate

$$\frac{d}{dx}\left(5x^4 - 8x + \frac{1}{x}\right) = 20x^3 - 8 - x^{-2}$$

$$= x^{-1}$$