US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Date of Patent

Inventor(s)

12390271

August 19, 2025

Harley; Doron et al.

Catheter with mapping and ablating tip assembly

Abstract

Ablation systems of the present disclosure facilitate the safe formation of wide and deep lesions. For example, ablation systems of the present disclosure can allow for the flow of irrigation fluid and blood through an expandable ablation electrode, resulting in efficient and effective cooling of the ablation electrode as the ablation electrode delivers energy at a treatment site of the patient. Additionally, or alternatively, ablation systems of the present disclosure can include a deformable ablation electrode and a plurality of sensors that, in cooperation, sense the deformation of the ablation electrode, to provide a robust indication of the extent and direction of contact between the ablation electrode and tissue at a treatment site.

Inventors: Harlev; Doron (Brookline, MA), Collier; Ian (Newton, MA), Wallace; Andrew

Miles (Needham, MA), Bond; Jonathan Matthew (Melrose, MA)

Applicant: Affera, Inc. (Newton, MA)

Family ID: 1000008764630

Assignee: AFFERA, INC. (Newton, MA)

Appl. No.: 18/160973

Filed: January 27, 2023

Prior Publication Data

Document IdentifierUS 20230172661 A1

Publication Date
Jun. 08, 2023

Related U.S. Application Data

continuation parent-doc US 17068812 20201012 US 12064168 child-doc US 18160973 continuation parent-doc US 15584709 20170502 US 10856937 20201208 child-doc US 17068812 us-provisional-application US 62468873 20170308 us-provisional-application US 62468339 20170307

us-provisional-application US 62434073 20161214 us-provisional-application US 62428406 20161130 us-provisional-application US 62424736 20161121 us-provisional-application US 62420610 20161111 us-provisional-application US 62399625 20160926 us-provisional-application US 62399632 20160926 us-provisional-application US 62357704 20160701 us-provisional-application US 62330395 20160502

Publication Classification

Int. Cl.: A61B18/14 (20060101); A61B1/00 (20060101); A61B5/00 (20060101); A61B18/12 (20060101); A61M3/02 (20060101); A61M25/00 (20060101); A61B17/00 (20060101); A61B18/00 (20060101); A61B90/00 (20160101)

U.S. Cl.:

CPC **A61B18/1492** (20130101); **A61B1/00087** (20130101); **A61B5/6843** (20130101); **A61B5/6852** (20130101); **A61B18/1206** (20130101); **A61B18/1233** (20130101); **A61B18/14** (20130101); **A61B18/148** (20130101); **A61B18/1482** (20130101); **A61M3/0295** (20130101); **A61M25/001** (20130101); **A61M25/007** (20130101); **A61M25/0071** (20130101); **A61M25/0082** (20130101); A61B2017/00039 (20130101); A61B2017/00053 (20130101); A61B2017/00154 (20130101); A61B2017/00477 (20130101); A61B2017/00526 (20130101); A61B2017/00867 (20130101); A61B2018/00011 (20130101); A61B2018/00029 (20130101); A61B2018/00065 (20130101); A61B2018/00077 (20130101); A61B2018/00083 (20130101); A61B2018/00089 (20130101); A61B2018/00101 (20130101); A61B2018/0016 (20130101); A61B2018/00166 (20130101); A61B2018/00214 (20130101); A61B2018/00238 (20130101); A61B2018/00267 (20130101); A61B2018/00351 (20130101); A61B2018/00357 (20130101); A61B2018/00577 (20130101); A61B2018/00642 (20130101); A61B2018/00714 (20130101); A61B2018/00726 (20130101); A61B2018/00744 (20130101); A61B2018/00767 (20130101); A61B2018/00791 (20130101); A61B2018/00797 (20130101); A61B2018/00815 (20130101); A61B2018/00821 (20130101); A61B2018/00839 (20130101); A61B2018/00875 (20130101); A61B2018/00904 (20130101); A61B2018/0091 (20130101); A61B2018/00982 (20130101); A61B2018/00988 (20130101); A61B2018/1417 (20130101); A61B2018/1465 (20130101); A61B2018/1467 (20130101); A61B2090/061 (20160201); A61B2090/065 (20160201); A61B2090/376 (20160201); A61B2090/3966 (20160201); A61B2217/007 (20130101); A61B2218/002 (20130101); A61B2218/003 (20130101); A61M2205/0266 (20130101); A61M2207/00 (20130101)

Field of Classification Search

CPC: A61B (18/1206); A61B (18/1233); A61B (18/14); A61B (18/148); A61B (18/1482); A61B (18/1492); A61B (1/00087); A61B (2017/00039); A61B (2017/00053); A61B (2017/00154); A61B (2017/00477); A61B (2017/00526); A61B (2017/00867); A61B (2018/00011); A61B (2018/00029); A61B (2018/00065); A61B (2018/00077); A61B (2018/00083); A61B (2018/00089); A61B (2018/00101); A61B (2018/00166); A61B (2018/00214); A61B (2018/00238); A61B (2018/00267); A61B (2018/00351); A61B (2018/00357); A61B (2018/00577); A61B (2018/00642); A61B

(2018/00714); A61B (2018/00726); A61B (2018/00744); A61B (2018/00767); A61B (2018/00791); A61B (2018/00797); A61B (2018/00815); A61B (2018/00821); A61B (2018/00839); A61B (2018/00875); A61B (2018/00904); A61B (2018/0091); A61B (2018/00982); A61B (2018/00988); A61B (2018/1417); A61B (2018/1465); A61B (2018/1467); A61B (2090/061); A61B (2090/065); A61B (2090/376); A61B (2090/3966); A61B (2217/007); A61B (2218/002); A61B (2218/003); A61B (5/6843); A61B (5/6852); A61M (2205/0266); A61M (2207/00); A61M (25/001); A61M (25/007); A61M (25/0071); A61M (25/0082); A61M (3/0295)

References Cited

U.S. PATENT DOCUMENTS

Patent No. Issued Date Patentee Name U.S. CI. CPC 5281218 12/1993 Imran N/A N/A 5309910 12/1993 Edwards et al. N/A N/A 5447529 12/1994 Marchlinski et al. N/A N/A 5588432 12/1995 Crowley N/A N/A 5722403 12/1997 McGee et al. N/A N/A 5797903 12/1997 Swanson et al. N/A N/A 5891134 12/1998 Goble et al. N/A N/A 5904680 12/1998 McGee N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5957961 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 603400 12/1999 Tu et al. N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6053913 12/1999 Pa	C.S. THIENT DOCCIVIENTS					
5309910 12/1994 Edwards et al. N/A N/A 5447529 12/1994 Marchlinski et al. N/A N/A 5548729 12/1995 Evans N/A N/A 5588432 12/1997 McGee N/A N/A 5797903 12/1997 Swanson et al. N/A N/A 5891134 12/1998 Goble et al. N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6041278 12/1999 Tu et al. N/A N/A 6071278 12/1999 Tu et al. N/A N/A 6163169 12/1999 Panescu et al. <th>Patent No.</th> <th>Issued Date</th> <th>Patentee Name</th> <th>U.S. Cl.</th> <th>CPC</th>	Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC	
5447529 12/1994 Marchlinski et al. N/A N/A 5542928 12/1995 Evans N/A N/A 5588432 12/1997 McGee et al. N/A N/A 5722403 12/1997 Swanson et al. N/A N/A 5797903 12/1998 Goble et al. N/A N/A 5891134 12/1998 McGee N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6071278 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6165169 12/1999 Panescu						
5542928 12/1995 Evans N/A N/A 5588432 12/1997 McGee et al. N/A N/A 5722403 12/1997 McGee et al. N/A N/A 5797903 12/1997 Swanson et al. N/A N/A 5891134 12/1998 Goble et al. N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 601579 12/1999 Pomeranz N/A N/A 6041560 12/1999 Tu et al. N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Panescu N/A N/A 6165169 12/1999 Panescu						
5588432 12/1997 Crowley N/A N/A 5722403 12/1997 McGee et al. N/A N/A 5797903 12/1997 Swanson et al. N/A N/A 5891134 12/1998 Goble et al. N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 614293 12/1999 Panescu et al. N/A N/A 620314 12/2000 Sherman			Marchlinski et al.			
5722403 12/1997 McGee et al. N/A N/A 5797903 12/1997 Swanson et al. N/A N/A 5891134 12/1998 Goble et al. N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Whayne et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 620314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey <td></td> <td>12/1995</td> <td></td> <td></td> <td></td>		12/1995				
5797903 12/1997 Swanson et al. N/A N/A 5891134 12/1998 Goble et al. N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Panescu N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman			5			
5891134 12/1998 Goble et al. N/A N/A 5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6014579 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6041260 12/1999 Tu et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Whayne et al. N/A N/A 6142993 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey	5722403	12/1997	McGee et al.	N/A	N/A	
5891136 12/1998 McGee N/A N/A 5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Panescu N/A N/A 6165169 12/1999 Panescu N/A N/A 6220314 12/2000 Sherman N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2001 Swanson	5797903	12/1997	Swanson et al.	N/A	N/A	
5904680 12/1998 Kordis et al. N/A N/A 5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Panescu N/A N/A 6142993 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 622695 12/2000 Sharkey N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6416511 12/2001 Swanson <td< td=""><td>5891134</td><td>12/1998</td><td>Goble et al.</td><td>N/A</td><td></td></td<>	5891134	12/1998	Goble et al.	N/A		
5957961 12/1998 Maguire et al. N/A N/A 5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Swanson <t< td=""><td>5891136</td><td>12/1998</td><td>McGee</td><td>N/A</td><td>N/A</td></t<>	5891136	12/1998	McGee	N/A	N/A	
5968040 12/1998 Swanson et al. N/A N/A 6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. <td< td=""><td>5904680</td><td>12/1998</td><td>Kordis et al.</td><td>N/A</td><td>N/A</td></td<>	5904680	12/1998	Kordis et al.	N/A	N/A	
6014579 12/1999 Pomeranz N/A N/A 6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Gambale et al. N/A N/A 6315778 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Keane N/A	5957961	12/1998	Maguire et al.	N/A	N/A	
6036689 12/1999 Tu et al. N/A N/A 6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6315778 12/2001 Swanson N/A N/A 6416511 12/2001 Swanson N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Swanson et al.	5968040	12/1998	Swanson et al.	N/A	N/A	
6041260 12/1999 Stern et al. N/A N/A 6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6416511 12/2001 Swanson N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al.	6014579	12/1999	Pomeranz	N/A	N/A	
6053913 12/1999 Tu et al. N/A N/A 6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Gambale et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6416511 12/2001 Swanson N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6917834 12/2004 Koblish et al.	6036689	12/1999	Tu et al.	N/A	N/A	
6071278 12/1999 Panescu et al. N/A N/A 6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6632223 12/2002 Keane N/A N/A 663223 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al.	6041260	12/1999	Stern et al.	N/A	N/A	
6123718 12/1999 Tu et al. N/A N/A 6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6632223 12/2002 Keane N/A N/A 663223 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins	6053913	12/1999	Tu et al.	N/A	N/A	
6142993 12/1999 Whayne et al. N/A N/A 6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 6917834 12/2004 Koblish et al. N/A N/A	6071278	12/1999	Panescu et al.	N/A	N/A	
6165169 12/1999 Panescu N/A N/A 6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Keane N/A N/A 6632223 12/2002 Keane N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6123718	12/1999	Tu et al.	N/A	N/A	
6200314 12/2000 Sherman N/A N/A 6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6142993	12/1999	Whayne et al.	N/A	N/A	
6246913 12/2000 Sharkey N/A N/A 6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6165169	12/1999	Panescu	N/A	N/A	
6292695 12/2000 Webster, Jr. et al. N/A N/A 6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6200314	12/2000	Sherman	N/A	N/A	
6315778 12/2000 Gambale et al. N/A N/A 6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6246913	12/2000	Sharkey	N/A	N/A	
6369465 12/2001 Swanson N/A N/A 6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6292695	12/2000	Webster, Jr. et al.	N/A	N/A	
6416511 12/2001 Lesh et al. N/A N/A 6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6315778	12/2000	Gambale et al.	N/A	N/A	
6421556 12/2001 Swanson N/A N/A 6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6369465	12/2001	Swanson	N/A	N/A	
6537248 12/2002 Mulier et al. N/A N/A 6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6416511	12/2001	Lesh et al.	N/A	N/A	
6572612 12/2002 Stewart et al. N/A N/A 6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6421556	12/2001	Swanson	N/A	N/A	
6632223 12/2002 Keane N/A N/A 6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6537248	12/2002	Mulier et al.	N/A	N/A	
6658279 12/2002 Swanson et al. N/A N/A 6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6572612	12/2002	Stewart et al.	N/A	N/A	
6813520 12/2003 Truckai et al. N/A N/A 6837886 12/2004 Collins 606/41 A61B A61B A61B A61B A61B 6917834 12/2004 Koblish et al. N/A N/A	6632223	12/2002	Keane	N/A	N/A	
6837886 12/2004 Collins 606/41 A61B 6917834 12/2004 Koblish et al. N/A N/A	6658279	12/2002	Swanson et al.	N/A	N/A	
683/886 12/2004 Collins 606/41 18/1492 6917834 12/2004 Koblish et al. N/A N/A	6813520	12/2003	Truckai et al.	N/A	N/A	
6917834 12/2004 Koblish et al. N/A N/A	6837886	12/2004	Colling	606/41	A61B	
	0037000	14/4004	Collins	000/41	18/1492	
6923805 12/2004 LaFontaine et al. N/A N/A	6917834	12/2004	Koblish et al.	N/A	N/A	
	6923805	12/2004	LaFontaine et al.	N/A	N/A	

7519410	12/2008	Taimisto et al.	N/A	N/A
7527625	12/2008	Knight et al.	N/A	N/A
7993337	12/2010	Lesh	N/A	N/A
8221407	12/2011	Phan et al.	N/A	N/A
8235988	12/2011	Davis et al.	N/A	N/A
8287533	12/2011	Henricus et al.	N/A	N/A
8295902	12/2011	Salahieh et al.	N/A	N/A
8348937	12/2012	Wang et al.	N/A	N/A
8419725	12/2012	Haemmerich et al.	N/A	N/A
8444639	12/2012	Arnold et al.	N/A	N/A
8449537	12/2012	Cao et al.	N/A	N/A
8449539	12/2012	Wang et al.	N/A	N/A
8460285	12/2012	Wang et al.	N/A	N/A
8500730	12/2012	Lee et al.	N/A	N/A
8500731	12/2012	Byrd et al.	N/A	N/A
8504132	12/2012	Friedman et al.	N/A	N/A
8527027	12/2012	Falwell et al.	N/A	N/A
8538501	12/2012	Venkatachalam et al.	N/A	N/A
8545408	12/2012	Sliwa et al.	N/A	N/A
8603084	12/2012	Fish et al.	N/A	N/A
8636732	12/2013	Davis et al.	N/A	N/A
8668686	12/2013	Govari et al.	N/A	N/A
8702690	12/2013	Paul et al.	N/A	N/A
8740900	12/2013	Kim et al.	N/A	N/A
8764742	12/2013	Pappone et al.	N/A	N/A
8784413	12/2013	Schwartz	N/A	N/A
8790341	12/2013	Pappone et al.	N/A	N/A
8801707	12/2013	Francischelli et al.	N/A	N/A
8858548	12/2013	Asconeguy	N/A	N/A
8882761	12/2013	Desai	N/A	N/A
8900228	12/2013	Grunewald et al.	N/A	N/A
8926604	12/2014	Govari et al.	N/A	N/A
8956353	12/2014	Govari et al.	N/A	N/A
8974453	12/2014	Wang	N/A	N/A
8986292	12/2014	Sliwa et al.	N/A	N/A
8992519	12/2014	Kim et al.	N/A	N/A
8996091	12/2014	de la Rama et al.	N/A	N/A
9011432	12/2014	Boomsma et al.	N/A	N/A
9037264	12/2014	Just et al.	N/A	N/A
9044233	12/2014	Davis et al.	N/A	N/A
9084611	12/2014	Amirana et al.	N/A	N/A
9144458	12/2014	Takaoka et al.	N/A	N/A
9155587	12/2014 12/2014	Willis et al. Mihalik et al.	N/A N/A	N/A N/A
9168093 9173586	12/2014	Deno et al.	N/A	N/A N/A
9226791	12/2014		N/A	N/A N/A
9226791	12/2015	McCarthy et al. Berger et al.	N/A	N/A N/A
9241756	12/2015	Bar-tal et al.	N/A	N/A N/A
9314299	12/2015	Fang	N/A	N/A N/A
9339325	12/2015	Miller et al.	N/A	N/A N/A
JJJJJJJJ	14/4013	ויוווכו כנ מו.	1 1 / / 1	1 1/ 1/1

9352134	12/2015	Levin et al.	N/A	N/A
9387031	12/2015	Stewart et al.	N/A	N/A
9445725	12/2015	Govari et al.	N/A	N/A
9474566	12/2015	Paul et al.	N/A	N/A
9492227	12/2015	Lopes et al.	N/A	N/A
9510892	12/2015	Davis et al.	N/A	N/A
9539056	12/2016	Beeckler et al.	N/A	N/A
9545285	12/2016	Ghaffari et al.	N/A	N/A
10105179	12/2017	Harlev et al.	N/A	N/A
10172673	12/2018	Viswanathan et al.	N/A	N/A
10219860	12/2018	Harlev et al.	N/A	N/A
10433908	12/2018	Viswanathan et al.	N/A	N/A
10842561	12/2019	Viswanathan et al.	N/A	N/A
10932850	12/2020	Harlev et al.	N/A	N/A
11382688	12/2021	Steinke et al.	N/A	N/A
2001/0020126	12/2000	Swanson	N/A	N/A
2001/0034518	12/2000	Edwards	N/A	N/A
2002/0026094	12/2001	Roth	N/A	N/A
2002/0177765	12/2001	Bowe	600/374	A61B
2002/01///05	12/2001	роме	600/3/4	18/1492
2002/0198492	12/2001	Miller et al.	N/A	N/A
2003/0018362	12/2002	Fellows et al.	N/A	N/A
2003/0032953	12/2002	VanDusseldorp	N/A	N/A
2003/0083613	12/2002	Schaer	N/A	N/A
2003/0093086	12/2002	Briggs	N/A	N/A
2003/0158477	12/2002	Panescu	N/A	N/A
2004/0087936	12/2003	Stern et al.	N/A	N/A
2004/0199156	12/2003	Rioux et al.	N/A	N/A
2004/0210121	12/2003	Fuimaono et al.	N/A	N/A
2004/0215296	12/2003	Ganz	N/A	N/A
2004/0215310	12/2003	Amirana	N/A	N/A
2004/0254621	12/2003	Jones et al.	N/A	N/A
2005/0020914	12/2004	Amundson	N/A	N/A
2005/0171524	12/2004	Stern et al.	N/A	N/A
2005/0171525	12/2004	Rioux	N/A	N/A
2005/0222563	12/2004	McDaniel et al.	N/A	N/A
2005/0245876	12/2004	Khosravi et al.	N/A	N/A
2006/0100669	12/2005	Fuimaono et al.	N/A	N/A
2007/0016391	12/2006	Minoguchi	N/A	N/A
2008/0009747	12/2007	Saadat et al.	N/A	N/A
2008/0033421	12/2007	Davis et al.	N/A	N/A
2008/0262489	12/2007	Steinke	N/A	N/A
2008/0281391	12/2007	MacAdam et al.	N/A	N/A
2008/0287942	12/2007	Amundson	N/A	N/A
2009/0076498	12/2008	Saadat et al.	N/A	N/A
2009/0093802	12/2008	Kulesa et al.	N/A	N/A
2009/0171274	12/2008	Harlev et al.	N/A	N/A
2009/0221965	12/2008	Osypka	N/A	N/A
2010/0030209	12/2009	Govari et al.	N/A	N/A
2010/0057072	12/2009	Roman et al.	N/A	N/A

