

Chương 4: TRANSISTOR ĐƠN NÔI (UNIJUNCTION TRANSISTOR - UJT)

UJT chỉ có một mối nối pn, không thông dụng như BJT nhưng giữ vai trò quan trọng trong các mạch tạo dạng sóng và định giờ.

Kí hiệu, cấu tạo và cấu trúc tương đương của UJT

UJT cấu tạo gồm một khối chất bán dẫn pha nhẹ loại n⁻ với hai lớp tiếp xúc kim loại ở hai đầu tạo thành 2 cực nền B₁ và B₂.

Mối nối ph hình thành do một sợi dây hợp kim nhôm tạo thành vùng p, vùng p nằm cách B_1 khoảng 70% so với chiều dài của B_1 và B_2 . Dây nhôm giống như cực E.

Nguyên lý hoạt động

- •Khi V_{EE} = 0V (cực phát E để hở) thỏi bán dẫn là một điện trở ký hiệu R_{BB} gọi là điện trở liên nền (trị số từ 4 K Ω 10K Ω).
- •Điện trở R_{B1} và R_{B2} diễn tả điện trở của thanh bán dẫn n-. Như vậy:

$$R_{BB} = R_{B1} + R_{B2} \big|_{I_E = 0}$$

Vậy điện thế tại điểm A là

$$V_A = \frac{R_{B1}}{R_{B1} + R_{B2}} V_{BB} = \eta . V_{BB} > 0$$

Tỉ số nội tại

$$\eta = \frac{R_{B1}}{R_{B1} + R_{B2}} = \frac{R_{B1}}{R_{BB}}$$

- Khi V_{EE} = 0V (nối cực phát E xuống mass), vì V_A có điện thế dương nên Diod bị phân cực nghịch, chỉ có một dòng điện rỉ nhỏ chạy ra từ cực E.
- Tăng V_{EE} lớn dần, dòng điện I_{E} bắt đầu tăng theo chiều dương (dòng rỉ ngược I_{E} giảm dần, và triệt tiêu).

Khi
$$V_E$$
 có trị số $V_E = V_D + V_A$,

$$V_E = 0.5V + \eta V_{B2B1}$$

$$(V_{B1B2} = V_{BB})$$

thì diode phân cực thuận và bắt đầu dẫn điên mạnh.

Điện thế $V_E = 0.5V + \eta V_{B2B1} = V_P$ được gọi là điện thế đỉnh (peak-point voltage) của UJT.

Khi $V_E=V_P$, mối nối P-N phân cực thuận, lỗ trống từ vùng phát khuếch tán vào vùng n-và di chuyển đến vùng nền B1, lúc đó lỗ trống cũng hút các điện tử từ mass lên.

Vì độ dẫn điện của chất bán dẫn là một hàm số của mật độ điện tử di động nên điện trở $R_{\rm B1}$ giảm. Kết quả là lúc đó dòng $I_{\rm E}$ tăng và điện thế $V_{\rm E}$ giảm. Ta có một vùng điện trở âm.

- Khi I_E tăng, R_{B1} giảm trong lúc R_{B2} ít bị ảnh hưởng nên điện trở liên nền R_{BB} giảm.
- Khi l_E đủ lớn, điện trở liên nền R_{BB} chủ yếu là R_{B2}.
- Kết thúc vùng điện trở âm là vùng thung lũng, lúc đó dòng l_E đủ lớn và R_{B1} quá nhỏ không giảm nữa (chú ý là dòng ra cực nền B1) gồm có dòng điện liên nền B cộng với dòng phát l_E) nên V_E không giảm mà bắt đầu tăng khi I tăng. Vùng này được gọi là vùng bão hòa.

Vậy:

- Dòng đỉnh I_P là dòng tối thiểu của cực phát E để đặt UJT hoạt động trong vùng điện trở âm.
- Dòng điện thung lũng l_v là dòng điện tối đa của l_E
 trong vùng điện trở âm.
- Tương tự, điện thế đỉnh V_P là điện thế thung lũng V_V là điện thế tối đa và tối thiểu của V_{EB1} đặt UJT trong vùng điện trở âm.

Trong các ứng dụng của UJT, người ta cho
 UJT hoạt động trong vùng điện trở âm.
 Muốn vậy, ta phải xác định điện trở R_E để
 I_P<I_E<I_V

THÔNG SỐ KĨ THUẬT CỦA UJT

Điện trở liên nền R_{BB} : là điện trở giữa hai cực nên khi cực phát để hở. R_{BB} tăng khi nhiệt độ tăng theo hệ số $0.8\%/1^{\circ}C$

$$\eta = \frac{R_{B1}}{R_{B1} + R_{B2}} = \frac{R_{B1}}{R_{BB}}$$

Tỉ số này cũng được định nghĩa khi cực phát E để hở.

Điện thế đỉnh V_P và dòng điện đỉnh I_{P} : V_P giảm khi nhiệt độ tăng vì điện thế ngưỡng của nối PN giảm khi nhiệt độ tăng. Dòng I_P giảm khi V_{BB} tăng.

Điện thế thung lũng V_V và dòng điện thung lũng $I_{V:}$ Cả V_V và I_V đều tăng khi V_{BB} tăng

- •Điện thế cực phát bão hòa V_{Esat}: là hiệu điện thế giữa cực phát E và cực nền B1 được đo ở I_E=10mA hay hơn và V_{BB} ở 10V. Trị số thông thường của V_{Esat} là 4 volt (lớn hơn nhiều so với diod thường).
- Ôn định nhiệt cho đỉnh: Điện thế đỉnh V_P là thông số quan trọng nhất của UJT. Như đã thấy, sự thay đổi của điện thế đỉnh V_P chủ yếu là do điện thế ngưỡng của nối PN vì tỉ số η thay đổi không đáng kể.

ổn định nhiệt cho V_P bằng cách thêm một điện trở nhỏ R_2 (khoảng vài trăm ohm) giữa B_2 và nguồn V_{BB} . Ngoài ra mắc một điện trở nhỏ R_1 cũng khoảng vài trăm ohm ở cực nền B_1 để lấy tín hiệu ra.

Reverse biasing the emitter junction

Forward biasing the emitter junction

mạch dao động tạo xung.

1. The timing period is given as:

$$f = \frac{1}{T}$$
, $\therefore T = \frac{1}{f} = \frac{1}{100} = 10 \text{mS}$

2. The value of the timing resistor, R₃ is calculated as

$$T = R_{3}C \ln\left(\frac{1}{1-\eta}\right)$$

$$\therefore R_{3} = \frac{T}{C \times \ln\left(\frac{1}{1-\eta}\right)} = \frac{10mS}{100nF \times \ln\left(\frac{1}{1-0.65}\right)}$$

$$\therefore R_{3} = 95.238\Omega \text{ or } 95.3k\Omega$$

Mạch điểu khiển tốc độ động cơ DC, độ sáng đèn, nhiệt trở

Mạch còi hụ

