Homework 1 - Truth Tables & Linear Programming with AMPL

Daniel Carpenter and Effouehi Moody

January 2022

Contents

1	Problem 1	3					
2	Problem 2	5					
3	Problem 3	6					
	3.1 Task a	6					
4 Problem 4							
	4.1 Task a	9					
	4.2 Task b	13					
	4.3 Task c	16					
	4.4 Task d	19					
5	Problem 5						
	5.1 Base Mathematical Formulation and Code	23					
	5.2 Task a	25					
	5.3 Task b	27					
	5.4 Task c	29					
	5.5 Task d	31					
	5.6 Task e	34					

6	Problem 6						
	6.1	Task a - c	35				
	6.2	Task d:	39				
	6.3	Task e	30				

1 Problem 1

Let	make on Bo	e a trui	th table	with T	for Trut yxin: only (p) one of us					
Go	cesce	Gregor	Typein							
	1	T	T	T	buth-tella to	T X				
2	2	一	T	F	¥	T				
3	5	T	F	7	F	-				
L		丁 1	F	F	-	T				
5	5	F	T	7	F	TX				
b		F	十	F	+	TX				
7		F	F	T		TX				
8		E		F	T					
-Tywin	-Tywin and Catelyn cannot be telling the buth									
-Tywin and Catelyn cannot be telling the buth at the same time. They also cannot lie at the same time. If one is lying, the other is telling the buth										
So case 1, 4,5 and 8 are impossible.										
Com 2. Grand Tyxlin are touth-tellars.										
If Gregor is a bruth-teller, that means only 1 of them is a bruthteller which contractions that both										
10	4011	110000	m UNIC	n biu	, we					
Them is a Trackin and	Gre	gon are	2 tout	n-tellos	w. w					
0 0 - 10000	-1 16 C									
is impos	ru	٠.		- 0		mat malt				
· Po. This milens mal tack-										
- case s: treger to the toller but catelyn is										
by one person is touth-teller but catelyn is										
by one person is touth-teller but totally truth a licer and Tyxlin remains the only truth tellor. This case is impossible.										
a till to so impossible.										
tellon, mi	3) (

(Ruestion 1 (Continued) Case 7: Gregor is a liar. This means not exactby I person is truth-teller but Tyxin is a Rian and Catelyn nomain the only truth-tollow. This case is also impossible. Case 3: Tyxin is a lian, that means Grager didn't vay " one of us is druth-teller", he probably said > 2 of us are truth-tellow', then Gregor and Catelyn are truth-tellers and Tyxin is a lian. This case is correct. Therefore we can vay that Gregor and Catelyn are truth-tellers and Tyxlin is a lian.

2 Problem 2

3 Problem 3

3.1 Task a

3.1.1 Decision Variables

bondA: dollars $\in \mathbb{R}$ to invest in bond A bondB: dollars $\in \mathbb{R}$ to invest in bond B bondC: dollars $\in \mathbb{R}$ to invest in bond C bondD: dollars $\in \mathbb{R}$ to invest in bond D bondE: dollars $\in \mathbb{R}$ to invest in bond E

3.1.2 Objective Function

• Maximize the Expected Earnings of the portfolio

 $Maximize\ Z = (0.043 \times bondA) + (0.027 \times bondB) + (0.025 \times bondC) + (0.022 \times bondD) + (0.045 \times bondE)$

3.1.3 Constraints

C1: Budget to invest is \$10 MM or less

 $budget: bondA + bondB + bondC + bondD + bondE \le 10$

C2: At least \$4 million must be invested in government and agency bonds

 $govtAndAgency: bondB + bondC + bondD \ge 4$

C3: Average Quality of the Portfolio must not exceed 1.4

 $avgQuality: (0.6 \times bondA) + (0.6 \times bondB) - (0.4 \times bondC) - (0.4 \times bondD) + (3.6 \times bondE) \leq 0$

C4: The Average Maturity must not Exceed Five Years

 $avgMaturity: (4 \times bondA) + (10 \times bondB) - (1 \times bondC) - (2 \times bondD) - (3 \times bondE) \leq 0$

