COMP5121 Data Mining and Data Warehousing Applications

Week 7: Cluster Analysis – Basic Concepts and Methods (Chapter 10 in textbook)

Dr. Fengmei Jin

- Email: fengmei.jin@polyu.edu.hk
- Office: PQ747 (+852 3400 3327)
- Consultation Hours: 2.30-4.30 pm every Thursday

Outline

- ☐ Cluster Analysis: An Introduction
- □ Partitioning Methods: K-means
- ☐ Hierarchical Methods: AGNES
- Density-based Methods: DBSCAN
- Evaluation of Clustering

What Is Cluster Analysis?

- ☐ Cluster: a collection of data objects that are
 - Similar (or related) to one another within the same group / cluster
 - Dissimilar (or unrelated) to the objects in other groups / clusters

- ☐ Cluster analysis (also called clustering or data segmentation)
 - The process of partitioning data points into a set of groups where members of each group are as similar as possible to each other.
 - Unsupervised: no predefined classes

What Is 'Good' Clustering?

- ☐ A good clustering method produces high-quality clusters:
 - High intra-cluster similarity: Cohesiveness within clusters
 - Low inter-cluster similarity: Distinctiveness between clusters
- Measuring clustering quality:
 - Use a separate quality function to evaluate clusters' goodness
 - Hard to define "similar enough" or "good enough" subjective

Cluster Analysis: Applications (I)

- ☐ A key intermediate step (preprocessing) for *other mining tasks*
 - Generating a compact summary of data
 - Organizing articles into topics for text classification or pattern discovery.
 - Anomaly detection: those "far away" from any cluster
 - Data compression and dimensionality reduction
 - □ e.g., image processing (via vector quantization)

Cluster Analysis: Applications (II) □ Recommender systems e.g., find *like-minded* users or similar products Dynamic trend detection e.g., cluster and detect trends/patterns in social networks Multimedia data analysis e.g., cluster images or video clips □ Biological data analysis e.g., protein networks si costs of the control of t

Key Considerations for Clustering (I)

- ☐ Partitioning: Single level vs. Hierarchical
 - Multi-level clustering, where clusters are nested, are useful for applications like taxonomy creation or organizing topical terms

Exclusive (a data point belongs to only one cluster, e.g., a customer assigned to a single region)

vs. Non-exclusive (e.g., an article categorized into multiple topics)

Level 2

Level 3

Key Considerations for Clustering (II)

□ Similarity measures

Distance-based, suitable for structured, continuous data

(e.g., Euclidean, road network, vector spaces)

vs. Connectivity-based, data with complex shapes or clusters defined by proximity (e.g., DBSCAN)

□ Clustering space

■ Full space (for low-dimensional data) vs. Subspace (necessary for high-dimensional data)

Requirements and Challenges (I)

□ Quality

- Support for different types of attributes
 - □ numeric, nominal, text, multimedia, networks, or even mixed types
- Discovery of clusters with arbitrary shapes
 - ☐ irregularly shaped clusters (e.g., circular, elongated)
- Ability to deal with noisy data

Scalability

- High dimensionality
- Clustering all the data instead of small samples
- Incremental or stream clustering and insensitivity to input order

Requirements and Challenges (II)

Constraint-based clustering

- User-given preferences / constraints
- Leverages domain knowledge to improve clustering results
- Customizes clustering results based on specific user-defined queries
 - e.g., cluster products that share similar features but prioritize high-selling items

Interpretability and Usability

- Clustering results should be easy to understand for non-expert users.
- Outputs should directly address user needs and allow actionable insights.

Cluster Analysis: A Multi-Dimensional Categorization

□ Technique-Centered

- Distance-based: effective for compact, well-separated clusters
- Density-based and grid-based: clusters of arbitrary shapes and handle noise
- Probabilistic and generative models
- High-dimensional clustering: useful for data with many irrelevant dimensions
- Other scalable techniques for cluster analysis

□ Data Type-Centered

numeric data, categorical data, text, multimedia data, time-series data, sequences, stream data, networked data, uncertain data, ...

