1

- 1. Definition: A basis is
- 2. A set of *n*-vectors a_1, a_2, \dots, a_k is called *orthogonal* if

3. Example: $S = \{v_1 = (1, 1, 1), v_2 = (1/2, 1/2, -1), v_3 = (1, -1, 0)\}$

- 4. A vector a is called *normal* if
- 5. Example:

6. A set of n-vectors a_1, a_2, \cdots, a_k is called *orthonormal* if

7. Example:

8. Suppose a_1, a_2, a_3 , and a_4 is a set of orthonormal n-vectors. Further, suppose that $\beta_1, \beta_2, \beta_3$ and β_4 have the property that

$$\beta_1 a_1 + \beta_2 a_2 + \beta_3 a_3 + \beta_4 a_4 = 0_n.$$

(a) Take the inner product of a_3 with both sides of the equation above to get a new equation. What can you conclude?

- (b) What can you conclude about β_i for i = 1, 2, 4?
- (c) What can you conclude about the set a_1, a_2, a_3 , and a_4 ? About *any* set of orthonormal vectors?

9. Example: Write the vector x=(1,2,3) as a linear combination of $T=\left\{\begin{bmatrix} \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}} \end{bmatrix},\begin{bmatrix} \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{6}}\\ \frac{-\sqrt{2}}{\sqrt{3}} \end{bmatrix},\begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{bmatrix}\right\}$

10. Gram-Schmidt Orthogonalization Algorithm Strategy: (1) Orthogonalize vectors one-by-one (2) normalize.

given: n-vectors a_1, a_2, \cdots, a_k

$$\text{(1) for } i=1,2,\cdots,k, \qquad \overline{q}_i=a_i-\left(\frac{a_i^T\overline{q}_{i-1}}{\|\overline{q}_{i-1}\|^2}\right)\overline{q}_{i-1}-\left(\frac{a_i^T\overline{q}_{i-2}}{\|\overline{q}_{i-2}\|^2}\right)\overline{q}_{i-2}-\cdots-\left(\frac{a_i^T\overline{q}_1}{\|\overline{q}_1\|^2}\right)\overline{q}_{1}$$

(2) for
$$1=1,2,\cdots,k,$$
 If $\overline{q}_i\neq 0_n$, then $q_i=\left(\frac{1}{\|\overline{q}_i\|}\right)\overline{q}_i.$

output:
$$\{q_i \mid \overline{q}_i \neq 0_n\}$$

11. Example:
$$a_1 = (1, -1, 1), a_2 = (1, 0, 1), a_3 = (1, 1, 2)$$