REPORT NO. CG ONSOD OI -80





# NORTH ATLANTIC OMEGA NAVIGATION SYSTEM VALIDATION

9) FINAL REPORT. 3 Aug 79-21 Jul 8/,

AD A 089615

L.W./Campbell
Dr. T.M./Servaes
E.R/Grassler
Analytical Systems Engineering Corp.
5 Old Concord Road

5 Old Concord Road Burlington, MA 01803



Sec. (C. 5)

DTIC ELECTE SEP 2 6 1980

(14) ASECR-79-125

11. 21 JUL 80

(2)280/

THE NATIONAL TECHNICAL INFORMATION SERVICE,
SPRINGFIELD, VA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
UNITED STATES COAST GUARD
OMEGA NAVIGATION SYSTEM OPERATIONS DETAIL
WASHINGTON, D.C. 20593

FILE COPY

4101114

80 9 26 048

CG-903591- A

#### NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its centents or use thereof.

#### NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

|                                             |                      |                                      | echnical Report D              |               |
|---------------------------------------------|----------------------|--------------------------------------|--------------------------------|---------------|
| <b>办</b>                                    | 2. Government Access |                                      | Recipient's Catalog N          | o.            |
| CG-ONSOD-01-80                              | AD-A089 0            | 615                                  |                                |               |
| 4. Title and Subtitle                       |                      |                                      | Report Date                    |               |
| North Atlantic OMEGA Navigat                | ion System Val       | lidation: 2                          | l July 1980                    |               |
| Final Report                                |                      | 6.                                   | Performing Organization        | on Code       |
| 7. Author's                                 |                      | 8.                                   | Performing Organizatio         | n Report No.  |
| L.W. Campbell, Dr. T.M.Serva                | aes. E.R. Gras:      | sler                                 | ASECR 79-125                   |               |
| 9. Performing Organization Name and Address |                      |                                      | Work Unit No. (TRAIS           | 5)            |
| Analytical Systems Engineers                | ing Corporation      |                                      |                                |               |
| 5 Old Concord Road                          |                      | 11.                                  | Contract or Grant No.          | 1             |
| Burlington, MA 01803                        |                      | <u> </u>                             | DOT-CG-903591                  |               |
| 12. Sponsoring Agency Name and Address      | <del></del>          | 13.                                  | Type of Report and P           | eriod Covered |
| U.S. Dept. of Transportation                | n                    | F                                    | inal Report                    |               |
| U.S. Coast Guard                            | •                    | 3                                    | Mag. 1979 - 2                  | l July 1980   |
| OMEGA Navigation System Open                | rations Detail       |                                      | Sponsoring Agency Co           |               |
| Washington, D.C. 20593                      |                      |                                      |                                |               |
| 15. Supplementary Notes                     |                      |                                      |                                |               |
| <i>r</i> /                                  |                      |                                      |                                |               |
| \ \                                         |                      |                                      |                                |               |
| 16. Abstract                                |                      |                                      |                                | ·             |
| The OMEGA Navigation                        | on System prov       | ides a worldwide                     | enroute positi                 | oning         |
| capability from eight transm                |                      |                                      |                                |               |
| mitting stations now provide                | -                    | _                                    | _                              |               |
| be declared fully operationa                | _                    | _                                    | _                              |               |
| 1985. The validation progra                 | am is being ac       | complished on a r                    | egional basis                  | through       |
| a measurement process conduc                | cted by the U.       | S. Coast Guard.                      | The North Atla                 | ntic          |
| is the second region to be                  | validated.           |                                      |                                |               |
| The data base for t                         | the North Atla       | ntic Validation c                    | onsisted of IC                 | IP Phase      |
| measurements from 36 station                |                      |                                      |                                |               |
| (ONSOL) worldwide monitor ne                |                      |                                      |                                |               |
| and airborne, throughout the                |                      | _                                    |                                | -             |
| (NOSC). These data were sup                 |                      | =                                    |                                |               |
| measurements and numerous Ol                |                      |                                      |                                |               |
| aircraft users, both civilia                |                      |                                      |                                |               |
|                                             |                      |                                      |                                | •             |
| The analysis result                         |                      | <del>-</del>                         |                                |               |
| areas, OMEGA provides at lea                |                      | <del>-</del>                         |                                |               |
| kHz voids are well covered a                |                      | <del></del>                          | _                              |               |
| the Gulf of Mexico during su                | -                    | _                                    |                                |               |
| of the 2-4 nm (2-drms) for (                | JMEGA 15 met 1       | n the North Atlan                    | tic where sign                 | ıaı           |
| coverage is provided.                       |                      |                                      |                                |               |
| 17. Key Words                               |                      | 18. Distribution Statement           |                                |               |
| OMEGA                                       |                      | Document is avai                     | lable to the r                 |               |
| Very Low Frequency Propogat:                |                      |                                      |                                |               |
|                                             | ion                  | through the Nati                     | onal Technical                 | l Inst.       |
| Validation                                  | ion                  |                                      | onal Technical                 | l Inst.       |
| Validation<br>North Atlantic                | ion                  | through the Nati                     | onal Technical                 | l Inst.       |
| <b>L</b>                                    | ion                  | through the Nati<br>Service, Springf | onal Technical                 | l Inst.       |
| North Atlantic                              |                      | through the Nati<br>Service, Springf | onal Technica<br>field, VA 221 | l Inst.<br>51 |

Form DOT F 1700.7 18-72

#### PREFACE

This report presents the results of the validation of the OMEGA Navigation System in the North Atlantic. The coverage being provided at 10.2 kHz and 13.6 kHz is described and maps showing recommended LOPs by geographical area are presented. Also included are studies of phase difference bias errors, effects of Sudden Ionospheric Disturbances (SIDs) on position fix accuracy and an evaluation of a variety of operational data.



| FACTORS    |
|------------|
| ੁ          |
| 9          |
| 5          |
| ₹.         |
| ŭ.         |
| _          |
| ≤          |
| 2          |
| S          |
| <u></u>    |
| CONVERSION |
| z          |
| 0          |
| U          |
| ٠,         |
| =          |
| Œ          |
| ETRIC      |
|            |

|                                              | Symptol                                                                           |                | 11              | £ }        | . I                  |                                       |          | ~ 1                  | <b>"}</b> "        | •                                  |                   |               |               | 7 1                                   |                  |              |                                              |        | =           | ĸ         | <b>.</b>          | i      | . 1          | ,           |                           |                                       |                     |                | ;# <u></u> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|-----------------------------------------------------------------------------------|----------------|-----------------|------------|----------------------|---------------------------------------|----------|----------------------|--------------------|------------------------------------|-------------------|---------------|---------------|---------------------------------------|------------------|--------------|----------------------------------------------|--------|-------------|-----------|-------------------|--------|--------------|-------------|---------------------------|---------------------------------------|---------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measures                                     | To Seed                                                                           |                | 1 Cha           | 2          |                      |                                       |          | Bequera taches       | sprea szerbs       | ****                               |                   |               |               | 1 per 1                               | short lone       |              |                                              |        | Burd sunces | *14.4     | 1 Dans            |        | Cubic seeds  | •           |                           |                                       | partemple:          | Sandana Street | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ns frem Metric                               | Multiply by                                                                       | LENGTH         | ğ. <del>4</del> | :2:        | 9.0                  |                                       | AREA     | ***                  | 7                  | : 7                                |                   | MASS [weight) |               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                  | •            | 70111146                                     |        | 603         | 2.1       | 8                 | 7.     | <u> </u>     | :           |                           | IEMPERAIURE (GESCI)                   | 9/8 (then           | 7<br>1         | 2 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Appraximata Canversions from Motric Measures | When Yes Knew M                                                                   | 1              | Prile, 61948    | Palers     | motors<br>bildomises |                                       |          | Source Constitutions | Section Contact    | Aperture 110,000 m. <sup>2</sup> ) | •                 | MAS           |               | 1                                     | Annual Clock hal | /6. mail 800 | >                                            |        | - Hillings  | litera    | files             | hiore  | Cubic maters |             | ,                         | N N N N N N N N N N N N N N N N N N N |                     | Lamber & Burt  | 25 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| Appre                                        |                                                                                   |                | ī               | Ž          | Ī                    |                                       |          | 3                    |                    | ł                                  |                   |               |               | \$ :                                  |                  | į            |                                              |        | ī           | =         | Ē.                | Jite   | 3 (          | •           |                           |                                       | ů                   |                | • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *                                            |                                                                                   | •              | F.1             |            | e 1                  |                                       |          | ` <b>`</b> }         | ~.                 | `s 2                               | !                 |               |               | •                                     | •                | •            |                                              |        | 1           | -         | -                 | _'     | `( ~         | ŧ           |                           |                                       | Ċ                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| " /<br> -<br> -                              | 7 /<br>1                                                                          | 1140)  <br>    |                 | - 1        | er<br>Sylvania       | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |          |                      | 1                  |                                    |                   | (*)           |               |                                       | 111              |              | • <b>•</b> • • • • • • • • • • • • • • • • • | 1      |             | •         |                   |        | <br>         | ,           |                           | •                                     |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ]" "<br> ,                                   | r[a]                                                                              | 1,1            |                 | יויןי<br>- | ' <u> </u> '         | ļ. <sub>1</sub> .                     | '' <br>' | ' <b>'</b> '         | !' '               | l' '                               | l' '              | l' ''         | '']'I         | ' 'I                                  | l'               | i'           | !' '<br>•                                    | "      | 'l']        | 'l'       | ' '<br> <br> <br> | j'     | ' '          | <b>!</b> '{ | 'l'<br>                   | 'l' <br>1                             |                     | l' '           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              | , 15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1 | į              |                 | ,          | 5 5                  | . 3                                   |          |                      |                    | `t "t                              | <b>~</b>          | 3             |               | •                                     | ٤.               | -            |                                              |        | 1           | ii        | 1                 | -      | -            | _           | . ~i                      | 7                                     |                     | •              | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Measures                                     |                                                                                   |                |                 |            | Continuint           | Antions Anti-                         |          |                      | Equare Continuated | square melera                      | square bilgmeters | Pacteres.     |               | 5                                     | Palest page      | towes        |                                              |        |             |           |                   | Litera | 110.0        | filers      | Infant<br>Carbic evaluate | Cubic melots                          |                     |                | Colina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Approximate Conversions to Matric Measures   | 1                                                                                 | de Leinen      | LENGTH          | •          | <b>5</b> g           | • •                                   | ę.       | AREA                 | 6.6                | \$ <b>-</b>                        | : 2               | *             | MASS (weight) | 2.0                                   | 9.0              | **           |                                              | VOICHE | ,           | • ;       | 2 8               | ***    | 7            | X.          |                           | 77.0                                  | TERPERATURE (esset) |                | b/9 (she<br>subsecting<br>Ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Apprenimete Conv                             | 3                                                                                 | When You Labor |                 |            | e cya                | g page                                | į        |                      | Square taches      | square feet                        | active avisa      | 1000          | =             |                                       |                  | shert tons   | (2000 14)                                    |        |             | Sepodes - | Child Andrea      |        | ī            | -           | Cobic feet                | County years                          | TE38                |                | Fabrada II<br>tempera hara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                              | •                                                                                 | rie de         |                 |            | 5 a                  | <b>.</b> 2 i                          | ĭ        |                      | 3                  | ~g~                                | ٤" ۽              | ï             |               | ;                                     | 3 4              | 3            |                                              |        |             | ż         | •                 |        | . &          | ¥           | ī                         |                                       |                     |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## TABLE OF CONTENTS

|    |                   |                        |                                                                                                                          | No.                             |
|----|-------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| EX | ECUT              | IVE SUN                | MMARY                                                                                                                    | 1                               |
| 1. | INT               | RODUCT                 | TION                                                                                                                     | 1-1                             |
| 2. | BAC               | KGROU                  | ND                                                                                                                       | 2-1                             |
|    | 2.1<br>2.2<br>2.3 | OMEG.                  | RIPTION AND STATUS OF THE OMEGA NAVIGATION SYSTEM A MONITOR NETWORK ROPAGATION THEORY AND MODELS                         | 2-1<br>2-6<br>2-8               |
|    |                   |                        | Effects on VLF Propagation Theoretical Predictions Models for Propagation Corrections                                    | 2-8<br>2-17<br>2-19             |
|    | 2.4               | OMEG.                  | A CAPABILITIES IN THE NORTH ATLANTIC                                                                                     | 2-22                            |
| 3. | VAI               | OITA DIL               | N METHODOLOGY                                                                                                            | 3-1                             |
|    | 3.2<br>3.3        | PREDI<br>EMPIR<br>ANAL | CTED SIGNAL THRESHOLD BOUNDARIES CTED FIX-ACCURACY DEGRADATION ICAL DATA YSIS AND INTERPRETATION ARISONS AND CONCLUSIONS | 3-1<br>3-1<br>3-4<br>3-5<br>3-6 |
| 4. | DES               | CRIPTIC                | ON OF DATA                                                                                                               | 4-1                             |
|    | 4.1               | r-non                  | TEST DATA                                                                                                                | 4-1                             |
|    |                   | 4.1.1<br>4.1.2         | Fixed OMEGA Monitor Data Integrated OMEGA/Satellite Shipboard Data                                                       | 4-1<br>4-4                      |
|    | 4.2               | TEST I                 | DATA                                                                                                                     | 4-9                             |
|    |                   | 4.2.1<br>4.2.2         | Airborne Monitor Data<br>Ground Monitor Data                                                                             | <b>4-</b> 9<br><b>4-</b> 16     |
| 5. | CLA               | SSIFICA                | ATION AND SYNTHESIS OF DATA                                                                                              | 5-1                             |
|    | 5.1               | DATA                   | CATEGORIES                                                                                                               | 5-1                             |
|    | 5.2               | TEST .                 | AND NON-TEST DATA INTEGRATION                                                                                            | 5-1                             |
|    | 5.3               | DATA                   | REDUCTION PHILOSOPHY                                                                                                     | 5-2                             |

## TABLE OF CONTENTS (Cont.)

|    |                              |                                  |                                                                                 | Page No.            |  |  |  |  |  |  |
|----|------------------------------|----------------------------------|---------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| 6. | DATA ANALYSIS                |                                  |                                                                                 |                     |  |  |  |  |  |  |
|    | 6.1                          | A COVERAGE IN THE NORTH ATLANTIC | 6-1                                                                             |                     |  |  |  |  |  |  |
|    |                              | 6.1.1<br>6.1.2                   | 10.2 kHz Coverage<br>13.6 kHz Coverage                                          | 6-1<br>6-7          |  |  |  |  |  |  |
|    | 6.2                          | 10.2 kl                          | HZ FIX ACCURACY                                                                 | 6-11                |  |  |  |  |  |  |
|    |                              | 6.2.1<br>6.2.2                   | ONSOD Ground Monitor Station Data Integrated OMEGA/Satellite Fix Accuracy       | 6-11<br>6-17        |  |  |  |  |  |  |
|    | 6.3                          | PHASE                            | E BIAS ERROR                                                                    | 6-23                |  |  |  |  |  |  |
|    | 6.4                          |                                  | CT OF SUDDEN IONOSPHORIC DISTURBANCES (SIDS) ON THE A NAVIGATION SYSTEM         | 6-27                |  |  |  |  |  |  |
|    |                              | 6.4.1<br>6.4.2                   | Sudden Phase Advance<br>Polar Cap Absorption                                    | 6-27<br>6-37        |  |  |  |  |  |  |
| 7. | OPERATIONAL DATA             |                                  |                                                                                 |                     |  |  |  |  |  |  |
|    | 7.1                          | DATA                             | SOURCES                                                                         | 7-1 {               |  |  |  |  |  |  |
|    |                              | 7.1.1<br>7.1.2<br>7.1.3          | Reported Shipboard Data                                                         | 7-1<br>7-4<br>7-6   |  |  |  |  |  |  |
|    | 7.2                          | OPER.                            | ATIONAL DATA EVALUATION                                                         |                     |  |  |  |  |  |  |
|    |                              | 7.2.1<br>7.2.2<br>7.2.3          | Reported Aircraft Data<br>Reported Shipboard Data<br>British Differential OMEGA | 7-6<br>7-19<br>7-28 |  |  |  |  |  |  |
| 8. | USER NAVIGATION REQUIREMENTS |                                  |                                                                                 |                     |  |  |  |  |  |  |
|    | 8.1                          | CIVIL                            | AIR OCEANIC NAVIGATION REQUIREMENTS                                             | 8-1                 |  |  |  |  |  |  |
|    | 8.2                          | CIVIL                            | MARINE OCEANIC NAVIGATION REQUIREMENTS                                          | 8-4                 |  |  |  |  |  |  |
|    | 8.3                          | U.S. M                           | ILITARY RADIONAVIGATION REQUIREMENTS                                            | 8-6                 |  |  |  |  |  |  |
| 9. | INT                          | ERPRET                           | ATION OF ANALYSIS RESULTS                                                       | 9-1                 |  |  |  |  |  |  |

THE SECRET SECRE

## TABLE OF CONTENTS (Cont.)

|     |       |                                                        | Page<br>No. |
|-----|-------|--------------------------------------------------------|-------------|
|     | 9.1   | MEASURED 10.2 KHZ OMEGA COVERAGE                       | 9-1         |
|     | 9.2   | COMPARISON OF MEASURED AND PREDICTED 10.2 KHZ COVERAGE | 9-2         |
|     | 9.3   | COVERAGE ASSESSMENT AT 13.6 KHZ                        | 9-3         |
|     | 9.4   | MEASURED 10.2 KHZ FIX ACCURACY                         | 9-4         |
| 10. | CON   | CLUSIONS AND RECOMMENDATIONS                           | 10-1        |
|     | 10.1  | CONCLUSIONS                                            | 10-1        |
|     |       | 10.1.1 Coverage                                        | 10-1        |
|     |       | 10.1.2 Fix Accuracy                                    | 10-2        |
|     | 19.2  | RECOMMENDATIONS                                        | 10-4        |
| API | PENDI | IX A. TRANSMITTER MONITOR STATION DATA                 | A-1         |
| API | PENDI | X B. GROUND MONITOR STATION DATA                       | B-1         |
| API | PENDI | IX C. INDIVIDUAL COVERAGE MAPS                         | C-1         |
| AP  | PENDI | IX D. FIX ACCURACY STATISTICS                          | D-1         |

## LIST OF FIGURES

| Figure<br>No. |                                                                                                | Page No. |
|---------------|------------------------------------------------------------------------------------------------|----------|
| 1             | Recommended LOPs Based on Total Error (D), Summer Day, 10.2 kHz                                | 6        |
| 2             | Recommended LOPs Based on Total Error (D), Winter Night, 10.2 kHz                              | 7        |
| 3             | Recommended LOPs Based on 95% CEP, Summer Day, 10.2 kHz                                        | 8        |
| 4             | Recommended LOPs Based on 95% CEP, Winter Night, 10.2 kHz                                      | 9        |
| 1-1           | Map of North Atlantic Region                                                                   | 1-2      |
| 2-1           | OMEGA Signal Transmission Format                                                               | 2-2      |
| 2-2           | Diurnal Variation in the Phase of a VLF Signal Observed at Boulder, Colorado                   | 2-9      |
| 2-3           | Transmission from North to South or South to North                                             | 2-11     |
| 2-4           | Transmission from West to East Near the Equator                                                | 2-11     |
| 2-5           | Conductivity Variation Within North American Continent                                         | 2-13     |
| 2-6           | Conductivity Effects                                                                           | 2-14     |
| 2-7           | The Effects of a Large Sudden Ionospheric Disturbance                                          | 2-15     |
| 2-8           | A Polar Cap Anomaly                                                                            | 2-16     |
| 2-9           | Sample Propagation Prediction Correction Table                                                 | 2-21     |
| 2-10          | Average Daily Merchant Ships in the North Atlantic<br>Reporting to U.S. Stations, January 1972 | 2-23     |
| 2-11          | Effective Auroral Zone for VLF Propagation                                                     | 2-26     |
| 2-12          | Relative Phase Velocity Variation in the Auroral Zone                                          | 2-26     |
| 3-1           | Composite Coverage Diagram, Full System Local Summer (Approx. Mid-Summer) Noon                 | 3-2      |
| 3-2           | Composite Coverage Diagram, Full System Local Winter (Approx. Mid-Winter) Midnight             | 3-3      |
| 4-1           | Location of ONSOD Monitor Facilities                                                           | 4-3      |

## LIST OF FIGURES (Cont.)

| Figure<br>No. |                                                                                                                     | Page<br>No.  |
|---------------|---------------------------------------------------------------------------------------------------------------------|--------------|
| 4-2           | North Atlantic MX1102/04 Deployment 1978                                                                            | 4-8          |
| 4-3           | Aircraft Flight Paths (FLTs 1-7)                                                                                    | 4-14         |
| 4-4           | Aircraft Flight Paths (FLTs 8-23B)                                                                                  | 4-15         |
| 6-1           | Measured Composite Coverage Diagram for Local Summer Noon - 10.2 kHz                                                | 6-2          |
| 6-2           | Measured Composite Coverage Diagram for Local Summer Night - 10.2 kHz                                               | 6-3          |
| 6-3           | Measured Composite Coverage Diagram for Local Winter Noon - 10.2 kHz                                                | 6-4          |
| 6-4           | Measured Composite Coverage Diagram for Local Winter Night - 10.2 kHz                                               | 6-5          |
| 6-5           | Measured Composite Coverage Diagram for Local Summer Noon - 13.6 kHz                                                | 6 <b>-</b> 8 |
| 6-6           | Measured Composite Coverage Diagram for Local Winter Night - 13.6 kHz                                               | <b>6-</b> 9  |
| 6-7           | Sample of EVAL Block Print                                                                                          | 6-13         |
| 6-8           | Example of Integrated OMEGA/Satellite Fix Data Summary                                                              | 6-18         |
| 6-9           | Maximum Phase-Offset Distributions Observed during SPA Events on Hawaii to New York Path at 10.2 kHz                | 6-28         |
| 6-10          | Disturbance Duration Distributions Observed During SPA Events on Hawaii to New York Path at 10.2 kHz                | 6-29         |
| 6-11          | Histograms of Cross Track Errors Receiver Position N52° W30°. Track =90°. Transmitters N. Dakota, Norway, Trinidad. | 6-32         |
| 6-12          | The Oceanic Control Area Showing the Five Selected Receiver Locations.                                              | 6-34         |
| 6-13          | Histograms of Cross Track Errors Transmitters Norway, Liberia                                                       | 6_35         |

tel describited with endamental

## LIST OF FIGURES (Cont.)

| Figure No. |                                                                                                            | Page<br>No. |
|------------|------------------------------------------------------------------------------------------------------------|-------------|
| 6-14       | Spatial Distribution of Errors                                                                             | 6-36        |
| 7-1        | Probability Distribution for Mark-On-Top Data Sample                                                       | 7-12        |
| 7-2        | Sample Probability Distribution for Data Taken Using<br>Electronic Fixes                                   | 7-13        |
| 7-3        | Sample Probability Distribution for Data Collected Using<br>Both Methods, Mark-On-Top and Electronic Fixes | 7-14        |
| 9-1        | Recommended LOPs Based on Total Error (D), Summer Day, 10.2 kHz                                            | 9-5         |
| 9-2        | Recommended LOPs Based on Total Error (D), Winter Night 10.2 kHz                                           | 9-6         |
| 9-3        | Recommended LOPs Based on 95% CEP, Summer Day, 10.2 kHz                                                    | 9-7         |
| 9-4        | Recommended LOPs Based on 95% CEP, Winter Night, 10.2 kHz                                                  | 9-8         |

## LIST OF TABLES

| Tabl<br>No. |                                                                                    | Page<br>No. |
|-------------|------------------------------------------------------------------------------------|-------------|
| 2-1         | OMEGA Transmitting Station Network                                                 | 2-3         |
| 2-2         | Monitor Network                                                                    | 2-7         |
| 4-1         | Monitor Network                                                                    | 4-2         |
| 4-2         | Summary of ONSOD 10.2 kHz MASTERFILE Transmitter Monitor Station Data              | 4-5         |
| 4-3         | Summary of ONSOD 10.2 kHz MASTERFILE Ground Station Phase Difference Data          | 4-6         |
| 4-4         | NOSC Flight Data Signal Amplitude vs Time                                          | 4-10        |
| 4-5         | NOSC Radial Flight Data Signal Amplitude vs Range                                  | 4-11        |
| 4-6         | Aircraft Flight Itinerary (FLTs 1-7)                                               | 4-12        |
| 4-7         | Aircraft Flight Itinerary (FLTs 8-23)                                              | 4-13        |
| 4-8         | Index of Plots of Observed Diurnal Signal Amplitudes at Long-Term Receiver Sites   | 4-17        |
| 4-9         | Index of Plots of Observed Diurnal Signal Amplitudes at Short-Term Receiver Site.  | 4-18        |
| 6-1         | ONSOD Ground Monitor Facilities                                                    | 6-12        |
| 6-2         | Summary of Integrated OMEGA/Satellite Fix Error Statistics For The Anchorage       | 6-20        |
| 6-3         | Summary of Integrated OMEGA/Satellite Fix Error Statistics For The Galloway        | 6-21        |
| 6-4         | Summary of Integrated OMEGA/Satellite Fix Error Statistics for The African Neptune | 6-22        |
| 6-5         | Phase Bias Errors                                                                  | 6-24        |
| 6-S         | Phase Bias Errors Observed For Four or More Months                                 | 6-26        |
| 6-7         | Suprise and Supret Data for Fach Propagation Dath                                  | 6-37        |

Sec.

## LIST OF TABLES (Cont.)

| Table<br>No. | •                                                                                                         | Page<br>No. |
|--------------|-----------------------------------------------------------------------------------------------------------|-------------|
| 7-1          | Summary of Reported Shipboard Data                                                                        | 7-5         |
| 7-2          | Summary of Maximum and Minimum SNRs Measured During Three Pan American Flights                            | 7-8         |
| 7-3          | Summary of Maximum and Minimum SNRs Measured During Two<br>Canadian Armed Forces Trans-Atlantic Flights   | 7-10        |
| 7-4          | Percent of Samples for a Given Signal Quality and Number<br>Of Available Stations Useful to Navigation    | 7-15        |
| 7-5          | Project Speckled Trout OMEGA Evaluation Results                                                           | 7-16        |
| 7-6          | Aeroflot Airport OMEGA Accuracies vs Geographic Coordinates                                               | 7-18        |
| 7-7          | Aeroflot Flight Zone OMEGA Accuracies vs DME or DME/VOR Coordinates                                       | 7-18        |
| 7-8          | Alabama Getty Measurements                                                                                | 7-20        |
| 7-9          | British Respect Measurements                                                                              | 7-22        |
| 7-10         | OMEGA Fix Accuracy Onboard HMAS HOBART On Cruise Between Baltimore and Gilbraltar                         | 7-25        |
| 7-11         | Summary of the Netherlands OMEGA/Satellite Data                                                           | 7-27        |
| 7-12         | Differential OMEGA Results                                                                                | ?-28        |
| 8-1          | Radionavigation System Applications                                                                       | 8-2         |
| 8-2          | Current Maritime User Requirements/Benefits for Purposes of System Planning and Development - Ocean Phase | 8-5         |

#### EXECUTIVE SUMMARY

An assessment of the coverage and accuracy being provided by the OMEGA Navigation System in the North Atlantic (0°-70° N. Latitude, 15° E.-100° W. Longitude) has been completed. The data base for this validation consists of long-term data first the U.S. Coast Guard fixed monitor sites, short-term data collected specifically for the North Atlantic region by the Naval Ocean Systems Center (NOSC) cooperatively with the Federal Aviation Administration Technical Center (FAATC) for the U.S. Coast Guard, OMEGA/Satellite shipboard data and data provided by various users.

The OMEGA Navigation System characteristics as specified in the proposed Federal Radionavigation Flam (5) are:

- e 99% system availability
- 2-4 nu (2-drms) predictable and repeatable accuracy

Also, the use of the OMEGA Navigation System generally requires the availability of signals from three or more stations.

The results of this regional validation show that:

- e Coverage: The system meets the three station coverage requirements at 10.2 kHz except in two small areas in the extreme northeastern sector of the North Atlantic and in the western part of the Gulf of Mexico during summer day, and the near field zone of the Liberia (B) station during daytime, both summer and winter. With the exception of the western part of the Gulf of Mexico 13.6 kHz signals provide coverage in all of the areas not covered by 10.2 kHz signals.
- Accuracy: The predictable accuracy of the OMEGA system is 0.8 nm during summer day and 2.4 nm during winter night when using the most accurate LOP combinations. Similarly, the repeatable error, expressed in 2-drms, is 1.4 nm during summer day and 2.2 nm during winter night.

#### • COVERAGE ASSESSMENT

The coverage being provided by OMEGA in the North Atlantic was assessed based on the following criteria:

- Areas likely to be affected by near-field phenomena (i.e. areas close (√ 1 Mm) to transmitting stations) were rejected.
- Areas likely to be affected by modal interference phenomena were rejected.

### Areas with Signal-to-Noise Ratio (SNR) < -20 dB in a 100 Hz bandwidth were rejected

The modal and near-field areas are functions of the intrinsic signal properties and therefore result in a "hard" boundary in terms of coverage whereas the SNR threshold is a function of receiver design and is considered a "soft" boundary. The SNR (105 Hz) criteria of -20dB was originally selected based on the design of marine receivers in existence at the time (1974). This SNR which occurs at the threshold of phase tracking will vary with different types of receivers. However, because -20 dB was used for the theoretical predictions of OMEGA 10.2 kHz coverage, it has been retained for the validation process.

#### Coverage Overview

The following summarizes the 10.2 kHz signal coverage being provided in the North Atlantic by the OMEGA transmitting stations.

Norway (A): The Norway 10.2 kHz signal is accessible to most of the North Atlantic with the exception of the western part of the Gulf of Mexico and the Gulf of Guinea at all times and a small portion of Baffin Bay during summer day.

Liberia (B): The 10.2 kHz signal from Liberia covers most of the North Atlantic during the day except for a small region of the northeast coast of the U.S. and Nova Scotia during the summer. At night, for both summer and winter, the 10.2 kHz Liberian signal is usable only northeastward of a (great circle) line from Dakar to Frobisher Bay.

Hawaii (C): During the day, the Hawaii 10.2 kHz signal is excluded in the following regions: 1) east of 40° W. Longitude and north of 30° N. Latitude during the summer and 2) east of 25° W. Longitude and North of 15° N. Latitude during the winter, except for a small region in the Norvegian Sea. At night, both summer and winter, the Hawaii signal is excluded east of a line from southeastern Greenland to Morocco except for a small region in the Norwegian Sea.

North Dakota (D): The North Dakota 10.2 kHz signal covers all points in the North Atlantic, day and night, except for a small portion in the extreme northeastern Atlantic during summer day.

La Reunion (E): 10.2 kHz signals from La Reunion are mostly "long-path" to points in the North Atlantic, especially during daytime over the short-path. In those regions where the long-path signal is blocked by the low conductivity in Greenland, the nighttime signals are modally disturbed and the daytime signals are highly attenuated.

Argentina (F): Daytime 10.2 kHz signals from Argentina are accessible to points in the North Atlantic up to 50° N. Latitude during the summer and 60° N. Latitude during the winter. The western part of the Gulf of Mexico is excluded during summer day. At night, Argentina coverage is excluded only west of about 70° W. Longitude due to modal interference.

Japan (H): The 10.2 kHz Japan signal is generally unavailable in the North Atlantic during the day except for the western part of the Gulf of

Mexico in the winter and in the extreme northeastern region of the North Atlantic. At night, the Japan signal covers regions west of about 75° W. Longitude and east of about 15° W. Longitude. In addition some long-path propagation may occur near the equator.

#### Composite Coverage

The use of the OMEGA Navigation System generally requires the availability of signals from three or more stations. The 10.2 kHz coverage assessment shows that the OMEGA system meets this requirement with the exception of a few small areas. During summer day, 10.2 kHz signals from only two OMEGA transmitting stations are accessible in 1) the western part of the Gulf of Mexico, 2) a small triangular area between Norway and the United Kingdom, and 3) a semi-circular area within the near-field zone of the Norway station. During both summer and winter day, 10.2 kHz signals from only two OMEGA transmitting stations are accessible within the near-field zone of the Liberian station. An analysis of 13.6 kHz signal coverage, however, indicates that use of this higher frequency would meet the coverage requirements in these areas with the exception of the extreme western part of the Gulf of Mexico during summer day.

In order to provide a fail-soft feature, i.e. a backup station if one station is off the air, it is necessary to have four station coverage. Several areas have been identified which do not have four station accessibility of 10.2 kHz signals. These are:

Summer Day:

a. Western Gulf of Mexico

b. 55° - 70° N. Latitude, 45° W. - 10° E Longitude

c. Near-Field zone of Liberia station

Summer Night: .

a. Western Gulf of Mexico

b. 10° - 40° N. Latitude, 65° - 75° W. Longitude

c. Gulf of Guinea

Winter Day:

a. Mid - Gulf of Mexico

b. Near-field zone of Liberia

Winter Night:

a. Western Gulf of Mexico

b. 10° - 40° N. Latitude, 65° - 75° W. Longitude

The 13.6 kHz coverage analysis for summer day and winter night indicates significant improvement in four station fail-soft coverage when using this higher frequency. Areas not being provided with this fail-soft feature at 13.6 kHz are:

Summer Day:

a. Western Gulf of Mexico

b. Southeast Coast of Greenland

c. Small triangular area between Iceland and Norway

Winter Night:

a. Extreme western part of Gulf of Mexico

b. Southeast coast of Greenland

## O ACCURACY ASSESSMENT

The characteristic accuracy of the OMEGA Navigation System as specified in the proposed Federal Radionavigation Plan (5) is:

- Predictable Accuracy = 2-4 nm (2-drms)
- Repeatable Accuracy = 2-4 nm (2-drms)
- Relative Accuracy = 1-2 nm\* (2-drms)

where 1) predictable accuracy is the accuracy of positioning with respect to geographical coordinates, 2) repeatable accuracy is the accuracy with which the user can return to a position whose coordinates have been measured previously with the same system and 3) relative accuracy is the accuracy with which a user can determine his position relative to another user of the same navigation system at the same time.

#### Definition of Terms

Three measures of fix errors have been considered as defined below;





<sup>\*</sup>Experience has shown that a relative accuracy of 0.25 nm is achievable with OMEGA.(35)

- a. R is the fix bias error which is the distance between the true position and the average measured position. The average measured position is known as the fix bias point. The fix bias error affects the predictable accuracy and is almost entirely due to propagation correction (PPC) error. Most of this error can be removed by PPC adjustments.
- b.  $\sigma_r$  is the standard deviation of radial error about the fix bias point. This error measure indicates the stability of the fix, i.e. the random component of the error, and affects the repeatable accuracy of a fix.
- c. D is the total error measure due to both the bias error (R) and random error  $(\sigma_r)$ .
- d. The radius of the 95% probability circle, centered at the fix bias point is equal to 2.4478  $\sigma_r$ , assuming a circular bivariate Gaussian distribution.

#### Fix Accuracies

Figures 1, 2, 3 and 4 are maps showing recommended LOPs by geographical area for the lowest measured values of 1) the total error (D) and 2) the 95% CEP for summer day and winter night.

Average values of the total error (D) and the 95% (CEP) weighted by zonal area over the entire North Atlantic, based on the most accurate LOP combination in each zone, were calculated. These are:

#### Fix Error in Nautical Miles

|              | Total Error (D) | 95% CEP |
|--------------|-----------------|---------|
| Summer Day   | 0.8             | 1.2     |
| Winter Night | 2.4             | 1.9     |

### • CONCLUSIONS

Conclusions drawn from the analysis of the data collected for the validation of the OMEGA Navigation System in the North Atlantic region can best be expressed in terms of coverage and accuracy being provided by the system.

#### Coverage

The use of the OMEGA Navigation System generally requires the availability of signals from three or more stations. The 10.2 kHz coverage assessment shows that this requirement is met in the North Atlantic with the exception of a few small areas. However, except for the western part of the Gulf of Mexico during summer day, the



Figure 1 Recommended LOPs Based on Total Error (D), Summer Day 10.2 kHz



K.C

Figure 2 Recommended LOPs Based on Total Error (D). Winter Night, 10.2 kHz

7

A COMMON TO THE WAY AND THE



Figure 3 Recommended APPs Based on 958 CEP, Summer D: \$10.2 kHz



Figure 4 Recommended LOPs Based on 95% CRP, Winter Night, 10,2 kHz

OMEGA 13.6 kHz signals provide adequate coverage for those areas not covered at 10.2 kHz. Also, the use of the 13.6 kHz signals greatly reduces the geographical areas which do not have a four station coverage fails soft feature at 10.2 kHz.

The coverage analysis also confirmed: 1) the lack of usable signals from the La Reunion (E) and Japan (H) Stations at all times in most of the North Atlantic, as predicted, and 2) the dependence on the Norway (A) signals, especially in the northeastern sector during summer day to achieve three station coverage. Predictions show that when the Australia (G) Station becomes operational, there will be a significant improvement in coverage in the southeastern Atlantic, the Caribbean Sea and the Gulf of Mexico during nighttime conditions.

Conclusions relating to other features affecting coverage are given below:

Modal Interference The NOSC airborne and ground station data confirmed the predicted 10.2 kHz nighttime modal interference zones in the North Atlantic for the Liberia (B) and Argentina (F) OMEGA stations. At 13.6 kHz, the data showed nighttime modal interference for Liberia very similar to the 10.2 kHz data except for flights between Liberia and Recife, Brazil where the 13.6 kHz signal was more severely disturbed. However, the Argentina signals at 13.6 kHz were less modally disturbed than the 10.2 kHz signals along the southeastern coast of the United States.

Near Field Zones The NOSC radial flights indicated that the extent of the near-field zone for Norway (A) is approximately 300 km (day) and 750 km (night) at 10.2 kHz and slightly larger at 13.6 kHz. Similar results were indicated for Liberia during the day, and the modal interference pattern at night encompasses the near-field zone.

Long Path The La Reunion (E) signals at both 10.2 kHz and 13.6 kHz recorded along the East Coast of the United flates and in the Caribbean have been identified as long-path signals, i.e. signals propagating from along the longer of two great circle arcs between the transmitting station and the receiver. Such long-path signals cannot be used for navigating.

#### Fix Accuracy at 10.2 kHz

The characteristic accuracy of the OMESA navigation system as specified in the proposed Federal Radionavigation Plan (5) is:

Predictable Accuracy = 2-4 nm (2-drms)

Repeatable Accuracy = 2-4 nm (2-drms)

Relative Accuracy = 1-2 nm (2-drms)

The civil marine requirement for safety at sea is a 2-4 nm predictable accuracy according to the Federal Radionavigation Plan (5).

The civil air requirement is that the standard deviation of the lateral track errors shall be less than 6.3 nm; i.e. 12.6 nm (20) (5, 34). This is specified in the Minimum Navigational Performance Specification (MNPS) developed under the auspices of the International Civil Aviation Organization (ICAO) (5, 34).

The analysis results show that by using the most accurate LOP combination, a total error (D) of 0.8 nm is achievable in the North Atlantic during summer day and 2.4 nm is achievable during winter night. Similarly, the 95t CEP achievable in the North Atlantic is 1.2 nm during summer day and 1.9 nm during winter night.

The 95% CEP figures are directly relatable to the required repeatable accuracy, expressed in terms of 2-drms, for the circular bivariate Gaussian distribution as follows:

1-drms = 
$$\sqrt{2}$$
  $\sigma_r = 1.414 \sigma_r$ 

 $2-drms = 2.828 \sigma_r$ 

95% CEP = 2.4478  $\sigma_r$ 

2-drms = 1.155 x 95% CEP

Thus, the achievable repeatable accuracy for the OMEGA Navigation System in the North Atlantic is 1.4 nm (2-drms) for summer day and 2.2 nm (2-drms) for winter night. This is clearly within the civil air user repeatable accuracy requirements of the MNPS and the civil marine user predictable accuracy requirements of 2-4 nm for safety at sea.

The total error (D) is a combination of the bias error (R) and the standard deviation of the radial error ( $\sigma_r$ ) and cannot be expressed in terms of 2-drms. It is, however, a measure of the predictable error and has been used in this study to better define the OMEGA system for the user. The bias error (R) is almost entirely due to PPC error and therefore most of this error can be removed by PPC adjustments.

A bias error analysis indicates that consistent phase difference biases are being measured at a number of the North Atlantic ground monitor sites.

#### • RECOMMENDATIONS

Three recommendations have resulted from this assessment of the coverage and accuracy being provided by the OMEGA Navigation System in the North Atlantic. These recommendations are:

• To investigate the efficacy of the -20dB SNR (100 Hz B.W.) criterion for signal coverage. New technology being implemented in receiver design offers an increase in receiver sensitivity for acquiring OMEGA signals, and an increase in noise reduction through new processing techniques. A relaxation in the criterion for signal coverage from -20 dB SNR to -30

dB SNR will result in a significant improvement in signal coverage for new technology receivers. Consistent with this advance in receiver technology, new signal coverage diagrams should be published which show SNR thresheld contours at -30 dB.

- To remove bias errors through PPC improvements as soon as possible. The results included in this report indicate that the bias errors due to PPC corrections are normally greater than the random errors and form a major portion of the overall error. More specifically, elimination of the PPC errors of the type described in Table 6.5 of this report would result in at least a 30% improvement in overall accuracy (D). Improved propagation corrections should be developed in order that this improvement can be realized.
- To recommend the use of multi-frequency receivers for improved coverage and accuracy. Analyses described in this report indicate that the use of 13.6 kHz signals improves signal coverage substantially. The OMEGA Navigation System offers additional frequencies which may be utilized to improve coverage and accuracy further. Signal coverage diagrams and propagation corrections should be developed for these additional frequencies.

#### 1. INTRODUCTION

The OMEGA Navigation System provides a worldwide enroute positioning capability from eight transmitting stations. Although the operational transmitting stations now provide useful navigation signals, the system will not be declared fully operational until a coverage and accuracy verification program is completed. This coverage and accuracy verification is called validation and is being accomplished through a measurement program conducted by the U.S. Coast Guard on a regional basis. The program includes the collection of data from fixed monitor receiver sites to correct and update propagation models and tables, special calibration tests and the collection of operational data to confirm propagation parameters affecting coverage and availability (1,2,3). As each geographic area is validated, the OMEGA system performance in that region will be defined and users will be advised of operational characteristics. The OMEGA system will be declared fully operational worldwide when the eighth permanent station becomes operational and signal accuracy and coverage in all regions have been validated. The validation process for the complete system will be accomplished by 1985.

The overall validation program is intended to substantiate OMEGA capability in several oceanic regions in the absence of other long-range navigation systems in those regions. The first region, a validation of OMEGA signals in the West Pacific Ocean was carried out in 1977 (4). The validation of the OMEGA Navigation System in the North Atlantic is the second region in the U.S. Coast Guard's Regional Validation Program. The North Atlantic region of interest is an area bounded by longitudes 100°W and 15°E and latitudes 0°S and 70°N. A map is shown in Figure 1-1 to illustrate the region. In succeeding years, validation efforts will address the following ocean areas: North Pacific (1981), South Atlantic (1982), Indian Ocean (1983), and South Pacific (1984).

Figure 1-1 Map of orth Atlantic Region



1-2

#### 2. BACKGROUND

The methodology and results of the OMEGA validation in the North Atlantic region are presented in later sections. A description of the OMEGA Navigation System and the factors which influence the accuracy of the system is provided in this section.

## 2.1 DESCRIPTION AND STATUS OF THE OMEGA NAVIGATION SYSTEM (5, 6)

The OMEGA Navigation System is a very low frequency (VLF), CW, phase comparison, circular or hyperbolic system. VLF propagation characteristics are such that eight (8) transmitting stations can provide worldwide signal coverage. At present, seven of the eight permanent stations are operating and the eighth, located in Australia, will be on the air in late 1980. Each station transmits four common navigational frequencies (10.2 kHz, 11.05 kHz, 11 1/3 kHz, 13.6 kHz) and a unique frequency. The transmissions from each station are time-sequenced to prevent interstation signal interference.

The characteristic predictable accuracy of the OMEGA Navigat on System as specified in the proposed Federal Kadionavigation Plan is 2 to 4 nm (2-drms) (5). The accuracy actually achieved by a user depends on geographic location, station pairs used, accuracy of propagation corrections, receiver characteristics, and operator familiarity. The repeatable accuracy is 2 to 4 nm (2-drms) (5). The relative accuracy is 1 to 2 nm (2-drms) (5), however, experience shows that a relative accuracy of 0.25 nm is attainable. (35) Definitions of these accuracies as defined in Bowditch (7) are as follows:

- Predictable accuracy is the accuracy of positioning with respect to geographical coordinates.
- Repeatable accuracy is the accuracy with which the user can return to a position whose coordinates have been measured previously with the same system.
- Relative accuracy is the accuracy with which a user can determine his position relative to another user

of the same navigation system at the same time. A system with a high relative accuracy provides good rendezvous capability for the users of the system.

Table 2-1 lists the OMEGA transmitting stations. A temporary station, located in Trinidad, is using the G station segment pattern which will be used by Australia when it becomes operational in 1980. All of the permanent stations (except Australia) are on the air, synchronized, and transmitting at a nominal radiated power of 10 kW at 10.2 kHz. The Trinidad station transmits at 1 kW.

Each of the OMEGA stations transmits in a prescribed time sequenced CW mode. This signal format (the OMEGA format) provides for transmission on 10.2 kHz, 11.05 kHz, 11.33 kHz. 13.6 kHz and a unique frequency, as illustrated in Figure 2-1. Each transmitter is identified by the pattern of segments which it transmits. A receiver uses the OMEGA format pattern to identify each of the stations it is monitoring.



Figure 2-1 OMEGA Signal Transmission Format

TABLE 2-1
OMEGA TRANSMITTING STATION NETWORK

| LETTER<br>DESIGNATION | SITE                               | LATITUDE/LONGITUDE             | OPERATING<br>AGENCY                                                           |
|-----------------------|------------------------------------|--------------------------------|-------------------------------------------------------------------------------|
| A                     | ALDRA, NORWAY                      | cella                          | e was I have                                                                  |
| В                     | MONROVIA, LIBERIA                  | 66°25'N/13°08'E 6°18'N/10°40'W | Norwegian Tele-<br>communications<br>Administration                           |
|                       |                                    | 20 47 10 40 4                  | Liberian Minis-<br>try of Com-<br>merce; Industry<br>and Transporta-<br>tion1 |
| С                     | HAIKU, HAWAII                      | 21°24'N/157°50'W               | U.S. Coast Guard                                                              |
| D                     | LA MOURE, N.D.                     | 46°22'N/98°20'W                | U.S. Coast Guard                                                              |
| E                     | LA REUNION ISLAND,<br>INDIAN OCEAN | 20°58'S/55°17'E                | French Navy                                                                   |
| F                     | GOLFO NUEVO,<br>ARGENTINA          | 43°03's/65°11'W                | Argentine Navy                                                                |
| G                     | WOODSIDE,<br>AUSTRALIA2            | 38°29'5/146°56'E               | Australian<br>Dept. of Trans-                                                 |
| H                     | TSUSHIMA, JAPAN                    | 34°37'N/129°27'E               | portation  Japanese Mari- time Safety                                         |

- 1. Station B, Liberia, is jointly operated by Liberian personnel and a U.S. Contractor.
- 2. A temporary station at Trinidad (10°42'N/61°38'W) under contract operation is transmitting in the G station segment pattern. The station in Australia is expected to become operational in 1980, at which time the Trinidad station will cease operation.

M. C. C. Company

The OMEGA Navigation System is usable by ships, aircraft and land vehicles in either a hyperbolic or circular mode. In the hyperbolic mode, the standard OMEGA receiver measures the difference in phase between the signals transmitted from two time-synchronized stations. A minimum of two phase difference measurements are required to provide a fix. To obtain these two phase difference measurements, signals from three stations must be available at the receiver.

The circular mode of operation requires signals from only two stations to obtain a fix. However, the receiver, to operate in this mode, must have a precise time standard. Some of the latest receivers use the OMEGA signals to calibrate the receiver's oscillator thereby eliminating the requirement for an expensive internal time standard; the results are not as precise as using the hyperbolic mode of operation or from the use of precise oscillators and also require one to two hours of operation before useable position fixes are obtained.

Position fixing using OMEGA relies on the measurement of the relative phase between signals received from pairs of transmitting stations, or between a single station and a stable local oscillator if the circular mode is utilized. For a given pair of stations, the signals will have the same relative phase everywhere on a line which can be shown to be a hyperbolic Line Of Position (LOP). Furthermore, for the same two stations, the signals will have the same relative phase on many such LOPs. Without other information, it is impossible to determine which line of position a receiver is on for a single phase difference measurement. This situation is called lane ambiguity. Two lines of position representing equal phase differences form the boundary of an OMEGA lane. The receiver can determine the position within a lane but cannot distinguish among lanes.

The width of an OMEGA lane is dependent on the navigation frequency. Measured along the baseline between two stations, a lane for the 10.2 kHz frequency is approximately 8 miles (one-half wave-length) wide. The other frequencies produce characteristic lane widths, and it

is possible to use combinations of these to establish wider lanes. This technique is useful if an established lane identification is lost for some reason.

In the simplest form of operation, the OMEGA user will initialize his receiver when he is at a known location, thereby establishing lane identification. Then, while under way, lane counts are noted in a log as lane boundaries are crossed. Many modern receivers perform this function automatically.

Published OMEGA charts aid the navigator in establishing his position as well as resolving lane ambiguity. OMEGA charts show lines of position which are derived from theoretical radio wave propagation conditions. However, VLF radio wave propagation is affected by several spatial and temporal factors which must be considered in using OMEGA. Propagation Correction (PPC) tables are published which provide corrections to be applied to phase measurements made by a receiver. By adding the proper correction for the time and location as published in the PPC tables to the receiver phase measurements, the position may be plotted on OMEGA charts. A more sophisticated receiver can apply the PPC table corrections automatically and provide latitude and longitude coordinates of position.

Most of the OMEGA Navigation System error, at the present state of the art, is attributable to uncertainty in the factors related to VLF radio propagation. The VLF wave travels at nearly the speed of light but the velocity is affected by a number of conditions which will be discussed in the next section. It is necessary to understand the theory of VLF propagation in order to make a meaningful interpretation of the phase measurement. A variety of techniques including theoretical formulation, modeling and empirical observation, are used to study VLF propagation. The Hydrographic/Topographic Center publishes the PPC tables based on the Coast Guard model to make the results of this theory accessible to the OMEGA user. The PPC tables provide the user with corrections to be applied to phase measurements depending on the location of the receiver,

the time of day and the month of the year. These corrections compensate for temporal and spatial errors accumulated along the propagation path and are obtained from theoretical estimates modified by empirical measurements from the OMEGA monitor network.

#### 2.2 OMEGA MONITOR NETWORK

The OMEGA Navigation System Operations Detail (ONSOD) maintains a worldwide monitor network. Each monitor consists of an OMEGA receiver and data logging equipment. The main purpose of these monitors is to provide data for use in preparing the PPC tables and to improve the modeling techniques used. The data are also being used for the OMEGA validation process. A list of the North Atlantic monitor sites is given in Table 2-2.

Data are available as far back as 1966 when the Norway and Hawaii transmitting stations were in operation. This data base has been augmented considerably with the addition of new monitor facilities and the commissioning of five additional transmitting stations, i.e., North Dakota (1972); Japan (1975); and Liberia, La Reunion, and Argentina (1976). Data have been collected using the Magnavox MX-1104 receiver at 1 number of monitor facilities since early in 1978. Prior to that time, data was collected using other types of receivers.

The data collected at these monitor sites are processed and stored on magnetic tape in the MASTERFILE data bank. The North Atlantic File contains 1870 blocks of 10.2 kHz data from 36 sites (Table 2-2) over the period 1966-1978. The data consist mainly of phase difference information. Each block contains one month of hourly phase differences at one frequency at a given monitor site for a given station pair.

#### TABLE 2-2

#### MONITOR NETWORK

#### NORTH ATLANTIC SITES ON 10.2 kHz MASTERFILE

大学のでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmので

Portsdown, U.K. Bermuda, U.K. Florida, USA Trinidad, Site 2 NRL, Washington, D.C., USA Hestmona, Norway Reflavik, Iceland Hammerfest, Norway Cambridge, Massachusetts, USA Farnborough, U.K. St. Anthony, Newfoundland, Canada Sardinia, Italy Toulon, France Miami, Florida, USA Coral Harbor, Canada Norfolk, COMOPTEVFOR Oslo, Norway Spitzbergen, Norway (identified as OSLO2 on the file) Resolute, NWT, Canada Montgomery, Alabama, USA La Moure, North Dakota, USA Piarco, Trinidad Belem, Brazil TASC, Reading, Massachusetts, USA Nea Makri, Greece Sabana Seca, Puerto Rico, USA Vila Nova, Azores Monrovia, Liberia Yorktown, Virginia, USA Canary Islands Eglin Air Force Base, Florida, USA Frobisher Bay, Canada Lajes, Azores Panama, Canal Zone Portsmouth, Virginia, USA Washington, D.C., USA

#### 2.3 VLF PROPAGATION THEORY AND MODELS

VLF radio waves can be viewed as propagating in the waveguide bounded by the D-region of the ionosphere and the surface of the earth. Ideally, these signals would propagate with constant phase velocity and with generally low attenuation. This is true if the characteristics of the waveguide were homogeneous. However, there are several ways in which the waveguide formed by the ionosphere and the earth's surface differs from the idealized conception and each has a significant effect on VLF propagation.

#### 2.3.1 Effects on VLF Propagation

The various effects of propagation path characteristics on VLF propagation are discussed in the following paragraphs.

#### Solar Ionospheric Effects

Signal propagation is affected by the daily variations in the ionization levels in the ionosphere. The diurnal variation in intensity of ionizing solar radiation produces changes in the nominal ionospheric reflection height from about 70 kilometers in the daytime to 90 kilometers at night. This in turn, affects the velocity of propagation of VLF radiowaves. Figure 2-2 shows typical variations in the recorded phase of a VLF signal over a one-day period.

The increase in phase delay at night results from the increase in the height of the ionosphere. This normal diurnal shift will be dependent on the sun's zenith angle and will vary on a daily, seasonal, and annual basis. The prediction of this diurnal effect is the dominant parameter in determining the phase of the VLF signal.

As can be expected, there will be greater attenuation of the signal in the daytime due to the decrease in the effective reflection height. However, since this greater daytime attenuation is not large, VLF signals can still travel over great distances.



Figure 2-2 Diurnal Variation in the Phase of a VLF Signal Observed at Boulder, Colorado

#### Geomagnetic Field Effects

Asymmetry occurs in the attenuation rates of signals propagating in directions normal to the horizontal component of the earth's magnetic field. Figure 2-3 shows the strength of 10.2 kHz transmissions, propagating in a direction parallel to the direction of the earth's magnetic field, as a function of distance (8).

and some straight of the second secon

asp) its sindafiliting asticism rate same was istain the operation of the state of

In the curve, the heavily shaded region shows field strength when propagating from north to south at distances noted on the abscissa. The lightly shaded region indicates transmission in the opposite direction, and for this direction, the distance scale on the abscissa must be reversed. As can be seen, the attenuation rate for north-south propagation is the same as for south-north propagation. Further study of this curve will indicate regions where the signal strengths of the same transmission traveling in opposite directions around the world start to approach each other in magnitude. This region is known as the antipode. It should be noted also that daytime attenuation is greater than nighttime. Without using sophisticated techniques to separate and detect these two signals, it is difficult to determine the phase of a one-way transmission traveling in a specific direction. Therefore, this places an upper bound on the useful range of transmission. The north-south curve indicates useful signals out to distances of 15,000 kilometers (9,200 statute miles).

Figure 2-4 <sup>(8)</sup> indicates the field strength of the 10.2 kHz signals propagating in directions normal to the earth's magnetic field, or from west to east (the heavily shaded region), and from east to west (the lightly shaded region).

These values are a function of latitude. This particular graph neglects changes in attenuation due to variations in ground conductivity. The daytime transmission toward the west in this example is attenuated at the rate of 4.4 dB/Mm, or more than twice the value of attenuation found in transmission toward the east. Transmission toward the west is only useful out to about 9,000 kilometers (5,600 statute miles), while transmission towards the east is sometimes useful out to about 18,000 kilometers, (11,000 statute miles).



Conservation of the second of the second

The state statement as a section

Figure 2-3 Transmission from North to South or South to North



Figure 2-4 Transmission from West To East Near the Equator

#### Ground Conductivity Effects

In the non-ideal waveguide, we observe that the earth is not a perfectly conducting sphere, nor is its conductivity uniform. Figure 2-5 approximates typical conductivities within the North American continent. Conductivity values range from 4 mhos per meter over ocean areas to  $10^{-5}$  mhos per meter in Arctic tundra regions. The effect of that change in conductivity is seen in Figure 2-6. The signal propagates over seawater with an effective attenuation rate of 3 dB per 1,000 km. The same signal, propagating over an ice path, is attenuated at a rate of 20 dB per 1,000 km.

and the contribution of the second of the se

#### ABNORMAL EFFECTS

These effects occur primarily from an active sun, sunspots, flares, and X-ray emissions. Most of these abnormal effects are not predictable. The ionospheric disturbances caused by the sun, which affect the ability to predict the phase velocity of the VLF signal, can be categorized into three distinct perturbation categories:

- Sudden ionospheric disturbances (SID's)
- 2. Ionospheric storms
- 3. Polar cap absorption évents (PCA's)

#### Sudden Ionospheric Disturbances

A sudden ionospheric disturbance (SID) is an increase in ionization of the ionosphere due to solar flare activity. It results in a lowering of the ionosphere and produces an apparent increase in the phase velocity (or an increase in phase of the signal).

months one and a temporal and the second of Conductivity Variation Within North American Continent Figure 2-5

بيكاف بالمائل بمدال للفوج والمؤسون فأفها فالمفاسلات كالمائع إسدادا فسعوه فللراح ومساعاته فيعدون مصحفر مغاد مساهمته والمقادات المفارسة المف



Figure 2-6 Conductivity Effects

The resulting changes in phase velocity due to solar activity cause the predictability of OMEGA signals to degenerate. Ionospheric lowering due to SID's caused by solar flare X-radiation can cause errors as high as 100 centicycles, or, equivalently, close to 10 nautical miles, for an all daylight path. These disturbances form in a matter of minutes after the flare begins and last 2 to 3 hours. Extreme flares ("M" type flares) have been recorded which caused errors for 12 hours, with a maximum phase shift of 20 centicycles. Although rare, they are of significance because of their duration.

An example of the effect of phase perturbations on propagation time during a large sudden ionospheric disturbance is illustrated in Figure 2-7. The SID associated with a solar flare began at about 1709 GMT on 8 July 1968.



Figure 2-7 The Effects of a Large Sudden Ionospheric Disturbance

At 1725 GMT the propagation delay is about 100  $\mu$  seconds. This would introduce a position fix error of about 9.3 nm. The effect is long lasting — still present, although much reduced, 3 hours later.

### Polar Cap Absorption (PCA)

PCA's cause extreme phase anomalies due to high-energy solar protons increasing the D-layer ionization and thereby reducing the reflection height down to altitudes on the order of 50 kilometers. These usually last on the order of one to three days. Within a few hours after solar flare occurrence, phase perturbations can be noted and usually absorption effects are evident.

The PCA event is located within the auroral zone, and occurs at high latitudes, as the name implies. Since the auroral zone extends to about 60° invariant latitude at night and about 78° during the day, the polar cap is defined to lie within a roughly oval shape interior to these latitudinal boundaries.

The proton flux is more intense at the polar cap and, by virtue of broken magnetic field lines in this region, more energetic particles are allowed to enter the ionosphere and penetrate to lower altitudes. This creates more intense ionization in the D-region and causes more pronounced phase shift and attenuation of a VLF signal here than elsewhere on the earth.

An example of this gation absorption is shown in Figure 2-8. Here transmissions 1. Forway as received at Cambridge, Massachusetts, are illustrated. This diagram shows the first two days of an average "Polar Cap Anomaly" (PCA) caused by corpuscular bombardment of the ionosphere by protons, and perhaps other charged particles, shot out in a solar eruption. The event shown began at approximately 10 GMT on 9 June 1968 and decreased in magnitude after about 40 hours.



Figure 2-8 A Polar Cap Absorption Anomaly

#### Atmospheric Noise

At VLF, atmospheric noise rather than thermal noise is the limiting factor on signal reception and phase measurement. Lightning discharges from electrical thunderstorms are the primary sources of atmospheric noise. This energy will propagate for large distances with little attenuation in the earth-ionosphere waveguide and therefore, seriously affect receiver operation. The peak of the RF energy spectrum, at great distances from the discharge, occurs at about 10 to 11 kHz. Since most lightning storms occur over the land masses near the equator and are almost non-existent at very high latitudes, atmospheric noise is most prevalent near the equator and then decreases with increasing latitude.

The main effect of noise is to introduce a phase error into the measurement. In general, however, degradation by atmospheric noise can be overcome by signal limiting in the receiver and by signal integration.

#### 2.3.2 Theoretical Predictions

Theoretical calculations of OMEGA signal propagation have been performed to make a preliminary assessment of OMEGA signal availability in the North Atlantic as well as other areas. Modifying and extending a VLF propagation model formulated earlier by Budden, Dr. Pappert and his co-workers at the Naval Ocean Systems Center (NOSC) developed a numerical prediction scheme based on a waveguide-mode representation of VLF signal propagation.

After several years of refinement this computational model now furnishes reliable and accurate results, especially signal amplitude and phase behavior as a function of great circle distance from a signal source. Predictions from this model have been verified for a limited number of paths in the northern hemisphere, but the principal weakness lies not so much in the method itself but primarily in the uncertainty of the ionospheric parameters used in the model. Thus, although these prediction models are generally reliable, observational data is indispensable to the task of establishing the relationship between predicted and

actual signal behavior. Comparisons of predicted and measured signal behavior show very good correlation over portions of the signal paths and fairly sharp departures from modeled behavior in other regions. Significantly, these departures can be linked to distinct physical mechanisms, a factor of special importance in regional validation planning. One of the most fruitful aspects of the waveguide-mode prediction model, for the purposes of this effort, is that it shows where the OMEGA signal parameters achieve certain "threshold" conditions. These "signal threshold boundaries" indicate to a test designer where crucial observations of OMEGA signals should be made thus circumventing the need for exhaustive testing over all the area in a given region.

OMEGA monitor studies have shown that, under certain geophysical conditions such as time of day, propagation path azimuth, and geomagnetic field direction, signal phase does not exhibit the stability which must exist in order to accurately predict diurnal phase variation. Under these conditions departures from the expected phase variation can be significantly large and frequently unstable, making such OMEGA navigation signals unusable. In the conventional model of VLF wave propagation, this phenomenon is characterized as "modal interference".

The earth-ionosphere waveguide can support a number of signal components or "modes" having the same frequency, but slightly different phase velocities. Modal interference is a special form of signal interference wherein two or more waveguide modes interfere with each other and irregularities appear in the phase pattern. This type of interference occurs predominantly under nighttime conditions when most of the propagation path is non-illuminated and the boundary conditions of the waveguide are most irregular. It is most severe for signals originating at stations located close to the geomagnetic equator.

Based on known station locations and models for VLF signal behavior and noise phenomena, it is possible to generate predictions of likely OMEGA signal coverage based on the following criteria:

- Areas likely to be affected by near-field phenomena (i.e., areas close (\(\sigma\) lmm) to transmitting stations) are rejected.
- Areas likely to be affected by modal interference phenomena are rejected.
- Areas with S/N < -20 dB (based on atmospheric noise models in a 100 Hz bandwidth) are rejected.

These criteria establish the availability of OMEGA signals throughout a region. However, other factors affect the usability of the signals.

The accuracy obtainable for signals of equal amplitude and phase stability is affected by the geometric dilution of precision (GDOP). A useful theoretical tool is an error model and computational scheme developed for OMEGA hyperbolic and range-only position-fixing techniques. This model is used to compute the GDOP incurred in determining position coordinates. The signal path phase error model presumes error data from existing globally applied propagation corrections (PPC's). After the signal accessibility in a region has been determined using criteria defined in previous paragraphs, these models are applied to eliminate certain combinations of signals in areas that would lead to excessive positional error. In effect, pair selection of signals available in a certain region can be ranked by accuracy.

### 2.3.3 <u>Models for Propagation Corrections</u> (9)

Charts have been prepared for large areas of the world showing Line-Of-Position (LOP) lattices corresponding to several transmitting stations. These charts have been constructed on the assumption that VLF

radio waves travel with the same velocity in all directions. This means that any two observers having the same great-circle distance from a transmitter are assumed to record identical accumulated phases. Put another way, the basic postulate of LOP charting is that electromagnetic wave fronts emanating from a transmission source, i.e., the loci of points receiving equal phases, are circular on the surface of the earth. However, due to the non-uniform electromagnetic properties of the earth's surface and the ionosphere, together with diurnal variations and the presence of a geomagnetic field, the wave fronts are appreciably noncircular. Thus, the phase velocity of the wave depends significantly on the direction of propagation and consequently, a user's position, as determined by received phase and charts alone, will not coincide with his true position. Much experimental and theoretical investigation of VLF wave propagation has contributed to the calculation of these phase discrepancies. The results of these studies have been synthesized into a computer program which generates tables of phase corrections, termed propagation corrections (PPC's). Individual corrections are tabulated for 4 x 4 regions of the world and a navigator simply algebraically adds the PPC difference computed for his region to the measured phase difference to obtain a more accurate LOP. These tables have undergone refinement and, currently, use of PPC's can yield positional accuracies of approximately one nautical mile. An example of a PPC table is given in Figure 2-9.

It should be mentioned at this point that a number of computational methods exist which could be used to calculate phase corrections. These programs stem from three alternative approaches to the phase prediction problem: (1) closed form, (2) full-wave, or (3) semi-empirical. These three modeling techniques are representative of the spectrum of techniques utilized to predict VLF signal parameters. The first two approaches listed above are primarily theoretical and not well-suited to modification by conventional experimental data. The semi-empirical approach consists of fitting "functional forms" to the dependence of phase variation (departure from nominal phase) upon certain independent parameters, e.g., ground conductivity along the path, path azimuth, and time

| DATE      |        |     |      |     |     |     |     |     |       |      | LOC | ATI  | ON  | 16.0 | N 4 | 0.0 W |
|-----------|--------|-----|------|-----|-----|-----|-----|-----|-------|------|-----|------|-----|------|-----|-------|
|           |        |     |      |     |     |     |     |     |       |      | STA | OTTA | N A |      | NO  | RWAY  |
|           | GMT 00 | 01  | 02   | œ   | 04  | 05  | 06  | 07  |       | 18   | 19  | 20   | 21  | 22   | 23  | 24    |
| 1-15 JAN  | -71    | -77 | ·~71 | -71 | -71 | -71 | -71 | -71 |       | -24  | -40 | -61  | -71 | -71  | -71 | -71   |
| 16-31 JAN | -71    | -71 | -71  | -71 | -71 | -71 | -71 | -65 |       | - 20 | -36 | -57  | -71 | -71  | -71 | -71   |
| 1-14 FEB  | -71    | -71 | -71  | -71 | -71 | -71 | -71 | -9  | ***** | -16  | -31 | -52  | -71 | -71  | -71 | -71   |
| 15-28 FEB | -71    | 71  | -71  | -71 | -71 | -71 | -67 | -44 |       | -09  | -24 | %    | -71 | -7,1 | -71 | -71   |
| 1-15 MAR  | -71    | -71 | -71  | -71 | -71 | -70 | - 5 | -32 | ****  | -05  | -17 | - 39 | -70 | -71  | -71 | -71   |
| ****      |        |     |      |     |     |     |     |     |       |      |     |      |     |      |     |       |
| 6-31 DEC  | -71    | -71 | -71  | -71 | -71 | -71 | -71 | -71 | ***** | - 28 | -43 | -65  | -71 | -71  | -71 | -71   |

Figure 2-9 Sample Propagation Prediction Correction Table

(month, day, hour). The sources of data from which the functional forms are derived include both observational results and information generated by computer programs based upon the full-wave method described above. One important advantage of the semi-empirical method is that its inherent statistical structure readily accommodates modifications necessary to conform to new data. Thus, only programs based on this semi-empirical technique currently provide propagation corrections of sufficient ac-

#### 2.4 OMEGA CAPABILITIES IN THE NORTH ATLANTIC

curacy to be used on an operational basis.

The North Atlantic is the area where the greatest number of users will rely on the OMEGA Navigation System for long range navigation. In addition to the general propagation features discussed above, other factors are prominent in this area:

- User Requirements As Figure 2-10 clearly illustrates, ship densities in much of the North Atlantic Validation region are high. Statistics show that more than 50% of registered vessels are to be found in these waters. Both the wide dispersion of traffic routes and concentration of world shipping within the area stress the importance of defining user navigation requirements and of relating these requirements to the wide area service capability of OMEGA.
- Signal Accessibility A more precise knowledge of signal/noise threshold contours is required to support user procedures for station selection/deselection. Signal degradation over Greenland and within the Greenland shadow is frequently reported and presents unique accessibility problems not present in other areas. Loss of Station H near the eastern edge of the shadow and sporadic performance of the Norway transmission within the shadow have been isolated as primary causes of lane loss problems. Poor reception of North Dakota near Northwest Europe has been frequently reported.

)

CO. ALANA

NOTE: SHIP DENSITIES LESS THAN 1.0 NOT PLOTTED DATA SOURCE: AMVER STATISTICS, U.S.C.G.

Figure 2-10

The same of the sa

Average Daily Merchant Ships in the North Atlantic

Reporting to U.S. Stations, January 1972

Accuracy - The ultimate goal of the validation effort is to verify the quality of navigation service provided and to better understand the temporal and spatial error distributions which define its accuracy. Reported accuracy performance in the North Atlantic ranges from "as predicted" to "poor" depending on the user, his experience and his receiver equipment. A Pan American/FAA flight test program(10) reported consistent accuracy in the 1 to 2 mile range due to the sophistication of the computer algorithms used. Other flight assessments have been reported by the Royal Air Force (11) and Laker Airways (12) with variable results. Seaborne users have reported 3 to 9 mile errors. The need for improved North Dakota PPC's to reduce a northwesterly error was cited and new coefficients were developed (13).

Modal Interference - Given daylight conditions along the entire propagation path, the only region of modal interference is a more-or-less circular area of radius 500-1000 km immediately surrounding a transmitting station. If a given path is subject to modal interference under nightime conditions, then the path is likely to exhibit strong irregularities (e.g., cycle slips) when the path is under transition (change from night-to-day or day-to-night conditions).

For the low-geomagnetic latitude transmitting stations (Liberia, Hawaii, Argentina, and Japan) the region of modal interference extends to the east approximately 2000 miles in a 20 - 30 sector. The northern hemispheric stations (Hawaii and Japan) show regions of modal inteference in the southwestern quadrant at all ranges. The Argentina station exhibits similar modal patterns except in the northwestern quadrant (relative to the station) rather than the southwestern quadrant. The Liberia station is nearly coincident with the geomagnetic equator and thus shows modal interference patterns in both the northwestern and southwestern quadrants in addition to a longer-range pattern to the east. The La Reunion and Australia (anticipated behavior) stations have higher geomagnetic latitudes and thus exhibit a pattern of modal interference in the northwestern quadrant beyond about 3000 miles in additon to a "near-field" region of approximately 1000 km radius. The high-latitude transmitting stations (North Dakota and Norway) are found to have no significant regions of modal interference outside the "near-field" (1000 km) region.

- Auroral Zone Signal Paths The effective height of the ionosphere is reduced and the phase velocity is increased in the auroral zone. This zone is an annular ring which lies between latitudes 600 and 800 in both the Northern and Southern hemispheres. Propagation models consider the latitude and geomagnetic bearing angle for all midpath segments since both signal attenuation and phase velocity are dependent upon these factors. Above 600 North latitude, however, more uncertainty exists. In addition to different ionospheric characteristics, much of the North Atlantic/Auroral region of interest to this validation effort is characterized by extremely low ground conductivity. For values of ground conductivity decreasing below 0.14mho/m, theory predicts increasing phase velocity (with decreasing conductivity), whereas observation shows that phase velocity decreases with decreasing conductivity. Since Greenland exhibits the lowest conductivity of any earth surface area and also lies under the Auroral zone, this portion of the earth/ ionospheric waveguide is not well defined by theoretical modeling. Figures 2-11 and 2-12 depict the Auroral zone and the relative phase velocity variation as a function of geomagnetic latitude within the zone.
- Long Path Conditions occasionally prevail which are particularly favorable to very low frequency propagation paths and theory predicts this possibility in certain regions of the North Atlantic. Receiver tests conducted by Navidyne Corporation (14) showed that strong and stable La Reunion signals were regularly received throughout the Gulf of Mexico from the west. (15,000 miles rather than 10,000). Identification and isolation of a data base which will provide an estimate of where and when this condition may occur would benefit refinement of transmitter deselection procedures, especially for areas where long path transmission is com- mon.



Figure 2-11 Effective Auroral Zone for VLF Propagation

He de state de mentione de la contraction de la



Figure 2-12 Relative Phase Velocity Variation in the Auroral Zone

#### 3. VALIDATION METHODOLOGY

#### 3.1 PREDICTED SIGNAL THRESHOLD BOUNDARIES

Coverage diagrams based upon predicted signal threshold boundaries for summer noon and winter midnight at 10.2 kHz are given in Figures 3-1 and 3-2 (2). These coverage diagrams show those areas where the signal-to-noise ratio (SNR) is greater than -20 dB (100 Hz bandwidth), and exclude areas likely to be affected by near field phenomena or modal interference. These coverage diagrams include Australia which will be part of the final OMEGA system and exclude the temporary transmitting station in Trinidad.

and the course of process of the contract of t

The predicted coverage diagrams were produced by developing a worldwide 10.2 kHz signal amplitude map for each of the eight transmitting stations and worldwide noise maps at 10.2 kHz. From these, SNR maps were produced upon which SNR threshold (-20 dB in a 100 Hz bandwidth) contours were drawn. These were then combined to produce composite coverage maps for two specific time-of-day conditions: (1) all-daylight, all-points at local summer noon and (2) all-night, all-points at local winter midnight.

#### 3.2 PREDICTED FIX-ACCURACY DEGRADATION

In OMEGA, fix accuracy is not only dependent on measurement uncertainties and signal quality but also on geometric effects. The geometric effects are taken into account by a factor known as "Geometric Dilution of Precision (GDOP)". GDOP is dependent upon both the divergence of the hyperbolic lines of position and the LOP crossing angles. The relative divergence of hyperbolic lines derived from two stations is proportional to the cosecant of half the angle subtended by great circles from the observer's location to the two transmitting stations being measured. Thus the relative divergence with the observer along the baseline where the two stations subtend 180° will be unity (i.e., with no



المحالية المجارة والمحالية والمحالية

Composite Coverage Diagram, Full Sytem Local Summer

(Approx. Mid-Summer) Noor

Figure 3-1

O

3-2



C,

Composite Coverage Diagram, Pull System Local Winter (Approx. Mid-Winter) Midnight Figure 3-2

JANUARY 1978

3-3

divergences, the spacing between sequential equi-phase hyperbola will be half the radio wavelength). At the other extreme, with the two stations located along the baseline extension (i.e., subtending  $0^{\circ}$ ), the relative divergence is infinite.

At distances close to the baseline, LOP determination accuracy is affected very little since the LOP divergence is relatively small. As distance from the baseline becomes greater, there is an increase in LOP divergence which may produce a significant error in position. The effect of GDOP, then, is to magnify a given phase measurement error in terms of displacement in distance on the baseline to a distance many times greater at locations greatly separated from the baseline, but with the same phase measurement error.

The RMS fix accuracy degrades as the crossing angle of LOPs narrows. Position can be most accurately determined when two LOPs cross at an angle of approximately 90 degrees. An angle which varies significantly from this optimum may reflect a less precise location of position. To obtain an angle with a measurement close to 90 degrees, a navigator may select the most suitable LOPs from several LOP combinations. This flexibility in developing a position determination is a feature unique to OMEGA.

#### 3.3 EMPIRICAL DATA

A discussion of predicted signal threshold boundaries and fix accuracy degradation has been presented in Sections 3.1 and 3.2. The purpose of the OMEGA Navigation System Validation is to assess the coverage and accuracy being provided by the OMEGA Navigation System from measured data and compare it with predictions as a function of location and time. These measured data are comprised of signal amplitude data collected during tests conducted by the Naval Ocean Systems Center (NOSC) cooperatively with the Federal Aviation Administration Technical Center (FAATC), phase difference data collected at the ONSOD fixed monitor facilities and a variety of operational data. A more complete description of the data is given in Sections 4 and 7 of this report.

The first step in the analysis of the data was to assess the coverage being provided by the OMEGA Navigation System in the North Atlantic region at 10.2 kHz. The prime data for accomplishing this were the NOSC signal amplitude ground and airborne test data (15). Using these signal amplitude data and International Radio Consultive Committee (CCIR)\* noise predictions (16), SNRs were derived as a function of location, season and time for each of the OMEGA transmitting stations. From these data a contour for an SNR of -20 dB (allowing for modal interference and near field zones) was drawn on separate maps for each of the transmitting stations, for two seasons and two times of day (local day and local night). These contours were then overlaid to produce composite coverage maps based on measured data. These were then compared with the predicted 10.2 kHz composite coverage maps.

The state of the s

Based on the coverage assessment, the next step in the analysis was to evaluate the quality of the accessible signals. The prime data for accomplishing this were the ONSOD ground station 10.2 kHz phase difference data. First, enough data to provide a meaningful sample were processed for each available LOP at as many ground stations as possible. After processing, these data were manually screened to determine which months and which LOP pairs were suitable for further processing to determine position-fix accuracies. The determining factors included the size of the standard deviation of the phase error (i.e., random error) and the bias error being observed. Large bias errors were further examined to determine if they were being caused by modal interference or were truly a bias in the measurements. If the latter was true, the data were retained for further analysis.

<sup>\*</sup>Although airborne noise measurements made by NOSC were very sparse, a comparison of these values with those of CCIR indicated fairly good agreement. CCIR noise levels have therefore been used throughout this analysis.

The third step in the validation was to determine the position fix accuracies that are being provided by OMEGA in the North Atlantic region at 10.2 kHz. The prime data for this analysis were the selected ONSOD processed ground station data supplemented with the integrated OMEGA/Satellite shipboard data. The position-fix accuracies were computed as a function of geographic location, LOP pair, season and time of day.

Additional analysis tasks included a signal coverage assessment at 13.6 kHz for comparison with the 10.2 kHz coverage, a phase difference bias error study, and investigation of the effects of SIDs on OMEGA fixing accuracy.

Shark in concession to the first of the firs

#### 3.5 COMPARISONS AND CONCLUSIONS

The measured coverage and accuracy being provided by OMEGA in the North Atlantic region have been compared with predictions of coverage and accuracy. Conclusions drawn concern signal accessibility, achievable fix accuracy and effectiveness of the PPC model. Also, an assessment has been made as to how well the OMEGA Navigation System meets the maritime and air user requirements in the North Atlantic region.

#### . DESCRIPTION OF DATA

Data used in this validation report is classified in two major categories: non-test data and test data. These classifications reflect differences in processing requirements for the long term, relatively permanent fixed monitor sites as distinguished from the short term data collection effort by NOSC which focussed on the North Atlantic validation only.

#### 4.1 NON-TEST DATA

SECTION.

The non-test data consist of fixed OMEGA monitor data and integrated OMEGA/Satellite shipboard data collected by ONSOD to measure system performance.

#### 4.1.1 Fixed OMEGA Monitor Data

The 10.2 kHz North Atlantic MASTERFILE used in this report consists of 1870 blocks of data from the period 1966-1978. Each block contains one month of hourly phase differences at a given frequency at a monitor site for one station pair. A list of these stations is provided in Table 4-1 and a map showing their locations is given in Figure 4-1.

A listing of all the data for each monitor site is given in tabular form in Appendices A and B as a function of transmitting station or LOP station pair and time (month/year). The data have been divided into two parts: 1) transmitter monitor stations and 2) all other monitor stations. The transmitter monitor station data have been separated from the other data as it is close to being single station phase data. However, it is recognized that this is not true in the strictest sense as the monitor stations are not co-located with the transmitting stations.

=11 cases, data from the early Forestport, N.Y. (designated I) and from the Trinidad Station (temporarily in the G station segment) have

#### TABLE 4-1

#### MONITOR NETWORK

#### NORTH ATLANTIC SITES ON 10.2 kHz MASTERFILE

Portsdown, U.K. Bermuda, U.K. Florida, USA Trinidad, Site 2 Washington, D.C., USA (NRL) Hestmona, Norway Keflavik, Iceland Hammerfest, Norway Cambridge, Massachusetts, USA Farnborough, U.K. St. Anthony, Newfoundland, Canada Sardinia, Italy Toulon, France Miami, Florida, USA Coral Harbor, Canada Norfolk, Virginia, USA (COMOPTEVFOR) Oslo, Norway Spitzbergen, Norway (identified as Oslo2 on the file) Resolute, NWT, Canada Montgomery, Alabama, USA La Moure, North Dakota, USA Piarco, Trinidad Belem, Brazil Reading, Massachusetts, USA (TASC) New Makri, Greece Sabana Seca, Puerto Rico, USA Vila Nova, Azores Monrovia, Liberia Yorktown, Virginia, USA Canary Islands Eglin Air Force Base, Florida, USA Frobisher Bay, Canada Lajes, Azores Panama, Canal Zone Portsmouth, Virginia, USA

Washington, D.C., USA



been deleted in the tables as neither station is intended to be part of the permanent OMEGA network.

In addition, the time of day is indicated and flags are noted. The definitions for the flags are as follows:

- S Data block failed phase error variance test
- Q Insufficient data in block for phase error variance test
- B Large phase error bias for data block
- E Large rms phase error for data block
- F All data in block are flagged

These flags are associated with monthly, station pair data blocks. The presence of an F-flag disqualifies the entire data block but the other flags indicate that only some of the data in the block is invalid and the block is retained for processing.

A summary of the total phase data available from each transmitter monitor site is given in Table 4-2 and phase difference data for all other monitor sites in Table 4-3.

#### 4.1.2 Integrated OMEGA/Satellite Shipboard Data

The Integrated OMEGA/Satellite data consists of measurements made aboard the following ships during 1978 on cruises indicated on a map, Figure 4-2. The equipment used was a Magnavox MX 1104 modified to receive and process Navy Navigation System Satellite (NNSS) data simultaneously with the OMEGA signals. Since this receiver combines elements of the MX 1102 satellite receiver with the MX 1104 OMEGA receiver, it has been designated MX 1102/04

| Vessel          | No. Satellite Fixes |
|-----------------|---------------------|
| ANCHORAGE       | 350                 |
| WESTWIND        | 200                 |
| GALLOWAY        | 150                 |
| AFRICAN NEPTUNE | 300                 |

TABLE 4-2

# SUMMARY OF ONSOD 10.2 KHZ MASTERFILE TRANSMITTER MONITOR STATION DATA\*

|                   |       | TOTAL   |   |
|-------------------|-------|---------|---|
| a.m.              |       | 3       |   |
| SITE              | YEAR  | LOP/MO. |   |
| HESTMONA, NORWAY  | 1967  | 7       |   |
|                   | 1968  | 12      |   |
|                   | 1969  | 12      |   |
|                   | 1970  | 11      |   |
|                   | 1971  | 12      |   |
|                   | 1972  | 14      |   |
|                   | 1973  | 11      |   |
|                   | 1974  | 13      |   |
|                   | 1975  | 26      |   |
|                   | 1976  | 27      |   |
|                   | 1977  | 31      |   |
|                   | 1978  | 8       |   |
| LA MOURE, N.D.    | 1973  | 7       |   |
|                   | 1974  | 14      | ļ |
|                   | 1975  | 27      | , |
|                   | 1976  | 17      |   |
|                   | 1977  | 21      |   |
|                   | 1978  | 6       |   |
| MONROVIA, LIBERIA | 1976  | 11      |   |
|                   | 1977  | 8       |   |
| 1                 | 1978  | 6       |   |
| PIARCO, TRINIDAD  | 1971  | 2       |   |
|                   | 1972  | 23      |   |
|                   | 1973  | 21      |   |
|                   | 1974  | 20      |   |
|                   | 1975  | 24      |   |
|                   | 1976  | 14      |   |
|                   | 1977  | 14      |   |
|                   | 1978  | 4       |   |
| TRINIDAD, SITE 2  | 1967  | 18      |   |
|                   | 1968  | 22      |   |
|                   | 1969  | 24      |   |
|                   | 1970  | 24      |   |
|                   | 1971  | 20      |   |
|                   | 1972  | 10      |   |
|                   | TOTAL | 541     |   |

A STATE OF THE PROPERTY OF THE

\*STATION (G) TRINIDAD AND (I) FORESTFORT NOT INCLUDED IN BLOCK COUNT

TABLE 4-3

# SUMMARY OF ONSOD 10.2 KHZ MASTERFILE GROUND STATION PHASE DIFFERENCE DATA\*

and the reconstruction of the contract of the

|                    |        | mOMAT.  |
|--------------------|--------|---------|
| O.T. m             | VIII D | TOTAL   |
| SITE               | YEAR   | LOP/MO. |
| BELEM, BRAZIL      | 1974   | 8       |
| ·                  | 1975   | 34      |
|                    | 1976   | 24      |
| BERMUDA            | 1966   | 1       |
|                    | 1968   | 2       |
|                    | 1969   | 12      |
|                    | 1970   | 11      |
|                    | 1971   | 12      |
|                    | 1972   | 14      |
|                    | 1973   | 9       |
|                    | 1974   | 14      |
|                    | 1975   | 13      |
|                    | 1977   | 6       |
|                    | 1978   | 36      |
|                    | 1979   | 12      |
| CAMBRIDGE, MA.     | 1968   | 2       |
|                    | 1969   | 8       |
|                    | 1978   | 5       |
|                    | 1979   | 15      |
| CORAL HARBOR, CAN. | 1971   | 5       |
|                    | 1972   | 5       |
| EGLIN AFB, FLA.    | 1977   | 6       |
|                    | 1978   | 30      |
|                    | 1979   | 24      |
| FARNBOROUGH, U.K.  | 1972   | 1       |
| •                  | 1973   | 4       |
|                    | 1974   | 12      |
|                    | 1975   | 9       |
|                    | 1976   | 15      |
| FROBISHER, CAN.    | 1977   | 6       |
| HAMMERFEST, NOR.   | 1968   | 12      |
|                    | 1969   | 7       |
| KEFLAVIK, ICELAND  | 1977   | 6       |
| ·                  | 1978   | 18      |
| LAJES, AZORES      | 1978   | 12      |
| ,                  | 1979   | 18      |
| MIAMI, FLA.        | 1971   | 1       |
| NEA MAKRI, GREECE  | 1975   | 12      |
|                    | 1976   | 19      |
| 1                  | 1977   | 12      |
|                    |        |         |

\*STATION (G) TRINIDAD AND (I) FORESTPORT NOT INCLUDED IN BLOCK COUNT

## SUMMARY OF ONSOD 10.2 KHZ MASTERFILE GROUND STATION DIFFERENCE DATA\*

| SITE               | YEAR   | TOTAL<br>LOP/MO. |
|--------------------|--------|------------------|
| NELC, CA.          | 1972   | 1                |
|                    | 1976   | 4                |
| NORFOLK, VA.       | 1971   | 1                |
|                    | 1972   | 5                |
|                    | 1973   | 2                |
|                    | 1974   | 9                |
|                    | 1975   |                  |
| NRL, WASH. D.C.    | 1967   | 2                |
|                    | 1968   | 9                |
|                    | 1969   | 12               |
|                    | 1970   | 2                |
| OSLO (2), NORWAY   | 1971   | 7                |
| PANAMA, C.Z.       | 1978   | 54               |
| PORTSMOUTH, VA.    | 1978   | 54               |
|                    | 1979   | 18               |
| RESOLUTE BAY, CAN. | 1971   | 5                |
|                    | 1972   | 2                |
| SABANA SECA, P.R.  | 1975   | 21               |
|                    | 1976   | 29               |
| ·                  | 1977   | 35               |
|                    | 1978   | 12               |
| SARDINIA, ITALY    | 1973   | 4                |
|                    | 1974   | 10               |
| 1                  | 1975   | 8                |
|                    | 1978   | 13               |
| ST. ANTHONY, NFLD. | 1968   | 1                |
|                    | 1969   | 11               |
|                    | 1970   | 2                |
|                    | 1977   | 6                |
| TASC, READING, MA. | 1974   | 5                |
|                    | 1975   | 7                |
| VILA NOVA, AZORES  | 1975   | 5                |
|                    | 1976   | 28               |
|                    | 1977   | 8                |
| WASHINGTON, D.C.   | 1978   | 42               |
|                    | 1979   | 18               |
| YORKTOWN, VA.      | 1976   | 3                |
|                    | TOTALS | 928              |

and the second s

<sup>\*</sup>STATION (G) TRINIDAD AND (I) FORESTPORT NOT INCLUDED IN BLOCK COUNT



Long to the property of the second of the se

Figure 4-2 North Atlantic MX1102/04 Deployment 1978

A review of these measurements has indicated that the data suitable for processing is limited to July 1978 for the ANCHORAGE, April 1978 for the GALLOWAY and October, November and December 1978 for the AFRICAN NEPTUNE.

For each satellite fix, the following OMEGA data is available: signal phase values and calibrated signal-to-noise ratio index for each signal/station frequency tracked, phase difference values, estimated single station phase errors, estimated lane information, position difference vectors (distance, azimuth) for each LOP combination, and best fix for each frequency.

#### 4.2 TEST DATA

The test data were collected by the Naval Ocean Systems Center (NOSC) through a special data collection effort organized to assess the performance of the OMEGA Navigation System in the Northern Atlantic region. The two basic categories of data were derived from a) 27 aircraft flights between 18 July and 20 September 1978, and b) 12 ground monitoring sites operated at various times between mid-July and October 1978 at selected locations in the North Atlantic region. A more complete report of the NOSC test data collection effort is contained in reference (15).

A STATE OF THE PROPERTY OF THE

#### 4.2.1 Airborne Monitor Data

The airborne data were oriented toward validating the transmitting station coverage contours and confirming the areas of modal interference.

A complete list of flights and OMEGA stations monitored is given in Table 4-4. A separate list of radial flight data is given in Table 4-5. The flight itinerary for Flights 1-7 and flights 8-23B is listed in Tables 4-6 and 4-7 respectively. The flight routes are shown in Figures 4-3 and 4-4.

TABLE 4-4

### NOSC FLIGHT DATA SIGNAL AMPLITUDE VS TIME

| FLIGHT # |   | 10 | 0.2 | KH | Z |   |   |   |   | 1  | 3.6 | KH | Z |   | -     |
|----------|---|----|-----|----|---|---|---|---|---|----|-----|----|---|---|-------|
|          | A | В  | С   | D  | E | F | H |   | A | ,В | С   | D  | E | F | H     |
|          |   |    |     |    |   |   |   |   |   |    |     |    |   |   |       |
| 1        |   |    |     |    |   |   |   |   | X |    |     |    |   | X |       |
| 2        |   | X  |     |    |   |   |   |   | Х | X  |     |    |   |   |       |
| 3        |   |    |     |    |   |   |   |   | Х |    |     |    |   |   | ļ     |
| 4        | X |    |     |    |   | X |   |   | X |    |     |    |   | X |       |
| 5        | X |    |     |    |   | X |   |   | X | X  |     |    |   | Х |       |
| 6        | X | Х  |     |    |   | X |   |   | X | Х  |     |    |   | Х |       |
| 7        | X |    |     |    |   | X |   |   | X | Х  |     | l  |   | х |       |
| 8        | X |    |     |    |   |   |   |   | X | Х  |     |    |   | X | )<br> |
| 9        | X | Х  |     |    |   | X |   |   | X | Х  |     |    |   | x |       |
| 10       | X | X  |     |    |   | Х |   |   | X | х  |     |    |   | x |       |
| 11       | X | x  |     | x  |   |   |   |   | x | х  |     | X  |   |   |       |
| 12       | Х | X  |     | X  |   | X |   |   | Х | х  |     |    |   | х |       |
| 13A      | Х | X  |     |    |   | X |   |   | Х | х  |     |    | X |   |       |
| 13B      | Х | x  |     | X  |   |   |   |   | X | х  |     | x  | x |   |       |
| 14A      | X | X  |     | x  |   |   |   |   | Х | х  |     |    | X | х |       |
| 14B      |   | х  |     | Ì  |   |   |   |   |   | x  |     |    |   |   |       |
| 15       |   | x  |     |    | x |   |   |   |   | x  |     |    | X | x |       |
| 16       |   | x  |     | Ì  | x |   |   |   |   | x  |     |    | x |   |       |
| 17       |   | х  | x   | x  |   |   |   |   |   | х  | x   | Х  | x |   |       |
| 18       | x | x  |     |    |   | x |   |   | x | х  |     |    |   | x |       |
| 19A      | x | x  |     |    |   | x |   |   | x | x  |     | x  |   | x |       |
| 19B      | x | x  |     |    |   | x |   |   | x | X  |     | x  |   | x |       |
| 20       | x |    |     | x  | 1 | x |   |   | x | x  |     | x  |   | x |       |
| 21       | x | х  |     | x  |   |   |   |   | x |    |     | х  |   | x |       |
| 22       | x | x  |     | x  |   |   |   | 1 | x | x  |     | х  | x |   |       |
| 23A      | x | x  | x   |    |   |   |   |   | x | х  | X   |    |   |   |       |
| 23B      | x | x  |     | x  |   | x |   |   | x | x  |     | X  |   | x |       |

-Frequency

-Stations

TABLE 4-5

#### NOSC RADIAL FLIGHT DATA SIGNAL AMPLITUDE VS RANGE

|               | FLIGHT                 | NO.                 |
|---------------|------------------------|---------------------|
| OMEGA STATION | DAYTIME                | NIGHTIME            |
| A. NORWAY     | 11, 12, 13A, 13B, 14A  | 8, 18, 19A, 19B, 20 |
| B. LIBERIA    | 13A, 13B, 14A, 14B, 17 | 2, 6, 9, 10, 15, 16 |
| D. N. DAKOTA  | 21                     | 20, 21              |
| F. ARGENTINA  |                        | 5, 7, 18, 19A, 19B  |

NOTE: Both 10.2 and 13.6 kHz signals were measured during all listed flights except Nos. 5 and 7. Only 13.6 kHz signals were measured during Flights 5 and 7.

CARNE OF STREET

TABLE 4-6 AIRCRAFT FLIGHT ITINERARY (FLTS 1-7)

| FLT | ORI           | RIGIN  |       | DEST          | DESTINATION |      | DURATION |                       |
|-----|---------------|--------|-------|---------------|-------------|------|----------|-----------------------|
|     | LOCATION      | DATE   | GMT   | LOCATION      | DATE        | E    | IIRS     | OVERFLIGHT LOCATIONS  |
| -   | Atlantic City | Jul 18 | 9070  | San Juan      | 341 18      | 0512 | 3.1      | MAFEC. Sabana Seca    |
| 7   | San Juan      | Jul 19 | 00100 | Merida        | Jul 19      | 0435 | 3.6      | Sabana Seca           |
|     | Merida        | Jul 21 | 0228  | San Juan      | Jul 21      | 0547 | 3.3      | Sabana Seca           |
| *   | San Juan      | Jul 22 | 0030  | San Juan      | Jul 22      | 0355 | 3.4      | Sabana Seca           |
| 2   | San Juan      | Jul 24 | 9900  | Bermuda       | Jul 24      | 0430 | 3.6      | Sabana Seca           |
| 9   | Bermuda       | Jul 25 | 6110  | Bernuda       | Jul 25      | 0438 | 3.3      | Bernuda               |
| 7   | Bermuda       | Jul 27 | 0115  | Atlantic City | Jul 27      | 0434 | 3.3      | NAA (Cutler WE) NAEEC |

TABLE 4-7 AIRCRAFT FLIGHT ITINERARY (FLTS 8-23)

The state of the s

はいかときとしているからないと

|       |               |          |       |               |             |      | NO LEGINA |                            |
|-------|---------------|----------|-------|---------------|-------------|------|-----------|----------------------------|
| FLT   | ORIGIN        | Z.       |       | DESTI         | DESTINATION |      | HOS IN    | OVERFILIGHT LOCATIONS      |
| €     | LOCATION      | DATE     | CHT   | LOCATION      | DATE        | CMT  |           | •                          |
| Ŀ     | Atlantic City | Aug. 25  | 0156  | Gander        | Aug 25      | 9090 | 4.1       | NAFEC                      |
|       | Carden Care   | A. 0. 26 | 00.00 | Azores        | Aug 26      | 0347 | 3.3       | Gander, Villa Nova         |
| ٤     | Azores        | Aug 28   | 2310  | Gander        | Aug 29      | 0246 | 3.6       | Villa Mova, Gander         |
| = =   | Ganden        | Aug 35   | 1248  | Keflavík      | Aug 30      | 1544 | 2.9       | Keflavík                   |
| 2     | Keflavík      | Aug 30   | 1750  | Bodo          | Aug 30      | 2004 | 2.2       | Keflavík, OMEGA 'A'        |
| :   = | Rodo          | Aug 31   | 1330  | Hildenhall    | Aug 31      | 1550 | 2.3       | OMEGA 'A'                  |
| 2     | Hildenhall    | Sep 2    | 1125  | Rota          | Sep 2       | 1410 | 2.0       | •                          |
| 4     | Rota          | Seo 4    | 1214  | Dakar         | Sep 4       | 1546 | 3.5       |                            |
| 148   | Dakar         | See 4    | 1738  | Monrovia      | Sep 4       | 9061 | 1.5       | OMEGA 'B'                  |
| 15    | Monrovia      | Sep 6    | 2147  | Recife        | Sep 7       | 0143 | 4.0       | OMEGA 'B', Monrovia, Natal |
| 92    | Recife        | Sep 8    | 2134  | Honrovia      | Sep 9       | 0136 | 4.0       | Natal, Monrovia, OMEGA '8' |
| =     | Honrovia      | Sep 10   | 1134  | Cape Verde    | Sep 10      | 1445 | 3.2       | OMEGA 'B'                  |
| 18    | Cape Verde    | Sep 12   | 0100  | Azores        | Sep 12      | 0340 | 3.5       | Vila Nova                  |
| 191   | Azores        | Sep 13   | 2210  | Shannon       | Sep 14      | 0112 | 3.0       | Villa Hova                 |
| 198   | Shannon       | Sep 14   | 2118  | Bodo          | Sep 14      | 2350 | 2.5       | OMEGA 'A'                  |
| 92    | 8odo          | Sep 16   | 2134  | Sondrestrom   | Sep 17      | 0147 | 4.2       | OFEGA 'A'                  |
| 12    | Sondrestrom   | Sep 18   | 0033  | Sondrestrom   | Sep 18      | 0409 | 3.6       | 7                          |
| 22    | Sondrestrom   | Sep 18   | 2222  | Frobisher     | Sep 10      | 2346 | 1.4       | Frobísher                  |
| 733   | Frobisher     | Sep 19   | 1856  | Gander        | Sep 19      | 2109 | 2.2       | Frobisher                  |
| 238   | Gander        | Sep 19   | 2227  | Atlantic City | Sep 20      | 0054 | 2.5       | NAFEC                      |
|       |               |          | A     |               |             |      |           |                            |

فماله فراعا المقاولة والمهر والموارية ويدارة ورام المراهد والمراهد والمتارية وحدودة وحدد والمارة ومر والمراهد وردامه ومدراه والمراهد والمراعد والمراهد والمر



(1



Figure 4-4 Aircraft Flight Paths (FLTs 8-23)

and in market the another description of the sold of the sold of

The aircraft flight data are in two forms, a) plots of signal strength (dB >  $1\mu\nu/m$ ) vs GMT for all flights and b) plots of signal strength vs range from the OMEGA transmitter stations for the radial flights.

## 4.2.2 Ground Monitor Data

Measurements were made at five long-term ground sites and seven short-term ground sites. A list of the ground monitoring sites, collection dates, and OMEGA stations recorded is given in Tables 4-8 and 4-9 for the long-term and short-term monitor sites, respectively.

The ground station data are in the form of plots of signal strength (dB >  $1\mu\nu/m$ ) vs GMT. For the long-term monitors, the signal strength plots show average and standard deviation over approximately weekly periods while the short-term monitor data are averaged over somewhat shorter periods.

Noise measurements were made at the ground monitor stations only during those periods when the transmitting station was off-the-air as indicated in Tables 4-8 and 4-9.

