## MCEN 3030 1 Feb 2024

HW & Quiz #1 Due Sun 11:59PM
runne & pdf details added after class

Last time: Root Finding - Newton's Method "open method"

Today: Root finding - Bisection & "closed method"

False-position methods

We will probably do another "open" method next week but I wanted to contrast one open and one bracketed method this week.

Benefits: • I like the north

- · Tends to be fast (er then other methods)
- · Graphical representation

<u>Last time</u>: Newton-Raphsen Method

· Multi-rainble versions exist

Drawbacks: Not guaranteed to converge

- Regnires knowledge of f(x) & f(x)
- · Regnires a seed, and you might have no idea

Bisection Method



Bisect the interval: 
$$x_3 = \frac{x_1 + x_2}{2}$$

if  $f(x_3) < 0$  we know the

zero lies on the left side  $x_1 \rightarrow x_3$ 

if  $f(x_3) > 0$  we know it

is on the right size

if  $f(x_3) = 0$  we are lucky, & done.

Algorithm:

- (d) Assumes you know one root exists between  $x_L$  (lower) and  $x_u$  (upper). These bracketing values are inputs. (see cavests below.)
- (1) Cakulate  $x_{m} = \frac{X_{L} + X_{U}}{2}$ .
- (2) If  $f(x_L) \cdot f(x_m) < 0$ , the zero is between  $x_L & x_m$ 
  - $\rightarrow$  (3) Reset  $x_u$  to  $x_m$  (i.e.  $x_u = x_m$ ) and go back to (1)
- (a) If  $f(x_m) \cdot f(x_u) < 0$ , the zero is between  $x_m & x_u$   $\Rightarrow$  (3) Reset  $x_L$  to  $x_m$  ( $x_L = x_m$ ) and go back to (1)
  - 4) Repeat til an acceptable error is reached.

    At each iteration, xm can be thought of as your new "best gness" for the root.