INFO-0012: Computation Structures

 β -machine - Report

Maxime Goffart 180521 Olivier Joris 182113

Academic year 2020 - 2021

Control logic

We had to implement the instructions ADDC, AND, CMPLEC, LD, and BNE inside the control logic¹. Also, we implemented the instruction ST which allows us to test the instruction LD more easily.

Instruction	Address	ALUFN	WERF	BSEL	WDSEL	WR	RA2SEL	PCSEL	Hexadecimal
ADDC	110000	0001	1	0	01	0	X(0)	00	190
AND	101000	0101	1	1	01	0	0	00	5D0
CMPLEC	110110	1110	1	0	01	0	X(0)	00	E90
LD	011000	0001	1	0	10	0	X(0)	00	1A0
BNE	011110	X(0000)	1	X(0)	00	0	X(0)	$\neg z$	080
ST	011001	0001	0	0	X(00)	1	1	00	10C

Instruction memory

The instructions we implemented in order to test the instructions ADDC, AND, CMPLEC, LD, and BNE²:

Instruction	Hexadecimal	Effect	Instruction	Hexadecimal	Effect
ADDC(R31, 5, R0)	C01F0005	R0=5	CMPLEC(R1, -5, R29)	DBA1FFFB	R29=1
ADDC(R31, -5, R1)	C03FFFFB	R1 = -5	CMPLEC(R1, -4, R28)	DB81FFFC	R28=1
ADDC(R0, 5, R2)	C0400005	R2=10	ADDC(R31, 0, R0)	C01F0000	R0=0
ADDC(R1, 5, R3)	C0610005	R3=0	ADDC(R31, 21, R30)	C3DF0015	R30=21
ADDC(R1, -5, R28)	C381FFFB	R28 = -10	ST(R30, 0, R0)	67C00000	$ \begin{array}{c} \text{MEM[Reg[R0]]} \\ \leftarrow \text{Reg[R30]} \end{array} $
ADDC(R31, 12, R0)	C01F000C	R0=12	LD(R0, 0, R1)	60200000	$\begin{array}{c} \operatorname{Reg}[R1] \\ \leftarrow \operatorname{Mem}[\operatorname{Reg}[R0]] \end{array}$
ADDC(R31, 10, R1)	C03F000A	R1=10	ADDC(R31, 4, R0)	C01F0004	R0=4
AND(R0, R1, R2)	A0400800	R2=8	ADDC(R31, 7, R2)	C05F0007	R2=7
ADDC(R31, 5, R0)	C01F0005	R0=5	ST(R2, 0, R0)	64400000	$ \begin{array}{c} \text{MEM[Reg[R0]]} \\ \leftarrow \text{Reg[R2]} \end{array} $
ADDC(R31, -5, R1)	C03FFFFB	R1 = -5	ADDC(R31,0,R0)	C01F0000	R0=0
CMPLEC(R0, 10, R30)	DBC0000A	R30=1	BNE(R0,0,R31)	7BE0FFE7	No jump
CMPLEC(R0, 5, R29)	DBA00005	R29=1	ADDC(R31,1,R1)	C03F0001	R1=1
CMPLEC(RO,2,R28)	DB800002	R28=0	BNE(R1,0,R31)	7BE1FFE5	Jump to first instruction
CMPLEC(R1, -6, R30)	DBC1FFFA	R30=0			

The first 5 lines of the first column are testing the ADD instruction.

The following 3 lines are testing the AND instruction. In the same instruction, we are testing every possibility (1&1, 1&0, 0&1, and 0&0).

The other lines of the first column and the first 2 lines of the second column are testing the CMPLEC instruction. The first 2 ADDC are used to put desired values inside the register file.

The following 7 lines are testing the LD instruction. We are using RO as a memory pointer. Then, we are storing 21 at address 0 in memory and loading the content at address 0 in R1. Finally, we are increasing RO by 4, storing 7 at address given by RO, and loading the content at the address given by RO in R2. Finally, the remaining lines of the second column are testing the BNE instruction.

Logisim and ROMs

From time to time, Logisim may loose data of some ROMs. Our implementation of the β -machine is using 2 ROMs. Inside the instruction memory, the ROM is using addresses $\in [00; 2A]$. If some of these words are empty, please load the file im_rom inside this memory. Inside the control logic, the ROM is using addresses mentioned in the table in the section *Control logic*. If some of these words are empty, please load the file cl_rom inside the memory.

 $^{^{1}}$ Instructions associated to the lowest student id (20180521) of our group.

 $^{^2}$ See footnote 1.