Optimización Numérica

Rodrigo Mendoza-Smith rodrigo.mendoza@itam.mx

Clase 3 y 4: Conjuntos y funciones convexas II

Conos propios y desigualdades generalizadas

- ▶ Un cono $K \subset \mathbb{R}^n$ es *propio* si :
 - K es convexo.
 - K es cerrado.
 - K es sólido (el interior es no vacío).
 - K es puntiagudo (no contiene ninguna línea)
- Un cono propio define una desigualdad generalizada (orden parcial en \mathbb{R}^n).

$$x \leq_K y \Leftrightarrow y - x \in K$$
.

► También podemos definir un orden parcial estricto:

$$x \prec_K y \Leftrightarrow y - x \in \text{int } K$$
.

▶ Si $K = \mathbb{R}_+$, $\leq_K \equiv \leq$ y $\prec_K \equiv <$.

Ejemplos

- Ortante no-negativo:
 - $K = \mathbb{R}^n_+ \subset \mathbb{R}^n$.
 - $ightharpoonup \leq_{\kappa} \equiv \leq$ (Desigualdad por componentes).
- ► El cono positivo semidefinido:
 - $ightharpoonup K = S_{\perp}^n \subset S_{\perp}^n$.
 - $ightharpoonup X \leq_K Y \text{ ssi } Y X \in \mathbf{S}^n_+.$
- ▶ Polinomios no-negativos en [0, 1]:
 - $K = \{c \in \mathbb{R}^n : \sum_{i=0}^{n-1} c_i t^i \geq 0 \ \forall \ t \in [0,1]\}.$
 - ▶ $c, d \in \mathbb{R}^n$ satisfacen $c \leq_K d$ ssi

$$\sum_{i=0}^{n-1} c_i t^i \leq \sum_{i=0}^{n-1} d_i t^i \ \forall \ t \in [0,1].$$

Propiedades de desigualdades generalizadas

Algunas propiedades de \leq_K :

► Se preserva bajo sumas

$$a \leq_{\kappa} b, c \leq_{\kappa} d$$
, entonces $a + c \leq_{\kappa} b + d$.

- Transitividad
- Se preserva bajo multiplicación por escalares no-negativos.
- Es reflexiva.
- ▶ Es anti-simétrica $x \leq_K y$, $y \leq_K x \Rightarrow x = y$.
- Se preserva bajo límites:

$$a_i \preceq_{\kappa} b_i, i \in \mathbb{N} \text{ y } (a_i, b_i) \xrightarrow[i \to \infty]{} (a, b) \text{ entonces } a \preceq_{\kappa} b.$$

Propiedades de desigualdades generalizadas

Algunas propiedades de \prec_K :

- ▶ Si $a \prec_{\kappa} b$, entonces $a \preceq_{\kappa} b$.
- ▶ Si $a \prec_K b$ y $c \preceq_K d$, entonces $a + c \prec_K b + d$.
- ▶ Si $a \prec_K b$ y $\alpha > 0$, entonces $\alpha a \prec_K \alpha b$.
- Si $a \prec_K b$ y $c \preceq_K d$ son suficientemente pequeños, $a + c \prec_K b + d$.

Elementos mínimos y minimales

- ▶ (\mathbb{R}, \leq) genera un *orden lineal*: Siempre $x \leq y$ o $y \leq x$ si $x, y \in \mathbb{R}$.
- ▶ No es el caso para \leq_K y \prec_K .
- $\triangleright x \in S$ es el *mínimo* de S si

$$x \leq_K y$$
 para todo $y \in S$.

