Ch 1

Ex 1.1.1

We plan to use Proposition B.19. Let $g_r(\zeta) = f(\zeta, re^{i\theta})$ for $r \in [0, 1)$. Then let $r_j \in [0, 1)$ be some sequence which converges to 1. Each g_{r_j} is holomorphic on \mathbb{D} , as f is holomorphic on \mathbb{D}^2 and $r_j e^{i\theta} \in \mathbb{D}$. The g_{r_j} converge towards g_1 , and we need to show that the g_{r_j} (or some subsequence) converge uniformly on compact subsets of \mathbb{D} , after which an application of Proposition B.19 tells us that g_1 is holomorphic.

We will use Theorem B.20 for this. As f is continuous on the compact set $\overline{\mathbb{D}^2}$, it is bounded, and attains some maximal modulus M. It follows that the g_{r_j} are uniformly bounded on compact subsets of \mathbb{D} , and Theorem B.20 gives us some some subsequence of g_{r_j} which converges uniformly on compact subsets of \mathbb{D} . By the previous paragraph, it follows that g_1 is holomorphic, and g_2 as well by analogous arguments.

Ex 1.1.2

As f is holomorphic in the first variable on Δ_1 , and continuous in the first variable on $\overline{\Delta}_1$, it follows from the univariate Cauchy integral formula that

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Delta_1} \frac{f(\zeta_1, z_2, z_3, \dots, z_n)}{z_1 - \zeta_1} d\zeta_1.$$

But then for a fix $\zeta_1 \in \partial \Delta_1$, we showed above that $f(\zeta_1, z_2, z_3, \dots, z_n)$ is holomorphic in the second variable by Exercise 1.1.1. We can apply Cauchy's integral formula again, and get

$$f(z) = \frac{1}{(2\pi i)^2} \int_{\partial \Delta_1} \int_{\partial \Delta_2} \frac{f(\zeta_1, \zeta_2, z_3, \dots, z_n)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} d\zeta_1 d\zeta_2.$$

Continuing this way, we see that we eventually get

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta_1, \zeta_2, \dots, \zeta_n)}{(\zeta_1 - z_1)(\zeta_2 - z_2) \dots (\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n.$$

Ex 1.1.3

As Γ is compact and f is continuous on Γ , f attains its maximal modulus M for some $z_m \in \Gamma$. It now follows from the Cauchy integral formula that

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta_1, \zeta_2, \dots, \zeta_n)}{(\zeta_1 - z_1)(\zeta_2 - z_2) \dots (\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n$$

$$\leq \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{|f(\zeta_1, \zeta_2, \dots, \zeta_n)|}{(\zeta_1 - z_1)(\zeta_2 - z_2) \dots (\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n$$

$$\leq \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{M}{(\zeta_1 - z_1)(\zeta_2 - z_2) \dots (\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n$$

$$= M \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{1}{(\zeta_1 - z_1)(\zeta_2 - z_2) \dots (\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n$$

$$= M,$$

where

$$1 = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{1}{(\zeta_1 - z_1)(\zeta_2 - z_2)\dots(\zeta_n - z_n)} d\zeta_1 \wedge d\zeta_2 \wedge \dots \wedge d\zeta_n$$

since the RHS is the expansion of the constant function $(z_1, \ldots, z_n) \mapsto 1$ via the Cauchy integral formula.

Ex 1.1.4

Let $f_p(z) = z + p$. Then f_p is holomorphic everywhere. By considering the f_p as a function on real space $\mathbb{R}^{2n} \to \mathbb{R}^2$, we see that the image of f_p is a 2n sphere centered about p, which has a strictly furtherest point 2p from the origin. Hence the function attains a strict maximum at p for values in the unit ball.

