Rozmytość a prawdopodobieństwo

Jacek Kluska

Politechnika Rzeszowska

Wstęp

So far as the laws of mathematics refer to reality, they are not certain. And so far as they are certain, they do not refer to reality. Albert Einstein

- Przypadkowość a wieloznaczność.
- Geometria zbiorów rozmytych: zbiory jako punkty.
- Jak duży jest zbiór rozmyty ?
- Twierdzenia.
- Powiązania z prawdopodobieństwem warunkowym.
- Wniosek: Żadna miara probabilistyczna nie mierzy rozmytości.
 - B. Kosko, Neural networks and fuzzy systems. A dynamical systems approach to machine intelligence. Prentice-Hall Int., Inc., New Jersey 1992.
 - D. Dubois, H. Prade, Copying with uncertain knowledge. In defense of possibility and evidence theories, Computers and Artificial Intelligence, 9 (2), pp. 115- 144, 1990.

Rozmytość w świecie probabilistycznym

Czy niepewność jest tym samym co przypadkowość ? Jeśli nie jesteśmy czegoś pewni, to czy jest tylko szansa ? Czy pojęcia szansy i prawdopodobieństwa wyczerpują nasze pojęcia o niepewności ?

- Jaynes E.T. (1979) ...każda metoda wnioskowania w, w której podajemy stopnie przypuszczenia poprzez liczby rzeczywiste, jest albo równoważna Laplace'owskiemu prawdopodobieństwu, albo sprzeczna.
- Lindley D.V. (1987) ...prawdopodobieństwo jest jedynym rozsądnym opisem niepewności i jest odpowiednie dla wszelkich problemów dotyczących niepewności. Wszystkie inne metody są nieadekwatne.

Podobieństwa

Przedział **jednostkowy:**
$$[0, 1]$$
 , $P_A(x) \in [0, 1]$, $\mu_A(x) \in [0, 1]$

Algebra rozmyta $\left| \left\langle Z, \vee, \wedge, \overline{(\cdot)} \right\rangle \right|$ Podobieństwo **strukturalne**. $\wedge = \min, \quad \vee = \max, \quad \overline{(\cdot)} = dopelnienie$

•
$$A \lor A = A$$
. $A \land A = A$.

•
$$A \lor B = B \lor A$$
, $A \land B = B \land A$,

•
$$A \lor (B \lor C) = (A \lor B) \lor C$$
,
 $A \land (B \land C) = (A \land B) \land C$,

•
$$A \lor (A \land B) = A$$
, $A \land (A \lor B) = A$,

•
$$A \lor (B \land C) = (A \lor B) \land (A \lor C),$$

 $A \land (B \lor C) = (A \land B) \lor (A \land C),$

idempotentność

przemienność

łączność

pochłanianie

rozdzielność

Podobieństwa - c.d.

- $\forall A \in Z$, $\exists ! \bar{A} \in Z$: $\overline{\bar{A}} = A$, dopełnienie i inwolucja
- $\exists ! \varnothing \in Z : \forall A \in Z, A \lor \varnothing = \varnothing \lor A = A,$

identyczność dla operacji 🗸

- $\exists ! X \in Z$: $\forall A \in Z$, $A \land X = X \land A = A$,
 - identyczność dla operacji \wedge
- $\overline{A \vee B} = \overline{A} \wedge \overline{B}$, $\overline{A \wedge B} = \overline{A} \vee \overline{B}$, prawa de Morgana

Podobieństwa - c.d.

