TABLE OF CONTENTS

		Page	
LIST	Γ OF FIGURES	xi	
LIST	T OF TABLES	XV	
LIST	T OF SYMBOLS AND ABBREVIATIONS	xvii	
1.	INTRODUCTION	1	
2.	SOURCES AND CONTROLLING FACTORS OF HYDROSALINITY	4	
	2.1 Sources of Hydrosalinity	4	
	2.1.1 Natural sources	4	
	2.1.2 Anthropogenic sources	5	
	2.2 Factors Controlling Hydrosalinity		
	2.2.1 Soil and geologic formations	7	
	2.2.2 Hydrologic and climatic factors	9	
	2.2.2.1 Rainfall	9	
	2.2.2.2 Irrigation water	10	
	2.2.2.3 Total evaporation	10	
	2.2.2.4 Runoff volume and flow components	11	
	2.2.3 Land use and land cover	12	
	2.2.4 Topographic characteristics	15	
	2.2.5 The effect of time	15	
3.	REVIEW OF HYDROSALINITY MODELLING APPROACHES	17	
	3.1 Types of Hydrosalinity Models		
	3.1.1 Calibration and parameter optimizing models	17	
	3.1.2 Parametric models	18	
	3.1.3 Stochastic models	18	
	3.1.4 Deterministic, physical conceptually based models	19	

	3.1.4.1 Mechanistic models	20
	3.1.4.2 Functional models	20
	3.2 Classification of Hydrosalinity Models Commonly Used in South Africa	22
	3.3 Mechanistic Modelling Approach of Salt Balance and Movement in Soils	23
	3.3.1 Diffusion	23
	3.3.2 Mechanical dispersion	24
	3.3.3 Convection and combined convective-diffusion transport	26
	3.3.4 Miscible displacement	27
	3.3.5 Anion exclusion	29
	3.4 Simplified Modelling Approaches of Soil Salt Balance and Movement	31
	3.4.1 Emprical and simplified functional approaches	31
	3.4.2 Soil water and TDS balance modelling in the DISA	
	hydrosalinity model	32
	3.4.3 Salt generation	34
	3.4.3.1 Salt generation in DISA model	34
	3.4.3.2 Combined salt generation and mixing models	35
	3.5 Conclusions	38
4.	DESCRIPTION OF THE $ACRU$ AGROHYDROLOGICAL MODELLING	
	SYSTEM	39
	4.1 Background and Concepts of ACRU Model	39
	4.2 ACRU 300 Series and Its Structural Limitations	41
	4.3 ACRU2000	42
	4.3.1 Object-oriented programming and the ACRU2000	42
	4.3.2 Basic structure and objects of ACRU2000	45
5.	DEVELOPMENT OF THE HYDROSALINITY MODULE	49
	5.1 Modelling Approach and Basic Objects in ACRUSalinity	49
	5.1.1 Component objects	50
	5.1.2 Data objects	50
	5.1.3 Process objects	51
	5.2 Subsurface TDS Balance and Baseflow Salinity	53
	5.2.1 Total evaporation and the soil water balance as conceptualised in the	
	ACRU model	53

		5.2.1.1	Total evaporation	54
		5.2.1.2	Soil water balance	55
	5.2.2	Rainfall	and irrigation water salt input	56
	5.2.3	Subsurfa	ace salt movement	58
		5.2.3.1	Downward subsurface salt movement	59
		5.2.3.2	Upward subsurface salt movement	65
	5.2.4	Salt gen	eration	68
	5.2.5	Effect of	f total evaporation on subsurface TDS balance	70
5.3	Deter	mination	of Surface Flow Salt Balance	71
	5.3.1	Stormflo	ow generation mechanism in ACRU	71
		5.3.1.1	Stormflow generation	71
		5.3.1.2	The concept of delayed stormflow	72
	5.3.2	Stormflo	ow and quick flow salinity	73
	5.3.3	The effe	ect of delayed stormflow on TDS balance determination	74
	5.3.4	Runoffs	salinity and salt load	75
5.4	Salt	Distribut	ion to Reservoir and Channel Reaches	77
	5.4.1	Runoff	distribution in ACRU	77
	5.4.2	Salt dist	ribution from non-irrigated lands	79
	5.4.3	Salt dist	ribution from irrigated lands	82
	5.4.4	4 Salt distribution from impervious areas		
		5.4.4.1	Hydrological responses of impervious areas as	
			conceptualised in ACRU model	83
		5.4.4.2	Determination and allocation of runoff salt load from	
			impervious areas	84
5.5	Rese	voir Salt	Budget and Salt Routing	88
	5.5.1	Reservo	ir water budgeting in ACRU	89
		5.5.1.1	Gains to the system	89
		5.5.1.2	Losses from the system	9(
		5.5.1.3	Surface area to storage relationship	91
	5.5.2	Determi	nation of TDS concentration of reservoir storage and outflows	92
	5.5.3	The PSa	ultStacking Process Object	94
5 6	Chan	nel Salt N	Movement and Distributed Hydrosalinity Modeling	97

