Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US

Serial No.: 09/758,903 Telephone: 703-308-3825

display, said flat panel |liquid-crystal display comprising:

backlight apparatus;

- a first linear polarizer adjacent said backlight apparatus;
- a first positive unfaxial retardation film adjacent said first linear polarizer;
- a first negative retardation film adjacent said first positive uniaxial retardation film;
- a first orientation film adjacent said first negative retardation film;
 - a liquid-crystal layer adjacent said first orientation film;
- a second orientation film adjacent said liquid-crystal layer;
- a second negative retardation film adjacent said second orientation film;
- a second positive uniaxial retardation film adjacent said second negative retardation film;
- a second linear polarizer adjacent said second positive uniaxial retardation film;
- a first glass substrate being disposed between said first orientation film and said first negative retardation film;
- a second glass substitute being disposed between said second orientation film and said second negative retardation film;
 - a first electrode being disposed between said first glass

NHL:ktp

Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US

Serial No.: 09/758,903 Telephone: 703-308-3825

substrate and said first ofientation film; and

a second electrode being disposed between said second glass substrates and said second orientation film;

said first and said second glass substrates comprising:

an alkali-free aluminoborosilicate glass;

said glass having a coefficient of thermal expansion

 $\alpha_{20/300}$ of between 2.8 \pm 10⁻⁶/K and 3.8 x 10⁻⁶/K;

said glass having the composition (in % by weight,

based on oxide):

SiO,

B,O,

 $A1_{2}O_{3}$

MgO

CaO

Sro

BaO

ZnO

> 58 - 65

> 6 - 11.5

> 21 - 25

4 - 8

0 - 8

2.6 - < 8

0 - < 0.5

0 - 2:

said glass being configured to be resistant to thermal shock;

said glass being configured to having a high transparency over a broad spectral range in the visible and ultra violet ranges; and

said glass being configured to be free of bubbles,

NHL: ktp

Examiner: David SAMPLE Docket No.: NHL-SCT-21 US Art Unit: 1755 Serial No.: 09/758,903 Facsimile: 703-872-9726 Telephone: 703-308-3825

knots, inclusions, streaks, and surface undulations. --

--42. The flat panel liquid-crystal display according to claim 41, wherein:

said glass comprises at least one of (a.), (b.), (c.), (d.), (e.), and (f.), where (a.), (b.), (c.), (d.), (e.), and (f.) are: (a.) more than 8% by weight of B2O3;

(b.) one of: more than \$18% by weight of Al2O3, at least 20.5% by weight of Al₂O₃, and at least 21% by weight of Al₂O₃;

(c.) additionally (in \$ by weight):

ZrO2 TiO2 0 - 2 with ZrO₂ + TiO₂ 0 - 2 As_2O_3 0 - 1.5 Sb_2O_3 0 - 1.5 SnO, 0 - 1.5 CeO₂ 0 - 1.5 Cl. 0 - 1.5 F. 0 - 1.5 SO,2. 0 - 1.5with $As_2O_3 + Sb_2O_3 + ||ShO_2||$ CeO, $+ C1 + F + SO_4^2$ 0 - 1.5;

(d.) a glass in which arsenic oxide, antimony oxide, and

NHL:ktp

Art Unit: 1755
Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US

Serial No.: 09/758,903 Telephone: 703-308-3825

inherent impurities are minimized;

- (e.) a float glass; and
- (f.) one of (i.), (ii.), and (iii.):
- (i.) a coefficient of thermal expansion $\alpha_{20/300}$ of between 2.8 x 10^{6} /K to 3.6 x 10^{-6} /K;
 - (ii.) a glass transition temperature T_g of > 700°C; and (iii.) a density ρ of < 2.600 g/cm³.--
- --43. The flat panel liquid-crystal display according to claim 41, wherein:

said glass comprises (a.), (b.), (c.), (d.), (e.), and (f.), where (a.), (b.), (c.), (d.), (e.), and (f.) are:

- (a.) more than 8% by weight of B_2O_3 ;
- (b.) one of: more than 18% by weight of Al₂O₃, at least 20.5% by weight of Al_2O_3 , and at least 21% by weight of Al_2O_3 ;
 - (c.) additionally (in % by weight):

ZrO,

TiO2

with ZrO₂ + TiO₂

 As_2O_3

 Sb_2O_3

SnO,

CeO₂

0 - 2

0 - 2

0 - 2

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

NHL:ktp

Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US Serial No.: 09/758,903 Telephone: 703-308-3825

0 - 1.5

0 - 1.5

SO₄2 0 - 1.5

with $As_{2}0_{3} + Sb_{2}0_{3} + SnO_{3} + CeO_{3}$ + C1 + F^{+} + SO_{4}^{2} 0 - 1.5;

- (d.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;
 - (e.) a float glass; and
 - (f.) one of (i.), (ii.), and (iii.):
 - (i.) a coefficient of thermal expansion $\alpha_{20/300}$ of between 2.8 x 10^{-6} /K to 3.6 x 10^{-6} /K;
 - (ii.) a glass transition temperature T_g of > 700°C; and (iii.) a density ρ of < 2.600 g/cm³.--

A glass substrate for a flat panel liquid-crystal display, such as for a laptop computer, the flat panel liquiddisplay including a twisted nematic display, a supertwisted nematic display, an active matrix liquid-crystal display, a thin film transistor display, and a plasma addressed liquid-crystal display, said substrate comprising:

an alkali-free aluminoborosilicate

said glass having a coefficient of thermal expansion $\alpha_{20/300}$ of between 2.8 x 10^{-6} /K and 3.8\ x/ 10^{-6} /K\

NHL: ktp

Examiner: David SAMPLE Art Unit: 1755 Docket No.: NHL-SCT-21 US Serial No.: 09/758,903 Facsimile: 703-872-9726 Telephone: 703-308-3825

said glass having the composition (in % by weight, based on oxide):

SiO₂ > 58 - 65 B_2O_3 > 6 - 11.5 Al_2O_3 > 14 - 25 MgO 4 - 8 CaO ' 0 - < 2

SrO > 0.5 - < 4

BaO 0 - < 0.5

ZnO 0 - 2;

said glass being configured to be resistant to thermal shock:

said glass being configured to have a high transparency over a broad spectral range in the visible and ultra violet ranges; and

said glass being configured to be free of bubbles, knots, inclusions, streaks, and surface undulations. --

--45. The glass substrate according to claim 44,

wherein:

said glass comprises at least one of (a.), (b.), (c.), (d.), (e.), and (f.), where (a.), (b.), (c.), (d.), (e.), and (f.) are: (a.) more than 8% by weight $of B_2O_3$;

NHL:ktp

Examiner: David SAMPLE Art Unit: 1755
Facsimile: 703-872-9726 Docket No.: NHL-SCT-21 US Serial No.: 09/758,903 Telephone: 703-308-3825

(b.) one of: more than 18% by weight of Al₂O₃, at least 20.5% by weight of $Al_2\phi_3$, and at least 21% by weight of Al_2O_3 ;

(c.) additionally \((in % by weight):

ZrO ₂		0 - 2
TiO ₂		0 - 2
with $ZrO_2 + TiO_2$		0 - 2
As ₂ O ₃		0 - 1.5
Sb ₂ O ₃		0 - 1.5
SnO_2		0 - 1.5
CeO ₂		0 - 1.5
C1 ⁻		0 - 1.5
F.		0 - 1.5
SO ₄ 2.		0 - 1.5
with As ₂ 0 ₃ + Sb ₂ 0 ₃	+ SnO ₂ + CeO ₂	
+ $C1^{-}$ + F^{-} + SO_4^{-2}		0 - 1.5;

(d.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;

- (e.) a float glass; and
- (f.) one of (i.), (ii.), and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of

between $2.8 \times 10^{-6}/K$ to $3.6 \times 10^{-6}/K$;

