Queens' College Cambridge

Complexity Theory

Alistair O'Brien

Department of Computer Science

May 16, 2021

Contents

1	Bac 1.1	kground Asympto		ion									4 4
2	Tur	ing Macl								6			
	2.1	Turing N	Machines										6
		2.1.1	Computat	le Functions	and L	angu	ages						9
		2.1.2 T	ime and	Space Comp	lexity								11
	2.2			c Turing Ma									13
				Space Comp									13
3	Cor	nplexity Classes 14											
	3.1	Complex	ity Class	es									14
		_	Reduction										14
		3.1.2 C	Completer	ness									16
	3.2		_										16
			roblems										17
		3	.2.1.1 H	Reachability									17
		3		Max Flow .									17
		3		Matching .									20
		3.2.2 c											21
	3.3	Non-Det		c Polynomial									21
	0.0			nal Logic \mathcal{L}_0									$\frac{1}{22}$
			_	SAT									$\frac{-}{22}$
				CNF									25
				blems									$\frac{27}{27}$
			-	ndependent									27
				Clique									29
				Graph Colora									30
				Hamiltonian									32
				DOD.									$\frac{32}{33}$

	3.3.3	Sets and Numbers
		3.3.3.1 Tripartite Matching
		3.3.3.2 Set Covering
		3.3.3.3 Knapsack and Pseudo-polynomial Time 36
	3.3.4	co-NP
		3.3.4.1 Primality
3.4	Functi	ion Classes
	3.4.1	Reductions
	3.4.2	Problems
		3.4.2.1 Factorization
	3.4.3	Cryptography
		3.4.3.1 One-way Functions 41
3.5	Space	Complexity
	3.5.1	Classes
	3.5.2	Inclusions
	3.5.3	Savitch's Theorem
	3.5.4	Hierarchy Theorem

1 Background

1.1 Asymptotic notation

Definition 1.1.1. (O-notation) For a given function $g : \mathbb{N} \to \mathbb{N}$, we denote O(g(n)) as the set of functions

$$O(g(n)) = \{ f(n) : \exists N, b > 0. \forall n > N.0 \le f(n) \le bg(n) \}.$$

- **Notation**: We often write functions as f(n) (as opposed to the correct notation: $f: \mathbb{N} \to \mathbb{N}$)
- Macro convention:
 - A set in a formula represents an anonymous function in the set.
 - For example

$$f(n) = n^3 + O(n^2) \iff \exists g(n) \in O(n^2). f(n) = n^3 + g(n).$$

and

$$n^2 + O(n) = O(n^2) \iff \forall f(n) \in O(n). \exists g(n) \in O(n^2). n^2 + f(n) = g(n).$$

Definition 1.1.2. (Ω -notation) For a given function $g : \mathbb{N} \to \mathbb{N}$, we denote $\Omega(g(n))$ as the set of functions

$$O(g(n)) = \{ f(n) : \exists N, a > 0. \forall n > N.0 \le ag(n) \le f(n) \}.$$

Definition 1.1.3. (Θ -notation) For a given function $g: \mathbb{N} \to \mathbb{N}$, we denote $\Theta(g(n))$ as the set of functions

$$\Theta(g(n)) = \{ f(n) : \exists N, a, b > 0 . \forall n > N . 0 \le ag(n) \le f(n) \le bg(n) \}.$$

• Note that

$$\Theta(g(n))=\left\{f(n):f(n)\in\Omega(g(n))\wedge f(n)\in O(g(n))\right\}.$$
 Hence $\Theta(g(n))=O(g(n))\cap\Omega(g(n)).$ So $\Theta(g(n))\subset O(g(n))$ and $\Theta(g(n))\subset\Omega(g(n))$

Theorem 1.1.1. For all functions $f, g, h : \mathbb{N} \to \mathbb{N}$, we have

(i) Transitivity:

$$f(n) \in \Theta(g(n)) \land g(n) \in \Theta(h(n)) \implies f(n) \in \Theta(h(n))$$

$$f(n) \in O(g(n)) \land g(n) \in O(h(n)) \implies f(n) \in O(h(n))$$

$$f(n) \in \Omega(g(n)) \land g(n) \in \Omega(h(n)) \implies f(n) \in \Omega(h(n))$$

(ii) Reflexivity:

$$f(n) \in \Theta(f(n))$$

 $f(n) \in O(f(n))$
 $f(n) \in \Omega(f(n))$

(iii) Symmetry:

$$f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n)).$$

(iv) Transpose Symmetry:

$$f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$$

2 Turing Machines

2.1 Turing Machines

Definition 2.1.1. (Turing Machines) A k-tape Turing machine M on Σ is the 5-tuple $(Q, \Sigma, q_0, \delta, H)$:

- (i) Q is a finite set of states
- (ii) Σ is a finite alphabet, disjoint from Q
- (iii) $q_0 \in Q$ is the initial state.
- (iv) $\delta: (Q \times \mathcal{O}(\Sigma)^k) \to Q \times (\mathcal{O}(\Sigma) \times \{\leftarrow, -, \rightarrow\})$ is the transition function.
- (v) $H \subseteq Q$ is the set of halting states

• Notation:

- The set of k-tape Turing machines over Σ is denoted TM_{Σ}^k .
- The set of directions $\mathsf{Direction} = \{\leftarrow, -, \rightarrow\}.$
- The set of actions $\mathsf{Act}_\Sigma = \mathcal{O}(\Sigma) \times \mathsf{Direction}$.
- Idea: Reasoning about labelled states (e.g. acc, rej) \implies labelled machines
- Tape Classifications (related to Flynn's Tax):
 - -n=0 defines the set of Nil machines
 - -n = 1 defined the set of SISD machines
 - -n > 1 defines the set of MIMD machines

Definition 2.1.2. (Labelled Machines) A labelled k-tape Turing machine M_L w/ labels on L is the pair $M_L = (M, \mathsf{lab})$ where $M = (Q, \Sigma, q_0, \delta, H)$ is a k-tape unlabelled Turing machine and $\mathsf{lab}: Q \to L$ is the labelling function of M.

• Notation: The set of k-tape labelled Turing machines over Σ, L is denoted $\mathsf{TM}^k_{\Sigma}(L)$.

Definition 2.1.3. (Tape) A tape τ on Σ is the pair $\tau = (u, v)$ where $u \in \Sigma^*, v \in \Sigma^*$, and \triangleright denote the left end-of-tape markers.

If u = wa, then a is the current character under the read/write head.

• Notation: Tape $_{\Sigma}$ denotes the set of tapes on Σ

Definition 2.1.4. (Tape Operators) The tape movement operator move : Direction \times Tape $_{\Sigma}$ \rightarrow Tape $_{\Sigma}$:

$$\begin{array}{lll} \operatorname{move}(\leftarrow,\;(\triangleright,\;v)) = (\triangleright,\;v) \\ \operatorname{move}(\leftarrow,\;(ua,\;v)) = (u,\;av) \\ \operatorname{move}(\rightarrow,\;(u,\;av)) = (ua,\;v) \\ \operatorname{move}(\rightarrow,\;(u,\;\varepsilon)) = (u,\;\varepsilon) \\ \operatorname{move}(-,\;\tau) = \tau \end{array}$$

The left/right tape operators left, right : $\mathsf{Tape}_{\Sigma} \to \Sigma^*$

left(
$$\triangleright$$
, v) = ε left($\triangleright ua$, v) = u

The tape write operator write : $\mathsf{Tape}_{\Sigma} \times \mathcal{O}(\Sigma) \to \mathsf{Tape}_{\Sigma}$

write
$$(\tau, \emptyset) = \tau$$

write $(\tau, |a|) = (\triangleright \text{left}(\tau)a, \text{right}(\tau))$

The current symbol function current : $\mathsf{Tape}_{\Sigma} \to \mathcal{O}(\Sigma)$ is defined by

$$\operatorname{current}(ua, v) = \lfloor a \rfloor$$

 $\operatorname{current}(_) = \emptyset$

The contents function contents : $\mathsf{Tape}_\Sigma \to \Sigma^*$ is defined by

```
contents(\triangleright u, v) = uv
```

• The empty type is $\tau_0 = (\triangleright, \varepsilon)$. The initial tape w/ contents $u \in \Sigma^*$ is $\tau_0(u) = (\triangleright, u)$.

Definition 2.1.5. (Configuration) A k-tape Turing machine configuration c for $M = (Q, \Sigma, q_0, \delta, H)$ is the tuple $c = (q, \tau_1, \dots, \tau_k)$ where:

- The current state $q \in Q$
- The *i*th tape $\tau_i \in \mathsf{Tape}_{\Sigma}$.

The set of configurations for M is denoted $\mathscr{C}(M)$.

Definition 2.1.6. (Transition Relation) The transition function for Σ tapes Tape_{Σ} w/ action $\mathsf{act} \in \mathsf{Act}_{\Sigma}$, denoted $\stackrel{\mathsf{act}}{\longrightarrow}$: $\mathsf{Tape}_{\Sigma} \mapsto \mathsf{Tape}_{\Sigma}$ is defined by

$$\frac{\tau_2 = \mathsf{move}(D, \mathsf{write}(\tau_1, a))}{\tau_1 \xrightarrow{(a, D)} \tau_2}$$

The transition relation for *n*-tape TM $M = (Q, \Sigma, q_0, \delta, H)$, denoted $\longrightarrow_M : \mathscr{C}(M) \longleftrightarrow \mathscr{C}(M)$ is inductively defined by

$$\frac{\mathsf{current}(\tau_i) = a_i \quad \delta(q, a_i) = (q', \mathsf{act}_1, \dots, \mathsf{act}_n) \quad \tau_i \xrightarrow{\mathsf{act}_i} \tau_i'}{(q, \tau_1, \dots, \tau_n) \longrightarrow_M (q', \tau_1', \dots, \tau_n')} [q \notin H]$$

• Notation: \longrightarrow_M^* denotes a sequence of transitions, the reflexive transitive closure of \longrightarrow_M .

Theorem 2.1.1. (Determinisim)

$$\begin{split} \forall M \in \mathsf{TM}_{\Sigma}^k. \\ \forall c, c_0, c_1 \in \mathscr{C}(M). \\ c \longrightarrow_M c_0 \land c \longrightarrow_M c_1 \implies c_0 = c_1 \end{split}$$

Definition 2.1.7. (Computation) A computation of a Turing machine M is a sequence of transitions (infinite or finite)

$$c_0 \longrightarrow_M c_1 \longrightarrow_M \cdots$$

where $c_0 \in \mathscr{C}(M)$ is the *initial* configuration.

• A configuration $c = (q, \tau_1, \dots, \tau_n)$ is halting if $q \in H$. Note that $c \not\longrightarrow_M \iff c$ is halting.

Definition 2.1.8. (Halting Computation) A halting computation of a k-tape Turing machine $M = (Q, \Sigma, q_0, \delta, H)$, denoted $(u_1, \ldots, u_\ell) \downarrow_M v$, where $\downarrow_M : (\Sigma^*)^\ell \rightharpoonup \Sigma^*$, and $\ell < k$, defined by

$$(u_1,\ldots,u_\ell) \downarrow_M^q \operatorname{contents}(\tau_k) \iff (q_0,\tau_0(u_1),\ldots,\tau_0(u_\ell),\ldots,\tau_0) \longrightarrow_M^* (q,\tau_1,\ldots,\tau_k) \not\longrightarrow.$$

• Halting computation define the I/O convention: kth tape = output and first ℓ tapes = input.

