Nombre signé en binaire

1 Nombres signés en binaire

Activité

Les nombres entiers négatifs s'écrivent aussi en binaire appelés nombres signés. La question est comment ?

- 1. Sur trois bits, on peut écrire les nombres de 0 à 7 en binaire. Les écrire verticalement, dans l'ordre, zéro en bas de liste.
- 2. Par convention, les nombres signés sur trois bits ont un bit de poids fort égal à 1. Donc:
 - combien de nombres négatifs sur trois bits ?
 - associer une valeur décimale pour chaque nombre négatif en binaire.
 - On sait que -3 + 3 = 0; de même -2 + 2 = 0. Toujours vrai en binaire ?
- 3. Pour trouver l'écriture binaire d'un nombre négatif, on utilise la méthode du complément à 2:
 - Par addition d'une puissance de 2
 - Par passage au complément à 1 auquel on ajoute 1 en binaire.

2 Complément à 2

Un nombre signé positif a son bit de poids fort égal à 0 et un nombre négatif a son bit de poids fort égal à 1.

Méthode

L'écriture binaire d'un nombre négatif s'obtient à partir du nombre positif (valeur absolue) et de son complément à 2 :

- on a l'écriture binaire de la valeur absolue du nombre négatif
- on détermine le complément à 1 de cette écriture binaire,
- puis on détermine le complément à 2 en ajoutant 1 au complément à 1.

Exemple

Écriture binaire du nombre négatif -12 sur 5 bits.

- on écrit 12 en binaire : 01100
- complément à 1 : 10011
- complément à 2 (on ajoute 1 au complément à 1): 10011 + 1 = 10100

En binaire, le nombre -12 s'écrit 10100 sur 5 bits.

3 Généralisation

La méthode du complément à 2 se généralise de la façon suivante:

Propriété:

Soit **n** le nombre de bits utilisés pour coder les entiers relatifs. On peut coder tous les nombres compris entre -2^{n-1} et $2^{n-1} - 1$.

Nombres signés sur n bits

Exemple

Sur n = 3 bits, on peut coder $2^3 = 8$ nombres entiers compris entre $-2^{3-1} = -2^2 = -4$ et $2^{3-1} - 1 = -2^2 - 1 = 4 - 1 = 3$.

On a donc 4 nombres strictement négatifs et 4 nombres positifs ou nul.

Méthode

Pour coder un nombre r entier relatif:

- il faut déterminer le nombre minimal n de bits à utiliser,
- si r est positif, on le code en directement binaire
- si r est négatif, on code le nombre $r + 2^n$ en binaire

Complément à 2

Nombres codés sur n bits donc p compris entre 0 et n-1

Exemple

Écriture binaire de -12:

- 1. On a : -16 < -12 < 15 ce qui est équivalent à $-2^4 < -12 < 2^4 1$. On en déduit que n=5 bits. 2. L'écriture binaire de -12 est la même que son complément à 2^5 soit $-12 + 2^5 = -12 + 32 = 20$
- 3. Or $20_{10} = 10100_2$ donc -12_{10} se code 10100_2 en binaire.

3.1 Exercice

Donner l'écriture binaire des nombres signés suivants:

- −9
- +21
- −33
- -78

3.2Exercice

Donner l'écriture binaire du nombre -7 écrit sur 1 octet.