Package 'divseg'

December 17, 2022

```
Version 0.0.5
Date 2022-12-16
Description Implements common measures of diversity and spatial segregation. This pack-
     age has tools to compute the majority of measures are reviewed in Massey and Den-
     ton (1988) <doi:10.2307/2579183>. Multiple common measures of within-geography diver-
     sity are implemented as well. All functions operate on data frames with a 'tidyselect' based work-
     flow.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.2
BugReports https://github.com/christopherkenny/divseg/issues
URL https://github.com/christopherkenny/divseg/,
     https://christophertkenny.com/divseg/
Suggests roxygen2, testthat (>= 3.0.0)
Imports sf (>= 1.0.0), rlang (>= 0.4.11), dplyr, magrittr, tidyselect,
     tibble, units
Depends R (>= 2.10)
Config/testthat/edition 3
NeedsCompilation no
Author Christopher T. Kenny [aut, cre]
     (<https://orcid.org/0000-0002-9386-6860>)
Maintainer Christopher T. Kenny <christopherkenny@fas.harvard.edu>
Repository CRAN
Date/Publication 2022-12-17 08:30:02 UTC
```

Title Calculate Diversity and Segregation Indices

2 de_county

R topics documented:

	 																										5
u relation _interacti	 																					•					_
u relation _interacti	 																										5
_interacti																											6
_	on																										7
isolation	on .																										7
_150144101.	١																										8
ta																											9
sim																											10
ersity .																											10
ropy																											11
-																											
t_prox				•		•		•	•		•		•		•	•				•		٠		٠		•	19
																											21
/ t 1 (/ /)	versity . tropy ni i eraction v_simpsor blationcentclustconc . vni annon .	/ersity tropy	versity tropy ni i eraction /_simpson olation cent clust conc minon	/ersity tropy ni i eraction /_simpson blation cent clust conc ni annon	/ersity tropy ni i eraction /_simpson olation cent clust conc ni annon	versity tropy ni i eraction /_simpson olation cent clust conc ni annon	versity tropy ni i eraction /_simpson olation cent clust conc ni annon	versity tropy ni i eraction /_simpson olation cent clust conc ni annon	versity tropy ni i eraction /_simpson olation cent clust conc ni annon	versity tropy ni i eraction /_simpson olation cent clust conc ni	/ersity	versity tropy ni i eraction /_simpson plation cent clust conc ni	versity tropy ni i eraction /_simpson olation cent clust conc /ni annon	versity tropy ni i eraction zsimpson plation _cent _clust _conc _ni _annon	versity tropy ni i eraction zsimpson plation _cent _clust _conc _ni _annon	versity tropy ni i eraction zsimpson plation _cent _clust _conc _ni	versity tropy ni i eraction /_simpson olation cent clust conc ni	versity tropy ni i eraction /_simpson olation cent clust conc ni annon	versity tropy ni i eraction /_simpson olation cent clust conc ni	versity tropy ni i eraction /_simpson olation cent clust conc ni annon	ssim //ersity tropy ni i eraction /_simpson olationcentclustconc //ni annon at_prox						

Description

This data contains 2010 Census data for each of the three counties in DE.

Usage

```
data("de_county")
```

Format

An sf dataframe with 3 observations

```
data("de_county")
```

de_tract 3

de_tract	de_tract
----------	----------

Description

This data contains 2010 Census data for each of the 218 tracts in DE.

Usage

```
data("de_tract")
```

Format

An sf dataframe with 218 observations

Examples

```
data("de_tract")
```

ds_abs_cent

Compute Absolute Centralization

Description

Compute Absolute Centralization

Usage

```
ds_abs_cent(.data, .cols, .name)
abs_cent(..., .data = dplyr::across(everything()))
```

Arguments

.data tibble with sf geometry
 .cols tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
 .name name for column with absolute centralization. Leave missing to return a vector.
 ... arguments to forward to ds_abs_cent from abs_cent

Value

a tibble or numeric vector if .name missing

ds_abs_clust

Examples

```
data("de_county")
ds_abs_cent(de_county, c(pop_white, starts_with('pop_')))
ds_abs_cent(de_county, c(pop_white, starts_with('pop_')), 'abs_cent')
```

ds_abs_clust

Compute Absolute Clustering

Description

Compute Absolute Clustering

Usage

```
ds_abs_clust(.data, .cols, .name)
abs_clust(..., .data = dplyr::across(everything()))
```