TABLE 4-8

The state of the s

THE PROPERTY OF THE PARTY OF TH

INDEX OF PLOTS OF OBSERVED DIURNAL SIGNAL AMPLITUDES AT LONG-TERM RECEIVER SITES

| DATA      | DATA PERIOD |         | ¥ | Atlantic City | 2           | 5        | 11             | Seb              | 2        | Sebana Seca                                  | 3                                            |          | Hatal    | 1 1          | 흔        | Frobister | 1 2      | ┝─┤     | [e]      | Keflavík | ايدا       |            |     |
|-----------|-------------|---------|---|---------------|-------------|----------|----------------|------------------|----------|----------------------------------------------|----------------------------------------------|----------|----------|--------------|----------|-----------|----------|---------|----------|----------|------------|------------|-----|
| TK9       |             | Julian  | ₹ | 85            | 5           | ш        | L <sub>b</sub> | ¥                | 89       | E .                                          | F                                            |          | =        | <u> </u>     | ~        |           | -        | ¥       |          | 0        | <u> </u>   | 14.        | . 1 |
|           |             |         |   |               | $\vdash$    |          |                |                  |          |                                              |                                              |          |          | -            | <u> </u> |           |          |         |          |          | -          | -          |     |
|           | 9-16        | 190-197 |   |               | -           |          | -              | ×                | <u> </u> | -                                            | ٦                                            | -        | <u> </u> | _            |          |           |          | _       |          | _        | ·          |            |     |
| JULY      | 17-23       | 198-204 | × | ×             | ×           | <u> </u> | ×              | ×                | · ×      | <u>                                     </u> |                                              | 1        | _        | ×            | -        |           |          | _       |          |          |            | <u> </u>   |     |
|           | 24-33       | 205-212 | × | ×             | ×           | <u> </u> | ×              | <u> </u>         | ×        | -                                            | ×                                            |          | ×        | <u> </u>     |          |           | <u> </u> |         | -        |          | -          |            | 1   |
|           | 1-8         | 213-220 | Z | ×             | X           |          | ×              | =                | ×        |                                              | ×                                            | ×        | ×        | ×            | <u> </u> | <u> </u>  | -        | -       | <u> </u> | <u> </u> |            | <b> </b> - |     |
| AUGUST    | 9-16        | 221-22H | × | ×             | ×           |          | <b>×</b>       | ×                | ×        | _                                            |                                              |          | :        |              |          |           |          |         | _        |          |            |            |     |
|           | 17-23       | 229-235 | × | ×             | ×           |          | ×              | <del> </del>   × | ×        | <u> </u>                                     | <u>.                                    </u> |          | ×        | <del>-</del> | ×        | ×         | ×        |         | <u> </u> |          |            |            |     |
|           | 24-31       | 236-243 | × | ×             | -           | ×        | ×              | ×                |          | ~<br>×                                       | <u> </u>                                     | <u>'</u> | ×        | =            |          | <u> </u>  |          | ×       | <u>~</u> | ×        | _          | ×          | _   |
|           | 1-8         | 244-251 | × | ×             | -           | ×        | ×              | ×                |          |                                              |                                              | -        | ×        | ×            | Ę        | Ę         | Ē        | IX<br>I | <u> </u> | _        | <u>~</u> . |            | _   |
| SEPTEMBER | 9-15        | 252-258 | × | ×             | <del></del> | <b>\</b> | ×              | <u>~</u>         | -<br> ×  | ×                                            | <u> </u>                                     |          | ~        | _            | ×        | . ×       | . *      | × :     | . ×      |          | ×          | <u> </u>   |     |
|           | 16-22       | 259-265 |   |               |             |          |                | <u>~</u>         | =        | ~<br>×                                       |                                              |          |          | ×            |          | ~         | *        | ×       | ×        |          |            |            |     |
|           | 23-30       | 266-273 |   |               | -           |          |                |                  | -        | -                                            | -                                            | _        |          | _            | _        | ×         | ×        |         | _        | _        |            |            | _   |

Legend

x - 10.2 & 13.6 KHZ
/ - 10.2 KHZ
II - Noise Only; XMTR Off-Air

e serve en est passenas et et es passameteras platacions establicados de designados establicados de

TABLE 4-9 INDEX OF PLOTS OF OBSERVED DIURNAL SIGNAL AMPLITUDES AT SHORT-TERM RECEIVER SITES

| Lajes, Azores               | A        | В   | С    | D     | E    | F    | H    |                |
|-----------------------------|----------|-----|------|-------|------|------|------|----------------|
| Aug. 24-31                  |          |     | X    |       |      |      |      |                |
| Sept. 1-8                   | X        | X   |      | X     |      | X    |      |                |
| 24-30                       | 1        |     |      |       | X    |      |      |                |
|                             |          |     |      |       |      |      |      |                |
| Monrovia, Liberia           |          |     |      |       |      |      | į l  |                |
| Sept. 5-12                  | X        |     |      | X     | X    | X    |      |                |
| Water Promis                | 1        |     |      | 1     |      |      |      |                |
| Natal, Brazil July 19-23    |          |     |      |       |      |      |      |                |
| Aug. 10-14                  | \        |     | x    |       |      |      | x    |                |
| 14-17                       | X'       |     |      |       |      |      |      |                |
| 17-23                       |          | х   |      | 1     |      | x    |      |                |
| 24-31                       |          | -   |      |       | X    |      |      |                |
|                             | <u> </u> |     |      |       |      |      |      |                |
| Merida - No usable data due | to h     | igh | nois | se le | evel | s an | d un | certainties in |
| absolute field stre         |          |     |      |       |      |      |      |                |
| _                           |          |     |      |       |      |      |      |                |
| Bermuda                     | ١.       | .   |      |       | İ    |      |      |                |
| July 24-26                  | /        | /   |      |       |      | /    | N    |                |
| Candon                      |          |     |      |       |      |      |      |                |
| Gander<br>Aug 25-29         | ,        |     |      | ,     |      | ,    |      | '              |
| Aug 23-29                   | /        | 4   |      | ′     |      | /    |      |                |
| Rota                        |          |     |      |       |      |      |      |                |
| Sept. 3-4                   | 1        |     |      |       | /    |      |      |                |
|                             | <b> </b> | '   |      |       | '    |      |      |                |
| Воф                         | 1        |     |      |       |      |      |      |                |
|                             | 1        | I 1 |      |       | 1 /  |      |      |                |
| Sept. 15-16                 | 1        |     |      |       | //   | //   | //   |                |

on a formal management of the contract of the

X - 10.2 KHZ & 13.6 KHZ

<sup>/ - 10.2</sup> KHZ only - 13.6 KHZ only

N - Noise only: XMTR Off-Air

### 5. CLASSIFICATION AND SYNTHESIS OF DATA

### 5.1 DATA CATEGORIES

The data base for the North Atlantic OMEGA validation consists of scientific data collected under controlled conditions at OMEGA ground monitor facilities operated by, or in cooperation with ONSOD, and from test data collected by NOSC at ground sites and aboard aircraft. Other scientific data is provided by integrated OMEGA/Satellite shipborne measurements.

The NOSC test data provide both airborne and fixed ground signal amplitude measurements while the ONSOD fixed monitor data basically provide phase difference measurements. However, some of the more recent ONSOD fixed monitor data also provide SNR information.

The integrated OMEGA/Satellite shipborne measurements include SNR indices, and phase difference and position-fix accuracy information.

In addition, a considerable amount of operational data are available from a variety of sources which provide information on SNRs and position-fix accuracy relative to an independent navigation system of allocable accuracy.

## 5.2 TEST AND NON-TEST DATA INTEGRATION

COMPANY.

The NOSC test data are the prime source of information for determining OMEGA signal coverage. Where deficiencies in these data have been found, additional SNR data have been obtained from the ONSOD monitor data file to supplement the NOSC test data. In addition, SNR data for the Norway station were obtained from the integrated OMEGA/Satellite measurements for the Caribbean and Gulf of Mexico. Also, SNR measurements from the airborne operational data have been analyzed to see if these are con-

a property the state of the same

sistent with the test measurements. In some cases, where NOSC test data deficiencies exist, the airborne operational data have been used to supplement the data base.

The ONSOD ground monitor data were the prime measurements for determining phase difference errors and fix-accuracy errors. The integrated OMEGA/Satellite shipborne measurements were used to supplement these data.

## 5.3 DATA REDUCTION PHILOSOPHY

The reduction of the data varied with the type of data. The first step was to establish SNRs for each OMEGA transmitting station as a function of geographic location. To accomplish this, the NOSC 10.2 kHz and 13.6 kHz amplitude data were scaled to establish signal levels around local noon and midnight. Both the fixed ground site and aircraft data were used and the amplitude values were tabulated.

Next, noise levels in a 106 Hz bandwidth at 10.2 kHz and 13.6 kHz were derived from CCIR<sup>(16)</sup>. Although noise data measured aboard the test aircraft in-flight were supplied by NOSC, these noise measurements were very sparse. A comparison of these values with CCIR values indicated fairly good agreement. Therefore, because there were so few noise measurements, the decision was made to use CCIR values throughout the data reduction process.

From the test amplitude measurements and the CCIR noise levels, SNRs were derived and tabulated for each OMEGA station as a function of season, time of day, and geographic location. These values of SNR were then placed on individual maps of the North Atlantic region. To supplement these values of SNR, additional data were acquired from the ONSOD monitor sites where the Magnavox 1104 receivers are used. These data were in the form of SNR indices and required conversion to decibels using a calibration curve. This calibration curve is extremely steep and errors in conversion could amount to a few decibels. In addition, further

supplementary data were acquired from the integrated OMEGA/Satellite measurements and some of the user aircraft data. These also were in the form of SNR indices and required conversion to decibels using the appropriate calibration curves.

After all the SNR values had been placed on the individual diagrams, coverage contours were drawn. These contours were drawn to reflect areas which likely would not be affected by near-field phenomena or modal interference, and areas where the SNR was >-20dB. Next, the individual contours were overlaid to produce composite coverage diagrams for summer and winter, day and night at 10.2 kHz to compare with theoretical predictions. The 13.6 kHz data were analyzed to reveal differences in coverages between 10.2 kHz and 13.6 kHz signals.

The ONSOD ground monitor station data have been processed on a Honeywell 6000 computer using the U.S. Coast Guard EVAL program (17) which, among other things, calculates the average and standard deviation of the predicted phase difference error for each hour, each day of the month for LOPs of interest.

In processing these data to assess fix-accuracy, both unflagged monthly data blocks and monthly data blocks flagged S, Q, B, and E were used. Data blocks flagged F were not used.

LANGE TRACK

Within each data block there are also daily/hourly flags (i.e. SID, PCA, transmitter out, monitor out, etc.). These flagged data were not used in the fix-accuracy calculations.

These data have been further processed to find the average of the fix bias error and standard deviation of radial error about the bias point over two five-hour periods, centered at local moon and local midnight. From these data, the months to be combined to calculate OMEGA fix accuracies for summer and winter, day and night as a function of LOP pairs were selected. The winter months selected were restricted to December/January/February and the summer months to June/July/August. The number of months selected varied from site-to-site and season-to season. The maximum number of months used for a site/season was seven and the

minimum was one. Emphasis was placed on the more recent data and those times when several LOPs were being measured. It should be pointed out however, that a review of the total data base showed good consistency in the phase measurements over the span of years of data collection and different types of receivers.

These data were then processed on a Honeywell 6000 computer using the U.S. Coast Guard accuracy program. All possible combinations of LOP pairs were processed. The output from the computer program resulted in fix bias error, standard deviation of radial error about the bias point and total fix error. These statistics were then tabulated for each monitor site, summer/winter, and day/night. Following this, the resultant tables were edited to delete any LOP pair combination containing signals from any OMEGA transmitting station which the earlier coverage analysis indicated no coverage.

In addition, the MX1102/1104 integrated OMEGA/Satellite shipboard measurements have been processed on the Data General Eclipse S-200 minicomputer at the Coast Guard facilities in Washington, D.C. to determine OMEGA fix accuracies.

and the second of the property of the second 
The MX1102/1104 OMEGA/Satellite monitor provides data output in the form of cassette tapes with the following information given at the time of closest approach of the NAVSAT satellite (18):

a) GMT of the satellite fix

- b) coordinates of the satellite fix
- c) date and GMT of OMEGA monitor data
- d) dead reckoning position coordinates
- e) letter designations of OMEGA station monitored
- f) designation of channel used for calibration
- g) phase measurements relative to an internal oscillator at 10.2 kHz, 11.3 kHz and 13.6 kHz for each OMEGA station
- h) signal-to-noise ratio measurements at 10.2 kHz, 11.3 kHz, and 13.6 kHz for each OMEGA station.

A computer program was developed by Magnavox personnel to examine the above data and provide the following information whenever a satellite fix was found in the data tape:

a) date and time of the satellite fix

- b) phase and SNR of each station at each frequency
- c) coordinates and time of closest approach for the satellite fix
- d) theoretical range to stations with SNR greater than
   -20 dB
- e) skywave corrections for each station at each frequency at which there was good data
- f) laning information for those stations which give good data at all three frequencies
- g) estimated single station phase errors for those stations which had good data
- h) line of position (LOP) errors for each frequency using stations with good data
- i) OMEGA fix error calculations using the satellite fix as a reference for all possible combinations of stations and frequencies
- j) calculation of "best fix" at each frequency.

#### 6. DATA ANALYSTS

The NOSC test data, the ONSOD ground station data and the integrated OMEGA/Satellite shipboard data have been processed and the results analyzed to show the coverage and accuracy being provided by the OMEGA Navigation System in the North Atlantic oceanic region.

#### 6.1 OMEGA COVERAGE IN THE NORTH ATLANTIC

A detailed analysis of the 10.2 kHz coverage being provided by the OMEGA system has been performed for comparison with predictions (See Figures 3-1 and 3-2 earlier in this report). Similar predictions have not been made for 13.6 kHz and therefore a more qualitative coverage analysis has been performed at this higher OMEGA frequency.

## 6.1.1 10.2 kHz Coverage

Composite OMEGA 10.2 kHz signal coverage diagrams (Figures 6-1, 2, 3, and 4) have been produced employing the same criteria used for the predicted signal coverage diagrams as follows:

- Areas likely to be affected by near-field phenomena (i.e., areas close (\( \sigma \) lmm) to transmitting stations) were rejected.
- Areas likely to be affected by modal interference phenomena were rejected.
- Areas with S/N < -20 dB in a 100 Hz bandwidtn (based on atmospheric noise models) were rejected.

The modal and near-field areas result in a hard boundary in terms of coverage whereas the SNR threshold is a function of receiver design and is considered a soft boundary. The SNR 100 Hz) criteria of -20dB was originally selected based on the design of marine receivers in existance at the time. This SNR threshold will vary with different types of receivers. However, because it was used for the theoretical predictions of OMEGA 10.2 kHz coverage, it has been retained for the validation process.



Measured Composite Composite Composite Composite Noon 10.2 KHz Figure 6-1

nd vialification described for some constraints and constraint and constraints of the constraint of th



The second second

nacion communicati per constitución de la constituc Measured Composite Coverage Diagram for Local Summer Night -10.2 kHz Figure 6-2



Figure 6-4 Measured Composite Coverage Diagram for Local Winter Night = 10.2 kHz north contract the contract of the contract to the contract of the contract o

First, individual maps showing values of SNR were produced for each OMEGA transmitting station, summer and winter, day and night. These are in Appendix C. The majority of the values of SNR were derived from the NOSC signal test data in combination with CCIR noise values. Some additional values were obtained from the ONSOD data file and, in the more northern latitudes (>  $60^{\circ}$ N), from operational aircraft data.

In most cases it was possible to draw contours of coverage based on a SNR = -20dB, and predicted modal interference and near-field areas. Very few signal measurements from the OMEGA transmitting stations at La Reunion (E) and Japan (H) were made during the NOSC test data collection but they confirmed predictions and therefore the predicted contours were used. Station E was recorded during flights 15 and 16 only between Recife, Brazil and Monrovia, Liberia. These were nighttime flights and the data indicated modal interference. La Reunion signals at Atlantic City, N.J. and Sabana Seca, P.R. were similar and indicated long path propagation during short-path daytime.

The Japan OMEGA transmitting station signal was not recorded during any of the NOSC test flights. Measurements at a few ground sites and onboard operational aircraft indicated poor coverage in the North Atlantic, as expected.

The accessibility of the OMEGA 10.2 kHz signals in the North Atlantic can be summarized as follows:

Norway (A): The Norway 10.2 kHz signal is accessible to most of the North Atlantic with the exception of the western part of the Gulf of Mexico at all times and a small portion of Baffin Bay during summer day.

Liberia (B): The 10.2 kHz signal from Liberia covers most of the North Atlantic during the day except for a small region of the Northeast coast of the U.S. and Nova Scotia during the summer. At night, both summer and winter, the 10.2 kHz Liberian signal is usable only Northeastward of a (great circle) line from Dakar to Frobisher Bay.

Hawaii (C): During the day, the Hawaii 10.2 kHz signal is excluded in the following regions: (1) east of 40 W Longitude and north of 30 N. Latitude during the summer and 2) east of 25 W. Longitude and North of 15 N. Latitude during the winter, except for a small region in the Norwegian Sea. At night, both summer and winter, the Hawaii signal is excluded east of a line from Southeastern Greenland to Morocco except for a small region in the Norwegian Sea.

North Dakota (D): The North Dakota 10.2 kHz signal covers all points in the North Atlantic, day and night, except for a small portion in the extreme Northeastern Atlantic during summer day.

La Reunion (E): 10.2 kHz signals from La Reunion are mostly "long-path" to points in the North Atlantic, especially during short-path day. In those regions where the long-path signal is blocked by the low conductivity in Greenland, the nighttime signals are modally disturbed and the daytime signals are highly attenuated.

Argentina (F): Daytime 10.2 kHz signals from Argentina are accessible to points in the North Atlantic up to 50 N. Latitude during the summer and 60 N. Latitude during the winter. The western part of the Gulf of Mexico is excluded during summer day. At night, Argentina coverage is excluded only west of about 70 W. Longitude due to modal interference.

Japan (H): The 10.2 kHz Japan signal is generally unavailable in the North Atlantic during the day except for the western part of the Gulf of Mexico in the winter and in the extreme Northeastern region of the North Atlantic. At night, the Japan signal covers regions west of about 75 W. Longitude and east of about 15 W. Longitude. In addition some long-path propagation may occur near the equator.

### 6.1.2 13.6 kHz Coverage

Composite OMEGA 13.6 kHz coverage diagrams for summer day and winter night are given in Figures 6-5 and 6-6. A comparison of the 13.6 kHz coverage with the 10.2 kHz coverage has indicated the following:

Nowway (A): The Norway 13.6 kHz signal is accessible in Baffin Bay and the Gulf of Guinea during summer day in contrast to the 10.2 kHz signal. Accessibility of





The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

6-9

the 13.6 kHz signal in the Gulf of Mexico is comparable to 10.2 kHz during summer day and slightly better during winter night.

Liberia (B): During summer day, the Liberia 13.6 kHz signal is accessible along the Northeast coast of the U.S. and Nova Scotia in contrast to the 10.2 kHz signal. During winter night, the 13.6 kHz signal provides a few degrees wider coverage on the east coast of Canada and a few degrees less coverage on the west coast of Africa than the 10.2 kHz signal.

<u>Hawaii (C)</u>: The Hawaii 13.6 kHz signal is accessible in about the same regions of the North Atlantic as the 10.2 kHz signal.

North Dakota (D): The North Dakota 13.6 kHz signal is accessible in about the same regions of the North Atlantic as the 10.2 kHz signal.

La Reunion (E): The 13.6 kHz signal from La Reunion provides better coverage of the Gulf of Guinea during summer day than the 10.2 kHz signal. During winter night, the coverage provided by the 13.6 kHz and 10.2 kHz signals is similar.

Argentina (F): The Argentina 13.6 kHz signal provides better coverage of the Northeast sector between Greenland and Norway than the 10.2 kHz signal during summer day. The nighttime modal boundary for 13.6 kHz lies slightly further to the west than the 10.2 kHz modal boundary.

Japan (H): During summer day, the Japan 13.6 kHz and 10.2 kHz signals provide similar coverage. During winter night, the 13.6 kHz signal provides better coverage west of 50 W. Longitude and north of 60 N. Latitude than the 10.2 kHz signal.

### 6.2 10.2 kHz FIX ACCURACY

The accuracies being provided by the OMEGA Navigation System in the North Atlantic were evaluated using data derived primarily from the ONSOD ground monitor stations and the integrated OMEGA/Satellite shipboard installations.

## 6.2.1 ONSOD Ground Monitor Station Data

OMEGA data have been collected and recorded at many ground facilities over varying periods of time. Table 6-1 lists the facilities which have collected data for at least two lines-of-position (LOP) where phase differences are recorded and at least three OMEGA stations where single station phase is recorded. In some instances there are several years of data and in others, only a month or two.

These data have been processed using the U.S. Coast Guard EVAL (17) program which, among other things, calculates the average and standard deviation of the predicted phase difference error for each hour (24) of each month for LOPs of interest. A sample of the EVAL block print output is given in Figure 6-7. The lines for the average error (bias error) and the standard deviation (random error) are noted.

These data have been further processed to find the average of the fix bias error and standard deviation of radial error about the bias point over two five-hour periods, centered at local moon and local midnight. From these data, months were selected and combined to calculate accuracies for summer and winter, day and night as a function of LOP pairs. All possible combinations of LOP pairs were evaluated and the data were later edited to retain valid data, i.e. LOPs for OMEGA stations providing coverage.

The various error measures (19) of interest are defined in the following paragraphs.

# TABLE 6-1 ONSOD GROUND MONITOR FACILITIES

# Phase Differences

Belem, Brazil Bermuda, U.K. Cambridge, MA Eglin AFB, FLA Farnborough, U.K. Frobisher Bay, Canada Keflavik, Iceland Lajes, Azores Nea Makri, Greece Panama, Canal Zone Portsmouth, VA Sabana Seca, P.R. Sardinia, Italy St. Anthony, Newfoundland TASC, Reading, MA Vila Nova, Azores Washington, D.C.

# Single Station Phase

Hestmona, Norway
La Moure, N.D.
Monrovia, Liberia
Piarco, Trinidad

LA MASA CONTROL OF THE SECOND PROPERTY OF THE

|            |            |             | _        |            |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     |         |     |             |    |      |      |          |            |   | - AVERAGE | 1          | 1    |            |                      |       | -   |
|------------|------------|-------------|----------|------------|------------|----------|-----|------|-----|----------|----------|----------|-----|-----|----------|-----|----|--------|----|----------|-----|-----|----------|----------------|------------|----------|----------|-----|---------|-----|-------------|----|------|------|----------|------------|---|-----------|------------|------|------------|----------------------|-------|-----|
|            |            | <b>9</b>    | •        | •          | •          |          | •   | •    | •   | •        | •        | •        | •   | •   | •        | •   | •  | •      | •  | ċ        | •   | •   | 0        | •              | •          | •        | •        | :   |         | •   | 70          | ć  | ;    | 7.   |          | 25         | ١ | 14.5      | ***        | I    |            |                      | 197   | ::  |
| 2          | ~1T£       | <b>&gt;</b> | •        | •          |            |          | 0   | •    | •   | •<br>•   | •        | •        | 3   | •   | <b>.</b> | 5   | 5  | •<br>• | •  | <b>.</b> | •   | •   | <b>.</b> | •              | •          | •        | ;        |     | •       | •   | 77          |    | ::   | •    |          | 25         |   | ~         |            | ļ, · | 4          | )<br>)<br>)          | •     |     |
| *0 . 19 e  |            | z           | <b>.</b> | <b>3</b> C | a          | <b>5</b> | ٥   | Þ    | >   | •        | •        | •        | 9   | >   | Э.       | э : | 9  | э.     | •  | >        | 0   | >   | 9        | >              | <b>3</b> ( | <b>.</b> | •        | . = | • >     | ۰   | 25          |    |      | 3    |          | 22         |   | •         |            | 4    |            |                      |       | F   |
|            | 7          | _           | Ξ (      |            | ō          |          | 0 0 | 200  | 20  | =        | • 2      | •        | •   | 0   | 400      | 9 0 | >  |        | 5  | =        | 2   | -   | 7        | 7              |            | 2        | 700      |     | 8       | 70  |             |    |      |      | -1       | <b>~</b> • |   | -         | C P        | 1.   | 33         | 3.5                  | 3     |     |
| =          | 2          |             |          |            | 9 0        | -        | 173 | 43.  | 6   | <u>;</u> | <b>?</b> | <b>3</b> | 2   | •   | * O #    | -   | c  | •      | 9  | <b>3</b> | 2   | ?   | 2        | e i            | 9 6        | ,        | 9 9      | •   | 0       | \$  | 7           |    |      | -    | ~        | -          |   | -         | <b>~</b> 2 |      | <b>4</b>   | 8078V                | 57.2  | • 1 |
| 2          | 23         |             | *        | <b>A</b>   |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     | ~       |     | 0 <b>.2</b> | •  | • ~  | 5    |          |            | 1 | 14.       |            |      | •          | ٠,                   | 0     |     |
| 4          | <b>.</b> . |             |          |            |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     |         |     |             |    | 16.7 |      | 2        | • «        |   | 13.7      | 0          |      |            | AVERA                |       |     |
| 31-5       | 9          |             |          |            |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     | 3       |     |             | ٥  | •    |      | 3        | P          | 1 | •         | <br>       |      | <b>-</b> 1 |                      |       |     |
| - 1        | •          |             |          |            |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     | 3 3     |     |             |    | ~    | 2    | -1       | ۰.         |   |           | 2 4<br>2 4 | 4    | 2          | 2                    |       |     |
| 250012     | =          |             |          |            |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     | 2       |     | -           | •  | _    | -    | 7        | 0-         |   | 2         | ===        | Ļ    | 5          | <u></u>              | 55    | +   |
|            | 11         |             |          |            |            |          |     |      |     |          |          |          |     |     |          |     |    |        |    |          |     |     |          |                |            |          |          |     | 2 =     | - 1 | _           | ,  | 200  | 12.7 |          |            | 1 | =         | 5:         | 1.   |            |                      | -     |     |
| \$203      | •          |             | 5        | 2 :        | 2 6        | -        | 200 | -    | 3   | -        | 3        | *        | 7   | £   | 3.       | 7   | ~  | £ 3    | 2  | =        | 7   | 6   | •        | ~              | 2 :        | •        | 2:       |     | :=      | 27  | :<br>•      | ;  |      | 10.4 | •        | *          |   | ;         | 0          | 1    | •          | • •                  | 25    | -   |
| =          | ?          |             | ;        | <b>*</b>   | *          | : ;      | 050 | 4    | 5   | S.       | •        | 7.5      | 7.5 | 2   | 69       | 74  | 4  | į      | 9  | 1        | 70  | 5   | 326      | 278            | 3 (        | 2        | 3 6      |     | \$      | 3   | •           | ,  | • -  | 7    | NI I     | 57         |   | 9.0       |            | 13   | 5          | 404/80(L)            | 1000  |     |
| -          | =          |             | ?        | 3          | :          |          | ,,  | 25   | 33  | :        | <b>.</b> | •        | 9   | 0   | ;        | •   | •  | 11     | -  | 7        | 9   | 9   | 9        | 2              | 3 ;        | = 1      | •        |     | : 2     | 3   |             |    | •    |      | -1       | ***        |   | 4         |            | 13.  | 3          | 35                   | L 168 |     |
| A          | ===        |             | =        | = 1        | = ;        | :        | ;   | 085  | 280 | ;        | =        | 900      | 2   | 100 |          | 93  | 8  | =      | ?  | x        | å   | 622 | ?        | 3              | 3          |          | r:       |     |         | =   | -           |    | •    | •    | ~        |            |   | =         | ; «        | 12/2 | XHT X      | E<br>9 S             | 10141 | •   |
| 7          | Ē <u>:</u> | •           | :        | 3          | = ;        |          | 0   | 200  | 37  | 7.2      | <b>3</b> | :        | •   | •   | 61       | 70  | •  | ?      | 70 | ÷        | ÷   | 31  | 3        | :              | 3          | 2        | •        |     |         | E   | 121         |    | _    | _    | -1       |            | 1 |           | • •        | 72   |            |                      |       |     |
| HEBTHONA   | :          |             | •        | 2          | <u> </u>   | ž        | 1   | 20   |     | ;        | ~        | 80       | :   | *   | ~        | ŧ   | ē  | ï      | =  | :        | ?   | ;   | 3        | 9              | 9          |          | ? :      | -   | : :     |     | =           | :  |      | 12.2 | 3        | 141        |   | 15.3      | 0          | Ē    |            |                      |       | 4   |
| 2          | 9          |             | 7        | 3          | -          |          | 3   |      | 150 |          | ፧        | 00       | •   | -   | 88       | •   | •  | =      | 7  | 9        | :   | ÷   | Ş        | Ş              | -          | 2        | 2        |     | 2       |     | º           | ;  |      |      | <b>:</b> | **         |   | •         | *          | 1    | _ (        | ~                    | • •   | ,   |
| KHZ        | •          | ,           | :        | <u>\$</u>  | •          |          | 4   | 034  | 43  | ;        | 90       | •        | :   | 9   | •        | ě   | 5  | 7      | 7  | 73       | •   | ;   | :        | 5              | \$         | •        | 2 :      |     |         | 2   |             | ١, | •    | -    | 2        | 0 .        | N | •         | ••         | ۹.   | #;         |                      | 10.1  |     |
| 2          | •          | ,           | -        | 2          | ₹.         |          |     | 2    | *   | *        | :        | •        | 7.9 | -   | :        | 7   | 73 | ;      | 3. | 9        | ₹   | ?   | 9        | ;              | 3 :        | •        | <b>7</b> |     | ; ;     | 5   | ı           |    | 4    | 2 2  | -        | **         | 1 | •         |            | 4    | _ :        |                      | • •   |     |
| 13 10      | •          | •           | 978      | 3          | <u>ن</u> و | ; ;      |     | 5    | 030 | 7        | 3.1      | 9        | •   | -   | •        | :   | ţ  | į      |    | 3        | 3   | 800 | \$ 5     | =              | = :        | 2        | •        | ,   | ;       |     | •           |    | 5    | =    | n I      |            | ı |           | ;:         | 157  |            | ,                    | 24    |     |
| CCECE      | •          | 1           | \$       | 5          | ž :        | 7        | ;   | , 6  | 3   | *        | 3        | 3        | 3   | 7   | 37       | 4   | ç  | 4.7    | 3  | ¥        | 832 | 807 | 3.5      | <b>3 8 5</b> € | 2          | 9        | 5        | ;;  | 72      | ×   | -           | ;  |      |      |          | 48.        | 1 | 15.5      |            | 15   |            |                      |       | :   |
|            | •          | •           | ~        | 9          | 9          | - 6      |     | 27.5 | 9   | 000      | 2        | ~        | 30  | 7   | 2.0      | 56  | 2  | 27     | •  | ?        | 1.7 | 200 | 300      | 540            | -          | ~        | 5        | 3:  | - 5     | 0   |             | :  |      | *    | 考        | ===        | : | 3         |            | 3    |            |                      |       | 1   |
| EREA       | •          | ,           | ~        | 7          | <b>*</b>   | •        | -   | . v  | 100 | 8        | 5        | =        | 30  | 0   | :        | 0   | 7  | 0      | Ç  | ¢        | -   | 010 | 111      | 272            | 9          | •        | -        | 2 6 |         | 8   |             | ,  |      | •    |          | •          | - |           | - ·        | 4 .  | 3          |                      |       | ;   |
| DIPFERENCE | •          | •           | 5        | 7,         | 7          |          | 0 0 | 970  | 0   | 7.       | *        | 8        | 4.7 | 45  | 9.       | 20  | 9  | •      | 3  | S        | •   | 9   | 71       | 450            |            |          | -        | ^:  | ָרָ בָּ | ~   |             | 1  | 4    |      | •        | •          |   | 10        |            |      |            | <b>-</b>             |       |     |
| PH48       | ~          | •           | 41       | 11         | 3          | -        |     | 8    | 040 | ×        | 93       |          | *   | :   | *        | *   | -  | ÷      | 9  | ĸ        | 0   | **  | 4        | 058            | ₹ 1        | ~        | <b>2</b> | •   |         | =   | •           |    |      |      | -1       | <b>N</b> - | 1 |           | 7.7        |      |            | 20                   | £2,   | :   |
| 0          | -          | •           | 5        | 43         | 075        |          |     | 000  |     | 0 20     | -        |          | 90  | 70  | :        | •1  | +  | Ö      | 8  | =        | 843 | 047 | 071      | 26.5           | 1          | ě.       |          |     | . «     | 4   | -           | 1  | 62   |      | 15.      | 22         | 1 | 18.       | 5          | Į,   |            | 0                    | 53    |     |
| CBBERVED   |            |             |          |            |            |          |     |      |     |          |          |          |     |     |          |     |    | ٥      | •  | -        | •   | •   | •        | ^              |            | ^        | ~ (      |     | ::      |     |             | 1  |      |      | 3 1      | Š          | 7 | 7.7       | \$ .       |      | ē.         | = 0                  | Ž:    |     |
| 80         | 0476       |             | 4        | 4          | 4          | •        | •   | • •  | •   | •        | •        | •        | •   | •   | •        | 4   | 4  | •      | 4  | •        | 4   | 4   | 4        | 4              | 4          | 4        | ₹ .      | •   |         | 4   | 1 _         |    |      | ~    | -        | *          |   |           | •          | : 5  | ;          | 0A4 (1.00<br>~17€ 0. | 3 0   |     |
|            | <u> </u>   |             | 0        | 9          | <u> </u>   | 6        | 6   | 3 6  | , 6 | 0        | -        |          | =   | -   | =        | -   | -  | =      | =  | =        | ~   | =   | ~        | -              | č          | <u>~</u> | 2        |     |         |     | L           | Ľ  | 7    | _    | =        |            | 1 | =         |            | 1    |            |                      | ** C  |     |

THE PERSON NAMED IN COLUMN TWO 
Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Commen

1. LOP bias error: The average (mean) value of a set of measurements of a given LOP.



LOP BIAS ERROR

2. Fix bias error: The distance between the true position and the intersection of two average measured LOP's (see 1 above). This intersection is known as the fix bias point. This bias error is almost entirely due to PPC error.



Calculation: Fix Bias Error =  $\sqrt{(\Delta x)^2 + (\Delta y)^2}$  = R

and 
$$\overline{\Delta x} = \frac{1}{N} \sum_{i=1}^{N} \Delta x_i$$
;  $\overline{\Delta y} = \frac{1}{N} \sum_{i=1}^{N} \Delta y_i$ 

where  $\Delta y_i = North-South$  component of i<sup>th</sup> measurement of fix error

 $\Delta x_i = \text{East-West component of } i^{\text{th}}$  measurement of fix error

3. Standard deviation of radial error about bias point: The standard deviation of the distance between the bias point (see 2 above) and the measured fix points. This error measure indicates the "stability" of the fix, i.e., the "random" component of the error.

<u>Calculation:</u> Std. dev. of Radial error =  $\sigma_r$ 

$$= \frac{\lambda \sigma_{\phi}}{2 \sin \theta} \left[ \frac{1}{\sin^2 \phi_1/2} + \frac{1}{\sin^2 \phi_2/2} - \frac{2\rho \cos \theta}{\sin \phi_1/2 \sin \phi_2/2} \right]^{1/2}$$

where  $\lambda$  = wavelength (nm)

 $\sigma_h$  = standard deviation of LOP phase error

θ = LOP crossing angle

 $\phi_i$  = angle subtended by two transmitting stations comprising the  $i^{th}$  LOP

p = correlation coefficient

= -0.5 for three stations

= 0 for four stations

4. Total fix error: The root-mean-square of the distance between the true fix point and the measured fix point. This error measure indicates the total error due to both bias error and random error sources. The actual error distribution is approximated by a circular bivariate Gaussian error distribution.



## Calculation:

THE REPORT OF THE PROPERTY OF

\*\*\*\*\*

Total Fix Error = 
$$\left[ R^2 + \sigma_r^2 \right]^{1/2}$$

where R = Fix bias error

 $\sigma_r$  = Std. Dev. of radial error

Error distribution: 
$$p(r,\theta) = \frac{1}{2\pi \sigma_r^2} e^{-r^2/2\sigma_r^2}$$

where r,  $\theta$  = distance, angle about bias point

5. Radius of 95% probability circle: The radius of the circle, centered at the bias point which encloses 95% of all fix measurements.



Calculation: Solution of 
$$\int_{0}^{R(0.95)} p(r,\theta) r dr d\theta = 0.95 \text{ is given by}$$

$$R(0.95) = 2.4478\sigma_{r}$$

where  $p(r,\theta)$  is given in #4 above.

In selecting the months of data for processing to obtain fix accuracy, winter months were restricted to December/January/February and summer months to June/July/August. For some of the monitoring sites which had limited operation, there were data for only one season. The number of months of data selected for each site and season varied from one to seven months, depending on available data.

The output from the computer program consisted of values of R,  $\sigma_{\rm r}$ , and D, as discussed above, for the two seasons, two times of day, for each LOP combination. These results were then screened to eliminate LOP pairs which included an OMEGA station which was not considered to be providing coverage (i.e. SNR<-20dB or modal interference) in the signal

accessibility analysis presented earlier in Section 6.1 of this report. In addition, the C-D LCP was eliminated from the data for stations located close to the baseline extension. Specifically these sites were Cambridge, MA., Reading, MA., St. Anthony, Nfld. and Lajes and Vilanova in the Azores.

The resulting tables of R,  $\sigma_r$ , and D are given in Appendix D and recommended LOP combinations are given by geographic area in Section 9 of this report, Interpretation of Results.

## 6.2.2 Integrated OMEGA/Satellite Fix Accuracy

All usable integrated OMEGA/Satellite data were processed on the Coast Guard's Data General Eclipse S-200 minicomputer using GFE programs. Primarily these integrated data were processed to determine fix accuracy statistics. The computer program allows for many options and/or restrictions as indicated in the Fix Data Summary example in Figure 6-11. For this processing, Longitude was usually segmented in 150 steps while Latitude was not restricted. The times selected were for a five hour period around local midday and midnight. All LOP combinations using OMEGA stations A, B, C, D, E, F were accepted for the daytime data. For nighttime, data stations B and E were eliminated due to the probability of modal interference in the test region. A minimum SNR index of 11, which corresponds to an SNR of -20dB in a 100 Hz bandwidth, was used and the maximum error was limited to 10 nautical miles to eliminate large transient errors. As a result of including all LOP combinations for fix error computation, many poor geometry combinations were included and therefore the error statistics are large.

Summaries of the results of this processing are given in Tables 6-2, 3, 4 for the ANCHORAGE, GALLOWAY and AFRICAN NEPTUNE, respectively.

In processing these data, a listing is available which gives the difference in nautical miles between the satellite system and the OMEGA system for each position fix, for every available LOP combination. This

1.

| MILES)               |
|----------------------|
| SUMMARY              |
| FIX DATA             |
| OMEGA<br>1STANCE/FIX |
| 013                  |

|                                                                                                                               |               |                                        | 1.60          | 1,50                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| DAIE: 27 7 1978 TO 31 7 1978  TIME: 1500 TO 2000  LATINCT RESTRICTED  LONI W 7500.00 TO W 9000.00  FREG: 10.2  STATIONS USED: | <b>₹</b> 8004 | TRANSITION PATHS INCLUDED  SAMPLE SIZE | AL ERROR AVEI | ERROR ABOUT XMEAN, YMEAN (XCOMPE ERROR STANDARD DEVIATION)  SORT (SIGMAX**2+SIGMAY*2); 1.76  SORT (SIGMAX**2+SIGMAY*2); 3.36  50  50  6.01 |

difference between the two systems corresponds to the total fix error (D) introduced in the preceding section (6.2.1). These data have been extracted and combined with the accuracy results from the ONSOD ground monitor sites. However, it should be pointed out that the satellite measurements have their own inherent inaccuracies of a few tenths of a nautical mile up to one-half of a nautical mile. Therefore the shipboard position errors are not entirely due to OMEGA.

And the second of the second o

TABLE 6-2
SUMMARY OF INTEGRATED OMEGA/SATELLITE FIX ERROR STATISTICS FOR THE ANCHORAGE.

| LOCAL D | AY          |     | OMEGA ST  | ATIONS: | A, F | , C, D, | E, F      |         |        |             |     |
|---------|-------------|-----|-----------|---------|------|---------|-----------|---------|--------|-------------|-----|
|         | <del></del> |     | ERROR ABO | OUT SAT | FIX  | (nm)    | ERROR ABO | OUT MEA | N (nm) | <del></del> |     |
| LAT     | LONG        | N   | RADIA     | L ERROR | CE   | P       | RADIA     | L ERROR |        | CE          | P   |
| °N      | ωM          | [ [ | AVE       | σ       | 50%  | 95%     | AVE       | σ       | RMS    | 50%         | 95% |
| 17-38   | 60-75       | 60  | 2.4       | 1.8     | 1.6  | 5.4     | 2.4       | 1.6     | 2.0    | 2.1         | 5.0 |
| 18-24   | 75-90       | 212 | 2.3       | 2.0     | 1.6  | 7.3     | 2.2       | 2.1     | 2.3    | 1.6         | 6.5 |
| 18-24   | 75-90       | 142 | 2.4       | 2.2     | 1.6  | 7.5     | 2.4       | 2.3     | 2.6    | 1.6         | 7.0 |
| 18-21   | 75-90       | 70  | 2.1       | 1.6     | 1.5  | 5.3     | 3.5       | 1.5     | 1.8    | 3.4         | 6.0 |
| LOCAL N | IGHT        |     | OMEGA ST  | ATIONS: | Α, C | , D, F  |           |         |        |             |     |
| 17-35   | 60-75       | 23  | 5.4       | 2.0     | 4.6  | 8.7     | 4.9       | 2.4     | 4.3    | 4.5         | 8.6 |
| 18-22   | 75-90       | 17  | 5.1       | 2.0     | 5.0  | 7.2     | 2.6       | 2.2     | 2.6    | 1.8         | 5.9 |

SHIP: ANCHORAGE

DATES: JULY 1978

TABLE 6-3
SUMMARY OF INTEGRATED OMEGA/SATELLITE FIX ERROR STATISTICS FOR THE GALLOWAY

| LOCAL D | AY    |    | OMEGA ST  | ATIONS: | A, B  | , C, D, | E, F      |                                       |        |     |             |
|---------|-------|----|-----------|---------|-------|---------|-----------|---------------------------------------|--------|-----|-------------|
|         |       |    | ERROR ABO | OUT SAT | . FIX | (mm)    | ERROR ABO | UT MEA                                | (תמ) ע |     |             |
| LAT     | LONG  | N  | RADIA     | L ERROR |       |         | RADIAL    | ERROR                                 |        | CE  | 9           |
| °N      | °W    |    | AVE       | σ       | 50%   | 95%     | AVE       | σ                                     | RMS    | 50% | 35%         |
| 40-41   | 60-75 | 65 | 8.دَ      | 1.9     | 3.3   | 7.4     | 2.6       | 2.3                                   | 2.2    | 1.2 | 7.0         |
| 43      | 45-60 | 14 | 5.7       | 2.2     | 5.4   | 8.5     | 4.2       | 2.3                                   | 2.8    | 3.0 | 7.8         |
| 42-43   | 30-45 | 30 | 3.8       | 2.3     | 3.5   | 7.1     | 4.1       | 2.2                                   | 2.8    | 3.6 | 7.8         |
| 45-46   | 15-30 | 75 | 3.1       | 2.1     | 2.5   | 7.5     | 3.1       | 2.1                                   | 2.5    | 2.4 | 6.8         |
| 41      | 15-30 | 14 | 4.7       | 2.8     | 4.1   | 8.9     | 4.9       | 3.1                                   | 2.6    | 3.8 | 9.8         |
| 48      | 00-15 | 26 | 1.7       | 1.3     | 1.3   | 2.6     | 2.2       | 1.6                                   | 1.1    | 2.0 | 3.0         |
| LOCAL N | IGHT  |    | OMEGA ST  | ATIONS: | Α, Ο  | , D, F  |           | · · · · · · · · · · · · · · · · · · · | ا      | L   | <del></del> |
| 40°     | 60-75 | 12 | 5.7       | 2.1     | 5.4   | 7.9     | 5.5       | 2.8                                   | 3.6    | 4.9 | 8.7         |
| 42-43   | 45-60 | 4  | 3.6       | 0.2     | 3.5   | 3.7     | 0.2       | 0.1                                   | 0.2    | 0.2 | 0.3         |
| 42-45   | 30-45 | 16 | 5.8       | 0.6     | 5.6   | 6.7     | 1.6       | 1.3                                   | 0.6    | 0.9 | 3.9         |
| 47      | 15-30 | 10 | 5.3       | 0.9     | 4.7   | 6.2     | 1.8       | 1.6                                   | 0.8    | 1.4 | 1.9         |
| 40      | 15-30 | 4  | 5.4       | 2.9     | 3.2   | 7.9     | 5.6       | 2.7                                   | 3.5    | 3.9 | 7.4         |
| 49-50   | 00-15 | 4  | 6.3       | 2.0     | 6.2   | 7.5     | 4.6       | 2.0                                   | 5.0    | 3.8 | 4.6         |

SHIP: GALLOWAY

DATES: APRIL 1978

TABLE 6-4
SUMMARY OF INTEGRATED OMEGA/SATELLITE FIX ERROR STATISTICS FOR THE AFRICAN NEPT

| LOCAL I | DAY   |          | OMEGA ST  | ATIONS: | A, E | , C, D, | E, F      |       |             |     |     |
|---------|-------|----------|-----------|---------|------|---------|-----------|-------|-------------|-----|-----|
|         |       |          | ERROR ABO |         |      |         | ERROR ABO |       |             |     |     |
| LAT     | LONG  | N        | RADIA     | ERROR   | CE   | EP .    | RADIAI    | ERROR |             | CE  | P   |
| °N      | ٥M    |          | AVE       | σ       | 50%  | 95%     | AVE       | п     | RMS         | 50% | 95% |
| 30-31   | 75-90 | 166      | 3.1       | 2.3     | 2.4  | 7.3     | 3.5       | 2.2   | 3.2         | 2.9 | 7.2 |
| 25-27   | 45-60 | 52       | 2.3       | 1.7     | 1.7  | 5.7     | 2.3       | 1.6   | 2.4         | 1.7 | 6.1 |
| 4-10    | 00-15 | 33       | 1.8       | 1.0     | 1.4  | 2.6     | 1.6       | 1.0   | 0.8         | 1.1 | 2.5 |
| LOCAL N | NIGHT | <u> </u> | OMEGA STA | TIONS:  | Α, Ο | , D, F  | •         |       | <del></del> |     | 1   |
| 28      | 60-75 | 11       | 3.9       | 1.1     | 3.5  | 5.3     | 3.9       | 1.4   | 3.0         | 3.6 | 4.7 |
| 26      | 45-60 | 5        | 4.8       | 0,1     | 4.8  | 4.8     | 0.1       | 0.3   | 0.1         | 0.1 | 0.1 |

SHIP: AFRICAN NEPTUNE

DATES: OCT., NOV., DEC. 1978

### 6.3 PHASE BIAS ERROR

The phase error is determined as follows:

Phase Error = Observed Phase - Predicted Phase where

Predicted Phase = Norminal Phase - PPC.

A study of the ONSOD ground monitor site data indicates that there are some bias errors evident in certain of the phase data. The data base for this study was the unflagged local noon and midnight (five-hour average) 10.2 kHz phase data used for the accuracy calculations.

Table 6-5 lists the apparent bias errors being observed for winter/summer, day/night. The values are an average of the bias errors over the months of observation. In many cases there are only two or three months of observation, which may be too small a sample to warrant considering the improvement of the PPCs. However, there are some instances where bias errors have been observed consistently for four months or more during winter or summer months. These are listed separately in Table 6-6 for Belem, Brazil; Farnborough, U.K.; Hestmona, Norway; La Moure, North Dakota; Nea Makri, Greece; and Sabana Seca, Puerto Rico. In the case of Belem, Brazil, the bias error may be due to a geodetic problem since it is based on a local datum. The cause of consistent bias errors at other monitor sites is not evident and improvement of the PPCs should be considered.

Table 6-5
Phase Bias Errors

L' Me Litter merchen, des parties and proposition of the second

|                   |                   |        | Δ          | ) - L    | OP PHASE B | IASES       | (CECS)            | )     |                  |
|-------------------|-------------------|--------|------------|----------|------------|-------------|-------------------|-------|------------------|
|                   |                   |        | W          | INTER    |            |             | Si                | JMMEF | ₹                |
| SITE              | LOP               | Ŋ      | DAY        | N        | night      | N           | DAY               | N     | NIGHT            |
| Belem, Brazil     | A-C<br>C-D        | 5<br>6 | +38<br>-31 |          |            | 6<br>6      | +23<br>-20        |       |                  |
| Bermuda, U.K.     | A-C<br>A-D        |        |            | 2 2      | +27<br>+16 |             |                   |       |                  |
|                   | A-F               |        |            | 2        | -34        |             |                   |       |                  |
|                   | B-C<br>B-D        | 2      | -24<br>+16 | 2 2      | -29<br>+28 |             |                   |       |                  |
| Eglin AFB, FLA.   | D-F<br>A-C        | 2      | -36        | 2        | -25<br>-20 |             |                   |       |                  |
|                   | A-D<br>C-D        | 2 2 .  | -29<br>-13 | <u> </u> |            |             |                   |       |                  |
| Farnborough, U.K. | A-B<br>A-D        | 8      | -15        | 3        | -19        | 11          | -17               |       |                  |
| Hestmona, NOR.    | B-C<br>B-E        |        |            |          |            | 5           | -17               | 4     | -40              |
|                   | B-H<br>C-D        | 5      | -13        | 5        | -25        | 3           | -16               |       | :                |
|                   | C-H<br>E-H        | 4      | -23        | 2        | -28        | İ           |                   |       |                  |
| Keflavik, Iceland | B-D<br>B-F        |        |            |          |            | 2 2         | -18<br>-19        |       |                  |
| Lajes, Azores     | A-C<br>C-F        | 2 2    | +14        |          |            |             |                   |       |                  |
| La Moure, N.D.    | A-C<br>A-H<br>C-H | 5      | +27        |          |            | 3<br>2      | +14 +14           | 3     | ÷12              |
| Nea Makri, GR.    | A-B<br>A-E<br>B-H | 3      | -13        | 4        | -20        |             |                   | 2     | +22              |
| Panama, C.Z.      | B-D<br>C-D<br>C-F |        |            |          |            | 2<br>2<br>2 | +20<br>-11<br>-20 | 2     | -16              |
| Piar∞, Trinidad   | A-C<br>B-D<br>C-D | 3      | -23        | 3        | -36<br>-16 | 3           | +13               | 3     | +15<br>-31<br>13 |
| Portsmouth, VA    | A·-C<br>D-H       | 2 2    | +15<br>-18 |          |            |             |                   |       |                  |

N = Number of Months

Table 6-5
Phase Bias Errors (Cont.)

|                   |     |   | Δ        | ф - L | OP PHASE B | IASES | (CECS | )     |       |
|-------------------|-----|---|----------|-------|------------|-------|-------|-------|-------|
|                   | 1   |   | W        | INTER |            |       | S     | UMMER | }     |
| SITE              | LOP | N | DAY      | N     | NIGHT      | N     | DAY   | N     | NIGHT |
| Sabana Seca, P.R. | A-C | 6 | +34      |       |            |       |       |       |       |
|                   | A-D | 4 | +15      |       |            |       |       |       | ]     |
|                   | A-F |   | <b> </b> | 2     | -38        | 1     | 1 1   | 2     | -42   |
|                   | C-D | 5 | -24      | 5     | -17        |       | 1 1   | 4     | -12   |
|                   | D-F |   | 1        | 3     | ~32        |       |       | 4     | -38   |
| St. Anthony, NEWF | A-C | 3 | +16      |       |            |       |       |       |       |
| Vila Nova, Azores | D-F |   |          |       |            |       |       | 3     | +55   |
| Washington, D.C.  | A-B |   |          | 2     | +24        |       |       | 3     | +23   |
|                   | A-D |   |          | 2     | -12        |       | 1 1   |       | Ì     |
|                   | C-D | 2 | -14      | }     |            |       | 1 1   |       | ]     |
|                   | D-H | 2 | -27      | 1     |            |       | 1 1   |       | ļ     |
|                   |     |   |          |       |            |       |       |       | 1     |

N = Number of Months

ANTHANTAL CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PR

Table 6-6
Phase Bias Errors Observed for Four or More Months

|                   |                          |             | Δ                 | φ - L | OP PHASE BI | ASES   | (CECS)     |      |            |
|-------------------|--------------------------|-------------|-------------------|-------|-------------|--------|------------|------|------------|
|                   |                          |             | W                 | INTER |             |        | St         | JMME | R          |
| SITE              | LOP                      | N           | DAY               | N     | NIGHT       | N      | DAY        | N    | NIGHT      |
| Belem, Brazil     | A-C<br>C-D               | 5<br>6      | +38<br>-31        |       |             | 6<br>6 | +23<br>-20 |      |            |
| F:cnborough, U.K. | A-D                      | 8           | -15               |       |             | 11     | -17        |      |            |
| Hesamona, NOR.    | B-C<br>B-E               |             |                   |       |             | 5      | -17        | 4    | -40        |
|                   | C-D<br>C-H               | 5<br>4      | -13<br>-23        | 5     | -25         |        |            |      |            |
| La Moure, N.D.    | A-C<br>C-H               | 5<br>6      | +27<br>-28        |       |             |        |            |      |            |
| Nea Markri, GR.   | A-B                      |             |                   | 4     | -20         |        |            |      |            |
| Sabana Seca, P.R. | A-C<br>A-D<br>C-D<br>D-F | 6<br>4<br>5 | +34<br>+15<br>-24 | 5     | -17         |        |            | 4    | -12<br>-38 |

N = Number of Months

6.4 EFFECT OF SUDDEN IONOSPHORIC DISTRUBANCES (SIDS) ON THE OMEGA NAVIGATION SYSTEM

SIDS are produced by solar flares and the frequency of occurrence and intensity are related to the 11 year solar cycle. The effects of a SID on VLF radio signals propagating over long paths are a Sudden Phase Advance or Anomaly (SPA) and sometimes, in the case of very large flares, Polar Cap Absorption (PCA) in the auroral zones. Both SPAs and PCAs can affect VLF position fix accuracy and in addition, PCAs can attenuate the signals propagating through the auroral zone to a non-usuable level.

