T.D. 3 Logique séquentielle

Exercice 1

Après avoir rappelé les tables de vérité des bascules D et JK synchronisées sur front montant, donnez le chronogramme des sorties **Q** de chacune des bascules câblées ci-dessous en fonction d'une entrée d'horloge **H**.

Exercice 2

Soit le montage ci-dessous :

- 1. Donnez sa table de vérité.
- 2. Quel circuit logique reconnaissez-vous?
- 3. Remplissez le chronogramme suivant :

T.D. 3

Exercice 3

1. À partir du montage de la <u>figure 1</u>, remplissez le chronogramme ci-dessous :

Figure 1

- 2. Que réalise le montage de la <u>figure 1</u>?
- 3. On modifie légèrement le montage de la <u>figure 1</u> afin d'obtenir le montage de la <u>figure 2</u>. En expliquant votre raisonnement, que réalise le montage de la <u>figure 2</u> ?

Figure 2

T.D. 3 2/6

4. À partir du montage de la <u>figure 3</u>, remplissez le chronogramme ci-dessous :

Figure 3

- 5. Que réalise le montage de la <u>figure 3</u>?
- 6. On modifie légèrement le montage de la <u>figure 3</u> afin d'obtenir le montage de la <u>figure 4</u>. En expliquant votre raisonnement, que réalise le montage de la <u>figure 4</u>?

Figure 4

T.D. 3

7. Câblez les bascules ci-dessous afin d'obtenir un compteur asynchrone modulo 10.

8. Câblez les bascules ci-dessous afin d'obtenir un décompteur asynchrone modulo 13.

T.D. 3 4/6

Exercice 4

Soit le montage ci-dessous :

- 1. En supposant que l'entrée S soit toujours à 1, que réalise ce montage ?
- 2. En supposant que l'entrée S soit toujours à 0, que réalise ce montage ?
- 3. En supposant que l'entrée E soit toujours à 0, remplissez le chronogramme ci-dessous :

Exercice 5

1. Remplissez la table des transitions d'une bascule JK.

$\mathbf{Q}_{(t)}$	$Q_{(t+1)}$	J	K

T.D. 3 5/6

Dans un premier temps, on désire réaliser un compteur synchrone modulo 7 à l'aide de bascules JK synchronisées sur front montant.

2. À l'aide de la table des transitions, remplissez le tableau ci-dessous :

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0

- 3. Donnez les expressions simplifiées des entrées J0, K0, J1, K1, J2 et K2.
- 4. Dessinez le schéma de câblage.

On désire maintenant réaliser un compteur synchrone, modulo 8 en code Gray, à l'aide de bascules JK synchronisées sur front descendant.

5. Remplissez le tableau ci-dessous :

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0

6. Donnez les expressions simplifiées des entrées J0, K0, J1, K1, J2 et K2.

T.D. 3