Theorem 2.1.2. (MIMD and SISD Reduction)

$$\forall M \in \mathsf{TM}_{\Sigma}^{k}. \exists N \in \mathsf{TM}_{\Sigma}^{1}.$$
$$\forall u, v \in \Sigma^{*}. u \downarrow_{M} v \iff u \downarrow_{N} v$$

2.1.1 Computable Functions and Languages

Definition 2.1.9. (Computable) A function $f \in \mathcal{P}[\Sigma^* \to \Sigma^*]$ is Turing computable iff there exists a k-tape Turing machine $M \in \mathsf{TM}^k_{\Sigma}$ s.t

$$\forall u, v \in \Sigma^*. u \downarrow_M v \iff f(u) = v$$

Definition 2.1.10. (Encodable) A set S is encodable on the finite alphabet Σ_S if there exists a bijection $[\![\cdot]\!]_S : S \to \Sigma_S^*$.

- All encodings for representations of mathematical objects are *polynomially related* (w/ the exception of unary encoding \implies pseudopolynomial complexity)
- If S is encodable on Σ , we must extend Σ (denoted Σ_+) w/ additional start, stop symbols

Definition 2.1.11. The extended alphabet Σ_+ of Σ be defined as:

$$\Sigma_+$$
 ::= Start | Stop | $a \in \Sigma$

Let Extend : $\Sigma \to \Sigma^+$ define a retraction.

• Extended alphabet Σ_+ is used to define tape contents of *encodable* sets

Definition 2.1.12. (Containment) Let S be an encodable set on Σ . The containment relation $\simeq: S \longrightarrow \Sigma_+^*$ is defined by

$$x \simeq w \iff u \in \Sigma^*.w = u \mathsf{Start} \, [\![x]\!]_S \, \mathsf{Stop}$$

The containment relation $\simeq: S \longrightarrow \mathsf{Tape}_{\Sigma_+}$ is defined by

$$x \simeq \tau \iff x \simeq \mathsf{contents}(\tau)$$

Definition 2.1.13. ((Natural) Computable) A function $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ is Turing computable iff there exists a Turing machine $M \in \mathsf{TM}^k_\Sigma$ s.t

$$\forall x_1, \dots, x_n, y \in \mathbb{N}.$$

$$u \downarrow_M v \land [x_1, \dots, x_n] \simeq u \land y \simeq v \iff f(x_1, \dots, x_n) = y$$

Definition 2.1.14. (**Decidable**) A Turing machine M decides $\mathcal{L} \subseteq \Sigma^*$ iff the characteristic function $\chi_{\mathcal{L}} : \Sigma^* \to \{0,1\}$ is computable.

A language $\mathcal{L} \subseteq \Sigma^*$ is decidable iff there exists a Turing machine M that decides \mathcal{L} .

Definition 2.1.15. (Acceptable) A language $\mathcal{L} \subseteq \Sigma^*$ is acceptable iff the partial function $\mathsf{acc}_{\mathcal{L}} : \Sigma^* \rightharpoonup \{1\}$ s.t

$$\forall x \in \Sigma^*. x \in \mathcal{L} \iff \mathsf{acc}_{\mathcal{L}}(x) = 1$$

The language $\mathcal{L}(M) \subseteq \Sigma^*$ that is *accepted* by the labelled Turing machine $M \in \mathsf{TM}^k_\Sigma(\{ _, \mathsf{acc}, \mathsf{rej} \})$ is defined by

$$\mathcal{L}(M) = \{ u \in \Sigma^* : \exists v \in \Sigma^* . u \downarrow_M^q v \land \mathsf{lab}(q) = \mathsf{acc} \}$$

• Acceptable is a weaker property that decidable (since acceptable may have a non-terminating computation for $u \notin \mathcal{L}$) \Longrightarrow Hierarchy of languages

Definition 2.1.16. (Recursive and Recursively Enumerable Languages) Let $\mathcal{L} \subseteq \Sigma^*$ be a formal language:

- (i) \mathcal{L} is recursively enumerable iff \mathcal{L} is acceptable
- (ii) \mathcal{L} is recursive iff \mathcal{L} is decidable.

Theorem 2.1.3. For all $\mathcal{L} \subseteq \Sigma^*$:

 \mathcal{L} is recursive $\implies \mathcal{L}$ is recursively enumerable

2.1.2 Time and Space Complexity

Definition 2.1.17. (Running Time) The running time of a k-tape Turing machine $M \in \mathsf{TM}_{\Sigma}^k$ on $u_1, \ldots, u_\ell \in \Sigma^*$ is $t_M(u_1, \ldots, u_\ell) = k \in \mathbb{N}$ iff

$$\exists q \in Q, (\tau_i) \in \mathsf{Tape}_{\Sigma}.$$

$$(q_0, \tau_0(u_1), \dots, \tau_0(u_{\ell}), \dots, \tau_0) \longrightarrow_M^k (q, \tau_1, \dots, \tau_k) \not\longrightarrow$$

For non-terminating computations, $t_M(u_1, \ldots, u_\ell) = \infty$.

Definition 2.1.18. (Time Bound) The time bound of a k-tape Turing machine $M \in \mathsf{TM}^k_\Sigma$ is $f : \mathbb{N} \to \mathbb{N}$ iff

$$\forall u_1, \dots, u_\ell \in \Sigma^*.t_M(u_1, \dots, u_\ell) \le f\left(\sum_{i=1}^\ell |u_i|\right)$$

• Asymptotic notation is used to denote asymptotic time bounds (or time complexity) of TMs.

Definition 2.1.19. (Time Complexity) The time complexity of a k-tape Turing machine $M \in \mathsf{TM}^k_\Sigma$ is O(g(n)) s.t the time bound of M, $f(n) \in O(g(n))$.

• **Problem**: Space complexity is defined on space used (excluding input) \implies we require a Turing machine w/ I/O conventions.

Definition 2.1.20. (Turing Machine with I/O) A k-tape Turing Machine $M = (Q, \Sigma, q_0, \delta, H)$ w/ I/O is a k-tape Turing Machine M that satisfies:

(i) The first ℓ -tapes are read-only where $\ell < k$.

$$\forall 1 \leq i \leq \ell.$$

$$\forall q, q' \in Q, (a_i), (a_i') \in \mathcal{O}(\Sigma), (D_i) \in \mathsf{Direction}.$$

$$\delta(q, a_1, \dots, a_i, \dots, a_k) = (q', (a_1', D_1), \dots, (a_i', D_i), \dots, (a_k', D_k)) \implies a_i = a_i'$$

(ii) The last tape is write-only (cannot move to the left)

$$\forall q, q' \in Q, (a_i), (a_i') \in \mathcal{O}(\Sigma), (D_i) \in \mathsf{Direction}$$

 $\delta(q, a_1, \dots, a_k) = (q', (a_1', D_1), \dots, (a_k', D_k)) \implies D_k \neq \leftarrow$

• Notation: The set of k-tape Turing Machines w/ I/O is denoted $\mathsf{IO}_{\Sigma}\mathsf{TM}_{\Sigma}^k$

Theorem 2.1.4. (IO Equivalence)

$$\forall M \in \mathsf{TM}_{\Sigma}^{k}. \exists N \in \mathsf{IO}_{-}\mathsf{TM}_{\Sigma}^{k+\ell+1}$$

$$\forall (u_{i}), v \in \Sigma^{*}. (u_{1}, \dots, u_{\ell}) \Downarrow_{M} v \iff (u_{1}, \dots, u_{\ell}) \Downarrow_{N} v$$

Definition 2.1.21. (Space) For a k-tape Turing machine $M \in \mathsf{IO}_{\Sigma} \mathsf{TM}^k_{\Sigma} \mathsf{w}/\mathsf{I}/\mathsf{O}$ on input $u_1, \ldots, u_\ell \in \Sigma^*$, the *space used* is $s_M(u_1, \ldots, u_\ell) \in \mathbb{N}$ is defined as

$$s_M(u_1,\ldots,u_\ell) = \sum_{i=\ell+1}^{k-1} |\mathsf{contents}(au_i)|$$

where

$$\exists q \in Q, (\tau_i) \in \mathsf{Tape}_{\Sigma}.$$

$$(q_0, \tau_0(u_1), \dots, \tau_0(u_{\ell}), \dots, \tau_0) \longrightarrow_M^* (q, \tau_1, \dots, \tau_k) \not\longrightarrow$$

Definition 2.1.22. (Space Bound) The space bound of a Turing machine M is $f: \mathbb{N} \to \mathbb{N}$ iff

$$\forall u_1, \dots, u_\ell \in \Sigma^*.t_M(u_1, \dots, u_\ell) \le f\left(\sum_{i=1}^\ell |u_i|\right)$$

• Asymptotic space complexity is the asymptotic space bound of a TM.

Definition 2.1.23. (Time Complexity) The space complexity of a k-tape Turing machine $M \in \mathsf{IO}_{-}\mathsf{TM}^k_{\Sigma}$ is O(g(n)) s.t the space bound of $M, f(n) \in O(g(n))$.

• Convention: Generally denote the space complexity of TM $M \in \mathsf{TM}_{\Sigma}^k$ w/ the space complexity of it's equivalent TM $M' \in \mathsf{IO}_{-}\mathsf{TM}_{\Sigma}^{k+\ell+1}$

2.2 Non-Deterministic Turing Machines

Definition 2.2.1. (Non-Deterministic Turing Machines) A non-deterministic k-tape Turing machine N is the 5-tuple $N = (Q, \Sigma, q_0, \Delta, H)$:

- (i) Q, Σ , q_0 and H are as defined in ??
- (ii) $\Delta: (Q \times \mathcal{O}(\Sigma)^k) \to \mathcal{P}(Q \times (\mathcal{O}(\Sigma) \times \{\leftarrow, -, \rightarrow\})^k)$ is the transition relation.
 - Notation: The set of k-tape NTMs over Σ is denoted NTM_{Σ}
 - Equivalent definitions for non-deterministic Turing machine configurations (See ??)

Definition 2.2.2. (Transition Relation) The transition relation for *n*-tape NTM $N = (Q, \Sigma, q_0, \Delta, H)$, denoted $\longrightarrow_N : \mathscr{C}(N) \longrightarrow \mathscr{C}(N)$ is inductively defined by

$$\frac{\mathsf{current}(\tau_i) = a_i \qquad (q', \mathsf{act}_1, \dots, \mathsf{act}_n) \in \Delta(q, a_i) \qquad \tau_i \xrightarrow{\mathsf{act}_i} \tau_i'}{(q, \tau_1, \dots, \tau_n) \longrightarrow_N (q', \tau_1', \dots, \tau_n')} [q \notin H]$$

- Note: Determinism (theorem ??) no-longer holds for NTMs \implies execution tree of configurations: IMAGE

 A computation tree.
- Equivalent definitions for computations, computable, etc.

2.2.1 Time and Space Complexity

• Time and space bounds are equivalently defined. See ??

Theorem 2.2.1. For all $N \in \mathsf{NTM}_{\Sigma}^k$, that accepts $L(N) \le V(n)$ time bound, there exists a deterministic Turing machine $M \in \mathsf{TM}_{\Sigma}^n$ s.t $L(N) = L(M) \le V(n)$ time bound $O(c^{2f(n)})$ for some $n \in \mathbb{N}, c > 1$.

• Deterministic simulation of NTM is performed by a breadth-first search of the computation tree.

3 Complexity Classes

3.1 Complexity Classes

- Idea: Classify languages via bounds, specified by
 - A model of computation
 - A resource (time, space, # cores, etc)
 - A bound on the resource.

Definition 3.1.1. (Complexity Class) A complexity class \mathcal{C} is the set $\mathcal{C} \subseteq \mathcal{P}(\Sigma^*)$, where $\mathcal{L} \in \mathcal{C}$ is decidable in some model of computation w/ a bound on a given resource.

• Complexity classes define a collection of *computationally similar* problems \implies reasoning about classes

3.1.1 Reductions

• Idea: Solving problems via reductions.

Definition 3.1.2. (Reduction) A reduction of $\mathcal{L}_1 \subseteq \Sigma_1^*$ to $\mathcal{L}_2 \subseteq \Sigma_2^*$ is a Turing computable function $f: \Sigma_1^* \to \Sigma_2^*$ s.t

$$\forall x \in \Sigma_1^* . x \in \mathcal{L}_1 \iff f(x) \in \mathcal{L}_2$$

- A reduction $f: \Sigma_1^* \to \Sigma_2^*$ reduces \mathcal{L}_1 to $\mathcal{L}_2 \implies$ if \mathcal{L}_2 is decidable then \mathcal{L}_1 must be.
- Notation: $f: \mathcal{L}_1 \to \mathcal{L}_2$ denotes a reduction from \mathcal{L}_1 to \mathcal{L}_2

Lemma 3.1.1. For all reductions $f: \mathcal{L}_1 \to \mathcal{L}_2$,

 \mathcal{L}_2 is decidable $\implies \mathcal{L}_1$ is decidable.

Proof. Let $\mathcal{L}_1 \subseteq \Sigma_1^*$, $\mathcal{L}_2 \subseteq \Sigma_2^*$ be arbitrary. Let $f: \mathcal{L}_1 \to \mathcal{L}_2$ be an arbitrary \mathcal{L}_1 to \mathcal{L}_2 reduction.

Let us assume that \mathcal{L}_2 is decidable. Hence $\chi_{\mathcal{L}_2}: \Sigma_2^* \to \{0,1\}$ is computable. By definition ??,

$$\forall x \in \Sigma_1^*. \chi_{\mathcal{L}_1}(x) = 1 \iff \chi_{\mathcal{L}_2}(f(x)) = 1.$$

Hence $\chi_{\mathcal{L}_1} = \chi_{\mathcal{L}_2} \circ f$. By theorem ??, $\chi_{\mathcal{L}_1}$ is computable. Hence \mathcal{L}_1 is decidable.

Corollary 3.1.0.1. For all reductions $f: \mathcal{L}_1 \to \mathcal{L}_2$,

 \mathcal{L}_1 is undecidable $\Longrightarrow \mathcal{L}_2$ is undecidable.

- Corollary?? provides a method for proving whether a \mathcal{L} is undecidable:
 - Determine a reduction $f: H \to \mathcal{L}$ where H is the halting problem (see section ??)

Definition 3.1.3. (Hardness Relation) The hardness relation \leq : $\mathcal{P}(\Sigma^*) \leftrightarrow \mathcal{P}(\Sigma^*)$ defined by

$$\mathcal{L}_1 \leq \mathcal{L}_2 \iff \exists \text{ reduction } f: \mathcal{L}_2 \to \mathcal{L}_1$$

We say that \mathcal{L}_2 is at least as hard as \mathcal{L}_1 .

Theorem 3.1.1. (Preorder of Hardness) $\leq : \mathcal{P}(\Sigma^*) \longrightarrow \mathcal{P}(\Sigma^*)$ is a preorder.

Definition 3.1.4. (\mathcal{C} -Reductions) A reduction $f: \mathcal{L}_1 \to \mathcal{L}_2$ is a \mathcal{C} -reduction if the language $\{x_{-}y: f(x)=y\} \in \mathcal{C}$. Similarly, for the Hardness relation, denoted $\leq_{\mathcal{C}}$.

Definition 3.1.5. (Closure of C-Reductions) C is closed under C-reductions iff

$$\forall \mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*. \mathcal{L}_1 \leq_{\mathcal{C}} \mathcal{L}_2 \land \mathcal{L}_1 \in \mathcal{C} \implies \mathcal{L}_2 \in \mathcal{C}$$

• All classes \mathcal{C} of interest are closed under \mathcal{C} -reductions.

3.1.2 Completeness

• Idea: Hardness relation \implies ordering on decision problems in a class.

Definition 3.1.6. (Completeness) For $\mathcal{L} \in \mathcal{C}$, \mathcal{L} is \mathcal{C} -complete iff

$$\forall \mathcal{L}' \in \mathcal{C}.\mathcal{L} < \mathcal{L}'$$

Definition 3.1.7. (Hardness) A language $\mathcal{L} \subseteq \Sigma^*$ is \mathcal{C} -hard iff

$$\forall \mathcal{L}' \in \mathcal{C}.\mathcal{L} \leq \mathcal{L}'$$

- Hardness and Completeness allow reasoning about the *hierarchy* of classes.
- Complete problems also "determine" the hardness of a class

3.2 Polynomial Time

• Deterministic Turing machines \implies deterministic time and space complexity classes

Definition 3.2.1. (Time Complexity Class) Let $f : \mathbb{N} \to \mathbb{N}$. TIME $(f(n)) \subseteq \mathcal{P}(\Sigma^*)$ is the complexity class (set of languages) s.t $\mathcal{L} \in \mathsf{TIME}(f(n)) \iff \mathcal{L}$ is decidable by a TM w/ time bound O(f(n)).

Definition 3.2.2. (Space Complexity Class) Let $f : \mathbb{N} \to \mathbb{N}$. SPACE $(f(n)) \subseteq \mathcal{P}(\Sigma^*)$ is the complexity class (set of languages) s.t $\mathcal{L} \in \mathsf{SPACE}(f(n)) \iff \mathcal{L}$ is decidable by a TM w/ space bound O(f(n)).

Definition 3.2.3. (Polynomial Time Complexity Class) The polynomial time complexity class P is defined by

$$\mathsf{P} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(n^k)$$

• P defines the set of *feasibly* computable languages.

Definition 3.2.4. (Tractable and Intractable) For $\mathcal{L} \subseteq \Sigma^*$, if $\mathcal{L} \in P$, then \mathcal{L} is said to be *tractable*. Conversely, if $\mathcal{L} \notin P$, then \mathcal{L} is *intractable*

• Note: Definitions of tractability and intractability are not always sound (e.g. worst-case exponential algorithms are used in practice).

Definition 3.2.5. (Polynomial Time Reductions) A reduction $f: \mathcal{L}_1 \to \mathcal{L}_2$ is a polynomial time reduction iff the TM M that computes f has a polynomial time bound $O(n^k)$.

Lemma 3.2.1. P is closed under P-reductions.

3.2.1 Problems

3.2.1.1 Reachability

Definition 3.2.6. (Reachability) The reachability problem is defined as the *decision problem*:

Given a directed graph G = (V, E) and vertices $u, v \in V$, determined whether $u \longrightarrow^* v$.

Denoted Reachability (G, u, v).

- Reachability is a decision problem
- Solution: BFS / DFS. See Algorithms IA notes
- Complexity: $O(|V|^2)$

3.2.1.2 Max Flow

Definition 3.2.7. (Network) A network N = (V, E, s, t, c) is a directed graph G = (V, E) w/ vertices $s, t \in V$ denoting the source and sink respectively, and $c : E \to \mathbb{N}$ denoting the *capacity function*.

Definition 3.2.8. (Flow) A flow f is a function $f: E \to \mathbb{N}$ in the network N satisfying:

- (i) Capacity: $\forall (u, v) \in E.f(u, v) \leq c(u, v)$
- (ii) Conservation:

$$\forall v \in V \setminus \{s, t\} . \sum_{u:(u, v) \in E} f(u, v) = \sum_{w:(v, w) \in E} f(v, w)$$

Definition 3.2.9. (Value) The value of a flow f in N is defined as

$$value(f) = \sum_{u:(s,u)\in E} f(s,u) - \sum_{v:(v,s)\in E} f(v,s)$$
$$= \sum_{u:(u,t)\in E} f(u,t) - \sum_{v:(t,v)\in E} f(t,v)$$

Definition 3.2.10. (Max Flow) The max flow problem is defined as the *optimization problem*:

Given a network N, determined a flow f s.t

$$f = \underset{\text{flow } f}{\operatorname{arg\,max}\, \operatorname{value}(f)}$$

Denoted MaxFlow(N).

• Note: MaxFlow is an *optimization problem*. However, all optimization problems have an equivalent *decision problem*

Definition 3.2.11. (Bounded Max Flow) The bounded max flow problem is defined as the *decision problem*:

Given a network N and bound k, determine whether

$$\max_{\text{flow } f} \text{value}(f) \leq k$$

Denoted $\mathsf{MaxFlow}(N,k)$.

Definition 3.2.12. (Cut) A cut (S, \overline{S}) on the network N is a partition on V, s.t $s \in S$ and $t \in \overline{S}$. The value of a cut (S, \overline{S}) is defined by

$$value(S, \overline{S}) = \sum_{\substack{u \in S, v \in \overline{S} \\ (u,v) \in E}} c(u,v)$$

Theorem 3.2.1. (Max Flow, Min Cut Theorem) For all flows f and cuts (S, \overline{S}) on N:

$$\mathrm{value}(f) \leq \mathrm{value}(S, \overline{S})$$

Proof. Let N=(V,E,s,t,c) be an arbitrary network. Let f and (S,\overline{S}) be arbitrary flows and cuts on N.

Let us extend c and f, to be defined on $V^2 \to \mathbb{N}$ s.t

$$\forall (u, v) \notin E.c(u, v) = f(u, v) = 0$$

So we have

$$\operatorname{value}(f) = \sum_{u \in V} f(s, u) - \sum_{u \in V} f(u, s)$$

$$= \sum_{v \in S} \left(\sum_{u \in V} f(v, u) - \sum_{u \in V} f(u, v) \right) \qquad \text{Conversation}$$

$$= \sum_{v \in S} \sum_{u \in S} f(v, u) + \sum_{v \in S} \sum_{u \in \overline{S}} f(v, u)$$

$$- \sum_{v \in S} \sum_{u \in \overline{S}} f(u, v) - \sum_{v \in S} \sum_{u \in \overline{S}} f(u, v)$$

$$= \sum_{v \in S} \sum_{u \in \overline{S}} f(v, u) - \sum_{v \in S} \sum_{u \in \overline{S}} f(u, v)$$

$$\leq \sum_{v \in S} \sum_{u \in \overline{S}} f(v, u) \qquad f(u, v) \geq 0$$

$$\leq \sum_{v \in S} \sum_{u \in \overline{S}} c(v, u) \qquad \text{Capacity}$$

$$= \operatorname{value}(S, \overline{S})$$

• Observation: A flow f is not optimal \iff there exists a flow f' s.t $\Delta f = f' - f$ has the value value $(\Delta f) \geq 0$.

