Generalizing the linear state-space model

 $v_{t}idN(0, \sigma_{v}^{2})$ yt = 8 + t * xt + Nt $x_{t} = \phi x_{t-1} + w_{t}$ $w_{t} \stackrel{iid}{\sim} N(0, \sigma_{w}^{2})$

$$\chi_{i} = \mu$$

Spectral Models Consider a stationary time series yt Could think of yt as a noisy realization of several periodic trends (*) yt = = Nk COS (2TTWkt) + Uk Sin (2TTWkt) $nu, vu \stackrel{iid}{\sim} N(0, \sigma_u^2)$ spectral representation theorem tells us that any stationary process yt can be represented Using a spectral representation (x) There's some number v variances or, or and frequencies wis..., wir such that (*) represents ye

Any Stationary ARMA(p,q) model with parameters $M, \phi_1, \ldots, \delta_p, \theta_1, \ldots, \theta_q, \sigma_w^2$ can be written as a spectral model for some r, 01,..., 52, and wi,..., wr

Analagous to our statements about how any ARMA(p, g) model has a possibly infinite AR representation

or MA representation

(#)
$$y_t = \sum_{k=1}^{\infty} v_k \cos(2\pi w_k t) + u_k \sin(2\pi w_k t)$$
 $v_k = \sum_{k=1}^{\infty} v_k \cos(2\pi w_k t) + u_k \sin(2\pi w_k t)$
 $v_k = \sum_{k=1}^{\infty} v_k \cos(2\pi w_k t) + u_k \sin(2\pi w_k t)$

Popular/vseful in part because $v_k = v_k = v_$

For any h70, $\nabla_{Y}(h) = \sum_{k=1}^{7} \nabla_{k}^{2} \cos(2\pi T w_{k} h)$ Basic idea behind the spectral representation theorem. If you had the values of an autocovariance $function T_{\gamma}(0),..., Y_{\gamma}(h),...$ then because we know how to relate the autocovariance fr. to $\sigma_1^2, ..., \sigma_r^2, w_1, ..., w_r$ we can always find a value of r and values of wy ..., wr, o,2,..., oz to veconstruct it

Some More Notation

$$V_1(h) = \int_{-0.5}^{0.5} exp{2\pi whi} J(w) dw$$

$$\forall y(h) = \sum_{k=1}^{2} \int_{u}^{2} \cos(2\pi t \omega_{k} h)$$