班级

一、单项选择题

历届考研真题

1. (1995 数三)假设事件 A 和 B 满足 P(B|A) = 1,则().

A. A 是必然事件 B. $P(B|\overline{A}) = 0$ C. $B \subset A$ D. $A \subset B$

2. (1996 数二) 设A,B	为仕意两个事件,且	$A \subset B, P(B) > 0,$	则卜列选坝必须	然风
7	立的是().				
	$P(A) < P(A \mid B)$		B. $P(A) \leq P(A \mid$	B)	
C	$LP(A) > P(A \mid B)$		D. $P(A) \ge P(A \mid$	B)	
3. (1998 数三)设A,B,	,C是3个相互独立的	的随机事件,且0	< P(C) < 1,则有	在下
歹	列给定的 4 对不相互	D独立的是().			
A	A + B与 C	B. \overline{AC} 与 \overline{C}	$C. \overline{A-B}$ 与 C	D. \overline{AB} 与 $\overline{\overline{C}}$	
4. (2000 数三)设A,B,	,C3个事件两两独立	L,则 A , B , C 相互	独立的充分必要	要条
1	牛是().				
A	A 与 BC 独立		B. AB 与 $A \cup C$ 独	过	
C	L. AB 与 AC 独立		$D.A \cup B$ 与 $A \cup C$	独立	
5. (2000 数三) 在电炉	上安装了4个温控器			在使
月	用过程中,只要有两	个温控器显示的温度	E 不低于临界温度	t ₀ ,电炉就断电	. 以
E	表示事件"电炉断	电",而 $T(1) \leq T(2)$	$(2) \leqslant T(3) \leqslant T(3)$	4)为4个温控	器显
刀	示按递增顺序排列的	的温度值,则事件 E等	等于().		
A	$ T(1) \ge t_0$	B. $\{T(2) \ge t_0\}$	C. $\{T(3) \ge t_0\}$	D. $\{T(4) \ge t_0\}$	
6. (2001 数三) 对于任意	意两个事件 A 和事件	$=B$,与 $A \cup B = B$	不等价的是().
A	$A \subset B$	B. $\overline{B} \subset \overline{A}$	C. $A\overline{B} = \emptyset$	D. $\overline{AB} = \emptyset$	
7. (2003 数三) 对于任意	意两个事件 A 和事件	=B,().		
A	. 若 $AB \neq \emptyset$,则 A , $B \neq \emptyset$	B一定独立	B. 若 $\overline{AB} \neq \emptyset$,则	A,B有可能独立	il.
C	$AB = \emptyset, 则 A, B$	B一定独立	D. 若 $A\overline{B} = \emptyset$,则	A,B一定不独立	1

8. (2003 数三)将一枚硬币独立地掷两心	x ,引进事件: $A_1 = {$ 掷第一次出现正		
面 $\}$, $A_2 = \{$ 掷第二次出现正面 $\}$, $A_3 = \{$	正、反面各出现一次 , A4 = 正面出		
现两次 },则事件().			
A. A ₁ , A ₂ , A ₃ 相互独立	B. A ₂ , A ₃ , A ₄ 相互独立		
C. A ₁ , A ₂ , A ₃ 两两独立	D. A ₂ ,A ₃ ,A ₄ 两两独立		
9. (2006 数三) 设 A, B 为两个随机事件	F, 且 P(B) > 0, P(A B) = 1, 则必		
有().			
A. $P(A \cup B) > P(A)$	B. $P(A \cup B) > P(B)$		
C. $P(A \cup B) = P(A)$	D. $P(A \cup B) = P(B)$		
10. (2007 数三)某人向同一目标独立重			
$p(0 ,则此人第 4 次射击恰好第$	52次命中目标的概率为().		
A. $3p(1-p)^2$ B. $6p(1-p)^2$	C. $3p^2(1-p)^2$ D. $6p^2(1-p)^2$		
11. (2009 数三)设事件 A 与事件 B 互不相	泪容,则().		
A. $P(\overline{AB}) = 0$	B. $P(AB) = P(A)P(B)$		
C. $P(A) = 1 - P(B)$	D. $P(\overline{A} \cup \overline{B}) = 1$		
12. (1998 数一)设A,B是两个随机事件,	$\mathbb{H}.0 < P(A) < 1, P(B) > 0, P(B \mid A) =$		
$P(B \overline{A})$,则必有().			
A. $P(A \mid B) = P(\overline{A} \mid B)$ C. $P(AB) = P(A)P(B)$	B. $P(A \mid B) \neq P(\overline{A} \mid B)$		
C. P(AB) = P(A)P(B)	D. $P(AB) \neq P(A)P(B)$		
13. (2014 数三)设随机事件 A 和事件 B 相			
0.3,则 $P(B-A) = ($).			
A. 0. 1 B. 0. 2	C. 0. 3 D. 0. 4		
14. (2015 数三) 若 A, B 为任意两个随机	事件,则()。		
$A. P(AB) \leq P(A)P(B)$	B. $P(AB) \geqslant P(A)P(B)$		
$C. P(AB) \leqslant \frac{P(A) + P(B)}{2}$	$D. P(AB) \geqslant \frac{P(A) + P(B)}{2}$		
C. I (AB) = 2	$D.1(AB) \ge 2$		

二、填空题

- 1. $(1996 \ \, \ \, \ \, \ \, \ \, \ \,)$ 设工厂 A 和工厂 B 产品的次品率分别为 1% 和 2% ,现从由 A 和 B 的产品分别占 60% 和 40% 的一批产品中随机抽取一件,发现是次品,则该次品属工厂 A 生产的概率是_____.
- 2. (1997 数一)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率

概率论与数理统计习题集

是 .

- 3. (1999 数一) 设两两相互独立的 3 个事件 A,B 和 C 满足条件: $ABC = \emptyset$, $P(A) = P(B) = P(C) = \frac{1}{2}, \text{已知 } P(A \cup B \cup C) = \frac{9}{16}, \text{则 } P(A) = \underline{\hspace{1cm}}.$
- 5. (2005 数一) 从数 1,2,3,4 中任取一个数,记为 X,再从 1,2,…,X 中任取一个数,记为 Y,则 $P\{Y=2\}=$ _____.
- 6. (1995 数三)设10 件产品中有4 件是不合格品,现从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率为_____.
- 7. (1997 数三)设A,B 是任意两个随机事件,则P((A+B)(A+B)(A+B)(A+B)(A+B)) = _____.
- 8. (2012 数三) 设 A,B,C 是随机事件,A,C 互不相容, $P(AB) = \frac{1}{2}$, $P(C) = \frac{1}{3}$,则 $P(AB \mid C) = ______$.

三、解答题

- 1. (1998 数三)设有来自 3 个地区的各 10 名、15 名和 25 名考生的报名表,其中女生的报名表分别为 3 份、7 份和 5 份. 随机地取一个地区的报名表,从中先后抽出两份.
 - ①求先抽到的一份是女生报名表的概率 p.
 - ②已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率 q.