ODR: Cvičné příklady—posouzení metod

Pro následující rovnice posuďte použitelnost tří základních metod řešení. Svůj názor odůvodněte. Rovnice nemusíte řešit.

1.
$$y' = 23y - 13$$
.

2.
$$y'' - y = \sqrt{x}$$
.

3.
$$y'y = x$$
.

4.
$$y' = xy + x$$
.

5.
$$y' = y^2 + x$$
.

6.
$$y' = x + y$$
.

7.
$$y'' = xy$$
.

Řešení

pHabala 2019

1. Separace: Použitelná. Důvod: Lze separovat, $y' = 1 \cdot (23y - 13) = g(x) \cdot h(y)$, popřípadě $\int \frac{dy}{23y - 13} = \int 1 dx$.

Lineární plus odhad: Použitelná. Důvod: Rovnice $y' - 23 \cdot y = -13$ je lineární s konstantními koeficienty, pravá strana -13 je speciální (má vhodný typ pro odhad).

Lineární plus variace: Možná použitelná. Důvod: Je lineární s konstantními koeficienty (popřípadě je lineární prvního řádu, obojí stačí). Zda bude možné spočítat integrál pro C(x) není možné posoudit, aniž bychom rovnici opravdu řešili.

2. Separace: Nepoužitelná. Důvod: Není to rovnice prvního řádu.

Lineární plus odhad: Nepoužitelná. Důvod: Rovnice $y'' - 1 \cdot y = \sqrt{x}$ je sice lineární s konstantními koeficienty, ale pravá strana \sqrt{x} není speciální (neumíme pro ni odhadnout).

Lineární plus variace: Možná použitelná. Důvod: Je lineární s konstantními koeficienty. Zda bude možné spočítat integrál pro C(x) není možné posoudit, aniž bychom rovnici opravdu řešili.

- **3.** Separace: Použitelná. Důvod: Lze separovat, $y' = x \cdot \frac{1}{y} = g(x) \cdot h(y)$, popřípadě $\int y \, dy = \int x \, dx$. Lineární plus odhad: Nepoužitelná. Důvod: Rovnice není lineární. Lineární plus variace: Nepoužitelná. Důvod: Rovnice není lineární.
- **4.** Separace: Použitelná. Důvod: Lze separovat, $y'=x\cdot(1+y)=g(x)\cdot h(y)$, popřípadě $\int \frac{dy}{y+1}=\int x\,dx$. Lineární plus odhad: Nepoužitelná. Důvod: Rovnice $y'-x\cdot y=x$ je sice lineární, ale nemá konstantní koeficienty. (Nenajdeme tedy homogenní řešení.) Mimochodem, pravá strana x je speciální, ale ani odhadovací přístup nefunguje bez konstantních koeficientů.

Lineární plus variace: Možná použitelná. Důvod: Je lineární, sice nemá konstantní koeficienty, ale je prvního řádu, takže y_h lze najít metodou separace. Zda bude možné spočítat integrál pro C(x) není možné posoudit, aniž bychom rovnici opravdu řešili.

- **5.** Separace: Nepoužitelná. Důvod: Nelze separovat, $y^2 + x$ nelze přepsat jako $g(x) \cdot h(y)$. Lineární plus odhad: Nepoužitelná. Důvod: Rovnice není lineární. Lineární plus variace: Nepoužitelná. Důvod: Rovnice není lineární.
- **6.** Separace: Nepoužitelná. Důvod: Nelze separovat, $y^2 + x$ nelze přepsat jako $g(x) \cdot h(y)$. Lineární plus odhad: Použitelná. Důvod: Rovnice $y' 1 \cdot y = x$ je lineární s konstantními koeficienty, pravá strana x je speciální (má vhodný typ pro odhad).

Lineární plus variace: Možná použitelná. Důvod: Je lineární s konstantními koeficienty (popřípadě je lineární prvního řádu, obojí stačí). Zda bude možné spočítat integrál pro C(x) není možné posoudit, aniž bychom rovnici opravdu řešili.

7. Separace: Nepoužitelná. Důvod: Není to rovnice prvního řádu. Napravo sice máme $g(x) \cdot h(y)$, ale to nepomůže.

Protože je rovnice $y'' - x \cdot y = 0$ lineární a homogenní, není třeba hledat partikulární řešení y_p a tak se nemusíme starat o metodu odhadu či variace, je to prostě jen otázka řešení homogenní lineární rovnice. Protože nemá konstantní koeficienty, přístup přes charakteristická čísla není možný.