Yifei Wang

5 Yiheyuan Road, Haidian District, Beijing, China

\(\+86-126-1113-6518 \) **\(\sqrt** yifei_wang@pku.edu.cn \) **\(\+** pkuwangyifei \) **\(\=** yifeiwang.me \)

EDUCATION

Peking University, School of Mathematical Sciences

09 2017 - 06 2023 (expected)

Ph.D. Candidate in Applied Mathematics

Beijing, China

Member of ZERO Lab. Advisors: Yisen Wang, Jiansheng Yang, Zhouchen Lin

Peking University, School of Mathematical Sciences

09 2013 – 07 2017

Bachelor of Science (Major)

Beijing, China

Peking University, Department of Philosophy

09 2014 - 07 2017

Bachelor of Art (Minor)

Beijing, China

EXPERIENCE

Huawei Noah's Arch Lab

09 2021 - 03 2022

Research Intern

Beijing, China

• Research on energy-based approaches to self-supervised learning.

Huawei Noah's Arch Lab

09 2019 - 03 2020

Research Intern

Beijing, China

• Research on disentangling of robust and non-robust features through end-to-end learning.

Baidu's Phoenix Nest

09 2018 - 03 2019

Research Intern

Beijing, China

• Research on end-to-end AD selection with Reinforcement Learning and Transformer.

SELECTED AWARDS

- Best Machine Learning Paper Award, ECML-PKDD, 2021 (1/685)
- Silver Best Paper Award, ICML AML workshop, 2021
- National Scholarship, 2021, 2022 (Highest scholarship given by Chinese government, top 1%)
- Principal Scholarship, 2022 (Highest scholarship given by PKU, one per department, top 1%)
- Baidu Scholarship Nomination Award (20 worldwide), Baidu Inc, 2022
- Meritorious Winner (First Prize), Mathematical Contest in Modeling, 2016
- Yizheng Scholarship, Peking University, 2016

RESEARCH INTERESTS

I am generally interested in uncovering the underlying mechanisms of foundational learning paradigms (to name a few, contrastive learning, masked autoencoding, adversarial training). Now I research on the following major subjects of modern machine learning to establish their theoretical foundations and improve real-world effectiveness:

- Unsupervised Learning: feature learning, generalization, transferability and robustness; generative models
- Robust Learning: out-of-distribution robustness; adversarial robustness; data privacy and copyright
- Graph Learning: understanding and designing feature propagation inside GNNs and Transformers

PUBLICATIONS

TUBLICATIONS	
*: equal contribution UNSUP Unsupervised Learning ROBUST Robust Learning GRAPH Graph Learning	
 [ICLR'23] A Message Passing Perspective on Learning Dynamics of Contrastive Learning (UNSUP) Yifei Wang*, Qi Zhang*, Tianqi Du, Jiansheng Yang, Zhouchen Lin, Yisen Wang 11th International Conference on Learning Representations (ICLR 2023) 	2023
 [ICLR'23] Towards a Unified Theoretical Understanding of Non-contrastive Learning via Rank Differential Mechanism (UNSUP) Example 2. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 2. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 3. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 4. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 5. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 6. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 7. A Contrastive Learning via Rank Differential Mechanism (UNSUP) 8. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP) 9. A Contrastive Learning Via Rank Differential Mechanism (UNSUP)	2023
 [ICLR'23] Rethinking the Effect of Data Augmentation in Adversarial Contrastive Learning (UNSUP) Rundong Luo*, Yifei Wang*, Yisen Wang 11th International Conference on Learning Representations (ICLR 2023) 	2023
 [ICLR'23] ContraNorm: A Contrastive Learning Perspective on Oversmoothing and Beyond UNSUP GRAPH Xiaojun Guo*, Yifei Wang*, Tianqi Du, Yisen Wang 11th International Conference on Learning Representations (ICLR 2023) 	2023
 [ICLR'23] Unbiased Stochastic Proximal Solver for Graph Neural Networks with Equilibrium States GRAPH Mingjie Li, Yifei Wang, Yisen Wang, Zhouchen Lin 11th International Conference on Learning Representations (ICLR 2023) 	2023
 [AAAI'23 Oral] On the Connection between Invariant Learning and Adversarial Training for OOD Generalization ROBUST Shiji Xin, Yifei Wang, Jingtong Su, Yisen Wang 37th AAAI Conference on Artificial Intelligence (AAAI 2023). Oral Presentation. 	2023
 [NeurIPS'22 Spotlight] How Mask Matters: Towards Theoretical Understandings of Masked Autoencoders UNSUP Qi Zhang*, Yifei Wang*, Yisen Wang 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Spotlight Presentation 	2022
 [NeurIPS'22 Spotlight] Improving Out-of-distribution Robustness by Adversarial Training with Structured Priors ROBUST Qixun Wang*, Yifei Wang*, Hong Zhu, Yisen Wang 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Spotlight Presentation 	2022
 [NeurIPS'22 Spotlight] When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture ROBUST Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, Yisen Wang 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Spotlight Presentation 	2022
 [SSL-NeurIPS'22] Variational Energy-Based Models: A Probabilistic Framework for Contrastive Self-Supervised Learning UNSU Tianqi Du*, Yifei Wang*, Yisen Wang NeurIPS 2022 Workshop: Self-Supervised Learning - Theory and Practice 	IP 2022
 [SSL-NeurIPS'22 Oral] AggNCE: Asymptotically Identifiable Contrastive Learning UNSUP Jingyi Cui*, Weiran Huang*, Yifei Wang, Yisen Wang NeurIPS'22 Workshop: Self-Supervised Learning - Theory and Practice. Oral Representation 	2022
 [ICML'22] Optimization-induced Graph Implicit Nonlinear Diffusion GRAPH Qi Chen, Yifei Wang, Yisen Wang, Zhouchen Lin 39th International Conference on Machine Learning (ICML 2022) 	2022
 [ICML'22] G²CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters GRAPH Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, Zhouchen Lin 39th International Conference on Machine Learning (ICML 2022) 	2022

