

Electricity market equilibrium models in a two-market setup

Ditte Mølgård Heide-Jørgensen CMS 2016 Salamanca, Spain Joint work with Salvador Pineda and Trine Krogh Boomsma

Electricity market equilibrium models in a two-market setup

- 1 Two-market setup
- 2 Open- and closed-loop formulation
- Results
- Contributions and further work

- Open-loop
- Closed-loop (subgame perfect equilibrium)
- Supply function equilibrium and variations

- Closed-loop (subgame perfect equilibrium)
- Supply function equilibrium and variations

• Closed-loop (subgame perfect equilibrium)

• Supply function equilibrium and variations

• Closed-loop (subgame perfect equilibrium)

• Supply function equilibrium and variations

• When is open-loop solution ≠ closed-loop solution?

$$\max_{x_i, x_{i\omega}^+, x_{i\omega}^-} px_i + \mathbb{E}[p_{\omega}(x_{i\omega}^+ - x_{i\omega}^-) - cost(x_i + x_{i\omega}^+ - x_{i\omega}^-)]$$
S.t. $0 \le x_i \le x_i^{\max}$

$$0 \le x_{i\omega}^+ \le x_i - x_i^{\max}$$

$$0 \le x_{i\omega}^- \le x_i$$

Closed-loop stage 1

$$\max_{x_i, x_{i\omega}^+, x_{i\omega}^-} px_i + \mathbb{E}[p_{\omega}(x_{i\omega}^+ - x_{i\omega}^-) - cost(x_i + x_{i\omega}^+ - x_{i\omega}^-)]$$

$$S + 0 < x_i < x_i^{max}$$

Stage 2 KKT

$$\max_{\substack{x_{i\omega}^{+}, x_{i\omega}^{-} \\ x_{i\omega}^{+} = x_{i\omega}^{-} }} px_{i} + \mathbb{E}[p_{\omega}(x_{i\omega}^{+} - x_{i\omega}^{-})]$$

$$- cost(x_{i} + x_{i\omega}^{+} - x_{i\omega}^{-})]$$
S.t. $0 \le x_{i} \le x_{i}^{max}$
 $0 \le x_{i\omega}^{+} \le x_{i} - x_{i}^{max}$
 $0 \le x_{i\omega}^{-} \le x_{i}$

Closed-loop stage 1

$$\max_{x_i, x_{i\omega}^+, x_{i\omega}^-} px_i + \mathbb{E}[p_{\omega}(x_{i\omega}^+ - x_{i\omega}^-) - cost(x_i + x_{i\omega}^+ - x_{i\omega}^-)]$$

Stage 2 KKT

Closed-loop stage 2

$$\begin{array}{l} \max\limits_{\substack{x_{i\omega}^+,x_{i\omega}^-\\ \\ -cost(x_i+x_{i\omega}^+-x_{i\omega}^-)}} p_{\omega}(x_{i\omega}^+-x_{i\omega}^-) \\ \mathrm{S.t.} \ 0 \leq x_{i\omega}^+ \leq x_i - x_i^{\mathsf{max}} \\ 0 \leq x_{i\omega}^- \leq x_i \end{array}$$

$$\max_{\substack{x_{i}, x_{i\omega}^{+}, x_{i\omega}^{-} \\ x_{i, x_{i\omega}^{+}, x_{i\omega}^{-}}}} px_{i} + \mathbb{E}[p_{\omega}(x_{i\omega}^{+} - x_{i\omega}^{-})]$$

$$- cost(x_{i} + x_{i\omega}^{+} - x_{i\omega}^{-})]$$
S.t. $0 \le x_{i} \le x_{i}^{max}$

$$0 \le x_{i\omega}^{+} \le x_{i} - x_{i}^{max}$$

$$0 \le x_{i\omega}^{-} \le x_{i}$$

Closed-loop stage 1

$$\max_{x_i, x_{i\omega}^+, x_{i\omega}^-} px_i + \mathbb{E}[p_{\omega}(x_{i\omega}^+ - x_{i\omega}^-) \\ - cost(x_i + x_{i\omega}^+ - x_{i\omega}^-)]$$

