

MOVIONS

Open Source Autopilots

Presented by:

Iman Shirdareh

Outline

- Why, How, What?
- Basics of Pixhawk project
- Pixhawk FMU hardware overview
- Basic concepts
- Control theory
- Estimation theory
- Pixhawk Software overview
- Operational Software Guide
- Operational Assembly Guide
- Flying Guide
- Flight Log Analysis Guide
- Advanced Guides

Navigation and Guidance

Main purposes

- Specifying of state variables (Position, Velocity, Acceleration, Angle,...) at each moment
- Defining of last desired position
- What should it do to follow the specified path
- Specifying desired Angle, Heading, Side acceleration,...
- Running defined desired variable

Navigation and Guidance

Guidance

Path planning & Trajectory planning/ Find last position or velocity

Navigation and Guidance

Navigation

Calculating position& velocity at each moment

Navigation and Guidance

Block Diagram of a flying system

Navigation and Guidance

Guidance Supplement

- Guidance Sensor
- Guidance Processor
- Guidance Algorithm

Navigation and Guidance

Guidance Sensor

Navigation and Guidance

Guidance Computer

Navigation and Guidance

Guidance Algorithm

Navigation and Guidance

Guidance Phases

- ☐ Launch/Take-off
- ☐ Crusoe
- ☐ Land

Navigation and Guidance

Guidance Phases

- ☐ Launch/Take-off
- ☐ Crusoe
- ☐ Land

Navigation and Guidance

Guidance paths

- ☐ Direct Path
- ☐ Optimum Path
- ☐ Crouse path
- ☐ Topographic path

Navigation and Guidance

Guidance paths

- ☐ Direct/Collision Path
- Optimum Path
- ☐ Crouse path
- ☐ Topographic path

Navigation and Guidance

Navigation Sensors

- ☐ Absolute Sensors
- ☐ Relative Sensors

Navigation and Guidance

Absolute Inertial Navigation Sensors

Inertial Navigation System (INS)

- Position
- Velocity
- Angular Velocity
- Euler Angle

Navigation and Guidance

Absolute Inertial Navigation Sensors
Global Positioning System(GPS)

- Position
- Velocity

Navigation and Guidance

Absolute Inertial Navigation Sensors

Attitude & Heading Reference System (AHRS)

- Angular velocity
- Euler Angle
- Heading
- Altitude

Navigation and Guidance

Absolute Inertial Navigation Sensors

Inertial Measurement Unit (IMU)

- Angular velocity
- Euler Angle

Navigation and Guidance

Absolute Inertial Navigation Sensors

Compass

Magnetic vector

Navigation and Guidance

Vision Navigation Sensors

Camera & Laser scanner

Simultaneous

Localization

And

Mapping

Navigation and Guidance

Vision Navigation Sensors

Camera & Laser scanner

• SLAM

Navigation and Guidance

Vision Navigation Sensors

Camera & Laser scanner

• SLAM

Basic Mechanics

Basic Mechanics

Forward kinematics

$$x_0 = l\cos\theta$$
$$y_0 = l\sin\theta$$

$$y_0 = l \sin \theta$$

Inverse kinematics

$$\theta = \cos^{-1}(x_0/l)$$

Orthogonal Matrix

$$\vec{i} \cdot \vec{j} = 0$$

$$\vec{i} \cdot \vec{k} = 0$$

$$\vec{i} \cdot \vec{j} = 0$$
$$\vec{i} \cdot \vec{k} = 0$$
$$\vec{k} \cdot \vec{j} = 0$$

$$|\vec{i}| = 1$$

$$\vec{j} = 1$$

$$|\vec{k}| = 1$$

Rotation Matrix

Translation of the origin of $\{B\}$ with respect to origin of $\{A\}$

Rotation Matrix

Point represented in O'uvw:

$$\vec{P}_{uvw} = p_u \mathbf{i}_u + p_v \mathbf{j}_v + p_w \mathbf{k}_w$$

$$p_u = p_x$$
 $p_v = p_y$ $p_w = p_z$

Rotation Matrix

$$\vec{P}_{xyz} = p_x \mathbf{i}_x + p_y \mathbf{j}_y + p_z \mathbf{k}_z$$

$$\vec{P}_{uvw} = p_u \mathbf{i}_u + p_v \mathbf{j}_v + p_w \mathbf{k}_w$$

$$P_{xyz} = RP_{uvw}$$

Rotation Matrix

 P_x , P_y , and P_z represent the projections of \boldsymbol{P} onto OX, OY, OZ axes, respectively

