COMP9414

Lecturers

- Dr. Francisco Cruz (LiC Lecturer in Charge)
 - https://www.unsw.edu.au/staff/francisco-cruz-naranjo

- Dr. Armin Chitizadeh (Guest Lecturer in week 3)
 - https://www.unsw.edu.au/staff/armin-chitizadeh

Course admin

- Maryam Hashemi
 - https://maryamhashemi1995.github.io/index3.html

Tutors

- Siti Mariyah, <u>s.mariyah@unsw.edu.au</u>
- Malhar Patel, malhar.patel@unsw.edu.au
- Stefano Mezza, <u>s.mezza@unsw.edu.au</u>
- Janhavi Jain, j.jain@student.unsw.edu.au
- Adam Stucci, a.stucci@unsw.edu.au
- Jingying Gao, jingying.gao@unsw.edu.au
- Zahra Donyavi, <u>z.donyavi@unsw.edu.au</u>
- Shengyuan Xie, shengyuan.xie@student.unsw.edu.au
- Lina Phaijit, l.phaijit@unsw.edu.au
- Raktim Kumar Mondol, <u>r.mondol@unsw.edu.au</u>
- Aayush Gupta, <u>aayush.gupta@unsw.edu.au</u>
- Kiran Jeet Kaur, <u>kiran_jeet.kaur@student.unsw.edu.au</u>
- Maher Mesto, <u>m.mesto@unsw.edu.au</u>
- Zhijin Meng, zhijin.meng@student.unsw.edu.au
- Ramya Kumar, ramya.kumar1@student.unsw.edu.au
- Session will be BYOD. Alternatively, you can borrow a laptop. See https://taggi.cse.unsw.edu.au/FAQ/Borrow_A_Laptop/

• What is intelligence?

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

What is artificial intelligence?

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

- What is artificial intelligence?
 - Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to intelligence displayed by humans or by other animals [Wikipedia].

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

- What is artificial intelligence?
 - Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to intelligence displayed by humans or by other animals [Wikipedia].

Can you give some examples?

Al is not ML is not ANN

Current (mis)understanding of Al

How are currently perceived AI-based systems?

Current (mis)understanding of Al

But in reality, it's still an open problem

Course Plan

- Introduce AI concepts through intelligent agents
- Start with very simple reactive agents
- Progress by adding more capabilities
- End with agents that learn, reason and communicate

Course Plan

Week 1

- 1 Introduction
- 1.1 History of Al
- 1.2 Agents
- 1.3 Knowledge representation
- 1.3.1 Feature-based vs iconic representations
- 1.3.2 Logic
- 1.3.3 Learning rules

Week 2

- 2 Neural Networks
- 2.1 Neurons biological and artificial
- 2.2 Single-layer perceptron
- 2.3 Linear separability
- 2.4 Multi-layer networks
- 2.5 Backpropagation
- 2.6 Neural engineering methodology

Week 3

- 3 Search
- 3.1 Uninformed search
- 3.2 Informed search
- 3.3 Informed vs uninformed

Week 4

- 4 Rewards instead of goals
- 4.1 Elements of reinforcement learning
- 4.2 Exploration vs exploitation
- 4.3 The agent-environment interface
- 4.4 Values functions
- 4.5 Temporal-difference prediction

Week 5

- 5 Metaheuristics
- 5.1 Asymptotic complexity
- 5.2 Classes of problems
- 5.3 Linear programming
- 5.4 Search space
- 5.5 Metaheuristics with and without memory
- 5.6 Population-based methods

Week 6

Recap and consultation

Week 7

- 7 Computer vision
- 7.1 Image processing
- 7.2 Scene analysis
- 7.3 Cognitive vision

Week 8

- 8 Language processing
- 8.1 Formal languages
- 8.1.1 Chomsky's hierarchy
- 8.1.2 Grammars
- 8.2 Regular expressions
- 8.3. Minimum edit distance and words
- 8.4 Natural languages: N-gram models

