

Redes de Computadores I

Roteamento

Fernando Parente Garcia

Funcionamento interno de roteadores e switches

Duas funções principais dos roteadores e comutadores:

- executar algoritmos/protocolo de roteamento (RIP, OSPF, BGP)
- repassar datagramas do enlace de entrada para saída

Funcionamento interno Comutação por memória

Roteadores de primeira geração:

- computadores tradicionais com a comutação via controle direto da CPU
- pacote copiado para a memória do sistema
- velocidade limitada pela largura de banda da memória (2 travessias de barramento por datagrama)

Funcionamento interno Comutação por uma rede de interconexão

- contorna limitações de largura de banda do barramento
- redes de interconexão desenvolvidas para interligas as entradas às saídas
- projeto avançado: fragmenta datagrama em células de tamanho fixo,
 comuta células através do elemento de comutação
- Exemplo:
 - Cisco 12000: comuta 60 Gbps através da rede de interconexão

Funcionamento interno Portas de saída

- Buffering exigido quando os datagramas chegam do elemento de comutação mais rápido que a taxa de transmissão
- Disciplina de escalonamento escolhe entre os datagramas enfileirados para transmissão

Funcionamento interno Enfileiramento na porta de saída

- buffering quando a taxa de chegada via comutador excede a velocidade da linha de saída
- enfileiramento (atraso) e perda devidos a estouro de buffer na porta de saída!

Funcionamento interno Enfileiramento na porta de entrada

- elemento de comutação mais lento que portas de entrada combinadas -> enfileiramento possível nas filas de entrada
- bloqueio de cabeça de fila (HOL): datagrama enfileirado na frente da fila impede que outros na fila sigam adiante
- atraso de enfileiramento
 e perda devidos a estouro no buffer de entrada

Roteamento Introdução

Protocolo de Roteamento

OBJ: determinar "bons" caminhos (seqüência de roteadores) através da rede da fonte ao destino.

Algoritmos de roteamento são descritos por grafos:

- Nós do grafo são roteadores
- Arestas do grafo são enlaces
 - Custo do enlace: atraso, número de hops, congestionamento...

- "bons" caminhos:
 - tipicamente correspondem aos caminhos de menor custo
 - caminhos redundantes

Roteamento Protocolos e Algoritmos

- Os protocolos de roteamento implementam um ou mais algoritmos de roteamento
 - Exemplos de Algoritmos
 - Distance Vector
 - Flooding
 - SPF (Shortest Path First)
 - Link State
 - Rota Fixa
 - Exemplos de protocolos
 - RIP
 - OSPF
 - IGRP
 - BGP

Algoritmos de roteamento Características desejáveis

- Otimização
- Robustez
- Estabilidade
- Correção
- Simplicidade

Algoritmos de roteamento Classificação

Informação global ou descentralizada

Global:

- Todos os roteadores tem informações completas da topologia e dos custos dos enlaces;
- Ex: algoritmo Link State.

Descentralizada:

- Roteadores só conhecem informações sobre seus vizinhos e os enlaces para eles;
- Processo de computação interativo, troca de informações com os vizinhos;
- Ex: algoritmo Distance vector.

Algoritmos de roteamento Classificação

Estático ou Dinâmico

Estático:

- As rotas são previamente definidas pelo administrador da rede;
- Ex: Rota Fixa.

Dinâmico:

- As rotas são mantidas e atualizadas pelos roteadores;
- Atualizações periódicas;
- Roteadores podem responder a mudanças no custo dos enlaces;
- Ex: Vetor de Distância

Roteamento Direto

Origem e Destino na mesma rede

Roteamento Indireto

Origem e Destino estão em redes diferentes.

Roteamento Estático Características

- Configurado manualmente pelo administrador da rede;
- A tabela de roteamento é estática;
- As rotas não se alteram dinamicamente de acordo com as alterações da topologia da rede;
- Custo de manutenção cresce de acordo com a complexidade e tamanho da rede;
- Sujeito a falhas de configuração.

Roteamento Estático Exemplo

Roteamento Dinâmico Características

- Divulgação e alteração das tabelas de roteamento de forma dinâmica pelos próprios roteadores;
 - Não há intervenção constante do administrador da rede;
- Alteração das tabelas dinamicamente de acordo com a alteração da topologia da rede;
 - Adaptativo: a tabela de roteamento pode ser alterada de acordo com as alterações dos custos dos enlaces;
- Diminui consideravelmente o tempo de manutenção das tabelas em grandes redes;
- Também está sujeito a falhas.

Roteamento Dinâmico Vetor de Distância (distance vector)

- Bellman-Ford
- É um algoritmo simples
 - Um roteador mantém uma lista de todos as rotas conhecidas em uma tabela;
 - Cada roteador divulga para os seus vizinhos as rotas que conhece;
 - Cada roteador seleciona dentre as rotas conhecidas e as divulgadas os melhores caminhos.