Since

$$P = p_u \mathbf{i}_u + p_v \mathbf{j}_v + p_w \mathbf{k}_w$$

$$p_x = \mathbf{i}_x \cdot P = \mathbf{i}_x \cdot \mathbf{i}_u p_u + \mathbf{i}_x \cdot \mathbf{j}_v p_v + \mathbf{i}_x \cdot \mathbf{k}_w p_w$$

$$p_y = \mathbf{j}_y \cdot P = \mathbf{j}_y \cdot \mathbf{i}_u p_u + \mathbf{j}_y \cdot \mathbf{j}_v p_v + \mathbf{j}_y \cdot \mathbf{k}_w p_w$$

$$p_z = \mathbf{k}_z \cdot P = \mathbf{k}_z \cdot \mathbf{i}_u p_u + \mathbf{k}_z \cdot \mathbf{j}_v p_v + \mathbf{k}_z \cdot \mathbf{k}_w p_w$$

Rotation Matrix

$$\begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{\mathbf{x}} \cdot \mathbf{i}_{\mathbf{u}} & \mathbf{i}_{\mathbf{x}} \cdot \mathbf{j}_{\mathbf{v}} & \mathbf{i}_{\mathbf{x}} \cdot \mathbf{k}_{\mathbf{w}} \\ \mathbf{j}_{\mathbf{y}} \cdot \mathbf{i}_{\mathbf{u}} & \mathbf{j}_{\mathbf{y}} \cdot \mathbf{j}_{\mathbf{v}} & \mathbf{j}_{\mathbf{y}} \cdot \mathbf{k}_{\mathbf{w}} \\ \mathbf{k}_{\mathbf{z}} \cdot \mathbf{i}_{\mathbf{u}} & \mathbf{k}_{\mathbf{z}} \cdot \mathbf{j}_{\mathbf{v}} & \mathbf{k}_{\mathbf{z}} \cdot \mathbf{k}_{\mathbf{w}} \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix}$$

Rotation about x-axis with

$$P_{xyz} = RP_{uvw}$$

$$Rot(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{bmatrix}$$

Rotation Matrix

Rotation about x axis with heta

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix}$$

$$p_{x} = p_{u}$$

$$p_{y} = p_{v} \cos \theta - p_{w} \sin \theta$$

$$p_{z} = p_{v} \sin \theta + p_{w} \cos \theta$$

Rotation Matrix

Rotation about x-axis with θ

Rotation about y-axis with θ

Rotation about z-axis with θ

$$P_{xyz} = RP_{uvw}$$

$$Rot(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{bmatrix}$$

$$Rot(y,\theta) = \begin{bmatrix} C\theta & 0 & S\theta \\ 0 & 1 & 0 \\ -S\theta & 0 & C\theta \end{bmatrix}$$

$$Rot(z,\theta) = \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation Matrix

$$R = \begin{bmatrix} i_{x} \cdot i_{u} & i_{x} \cdot j_{v} & i_{x} \cdot k_{w} \\ j_{y} \cdot i_{u} & j_{y} \cdot j_{v} & j_{y} \cdot k_{w} \\ k_{z} \cdot i_{u} & k_{z} \cdot j_{v} & k_{z} \cdot k_{w} \end{bmatrix} \quad P_{xyz} = RP_{uvw}$$

Obtain the coordinate of P_{uvw} from the coordinate of P_{xyz}

Dot products are commutative!

$$\begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{\mathbf{u}} \cdot \mathbf{i}_{\mathbf{x}} & \mathbf{i}_{\mathbf{u}} \cdot \mathbf{j}_{\mathbf{y}} & \mathbf{i}_{\mathbf{u}} \cdot \mathbf{k}_{\mathbf{z}} \\ \mathbf{j}_{\mathbf{v}} \cdot \mathbf{i}_{\mathbf{x}} & \mathbf{j}_{\mathbf{v}} \cdot \mathbf{j}_{\mathbf{y}} & \mathbf{j}_{\mathbf{v}} \cdot \mathbf{k}_{\mathbf{z}} \\ \mathbf{k}_{\mathbf{w}} \cdot \mathbf{i}_{\mathbf{x}} & \mathbf{k}_{\mathbf{w}} \cdot \mathbf{j}_{\mathbf{y}} & \mathbf{k}_{\mathbf{w}} \cdot \mathbf{k}_{\mathbf{z}} \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

$$P_{uvw} = QP_{xyz}$$
 $QR = R^TR = R^{-1}R = I_3 <== 3X3$ identity matrix $P_{xyz} = RP_{uvw}$ $Q = R^{-1} = R^T$

