Section 8.1

The Inverse Sine, Cosine, and Tangent Functions

Review of Properties of Functions and Their Inverses

- **1.** $f^{-1}(f(x)) = x$ for every x in the domain of f and $f(f^{-1}(x)) = x$ for every x in the domain of f^{-1} .
- **2.** Domain of $f = \text{range of } f^{-1}$, and range of $f = \text{domain of } f^{-1}$.
- 3. The graph of f and the graph of f^{-1} are symmetric with respect to the line y = x.
- **4.** If a function y = f(x) has an inverse function, the equation of the inverse function is x = f(y). The solution of this equation is $y = f^{-1}(x)$.

The Inverse Sine Function

$$y = \sin x, -\infty < x < \infty, -1 \le y \le 1$$

$$y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}, -1 \le y \le 1$$

$$y = \sin^{-1} x$$
 means $x = \sin y$

where
$$-1 \le x \le 1$$
 and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$y = \sin^{-1} x$$
, $-1 \le x \le 1$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Finding the Exact Value of an Inverse Sine Function

Find the exact value of: $\sin^{-1} 1$

We seek the angle θ , $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, whose sine equals 1.

We see that the only angle θ within the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is 1 is $\frac{\pi}{2}$.

(Note that $\sin \frac{5\pi}{2}$ also equals 1, but $\frac{5\pi}{2}$ lies outside the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and hence

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin heta$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

ntice Hall.

Finding the Exact Value of an Inverse Sine Function

Find the exact value of: $\sin^{-1}\left(-\frac{1}{2}\right)$

We seek the angle θ , $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, whose sine equals $-\frac{1}{2}$.

$$\frac{\theta}{-\frac{\pi}{2}} - \frac{\pi}{3} - \frac{\pi}{4} - \frac{\pi}{6} = 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} = \frac{\pi}{2}$$

$$\sin \theta = -1 \quad -\frac{\sqrt{3}}{2} \quad -\frac{\sqrt{2}}{2} \quad -\frac{1}{2} = 0 \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} = \frac{\sqrt{3}}{2} = 1$$

$$\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

Finding an Approximate Value of an Inverse Sine Function

Find an approximate value of:

(a)
$$\sin^{-1} \frac{1}{3}$$

(b)
$$\sin^{-1}\left(-\frac{1}{4}\right)$$

Express the answer in radians rounded to two decimal places.

Properties of Inverse Functions

$$f^{-1}(f(x)) = \sin^{-1}(\sin x) = x$$
, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 $f(f^{-1}(x)) = \sin(\sin^{-1} x) = x$, where $-1 \le x \le 1$

Finding the Exact Value of Certain Composite Functions

Find the exact value of each of the following composite functions:

(a)
$$\sin^{-1}\left(\sin\frac{\pi}{8}\right)$$

Because $\frac{\pi}{8}$ is in the interval $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$,

$$\sin^{-1}\left(\sin\frac{\pi}{8}\right) = \frac{\pi}{8}$$

(b)
$$\sin^{-1}\left(\sin\frac{5\pi}{8}\right)$$

 $\frac{5\pi}{8}$ is not in the interval $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$ so

we need an angle in the interval

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 for which $\sin \theta = \sin \frac{5\pi}{8}$.

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 for which $\sin \theta = \sin \frac{5\pi}{8}$. $\sin^{-1}\left(\sin \frac{5\pi}{8}\right) = \sin^{-1}\left(\sin \frac{3\pi}{8}\right) = \frac{3\pi}{8}$

Finding the Exact Value of Certain Composite Functions

Find the exact value, if any, of each composite function.

(a) $\sin(\sin^{-1} 0.5)$

- (b) $\sin(\sin^{-1} 1.8)$
- (a) The composite function $\sin(\sin^{-1} 0.5)$ follows the form of equation (2b) and 0.5 is in the interval [-1, 1]. So we use (2b):

$$\sin(\sin^{-1} 0.5) = 0.5$$

(b) The composite function sin(sin⁻¹ 1.8) follows the form of equation (2b), but 1.8 is not in the domain of the inverse sine function. This composite function is not defined.