2010/0076426 12/2009 de la Rama et al. N/A N/A N/A 2010/0145371 12/2009 Badie N/A N/A N/A 2010/016847 12/2009 Tegg N/A N/A N/A 2010/00234807 12/2009 Fisher et al. N/A N/A N/A 2010/00234807 12/2009 Pisher et al. N/A N/A N/A 2010/00234807 12/2009 Paulen et al. N/A N/A N/A 2010/00234540 12/2009 Paulen et al. N/A N/A N/A 2011/0009857 12/2010 Subramaniam et al. N/A N/A N/A 2011/0009857 12/2010 Subramaniam et al. N/A N/A N/A 2011/016012 12/2010 Velarde N/A N/A N/A N/A 2011/016012 12/2010 Rama et al. N/A N/A N/A 2011/016054 12/2010 Rama et al. N/A N/A N/A 2011/0257649 12/2010 Stephens et al. N/A N/A N/A 2011/0257649 12/2010 Geistert et al. N/A N/A N/A 2012/0046610 12/2011 Rankin N/A N/A N/A 2012/0104300 12/2011 Beetel N/A N/A N/A 2012/0136350 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Gristian N/A N/A N/A 2012/0172871 12/2011 Christian N/A N/A 2012/0167809 12/2011 Christian N/A N/A 2012/0167801 12/2011 Hastings et al. N/A N/A 2012/0167801 12/2011 Harley et al. N/A N/A 2012/0203267 12/2011 Harley et al. N/A N/A 2012/030604 12/2011 Harley et al. N/A N/A 2012/030604 12/2011 Harley et al. N/A N/A 2012/03060550 12/2011 Grunewald et al. N/A N/A 2013/0060550 12/2012 Grunewald et al. N/A N/A 2013/0060550 12/2012 Grunewald et al. N/A N/A 2013/0060550 12/2012 Mathur et al. N/A N/A N/A 2013/0060550 12/2013 Shafran N/A N/A N/A 2014/00580	2010/0057074	12/2009	Roman et al.	N/A	N/A
2010/0145330 12/2009 Badie N/A N/A 2010/0152731 12/2009 de la Rama N/A N/A N/A 2010/016647 12/2009 Tegg N/A N/A N/A 2010/0234807 12/2009 Fisher et al. N/A N/A N/A 2010/0240951 12/2009 Nuccitelli et al. N/A N/A 2010/0324540 12/2009 Paullen et al. N/A N/A 2011/0009857 12/2010 Subramaniam et al. N/A N/A 2011/0022041 12/2010 Ingle et al. N/A N/A N/A 2011/0106012 12/2010 Rama et al. N/A N/A N/A 2011/0118726 12/2010 Rama et al. N/A N/A N/A 2011/0160584 12/2010 Paul et al. N/A N/A N/A 2011/0257649 12/2010 Stephens et al. N/A N/A 2011/0257649 12/2010 Geistert et al. N/A N/A 2012/0046610 12/2011 Baetel N/A N/A 2012/010413 12/2011 Beetel N/A N/A 2012/0136350 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165812 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Gristian N/A N/A 2012/0165812 12/2011 Hartings et al. N/A N/A 2012/0265192 12/2011 Harlev et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0066315 12/2012 Medioni et al. N/A N/A 2013/0066315 12/2012 Mathur et al. N/A N/A 2013/0066315 12/2013 Salahieh et al. N/A N/A 2014/007639 12/2013 Salahieh et al. N/A N/A 2014/007639 12/2013 Salahieh et al. N/A					
2010/0152731 12/2009 Tegg N/A N/A 2010/0234807 12/2009 Tegg N/A N/A 2010/0240995 12/2009 Pisher et al. N/A N/A 2010/0324540 12/2009 Paulen et al. N/A N/A 2011/0022041 12/2010 Subramaniam et al. N/A N/A 2011/0022041 12/2010 Velarde N/A N/A 2011/0106052 12/2010 Rama et al. N/A N/A 2011/0160584 12/2010 Rama et al. N/A N/A 2011/0201973 12/2010 Stephens et al. N/A N/A 2011/0270242 12/2010 Geistert et al. N/A N/A 2011/0270242 12/2010 Geistert et al. N/A N/A 2012/0166610 12/2011 Bankin N/A N/A 2012/0101413 12/2011 Beetel N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A					
Tegg					
2010/0234807 12/2009	2010/0168647				
2010/0240995 12/2009 Nuccitelli et al. N/A N/A 2010/0324540 12/2010 Subramaniam et al. N/A N/A 2011/0009857 12/2010 Ingle et al. N/A N/A 2011/0106012 12/2010 Urglarde N/A N/A N/A 2011/0106012 12/2010 Rama et al. N/A N/A N/A 2011/0160584 12/2010 Paul et al. N/A N/A N/A 2011/0257649 12/2010 Geistert et al. N/A N/A 2011/0270242 12/2010 Marion N/A N/A 2011/0270242 12/2010 Geistert et al. N/A N/A 2011/0270242 12/2010 Marion N/A N/A 2012/01046610 12/2011 Bankin N/A N/A 2012/01046610 12/2011 Beetel N/A N/A N/A 2012/0136350 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165812 12/2011 Govari et al. N/A N/A 2012/0165812 12/2011 Christian et al. N/A N/A 2012/0168812 12/2011 Christian et al. N/A N/A 2012/0184863 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/0060245 12/2011 McGee N/A N/A 2013/0066315 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Tsamir et al. N/A N/A 2013/00865413 12/2012 Mathur et al. N/A N/A 2013/028604 12/2012 Mathur et al. N/A N/A 2013/028604 12/2012 Mathur et al. N/A N/A 2013/028084 12/2012 Mathur et al. N/A N/A 2013/028084 12/2012 Mathur et al. N/A N/A 2013/0286081 12/2013 Salahieh et al. N/A N/A 2014/0016336 12/2013 Salahieh et al. N/A N/A 2014/0016336 12/2013 Salahieh et al. N/A N/A 2014/0016360 12/2013 Salahieh et al. N/A N/A 2014/0016360 12/2013 Salahieh et al. N/A N/A 2014/0016396 12/2013 Salahieh et al. N/A N/A 2014/0016360 12/2013 Salahieh et al. N/A N/A 2014/00163360 12/2013 Salahieh et al. N/A N/A 2014/	2010/0234807			N/A	N/A
2011/0009857 12/2010 Subramaniam et al. N/A N/A 2011/0022041 12/2010 Ingle et al. N/A N/A N/A 2011/0106012 12/2010 Velarde N/A N/A N/A 2011/016762 12/2010 Rama et al. N/A N/A N/A 2011/0160584 12/2010 Paul et al. N/A N/A N/A 2011/0201973 12/2010 Stephens et al. N/A N/A N/A 2011/0270242 12/2010 Geistert et al. N/A N/A N/A 2011/0270242 12/2010 Marion N/A N/A N/A 2012/0046610 12/2011 Rankin N/A N/A N/A 2012/01403400 12/2011 Beetel N/A N/A N/A 2012/0136350 12/2011 Goshgarian et al. N/A N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A N/A 2012/015809 12/2011 Goshgarian et al. N/A N/A N/A 2012/0165812 12/2011 Christian et al. N/A N/A N/A 2012/0165812 12/2011 Christian et al. N/A N/A N/A 2012/0128403 12/2011 Hastings et al. N/A N/A N/A 2012/012863 12/2011 Harlev et al. N/A N/A N/A 2012/020260 12/2011 Lambert et al. N/A N/A N/A 2012/020260 12/2011 Lambert et al. N/A N/A N/A 2012/030064 12/2011 Harks et al. N/A N/A N/A 2012/0308677 12/2011 Harks et al. N/A N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/008650 12/2012 Subramaniam et al. N/A N/A 2013/008650 12/2012 Hill N/A N/A N/A 2013/0286012 12/2012 Madipar et al. N/A N/A N/A 2013/0286012 12/2013 Ghaffari et al. N/A N/A N/A 2014/00156397 12/2013 Salahieh et al. N/A N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A N/A 2014/005808 12/2013 Salahieh et al. N/A N/A N/A 2014/0058095 12/2013 Salahieh et al. N/A N/A N/A 2014/0163360 12/2013 Salahieh et al. N/A N/A N/A 2014/0163360 12/2013 Salahieh et al. N/A N/A N/A 2014/0163360 1			Nuccitelli et al.		
2011/0022041 12/2010	2010/0324540	12/2009	Paulen et al.	N/A	N/A
2011/0106012 12/2010 Velarde N/A N/A 2011/0118726 12/2010 Rama et al. N/A N/A 2011/0160584 12/2010 Paul et al. N/A N/A 2011/0201973 12/2010 Stephens et al. N/A N/A 2011/0257649 12/2010 Geistert et al. N/A N/A 2011/0270242 12/2011 Marion N/A N/A 2012/046610 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Beetel N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian et al. N/A N/A 2012/0184863 12/2011 Hastings et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A	2011/0009857	12/2010	Subramaniam et al.	N/A	N/A
2011/0106012 12/2010 Velarde N/A N/A 2011/0118726 12/2010 Rama et al. N/A N/A 2011/0160584 12/2010 Paul et al. N/A N/A 2011/02973 12/2010 Stephens et al. N/A N/A 2011/0257649 12/2010 Marion N/A N/A 2012/046610 12/2011 Beetel N/A N/A 2012/046610 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Beetel N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Gorari et al. N/A N/A 2012/015809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Hastings et al. N/A N/A 2012/0209260 12/2011 Harlev et al. N/A N/A 2012/0302877 12/2011 Harlev et al. N/A N/A <	2011/0022041	12/2010	Ingle et al.	N/A	N/A
2011/0160584 12/2010 Paul et al. N/A N/A 2011/0201973 12/2010 Stephens et al. N/A N/A 2011/0270242 12/2010 Geistert et al. N/A N/A 2011/0270242 12/2011 Rankin N/A N/A 2012/010413 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Christian N/A N/A 2012/0172871 12/2011 Christian N/A N/A 2012/0184863 12/2011 Hastings et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0302875 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A	2011/0106012	12/2010	_	N/A	N/A
2011/0201973 12/2010 Stephens et al. N/A N/A N/A 2011/0257649 12/2010 Geistert et al. N/A N/A N/A 2011/0270242 12/2010 Marion N/A N/A N/A 2012/046610 12/2011 Rankin N/A N/A N/A 2012/0101413 12/2011 Beetel N/A N/A N/A 2012/0123400 12/2011 Goshgarian et al. N/A N/A N/A 2012/0158350 12/2011 Goshgarian et al. N/A N/A N/A 2012/0158809 12/2011 Govari et al. N/A N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A N/A 2012/0165812 12/2011 Christian N/A N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0209270 12/2011 Sliwa et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0060315 12/2012 Subramaniam et al. N/A N/A 2013/0060315 12/2012 Tsamir et al. N/A N/A 2013/0095550 12/2012 Hill N/A N/A 2013/028084 12/2012 Mathur et al. N/A N/A 2013/028084 12/2012 Mathur et al. N/A N/A 2013/028084 12/2012 Mathur et al. N/A N/A 2013/0296852 12/2012 Mathur et al. N/A N/A 2013/028084 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Shafran N/A N/A 2014/001639 12/2013 Shafran N/A N/A 2014/005808 12/2013 Shafran N/A N/A 2014/0163360 12/2013 Shafran N/A N/A 2014/016336	2011/0118726	12/2010	Rama et al.	N/A	N/A
2011/0257649 12/2010 Geistert et al. N/A N/A 2011/0270242 12/2010 Marion N/A N/A 2012/0046610 12/2011 Rankin N/A N/A 2012/0101413 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165812 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian et al. N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/020860 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0085510 12/2012 Subramaniam et al. N/A N	2011/0160584	12/2010	Paul et al.	N/A	N/A
2011/0270242 12/2010 Marion N/A N/A 2012/0046610 12/2011 Rankin N/A N/A 2012/0101413 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Francischelli et al. N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0300604 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0385413 12/2012 Waters et al. N/A N/A <td>2011/0201973</td> <td>12/2010</td> <td>Stephens et al.</td> <td>N/A</td> <td>N/A</td>	2011/0201973	12/2010	Stephens et al.	N/A	N/A
2012/0046610 12/2011 Rankin N/A N/A 2012/0101413 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Francischelli et al. N/A N/A 2012/0157890 12/2011 Goshgarian et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0209260 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/066315 12/2011 McGee N/A N/A 2013/066315 12/2012 Grunewald et al. N/A N/A 2013/0085413 12/2012 Subramaniam et al. N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A	2011/0257649	12/2010	Geistert et al.	N/A	N/A
2012/0101413 12/2011 Beetel N/A N/A 2012/0123400 12/2011 Francischelli et al. N/A N/A 2012/0136350 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Govari et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0085413 12/2012 Subramaniam et al. N/A N/A 2013/03096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A<	2011/0270242	12/2010	Marion	N/A	N/A
2012/0123400 12/2011 Francischelli et al. N/A N/A 2012/0136350 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Govari et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0060315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Waters et al. N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0282084 12/2012 Medioni et al. N/A </td <td>2012/0046610</td> <td>12/2011</td> <td>Rankin</td> <td>N/A</td> <td>N/A</td>	2012/0046610	12/2011	Rankin	N/A	N/A
2012/0136350 12/2011 Goshgarian et al. N/A N/A 2012/0157890 12/2011 Govari et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Sliwa et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0086315 12/2012 Subramaniam et al. N/A N/A 2013/0086530 12/2012 Waters et al. N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0282084 12/2012 Madhur et al. N/A	2012/0101413	12/2011	Beetel	N/A	N/A
2012/0157890 12/2011 Govari et al. N/A N/A 2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Sliwa et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0066315 12/2012 Grunewald et al. N/A N/A 2013/0086315 12/2012 Subramaniam et al. N/A N/A 2013/0086513 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Waters et al. N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0282084 12/2012 Medioni et al. N/A N/A	2012/0123400	12/2011	Francischelli et al.	N/A	N/A
2012/0165809 12/2011 Christian et al. N/A N/A 2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Sliwa et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0310064 12/2012 Grunewald et al. N/A N/A 2013/0060245 12/2012 Subramaniam et al. N/A N/A 2013/0086315 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Waters et al. N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0282084 12/2012 Madjarov et al. N/A N/A 2013/0296852 12/2012 Medioni et al. N/A N	2012/0136350	12/2011	Goshgarian et al.	N/A	N/A
2012/0165812 12/2011 Christian N/A N/A 2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0137980 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/0296852 12/2012 Medioni et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A	2012/0157890	12/2011	Govari et al.	N/A	N/A
2012/0172871 12/2011 Hastings et al. N/A N/A 2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0265192 12/2011 Sliwa et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0137980 12/2012 Hill N/A N/A 2013/0190754 12/2012 Waters et al. N/A N/A 2013/0286012 12/2012 Mathur et al. N/A N/A 2013/0296852 12/2012 Medioni et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A	2012/0165809	12/2011	Christian et al.	N/A	N/A
2012/0184863 12/2011 Harlev et al. N/A N/A 2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0265192 12/2011 Sliwa et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0066315 12/2012 Grunewald et al. N/A N/A 2013/0085413 12/2012 Subramaniam et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Medioni et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0058197 12/2013 Slahieh et al. N/A N/A	2012/0165812	12/2011	Christian	N/A	N/A
2012/0209260 12/2011 Lambert et al. N/A N/A 2012/0265192 12/2011 Sliwa et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0282084 12/2012 Paul et al. N/A N/A 2013/0286012 12/2012 Medioni et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A	2012/0172871	12/2011	Hastings et al.	N/A	N/A
2012/0265192 12/2011 Sliwa et al. N/A N/A 2012/0302877 12/2011 Harks et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0286084 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Medioni et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/007639 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A	2012/0184863	12/2011	Harlev et al.	N/A	N/A
2012/0302877 12/2011 Harks et al. N/A N/A 2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0286084 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/017639 12/2013 Zhang et al. N/A N/A	2012/0209260	12/2011	Lambert et al.	N/A	N/A
2012/0310064 12/2011 McGee N/A N/A 2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/016367 12/2013 Bar-tal N/A N/A	2012/0265192	12/2011	Sliwa et al.	N/A	N/A
2013/0060245 12/2012 Grunewald et al. N/A N/A 2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/0286012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0167639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A <	2012/0302877		Harks et al.	N/A	N/A
2013/0066315 12/2012 Subramaniam et al. N/A N/A 2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/0296852 12/2012 Medioni et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058208 12/2013 Salahieh et al. N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0206985 12/2013 Steven-Wright et al. N/A N/A					
2013/0085413 12/2012 Tsamir et al. N/A N/A 2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/0286012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058208 12/2013 Salahieh et al. N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0206985 12/2013 Steven-Wright et al. N/A N/A					
2013/0096550 12/2012 Hill N/A N/A 2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/02968012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0206985 12/2013 Steven-Wright et al. N/A N/A N/A N/A N/A N/A <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
2013/0137980 12/2012 Waters et al. N/A N/A 2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/02968012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0107639 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2013/0190754 12/2012 Paul et al. N/A N/A 2013/0282084 12/2012 Mathur et al. N/A N/A 2013/0286012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2013/0282084 12/2012 Mathur et al. N/A N/A 2013/0286012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2013/0286012 12/2012 Medioni et al. N/A N/A 2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2013/0296852 12/2012 Madjarov et al. N/A N/A 2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2014/0012160 12/2013 Ghaffari et al. N/A N/A 2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0206985 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2014/0017639 12/2013 Zhang et al. N/A N/A 2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A			3		
2014/0058197 12/2013 Salahieh et al. N/A N/A 2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2014/0058208 12/2013 Shafran N/A N/A 2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A			_		
2014/0058375 12/2013 Koblish N/A N/A 2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2014/0107639 12/2013 Zhang et al. N/A N/A 2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2014/0121657 12/2013 Bar-tal N/A N/A 2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A					
2014/0142570 12/2013 Bakczewitz 606/41 A61B 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A			9		
2014/01425/0 12/2013 Bakczewitz 606/41 18/1492 2014/0163360 12/2013 Steven-Wright et al. N/A N/A 2014/0206985 12/2013 Kariv N/A N/A	2014/0121657	12/2013	Bar-tal	N/A	
2014/0206985 12/2013 Kariv N/A N/A	2014/0142570	12/2013	Bakczewitz	606/41	
2014/0206985 12/2013 Kariv N/A N/A	2014/0163360	12/2013	Steven-Wright et al.	N/A	N/A
2014/0228832 12/2013 Chun N/A N/A	2014/0206985	12/2013		N/A	N/A
	2014/0228832	12/2013	Chun	N/A	N/A

2014/0236146	12/2013	McLawhorn	N/A	N/A
2014/0238175	12/2013	Huszar et al.	N/A	N/A
2014/0257282	12/2013	Wang et al.	N/A	N/A
2014/0276078	12/2013	Schweitzer et al.	N/A	N/A
2014/0276562	12/2013	Govari et al.	N/A	N/A
2014/0276617	12/2013	Akingba et al.	N/A	N/A
2014/0316400	12/2013	Blix et al.	N/A	N/A
2014/0316406	12/2013	Willis et al.	N/A	N/A
2014/0357956	12/2013	Salahieh et al.	N/A	N/A
2014/0364848	12/2013	Heimbecher et al.	N/A	N/A
2015/0018818	12/2014	Willard et al.	N/A	N/A
2015/0105645	12/2014	Subramaniam et al.	N/A	N/A
2015/0105659	12/2014	Salahieh et al.	N/A	N/A
2015/0119876	12/2014	Willard	N/A	N/A
2015/0119883	12/2014	Buysman	N/A	N/A
2015/0133920	12/2014	Rankin et al.	N/A	N/A
2015/0141738	12/2014	Toellner	N/A	N/A
2015/0141982	12/2014	Lee	N/A	N/A
2015/0182282	12/2014	Zemel et al.	N/A	N/A
2015/0202408	12/2014	McMurtry et al.	N/A	N/A
2015/0223757	12/2014	Werneth et al.	N/A	N/A
2015/0272667	12/2014	Govari et al.	N/A	N/A
2015/0282859	12/2014	Bencini et al.	N/A	N/A
2015/0297292	12/2014	Sutermeister	N/A	N/A
2015/0327921	12/2014	Govari et al.	N/A	N/A
2015/0327925	12/2014	Christian	N/A	N/A
2015/0342671	12/2014	Govari et al.	N/A	N/A
2015/0342672	12/2014	Bencini et al.	N/A	N/A
2015/0351836	12/2014	Prutchi	N/A	N/A
2015/0366604	12/2014	Shikhman	N/A	N/A
2015/0374252	12/2014	de la Rama et al.	N/A	N/A
2016/0051321	12/2015	Salahieh et al.	N/A	N/A
2016/0058502	12/2015	Clark et al.	N/A	N/A
2016/0174864	12/2015	Levin et al.	N/A	N/A
2016/0184008	12/2015	Papaioannou et al.	N/A	N/A
2016/0228023	12/2015	Govari et al.	N/A	N/A
2016/0278856	12/2015	Panescu et al.	N/A	N/A
2016/0287312	12/2015	Tegg et al.	N/A	N/A
2016/0317212	12/2015	Ge et al.	N/A	N/A
2016/0324571	12/2015	Beeckler et al.	N/A	N/A
2016/0331254	12/2015	Tegg et al.	N/A	N/A
2016/0361115	12/2015	Bencini et al.	N/A	N/A
2016/0374754	12/2015	Asirvatham et al.	N/A	N/A
2017/0172442	12/2016	Govari	N/A	N/A
2017/0312007	12/2016	Harlev et al.	N/A	N/A
2017/0312008	12/2016	Harlev et al.	N/A	N/A
2017/0312012	12/2016	Harlev et al.	N/A	N/A
2017/0312023	12/2016	Harlev et al.	N/A	N/A
2017/0312025	12/2016	Harlev et al.	N/A	N/A
2017/0312027	12/2016	Harlev et al.	N/A	N/A

2019/00/0190	12/2010	namev et al.	1 V / <i>F</i> 1			
FOREIGN PATENT DOCUMENTS						
Patent No.	Application Date	Country	CPC			
101856271	12/2009	CN	N/A			
104812297	12/2014	CN	N/A			
1256326	12/2001	EP	N/A			
1498080	12/2008	EP	N/A			
2201905	12/2009	EP	N/A			
1554986	12/2009	EP	N/A			
2382935	12/2010	EP	N/A			
2913017	12/2014	EP	N/A			
2470099	12/2014	EP	N/A			
2229904	12/2015	EP	N/A			
3141181	12/2016	EP	N/A			
H0838503	12/1995	JP	N/A			
4062935	12/2007	JP	N/A			
2009-532162	12/2008	JP	N/A			
2012-520474	12/2011	JP	N/A			
2001022897	12/2000	WO	N/A			
2004110258	12/2003	WO	N/A			
2010056771	12/2009	WO	N/A			
2011101778	12/2010	WO	N/A			
2014132463	12/2013	WO	N/A			
2014168987	12/2013	WO	N/A			
2015200518	12/2014	WO	N/A			
2017192477	12/2016	WO	N/A			
2017192480	12/2016	WO	N/A			
2017192495	12/2016	WO	N/A			
2017192510	12/2016	WO	N/A			
2017192542	12/2016	WO	N/A			

Harlev et al.

Harlev et al.

N/A

N/A

N/A

N/A

OTHER PUBLICATIONS

2017/0312028

2019/0076190

12/2016

12/2018

Byun et al., Radiofrequency Ablation of the Gastrointestinal Tract with a Stent-Like Electrode: Experimental Study, Koean J Radiol 4(1), Mar. 2003, pp. 19-26. cited by applicant Goldberg, S. N. et al., "Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis", JVIR; vol. 10 No. 7, Jul.-Aug. 1999, pp. 907-916. cited by applicant

International Search Report and Written Opinion dated Nov. 15, 2017; International Application No. PCT/US2017/030575; 15 pages. * verified. cited by applicant

International Search Report and Written Opinion mailed Nov. 15, 2017; International Patent Application No. PCT/US2017/030495; 16 pages. cited by applicant

International Search Report and Written Opinion mailed Sep. 7, 2017; International Patent Application No. PCT/US2017/030518; 13 pages. cited by applicant

ISA, "PCT Application No. PCT/US17/30492 International Search Report and Written Opinion mailed Jul. 25, 2017", 16 pages. * verified (14 pgs without cover/end page). cited by applicant ISA, "PCT Application No. PCT/US17/30495 Invitation to Pay Additional Fees and Partial International Search Report mailed Sep. 8, 2017", 14 pages. (our copy 11 pages). cited by applicant ISA, "PCT Application No. PCT/US17/30535 International Search Report and Written Opinion

mailed Jan. 5, 2018", 15 pages. cited by applicant

ISA, "PCT Application No. PCT/US17/30535 Invitation to Pay Additional Fees and Partial Search Report mailed Sep. 14, 2017", 12 pages. cited by applicant

ISA, "PCT Application No. PCT/US17/30575 Invitation to Pay Additional Fees and Partial Search Report mailed Sep. 20, 2017", 14 pages. cited by applicant

International Search Report and Written Opinion dated Apr. 14, 2021 for International Patent Application No. PCT/US20/65314, 13 pages. cited by applicant

Koruth et al., Bipolar irrigated radiofrequency ablation: A therapeutic option for refractory intramural atrial and ventricular tachycardia circuits, Heart Rhythm, Dec. 2012, vol. 9, Issue 12, pp. 1932-1941. cited by applicant

Kumar, et al., "Better Lesion Creation and Assessment During Catheter Ablation", Journal of Atrial Fibrillation, vol. 8, Issue 3, Oct.-Nov. 2015, 12 Pages. cited by applicant

MDDI, "Machining Materials: A Primer on Photoetching", Medical Service and Diagnostics Industry http://www.mddionline.com/article/machining-materials-primer-photoetching Jan. 1, 2008, 3 Pages. cited by applicant

Sapp et al., Deep Myocardial Ablation Lesions Can Be Created with a Retractable Nedele-Tipped Catheter, Pacing and Clinical Electrophysiology, vol. 27, Issue 5, May 2004, pp. 594-599. cited by applicant

Solazzo, Stephanie A. et al., "High-Power Generator for Radiofrequency Ablation: Larger Electrodes and Pulsing Algorithms in Bovine ex Vivo and Porcine in Vivo Settings", Experimental Studies; Radiology; vol. 242; No. 3, Mar. 2007, pp. 743-750. cited by applicant

Primary Examiner: Demie; Tigist S

Attorney, Agent or Firm: Tarolli, Sundheim, Covell & Tummino LLP

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATION(S) (1) This application is a continuation of U.S. patent application Ser. No. 17/068,812, filed Oct. 12, 2020, now pending, which is a continuation of U.S. patent application Ser. No. 15/584,709, filed May 2, 2017, now U.S. Pat. No. 10,856,937, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/330,395, filed May 2, 2016, U.S. Provisional Application No. 62/357,704, filed Jul. 1, 2016, U.S. Provisional Application No. 62/399,632, filed Sep. 26, 2016, U.S. Provisional Application No. 62/399,625, filed Sep. 26, 2016, U.S. Provisional Application No. 62/420,610, filed Nov. 11, 2016, U.S. Provisional Application No. 62/424,736, filed Nov. 21, 2016, U.S. Provisional Application No. 62/428,406, filed Nov. 30, 2016, U.S. Provisional Application No. 62/434,073, filed Dec. 14, 2016, U.S. Provisional Application No. 62/468,339, filed Mar. 7, 2017, and U.S. Provisional Application No. 62/468,873, filed Mar. 8, 2017, with the entire contents of each of these applications hereby incorporated herein by reference. (2) This application is also related to the following commonly-owned U.S. patent applications filed on even date herewith: U.S. patent application Ser. No. 15/584,323, filed May 2, 2017 entitled "LESION FORMATION"; U.S. patent Ser. No. 15/584,533, filed May 2, 2017, entitled "PULSED RADIOFREQUENCY ABLATION"; U.S. patent application Ser. No. 15/584,146, filed May 2, 2017 entitled "THERAPEUTIC CATHETER WITH IMAGING"; and U.S. patent application Ser. No. 15/584,080, filed May 2, 2017, entitled "CATHETER INSERTION." Each of the foregoing applications is hereby incorporated herein by reference in its entirety.

BACKGROUND

- (1) Abnormal rhythms generally referred to as arrhythmia can occur in the heart. Cardiac arrhythmias develop when abnormal conduction in the myocardial tissue modifies the typical heartbeat pattern. Radio frequency ("RF") catheter ablation can be used to form lesions that interrupt the mechanism of abnormal conduction to terminate certain arrhythmias. SUMMARY
- (2) Ablation systems of the present disclosure facilitate the safe formation of wide and deep lesions. For example, ablation systems of the present disclosure can allow for the flow of irrigation fluid and blood through an expandable ablation electrode, resulting in efficient and effective cooling of the ablation electrode as the ablation electrode delivers energy at a treatment site of the patient. Additionally, or alternatively, ablation systems of the present disclosure can include a deformable ablation electrode and a plurality of sensors that, in cooperation, sense the deformation of the ablation electrode, to provide a robust indication of the extent and direction of contact between the ablation electrode and tissue at a treatment site.
- (3) According to one aspect, a catheter including a catheter shaft, an irrigation element, and an ablation electrode. The catheter shaft has a proximal end portion and a distal end portion, the catheter shaft defining a lumen extending from the proximal end portion to the distal end portion. The irrigation element is coupled to the distal end portion of the catheter shaft, the irrigation element defining irrigation holes in fluid communication with the lumen. The ablation electrode is coupled to the catheter shaft, the ablation electrode having an inner portion and an outer portion opposite the inner portion, wherein the irrigation holes of the irrigation element are directed toward the inner portion of the ablation electrode.
- (4) In certain implementations, at least some of the irrigation holes can have a maximum dimension and, in the absence of external force applied to the ablation electrode, the ratio of the maximum dimension of each irrigation hole to a respective perpendicular distance between the irrigation hole and the inner portion of the ablation electrode can be greater than about 0.02 and less than about 0.2.
- (5) In some implementations, the total area of the irrigation holes can be greater than about 0.05 mm2 and less than about 0.5 mm2.
- (6) In certain implementations, the ablation electrode can envelop the irrigation element. Additionally, or alternatively, a volume defined by the inner portion of the ablation electrode in an expanded state can be larger than a volume defined by the irrigation element in an expanded state. For example, in the absence of external force applied to the ablation electrode, the ablation electrode can include a portion contained between a first radius and a second radius, the first radius and the second radius within 30 percent of one another. As an additional or alternative example, in the absence of external force applied to the ablation electrode, the ablation electrode can include a substantially spherical portion. In certain instances, the ablation electrode can also, or instead, include a substantially conical proximal region.
- (7) In some implementations, the irrigation element can be expandable. For example, the irrigation element, in an expanded state, can include an ellipsoidal portion.
- (8) In certain implementations, the ablation electrode can be expandable.
- (9) In some implementations, the irrigation holes can be spaced circumferentially and axially along the irrigation element.
- (10) In certain implementations, at least a portion of the irrigation holes can be arranged to direct fluid in a distal direction with respect to the ablation electrode, and at least a portion of the irrigation holes can be arranged to direct fluid in a proximal direction with respect to the ablation electrode.
- (11) In some implementations, the irrigation element can include one of a non-compliant balloon or a semi-compliant balloon.

- (12) In certain implementations, the irrigation element can be a resilient, expandable structure.
- (13) In some implementations, the irrigation element can include a porous membrane.
- (14) In certain implementations, the irrigation element can include an open-cell foam.
- (15) In some implementations, at least one of the irrigation element or the ablation electrode can be expandable to have a cross-sectional dimension larger than a cross-sectional diameter of the catheter shaft.
- (16) In certain implementations, the irrigation element can be electrically isolated from the ablation electrode.
- (17) In some implementations, the irrigation element can be electrically isolated from the ablation electrode over a predetermined frequency range.
- (18) In certain implementations, the catheter can further include a center electrode disposed along the irrigation element.
- (19) In some implementations, the irrigation element can be thermally isolated from the ablation electrode.
- (20) In certain implementations, the catheter can further include a thermocouple disposed along the irrigation element.
- (21) In some implementations, the catheter can further include a handle coupled to the proximal end portion of the catheter shaft, the handle including an actuation portion configured to actuate deflection of the catheter shaft.
- (22) In certain implementations, the catheter can further include a plurality of sensors, and the ablation electrode can include a deformable portion and the plurality of sensors is supported on the deformable portion of the ablation electrode. For example, at least one of the sensors can be movable into contact with the irrigation element when a threshold force is exceeded along the deformable portion of the ablation electrode. Continuing with this example, none of the plurality of sensors are in contact with an irrigation element, in certain instances, when the deformable portion of the ablation electrode is in an uncompressed state.
- (23) According to another aspect, a method of ablation tissue in a human patient can include positioning an ablation electrode at a treatment site (the ablation electrode having an outer portion disposed toward tissue and an inner portion opposite the outer portion), directing energy to some of the outer portion of the ablation electrode, and providing a flow of irrigation fluid at the inner portion of the electrode, the flow of irrigation fluid having a Reynolds number greater than about 2300 at the inner portion of the ablation electrode, in the absence of external force applied to the ablation electrode.
- (24) In certain implementations, providing the flow of irrigation fluid can include pumping irrigation fluid through a plurality of irrigation holes defined by an irrigation element enveloped by the ablation electrode, and the irrigation element and the ablation electrode can each be coupled to a distal end portion of a catheter shaft. For example, pumping irrigation fluid through the irrigation holes can include directing at least a portion of the irrigation fluid in a direction distal to the irrigation element and at least a portion of the irrigation fluid in a direction proximal to the irrigation element.
- (25) In some implementations, the method can further include delivering the ablation electrode and the irrigation element to a tissue treatment site. For example, the ablation electrode and the irrigation element can each be coupled to a distal end portion of a catheter shaft, and delivery of the ablation electrode and the irrigation element to the tissue treatment site can includes moving the ablation electrode and the irrigation element, each in a collapsed state, through an 8F introducer sheath.
- (26) According to another aspect, a catheter can include a catheter shaft, an irrigation element, and an ablation electrode. The catheter shaft can have a proximal end portion and a distal end portion, the catheter shaft defining a lumen extending from the proximal end portion to the distal end portion. The irrigation element can be coupled to the distal end portion of the catheter shaft, the

irrigation element in fluid communication with the lumen. The ablation electrode can be coupled to the catheter shaft. The ablation electrode can have an inner portion and an outer portion opposite the inner portion. Additionally, or alternatively, the ablation electrode can include a deformable portion, the deformable portion resiliently flexible from a compressed state to an uncompressed state, the inner portion of the ablation electrode along the deformable portion is closer in the compressed state than in the uncompressed state to at least a portion of a surface of the irrigation element.

- (27) In certain implementations, the ablation electrode can be movable from the uncompressed state to the compressed state by a compression force greater than about 5 grams.
- (28) In some implementations, the irrigation element can define a plurality of irrigation holes in fluid communication with the lumen, with more than one irrigation hole of the plurality of irrigation holes arranged along the irrigation element to direct fluid toward the inner portion of the ablation electrode along the deformable portion. For example, the irrigation element can include a porous membrane. Additionally, or alternatively, the irrigation element can include an open-cell foam. Further, or instead, in an expanded state, the irrigation element can include an ellipsoidal portion (e.g., a balloon). In certain instances, the irrigation holes can be spaced circumferentially and axially along the irrigation element. In some instances, at least a portion of the irrigation holes can be arranged to direct fluid in a distal direction with respect to the ablation electrode, and at least a portion of the irrigation holes can be arranged to direct fluid in a proximal direction with respect to the ablation electrode.
- (29) In certain implementations, the deformable portion of the ablation electrode can be resiliently flexible in an axial direction relative to the catheter shaft and in a radial direction relative to the catheter shaft. Additionally, or alternatively, in the uncompressed state, the deformable portion of the ablation electrode can envelop the irrigation element. In certain instances, the irrigation element can be expandable from a delivery state to an expanded state.
- (30) In some implementations, the ablation electrode can have a conductive surface, the conductive surface having greater than about 50 percent and less than about 95 percent open area along both the inner portion and the outer portion.
- (31) In certain implementations, the ablation electrode can be a mesh.
- (32) In some implementations, the ablation electrode is a braid.
- (33) In certain implementations, the ablation electrode is formed of nitinol. For example, the ablation electrode can be formed of coated nitinol. The coating can be, by way of example, gold tantalum, or a combination thereof.
- (34) In some implementations, the ablation electrode can be at least partially radiopaque.
- (35) In certain implementations, the irrigation element can include a balloon formed of one or more of: thermoplastic polyurethane, silicone, poly(ethylene terephthalate), and polyether block amide. (36) In some implementations, the catheter can further include a plurality of sensors supported on the deformable portion of the ablation electrode. For example, at least one of the sensors can be movable into contact with the irrigation element when a threshold force on the deformable portion of the ablation electrode is exceeded. Additionally, or alternatively, when the deformable portion of the ablation electrode is in the uncompressed state none of the plurality of sensors supported on the deformable portion of the ablation electrode, in the uncompressed state, can include, as an example, an ellipsoidal portion and the sensors of the plurality of sensors can be spaced from one another in a circumferential direction along an inner portion of the ellipsoidal portion of the ablation electrode. For example, the sensors of the plurality of sensors can be uniformly spaced in the circumferential direction along the ellipsoidal portion of the inner portion of the ablation electrode. Further, or instead, the plurality of sensors can include a first set of sensors and a second set of sensors, the first set of sensors can be disposed distal to the second set of sensors along the

inner portion of the ablation electrode. In certain instances, the sensors of the plurality of sensors

can be substantially uniformly distributed along the inner portion of the ablation electrode. Also, or instead, at least one of the sensors can include a radiopaque portion. Additionally, or alternatively, the catheter can include at least one radiopaque marker disposed on the ablation electrode (e.g., supported on at least one of the sensors).

- (37) In certain implementations, the irrigation element and the deformable portion of the ablation electrode can be collapsible to a size deliverable through an 8F introducer sheath.
- (38) According to still another aspect, a catheter ablation system includes a catheter and a controller. The catheter can include a catheter shaft, an irrigation element, and an ablation electrode, and a plurality of sensors. The catheter shaft can have a proximal end portion and a distal end portion, the catheter shaft defining a lumen extending from the proximal end portion to the distal end portion. The irrigation element can be coupled to the distal end portion of the catheter shaft, the irrigation element in fluid communication with the lumen. The ablation electrode can be coupled to the catheter shaft, the ablation electrode having an inner portion and an outer portion opposite the inner portion. The ablation electrode can include a deformable portion, the deformable portion resiliently flexible from a compressed state to an uncompressed state, the inner portion of the ablation electrode along the deformable portion being closer in the compressed state than in the uncompressed state to at least a portion of a surface of the irrigation element. The plurality of sensors can be supported on the deformable portion of the ablation electrode. The controller can be configured to: i) receive a measurement resulting from an electrical signal generated between at least one of the sensors and another electrode; and ii) based at least in part on the measurement, determining a state of the deformable portion of the ablation electrode.
- (39) In certain implementations, the determined state of the deformable portion of the ablation electrode can correspond to a shape of the deformable portion of the ablation electrode.
- (40) In some implementations, the controller can be further configured to send an indication of the determined shape of the deformable portion of the ablation electrode to a graphical user interface.
- (41) In certain implementations, the controller can be further configured to send electrical energy between at least one of the sensors and the irrigation element, and the received measurement can be based on the electrical energy between the at least one of the sensors and the irrigation element.
- (42) In some implementations, the catheter ablation system can further include a center electrode disposed about the irrigation element. The controller can be further configured to send electrical energy between at least one of the sensors and the center electrode, and the received measurement can be based on the electrical energy between the at least one of the sensors and the center electrode.
- (43) According to still another aspect, a method of determining shape of an ablation catheter can include receiving a measurement resulting from an electrical signal generated between at least one sensor (supported on a deformable portion of an ablation electrode) and another electrode, based at least in part on the measurement, determining whether the deformable portion of an ablation electrode is in contact with an irrigation element enveloped by the deformable portion of the ablation electrode, and sending, to a graphical user interface, an indication of the determined contact between the deformable portion of the ablation electrode and the irrigation element.

 (44) In certain implementations, determining the shape of the deformable portion of the ablation catheter can include determining a three-dimensional shape of the deformable portion of the ablation catheter.
- (45) According to still another aspect, a method of making an ablation catheter includes coupling an irrigation element to a distal end portion of a catheter shaft such that the irrigation element is in fluid communication with a lumen defined by the catheter shaft, forming a deformable portion of an ablation electrode, positioning deformable portion of the ablation electrode relative to the irrigation element such that an inner portion of the ablation electrode envelops the irrigation element, and coupling the deformable portion of the ablation electrode to the catheter shaft relative to the irrigation element, the inner portion of the ablation electrode along the deformable portion

- movable between a compressed state and an uncompressed state, the inner portion of the ablation electrode being closer in a compressed than in an uncompressed state to a least a portion of a surface of the irrigation element.
- (46) In certain implementations, forming the deformable portion of the ablation electrode can include removing material from a tube of material (e.g., nitinol) and bending the tube of material into a substantially enclosed shape.
- (47) In some implementations, forming the deformable portion of the ablation electrode can include removing material from a flat sheet of material (e.g., nitinol) and bending the flat sheet of material into a three-dimensional shape. For example, removing material from the flat sheet of material can include laser cutting the flat sheet of material. Additionally, or alternatively, removing material from the flat sheet of material includes chemically etching the flat sheet of material.
- (48) According to yet another aspect, a catheter can include a catheter shaft having a proximal end portion and a distal end portion, and an ablation electrode coupled to the distal end portion of the catheter shaft. The ablation electrode can include struts coupled to one another at joints to define collectively a plurality of cells. Each cell of the plurality of cells can be bounded and the coupled struts can be movable relative to one another such that a maximum radial dimension of the ablation electrode increases by at least a factor of two as the coupled struts move relative to one another to transition the ablation electrode from a compressed state, in the presence of external force, to an uncompressed state, in the absence of external force.
- (49) In some implementations, the struts can be in electrical communication with one another to form a single electrical conductor.
- (50) In certain implementations, the struts can be movable relative to one another to self-expand the ablation electrode from the compressed state to the uncompressed state.
- (51) In some implementations, the ablation electrode can include an inner portion and an outer portion, opposite the inner portion, and the inner portion is in fluid communication with the outer portion through the plurality of cells.
- (52) In certain implementations, in the uncompressed state, at least some of the struts can extend circumferentially with respect to an axis defined by the proximal end portion and the distal end portion of the catheter shaft.
- (53) In some implementations, the ablation electrode can have a maximum axial dimension that changes by less than about 33 percent as the coupled struts move relative to one another to expand the ablation electrode from the uncompressed state to the compressed state upon a change in an external radial force applied to the ablation electrode.
- (54) In certain implementations, in the uncompressed state, the maximum radial dimension of the ablation electrode is at least about 20 percent greater than an outer diameter of the distal end portion of the catheter shaft.
- (55) In some implementations, the ablation electrode can be bulbous in the uncompressed state.
- (56) In certain implementations, the catheter shaft can define a center axis extending from the proximal end portion to the distal end portion, and at least some of the cells of the plurality of cells can have a respective symmetry plane passing through the respective cell and containing the center axis of the catheter shaft. For example, each cell of the plurality of cells can be symmetric about its respective symmetry plane in the compressed state and in the uncompressed state of the ablation electrode.
- (57) In some implementations, the catheter shaft can define a center axis extending from the proximal end portion to the distal end portion, and at least some of the cells of the plurality of cells can have a respective symmetry plane passing through a distal end of the cell, a proximal end of the cell, and the center axis.
- (58) In certain implementations, the ablation electrode can include a distal region and a proximal region, the proximal region coupled to the distal end portion of the catheter, and the struts along the distal region coupled to one another to define a closed shape along the distal region of the ablation

electrode.

- (59) In some implementations, at least some of the cells of the plurality of cells can have a larger area in the uncompressed state of the ablation electrode than in the compressed state of the ablation electrode.
- (60) In certain implementations, in the compressed state, the ablation electrode can be deliverable through an 8 Fr sheath.
- (61) In some implementations, in the compressed state, strain in the ablation electrode can be less than about ten percent.
- (62) In certain implementations, at least some of the plurality of cells can be substantially diamond-shaped in the uncompressed state.
- (63) In some implementations, each end of each of the struts can be coupled to an end of another strut or to the distal end portion of the catheter shaft.
- (64) In certain implementations, the ablation electrode can have an outer portion and an inner portion opposite the outer portion and each cell can extend from the outer portion to the inner portion.
- (65) In some implementations, the struts can be formed of nitinol.
- (66) In certain implementations, the plurality of cells can be circumferentially and axially disposed about the ablation electrode.
- (67) In some implementations, each of the struts can define a portion of at least two cells.
- (68) In certain implementations, a combined area of the plurality of cells along an outer surface of the ablation electrode can be greater than a combined surface area of the struts along the outer surface of the ablation electrode.
- (69) In some implementations, some of the struts can be wider than other ones of the struts. For example, at least some of the wider struts can be mechanically fixed relative to the distal portion of the catheter shaft. Additionally, or alternatively, the other ones of the struts are movable relative to the distal portion of the catheter shaft.
- (70) In certain implementations, at least some of the struts include a non-uniform width along a length of the respective strut.
- (71) According to still another aspect, a catheter can include a catheter shaft, an irrigation element, and an ablation electrode. The catheter shaft can have a proximal end portion and a distal end portion. The irrigation element can be positioned relative to the catheter shaft to direct irrigation fluid distal to the distal end portion of the catheter shaft. The ablation electrode can include a distal region and a proximal region, the proximal region coupled to the distal end portion of the catheter shaft. The distal region can include struts coupled to one another to define collectively a plurality of cells. Each cell in the plurality of cells can be bounded by at least four of the struts, and the struts can be coupled to one another to define a closed shape along the distal region, the closed shape of the distal end region enveloping the irrigation element.
- (72) In certain implementations, the catheter can further include a fastener (e.g., a rivet) coupling the struts to one another to define a closed shape along the distal end region. For example, the fastener can be formed of a first material and the struts are formed of a second, the first material different from the second material. Further, or instead, a portion of the struts can define respective eyelets through which the fastener extends to couple the portion of the struts to one another. The eyelets can be, for example, aligned with one another. The fastener can, for example, extend through the eyelets at a distalmost position of the ablation electrode. Additionally, or alternatively, the plurality of cells can include a first set of cells and a second set of cells. The first set of cells can be bounded by the portion of the struts defining respective eyelets, the second set of cells can be bounded by fewer struts than the first set of cells.
- (73) In some implementations, the catheter shaft can define a center axis extending from the proximal end portion to the distal end portion. The center axis can extend, for example, through the

fastener in the absence of an external force applied to the ablation electrode.

- (74) In certain implementations, each end of the strut can be coupled to an end of at least one of the other struts or to the distal end portion of the catheter shaft.
- (75) In some implementations, at least one portion of the ablation electrode can be resiliently flexible between a compressed state, in the presence of an external force, and an uncompressed state, in the absence of an external force. For example, at least some of the cells of the plurality of cells can have a larger area in the uncompressed state than in the compressed state. As a further or alternative example, the ablation electrode can be self-expandable from the compressed state to the uncompressed state. In certain instances, the ablation electrode can be deliverable through an 8 Fr sheath. In some instances, in the compressed state, strain in the ablation electrode is less than about ten percent. Further or instead, the ablation electrode can be bulbous in the uncompressed state. (76) In certain implementations, the struts can be formed of nitinol.
- (77) In some implementations, the plurality of cells can be circumferentially and axially disposed about the ablation electrode.
- (78) In some implementations, each of the struts can define a portion of at least two cells.
- (79) According to another aspect, a method of forming a catheter can include forming an ablation electrode having two open ends, the ablation electrode including struts collectively defining a first set of cells, a portion of the struts having a first end region coupled to another one of the struts and a second end region uncoupled from each of the other struts, inserting a fastener through the respective second end regions of the portion of the struts to couple the second end regions to one another to define a second set of cells and to close one of the two open ends of the ablation electrode, and coupling the ablation electrode to a distal end portion of a catheter shaft.
- (80) In certain implementations, the open end of the ablation electrode away from the fastener can be coupled to the distal end portion of the catheter shaft.
- (81) In some implementations, with the second end regions of the portion of the struts coupled to one another, the ablation electrode can be resiliently flexible between a compressed state, in the presence of an external force, and an uncompressed state, in the absence of an external force.
- (82) In certain implementations, the second end region of each respective strut of the portion of struts can define an eyelet and inserting the fastener through the respective second end regions of the portion of struts can include aligning the eyelets of the second end regions such that the fastener is inserted through the aligned eyelets.
- (83) In some implementations, forming the ablation electrode can include removing material from a flat sheet of material to form the first set of cells. For example, removing material from the flat sheet of material can include one or more of laser cutting the flat sheet of material and chemically etching the flat sheet of material.
- (84) In certain implementations, forming the ablation electrode can include removing material from a tube of material to form the first set of cells. For example, removing material from the tube of material includes laser cutting the tube.
- (85) In some implementations, the ablation electrode can be formed of nitinol.
- (86) According to still another aspect, the catheter can include a catheter shaft and an ablation electrode (e.g., formed of nitinol). The catheter shaft can have a proximal end portion and a distal end portion. The ablation electrode can be coupled to the distal end portion of the catheter shaft and in electrical communication with an electrical power source. The ablation electrode can include a deformable portion resiliently flexible between a compressed state and an uncompressed state. The deformable portion can have less than about ± 10 percent variation in current density at 1 mm away in a medium of uniform conductivity from an outer portion of the deformable portion in the uncompressed state as current from the electrical power source moves through the deformable portion of the ablation electrode.
- (87) In certain implementations, in the uncompressed state, the maximum radial dimension of the deformable portion is at least 20 percent greater than a maximum radial dimension of the catheter

shaft. For example, in the compressed state, the deformable portion can be deliverable through an 8 Fr sheath.

- (88) In some implementations, the deformable portion can be substantially spherical in the uncompressed state.
- (89) In certain implementations, at least the deformable portion of the ablation electrode can include electropolished surfaces.
- (90) In some implementations, the deformable portion can include struts collectively defining a plurality of cells, each cell extending from the outer portion of the deformable portion to an inner portion of the deformable portion. For example, the area of at least some of the cells can be larger in the uncompressed state than the area of the respective cell in the compressed state.
- (91) In certain implementations, the catheter shaft can define a center axis extending from the proximal portion to the distal portion and the deformable portion is symmetric about a plane including the center axis.
- (92) According to another aspect, a catheter includes a catheter shaft and an ablation electrode. The catheter shaft can have a proximal end portion and a distal end portion. The ablation electrode can include a distal region and a proximal region, the proximal region coupled to the distal end portion of the catheter shaft. The ablation electrode can be connectable in electrical communication with an electrical power source. The ablation electrode can include struts collectively defining a plurality of cells, wherein open area of the cells of the plurality of cells varies from the proximal region to the distal region of the ablation electrode, and the struts defining the plurality of cells are electrically conductive.
- (93) In certain implementations, a number of the cells along a meridian of the distal region can be less than a number of cells along a meridian passing through a maximum radial dimension of the ablation electrode.
- (94) In some implementations, the number of cells along a meridian of the proximal region can be less than a number of cells along a meridian passing through a maximum radial dimension of the ablation electrode.
- (95) In certain implementations, the struts defining the plurality of cells can have a substantially uniform width.
- (96) In some implementations, the struts can include a first set of struts having a first width and a second set of struts having a second width, different from the first width, and the first set of struts are axially spaced from the second set of struts.
- (97) In certain implementations, at least some of the struts can have a non-uniform width along a respective length of the strut. For example, the at least some of the struts can have a width increasing along the respective length of the strut in a direction from the proximal region to the distal region of the ablation electrode.
- (98) According to still another aspect, a catheter can include a catheter shaft and an ablation electrode. The catheter shaft has a proximal end portion and a distal end portion, and the ablation electrode is coupled to the distal end portion of the catheter shaft. The ablation electrode includes a deformable portion resiliently flexible between a compressed state and an uncompressed state, the deformable portion in the uncompressed state positionable at multiple different angles relative to tissue at a treatment site, and, for the same amount of ablation energy delivered from the deformable portion to the tissue at a given amount of pressure between the deformable portion and the tissue, the deformable portion generating lesions of substantially similar size at each of the multiple different angles.
- (99) In certain implementations, the multiple different angles can include an axial direction defined by the catheter shaft and a lateral direction perpendicular to the axial direction.
- (100) In some implementations, the lesions can correspond to each of the multiple different angles have similar depth and similar width at each of the multiple different angles.
- (101) In certain implementations, the lesions can correspond to each of the multiple different

angles have a depth varying by less than about ± 30 percent. For example, the lesions can correspond to each of the multiple different angles have a depth varying by about ± 20 percent.

- (102) In some implementations, the deformable portion in the uncompressed state can have a maximum lateral dimension at least 20 percent greater than a maximum lateral dimension of the catheter shaft.
- (103) In certain implementations, the deformable portion includes an open framework through which fluid is movable through the framework to cool the deformable portion.
- (104) According to another aspect, a cardiac catheter includes a catheter shaft, a center electrode, enclosure, and surface electrodes. The catheter shaft has a proximal end portion and a distal end portion. The center electrode is coupled to the distal end portion of the catheter shaft. The enclosure is coupled to the distal end portion of the catheter shaft, the enclosure resiliently flexible in response to external force, and the enclosure enveloping the center electrode in the absence of external force. The surface electrodes can be disposed along the enclosure and spaced apart from the center electrode in the absence of external force applied to the enclosure.
- (105) In certain implementations, in the absence of external force applied to the enclosure, each surface electrode can be spaced from the center electrode by a distance greater than about 2 mm and less than about 6 mm.
- (106) In some implementations, independent of orientation of the enclosure relative to tissue, the enclosure can make initial contact with the tissue before the center electrode makes initial contact with the tissue.
- (107) In certain implementations, in the absence of external force applied to the enclosure, the surface electrodes can be noncoplanar relative to one another.
- (108) In some implementations, the enclosure can be an ablation electrode.
- (109) In certain implementations, each surface electrode can be electrically isolated from the enclosure.
- (110) In some implementations, the enclosure can include an outer portion opposite an inner portion, the enclosure defining a plurality of cells extending from the outer portion to the inner portion.
- (111) In certain implementations, the center electrode can be in fluid communication with the outer portion of the enclosure through the plurality of cells.
- (112) In some implementations, each surface electrode can be disposed along the outer portion of the enclosure.
- (113) In certain implementations, each surface electrode can be disposed along the inner portion of the enclosure.
- (114) In some implementations, each surface electrode can extend through the enclosure, from an outer portion of the enclosure to an inner portion of the enclosure.
- (115) In certain implementations, the enclosure, in the absence of external force, can have a maximum radial dimension greater than a maximum radial dimension of the distal end portion of the catheter shaft. For example, the maximum radial dimension of the enclosure can be greater than the maximum radial dimension of the distal end portion of the catheter shaft by at least about 20 percent.
- (116) In some implementations, in the absence of external force applied to the enclosure, at least a portion of the enclosure can be substantially spherical.
- (117) In certain implementations, the center electrode can be spaced distally from the distal end portion of the catheter shaft.
- (118) In some implementations, the center electrode can be disposed on an irrigation element in fluid communication with the catheter shaft.
- (119) In certain implementations, the center electrode can be disposed substantially along a center axis defined by the catheter shaft.
- (120) According to another aspect, a system can include a catheter shaft, a center electrode, an

enclosure, surface electrodes, and a catheter interface unit. The catheter shaft has a proximal end portion and a distal end portion. The center electrode is coupled to the distal end portion of the catheter shaft. The enclosure is coupled to the distal end portion of the catheter shaft, the enclosure resiliently flexible in response to an external force, and the enclosure enveloping the center electrode in the absence of the external force. The surface electrodes are disposed along the enclosure and spaced apart from the center electrode in the absence of external force applied to the enclosure. The catheter interface unit includes a graphical user interface, one or more processors and a non-transitory, computer readable storage medium having stored thereon computer executable instructions for causing the one or more processors to acquire a plurality of electrograms, each respective electrogram based on a difference between a first electrical signal and a second electrical signal, the first electrical signal from a respective one of the surface electrodes, and the second electrical signal from the center electrode, and display a representation of at least one of the plurality of electrograms on the graphical user interface.

