Vibrations and Waves by George C. King Notes

Chris Doble

April 2022

Contents

1 Simple Harmonic Motion

1

2 The Damped Harmonic Oscillator

2

1 Simple Harmonic Motion

• The equation of motion for a simple harmonic oscillator is

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

where

$$\omega^2 = \frac{k}{m}$$

• The general solution of the equation of motion for a simple harmonic oscillator is

$$x = A\cos(\omega t + \phi)$$

or equivalently

$$x = a\cos\omega t + b\sin\omega t$$

- The angular frequency ω is determined entirely by properties of the oscillator, e.g. its mass and spring coefficient
- The total energy of a harmonic oscillator is

$$E = \frac{1}{2}kA^2$$

• Nearly all potential wells have a shape that is parabolic when sufficiently close to the equilibrium position, so most oscillating systems will oscillate with SHM when the amplitude of oscillation is small

• The vibrations of nuclei in a molecule can be modeled by SHM, but only a discrete set of vibrational energies is possible, namely

$$\frac{1}{2}\hbar\omega, \frac{3}{2}\hbar\omega, \frac{5}{2}\hbar\omega, \dots$$

where \hbar is Planck's constant divided by 2π

• The total energy of a system undergoing SHM is always given by an expression of the form

$$E = \frac{1}{2}\alpha v^2 + \frac{1}{2}\beta x^2$$

where α and β are physical constants — if we obtain this equation during the analysis of a system we know we have SHM

• The equation of motion for a system described by the energy equation above is

$$\frac{d^2x}{dt^2} = -\frac{\beta}{\alpha}x$$

2 The Damped Harmonic Oscillator

• The equation of motion of a damped harmonic oscillator is

$$F = ma = -kx - bv$$

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$$

$$\frac{d^2x}{dt^2} + \gamma\frac{dx}{dt} + \omega_0^2x = 0$$

where $\gamma = b/m$ and $\omega_0^2 = k/m$

- ω_0 is known as the **natural frequency of oscillation**, i.e. the oscillation frequency if there were no damping
- Light damping / underdamped
 - The motion is still oscillatory but the amplitude decreases expontentially
 - This occurs when $\gamma^2/4 < \omega_0^2$
 - The general solution is

$$x = A_0 e^{-\gamma t/2} \cos(\omega t + \phi)$$

where A_0 is the initial amplitude

- Successive maxima decrease by the same fractional amount

$$\frac{A_n}{A_{n+1}} = e^{\gamma T/2}$$

– The natural logarithm of A_n/A_{n+1} is called the **logarithmic decrement**

$$\ln\left(\frac{A_n}{A_{n+1}}\right) = \frac{\gamma T}{2}$$

Heavy damping / overdamped

- The motion is not oscillatory and returns sluggishly to the equilibrium position
- This occurs when $\gamma^2/4 > \omega_0^2$
- The general solution is

$$x = e^{-\gamma t/2} [Ae^{\alpha t} + Be^{-\alpha t}]$$
$$= Ae^{(\alpha - \gamma/2)t} + Be^{-(\alpha + \gamma/2)t}$$

where
$$\alpha = \sqrt{\gamma^2/4 - \omega_0^2}$$

• Critical damping

- The motion is not oscillatory and returns as quickly as possible to the equilibrium position
- This occurs when $\gamma^2/4 = \omega_0^2$
- The general solution is

$$x = Ae^{-\gamma t/2} + Bte^{-\gamma t/2}$$

 $\bullet\,$ The total energy of an underdamped system decreases over time

$$E = E_0 e^{-\gamma t}$$

where E_0 is the initial energy of the system

- The decay time or time constant of the system $\tau = 1/\gamma$ is the time it takes for its energy to decrease by a factor of e
- The quality factor of a harmonic oscillator is a dimensionless value that gives a measure of the degree of damping

$$Q = \frac{\omega_0}{\gamma}$$

where large values indicate little damping and small values indicate more damping

• The quality factor can also be used as a measure of the energy lost per cycle $2\pi/Q$ or the energy lost per radian 1/Q