Departamento de Matemática, Universidade de	Aveiro	Matemática Discreta
TESTE 2, 29 de Junho de 2022, Duração: 1h30m	1	Classificação:
Nome:	_	Nr^{o} Mec.:
Curso:		Turma:
Declaro que desisto:		Folhas supl.:

- (1) Um comboio tem quatro carruagens de primeira classe, sete de segunda classe, uma carruagem restaurante e duas de bagagem. Qual é o número de possíveis sequências diferentes de carruagens
 - a) sem restrições.
 - b) quando as carruagens de primeira classe não podem estar separadas.

Departamento de Matemática, Universidade de A	veiro Matemática Discreta
Teste 2, 29 de Junho de 2022, Duração: 1h30m	2 Classificação:
Nome:	Nr^{o} Mec.:
Curso:	Turma:
Declaro que desisto:	Folhas supl.:

(2) Utilizando séries de potências formais, determine o número de maneiras de distribuir 8 bolas não distinguíveis por 5 caixas numeradas de modo que a primeira caixa recebe no máximo 2 bolas.

Departamento de Matemática, Universidade de	Aveiro	Matemática Discreta
TESTE 2, 29 de Junho de 2022, Duração: 1h30m	3	Classificação:
Nome:	_	Nr^{o} Mec.:
Curso:		Turma:
Declaro que desisto:		Folhas supl.:

(3) Considere a sucessão $(a_n)_{n\geq 0}$, onde $a_0=1,\ a_1=0,\ a_n=4a_{n-1}-4a_{n-2}+3,$ para $n\geq 2.$ Determine uma fórmula não recursiva para $a_n.$

Departamento de Matemática, Universidade de Aveiro	Matemática Discreta
Teste 2, 29 de Junho de 2022, Duração: 1h30m $f 4$	Classificação:
Nome:	Nr^{o} Mec.:
Curso:	Turma:
Dodaro que desisto:	Folhas supl

(4) Seja G um grafo simples não orientado, com matriz de custos (ou pesos)

$$C = \begin{bmatrix} 0 & 20 & 20 & 10 & \infty & \infty \\ 20 & 0 & \infty & \infty & 30 & 30 \\ 20 & \infty & 0 & 20 & \infty & \infty \\ 10 & \infty & 20 & 0 & 10 & 60 \\ \infty & 30 & \infty & 10 & 0 & 40 \\ \infty & 30 & \infty & 60 & 40 & 0 \end{bmatrix}$$

- a) Indique um subgrafo H de G com 5 vértices que seja bipartido e conexo (apresente uma figura com o subgrafo, identificando os vértices). Determine uma bipartição de H. Justifique.
- b) Determine um caminho de custo mínimo entre os vértices 1 e 6, aplicando o algoritmo de Dijkstra. Apresente todos os passos do algoritmo.
- c) Considere o subgrafo F de G induzido pelo subconjunto de arestas $E' = \{12, 13, 14, 25, 34, 45\}$. Determine o número de árvores abrangentes de F, aplicando a fórmula recursiva e indicando em cada passo a aresta selecionada.
- d) Determine uma árvore abrangente de G com custo mínimo, aplicando o algoritmo de Kruskal ou o algoritmo de Prim. Apresente todos os passos do algoritmo.