- 1. $u \notin W$.
- 2. For every $f \in \mathcal{F}$, the vector f(u) belongs to the subspace $W \oplus Ku$ spanned by W and u.

Proof. By renaming the elements of \mathcal{F} if necessary, we may assume that (f_1, \ldots, f_r) is a basis of the subspace of $\operatorname{End}(E)$ spanned by \mathcal{F} . We prove by induction on r that there exists some vector $u \in E$ such that

- 1. $u \notin W$.
- 2. $(f_i \alpha_i id)(u) \in W$ for i = 1, ..., r, for some scalars $\alpha_i \in K$.

Consider the base case r = 1. Since f_1 is triangulable, its eigenvalues all belong to K since they are the diagonal entries of the triangular matrix associated with f_1 (this is the easy direction of Theorem 15.5), so the minimal polynomial of f_1 is of the form

$$m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},$$

where the eigenvalues $\lambda_1, \ldots, \lambda_k$ of f_1 belong to K. We conclude by applying Proposition 31.5.

Next assume that $r \geq 2$ and that the induction hypothesis holds for f_1, \ldots, f_{r-1} . Thus, there is a vector $u_{r-1} \in E$ such that

- 1. $u_{r-1} \notin W$.
- 2. $(f_i \alpha_i \operatorname{id})(u_{r-1}) \in W$ for $i = 1, \ldots, r-1$, for some scalars $\alpha_i \in K$.

Let

$$V_{r-1} = \{ w \in E \mid (f_i - \alpha_i \text{id})(w) \in W, i = 1, \dots, r-1 \}.$$

Clearly, $W \subseteq V_{r-1}$ and $u_{r-1} \in V_{r-1}$. We claim that V_{r-1} is invariant under \mathcal{F} . This is because, for any $v \in V_{r-1}$ and any $f \in \mathcal{F}$, since f and f_i commute, we have

$$(f_i - \alpha_i \operatorname{id})(f(v)) = f((f_i - \alpha_i \operatorname{id})(v)), \quad 1 \le i \le r - 1.$$

Now $(f_i - \alpha_i \operatorname{id})(v) \in W$ because $v \in V_{r-1}$, and W is invariant under \mathcal{F} , so $f(f_i - \alpha_i \operatorname{id})(v) \in W$, that is, $(f_i - \alpha_i \operatorname{id})(f(v)) \in W$.

Consider the restriction g_r of f_r to V_{r-1} . The minimal polynomial of g_r divides the minimal polynomial of f_r , and since f_r is triangulable, just as we saw for f_1 , the minimal polynomial of f_r is of the form

$$m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},$$

where the eigenvalues $\lambda_1, \ldots, \lambda_k$ of f_r belong to K, so the minimal polynomial of g_r is of the same form. By Proposition 31.5, there is some vector $u_r \in V_{r-1}$ such that