The Uncertainty Principle Approach to the Balian-Low Theorem

A Project Report Submitted for the Course

MA699 Project

by

Purushottam Priyam Rathaur (Roll No. 222123039)

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI - 781039, INDIA

April 2024

CERTIFICATE

This is to certify that the work contained in this report entitled "The Uncertainty Principle Approach to the Balian-Low Theorem" submitted by Purushottam Priyam Rathaur (Roll No: 222123039) to Department of Mathematics, Indian Institute of Technology Guwahati towards the requirement of the course MA699 Project has been carried out by him under my supervision.

Guwahati - 781 039 April 2024 (Dr. Jitendriya Swain) Project Supervisor

ABSTRACT

The aim of the project is to study The Uncertainty Principle Approach to Balian-Low theorem to higher dimensions, focusing on symplectic lattices in \mathbb{R}^{2d} and for Riesz bases to higher dimension.

Contents

1	Pos	sition and Momentum Operator and Uncertainty Princuple 1					
	1.1	.1 Position Operator and Momentum Operator					
	1.2	Translation and Modulation operator					
	1.3	Theorem Uncertainty Thoerem	2				
		1.3.1 The classical uncertainty principle inequality	2				
	1.4 Commutator of operators						
		1.4.1 Commatator of Momentum operator	5				
	1.5 Balian-Low Theorem on lattice in \mathbb{R}		5				
		1.5.1 The Weak BLT	5				
		1.5.2 Weak BLT	7				
2	Lat	Lattice, Gabor system and Modulation Space					
	2.1 Definition						
		2.1.1 Lattice in \mathbb{R}^d	9				
		2.1.2 Riesz Basis	9				
		2.1.3 Frame:	9				
		2.1.4 Symplectic lattices and operators	10				
	2.2	2.2 Time-frequency shifts and Gabor systems					
		2.2.1 Gabor system:	11				
	2.3 Modulation Space		12				
	2.4	Result	13				
3	The	e Balian–Low theorem for symplectic lattices in higher dimensions 1					
	3.1	The Balian-Low theorem					
		3.1.1 The weak subspace BLT for arbitrary lattice	15				

3.1.2	The BLT on non-lattice		16	
Bibliography				

List of notations

List of notations

 \mathbb{R} : The set of all real numbers.

 \mathbb{R}^n : The n-dimensional real Euclidean space.

 $\mathcal{C}_c(\mathbb{R}^n)$: The set of all real-valued continuous functions on \mathbb{R}^n having compact support.

 $\mathcal{C}_0(\mathbb{R}^n)$: The set of all real-valued continuous functions on \mathbb{R}^n vanishing at infinity.

 $\mathcal{M}(\mathbb{R}^n)$: The class of all finite Borel measures on \mathbb{R}^n .

 $L^p(\mathbb{R}^n)$: The space of all measurable functions whose p-th power is integrable, where $1 \leq p < \infty$.

 \hat{f} : The Fourier transform of f.

 Λ : The lattice, a discrete subgroup of \mathbb{R}^n .

 $\mathcal{G}(g,\Lambda)$: A Gabor system forming an orthonormal or Riesz basis for $L^2(\mathbb{R})$.

 $GL(n,\mathbb{R})$: The set of all invertible matrices of size $n \times n$ with real entries.

 $\mathcal{S}(\mathbb{R})$: The Schwartz space

 $\{g_{m,n}\}$: Exact frame for $L^2(\mathbb{R})$.

 $\Re(z)$: Real part of z, where $z \in \mathbb{C}$.

Chapter 1

Position and Momentum Operator and Uncertainty Princuple

1.1 Position Operator and Momentum Operator

Let f be a function belongs to Schwartz space $\mathcal{S}(\mathbb{R}^d) \subseteq L^2(\mathbb{R}^d)$. Then the position operator X_j and momentum operator P_j are defined as:

$$(X_j f)(x) = x_j f(x)$$
 for $j = 1, 2, 3, \dots, d$

$$(P_j f)(x) = \frac{1}{2\pi i} \frac{\partial f}{\partial x_i}$$
 for $j = 1, 2, 3, \dots, d$

where $x = (x_1, x_2, \dots, x_d)$ is a point in \mathbb{R}^d .

$$||X_j f||_{L^2(\mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |X_j(f(x))|^2 dx \right)^{1/2}$$

$$||P_j f||_{L^2(\mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |P_j(f(x))|^2 dx\right)^{1/2}$$

1.2 Translation and Modulation operator

For $x, \omega \in \mathbb{R}^d$, we define

Translation operator: $T_x f(t) = f(t-x)$

Modulation operator : $M_{\omega}f(t) = e^{2\pi i\omega \cdot t}f(t)$.