#### 6.4.1 Sudden Phase Advance

A study (20) of the distributions of SPAs has been made which includes the number distributions of the maximum phase offsets produced by SPAs observed at 10.2 kHz on the Hawai! - New York path from 1966 through 1970 (Figure 6-9). This figure clearly shows that there were fewer SPAs and they were smaller during periods of lower solar activity (1966-1967) than near the solar cycle maximum (1968-1970).

Figure 6-10 shows the disturbance duration distributions observed during SPA events for the same path and years. These plots indicate a peaking effect around 40 minutes with a decrease in frequency with length of disturbance. These data do not indicate any significant relationship between disturbance duration and the sunspot number, which nearly tripled over the time span that was analyzed.

A study (21) of SIDs and their effect on VLF position fixing accuracy was commissioned by National Air Traffic Services in conjunction with the Ministry of Defence in the United Kingdom. The study was intended as a reference work for those concerned with the use of VLF propagation for navigation.

A few of the details of this analysis are included here. The results of this study indicate that for a suitable combination of trans-



Figure 6-9 Maximum Phase-Offset Distributions Observed during SPA Events on Hawaii to New York Path at 10.2 kHz



Distinct on Lawrington Distributions Observed During SPA Events on Hawaii to New York Path at 10.2 kHz  $\,$ 21gure 6-10

mitter stations serving the North Atlantic Organized Track Structure area, SIDs are unlikely to cause positional errors of more than 15 nautical miles.

The phase recordings used in this study came from two main sources:

- a. Phase recordings of the Trinidad Omega transmitting station received at RAE Farnborough from 1966 through until 1971.

  The data were mainly at 10.2 kHz but also included some at 11.3 kHz and 13.6 kHz.
- b. Phase recordings of the Trinidad Omega transmitting station received at RGO Hertmonceux from November 1969 to June 1973. These data were at 12 kHz.

These recordings together covered a substantial part of the 11 year Solar Cycle. In particular they covered the period of maximum solar activity when the ionospheric disturbances can be expected to be most frequent and of maximum intensity.

It was unfortunate that no single set of records covered the total period, therefore an attempt was made to use records from both of the above sources despite the different frequencies at which the recordings were made. It was considered that the propagation path was so similar that no correction need be applied for the difference.

#### Frequency Dependence

The size of the phase shift caused by a SID is dependent on frequency. Fortunately, there was a reasonable amount of overlapping data during 1970 at 10.2 kHz, 11.3 kHz, 12 kHz and 13.6 kHz on the two paths under study. An analysis of these data showed the following relationship.

| f <sub>2</sub> (kHz) | Ratio $\left(\frac{10.2 \text{ kHz}}{f_2}\right)$ |
|----------------------|---------------------------------------------------|
| 11.3                 | 1.3                                               |
| 12.0                 | 1.45                                              |
| 13.6                 | 1.7                                               |

#### Probable Cross Track Errors

All of the SID associated data were converted to 10.2 kHz and normalized to a path length subtending one radian at the center of the earth, under normal illumination. Given a particular transmitting station, date, and time this normalized distribution was converted into an expected distribution at a given receiver. By using three transmitting stations simultaneously, it was possible to deduce a distribution for the errors in hyperbolic position fixing at the receiver.

A receiver position of 52° N. Latitude, 30° W. Longitude was used and several combinations of transmitting stations (3) were used for the study. In each case the months of June and December were included in the analysis. Daily mean examples of the results using Norway, Trinidad and North Dakota are given in Figure 6-11. In each case, the vertical axis is the  $\log_{10}$  probability of the cross track error falling in a given range and the horizontal axis is the cross track error in nautical miles. The track in these runs was in the East - West direction, so that the negative cross track error means that the aircraft true position is north of the indicated position.

The daily mean distributions for this combination of transmitting stations indicates a cross track error between -5 nm and +6 nm for June (Figure 6-11a) and between -8nm and 0nm for December (Figure 6-11b). The



TANGER OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE

Figure 6-11 Histograms of Cross Track Errors Receiver Position N52° W30°. Track=90°. Transmitters N. Dakota, Norway, Trinidad.

individual hourly data (not shown here) showed that the worst errors occur at about 1300 GMT in December when there is a long sunlit path to Trinidad. Also large errors can occur at 2300 GMT in June when the Norway path can be in sunlight due to the high latitude of this path.

Another analysis task in this study was to derive the variation of cross track errors with different receiver locations using the same combination of transmitting stations. The five receiver locations are shown in Figure 6-12. These are located at the extreme corners of the Oceanic Control Area and a point near the middle. The transmitting stations used were Norway, North Dakota and Liberia which would be considered to provide optimum coverage for this area.

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

The expected cross track errors observed at these five locations are shown in Figure 6-13a for June and in Figure 6-13b for December. Again the vertical axis represents the  $\log_{10}$  of the probability and the horizontal axis represents the cross track error in nautical miles. In both the summer and winter cases the northern most points give the larger errors. This is because these have a longer path to Liberia which has a higher illumination than the other paths. In the June case only, the "Midnight Sun" causes some disturbances at night, which are much larger at the receiver positions which are furthest west (furthest from Norway).

At no time was a cross track error observed that was greater in magnitude than 13 nautical miles. However, if a less optimum triad of transmitting stations had to be used, the error would likely be larger.

#### Spatial Distribution of Errors with Time

Not only the cross track errors are of interest to those concerned in defining airways and clearances. Also of interest is the direction of the error at any time. As receiver A (Figure 6-12) appeared to give the most dramatic errors in the previous section it was chosen to demonstrate the variation of the total expected error with time. These results are shown in Figure 6-14.



and the second second second second second second second second second second second second second second second

Figure 6-12 The Oceanic Control Area Showing the Five Selected Receiver Locations.



Figure 6-13 Histograms of Cross Track Errors: Transmitters Norway, Liberia and North Dakota. Track=90°. Receiver Positions (as shown in Figure 6-12)

Figure 6-14 Spatial Distribution of Errors

As can be seen in both the runs for June and December, the error is very great in roughly the direction of the Liberian transmitter when that propagation path is illuminated. The error is in roughly the direction of the North Dakota transmitter when only that path is illuminated, and roughly in the direction of the Norway transmitter when only that path is illuminated (June only; Midnight Sun effect).

The diagram shows dramatically the apparent shortening of phase on a sunlit path. The sunrise/sunset data for each path (Table 6-7) is helpful when understanding the shape of the spacial error distribution.

Table 6-7
Sunrise and Sunset Data for Each Propagation Path

| Propagation Path | Jui     | ne     | Dece      | mber   |
|------------------|---------|--------|-----------|--------|
|                  | Sunrise | Sunset | Sunr i se | Sunset |
| Libecia          | 0600    | 1900   | 0700      | 1800   |
| North Dakota     | 0700    | 0000   | 1200      | 1900   |
| Norway           | 6000    | 2200   | 1100      | 1300   |

## 6.4.2 Polar Cap Absorption

High war in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the

Many of the largest Solar Flares, which produce the SIDs by producing a large hard X ray flux, also produce a stream of charged particles which take from a few hours to about a day to reach the Earth. These particles reach ionospheric altitudes only in the region of the Magnetic Poles where the angle of magnetic dip is steepest. The area effected by these PCAs is the Auroral Zone, between 60° magnetic Latitude and the Magnetic Pole. Not much effect is observed outside these Zones.

The observed effect of a PCA is to produce a large phase advance which will slowly recover over several days. These effects are normally accompanied by radio "fade outs" so warning systems to report such events would have to use frequencies relatively unaffected by the event.

Data on these events are very scarce, although some work done by NOSC (formerly the Naval Electronics Laboratory Center) (22) using paths from Norway-Wales (Alaska) and New York to Wales suggests that PCAs could dominate those paths for some 5 percent of the observed time during the period of maximum solar activity. It should be stressed, however, that the propagation paths used to obtain those results are both almost entirely within the Auroral Zone and certainly no path in use over the North Atlantic is likely to be affected to the same amount.

11/14

#### 7. OPERATIONAL DATA

#### 7.1 DATA SOURCES

OMEGA user aircraft data have been reported by Pan American World Airways, the National Aviation Facilities Experimental Center (NATEC) the Canadian Armed Forces, the U.S. Naval C-118 Weapons System, the U.S. Air Force 4950th Test Wing and the Soviet Aeroflot Airline. Shipboard data have been reported by a variety of users from several countries including the United Kingdom, Australia, Denmark, Finland, the Netherlands and the United States. In addition, differential OMEGA measurements have been reported, by Redifon Ltd. and the Admiralty Compass Observatory (ACO) of the United Kingdom.

#### 7.1.1 Reported Aircraft OMEGA Data

The following paragraphs summarize the reported OMEGA aircraft data.

#### Pan American World Airways

OMEGA data are available from three Pan American flights transitting the North Atlantic using dual Canadian Marconi (CMA-740) receiver systems as follows:

| New York - Paris | 8  | May | 1979 |
|------------------|----|-----|------|
| Paris - Malaga   | 9  | Мау | 1979 |
| Malaga - Bangor  | 10 | мау | 1979 |

The data for these flights are in the form of observer notes including a chronological summary. The data also include an SNR index for each frequency (10.2, 11 1/3, 13.6 kHz) and OMEGA Station (A through H) at approximately 30 minute intervals and a calibration curve is pro-

vided. Also included is the position difference between OMEGA measurements and INS measurements.

# NAFEC Data (23)

A report is available describing the results of measurements made during five flights in January (6, 7, 20, 21, 23) 1976 across the North Atlantic in a TWA-707. The OMEGA receiver was a Litton ONS-201 and the reference system, an LTN-72 Inertial Navigation System.

Several types of data are included in the report as follows:

- a. SNR vs GMT from Stations A through H
- b. ONS-201 OMEGA/LTN-72 Inertial Position Comparison
- c. Cross Track and Along Track Error vs GMT
- d. Ground speed and distance to waypoint vs GMT

# Canadian Armed Forces Data (24)

Data from the Maritime Proving and Evaluation Unit of the Canadian Armed Forces for aircraft flight over Northern Canada on four days, 18, 19, 21, and 26 October 1976 are available. The data are in the form of signal-to-noise ratio indices for all eight OMEGA stations and three frequencies. These data are in tabular form and require the use of a calibration curve which is provided.

Also, data in the form of a signal-to-noise index for five OMEGA transmitting stations (Norway, Trinidad, Hawaii, North Dakota and Japan) for three frequencies (10.2, 13.6 % 11.3 kHz) as measured using a Canadian Marconi receiver are given for the following flights:

#### Trans-Atlantic Flights

3

Prince Edward I. to England - 20 May 1975 England to Newfoundland - 28 May 1975

#### Trans-Canada Flights

15/16 April 1975 18 April 1975 19/20 April 1975 27/28 April 1975

The times and geographic positions are indicated on maps for each set of measurements. A calibration curve is provided to convert the signal-to-noise indices into decibels.

# C-118 Aircraft Data (25)

A commercial Litton Aero Production OMEGA Navigation System (ONS), LTN-201, was installed in a C-118B for an operational evaluation by an operational squadron. The purpose of the tests was to evaluate the suitability of a commercial ONS to fulfill the Navy's requirement for long-range overwater navigation and to evaluate position accuracy and reliability of the LTN-201 ONS.

Operative navigation equipment on board the aircraft during the tests consisted of TACAN VOR/DME, sextant and a driftmeter. The majority of flight hours were accumulated during a 1-16 July, 1978 deployment to the Mediterranean. A flight to Puerto Rico and a flight to Mexico in May 1978 were the only other flights made.

# Project Speckled Trout 4950th Test Wing (AFSC) - Andrews AFB (26)

Reports are available from the Department of the Air Force, Det. 1, 4950th Test Wing (AFSC), Andrews AFB, Washington, D.C. concerning the operational evaluation of several navigational systems installed on the Speckled Trout aircraft for the period January 1979 through January 1980

Many trans-Atlantic, trans-Pacific and domestic flights were flown. The OMEGA system was evaluated using the fully automatic CMA-719 OMEGA Navigation System. The system provided continuous automatic readouts of aircraft position displayed in various forms, namely latitude/longitude, bearing/distance, track angle/cross track distance etc.

m in a serial of the territor and an in these while was distributed and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the serial and the seria

# Soviet Aeroflot Data (27)

A Dynell ONS-UP receiver has been used on the IL-62M aircraft of the Aeroflot since October 1977 on flights over the North Atlantic. In the period January - April of 1978, an evaluation of the accuracy of position fixing of the aircraft using the ONS-UP equipment was conducted. This evaluation was performed on board the aircraft while parked at airports in Paris, Lisbon, Frankfurt, Montreal, Rabat, Lima and other airports, as well as during flights over the North Atlantic during approaches of the coastal zone. The references for the accuracy evaluation of OMEGA were coordinates obtained from the measurement of two (2) distances from DME, or azimuth and distance for VOR/DME with distances from the radio beacons of not more than 40 KM.

During the various flights the stability of reception of signals from different "OMEGA" ground stations was also determined.

# 7.1.2 Reported Shipboard Data

A listing of the ships which reported OMEGA data is given in Table 7-1. These data were reported in various formats and Table 7-1 attempts to summarize the type of information that is available from each ship. In most instances, the OMEGA station pairs being used are indicated. In many cases, OMEGA positions are given simultaneously with a reference system position. However, in some cases, only an OMEGA fix is listed and no comparison can be made. Some of the data includes user's comments and error plots or information derived from the measurements.

TABLE 7-1
SIMMARY OF REPORTED SHIPBOARD DATA

|                   |                         | REF. SYSTEM |       | ERROR     |
|-------------------|-------------------------|-------------|-------|-----------|
| VESSEL            | CRUISE                  | £           | ERROR | INFOR-    |
|                   |                         | OMEGA       | PLOTS | MATION    |
| ALABAMA GETTY     | U.S. TO GIBRALTAR       | x           | 1     | x         |
| BRITISH RESPECT   | CAPETOWN - GENOA        |             | x     |           |
|                   | SPITHEAD - PERSIAN GULF | x           | х     |           |
|                   | PERSIAN GULF - EUROPE   | x           | x     |           |
|                   | EUROPORT - PERSIAN GULF | x           | x     |           |
| UNKNOWN FINNISH   | COAST OF W. AFRICA      |             |       | x         |
| UNITED OVERSEAS I | 16 CRUISES - ENGLAND    |             |       | 2 CRUISES |
|                   | AFRICA, MEDITERRANEAN,  |             |       |           |
|                   | PERSIAN GULF AREA       |             |       |           |
| BESKYTTEREN       | NORWEGIAN SEA           | x           |       |           |
| VAEDDEREN         | NORWEGIAN SEA           | x           |       |           |
| HMS AURORA        | NORWEGIAN SEA           | x           |       |           |
| HMS KENT          | NORWEGIAN SEA           | x           |       |           |
| HMS NORFOLK       | PORTSMOUTH - BORDEAUX   | x           |       | 4         |
|                   | - GIBRALTAR             |             | -     |           |
| HMS BLAKE         | BREST - BERMUDA -       | x           |       |           |
|                   | CARTAGENA - PACIFIC     |             |       |           |
| HMS ARETHUSA      | ENGLAND, SWEDEN, BALTIC | x           | }     |           |
| HMS POOLSTED      | ENGLAND - PORTUGAL      |             |       |           |
| HMS TROMD         | NORTH SEA               |             |       |           |
| HMS EVERTSEN      | GIBRALTAR               |             |       |           |
| HMAS HOBART       | BALTIMORE - GIBRALTAR   |             |       | x         |
| USS TATTINAL      | W. COAST OF ENGLAND     |             |       |           |
| USS J.F. KENNEDY  | U.S MEDITERRANEAN       | x           |       |           |
| USS WM. PRATT     | PUERTO RICO - MARACAIBO | 4           |       |           |
|                   | VENEZUELA, LA GUAIRA    |             |       |           |
| TJERK HIDDES      | ENGLAND - PORTUGAL      |             |       | x         |
| H.NL.M.S. TYDEMAN | Trans-Atlantic          | x           |       | x         |
|                   |                         |             | 1     | 1         |

Also, about a month of OMEGA/Satellite data have been reported by the Netherlands Navy. The data were collected in the North Atlantic region during the November/December time frame. The measurements were made onboard the H.NL.M.S. "TYDEMAN" which was equipped with an automatic data logging system (Oceanlos). Connected to this system were a Magnavox 702A Satellite Navigation system and a Seccel NRNX-4R OMEGA receiver.

At the time of closest approach of a satellite, the system prints: Day/Time/OMEGA receiver readings/propagation corrections and stores the geographical postion which is computed from the readings after application of the propagation corrections. If a satellite-pass results in an acceptable satellite fix, the difference between the stored OMEGA-position and the accepted satellite-position at 'time of fix' is computed.

#### 7.1.3 Differential OMEGA Measurements

Redifon/ACO differential OMEGA measurements at nine monitor sites off the southern coast of England for three station pairs (AB, AD, CD) are given in terms of distance (nm) and hearing. Tables give mean LOP's (day, night, all), standard deviation (day, night, all) and mean error (day, night, all).

#### 7.2 OPERATIONAL DATA EVALUATION

#### 7.2.1 Reported Aircraft Data

The following sections summarize the results of the reported aircraft data.

#### Pan American World Airways

OMEGA data are available for three Pan American flights (New York-Paris, Paris-Malaga, Malaga-Bangor) made in May 1979. These data consist of OMEGA SNR information and fix differences between a CMC 740 OMEGA Navigation System (ONS) and a Carousel IV inertial navigation system (INS). The maximum and minimum values of SNR (in a 100 Hz bandwidth) for each OMEGA station during each flight are given in Table 7-2.

For the flight from New York to Paris, the typical difference between the ONS and INS was around 3 nm. During the flights from Paris to Malaga and Malaga to Bangor, the difference between the ONS and INS was normally about 2 nm. Actual differences at the landing terminals were 2.1 nm (ONS) and 18 nm (INS) at Orly Airport, 2.4 nm (ONS) and 1.1 nm (INS) at Aeropuerto de Malaga, and 0.5 nm (ONS) and 2.3 nm (INS) at Bangor Airport.

# NAFEC Flight Data (23)

A report from the Communications and Guidance Division of NAFEC presents a summary of data recorded during five trans-Atlantic flights in January 1976 using an OMEGA Navigation System, ONS-201, in a TransWorld Airline (TWA) Air-Cargo 707. SNR data are given as a function of time and OMEGA fixes are compared with those measured using a Litton LTN-72 inertial navigation system. During these flights the Norway, Hawaii, North Dakota and Japan stations were operating normally while La Reunion, Argentina and Liberia were testing intermittently.

TABLE 7-2
SUMMARY OF MAXIMUM AND MINIMUM SNRs MEASURED
DURING THREE PAN AMERICAN FLIGHTS

|               | MAX/MIN              | SNR (dB) IN 100 Hz BA | NDWIDTH             |
|---------------|----------------------|-----------------------|---------------------|
| STATION       | NEW YORK - PARIS (1) | PARIS - MALAGA (2)    | MALAGA - BANGOR (3) |
| A. NORWAY     | +12/+5               | +8/+6                 | +12/-2.5            |
| B. LIBERIA    | +6.5/-8              | +8/+4                 | +7/-9               |
| C. HAWAII     | +2/<-20              | <-20                  | 0/<-20              |
| D. N. DAKOTA  | +8/+4                | +4/<-20               | +6.5/-5.5           |
| E. LA REUNION | -14/<-20             | -10/<-20              | -11.5/<-20          |
| F. ARGENTINA  | +4/-11               | +1.5/-8               | -1/<-20             |
| G. TRINIDAD   | +7/+5                | +3.5/-18              | +8/-7.2             |
| H. JAPAN      | <-20                 | -10.5/<-20            | -14.5/<-20          |

- (1) FLIGHT R146, 8 MAY 1979, 0235-0940 Z
- (2) FLIGHT TR151, 9 MAY 1979, 0619-0810 Z
- (3) FLIGHT R151, 10 MAY 1979, 1125-1911 Z

The SNR data for the normally operating stations can be summarized as follows based on a -20dB threshold:

Norway -Above threshold all flights,
North Dakota day and night

Hawaii -Above threshold west of √ 15° Long. during day and √ 30° Long. during night.

Japan -Mostly below threshold

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

Test transmissions from other stations indicated that Liberia provided good coverage across the Atlantic, La Reunion signals were above threshold in the Eastern Atlantic and Argentina was above threshold for three flights and marginal or below threshold for two flights.

Plots of OMEGA position with respect to the INS reference are included. An analysis of these data indicates that 41% of the OMEGA positions were within 2 nm of the reference position and 66% were within 3nm.

# Canadian Armed Forces Flight Data (24)

SNR data are available from the Canadian Armed Forces for two trans-Atlantic flights and several flights in Northern Canada. The 10.2 KHz data for the trans-Atlantic flights are summarized in Table 7-3. Included are the maximum and minimum values of SNR for four stations , A, C, D and H.

Additional data have been reported by the Maritime Proving and Evaluation Unit during a northern expedition in October 1976. Most of the data are for the region of  $76^{\circ}-88^{\circ}$  N. Latitude and  $66^{\circ}-72^{\circ}$  W. Longitude. In this region, the SNR for OMEGA stations A, C, D and H is always greater than the -20dB SNR threshold. Stations B, E and F are always below this threshold. Some data at lower latitudes indicate that station E drops below threshold at  $\checkmark$  58° N. and stations B and F at  $\checkmark$  71° N.

Also included in this report was the information that they rendezvoused the aircraft with a Royal Navy submarine at 84° 50°N, 69° 12°W. The submarine was using NAV SAT and the difference between the aircraft OMEGA position and the submarine's position was 0.7 nm.

TABLE 7-3

SUMMARY OF MAXIMUM AND MINIMUM SNRs MEASURED

DURING TWO CANADIAN ARMED FORCES TRANS-ATLANTIC FLIGHTS

|              | MAX/MIN SNR (dB)  | IN 100 Hz BANDWIDTH        |
|--------------|-------------------|----------------------------|
| STATION      | P.E.I ENGLAND (1) | ENGLAND - NEWFOUNDLAND (2) |
| A. NORWAY    | +12/+8            | +12/+9.5                   |
| C. HAWAII    | -1/<-20           | -10.5/<-20                 |
| D. N. DAKOTA | +9.5/-4           | +7/-2./5                   |
| H. JAPAN     | -13/<-20          | -12/<-20                   |

- (1) 20 MAY 1975, 0339-1550 Z
- (2) 28 MAY 1975, 1218-2346 Z

# C-118 Aircraft Data (25)

OMEGA data were collected onboard a C-118B aircraft in three areas of operation, Conus, Caribbean and Mediterranean in May-July 1978 using a LTN-201 ONS.

The signal quality from all eight stations was recorded at various times during the evaluation. The LTN 201 uses the most distant station for calibration and cannot be used for navigation. It does provide a reference which, together with the hardware and software, make Signal to Noise Ratios (SNRs) as low as -9 dB available for navigation.

In reducing the data, the position data collected were grouped according to the type of reference fix. Visual mark-on-top over surveyed targets is the most accurate way of determining the geographic position of the aircraft. In flight, the aircraft driftmeter was used to determine the geographic position of the aircraft. The altitude of the aircraft and the field of view of the driftmeter were used to ensure that the aircraft was no greater than 1/2 nautical mile from the surveyed point. The fixes using TACAN, VOR, and enroute radar are considered less accurate and were grouped separately. The data taken where no information as to how the fix was obtained were not used even though the accuracy was comparable to the accuracy obtained for the remainder of the evaluation.

The signal quality data were recorded near the waypoints and at the airports. The LTN 201 can display SNR for each station and each of the three frequencies. For statistical purposes, the lowest SNR for the three signals from each station was taken as the value for the station. This gave a pessimistic value for signal quality.

The 55 mark-on-top data points showed an average error of 0.76 nautical miles with a standard deviation of 0.4457. Within this population there were seven data points taken at night. These seven showed the average error to be 0.50 nautical miles. The sample probability distribution is shown in Figure 7-1. The 40 electronic data points showed an average error of 0.77 nautical miles and a standard deviation of 0.3287. The sample probability distribution is shown in Figure 7-2. Figure 7-3 shows the probability distribution for the combined data represented in Figures 7-1 and 7-2. Signal quality data appears in Table 7-4 to portray the percent of samples for a given minimum value of SNR and the minimum number of stations which meet SNR on all three frequencies. All 96 samples were included.



Figure 7-1 Probability Distribution for Mark-On-Top Data Sample





7-13

the state of the state of the



Figure 7-3 Sample Probability Distribution for Data Collected Using Both Methods, Mark-On-Top and Electronic Fixes

TABLE 7-4

# Percent of Samples for a Given Signal Quality and Number of Available Stations Useful to Navigation

| Minimum    |       |       | Number of | Stations |       |       |
|------------|-------|-------|-----------|----------|-------|-------|
| SNIR dib   | 2     | 3     | 4         | 5        | 6     | 7     |
| +20        | 89.58 | 45.82 | 35.42     | 0        | 0     | 0     |
| +10        | 92.71 | 55.21 | 37.50     | 1.04     | 0     | e     |
| +5         | 98.96 | 89.58 | 60.41     | 37.49    | 1.03  | 0     |
| +0         | 100   | 95.82 | 88.53     | 72.91    | 16.66 | 2.08  |
| <b>-</b> 5 | 100   | 98.95 | 95.83     | 88.54    | 73.96 | 29.17 |
| -9         | 100   | 100   | 100       | 100      | 100   | 87.50 |

The squadron was required to report ambiguity conditions, relanes, resets and malfunctions. There were no LTN 201 failures. In-flight initializations were accomplished without difficulty by estimating the position of the aircraft. No point estimate could be made as to the reliability of the LTN 201 since no failures or difficulties were encountered.

# Project Speckled Trout 4950th Test Wing (AFSC) - Andrews AFE (26)

A summary of the results of the operational evaluation of the UnITGA Navigation System using a CMA-719 ONS onboard the Speckled Trout aircraft is given below in Table 7-5. The results presented include only those OMDGA data derived during flights in the North Atlantic region. These data show that the measured OMEGA radial errors were consistently small, < 5mm, with the exception of two flights on 17 September and 9 December 1979.

Table 7-5 . Project Speckled Trout OMEGA Evaluation Results

| Date      | Flight Route                      | Flight Time<br>(Hrs) | OMEGA<br>Radial Error<br>(nm) |
|-----------|-----------------------------------|----------------------|-------------------------------|
| 13 May 79 | Andrews AFB - Bentwaters, U.K     | 7.2                  | 2.45                          |
| 15 May 79 | Bentwaters, U.K Brussels, BE      | 1.1                  | 0.59                          |
| 15 May 79 | Brussels, BE - Andrews AFB        | 8.4                  | 2.15                          |
| 19 May 79 | Andrews AFB - Howard AFB, C.z.    | 5.3                  | 1.09                          |
| 20 May 79 | Howard AFB, C.Z Maiquetia, VEN    | 2.4                  | 0.60                          |
| 26 May 79 | Maiquetia, VEN - Howard AFB, C.Z. | 2.3                  | 1.94                          |
| 30 May 79 | Andrews AFB - Torrejon AB, SP     | 7.2                  | 1.11                          |
| 2 Jun 79  | Torrejon AB, SP - Andrews AFB     | 7.9                  | 1.50                          |
| 28 Jun 79 | Andrews AFB - Mildenhall, U.K.    | 6.6                  | 2.78                          |
| 29 Jun 79 | Mildenhall, U.K Brussels, BE      | 0.95                 | 1.02                          |
| 29 Jun 79 | Brussels, BE - Keflavik, IC       | 3.3                  | 0.67                          |
| 30 Jun 79 | Keflavik, IC - Andrews AFB        | 6.3                  | 1.02                          |
| 17 Sep 79 | Andrews AFB - Luxembourg          | 7.3                  | 3.92                          |
| 25 Sep 79 | Paris - Andrews AFB               | 9.1                  | 2.14                          |
| 9 Dec 79  | Andrews AFB - Brussels, BE        | 7.1                  | 6.48                          |
| 11 Dec 79 | Brussels, BE - Andrews AFB        | 8.2                  | 1.96                          |

# Soviet Aeroflot Data (27)

OMEGA data were collected during January-April 1978 using a Dynell CNS-UP receiver on an IL-62M aircraft of the Aeroflot. The data were collected both at airports and during approaches of coastal zones in the North Atlantic. The accuracy of the measured OMEGA geographic coordinates compared with known parking place coordinates is given in Table 7-6 for the airport measurements and compared with DME or DME/VOR coordinates in Table 7-7 for the flight zones. More than 100 measurements were made in each of the indicated zones of Tables 7-6 and 7-7.

During flights over the North Atlantic, the ONS-UP equipment provided stable tracking of OMEGA signals. During flights over the Greenland zone, short-term (up to 35-40 sec) transitions to the dead reckoning mode (DR-mode) were observed.

In the course of the above mentioned period, the crews of air-craft on flights from America to Europe have registered four cases of long-term (up to 3 hours) nonpassage of signals from the OMEGA ground stations. In this case signals from only 1-2 ground stations were received by the equipment.

During flights over land, short-term (15-20 sec) transitions to the DR mode were observed, even though at that time the equipment was receiving signals from 3 to 4 stations.

When flights occurred during cloudy conditions or in zones with lightning activity, the ONS-UP reception indicator operated normally.

Table 7-6 Aeroflot Airport OMEGA Accuracies
Vs Geographic Coordinates

| Airport       | OMEGA Difference in Kilometers |     |       |      |  |  |  |  |
|---------------|--------------------------------|-----|-------|------|--|--|--|--|
|               | Latit                          | ude | Longi | tude |  |  |  |  |
|               | Ave                            | σ   | Ave   | σ    |  |  |  |  |
| Montreal      | -3.1                           | 3.2 | -2.5  | 2.2  |  |  |  |  |
| Chas. de Gaul | 0.7                            | 1.4 | -5.2  | 2.6  |  |  |  |  |
| Lisbon        | 1.7                            | 2.7 | -2.2  | 3.2  |  |  |  |  |
| Frankfurt     | 0.4                            | 2.8 | -1.7  | 4.8  |  |  |  |  |
| Rabat         | 0.3                            | 0.7 | 1.4   | 3.9  |  |  |  |  |
| Havana        | 0.9                            | 4.6 | -0.3  | 2.8  |  |  |  |  |

Table 7-7 Aeroflot Flight Zone OMEGA Accuracies
Vs DME or DME/VOR Coordinates

|                               | OMEGA I | Difference i | n Kilomete | ers  |
|-------------------------------|---------|--------------|------------|------|
| Flight                        | Latit   | ıde          | Longit     | tude |
| Zones                         | Ave     | σ            | Ave        | σ    |
| Sea Coast of<br>North America | 6.8     | 7.0          | 7.6        | 4.4  |
| United Kingdom                | 2.1     | 6.9          | -0.2       | 8.6  |
| France                        | -0.6    | 4.0          | -4.6       | 3.4  |
| Italy                         | -5.4    | 4.9          | 5.0        | 7.3  |
| North Africa                  | 6.4     | 3.6          | 2.7        | 2.0  |
| Bermuda Is.                   | -2.1    | 8.1          | 6.3        | 5.1  |
| Nassau                        | -3.6    | 6.5          | -1.9       | 4.7  |

#### 7.2.2 REPORTED SHIPBOARD DATA

OMEGA shipboard data have been reported in a variety of ways from numerous ships as listed in Table 7-1. The following sections summarize the results of these reported shipboard data. It should be noted that the difference between the OMEGA fix and a reference system is given in many cases. Because no estimate of accuracy of the reference system is included, the differences in position can not be concluded as OMEGA errors but rather a measure of the re-ionship between the two systems.

# Alabama Getty (28)

A report from the Hemisphere Transportation Corp. of Wilmington, Delaware gave fix measurements using a Redifon NV1 OMEGA Navigator on board the Alabama Getty during a cruise from the United States to Gibraltar during December 1976. A comparison between the OMEGA fixes and those derived from other means, typically dead reckoning or sight in this case, is given in Table 7-8 as a function of date, location, and LOPs. Typically there were 6-10 readings each day. The average daily difference between the OMEGA fix and the reference system fix ranged from 3-8 nm.

# United Overseas I (29)

A considerable amount of OMEGA fix data were reported by the United Overseas I of the United Overseas Corporation for the years 1977 to 1979. Only a few of the cruises were in the Northern Atlantic and in most cases, a reference position fix was not reported. However for two cruises from the south of England down the west coast of Africa, some OMEGA accuracies were reported. These OMEGA accuracies averaged 3.1 nm in May 1977 and 2.3 nm in October 1977. In both cases the LOPs used were A-D, A-G, and G-D.

# ALABAMA GETTY MEASUREMENTS TABLE 7-8

Alabama Getty VESSEL:

AVERAGE DIFFERENCE (NM) 5.17 7.47 7.66 8.29 5.04 7.48 5.00 6.90 7.05 3.49 4.71 6.94 6.01 8.36 6.78 8.27 7.15 3.45 REFERENCE SYSTEM D/S/X s/a = = Ξ. : = = Ξ £ = = OMEGA LOPs AC/BC/BF AC/BC/DF AC/AD/AF AC/AD/AF AC/BC/BF AC/BC/DF AC/BC/BF AC/BC/AF AC/AD/BC AC/AF/BC AC/AF/BC AD/AF/BF AD/AF/BF AB/BD/DE AB/BD/DE AB/BD/EF AB/BD/-AB/BD/-LONGITUDE 740-180W APPROXIMATE LOCATION 33-30, 62-48 69-46 55-48 46-55 40-59 33-55 50-35 31-23 29-05 16-48 26-17 23-59 20-36 18-12 12-52 08-15 LATITUDE 380-170N 35-40 32-53 33-26 33-16 33-43 33-08 33-02 33-66 33-12 33-06 33-06 33-56 33-40 34-28 33-02 33-10 35-27 **DATE** 1976 DEC-10 DEC-12 DEC-13 DEC-14 DLC-14 DLC-15 DEC-16 DEC-16 DEC-16 DF.C-18 DFC-11 DFC-17 PEC-17 PEC-18 DFC-18 DEC-19 DEC-19 Dr.C-20

7-20

S-31GHT REF. SYSTEM:

X-VISUAL, DECCA, FADAR, SATELLITE

# Finnish Vessel (30)

A report was received concerning findings by a Finnish vessel operating with OMEGA off the West Coast of Africa. The receiver used was a C. Plath Model 1107, single channel, measuring three LOPs simultaneously. Transmitters employed were Norway, North Dakota and Liberia (Argentina was used when the ship was in the vicinity of the Liberia station).

The receiver was in use 152 days, during which time the recorder tapes showed a total of counted stoppages of 14 days. These stoppages were due to atmospheric disturbances as well as interrupted transmissions. The atmospheric disturbances were most frequent in the "Intertropical" zone off Guinea, where tropical and subtropical masses of air mixed. The longest period of disturbances experienced lasted for 20 hours. Usually the disturbances only lasted for half an hour. A total number of 101 disturbances were recorded. It may be pointed out, that of the whole operative time, 9% of it was lost for position fixing.

Observations used for calculations and computing purposes were taken either in port or by radar in the vicinity of the coastal line. The accuracy of OMEGA measurements made off the West Coast of Africa was 3.5 miles during daytime and 5.5 miles at nighttime.

# British Respect (31)

A considerable amount of OMEGA fix data were reported by the British Respect of the BP Tanker Company Ltd, London, England. Most of these data were for areas outside of the Northern Atlantic region and have not been evaluated. However there were data for one area of interest, an area along the west coast of Spain and Africa. The average daily difference in fix between OMEGA and a reference system, Decca, Dead Reckoning or radar, are given in Table 7-9 for this area. Typically these average position differences are 2-5 miles.

BRITISH RESPECT MEASUREMENTS TABLE 7-9

A STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE

5636

British Pespect VESSEL

7

| OMEGA REFERENCE AVERAGE | LOPs SYSTEM (NM) | A/B B/D D/E X 2.55 | A/B B/D D/E X 2.00 | A/B B/D D/E D 3.70 | A/B B/D D/E D 7.40 | A/B B/D A/F R/D 2.95 | A/B B/D A/F D 5.24 | A/B B/D A/F D 5.04 | A/D D/F A/F D 2.58 | A/D D/F A/F D 2.33 | A/D D/F A/F D 4.99 | A/D D/F A/F D 6.78 | 3/E E/F B/F D 2.12 |  |  |  |  |  |  |  |
|-------------------------|------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|--|--|--|--|
| (N)                     | 255              | 25.3               | 2.00               | 3.70               | 7.40               | 2.95                 | 5.24               | 5.04               | 2.58               | 2.33               | 4.99               | 5.78               | 2.12               |  |  |  |  |  |  |  |
|                         | SYSTEM           | ×                  | ×                  | D                  | D                  | R/D                  | · a                | D                  | D                  | ٥                  | D                  | D                  | D                  |  |  |  |  |  |  |  |
|                         | LOPs             | A/B B/D D/E        | A/B B/D D/E        | A/B B/D D/E        | A/B B/D D/E        | A/B B/D A/F          | A/B B/D A/F        | A/B B/D A/F        | A/D D/F A/F        | A/D D/F A/F        | A/D D/F A/F        | A/D D/F A/F        | B/E E/F B/F        |  |  |  |  |  |  |  |
|                         | LONGITUDE        | M 99 - 80          | 11 – 20            | 13 – 05            | 14 - 37            | 16 – 13              | 17 – 58            | 18 – 05            | 18 – 00            | 15 – 09            | 12 - 46            | . 22 - 60          | 06 – 53            |  |  |  |  |  |  |  |
| ALL DOMINGIE ESCALISIA  | LATITUDE         | 45 - 11 N          | 40 – 28            | 36 – 02            | 31 – 29            | 27 - 07              | 21 – 34            | 16 – 39            | 11 – 37            | 08 — 54            | 05 - 20            | 1                  | 02 - 06            |  |  |  |  |  |  |  |
|                         | DATE             | OCTOBER 11, 1977   | OCTOBER 12,        | OCTOBER 13         | OCTOBER 14         | OCTOBER 15           | ОСТОВЕЯ 16         | OCTORER 17         | OCTOBER 18         | OCTORER 19         | OCTOBER 20         | OCTOBER 21         | ОСТОВЕЯ 22         |  |  |  |  |  |  |  |

7-22

REF. SYSTEM: X — DECCA R — RADAR D — DEAD RECKONING

## Danish Navy (32)

OMEGA reports for the last three months of 1977 have been received from two Danish Naval ships, the VAEDDEREN and the BESKYTTEREN. The reference systems used were R (assumed radar), D (assumed Decca), L (assumed Loran) and B (defined as Bestik). Reduction of some of these data shows an OMEGA accuracy of 1.5 to 5.4 nm for the VAEDDEREN on a cruise from Greenland to the North Sea in October 1977 and 1.4 to 4.5 nm for the BESKYTTEREN during December 1977 while operating in the North Sea. LCPs A-B, A-D and B-D were used for both cruises.

#### British Navy Ships

OMEGA data have been reported by eight British Naval ships as follows:

HMS Kent
HMS Norfolk
HMS Blake
HMS Arethusa
HMS Aurora
HMS Poolsted
HMS Tromd
HMS Evertsen

The reference system most commonly used was Decca although in a few cases it was described as alongside. These data have been evaluated and the average difference between the OMEGA fixes and the reference system used can be summarized as follows:

| Area of Cruise    | Ave. OMEGA<br>Fix Diff. | LOPs                             |
|-------------------|-------------------------|----------------------------------|
| Atlantic Crossing | 3.4                     | A-B, A-D, B-D/B-F; A-F, A-C, B-F |
| Gibraltar Bay     | 2.2                     | A-B, B-D, A-D                    |
| North Sea         | 4.7                     | A-B, A-D, B-D/D-F; B-H, B-C      |
| English Coast     | 3.4                     | A-B, A-D, B-D                    |

# Australian Naval Ship (33)

The Australian Naval Chip, the HMAS Hobart, has reported OMEGA accuracies measured during a cruise from Baltimore to Gibraltar, 10-20 July 1976. Two OMEGA receivers were used, a Dynell 300 and a Navidyne ESZ 1001A. These measured accuracies are given in Table 7-10. Over a 10 day period, the average difference in position between OMEGA and the reference system was 3.6 nm.

Apparently the reference system that was used was celestial navigation. They report that astronomical conditions were very poor due to fog and that the assessed OMEGA accuracy may have been better than that given in Table 7-10 due to the infrequency of observed positions. Also, they indicate that the OMEGA system was generally stable with few LOPs slipping.

#### U.S. Navy Ships

OMEGA fix data have been reported by three U.S. Navy ships, the USS TATINALL, the USS JOHN F. KENNEDY and the USS WM. V. PRATT. The USS TATINALL data are for 13 days in June/July 1978 operating along the west coast of England. LOPs AD, AB and BD were used during the majority of the time. These data did not include any reference system position and thus the OMEGA fix accuracies could not be evaluated.

About 95% of the USS WM. V. PRATT data are for the Southern Atlantic region. Seven days of OMEGA data collected in the area south of Puerto Rico and along the Northeast Coast of South America were included. Various combinations of LOPs were used including AG, GD, AD; DF, CD, CF; DF, BD, BC; GD, GF, DF; and DF, AF, BF.

The data from the USS JOHN F. KENNEDY are for a cruise from the east coast of the United States to the Mediterranean in June/July 1978. In addition to OMEGA fixes, many satellite positions are given. However, the OMEGA and satellite fixes are not simultaneous and therefore the data are not suitable for evaluating OMEGA accuracies.

\_\_\_\_

## OMEGA FIX ACCURACY ONBOARD HMAS HOBART ON CRUISE BETWEEN BALTIMORE AND GILBRALTAR

TABLE 7-10

| DATE      | NO. OF | average<br>accuracy | LOP'S USED         | REMARKS                             |
|-----------|--------|---------------------|--------------------|-------------------------------------|
| 11 JUL 76 | 13     | 5 NM                | AC, AF, DC, BF, DG | CB and BF adjusted for<br>lane slip |
| 12 JUL 76 | 15     | 4 NM                | AC, AD, AF, BC, BF | BC adjusted for lane slip           |
| 13 JUL 76 | 13     | 4 NM                | AC, AD, AF, BC, BF | BC adjusted for lane slip           |
| 14 JUL 76 | 13     | 4 NM                | AC, AD, AF, BC, BF |                                     |
| 15 JUL 76 | 11     | 2 NM                | AC, AD, AF, BC, BF |                                     |
| 16 JUL 76 | 14     | 5 NM                | AC, AD, AF, BC, BF | BC and AC adjusted for lan          |
|           |        |                     |                    | slip                                |
| 17 JUL 76 | 9      | 5 NM                | AC, AD, AF, BC, BF |                                     |
| 18 JUL76  | 13     | 3 NM                | AC, AD, AG, CG, DG |                                     |
| 19 JUL 76 | 14     | 3 NM                | AC, AD, AG, CG, DG |                                     |
| 20 JUL 76 | 3      |                     | AC, AD, AG, CG, DG |                                     |
| `         |        | Ave. 3.6 NM         |                    |                                     |

## TUERK HIDDES

Three days of data collected between England and Spain were reported by the Netherlands Ship, TJERK HIDDES. The reference system for these data was the Decca navigation system. OMEGA LOPs used were AD/BD and AB/BD. The average difference between the OMEGA and Decca fixes was 3 nm.

## The Netherlands Navy OMEGA/Satellite Bata

Most of the Netherlands Navy OMEGA/Satellite data collected on board the H.NL.M.S. TYDEMAN are summarized in Table 7-11. Listed are the latitude and longitude, and the bearing and distance (in nautical miles) between the Satellite fix and the OMEGA fix. The maximum measured distance between the two systems for these data is 4.7nr and the average is 2.0 nm.

Table 7-11
Summary of the Netherlands OMEGA/Satellite Data

|             |              | Satellite | to OMEGA |
|-------------|--------------|-----------|----------|
|             | 1            | Bearing   | Distance |
| N. Latitude | W. Longitude | (Deg)     | (nm)     |
| 250 45.091  | 160 56.30'   | 332.8     | 3.1      |
| 240 10.95'  | 17° 22.67'   | 278.3     | 1.7      |
| 240 7.74'   | 170 24.65'   | 270.5     | 2.8      |
| 240 7.00'   | 170 24.69'   | 263.3     | 4.7      |
| 210 31.98'  | 180 4.39'    | 271.6     | 2.4      |
| 210 33.57   | 180 7.07'    | 325.3     | 1.2      |
| 210 26.49   | 180 13.87'   | 307.8     | 1.4      |
| 210 32.18'  | 180 5.52     | 254.4     | 2.1      |
| 210 32.63'  | 180 4.56     | 245.0     | 2.5      |
| 210 25.76'  | 180 15.33'   | 244.4     | 1.7      |
| 190 56.26'  | 280 52.84    | 261.9     | 0.9      |
| 190 56.76'  | 28° 53.22'   | 247.0     | 2.4      |
| 190 57.40   | 280 55.40    | 268.6     | 1.0      |
| 190 55.83'  | 300 45.10    | 303.4     | 4.4      |
| 200 1.59'   | 320 6.05     | 252.3     | 1.7      |
| 200 0.92'   | 320 6.25'    | 238.9     | 1.2      |
| 290 15.49'  | 33° 33.92'   | 214.1     | 2.3      |
| 290 44.17'  | 330 7.24'    | 202.1     | 0.6      |
| 290 59.33'  | 320 52.451   | 222.9     | 1.9      |
| 410 26.68'  | 240 5.10'    | 245.9     | 2.8      |
| 420 3.93'   | 23° 51.56'   | 288.5     | 1.2      |
| 420 7.29'   | 230 50.06    | 278.5     | 1.9      |
| 420 25.20'  | 230 44.17'   | 286.7     | 1.8      |
| 420 28.68   | 230 42.91'   | 284.6     | 2.0      |
| 420 39.46'  | 230 38.57    | 287.5     | 2.6      |
| 420 54.19'  | 23° 23.23'   | 283.1     | 3.1      |
| 430 17.82'  | 220 24.82'   | 247.1     | 2.4      |
| 430 24.06   | 220 10.53'   | 247.5     | 1.9      |
| 430 32.191  | 21° 51.27'   | 207.8     | 1.4      |
| 430 33.82*  | 21° 46.95'   | 202.1     | 1.7      |
| 430 38.87   | 210 34.00'   | 168.8     | 0.9      |
| 430 43.83   | 21° 21.74'   | 172.5     | 0.9      |
| 430 52.051  | 210 01.40'   | 215.7     | 1.6      |
|             |              | AVE       | 2.0      |

## 7.2.3 United Kingdom Differential OMEGA

ţ

OMEGA data from 10 monitor sites off the southern coast of England yield position-fix errors using LOPs AB, AD, and BD before and after application of differential correction techniques. These are summarized below in Table 7-12 based on our interpretation of the data. These measurements were provided as the results of tests conducted by Redifon Ltd. for the Admiralty Compass Observatory, Slough, England of the Admiralty Surface Weapons Establishment.

TABLE 7-12
DIFFERENTIAL OMEGA RESULTS

| Monitor            | No. | Mean Error | Improvement |
|--------------------|-----|------------|-------------|
| Location           | of  | (nm)       | Factor      |
|                    | 0bs |            |             |
| Swansea            | 15  | 0.45       | N/A*        |
| Round Island       | 39  | 0.07       | 21:1        |
| Penzance           | 118 | 0.33       | 4:1         |
| St. Anthony's Head | 38  | 0.55       | 2.5:1       |
| Falmouth           | 24  | 0.31       | 5.3:1       |
| Eddystone L/H      | 17  | 0.53       | 2.7:1       |
| Plymouth (1)       | 93  | 0.68       | 2:1         |
| Plymouth (2)       | 22  | 0.75       | 11:1        |
| Yarmouth           | 24  | 1.45       | 1.7:1       |
| Salt Mead          | 15  | 1.56       | 1:1         |

\*Not Available

#### 8. USER NAVIGATION REQUIREMENTS

Ł.

Navigation services are required by both military and civil users. The requirements vary depending upon the activities in which the users are engaged, the locations in which the activities occur, the relation to other craft and physical hazards, and to some extent the type of craft. Because these differences exist, the requirements for navigational services are divided by classes or type of users and the phases of navigation. Table 8-1 from the Federal Radionavigation Plan (5) shows the emphasis placed on existing radionavigation systems in the various phases of navigation.

As is evident from this table, the OMEGA Navigation System is the primary system for oceanic enroute air users and oceanic marine users.

A Minimum Navigational Performance Specification (MNPS) has been developed under the auspices of the International Civil Aviation Organization (ICAO) for the North Atlantic airspace. (34) A comparable maritime international standard for ships operating in oceanic areas apparently does not exist. Therefore, in this report, the maritime oceanic navigation requirements given in the Federal Radionavigation Plan are presented.

# 8.1 CIVIL AIR OCEANIC NAVIGATION REQUIREMENTS (5, 34)

A Minimum Navigational Performance Specification (MNPS) was implemented on 29 December 1977 in the North Atlantic Region air traffic control (ATC) system. The MNPS developed under the auspices of the International Civil Aviation Organization (ICAO) is intended to be operative in the North Atlantic Region at least through 1987. The MNPS concept is also used in the Central East Pacific between the U.S. Mainland

RADIONAVIGATION SYSTEM APPLICATIONS TABLE 8-1

| SYSTEM                                                                | VOR/DME     | TACAN      | LORAN.A | OMEGA         | LORAN-C      | RADIO-<br>BEACON<br>(NDB/RBN) | ILS/MLS | TRANSIT  | NAVSTAR<br>GPS |
|-----------------------------------------------------------------------|-------------|------------|---------|---------------|--------------|-------------------------------|---------|----------|----------------|
| Phase of Navigation AIR ENROUTE/TERMINAL                              |             |            |         |               |              |                               |         | ·        |                |
| *Helicopter Oceanic En route Domestic En route Terminal               | mmles       | mmlere     | 11111   | mme vo J      | <b>ww(ww</b> | <b>00100</b>                  | 11111   | 11111    |                |
| APPROACH/LANDING<br>Non Precision<br>Precision                        | <b>a.</b> I | <b>a</b> 1 | 1 1     | 1 1           | ш (          | <b>6</b> 0                    | 1 0.    | 1 1      | w t            |
| MARINE Oceanic Coststal *Harbor & Harbor Approaches *Inland Waterways | 11 11       | 11 11      | 11 11   | <b>4</b> 1 11 | 60 E W (     | 0 0 I I                       | 1'1 1 1 | a. 1 1 1 | ww w 1         |
| LAND** AVM/AVL Site Registration                                      | 1 1         | ŧ 1        | 1 1     | 1 1           | w w          | 1 1                           | 1 1     | 1 00     | <b>u u</b>     |
| SPACE                                                                 |             |            |         |               |              |                               |         |          |                |

LEGENT

P - Primary System

S - Secolosty/Supplemental System

E - System in Evaluation

\*New Requirement

\*\*This area is under assessment

and Hawaii. Also, performance specifications for other portions of the world's airspace are being addressed by ICAO's Review of the General Concept of Separation Panel.

1

of an airspace route configuration known as composite tracks. The composite track route structure approximately doubles the capacity of the airspace over the conventional route system. The composite route structure staggers the flight level by 1000 feet between aircraft operating on adjacent routes while retaining 2000 feet vertical separation between aircraft on the same route. The lateral spacing between aircraft operating at the same level is 120 nm in the North Atlantic.

While the current organized track system for the North Atlantic and Central East Pacific uses composite separation, it is expected that a non-composite 60 nm lateral separation standard will go into effect on the North Atlantic fixed route system in October 1980.\* The following system performance (MNFS) is required to achieve this separation:

- 1. The standard deviation of the lateral track errors shall be less than 6.3 nm, i.e., 12.6 nm (2 sigma).
- 2. The proportion of the total flight time spent by aircraft 30 nm or more off track shall be less than 5.3 x 10<sup>-4</sup>, i.e., less than one hour in about 2,000 flight hours.
- 3. The proportion of the total flight time spent by aircraft between 50 nm and 70 nm off track shall be less than 1.3 x  $10^{-4}$ , i.e., less than one hour in about 8,000 flight hours.

Estimates are that a 30 nm composite lateral separation will be required in the future to meet the expected increased traffic, and for fuel economy. A 30 nm separation will require a lateral track error of less than  $\pm$  6.2 nm (2 Sigma)

<sup>\*</sup>Private Communication with FAA

## 8.2 CIVIL MARINE OCEANIC NAVIGATION REQUIREMENTS

From the Federal Radionavigation Plan (5), the requirements for safety of navigation in the ocean phase for all ships are given in Table 8-2. These requirements must provide the master with a capability to avoid hazards in the ocean (e.g., small islands, reefs) and to plan correctly the approach to land or restricted waters. For operational purposes, repeatability is necessary to locate and return safely to the vicinity of a maritime distress, as well as for special activities such as hydrography, research, etc. Economic efficiency in safe transit of open ocean areas depends upon the continuous availability of accurate position fixes to enable the vessel to follow the shortest safe route with precision thus, minimizing transit time and permits tighter, more productive scheduling of terminal facilities.

## Requirements (5)

For safe general navigation under normal circumstances, the requirements for the accuracy and frequency of fixes on the high seas are not very strict. As a minimum, these requirements include a predictable accuracy of 2-4 nm coupled with a maximum fix interval of two hours or less. Predictable accuracy is the accuracy of positioning with respect to geographical coordinates (7). These minimum requirements would permit reasonably safe oceanic navigation, provided that the navigator understands and makes allowances for the probable error in navigation, and provided that more accurate navigational service is available as land is approached. While these minimum requirements would permit all vessels to navigate with relative safety on the high seas, more desirable requirements would provide a predictable accuracy of 1-2 nm and a fix interval of 15 minutes or less.

Larger recreational craft and smaller commercial fishing vessels which sail beyond the range of coastal navigation systems require, for a reasonable level of safety, some means of establishing their position

CURRENT MARTTIME USER REQUIREMENTS/BENEFITS FOR PURPOSES OF SYSTEM PLANNING AND DEVELOPMENT - OCEAN HIASE TABLE 8-2

# ; 4 is

. . .

| Requirements |                  |                      | Mees     | Messures of Minimum Performance Criteria to Meet Requirements | erformence Crite         | rie to Meet I | Requirements |           |                              |            |
|--------------|------------------|----------------------|----------|---------------------------------------------------------------|--------------------------|---------------|--------------|-----------|------------------------------|------------|
|              | Acc<br>(2        | Accuracy<br>(2 drms) |          |                                                               |                          |               | A L          | -<br> -   |                              |            |
|              | Predictable      | Repentable Relative  | Refetive | Coverage                                                      | Availability Reliability | Reliability   | Rete         | Dimension | Dimension Capacity Ambiguity | Ambiguity  |
| Safety of    | 2-4NM(3.7-7.4km) | 1                    | •        | Worldwide                                                     | 95% full cap.            | (2)           | 15 Mine. or  | Twe       | Unitmited Resolveble         | Resolvable |
| Navigetion - | Minimum          |                      |          |                                                               | 99% Fix at least         |               | Less De-     |           |                              | with 99%   |
|              | DESIRABLE        |                      |          |                                                               | SUPPLY SE HOUSE          |               | Maximum      |           | ,                            | A SHIPPING |

|                                                              | Unlimited Resolvable with 99% Confidence | Resolvable with 99% Centidence                      | Resolvable with 89% Cenfidence                         |
|--------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|
|                                                              | Unlimited                                | Uniforited                                          | Unimited Resetable with 99% Confidence                 |
|                                                              | Two                                      | Twe                                                 | Ī                                                      |
| eve Benefits                                                 | 5 min.                                   | 1 min.                                              | 1 min.                                                 |
| teris to Achi                                                | (2)                                      | (2)                                                 | 2                                                      |
| Performance Cri                                              | %6 <b>6</b>                              | <b>8</b> 5%                                         | <b>%66</b>                                             |
| Messures of Minimum Performance Criteria to Achieve Benefits | Worldwide,<br>except<br>Poler Regions    | Worldwide                                           | National<br>Maritims<br>SAR<br>Region<br>(NPAC, NWLAN) |
| Me                                                           | ı                                        | 1                                                   | 185 M.                                                 |
|                                                              | ı                                        | Meximum<br>Possible                                 | 0.25NM                                                 |
|                                                              | 0.1-0.25NM<br>(185-460M)<br>(1)          | 0.1-0.25NM<br>(185-460M)                            | 0.25NM<br>(480M.)                                      |
| Benefits                                                     | Lorge Ships<br>Maximum<br>Efficiency     | Hydrography<br>Science,<br>Resource<br>Exploitation | Search<br>Operations                                   |

<sup>(\*)</sup> Requirement subject to confirmation by additional study (2) Dependent upon mission time

reliably at intervals of a few hours at most. Even more so than with larger ships, this capability is particularly important in time of emergency or distress. Many (perhaps most) of these craft, however, will accept the risk of ocean sailing without reliable radionavigation unless that capability is available at relatively low cost.

## Minimum Performance Criteria (5)

Economic efficiency in transoceanic transportation, special maritime activities and safety in emergency situations require or benefit from navigational accuracy higher than that needed for safety in routine, point-to-point ocean voyages. These requirements are summarized in Table 8-2. The predictable accuracy requirements may be as stringent as 0.1 nm for special maritime activities and large, economically efficient vessels; and may range to 0.25 nm for all of the above categories, including search operations. Search operations must also have a repeatable accuracy of at least 0.25 nm. As indicated in Table 8-2, the required fix rate may range from as low as once per five minutes to as high as one per minute. Signal availability must be at least 95 percent and approach 99 percent for search and rescue operations and large, high-efficiency ships. These requirements are based on current estimates and are to be used for the purpose of system planning. There have not been sufficient analyses to establish quantitative relationships between navigational accuracy and economic efficiency. The expensive, satellite-based navigation systems used by ships engaged in science and resource exploration, and the increasing use of relatively expensive satellite navigation by merchant ships and larger, ocean-going fishing vessels is evidence of the perceived value attached to highly accurate ocean navigation by the vessel owners.

## 8.3 U.S. MILITARY RADIONAVIGATION REQUIREMENTS (5)

The world-wide mission of the U.S. Military Forces requires accurate navigation within the Continental United States (CONUS), in oceanic areas, and in overseas theaters. A DoD classified supplement to the

Pederal Radionavigation Plan provides specific service and Defense Mapping Agency (DMA) requirements for navigation and positioning accuracy organized by primary missions and functions and their related accuracy requirements in 2drms. These requirements are to be used for information and guidance in the development and procurement of military navigation systems.

### 9. INTERPRETATION OF ANALYSIS RESULTS

### 9.1 MEASURED 10.2 KHZ OMEGA COVERAGE

The OMEGA 10.2 kHz signal coverage results indicate that most areas of the North Atlantic have a minimum of four stations accessible during both summer and winter, day and night. Large areas have coverage from five stations during the day which is reduced to four station coverage during the night due to expected modal interference from Station B, Liberia. Some exceptions to this general coverage assessment were found which are consistent with the predicted coverage for the North Atlantic. These exceptions are identified in the following discussion.

The use of the OMEGA Navigation System generally requires the availability of signals from three or more stations. The 10.2 kHz coverage assessment shows that this requirement is being met in the North Atlantic with the exception of a few small areas. During summer day, 10.2 kHz signals from only two OMEGA transmitting stations are accessible in 1) the western part of the Gulf of Mexico, 2) a small triangular area between Norway and the United Kingdon, and 3) a semi-circular area within the near-field zone of the Norway Station. This condition also exists during daytime, both summer and winter, within the near-field zone of the Liberian Station.

Also, in er to provide a fail-soft feature (i.e. a backup station if one station is off-the-air), it is necessary to have four station coverage. Several areas have been identified which do not provide four station accessibility of the 10.2 kHz signals. These are:

Summer Day:

- a. Western Gulf of Mexico
- b. 55° 70° N. Latitude, 45° W 10° E Longitude
- c. Near-Field zone of Liberian station

Summer Night:

a. Western Gulf of Mexico

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

b. 10° - 40° N. Latitude, 65° - 75° W. Congitude

**医学生产生活。** 

c. Gulf of Guinea

Winter Day:

- a. Mid-Gulf of Mexico
- b. Near-field zone of Liberian Station

Winter Night:

- a. Western Gulf of Mexico
- b. 10° 40° N. Latitude, 65° 75° W. Longitude

#### 9.2 COMPARISON OF MEASURED AND PREDICTED 10.2 KHZ COVERAGE

A comparison of the measured 10.2 kHz results with predicted coverage indicates the following:

#### Summer Local Noon

Station A - Norway: Measurements indicate that coverage extends further to the west than predicted, including the Caribbean Sea and the eastern part of the Gulf of Mexico. Although the NOSC test data were sparse in this region, measurements onboard the Anchorage in the eastern part of the Gulf during July 1978 indicated strong signal levels from Station A as far west as 81°. However, in the southeast sector of the North Atlantic coverage from Station A appears to be poorer than predicted.

Station B - Liberia: Measurements indicate that coverage is better than predicted in the southwest sector and poorer than predicted in the northwest sector.

Station C - Hawaii: Measurements indicate that coverage is as predicted in the northeast sector (i.e. the data shows the Greenland Shadow effect) and better than predicted off the west coast of Africa.

Station D - North Dakota: Measurements indicate that coverage is better than predicted in the northeast sector and as predicted in the southeast sector.

Station E - La Reunion: Measurements indicated that no coverage is provided, which substantiates predictions.

Station F - Argentina: Measurements indicate coverage as far north as  $50^{\circ}$  N. Latitude as compared to  $20^{\circ}$  N. Latitude from predictions.

Station H - Japan: The few measurements for this station do not contradict predictions.

## Winter Local Midnight

Station A - Norway: Measurements indicate that coverage extends further west in the Gulf of Mexico than predicted.

Station B - Liberia: Predicted modal interference zone was confirmed as NOSC flight data through the area showed considerable signal instability.

Station C - Hawaii: Measurements indicate that coverage is as predicted.

Station D - North Dakota: Measurements indicate better coverage than predicted in the northeast sector.

Station E - La Reunion: Predicted modal interference zone was confirmed although there were very little data to either substantiate or contradict this.

Station F - Argentina: Predicted modal interference zone was rejected based on measurements made on east coast of U.S.

Station H - Japan: The few measurements for this station do not contradict predictions.

#### 9.3 COVERAGE ASSESSMENT AT 13.6 KHZ

The OMEGA 13.6 kmz signal coverage results for summer day and winter night show improved signal coverage in all areas where the 10.2 kHz coverage does not meet the three station fix capability, except the western part of the Gulf of Mexico during summer day.

Further improvement is indicated in the four station availability fail-soft feature. At 13.6 kHz, the only areas where this feature is not provided are in the western part of the Gulf of Mexico, the southeast coast of Greenland and a small triangular area between Iceland and Norway during summer day; the southeast coast of Greenland and the extreme western part of the Gulf of Mexico during winter night.

#### 9.4 MEASURED 10.2 KHZ FIX ACCURACY

Based on the fix accuracy analysis described in Section 6 of this report, zonal maps have been prepared which show the recommended LOP combinations in the North Atlantic. Zonal maps showing recommended LOP combinations based on the total error (D) are given in Figure 9-1 for summer day and Figure 9-2 for winter night. Similar type maps based on the 95% CEP figures are given in Figure 9-3 for summer day and Figure 9-4 for winter night.

In preparing these maps, the coverage criteria discussed earlier in the report was adhered to except along a small portion of the eastern coast of the United States between Massachusetts and Virginia. Here the accuracies were very poor for LOP combinations using C-D because this area is on or close to the C-D baseline extension. Although the Argentina (F) signal is expected to be modally disturbed in this area during nighttime, it appears that it would be preferable to use it instead of LOP C-D.

Average values of the total error (D) and the 95% CEP weighted by zonal area over the entire North Atlantic, based on the most accurate LOP combination in each zone, were calculated. These are:

|              | Fix Error in Naut | ical Miles |
|--------------|-------------------|------------|
|              | Total Error (D)   | 95% CEP    |
| Summer Day   | 0.8               | 1.2        |
| Winter Night | 2.4               | 1.9        |

Figure 9-1 Recommended LOPs Based on Total Error (D), Summer Day, 10.2 kHz

Figure 9-2 Recommended LOPE Based on Total Error (D), Winter Nig. 10.2 kHz



1;

The Additional of the second



Figure 9-3 Recommended LOPs Based on 95% CEP, Summer Day, 10.2 kHz



Figure 9-4 Recommended LOPs Based on 95% CEP, Winter N. t. 10.2 kHz

#### 10. CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

Conclusions drawn from the analysis of the data collected for the validation of the OMEGA Navigation System in the North Atlantic region can best be expressed in terms of coverage and accuracy being provided by the system.

### 10.J.1 Coverage

The use of the OMEGA Navigation System generally requires the availability of signals from three or more stations. The 10.2 kHz coverage assessment shows that this requirement is met in the North Atlantic with the exception of a few small areas. However, except for the western part of the Gulf of Mexico during summer day, the OMEGA 13.6 kHz signals provide adequate coverage for those areas not covered at 10.2 kHz. Also, the use of the 13.6 kHz signals greatly reduces the geographical areas which do not have a four station coverage fail-soft feature at 10.2 kHz.

The coverage analysis also confirmed 1.) the lack of usable signals from the La Reunion (E) and Japan (H) stations at all times in most of the North Atlantic, as predicted, and 2.) the dependence on the Norway (A) signals, especially in the northeastern sector during summer day when only three station coverage is indicated. Predictions show that when the Australia (G) station becomes operational, there will be a significant improvement in coverage in the Southeastern Atlantic, the Caribbean Sea and the Gulf of Mexico during nighttime conditions.

Conclusions relating to other features affecting coverage are given below.

#### Modal Interference

The NOSC airborne and ground station data confirmed the predicted 10.2 kHz nighttime modal interference zones in the North Atlantic for the Liberia (B) and Argentina (F) OMEGA stations. At 13.6 kHz, the data showed nighttime modal interference for Liberia very similar to the 10.2 kHz data except for flights between Liberia and Recife, Brazil where 13.6 kHz was more severly disturbed. However, the Argentina signals at 13.6 kHz were less modally disturbed than the 10.2 kHz signals along the southeastern coast of the United States.

### Near Field Zones

The NOSC radial flights indicated that the extent of the near-field zone for Norway (A) is approximately 300 km (day) and 750 km (night) at 10.2 kHz and slightly larger at 13.6 kHz. Similar results were indicated for Liberia during the day, and the modal interference pattern at night encompasses the near-field zone.

#### Long Path

The La Reunion (E) signals at both 10.2 kHz and 13.6 kHz recorded along the east coast of the United States and in the Caribbean have been identified as long-path signals, i.e. signals propagating from along the longer of two great circle arcs between the transmitting station and the receiver. Such long-path signals cannot be used for navigating.

#### 10.1.2 Fix Accuracy at 10.2 kHz

The characteristic accuracy of the OMEGA Navigation System as specified in the proposed Federal Radionavigation Plan  $^{(5)}$  is:

Predictable Accuracy = 2-4 nm (2-drms)

Repeatable Accuracy = 2-4 nm (2-drms)

Relative Accuracy = 1-2 nm (2-drms)

The analysis results show that by using the most accurate LOP combination a total error (D) of 0.8 nm is achievable in the Worth Atlantic during summer day and 2.4 nm is achievable during winter night. Similarly, the 95% CEP achievable in the North Atlantic is 1.2 nm during summer day and 1.9 nm during winter night.

The 95% CEP figures are directly relatable to the required - repeatable accuracy, expressed in terms of 2-3rms. For a circular bivariate Gaussian distribution:

1-drms = 2  $\sigma_{\tilde{r}} = 1.414 \, \sigma_{\tilde{r}}$ 2-drms = 2.828  $\sigma_{\tilde{r}}$ 95% CEP = 2.4478  $\sigma_{\tilde{r}}$ 2-drms = 1.155 x 95% CEP

Thus the repeatable accuracy for the OMEGA Navigation System in the North Atlantic is 1.4 nm (2-drms) for summer day and 2.2 nm (2-drms) for winter night. This is clearly within the civil air user repeatable accuracy requirements of the MNPS, i.e. 20-shall be less than 12.6 nm for the organized track system in the North Atlantic and the predictable accuracy of the civil marine requirements of 2-4 nm for safety at sea.

The total error (D) is a combination of the bias error (R) and the standard deviation of the radial error ( $\sigma_{\rm r}$ ) and cannot be expressed in terms of 2-drms. It is, however, a measure of the predictable error and has been used in this study to better define the OMEGA system for the user. The bias error (R) is almost entirely due to PPC error and therefore most of this error can be removed by PPC adjustments.

A bias error analysis (Section 6.3) indicates that consistent phase difference biases are being measured at a number of the North Atlantic ground monitor sites.

#### 10.2 RECOMMENDATIONS

Three recommendations have resulted from this assessment of the coverage and accuracy being provided by the OMEGA Navigation System in the North Atlantic. These recommendations are:

- To investigate the efficacy of the -20dB SNR (100 Hz B.W.) criterion for signal coverage. New technology being implemented in receiver design offers an increase in receiver sensitivity for acquiring OMEGA signals, and an increase in noise reduction through new processing techniques. A relaxation in the criterion for signal coverage from -20 dB SNR to -30 dB SNR will result in a significant improvement in signal coverage for new technology receivers. Consistent with the advance in receiver technology, new signal coverage diagrams should be published which show SNR threshold contours at -30 dB.
- To remove bias errors through PPC improvements as soon as possible. The results included in this report indicate that the bias errors due to PPC corrections are normally greater than the random errors and form a major portion of the overall error. More specifically, elimination of the PPC errors of the type described in Table 6.5 of this report would result in at least a 30% improvement in overall accuracy (D). Improved propagation corrections should be developed in order that this improvement can be realized.
- To recommend the use of multi-frequency receivers for improved coverage and accuracy. Analyses described in this report indicate that the use of 13.6 kHz signals improves signal coverage substantially. The OMEGA Navigation System offers additional frequencies which may be utilized to improve coverage and accuracy further. Signal coverage diagrams and propagation corrections should be developed for these additional frequencies.

## REFERENCES

- Scull, D.C., "OMEGA Worldwide Calibration and Validation", Proc. of Conference on Navigation in Transportation, DOT-TSC-RSPA 78-22, September 1978.
- Morris, P.B., "The Determination of Regional OMEGA Signal Characteristics Through Prediction, Validation and Calibration", Proc. of the Third Annual Meeting of the International OMEGA Association, London, England, 26-28 September 1978.
- 3. Bortz, J.E., Gupta, R.R., Scull, D.C., Morris, P.B., "OMEGA Signal Prediction", Journal of the Institute of Navigation, Spring 1976.
- 4. Karkalik, F.G., Sage, G.F., Vincent, W.R., "Western Pacific OMEGA Validation" Systems Control, Inc. (VT), ONSOD 01-78, April 1978.
- 5. "Federal Radionavigation Plan" Department of Defense and Department of Transportation, November 1979 DRAFT
- 6. "OMEGA Navigation System: User Guide", Dept. of the Navy, Naval Electronic Systems Command, 1 March 1978.
- 7. Bowditch, Nathaniel, "American Practical Navigator", Pub. No. 9, Volume I, Published by the Defense Mapping Agency Hydrographic Center, 1977 Edition.
- 8. Pierce, J.A., "OMEGA, IEEE Transactions on Aerospace and Electronic Systems, Volume AES-1, Number 3, December 1965.
- Morris, Peter B., and Cha, Milton Y., "OMEGA Propagation Corrections: Background and Computational Algorithm", ONSOD-01-74, DOT, U.S. Coast Guard, OMEGA Navigation System Operations Detail, December 1974.
- 10. Reynolds, P.R.J., "An American OMEGA Navigation Evaluation Programme 1975-1977", The Journal of Navigation, Vol. 30, No. 3, September 1977.
- 11. Broughton, D.W., "Royal Air Force Assessment Flights", The Journal of Navigation, Vol 30, No. 3, September 1977.
- 12. Bradley, R.H.N., "Flight Experience with OMEGA", The Journal of Navigation, Vol. 30, No. 3, September 1977.
- 13. Tolstoy, A.I., "New Coefficients for the Swanson PPC Model as Utilized by OMEGA at 10.2 kHz", ONSOD 01-76, October 1976.

1

14. Barker, A. Clifford, "Shipboard Evaluation of an OMEGA Navigation System with Automatic Propagation Corrections and Latitude/Longitude Conversion", Proceedings of the Institute of Navigation, 1 November 1977.

- Rugel, C.P., Ferguson, J.A., Rider, K.B., Bradford, W.R., Bickel, J.E., "North Atlantic OMEGA Validation", Final Report (Draft), 1 June 1979, Naval Ocean Systems Center.
- 16. "World Distribution and Characteristics of Atmospheric Radio Noise", CCIR Report 322, International Telecommunication Union, Geneva, 1964.
- 17. "Program EVAL Documentation, Version 3", TR-735-2-4, The Analytic Sciences Corporation, 16 May 1977.
- 18. McConnell, D.E., Hatch, R., "OMEGA Data Analysis and Statistics Programs", Final Report R-73917-A, August 1978, Magnavox/Advanced Products Division.
- 19. Burt, W.A., Kaplan, D.J., Keenly, R.R., et al, "Mathematical Considerations Pertaining to the Acquracy of Position Location and Navigation Systems", Naval Warfare Research Center NWRC-RM34, Stanford Research Institute, November 1965.
- 20. Swanson, E.R., Kugel, C.P., "A Synoptic Study of Sudden Phase Anomalies (SPAs) Effecting VLF Navigation and Timing", Proc. of the Fifth Annual NASA and Department of Defense Precise Time and Time Interval (PTTI) Planning Meeting, 4-6 December 1973, NASA Publication X-814-74-225.
- 21. "A Study of Sudden Ionospheric Disturbances and Their Effect on VLF Position Fixing Accuracy", Civil Aviation Authority (CAA) Paper 76017, National Air Traffic Service, March 1976.
- 22. Martin, J.N., "OMEGA Phase Variations during PCA Events", Naval Electronics Laboratory Center, NELC/TR 1835.
- 23. Moore, R., "Flight Test of OMEGA Navigation System ONS-201 Along Commercial Jet Routes of the North Atlantic", NAFEC, 17 March 1976.
- 24. Letter Report and data from Major J.K. Millar, Maritime Proving and Evaluation Unit, Sleman Park, P.E.I., Canada to Mr. P. Morris, U.S. Coast Guard/ONSOD.
- 25. Wrestler, C.G., Jr., "Evaluation of a Commercial OMEGA Navigation System Installed in the C-118 Aircraft", C-118 Weapon Systems Manager, Naval Air Rework Facility, Norfolk, VA, Report No. C-118 WSM 1-78.
- 26. "Project Speckled Trout Navigation Systems Operations Evaluation", Reports 79-01, 02, 03, 04, 05, 80-1, Det. 1, 4950th Test Wing, Andrews AFB; 1979, 1980.
- 27. Kuranov, V.P., Federov, YU.M., Nikonov, Ye.A., Yerushev, P.N., Pavlov A.V., Kuznetsov, L.M., "Preliminary Working Results of the OMEGA Long-Range Radio Navigation System on Flights by IL-62 Aircraft Over the North Atlantic".

- 28. "OMEGA Experience Information Survey", Letter and data from J. Liebertz, Hemisphere Transportation Corp., Wilmington, Delaware, 5 April 1977 to U.S. Coast Guard/ONSOD.
- 29. Letter and data from J.J. Gasull, United Overseas Corp., 21 January 1978.
- 30. "Studies on the Accuracy of the OMEGA Navigation System", Note by Finland, Intersessional Working Group on Differential OMEGA, 2nd Meeting, ISWG-DO-II/14, 3 April 1978.
- 31. Letters and data from A. Davies, Commodore, BP Tanker Co. Ltd., London, U.K. to U.S. Coast Guard/ONSOD, 11 December 1976, 9 August 1977 and 19 November 1977.
- 32. Letter and data from S.E.J. Martiny, Commander, Director Naval Tactical Training, Copenhagen, Denmark to U.S. Coast Guard/ONSOD, 23 January 1978.
- 33. "OMEGA Navigation System Evaluation", Letter Report from Department of Defense (Navy Office), Canberra, Australia to Dynell Electronics Corp, New York, 12 January 1977.
- 34. Busch, A. and Colamosca, B., "Navigational System Requirements via Collision Risk Model", FAA/NAFEC, The Institute of Navigation Proceedings of the National Aerospace Symposium, April 1978.
- 35. "Test and Evaluation of Two Analog Differential OMEGA Telemetry Systems", Final Report, Vol. 1, Naval Electronic Systems Engineering Activity, 7 April 1978.

#### APPENDIX A

### Transmitter Monitor Station Data

The tables in this section list the measured 10.2 kHz data at each of the transmitter monitor sites. The time of day is indicated for each block of data and flags are shown appropriately. The definitions of the flags are as follows:

- S Data block failed phase error variance test
- Q Insufficient data in block for phase error variance test
- B Large phase error bias for data block
- E Large rms phase error for data block
- F All data in block are flagged

In processing these data to assess fix accuracy, both unflagged monthly data blocks and monthly data blocks flagged S, Q, B, and E were used. Data blocks flagged F were not used.

Within each data block there are also daily/hourly flags (i.e. SID, PCA, transmitter out, monitor out etc). These flagged data were not used in the fix-accuracy calculations.

The following tables are included:

Table A-1 (A-C) Hestmona, Norway

Table A-2 (A-B) La Moure, North Dakota

Table A-3 Monrovia, Liberia

Table A-4 (A-B) Piarco, Trinidad

Table A-5 (A-B) Trinidad, Site 2

\* Y3 5 . V . . . .

between a consequent the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of

|                                                               | FIXED         | FIXED MONITOR: HESTMONA, | R: H | ESTA     | IONB      |      | NORWAY |   |   |      | •   | FREQUENCY:_ | NCY: | 10.2 kHz | Hz      |   |   |   | 11 |
|---------------------------------------------------------------|---------------|--------------------------|------|----------|-----------|------|--------|---|---|------|-----|-------------|------|----------|---------|---|---|---|----|
|                                                               |               |                          |      |          | STATION   | 2    |        |   |   |      | 9   |             |      |          | STATION | 2 |   |   |    |
| ×<br>R                                                        | Ç<br><b>∑</b> | 4                        | 8    | ပ        | ۵         | w w  | T.     | 0 | Η | ij.  | 2   | 4           | 8    | ပ        | ٥       | - | u | 0 | =  |
| 1967                                                          | JAN           |                          |      |          |           |      |        |   |   | 1869 | NAL |             |      | 7        |         |   |   | 1 | 1  |
| <del></del>                                                   | FEB           |                          |      |          |           |      |        |   |   |      | FEB |             |      | 7        |         |   |   |   | I  |
|                                                               | MAR           |                          |      |          |           |      |        |   |   |      | MAR |             |      | 1        |         |   |   |   | 1  |
|                                                               | APR           |                          |      |          |           |      |        |   |   |      | APR |             |      | DO       |         |   |   |   | 1  |
| be Tour                                                       | MAY           |                          |      |          |           |      |        |   |   |      | MAY |             |      | 90       |         |   |   |   |    |
|                                                               | 3             |                          |      | DB       |           |      |        |   |   |      | JUN |             |      | D        |         |   |   |   | 1  |
|                                                               | 125           |                          |      | B        |           |      |        |   |   |      | 121 |             |      | 9        |         |   |   | 1 | 1  |
|                                                               | AUG           |                          |      | 28       |           |      |        |   |   |      | AUG |             |      | A        |         |   |   |   | 1  |
| -                                                             | SEP           |                          |      | 70       |           |      |        |   |   |      | SEP |             |      | 7.       |         |   |   | 1 | -  |
|                                                               | 100           |                          |      | 7        |           |      |        |   |   |      | 007 |             |      | 70       |         |   |   |   | 1  |
|                                                               | >ON           |                          |      | 7        |           |      |        |   |   |      | MOV |             |      | 1        |         |   |   | 1 | Ì  |
|                                                               | DEC           |                          |      | >        |           |      |        |   |   |      | DEC |             |      | ×        |         |   |   |   |    |
| 8 7 61                                                        |               |                          |      | 1        |           |      |        |   |   | 0281 | JAN |             |      | 7        |         |   |   |   | :  |
|                                                               |               | ,                        |      | 1        |           |      |        |   |   |      | FEB |             |      | 7        |         |   |   | 1 | ı  |
|                                                               | MAR           |                          |      | 7        |           |      |        |   |   |      | MAR |             |      | 78       |         |   |   | 1 |    |
|                                                               | APR           |                          |      | a        |           |      |        |   |   |      | APR |             |      | A        |         |   |   | 1 | 1  |
|                                                               | MAY           |                          |      | a        |           |      |        |   |   |      | MAY |             |      | A        |         |   |   |   |    |
|                                                               | 713           |                          |      | a        |           |      |        |   |   |      | 35  |             |      | A        |         |   | 1 |   |    |
| <u>-</u>                                                      | 705           |                          |      | a        |           |      |        |   |   |      | 305 |             |      | A        |         | 1 | 1 | 1 | 5  |
|                                                               | AUG           | _                        |      | DB       |           | <br> |        |   |   |      | AUG |             |      |          |         |   |   |   | ١  |
|                                                               | SEP           |                          |      | 78       |           |      |        |   |   |      | SEP |             | 1    | 7        |         |   |   |   |    |
|                                                               | OCT           |                          |      | 1        |           |      |        |   |   |      | 120 | 1           |      | 7        | 1       |   | 1 | 1 |    |
| · · · · · · · · · · · · · · · · · · ·                         | <b>NON</b>    |                          |      | 7        |           |      |        |   |   |      | NOV |             |      | H        | 1       |   |   | 1 |    |
|                                                               | DEC           |                          |      | >        |           |      |        | Š |   |      | DEC |             |      | ×        |         |   | 7 |   | ł  |
| ֝֞֞֜֜֜֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֝֝֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֡֡ | 200           | Day &                    |      | <u> </u> | the three |      |        |   |   |      |     |             |      |          |         |   | , |   |    |

O; D/N · Day & Night; D · No Nighttline; N · No Daythne; T · Transition Only; LE

Flags S, Q, B, E, F - See accompanying description

Ch. Transition

Miles and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco

|                 |         | ٦        |      |     |                                       |     |          |     |      |     |                                       |     |            |        | ·    |     |      |     |     |     |     |     |     |      |            |          |
|-----------------|---------|----------|------|-----|---------------------------------------|-----|----------|-----|------|-----|---------------------------------------|-----|------------|--------|------|-----|------|-----|-----|-----|-----|-----|-----|------|------------|----------|
|                 |         | Ø        |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            |          |
|                 |         | ш        |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            |          |
|                 | 2       | E        |      |     |                                       |     |          |     |      |     |                                       | 1   |            |        |      |     |      |     |     | 1   |     |     |     |      |            |          |
| ž               | STATION | a        | NB   | NB  | DINO                                  | 7   | 00       | 00  | 28   | 18  |                                       |     |            | ٥<br>٥ |      | NB  | gN/a | 00  | 0 8 | 20  | A   | 20  | 7.8 | DINE | NB         | NB       |
| 10.2 kHz        |         | ၁        | 7    | 7   |                                       |     |          |     |      |     |                                       | 7   |            |        |      |     | 7    |     |     |     |     |     |     |      | H          | ×        |
| CY:             |         | 8        |      |     |                                       |     |          |     |      |     |                                       |     |            | 7      |      |     |      |     |     |     |     |     |     |      | 1          | 1        |
| FREQUENCY:      |         | <        |      |     |                                       |     |          |     |      |     |                                       | 1   |            |        |      |     |      |     |     |     |     |     |     |      |            |          |
|                 |         | G        | JAN  | FEB | MAR                                   | APR | MAY      | JUN | זמר  | AUG | SEP                                   | 007 | NOV        | DEC    | JAN  | FEB | MAR  | APR | MAY | JUN | JUL | AUG | SEP | ОСТ  | NOV        | DEC      |
| ı               | -       | Y K.     | 1873 |     |                                       | لئا | لگ       |     |      |     | - 60                                  |     |            |        | 1974 |     |      |     |     |     |     |     | S   |      | -1         | ᅴ        |
|                 |         | Ξ        |      |     |                                       |     |          |     |      |     |                                       |     |            |        | -    |     |      |     |     |     |     |     |     |      |            |          |
|                 |         | G        |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            | $\dashv$ |
| KAX             |         |          |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            |          |
| NORWAY          |         | -        |      |     |                                       |     |          |     |      |     |                                       |     |            |        | _    | _   | _    |     |     |     |     |     |     |      |            |          |
| A.              | NO      | E        |      | _   | _                                     |     |          |     |      |     |                                       |     |            |        |      | _   |      |     |     |     |     |     |     | _    | 9          | 3        |
| NOW             | STATION | ٥        | _    |     |                                       |     | _        |     |      |     |                                       |     |            |        |      |     | _    |     |     |     |     |     |     |      | NB         | NB       |
| HESTMONA        |         | ပ        | 1    | 7   | 1                                     | D   | DB       | 0   | a    | a   | 78                                    | 75  | 7.8        | >      | 1    | 1   | 1    | a   | A   | a   | a   | 28  | 7.8 | 1    | 1          | ×        |
|                 |         | æ        |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            |          |
| MONITO          |         | 4        |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            |          |
| FIXED MONITOR:_ |         | MO.      | JAN  | FEB | MAR                                   | APR | MAY      | JUN | 30,5 | AUG | SEP                                   | OCT | <b>NOV</b> | DEC    | JAN  | FEB | MAR  | APR | MAY | SCN | H   | AUG | SEP | OCT  | <b>NOV</b> | DEC      |
| _               |         | Υ.<br>A. | 1671 |     | · · · · · · · · · · · · · · · · · · · |     | <u> </u> | •   |      |     | · · · · · · · · · · · · · · · · · · · |     |            |        | 1972 |     |      |     |     |     |     |     |     |      |            |          |
|                 |         |          |      |     |                                       |     |          |     |      |     |                                       |     |            |        |      |     |      |     |     |     |     |     |     |      |            |          |

LEGEND: D/N - Day & Night; D - No Nighttime; N - No Daytine; T - Transition Only;

|              | FIXED (                                | FIXED MONITOR:       | 1     | KST.            | HESTANDA | Mark | RWAY |   |       | 1    | Œ   | FREQUENCY: | , k      | 10.2 kHz | 4       |       |            |   |      |
|--------------|----------------------------------------|----------------------|-------|-----------------|----------|------|------|---|-------|------|-----|------------|----------|----------|---------|-------|------------|---|------|
|              |                                        |                      |       |                 | STATION  |      |      |   |       | 5    | 9   |            |          | 2        | STATION |       |            |   |      |
| —<br>Ж       | Ç                                      | 4                    | 8     | ပ               | ٥        | W.   | u.   | 9 | Ξ     |      | į   | A          |          | 0        |         |       | -          | 0 | Ŧ    |
| 1975         | NAL                                    |                      |       | 7               | NB       |      |      |   |       | 1077 | JAN |            | -        | 1        |         |       |            |   |      |
| <b></b>      | FEB                                    |                      |       | ٢               | 0 /      |      |      |   |       |      | FEB |            |          | 1        |         | 1     |            |   |      |
|              | MAR                                    |                      |       | 1               | B N/a    |      |      |   |       |      | MAR |            |          |          |         |       |            |   |      |
|              | APR                                    |                      |       | DB              | 20       |      |      |   |       |      | APR | D          | Ma       | 80       |         | 9/4/4 |            |   |      |
|              | MAY                                    |                      |       | 28              | 20       |      |      |   |       |      | MAY | D          |          | 20       |         | 2 N/a |            |   | 00   |
| يست نين      | SUN                                    |                      |       | A               | 2 Q      |      |      |   |       |      | JUN | 7          | DIN      | 00       |         | S M/a |            |   | 20   |
|              | 301                                    |                      |       | B               | 28       |      |      |   |       |      | JUL |            |          |          |         |       |            |   |      |
|              | AUG                                    |                      |       | DB              | DB       |      |      |   |       |      | AUG | 10         | D/NO     | 00       | 7       | 8 N/a |            |   | 20   |
|              | SEP                                    |                      |       | 78              |          |      |      |   |       |      | SEP | Na         |          | TO       | 7       | 51/10 |            |   | 20   |
|              | 00.1                                   |                      |       | 78              | NB       |      |      |   | NB    |      | ОСТ | <i>/a</i>  | _        | 7        | 7       | 2/1/2 |            |   | 9140 |
|              | NOV                                    |                      |       | 75              | NB       |      |      |   | NB    |      | NON | 0/0        |          | 7        | 7       | DINS  |            |   | 718  |
|              | DEC                                    |                      |       | 75              | TE       |      |      |   | NB    |      | DEC | 7          | ΝS       | N        |         | NS.   |            |   | 87   |
| 1976         | <del> -</del>                          |                      |       | 7.5             | 78       |      |      |   | NB    | 1978 | JAN |            |          |          |         |       |            |   |      |
| -            | ــــــــــــــــــــــــــــــــــــــ |                      | 2/4/6 | 78              | BN       |      |      |   | NB    |      | FEB | <u> </u>   | NB       | ア        |         | NB    |            | - | NB   |
|              | MAR                                    |                      |       | 1               | NB       |      |      |   | DAN B |      | MAR | //a        | s N/a    | 7        | 7       | DN/S  |            |   | anla |
|              | APR                                    |                      |       | DB              | 28       |      |      |   | DB    |      | APR |            |          |          |         |       |            |   |      |
| <del></del>  | MAY                                    |                      | D     | 28              | 1        |      |      |   | DB    |      | MAY | $\dashv$   | $\dashv$ |          | 1       | 1     |            |   |      |
|              | NOS                                    |                      | A     | 28              |          |      |      |   | DB    |      | NO. |            | $\dashv$ | +        | 1       |       |            |   |      |
|              | JUL                                    |                      | PB    | 80              |          | D/NB |      |   | 20    |      | 301 | +          | $\dashv$ | 1        | +       |       |            |   |      |
|              | AUG                                    |                      | 20    | DB              |          | DB   |      |   | DB    |      | AUG | -          | 1        | +        | 1       | 1     |            |   |      |
|              | SEP                                    |                      |       |                 |          |      |      |   |       |      | SEP | +          | $\dashv$ | +        | 1       | 1     |            |   |      |
| ~ <u>-</u> - | 100                                    |                      |       |                 |          |      |      |   |       |      | 120 | +          | $\dashv$ | 1        | 1       |       |            |   |      |
| · ·          | >ON                                    |                      |       |                 |          |      |      |   |       |      | NOV | +          | $\dashv$ | +        | 1       |       |            |   |      |
| <b></b>      | DEC                                    |                      |       |                 |          |      |      |   |       |      | DEC |            | -        |          | 1       |       |            |   |      |
| LEGEN        | N/G                                    | LEGEN ON ON & Night; | 10    | · No Nighttime; | phitime; |      |      |   | our l |      |     |            |          |          |         |       | . <b>J</b> |   |      |

No Daytime; T. Transition Only; Flags S, O, B, E, F. See accompanying description

desirate a constable season and and and the

|      |     |       |   |     | 1       |   |   |   |   |              |          |               |   |     |         |     |     |   |     |
|------|-----|-------|---|-----|---------|---|---|---|---|--------------|----------|---------------|---|-----|---------|-----|-----|---|-----|
| 5    | 3   |       |   |     | STATION | ž |   |   |   | 8A           | \$       |               |   |     | STATION | Z   |     |   |     |
| Ĕ    | M   | 4     | 8 | ပ   | ٥       | E | F | ຍ | Ξ |              | i        | ٧             | 8 | ၁   | ۵       | w w | u.  | 0 |     |
| 1973 | JAN |       |   |     |         |   |   |   |   | 1975         | NAL      | NB            |   |     |         |     |     |   |     |
|      | FEB |       |   |     |         |   |   |   |   | 1            | FEB      | NB            |   | 2/2 |         |     |     |   |     |
|      | MAR | N/a   |   |     |         |   |   |   |   |              | MAR      | Na            |   | Din |         |     |     |   | 7.5 |
|      | APR | 7.5   |   |     |         | _ |   |   |   |              | APR      |               |   | D/W |         |     |     |   |     |
|      | MAY | 20    |   |     |         |   |   |   |   | <u> </u>     | MAY      |               |   | n/a |         |     |     |   | 00  |
|      | JUN | 28    |   |     |         |   |   |   |   | <u> </u>     | NO.      | DB            |   | n/a |         |     |     |   | 20  |
|      | 301 | 28    |   |     |         |   |   |   |   |              | 70r      | 00            |   | N/a |         |     |     |   | A   |
|      | AUG | 20    |   |     |         |   |   |   |   |              | AUG      | De            |   | na  |         |     |     |   | 20  |
|      | SEP |       |   |     |         |   |   |   |   |              | SEP      |               |   |     |         |     |     |   |     |
|      | 000 |       |   |     |         |   | _ |   |   |              | 120      | D/W           |   | D/W |         |     |     |   | NB  |
|      | NOV |       |   |     |         |   |   |   |   |              | NOV      | ×             |   | n/a |         |     |     |   | NB  |
|      | DEC | NS    |   |     |         |   |   |   |   |              | DEC      | N             |   | D/W |         |     |     |   | X   |
| 1974 | JAN | >     |   |     |         |   |   |   |   | 57.81        | KY?      | $\mathcal{N}$ |   | n/a |         |     |     |   | 3   |
|      |     | 7     |   |     |         |   |   |   |   |              | FEB      | NS            |   | Ma  |         |     |     |   | ×   |
|      | MAR | 10/10 |   |     |         |   |   |   |   |              | MAR      | NB            |   | N/a |         |     |     |   | N   |
|      | APR | DB    |   |     |         |   |   |   |   |              | APR      | 28            |   | N/A |         |     |     |   | A   |
|      | MAY | 20    |   |     |         |   |   |   |   |              | MAY      | 28            |   | DW  |         |     |     |   |     |
|      | NOT | DB    |   |     |         |   |   |   |   | ·····        | SOS      |               |   | Ma  |         |     | D/V |   | NA  |
|      | 101 | 20    |   |     |         |   |   |   |   | ·            | 정        |               |   |     |         |     |     |   |     |
|      | AUG | 28    |   |     |         |   |   |   |   | 1            | AUG      |               |   |     |         |     |     |   |     |
|      | SEP | 78    |   |     |         |   |   |   |   | <del>-</del> | SEP      |               |   |     |         |     |     |   |     |
|      | OCT | 0/10  |   |     |         |   |   |   |   |              | 100      |               |   |     |         |     |     |   |     |
|      | NOV | NB    |   | N/a |         |   |   |   | _ |              | <b>№</b> |               |   |     | T       |     |     |   |     |
|      |     | 8     |   | 177 |         |   | _ | _ | _ |              | שני      |               |   |     |         |     |     |   |     |

LEGEND: D/N . Day & Night; D . No Nighttime;
N . No Daytime; T . Transition Only;
Flags S, O, B, E, F . See accompanying description

Allen perdebases and the recession between an enterest

|              |             |   |   | `     | •       | ` |       | \ |    |    |            |   |    |   |         |     |   |         |
|--------------|-------------|---|---|-------|---------|---|-------|---|----|----|------------|---|----|---|---------|-----|---|---------|
|              |             |   |   |       |         |   |       |   |    |    |            |   |    |   |         | 1   |   |         |
|              |             |   | ı |       | STATION | - |       |   |    | \$ | \$         |   |    |   | STATION | NC. |   |         |
| Ä.           |             | < | æ | ၁     | ٥       | 3 | F     | g | н  |    |            | ٧ | 8  | O | a       | w   | 4 | ٩       |
| 1977         | NAL         |   |   | N/a   |         |   | D/W3  |   | NB | 10 | JAN        |   |    |   |         |     |   | 4       |
| 7            | FEB         |   |   | D/W   |         |   | D/W 3 |   | NB |    | FEB        |   |    |   |         |     |   | _       |
|              | MAR         |   |   | N/a   |         |   | nh    |   | NB |    | MAR        |   |    |   |         |     |   | 1       |
|              | APR         |   |   |       |         |   | DINS  |   | W  |    | APR        |   |    |   |         |     |   | 4       |
| , w- · · · · | MAY         |   |   |       |         |   |       |   |    |    | MAY        |   |    |   |         |     |   | $\bot$  |
|              | SUS         |   |   | 0/0   |         |   | D/W3  |   | 0  |    | 3          |   |    |   |         |     |   | _       |
|              | 707         |   |   |       |         |   |       |   |    |    | ž          |   |    |   |         |     |   | _       |
|              | AUG         |   |   |       |         |   |       |   |    |    | AUG        |   |    |   |         |     |   | 4       |
|              | SEP         |   |   | 10/0  |         |   | 5/1/0 |   | 78 |    | SEP        |   |    |   |         |     |   | _       |
|              | 007         |   |   |       |         |   |       |   |    |    | 120        |   | ٠, |   |         |     |   | _       |
|              | NOV         |   |   |       |         |   |       |   |    |    | NOV<br>NOV |   |    |   |         |     |   |         |
|              | DEC         |   |   | N/0   |         |   | D/NS  |   | NB |    | DEC        |   |    |   |         |     |   | 4       |
| 1978         | JAN         |   |   |       |         |   |       |   |    | 2  | JAN        |   |    |   |         |     |   | _       |
|              | FEB         |   |   | 10/10 |         |   | s N/a |   | 78 |    | FEB        |   |    |   |         |     |   |         |
|              | MAR         |   |   | 1/4   |         |   | 76    |   | 28 |    | MAR        |   |    |   |         |     |   | _       |
|              | APR         |   |   | _     |         |   |       |   |    |    | APR        |   |    |   |         |     |   | 4       |
|              | MAY         |   |   |       |         |   |       |   |    |    | MAY        |   |    |   |         |     |   | _       |
|              | <b>N</b> 57 |   |   |       |         |   |       |   |    |    | 3          |   |    |   |         |     |   | $\perp$ |
|              | 10,         |   |   |       |         |   |       |   |    |    | 2          |   |    |   |         |     |   | 1       |
|              | AUG         |   |   |       |         |   |       |   |    |    | AGG        |   |    |   |         |     |   | 1       |
|              | SEP         |   |   |       |         |   |       |   |    |    | SEP        |   |    |   |         |     |   | 1       |
|              | 120         |   |   |       |         |   |       |   |    |    | हु         |   |    |   |         |     |   | 1       |
|              | <b>NOV</b>  |   |   |       |         |   |       |   |    |    | Ş          |   |    |   |         |     |   |         |
|              | 3.0         |   |   |       |         |   |       |   |    |    | 200        | _ |    |   | _       |     |   | •       |

LEGEN VO Day & Night; D. Na Nighttime;
'N. No Daytime; T. Transition Only;
Flags S, O, B, E, F. See accompanying description

| -           | 9                 |       |   |   | STATION | 2     |        |   |   | 9    | 3           |      |    |   | STATION | NO    |       |   |   |
|-------------|-------------------|-------|---|---|---------|-------|--------|---|---|------|-------------|------|----|---|---------|-------|-------|---|---|
| <del></del> | <br>ġ<br><b>∑</b> | 4     | 8 | ပ | ۵       | E     | F      | 9 | z | i A  | į           | ۷    | 86 | ပ | ٥       | E     |       | 0 | Ξ |
| . 22.61     | JAN               |       |   |   |         |       |        |   |   | 8281 | NYC         |      |    |   |         |       |       |   |   |
| <u> </u>    | FEB               | BN/C  |   |   |         |       |        |   |   |      | 83 <i>4</i> | BN   |    |   |         | D/NB  | DIN B |   |   |
| <u> </u>    | 1                 | 8 %   |   |   |         |       |        |   |   |      | MAR         | DANS |    |   |         | D/N 8 |       |   |   |
|             | 7                 | 5 1/0 |   |   |         |       |        |   |   |      | APR         |      |    |   |         |       |       |   |   |
| <u> </u>    | 1                 |       |   |   |         |       |        |   |   |      | MAY         |      |    |   |         |       |       |   |   |
| <u> </u>    | JUN               | DE    |   |   |         |       | sWa    |   |   |      | 3           |      |    |   |         |       |       |   |   |
| 1.          | 101               | 250   |   |   |         | 0//0  | 5 11/0 |   |   |      | אטר         |      |    |   |         |       |       |   |   |
|             | AUG               | 2 8   |   |   |         | 2 m/a |        |   |   | -    | AUG         |      |    |   |         |       |       |   |   |
| 1           | SEP               |       |   |   |         |       | 1 1    |   |   |      | SEP         |      |    |   |         |       |       |   | 1 |
| <u> </u>    | 130               |       |   |   |         |       |        |   |   |      | 007         |      |    |   |         |       |       |   |   |
|             | >0N               |       |   |   |         |       |        |   |   |      | NOV         |      |    |   |         |       |       |   |   |
|             | DEC               |       |   |   |         |       |        |   |   |      | DEC         |      |    |   |         |       |       |   |   |
| 1977        | NAL               |       |   |   |         |       |        |   |   | 19   | JAN         |      |    |   |         |       |       |   | : |
|             | FEB               |       |   |   |         |       |        |   |   |      | FEB         |      |    |   |         |       | -     |   |   |
| 1_          | MAR               |       |   |   |         |       |        |   |   |      | MAR         |      |    |   |         |       |       |   |   |
|             | APR               |       |   |   |         |       |        |   |   |      | APR         |      |    |   |         |       |       |   |   |
| <u> </u>    | MAY               |       |   |   |         |       |        |   |   |      | MAY         |      |    |   |         |       |       |   |   |
| <u> </u>    | 3                 |       |   |   |         |       |        |   |   |      | NO.         |      |    |   |         |       |       |   |   |
| <u> </u>    | 101               |       |   |   |         |       |        |   |   |      | 3           |      |    |   |         |       |       |   |   |
| 1           | AUG               |       |   |   |         |       |        |   |   |      | AUG         |      |    |   |         |       |       |   |   |
| 1           | SEP               | 5 M/a |   |   |         | BM/a  | gN/Q   |   |   |      | SEP         |      |    |   | į       |       |       |   |   |
| ــــــــا   | 00.7              | 2 N/a |   |   |         |       |        |   |   |      | 100         |      |    |   |         |       |       |   | ١ |
| <u> </u>    | <b>NOV</b>        |       |   |   |         |       |        |   |   |      | NOV<br>NOV  |      |    |   |         |       |       |   |   |
| L.          | 200               | 8,4   |   |   |         | 2/./5 | 8 17 4 |   |   |      | DEC         |      | ٠  |   |         |       |       |   |   |

