MATH 311 Midterm Summary

Eddie Guo October 18, 2021

1 Important Equations

Theorem 1.1. (De Moivre's theorem). $(e^{it})^n = e^{int} \Longrightarrow (\cos t + i \sin t)^n = \cos nt + i \sin nt$.

Corollary 1.2. $\cos n\theta = \Re(e^{in\theta})$ and $\sin n\theta = \Im(e^{in\theta})$.

$$e^{3i\theta} = \cos 3\theta + i\sin 3\theta = (\cos \theta + i\sin \theta)^3 = \cos^3 \theta + 3i\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i\sin^3 \theta$$

$$\Re(e^{3i\theta}) = \cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2 \theta = \cos^3 \theta - 3\cos\theta(1 - \cos^2 \theta) = 4\cos^3 \theta - 3\cos\theta$$

$$\Im(e^{3i\theta}) = \sin 3\theta = 3\cos^2\sin\theta - \sin^3\theta = 3(1-\sin^3\theta)\sin\theta - \sin^3\theta = 3\sin\theta - 4\sin^3\theta$$

Definition 1.1. (Complex logs). $\log z = \ln |z| + i \arg z = \ln |z| + i(t + 2\pi k), k \in \mathbb{Z}$. Furthermore, $z^c = e^{c \log z}$.

Theorem 1.3. (nth root). If $z^n = c$, then $z = |c|^{1/n} e^{(i \arg c)/n} = |c|^{1/n} e^{i(t+2\pi k)/n}$, k = 0, 1, ..., n-1.

Example 1.4. Compute $i^{1/3}$.

$$\begin{split} i^{1/3} &= e^{\frac{1}{3}\log i} = e^{\frac{1}{3}(\ln|i| + i\arg i)} = e^{\frac{i}{3}}(\pi/2 + 2\pi k), \quad k = 0, 1, 2 \\ \begin{cases} k &= 0: & e^{i\pi/6} = \frac{1}{2}(\sqrt{3} + i) \\ k &= 1: & e^{i5\pi/6} = \frac{1}{2}(-\sqrt{3} + i) \\ k &= 2: & e^{i3\pi/2} = -i \end{split}$$

2 Trigonometric Functions

Definition 2.1. The complex trig functions are

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cosh z = \frac{e^z + e^{-z}}{2}, \quad \sinh z = \frac{e^z - e^{-z}}{2}$$

$$\cosh z = \cos iz, \quad i \sinh z = \sin iz, \quad \tanh z = -i \tan iz, \quad \tanh iz = i \tan z$$

$$\cos z = \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$$

$$\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$$

Example 2.1. Solve for z given $\cos z = 2$.

$$\begin{split} \frac{e^{iz} + e^{-iz}}{2} &= 2 \Longrightarrow e^{2iz} - 4e^{iz} + 1 = 0 \\ e^{iz} &= \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3} \\ iz &= \log(2 \pm \sqrt{3}), \qquad \text{Note that } (2 + \sqrt{3})(2 - \sqrt{3}) = 1, \text{ so } (2 - \sqrt{3}) = (2 + \sqrt{3})^{-1} \\ z &= \pm \frac{1}{i} \log(2 + \sqrt{3}) \\ &= \pm i \log(2 + \sqrt{3}) \\ &= \pm i \left[\ln(2 + \sqrt{3}) + i \arg(2 + \sqrt{3}) \right] \\ &= \pm i \left[\ln(2 + \sqrt{3}) + i(2\pi k) \right], \quad k \in \mathbb{Z} \\ &= \pm \left[i \ln(2 + \sqrt{3}) + 2\pi k \right], \quad k \in \mathbb{Z} \end{split}$$

3 Linear Fractional Transformations (LFTs)

Definition 3.1. (LFTs). An LFT is defined as $w = w(z) = \frac{az+b}{cz+d}$ where det $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq 0$.

Corollary 3.1. Let w := 1/z. Then w takes $A(x^2 + y^2) + Bx + Cy + D = 0$ in the z-plane to $D(\mu^2 + \nu^2) + B\mu - C\nu + A = 0$ in the w-plane, where $w(z) = \mu + i\nu$.

