The Theoretical Minimum

Classical Mechanics - Solutions

I01E04

M. Bivert

October 7, 2022

Exercise 1. Let $(A_x = 2, A_y = -3, A_z = 1)$ and $(B_x = -4, B_y = -3, B_z = 2)$. Compute the magnitude of \vec{A} and \vec{B} , their dot product, and the angle between them.

This is an immediate application of the formulas. Let's start by plotting those vectors:

Uusing slightly different notations, let us then recall first how the magnitude of a vector u is defined:

$$\|\mathbf{u}\| = \sqrt{u_x^2 + u_y^2 + u_z^2} = u \tag{1}$$

There are two formulas for the dot product: one involving the magnitudes and the angle between the vectors, and the other one involving the components:

$$\mathbf{u} \cdot \mathbf{v} = u_x v_x + u_y v_y + u_z v_z$$

= $\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta_{uv}$ (2)

By applying (1), we have:

$$A = \sqrt{2^2 + (-3)^2 + 1^2} \qquad B = \sqrt{(-4)^2 + (-3)^2 + 2^2}$$

$$= \sqrt{4 + 9 + 1} \qquad = \sqrt{16 + 9 + 4}$$

$$= \boxed{\sqrt{14}} \qquad = \boxed{\sqrt{29}}$$

We can also compute the dot product from the vectors' components, using the first form of (2):

$$\mathbf{A} \cdot \mathbf{B} = 2(-4) + (-3)(-3) + 1 \times 2$$

= 3

From the second form of (2), we can deduce a formula for the angle between \boldsymbol{A} and \boldsymbol{B} , θ_{AB} :

$$\cos \theta_{AB} = \frac{A \cdot B}{\|A\| \|B\|}$$

$$\Leftrightarrow \quad \theta_{AB} = \cos^{-1} \left(\frac{A \cdot B}{\|A\| \|B\|} \right)$$

$$\Leftrightarrow \quad = \cos^{-1} \left(\frac{3}{\sqrt{14 \times 29}} \right)$$

$$\Leftrightarrow \quad = \boxed{81.43753893^{\circ}}$$

Remark 1. Looking at our plots, the angle feels to be something a little less than 90° , which is coherent with what we've found.