Arguments

```
    .data tibble with sf geometry
    .cols tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
    .name name for column with absolute clustering. Leave missing to return a vector.
    ... arguments to forward to ds_abs_clust from abs_clust
```

Value

a tibble or numeric vector if .name missing

```
data("de_county")
ds_abs_clust(de_county, c(pop_white, starts_with('pop_')))
ds_abs_clust(de_county, c(pop_white, starts_with('pop_')), 'abs_clust')
```

ds_abs_conc 5

ds_abs_conc

Compute Absolute Concentration

Description

Compute Absolute Concentration

Usage

```
ds_abs_conc(.data, .cols, .name)
abs_conc(..., .data = dplyr::across(everything()))
```

Arguments

.data tibble with sf geometry
 .cols tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
 .name name for column with absolute concentration. Leave missing to return a vector.

arguments to forward to ds_abs_conc from abs_conc

... arguments to forward to ds_dos_cone from dos_

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_abs_conc(de_county, c(pop_black, starts_with('pop_')))
ds_abs_conc(de_county, c(pop_black, starts_with('pop_')), 'abs_conc')
```

ds_atkinson

Compute Atkinson b Index

Description

Compute Atkinson b Index

```
ds_atkinson(.data, .cols, .name, b = 0.5)
atkinson(..., .data = dplyr::across(everything()))
```

6 ds_blau

Arguments

.data	tibble
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with Atkinson b index. Leave missing to return a vector.
b	Default 0.5. Exponent parameter b, where $0 \le b \le 1$.
	arguments to forward to ds_atkinson from atkinson

Value

a tibble or numeric vector if .name missing

Examples

```
data('de_county')
ds_atkinson(de_county, c(pop_white, starts_with('pop_')))
ds_atkinson(de_county, starts_with('pop_'), 'atkinson')
```

ds_blau

Compute Blau's Index

Description

Compute Blau's Index

Usage

```
ds_blau(.data, .cols, .name)
blau(..., .data = dplyr::across(everything()))
```

Arguments

```
.data tibble
.cols tidy-select Columns to compute the measure with.
.name name for column with Blau index. Leave missing to return a vector.
... arguments to forward to ds_blau from blau
```

Value

a tibble or numeric vector if .name missing

```
data("de_county")
ds_blau(de_county, starts_with('pop_'))
ds_blau(de_county, starts_with('pop_'), 'blau')
```

ds_correlation 7

ds_correlation

Compute Correlation Index

Description

Compute Correlation Index

Usage

```
ds_correlation(.data, .cols, .name)
correlation(..., .data = dplyr::across(everything()))
```

Arguments

.data tibble
 .cols tidy-select Columns to compute the measure with. Must be at least 2 columns.

If more than 2, treats first column as first group and sum of other columns as sec-

ond.

. name name for column with Correlation index. Leave missing to return a vector.

... arguments to forward to ds_correlation from correlation

Value

a tibble or numeric vector if .name missing

Examples

```
data('de_county')
ds_correlation(de_county, c(pop_white, starts_with('pop_')))
ds_correlation(de_county, starts_with('pop_'), 'correlation')
```

ds_dd_interaction

Compute Distance Decay Interaction

Description

Compute Distance Decay Interaction

```
ds_dd_interaction(.data, .cols, .name, .comp = FALSE)

dd_interaction(..., .data = dplyr::across(everything()))
```

8 ds_dd_isolation

Arguments

.data	tibble with sf geometry
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with distance decay interaction. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
• • •	arguments to forward to ds_dd_interaction from dd_interaction

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_dd_interaction(de_county, c(pop_black, starts_with('pop_')))
ds_dd_interaction(de_county, c(pop_black, starts_with('pop_')), 'dd_interaction')
```

ds_dd_isolation

Compute Distance Decay Isolation

Description

Compute Distance Decay Isolation

Usage

```
ds_dd_isolation(.data, .cols, .name, .comp = FALSE)

dd_isolation(..., .data = dplyr::across(everything()))
```

