Beschreibungslogik | Übung 03

D. Marschner, A. Mahdavi alma@uni-bremen.de

Aufgabe 1 a)

 $C_0 = \exists r.A \sqcap \exists r.B \sqcap \forall r.\exists r.A \sqcap \forall r.\forall r.\neg A$

in Aufgabe 1 a) C_0 ist nicht erfüllbar, weil es keinen I-Baum gibt ohne offensichtlichen Wiederspruch und vollständig ist.

19:3/10

Aufgabe 1 b)

$$C_0 = \neg(\forall r.(A \sqcup B) \sqcap \forall r.(A \sqcup \neg B)) \sqcap \neg \exists r.(\neg A \sqcap \neg B)$$
schritt 1. (NNF berechnung)
$$C_0 = (\exists r.\neg(A \sqcup B) \sqcup \exists r.\neg(A \sqcup \neg B)) \sqcap \forall r.\neg(\neg A \sqcap \neg B)$$

$$\underline{C_0}' = (\exists r.(\neg A \sqcap \neg B) \sqcup \exists r.(\neg A \sqcap B)) \sqcap \forall r.(A \sqcup B)$$

$$C_0$$
, (2) initialer Baum $\mathcal{B}_{\mathsf{ini}}$ $\exists r.(\neg A \sqcap \neg B) \sqcup \exists r.(\neg A \sqcap B))$, $\forall r.(A \sqcup B)$ (3) \sqcap -Regel auf (2)

Wieso habt the die zwei Knoker die zwei Knoker aus Ba C_0 , (2) $\exists r.(\neg A \sqcap \neg B) \sqcup \exists r.(\neg A \sqcap B)$, $\forall r.(A \sqcup B)$, (3) $\exists r.(\neg A \sqcap \neg B)$, $(4a \neg A \sqcap B)$ $\exists r.(\neg A \sqcap B)$, $\exists r.(\neg A \sqcap B)$,

(5) (5) (6) (7) $(8) \sqcup -\text{Regel auf } (6)$ $(8) \sqcup -\text{Regel ist rich} = 10$ $2 \sqcup -\text{Regel er pangle} = 2 \sqcup -\text{Linker} = 10$ $2 \sqcup -\text{Linker} = 10$

Model \mathcal{I} gemäß Beweis von theorem 4.8: $\underline{v} = V_i ni, V_1$ da ist . $\underline{E} = (V_i ni, r, V_1)$ $\underline{\mathcal{L}}: V \rightarrow 2^{sub(C_0)}$ ist Knotenbeschriftung

1 = 1 MV.

$$\Delta^{\mathcal{I}} = V$$

$$r^{\mathcal{I}} = \{(V, V') \in E\} \text{ für alle Rollennamen r}$$

$$A^{\mathcal{I}} = \{V | A \in \mathcal{L}(v)\} \text{ für alle Konzeptnamen A}$$

$$C_0^{\mathcal{I}} = ((\exists r. (\neg A \sqcap \neg B) \sqcup \exists r. (\neg A \sqcap B)) \sqcap \forall r. (A \sqcup B))^{\mathcal{I}}$$

$$= ((\exists r. (\neg A \sqcap \neg B) \sqcup \exists r. (\neg A \sqcap B))^{\mathcal{I}} \cap \forall r. (A \sqcup B))^{\mathcal{I}}$$

$$= (\exists r. (\neg A \sqcap \neg B)^{\mathcal{I}} \vee \exists r. (\neg A \sqcap B)^{\mathcal{I}}) \cap \{V_{ini}\}$$

$$= \{V_{ini}\}$$

$$C_0^{\mathcal{I}} \neq = > \mathcal{I} \text{ ist Modell von } C_0$$

Da wir einen I-Baum gefunden haben, der keinen offensichtlichen Wiederspruch hat und vollständig ist, ist C_0 erfüllbar.

