КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

		изичнии факультет	
	(на	азва факультету, інституту)	
Кафедра ке	вантової теорії	і поля та космомікрофізики	
		А НАВЧАЛЬНОЇ ДИ	вчальної роботи ана МОМОТ 2022 року СЦИПЛІНИ
ЛІНІИ		А ТА АНАЛІТИЧНА ГЕОМ	LETPIN
	(повна	а назва навчальної дисципліни) для студентів	
		для студентів	
галузь знань		10 Природничі науки (шифр і назва)	
спеціальність	10		
		4 Фізика та астрономія (шифр і назва спеціальності)	
освітній рівень	(110)	бакалавр одший бакалавр, бакалавр, магістр)	

освітня програма	фізичне	матеріалознавство / неметаліч	іне
		матеріалознавство (назва освітньої програми)	
вид дисципліни	DR. 1.5	обов'язкова	
вид дисциплини		ооов изкова	
		Форма навчання	денна
		Навчальний рік	2022/2023
		Семестр	1-2
		Кількість кредитів ECTS	8
		Мова викладання, навчання	
		та оцінювання	українська
		Форма заключного контролю	залік
Викладачі: Вільчи	нський Станіс	слав Йосипович, Приходько О	пена
Олександрівна			9
- Or	_		
Пролонговано: на 2	20/20 н.р	(підпис, ПІБ, дата) « »	20 p.
' на	20/20 н.р	() «»	20 p.

Розробник(и): Вільчинський Станіслав Йосипович, доктор фіз.-мат. наук, професор, завідувач кафедри квантової теорії поля та космомікрофізики

Зав. кафедри <u>квантової теорії поля та космомікрофізики</u>

Станіслав ВІЛЬЧИНСЬКИЙ (прізвище та ініціали)

Протокол № _17 _ від «_27_» _травня_ 2022 р.

ЗАТВЕРДЖЕНО

 Мета дисципліни — формування комплексу знань, вмінь і навичок фундаментальних розділів лінійної алгебри та аналітичної геометрії необхідних для володіння її апаратом та методами в процесі розв'язування прикладних задач, а також для вивчення профільних

дисциплін.

- 1. Попередні вимоги до опанування або вибору навчальної дисципліни (за наявності):
 - 1. Знати основи алгебри, початку аналізу, тригонометрію, геометрію.
 - 2. **Вміти** розв'язувати задачі з алгебри, геометрії, тригонометрії, планувати власну роботу і оцінювати її результати і наслідки.
 - 3. **Володіти навичками** опрацьовувати літературу, роботи з інтерактивними і мультимедійними засобами, взаємодії з колегами під час навчання.
- **3.** Анотація навчальної дисципліни: лінійна алгебра та аналітична геометрія є базовою математичною дисципліною, яка викладається два семестра. В рамках дисципліни студенти оволодіють основними поняттями векторної алгебри в просторі, прямих і площин, кривих і поверхонь другого порядку, теорією матриць, визначників, систем лінійних алгебраїчних рівнянь, векторних просторів, векторних просторів зі скалярним добутком, лінійними оператори в евклідовому та унітарному просторах, функціями на векторних просторах.
- **4.** Завдання (навчальні цілі): основними завданнями вивчення дисципліни «Аналітична геометрія та лінійна алгебра» є оволодіння необхідними теоретичними положеннями і методами курсу та застосування їх до профільних дисциплін, формування системи знань та застосування властивостей основних понять курсу для розв'язування практичних задач.

Згідно освітньо-професійної програми дисципліна забезпечує набуття здобувачами освіти наступних *компетентностей*:

Інтегральної:

Здатність розв'язувати складні спеціалізовані задачі та практичні проблеми з фізики у професійній діяльності або у процесі подальшого навчання, що передбачає застосування певних теорій і методів фізики і характеризується комплексністю та невизначеністю умов.

Загальних

- 3К5. Здатність приймати обґрунтовані рішення.
- 3К8. Здатність оцінювати та забезпечувати якість виконуваних робіт.
- ЗК9. Визначеність і наполегливість щодо поставлених завдань і взятих обов'язків.
- 3К12. Здатність спілкуватися державною мовою як усно, так і письмово.