Arguments

.data	tibble with sf geometry
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with distance decay isolation. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
	arguments to forward to ds_dd_isolation from dd_isolation

Value

a tibble or numeric vector if .name missing

ds_delta 9

Examples

```
data("de_county")
ds_dd_isolation(de_county, c(pop_black, starts_with('pop_')))
ds_dd_isolation(de_county, c(pop_black, starts_with('pop_')), 'dd_isolation')
```

ds_delta

Compute Delta Index

Description

Compute Delta Index

Usage

```
ds_delta(.data, .cols, .name, .comp = FALSE)

delta(..., .data = dplyr::across(everything()))
```

Arguments

.data	tibble with sf geometry
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with delta index. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
	arguments to forward to ds_delta from delta

Value

a tibble or numeric vector if .name missing

```
data("de_county")
ds_delta(de_county, c(pop_white, starts_with('pop_')))
ds_delta(de_county, starts_with('pop_'), 'delta')
```

ds_diversity

ds	di	ssim

Compute Dissimilarity Index

Description

Compute Dissimilarity Index

Usage

```
ds_dissim(.data, .cols, .name, .comp = FALSE)
dissim(..., .data = dplyr::across(everything()))
```

Arguments

.data	tibble
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with dissimilarity index. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
	arguments to forward to ds_dissim from dissim

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_dissim(de_county, c(pop_white, starts_with('pop_')))
ds_dissim(de_county, c(pop_white, starts_with('pop_')), .comp = TRUE)
ds_dissim(de_county, starts_with('pop_'), 'dissim')
```

 $ds_diversity$

Compute Diversity

Description

This is equivalent to perplexity.

ds_entropy 11

Usage

```
ds_diversity(.data, .cols, .name, q = 1)
diversity(..., .data = dplyr::across(everything()))
ds_perplexity(.data, .cols, .name, q = 1)
perplexity(..., .data = dplyr::across(everything()))
```

Arguments

```
    .data tibble
    .cols tidy-select Columns to compute the measure with.
    .name name for column with diversity. Leave missing to return a vector.
    q exponent parameter. Default 0. Can not be 1.
    ... arguments to forward to ds_diversity from diversity
```

Value

a tibble or numeric vector if .name missing

Examples

```
data('de_county')
ds_diversity(de_county, starts_with('pop_'))
ds_diversity(de_county, starts_with('pop_'), 'diversity')
```

ds_entropy

Compute Entropy Index

Description

Compute Entropy Index

```
ds_entropy(.data, .cols, .name, .comp = FALSE)
entropy(..., .data = dplyr::across(everything()))
```

ds_gini

Arguments

.data	tibble
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with entropy index. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
	arguments to forward to ds_entropy from entropy

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_entropy(de_county, c(pop_white, starts_with('pop_')))
ds_entropy(de_county, starts_with('pop_'), 'entropy')
```

ds_gini

Compute Gini Index

Description

Compute Gini Index

Usage

```
ds_gini(.data, .cols, .name, .comp = FALSE)
gini(..., .data = dplyr::across(everything()))
```

Arguments

.data	tibble
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with gini index. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
	arguments to forward to ds_gini from gini

Value

a tibble or numeric vector if .name missing

ds_hhi

Examples

```
data("de_county")
ds_gini(de_county, c(pop_white, starts_with('pop_')))
ds_gini(de_county, starts_with('pop_'), 'gini')
```

ds_hhi

Compute Herfindahl-Hirshman Index

Description

This is equivalent to the Simpson Index.

