1 | Series Convergence

1.1 | Geometric Series

In $\sum_{k=0}^\infty a(r^k)$, where |r|<1, the series converges to $\sum_{k=0}^\infty a(r^k)=\frac{a}{1-r}$ In $\sum_{k=0}^n a(r^k)$, $\sum_{k=0}^n a(r^k)=\frac{a-ar^{n+1}}{1-r}$

1.2 | nth term divergence test

If $\lim_{n\to\infty} a_n$ is not zero, the series will diverge. The inverse is not necessarily true; that is, if this fails, use another test to test convergence.

1.3 | Intergral Test

If the intergral to infinity is convergent, the sequence is convergent as long as the sequence is continuous, positive, and decreasing. The inverse applies, too.

1.4 | Power Series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

If a p-series has a p > 1, the p-series will converge

If a p-series has a $p \le 1$, the p-series will diverge

1.5 | Comparison Test

Both provided that $a_n, b_n \ge 0$ & $a_n \le b_n$

Pasted image 20210308082352.png

Pasted image 20210308082201.png

Also, if $\lim_{n \to \infty} \frac{a_n}{b_n} = C$ $(0 < c < \infty)$, the two series will either both converge or both diverge. So you only need to test one.

1.6 | Alternating Series Test

Pasted image 20210309081249.png

1.7 | Ratio Test

In a geometric series, the common ratio is simply $r = \frac{r^{n+1}}{r^n}$.

If r is an real value, |r| < 1, then series converges. If $|r| \ge 1$, the series diverges.

As limit goes to infinity in the r, if the common ratio approaches <1, that means that the ratio will get smaller and smaller, just like if r were to be a real value and it was smaller than one. Meaning that the series **converges.**

Pasted image 20210310083028.png

And so, formally.

Pasted image 20210310083142.png

The inverse is true, too.

However, if the ratio is equal to one, the test is inconclusive.

Absolute Convergence => series who converge and whose absolute value converges

Conditional Convergence => series who converge and whose absolute value does not converge

1.8 | So what is the error of a talor series? (Lagrange Error)

The error at point x of a nth degree talor polynomial centered at a modeling a function with an absolute maximum value of M in its n+1th dervitave between a bound containing x and a:

$$|E(x)| \le \frac{M(x-a)^{n+1}}{(n+1)!}$$

1.9 | Power Series

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n = a_n (x-c)^0 + a_n (x-c)^1 \dots$$

For instance, a geometric series is a special power series...

$$g(x) = \sum_{n=0}^{\infty} = ax^n$$

This geometric series converges if |x| < 1, and so it has an interval of convergence of -1 < x < 1. If this converges, this function will converge to $\frac{a}{1-x}$

Interval of Convergence: at what values of x does the series converge?

Radius of Convergence: at what absolute distance from c (the "centering" of the series) will the series converge?

To figure the interval of convergence, simply use the ratio test and solve for x that makes the ratio < 1. Then, think about the inconclusive cases whereby ratio = 1 — then, use the comparison test, or intergral test

Pasted image 20210317084838.png

Derivatives, intergrals have the same radius of convergence as the parent function, but their interval may be different due to different behavior at endpoints