- A shaft is a rotating member usually of circular cross section (solid or hollow) used to transmit power
 - Gears, pulleys and flywheels are mounted on the shaft and the shaft is supported by bearings
 - Is subjected to bending in both planes, thrust loads and torque
 - Loading can be fully reversed or repeated
- An axle is a non rotating member which is used to support rotating wheels

Design considerations

- Yielding
- Fatigue failure
- Excessive deflection and slope beyond allowable limits
- Dynamic stability during operation
- Provide appropriate interfaces for locating and securing elements like gears, pulleys etc.
- The location of these elements are governed by overall layout of the system in which shaft is a part
- Assembly and dis-assembly considerations

Figure 7-9

Techniques for reducing stress concentration at a shoulder supporting a bearing with a sharp radius. (a) Large radius undercut into the shoulder. (b) Large radius relief groove into the small diameter

	Bending	Torsional	Axial
Shoulder fillet—sharp $(r/d = 0.02)$	2.7	2.2	3.0
Shoulder fillet—well rounded $(r/d = 0.1)$	1.7	1.5	1.9
End-mill keyseat ($r/d = 0.02$)	2.2	3.0	_
Sled runner keyseat	1.7		_
Retaining ring groove	5.0	3.0	5.0

Missing values in the table are not readily available.

Shaft deflection

- Complete geometry and dimensions along with support conditions are needed
- Deflection calculation is usually performed after design for yield and fatigue
- Both linear deflection and slope have to be obtained
- Shaft bends in two planes invariably
- Diameter can vary along the shaft length
- Options
 - A 3D finite element analysis can be carried out
 - Separate 2D analysis for bending in each plane based on MOM can be performed
 - The resultant deflection can be obtained by vector addition
- Fillets, key ways, grooves etc. do not affect the rigidity significantly and can be neglected

