

Shenzhen ETR Standard Technology Co., Ltd.

Report No.: ET-ID14063431

Page: 1 of 47

FCC Test Report

(FCC ID: 2AB6X52691)

Applicant : ELECTRONICA INTEGRAL DE SONIDO S.A.

Address : Pol. Malpica, C/F-Oeste, Grupo Quejido, 87-88, Zaragoza, Spain

Equipment Under Test (EUT)

Product Name : IN-WALL BLUETOOTH AUDIO RECEIVER

Model No. 52691

Trademark : EISSOUND

Applicable standards : FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt : 2014-06-05

Date of test : 2014-06-05 to 2014-06-17

Date of report issued : 2014-06-18

Test result : PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Test/Witness Engineer

: Jim chen
: Jorddon **Approved & Authorized**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Page: 2 of 47

Contents

CON	ITENTS		2		
1.	GENE	RAL INFORMATION	3		
	1.1.	Client Information	3		
	1.2.	General Description of EUT (Equipment Under Test)	3		
	1.3.	Block Diagram Showing The Configuration of System Tested	4		
	1.4.	Description of Support Units	4		
	1.5.	External I/O Cable	5		
	1.6.	Description of Test Software Setting	5		
	1.7.	Description of Test Mode	5		
	1.8.	Laboratory Location	5		
	1.9.	Test Instruments List	6		
2.	TEST	SUMMARY	7		
3.	TEST RESULTS AND MEASUREMENT DATA				
	3.1.	Antenna Requirement	8		
	3.2.	Conducted Emission Test	9		
	3.3.	Conducted Peak Output Power Test	10		
	3.4.	20dB Occupy Bandwidth Test	14		
	3.5.	Carrier Frequency Separation Test	18		
	3.6.	Number of Hopping Channel	23		
	3.7.	Dwell Time Test	25		
	3.8.	Pseudorandom Frequency Hopping Sequence	29		
	3.9.	Band Edge Requirement (Conducted Emission Method)	30		
	3.10.	Band Edge Requirement (Radiated Emission Method)	34		
	3.11.	Spurious Emission (Conducted Emission Method)	37		
	3 12	Spurious Emission (Radiated Emission Method)	41		

1. General Information

1.1. Client Information

Applicant: ELECTRONICA INTEGRAL DE SONIDO S.A.

Address : Pol. Malpica, C/F-Oeste, Grupo Quejido, 87-88, Zaragoza, Spain

Manufacturer : Shenzhen AOK Science And Technology Co., Ltd

Address : No.3 Bldg., Guihutang Street, Guhua Village, Guanlan Town, Bao'an, Shenzhen, China

1.2. General Description of EUT (Equipment Under Test)

Product Name : IN-WALL BLUETOOTH AUDIO RECEIVER

Models No. : 52691

Trademark : EISSOUND

Operation Frequency: 2402MHz~2480MHz

Transfer Rate: 1/2/3 Mbits/s

Number of Channel: 79 Channels

Product 79 Gridinici. 79 Gridinici.

Description : Modulation Type: GFSK, $\pi/4$ -DQPSK, 8-DPSK

Modulation Technology: FHSS

Antenna Type: Integral PCB Antenna

Antenna Gain: 0 dBi

Power Supply : DC 15V from external power supply

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466

11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454			
26	2428	53	2455			
Remark: Char	Remark: Channel 0, 39 &78 selected for GESK, π/4-DOPSK and 8DPSK					

Remark: Channel 0, 39 &78 selected for GFSK, π /4-DQPSK and 8DPSK.