Additional Insight-Centered

Visual insights, semi-supervised, ensemble-based, validation-based

1) Typical Clustering Methodologies (I)

□ Distance-based methods

- Partitioning algorithms: K-Means, K-Medians, K-Medoids
- Hierarchical algorithms: agglomerative vs. divisive methods

Density-based and Grid-based methods

- Density-based: Identify clusters as dense regions of points (arbitrary shapes) separated by sparse regions
- Grid-based: Form clusters by grouping adjacent dense grid cells

1) Typical Clustering Methodologies (II)

- Probabilistic and Generative models: Modeling clustering as a generative process
 - 1) Assume a specific form of the generative model
 - e.g., Hidden Markov Model (HMM) for sequential data
 - 2) Estimate model parameters using the EM algorithm
 - finding parameters that maximize the likelihood of the observed data
 - 3) Assign data points to clusters based on generative probabilities

1) Typical Clustering Methodologies (III)

☐ High-dimensional clustering

- Subspace clustering:
 - ☐ Find clusters in subsets of dimensions (subspaces) rather than full space
 - □ e.g., bottom-up, top-down, correlation-based, ...
- Dimensionality reduction
 - ☐ Reduce dimensions to simplify data while retaining meaningful structure

2) Clustering Different Types of Data (I)

- □ Numerical data: points in a multi-dimensional space
 - Most early clustering algorithms were designed for such data.
- Nominal data
 - Discrete data without natural order (e.g., gender, race, zip codes, product categories, market-basket)
- ☐ **Text data**: Popular in social media, Web, documents
 - High-dimensional, sparse, <u>represented as word frequencies</u>
 - Methods: K-means and hierarchical clustering with vectorized data, such as topic modeling, co-clustering, etc.

2) Clustering Different Types of Data (II)

- Multimedia data: Image, audio, video
 - Multi-modal, often combined with text data
 - Containing both behavioral and contextual attributes
 - ☐ A pixel of images: intensity/color (behavior) and position (context)
 - Methods: deep learning models like CNNs, RNNs, etc.
- ☐ Time-series data: Sensor readings, stock prices, GPS tracking
 - Data are temporally dependent
 - ☐ Time: contextual attribute; Value: behavioral attribute
 - Correlation-based online analysis & Shape-based offline analysis

3) User Insights and Interactions in Clustering

- □ **Visual insights**: "One picture is worth a thousand words."
 - Visualizations help humans intuitively understand cluster structures.
- ☐ Semi-supervised insights: Passing user's intention to system
 - User-seeding: A user provides several labeled examples, approximately representing initial categories of interest
- Multi-view and ensemble-based insights
 - Multi-view clustering: Multiple clusters represent different perspectives
 - Multiple clustering results can be ensembled for a more robust solution.
- □ Validation-based insights: Evaluating quality of generated clusters
 - May use case studies, specific measures, or pre-existing labels

k-means, k-medoids, k-medians, k-modes, ...

PARTITIONING-BASED CLUSTERING METHODS

Partitioning Algorithms: Basic Concepts

Partitioning method

 Discover groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions

☐ *K*-partitioning method

- Objective: Divide a dataset D of n objects into a set of K clusters, so that an objective function is optimized (e.g., minimizing the sum of distances within clusters)
- Typical objective function: Sum of Squared Errors (SSE)

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

where c_k is the centroid or medoid of cluster C_k

Partitioning Algorithms: Basic Concepts

- \square To find the best partition of K clusters that optimizes the chosen partitioning criterion -
 - Global optimal: exhaustively enumerate all possible partitions
 - Heuristic methods (i.e., greedy algorithms): approximation
 - ☐ *K*-Means, *K*-Medians, *K*-Medoids, etc.

- ☐ Different kinds of measures can be used:
 - Manhattan / Euclidean distance
 - Cosine similarity
 - **.**..

