Data Science

Apprentissage par transfert

Hachem Kadri

2018-2019

 Dans des contextes réels, le meilleur jeu de données pour la tâche d'apprentissage n'est pas toujours disponible

from http://experiencesutra.com/experiments/deep-learning-in-fashion

- ▶ Un domaine source \mathcal{D}_S et une tâche source \mathcal{T}_S
- ▶ Un domaine cible $\mathcal{D}_{\mathcal{T}}$ et une tâche source $\mathcal{T}_{\mathcal{T}}$

Apprentissage par transfert a pour objectif de d'améliorer l'apprentissage de la fonction cible utilisant les connaissances de \mathcal{D}_S et \mathcal{T}_S dans les cas où $\mathcal{D}_S \neq \mathcal{D}_T$ et/ou $\mathcal{T}_S \neq \mathcal{T}_T$.

- Généralement, d'autres contraintes sur le domaine cible sont imposées, par exemple peu ou pas d'étiquettes
- ▶ Dans le cas où $\mathcal{D}_S = \mathcal{D}_T$ et/ou $\mathcal{T}_S = \mathcal{T}_T$, on retrouve la cas classique d'apprentissage supervisé

"survey on Transfer Learning" [Pan and Yang, TKDE 2010]

- ► Même tâche, domaines différents ⇒ Adaptation de domaine
- ▶ Même domaine, plusieurs tâches ⇒ Apprentissage multi-tâche

Adaptation de domaine

Adaptation de domaine

Adaptation de domaine

- lacktriangle un espace de features \mathcal{X} , un ensemble de labels $\mathcal{Y}=\{-1,1\}$
- une distribution source P_s , une distribution cible P_t
- une fonction inconnue $f: \mathcal{X} \to \mathcal{Y}$ selaon $P_t(y|x)$
- un ensemble de données d'apprentissage $S_s = \{(x_i, y_i)\}$ généré i.i.d selon P_s , un ensemble de données test $S_t = \{x_i\}$ généré selon D_t , la loi marginale de P_t sur \mathcal{X}
- apprendre un classifieur h le plus proche possible de la fonction inconnue f
- risque réel (source) : $R_s(h) = E_{(x,y) \sim P_s} I[h(x) \neq y)]$ risque empirique sur S_s : $\hat{R}_s(h) = \sum_{(x,y) \in S_s} I[h(x) \neq y)]$
- ▶ risque réel (cible) : $R_t(h) = E_{(x,y)\sim P_t}I[h(x) \neq y)]$

Borne de généralisation :
$$R_s(h) \leq \hat{R}_s(h) + \sqrt{rac{complexite(h \in \mathcal{H})}{|S_s|}}$$

⇒ guaranties théoriques pour le domaine cible ?

Adaptation de domaine - Stratégies

from https://limos.fr/media/uploads/seminaire/hebrard_slides_Nov18.pdf

Adaptation de domaine - par repondération

$$\begin{split} \epsilon_{T}(h) &= \underset{(\mathbf{x}^{t}, y^{t}) \sim P_{T}}{\mathbf{E}} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \\ &= \underset{(\mathbf{x}^{t}, y^{t}) \sim P_{T}}{\mathbf{E}} \frac{P_{S}(\mathbf{x}^{t}, y^{t})}{P_{S}(\mathbf{x}^{t}, y^{t})} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \\ &= \sum_{(\mathbf{x}^{t}, y^{t})} P_{T}(\mathbf{x}^{t}, y^{t}) \frac{P_{S}(\mathbf{x}^{t}, y^{t})}{P_{S}(\mathbf{x}^{t}, y^{t})} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \\ &= \underset{(\mathbf{x}^{t}, y^{t}) \sim P_{S}}{\mathbf{E}} \frac{P_{T}(\mathbf{x}^{t}, y^{t})}{P_{S}(\mathbf{x}^{t}, y^{t})} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \\ &= \underset{(\mathbf{x}^{t}, y^{t}) \sim P_{S}}{\mathbf{E}} \frac{D_{T}(\mathbf{x}^{t}) P_{T}(y^{t} | \mathbf{x}^{t})}{D_{S}(\mathbf{x}^{t}) P_{S}(y^{t} | \mathbf{x}^{t})} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \\ &= \underset{(\mathbf{x}^{t}, y^{t}) \sim P_{S}}{\mathbf{E}} \frac{D_{T}(\mathbf{x}^{t})}{D_{S}(\mathbf{x}^{t}) P_{S}(y^{t} | \mathbf{x}^{t})} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \\ &= \underset{(\mathbf{x}^{t}, y^{t}) \sim P_{S}}{\mathbf{E}} \frac{D_{T}(\mathbf{x}^{t})}{D_{S}(\mathbf{x}^{t})} \mathbf{I} \big[h(\mathbf{x}^{t}) \neq y^{t} \big] \end{split}$$

