

Semana temática da Biologia IB - USP

Comandos básicos do R (Introdução à Bioestatística)

Bárbara Maria de Andrade Costa Murillo Fernandes

> São Paulo 4 a 6 de outubro, 2016

O que é R?

R é uma linguagem de programação e um ambiente de desenvolvimento integrado, para cálculos estatísticos e gráficos.

Interfaces para o R

Para trabalhar mais eficientemente com o R você vai precisar de uma interface, ou de um ambiente de desenvolvimento (IDE - Integrated Development Environment).

São ambientes de programação que combinam ferramentas para escrever e executar seu código de maneira mais fácil e eficiente.

Interface sugerida: RStudio

Primeiro IDE criado especificamente para R. Seu ponto forte é a organização das janela sem um arranjo fixo e de fácil acesso.

Simples e intuitivo, é uma das melhores opções para começar: http://www.rstudio.org

O ambiente de trabalho

Script, Console, Global Environment, Files/Plots/Help/Viewer

Use o # para comentar códigos no seu script!

Use # e comente seus códigos no script

data (plethodon) # carrega os dados

plethodon # olhe o conteudo do objeto plethodon

names (plethodon) # olhe os nomes dentro do objeto plethodon

class (plethodon) # mostra a classe a que pertence o objeto plethodon

Como trabalhar com o R no curso de Introdução à Bioestatística?

- Vamos criar uma pasta para o Curso e armazená-la no diretório que você preferir(Desktop, Meus Documentos...);
- 2. Sempre que iniciar o R você precisa checar em qual diretório de tabalho está;
- 3. Para isso vamos usar: getwd() e setwd().

getwd() e setwd()

Qual o diretório de trabalho atual?

getwd()

[1] "/Users/tafinha/Dropbox/MGeo"

Vamos mudar o diretório atual de trabalho?

setwd("~/Desktop/bioestat")

Verificando...

getwd()

[1] "/Users/tafinha/Desktop/bioestat"

Outra opção: vá na janela do canto inferior direito do RStudio...

Qual os arquivos presentes no meu diretório ou pasta de trabalho?

```
getwd() # onde estou?
[1] "/Users/tafinha/Desktop/bioestat"
dir() # o que há dentro de Introducao R?
[1] "aulas" "Figuras" "scripts"
[4] "pasta"
```

ls() # listar os objetos ...

Instalando e carregando pacotes no R

Instalar pacotes

install.packages()

install.packages()

install.packages ("car")

tentando a URL 'https://cran.rstudio.com/bin/macosx/mavericks/contrib/ 3.3/car_2.1-3.tgz'

Content type 'application/x-gzip' length 1448242 bytes (1.4 MB)

downloaded 1.4 MB

The downloaded binary packages are in /var/folders/d2/g84sbdbx42sgm_zqpx_bhtvm0000gn/T//Rtmp97pkzS/downloaded_packages

install.packages()

install.packages ("ggplot2")

The downloaded binary packages are in /var/folders/d2/g84sbdbx42sgm_zqpx_bhtvm0000gn/T// RtmpZSOdOR/downloaded_packages

Carregar pacotes

library()

install.packages()

library (car)

Loading required package: car

Loading required package: dependencia

library (ggplot2)

Loading required package: ggplot2

Loading required package: dependencia

Operadores <- , =

Operadores e objetos

```
objeto <- expressão
  aves.area <- c(50, 67, 26, 22, 47, 16, 21)
objeto = expressão
   aves.area = c(50, 67, 26, 22, 47, 16, 21)
objeto <- expressão
   aves.riqueza <- c(10, 15, 6, 18, 5, 11, 20)
objeto = expressão
   aves.riqueza = c(10, 15, 6, 18, 5, 11, 20)
```