These both operators are unitary and we denote the corresponding time–frequency shift by

$$\pi(z)f(t) = M_{\omega}T_x f(t) = e^{2\pi i \omega \cdot t} f(t-x)$$

where $z = (x, \omega) \in \mathbb{R}^{2d}$ for a point in the time–frequency plane $\mathbb{R}^{2d} = \mathbb{R}^d \times \mathbb{R}^d$,

1.3 Theorem Uncertainty Theorem

1.3.1 The classical uncertainty principle inequality

If $f \in L^2(\mathbb{R})$ and $x_0, \gamma_0 \in \mathbb{R}$, then

$$||f||_2^2 \le 4\pi ||(x - x_0)f(x)||_2 ||(\gamma - \gamma_0)\hat{f}(\gamma)||_2, \tag{1.1}$$

where $||f||_2^2 = \int_{-\infty}^{\infty} |f(x)|^2 dx$.

Moreover, there is equality if and only if

$$f(x) = Ce^{2\pi i x \gamma_0} e^{-s(x-x_0)^2}, \tag{1.2}$$

for $C \in \mathbb{C}$ and s > 0. Here, $||\cdot||_2$ designates the L^2 norm, and the Fourier transform $\hat{f}(\gamma)$ of f is formally defined as

$$\hat{f}(\gamma) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\gamma} dx.$$
 (1.3)

Proof: We prove it for $f \in \mathcal{S}(\mathbb{R})$. For sake of convenience we may assume $x_0 = \gamma_0 = 0$

$$\int_{\mathbb{R}} (xf(x))\overline{f'(x)} \, dx = x|f(x)|^2 \Big|_{x=-\infty}^{x=\infty} - \int_{\mathbb{R}} \left(|f(x)|^2 + xf'(x)\overline{f(x)} \right) \, dx.$$

As $f \in \mathcal{S}(\mathbb{R})$ then $\lim_{x \to \pm \infty} x |f(x)|^2 = 0$, hence equation can be re-arranged as,

$$\int_{\mathbb{R}} |f(x)|^2 dx = -\int_{\mathbb{R}} x f(x) \overline{f'(x)} dx - \int_{\mathbb{R}} x \overline{f(x)} f'(x) dx = -2\Re \left(\int_{\mathbb{R}} x f(x) \overline{f'(x)} dx \right),$$

as $x \in \mathbb{R}$.

$$\left| -2\Re \left(\int_{\mathbb{R}} x f(x) \overline{f'(x)} \, dx \right) \right| \le 2 \left| \int_{\mathbb{R}} x f(x) \overline{f'(x)} \, dx \right|.$$

Now, we use the Cauchy-Schwarz inequality to obtain

$$\left| \int_{\mathbb{R}} -x f(x) \overline{f'(x)} \, dx \right| = |\langle x f, f' \rangle| \le ||-x f||_2 ||f'||_2 = \left(\int_{\mathbb{R}} x^2 |f(x)|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}} |f'(x)|^2 \, dx \right)^{1/2}.$$

$$\implies \int_{\mathbb{R}} |f(x)|^2 \, dx \le 2 \left(\int_{\mathbb{R}} x^2 |f(x)|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}} |f'(x)|^2 \, dx \right)^{1/2}.$$

By Plancherel's theorem and the Fourier transform of derivatives, we have

$$\left(\int_{\mathbb{R}} |f'(x)|^2 dx\right)^{1/2} = \left(\int_{\mathbb{R}} |(2\pi i \gamma)\hat{f}(\gamma)|^2 d\gamma\right)^{1/2}.$$

Combining this with the previous lines, we obtain

$$\frac{\|f\|_2^2}{4\pi} \le \|xf\|_2 \|\gamma \hat{f}\|_2$$

$$\implies ||f||_2^2 \le 4\pi ||xf||_2 ||\gamma \hat{f}||_2$$

And the equality holds only when $-xf(\bar{x}) = kf'(x)$ where $k \ge 0$. We can express f(x) as

