Autómatas y Lenguajes formales Ejercicio Semanal 11

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

09 de mayo del 2019

1. a) Da la especificación formal de M.

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F \rangle$$
 donde:

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_{acpt}\}$
- $\quad \blacksquare \ \Gamma = \{\sqcup, 0, X\}$
- **■** δ:

q	0	X	⊔
0	(q_1, \sqcup, \to)		
1	(q_2, X, \rightarrow)	(q_1, X, \rightarrow)	$(q_{acpt}, \sqcup, \rightarrow)$
2	$(q_3,0,\rightarrow)$	(q_2, X, \rightarrow)	$(q_4, \sqcup, \leftarrow)$
3	(q_3, X, \rightarrow)	(q_3, X, \rightarrow)	
4		(q_4, X, \leftarrow)	(q_1, \sqcup, \to)
acpt			

 $F = \{q_{acpt}\}$

Figura 1: Diagrama de la Máquina M

b) Simula el comportamiento de la Máquina de Turing M
 con la entrada 00000000 usando una Máquina Universal
 ${\mathcal M}$

Damos la siguiente codificación para \mathcal{M} :

Codificación de la cinta:

 $X \coloneqq 111$

Codificación de estados:

 $q_i \coloneqq 1^{i+1}$

estado inicial := 1

estado final \coloneqq 111111

Codificación de direcciones:

 $\rightarrow := 1$

 $\leftarrow := 11$

- := 111

Codificamos las transiciones:

$\delta(q_0,0)=(q_1,\sqcup,\to)$	0101101101010
$\delta(q_1, \sqcup) = (q_{acpt}, \sqcup, \to)$	011010111111101010
$\delta(q_1, X) = (q_1, X, \to)$	01101110110111010
$\delta(q_1,0) = (q_2, X, \to)$	01101101110111010
$\delta(q_2, X) = (q_2, X, \to)$	0111011101110111010
$\delta(q_2,0) = (q_3,0,\rightarrow)$	011101101111011010
$\delta(q_2,\sqcup)=(q_4,\sqcup,\leftarrow)$	0111010111111010110
$\delta(q_3, X) = (q_3, X, \to)$	011110111011110111010
$\delta(q_3,0) = (q_3, X, \to)$	01111011011110111010
$\delta(q_4,0) = (q_4,0,\leftarrow)$	01111101101111110110110
$\delta(q_4, X) = (q_4, X, \leftarrow)$	0111110111011111101110110
$\delta(q_4,\sqcup)=(q_1,\sqcup,\to)$	0111110101101010

 \mathbf{Y} codificamos la cadena: 011011011011011011011011

2. Describe el lenguaje aceptado por la Máquina de Turing del inciso anterior.

 $L = \{0^n | \text{ n es potencia de 2}\}$