

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 10: Tuesday 4/11 May 1 @ 11:59 pm
 - Homework 11: this Friday May 1 @ 11:59 pm
 - Assignment 4: this Friday May 1 @ 11:59 pm
 - Support video and slides on Canvas + Solutions for Labs 8 and 9
 - Midterm Question Reattempts: Monday 4/17 @ 11:59 pm
 - up to 7 points back
 - Please use GradeScope's Regrade Requests for each question individually

Previous Lecture ...

Dynamic Programming

- A recipe
- Examples:
 - Computing the nth Fibonacci Number
 - Unbounded Knapsack

This Lecture ...

Dynamic Programming: Typical question in coding interviews!

- More Examples:
 - 0/1 Knapsack
 - Change Making
 - Subset Sum
 - Edit Distance
 - Longest Common Subsequence
 - Reinforcement Learning

Dynamic Programming: a recipe

- What is the first decision to make to solve the problem?
- What subproblem(s) emerge out of the that first decision?
- Must wait for subproblem solutions to make first decision
- start with a recursive solution
- if inefficient, do you have overlapping subproblems?
- identify the unique subproblems
- Allocate an array to hold their solutions
- solve them from bottom-up smaller to larger
- Optimize space if possible

Dynamic Programming: a recipe

- How to combine subproblem solutions to a problem's solution?
- What are the unique subproblems?

Example 3: The 0/1 knapsack problem

- a finite set of items each with a weight and value
 - O Two choices for each item:
 - goes in the knapsack or
 - left out
- What would be our first decision?
 - O to place or not the first item (or last item)
- What suproblems emerge?
 - item placed → one less item and capacity less by item's weight
 - \bigcirc item not placed \rightarrow one less item and same capacity
 - O which choice to take?
 - O do we have to **wait** for both subproblem solutions?

10 lb.

capacity

Recursive solution

weight: 6 3 4 2

value: 30 14 16 9

Recursive solution

```
int knapSack(int[] wt, int[] val, int L, int n) {
   if (n == 0 | L == 0) { return 0 };
   //try placing the (n-1)st item
   if (wt[n-1] > L) { //cannot place
       return knapSack(wt, val, L, n-1)
                                                 place the item
   } else {
       return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),
                   knapSack(wt, val, L, n-1)
                                           don't place
                                           the item
```

Overlapping Subproblems?

weight: 6 3 4 2

value: 30 14 16 9

Overlapping Subproblems?

weight: 4 4 2 2

value: 30 14 16 9

Subproblems

- What are the unique subproblems?
- What array should we use to store their solutions?
 2-D array!

i\l	0	1	2	3	4	5	6	7	8	9	10	
0											,	
1								(r	<i>[[i][l]</i> is max) v	alue v	vhen	
2					-			a	re ava	ilable		5
3									nly <i>I</i> lk ne kna			
4												

```
int knapSack(int wt[], int val[], int L, int n) {
   int[][] K = new int[n+1][L+1];
   for (int i = 0; i <= n; i++) {
      for (int l = 0; l <= L; l++) {
        if (i==0 || l==0){ K[i][l] = 0 };
    }
}</pre>
```


i∖l	0	1	2	3	4	5	6	7	8	9	10	
0	0	0	0	0	0	0	0	0	0	0	0	
1	0							(r	<i>[i][l]</i> is max) v	alue v	when	
2	0				-			a	re ava	ilable		6
3	0								nly <i>I</i> lk ne kna			
4	0											

```
int knapSack(int wt[], int val[], int L, int n) {
   int[][] K = new int[n+1][L+1];
   for (int i = 0; i <= n; i++) {
       for (int l = 0; l <= L; l++) {
           if (i==0 | | 1==0) \{ K[i][1] = 0 \};
           //try to add item i-1
           else if (wt[i-1] > 1) \{ K[i][1] = K[i-1][1] \};
                                                    place the item
           else {
               K[i][1] = \max(val[i-1] + K[i-1][1-wt[i-1]],
                              K[i-1][1]);
                                            don't place
                                             the item
   return K[n][L];
```


i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0					
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0								
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16						
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16	16	30	30	30	44	46
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16	16	30	30	30	44	46
4	0	0									

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	14	16	16	30	30	30	44	46
4	0	0	9	14	16	16	30	30	39	44	

Example 4: the change making problem

- What is the minimum number of coins needed to make up a given change value k >= 0?
- If you were working as a cashier, what would your algorithm be to solve this problem?

This is a greedy algorithm

• At each step, the algorithm makes the choice that

seems to be best at the moment

... But wait ...

- Does our greedy change making algorithm solve the change making problem?
 - For US currency ...
 - yes!
 - But what about a currency composed of
 - pennies (1 cent), thrickels (3 cents), and fourters (4 cents)?
 - What denominations would it pick for k=6?