фахових:

- ФК9. Здатність працювати з джерелами навчальної та наукової інформації.
- ФК10. Здатність самостійно навчатися і опановувати нові знання з фізики, астрономії та суміжних галузей.
- ФК14. Здатність здобувати додаткові компетентності через вибіркові складові освітньої програми, самоосвіту, неформальну та інформальну освіту.

5. Результати навчання за дисципліною:

Код	Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність) Результат навчання	Форми (та/або методи і технології) викладання і навчання	Методи оцінювання та пороговий критерій оцінювання (за необхідності)	Відсоток у підсумкові й оцінці з дисциплін и					
	1. Знати								

1.1	поняття вектору: скалярний, векторний, мішаний та подвійний векторні добутки	• лекції • практичні заняття	• контрольні роботи • колоквіум	8
.2	теорію матриць і визначників, систем лінійних рівнянь	• консультації • самостійна робота	• тематичний контроль самостійної роботи	8
.3	основні властивості кривих другого порядку, прямої та площини, поверхонь обертання	pocora	• залікова робота • екзаменаційна робота	8
.4	основні поняття лінійного простору, евклідового та унітарного просторів			8
.5	основні поняття лінійних операторів в евклідовому та унітарному просторах			8
			Загалом:	40
		2. Вміти		
.1	обчислювати визначник матриці, проводити дії над матрицями, обчислювати ранг матриці, знаходити обернену матрицю	лекціїпрактичні заняттяконсультаціїсамостійна	• тематичний контроль	8
.2	розв'язувати системи лінійних алгебраїчних рівнянь	робота	самостійної роботи • залікова робота • екзаменаційна	8
.3	аналізувати загальні рівняння на площині та у просторі, будувати криві другого порядку, проводити канонізацію кривих другого порядку		робота	8
.4	знаходити матрицю переходу, матрицю Грама, будувати ортонормований базис (процес Грама-Шмідта)			8
.5	проводити обчислення власних чисел і векторів, проводити канонізацію симетричних білінійних форм			8
			Загалом:	40
	3.	Комунікація		
.1	здатність бути активним учасником обговорень	лекціїпрактичні заняття	•	3
.2	презентувати результати самостійної роботи у форматі усних та/або письмових повідомлень із/без використання наочних засобів	консультаціїсамостійна робота	 тематичний контроль самостійної роботи залікова робота екзаменаційна 	4
.3	майстерність методологічного сумніву висловленої позиції колег та/або авторитетного джерела		робота	3
			Загалом:	10
	4. Автономні	сть та відповідалі	ьність	
.1	віднаходити необхідну інформацію з	• лекції	• контрольні роботи	4

4.2	застосовувати отримані знання в професійній діяльності	• практичні заняття • консультації	• колоквіум • тематичний	3
4.3	демонструвати вміння працювати в колективі та самостійно	• самостійна робота	контроль самостійної роботи залікова робота екзаменаційна робота	3
			Загалом:	10

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін які не входять до блоків спеціалізації)

Результати навчання дисципліни			1			2				3			4			
Програмні результати навчання	1	2	3	4	5	1	2	3	4	5	1	2	3	1	2	3
ПРН4. Вміти застосовувати базові математичні знання, які використовуються у фізиці та астрономії: з аналітичної геометрії, лінійної алгебри, математичного аналізу, диференціальних та інтегральних рівнянь, теорії ймовірностей та математичної статистики, теорії груп, методів математичної фізики, теорії функцій комплексної змінної, математичного моделювання.	+	+	+	+	+	+	+	+	+	+						
ПРН8. Мати базові навички самостійного навчання: вміти відшуковувати потрібну інформацію в друкованих та електронних джерелах, аналізувати, систематизувати, розуміти, тлумачити та використовувати її для вирішення наукових і прикладних завдань.														+	+	+
ПРН16. Мати навички роботи із сучасною обчислювальною технікою, вміти використовувати стандартні пакети прикладних програм і програмувати на рівні, достатньому для реалізації чисельних методів розв'язування фізичних задач, комп'ютерного моделювання фізичних та астрономічних явищ і процесів, виконання обчислювальних експериментів.											+	+	+	+	+	+
ПРН18. Володіти державною та іноземною мовами на рівні, достатньому для усного і письмового професійного спілкування та презентації результатів власних досліджень.											+	+	+			

7. Схема формування оцінки.