LEGEND: D/N - Day & Night; D - No Nighttime; N - No Daytine; T - Transition Only;

|                 |          | 0      |          | 1        |     |          |     |            | _        | $\frac{1}{1}$ | 4        | 1   | 1        |     | 1        | 1        | +   | 1     | +   | $\frac{1}{1}$ | 1       | +        | 4    | +     | 1   |     |
|-----------------|----------|--------|----------|----------|-----|----------|-----|------------|----------|---------------|----------|-----|----------|-----|----------|----------|-----|-------|-----|---------------|---------|----------|------|-------|-----|-----|
|                 |          |        | $\dashv$ | $\dashv$ | +   | -        | +   | -          | $\dashv$ | +             | +        | +   | +        | 4   | $\dashv$ | $\dashv$ | +   | +     | +   | +             | -       | $\dashv$ | -    | +     | +   | 4   |
|                 | ETATION  | -      | $\dashv$ | 2        | .5  | 2        | .2  | 7          | 1        | 3             |          | 7   | <u> </u> | 1   | 3        | 1        | 3   | 2     | 2   |               | 1       |          | 2    | 1     | 3   | 4   |
| 10.2 kHz        | STA      | ٥      |          | 30/0     | Na  | Ma       | Ma  | N/a        | 7/0      | Ma            | 7/4      | 7/0 | 10/10    | Ma  | Na       | 10/10    | 7/0 | 2/10  | Ma  | Ma            | Ma      | 2/0      | 7/0  | Ma    | Ma  | 4   |
| .02             |          | ٥      | Ma       | DWB      |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       |     |     |
| ENCY:_          |          | 8      |          |          |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       |     |     |
| FREQUENCY:      |          | <      | Ma       | 7/10     | Na  | 0 Ma     | 20  | 08         | A        |               |          |     |          | >   | 11/1     |          | N/a | 7/0   | 20  | DB            | DB      | a        | NB   | 0/10  |     |     |
|                 | 5        |        | JAN      | FEB      | MAR | APR      | MAY | <b>108</b> | JUL      | AUG           | SEP      | OCT | NOV      | DEC | JAN      | FEB      | MAR | APR   | MAY | JUN           | JUL     | AUG      | SEP  | OCT   | NOV | DEC |
| 1               | \$       |        | 1973     |          |     |          |     |            |          |               |          |     |          |     | 1974     |          |     |       |     |               |         |          |      |       |     |     |
|                 |          | I      |          |          |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       |     |     |
|                 |          | Ø      |          |          |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       |     |     |
| DAD             |          | IJ.    |          |          |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       |     |     |
| TRINIDAD        |          | E      |          |          |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       |     |     |
|                 | STATION  | 0      |          |          |     |          |     |            |          |               |          |     |          |     |          |          |     |       |     |               |         |          |      |       | N/a | N/0 |
| PIARCE          | IS       | ပ      |          |          |     |          |     |            |          |               | N/0      |     |          |     | aN/a     | N/a      | D/W | N/a   | N/a |               | W/a     | N/Q      | 11/0 | D/W   | N/a | N/Q |
| 1               |          | 8      |          |          |     |          |     |            |          |               |          |     |          |     | -        |          |     | `     |     |               |         |          |      |       |     |     |
| FIXED MONITOR:_ |          | <      |          |          |     |          |     |            |          |               | N/a      |     |          |     | N/0      | Ma       | N/0 | D/W   | a   |               | a       | 2        | DINB | D/WB  | W/a | ~   |
| XED M           |          | Ĺ<br>ġ | JAN      | FEB      | MAR | APR      | MAY | NOS        | 106      | AUG           | SEP (    | ЭСТ | NOV      | DEC | JAN      | FEB      |     | APR 1 | MAY | SCN.          | JUL     | AUG      | SEP  | OCT 1 | VOV | DEC |
| -               | <b> </b> |        | 197/     |          | _   | <u> </u> |     |            |          |               | <u> </u> |     |          |     | 1972     |          |     |       |     |               | <u></u> |          | 1,   |       |     |     |

LEGEN D/N - Day & Night; D · No Nighttime;
N · No Daytims; T · Transition Only;
Flags S, Q, B, E, F · See accompanying description

|                 | ****    | =                 | T     | T            | T        | T    | 1                  | T        | T    | T           | 1       | T     | T        | T        | T            | T       | T        | T        | T        | T        | T                | 7           | T       | T        | T        | 7        |
|-----------------|---------|-------------------|-------|--------------|----------|------|--------------------|----------|------|-------------|---------|-------|----------|----------|--------------|---------|----------|----------|----------|----------|------------------|-------------|---------|----------|----------|----------|
| li              | }       | 7                 | 4     | +            | +        | +    | +                  | $\dashv$ | 4    | $\dashv$    | -       | +     | +        | -        | 4            | 4       | 4        | 4        | +        | +        | 4                | $\dashv$    | 4       | +        | +        | 4        |
|                 |         | ٥                 |       | $\downarrow$ |          | 1    |                    |          |      |             | 1       |       |          |          | $\downarrow$ |         | 1        | _        |          |          |                  | _           |         | 1        |          |          |
|                 |         | -                 |       |              |          |      |                    |          |      |             |         |       | Ì        | ١        |              | ١       |          |          |          |          | ١                |             | 1       | ŀ        |          |          |
|                 | :2      | E                 |       |              |          |      |                    |          |      |             |         |       |          |          |              |         |          |          |          |          |                  |             |         |          |          |          |
|                 | STATION | ۵                 | Ma    | Ma           | 1        |      |                    | Ma       |      |             | Na      | H     |          | Ma       |              | Div     | n/a      | 1        |          |          |                  |             | 1       | 1        |          | 7        |
| 10.2 KTZ        |         | S                 | 1     | 1            | 1        | 1    |                    | 1        |      | 1           | 7       | 1     | 1        |          |              |         |          | 1        | 1        | 1        |                  |             | 1       | 7        | 1        | 7        |
| <u>ا</u><br>ټ   |         |                   | S N/O | DINB         | +        | D/wB | 2 m/a              | DIN 3    | -    | $\dashv$    | 0       | Divis |          | D/N 8    | -            | sw/a    | B/NB     | -        |          | +        | -                |             | -       | $\dashv$ | $\dashv$ | $\dashv$ |
| FREQUENCY:      |         | -                 | //0   | 1/4          | +        | 70   | <b>7/</b> <i>a</i> | 70       | _    | -           | ON/a    | 1/4   | 4        | Ã        | _            | 10      | 1/0      | -        | -        | 1        | _                | _           |         | $\dashv$ | +        | $\dashv$ |
| FREC            |         | <                 | _     | $\downarrow$ |          |      |                    |          |      | _           | _       |       | - 4      |          |              |         |          |          |          |          |                  |             |         | _        |          |          |
|                 | 9       | į                 | NYT   | FEB          | MAR      | APR  | MAY                | JUK      | 705  | AUG         | SEP     | OCT   | NO \     | DEC      | JAN          | FEB     | MAR      | APR.     | MAY      | NS.      | אַר              | AUG         | SEF     | 00       | ¥0¥      | DEC      |
| 1               | \$      | <u>i</u>          | 761   |              |          |      |                    |          |      | · · · · · · |         |       |          |          | 1978         |         |          |          |          |          |                  |             |         |          |          |          |
|                 |         | Ξ                 |       |              |          |      |                    |          | ,÷_  |             |         |       |          |          |              |         |          |          |          |          |                  |             |         |          |          |          |
|                 |         | 9                 |       |              |          | _    |                    |          |      |             |         |       |          |          |              |         |          |          |          |          |                  |             |         |          |          |          |
| 4               |         | L.                |       |              |          |      |                    |          |      |             |         |       |          |          |              |         |          |          |          |          |                  |             |         |          |          |          |
| LARCO IRMINED   |         |                   |       |              |          |      |                    |          |      |             |         |       |          |          |              |         |          |          |          |          |                  | -           |         |          |          |          |
| KIT             | NO      | -                 |       | _            |          |      |                    | -        | >    | ,           |         | 7     | 2        | 7        | 7            | _       | 3        | 2        |          |          | -                | ļ           |         |          |          |          |
| 9               | STATION | a                 |       | M/a          |          |      |                    | 0/0      | W/0  | -           | -       | N/a   |          |          | I            | <u></u> | 4/0      | W/Q      | a        | A        | 0/4              |             |         |          |          | _        |
| IARS            |         | ပ                 |       | 78           |          |      |                    | W/Q      | N/a  | n/a         | N/O     | D/W   | s fu     | 78       | 7.8          | 1       |          |          |          |          |                  |             |         |          |          |          |
| 1               |         | в                 |       |              |          |      |                    |          |      |             |         |       |          |          |              | 8 14/0  | n/u 8    | D/V/Q    | D/N 8    | 2/48     | B 14/0           |             |         |          |          |          |
| FIXED MONITOR:_ | 1       | ٧                 |       | D/N          |          |      |                    | D        | D    | a           | N/a     | N/Q   | Ma       | ₹.       |              |         |          |          |          |          |                  |             |         |          |          |          |
| EXED A          |         | <br>j<br><b>∑</b> | 35.8  | FER          | MAR      | APR  | MAY                | JUN      | 7116 | AUG         | SEP     |       | N0V      | _        | JAN          | FEB     | MAR      | APR      | MAY      | N C      | 701              | AFIG        | SEP     | OCT      | NOV      | DEC      |
| 4               |         | <br>E             | 1975  | L            | <u> </u> | L    | L                  | <u></u>  | L    | L           | <u></u> | !<br> | <u> </u> | <b>!</b> | 1976         | ┸       | <u>!</u> | <u> </u> | <u> </u> | <u>i</u> | <b>ا</b> ـــــــ | <u>ــــ</u> | <u></u> |          | ل        | <u> </u> |

LEGEND: D/N - Day & Night; D - No Nighttime;
N - No Daythne; T - Transition Only;
Flags S, Q, B, E, F - See accompanying s

TABLE A-5-A

|                                                   | FIXED  | FIXED MONITOR:_ | 1 | TRINIDAD    | DAD       | Sire | re 2 |   |   |       |            | FREQUENCY: | NCY: | 10.2 kHz   | 7       |   |   |   |   |
|---------------------------------------------------|--------|-----------------|---|-------------|-----------|------|------|---|---|-------|------------|------------|------|------------|---------|---|---|---|---|
|                                                   |        |                 |   |             | STATION   | z    |      |   |   | 5     | 9          |            |      |            | STATION | Z |   |   |   |
| ¥.                                                | Ğ<br>Ç | <               | 8 | ပ           | ۵         | E    | ı.   | 0 | Ξ | ż     |            | <          | 8    | ပ          | ٥       | £ | 4 | 0 | Ξ |
| 194.7                                             | JAN    |                 |   |             |           |      |      |   |   | 1967  | JAN        | n/a        |      | Ma         |         |   |   |   |   |
| ·                                                 | FEB    |                 |   |             |           |      |      |   |   |       | FEB        | Ma         |      | Ma         |         |   |   |   |   |
|                                                   | MAR    |                 |   |             |           |      |      |   |   |       | MAR        | Na         |      | N/a        |         |   |   |   |   |
| <del></del>                                       | APR    | 1/4             |   | N/Q         |           |      |      |   |   |       | APR        | DIN B      |      | nja        |         |   |   |   |   |
| لحديد                                             | MAY    | a               |   | 2/10        |           |      |      |   |   |       | MAY        | 00         |      | Ma         |         |   |   |   |   |
|                                                   | SUN    | DB              |   | a           |           |      |      |   |   |       | 308        | 25         |      | NA         |         |   |   |   |   |
| , <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> | JUL    | 2               |   | D           |           |      |      |   |   |       | JUL        | B          |      | Ma         |         |   |   |   |   |
|                                                   | AUG    | 0               |   | W/0         |           |      |      |   |   |       | AUG        | D          |      | 10/10      |         |   |   |   |   |
|                                                   | SEP    | 2/1             |   | D/U         |           |      |      |   |   |       | SEP        | Ma         |      | m/a        |         |   |   |   |   |
|                                                   | 130    | D/W             |   | 17/1        |           |      |      |   |   |       | OCT        | g N/a      |      | 2/4        |         |   |   |   |   |
|                                                   | NOV    | n/a             |   | 5/4         |           |      |      |   |   |       | MOV        | 10/10      |      | Na         |         |   |   |   |   |
|                                                   | DEC    | 8 N             |   | 2/1         |           |      |      |   |   |       | DEC        | >          |      | Ma         |         |   |   |   |   |
| 1968                                              | NVS    | Ma              |   | D/W         |           |      |      |   |   | 19 70 | NAL        | N/a        |      | 10/0       |         |   |   |   |   |
|                                                   | FEB    | 10/418          |   | N/Q         |           |      |      |   |   |       | FEB        | N/Q        |      | $\alpha/a$ |         |   |   |   |   |
|                                                   | MAR    | 1/4             |   | D/W         |           |      |      |   |   |       | MAR        | 2/10       |      | NA         |         |   |   |   |   |
| ····                                              | APR    | N/a             |   | D/W         |           |      |      |   |   |       | APA        | Ma         |      | NA         | 1       |   |   |   | T |
| ,t-                                               | MAY    |                 |   |             | •         |      |      |   |   |       | MAY        | a          | T    | 7/0        | 1       |   |   |   | T |
|                                                   | SS     | a               |   | D/M         |           |      |      |   |   |       | NOP        | a          |      | o Ma       | 1       |   |   |   |   |
|                                                   | 701    | Q               |   | D/W         |           |      |      |   |   |       | <b>101</b> | DB         |      | Ma         | 1       |   |   |   |   |
|                                                   | AUG    | Q               |   | N/A         |           |      |      |   |   |       | AUG        | n/a        |      | Na         | 1       |   |   |   |   |
|                                                   | SEP    | B/V             |   | N/a         |           |      |      |   |   |       | SEP        | 7/0        |      | D/W        | 1       |   |   |   |   |
| · · · · · · · · · · · · · · · · · · ·             | 100    | 0/118           |   | Ma          |           |      |      |   |   |       | 120        | n/a        |      | DIN        | 1       |   |   |   | T |
| -                                                 | NOV    | 8 N/Q           |   | DIN         |           |      |      |   |   |       | <b>%</b> 0 | 7/1        |      | 2/2        | 1       |   |   |   | T |
|                                                   | DEC    | >               |   | N/C         |           |      |      |   |   |       | DEC        | *          |      | DIN        |         |   |   |   |   |
|                                                   |        |                 | ١ | No Nighttim | aht time: |      |      |   | Ļ |       |            |            |      |            |         |   | • | • |   |

LEGENF 1/N - Day & Night; D - No Nighttime; .1 - No Daytime; T - Transition Only; Flags S, O, B, E, F - See accompanying description

|   |         | T 0                                          |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|---|---------|----------------------------------------------|------|-----|-----|-----|-----|-----------|-----|------------|-----|-------|--------|-------------|-------|-------|-------|-------|-----|-------|-----|-----|-----|-----|------|
|   | STATION | <b>u</b>                                     |      | -   |     |     |     | 1         |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   |         | ပ<br><b>8</b>                                |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   | GF      | <b>4</b>                                     | JAN  | FEB | MAR | APR | MAY | <b>15</b> | JUL | AUG        | SEP | ОСТ   | NOV    | DEC         | JAN   | FEB   | MAR   | APR   | MAY | JUN   | JUL | AUG | SEP | OCT |      |
|   | a^      |                                              | 9    |     |     |     |     |           |     | <u>-</u> - |     |       |        |             | 5     |       |       |       |     |       |     |     | 1   |     |      |
|   |         | Ξ                                            |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   |         | 9                                            |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   |         | F                                            |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   |         | E                                            |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   | STATION | a                                            |      |     |     |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   | S       | ၁                                            |      | n/a | DIN | DW  | D/N | D/N       | Ma  | N/a        |     | 8 N/a | 8 1/4  | 8 11/9      | B/N/a | D/N 6 | 30.00 | D/N B |     | 9 N/a |     |     |     |     |      |
| 1 |         | 8                                            |      |     | 1   |     |     |           |     |            |     |       |        |             |       |       |       |       |     |       |     |     |     |     |      |
|   |         | 4                                            |      | N/a | D/W | N/a | 20  | D         | Q   | a          |     | 8 N/a | 0 1/10 | NB          | D/N B | B/N 8 | 8 N/a | B N/Q |     | D8    |     |     |     |     |      |
|   | 3       | <u>.                                    </u> | JAN  | FEB | MAR | APR | MAY | NOC       | ากเ | AUG        | SEP | OCT   | NOV    | 7           | JAN   | FEB   | 1_    | APR   | MAY | JUN   | JUL | AUG | SEP | 100 | 70,0 |
|   |         | ž                                            | 1971 |     | ·   |     | -   |           |     |            |     |       | -      | <del></del> | 1972  |       |       |       |     |       |     |     |     |     |      |

LEGEND: D/N - Day & Night; D - No Nighttime;
N - No Daytine; T - Transition Only;
Flags S, Q, B, E, F - See accompanies

## APPENDIX B

## Ground Monitor Station Data

The tables in this section list the measured 10.2 kHz data at each of the ground monitor sites. The time of day is indicated for each block of data and flags are shown appropriately. The definitions of the flags are as follows:

- S Data block failed phase error variance test
- Q Insufficient data in block for phase error variance test
- B Large phase error bias for data block
- E Large rms phase error for data block
- F All data in block are flagged.

In processing these data to assess fix-accuracy, both unflagged monthly data blocks and monthly data blocks flagged S, Q, B and E were used. Data blocks flagged F were not used.

Within each data block there are also daily/hourly flags (i.e., SID, PCA, transmitter out, monitor out etc). These flagged data were not used in the fix-accuracy calculations.

The following tables are included:

| Table B-1 |       | Belem, Brazil           |
|-----------|-------|-------------------------|
| Table B-2 | (A-C) | Bermuda                 |
| Table B-3 |       | Cambridge, M., U.S.A.   |
| Table B-4 |       | Coral Harbor, Canada    |
| Table B-5 |       | Eglin APB, FLA., U.S.A. |
| Table B-6 | (A-B) | Parnborough, U.K.       |
| Table B-7 |       | Frobisher, Canada       |

| Table B-8  |       | Hammerfest, Norway            |
|------------|-------|-------------------------------|
| Table B-9  |       | Keflavik, Iceland             |
| Table B-10 |       | Lajes, Azores                 |
| Table B-11 |       | Miami, FLA., U.S.A.           |
| Table B-12 | (A-B) | Nea Makri, Greece             |
| Table B-13 |       | NELC, San Diego, CA., U.S.A   |
| Table B-14 | (A-B) | Norfolk, COMOPTEVFOR          |
| Table B-15 |       | NRL, Washington, D.C., U.S.A. |
| Table B-16 |       | Oslo (2), Norway              |
| Table B-17 |       | Panama, Canal Zone            |
| Table B-18 |       | Portsmouth, VA., U.S.A.       |
| Table B-19 |       | Resolute Bay, NWT, Canada     |
| Table B-20 |       | Sabana Seca, Puerto Rico      |
| Table B-21 |       | Sardinia, Italy               |
| Table B-22 |       | St. Anthony, Newfoundland     |
| Table B-23 |       | TASC, Reading, MA., U.S.A     |
| Table B-24 |       | Vila Nova, Azores             |
| Table B-25 |       | Washington, D.C., U.S.A.      |
| Table B-26 |       | Yorktown, VA., U.S.A          |

ī

m. ~

FIXED MONITOR: BELEM

10.2 kHz FREQUENCY:

|            |     |              |     |         |                    |  |      |          |     |    |       | 60.      |      |   |   |               |
|------------|-----|--------------|-----|---------|--------------------|--|------|----------|-----|----|-------|----------|------|---|---|---------------|
| 2          | 3   |              |     |         | 10P                |  | YR.  | Ó        |     |    | -     | <u> </u> |      | - |   | T             |
|            |     | AC           | AD  | CD      |                    |  |      |          | 10  | 90 | 00    | -        | _    | _ | _ |               |
| 1974       | JAN |              |     |         |                    |  | 1976 | JAN      | 78  | ν  | BN/a  |          |      |   |   |               |
|            | 1   |              |     |         |                    |  |      | FEB      | 78  | ×  | D/WB  |          |      |   |   | 7             |
|            | MAR |              |     |         |                    |  |      | MAR      | 75  | NB | D/NB  |          |      |   |   | <u>1</u>      |
|            | APR |              |     |         |                    |  |      | APR      | B Q | D  | D/NB  |          |      |   |   | 7             |
|            | MAY |              |     |         |                    |  |      | MAY      | Ba  | Ø  | ON/a  |          |      | ٠ |   | <del></del> 1 |
|            | JUN |              | P   |         |                    |  |      | JUN      | D8  | D  | BN/a  |          |      |   |   | 7             |
|            | 101 |              | D   |         |                    |  |      | າດເ      | Ba  | Ø  | BN/a  |          |      |   |   |               |
|            | AUG |              | Q   |         |                    |  |      | AUG      | 25  | D  | D/N e |          |      |   |   | Ţ             |
|            | SEP |              |     |         |                    |  |      | SEP      |     |    |       |          |      |   |   | 7             |
|            | UCT |              | N/a |         |                    |  |      | 0ст      |     |    |       |          |      |   |   | - 1           |
|            | NOV |              | BN  |         |                    |  |      | MOV      |     |    |       |          | -    |   |   |               |
|            | DEC | Nβ           | NB  | B/N/a   |                    |  |      | DEC      |     |    |       |          | -    |   |   |               |
| 19 25      | JAN | 78           | >   |         |                    |  | 19   | JAN      |     |    |       |          |      |   | ; | _             |
|            | FEB | 78           | >   | N/A     |                    |  |      | FEB      |     |    |       |          |      |   |   | - 1           |
|            | MAR | 75           | N/a | D/NB    |                    |  |      | MAR      |     |    |       |          |      |   | _ |               |
|            | APR | 2/1          |     | N/Q     |                    |  |      | APR      |     |    |       |          |      |   |   |               |
|            | MAY | 28           |     | 8 11/1  |                    |  |      | MAY      |     |    |       |          |      |   | _ |               |
|            | 208 | 28           | Ø   | B/NB    |                    |  |      | JCN<br>N |     |    |       |          |      |   |   |               |
|            | 301 | DB           | Ø   | 8 N/a   |                    |  |      | JUL      |     |    |       |          |      | - |   |               |
|            | AUG | 25           | B   | Ma      |                    |  |      | AUG      |     |    |       |          |      |   |   | - 7           |
|            | SEP | 75           |     |         |                    |  |      | SEP      |     |    |       |          |      |   | _ |               |
|            | ОСТ | 75           | N/a | N/0     |                    |  |      | OCT      |     |    |       |          | <br> |   | - | -7            |
|            | NOV | T5           | >   | N/a     |                    |  |      | NOV      |     |    |       |          |      |   |   | -7            |
|            | DEC | NB           | >   | NIA     |                    |  |      | DEC      |     |    |       |          |      |   |   | <del></del> ) |
| LEGEND: DA | D/N | Day & Michie |     | 114 614 | O . No Nichtstane. |  |      |          |     |    |       |          |      |   |   |               |

LEGEND: D/N - Day & Night; D - No Nighttime; N - No Daytime; T - Transition Only;

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

| SEP OCT | 4 2 7 7 4 8 6 2 6 7 1 2 4 2 7 7 7 | MO. A JAN FEB MAR MAY JUN JUL Z JAN DEC JAN FEB MAR MAY AUG JUN JUN JUN JUN JUN JUN JUN AUG AUG | B/N | 40 · |  |                | 2 L L L A O O O O O L L L X L L L O O O O |  |  |   |  |
|---------|-----------------------------------|-------------------------------------------------------------------------------------------------|-----|------|--|----------------|-------------------------------------------|--|--|---|--|
| NON     |                                   | SEP<br>SCT                                                                                      |     |      |  | <br>SEP<br>OCT | <b>L</b>                                  |  |  |   |  |
|         | 12                                | +-                                                                                              | 1   |      |  | NOV            | 1.                                        |  |  |   |  |
| 380     | i                                 | +                                                                                               | -   |      |  | DEC            | ~                                         |  |  | - |  |

LEGEND: D' Day & Night; D - No Nightlime;

N - No Daytime; T - Transition Only; Fings S, O, B, E, F - See accompanying description

The stage has the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of

|                                                                                                                | FIXED         | FIXEG MONITOR:_ | 1  | BERMUDA         |              |            | FREQUENCY: |      | 10.2 kHz |
|----------------------------------------------------------------------------------------------------------------|---------------|-----------------|----|-----------------|--------------|------------|------------|------|----------|
|                                                                                                                |               |                 |    | 10b             | <u> </u>     | 3          |            |      | 109      |
| Ķ<br>—                                                                                                         | <b>.</b><br>0 | AC              | an |                 | Ä            | 1          | AC         | AD   |          |
| 197/                                                                                                           | NY,           | 7               |    |                 | 10.7.5       | JAN        |            |      |          |
|                                                                                                                | FEB           | 8.L             |    |                 | _            | FEB        | 7          | ×    |          |
|                                                                                                                | MAR           | 7               |    |                 | <del>-</del> | MAR        |            | N/a  |          |
|                                                                                                                | APR           | 28              |    |                 |              | APR        |            | a    |          |
|                                                                                                                | MAY           | a               |    |                 |              | MAY        |            | D    |          |
|                                                                                                                | NOT           | a               |    |                 |              | JUN        |            | D    |          |
|                                                                                                                | JUL           | a               |    |                 |              | JUL        |            | D    |          |
|                                                                                                                | AUG           | a               |    |                 |              | AUG        |            | 7    |          |
|                                                                                                                | SEP           | 7.8             |    |                 |              | SEP        |            |      |          |
| No. of Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, | 100           | 7               |    |                 |              | ОСТ        |            |      |          |
|                                                                                                                | NO            | 75              |    |                 |              | NO.        |            |      |          |
| <i></i>                                                                                                        | DEC           | >               |    |                 |              | DEC        |            | 7    |          |
| 1872                                                                                                           | JAN           | 75              |    |                 | 1974         | JAN        |            | N    |          |
|                                                                                                                | FEB           | 75              |    |                 |              | FEB        |            | N    |          |
|                                                                                                                | MAR           | 75              |    |                 |              | MAR        |            | N/d  |          |
|                                                                                                                | APR           | T 5             |    |                 | _            | APR        |            | 20   |          |
|                                                                                                                | MAY           | a               |    |                 | 1            | MAY        |            | D    |          |
| <del></del>                                                                                                    | ş             | a               |    |                 |              | NOT        |            | A    |          |
| وسندروا                                                                                                        | a<br>a        | D               |    |                 |              | JUL        |            | De   |          |
|                                                                                                                | AUG           | 28              |    |                 |              | AUG        |            | De   |          |
|                                                                                                                | SEP           | 78              |    |                 |              | SEP        |            | 73   |          |
|                                                                                                                | 100           | T-8             |    |                 |              | ОСТ        | -          | D/N3 |          |
|                                                                                                                | NOV           | 75              | NS |                 |              | <b>NOV</b> | _          | NS   |          |
| ·                                                                                                              | DEC           | 73              | >  |                 |              | DEC        | N.S.       | NS   |          |
| ECEMB: D/N                                                                                                     | N/U           | Day & Midst.    | 2  | . No Nightlime: |              |            |            |      |          |

N - No Daytime; T - Transition Only; Flags S, Q, B, E, F - See accomponying LEGEND: D/N - Day & Night; D - No Nighttlime; N - No Daytime; T - Transition Only;

| - }          |
|--------------|
| ı            |
|              |
| - 1          |
| - 1          |
|              |
|              |
| 1            |
| - 1          |
| - 1          |
| - 1          |
|              |
|              |
| - {          |
| 7            |
| 3            |
| 77           |
| W.           |
| P            |
| 6            |
| 4            |
| Ë            |
| E            |
| <u> </u>     |
| Z<br>O       |
| Ž            |
| XED MONITOR: |
| X            |
| 1            |
|              |

|                         | FIXE      | FIXED MONITOR: | , ,      | DERMUDA | שמה |     |          |    |   |            |        | FREGU        | FREQUENCY:_ | 10.2 | 10.2 kHz  |           |           |           |    |
|-------------------------|-----------|----------------|----------|---------|-----|-----|----------|----|---|------------|--------|--------------|-------------|------|-----------|-----------|-----------|-----------|----|
| YA.                     | r.<br>MO. |                |          |         | 100 |     |          |    |   | - 17       |        |              |             |      |           | 907       |           |           |    |
|                         |           | Q              | AL       | AF      | 96  | 8   | 0        | J. |   | Y.         | ರ<br>1 | BC           | 20          | AF   | 86        | 80        | 90        |           |    |
| 1975                    |           | 1              | 1 N 3    |         | _   |     |          |    |   | 82.61      | JAN    |              |             |      |           |           |           |           |    |
|                         | FEB       | 73             | Z        |         |     |     |          |    |   |            | FEB    |              |             |      |           |           |           |           |    |
|                         | MAR       | 70             |          |         |     |     |          |    | _ | ·          | MAR    |              |             |      |           |           |           |           | T  |
| <b>Thursday</b>         | APA       | A              | 0        |         |     |     |          | _  |   |            | APA    |              |             |      |           |           |           |           | T  |
|                         | MAY       | 0              | a        |         |     |     |          |    |   | 1          | MAY    | 7.8          | 7.6         | 76   | 20        | 2.45      | 9770      |           | T  |
| -                       | 5         | 25             |          |         |     |     |          |    |   | T          | SUS    |              |             |      |           |           | 2/10      |           | T  |
| *********************** | אַנוּ     |                |          |         |     |     |          |    |   |            | 100    | 25           | 25          | 26   | 30        | 20        | 20        | 1         | T  |
|                         | Atyg      | 25             | 23       |         |     |     |          |    |   |            | AUG    | 7 18         | 7.5         | 76   | 4.6       | 1         | li        | †         | T  |
|                         | SEP       | 75             |          |         |     |     |          |    |   |            | SEP    | 7.6          | 30          | 20   | 20        | 2/10      | 97.70     |           | T  |
|                         | 00        |                |          |         |     |     |          |    |   |            | 100    |              |             | T    | 1         | 2/11      | 200       | +         | T  |
| ~                       | §<br>§    |                |          |         |     |     |          |    |   |            | Ş      | 76           | NE          | EN/a | 7.6       | 240       | 3,77      | +         | T  |
|                         | DEC       |                |          |         |     |     |          |    |   |            | DEC    | Ne.          | -           | NE   | 76        | 07/0      | Q III     | $\dagger$ | T  |
| 1077                    |           |                |          |         |     |     |          |    |   | 1979       | NAL    | 76           | 300         | 3 %  | 1:        | 0 /1/4    | 8179      | $\dagger$ | T. |
|                         | FEB       |                |          |         |     |     |          |    |   | \- <u></u> | FEB    |              |             |      |           |           | 207       | $\dagger$ | T  |
|                         | MAR       |                |          |         |     |     | _        |    | • | J.,        | MAR    | 14.4         | 8/2         | 124  | 10        | 577       | 5;        | +         | T  |
|                         | APR       |                |          |         |     |     |          | _  |   |            | APR    | +            |             |      | T         | 2         |           | +         | T  |
|                         | MAY       |                |          |         |     |     |          |    |   | 1          | MAY    | 1            |             | T    | 1         |           | 1         | $\dagger$ | T  |
|                         | 3         |                |          |         |     |     |          |    |   |            | 3      | T            | 1           | 1    | 1         | T         | 1         | $\dagger$ | T  |
|                         | 25        |                |          |         |     |     |          |    |   |            | 305    | <u> </u>     | T           |      | 1         | T         | 1         | $\dagger$ | T  |
|                         | AUG       |                |          |         |     |     |          |    |   | L          | AUG    |              | T           | T    |           | T         |           | $\dagger$ | T  |
|                         | SEP       |                |          |         |     |     | <u> </u> |    |   | 1          | SEP    | $\dagger$    | 1           |      | 1         | $\dagger$ |           | $\dagger$ | T  |
|                         | 120       |                |          |         |     |     |          |    |   |            | OCT    | <del> </del> |             | T    | $\dagger$ | T         |           | +         | T  |
|                         | NOV       | 75             | 75       | NB      | 75  | 7.5 | Sa       |    |   | 1          | NOV    | $\vdash$     |             | T    | $\dagger$ | T         | +         | +         | T  |
|                         | DEC       |                |          |         |     |     |          |    |   | 1.         | DEC    | +            | +           |      | 1         | T         | $\dagger$ | +         | T  |
| EGEND: 0 ***            | . 0       | Day & Mi       | Michel D | N. 811. | 1   |     |          |    |   | 7          | 1      | 1            | 1           | 1    | 4         | 1         |           |           |    |

LEGEND: C.\*\* - Day & Night; D - No Nighttime;
N. No Daytime; T - Transition Only;
Fiegs S, Q, B, E, F - Sae accompanying description

FREQUENCY:\_\_

FIXED MONITOR: CAMBRIDGE, MA.

|         | - 3  |     | ГОР | 5      |            |     |    |      | LOP   | ď     |   |   |   |
|---------|------|-----|-----|--------|------------|-----|----|------|-------|-------|---|---|---|
| <u></u> | Ž    | AC  |     |        | į          | AC  | au | 36   | 92    | 90    |   |   |   |
| 1978    | JAN  |     |     | 19 78  | JAN        |     |    |      |       |       |   |   |   |
|         | FEB  |     |     | الميين | FEB        |     |    |      |       |       |   |   |   |
|         | MAR  |     |     |        | MAR        |     |    |      |       |       |   |   |   |
|         | APR  |     |     |        | APR        |     |    |      |       |       |   |   |   |
|         | MAY  |     |     |        | МАУ        |     |    |      |       |       |   |   |   |
|         | NOC  |     |     | 1      | NO.        |     |    |      |       |       |   |   |   |
|         | JUL  |     |     |        | 71.1       | 25  | D3 | 73   | 73    | 73    |   |   |   |
|         | AUG  |     |     |        | AUG        |     |    |      |       |       |   |   |   |
|         | SEP  |     |     |        | SEP        |     |    |      |       |       |   |   |   |
|         | 00.7 |     |     |        | OCT        |     |    |      |       |       |   |   |   |
|         | NOV  | 7   |     |        | NOV        |     |    |      |       |       | - |   |   |
|         | DEC  | >   |     |        | DEC        |     |    |      |       |       |   |   |   |
| 1965    | JAN  | 7   |     | 62 61  | JAN        | 7-5 | N3 | 75   | 5 M/a | 7.5   |   | 7 | : |
|         | FEB  | 7   |     |        | FEB        | 76  | NB | D/NB | 3 N/a | 3 N/a |   |   |   |
|         | MAR  | 7.8 |     | *<br>- | MAR        | 78  |    | D/NB | D/NE  | D/N C |   |   |   |
|         | APR  | 2 Q |     |        | APR        |     |    |      |       |       |   |   |   |
|         | MAY  | Q   |     |        | MAY        |     |    |      |       |       |   |   |   |
| -       | JUN  | Q   |     |        | NOC        |     |    |      |       |       |   |   |   |
|         | ากเ  | Ø   |     |        | <b>JUL</b> |     |    |      |       |       |   |   |   |
|         | AUG  | Q   |     |        | AUG        |     |    |      |       |       |   |   |   |
|         | SEP  |     |     |        | SEP        |     |    |      |       |       |   |   |   |
|         | OCT  |     |     |        | 100        |     |    |      |       |       |   |   |   |
|         | NO.7 |     |     |        | NOV        |     |    |      |       |       |   |   |   |
|         | DEC  |     |     |        | DEC        |     |    |      |       |       |   |   |   |

B-7

LEGEND: D/N - Day & Night; D - No Nighttime; N - No Daytime; T - Transition Only;

FREQUENCY:\_\_

er indication of a column to a column to a column to a column to a column to a column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column to the column

CANAPA

FIXED MONITOR: CORCL HARBIR

F .

| JUL    | SEP         | NOV        | DEC      |
|--------|-------------|------------|----------|
| JUL    | SEP         |            |          |
| JUL    | SEP         | NOV        | DEC      |
| JUL    | SEP         | NOV        | DEC      |
| JUL    | SEP         | NOV        | DEC      |
| JUL    | SEP         | NOV        | DEC      |
| JUL    | SEP         | NOV        | DEC      |
| JUL    | SEP         | NOV        | DEC      |
| 11     | 11          |            |          |
|        |             |            | ı        |
|        | TT          | 11         |          |
|        |             |            |          |
|        |             |            |          |
|        | 11          | ++         | 一        |
|        | ++          |            | $\dashv$ |
|        |             |            | _        |
|        |             |            |          |
|        |             |            |          |
| -      | ++          |            |          |
|        | $\bot \bot$ |            |          |
|        |             | 76         | ,        |
| JUL    | SEP         | OCT<br>NOV | DEC      |
| 1_1_1_ |             |            |          |
|        | זחר         |            | 7-6      |

· Transition Only;

N - No Daytime; T

. Day & Night; D - No Nighttime;

LEGEND:

|     |     |     |      |       |     |     |   |      |     |     |     |     | *     | •  |     |          |
|-----|-----|-----|------|-------|-----|-----|---|------|-----|-----|-----|-----|-------|----|-----|----------|
|     |     |     |      | 9     |     |     |   | Y.B. | Š.  |     |     |     |       |    |     | -        |
|     | AC  | au  | 92   | 40    | CH  | Ma  |   |      |     | Ac  | DB  | 00  | 70    | NO | Na  |          |
| NAL |     |     |      |       |     |     |   | 1079 | NAL | T.S | 203 | M/Q | 25    | 76 | 7,6 | +        |
| FEB |     |     |      |       |     |     |   |      | FEB | 75  | NS  | DIM | 0/2   | Tr | 7.6 |          |
| MAR |     |     |      |       |     |     |   | •    | MAR | 76  | NB  | Ma  | 2/103 | 76 | 76  | 1        |
| APH |     |     |      |       |     |     |   | `    | APR | 75  | 75  | N/a | D/w3  | 76 | 7.6 | 1        |
| MAY |     |     |      |       |     |     |   |      | MAY |     |     |     |       |    |     |          |
| NO. |     |     |      |       |     |     |   |      | JUN |     |     |     |       |    |     |          |
| JUL | 7.6 | 76  | 16   | 76    | 76  | 16  |   |      | JUL |     |     |     |       |    |     |          |
| AUG |     |     |      |       |     |     |   |      | AUG |     |     |     |       |    |     | +        |
| SEP |     |     |      |       |     |     |   | -    | SEP |     |     |     |       |    |     | 7        |
| 120 |     |     |      |       |     |     |   |      | ОСТ |     |     |     |       |    |     | +        |
| NOV |     |     |      |       |     |     |   |      | MOV |     |     |     |       |    |     | 1        |
| DEC |     |     |      |       |     |     |   |      | DEC |     |     |     |       |    |     |          |
| JAN |     |     |      |       |     |     |   | 2    | NAL |     |     |     |       |    |     |          |
| FEB | Te  | Tr  | DING | 75    | 7 6 | 16  |   |      | FEB |     |     |     |       |    |     |          |
| MAR | 75  | T 5 | BN/a | 1     | 75  | 75  |   |      | MAR |     |     |     |       |    |     | -        |
| APR |     |     |      |       |     |     |   |      | APR |     |     |     |       |    |     | $\dashv$ |
| MAY |     |     |      |       |     |     |   |      | MAY |     |     |     |       |    |     |          |
| Mor | TE  | 76  | N/a  | 5 M/a | 76  | 16  |   |      | NOF |     |     |     |       |    |     | 1        |
| 151 | 25  | 205 |      | sM/a  | 16  | 12  |   |      | JUL |     |     |     |       |    |     |          |
| AUG |     |     |      |       |     |     | Ŷ |      | AUG |     |     |     |       |    |     |          |
| SEP | 75  | 7.5 | N/a  | 5 M/a | TF  | عرو |   |      | SEP |     |     |     |       |    |     | 1        |
| 120 |     |     |      |       |     |     |   |      | ocr |     |     |     |       |    |     |          |
| NOV |     |     |      |       |     |     |   |      | NOV |     |     |     |       |    |     | -        |
| 250 |     |     |      |       |     |     |   |      | 200 |     |     |     |       |    |     |          |

LEGEND: D/M . Day

The first section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of

|                             |            |        | T            |        | T              |     |     |          |          | T        |          |          |          |              |          |          |     |              |                                                  |          |          | 1   |        | T            |          |
|-----------------------------|------------|--------|--------------|--------|----------------|-----|-----|----------|----------|----------|----------|----------|----------|--------------|----------|----------|-----|--------------|--------------------------------------------------|----------|----------|-----|--------|--------------|----------|
|                             |            | +      | +            | +      | +              |     |     | +        | $\dashv$ | $\dashv$ | +        | $\dashv$ | +        | +            | $\dashv$ | $\dashv$ | 4   | $\dashv$     | +                                                | $\dashv$ | $\dashv$ | 4   | +      | +            | $\dashv$ |
|                             |            |        | $\downarrow$ | $\bot$ | _              | ·   |     | $\dashv$ | _        | _        | _        | _        |          | _            |          |          |     | _            | _                                                |          | _        |     | $\bot$ | $\downarrow$ |          |
|                             |            |        |              |        |                |     |     |          | -        |          | İ        |          |          | İ            |          |          | 1   | ١            |                                                  | ١        |          |     | ١      |              | į        |
|                             |            |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
|                             | 10         |        |              | +      | +              |     |     |          | -        | $\dashv$ | +        | +        | $\dashv$ | +            | 1        | -        | -   |              | $\dashv$                                         | -        |          | -   |        | -            | $\dashv$ |
| 10.2 kHz                    |            |        |              | +      |                |     |     |          | -        | -        | $\dashv$ | _        | $\dashv$ |              | 4        | _        | -   | _            | _                                                | _        | _        |     |        | -            | 4        |
| 2                           |            |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| NCY:                        |            |        |              |        |                |     |     |          |          |          |          |          | İ        |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| FREQUENCY:                  |            | ab     | 2            | No     | 2010           | 20  | 20  | 28       | D        | 10       | DIM      | N O      | 8 8      |              | No       |          | DB  | 26           | 20                                               | 20       | 20       |     | N B    | NO           | N. O.    |
|                             | 1          |        | NY           |        | MAR            | MAY | NS. | JUL      | AUG      | SEP      | 120      | NOV      | DEC      | JAN          | FEB      | MAR      | APR | MAY          | JUN                                              | JUL      | AUG      | SEP | 120    | NOV<br>NOV   | DEC      |
|                             |            | ž<br>Į | 1074         |        |                | 1   | نا  |          | 1        |          |          |          |          | 1975         |          | لتـ      | لند |              |                                                  |          | <u> </u> |     |        |              |          |
|                             |            |        | -            | -      |                | T   |     |          |          |          |          | 7        |          | =            |          |          |     |              |                                                  |          |          |     |        |              |          |
|                             |            |        |              | _      | <del> </del> - | ļ.  |     |          |          |          | _        | _        |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
|                             |            |        |              |        |                |     |     |          |          |          |          | -        |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| , k.                        |            |        |              | - 1    | -              | ĺ   |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| 4                           |            | 1 1    |              |        |                |     | l   |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| Z                           |            |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| DUGH                        |            |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| BOROVEH                     | 401        |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| ARNBOROVGH                  | 401        |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
| A: FARNBOROVGH U.K          | 401        |        |              |        |                |     |     |          |          |          |          |          |          |              |          |          |     |              |                                                  |          |          |     |        |              |          |
|                             | <b>#01</b> | AD     |              |        |                |     |     |          |          |          |          |          | N/B      |              |          |          |     | DB           | 7.8                                              | 78       | 7-8      |     |        |              |          |
|                             |            |        |              | FEB    | MAR            | MAY | NOC | JOL      | AUG      | SEP      | ост      | -        |          | <del> </del> | FEB      | MAR      | APR | <del> </del> | <del>                                     </del> | $\vdash$ | +-       | +-  | 007    | NON          | DEC      |
| FIXED MONITOR: FARN BOROVEH |            | AD     | 1074 JAN     | FEB    | MAR            | MAY | MIL | JUL      | AUG      | SEP      | ОСТ      | -        |          | 1873 JAN     | FEB      | MAR      | APR | <del> </del> | JUN T.B                                          | $\vdash$ | +-       | 86  | 0001   | NOV          | DFC      |

. Day & Night; D - No Nighttime; LEGEND: C

N - No Daytlms; T - Transition Gnly; Flags S, O, B, E, F - See accompanying description

The transport of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

| YR. MO.  19 JAN  MAR  MAY  JUL  NOV  DEC  DEC  MAR  MAR  MAR  JUN  JUN  JUN  JUN  JUN  JUN  JUN  JU | d01 |
|-----------------------------------------------------------------------------------------------------|-----|
| NOV NOV                                                                                             |     |
| 396                                                                                                 |     |

\_EGEND: D/N - Day & Night; D - No Nighttline; N - No Daytime; T - Transition Only; N · No Daytime; T

FREQUENCY:

FIXED MONITOR:

|   | 100 |            |     |     |     |     |               |     |     |     |     |     |     |       | :   |     |     |     |     |     |      |     |     |     |   |
|---|-----|------------|-----|-----|-----|-----|---------------|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|---|
|   |     |            |     |     |     |     |               |     |     |     |     |     |     |       |     |     |     |     |     |     |      |     |     |     |   |
|   | 9   |            | JAN | FEB | MAR | APR | MAY           | AU. | JUL | AUG | SEP | 007 | NOV | DEC   | JAN | FEB | MAR | APR | MAY | NS. | JUL. | AUG | SEP | 001 |   |
|   | \$  |            | =   | _   | 7   | _   | <b>350</b> 00 |     |     | -   |     |     |     |       | =   |     |     |     |     |     |      |     |     |     |   |
|   |     |            |     | 4   |     |     |               |     |     |     |     |     |     |       |     |     |     |     |     |     |      |     |     |     |   |
|   |     | 7          |     | 1   | _   |     | _             |     |     |     |     |     |     | 9     |     |     |     |     |     |     |      |     |     |     | - |
| \ |     | HA         |     | _   | _   |     | _             |     |     |     |     |     |     | 5 N   |     |     |     |     |     |     |      |     | ,   |     |   |
|   |     | DE         |     |     |     |     |               |     |     |     |     |     |     | 7.3   |     |     |     |     |     |     |      | _   |     |     | L |
|   | ۾ ا | CF         |     |     |     |     |               |     |     |     |     |     |     | TR    |     |     |     |     |     |     |      |     |     |     |   |
|   | LOP | \ <u>\</u> |     | _   |     |     | <u> </u>      |     |     |     |     |     | -   | -     |     |     |     |     |     |     |      | •   |     |     | • |
|   | 0.7 | 000        |     |     |     |     |               |     |     |     |     |     |     | 811   |     |     |     |     |     |     |      |     |     |     |   |
|   | 07  | _          |     |     |     |     |               |     |     |     |     |     |     | NS NB |     |     |     |     |     |     |      |     |     |     |   |
|   | 10  | 02         |     |     |     |     |               |     |     |     |     |     |     |       |     |     |     |     |     |     |      |     |     |     |   |
|   |     | 80 00      |     | FEB | MAR | APR | MAY           | NOC | ากา | AUG | SEP | ост |     | N NS  |     | FEB | MAR | APR | MAY | JUN | JUL  | AUG | SEP | 0CT |   |

LEGEND: ( ... Day & Night; D - No Nighttime; N : No Daytime; T - Transition Only;

Ž,

6620

| дот | 7 7 7 7 7 8 7 7 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 | VR. MO. | 19 JAN |  | MAR | APR | MAY | JUN | JUL | AUG | SEP | ccr | NOV | DEC | 19 JAN | FEB | MAR | APR | MAY | NOC | JUL | AUG | SEP | OCT | NON |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|

Flags S. O. B. E. F. - See accompanying description

|            | 80<br>N<br>N<br>T F<br>T F | 2 | DE S S T T T T T T T T T T T T T T T T T | 8D<br>N 8<br>N 8<br>D 6<br>D 6 | BF BF BF BF BF BF BF BF BF BF BF BF BF B | 7 | , b         | ┝╼╼╼╢╌┸╼┸╼┸╼┸╼┸╼┸╼┸╼┸╼┸╼┸╼┸╼┸╼╂ |  |   |     |         |
|------------|----------------------------|---|------------------------------------------|--------------------------------|------------------------------------------|---|-------------|---------------------------------|--|---|-----|---------|
| SEP<br>OCT |                            |   |                                          |                                |                                          | - |             | SEP                             |  |   | ++  | $\prod$ |
| VON        |                            |   |                                          |                                |                                          |   | <del></del> | NOV                             |  |   | 1   | T       |
| 0.60       |                            |   |                                          |                                |                                          |   | _           | 000                             |  | - | · · |         |

LEGEND: - Day & Night; D - No Nighttime;

F - See accompanying description - Transition Only; N - No Daytime; Fings S, Q, B, E,

| dO1  |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| TO 1 |

LEGER

Flags S. D. B. E. F. - See accompanying description can also be accompanied by the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec N - No Daytline; T - Transition Only;

B-16

FIXED MONITOR:

10.2 kHz

FREQUENCY:

LEGEND: D/N Dev & Night; D - No Nightlime;

D: D/N · Dsv & Night; D · No Nightline;
N · No Daytine; T · Transition Only;
Flags S, Q, B, E, F · Soe accompanying description

2

| T     |    |       |      |     |          |     |     |     |     |     |     |     |     |     |     |     |     |     |     | Ī   |     |     | T   | T              |       |
|-------|----|-------|------|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|-------|
|       | 1  | •     | 1    |     |          |     |     | 1   |     |     | 1   |     |     |     | 1   |     | 1   | 1   | _   |     |     |     |     | <del>- -</del> | -     |
|       |    |       |      |     |          |     |     |     |     |     |     |     | 7   | 1   |     | 1   | 1   |     | 1   |     |     |     | 1   | 1              |       |
|       | 1  |       | 1    |     |          |     |     |     | 1   |     |     |     |     |     |     |     | 1   |     |     |     |     |     |     | 1              |       |
| 407   |    |       | 1    |     |          |     | 1   |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |     | 1              |       |
|       |    |       |      |     |          |     |     |     |     |     |     |     |     |     |     |     | +   |     |     |     |     |     |     |                | -     |
|       |    |       |      |     |          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1              | 700   |
| -     |    |       |      |     |          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                | ***** |
|       |    | JAN   | FEB  | MAR | APR      | MAY | JUN | 301 | AUG | SEP | 100 | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | ОСТ | NOV            | , L   |
| X     |    | =     |      | 1   | 1        | l   |     |     |     |     | 1   |     | -   | 19  |     |     |     |     | 1   |     |     |     |     |                | _     |
|       |    |       |      |     | ·        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |       |
|       | 80 | N     | 2    |     | 7 6      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |       |
|       | OF | Ma    | DÍNB |     | 76       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                | -     |
|       | AF | 21/10 | !    |     | 7 6      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                | _     |
| LOP   | ВН |       |      |     | Ba       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |       |
| _     | AB |       |      |     | 76       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |       |
|       | AH |       |      |     |          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |       |
|       | AD | >     | 72   |     | 11.      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                |       |
| 1     | ,  |       | -    | ۳   | <u> </u> | MAK | 2   |     | AUG | ٩   | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | NOS | 301 | AUG | SEP | ocr | NOV            |       |
| <br>{ | j  | JAN   | res  | MAR | API.     | È   | JCN | 305 | ¥   | SEP | Ö   | Ž   | 0   | 13  | T.  | Σ   | 1   | 2   | -   | =   | <   | S   | Ô   | Z              |       |

LEGEND: "N - Day & Night; D - No Nighttime;

