DSC 214 Topological Data Analysis

Topic 9: Mapper

Instructor: Zhengchao Wan

- Persistent homology
 - One of the most important developments in computational topology in the last two decades

- Other topological structures for analyzing functions
 - Real valued functions, or more complex maps

Mapper

- [Singh, Mémoli, Carlsson, 2007]
- Dimension reduction through topological methods
- Data visualization

▶ Summarizing topological structure of a map $f: X \to Z$ into a graph

Section 0: Reeb graph

• Given a topological space *X* and function *f*: *X*

 $\rightarrow R$

- Given a topological space *X* and function *f*: *X*
 - $\rightarrow R$
- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$

- Given a topological space X and function f: X
 - $\rightarrow R$
- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$

- Given a topological space X and function $f: X \rightarrow R$
- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$
- A *contour* at value *a*:
 - \triangleright a connected component of X_a

- Given a topological space X and function $f: X \to R$
- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$
- A contour at value a:
 - \triangleright a connected component of X_a
- $ightharpoonup Reeb graph R_f(X)$ of X w.r.t. f:
 - continuous collapsing of each contour of f to a point
 - A continuous surjection $\phi: X \to R_f(X)$ s.t, $\phi(x) = \phi(y)$ if and only if x and y is in the same contour

- Given a topological space X and function $f: X \to R$
- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$
- A contour at value a:
 - \triangleright a connected component of X_a
- $ightharpoonup Reeb graph R_f(X)$ of X w.r.t. f:
 - continuous collapsing of each contour of f to a point
 - A continuous surjection $\phi: X \to R_f(X)$ s.t, $\phi(x) = \phi(y)$ if and only if x and y is in the same contour

- Given a topological space X and function $f: X \to R$
- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$
- A *contour* at value *a*:
 - \triangleright a connected component of X_a
- $ightharpoonup Reeb graph R_f(X)$ of X w.r.t. f:
 - continuous collapsing of each contour of f to a point
 - A continuous surjection $\phi: X \to R_f(X)$ s.t, $\phi(x) = \phi(y)$ if and only if x and y is in the same contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

- Imagine sweeping *X* in increasing order of *f*
 - Track the changes in 0-th homology of level sets
 - i.e, changes in contours
 - Node:
 - where changes happen
 - Arc:
 - evolution of a single contour

Reeb graph of Morse function

- Given an m-manifold M and $f: M \rightarrow R$,
 - A point $p \in M$ is *critical* if gradient of f vanishes at p
- A critical point is non-degenerate
 - if it has non-degenerate Hessian
- For every non-degenerate critical point

Morse Lemma. Let u be a non-degenerate critical point of $f: \mathbb{M} \to \mathbb{R}$. There are local coordinates with $u = (0, 0, \dots, 0)$ such that

$$f(x) = f(u) - x_1^2 - \dots - x_p^2 + x_{p+1}^2 + \dots + x_d^2$$

for every point $x = (x_1, x_2, \dots, x_d)$ in a small neighborhood of u.

Critical Points cont.

- For non-degenerate critical points
- Suppose M is 2-manifold

Critical Points cont.

- For non-degenerate critical points
- Suppose M is 2-manifold

If M is an d-manifold and $f: M \rightarrow R$ a Morse function

- If M is an d-manifold and $f: M \rightarrow R$ a Morse function
 - Degree 1 nodes:
 - Minimum or maximum

- If M is an d-manifold and f: $M \rightarrow R$ a Morse function
 - Degree 1 nodes:
 - Minimum or maximum
 - Degree 3 nodes:
 - ▶ 1-saddles that merge two contours (merging forks)

- If M is an d-manifold and f: $M \rightarrow R$ a Morse function
 - Degree 1 nodes:
 - Minimum or maximum
 - Degree 3 nodes:
 - ▶ 1-saddles that merge two contours (merging forks)
 - \triangleright or (d-1)-saddles that split a contour into two (splitting forks)
 - Degree 2 nodes:
 - All other nodes

M is a 2-Manifold

The Reeb graph of a Morse function on a connected, orientable 2-manifold of genus *g* has *g* loops.

