ANSC 446 Formula sheet for Exam 3 (and after)

Verify answers using unit square

Hardy Weinberg principle: for two alleles A_1 with frequency p, and A_2 with frequency q, genotypes A_1A_1 , A_1A_2 , A_2A_2 have frequencies p^2 , 2pq, q^2 respectively, or P, H, Q, respectively.

$$P + H + Q = 1$$

 $p^{2} + 2pq + q^{2} = 1$
 $p + q = 1$

DRIFT, EFFECTIVE POPULATION SIZE, MUTATION, NEUTRALITY:

Effective population size over t generations: $N_e = t / (\Sigma (1/N_i))$ where N_i is N_e for generation i

Effective population size, effect of inbreeding: $N_e = N / (1+f)$

Small population size, loss of heterozygosity: $H_{t+1} = (1 - (1/(2N))H_t$

Generations until loss of heterozygosity: $t = (-2N)\ln(x)$ where $x = H_t / H_0$

Effective population sizes for different types of markers:

Autosomal: $N_e = (4N_f N_m)/(N_f + N_m)$ X-chromosome: $N_e = (9N_f N_m)/(2N_f + 4N_m)$ Haploid: $N_e = N_{ef}/2$ or $N_e = N_{em}/2$ as appropriate where m is males: f is females

New neutral mutation, initial frequency: 1/(2N)

New neutral mutation, time to fixation: 4N_e

Neutral allele A_2 , probability of fixation is the current $Pr(A_2)$

Neutral allele with initial frequency of q, time to fixation: T(q) = -[(4N)(1-q)ln(1-q)]/q

Equilibrium frequency of A₂: $q_e = u / (u + v)$ where u is forward mutation rate, v is back mutation rate

Time between substitutions under neutrality: 1/u

Number of effective alleles under neutrality: $\theta + 1$ (theta plus one), where $\theta = 4N_e u$

MIGRATION, POPULATION STRUCTURE:

Nei's $G_{ST} = (H_T - H_S) / H_T$ where H_S is average subpopulation heterozygosity under Hardy-Weinberg equilibrium; and $H_T = 1 - [\Sigma ((\overline{p}_i)^2)]$

Allele frequency after migration, one generation: $q_1 = (1-m)q_0 + mq_m$ where q_m is the allele frequency of the migrants

Allele frequency after migration, >1 generation: $q_t = ((1-m)^t)q_0) + [(1-(1-m)^t)q_m]$ where q_m is the allele frequency of the migrants

Migration rate estimation, one generation: m-hat = $(q_0 - q_1) / (q_0 - q_m)$

FORMULA-SHEET, (AFTER Exam3)

Note: Chapter questions for final: Ch 10, Q 2 (D and D' only); Ch. 11, Q 4 and 5

LINKAGE DISEQUILIBRIUM

Linkage disequilibrium, D= (product of coupling gametes) – (product of repulsion gametes) = $(x_{11}x_{22}) - (x_{12}x_{21})$

 $D_t = (1 - c)^t X D_0$ where c is rate of recombination and t is number of generations

 $D' = D/D_{max}$ where for D > 0, D_{max} is the lesser of p_1q_2 or p_2q_1 while for D < 0, D_{max} is the lesser of p_1q_1 or p_2q_2