Контроль знань здійснюється за системою ECTS, яка передбачає дворівневе оцінювання засвоєного матеріалу, зокрема:

• оцінювання теоретичної підготовки

(результати навчання: **знати** 1.1 - 1.6), що складає 40% від загальної оцінки;

• оцінювання практичної підготовки

(результати навчання: **вміти** 2.1-2.6; **комунікація** 3.1-3.6; **автономність та відповідальність** 4.1-4.6), що складає 60% загальної оцінки.

7.1 Форми оцінювання студентів:

- семестрове оцінювання розмежоване поміж практичними заняттями, лекційними заняттями, самостійною роботою. Загалом форми викладання і навчання проводяться у форматі усних та письмових завдань, обов'язкову кількість яких оцінюють різною кількістю балів:
- min найменша кількість балів (їх отримання ϵ свідченням, що студент приділив недостатньо уваги окремому завданню)
- max висока кількість балів (їх отримання є свідченням, що студент приділив достатньо уваги та самоорганізації для опрацювання теми)

Форми викладання і	Форми контролю	Результати	Кількісті	ь балів
навчання		навчання	min	max
	Контрольна робота 1	1.1-1.5 2.1-2.5	8	15
	Контрольна робота 2	3.1-3.3		
Практичні завдання	Контрольна робота 3	4.1-4.3		
	Контрольна робота 4			
	Модульний	1.1-1.5	9	30
	контроль1	2.1-2.5		
Лекційні заняття	Модульний	3.1-3.3		
	контроль2	4.1-4.3		
		1.1-1.5	7	1.5
Самостійна робота	Виконання домашніх	2.1-2.5	7	15
	завдань	3.1-3.3		
	завдань	4.1-4.3		
	Загалом з	а роботу у семестрі	24	60

- враховуючи важливість даного курсу підсумкова кількість балів з дисципліни (максимум 100 балів), визначається як сума (проста або зважена) балів за систематичну роботу впродовж семестру (60 балів) та (40 балів) за екзаменаційну роботу.
- відпрацювання пропусків практичних занять, всі пропуски студентом без поважної причини повинні бути відпрацьовані за вимогами викладачів, які читають практичні.
- допуском студента до підсумкового оцінювання є виконання обов'язкових самостійних завдань, написання контрольних робіт, відпрацювання пропусків практичних занять та набирання мінімальної (24) кількості балів.
- підсумкове оцінювання у формі екзамену (заліку) здійснюється у формі письмового екзамену. Білет включає два теоретичних питання і три практичних. Загальна кількість балів за екзаменаційну роботу складає 40 балів (20 +4+6+10).
 - Оцінка за екзаменаційну роботу вноситься у екзаменаційну відомість тільки якщо вона рівна або більша 24 балам (тобто від 24 до 40). Якщо загальна оцінка за екзаменаційну

роботу буде меншою 24 балів, тоді у екзаменаційну відомість вноситься 0 балів $\,$ і іспит ε нескладеним і загальна оцінка за навчальну дисципліну ε «незадовільною».

- результуюча оцінка з дисципліни ставиться за результатами ІІ-го семестру і екзаменаційної роботи.

7.2 Організація оцінювання:

Форма	Форми	_	Графік оцінювання				
оцінюва ння	викладання і навчання	Форми контролю	конкретизований	загальний			
		Контрольна робота 1	Після теми 1-4				
		Контрольна робота 2	Після теми 5-6				
	Практичні завдання	Контрольна робота 3	Після теми 7-8				
Семестро	зирдиния	Контрольна робота 4	Після теми 9-10	Впродовж теоретичного			
ва	Лекційні заняття	Модульний контроль 1 Модульний контроль 2	І-ий семестр в кінці Жовтня ІІ-ий семестр в кінці Квітня	навчання у семестрі			
	Самостійна робота	Виконання домашніх завдань	В рамках теоретичного навчання, до початку семестрового контролю				
Підсумк ова	Письмова робота	Екзаменаційна робота	Залежно від графіку навчання	Впродовж семестрового контролю			

7.3 Шкала відповідності оцінок

.э шкала ыдпоыдпостт оцшок					
Відмінно / Excellent	90-100				
Д обре / Good	75-89				
Задовільно / Satisfactory	60-74				
Незадовільно / Fail	0-59				
Зараховано / Passed	60-100				
He зараховано / Fail	0-59				

