OPENCLASSROOMS

SOUTENANCE: PROJET 4

CLUSTERING CLIENTS - RFM + SATISFACTION + CATEGORIES

Edward Levavasseur

Updated: 2021/04/15

Problématique Olist

Votre objectif est de comprendre les différents types d'utilisateurs grâce à leur comportement et à leurs données personnelles.

Vous devrez fournir à l'équipe marketing une description actionable de votre segmentation et de sa logique sous-jacente pour une utilisation optimale, ainsi qu'une proposition de contrat de maintenance basée sur une analyse de la stabilité des segments au cours du temps.

1

Plan

- 1. RFM + Satisfaction + Catégories
- 2. K-means: Recherche du nombre optimal de clusters
- 3. Stabilité des clusters dans le temps
- 4. Description des Clusters
- 5. Conclusion

RFM + SATISFACTION + CATÉGORIES

Création d une base de données RFM

- Importation des données
- Suppression des Commandes doubles
- O Transformation de la date des commandes en numérique:
 - o Nombre de jours écoulés depuis le 01 Janvier 2015

- Pour chaque "customer unique id":
 - Recency: dernière commande
 - Frequency: nombre total de commandes
 - AMount: Somme des dépenses
 - Satisfaction: Review score moyen

Ajout des Catégories

- Variables Catégoriques:
 - Ville
 - Etat
 - Type de Payment
 - Type de produit

- Target Encoding:
 - 4 variables Target (R+F+M+Satisfaction)
 - 4 variables Catégoriques
 - $\circ \implies 4 \times 4 = 16$ variables target encoding
- O Base de données RFM+Satisfaction+Catégories
 - 4+16 = 20 variables

K-MEANS: RECHERCHE DU NOMBRE OPTIMAL DE CLUSTERS

Normalization des variables

Chronologique

Décision

- O Pas de "Elbow" très distinct
- O Score de Silhouette souvent maximisé pour 4 clusters
- Décison ⇒ 4 Clusters

Représentation des Clusters sur tSNE

tSNE:

- Calcul de la distance euclidienne de chaque client, par rapport aux autres clients
- Construction d'une matrice de similarité des clients entre eux
- Recherche itérativement à rapprocher les clients similaires, et éloigner les clients différents sur un graphique de moindre dimensions

Représentation des Clusters sur tSNE

O tSNE:

- Calcul de la distance euclidienne de chaque client, par rapport aux autres clients
- Construction d'une matrice de similarité des clients entre eux
- Recherche itérativement à rapprocher les clients similaires, et éloigner les clients différents sur un graphique de moindre dimensions

Représentation des Clusters sur tSNE

• tSNE:

- Calcul de la distance euclidienne de chaque client, par rapport aux autres clients
- Construction d'une matrice de similarité des clients entre eux
- Recherche itérativement à rapprocher les clients similaires, et éloigner les clients différents sur un graphique de moindre dimensions

STABILITÉ DES CLUSTERS DANS LE TEMPS

Fitter le K-means sur des donnés plus anciennes

 \bigcirc Fitting du K-Means sur des données en t-n, et prédiction des clusters sur des données en t

Fitter le K-means sur des donnés plus anciennes

- \bigcirc Fitting du K-Means sur des données en t-n, et prédiction des clusters sur des données en t
- Fitting du K-means sur des données en *t*, et prédiction des clusters sur les donénes en *t*

Fitter le K-means sur des donnés plus anciennes

- Fitting du K-Means sur des données en t n, et prédiction des clusters sur des données en t
- Fitting du K-means sur des données en t, et prédiction des clusters sur les donénes en t
- Comparaison des performances du fitting en t n et du fitting en t pour la prédiction des clusters en t

O Evaluation des erreurs de prédiction du "fitting" en t - n, en utilisant le Rand Index

Rand Index - Pourcentage d'erreurs de prédiction

- O Plus le "fitting" est ancien, plus le clustering est erronné
- Recommandation: Mettre à jour le clustering impérativement avant 4 mois, et avant 2 mois pour des performances optimales

Description des Clusters:

- O Différence de Montant: Cluster1 > Cluster0 > Cluster3
- Insatisfaction: Cluster 2

Description des Clusters:

- O Cluster 1 (Riche): Paye par carte crédit / débit
- Cluster 3 (Pauvre): Paye par moyen alternatif (Boletto /voucher)
- Oluster 2 (Insatisfait): utilise tous les moyens

Description des Clusters:

- O Cluster 1 (Riche): Rio de Janeiro + Salvador
- O Cluster 3 (Pauvre): Partout, mais moins à Rio et Salvador
- O Cluster 2 (Insatisfait): Sur-représentés à Porto Alegre

Types de produits

- O Cluster 1 (Riche): Relogios presentes (Horlogerie)
- O Cluster 3 (Pauvre): Un peu tout, mais peu d'horlogerie
- Cluster 2 (Insatisfait): Casa Mesa Banho (Maison, Table, Salle de Bain)

Conclusion

- Maintenance du clustering:
 - 2 mois: Fortement conseillé (< 20% d'erreurs)
 - 4 mois: Indispensable (≤ 45% d'erreurs)
- 4 Clusters:
 - o Dépense beaucoup:
 - o Rio de Janeiro, Salvador
 - Horlogerie
 - o CB
 - o Dépense peu :
 - o Moins représentés à Rio et Salvador
 - o Peu d'Horlogerie
 - o Paye par Boleto / voucher
 - o Insatisfaits:
 - o Très présents à Porto Alegre
 - o Maison, Table, Salle de bain

Recommandations

Clients Dépensiers:

 Continuer de proposer de l'horlogerie à la clientèle de Rio et Salvador

O Clients peu dépensiers:

 Proposer des produtis peu chères au clients payant par boletto et voucher

O Insatisfaction:

- Vérifier s'il n'y a pas un problème de livraison à Porto Allegre
- Vérifier si les produits Maison, Table, Salle de Bain n'arrivent pas endommagés.