Usage

```
ds_hhi(.data, .cols, .name)
hhi(..., .data = dplyr::across(everything()))
ds_simpson(.data, .cols, .name)
simpson(..., .data = dplyr::across(everything()))
```

Arguments

```
    .data tibble
    .cols tidy-select Columns to compute the measure with.
    .name name for column with HHI. Leave missing to return a vector.
    ... arguments to forward to ds_hhi from hhi
```

Value

a tibble or numeric vector if .name missing

```
data("de_county")
ds_hhi(de_county, starts_with('pop_'))
ds_hhi(de_county, starts_with('pop_'), 'blau')
```

14 ds_inv_simpson

ds_interaction

Compute Interaction Index

Description

Compute Interaction Index

Usage

```
ds_interaction(.data, .cols, .name, .comp = FALSE)
interaction(..., .data = dplyr::across(everything()))
```

Arguments

.data	tibble
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with Interaction index. Leave missing to return a vector.
.comp	Default is FALSE. FALSE returns the sum, TRUE returns the components.
	arguments to forward to ds_interaction from interaction

Value

a tibble or numeric vector if .name missing

Examples

```
data('de_county')
ds_interaction(de_county, c(pop_white, starts_with('pop_')))
ds_interaction(de_county, starts_with('pop_'), 'interaction')
```

ds_inv_simpson

Compute Simpson Index

Description

Compute Simpson Index

```
ds_inv_simpson(.data, .cols, .name)
inv_simpson(..., .data = dplyr::across(everything()))
```

ds_isolation 15

Arguments

```
    .data tibble
    .cols tidy-select Columns to compute the measure with.
    .name name for column with Simpson Index Leave missing to return a vector.
    ... arguments to forward to ds_inv_simpson from inv_simpson
```

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_inv_simpson(de_county, starts_with('pop_'))
ds_inv_simpson(de_county, starts_with('pop_'), 'blau')
```

ds_isolation

Compute Isolation Index

Description

Compute Isolation Index

Usage

```
ds_isolation(.data, .cols, .name, .comp = FALSE)
isolation(..., .data = dplyr::across(everything()))
```

Arguments

```
    .data tibble
    .cols tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
    .name name for column with Isolation index. Leave missing to return a vector.
    .comp Default is FALSE. FALSE returns the sum, TRUE returns the components.
    ... arguments to forward to ds_isolation from isolation
```

Value

a tibble or numeric vector if .name missing

```
data('de_county')
ds_isolation(de_county, c(pop_white, starts_with('pop_')))
ds_isolation(de_county, starts_with('pop_'), 'isolation')
```

ds_rel_clust

ds_rel_cent

Compute Relative Centralization

Description

Compute Relative Centralization

Usage

```
ds_rel_cent(.data, .cols, .name)
rel_cent(..., .data = dplyr::across(everything()))
```

Arguments

.data tibble with sf geometry
 .cols tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
 .name name for column with relative centralization. Leave missing to return a vector.

... arguments to forward to ds_rel_cent from rel_cent

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_rel_cent(de_county, c(pop_white, starts_with('pop_')))
ds_rel_cent(de_county, c(pop_white, starts_with('pop_')), 'rel_cent')
```

ds_rel_clust

Compute Relative Clustering

Description

Compute Relative Clustering

```
ds_rel_clust(.data, .cols, .name)
rel_clust(..., .data = dplyr::across(everything()))
```

ds_rel_conc 17

Arguments

.data	tibble with sf geometry
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with relative clustering. Leave missing to return a vector.
	arguments to forward to ds_rel_clust from rel_clust

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_rel_clust(de_county, c(pop_black, starts_with('pop_')))
ds_rel_clust(de_county, c(pop_black, starts_with('pop_')), 'rel_clust')
```

ds_rel_conc

Compute Relative Concentration

Description

Compute Relative Concentration

Usage

```
ds_rel_conc(.data, .cols, .name)
rel_conc(..., .data = dplyr::across(everything()))
```

Arguments

.data	tibble with sf geometry
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with relative concentration. Leave missing to return a vector.
	arguments to forward to ds_rel_conc from rel_conc

Value

a tibble or numeric vector if .name missing

ds_reyni

Examples

```
data('de_county')
ds_rel_conc(de_county, c(pop_black, starts_with('pop_')))
ds_rel_conc(de_county, c(pop_black, starts_with('pop_')), 'rel_conc')
```

ds_reyni

Compute Reyni Entropy

Description

Compute Reyni Entropy

Usage

```
ds_reyni(.data, .cols, .name, q = 0)
reyni(..., .data = dplyr::across(everything()))
```

Arguments

```
.data tibble
.cols tidy-select Columns to compute the measure with.
.name name for column with Reyni entropy. Leave missing to return a vector.
q exponent parameter. Default 0. Can not be 1.
... arguments to forward to ds_reyni from reyni
```

Value

a tibble or numeric vector if .name missing

