Контрольные вопросы к защите второй задачи ДЗ

МВТУ 2017 г.

1. Знать единицы измерения и уметь определять размерности (в системе СИ) важнейших физических величин по теме (угловая скорость, угловое ускорение, крутящий момент сил, момент импульса, мощность, энергия, работа и др.). Знать закономерные соотношения между этими величинами.

Угловая скорость $-T^{-1}$ – [рад/с]

Угловое ускорение — T^{-2} — [рад/ c^2]

Момент сил – ML^2T^{-2} – [H*M]

Момент импульса – ML^2T^{-1} – [кг·м²/с]

Mощность $-ML^2T^{-3} - [B_T]$

Энергия – ML^2T^{-2} – [Дж]

Работа – ML^2T^{-2} – [Дж]

Поступательное движение		Вращательн	Вращательное движение	
Путь	S	Угол поворота	φ	
Скорость	$v = \frac{dS}{dt}$	Угловая ско- рость	$\omega = \frac{d\phi}{dt}$	
Ускорение	$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	Угловое уско- рение	$\varepsilon = \frac{\mathrm{d}\omega}{\mathrm{d}t}$	
	$v = v_0 \pm at$ $S = v_0 t \pm \frac{at^2}{2}$ $S = \int_0^t v dt$		$\omega = \omega_0 \pm \varepsilon t$ $\varphi = \omega_0 t \pm \frac{\varepsilon t^2}{2}$ $\varphi = \int_0^t \omega dt$	
Основное уравнение ди- намики по- ступательного движения	$\frac{d\vec{p}}{dt} = \vec{F}$ $m\vec{a} = \vec{F}$	Основное уравнение динамики вращательного движения	$\frac{d\vec{L}}{dt} = \vec{M}$ $I\vec{\epsilon} = \vec{M}$	
Импульс	$\vec{p} = m\vec{v}$	Момент им-	$\vec{L} = I\vec{\omega}_{47}$	

вращательного	о (относительно н	еподвижной оси) движен	ний тела
Поступательное движение		Вращательное движение	
Перемещение	dr	Угловое перемещение	$d\vec{\varphi}$
Скорость	$\vec{v} = \dot{\vec{r}}$	Угловая скорость	$\vec{\omega} = \dot{\vec{\varphi}}$
Ускорение	$\vec{a} = \dot{\vec{v}} = \ddot{\vec{r}}$	Угловое ускорение	$\vec{\varepsilon} = \dot{\vec{\omega}} = \ddot{\vec{\varphi}}$
Macca	m	Момент инерции	J
Сила	$\vec{F} = \dot{\vec{p}}$	Момент силы	$\vec{M} = \vec{r} \times \vec{F}$
Импульс	\vec{p}	Момент импульса	$\vec{L} = \vec{r} \times \vec{p}$
Работа	$dA = F_z ds$	Работа	$dA = M_s d\varphi$
Кинетическая энергия	$\frac{mv^2}{2} = \frac{p^2}{2m}$	Кинетическая энергия	$\frac{J\omega^2}{2} = \frac{L^2}{2J}$
0	$\vec{F} = m\vec{a}$	Основное уравнение динамики	$\vec{M} = J\vec{\varepsilon}$
Основное уравнение динамики	$\vec{F} = \frac{d\vec{p}}{dt}$ A.C. Yy		$\vec{M} = \frac{d\vec{L}}{dt}$

Закон сохра- нения им- пульса	$m\vec{v} = \text{const}$	Закон сохране- ния момента импульса	$I\vec{\omega} = \text{const}$
Работа	$A = F \cdot S$	Работа враще- ния	$A = M \cdot \varphi$
Кинетическая энергия	$K = \frac{mv^2}{2}$	Кинетическая энергия вра- щающегося тела	$K_{\rm Bp.} = \frac{I\omega^2}{2}$
По	лная энергия тела	а, катящегося с высоть	ı h
	mgh =	$\frac{mv^2}{2} + \frac{I\omega^2}{2}$	

2. Крутящие моменты внешних и внутренних сил. Момент импульса. Уравнение моментов.

Момент силы - векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение.

$$\vec{M} = [\vec{r} \times \vec{F}] M = Fl_{M=I * \beta}$$

Момент импульса - физическая величина, характеризующая количество вращательного движения и зависящая от того, сколько массы вращается, как она распределена в пространстве и с какой угловой скоростью происходит вращение.

$$ec{L} = ec{r} imes ec{p}$$
 L=m*V*R=I* ω

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \stackrel{\rightarrow}{M}^{\text{\tiny eneu}} \qquad \frac{d\vec{L}}{dt} = \left[\frac{d\vec{r}}{dt}, \vec{p}\right] + \left[\vec{r}, \frac{d\vec{p}}{dt}\right]$$

Уравнение моментов:

3. Момент импульса частицы относительно точки и относительно оси. Момент инерции, Понятие о тензоре инерции.