Problem: Augmenting flow Δf is negative on some edges $\implies backwards\ edges$

Definition 3.2.13. (Residual Network) The residual network N(f) of a flow f on N = (V, E, s, t, c) is defined as N(f) = (V, E', s, t, c') where

$$E' = E \setminus \{(u, v) \in E : f(u, v) = c(u, v)\}$$

$$\cup \{(u, v) \in V^2 : (v, u) \in E \land f(v, u) > 0\}$$

and

$$c'(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E\\ f(v,u) & (u,v) \in E' \setminus E \end{cases}$$

So by definition: f is optimal \iff there is no positive flow Δf in N(f)

• Solution:

- 1. Determining a positive flow Δf consists of determining a path in $N(f) \implies$ reduces to Reachability $(O(|V|^2))$
- 2. Compute flow $f \leftarrow f + \Delta f$
- 3. Repeat 1, 2 until no such flow Δf exists.

• Complexity:

- Finding the augmenting flow Δf : $O(|V|^2)$
- Each flow adds at least 1 to value(f). Defined $F = \max_{\text{flow } f} \text{value}(f)$ $\implies O(F)$ iterations
- $-O(|V|^2F)$

3.2.1.3 Matching

Didn't really appreciate the hetro and cis normativity of this chapter...

Definition 3.2.14. (Bipartite Graph) A Bipartite graph B is the tuple B = (U, V, E) where $U \cap V \neq \emptyset$ and $E \subseteq U \times V$.

Definition 3.2.15. (Matching) A matching on B is a set $M \subseteq E$ satisfying

$$\forall (u,v), (u',v') \in M.u \neq u' \land v \neq v'$$

• A matching defines a bijection between subsets of U, V.

Definition 3.2.16. (Matching) The matching problem is defined as the decision problem:

Given a Bipartite graph B, determine whether a matching M exists

Denoted Matching(B).

- Solution:
 - Reduction from $\mathsf{Matching}(B)$ to $\mathsf{MaxFlow}(N,n)$ with network $N = (\{s,t\} \cup U \cup V, E', s, t, c)$ where

$$E' = \{(s, u) : u \in U\} \cup E \cup \{(v, t) : v \in V\}$$
$$c = \mathbf{1}$$

and $n = \max\{|U|, |V|\}$

• Complexity: $O(n^3)$.

3.2.2 co-P

3.3 Non-Deterministic Polynomial Time

ullet Non-Deterministic Turing machines \Longrightarrow non-deterministic time and space complexity classes

Definition 3.3.1. (NTime Complexity Class) Let $f : \mathbb{N} \to \mathbb{N}$. NTIME $(f(n)) \subseteq \mathcal{P}(\Sigma^*)$ is the complexity class (set of languages) s.t $\mathcal{L} \in \mathsf{NTIME}(f(n)) \iff \mathcal{L}$ is decidable by a NTM w/ time bound O(f(n)).

Definition 3.3.2. (NSpace Complexity Class) Let $f : \mathbb{N} \to \mathbb{N}$. NSPACE $(f(n)) \subseteq \mathcal{P}(\Sigma^*)$ is the complexity class (set of languages) s.t $\mathcal{L} \in \mathsf{NSPACE}(f(n)) \iff \mathcal{L}$ is decidable by a NTM w/ space bound O(f(n)).

Definition 3.3.3. (NP Complexity Class) The non-deterministic polynomial time complexity class NP is defined by

$$\mathsf{NP} = \bigcup_{k=1}^\infty \mathsf{NTIME}(n^k)$$

Lemma 3.3.1. NP is closed under P-reductions.

Definition 3.3.4. (NP Complexity Class) Equivalently, a language $\mathcal{L} \subseteq \Sigma^*$ is in NP \iff

$$\mathcal{L} = \left\{ x \in \Sigma^*. \exists y \in \Sigma^*. R(y, x) \right\},\,$$

where $R: \Sigma^* \longrightarrow \Sigma^*$ satisfying:

- R is decidable in polynomial time by the TM M
- R is polynomially balanced:

$$\forall y, x \in \Sigma^*.R(y, x) \implies |y| \le p(|x|),$$

where p is some polynomial.

• y is the *certificate* of $x \in \mathcal{L}$

3.3.1 Propositional Logic \mathcal{L}_0 Problems

3.3.1.1 SAT

Definition 3.3.5. (**SAT**) The satisfiability problem is defined as the decision problem:

Given a proposition $\psi \in \mathcal{L}_0$, determine whether ψ is satisfiable.

Denoted $SAT(\psi)$.

- Note: VAL reduces to SAT by $\vDash \psi \iff \neg \psi$ is unsatisfiable.
- Solution:
 - Consider $2^{|[\psi]_P|}$ possible interpretations (by coincidence lemma I)
 - $-O(|\llbracket\psi\rrbracket_P|^2)$ algorithm for determining $\mathcal{T}\llbracket\psi\rrbracket_{\mathcal{I}}=1$.
- Complexity: $O(2^{|\llbracket\psi\rrbracket_P|}|\llbracket\psi\rrbracket_P|^2)$.

Lemma 3.3.2. SAT \in NP.

Theorem 3.3.1. SAT is NP-complete.

Proof. We show that

$$\forall \mathcal{L} \in \mathsf{NP}.\mathcal{L} \leq \mathsf{SAT}$$

Let $\mathcal{L} \in \mathsf{NP}$ be arbitrary. By definition, there exists a NTM $M = (Q, \Sigma, q_0, \Delta, H)$ that decides \mathcal{L} w/ polynomial time bound $f(|x|) \in O(|x|^k)$ for some $k \geq 0$.

We wish to define a reduction $f: \mathcal{L} \to \mathsf{SAT}$. Let $x \in \Sigma^*$ be arbitrary. Define the set of propositional symbols $\Omega(x) \subseteq \Sigma_P$ as:

 $S_{i,q}$ will be true if M is in state q at step i $i \leq |x|^k, q \in Q$

 $T_{i,j,a}$ will be true if tape τ is at position j w/ current a at step i $i, j \leq |x|^k, a \in \mathcal{O}(\Sigma)$ $H_{i,j}$ will be true if head is at position j at step i $i, j \leq |x|^k$

Note that $|\Omega(x)| = |Q||x|^k + |\Sigma||x|^{2k} + |x|^{2k}$.

The proposition $f(x) = \psi$ is defined by the conjunction of:

$$S_{1,q_0} \wedge H_{1,1}$$

$$\bigwedge_{i} \bigwedge_{j} \left(H_{i,j} \to \bigwedge_{k \neq j} \neg H_{i,j} \right)$$
$$\bigwedge_{i} \bigwedge_{q} \left(S_{i,q} \to \bigwedge_{q' \neq q} \neg S_{i,q'} \right)$$

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{a} \left(T_{i,j,a} \to \bigwedge_{a' \neq a} \neg T_{i,j,a'} \right)$$
$$\bigwedge_{j \le |x|} T_{1,j,\lfloor x_j \rfloor} \land \bigwedge_{|x| < j} T_{1,j,\emptyset}$$

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{j' \neq j} \bigwedge_{a} (H_{i,j} \wedge T_{i,j',a}) \to T_{i+1,j',a}$$

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{a} \bigwedge_{q} (H_{i,j} \wedge S_{i,q} \wedge T_{i,j,a})$$

$$\to \bigvee_{\Gamma} (H_{i+1,j'} \wedge S_{i+1,q'} \wedge T_{i+1,j,a'})$$

where
$$\Gamma = \{(q', j', a') : (q', a', D) \in \Delta(q, a) \land j' = [\![j]\!]_D\}.$$

$$\bigvee_{q \in \mathsf{lab(acc)}} \bigvee_i S_{i,q}$$

Computation starts in state q_0 at position 1

Tape position cannot be in 2 positions at once

Cannot be in 2 states at once

Cannot have 2 symbols in the same position at once

Initially, tape contains |x| (and nothing else)

Only the tape changes under the head

Transitions

Halts at some point.

We now show that

$$x \in \mathcal{L} \iff f(x) \in \mathsf{SAT}$$

 (\Longrightarrow) . Let us assume that $x \in \mathcal{L}$, so we have

$$\exists q_{\mathsf{acc}} \in \mathsf{lab}(\mathsf{acc}), u \in \Sigma^*. (q_0, \tau_0(x)) \longrightarrow_M^{|x|^k} (q_{\mathsf{acc}}, u)$$

Let $c_i = (q_i, \tau_i)$ denote the *i*th configuration in the above computation. Let us define the interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t

$$\mathcal{I}(S_{i,q_i}) = 1$$

$$\mathcal{I}(T_{i,j,a}) = (a = \tau_i[j])$$

$$\mathcal{I}(H_{i,j}) = \mathsf{index}(\tau_i)$$

where

$$index(\triangleright, _) = 1$$

 $index(\triangleright u, _) = |u| + 1$

By definition of the tape semantics, Δ , and the computation, we have $\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$.

(\Leftarrow). Let us assume that $f(x) = \psi \in \mathsf{SAT}$. Then there exists $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t $\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$. We define the computation $c_i = (q_i, \tau_i)$ s.t

$$q_i = q$$
 $\mathcal{I}(S_{i,q}) = 1$
 $\tau_i = (\triangleright a_1 \dots a_i, a_{i+1} \dots a_m)$ $\mathcal{I}(T_{i,k,a_{k-1}}) = 1, \mathcal{I}(H_{i,i-1}) = 1$

By (2), (3), (4), q_i and τ_i are unique. By (1), $c_0 = (q_0, \tau_0(x))$. By (5) and (6), the computation $c_0 \longrightarrow_M c_1 \longrightarrow \dots$ satisfies \longrightarrow_M , and by (7),

$$\exists q_{\mathsf{acc}} \in \mathsf{lab}(\mathsf{acc}), u \in \Sigma^*.(q_0, \tau_0(x)) \longrightarrow_M^* (q_{\mathsf{acc}}, u)$$

Hence since M decides \mathcal{L} , we have $x \in \mathcal{L}$.

• Note: ψ encodes M and x. Constructing ψ is done in polynomial time.

3.3.1.2 CNF

Definition 3.3.6. (CNF) The CNF satisfiability problem is defined as the decision problem:

Given proposition $\psi = \bigwedge_i \bigvee_j \ell_{ij} \in \mathcal{L}_0^{CNF}$, determine whether ψ is satisfiable.

- Translation function $\llbracket \cdot \rrbracket^{CNF} : \mathcal{L}_0 \to \mathcal{L}_0^{CNF}$ defines reduction to CNF satisfiability.
- **Problem**: Reduction is *not polynomial* but exponential (by distributive law).
- Solution: Convert (1), (2), ..., (7) directly into CNF. Resulting in polynomial increases.

Lemma 3.3.3. CNF is NP-complete.

Proof. (Sketch) Polynomial reduction from SAT to CNF. Closure and transitivity of $\leq_{P} \implies \text{CNF}$ is NP-complete.

Definition 3.3.7. (3 CNF) A proposition $\psi \in \mathcal{L}_0$ is said to be in 3 CNF iff $\forall C_i \in [\![\psi]\!]_{\Lambda}$. $|C_i| \leq 3$.

The set of 3 CNF propositions is denoted \mathcal{L}_0^{3CNF}

Definition 3.3.8. (CNF) The 3CNF satisfiability problem is defined as the decision problem:

Given proposition $\psi = \bigwedge_i \bigvee_{j \leq 3} \ell_{ij} \in \mathcal{L}_0^{3CNF}$, determine whether ψ is

Lemma 3.3.4. 3CNF is NP-complete.