- (121) In certain implementations, the computer readable storage medium further can have stored thereon computer executable instructions for causing the one or more processors to determine a voltage map of a heart associated with the plurality of electrograms, the voltage map based at least in part on the plurality of electrograms. Additionally, or alternatively, the non-transitory, computer readable storage medium can have stored thereon computer executable instructions for causing the one or more processors to display the voltage map on the graphical user interface.
- (122) According to still another aspect, a method of determining electrical activity associated with a heart of a patient can include receiving a first electrical signal from a center electrode of a cardiac catheter, for surface electrodes disposed on an enclosure enveloping the center electrode, receiving a plurality of second electrical signals, each respective second electrical signal associated with one of the surface electrodes, and determining a plurality of electrograms, each electrogram based on a difference between a respective one of the second electrical signals and the first signal.
- (123) In certain implementations, the center electrode can be at least about 2 mm and less than about 6 mm from each of the surface electrodes in the absence of a force applied to the enclosure enveloping the center electrode.
- (124) In some implementations, the method can further include sending a representation of one or more of the electrograms to a graphical user interface.
- (125) In certain implementations, the method can further include determining a voltage map of the heart based at least in part on the plurality of electrograms.
- (126) In some implementations, the method can further include sending electrical energy to an irrigation element of the cardiac catheter, wherein the center electrode is disposed along the irrigation element, and the electrical energy to the irrigation element reduces noise on one or more of the first electrical signal and the plurality of the second electrical signals.
- (127) According to still another aspect, a method of treating a cardiac condition includes moving a distal end region of a catheter shaft toward a cavity of a heart of a patient, for an enclosure coupled to the catheter shaft, expanding the enclosure such that surface electrodes disposed on the enclosure move in a direction away from a center electrode enveloped by the enclosure and coupled to the catheter shaft, and selectively treating tissue of the cavity based on a plurality of electrograms, each electrogram based on a difference between a first electrical signal from the center electrode and a second electrical signal from at least one surface electrode disposed on the enclosure.
- (128) In certain implementations, selectively treating the tissue of the cavity can include delivering ablation energy to the tissue of the cavity.
- (129) In some implementations, delivering ablation energy to the tissue of the cavity includes delivering ablation energy to the enclosure upon which the surface electrodes are disposed. (130) Embodiments can include one or more of the following advantages.
- (131) In certain implementations, irrigation holes of an irrigation element are directed toward an inner portion of the ablation electrode. This configuration can facilitate cooling the ablation

electrode through a combination of irrigation fluid and blood flow past the inner portion of the ablation electrode. For example, directing irrigation fluid toward the inner portion of the ablation electrode can facilitate the movement of blood in the space between the introduction of the irrigation fluid and the inner portion of the ablation electrode. Thus, as compared to closed cooling configurations, implementations including the irrigations holes directed toward the inner portion of the ablation electrode can improve local cooling at the ablation electrode and/or reduce the likelihood of blood clot or charring at the treatment site.

(132) In some implementations, an ablation electrode is expandable from a compressed state to an uncompressed state. As compared to ablation electrodes that are not expandable, expandable ablation electrodes of the present disclosure can be delivered through relatively small sheaths (e.g., 8 French sheaths) while still having a large surface area through which energy can be safely delivered to tissue to create lesions in the tissue of the patient. Also, or instead, expandable ablation electrodes of the present disclosure can have an open area through which blood can flow during treatment. As compared to ablation electrodes that are impervious to the movement of blood, the expandable ablation electrodes of the present disclosure have a reduced impact on the natural movement of blood and, thus, a reduced impact on cooling afforded by the natural movement of blood past the treatment site.

(133) In certain implementations, sensors are disposed on a deformable portion of an expandable ablation electrode, and deformation of the deformable portion of the ablation electrode can be detected in one or more directions using the sensors. In general, such a configuration of sensors can provide information about the amount and direction of contact force exerted on tissue by the expandable electrode which, by being expandable, can have a larger surface area than a non-expandable electrode deliverable through a sheath of a given size. More specifically, because the deformation of the deformable portion can be reproducible (e.g., substantially linear in some cases) as a function of force (e.g., over a range of forces associated with an ablation procedure), deformation detected by the sensors can be useful as feedback regarding the amount and direction of force applied to tissue by the expandable ablation electrode having a large surface area. Thus, in combination with or in addition to the large surface area afforded by the expandable ablation electrode, the deformation detectable by the sensors regarding the degree and/or direction of contact between the expandable ablation electrode and tissue can, for example, facilitate application of appropriate force and the safe application of energy to tissue.

(134) In some implementations, an ablation electrode includes a deformable portion resiliently flexible between a compressed state and an uncompressed state, the deformable portion having a substantially uniform current density (e.g., less than about ±10 percent variation in current density at 1 mm away from an outer portion of the deformable portion) as current from an electrical power source moves through the deformable portion in the uncompressed state. Such a substantially uniform distribution of current density can facilitate reliable and repeatable creation of large lesions with an expandable electrode. Additionally, or alternatively, the substantially uniform distribution of current density in an expandable electrode can facilitate forming large lesions in a manner that is substantially independent of orientation of the expandable electrode relative to the tissue. (135) Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** is a schematic representation of an ablation system during an ablation treatment.
- (2) FIG. 2 is a perspective view of a catheter of the ablation system of FIG. 1.
- (3) FIG. **3** is a perspective view of a distal end portion of the catheter of the ablation system of FIG.

- 1.
- (5) FIG. **5** is a schematic representation of a jet of irrigation fluid moving from an irrigation element to an inner portion of an ablation electrode of the catheter of FIG. **2**.
- (6) FIG. **6** is a side view of an ablation electrode of the ablation system of FIG. **1**.

(4) FIG. 4 is a cross-sectional perspective view along cross-section A-A of FIG. 3.

- (7) FIG. **7** is a perspective view of the ablation electrode of the ablation system of FIG. **1**.
- (8) FIG. **8** is a cross-sectional view, taken along line B-B in FIG. **7**, of the ablation electrode of the ablation system of FIG. **1**.
- (9) FIG. **9** is an exemplary graph of force as a function of displacement of a deformable portion of the ablation electrode of the ablation system of FIG. **1**.
- (10) FIG. **10** is a perspective view of sensors and the ablation electrode of the ablation system of FIG. **1**, with the sensors shown mounted to the ablation electrode.
- (11) FIG. **11** is a perspective view of a sensor of the ablation system of FIG. **1**.
- (12) FIGS. **12**A-**12**C are schematic representations of a method of forming the ablation electrode of the ablation system of FIG. **1**.
- (13) FIGS. **13**A-**13**E are schematic representations of a method of inserting the catheter of FIG. **2** into a patient.
- (14) FIGS. **14**A-**14**C are schematic representations of a method of positioning the ablation electrode of the ablation system of FIG. **1** at a treatment site of a patient.
- (15) FIGS. **15**A and **15**B are schematic representations of a method of irrigating the ablation electrode of the ablation system of FIG. **1**.
- (16) FIG. **16** is a schematic representation of a side view of a helical irrigation element of a catheter of an ablation system.
- (17) FIG. **17** is a side view of an irrigation element of a catheter of an ablation system, the irrigation element including a porous membrane.
- (18) FIG. **18** is a perspective view of a distal end portion of a catheter of an ablation system.
- (19) FIG. **19** is a perspective view of a distal end portion of a catheter of an ablation system.
- (20) FIG. **20** is a cross-sectional perspective view along cross-section D-D of FIG. **19**.
- (21) FIG. 21 is a perspective view of a distal end portion of a catheter of an ablation system.
- (22) FIG. **22** is a cross-sectional side view of the catheter of FIG. **21** along cross-section E-E. of FIG. **21**.
- (23) FIG. **23** is a perspective view of an irrigation element of the catheter of FIG. **21**.
- (24) FIG. **24** is a perspective view of a tube for forming the irrigation element shown in FIG. **23**.
- (25) FIG. **25** is a schematic representation of placement of a sensor on an ablation electrode of the catheter of FIG. **21**.
- (26) FIG. **26** is a schematic representation of a trajectory around an outer surface of an ablation electrode of the catheter of FIG. **21**, the trajectory used to present simulation results of current density associated with the ablation electrode.
- (27) FIG. **27** is a graph of percentage change in simulated current density along the trajectory shown in FIG. **26**, at a fixed distance of 1 mm from an outer surface of the ablation electrode.
- (28) FIG. **28** is a graph of depth and width of lesions applied to chicken breast meat using the ablation electrode of FIG. **21** in axial and lateral orientations relative to the chicken breast meat.
- (29) FIG. **29** is a side view of a deformable portion of an ablation electrode, the deformable portion of the ablation portion including a substantially conical proximal portion.
- (30) Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

(31) The present disclosure is generally directed to systems and methods of ablating tissue of a patient during a medical procedure being performed on an anatomic structure of the patient. By way of non-limiting example and for the sake of clarity of explanation, the systems and methods of the present disclosure are described with respect to ablation of tissue in a heart cavity of the patient

- as part of an ablation treatment associated with the treatment of cardiac arrhythmia. However, it should be appreciated that, unless otherwise specified, the systems and methods of the present disclosure can be used for any of various different medical procedures, such as procedures performed on a hollow anatomic structure of a patient, in which ablation of tissue is part of a medical treatment.
- (32) As used herein, the term "physician" should be considered to include any type of medical personnel who may be performing or assisting a medical procedure.
- (33) As used herein, the term "patient" should be considered to include any mammal, including a human, upon which a medical procedure is being performed.
- (34) FIG. 1 is a schematic representation of an ablation system 100 during a cardiac ablation treatment being performed on a patient 102. The ablation system 100 includes a catheter 104 connected, via an extension cable 106, to a catheter interface unit 108. The catheter interface unit 108 can be a computing device that includes a processing unit 109a, a non-transitory, computer readable storage medium 109b, and a graphical user interface 110. The processing unit 109a can be a controller including one or more processors, and the storage medium 109b can have stored thereon computer executable instructions for causing the one or more processors of the processing unit 109a to carry out one or more portions of the various methods described herein, unless otherwise indicated or made clear from the context.
- (35) A mapping system **112**, a recording system **111**, an irrigation pump **114**, and a generator **116** can be connected to the catheter interface unit **108**. The irrigation pump **114** can be removably and fluidly connected to the ablation catheter **104** via fluid line **115**. The generator **116** can also, or instead, be connected, via one or more of wires **117**, to one or more return electrodes **118** attached to the skin of the patient **102**. The recording system **111** can be used throughout the ablation treatment, as well as before or after the treatment. The mapping system **112** can be used prior to and/or during an ablation treatment to map the cardiac tissue of the patient **102** and determine which region or regions of the cardiac tissue require ablation.
- (36) Referring now to FIGS. **2-4**, the catheter **104** can include a handle **120**, a catheter shaft **122**, an ablation electrode **124**, sensors **126**, and an irrigation element **128**. The handle **120** is coupled to a proximal end portion **130** of the catheter shaft **122**, and a distal end portion **132** of the catheter shaft **122** can be coupled to the irrigation element **128** and to the ablation electrode **124**, which supports the sensors **126** in some implementations. The handle **120** can, further or instead, be coupled to the fluid line **115** and to one or more of the wires **117** for delivery of irrigation fluid and electrical energy, respectively, along the catheter shaft **122**, to the ablation electrode **124**.
- (37) As described in further detail below, in a deployed state of the ablation electrode **124**, irrigation fluid exits irrigation holes **134** defined by the irrigation element **128** and is directed toward an inner portion **136** of the ablation electrode **124** while an outer portion **138** (opposite the inner portion **136**) of the ablation electrode **124** is in contact with tissue as part of an ablation treatment. Spacing between the irrigation holes **134** and the inner portion **136** of the ablation electrode **124** can facilitate heat transfer between the irrigation fluid and the ablation electrode **124**. For example, in the spacing between the irrigation holes **134** and the inner portion **136** of the ablation electrode **124**, the respective jets of irrigation fluid can develop turbulent characteristics. Without wishing to be bound by theory, it is believed that, as compared to non-turbulent or less turbulent flow of irrigation fluid, increased turbulence can improve local heat transfer from the ablation electrode **124** (e.g., from the inner portion **136** of the ablation electrode **124**) to the irrigation fluid. Additionally, or alternatively, blood can flow through the spacing between the irrigation holes **134** and the inner portion **136** of the ablation electrode **124**. As compared to configurations in which the flow of blood away from the treatment site is impeded, the flow of blood through the spacing between the irrigation holes **134** and the inner portion **136** of the ablation electrode **124** can, additionally or alternatively, improve further the local heat transfer from the outer portion **138** of the ablation electrode **124**. In general, it should be appreciated that

such improved local heat transfer can reduce the likelihood of blood clot or charring. As used herein, the term "holes" should be understood to include any size and shape of discrete orifice having a maximum dimension and through which fluid can flow and, thus, should be understood to include any manner and form of substantially geometric shapes (e.g., substantially circular shapes) and, also or instead, substantially irregular shapes, unless otherwise specified or made clear from the context.

- (38) As also described in further detail below, the ablation electrode **124** can include a coupling portion **140** and a deformable portion **142**. As used herein, the terms "expandable" and "deformable" are used interchangeably, unless otherwise specified or made clear from the context. Thus, for example, it should be understood that the deformable portion **142** is expandable unless otherwise specified.
- (39) The coupling portion **140** is secured to the distal end portion **132** of the catheter shaft **122**, and the deformable portion **142** can extend distally from the coupling portion **140**. The deformable portion **142** of the ablation electrode **142** can be deformed for delivery (e.g., through an introducer sheath, such as an 8F introducer sheath) and expanded at a treatment site to have a cross-sectional dimension larger than a cross-sectional dimension of the catheter shaft **122**. As compared to smaller ablation electrodes, the ablation electrode **124** can provide wider lesions within a shorter period of time, facilitating the creation of a pattern of overlapping lesions (e.g., reducing the likelihood of arrythmogenic gaps, and reducing the time and number of lesions required for an overlapping pattern, or both). Additionally, or alternatively, a larger tip can facilitate the delivery of more power for providing wider and deeper lesions.
- (40) Further, in an expanded state, the deformable portion **142** of the ablation electrode **124** is deformable upon sufficient contact force with tissue, and the shape and extent of the deformation can be detected based, at least in part, upon signals received from the sensors **126** on the deformable portion **142** of the ablation electrode **124**. As described in greater detail below, the sensors **126** can be used in one or more modes of parameter measurement and, for example, can include one or more of an electrode, a thermistor, an ultrasound transducer, and an optical fiber. Additionally, or alternatively, the deformable portion **142** can be radiopaque such that deformation of the deformable portion **142** as a result of contact with tissue is observable, for example, through X-ray or similar visualization techniques. The detection and/or observation of the deformation of the deformable portion **142** of the ablation electrode **124** can, for example, provide improved certainty that an intended treatment is, in fact, being provided to tissue. It should be appreciated that improved certainty of positioning of an ablation electrode with respect to tissue can reduce the likelihood of gaps in a lesion pattern and, also or instead, can reduce the time and number of ablations otherwise required to avoid gaps in a lesion pattern.
- (41) The handle **120** can include a housing **145** and an actuation portion **146**. In use, the actuation portion **146** can be operated to deflect the distal end portion **132** of the catheter shaft **122** to facilitate positioning the ablation electrode **124** into contact with tissue at a treatment site. The handle **120** can include a fluid line connector **148** (e.g., a luer connector) and an electrical connector **149**. The fluid line **115** can be connectable to the fluid line connector **148** and, in use, irrigation fluid (e.g., saline) can be delivered from the irrigation pump **114** to the catheter **104** where, as described in further detail below, the irrigation fluid is ultimately deliverable through the irrigation holes **134** of the irrigation element **128** to the inner portion **136** of the ablation electrode **124**. The extension cable **106** is connectable to the electrical connector **149**. In use, electrical energy can be delivered from the generator **116** to the catheter **104** where, as described in further detail below, the electrical energy is ultimately deliverable to the ablation electrode **124** to ablate tissue in contact with the outer portion **138** of the ablation electrode **124**.
- (42) The handle **120** can be attached to the proximal end portion **130** of the catheter shaft **122** through any of various techniques, including one or more of adhesive bonds, thermal bonds, and mechanical connections.

- (43) The catheter shaft 122 defines a lumen 151 extending from the proximal end portion 130 of the catheter shaft 122 to the distal end portion 132 of the catheter shaft 122. The lumen 151 can be in fluid communication with the irrigation pump 114, via the fluid line 115 and the fluid line connector 148 of the handle 120, such that irrigation fluid can be pumped from the irrigation pump 114 to the irrigation holes 134 defined by the irrigation element 128. The catheter shaft 122 can also, or instead, include electrical wires (such as any one or more of the wires 117 shown in FIG. 1) extending along the catheter shaft 122 to carry signals between the sensors 126 and the catheter interface unit 108 and to carry electrical power from the generator 116 to the ablation electrode 124.
- (44) The catheter shaft 122 can be formed of any of various different biocompatible materials that provide the catheter shaft 122 with sufficient sturdiness and flexibility to allow the catheter shaft 122 to be navigated through blood vessels of a patient. Examples of suitable materials from which the catheter shaft 122 can be formed include polyether block amides (e.g., Pebax®, available from Arkema of Colombes, France), nylon, polyurethane, Pellethane® (available from The Lubrizol Corporation of Wickliffe, Ohio), and silicone. In certain implementations, the catheter shaft 122 includes multiple different materials along its length. The materials can, for example, be selected to provide the catheter shaft 122 with increased flexibility at the distal end, when compared to the proximal. The catheter shaft 122 can also, or instead, include a tubular braided element that provides torsional stiffness while maintaining bending flexibility to one or more regions of the catheter shaft 122. Further, or in the alternative, the shaft material can include radiopaque agents such as barium sulfate or bismuth, to facilitate fluoroscopic visualization.
- (45) The catheter shaft **122** can further include pull wires (not shown) mechanically coupled (e.g., via a ring secured to the catheter shaft **122**) to the distal end portion **132** of the catheter shaft **122** and mechanically coupled to the actuation portion **146** of the handle **120**, as is well known in the art. During use, tension may be applied to the wires to deflect the distal end portion **132** of the catheter shaft **122** to steer the catheter shaft **122** toward a treatment site.
- (46) The irrigation element **128** can include a stem **154** and a bulb **156**. The stem **154** can be coupled to the distal end portion **132** of the catheter shaft **122** in fluid communication with the lumen **151** of the catheter shaft **122** and, ultimately, with the irrigation pump **114**. The bulb **156** defines the irrigation holes **134** and is in fluid communication with the stem **154**. Accordingly, irrigation fluid can pass through the lumen **151**, through the stem **154**, and can exit the irrigation element **128** through the irrigation holes **134** defined by the bulb **156**.
- (47) The stem **154** can be substantially rigid and extend from the distal end portion **132** of the catheter shaft **122** in a direction having a distal component and/or a radial component. For example, a radial extent of the stem **154** can direct irrigation fluid from an off-center position of the lumen **151** to a position along a center axis defined by the catheter shaft **122**. Additionally, or alternatively, a distal extent of the stem **154** can facilitate clearance of the catheter shaft **122** such that a portion of the irrigation holes **134** directed in the proximal direction have a substantially unobstructed path to a portion of the inner portion **136** of the ablation electrode **124** that is proximal to the irrigation element **128**. Thus, more generally, it should be understood that the size and shape of one or more of the stem **154**, the bulb **156**, and the irrigation holes **134** can be varied to achieve desired directionality of the irrigation fluid toward the inner portion **136** of the ablation electrode **124**.
- (48) The bulb **156** can be substantially rigid and, in certain implementations, formed of the same material as the stem **154**. Additionally, or alternatively, the bulb **156** can be substantially spherical to facilitate directing irrigation fluid toward substantially the entire inner portion **136** of the ablation electrode **124**. It should be appreciated, however, that the bulb **156** can be any of various different shapes that facilitate multi-directional dispersion of irrigation fluid toward the inner portion **136** of the ablation electrode **124**.
- (49) In certain implementations, the irrigation holes 134 can be spaced circumferentially and

axially along the irrigation element. For example, the irrigation holes **134** can be spatially distributed along the bulb **156** with at least a portion of the irrigation holes **134** arranged to direct irrigation fluid in a distal direction with respect to the ablation electrode **124** and at least a portion of the irrigation holes **134** arranged to direct irrigation fluid in a proximal direction with respect to the ablation electrode **124**. More generally, the irrigation holes **134** can be distributed to produce a relatively uniform dispersion of irrigation fluid along the inner portion **136** of the ablation electrode **124** enveloping the irrigation element **128**.

- (50) The overall radial extent of the irrigation element **128** can be less than the outer diameter of the catheter shaft **122**. For example, the irrigation element **128** can remain in the same orientation in a delivery configuration of the catheter **104** to the treatment and during treatment at the treatment site while, as described in further detail below, the ablation electrode **124** expands from a compressed state during delivery to an expanded state during treatment at the treatment site. As also described in further detail below, the fixed orientation of the irrigation element **128** can facilitate using the irrigation element **128** to act as a sensor or to carry a sensor. For example, a sensor can be added to the irrigation element **128** to act as a sensor, in cooperation with the sensors **126** such that the sensor on the irrigation element **128** can act as a center electrode and the sensors **126** can act as surface electrodes, as described in greater detail below.
- (51) While the irrigation element 128 can extend distal to the catheter shaft 122, distal extent of the irrigation element 128 can be limited by the inner portion 136 of the ablation electrode 124. For example, the irrigation element 128 can be spaced relative to the inner portion 136 of the ablation electrode 124 such that the irrigation holes 134 direct irrigation fluid toward the inner portion 136 of the ablation electrode 124 in an expanded state. In particular, given that the deformable portion 142 of the ablation electrode 124 is intended to contact tissue during ablation, the irrigation holes 134 can be oriented toward the deformable portion 142 of the ablation electrode 124 to direct fluid toward the inner portion 136 of the ablation electrode 124 along the deformable portion 142 in contact with the tissue. Directing the irrigation fluid toward the deformable portion 142 of the ablation electrode 124 in this way can, for example, reduce the likelihood of unintended tissue damage resulting from the ablation treatment.
- (52) Referring now to FIG. **5**, a schematic representation of a jet **158** of irrigation fluid exiting one of the irrigation holes **134** and moving toward the inner portion **136** of the ablation electrode **124** is shown just prior to impact between the jet **158** and the inner portion **136**. A distance "L" is a perpendicular distance between the irrigation hole **134** and the inner portion **136** of the ablation electrode **124** when the ablation electrode **124** is in an undeformed state (e.g., in the absence of an external force applied to the ablation electrode **124**). For the sake of clarity, a two-dimensional cross-section of a single jet is shown. However, it should be understood that, in use, a respective three-dimensional jet issues from each of the irrigation holes **134** and the plurality of jets may interact with one another and/or with the patient's blood, along the distance "L," to create additional turbulence at the inner portion **136** of the ablation electrode **124**.
- (53) In implementations in which the irrigation holes **134** have a circular cross-section, the ratio of a maximum dimension "D" of each of the irrigation holes **134** to the respective distance "L" between the respective irrigation hole **134** and the inner portion **136** of the ablation electrode **124** can be greater than about 0.02 and less than about 0.2 (e.g., greater than about 0.03 and less than about 0.06). Given other design considerations (e.g., manufacturability of hole sizes of the irrigation holes **134**, acceptable pressure drop in the system, the influence of blood flow between the irrigation element **128** and the ablation electrode **124**, or a combination thereof), this range of ratios will result in turbulent flow of irrigation fluid at the inner portion **136** of the ablation electrode **124**. Without wishing to be bound by theory, it is believed that, as compared to configurations with laminar flow and/or less turbulent flow of irrigation fluid past the inner portion **136** of the ablation electrode **124**, the turbulent flow of irrigation fluid moving from the irrigation holes **134** to the inner portion **136** of the ablation electrode **124** results in increased heat transfer,

which can reduce unintended tissue damage during ablation.

