PROCESS TABLE

Multiprogramming OS needs to keep track of all processes.

- a) Process table is a kernel data structure that describes the state of process.
- b) It holds the information about the processes that are currently handled by the OS.
- c) Each entry (row) in process table represents a process in the system
- d) The table is updated every time a process is created / terminated / changes it's state

PID	PPID	State	PC	Register	Priority	Memory Limits	List of Open Files	I/O Status	344

<u>PID</u>

Process ID, stores the ID of the process

PPID

Parent Process ID, Stores the ID of the parent process from which it's created.

STATE

Stores the current state of the process

PC

Stores the last value of the Program counter

Register

Registers that this process has used / using

Priority

States the priority of the process (which process would run before which one)

Etc....

PROCESS CONTROL BLOCK

Each row of process table is called process control block

Pointer to the process parent							
Pointer to the process child	Process State						
Process Identification Number							
Process Priority							
Program Counter							
Registers							
Pointers to Process Memory							
Memory Limits							
List of open Files							

created by Notes Jam

The PCB is a central store of information that allows the operating system to locate all the key information about the process. The operating system uses this information and performs the **operations in the process**. The operations include suspending a process, resuming a process, change the process priority, dispatch a process, name the process and so on.

Concurrent Process

Two processes are 'serial' if the execution of one must be completed before the execution of other starts. If the two processes said to be concurrent, they are not serial, and their execution can overlap in time.

Concurrent Process

Here the example of a concurrent process in an operating system. Let's assume there are three process P1, P2 and P3 and execution time is T. According to the figure, the execution time of P1, P2, and P3 overlapped, so these called **concurrent process model**.

Context Switching

