Motion Planning for Mobile Robots -- Assignment 06 Bernstein Basis for Constraints

NOTE Please open this in VSCode with MATLAB plugin

Solution guide for Assignment 06, Bernstein Basis for Constraints.

Introduction

Welcome to Solution Guide for Assignment 06! Here I will guide you through the MATLAB implementations of both

• Flight Corridor Quadrotor Navigation with Bernstein Basis

Q & A

Please send e-mail to alexgecontrol@qq.com with title Motion-Planning-for-Mobile-Robots—Assignment-05—Q&A-[XXXX]. I will respond to your questions at my earliest convenience.

NOTE

• I will NOT help you debug your code and will only give you suggestions on how should you do it on your own.

QP Solver for Bezier Curve Based Flight Corridor Navigation

Overview

The workflow of numeric solver can be summed up as follows:

- Build objective matrix
 - It is defined by minimum-snap or minimum-jerk on monomial polynomial
 - Then map the representation to Bernstein basis, which can be achieved using transformation matrix
- Build equality constraint matrix, which is defined by:
 - o Boundary conditions, start / end ego states
 - o Continuity on transition waypoint between two consecutive trajectory segments
- · Build inequality constraint matrix, which is defined by the series of bounding boxes that define the flight corridor:
- Solve the QP problem for the optimal coefficients of Bernstein polynomial.
- Map the optimal result back to monomia polynomial for easy trajectory generation.

The workflow can be implemented in MATLAB as follows:

Part 1, Optimization Target

The actual objective matrix **Q** is defined by **the L2-norm of the optimization target**:

- Minimum Snap, which is equivalent to t_order = 4 in the implementation below
- Minimum Jerk, which is equivalent to t_order = 3 in the implementation below

```
function Q = getQ(K, t_order, ts)
  % num. of polynomial coeffs:
  N = 2*t_order;
  \% pre-compute constants used in Q construction
  % factorial from derivative
  Q_k = zeros(N - t_order);
  Q_v = zeros(N - t_order);
  for n = t_order:(N - 1)
     Q_k(n - t_order + 1) = n;
     Q_v(n - t_order + 1) = factorial(n) / factorial(n - t_order);
  Q_factorial = containers.Map(Q_k, Q_v);
  % time power:
  ts_power = ts .^ t_order;
  Q_i = [];
  Q_j = [];
  Q_v = [];
  index = 1;
  for k = 1:K
     for m = t_order:(N - 1)
        for n = t_order:(N - 1)
           % TODO - define elements in Q:
           index = index + 1;
         end
     end
  end
   Q = sparse(Q_i, Q_j, Q_v);
end
```

Part 2, Transformation Matrix, Bernstein to Monomial

The transformation matrix **M** is defined by the L2-norm of the optimization target:

```
function M = getM(K, t_order)
   % num. of polynomial coeffs:
   N = 2*t_order;
   % num. of non-zero M elements:
   E = K*N*(N + 1)/2;
   % build M
   M_i = zeros(E, 1);
   M_j = zeros(E, 1);
   M_v = zeros(E, 1);
   b = zeros(N, 1);
   index = 1;
   for n = 1: N
      \% TODO -- binomial coefficient from bernstein polynomial:
   end
   for n = 1: N
      for m = 1:n
         for k = 1:K
             % TODO -- calculate binomial coefficient from t^{(i)*(1-t)^{(n-i)}}
             index = index + 1;
          end
      end
   end
   % done:
   M = sparse(M_i, M_j, M_v);
end
```

Part 3, Done!

Finally, create objective matrix for Bernstein polynomial as follows:

Equality Constraint Matrix

The equality constraint matrix is defined as follows:

- Boundary Conditions, which are defined by start and end states of target trajectory
- Continuity on transition waypoint between two consecutive trajectory segments, which requires the planned trajectory should bet_order 1 order continuous at each transition waypoint between two segments.

```
function [Aeq, beq] = getAbeq(K, t_order, ts, start_cond, end_cond)
  % num. of polynomial coeffs:
  N = 2*t order;
  % num. of equality constraints:
  D = (K + 1)*t_order;
  \% TODO -- num. of non-zero Aieq elements:
  E = 0;
  % pre-compute constants used in A construction
  % factorial from derivative
  Aeq factorial k = [];
  Aeq_factorial_v = [];
  index = 1;
  for c = 1:t_order
     Aeq_factorial_k(index) = c;
     Aeq_factorial_v(index) = factorial(N - 1) / factorial(N - c);
     index = index + 1;
  end
  Aeq_factorial = containers.Map(Aeq_factorial_k, Aeq_factorial_v);
  % build constraint matrix
  index = 1;
  Aeq_i = zeros(E, 1);
  Aeq_j = zeros(E, 1);
  Aeq_v = zeros(E, 1);
  beq = zeros(D, 1);
  c_index = 1;
  % start & end conditions
  for c = 1:t_order
     for i = 1:c
        % TODO -- set start condition:
        % TODO -- set end condition:
        index = index + 2;
     end
     % start condition:
     beq(c_index) = start_cond(c);
     % end condition:
     beq(c_index + 1) = end_cond(c);
     % move to next constraint:
     c_{index} = c_{index} + 2;
  end
  \ensuremath{\mbox{\%}} transition waypoint continuity constraints
  for k = 1:(K - 1)
```

```
for c = 1:t_order
    for i = 1:c
        % TODO -- end state of current trajectory segment:

        % TODO -- should equal to start state of next trajectory segment:

        index = index + 2;
    end

        % move to next constraint:
        c_index = c_index + 1;
    end
end

% done:
    Aeq = sparse(Aeq_i, Aeq_j, Aeq_v);
end
```

Implementation Nodes

According to the original paper, if your objective function is the L2-norm of <u>t_order</u> trajectory derivative, then the trajectory should be <u>t_order - 1</u> order continuous at each intermediate waypoint.

Inequality Constraint Matrix

The inequality constraint matrix defined by the series of bounding boxes that define the flight corridor

```
function [Aieq, bieq] = getAbieq(K, t_order, ts, corridor_range, v_max, a_max)
   % num. of polynomial coeffs:
   N = 2*t_order;
   % num. of inequality constraints:
   D = K*(2*N - t_order + 1)*t_order;
   \% TODO -- num. of non-zero Aieq elements:
   E = 0;
   % pre-compute constants used in Aieq construction
   % factorial from derivative
   Aieq_factorial_k = [];
   Aieq_factorial_v = [];
   index = 1;
   for c = 1:t_order
      Aieq_factorial_k(index) = c;
      Aieq_factorial_v(index) = factorial(N - 1) / factorial(N - c);
      index = index + 1;
   Aieq_factorial = containers.Map(Aieq_factorial_k, Aieq_factorial_v);
   % build constraint matrix
   index = 1;
   Aieq_i = zeros(E, 1);
   Aieq_j = zeros(E, 1);
   Aieq_v = zeros(E, 1);
   bieq = zeros(D, 1);
   c_{index} = 1;
   for c = 1:t_order
      for k = 1:K
         for n = c:N
             % TODO -- set derivative:
             for i = 1:c
                index = index + 2;
             end
             % TODO -- set limit:
             % move to next constraint:
             c_index = c_index + 2;
         end
      end
   end
   % done:
   Aieq = sparse(Aieq_i, Aieq_j, Aieq_v);
end
```

Happy Learning & Happy Coding!

Yao

- GitHub
- LinkedIn