Задание 4

Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Усвяцов Михаилб 1766

Задача 1^{\dagger} . Доказать, что регулярные языки замкнуты относительно взятия морфизма.

Задача 2^{\dagger} . Верно ли, что для любого языка L и любого морфизма $\varphi: \Sigma^* \to \Sigma^*$

- 1. язык $\varphi(\varphi^{-1}(L))$ совпадает с L?
- 2. язык $\varphi^{-1}(\varphi(L))$ совпадает с L?
- 3. $\varphi(\varphi^{-1}(L)) \stackrel{?}{=} \varphi^{-1}(\varphi(L))$

Задача 3^{\dagger} . Доказать, что регулярные языки замкнуты относительно операции взятия обратного морфизма.

Задача 4. Доказать, что для языка L выполняется лемма о накачке, но он не является регулярным. Обозначим за PRIMES множество простых чисел. Напомним, что $A^+ = AA^*$.

$$L = b^* \cup \{ab^p \mid p \in PRIMES\} \cup aa^+b^*.$$

Задача 5. К языку L_1 добавили конечный язык R и получили язык L ($L = L_1 \cup R$). Язык L оказался регулярным. Верно ли, что язык L_1 мог быть нерегулярным?

Задача 6. Язык L задан автоматом \mathcal{A} . Построить минимальный автомат для языка L.

 ${\bf 3 aдач a} \ {\bf 7.} \ \ \Pi$ остройте минимальный автомат для языка $\bar L$ из предыдущей задачи.

Задача 8. Найдите все классы эквивалентности Майхилла-Нероуда для языка $\Sigma^*ab\Sigma^*$ и постройте по ним ДКА.