IOT PHASE 4

SMART PARKING

DEVELOPMENT PART 2

Building a camera-based parking detection system with Raspberry Pi and Microsoft Azure

involves multiple steps, both in terms of hardware setup and software development. I'll break down the project into a detailed, step-by-step guide:
To check for parking space availability using camera:
Python code:
import picamera
import cv2
import requests
import time
API endpoint for sending parking data
API_ENDPOINT = "https://your-server.com/api/parking"
Initialize the camera
camera = picamera.PiCamera()
Function to capture an image and analyze occupancy
def capture_and_analyze_image():
Capture an image

```
timestamp = time.strftime("%Y%m%d%H%M%S")
  image filename = f"parking {timestamp}.jpg"
  camera.capture(image_filename)
  # Load the captured image
  image = cv2.imread(image_filename)
  # Implement image processing and analysis here (e.g., detecting car presence)
  # For demonstration, assume a simple condition for occupancy
  if True: # Replace with your actual occupancy detection logic
    status = "Occupied"
  else:
    status = "Vacant"
  return image_filename, status
# Main loop for parking space monitoring
try:
  while True:
    image filename, status = capture and analyze image()
    # Send data to the server
    payload = {"space_id": 1, "status": status, "image_filename": image_filename}
```

response = requests.post(API_ENDPOINT, json=payload)

Sleep for a defined interval before checking again time.sleep(10)

except KeyboardInterrupt:

camera.close()