Algoritmo Vetor de Distância Métrica

- A escolha do melhor caminho é baseada na comparação da métrica do enlace
 - Normalmente: Melhor = menor caminho
- A métrica é o custo de envio em um enlace
 - Pode ser calculada utilizando vários parâmetros:
 - Taxa de transmissão em bps
 - Vazão
 - Atraso
 - Tráfego
 - Congestionamento
 - Número de saltos (no. de hops) (+ usado)

- Quando o roteador executa o "boot" ele armazena na tabela informações sobre cada uma das redes que estão diretamente conectadas a ele.
 - Cada entrada na tabela indica uma rede destino, o gateway para a rede e a sua métrica.
- 2. Periodicamente cada roteador envia uma cópia da sua tabela para todos os roteadores que sejam diretamente alcançáveis.
- 3. Cada roteador que recebe uma cópia da tabela, verifica as rotas divulgadas e suas métricas.
 - O roteador soma à métrica divulgada o custo do enlace entre ele e o roteador que fez a divulgação.
 - Em seguida, compara cada uma das entradas da tabela divulgada com as da sua tabela de roteamento.
 - Rotas novas são adicionadas, rotas existentes são selecionadas pela sua métrica.

Algoritmo Vetor de Distância

- 3.1 Se a rota já existe na tabela e a métrica calculada é menor do que a da rota conhecida
 - Remove a entrada anterior e adiciona a nova rota divulgada.
- 3.2 Se a rota já existe na tabela e a métrica calculada é igual a da rota conhecida
 - Não altera a entrada.
- 3.3. Se a rota já existe na tabela e a métrica divulgada é maior do que a da rota conhecida, então verifica se o gateway desta rota é o mesmo que está fazendo nova divulgação
 - Se o gateway é o mesmo altera a métrica para esta rota
 - Se o gateway não é o mesmo não altera a rota conhecida

- Implementa o algoritmo Vetor Distância;
- A métrica utilizada é o número de estações intermediárias (no. de hops);
- Não permite o balanceamento de tráfego;
- Cada roteador divulga sua tabela periodicamente a cada 30 segundos através de um broadcast para todos os roteadores conectados diretamente à ele;
 - Se uma rota não for atualizada em 180 segundos é considerada inatingível;
 - A informação de rota inatingível é repassada aos roteadores "vizinhos" (diretamente alcançáveis);
- As mensagens divulgadas levam n tuplas contendo

RIP Problemas

- Não tem mecanismos de segurança
 - É suscetível a spoofing;
- Não tem controle de "idade" das mensagens
 - Mensagens "velhas" podem ser processadas após mensagens "novas"
 - Inconsistência nas tabelas de roteamento
- Problemas de loops na divulgação das rotas
- Limitação de número de roteadores intermediários
 - Métrica = 16, indica rota inalcançável
- Não suporta máscara de subrede

- Se não há comunicação depois de 180 segundos, o vizinho e o enlace são declarados mortos
 - rotas através do vizinho são anuladas
 - novos anúncios são enviados aos vizinhos
 - os vizinhos por sua vez devem enviar novos anúncios (se suas tabelas de rotas foram alteradas)
 - a falha de um enlace se propaga rapidamente para a rede inteira
 - poison reverse é usado para prevenir loops, isto é, evitar que a rota para um destino passe pelo próprio roteador que está enviando a informação de distância (distância infinita= 16 hops)

- As tabelas de roteamento do RIP são manipuladas por um processo de aplicação chamado routed (daemon).
- Anúncios são enviados periodicamente em segmentos UDP.

RIP Inserção de um nó na rede

RIP Queda de um enlace

RIP Queda de um enlace

IGRP (Interior Gateway Routing Protocol)

- Protocolo proprietário da CISCO;
- Sucessor do RIP (meados dos anos 80);
- Algoritmo vetor de distância;
- Várias métricas de custo:
 - atraso, largura de banda, taxa de erro, tráfego, etc.
- Usa o TCP para trocar informações de novas rotas;
- Loop-free routing
 - Distributed Updating Algorithm (DUAL) baseado em técnicas de computação difusa.

algoritmo de Dijkstra

- Topologia e custos de enlace conhecidos de todos os nós
 - realizado por "broadcast de estado do enlace"
 - todos os nós têm a mesma informação
- calcula caminhos de menor custo de um nó ("origem") para todos os outros nós

notação:

- c(x,y): custo do enlace do nó x até y; = ∞ se não forem vizinhos diretos
- D(v): valor atual do custo do caminho da origem ao destino v
- p(v): nó predecessor ao longo do caminho da origem até v
- N': conjunto de nós cujo caminho de menor custo é definitivamente conhecido

Algoritmo de Dijkstra

```
Inicialização:
   N' = \{u\}
   para todos os nós v
   se v adjacente a u
       então D(v) = c(u,v)
    senão D(v) = ∞
   Loop
    acha w não em N' tal que D(w) é mínimo
    acrescenta w a N'
    atualiza D(v) para todo v adjacente a w e não em N':
      D(v) = \min(D(v), D(w) + c(w,v))
    /* novo custo para v é custo antigo para v ou custo conhecido
     do caminho mais curto para w + custo de w para v */
15 até todos os nós em N'
```


