

Effect of misalignment on tracks for MPOG Note and CRUZET endcap alignment results

Jim Pivarski

Alexei Safonov

Texas A&M University

18 August, 2008

 Quantified effect of residual misalignment on tracks for MPOG Note, using CSA08 results

- Aligned CSC disks in CRUZETs 1&2
 - Status of CRUZET-3 and prompt AlCaReco for CRUZET-4

- Estimated hardware-only alignment: Gaussian-distributed misalignments with sigmas on the order of those expected from hardware systems only (LAS in tracker, MHAS in muon system), also known as STARTUP scenario
- ▶ Estimated 10 pb⁻¹ scenario: Gaussian-distributed misalignments with sigmas expected from inclusion of track-based alignment; used in some Monte Carlo samples
- ▶ Result of 10 pb⁻¹ exercise: residual misalignments after CSA08 exercises (tracker and muon system), also known as S156
- Perfect alignment, also known as ideal

Curvature resolution

Jim Pivarski

4/10

(Fractional uncertainty in $1/p_T$ equals fractional uncertainty in p_T)

- caloMuons below 5 GeV, globalMuons below 50 GeV, TeVmu/firstHit above
- ► CSA08 tracker results much better than 10 pb⁻¹ estimate because MinBias were more useful than expected

Split up by η

5/10

Bottom-to-top: < 50 GeV (blue), < 500 (green), < 1000 (red), above (purple)

Muon alignment:

Alignment accuracy a little better at high η , but radial lever arm for measuring p_T is several times smaller

Grey: hardware-only, | yellow: 10 pb $^{-1}$ track-based, | dashed: same with perfect tracker

- $ightharpoonup \Delta p_T$ is smaller at low masses
- $ightharpoonup \Delta \phi$, $\Delta \eta$ are smaller at high masses

Endcap disk alignment for CRUZETs 1&2 (no tracker)

Method:

- Muon barrel is the (aligned) reference
- Fit tracks in one tracking volume (barrel or a CSC disk), align a more-distant disk using those tracks

- ▶ Allows for internal cross-checks: compare direct MB \rightarrow ME2 against MB \rightarrow ME1 + ME1 \rightarrow ME2 (etc.)
- Uses standard alignment framework in a non-standard way

Results for CRUZETs 1&2

Jim Pivarski

Tags for CSCAlignmentRcds in database (with IOVs):

8/10

CRUZET1-CSCStation-xyz-2mmRadialFix_v1
CRUZET2-CSCStation-xyzphiz-2mmRadialFix_v2

Requires approx. position of endcap; displacements between disks are new

Details (soon): https://twiki.cern.ch/twiki/bin/view/CMS/MuonAlignment

Consistency checks

Comparison	x (mm)	y (mm)	z (mm)	ϕ_{z} (mrad)
$\overline{\text{(MB}\rightarrow\text{2)}-\text{(MB}\rightarrow\text{1}\rightarrow\text{2)}}$	-12.8	6.4	39.9	-4.75
$(MB{\rightarrow}3)-(MB{\rightarrow}2{\rightarrow}3)$	-3.4	-8.7	-15.3	-1.06
$(MB\rightarrow 4) - (MB\rightarrow 3\rightarrow 4)$	0.4	6.0	10.3	2.8

$$\sqrt{\frac{1}{N-1}\sum (x_i - \bar{x})^2} = \begin{cases} 7.8 \text{ mm for } x \text{ and } y \\ 28 \text{ mm for } z \\ 3.8 \text{ mrad for } \phi_z \end{cases}$$

Some values verified with physical measurements (tape measure)

Follow-ups:

- ▶ Apply same procedure to CRUZET-3 after re-reco (status?)
- ▶ Validate CRUZET-4 prompt AlCaReco
- ▶ Use tracker in CRUZETs 3&4 as a reference
- Depending on statistics and quality of tracker tracks, apply chamber-by-chamber alignment procedure

- MPOG Note estimates of momentum resolution based on from CSA08 alignment exercises
- ▶ Aligned CRUZETs 1&2 disks, same procedure ready for 3&4
- Tracker-to-muon and chamber-by-chamber alignments will also be possible in 3&4
- CRUZET-4 will also test prompt AlCaReco (StandAloneMuons and GlobalMuons)