University of Asia Pacific (UAP)

Department of Computer Science and Engineering (CSE)

Course Outline

Program: Computer Science and Engineering (CSE)

Course Title: Digital Logic & System Design

Course Code: CSE 209

Semester: Fall 2021

Level: 4th Semester

Credit Hour: 4.0

Name & Designation of Teacher: Dr. Aloke Kumar Saha, Professor

Office/Room: 701 (7th Floor)

Class Hours: Monday 11 am to 12:20 pm; Wednesday 12:30 pm to 1:50

pm; Thursday 2 pm to 3:20 pm

Consultation Hours: Tuesday 11 am to 12:20 pm

E-mail: aloke@uap-bd.edu

Mobile: +8801711465641

Rationale: Required course and a pre-requisite to Computer Architecture (CSE 317) and Peripheral & Interfacing (CSE 315) in the CSE program. This knowledge is very important for the Robotics and Embedded system.

Pre-requisite (if any): N/A

Course Synopsis:

Boolean algebra: Truth tables, canonical and standard forms of functions, logic operations.

Simplification of functions: Karnaugh map, SOP and POS methods, nondegenarate terms, don't care conditions, tabulation method.

Logic gates: AND, OR, NOT and universal gates, NAND, NOR, wired-OR and wired-AND implementation.

Combinational logic: Half and full adder and subtractor, binary parallel adder, BCD adder, encoder and decoder, multiplexer and demultiplexer, Boolean function implementation using decoder and multiplexer; design and implementation of logic circuits.

Sequential logic: Latches, flip flops, flip flop excitation table.

Registers: SISO, SIPO, PISO, PIPO and universal shift register, combinational shift register.

Counters: Asynchronous and synchronous binary and BCD counters, Johnson counters and ring counters.

Synchronous sequential circuits: State diagrams, state tables, state equations, Mealy and Moore type circuits, state reduction, state assignment, incompletely specified diagrams.

Asynchronous Sequential circuits: Fundamental and pulse mode circuits, race and cycles, methods of secondary assignment.

Design the various Components of Computer: Flag Registers, Shift and Parallel Registers, Memory Units, Control Units.

Design of Simple Microprocessors (SAP1 & SAP2): Architecture, Instructions Set, Instructions Cycle, Programming Model.

Course Objectives: The objectives of this course are to:

- **1. Provide** knowledge and understanding on principles of digital logic operation and different types of logic gates.
- **2. Introduce** the concept of different types of combinational logic, sequential circuits, registers and counters.
- **3. Learn** the operation of different types of combinational logic, sequential circuits, registers and counters.
- **4. Enable** the student to gain Application of different types of logic gates and flip flops.
- **5. Emphasize** the Design and Implement of different types of combinational & sequential logic circuits and counters.

Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning Assessment methods:

CO No.	CO Statements: Upon successful completion of the course, students should be able to:	Corresponding POs (Appendix-1)	Bloom's taxonomy domain/level (Appendix-2)	Delivery methods and activities	Assessment Tools
CO1	Describe the concept of digital logic operation and different types of logic gates.	1	1/Remember	Lecture, multimedia,	Written Examination, Assignment
CO2	Recognize the concept of different types of combinational logic, sequential circuits, registers and counters.	1	1/Analyze	Lecture, Group discussion	Quiz, Written Examination
CO3	Understand the operation of different types of combinational	4	1/Understand	Lecture, Problem Solving,	Quiz, Presentation,

	logic, sequential circuits, registers and counters.			Group discussion	Viva, Written Examination
CO4	Apply different types of logic gates and flip flops.	5	1/Apply	Problem Solving	Quiz, Assignment, Written Examination
CO5	Design and Implement different types of combinational & sequential logic circuits and counter.	5	1/Create	Multimedia	Quiz, Written Examination

Weighting COs with Assessment methods:

Assessment Type	% weight	CO1	CO2	CO3	CO4	CO5
Final Exam	50%		10	20	10	10
Mid Term	20%	6.67		6.67		6.67
Class performance, Quiz, Presentation, Assignment, Project, Others.	30%	2	5	5	13	5
Total	100%	8.67	15	31.67	23	21.67