The *K*-Means Clustering Algorithm

- ☐ Idea: each cluster is represented by the centroid, which is the mean position of all data points in the cluster
 - It may not correspond to an actual data point in the dataset!
- ☐ Given *K*, the number of clusters, the *K*-Means clustering algorithm is outlined as follows:

Initialization: Select *K* data points as initial centroids **Repeat**

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., mean point) of each cluster
 Until centroids no longer change or convergence criterion is met

Example: K-Means Clustering

Select *K* points as initial centroids

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., *mean point*) of each cluster

Until convergence criterion is satisfied

Discussion on *K*-Means Clustering (I)

- \square Efficiency: O(tKn)
 - Input terms: t = # iterations, K = # clusters, n = # objects
 - Normally, K, $t \ll n$, thus, an efficient method.

☐ Limitations (I)

- Need to specify *K* in advance
 - \square There are ways to automatically determine the 'best' K.
 - □ In practice, one often runs a range of values and selected the 'best'.
- Only for objects in a continuous data space: K-modes for nominal data

Discussion on K-Means Clustering

☐ Limitations (II)

- \blacksquare *K*-means clustering often terminates at a local optimum.
 - Poor initialization can lead to suboptimal clusters.
- Sensitive to noisy data and outliers (extreme values)

☐ Variations of *K*-Means

- Choosing better initial centroid estimates
 - □ e.g., *K*-Means++, Intelligent *K*-Means, Genetic *K*-Means
- Choosing different representative prototypes for the clusters
 - □ e.g., *K*-Medoids, *K*-Medians, *K*-Modes
- Applying feature transformation techniques
 - □ e.g., Weighted *K*-Means, Kernel *K*-Means

Example: Poor Initialization May Lead to Poor Clustering

- This run of K-Means generates poor-quality clusters.
- Re-run of K-Means using another random K seeds.

Problem 1: Initialization of *K*-Means

- Different initializations may generate very different clustering results. Some could be far from optimal!
- □ Original proposal (MacQueen'67): Select *K* seeds randomly
 - Require running the algorithm multiple times with different seeds
- ☐ Improved methods for better initialization of *K* seeds

Variation: *K***-Means++** (Arthur & Vassilvitskii'07)

- The first centroid is selected at random
- The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
- The selection continues until all K centroids are chosen

Problem 2: Handling Outliers by Medoids

- ☐ The *K*-Means algorithm is sensitive to outliers!
 - An object with an extremely large value may substantially distort the distribution of the data.

- □ Variation 1: From *K*-Means to *K*-Medoids
 - Robustness to outliers
 - □ K-medoids choose actual data points, which are the most centrally located object in a cluster, as centers (called medoids)
 - Greater interpretability of the cluster centers
 - \square *K*-means takes the calculated mean value of objects in a cluster as a reference point, while *K*-medoids are real data points.

Variation 1: The *K*-Medoids Clustering Algorithm

□ Select *K* points as the initial representative objects (i.e., as initial *K* medoids)

□ Repeat

- Assigning each point to the cluster with its closest medoid
- **Update Step**: within each cluster (the current medoid is m)
 - \square For each "non-medoid" object o_i in this cluster, compute the total cost of swapping the current medoid m with o_i
 - Determine which swap would improve the clustering quality
- Form new set of medoids if any cluster's medoid was changed
- Until convergence criterion is satisfied

Discussion on *K*-Medoids Clustering

- ☐ *K*-Medoids Clustering
 - Find the most representative objects (medoids) in clusters
- □ **PAM** (Partitioning Around Medoids: *Kaufmann, et al.,1987*)
- Starts from an initial set of medoids, and
- Iteratively replaces one of the medoids by one of the non-medoids if it
 improves the total sum of the squared errors (SSE) of the resulting clustering
 - Efficient for small data, but hard to scale well for large data
 - \square Computational complexity of **PAM**: $O(K(n-K)^2)$ expensive!

PAM: A Typical *K*-Medoids Algorithm

Until convergence criterion is satisfied

0 1 2 3 4 5 6 7 8 9 10

30

0 1 2 3 4 5 6 7 8 9 10

Problem 2: Handling Outliers by Medians

- ☐ Medians are less sensitive to outliers than means
 - e.g., median salary vs. mean salary of a large company when adding a few top executives!

