Day 10 – Breaking Rectangular Transposition

Conditional Probability

Definition 1. The conditional probability of an event B is the probability that this event will occur, given the knowledge that another event A has already occurred.

 $\mathbb{P}(B|A) = \frac{\mathbb{P}(B \text{ and } A)}{\mathbb{P}(A)},$

b/c A has occured, it will block some of

assuming that $\mathbb{P}(A) > 0$.

Example. Two women state the following:

- A: "I have two children, the eldest is a girl."
- B: "I also have two children, and one of them is a girl."

Which of them is more likely to have two girls?

2 children: Sample space = set of all outcomes {BB, BG, GB, GG?

New sample space $\{GB, GG\}$ $P(2G's | at least 1 is a G) = \frac{1}{3}$ $P(2G's | 1st = G) = \frac{1}{2}.$ $= \frac{P(2G's \text{ and } 1st = G)}{P(1st = G)}$

$$=\frac{1/4}{1/2}=\frac{1}{2}$$

Example.

- The Z-virus is a rare disease that hits about 5% of the population.
- Meanwhile, Umbrella Corporation claim that they have a test that can detect Z-virus with 95% accuracy. → 95% if will get the correct result.

Suppose that you are **tested positive** for having Z-virus (by Umbrella's test), what is the probability that you actually carry the deadly disease?

Example. Given an English text. What is the probability that a randomly chosen letter λ is A?

$$P(\lambda = A^*) = P_A = 0.08399$$
 (from table on Day 09)

Now suppose that we also know about the letter μ that is immediately to the left of λ . What is the probability that $\lambda =$ "A" given that

$$P(\lambda = A \mid \mu = G) = \frac{P(\lambda = A \text{ and } \mu = G)}{P(\mu = G)} = \frac{O}{P(\mu = G)} = O.$$

$$\sim \underline{E} \stackrel{?}{A} \sim \mu = E^{n}?$$

$$P(\lambda = A \mid \mu = E) = \frac{P(\mu \lambda = EA)}{P(\mu = E)} = \frac{110/10,000}{1237/10,000} = \frac{110}{1237}$$

$$E = \frac{110}{10000} = \frac{110}{1237}$$

$$E = \frac{110}{10000} = \frac{110}{1237}$$

$$P(\lambda = A) \mu = L$$

$$P(\lambda = A) \mu = L$$

$$P(\mu \lambda = LA) = \frac{40}{391}$$

Now suppose that μ and λ are far apart. What is the probability that $\mu = "L"$ and $\lambda = "A"$?

If the letters are far apart.

(> they're independent.

$$P(\lambda = A \text{ and } \mu = L) = P(\mu = L) \cdot P(\lambda = A)$$

$$= P_L \cdot P_A$$
from Day 09 Table.

Breaking Rectangular Transposition

Some remarks:

- 1. Single letter frequencies are useless here
- 2. Not all pairs of adjacent English letters are equally probable
- 3. Table of bi-letter frequencies should reveal which pairs of letters of ciphertext were adjacent in the plaintext

Definition 2. A function y = f(x) is **convex** on an interval [a, b] provided that $f''(x) \ge 0$ for all $a \le x \le b$. In particular, the first derivative f'(x) is increasing on the interval [a, b].

Theorem 1. Let $x_1, x_2, ..., x_n \in [a, b]$ and let $p_1, p_2, ..., p_n$ be real numbers such that $p_1 + ... + p_n = 1$. If f is **convex** on [a, b] then

$$f(\widehat{p_1x_1 + p_2x_2 + \dots + p_n}x_n) \le p_1f(x_1) + p_2f(x_2) + \dots + p_nf(x_n).$$

 $f(\widehat{p_1x_1+p_2x_2+\cdots+p_n}x_n) \leq p_1f(x_1)+p_2f(x_2)+\cdots+p_nf(x_n).$ Here, equality occurs if and only if $x_1=x_2=\cdots=x_n$.

Corollary 1.1. Let $f(x) = \log\left(\frac{1}{x}\right)$ in the above theorem to obtain

$$\log\left(\frac{1}{p_1x_1 + p_2x_2 + \dots + p_nx_n}\right) \le p_1\log\left(\frac{1}{x_1}\right) + \dots + p_n\log\left(\frac{1}{x_n}\right)$$

Theorem 2. Let p_1, \ldots, p_n be probabilities with $p_1 + \cdots + p_n = 1$. Then for any set of probabilities q_1, \ldots, q_n such that $q_1 + \cdots + q_n = 1$, we have

To prove this, use Corollary 1.1 with $x_i = q_i/p_i$.

Guess a length for the decrypting permutation, says k.
 Arrange the ciphertext into k columns and let N be the height (i.e. number of rows) of the resulting rectangle.
 For each pair 1 ≤ i ≠ j ≤ k, extract the columns i and j and count the number of occurrence of the pair of letters αβ and call this n^(ij)
 For each pair αβ let n 1.

The steps for breaking rectangular transposition:

- language (obtain from the table of frequency for letter pairs). Compute

$$C_{ij} = \sum_{\alpha,\beta} p_{\alpha\beta} \log(n_{\alpha\beta}^{(ij)}).$$

$$\text{now repeat for all values i, j in 1,2,...,k.}$$

$$\text{with } i \neq j$$

$$C_{ij} = \sum_{lpha,eta} p_{lphaeta} \log(N \cdot f_{lphaeta}^{(ij)})$$

$$= \log(N) + \sum_{lpha,eta} p_{lphaeta} \log(f_{lphaeta}^{(ij)})$$

$$\leq \sum_{lpha,eta} p_{lphaeta} \log(p_{lphaeta})$$

so C_{ij} is much smaller comparing to when two columns i and j were consecutive in the plaintext.

So if we guessed the correct period then the matrix $[C_{ij}]_{1 \le i \ne j \le k}$ will have a substantially bigger number in each row, except one.

- If C_{ij} is the substantially big number on row i then j follows i in the decryption permutation.
- If row k is the only row with no substantially big entry, then k is the first entry in the decryption permutation.

B's cannot be on the same row/col.