UNIVERSIDAD AUTONOMA DE OCCIDENTE FACULTAD DE INGENIERIA. PROCESAMIENTO DE DATOS SECUENCIALES CON DEEP LEARNING ESPECIALIZACIÓN EN INTELIGENCIA ARTIFICIAL PROFESOR: JESÚS ALFONSO LÓPEZ

PROCESAMIENTO DE SEÑALES UNIDIMENSIONALES CON MODELOS AUTO REGRESIVOS, CONVOLUCIÓN 1D, CONVOLUCIÓN 2D USANDO EL ESPECTROGRAMA Y REDES RECURRENTES

ENUNCIADO DEL EJERCICIO

En este entregable se realizarán una serie de modelos basados en Deep Learning para procesamiento de señales secuenciales como las provenientes de series de tiempo, de sensores inerciales de movimiento o de audio.

PUNTOS POR DESARROLLAR

- 1. Seleccione una serie temporal de algún repositorio de datos y realice la predicción de uno y varios pasos usando un modelo auto-regresivo.
 - Entrene por lo menos tres modelos basados en redes neuronales profundas (Uno basado en una red multicapa profunda, otro en convolución 1D y el otro en redes recurrentes) en la plataforma TensorFlow-Keras.
 - Presente los diagramas de los diferentes modelos y el cálculo de parámetros de los mismos en cada una de sus capas.
 - Realice una comparación de los diferentes modelos usando métricas adecuadas para cada caso.
- 2. Genere un data set propio de al menos cinco categorías enfocadas a una aplicación de clasificación de movimiento y realice lo siguiente:
 - Entrene a lo menos tres modelos basados en redes neuronales profundas (Uno basado en una red multicapa profunda, otro en convolución 1D y el otro en redes recurrentes) en la plataforma TensorFlow-Keras.
 - Presente los diagramas de los diferentes modelos y el cálculo de parámetros de los mismos en cada una de sus capas
 - Replique el entrenamiento de uno de los modelos en Edge Impulse y verifique el funcionamiento del modelo en el celular.
- 3. Genere un data set propio de al menos cinco categorías enfocadas a una aplicación de clasificación de audio y realice lo siguiente:
 - Entrene por lo menos dos modelos basados en redes neuronales profundas (Uno basado en convolución 2D usando como entrada el espectrograma y otro basado en los MFCC) en la plataforma TensorFlow-Keras.
 - Presente los diagramas de los diferentes modelos y el cálculo de parámetros de los mismos en cada una de sus capas.
 - Replique el entrenamiento de uno de los modelos en Edge Impulse y verifique el funcionamiento del modelo en el celular.

Entregables

- Informe tipo paper en formato IEEE donde se documente el procedimiento realizado o en su defecto, el notebook de Colab completamente documentado.
- Códigos en Colab de los ejercicios realizados en dicha plataforma.
- Los códigos usados en el proyecto. En el caso del proyecto en Edge Impulse ponerlo público y dando el enlace para poder acceder a él.
- Un video de máximo 15 minutos, donde se realice una presentación del proyecto (problema a resolver, desarrollo de la solución propuesta y pruebas de la implementación final)

Anotaciones

- Los datos pueden ser capturados usando Edge impulse, el IDE de Arduino u de otra manera.
- Para contextualizar las aplicaciones de clasificación de movimiento o de clasificación de sonido, se recomienda considerar los siguientes puntos:
 - a. Objetivos de la aplicación.
 - b. Descripción del proyecto.
 - c. Referencias (incluido otro código o datos), fuentes de inspiración.
 - d. Descripciones de lo siguiente:
 - Diagrama de bloques
 - Hardware utilizado
 - Recopilación de datos
 - e. Problemas u obstáculos que se presentaron y sus soluciones.