- ☐ Variation 2: **K-Medians**
 - Instead of taking the mean value of the object in a cluster as a reference point, medians are used (L_1 -norm as the measure)
 - The criterion function for the *K*-Medians algorithm:

$$S = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} |x_{ij} - med_{kj}|$$

Variation 2: The *K*-Medians Clustering Algorithm

- □ Select *K* points as the initial representative objects (i.e., as initial *K* medians)
- □ Repeat
 - Assign every point to its nearest median
 - Re-compute the median using the median of each individual feature
- ☐ Until convergence criterion is satisfied

Variation 3: K-Modes for Clustering Nominal Data

- ☐ *K*-Means cannot handle non-numerical (categorical) data
 - Mapping categorical value to 1 / 0 cannot generate quality clusters for high-dimensional data

- □ K-Modes: An extension to K-Means by replacing means of clusters with modes
 - Different similarity measures between categorical objects can be used. It may be frequency-based.
 - Algorithm is still based on iterative object cluster assignment and centroid update.

Agglomerative vs Divisive

HIERARCHICAL-BASED CLUSTERING

Hierarchical-based clustering

- ☐ To group data objects into a hierarchy or "tree" of clusters
 - Very useful for data summarization and visualization as it provides a nested structure of clusters

Employees can be grouped hierarchically:

- Top-level: {Executives, Managers, Staff}
- Subgroups: Staff = {Senior Officers, Officers, Trainees}

In the study of evolution, **group animals** according to their biological features to uncover evolutionary paths – a hierarchy of species

Why Hierarchical Clustering?

- □ No need to specify # clusters in advance
- ☐ Provide more insights into data structure (relationships)
- ☐ Flexible linkage criteria based on data characteristics
- □ Handle any type of distance metric

- ☐ Two types of methods:
 - Agglomerative: bottom-up
 - **Divisive**: top-down

Agglomerative Hierarchical Clustering

- □ Bottom-up strategy
 - Start by letting every object form its own cluster and iteratively merges clusters into larger and larger clusters
 - ☐ For **merging**, it finds the two clusters that are closest to each other (according to some similarity measures) as a new one.
 - Stop until all the objects are in a single cluster (the hierarchy's root), or certain termination conditions are satisfied.

Distance Between Clusters

- ☐ Single linkage (between the nearest points of two clusters)
- Complete linkage (between the farthest points of two clusters)
- Average linkage (between all points)
- ☐ Centroid linkage (mean)

■ Example:

- $C_1 = \{p_1, p_2\}$
- $C_2 = \{p_3, p_4\}$
- $C_3 = \{p_5\}$

Single linkage:

 $dist(C_1, C_2) = 2$, $dist(C_2, C_3) = 2.5 \rightarrow \text{Merge } C_1 \text{ and } C_2$

Complete linkage:

 $dist(C_1, C_2) = 4$, $dist(C_2, C_3) = 3.5 \rightarrow \text{Merge } C_2 \text{ and } C_3$

AGNES: AGglomerative NESting algorithm

☐ Steps:

- 1. Initialization: Start with n points, each treated as its own cluster (i.e., n clusters)
- 2. Find the nearest pair of clusters based on a predefined measure
- 3. Merge these two clusters
 - Combine them into one cluster
 - Update the distance matrix to reflect the new cluster distances
- 4. Repeat step 2 & 3 until all data points belong to a single cluster

- ☐ Initialize with 6 clusters
 - \blacksquare { p_1 }, { p_2 }, { p_3 }, { p_4 }, { p_5 }, { p_6 }
- ☐ Calculate distances

	$\{p_1\}$	{p ₂ }	{p ₃ }	$\{p_4\}$	{p ₅ }	{p ₆ }
$\{p_1\}$	0.0					
$\{p_2\}$	0.7	0.0				
$\{p_{3}\}$	5.7	4.9	0.0			
$\{p_4\}$	3.6	2.9	2.2	0.0		
$\{p_5\}$	4.2	3.5	1.4	1.0	0.0	
$\{p_6\}$	3.2	2.5	2.5	0.5	1.1	0.0