1.3. Block Diagram Showing The Configuration of System Tested

TX Mode:

1.4. Description of Support Units

Name	Model	FCC ID/DOC	Manufacturer	Used "√"
PC	OPTIPLEX380	DOC	DELL	
LCD Monitor	E170Sc	DOC	DELL	
Keyboard	L100	DOC	DELL	
Mouse	M-UARDEL7	DOC	DELL	

1.5. External I/O Cable

N/A

1.6. Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Т	est Program: CSR MP Tool.	apk
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π/4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7. Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Mode	Description
Transmitting mode	Keep the EUT in Transmitting mode with worst case data rate
Remark	GFSK(1Mbps) is the worst case mode

Remark: The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

1.8. Laboratory Location

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

Tel:86-755-26509301 Fax: 86-755-26509195

Page: 6 of 47

1.9. Test Instruments List

Item	Test Equipment	Manufacturer	Model No.	Series No.	Cal. Date	Cal. Due date
1	EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Aug. 10, 2013	Aug.09, 2014
2	50ΩCoaxial Switch	Anritsu	MP59B	X10321	Aug. 10, 2013	Aug.09, 2014
3	RF Switching Unit	Compliance Direction	RSU-A4	34403	Aug. 10, 2013	Aug.09, 2014
4	L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 10, 2013	Aug.09, 2014
5	L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 10, 2013	Aug.09, 2014
6	Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
7	Spectrum Analyzer	Rohde & Schwarz	FSP7	DE25181	Aug. 10, 2013	Aug.09, 2014
8	Spectrum Analyzer	Rohde & Schwarz	FSP30	DE43625	Aug. 10, 2013	Aug.09, 2014
9	EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
10	Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
11	Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
12	Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
13	Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
14	Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
15	Cable	HUBER+SUHNER	RG 223/U	CBL2-NN-2.0	Aug. 10, 2013	Aug.09, 2014
16	Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
17	Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
18	Antenna Mast	ETS-LINDGREN	2175	N/A	N/A	N/A

Page: 7 of 47

2. Test Summary

Standard Section	Test Item	Result		
15.203/15.247(c)	Antenna Requirement	PASS		
15.207	Conducted Emission	N/A		
15.247(b)(1)	Conducted Peak Output Power	PASS		
15.247(a)(1)	20dB Occupied Bandwidth	PASS		
15.247(a)(1)	Carrier Frequencies Separation	PASS		
15.247(a)(1)	Hopping Channel Number	PASS		
15.247(a)(1)	Dwell Time	PASS		
15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pseudorandom Frequency Hopping Sequence	PASS		
15.205/15.209	Spurious Emission	PASS		
15.247(d)	Band Edge	PASS		
Remark: "N/A" is an abbreviation for Not Applicable.				

3. Test Results and Measurement Data

3.1. Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0dBi.

BT ANTENNA

3.2. Conducted Emission Test

Test Requirement:		FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4:2003	ANSI C63.4:2003				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sw	eep time=auto				
Limit:	Frequency range (MHz)	Frequency range (MHz) Limit (dBuV)				
		Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	of the frequency.				
Test setup:	Reference Plan	ne				
	AUX Equipment Test table/Insulation plane Remark E.U.T EMI Receiver Receiver LISN: Line impedence Stabilization Network Test table height=0.8m					
Test procedure:	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.					
Test Instruments:	Refer to section 1.9 for details	Refer to section 1.9 for details				
Test mode:	Bluetooth (Continuous transmit	Bluetooth (Continuous transmitting) mode				
Test results:	N/A. The EUT's power supply is DC 15V, from an external battery.					

3.3. Conducted Peak Output Power Test

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz)		
	RBW=3MHz, VBW=10MHz, Detector=Peak		
	(If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 1.9 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

wieasurement Data						
GFSK mode						
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Result		
CH 00	2402	3.01	21	PASSED		
CH 39	2441	3.67	21	PASSED		
CH 78	2480	3.97	21	PASSED		
		π/4-DQPSK mode				
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Result		
CH 00	2402	2.27	21	PASSED		
CH 39	2441	2.95	21	PASSED		
CH 78	2480	3.19	21	PASSED		
		8DPSK mode				
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Result		
CH 00	2402	2.14	21	PASSED		
CH 39	2441	2.95	21	PASSED		
CH 78	2480	3.19	21	PASSED		

Page: 10 of 47

Page: 12 of 47

3.4. 20dB Occupy Bandwidth Test

Measurement Data

Channel	Channel		20dB Bandwidth	
Number	_		(kHz)	
Number	Frequency	GFSK	π/4-DQPSK	8DPSK 1182 1182 1182
CH 00	2402(MHz)	585	1152	1182
CH 39	2441(MHz)	561	1152	1182
CH 78	2480(MHz)	561	1152	1182

Page: 14 of 47

3.5. Carrier Frequency Separation Test

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.4:2003 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak				
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 1.9 for details				
Test mode:	Hopping mode				
Test results:	Pass				

Measurement Data

		GFSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Result
CH 00	2402	1004	374.000	PASS
CH 39	2441	1004	374.000	PASS
CH 78	2480	1004	374.000	PASS
		π/4-DQPSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Result
CH 00	2402	1004	768.000	PASS
CH 39	2441	1004	768.000	PASS
CH 78	2480	1004	768.000	PASS
		8DPSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Result
CH 00	2402	1004	788.000	PASS
CH 39	2441	1008	788.000	PASS
CH 78	2480	1004	788.000	PASS

Page: 18 of 47

Page: 19 of 47

According to section 3.4

Test Mode	20dB bandwidth (kHz)	Limit (kHz)
	(worse case)	(Carrier Frequency Separation)
GFSK	561.00	374.000
π/4-DQPSK	1152.00	768.000
8DPSK	1182.00	788.000

Page: 23 of 47

3.6. Number of Hopping Channel

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.4:2003 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 1.9 for details				
Test mode:	Hopping mode				
Test results:	Pass				

3.7. Dwell Time Test

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.4:2003 and KDB DA00-705				
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 1.9 for details				
Test mode:	Hopping mode				
Test results:	Pass				

Measurement Data

Mode	Packet	Total of Dwell	Period Time	Limit	Result
		(ms)	(s)	(s)	
	DH1	0.12768	31.60		PASS
GFSK	DH3	0.26448	31.60		PASS
	DH5	0.31125	31.60		PASS
	2-DH1	0.12768	31.60		PASS
π/4-DQPSK	2-DH3	0.27024	31.60	0.4	PASS
	2-DH5	0.31125	31.60		PASS
	3-DH1	0.12896	31.60		PASS
8DPSK	3-DH3	0.26640	31.60		PASS
5 05014 14 5	3-DH5	0.31381	31.60		PASS

For GFSK, π/4-DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

DH1 time slot=0.399*(1600/ (2*79))*31.6=127.68ms DH3 time slot=1.653*(1600/ (4*79))*31.6=264.48ms DH5 time slot=2.918*(1600/ (6*79))*31.6=311.25ms

2-DH1 time slot=0.399*(1600/ (2*79))*31.6=127.68ms 2-DH3 time slot=1.689*(1600/ (4*79))*31.6=270.24ms 2-DH5 time slot=2.918*(1600/ (6*79))*31.6=311.25ms

3-DH1 time slot=0.403*(1600/ (2*79))*31.6=128.96ms

3-DH3 time slot=1.665*(1600/ (4*79))*31.6=266.40ms 3-DH5 time slot=2.942*(1600/ (6*79))*31.6=313.81ms

Page: 26 of 47

Page: 28 of 47

Page: 29 of 47

3.8. Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding

transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2^9 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Page: 30 of 47

3.9. Band Edge Requirement (Conducted Emission Method)

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 1.9 for details				
Test mode:	Non-hopping mode and hopping mode				
Test results:	Pass				

Page: 32 of 47

Page: 34 of 47

3.10. Band Edge Requirement (Radiated Emission Method)

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
		FCC Part 15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003	3				
Test Frequency Range:	2.3GHz to 2.5GH	z				
Test site:	Measurement Dis	tance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		Peak	1MHz	10Hz	Average Value	
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark	
	Above 1	GHz _	54.0	0	Average Value	
			74.0	0	Peak Value	
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier					
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified 					
Test Instruments:	Refer to section 1	Refer to section 1.9 for details				
Test mode:	Non-hopping mod					
Test results:	Pass					

