Series (Lecture 7 - 9)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Definition

Let $\{a_n\}$ be a sequence of real numbers.

(a) An expression of the form

$$a_1 + a_2 + \ldots + a_n + \ldots$$

is called an infinite series.

- (b) The number a_n is called as the n^{th} term of the series.
 - c) The sequence $\{s_n\}$, defined by $s_n = \sum_{k=1}^{n} a_k$, is called the sequence of partial sums of the series.
- (d) If the sequence of partial sums converges to a limit L, we say that the series converges and its sum is L.
- (e) If the sequence of partial sums does not converge, we say that the series diverges.

Example

If 0 < x < 1, then $\sum_{n=0}^{\infty} x^n$ converges to $\frac{1}{1-x}$.

Solution: Let us consider the sequence of partial sums $\{s_n\}$, where $s_n = \sum_{k=0}^{n-1} x^k$. Here

$$s_n = \sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x} = \frac{1}{1-x} - \frac{x^n}{1-x}, \ n \in \mathbb{N}.$$

As, $0 < x < 1, x^n \to 0$ as $n \to \infty$. Hence $s_n \to \frac{1}{1-x}$. Thus the given series converges to 1

1-x

Example

The series $\sum_{n=1}^{\infty} \log(\frac{n+1}{n})$ diverges.

Hint: $S_n = \log(n+1) \to \infty$ as $n \to \infty$.

Example (Telescopic series)

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to 1.

Solution: Consider the sequence of partial sums $\{s_n\}$. Then

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1} \to 1.$$

Thus the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges and it converges to 1.

Lemma

- (a) If $\sum_{n=1}^{\infty} a_n$ converges to L and $\sum_{n=1}^{\infty} b_n$ converges to M, then $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to L + M.
- (b) If $\sum_{n=1}^{\infty} a_n$ converges to L and if $c \in \mathbb{R}$, then the series $\sum_{n=1}^{\infty} ca_n$ converges to cL.

Theorem (Necessary condition for convergence)

If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Proof: Suppose $\sum_{n=1}^{\infty} a_n = L$. Then the sequence of partial sums $\{s_n\}$ also converges to L. Now

$$a_n = s_n - s_{n-1} \to L - L = 0$$
 as $n \to \infty$.

- It is possible that $a_n \to 0$ and $\sum_{n=0}^{\infty} a_n$ diverges.
 - **Example:** $\sum_{n=1}^{\infty} \log(\frac{n+1}{n})$ diverges, however $\log(\frac{n+1}{n}) \to 0$.

• If $\lim_{n\to\infty} a_n \neq 0$. Then $\sum_{n=1}^{\infty} a_n$ diverges.

Example: If x > 1, then the series $\sum_{n=0}^{\infty} x^n$ diverges.

Solution: Assume that the series $\sum_{n=0}^{\infty} x^n$ converges. Then $x^n \to 0$. But as x > 1, $x^n \ge 1$ for all

 $n \in \mathbb{N}$ and hence $\lim_{n \to \infty} x^n \ge 1$, which is a contradiction. Hence the series $\sum_{n=1}^{\infty} x^n$ diverges.

Theorem (Necessary and sufficient condition for convergence)

Suppose $a_n \ge 0$ for all n. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\{s_n\}$ is bounded above.

Proof: Note that under the hypothesis $\{s_n\}$ is an increasing sequence.

Example

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution: Consider the sequence of partial sums $\{s_n\}$, where $s_n = \sum_{k=1}^n \frac{1}{k}$. Now, let us examine the subsequence s_{2^n} of $\{s_n\}$. Here

$$s_{2} = 1 + 1/2 = 3/2,$$

$$s_{4} = 1 + 1/2 + 1/3 + 1/4 > 3/2 + 1/4 + 1/4 = 2,$$

$$s_{2^{n}} \ge 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{n-1} \cdot \frac{1}{2^{n}} = 1 + \frac{n}{2}.$$

Thus the subsequence $\{s_{2^n}\}$ is not bounded above and as it is also increasing, it diverges. Hence the sequence diverges, i.e., the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Remark: Note that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=p}^{\infty} a_n$ converges for any $p \ge 1$.

Theorem (Comparison Test)

Let $\{a_n\}, \{b_n\}$ be sequences of positive reals such that $a_n \leq b_n$ for $n \geq k$ for some k. Then

- **①** If $\sum b_n$ converges then $\sum a_n$ converges.
- ② If $\sum a_n$ diverges then $\sum b_n$ diverges.

Examples

- The series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ converges, because $\frac{1}{(n+1)^2} \le \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.
- **3** The series $\sum_{n=1}^{\infty} \frac{1}{2n^2 n}$ converges, because $2n^2 n \ge n^2$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.
- The series $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ diverges, because $\frac{1}{n+\sqrt{n}} \ge \frac{1}{2n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- The series $\sum_{n=1}^{\infty} \frac{7}{7n-2}$ diverges, because $\frac{7}{7n-2} = \frac{1}{n-2/7} \ge \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Theorem (Cauchy condensation test)

Let $\{a_n\}$ be an decreasing sequence of positive numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} 2^n a_{2^n}$ converges.

