Lab 1: SWITCHES, LED.

I. Mục tiêu:

Thiết kế hệ thống với Nios II Processor thực hiện công việc sau: Sử dụng 8 Switches để bật tắt 8 LEDR.

II. Tao New Project Quartus II:

Thực hiện theo thứ tự các bước sau:

- 1. Tạo 1 file mới New folder với tên lab1.
- 2. Double click vào shortcut Quartus II trên Destop để mở giao diện làm việc.

3. Trên Quartus II menu bar chọn File -> New Project Wizard. Thiết lập các tùy chọn như bên dưới.

- 4. Click Next.
- 5. Trong khung thứ nhất chọn đường dẫn vào thư mục vừa tạo mang tên lab1.
 Tên project phải trùng với tên thư mục là lab1.

Click Next

6. Click Next

7. Chọn Cyclone II.

Available devices: Chon EP2C35F672C6.

Click Next

8. Click Next.

9. Click Finish.

10. Click New

11. Chọn Verilog HDL File -> click OK

III. TẠO SOPC:

1. Click SOPC Builder để tạo file SOPC.

2. System name: nios_system -> Click OK.

Target HDL: **Verilog** Sau đó chọn : **OK**

3. Trong Library: Click Memmories and Memory Controlers -> On-Chip -> On-chip Memory(RAM or ROM)

4. Click Next -> Finish.

5. Trong Library: Click Processors -> chọn Nios II Processor để tạo CPU

6. Chon Nios II/s

7. Trong Reser Vector và Exception Vector : chọn Onchip_memory2_0 -> click Finish

8. Trong Library: click Interface Protocols -> Serial -> chọn JTAG UART, sau đó chọn Finish.

9. Tiếp theo, trong mục Peripherals, chọn Microcontroller Peripherals, chọn PIO (Parallel I/O). Chọn Width là 8 bit và Direction là Input ports only và chọn Finish.

10. Chọn Microcontroller Peripherals, chọn PIO (Parallel I/O). Chọn Width là 8 bit và Direction là Output ports only và chọn Finish.

11. Chọn System -> Auto-Assign Base Addresses.

12. Chọn Generate. Nếu system generation was successful, save lại và tắt SOPC builder.

	System Generation		
Options			
System module	ogic will be created in Verilog.		
Simulation.	Create project simulator files. Run Simula	listor	
Nios II Tools			
Nios II Softw	are Build Tools for Eclipse		
	ro.oo. ro () making arolication and system (it		
	10:08:18 (*) Generating Quartus symbol for t		
# 2014.09.19	10:08:18 (*) Generating Symbol D:/altera/Proj	ject/Lab001/Nios_system.bsf	
# 2014.09.19	10:08:18 (*) Creating command-line system-g	generation script: D:/altera/Project/Lab001/Nios_system_generation_script	
# 2014.09.19	10:08:18 (*) Running setup for HDL simulator	r: modelsim	
# 2014.09.19	10:08:18 (*) Completed generation for system	m: Nios_system.	
#2014.09.19	10:08:18 (*) THE FOLLOWING SYSTEM ITEMS	IS HAVE BEEN GENERATED:	
SOPC Builde	r database : D:/altera/Project/Lab001/Nios_sy	ystem.ptf	
System HDL	Model: D:/altera/Project/Lab001/Nios_system	m.v	
System Gen	eration Script : D:/altera/Project/Lab001/Nios_	_system_generation_script	
#2014.09.19	10:08:18 (*) SUCCESS: SYSTEM GENERATIO	ON COMPLETED.	
Info: System o	generation was successful.		
m.	W.		F.

IV. Verilog Code:

```
module lab1 (
    // Inputs
    CLOCK_50,
    CLOCK_27,
    EXT_CLOCK,
    KEY,
    SW,
    // Communication
    UART_RXD,
    // Audio
    AUD_ADCDAT,
// Bidirectionals
    GPIO_0,
    GPIO_1,
    // Memory (SRAM)
    SRAM_DQ,
    // Memory (SDRAM)
    DRAM_DQ,
    // PS2 Port
    PS2_CLK,
    PS2_DAT,
    // Audio
    AUD_BCLK,
    AUD_ADCLRCK,
    AUD_DACLRCK,
    // Char LCD 16x2
    LCD_DATA,
    // AV Config
    I2C_SDAT,
// Outputs
    TD_RESET,
    //
         Simple
    LEDG,
    LEDR,
```

```
HEXO,
HEX1,
HEX2,
HEX3,
HEX4,
HEX5,
HEX6,
HEX7,
//
      Memory (SRAM)
SRAM_ADDR,
SRAM_CE_N,
SRAM_WE_N,
SRAM_OE_N,
SRAM_UB_N,
SRAM_LB_N,
// Communication
UART_TXD,
// Memory (SDRAM)
DRAM_ADDR,
DRAM_BA_1,
DRAM_BA_0,
DRAM_CAS_N,
DRAM_RAS_N,
DRAM_CLK,
DRAM_CKE,
DRAM_CS_N,
DRAM_WE_N,
DRAM_UDQM,
DRAM_LDQM,
// Audio
AUD_XCK,
AUD_DACDAT,
// VGA
VGA_CLK,
VGA_HS,
VGA_VS,
VGA_BLANK,
VGA_SYNC,
VGA_R,
VGA_G,
VGA_B,
```

```
// Char LCD 16x2
     LCD_ON,
     LCD_BLON,
     LCD_EN,
     LCD_RS,
     LCD_RW,
     // AV Config
     I2C_SCLK,
);
           Parameter Declarations
Port Declarations
// Inputs
                    CLOCK_50;
input
                    CLOCK_27;
input
                     EXT_CLOCK;
input
input
          [3:0]
               KEY;
          [17:0] SW;
input
// Communication
input
                     UART_RXD;
// Audio
input
                    AUD_ADCDAT;
// Bidirectionals
          [35:0] GPIO_0;
inout
inout
          [35:0] GPIO_1;
//
     Memory (SRAM)
          [15:0] SRAM_DQ;
inout
// Memory (SDRAM)
inout
          [15:0] DRAM_DQ;
// PS2 Port
inout
                     PS2 CLK;
                     PS2_DAT;
inout
```

```
// Audio
inout
                            AUD_BCLK;
inout
                            AUD_ADCLRCK;
inout
                            AUD_DACLRCK;
// AV Config
inout
                            I2C_SDAT;
// Char LCD 16x2
inout
              [7:0] LCD_DATA;
// Outputs
output
                            TD_RESET;
       Simple
//
output
              [8:0]
                     LEDG;
output
              [17:0] LEDR;
              [6:0]
                     HEXO;
output
output
              [6:0]
                     HEX1;
              [6:0]
output
                     HEX2;
output
              [6:0]
                     HEX3;
output
              [6:0]
                     HEX4;
output
              [6:0]
                     HEX5;
output
              [6:0]
                     HEX6;
              [6:0]
output
                     HEX7;
//
       Memory (SRAM)
             [17:0] SRAM_ADDR;
output
output
                            SRAM_CE_N;
output
                            SRAM_WE_N;
output
                            SRAM_OE_N;
output
                            SRAM_UB_N;
output
                            SRAM_LB_N;
// Communication
output
                            UART_TXD;
// Memory (SDRAM)
output
              [11:0] DRAM_ADDR;
output
                            DRAM_BA_1;
output
                            DRAM_BA_0;
output
                            DRAM_CAS_N;
                            DRAM_RAS_N;
output
                            DRAM_CLK;
output
                            DRAM_CKE;
output
```

```
output
                 DRAM_CS_N;
output
                 DRAM_WE_N;
output
                 DRAM_UDQM;
output
                 DRAM_LDQM;
// Audio
output
                 AUD_XCK;
output
                 AUD_DACDAT;
// VGA
output
                 VGA_CLK;
output
                 VGA_HS;
                 VGA_VS;
output
output
                 VGA_BLANK;
                 VGA_SYNC;
output
        [9:0] VGA_R;
output
        [9:0] VGA_G;
output
output
        [9:0] VGA_B;
// Char LCD 16x2
output
                 LCD ON;
output
                 LCD_BLON;
output
                 LCD_EN;
output
                 LCD_RS;
output
                 LCD_RW;
// AV Config
output
                 I2C_SCLK;
Internal Wires and Registers Declarations
// Internal Wires
// Used to connect the Nios 2 system clock to the non-shifted output of the PLL
wire
                 system clk;
// Internal Registers
// State Machine Registers
Finite State Machine(s)
Sequential Logic
```

```
Combinational Logic
// Output Assignments
assign TD_RESET
                              = 1'b1;
assign GPIO_0[0]
                       = 1'bZ;
assign GPIO_0[2]
                       = 1'bZ;
assign GPIO_0[16]
                       = 1'bZ;
                       = 1'bZ;
assign GPIO_0[18]
assign GPIO_1[0]
                       = 1'bZ;
assign GPIO_1[2]
                       = 1'bZ;
                       = 1'bZ;
assign GPIO_1[16]
assign GPIO_1[18]
                       = 1'bZ;
Nios_system NIOSII (
           // 1) global signals:
           .clk_0(CLOCK_50),
           .reset_n(KEY[0]),
           // the_A
           .in_port_to_the_A(SW[7:0]),
           // the B
           .out_port_from_the_B(LEDR[7:0])
;
endmodule
```

- 1. Save lại vào thư mục project của mình.
- 2. Vào Assignments → Import Assignments → Chọn file DE2_pin_assignments.csv → Open

3. Start compile.

V. C code trên NIOS II 9.1 IDE

1. Chọn File -> chọn Switch workspace, tạo 1 thư mục software mới trong thư mục project, sau đó tắt tab Welcome.

- 2. Chọn File \rightarrow New \rightarrow Nios II C/C++ Application
- 3. Đặt tên cho project.

Chọn Blank Project.

Chọn đường dẫn để đến file **nios_system.ptf** (vừa tạo được ở các bước trên) ở mục **SOPC Builder System PTF File**

Sau đó chon Finish.

4. Click chuột phải vào lab1_syslib[nios_system] -> Build Project

5. Click chuột phải vào lab1 → New → Source File. Đặt tên source file giống với tên project mình đặt

6. Lập trình code C:

```
#include "stdio.h"

int * SW = 0x00011000;
int * LED = 0x00011010;

int main (void)
{
    while (1)
    {
      *LED = * SW;
    }
    return 0;
}
```

7. Save lại và Click chuột phải vào lab1 -> Build Project

VI. Run Hardware on DE2 board:

1. USB Blaster:

- In window Quartus II, click Programmer in taskbar

2. Run:

