IQ-TREE Methodology and Practice

Minh Bui Australian National University

Workshop on Molecular Evolution Woods Hole, August 2019

IQ-TREE DEVELOPMENT TEAM

Lam Tung Nguyen

Google Scholar

Contribution: Tree search algorithm and parallelization.

Jana Trifinopoulos

Contribution: W-IQ-TREE web service.

Michael Woodhams

Google Scholar

Contribution: Lie Markov models.

Olga Chernomor

Google Scholar

Contribution: Partition models and phylogenomic search.

Bui Quang Minh

Google Scholar

Contribution: Team leader, software core, ultrafast bootstrap, model selection.

Arndt von Haeseler

Google Scholar

Contribution: Advice, ideas and financial support.

Heiko A. Schmidt

Google Scholar

Contribution: Integration of TREE-PUZZLE features.

Dominik Schrempf

Google Scholar

Contribution: Polymorphism-aware models (PoMo).

Diep Thi Hoang

Contribution: Improving ultrafast bootstrap.

Thanks to plenty of users for feedback and bug reports!

Practical data set: Where is Turtle in the tree?

Practical data set: Where is Turtle in the tree?

Practical data set: Where is Turtle in the tree?

Thanks Jeremy Brown

Next generation sequencing data represent both a blessing and a curse:

Next generation sequencing data represent both a blessing and a curse:

• Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.
 - "All models are wrong, but some are useful" (Box, 1976)

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.

"All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.

"All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

Analyze ultra-large data sets.

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.
 - "All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

- Analyze ultra-large data sets.
- Provide many (if not most) "useful" models of sequence evolution.

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.
 - "All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

- Analyze ultra-large data sets.
- Provide many (if not most) "useful" models of sequence evolution.

But still, there are RAxML, PhyML out there, why do I need IQ-TREE?

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.
 - "All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

- Analyze ultra-large data sets.
- Provide many (if not most) "useful" models of sequence evolution.

But still, there are RAxML, PhyML out there, why do I need IQ-TREE?

 We better have at least 2 software independently developed for similar purpose. Only then, the pros and cons (sometimes bugs) can be identified. This creates a *friendly* competition, which helps to advance the field!

Next generation sequencing data represent both a blessing and a curse:

- Blessing: (Phylo)genomic data help to elucidate many phylogenetic questions.
- Curse: Many model assumptions become increasingly distant from the truth due to growing data complexity.
 - "All models are wrong, but some are useful" (Box, 1976)

With IQ-TREE we aim to:

- Analyze ultra-large data sets.
- Provide many (if not most) "useful" models of sequence evolution.

But still, there are RAxML, PhyML out there, why do I need IQ-TREE?

- We better have at least 2 software independently developed for similar purpose. Only then, the pros and cons (sometimes bugs) can be identified. This creates a *friendly* competition, which helps to advance the field!
- Same as having MrBayes, RevBayes, BEAST for Bayesian inference.

An independent benchmark by Zhou et al. (2018)

Frequency of reporting the highest likelihood score

An independent benchmark by Zhou et al. (2018)

Tree search algorithms in RAxML and IQ-TREE

Feature	RAxML	IQ-TREE
Starting tree	Parsimony: Stepwise addition + subtree pruning and regrafting (SPR)	99 parsimony trees (like RAxML) and 1 Neighbor-joining tree
Tree search heuristics	Hill-climbing SPR	Stochastic: Hill- climbing Nearest Neighbor Interchange (NNI) and downhill NNI

Typical phylogenetic analysis

Sequence alignment

CACCTGTCGT			TCTGGTGCAG
CAGCTGTCGT	GCTCTTTCTG	TTGAGCCTGG	TCTGGTGCAG
CAGCTGCCGT	GTTTTCTCTG	TTGAGCCTGG	TCTGGTACAG
CAGCTGCCGC	GTTCTCTCCG		TCTGGTGCAA
CTCCTGCCGG	GTGCTCTCAG		
CTCCTGCCGG		CTGAGCCGGG	TCTGGTGCAG
CTCTTGCCGG		CTGAGCCTTG	

(Jukes & Cantor 1969)

Rate model	Explanation
+I	Some sites are <i>invariable</i> (zero rate), e.g. due to selective force.
+G	Site rates follow a <i>Gamma</i> distribution.
+I+G	Some sites are invariable, the rest follow a Gamma distribution.
+R	Sites fall into several categories from slow to fast rates. No assumption of rate distribution (free-rate model).

Rate model	Explanation
+I	Some sites are <i>invariable</i> (zero rate), e.g. due to selective force.
+G	Site rates follow a <i>Gamma</i> distribution.
+I+G	Some sites are invariable, the rest follow a Gamma distribution.
+R	Sites fall into several categories from slow to fast rates. No assumption of rate distribution (free-rate model).

Rate model	Explanation
+I	Some sites are <i>invariable</i> (zero rate), e.g. due to selective force.
+G	Site rates follow a <i>Gamma</i> distribution.
+I+G	Some sites are invariable, the rest follow a Gamma distribution.
+R	Sites fall into several categories from slow to fast rates. No assumption of rate distribution (free-rate model).

Rate heterogeneity: alignment sites evolved at different rates. Some slow, some fast.

Rate model	Explanation
+I	Some sites are <i>invariable</i> (zero rate), e.g. due to selective force.
+G	Site rates follow a <i>Gamma</i> distribution.
+I+G	Some sites are invariable, the rest follow a Gamma distribution.
+R	Sites fall into several categories from slow to fast rates. No assumption of rate distribution (free-rate model).

Rate heterogeneity: alignment sites evolved at different rates. Some slow, some fast.

Rate model	Explanation
+I	Some sites are <i>invariable</i> (zero rate), e.g. due to selective force.
+G	Site rates follow a <i>Gamma</i> distribution.
+I+G	Some sites are invariable, the rest follow a Gamma distribution.
+R	Sites fall into several categories from slow to fast rates. No assumption of rate distribution (free-rate model).

A model = substitution model + rate heterogeneity, e.g. "GTR+G"

Model selection

JC		GTR
JC+G JC+I		GTR+G GTR+I
JC+I+G JC+R2	• • • • •	GTR+I+G GTR+R2
 JC+R10		 GTR+R10

Which model is best?

Model selection

JC JC+G JC+I JC+I+G JC+R2	• • • • •	GTR GTR+G GTR+I GTR+I+G GTR+R2
 JC+R10		 GTR+R10

Which model is best?

Problem:

More complex models always have higher *likelihood* than simpler models!

Model selection

Which model is best?

Problem:More complex models al

More complex models always have higher *likelihood* than simpler models!

Solution: Penalize a model M by the number of its parameters (k)

- 1. Akaike information criterion (AIC):
- 2. Bayesian information criterion (BIC):

where n is the number of alignment sites.

Select the model with smallest AIC or BIC score.

The default in IQ-TREE is BIC, but you should state that in the publication!

Bootstrap: How reliable are branches of the tree?

Bootstrap: How reliable are branches of the tree?


```
Sample 1

. AGGGGUCAAA . .
. AGGGGCCCAAA . .
. AUUUUCCACC . .
```


M.A.T. Nguyen, A. von Haesel

estimated site log-likelihoods from the original alignment

M.A.T. Nguyen, A. von Haesel

M.A.T. Nguyen, A. von Haesel

Genome-scale data: Concatenation methods

Genome-scale data: Concatenation methods

Species tree of life

Genome-scale data: Concatenation methods

Level of model violations in 35 phylogenomic datasets (https://doi.org/10.1101/460121)

Level of model violations in 35 phylogenomic datasets (https://doi.org/10.1101/460121)

- 1. Resulting trees tend to be biased towards the genes that violated model assumptions.
- 2. Bootstrap supports tend to 100% as #genes increases.

Level of model violations in 35 phylogenomic datasets (https://doi.org/10.1101/460121)

- 1. Resulting trees tend to be biased towards the genes that violated model assumptions.
- 2. Bootstrap supports tend to 100% as #genes increases.

Model violation → Systematic bias

Level of model violations in 35 phylogenomic datasets (https://doi.org/10.1101/460121)

- 1. Resulting trees tend to be biased towards the genes that violated model assumptions.
- 2. Bootstrap supports tend to 100% as #genes increases.

Model violation → Systematic bias

- 1. Remove "bad" loci
- Use more realistic models

Partition model

Partition model

shared

linked

Partition model

Supermatrix						
Gene 1		Gene 2		Gene 1,000		
	CACCTGTCGT			TCTGGTGCAG		
	CAGCTGTCGT	GCTCTTTCTG	TTGAGCCTGG	TCTGGTGCAG		
	CAGCTGCCGT	GTTTTCTCTG	TTGAGCCTGG	TCTGGTACAG		
	CAGCTGCCGC	GTTCTCTCCG		TCTGGTGCAA		
	CTCCTGCCGG	GTGCTCTCAG				
	CTCCTGCCGG		CTGAGCCGGG	TCTGGTGCAG		
	CTCTTGCCGG		CTGAGCCTTG			

Substitution models:

HKY

•••••

GTR+G

PartitionFinder algorithm

(Lanfear et al. 2012):

- 1. Evaluate to merge all pairs of genes.
- 2. Choose the pair with the best score.
- 3. If score improves, merge two genes and repeat steps 1-3.
- 4. Otherwise, stop.

Substitution models:

HKY

•••••

GTR+G

HKY

models:

PartitionFinder algorithm

(Lanfear et al. 2012):

- 1. Evaluate to merge all pairs of genes.
- 2. Choose the pair with the best score.
- 3. If score improves, merge two genes and repeat steps 1-3.
- 4. Otherwise, stop.

Relaxed clustering algorithm

(Lanfear et al. 2014):

GTR+G

In step 1: only examine the top k% of most "promising" pairs.

How to bootstrap phylogenomic alignments?

Supermatrix					
Gene 1		Gene 2		Gene 1,000	
	CACCTGTCGT			TCTGGTGCAG	
	CAGCTGTCGT	GCTCTTTCTG	TTGAGCCTGG	TCTGGTGCAG	
	CAGCTGCCGT	GTTTTCTCTG	TTGAGCCTGG	TCTGGTACAG	
	CAGCTGCCGC	GTTCTCTCCG		TCTGGTGCAA	
	CTCCTGCCGG	GTGCTCTCAG			
	CTCCTGCCGG		CTGAGCCGGG	TCTGGTGCAG	
	CTCTTGCCGG		CTGAGCCTTG		

Tree topology tests

$$\overset{\delta}{\delta} = \log \Big(likelihood(T_1) \Big) - \log \Big(likelihood(T_0) \Big)$$

Tree topology tests

⁶Testing two trees (Kishino & Hasegawa, 1989):

- 1. Statistic: .
- 2. Generate distribution of from many "random" data (e.g. by 1000 bootstrap resampling).
- 3. Compare the statistic between original and random data to obtain *p-value*.
- 4. If p-value < 0.05: YES! two trees are significantly different.
- If p-value >= 0.05: NO! they are not.

Concatenation methods: Limitation

Concatenation methods: Limitation

Species tree of life

Bootstrap supports and Bayesian posteriors tend to 100% as #genes increases!

Concatenation methods: Limitation

CTGAGCCTTG

Supermatrix Gene 2 Gene 1 Gene 1,000 CACCTGTCGT TCTGGTGCAG CAGCTGTCGT TCTGGTGCAG GCTCTTTCTG TTGAGCCTGG CAGCTGCCGT GTTTTCTCTG TTGAGCCTGG TCTGGTACAG CAGCTGCCGC **GTTCTCTCCG** TCTGGTGCAA CTCCTGCCGG **GTGCTCTCAG** CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG

CTCTTGCCGG

Species tree of life

Bootstrap supports and Bayesian posteriors tend to 100% as #genes increases!

Concatenation assumes a single tree across all loci

Potential systematic bias

Felsenstein (1985):

which not. Where the method of inferring phylogenies is one with undesirable statistical properties such as inconsistency, the bootstrap does not correct for these.

_			•	•
Su	\mathbf{n}	rm	3+	riv
711	—		~ 1	
			u	/

Supermucia						
Gene 1		Gene 2		Gene 1,000		
	CACCTGTCGT			TCTGGTGCAG		
	CAGCTGTCGT	GCTCTTTCTG	TTGAGCCTGG	TCTGGTGCAG		
	CAGCTGCCGT	GTTTTCTCTG	TTGAGCCTGG	TCTGGTACAG		
	CAGCTGCCGC	GTTCTCTCCG		TCTGGTGCAA		
	CTCCTGCCGG	GTGCTCTCAG				
	CTCCTGCCGG		CTGAGCCGGG	TCTGGTGCAG		
	CTCTTGCCGG		CTGAGCCTTG			

Supermatrix

Supermucia					
Gene 1		Gene 2	•••••	Gene 1,000	
	CACCTGTCGT			TCTGGTGCAG	
	CAGCTGTCGT	GCTCTTTCTG	TTGAGCCTGG	TCTGGTGCAG	
	CAGCTGCCGT	GTTTTCTCTG	TTGAGCCTGG	TCTGGTACAG	
	CAGCTGCCGC	GTTCTCTCCG		TCTGGTGCAA	
	CTCCTGCCGG	GTGCTCTCAG			
	CTCCTGCCGG		CTGAGCCGGG	TCTGGTGCAG	
	CTCTTGCCGG		CTGAGCCTTG		

Supermatrix Gene 2 Gene 1 Gene 1,000 TCTGGTGCAG CACCTGTCGT CAGCTGTCGT GCTCTTTCTG TTGAGCCTGG TCTGGTGCAG CAGCTGCCGT GTTTTCTCTG TTGAGCCTGG TCTGGTACAG CAGCTGCCGC GTTCTCTCCG TCTGGTGCAA CTCCTGCCGG GTGCTCTCAG CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG **CTCTTGCCGG CTGAGCCTTG**

Supermatrix Gene 2 Gene 1 Gene 1,000 CACCTGTCGT TCTGGTGCAG CAGCTGTCGT GCTCTTTCTG TTGAGCCTGG TCTGGTGCAG CAGCTGCCGT GTTTTCTCTG TTGAGCCTGG TCTGGTACAG CAGCTGCCGC **GTTCTCTCCG** TCTGGTGCAA CTCCTGCCGG GTGCTCTCAG CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG **CTCTTGCCGG CTGAGCCTTG**

Supermatrix Gene 2 Gene 1 Gene 1,000 CACCTGTCGT TCTGGTGCAG CAGCTGTCGT GCTCTTTCTG TTGAGCCTGG TCTGGTGCAG CAGCTGCCGT GTTTTCTCTG TTGAGCCTGG TCTGGTACAG CAGCTGCCGC **GTTCTCTCCG** TCTGGTGCAA CTCCTGCCGG GTGCTCTCAG CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG **CTCTTGCCGG CTGAGCCTTG**

Supermatrix Gene 2 Gene 1 Gene 1,000 CACCTGTCGT TCTGGTGCAG TTGAGCCTGG CAGCTGTCGT GCTCTTTCTG TCTGGTGCAG CAGCTGCCGT **GTTTTCTCTG** TTGAGCCTGG TCTGGTACAG CAGCTGCCGC **GTTCTCTCCG TCTGGTGCAA** CTCCTGCCGG GTGCTCTCAG CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG **CTCTTGCCGG CTGAGCCTTG**

Supermatrix Gene 2 Gene 1 Gene 1,000 CACCTGTCGT TCTGGTGCAG CAGCTGTCGT GCTCTTTCTG TTGAGCCTGG TCTGGTGCAG CAGCTGCCGT **GTTTTCTCTG** TTGAGCCTGG TCTGGTACAG CAGCTGCCGC **GTTCTCTCCG** TCTGGTGCAA CTCCTGCCGG GTGCTCTCAG CTCCTGCCGG CTGAGCCGGG TCTGGTGCAG **CTCTTGCCGG CTGAGCCTTG**

- gCF and sCF are useful when bootstrap supports reach 100%.
- CAUTION when gCF ~ 0% or sCF ~ 33%, even if BS ~ 100%.
- GREAT when gCF and sCF > 50%.

Exercises

- 1. Input data
- 2. Inferring the first phylogeny
- 3. Applying partition model
- 4. Choosing the best partitioning scheme
- 5. Tree topology tests
- 6. Concordance factors
- 7. Resampling partitions and sites
- 8. Identifying most influential genes
- 9. Wrapping up

http://www.iqtree.org/workshop/molevol2019

Suggestion: Use your laptop if possible, as cluster nodes are quite slow!