Machine Learning Foundations

(機器學習基石)

Lecture 7: The VC Dimension

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 6: Theory of Generalization

 $E_{\rm out} \approx E_{\rm in}$ possible

if $m_{\mathcal{H}}(N)$ breaks somewhere and N large enough

Lecture 7: The VC Dimension

- Definition of VC Dimension
- VC Dimension of Perceptrons
- Physical Intuition of VC Dimension
- Interpreting VC Dimension
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Recap: More on Growth Function

$$m_{\mathcal{H}}(N)$$
 of break point $k \leq B(N, k) = \underbrace{\sum_{i=0}^{k-1} \binom{N}{i}}_{\text{highest term } N^{k-1}}$

				k		
1	B(N,k)	1	2	3	4	5
	1	1	2	2	2	2
	2	1	3	4	4	4
	3	1	4	7	8	8
Ν	4	1	5	11	15	16
	5	1	6	16	26	31
	6	1	7	22	42	57

			k			
N^{k-1}	1	2	3	4	5	
1	1	1	1	1	1	
2	1	2	4	8	16	
3	1	3	9	27	81	
4	1	4	16	64	256	
5	1	5	25	125	625	
6	1	6	36	216	1296	

provably & loosely, for $N \ge 2, k \ge 3$,

$$m_{\mathcal{H}}(N) \leq B(N,k) = \sum_{i=0}^{k-1} {N \choose i} \leq N^{k-1}$$

Recap: More on Vapnik-Chervonenkis (VC) Bound

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $k \geq 3$

$$\begin{split} & \mathbb{P}_{\mathcal{D}}\Big[\big|E_{\mathsf{in}}(\boldsymbol{g}) - E_{\mathsf{out}}(\boldsymbol{g})\big| > \epsilon\Big] \\ \leq & \mathbb{P}_{\mathcal{D}}\Big[\exists h \in \mathcal{H} \text{ s.t. } \big|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)\big| > \epsilon\Big] \\ \leq & 4m_{\mathcal{H}}(2N)\exp\left(-\frac{1}{8}\epsilon^2N\right) \\ & \overset{\mathsf{if } k \text{ exists}}{\leq} & 4(2N)^{k-1}\exp\left(-\frac{1}{8}\epsilon^2N\right) \end{split}$$

```
if 1 m_{\mathcal{H}}(N) breaks at k (good \mathcal{H})

2 N large enough (good \mathcal{D})

\Rightarrow probably generalized 'E_{out} \approx E_{in}', and if 3 \mathcal{A} picks a g with small E_{in} (good \mathcal{A})

\Rightarrow probably learned! (:-) good luck)
```

VC Dimension

the formal name of maximum non-break point

Definition

VC dimension of \mathcal{H} , denoted $d_{VC}(\mathcal{H})$ is

largest N for which
$$m_{\mathcal{H}}(N) = 2^N$$

- the most inputs \mathcal{H} that can shatter
- d_{VC} = 'minimum k' 1

$$N \le d_{VC} \implies \mathcal{H}$$
 can shatter some N inputs $k > d_{VC} \implies k$ is a break point for \mathcal{H}

if
$$N \geq 2$$
, $d_{VC} \geq 2$, $m_{\mathcal{H}}(N) \leq N^{d_{VC}}$

The Four VC Dimensions

positive rays:

$$d_{\rm VC}=1$$

•

positive intervals:

$$d_{VC} = 2$$

•

convex sets:

$$d_{VC} = \infty$$

$$m_{\mathcal{H}}(N) = N + 1$$

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

$$m_{\mathcal{H}}(N)=2^N$$

• 2D perceptrons:

$$d_{VC}=3$$

$$\emph{m}_{\mathcal{H}}(\emph{N}) \leq \emph{N}^3$$
 for $\emph{N} \geq 2$

good: finite d_{VC}

VC Dimension and Learning

finite $d_{\text{VC}} \Longrightarrow g$ 'will' generalize ($E_{\text{out}}(g) \approx E_{\text{in}}(g)$)

- ullet regardless of learning algorithm ${\cal A}$
- regardless of input distribution P
- regardless of target function f

Fun Time

If there is a set of N inputs that cannot be shattered by \mathcal{H} . Based only on this information, what can we conclude about $d_{VC}(\mathcal{H})$?

- $\mathbf{0}$ $d_{VC}(\mathcal{H}) > N$
- $2 d_{VC}(\mathcal{H}) = N$
- $\mathbf{3} d_{VC}(\mathcal{H}) < N$
- 4 no conclusion can be made

Reference Answer: (4)

It is possible that there is another set of N inputs that can be shattered, which means $d_{\rm VC} \geq N$. It is also possible that no set of N input can be shattered, which means $d_{\rm VC} < N$. Neither cases can be ruled out by one non-shattering set.