Stage 2 KKT

Open-loop

$$egin{array}{l} \max_{x_i,x_{i\omega}^+,x_{i\omega}^-} px_i + \mathbb{E}[p_{\omega}(x_{i\omega}^+ - x_{i\omega}^-) \\ & - cost(x_i + x_{i\omega}^+ - x_{i\omega}^-)] \\ \mathrm{S.t.} \ 0 \leq x_i \leq x_i^{\mathsf{max}} \end{array}$$

$$0 \le x_{i\omega}^+ \le x_i - x_i^{\max}$$

$$0 \le x_{i\omega}^- \le x$$

Closed-loop stage 2

$$\begin{array}{l} \max\limits_{\substack{x_{i\omega}^+,x_{i\omega}^-} \\ } p_{\omega}(x_{i\omega}^+-x_{i\omega}^-) \\ - cost(x_i+x_{i\omega}^+-x_{i\omega}^-) \end{array}$$

 $0 \le x_{i\omega} \le x_i - x_i$ $0 < x^- < x_i$

$$0 \le x_{i\omega}^- \le x_i$$

 $ho=\mathbb{E}[
ho_{\omega}$

$$p_{\omega} = \beta_{\omega} - \alpha \sum_{i} (x_{i} + x_{i\omega}^{+} - x_{i\omega}^{-})$$

Market clearing

• 3 identical power production units, $x^{max} = 60MWh$

- 3 identical power production units, $x^{max} = 60MWh$
- Prod cost 50, up-reg cost 20, down-reg cost 5 (DKK)

- 3 identical power production units, $x^{max} = 60MWh$
- Prod cost 50, up-reg cost 20, down-reg cost 5 (DKK)
- Cournot competition

- 3 identical power production units, $x^{max} = 60MWh$
- Prod cost 50, up-reg cost 20, down-reg cost 5 (DKK)
- Cournot competition
- One time period in each market

- 3 identical power production units, $x^{max} = 60MWh$
- Prod cost 50, up-reg cost 20, down-reg cost 5 (DKK)
- Cournot competition
- One time period in each market
- $p_{\omega} = 100 \sum_{i} (x_i + x_i^+ x_i^-).$

- 3 identical power production units, $x^{max} = 60MWh$
- Prod cost 50, up-reg cost 20, down-reg cost 5 (DKK)
- Cournot competition
- One time period in each market
- $p_{\omega} = 100 \sum_{i} (x_i + x_i^+ x_i^-).$

	•						
x _i *	x_{it}^{+*}	x_{it}^{-*}	Total prod	Price DA	Price bal	Cost	Profit
12.50	0.00	0.00	12.50	62.50	62.50	625.00	156.25

x _i *	x_{it}^{+*}	x_{it}^{-*}	Total prod	Price DA	Price bal	Cost	Profit
12 50	0.00	0.00	12 50	62 50	62 50	625 00	156 25

• One time period in DA and two in BAL

- One time period in DA and two in BAL
- $p_{1\omega} = 60 \sum_{i} (x_i/2 + x_i^+ x_i^-).$

- One time period in DA and two in BAL
- $p_{1\omega} = 60 \sum_{i} (x_i/2 + x_i^+ x_i^-).$
- $p_{2\omega} = 140 \sum_{i} (x_i/2 + x_i^+ x_i^-)$.

- One time period in DA and two in BAL
- $p_{1\omega} = 60 \sum_{i} (x_i/2 + x_i^+ x_i^-).$
- $p_{2\omega} = 140 \sum_{i} (x_i/2 + x_i^+ x_i^-)$.

Open-loop

t	x _i *	x _{it} +*	×_*	Total prod	Price DA	Price bal	Cost	Profit
1	42.50	0.00	17.50	3.75	62.50	48.75	275.00	465.62
2	42.50	0.00	0.00	21.25	02.50	76.25	1062.50	405.02

Closed-loon

t	x _i *	x+*	×_*	Total prod	Price DA	Price bal	Cost	Profit
1	41.00	0.00	11.62	8.87	E0.7E	33.38	501.87	252 41
2	41.00	2.13	0.00	22.62	52.75	72.13	1173.75	252.41

Further work includes

Further work includes

· Look into the inverse demand functions

Further work includes

Look into the inverse demand functions

Further work includes

Look into the inverse demand functions

- Market power analysis when access to balancing market is limited
- Including ramp rates and network

Further work includes

Look into the inverse demand functions

- Market power analysis when access to balancing market is limited
- Including ramp rates and network
- Include stochastic producers

Further work includes

· Look into the inverse demand functions

- Market power analysis when access to balancing market is limited
- Including ramp rates and network
- Include stochastic producers
- Efficient solutions methods e.g. parallelization.

References

- Wogrin et al. (2013) Open versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic competition
- Shanbhag et al. (2011) A Complementarity Framework for Forward Contracting Under Uncertainty
- Allaz (1992) Oligopoly, uncertainty and strategic forward transactions

