## Introduction

Cervical Cancer accounts for 4th highest cause of mortality in women worldwide Its prevalence is highly skewed towards developing countries due to lack of vaccination and early screening

#### **Problem statement**

To develop a algorithm such that we can predict through classification the occurence of cervical cancer based on risk factors. This would allow us to identify high risk population segment for selected screening

#### In [44]:

```
#import libraries
import pandas as pd
import numpy as np
from pandas.plotting import scatter matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy score
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn import preprocessing
from sklearn.model_selection import KFold
import seaborn as sns; sns.set()
import scikitplot as skplt
```

```
In [45]:
```

```
df = pd.read_csv(r"risk_factors_cervical_cancer.csv", na_values="?")
```

# **Exploratory Data Analysis**

## In [46]:

df.describe()

## Out[46]:

|       | Age        | Number of<br>sexual<br>partners | First<br>sexual<br>intercourse | Num of pregnancies | Smokes     | Smokes<br>(years) | Smokes<br>(packs/year) |
|-------|------------|---------------------------------|--------------------------------|--------------------|------------|-------------------|------------------------|
| count | 858.000000 | 832.000000                      | 851.000000                     | 802.000000         | 845.000000 | 845.000000        | 845.000000             |
| mean  | 26.820513  | 2.527644                        | 16.995300                      | 2.275561           | 0.145562   | 1.219721          | 0.453144               |
| std   | 8.497948   | 1.667760                        | 2.803355                       | 1.447414           | 0.352876   | 4.089017          | 2.226610               |
| min   | 13.000000  | 1.000000                        | 10.000000                      | 0.000000           | 0.000000   | 0.000000          | 0.000000               |
| 25%   | 20.000000  | 2.000000                        | 15.000000                      | 1.000000           | 0.000000   | 0.000000          | 0.000000               |
| 50%   | 25.000000  | 2.000000                        | 17.000000                      | 2.000000           | 0.000000   | 0.000000          | 0.000000               |
| 75%   | 32.000000  | 3.000000                        | 18.000000                      | 3.000000           | 0.000000   | 0.000000          | 0.000000               |
| max   | 84.000000  | 28.000000                       | 32.000000                      | 11.000000          | 1.000000   | 37.000000         | 37.000000              |

8 rows × 36 columns

In [47]:

df.shape

Out[47]:

(858, 36)

## In [48]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 858 entries, 0 to 857
Data columns (total 36 columns):

|         | Columns (total 36 columns):        | Non Null Count | Dtuno     |
|---------|------------------------------------|----------------|-----------|
| #<br>   | COLUMN                             | Non-Null Count | Dtype<br> |
| 0       | Age                                | 858 non-null   | int64     |
| 1       | Number of sexual partners          | 832 non-null   | float64   |
| 2       | First sexual intercourse           | 851 non-null   | float64   |
| 3       | Num of pregnancies                 | 802 non-null   | float64   |
| 4       | Smokes                             | 845 non-null   | float64   |
| 5       | Smokes (years)                     | 845 non-null   | float64   |
| 6       | Smokes (packs/year)                | 845 non-null   | float64   |
| 7       | Hormonal Contraceptives            | 750 non-null   | float64   |
| 8       | Hormonal Contraceptives (years)    | 750 non-null   | float64   |
| 9       | IUD                                | 741 non-null   | float64   |
| 10      | IUD (years)                        | 741 non-null   | float64   |
| 11      | STDs                               | 753 non-null   | float64   |
| 12      | STDs (number)                      | 753 non-null   | float64   |
| 13      | STDs:condylomatosis                | 753 non-null   | float64   |
| 14      | STDs:cervical condylomatosis       | 753 non-null   | float64   |
| 15      | STDs:vaginal condylomatosis        | 753 non-null   | float64   |
| 16      | STDs:vulvo-perineal condylomatosis | 753 non-null   | float64   |
| 17      | STDs:syphilis                      | 753 non-null   | float64   |
| 18      | STDs:pelvic inflammatory disease   | 753 non-null   | float64   |
| 19      | STDs:genital herpes                | 753 non-null   | float64   |
| 20      | STDs:molluscum contagiosum         | 753 non-null   | float64   |
| 21      | STDs:AIDS                          | 753 non-null   | float64   |
| 22      | STDs:HIV                           | 753 non-null   | float64   |
| 23      | STDs:Hepatitis B                   | 753 non-null   | float64   |
| 24      | STDs:HPV                           | 753 non-null   | float64   |
| 25      | STDs: Number of diagnosis          | 858 non-null   | int64     |
| 26      | STDs: Time since first diagnosis   | 71 non-null    | float64   |
| 27      | STDs: Time since last diagnosis    | 71 non-null    | float64   |
| 28      | Dx:Cancer                          | 858 non-null   | int64     |
| 29      | Dx:CIN                             | 858 non-null   | int64     |
| 30      | Dx:HPV                             | 858 non-null   | int64     |
| 31      | Dx                                 | 858 non-null   | int64     |
| 32      | Hinselmann                         | 858 non-null   | int64     |
| 33      | Schiller                           | 858 non-null   | int64     |
| 34      | Citology                           | 858 non-null   | int64     |
| 35      | Biopsy                             | 858 non-null   | int64     |
| 4+,,,,, | ac. float(4/26) int(4/10)          |                |           |