Example

$$\mu_A(x) \stackrel{?}{=} P(x \in A)$$

Różnice

Suma stopni przynależności

$$\sum_{x}\mu_{A}\left(x\right) \neq1$$

Rozmycie opisuje niejednoznaczność zdarzenia; mierzy w jakim stopniu występuje dane zdarzenie, a nie odpowiada na pytanie, czy dane zdarzenie wystąpi czy nie wystąpi

	Przed eksperymentem	Wynik eksperymentu
Losowość:	$P(x \in A) = a$	$ \begin{cases} 1 \Longleftrightarrow x \in A \\ 0 \Longleftrightarrow x \notin A \end{cases} $
	↑o to można się założyć (!)↑	

Rozmytość: $\mu_{A}(x) = a$ $\mu_{A}(x) = a$

Różnice - c.d.

3. W przestrzeni probabilistycznej nie istnieje "zachodzenie na siebie" (overlap); nie występują też "szczeliny" (underlap)

$$\forall x, \qquad P\{x \in (A \land \overline{A})\} = 0, \qquad \forall x, P\{x \in (A \lor \overline{A})\} = 1$$
 $\exists x: \qquad A(x) \land \overline{A(x)} > 0, \qquad \exists x: \qquad A(x) \lor \overline{A(x)} < 1$

4. Prawdopodobieństwo zanika wraz ze wzrostem informacji, natomiast rozmycie pozostaje bez zmian

Example

Oczekujemy: $\mathbf{101}$; - brak informacji: P = 1/8

- wystąpiło $\mathbf{1}$: P=1/4

- wystąpiło **10**: P = 1/2

- wystąpiło 101: P=1

Skąd wynika rozmytość?

Rozmytość ma miejsce wtedy, gdy rzecz A nie może być jednoznacznie odróżniona od jej przeciwieństwa \bar{A} .

Dwie kwestie

1. Czy zawsze i wszędzie jest prawdą, że

$$A \cap \overline{A} = \emptyset$$
 ?

2. Kto może wyprowadzić operator prawdopodobieństwa warunkowego

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
?

Geometria zbiorów rozmytych: zbiory jako punkty

Example $X = \{x_1, x_2\} \Rightarrow 2^X = \{\emptyset, X, \{x_1\}, \{x_2\}\}$ $\{x_2\} \leftrightarrow 0, 1$ $x \leftrightarrow 1, 1$ $\begin{cases} x_2 \leftrightarrow 0, 1 \\ x_2 \leftrightarrow 0 \end{cases}$ $\begin{cases} x_3 \leftrightarrow 0, 1 \\ x_3 \leftrightarrow 0 \end{cases}$ $\begin{cases} x_4 \leftrightarrow 1, 1 \\ x_4 \leftrightarrow 1 \end{cases}$

Hipersześcian jednostkowy $I^n = [0, 1]^n = [0, 1]^2$

 X_1

 $\{x_1\} \leftrightarrow 1,0$

 $\emptyset \leftrightarrow 0,0$ $\frac{1}{3}$ $\frac{2}{3}$

 $0.0 \leftrightarrow 0.0$

 $\{x_1\} \longleftrightarrow 1,0$

Geometria zbiorów rozmytych: zbiory jako punkty - c.d.

- Zbiór zwykły: $A: X \rightarrow \{0,1\}$ wierzchołek I^n
- Zbiór rozmyty: $A: X \rightarrow [0,1]$ punkt w I^n
- Algebra Boole'a:

$$\langle \{0,1\}^{\textit{n}} \text{ , } \vee \text{, } \wedge \text{, } (-) \rangle$$

• Algebra rozmyta:

$$\langle \{0,1\}^n$$
 , \vee , \wedge , $(-) \rangle$

Propozycja: A jest właściwym zbiorem rozmytym

$$\iff A \cap \overline{A} \neq \emptyset, \\ \& \iff A \cup \overline{A} \neq X.$$

$$\& \iff A \cup \overline{A} \neq X.$$

Środek hipersześcianu

$$A=\left(\frac{1}{2},\,\frac{1}{2},\,\ldots,\,\frac{1}{2}\right)\in I^n$$

$$A = \overline{A} = A \cap \overline{A} = A \cup \overline{A}$$

- 1. Szklanka do połowy pusta i do połowy pełna.
- 2. Kłamca z Krety, który powiedział, że wszyscy Kreteńczycy są kłamcami.
- 3. Fryzjer Russell'a.
- 4. Zbiór wszystkich zbiorów, które nie należą do samych (Russell).

