Second-Order Neural ODE Optimizer

Guan-Horng Liu, Tianrong Chen, Evangelos A. Theodorou

Georgia Institute of Technology {ghliu, tianrong.chen, evangelos.theodorou}@gatech.edu

NeurIPS 2021 (Spotlight)

Second-Order Neural ODE Optimizer

A new optimizer for deep continuous-time models (e.g., Neural ODEs) that enjoys

- Strong empirical results
 - superior convergence & test-time performance
 - hyper-parameter robustness
 - architecture optimization
- Solid theoretical analysis
 - continuous-time optimal control theory
 - generalization of first-order adjoint method to higher-order at the same *O(1)* memory (in depth)

Training Process of Neural ODEs

Adjoint-based optimization

Forward ODE

Backward Adjoint ODE

- Computation flow
- → Query time derivative

Training Process of Neural ODEs

Application to higher-order optimization (prior attempts)

Backward Recursive Adjoint ODE

- ! linear runtime dependency
- accumulated integration errors

This work (our contribution)

Higher-order computational framework from an optimization viewpoint.

- Computation flow
- → Query time derivative

Optimal Control Perspective (OC)

- Treat the <u>propagation of each layer</u> as a distinct <u>time step of a nonlinear dynamical system</u>.
- Interpret <u>layer parameter</u> as the <u>time-varying control</u> (Weinan et al., 2018; Liu & Theodorou, 2019).
- New optimization theory and OC-inspired training methods (Liu et al., 2021a,b).

Optimal Control Perspective (OC)

- Neural ODEs, by construction, aim to represent <u>continuous-time dynamical systems</u>.
- <u>Backward adjoint ODE</u> originates from optimality conditions in <u>Optimal Control</u> (<u>Pontryagin et al., 1962</u>).

system

output

compute loss

Training Neural ODE by Solving OCP

Original Training Process

$$\min_{ heta} \mathcal{L}(\mathbf{x}(t_1)),$$
 s.t. $rac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = rac{F(t,\mathbf{x}(t), heta)}{Neural\ ODE}, \quad \mathbf{x}(t_0) = oldsymbol{x}_{t_0},$

Optimal Control Programming (OCP)

$$egin{aligned} \min_{ heta} \left[\Phi(\mathbf{x}_{t_1}) + \int_{t_0}^{t_1} \ell(t, \mathbf{x}_t, \mathbf{u}_t) \mathrm{d}t
ight], \ \mathrm{s.t.} & \left\{ egin{aligned} rac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} &= F(t, \mathbf{x}(t), \mathbf{u}(t)), & \mathbf{x}(t_0) &= oldsymbol{x}_{t_0} \ rac{\mathrm{d}\mathbf{u}(t)}{\mathrm{d}t} &= oldsymbol{0}, & \mathbf{u}(t_0) &= heta \end{aligned}
ight. \ \mathcal{ODE} \ \textit{with time-invariant control} \end{aligned}$$

Adjoint-based derivatives

$$\frac{\partial \mathcal{L}}{\partial \theta}$$

$$\frac{\partial^2 \mathcal{L}}{\partial \theta \partial \theta}$$

Define accumulated loss: $Q(t,\mathbf{x}_t,\mathbf{u}_t) := \Phi(\mathbf{x}_{t_1}) + \int_t^{t_1} \ell(au,\mathbf{x}_ au,\mathbf{u}_ au) \mathrm{d} au$

OCP-based derivatives

$$egin{aligned} (\mathcal{L}, heta) := (Q(t_0),\mathbf{u}_{t_0}) & rac{\partial Q(t_0,\mathbf{x}_{t_0},\mathbf{u}_{t_0})}{\partial \mathbf{u}_{t_0}} \equiv Q_{oldsymbol{u}}(t_0) \ rac{\partial^2 Q(t_0,\mathbf{x}_{t_0},\mathbf{u}_{t_0})}{\partial \mathbf{u}_{t_0}\partial \mathbf{u}_{t_0}} \equiv Q_{oldsymbol{u}}(t_0) \end{aligned}$$

Generalization of Adjoint Process

Our goal is to solve derivatives of $Q(t, \mathbf{x}_t, \mathbf{u}_t)$ w.r.t. the control \mathbf{u} at t_0 :

Theorem 1 (Second-Order Differential Programming)