Homology Relations

Reeb graph contains less topological information than its original space

Lemma $\beta_0(R_f(X)) = \beta_0(X)$ $\beta_1(R_f(X)) \le \beta_1(X)$

[Dey and Wang, DCG2012]

[Dey and Wang, DCG2012]

[Dey and Wang, DCG2012]

[Dey and Wang, DCG2012]

In general, the Reeb graph of a function $f: X \to R$ captures the so-called 1st *vertical homology* of X w.r.t. f.

[Dey and Wang, DCG2012]

In general, the Reeb graph of a function $f: X \to R$ captures the so-called 1st *vertical homology* of X w.r.t. f.

[Dey and Wang, DCG2012]

PL Setting

- ▶ PL function f defined on simplicial complex K
 - f is decided by function values on the vertices V of K
 - only 2-skelenton (*V*,*E*,*T*) of *K* matters
 - Reeb graph $R_f(X)$ can be computed in $O(m \log n)$ time
 - \triangleright m: number of vertices, edges, and triangles of X,
 - n: number of vertices

- ▶ Handle removal
- Skelentonize a shape
- Shape matching

- ▶ Handle removal
- Skelentonize a shape
- Shape matching

- ▶ Handle removal
- Skelentonize a shape
- Shape matching

Courtesy of Wood et al. 2002

- ▶ Handle removal
- Skelentonize a shape
- Shape matching

- ▶ Handle removal
- Skelentonize a shape
- Shape matching

Courtesy of Ge et al. 2011

- ▶ Handle removal
- Skelentonize a shape

▶ Shape matching

Courtesy of Hilaga et al. 2001

Reeb Space

• Given a topological space X and function

$$f: X \to Z$$

- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$
- A contour at value a:
 - \triangleright a connected component of X_a
- $ightharpoonup Reeb space RS_f(X)$ of X w.r.t. f:
 - continuous collapsing of each contour of *f* to a point
 - A continuous surjection $\phi: X \to R_f(X)$ s.t, $\phi(x) = \phi(y)$ if and only if x and y is in the same contour

Reeb Space

• Given a topological space X and function

$$f: X \to Z$$

- Level set at value a:
 - $X_a := \{ x \in X \mid f(x) = a \}$
- A contour at value a:
 - \triangleright a connected component of X_a
- $ightharpoonup Reeb space RS_f(X)$ of X w.r.t. f:
 - continuous collapsing of each contour of *f* to a point

That is, Reeb space tracks connected components in the pre-image of any point in the codomain Z.

- Study of Reeb space structure is intricate though. In general, it is not easy to compute the Reeb space.
 - [Edelsbrunner, Harer and Patel, 2008]
- The idea of viewing the structure of X from the lens of the map $f: X \to Z$ is interesting
 - In particular, often in practice, we may not know *X* but we can have several observations at points in *X*
- The Mapper construction!
 - ▶ [Singh, Mémoli and Carlsson, 2007]
 - Instead of considering pullbacks of all points in \mathbb{Z} , and track their components, now considering pullbacks of elements in a cover of co-domain \mathbb{Z} .
 - Tracking of components in such pullbacks is achieved via taking the nerve of these components.

Section 1: Mapper: A topological summary of high dimensional data

• A finite cover $\mathscr{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ of a space Y

- A finite cover $\mathscr{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ of a space Y
- Nerve of $\mathcal{U}: N(\mathcal{U})$
 - with vertex set A, and

- A finite cover $\mathscr{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ of a space Y
- Nerve of $\mathcal{U}: N(\mathcal{U})$
 - with vertex set A, and

- A finite cover $\mathscr{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ of a space Y
- Nerve of \mathcal{U} : N(\mathcal{U})
 - with vertex set A, and
 - simplex $(\alpha_0, ..., \alpha_k)$ iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_k} \neq 0$

- A finite cover $\mathscr{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ of a space Y
- Nerve of $\mathcal{U}: N(\mathcal{U})$
 - with vertex set A, and
 - simplex $(\alpha_0, ..., \alpha_k)$ iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_k} \neq 0$