Page: 35 of 47

Test Data

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in the report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Test mode: GFSK				Test	channel: Lowes	st		
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/i	l	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
2390.00	52.87	0.77	53.64	ŀ	74.00	-20.36	Н	PEAK
2390.00	53.22	0.77	53.99)	74.00	-20.01	V	PEAK
2390.00	40.21	0.77	40.98	3	54.00	-13.02	Н	AVG.
2390.00	41.63	0.77	42.40)	54.00	-11.60	V	AVG.
Test mode: GFSK				Test channel: Highest				
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/	l	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
2483.50	53.62	1.17	54.79)	74.00	-19.21	Н	PEAK
2483.50	54.78	1.17	55.95		74.00	-18.05	V	PEAK
2483.50	48.50	1.17	49.67	,	54.00	-4.33	Н	AVG.
2483.50	47.13	1.17	48.30)	54.00	-5.70	V	AVG.

- 1. Final Level = Read Level + Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page: 36 of 47

Test mode: π/4-DQPSK				Test channel: Low	/est		
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
2400.00	52.31	0.77	53.08	74.00	-20.92	Н	PEAK
2400.00	52.89	0.77	53.66	74.00	-20.34	V	PEAK
2400.00	39.56	0.77	40.33	54.00	-13.67	Н	AVG.
2400.00	41.78	0.77	42.55	54.00	-11.45	V	AVG.
Test mode: π/4-[DQPSK			Test channel: Highest			
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
2483.50	51.17	1.17	52.34	74.00	-21.66	Н	PEAK
2483.50	53.46	1.17	54.63	74.00	-19.37	V	PEAK
2483.50	47.30	1.17	48.47	54.00	-5.53	Н	AVG.
2483.50	46.18	1.17	47.35	54.00	-6.65	V	AVG.

Remark:

- 1. Final Level = Read Level + Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8DPSK					Test o	channel: Lowe	est	
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Lim (dBuV		Over Limit (dB)	Pol.	Detector
2400.00	51.49	0.77	52.26	74.0	00	-21.74	Н	PEAK
2400.00	52.61	0.77	53.38	74.0	00	-20.62	V	PEAK
2400.00	39.11	0.77	39.88	54.0	00	-14.12	Н	AVG.
2400.00	39.42	0.77	40.19	54.0	00	-13.81	V	AVG.
Test mode: 8DPS	SK				Test channel: Highest			
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Lim (dBu\		Over Limit (dB)	Pol.	Detector
2483.50	52.11	1.17	53.28	74.0	00	-20.72	Н	PEAK
2483.50	52.43	1.17	53.60	74.00		-20.40	V	PEAK
2483.50	47.61	1.17	48.78	54.00		-5.22	Н	AVG.
2483.50	46.25	1.17	47.42	54.0	00	-6.58	V	AVG.

- 1. Final Level = Read Level + Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page: 37 of 47

3.11. Spurious Emission (Conducted Emission Method)

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 1.9 for details				
Test mode:	Non-hopping mode				
Test results:	Pass				

3.12. Spurious Emission (Radiated Emission Method)

Test Requirement:	FCC Part15 C Section 15.209										
Test Method:	ANSI C63.4: 2003										
Test Frequency Range:	9 kHz to 25 GHz	9 kHz to 25 GHz									
Test site:	Measurement Dis	Measurement Distance: 3m									
Receiver setup:	Frequency	Detector	RBW	VBW	Remark						
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGHZ	Peak	1MHz	10Hz	Average Value						
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark						
	30MHz-8	8MHz	40.0)	Quasi-peak Value						
	88MHz-21	6MHz	43.5	5	Quasi-peak Value						
	216MHz-9	60MHz	46.0)	Quasi-peak Value						
	960MHz-	1GHz	54.0)	Quasi-peak Value						
	Above 1	GHz	54.0)	Average Value						
	710000	0112	74.0)	Peak Value						
	Turn Table Ground Plane - Above 1GHz	3m 4m 4m 4m 4m 4m 4m 4m 4m 4m 4m		Antenna Tower Horn Antenna Spectrum Analyzer							

Page: 42 of 47

Test Procedure:	4. The FUT was alread as the tag of a setation table 0.0 sectors above the second
	The EUT was placed on the top of a rotating table 0.8 meters above the ground
	at a 3 meter camber. The table was rotated 360 degrees to determine the
	position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which
	was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to
	determine the maximum value of the field strength. Both horizontal and vertical
	polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then
	the antenna was tuned to heights from 1 meter to 4 meters and the rota table
	was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified
Test Instruments:	Refer to section 1.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

