

1. Rappel

Limitation du modèle à une seule table

 Pour le moment, nous avons manipulé des bases de données contenant une seule et unique table (dotée d'une clé primaire) Ce modèle n'est pas pertinent et conduit à dupliquer l'information. Par exemple pour une base de données de livres, on stockerait sur chaque enregistrement les informations du livre, de l'auteur et de l'éditeur.

Limitation du modèle à une seule table

- Pour le moment, nous avons manipulé des bases de données contenant une seule et unique table (dotée d'une clé primaire) Ce modèle n'est pas pertinent et conduit à dupliquer l'information. Par exemple pour une base de données de livres, on stockerait sur chaque enregistrement les informations du livre, de l'auteur et de l'éditeur.
- Pour de multiples raisons (espace occupé, efficacité pour les recherches ou les modifications, . . .) une base de données est constituée d'un ensemble de tables liées entre elles

1. Rappel

Limitation du modèle à une seule table

- Pour le moment, nous avons manipulé des bases de données contenant une seule et unique table (dotée d'une clé primaire) Ce modèle n'est pas pertinent et conduit à dupliquer l'information. Par exemple pour une base de données de livres, on stockerait sur chaque enregistrement les informations du livre, de l'auteur et de l'éditeur.
- Pour de multiples raisons (espace occupé, efficacité pour les recherches ou les modifications, . . .) une base de données est constituée d'un ensemble de tables liées entre elles.
- Le modèle entité-association permet de concevoir des bases de données de façon efficace.

Définitions

• Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité.

Définitions

 Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .

- Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .
- Une entité possède un ou plusieurs attributs.

- Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .
- Une entité possède un ou plusieurs attributs. Par exemple, l'entité *film* peut avoir les attributs date, titre, année, . . .

2. Modèle entité-association

- Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .
- Une entité possède un ou plusieurs attributs. Par exemple, l'entité *film* peut avoir les attributs date, titre, année, . . .
- Une instance d'une entité est un objet en particulier.

2. Modèle entité-association

- Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .
- Une entité possède un ou plusieurs attributs. Par exemple, l'entité *film* peut avoir les attributs date, titre, année, . . .
- Une instance d'une entité est un objet en particulier. Par exemple, *Forrest Gump* est une instance de l'entité *Film*.

2. Modèle entité-association

- Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .
- Une entité possède un ou plusieurs attributs. Par exemple, l'entité *film* peut avoir les attributs date, titre, année, . . .
- Une instance d'une entité est un objet en particulier. Par exemple, *Forrest Gump* est une instance de l'entité *Film*.
- Une association est un lien entre plusieurs entités. Le degré d'une association est le nombre d'entités intervenant dans l'association.

2. Modèle entité-association

- Une entité est une modélisation d'un objet concret ou abstrait à propos duquel on souhaite conserver des informations. Une entité doit pouvoir être identifiée de façon unique via un identifiant d'identité. Par exemple un livre (identifié par son ISBN), une facture (identifié par son code), un client (identifié par son email), un anniversaire (identifié par une personne et une date), une transaction commerciale (identifié par un code) . . .
- Une entité possède un ou plusieurs attributs. Par exemple, l'entité *film* peut avoir les attributs date, titre, année, . . .
- Une instance d'une entité est un objet en particulier. Par exemple, *Forrest Gump* est une instance de l'entité *Film*.
- Une association est un lien entre plusieurs entités. Le degré d'une association est le nombre d'entités intervenant dans l'association. Par exemple, l'association écrit de degré 2, relie l'entité auteur à l'entité livre

Définitions

 Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1–1 association directe et exclusive entre deux entités (one to one).

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1-1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1-1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.
 - 1-* (aussi noté 1-1..N) association d'une instance de la première entité à un ensemble d'instances de la seconde (one to many).

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1–1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.
 - 1-* (aussi noté 1-1..N) association d'une instance de la première entité à un ensemble d'instances de la seconde (one to many). Par exemple, un propriétaire peut avoir plusieurs voitures, un client peut avoir plusieurs numéro de téléphone.

3. Modèle entité-association

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1-1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.
 - 1-* (aussi noté 1-1..N) association d'une instance de la première entité à un ensemble d'instances de la seconde (one to many). Par exemple, un propriétaire peut avoir plusieurs voitures, un client peut avoir plusieurs numéro de téléphone.
 - *_* (aussi noté 1..N-1..N) association d'un ensemble d'instances à un autre ensemble d'instance.

3. Modèle entité-association

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1-1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.
 - 1-* (aussi noté 1-1..N) association d'une instance de la première entité à un ensemble d'instances de la seconde (one to many). Par exemple, un propriétaire peut avoir plusieurs voitures, un client peut avoir plusieurs numéro de téléphone.
 - *-* (aussi noté 1..N-1..N) association d'un ensemble d'instances à un autre ensemble d'instance. Par exemple, un *livre* peut avoir plusieurs *auteurs* et un *auteur* peut écrire plusieurs *livres*.

3. Modèle entité-association

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1-1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.
 - 1-* (aussi noté 1-1..N) association d'une instance de la première entité à un ensemble d'instances de la seconde (one to many). Par exemple, un propriétaire peut avoir plusieurs voitures, un client peut avoir plusieurs numéro de téléphone.
 - *-* (aussi noté 1..N-1..N) association d'un ensemble d'instances à un autre ensemble d'instance. Par exemple, un *livre* peut avoir plusieurs auteurs et un auteur peut écrire plusieurs *livres*.
- Les associations de types *-* peuvent être séparées entre deux associations de type 1-* à l'aide d'une nouvelle entité.

3. Modèle entité-association

Définitions

- Pour les associations de degré 2 (binaire), on précise de chaque côté d'une association le nombre d'entités concernées. C'est la cardinalité de l'association qui se résume à trois types principaux :
 - 1-1 association directe et exclusive entre deux entités (one to one). Par exemple, un lycée a un proviseur, un pays a une seule capitale.
 - 1-* (aussi noté 1-1..N) association d'une instance de la première entité à un ensemble d'instances de la seconde (one to many). Par exemple, un propriétaire peut avoir plusieurs voitures, un client peut avoir plusieurs numéro de téléphone.
 - *-* (aussi noté 1..N-1..N) association d'un ensemble d'instances à un autre ensemble d'instance. Par exemple, un *livre* peut avoir plusieurs auteurs et un auteur peut écrire plusieurs *livres*.
- Les associations de types *-* peuvent être séparées entre deux associations de type 1-* à l'aide d'une nouvelle entité.

Par exemple, en créant une entité *attribution*, un *livre* a plusieurs *attributions* (car il a été écrit par plusieurs *auteurs*) et un auteur à plusieurs *attributions* (car il a écrit plusieurs livres)

Exemples

• Un exemple d'association one to one :

Exemples

• Un exemple d'association one to one :

Pays			
•			Capitale
<u>nom</u>			nom
region	1	1	<u>110111</u>
0			longitude
population			latitude
surface			iatituue

• Un exemple d'association one to many :

Client		Commande
<u>num</u>		<u>id</u>
nom	1 *	prix
prenom		articles
email		dates

Exemples

Exemples

• Un exemple d'association many to many :

Etudiant		Cours	
<u>ine</u>		<u>id</u>	
nom	* *	matière	
prenom		durée	
adresse		description	

Exemples

• Un exemple d'association many to many :

Etudiant		Cours	
<u>ine</u>		<u>id</u>	
nom	* *	matière	
prenom		durée	
adresse		description	

• Sa transformation en deux associations one to many à l'aide d'une table de liaison

Etudiant				Cours
<u>ine</u>		Inscription		<u>id</u>
nom	1 *	<u>Etudiant</u>	* 1	matière
prenom		Cours		durée
adresse				description

Année scolaire 2023-2024

Méthode

Pour passer du modèle entité association au modèle relationnel :

• Une entité devient une relation (c'est à dire une table)

Méthode

Pour passer du modèle entité association au modèle relationnel :

- Une entité devient une relation (c'est à dire une table)
- L'identifiant d'identité devient la clé primaire de cette table

Méthode

Pour passer du modèle entité association au modèle relationnel :

- Une entité devient une relation (c'est à dire une table)
- L'identifiant d'identité devient la clé primaire de cette table
- On transforme les associations suivant les cas de figure

Cas des associations one to one : fusion

Cas des associations one to one : fusion

Cas des associations one to one : fusion

Deux entités associées en one to one peuvent fusionner dans la même relation.

Cas des associations one to one : fusion

Deux entités associées en one to one peuvent fusionner dans la même relation.

Par exemple, les entités *pays* et *capitale* peuvent fusionner dans une seule table *pays* en ajoutant dans cette table les attributs des capitales.

Cas des associations one to one : fusion

Deux entités associées en *one to one* peuvent fusionner dans la même relation. Par exemple, les entités *pays* et *capitale* peuvent fusionner dans une seule table *pays* en ajoutant dans cette table les attributs des capitales.

Cas des associations one to one : clé étrangère

on peut aussi choisir de garder les deux entités séparées et donc dans deux relations différentes, on introduit alors le concept de clé étrangère c'est à dire la clé primaire d'une autre table qui indique dans l'une des tables la référence vers l'autre

Cas des associations one to one : clé étrangère

on peut aussi choisir de garder les deux entités séparées et donc dans deux relations différentes, on introduit alors le concept de clé étrangère c'est à dire la clé primaire d'une autre table qui indique dans l'une des tables la référence vers l'autre

Cas des associations one to one : clé étrangère

on peut aussi choisir de garder les deux entités séparées et donc dans deux relations différentes, on introduit alors le concept de clé étrangère c'est à dire la clé primaire d'une autre table qui indique dans l'une des tables la référence vers l'autre

L'attribut capitale d'un pays est donc une clé étrangère car c'est une clé primaire dans une autre table.

Cas des associations one to one : clé étrangère

on peut aussi choisir de garder les deux entités séparées et donc dans deux relations différentes, on introduit alors le concept de clé étrangère c'est à dire la clé primaire d'une autre table qui indique dans l'une des tables la référence vers l'autre

L'attribut capitale d'un pays est donc une clé étrangère car c'est une clé primaire dans une autre table.

⚠ Ici la table capitale doit être crée avant la table Pays. Car un pays *doit* avoir une capitale. De même on ne pourra pas supprimer une capitale qui apparait dans la table Pays. C'est l'intégrité référentielle

Cas des associations one to many

On utilise là aussi la clé étrangère de façon à ce qu'un élément du côté "many" de l'association soit associé à un unique élément du côté "one".

Cas des associations one to many

On utilise là aussi la clé étrangère de façon à ce qu'un élément du côté "many" de l'association soit associé à un unique élément du côté "one".

Cas des associations many to many

On crée trois tables : une pour chacune des entités et la table de liaison, celle-ci a pour clé primaire l'union des clés primaires des deux entités et est en liaison avec celles-ci en utilisant des clés étrangères.

Cas des associations many to many

On crée trois tables : une pour chacune des entités et la table de liaison, celle-ci a pour clé primaire l'union des clés primaires des deux entités et est en liaison avec celles-ci en utilisant des clés étrangères.

Etudiant				Cours
<u>ine</u>		Inscription		<u>id</u>
nom	1 *	<u>Etudiant</u>	* 1	matière
prenom		Cours		durée
adresse				description

Cas des associations many to many

On crée trois tables : une pour chacune des entités et la table de liaison, celle-ci a pour clé primaire l'union des clés primaires des deux entités et est en liaison avec celles-ci en utilisant des clés étrangères.

4 0 1 4 1 1 1 4 1 1 1 1 4

Exemple		

Exemple

Exemple

On souhaite créer une base de données permettant de gérer les notes obtenus par des élèves dans des matières.

- Les élèves ont les attributs suivants : nom, prénom, date de naissance, et identifiant unique.

4. Du modèle EA au modèle relationnel

Exemple

- Les élèves ont les attributs suivants : nom, prénom, date de naissance, et identifiant unique.
- Les matières ont les attributs suivants : nom (unique), horaire, coefficient

4. Du modèle EA au modèle relationnel

Exemple

- Les élèves ont les attributs suivants : nom, prénom, date de naissance, et identifiant unique.
- Les matières ont les attributs suivants : nom (unique), horaire, coefficient
- Chaque élève peut avoir plusieurs notes par matière.

4. Du modèle EA au modèle relationnel

Exemple

- Les élèves ont les attributs suivants : nom, prénom, date de naissance, et identifiant unique.
- Les matières ont les attributs suivants : nom (unique), horaire, coefficient
- Chaque élève peut avoir plusieurs notes par matière.
- Expliquer pourquoi un schéma relationnel d'une seule table notes n'est pas satisfaisant.