Algoritmo de Dijkstra: exemplo

Etapa		N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
•	1	UX ←	2, u	4,x		2,x	∞
•	2	uxy	2,u	3,у			4,y
,	3	uxyv 🗸		3,y			4,ÿ
	4	uxyvw 🗸					4,ÿ
	5	UXVVWZ					

Algoritmo de Dijkstra: exemplo

árvore resultante do caminho mais curto a partir de u:

tabela de repasse resultante em u:

destino	enlace	
V	(u,v)	
X	(u,x)	
y	(u,x)	
W	(u,x)	
Z	(u,x)	

OSPF (Open Shortest Path First)

- "open": publicamente disponível
- usa algoritmo Link State
 - disseminação de pacote LS
 - mapa de topologia em cada nó
 - cálculo de rota usando algoritmo de Dijkstra
- anúncio OSPF transporta uma entrada por roteador vizinho

Recursos "avançados" do OSPF (não no RIP)

- segurança: todas as mensagens OSPF autenticadas (para impedir intrusão maliciosa)
- múltiplos caminhos de mesmo custo permitidos (apenas um caminho no RIP)
- suporte integrado para uni e multicast:
 - Multicast OSPF (MOSPF) usa mesma base de dados de topologia que o OSPF
- OSPF hierárquico em grandes domínios

OSPF (Open Shortest Path First)

- hierarquia em dois níveis: área local, backbone.
 - anúncios de estado do enlace somente na área
 - cada nó tem topologia de área detalhada; somente direção conhecida (caminho mais curto) para redes em outras áreas.
- <u>roteadores de borda:</u> "resumem" distâncias às redes na própria área, anunciam para outros roteadores de borda.
- <u>roteadores de backbone</u>: executam roteamento OSPF limitado ao backbone.
- <u>roteadores de fronteira:</u> conectam-se a outros AS's.

Sistemas Autônomos Introdução

- Um SA (Sistema Autônomo) pode ser definido como
 - "Um grupo de redes e roteadores controlados por uma única autoridade administrativa."
- Roteadores em um sistema autônomo seguem as mesmas "regras" de roteamento.
- Protocolos de roteamento s\u00e3o classificados de acordo com sua atua\u00e7\u00e3o.

- Protocolos Interiores (Intra-AS)
 - São aqueles utilizados para comunicação entre roteadores de um mesmo sistema autônomo.
- Protocolos Exteriores (Inter-AS)
 - São aqueles utilizados para comunicação entre roteadores de sistemas autônomos diferentes.

Roteamento Intra-AS e Inter-AS

40

·realizam roteamento inter-AS entre si

·realizam roteamento intra-AS com

outros roteadores do mesmo AS

Hierarquia de AS

Roteador de borda Intra-AS (exterior gateway)

Roteador interno Inter-AS (gateway)

Hierarquia de AS

- Roteadores no mesmo AS rodam o mesmo protocolo de roteamento
 - Protocolo de roteamento "Intra-AS"
- Roteadores em diferentes AS's podem rodar diferentes protocolos de roteamento

Roteamento Intra-AS

- Também conhecido como Interior Gateway Protocols (IGP);
- IGPs mais comuns:
 - RIP: Routing Information Protocol
 - IGRP: Interior Gateway Routing Protocol
 - proprietário da Cisco
 - OSPF: Open Shortest Path First

Roteamento Inter-AS

Ex.: BGP (Border Gateway Protocol)

Roteamento Inter-AS BGP

- BGP (Border Gateway Protocol)
 - E o padrão de fato para uso na Internet;
- Algoritmo Path Vector
 - Similar ao algoritmo vetor de distância;
 - Cada roteador de borda envia em broadcast aos seus vizinhos o caminho inteiro (a seqüência de ASs) até o destino;

Roteamento Inter-AS BGP

 Exemplo: Roteador X envia seu caminho até o destino Z para o roteador vizinho W

Path
$$(X,Z) = X,Y1,Y2,Y3,...,Z$$

- O roteador W pode escolher ou não o caminho oferecido por X
 - critérios de escolha:
 - Custo
 - Regras (não rotear através de AS rivais)
- Se o roteador W seleciona o caminho oferecido por X, então:

Path
$$(W,Z) = W$$
, Path (X,Z)

- Nota: O roteador X pode controlar o tráfego de entrada controlando as rotas que ele informa aos seus vizinhos:
 - Se X não quer rotear tráfego para Z, então X não informa nenhuma rota para Z.

Roteamento Inter-AS BGP

- As mensagens do BGP são trocadas encapsuladas no TCP.
- Mensagens BGP:
 - OPEN
 - Inicia a conexão TCP com um roteador vizinho e autentica o transmissor.
 - UPDATE
 - Anuncia novo caminho (ou retira um velho).
 - KEEPALIVE
 - Mantém a conexão viva em caso de ausência de atualizações;
 - NOTIFICATION:
 - Reporta erros nas mensagens anteriores;
 - Também usado para encerrar uma conexão.