So what changed about the problem?

- For greedy algorithms to produce optimal results, problems must have two properties:
 - Optimal substructure: optimal solution to a subproblem leads to an optimal solution to the overall problem
 - \blacksquare best way to make change for 3 cents \rightarrow best way to make 6 cents
 - The greedy choice property
 - Globally optimal solutions assembled from locally optimal choices
 - K = 6: for US currency, the best overall choice will be to use the biggest coin (nickel)
 - With thrickels/fourters, we can't know until we've looked at all possible breakdowns
- Why is optimal substructure not enough?

We will see a dynamic programming algorithm in the recitations

Example 5: Subset sum

• Given a set of **non-negative integers** S and a **target sum** k, is there a **subset** of S that sums to **exactly** k?

Dynamic Programming: a recipe

- Decision: whether last item in input set is in solution subset
 - try both alternatives!
- How to combine subproblem solutions to a problem's solution?
 - logical OR (|| in Java)
- What are the unique subproblems?

Subset sum calls

Subset sum recursive solution

```
boolean SSS(int set[], int sum, int n) {
   //base cases
   if (sum == 0)
         return true;
   if (sum != 0 && n == 0)
         return false;
   //can we include item n-1?
   if (set[n-1] > sum)
         return SSS(set, sum, n-1);
   //should we include item n-1?
   return SSS(set, sum, n-1) ||
          SSS(set, sum-set[n-1], n-1);
}
```

The Subset Sum dynamic programming solution

The Subset Sum dynamic programming solution

i\j	0	1	2	3	4	5	6	
0	true	false	false	false	false	false	false	
1	true							
2	true					<i>ubset[i][j]</i> ubset of t		
3	true				ite	ems sum	s up to j	,

The Subset Sum dynamic programming solution

i\j	0	1	2	3	4	5	6
0	true	false	false	false	false	false	false
1	true		1		†		
2	true		go lef set[i-1	t by	OR		
3	true		set[i-1]			

The Subset Sum dynamic programming solution

i\j	0	1	2	3	4	5	6
0	true	false	false	false	false	false	false
1	true				†		
2	true		go lef	t by	OR		
3	true		set[i-1				

Subset sum bottom-up dynamic programming

```
boolean SSS(int set[], int sum, int n) {
    boolean[][] subset = new boolean[n+1][sum+1];
    //easy cases
    for (int i = 0; i <= n; i++) subset[i][0] = true;
    for (int i = 1; i <= sum; i++) subset[0][i] = false;
   for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= sum; j++) {
             if (j >= set[i-1])
                    subset[i][j] = subset[i-1][j] ||
                                    subset[i-1][j-set[i-1]];
             else subset[i][j] = subset[i-1][j];
   return subset[n][sum];
```

Example 6: Edit Distance

- Given two strings
 - a string S of length n
 - a string T of length m
- find minimum number of edits to convert S to T
 - called Levenshtein Distance (LD)
- Example: "WEASEL" → "SEASHELL"
- Possible edits
 - Change a character
 - Delete a character
 - Insert a character

- LD("WEASEL", "SEASHELL") = 3
 - O Consider "WEASEL":
 - Change W to S
 - Add an H in position 5
 - Add an L in position 8
 - Result is SEASHELL
 - If we reverse the arguments, we get the (same) distance from T to S (but the edits may be different)
- How can we determine this?
 - We can define it in a recursive way initially
 - Then we will use dynamic programming to improve the run-time

 We want to calculate D(S, T) where n is the length of S and m is the length of T

```
If n = 0 // BASE CASE 1
return m (m appends will create T from S)
else if m = 0 // BASE CASE 2
return n (n deletes will create T from S)
else
Consider character n of S and character m of T
```

Edit Distance: last characters match

If characters match

- Result is the same as for strings with last characters removed (since they match)
- return D(n-1, m-1)
- Recursively solve the same problem with both strings one character smaller

Edit Distance: last characters don't match

- If characters do not match -- more possibilities here
 - We could have a mismatch at that char:
 - **Example:**
 - S = -----X
 - T = ----Y
 - Change X to Y, then recursively solve the same problem but with both strings one character smaller
 - return D(n-1, m-1) + 1

Edit Distance: last characters don't match

- S could have an **extra** character
 - Example:
 - \blacksquare S = ----XY
 - T = ----X
 - Delete Y, then recursively solve the same problem, with S
 one char smaller but with T the same size
 - return D(n-1, m) + 1

Edit Distance: last characters don't match

- S could be **missing** a character there
 - Example:

$$\blacksquare$$
 S = ----Y

$$\blacksquare T = -----YX$$

- Append X onto S, then recursively solve the same problem with S the original size and T one char smaller
- return D(n, m-1) + 1

