1-	$5^{th} \rightarrow 2^{rod}$ $\lambda_1 =$ $6^{th} \rightarrow 2^{rod}$ $\lambda_2 =$ $6^{th} \rightarrow 5^{th}$ $\lambda_3 =$	520 nm E52 = F6	5 - E2		
	6th > 2nd /22	410 nm F123 E6	– Ez		
	6th > 5th 23 =	?			
	E = hf = hc				
	λ				
	F52: 6-626×10-34	× 3×108 J =	3.82 ×10-19		
	520 x10				
	E62; 6.626 x 10-34	x 3 × 108 J =	4.85 × 10-19		
		10-9			
	E65, E62-E52	- (4.85 - 3.82)	×10-19		
		= 1.03 × 10-19			
	E65, hc				
	λ_{s}				
	λ 3 5 6-626 × 10-34	× 3 × 108			
	(-03 × 10	19			
	1929 nm				
5.					
u)	3d Subshell				
V	1	2		3	
L	0 0	(6	1	2

me	0 0 -1 0 1	0	-1 0 (-2 -1 0 1 2
Μς	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2	222222	22222222
	10 sets of quantum numbers si	n sd		
	6 sets y quantum numbers in	38		
	<i>b</i> ,			
3.	م م څالخ			
J.	R= Ro ext			
	8 = e xt			
	n 8			
	-0·223 = - XI-			
	1 = 0·223			
	= 1.549 × 10-5 5			
	Typ = 1n2 = 447489			
	λ = 12 43 h			
	$R_0 = N_0 \lambda$ $N_0 = R_0 = 10 \times 10^{-3} \times 3.7 \times 10^{10}$ alons			
	1.549×10-5			
	2.389 × 1013 along			
	R = Roe-At			

-1	10	e-1.5	4 4 10	J * 3	o * 60 ·	-60	ا ہ	0 ⁻³ ×	3-7	X10 ¹⁵	•					
=	6	9-4:	الم 5	o c	Bg											
=	1-8	77	mC	Ã	'											
	-															