dtypes: float64(26), int64(10)

memory usage: 241.4 KB

## In [49]:

```
df.hist("Age")
```

## Out[49]:

array([[<AxesSubplot:title={'center':'Age'}>]], dtype=object)



# In [7]:

```
plt.boxplot(df["Age"])
plt.show()
```



## In [8]:

```
df.hist("Biopsy")
```

### Out[8]:

array([[<AxesSubplot:title={'center':'Biopsy'}>]], dtype=object)



## In [9]:

```
df.groupby(["Biopsy"]).size()
```

## Out[9]:

Biopsy 803

1 55

dtype: int64

In the dataset, 848 observations, 803 are negative, and 55 positive of cervical cancer. There is a need to do oversampling/undersampling through SMOTE technique

## In [10]:

```
df.hist("Number of sexual partners")
```

## Out[10]:



## In [11]:

df.isna().sum()

## Out[11]:

| Age                                | 0   |
|------------------------------------|-----|
| Number of sexual partners          | 26  |
| First sexual intercourse           | 7   |
| Num of pregnancies                 | 56  |
| Smokes                             | 13  |
| Smokes (years)                     | 13  |
| Smokes (packs/year)                | 13  |
| Hormonal Contraceptives            | 108 |
| Hormonal Contraceptives (years)    | 108 |
| IUD                                | 117 |
| IUD (years)                        | 117 |
| STDs                               | 105 |
| STDs (number)                      | 105 |
| STDs:condylomatosis                | 105 |
| STDs:cervical condylomatosis       | 105 |
| STDs:vaginal condylomatosis        | 105 |
| STDs:vulvo-perineal condylomatosis | 105 |
| STDs:svphilis                      | 105 |

## In [12]:

```
mis_val = df.isnull().sum()
mis_val_percent = (100 * df.isnull().sum() / len(df)).round(1)
mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
mis_val_table = mis_val_table.rename(columns = {0 : 'Missing', 1 : 'Proportion in %'})
mis_val_table
```

## Out[12]:

|                                    | Missing | Proportion in % |  |
|------------------------------------|---------|-----------------|--|
| Age                                | 0       | 0.0             |  |
| Number of sexual partners          | 26      | 3.0             |  |
| First sexual intercourse           | 7       | 0.8             |  |
| Num of pregnancies                 | 56      | 6.5             |  |
| Smokes                             | 13      | 1.5             |  |
| Smokes (years)                     | 13      | 1.5             |  |
| Smokes (packs/year)                | 13      | 1.5             |  |
| Hormonal Contraceptives            | 108     | 12.6            |  |
| Hormonal Contraceptives (years)    | 108     | 12.6            |  |
| IUD                                | 117     | 13.6            |  |
| IUD (years)                        | 117     | 13.6            |  |
| STDs                               | 105     | 12.2            |  |
| STDs (number)                      | 105     | 12.2            |  |
| STDs:condylomatosis                | 105     | 12.2            |  |
| STDs:cervical condylomatosis       | 105     | 12.2            |  |
| STDs:vaginal condylomatosis        | 105     | 12.2            |  |
| STDs:vulvo-perineal condylomatosis | 105     | 12,2            |  |
| STDs:syphilis                      | 105     | 12.2            |  |
| STDs:pelvic inflammatory disease   | 105     | 12.2            |  |
| STDs:genital herpes                | 105     | 12.2            |  |
| STDs:molluscum contagiosum         | 105     | 12.2            |  |
| STDs:AIDS                          | 105     | 12.2            |  |
| STDs:HIV                           | 105     | 12.2            |  |
| STDs:Hepatitis B                   | 105     | 12.2            |  |
| STDs:HPV                           | 105     | 12.2            |  |
| STDs: Number of diagnosis          | 0       | 0.0             |  |
| STDs: Time since first diagnosis   | 787     | 91.7            |  |
| STDs: Time since last diagnosis    | 787     | 91.7            |  |
| Dx:Cancer                          | 0       | 0.0             |  |
| Dx:CIN                             | 0       | 0.0             |  |
| Dx:HPV                             | 0       | 0.0             |  |
|                                    |         |                 |  |

