

Agenda

- SVM The Primal problem
- SVM The Dual problem
- Linear Inseparability and Kernels
- Common Kernels
- Implementation
- Results on Datasets

SVM – The Primal Problem

Linear separator, optimizes for largest margin

We have \emph{n} data points, \emph{p} features

$$x_i, w \in \mathbb{R}^p$$

 $b \in \mathbb{R}$
 $y_i \in \{-1, 1\}$

$$x \in \mathbb{R}^{nxp}$$
$$y \in \mathbb{R}^n$$

SVM – The Primal Problem

Margin size formulation :

Let x_0 be a point on the hyperplane, so: $w^Tx_0 - b = 0$. If we move from x_0 a distance k in the direction of w to the hyperplane $w^Tx - b = 1$, we get a point: $x_0 + k \cdot \frac{w}{\|w\|}$.

The new point is on the upper plane, so: $w^T \cdot (x_0 + k \cdot \frac{w}{\|w\|}) - b = 1$

And so we get: $k = \frac{1}{\|w\|}$

 $w^T x - b = 0$

SVM - The Primal Problem

Margin size formulation :

Let x_0 be a point on the hyperplane, so: $w^Tx_0 - b = 0$. If we move from x_0 a distance k in the direction of w to the hyperplane $w^Tx - b = 1$, we get a point: $x_0 + k \cdot \frac{w}{\|w\|}$.

The new point is on the upper plane, so: $w^T \cdot (x_0 + k \cdot \frac{w}{\|w\|}) - b = 1$

And so we get: $k = \frac{1}{\|w\|}$

► Hence, the margin we want to $\underline{\text{maximize}}$ is: $\frac{2}{\|w\|}$

▶ Which is the same as minimizing $\frac{1}{2} \|w\|^2$

SVM – The Primal Problem

• Constraints: All points should be on the correct sides of the lines:

$$y_i(x_i^T w + b) \ge 1$$
$$i = 1..n$$

And so, we get the primal SVM problem:

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t.

$$y_i(x_i^T w + b) \ge 1$$
$$i = 1..n$$

SVM - The Primal Problem

Primal SVM problem:

$$\min_{w,b} \frac{1}{2} ||w||^2$$
s.t.

$$y_i(x_i^T w + b) \ge 1$$

$$i = 1..n$$

Lagrangian:

$$\mathcal{L}_p(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=0}^n \alpha_i (y_i(x_i^T w + b) - 1)$$

- Quadratic problem, solved with KKT conditions
- Note that the only active constraints are the points that define the margins from KKT – all other Alphas are zero!

SVM – The Dual Problem (Strong duality)

Formulation:

$$Max_{\alpha}Min_{w,b}\mathcal{L}(w,b,\alpha)$$

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^n \alpha_i \left(y_i (w^T x_i - b) - 1 \right)$$

$$g(\alpha) = Min_{w,b}\mathcal{L}(w,b,\alpha)$$

$$\frac{\partial \mathcal{L}}{\partial w} = 0 \Longrightarrow w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\frac{\partial \mathcal{L}}{\partial w} = 0 \Longrightarrow w = \sum_{i}^{n} \alpha_{i} y_{i} x_{i}$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0 \Longrightarrow \alpha^{T} y = 0$$

$$g(\alpha) = \sum_{i=0}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j, \quad \alpha^T y = 0, \quad \alpha_i \ge 0$$

 $Max_{\alpha}g(\alpha)$

s.t.

$$\alpha^T y = 0, \quad \alpha_i \ge 0$$

SVM – The Dual Problem (Strong duality)

Formulation:

$$Max_{\alpha}g(\alpha)$$

s.t.

$$\alpha^T y = 0, \quad \alpha_i \ge 0$$

▶ Which is same as:

$$Min_{\alpha}\left(\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}^{T}x_{j}\right)-\sum_{i=1}^{n}\alpha_{i}$$

s.t.

$$\alpha^T y = 0, \quad \alpha_i \ge 0$$

▶ Remember - Alpha=0 for non-support vectors

$$Min_{\alpha}\left(\frac{1}{2}\sum_{SVpairs(i,j)}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}^{T}x_{j}\right) - \sum_{SValphas}\alpha_{i}$$

s.t.

$$\alpha^T y = 0, \quad \alpha_i \ge 0$$

Why go Dual?

- "Wide" datasets High dimensional data (p>n):
 - ▶ Primal problem size $n \times p$ (Size of X)
 - ▶ Dual problem size n x n (Size of X^TX)
- Kernels!

Non-linearly separable data

- The good news: Given enough dimensions, Everything is linearly separable!
- The bad news: We get a VERY wide matrices....