3.1.4 Code

```
▼I File Edit Selection View Go Run Terminal Help

Ф
       EXPLORER

✓ AMPL MODELS

group10_HW1_p4a.txt

□ group10_HW1_p4a.txt

group10_HW1_p4c.txt

□

group10_HW1_p4c.txt
        option solver cplex;
                                                  option cplex_options 'sensitivity';
                                                  ## Dollars Invested in Respective Bonds (A, B, C, D, E)
var bondA >= 0;
                                                  var bondC >= 0;
var bondC >= 0;
                                                  var bondD >= 0;
                                                   var bondE >= 0;
                                                  maximize expectedEarnings: 0.043*bondA + 0.027*bondB + 0.025*bondC + 0.022*bondD + 0.045*bondE;
                                                  subject to budget: bondA + bondB + bondC + bondD + bondE <= 10;</pre>
                                                   subject to govtAndAgency: bondB + bondC + bondD >= 4;
                                                  ## Constraint 3: Average Quality of the Portfolio must not exceed 1.4
subject to avgQuality: 0.6*bondA + 0.6*bondB - 0.4*bondC - 0.4*bondD + 3.6*bondE <= 0;</pre>
                                                  ## Constraint 4: The Average Maturity must not Exceed Five Years
subject to avgMaturity: 4*bondA + 10*bondB - bondC - 2*bondD - 3*bondE <= 0;</pre>
                                                   print 'Objective: Expected Earnings';
display expectedEarnings;
                                                   display bondA, bondB, bondC, bondD, bondE;
```

3.1.5 Output

```
ampl: model group10_HW1_p3.txt
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 0.2983636364
3 dual simplex iterations (1 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

Objective: Expected Earnings
expectedEarnings = 0.298364

Decision Variables for Bond A, B, C, D, and E, Respectively
bondA = 2.18182
bondB = 0
bondC = 7.36364
bondD = 0
bondE = 0.454545
```

4 Problem 4

4.1 Task a

4.1.1 Decision Variables

 $tv = the number of minutes \in \mathbb{R}$ to air advertising on the *television* medium $magazine = the number of pages \in \mathbb{I}$ to to advertise on the *magazine* medium

4.1.2 Objective Function

• Maximize the total audience reach

$$Maximize\ Z = (1.8 \times tv) + (1.0 \times magazine)$$

4.1.3 Constraints

C1: Must not Exceed Budget of 1 Million dollars

$$budget: (20,000 \times tv) + (10,000 \times magazine) \le 1,000,000$$

C2: Must have at least 10 minutes of air time on the TV medium

$$minTimeTV: tv \geq 10$$

4.1.4 Code

```
★ File Edit Selection View Go Run Terminal Help
     EXPLORER
                 ---- ■ group10_HW1_p4a.txt × ■ group10_HW1_p4b.txt ■ group10_HW1_p4c.txt ■ group10_HW1_p4d.txt
     V AMPL MODELS
    ≣ group10_HW1_p4a.txt
≣ group10_HW1_p4b.txt

■ group10_HW1_p4c.txt

     option solver cplex;
                                    option cplex_options 'sensitivity';
                                     var magazine integer >= 0;
                                     maximize audienceReach: (1.8*tv) + (1.0*magazine);
                                     subject to budget: (20000*tv) + (10000*magazine) <= 1000000;
                                     subject to minTimeTV: tv >= 10;
                                     printf '\nPROBLEM 4(a) SOLUTIONS -----\n\n';
                                     display audienceReach;
                                     print 'Number of minutes dedicated to TV, and pages of Magazines:';
                                     display tv, magazine;
                                     print 'Total Budget Used (US Dollars):';
                                     display 20000*tv + 10000*magazine;
```

4.1.5 Output

```
ampl: model group10_HW1_p4a.txt
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 98
0 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

PROBLEM 4(a) SOLUTIONS ------

Optimal / Maximum Audience Reach in Millions:
audienceReach = 98

Number of minutes dedicated to TV, and pages of Magazines:
tv = 10
magazine = 80

Total Budget Used (US Dollars):
20000*tv + 10000*magazine = 1e+06
```

4.1.6 Solving Problem 4(a) Graphically by Hand

4.2 Task b

4.2.1 Additional Constraint: Labor Time

C3: Only 100 person weeks available, given it takes three weeks and one week to create a tv and magazine minute for advertisement, respectively.

