Typed Semantics for λ_i

1. Syntax

$$\begin{array}{c|cccc} e & ::= & & \text{Expression} \\ & n & & \text{Integer Literal} \\ & e_1 + e_2 & \text{Add} \\ & x & & \text{Variable} \\ & \lambda x. \ e & & \text{Abstraction} \\ & e_1 \ e_2 & & \text{Application} \\ & e_1 \ , \ e_2 & & \text{Merge} \\ & (e:A) & & \text{Annotation} \end{array}$$

2. Semantics

$$\begin{array}{c} v\Rightarrow A \quad \text{Typed Values (Inf)} \\ \hline \\ n\Rightarrow \text{Int} \quad \text{VI_INT} \quad \frac{v_1\Rightarrow A}{v_1\,,\, v_2\Rightarrow A\&B} \quad \text{VI_MERGE} \quad \frac{v\in A}{(v:A)\Rightarrow A} \quad \text{VI_ANN} \\ \hline \\ v\in A \quad \text{Typed Values (Chk)} \\ \hline \\ \hline \\ \lambda x.\ e \leftarrow A \rightarrow B \quad \text{VC_ABS} \\ \hline \\ e_1 \leadsto e_2 \quad \text{Reduction} \\ \hline \\ e_1 \leadsto e_3 \quad \text{R_APP1} \quad \frac{e_1\leadsto e_2}{ve_1\leadsto ve_2} \quad \text{R_APP2} \quad \frac{e_1\leadsto e_2}{(\lambda x.\ e:A\rightarrow C)\ v\leadsto (\lambda x.\ e:A\rightarrow C)\ e} \quad \text{R_APPSUB} \\ \hline \\ \hline \\ e_1 \leadsto e_3 \quad \text{R_APP1} \quad \frac{e_1\leadsto e_2}{ve_1\leadsto ve_2} \quad \text{R_APP2} \quad \frac{v\Rightarrow B}{(\lambda x.\ e:A\rightarrow C)\ v\leadsto (\lambda x.\ e:A\rightarrow C)\ e} \quad \text{R_APPSUB} \\ \hline \\ \hline \\ \hline \\ e_1 \leadsto e_3 \quad \text{R_MERGE1} \quad \frac{e_1\leadsto e_2}{vv_1, e_1\leadsto vv_1, e_2} \quad \text{R_MERGE2} \quad \frac{e_1\leadsto e_2}{(e_1:A)\leadsto (e_2:A)} \quad \text{R_ANN1} \\ \hline \\ \hline \\ \hline \\ v\Rightarrow B \quad A\neq B \quad v\leadsto e \Leftarrow A \quad \text{R_ANNSUB} \quad \frac{v\Rightarrow A}{(v:A)\leadsto v} \quad \text{R_ANN3} \\ \hline \\ \hline \\ \hline v \leadsto A \rightarrow B \quad \text{R_ANNSUB} \quad \frac{v\Rightarrow A}{(v:A)\leadsto v} \quad \text{R_ANN3} \\ \hline \\ \hline v \leadsto A \rightarrow B \quad \text{R_SUB_ANDL1} \quad \frac{\text{ord}\ A \quad v_2\Rightarrow C \quad C\leq A}{vv_1, v_2\leadsto v_2\in A} \quad \text{R_SUB_ANDL2} \\ \hline \\ \hline \\ \hline \end{array}$$

Remark 1: R_AppSub and R_AnnSub's condition $A \neq B$ prevents looping (subtyping is reflexive). **Remark 2**: If there are no assumptions over v, then assume $\exists A. v \Rightarrow A$.

3. Metatheory

Lemma 3.1 (Subject reduction (sub)). [safety_sub] If $\Gamma \vdash v \Rightarrow A$ and $v \leadsto e \Leftarrow B$ and $A \leq B$, then $\Gamma \vdash e \Leftarrow B$.

Lemma 3.2 (Subject reduction (inf)). [safety_inf] If $\Gamma \vdash e_1 \Rightarrow A$ and $e_1 \leadsto e_2$, then $\Gamma \vdash e_2 \Rightarrow A$.

Lemma 3.3 (Subject reduction (chk)). [safety_chk] If $\Gamma \vdash e_1 \Leftarrow A$ and $e_1 \leadsto e_2$, then $\Gamma \vdash e_2 \Leftarrow A$.