Test Data

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Radiated Emission Test Data (Below 1GHz)

:UT:			IN-WALL BLUETOOTH AUDIO RECEIVER					Model Name :			52691			
emperatur	re:	25	25°C Relative Humidity: 55%											
est Voltag	e:	DC 15V												
nt. Pol.		Ve	rtica	I										
est Mode:		TX	GFS	SK M	lode	2402	!MHz							
Remark:		On	ly wo	orse (case	is rep	orted							
80.0 dBuV/	/m													
00:0 00077	·••													
										F	CC 158	3M B	adiation	
										ļ			rgin -6 d	в
					-	_			5					
20									×					
30							2 X	3		lı		10	مداهر با ا	المليد
30	1 \^*	was a second	WW har	Man	g to the last of t	whole		3 Market	*	Marine	Andrew State of the	ru]fulf/ ² ,	ngthytrappet "see	ماسسه
-20	1 40	50 (/h		www.holy	2 ************************************	3 Ade Adam Adam Adam	*	400	500	600		1000.00
-20 30.000	\			70 80			(MHz) Correct Factor	Measure ment	300	400		600		
-20 30.000	40	Fı	60 7	70 80	Reac	/el	Correct	Measure	300	490 t	500	e00		1000.00
-20	40	Fı	req.	70 80	Read Lev	/el u∨	Correct Factor	Measure- ment	300 - Limi	400 t	500 Ove	e00	700	1000.00
-20 30.000 No.	40 . Mk.	Fı	req.	70 80	Read Lev	/el u∨ 80	Correct Factor	Measure- ment dBuV/m	300 Limi	400 it //m	500 Ove	600 er 76	700	1000.00
-20 30.000 No.	40 . Mk.	30.9	req. IHz 9619	70 80	Read Lev	/el u/ 80 78	Correct Factor dB/m -14.56	Measurement dBuV/m 29.24	300 Limi dBu\ 40.0	400 tt //m	500 Ove dB -10.	600 er 76	700 Detect	1000.00
-20 30.000 No.	40 . Mk.	30.9 46.0	req. IHz 9619 0164	70 80 	Read Lev dBu 43.4	/el uv 80 78 08	Correct Factor dB/m -14.56 -22.71	Measurement dBuV/m 29.24 29.07	300 Limi dBu\ 40.0	400 it //m 00 00	500 Ove dB -10.	76 93	Detect pea	1000.00
-20 30.000 No.	40 . Mk.	30.9 46.0	req. IHz 9619 11330) 1 0 4	Read Lev dBu 43.6 51.7	/el uV 80 78 08	Correct Factor dB/m -14.56 -22.71 -22.37	Measure- ment dBuV/m 29.24 29.07 22.71	300 Limi dBu\ 40.0 43.9	400 tit 7/m 000 500	500 OV€ dB -10. -10.	76 93 79 41	Detect pea pea pea	tor k k k k

Radiated Emission Test Data (Above 1GHz)

Test mode: G	ode: GFSK Test channel: Lowest						
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
4804.00	56.86	8.18	65.04	74.00	-8.96	V	PEAK
7206.00	48.61	11.50	60.11	74.00	-13.89	V	PEAK
9608.00	*			74.00		V	PEAK
12010.00	*			74.00		V	PEAK
14412.00	*			74.00		V	PEAK
16814.00	*			74.00		V	PEAK
4804.00	54.21	8.18	62.39	74.00	-11.61	Н	PEAK
7206.00	47.33	11.50	58.83	74.00	-15.17	Н	PEAK
9608.00	*			74.00		Н	PEAK
12010.00	*			74.00		Н	PEAK
14412.00	*			74.00		Н	PEAK
16814.00	*			74.00		Н	PEAK
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
4804.00	39.21	8.18	47.39	54.00	-6.61	V	AVG.
7206.00	34.78	11.50	46.28	54.00	-7.72	V	AVG.
9608.00				54.00		V	AVG.
12010.00				54.00		٧	AVG.
14412.00				54.00		V	AVG.
16814.00				54.00		V	AVG.
4804.00	38.65	8.18	46.83	54.00	-7.17	Н	AVG.
7206.00	33.46	11.50	44.96	54.00	-9.04	Н	AVG.
9608.00				54.00		Н	AVG.
12010.00	*			54.00		Н	AVG.
14412.00	*			54.00		Н	AVG.
16814.00	*			54.00		Н	AVG.

