Топология гладких многообразий

ГКП-4, упр.1. Докажите, что непрерывный образ компакта — компакт.

ГКП-4, упр.2. Гомеоморфны ли окружность и граница треугольника?

ГКП-4, упр.3*. Рассмотрим буквы T, X, L и E как топологические пространства. Какие из них гомеоморфны друг другу?

ГКП-4, упр.4*. Докажите, что если X компактно, то любое взаимнооднозначное непрерывное отображение $f\colon X\to Y$ — гомеоморфизм, где Y — хаусдорфово.

ГКП-4, упр.5. Какое минимальное число карт нужно, чтобы покрыть сферу?

ГКП-4, упр.6. Докажите, что сфера и тор не гомеоморфны.

Топология дискретных поверхностей

(Геометрический) *симплициальный комплекс* — это такой набор симплексов в \mathbb{R}^n , что грань каждого симплекса тоже входит в этот набор и пересечение любых двух симплексов является гранью каждого из них.

Симплициальным многообразием называется симплициальный комплекс, у которого звезда каждой вершины (то есть совокупность всех симплексов, содержащих её) гомеоморфна шару. Поверхностью мы называем двумерное многообразие.

Вершина называется регулярной, если её степень равна шести.

ГКП-4, упр.7. Пусть L и M являются подкомплексами симплициального комплекса K. Докажите, что $L\cap M$ и $L\cup M$ также являются таковыми.

ГКП-4, упр.8. Постройте *тиангуляцию*, то есть гомеоморфизм с симплициальной поверхностью, для

- (a) сферы \mathbb{S}^2 ;
- (б) тора $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$;

ГКП-4, упр.9. Для выпуклого многогранника, у которого V вершин, E рёбер и F граней, докажите формулу Эйлера: V-E+F=2.

ГКП-4, упр.10*. Для симплициальной поверхности (ориентируемой, без края) с g ручками, у которой V вершин, E рёбер и F граней, докажите формулу Эйлера-Пуанкаре: V-E+F=2-2g.

ГКП-4, упр.11. Докажите, что если каждая вершина симплициальной поверхности (связной, ориентируемой, без края) регулярна, то эта поверхность — тор, т.е. g=1.

ГКП-4, упр.12. Докажите, что при $g \ge 2$ есть хотя бы одна нерегулярная вершина, а при g = 0 — хотя бы четыре.

ГКП-4, упр.13. Докажите, что *средняя* степень вершин стремится к 6 при увеличении числа вершин в триангуляции поверхности.

Топология гладких многообразий

ГКП-4, упр.1. Докажите, что непрерывный образ компакта — компакт.

ГКП-4, упр.2. Гомеоморфны ли окружность и граница треугольника?

ГКП-4, упр.3*. Рассмотрим буквы T, X, L и E как топологические пространства. Какие из них гомеоморфны друг другу?

ГКП-4, упр.4*. Докажите, что если X компактно, то любое взаимнооднозначное непрерывное отображение $f\colon X\to Y$ — гомеоморфизм, где Y — хаусдорфово.

ГКП-4, упр.5. Какое минимальное число карт нужно, чтобы покрыть сферу?

ГКП-4, упр.6. Докажите, что сфера и тор не гомеоморфны.

Топология дискретных поверхностей

(Геометрический) *симплициальный комплекс* — это такой набор симплексов в \mathbb{R}^n , что грань каждого симплекса тоже входит в этот набор и пересечение любых двух симплексов является гранью каждого из них.

Симплициальным многообразием называется симплициальный комплекс, у которого звезда каждой вершины (то есть совокупность всех симплексов, содержащих её) гомеоморфна шару. Поверхностью мы называем двумерное многообразие.

Вершина называется регулярной, если её степень равна шести.

ГКП-4, упр.7. Пусть L и M являются подкомплексами симплициального комплекса K. Докажите, что $L\cap M$ и $L\cup M$ также являются таковыми.

ГКП-4, упр.8. Постройте *тиангуляцию*, то есть гомеоморфизм с симплициальной поверхностью, для

- (a) сферы \mathbb{S}^2 ;
- (б) тора $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$;

ГКП-4, упр.9. Для выпуклого многогранника, у которого V вершин, E рёбер и F граней, докажите формулу Эйлера: V-E+F=2.

ГКП-4, упр.10*. Для симплициальной поверхности (ориентируемой, без края) с g ручками, у которой V вершин, E рёбер и F граней, докажите формулу Эйлера-Пуанкаре: V-E+F=2-2g.

ГКП-4, упр.11. Докажите, что если каждая вершина симплициальной поверхности (связной, ориентируемой, без края) регулярна, то эта поверхность — тор, т.е. g=1.

ГКП-4, упр.12. Докажите, что при $g \ge 2$ есть хотя бы одна нерегулярная вершина, а при g = 0 — хотя бы четыре.

ГКП-4, упр.13. Докажите, что *средняя* степень вершин стремится к 6 при увеличении числа вершин в триангуляции поверхности.