2D PLA Revisited

general PLA for **x** with more than 2 features?

VC Dimension of Perceptrons

- 1D perceptron (pos/neg rays): $d_{VC} = 2$
- 2D perceptrons: d_{VC} = 3
 - d_{VC} ≥ 3:
 - $d_{VC} \leq 3$: $\times {\circ} \times$
- *d*-D perceptrons: $d_{VC} \stackrel{?}{=} d + 1$

two steps:

- $d_{VC} \ge d + 1$
- $d_{VC} \le d + 1$

Extra Fun Time

What statement below shows that $d_{VC} > d + 1$?

- 1 There are some d+1 inputs we can shatter.
- We can shatter any set of d + 1 inputs.
 There are some d + 2 inputs we cannot shatter.
- 4 We cannot shatter any set of d + 2 inputs.

Reference Answer: 1

 d_{VC} is the maximum that $m_{\mathcal{H}}(N)=2^N$, and $m_{\mathcal{H}}(N)$ is the most number of dichotomies of N inputs. So if we can find 2^{d+1} dichotomies on some d+1 inputs, $m_{\mathcal{H}}(d+1)=2^{d+1}$ and hence $d_{VC}\geq d+1$.

$$d_{VC} \geq d + 1$$

There are some d + 1 inputs we can shatter.

• some 'trivial' inputs:

$$\mathbf{X} = \begin{bmatrix} & -\mathbf{x}_{1}^{T} - \\ & -\mathbf{x}_{2}^{T} - \\ & -\mathbf{x}_{3}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

• visually in 2D:

note: X invertible!

Can We Shatter X?

$$X = \begin{bmatrix} & -\mathbf{x}_{1}^{T} - \\ & -\mathbf{x}_{2}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \text{ invertible}$$

to shatter ...

for any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_{d+1} \end{bmatrix}$$
, find \mathbf{w} such that

$$\text{sign}\left(X\boldsymbol{w}\right) = \boldsymbol{y} \quad \Longleftrightarrow \quad \left(\boldsymbol{X}\boldsymbol{w}\right) = \boldsymbol{y} \stackrel{X \text{ invertible!}}{\Longleftrightarrow} \boldsymbol{w} = \boldsymbol{X}^{-1}\boldsymbol{y}$$

'special' X can be shattered $\Longrightarrow d_{VC} \ge d+1$

Extra Fun Time

What statement below shows that $d_{vo} < d + 1$?

- 1 There are some d + 1 inputs we can shatter.
- 2 We can shatter any set of d + 1 inputs.
- 3 There are some d + 2 inputs we cannot shatter.
- 4 We cannot shatter any set of d + 2 inputs.

Reference Answer: (4)

 $d_{\rm VC}$ is the maximum that $m_{\cal H}(N)=2^N$, and $m_{\cal H}(N)$ is the most number of dichotomies of N inputs. So if we cannot find 2^{d+2} dichotomies on any d+2 inputs (i.e. break point), $m_{\cal H}(d+2)<2^{d+2}$ and hence $d_{\rm VC}<d+2$.

$$m_{\mathcal{H}}(a+2) < 2^{a+2}$$
 and hence $a_{VC} < a$

That is,
$$d_{VC} \leq d + 1$$
.

$$d_{VC} \le d + 1 (1/2)$$

A 2D Special Case

$$\begin{array}{ccc} \bullet & \bullet & & & \\ & \bullet & \bullet & & \\ & \bullet & \bullet & & \\ & & \bullet & & \\ \end{array} \begin{array}{cccc} & -\mathbf{x}_{1}^{T} - & & \\ & -\mathbf{x}_{3}^{T} - & & \\ & -\mathbf{x}_{4}^{T} - & & \\ \end{array} \end{array} \right] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

? cannot be ×

$$\mathbf{w}^{T}\mathbf{x}_{4} = \underbrace{\mathbf{w}^{T}\mathbf{x}_{2}}_{\circ}\mathbf{w}^{T}\mathbf{x}_{2} + \underbrace{\mathbf{w}^{T}\mathbf{x}_{3}}_{\circ}\mathbf{w}^{T}\mathbf{x}_{3} - \underbrace{\mathbf{w}^{T}\mathbf{x}_{1}}_{\times}\mathbf{w}^{T}\mathbf{x}_{1} > 0$$

linear dependence restricts dichotomy

$$d_{\rm VC} \leq d+1~(1/2)$$

d-D General Case

$$X = \begin{bmatrix} & -\mathbf{x}_{2}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \\ & -\mathbf{x}_{d+2}^{T} - \end{bmatrix}$$

more rows than columns:

linear dependence (some a_i non-zero) $\mathbf{x}_{d+2} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_{d+1} \mathbf{x}_{d+1}$

