JOSÉ GERALDO DE CARVALHO PEREIRA AUTÔMATOS CELULARES E PROTEÍNAS

AUTÔMATOS CELULARES E PROTEÍNAS

JOSÉ GERALDO DE CARVALHO PEREIRA

Exploração de um novo modelo para a predição de estruturas secundárias Agosto de 2016 – version 4.2

RESUMO

Short summary of the contents in English...a great guide by Kent Beck how to write good abstracts can be found here:

https://plg.uwaterloo.ca/~migod/research/beck00PSLA.html

ABSTRACT

Resumo

SUMÁRIO

BIBLIOGRAFIA

33

FUNDAMENTOS TEÓRICOS 1 INTRODUÇÃO 3 1.1 Proteínas 3 1.1.1 Estruturas 1.1.2 Enovelamento Modelos teóricos para a formação da estrutura 1.1.3 secundária 1.2 Autômatos celulares Autômato celular elementar 1.2.1 1.2.2 Outros tipos de autômatos celulares 3 1.2.3 Problema inverso 3 2 OBJETIVOS 3 JUSTIFICATIVA DESENVOLVIMENTO 4 DADOS 11 4.1 Proteínas camaleônicas 11 4.2 Proteínas diversas 5 IMPLEMENTAÇÃO 13 III RESULTADOS 6 ANÁLISE DOS DADOS 17 7 APRENDIZADO DAS REGRAS GERAIS 8 ANÁLISE DAS REGRAS GERAIS IV PERSPECTIVAS FUTURAS 23 9 DESAFIOS FUTUROS 10 ALTERNATIVAS EM ANÁLISE 27 APPENDIX A APPENDIX TEST 31 A.1 Appendix Section Test A.2 Another Appendix Section Test 31

vii

LISTA DE FIGURAS

Figura 1 Figura da sequencia e das estruturas das camaleonicas 12

LISTA DE TABELAS

Tabela 1 Autem timeam deleniti usu id 12
Tabela 2 Autem usu id 31

LISTINGS

Listing 1 A floating example (listings manual) 31

ACRONYMS

viii

Parte I FUNDAMENTOS TEÓRICOS

INTRODUÇÃO

PROTEÍNAS

Estruturas

Enovelamento

Modelos teóricos para a formação da estrutura secundária

AUTÔMATOS CELULARES

Autômato celular elementar

Outros tipos de autômatos celulares

Problema inverso

JUSTIFICATIVA

Parte II DESENVOLVIMENTO

DADOS

Neste trabalho foram utilizados dois conjuntos de dados compostos de proteínas com estruturas resolvidas experimentalmente e da estrutura secundária atribuída aos seus resíduos por quatro diferentes algoritmos, DSSP, Stride, Kaksi e Pross.

O primeiro conjunto selecionado é formado por um grande número de estruturas de alta qualidade tem como finalidade ser utilizado na busca de regras gerais para o autômato celular. Essas regras gerais são um dos elementos mais importantes desse trabalho, pois permitem avaliar a generalização do autômato celular, isto é, qual o grau de sucesso da aplicação do autômato para o universo de proteínas existentes.

O segundo conjunto selecionado é composto de quatro proteínas denominadas de camaleônicas. Esse conjunto foi selecionado por ser, possivelmente, o exemplo experimental mais desafiador para os métodos de predição de estrutura secundária. Como discutiremos ao longo do texto, todos os métodos de predição de estrutura secundária, assim como os de modelagem comparativa, tendem a falhar nesse conjunto devido à limitações teóricas dos métodos.

PROTEÍNAS CAMALEÔNICAS

PROTEÍNAS DIVERSAS

O conjunto de proteínas diversas utilizado para o treinamento do autômato foi obtido do banco de dados "Top8000" (versão de 2015). Esse banco de dados foi organizado pelo Richardson Lab da Universidade de Duke (disponível em github.com/rlabduke/reference_data). As cadeias selecionadas atendem aos seguintes critérios:

- Resolução < 2.0 Å
- MolProbity score < 2.0
- $\leq 5\%$ dos resíduos apresentando comprimentos de ligação anormais ($> 4\sigma$)
- $\leq 5\%$ dos resíduos apresentando ângulos de ligação anormais ($> 4\sigma$)
- $\leqslant 5\%$ dos resíduos com desvios anormais do C_{β} (> 0.25 Å)

As cadeias selecionadas pelos critérios acima são subagrupadas de acordo com o grau de identidade sequencial (homologia): < 50%,

Figura 1: Figura da sequencia e das estruturas das camaleonicas

CONJUNTO	# ORIGINAL	# UTILIZADAS
Top8000-hom50	7233	6749
Top8000-hom70	7958	7435
Top8000-hom95	8826	8227

Tabela 1: Autem timeam deleniti usu id. Knuth

<70% e <95%. Cadeias que apresentavam resíduos indeterminados na estrutura ou que apresentaram algum erro durante a atribuição da estrutura secundária por algum dos quatro métodos foram removidos do conjunto. A tabela (?) mostra o número de cadeias utilizadas.

Parte III

RESULTADOS

ANÁLISE DOS DADOS

APRENDIZADO DAS REGRAS GERAIS

ANÁLISE DAS REGRAS GERAIS

Parte IV PERSPECTIVAS FUTURAS

DESAFIOS FUTUROS

ALTERNATIVAS EM ANÁLISE

Parte V

APPENDIX

APPENDIX TEST

Lorem ipsum at nusquam appellantur his, ut eos erant homero concludaturque. Albucius appellantur deterruisset id eam, vivendum partiendo dissentiet ei ius. Vis melius facilisis ea, sea id convenire referrentur, takimata adolescens ex duo. Ei harum argumentum per. Eam vidit exerci appetere ad, ut vel zzril intellegam interpretaris.

More dummy text.

APPENDIX SECTION TEST

Test: Tabela 2 (This reference should have a lowercase, small caps A if the option floatperchapter is activated, just as in the table itself \rightarrow however, this does not work at the moment.)

LABITUR BONORUM PRI NO	OUE VISTA	HUMAN
LABITOR BONOROW I KI NO	QUE VISIA	HUMAN
fastidii ea ius	germano	demonstratea
suscipit instructior	titulo	personas
quaestio philosophia	facto	demonstrated

Tabela 2: Autem usu id.

ANOTHER APPENDIX SECTION TEST

Equidem detraxit cu nam, vix eu delenit periculis. Eos ut vero constituto, no vidit propriae complectitur sea. Diceret nonummy in has, no qui eligendi recteque consetetur. Mel eu dictas suscipiantur, et sed placerat oporteat. At ipsum electram mei, ad aeque atomorum mea. There is also a useless Pascal listing below: Listing 1.

Listing 1: A floating example (listings manual)

```
for i:=maxint downto 0 do
begin
{ do nothing }
end;
```

BIBLIOGRAFIA

[1] Donald E. Knuth. "Big Omicron and Big Omega and Big Theta". Em: SIGACT News 8.2 (1976), pp. 18–24.

DECLARATION	
Put your declaration here.	
Campinas, Agosto de 2016	
	José Geraldo de Carvalho
	Pereira

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst's seminal book on typography "The Elements of Typographic Style". classicthesis is available for both LATEX and LaX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection of postcards received so far is featured here:

http://postcards.miede.de/