Decision Tree Regression

October 15, 2024

1 Decision Tree Regression

```
[3]: # Importing the libraries
     import numpy as np
     import matplotlib.pyplot as plt
     import pandas as pd
     import os
[4]: # Importing the dataset
     os.chdir("C:\\Users\ddaya\OneDrive\Documents\Python_programming")
     dataset = pd.read csv('Position Salaries.csv')
     X = dataset.iloc[:, 1:-1].values
     y = dataset.iloc[:, -1].values
[5]: # Training the Decision Tree Regression model on the whole dataset
     from sklearn.tree import DecisionTreeRegressor
     regressor = DecisionTreeRegressor(random_state = 0)
     regressor.fit(X, y)
[5]: DecisionTreeRegressor(random_state=0)
[6]: # Predicting a new result
     regressor.predict([[6.5]])
[6]: array([150000.])
[7]: # Visualising the Decision Tree Regression results (higher resolution)
     X_grid = np.arange(min(X), max(X), 0.01)
     X_grid = X_grid.reshape((len(X_grid), 1))
     plt.scatter(X, y, color = 'red')
     plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
     plt.title('Truth or Bluff (Decision Tree Regression)')
     plt.xlabel('Position level')
     plt.ylabel('Salary')
     plt.show()
```

C:\Users\ddaya\AppData\Local\Temp\ipykernel_11584\4024256648.py:2:
DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is

deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.) $X_{grid} = \text{np.arange}(\min(X), \max(X), 0.01)$

[]: