Lista 1 pt. 3

4.10. Sean A un conjunto arbitrario en E y r>0. **Pruebe** que

$$U_r = \{x \in E \mid d(x, A) < r\} = A + B(0, r)$$

y **concluya** que U_r es un conjunto abierto en E. ¿Es

$$V_r = \{ x \in E \mid d(x, A) \le r \}$$

un conjunto cerrado en E? Sea ahora C es un conjunto compacto en E. Muestre que

$$W_r = \{ x \in E \mid d(x, C) \le r \} = C + B'(0, r)$$

y **concluya** que W_r un conjunto cerrado en E. ¿Cuándo será seguramente W_r un conjunto compacto en E? **Justifique**.

Dem:

Probaremos que $U_r = \{x \in E \mid d(x,A) < r\} = A + B(0,r)$

i) Sea $x \in Ur$ entonces d(x,A) < r Portanto $a \in A \setminus (x \cdot a) < r$ Por ser el intimo, pura $\mathcal{E} = \frac{r - a(x,A)}{2} > 0$, $\exists a \in A \mid tul \mid que \mid N(x-a) < d(x,A) + \frac{r}{2} - \frac{a(x,A)}{2} = > N(x-a) < \frac{a(x,A) + r}{2} < \frac{2r}{2} = r$ Entonces $x - a \in B(0,r)$, $y \in A$ Lue $g_0 x = a + x - a \mid donde \mid a \in A \mid y \mid x - a \in B(0,r)$ Por tunto $Ur \in A + B(0,r)$

Sea $x \in A + B(0,r)$, entonces $\exists a \in A$ y $b \in B(0,r) \cap x = a + b => x - a = b$.

portunto $N(x-a) < r => d(x,A) = \inf_{a' \in A} N(x-a') \leq N(x-a) < r$. Portunto, $\chi \in U_r$, as: $A + B(0,r) \subseteq U_r$.

Por i) y ii), $U_r = A + B(0, r)$. Como E es espacio normado y B(0, r) es abjerta, entônces $A + B(0, r) = U_r$ es abjerto en E, por una proposición anter:

Dr

Para la otra parte, probaremos que:

$$V_r = \{ \chi \in E \mid d(\chi, \Lambda) \leq r \} = \Lambda + \beta'(0, r)$$

 $|Sea| x \in Vr$, entonces $d(x,A) \leqslant r => \inf_{\alpha \in A} N(x-\alpha) \leqslant r$