6.	VALIDATION AND VERIFICATION	101
	6.1 Description of the Upper Mkomazi Catchment	102
	6.1.1 Climatological and hydrological conditions	102
	6.1.2 Physiography	104
	6.1.3 Land use and land cover	104
	6.1.4 Geological formations	106
	6.1.5 Salinity in the catchment	107
	6.2 Previous Modelling Efforts in the Upper Mkomazi Catchment	108
	6.2.1 DWAF pre-feasibility study	109
	6.2.2 ACRU based simulation study	109
	6.3 Setup of ACRU2000 for the Upper Mkomazi Catchment	110
	6.4 Basic Data Input Requirements and Data Preparation for ACRUSalinity	113
	6.4.1 Rainfall and irrigation water TDS concentrations	113
	6.4.2 Initial TDS concentrations of subsurface and reservoir water storage	114
	6.4.3 Salt uptake rate and equilibrium values	115
	6.5 Code Validation of the major ACRUSalinity Process Objects	116
	6.5.1 Code validation of subsurface salt movement processes	116
	6.5.2 Code validation of surface salt movement processes	119
	6.5.3 Code validation of reservoir salt budgeting processes	119
	6.5.4 Code validation of channel salt movement and distributed	
	hydrosalinity modelling processes	121
	6.6 Verification Against Observed Data	123
	6.6.1 Observed daily flow and TDS concentration	124
	6.6.2 Observed data conversion and patching	124
	6.6.3 Calibration of the ACRUSalinity module	125
	6.6.3.1 Time series and percentile curves	126
	6.6.3.2 Statistical analysis	127
	6.6.4 Verification result and discussion	129
	6.6.4.1 Time series and percentile curves	129
	6.6.4.2 Statistical analysis	131
	6.7 Conclusions	133

7.	SENSITIVITY ANALYSIS AND CASE STUDY	134
	7.1 Sensitivity Analysis of the Basic ACRUSalinity Parameters	134
	7.1.1 Effect of the salt uptake rate constant on subsurface water and	
	runoff salinity	135
	7.1.2 The influence of changes in salt saturation value on runoff and	
	subsurface water salinity	138
	7.1.3 Effect of initial soil water salinity on time series subsurface water	
	and runoff salinity	139
	7.1.4 Effect of initial reservoir storage salinity on time series reservoir	
	storage and outflow salinity	144
	7.2 Some Applications of ACRUSalinity: Case Study in the Upper Mkomazi	
	Catchment	146
	7.2.1 Spatial and temporal variations in streamflow salinity within the	
	catchment	146
	7.2.1.1 TDS concentration at sub-catchment outlets and reaches	146
	7.2.1.2 Temporal variations in streamflow salinity and catchment	
	salt export	148
	7.2.2 Modeling future scenarios	150
	7.2.2.1 Evaluating the impact of a proposed reservoir on	
	downstream TDS concentration	150
	7.2.2.2 The impact of land use change on downstream TDS balance	151
	7.3 Conclusions	154
8.	DISCUSSION AND CONCLUSIONS	156
9.	RECOMMENDATIONS FOR FUTURE RESEARCH	163
10.	REFERENCES	166
11.	APPENDICES	176