Proof. (Sketch) We have the following reduction $f: CNF \rightarrow 3CNF$:

$$f(\bigwedge_{i=1}^{n}\bigvee_{j=1}^{m_{i}}\ell_{ij}) = \bigwedge_{i=1}^{n} \left((\ell_{i1} \vee \ell_{i2} \vee P_{i2}) \wedge \bigwedge_{j=2}^{m-3} (\neg P_{ij} \vee \ell_{i(j+1)} \vee P_{i(j+1)}) \wedge (\neg P_{i(m-2)} \vee \ell_{i(m-1)} \vee \ell_{im}) \right)$$

where $P_{ij} \notin \llbracket \psi \rrbracket_P$.

Note that ψ is satisfiable $\iff f(\psi)$ is satisfiable. We also note that polynomial increase in propositional symbols occurs due to $f \implies$ polynomial reduction.

3.3.2 Graph Problems

3.3.2.1 Independent Set

Definition 3.3.9. (Independent Set) For a undirected graph G = (V, E), a set $I \subseteq V$ is said to be *independent* \iff

$$\forall u, v \in I.(u, v) \notin E.$$

• Every graph G = (V, E) w/ $|V| \ge 1$ has a trivial independent set: $I = \{v\}$ w/ $v \in V$ (assuming no loops).

Definition 3.3.10. (Independent) The independent set problem is defined as the optimization problem:

Given
$$G = (V, E)$$
, determine

$$I = \mathop{\arg\max}_{\text{independent I}} |I|$$

Denoted Independent(G)

Definition 3.3.11. (Bounded Independent) The bounded independent set problem is defined as the decision problem:

Given
$$G = (V, E)$$
 and k , determine whether

$$\max\{|I| : \text{independent } I\} = k$$

Denoted Independent(G, k)

- Solution: $2^{|V|}$ subsets of V. $O(|V|^2)$ method of determining whether $I \subseteq V$ is independent.
- Complexity: $O(2^{|V|}|V|^2)$.

Lemma 3.3.5. Independent $\in \mathsf{NP}$

Theorem 3.3.2. Independent is NP-complete.

Proof. We proceed by defining a polynomial reduction from 3CNF to Independent, $f: 3CNF \rightarrow Independent$, where

$$f(\bigwedge_{i=1}^{n} \bigvee_{j=1}^{3} \ell_{ij}) = (G, n)$$

where G = (V, E) and

$$V = \{v_{ij} : 1 \le i \le n, 1 \le j \le 3\}$$

$$E = \{(v_{ij}, v_{ik}) : 1 \le i \le n, 1 \le j < k \le 3\}$$

$$\cup \{(v_{ij}, v_{kl}) : i \ne k \land \ell_{ij} \equiv \neg \ell_{kl}\}$$

We now show that

$$\forall \psi \in \Sigma^*. \psi \in \mathsf{3CNF} \iff f(\psi) \in \mathsf{Independent}$$

Let $\psi \in \Sigma^*$ be arbitrary.

 (\Longrightarrow) . Let us assume that $\psi = \bigwedge_{i=1}^n \bigvee_{j=1}^3 \ell_{ij} \in \mathsf{3CNF}$. Hence there exists interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t

$$\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$$

$$\iff \forall 1 \le i \le n. \mathcal{T} \llbracket \vee_{j=1}^{3} \ell_{ij} \rrbracket_{\mathcal{I}} = 1$$

$$\iff \forall 1 \le i \le n. \exists 1 \le j \le 3. \mathcal{T} \llbracket \ell_{ij} \rrbracket_{\mathcal{I}} = 1$$

Let us introduce the witnesses $1 \leq j_1, \ldots, j_n \leq 3$ s.t $\mathcal{T} \llbracket \ell_{ij_i} \rrbracket = 1$. Define the set $I = \{v_{ij_i} : 1 \leq i \leq n\} \subseteq V$. We have |I| = n. So we wish to show that

$$\forall v_{ij}, v_{kl} \in I.(v_{ij}, v_{kl}) \notin E$$

Let $v_{ij}, v_{kl} \in I$ be arbitrary. We proceed by contradiction. Let us assume that $(v_{ij}, v_{kl}) \in E$. We have the following cases (by definition of E):

- i = k. Let us assume that i = k. A contradiction! By definition of I.
- $i \neq k \land \ell_{ij} \equiv \neg \ell_{kl}$. So we have

$$\mathcal{T} \llbracket \ell_{ij} \rrbracket = 1$$

$$\iff \mathcal{T} \llbracket \neg \ell_{kl} \rrbracket = 1$$

$$\iff \mathcal{T} \llbracket \ell_{kl} \rrbracket = 0$$

A contradiction! Since $v_{kl} \in I$ and $T \llbracket \ell_{kl} \rrbracket = 1$ by the definable property of I.

 $(\ \ \ \).$ Let us assume that $f(\psi)=(G,n)\in \mathsf{Independent},$ where $\psi=\bigwedge_{i=1}^n\bigvee_{j=1}^3\ell_{ij}$ and G=(V,E). Hence there exists an independent set $I\subseteq V$ w/ |I|=n. Let us define

the interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t

$$\mathcal{T} \llbracket \ell_{ij} \rrbracket_{\mathcal{I}} = 1 \iff v_{ij} \in I$$

We wish to show that $\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$:

$$\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$$

$$\iff \forall 1 \le i \le n. \mathcal{T} \llbracket \bigvee_{j=1}^{3} \ell_{ij} \rrbracket_{\mathcal{I}} = 1$$

$$\iff \forall 1 \le i \le n. \exists 1 \le j \le 3. \mathcal{T} \llbracket \ell_{ij} \rrbracket_{\mathcal{I}} = 1$$

TODO

3.3.2.2 Clique

Definition 3.3.12. (Clique) For a graph G = (V, E), a set $X \subseteq V$ of vertices is a $clique \iff$

$$\forall u, v \in X.(u, v) \in E.$$

Definition 3.3.13. (Clique) The clique problem is defined as a optimization problem:

Given a graph G, determine

$$X = \operatorname*{arg\,max}_{\text{clique }X} |X|$$

Denoted Clique(G)

Definition 3.3.14. (Bounded Clique) The bounded clique problem is defined as a decision problem:

Given a graph G and k, determine whether

$$\max\{|X| : \text{clique } X\} \ge k$$

Denoted Clique(G, k)

- Solution: $2^{|V|}$ subsets of V. $O(|V|^2)$ method of determining whether $X \subseteq V$ is a clique.
- Complexity: $O(2^{|V|}|V|^2)$.

Lemma 3.3.6. Clique $\in NP$

Theorem 3.3.3. Clique is NP-complete

Proof. Suffices to prove that Independent \leq_P Clique. Define the reduction f: Independent \to Clique s.t

$$f(G, k) = (\overline{G}, k)$$

where $G = (V, E), \overline{G} = (V, \overline{E})$ and

$$\overline{E} = \{(u, v) \in V^2 : (u, v) \notin E\}.$$

We have

 $(G,k) \in \mathsf{Independent} \iff (\overline{G},k) \in \mathsf{Clique}$

$$\iff \exists I \subseteq V. |I| = k \land (\forall u, v \in I.(u, v) \notin E) \iff \exists X \subseteq V. |X| = k \land (\forall u, v \in X.(u, v) \in \overline{E}) \\ \iff \exists I \subseteq V. |I| = k \land (\forall u, v \in I.(u, v) \notin E) \iff \exists X \subseteq V. |X| = k \land (\forall u, v \in X.(u, v) \notin E)$$

By α -equivalence, f is a reduction. f is a polynomial reduction w/ time bound $O(|V|^2)$. So we have Independent \leq_P Clique.

3.3.2.3 Graph Colorability

Definition 3.3.15. (k-colorable) For a G = (V, E), G is k-colorable if there exists a coloring

$$\chi:V\to [0,k-1],$$

s.t

$$\forall (u, v) \in E.\chi(u) \neq \chi(v)$$

Definition 3.3.16. (k-Colorable) The k-Colorable problem is defined as a decision problem:

Given a graph G = (V, E), determine whether G is k-colorable.

Denoted k-Colorable(G)

- Solution: Determine $k^{|V|}$ possible functions $\chi: V \to [1, k]$. $O(|V|^2)$ algorithm for determining whether χ is a k-coloring.
- Complexity: $O(k^{|V|}|V|^2)$.
- 2-Colorable $\in P$ (determine whether G is Bipartite)

Theorem 3.3.4. 3-Colorable is NP-complete.

Proof. (Sketch) Suffices to prove 3CNF \leq_P 3-Colorable. Define the reduction $f: 3CNF \rightarrow 3$ -Colorable s.t

$$f(\bigwedge_{i=1}^{3} \bigvee_{j=1}^{3} \ell_{ij}) = G,$$

where G = (V, E) and

$$V = \{a\} \cup \bigcup_{P \in \llbracket \psi \rrbracket_P} \{v_P, v_{\neg P}\} \cup \{v_{ij} : 1 \le i \le n, 1 \le j \le 3\}$$

$$E = \bigcup_{P \in \llbracket \psi \rrbracket_P} \{(a, v_P), (a, v_{\neg P}), (v_P, v_{\neg P})\}$$

$$\cup \{(v_{ij}, v_{\ell_{ij}}) : 1 \le i \le n, 1 \le j \le 3\}$$

We now show that $\forall \psi \in \Sigma^*. \psi \in 3\mathsf{CNF} \iff f(\psi) \in 3\mathsf{-Colorable}$. Let $\psi \in \Sigma^*$ be arbitrary.

(\Longrightarrow). Let us assume that $\psi = \bigwedge_{i=1}^n \bigvee_{j=1}^3 \ell_{ij} \in 3\mathsf{CNF}$. So there exists an interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t $\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$. Define the coloring $\chi : V \to \{0, 1, 2\}$ s.t

$$\chi(a) = 2$$

$$\chi(v_P) = \begin{cases} 1 & \text{if } \mathcal{I}(P) = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\chi(v_{\neg P}) = \begin{cases} 1 & \text{if } \mathcal{I}(P) = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\chi(v_{i1}), \chi(v_{i2}), \chi(v_{i3}) = 0, 1, 2 \qquad \text{wlog } \mathcal{T} \llbracket \ell_{i1} \rrbracket = 1, \mathcal{T} \llbracket \ell_{i2} \rrbracket = 0$$

 χ is trivially a coloring.

(\iff). Let us assume that $f(\psi) = G \in 3$ -Colorable. Without loss of generality (by renaming), there exists a coloring $\chi: V \to \{0, 1, 2\}$ s.t $\chi(a) = 2$. Hence $\{\chi(v_P), \chi(v_{\neg P})\} = \{0, 1\}$.

Define the interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t

$$\mathcal{I}(P) = 1 \iff \chi(v_P) = 1$$

 $\mathcal{I}(P) = 0 \iff \chi(v_{\neg P}) = 1$

We wish to show that $\mathcal{T}[\![\psi]\!]_{\mathcal{I}} = 1$. It suffices to show that $\forall 1 \leq i \leq n. \exists 1 \leq j \leq 3. \chi(v_{ij}) = 1$.

Let $1 \le i \le n$ be arbitrary. We proceed by contradiction. Let us assume that $\forall 1 \le j \le 3. \chi(v_{ij}) \ne 1 \in \{0, 2\}$. So we have $\chi(v_{i1}), \chi(v_{i2}), \chi(v_{i3}) \in \{0, 2\}$, so by the Pigeonhole principle, there exists $1 \le j < j' \le 3$ s.t $\chi(v_{ij}) = \chi(v_{ij'})$. A contradiction!