$$f(x) = u(x) + iv(x)$$

$$\implies -xu(x) = ku'(x),$$
and $xv(x) = kv'(x)$

Solving these differential equations, we get

$$-xu(x) = ku'(x)$$

$$-xdx = \frac{k}{u(x)}du(x)$$

$$-x^2/2k + c_1 = \ln(u(x))$$

$$u(x) = e^{c_1} \cdot e^{-x^2/2k}$$

$$u(x) = Ae^{-x^2/2k}$$

$$\implies u(x) = Ae^{-sx^2}$$

$$xv(x) = kv'(x)$$

$$\frac{x^2}{2k} + c_2 = \ln(v(x))$$

$$v(x) = e^{c_2} \cdot e^{\frac{x^2}{2k}}$$

$$v(x) = Be^{\frac{x^2}{2k}} \implies v(x) = Be^{sx^2}$$

We have,

$$f(x) = u(x) + iv(x)$$

$$\implies f(x) = Ae^{-sx^2} + Be^{sx^2}$$

and as f is in Schwartz space, B=0 . Hence $f(x)=Ae^{-sx^2}$.

1.4 Commutator of operators

The commutator of two operators A and B defined on a Hilbert space H is denoted as [A, B] and defined as

$$\boxed{[A,B] = AB - BA}$$

1.4.1 Commatator of Momentum operator

$$\left[[X_j, P_j] = \frac{i}{2\pi} I \right]$$

Proof:

$$(X_{j}P_{j} - P_{j}X_{j})f(x) = X_{j}P_{j}f(x) - P_{j}X_{j}f(x)$$

$$= X_{j}\left(\frac{1}{2\pi i}\frac{\partial f}{\partial x_{j}}\right) - P_{j}(x_{j}f(x))$$

$$= \frac{1}{2\pi i}x_{j}\frac{\partial f}{\partial x_{j}} - \frac{1}{2\pi i}x_{j}\frac{\partial f}{\partial x} - \frac{f(x)}{2\pi i}$$

$$= \frac{i}{2\pi}f(x).$$

Hence we conclude that

$$X_j P_j - P_j X_j = \frac{i}{2\pi} I$$

1.5 Balian-Low Theorem on lattice in \mathbb{R}

1.5.1 The Weak BLT

The fact that $[X, P] = -\frac{1}{2\pi i}I$ forms the core of the uncertainty principle approach to proving the BLT. We state this fact in the following form.

Lemma 1: If $f, g \in L^2(\mathbb{R})$ satisfy $Xf, Xg \in L^2(\mathbb{R})$ and $X\hat{f}, X\hat{g} \in L^2(\widehat{\mathbb{R}})$, then

$$\langle Xf, Pg \rangle - \langle Pf, Xg \rangle = \frac{1}{2\pi i} \langle f, g \rangle.$$
 (1.4)

Proof. Pf and Pg are well defined since $X\hat{f}, X\hat{g} \in L^2(\widehat{\mathbb{R}})$. As we know that $\mathcal{S}(\mathbb{R})$ is dense in $L^2(\mathbb{R})$,so that we can find $\varphi_k, \psi_k \in \mathcal{S}(\mathbb{R})$ such that $\varphi_k \to f, X\varphi_k \to f$

 $Xf, P\varphi_k \to Pf$, and $\psi_k \to g, X\psi_k \to Xg$, $P\psi_k \to Pg$, all in L^2 -norm. Since $\varphi_k, \psi_k \in \mathcal{S}(\mathbb{R})$ and X, P are self-adjoint, we have

$$\begin{split} \langle X\varphi_k, P\psi_k \rangle - \langle P\varphi_k, X\psi_k \rangle &= \langle XP\varphi_k, \psi_k \rangle - \langle PX\varphi_k, \psi_k \rangle \\ &= -\langle [X, P]\varphi_k, \psi_k \rangle \\ &= \frac{1}{2\pi i} \langle \varphi_k, \psi_k \rangle. \end{split}$$

However, the inner product is continuous, so $\langle \varphi_k, \psi_k \rangle \to \langle f, g \rangle$, $\langle X \varphi_k, P \psi_k \rangle \to \langle X f, P g \rangle$, and $\langle P \varphi_k, X \psi_k \rangle \to \langle P f, X g \rangle$. Therefore (1.4) holds.

Next, we compute the commutators of X and P with the translation and modulation operators T_x and M_ω defined in section 1.2, Here we are taking x and $\omega \in \mathbb{Z}$.