(ii.) a glass transition temperature T_{c} of > 700°C; and (iii.) a density ϕ ϕ f < 2.600 g/cm³.--

NHL: ktp

```
Examiner: David SAMPLE
                                              Docket No.: NHL-SCT-21 US
Art Unit: 1755
                                              Serial No.: 09/758,903
Facsimile: 703-872-9726
                                              Telephone: 703-308-3825
                The glass substrate according to claim 44,
wherein:
  said glass comprises (a.), (b.), (c.), (d.), (e.), and (f.),
where (a.), (b.), (a.), (d.), (e.), and (f.) are:
     (a.) more than 8% by weight of B2O3;
      (b.) one of: more than 18% by weight of Al<sub>2</sub>O<sub>3</sub>, at least
20.5% by weight of Al2O3, and at least 21% by weight of Al2O3;
     (c.) additionally (in % by weight):
     ZrO,
                                                   0 - 2
                                                   0 - 2
     TiO,
     with ZrO<sub>2</sub> + TiO<sub>2</sub>
                                                   0 - 2
     As<sub>2</sub>O<sub>3</sub>
                                                   0 - 1.5
     Sb,0,
                                                   0 - 1.5
```

 $+ C1^{\cdot} + F^{\cdot} + SO_4^{2}$ (d.) a glass in which arsenic oxide, antimony oxide, and inherent impurities are minimized;

with $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2$

(e.) a float glass; and

NHL:ktp

SnO,

CeO₂

Cl.

SO₄2.

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US Serial No.: 09/758,903

Telephone: 703-308-3825

(f.) one of (i.), (ii.), and (iii.):

(i.) a coefficient of thermal expansion $\alpha_{20/300}$ of

between 2.8 x 10^{-6} /K to 3/6 x 10^{-6} /K;

(ii.) a glass transition temperature T_g of > 700°C; and (iii.) a density ρ of < 2.600 g/cm³...

--47. A glass comprising:

a substantially alkali-free aluminoborosilicate glass;

said glass having a coefficient of thermal expansion $\alpha_{20/300}$ of between 2.8 x 10 $^{-6}/K$ and 3.8 x 10 $^{-6}/K$;

said glass having the composition (in % by weight, based on oxide):

SiO2

B,O,

A1,0,

MgO

CaO

SrO

BaO

with SrO + BaO

ZnO

> 58 - 65

> 6 - 11.5

> 14 - 25

4 - 8

0 - 8

2.6 - < 4

0 - < 0.5

> 3

0 - 2.--

--48. The glass according to claim 47, wherein:

NHL: ktp

10

Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US

Serial No.: 09/758,903 Telephone: 703-308-3825

said glass is configured to be resistant to thermal shock; said glass is configured to have a high transparency over a broad spectral range in the visible and ultra violet ranges; and said glass is configured to be free of bubbles, knots, inclusions, streaks, and surface undulations. --

The glass according to claim 48, wherein: said glass comprises more than 8% by weight of B201. --

--50. The glass according to claim 49, wherein: said glass comprises one of (i.) and (ii.):

- (i.) more than 18% by weight of Al₂O₃; and
- (ii.) at least 20.5% by weight of Al_2O_3 .--

The glass according to claim 50, wherein said --51. glass comprises at least 21.5% by weight of Al₂O₃...

--52. The glass according to claim 51, wherein: said glass additionally comprises (in % by weight):

ZrO,

TiO,

with ZrO2 + TiO2

As₂O₃

0 - 2

0 - 2

0 - 2

0 - 1.5

NHL:ktp

11

Art Unit: 1755

Facsimile: 703-872-9726

 $+ C1^{\cdot} + F^{\cdot} + SO_{a}^{2}$

Docket No.: NHL-SCT-21 US Serial No.: 09/758,903 Telephone: 703-308-3825

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5; and

0 - 1.5.--

Sb203 Sno. CeO₂ CI F. SO₄2. with $As_2O_3 + Sb_2Q_3 + SnO_2 + CeO_2$

The glass according to claim 52, wherein: --53. said glass comprises a glass in which arsenic oxide. antimony oxide, and inherent impurities are minimized .--