Grading Policy: As per the approved grading policy of UAP (Appendix-3)

Course Content Outline and mapping with COs

Weeks	Topics / Contents	Course Outcome	Delivery methods and activities	Reading Materials
	Logic gates and		Lecture	Digital Systems:
1	Boolean Algebra	CO1		Principles and
	Doolean Aigeora			Applications, Chapter 3
2	Combinational Logic	CO2	Lecture	Digital Systems:
	Circuits, Quiz 1			Principles and
				Applications, Chapter
				4; Other Materials to
				be delivered during
				lecture
3	Digital Arithmetic:	CO2	Lecture, Problem Solving	Digital Systems:
	Operations and			Principles and
	Circuits			Applications, Chapter 6
4 & 5	Flip Flops and their	CO3	Lecture, Problem Solving	Digital Systems:
	applications			Principles and
	иррисциона			Applications, Chapter 5
6 & 7		CO5	Lecture, Group discussion	Digital Systems:
	Counters and			Principles and
	Registers, Quiz 2			Applications, Chapter
	1108181018, Quill 2			7; Other Materials to be
				delivered during lecture
8 & 9		CO5	Lecture, Group discussion	Digital Systems:
	MSI Logic Circuits,			Principles and
	Quiz 3			Applications, Chapter
				9; Other Materials to be
				delivered during lecture
10		CO4	Lecture, Problem Solving	Digital Systems:
	Synchronous			Principles and
	sequential Circuits			Applications, Chapter 5
			·	& 7
11	Asynchronous	CO4	Lecture, Group discussion	Digital Systems:
	sequential Circuits,			Principles and
	Quiz 4			Applications, Chapter 5
10	_	002	Y . 100 10	& 7
12	Design the various	CO3	Lecture, multimedia	To be assigned during
	Components of			lecture.
	Computer			icciaic.
13 & 14	Design of Simple	CO5	Lecture, multimedia	
	Microprocessors(SAP1			To be assigned during
	& SAP2), Quiz 5			lecture.

Required References: Digital Systems: Principles and Applications – Ronald J. Tocci

& Neal S. Widmer

Recommended References: Digital Logic and Computer Design – M. Morris Mano

Digital Fundamentals – Thomas L. Floyd

Special Instructions:

Students must come to the class prepared for the course material covered in the previous classes.

They must submit their assignments on time.

No late or partial assignments will be acceptable. There will be no make-up quizzes.

Prepared by	Checked by	Approved by	
Course Teacher	Chairman, PSAC committee	Head of the Department	

<u>Appendix-1:</u> Washington Accord Program Outcomes (PO) for engineering programs:

No.	PO	Differentiating Characteristic
1	Engineering Knowledge	Breadth and depth of education and type of knowledge,
		both theoretical and practical
2	Problem Analysis	Complexity of analysis
3	Design/ development of solutions	Breadth and uniqueness of engineering problems i.e. the
		extent to which problems are original and to which
		solutions have previously been identified or codified
4	Investigation	Breadth and depth of investigation and experimentation
5	Modern Tool Usage	Level of understanding of the appropriateness of the tool
6	The Engineer and Society	Level of knowledge and responsibility
7	Environment and Sustainability	Type of solutions.
8	Ethics	Understanding and level of practice
9	Individual and Team work	Role in and diversity of team
10	Communication	Level of communication according to type of activities
		performed
11	Project Management and Finance	Level of management required
		for differing types of activity
12	Lifelong learning	Preparation for and depth of Continuing learning.

Appendix-2

Bloom's Taxonomy (Taxonomy of Learning) 3 Domains **(1)** (2) (3) Cognitive **Psychomotor Affective** (Attitude) (Knowledge) (Skill) Remember Receiving **Imitation** Understand Responding Manipulation Valuing Apply Precision Analyze Organization Articulation Evaluate Naturalization Characterization

Appendix-3: Grading Policy

Create

Numeric Grade	Letter Grade	Grade Point
80% and above	A+	4.00
75% to less than 80%	A	3.75
70% to less than 75%	A-	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	В	3.00
55% to less than 60%	B-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00