Lemma 2:
$$[M_{\omega}T_x, X] = M_{\omega}T_xX - XM_{\omega}T_x = -xM_{\omega}T_x$$

 $[M_{\omega}T_x, P] = M_{\omega}T_xP - PM_{\omega}T_x = -\omega M_{\omega}T_x.$ (1.5)

Proof. As the two parts are similar, we prove only part a. We compute

$$(M_{\omega}T_{x}Xf)(t) - (XM_{\omega}T_{x}f)(t) = M_{\omega}(t)(T_{x}Xf)(t) - t(M_{\omega}T_{x}f)(t)$$

$$= M_{\omega}(t)(Xf)(t-x) - tM_{\omega}(t)(T_{x}f)(t)$$

$$= M_{\omega}(t)(t-x)f(t-x) - tM_{\omega}(t)f(t-x)$$

$$= -xM_{\omega}(t)f(t-x)$$

$$= -xM_{\omega}(t)(T_{x}f)(t)$$

$$= -x(M_{\omega}T_{x}f)(t).$$

We can now prove a weak version of the BLT.

1.5.2 Weak BLT

Theorem (Weak BLT): Assume $g \in L^2(\mathbb{R})$ is such that $\{g_{m,n}\}$ is an exact frame for $L^2(\mathbb{R})$. Then we cannot have all of $Xg, X\tilde{g} \in L^2(\mathbb{R})$ and $X\hat{g}, X\hat{\tilde{g}} \in L^2(\hat{\mathbb{R}})$, that is, we must have

$$||tg(t)||_2 ||\gamma \hat{g}(\gamma)||_2 ||t \tilde{g}(t)||_2 ||\gamma \hat{\tilde{g}}(\gamma)||_2 = +\infty.$$

Proof. Assume all four functions were elements of L^2 . Note that

$$\forall f, h \in L^2(\mathbb{R}), \langle f, h_{m,n} \rangle = \langle f_{-m,-n}, h \rangle.$$

Also, by Lemma 2.a,

$$\forall f \in L^2(\mathbb{R}), X(f_{m,n}) = (Xf)_{m,n} + nf_{m,n}.$$

Since X is selfadjoint and $\{g_{m,n}\}$ is biorthonormal to its dual frame $\{\tilde{g}_{m,n}\}$, we can therefore compute

$$\begin{split} \langle Xg, \tilde{g}_{m,n} \rangle &= \langle g, X(\tilde{g}_{m,n}) \rangle = \langle g, (X\tilde{g})_{m,n} \rangle + n \langle g, \tilde{g}_{m,n} \rangle \\ &= \langle g_{-m,-n}, X\tilde{g} \rangle + n \delta_{m,0} \delta_{n,0} \\ &= \langle g_{-m,-n}, X\tilde{g} \rangle. \end{split}$$

Now, by the L^2 -inversion formula, both Pg and $P\tilde{g}$ exist and are in $L^2(\mathbb{R})$, so by Lemma 2.b we similarly obtain

$$\langle g_{m,n}, P\tilde{g} \rangle = \langle P(g_{m,n}), \tilde{g} \rangle = \langle (Pg)_{m,n}, \tilde{g} \rangle + m \langle g_{m,n}, \tilde{g} \rangle$$

= $\langle Pg, \tilde{g}_{-m,-n} \rangle$.

Since $f = \sum \langle f, g_{m,n} \rangle \tilde{g}_{m,n} = \sum \langle f, \tilde{g}_{m,n} \rangle g_{m,n}$ for every $f \in L^2(\mathbb{R})$, we therefore have

$$\langle Xg, P\tilde{g} \rangle = \sum_{m,n} \langle Xg, \tilde{g}_{m,n} \rangle \langle g_{m,n}, P\tilde{g} \rangle$$

$$= \sum_{m,n} \langle g_{-m,-n}, X\tilde{g} \rangle \langle Pg, \tilde{g}_{-m,-n} \rangle$$

$$= \sum_{m,n} \langle Pg, \tilde{g}_{m,n} \rangle \langle g_{m,n}, X\tilde{g} \rangle$$

$$= \langle Pg, X\tilde{g} \rangle.$$

Therefore, by biorthonormality and Lemma 1,

$$\begin{aligned} 1 &= \langle g, \tilde{g} \rangle \\ &= 2\pi i \left(\langle Xg, P\tilde{g} \rangle - \langle Pg, X\tilde{g} \rangle \right) \\ &= 0, \end{aligned}$$

a contradiction. \Box

for proof of this $\langle g, \tilde{g} \rangle = 1$ see the Book on Frame thoery Titled : An Introduction to frames and Riesz Bases by Ole Christensen .