Adding Features the Standard Way

Reminder – The dual problem:

$$\begin{aligned} & Min_{\alpha} \bigg(\frac{1}{2} \, \sum_{i=1}^{n} \, \sum_{j=1}^{n} \, \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \bigg) - \sum_{i=1}^{n} \, \alpha_{i} \\ & \text{s.t.} \\ & \alpha^{T} y = 0, \quad \alpha_{i} \geq 0 \end{aligned}$$

Define:

$$\varphi(x): \mathbb{R}^p \to \mathbb{R}^P, \quad P \ge p$$

$$k(x, y) = \varphi(x) \cdot \varphi(y), \quad k(x, y): \mathbb{R}^p x \mathbb{R}^p \to \mathbb{R}$$

• So, the problem becomes:

$$Min_{\alpha}\left(\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}k(x_{i},x_{j})\right)-\sum_{i=1}^{n}\alpha_{i}$$
s.t.
$$\alpha^{T}y=0, \quad \alpha_{i}\geq 0$$

Dot product between vectors of dimension P instead of p.

Adding features – the Kernel Trick

- A function $k: \mathbb{R}^p x \mathbb{R}^p \to \mathbb{R}$ is called a kernel if there exists a mapping function $\varphi: \mathbb{R}^p \to \mathbb{R}^P$ so that the following always holds: $\forall x, y: k(x, y) = \varphi(x) \cdot \varphi(y)$
- A mapping function $\varphi: \mathbb{R}^p \to \mathbb{R}^P$ is said to afford a kernel if such k exists
- Example Inhomogeneous polynomial kernel of degree 2:

$$x, y \in \mathbb{R}^2$$

$$k(x, y) = (x^T y + 1)^2$$

$$\varphi(x) = [x_1^2, \sqrt{2}x_1, \sqrt{2}x_1x_2, \sqrt{2}x_2, x_2^2, 1]$$

$$\varphi: \mathbb{R}^2 \to \mathbb{R}^6$$

$$\varphi(x, y) \cdot \varphi(x, y) : \mathbb{R}^6 x \mathbb{R}^6 \to \mathbb{R}$$

$$k: \mathbb{R}^2 x \mathbb{R}^2 \to \mathbb{R}$$

Less computation, same result!

Some Common Useful Kernels

- Homogeneous Polynomial kernel: $k(x, y) = (x^T y)^d$
- Inhomogeneous Polynomial kernel: $k(x, y) = (x^T y + c)^d$
- Radial Basis Function (RBF) kernel: $k(x, y) = e^{-\frac{\|x y\|^2}{2\sigma^2}}$

Additional notes

Some kernel arithmetic:

```
(1) k(x,y) = k_1(x,y) + k_2(x,y)
(2) k(x,y) = ak_1(x,y) where a > 0
```

(3)
$$k(x,y) = f(x) \cdot f(y)$$
 for any function f on x

(4)
$$k(x,y) = k_1(x,y) \cdot k_2(x,y)$$

(4)
$$k(x,y) = k_1(x,y) \cdot k_2(x,y)$$

(5) $k(x,y) = \frac{k_1(x,y)}{\sqrt{k_1(x,x)}\sqrt{k_1(y,y)}}$

Not all kernels are useful

Implementation – SVM Kernel Classifier

Classifier class usage example:

```
print(f'[Main] Info: Building SVM model with C={C}, sigma={sigma}')
model = KernelSvmClassifier(C=C, kernel=RBF)
model.fit(X_train, y_train, DEBUG=DEBUG)

print('[Main] Info: Test model on test data')
test_prediction = model.predict(X_test, DEBUG=DEBUG)

print('[Main] Info: Finished prediction! Test results:')
run_results_df = data_helpers.assess_accuracy(test_prediction, y_test)
```

Kernel function:

```
def RBF(x1, x2):
    """"RBF kernel """
    diff = x1 - x2
    return np.exp(-1 * (diff @ diff) / (2 * (sigma**2)))
```

```
def poly(x1, x2):
    """"Poly kernel"""
    return (x1 @ x2 + 1) ** poly_rank
```

Implementation – SVM Kernel Classifier (Constrained)

• Fit() method – cost function:

```
# Create Gram matrix of k(x) y:
gramXX = np.apply_along_axis(lambda x1: np.apply_along_axis(lambda x2: self.kernel(x1, x2), 1, X), 1, X) # 2 for loops.
yp = y.reshape(-1, 1)
yy = yp @ yp.T
gramXXyy = gramXX * yy
```

```
# Lagrange dual objective function (to maximize!)
def ld_obj(gram, alpha):
    return alpha.sum() - 0.5 * alpha @ (alpha @ gram)

# Partial derivative of ld_obj on alpha
def d_ldobj_d_alpha(gram, alpha):
    return np.ones_like(alpha) - alpha @ gram

# cost function and its gradient - to minimizes
def cost_func(a):
    return -ld_obj(gramXXyy, a)

def cost_grad(a):
    return -d_ldobj_d_alpha(gramXXyy, a)
```

$$Min_{\alpha} \left(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k(x_{i}, x_{j})\right) - \sum_{i=1}^{n} \alpha_{i}$$

$$Matrix \ writing:$$

$$Min_{\alpha} \left(\frac{1}{2} \alpha^{T} (\alpha^{T} \cdot Gram_{k})\right) - \alpha^{T} \cdot \begin{bmatrix}1\\ \vdots\\1\end{bmatrix}$$

