Text Classification

Using SVM with Various Vectorization Techniques

Ahmed Khwaja Amrita Ajay Sagar Hassan Sayed Manisha K

Project Overview

- Objective: Comparing different approaches to classify text into different categories
- Dataset: Contains various text samples with corresponding categories.
- Techniques Used:
 - Bag of Words
 - TF -IDF
 - Word2Vec
 - SVM Model for classification
 - Deep Learning with BERT & other transformer embeddings

Data Preprocessing

- Steps taken:
 - Convert text to lowercase
 - Remove URLs, emails, and hashtags
 - Remove special characters and numbers
 - Tokenization
 - Part-of-Speech (POS) Tagging
 - Stopword removal
 - Lemmatization
 - Libraries used : NLTK, re, sklearn

Data Splitting

- Initial Stratified Split:
 - 98% Training Data
 - 2% Test Data
- Further Splitting:
 - 80% Train
 - 20% Validation

Vectorization Techniques

1.Bag of Words (BoW)

- °Converts text into frequency-based numerical representation.
- Uses CountVectorizer from sklearn.

2.TF-IDF (Term Frequency-Inverse Document Frequency)

- Observe of the obs
- Uses TfidfVectorizer from sklearn.

3.Word2Vec

- Generates dense word embeddings.
- Uses Word2Vec from gensim.

BERT-training Approach

- Model Used: BERT-base-uncased
- Training: Trained from scratch for 50 epochs
- Results:
 - Accuracy: ~80%
 - Issues: Computationally expensive, longer training time

Embeddings from Deep Learning Models

Sentence Transformer Models Tested:

- MiniLM+ Xgboost: Accuracy ~62.05%
- MPNet+ Xgboost: Accuracy ~65.2%
- BERT+ XgBoost: Accuracy: ~53.96%

Conclusion: Deeplearning embeddings performed poorly.

Classical ML - SVM + TF-IDF

Feature Extraction: TF-IDF (Term Frequency-Inverse Document Frequency)

Classifier Used: SVM (Support Vector Machine)

Why TF-IDF + SVM?

- Simpler and computationally efficient
- No need for GPU
- Performed best for our dataset

Model Training - SVM

Model Used: Support Vector Machine (SVM)

•Hyperparameters:

°Kernel: Linear

Probability: True

°Random Seed: 42

•Libraries Used: sklearn.svm.SVC

Alternative approaches

- Multinomial NaiveBayes: Accuracy ~68
- Random Forest: Accuracy ~77
- KNN: Accuracy: ~66

Model Comparison

Algorithm	Accuracy	Precision	F1-Score	Recall
MiniLM+ Xgboost	62.05	63	62	62
MPNet+ Xgboost	65.20	64	64	64
BERT+ XgBoost	53.96	54	53	54
Multinomial NaiveBayes	68	66	66	68
Random Forest	77	76	75	77
KNN	66	65	65	66
SVM	81	80	81	80

Final Model Selection

Final Choice: SVM with TF-IDF

Reason for Selection:

Outperformed BERT-based approaches and other ML approaches

Faster training and inference

Bag of Words was competitive but slightly less effective

Word2Vec also underperformed

Best Accuracy & F1-Score on validation data

Conclusion

Key Findings:

- Deep learning models did not significantly outperform traditional ML for this dataset.
- SVM + TF-IDF was the optimal choice due to its efficiency and accuracy.