4.11 Two quality control technicians measured the surface finish of a metal part, obtaining the data in Table 4E.1. Assume that the measurements are normally distributed.

Technician 1	Technician	2	x =	x =	
1.	45	1.54		1.383	1.376
1.	37	1.41	s =	s =	
1.	21	1.56		0.005	0.027
1.	54	1.37		0.000	0.001
1.	48	1.2		0.030	0.034
1.	29	1.31		0.025	0.000
1.	34	1.27		0.009	0.031
		1.35		0.009	0.004
				0.002	0.011
n = 7	n = 8				0.001
				0.115	0.125
			Spoo) =	
			(0.1204	

(a) Test the hypothesis that the mean surface finish measurements made by the two technicians are equal. Use $\alpha = 0.05$, and assume equal variances.

```
H_0: \mu_1 = \mu_2 H_1: \mu_1 \neq \mu_2 \sigma_1 \sigma_2 未知但相等 t_{0.025}(13) = 2.166 t = ( \overline{x}_1 - \overline{x}_2 / \text{spool}(\sqrt{(1/n_1 + 1/n_2))}) = 0.106 < 2.166 reject H_0
```

(b) What are the practical implications of the test in part (a)? Discuss what practical conclusions you would draw if the null hypothesis were rejected.

The mean surface finish measurements made by two technicians are not statistically different at $\alpha = 0.05$

(c) Assuming that the variances are equal, construct a 95% confidence interval on the mean difference in surface-finish measurements.

```
\overline{x}_1 - \overline{x}_2 \pm t * spool(\sqrt{(1/n_1 + 1/n_2)})
1.383-1.376 ± 2.16(0.1204)(\sqrt{(1/n_1 + 1/n_2)})
= (-0.128, 0.141)
```

(d) Test the hypothesis that the variances of the measurements made by the two technicians are equal. Use α = 0.05. What are the practical implications if the null

hypothesis is rejected?

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$
 $F = s_1^2 / s_2^2 = 0.85$
p-value = 0.57 > 0.05

We fail to reject H_0 , there is no difference the variance of mean surface finish measurement between the two techniques.

(e) Construct a 95% confidence interval estimate of the ratio of the variances of technician measurement error.

```
 [(s<sub>1</sub><sup>2</sup>/s<sub>2</sub><sup>2</sup>)/(F<sub>0.05/2</sub>,6,7), (s<sub>1</sub><sup>2</sup>/s<sub>2</sub><sup>2</sup>)/(F<sub>(1-0.05)/2</sub>,6,7)] 
 = [(0.115<sup>2</sup>/0.125<sup>2</sup>)/5.1186, (0.115<sup>2</sup>/0.125<sup>2</sup>)/0.1756] 
 = [0.1654, 4.8206]
```

(f) Construct a 95% confidence interval on the variance of measurement error for technician 2.

$$[(n_2-1)S_2^2/x^2_{0.05/2}(n_2-1), (n_2-1)S_2^2/x^2_{1-0.05/2}(n_2-1)]$$
= [7 * 0.125²/16.0128, 7 * 0.125²/1.6899]
=[0.0068, 0.0697]

(g) Does the normality assumption seem reasonable for the data?

	7	Number of	f data points		S	-49.99581		21-1		
	1.383	Sample Me	ean				AD = -	$N - \frac{2I-1}{N} (\ln (F$	(Y_i)) + $\ln(1 - F(1))$	$Y_{N+1-i}))$
	0.115	Sample Si	gma		p-value c	alculations		N		
					p1	0		/ 0.75	2.25 \	
	0.1423	AD test st	atistic		p2	0	AD° -	$AD\left(1 + \frac{0.75}{N} + \frac{1}{2}\right)$	2.23	
	0.164033	AD* test s	tatistic		p3	0		(N	N-)	
	0.943049	P-value			p4	0.9430494				
ENTER										
DATA										
HERE	Sorted	Count	F1i	1-F1i	F2i	Si	N Plt Line	N Plt Line		
1.45	1.21		0.0881529	0.9338471	0.0856174	-5.173853	1.226146	0.086207		
1.37	1.29		0.2093987	0.7908013	0.1988251	-9.538534	1.295767	0.224138		
1.21	1.34		0.3545154	0.6454846	0.2794035	-11.56051	1.342323	0.362069		
1.54	1.37	4	0.4554325	0.5445875	0.5445875	-9.759898	1.382857	0.5		
1.48	1.45		0.7205985	0.2794035	0.6454846	-6.888868	1.423392	0.637931		
1.29	1.48		0.8011749	0.1988251	0.7906013	-5.023013	1.489947	0.775882		
1.34	1.54		0.9143826	0.0856174	0.9338471	-2.053334	1.539568	0.913793		
1.04										