Ex 1.1.5

Fix y and let $f_a(x) = \frac{ax}{x^2 + a^2}$. Then if $a \neq 0$, we have f_a differentiable everywhere with derivative

$$f_a'(x) = \frac{a(x^2 + a^2) - 2ax^2}{(x^2 + a^2)^2} = \frac{a^3 - ax^2}{(x^2 + a^2)^2}.$$

If a=0, then $f_a=0$, and is infinitely smooth everywhere on \mathbb{R} . The same story holds when we fix x and partial derivatives in y. Thus we've shown that partial derivatives of f exist everywhere. Moreover, f is locally bounded as $|xy|<|x^2+y^2|$ for all $x,y\in\mathbb{R}^2$, hence $|f|\leq 1$.

Ex 1.1.6

First suppose that f is locally bounded and that $\zeta \mapsto f(\zeta a + b)$ is holomorphic for every $a, b \in \mathbb{C}^n$ on the set W such that $\zeta \in W$ whenever $\zeta a + b \in U$. Then

picking $a = e_k^c = (c_1, c_2, \dots, c_{k-1}, 1, c_{k+2}, \dots, c_n)$ and b = 0 yields that f is holomorphic in the k-th coordinate when we fix the remaining coordinates to some $c \in \pi_{k^*}(U)$ (where π_{k^*} is the projection onto all but the k-th coordinate). Running over all possible choices of c shows that f is holomorphic in the k-th variable on all points of U, then running through all ks, shows that f is holomorphic in every variable on U. Combining this with the fact that f is locally bounded yields that f is holomorphic on U.

Now suppose that f is holomorphic. Then f is locally bounded by definition. Moreover, $f \circ (\zeta \mapsto a\zeta + b)$ is clearly continuous and differentiable as it is a composition of such functions, and the Wirtinger equation is given by

$$\frac{\partial}{\partial \overline{z}} f(a\zeta + b) = \frac{\partial}{\partial x} f(a\zeta + b) + i \frac{\partial}{\partial x} f(a\zeta + b)$$

$$= \sum_{k=1}^{n} f_{x_k} (a\zeta + b) a + i f_{y_k} (a\zeta + b) a$$

$$= \sum_{k=1}^{n} a_k \frac{\partial}{\partial \overline{z}} f \Big|_{a\zeta + b}$$

$$= 0.$$

Ex 1.2.5

First, let's prove the following lemma which allows us to restrict checking normal convergence to checking uniform convergence on polydiscs.

Lemma 0.1. Let D be a domain. Then a sequence of functions f_n is normally convergent on D if it converges uniformly on all closed polydiscs $\overline{\Delta} \subset D$.

Proof. Let $K \subset D$ be a compact subset. Then there is some neighbourhood $U \subset D$ containing D. Write D as a union of open polydiscs. Now pick a finite subset of the polydiscs which cover K. As K is closed, we may pick these polydiscs to be closed as well (either by adding the boundary, or by shrinking them). Denote this cover of K by closed polydiscs as $\overline{\Delta}_n, n \in [1..N]$

Now, let $\epsilon > 0$. As the f_n converge uniformly on each $\overline{\Delta}_n, n \in [1..N]$, to say g_n , we can pick N_n for each $n \in N$ such that $f_n - g_n < \epsilon$ for all $n > N_n$. Let $M = \max_{N_n}$. Then $f_n - g < \epsilon$ for all n > M where $g = g_n$ on each $\overline{\Delta}_n$, and so f_n converges uniformly on K.

We are now ready to prove the theorem.

Proof. Let $\overline{\Delta}$ be a polydisc in K. Then

$$\left| \frac{df}{dz_k}(z) \right| \le \frac{1}{\rho_k} ||f||_{\Gamma}$$

for all $z \in \overline{\Delta}$. Uniform convergence is equivalent to uniform cauchy convergence, and so if we let $F_n = f_{n+1} - f_n$, we see that uniform cauchy convergence of the f_n imply that $F_n \to 0$ uniformly. It follows that

$$\left| \frac{df_{n+1}}{dz_k}(z) - \frac{df_n}{dz_k}(z) \right| \le \frac{1}{\rho_k} ||f_{n+1} - f_n||_{\Gamma} \to 0$$

uniformly, hence the derivatives are uniformly cauchy convergent, and so uniformly convergent.

