Лабораторная работа №1.

ВЫЧИСЛЕНИЕ ПОГРЕШНОСТЕЙ ПРИ ВЫПОЛНЕНИИ АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ НАД ЧИСЛАМИ

Цель работы: приобретение и закрепление практических навыков при оценке погрешности результатов вычислений, полученных с помощью арифметических операций над действительными числами.

Задание. По данным из таблицы 1 вычислить величину *s* и ее абсолютную и относительную погрешности, используя формулы погрешности алгебраической суммы, произведения, частного, погрешности степени и корня для приближенных чисел.

Таблица 1 Варианты задания к лабораторной работе №1

No॒	Выполюцию Значения параметров			ров
вар.	Выражение	а	b	c
1	$s = \frac{c^2 \sqrt{a^2 + b^2}}{18 \left(a - b\right)}$	$3,85 \pm 0,01$	2,043±0,004	$1,6 \pm 0,2$
2	$s = \frac{\sqrt{a+b} \cdot c}{4} + \frac{b^2}{a}$	$8,53 \pm 0,05$	$6,27 \pm 0,01$	$12,4 \pm 0,1$
3	$s = \frac{\left(a+b\right)^2}{4\sqrt{c}} + \frac{c}{b}$	0,843±0,002	$0,35 \pm 0,01$	$0,74 \pm 0,05$
4	$s = \frac{a}{\sqrt{b}} \left(4 + \frac{c^2}{a - b} \right)$	5,71 ± 0,01	$3,27 \pm 0,05$	$4,7 \pm 0,2$
5	$s = \frac{b^2}{a+c} \left(1 + a^2 + \sqrt{c} \right)$	$3,25 \pm 0,02$	$2,73 \pm 0,05$	$1,8 \pm 0,3$
6	$s = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$	$5,44 \pm 0,03$	$11,27 \pm 0,05$	$2,8 \pm 0,2$
7	$s = \frac{\sqrt{b-a}}{1+c^2+a^2}$	$1,37 \pm 0,01$	$4,73 \pm 0,05$	5,9 ± 0,3
8	$s = \frac{a + 2b + 3c^2}{\sqrt{abc}}$	$4,52 \pm 0,03$	$1,92 \pm 0,01$	$5,1 \pm 0,1$
9	$s = \sqrt{\frac{a^3(b-c)}{4b}}(a-c)$	$7,58 \pm 0,03$	$5,21 \pm 0,01$	$3,48 \pm 0,03$

No	D. гоомонно	Значения параметров		
вар.	Выражение	а	b	c
10	$s = \frac{\left(2a^2 - c\right)b}{\sqrt{c - b^2}}$	5,43 ± 0,01	$1,27 \pm 0,03$	$4,7 \pm 0,1$
11	$s = \frac{a^3 - b - c^2}{1 + c^2 + \sqrt{a}}$	5,19 ± 0,03	$3,69 \pm 0,05$	9,8 ± 0,5
12	$s = \frac{\sqrt[3]{a} - \sqrt{b}}{c^2 + a + b}$	2,87±0,03	5,13 ±0,05	$1,8 \pm 0,1$
13	$s = \frac{a^2 + \sqrt{b}}{abc}$	$2,14 \pm 0,05$	$1,73 \pm 0,01$	2,9 ± 0,3
14	$s = \frac{\left(a+b+c\right)^2}{\sqrt{a}+b}$	$7,11 \pm 0,01$	$5,19 \pm 0,03$	$2,2 \pm 0,1$
15	$s = \frac{a^2 - b + \sqrt{c}}{ac}$	$1,19 \pm 0,05$	2,31 ± 0,01	$7,9 \pm 0,3$
16	$s = \frac{ab^2 + c}{\sqrt{ab}}$	$1,25 \pm 0,03$	$1,83 \pm 0,05$	5,2 ± 0,3
17	$s = 1 + \frac{a^2 - b}{\sqrt{c + b}}$ $s = a^2 + \frac{b}{c} + \sqrt[3]{c}$	$3,48 \pm 0,02$	$5,47 \pm 0,03$	$2,9 \pm 0,1$
18	$s = a^2 + \frac{b}{c} + \sqrt[3]{c}$	$5,18 \pm 0,03$	$6,87 \pm 0,05$	$3,7 \pm 0,2$
19	$s = \frac{a^2 - b^2}{\sqrt{c^2 + a^2}} + a$	$2,73 \pm 0,03$	$1,48 \pm 0,01$	$1,2 \pm 0,1$
20	$s = \frac{\sqrt{a^2 + b^3}}{c + a + b}$	$3,56 \pm 0,02$	$2,49 \pm 0,03$	$1,3 \pm 0,1$
21	$s = \frac{\sqrt{ac} + bc}{a^2 + b + c}$	$2,49 \pm 0,03$	$1,23 \pm 0,01$	$3,8 \pm 0,5$
22	$s = \frac{a^3 + b^2 + c}{\sqrt{a+b+c}}$	$2,13 \pm 0,02$	$1,45 \pm 0,03$	5,6 ± 0,2
23	$s = \frac{(ab)^2 + c}{\sqrt{4 + c + b}}$ $s = \frac{a + \sqrt{b} + c}{(c + b)^3}$	$1,73 \pm 0,01$	$2,34 \pm 0,02$	$5,1 \pm 0,1$
24	$s = \frac{a + \sqrt{b} + c}{\left(c + b\right)^3}$	$8,93 \pm 0,03$	9,49 ± 0,01	$1,2 \pm 0,2$