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І СЕМІНАРСЬКИХ ЗАНЯТЬ

D.C.		Кількість годин				
№ п/п	Назва лекції	лекції	практи чні	C/P		
	<i>Змістовий модуль 1</i> Теорія матриць.					
1	Тема 1 Матриці. Пропедевтика.	4	6	8		
2	Тема 2. Детермінант (визначник) квадратної матриці. Матриці і визначники.	10	8	16		
	Тема 3. Ранг матриці.	4	2	6		
	Тема 4. Множення матриць	2	2	4		
	Модульна контрольна робота 1		1	4		
	Змістовий модуль 2 Системи лінійних алгебраїчних рів	нянь (СЛ	IAP)			
3	Тема 5. Системи лінійних алгебраїчних рівнянь	10	4	12		
4	Тема 6. Лінії та поверхні першого порядку		6	6		
	Колоквіум і модульна контрольна робота 2		1	3		
Всьо	Γ0	30	30	59		
	Змістовий модуль 3 Лінійні простори					
5	Тема 7 Лінійні простори Лінії та поверхні другого порядку.	8	8	12		
6	Тема 8. Лінійні оператори в евклідових та унітарних просторах. Функції на векторних просторах.	6	8	13		
	Модульна контрольна робота 3		2	4		
	Змістовий модуль 4 Лінійні оператори	1	<u> </u>			
7	Тема 9. Лінійні відображення та оператори	8	6	12		
8	Тема 10. Білінійні та квадратичні форми	8	4	14		

Колоквіум і модульна контрольна робота 4	E	2	4
ВСЬОГО	30	30	59

Загальний обсяг 1-ший семестр

120 *год.*, в тому числі:

Лекцій **– 30** год.

Практичні – 30 год.

Консультація – 1 год.

Самостійна робота – 59 год,

Загальний обсяг 2-ий семестр

120 *год.*, в тому числі:

Лекцій **– 30** год.

Практичні – 30 год.

Самостійна робота – 59 год.

Консультація – 1 год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна: (Базова):

- 1. О.О. Приходько, В.Б. Шевченко, Л.В. Задорожна, А.В. Чумаченко, методичний посібник до практичних занять "Лінійна алгебра та аналітична геометрія" (https://qft.knu.ua/wp-ontent/uploads/2022/01/metod_%D0%90GLA.pdf)
- 2. О.М. Теслик, О.О. Приходько, С.Й. Вільчинський, Е.В. Горбар, навчальний посібник для студентів фізичного факультету "Лекції з лінійної алгебри" (https://qft.knu.ua/wp-content/uploads/2022/01/lectures_agla.pdf).
- 3. Придатченко Ю.В., Львов В.А. Алгебра для фізиків: вектори і координати: Навч. посібник. Видавничо-поліграфічний центр "Київський університет"., 2002. 87 с.
- 4. Axler S. Linear Algebra Done Right. Springer New York, 2004. 251 p.
- 5. Treil S. Linear Algebra Done Wrong. Brown University, 2017. 276 p.
- 6. Strang G. Introduction to Linear Algebra. 5th Edition. Wellesley-Cambridge Press, 2016. 574 p.
- 7. Hoffman K, Kunze R. Linear Algebra. Second Edition. Prentice-Hall, Inc., 1971, 407 p.
- 8. Halmos P.R. Finite-Dimensional Vector Spaces: Second Edition. Dover Publications, 2017. 208 p.
- 9. Friedberg S, Insel A., Spence L. Linear Algebra. 5th Edition. Pearson, 2018. 608 p.
- 10. Roman S. Advanced Linear Algebra. 3rd Edition. Springer, 2007. 525 p.
- 11. Hefferron J. Linear Algebra. 4th Edition. 525 p. (https://joshua.smcvt.edu/linearalgebra/).
- 12. Krishnamurthy V., Mainra V.P., Arora J.L. An Introduction to LINEAR ALGEBRA. Chaukhamba Auriyantaliya, 2018. 348 p.
- 13. Baker A. Analytical geometry for beginners. Alpha Editions, 2020. 228 p.
- 14. Fuller G., Tarwater D. Analytic Geometry (7th Edition). Pearson, 1992. 440 p.
- 15. Riddle D.F. Analytic Geometry. 6th Edition. Cengage Learning, 1995. 496 p.
- 16. Sochi T. Tensor Calculus Made Simple. Create Space Independent Publishing Platform, 2016. 170 p.
- 17. Horn R.A., Johnson C.R. Matrix Analysis. 2nd Edition. Cambridge University Press, 2012. 662 p.