Edit Distance: recursive solution

- Unfortunately, we don't know which of these gives the minimum distance until we try them all!
- We must try all subproblems and choose the one that gives the minimum result
 - o up to 3 recursive calls (mismatch case) for each original call
 - \circ worst-case run-time: Theta(3^{n+m})

Edit Distance: dynamic programming

- How can we do this more efficiently?
 - One unique subproblem for each value of n and m
 - a two-dimensional array for all possible values for n and m
 - o calculate the same D() values but bottom up rather than top down

- D[i, j] = D[i-1, j-1] if we have a **match**
- When we have a mismatch, minimum of the cells
 - \circ D[i-1, j-1] + 1
 - Change char at this point in S
 - \circ D[i-1, j] + 1
 - Delete a char from S
 - \circ D[i, j-1] + 1
 - Append a char to S

Edit Distance in case of matching letters i and j

Edit Distance in case of matching letters i and j

Edit Distance in case of mismatching letters i and j

- value at bottom right corner is the edit distance
- Example:
 - PROTEIN → ROTTEN

	Р	R	0	Т	Е	I	N
R							
0							
Т							
Т							
Е							
N							

		Р	R	0	Т	Е	I	N
	0	1	2	3	4	5	6	7
R	1							
0	2							
Т	3							
Т	4							
Е	5							
N	6							

		Р	R	0	Т	Е	I	N
	0	1	2	3	4	5	6	7
R	1	1	1	2	3	4	5	6
0	2	2	2	1	2	3	4	5
Т	3	3	3	2	1	2	3	4
Т	4	4	4	3	2	2	3	4
Е	5	5	5	4	3	2	3	4
N	6	6	6	5	4	3	3	

- This is cool!
- Run-time is Theta(mn)
 - As opposed to the 3^{n+m} of the recursive version
- Not pseudo-polynomial like subset sum and knapsack
- Optimized versions can reduce space from Theta(mn) to Theta(m+n)

Example 7: Longest Common Subsequence

Given two sequences, return the longest common

subsequence

o Example:

```
A Q S R J K V B I
Q B W F J V I T U
A Q S R J K V B I
Q B W F J V I T U
```

We'll consider a relaxation of the problem and only look for

the *length* of the longest common subsequence

LCS dynamic programming example

X	Α	Q	S	R	J	B	Ι
		_					

V	0	В	I	J	T	U	Т
	-				-		-

i∖j	Q	В	I	J	Т	U	Т
A							
Q							
S							
R							
J							
В							
I							

LCS dynamic programming solution

```
int LCSLength(String x, String y) {
   int[][] m = new int[x.length + 1][y.length + 1];
   for (int i=0; i <= x.length; i++) {
            for (int j=0; j <= y.length; j++) {
                  if (i == 0 | | j == 0) m[i][j] = 0;
                  if (x.charAt(i) == y.charAt(j))
                        m[i][j] = m[i-1][j-1] + 1;
                  else
                        m[i][j] = max(m[i][j-1], m[i-1][j]);
   return m[x.length][y.length];
```

Example 8: Reinforcement Learning

- A type of Machine Learning
 - o an **agent** (e.g., a robot)
 - learns an optimal policy
 - only by getting rewards from the environment

Example

Source: https://medium.com/machine-learning-for-humans/

Input: Markov Decision Process

- A set of states
 - o e.g., maze locations, agent health
- A set of agent actions
 - o e.g., move left, move right, etc.

- e.g., move left action → moving left with 1.0 prob. if no wall
- e.g., if wall, move left action → moving right or up or down with 0.33 prob.
- Reward function
 - depends on state and action
 - o e.g., high reward for moving up from below cheese

Input: Markov Decision Process

- A set of states
 - think graph vertices
- A set of agent actions
 - think graph edges
- Probabilities of ending up in a state given a current state and an action
- Reward function
 - think edge weights
- A special case: all information readily available
 - called **Planning**

Output: Optimal Agent Policy

- An agent policy determines the probability of taking an action given a state
 - o e.g., prob. 1.0 for moving left from start
- An optimal policy gives the maximum total reward
- Let's embed rewards into state values
 - think distance[] in Bellman-Ford
- An optimal policy gives the maximum total

Expectations

- Expected value of a state?
 - depends on actions
 - Sum_{all actions}:
 - prob. of action (from policy) * expected reward
- Expected reward from an action depends on
 - immediate reward (from reward function)
 - values of states reachable through the action
 - O Sum_{all states}:
 - prob. of reaching state * state value

Using Dynamic Programming to Solve MDP

- Data Structure: Array of state values
- Step 0: Start with an **initial** policy and initial state values
 - e.g., all actions equally likely and state values = 0
- Step 1: Compute expected state values
 - o optional: **iterate** until values **converge**
- Step 2: **Modify** policy to take the best action with probability 1.0 (given the current state values)
- Repeat Step 1 and 2 until policy converges