Зад.1 Известно е, че в 51% от случайте на раждане на близнаци първият роден близнак е момче. Да приемем, че вероятността за раждане на еднополови близнаци е два пъти по-голяма отколкото на разнополови, а при разнополови близнаци вероятността да се роди пръв за всеки пол е една и съща. Ако първият роден близнак е момче, каква е вероятността вторият също да е момче.

Зад.2. Върху отсечка с дължина d по случаен начин попадат две точки. Каква е вероятността и трите получени отсечки да са по-къси от а.

Зад.3 Последователно се хвърля зар докато се падне шестица за втори път. Нека ξ е сл. в. "брой на направените хвърляния". Да се намери разпределението на ξ , да се пресметнат $E\xi$, $D\xi$ и $P(\xi > 5)$.

Зад.4. От числата 1, 2, 3, 4, 5 и 6 по случаен начин без повторение се избират четири. Нека ξ е сл.в. "най-малкото от избраните числа", а η е "броят на числата делящи се на три измежду избраните". Да се определи коефицентът на корелация на ξ и η .

Зад.1 Първият роден близнак е момче. Каква е вероятността вторият също да е момче, ако при близнаците вероятностите за раждане на две момчета и две момичета са съответно a и b, а при разнополови близнаци е два пъти по вероятно да се роди първо момче, отколкото първото родено дете да е момиче.

Зад. 2 От всяка една страна на магнитофонна лента с дължина 100 метра е записано съобщение дълго 20 метра. Да се намери вероятността в интервала от 30 до 55 метър върху лентата да не съществува участък несъдържащ запис, ако се знае че мястото на всеки запис е случайно.

 ${\bf 3}$ ад. ${\bf 3}$ Хвърлят се два зара. Нека ξ е сл.в. "брой на падналите се шестици", а η - "брой на падналите се четни числа". Да се определи:

- а) съвместното разпределение на ξ и η ;
- б) ковариацията на ξ и η ;
- в) $P(\xi < \eta);$
- r) E($\xi \mid \eta = 2$).

Зад. 4 Каква трябва да бъде дължината на интервал, така че вероятността за едновременно попадане в него на две независими нормално разпрежелени сл.в. да бъде 0.04, ако математическото очакване на случайните величини съвпада със средата на интервала, а дисперсията им е 64.

Зад.1 Каква е вероятността, две точки избрани по случаен начин върху окръжност, да лежат от едната страна на хорда, която е успоредна на дадено направление, ако разстоянието от хордата до центъра на окръжността е равномерно разпределена случайна величина.

Зад.2 Автомат изработва детайли. Смята се, че отклонението на детайла от стандартния размер е нормално разпределена случайна величина $\xi \in \mathbb{N}(1,9)$.

 а) Колко процента годни детайли произвежда автомата, ако един детайл се смята за годен, тогава когато отклонението му от стандарта по модул е по-малко от 5

б) Колко трябва да е максималното отклонението по модул от стандарта на един детайл, при което той се приема за годен, така че 90% от детайлите да се окажат годни.

Зад.3 Нека $\xi \in \mathrm{U}(0,2)$ и $\eta \in \mathrm{U}(0,1)$ са независими сл.в. Да се определи :

- а) плътността на случайната величина $\xi \, / \, \eta;$
- б) математическото очакване на $\sqrt{\frac{\xi}{\eta}}$

Задача 1. Дадени са три урни. В първата има 3 черни и 1 бели топки. Във втората - 2 черни и 2 бели, а в третата 1 черна и 3 бели. По случаен начин от една от урните се вади една топка и се пуска в някоя от урните. След това от първата урна се вади топка. Каква е вероятността тази топка да е бяла. Ако е бяла, каква е вероятността топката извадена при първото теглене да е от втората урна.

Задача 2. Каква е вероятността уравнението $x^2-2bx+c=0$ да има различни и реални корени, ако b и c са независими случайни величини с експоненциално разпределение с параметър λ : $f(x)=\lambda e^{-\lambda x}$.

Задача 3. Да се докаже, че ако случайната величина $\xi \in Po(\lambda)$ и математическото й очакване е цяло число, то има две стойности, които ξ приема с една и съща вероятност.

$$P(\xi = k) = \frac{\lambda^k}{k!}e^{-\lambda}.$$

Задача 4. По случаен начин избираме точка A от полуокръжността $x^2+y^2=a, y\geq 0, -a\leq x\leq a,$ и нека A_1 е проекцията на A върху оста y=0. Да се намерят функциите на разпределение и на плътността на дължината $\mathring{\xi}$ на отсечката $\mathring{A}\mathring{A}_1$.

4

Задача 1: В две урни има съответно 3 и 5 топки, които са бели или черни, като във всяка урна броят на белите и черните топки се различава с една. От първата урна се вади топка и се прехвърля във втората урна. След това от втората урна се вади една топка. Каква е вероятността тя да е черна? Каква е вероятността от първата урна да е извадена черна топка, ако от втората урна е изтеглена черна топка?

 ${f 3}$ адача ${f 2}$: Дадени са две независими биномно разпределени случайни величини $\xi\in Bi(x+5,p)$ и $\eta\in Bi(y^2,p),\, 0< p<1$. Да се намерят онези x и y, за които условиото разпределение на случайната величина ξ при условие, че $\xi+\eta=n$, е хипергеометрично от вида HG(46,10,n).

Задача 3: Три пъти последователно се хвърля монета. Нека ξ е случайна величина 'брой гербове, паднали се при трите хвърляния', а η е случайна величина 'брой гербове от първите две хвърляния'. Да се определят:

- а) съвм
встното разпределение на ξ и $\eta;$
- б) маргиналните разпределения на ξ и η ;
- в) да се провери дали ξ и η са независими;
- r) $E\xi$, $E\eta$, $D\xi$, $D\eta$;
- д) ковариацията и коефициентът на корелация;
- е) условното математическо очакване на ξ при условие $\eta=2;$
- ж) разпределението на случайната величина $\theta = \xi \eta$;
- 3) $P(\xi \neq 3, \eta < 2)$ и $P(\xi > 2|\eta = 2)$.

$$\begin{split} \xi \in Bi(n,p) &\Leftrightarrow P(\xi=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k=0,\cdots,n; \\ \xi \in HG(N,M,n) &\Leftrightarrow P(\xi=k) = \binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n} \\ &\sum_{k=0}^{\min(n,a)} \binom{a}{k} \binom{b}{n-k} = \binom{a+b}{n} \end{split}$$