Administración de Memoria Principal Explicación de práctica

Introducción a los Sistemas Operativos Conceptos de Sistemas Operativos

Facultad de Informática Universidad Nacional de La Plata

2025

- La organización y administración de la memoria RAM es uno de los factores más importantes en el diseño de un SO
- Los programas y datos deben residir en ella para:
 - Poder ejecutar
 - Referenciarlos directamente

- La parte del SO que administra esta memoria se llama "administrador de la memoria":
 - Lleva un registro de las partes de la memoria que se están utilizando y de aquellas que no
 - Asigna espacio en memoria a los procesos cuando estos la necesitan
 - Libera espacio de memoria asignada a procesos que han terminado
- Se espera que el SO haga uso eficiente de esta memoria con el fin de alojar el mayor número de procesos > repercute en la multiprogramación

Dirección Lógica:

- Es una dirección que enmascara o abstrae una dirección física
- Referencia a una localidad en memoria
- Se la debe traducir a una dirección física

Dirección Física:

- Es la dirección real. Es con la que se accede efectivamente a memoria
- Representa la dirección absoluta en memoria principal
- La CPU trabaja con direcciones lógicas. Para acceder a la memoria se deben transformar en direcciones físicas
- El mapeo entre direcciones virtuales y físicas se realiza mediante hardware -> MMU (Memory Management Unit)

Traducción MMU

Asignación de memoria

Particiones Fijas:

- La memoria se divide en particiones o regiones de tamaño fijo → tamaños iguales o diferentes
- · Alojan un único proceso

Particiones Dinámicas:

- · Las particiones varían en tamaño y número
- · Alojan un proceso cada una
- Cada partición se genera en forma dinámica del tamaño justo que necesita el proceso

Selección de partición:

- Cada proceso se coloca en alguna partición de acuerdo a algún criterio:
 - First Fit
 - Best Fit
 - Worst Fit
 - Next Fit

¿Qué problemas se generan en cada caso?

Asignación de memoria

Particiones Fijas:

- La memoria se divide en particiones o regiones de tamaño fijo → tamaños iguales o diferentes
- · Alojan un único proceso

Particiones Dinámicas:

- · Las particiones varían en tamaño y número
- · Alojan un proceso cada una
- Cada partición se genera en forma dinámica del tamaño justo que necesita el proceso

Selección de partición:

- Cada proceso se coloca en alguna partición de acuerdo a algún criterio:
 - First Fit
 - Best Fit
 - Worst Fit
 - Next Fit

¿Qué problemas se generan en cada caso?

Fragmentación

 La fragmentación se produce cuando una localidad de memoria no puede ser utilizada por no encontrarse en forma contigua

Fragmentación Interna:

- Se produce en el esquema de particiones fijas
- Es interna a la localidad asignada
- Es la porción de la localidad que queda sin utilizar

• Fragmentación Externa:

- Se produce en el esquema de particiones dinámicas
- Son huecos que van quedando en la memoria a medida que los procesos finalizan
- Al no encontrarse en forma contigua puede darse el caso de que tengamos memoria libre para alocar un proceso, pero que no la podamos utilizar
- Solución → compactación → muy costosa

Paginación

- La memoria se divide en porciones de igual tamaño llamadas marcos
- El espacio de direcciones de los procesos se divide en porciones de igual tamaño denominadas páginas
- Tamaño página = tamaño marco = 512 bytes (generalmente)
- El SO mantiene una tabla de páginas para cada proceso, la cual contiene el marco donde se encuentra cada página
- La paginación bajo demanda es una técnica eficiente de manejar esta estrategia

Paginación - Direccionamiento

Programa

Tabla de Páginas

0	
1	Page 1
2	
3	Page 3
4	Page 0
5	
6	Page 2
7	
	Memoria

Paginación - Direccionamiento

- Un proceso en ejecución hace referencia a una dirección virtual → v = (p,d)
- El SO busca la página p en la tabla de páginas del proceso y determina en qué marco se encuentra
- La dirección de almacenamiento real se forma por la concatenación de la resolución de p (dirección inicio del marco que aloca la página) y d, donde p es el número de página y d es el desplazamiento

Paginación - Ejemplo

- Memoria administrada por sistema de paginación
- Tamaño de página → 512 Bytes
- Cada dirección de memoria referencia a 1 Byte
- Los marco en memoria principal se encuentran desde la dirección física 0
- Tenemos un proceso con un tamaño de 2000 Bytes y con la siguiente tabla de páginas

Página	Marco	
0	1	
1	2	
2	3	
3	0	

Marco	Inicio-Fin	
0	0 - 511	
1	512 - 1023	
2	1024 - 1535	
3	1536 - 2047	

F.I. de 48 B.

- Si tenemos una dirección virtual, por ejemplo 580:
 - Para averiguar el número de página hacemos 580 div 512 = 1.
 Luego esta dirección corresponde a la página 1 que se encuentra en el marco 2
 - Para averiguar el desplazamiento hacemos 580 mod 512 = 68
 - La dirección física es 1024 + 68 = 1092

Página	Marco		Marco	Inicio-Fin
0	1		0	0 - 511
1	2		1	512 - 1023
2	3		2	1024 - 1535
3	0		3	1536 - 2047

F.I. de 48 B.

- Si tenemos una dirección física, por ejemplo 1092:
 - Para averiguar el número de marco hacemos 1092 div 512 = 2.
 En el marco número 2 tenemos la página número 1
 - Para averiguar el desplazamiento hacemos 1092 mod 512 = 68
 - La dirección virtual es 512 + 68 = 580

Segmentación

- La segmentación básicamente la podemos ver como una mejora de la paginación (no hay F.I., sino externa)
- Ahora la tabla de segmentos, además de tener la dirección de inicio del mismo, tiene la longitud o límite
- Las direcciones lógicas constan de dos partes → un número de segmento s y un desplazamiento d dentro del segmento

(0 (d (límite)