Збірники задач:

- 18. Ізвєков С.В., М.Ф. Ледней «Методичні вказівки для розвязування задач з аналітичної геометрії для студентів фізичного факультету» К.: РВЦ «Київський університет», 1998. 50 с.
- 19.Ф.С. Гудименко «Збірник задач з вищої математики» Київ: Видавництво Київського Університету, 1967. 352с.

- 20. Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре. М.: Наука., 1987. 496 с.
- 21. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: Физматлит., 2002. 248 с.
- 22. Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Наука., 1972. 240 с.

Екзаменаційні питання з курсу аналітичної геометрії та лінійної алгебри.

- 1. Матриця: означення і властивості. Операції додавання матриць, множення на число. Властивості лінійних операцій над матрицями.
- 2. Віднімання матриць. Матриця, протилежна до даної. Одинична, нульова матриці.
- 3. Транспонування матриць. Симетрична та антисиметрична матриці. Матриці Паулі.
- 4. Матриці-стовпчики та матриці стрічки, означення їх лінійної комбінації. Прелставлення матриці довільних розмірів у виглядв матриць-стрічок і матриць чтовпчиків
- 5. Означення і приклади лінійно незалежної системи вектор-стовпчиків.
- 6. Властивості лінійно незалежної системи вектор-стовпчиків.
- 7. Означення детермінанту (визначника) матриці
- 8. Властивості детермінанту (визначника) матриці. (з доведенням!)
- 9. Формула повного розкладу детермінанту матриці за елементами матриці.
- 10. Методи обчислення визначників порядку п.
- 11. Поняття мінору. Мінори довільного порядку. Додатковий мінор та алгебраїчне доповнення.
- 12. Поняття базисного мінору та рангу матриці.
- 13. Елементарні перетвореня матриці. Знаходження рангу матриці за допомогою елементарних перетворень (метод Гауса).
- 14. Перетворення квадратної матриці до одиничної.
- 15. Теореми про базисний мінор та ранг матриці.
- 16. Множення матриць-означення, властивості
- 17. Елементарні перетвореня матриці як множення чатриць.
- 18. Детермінант добутку матриць.
- 19. Системи лінійних алгебраїчних рівнянь (СЛАР): загальна постановка задачі. Сумісна та несумісна система.
- 20. Розвязування СЛАР, в якій кількість рівнянь дорівнюї кількості невідомих за допомогою теореми Крамера.
- 21. Метод Гауса розвязування СЛАР, в якій кількість рівнянь дорівнюї кількості невідомих
- 22. Обернена матриця: означення, властивості та способи знаходження
- 23. Умова сумісності СЛАР. Теорема Кронекера-Капеллі та наслідок з неї
- 24. Однорідна СЛАР та ластивості множини розв'язків однорідної СЛАР
- 25. Нормальна фундаментальна система розв'язків однорідної СЛАР.
 - 26. Фундаментальна система розв'язків однорідної СЛАР
 - 27. Загальний розв'язок СЛАР
 - 28. Теорема Крамера як частинний випадок теореми Кронекера-Капеллі
 - 29. Векторний (лінійний) простір: означення. Приклади лінійних просторів
 - 30.Векторний простір: наслідки з означення.Підмножина лінійного простору. Лінійна оболонка
 - 31. Система лінійно незалежних (залежних) векторів. Властивості.
 - 32. Вимірність лінійного простору, приклади
 - 33. Базис векторного простору.
 - 34. Координати вектора відносно базису. Приклади. Властивості.
 - 35. Заміна базису. Матриця переходу між базисами, її властивості
 - 36.Зв'язок між координатами вектора в різних базисах.
 - 37.Скалярний добуток геометричних векторів-означення, властивості
 - 38. Евклідів простір-означення, та наслідки з аксіоматики
 - 39. Приклади евклідових просторів