Example 3.2. Given w := 1/z, what is $|z+1-i| = \sqrt{2}$ in the w-plane?

$$|z+1-i| = \sqrt{2} \Longrightarrow (x+1)^2 + (y-1)^2 = 2$$
$$x^2 + y^2 + 2x - 2y = 0 \Longrightarrow 2u + 2v + 1 = 0$$

Example 3.3. Given w := 1/z, what is |z - 3| = 2 in the w-plane?

$$|z - 3| = 2 \Longrightarrow (x - 3)^2 + y^2 = 4$$
$$x^2 + y^2 - 6x + 5 = 0 \Longrightarrow 5(u^2 + v^2) - 6u + 1 = 0$$
$$\left(u - \frac{3}{5}\right)^2 + v^2 = \left(\frac{2}{5}\right)^2 \Longrightarrow \left|w - \frac{3}{5}\right| = \frac{2}{5}$$

This is a circle in the w-plane centered at (-3/5,0) with radius 2/5.

Lemma 3.4. Given $T(P_1) = Q_1$, $T(P_2) = Q_2$, $T(P_3) = Q_3$, we can obtain an LFT w = w(z) by solving

$$\frac{z - P_1}{z - P_3} \left(\frac{P_2 - P_3}{P_2 - P_1} \right) = \frac{w - Q_1}{w - Q_3} \left(\frac{Q_2 - Q_3}{Q_2 - Q_1} \right)$$

Lemma 3.5. Given P_1 , P_2 , P_3 on a circle in \mathbb{C} , if $T(P_1) = 0$, $T(P_2) = 1$, $T(P_3) = \infty$, then

$$T(z) = \frac{z - P_1}{z - P_3} \left(\frac{P_2 - P_3}{P_2 - P_1} \right)$$

maps the circle to the real axis.

Theorem 3.6. Compositions of LFTs are LFTs.

Example 3.7. Consider the unit circle C = |z + i| = 1. Find an LFT which maps C to the line l given by the parametric equation $l(t) = (1 + 2i) + t(-2 + i), t \in \mathbb{R}$. Describe the region w(|z + i| < 1).

Choose 3 points on \mathcal{C} : 0, -2i, -1-i. Set T(0)=0, T(-2i)=1, $T(-1-i)=\infty$. Then the LFT is

$$T(z) = \frac{z - 0}{z - (-1 - i)} \left(\frac{-2i - (-1 - i)}{-2i - 0} \right) = \frac{z}{z + 1 + i} \left(\frac{1 - i}{-2i} \right)$$

Since $T(\mathcal{C})$ is the real axis, l(z) = (-2+i) T(z) + (1+2i).

In (x, y) coordinates, l(t) passes through (1, 2) with slope $-1/2: \frac{y-2}{x-1} = -\frac{1}{2} \Longrightarrow y = y(x) = -\frac{1}{2}x + \frac{5}{2}$. Now choose a point within \mathcal{C} , say -i.

$$T(-i) = \frac{-i}{2i+1} \left(\frac{1-i}{-2i}\right) = \frac{1-i}{4i+2} = -\frac{1}{10} - i\frac{3}{10}$$

$$w(-i) = (-2+i) \ T(-i) + (1+2i) = (-2+i) \left(-\frac{1}{10} - i\frac{3}{10}\right) + (1+2i) = \frac{3}{2} + i\frac{5}{2}$$

$$y(3/2) = -\frac{1}{2} \left(\frac{3}{2}\right) + \frac{5}{2} = \frac{7}{4} < \frac{5}{2}$$

Since w(i) is above l(t), $w(|z+i|<1)=\left\{z\in\mathbb{C}\mid\Im(z)>-\frac{1}{2}\Re(z)+\frac{5}{2}\right\}$. To find an LFT that maps l to \mathcal{C} (i.e., the inverse map), solve for z in w=(-2+i) T(z)+(1+2i).

4 Complex Differentiation

Definition 4.1. (Complex derivatives). The complex derivative is defined as $f'(z) = \mu_x + i\nu_x = \nu_y - i\mu_y$. The derivative exists \iff the Cauchy-Riemann equations exist: $\mu_x = \nu_y$, $\mu_y = -\nu_x$.

Definition 4.2. (Domains). Domains are open, connected sets. Let $D \in \mathbb{C}$ be a domain and $p \in D$ be a point. Then,

- 1. f is analytic at p if f'(z) exists at p AND in an epsilon neighbourhood around any p.
- 2. f is analytic $\forall p \in D \iff f'(z)$ is analytic $\forall z \in D$.
- 3. f is entire if f is analytic on \mathbb{C} .

Example 4.1. Let $f(z) = (xy^2 + y) + iyx^2$. Find all points $p \in \mathbb{C}$ where f'(p) exists and compute f'(p). Is f analytic at any p?

