Example 1: Linear confined aquifer

PDE:
$$-\frac{d}{dx} \left[bk \frac{dh}{dx} \right] = f_s \times \epsilon \left[0, L \right]$$

BC:
$$\frac{dh}{dx}|_{o} = o$$
 $h(L) = h_{o}$

dependent variable: h (head)

independent variable: × (distance)

Parameters: b, k, l, fs, ho => 5

To determine the number of independent parameters.

we scale or non-dimensionalize the problem.

Use the parameters to reader variable dimensionless.

Dimension less variables:

$$x' = \frac{x}{\ell}$$
 $\Rightarrow x = \ell x'$ $\ell = \text{external scale}^{\text{"}}$

$$h' = \frac{h - h_0}{h_c}$$
 \rightarrow $h = h_0 + h_c h'$ $h_c = chas. head$

he is not yet clear -> internal scale

substitute into PDE and BC's

PDE: -
$$\frac{d}{d(\ell \times')} \left[bk \frac{d(h_0 + h_c h')}{d(\ell \times')} \right] = f_s \times' \ell \in [0, \ell]$$

since parameters are constant we can collect them

$$-\frac{bk}{e^2}\frac{d}{dx'}\left[\frac{dho^3}{dx'} + h_c\frac{dh'}{dx'}\right] = f_s$$

collect all params on ths

$$-\frac{dh'}{dx'} = \frac{f_s L^2}{bkh_c} = 1$$

l.h.s. is dimension less => param. group on the also dim. less setting $\frac{f_s \ell^2}{b k h} = 1$ provides internal head scale $h_c = \frac{f_s \ell^2}{b k}$

BC:
$$\frac{dh}{dx}\Big|_{x=0} = 0$$

$$\frac{d(h_0 + h_0 h')}{d(lx')}\Big|_{lx'=0} = \frac{h_0}{l} \frac{dh'}{dx'}\Big|_{x=0} = 0 \implies \frac{dh'}{dx'}\Big|_{0}$$

$$h(x=l) = h_0$$

$$h(x+h_0 h'(x'l=l) = h_0 \implies h'(x'=l) = 0$$

Dimensionless problem:

PDE:
$$-\frac{d^{2}h'}{dx'^{2}} = 1 \qquad x' \in [0, 1] \qquad h = h_{o} + \frac{f_{s}\ell^{2}}{bk'}h'$$

$$BC: \qquad \frac{dh'}{dx'}\Big|_{0} = 0 \qquad h'(1) = 0 \qquad x = \ell x'$$

scaling removes all parameters >> single solution

Analytic solution: (dropping primes)

$$-\frac{d^2h}{dx^2}=1$$

Integrate once:
$$-\frac{dh}{dx} = x + e$$
,

use 1st BC:
$$-\frac{dh}{dx}\Big|_{x=0} = c_1 = 0 \implies c_1 = 0$$

 $\Rightarrow -\frac{dh}{dx} = x$

Integrate again: - h =
$$\frac{x^2}{2}$$
 + cz

we 2nd BC:
$$-h(1) = \frac{1}{2} + c_2 = 0 \implies c_2 = -\frac{1}{2}$$

$$\Rightarrow$$
 $-h = \frac{x^2}{2} - \frac{1}{2}$ $h = \frac{1}{2}(1 - x^2)$

dimensionless solution:
$$h' = \frac{1}{2}(1-x'^2)$$

$$x' = \frac{x}{\ell} \qquad h' = \frac{h - h_o}{h_c} \qquad h_c = \frac{f_s \ell^2}{b K}$$

$$\frac{h - h_o}{h_c} = \frac{1}{2} \left(1 - \left(\frac{x}{\ell} \right)^c \right)$$

$$h = h_o + \frac{h_e}{2} \left(1 - \left(\frac{x}{\ell} \right)^c \right)$$

Dimensional solution:

sional solution:

$$h = h_o + \frac{f_s \ell^2}{2bk} \left(1 - \left(\frac{x}{\ell} \right)^2 \right)$$

Hence the internal head scale $\frac{f_s l^2}{b \, K}$ gives the order of magnitude for the increase in head across the aguifer.