from https://limos.fr/media/uploads/seminaire/hebrard_slides_Nov18.pdf

Adaptation de domaine - par repondération

covariate shift

$$R_t(h) = E_{(x^t, y^t) \sim P_s} \frac{D_t(x^t)}{D_s(x^t)} I[h(x^t) \neq y^t]$$

- lacktriangle erreur de pondération dans le domaine source : $\omega(x^t) = rac{D_t(x^t)}{D_s(x^t)}$
- repondérer les données sources étiquetées :

$$\sum_{(x,y)\in S_s} \hat{\omega}(x_i^s) \mathrm{I}[h(x^s) \neq y^s],$$

avec $\hat{\omega}$ une estimation de ω

Adaptation de domaine - par repondération

Estimateurs de densité

Construire des estimateurs de densité pour les domaines source et cible et estimer le ratio

- $\hat{\omega}(x) = \sum_{I} \alpha_{I} \psi_{I}(x)$
- apprendre α : arg min $_{\alpha}$ KL $(\hat{\omega}D_s, D_t)$

Kernel mean matching

Matcher les distributions avec des noyaux

- ► $MMD(P_s, P_t) = \|1/n_s \sum_{i=1}^{n_s} \phi(x_i^s) 1/n_t \sum_{i=1}^{n_t} \phi(x_i^t)\|_{\mathcal{H}}$
- $ightharpoonup \min_{\beta} MMD(\beta(x)P_s(x), P_t) \ s.t. \ \beta(x) > 0 \ \text{et} \ E_{P_s}[\beta(x)] = 1$

Apprentissage multi-tâche

Apprentissage multi-tâche

- Apprendre plusieurs tâches simultanément
- ...au lieu d'apprendre les tâches indépendamment
- Améliorer l'apprentissage et la prédiction en tenant en compte les dépendences entre les tâches

Apprentissage supervisé

- ▶ Classification $f: X \to Y \subseteq \{-1, 1\}$
- ▶ Régression $f: X \to Y = \mathbb{R}$

Autres tâches?

- ▶ Multi-classe $f: X \rightarrow Y = \{1, 2, ... T\}$
- ▶ Régression à valeur vectorielle $f: X \to Y \subseteq \mathbb{R}^T$

Apprentissage supervisé multi-tâche

Données d'apprentissage

$$S_1 = (x_i^1, y_i^1)_{i=1}^{n_1}, \dots, S_{\mathrm{T}} = (x_i^{\mathrm{T}}, y_i^{\mathrm{T}})_{i=1}^{n_{\mathrm{T}}}$$

Apprendre

$$f_1: X_1 \rightarrow Y_1, \ldots, f_T: X_T \rightarrow Y_T$$

Régression à valeur vectorielle

$$S_n = (x_i, y_i)_{i=1}^n, \quad x_i \in X, \quad y_i \in \mathbb{R}^T$$

Multi-tâche avec les mêmes données d'entrée ! Chaque composante du vecteur de sortie est une "tâche"

Multi-classe

$$S_n = (x_i, y_i)_{i=1}^n, \quad x_i \in X, \quad y_i \in \{1, \dots, T\}$$

Pourquoi apprendre plusieurs tâches simultanément ?

• Cas de la régression multiple

from [Dinuzzo et al., 2013]

- Les courbes de réponses ont des allures similaires
- ▶ Il y a une variabilité inter-individuelle

Pourquoi apprendre plusieurs tâches simultanément ?

• Cas de la régression multiple

from [Dinuzzo et al., 2013]

▶ Peu de données par sujet et différents échantiollonages

Pourquoi apprendre plusieurs tâches simultanément ?