- (54) The size and number of the irrigation holes **134** defined by the irrigation element **128** are selected such that the pressure of irrigation fluid in the irrigation element **128** is sufficient to prevent blood from entering the irrigation holes **134**. For example, providing for some margin of variation in pressure of the irrigation fluid, the size and number of the irrigation holes **134** defined by the irrigation element **128** can be selected such that the pressure of the irrigation fluid in the irrigation element **128** is at least about 0.5 psi greater than the pressure of the blood of the patient **102**. Further, in implementations in which the irrigation element **128** is expandable (e.g., a balloon), the positive pressure difference between the irrigation fluid within the irrigation element **128** and the blood of the patient **102** can allow the irrigation element **128** to maintain an expanded shape. The size and number of the irrigation holes **134** can be, additionally or alternatively, selected to provide substantially uniform coverage of the irrigation fluid on the deformable portion **142** of the ablation electrode **124**.
- (55) In certain implementations, the irrigation holes **134** defined by the irrigation element **128** have a total open area of greater than about 0.05 mm2 and less than about 0.5 mm2. In some implementations, the total number of the irrigations holes **134** can be greater than about 50 and less than about 250 (e.g., about 200). In implementations in which the irrigation element **128** is substantially rigid (e.g., formed of stainless steel and/or platinum iridium), the irrigation holes **134** can be formed into the irrigation element **128** using any one or more material removal techniques known in the art, examples of which include drilling and the use of a laser. In implementations in which the irrigation element **127** is formed of an elastomer, the irrigation holes **134** can be formed through the use of a laser.
- (56) Referring now to FIGS. **1-11**, the ablation electrode **124** is a continuous structure that acts as one electrode in the monopolar electrode configuration of the ablation system **100**, shown in FIG. **1**. It should be appreciated, however, that the ablation electrode **124** can include electrically isolated portions such that the ablation electrode **124** includes two electrodes of a bipolar electrode configuration.
- (57) The ablation electrode **124** can have an outer diameter of greater than about 4 mm and less than about 16 mm (e.g., about 8 mm) and, additionally or alternatively, a thickness of greater than about 0.07 mm and less than about 0.25 mm (e.g., about 0.17 mm). In certain implementations, the ablation electrode **124** can have greater than about 50 percent open area and less than about 95 percent open area (e.g., about 80 percent open area). As used herein, the percentage of open area of the ablation electrode **124** should be understood to be the ratio of the area through which fluid can flow from the outer portion **138** of the ablation electrode **124** to the surface area of a convex hull that includes the outer portion **138** of the ablation electrode **124** and the structural elements defining the outer portion **138** of the ablation electrode, with the ratio expressed as a percentage. It should be appreciated that the open area of the ablation electrode 124 can facilitate the flow of irrigation fluid and blood through ablation electrode **124** during treatment. As compared to ablation electrodes that impede the flow of blood, the open area of the ablation electrode 124 can reduce the likelihood of local heating of blood at the treatment site as ablation energy is delivered to the tissue. It should be appreciated that the delivery of irrigation fluid to the inner portion **136** of the ablation electrode **124** can augment the cooling that occurs through the flow of only blood through the open area.
- (58) In general, it should be appreciated that the dimensions of the ablation electrode **124**, including the dimensions related to the diameter, thickness, and/or open area, can facilitate retraction of the ablation electrode **124**. That is, the force required to retract the ablation electrode **124** into a sheath (e.g., at the end of a procedure) are such that the ablation electrode **124** can be retracted by a physician without requiring assistance of a separate mechanism to provide a mechanical advantage. Further, or instead, the dimensions of the ablation electrode **124** can facilitate adequate expansion of the electrode **124**. For example, in instances in which the electrode

- **124** is formed of nitinol, the ablation electrode **124** can be dimensioned such that, in the compressed state (e.g., for delivery), strain in the ablation electrode **124** is less than about ten percent. As a more general example, the ablation electrode **124** can be dimensioned such that the ablation electrode **124** is compressible to a size suitable for delivery (e.g., through an 8 French sheath) using a force that avoids, or at least limits, plastic deformation of the material of the ablation electrode **124**. It should be appreciated that avoiding, or at least limiting, plastic deformation in this way can facilitate expansion of the ablation electrode **124** in a predictable manner (e.g., to a full extent) in the absence of an applied force.
- (59) The coupling portion **140** of the ablation electrode **124** can be directly or indirectly mechanically coupled to the catheter shaft 122. For example, the coupling portion 140 can include struts **144***a* directly coupled to the catheter shaft **122** or coupled to a transition part coupled to the catheter shaft **122**. Each strut **144***a* can include a portion extending parallel to the catheter shaft **122**. with the coupling portion **140** coupled to the catheter shaft **122** along the portion of the strut **144***a* extending parallel to the catheter shaft **122**. Alternatively, or in addition, the coupling portion **140** can include a complete ring directly or indirectly mechanically coupled to the catheter shaft 122. (60) The coupling portion **140** can be electrically coupled to the generator **116** via one or more of the wires **117** (shown in FIG. **1**) and/or other conductive paths extending from the generator **116**, along the length of the catheter shaft 122, and to the coupling portion 140. For example, the coupling portion 140 can be fitted into the distal end portion 132 of the catheter shaft 122, connected to wires extending to the generator **116**, and potted within an adhesive in the distal end portion **132** of the catheter shaft **122**. In use, electrical energy provided at the generator **116** can be delivered to the coupling portion **140** and, thus, to the deformable portion **142** of the ablation electrode **124**, where the electrical energy can be delivered to tissue of the patient **102**. (61) The deformable portion **142** of the ablation electrode **124** can include struts **144***b* mechanically coupled to one another at joints **141***a* to define collectively a plurality of cells **147** of the ablation electrode **124**. Additionally, or alternatively, the struts **144***b* can be mechanically coupled to one another by a fastener **141***b*. Accordingly, each end of the struts **144***b* can be coupled to an end of another strut **144***b*, to the fastener **141***b*, or a combination thereof to define the deformable portion **142** of the ablation electrode **124**. For example, the struts **144***b* along the deformable portion **142** of the ablation electrode can be coupled to one another, to the fastener **141***b*, or to a combination thereof to define a closed shape along the deformable portion 142. Also, or instead, at least some of the struts **144***b* can be coupled to the struts **144***a* to transition between the deformable portion **142** and the coupling portion **140** of the ablation electrode **124**. In certain implementations, the struts **144***b* can be coupled to the struts **144***a* such that the coupling portion **140** defines an open shape
- (62) The catheter shaft **122** defines a center axis CL-CL extending from the proximal end portion **130** to the distal end portion **132** of the catheter shaft **122**. The cells **147** can have a generally axial orientation relative to the center axis CL-CL. For example, each of the cells **147** can have a respective symmetry plane passing through a distal end of the cell **147**, a proximal end of the cell **147**, and the center axis CL-CL. Such an orientation can advantageously preferentially expand and contract the cells **147** relative to the center axis CL-CL, which can facilitate compressing the deformable portion **142** of the ablation electrode **124** to a size suitable for delivery to a treatment site.

along the coupling portion **140** to facilitate, for example, securing the struts **144***a* to the distal end

portion **132** of the catheter shaft **122**.

- (63) The center axis CL-CL can, for example, extend through the fastener **141***b* in the absence of an external force applied to the ablation electrode. Such alignment of the fastener **141***b* can facilitate, in certain instances, location of the distal end portion **142** of the ablation electrode **124** (e.g., by locating the fastener **141***b* at a treatment site).
- (64) The fastener **141***b* can be formed of a first material (e.g., a polymer) and the struts **144***b* can be formed of a second material (e.g., a nitinol) different from the first material. It should be

appreciated that the material of the fastener **141***b* can be selected for a combination of strength and electrical properties suitable for maintaining the struts **144***b* coupled to one another while achieving a current density distribution suitable for a particular application. The closed shape of the deformable portion **142** can, for example, facilitate the delivery of substantially uniform current density through the ablation electrode **124** in a manner that, as compared to an electrode with an open shape, is less dependent on the orientation of the ablation electrode **124** relative to tissue, as described in greater detail below.

- (65) In general, each cell **147** can be defined by at least three struts **144***b*. Also, or instead, each strut **144***b* can define a portion of at least two of the cells **147**. The inner portion **136** of the ablation electrode **124** can be in fluid communication with the outer portion **138** of the ablation electrode **124** through the plurality of cells **147** such that, in use, irrigation fluid, blood, or a combination thereof can move through the plurality of cells **147** to cool the ablation electrode **124** and tissue in the vicinity of the ablation electrode **124**.
- (66) At least some of the plurality of cells **147** can be flexible in the axial and lateral directions such that the open framework formed by the plurality of cells **147** along the deformable portion **142** of the ablation electrode **124** is similarly flexible. For example, at least some of the plurality of cells can be substantially diamond-shaped in the uncompressed state of the deformable portion **142** of the ablation electrode **124**. As used herein, substantially diamond-shaped includes shapes including a first pair of joints substantially aligned along a first axis and a second pair of joints substantially aligned along a second axis, different from the first axis (e.g., perpendicular to the first axis).
- (67) The flexibility of the open framework formed by the plurality of cells **147** along the deformable portion **142** of the ablation electrode **124** can, for example, advantageously resist movement of the deformable portion **142** in contact with tissue during a medical procedure. That is, the deformable portion **142** can deform upon contact with tissue and the deformable portion **142** can engage the tissue through one or more of the cells **147** to resist lateral movement of the deformable portion **142** relative to the tissue. That is, as compared to a closed surface in contact with tissue, the deformable portion **142** will resist unintended movement (e.g., sliding with respect to the tissue) with which it is in contact. It should be appreciated that such resistance to movement can facilitate, for example, more accurate placement of lesions.
- (68) The struts **144***a*, **144***b* can have dimensions that differ from corresponding dimensions of other ones of the struts **144***a*, **144***b*. For example, the struts **144***b* can have a dimension (e.g., width) that differs from a corresponding dimension of another one of the struts **144***b*. Varying dimensions of the struts **144***a*, **144***b*, for example, can facilitate delivery of substantially uniform current density through the deformable portion **142** of the ablation electrode **124**, as described in greater detail below. Additionally, or alternatively, the struts **144***a* can be wider than the struts **144***b* to facilitate fixing the struts **144***a* directly or indirectly to the distal end portion **132** of the catheter shaft **122**. (69) In general, the struts **144***b* can be dimensioned and arranged relative to one another for delivery of substantially uniform current density through the deformable portion **142** of the ablation electrode **124**, as described in greater detail below. By way of non-limiting example, a first set of the struts **144***b* can have a first width, and a second set of the struts **144***b* can have a second width, different from the first width. Continuing with this example, the first set of the struts **144***b* can be axially spaced relative to the second set of the struts **144***b*. Such axial distribution of the material of the struts can be useful, for example, for achieving a desired current density profile (e.g., a substantially uniform current density profile). As another non-limiting example, at least some of the struts **144***b* can have a non-uniform width along a length of the respective strut **144***b* such that the amount of material along a given strut is varied, resulting in an associated distribution in current density. For example, at least some of the struts **144***b* can include a width increasing along the length of the respective strut **144***b* in a direction from a proximal region to a distal region of the ablation electrode **124**.

- (70) While dimensions of the struts **144***b* can be varied to achieve a desired current density distribution along the deformable portion **142**, it should be appreciated that the distribution of current density is more generally characterized as being a function of the distribution of metal along the deformable portion **142** of the ablation electrode **124**. Because the metal of the struts **144***b* defines the plurality of cells **147**, it should be further appreciated that the distribution of current density is also related to the open area of the plurality of cells **147**. In particular, maintaining a substantially constant ratio of open area of the cells **147** to the volume of material of the struts **144** defining the open area of the cells **147**, along each meridian of the deformable portion **142**, can be a useful design guide for achieving a substantially uniform distribution of current density. However, maintaining such a substantially constant ratio must be achieved while also satisfying the structural requirements for forming the desired shape of the deformable portion **142**. That is, any suitable solution for the arrangement of the struts **144***b* to form the plurality of cells **147** to produce substantially uniform current density must also satisfy the structural requirements for forming a desired shape of the deformable portion **142** (e.g., a substantially spherical shape).
- (71) In general, a substantially uniform current distribution can be achieved along a substantially spherical shape of the deformable portion **142** through a pattern of struts **144** and cells **147** that varies from the proximal region to the distal region of the deformable portion **142**. For example, a substantially uniform current distribution can be achieved while meeting the structural requirements of the desired shape of the deformable portion **142** by varying one or more of the dimensions (e.g., length, width, thickness) of the struts **144***b*, the number of the struts **144***b*, and the number of the cells **147** along the deformable portion **142**. Thus, for example, the struts **144***b* can have a substantially uniform width and/or thickness while one or more of the number of the struts **144***b* and the number of cells **147** can be varied from the proximal region to the distal region of the deformable portion **142**. As an additional, or alternative example, the number of the cells **147** along a meridian of one or both of a distal region and a proximal region of the deformable portion **142** can be less than a number of the cells **147** along a meridian passing through a maximum radial dimension of the ablation electrode.
- (72) In general, the plurality of cells **147** can be disposed circumferentially and axially about the ablation electrode **124**. More specifically, as described in greater detail below, the plurality of cells **147** can be arranged about the ablation electrode **124** (e.g., along the deformable portion **142** of the ablation electrode **124**) to facilitate contraction and expansion of the deformable portion **142** and/or to facilitate substantially uniform distribution of current density along the deformable portion **142**. (73) Each cell **147** can be bounded. In particular, as used herein, a bounded cell **147** includes a cell entirely defined by the struts **144***b*, the joints **141***a*, sensors **126** disposed along the struts **144***b* or the joints **141***a*, or a combination thereof. As described in further detail below, the struts **144***b* can be connected to one another at the joints **141***a* as part of a unitary or substantially unitary structure. Additionally, or alternatively, as also described in greater detail below, the struts **144***b* can be connected to one another through welds, fasteners, or other mechanical connections at one or more of the joints **141***a*.
- (74) The struts **144***b* can be movable relative to one another through flexing at the joints **141***a*. More specifically, the struts **144***b* can be flexible relative to one another to move the deformable portion **142** between a compressed state, in the presence of an external force, and an uncompressed state, in the absence of the external force. For example, a maximum radial dimension (alternatively referred to herein as a lateral dimension) of the ablation electrode can increase by at least a factor of 2 as the coupled struts **144***b* move relative to one another to transition the ablation electrode **124** from a compressed state, in the presence of external force, to an uncompressed state, in the absence of external force. This ratio of increase in size is achieved through the use of the open framework of cells **147** formed by the struts **144***b*, which makes use of less material than would otherwise be required for a solid shape of the same size. Further, or instead, it should be appreciated that the

ratio of the increase in size achieved through the use of the open framework of cells **147** is useful for delivery to a treatment site through an 8 French sheath while also facilitating the formation of large lesions at the treatment site.

- (75) Through flexing at the joints **141***a* and associated movement of the struts **144***b*, the deformable portion **142** can be resiliently flexible in an axial direction relative to the catheter shaft **122** and/or in a radial direction relative to the catheter shaft **122**. Additionally, or alternatively, the deformable portion 142 can be expandable (e.g., self-expandable) from the compressed state to the uncompressed state. For example, the struts **144***b* can be biased to move in one or more directions away from one another to self-expand the deformable portion 142 from the compressed state to the uncompressed state. In certain instances, the inner portion **136** of the ablation electrode **124** along the deformable portion **142** can be closer in the compressed state than in the uncompressed state to at least a portion of a surface of the irrigation element **128** and, thus, the inner portion **136** of the ablation electrode **124** can move away from at least a portion of the surface of the irrigation element **128** as the deformable portion **142** is expanded from the compressed state to the uncompressed state. In certain instances, the inner portion **136** of the ablation electrode **124** along the deformable portion 142 can be closer in the compressed state than in the uncompressed state to at least a portion of a surface of the irrigation element 128 and, thus, the inner portion 136 of the ablation electrode **124** can move away from at least a portion of the surface of the irrigation element **128** as the deformable portion **142** is expanded from the compressed state to the uncompressed state.
- (76) In the uncompressed state, the struts **144***b*, the joints **141***a*, and the cells **147** together can form an open framework having a conductive surface along the deformable portion **142** of the ablation electrode **124**. For example, the open framework formed by the struts **144***b*, the joints **141***a*, and the cells **147** can have greater than about 50 percent open area along the outer portion **138** of the ablation electrode **124** when the deformable portion **142** of the ablation electrode **124** is in the uncompressed state. Continuing with this example, in the uncompressed state, the combined open area of the cells **147** can be greater than the combined area of the struts **144***b* and the joints **141***a* along the outer portion **138** of the ablation electrode **124**. Further, or instead, at least some of the cells **147** can have a larger area in the uncompressed state of the deformable portion **142** than in the compressed state of the deformable portion **142**.
- (77) More generally, the open area defined by the cells **147** can have a magnitude and spatial distribution sufficient to receive the struts **144***b* and, optionally the sensors **126**, as the deformable portion **142** collapses from the uncompressed state to the compressed state. Accordingly, it should be appreciated that the magnitude of the ratio of the combined open area of the cells **147** to the combined area of the struts **144***b* and the joints **141***a* can, among other things, be useful for varying the degree of expansion of a deformable portion **142** of the ablation electrode **124** relative to a delivery state in which the deformable portion **142** is in a compressed state. That is, the ratio of the combined open area of the cells **147** to the combined area of the struts **144***b* and the joints **141***a* can facilitate minimally invasive delivery (e.g., delivery through an 8 Fr sheath) of the ablation electrode **124**.
- (78) By way of example, a maximum radial dimension of the ablation electrode **124** can increase by at least a factor of 2 as the struts **144***b* move relative to one another to transition the ablation electrode **124** (e.g., the deformable portion **142** of the ablation electrode **124**) from a compressed state, in the presence of an external force (e.g., a radial force), to an uncompressed state, in the absence of an external force. Additionally, or alternatively, the struts **144***b* can be movable relative to one another such that a maximum radial dimension of the deformable portion **142**, in the uncompressed state, is at least about 20 percent greater than a maximum radial dimension of the catheter shaft **122** (e.g., greater than a maximum radial dimension of the deformable portion **132** of the catheter shaft **122**). It should be appreciated that the extension of the deformable portion **142** beyond the maximum radial dimension of the catheter shaft **122** can facilitate creation of a lesion

- having a large width, as compared to an ablation electrode constrained by a radial dimension of a catheter shaft.
- (79) In certain implementations, the ablation electrode **124** has a maximum axial dimension that changes by less than about 33 percent (e.g., about 20 percent) as the struts **144***b* expand (e.g., self-expand) from the uncompressed state to the compressed state upon removal of an external radial force applied to the ablation electrode **124**.
- (80) At least some of the struts **144***b* extend in a direction having a circumferential dimensional component with respect to an axis defined by the catheter shaft **122** (e.g., an axis defined by the proximal end portion **130** and the distal end portion **132** of the catheter shaft **122**). That is, the struts **144***b* extending in a direction having a circumferential dimensional component with respect to an axis defined by the catheter shaft **122** are nonparallel to the axis defined by the catheter shaft **122**. In some implementations, at least some of the struts **144***b* include a non-uniform width along a length of the respective strut **144***b*. Because current density at a given point along the ablation electrode **124** is a function of the amount of surface area at the given point along the ablation electrode **124**, the non-uniform width of a given one of the struts **144***b* can facilitate balancing current density to achieve a target current density profile along the deformable portion **142** of the ablation electrode **124**. As described in greater detail below, the circumferential extension and/or the non-uniform width along the length of at least some of the struts **144***b* can facilitate substantially uniform distribution of current density along the deformable portion **142** during a medical procedure.
- (81) While a large surface area of the struts **144***b* can be advantageous for the delivery of energy to tissue, an upper boundary of the area of the struts **144***b* can be the geometric configuration that will allow the struts **144***b* to collapse into the compressed state (e.g., during delivery to the treatment site and/or during contact with tissue at the treatment site) without interfering with one another. Additionally, or alternatively, the struts **144***b* can be twisted towards the inner portion **136** of the ablation electrode **124**. It should be appreciated that, as compared to struts that are not twisted, the twisted struts **144***b* can be wider while still being collapsible into the compressed state without interfering with one another. Further in addition or further in the alternative, an upper boundary of the area of the struts **144***b* can be the amount of open area of the deformable portion **142** that will facilitate appropriate heat transfer (e.g., during ablation) at the ablation electrode **124** through the movement of irrigation fluid and/or blood through the deformable portion **142**.
- (82) As used herein, the uncompressed state of the deformable portion **142** refers to the state of the deformable portion **142** in the absence of a substantial applied force (e.g., an applied force less than about 5 grams). Thus, the uncompressed state of the deformable portion **142** includes a state of the ablation electrode **124** in the absence of external forces. Additionally, the uncompressed state of the deformable portion **142** includes a state of the ablation electrode **124** in which a small applied force (e.g., less an about 5 grams) is present, but is insufficient to create a significant deformation in the deformable portion **142**.
- (83) In the uncompressed state of the deformable portion **142**, the ablation electrode **124** can be bulbous. For example, in the uncompressed state, the deformable portion **142** can be a shape having symmetry in a radial direction and/or an axial direction relative to the catheter shaft **122**. For example, in the uncompressed state the deformable portion **142** can be an ellipsoidal shape such as, for example, a substantially spherical shape (e.g., an arrangement of the struts **144***b*, each strut **144***b* having a planar shape, relative to one another to approximate a spherical shape). Additionally, or alternatively, in the uncompressed state, the deformable portion **142** can be a symmetric shape (e.g., a substantially ellipsoidal shape or another similar shape contained between a first radius and a perpendicular second radius, the first radius and the second radius within 30 percent of one another in magnitude). Symmetry of the deformable portion **142** can, for example, facilitate symmetric delivery of ablation energy to the tissue in a number of orientations of the deformable portion **142** relative to the tissue being ablated.

- (84) At least when the deformable portion **142** is in the uncompressed state, the deformable portion **142** can envelop the irrigation element **128** such that the irrigation element **128** directs irrigation fluid toward the inner portion **136** of the ablation electrode **124**. Accordingly, in implementations in which the deformable portion **142** is symmetric, the irrigation element **128** can provide a substantially uniform distribution of irrigation fluid along the inner portion **136** of the ablation electrode **124**, as the deformable portion **142** in the uncompressed state envelops the irrigation element **128**.
- (85) In certain implementations, the largest cross-sectional dimension of the deformable portion 142 in the uncompressed state is larger than the largest cross-sectional dimension of the catheter shaft 122. Thus, because the deformable portion 142 is expandable to extend beyond the catheter shaft 122, the deformable portion 142 can create a lesion that is larger than the largest dimension of the catheter shaft 122 such that the resulting lesions are wider and deeper than lesions created by ablation electrodes that do not expand. For example, in the uncompressed state, the deformable portion 142 can be substantially circular at the largest cross-sectional dimension of the deformable portion, and the catheter shaft 122 can be substantially circular at the largest cross-sectional dimension of the catheter shaft 122. Thus, continuing with this example, the outer diameter of the deformable portion 142 is larger than the outer diameter of the catheter shaft 122.
- (86) The compressed state of the ablation electrode **124**, as used herein, refers to the state of the ablation electrode in the presence of a force (e.g., a force of about 5 grams or greater) sufficient to cause the deformable portion **142** to flex (e.g., through flexing of one or more of the joints **141***a*) to a significant extent. Thus, for example, the compressed state of the ablation electrode **124** includes the reduced size profile of the ablation electrode **124** during introduction of the catheter **104** to the treatment site, as described in further detail below. The compressed state of the ablation electrode **124** also includes one or more states of deformation and/or partial deformation resulting from an external force exerted along one or more portions of the deformable portion **142** of the ablation electrode **124** as a result of contact between the deformable portion **142** and tissue at the treatment site.
- (87) The compressed state of the ablation electrode **124** can have a predetermined relationship with respect to an applied force. For example, the compressed state of the ablation electrode **124** can have a substantially linear (e.g., within ±10 percent) relationship with applied forces in the range of forces typically applied during an ablation procedure (e.g., about 1 mm deformation in response to 60 grams of force). It should be appreciated that such a predetermined relationship can be useful, for example, for determining the amount of applied force on the ablation electrode **124** based on a measured amount of deformation of the ablation electrode **124**. That is, given the predetermined relationship between deformation of the ablation electrode **124** and an amount of an applied force, determining the amount of deformation of the ablation electrode **124** can provide an indication of the amount of force being applied by the ablation electrode **124** on tissue at the treatment site. As such, the determined amount of deformation of the ablation electrode **124** can be used, for example, as feedback to control the amount of force applied to tissue at the treatment site. Methods of determining the amount of deformation of the ablation electrode **124** are described in greater detail below.
- (88) FIG. **9** is a graph of an exemplary relationship between force and displacement for different amounts of force applied to the deformable portion **142** of the ablation electrode **124**. The deformable portion **142** of the ablation electrode **124** can have different force-displacement responses, depending on the direction of the force applied to the deformable portion **142** of the ablation electrode **124**. For example, as shown in the exemplary relationship in FIG. **9**, the deformable portion **142** of the ablation electrode **124** can have an axial force-displacement response **143***a* and a lateral force-displacement response **143***b*. That is, the response of the deformable portion **142** to the application of force can depend on the direction of the applied force. In the specific example of FIG. **9**, the deformable portion **142** can be stiffer in the axial direction

than in the lateral direction.

- (89) In general, the axial force-displacement **143***a* and the lateral force-displacement response **143***b* can be reproducible and, thus, the amount of force applied to the deformable portion **142** of the ablation electrode **124** in the axial and/or lateral direction can be reliably determined based on respective displacement of the deformable portion **142**. Accordingly, as described in greater detail below, the determined displacement of the deformable portion **142** can be used to determine the amount and direction of force applied to the deformable portion **142**. More generally, because the deformable portion **142** is movable between a compressed state and an uncompressed state in a reproducible manner in response to applied force, the deformable portion **142** of the ablation electrode can be useful as a contact force sensor and, thus, can facilitate application of appropriate force during ablation treatment.
- (90) In certain implementations, at least a portion of the ablation electrode **124** is radiopaque, with the deformable portion **142** observable through the use of fluoroscopy or other similar visualization techniques. For example, the deformable portion **142** of the ablation electrode **124** can be radiopaque such that fluoroscopy can provide an indication of the deformation and/or partial deformation of the deformable portion **142** and, therefore, provide an indication of whether the deformable portion **142** is in contact with tissue.
- (91) A material for forming the ablation electrode **124** can include nitinol, which is weakly radiopaque and is repeatably and reliably flexible between a compressed state and an uncompressed state. Additionally, or alternatively, the material for forming the ablation electrode **124** can be coated with one or more of gold or tantalum. Thus, continuing with this example, the deformable portion **142** of the ablation electrode **124** (e.g., the struts **144***b*) can be formed of nitinol, either alone or coated, such that ablation energy is delivered through the nitinol forming the deformable portion **142** for delivery to tissue to create lesions.
- (92) As described in further detail below, the deformation and/or partial deformation of the deformable portion **142** in the compressed state can be additionally, or alternatively, detected by the sensors **126** to provide feedback regarding the extent and direction of contact between the deformable portion **142** of the ablation electrode **124** and the tissue at the treatment site. (93) Referring now to FIGS. **10** and **11**, the sensors **126** can be mounted along the deformable portion **142** of the ablation electrode **124**. Each sensor **126** can be electrically insulated from the ablation electrode **124** and mounted on one of the struts **144***b* of the deformable portion **142**. For example, each sensor **126** can be mounted to the deformable portion **142** using a compliant adhesive (e.g., a room temperature vulcanized (RTV) silicone), any of various different mechanical retaining features (e.g., tabs) between the sensor **126** and the ablation electrode **124**, and/or molding or overmolding of the sensor **126** to the ablation electrode **124**. Because the struts **144***b* do not undergo significant flexing as the deformable portion **142** moves between the compressed state and the uncompressed state, mounting the sensors **126** on the struts **144***b* can reduce physical strain on the sensors **126**, as compared to mounting the sensors **126** on sections of the deformable portion **142** that experience larger amounts of flexing as the deformable portion **142** moves between the compressed state and the uncompressed state.
- (94) Wires **148** extend from each sensor **126**, along the inner portion **136** of the ablation electrode **124**, and into the catheter shaft **122** (FIG. **2**). The wires **148** are in electrical communication with the catheter interface unit **108** (FIG. **1**) such that, as described in further detail below, each sensor **126** can send electrical signals to and receive electrical signals from the catheter interface unit **108** during use.
- (95) In general, the sensors **126** can be positioned along one or both of the inner portion **136** and the outer portion **138** of the ablation electrode **124**. For example, the sensors **126** can extend through a portion of the ablation electrode **124**. Such positioning of the sensors **126** through a portion of the ablation electrode **124** can facilitate forming a robust mechanical connection between the sensors **126** and the ablation electrode **124**. Additionally, or alternatively, positioning the

sensors **126** through a portion of the ablation electrode **124** can facilitate measuring conditions along the outer portion **138** and the inner portion **136** of the ablation electrode **124**.