Flags S, Q, B, E, F - See accompanying description .. - No Daytine; T - Transition Only;

| 0000                                        |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
|---------------------------------------------|------|-----------|-----|---------|---------|------|-----|-------------|-----|-----|-----|-----|-----------------------------|-----|-----|-----|-----|-----|------|-----|--------|-----|-----|---------|-----|-----|
|                                             | ,    |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
|                                             |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
|                                             | 10h  |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
| 10.2 kHz                                    |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     | 7    |     |        |     |     |         |     |     |
| ICY:                                        |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
| FREQUENCY:_                                 |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
| _                                           | 9    | j<br>E    | JAN | FEB     | MAS     | APR  | NOY | JUN         | JUL | AUG | SEP | 120 | NOV                         | DEC | JAN | FEB | MAR | APR | MAY  | JUN | JUL    | AUG | SEP | ост     | NOV | DEC |
|                                             | 2    | Ė         | 6   | <b></b> | - Franc | **** | -   | e according |     |     | -   |     |                             |     | 19  |     |     |     |      |     |        |     |     |         |     |     |
|                                             | 1 1  |           |     | ı       |         |      |     |             |     | ì   |     |     | 1                           |     |     |     |     | 1   |      |     |        |     |     |         |     |     |
| S.A.                                        |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
| A. J. U.S.A.                                |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
| 60, CA., U.S.A.                             |      |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     |        |     |     |         |     |     |
| N DIECO, CA., 11.5.A.                       |      | 2         |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     | N      |     |     |         |     |     |
| 2, SAN DIEGO, CA., U.S.A.                   | пОР  |           |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     | D 5    |     |     | 77.7    |     |     |
| WELC, SAN DIEGO CA, U.S.A.                  | ηО   | DH        |     |         |         |      |     |             |     |     |     |     |                             |     |     |     |     |     |      |     | Q Q    |     |     |         |     |     |
| OR: NELC, SAN DIECO, CA., U.S.A.            | 4O1  |           |     |         |         |      |     |             |     |     |     |     | $\mathcal{D}_{\mathcal{B}}$ |     |     |     |     |     |      |     | a a Wa |     |     | 7777777 |     |     |
| MONITOH: NELC, SAN DIECO, CA, U.S.A.        | lOP  | DH        |     |         |         |      |     |             |     |     |     |     | $\mathcal{D}_{\mathcal{B}}$ |     |     |     |     |     |      |     | Q Q    |     |     |         |     |     |
| FIXED MONITOR: NELC, SAN DIECO, CA., U.S.A. | dOll | 8F (C) DH |     | FEB     | МАЯ     | АРВ  | MAY | 217         | JUL | AUG | SEP | OCT | NOV DB                      | DEC | JAN | FEB | MAR | APR | Kiay | JUN | a a Wa | AUG | SEP | 120     | NOV | ОЕС |

LEGEND: D/N . Day & Night; D . No Nighttime;

N - No Daytime; T - Transition Only; Flags S, Q, B, E, F - Soe accompanying description

and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

| 100 | a   |          |     |     |     |     |     |     |     |     |     |       |     |          |          | <i>≫</i> |     | D 8 | D8      |     | D.  |     | N   | 2   |        |
|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|----------|----------|----------|-----|-----|---------|-----|-----|-----|-----|-----|--------|
|     | ACA |          | 7   |     |     |     |     |     |     |     |     | .     |     | N        | ~        | N/Q      | A   | A   | Ø       |     | D   |     | N/Q |     |        |
| -   | YR. | 1973 JAN | FEB | MAR | APR | MAY | JUN | 101 | AUG | SEP | OCT | NOV . | DEC | 1974 JAN | FEB      | MAR      | APR | MAY | NOS     | JUL | AUG | SEP | OCT | NOV | DEC    |
|     |     |          |     |     |     |     |     |     |     |     |     |       |     |          |          |          |     |     |         |     |     |     |     |     |        |
| 101 |     |          |     |     |     |     |     |     |     |     |     |       |     |          |          |          |     |     |         |     |     |     |     |     |        |
|     | 90  |          |     |     |     |     |     |     | 0   |     |     |       |     | 7        | <b>L</b> | 7        |     |     |         |     |     |     | 7   | 7   |        |
| ; j | 1   | 778      | ren | MAR | APR | MAY | NOS | JUL | -   | -   | ОСТ | NOV   | DEC | -        | FEB      | MAR      | AFR | MAY | JUN NOT | 705 | AUG | SEP | ОСТ | NOV | - 0.50 |

. Cay & Night; D - No Nighttime; N - No Daythne; T - Transition Only; LEGEND:

Flags S. (1, fl, E, F - See accompanying description

LEGEND: D/N - Day & Night; D - No Nighttime;

Flags S, Q, B, E, F - See accompanying description Transition Only; N . No Daytime; T

| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |            |    |     | `    |   |      |        |     |   |             |                                               |              |          |              |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----|-----|------|---|------|--------|-----|---|-------------|-----------------------------------------------|--------------|----------|--------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X.      | MO.        |    | LOP |      |   |      |        |     |   |             | 100                                           |              |          |              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |            | Ac |     |      |   |      | j<br>S | Ac  |   |             | <br>                                          | $\vdash$     | -        | -            | İ |
| ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1967    | JAN        |    |     |      |   | 1969 | JAN    | 1   |   |             |                                               | _            | _        | -            |   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L.      | FEB        |    |     |      |   |      | FEB    | 7   |   |             |                                               |              | -        | -            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | MAR        |    |     |      |   |      | MAR    | 78  |   |             | -                                             |              | -        | <del> </del> |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | AFR        |    |     | <br> |   |      | APR    | 26  |   |             | <u>                                      </u> |              | $\vdash$ | -            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | MAY        | 20 |     |      | • |      | MAY    | 28  |   |             |                                               |              | -        | -            |   |
| erperana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | NOC        | DB |     |      |   |      | JUN    | 28  |   |             | _                                             | -            |          | -            |   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | JUL        |    |     |      |   |      | JUI.   | a   |   |             |                                               | -            | -        | <u> </u>     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | AUG        |    |     |      |   |      | AUG    | 26  |   |             |                                               | _            |          | <u> </u>     | İ |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | SEP        |    |     |      |   |      | SEP    | 7   |   |             |                                               |              | -        | -            |   |
| er Jeanson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | !       | OCT        |    |     |      |   |      | 100    | 7   |   | -           | -                                             |              |          | $\vdash$     | Π |
| B-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 400        |    |     |      |   | 7    | NOV    | 7   |   |             |                                               | <u> </u><br> | $\perp$  | +            | T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | DEC        |    |     |      |   |      | DEC    | >   |   |             | _                                             | -            | +        | +            | T |
| ALL COMMON TO SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE | 1968    | JAN        |    |     |      |   | 1670 | JAN    | 78  | - | $\parallel$ | -                                             | -            | ╀        | $\vdash$     | T |
| Company (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | FEB        |    |     |      |   |      | FEB    | 7.8 |   |             |                                               | -            | -        |              | T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | MAR        | 7  |     |      |   |      | MAR    |     | - |             | _                                             |              | -        |              | T |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | APR        | D  |     |      |   |      | APR    |     |   |             |                                               | -            |          | -            | T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | MAY        | Q  |     |      |   |      | MAY    |     |   |             | _                                             |              | -        | <u> </u>     | T |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       | nor<br>Nor | D  |     |      |   |      | NO.    |     |   |             |                                               | _            |          | _            | T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | JUL        | D  |     |      |   |      | 701    |     |   |             |                                               |              | _        | <u> </u>     | T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       | AUG        | D  |     |      |   |      | AUG    |     |   |             |                                               |              |          | _            | Π |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | SEP        | 1  |     |      |   |      | SEP    |     |   |             |                                               |              | _        | _            | Π |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | سَــا   | ОСТ        |    |     |      |   |      | ост    |     |   |             |                                               |              |          | _            | Π |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | VOV        | 7  |     |      |   |      | NOV    |     |   |             |                                               |              |          | _            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | DEC        | >  |     | •    |   |      | DEC    |     |   |             |                                               | _            | <u> </u> |              | Τ |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COCAID. | ,          | •  |     |      |   | 1    |        | 1   |   | 4           |                                               | -            | -<br>-   | -            | 7 |

LEGEND:

N. Day & Night; D. - No Nighttime; N. No Daytime; T. Transition Only; Fings S. O. B. E. F. - See accompanying

| RWAY FREQUENCY: 10.2 kHz       | 401<br>VB 401 |    | 19 JAN | FES | MAR | APR | MAY | NOC | JOL           | AUG | SEP | OCT | NOV | DEC | 19 JAN | FEB | MARI | АРЯ | MAY | NOT | nar | AUG | SEP | 130 | NON | DEC |
|--------------------------------|---------------|----|--------|-----|-----|-----|-----|-----|---------------|-----|-----|-----|-----|-----|--------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| PIXED MONITOR: OSLO (2) NORWAY | dO1           | 96 | 7      |     |     |     | D   | 2   | $\mathcal{D}$ | D   |     |     |     |     |        |     |      |     |     |     |     |     |     |     |     |     |

Flags S, Q, B, E, F . Sas accompanying description LEGEND: D/N - Day is Night; D - No Nighttlme; N - No Dayilme; T - Frantition Only;

| FREQUENCY: 10.2 kHz | -   |        | JAN      | FEB      | MAR      | АРП | MAY          | Nnr            | JUL     | AUG  | SEP | ocr     | NON          | DEC      | JAN      | FEB | MAR | АРВ | MAY | Nac | JUL | AUG | SEP | 120 | NOV | DEC     |                    |
|---------------------|-----|--------|----------|----------|----------|-----|--------------|----------------|---------|------|-----|---------|--------------|----------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|--------------------|
|                     |     |        | NAL      | FEB      | MAR      | АРВ | MAY          | NOT            | JUL     | AUG  | SEP | ocr     | NOV          | DEC      | NAC      | FEB | MAR | APR | MAY | JUN | JOL | AUG | SEP | 120 | NON | DEC     |                    |
|                     | 7   |        | 19       |          | <b>*</b> |     |              |                |         |      |     |         |              |          | 19       |     |     |     |     |     |     |     |     |     |     | _ <br>_ |                    |
|                     |     | DH     | 75       |          | 7 6      | 7 6 | 7 6          | 7-6            | TE      |      |     | TF      | 7.           | 7-6      |          |     |     |     |     |     |     |     |     |     |     |         |                    |
|                     |     | CH     |          |          | NS       | -   | 7,5          |                |         |      |     | 3 76    |              | 76       |          |     |     |     |     |     |     |     |     |     |     |         | •                  |
| PANAMA              | LOP | 90     |          |          | 73       |     | 7.3          | 9 0            |         |      |     | 8 D/W 3 | B D/N B      | NB       | ١        |     |     |     |     |     |     |     |     |     |     |         | . Mrs. Mindiglime. |
| PAN                 |     | 02     | <b> </b> |          | 7.3      |     |              | <del>! '</del> | s Div 8 |      |     | E D/W 8 | 5 D/WB       | s NB     | <u> </u> |     |     |     |     |     |     |     |     |     |     |         | No. 7              |
| OR:                 |     | 80     |          |          | TE       | 76  | <del> </del> | -              | -       |      |     | D/W&    |              | N B      |          |     |     |     |     |     |     |     |     |     |     |         | O 6 Mil.d. 6.      |
| FIXED MONITOR:_     | _   | AD     | 73       | <u> </u> | 76       | !   | <del> </del> | -              | 5       | -    |     | NS      | <del> </del> | <u> </u> | ļ        |     | _   |     |     |     |     | -   |     |     |     |         |                    |
| FIXED               |     | Č<br>V | JAN      | / EB     | MAR      | APR | MAY          | NO.            | 711     | P'NG | SEP | OCT     | NOV          | DEC      | 247      | FEB | MAR | APR | MAY | 205 | 12  | AUG | SEP | 100 | NOV | DEC     |                    |
|                     |     | YR.    | 1978     |          |          |     |              |                |         |      |     |         |              |          |          |     |     |     |     |     |     |     |     |     |     |         | 4                  |

LEGEND. 1 - Day & Night; D - No Nighttione;

IN - No Daytime; T - Transition Only; Fings S, O, B, E, F - See accompanying description

| ( |   | 3 |   |
|---|---|---|---|
| ١ | ١ | ĺ |   |
| ¢ | í | 3 |   |
| ٤ | ٤ | 3 | ļ |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

LEGEND: B/N - Day & Night; D - No Nighttlme;

Flags S. O. B. E. F · See accompanying description N . No Daytime; T . Transition Only;

· Day & Night; D · No Nighttime; LEGEND. F Fings S, Q, B, E, F · Sse accon, panying dotcription

|             |      | 70             |          |       |              |             |              |          |             |                                         |          |             | 1            | $\cdot$ |          |               |           | 1             | 77                          |                   |                                 |               |     |             |               |          |
|-------------|------|----------------|----------|-------|--------------|-------------|--------------|----------|-------------|-----------------------------------------|----------|-------------|--------------|---------|----------|---------------|-----------|---------------|-----------------------------|-------------------|---------------------------------|---------------|-----|-------------|---------------|----------|
|             |      | 9              | $\dashv$ | +     | +            | $\dashv$    | -            | $\dashv$ | $\dashv$    | +                                       | $\dashv$ | -           | 1            | 10/     | $\dashv$ | $\dashv$      | +         | +,            | 1                           | +                 | $\dashv$                        | 1             | -   | $\dashv$    | $\frac{1}{1}$ | -        |
|             |      | U              |          | 80    |              | 40          | •            |          | 1           |                                         |          | -           |              | 30      | _        | <u>~</u>      | _         | 1             | 9                           | _                 | _                               | _             | _   |             | _             | _        |
|             |      | 70             |          | D/MB  |              | 511/0       | 0/1/0        | DINB     |             |                                         | D/NB     | 9 11/0      |              | DIN B   |          | 5Wa           | TE        |               |                             |                   |                                 |               |     |             |               |          |
|             |      | AF             | NB       | 3/1/2 |              | D 3         |              | 28       |             | -                                       |          |             |              | 75      |          | T3            | TE        |               |                             |                   |                                 |               |     |             |               |          |
| 7           | 10P  | 80             |          | 1     |              |             |              |          |             |                                         |          |             |              | 8 M/a   |          |               |           | 1             | D/N                         |                   |                                 |               |     |             |               |          |
| 10.2 kHz    |      | 00             | 8 11/0   | D/WB  | <del> </del> | D/W 8       | N/a          | 17/2     |             |                                         | N/a      | m/a         |              | D/NB 1  |          | B/N/a         | B/N/Q     |               | N/a                         |                   |                                 |               |     |             |               |          |
| <u> </u>    |      | AD             | 7        | 7     | -            | 7           | 7            |          |             |                                         |          |             |              | 7 7     |          | 7             | 2         | _             | 7 7                         |                   |                                 |               |     |             |               | $\dashv$ |
| FREGUENCY:  |      |                | 8        | 8     |              | ~           |              |          |             |                                         | 8        | 8           | _            | 8       |          | 8             | _         | -             |                             | -                 | _                               |               | -   |             | _             | $\dashv$ |
| FREC        |      | AC             | 7        | 7,    |              | 28          | a            | a        |             | _                                       | 1        | 7           |              | ≯       |          | 7             |           |               |                             |                   | _                               |               |     |             |               |          |
|             |      | Ž.             | JAPI     | FEB   | MAKR         | APR         | MAY          | JUN      | 101         | AUG                                     | SEP      | OCT         | NOV          | DEC     | JAN      | FEB           | MAR       | APR           | MAY                         | NO.               | 301                             | AUG           | SEP | OCT         | NOV           | DEC      |
| 1           | 1    | Y.             | 1977     |       |              | <del></del> | <del> </del> | •        | <del></del> | *************************************** |          | <del></del> |              |         | 1978     |               |           |               |                             |                   |                                 |               |     | <del></del> |               |          |
| Rico        |      |                |          |       |              |             |              |          |             |                                         |          |             |              |         |          |               |           |               |                             |                   |                                 |               |     |             |               |          |
| V           | 1    | l              |          |       |              | ļ           |              |          |             | - 1                                     |          |             |              |         |          |               |           | -             |                             |                   |                                 |               |     |             |               |          |
| - {         |      | -              |          |       |              |             |              |          |             |                                         |          |             |              |         |          |               |           |               |                             |                   |                                 |               |     |             |               |          |
| - {         |      | 7              |          |       |              |             |              |          |             |                                         |          |             |              |         |          |               |           |               |                             | VB                | 8/                              | 0'            |     |             |               |          |
| PUERTO      |      | DF             | ├        |       |              |             |              |          |             |                                         |          |             |              |         |          |               |           |               |                             | D/N               | N/a                             | N/a           |     |             |               |          |
| PUERTO      |      | AF DF          |          |       |              |             |              |          |             |                                         |          |             |              |         |          |               |           |               | - 1                         |                   | N/a                             | N/a           |     |             |               |          |
| SECA PUERTO | 00   | OAF            |          |       |              |             |              |          |             |                                         |          |             |              |         |          | D/N 8         | D/N B     | D/N 8         | - 1                         | D/N               | N/a                             | N/a           |     |             |               |          |
| SECA PUERTO | 401  | OAF            |          |       |              |             | NO           | D/W      | D/W 8       | D/W                                     |          | D/W         | D/W          | D/NB    | B/V/B    | D/N 8 D/N 6   | D/NB D/NB | D/N @ D/N B   |                             | N/O B O/W         | N/O BO                          | DS D/W        |     |             |               |          |
| SECA PUERTO | a001 | D 80 AF        |          |       |              |             | N/0          | D D/W    |             | D D/W                                   | 1        | <del></del> | <del>├</del> |         | N D/N B  | 8 1/0         | D/N/O     | D D/w @ D/N 8 |                             | N/O B O/W         | N/O BO                          | 3 D S D/W     |     |             |               |          |
| SECA PUERTO | a    | AD CD 80 AF    |          |       |              |             | N/C C        | 2        | 0           | P                                       |          | MA          | <del>├</del> | BN      | ~        | B N D/NB      | B N D/NB  | B D D/WG      |                             | N/O BO N/O        | N/O BO N/O                      | N/Q S Q B/N/Q |     |             |               |          |
| SECA PUERTO | 401  | AC AD CD RD AF |          | 83    | AR           | 84          | 0            | Do D     | D8 D        | D D                                     | 7        | T DW        | 7 ~          | NBN     | Y B Y    | 78 N D/N 8    | TB N D/NB | DB D D/WO     | $\mathcal{D}^{\mathcal{B}}$ | N/O B O N/O B O/W | $D$ $D/\omega$ $D^B$ $D/\omega$ | N/O S O B/N/O |     | 100         | 701           | JEC .    |
| PUERTO      | a001 | AD CD 80 AF    |          |       | MAR          | APR         | 0            | Do D     | D8 D        | D D                                     | 1        | T DW        | 7            | NBN     | ~        | FEB TB N D/NB | TB N D/WB | B D D/WG      | B D/N                       | N/O BO N/O        | N/O BO N/O                      | N/Q S Q B/N/Q |     | 00.1        | NOV           | DEC      |

N - No Daytime; T - Transition Only; LEGEND: D/N - Day & Night; D - No Nighttime;

Flags S, O, B, E, F · See accompanying description

THE FOLLOWING THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

|            | ĺ   |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           | T        | 7        |
|------------|-----|----------|------|-------------------------------------------|----------------------|-----|-----|-----|-----|-----|-----|------|-----|-----|------------------|--------|---------------------|--------|-----|----------|----------------------------------------------|-----|-----|-----------|----------|----------|
|            |     | 1        | 1    | 1                                         | 1                    | +   |     |     | +   | 1   | -   | +    | 1   | 1   | +                | 1      | $\dashv$            |        | +   | $\dashv$ | +                                            |     |     |           | +        | 1        |
|            |     | BH       | -+   | +                                         |                      |     |     |     |     |     | -   |      |     |     |                  | -      | 18                  |        | 23  |          | 1                                            |     | 1   |           | $\dashv$ | -'<br>   |
|            |     | 80       |      | 7                                         |                      |     |     |     |     |     |     | 1    | 1   |     | 1                |        | NB                  |        | 20  | 1        | 1                                            |     | 1   |           | 1        | 1        |
| 2          | 10P | AF       |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        | T                   |        | 76  |          |                                              |     |     |           | 1        | 1        |
| 10.2 8114  |     | AE       |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        | NB                  |        | 75  |          |                                              |     |     | 1         | 1        | 1        |
| VCY:       |     | AD       | NB   | 8 %                                       | D/NB                 | 80  | 80  | 78  | 75  |     |     |      |     | × 0 |                  |        | >                   |        | 75  |          |                                              |     |     |           |          |          |
| FREQUENCY: |     | AB ,     |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        | g/N/a               | TE     | 7.5 |          |                                              |     |     |           |          |          |
| <b></b>    | 9   | j        | NAL  | FEB                                       | MAR                  | APR | MAY | JUN | 701 | AUG | SEP | 0CT  | NOV | DEC | JAN              | FEB    | MAR                 | APR    | MAY | SUN      | JUL.                                         | AUG | SEP | OCT       | NOV      | DEC      |
| 1          | 5   | <u>.</u> | 1975 |                                           |                      | 1   |     |     |     |     |     |      |     |     | 1978             | 1      |                     |        |     | 1        | 1                                            |     | 1   | L         |          |          |
|            |     |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           |          | <b>-</b> |
|            |     |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           |          |          |
| 776        |     |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           |          |          |
| Н          |     |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           | •        |          |
| 1791       |     |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           |          |          |
|            | 10J |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           |          |          |
|            | 101 |          |      |                                           |                      |     |     |     |     |     |     |      |     |     |                  |        |                     |        |     |          |                                              |     |     |           |          |          |
| PRDIMIBS   | 101 | AD       |      |                                           | D/WB                 |     | D 8 | 28  |     |     |     |      |     | N8  | 8 //             | N B    | Nβ                  | D 8    | D 8 | B C      | 80                                           | 26  |     | D/W 8     | NS       |          |
| PRDIMIBS   | TOP |          |      |                                           | D/N <sup>B</sup>     |     |     |     |     |     |     |      |     | N8  | N.8              | NB     | $N \in \mathcal{S}$ | D 8    | D 8 | 8 C      | D 8                                          |     |     | 2/N S     | NB       |          |
|            |     | AD       |      | len en en en en en en en en en en en en e | MAR D/N <sup>B</sup> |     | A   | Q   |     | AUG | SEP | 0007 | NOV |     | 1974 JAN $N^{8}$ | FEB NB | MAR N B             | APR DB |     | JUN D 8  | ης Q γης γης γης γης γης γης γης γης γης γης |     | SEP | 0CT D/W 5 | NOV NOV  | DEC      |

CEGEND

'N . Day & Night; D - No Nighttime; . Transition Only; . No Daysime; T

- See accompanying description

Fish 5, U, B, E, F.

TABLE B-22

|               |     |     |       |              |                           |     | _                |                      | _   |     |                            | _        | _   | _            | -     |           |           | _   | _   | _   |          |     | -                                              | _                   | 1                                                | _   |
|---------------|-----|-----|-------|--------------|---------------------------|-----|------------------|----------------------|-----|-----|----------------------------|----------|-----|--------------|-------|-----------|-----------|-----|-----|-----|----------|-----|------------------------------------------------|---------------------|--------------------------------------------------|-----|
|               |     |     |       |              | -                         | _   |                  | _                    | 1   | 1   | -                          | _        | _   | 4            | _     | _         |           | _   | 1   | _   | _        |     | $\dashv$                                       | _                   | _                                                |     |
|               |     | 13  |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  | 73  |
|               | LOP | CF  |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  | 18  |
| .Hz           | ٦   | ap  |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  | >   |
| 10.2 kHz      |     | AD  |       |              |                           |     |                  |                      |     |     |                            |          |     |              | İ     |           |           |     |     |     |          |     |                                                |                     |                                                  | >   |
| VCY:          |     | AB  |       |              |                           |     |                  |                      |     |     |                            |          |     | Ì            |       |           |           |     |     |     |          |     |                                                |                     |                                                  | N3  |
| FREQUENCY:    |     | AC  | 7     | 7            |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  | >   |
| <b>u</b> .    |     | MO. | JAN   | FEB          | MAR                       | APR | MAY              | NOF                  | JUL | AUG | SEP                        | 100      | NOV | DEC          | JAN   | FEB       | MAR       | АРП | MAY | NOS | JUL      | AUG | SEP                                            | ОСТ                 | NOV                                              | DEC |
| 1             |     | YR. | 1970  |              |                           | h   |                  | <del>-</del>         |     |     | <del>\</del>               |          |     |              | 1977  | I         | <u>_</u>  | k   | L   | 1   |          |     |                                                |                     |                                                  |     |
| JWE           |     |     |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  |     |
| NEWFOUNDLAND  |     |     |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  |     |
| WEau          |     |     |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  |     |
| í             |     |     |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  |     |
| ANTHOUX       | á   |     |       | <b></b> -    |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     |                                                |                     |                                                  |     |
| - 1           | =   |     |       |              |                           |     |                  |                      |     |     |                            |          |     |              |       |           |           |     |     |     |          |     | <u> </u>                                       |                     |                                                  |     |
| 57.           |     | -   |       |              |                           |     |                  |                      |     |     |                            |          | -   |              | -     |           |           |     |     |     | <br>     |     | <u>                                       </u> |                     |                                                  |     |
| XED MONITOR:_ |     | AC  |       |              |                           |     | -                | _                    |     |     |                            | -        |     | >            | 1     | _         | 1         | _   | ^   | a   |          |     | 7                                              | 1                   |                                                  | >   |
| o Mor         | -   |     | ┼     |              | æ                         | -   | >                | _                    |     | 0   |                            |          |     | <del> </del> | -     |           | H         | 2   | V D |     | <u> </u> | 7 0 | <del> </del>                                   |                     | <del>                                     </del> | -   |
| X             | _   | W   | NAL 8 | FEB          | MAR                       | APR | MAY              | NO.                  | 701 | AUG | SEP                        | OCT      | NOV | DEC          | JAN P | FEB       | MAR       | APR | MAY | 25  | 15       | AUG | SEP                                            | OCT                 | NOV                                              | DEC |
|               |     | Y.  | 1968  | Marie Second | <del>Variation (by)</del> |     | <b>4.6</b> 00-00 | ar was an indicate a |     |     | general designation of the | المراسوس |     |              | 6701  | Attical L | Whyters 4 |     |     | -   | ***      |     | n e e e e e e e e e e e e e e e e e e e        | · Million III de La |                                                  |     |

LEGEND: D/N - Day & Night; D - No Nightilme;

· Transition Only; N - No Daytime; Flags S, Q, B, E,

F - See accompanying description

eer meerster verschiede en de state en de state en de state en de state en de state en de state en de state en

| 10P | ∤      | JAN | FEB | MAR | АРВ      | MAY | NUL         | JUL | AUG | SEP      | 0СТ | NON        | DEC | JAN | FEB | MAR | APR   | MAY | NOT | JUL | AUG | SEP | 001 | NOV        | . 330 |
|-----|--------|-----|-----|-----|----------|-----|-------------|-----|-----|----------|-----|------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|------------|-------|
| 90  |        |     |     |     |          |     |             |     |     |          |     |            |     |     |     |     |       |     |     |     |     |     |     |            |       |
| 7   |        |     |     |     |          |     |             |     |     |          |     |            |     |     |     |     |       |     |     |     |     |     |     |            |       |
|     |        |     |     |     |          |     |             |     |     |          |     |            |     |     |     |     |       |     |     |     |     |     |     |            |       |
| QW. |        | JAN | FEB | MAR | APR      | MAY | NO.         | 705 | AUG | SEP      | ОСТ | NOV<br>NOV | DEC | JAN | FEB | MAR | APR   | MAY | NO. | 301 | AUG | SEP | ОСТ | NOV        | טבט   |
| X   |        | 6   |     |     |          |     |             |     |     |          |     |            |     | 18  | -   |     |       |     |     |     |     |     |     |            |       |
|     |        |     |     |     |          |     |             |     |     |          |     |            |     |     |     |     |       |     |     |     |     |     |     |            |       |
| LOP |        |     |     |     | <b>-</b> |     |             |     |     | •        |     |            |     |     |     |     |       |     |     |     |     |     |     |            |       |
|     | 90     |     |     |     |          |     |             |     |     |          |     | N/Q        | Ma  | N/a | N/a | N/a | 2/1/2 | MI  |     |     |     |     |     |            |       |
|     |        |     |     |     |          |     |             |     |     |          | N/a | >          | ~   |     | >   | N/a |       |     |     |     |     |     |     |            |       |
|     | AD     |     |     |     | <b>1</b> |     | <del></del> | ì   |     | <u> </u> |     | >          | ပ   | 7   | 83  | MAR | æ     | ٨   | z   |     | D   |     |     | >          | Ī     |
| Ç   | MU. AD | JAN | FEB | MAR | APR      | MAY | NO.         | JUL | AUG | SEP      | 100 | NOV        | DEC | 200 | FEB | ž   | APR   | MAY | 252 | 701 | AUG | SEP | OCT | <b>NOV</b> |       |

LEGEND

Fings S, Q, B, E, F . See accompanying description 'N . Day & Night; D . No Nighttline; . . No Daytime; T . Transition Only;

TABLF 8-24

N . No Daytine; T . Ir attion Only; LEGEND: D/N · Cay & Night; D · No Nighttline;

Fings S, Q, B, E, F - Ser excompanying description

| 6620                       |               |          |         |          |         |          |                                        |            |         |             |          |     |         |     |       |      |          |     |           |     |     |      |     |     |     |     |
|----------------------------|---------------|----------|---------|----------|---------|----------|----------------------------------------|------------|---------|-------------|----------|-----|---------|-----|-------|------|----------|-----|-----------|-----|-----|------|-----|-----|-----|-----|
|                            |               | L        | _       | -        |         | <u> </u> | _                                      | _          |         | _           | <u> </u> |     | _       |     |       |      | <u> </u> |     |           |     |     |      |     |     |     |     |
|                            |               | -        | igg     | <u> </u> | _       | _        | _                                      |            | -       | _           |          |     |         |     | _     | L    |          |     |           |     |     |      |     |     |     |     |
|                            | 100           |          | -       |          | _       | _        | -                                      | _          | _       | _           |          |     |         |     | _     |      |          | _   |           |     |     |      |     |     |     |     |
| 10 2 kHz                   |               | -        | -       |          | -       |          |                                        |            | -       | <u> </u>    |          |     |         |     | _     |      | _        |     |           |     |     |      |     |     |     |     |
|                            |               |          | -       | -        |         |          | _                                      |            |         |             |          |     |         |     | _     |      |          |     |           |     |     |      |     |     |     |     |
| FREQUENCY:                 |               | -        | -       | <u> </u> |         |          | -                                      |            |         |             |          |     |         |     |       |      |          |     |           |     |     |      |     |     |     |     |
| FRE                        | -             | <u> </u> | 7       |          | <br>  E |          | >                                      | _          |         | 6           |          |     |         |     |       |      |          |     |           |     |     |      |     |     |     |     |
| í                          | -             | YR       | JAN     | FEB      | MAR     | APR      | MAY                                    | NO.        | 301     | AUG         | SEP      | OCT | NOV     | DEC | ۲۵۲   | FEB  | MAR      | APR | MAY       | S   | 105 | AUG  | SEP | OCT | NON | DEC |
|                            |               | <u> </u> | 5       |          |         |          |                                        |            |         |             |          |     |         | -   | 19    |      |          |     |           |     |     |      |     |     |     |     |
| V. S.A.                    |               |          |         | _        |         |          |                                        |            |         |             |          |     |         |     |       |      |          |     |           |     |     |      |     |     |     |     |
| 1                          |               | H        | 7 6     |          | 16      |          |                                        | y          | 8       | £           | E        |     | 8       |     | 3     | 8    | 6        |     |           |     |     | -    |     |     |     |     |
| D.C.                       |               | F DH     | 1       | •        |         |          |                                        | 2          | 2       | Q           |          | - 1 | 5 70    |     | 5 75  |      |          |     |           |     |     |      |     |     |     |     |
| TOM                        |               | DF       | V 0/W 5 |          | FF      |          |                                        | 1 0/115    | 1 D/N B | 1 D/NS      | / DINS   |     | 2 N/a / |     | 2 M/a |      |          |     |           |     |     |      |     | _   |     |     |
| 11NG                       | 1.0P          | 20       | -       |          | 7 6     |          |                                        | n/a        | N/a     | n/a         | D/M      |     | D/W     |     | 1/0   | M/Q  |          |     |           |     |     |      |     |     |     |     |
| Nası                       |               | ab       | 1       |          | 16      |          |                                        | a          | Q       | 0           | 0        |     | >       |     | ≷     | ₹    | TE       |     |           |     |     |      |     |     |     |     |
| OR:                        |               | AC       |         |          | 16      |          |                                        | 0          | 7       | 1           | 7        |     | ٢       |     | 75    | ٢    | TF       |     |           |     |     |      |     |     |     |     |
| FIXED MONITON: WASHINGTON, |               | AB       | TF      |          | 16      |          |                                        | 23         | 20      | 28          | DIN B    |     | NB      |     | NB    | DN B | NS       |     |           |     |     |      |     |     |     |     |
| FIXED                      | 8             | 2        | JAN     | FE8      | MAR     | APR      | MAY                                    | Stu        | JUL     | AUG         | SEP      | OCT | NOV     | DEC | JAN   | FEB  | MAR      | APR | MAY       | NOS | ž,  | AUG  | SEP | OCT | NOV | DEC |
| 3                          | 2<br><b>~</b> |          | 19 78   |          | ****    |          | •••••••••••••••••••••••••••••••••••••• | ورجني الما |         | وية حالنجيت | ·        |     |         |     | 1879  |      | A ANDRE  |     | an egendy |     |     | 7-10 |     |     | ·   |     |

LEGENT /N - Day & Night; C - Nr Highttline;

.4 · No Daytime; T · Transition Only; Fings S, Q, B, E, F · Son accomparying description

| 19 761<br>19 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MO.  JAN  FEB  MAR  APR  MAY  JUN  JUL  AUG  SEP | 00 m/0 m/0 m/0 m/0 m/0 m/0 m/0 m/0 m/0 m | LOP | ×   | MO.  FEB  MAR  APR  MAY  JUN  JUL  AUG  SEP  OCT |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|-----|-----|--------------------------------------------------|--|
| fichten, protocorpussioners school                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOV<br>DEC                                       |                                          |     |     | NOV<br>DEC                                       |  |
| Ç.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JAN                                              |                                          |     | 6   | JAN<br>FEB                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAY MAY                                          |                                          |     |     | APR<br>MAY<br>JUN                                |  |
| p.400p3.6-45,01 AT.655550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JUL                                              |                                          |     |     | JUL<br>AUG                                       |  |
| alvalatis ar till viktor konsungs, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SEP<br>OCT                                       |                                          |     | 1 1 | SEP<br>OCT                                       |  |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | <b>√</b> 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |                                          |     |     | NOV                                              |  |

LEGEND: D/N · Day & Night; D · No Nighttime;
N · No Daytime; T · Transition Only;
flags S. Q. B. E. E · See accompanying

## APPENDIX C

## Individual Coverage Maps

Included in this Appendix are individual maps showing values of 10.2 kHz SNR and coverage contours as follows:

- Figure C-l OMEGA Station A Coverage Summer Lay
  - C-2 OMEGA Station A Coverage Summer Night
  - C-3 OMEGA Station A Coverage Winter Day
  - C-4 OMEGA Station A Coverage Winter Night
  - C-5 OMEGA Station B Coverage Summer Day
  - C-6 OMEGA Station B Coverage Summer Night
  - C-7 OMEGA Station B Coverage Winter Day
  - C-8 OMEGA Station B Coverage Winter Night
  - C-9 OMEGA Station C Coverage Summer Day
  - C-10 OMEGA Station C Coverage Summer Night
  - C-11 OMEGA Station C Coverage Winter Day
  - C-12 OMEGA Station C Coverage Winter Night
  - C-13 OMEGA Station D Coverage Summer Day
  - C-14 OMEGA Station D Coverage Summer Night
  - C-15 OMEGA Station D Coverage Winter Day
  - C-16 OMEGA Station D Coverage Winter Night
  - C-17 OMEGA Station E Coverage Summer Day
  - C-18 OMEGA Station E Coverage Summer Night
  - C-19 OMEGA Station E Coverage Winter Day
  - C-20 OMEGA Station E Coverage Winter Night
  - C-21 OMEGA Station F Coverage Summer Day
  - C-22 OMEGA Station F Coverage Summer Night
  - C-23 OMEGA Station F Coverage Winter Day
  - C-24 OMEGA Station F Coverage Winter Night
  - C-25 OMEGA Station G Coverage Summer Lay
  - C-26 OMEGA Station G Coverage Summer Night
  - C-27 OMEGA Station G Coverage Winter Lay
  - C-28 OMEGA Station G Coverage Winter Night



Pigure C-1 OMEGA Static Coverage - Summer Day



C-4





C-5



C-6



C-7







C-10



C-11



C-12



C-13



C-14



C<del>-</del>15 .





C-17

The state of the state of the state of





C-19





C-21



C-22



C-23





Figure C-24 OMEGA Station F Coverage - Winter Night



OMEGA Station H Coverage - Summer Night

Figure C-26

C-27



C-28



re C-28 OMEGA Station H Coverage ∴ Winter Night

## APPENDIX D

## Fix Accuracy Statistics

Included in this Appendix are tables of 10.2 kHz accuracy statistics from data measured at the ONSOD ground monitoring facilities as follows:

- Table D-1 Belem, Brazil Summer
  - D-2 Belem, Brazil Winter
  - D-3 Bermuda Summer
  - D-4 Bermuda Winter
  - D-5 Cambridge, MA Summer
  - D-6 Cambridge, MA Winter
  - D-7 Eglin AFB, Fla. Summer
  - D-8 Eglin AFB, Fla. Winter
  - D-9 Farnborough, U.K. Summer
  - D-10 Farnborough, U.K. Winter
  - D-11 Frobisher, NWT Winter
  - D-12 Hestmona, Norway Summer
  - D-13 Hestmona, Norway Winter
  - D-14 Keflavik, Iceland Summer
  - D-15 Keflavik, Iceland Winter
  - D-16 Lajes, Azores Summer
  - D-17 Lajes, Azores Winter
  - D-18 La Moure, N.D. Summer
  - D-19 La Moure, N.D. Winter
  - D-20 Monrovia, Liberia Summer
  - D-21 Monrovia, Liberia Winter
  - D-22 Natal, Brazil Winter
  - D-23 Nea Makri, Greece Summer
  - D-24 Nea Makri, Greece Winter
  - D-25 Panama Summer
  - D-26 Panama Winter

a line continue traction as

Land rather Drown Street

- D-27 Piarco, Trinidad Summer
- D-28 Piarco, Trinidad Winter
- D-29 Portsmouth, VA Winter
- D-30 Sabana Seca, P.R. Summer
- D-31 Sabana Seca, P.R. Winter
- D-32 St. Anthony, Nfld Summer
- D-33 St. Anthony, Nfld. Winter
- D-34 Vila Nova, Azores Summer
- D-35 Vila Nova, Azores Winter
- D-36 Washington, D.C. Summer
- D-37 Washington, D.C. Winter

TABLE D-1 10.2 KHz OMEGA ACCURACY SUMMARY; BELEM, BRAZIL; SUMMER

|       |        | DAYTIME   |          |        | NIGHTTIME |          |
|-------|--------|-----------|----------|--------|-----------|----------|
| LOP   | R (nn) | Gr (1111) | D (nm)   | ռ (ոտ) | Gr (nm)   | D (um)   |
| AC/AD | 10.3   | 1.2 (1)   | 10.4 (3) | 8.3    | 4.4 (3)   | 9.4. (3) |
| AC/CD | 7.9    |           | 8.4 (1)  | 8.3    | 3.6 (2)   | 6.4 (1)  |
| AC/CD | 8.6    | )         | 8.7 (2)  | 6.3    | 3.2 (1)   | 7.1 (2)  |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          | -      |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          | •      |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |
|       |        |           |          |        |           |          |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

| ) - RANK

A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A TORONO A

D-3

an percent

TABLE D-2

10.2 kHz OMEGA ACCURACY SUMMARY; BELEM, BRAZIL; WINTER

|           | D (nm)  | 9.2 (3)  | 7.8 (1)  | 7.7 (2)  |  |  |  |  |   |  |   |
|-----------|---------|----------|----------|----------|--|--|--|--|---|--|---|
| NIGHTTIME | Gr (nm) | 4.1 (3)  | 3.9 (2)  | 3.0 (1)  |  |  |  |  |   |  |   |
|           | R (nm)  | 8.2      | 6.5      | 7.1      |  |  |  |  | • |  |   |
|           | D (ուռ) | 19.8 (1) | 11.7 (3) | 11.5 (2) |  |  |  |  |   |  |   |
| DAYTIME   | Gr (nm) | 2.8 (2)  | 2.4 (1)  | 2.4 (1)  |  |  |  |  |   |  | ļ |
|           | R (nm)  | 10.4     | 11.5     | 11.2     |  |  |  |  |   |  |   |
|           | LOP     | AC/AD    | NC/CD    | AD/CD    |  |  |  |  |   |  |   |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX FRROR

( ) = RANK

TABLE D-3

10.2 KHZ OMEGA ACCURACY SUMMARY; BERMUDA; SUMMER

5646

|        |        | DAYTIME  |           |        | NIGHTTIME |         |
|--------|--------|----------|-----------|--------|-----------|---------|
| LOF    | R (nm) | Gr (nm)  | D (nm)    | R (nm) | մ  (ոտ)   | D (mm)  |
| AC/AD  | 39.7   | 4.7 (13) | 40.1 (15) |        |           | -       |
| AC/AF  | 5.9    | 0.3 (1)  | 5.9 (11)  | 9.0    | 0.5 (1)   | 0.8 (1) |
| AC/BC  | 5.8    | 0.6 (3)  | 5.8 (10)  |        |           |         |
| AC/BD  | 5.9    | 1.0 (4)  | 6.0 (12)  |        |           |         |
| AC/UF  | 3.5    | 1.0 (4)  | 3.6 (7)   |        |           |         |
| AU/AF  | 3.1    | 1.2 (6)  | 3.3 (6)   |        |           |         |
| AD/BC  | 6.0    | 2.6 (11) | 6.5 (13)  |        |           |         |
| AD/BD  | 3.6    | 1.8 (10) | 4.1 (9)   |        |           |         |
| AD/DF  | 3.3    | 1.6 (9)  | 3.7 (8)   |        |           |         |
| AF/BC  | 1.9    | 0.4 (2)  | 1.9 (2)   |        |           |         |
| Al'/BD | 2.5    | 0.6 (3)  | 2.6 (5)   |        |           |         |
| AF/DF  | 2.5    | 1.1 (5)  | 2.7 (4)   |        |           |         |
| BC/BD  | 6.2    | 3.0 (12  | 6.9 (14)  | •      |           |         |
| BC/DF  | 0.7    | 1.3 (7)  | 1.5 (1)   |        |           |         |
| BD/DF  | 2.5    | 1.4 (8)  | 2.9 (5)   |        |           |         |
|        |        |          |           |        |           |         |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

D-5

TABLE D-4

10.2 kHz OMEGA ACCURACY SUMMARY; BERMUDA; WINTER

5846

|       |        | DAYTIME |           |        | NIGHTTIME |          |
|-------|--------|---------|-----------|--------|-----------|----------|
| LOP   | R (nm) | Gr (mm) | D (nm)    | R (nm) | Gr (nm)   | D (nm)   |
| AC/AD | 5.8    | 3.1 (9) | 6.6 (14)  | 27.5   | 3.3 (3)   | 27.7 (5) |
| AC/AF | 0.8    | 0.9 (5) | 1.2 (2)   | 6.1    | 0.7 cm    | 6.1 (4)  |
| AC/BC | 4.0    | (5) 6.0 | 4.1 (11)  |        |           |          |
| AC/BD | 1.3    | 0.7 (3) | 1.5 (3)   |        |           |          |
| AC/DF | 3.2    | 0.8 (4) | 3.3 (7)   | 3.4    | 0.7 (1)   | 3.5 (3)  |
| AD/AF | 0.7    | 0.8 (4) | 1.1 (1)   | 2.8    | 0.7 (1)   | 2.9 (1)  |
| AD/BC | 3.5    | 1.3 (7) | 3.8 (10)  |        |           |          |
| AD/BD | 2.4    | 0.5 (1) | 2.5 (6)   |        |           |          |
| AD/DF | 3.3    | 0.7 (3) | 3.4 (8)   | 3.2    | 0.8 (2)   | 3.3 (2)  |
| AF/BC | 1.9    | 0.7 (3) | 2.1 (5)   |        |           |          |
| AF/BC | 1.6    | 0.6 (2) | 1.7 (4)   |        |           |          |
| AF/DF | 5.5    | 1.0 (6) | 5.6 (12)  | 2.8    | 0.8 (2)   | 2.9 (1)  |
| BC/BD | 19.5   | 1.9 (8) | 19.6 (15) | •      |           |          |
| BC/DF | 6.3    | (5) 6.0 | 6.4 (13)  |        |           |          |
| BD/DF | 3.7    | 0.7 (3) | 3.7 (9)   |        |           |          |
|       |        |         |           |        |           |          |

R - FIX BIAS ERROR

fr = STANDARD DEVIATION OF RADIAL ERROR
D = TOTAL FIX ERROR
( ) = RANK

Ž3

10.2 kiiz OMEGA ACCURACY SUMMARY; CAMBRIDGE, MA; SUMMER TABLE D-5

|           | D (nm)  | •        |         |         |  |  |  |  |   |  |
|-----------|---------|----------|---------|---------|--|--|--|--|---|--|
| NIGHTTIME | Gr (nm) |          |         |         |  |  |  |  |   |  |
| •         | R (nm)  |          |         |         |  |  |  |  | • |  |
|           | D (nm)  | 40.4 (3) | 1.8 (1) | 2.8 (2) |  |  |  |  |   |  |
| DAYTIME   | Gr (nm) | 22.0 (3) | 1.7 (1) | 2.1 (2) |  |  |  |  |   |  |
|           | R (nm)  | 33.9     | 9.0     | 1.9     |  |  |  |  |   |  |
| aC        | PAIRS   | AC/AD    | AC/CF   | AD/CF   |  |  |  |  |   |  |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-6

10.2 KHZ OMEGA ACCURACY SUMMARY; CAMBRIDGE, MA; WINTER

3.0 (4) 1.8 (1) 2.1 (2) 2.1 (2) 2.8 (3) 24.0 (5) 0 (mm) (3) (1) (4) (1)(2) 10.5 (6) Gr (nm) NIGHTTIME 0.7 1.1 0.7 1.0 0.8 R (nm) 21.6 2.9 2.0 2.4 (4) 1.7 (1) 2.2 (3) 2.0 (2) 18.4 (6) 4.1 (5) D (nm) 9.5 (5) 0.2 (1) 0.6 (2) 0.8 (3) 1.1 (4) 0.6(2)Gr (nm) DAYTIME 1.6 2.4 4.0 R (nm) 15.7 2.1 AC/AD AC/AF AC/CF AD/AF AJ/CF AF/CF PAIRS LOP

**Gr-STANDARD DEVIATION OF RADIAL ERROR** D - TOTAL FIX ERROR R . FIX BIAS ERROR ( ) - RANK

D-8

TABLE D-7

10.2 kHz OMEGA ACCURACY SUMMARY; EGLIN AFB, FLA; SUMMER

| <del>- ,</del> |         | <del></del> - |          | - 1     |         | <del>- 1</del> |         | <br> | <del></del> -1 | 1 | 1 | - 1 | т | <br> |
|----------------|---------|---------------|----------|---------|---------|----------------|---------|------|----------------|---|---|-----|---|------|
|                | D (nm)  | 4.2. (3)      | 3.5 (1). |         | 4.0 (2) |                |         |      |                |   |   |     |   |      |
| NIGHTTIME      | Gr (nm) | 3.7 (3)       | 2.7 (2)  |         | 2.6 (1) |                |         |      | •              |   |   |     |   |      |
| •              | R (nm)  | 2.1           | 2.2      |         | 2.2     |                |         |      |                |   |   |     | • |      |
|                | D (nm)  | 8.7 (3)       | 9.7 (4)  | 3.9 (2) | 8.7 (3) | 9.7 (4)        | 1.2 (1) |      |                |   |   |     |   |      |
| DAYTIME        | 1 .     | 4.3 (6)       | ł        | 1.2 (2) | 3.0 (4) | 2.6 (3)        | 0.7 (1) |      |                |   |   |     |   |      |
|                | R (nm)  | 7.6           | 9.1      | 3.7     | 8.2     | 9.4            | 1.0     |      |                |   |   |     |   |      |
|                | LOP     | 10/0:         | AC/CD    | AC/CF   | AD/CD   | FD/CF          | CD/CF   |      |                |   |   |     |   |      |

R = FIX BIAS ERROR

G r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

COLUMN TO THE SECOND

TABLE D-8 10.2 KHZ OMEGA ACCURACY SUMMARY; EGLIN AFB, FLA; WINTER

| ٢         | Τ         | Π        |          |         |         |         | T       | T | Ī |   | Γ | <u> </u> | <u> </u> |  |
|-----------|-----------|----------|----------|---------|---------|---------|---------|---|---|---|---|----------|----------|--|
|           | D (nm)    | 3.8. (1) | 3.9 (2)  |         | 3.9 (2) |         |         |   |   | Y |   |          |          |  |
| NIGHTTIME | Gr (nm)   | 2.7 (2)  | 2.5 (1)  |         | 2.7 (2) |         |         |   |   |   |   |          |          |  |
|           | R (nm)    | 2.7      | 3.0      |         | 2.9     |         |         |   |   |   |   |          | •        |  |
|           | D (nm)    | 8.4 (4)  | 10.0 (6) | 2.5 (1) | 8.9 (5) | 8.3 (3) | 2.6 (2) |   |   |   |   |          |          |  |
| DAYTIME   | Tr (1111) | 3.2 (6)  | 2.5 (5)  | 1.0 (2) | 2.3 (4) | 2.0 (3) | 0.8 (1) |   |   |   |   |          |          |  |
|           | R (nm)    | 7.8      | 9.6      | 2.3     | 8.6     | 8.0     | 2.4     |   |   |   |   |          |          |  |
|           | PAIRS     | AC/AD    | AC/CD    | AC/CF   | AD/CD   | AD/CF   | CD/CF   |   |   |   |   |          |          |  |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

D-10

TABLE D- 9

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

10.2 kHz OMEGA ACCURACY SUMMARY; FARNBOROUGH, U.K.; SUMMER

|           | D (nm)  | 1.5 (1)  |  |  |  |  |  |   |  |
|-----------|---------|----------|--|--|--|--|--|---|--|
| NIGHTTIME | Gr (nm) | 0.5 (1). |  |  |  |  |  |   |  |
|           | R (nm)  | 1.4      |  |  |  |  |  | • |  |
|           | D (nm)  | 1.6 (1)  |  |  |  |  |  |   |  |
| DAYTIME   | Gr (nm) | 0.5 (1)  |  |  |  |  |  |   |  |
|           | R (nm)  | 1.5      |  |  |  |  |  |   |  |
| 401       | PAIRS   | AB/AD    |  |  |  |  |  |   |  |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = I:ANK

TABLE D-10

10.2 kHz OMEGA ACCURACY SUMMARY, FARNBOROUGH, U.K.; WINTER

|           | D (nm)       | 2.0 (1) |  |  |  |  |  |  |  |
|-----------|--------------|---------|--|--|--|--|--|--|--|
| NIGHTTIME | Gr (nm)      | 0.6 (1) |  |  |  |  |  |  |  |
|           | R (nm)       | 1.9     |  |  |  |  |  |  |  |
|           | D (nm)       | 2.7 (1) |  |  |  |  |  |  |  |
| DAYTIME   | Gr (11m)     | 0.8 (1) |  |  |  |  |  |  |  |
|           | R (nm)       | 2.6     |  |  |  |  |  |  |  |
|           | LOP<br>PAIRS | AB/AD   |  |  |  |  |  |  |  |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-11

