

-Side Augmentation for Document-Level Machine Translation

Guangsheng Bao, Zhiyang Teng, and Yue Zhang

Introduction: Data Augmentation in MT

Rely on external data

or models.

Rely on parallel data only.

- The DA model estimates the posterior distribution of translations given observed x_i and y_i .
- The posterior distribution balances the Diversity and Deviation of generated translations, providing better estimation (lower PPL).

Method	Diversity ↑	Deviation \downarrow	PPL ↓
Prior distribution	78.68	76.55	8.68
Posterior distribution	45.42	47.14	7.00

Method: Target-Side Data Augmentation

Samples from data distribution for training:

DA Model

 $P_{da}(y|x_i,y_i)$

MT Model

 $P_{mt}(y|x_i)$

Step 2. Target-side data augmentation:

die meisten freien Gesellschaften halten diese Einschränkungen für sinnvoll , aber die Gesetze wurden in letzter Zeit verschärft .	x_i	—

Step 3. MT model training:

die meisten freien Gesellschaften halten diese Einschränkungen für sinnvoll , aber die Gesetze wurden in letzter Zeit verschärft .

Sample from DA model:

- \hat{y}_1 : while most free societies consider these restrictions useful, the law has recently been tightened.
- \hat{y}_2 : most free societies regard such restrictions as reasonable, but the law has been strengthened lately.
- \hat{y}_3 : ···

DA Model:

$$P_{da}(y|x_i, y_i) = \sum_{z \in \mathcal{Z}_i} P_{\varphi}(y|x_i, z) P_{\alpha}(z|y_i),$$

$$P_{da}(y|x_i, y_i) \approx \frac{1}{|\hat{\mathcal{Z}}_i|} \sum_{z \in \hat{\mathcal{Z}}} P_{\varphi}(y|x_i, z),$$

$$\mathcal{L}_{da} = -\sum_{i=1}^{N} \log P_{da}(y = y_i | x_i, y_i)$$

$$\approx -\sum_{i=1}^{N} \log \frac{1}{|\hat{\mathcal{Z}}_i|} \sum_{z \in \hat{\mathcal{Z}}_i} P_{\varphi}(y = y_i | x_i, z)$$

$$\leq -\sum_{i=1}^{N} \frac{1}{|\hat{\mathcal{Z}}_i|} \sum_{z \in \hat{\mathcal{Z}}_i} \log P_{\varphi}(y = y_i | x_i, z),$$

MT Model:

$$\hat{\mathcal{Y}}_i = \{\arg\max_{y} P_{\varphi}(y|x_i, z_j)|z_j \sim P_{\alpha}(z|y_i)\}_{j=1}^M,$$

$$\mathcal{L}_{mt} = -\sum_{i=1}^{N} \sum_{y \in \mathcal{Y}_i} P_{da}(y|x_i, y_i) \log P_{mt}(y|x_i),$$

$$\mathcal{L}_{mt} pprox - \sum_{i=1}^{N} \frac{1}{|\hat{\mathcal{Y}}_i|} \sum_{y \in \hat{\mathcal{Y}}_i} \log P_{\theta}(y|x_i),$$

Data Augmentation Process:

Results & Analysis

Compare to Baselines and Back-translations:

Compare to Paraphraser:

Method	Dev	Test
Transformer (base)	34.85	33.87
+ T5 paraphraser \diamondsuit	34.01	33.10
+ Target-side augmentation	36.42	35.42

Table 6: Target-side augmentation vs paraphraser on sentence-level MT, evaluated on IWSLT14 German-English (De-En). \Diamond – nucleus sampling with p=0.95.

Impact of Aug Scale:

Figure 3: Impact of the sampling scale for z, trained on G-Transformer (fnt.) and evaluated in s-BLEU on News.

Impact of Latent Variable:

generated by the DA model,

evaluated on *News*

(b) Performance of MT model on augmented data, evaluated on *News*

els trained using mixed ob-

served ratios

Figure 4: Impact of the observed ratio for z, trained on G-Transformer (fnt.) and evaluated in s-BLEU. Beta(a,b) – The function curves are shown in Appendix B.3.

Conclusion

- Target-side data augmentation mitigates data sparsity effectively.
- Balancing Diversity and Deviation is the key for the DA model to obtain the best effect.
- Poster distribution can approximate the data distribution better than prior distribution.
- Given single translation parallel data, we model poster distribution by introducing an intermediate latent variable.

Contact: baoguangsheng
@westlake.edu.cn

Westlake University