• can you generate $(sign(a_1), sign(a_2), ..., sign(a_{d+1}), \times)$? if so, what **w**?

$$\mathbf{w}^{T}\mathbf{x}_{d+2} = \mathbf{a}_{1} \underbrace{\mathbf{w}^{T}\mathbf{x}_{1}}_{\circ} + \mathbf{a}_{2} \underbrace{\mathbf{w}^{T}\mathbf{x}_{2}}_{\times} + \dots + \mathbf{a}_{d+1} \underbrace{\mathbf{w}^{T}\mathbf{x}_{d+1}}_{\times}$$

$$> 0(\text{contradition!})$$

'general' X no-shatter $\implies d_{VC} < d + 1$

Fun Time

Based on the proof above, what is d_{vc} of 1126-D perceptrons?

- 1024
- 2 1126
- **3** 1127
- 4 6211

Reference Answer: (3)

Well, too much fun for this section! :-)

Degrees of Freedom

(modified from the work of Hugues Vermeiren on http://www.texample.net)

- hypothesis parameters $\mathbf{w} = (w_0, w_1, \dots, w_d)$: creates degrees of freedom
- hypothesis quantity $M = |\mathcal{H}|$: 'analog' degrees of freedom
- hypothesis 'power' d_{VC} = d + 1:
 effective 'binary' degrees of freedom

$d_{VC}(\mathcal{H})$: powerfulness of \mathcal{H}

Two Old Friends

Positive Rays ($d_{vc} = 1$)

$$h(x) = -1 \qquad \qquad \downarrow \\ a \qquad \qquad h(x) = +1 \qquad \qquad$$

free parameters: a

Positive Intervals ($d_{VC} = 2$)

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

free parameters: ℓ , r

practical rule of thumb:

 $d_{VC} \approx \#$ free parameters (but not always)

M and d_{VC}

copied from Lecture 5:-)

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

small M

- Yes!,
 ℙ[BAD] ≤ 2 ⋅ M ⋅ exp(...)
- 2 No!, too few choices

large M

- No!,ℙ[BAD] ≤ 2 · M · exp(...)
- 2 Yes!, many choices

small $d_{\rm VC}$

- 1 Yes!, $\mathbb{P}[BAD] \le 4 \cdot (2N)^{d_{VC}} \cdot \exp(...)$
- No!, too limited power

large d_{VC}

- 1 No!, $\mathbb{P}[BAD] \leq 4 \cdot (2N)^{d_{Vc}} \cdot \exp(\ldots)$
- 4 · (2/V) · · exp(...)
- Yes!, lots of power

using the right d_{VC} (or \mathcal{H}) is important

Fun Time

Origin-crossing Hyperplanes are essentially perceptrons with w_0 fixed at 0. Make a guess about the d_{VC} of origin-crossing hyperplanes in \mathbb{R}^d .

- 1
- 2 d
- 3 d + 1
- 4∞

Reference Answer: (2)

The proof is almost the same as proving the d_{VC} for usual perceptrons, but it is the **intuition** ($d_{VC} \approx \#$ free parameters) that you shall use to answer this quiz.

VC Bound Rephrase: Penalty for Model Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\underbrace{\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon}_{\mathsf{BAD}}\right] \qquad \leq \qquad \underbrace{4(2N)^{d_{\mathsf{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

Rephrase

$$\begin{aligned} & \text{..., with probability} \geq 1 - \delta, \, \textbf{GOOD:} \, \left| E_{\text{in}}(g) - E_{\text{out}}(g) \right| \leq \epsilon \\ & \text{set} \qquad \delta \qquad = \qquad 4(2N)^{d_{\text{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right) \\ & \frac{\delta}{4(2N)^{d_{\text{VC}}}} \qquad = \qquad \exp\left(-\frac{1}{8}\epsilon^2N\right) \\ & \ln\left(\frac{4(2N)^{d_{\text{VC}}}}{\delta}\right) \qquad = \qquad \frac{1}{8}\epsilon^2N \\ & \sqrt{\frac{8}{N}\ln\left(\frac{4(2N)^{d_{\text{VC}}}}{\delta}\right)} \qquad = \qquad \epsilon \end{aligned}$$

