in God we trust

اعضای گروه: یاسمن عموجعفری (۸۱۰۱۰۲۴۸) - مهدیس میرزایی (۸۱۰۱۰۲۵۸)

• مسیر داده:

• كنترلر :

	PCSrc	Result Stc	Memwrite	AIU OP	A10 Src	Imm Src	Reg Write
add	00	00	0	(0	0	900	1
sub	00	00	0	10	0	000	I .
and	00	00	0	10	0	000	1
or	00	00	0	10	0	000	(
Slt	00	00	О	10	0	000	1
lw	00	0(0	00	I	000	1
addi	GO	00	0	16	1	000	1
0ri	gc.	ao	O	(0)	1	000	١
Slti	Oυ	Oυ	0	Į0	1	000	١
jalv	10	10	O	00	١	000)
Sw	00	00	ſ	00	I	001	σ
jal	θı	10	O	00	0	0(1	1
beq	Zero? (: O	00	c	01	O	019	0
bne	Zero? 0:1	00	О	01	0	010	0
lui	0.0	00	σ	11	0	100	J

• دستورهای استفاده شده:

RV32I Base Integer Instructions

Inst	Name	FMT	Opcode	funct3	funct7	Description (C)	Note
add	ADD	R	0110011	0x0	0x00	rd = rs1 + rs2	
sub	SUB	R	0110011	0x0	0x20	rd = rs1 - rs2	
xor	XOR	R	0110011	0x4	0x00	rd = rs1 ^ rs2	
or or	OR	R	0110011	0x6	0x00	rd = rs1 rs2	
and	AND	R	0110011	0x7	0x00	rd = rs1 & rs2	
sll	Shift Left Logical	R	0110011	0x1	0x00	rd = rs1 << rs2	
srl	Shift Right Logical	R	0110011	0x5	0x00	rd = rs1 >> rs2	
sra	Shift Right Arith*	R	0110011	0x5	0x20	rd = rs1 >> rs2	msb-extends
<pre>slt</pre>	Set Less Than	R	0110011	0x2	0x00	rd = (rs1 < rs2)?1:0	
sltu	Set Less Than (U)	R	0110011	0x3	0x00	rd = (rs1 < rs2)?1:0	zero-extends
addi	ADD Immediate	I	0010011	0x0		rd = rs1 + imm	
xori	XOR Immediate	I	0010011	0x4		rd = rs1 ^ imm	
ori ori	OR Immediate	I	0010011	0x6		rd = rs1 imm	
andi	AND Immediate	I	0010011	0x7		rd = rs1 & imm	
slli	Shift Left Logical Imm	I	0010011	0x1	imm[5:11]=0x00	rd = rs1 << imm[0:4]	
srli	Shift Right Logical Imm	I	0010011	0x5	imm[5:11]=0x00	rd = rs1 >> imm[0:4]	
srai	Shift Right Arith Imm	I	0010011	0x5	imm[5:11]=0x20	rd = rs1 >> imm[0:4]	msb-extends
slti	Set Less Than Imm	I	0010011	0x2		rd = (rs1 < imm)?1:0	
sltiu	Set Less Than Imm (U)	I	0010011	0x3		rd = (rs1 < imm)?1:0	zero-extends
1b	Load Byte	I	0000011	0x0		rd = M[rs1+imm][0:7]	
1h	Load Half	I	0000011	0x1		rd = M[rs1+imm][0:15]	
1w	Load Word	I	0000011	0x2		rd = M[rs1+imm][0:31]	
1bu	Load Byte (U)	I	0000011	0x4		rd = M[rs1+imm][0:7]	zero-extends
1hu	Load Half (U)	I	0000011	0x5		rd = M[rs1+imm][0:15]	zero-extends
sb	Store Byte	S	0100011	0x0		M[rs1+imm][0:7] = rs2[0:7]	
sh	Store Half	S	0100011	0x1		M[rs1+imm][0:15] = rs2[0:15]	
SW	Store Word	S	0100011	0x2		M[rs1+imm][0:31] = rs2[0:31]	
beq	Branch ==	В	1100011	0x0		if(rs1 == rs2) PC += imm	
bne	Branch !=	В	1100011	0x1		if(rs1 != rs2) PC += imm	
blt	Branch <	В	1100011	0x4		if(rs1 < rs2) PC += imm	
bge	Branch ≥	В	1100011	0x5		if(rs1 >= rs2) PC += imm	
bltu	Branch < (U)	В	1100011	0x6		if(rs1 < rs2) PC += imm	zero-extends
bgeu	Branch \geq (U)	В	1100011	0x7		if(rs1 >= rs2) PC += imm	zero-extends
o jal	Jump And Link	J	1101111			rd = PC+4; PC += imm	
jalr	Jump And Link Reg	I	1100111	0x0		rd = PC+4; PC = rs1 + imm	
• lui	Load Upper Imm	U	0110111			rd = imm << 12	
auipc	Add Upper Imm to PC	U	0010111			rd = PC + (imm << 12)	
ecall	Environment Call	I	1110011	0x0	imm=0x0	Transfer control to OS	
ebreak	Environment Break	I	1110011	0x0	imm=0x1	Transfer control to debugger	

• قرار گرفتن عدد ماکسیمم بدون علامت بین ۲۰ تا عدد داده شده در خانه X9 :

عدد fffffff در hex در خانه x9 نخیره شده است.