- (96) The sensors **126** can be substantially uniformly spaced from one another (e.g., in a circumferential direction and/or in an axial direction) along the deformable portion **142** of the ablation electrode **124** when the deformable portion **142** of the ablation electrode **124** is in an uncompressed state. Such substantially uniform distribution of the sensors **126** can, for example, facilitate determining an accurate deformation and/or temperature profile of the deformable portion **142** during use.
- (97) Each sensor **126** can act as an electrode (e.g., a surface electrode) to detect electrical activity of the heart in an area local to the sensor **126** and, further or instead, each sensor **126** can include a flexible printed circuit **150**, a thermistor **152** secured between portions of the flexible printed circuit **150**, and a termination pad **155** opposite the thermistor **152**. As an example, the sensor **126** can be mounted on the deformable portion **142** of the ablation electrode **124** with the thermistor **152** disposed along the outer portion **138** of the deformable portion **142** and the termination pad **155** disposed along the inner portion **136** of the deformable portion **142**. In certain instances, the thermistor **152** can be disposed along the outer portion **138** to provide an accurate indication of tissue temperature. A thermally conductive adhesive or other conductive material can be disposed over the thermistor **152** to secure the thermistor **152** to the flexible printed circuit **150**. (98) In some implementations, each sensor **126** can include a radiopaque portion and/or a radiopaque marker. The addition of radiopacity to the sensor **126** can, for example, facilitate visualization (e.g., using fluoroscopy) of the sensor **126** during use. Examples of radiopaque material that can be added to the sensor **126** include: platinum, platinum iridium, gold, radiopaque ink, and combinations thereof. The radiopaque material can be added in any pattern that may facilitate visualization of the radiopaque material such as, for example, a dot and/or a ring. (99) In certain implementations, each sensor **126** can form part of an electrode pair useful for detecting contact between each sensor **126** and tissue. For example, electric energy (e.g., current) can be driven through each sensor **126** and another electrode (e.g., any one or more of the various different electrodes described herein) and a change in a measured signal (e.g., voltage or impedance) can be indicative of the presence of tissue. Because the position of the ablation electrode **124** is known, the detection of contact through respective measured signals at the sensors **126** can be useful for determining a shape of the anatomic structure in which the ablation electrode **124** is disposed during the course of a medical procedure.
- (100) In use, each sensor **126** can, further or instead, act as an electrode to detect electrical activity in an area of the heart local to the respective sensor **126**, with the detected electrical activity forming a basis for an electrogram associated with the respective sensor **126** and, further or instead, can provide lesion feedback. The sensors **126** can be arranged such that electrical activity detected by each sensor **126** can form the basis of unipolar electrograms and/or bipolar electrograms. Additionally, or alternatively, the sensors **126** can cooperate with a center electrode (e.g., an electrode associated with an irrigation element, such as a center electrode **235** in FIGS. **21** and **22**, or the irrigation element itself, such as the irrigation element **128** in FIG. **3**) to provide near-unipolar electrograms, as described in greater detail below. It should be appreciated that the sensors **126** and a center electrode can cooperate to provide near-unipolar electrograms in addition, or as an alternative, to any one or more of the various different methods of determining contact, shape, force, and impedance described herein, each of which may include further or alternative cooperation between the sensors **126** and a center electrode.
- (101) FIGS. **12**A-**12**C are a schematic representation of an exemplary method of making the ablation electrode **124** from a sheet **156** of material.
- (102) As shown in FIG. **12**A, the sheet **156** of material is flat. As used herein, a flat material includes a material exhibiting flatness within normal manufacturing tolerances associated with the material. The material of the sheet **156** is conductive and, optionally, also radiopaque. For example,

the sheet **156** can be nitinol.

- (103) The thickness of the sheet **156** can correspond to the thickness of the ablation electrode **124**. For example, the thickness of the sheet **156** can be greater than about 0.1 mm and less than about 0.20 mm. In certain implementations, however, the thickness of the sheet **156** can be larger than at least a portion of the thickness of the ablation electrode **124** such that the removal of material from the flat sheet includes removal of material in a thickness direction of the sheet **156**. For example, material can be selectively removed in the thickness direction of the sheet **156** to produce the ablation electrode **124** with a variable thickness (e.g., the ablation electrode **124** can be thinner along the joints **141***a* (FIGS. **6-8**) to facilitate flexing).
- (104) As shown in FIG. **12**B, material can be removed from the sheet **156** to define the open area of the deformable portion **142** and to define the coupling portion **140**. In particular, the removal of material along the deformable portion **142** can define the struts **144***b* and the joints **141***a*. (105) The material of the sheet **156** can be removed, for example, by using any of various different subtractive manufacturing processes. As an example, the material of the sheet **156** can be removed using chemical etching (also known as photo etching or photochemical etching) according to any one or more methods that are well known in the art and generally include removing material by selectively exposing the material to an acid to remove the material. Additionally, or alternatively, the material of the sheet **156** can be removed by laser cutting the material. The removal of material can be done to create openings in the sheet **156** and/or to thin selected portions of the sheet **156**. (106) Because the sheet **156** is flat, removing material from the sheet **156** to form the deformable portion **142** can have certain advantages. For example, as compared to removing material from a curved workpiece, removing material from the sheet **156** can facilitate controlling geometric tolerances. Additionally, or alternatively, as compared to removing material from a curved workpiece, removing material from the sheet 156 can facilitate placement of sensors (e.g., while the sheet **156** is flat). In certain implementations, as compared to removing material from a curved workpiece, removing material from the sheet **156** can reduce, or even eliminate, the need to shape set the sheet **156**, as the distal and proximal sections can be put together to form the shape of the ablation electrode 124 (e.g., a substantially spherical shape).
- (107) In certain implementations, the material removed from the sheet **156** can define eyelets **157** disposed at one end of at least a portion of the struts **144***b*. The eyelets **157** can be, for example, defined at the intersection of two or more of the struts **144***b*.
- (108) In general, the material forming the ablation electrode **124** can be processed at any of various different stages of fabrication of the ablation electrode **124**. For example, with the material removed from the sheet to define the struts **144***a*, **144***b* and the joints **141***a* as shown in FIG. **12**B, one or more surfaces of the material can be electropolished. Such electropolishing can, for example, be useful for smoothing surfaces and/or otherwise producing fine adjustments in the amount of material along the ablation electrode **124**.
- (109) As shown in FIG. **12**C, with the material removed from the sheet **156** to define the struts **144***a*, **144***b* and the joints **141***a*, the sections **158** are bent into proximity with one another and joined to one another to form a unitary three-dimensional structure having the overall shape of the ablation electrode **124**. For example, the struts **144***b* can be bent toward one another and the fastener **141***b* can couple the portion of the struts **144***b* to one another at the eyelets **157**, thus defining a closed distal end of the deformable portion **142** of the ablation electrode **124**. With the deformable portion **142** defined, the fastener **141***b* can be at a distalmost portion of the deformable portion **142**.
- (110) In certain implementations, the fastener **141***b* can be a rivet. In such implementations, the eyelets **157** can be, for example, aligned with one another such that the fastener **141***b* passes through the aligned eyelets **157** to hold them together through force exerted on the eyelets **157** by the fastener **141***b*. Additionally, or alternatively, a secondary operation such as welding can secure the fastener **141***b* to the struts **144***b* at the eyelets **157**.

- (111) Referring now to FIGS. **13**A-**13**E, to perform a cardiac ablation treatment, the distal end portion **132** of the catheter shaft **122** and, thus, the ablation electrode **124** can be first introduced into the patient, typically via a femoral vein or artery. FIGS. **13**A-**13**E schematically illustrate a series of steps carried out to introduce the ablation electrode **124** into the patient.
- (112) In a first step, shown in FIG. **13**A, an introducer sheath **162** is positioned within a blood vessel of the patient (e.g., the femoral artery of the patient) and the ablation electrode **124** is positioned for insertion into the introducer sheath **162**.
- (113) In a second step, shown in FIG. 13B, the user grasps the handle 120 of the catheter 104 and distally advances an insertion sheath 164 along the catheter shaft 122 until the insertion sheath 164 surrounds the ablation electrode 124. As the insertion sheath 164 is advanced over the ablation electrode 124, the ablation electrode 124 collapses to a diameter capable of being inserted into the introducer sheath 162.
- (114) In a third step, shown in FIG. 13C, the user inserts the insertion sheath 164 (containing the ablation electrode 124) into the introducer sheath 162 and distally advances the catheter 104. (115) In a fourth step, shown in FIG. 13D, after positioning the ablation electrode 124 within the introducer sheath 162, the ablation electrode 124 is advanced out of the insertion sheath 164 that is then left surrounding the proximal end portion 130 of the catheter shaft 122 throughout the remainder of the treatment.
- (116) In a fifth step, shown in FIG. **13**E, the catheter **104** is advanced through the introducer sheath **162** and the patient's vasculature until the ablation electrode **124** reaches the treatment site in the heart of the patient. As the ablation electrode **124** is extended distally beyond the introducer sheath **162**, the ablation electrode **124** can expand to the uncompressed state.
- (117) Because the ablation electrode **124** is collapsible, the introducer sheath **162** can have a small diameter that can be inserted through a correspondingly small insertion site. In general, small insertion sites are desirable for reducing the likelihood of infection and/or reducing the amount of time required for healing. In certain implementations, the introducer sheath **162** can have an 8 French diameter, and the deformable portion **142** (FIG. **3**) of the ablation electrode **124** can be collapsible to a size deliverable through the introducer sheath **162** of this size. In some implementations, the irrigation element **128** is additionally collapsible to a size smaller than the size of the ablation electrode **124** such that the irrigation element **128** and the ablation electrode **124** are, together, deliverable through the introducer sheath **162** of this size.
- (118) FIGS. **14**A-**14**C schematically represent an exemplary method of positioning the deformable portion **142** of the ablation electrode **124** into contact with tissue "T" at the treatment site. It should be appreciated that, because the delivery of ablation energy to the tissue "T" at the treatment site is enhanced by contact between the ablation electrode **124** and the tissue "1," such contact is established prior to delivery of ablation energy.
- (119) In a first step, shown in FIG. **14**A, the deformable portion **142** of the ablation electrode **124** is away from the tissue "T" and, thus, in an uncompressed state. In certain instances, this uncompressed state is observable through fluoroscopy. That is, the shape of the deformable portion **142** can be observed in the uncompressed state.
- (120) In a second step, shown in FIG. **14**B, the deformable portion **142** of the ablation electrode **124** makes initial contact with the tissue "T." Depending on the nature of the contact between the tissue "T" and the deformable portion **142** of the ablation electrode **124**, deformation of the deformable portion **142** may or may not be observable through fluoroscopy alone. For example, the contact force on the deformable portion **142** may be insufficient to compress the deformable portion **142** to an extent observable using fluoroscopy. Additionally, or alternatively, the contact may not be observable, or may be difficult to observe, in the direction of observation provided by fluoroscopy.
- (121) In a third step, shown in FIG. **14**C, the deformable portion **142** of the ablation electrode **124** is moved further into contact with the tissue "T" such that sufficient contact is established between

the deformable portion **142** and the tissue "T" to deform the deformable portion **142**. While such deformation may be observable using fluoroscopy, the degree and/or direction of the deformation is not readily determined using fluoroscopy alone. Further, as is also the case with initial contact, the contact and/or degree of contact may not be observable, or may be difficult to observe, in the direction of observation provided by fluoroscopy. Accordingly, as described in greater detail below, determining apposition of the deformable portion **142** to the tissue "T" can, additionally or alternatively, include sensing the position of the deformable portion **142** based on signals received from the sensors **126**.

- (122) Referring again to FIGS. **1** and **3**, the sensors **126** can be used to determine the shape of the deformable portion **142** of the ablation electrode **124** and, thus, determine whether and to what extent certain regions of the deformable portion **142** are in contact with the tissue "T." It should be appreciated, however, that the sensing methods described herein can be carried out using the sensors **126**, alone or in combination with another electrode, such as an electrode carried on an irrigation element, as described in greater detail below.
- (123) For example, the processing unit **109***a* can control the generator **116** and/or another electrical power source to drive an electrical signal between any number and combination of electrode pairs formed by any combination of electrodes associated with the ablation electrode **124**, and the processing unit **109***a* can receive a signal (e.g., a signal indicative of voltage) from another electrode pair or the same electrode pair. For example, the processing unit **109***a* can control the generator **116** to drive one or more of the sensors **126**, the ablation electrode **124**, the irrigation element **128**, and a center electrode (e.g., a center electrode **235** shown in FIGS. **21** and **22**). Additionally, or alternatively, multiple pairs can be driven in a multiplexed manner using time division, frequency division, code division, or combinations thereof. The processing unit **109***a* can also, or instead, receive one or more measured electrical signals from one or more of the sensors **126**, the ablation electrode **124**, the irrigation element **128**, and a center electrode (e.g., the center electrode **235** shown in FIGS. **21** and **22**). The driven electrical signal can be any of various, different forms, including, for example, a prescribed current or a prescribed voltage. In certain implementations, the driven electrical signal is an 8 kHz alternating current applied between one of the sensors **126** and the irrigation element **128**.
- (124) In an exemplary method, the impedance detected by an electrode pair can be detected (e.g., as a signal received by the processing unit 109a) when an electrical signal is driven through the electrode pair. The impedance detected for various electrode pairs can be compared to one another and relative distances between the members of each electrode pair determined. For example, if the sensors **126** are identical, each sensor **126** can be driven as part of a respective electrode pair including the irrigation element **128**. For each such electrode pair, the measured impedance between the electrode pair can be indicative of relative distance between the particular sensor **126** and the irrigation element **128** forming the respective electrode pair. In implementations in which the irrigation element **128** is stationary while electrical signals are driven through the electrode pairs, the relative distance between each sensor **126** and the irrigation element **128** can be further indicative of relative distance between each sensor 126 and each of the other sensors 126. In general, driven electrode pairs with lower measured impedance are closer to one another than those driven electrode pairs with higher measured impedance. In certain instances, electrodes associated with the ablation electrode **124** (e.g., one or more of the sensors **126**) that are not being driven can be measured to determine additional information regarding the position of the driven current pair. (125) The measurements received by the processing unit **109***a* and associated with the driven current pairs alone, or in combination with the measurements at the sensors 126 that are not being driven, can be fit to a model and/or compared to a look-up table to determine displacement of the deformable portion **142** of the ablation electrode **124**. For example, the determined displacement of the deformable portion **142** of the ablation electrode **124** can include displacement in at least one of an axial direction or a lateral (radial) direction. It should be appreciated that, because of the spatial

separation of the current pairs in three dimensions, the determined displacement of the deformable portion **142** of the ablation electrode **124** can be in more than one direction (e.g., an axial direction, a lateral direction, and combinations thereof). Additionally, or alternatively, the determined displacement of the deformable portion **142** of the ablation electrode **124** can correspond to a three-dimensional shape of the deformable portion **142** of the ablation electrode **124**.

(126) Based on the determined displacement of the deformable portion **142** of the ablation

electrode **124**, the processing unit **109***a* can send an indication of the shape of the deformable portion **142** of the ablation electrode **124** to the graphical user interface **110**. Such an indication of the shape of the deformable portion **142** can include, for example, a graphical representation of the shape of the deformable portion **142** corresponding to the determined deformation.

(127) In implementations in which the force-displacement response of the deformable portion **142** is reproducible (e.g., as shown in FIG. **9**), the processing unit **109***a* can determine force applied to the deformable portion **142** based on the determined displacement of the deformable portion **142**. For example, using a lookup table, a curve fit, or other predetermined relationship, the processing unit **109***a* can determine the direction and magnitude of force applied to the deformable portion **142** based on the magnitude and direction of the displacement of the deformable portion **142**, as determined according to any one or more of the methods of determining displacement described herein. It should be appreciated, therefore, that the reproducible relationship between force and displacement along the deformable portion **142**, coupled with the ability to determine displacement using the sensors **126** disposed along the deformable portion **142**, can facilitate determining whether an appropriate amount of force is being applied during an ablation treatment and, additionally or alternatively, can facilitate determining appropriate energy and cooling dosing for lesion formation.

(128) FIGS. **15**A and **15**B schematically represent an exemplary method of cooling the ablation electrode **124** at the treatment site with irrigation fluid from the irrigation element **128**. For the sake of clarity of illustration, a single jet of irrigation fluid is shown. It should be appreciated, however, that a plurality of jets issue from the irrigation element **128** during use. In certain implementations, the irrigation fluid is substantially uniformly directed to the inner portion **136** of the ablation electrode **124**. Additionally, or alternatively, a portion of the irrigation fluid can be directed in a direction distal to the irrigation element **128** and a portion of the irrigation fluid can be directed in a direction proximal to the irrigation element **128**.

(129) In a first step, shown in FIG. **15**A, the ablation electrode **124** is positioned at the treatment site with the outer portion 138 disposed toward tissue. A baseline flow of irrigation fluid is delivered to the irrigation element **128** prior to delivery of ablation energy to the ablation electrode **124**. The baseline flow of irrigation fluid can be, for example, about 0.5 psi above the patient's blood pressure to reduce the likelihood that blood will enter the irrigation element **128** and clot. Further, as compared to always delivering irrigation fluid at a higher pressure, the delivery of this lower pressure of irrigation fluid when ablation energy is not being delivered to the ablation electrode **124** can reduce the amount of irrigation fluid delivered to the patient during treatment. (130) In a second step, shown in FIG. **15**B, ablation energy is directed to at least some of the outer portion **138** of the ablation electrode **124** in contact with the tissue "T." As the ablation energy is delivered to the ablation electrode **124**, the pressure of the irrigation fluid can be increased, resulting in a higher pressure flow directed from the irrigation element **128** toward the inner portion **136** of the ablation electrode **124**. The higher flow of irrigation fluid at the inner portion **136** can result in turbulent flow which, compared to laminar flow, can improve heat transfer away from the ablation electrode **124**. For example, each jet of irrigation fluid issuing from the irrigation element **128** can have a Reynolds number above about 2000 (e.g., greater than about 2300) at the inner portion **136** of the ablation electrode **124** when the deformable portion **142** is in the uncompressed state.

(131) While certain embodiments have been described, other embodiments are additionally or

alternatively possible.

(132) For example, while forming the deformable portion of an ablation electrode has been described as including removal of material from a flat sheet, other methods of forming a deformable portion of an ablation electrode are additionally or alternatively possible. For example, a deformable portion of an ablation electrode can be formed by removing material (e.g., by laser cutting) from a tube of material (e.g., a tube of nitinol). With the material removed, the tube can be bent into a substantially enclosed shape such as the substantially spherical shapes described herein. (133) As another example, while the deformable portion of an ablation electrode has been described as being formed by removing material from a unitary structure of material (e.g., from a plate and/or from a tube), other methods of forming a deformable portion of an ablation electrode are additionally or alternatively possible. For example, a deformable portion of an ablation electrode can include a mesh and/or a braid. The mesh material can be, for example, nitinol. It should be appreciated that this mesh and/or braided portion of the ablation electrode can move between a compressed and uncompressed state.

(134) As yet another example, while an ablation electrode has been described as having a deformable portion, along which sensors are disposed for determining displacement of the deformable portion, other configurations for determining displacement are additionally or alternatively possible. For example, a plurality of coils can be disposed along a deformable portion of an ablation electrode. In use, some coils in the plurality can be used to emit a magnetic field while other coils in the plurality can be used to measure the resultant magnetic field. The signals measured can be used to determine displacement of the deformable portion. This determined displacement of the deformable portion can be used, for example, to determine the shape of the deformable portion and, additionally or instead, to determine the force applied to the deformable portion according to any one or more of the methods described herein. Further, or instead, a plurality of ultrasound transducers or other types of image sensors can be disposed along a deformable portion of an ablation electrode, on an irrigation element enveloped by the deformable portion, or a combination thereof. The signals measured by the ultrasound transducers or other types of image sensors can be used to determine displacement of the deformable portion. (135) As still another example, while the deformable portion of an ablation electrode has been described as being self-expandable from the compressed state to the uncompressed state, the deformable portion of the ablation electrode can be additionally or alternatively expanded and/or contracted through the application of external force. For example, a catheter such as any one or more of the catheters described herein can include a sliding member extending from the handle, though a catheter shaft, and to an ablation electrode. The sliding member can be coupled (e.g., mechanically coupled) to the ablation electrode such that axial movement of the sliding member relative to the catheter shaft can exert compression and/or expansion force on the deformable portion of the ablation electrode. For example, distal movement of the sliding member can push the ablation electrode in a distal direction relative to the catheter shaft such that the deformable portion of the ablation electrode collapses to a compressed state (e.g., for retraction, delivery, or both). In addition, or as an alternative, proximal movement of the sliding member can pull the ablation electrode in a proximal direction relative to the catheter shaft such that the deformable portion of the ablation electrode expands to an uncompressed state (e.g., for the delivery of treatment). In certain implementations, the sliding member can be mechanically coupled to a portion of the handle such that movement of the sliding member can be controlled at the handle. It should be appreciated that the sliding member can be an elongate member (e.g., a wire) that is sufficiently flexible to bend with movement of the shaft while being sufficiently rigid to resist buckling or other types of deformation in response to the force required to move the deformable portion of the ablation electrode.

(136) As yet another example, while the irrigation element has been described as including a substantially rigid stem and bulb configuration, other configurations of the irrigation element are

additionally or alternatively possible. For example, referring now to FIG. **16**, an irrigation element **128***a* can include an axial portion **166** and a helical portion **168**. The irrigation element **128***a* can be used in any one or more of the catheters described herein. For example, the irrigation element **128***a* can be used in addition to or instead of the irrigation element **128**, as described with respect to FIGS. **3-5**.

- (137) The axial portion **166** and the helical portion **168** are in fluid communication with one another and, in certain implementations, with an irrigation lumen defined by the catheter shaft. At least the helical portion **168** and, optionally, the axial portion **166** define a plurality of irrigation holes **134***a* along at least a portion of the length of the irrigation element **128***a*. In use, the delivery of irrigation fluid through the irrigation holes **134***a* can result in an axially, circumferentially, and/or radially distributed pattern. Unless otherwise indicated or made clear from the context, the irrigation element **128***a* can be used in addition to or instead of the irrigation element **128** (FIG. **3**). Thus, for example, it should be understood that the irrigation element **128***a* can provide substantially uniform cooling along the inner portion **136** of the ablation electrode **124** (FIG. **3**). (138) The irrigation holes **134***a* can be similar to the irrigation holes **134** defined by the irrigation element **128**. Additionally, or alternatively, the irrigation holes **134***a* can have the same open area as the irrigation holes **134** defined by the irrigation element **128**.
- (139) The axial portion **166** of the irrigation element **128** can be coupled to a catheter shaft (e.g., to a distal end portion of the catheter shaft such as the distal end portion **132** of the catheter shaft **122** described with respect to FIGS. **2-4**). Additionally, or alternatively, the axial portion **166** can extend distally from the catheter shaft. For example, the axial portion **166** can extend distally from the catheter shaft, along an axis defined by the irrigation lumen.
- (140) In general, the helical portion 168 extends in a radial direction away from the axial portion 166. In certain implementations, a maximum radial dimension of the helical portion 168 is less than an outer diameter of the catheter shaft. In such implementations, the helical portion 168 can remain in the same orientation during delivery and use of the catheter (e.g., during any of the delivery and/or use methods described herein). In some implementations, however, the helical portion 168 can be resiliently flexible (e.g., a nitinol tube shape set in a helical configuration) such that the maximum radial extent of the helical portion 168 is less than an outer diameter of the catheter shaft during delivery to the treatment site and expands such that the maximum radial extent of the helical portion 168 is greater than the outer diameter of the catheter shaft in a deployed position. It should be appreciated that, in the deployed position, the helical portion can be positioned closer to the inner surface of an ablation electrode, which can facilitate delivery of irrigation fluid to the inner surface of the ablation electrode.
- (141) In addition to extending in a radial direction away from the catheter shaft, the helical portion **168** extends in a circumferential direction relative to the axial portion **166**. For example, the helical portion **168** can extend circumferentially about the axial portion **166** through at least one revolution. Such circumferential extension of the helical portion through at least one revolution can facilitate substantially uniform dispersion of irrigation fluid about an inner surface of a substantially spherical ablation electrode enveloping the helical portion **168**.
- (142) Optionally, the helical portion **168** can further extend in an axial direction relative to the axial portion **166**. Thus, as used herein, the helical portion **168** should be understood, in the most general sense, to include any of various different helical patterns that are substantially planar and/or various different helical patterns that extend axially relative to the axial portion **166**.
- (143) As another example, while the irrigation element has been described as having a discrete number of uniform irrigation holes, other implementations are additionally or alternatively possible. For example, referring now to FIG. 17, an irrigation element 128*b* can be a porous membrane defining a plurality of openings 170. In general, the plurality of openings 170 are a

property of the material forming the irrigation element **128***c* and are, therefore, distributed (e.g., non-uniformly distributed and/or uniformly distributed) along the entire surface of the irrigation element **128***b*. Because the openings **170** are a property of the material forming the irrigation element **128***b*, the plurality of openings **170** can be substantially smaller than irrigation holes formed in an irrigation element through laser drilling or other similar secondary processes. Unless otherwise indicated or made clear from the context, the irrigation element **128***b* can be used in addition to or instead of the irrigation element **128** (FIG. **3**) and/or the irrigation element **128***a* (FIG. **16**). Thus, for example, it should be understood that the irrigation element **128***b* can provide substantially uniform cooling along the inner portion **136** of the ablation electrode **124** (FIG. **3**). (144) In certain implementations, the irrigation element **128***b* can include an arrangement of one or more polymers. Such an arrangement can be porous and/or microporous and, as an example, can be formed of polytetrafluoroethylene (PTFE). In such implementations, the openings 170 can be defined by spaces between polymeric fibers or through the polymeric fibers themselves and are generally distributed along the entire surface of the irrigation element **128***b*. It should be appreciated that the large number of the openings **170** and the distribution of the openings **170** along the entire surface of the irrigation element **128***b* can produce a substantially uniform spray of irrigation fluid. Further, the large number of the openings **170** and the distribution of the openings **170** along the entire surface of the irrigation element **128***b* can facilitate interaction of multiple different fluid jets and, thus, the development of turbulent flow of irrigation fluid. (145) The size and distribution of the openings **170** defined between or through polymeric fibers can allow the irrigation element **128***b* to act as a selective filter. For example, because blood molecules are substantially larger than water molecules, the size (e.g., the average size) of the openings **170** can be smaller than blood molecules but larger than water molecules. It should be appreciated that such sizing of the openings 170 can permit egress of irrigation fluid from the irrigation element **128***b* while preventing ingress and, thus, clotting of blood molecules into the irrigation element **128***b*.