Week 9

- 9 Reasoning with uncertain information
- 9.1 Confidence factors
- 9.1 Probability and probabilistic inference
- 9.2 Bayes nets
- 9.3 Fuzzy logic

Week 10

- 10 Human-aligned intelligent robotics
- 10.1 Human interaction and human-in-the-
- loop robot learning
- 10.2 Explainability and interpretability
- 10.3 Safe robot exploration
- 10.4 Ethics

Related Course

- COMP3431 Robot Software Architectures
- COMP4418 Knowledge Representation and Reasoning
- COMP9417 Machine Learning and Data Mining
- COMP9444 Neural Networks and Deep Learning
- COMP9491 Applied Artificial Intelligence
- COMP9517 Computer Vision
- COMP6713 Natural Language Processing
- COMP9418 Advance Machine Learning
- COMP9727 Recommender Systems

Timetable

- Lecture:
 - Mon 4:00 7:00pm
 (E19 Patricia O'Shane 109)
- Consultation time:
 - Thu 1:00 2:00pm (J17 Lv 5 Rm 510J)

• Tutorials:

Nr.	Class	Section	Room	Day/Time	Name
1	4210	<u>F12A</u>	Colombo LG01 (K-B16-LG01)	Fri 12:00 - 14:00 (Weeks:1-10)	Siti Mariyah
2	4211	F12B	Goldstein G01 (K-D16-G01)	Fri 12:00 - 14:00 (Weeks:1-10)	Malhar Patel
3	4212	<u>F14A</u>	Webster 302 (K-G14-302)	Fri 14:00 - 16:00 (Weeks:1-10)	Stefano Mezza
4	4213	F14B	Quadrangle G046 (K-E15-G046)	Fri 14:00 - 16:00 (Weeks:1-10)	Janhavi Jain
5	4214	F14C	Goldstein G01 (K-D16-G01)	Fri 14:00 - 16:00 (Weeks:1-10)	Adam Stucci
6	<u>4215</u>	<u>F16A</u>	Quadrangle G046 (K-E15-G046)	Fri 16:00 - 18:00 (Weeks:1-10)	Janhavi Jain
7	<u>4216</u>	<u>F18A</u>	Online (ONLINE)	Fri 18:00 - 20:00 (Weeks:1-10)	Jingying Gao
3	<u>4217</u>	<u>H14A</u>	Quadrangle G032 (K-E15-G032)	Thu 14:00 - 16:00 (Weeks:1-10)	Shengyuan Xie
)	4218	<u>H14B</u>	Webster 256 (K-G14-256)	Thu 14:00 - 16:00 (Weeks:1-10)	Adam Stucci
10	4219	H14C	Quadrangle G031 (K-E15-G031)	Thu 14:00 - 16:00 (Weeks:1-10)	Malhar Patel
11	4220	<u>H16A</u>	Blockhouse G6 (K-G6-G6)	Thu 16:00 - 18:00 (Weeks:1-10)	Siti Mariyah
12	4221	<u>H18A</u>	Law Building 163 (K-F8-163)	Thu 18:00 - 20:00 (Weeks:1-10)	Jingying Gao
13	4223	<u>T09A</u>	Quadrangle G047 (K-E15-G047)	Tue 09:00 - 11:00 (Weeks:1-10)	Zahra Donyavi
14	4224	<u>T12A</u>	Colombo LG01 (K-B16-LG01)	Tue 12:00 - 14:00 (Weeks:1-10)	Maher Mesto
15	4225	<u>T12B</u>	Old Main Building 229 (K-K15-22	?!Tue 12:00 - 14:00 (Weeks:1-10)	Raktim Kumar Mondol
16	4226	<u>T12C</u>	Webster 302 (K-G14-302)	Tue 12:00 - 14:00 (Weeks:1-10)	Stefano Mezza
17	4227	<u>T16A</u>	Quadrangle G044 (K-E15-G044)	Tue 16:00 - 18:00 (Weeks:1-10)	Shengyuan Xie
18	4228	<u>T16B</u>	Quadrangle G045 (K-E15-G045)	Tue 16:00 - 18:00 (Weeks:1-10)	Zahra Donyavi
19	4229	<u>T16C</u>	Quadrangle G031 (K-E15-G031)	Tue 16:00 - 18:00 (Weeks:1-10)	Raktim Kumar Mondol
20	4230	<u>T16D</u>	Quadrangle G032 (K-E15-G032)	Tue 16:00 - 18:00 (Weeks:1-10)	Aayush Gupta
21	<u>4231</u>	<u>T18A</u>	Webster 302 (K-G14-302)	Tue 18:00 - 20:00 (Weeks:1-10)	Aayush Gupta
22	4232	<u>W09A</u>	Goldstein G02 (K-D16-G02)	Wed 09:00 - 11:00 (Weeks:1-10)	Kiran Jeet Kaur
23	4233	<u>W13A</u>	Online (ONLINE)	Wed 13:00 - 15:00 (Weeks:1-10)	Stefano Mezza
24	4234	<u>W13B</u>	Quadrangle G032 (K-E15-G032)	Wed 13:00 - 15:00 (Weeks:1-10)	Kiran Jeet Kaur
25	12564	<u>W12A</u>	Online (ONLINE)	Wed 12:00 - 14:00 (Weeks:1-10)	Lina Phaijit
26	12565	<u>T16E</u>	Online (ONLINE)	Tue 16:00 - 18:00 (Weeks:1-10)	Zhijin Meng
27	12696	H18B	Mathews 106 (K-F23-106)	Thu 18:00 - 20:00 (Weeks:1-10)	Ramya Kumar
28	12695	<u>T18B</u>	Ainsworth 101 (K-J17-101)	Tue 18:00 - 20:00 (Weeks:1-10)	Maher Mesto
29	12693	W18A	Ainsworth 201 (K-J17-201)	Wed 18:00 - 20:00 (Weeks:1-10)	Zhijin Meng
30	12694	W18B	Mathews 108 (K-F23-108)	Wed 18:00 - 20:00 (Weeks:1-10)	Ramya Kumar

