中国科学技术大学

2023-2024 秋季实分析试卷

考试时间: 2023 年 11 月 28 日 8:30-10:30	主讲教师: 赵老师、	郭老师
J 2011 J 1 2028 11 / 1 20 H 0180 10180	2 //3//11/C 1//11	1 k 🗆 🗀

姓名:

学号:

注意: 所有题目的解答要有详细过程, 其中使用的定理或命题需要注明.

题号	_	=	Ξ	四	五	六	七	总分	阅卷 教师
分数									

阅卷人	
得 分	

一、选择题 (每题 10 分, 共 10 分)

- 1. 设有平面区域 $D = \{(x,y) \mid -a \leqslant x \leqslant a, x \leqslant y \leqslant a\}$, $D_1 = \{(x,y) \mid 0 \leqslant x \leqslant a, x \leqslant y \leqslant a\}$, 则 $\iint\limits_D (xy + \cos x \sin y) \, \mathrm{d}x \, \mathrm{d}y = (x,y) \mid 0 \leqslant x \leqslant a, x \leqslant y \leqslant a\}$
 - ()
- (A) 0.

- (B) $4\iint_{D_1} (xy + \cos x \sin y) dx dy$.
- (C) $2\iint_{R} xy \,dx \,dy$.
- (D) $2\iint_{D} \cos x \sin y \, dx \, dy.$

阅卷人	
得 分	

二、填空题 (每题 10 分, 共 20 分)

- 2. 设 $z = u^2 \ln v$,而 $u = \frac{x}{y}, v = x y$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$
- 3. 把二次积分 $\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$ 化为极坐标形式的二次积分为_____.

阅卷人	
得 分	

三、解答题 (每题 30 分, 共 120 分)

4. (30 分) 设 f 是 \mathbb{R}^d 上不恒为零的可积函数, 证明存在常数 c > 0 使得对于所有的 $|x| \ge 1$,

$$f^* \ge \frac{c}{|x|^{\mathsf{d}}}$$

其中

$$f*(x) = \sup_{x \in B} \frac{1}{m(B)} \int_{B} |f(x)| \, \mathrm{d}y, \ x \in \mathbb{R}^{d}.$$

5. (30 分) 设 f_n 是区间 [0,1] 上的一列可测函数, 满足

$$\lim_{n \to \infty} f_n(x) = 0$$
, a.e. $x \in [0, 1]$

且

$$\sup_{n} \|f_n\|_{L^2([0,1])} \le 1$$

证明:

$$\lim_{n\to\infty} \|f_n\|_{L^1([0,1])} = 0.$$

6. (30 分) 令 m 表示 \mathbb{R} 上的 Lebesgue 测度, $A \subset \mathbb{R}$ 是 Lebesgue 可测集. 假设对于所有的实数 a < b,

$$m(A\cap[a,b])<\frac{b-a}{2}$$

证明: m(A) = 0.

7. (30 分) 若 f 在 \mathbb{R} 上绝对连续, 且 $f \in L^1(\mathbb{R})$. 如果

$$\lim_{t \to 0} \int_{\mathbb{R}} \left| \frac{f(x+t) - f(x)}{t} \right| dx = 0$$

证明: $f \equiv 0$.