- (es único si existe)
- \triangleright $x \in S$ es un elemento *minimal* de S si

$$y \in S, y \prec_K x \Rightarrow y = x.$$

- \triangleright $x \in S$ es un elemento mínimo de S ssi $S \subset x + K$.
- ▶ $x \in S$ es un elemento minimal de S ssi $(x K) \cap S = \{x\}.$

Elementos mínimos y minimales

Figure 2.17 Left. The set S_1 has a minimum element x_1 with respect to componentwise inequality in \mathbb{R}^2 . The set $x_1 + K$ is shaded lightly, x_1 is the minimum element of S_1 since $S_1 \subseteq x_1 + K$. Right. The point x_2 is a minimal point of S_2 . The set $x_2 - K$ is shown lightly shaded. The point x_2 is minimal because $x_2 - K$ and S_2 intersect only at x_2 .

Figure: Fuente: Boyd & Vandenberghe (Convex Optimization)

Hiperplanos separadores

Teorema (Separación de hiperplanos)

Supongamos C y D son no-vacíos y convexos. Si $C \cap D = \emptyset$, entonces existe $a \neq 0$ y b tal que $a^T x \leq b \ \forall x \in C$ y $a^T x \geq b$ $\forall x \in D$.

- $\{x: a^T x = 0\}$ es el hiperplano separador.
- ► (Demostración para caso especial)
- ¿ Es cierto el converso?

Hiperplanos de soporte

Si $C \subset \mathbb{R}^n$ y $x_0 \in \text{bd } C$. Si $a \neq 0$ satisface $a^T x \leq a^T x_0$ para todo $x \in C$, entonces $\{x : a^T x = a^T x_0\}$ es el hiperplano de soporte a C en x_0 .

Teorema (Hiperplanos de soporte)

Para todo conjunto convexo C no vacío y todo $x_0 \in bd$ C existe un hiperplano de soporte a C en x_0 .

Figure 2.21 The hyperplane $\{x \mid a^T x = a^T x_0\}$ supports C at x_0 .

Figure: Fuente: Boyd & Vandenberghe (Convex Optimization)

Conos duales

► Sea *K* un cono. El conjunto,

$$K^* = \{ y : x^T y \ge 0 \ \forall x \in K \}$$

es el cono dual de K.

- ► *K** es un _____.
- $ightharpoonup K^*$ es siempre convexo (aún cuando K no lo es).
- ¿Cómo se ve el cono dual?

Ejemplos

- (Subespacio) El cono dual de un subespacio $V \leq \mathbb{R}^n$ es V^{\perp} .
- ▶ (El ortante no-negativo) El cono \mathbb{R}^n_+ es su propio dual (es *auto-dual*).
- ▶ (El cono positivo-semidefinido) S_+^n es auto-dual (con $\langle X, Y \rangle = \operatorname{tr}(XY)$.

$$\operatorname{tr}(XY) \geq 0 \ \forall \ X \succeq 0 \Leftrightarrow Y \succeq 0.$$

Algunas propiedades

- \triangleright K^* es convexo y cerrado.
- ▶ $K_1 \subset K_2$ implica $K_2^* \subset K_1^*$.
- ▶ Si el interior de K no es vacío, K* es puntiagudo.
- Si la cerradura de K es puntiaguda, el interior de K* es no vacío.
- $ightharpoonup K^{**}$ es la cerradura de la envoltura convexa de K.

Desigualdades generalizadas (duales)

Si K es propio, K^* es propio e induce la desigualdad generalizada dual \preceq_{K^*} .

- $ightharpoonup x \leq_K y \text{ ssi } \lambda^T x \leq \lambda^T y \text{ para todo } \lambda \succeq_{K^*} 0.$
- $ightharpoonup x \prec_{\kappa} y \text{ ssi } \lambda^{T} x < \lambda^{T} y \text{ para todo } \lambda \succeq_{\kappa^{*}} 0, \ \lambda \neq 0.$

Elementos mínimos (caracterización dual)

Sea $S \subset \mathbb{R}^n$ (no necesariamente convexo), K un cono propio.

- ▶ x es el *elemento mínimo* de S c.r.a. \leq_K ssi para todo $\lambda \succ_{K^*} 0$, x es el único minimizador de $\lambda^T z$ sobre $z \in S$.
- ▶ Para todo $\lambda \succ_{K^*} 0$, $\{z : \lambda^T (z x) = 0\}$ es un hiperplano de soporte estricto a S en x.