[ICLR'22] Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap (UNSUP)

- Yifei Wang*, Qi Zhang*, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- 10th International Conference on Learning Representations (ICLR 2022)

[ICLR'22] A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training (UNSUP) ROBUST

- Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- 10th International Conference on Learning Representations (ICLR 2022)
- Won Silver Best Paper at ICML 2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning

[NeurIPS'21] Residual Relaxation for Multi-view Representation Learning (UNSUP)

2021

- Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- 35th Conference on Neural Information Processing Systems (NeurIPS 2021)

[NeurIPS'21] Dissecting the Diffusion Process in Linear Graph Convolutional Networks (GRAPH)

2021

- Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- 35th Conference on Neural Information Processing Systems (NeurIPS 2021)

[ECML-PKDD'21 Best ML Paper] Reparameterized Sampling for Generative Adversarial Networks (UNSUP)

2021

- Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2021). Best Machine Learning Paper Award (1/685). Invited to Machine Learning Journal

[COLING'20] Train Once, and Decode as You Like (UNSUP)

- Chao Tian, Yifei Wang, Hao Cheng, Yijiang Lian, Zhihua Zhang
- 29th International Conference on Computational Linguistics (COLING 2020)

ROLES AND RESPONSIBILITIES

- Conference Reviewer: ICML (2022), NeurIPS (2022), ICLR (2022), ACL (2021, 2022), CVPR (2023), ECML-PKDD (2022)
- Organizer of a regular reading group on self-supervised learning (around 15 members) @ PKU, 2021-now
- TA, Optimization Methods in Machine Learning, 2018. Instructor: Zhouchen Lin
- TA, Advanced Mathematics, 2019. Instructor: Chao Wang
- TA, Introduction to Artificial Intelligence (Trustworthy ML Class), 2020, 2022. Instructor: Yisen Wang

TALKS

- Theoretical Foundations of Self-Supervised Learning. KAIST. 2022.
- Towards Truly Unlearnable Examples for Data Privacy. Chinese Academy of Science. 2022.
- Contrastive Energy-based Models: A Unified Framework. Peking University. 2021.
- **Reparameterized Sampling for GANs**. Huawei Noah's Arch Lab. 2021.
- Reparameterized Sampling for GANs (<u>Link</u>). Beijing Academy of Artificial Intelligence (BAAI). 2021.

SKILLS

Languages: Chinese (Native), English (Fluent).

Programming: Python, MATLAB, C.

Machine Learning: PyTorch, Tensorflow, Scikit-learn, JAX.

2022

2022

2020