- A finite cover $\mathscr{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ of a space Y
- Nerve of \mathcal{U} : N(\mathcal{U})
 - with vertex set A, and
 - $\Rightarrow \text{ simplex } (\alpha_0, \ldots, \alpha_k) \text{ iff } U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_k} \neq 0$
- One can view the nerve of a space as a discrete representation of the space via the cover
 - the cover provides the discretization

Pullback Cover

Let $f: X \to Z$ be continuous and well-behaved, $\mathcal{U} = \left\{ U_{\alpha} \right\}_{\alpha \in A}$ a finite cover of Z

Pullback Cover

- Let $f: X \to Z$ be continuous and well-behaved, $\mathscr{U} = \big\{ U_{\alpha} \big\}_{\alpha \in A}$ a finite cover of Z
- Pullback cover via f and \mathcal{U} :
 - Connected components of $f^{-1}(U_\alpha) = \bigcup_{i=1}^{j_\alpha} V_{\alpha,i}$, for all $\alpha \in A$, form a cover $f^*(\mathcal{U})$ of X

Pullback Cover

- Let $f: X \to Z$ be continuous and well-behaved, $\mathscr{U} = \{U_{\alpha}\}_{\alpha \in A}$ a finite cover of Z
- Pullback cover via f and \mathcal{U} :
 - Connected components of $f^{-1}\big(U_\alpha\big)=\bigcup_{i=1}^{j_\alpha}V_{\alpha,i}$, for all $\alpha\in A$, form a cover $f^*(\mathcal U)$ of X
- ▶ Mapper: $M(\mathcal{U}, f) := N(f^*(\mathcal{U}))$ the nerve of the pullback cover $f^*(\mathcal{U})$!

Another example

- ightharpoonup Z is usually chosen to be $\mathbb R$ or $\mathbb R^2$
- Intervals or hypercube covers

- In some sense, mapper structure can be considered as a coarsening of Reeb space via the coarsening of the co-domain (via a cover of it)
 - Certain convergences results known [Munch, B. Wang, 2016], [Dey, Mémoli, Wang, 2017]

Theorem 32. Under the conditions above,

$$d_{GH}((R_f, \tilde{d}_f), (P_\delta, d_\delta)) \le 5\delta.$$

- In some sense, mapper structure can be considered as a coarsening of Reeb space via the coarsening of the co-domain (via a cover of it)
 - Certain convergences results known [Munch, B. Wang, 2016], [Dey, Mémoli, Wang, 2017]

Theorem 32. Under the conditions above,

$$d_{GH}((R_f, \tilde{d}_f), (P_\delta, d_\delta)) \le 5\delta.$$

- If X is discrete, then $f^{-1}U_{\alpha}$ is also discrete and is just a union of points. The nerve doesn't make sense now
- Use clustering algorithm to construct clusters from the set of points $f^{-1}U_{\alpha}$
 - DBSCAN
 - Single linkage clustering
 - •

In practice, for point clouds data, a clustering algorithm can be applied to the pullback of each cover elements to identify the components

- In practice, for point clouds data, a clustering algorithm can be applied to the pullback of each cover elements to identify the components
- ▶ 1-skeleton of the mapper structure is often used, as a platform for data exploration

- In practice, for point clouds data, a clustering algorithm can be applied to the pullback of each cover elements to identify the components
- ▶ 1-skeleton of the mapper structure is often used, as a platform for data exploration
- Mapper can be used as a replacement for dimensionality reduction
 - serving as a low-dimensional metaphor for the continuous space of high dimensional data

- In practice, for point clouds data, a clustering algorithm can be applied to the pullback of each cover elements to identify the components
- ▶ 1-skeleton of the mapper structure is often used, as a platform for data exploration
- Mapper can be used as a replacement for dimensionality reduction
 - serving as a low-dimensional metaphor for the continuous space of high dimensional data
- Input data can be just point cloud data
 - helper functions (called filter functions) will be used to serve as $f: X \to \mathbb{R}^d$