Wir ordnen jeder Menge M_i von Monstern eine Multimenge MM_i wie folgt

1:11120

Aufgabe 2

m (X)

zu: Für jedes Monster $X \in M_i$ enthält MM_i die Zahl $\underline{M(x)} = \underline{100 \text{ minus die}}$ Anzahl i der erlegten Monster, mittels derer X generiert wurde " Somit ist MM_i eine Multimenge über der Grundmenge \mathbb{N} . Da < auf \mathbb{N} wohldefiniert ist, ist mit Theorem 4.7 auch $<_{mul}$ auf $MM(\mathbb{N})$ wohldefiniert. Außerdem gilt $MM_i \ge_m ul MM_{i+1}$ für jedes i >= 0,dann mit jedem erlegten Monster X wird in M_i das Monster X durch beliebig viele neue Monster ersetyt, wobei für jedes neue Monster gilt: $m(X_{neu}) < m(X)$. Somit er-Wegen der Wohldefiniert
Mit muss die Folge der (die beiden Begriffe haben verschiedene Bedeutungen). hält man $MM_i + 1$ aus MM_i indem man m(x) durch die kleineren Zahlen $m(x_{neu_1}), m(x_{neu_2}), ..., m(x_{neu_n})$ mit $n \in \mathbb{N}$ ersetzt. Wegen der Wohldefiniert-<u>heit</u> von $<_{mul}$ uns der Beobachtung $MM_i >_{mul} MM_{i+1}$ muss die Folge der MM_i endilich sein.

(*) Warun nicht einfach die Anzahl de Könse von X? 4

Aufgabe 3 a)

Aufgabe 3 b)

 $\begin{array}{ll} B, \neg A, \exists r.B \sqcap \exists r.B, & B, \neg A, \exists r.B \sqcap \exists s.B \\ \exists r.B, \exists s.B & \exists r.B, \exists s.B \\ \text{direkt block von } V_{ini} & \text{direkt block von } V_{ini} \end{array}$

 $B, \exists r.B \sqcap \exists s.B, \\ \exists r.B, \exists s.B, \neg A$ direkt block von V_{ini}

 $B, \exists r.B \sqcap \exists s.B, \\ \exists r.B, \exists s.B, \neg A$ direkt block von V_{ini}

 V_3, V_4, V_5, V_6 direkt block von V_{ini}

Wie gezeigt gibt es einen vollständigen I-Baum ohne offensichtlichen Wiederspruch. Also ist C_2 bezüglich \mathcal{T}_2 erfüllbar.

36:617

Aufgabe 3 c)

Behaupt $\mathcal{T}_3 \models Student \sqsubseteq Happy$?

Antwort Die Behauptung ist wahr

Das ist et as andres! 11 Co une fallbar bzgl. To ist nicht aquivalent zu
11 Co er faillbar bzgl. To " - Die 1. Anssage hat die torm
11 es gibt kein Modell ..." und die zweite: 1, es gibt ein Modell",

Beweis Wir formulieren die Behauptung zunächst einmal um.

 $C_1 = \neg C_0 = \neg (Student \sqcap \neg Happy) = \neg Student \sqcup Happy$ erfüllbar bzgl. \mathcal{T}_3 ? Wir zeigen über den Tableau Algorithmus im folgenden, dass $C_1 = \neg C_0$ erfülbar bzgl. \mathcal{T}_3 , denn wir finden einen vollständigen I-Baum ohne offensichtlichen Wiederspruch. Dadurch wird die Behauptung bewiesen, da C_1 bzgl. \mathcal{T}_3 erfüllbar.

 $\mathcal{T}_{3} \text{ umformen zu } \{T \sqsubseteq C_{\mathcal{T}}\}$ $\mathcal{T}_{3} \{Student \sqsubseteq \exists solves.Exercise, \\ \exists solves.T \sqsubseteq Happy\}$ $= \{T \sqsubseteq (\neg Student \sqcup \exists solves.Exercise) \sqcap \\ (\neg \exists solves.T \sqcup Happy)\}$ $= \{T \sqsubseteq (\neg Student \sqcup \exists solves.Exercise) \sqcap \\ (\forall solves. \neg T \sqcup Happy)\}$

Über Tableau-Algorithmus Modell $\mathcal I$ für $\mathcal T$ finden :

Abkürzungen: Student≡ S

Exercise≡ E

Happy≡ H

solves≡ r

$$\mathcal{T} = \{ T \sqsubseteq (\neg S \sqcup \exists r.E) \sqcap (\forall r.\neg T \sqcup H) \}$$

$$C_0 = \neg S \sqcup H$$

Zu Aufgabe 4:

- a) Beim TBox-Konzept für T1 habt ihr vergessen, Klammern nach "r only" zu setzen.
- b) Beim TBox-Konzept habt ihr "or" statt "and" verwendet.
- c) Hier habt ihr in Protégé etwas anderes getestet, als ihr am Anfang von Aufgabe 3c angekündigt habt: ihr habt getestet, ob T3 ∪ {⊤ ⊑ Happy ⊔ ¬Student} erfüllbar ist.

4:15/20

$$C_0 = \neg S \sqcup H$$
 erfüllbar bzgl. \mathcal{T}_3
 $(C_0)^{\mathcal{I}} = (\neg S \sqcup H)^{\Im} = V_{ini}, V_1$

Sc: 117 3:17/20

Aufgabe 5)

Wir formulieren die Behauptung zunächst einmal um.

 \mathcal{T} umformen zu $\{T \sqsubseteq C_{\mathcal{T}}\}:$

$$\mathcal{T} = \{ \overline{D} \sqsubseteq \exists r.A, T \sqsubseteq \forall \overline{r}. \forall \overline{r}. \neg A \}$$

$$\{ T \sqsubseteq (\neg T \sqcup \exists r.A) \sqcap (\neg T \sqcup \forall \overline{r}. \forall \overline{r}. \neg A) \}$$

$$C_0 = A$$

Einfacher: 7= {T = FrAn Vr. Vr. 1A }

the seed in

daler beachtet

The die

Blockierug

Um die Erfüllbarkeit C_0 bzgl. \mathcal{T} zu prüfen, konstruieren wir einen I-Baum mit $C_0, \mathcal{T} \in \mathcal{L}(V_{ini})$. Aufgrund der Tbox-Regel ist $\mathcal{T} \in L(x)$, wobei x beliebiger Knoten aus V ist. Durch die \sqcap Regel angewendet auf $\mathcal{T} \in \mathcal{L}(v)$ mit $v \in V$ ist beliebiger Knoten, erhalten wir $(\neg T \sqcup \exists r.A) \in \mathcal{L}(v)$ und $(\neg T \sqcup \forall \overline{r}. \forall \overline{r}. \neg A) \in \mathcal{L}(v).$

Sei $C = (\neg T \sqcup \exists r.A)$ und $D = (\neg T \sqcup \forall \overline{r}. \forall \overline{r}. \neg A)$, dann ist nach vorheriger Erklärung $C \in \mathcal{L}(v)$ und $D \in \mathcal{L}(v)$, wobei $v \in V$ ein beliebiger Knoten aus Mem I-Baum ist.

Da wir auch die \square Regel auf C und D anwenden müssen, und $\neg T \in \mathcal{L}(v)$ ein offensichtlicher Widerspruch wäre, erhalten wir $\exists r.A \in L(v)$ und $(\forall \overline{r}. \forall \overline{r}. \neg A) \in$ L(v) für alle I-Bäume mit bislang keinen offensichtlichen Wiederspruch.

Wenn aber $\forall \overline{r} \forall \overline{r}. \neg A \in \mathcal{L}(v)$, dann gibt es ein $u \in V$ mit $(u,r,v) \in E$ und $\forall \overline{r}. \neg A \in \mathcal{L}(u)$. Das wiederum bedeutet, es gibt ein $w \in V$ mit $(w,r,u) \in E$ und $\neg A \in \mathcal{L}(w)$. Wir können also sagen, das $\neg A \in \mathcal{L}(w)$, wobei w irgend ein Knoten ist. Da aber $\exists r.A \in L(v)$, wobei v beliebiger Knoten ist, gibt es sicher ein r-Vorgänger w' von w mit $\exists r.A \in L(w')$ und $(w',r,w) \in E$. Das würde bedeuten, dass $A, \neg A \in L(w)$, wobei w mindestens ein Knoten in jedem möglichen I-Baum ist. Also hat jeder I-Baum immer einen offensichtlichen Wiederspruch, sodass der Tableau-Algorithmus sicher ein falsches Ergebnis liefert.

8/20

"semantischen
Argumentiern" dass
(. merfilbarist bryl).
(Dafur gebeich die Punkte

aler (o ist nicht erfillbur bzgl)

also ist das Ergelonis

horrelt in dem Fall?!

A, (TU 3nA) [(TU 4n 4n 2n), 3nA (4n 4n 2n), 4n 2n A)

(TU 3nA), (TU 4n 4n 2n), 3n A (4n 4n 2n), A

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n), A

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n), 4n 2n

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n), 4n 2n

A, (TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n), 4n 2n

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n), 4n 2n

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n), 4n 2n

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n)

(TU 3nA), (TU 4n 4n 2n), 3n A, (4n 4n 2n)

Abbildung 1: Aufgabe 5 - Tableau Algorithmus - Widerspruch wie im Text erklärt