- 40. Довжина вектора та кут між векторами в евклідовому просторі Неріність Коші-Буняковського Нерівність трикутника
- 41.Ортонормовані системи векторів.
- 42.Процедура ортогоналізації заданої системи лінійно незалежних векторів (алгоритм Грама-Шмідта).
- 43. Матриця Грама базису, вираз скалярного добутку через координати векторівспівмножників та матрицю Грама.
- 44.Зв'язок між матрицями Грама різних базисів.та властивості матриці Грама будь-якого базису.
- 45.Ортогональні матриці-означення, приклади та властивості.
- 46. Матриця Грама довільної системи векторів. Критерій лінійної залежності та незалежності векторів у просторі Евкліда. Узагальнення нерівності Коші-Буняковського
- 47. Взаємні базиси: означення та приклади.
- 48.Властивості взаємних базисів.
- 49. Координати вектора у взаємних базисах. Коваріантний і контраваріантний базис. Коваріантні і контраваріантні координати вектора.
- 50. Унітарний простір: означення та приклади.
- 51. Властивості унітарного простору. Ермітова та унітарна матриці
- 52. Лінійний оператор. Дії з лінійними операторами
- 53. Матриця лінійного оператора, звязок між матрицями оператора в різних базисах.
- 54. Оператор, обернений до даного.
- 55. Інваріантний підпростір, власні числа і власні значення лінійного оператора, їх властивості.
- 56. Алгоритм пошуку власних векторів і власних значень лінійного оператора.
- 57. Визначення і властивості спряженого оператора в евклідовому просторі.
- 58.Визначення і властивості самоспряженого (симетричного) оператора в евклідовому просторі.
- 59.Визначення і властивості ортогонального оператора в евклідовому просторі.
- 60.Визначення і властивості спряженого оператора в унітарному просторі.
- 61. Нормальний оператор і його властивосты
- 62.Визначення і властивості самоспряженого (симетричного) оператора в унітарному просторі.
- 63. Визначення і властивості ортогонального оператора в унітарному просторі.
- 64. Лінійні функції одного аргументу (лінійні форми) Білінійні форми
- 65. Квадратичні форми. Теорема про діагоналізацію квадратичних форм
- 66.Ранг, індекс, визначеність квадратичних форм
- 67. Закон інерції квадратичної форми
- 68. Додатньо означені квадратичні форми. Означення евклідового простору за допомогою додатньо означеної квадратичної форми
- 69. Критерій Сильвестра
- 70.Лінійний оператор, заданий в евклідовому просторі, приєднаний до квадратичної форми

- 71. Алгоритм приведення двох квадратичних форм до діагонального вигляду.
- 72. Визначення алгебраїчної лінії та поверхні довільного порядку.
- 73. Параметричні рівняння лінії та поверхні.
- 74. Поверхні та лінії першого порядку.
- 75. Параметричні рівняння прямої та площини.
- 76. Векторне рівняння площини.
- 77. Векторне рівняння прямої.
- 78.Ознаки паралельності прямих на площині..
- 79. Векторне рівняння прямої в просторі.
- 80. Канонічне та параметричне рівняння прямої.
- 81. Рівняння площини, яка проходить через три точки.
- 82.Ознаки паралельності прямих та площин.
- 83. Лінії і поверхні другого порядку. Дослідження рівнянь ліній другого порядку.
- 84.Еліпс.
- 85.Гіпербола.
- 86. Дотична до еліпса. Дотична до гіперболи.
- 87. Основна властивість дотичних до еліпса, до гіперболи.
- 88.Парабола.
- 89. Визначення та загальне рівняння поверхні обертання.
- 90. Конус другого порядку.
- 91.Еліпсоїд
- 92.Однопорожнинний гіперболоїд
- 93. Двопорожнинний гіперболоїд.
- 94. Еліптичний парабалоїд.
- 95. Гіперболічний параболоїд. рболічний параболоїд.
- 96. Взаємне розташування прямої та точки
- 97. Взаємне розташування двох прямих.
- 98.Відстань між мимобіжними прямими. Спільний перпендикуляр до двох мимобіжних прямих
- 99. Проекція прямої на площину.
- 100. Проекція точки на пряму та площину.
- 101. Відстань між точкою та площиною. Нормальнее рівнянн площини.