A standard Mapper pipeline in practice

▶ Input: high dimensional PCD *P*

- Step 1: Choose a few (*d*) filter functions $F: P \to R^d$, which could incorporate domain knowledge (or can be as simple as eigenfunctions from PCA)
- Step 2: Create the Mapper structure (upto 2-skeleton, i.e, vertices, edges and triangles; often just 1-skeleton) w.r.t. F and some cover of R^d (i.e, just some ``rectangular"-tiling), where connected components in pullbacks are computed by some clustering algorithm
- Step 3: Visualize the 1-skeleton (graph skeleton) of Mapper structure using a graph layout algorithm

A standard Mapper pipeline in practice

- Parameters
 - Filter function $f: X \to \mathbb{R}$
 - Cover of im(f) by open intervals
 - Clustering method and its parameters

Mapper for high-D data exploration

- Visualizing and exploring high dimensional data
 - Clustering is limited, ignoring the continuous space behind data
 - Dimensionality reduction can be misleading due to that the target dimension is much smaller than intrinsic dimension
- Mapper provides a low-D metaphor for the continuous space behind high dimensional data, via the lens of filter functions
 - bears similarity to the topological landscape via contour trees

Mapper in Applications

- Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013
- Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015
- Using Topological Data Analysis for Diagnosis Pulmonary Embolism, Rucco et al., arXiv preprint, 2014
- Topological Methods for Exploring Low-density States in Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009
- CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes, Sarikonda et al., J. Autoimmunity, 2013
- Innate and adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms, Hinks et al., J. Allergy Clinical Immunology, 2015

Using TDA to Define College Basketball Positions with Mapper

Mark Yukelis and Alan Suh

A Original Point Cloud

B Coloring by filter value

Using TDA to Define College Basketball Positions with Mapper

Mark Yukelis and Alan Suh

A Original Point Cloud

B Coloring by filter value

Section 2: Multi-mapper: A multiscale representation of general maps

Main idea

- Consider a sequence of coarser and coarser covers (aka, look at the discretization at coarser and coarser resolution)
- Pull back, look at the sequence of coarser and coarser Mapper structures
- This gives rise to a sequence of simplicial complexes, called multiscale mapper, and we can compute its persistent homology.

- Mapper is at a fixed scale
 - How to choose the scale? Why not look at all scales?

- Mapper is at a fixed scale
 - How to choose the scale? Why not look at all scales?
- Mapper is a structure, not an easy feature representation to compare
 - Can we obtain a persistence-like summary?

- Mapper is at a fixed scale
 - How to choose the scale? Why not look at all scales?
- Mapper is a structure, not an easy feature representation to compare
 - Can we obtain a persistence-like summary?
- Un-stability of mapper

- Mapper is at a fixed scale
 - How to choose the scale? Why not look at all scales?
- Mapper is a structure, not an easy feature representation to compare
 - Can we obtain a persistence-like summary?

- Given two covers $\mathscr{U}=\left\{U_{\alpha}\right\}_{\alpha\in A}$ and $\mathscr{V}=\left\{V_{\beta}\right\}_{\beta\in B}$ of the same space Y,
 - ▶ a cover map ξ : \mathcal{U} → \mathcal{V} is any set map ξ : A → B such that $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
 - Intuitively, a cover map can connect covers at different resolutions (B is coarser than A)
- A cover map $\xi: A \to B$ induces a simplicial map in nerves:

$$N(\xi):N(\mathscr{U})\to N(\mathscr{V})$$

- Given two covers $\mathscr{U}=\left\{U_{\alpha}\right\}_{\alpha\in A}$ and $\mathscr{V}=\left\{V_{\beta}\right\}_{\beta\in B}$ of the same space Y,
 - ▶ a cover map ξ : $\mathcal{U} \to \mathcal{V}$ is any set map ξ : $A \to B$ such that $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
 - Intuitively, a cover map can connect covers at different resolutions (B is coarser than A)
- A cover map $\xi: A \to B$ induces a simplicial map in nerves:

 $N(\xi):N(\mathscr{U})\to N(\mathscr{V})$

- Given two covers $\mathscr{U}=\left\{U_{\alpha}\right\}_{\alpha\in A}$ and $\mathscr{V}=\left\{V_{\beta}\right\}_{\beta\in B}$ of the same space Y,
 - a cover map is any set map $\xi: A \to B$ such that $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
 - Intuitively, a cover map can connect covers at different resolutions (B is coarser than A)
- A cover map $\xi: A \to B$ induces a simplicial map in nerves:

$$N(\xi): N(\mathscr{U}) \to N(\mathscr{V})$$
 if $\mathcal{U} \stackrel{\xi_1}{\to} \mathcal{V} \stackrel{\xi_2}{\to} \mathcal{W}$, then $N(\xi_2 \circ \xi_1) = N(\xi_2) \circ N(\xi_1)$

- Given two covers $\mathscr{U}=\left\{U_{\alpha}\right\}_{\alpha\in A}$ and $\mathscr{V}=\left\{V_{\beta}\right\}_{\beta\in B}$ of the same space Y,
 - ▶ a cover map is any set map $\xi: A \to B$ such that $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
 - Intuitively, a cover map can connect covers at different resolutions (B is coarser than A)
- A cover map $\xi: A \to B$ induces a simplicial map in nerves:

$$N(\xi):N(\mathscr{U}) o N(\mathscr{V})$$

$$N(\xi):N(\mathscr{U}) o N(\mathscr{V})$$
 if $\mathscr{U}\overset{\xi_1}{ o}\mathscr{V}\overset{\xi_2}{ o}\mathscr{W}$, then $N(\xi_2\circ\xi_1)=N(\xi_2)\circ N(\xi_1)$

Pullback covers

- $f: X \to Z$ continuous, and well-behaved
- ▶ A map ξ : $\mathcal{U} \to \mathcal{V}$ between covers of Z
- ightarrow ightarrow a cover map for pullback covers of X
 - $f^*(\xi): f^*(\mathcal{U}) \to f^*(\mathcal{V})$

a tower of covers

$$\mathfrak{A} = \left\{ \mathscr{U}_{\varepsilon} \right\}_{\varepsilon}$$

a tower of covers

$$\mathfrak{A} = \left\{ \mathcal{U}_{\varepsilon} \right\}_{\varepsilon}$$

Multiscale Mapper:

$$MM(\mathfrak{A}, f) := N(f^*(\mathfrak{A}))$$

a tower of covers

 $\mathfrak{A} = \left\{ \mathscr{U}_{\varepsilon} \right\}_{\varepsilon}$

Multiscale Mapper:

$$MM(\mathfrak{A}, f) := N(f^*(\mathfrak{A}))$$

 $D_kMM(\mathfrak{U}, f)$ = persistence diagram of:

$$\mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{1}}))\big) \to \mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{2}}))\big) \to \cdots \to \mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{n}}))\big)$$

Intuitively, persistent homology of multiscale mapper captures important features of X through the lens of the map f and a tower of covers (across resolutions) of co-domain Z

- Intuitively, persistent homology of multiscale mapper captures important features of X through the lens of the map f and a tower of covers (across resolutions) of co-domain Z
- For H_1 , turns out that we cannot create new features, only kill existing features at the highest resolution gradually
 - time a feature is killed (ie., its persistence) corresponds to its importance

- Intuitively, persistent homology of multiscale mapper captures important features of X through the lens of the map f and a tower of covers (across resolutions) of co-domain Z
- For H_1 , turns out that we cannot create new features, only kill existing features at the highest resolution gradually
 - time a feature is killed (ie., its persistence) corresponds to its importance
- The multiscale mapper and its PH summaries have several stability properties w.r.t. perturbation of functions and tower of covers.

- Intuitively, persistent homology of multiscale mapper captures important features of X through the lens of the map f and a tower of covers (across resolutions) of co-domain Z
- lacktriangledown For H_1 , turns out that we cannot create new features, only kill existing features at the highest resolution gradually
 - time a feature is killed (ie., its persistence) corresponds to its importance
- The multiscale mapper and its PH summaries have several stability properties w.r.t. perturbation of functions and tower of covers.
- Finally, there is an interleaving distance between multiscale mappers, much like the one for persistent homology.

FIN