The Facility Perspective

Tim Snow
Diamond Light Source

Introduction

- Diamond Light Source
 - Synchrotron x-ray radiation source
- ISIS Neutron and Muon Source
 - Spallation radiation source
- Scientific Computing Application Resource for Facilities (SCARF)
 - Joint computing resource on the RAL site

Small angle scattering

X-ray data

Neutron data

Image integration

Advantages

- Averaging data points mitigates scattering variation at a given q or χ value
- Yields smaller datasets which can be compared by eye and analysed relatively quickly by computer

Disadvantages

- Image integration results in information loss
- Mutual exclusivity between orientation and structural information
- Obscures the true nature of the sample scanned

Small angle scattering

Small angle scattering

Azimuthal (I vs. q) analysis

- SasView
 - Shape and size fitting to SAS data
- Scåtter
 - P(r) and R_g values from solution scattering
- SAS Portal
 - List of small angle scattering software
 - www.smallangle.org

How far should facilities go?

- Scattering is a tool and part of providing the tool should be analysis tools
 - The job of the facilities
- Analysis is where the science is to be found
 - The job of the user

Data on disk is useless to everybody

Analysing complex datasets

- Currently
 - Biological users
 - Advantage from protein databank
 - Creation of simulation trajectory files catered for
 - Groups with simulation expertise
- Future
 - Polymer systems
 - Soft matter systems
 - Bio-mimetic systems

HPC at RAL

- SCARF resources available
 - 420 nodes, 6,176 CPU cores, 32.5 TB RAM
 - Access, via FED ID, to all Diamond and ISIS users
- SASSIE is being installed on SCARF
 - Most dependencies installed
 - Collaboration with J. Curtis
 - www.github.com/zazzie_1.5

First steps

- Trajectory files and simulation constraints
 - Simplify process of creation
 - Some form of 'intelligence' required
 - Prevent users from analysing unphysical systems
- Commitment to SASSIE
 - Installation and setup of SASSIE on SCARF
 - Provision of HPC time by Diamond and ISIS
 - Initial user training

Future steps

- Building on biological roots
 - Suite of tools for trajectory files
 - Colloidal systems
 - Polymer systems
 - Soft matter systems
- Develop simulation expertise at facilities
 - First point of contact
- Integrating SASSIE with RAL data analysis

Final thoughts

- Scattering is a tool and part of providing the tool should be analysis tools
 - Pooling of resources and collaborations facilitating better resources for users
- Analysis is where the science is to be found
 - We must help users but, ultimately, they must work with their data to make discoveries

Data on disk is useless to everybody

Acknowledgements

CCP-SAS Working Group

EPSRC – Grant EP/K039121/1

NSF – Grant SI2/CHE-1265821

