LECTURE 3 NOTES

1. The likelihood function.

DEFINITION 1.1 (likelihood function). The likelihood function $l: \Theta \rightarrow [0, \infty)$ of a sample $x \in \mathcal{X}$ is given by

$$l_x(\theta) = f_{\theta}(x).$$

As we shall see, the likelihood function plays a crucial role in statistical inference. One possible explanation for its imperativeness is its connection to the minimal sufficient partition.

THEOREM 1.2. A partition $\{A_t\}_{t\in\mathcal{T}}$ is the minimal sufficient partition of \mathcal{X} if the ratio $\frac{l_{x_1}(\theta)}{l_{x_2}(\theta)}$ is constant in θ if and only if $x_1, x_2 \in \mathcal{A}_t$.

PROOF. The theorem is a restatement of Lecture 2, Theorem 2.2. \Box

Thus knowledge of any sufficient statistic determines the likelihood function up to a constant. We remark that

- 1. the likelihood is a *random* function. It depends on the (random) observations.
- 2. the likelihood is not a density. It is a function of θ , not of x.

Often, we work with the log-likelihood function $\ell_x: \Theta \to \mathbf{R}$ given by

$$\ell_x(\theta) = \log l_x(\theta).$$

If the observations $\mathbf{x} = (\mathbf{x}_i)_{i \in [n]}$ consists of *i.i.d.* random variables \mathbf{x}_i , the (joint) likelihood is a product of likelihoods:

$$l_x(\theta) = \prod_{i \in [n]} f_{\theta}^1(x_i),$$

where $f_{\theta}^{1}(x)$ is the density of \mathbf{x}_{1} , and the log-likelihood is a sum of log likelihoods:

$$\ell_x(\theta) = \sum_{i=1}^n \log l_x(\theta).$$

Example 1.3. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p)$. The log-likelihood function is

$$\ell_{\mathbf{x}}(p) = \sum_{i \in [n]} \ell_{\mathbf{x}_i}(p)$$

$$= \sum_{i \in [n]} \mathbf{x}_i \log(p) + (1 - \mathbf{x}_i) \log(1 - p)$$

$$= \mathbf{t} \log(p) + (n - \mathbf{t}) \log(1 - p).$$

where $\mathbf{t} = \sum_{i \in [n]} \mathbf{x}_i$.

Example 1.4. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known. The log likelihood function is

$$\ell_{\mathbf{x}}(\mu) = \sum_{i \in [n]} -\frac{1}{2\sigma^2} (\mathbf{x}_i - \mu)^2 - \log \sigma - \frac{1}{2} \log(2\pi).$$

Dropping the terms that do not depend on μ ,

$$\propto -\frac{n}{2\sigma^2}(\bar{\mathbf{x}}-\mu)^2$$
.

Example 1.5. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \Sigma)$. The log-likelihood function is

$$\ell_{\mathbf{x}}(\mu, \Sigma) = \sum_{i \in [n]} -\frac{1}{2} \|\mathbf{x}_i - \mu\|_{\Sigma^{-1}}^2 - \frac{1}{2} \log \det(\Sigma) - \frac{1}{2} \log(2\pi)$$
$$\propto -\frac{1}{2} \sum_{i \in [n]} \|\mathbf{x}_i - \mu\|_{\Sigma^{-1}}^2 - \frac{n}{2} \log \det(\Sigma).$$

It is possible to show that

$$\sum_{i \in [n]} \|\mathbf{x}_i - \mu\|_{\Sigma^{-1}}^2 = \sum_{i \in [n]} \|\mathbf{x}_i - \bar{\mathbf{x}}\|_{\Sigma^{-1}}^2 + n\|\bar{\mathbf{x}} - \mu\|_{\Sigma^{-1}}^2.$$

By the properties of the tr,

$$\sum_{i \in [n]} \|\mathbf{x}_i - \bar{\mathbf{x}}\|_{\Sigma^{-1}}^2 = \sum_{i \in [n]} \operatorname{tr}((\mathbf{x}_i - \bar{\mathbf{x}})^T \Sigma^{-1}(\mathbf{x}_i - \bar{\mathbf{x}}))$$
$$= \sum_{i \in [n]} \operatorname{tr}((\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^T \Sigma^{-1})$$
$$= n \operatorname{tr}(\mathbf{S}\Sigma^{-1}),$$

where $\mathbf{S} := \frac{1}{n} \sum_{i \in [n]} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$ is the sample covariance matrix. Thus the log-likelihood is

$$\ell_{\mathbf{x}}(\mu, \Sigma) \propto -\frac{n}{2}\operatorname{tr}(\mathbf{S}\Sigma^{-1}) - n\|\bar{\mathbf{x}} - \mu\|_{\Sigma^{-1}}^2 - \frac{n}{2}\log\det(\Sigma).$$

2. The maximum likelihood estimator.

DEFINITION 2.1. A maximum likelihood estimator (MLE) of $\theta^* \in \Theta$ on a sample $x \in \mathcal{X}$ is given by $\arg \max_{\theta \in \Theta} \ell_{\mathbf{x}}(\theta)$.

