

MÉTODO DE ELEMENTOS FINITOS (MEF) -UMA INTRODUÇÃO-

Curso de Transferência de Calor I - FEN03-5190

Prof. Gustavo R. Anjos gustavo.anjos@uerj.br

17 e 23 de junho de 2015

Escoamento
de fluido
aquecido em
canal tipo 'L'
invertido com
furo

Simulação de perturbação de onda em um copo com água

Oscilação de uma gota, inicialmente cilíndrica, sem presença de gravidade

bolha em ascensão

coalescência

microcanal triangular

degrau

PROGRAMA DE COMPUTADOR

- Pré-processamento:
 - · definir a geometria do problema;
 - · definir tipo de elemento;
 - · definir as propriedades geométricas do elemento;
 - · definir as conectividades do elemento;
 - definir as condições de contorno e termos fontes;
- Solução (processamento):
 - calcular os valores desconhecidos de velocidade, pressão e temperatura (leis de conservação);
- Pós-processamento:
 - utilizar aplicativos sofisticados de visualização;
 - Ex.: Paraview, Maya, Tecplot

LITERATURA

Básico

Fundamentals of the Finite Element Method for Heat and Fluid Flow Autores: Roland W. Lewis, Perumal Nithiarasu, Kankanhally e N. Seetharamu

Avançado

The Finite Element Method - Linear Static and Dynamic Finite Element Analysis

Autores: Thomas J.R. Hughues

LITERATURA

Básico - português

Introdução ao Método dos Elementos Finitos

- notas de aula COPPE/UFRJ -

Autor: Prof. Fernando L. B. Ribeiro

Método dos Elementos Finitos Universidade do Porto - Portugal Autor: Álvaro F. M. Azevedo

LITERATURA

língua portuguesa

APLICAÇÕES BÁSICAS

- Engenharias Mecânica
 Aeroespacial
 Civil
 Automotiva
- Análise de tensões e estruturas Estática/Dinâmica Linear/não-Linear
- Escoamento de fluidos
- Transferência de calor
- Campos eletromagnéticos
- Mecânica de sólidos
- Acústica etc.

APLICAÇÕES BÁSICAS

IDÉIA DO MÉTODO

DISCRETIZAÇÃO

O modelo (ou objeto) é subdividido em vários objetos menores ou unidades (elementos finitos), que são interconectados em pontos comuns de dois ou mais elementos, através de nós ou pontos nodais e/ou linhas e/ou superfícies.

TIPOS DE ELEMENTOS

TIPOS DE ELEMENTOS

2D

malha

TIPOS DE ELEMENTOS

3D

tetraedro

paralelepípido

malha

LITERATURA - ELEMENTOS

The Finite Element Method - Its Basis & Fundamentals
Autores: O.C. Zienkiewicz, R.L.Taylor e
J.Z. Zhu

Fundamentals of the Finite Element Method for Heat and Fluid Flow Autores: Roland W. Lewis, Perumal Nithiarasu, Kankanhally e N. Seetharamu

VANTAGENS/DESVANTAGENS

- contorno irregulares;
- · materiais/fluidos diferentes; ·
- tamanho de elementos diferentes;
- fácil modificação de problemas;
- · malhas não estruturadas. -

- necessidade de computadores;
- grande quantidade de memória RAM;
- programação complexa, porém flexível.

PROBLEMA SIMPLES - MEF

barra aquecida

la. simplificação - 2D

2a. simplificação - ID

distribuição de temperatura

PERFIL DE TEMPERATURA

Problema ID - linear:

$$T(x) = \alpha_1 + \alpha_2 x$$

Problema ID - quadrático:

$$T(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$$

FUNÇÕES DO MEF

Propriedades do elemento finito

- as funções de forma assumem o valor unitário no nó designado e zero nos demais nós;
- a soma de todas as funções de forma em um elemento é igual a um em todo o elemento, incluindo o contorno.

Tabela

item	nó, i	nó, j	x arbitrário
Ni		0	entre 0 e I
Nj	0		entre 0 e I
Ni+Nj			

FUNÇÕES DO MEF

Problema ID - linear:

Problema ID - quadrático:

$$T(x) = \alpha_1 + \alpha_2 x$$

$$T(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$$

PROBLEMA ID - EXEMPLO

Calcular a temperatura de uma barra de 10cm em uma distância de 7cm de uma extremidade, onde a temperatura é de 80 graus Celsius e a outra extremidade onde a temperatura é de 220 graus Celsius. Considere uma distribuição de temperatura linear.

Resposta: 178 graus Celsius

RECEITA PARA O MEF

papel:

- a partir da forma forte do problema, passar para a forma fraca;
- utilizar o método de Galerkin para transformar o problema contínuo em discreto;

computador:

- definir a geometria e malha
- gerar matrizes de coordenadas e conectividade;
- montar o sistema linear do tipo Ax=b;
- resolver o sistema linear para x;
- · visualizar o resultado.

RESUMO DO MEF

PROBLEMA ID

Encontrar u no domínio $\Omega = [0, 1]$ tal que:

$$\frac{d^2u}{dx^2} + u + 1 = 0$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = 1$$
condição de contorno

domínio: $h_1 = h_2 = h_3 = 1/3$

Resposta: $u_2 = 1.055 I$; $u_3 = 1,872$; $u_4 = 2,39 I$

PROBLEMA ID

Encontrar u no domínio $\Omega = [0, 1]$ tal que:

$$\frac{d^2u}{dx^2} + u + 1 = 0$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = -u$$
condição de contorno

domínio: $h_1 = h_2 = h_3 = 1/3$

Resposta: $u_2=0,2511$; $u_3=0,3655$; $u_4=0,3299$

PROBLEMA 2D

Encontrar u no domínio $\Omega = [0,1] \times [0,1]$ tal que:

CONCLUSÃO

- o Método de Elementos Finitos foi apresentado como ferramenta de solução numérica para problemas permanentes e transientes de equações a derivadas ordinárias e parciais, unidimensional e bidimensional;
- 3 exercícios foram propostos dos quais os 2 primeiros foram resolvidos em sala de aula.

PROJETO

- Resolver o problema permanente 2D apresentado no slide anterior;
- Resolver o problema transiente 2D, adicionando a derivada temporal de u no problema do slide anterior, considerando condição inicial u=0 nos pontos internos.

INTEGRAÇÃO POR PARTES

De acordo com a regra do produto:

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

Note que a função $(f \cdot g)$

é uma antiderivada de $f' \cdot g + f \cdot g'$

Com isso:
$$\int f'(x)g(x)dx + \int f(x)g'(x)dx = f(x)g(x) + C$$

reescrevendo:
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

substituindo:
$$u = f(x)$$

 $v = g(x)$

fórmula:

$$\int u dv = uv - \int v du$$