10.2 kHz OMEGA ACCURACY SUMMARY, FROBISHER, N.W.T.; WINTER

|       |        | DAYTIME |         |        | NIGHTTIME |          |
|-------|--------|---------|---------|--------|-----------|----------|
| PAIRS | R (nm) | Gr (nm) | D (nm)  | R (nm) | մ r (nm)  | D (nm)   |
| AC/BD | 1.6    | 6.2 (3) | 6.4 (3) | 5.3    | 5.6 (1)   | 7.7. (1) |
| AC/DF | 2.7    | 3.4 (1) | 4.3 (1) |        |           |          |
| BD/DF | 4.5    | 3.9 (2) | 5.9 (2) |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         | •      |           |          |
|       |        |         |         |        |           |          |
|       |        |         |         |        |           |          |

R = FIX BIAS ERROR

G r = STANDARD DEVIATION OF RADIAL ERROR

D = FOTAL FIX ERROR

( ) = RANK

TABLE D-12

10.2 kHz OMEGA ACCURACY SUMMARY; HESTMONA; SUMMER

5646

|        |        | DAYTIME  |          |        | NIGHTTIME |           |
|--------|--------|----------|----------|--------|-----------|-----------|
| LOP    | R (nm) | Gr (nm)  | D (nm)   | R (nm) | Gr (nm)   | D (nm)    |
| nC/RF  | 1.8    | 0.4 (1)  | 1,8 (6)  | 3.1    | 0.8 (3)   | 3.2 (7)   |
| BC/BH  | 1.4    | 0.6 (3)  | 1.5 (3)  | 0.6    | 0.7 (2)   | 0.9 (2)   |
| DC/CF  | 1.7    | 0.5 (2)  | 1.8 (6)  | 1.0    | 0.9 (4)   | 1.4 (5)   |
| BC/CII | 1.4    | و ا      | 1.5 (3)  | 9.0    | 0.6 (1)   | 0.8 (1)   |
| HE /EH | 11.6   | 11.7 (7) | 16.5 (8) | 13.3   | 19.4 (10  | 23.5 (10) |
| BE/BH  | 1.5    | 0.6 (3)  | 1.6 (4)  | 4.5    | 1.0 (5)   | 4.6 (8)   |
| BE/CE  | 1.8    | 0.5 (2)  | 1.8 (6)  | 2.9    | 1.0 (5)   | 3.1 (6)   |
| BEZCH  | 2.9    | 1.3 (6)  | 3.1 (7)  | 5.6    | 2.0 (9)   | 5.9 (9)   |
| BEZEH  | 1.6    | 0.5 (2)  | 1.7 (5)  | 2.9    | 1.2 (7)   | 3.1 (6)   |
| ВИ/СИ  | 1.4    | 0.6 (3)  | 1.2 (1)  | 9.0    | 0.7 (2)   | 0.9 (2)   |
| 35/114 | 1.4    | 0.5 (2)  | 1.5 (3)  | 0.5    | 0.7 (2)   | 0.9 (2)   |
| PH/EH  | 1.4    | 0.7 (4)  | 1.6 (4)  | 0.8    | 1.2 (7)   | 1.4 (5)   |
| CE/CH  | 0.9    | 0.8 (5)  | 1.2 (1)  | 0.2    | 1.1 (6)   | 1.1 (3)   |
| CE/EH  | 1.0    | 0.8 (5)  | 1.3 (2)  | 0.1    | 1.4 (8)   | 1.4 (5)   |
| CH/EH  | 1.0    | 0.8 (5)  | 1.2 (1)  | 0.2    | 1.1 (6)   | 1.2 (4)   |
| />     |        | A        |          |        |           |           |

R - FIX BIAS ERROR

fr= STANDARD DEVIATION OF RADIAL ERROR
D = TOTAL FIX ERROR
( ) = RANK

TABLE D-13 10.2 kHz OMEGA ACCURACY SUMMARY; HESTMONA; WINTER

| R (nm)         Gr (lim)         D (nm)         R (nm)           2,9         0,7 (1)         3.0 (5)         5,7           3,2         1,3 (4)         3.5 (7)         0.5           1,7         1,0 (2)         1,9 (2)         3.5           2,8         1,3 (4)         3.9 (8)         1.6           1,0         0.7 (1)         2.2 (3)         5.6           1,0         0.7 (1)         2.2 (3)         5.6           2,3         1,2 (3)         5.6 (4)         7.2           1,3         1,0 (2)         1,6 (1)         2.1           3,7         1,5 (5)         4.0 (9)         1,9           3,1         1,7 (7)         3.5 (7)         6.5           4,1         1,6 (6)         4,4 (10)         4,4           5,4         1,5 (5)         5.6 (13)         3.8           5,4         1,5 (5)         5.6 (13)         3.8           4,5         1,7 (7)         4,8 (11)         4,1 |        |         | DAYTIME    |          |        | NIGHTTIME |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|------------|----------|--------|-----------|-----------|
| 2.9       0.7 (1)       3.0 (5)         3.2       1.3 (4)       3.5 (7)         1.7       1.0 (2)       1.9 (2)         2.8       1.3 (4)       3.9 (8)         1.0       0.7 (1)       2.2 (3)         4.4       2.9 (8)       5.2 (12)         2.3       1.2 (3)       2.6 (4)         1.3       1.0 (2)       1.6 (1)         3.7       1.5 (5)       4.0 (9)         4.1       1.6 (6)       4.4 (10)         5.4       1.5 (5)       5.6 (13)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                           | LOP    | R (nnı) | Gr (13111) | D (nm)   | R (nm) | G r (nm)  | D (nm)    |
| 3.2       1.3 (4)       3.5 (7)         1.7       1.0 (2)       1.9 (2)         2.8       1.3 (4)       3.9 (8)         4.4       2.9 (8)       5.2 (12)         2.3       1.2 (3)       5.2 (12)         1.3       1.0 (2)       1.6 (1)         3.7       1.5 (5)       4.0 (9)         4.1       1.6 (6)       4.4 (10)         5.4       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BC/BE  | 2.9     |            | 3,0 (5)  | 5,7    | 1.3 (4)   | 5.9 (9)   |
| 1.7       1.0 (2)       1.9 (2)         3.7       1.3 (4)       3.9 (8)         2.8       1.3 (4)       3.1 (6)         4.4       2.9 (8)       5.2 (12)         2.3       1.2 (3)       2.6 (4)         1.3       1.0 (2)       1.6 (1)         3.7       1.5 (5)       4.0 (9)         4.1       1.7 (7)       3.5 (7)         5.4       1.5 (5)       5.6 (13)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BC/BH  | 3.2     |            | 3.5 (7)  | 0.5    | 1.1(2)    | 1.2 (1)   |
| 3.7       1.3 (4)       3.9 (8)         2.8       1.3 (4)       3.1 (6)         1.0       0.7 (1)       2.2 (3)         4.4       2.9 (8)       5.2 (12)       1         2.3       1.2 (3)       2.6 (4)       1         1.3       1.0 (2)       1.6 (1)       1         3.7       1.5 (5)       4.0 (9)       4         4.1       1.6 (6)       4.4 (10)       4         5.4       1.5 (5)       5.6 (13)       4         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC/CE  | 1.7     |            | 1.9 (2)  | 3.5    | 1.5 (5)   | 3.8 (5)   |
| 2.8       1.3 (4)       3.1 (6)         1.0       0.7 (1)       2.2 (3)         4.4       2.9 (8)       5.2 (12)       1         2.3       1.2 (3)       2.6 (4)       1         1.3       1.0 (2)       1.6 (1)       1         3.7       1.5 (5)       4.0 (9)       4         4.1       1.6 (6)       4.4 (10)       4         5.4       1.5 (5)       5.6 (13)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | вс/си  | 3.7     | 1.3 (4)    | 3.9 (8)  | 1.6    | 1.0 (1)   | 1.9 (2)   |
| 1.0       0.7 (1)       2.2 (3)         4.4       2.9 (8)       5.2 (12)         2.3       1.2 (3)       2.6 (4)         1.3       1.0 (2)       1.6 (1)         3.7       1.5 (5)       4.0 (9)         4.1       1.7 (7)       3.5 (7)         5.4       1.5 (5)       5.6 (13)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ВЕ./ВИ | 2.8     |            | 3.1 (6)  | 7.6    | 1.7 (7)   | 7.8 (12)  |
| 4.4       2.9 (8)       5.2 (12)       1         2.3       1.2 (3)       2.6 (4)       2.9 (8)       1.6 (1)         3.7       1.0 (2)       1.6 (1)       1.5 (5)       4.0 (9)         4.1       1.7 (7)       3.5 (7)       4.4 (10)         5.4       1.5 (5)       5.6 (13)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BE/CE  | 1.0     |            | 2.2 (3)  | 5.6    | 1.7 (7)   | 5.8 (8)   |
| 2.3       1.2 (3)       2.6 (4)         1.3       1.0 (2)       1.6 (1)         3.7       1.5 (5)       4.0 (9)         4.1       1.7 (7)       3.5 (7)         5.4       1.5 (5)       5.6 (13)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ве/си  | 4.4     |            | 5.2 (12) | 14.9   | 3.5 (11)  | 15.4 (13) |
| 1,3       1.0 (2)       1.6 (1)         3.7       1.5 (5)       4.0 (9)         4.1       1.7 (7)       3.5 (7)         5.4       1.6 (6)       4.4 (10)         4.5       1.7 (7)       4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | на/зя  | 2.3     |            | 2.6 (4)  | 7.2    | 1.8 (8)   | 7.4 (11)  |
| 3.7 1.5 (5) 4.0 (9)<br>3.1 1.7 (7) 3.5 (7)<br>4.1 1.6 (6) 4.4 (10)<br>5.4 1.5 (5) 5.6 (13)<br>4.5 11.7 (7) 4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BH/CE  | 1,3     |            | 1.6 (1)  | 2.1    | 1.2 (3)   | 2.4 (4)   |
| 3.1 1.7 (7) 3.5 (7) (6 4.1 1.6 (6) 4.4 (10) (7) (7) 4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ВИ/СИ  | 3.7     |            | 4.0 (9)  | 1.9    | 1.1 (2)   | 2.2 (3)   |
| 4.1     1.6 (6)     4.4 (10)       5.4     1.5 (5)     5.6 (13)       4.5     1.7 (7)     4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ВИЛЕН  | 3.1     | 7          | 3.5 (7)  | 6.5    | 1.6 (6)   | 6.7 (10)  |
| 5.4 1.5 (5) 5.6 (13) 4.5 11.7 (7) 4.8 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | СЕ/СН  | 4.1     |            | 4.4 (10) | 4.4    | 1.9 (9)   | 4.8 (7)   |
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE/EH  | 5.4     |            | 5.6 (13) | 3.8    | 2.2 (10)  | 4.4 (6)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СИ/ЕН  | 4.5     | 1.7 (7)    | 4.8 (11) | 4.1    | 1.6 (6)   | 4.4 (6)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |         |            |          |        |           |           |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

Missesson on the Manage Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage and Manage an

10.2 kHz OMEGA ACCURACY SUMMARY; KEFLAVIK; SUMMER TABLE D-14

| PALIES         R (nm)         GT (nm)         D (nm)         R (nm)         GT (nm)         D (nm)           ABAND         11.6         0.2 (1)         11.6 (1)         0.9         0.4 (1)         1.1 (2)           ABABD         11.6         11.6 (1)         0.9         0.5 (2)         1.0 (1)           ABABD         11.6         11.1 (4)         36.2         2.7 (5)         36.3 (5)           BUD/BF         11.1 (4)         36.2         2.7 (5)         36.3 (5)           BUD/BF         11.1 (4)         15.5         11.4 (4)         15.6 (4)           BUD/BF         11.2 (4)         15.6 (4)         15.6 (4)           BUD/BF         11.4 (4)         15.6 (4)         15.6 (4) | dO 1  |        | DAYTIME |          |        | NIGHTTIME |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------|----------|--------|-----------|----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PA.RS | R (nm) | Gr (nm) | D (nm)   | R (nm) | Gr (nm)   | D (nm)   |
| 1.6     0.3 (2)     1.6 (1)     0.9     0.5 (2)       1.6     1.6 (1)     0.9     0.8 (3)       1.6     1.6 (1)     0.9     0.5 (2)       11.1     (4)     36.2     2.7 (5)       11.1 (4)     15.5     1.4 (4)     1       11.4 (4)     15.5     1.4 (4)     1                                                                                                                                                                                                                                                                                                                                                                                                                                             | AB/AD | 1.6    | 0.2 (1) | 1.6 (1)  | 1.0    | 0.4 (1)   | 1.1 (2)  |
| 1.6 1.6 (1) 0.9 0.5 (2) 1.1 (4) 36.2 2.7 (5) 1.2 (1) 1.5 1.4 (4) 1.5 1.4 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB/BD | 1.6    | 0.3 (2) | 1.6 (1)  | 6.0    | 0.5 (2)   | 1.0 (1)  |
| 1.6 (1) (0.9 (0.5 (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB/BF |        |         |          | 8.8    | 0.8 (3)   | 8.8 (3)  |
| 11.1 (4) 36.2 2.7 (5) 15.5 1.4 (4) 15.5 1.4 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AD/BD | 1.6    |         | 1.6 (1)  | 6.0    | 0.5 (2)   | 1.1 (2)  |
| 15.5 1.4 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4D/8F |        |         | 11.1 (4) | 36.2   | 2.7 (5)   | 36.3 (5) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BD/BF |        |         |          | 15.5   | 1.4 (4)   | 15.6 (4) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |         |          |        |           |          |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-15

10.2 kHz OMEGA ACCURACY SUMMARY; KEFLAVIK; WINTER

|       |                                        | DAYTIME |         |         | NIGHTTIME |          |
|-------|----------------------------------------|---------|---------|---------|-----------|----------|
| PAIRS | R (run)                                | Gr (nm) | D (nm)  | ռ (ուռ) | Gr (nm)   | D (nm)   |
| AB/AD | <i>c</i> [                             | 0.7 (2) | 1.8 (2) | 0.5     | 0.8 (2)   | 0.9 (1)  |
| AR/BD | 1.7                                    | 0.5 (1) | 1.8 (2) | 0.7     | 0.7 (1)   | 1.0 (2)  |
| AB/BF | 4.3                                    | 0.7 (2) | 4.3 (5) |         |           |          |
| AB/DF | 2.1                                    | 0:9 (4) | 2.1 (4) | 7.0     | 0.9 (3)   | 7.1 (4)  |
| AD/BD | 1.8                                    | 0.7 (2) | 1.9 (3) | 0.5     | 0.9 (3)   | 1.0 (2)  |
| AD/DF | 0.4                                    | 0.8 (3) | 0.9 (1) | 5.8     | 1.0 (4)   | 5.9 (3)  |
| BD/BF | 4.3                                    | 1.1 (5) | 4.4 (6) |         |           |          |
| BD/DF | 4.4                                    | 1.4 (6) | 4.6 (7) | 14.7    | 1.7 (5)   | 14.8 (5) |
| BF/DF | 4.3                                    | 1.1 (5) | 4.4 (6) |         |           |          |
|       |                                        |         |         |         |           |          |
|       |                                        |         |         |         |           |          |
|       |                                        |         |         |         |           |          |
|       |                                        |         |         | •       |           |          |
|       |                                        |         |         |         |           |          |
|       |                                        |         |         |         |           |          |
|       | ************************************** |         |         |         |           |          |

R = FIX BIAS ERROR

G r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = Rv.NK

5646

10.2 kHz OMEGA ACCURACY SUMMARY; LAJES, AZORES; SUMMER

ź

TABLE D-16

|           | D (nm)   | 3.4 (2) | 1.4 (1) | 17.8 (5) | 26.5 (6) | 4.9 (4) | 3.7 (3) |  |  |  |   |  |
|-----------|----------|---------|---------|----------|----------|---------|---------|--|--|--|---|--|
| NIGHTTIME | δr (nm)  | 0.8 (3) | 0.6 (1) | 4.6 (5)  | 5.9 (6)  | 0.9 (4) | 0.7 (2) |  |  |  |   |  |
|           | R (nm)   | 3.3     | 1.3     | 17.2     | 25.8     | 4.8     | 3.6     |  |  |  | • |  |
|           | D (nm)   |         | 0.5 (1) |          |          |         | 1.0 (2) |  |  |  |   |  |
| DAYTIME   | Մr (ուռ) |         | 0.2 (1) |          |          |         | 1.0 (2) |  |  |  |   |  |
|           | R (nm)   |         | 0.5     |          |          |         | 0.3     |  |  |  |   |  |
|           | PAIRS    | AB/AC   | AB/AD   | AP/CF    | AC/AD    | AC/CF   | AD/CF   |  |  |  |   |  |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERRCR

( ) = RANK

TABLE D-17

10.2 kHz OMEGA ACCURACY SUMMARY, LAJES, AZORES; WINTER

2.4 (2) 6.7 (4) 17.4 (5) 3.2 (3) 2.1 '(1) D (nm) 1.1 (3) 0.9 (1) 6.3 (4) 7.7 (5) (1)(2) Gr inm) NIGHTTIME 1.0 6.0 R (nm) 9 15.6 1.9 3.1 3 (2) 12.3 (5) 19.3 (6) 2.7 (4) 0.9 (1) D (nm) 1.8 0.9 (2) 0.8 (1) 4.8 (3) 9.4 (4) 0.8 (1) 0.8 (1) Gr (nm) DAYTIME R (nm) 0.4 11.3 16.9 2.5 AB/AC AB/AD PAIRS AB/CF AC/AD AC/CF AD/CF **40** 

Gr = STANDARD DEVIATION OF RADIAL ERROR D = TOTAL FIX ERROR R . FIX BIAS ERROR

D-19

and the state of the state of

10.2 KHZ OMEGA ACCURACY SUMMARY; LA MOURE, N.D.; SUMMER TABLE D-18

0 (mm) Sr (nm) NIGHTTIME R (nm) 0.6 (1) 0.8 (2) (1) (2) Gr (mm) 0.7 DAYTIME 0.5 0.2 0.5 A (nm) CF/CH CF/FH CH/FH PAIRS 10p

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

11 D-19

10.2 kHz OMEGA ACCURACY SUMMARY, LA MOURE, N.D.; WINTER

|           | D (nm)  |         |         |         |  |  |  |  | · |  |  |
|-----------|---------|---------|---------|---------|--|--|--|--|---|--|--|
| NIGHTTIME | Gr (nm) |         |         |         |  |  |  |  |   |  |  |
| NIG       | R (nm)  |         |         |         |  |  |  |  |   |  |  |
|           | D (nm)  | 5.0 (1) | 5.1 (2) | 5.2 (3) |  |  |  |  |   |  |  |
| DAYTIME   | Gr (nm) | 1,5 (1) | 1.6 (2) | 2.1 (3) |  |  |  |  |   |  |  |
| 0         | R (nm)  | 4.8     | 4.8     | 4.7     |  |  |  |  |   |  |  |
|           | LOP     | CF/CH   | CF/FH   | СН/ЕН   |  |  |  |  |   |  |  |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-20

10.2 kHz OMEGA ACCURACY SUMMARY; MONROVIA, LIBERIA; SUMMER

|           |          |         |         |         | <br> | <br> | <br> | <br> |   | <br> |  |
|-----------|----------|---------|---------|---------|------|------|------|------|---|------|--|
|           | D (ուπ)  | 3.1 (1) | 3.2 (2) | 3.1 (1) |      |      |      |      |   |      |  |
| NIGHTTIME | و د (um) | 1.0 (1) | 1.2 (2) | 1.0 (1) |      |      |      |      |   |      |  |
|           | R (nm)   | 2.9     | 2.9     | 2.9     |      |      |      |      |   |      |  |
|           | D (nm)   | 2.3 (1) | 2.3 (1) | 2.3 (1) |      |      |      |      |   |      |  |
| DAYTIME   | Gr (nm)  | 0.3 (1) | 0.3 (1) | 0.3 (1) |      |      |      |      | Ī |      |  |
|           | R (nm)   | 2.3     | 2.3     | 2.3     |      |      |      |      |   |      |  |
| ac        | PAIRS    | AE/AF   | AE/LF   | AF/EF   |      |      |      |      |   |      |  |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-21

10.2 kHz OMEGA ACCURACY SUMMARY; MONROVIA, LIBERIA; WINTER

|           |         | 7       | 1       |         | <br> |  |  | 7 | <br> |  | $\neg$ |
|-----------|---------|---------|---------|---------|------|--|--|---|------|--|--------|
|           | D (nm)  | 1.6 (2) | 1.6 (2) | 1.5 (1) |      |  |  |   |      |  |        |
| NIGHTTIME | Sr (nm) | 0.9 (2) | 0.9 (2) | 0.8 (1) |      |  |  |   |      |  |        |
|           | R (nm)  | 1.3     | 1.3     | 1.3     |      |  |  |   |      |  |        |
|           | D (nm)  | 1.6 (1) | 1.7 (2) | 2.0 (3) |      |  |  |   |      |  |        |
| DAYTIME   | Gr (nm) | 0.5 (2) | 0.4 (1) | 0 4 (1) |      |  |  |   |      |  |        |
|           | R (nm)  | 1.5     | 1.6     | 1.9     |      |  |  |   |      |  |        |
|           | LOP     | AE/AF   | AE/EF   | AF/EF   |      |  |  |   |      |  |        |

R = FIX BIAS ERROR

G r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

D-23

*U*-2

TABLE D-22

10.2 kHz OMEGA ACCURACY SUMMARY, NATAL, BRAZIL; WINTER

5646

| ac    |        | DAYTIME  |          |        | NIGHTTIME |           |
|-------|--------|----------|----------|--------|-----------|-----------|
| PAIRS | R (nm) | Gr (nm)  | D (nm)   | R (nm) | و ( (um   | D (nm)    |
| AD/AE |        |          |          | 4.8    | 1.8 (4)   | 5.1 (5)   |
| AD/BF | 2.6    | 2.6 (3)  | 3,7 (3)  | 5.4    | 3.3 (8)   | 6.3 (7)   |
| AD/CD | 7.8    | 6.7 (5)  | 10.2 (5) | 4.7    | 4.9 (9)   | 6.8 (8)   |
| AU/UF | 0.5    | 1.6 (2)  | 1.7 (2)  | 4.7    | 1.5 (3)   | 5.0 (4)   |
| AD/EF |        |          |          | 39.5   | 14.3 (11) | 42.0 (10) |
|       |        |          |          |        |           |           |
| AE/CD |        |          |          | 4.4    | 2.4 (6)   | 5.0 (4)   |
| AE/DF |        |          |          | 2.8    | 2.2 (5)   | 3.5 (3)   |
| AE/EF |        |          |          | 1.3    | 1.3 (2)   | 1.9 (2)   |
| BF/CD | 33.2   | 14.9 (6) | 36.4 (6) |        |           |           |
| BF/DF | 1.1    | 0.7 (1)  | 1.3 (1)  |        |           |           |
|       |        |          |          |        |           |           |
| CD/DF | 9.0    | 4.4 (4)  | 10.1 (4) | 5.0    | 2.5 (7)   | 5.6 (6)   |
| CD/EF |        |          |          | 7.4    | 5.3 (10)  | 9.1 (9)   |
| DF/EF |        |          |          | 1.1    | 1.2 (1)   | 1.6 (1)   |
|       |        |          |          |        |           |           |

R = FIX BIAS ERROR

fr = STANDARD DEVIATION OF RADIAL ERROR
D = TOTAL FIX ERROR
( ) = RANK

ABLE D-23

10.2 kHz OMEGA ACCURACY SUMMARY; NEA MAKRI, GREECE; SUMMER

|           | D (nm)  |         | 2.0 (1) |         |         | 5.7 (2) |  |  |  |   |  |
|-----------|---------|---------|---------|---------|---------|---------|--|--|--|---|--|
| NIGHTTIME | Gr (nm) |         | 0.6 (1) |         |         | 0.8 (2) |  |  |  |   |  |
|           | R (nm)  |         | 1.8     |         |         | 5.6     |  |  |  | • |  |
|           | D (nm)  | 1.6 (5) | 0.6 (1) | 0.9 (2) | 1.0 (3) | 1.5 (4) |  |  |  |   |  |
| DAYTIME   | Gr (nm) | 0.1 (1) | 0.4 (4) | 0.2 (2) | 0.3 (3) | 0.6 (5) |  |  |  |   |  |
|           | R (nm)  | 1.6     | 0.5     | 0.9     | 6.9     | 1.3     |  |  |  |   |  |
|           | SUVA I  | AB/AE   | AB/BH   | AE/AF   | AL/BH   | ÀF/BH   |  |  |  |   |  |

R = FIX BIAS ERBUR

G r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

D-25

D-24 TABLE

10.2 kHz OMEGA ACCURACY SUMMARY; NEA MAKRI, GREECE; WINTER

|           | D (nm)  | -       | 2.1 (1) |         |         | 3.2 (2) |  |   |  |   |  |   |
|-----------|---------|---------|---------|---------|---------|---------|--|---|--|---|--|---|
| NIGHTTIME | Gr (nm) |         | 0.8 (2) |         |         | 0.7 (1) |  | • |  |   |  |   |
|           | R (nm)  |         | 2.0     |         |         | 3.1     |  |   |  | • |  |   |
|           | D (nm)  | 1.3 (4) | 1.3 (4) | 0.8 (2) | 0.6 (1) | 1.0 (3) |  |   |  |   |  | A |
| DAYTIME   | Gr (nm) | 0.6 (2) | 0.6 (2) | 0.7 (3) | 0.5 (1) | 0.9 (4) |  |   |  |   |  |   |
|           | R (nm)  | 1.2     | 1.1     | 0.5     | 0.3     | 0.2     |  |   |  |   |  |   |
|           | LOP LOP | AD /AE  | AB/AB   | AE/AF   | AE/BH   | AF/BH   |  |   |  |   |  |   |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

fABLE D-25

10.2 kHz OMEGA ACCURACY SUMMARY; PANAMA; SUMMER

|           | D (nm)  | -       | 4.3 (1) | ·       |         |         |         |  |  |  |   |  |
|-----------|---------|---------|---------|---------|---------|---------|---------|--|--|--|---|--|
| NIGHTTIME | Gr (nm) |         | 1.5 (1) |         |         |         |         |  |  |  |   |  |
|           | R (nm)  |         | 4.1     |         |         |         |         |  |  |  | • |  |
|           | D (nm)  | 3.3 (5) | 2.7 (3) | 2.2 (1) | 2.7 (3) | 2.4 (2) | 2.9 (4) |  |  |  |   |  |
| DAYTIME   | Gr (nm) | 0.9 (3) | 0.9 (3) | 0.7 (2) | 0.4 (1) | 1.1 (4) | 0.4 (1) |  |  |  |   |  |
|           | R (nm)  | 3.2     | 2.5     | 2.1     | 2.7     | 2.1     | 2.8     |  |  |  |   |  |
|           | LOP     | An Zan  | AD/CD   | AD/CF   | BD/CD   | BD/CF   | CD/CF   |  |  |  |   |  |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANY.

erbeneraren beren besen erren erak besteuren erak besteuren besteuren besteuren besteuren besteuren besteuren b

5646

TABLE D-26 10.2 kHz OMEGA ACCURACY SUMMARY; PANAMA; WINTER

|           | D (nm)  | 5.0 (1) |       |       |  |  |  |  |   |  |   |
|-----------|---------|---------|-------|-------|--|--|--|--|---|--|---|
| NIGHTTIME | Gr (nm) | 2.1 (1) |       |       |  |  |  |  |   |  |   |
|           | R (nm)  | 4.5     |       |       |  |  |  |  | • |  |   |
|           | D (nm)  |         |       |       |  |  |  |  |   |  |   |
| DAYTIME   | Gr (nm) |         |       |       |  |  |  |  |   |  |   |
|           | R (nm)  |         |       |       |  |  |  |  |   |  |   |
|           | PAIRS   | 00/00   | AD/CF | CP/CF |  |  |  |  |   |  | L |

R = FIX BIAS ERROR

G't = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

{ } = RANK

TABLE D-27

10.2 kHz OMEGA ACCURACY SUMMARY, PIARCO, TRINIDAD; SUMMER

5646

(1)(2) (2) 5.0 5.1 5.1 D (nm) 1.6(1) 2.0 (3) 1.9 (2) Gr (nm) NIGHTTIME R (nm) 4.7 4.7 4.7 2.1 (2) 3.8 (4) (3) 3.8 (4) 3.9 (5) 1.3 (1) D (nm) (3) (2) (2) 4 Gr (mm) 1.2 0.4 0.5 0.5 DAYTIME 3.5 3.0 2.1 3.7 1.2 R (nm) AD/BD AC/AD AC/BD AC/CD AD/CD BD/CD PAIRS 1 OP

R = FIX BIAS ERROR

© r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROA

( ) = RANK

r-29

TABLE D-28

10.2 kHz OMEGA ACCURACY SUMMARY; PIARCO, TRINIDAD; WINTER

|           | D (nm)  | -       |  |  |  |  |  |   |  |
|-----------|---------|---------|--|--|--|--|--|---|--|
| NIGHTTIME | Gr (nm) |         |  |  |  |  |  |   |  |
|           | R (nm)  |         |  |  |  |  |  | • |  |
|           | D (nm)  | 6.5 (1) |  |  |  |  |  |   |  |
| DAYTIME   | Or (nm) | 0.9 (1) |  |  |  |  |  |   |  |
|           | R (nm)  | 6.5     |  |  |  |  |  |   |  |
|           | PAIRS   | BD/CD   |  |  |  |  |  |   |  |

R = FIX BIAS ERROR

Gr = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

D-30

TABLE D-29

10.2 kHz OMEGA ACC'IRACY SUMMARY; PORTSMOUTH, VA.; WINTER

|           | Y       | ·       |         | · ·     |         |         |         | <del></del> |         | <del></del> | <br> | <br>_ | <br> |
|-----------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|-------------|------|-------|------|
|           | D (nm)  | _       |         |         | 6.9 (3) | 7.3 (5) | 3.2 (1) | 7.1 (4)     | 3.7 (2) | 8.1 (6)     |      |       |      |
| NIGHTTIME | Gr (nm) |         |         |         | 5.0 (6) | 4.5 (5) | 1.0 (1) | 4.3 (4)     | 1.1 (2) | 2.9 (3)     |      |       |      |
|           | R (nm)  |         |         |         | 4.8     | 5.7     | 3.0     | 5.6         | 3.5     | 7.6         |      |       |      |
|           | D (ոու) | 3.6 (3) | 3.8 (4) | 4.4 (5) | 4.9 (7) | 4.7 (6) | 1.9 (2) | 4.9 (8)     | 1.6 (1) | 5.1 (9)     |      |       |      |
| DAYTIME   | Gr (nm) | 1.1 (2) | 1.4 (3) | 3.0 (5) | 4.1 (8) | 3.6 (6) | 0.9 (1) | 3.9 (7)     | 1.1 (2) | 2.8 (4)     |      |       |      |
|           | R (nm)  | 3.4     | 3.5     | 3.3     | 2.8     | 3.1     | 1.7     | 3.1         | 1,2     | 4.2         |      |       |      |
| a c       | PAIRS   | AB/AC   | AB/AD   | AB/CD   | AC/AD   | AC/CD   | AC/DF   | AD/CD       | AD/DF   | CD/DF       |      |       |      |

R = FIX BIAS ERROR

Gr = STANDARD DEV'ATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-30

10.2 kHz OMUGA ACCURACY SUMMARY; SABANA SECA, P.R.; SUMMER

| Ā         | n) D (nm)      | (1) 4.7 (3) |           | (2) 3.3 (1) | (6) 15.4 (6) | (3) 3.5 (2) | (4) 6.9 (5) |  |  |  |  |  |
|-----------|----------------|-------------|-----------|-------------|--------------|-------------|-------------|--|--|--|--|--|
| NIGHTTIME | R (nm) Gr (nm) | 4.7 0.5 (1) | 5.2 1.6   | 3.3 0.6 (2) | .8 2.0 (6)   | 3.5 0.7 (3) | 6.8 1.2 (4) |  |  |  |  |  |
|           |                |             |           |             | 5.1 (6) 15.8 |             |             |  |  |  |  |  |
| E         | nm) D (nm)     | (2) 0.9 (2) | (4)       | (1)         | (5)          | (2)         | (3) 2.6 (4) |  |  |  |  |  |
| DAYTIME   | n) Gr (nm)     |             | 1.1       | 0.3         | 1.6          | 0.4         | 9.0         |  |  |  |  |  |
| 10p       | PAIRS R (nm)   | 0.8 0.8     | AC/CD 3.2 | AC/DF 0.9   | AF/C) 4.8    | AF/DF 0.5   | CD/UF 2.5   |  |  |  |  |  |

R = FIX BIAS ERROR

G r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-31

10.2 kHz OMEGA ACCURACY SUMMARY; SABANA SECA, P.R.; WINTER

| 9    |  |
|------|--|
| 5646 |  |
|      |  |
|      |  |
|      |  |

\*\*

| LONG         H (tum)         G τ (tum)         D (tum)         B (tum)         G τ (tum)         D (tum)         D (tum)         D (tum)           AC/ADD         5.4         3.6 (10)         6.4 (10)         7.4         2.7 (6)         7.9 (6)           AC/ADF         3.7         1. (*)         3.9 (7)         4.9         9.9 (2)         5.0 (4)           AC/ADF         7.7         2. *         4.9 (9)         3.1         0.9 (2)         5.0 (4)           AC/ADF         7.7         2. *         4.9 (9)         3.1         0.9 (2)         5.0 (4)           AC/ADF         3.7         0.7 (*)         4.9 (9)         3.1         0.9 (2)         5.0 (4)           AC/ADF         3.7         0.7 (*)         4.9 (9)         3.1         0.8 (1)         3.2 (1)           AD/AP         2.5         1.4 (7)         4.9 (8)         3.1         0.9 (2)         3.3 (1)           AD/DE         2.6         1.4 (7)         4.7 (8)         3.1         0.9 (2)         3.1 (5)           AF/DE         1.4 (7)         4.7 (8)         3.1         0.9 (2)         3.1 (1)           AF/DE         1.0 (8)         1.0 (8)         1.2 (4)         3.1 (4)         3.1 (4)     <                                                                                               | 90.   |        | DAYTIME  |           |        | NIGHTTIME |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|----------|-----------|--------|-----------|----------|
| 5.4         3.6 (10)         6.4 (10)         7.4         2.7 (6)         7.9           3.7         1. (*)         3.9 (7)         4.9         0.9 (2)         5.0           4.9         3.7         1. (*)         4.9 (9)         0.9 (2)         5.0           7.7         2. (*)         4.9 (9)         3.1         0.9 (2)         5.0           7.7         2. (*)         3.7 (6)         3.1         0.8 (1)         3.2           8.2         1.4 (7)         2.8 (5)         3.2         0.9 (2)         3.3           9.45         1.4 (7)         4.7 (8)         4.6         0.9 (2)         3.3           9.72         3.1 (9)         7.8 (12)         4.6         0.9 (2)         3.2           9.72         1.0 (5)         2.7 (4)         3.1         0.9 (2)         3.2           9.80         1.2 (1)         1.5 (2)         2.2 (4)         5.1           9.80         1.0 (5)         2.3 (3)         3.2         0.9 (2)         3.3           9.80         1.0 (5)         2.3 (3)         3.2         0.9 (2)         3.3           9.80         0.3 (1)         0.4 (1)         0.9 (2)         0.9 (2)         3.3                                                                                                                                                         | PAIRS | R (nm) | Gr (nm)  | D (nm)    | R (nm) | Gr (nm)   | D (nm)   |
| 3.7 $1.$ $(.)$ $3.9$ $(7)$ $4.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$ $6.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC/AD | 5.4    | 3.6 (10) | 6.4 (10)  | 7.4    | 2.7 (6)   | 7.9 (6)  |
| 4.9         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.)         (.) <td>AC/AF</td> <td>3.7</td> <td></td> <td>3.9 (7)</td> <td>4.9</td> <td>0.9 (2)</td> <td>5.0 (4)</td> | AC/AF | 3.7    |          | 3.9 (7)   | 4.9    | 0.9 (2)   | 5.0 (4)  |
| 7.7         2. ±         8.2 (13)         3.5         7.4 (5)         4.2           3.7         0.7 (5)         3.7 (6)         3.1         0.8 (1)         3.2           4.5         1.4 (7)         2.8 (5)         3.2         0.9 (2)         3.3           4.5         1.4 (7)         4.7 (8)         4.6         0.9 (2)         3.3           7.2         3.1 (9)         7.8 (12)         4.6         2.2 (4)         5.1           1.4         0.8 (3)         1.5 (2)         0.9 (2)         3.2           12.7         4.6 (11)         13.5 (14)         18.3         0.9 (2)         3.3           2.1         1.0 (5)         2.3 (3)         3.2         0.9 (2)         3.3           6.7         1.0 (5)         6.8 (11)         0.9 (2)         3.3           0.3         0.3 (1)         0.4 (1)         8.0         1.3 (3)         8.2                                                                                                                                                                                                                                                                                                                                                                                                                                            | AC/BL | 4.9    | (·) (·)  | 4.9 (9)   |        |           |          |
| 3.7         0.7 (§ -1)         3.7 (6)         3.1         0.8 (1)         3.2           2.5         1.4 (7)         2.8 (5)         3.2         0.9 (2)         3.3           4.5         1.4 (7)         4.7 (8)         4.6         0.9 (2)         3.3           2.6         1.0 (5)         2.7 (4)         3.1         0.9 (2)         3.2           1.4         0.8 (3)         1.5 (2)         3.1         0.9 (2)         3.3           12.7         4.6 (11)         13.5 (14)         13.3         3.2         0.9 (2)         18.5           2.1         1.0 (5)         2.3 (3)         3.2         0.9 (2)         3.3           6.7         1.0 (5)         6.8 (11)         0.9 (2)         3.3           0.3         0.3 (1)         0.4 (1)         8.0         1.3 (3)         8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC/CD | 7.7    |          | 8.2 (13)  | 3.5    | 2.4 (5)   | 4.2 (3)  |
| 2.5         1.4 (7)         2.8 (5)         3.2         0.9 (2)         3.3           4.5         1.4 (7)         4.7 (8)         6.9 (2)         7.8 (12)         4.6         7.2 (4)         5.1           2.6         1.0 (5)         2.7 (4)         3.1         0.9 (2)         3.2           1.4         0.8 (3)         1.5 (2)         0.9 (2)         3.2           12.7         4.6 (11)         13.5 (14)         13.3         3.0 (6)         18.5           2.1         1.0 (5)         2.3 (3)         3.2         0.9 (2)         3.3           6.7         1.0 (5)         6.8 (11)         0.9 (2)         3.3           0.3         0.3 (1)         0.4 (1)         8.0         1.3 (3)         8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC/DF | 3.7    | •        | 3.7 (6)   | 3.1    | 0.8 (1)   | 3.2 (1)  |
| 4.5       1.4 (7)       4.7 (8)       4.6       2.2 (4)       5.1         7.2       3.1 (9)       7.8 (12)       4.6       0.9 (2)       3.2         1.4       0.8 (3)       1.5 (2)       0.9 (2)       3.2         12.7       4.6 (11)       13.5 (14)       18.3       3.0 (6)       18.5         2.1       1.0 (5)       2.3 (3)       3.2       0.9 (2)       3.3         6.7       1.0 (5)       6.8 (11)       0.9 (2)       3.3         0.3       0.3 (1)       0.4 (1)       8.0       1.3 (3)       8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AD/AF | 2.5    | 1.4 (7)  | 2.8 (5)   | 3.2    |           | 3.3 (2)  |
| 7.2       3.1       (9)       7.8       (12)       4.6       2.2       (4)       5.1       5.2       (4)       3.1       0.9       (2)       3.2         1.4       0.8       (3)       1.5       (2)       1.5       (2)       1.0       (6)       1.0       (6)       1.0       (6)       1.0       (6)       1.0       (6)       1.0       (7)       1.0       (6)       1.0       (7)       1.0       (7)       1.0       (6)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (7)       1.0       (8)       1.0       (6)       1.0       (7)       1.0       (7)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0       (8)       1.0                                                                                                                                                                                                                    | d8/GK | 4.5    | 1.4 (7)  | 4.7 (8)   |        |           |          |
| 2.6       1.0 (5)       2.7 (4)       3.1       0.9 (2)         1.4       0.8 (3)       1.5 (2)       3.0 (6)       1         12.7       4.6 (11)       13.5 (14)       13.3       3.0 (6)       1         2.1       1.0 (5)       6.8 (11)       0.9 (2)       0.9 (2)         6.7       1.0 (5)       6.8 (11)       0.9 (2)       0.9 (2)         0.3       0.3 (1)       0.4 (1)       8.0       1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD/CD | 7.2    | 3.1 (9)  | 7.8 (12)  | 4.6    | 2.2 (4)   |          |
| 1.4       0.8 (3)       1.5 (2)       13.3       3.0 (6)       1         2.1       1.0 (5)       2.3 (3)       3.2       0.9 (2)         6.7       1.0 (5)       6.8 (11)       0.4 (1)       0.4 (1)         0.3       0.3 (1)       0.4 (1)       8.0       1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AD/DF | 2.6    | 1.0 (5)  | 2.7 (4)   | 3.1    | 0.9 (2)   | 3.2 (1)  |
| 12.7       4.6 (11)       13.5 (14)       18.3       3.0 (6)       1         2.1       1.0 (5)       2.3 (3)       3.2       0.9 (2)         6.7       1.0 (5)       6.8 (11)       6.8 (11)         0.3       0.3 (1)       0.4 (1)       8.0       1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AF/BD | 1.4    | 0.8 (3)  | 1.5 (2)   |        |           |          |
| 2.1       1.0 (5)       2.3 (3)       3.2       0.9 (2)         6.7       1.0 (5)       6.8 (11)       6.8 (11)         0.3       0.3 (1)       0.4 (1)       8.0       1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AF/CD | 12.7   | 4.6 (11) | 13.5 (14) | 13.3   | 3.0 (6)   | 18.5 (8) |
| 6.7     1.0 (5)     6.8 (11)       0.3     0.3 (1)     0.4 (1)       7.7     1.1 (6)     7.8 (12)     8.0     1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AF/DF | 2.1    | 1.0 (5)  | 2.3 (3)   | 3.2    | 0.9 (2)   | 3.3 (2)  |
| 0.3     0.3 (1)     0.4 (1)       7.7     1.1 (6)     7.8 (12)     8.0     1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DD/CD | 6.7    | 1.0 (5)  | 6.8 (11)  |        |           |          |
| 7.7 1.1 (6) 7.8 (12) 8.0 1.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BD/DF | 0.3    | 0.3 (1)  | 0.4 (1)   |        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CD/DF | 7.7    | 1.1 (6)  | 7.8 (12)  | 8.0    | 1.3 (3)   | 8.2 (7)  |

R = FIX BIAS ERROR

① r = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK

TABLE D-32

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

The Name of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contr

10.2 kHz OMEGA ACCUPACY SUMMARY, ST. ANTHONY, NFLD; SUMMER

|        |        | DAYTIME |         |        | NIGHTTIME |         |
|--------|--------|---------|---------|--------|-----------|---------|
| LOP    | R (nm) | Gr (nm) | D (nm)  | R (nm) | մ։ (ոm)   | D (nm)  |
| AB/AC  | 0.1    | 1.3 (3) | 1.3 (2) |        |           |         |
| AB/AD  | 9.0    | 7 1     | 0.7 (1) |        |           |         |
| AR/CF  | 1.0    | 3.7 (5) | 3.8 (4) |        |           |         |
| GV/. ' | 3.4    | 5.7 (6) | 6.7 (5) | 1.0    | 4.2 (3)   | 4.3 (3) |
| AC/CF  | 0.3    | 1.6 (4) | 1.6 (3) | 3.8    | 1.2 (2)   | 4.0 (2) |
| AD/CF  | 9.0    | 1.2 (2) | 1.3 (2) | 3.7    | 1.0 (1)   | 3.8 (1) |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |
|        |        |         |         |        |           |         |

R - FIX BIAS ERROR

f. = STANDARD DEVIATION OF RADIAL ERHORD = TOTAL FIX ERROR( ) = RANK

TABLE D-33

10.2 kHz OMEGA ACCURACY SUMMARY; ST. ANTHONY, NFLD.; WINTER

|           |         |         | 1       |         |   | 1 |  |  | -1 | 1 | <br> | _ |
|-----------|---------|---------|---------|---------|---|---|--|--|----|---|------|---|
|           | D (nm)  | 5.7 (2) | 4.1 (1) | 4.1 (1) |   |   |  |  |    |   |      |   |
| NIGHTTIME | ود (nm) | 3.4 (2) | 0.7 (1) | 0.7 (1) |   |   |  |  |    |   |      |   |
|           | R (nm)  | 4.5     | 4.1     | 4.1     |   | : |  |  |    |   |      |   |
|           | D (nm)  |         |         |         |   |   |  |  |    |   |      |   |
| DAYTIME   | Gr (nm) |         |         |         |   |   |  |  |    |   |      |   |
|           | R (nm)  |         |         |         |   |   |  |  |    |   |      |   |
|           | PAIRS   | AC/AD   | A . F   | AD/ :F  | - |   |  |  |    |   |      |   |

R = FIX BIAS ERROR G'r = STANDARD DEVIATION OF RADIAL ERROR D ~ TOTAL FIX ERROR

( ) # RANK

TABLE D-34

and a second beautiful and a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s

10.2 kHz OMEGA ACCURACY SUMMARY; VILA NOVA, AZORES; SUMMER

| MITTHON |         | R (nm) Gr (nm) D (nm) | 8.4 0.9 (3) 8.4 (4) | 1.5 0.8 (2) 1.7 (1) | 23.3 2.8 (5) 23.5 (6) | 3.1 0.6 (1) 3.2 (2) | 4.3 0.8 (2) 4.3 (3) | 10.1 1.1 (4) 10.2 (5) |  |  |  |  |  |
|---------|---------|-----------------------|---------------------|---------------------|-----------------------|---------------------|---------------------|-----------------------|--|--|--|--|--|
|         |         | D (nm)                | 2.0 (4)             |                     |                       |                     |                     |                       |  |  |  |  |  |
|         | DAYFEME | Gr (nm)               | 0.4 (2)             | 0.3 (1)             | 1.3 (4)               | 0.3 (1)             | 0.4 (2)             | 0.5 (3)               |  |  |  |  |  |
|         |         | R (mm)                | 2.0                 | 0.7                 | 3.5                   | 1.1                 | 0.6                 | 2.4                   |  |  |  |  |  |
| 1       | a C     | PAIRS                 | 7 V O V             | AB/AR               | AB/BM                 | AF/BD               | AF /OF              | BD/DF                 |  |  |  |  |  |

Or = STANDARD DEVIATION OF RADIAL ERROR
D = TOTAL FIX ERROR
( ) = RANK R = FIX BIAS ERROR

ABLE D-35

10.2 kHz OMEGA ACCURACY SUMMARY; VILA NOVA, AZORES; WINTER

5346

| NIGHTTIME | D (nm) Gr (nm) O (nm) | 1,1 (2) 2,2 0,7 (1) 2,3 (1) | 2.2 0.7 (1) | 1.1 (2) 2.2 C.8 (2) 2.3 (1) |  |  |  |  | • |  |
|-----------|-----------------------|-----------------------------|-------------|-----------------------------|--|--|--|--|---|--|
| DAYTIME   | Gr (nm)               | 0.6 (2)                     | 0.5 (1)     |                             |  |  |  |  |   |  |
| DAY       | R (nm)                | 6.0                         | 6.0         | 6.0                         |  |  |  |  |   |  |
| (         | LOP                   | AR/An                       | AB/BD       | AD/BD                       |  |  |  |  |   |  |

f = STANDARD DEVIATION OF RADIAL ERROR
D = TOTAL FIX ERROR R - FIX BIAS ERROR

( ) - RANK

TABLE D-36

10.2 KHZ OMEGA ACCURACY SUMMARY, WASHINGTON, D.C.; SUMMER

| 90     |                                         | DAYTIME |         |        | NIGHTTIME |         |
|--------|-----------------------------------------|---------|---------|--------|-----------|---------|
| PAIRS  | R (r.m)                                 | Gr (nm) | D (nm)  | R (nm) | Gr (nm)   | D (ուռ) |
| AB/AC  | 0.4                                     | 0.5 (2) | 0.8 (2) |        |           | -       |
| AB/AD  | 0.3                                     | 0.6 (2) | 0.7 (1) |        |           |         |
| AB/CD  | 2.1                                     | 1.6 (5) | 2.7 (7) |        |           |         |
| AB/DF  | 3.3                                     | 3.4 (7) | 4.8 (9) |        |           |         |
| AC /AD | 6.3                                     | 1.9 (6) | 3.5 (8) | 3.3    | 2.4 (4)   | 4.1 (5) |
| d3/~ / | 1.7                                     | 1.5 (4) | 2.3 (4) | 3.3    | 2.2 (3)   | 4.0 (4) |
| AC/Dr  | 7.0                                     | 0.4 (1) | 0.8 (2) | 0.5    | 1,1 (1)   | 1.2 (1) |
| Al'/CD | 1.9                                     | 1.5 (4) | 2.4 (5) | 3.3    | 2.0 (2)   | 3.9 (3) |
| AD/DF  | 0.8                                     | 0.4 (1) | (٤) 6.0 | 8*0    | 1.1 (1)   | 1.4 (2) |
| CD/DF  | 5.3                                     | 0.9 (3) | 2.5 (6) | 2.4    | 4.1 (5)   | 4,7 (6) |
|        |                                         |         |         |        |           |         |
|        |                                         |         |         |        |           |         |
|        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |         | •      |           |         |
|        |                                         |         |         |        |           |         |
|        |                                         |         |         |        |           |         |

R = FIX BIAS ERROR

© r = STANDARD DEV'A";ON OF RADIAL ERROR

D = TOTAL FIX ERR.JR

( ) = RANK

• 7

D-37 TABLE

10.2 KHZ OMEGA ACCURACY SUMMARY; WASHINGTON, D.C.; WINTER

| aO I   |        | DAYTIME |          |        | NIGHTTIME |         |
|--------|--------|---------|----------|--------|-----------|---------|
| PAIRS  | R (nm) | Tr (nm) | D (nm)   | R (nm) | Gr (nin)  | D (tam) |
| AB,'AC | 1.4    | 1.4 (3) | 2.0 (4)  |        |           | •       |
| AB/AD  | 0.6    | 1.5 (4) | 1.6 (3)  |        |           |         |
| AB/CD  | 8.6    | 4.0 (7) | 9.5 (9)  |        |           |         |
| AB/DF  | 6.1    | 7.4 (9) | 9.6 (10) |        |           |         |
| AC/AD  | 6.4    | 4.8 (8) | 8.1 (5)  | 4.6    | 4.6 (4)   | (9) 5'9 |
| AC/CD  | 8.5    | 4.0 (7) | 9.4 (8)  | 4.4    | 4.0 (3)   | 6.0 (5) |
| AC/DF  | 1.3    | 0.9 (2) | 1.5 (2)  | 0.7    | 1.4 (1)   | 1.6 (1) |
| AD/CD  | 8.2    | 3.7 (6) | 9.0 (7)  | 4.5    | 3.6 (2)   | 5.7 (4) |
| AD/DF  | 0.3    | 0.8 (1) | 0.9 (1)  | 1.4    | 1.4 (1)   | 2.0 (2) |
| CD/DF  | 8.4    | 2.0 (5) | 8.6 (6)  | 2.9    | 4.8 (5)   | 5.6 (3) |
|        |        |         |          |        |           |         |
|        |        |         |          |        |           |         |
|        |        |         |          | •      |           |         |
|        |        |         |          |        |           |         |
| :      |        |         |          |        |           |         |

R = FIX BIAS ERROR

Or = STANDARD DEVIATION OF RADIAL ERROR

D = TOTAL FIX ERROR

( ) = RANK