(146) The arrangement of one or more polymers of the irrigation element **128***b* can include electrospun polytetrafluorethylene and/or expanded polytetrafluoroethylene (ePTFE). In certain implementations, the arrangement of one or more polymers is nonwoven (as shown in FIG. **17**) resulting in the spacing between the fibers being substantially non-uniform such that the openings **170** defined by the spacing between the fibers are of non-uniform size and/or non-uniform distribution. In some implementations, the irrigation element **128***b* can include a woven or fabric arrangement of polymers through which irrigation fluid can be directed. For example, the fabric can be formed of one or more polymers or other biocompatible materials woven together to form a substantially uniform porous barrier through which, in use, irrigation fluid may pass. Examples of polymers that can be arranged together into a fabric suitable for forming the irrigation element **128***c* include, but are not limited to, one or more of the following: polyester, polypropylene, nylon, PTFE, and ePTFE.

(147) In some implementations, the irrigation element **128***b* can include an open cell foam such that the openings **170** are defined by cells of the open cell foam along the surface of the irrigation element **128***b*. In such implementations, irrigation fluid can move through tortuous paths defined by the open cell foam until the irrigation fluid reaches the openings **170** along the surface of the irrigation element **128***b*, where the irrigation fluid exits the irrigation element **128***b*. It should be appreciated that, in such implementations, the openings **170** are distributed along the entire surface of the irrigation element **128***b*, resulting in spray of irrigation fluid issuing from the irrigation element **128***b* in a substantially uniform and substantially turbulent pattern.

(148) As yet another example, while irrigation elements have been described as including a resilient, expandable helical portion, other types of resilient, expandable irrigation elements are additionally or alternatively possible. For example, referring now to FIG. **18**, an irrigation element **128***c* can be a resilient, inflatable structure, such as balloon, disposed along a distal end portion

132' of a catheter shaft 122' and in fluid communication with a lumen 151'. In certain implementations, the irrigation element **128***c* and the ablation electrode **124**′ can each be coupled to the distal end portion **132**' of the catheter shaft **122**'. Unless otherwise indicated or made clear from the context, an element designated with a primed (') element number in FIG. 18 is similar to a corresponding element designated with an unprimed number in other figures of the present disclosure and, thus, should be understood to include the features of the corresponding element designated with an unprimed number. As one example, therefore, the ablation electrode **124**′ should be understood to correspond to the ablation electrode **124** (FIG. **3**), unless otherwise specified. (149) In certain implementations, the irrigation element **128***c* is expandable. For example, the irrigation element **128***c* can be uninflated and/or underinflated in a delivery state of the distal end portion 132' of the catheter shaft 122' to a treatment site according to any of the methods described herein. In such a delivery state, the irrigation element **128***c* can be delivered to the treatment site with a low profile (e.g., a profile that is less than or equal to a maximum outer dimension of the catheter shaft **122**′). At the treatment site, the irrigation element **128***c* can be inflated to expand from the delivery state to an expanded state. For example, the irrigation element **128***c* can expand in a radial direction beyond an outermost dimension of the catheter shaft 122'. (150) The irrigation element **128***c* can be a non-compliant balloon or a semi-compliant balloon. In such implementations, the irrigation element **128***c* can be substantially resistant to deformation when in an inflated state. Thus, in instances in which the irrigation element **128***c* is non-compliant or semi-compliant, the irrigation element **128***c* can resist deformation when contacted by an inner portion **136**′ of the deformable portion **142**′ of the ablation electrode **124**′. As compared to a compliant balloon, this resistance to deformation by the irrigation element **128***c* can facilitate, for example, control over the flow of irrigation fluid through the irrigation element **128***c*. (151) In some implementations, the irrigation element **128***c* is a balloon formed of one or more polymers. Polymers can be, for example, sufficiently flexible to expand from the delivery state to the expanded state while withstanding forces created by the movement of irrigation fluid through the irrigation element **128***c*. In instances in which the irrigation element **128***c* is formed of one or more polymers, irrigation holes can be formed in polymers through laser drilling or other similar secondary processes. Examples of polymers that can be used to form the irrigation element **128***c* include one or more of: thermoplastic polyurethane, silicone, poly(ethylene terephthalate), and polyether block amide.

(152) The irrigation element **128***c* can define a plurality of irrigation holes **134***c*. The irrigation holes **134***c* can be similar to the irrigation holes **134** defined by the irrigation element **128** (FIG. **3**). For example, the irrigation holes **134***c* can be the same size and shape as the irrigation holes **134** defined by the irrigation element **128**. Additionally, or alternatively, the irrigation holes **134***c* can have the same open area as the irrigation holes **134** defined by the irrigation element **128**. (153) In use, irrigation fluid can flow from the lumen **151**′, into the irrigation element **128***c*, and can exit the irrigation element **128***c* through the plurality of irrigation holes **134***c*. In general, the plurality of irrigation holes **134***c* can have a combined area that is less than the cross-sectional area of the lumen **151**′ such that fluid pressure can build in the inflatable element **128***c* as the irrigation fluid moves through the irrigation element **128***c*. It should be appreciated, then, that the pressure in the inflatable element **128***c*, resulting from the flow of irrigation fluid through the irrigation element **128***c*, can inflate the irrigation element **128***c* (e.g., from the delivery state to the expanded state).

(154) In certain implementations, the volume defined by an inner portion **136**′ of the ablation electrode **124**′ in an expanded or uncompressed state is larger than the volume defined by the irrigation element **128***c* in an expanded state. Thus, for example, the inner portion **136**′ of the ablation electrode **124**′ (e.g., along the deformable portion **142**′) can be spatially separated from at least a portion of the surface area of the irrigation element **128***c* when the irrigation element **128***c* is in the expanded state. This spatial separation can be advantageous, for example, for developing

turbulence of irrigation fluid issuing from the irrigation holes **134***c* prior to reaching the inner portion **136**′ of the ablation electrode **124**′. It should be appreciated that, as compared to less turbulent flow and/or laminar flow, such turbulence of the flow of irrigation fluid at the inner portion **136**′ of the ablation electrode **124**′ can facilitate efficient cooling of the ablation electrode **124**′.

- (155) The irrigation element **128***c* can be enveloped by the ablation electrode **124**′ in an uncompressed state to facilitate, for example, cooling substantially the entire inner portion **136**′ of the ablation electrode **124**′. Additionally, or alternatively, enveloping the irrigation element **128***c* with the ablation electrode **124**′ can reduce the likelihood of exposing the irrigation element **128***c* to undesirable forces such as, for example, forces that can be encountered as the ablation electrode **124**′ and the irrigation element **128***c* are moved to the treatment site.
- (156) In the expanded state, the irrigation element **128***c* can include a substantially ellipsoidal portion. As used herein, a substantially ellipsoidal portion can include a substantially spherical shape and deformations of a substantially spherical shape.
- (157) In certain implementations, the irrigation holes **134***c* are defined on this ellipsoidal portion of the irrigation element **128***c*. Thus, in such implementations, the ellipsoidal portion of the irrigation element **128***c* can facilitate directing irrigation fluid in multiple, different axial and radial directions. For example, the irrigation holes **134***c* can be spaced circumferentially (e.g., about the entire circumference) about the ellipsoidal portion of the irrigation element **128***c* such that irrigation fluid can be directed toward the inner portion **136**′ of the ablation electrode **142**′ along various different radial directions. As an additional or alternative example, the irrigation holes **134***c* can be spaced axially (e.g., along an entire axial dimension of the ellipsoidal portion of the irrigation element **128***c*) such that the irrigation fluid can be directed toward the inner portion **136**′ of the ablation electrode **142**′ along proximal and/or distal axial directions.
- (158) A plurality of sensors **126**' can be supported on the deformable portion **142**' of the ablation electrode **124**′. In use, the plurality of sensors **126**′ can be used to detect deformation of the deformable portion **142**′. For example, the irrigation element **128***c* can include a sensor **172** and electrical signals can be driven between the one or more electrodes on the irrigation element **128***c* and each of the plurality of sensors **126**′ according to any of the methods described herein. (159) While the plurality of sensors **126**′ can be used in cooperation with the sensor **172** on the irrigation element **128***c*, other configurations for sensing deformation of the deformable portion 142' are also or instead possible. For example, referring now to FIGS. 19 and 20, a plurality of sensors **174** can be supported along an ablation electrode **124**" at least partially enveloping an irrigation element **128***c*". Unless otherwise indicated or made clear from the context, an element designated with a double primed (") element number in FIGS. 19 and 20 is similar to a corresponding element designated with an unprimed number and/or with a primed number in other figures of the present disclosure and, thus, should be understood to include the features of the corresponding element designated with an unprimed number and/or with a primed number. As one example, the irrigation element **128***c*" should be understood to include the features of the irrigation element **128***c* (FIG. **18**), unless otherwise specified or made clear from the context. As another example, the ablation electrode **124**" should be understood to include the features of the ablation electrode **124** (FIGS. **3** and **4**) and/or of the ablation electrode **124**′ (FIG. **18**), unless otherwise specified or made clear from the context.
- (160) Each sensor **174** can include a flexible printed circuit and/or a thermistor similar to any of the flexible printed circuits and/or thermistors described herein, including the flexible printed circuit **150** and/or thermistor **152** described above with respect to FIGS. **10** and **11**.
- (161) In the uncompressed state of the ablation electrode **124**", the inner portion **136**" of the ablation electrode **124**" is spatially separated from a least a portion of a surface of the irrigation element **128***c*" such that, for example, at least one of the plurality of sensors **174** is not in contact with the irrigation element **128***c*". In certain implementations, the ablation electrode **124**" in the

uncompressed state is not in contact with any of the plurality of sensors **174**. That is, in such implementations in which the ablation electrode **124**", in the uncompressed state, is spatially separated from one or more of the sensors **126**", the default arrangement of the sensors **126**" is away from the irrigation element **128***c*.

(162) The ablation electrode **124**" can include a deformable portion **142**" that is resiliently flexible

- from a compressed state (e.g., in which the inner portion **136**" of the ablation electrode **124**" is in contact with the irrigation element **128***c*") to an uncompressed state (e.g., in which the inner portion **136**" of the ablation electrode **124**" is spatially separated from at least a portion of the surface of the irrigation element **128***c*"). Thus, in such implementations, deformation of the deformable portion **142**" can place one or more of the plurality of sensors **174** into contact with the irrigation element **128***c*" and sensing this contact can be used to determine the shape of the deformable portion **142**" in response to a deformation force, such as a force exerted through contact with tissue. (163) The sensors **174** can be axially and/or circumferentially spaced from one another along the deformable portion 142" of the ablation electrode 124". For example, a first set of the sensors 174 can be disposed distal to a second set of the sensors 174 along the ablation electrode 124" (e.g., along the deformable portion 142"). It should be appreciated that the spatial resolution of the detected deformation of the deformable portion 142" can be a function of the number and spatial distribution of the sensors **174**, with a larger number of uniformly spaced sensors **174** generally providing increased spatial resolution as compared to a smaller number of clustered sensors **174**. (164) In use, an electrical signal can be driven between at least one of the sensors **174** and another one of the sensors **174**. Measured electrical signals generated between at least one of the sensors **174** and another of the sensors **174** can be received at a processing unit such as any of the processing units described herein (e.g., processing unit **109***a* described with respect to FIG. **1**). (165) Based at least in part on the measured electrical signals generated between at least one of the sensors **174** and another of the sensors **174**, deformation of the deformable portion **142**" of the ablation electrode 124" can be detected. For example, as the deformable portion 142" of the ablation electrode **124**" deforms, one or more of the sensors **174** can be brought into contact with the irrigation element **128***c*". It should be appreciated that a certain amount of force is required to deform the deformable portion 142" by an amount sufficient to bring the one or more sensors 174 into contact with the irrigation element **128***c*". As used herein, this force can be considered a threshold at least in the sense that forces below this threshold are insufficient to bring the one or more sensors **174** into contact with the irrigation element **128**c" and, therefore, are not detected as contact between the one or more sensors **174** and the irrigation element **128***c*". (166) Contact between the one or more sensors **174** and the irrigation element **128**c'' can be detected, for example, as a change in the measured electrical signal received, by the processing unit, from the respective one or more sensors **174**. As a non-limiting example, contact between one
- (167) The detection of deformation of the deformable portion **142**" of the ablation electrode **124**" can, for example, include a determination of whether one or more of the sensors **174** is in contact with the irrigation element **128**c. In addition, or instead, the detection of deformation of the deformable portion **142**" based on the measured electrical signals can include a detection of a degree and/or direction of deformation of the deformable portion **142**". That is, a degree and/or direction of deformation of the deformable portion **142**" can be determined based on the number and/or position of the one or more sensors **174** detected as being in contact with the irrigation element **128**c.

or more of the sensors **174** and the irrigation element **128***c* can be detected as a rise in impedance of a respective one or more electrical signals associated with the one or more sensors **174** in contact

with the irrigation element **128***c*.

(168) An indication of a determined state of the deformable portion **142**" can be sent to a graphical user interface, such as any one or more of the graphical user interfaces described herein (e.g., the graphical user interface **110** described with respect to FIG. **1**). In certain implementations, the

degree and/or orientation of deformation of the deformable portion **142**" can be sent to the graphical user interface. For example, based on which sensors **174** are detected as being in contact with the irrigation element **128**c, a corresponding representation of the compressed state of the deformable portion **142**" can be sent to the graphical user interface. The corresponding representation of the compressed state of the deformable portion **142**" can be based on, for example, a look-up table of shapes corresponding to different combinations of sensors **174** detected as being in contact with the irrigation element **128**c.

- (169) An exemplary method of making a catheter including the irrigation element **128**c" can include coupling (e.g., using an adhesive) the irrigation element **128**c" to a distal end portion **132**" of a catheter shaft **122**". The deformable portion **142**" can be formed according to any one or more of the methods described herein, and the deformable portion **142**" can be positioned relative to the irrigation element **128**c" such that the inner portion **136**" of the ablation electrode **124**" envelops the irrigation element **128**c". The deformable portion **142**" can be coupled to the catheter shaft **122**" relative to the irrigation element **128**c" such that, in a compressed state, the inner portion **136**" of the ablation electrode **124**" is in contact with the irrigation element **128**c" and, in an uncompressed state, the inner portion **136**" of the ablation electrode **124**" along the deformable portion **142**" is spatially separated from the irrigation element **128**c".
- (170) As another example, while certain arrangements of struts to form cells along a deformable portion of an ablation electrode have been described, other configurations are additionally or alternatively possible. For example, referring now to FIGS. **21** and **22**, a catheter **204** can include an ablation electrode **224** having struts **244***b* defining a plurality of cells **247**, with the struts **244***b* progressively ganged together in a direction from a proximal region to a distal region of a deformable portion **242** of the ablation electrode **224**. For the sake of efficient and clear description, elements designated by 200-series element numbers in FIGS. **21** and **22** are analogous to or interchangeable with elements with 100-series element numbers (including primed and double-primed element numbers) described herein, unless otherwise explicitly indicated or made clear from the context, and, therefore, are not described separately from counterpart elements having 100-series element numbers, except to note differences or to describe features that are more easily understood with reference to FIGS. **21** and **22**. Thus, for example, catheter **204** in FIGS. **21** and **22** should generally be understood to be analogous to the catheter **104** (FIGS. **1-4**), unless otherwise explicitly indicated or made clear from the context.
- (171) As used herein, a progressively ganged together configuration of the struts **244***b* can include an arrangement of the struts **244***b* in which the number of cells in the plurality of cells **247** decreases in a given direction. Thus, for example, the struts **244***b* can be progressively ganged together in the direction toward the distal end of the deformable portion **242** such that the number of cells **247** defined by the struts decreases in the direction toward the distal end of the deformable portion **242**. Thus, as compared to a configuration in which struts are uniformly disposed about a shape, the closed end of the deformable portion 242 of the ablation electrode 224 can be formed by joining together relatively few of the struts **244***b*. This can be advantageous with respect to, for example, achieving acceptable manufacturing tolerances or, further or instead, facilitating substantially uniform distribution of current density along the deformable portion **242**. (172) In some implementations, the cells in the plurality of cells **247** can be bounded by different numbers of struts **244***b*, which can facilitate achieving a target distribution of current density along the deformable portion **242**. For example, a first set of cells of the plurality of cells **247** can be bounded by struts **244***b* defining eyelets (e.g., eyelets **157** in FIG. **12**B), and a second set of cells of the plurality of cells **247** can be bounded by fewer struts than the first set of cells. For example, the first set of cells of the plurality of cells **247** can be bounded by at least four struts **244***b*. (173) In certain implementations, at least some of the cells **247** of the plurality of cells **247** are symmetric. Such symmetry can, for example, facilitate achieving substantially uniform current density in a deformable portion **242** of the ablation electrode **224**. Additionally, or alternatively,

such symmetry can be useful for achieving suitable compressibility of the deformable portion for delivery to a treatment site (e.g., through a sheath) while also achieving suitable expansion of the deformable portion for use at the treatment site.

- (174) At least some of the cells **247** can have mirror symmetry. As used herein, a mirror symmetric shape includes a shape that is substantially symmetric about a plane intersecting the shape, with the substantial symmetry allowing for the presence or absence of a sensor **226** on one or both sides of the plane intersecting the shape. For example, at least some of the cells **247** can have mirror symmetry about a respective mirror symmetry plane passing through the respective cell **247** and containing a center axis CL'-CL' defined by a catheter shaft **222** and extending from a proximal end portion to a distal end portion of the catheter shaft **222**. In the side view shown in FIG. **22**, a mirror symmetry plane for some of the cells of the plurality of cells **247** is directed perpendicularly into the page and passes through the center axis CL'-CL'. Additionally, or alternatively, it should be appreciated that the overall deformable portion **242** of the ablation electrode **224** can be symmetric about a plane including the center axis CL'-CL', such as the plane directed perpendicularly into the page and passing through the center axis CL'-CL'.
- (175) The mirror symmetry of at least some of the cells of the plurality of cells 247 and/or the overall deformable portion 242 can be useful, for example, for uniform distribution of current density. Additionally, or alternatively, symmetry can facilitate expansion and contraction of the deformable portion 242 of the ablation electrode 224 in a predictable and repeatable manner (e.g., with little to no plastic deformation). For example, each of the cells of the plurality of cells 247 can be symmetric about its respective symmetry plane in the compressed state and in the uncompressed state of the deformable portion 242 of the ablation electrode 224. With such symmetry in the compressed state and in the uncompressed state of the deformable portion 242, the deformable portion 242 can expand with little to no circumferential translation of the deformable portion 242 during expansion, which can facilitate accurate knowledge of the position of the deformable portion 242 during delivery and deployment of the deformable portion 242.
- (176) The catheter **204** can be formed according to any one or more of the various different methods described herein. For example, the ablation electrode **224** can be formed from a flat sheet or from a tube, as described herein, such that the ablation electrode **224** has two open ends. A fastener **241***b* can be inserted through an end of at least some of the struts **244***b* according to any of the various different methods described herein to couple ends of the struts **244***b* to close one of the two open ends of the ablation electrode **224**. An open end of ablation electrode **224** (e.g., an end opposite the fastener **241***b*) can be coupled to a distal end portion **232** of the catheter shaft **222** to form the catheter **204**.
- (177) The following simulation and experiment describe the uniformity of current density associated with the ablation electrode **224** in the uncompressed state. It is to be understood that the simulation and experiment described below are set forth by way of example only, and nothing in the simulation or experiment shall be construed as a limitation on the overall scope of this disclosure.
- (178) Referring now to FIGS. **21-23**, an irrigation element **228** can be enveloped by the deformable portion **242** of the ablation electrode **224** such that the deformable portion **242** forms an enclosure about the irrigation element **228**. The irrigation element **228** can be any of the various different irrigation elements described herein and can be in fluid communication with a catheter shaft **222**. For example, the irrigation element **228** can be disposed substantially along the center axis CL'-CL', can extend distally from a distal end portion **232** of the catheter shaft **222**, and, also or instead, can define a plurality of irrigation holes **234** disposed along the irrigation element **228** to direct irrigation fluid toward the deformable portion **242** of the ablation electrode **224**. Additionally, or alternatively, a center electrode **235** can be disposed along the irrigation element **228** and directly or indirectly coupled to the distal end portion **232** of the catheter shaft **222**.
- (179) The irrigation element 228 can include a nozzle portion 229 disposed along an end of a

substantially cylindrical body 230. The plurality of irrigation holes 234 can be defined along one or both of the nozzle portion **229** and the substantially cylindrical body **230**. In general, the plurality of irrigation holes **234** can be sized and positioned to direct fluid from the nozzle portion **229** in a variety of different spray patterns. For example, the nozzle portion **229** can be substantially hemispherical to facilitate orienting at least some of the plurality of irrigation holes 234 in multiple different directions. Additionally, or alternatively, at least some of the plurality of irrigation holes **234** can be spaced axially, circumferentially, or both, about the cylindrical body **230**. In certain instances, the orientation of the plurality of irrigation holes 234 along the nozzle portion 229, the cylindrical body **230**, or a combination thereof, can be useful for generating substantially uniform distribution of irrigation fluid from the irrigation element **228** toward the ablation electrode **224**. Additionally, or alternatively, the orientation of the plurality of irrigation holes **234** in multiple different directions can be useful for creating a turbulent flow of the irrigation fluid, which can be useful for promoting heat transfer away from the ablation electrode **224**. Further in addition, or in the alternative, the orientation of the plurality of irrigation holes 234 in multiple different directions can be useful for entraining blood and increasing the volume velocity of fluid over the ablation electrode **224** and tissue.

(180) In the absence of force applied to the deformable portion 242 of the ablation electrode 224, the center electrode 235 is spaced apart from the sensors 226. As the deformable portion 242 is brought into contact with tissue through application of force applied to the deformable portion 242, it should be appreciated that, independent of orientation of the deformable portion 242 relative to tissue, the deformable portion 242, and thus the sensors 226, makes initial contact with the tissue before the center electrode 235 makes initial contact with the tissue. In certain implementations, the center electrode 235 remains spaced from tissue under normal operation. That is, the deformable portion 242 of the ablation electrode 224 can be sufficiently rigid to maintain spacing of the center electrode 235 from tissue under a normal range of contact forces, which are less than about 100 g (e.g., less than about 50 g).

(181) In certain implementations, the irrigation element 228 can be one or both of electrically and thermally isolated from the center electrode 235. In such instances, the irrigation element 228 can be a grounded electrode of the measurement circuit to reduce noise, measurement error, or both. For example, in instances in which the irrigation element 228 is a grounded electrode, the irrigation element 228 can be connected to a ground node of the measurement circuit through a resistor (e.g., a $50~\text{k}\Omega$ resistor). As a further or alternative example, the irrigation element 228 can be a driven electrode that is part of an analog feedback circuit, and electrical energy can be driven through the irrigation element 228 such that a voltage measured on a reference electrode (e.g., the center electrode 235) is reduced. In general, it should be appreciated that the use of the irrigation element 228 as a grounded electrode or as a driven electrode, as the case may be, can reduce or eliminate the need to have a grounded or driven electrode carried on a separate device (such as a right leg electrode). Such a reduction in complexity associated with grounding a measurement circuit can be useful, for example, for reducing complexity of a medical procedure.

(182) In certain implementations, a thermocouple **251** can be disposed along the irrigation element **128**. For example, the thermocouple **251** can be disposed on one or both of an outer surface or an inner surface of the irrigation element **128**. The thermocouple **251** can be in electrical communication with, for example, the processing unit **109***a*. In use, the processing unit **109***a* can adjust one or more parameters related to rate of irrigation fluid delivery through the irrigation element **128**, timing of irrigation fluid delivery through the irrigation element **128**, or a combination thereof, based on a signal received from the thermocouple **251**. Additionally, or alternatively, the processing unit **109***a* can alert the physician if the signal received from the thermocouple **251** is inconsistent with an expected irrigation rate.

(183) Electrical activity detected (e.g., passively detected) by the center electrode **235** and the sensors **226** (acting as surface electrodes) can form the basis of respective electrograms associated

with each unique pairing of the center electrode **235** and the sensors **226**. For example, in implementations in which there are six sensors **226**, the center electrode **235** can form six electrode pairs with the sensors **226** which, in turn, form the basis for six respective electrograms. (184) An electrogram formed by electrical signals received from each respective electrode pair (i.e., the center electrode **235** and a respective one of the sensors **226**) can be generated through any of various different methods. In general, an electrogram associated with a respective electrode pair can be based on a difference between the signals from the electrodes in the pair and, thus more specifically, can be based on a difference between an electrical signal received from the center electrode **235** and an electrical signal received from a respective one of the sensors **226**. Such an electrogram can be filtered or otherwise further processed to reduce noise and/or to emphasize cardiac electrical activity, for example.

