Assignment L1

- 1. Given a neural network with a single neuron, calculate the output of this neuron using four different activation functions: sigmoid, ReLU (Rectified Linear Unit), threshold, and tanh (hyperbolic tangent). The input to the neuron (pre-activation) is x = 0.5, and the neuron's weight is w = -1.5, with no bias term. For the threshold function, use a threshold value of 0. (10 marks)
 - (a) **Sigmoid Function:** The sigmoid function is defined as $\sigma(z) = \frac{1}{1+e^{-z}}$. Calculate the output of the neuron using the sigmoid activation function.
 - (b) **ReLU Function:** The ReLU function is defined as $R(z) = \max(0, z)$. Calculate the output of the neuron using the ReLU activation function.
 - (c) **Threshold Function:** The threshold function is defined as T(z) = 1 if $z \ge 0$ and T(z) = 0 if z < 0. Calculate the output of the neuron using the threshold activation function.
 - (d) **Tanh Function:** The tanh function is defined as $\tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$. Calculate the output of the neuron using the tanh activation function.

For each activation function, provide your calculation and the final output value.

Note: For this question, the pre-activation value z is calculated as $z = w \cdot x$.

2. Construct by hand a Perceptron which correctly classifies the following data; use your knowledge of plane geometry to choose appropriate values for the weights w_0 , w_1 , and w_2 . (10 marks)

Training Example	x_1	x_2	Class
a.	0	1	-1
b.	2	0	-1
c.	1	1	+1

Table 1: Samples used