• Cas de la régression multiple

from [Dinuzzo et al., 2013]

Combiner les données pour mieux estimer toutes les courbes

Apprentissage multi-tâche régularisé

$$err(w_1, \dots, w_T) + pen(w_1, \dots, w_T)$$

On considère des modèles linéaires

$$f_1(x) = \mathbf{w}_1^{\mathsf{T}} x, \dots, f_{\mathsf{T}}(x) = \mathbf{w}_{\mathsf{T}}^{\mathsf{T}} x$$

Erreur empirique

$$\operatorname{err}(\mathbf{w}_1, \dots, \mathbf{w}_T) = \sum_{t=1}^T \frac{1}{n_t} \sum_{i=1}^{n_t} (y_i^t - \mathbf{w}_t^\top x_i^t)^2$$

▶ Il est possible de consider d'autres fonctions coûts

Erreur empirique

$$\operatorname{err}(\mathbf{w}_1, \dots, \mathbf{w}_{\mathrm{T}}) = \sum_{t=1}^{\mathrm{T}} \frac{1}{n_t} \sum_{i=1}^{n_t} (y_i^t - \mathbf{w}_t^{\mathsf{T}} x_i^t)^2$$

• Cas de la régression à valeur vectorielle

$$S_n = (x_i, y_i)_{i=1}^n, \quad x_i \in X, \quad y_i \in \mathbb{R}^T$$

$$\operatorname{err}(\mathbf{w}_1, \dots, \mathbf{w}_{\mathrm{T}}) = \frac{1}{n} \sum_{t=1}^{\mathrm{T}} \sum_{i=1}^{n} (y_i^t - \mathbf{w}_t^\top x_i)^2 = \frac{1}{n} ||Y - XW||^2$$

 $Y = (y_i)_{i=1}^n \in \mathbb{R}^{n \times T}, \quad X = (x_i)_{i=1}^n \in \mathbb{R}^{n \times d}, \quad W \in \mathbb{R}^{d \times T}$

$$pen(w_1, \ldots, w_T)$$

- Coupler les solutions obtenues pour chaque tâche par régularisation
- ► Exploiter la structure entre les tâches

$$pen(w_1, ..., w_T) = \sum_{t=1}^{T} ||w_t||^2$$

Indépendence entre tâches !

$$\min_{w_1, \dots, w_T} \frac{1}{n} \sum_{t=1}^{T} \sum_{i=1}^{n} (y_i^t - \mathbf{w}_t^\top x_i)^2 + \lambda \sum_{t=1}^{T} \|\mathbf{w}_t\|^2$$
$$= \sum_{t=1}^{T} (\min_{w_t} \sum_{i=1}^{n} (y_i^t - \mathbf{w}_t^\top x_i)^2 + \lambda \|\mathbf{w}_t\|^2)$$

$$pen(w_1, \dots, w_T) = rank(W)$$

Régression de faible rang

$$\min_{W \in \mathbb{R}^{d \times T}} \frac{1}{n} ||Y - XW||^{2}$$
s.t. $rank(W) \le r$

Régression de faible rang

$$\hat{W}^* = \min_{W \in \mathbb{R}^{d \times T}} \frac{1}{n} ||Y - XW||^2$$
s.t. $rank(W) \le r$

1. Calculer la solution de la régression par moindres carrés (sans contraintes)

$$W^* = (X^\top X)^{-1} X^\top Y$$

2. Calculer l'estimation par moindres carrés

$$Y^* = XW^*$$

3. Calculer la SVD de Y^* et la matrice de projection P_r

$$Y^* = UDV, \quad P_r = \sum_{i=1}^r v_i v_i^{\top}$$

4. Obtenir la solution de la régression de faible range

$$\hat{W}^* = W^* P_r$$

$$\mathrm{pen}(w_1,\ldots,w_T)$$

- Régularisation matricielle
 - rang
 - norme nucléaire : $\|W\|_* = \operatorname{trace}(\sqrt{W^\top W})$
 - norme $L_{2,1}$: $\|W\|_{2,1} = \sum_{j=1}^d \sqrt{\sum_{t=1}^{\mathrm{T}} W_{jt}^2}$
 - ...