Let $\mu = xy^2$ and $\nu = yx^2$. By the CR equations.

$$\mu_x = y^2 = x^2 = \nu_y \Longrightarrow x = \pm y$$

 $\mu_y = 2xy + 1 = -2xy = -\nu_x \Longrightarrow xy = -1/4$

Therefore, $x = \pm 1/2$ and $y = \mp 1/2$, which means $p = \{\frac{1}{2}(1-i), \frac{1}{2}(-1+i)\}$.

$$f'(p) = \mu_x(p) + i\nu_x(p) = y^2 + i(2xy)|_p = \frac{1}{4} - \frac{i}{2}$$

f is nowhere analytic as f' does not exist on any neighbourhood around p.

Example 4.2. Find all points where $f(z) = \frac{\cot z}{z^4 + 16}$ is analytic.

$$f(z) = \frac{\cos z}{\sin z(z^4 + 16)}$$

Since $\cos z$, $\sin z$, and $z^4 + 16$ are entire, f is analytic except when the denominator is 0.

$$\sin z = 0 \Longrightarrow z = k\pi, \quad k \in \mathbb{Z}$$

 $z^4 + 16 = 0 \Longrightarrow z = (-16)^{1/4} = 2e^{i(2m+1)\pi/4}, \quad m = 0, 1, 2, 3$

Thus, f is analytic where $\{z\in\mathbb{C}\}\setminus\{k\pi,\ 2e^{i\pi/4},\ 2e^{i3\pi/4},\ 2e^{5\pi/4},\ 2e^{i7\pi/4}\},\ k\in\mathbb{Z}.$

Example 4.3. Let $f(z) = \mu + i\nu$ be an entire function satisfying $A\mu + B\nu + C = 0$, where $z \in \mathbb{C}$, $A, B, C \in \mathbb{R}$, and $(A, B) \neq (0, 0)$. Show that $f \in \mathbb{C}$ is a constant function.

$$\begin{vmatrix} A\mu_x + B\nu_x = 0 \\ A\mu_y + B\nu_y = 0 \end{vmatrix} \Longrightarrow \begin{bmatrix} \mu_x & \nu_x \\ \mu_y & \nu_y \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Longrightarrow \det \begin{bmatrix} \mu_x & \nu_x \\ \mu_y & \nu_y \end{bmatrix} = \det \begin{bmatrix} \mu_x & -\mu_y \\ \mu_y & \mu_x \end{bmatrix} = \mu_x^2 + \mu_y^2 = \nu_y^2 + \nu_x^2 = 0$$

By the CR equations. $\nabla \mu = \nabla \nu = 0$ implies $\mu, \nu \in \mathbb{R}$. Therefore, $f(z) = \mu + i\nu$ is a constant function.

Example 4.4. Let $f(z) = \mu + i\nu$ be an entire function satisfying $\nu = \mu^2$. Show that $f(z) \in \mathbb{C}$ is a constant function.

$$\begin{aligned}
\nu_x &= 2\mu\mu_x \Longrightarrow \nu_x - 2\mu\mu_x = 0 \\
\nu_y &= 2\mu\mu_y \Longrightarrow \nu_y - 2\mu\mu_y = 0
\end{aligned}
\Longrightarrow
\begin{bmatrix}
\nu_x & \mu_x \\
\nu_y & \mu_y
\end{bmatrix}
\begin{bmatrix}
1 \\
-2\mu
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\det
\begin{bmatrix}
\mu_x & \nu_x \\
\mu_y & \nu_y
\end{bmatrix} = \det
\begin{bmatrix}
\mu_x & -\mu_y \\
\mu_y & \mu_x
\end{bmatrix} = \mu_x^2 + \mu_y^2 = \nu_y^2 + \nu_x^2 = 0$$

By the CR equations. $\nabla \mu = \nabla \nu = 0$ implies $\mu, \nu \in \mathbb{R}$. Therefore, $f(z) = \mu + i\nu$ is a constant function.

5 Important Examples

Example 5.1.
$$i^{72} - 3i^{81} + 5 = (-1)^{36} - 3(-1)^{40}i + 5 = 6 - 3i^{40}i + 5 =$$

Example 5.2.
$$(1-\sqrt{3}i)^{-5}=(2e^{-i\pi/3})^{-5}=2^{-5}e^{i5\pi/3}=2^{-5}\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)$$

Example 5.3.
$$\left| \frac{(3+i)^{20}}{(2-i)^3} \right| = \frac{|3+i|^{20}}{|2-i|^3} = \frac{10^{20/2}}{5^{3/2}} = \frac{10^{10}}{5\sqrt{5}}$$

Example 5.4. Let the roots of the equation $(z+1)^5+z^5=0$ be $z_k,\ k=0,1,\ldots,4$. Show that $\Re(z_k)=-1/2$.