3.3.2.4 Hamiltonian Graph

Definition 3.3.17. (Hamiltonian Cycles and Graphs) For a graph G = (V, E), a Hamiltonian cycle is a $v \longrightarrow_{\mathsf{path}}^* v$ path for some $v \in V$ and $\llbracket v \longrightarrow_{\mathsf{path}}^* v \rrbracket_V = V$.

A graph \dot{G} is Hamiltonian if it contains a Hamiltonian cycle.

Definition 3.3.18. (Hamiltonian) The Hamiltonian graph problem is defined as the *decision problem*:

Given a graph G, determine whether G is Hamiltonian.

Denoted Hamiltonian(G).

- Solution: Generate O(|V|!) permutations of vertices. Verify permutation is a Hamiltonian cycle in O(|V|) time.
- Complexity: O(|V|!|V|)

Lemma 3.3.7. Hamiltonian $\in NP$

Theorem 3.3.5. Hamiltonian is NP-complete.

3.3.2.5 TSP

Definition 3.3.19. (Travelling Salesperson Problem) The travelling salesperson problem is defined as the *optimization problem*:

Given a graph $G = (V, V \times V)$ w/ symmetric cost function $c: V \times V \to \mathbb{N}$ and $V = \{v_1, \dots, v_n\}$. Define the cost of a permutation $\pi: V \to V$ as

$$C(\pi) = c(\pi(v_1), \pi(v_n)) + \sum_{i=1}^{n-1} c(\pi(v_i), \pi(v_{i+1}))$$

Determine a permutation $\pi: V \to V$ s.t $\pi = \arg\min_{\pi} C(\pi)$.

Denoted $\mathsf{TSP}(G, c)$.

• Optimization problem \rightarrow bounded decision problem

Definition 3.3.20. (Bounded TSP) The bounded TSP is defined as the *decision problem*:

Given a graph G = (V, E) w/ symmetric cost function $c : V \times V \to \mathbb{N}$, and $k \in \mathbb{N}$, determine

$$C(\mathsf{TSP}(G,c)) \leq k$$

Denoted $\mathsf{TSP}(G, c, k)$

- Complexity:
 - Upper bound: Brute force: Check all permutations O(n!)
 - Lower bound: $\Omega(n \log n)$

Lemma 3.3.8. $TSP \in NP$

Theorem 3.3.6. TSP is NP-complete.

Proof. TODO REDUCTION FROM HAM TO TSP

3.3.3 Sets and Numbers

3.3.3.1 Tripartite Matching

Definition 3.3.21. A matching on disjoint X, Y, Z s.t |X| = |Y| = |Z| = n is a set $M \subseteq X \times Y \times Z$ satisfying

$$\forall (x, y, z), (x', y', z') \in M. x \neq x' \land y \neq y' \land z \neq z',$$

and |M| = n.

• Note: Generalization of Matching (see section ??)

Definition 3.3.22. (**Tripartite Matching**) The tripartite matching problem is defined as the decision problem:

Given disjoint X, Y, Z and M, is M a matching

Denoted 3Matching(X, Y, Z, M)

Lemma 3.3.9. 3Matching $\in NP$

Theorem 3.3.7. 3Matching is NP-complete.

Proof. Suffices to show that $3CNF \leq_P 3Matching$, by defining a polynomial reduction $f: 3CNF \rightarrow 3Matching$, where

$$f\left(\bigwedge_{i=1}^{n}\bigvee_{j=1}^{3}\ell_{ij}\right) = (X, Y, Z)$$

where $\llbracket \psi \rrbracket_P = \{P_1, \dots, P_m\}$ and

$$X = \bigcup_{P \in \llbracket \psi \rrbracket_P} \{x_{P1}, \dots, x_{Pn}\}$$

$$\cup \{x_{C_1}, \dots, x_{C_n}\} \cup \underbrace{\{x'_1, \dots, x'_{n(m-1)}\}}_{\text{Dummy elements}}$$

$$Y = \bigcup_{P \in \llbracket \psi \rrbracket_P} \{y_{P1}, \dots, y_{Pn}\}$$

$$\cup \{y_{C_1}, \dots, y_{C_n}\} \cup \underbrace{\{y'_1, \dots, y'_{n(m-1)}\}}_{\text{Dummy elements}}$$

$$Z = \bigcup_{P \in \llbracket \psi \rrbracket_P} \{ z_{P1}, \dots, z_{Pn}, \overline{z}_{P1}, \dots, \overline{z}_{Pn} \}$$

Dummy elements required since |Z| = 2mn and (without dummy elements) |X| = |Y| = mn + n. However |X| = |Y| = |Z| is required. Define the set N s.t

$$N = \bigcup_{P \in \llbracket \psi \rrbracket_P} \left\{ (x_{Pi}, y_{Pi}, z_{Pi}), (x_{Pi}, y_{P(i+1)}, \overline{z}_{Pi}) : 1 \le i < n \right\} \cup \left\{ (x_{Pn}, y_{Pn}, z_{Pn}), (x_{Pn}, y_{P1}, z_{Pn}) \right\}$$

$$\cup \left\{ (x_{C_i}, y_{C_i}, z_{Pi}) : 1 \le i \le n, P \in C_i \right\} \cup \left\{ (x_{C_i}, y_{C_i}, \overline{z}_{Pi}) : 1 \le i \le n, \neg P \in C_i \right\}$$

$$\cup \underbrace{\left\{ (x'_i, y'_j, z) : z \in Z, 1 \le i, j \le n(m-1) \right\}}_{\text{Dummy variables}}$$

We wish to show $\forall \psi \in \Sigma^*. \psi \in \mathsf{3CNF} \iff f(\psi) \in \mathsf{3Matching}$. Let $\psi \in \Sigma^*$ be arbitrary.

 (\Longrightarrow) . Let us assume that $\psi = \bigwedge_{i=1}^n \bigvee_{j=1}^3 \ell_{ij} \in 3\mathsf{CNF}$. Hence an interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}$ s.t $\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1$.

We wish to find $M \subset N$ s.t M is a matching. We have

$$M = \{(x_{Pi}, y_{P(i+1)}, \overline{z}_{Pi}) : 1 \le i \le n, \mathcal{I}(P) = 1\} \cup \{(x_{Pi}, y_{P(i+1)}, z_{Pi}) : 1 \le i \le n, \mathcal{I}(P) = 0\}$$

$$\cup \{(x_{Ci}, y_{Ci}, z_{Pi}) : 1 \le i \le n, P \in C_i, \mathcal{I}(P) = 1\}$$

$$\cup \{(x_{Ci}, y_{Ci}, \overline{z}_{Pi}) : 1 \le i \le n, P \in C_i, \mathcal{I}(P) = 0\}$$

(wlog only a true literal in C_i for all $1 \le i \le n$).

M is a matching and |M| = mn + mn = 2mn. (\iff). TODO

3.3.3.2 Set Covering

Definition 3.3.23. (Set Covering) For a family $\mathcal{F} = \{S_1, \ldots, S_n\} \subseteq \mathcal{P}(\mathcal{U})$, a family $\mathcal{G} \subseteq \mathcal{F}$ covers $\mathcal{U} \iff \bigcup \mathcal{G} = \mathsf{U}$.

Definition 3.3.24. (SetCovering) The set covering problem is defined as the decision problem:

Given a family $\mathcal{F} \subseteq \mathcal{P}(\mathcal{U})$, a universe \mathcal{U} , and $1 \leq k \leq |\mathcal{F}|$. Determine whether there exists $\mathcal{G} \subseteq \mathcal{F}$ s.t \mathcal{G} covers \mathcal{U} and $|\mathcal{G}| = k$.

Denoted SetCovering($\mathcal{F}, \mathcal{U}, k$).

Lemma 3.3.10. SetCovering \in NP

Definition 3.3.25. (3SetCovering) The 3 set covering problem is defined as the decision problem:

Given a family $\mathcal{F} \subseteq \{S \in \mathcal{P}(\mathcal{U}) : |S| = 3\}$, a universe \mathcal{U} w/ $|\mathcal{U}| = 3n$. Determine whether there exists $\mathcal{G} \subseteq \mathcal{F}$ s.t \mathcal{G} covers \mathcal{U} and $|\mathcal{G}| = n$.

Denoted $3SetCovering(\mathcal{F}, \mathcal{U})$.

Theorem 3.3.8. 3SetCovering is NP-complete.

Proof. (Sketch) Suffices to show 3Matching \leq_{P} 3SetCovering, with reduction

$$f(X, Y, Z, M) = (\{\{x, y, z\} : (x, y, z) \in M\}, X \cup Y \cup Z).$$

Theorem 3.3.9. SetCovering is NP-complete.

Proof. (Sketch) Suffices to show 3SetCovering \leq_{P} SetCovering, with reduction

$$f(\mathcal{F}, \mathcal{U}) = (\mathcal{F}, \mathcal{U}, |\mathcal{U}|/3).$$

3.3.3.3 Knapsack and Pseudo-polynomial Time

Definition 3.3.26. (Knapsack) The knapsack problem is defined as the constrained optimization problem:

Given n items w/ value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$, and bounds W and V, determine whether

$$\sum_{i=1}^{n} v_i I_i \ge V$$

$$\sum_{i=1}^{n} w_i I_i \le W$$

where $I_i = 0$ if the *i*th item is used.

Denoted Knapsack $(n, \mathbf{v}, \mathbf{w}, V, W)$

Theorem 3.3.10. Knapsack is NP-complete.

Proof. (Sketch) Suffices to show that $3SetCovering \leq_P Knapsack$. Let us define the reduction

$$f(\mathcal{F}, \mathcal{U}) = (m, \mathbf{v}, \mathbf{w}, V, W),$$

where $\mathcal{F} = \{S_1, ..., S_m\}, \ \mathcal{U} = \{1, ..., 3n\}$ and

$$v_i = w_i = \sum_{j \in S_i} (m+1)^{j-1}$$

$$V = W = \sum_{j=0}^{3n-1} (m+1)^j = (m+1)^{3n} - 1$$

Idea: items represent bit vectors and values and weights of sets S_i are m+1 base integers (required to avoid carry bits). Union of bit vectors is addition \implies a set covers $\mathscr{U} \iff$ bit vector of $111 \dots 1_{m+1}$.

Theorem 3.3.11. Knapsack has a time bound of O(nW).

• Note: This complexity doesn't reflect the input size: $O(n \log W)$. Hence the complexity is *exponential*.

3.3.4 co-NP

Definition 3.3.27. (co-NP) We define co-NP = $\overline{\text{NP}}$. Equivalently, $\mathcal{L} \in \text{co-NP} \iff$

$$\mathcal{L} = \left\{ x \in \Sigma^*. \forall y \in \Sigma^*. \neg R(y, x) \right\}.$$

• Note: co-NP problems require checking all polynomial certificates falsify R.

Theorem 3.3.12. $P \subseteq \text{co-NP}$.

Proof. Since
$$P = \text{co-P}$$
, and $P \subseteq NP$, hence $P = \text{co-P} \subseteq \text{co-NP}$

• Hence $P \subseteq NP \cap co-NP$.

IMAGE

Theorem 3.3.13.

