CS6LXXXX – Linear Algebra, Analytic Geometry, and Matrix Decompositions

Matrices and Linear Systems – Definitions, Properties, Rules & Constructs (Chapter 2)

- Matrix Definition
- Matrix Arithmetic Properties
 - Addition, Multiplication, Multiply by a scalar
- Matrix Algebraic Properties
 - Commutative: Addition is Commutative,
 Multiplication is not Commutative
 - Associative: Both Addition and Multiplication is Associative
 - Distributive: Multiplication is Distributive over Addition (both left and right). Addition not Distributive over Multiplication
 - Transpose Matrix and Add/Multiply Property

$$(A+B)^T = A^T + B^T = B^T + A^T$$

- \triangleright (AB)^T = B^TA^T and (AB)^T \neq A^TB^T
- Square Matrix and its Properties
- Identity Matrix and its Properties
- Matrix Inversion and Add/Multiply Property
 - \rightarrow (A+B)⁻¹ \neq A⁻¹ + B⁻¹ \neq B⁻¹ + A⁻¹
 - \rightarrow (AB)⁻¹ = B⁻¹A⁻¹ and (AB)⁻¹ \neq A⁻¹B⁻¹

- Matrix Algebraic Properties (continues)
 - Regular/Invertible/Non-singular Matrix
 - Determinant, Trace, and Minor
 - Symmetric Matrix
 - Row-Echelon form of a matrix and pivots
 - Reduced Row-Echelon form of a matrix
 - Gaussian Elimination of a Matrix
 - Lower (L) and Upper (U) Triangular Matrices
 - LU factorization of a Matrix
- Linear System Definition, Representation, Solution Set, and Elementary Transformation and its effect on Solution Set (exchange of rows, addition of rows, scalar multiplication of a row, any combination)
- Group and Vector Space
 - Definition, Properties, Abelian (Commutative)
 Group, General Linear Group
 - Linear Combination and Linearly Independent
 - Generating Set, Span & Minimal Generating Set
 - Basis and Rank