Paradoksy klasycznej teorii mnogości i logiki są częścią ceny, którą przychodzi nam płacić, przy upieraniu się przy dwuwartościowości. Zaokrąglenie i kwantyzacja, upraszczają życie i często niewiele kosztują. Srodek hipersześcianu nie może być przybliżony do żadnego spośród jego wierzchołków!

Jak liczny jest zbiór rozmyty?

Liczność A:

$$M(A) = \sum_{i=1}^{n} A(x_i)$$
, $sigma - count[Zadeh] \in R$

Odległość między zbiorami A i B

$$I^{p}(A, B) = \left(\sum_{i=1}^{n} |A(x_{i}) - B(x_{i})|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p \leq \infty$$

- Odległość I^2 = fizyczna odległość Euklidesowa.
- ullet Najprostsza odległość: $I^1=$ rozmyta odległość Hamminga

$$M(A) = \sum_{i=1}^{n} A(x_i) = \left(\sum_{i=1}^{n} |A(x_i) - 0|^1\right)^{\frac{1}{1}} = l^1(A, \varnothing)$$

Na ile "rozmyty" jest zbiór rozmyty?

"Rozmytość" (nieokreśloność, niejednoznaczność) można mierzyć entropią rozmytą (fuzzy entropy):

$$E(A) = \frac{a}{b} = \frac{I^{1}(A, A_{near})}{I^{1}(A, A_{far})} \in [0, 1]$$

$$\min_{A \in I^n} E\left(A\right) = 0 \iff A \in \left\{0, 1\right\}^n, \ \max_{A \in I^n} E\left(A\right) = 1 \iff A = \left(1/2, \dots, 1/2\right)$$

Twierdzenie 1 o entropii rozmytej

Theorem

$$E(A) = \frac{M(A \cap \bar{A})}{M(A \cup \bar{A})}$$

Iloraz "ilości" naruszeń prawa niesprzeczności do ilości naruszeń prawa wyłączonego środka.

 $M(A \cap \bar{A}) = \text{miara stopnia "zachodzenia na siebie" (overlap measure),}$

 $M(A \cup \bar{A}) = \text{miara wielkości "szczeliny" (underlap measure)}.$

- Tw. 1 o entropii dostarcza formalnej zasady do wyprowadzenia operatorów: ∧, ∨, (√), (Zadeh, 1965).
- 2 Entropia rozmyta różni się od entropii probabilistycznej.

Rozkład: (1/n, ..., 1/n) maksymalizuje entropię rozmytą na simpleksie $\sum_{i=1}^{n} A_i(x_1, ..., x_n) = 1$ (ale nie unikatowo).

Jak wygląda $F(2^B)$?

• $F(2^B)$ = hiper-prostokąt - nie jest rozmyty !

S(A, B) = stopień w którym A jest podzbiorem B (subsethood measure):

$$S(A, B) = Degree(A \subset B) = \mu_{F(2^B)}(A)$$

Można wykazać, że

$$S(A,B) = 1 - \frac{\sum\limits_{x_i} \left\{ 0 \vee \left(A(x_i) - B(x_i) \right) \right\}}{M(A)}$$

Interpretacja. Miara S ściśle wiąże się z operatorem implikacji Łukasiewicza $(n=1,\ M(A)=1)$:

$$S(A, B) = 1 - \{0 \lor (A(x) - B(x))\}$$

= $1 \land (1 - A(x) + B(x))$
 $S(A, B) = A(x) * \rightarrow B(x)$

Example

$$S(D,C) > S(C,D)$$
.