Operadores e objetos

aves.area

[1] 50 67 26 22 47 16 21

aves.riqueza

[1] 10 15 6 18 5 11 20

Você acabou de criar dois objetos (veja no Global Environment)

```
Environment History
sPCA.Rmd × 😕 pca.R × 😕 exercicioAllometry.R × 😕 exercicioPCA.R × 🔛 presintroR.Rmd* × >> 👝 🗔
                                                                                                                                                     -
        ABC Q ? · M Knit HTML · @
                                                                  Run 😝 🕒 Chunks •
                                                                                             😭 🖳 📑 Import Dataset 🕶 🎻 Clear 🔞
                                                                                                                                                   ☐ List •
                                                                                                                                         Q
                                                                                             Global Environment •
       aves.area <- c(50, 67, 26, 22, 47, 16, 21)
                                                                                             Values
  151
  152
       **objeto = expressão**
                                                                                                               num [1:7] 50 67 26 22 47 16 21
                                                                                               aves.area
  153
                                                                                               aves.riqueza
                                                                                                              num [1:7] 10 15 6 18 5 11 20
       aves.area = c(50, 67, 26, 22, 47, 16, 21)
  154
  155
  156
       **objeto <- expressão**
  157
  158
       aves.riqueza <- c(10, 15, 6, 18, 5, 11, 20)
  159
  160
  161
       **objeto = expressão**
  162
  163
       aves.riqueza = c(10, 15, 6, 18, 5, 11, 20)
       (Top Level) $
                                                                               R Markdown $
```

Linguagem orientada a objetos

Linguagem orientada a objetos

aves.area <- c(50, 67, 26, 22, 47, 16, 21)

aves.area

[1] 50 67 26 22 47 16 21

summary (aves.area) # mostra resultados resumidos

Min. 1st Qu. Median Mean 3rd Qu. Max.

16.00 21.50 26.00 35.57 48.50 67.00

Is()

Lista os objetos

Is()

[1] "aves.area" "aves.riqueza" "modelo1"

Sintaxe básica das funções

função (argumento1 = valor, argumento2=valor)

?rnorm # essa função gera uma distribuição normal aleatória

args(rnorm) # vamos olhar os argumentos da função

function (n, mean = 0, sd = 1)

USE O HELP

Sintaxe básica das funções

help(summary)

?summary

Ou na janela inferior direita do RStudio digitando no help o que procura

O help fornece

- O help fornece
- Descrição da função
- Como usar a função
- Os argumentos da função
- Detalhes
- Referências
- Exemplos

Tipos de dados no R ("Atomic data types")

1. Numeric

value <- 605

value

[1] 605

2. Character

```
string <- "Hello World"
```

string

[1] "Hello World"

3. Logical

2 < 4

[1] TRUE

4. Complex number

cn

$$[1] 2+3i$$

Tipos de objetos no R

Tipos de objetos

1. Vetor

Contém várias cópias de um mesmo tipo de objeto. Um vetor pode conter somente objetos de mesma classe.

atenção para a função c() (catenate)

meu.vetor <- c(10.5,11.3,12.4,5.7)

meu.vetor

[1] 10.5 11.3 12.4 5.7

2. Matriz

um array de duas dimensões com número arbitrário de linhas e colunas

```
minha.matriz <- matrix(data=1:12,nrow=3,ncol=4)
```

minha.matriz

```
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
```

3. Array

como uma matriz, mas com dimensões arbitrárias (isto é, mais do que duas dimensões)

my.array <- array(1:24, dim=c(3,4,2))

```
my.array <- array(1:24, dim=c(3,4,2))
my.array
... 1
```

```
, , 1
  [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
, , 2
```

```
[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24
```

Matriz e Array

4. Data frame

conjunto de dados organizados, similar a uma matriz. Entretanto, cada coluna do data frame deverá conter um tipo de dado.

Com a função data.frame reunimos vetores de mesmo comprimento em um só objeto.

4. Data frame

```
nome <- c("Didi","Dede","Mussum","Zacarias")
ano.nasc <- c(1936,1936,1941,1934)
vive <- c("V","V","F","F")
trapalhoes <- data.frame(nome,ano.nasc,vive)
trapalhoes
```

```
nome ano.nasc vive
1 Didi 1936 V
2 Dede 1936 V
3 Mussum 1941 F
4 Zacarias 1934 F
```

O mesmo, em um só comando:

trapalhoes <- data.frame (nomes=c("Didi","Dedé","Mussum","Zacarias"), ano.nasc=c(1936,1936,1941,1934), vive=c("V","V","F","F"))

```
nome ano.nasc vive
1 Didi 1936 V
2 Dede 1936 V
3 Mussum 1941 F
4 Zacarias 1934 F
```

5. Function

conjunto de comandos com entrada (input) e saída (output) definidos.