The Inverse Cosine Function

$$y = \cos x$$
, $-\infty < x < \infty$,
 $-1 \le y \le 1$

$$y = \cos^{-1} x$$
 means $x = \cos y$
where $-1 \le x \le 1$ and $0 \le y \le \pi$

Finding the Exact Value of an Inverse Cosine Function

θ	$\cos \theta$
0	1
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	0
$\frac{2\pi}{3}$	$-\frac{1}{2}$
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$
π	- 1

Find the exact value of: $\cos^{-1} 0$

We seek the angle θ , $0 \le \theta \le \pi$, whose cosine equals 0.

$$\cos^{-1} 0 = \frac{\pi}{2}$$

Finding the Exact Value of an Inverse Cosine Function

θ	$\cos \theta$
0	1
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	0
$\frac{2\pi}{3}$	$-\frac{1}{2}$
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$
π	-1

Find the exact value of: $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$$

Properties of Inverse Functions

$$f^{-1}(f(x)) = \cos^{-1}(\cos x) = x$$
, where $0 \le x \le \pi$
 $f(f^{-1}(x)) = \cos(\cos^{-1} x) = x$, where $-1 \le x \le 1$

Using Properties of Inverse Functions to Find the Exact Value of Certain Composite Functions

Find the exact value of:

(a)
$$\cos^{-1} \left[\cos \left(\frac{5\pi}{6} \right) \right] = \frac{5\pi}{6}$$
 since $\frac{5\pi}{6}$ is in the interval $[0, \pi)$.

(b) $\cos(\cos^{-1} 0.2) = 0.2$ since 0.2 is in the interval [-1,1].

(c)
$$\cos^{-1} \left[\cos \left(\frac{5\pi}{4} \right) \right] = \cos^{-1} \left[\cos \left(\frac{3\pi}{4} \right) \right] = \frac{3\pi}{4}$$

Since $\frac{5\pi}{4}$ is not in the interval $[0,\pi)$ we find an angle that has the same

cosine value that is in that interval.
$$\cos\left(\frac{5\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$$

(d) $\cos(\cos^{-1} 2)$ This is undefined since 2 is not the interval [-1,1].

The Inverse Tangent Function

$$y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2},$$

 $-\infty < y < \infty$

$$y = \tan^{-1} x$$
 means $x = \tan y$
where $-\infty < x < \infty$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Finding the Exact Value of an Inverse Tangent Function

θ	an heta
$-\frac{\pi}{2}$	Undefined
$-\frac{\pi}{3}$	$-\sqrt{3}$
$-\frac{\pi}{4}$	-1
$-\frac{\pi}{6}$	$-\frac{\sqrt{3}}{3}$
0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	1
$\frac{\pi}{3}$	$\sqrt{3}$
$\frac{\pi}{2}$	Undefined

Find the exact value of: tan⁻¹ 1

We seek the angle θ , $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, whose tangent equals 1.

$$\tan^{-1} 1 = \frac{\pi}{4}$$

$$y = \tan^{-1} x$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Finding the Exact Value of an Inverse Tangent Function

θ	an heta
$-\frac{\pi}{2}$	Undefined
$-\frac{\pi}{3}$	$-\sqrt{3}$
$-\frac{\pi}{4}$	-1
$-\frac{\pi}{6}$	$-\frac{\sqrt{3}}{3}$
0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	1
$\frac{\pi}{3}$	$\sqrt{3}$
$\frac{\pi}{2}$	Undefined

Find the exact value of: $tan^{-1}(-\sqrt{3})$

We seek the angle $\theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$, whose tangent equals $-\sqrt{3}$.

$$\tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$$

$$y = \tan^{-1} x$$

Properties of Inverse Functions

$$f^{-1}(f(x)) = \tan^{-1}(\tan x) = x$$
 where $-\frac{\pi}{2} < x < \frac{\pi}{2}$
 $f(f^{-1}(x)) = \tan(\tan^{-1} x) = x$ where $-\infty < x < \infty$

Finding the Inverse Function of a Trigonometric Function

Find the inverse function f^{-1} of $f(x) = 3\cos x + 1$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

Find the range of f and the domain and range of f^{-1} .

$$y = 3\cos x + 1$$

Recall that the domain of f is the range of f^1 and the range of f is the domain of f^1 .

$$x = 3\cos y + 1$$
 interchange x and y

$$3\cos y = x-1$$

So the range of f is $-2 \le y \le 4$

$$\cos y = \frac{x-1}{3}$$

and the range of f^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$y = \cos^{-1}\left(\frac{x-1}{3}\right) = f^{-1}(x)$$
 Domain of f^{-1} is $-1 \le \frac{x-1}{3} \le 1$
 $-3 \le x - 1 \le 3$ $-2 \le x \le 4$

Solving an Equation Involving an Inverse Trigonometric Function

Solve the equation:
$$2\cos^{-1} x = \frac{\pi}{2}$$

$$\cos^{-1} x = \frac{\pi}{4}$$

$$x = \cos\frac{\pi}{4}$$

$$x = \frac{\sqrt{2}}{2}$$