In the rest of the notes, we assume the MLE is unique; i.e. the arg max in Definition 2.1 is attained at a unique $\hat{\theta}$. When the MLE is not unique, it suggests either the model is unidentifiable (e.g. a non-minimal exponential family) or the data is insufficient.

Intuitively, the MLE a parameter point at which the observed sample is most likely. As we shall see, the MLE is generally a good point estimator, possessing some of the optimality properties that we shall discuss later. The main drawback to the MLE is the hardness of finding the *global* maximizer of the likelihood function, especially when the likelihood is non-concave.

Example 2.2 (Example 1.3 continued). Recall the log-likelihood function is

$$\ell_{\mathbf{x}}(p) = \sum_{i \in [n]} \mathbf{x}_i \log p + (1 - \mathbf{x}_i) \log(1 - p)$$
$$= \mathbf{t} \log p + (n - \mathbf{t}) \log(1 - p),$$

where $t = \sum_{i \in [n]} \mathbf{x}_i$. By the optimality of the MLE \hat{p}_{ML} ,

$$0 = \nabla \ell_{\mathbf{x}}(\hat{p}_{\mathrm{ML}}) = \frac{\mathbf{t}}{\hat{p}_{\mathrm{ML}}} - \frac{n - \mathbf{t}}{1 - \hat{p}_{\mathrm{ML}}}.$$

We solve for \hat{p}_{ML} to obtain $\hat{p}_{ML} = \frac{\mathbf{t}}{n}$.

We observe that \mathbf{t} is a sufficient statistic for the *i.i.d.* Bernoulli model, and \hat{p} depends only on \mathbf{x} through \mathbf{t} . This is not a coincidence: the MLE generally depends only on the data through a sufficient statistic. Indeed, by the factorization theorem, we have

$$\arg \max_{\theta \in \Theta} \ell_{\mathbf{x}}(\theta) = \arg \max_{\theta \in \Theta} \log f_{\theta}(\mathbf{x})$$

$$= \arg \max_{\theta \in \Theta} \log g_{\theta}(\phi(\mathbf{x})) + \log h(\mathbf{x})$$

$$= \arg \max_{\theta \in \Theta} \log g_{\theta}(\phi(\mathbf{x})).$$

$$= \arg \max_{\theta \in \Theta} \log g_{\theta}(\phi(\mathbf{x})).$$

Example 2.3. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. The log-likelihood function is

$$\ell_{\mathbf{x}}(\mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i \in [n]} \left[-(\mathbf{x}_i - \mu)^2 - \log \sigma - \log \sqrt{2\pi} \right]$$
$$\propto -\frac{1}{2\sigma^2} \sum_{i \in [n]} (\mathbf{x}_i - \mu)^2 - n \log \sigma.$$

By the optimality of $\hat{\mu}_{ML}$,

$$0 = -\frac{1}{\hat{\sigma}_{\text{ML}}^2} \sum_{i \in [n]} \left[\hat{\mu}_{\text{ML}} - \mathbf{x}_i \right]$$
$$= -\frac{1}{\hat{\sigma}_{\text{ML}}^2} \left(n \hat{\mu}_{\text{ML}} - \sum_{i \in [n]} \mathbf{x}_i \right).$$

We solve for $\hat{\mu}$ to obtain $\hat{\mu} = \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i$. By a similar argument, it is possible to show $\hat{\sigma}_{\mathrm{ML}}^2 = \frac{1}{n} \sum_{i \in [n]} (\mathbf{x}_i - \hat{\mu})^2$. Indeed, by the optimality of $\hat{\sigma}_{\mathrm{ML}}$,

$$0 = \frac{1}{\hat{\sigma}_{\mathrm{ML}}^3} \sum_{i \in [n]} (\mathbf{x}_i - \mu)^2 - \frac{n}{\hat{\sigma}_{\mathrm{ML}}}.$$

We solve for $\hat{\sigma}_{\mathrm{ML}}^2$ to obtain $\hat{\sigma}_{\mathrm{ML}}^2 = \frac{1}{n} \sum_{i \in [n]} (\mathbf{x}_i - \hat{\mu})^2$.

Example 2.4. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \text{unif}(0,\theta)$. The likelihood function is

$$l(\theta) = \theta^{-1} \prod_{i \in [n]} \mathbf{1}_{[0,\theta]}(\mathbf{x}_i) = \theta^{-n} \prod_{i \in [n]} \mathbf{1}_{[0,\theta]}(\mathbf{x}_i).$$

If θ is smaller than any observation, the likelihood vanishes. Thus $\hat{\theta}_{ML}$ is at least $\max_{i \in [n]} \mathbf{x}_i$. But θ^{-n} is larger at smaller values of θ . Thus

$$\hat{\theta}_{\mathrm{ML}} := \max_{i \in [n]} \mathbf{x}_i.$$

Before moving on to other approaches to point estimation, we mention that the MLE is equivariant: if $\hat{\theta}$ is the MLE of a parameter θ^* , then $\tau(\hat{\theta})$ is the MLE of $\tau(\theta^*)$. It is a consequence of the equivariance of optimization to re-parametrization.

LEMMA 2.5. If $\hat{\theta}_{ML}$ is the MLE of θ , $g(\hat{\theta}_{ML})$ is the MLE of $\eta = g(\theta)$.

PROOF. Let $g^{-1}(\eta) := \{\theta \in \Theta : g(\theta) = \eta\}$. We remark that g^{-1} is not a function; it is a set-valued mapping. The reparametrized likelihood is

$$l'_{\mathbf{x}}(\eta) = \sup_{\theta \in g^{-1}(\eta)} l_{\mathbf{x}}(\theta),$$

where $l_{\mathbf{x}}(\theta)$ is the (original) likelihood. By the optimality of $\hat{\theta}_{\mathrm{ML}}$,

$$l'_{\mathbf{x}}(g(\hat{\theta}_{\mathrm{ML}})) = \sup_{\theta \in g^{-1}(g(\hat{\theta}_{\mathrm{ML}}))} l_{\mathbf{x}}(\theta)$$
$$= l_{\mathbf{x}}(\hat{\theta}_{\mathrm{ML}})$$
$$\geq l_{\mathbf{x}}(\theta)$$

for any $\theta \in \Theta$, where the second equality is by

- 1. $\hat{\theta}_{\mathrm{ML}} \in g^{-1}(g(\hat{\theta}_{\mathrm{ML}})) \subset \Theta$ by the definition of g^{-1} ,
- 2. $l_{\mathbf{x}}(\hat{\theta}_{\mathrm{ML}}) \geq l_{\mathbf{x}}(\theta)$ for any $\theta \in g^{-1}(g(\hat{\theta}_{\mathrm{ML}}))$.

Thus

$$l'_{\mathbf{x}}(g(\hat{\theta}_{\mathrm{ML}})) \ge \sup_{\theta \in g^{-1}(n)} l_{\mathbf{x}}(\theta) = l'_{\mathbf{x}}(\eta)$$

for any $\eta = g(\theta)$ for some $\theta \in \Theta$.

Example 2.6 (Example 1.3 continued). Going back to Example 1.3, if the parameter of interest is the odds ratio $\frac{p}{1-p}$, by the equivariance of the MLE, the MLE of the odds ratio is $\frac{\hat{p}_{\text{ML}}}{1-\hat{p}_{\text{ML}}}$.

- **3. The method of moments.** An older approach to point estimation is the method of moments (MoM). Let $\mathbf{x} \in \mathbf{R}^n$ consist of *i.i.d.* random variables $\mathbf{x}_i \in \mathbf{R}$, $i \in [n]$. In its most simple form, the MoM
 - 1. expresses the first m moments of \mathbf{x}_1 in terms of θ :

$$\mu_k(\theta) = \mathbf{E}_{\theta} [\mathbf{x}_1^k], k \in [m];$$

2. plugs in the first m sample moments and solve for $\hat{\theta}$:

$$\frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i^k - \mu_k(\hat{\theta}_{MoM}) = 0, \ k \in [m].$$

EXAMPLE 3.1 (Example 1.3 continued). The first moment of \mathbf{x}_1 is p. We plug in the first sample moment $\hat{\mu}_1 = \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i$ to obtain

$$\hat{p}_{\text{MoM}} = \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i$$

Thus, in the coin tossing example, the MLE and the MoM are the same! As we shall see, this is no mere coincidence: the two approaches are generally equivalent when the model is an exponential family.

Example 3.2. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \text{Bin}(n, p)$, where both n and p are unknown. By the properties of the binomial distribution,

$$\mu_1(n, p) = np,$$

 $\mu_2(n, p) = np(1 - p) + (np)^2.$

We plug in the first two sample moments and solve for n and p to obtain

$$\hat{n} = \frac{\hat{\mu}_2^2}{\hat{\mu}_1 - \hat{\mu}_2 + \hat{\mu}_1^2}, \ \hat{p} = \frac{\hat{\mu}_1}{\hat{n}}.$$

6 STAT 201B

An application of the preceding model is investigating the reporting rates of crimes. Each crime is a Bernoulli trial. It is a success if the crime is reported and a failure otherwise. Here the true reporting rate p and the total number of crimes n are unknown.

Yuekai Sun Berkeley, California December 6, 2015