## Miscellaneous notes for D. Huybrechts's Complex Geometry

#### Taper

#### September 9, 2016

#### Abstract

Miscellaneous notes for D. Huybrechts's book  $Introduction\ to\ Complex\ Geometry,$  include some homeworks done.

#### Contents

1 The structure of almost complex structures on  $\mathbb{R}^{2n}$  1
2 License 4

# 1 The structure of almost complex structures on $\mathbb{R}^{2n}$

In exercise 1.2.1, it says that the set of all compatible almost complex structures on a euclidean space of dimension 2n, is two copies of  $S^2$ .

To show it, I tried first a straight calculation. Assuming the almost complex structure  $I = (a_{ij})$ . Then we have:

Exercises

1.2-1.

Q: Let 
$$(\nabla, \langle \cdot, \rangle)$$
: euclidian space of din=4. Show: {all compatible almost complex structures } two copies of  $S^2 = a two balls$ .

Recap: compatible:  $I: I^2=-1, \langle I(v), I(w) \rangle = \langle v, w \rangle$ 

Choose an orthogonal basis: 
$$e_1 \cdots e_4$$

Let 
$$I = (a_{ij})$$
 
$$I^2 = a_{ij}^i a_{k}^j = -\delta_{k}^i$$

also 
$$\langle , \rangle \approx \delta_j^i$$
 &

$$\langle I(w), I(w) \rangle = (a^{i}_{j} v^{j}) \cdot \delta^{i}_{k} (a^{k}_{i} w^{k}) = v^{i} \delta^{i}_{k} w^{k}$$

$$(\forall \vec{v}, \vec{w})$$
Hence  $a^{i}_{j} \delta^{i}_{k} a^{k}_{i} = \delta_{j} \ell$  or  $\int \underline{a^{i}_{j}} a^{i}_{k} = \delta_{j} k$ 

For example:

$$\frac{\sum_{j} \alpha_{j}^{1} \alpha_{2}^{j}}{a_{1}^{j} \alpha_{2}^{j}} = 0 = \sum_{j} \alpha_{1}^{j} \alpha_{2}^{j} \Rightarrow \frac{4}{\sum_{j=2}^{4}} \alpha_{1}^{1} \alpha_{2}^{0} = \frac{4}{\sum_{j=2}^{4}} \alpha_{1}^{1} \alpha_{2}^{0}$$

This can be generalized: 
$$\int_{j=1}^{j=2} \frac{1}{a_{k}^{j}} a_{k}^{j} = \frac{1}{a_{k}^{j}}$$

Figure 1: Draft

Then I discover this too hard to work, because too many equations are involed, and none of them could be eliminiated by other. Meanwhile, I found a post in Math.SE about this: set of almost complex structures on  $\mathbb{R}^4$  as two disjoint spheres.

To understand that post, I read this: Does  $GL(n, \mathbb{C})$  inject into  $GL^+(2n, \mathbb{R})$  for all n?. However, the proof inside is not perfect:

The claim is: If V is an n-dimensional complex vector space with underlying 2n-dimensional real vector space W, then the canonical group monomorphism  $\operatorname{GL}(V) \to \operatorname{GL}(W)$  lands inside  $\operatorname{GL}^+(W) = \{f \in \operatorname{GL}(W) : \det(f) > 0\}$ . The purpose of this abstract reformulation is that we may use operations on vector spaces in order to simplify the problem: If V' is another finite-dimensional complex vector space with underlying real vector space W', the diagram

$$\begin{array}{ccc} \operatorname{GL}(V) \times \operatorname{GL}(V') & \to & \operatorname{GL}(W) \times \operatorname{GL}(W') \\ \downarrow & & \downarrow & \\ \operatorname{GL}(V \oplus V') & \to & \operatorname{GL}(W \oplus W') \end{array} \tag{1.0.1}$$

commutes, and the image of  $\operatorname{GL}^+(W) \times \operatorname{GL}^+(W')$  is contained in  $\operatorname{GL}^+(W \oplus W')$ . Therefore, if some element in  $\operatorname{GL}(V \oplus V')$  lies in the image of  $\operatorname{GL}(V) \times \operatorname{GL}(V')$ , it suffices to consider the components. Combining this with the fact that  $\operatorname{GL}(V)$  is generated by elementary matrices (after chosing a basis of V), we may reduce the whole problem to the following three types of matrices:

- the  $1 \times 1$ -matrices  $(\lambda)$ ,
- the 2 × 2-matrices  $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$ ,
- and the  $2 \times 2$ -matrix  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

Write  $\lambda = a + ib$  with  $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ . Then, the complex  $1 \times 1$ -matrix  $(\lambda)$  becomes the real  $2 \times 2$ -matrix  $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ , which

has determinant  $a^2 + b^2 > 0$ . The complex  $2 \times 2$ -matrix  $\begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$ 

becomes the real  $4 \times 4$ -matrix  $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a & -b & 1 & 0 \\ b & a & 0 & 1 \end{pmatrix}$ , which has

determinant 1. Finally, the complex  $2 \times 2$ -matrix  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  be-

comes the real  $4 \times 4$ -matrix  $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ , which has deter-

minant 1.

This proof is not complete because, to build the proof from  $\mathbb{R}^2$  to  $\mathbb{R}^{2n}$ , it requries, in his argument, that any element in  $\mathrm{GL}(V \oplus V)$  is in the image of  $\mathrm{GL}(V) \times \mathrm{GL}(V')$ , which is not the case.

On the other hand, it seems that this property can be proved directly by calculation.

#### References

[1] D Huybrechts's Introduction to Complex Geometry. Springer.

### 2 License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.