Examples

- (1) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, p > 0. Then we have $\sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \frac{1}{(2^n)^{p-1}}$ which converges for p > 1 and diverges for $p \le 1$.
- (2) Consider the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$. Here $\sum_{n=2}^{\infty} 2^n \frac{1}{2^n \log 2^n} = \frac{1}{\log 2} \sum_{n=2}^{\infty} \frac{1}{n}$ which diverges. Hence the given series diverges.

Theorem (Limit comparison test)

Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive numbers. Then

- (a) if $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or diverge together.
- (b) if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- (c) if $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Example

(1) Consider the series $\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$. Here $a_n = \frac{2n+1}{(n+1)^2}$. Let $b_n = \frac{1}{n}$. Then

$$\frac{a_n}{b_n} = \frac{\left(\frac{2n+1}{(n+1)^2}\right)}{\frac{1}{n}} = \frac{2n^2+n}{n^2+2n+1} \to 2 \text{ as } n \to \infty. \text{ Further, } \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges. Thus by}$$

limit comparison test, the given series diverges.

Examples

- (2) The series $\sum_{n=1}^{\infty} \frac{1}{2^n 1}$ converges. Here $a_n = \frac{1}{2^n 1}$. Let $b_n = \frac{1}{2^n}$. Then $\frac{a_n}{b_n} = \frac{2^n}{2^n 1} \to 1$. Further, $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges and hence the given series converges.
- (3) The series $\sum_{n=1}^{\infty} \frac{e^{-n}}{n^2}$ converges. Here $a_n = \frac{e^{-n}}{n^2}$ and $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = e^{-n} \to 0$ as $n \to \infty$. Further, $\sum \frac{1}{n^2}$ converges and hence the given series converges.
- (4) The series $\sum_{n=1}^{\infty} \frac{1}{n} \log(1+\frac{1}{n})$ converges. Take $b_n = \frac{1}{n^2}$. Then $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.
- (5) The series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ converges. Take $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = 1$.

Definition (Absolute convergence)

- (a) Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. If $\sum_{n=1}^{\infty} |a_n|$ converges, we say that $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (b) If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, we say that $\sum_{n=1}^{\infty} a_n$ converges conditionally.

Examples

- (1) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ converges absolutely.
- (2) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely.
- (3) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.
- (4) The series $\sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{2n-1}$ converges conditionally.

Theorem

If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.

Tests for absolute convergence

Theorem (Comparison test)

Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. Then, $\sum_{n=1}^{\infty} a_n$ converges absolutely if there is an absolutely convergent series $\sum_{n=1}^{\infty} c_n$ with $|a_n| \le |c_n|$ for all $n \ge N, N \in \mathbb{N}$.

Theorem (Ratio test)

Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. Let

$$L=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|.$$

Then

- (a) $\sum_{n=1}^{\infty} a_n$ converges absolutely if L < 1.
- (b) $\sum_{n=1}^{\infty} a_n$ diverges if L > 1.
- (c) the test fails if L = 1.

Examples

(a) The series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ diverges.

Here

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \frac{n!}{n^n} = \left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \to e,$$

which is greater than 1. So L > 1. Thus the given series diverges.

(b) For every $x \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges.

Here

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} = \frac{x}{n+1} \to 0.$$

Therefore L=0<1. Thus, for all $x\in\mathbb{R}$, the given series converges.

Theorem (Root test)

Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. Let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. Then

- (a) the series converges absolutely if L < 1;
- (b) the series diverges if L > 1;
- (c) the test fails if L = 1.

Examples

(1) Find the value of $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges or diverges.

Here $a_n = \frac{x^n}{n}$. Therefore, $\sqrt[n]{\left|\frac{x^n}{n}\right|} = \left|\frac{x}{\sqrt[n]{n}}\right| \to |x|$. Thus the series converges for |x| < 1 and diverges for |x| > 1.

(2) Find the value of $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$ converges.

Here $a_n = \frac{x^n}{n^n}$. Then, $\sqrt[n]{|a_n|} = \left|\frac{x}{n}\right| \to 0$. Thus the series converges for $x \in \mathbb{R}$.

Alternating series

Definition

An alternating series is an infinite series whose terms alternate in sign. i.e. $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$ is an alternating series.

Theorem (Leibniz's test)

Suppose $\{a_n\}$ is a sequence of positive numbers such that

- (a) $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$ and
- (b) $\lim_{n\to\infty} a_n = 0$,

then the alternating series $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$ converges.

Example

Consider the series $\sum_{n=1}^{\infty} (1-2^{1/n})(-1)^{n+1}$. Here $a_n=1-2^{1/n}\to 0$ as $n\to\infty$. Also $a_n\geq a_{n+1}$ for all $n\in\mathbb{N}$. Hence the series converges.

Examples

(a) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

Then a_n 's of this series satisfies the hypothesis of the above theorem and hence the series converges.

(b) Consider the series $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\log n}$.

Then $a_n = \frac{1}{\log n}$ satisfy the hypothesis of the above theorem and hence the series converges.

Result

- (a) Grouping of terms of a convergent series does not change the convergence and the sum. However, a divergent series can become convergent after grouping of terms.
- (b) Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

