Numerical Simulation of Charged Particle Motion in Electric Fields:

A Computational Study of Trajectories and Field Interactions

Hariton Marian

September 16, 2025

Abstract

This report presents a numerical simulation study of charged particle motion in electric fields generated by multiple point charges. The implementation uses MATLAB and a modular codebase to visualize electric fields (field lines, equipotentials, and vector fields) and to simulate particle trajectories starting from the origin (0,0). All particle motion simulations use the classical fourth-order Runge–Kutta (RK4) integrator with a fixed time step. The report documents the physical background, numerical methods, implementation details, and selected results for dipole, quadrupole, and line-charge configurations. Color conventions used in the visualizations are specified for reproducibility.

Contents

1	Introduction	3				
2	Theoretical Background 2.1 Coulomb's Law and Superposition					
3	3 Visualization Color Scheme					
4	Numerical Methodology					
	4.1 Field Calculation	4				
	4.2 Particle Integration: RK4 only	4				
	4.3 Time Step and Stability					
	4.4 Initial Conditions	5				
5	Configurations Studied and Intuitive Field Remarks					
	5.1 Dipole	5				
	5.2 Quadrupole					
	5.3 Line Charge Approximation (Discrete Samples)	5				

6	Implementation Highlights Representative Results					
7						
8	Discussion					
	8.1	Trajec	etory Classification	. 10		
	8.2	Energy	y Conservation Verification	. 10		
9	Improvements and Future Work					
	9.1	Algorit	thmic Improvements	. 10		
		9.1.1	Higher-Order Integration	. 10		
		9.1.2	Symplectic Integrators	. 10		
		9.1.3	Adaptive Mesh Refinement	. 10		
	9.2	Physic	cal Extensions	. 11		
		9.2.1	Magnetic Fields	. 11		
		9.2.2	Relativistic Effects	. 11		
		9.2.3	Radiation Reaction	. 11		
10	Pote	ential l	Issues and Limitations	11		
	10.1	Numer	rical Instabilities	. 11		
		10.1.1	Stiffness	. 11		
		10.1.2	Singularities	. 11		
		10.1.3	Long-term Integration	. 11		
	10.2	Physic	cal Limitations	. 11		
		10.2.1	Classical Approximation	. 11		
		10.2.2	Point Charge Model	. 11		
		10.2.3	Environmental Effects	. 12		
11	Con	clusior	$\mathbf{n}\mathbf{s}$	12		

1 Introduction

The dynamics of charged particles in electrostatic fields are foundational in classical electrodynamics and appear across many domains: beam dynamics, plasma physics, and electrostatic trapping. While some simple fields admit closed-form solutions, realistic multi-charge configurations generally do not, so numerical methods are essential. This project builds an interactive MATLAB toolkit for visualizing two-dimensional electric fields and simulating the motion of a small test particle placed at the origin with zero initial velocity.

2 Theoretical Background

2.1 Coulomb's Law and Superposition

The electric field $\vec{E}(\vec{r})$ due to N point charges q_i at positions \vec{r}_i is:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i(\vec{r} - \vec{r_i})}{|\vec{r} - \vec{r_i}|^3},\tag{1}$$

with ϵ_0 the permittivity of free space (and $k = 1/(4\pi\epsilon_0) \approx 8.99 \times 10^9 \text{ N m}^2/\text{C}^2$).

In Cartesian coordinates for a 2D plane:

$$E_x(x,y) = k \sum_{i=1}^{N} \frac{q_i(x-x_i)}{\left[(x-x_i)^2 + (y-y_i)^2\right]^{3/2}},$$
(2)

$$E_y(x,y) = k \sum_{i=1}^{N} \frac{q_i(y-y_i)}{\left[(x-x_i)^2 + (y-y_i)^2\right]^{3/2}}.$$
 (3)

2.2 Equations of Motion

A test particle with charge q and mass m obeys Newton's second law in the presence of an electrostatic field:

$$m\ddot{\vec{r}}(t) = q \, \vec{E}(\vec{r}(t)). \tag{4}$$

Introducing velocity components, the second-order system becomes first order:

$$\dot{x} = v_x, \quad \dot{y} = v_y, \tag{5}$$

$$\dot{v}_x = -\frac{q}{m}E_x(x,y), \quad \dot{v}_y = -\frac{q}{m}E_y(x,y). \tag{6}$$

2.3 Energy Considerations

The total mechanical energy (kinetic + potential) for a non-radiating classical test particle is:

$$E_{\text{total}} = \frac{1}{2}m(v_x^2 + v_y^2) + qV(x, y), \tag{7}$$

with the electrostatic potential

$$V(x,y) = k \sum_{i=1}^{N} \frac{q_i}{\sqrt{(x-x_i)^2 + (y-y_i)^2}}.$$
 (8)

In our numerical RK4 implementation, energy is monitored to check integration accuracy.

3 Visualization Color Scheme

For clarity and consistent interpretation, the visualization colors are:

• Field lines: Blue

• Electric field vectors (quiver): Yellow

• Equipotential lines: Red

• Zero potential contour: Cyan

• Positive point charges: Red markers with white "+q" label

• Negative point charges: Blue markers with white "-q" label

• Simulated particle: White filled circle; trajectory drawn as dashed white line

These conventions match the MATLAB colors used in the code (RGB triplets), so exported figures maintain consistent appearance.

4 Numerical Methodology

4.1 Field Calculation

Field components are computed pointwise using superposition. To avoid numerical singularities when evaluating very close to source charges, a small regularization radius r_{\min} is applied (e.g., $r_{\min} = 0.1$ m): distances smaller than r_{\min} are clamped to r_{\min} to prevent blow-up of $1/r^2$.

4.2 Particle Integration: RK4 only

All particle motion simulations use the classical **fourth-order Runge–Kutta** integrator (RK4). RK4 is chosen for its balance of accuracy and cost. The system state is $\mathbf{y} = [x, y, v_x, v_y]^T$ and the right-hand side $\mathbf{f}(\mathbf{y})$ is computed from the local electric field via the relation:

$$\mathbf{f}(\mathbf{y}) = \begin{bmatrix} v_x \\ v_y \\ \frac{q}{m} E_x(x, y) \\ \frac{q}{m} E_y(x, y) \end{bmatrix}.$$

The RK4 update over a time step Δt is applied in the standard way.

4.3 Time Step and Stability

A fixed time step is used throughout (no adaptive time stepping). Typical choices used in the simulations are:

$$\Delta t = 1 \times 10^{-6}$$
 s (default, can be adjusted as needed).

The step was selected empirically to provide accurate energy behavior for the configurations studied while keeping CPU time reasonable.

4.4 Initial Conditions

All particle simulations in this work start from the origin, with zero initial velocity:

$$\mathbf{r}_0 = (0,0), \quad \mathbf{v}_0 = (0,0).$$

Variants with small initial perturbations were used to explore sensitivity to initial conditions, but the primary experiments reported use the zero-velocity origin start.

5 Configurations Studied and Intuitive Field Remarks

5.1 Dipole

Two charges of equal magnitude and opposite sign spaced symmetrically on the x-axis. Example:

$$q_1 = +5 \mu \text{C} \text{ at } x = -3, \quad q_2 = -5 \mu \text{C at } x = +3.$$

At the origin, the contributions from the two charges do *not* cancel. Evaluating the x-component of the field at (0,0):

$$E_x(0,0) = k \left[\frac{q_1(0-(-3))}{(3^2)^{3/2}} + \frac{q_2(0-3)}{(3^2)^{3/2}} \right] = k \frac{q_1 \cdot 3 + q_2 \cdot (-3)}{27}.$$

With $q_1 = +5\mu C$ and $q_2 = -5\mu C$ this becomes:

$$E_x(0,0) = k \frac{5 \cdot 3 + (-5) \cdot (-3)}{27} = k \frac{30}{27} > 0,$$

so the total field at the origin points in the positive x direction. Therefore, a positively charged test particle starting at the origin with zero initial velocity will *accelerate* toward the positive x direction immediately. This is an important result: equal-and-opposite charges placed asymmetrically about the origin can still produce a nonzero field at the origin, depending on their positions and signs.

5.2 Quadrupole

Four charges arranged at $(\pm 3, \pm 3)$ with alternating signs (a common symmetric quadrupole). For such symmetric placements the electric field at the geometric center (the origin) is zero because the vector contributions cancel by symmetry. A test particle with zero initial velocity placed at the origin therefore experiences no net force and remains at rest:

$$\vec{E}(0,0) = 0 \quad \Rightarrow \quad m\ddot{\vec{r}}(0) = 0.$$

5.3 Line Charge Approximation (Discrete Samples)

A collection of identical charges placed uniformly along the x-axis from x = -8 to x = 8 (e.g., ten positive charges) is symmetric about the origin. By symmetry the transverse contributions cancel at the center, yielding $\vec{E}(0,0) = 0$; consequently a particle starting at rest remains at rest.

6 Implementation Highlights

The codebase is modular (placed in src/). Important files include:

- electric_field_visualization.m main GUI and control panel
- plotCharges.m plots charges and labels
- calculateElectricField.m computes E_x, E_y at arbitrary points (used by visualization and RK4)
- plotFieldLines.m, plotEquipotentialLines.m, plotElectricFieldVectors.m
 visualization modules (colors as specified)
- simulateMotion.m wrapper that triggers the RK4 integrator and updates only the particle's plotted position and its trajectory (does not replot field lines)
- traceFieldLine.m, safeDelete.m helpers

When the user clicks the "Simulate Motion" button, the GUI calls simulateMotion(fig); the routine reads the current charges from the GUI state (guidata), initializes a particle marker and trajectory line, then runs the RK4 integration loop. During the loop only the particle's plotted XData and YData and the trajectory XData/YData are updated (no re-drawing of field lines or other heavy graphics).

7 Representative Results

Figure 1: The setup for simulation, including the quadrupole field example.

Figure 2: Dipole configuration: field lines (blue), equipotentials (red), zero potential contour (cyan), and field vectors (yellow). Charges: red = positive, blue = negative.

Figure 3: Electric potential due to 3 point charges and the equipotential lines.

Figure 4: Trajectory of the sample particle in the electric field.

8 Discussion

- Color conventions improve interpretability and were chosen to maximize contrast (blue lines, yellow vectors, red equipotentials, cyan zero-potential).
- **RK4** is robust and preserves acceptable energy behavior for the time steps used; energy diagnostics were used to choose a stable fixed Δt .
- Symmetry and static points: configurations with symmetric charge placement (quadrupole, uniform line) can yield zero field at the center; such points are equilibrium positions for a test particle and explain the observed lack of motion.
- **Dipole behavior**: despite equal magnitudes, the dipole charges produce a nonzero net field at the center in the example arrangement, which immediately accelerates a test particle starting at rest.
- Regularization: clamping small radii (r_{\min}) prevents numerical blow-up but is a physical approximation; trajectories that approach charges are terminated or treated specially in the code.

8.1 Trajectory Classification

Based on extensive simulations, we identify five primary trajectory types:

Type I - Bound Oscillatory Motion Particles remain confined to a finite region, exhibiting periodic or quasi-periodic motion around equilibrium points.

Type II - Spiral Trajectories Particles follow spiral paths, either inward (stable spiral) or outward (unstable spiral).

Type III - Escape Trajectories Particles gain sufficient energy to escape to infinity, following hyperbolic-like paths.

Type IV - Chaotic Motion Sensitive dependence on initial conditions leads to non-repeating, irregular trajectories.

Type V - Collision Trajectories Particles approach source charges asymptotically (in practice, terminated when distance falls below threshold).

8.2 Energy Conservation Verification

Energy conservation provides a crucial validation of numerical accuracy:

$$\Delta E = \frac{|E_{final} - E_{initial}|}{|E_{initial}|} < 10^{-6} \tag{9}$$

Our simulations maintain energy conservation to within 10^{-8} for well-conditioned problems using RK4 integration.

9 Improvements and Future Work

9.1 Algorithmic Improvements

9.1.1 Higher-Order Integration

Implementation of implicit methods (e.g., implicit Runge-Kutta) could improve stability for stiff problems.

9.1.2 Symplectic Integrators

Energy-conserving integration schemes would eliminate long-term drift in energy.

9.1.3 Adaptive Mesh Refinement

Dynamic grid refinement near charges could improve accuracy without excessive computational cost.

9.2 Physical Extensions

9.2.1 Magnetic Fields

Including magnetic field effects would enable study of more complex particle dynamics:

$$m\frac{d\vec{v}}{dt} = q(\vec{E} + \vec{v} \times \vec{B}) \tag{10}$$

9.2.2 Relativistic Effects

For high-energy particles, relativistic equations of motion become necessary:

$$\frac{dp^{\mu}}{d\tau} = qF^{\mu\nu}u_{\nu} \tag{11}$$

9.2.3 Radiation Reaction

The Abraham-Lorentz force could model energy loss through electromagnetic radiation:

$$\vec{F}_{rad} = \frac{q^2}{6\pi\epsilon_0 c^3} \frac{d^2 \vec{v}}{dt^2} \tag{12}$$

10 Potential Issues and Limitations

10.1 Numerical Instabilities

10.1.1 Stiffness

Near charge locations, the electric field varies rapidly, leading to stiff differential equations that require small time steps for stability.

10.1.2 Singularities

The $1/r^2$ dependence of the electric field creates numerical challenges as particles approach charges. Our regularization scheme ($r_{min} = 0.1 \text{ m}$) is somewhat artificial but necessary for computational stability.

10.1.3 Long-term Integration

For very long simulation times, accumulated round-off errors can lead to unphysical behavior, particularly violation of energy conservation.

10.2 Physical Limitations

10.2.1 Classical Approximation

The classical treatment ignores quantum mechanical effects that become important at atomic scales or very low energies.

10.2.2 Point Charge Model

Real charges have finite size, and the point charge approximation breaks down at short distances where particle structure becomes important.

10.2.3 Environmental Effects

The simulation assumes vacuum conditions, neglecting:

- Air resistance or medium effects
- Gravitational forces
- External electromagnetic fields
- Interactions with other particles

11 Conclusions

This project provides a clear, modular MATLAB framework to visualize electrostatic fields and to simulate test-particle motion using a fixed-step RK4 integrator. The color-coded visualizations and the GUI controls enable intuitive exploration. Important physical insights (e.g., zero-field equilibrium due to symmetry, acceleration in dipole case) are reproduced faithfully by the code.

References

- [1] D. J. Griffiths, *Introduction to Electrodynamics*, 4th ed., Cambridge University Press, 2013.
- [2] MathWorks Documentation: https://www.mathworks.com/help/matlab/