April 15th 2024 Neutrinos from Home

Free-Streaming Neutrinos & Their Induced Phase Shift in the CMB Spectra

Gabriele Montefalcone

Weinberg Institute for Theoretical Physics, University of Texas at Austin

Based on ongoing work with Benjamin Wallisch and Katherine Freese

The Cosmic Microwave Background Anisotropies

- An almost perfect black-body spectrum at a single temperature of $T_0 = 2.7255$ K today
- Temperature anisotropies in the order of 10⁻⁵

Cosmic sound waves in the CMB

- Photons and baryons are strongly coupled
- Initial fluctuations excited sound waves in the primordial plasma
- Gravity sources the fluctuations in the photon-baryon fluid

$$\ddot{\delta}_{\gamma} - c_{\gamma}^2 \nabla^2 \delta_{\gamma} = \nabla^2 \Psi_+$$

We observe these acoustic oscillations in the CMB power spectra

$$\delta_{\gamma} \sim A_{\vec{k}} \cos(c_s k \tau),$$
Initial condition (inflation)

$$c_s^2 \sim \frac{c^2}{3(1+R_b)}$$

$$R_b \equiv 3\bar{\rho}_b/(4\bar{\rho}_\gamma)$$

CMB Power Spectra

Temperature spectrum traces **density** perturbations, roughly the gravitational potential

$$\mathcal{D}_{\ell}^{TT} \propto \cos^2(\ell\theta_s)$$

TE spectrum roughly tells us how the plasma is moving into the gravitational potential wells

$$\mathcal{D}_{\ell}^{TE} \propto \sin(\ell\theta_s)\cos(\ell\theta_s)$$

$$\mathcal{D}_{\ell}^{EE} \propto \sin^2(\ell \theta_s)$$

Cosmic Neutrinos

$$\rho_r = \rho_\gamma \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\text{eff}} \right)$$

• 41% of the radiation density in the universe

Neutrino contribution

• In the SM, the effective number of neutrinos $N_{eff} = 3.044$

Akita1, Yamaguchi (2020)

- Cosmology is sensitive to their gravitational effects
 - Both through their energy density and perturbations
 - \circ Planck 2018: $N_{
 m eff}^{
 m CMB} = 2.99 \pm 0.17$

Cosmic Neutrinos in the CMB Energy density

• Main effect in the damping tail of the CMB TT power spectrum, via their effect on the expansion rate

$$\theta_d \propto (H/n_e)^{1/2} \theta_s$$

- $\circ \quad \text{For fixed a}_{eq} \text{ and } \theta_s, \textbf{larger N}_{eff} \\ \textbf{means more damping}$
- Degeneracy with primordial Helium fraction \mathbf{Y}_{He} via \mathbf{n}_{e}

Cosmic Neutrinos in the CMB Free Streaming Nature

- Perturbations from free-streaming neutrinos induce metric perturbations ahead of the sound horizon
- The photon-baryon fluid is pulled by such perturbations, shifting their perturbations peaks to larger radii.

Cosmic Neutrinos in the CMB Free Streaming Nature

 This results in a shift in the phase of the acoustic peaks of the CMB

Bashinsky & Seljak (2003)

- Larger radii → smaller multipoles
- Small effect: $\Delta \ell \approx 5 \cdot \Delta N_{\rm eff}$
- Detected in Planck 2013 TT data!

Follin, Knox, Millea & Pan (2015)

Undamped temperature power spectrum

The special role of the phase shift

- Difficult to reproduce in the absence of free-streaming
 - Either free-streaming or non-adiabatic fluctuations

Baumann, Green, Meyers & Wallisch (2015)

- Same shift both in temperature and polarization spectrum
 - o polarization provides cleaner signal

The phase shift in the CMB power spectra

Following Follin, Knox, Millea & Pan (2015)

 A new parameter to control the shift

$$N_{ ext{eff}}^{\delta\phi} \ \mathcal{C}_{\ell}
ightarrow \mathcal{C}_{\ell+\delta\ell}$$

Our Contributions:

- A new analytic form of the template
- Test with both temperature and polarization data

Phase shift constraints

• Based on Planck 2013 temperature only:

$$N_{
u}^{\delta\phi}=2.3^{+1.1}_{-0.4}$$
 Follin et al. (2015) $(N_{
m eff}=N_{
u}=3.044)$

- Work in Progress (preliminary)
 - Current data, including polarization:

Planck 2018:
$$N_{\nu}^{\delta\phi} = 2.7_{-0.4}^{+0.5}$$

+ ACT + SPT:
$$N_{\nu}^{\delta\phi} = 2.9_{-0.3}^{+0.3}$$

o Forecasts:

SO:
$$\sigma\left(N_{\nu}^{\delta\phi}\right) \sim 0.2$$

CMB-S4:
$$\sigma\left(N_{\nu}^{\delta\phi}\right)\sim0.1$$

Phase shift constraints

- Strong evidence of free-streaming nature of neutrinos
- Current CMB data is compatible with the Standard Model

The phase shift in the CMB perturbations

- Extract the **phase shift** at the **perturbations** level, instead of the CMB power spectra
 - o Cleaner signature: avoids projection and smearing effects

$$S_T(k,\tau) = g(\delta_{\gamma}/4 + \psi) + (g k^{-2}\theta_b)' + \text{polarization} + \dots$$

$$S_P(k,\tau) = \sqrt{6}/2\,g\,\Pi$$

$$\Delta_{X\ell}(k) = \int_0^{\tau_0} d\tau \ S_X(k,\tau) \ P_{X\ell}(k[\tau_0 - \tau])$$
 Source Term Projection

$$C_{\ell}^{XY} = \frac{2}{\pi} \int k^2 dk \underbrace{P(k)}_{\text{Inflation}} \Delta_{X\ell}(k) \Delta_{Y\ell}(k)$$
Inflation Anisotropies

Perturbation-based method

Phase Shift Constraints PBT vs SBT

Perturbation Based Template (PBT)

Planck 2018:
$$N_{\nu}^{\delta\phi} = 2.3_{-0.4}^{+0.4}$$

+ ACT + SPT:
$$N_{\nu}^{\delta\phi} = 2.7_{-0.3}^{+0.3}$$

Spectrum Based Template (SBT)

Planck 2018:
$$N_{\nu}^{\delta\phi} = 2.7_{-0.4}^{+0.5}$$

+ ACT + SPT:
$$N_{\nu}^{\delta\phi} = 2.9_{-0.3}^{+0.3}$$

$$(N_{\rm eff} = N_{\nu} = 3.044)$$

Phase Shift Constraints PBT vs SBT

 While a systematic difference is present, the constraints on the phase shift from the PBT and SBT methods are consistent

 The PBT method is a more direct probe of the free-streaming nature of neutrinos

Summary

- The **phase shift** is a robust probe of **free-streaming neutrinos**
 - CMB measurements provide strong evidence of this effect!
 - Current data are compatible with the Standard Model, constraining non-standard neutrino physics.
- We developed a more **direct** method for the phase shift extraction, at the perturbation level.
 - This will become particularly relevant with the forthcoming improvements in our detectors sensitivity

Grazie per l'attenzione

Gabriele Montefalcone

Weinberg Institute for Theoretical Physics, University of Texas at Austin

Summary Slide

 $(N_{\rm eff} = N_{\nu} = 3.044)$

- The phase shift is a robust probe of free-streaming neutrinos
 - Current data are compatible with the Standard Model, constraining non-standard neutrino physics.
- We developed a more **direct** method for the phase shift extraction, at the perturbation level.