Rotation Matrix

• A point $a_{uvw} = (4,3,2)$ is attached to a rotating frame, the frame rotates 60 degree about the OZ axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation.

$$a_{xyz} = Rot(z,60)a_{uvw}$$

$$= \begin{bmatrix} 0.5 & -0.866 & 0 \\ 0.866 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.598 \\ 4.964 \\ 2 \end{bmatrix}$$

Rotation Matrix

Rotation ϕ about OY axis

Rotation θ about OW axis

Rotation α about OU axis

Answer...

$$R = Rot(y,\phi)I_{3}Rot(w,\theta)Rot(u,\alpha)$$

$$= \begin{bmatrix} C\phi & 0 & S\phi \\ 0 & 1 & 0 \\ -S\phi & 0 & C\phi \end{bmatrix} \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & S\alpha & C\alpha \end{bmatrix}$$

$$= \begin{bmatrix} C\phi C\theta & S\phi S\alpha - C\phi S\theta C\alpha & C\phi S\theta S\alpha + S\phi C\alpha \\ S\theta & C\theta C\alpha & -C\theta S\alpha \end{bmatrix}$$

 $-S\phi C\theta$ $S\phi S\theta C\alpha + C\phi S\alpha$ $C\phi C\alpha - S\phi S\theta S\alpha$

Pre-multiply if rotate about the OXYZ axes

Post-multiply if rotate about the OUVW axes

Atan Function

Recall:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{y}{x}$$

The function $\theta = \tan^{-1}(\frac{y}{x})$ returns the angle θ for which $\tan(\theta) = \frac{y}{x}$.

$$\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}} \longrightarrow \tan^{-1}(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}$$

$$\operatorname{atan}(\frac{y}{x}) = \tan^{-1}(\frac{y}{x})$$

Atan Function

The atan function cannot distinguish between opposite points on the unit circle.

Atan Function

$$\frac{\sin(\theta)}{\cos(\theta)} = \frac{y}{x} = \frac{\pm 1}{0} = \text{undefined}$$

The atan function fails when $\theta=\pm\frac{\pi}{2}$.

Returns values in range
$$(-\frac{\pi}{2}, \frac{\pi}{2})$$

Atan Function

 $\mathrm{atan2}(y,x)$ is an implementation of the atan function that takes into account ratio and the signs of y and x.

MOTION UAV

Basic Mechanics

Rotor Physics

rotor speed (rad/s or RPM)

Basic Mechanics (Hover)

$$k_F \omega_i^2 = \frac{1}{4} mg$$

Motor Torques

$$\tau_i = k_M \omega_i^2$$

Basic Mechanics (Hover)

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 - mg\mathbf{a}_3$$

Resultant Moment

$$\mathbf{M} = \mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times \mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3 + \mathbf{r}_4 \times \mathbf{F}_4$$
$$+ \mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_4$$

Basic Mechanics (Hover)

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 - mg\mathbf{a}_3$$

Resultant Moment

$$\mathbf{M} = \mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times \mathbf{F}_2 + \mathbf{r}_3 \times \mathbf{F}_3 + \mathbf{r}_4 \times \mathbf{F}_4$$
$$+ \mathbf{M}_1 + \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_4$$

Control of altitude

What input drives the robot to the desired position?

Control of altitude

Problem

State, input

$$x, u \in \mathbb{R}$$

Plant model

$$\ddot{x} = u$$

Want x to follow the desired trajectory $x^{des}(t)$

General Approach

Define error, $e(t)=x^{des}(t)-x(t)$

Want e(t) to converge exponentially to zero

Strategy

Find u such that

$$\ddot{e} + K_v \dot{e} + K_p e = 0 \qquad K_p, \ K_v \ > \ 0$$

$$u(t) = \ddot{x}^{\mathrm{des}}(t) + K_v \dot{e}(t) + K_p e(t)$$
Feedforward Proportional

Control of altitude

PD control

$$u(t) = \ddot{x}^{\text{des}}(t) + K_v \dot{e}(t) + K_p e(t)$$

Proportional control acts like a spring (capacitance) response

Derivative control is a viscous dashpot (resistance) response

Large derivative gain makes the system overdamped and the system converges slow

PID control

In the presence of disturbances (e.g., wind) or modeling errors (e.g. unknown mass), it is often advantageous to use PID control

$$u(t) = \ddot{x}^{\text{des}}(t) + K_v \dot{e}(t) + K_p e(t) + K_i \int_0^t e(\tau) d\tau$$
Integral

PID control generates a third-order closed-loop system Integral control makes the steady-state error go to zero

Control of altitude