Моментом импульса материальной точки относительно неподвижной точки называется физическая величина, равная векторному произведению

где $\,$ г - радиус-вектор проведенный из точки $\,$ в точку $\,$ а, $\,$ $\,$ $\,$ $\,$ - импульс материальной точки.

Моментом импульса материальной точки относительно неподвижной оси z называется скалярная величина $^{L_{z}}$, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки данной оси. Значение момента импульса не зависит от положения точки на оси z.

Момент инерции – это мера инертности материальной точки или тела при вращательном

$$J=\int\limits_{(m)}r^2\mathrm{d}m$$
движении.

Тензор инерции — в механике абсолютно твёрдого тела — тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с угловой скоростью: $L = I * \omega$

$$J = egin{array}{c|ccc} J_{xx} & J_{xy} & J_{xz} \ J_{yx} & J_{yy} & J_{yz} \ J_{zx} & J_{zy} & J_{zz} \ \end{array}$$

4. Закон сохранения момента импульса для системы частиц. Распределение момента импульса в Солнечной системе, теории происхождения планет.

Закон сохранения момента импульса: в инерциальной системе отсчета момент импульса замкнутой системы частиц остается постоянным, т.е. не меняется со временем.

$$\vec{L} = \sum \vec{L}_i(t) = const.$$

Момент импульса Солнечной системы распределен неравномерно: на Солнце приходится всего 2 % этой величины, хотя масса Солнца составляет более 99 % всей массы Солнечной системы. В итоге 98 % момента импульса Солнечной системы падает на планеты, астероиды и другие малые тела. Основная идея ведущих теорий формирования планет такова: мелкие пылинки слипаются и захватывают газ. Но эти процессы сложны и запутанны. Борьба конкурирующих механизмов может привести к совершенно различным результатам.

5. В чем причина действия закона сохранения момента импульса по теореме Эмми Нётер? Что такое изотропность пространства и свойство анизотропии?

Изотропность пространства. Изотропность пространства – равноценность всех направлений; ни одно направление не имеет преимуществ в сравнении с другим. **Анизотропия** - когда в разных направлениях что-то отличается.

6. Как определяется момент импульса системы материальных частиц в системе их центра масс? Собственный момент импульса.

Если в задаче рассматривается не одна материальная точка, а система точек, то **момент импульса системы** равен векторной сумме моментов импульсов всех материальных точек системы где все векторы определены относительно одной и той же точки заданной системы отсчета. Сумма моментов всех внутренних сил будет равна нулю, так как силы, с которыми взаимодействуют любые две материальные точки системы, удовлетворяют третьему закону Ньютона и действуют вдоль одной прямой, поэтому их плечи одинаковые, а направления $L = \sum L_i$ противоположные.

Собственным моментом импульса системы материальных точек называется момент импульса системы относительно точки, совпадающей с ее центром масс.

7. Основное уравнение динамики вращательного движения твердого тела. Момент инерции твердого тела относительно оси. Теорема Штейнера-Гюйгенса. Выражение энергии вращающегося тела через момент импульса и момент инерции.

$$\vec{M} = \frac{d\vec{L}}{dt}$$
 $L = J\omega$

$$M = J\frac{d\omega}{dt}$$
 $\frac{d\omega}{dt} = \epsilon$

$$M = J\epsilon$$

Моментом инерции материальной точки относительно неподвижной оси называется скалярная физическая величина, являющаяся мерой инертности этой точки при вращательном движении и, равная произведению её массы на квадрат расстояния до оси. $J = \int\limits_{(m)} r^2 \mathrm{d}m$

Теорема Штейнера: момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J_C относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями.

$$E_{\kappa, sp.} = \frac{I\omega^2}{2}$$

$$E = L^2/2I$$

8. Моменты инерции для: тонкого стержня, обода, диска, шара и тонкостенной сферы, знать вывод их формул. Главные моменты инерции тел.

9. Свободные и несвободные оси вращения. Гироскопы. Движения прецессии и нутации. Периоды движений прецессии и нутации планеты Земля.

Ось, направление которой в пространстве не изменяется с течением времени без действия на неё внешних сил, называется свободной.

Гироскопом называют массивное симметричное тело, вращающееся с большой угловой скоростью вокруг своей оси.

Прецессия (от позднелат. praecessio - движение впереди), движение оси вращения твердого тела, в частности гироскопа, при котором она описывает круговую коническую поверхность.

Нутация (от лат. nutatio - колебание), колебательное движение оси собственного вращения тела, происходящее одновременно с прецессией, при котором изменяется угол между осью собственного вращения тела и осью, вокруг которой происходит прецессия.

26 000 лет и 18,6 лет соответственно для Земли.

10. Три закона Кеплера. Второй закон Кеплера – это выражение какого закона сохранения? **Первый**: Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов такой орбиты находится Солнце.

Второй: Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Эквивалентом второго закона Кеплера можно считать закон сохранения момента импульса.

Третий: Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