|            | Missing | Proportion in % |
|------------|---------|-----------------|
| Dx         | 0       | 0.0             |
| Hinselmann | 0       | 0.0             |
| Schiller   | 0       | 0.0             |
| Citology   | 0       | 0.0             |
| Biopsy     | 0       | 0.0             |

#### In [13]:

```
df["STDs: Number of diagnosis"].sum()
```

#### Out[13]:

75

The sum in the number of diagnosis in STD is only 75, with mostly zero data.

As a set, STDs number, time since last diagnosis and time since first diagnosis are dropped.

### In [14]:

```
df["Number of sexual partners"].median()
```

#### Out[14]:

2.0

## In [50]:

```
df["Number of sexual partners"].fillna(df["Number of sexual partners"].median(), inplace=Tr
df["First sexual intercourse"].fillna(df["First sexual intercourse"].median(), inplace=True
df["Num of pregnancies"].fillna(df["Num of pregnancies"].median(), inplace=True)
```

## In [34]:

```
df.hist("Smokes (years)",bins=40)
```

### Out[34]:

array([[<AxesSubplot:title={'center':'Smokes (years)'}>]], dtype=object)



## In [35]:

```
df.hist("Smokes (packs/year)",bins=40)
```

## Out[35]:



## In [36]:

```
df.plot(kind="box", subplots=True, layout=(20,3),sharex=False, sharey=False, figsize=(8, 2
plt.show()
```





































## In [7]:

```
df.hist("STDs:Hepatitis B")
```

## Out[7]:

array([[<AxesSubplot:title={'center':'STDs:Hepatitis B'}>]], dtype=object)



## In [37]:

```
df["STDs (number)"].sum()
```

## Out[37]:

133.0

### In [51]:

```
# cleaning numerical columns with median
cleanlist =[1,2,3,5,6,8,10,12]
for i in cleanlist:
    df.iloc[:,i].fillna(df.iloc[:,i].median(),inplace=True)
```

## In [52]:

```
# cleaning STD Boolean columns with True (1)

cleanlist = np.arange(11,25)
for i in cleanlist:
    df.iloc[:,i].fillna(1,inplace=True)
```

### In [40]:

```
df.hist("Smokes")
```

## Out[40]:

array([[<AxesSubplot:title={'center':'Smokes'}>]], dtype=object)



### In [41]:

```
df.hist("IUD")
```

### Out[41]:

array([[<AxesSubplot:title={'center':'IUD'}>]], dtype=object)



## In [42]:

```
df.hist("Hormonal Contraceptives")
```

### Out[42]:



## In [53]:

```
# Dealing with remaining Smokes, Hormonal Contraceptives, IUD replacing with mode

df["Smokes"].fillna(0,inplace=True)

df["Hormonal Contraceptives"].fillna(1,inplace=True)

df["IUD"].fillna(0,inplace=True)
```

#### In [54]:

```
# Drop columns on STD Number of Diagnosis, time since last, first diagnosis

df=df.drop(['STDs: Number of diagnosis', 'STDs: Time since first diagnosis', 'STDs: Time sin
```

#### In [55]:

```
X=df.iloc[:,0:28]
y=df.iloc[:,32]
```

#### In [56]:

X.shape

#### Out[56]:

(858, 28)

### In [57]:

```
y.shape
```

Out[57]:

(858,)

