CP1 | **PPII2** ▷ **Charte de Projet**

Table 1 – Auteurs

Nom / mail	Qualité / rôle
Stanislas MEZUREUX / stanislas.mezureux@telecomnancy.eu	Chef de projet
Yann DIONISIO / yann.dionisio@telecomnancy.eu	Membre de l'équipe projet

TABLE 2 – Historique des modifications et révisions de ce document

n° de version	Date	Description et circonstances de la modification
V1	23/05/2023	Première version à la suite de la deuxième réunion

TABLE 3 – Validation / autorisations

nº de version	Nom / qualité	Date / signature	Commentaires er réserves éventuelles
V1	Commanditaires		

I Résumé

- ▷ Il nous est dans un premier temps demandé de créer une application de calcul d'itinéraire optimisé pour véhicule électrique.
- Dans un second temps, il nous faudra concevoir une application de monitoring du réseau de stations de recharge.
- ▷ Ces deux applications seront principalement conçu en langage "C".

II Cadrage

II.1 Finalités et importance du projet

Ce projet s'inscrit dans le cadre du programme d'étude de première année de Telecom Nancy. Il répond à l'objectif proposé pour le Projet Interdisciplinaire d'Informatique Intégrative 2 (PPII2).

L'augmentation de l'utilisation des voitures électriques induite par la prise de conscience écologique apporte également son lot de contraintes parmi lesquelles l'autonomie encore limitée des batteries et la répartition inégale des stations de recharges sur le territoire.

Pour répondre à ces problématiques qui peuvent ralentir la transition écologique, il nous est proposé de concevoir des outils utiles à l'utilisateur (système d'optimisation d'itinéraire) mais aussi les entreprises afin de mieux planifier l'expansion du réseau de bornes de recharge.

II.2 Objectifs et résultats opérationnels

Liste des livrables :

- > Application de planification d'itinéraire fonctionnelle : code source
- > Application de monitoring des stations de recharge fonctionnelle : code source
- ▷ Rapport de projet : document de présentation de développement du projet
- Documents relatifs à la gestion de projet

Critères de succès et indicateurs mesurables :

- - Critères de succès :
 - L'application renvoie le trajet le plus court (qui respecte les capacités de la voiture).
 - Le trajet est affichable dans une application tierce.
 - Il est possible d'indiquer des paramètres supplémentaires (seuil de batterie minimal, temps de recharge maximal, ...)
 - o Indicateurs clés de performance :
 - Temps d'exécution.
- - Critères de succés :
 - L'application renvoie l'évolution de la charge des stations en fonction d'un nombre de trajets d'utilisateurs donnés.
 - Les données sont affichables
 - o Indicateurs clés de performances :
 - Temps d'exécution.

III Déroulement du projet

III.1 Organisation / ressources, budget

Ce travail s'effectue par groupe de quatre, toutes les ressources produites transitent via le serveur GitLab de l'école et les ressources dont nous disposons sont les locaux de l'école, le soutient du corps enseignant ainsi que les bases de données relatives aux stations de recharge et aux véhicules électriques.

Table 4 – Parties prenantes

Membres de l'équipe	Autres parties prenantes
Stanislas MEZUREUX : chef de projet	Olivier FESTOR : commanditaire
Corentin BILLARD	Gérald OSTER
Antonin FREY	Autres groupes
Yann DIONISIO	Utilisateurs finaux

Moyens à mobiliser ordinateurs (personnels et de l'école), C, Latex, ...

III.2 Jalons : échéancier / événements importants

Table 5 – Échéancier

Jalon	Description	Date
Étape 1 : Définition et cadrage	Latex : Etat de l'art et charte de projet	24/03/2023
Étape 2 : Montage partie 1	WBS, Gantt et RACI	29/03/2023
Étape 3 : Développement partie 1	Code source	19/04/2023
Étape 4 : Évaluation et test partie 1	Tests et Benchmark	24/04/2023
Étape 5 : Montage partie 2	WBS, Gantt et RACI	30/04/2023
Étape 6 : Développement partie 2	Code source	14/05/2023
Étape 7 : Évaluation partie 2	Tests et Benchmark	17/05/2023
Étape 8 : Rapport de projet	Latex : Rapport	24/05/2023
Étape 9 : Soutenance	Soutenance	31/05/2023

III.3 Risques et opportunités

Table 6 – Éléments favorables et défavorables

Favorable	Défavorable
L'équipe a déjà travaillée ensemble	Peu d'expérience en C
Pas de coûts	Difficile d'évaluer le temps que va prendre chaque jalon

Scénarios défavorables :

1) Le projet est trop ambitieux, nous ne parvenons pas rendre le livrable principal à temps