Chapter 2

Lattice, Gabor system and Modulation Space

2.1 Definition

2.1.1 Lattice in \mathbb{R}^d

A subset Λ of \mathbb{R}^d is said to be a lattice if \exists a matrix $A \in GL(n, \mathbb{R})$ such that $\Lambda = A\mathbb{Z}^d$, i.e $\Lambda = \{Ax : x \in \mathbb{Z}^d\}.$

Notes

 Λ is discrete subgroup of \mathbb{R}^d satisfying following conditions :

- (i). Λ is closed under addition and subtraction .
- (ii) $\exists \ \epsilon > 0$ such that if $x \neq y \in \Lambda$ then $|x y| \geq \epsilon$

2.1.2 Riesz Basis

Riesz basis in HILBERT Space: A collection of vectors $\{x_k\}$ in a Hilbert space H is a Riesz basis for H if it is image of an orthonormal basis for H under an invertible linear transformation.

2.1.3 Frame:

A sequence $\{x_k\}$ in a Hilbert space H is a frame if $\exists A, B \geq 0$, such that for all $x \in H$

$$A||x||^2 \le \sum_k |\langle x, x_k \rangle|^2 \le B||x||^2$$
 (2.1)

Note

- (i) If $\{x_k\}$ is an orthonormal set in Hilbert space H, then $\sum_k |\langle x, x_k \rangle|^2 \leq \|x\|^2$
- (ii) If $\{x_k\}$ is an orthonormal basis in Hilbert space H, then $||x||^2 = \sum_k |\langle x, x_k \rangle|^2$

Theorem:

Suppose $\{x_n\}$ be a sequence in a Hilbert space H. Then the following are equivalent:

- 1. $\{x_n\}$ is frame with bounds A and B
- 2. $S(x) = \sum_{n} \langle x, x_n \rangle x_n$ is bounded linear operator with $AI \leq S \leq BI$, S(x) is called frame operator.

Corollary:

- 1. S is an invertible operator and $B^{-1}I \leq S^{-1} \leq A^{-1}$.
- 2. $\{S^{-1}x_n\}$ is a frame with bounds B^{-1} and A^{-1} , called the dual frame of $\{x_n\}$.
- 3. $\forall x \in H$, $x = \sum \langle x, S^{-1} x_n \rangle x_n = \sum \langle x, x_n \rangle S^{-1} x_n$

2.1.4 Symplectic lattices and operators

In time–frequency analysis, compositions of the symmetric time–frequency shifts $M_{\omega/2}T_xM_{\omega/2}$ often occur, and the symplectic form $[\cdot,\cdot]$ defined by

$$[(x_1, \omega_1), (x_2, \omega_2)] = x_2 \cdot \omega_1 - x_1 \cdot \omega_2 \quad (x_1, \omega_1), (x_2, \omega_2) \in \mathbb{R}^{2d}$$

The symplectic group $\operatorname{Sp}(d)$ is the group of all matrices $M \in \operatorname{GL}(2d, \mathbb{R})$ that leave the symplectic form $[\cdot, \cdot]$ invariant, i.e., $M \in \operatorname{Sp}(d)$ satisfies

$$[Mx, My] = [x, y]$$
 for all $x, y \in \mathbb{R}^{2d}$.

As a consequence of the Stone–von Neumann theorem, a symplectic transformation $M \in \operatorname{Sp}(d)$ corresponds to a unitary symplectic operator $\mu(M)$ on $L^2(\mathbb{R}^d)$ which satisfies

$$\pi(Mz) = \mu(M)\pi(z)\mu(M)^{-1}$$
 for all $z \in \mathbb{R}^{2d}$.

Definition 2: A lattice $\Lambda \subseteq \mathbb{R}^{2d}$ is a symplectic lattice if $\Lambda = \alpha M \mathbb{Z}^{2d}$ for some $\alpha \in \mathbb{R} \setminus \{0\}$ and $M \in \operatorname{Sp}(d)$.

Note: If M is symplectic, then $|\det(M)| = 1$, so $\operatorname{vol}(\alpha M \mathbb{Z}^{2d}) = |\alpha|$. Since $\operatorname{Sp}(1) = \operatorname{SL}(2,\mathbb{R})$, every lattice in \mathbb{R}^2 is a symplectic lattice. However, this is not the case when d > 1.