It now follows that the derivatives of the f_n converge to the derivative of f, as in Exercise 1.2.3, and so f is holomorphic just as in Exercise 1.2.3.

We may now repeat the procedure, taking derivatives of the sequence of derivatives, as many times as we need, to obtain the desired result. \Box

Ex 1.2.13

Proof. Pick two points, $a, b \in \mathbb{C}^n$ and let c = f(a). Consider the function which fixes the last n coordinates of f to a, namely $z_1 \mapsto f(z_1, a_2, \ldots, a_n)$. This is a bounded holomorphic function $\mathbb{C} \to \mathbb{C}$, hence constant by Liouville's Theorem in one variable, and so $f(b_1, a_2, \ldots, a_n) = c$. Now consider the function, $z_2 \mapsto f(b_1, z_2, a_3, \ldots, a_n)$. Again, this is a constant function and so $f(b_1, b_2, a_3, \ldots, a_n) = c$. Continuing this way we see that f(a) = f(b). We've shown that f is constant on two arbitrary points in \mathbb{C}^n , whence f is constant. \square

Ex 1.2.15

Proof. First of, it's enough to prove uniform convergence on polydiscs, since any compact set can be covered by finitely many polydiscs.

 \mathbb{C}^n is separable as it's homeomorphic to a countable product of \mathbb{R} . Thus, by Arzela-Ascoli, it will suffice to show that the sequence is equicontinuous.

Let M be a bound on the f_j . Then for any $f = f_j$ and a, b in some polydisc

 $\Delta \subset U$, we have

$$|f(a) - f(b)| = \left| \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{\zeta - a} d\zeta - \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)}{\zeta - b} d\zeta \right|$$

$$= \left| \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)(\zeta - b) + f(\zeta)(\zeta - a)}{(\zeta - a)(\zeta - b)} d\zeta \right|$$

$$= \left| \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(\zeta)(b - a)}{(\zeta - a)(\zeta - b)} d\zeta \right|$$

$$\leq \left| \frac{M(b - a)}{(2\pi i)^n} \int_{\Gamma} \frac{1}{(\zeta - a)(\zeta - b)} d\zeta \right|$$

$$\leq \left| \frac{M(b - a)}{\rho_1 \rho_2 \dots \rho_n} \right|.$$

We can pick a neighbourhood U about a which is small enough such that for all $b \in U$, we have

$$\left| \frac{M(b-a)}{\rho_1 \rho_2 \dots \rho_n} \right| \le \epsilon$$

for any $\epsilon > 0$, and so the sequence is equicontinuous.

Ex 1.2.15

Suppose that U is disconnected, and that V is a connected component of U. Then we can pick two holomorphic non-zero functions, one which is non-zero on V, and zero on $U \setminus V$, and one which is zero on V and non-zero on $U \setminus V$, and their product is the zero function.

Now suppose that U is connected, and that $f,g \in \mathcal{O}(U)$ are such that fg = 0, or in other words, $V(f) \cup V(g) = U$. If $f \neq 0$, then the vanishing set of f, $V(f) = \{p \in U : f(p) = 0\}$ does not contain any open set by the uniqueness theorem. It follows that every single open subset of U intersects V(g), since otherwise it would be contained in V(f) per $V(f) \cup V(g) = U$. Thus V(g) is dense in U. But V(g) is also closed as g is continuous, hence V(g) = U and g = 0.

Ex 1.4.3

Suppose that $f(\partial U) \subset \partial V$. Then let $\{p_k\}$ be a sequence of points in U converging to $p \in \partial U$. As f is continuous, the points $g(p_k) = f(p_k)$ converge to f(p) which lies in ∂V by hypothesis. Hence g is proper by Lemma 1.4.7.

Suppose now that g is proper, and let $p \in \partial U$. Let $\{p_k\}$ be a sequence of points in U converging to p. As f is continuous, the points $g(p_k) = f(p_k)$ converge to f(p), and as g is proper, $f(p) \in \partial V$. As p was an arbitrary point in ∂U , it follows that $f(\partial U) \subset \partial V$

Ex 1.4.7

Ex 1.4.8