Technician 1

Technician 2

The p-values are greater than 0.05, both data follows normal distribution

4.14 Two different types of glass bottles are suitable for use by a soft-drink beverage bottler. The internal pressure strength of the bottle is an important quality characteristic. It is known that $\sigma_1 = \sigma_2 = 3.0$ psi. From a random sample of $n_1 = n_2 = 16$ bottles, the mean pressure strengths are observed to be $\overline{x}_1 = 175.8$ psi and $\overline{x}_2 = 181.3$ psi. The company will not use bottle design 2 unless its pressure strength exceeds that of bottle design 1 by at least 5 psi. Based on the sample data, should they use bottle design 2 if we use α =0.05. What is the P-value for this test?

```
\begin{array}{ll} \text{H0}: \mu_2\text{-}\mu_1 \leq 5 & \text{H1}: \mu_2\text{-}\mu_1 > 5 \\ \alpha = 0.05 \\ \left(\left(\,\overline{x}_2 - \overline{x}_1\,\right) - \left(\,\mu_2 - \mu_1\,\right) \,/\, \sigma \,\,\sqrt{\,\left(1/n_1 + 1/n_2\right)}\right) \\ = \left(\left(181.3 - 175.8\right) - 5\right) \!/\! 3\sqrt{\,\left(1/16 + 1/16\right)} \\ = 0.471 \\ \text{p-value} = 0.3189 > 0.05 \\ \text{fail to reject H0} \end{array}
```

4.19 An inspector counts the surface-finish defects in dishwashers. A random sample of five dishwashers contains three such defects. Is there reason to conclude that the mean occurrence rate of surface-finish defects per dishwasher exceeds 0.5? Use the results of part (a) of Exercise 4.18 and assume that α =0.05.

```
\begin{array}{ll} \text{H0}: p \leq 0.5 & \text{H1}: p > 0.5 \\ \hat{p} = 3/5 = 0.6 & n = 5 & P_0 = 0.5 \\ Z_{0.05} = 1.644 \\ z = (\hat{P} - P_0)/\sqrt{(P_0*(1-P_0)/n)} = (0.6\text{-}0.5)/(0.5*0.5/5) = 2 > 1.644 \\ \text{reject H0, we can say that the mean occurrence rate of surface-finish defects per dishwasher exceeds 0.5} \end{array}
```

4.24 Plot the residuals from Exercise 4.23 against the firing temperatures. Is there any indication that variability in baked anode density depends on the firing temperature? What firing temperature would you recommend using?

單因子變勢	異數分析					
摘要						
組	個數	總和	平均	變異數		
500	6	250.2	41.7	0.02		
525	6	249.5	41.58333	0.037667		
550	6	248.7	41.45	0.115		
575	6	248	41.33333	0.246667		
ANOVA						
變源	SS	自由度	MS	F	P-值	臨界值
組間	0.456667	3	0.152222	1.45204	0.257611	3.098391
組內	2.096667	20	0.104833			
總和	2.553333	23				

p-value = 0.258 > 0.05

Durity (%)

fail to reject H0, we cannot say that variability in baked anode density depends on the firing temperature

I recommend to use 500 fire temperature, because its variance is the smallest, which means it's steady.

4.27 A plant distills liquid air to produce oxygen, nitrogen, and argon. The percentage of impurity in the oxygen is thought to be linearly related to the amount of impurities in the air as measured by the "pollution count" in parts per million (ppm). A sample of plant operating data is shown below:

03 3 02 0 02 4 01 7 04 0 04 6 03 6

Purity	y (%)		93.3	92.0	92.4	91	./ 94.	.0 94.6	93.6
Pollu count	tion (ppm)		1.10	1.45	1.36	1	59 1.0	08 0.75	1.20
Purity	y (%)	93.1	93.2	92.9	92.2	91	.3 90.	.1 91.6	91.9
Pollu		0.99	0.83	1.22	1.47	1.	81 2.0	3 1.75	1.68
摘要輸出									
迴歸	 統計								
R 的倍數	0.934851								
R 平方	0.873946								
調整的 R ·	0.86425								
標準誤	0.137843								
觀察值個影	15								
ANOVA									
	自由度	SS	MS	F	顯著	蒈值			
迴歸	1	1.71255	1.71255	90.130	57 3.28	BE-07			
殘差	13	0.24701	0.019001						
總和	14	1.95956							
	係數	標準誤	t 統計	P-值	下限	95%	上限 95%	下限 95.0%	上限 95.0%
截距	29.2287	2.936338	9.954133	1.9E-	07 22.8	8513	35.57228	22.88513	35.57228
X 變數 1	-0.30126	0.031733	-9.49371	3.28E-	07 -0.3	6982	-0.23271	-0.36982	-0.23271

(a) Fit a linear regression model to the data.

$$Y = \beta_0 + \beta_1 x = 29.23 - 0.3x$$

(b) Test for significance of regression.

 $H0: \beta_1 = 0 \quad H1: \beta_1 \neq 0$

t-test = 90.13

p-value = 0.0001 < 0.05

reject H0, we can say that there is a significant difference between purity and pollution count.

(c) Find a 95% confidence interval on $\beta_1.$

根據上表

[-0.37, -0.23]