2.2 Time-frequency shifts and Gabor systems

For $x, \omega \in \mathbb{R}^d$, we define $T_x f(t) = f(t-x)$ and $M_{\omega} f(t) = e^{2\pi i \omega \cdot t} f(t)$ to be the unitary operators of translation and modulation. We denote the corresponding time–frequency shift by

$$\pi(z)f(t) = M_{\omega}T_x f(t) = e^{2\pi i\omega \cdot t} f(t-x)$$

Where $z = (x, \omega) \in \mathbb{R}^{2d}$ for a point in the time-frequency plane $\mathbb{R}^{2d} = \mathbb{R}^d \times \mathbb{R}^d$,

2.2.1 Gabor system:

Given a function $\mathbf{g} \in L^2(\mathbb{R}^d)$, called a window function, and a lattice Λ in the time-frequency plane \mathbb{R}^{2d} , the corresponding Gabor system is

$$\mathcal{G}(\mathbf{g}, \Lambda) = \{\pi(\lambda)\mathbf{g} \mid \lambda \in \Lambda\}.$$

If $\mathcal{G}(\mathbf{g}, \Lambda)$ is a frame for its closed span $H = \operatorname{span}\{\pi(\lambda)\mathbf{g}\}_{\lambda \in \Lambda}$ in $L^2(\mathbb{R}^d)$, i.e., there exist A, B > 0 such that

$$\forall f \in H, \quad A||f||_2^2 \le \sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda) \mathbf{g} \rangle|^2 \le B||f||_2^2$$
 (2.2)

then the associated Gabor frame operator is

$$S_{\mathbf{g},\Lambda}f = \sum_{\lambda \in \Lambda} \langle f, \pi(\lambda)\mathbf{g} \rangle \pi(\lambda)\mathbf{g}. \tag{2.3}$$

This is a positive, invertible operator of H onto itself. The canonical dual window is $\gamma = S_{\mathbf{g},\Lambda}^{-1}\mathbf{g} \in H$, and the canonical dual frame is the Gabor system $G(\gamma,\Lambda)$. We have the frame expansions

$$\forall f \in H, \quad f = \sum_{\lambda \in \Lambda} \langle f, \pi(\lambda) \gamma \rangle \pi(\lambda) \mathbf{g} = \sum_{\lambda \in \Lambda} \langle f, \pi(\lambda) \mathbf{g} \rangle \pi(\lambda) \gamma. \tag{2.4}$$

2.3 Modulation Space

Modulation spaces are a family of Banach spaces defined by the behavior of the shorttime Fourier transform with respect to a test function from the Schwartz space.

Modulation spaces are defined as follows. For $1 \leq p \leq \infty$, a non-negative function $m(x,\omega)$ on \mathbb{R}^{2d} and a test function $g \in \mathcal{S}(\mathbb{R}^d)$, the modulation space $M_m^p(\mathbb{R}^d)$ is defined by

$$M_m^p(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |V_g f(x, \omega)|^p m(x, \omega)^p dx \right) d\omega \right)^{1/p} < \infty \right\}.$$

In the above equation, $V_g f$ denotes the short-time Fourier transform of f with respect to g evaluated at (x, ω) , namely

$$V_g f(x,\omega) = \int_{\mathbb{R}^d} f(t) \overline{g(t-x)} e^{-2\pi i t \cdot \omega} dt = \langle f, M_w T_x g \rangle$$

In other words, $f \in M_m^p(\mathbb{R}^d)$ is equivalent to $V_g f \in L_m^p(\mathbb{R}^{2d})$. The space $M_m^p(\mathbb{R}^d)$ is

the same, independent of the test function $g \in \mathcal{S}(\mathbb{R}^d)$ chosen.

For our purpose the following special cases of the modulation spaces will be sufficient .

Definition Let $v(z) \geq 1$ be a submultiplicative weight function on \mathbb{R}^{2d} with at most polynomial growth. Then the modulation space M_p^v , where $1 \leq p \leq \infty$, is defined as the subspace of all $f \in \mathcal{S}(\mathbb{R}^d)'$ such that the norm

$$||f||_{M_p^v} = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |V_g f(x,\omega)|^p m(x,\omega)^p dx\right) d\omega\right)^{1/p}$$

For the BLT,

 L_s^2 denotes the weighted L^2 -space with norm

$$||f(t)||_{L_s^2}^2 = \int |f(t)|^2 (1+|t|^2)^s dt,$$

and H^s denotes the Bessel potential space with norm

$$||f(\omega)||_{H^s}^2 = \int |\hat{f}(\omega)|^2 (1+|\omega|^2)^s d\omega.$$

Remark.

