

REPLACEMENT SHEET

NEW SHEET

4/4

Production	n of sy	ynthesis gas	without addition of	f hydrogen	
CO2 + CH4 → 2 CO + 2 H2			Ar/CO2/CH4	Ar/C02/CH4=68/18/13%	
P=4500W V=40 I/min			n· No Co	No Catalyst	
Convers	ion		Yie	eld	
CO ₂	СН	4 H2	CO	H2	
0.91	0.9	9 –	0.83	0.93	

Production of synthesis gas with addition of hydrogen					
CO2 + CH4 - 2 CO + 2 H2			Ar/CO2/CH4/H2=70/15/11/4%		
P=5000	00W V=40 I/min		No Catalyst		
Conversion			Yield		
CO2	CH4	H2	CO	H2	
0.95	0.99	0.10	0.96	0.95	

Production of acetylene					
CO2 + C2H	4 → C2H2 +	CO + H ₂ O	Ar/CO2/C2H4=73/21/6%		
P=3500	P=3500W V=38.5 I/min		No Catalyst		
Conversi	on		Yield		
CO2	C2H4	H2	CO	C2H2	
0.21	0.55	_	0.17	0.07	

Production of benzene on copper catalysts				
2 CO2+2 C2H4+3 H2 C6H6+4 H2O			Ar/CO2/C2H4/H2=66/19/9/6%	
P=4500	OW V=42.5 I/min		Copper Catalyst	
Conversion			Yield	
CO2	C2H4	H2	CO	C6H6
0.37	0.23	0.65	0.25	0.02