### In [36]:

```
# Correlation Heat Map

plt.figure(figsize=(20, 20))
heatmap = sns.heatmap(X.corr(), vmin=-1, vmax=1, annot=True)
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12);
```



#### In [58]:

```
# For each X, calculate VIF and save in dataframe
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif["features"] = X.columns
vif.round(1)

4

C:\Users\chung\anaconda3\lib\site-packages\statsmodels\stats\outliers_infl
uence.py:193: RuntimeWarning: divide by zero encountered in double_scalars
vif = 1. / (1. - r_squared_i)
```

#### In [59]:

```
scaler = preprocessing.StandardScaler().fit(X)
X = scaler.transform(X)
```

#### In [60]:

```
from sklearn.decomposition import PCA

pca = PCA().fit(X)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance')
```

## Out[60]:

Text(0, 0.5, 'cumulative explained variance')



#### In [61]:

```
pca = PCA(n_components=10)
pca.fit(X)
X_pca = pca.transform(X)
print("original shape: ", X.shape)
print("transformed shape:", X_pca.shape)
```

original shape: (858, 28) transformed shape: (858, 10)

```
In [62]:
# Looking at the PCA components

for i in range(10):
    print("PCA Component",i,"Min:",round(X_pca[:,i].min(),2), "Max:",round(X_pca[:,i].max())

PCA Component 0 Min: -2.06 Max: 9.21
PCA Component 1 Min: -1.99 Max: 16.48
PCA Component 2 Min: -5.29 Max: 7.45
PCA Component 3 Min: -6.03 Max: 8.65
PCA Component 4 Min: -3.42 Max: 6.51
PCA Component 5 Min: -4.58 Max: 5.96
PCA Component 6 Min: -4.94 Max: 5.13
PCA Component 7 Min: -1.99 Max: 9.0
PCA Component 8 Min: -5.77 Max: 7.82
PCA Component 9 Min: -3.47 Max: 9.56
```

```
In [ ]:
```

```
! pip install -U imbalanced-learn
```

## In [63]:

```
from imblearn.over_sampling import SMOTE

oversample = SMOTE()
X_pca, y = oversample.fit_resample(X_pca, y)
```

### In [64]:

```
# Split-out validation dataset

validation_size = 0.20
seed = 7
X_train, X_test, y_train, y_test = model_selection.train_test_split(X_pca, y, test_size =validation_size, random_state=seed)
```

## In [65]:

```
# Test options and evaluation metric
seed = 7
scoring = 'accuracy'
```

#### In [66]:

```
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression(solver='lbfgs', multi_class='auto', max_iter=200)))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10)
    cv results = model selection.cross val score(model, X train, y train, cv=kfold, scoring
    results.append(cv results)
    names.append(name)
    msg = '%s: %f (%f)' % (name, cv_results.mean(), cv_results.std())
    print(msg)
```

LR: 0.654148 (0.055353) LDA: 0.652574 (0.059573) KNN: 0.854367 (0.025114) CART: 0.840377 (0.031330) NB: 0.644852 (0.043356) SVM: 0.827114 (0.020701)

KNN, CART and SVM perform best in the group of algorithms

#### In [67]:

```
# Make predictions on validation dataset
KN = KNeighborsClassifier()
KN.fit(X_train, y_train)
predictions = KN.predict(X_test)
print('Accuracy:')
print(accuracy_score(y_test, predictions))
print()
print('Confusion matrix:')
print(confusion_matrix(y_test,predictions)) #result is rows: prediction,col: actual
print()
print('Classification report:')
print(classification_report(y_test, predictions))
```

#### Accuracy:

0.8322981366459627

Confusion matrix:

[[126 43] [ 11 142]]

Classification report:

|             |          |        | сро. с.   |              |
|-------------|----------|--------|-----------|--------------|
| ore support | f1-score | recall | precision |              |
| 82 169      | 0.82     | 0.75   | 0.92      | 0            |
| 84 153      | 0.84     | 0.93   | 0.77      | 1            |
| 83 322      | 0.83     |        |           | accuracy     |
| 83 322      | 0.83     | 0.84   | 0.84      | macro avg    |
| 83 322      | 0.83     | 0.83   | 0.85      | weighted avg |