(a) If
$$v(x,\omega) = (1+|x|^2)^{s/2}$$
, then $M_v^2 = L_s^2$.

(b) If
$$v(x, \omega) = (1 + |\omega|^2)^{s/2}$$
, then $M_v^2 = H^s$.

The weights that we shall use are

$$m(x,\omega) = (1+|x|^2+|\omega|^2)^{1/2}$$

$$m_j(x,\omega) = (1+|x_j|^2+|\omega_j|^2)^{1/2}, j=1,\ldots,d.$$
 Remark implies that $M_m^2 = L_1^2 \cap H^1$.

2.4 Result

Consequently, if $f \in L^2(\mathbb{R}^d)$, then

$$f \in M_{m_i}^2 \iff ||X_j f||^2 ||P_j f||^2 < \infty$$

$$f \in M_m^2 \iff \left(\int_{\mathbb{R}^d} |x| |g(x)|^2 dx \right) \left(\int_{\mathbb{R}^d} |\omega| |\hat{g}(\omega)|^2 d\omega \right) < \infty$$

Chapter 3

The Balian–Low theorem for symplectic lattices in higher dimensions

3.1 The Balian-Low theorem

3.1.1 The weak subspace BLT for arbitrary lattice

Theorem 1: Let Λ be a lattice in \mathbb{R}^{2d} . If $\mathbf{g} \in L^2(\mathbb{R}^d)$ is such that $\mathcal{G}(\mathbf{g}, \Lambda)$ is a Riesz basis for its closed span $H = \overline{span}\{\pi(\lambda)\mathbf{g}\}_{\lambda \in \Lambda}$ in $L^2(\mathbb{R}^d)$ and the dual window is $\gamma = S_{\mathbf{g},\Lambda}^{-1}\mathbf{g}$, then for each $j = 1, \ldots, d$, one of $X_j\mathbf{g}$, $P_j\mathbf{g}$, $X_j\gamma$, or $P_j\gamma$ cannot lie in H. In particular, if $G(\mathbf{g}, \Lambda)$ is a Riesz basis for $L^2(\mathbb{R}^d)$, then:

- (a) For each $j=1,\ldots,d$, either $\mathbf{g}\notin M_{m_j}^2$ or $\gamma\notin M_{m_j}^2$.
- (b) Either $\mathbf{g} \notin M_m^2$ or $\gamma \notin M_m^2$.

Proof. Assume that $X_j g, P_j g, X_j \gamma, P_j \gamma \in H$. We can compute that for any $(p, q) \in \mathbb{R}^d$ we have

$$\langle X_j g, M_q T_p \gamma \rangle = \langle T_{-p} M_{-q} g, X_j \gamma \rangle$$
 and $\langle M_q T_p g, P_j \gamma \rangle = \langle P_j g, T_{-p} M_{-q} \gamma \rangle.$

Then, using the frame expansions 2.4, we have that

$$\begin{split} \langle X_j g, P_j \gamma \rangle &= \left\langle \sum_{(p,q) \in \Lambda} \langle X_j g, M_q T_p \gamma \rangle M_q T_p g, P_j \gamma \right\rangle \\ &= \sum_{(p,q) \in \Lambda} \langle T_{-p} M_{-q} g, X_j \gamma \rangle \langle P_j g, T_{-p} M_{-q} \gamma \rangle \\ &= \left\langle P_j g, \sum_{(p,q) \in \Lambda} \langle X_j \gamma, M_q T_p g \rangle M_q T_p \gamma \right\rangle \\ &= \langle P_j g, X_j \gamma \rangle. \end{split}$$

However, the canonical commutation relation $[X_j, P_j] = -\frac{1}{2\pi i}I$ leads to the contradiction

$$\begin{aligned} 1 &= \langle g, \gamma \rangle \\ &= 2\pi i \left(\langle P_j g, X_j \gamma \rangle - \langle X_j g, P_j \gamma \rangle \right) \\ &= 0. \end{aligned}$$

3.1.2 The BLT on non-lattice

The assumption of lattice structure is not essential to the definition of a Gabor frame. In particular, if Λ is any countable sequence of points in \mathbb{R}^{2d} , then $G(g,\Lambda)$ is a Gabor frame for $L^2(\mathbb{R}^d)$ if

$$\sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g \rangle|^2$$

is an equivalent norm for $L^2(\mathbb{R})$. Unfortunately, if Λ is not a lattice then although a dual frame $\{h_{\lambda}\}_{{\lambda}\in\Lambda}$ will exist, it need not be a Gabor frame of the form $G(\gamma,\Lambda)$. However, for the case of a so-called normalized tight frame, including orthonormal bases in particular, the dual frame coincides with the frame. In this case, we can observe that the proof of Theorem 1 requires no structural assumptions on Λ except that it be symmetric about the origin. Hence we have the following.

