Теоретические сведения. Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

Диффузия в системе, состоящей из двух компонентов a и b (бинарная смесь), подчиняется закону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как

$$j_a = -D\frac{\partial n_a}{\partial x}, \quad j_b = -D\frac{\partial n_b}{\partial x},$$

где D — коэффициент взаимной диффузии компонентов. Знак «минус» отражает тот факт, что диффузия идёт в направлении выравнивания концентраций. Равновесие достигается при равномерном распределении вещества по объёму сосуда ($\partial n/\partial x = 0$).

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными: $P=(n_{\rm He}+n_{_{\rm B}})k_{_B}T={\rm const}$, где $n_{\rm He}$ и $n_{_{\rm B}}$ — концентрации (объёмные плотности) диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta\,n_{_{\rm B}}=-\Delta\,n_{\rm He}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия $n_{\rm He}$:

$$j_{He} = -D \frac{\partial n_{He}}{\partial x} \tag{1}$$

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала ($n_{\rm He}\!\ll\!n_{\rm B}$). Кроме того, атомы гелия существенно легче молекул, составляющих воздух ($\mu_{\rm He}\!\ll\!\mu_{\rm N_2},\!\mu_{\rm O_2}$), значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц Не на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен

$$D = \frac{1}{3} \lambda \, \overline{v} \,\,, \tag{2}$$

где $\overline{v}=\sqrt{\frac{8RT}{\pi\mu}}$ — средняя тепловая скорость частиц примеси, $\lambda=\frac{1}{n_0\sigma}$ — их длина свободного пробега, n_0 — концентрация рассеивающих центров (фо-

на), σ — сечение столкновения частиц примеси с частицами фона.