- 1. Final Level = Read Level + Correct Factor
- 2. " \star ", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Radiated Emission Test Data (Above 1GHz)

Test mode: G	SFSK			Test channel:	Middle	/liddle			
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector		
4882.00	55.96	8.18	64.14	74.00	-9.86	V	PEAK		
7323.00	48.22	11.50	59.72	74.00	-14.28	V	PEAK		
9764.00	*			74.00		V	PEAK		
12205.00	*			74.00		V	PEAK		
14646.00	*			74.00		V	PEAK		
17087.00	*			74.00		V	PEAK		
4882.00	53.16	8.18	61.34	74.00	-12.66	Н	PEAK		
7323.00	46.51	11.50	58.01	74.00	-15.99	Н	PEAK		
9764.00	*			74.00		Н	PEAK		
12205.00	*			74.00		Н	PEAK		
14646.00	*			74.00		Н	PEAK		
17087.00	*			74.00		Н	PEAK		
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)	LIMIT (dRu\//m)	Over Limit (dB)	Pol.	Detector		
4882.00	38.61	8.18	46.79	54.00	-7.21	V	AVG.		
7323.00	34.22	11.50	45.72	54.00	-8.28	V	AVG.		
9764.00				54.00		V	AVG.		
12205.00				54.00		V	AVG.		
14646.00				54.00		V	AVG.		
17087.00				54.00		V	AVG.		
4882.00	37.53	8.18	45.71	54.00	-8.29	Н	AVG.		
7323.00	34.56	11.50	46.06	54.00	-7.94	Н	AVG.		
9764.00				54.00		Н	AVG.		
12205.00	*			54.00		Н	AVG.		
14646.00	*			54.00		Н	AVG.		
17087.00	*			54.00		Н	AVG.		

- 1. Final Level = Read Level + Correct Factor
- 2. " \star ", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Radiated Emission Test Data (Above 1GHz)

Test mode: G	est mode: GFSK Test channel: Highest							
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emission Level (dBuV/m)		Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
4960.00	54.75	8.18	62.93		74.00	-11.07	V	PEAK
7440.00	47.22	11.50	58.72		74.00	-15.28	V	PEAK
9920.00	*				74.00		V	PEAK
12400.00	*				74.00		V	PEAK
14880.00	*				74.00		V	PEAK
17360.00	*				74.00		V	PEAK
4960.00	53.67	8.18	61.8	5	74.00	-12.15	Н	PEAK
7440.00	46.58	11.50	58.08	8	74.00	-15.92	Н	PEAK
9920.00	*				74.00		Н	PEAK
12400.00	*				74.00		Н	PEAK
14880.00	*				74.00		Н	PEAK
17360.00	*				74.00		Н	PEAK
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
4960.00	38.64	8.18	46.8	2	54.00	-7.18	V	AVG.
7440.00	33.73	11.50	45.23	3	54.00	-8.77	٧	AVG.
9920.00					54.00		٧	AVG.
12400.00					54.00		V	AVG.
14880.00					54.00		V	AVG.
17360.00					54.00		٧	AVG.
4960.00	37.69	8.18	45.8	7	54.00	-8.13	Н	AVG.
7440.00	33.95	11.50	45.4	5	54.00	-8.55	Н	AVG.
9920.00					54.00		Н	AVG.
12400.00	*				54.00		Н	AVG.
14880.00	*				54.00		Н	AVG.
17360.00	*				54.00		Н	AVG.

- 1. Final Level = Read Level + Correct Factor
- 2. " \star ", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.