Theorem 2. Let Λ be a countable sequence in \mathbb{R}^{2d} such that $\Lambda = -\Lambda$. If $g \in L^2(\mathbb{R}^d)$ is such that $G(g,\Lambda)$ is an orthonormal basis for $L^2(\mathbb{R}^d)$, then:

- 1. $g \notin M_{mj}^2$ for each $j = 1, \ldots, d$, and
- $2. \ g \notin M_m^2.$

Theorem 3. Let Λ be a symplectic lattice in \mathbb{R}^{2d} . If $g \in L^2(\mathbb{R}^d)$ is such that $G(g,\Lambda)$ is a Riesz basis for $L^2(\mathbb{R}^d)$, then $g \notin M^1$.

Let (C_0, l^1) denote the Wiener amalgam space

$$(C_0, l^1) = \left\{ f : f \text{ is continuous and } \sum_{k \in \mathbb{Z}^d} \|f \cdot \chi_{Q+k}\|_{\infty} < \infty \right\},$$

where $Q = [0, 1)^d$. Because M^1 is embedded into (C_0, l^1) , we have for the case $\Lambda = \alpha \mathbb{Z}^d \times (1/\alpha) \mathbb{Z}^d$ that Theorem 3 is implied by the following result known as the Amalgam BLT[11].

Theorem 4. If $g \in L^2(\mathbb{R}^d)$ is such that $G(g, \alpha \mathbb{Z}^d \times (1/\alpha) \mathbb{Z}^d)$ is a Riesz basis for $L^2(\mathbb{R}^d)$, then $g, \hat{g} \notin (C_0, l^1)$.

Since M_m^2 is not embedded into (C_0, l^1) nor conversely

The proof of Theorem 3 relies on the fact that M^1 is invariant under symplectic operators. It is unknown whether (C_0, l^1) is invariant under such operators, and it is an open question whether the Amalgam BLT extends to more general lattices than $\alpha \mathbb{Z}^d \times (1/\alpha) \mathbb{Z}^d$.

Finally, we observe that some of the most natural lattices in \mathbb{R}^{2d} are the separable lattices. If a separable lattice with unit volume is symplectic, then it is a product lattice. Every lattice in \mathbb{R}^2 is symplectic, but this is not the case in \mathbb{R}^{2d} when d > 1. It is an open question whether question as to whether the BLT extends to the case of separable, non-product lattices in higher dimensions.

Bibliography

- [1] R. Balian, Un principe d'incertitude fort en théorie du signal ou en mécanique quantique, C.R. Acad. Sci. Paris 292 (1981) 1357–1362.
- [2] G. Battle, Heisenberg proof of the Balian–Low theorem, Lett. Math. Phys. 15 (1988) 175–177.
- [3] J.J. Benedetto, C. Heil, D. Walnut, Differentiation and the Balian-Low theorem, J. Fourier Anal. Appl. 1 (1995) 355–402.
- [4] O. Christensen, B. Deng, C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999) 292–304.
- [5] I. Daubechies, The wavelet transform, time–frequency localization and signal analysis, IEEE Trans. Inform. Theory 39 (1990) 961–1005.
- [6] H.G. Feichtinger, K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: C.K. Chui (Ed.), Wavelets: A Tutorial in Theory and Applications, Academic Press, Boston, 1992, pp. 359–397.
- [7] K. Gröchenig, Aspects of Gabor analysis on locally compact abelian groups, in: H.G. Feichtinger, T. Strohmer (Eds.), Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 1998, pp. 211–231.
- [8] D. Han, Y. Wang, Lattice tiling and the Weyl-Heisenberg frames, Geom. Funct. Anal. 11 (2001) 742–758.
- [9] Christensen Ole, An Introduction to Frames and Riesz Bases (2016), publisher=Birkhäuser

- [10] F. Low, Complete sets of wave packages, in: C. DeTar, et al. (Eds.), A Passion for Physics—Essays in Honor of Geoffrey Chew, World Scientific, Singapore, 1985, pp. 17–22.
- [11] C.Heil ,Wiener Amalgam Spaces in Generalized Harmonic Analysis and Wavelet Theory,PhD thesis,University of Maryland,1990