No	Выражение	Значения параметров		
вар.		а	b	c
25	$s = \frac{\sqrt[3]{a} - \sqrt{b}}{c^2 + a + b}$	12,87±0,03	3,13 ±0,05	$2,8 \pm 0,1$

Отчет по лабораторной работе должен содержать:

- тему лабораторной работы, полный текст задания и исходные данные в соответствии с номером варианта;
- формулы и соотношения, описывающие вычисление абсолютной и относительной погрешностей при выполнении арифметических операций над действительными числами;
- результаты аналитических расчетов, связанных с вычислением абсолютной и относительной погрешности;
 - выводы по работе.

Пример 1. Вычислить величину $s=\frac{\left(a-b^2\right)\sqrt{c}}{c+2}$ при значениях $a=8,37\pm0,03,\ b=1,73\pm0,01,\ c=2,3\pm0,2$ и оценить погрешность результата вычислений.

По условию задачи значения приближенных величин a, b и c заданы с предельными абсолютными погрешностями: $\Delta a = 0.03$; $\Delta b = 0.01$ и $\Delta c = 0.2$, соответственно.

Находим приближенное значение величины s:

$$s = \frac{\left(8,37-1,73^2\right)\sqrt{2,3}}{2,3+2} = 1,896.$$

При вычислении величины s используется по одной операции умножения и деления. Поэтому предельная относительная погрешность величины s может быть найдена по формуле: $\delta_s = \delta_{a-b^2} + \delta_{\sqrt{c}} + \delta_{c+2}$, где δ_{a-b^2} , $\delta_{\sqrt{c}}$ и δ_{c+2} – предельные относительные погрешности разности $a-b^2$, квадратного корня \sqrt{c} и суммы c+2, соответственно [1,4,5].

Предельная относительная погрешность разности $a-b^2$ находится как отношение предельной абсолютной погрешности к модулю разности: $\delta_{a-b^2} = \frac{\Delta_{a-b^2}}{\left|a-b^2\right|},$ где предельная абсолютная погрешность

разности $a-b^2$ вычисляется как сумма предельных абсолютных погрешностей величин a и b^2 : $\Delta_{a-b^2} = \Delta a + \Delta_{b^2}$ [1,4,5].

Предельную абсолютную погрешность величины b^2 можно найти по формуле: $\Delta_{b^2} = \delta_{b^2} \cdot b^2$, где δ_{b^2} – предельная относительная погрешность величины b^2 . Известно [1,4,5], что при возведении в квадрат приближенного числа b имеет место формула: $\delta_{b^2} = 2\,\delta_b$, где $\delta_b = \frac{\Delta b}{|b|} = \frac{0.01}{1.73} = 0.00578$. Тогда имеем: $\delta_{b^2} = 2\,\delta_b = 0.01156$,

$$\Delta_{b^2} = 0,01156 \cdot 1,73^2 = 0,0346\,, \qquad \Delta_{a-b^2} = 0,0346 = 0,0646 \qquad \text{и}$$

$$\delta_{a-b^2} = \frac{0,0646}{\left|8,37-1,73^2\right|} = 0,0120\,.$$

Вычислим предельную относительную погрешность величины c : $\delta_c = \frac{\Delta c}{c} = \frac{0,2}{2,3} = 0,08696\,.$ Тогда предельная относительная погреш-

ность величины \sqrt{c} найдется по формуле: $\delta_{\sqrt{c}} = \frac{1}{2} \delta_c = \frac{0,0870}{2} = 0,0435$.

Так как
$$\Delta_{c+2}=\Delta c=0,2$$
 , то $\delta_{c+2}=\frac{\Delta_{c+2}}{|c+2|}=\frac{0,2}{4,3}=0,0465$.

Таким образом, окончательно получаем: $\delta_s = 0.0120 + 0.0435 + 0.0465 = 0.1020$. Отсюда предельная абсолютная погрешность величины s равна: $\Delta s = s\delta_s = 1.896 \cdot 0.102 = 0.1934$.

Таким образом, получили: $s = 1,896 \pm 0,193$, $\delta_s \approx 10\%$.

Контрольные вопросы

- 1. Дать определение абсолютной погрешности приближенного числа.
- 2. Дать определение относительной погрешности приближенного числа.
- 3. Дать определение предельной абсолютной погрешности приближенного числа.
- 4. Дать определение предельной относительной погрешности приближенного числа.
- 5. Сформулировать и доказать теорему о погрешности алгебраической суммы нескольких приближенных чисел.
- 6. В чем заключается проблема вычитания двух близких приближенных чисел?
- 7. Как определяется погрешность при перемножении нескольких приближенных чисел?
- 8. Как определяется погрешность при делении двух приближенных чисел?