$$(z+1)^5 + z^5 = 0 \Longrightarrow \left(-\frac{z+1}{z}\right)^5 = \left(-1 - \frac{1}{z}\right)^5 = 1$$

$$-\left(1 + \frac{1}{z}\right) = e^{i(2k\pi/5)}, \quad k = 0, 1, \dots, 4 \Longrightarrow z_k = -\frac{1}{1 + e^{i\lambda k}}, \quad \lambda = 2\pi/5$$

$$= -\frac{1}{1 + \cos\lambda k + i\sin\lambda k} = -\frac{(1 + \cos\lambda k) - i\sin\lambda k}{2(1 + \cos\lambda k)} = -\frac{1}{2} + \frac{i\sin\lambda k}{2(1 + \cos\lambda k)}$$

Therefore, $\Re(z_k) = -1/2$ for $k = 0, 1, \dots, 4$, which lies on the line x = -1/2.

Example 5.5. Express the complex number $z = \cos(\pi(1+i))$ in the form a+ib, where $a,b \in \mathbb{R}$.

$$\cos(\pi(1+i)) = \cos(\pi + i\pi) = \cos\pi \cos i\pi - \sin\pi \sin i\pi$$
$$= \cos\pi \cosh\pi - i\sin\pi \sinh\pi$$
$$= -\cosh\pi$$
$$= -\frac{e^{\pi} + e^{-\pi}}{2}$$

Example 5.6. $|z|^i = |e^{i \log 2}| = |e^{i(\ln 2 + i \arg 2)}| = |e^{i \ln 2}e^{-2\pi k}| = e^{-2\pi k}, \quad k \in \mathbb{Z}$

Example 5.7. Compute $\Re \left[(1 - i\sqrt{3})^{3i} \right]$.

$$(1 - i\sqrt{3})^{3i} = e^{3i\log(1 - i\sqrt{3})} = e^{3i\left[\ln 2 + i\left(-\frac{\pi}{3} + 2\pi k\right)\right]} = e^{3i\ln 2}e^{-3\left(-\frac{\pi}{3} + 2\pi k\right)}, \quad k \in \mathbb{Z}$$
$$= \left[\cos(3\ln 2) + i\sin(3\ln 2)\right]e^{\pi - 6\pi k}, \quad k \in \mathbb{Z}$$
$$\Re\left[(1 - i\sqrt{3})^{3i}\right] = e^{(6k+1)\pi}\cos(3\ln 2), \quad k \in \mathbb{Z}$$

Example 5.8. Find all values of $\log e^z$.

$$\begin{split} \log e^z &= \ln |e^z| + i \arg e^z \\ |e^z| &= |e^x e^{iy}| = e^x, \quad \arg e^z = \arg (e^x e^{iy}) = y + 2\pi k, \quad k \in \mathbb{Z} \\ \log e^z &= \ln e^x + i(y + 2\pi k) = (x + iy) + 2\pi ki = z + 2\pi ik, \quad k \in \mathbb{Z} \end{split}$$

Example 5.9. Show that $\log z^{1/N} = \frac{1}{N} \log z$.

$$\begin{split} z^{1/N} &= e^{\log z/N} = e^{\frac{1}{N}(\ln|z| + i\arg z)} = |z|^{1/N} e^{\frac{i}{N}\arg z} \\ \log z^{1/N} &= \ln|z|^{1/N} + \frac{i}{N}\arg z + 2n\pi i, \quad n \in \mathbb{Z} \\ &= \frac{1}{N}\ln|z| + \frac{i}{N}\arg z \\ &= \frac{1}{N}\log z \end{split}$$

Example 5.10. Show that $\log z^N \neq N \log z$.

$$\begin{split} z^N &= e^{N\log z} = e^{N(\ln|z| + i\arg z)} = |z|^N e^{iN\arg z} = |z|^N e^{iN(t + 2\pi n)}, \quad n \in \mathbb{Z} \\ \log z^N &= N\ln|z| + iNt + 2\pi ni, \quad n \in \mathbb{Z} \\ &\neq N\ln|z| + iNt + 2nN\pi i = N\log z \end{split}$$

Example 5.11. Find all values of $\log[(1+i)^3]$. Are the values the same as that of $3\log(1+i)$?

$$\log[(1+i)^3] = 3\ln\sqrt{2} + i\arg[(1+i)^3] = 3\ln\sqrt{2} + i\left(\frac{3\pi}{4} + 2\pi n\right), \quad n \in \mathbb{Z}$$
$$3\log(1+i) = 3[\ln\sqrt{2} + i\arg(1+i)] = 3\ln\sqrt{2} + 3i\left(\frac{\pi}{4} + 2\pi n\right) = 3\ln\sqrt{2} + i\left(\frac{3\pi}{4} + 6\pi n\right), \quad m \in \mathbb{Z}$$

Thus, the values are not the same.