- --54. The glass according to claim 53, wherein: said glass comprises a float glass .--
- The glass according to claim 54/ wherein: --55. said glass has one of (i.), (ii.) and (fii.):
- (i.) a coefficient of thermal expansion $\alpha_{20/300}$ of between 2.8 $\times 10^{-6}/K$ to 3.6 $\times 10^{-6}/K$;
 - (ii.) a glass transition temperature T_a of > 700°C; and (iii.) a density ρ of < 2.600 g/cm³...

12

NHL:ktp

Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US

Serial No.: 09/758,903

Telephone: 703-308-3825

--56. The glass according to claim 47, wherein:

said glass comprises at least one of (a.), (b.), (c.), (d.),

- (e.), and (f.), where (a.), (b.), (c.), (d.), (e.), and (f.) are:
 - (a.) more than 8% by weight of B₂O₃;
 - (b.) one of: more than 18% by weight of Al₂O₃, at least
- 20.5% by weight of Al_2O_3 , and at least 21% by weight of Al_2O_3 ;
 - (c.) additionally (in % by weight):

ZrO,

TiO,

with ZrO₂ + TiO₂

 As_2O_3

 Sb_2O_3

 SnO_2

CeO,

Cl.

F.

SO₄2-

with $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2$

 $+ C1 + F + SO_4^2$

0 - 1.5;

0 - 2

0 - 2

0 - 2

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

0 - 1.5

- (d.) a glass in which arsenic oxide, antimony oxide, and
- inherent impurities are minimized;
 - (e.) a float glass; and
 - (f.) one of (i.), (ii.), and

and (iii.):

NHL:ktp

SCT-21 US 13sd/SCT034sd

13

Examiner: David SAMPLE Art Unit: 1755

Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US Serial No.: 09/758,903

Telephone: 703-308-3825

- (i.) a coefficient of thermal expansion $\alpha_{20/300}$ of between 2.8 x 10^{-6} /K to 3.6 x 10^{-6} /K;
 - (ii.) a glass \forall ransition temperature T_a of > 700°C; and (iii.) a density ρ of < 2.600 g/cm³.--
- --57. The glass according to claim 47, wherein:

said glass is configured as a glass substrate in combination in or with a flat panel liquid-crystal display, such as for a laptop computer, the flat panel liquid-crystal display including a twisted nematic display, a supertwisted nematic display, an active matrix liquid-crystal display, a thin film transistor display, and a plasma addressed liquid-crystal display. --

- --58. The glass according to claim 57, wherein: said flat panel liquid-crystal display comprises: backlight apparatus;
- a first linear polarizer adjacent said backlight apparatus;
- a first positive unlaxial retardation film adjacent said first linear polarizer;
- a first negative metardation film adjacent said first positive uniaxial retardation film;
- a first orientation film adjacent said first negative retardation film;

14

NHL:ktp

Art Unit: 1755
Facsimile: 703-872-9726

Docket No.: NHL-SCT-21 US Serial No.: 09/758,903

Telephone: 703-308-3825

a liquid-crystal layer adjacent said first orientation film;

a second orientation film adjacent said liquid-crystal layer;

a second negative retardation film adjacent said second orientation film;

a second positive uniaxial retardation film adjacent said second negative retardation film;

a second linear polarizer adjacent said second negative retardation film;

said glass substrate comprising a first glass substrate;
said first glass substrate being disposed between said first
orientation film and said first negative retardation film;

said glass substrate comprising a second glass substrate; said second glass substrate being disposed between said second orientation film and said second negative retardation film;

a first electrode being disposed between said first glass substrate and said first crientation film; and

a second electrode being disposed between said second glass substrate and said second orientation film.

--59. The glass according to claim 47, wherein: said glass is configured as a glass substrate in combination

15

NHL:ktp