$$personWeeks: (3 \times tv) + (1 \times magazine) \le 100$$

4.2.2 Code

```
★ File Edit Selection View Go Run Terminal Help

        $\mathbf{F}\ \text{group10_HW1_p4a.txt M}$
        $\mathbf{F}\ \text{group10_HW1_p4b.txt U}$
        $\mathbf{F}\ \text{group10_HW1_p4d.txt U}$
        $\mathbf{F}\ \text{group10_HW1_p4d.txt U}$

     V AMPLIMODELS

group10_HW1_p4b.txt U

□

group10_HW1_p4c.txt U

□

group10_HW1_p4d.txt ∪
                                             option solver cplex;
                                             option cplex_options 'sensitivity';
                                            var magazine integer >= 0;
                                            maximize audienceReach: (1.8*tv) + (1.0*magazine);
                                             subject to budget: (20000*tv) + (10000*magazine) <= 1000000;
                                             subject to minTimeTV: tv >= 10;
                                              subject to personWeeks: (3*tv) + (1*magazine) <= 100;</pre>
                                             printf '\nPROBLEM 4(b) SOLUTIONS -----\n\n';
                                             print 'Optimal / Maximum Audience Reach in Millions:';
                                              display audienceReach;
                                             print 'Number of minutes dedicated to TV, and pages of Magazines:';
                                             display tv, magazine;
                                             print 'Total Budget Used (US Dollars):';
display 20000*tv + 10000*magazine;
```

4.2.3 Output

```
ampl: model group10_HW1_p4b.txt
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 88
1 dual simplex iterations (1 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

PROBLEM 4(b) SOLUTIONS -------
Optimal / Maximum Audience Reach in Millions:
audienceReach = 88

Number of minutes dedicated to TV, and pages of Magazines:
tv = 10
magazine = 70

Total Budget Used (US Dollars):
20000*tv + 10000*magazine = 9e+05
```

4.3 Task c

4.3.1 Additional Constraint: Radio Advertising Medium

4.3.2 Decision Variables

 $tv = the number of minutes \in \mathbb{R}$ to air advertising on the *television* medium $magazine = the number of pages \in \mathbb{I}$ to to advertise on the *magazine* medium $radio = the number of minutes \in \mathbb{R}$ to air advertising on the *radio* medium

4.3.3 Objective Function

• Maximize the total audience reach

$$Maximize\ Z = (1.80 \times tv) + (1.00 \times magazine) + (0.25 \times radio)$$

4.3.4 New Constraints

C1: Must not Exceed Budget of 1 Million dollars

$$budget: (20,000 \times tv) + (10,000 \times magazine) + (2,000 \times radio) \le 1,000,000$$

C2: Must have at least 10 minutes of air time on the TV medium

$$minTimeTV: tv \ge 10$$

C3: Only 100 person weeks available, given it takes three weeks and one week to create a tv and magazine minute for advertisement, respectively. It only takes one day for radio.

$$personWeeks: (3 \times tv) + (1 \times magazine) + (\frac{1}{7} \times radio) \le 100$$

4.3.5 Code

```
▼ File Edit Selection View Go Run Terminal Help
                              F group10_HW1_p4a.txt M ● F group10_HW1_p4b.txt U F group10_HW1_p4c.txt U X F group10_HW1_p4d.txt U
     V AMPL MODELS

group10_HW1_p4b.txt U

□
      option solver cplex;
                                         option cplex_options 'sensitivity';
                                        var magazine integer >= 0;
                                         var radio >= 0;
                                         maximize audienceReach: (1.8*tv) + (1.0*magazine) + (0.25*radio);
                                         ## C1: Must not Exceed Budget of 1 Million dollars
subject to budget: (20000*tv) + (10000*magazine) + (2000*radio) <= 1000000;</pre>
                                         subject to minTimeTV: tv >= 10;
                                         subject to personWeeks: (3*tv) + (1*magazine) + (1/7*radio) <= 100;</pre>
                                         printf '\nPROBLEM 4(c) SOLUTIONS -----\n\n';
                                         display audienceReach;
                                         ## Print the decision variables
print 'Number of minutes dedicated to TV, and pages of Magazines:';
                                         display tv, magazine, radio;
                                         print 'Total Budget Used (US Dollars):';
                                         display 20000*tv + 10000*magazine + 2000*radio;
```

4.3.6 Output

```
ampl: model group10_HW1_p4c.txt
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 118
1 dual simplex iterations (1 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

PROBLEM 4(c) SOLUTIONS -----

Optimal / Maximum Audience Reach in Millions:
audienceReach = 118

Number of minutes dedicated to TV, and pages of Magazines:
tv = 10
magazine = 0
radio = 400

Total Budget Used (US Dollars):
20000*tv + 10000*magazine + 2000*radio = 1e+06
```

4.4 Task d

${\bf 4.4.1} \quad {\bf Additional\ Constraints:\ Miminum\ Magazine\ and\ Maximum\ Radio\ Requirements}$

C4: Must sign up for at least 2 magazine pages

 $minMagazines: magazine \geq 2$

C5: Must to exceed 120 minutes of radio

 $maxRadio: radio \leq 120$

4.4.2 Code

```
★ File Edit Selection View Go Run Terminal Help
      EXPLORER
                     ··· 

group10_HW1_p4a.txt M 

group10_HW1_p4b.txt U

□
                                                                         V AMPL MODELS

group10_HW1_p4b.txt U

□
 0

group10_HW1_p4c.txt U

□

group10_HW1_p4d.txt ∪

                                     option solver cplex;
                                     option cplex_options 'sensitivity';
                                      var tv >= 0:
                                     var magazine integer >= 0;
                                     var radio >= 0;
                                     maximize audienceReach: (1.8*tv) + (1.0*magazine) + (0.25*radio);
                                     subject to budget: (20000*tv) + (10000*magazine) + (2000*radio) <= 1000000;</pre>
                                     subject to minTimeTV: tv >= 10;
                                     subject to personWeeks: (3*tv) + (1*magazine) + (1/7*radio) <= 100;</pre>
                                     subject to minMagazines: magazine >= 2;
                                     subject to maxRadio: radio <= 120;</pre>
                                     printf '\nPROBLEM 4(d) SOLUTIONS -----\n\n';
                                     print 'Optimal / Maximum Audience Reach in Millions:';
                                     display audienceReach;
                                     print 'Number of minutes dedicated to TV, and pages of Magazines:';
                                      display tv, magazine, radio;
                                     print 'Total Budget Used (US Dollars):';
                                     display 20000*tv + 10000*magazine + 2000*radio;
    > OUTLINE
     > TIMELINE
```

4.4.3 Output

```
ampl: model group10_HW1_p4d.txt
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal integer solution; objective 100.75

1 MIP simplex iterations
0 branch-and-bound nodes

suffix up OUT;
suffix down OUT;
suffix current OUT;

PROBLEM 4(d) SOLUTIONS ----------

Optimal / Maximum Audience Reach in Millions:
audienceReach = 100.75

Number of minutes dedicated to TV, and pages of Magazines:
tv = 10
magazine = 53
radio = 119

Total Budget Used (US Dollars):
20000*tv + 10000*magazine + 2000*radio = 968000
```

5 Problem 5

Base Mathematical Formulation and Code 5.1

• Each task shows a separate change to the base model. Therefore, each change should not accumulate.

Mathematical Formulation

Given: P, a set of products

 $a_j = \text{tons per hour of product } j$, for each $j \in P$

b =hours available at the mill

 c_i = profit per ton of product j, for each $j \in P$ $u_i = \text{maximum tons of product } j, \text{ for each } j \in P$

Define variables: $X_i = \text{tons of product } j \text{ to be made, for each } j \in P$

Maximize: $\sum_{j \in P} c_j X_j$

 $\sum_{j \in P} (1/a_j) X_j \le b$ Subject to:

 $0 \le X_j \le u_j$, for each $j \in P$

5.1.2 Code for Model .mod and Input Data .dat

5.2 Task a

5.2.1 Changed Constraint for Total Hours

• Change the constraints so that total hours used by all products must equal the total hours available for each stage

5.2.2 Code

```
Once of Section Vew Go Run Service Services Serv
```

5.2.3 Output

There is no difference in the optimal solution because the range of Time before there is a change in optimal remains the same, and the hours available have not changed.

```
ampl: model group10_HW1_p5base.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 190071.4286
2 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
ampl: model group10_HW1_p5a.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 190071.4286
2 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
                        Make.up
                                         Make.down
           Make
                                                           :=
          3357.14
bands
                           27.6
                                        -1e+20
coils
          500
                           31.8571
                                        -1e+20
          3142.86
                                             27.9167
plate
                       1e+20
           Time
                    Time.up Time.down
                                                :=
           1800
                     37.6429 34.5536
reheat
           3200
                    40,4464
                                 37.0089
roll
```

5.3 Task b

5.3.1 New Constraint for Max Weight

• Restrict the total weight of all products to be less than a new parameter, max_weight = 6,500

$$totalWeight: \sum_{p \ \in \ PROD} Make_p \leq max_weight$$

5.3.2 Code

5.3.3 Output

The total number of tons has reduced from 7,000 to 6,500 per week

```
ampl: model group10_HW1_p5base.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 190071.4286
2 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT:
suffix current OUT;
Make [*] :=
bands 3357.14
coils
         500
plate 3142.86
ampl: model group10_HW1_p5b.mod
CPLEX 20.1.0.0: sensitivity CPLEX 20.1.0.0: optimal solution; objective 183791.6667
3 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
Make [*] :=
bands 1541.67
coils 1458.33
plate 3500
```

5.4 Task c

5.4.1 Changed Objective Function

• Change the objective function to maximize total tons

$$maximize\ Total_Tons = \sum_{p\ \in\ PROD} Make_p$$

5.4.2 Code

```
The Last Selection View Go Run Proposed Horizontal Hori
```

5.4.3 Output

The data file does not make a diference in the optimal (assuming that is what the question is asking). Please note that the total number of tons produced are the same as in the base model; however, the allocation of tons have shifted among each of the products.

```
ampl: model group10_HW1_p5base.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 190071.4286
2 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT:
suffix current OUT;
Make [*] :=
bands 3357.14
coils 500
plate 3142.86
ampl: model group10_HW1_p5c.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 7000
1 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
Make [*] :=
bands 5750
coils
         500
plate 750
```

5.5 Task d

5.5.1 New Constraint

• Minimum Share of Tons for each Product

$$Share_of_Products: Make_j \geq share_j \times \sum_{k \ \in \ PROD} Make_k, \ \ \forall \ j \ \in \ PROD$$

5.5.2 Code (Part I)

5.5.3 Output (Part I)

Note that bands represent $\sim 49.99\%$, coils: 40%, and plates: 10%

```
ampl: model group10_HW1_p5d.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 183211.9403
5 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;
Make [*] :=
bands 3343.28
coils 2674.63
plate 668.657
;
```

5.5.4 Code (Part II)

5.5.5 Output (Part II)

Profit is zero because it is impossible for bands to reach 50% of the share.

```
ampl: model group10_HW1_p5d.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 0
4 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;
Make [*] :=
bands 0
coils 0
plate 0
;
```

5.6 Task e

5.6.1 Changing Input Data via .dat File

Simply add the new item within the set called finishing, then add the its the associate values to the rate and avail parameters.

5.6.2 Output

```
ampl: model group10_HW1_p5e.mod
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 84250
0 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;
Make [*] :=
bands 1000
coils 1250
plate 750
;
```

6 Problem 6

6.1 Task a - c

6.1.1 Decision Variables

bondA: dollars $\in \mathbb{R}$ to invest in bond A bondB: dollars $\in \mathbb{R}$ to invest in bond B bondC: dollars $\in \mathbb{R}$ to invest in bond C bondD: dollars $\in \mathbb{R}$ to invest in bond D bondE: dollars $\in \mathbb{R}$ to invest in bond E

6.1.2 Objective Function

• Maximize the Expected Earnings of the portfolio

 $Maximize\ Z = (0.043 \times bondA) + (0.027 \times bondB) + (0.025 \times bondC) + (0.022 \times bondD) + (0.045 \times bondE)$

6.1.3 Constraints

C1: Budget to invest is \$10 MM or less

 $budget: bondA + bondB + bondC + bondD + bondE \le 10$

C2: At least \$4 million must be invested in government and agency bonds

$$govtAndAgency: bondB + bondC + bondD \ge 4$$

C3: Average Quality of the Portfolio must not exceed 1.4

 $avgQuality: (0.6 \times bondA) + (0.6 \times bondB) - (0.4 \times bondC) - (0.4 \times bondD) + (3.6 \times bondE) < 0$

C4: The Average Maturity must not Exceed Five Years

 $avgMaturity: (4 \times bondA) + (10 \times bondB) - (1 \times bondC) - (2 \times bondD) - (3 \times bondE) \le 0$

C5: Only select Bonds A and D (Don't select B, C, or E)

onlyAandB:bondB+bondC+bondE=0;

C6: Municipal Bonds must be less than or equal to \$3 MM

 $municipal: bondA \leq 3;$

6.1.4 Code

```
File Edit Selection View Go Run Terminal Help
        EXPLORER
Ф
       = group10_HW1_p3.txt M
        = group10_HW1_p4a.txt
        = group10_HW1_p4b.txt
 0

■ group10_HW1_p4c.txt

■ group10_HW1_p4d.txt

                                                        ## Set up options and the solver
option solver cplex;
option cplex_options 'sensitivity';
                                                        NN Dollars Invested in Respective Bonds (A, B, C, D, E)
var bondA >= 0;
var bondB >= 0;
var bondC >= 0;
var bondD >= 0;
var bondD >= 0;
                                                         maximize expectedEarnings: 0.043*bondA + 0.027*bondB + 0.025*bondC + 0.022*bondD + 0.045*bondE;
                                                         subject to budget: bondA + bondB + bondC + bondD + bondE <= 10;
                                                         subject to govtAndAgency: bondB + bondC + bondD >= 4;
                                                         ### Constraint 3: Average Quality of the Portfolio must not exceed 1.4 subject to avgQuality: 0.6*bondA + 0.6*bondB - 0.4*bondC - 0.4*bondD + 3.6*bondE <= 0;
                                                         subject to avgMaturity: 4*bondA + 18*bondB - bondC - 2*bondD - 3*bondE <= 0;
                                                         ## Constraint 5: Only select Bonds A and D (Don't select B, C, or E) subject to onlyAandB: bondB + bondC + bondE == 0;
                                                         AN Constraint 6: Municiple Bonds must be less than or equal to $3 MM subject to municipal: bondA <= 3;
                                                         print;
print 'Objective: Optimal Solution for Expected Earnings (millions of dollars)';
display expectedEarnings;
                                                         print 'Decision Variables for Bond A, B, C, D, and E, Respectively';
                                                         display bondA, bondD;
                                                         display municipal;
                                                         print 'Range of the Municipal Limit before it becomes infeasible';
print '(assuming nothing else changes)';
                                                         display municipal.up, municipal.down;
                                                         print 'You may not borrow more than 2.83%, since that is the expected';
print 'yield to maturity (30% of bondA * 4.3%) + (70% of bondD * 2.2%)';
                                                         print;
print 'If you borrowed at a rate greater than the expected YTM, then the)';
print 'venture would not be profitable.';
```

6.1.5 Output

```
ampl: model group10_Hw1_p6.txt
CPLEX 20.1.0.0: sensitivity
CPLEX 20.1.0.0: optimal solution; objective 0.283
0 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;
Objective: Optimal Solution for Expected Earnings (millions of dollars)
expectedEarnings = 0.283

Decision Variables for Bond A, B, C, D, and E, Respectively
bondA = 3
bondD = 7

Shadow Price of the municipal limit:
municipal = 0.021

Range of the Municipal Limit before it becomes infeasible
(assuming nothing else changes)
municipal.up = 0
municipal.down = 0
```

6.2 Task d:

You may not borrow more than 2.83%, since that is the expected yield to maturity (30% of bondA * 4.3%) + (70% of bondD * 2.2%)

6.3 Task e:

If you borrowed at a rate greater than the expected YTM, then the venture would not be profitable.