Example 5.12. Given $w(z) = \frac{iz+1}{z+i}$.

(i) Verify that w(z) is an LFT.

$$\det \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix} = -2 \neq 0$$

(ii) Describe the image $w(|z| \le 1)$ in the w-plane.

Choose 3 points on the circle |z| = 1. Since w(i) = 0, $w(-i) = \infty$, w(1) = 1, the LFT maps |z| = 1 to the real axis, $\Im(z) = 0$. Choose a point inside the circle: w(0) = -i. Therefore, $w(|z| \le 1) = \{z \in \mathbb{C} \mid \Im(z) \le 0\}$.

(iii) Find an LFT w = w(z) that takes the real axis to the unit circle |z| = 1.

This is the inverse transformation, where we solve for z in terms of w:

$$w(z+i) = iz + 1 \Longrightarrow wz - iz = 1 - iw \Longrightarrow z(w-i) = 1 - iw \Longrightarrow z = \frac{1 - iw}{w - 1} \Longrightarrow w = \frac{-iz + 1}{z - i}$$

Example 5.13. Consider the map w = 1/z. Describe the image $w(|z+1-2i|) = \sqrt{6}$.

$$|z+1-2i| = \sqrt{6} \iff (x+1)^2 + (y-2)^2 = 6 \iff (x^2+y^2) + 2x - 4y - 1 = 0$$

$$(-1)(\mu^2 + \nu^2) + 2\mu + 4\nu + 1 = 0$$

$$\mu^2 + \nu^2 - 2\mu - 4\nu - 1 = 0$$

$$(\mu - 1)^2 + (\nu - 2)^2 = 6$$

$$|w - 1 - 2i| = \sqrt{6}$$

This is a circle in the w-plane centered at (1, 2i) with radius $\sqrt{6}$.

Example 5.14. Let $f(z) = 2x^2 - y^2 + i2xy$.

(i) Find where the Cauchy-Riemann equations hold.

$$\mu_x = 4x = 2x = \nu_y \Longrightarrow x = 0$$

$$\mu_y = -2y = 2y = -\nu_x$$

Therefore, CR equations hold when $x = 0 \Longrightarrow \Re(z) = 0$.

(ii) Find where f is differentiable.

The partial derivatives exist and are continuous wherever the CR equations hold. Thus, f' exists and is differentiable when x = 0, which implies $\Re(z) = 0$.

(iii) Find where the function is analytic.

f is nowhere analytic because there is no neighbourhood around any point on $\Re(z) = 0$ where f' exists.

Example 5.15. Find the image of the region $-\frac{\pi}{2} \le \Im(z) \le \frac{\pi}{2}$ and $0 \le \Re(z) \le 1$ under the transformation $w = e^z$.

$$w = e^z = e^x \cdot e^{iy} = e^x + ie^x \sin y$$

$$\mu(x, y) = e^x \cos y \quad \text{and} \quad \nu(x, y) = e^x \sin y$$

Holding x fixed at x=1, then $\mu^2+\nu^2=e^2(\cos^2y+\sin^2y)=e^2$. Thus, the image of the line segment $x=1,\ -\pi/2\leq y\leq \pi/2$ in the w-plane is the semicircle $\mu=e\cos y,\ \nu=e\sin y,$ where $y\in [-\pi/2,\pi/2]$.

Similarly, holding x fixed at x=0, then $\mu^2 + \nu^2 = \cos^2 y + \sin^2 y = 1$. Thus, the image of the line segment $x=0, -\pi/2 \le y \le \pi/2$, in the w-plane is the semicircle $\mu=\cos y, \nu=\sin y$, where $y\in [-\pi/2,\pi/2]$.

Holding y fixed at $y = \pi/2$, then $\mu = 0$, $\nu = e^x$, where $0 \le x \le 1$. Then the image in the w-plane of the line segment $0 \le x \le 1$, $y = \pi/2$ is the line segment $\mu = 0$, $1 \le \nu \le e$.

Similarly, holding y fixed at $y=-\pi/2$, then $\mu=0,\ \nu=-e^x$, where $0\leq x\leq 1$. Then the image in the w-plane of the line segment $0\leq x\leq 1,\ y=-\pi/2$ is the line segment $\mu=0,\ -e\leq \nu\leq -1$.