#### In [68]:

```
# Make predictions on validation dataset
CART = DecisionTreeClassifier()
CART.fit(X_train, y_train)
predictions = CART.predict(X_test)
print('Accuracy:')
print(accuracy_score(y_test, predictions))
print()
print('Confusion matrix:')
print(confusion_matrix(y_test,predictions)) #result is rows: prediction,col: actual
print()
print('Classification_report:')
print(classification_report(y_test, predictions))
```

#### Accuracy:

0.8757763975155279

Confusion matrix:

[[151 18] [ 22 131]]

Classification report:

|         |          |        | . upu. u. |              |
|---------|----------|--------|-----------|--------------|
| support | f1-score | recall | precision |              |
| 169     | 0.88     | 0.89   | 0.87      | 0            |
| 153     | 0.87     | 0.86   | 0.88      | 1            |
| 322     | 0.88     |        |           | accuracy     |
| 322     | 0.88     | 0.87   | 0.88      | macro avg    |
| 322     | 0.88     | 0.88   | 0.88      | weighted avg |

### In [69]:

```
# Make predictions on validation dataset
svm = SVC(gamma = 'auto')
svm.fit(X_train, y_train)
predictions = svm.predict(X_test)
print('Accuracy:')
print(accuracy_score(y_test, predictions))
print()
print('Confusion matrix:')
print(confusion_matrix(y_test,predictions)) #result is rows: prediction,col: actual
print()
print('Classification report:')
print(classification_report(y_test, predictions))
Accuracy:
0.84472049689441
Confusion matrix:
[[129 40]
 [ 10 143]]
Classification report:
              precision
                           recall f1-score
                                               support
           0
                   0.93
                             0.76
                                        0.84
                                                   169
           1
                   0.78
                             0.93
                                        0.85
                                                   153
                                        0.84
                                                   322
    accuracy
                             0.85
                                        0.84
   macro avg
                   0.85
                                                   322
                   0.86
                             0.84
                                        0.84
                                                   322
weighted avg
```

# Try ensemble or gradient boosting to raise performance

#### In [70]:

#### Out[70]:

RandomForestClassifier(n\_jobs=1)

## In [71]:

```
predictions = model.predict(X_test)
print('Accuracy:')
print(accuracy_score(y_test, predictions))
print()
print('Confusion matrix:')
print(confusion_matrix(y_test,predictions)) #result is rows: prediction,col: actual
print()
print('Classification report:')
print(classification_report(y_test, predictions))
```

## Accuracy:

0.922360248447205

Confusion matrix:

[[151 18] [ 7 146]]

### Classification report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.96      | 0.89   | 0.92     | 169     |
| 1            | 0.89      | 0.95   | 0.92     | 153     |
| 2661192614   |           |        | 0.92     | 322     |
| accuracy     |           |        |          |         |
| macro avg    | 0.92      | 0.92   | 0.92     | 322     |
| weighted avg | 0.92      | 0.92   | 0.92     | 322     |

### In [72]:

```
#skplt.metrics.plot_confusion_matrix
skplt.metrics.plot_confusion_matrix(y_test, predictions, normalize=True)
plt.show()
```



### In [73]:

from sklearn.ensemble import GradientBoostingClassifier

#### In [74]:

#### Out[74]:

GradientBoostingClassifier(max\_depth=10, n\_estimators=120)

## In [75]:

```
predictions = model.predict(X_test)
print('Accuracy:')
print(accuracy_score(y_test, predictions))
print()
print('Confusion matrix:')
print(confusion_matrix(y_test,predictions)) #result is rows: prediction,col: actual
print()
print('Classification report:')
print(classification_report(y_test, predictions))
```

#### Accuracy:

0.9192546583850931

### Confusion matrix:

[[152 17] [ 9 144]]

#### Classification report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.94      | 0.90   | 0.92     | 169     |
| 1            | 0.89      | 0.94   | 0.92     | 153     |
| accuracy     |           |        | 0.92     | 322     |
| macro avg    | 0.92      | 0.92   | 0.92     | 322     |
| weighted avg | 0.92      | 0.92   | 0.92     | 322     |

## In [76]:

```
#skplt.metrics.plot_confusion_matrix
skplt.metrics.plot_confusion_matrix(y_test, predictions, normalize=True)
plt.show()
```



## In [ ]: