

Analyse fonctionnelle

Équipe Smart

Table des matières

Ta	Table des matières Introduction				
In					
Ι	Analyse fonctionnelle	4			
1	Présentation du contexte 1.1 Acoustique	5 5 5 6 6 7			
2	Analyse fonctionnelle 2.1 Interview	8 8 8 10 11			
II	État de l'art	13			
3	Radio-goniométrie 3.1 Principe	14 14			
Co	nclusion	15			
A	Organisation du travail A.1 Méthode de travail	17 17 17			
В	Le Montréal 3V2 B.1 Évolution du Montréal	19 19 20 20 20 21 21			
Ta	ole des figures	22			

Bibliographie 23

Introduction

Ce document constitue le rapport de l'analyse fonctionnelle du projet Smart. L'équipe Smart est constituée de Rigaud Michaël, D'Acremont Antoine, Cotten Guillaume, Legay Kevin, Aya Kenaan, et Mohamed Shehade.

Le projet Smart a pour but de mettre en place un système de détection et de neutralisation de drones.

Compte tenu du temps imparti, nous avons choisi de nous concentrer sur la détection d'un drone. Pour réaliser cette détection, nous utiliserons un ensemble de goniomètre permettant de réaliser la localisation d'un drone. Ce projet étant nouveau, l'ensemble des recherches et la réalisation du système devront être mené dans le temps imparti.

Première partie Analyse fonctionnelle

Présentation du contexte

Dans le domaine de la détection de drones, après recherche littéraires et numérique, nous en avons conclu qu'il existait plusieurs types de détection : par acoustique, par méthodes optiques et par radiogoniométrie. Ces méthodes possèdent chacunes leurs avantages et leurs inconvéniants que nous allons spécifier ci-dessous.

1.1 Acoustique

Plusieurs entreprises proposent des outils de détection des drones. Ces derniers se présentent sous forme de boîtiers reliés à des micros, positionnés en hauteur : c'est par le son de leurs hélices que les drones sont repérés, dans un rayon d'une centaine de mètres. Une alerte est alors envoyée sur un ordinateur ou par un SMS. Avantage : le système ne s'occupe pas des ondes, et peut détecter les drones autopilotés (voir plus bas). Problème : le bruit de fond doit être inférieur à un certain seuil, ce qui le rend difficilement utilisable en milieu urbain. De plus, pour des raisons d'échos, la multiplication de récepteurs est nécessaire afin de pouvoir filtrer le signal. Enfin, il est nécessaire de disposer préalablement d'une base de données des signatures acoustiques des différents drones qui peuvent émettre sur un domaine de fréquences acoustiques larges.

Cependant, ce système présente des failles. En effet, il est assez simple pour un drone de parer ce système de détection. Par la simple émission d'une onde sonore couvrant sa propre signature acoustique, un drone passerait totalement inaperçu.

Certains systèmes utilisent aussi une analyse fréquentielle poussée du signal afin de détecter les moteurs en fonction de leurs fréquences de fonctionnement.

Au-delà de cet aspect, il présente un avantage et des plus importants, son coût. En effet, un tel système est très économique à produire. Actuellement diverses solutions actives comme passives sont déjà présentes sur le marché. Ces solutions sont orientées vers une utilisation domestique et non professionnelle pour les raisons évoquées précédemment. Leur prix se situe aux alentours de 100 dollars pour un modèle classique, mais la multiplication des solutions tant à réduire le prix d'un tel système.

1.2 Optique

Une caméra normale a besoin de lumière pour produire une image, une caméra thermique (ou infrarouge) peut capter de très faibles différences de température et les convertir en une excellente image thermique sur laquelle les plus petits détails sont visibles. Contrairement à d'autres technologies, comme l'amplification de lumière qui nécessite une petite quantité de lumière pour produire une image, l'imagerie thermique permet de voir dans l'obscurité totale. Elle ne nécessite aucune source de lumière.

Depuis qu'il est possible de produire une image lisible dans l'obscurité totale, la technologie de l'imagerie thermique permet de voir et de cibler les forces ennemies dans la nuit la plus noire. Les caméras thermiques voient à travers la brume, la pluie et la neige. Elles voient aussi à travers la fumée, ce qui était particulièrement intéressant pour l'armée.[3]

En mode passif, des caméras thermiques d'observation savent repérer un drone de 50 cm d'envergure à une distance d'environ 1 km, de jour comme de nuit . Lorsqu'un drone entre dans son champ de vision, des algorithmes identifient son image. La forme, la couleur et la géométrie de l'objet permettent de distinguer le drone d'éventuels oiseaux et lancer une alerte, à condition qu'il n'y ait pas d'obstacle entre la caméra et lui.

En mode actif, on peut éclairer une scène à 360° avec un laser. Les photons, les particules de lumière, se réfléchissent sur l'appareil, le signal est récupéré et analysé. D'une portée similaire à celle de la caméra, le laser a l'avantage de décamoufler (observation à travers brouillard, pluie ou filet de camouflage), de livrer la distance précise de l'objet, et de le reconstituer en imagerie 3D.Une fois le drone suffisamment proche, une caméra classique avec un opérateur humain peuvent prendre le relai pour vérifier visuellement la nature de l'intrus et éventuellement passer à la phase de neutralisation.

1.3 Radiogoniométrie

Parmis les méthodes pour détecter un drone on peut citer la radiogoniométrie. Le principe de la radiogoniométrie est de mesurer la direction d'arrivée d'une onde électromagnétique par rapport à une direction de référence. Les radio-goniomètres sont donc des détecteurs passifs.

On distingue deux types de goniomètres : les goniomètres à une dimension qui n'estiment que le gisement ou l'azimut, et les goniomètres à deux dimensions qui estiment le gisement ou azimut ainsi que l'élévation. Ainsi grâce à un réseau d'au moins 2 goniomètres il est possible de déterminer la position de l'émission de l'onde.

Dans le cas d'une détection de drones, le radio-goniomètre réalise une écoute de l'environnement avec un balayage de fréquences. Lorsque le drone émettra avec la personne qui le guide on pourra ainsi le localiser précisément.

Seulement, la radiogoniométrie a des failles. En effet, il existe sur le marché des drones auto-pilotés qui n'émettent pas car ils chargent avant le début de leur vol leurs trajectoires. Ainsi il n'y a pas de communication avec un quelconque utilisateur, et donc il n'y a aucun signal émis. Il est donc impossible de les localiser à l'aide de cette technique.

Mais cette technique possède aussi ses avantages. C'est une technique passive et donc indécelable. C'est d'ailleurs pour cela que c'est une technique très utilisée dans la guerre électronique.

1.4 Radar

Le radar (de l'anglais RAdio Detection And Ranging) est un système qui utilise les ondes électromagnétiques pour détecter la présence d'objets. Le radar émet des ondes, elles rebondissent sur les objets rencontrés et il est possible de mesurer leur distance, la direction, l'altitude ainsi que la vitesse en analysant le signal renvoyé. Les modèles Doppler peuvent ainsi détecter les objets en mouvement : avion, hélicoptère et certains modèles de drones, même « légers ». C'est le cas du radar Squire de Thales Air Systems.

FIGURE 1.1 – Le radar portable Squire de Thales Air Systems

Il existe néanmoins certains drones construits en carbone pouvant être perméables à certaines ondes radars et ainsi indétectable par cette technologie. Cependant le "radar passif", radar exploitant les variations d'ondes électromagnétiques en milieu urbain, telles que les ondes de la TNT, pourrait être exploité en milieu urbain.

1.5 Synthèse

Ainsi, la meilleure solution serait de réaliser un détecteur à base de ces trois modes de détection. C'est d'ailleurs pourquoi les produits les plus performants existant sur le marché utilisent un mélange de ces trois technologies. On peut notamment citer le cas du système drone-detector [7].

Néanmoins nous avons choisi pour ce projet de nous concentrer, dans un premier temps, sur une détection uniquement à base de radiogoniométrie.

Analyse fonctionnelle

2.1 Interview

Après notre interview avec notre encadrant Ali Mansour, nous avons réalisé un tableau des spécifications suivantes :

Synthèse exigences première interview		
	détecter un drone	
Demande principale	utiliser la radiogoniométrie comme technologie détection	
Demande secondaire	travailler sur un domaine de fréquence à définir	
Demande secondaire	une interface homme/machine pourra être réalisée	
	Le budget est de 300€	
Spécifaciations techniques	Aucun matériel n'est préalablement disponible pour la réalisation du démonstrateur	

2.2 Tableau des spécifications

En prennant en compte les recommandations de notre encadrant, et les recherches qu nous avons réalisées, nous avons établie les contraintes et les spécifications suivantes :

		Tableau des Exigences	du SMART		
	Client		Con	cepteur/Réalisateur	
Numéro	Désignation	Critère	Niveau	Niveau de flexibilité	Classe
FS1	Détecter des drones à porté de reception par les antennes dans un domaine de fréquence prédéfini	Puissance du signal, fréquence	WIFI 2.4 GHz (2400 - 2483,5 MHz)	Tolérance faible	0
FS2 a.	Retourner la position du drone à l'utilisateur en temps réel	Clareté, temps de réponse	Mise à jour des données dans un tableau d'information	Tolérance faible	1
FS2 b.	Avoir une précision de l'ordre du mètre	Précision	Entre 0 et 2 mètres	Tolérance faible	0
FS3	Suivre les déplacements du drone en temps réel	Fiabilité	Projection de la position sur une représentation de la zone géographique	Tolérance moyenne	2
FS4	Alerter l'utilisateur en cas de nouvelle détection par un message dans la console du PC	Temps de réponse	Entre 0 et 2s	Tolérance moyenne	2
FS4b.	Alerter l'utilisateuren cas de nouvelle détection par un message via application Android	Temps de réponse	Entre 0 et 2s	Tolérance élevée	3
FS5	Analyser et retourner la vitesse de délacement du drone	Clareté, temps de réponse	Mise à jour des données dans un tableau d'information	Tolérance moyenne	2
FS6	Retourner la trajectoire du drône à l'utilisateur	Fiabilité, temps de réponse	Projection de la trajectoire sur la carte permettant de visualiser la position u drone	Tolérance moyenne	2
C1	Utiliser la radiogoniométrie pour réaliser la localisation	Critère client	Radiogoniométrie multi- antenne	Tolérance faible	0
C2	le système doit posséder au minimum deux goniomètres pour la réception	Critère client	Antennes disposées en treilli pour optimiser la localisation	Tolérance faible	0
C3	Etre alimenté uniquement par le réseau électrique	Simplification des sources d'alimentation	230V	Tolérance faible	0
C4	Etre paramétrable par l'utilisateur	Souplesse d'utilisation	Configuer l'IHM selon ses envies	Tolérance moyenne	1
C5	Respecter les normes environne mentales	Juridique	Normes minimales environnementales	Tolérance faible	0
C6	Respecter un budget restreint	Budget proposé	300 €	Tolérance faible	0
C7	Résister aux contraintes météorologiques	Réalité du terrain	Etre résistant à l'eau et au vent de faible puissance	Tolérance moyenne	0
C8	Tenir un délai de réalisation	Planning	7 mois comprenant l'analyse et la réalisation du projet	Tolérance faible	0

Types d'exigence		
Fonction de service	FS	
Contrainte	С	

Classe	
Non négociable	0
Peu négociable	1
Négociable	2
Non nécessaire	3

2.3 Diagramme pieuvre

Diagramme Pieuvre

FIGURE 2.1 – Diagramme pieuvre

2.4 SADT

FIGURE 2.2 – SADT A-0

FIGURE 2.3 – SADT A0

Comme on peut le voir sur le SADT A0, nous avons découpé notre objectif en trois parties.

Dans un premier temps il faut capter les signaux. Pour cela il faut réaliser un balayage sur le radiogoniomètre pour détecter les bons signaux.

Ensuite, il faut analyser les signaux reçus pour s'assurer que nous sommes bien en présence d'un drone.

Enfin, il faut récupérer les données des radiogoniometres pour déterminer la position du drone.

