GROUP WORK PROJECT # 1 MScFE 622: STOCHASTIC MODELING

Group Number: 3589

FULL LEGAL NAME	LOCATION (COUNTRY)	EMAIL ADDRESS	MARK X FOR ANY NON-CONTRIBUTING MEMBER
Yuhua Ren	Singapore	yuhua.ren1@gmail.com	
Shailza Virmani	India	virmanishailza@gmail.com	
Allan Bakyaita Sserwanga	Uganda	allansserwanga2@gmail.com	

Statement of integrity: By typing the names of all group members in the text boxes below, you confirm that the assignment submitted is original work produced by the group (excluding any non-contributing members identified with an "X" above).

Team member 1 Ren Yuhua

Team member 2 Shailza Virmani

Team member 3 Allan Bakyaita Sserwanga

Use the box below to explain any attempts to reach out to a non-contributing member. Type (N/A) if all members contributed. Note: You may be required to provide proof of your outreach to non-contributing members upon request.
N/A

GWP1

July 21, 2023

0.1 Step 1

0.1.1 The Lewis approach to calibrate the Heston (1993) model

To calibrate our Heston model, we choose only those options with 15 days to maturity and strikes that are 2% from SO (232.9).

	Days to Maturity	Strike	Put	Call	Т	r
1	15	230.0	5.20	10.05	0.041096	0.015
2	15	232.5	6.45	7.75	0.041096	0.015
3	15	235.0	7.56	6.01	0.041096	0.015
4	15	237.5	8.78	4.75	0.041096	0.015

Calibrated Heston 1993 model parameters under Lewis:

kappa_v: 12.1999777 theta_v: 0.0103035 sigma_v: 0.0560699

rho: -0.0128791 v0: 0.1711087

Using the Heston 1993 model with calibrated parameters to price options

0.1.2 The Carr-Madan approach to calibrate the Heston (1993) model

Calibrated Heston 1993 model parameters under Carr-Madan:

kappa_v: 7.9619829 theta_v: 0.0176 sigma_v: 0.0615781

rho: -0.0091954 v0: 0.1573166

Using the Heston 1993 model with calibrated parameters to price options

 κ_v parameter seems off compared to calibrating under Lewis approach. However, the predictions are mostly consistent.

0.2 Pricing asian option with calibrated Heston model

Price of Asian option under Heston:

3.85

4% fee charged to client: 0.15
Total price to be paid by client: 4.0

0.3 Step 2

0.3.1 The Lewis approach to calibrate the Bates (1996) model

To calibrate our Heston model, we choose only those options with 60 days to maturity and strikes that are 2% from SO (232.9).

	Days to Maturity	Strike	Put	Call	T	r
6	60	230.0	12.15	17.65	0.164384	0.015
7	60	232.5	13.37	16.86	0.164384	0.015
8	60	235.0	14.75	16.05	0.164384	0.015
9	60	237.5	15.62	15.10	0.164384	0.015

1st calibration of Bates 1996 model parameters under Lewis:

lamb: 0.906066

mu: -0.0

delta: 0.4137137

c:\users\yuhua\appdata\local\programs\python\python37\lib\sitepackages\ipykernel_launcher.py:36: IntegrationWarning: The occurrence of
roundoff error is detected, which prevents

the requested tolerance from being achieved. The error may be underestimated.

Fully calibrated Bates 1996 model parameters under Lewis:

kappa_v: 10.904418 theta_v: 0.0050051 sigma_v: 0.0151027

rho: 0.1439716 v0: 0.1778501 lamb: 0.7884493 mu: -0.0 delta: 0.4312459

Using the Bates 1996 model with calibrated parameters to price options

0.3.2 The Carr-Madan approach to calibrate the Bates (1996) model

1st calibration of Bates 1996 model parameters under Carr-Madan:

lamb: 0.9060011

mu: -0.0

delta: 0.4137353

Fully calibrated Bates 1996 model parameters under Carr-Madan:

kappa_v: 12.3462662 theta_v: 0.0118535 sigma_v: 2.8e-06

rho: -0.0206757 v0: 0.1743942 lambda: 0.9050686 mu: -0.0

delta: 0.4073505

Using the Bates 1996 model with calibrated parameters to price options

Calibrating under the Carr-Madan approach gives vastly different parameters than the Lewis approach. However, the predictions are mostly consistent.

0.4 Pricing European put option with calibrated Bates model

Price of European option under Bates: 9.96
4% fee charged to client: 0.4
Total price to be paid by client: 10.36

0.5 Step 3

0.6 Calibrating CIR model

Note: Euribor uses the 30/360 convention for month/year. We use the cubic spline method to interpolate 24 evenly spaced maturities in 1 year.

Calibrated CIR model parameters:

kappa_r: 0.989083 theta_r: 0.1086319 sigma_r: 0.0010007

Using the calibrated CIR model to predict Euribor interest rates

0.7 Simulating 12-months rate with calibrated CIR model
Using the CIR parameters obtained from calibration previously.

Let us consider the most extreme 10% to be outlier. To see where the 12-month Euribor rate could be, we can look at the value of the 10th and 90th percentile values.

 10th percentile:
 0.07737

 90th percentile:
 0.07779

 Expected value:
 0.07758

Graphically, the CIR model say that the 12-month Euribor rate is projected to rise. With the Euro being a major global currency, the Euribor rate can be taken as the risk-free rate (r). Therefore, it affects the pricing in the various models such as Heston 1993 and Bates 1996 used in the previous sections.