Theorem

(The Subsethood Theorem)

$$S(A, B) = \frac{M(A \cap B)}{M(A)}$$

Prawdopodobieństwo warunkowe

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)}$$

Stąd

$$P(B \cap A) = P(A) P(B \mid A)$$

$$P(A \cap B) = P(B) P(A \mid B)$$

Theorem

Twierdzenie Bayesa

$$P(B|A) = \frac{P(B)P(A|B)}{P(A)}$$

Fundamentalna różnica: postać ilorazowa jest

- wyprowadzona z miary S(A, B),
- **nie jest założona** w celu wyznaczenia prawdopodobieństwa warunkowego P(B | A).

Zachodzi

$$P(A) = P(A \mid X)$$

Pojęcie losowości nigdy nie odnosi się do determinizmu.

Częstotliwość względna:

$$S(B,A) = \frac{M(A)}{M(B)} = \frac{n_A}{N}$$

Np. n_A – liczba trafień w N próbach.

Wielkość kluczowa: miara nakładania się $M(A \cap B)$ – tu nie ma niczego "losowego".

Deterministyczne wyprowadzenie względnej częstotliwości na podstawie Twierdzenia o podzbiorach eliminuje potrzebę odwoływania się do "losowości".

Corollary

$$S\left(B,\,A
ight)\in\left[0,1
ight]\cap wymierne \qquad jeżeli\ A,\,B$$
 - nierozmyte

$$S(B, A) \in [0, 1] \cap r$$
zeczywiste jeżeli A, B - rozmyte

Relacje dotyczące prawdopodobieństwa warunkowego

Wypukłość:

$$0 \le P(A \mid H) \le 1$$
, and $P(A \mid H) = 1$ if $H \Rightarrow A$

Dodawanie:

$$P(A_1 \cup A_2 \mid H) = P(A_1 \mid H) + P(A_2 \mid H) - P(A_1 \cap A_2 \mid H)$$

Mnożenie:

$$P(A_1 \cap A_2 | H) = P(A_1 | H) P(A_2 | A_1 \cap H)$$

Lindley stwierdził:

... "wszystkie bogate i wspaniałe rezultaty wynikają z aksjomatów rachunku prawdopodobieństwa".

Aksjomaty są "niepodważalne".

"Naprawdę nie mamy wyboru co do praw rządzących naszymi miarami niepewności: są one podyktowane nam przez nieubłagane prawa logiki".

Teoria rozmyta jest rozszerzeniem teorii prawdopodobieństwa, lub równoważnie, prawdopodobieństwo jest szczególnym przypadkiem rozmytości.

Twierdzenie o entropii i podzbiorach

Theorem

$$E(A) = S(A \cup \overline{A}, A \cap \overline{A})$$

Entropia mierzy stopień, w jakim nadzbiór $A \cup \overline{A}$ jest podzbiorem swojego własnego podzbioru $A \cap \overline{A}$

= Stopień, do którego całość jest częścią jednej spośród swoich części !!

Żadna miara prawdopodobieństwa nie mierzy rozmytości

<u>Dow</u>. Załóżmy, rozmyta entropia nie mierzy nic nowego (i teoria prawdopodobieństwa "jest odpowiednia dla wszystkich problemów związanych z niepewnością").

$$\exists P: P = E \& P \neq 0$$
, ponieważ $P(X) = 1$

$$\Rightarrow$$
 $\exists A: P(A) = E(A) > 0$

W przestrzeni probabilistycznej:

$$A \cap \overline{A} = \emptyset$$
 and $A \cup \overline{A} = X$

Z ostatniego twierdzenia \Rightarrow

$$0 < P(A) = E(A) = S(A \cup \overline{A}, A \cap \overline{A}) = S(X, \varnothing)$$

Jedyna możliwość: $X = A = \varnothing$. Stąd

$$P(X) = P(\varnothing) = 0$$
 lub $P(\varnothing) = 1$

Sprzeczność (dwuwartościowa).

