Spring 2018: COT3210–Computability and Automata Test 02: Answers

Instructions:

- 1. Put your Name and n# on your test.
- 2. Please write your answers legibly in the box provided under each question.
- 3. Answer all questions.

Name:	n#:
	"

1. Shown below is the state diagram for an NFA that has no ε -transitions, 3 states, and will recognize the language

 $A = \{w \mid w \text{ does not contain the substring 100}\}.$

- 2. The required regular expressions are shown below:
 - a. $\{w \,|\, w \text{ is of length at most 3}\} = (\varepsilon \cup \Sigma)^3$, or $\varepsilon \cup \Sigma \cup \Sigma \Sigma \cup \Sigma \Sigma \Sigma$.
 - b. $A = \{w \mid w \text{ is of length at least 1 and begins and ends with the same symbol}\}.$

$$A = \Sigma \cup 0 \Sigma^* 0 \cup 1 \Sigma^* 1$$

- c. $\{w \mid \text{Every 0 is followed by at least one 1 in } w\} = 1^*(01^+)^*.$
- 3. Shown below is the state diagram for an NFA that has no ε -transitions, 4 states, and will recognize the language $0^* \cup (01)^*$.

4. Shown below is the state diagram for an NFA that has six states and accepts the language

 $\{w \mid w \text{ contains an even number of 0s or contains exactly two 1s}\}.$

You may use ε -transitions as needed.

- 5. The state diagrams for the required machines are shown below:
 - a. N_1 , N_2 , and N_3 with $L(N_1)=\{0\}$, $L(N_2)=\{1\}$, and
 - $\text{b.} \quad \text{The NFA } N_4 \text{ with } L(N_4) = L(N_1) \cup L(N_3) = 0 \cup 10. \ L(N_3) = L(N_2) \circ L(N_1) = 10.$

c. The NFA N_5 with $L(N_5) = [L(N_4)]^* = (0 \cup 10)^*.$

 $\mbox{d.} \quad \mbox{The NFA} \ \underline{N_6} \ \mbox{with} \ \underline{L(N_6)} = L(N_3) \circ L(N_2) = 101.$

e. The NFA N_7 with $L(N_7) = L(N_5) \circ L(N_6) = (0 \cup 10)^*101.$

6. The state diagram for the given NFA and its equivalent DFA (along with the state transition table for the DFA) are shown below:

The given NFA:

The state table for the equivalent DFA:

	a	b
{1}*	{2}	{2}
{2}	{2}	$\{3\}$
{3}	$\{1, 3\}$	Ø
$\{1,2\}^*$	{2}	$\{2, 3\}$
$\rightarrow \{1,3\}^*$	$\{1, 2, 3\}$	$\{2\}$
$\{2, 3\}$	$\{1, 2, 3\}$	$\{3\}$
$\{1,2,3\}^*$	$\{1, 2, 3\}$	${2,3}1$
Ø	Ø	\emptyset

The state diagram for the DFA:

Let
$$q_0=\{1,3\};\ q_1=\{1,2,3\};\ q_2=\{2,3\};\ q_3=\{3\};\ {\rm and}\ q_4=\{2\}.$$

7. We convert the following DFA to its equivalent regular expression:

a. Shown below is the GNFA for the above diagram that we will need in order to obtain the regular expression. The start state is denoted by s and the final state by f. All the \emptyset transitions are shown as well.

b. Shown below is the GNFA obtained after ripping state 1.

c. Shown below is the GNFA after ripping state 2.