4. Du modèle EA au modèle relationnel

Exemple

- Les élèves ont les attributs suivants : nom, prénom, date de naissance, et identifiant unique.
- Les matières ont les attributs suivants : nom (unique), horaire, coefficient
- Chaque élève peut avoir plusieurs notes par matière.
- Expliquer pourquoi un schéma relationnel d'une seule table notes n'est pas satisfaisant.

4. Du modèle EA au modèle relationnel

Exemple

- Les élèves ont les attributs suivants : nom, prénom, date de naissance, et identifiant unique.
- Les matières ont les attributs suivants : nom (unique), horaire, coefficient
- Chaque élève peut avoir plusieurs notes par matière.
- Expliquer pourquoi un schéma relationnel d'une seule table notes n'est pas satisfaisant.
- Proposer un schéma relationnel constitué de 3 tables issu du modèle entité-association.

Union de deux tables

Lorsque deux tables T_1 et T_2 ont le même schéma relationnel (c'est à dire les même colonnes), $T_1 \cup T_2$ contient les enregistrement de T_1 ou T_2 (sans duplication):

Table T_1

Tubic 11		
В	U	
b_1	c_1	
b_2	c_2	
b_3	c_3	
b_4	c_4	
	$egin{array}{c} B & & & \\ b_1 & & & \\ b_2 & & & \\ b_3 & & & \\ \end{array}$	

Table T

Table 12		
Α	В	С
a_5	b_5	c_5
a_3	b_3	c_3
a_6	b_6	c_6

Table $T_1 \cup T_2$		
Α	В	U
a_1	b_1	c_1
a_2	b_2	c_2
a_3	b_3	c_3
a_4	b_4	c_4
a_5	b_5	c_5
a_6	b_6	c_6

SELECT * FROM T1 UNION SELECT * FROM T2;

Intersection de deux tables

Lorsque deux tables T_1 et T_2 ont le même schéma relationnel (c'est à dire les même colonnes), $T_1 \cap T_2$ contient les enregistrement apparaissant dans T_1 et dans T_2 :

Table T_1

Α	В	С
a_1	b_1	c_1
a_2	b_2	c_2
a_3	b_3	c_3
a_4	b_4	c_4

Table T_2

Table 12		
Α	В	С
a_5	b_5	c_5
a_3	b_3	c_3
a_6	b_6	c_6

Table
$$T_1 \cap T_2$$

	. • • 1	
Α	В	С
a_3	b_3	c_3

SELECT * FROM T1 INTERSECT SELECT * FROM T2 ;

Différence de deux tables

Lorsque deux tables T_1 et T_2 ont le même schéma relationnel (c'est à dire les même colonnes), T_1-T_2 contient les enregistrement apparaissant dans T_1 et pas dans T_2 :

Table T_1

1		
Α	В	С
a_1	b_1	c_1
a_2	b_2	c_2
a_3	b_3	c_3
a_4	b_4	c_4

Table T_2

Table 12		
Α	В	C
a_5	b_5	c_5
a_3	b_3	c_3
a_6	b_6	c_6

Table
$$T_1 - T$$

Table $I_1 - I_2$			
Α	В	С	
a_1	b_1	c_1	
a_2	b_2	c_2	
a_4	b_4	c_4	

SELECT * FROM T1 EXCEPT SELECT * FROM T2 ;

Produit cartésien de deux tables

On peut réaliser le produit cartésien de deux tables, c'est à dire l'ensemble des enregistrements formé d'un enregistrement de la première table et d'un enregistrement de la seconde.

Table T_1

Α	В	С
a_1	b_1	c_1
a_2	b_2	c_2

Table T_2

D	Е		
d_1	e_1		
d_2	e_2		
d_3	e_3		

Table $T_1 \times T_2$

Table $I_1 \times I_2$					
Α	В	C	D	Е	
a_1	b_1	c_1	d_1	e_1	
a_1	b_1	c_1	d_2	e_2	
a_1	b_1	c_1	d_3	e_3	
a_2	b_2	c_2	d_1	e_1	
a_2	b_2	c_2	d_2	e_2	
a_2	b_2	c_2	d_3	e_3	

SELECT * FROM T1, T2;