Important dates

- First lecture: Monday 27th May 2024
- Last lecture: Monday 29th July 2024
- Guest lecture: Friday 7th June 2024, 9am-12pm (online)
- Assignment 1 open: Week 2
- Assignment 1 deadline: Week 5 (discussion in week 6)
- Assignment 2 open: Week 6
- Assignment 2 deadline: Week 9 (discussion in week 10)
- Exam: Exams period

Assessment

- Assessment will consist of:
 - Assignment 1: 25%.
 - Assignment 2: 25%.
 - Final exam 50%.
- To pass, you must score:
 - A combined mark of at least 50/100.
 - At least 20/50 for the exam.

Student Conduct

- Assignments will be done individually.
 - Students must participate in the discussion.
- Late deliveries will be accepted subject to 5% discount per day from the results (including weekends and public holidays), for up to 5 days, after which mark is 0.
- It's students' responsibility to have code discussions with tutors in time.
- Plagiarism is academic misconduct.

Contact

- The first contact should be the forums.
- Additionally, a consultation time is scheduled every week.
- In special circumstances you could also email to the lecturing team (cs9414@cse.unsw.edu.au)

Texts & References

- Poole, D.L. & Mackworth, A. Artificial Intelligence: Foundations of Computational Agents. Second Edition. Cambridge University Press, Cambridge, 2017.
- Russell, S.J. & Norvig, P. Artificial Intelligence: A Modern Approach.
 Fourth Edition, Pearson Education, Hoboken, NJ, 2021.
- Sutton, R. & Barto, A. Reinforcement Learning: An Introduction. MIT press. 2018.
- Jurafsky, D. & Martin, J. H. Speech and Language Processing. Stanford.
 2023.

Feedback

- In case you want to provide anonymous feedback on these lectures, please visit:
- https://forms.gle/KBkN744QuffuAZLF8