Deuxième partie État de l'art

Radio-goniométrie

3.1 Principe

Système Doppler

Système TDOA

Système Homing

Conclusion

Bien que sommaire, cette première analyse comprenant de la recherche bibliographique, de la veille technologique et de l'analyse fonctionnelle, nous permet de nous recentrer sur l'essentiel. Le domaine de la localisation de drone étant en plein essor, il est primordial de se concentrer sur un type de détection et d'avancer pas à pas.

Nous allons donc, dès à présent, nous attacher à la compréhension de la radiogoniométrie ainsi qu'à poursuivre la veille technologique afin de retenir les bonnes solutions de détection.

Annexe

Organisation du travail

A.1 Méthode de travail

Nous avons cherché au mieux à répartir notre travail. Pour cela nous avons défini 3 grands axes de travail à l'issue de cette étude fonctionnelle.

- Dans un premier temps nous allons réaliser l'état de l'art.
- Dans un deuxième temps nous étudierons la phase de réalisation.
- Enfin nous testerons notre projet dans des conditions réelles.

Tout au long de ce projet nous avons choisi de réaliser notre travail en divisant notre équipe en 3 groupes de travail distincts formés respectivement de D'Acremont - Cotten, Legay - Rigaud, et Kenaan - Shehade. Notamment lors de l'état de l'art, ces groupes vont réaliser des recherches par binômes pour ensuite redistribuer les informations grâce aux outils mis à notre disposition (nous avons détaillé ces outils plus loin).

De plus, nous avons décidé lors de la phase de conception de diviser ce travail en plusieurs sous ensembles que nous définirons plus tard et qui seront chacun d'eux testés indépendemment, à l'image de tests unitaires en programmation.

A.2 Outils utilisés

Lors de notre projet nous avons choisi d'utiliser plusieurs outils de travail en collaboration.

- Nous utilisons Office 365. Nous avons créé un groupe de travail où nous partageons des fichiers et envoyons des mails de manière centralisée.
- Nous utilisons également L^AT_EX pour la rédaction de nos rapports.
- Nous pensons finalement utiliser Git et GitHub lors de notre phase de conception.
 Nous avons pour cela crée un projet sur GitHub.
- Après plusieurs difficultés, nous avons réussi à utiliser Framaboard du groupe Framasoft pour gérer notre projet.

Framaboard

FIGURE A.1 – Impression d'écran de notre Framaboard

Il est possible d'avoir accès en lecture à notre page Framaboard en cliquant ici

GitHub

FIGURE A.2 – Impression d'écran de notre GitHub

Il est possible d'avoir accès à notre page GitHub en cliquant ici

Le Montréal 3V2

Nous allons ici présenter la solution sur laquelle nous nous appuyons pour réaliser notre propre radiogoniomètre à effet Doppler, le Montréal 3V2. Pour réaliser cette documentation nous nous sommes appuyé sur la documentation trouvé sur le site f1lvt [2]

B.1 Évolution du Montréal

Radiogeniométrie Deppler / Mentréal 3V2 – AG FNRASEC Berdeaux 2008 – F1LVT@yahoo.fr

FIGURE B.1 – Evolution du Montréal

B.2 Avantages du Montréal 3v2

FIGURE B.2 – Photographie prise du Montréal 3v2

Le Montréal 3v2 sert principalement à l'FNRASEC ¹ et aux chasseurs d'onde amateurs. Ce radiogoniomètre est utilisé pour la détection de balise de détresse de 406MHz.

Un des intérêts majeurs du Montréal 3-V2, c'est sa capacité de localiser des signaux très courts, son prix de revient est très raisonnable, son traitement très rapide et la mise en mémoire automatique du dernier relevé. On peu aussi noter qu'il est simple d'utilisation grâce a son affichage à 36LED disposé en cercle et qui indique la direction. De plus une LED centrale est indique le fonctionnement; verte la direction affichée est bonne, rouge le signal est insuffisant, la direction reste alors figée dans la dernière bonne direction reçue.

B.3 Caractéristiques

Le Montréal 3v2 est un radiogoniomètre à effet Doppler, il possède donc toutes les caractéristiques associé a ce type de radiogoniomètre.