(185) Because the center electrode **235** remains spaced at an intermediate distance from the sensors **226** and tissue in the range of forces experienced through contact between tissue and the deformable portion **242** of the ablation electrode **224**, the electrogram formed from each electrode pair can advantageously be a near-unipolar electrogram. As used herein, a near-unipolar electrogram includes an electrogram formed based on the difference between two electrodes that are greater than about 2 mm apart and less than about 6 mm apart and oriented such that one of the electrodes remains spaced away from tissue. In certain implementations, in the absence of force applied to the deformable portion **242** of the ablation electrode **224**, the center electrode **235** is spaced apart from the sensors **226** by distance greater than about 2 mm and less than about 6 mm. (186) The near-unipolar electrograms associated with the center electrode **235** spaced from the sensors 226 can provide certain advantages over unipolar configurations (i.e., configurations having electrode spacing greater than 6 mm) and over bipolar configurations (i.e., configurations having electrode spacing equal to or less than 2.5 mm and/or allowing both electrodes to be spaced close to tissue). For example, as compared to unipolar electrograms, the near-unipolar electrograms formed based on signals received from the center electrode **235** and the sensors **226** are less noisy and, additionally or alternatively, less susceptible to far-field interference from electrical activity away from the tissue of interest. Also, as compared to unipolar electrograms, a near-unipolar electrogram does not require a reference electrode on a separate catheter or other device. As a further or alternative example, as compared to bipolar electrograms, a near-unipolar electrogram formed based on signals received from the center electrode 235 and the sensors 226 is generated from an electrode pair with only one electrode in the electrode pair in contact with tissue such that the resulting electrogram waveform arises from one tissue site, making it less complex to interpret. Also, or instead, as compared to bipolar electrograms generated from a pair of electrodes in contact with tissue, the signal of a near-unipolar electrogram formed based on signals received from the center electrode **235** and the sensor **226** in contact with tissue can have a more consistent morphology and/or a larger amplitude at least because the center electrode 235 is always oriented away from tissue as compared to the sensor **226** in the electrode pair touching tissue. (187) The sensors **226** can be any of the various different sensors described herein and, in addition or in the alternative, can be arranged on the deformable portion **242** of the ablation electrode **224** according to any of the various different arrangements described here. For example, in the absence of external force applied to the deformable portion **242** of the ablation electrode **224** enveloping the center electrode **235**, the sensors **226** can be noncoplanar relative to one another. It should be appreciated that, as compared to a planar arrangement, the electrograms generated from the sensors **226** arranged in such a noncoplanar configuration can be useful for providing improved directional information regarding electrical activity in tissue.

(188) The sensors **226** can be electrically isolated from the deformable portion **242** of the ablation electrode **224** with the sensors **226**, acting as surface electrodes, passively detecting electrical activity in tissue in proximity to each respective sensor **226** without interference from the deformable portion **242** of the ablation electrode **224**. At least some of the sensors **226** can be at

least partially disposed along an outer portion of the deformable portion **242** of the ablation electrode **224** with the deformable portion **242** of the ablation electrode between the center electrode **235** and at least a portion of each respective one of the sensors **226** along the outer portion. Additionally, or alternatively, at least some of the sensors **226** can be at least partially disposed along an inner portion of the deformable portion **242** of the ablation electrode **224**. In such implementations, each sensor **226** can be in proximity to tissue without touching tissue as the deformable portion **242** of the ablation electrode **224** touches tissue. Thus, for example, at least some of the sensors **226** can extend through the ablation electrode **224**.

(189) Referring now to FIGS. **1** and **22-23**, the catheter **204** can replace the catheter **104** in FIG. **1**. Accordingly, electrical signals from the sensors **226** and the center electrode **235** can be directed to the catheter interface unit **108** and, thus, unless otherwise indicated or made clear from the context, should be understood to form a basis for detecting contact with tissue, detecting deformation of the ablation electrode **224**, or a combination thereof, according to any one or more of the methods described herein. For example, the signals can be sent to an electrical input stage associated with the catheter interface unit **108**. In certain implementations, the difference between electrical signals is determined through electronic circuitry (e.g., a voltage amplifier with a differential input). Additionally, or alternatively, the difference between electrical signals can be determined by the processing unit **109***a* of the catheter interface unit **108**.

(190) In general, the storage medium **109***b* of the catheter interface unit **108** can have stored thereon computer-executable instructions for causing the processing unit **109***a* to acquire a plurality of electrograms (e.g., an electrogram for each electrode pair formed by the center electrode **235** and each respective sensor **226**). The storage medium **109***b* be can, also or instead, have stored thereon instructions for causing the processing unit **109***a* to display a representation of at least one of the plurality of electrograms on the graphical user interface **110**. In certain implementations, the storage medium **109***b* can have stored thereon instructions for causing the processing unit **109***a* to determine a voltage map associated with the plurality of electrograms, the voltage map corresponding, for example, to electrical activity of a heart of a patient. In some implementations, the storage medium **109***b* can have stored thereon instructions for causing the processing unit **109***a* to display the voltage map on the graphical user interface **110**. The displayed electrograms, alone or in combination with a displayed voltage map, can be useful for selectively treating tissue of the heart (e.g., delivering ablation energy from the deformable portion **242** of the ablation electrode **224** to tissue in a cavity of the heart).

(191) Referring now to FIG. 24, the irrigation element 228 (FIG. 23) can be formed from a substantially planar sheet of material rolled into a tube 233 (e.g., a substantially cylindrical tube). It should be appreciated that various features of the irrigation element 228 can be formed in the substantially flat sheet prior to or while the substantially flat sheet is formed into the tube 233. More specifically, material can be removed from the substantially planar sheet of material (e.g., through laser cutting) to form leaflets 236, the plurality of irrigation holes 234, or a combination thereof. As compared to forming features on a curved material, it should be appreciated that forming the leaflets 236, the plurality of irrigation holes 234, or a combination thereof on the substantially planar sheet can reduce manufacturing complexity and, also or instead, facilitate controlling spacing and size tolerances associated with the plurality of irrigation holes 234 which, in turn, can facilitate controlling a spray pattern of irrigation fluid through the plurality of irrigation holes 234.

(192) Once the tube **233** is formed, the nozzle portion **229** of the irrigation element **228** (FIG. **23**) can be formed by, for example, bending the leaflets **236** toward each other to form a substantially closed end of the irrigation element **228**. In certain implementations, the bent leaflets **236** can be joined to one another (e.g., through welding) at seams between the leaflets **236** adjacent to one another.

(193) Referring now to FIGS. 21, 22, and 25, one or more of the sensors 226 can be supported on

the deformable portion **242** of the ablation electrode **224** through an orifice **237** defined at an intersection of struts **244***b* (e.g., at a joint). For example, the sensor **226** can extend from an exterior surface of the deformable portion **242** to an interior surface of the deformable portion **242**. Arranged in this way, the sensor **226** can come into contact with tissue along the exterior surface of the deformable portion **242** and, additionally or alternatively, the portion of the sensor **226** extending to the interior surface of the deformable portion **242** can be connected to wires carrying electrical signals as necessary for using the sensor **226** to measure contact with tissue, measure electrical activity of tissue (e.g., electrograms), or combinations thereof.

(194) In certain implementations, the sensor **226** can be formed as a rivet securable to the deformable portion **242** through the orifice **237**. A grommet **239** can be disposed in the orifice **237**, between the sensor **226** and the deformable portion **242** of the ablation electrode **224**. The grommet **239** can be formed, for example, of an electrically insulating material (e.g., any of various different biocompatible polymers) spaced between the sensor **226** and the deformable portion **242** of the ablation electrode **224**. In this way, the grommet **239** can electrically isolate the sensor **226** from the deformable portion **242** of the ablation electrode **224**. Additionally, or alternatively, the grommet **236** can be formed of a pliable material to facilitate, for example, press fitting the grommet **239** and the sensor **226** through the orifice **237**.

(195) In general, the grommet **239** can reduce the likelihood that mounting the sensor **226** in the orifice **237** will interfere with operation of the sensor **226**. For example, the grommet **239** can facilitate mounting the sensor **226** to the deformable portion **242** of the ablation electrode **224** without requiring physical modification (e.g., drilling) of the sensor **226**.

(196) Referring now to FIG. **26**, current density through the deformable portion **242** of the ablation electrode **224** (FIG. **21**) in the uncompressed state was simulated using a finite difference method. In the simulation, the ablation electrode **224** was assumed to have uniform voltage (e.g., 1 V), with the medium set at uniform resistivity. The return electrode was assumed to be the edge of the domain and was set to another uniform voltage (e.g., 0 V). It is believed that the variation in simulated current density along a trajectory (shown as the arc extending from position **0** to position **450**) at a fixed distance away from an outer surface of the deformable portion **242** is a proxy for the actual variation in current density along the respective trajectory of the deformable portion 242. (197) Referring now to FIGS. **26** and **27**, the simulated current density through the deformable portion **242** varies by less than about ± 10 percent along the trajectory at 1 mm away from an outer surface of the deformable portion **242** in the uncompressed state. Thus, the current density at a fixed distance near the deformable portion **242** in the uncompressed state is believed to be relatively uniform. Thus, more generally, current density near the surface of the deformable portion **242** is substantially insensitive to the orientation of the deformable portion **242** relative to tissue. Further, given that the deformable portion **242** in the expanded state is larger than a maximum lateral dimension of the catheter shaft 222 (FIG. 21), the deformable portion 242 can reliably deliver wide lesions in any of various different orientations relative to tissue. This can be useful, for example, for reducing treatment time and/or increasing the likelihood that applied ablation energy is sufficient to treat a targeted arrhythmia.

(198) While the results shown in FIG. **27** are based on a simulation using a finite difference method, the general observations drawn from these simulations are supported by the experimental results described below.

(199) FIG. **28** is a graph of depth of lesions applied to chicken breast meat using the ablation electrode **224** (FIG. **21**) in axial and lateral orientations relative to the chicken breast meat. Each lesion was performed on chicken breast meat and 0.45% saline solution at body temperature and, for each lesion, the deformable portion **242** of the ablation electrode **224** (FIG. **21**) was in contact with the chicken breast meat with 10 g of force and 8 mL/min of irrigation was used. For each ablation, 2 amperes were delivered to the tissue through the deformable portion **242** (FIG. **21**) for ten seconds. Lesion depth was determined using a ruler to measure the depth of tissue discolored

from pink to white.

from the context.

(200) Five of the lesions were created with the deformable portion **242** (FIG. **21**) in an axial orientation in which the catheter shaft 222 (FIG. 21) was perpendicular to the chicken breast, and five of the lesions were created with the deformable portion **242** in a lateral orientation perpendicular to the axial orientation. As shown in FIG. 28, although the lesions were created using different orientations, the lesion depths were similar, with lesion depth varying by less than about ±20 percent, indicating that the amount of energy ablating tissue in both orientations is similar. This experimental finding is consistent with the results of the simulation. That is, lesions corresponding to multiple different angles between the deformable portion **242** (FIG. **21**) and tissue have similar depth at each of the multiple different angles. Such uniform distribution of current density can facilitate controlling lesion size, which can be particularly useful for ablating thin tissue. (201) While a center electrode has been described as being disposed on the irrigation element, it should be appreciated that a center electrode can additionally or alternatively be located at any of various different positions within a deformable portion of an ablation electrode. For example, a center electrode (e.g., the center electrode 235 in FIG. 21) can be positioned on a distal end portion of a catheter shaft. Additionally, or alternatively, an irrigation element (such as the irrigation element **228** in FIG. **21**) itself can be used as a center electrode. Thus, for example, the irrigation element can be at least partially formed of an electrically conductive material and used as a reference electrode, a driven/grounding electrode, or a combination thereof. (202) While ablation electrodes have been shown and described as including certain substantially spherical deformable portions, it should be generally understood that a substantially spherical deformable portion, as described herein, can include a deformable portion, in an uncompressed state, having at least a hemisphere (e.g., at least a distal hemisphere) lying within a range of the larger of about ±1 mm or about ±25% of a nominal radius from a center point. Thus, for example, referring now to FIG. 29, an ablation electrode 324 can have a deformable portion 342 having a distal region **344** and a proximal region **346**. Unless otherwise indicated or made clear from the context, the ablation electrode **324** should be understood to be useable instead of or in addition to any one or more of the ablation electrodes described herein. Thus, by way of example and not limitation, the ablation electrode **324** should be understood to be useable in place of one or more of the ablation electrode 124 (FIG. 2), the ablation electrode 124' (FIG. 18), the ablation electrode 124" (FIG. 19), and the ablation electrode 224 (FIG. 21), unless otherwise indicated or made clear

(203) In general, the deformable portion 342 can be substantially spherical in an uncompressed state. That is, in the uncompressed state, the distal region 344 of the deformable portion 342 can be at least a hemisphere lying within a range of the larger of about ± 1 mm or about $\pm 25\%$ of a nominal radius "R" from a center point "P." In FIG. 29, for the sake of clarity, the hemispherical extent of the deformable portion 342 is shown in only two dimensions. Given the three-dimensional extent of the deformable portion 342, however, it should be appreciated that the relationship shown in FIG. 29 applies in three dimensions.

(204) In certain implementations, the proximal region **346** of the deformable portion **342** can be shaped differently from the distal region **344** in the uncompressed state. For example, the proximal region **346** can be substantially conical in the uncompressed state. As used herein, a substantially conical shape of the proximal region **346** should be understood to include any one or more of various different shapes for which, in the uncompressed state, the shortest distance from each point along the proximal region **346** is less than about ±1 mm from a frustum of a right circular cone **348**. For example, the frustum of the right circular cone **348** can have a radius of a first base of about 1 mm or greater and a radius of a second base of about 6 mm or less, with the radius of the first base less than the radius of the second base.

(205) In general, it should be appreciated that the ablation electrode **324** having a substantially spherical shape including a substantially conical proximal region **346** can have any one or more of

the advantages described herein with respect to other ablation electrodes and, thus, should be understood to offer advantages with respect to one or more of uniform current density near the outer surface of the ablation electrode **324** and repeatable positioning of struts, cells, and/or sensors as the deformable portion **342** moves from a compressed state to an uncompressed state. Further, or instead, as compared to other shapes, the ablation electrode **324** having a substantially spherical shape can be less traumatic to tissue (e.g., when there is contact between the deformable portion **342** and tissue of the heart). Additionally, or alternatively, in instances in which a maximum radial dimension of the ablation electrode **324** is larger than a maximum radial dimension of a distal portion of a catheter shaft, the formation of the proximal region **346** as substantially conical can facilitate proximal movement of the ablation electrode **324**. That is, continuing with this example, the substantially conical shape of the proximal region **346** can be, as compared to other shapes, less resistant to proximal movement into or within, for example, the heart, the vasculature, a sheath, an insertion sleeve, or any combination thereof.

(206) While ablation electrodes have been described as including deformable portions, other configurations of the ablation electrode are additionally or alternatively possible. For example, the ablation electrode can include a plurality of struts (e.g., any of the struts described herein) defining a plurality of cells, with the struts forming a substantially rigid structure that maintains a shape in response to force exerted on the ablation electrode. For example, the plurality of struts can form, for example, a substantially rigid structure having a maximum radial dimension substantially equal to a maximum radial dimension of a catheter shaft to which the substantially rigid structure is coupled (e.g., directly or indirectly coupled). In use, one or more of irrigation fluid and blood can flow through the cells of the substantially rigid structure as described with respect to any one or more of the ablation electrodes described herein. Additionally, or alternatively, any one or more of the surface electrodes described herein can be carried on the substantially rigid structure, and the substantially rigid structure can envelop any one or more of the center electrodes described herein. Thus, by way of example, one or more surface electrodes carried on the substantially rigid structure can cooperate with a center electrode enveloped by the substantially rigid structure such that that contact with tissue of an anatomic structure is detected.

(207) The above systems, devices, methods, processes, and the like may be realized in hardware, software, or any combination of these suitable for a particular application. The hardware may include a general-purpose computer and/or dedicated computing device. This includes realization in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable devices or processing circuitry, along with internal and/or external memory. This may also, or instead, include one or more application specific integrated circuits, programmable gate arrays, programmable array logic components, or any other device or devices that may be configured to process electronic signals.

(208) It will further be appreciated that a realization of the processes or devices described above may include computer-executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software. In another aspect, the methods may be embodied in systems that perform the steps thereof, and may be distributed across devices in a number of ways. At the same time, processing may be distributed across devices such as the various systems described above, or all of the functionality may be integrated into a dedicated, standalone device or other hardware. In another aspect, means for performing the steps associated with the processes described above may include any of the hardware and/or software described above. All such permutations and combinations are intended to fall within the scope of the present disclosure.

- (209) Embodiments disclosed herein may include computer program products comprising computer-executable code or computer-usable code that, when executing on one or more computing devices, performs any and/or all of the steps thereof. The code may be stored in a non-transitory fashion in a computer memory, which may be a memory from which the program executes (such as random access memory associated with a processor), or a storage device such as a disk drive, flash memory or any other optical, electromagnetic, magnetic, infrared or other device or combination of devices.
- (210) In another aspect, any of the systems and methods described above may be embodied in any suitable transmission or propagation medium carrying computer-executable code and/or any inputs or outputs from same.
- (211) The method steps of the implementations described herein are intended to include any suitable method of causing such method steps to be performed, consistent with the patentability of the following claims, unless a different meaning is expressly provided or otherwise clear from the context. So, for example performing the step of X includes any suitable method for causing another party such as a remote user, a remote processing resource (e.g., a server or cloud computer) or a machine to perform the step of X. Similarly, performing steps X, Y and Z may include any method of directing or controlling any combination of such other individuals or resources to perform steps X, Y and Z to obtain the benefit of such steps. Thus, method steps of the implementations described herein are intended to include any suitable method of causing one or more other parties or entities to perform the steps, consistent with the patentability of the following claims, unless a different meaning is expressly provided or otherwise clear from the context. Such parties or entities need not be under the direction or control of any other party or entity, and need not be located within a particular jurisdiction.
- (212) It should further be appreciated that the methods above are provided by way of example. Absent an explicit indication to the contrary, the disclosed steps may be modified, supplemented, omitted, and/or re-ordered without departing from the scope of this disclosure.
- (213) It will be appreciated that the methods and systems described above are set forth by way of example and not of limitation. Numerous variations, additions, omissions, and other modifications will be apparent to one of ordinary skill in the art. In addition, the order or presentation of method steps in the description and drawings above is not intended to require this order of performing the recited steps unless a particular order is expressly required or otherwise clear from the context. Thus, while particular embodiments have been shown and described, it will be apparent to those skilled in the art that various changes and modifications in form and details may be made therein without departing from the spirit and scope of this disclosure and are intended to form a part of the invention as defined by the following claims, which are to be interpreted in the broadest sense allowable by law.

Claims

1. A catheter, comprising: a shaft having a proximal end portion and a distal end portion; and a tip assembly coupled to the distal end portion of the shaft, the tip assembly including (a) a plurality of cells formed of struts separated by joints, wherein the struts are moveable based on a flexibility of the joints, and (b) one or more sensors, wherein the one or more sensors are disposed on the struts, wherein: at least a portion of each cell in the plurality of cells is configured to conduct and deliver ablative electrical energy along a majority of its length directly to a target tissue of a patient, a sensor of the one or more sensors is electrically isolated, via an electrically insulating material, from a respective strut in the plurality of cells, the sensor mounted to the respective strut, the electrically insulating material is positioned between the sensor and the respective strut, and the sensor of the one or more sensors is configured to measure an electrophysiological signal corresponding to electrical activity of the tissue in an area of an anatomic structure local to the

sensor, the electrical activity useable for mapping the anatomic structure.

- 2. The catheter of claim 1 wherein: the tip assembly is transitionable between a compressed state and an expanded state; and a distance between a distalmost portion of the tip assembly and the distal end portion of the shaft decreases as the tip assembly expands from the compressed state to the expanded state.
- 3. The catheter of claim 2 wherein, in the expanded state, the tip assembly is generally ellipsoidal.
- 4. The catheter of claim 2 wherein, in the expanded state, a cross-sectional diameter of the tip assembly is larger than a cross-sectional diameter of the distal end portion of the shaft.
- 5. The catheter of claim 1 wherein: the tip assembly is transitionable between an expanded state and a compressed state; and a distance between a distalmost portion of the tip assembly and the distal end portion of the shaft increases as the tip assembly collapses from the expanded state to the compressed state.
- 6. The catheter of claim 1 wherein the cells of the plurality of cells are electrically coupled to one another to form a single electrical conductor.
- 7. The catheter of claim 1 wherein a first subset of the plurality of cells is electrically isolated from a second subset of the plurality of cells such that the tip assembly includes two electrodes of a bipolar electrode configuration.
- 8. The catheter of claim 1 wherein: the one or more sensors include a first sensor and a second sensor; and the first sensor is disposed along the tip assembly at a location distal to the second sensor.
- 9. The catheter of claim 1, further comprising a substantially rigid structure coupled to the distal end portion of the catheter shaft at only a proximal end of the structure, wherein the structure protrudes from the distal end portion of the catheter shaft into and terminates within a volume defined by inner surfaces of the plurality of cells such that the structure is enclosed by the plurality of cells of the tip assembly.
- 10. The catheter of claim 9 wherein: the one or more sensors includes a plurality of sensors; and sensors of the plurality of sensors are disposed along the tip assembly such that, as the tip assembly contacts tissue while the tip assembly is in an axial orientation in which a longitudinal axis of the catheter shaft is generally perpendicular to the tissue, a sensor of the plurality of sensors makes initial contact with the tissue before the structure.
- 11. The catheter of claim 9 wherein: the one or more sensors include a plurality of sensors; and sensors of the plurality of sensors are disposed along the tip assembly such that as the tip assembly contacts tissue while the tip assembly is in a lateral orientation in which a longitudinal axis of the catheter shaft is generally parallel to the tissue, a sensor of the plurality of sensors makes initial contact with the tissue before the structure.
- 12. The catheter of claim 1 wherein, while the tip assembly is contacting the target tissue and is in an axial orientation in which a longitudinal axis of the catheter shaft is generally perpendicular to the target tissue, at least one cells of the plurality of cells is in contact with the target tissue and is configured to conduct and deliver the ablative electrical energy to the target tissue.
- 13. The catheter of claim 1 wherein, while the tip assembly is contacting the target tissue and is in a lateral orientation in which a longitudinal axis of the catheter shaft is generally parallel to the target tissue, at least one cells of the plurality of cells is in contact with the target tissue and is configured to conduct and delivery the ablative electrical energy to the target tissue.
- 14. The catheter of claim 1 wherein the tip assembly is coupled to the distal end portion of the catheter shaft via a coupling portion, and wherein the coupling portion includes a ring.
- 15. The catheter of claim 1, further comprising a substantially rigid structure coupled to the distal end portion of the catheter shaft, in which a sensor of the plurality of sensors makes initial contact with the tissue before the rigid structure.
- 16. A catheter, comprising: a shaft having a proximal end portion and a distal end portion; an ablation electrode coupled to the distal end portion of the shaft, the ablation electrode including a

plurality of cells formed of struts separated by joints, wherein the struts are moveable based on a flexibility of the joints and configured to conduct and deliver ablative electrical energy along a majority of their lengths directly to tissue of a patient; and a plurality of surface electrodes disposed along an outer surface of the ablation electrode, each surface electrode of the plurality of surface electrodes electrically isolated from the ablation electrode via an electrically insulating material positioned between a sensor and the ablation electrode, wherein the sensor is mounted to a strut, and wherein each surface electrode of the plurality of surface electrodes is useable to measure an electrophysiological signal corresponding to electrical activity in the tissue and map an anatomic structure based at least in part on the electrical activity (a) corresponding to tissue of the anatomic structure and (b) measured by the surface electrode in an area local to the surface electrode. 17. A method, comprising: positioning a tip assembly of a catheter within an anatomic structure of a patient, the tip assembly coupled to a distal end portion of a shaft and including (a) a plurality of cells formed of struts separated by joints, wherein the struts are moveable based on a flexibility of the joints, and (b) one or more sensors disposed on the struts, at least a portion of each cell in the plurality of cells is configured to conduct and deliver ablative electrical energy along a majority of its length directly to target tissue of the anatomic structure, and at least one sensor of the one or more sensors is electrically isolated, via an electrically insulating material, from a respective strut in the plurality of cells, the at least one sensor mounted to a struct of the respective strut, the electrically insulating material positioned between the at least one sensor and the respective strut; mapping select tissue of the anatomic structure, wherein mapping the select tissue includes measuring an electrophysiological signal corresponding to electrical activity of the tissue local to the at least one sensor; and ablating select target tissue of the anatomic structure, wherein ablating the select target tissue includes delivering ablative electrical energy to the select target tissue via at least one cell of the plurality of cells.

- 18. The method of claim 17 wherein mapping the select tissue includes: mapping the select tissue prior to ablating the select target tissue; and identifying, based at least in part on the measured electrophysiological signal, the select tissue as the select target tissue.
- 19. The method of claim 17 wherein mapping the select tissue includes mapping the select tissue after ablating the select target tissue.
- 20. The method of claim 17 wherein the ablative electrical energy includes radiofrequency (RF) energy, and wherein ablating the select target tissue includes delivering pulsed RF energy to the select target tissue.
- 21. The method of claim 17 wherein the one or more sensors include multiple sensors, and wherein mapping the select tissue includes: detecting electrical activity corresponding to the select tissue in areas local to two of the multiple sensors; and generating a bipolar electrogram based at least in part on the detected electrical activity.
- 22. The method of claim 17 wherein mapping the select tissue further includes generating a unipolar electrogram based at least in part on the electrical activity corresponding to the select tissue in an area local to a sensor of the one or more sensors.
- 23. The method of claim 17 wherein mapping the select tissue further includes: generating an electrogram based at least in part on the electrical activity; and generating a voltage map of the select tissue based at least in part on the generated electrogram.
- 24. The method of claim 17 wherein the catheter further comprises a reference electrode coupled to the distal end portion of the catheter shaft and spaced apart from the one or more sensors, and wherein: mapping the select tissue includes (a) receiving electrophysiological signals from the reference electrode and a sensor of the one or more sensors, and (b) generating an electrogram based at least in part on a difference between the electrophysiological signals received from the reference electrode and the electrophysiological signals received from the sensor.
- 25. The method of claim 17 wherein: mapping the select tissue includes detecting contact between the select tissue and a sensor of the one or more sensors; and detecting the contact includes driving