Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Дисциплина: Информационная безопасность (Криптография)
Лабораторная работа 2.2

Вариант 12

Работу выполнил студент группы Р34111: Кривоносов Егор Дмитриевич

Преподаватель:

Маркина Татьяна Анатольевна

2022 г.

г. Санкт-Петербург

Оглавление

Цель работы	
Задание	3
Ход работы	3
Скриншот работы программы PS.exe	4
Вывод	4

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством повторного шифрования.

Задание

Вариант	Модуль, N	Экспонента, е	Блок зашифрованного текста, С
12	680953235477	920197	391097155052 640128264104 655783446185 380882921502 243151555158 525608289811 439378081915 674406455075 295448137012 494853048412 566308391875 623790961908 222667625162

Ход работы

- 1. Исходные данные заносятся в соответствующие поля ввода. Произвольное число Y = 17101337 (меньше чем заданное N)
- 2. После запуска повторного шифрования получены числа X = 534457682471 и i = 73080, где X корень е степени от числа Y по модулю N, а i порядок e.
- 3. В область С помещается блок зашифрованного текста и производится дешифрация

Скриншот работы программы PS.exe

Полученный результат: "анализатором протоколов, причем до начала и после ___"

Вывод

В ходе выполнения данной лабораторной работы я ознакомился с методом повторного шифрования для атаки на алгоритм шифрования RSA.

$$y_{1} = y$$

$$y_{i} = y_{y-1}^{e} \mod N$$

$$y = x^{e} \mod N$$