VC Bound Rephrase: Penalty for Model Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\underbrace{\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon}_{\mathsf{BAD}}\right] \qquad \leq \qquad \underbrace{4(2N)^{\mathsf{d}_{\mathsf{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

Rephrase

..., with probability $\geq 1 - \delta$, **GOOD!**

gen. error
$$\left| E_{\mathsf{in}}(\underline{\pmb{g}}) - E_{\mathsf{out}}(\underline{\pmb{g}}) \right| \leq$$

$$E_{\mathsf{in}}(oldsymbol{g}) - \sqrt{rac{8}{N} \mathsf{ln}\left(rac{4(2N)^{\mathsf{d}_{\mathsf{VC}}}}{\delta}
ight)} \ \le \ oldsymbol{E_{\mathsf{out}}(oldsymbol{g})} \ \le \ oldsymbol{E_{\mathsf{in}}(oldsymbol{g})} + \sqrt{rac{8}{N} \mathsf{ln}\left(rac{4(2N)^{\mathsf{d}_{\mathsf{VC}}}}{\delta}
ight)}$$

$$\underbrace{\sqrt{\dots}}_{\Omega(N,\mathcal{H},\delta)}$$
: penalty for model complexity

 $\sqrt{\frac{8}{N}} \ln \left(\frac{4(2N)^{d_{VC}}}{\delta} \right)$

THE VC Message

with a high probability,

$$E_{\mathsf{out}}(g) \leq E_{\mathsf{in}}(g) + \underbrace{\sqrt{rac{8}{N}\ln\left(rac{4(2N)^{d_{\mathsf{VC}}}}{\delta}
ight)}}_{\Omega(N,\mathcal{H},\delta)}$$

- d_{VC} ↑: E_{in} ↓ but Ω ↑
- d_{VC} ↓: Ω ↓ but E_{in} ↑
- best d_{VC}^* in the middle

powerful \mathcal{H} not always good!

VC Bound Rephrase: Sample Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\underbrace{\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon}_{\mathsf{BAD}}\right] \qquad \leq \qquad \underbrace{4(2N)^{\mathsf{dvc}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

given specs
$$\epsilon = 0.1$$
, $\delta = 0.1$, $d_{\text{VC}} = 3$, want $4(2N)^{d_{\text{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right) \leq \delta$ $\frac{N \quad \text{bound}}{100 \quad 2.82 \times 10^7}$ $1,000 \quad 9.17 \times 10^9$ sample complexity: need $N \approx 10,000 d_{\text{VC}}$ in theory $100,000 \quad 1.65 \times 10^{-38}$ $29,300 \quad 9.99 \times 10^{-2}$

practical rule of thumb:

 $N \approx 10 d_{\rm VC}$ often enough!

Looseness of VC Bound

$$\mathbb{P}_{\mathcal{D}}\Big[\big|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\big| > \epsilon\Big] \qquad \leq \qquad 4(2\mathit{N})^{\mathit{d}_{\mathsf{VC}}} \exp\left(-\tfrac{1}{8}\epsilon^2\mathit{N}\right)$$

theory: $N \approx 10,000 d_{VC}$; practice: $N \approx 10 d_{VC}$

Why?

- Hoeffding for unknown E_{out}
- $m_{\mathcal{H}}(N)$ instead of $|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)|$
- $N^{d_{VC}}$ instead of $m_{\mathcal{H}}(N)$
- union bound on worst cases

any distribution, any target 'any' data

'any' \mathcal{H} of same d_{VC}

any choice made by A

—but hardly better, and 'similarly loose for all models'

philosophical message of VC bound important for improving ML

Fun Time

Consider the VC Bound below. How can we decrease the probability of getting **BAD** data?

$$\mathbb{P}_{\mathcal{D}} \Big[ig| E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g) ig| > \epsilon \Big] \qquad \leq \qquad 4 (2 N)^{d_{\mathsf{VC}}} \exp \left(- rac{1}{8} \epsilon^2 N
ight)$$

- decrease model complexity d_{VC}
- increase data size N a lot
- $oldsymbol{3}$ increase generalization error tolerance ϵ
- 4 all of the above

Reference Answer: (4)

Congratulations on being Master of VC bound! :-)

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 6: Theory of Generalization

Lecture 7: The VC Dimension

Definition of VC Dimension

maximum non-break point

VC Dimension of Perceptrons

$$d_{VC}(\mathcal{H}) = d + 1$$

Physical Intuition of VC Dimension

$$d_{\rm VC} \approx \# {
m free} \ {
m parameters}$$

Interpreting VC Dimension

loosely: model complexity & sample complexity

- next: more than noiseless binary classification?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?