Figure: x es el mínimo de S c.r.a. $\mathbb{R}^2_{\geq 0}$ (Fuente: Boyd & Vandenberghe, Convex Optimization)

Elementos minimales (caracterización dual)

Sea $S \subset \mathbb{R}^n$ (no necesariamente convexo), K un cono propio.

- ▶ Si $\lambda \succ_{K^*} 0$ y x minimiza $\lambda^T z$ sobre $z \in S$, entonces x es minimal.
- ▶ El converso no es cierto: Un punto x puede ser minimal en S, pero no un minimizador de $\lambda^T z$ sobre $z \in S$ para todo λ .

Figure: Conjunto de elementos minimales con respecto a $\mathbb{R}^2_{\geq 0}$, y ejemplo que muestra que el converso no es cierto. (Fuente: Boyd & Vandenberghe, Convex Optimization)

Funciones convexas

Funciones convexas

Una función $f: \mathbb{R}^n \to \mathbb{R}$ es convexa si dom f es convexo y $\forall x, y \in \text{dom } f$ y θ en $\theta \in [0, 1]$ tenemos

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y). \tag{1}$$

- La función es estrictamente convexa si la desigualdad es estricta cuando $x \neq y$ y $\theta \in (0,1)$.
- ightharpoonup f es cóncava si -f es convexa.
- Función es afín ssi es convexa y cóncava.
- ▶ Definimos la *extensión* de *f* como:

$$\hat{f}(x) = \begin{cases} f(x) & x \in \text{dom}(f) \\ \infty & x \notin \text{dom}(f) \end{cases}$$

Condiciones de primer orden

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable

f es convexa ssi dom(f) es convexo y

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) \tag{2}$$

 $\forall x, y \in dom(f)$

- ► (Demostración)
- La aproximación de Taylor de primer orden es un sub-estimador global de la función.
- ▶ Información local $(f(x), \nabla f(x)) \Rightarrow$ Información global (sub-estimador global).
- ► Si $\nabla f(x) = 0$, entonces _____.

Condiciones de segundo orden

Supongamos que $f: \mathbb{R}^n \to \mathbb{R}$ es dos veces diferenciable ($\nabla^2 f$ existe en todo punto de dom(f)).

▶ f es convexa ssi dom(f) es convexo y

$$\nabla^2 f \in \mathbf{S}_+^n. \tag{3}$$

Demostración: Tarea

Ejemplos de funciones $f: \mathbb{R}^n \to \mathbb{R}$ convexas (o cóncavas) usadas en ML

- ▶ Normas: $f(x) = ||x||_p p \ge 1$.
- $ightharpoonup Max: f(x) = max_i x_i.$
- ► Log-sum-exp: $f(x) = \log(\sum_{i=1}^{n} e^{x_i})$.
 - ► Modelos gráficos probabilísticos.
- Media geométrica: $f(x) = (\prod_{i=1}^{n} x_i)^{1/n}$.
 - Aprendizaje métrico
- ▶ Log-determinante: $f(X) = \log \det(X)$ ($X \in \mathbf{S}_{++}^n$).
 - Procesos Gaussianos

El epigrafo

El epigrafo de una función $f : \mathbb{R}^n \to \mathbb{R}$ se define como:

$$epi(f) = \{(x, t) : x \in dom(f), f(x) \le t\}.$$
 (4)

- ightharpoonup f es convexa ssi epi(f) es un conjunto convexo.
- El epigrafo nos permite usar resultados de convexidad de conjuntos, pero en funciones.
- Por ejemplo,

$$(y,t) \in \operatorname{epi}(f) \Rightarrow \begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^{-1} \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \leq 0$$
(5)

e.g. El hiperplano definido por $[\nabla f(x), -1]$ soporta a epi(f) en (x, f(x)).