Implementation – SVM Kernel Classifier (Constrained)

Fit() method – constraints and (scipy) solver

```
# store support vectors and y*alpha vals to use in inference
epsilon = 1e-8  # Max distance to become a support vector
supportIndices = self.alpha > epsilon
self.supportVectors = X[supportIndices]
self.supportAlphaY = y[supportIndices] * self.alpha[supportIndices]
```

Implementation – SVM Kernel Classifier (Constrained)

Predict() method – note it only uses the support vectors:

$$Sign\left(\sum_{SV} k(x, SV_i) \cdot \alpha_i y_i\right)$$

```
def predict(self, X, DEBUG=False):
    """ Predict y values in {-1, 1} """
    if DEBUG:
        print(f'[KernelSvmClassifier] Debug: predict() started -----')
        print(f'[KernelSvmClassifier] Debug: X.shape: {X.shape}')

def predict_sample(x):
        x1 = np.apply_along_axis(lambda s: self.kernel(s, x), 1, self.supportVectors)
        # Calc kernel of the sample with each support vector, return vectorized results
        x2 = x1 * self.supportAlphaY_# Multiply by alpha*y of each vector
        return np.sum(x2)

d = np.apply_along_axis(predict_sample, 1, X)_# for each vector in X, run predict_sample
    return 2 * (d > 0) - 1
```


Results on Actual Datasets – Epileptic Seizure Predictin

Dataset:

▶ Identify epileptic seizure based on brainwave data from 178 sensors

▶ 178 attributes, binary target (Seizure / no seizure)

► Train size: 800, Test size: 15,000

Linear kernel with slack: Failed to converge

RBF Kernel

Column1 *	C 💌	sigma 💌	% Success 🛂	% False neg 💌	% False pos 💌
3	0.1	0.1	89.64	0.28	10.08
10	1	0.1	89.64	0.28	10.08
17	10	0.1	89.64	0.28	10.08
18	10	0.5	85.08	0.06	14.86
11	1	0.5	82.79	0.03	17.19

Polynomial kernel

Column1 💌	C 💌	Polynom rank 🗾	% Success 🛂	% False neg 🗾	% False pos 💌
1	100	3	79.95	0.00	20.05
2	100	5	79.95	0.00	20.05
3	100	10	79.95	0.00	20.05
4	100	15	79.95	0.00	20.05
6	10	3	79.95	0.00	20.05

Results on Actual Datasets – Network Attack Prediction

- Dataset:
 - ▶ Predict whether a network transaction is an attack based on technical attributes protocol, ports, packet attributes and more
 - ▶ 41 attributes, binary target (attack true / false Union of all attack types)
 - ▶ Train size: 800, Test size: 15,000
- Linear kernel with slack:

Column1 Z	C 💌	Polynom rank 💌	% Success 🛂	% False neg 🗾	% False pos 🗾
3	0.1		96.82	2.45	0.73
4	0.01		96.63	2.61	0.75
2	1		87.81	12.06	0.13
1	10		82.65	17.29	0.07
0	100		80.23	19.77	0.00

RBF Kernel

Colun	nn1 <u> </u>	C 💌	sigma 💌	% Success 🛂	% False neg 🗾	% False pos 🗾
	24	1	0.1	99.21	0.42	0.37
	31	10	0.1	99.21	0.43	0.35
	18	0.1	0.5	99.18	0.04	0.78
	26	1	0.75	99.17	0.11	0.71
	34	10	1	99.05	0.14	0.81

Polynomial kernel

Column1	C 💌	Polynom rank 💌	% Success 🚽	% False neg 🗾	% False pos
1	100	3	99.27	0.41	0.32
8	10	10	98.84	0.29	0.87
18	0.1	10	98.63	0.27	1.10
15	0.1	1	96.81	2.45	0.73
20	0.01	1	96.63	2.61	0.75

Altered Digits Dataset – One vs All

```
Linear kernal results:
# support vectors: (2896, 784)
Training set: {'Success': 1.0, 'False Positive': 0.0, 'False Negative': 0.0}
             'Success': 0.1864406779661017, 'False Positive': 0.8135593220338984, 'False Negative': 0.8135593220338984}
<Figure size 640x480 with 0 Axes>
[7 3 3 7 4 0 1 9 3 1 6 9 2 0 3 0 0 1 5 3 9 6 8 0 7]
Polinomial kernal results:
# support vectors: (2054, 784)
{|'Success': 0.7867381214902947, | 'False Positive': 0.21326187850970538, 'False Negative': 0.21326187850970538}
<Figure size 640x480 with 0 Axes>
[4911891481610442594148087]
rbf kernal results:
# support vectors: (2071, 784)
Training set: { 'Success': 0.95. 'False Positive': 0.05, 'False Negative': 0.05}
             {|'Success': 0.9067411984922691, | 'False Positive': 0.09325880150773097, 'False Negative': 0.09325880150773097}
<Figure size 640x480 with 0 Axes>
[4917891481620442594248487]
```