## Correlation analysis

a statistical method used to evaluate the strength of relationship between two quantitative variables.

Pearson's correlation coefficient

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

- $-1 \le r \le 1$
- r > 0: Positive correlation ( if x increases, so does y.)
- r < 0: Negative correlation (if x increases, y decreases.)
- The closer to either 1 or -1 the value r is, the more correlated x and y are.



Plot the graph and calculate the correlation coefficient.

| beers | 5    | 2    | 9    | 8    | 3    | 7     | 3    | 5    | 3    | 5    |
|-------|------|------|------|------|------|-------|------|------|------|------|
| bal   | 0.10 | 0.03 | 0.19 | 0.12 | 0.04 | 0.095 | 0.07 | 0.06 | 0.02 | 0.05 |

**linear regression** is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables)