 $\forall \mathcal{L}_1 \subseteq \Sigma_1^*, \mathcal{L}_2 \subseteq \Sigma_2^*. \exists f : \mathcal{L}_1 \to \mathcal{L}_2 \text{ reduction} \implies f : \overline{\mathcal{L}_1} \to \overline{\mathcal{L}_2} \text{ is a reduction}$

Proof. Let $\mathcal{L}_1 \subseteq \Sigma_1^*, \mathcal{L}_2 \subseteq \Sigma_2^*$ be arbitrary. Let us assume there exists a reduction $f: \mathcal{L}_1 \to \mathcal{L}_2$. Let x be arbitrary. We have

$$x \in \overline{\mathcal{L}_1} \iff x \notin \mathcal{L}_1$$

$$\iff f(x) \notin \mathcal{L}_2$$

$$\iff f(x) \in \overline{\mathcal{L}_2}$$

Hence $f: \overline{\mathcal{L}_1} \to \overline{\mathcal{L}_2}$.

Corollary 3.3.13.1. If \mathcal{L} is NP-complete, then $\overline{\mathcal{L}}$ is co-NP-complete.

• SAT is co-NP-complete.

3.3.4.1 Primality

Definition 3.3.28. Comp = $\{x \in 1 \{0, 1\}^* : x \text{ is composite}\}\$ and Prime = $\{x \in 1 \{0, 1\}^* : x \text{ is prime}\}.$

- Comp is in NP:
 - Certificate is the factorization (not necessarily the prime factorization). Divisor length is bounded by $O(\log \sqrt{x})$

Hence Prime is in co-NP.

Theorem 3.3.14. Comp \in NP. Prime \in co-NP.

Proof. Algorithm for determine whether n is composite:

- Search the range $[1, \sqrt{n}]$ for a factor.
- The factor is the certificate y (of length $O(\log_2 \sqrt{n})$)
- $R(y,x) = y \mid x$. $O(|y|^2)$ time complexity. Deterministic.

So by definition ??, $\mathsf{Comp} \in \mathsf{NP}$. Hence by definition ??, $\mathsf{Prime} = \overline{\mathsf{Comp}} \in \mathsf{co-NP}$.

Theorem 3.3.15. $p \in \mathbb{P} \iff \text{there exists } 1 < i < p \text{ s.t } i^{p-1} \equiv 1 \pmod{p}$ and $i^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$ for all prime divisors q of p.

Theorem 3.3.16. Prime \in NP.

Proof. Determining $a^b \pmod{p}$:

- Compute $a^2, a^4, \dots, a^{2^{\log_2 b}}$ on modulo p, which requires $\log_2 b$ multiplications.
- Complexity: $O(\log_2^3 b)$.

So we may determine $i^{p-1} \equiv 1 \pmod{p}$ in $O(\log_2^3 p)$. Determining $i^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$:

- Requires prime divisors $\mathbf{q} = (q_1, \dots, q_k)$ of p-1
- Uses algorithm to determine $i^{\frac{p-1}{q_j}} \pmod{p}$ for all $q_j \in \mathbf{q}$.
- Complexity: $O(k \log_2^3 p) = O(\log_2^4 p)$

Certificate:

$$C(p) = (i, \{(q_i, C(q_i)) : q_i \in \mathbf{q}\})$$

 $|C(p)| \le 4 \log_2^2 p$ (strong induction on p).

3.4 Function Classes

• **Problem**: Complexity classes only reason about *decidable* languages. Not about *functions*.

Definition 3.4.1. (Witness Function) A witness function for $\mathcal{L} \subseteq \Sigma^*$ is a function $f: \Sigma^* \to \mathcal{O}(\Sigma^*)$ such that:

- If $x \in \mathcal{L}$, then $f(x) = \lfloor y \rfloor$ s.t R(y, x) where y is the certificate of x
- Otherwise $f(x) = \emptyset$.
- \bullet $\, {\bf Note} : \,$ This definition applies for all ${\cal L}$ (not just ${\sf NP})$

Definition 3.4.2. The function class of a complexity class C is the class $FC = \{\text{witness } f_{\mathcal{L}} : \mathcal{L} \in C\}.$

 $\bullet \implies \mathsf{FP} \text{ and } \mathsf{FNP}.$

3.4.1 Reductions

TODO

3.4.2 Problems

3.4.2.1 Factorization

Definition 3.4.3. (Factorization Problem) The factorization problem is the witness function:

$$f(n) = (2, k_1; 3, k_2; \dots; p_m, k_m),$$

s.t $n = \prod_i p_i^{k_i}$.

Factorization is FNP since the witness function is for a language Comp ∈ NP.

3.4.3 Cryptography

- **Problem**: 2 parties (Alice and Bob) wish to send a message x w/out a third party (Eve) knowing x.
- **Solution**: Encryption:
 - Alice and Bob define $E, D: \Sigma^* \times \Sigma^* \to \Sigma^*$ and $e, d \in \Sigma^*$ s.t

$$\forall x \in \Sigma^*. D(E(x,e),d) = x$$

- $D, E \in \mathsf{P}$ for the cryptographic system to be tractable.
- Types:
 - Private-key: e, d are only known to A and B respectively.
 - Public-key: e is public and d is only known to B.

Example 3.4.1. (XOR Encryption) Define $D, E = \oplus$ and d = e (known as a *one-time pad*). Relies on the identity $(x \oplus e) \oplus e = x$.

Provably secure if Eve doesn't know e: since $e = x \oplus y$.

3.4.3.1 One-way Functions

- **Problem**: For public-key systems: The function that maps $E(x, e) \mapsto x \text{ (w/out } d) \notin \mathsf{FP} \implies \mathsf{FNP}.$
- Hence public-key systems rely on $FNP \neq FP$.

Definition 3.4.4. (One-way Functions) A function $f: \Sigma^* \to \Sigma^*$ is a one-way function \iff :

- 1. f is injective
- 2. $\forall x \in \Sigma^* . \exists k \in \mathbb{N}. |x|^{1/k} \le |f(x)| \le |x|^k.$
- 3. $f \in \mathsf{FP}, f^{-1} \notin \mathsf{FP}$
- Proving f is a one-way function relies on assuming $P \neq NP$. So security of f is shown by proving: $P \neq NP \implies f$ is one-way. e.g. RSA

Definition 3.4.5. (Unambiguous) A non-deterministic Turing machine $M \in \mathsf{NTM}^k_\Sigma$ is unambiguous \iff

$$\exists! (q, \tau_1, \dots, \tau_k) \in \mathscr{C}(M). (q_0, \tau_0(u_1), \dots, \tau_0(u_\ell), \dots, \tau_0) \longrightarrow_M^* (q, \tau_1, \dots, \tau_k) \land \mathsf{lab}(q) = \mathsf{acc}$$

Definition 3.4.6. (UP) $\mathcal{L} \in \mathsf{UP}$ iff \mathcal{L} is accepted by an unambiguous NTM. Equivalently, $\mathcal{L} \in \mathsf{UP}$ iff

$$\mathcal{L} = \left\{ x \in \Sigma^*. \exists y \in \Sigma^*. R(y, x) \right\},\,$$

where

- R is polynomial time computable and balanced.
- $\forall x, y_1, y_2 \in \Sigma^*. R(y_1, x) \wedge R(y_2, x) \implies y_1 = y_2$. Injective.

Lemma 3.4.1. $P \subseteq UP \subseteq NP$

Theorem 3.4.1. $UP = P \iff$ there are no one-way functions.

Proof. We proceed by contradiction.

(\Longrightarrow). Let us assume there exists a one-way function $f: \Sigma^* \to \Sigma^*$. Define

$$\mathcal{L}_f = \{(x, y) : \exists z \in \Sigma^*.z \le x \land f(z) = y\},\,$$

where \leq is a lexicographical ordering.

It suffices to show that $\mathcal{L}_f \in \mathsf{UP} \setminus \mathsf{P}$. We first show that $\mathcal{L}_f \in \mathsf{UP}$:

- $R(z,(x,y)) = z \le x \land f(z) = y$ is computable in polynomial time and polynomially balanced by definition of f (??).
- R is injective since f is injective

So by definition ??, $\mathcal{L}_f \in \mathsf{UP}$. We now show that $\mathcal{L}_f \notin \mathsf{P}$. Let us assume that $\mathcal{L}_f \in \mathsf{P}$. Then it follows that we may compute f^{-1} in polynomial time:

- By definition ??, given $y \in \Sigma^*$ s.t $f(z) = y \implies |z|^{1/k} \le |y| \le |z|^k$ for some $k \in \mathbb{N}$.
- \bullet Use a binary search procedure w/ time bound of $(\log_2 y)^k$

Hence $f^{-1} \in \mathsf{FP}$. A contradiction! So we are done. (\Leftarrow) . Let us assume that $\mathsf{UP} \neq \mathsf{P}$. Hence there exists $\mathcal{L} \in \mathsf{UP} \setminus \mathsf{P}$, where U is the unambiguous NTM accepting \mathcal{L} .

Define $f_U: \Sigma^* \to \Sigma^*$:

$$f_U(x) = \begin{cases} 1y & \text{if } x \text{ encodes the accepting computation of } U \text{ w/ input } y \\ 0x & \text{otherwise} \end{cases}$$

 f_U is injective since U is unambiguous. $f_U \in \mathsf{FP}$ (assuming a polynomial encoding between x and computations). $|f_U(x)| \leq |x|^k$ since U has a polynomial running time. We now show that $f_U^{-1} \notin \mathsf{FP}$. Assume that $f_U^{-1} \in \mathsf{FP}$. Hence $\mathcal{L} \in \mathsf{P}$. A contradiction!

3.5 Space Complexity

• Idea: Reason about relations between time and space complexity classes

3.5.1 Classes

Definition 3.5.1. (Space Complexity Class) Let $f : \mathbb{N} \to \mathbb{N}$. SPACE $(f(n)) \subseteq \mathcal{P}(\Sigma^*)$ is the complexity class (set of languages) s.t $\mathcal{L} \in \mathsf{SPACE}(f(n)) \iff \mathcal{L}$ is decidable by a TM w/ space bound O(f(n)).

Definition 3.5.2. (NSpace Complexity Class) Let $f : \mathbb{N} \to \mathbb{N}$. NSPACE $(f(n)) \subseteq \mathcal{P}(\Sigma^*)$ is the complexity class (set of languages) s.t $\mathcal{L} \in \mathsf{NSPACE}(f(n)) \iff \mathcal{L}$ is decidable by a NTM w/ space bound O(f(n)).

• See definition?? for space bound (relies on TM's w/ I/O)

Definition 3.5.3. (Logarithmic Space Complexity) The logarithmic space complexity class LSPACE is defined by

$$\mathsf{LSPACE} = \mathsf{SPACE}(\log n).$$

Similarly, the non-deterministic logarithmic space complexity class NLSPACE is

$$\mathsf{NLSPACE} = \mathsf{NSPACE}(\log n).$$

Definition 3.5.4. (Polynomial Space Complexity) The polynomial space complexity class PSPACE is defined by

$$\mathsf{PSPACE} = \bigcup_{k=1}^{\infty} \mathsf{SPACE}(n^k).$$

The non-deterministic polynomial space complexity class NPSPACE is

$$\mathsf{NPSPACE} = \bigcup_{k=1}^{\infty} \mathsf{NSPACE}(n^k).$$

3.5.2 Inclusions

• Idea: Prove ⊂ relations between complexity classes:

LSPACE
$$\subset$$
 NLSPACE \subset P \subset NP \subset PSPACE \subset NPSPACE.

