CSCI 338: Assignment 2 (6 points)

Elliott Pryor

Feb 18, 2020

This assignment is due on **Tuesday**, **Feb 18**, **11:30pm**. It is strongly encouraged that you use Latex to generate a single pdf file and upload it under *Assignment 2* on D2L. But there will NOT be a penalty for not using Latex (to finish the assignment). This is **not** a group-assignment, so you must finish the assignment by yourself.

(1.1) Problem 1.6.c, 1.6.f (page 84— all the questions with only numbers given are referred to the 3rd edition of the textbook).

1.6.c

Figure 1: Solution to 1.6.c

1.6.f

Figure 2: Solution to 1.6.f

(1.2) Problem 1.7.b, 1.7.c (page 84).

1.7.b

The solution for 1.6.c (Figure 1) is also a valid NFA and has 5 states.

1.7.c

Figure 3: Solution to 1.7.c

Problem 1.16.a, Problem 1.16.b (page 86).

1.16.a

Figure 4: Solution to 1.16.a

1.16.b

Figure 5: Solution to 1.16.b

Problem 1.19.a, 1.19.b (page 86).

Note in solutions some of the internal epsilon transitions are ommitted for concision.

1.19.a

Figure 6: Solution to 1.19.a

1.19.b

Figure 7: Solution to 1.19.b

Problem 1.21.a (page 86).

1.21.a

Figure 8: Solution to 1.21.a

Prove the following languages are not regular.

(5.1) $A = \{a^{n^3} | n \ge 0\}$. Here a^x means a string of x a's.

PROOF. Assume A is regular. Then let $S = a^{p^3}$ where p is the pumping length.

By the pumping lemma, S can be decomposed into xyz s.t.

- (1) $xy^iz \in A \text{ for } i \ge 0$
- (2) |y| > 0
- (3) $|xy| \le p$

By (3), $|y| \le p$. Pumping up, $|xy^2z| \le p^3 + p < p^3 + 3p^2 + 3p + 1 = (p+1)^3$. By (2), |y| > 0 hence $p^3 < |xy^2z| < (p+1)^3$. Thus $xy^2z \notin A$, a contradiction of the pumping lemma. Therefore A is not regular.

 $(5.2) B = \{0^n 1^m 0^n | m, n \ge 0\}.$

PROOF. Assume B is regular. Then let $S=0^p1\,0^p$ where p is the pumping length.

By the pumping lemma, S can be decomposed into xyz s.t.

- $(1) \ xy^iz \in A \text{ for } i \ge 0$
- (2) |y| > 0
- $(3) \ |xy| \le p$

By (3), y must consist only of 0's. Let $\delta = |y|$ then by (2) $\delta > 0$. Then pumping up, $xy^2z = 0^{p+\delta}10^p \notin B$ because there are not the same number of 0's before and after the 1. A contradiction of the pumping lemma, therefore B is not regular.