```
data('de_county')
ds_reyni(de_county, starts_with('pop_'))
ds_reyni(de_county, starts_with('pop_'), 'reyni')
```

ds_shannon 19

ds_shannon

Compute Shannon Index

Description

Compute Shannon Index

Usage

```
ds_shannon(.data, .cols, .name)
shannon(..., .data = dplyr::across(everything()))
```

Arguments

```
    .data tibble
    .cols tidy-select Columns to compute the measure with.
    .name name for column with Shannon index. Leave missing to return a vector.
    ... arguments to forward to ds_shannon
```

Value

a tibble or numeric vector if .name missing

Examples

```
data("de_county")
ds_shannon(de_county, starts_with('pop_'))
ds_shannon(de_county, starts_with('pop_'), 'shannon')
```

ds_spat_prox

Compute Spatial Proximity

Description

Compute Spatial Proximity

```
ds_spat_prox(.data, .cols, .name)
spat_prox(..., .data = dplyr::across(everything()))
```

20 ds_spat_prox

Arguments

.data	tibble with sf geometry
.cols	tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.
.name	name for column with spatial proximity. Leave missing to return a vector.
	arguments to forward to ds_spat_prox from spat_prox

Value

a tibble or numeric vector if .name missing

```
data("de_county")
ds_spat_prox(de_county, c(pop_black, starts_with('pop_')))
ds_spat_prox(de_county, c(pop_black, starts_with('pop_')), 'spat_prox')
```

Index

* centralization	correlation (ds_correlation), 7
ds_abs_cent, 3	
ds_rel_cent, 16	dd_interaction(ds_dd_interaction), 7
* clustering	dd_isolation(ds_dd_isolation),8
ds_abs_clust, 4	de_county, 2
ds_dd_interaction,7	de_tract, 3
$ds_dd_isolation, 8$	delta(ds_delta),9
ds_rel_clust, 16	dissim(ds_dissim), 10
ds_spat_prox, 19	diversity(ds_diversity), 10
* concentration	ds_abs_cent, 3
ds_abs_conc, 5	ds_abs_clust, 4
ds_delta,9	ds_abs_conc, 5
ds_rel_conc, 17	ds_atkinson,5
* data	ds_blau, 6
de_county, 2	ds_correlation, 7
de_tract, 3	ds_dd_interaction, 7
* div	ds_dd_isolation, 8
ds_blau, 6	ds_delta,9
ds_diversity, 10	ds_dissim, 10
ds_hhi, 13	ds_diversity, 10
ds_inv_simpson, 14	ds_entropy, 11
ds_reyni, 18	ds_gini, 12
ds_shannon, 19	ds_hhi, 13
* evenness	ds_interaction, 14
ds_atkinson, 5	ds_inv_simpson, 14
ds_dissim, 10	ds_isolation, 15
ds_entropy, 11	<pre>ds_perplexity (ds_diversity), 10</pre>
ds_gini, 12	ds_rel_cent, 16
	ds_rel_clust, 16
* exposure	ds_rel_conc, 17
ds_correlation, 7	ds_reyni, 18
ds_interaction, 14	ds_shannon, 19
ds_isolation, 15	ds_simpson(ds_hhi), 13
	ds_spat_prox, 19
abs_cent (ds_abs_cent), 3	
abs_clust (ds_abs_clust), 4	entropy (ds_entropy), 11
abs_conc (ds_abs_conc), 5	
atkinson (ds_atkinson), 5	gini (ds_gini), 12
blau (ds_blau), 6	hhi (ds_hhi), 13

22 INDEX

```
interaction (ds_interaction), 14
inv_simpson (ds_inv_simpson), 14
isolation (ds_isolation), 15

perplexity (ds_diversity), 10

rel_cent (ds_rel_cent), 16
rel_clust (ds_rel_clust), 16
rel_conc (ds_rel_conc), 17
reyni (ds_reyni), 18

shannon (ds_shannon), 19
simpson (ds_hhi), 13
spat_prox (ds_spat_prox), 19
tibble, 3-20
```