The derivatives of Q expanded along a solution path (x_t, u_t) , which solves the forward ODE, obey the following set of couple backward ODEs:

$$\begin{aligned} -\frac{\mathrm{d}Q_{x}}{\mathrm{d}t} &= \ell_{x} + F_{x}^{\mathsf{T}}Q_{x} & -\frac{\mathrm{d}Q_{u}}{\mathrm{d}t} &= \ell_{u} + F_{u}^{\mathsf{T}}Q_{x} \\ -\frac{\mathrm{d}Q_{xx}}{\mathrm{d}t} &= \ell_{xx} + F_{x}^{\mathsf{T}}Q_{xx} + Q_{xx}F_{x} & -\frac{\mathrm{d}Q_{xu}}{\mathrm{d}t} &= \ell_{xu} + F_{x}^{\mathsf{T}}Q_{xu} + Q_{xx}F_{u} \\ -\frac{\mathrm{d}Q_{uu}}{\mathrm{d}t} &= \ell_{uu} + F_{u}^{\mathsf{T}}Q_{xu} + Q_{ux}F_{u} & -\frac{\mathrm{d}Q_{ux}}{\mathrm{d}t} &= \ell_{ux} + F_{u}^{\mathsf{T}}Q_{xx} + Q_{ux}F_{x} \end{aligned} \right\}$$

original Adjoint

generalization to second-order

- uno recursive dependency! (everything's solved in one single backward pass)
- e can be extended to computing higher-order tensors

Memory Complexity

ullet Memory complexity of backward pass ($\mathbf{x}_t \in \mathbb{R}^m, \mathbf{u}_t \in \mathbb{R}^n$, rank R)

	1st-order Adjoint	Theorem 1	Proposed method (2nd-order)
w.r.t. depth (NFE)	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
w.r.t m, n	$\mathcal{O}(n+m)$	$\mathcal{O}((n+m)^2)$	$\mathcal{O}(2n+Rm)$

- Practical implementation: adopt <u>low-rank approximation</u> & <u>Kronecker factorization</u>.
- 10-40% additional <u>constant</u> memory compared to 1st-order Adjoint. (less than 1GB on all experiments)

NFE: number of function evaluation

Per-Iteration Runtime

Per-iteration runtime (seconds) w.r.t. Adam

	Imag	Image Classification			Time-series Prediction			Continuous NF		
	MNIST	SVHN	CIFAR10	SpoAD	ArtWR	CharT	Circle	Gas	Minib.	
Ours Adam	1.00	0.87	1.16	0.99	1.01	1.01	2.75	1.93	1.60	

😀 run nearly as fast as Adam!

1.5~3x slower on CNF datasets

may run faster (e.g., SVHN)!

still faster convergence (next slide)

- 2~5x faster than recursive adjoint baseline
- Preconditioned updates may lead to implicit regularization.

		evaluation (NFE) backward pass	Regularization (Finlay et al., 2020) ($\int \nabla_{\mathbf{x}} F ^2 + \int F ^2$)
Adam	32.0	42.1	323.9 (100%)
Ours	26.0	32.6	199.1 (61.5%)

Empirical Performance

Superior convergence in wall-clock time (<u>Adam</u>, <u>SGD</u>, <u>Ours</u>)

Improves test-time performance (accuracy for Image/Time-series, NLL for CNF)

	Image Classification		Time-series Prediction			Continuous NF			
	MNIST	SVHN	CIFAR10	SpoAD	ArtWR	CharT	Circle	Gas	Minib.
Adam	98.83	91.92	77.41	94.64	84.14	93.29	0.90	-6.42	13.10
SGD	98.68	93.34	76.42	97.70	85.82	95.93	0.94	-4.58	13.75
Ours	98.99	95.77	79.11	97.41	90.23	96.63	0.86	-7.55	12.50

Application to Architecture Optimization

Consider an extension of $Q(t, \mathbf{x}_t, \mathbf{u}_t)$ that includes the terminal horizon t_1 .

reduce runtime by 20% without

hindering test-time accuracy

Conclusion

A new second-order optimizer for training Neural ODEs that

- grounded on optimal control theory
- generalizes first-order adjoint method while retaining the same constant O(1) memory (in depth)
- achieves strong empirical results
 (e.g., convergence & test-time performance)
- opens up new applications and questions
 (e.g., architecture optimization, implicit regularization)

Reference

Weinan et al., 2018, "A mean-field optimal control formulation of deep learning."

Liu & Theodorou, 2019, "Deep learning theory review: An optimal control and dynamical systems perspective."

Liu et al., 2021a, "DDPNOpt: Differential dynamic programming neural optimizer."

Liu et al., 2021b, "Dynamic game-theoretic neural optimizer."

Pontryagin et al., 1962, "The mathematical theory of optimal processes."

Finlay et al., 2020, "How to train your neural ode: the world of jacobian and kinetic regularization."