Lemma 3.5.1. (Deterministic Completement Lemma) For all $\mathcal{L} \subseteq \Sigma^*$:

$$\mathcal{L} \in \mathsf{TIME}(f(n)) \implies \overline{\mathcal{L}} \in \mathsf{TIME}(f(n))$$
 $\mathcal{L} \in \mathsf{SPACE}(f(n)) \implies \overline{\mathcal{L}} \in \mathsf{SPACE}(f(n))$

 $\mathbf{Corollary~3.5.0.1.~LSPACE} = \mathsf{co\text{-}LSPACE}, \mathsf{P} = \mathsf{co\text{-}P} \ \mathrm{and} \ \mathsf{PSPACE} = \mathsf{co\text{-}PSPACE}.$

- **Problem**: Functions $f: \mathbb{N} \to \mathbb{N}$ may not be computable (in the complexity class they describe) \Longrightarrow difficult for constructions on bounded computation.
- Solution: Proper function (or constructible functions).

Definition 3.5.5. (Proper Function) A function $f : \mathbb{N} \to \mathbb{N}$ is a proper function iff:

- (i) f is non-decreasing: $\forall n \in \mathbb{N}. f(n) \leq f(n+1)$.
- (ii) f is computable w/ a O(|x| + f(|x|)) time bound and O(f(|x|)) space bound, where $|x| = |\lceil n \rceil_{\mathbb{N}}|$ (the length of the encoding).

Lemma 3.5.2. For all $f, g : \mathbb{N} \to \mathbb{N}$, if f, g are constructible, then

- 1. f + g, $f \times g$ and 2^f are constructible
- 2. $f \circ g$ is constructible iff $\forall n \in \mathbb{N}. f(n) > n$.

Proof. (Sketch) Relies on re-computing f determining symbol a at index i on output tape to obtain output w/out affecting space bound. TODO

Theorem 3.5.1. (The Inclusion Theorem) For all constructible functions $f : \mathbb{N} \to \mathbb{N}$:

- (i) $SPACE(f(n)) \subseteq NSPACE(f(n))$
- (ii) $\mathsf{TIME}(f(n)) \subseteq \mathsf{NTIME}(f(n))$
- (iii) $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n))$
- (iv) $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)})$

Proof. Let $f: \mathbb{N} \to \mathbb{N}$ be an arbitrary constructible function.

- (i), (ii) (i) and (ii) are trivial.
 - (iii) Let $\mathcal{L} \in \mathsf{NTIME}(f(n))$. Let $N \in \mathsf{NTM}_{\Sigma}^k$ be the NTM that decides \mathcal{L} in f(n) time. The computation tree \mathscr{T} of N is given by: IMAGE

where $b = \max \{ |S| : S \in \overrightarrow{\Delta}(Q, \mathcal{O}(\Sigma)^k) \}$ is branching factor of the computation tree.

A bounded depth-first search on \mathscr{T} is computable w/ space bound of d = f(n) (See AI supervision work). Hence $\mathcal{L} \in \mathsf{SPACE}(f(n))$.

(iv) Let $\mathcal{L} \in \mathsf{NSPACE}(f(n))$. Let $N \in \mathsf{NTM}_{\Sigma}^k$ be the NTM that decides \mathcal{L} in f(n) space.

The configuration graph of N w/ input $x \in \Sigma^*$ is a graph G = (V, E) inductively defined by

$$(q_0, \tau_0(x), \tau_0, \dots, \tau_0) \in V$$

$$\frac{c \in V \quad c \longrightarrow_N c'}{c' \in V, (c, c') \in E}$$

M accepts $x \iff$ an accepting configuration is reachable from c_0 . We note that $|V| \leq |\mathscr{C}_x(N)|$, where $|\mathscr{C}_x(N)|$ is the number of possible configuration of N w/ input x:

$$|Q| \times \underbrace{|x|}_{\text{position on input}} \times \left[\underbrace{(|\Sigma|+1)^{f(|x|)}}_{\text{tape contents}} \times \underbrace{f(|x|)}_{\text{position on tape}}\right]^{k-2}$$

Note that Reachability has a time complexity of $O(|V|^2)$ (see section ??). Hence \mathcal{L} is decidable in

$$O\left(\left\{|Q| \times |x| \times [(|\Sigma|+1)^{f(|x|)} \times f(|x|)]^{k-2}\right\}^{2}\right) = O\left(\left\{|x|\left[c^{\log_{c}|x|+f(|x|)}\right]^{k-2}\right\}^{2}\right)$$

$$= O\left(c^{\log_{c}|x|+f(|x|)}\right)$$

So we have $\mathcal{L} \in \mathsf{TIME}(c^{\log n + f(n)})$.

Theorem 3.5.2. (NLSPACE Reachability) Reachability ∈ NLSPACE

Proof. Reachability \in NLSPACE w/ the following algorithm:

```
\begin{array}{l} i \leftarrow \operatorname{index\_of}(u); \; / / \; \operatorname{current \; index} \\ \text{while (true) } \{ \\ \text{if } (V[i] = v) \; \operatorname{return \; acc}; \\ \\ \text{non-deterministically determine \; index} \; j \; (\log |V| \; \operatorname{bits}); \\ \text{if } ((V[i], \; V[j]) \notin E) \; \operatorname{return \; rej}; \\ i \leftarrow j; \\ \} \end{array}
```

Requires $2 \log |V|$ space. Hence Reachability \in NLSPACE.

3.5.3 Savitch's Theorem

Theorem 3.5.3. (Savitch's Theorem) Reachability $\in SPACE(\log^2 |V|)$

Proof. Reachability \in SPACE($\log^2 |V|$) w/ the following algorithm:

```
\begin{array}{ll} \operatorname{path}(u,\ v,\ i)\ \{\\ & \text{if } (i=1\ \land\ u\neq v\ \land\ (u,v)\notin E)\ \text{return false};\\ & \text{if } ((u,v)\in E\ \lor\ u=v)\ \text{return true};\\ \\ & \text{for } (w\in V)\ \{\\ & \text{if } (\operatorname{path}(u,\ w,\ \lfloor i/2\rfloor)\\ & \land\ \operatorname{path}(w,\ v,\ \lceil i/2\rceil))\\ & \text{return true};\\ \\ \}\\ \end{array}
```

The above algorithm computes $\operatorname{path}(u, v, i)$, which defines the predicate: there is a path $u \longrightarrow^k v$ where $k \leq i$. Each stack frame of path may be defined by $4 \log |V|$ bits (3 for parameters + 1 for w). The maximum recursion depth is given by $\log |V| \Longrightarrow \operatorname{space}$ bound of $4 \log^2 |V|$

path(u, v, $\lceil \log |V| \rceil$) defines reachability. Hence Reachability \in SPACE($\log^2 |V|$).

Corollary 3.5.3.1. For constructible functions $f : \mathbb{N} \to \mathbb{N}$ s.t $\forall n \in \mathbb{N}$. $f(n) \ge \log n$,

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2).$$

Proof. Let $f: \mathbb{N} \to \mathbb{N}$ be an arbitrary constructible function. Let us assume that $\forall n \in \mathbb{N}. f(n) \ge \log n$.

Let $\mathcal{L} \in \mathsf{NSPACE}(f(n))$ be defined as in theorem ??, proof of (iv). Hence \mathcal{L} is decidable in

$$O(\log^2\left(c^{\log_c|x|+f(|x|)}\right)) = O((\log_c|x|+f(|x|))^2) = O(f(|x|)^2).$$
 So $\mathcal{L} \in \mathsf{SPACE}(f(n)^2).$

Lemma 3.5.3. PSPACE = NPSPACE

Proof. By Corollary ??, we have

$$\begin{aligned} \mathsf{NPSPACE} &= \bigcup_{k=1}^\infty \mathsf{NSPACE}(n^k) \\ &\subseteq \bigcup_{k=1}^\infty \mathsf{SPACE}(n^{2k}) \\ &\subset \mathsf{PSPACE} \end{aligned}$$

Since $PSPACE \subseteq NPSPACE$, then we have PSPACE = NPSPACE.

Theorem 3.5.4. (The Immerman-Szelepscenyi Theorem) For a given G = (V, E) and vertex $v \in V$, $|\{u \in V : v \longrightarrow^* u\}|$, the number of vertices reachable from v, is computable by a NTM w/ a log |V| space bound.

Corollary 3.5.4.1. For all constructible functions $f: \mathbb{N} \to \mathbb{N}$ w/ $\forall n \in \mathbb{N}. f(n) \ge \log n$,

$$\mathsf{NSPACE}(f(n)) = \mathsf{co-NSPACE}(f(n)).$$

3.5.4 Hierarchy Theorem

• **Problem**: Theorems so far prove \subseteq but not \subset .

Definition 3.5.6. (Time Bounded Halting Problem) Let $f : \mathbb{N} \to \mathbb{N}$ be a constructible function s.t $\forall n \in \mathbb{N}. f(n) \geq n$. The time bounded halting problem H_f is defined as

$$H_f = \{(\llbracket M \rrbracket, x) : M \in \mathsf{TM}_{\Sigma} \text{ accepts } x \text{ after } f(|x|) \text{ transitions} \},$$

where $\llbracket \cdot \rrbracket : \mathsf{TM}_{\Sigma}^k \to \Sigma_+^*$ is an encoding function for Turing machines.

Lemma 3.5.4. $H_f \in TIME(f(n)^3)$.

Proof. (Sketch) Define a Turing machine U_f that decides H_f :

- Computes f(|x|) from input $(\llbracket M \rrbracket_M, x)$. Takes O(f(n)) time (by definition of constructible function).
- Universal Turing machine U simulates each transition of M in time $O(\ell_M k_M^2 f(|x|))$ w/ k_M is # of strings of M, ℓ_M is the length of the description of each state and symbol.

$$k_M, \ell_M = O(\log | [M]_M |).$$

Hence each step takes $O(f^2(|x|))$ time.

So
$$H_f \in \mathsf{TIME}(f(n)^3)$$
.

Lemma 3.5.5. $H_f \notin \mathsf{TIME}(f(\lfloor n/2 \rfloor))$.

Proof. We proceed by contradiction. Suppose $H_f \in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$. Let $M \in \mathsf{TM}_{\Sigma}^k$ be the TM that decides H_f in $f(\lfloor n/2 \rfloor)$ time. Define the TM $N \in \mathsf{TM}_{\Sigma}^k$ which decides

$$\mathcal{L} = \{ \llbracket M \rrbracket_M : (\llbracket M \rrbracket_M, \llbracket M \rrbracket_M) \notin H_f \}.$$

By existence of M, N has the time bound of $f(\lfloor (2n+3)/2 \rfloor) = f(n+1)$ (copies input $[\![M]\!]_M$, adds (,) (3 symbols)). Note that

$$\begin{split} & [\![N]\!]_M \in \mathcal{L} \\ & \iff ([\![N]\!]_M, [\![N]\!]_M) \notin H_f \\ & \iff N \text{ doesn't accept } [\![N]\!]_M \text{ after } f(n) \text{ transitions} \\ & \iff [\![N]\!] \notin \mathcal{L} \end{split}$$

A contradiction!

Theorem 3.5.5. (Time Heirarchy Theorem) For all $f : \mathbb{N} \to \mathbb{N}$ s.t f is constructible and $\forall n \in \mathbb{N}. f(n) \geq n$,

$$\mathsf{TIME}(f(n)) \subset \mathsf{TIME}(f(2n+1)^3).$$

Corollary 3.5.5.1. $P \subset EXP$