Operaciones que preservan convexidad

- Sumas escaladas por elementos no-negativos: $f = \sum_{i=1}^{n} w_i f_i$.
 - ► El conjunto de funciones convexas es un cono convexo!
- ► Composición con funciones afines: g(x) = f(Ax + b).
 - ▶ Si f es convexo, g es convexo.
- Máximos puntuales: $f(x) = \max\{f_1(x), f_2(x)\}\$ con $dom(f) = dom(f_1) \cap dom(f_2)$.
- Supremos puntuales: $g(x) = \sup_{y \in S} f(x, y) (f(x, y))$ convexo en x.
 - ▶ $f(X) = \lambda_{max}(X)$ es convexo (X simétrica).
- ► Composición: $h: \mathbb{R}^k \to \mathbb{R}$ y $g: \mathbb{R}^n \to \mathbb{R}^k$, $f = g \circ h$.

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$
, si $k = n = 1$.

Se pueden derivar casos. El caso general se razona de manera similar.

Operaciones que preservan convexidad II

- ▶ Minimización: $g = \inf_{y \in S} f(x, y)$ si $g(x) > -\infty \forall x$.
- Si $f: \mathbb{R}^n \to \mathbb{R}$, entonces la función de perspectiva $g: \mathbb{R}^{n+1} \to \mathbb{R}$ de f definida por

$$g(x,t) = tf(x/t)$$
 es convexa. (6)

- ▶ $f(x) = \log(x)$ es convexa en $\mathbb{R}_{>0}$. Su perspectiva es $g(x,t) = t \log(t/x)$ La entropía relativa de t y x. (7)
- La entropía relativa para vectores $x, y \in \mathbb{R}^n_{>0}$:

$$H(u \mid v) = \sum_{i=1}^{n} u_i \log(u_i/v_i). \tag{8}$$

 Entropía relativa + Función lineal = Divergencia de Kullback-Leibler

$$D_{KI}(u, v) = \sum_{i=1}^{N} (u_i \log(u_i/v_i) - u_i + v_i).$$
 (9)

Funciones conjugadas

Sea $f: \mathbb{R}^n \to \mathbb{R}$, la función conjugada $f^*: \mathbb{R}^n \to \mathbb{R}$ está dada por:

$$f^*(y) = \sup_{x \in \text{dom}(f)} (y^T x - f(x)), \tag{10}$$

El conjugado tiene dominio dom $(f^*) = \{y : f^*(y) < \infty\}.$

- Supremo puntual de una familia de funciones convexas (en y), entonces convexo (incluso cuando f no es convexo).
- Minimización: $g = \inf_{y \in S} f(x, y)$ si $g(x) > -\infty$ para todo x.
- ► Ejemplos:
 - Log-determinante (en clase)
 - La función indicadora (en conjuntos no necesariamente convexos)
 - Log-sum-exp (Tarea)
 - Normas

Propiedades

La desigualdad de Fenchel:

$$f(x) + f^*(y) \ge x^T y. \tag{11}$$

- ▶ Si f es convexo y epi(f) es cerrado, $f^** = f$.
- ► Transformada de Legendre: (f convexa y diff) x^* maximiza $y^Tx f(x)$ ssi $y = \nabla f(x^*)$, por lo tanto si $y = \nabla f(x^*)$,

$$f^*(y) = (x^*)^T \nabla f(x^*) - f^*(x). \tag{12}$$

- ▶ Si a > 0 y $b \in \mathbb{R}$, el conjugado de g(x) = af(x) + b es $g^*(y) = af^*(y/a) b$.
- ► Si $f(u, v) = f_1(u) + f_2(v)$, $f * (w, z) = f_1^*(w) + f_2^*(z)$.