Fréquences	distance	moyenne portée
	gamme	50MHz-1 3GHz

gamme 50MHz-1.3GHz

démodulation FM LED 36LED

écran LCD en 2 lignes

Filtre capa très faible largeur de bande (0.5Hz)

Coût estimé à 50€

B.4 Fonctionnement

Affichage

La partie centrale contient les circuits d'amplification et de commutation. Les 4 brins verticaux (les brins actifs) se fixent par BNC.

Les antennes sont alimentées de façon séquentielle pour imiter une antenne en rotation. Une fois que les antennes ont capté les ondes provenant du drone, il faut faire une démodulation et enlever tous les bruits.

Un système à LED permet de visualiser la composante continue qui passe dans les antennes. A partir du boîtier Doppler et de son menu de test, on peut ainsi vérifier individuellement chaque antenne. Ceci permet soit de faire fonctionner le système Doppler avec une antenne sur 4, soit avec 3 antennes sur 4.

Trois microcontrôleurs Pics sont utilisés un 16F628A pour l'affichage, un 16F877A pour le circuit principal et un 12F675 comme diviseur de fréquence.

^{1.} Fédération Nationale des Radioamateurs au service de la Sécurité Civile, agrée de sécurité civile

Ce Doppler est la version la plus récente et la plus performante de la série. Il commute les antennes et il affiche la direction mesurée sur la boussole à 36 LED.

B.5 Schéma bloc

Radiogoniométrie Doppler / Montréal 3V2 – AG FNRASEC Bordeaux 2008 – F1LVT@yahoo.fr

FIGURE B.3 – Schéma bloc du Montréal 3v2

B.6 Liste des composants

Voici la liste des composants pour la construction du Montréal 3v2 :

. 0101 10 11010 0100 0	somposition podis in construction on	
IC30	LM386N-4	Ampli BF
IC50	MAX267BCNG	Filtre
IC51	PIC 12F675-I/P	PIC
IC52	74HC4051N	Filtre
IC53	MAX492CPA	Ampli Op
IC70	PIC 18F4520-I/P	PIC
VR20	7805 TO-220	Régulateur
X70	20 MHz HC49	Quartz
D50	1N5819	Diode Schottky
LCD20	LCD 2X16,	Afficheur 2 lignes de 16 car.
IC1	PIC16F628A-I/P	PIC
LED1 - LED36	ø3mm, Rouge et/ou Vert	
LED37	3 ou 5mm Bicolore Rouge/Verte	
FB1 - FB8	Ferrites ²	
IC100	= MAX232ACPE	en option
Q100	= 2N2222 TO-92	

Table des figures

1.1	Le radar portable Squire de Thales Air Systems	7
2.1	Diagramme pieuvre	10
2.2	SADT A-0	11
2.3	SADT A0	11
A.1	Impression d'écran de notre Framaboard	18
A.2	Impression d'écran de notre GitHub	18
B.1	Evolution du Montréal	19
B.2	Photographie prise du Montréal 3v2	20
B.3	Schéma bloc du Montréal 3v2	21

Bibliographie

- [1] Juliette Demey. Comment détecter les drones. *JDD*, 1 mars 2015. http://www.lejdd.fr/Societe/Faits-divers/Comment-detecter-les-drones-720496.
- [2] F1LVT. F1lvt : comment créer un radio-goniomètre doppler le montréal 3v2. http://f1lvt.com/.
- [3] Société Flir. L'imagerie thermique : Une technologie prête à conquérir le reste du monde. http://www.flir.fr/cs/display/?id=51839.
- [4] Peter Hausmann. UAV Sound Source Localization, 2014.
- [5] Jason Koebler. Tiny device will detect domestic drones. *US.news*, May 1 2013. http://www.usnews.com/news/articles/2013/05/01/tiny-device-will-detect-domestic-drones.
- [6] Philippe Martin. *Recepteur gonio(ou indicateur de champ) vhf.* http://phmartin.pagesperso-orange.fr/f6eti/realisations/9901rxvhf/index.htm.
- [7] Société Orelia. Drone detector. http://www.drone-detector.com/fr/.
- [8] H. Lissek P. Marmaroli, X. Falourd. A UAV motor denoising technique to improve localization of surrounding noisy aircrafts: proof of concept for anti-collision systems, 2012.