- \square Merge $\{p_4\}$ and $\{p_6\}$
- ☐ Calculate distances

	{ <i>p</i> ₁ }	{p ₂ }	$\{p_{3}\}$	$\{p_4,p_6\}$	$\{p_5\}$
{ <i>p</i> ₁ }	0.0				
{ <i>p</i> ₂ }	0.7	0.0			
$\{p_3\}$	5.7	4.9	0.0		
$\{p_4,p_6\}$	3.2	2.5	2.2	0.0	
$\{p_5\}$	4.2	3.5	1.4	1.0	0.0

- \square Merge $\{p_1\}$ and $\{p_2\}$
- ☐ Calculate distances

	$\{p_1,p_2\}$	$\{p_3\}$	$\{p_4,p_6\}$	$\{p_5\}$
$\{p_1,p_2\}$	0.0			
$\{p_3\}$	4.9	0.0		
$\{p_4,p_6\}$	2.5	2.2	0.0	
$\{p_5\}$	3.5	1.4	1.0	0.0

- \square Merge $\{p_4, p_6\}$ and $\{p_5\}$
 - \blacksquare { p_1, p_2 }, { p_3 }, { p_4, p_5, p_6 }
- ☐ Calculate distances

	$\{p_1,p_2\}$	$\{p_{3}\}$	$\{p_4, p_5, p_6\}$
$\{p_1,p_2\}$	0.0		
$\{p_3\}$	4.9	0.0	
$\{p_4, p_5, p_6\}$	2.5	1.4	0.0

- \square Merge $\{p_4, p_5, p_6\}$ and $\{p_3\}$
- ☐ Calculate distances
 - \blacksquare $dist(\{p_1, p_2\}, \{p_3, p_4, p_5, p_6\}) = 2.5$
- ☐ Merge into one cluster

Visualization Using **Dendrogram**

- ☐ A tree structure to represent the process of hierarchical clustering
 - \blacksquare $\{p_4\}$ and $\{p_6\}$ merges at distance 0.5
 - \blacksquare $\{p_1\}$ and $\{p_2\}$ merges at distance 0.7
 - $\{p_4, p_6\}$ and $\{p_5\}$ merges at distance 1.0
 - $\{p_4, p_5, p_6\}$ and $\{p_3\}$ merges at distance 1.4
 - $\{p_3, p_4, p_5, p_6\}$ and $\{p_1, p_2\}$ merges at distance 2.5

Divisive Hierarchical Clustering

- □ Top-down strategy
 - Start by placing all objects in one cluster (the hierarchy's root)
 - Divide the root cluster into several smaller subclusters, and recursively partitions those clusters into smaller ones.
 - Stop: the partitioning process continues until each cluster at the lowest level is coherent enough
 - either containing only one object
 - or the objects within a cluster are sufficiently similar to each other.

DBSCAN

DENSITY-BASED CLUSTERING

Density-based Clustering

- Idea: Clusters are identified as dense regions separated by areas of lower density (sparse).
 - Group data points into clusters based on the density in a region.
 - Regions with high densities of points form clusters, while regions with low densities are treated as noise or outliers.

■ Advantages:

- No predefined number of clusters
- Deal with arbitrary shapes
- Robust to noises

Density-**B**ased **S**patial **C**lustering of **A**pplications with **N**oise

DBSCAN – Basic Concepts

- \square **Input**: radius of neighborhood ϵ , minimum points minPts
 - An object's ϵ -neighborhood: $N_{\epsilon}(p) = \{o | dist(p, o) \leq \epsilon\}$
 - ☐ The maximum distance for points to be considered 'neighbors'
 - \blacksquare p is a core object $\Leftrightarrow |N_{\epsilon}(p)| \ge minPts$
 - ☐ The minimum number of points required to form a dense region

Three types of objects:

- Core objects: points with at least *minPts* neighbors within ϵ
- Border objects: points within ϵ -neighborhood of a core object but with fewer than minPts neighbors
- Noise: points that are not within the ϵ -neighborhood of any core object

DBSCAN – Density-Reachability

- \square p is directly density-reachable from q if
 - 1. q is a core object
 - 2. p is within q's ϵ -neighbourhood, i.e., $p \in N_{\epsilon}(q)$
- \square p is density-reachable from q if there exists a chain of objects $p_1, p_2, ..., p_n$, s.t.,
 - 1. $p_1 = q, p_n = p$
 - 2. p_{i+1} is directly density-reachable from p_i , for $1 \le i < n$

minPts = 4

- q has 4 neighbors
- p has 5 neighbors
- r has 2 neighbors

DBSCAN – Density-Reachability (Properties)

- □ Density-reachability is transitive
 - $q \rightarrow p$ and $p \rightarrow r$, then $q \rightarrow r$

- $p \to w \text{ does not mean } w \to p$
- Density-reachability is symmetric for core objects

DBSCAN – Density-Connectivity

- \square w and r are density-connected if there exists a core object p, s.t.,
 - $p \rightarrow w \text{ and } p \rightarrow r$
- Properties
 - Density-connectivity is symmetric
 - \square If w is density-connected to r, then r is also density-connected to w.
 - Density-connectivity is NOT transitive
 - ☐ If o_1 and o_2 are density-connected, o_2 and o_3 are density-connected, it does not mean o_1 and o_3 are density-connected.

Density-based Clusters

- ☐ A density-based cluster *C* satisfies:
 - Connectivity: For any $p, q \in C$, p and q are density-connected
 - Maximality: For any p, q, if $q \in C$ and p is density-reachable from q, then $p \in C$
 - ☐ If a core object $p \in C$, then all objects density-reachable from p belong to C

Density-based Clusters

□ Core objects

- \square Border objects: p belongs to a cluster C, but p is not a core object
 - A border object can belong to multiple clusters (hub or bridge)
- Noises: objects belong to no clusters

quality, stability, tendency, ...

EVALUATION OF CLUSTERING

Major Tasks in Clustering Evaluation

□ Clustering Quality

To evaluate the goodness of the clustering, e.g., how well the clusters fit the data set, or how well the clusters match the "ground truth" (if available)

□ Clustering Stability

■ To understand the sensitivity of the clustering result to parameters, e.g., # clusters *K*

Clustering Tendency

To assess the suitability of clustering, i.e., whether the data has any inherent non-random grouping structure – meaningful clusters

Measuring Clustering Quality

- □ **Evaluation**: Evaluating the goodness of clustering results
 - No universally recognized 'best' measure in practice!
- □ Three categorization of measures
 - Internal: Unsupervised, criteria derived from data itself
 - □ How well the clusters are separated and how compact the clusters are
 - **External**: Supervised, employ criteria not inherent to the dataset
 - ☐ Compare a clustering against prior or expert-specified knowledge (i.e., the ground truth) using certain clustering quality measures
 - Relative: Directly compare different clustering, usually those obtained by varying parameters for the same algorithm

Measuring Clustering Quality: External Methods

- Given the ground truth T, compare the clustering result (C) with the ground truth using a quality measure Q(C,T). It is considered good if it satisfies the following essential criteria:
 - Cluster homogeneity: the purer clusters, the better clustering
 - Cluster completeness: objects belonging to the same category in the ground truth should be assigned to the same cluster
 - Small cluster preservation: Splitting a small category into pieces is more harmful than splitting a large category into pieces
 - Rag bag: putting a heterogeneous object into a pure cluster is worse than putting it into a rag bag (i.e., "other" class)

Summary

- ☐ Cluster: a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in others.
- □ Clustering: the unsupervised process of grouping objects
 - As a standalone data mining tool to gain insight into data distribution
 - As a preprocessing step for other data mining algorithms
- ☐ Partitioning-based: k-means, k-medoids, k-medians, k-modes, ...
- ☐ **Hierarchical-based**: either agglomerative (bottom-up) or divisive (top-down), based on how the hierarchical decomposition is formed
- Density-based: DBSCAN, arbitrary shapes, robust to noise
- Clustering evaluation: quality, stability, tendency subjective!

Email: fengmei.jin@polyu.edu.hk

Office: PQ747

THANK YOU!