Dualidad de Fenchel

Sean $f,g:\mathbb{R}^n\to\mathbb{R}$, f convexa, g cóncava tal que $f,-g>-\infty$. Sean

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ y^T x - f(x) \}$$
$$g_*(y) = \inf_{x \in \mathbb{R}^n} \{ y^T x - g(x) \}$$

Entonces,

$$\inf_{x} (f(x) - g(x)) = \sup_{p} (g_{*}(p) - f^{*}(p)). \tag{13}$$

Figure: Fuente: Wikipedia

Funciones cuasi-convexas

Sean $f: \mathbb{R}^n \to \mathbb{R}$, es una función cuasi-convexa si su dominio y todos sus conjuntos de nivel $S_\alpha = \{x \in \text{dom}(f) : f(x) \le \alpha\}$ para $\alpha \in \mathbb{R}$ son convexos.

- ► Funciones convexas ⊂ Funciones cuasi-convexas
- ightharpoonup Funciones convexas \neq Funciones cuasi-convexas
- ▶ f es cuasi-convexa ssi dom(f) es convexo y \forall $x, y \in \text{dom}(f)$ y $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}. \tag{14}$$

- ▶ e.g. La función $\operatorname{rank}(X)$ es cuasi-cóncava en \mathbf{S}_{+}^{n} . Entonces $\operatorname{rank}(X + Y) \ge \min\{\operatorname{rank}(X), \operatorname{rank}(Y)\}$.
- ▶ Si f es diferenciable, f es cuasi-convexa ssi dom(f) es convexo y $\forall x, y \in \text{dom}(f)$, $f(y) \leq f(x) \Rightarrow \nabla f(x)^T (y x) < 0$.
- ► Condiciones de segundo orden también existen!

Funciones log-cóncavas y log-convexas

Sean $f : \mathbb{R}^n \to \mathbb{R}$, es log-(cónvava/convexa) si f(x) > 0 para todo $x \in \text{dom}(f)$ y log f es (cóncava/convexa).

▶ Log-cóncava ssi $\forall x, y \in dom(f)$ y $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}. \tag{15}$$

- ► Ejemplos:
 - La función de distribución acumulada Gaussiana $\Phi(x)$.
 - La función de distribución Gamma.
 - $ightharpoonup \det(X) \operatorname{det}(X) / \operatorname{tr}(X) \operatorname{en} \mathbf{S}_{++}^n$.
 - La distribución normal multivariada.
 - ▶ La distribución exponencial multivariada en \mathbb{R}^n_+ .
 - La distribución uniforme en un conjunto convexo.
 - ▶ La distribución de Wishart (soporte en S_{++}^n).
- Cerradura bajo suma, multiplicación, multiplicación por escalares, integración, convolución.

Monotonicidad con respecto a desigualdades generalizadas

Sea K un cono propio con desigualdad generalizada \leq_K y $f: \mathbb{R}^n \to \mathbb{R}$.

► f es K-no-decreciente si

$$x \leq_K y \Rightarrow f(x) \leq f(y).$$
 (16)

▶ f es K-creciente si

$$x \leq_{\kappa} y, x \neq y \Rightarrow f(x) < f(y).$$
 (17)

Si f es diferenciable y dom(f) es convexo, f es K-no-decreciente si

$$\nabla f(x) \succeq_{K^*} 0. \tag{18}$$

► (Demostración)

Convexidad con respecto a desigualdades generalizadas

Sea K un cono propio con desigualdad generalizada \leq_K . Decimos que $f: \mathbb{R}^n \to \mathbb{R}$ es K-convexa si para todo x, y y $\theta \in [0,1]$.

$$f(\theta x + (1 - \theta)x) \leq_{\kappa} \theta f(x) + (1 - \theta)f(y). \tag{19}$$

▶ f es estrictamente K-convexa si desigualdad es \prec_K para todo $x \neq y$.

$$x \leq_{\kappa} y \Rightarrow f(x) \leq f(y).$$
 (20)

- Muchos resultados de convexidad tienen extensiones a K-convexidad :)
- ► Caracterización dual: f es K-convexa ssi $\forall w \succeq_{K^*} 0$, $w^T f$ es estrictamente convexa.