Name: _

Student ID:

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. The tangent to $f(t) = (t^5, t^3, t)$ in the point (1, 1, 1) meets the plane x - y + z = 0 in

 $(-\frac{2}{3},0,\frac{2}{3})$ $(\frac{2}{3},\frac{2}{3},0)$ $(\frac{2}{3},0,-\frac{2}{3})$

2. The arc length of the curve $g(t) = (t \sin(18t), t \cos(18t), 4t^{3/2}), t \in [0,3]$ is 10 36 38 484

148

3. For a \mathcal{Q}^1 -curve $\mathbf{u}: I \to \mathbb{R}^3 \setminus \{\mathbf{0}\}$ and $t \in I$, the derivative $(d/dt) |\mathbf{u}(t)|^3$ is equal to

 $\sqrt{3} |\mathbf{u}(t)|^2 \mathbf{u}'(t)$

 $3 |\mathbf{u}(t)|^2$ $3 |\mathbf{u}(t)| \mathbf{u}(t) \cdot \mathbf{u}'(t)$ $\frac{3}{2} |\mathbf{u}(t)|$ $3 \mathbf{u}(t) \cdot \mathbf{u}'(t)$

4. The range of a parametric space curve $f: \mathbb{R} \to \mathbb{R}^3$ with nonzero curvature and $f''(t) = \mathbf{w} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$

(i.e., a nonzero constant vector) is

X a line

an ellipse

a hyperbola

non-planar

5. The volume of the pyramid ("tetrahedron") with vertices (2,0,-1), (3,-1,0), (0,a,-1), (0,3,1)

is equal to 1 for

a = -3

6. The inverse matrix of $\begin{pmatrix} 5 & 6 \\ 6 & 7 \end{pmatrix}$ is

7. The matrix $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ describes a reflection whose axis in polar coordinates is given by

 $\theta = 22.5^{\circ}$

 $\theta = 90^{\circ}$

8. The maximum rank of $\mathbf{A} \in \mathbb{R}^{4 \times 5}$ with entries ± 1 and exactly two entries equal to -1 is

5

 $x_1 + x_2 + x_3 = b$ $x_1 - x_3 = -1$ has a solution if $3x_1 - 2x_2 = 7x_3 = 1$ 9. The linear system

b = 1

10. The distance from the point (1,-1,1) to the line $x_1-x_2=2x_2-x_3=1$ is

b=0

 $\frac{1}{2}\sqrt{11}$

 $\frac{7}{2}$

Time allowed: 40 min

CLOSED BOOK

Good luck!

 $u(t) = (t^3, t^2, t)$

(9t5+ bt3+ 3t) Jt644t2

 $\frac{3}{2} \left(y_1^2(t) + y_2^2(t) + y_3^2(t) \right)^{\frac{1}{2}} \left(2y_1(t) + y_3(t) \right)^{\frac{1}{2}}$