Skup podataka

Dataset: https://www.kaggle.com/datasets/mssmartypants/water-quality

Sadrzaj dataseta su supstance koje se sadrze u vodi I klasa koja oznacava da li je voda bezbedna za pice.

Cilj: Predvideti da li je voda bezbedna za pice.

Pocetni podaci:

Normalizovani podaci:

Priprema skupa podataka za dalju analizu

Ciscenje podataka od pogresnih vrednosti: U datasetu nemamo nevalidnih vrednosti ili vrednosti koje odskacu od opsega.

Skaliranje I normalizacija podataka: sve kolone imaju numericke vrednosti koje je moguce normalizovati osim klase koja ima vrednosti 0 I 1. Normalizujemo podatke iz razloga da ako neke kolone imaju razlicite vrednosti da se ne da posebna vaznost visokom vrednostima, normalizujemo ih tako da imaju jednaku vaznost.

Primena algoritma

1. NaiveBayes sa cross validation

Roc kriva za klasnu vrednost 0:

Roc kriva za klasnu vrednost 1:

Primecujemo da su ROC vrednosti iste 0,82. Tj. da se jednako dobro predvidjaju 0 i 1 vrednosti

Kako NaiveBayes algoritam pretpostavlja da su atributi nezavisni a normalizacija nece promeniti medjusobne odnose izmedju njih normalizacija nece znacajno uticati na rezultate,takodje ovaj algoritam nije osetljiv na razlike u opsegu atributa pa su rezultati sa normalizovanim I nenormalizovanim podacima slicni.

2. Koriscenjem percentage split opcije 70%, 80%, 90% redom:

3. ZeroR

4. OneR

OneR je jednostavan klasifikator koji bira jedan atribut i za njega definiše pravila na osnovu kojih se radi klasifikacija. U nasem slučaju je to aluminium atribut.

5. K Nearest Neighbors (kNN)

KNN sa vrednoscu 1:

KNN sa vrednoscu 6:

KNN sa vrednoscu 9:

6. J48 algoritam

Izgled stable:

Ukoliko izaberemo da postoji odsecanje stable dobijamo za nijansu losije rezultate (92,1083%)

7. Random forest

8. Classification via Regression

9. JRip

Sa odsecanjem

Bez odsecanja

Selekcija atributa I primena algoritma

Weka je dosla do zakljucka da su samo ovi atributi bitni za odredjivanje klase:

NaiveBayes sa cross validacijom:

J48:

RandomForest:

Svaki algoritam koji radi nad selektovanim atributima daje losije rezultate

Najbolji rezultat:

RandomForest

Poredjenje:

