鲁棒控制

控制系统。

确定的

非确定的:模型的不精确性和外部干扰

*鲁棒控制:一个控制系统在存在不确定的情况下,如果能使系统仍保持预期的性能,使模型的不精确性和外部干扰造成的系统的性能改变是可以接受的。

**Robust:鲁棒,稳健的,有适应能力的

1. LTI鲁棒控制器

考虑系统

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} + E\mathbf{w}$$

$$\mathbf{y} = C\mathbf{x} + D\mathbf{u} + F\mathbf{w}$$

$$\mathbf{e} = \mathbf{y} - \mathbf{y}_r$$

参考输入У,满足如下状态方程:

$$\dot{\mathbf{z}}_r = A_r \mathbf{z}_r$$

$$\mathbf{y} = C_r \mathbf{z}_r$$

干扰 w 满足如下状态方程:

$$\dot{\mathbf{z}}_{w} = A_{w} \mathbf{z}_{w}$$
 $\mathbf{w} = C_{w} \mathbf{z}_{w}$

**控制问题是:

- >设计控制器,使达到输出调节,即 $\lim_{t\to\infty} e(t) = 0$ 。
- ▶当模型存在一定的扰动时系统仍能达到输出调节, 即设计鲁棒(伺服)控制系统。

2. 鲁棒控制器存在的条件

定理5-1 鲁棒控制器存在的充分必要条件是

- 1) (A,B) 可镇定___、
- 2) (C,A) 可检测

意味着系统中不稳定的部分是能 控能观测的,因而可通过动态输出 反馈镇定。

3) $m \ge r$

4) 对 A_r 或 A_w 的任一特征值 λ

$$rank \begin{bmatrix} A - \lambda I & B \\ C & D \end{bmatrix} = n + r$$

表明 A_r 或 A_ω 的任一特况在值 λ 都不是系统的传递

3.鲁棒控制器的一般结构

- + 鲁棒控制器的结构:由伺服补偿器和镇定补偿器构成。
- $oxedsymbol{D}$ 何服补偿器的作用是在克服干扰 $oldsymbol{W}$ 的作用实现输出调节,使系统输出跟踪参考输入,没有稳态误差,它的输出记为 $oldsymbol{\xi}$ 。
- $\frac{1}{2}$ 镇定补偿器的作用是使整个闭环系统稳定,它以 ξ,u,y 为输入,它的输出记为 η 。
- 在整个控制系统中作用于被控对象的<mark>控制向量为 $u=K_1$ $\xi+K_2$ η </mark>,式中 K_1,K_2 是需要设计的反馈矩阵。

4.内模原理

- +伺服补偿器的设计只由干扰向量w 和参考输入 y_r 的动态特性(A_w 或 A_r 的特征值)决定而与被控对象无关。
- *因此我们说:在伺服补偿器中包含了外部环境的模型。这说明欲克服外干扰,实现输出调节需在控制器内引入一个外部动态的模型。在调节器的设计中这一事实称为内模原理。