Answer Key

<u>1.1.1</u>

TABLE 1:

	a)	b)	c)
Vout	-20V	-24V	-24V
Gain	-2	-2.4	-2.4

a)

Figure 1 : Vout for a)

b)

Figure 2 : Vout for B)

c)

Figure 3 :Vout for c)

FOR B) →

V0=Rf(V1/R1+V2/R2)

Vout =
$$-2k*(10/5+10/1) = -24V$$

Gain = Vout/ Vin =
$$-2.4$$
 = A1+A2+A3

$$A1 = -Rf/R1 = -2$$

$$A2 = -Rf/R2 = -0.5$$

FOR C)
$$\rightarrow$$

$$V0=Rf(V1/R1+V2/R2+V3/R3)$$

Vout =
$$-2k*(10/10 + 10/10 + 10/1) = -24V$$

$$A1 = -Rf/R1 = -2$$

$$A2 = -Rf/R2 = -0.2$$

$$A3 = -Rf/R3 = -0.2$$

Gain = Vout/ Vin =
$$-2.4 = A1 + A2 + A3$$

Farklı devreler olsalar da B'deki kazanç ile C'deki kazancın birbirine eşit olduğu görülmüştür.

<u>1.1.2</u>

<u>a)</u>

Figure 4 : Circuit for AC voltage

Figure 5: Simulation Result

Figure 6 : Square Wave

Figure 7 : Circuit for b)

Figure 8 : Simulation for b)

2.1.1

Figure 9 : Circuit for a)

b)

TABLE 1:

Figure 10 : Circuit for b)

TABLE2

	a)	b)
V _{out}	3V	4V
Gain	0.3	0.4

1.2.2

Figure 11 : Circuit for AC Voltage

Figure 12 : Simulation Result

Figure 13 : Square Wave

2) INTEGRATOR CIRCUIT

2.1

GAIN:
$$A_{V=-}\frac{R_F}{R_1} = \frac{-100k}{10k} = -10$$

$$V_{in} = \sin(2 \times \pi \times 7000 t)$$

$$V_{out} = \frac{-1}{R_1 \times C_F} \times \int \sin(2 \times \pi \times 7000 t) dt$$

$$V_{out} = \frac{-1}{10000 \times 4.7 \times 10^{-9}} \times \int \sin(2 \times \pi \times 7000 t) dt$$

$$= 0.048 \times \cos(2 \times \pi \times 7000 t)$$

COMMENT:

$$f_L = \frac{1}{2 \times \pi \times R_F \times C_F} = \frac{1}{2 \times \pi \times 100 \times 4.7 \times 10^{-9}} = 337 \text{ Hz}$$

$$f_S > 10 f_L \rightarrow 10 \times 337 \text{Hz} = 3370 \text{ Hz} = 3.370 \text{ kHz}$$

şartını sağlayan frekans değerleri kaynak frekansı olamalıdır ki devre integrator özelliği gösterebilsin. Bu nedenle 7 kHz değeri bu şartı sağlar. Yani devre integrator gibi çalışır.

2.2

4 kHz:

$$V_{in} = \sin(2 \times \pi \times 4000 t)$$

$$V_{out} = \frac{-1}{R_1 \times C_F} \times \int \sin(2 \times \pi \times 4000 t) dt$$

$$V_{out} = \frac{-1}{10000 \times 4.7 \times 10^{-9}} \times \int \sin(2 \times \pi \times 4000 t) dt$$

$$= 0.85 \times \cos(2 \times \pi \times 4000 t)$$

2 kHz:

$$\begin{split} V_{in} &= \sin(2 \times \pi \times 2000 \, t) \\ V_{out} &= \frac{-1}{R_1 \times C_F} \times \int \sin(2 \times \pi \times 2000 \, t) \, dt \\ V_{out} &= \frac{-1}{10000 \times 4.7 \times 10^{-9}} \times \int \sin(2 \times \pi \times 4 - 2000 \, t) \, dt \\ &= 1.7 \times \cos(2 \times \pi \times 2000 \, t) \end{split}$$

10 kHz:

$$V_{in} = \sin(2 \times \pi \times 10000 t)$$

$$V_{out} = \frac{-1}{R_1 \times C_F} \times \int \sin(2 \times \pi \times 10000 t) dt$$

$$V_{out} = \frac{-1}{10000 \times 4.7 \times 10^{-9}} \times \int \sin(2 \times \pi \times 10000 t) dt$$

$$= 0.34 \times \cos(2 \times \pi \times 10000 t)$$

COMMENT:

$$f_L = \frac{1}{2 \times \pi \times R_F \times C_F} = \frac{1}{2 \times \pi \times 100 \times 4.7 \times 10^{-9}} = 337 \, Hz$$

$$f_S > 10 f_L \rightarrow 10 \times 337 Hz = 3370 \, Hz = 3.370 \, kHz$$
 şartını sağlayan frekans değerleri kaynak frekansı olamalıdır ki devre integrator özelliği gösterebilsin. Bu nedenle 4 kHz, 2 khz ve 10 kHz frekans değerlerinden 2 kHz değeri bu şartı sağlamaz .

$$V_{in} = \sin(2 \times \pi \times 7000 t)$$

$$V_{out} = \frac{-1}{R_1 \times C_F} \times \int \sin(2 \times \pi \times 7000 t) dt$$

$$V_{out} = \frac{-1}{5000 \times 4.7 \times 10^{-9}} \times \int \sin(2 \times \pi \times 7000 t) dt$$

 $= 0.97 \times \cos(2 \times \pi \times 7000 t)$