6. Listas

coleção arbitrária de outros objetos de R (os quais podem incluir outras listas). Pode conter objetos de diferentes classes.

data(plethodon) # carrega os dados

plethodon

São dados do pacote geomorph referentes à salamandra do gênero Plethodon.

data(iris)

São dados do pacote datasets referentes à medidas de 50 flores de 3 espécies de íris.

```
$land
[,1] [,2]
[1,] 8.89372 53.77644
[2,] 9.26840 52.77072
[3,] 5.56104 54.21028
[4,] 1.87340 52.75100
$links
[,1] [,2]
[1, ] 4 5
[2,] 3 5
[3,] 2 4
[4,] 1 2
[5,] 1 3
[6,] 6 7
```

• • •

\$species [1] Jord Jord Jord Jord Jord Jord Jord Jord Teyah Teyah Teyah Teyah Teyah Teyah [18] Teyah Teyah Teyah Jord Jord Jord Jord Jord Jord Jord Jord Teyah Teyah Teyah Teyah [35] Teyah Teyah Teyah Teyah Teyah Levels: Jord Teyah

A base de dados plethodon é uma lista que contém quatro componentes:

- as coordenadas dos dados landmarks (plethodon\$land);
- the wirelink addresses for plotting (plethodon\$links);
- dois conjuntos de variáveis como fatores species e sites

Classes que pertencem os componentes da lista

```
class(plethodon$site)
```

```
[1] "factor"
```

class(plethodon\$land)

```
[1] "array"
```

class(plethodon\$links)

```
[1] "matrix"
```

Indexação

Indexação - vetores

```
a = c(1,2,3,4,5,6)
a
[1] 1 2 3 4 5 6
a[1]
[1] 1
a[9]
[1] NA
                       a[ -(2:4) ]
a[a<5]
                                              a[-c(1,5,9)]
                       [1] 1 5 6 9
                                              [1] 2 3 4 6 9
[1] 1 2 3 4
```

Indexação - vetores

```
biomas = c (4, 6, 2, 5)
biomas
[1] 4 6 2 5
```

```
names(biomas) = c ("Amazonia", "Cerrado", "Pantanal", "MA") biomas
```

```
Amazonia Cerrado Pantanal MA
4 6 2 5
```

```
biomas[ c("Cerrado","MA") ]
Cerrado MA
6 5
```

Indexação - matrizes e data frases

Indexação [linhas,colunas]:

```
matrix.a = matrix (data=1:12,nrow=3,ncol=4)
matrix.a
   [,1][,2][,3][,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
matriz[1,1]
                                 matriz[1:2,1:2]
                                    [,1][,2]
[1] 1
                                 [1,] \quad 1 \quad 4
                                 [2,] 2 5
matriz[1:2,1]
```

[1] 1 2

Indexação - matrizes e data frases

```
iris[1:5,c(2,4)]
```

```
Sepal.Width Petal.Width
1 3.5 0.2
2 3.0 0.2
3 3.2 0.2
4 3.1 0.2
5 3.6 0.2
```

iris[1:5,c("Sepal.Width","Petal.Width")]

Sepal.Width Petal.Width

1	3.5	0.2
2	3.0	0.2
3	3.2	0.2
4	3.1	0.2
5	3.6	0.2

Indexação - matrizes e data frases

iris[iris\$Sepal.Length>7.0,c("Sepal.Width","Petal.Width")]

	Sepal.Width	Petal.Width
103	3.0	2.1
106	3.0	2.1
108	2.9	1.8
110	3.6	2.5
118	3.8	2.2
119	2.6	2.3
123	2.8	2.0
126	3.2	1.8
130	3.0	1.6
131	2.8	1.9
132	3.8	2.0
136	3.0	2.3

Funções básicas no R que ajudam a entender o formato dos dados

Funções básicas no R

```
class() # a classe do objeto
names() # o(s) nome(s) de um objeto
str() # mostra a estrutura do objeto
attributes() # atributo do objeto (lista)
dim() # dimensões do objeto
nrow(); ncol() # número de linhas/colunas de uma matriz
dimnames() # nome da dimensão do objeto
rownames(); colnames() # nome de linhas e colunas
```

Vamos para a prática!