	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\!$	$\tau_{1}^{\#1}{}_{\!$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}$	$\tau_{1^{-}\alpha}^{\#1}$	$\tau_{1^{-}}^{\#2}\alpha$
$\sigma_{1}^{\#1} + \alpha \beta$	$\frac{6}{(3+2 k^2)^2 t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} + \alpha \beta$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$\tau_{1}^{#1} + \alpha \beta$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#_{1}} +^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_1^{\#2} +^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#_{1}} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} +^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$

<u>[</u> :	# -	-	1	٣	κ	m	m	2	000	7
Source constraints		$U_{0^{-}}^{0^{-}} = 0$ $U_{0^{+}}^{\#2} = 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik\sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta - 2ik \sigma_{1+}^{\#1}\alpha\beta == 0$	$2 \sigma_{1+}^{\#1} \alpha \beta + \sigma_{1+}^{\#2} \alpha \beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$	Total #	2
$f_{1^-}^{\#2}\alpha$	0	С	0	, , ,	I K C ₁	0	0	0		
$f_{1^-}^{\#1} \alpha$	0	C	0) (0	0	0		
$\omega_{1^{-}\alpha}^{\#2} f_{1^{-}\alpha}^{\#1} f_{1^{-}}^{\#2}$	0	С	0	<i>t</i> ₁	72	0	0	0		
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	, t ₁	$-x / 1 - \frac{x}{2}$	<u>√2</u>	0	$-ikt_1$		
$f_{1}^{\#1}$	$\frac{ikt_1}{2}$	3 72 <u>i kt1</u>	$\frac{3}{k^2 t_1}$		>	0	0	0		C
$\omega_{1}^{\#1}{}_{\alpha\beta}\ \omega_{1}^{\#2}{}_{\alpha\beta}\ f_{1}^{\#1}{}_{\alpha\beta}$	- t1	3 7 2 <u>f_1</u>	$\frac{3}{-\frac{1}{l}}$ likt ₁	m (0	0	0	0		c
$\omega_{1}^{\#1}{}_{\alpha\beta}$			$\frac{3\sqrt{2}}{i^k t_1}$	3 12	>	0	0	0		7
	$\omega_{1+}^{\#1} +^{\alpha\beta}$	$\omega_{+}^{#2} + \alpha \beta$	$f_{1}^{*1} + \alpha \beta$	#1 + \alpha	ω ₁ - Τ	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$		7
	ε_1^*	#3	T # #	⊣ "	3	3	f	f		C

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	0
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	$i\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$\omega_{0}^{\#1}$	-t ₁	$-i \sqrt{2} kt_1$	0	0
	$\omega_{0^+}^{\#1} \dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2} +$	$\omega_{0}^{\#1} \dagger$

0	0	$k^2 r_1 + \frac{t_1}{2}$
$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
$\omega_2^{#1} + \alpha^{\beta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_2^{\#1} \dagger^{lphaeta\chi}$
	$\frac{t_1}{2} - \frac{ikt_1}{\sqrt{2}}$	$\frac{t_1}{2} - \frac{ikt_1}{\sqrt{2}}$ $\frac{ikt_1}{\sqrt{2}} + k^2 t_1$

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

_	$\sigma_0^{\#1}$	$ au_0^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	0

Massive partic	le
Pole residue:	$-\frac{1}{r_1} > 0$
Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd
	Polarisations: Square mass: Spin:

(No massless particles)