MFE 230M: CDS

GSI: Haoyang Liu

September 8, 2016

Outline

- Two payment streams in a CDS
- Valuation of CDS
 - · Forecast pools' cash flows
 - Estimate prepayment and default parameters
 - Forecast prepayment and default speeds
 - Calculate bonds' cash flows from waterfalls
 - Calculate CDSs' cash flows and value them

- A CDS contract involves two streams of payments
 - Payments from protection seller to protection buyer (the variable leg).
 - Payments from protection buyer to protection seller (the fixed leg).

- A CDS contract involves two streams of payments
 - Payments from protection seller to protection buyer (the variable leg).
 - Payments from protection buyer to protection seller (the fixed leg).

Protection seller	Long credit risk	Bets few defaults	Pays variable leg
Protection buyer	Short credit risk	Bets many defaults	Pays fixed leg

 Payments from protection seller to protection buyer (the variable leg):

- Payments from protection seller to protection buyer (the variable leg):
 - Compensate for defaults. Make defaults look like prepayments.

- Payments from protection seller to protection buyer (the variable leg):
 - Compensate for defaults. Make defaults look like prepayments.
 - Compensate for shortfalls in interest payments.

- Payments from protection seller to protection buyer (the variable leg):
 - Compensate for defaults. Make defaults look like prepayments.
 - Compensate for shortfalls in interest payments.
 - Does not compensate for prepayments.

- Payments from protection seller to protection buyer (the variable leg):
 - Compensate for defaults. Make defaults look like prepayments.
 - Compensate for shortfalls in interest payments.
 - · Does not compensate for prepayments.
- Payments from protection buyer to protection seller (the fixed leg):
 - Upfront premium
 - Fixed coupon

Outline

- Two payment streams in a CDS
- Valuation of CDS
 - · Forecast pools' cash flows
 - Estimate prepayment and default parameters
 - Forecast prepayment and default speeds
 - Calculate bonds' cash flows from waterfalls
 - Calculate CDSs' cash flows and value them

Valuation Framework

- 1) Forecast pools' cash flows
 - Forecast prepayment and default speed.
 - Forecast interest payments from ARM.

Valuation Framework

- 1) Forecast pools' cash flows
 - Forecast prepayment and default speed.
 - Forecast interest payments from ARM.
- 2) Forecast bonds' cash flows using waterfall.
 - In this deal, there are two waterfalls: waterfall for principal payments and waterfall for interest payments

Valuation Framework

- 1) Forecast pools' cash flows
 - Forecast prepayment and default speed.
 - Forecast interest payments from ARM.
- 2) Forecast bonds' cash flows using waterfall.
 - In this deal, there are two waterfalls: waterfall for principal payments and waterfall for interest payments
- 3) Calculate CDS cashflows
 - Variable leg
 - Fixed leg

Estimate Prepayment and Default Hazard Parameters

Estimate seperately for ARM and FRM

Estimate Prepayment and Default Hazard Parameters

- Estimate seperately for ARM and FRM
- Covariates
 - Prepayment: should include summer indicator and coupon gap.
 - Default: should include loan to value ratio.

Estimate Prepayment and Default Hazard Parameters

- Estimate seperately for ARM and FRM
- Covariates
 - Prepayment: should include summer indicator and coupon gap.
 - Default: should include loan to value ratio.
- There are four sets of parameters:

 $\{ARM / FRM\} \times \{Prepayment / Default\}$

Predict Prepayment and Default Speeds

Use the $\{ARM / FRM\} \times \{Prepayment / Default\}$ hazard parameters to forecast prepayment and default speeds

 Predicting prepayment and default speeds requires forecasting the covariates:

Predict Prepayment and Default Speeds

Use the $\{ARM / FRM\} \times \{Prepayment / Default\}$ hazard parameters to forecast prepayment and default speeds

- Predicting prepayment and default speeds requires forecasting the covariates:
 - Prepayment: coupon gap (same as in HW2 from the Hull and White model).
 - Default: loan to value ratio

remaining balance home price

- Forecasting loan to value ratio involves
 - · Forecasting remaining balance.
 - Forecasting house prices.

Forecast Home Prices

House prices follow a GBM of the form

$$dH_t = (r_t - q_H)H_tdt + \phi_H H_t dW_{H,t}$$

where,

$$r_t$$
 = riskless short rate,
 q_H = .025(the rental flow rate),
 ϕ_H = .12(volatility)

H₀ is backed out from

Current LTV (6/30/09)

$$H_0 = \text{remaining balance} \times \frac{\text{home price}}{\text{remaining balance}} = \frac{\text{remaining balance}}{\textit{LTV}}$$

Current Principal: (6/30/09)	\$52, 416,15 5	\$226,122,657
	85.6%	85.6%

Outline

- Two payment streams in a CDS
- Valuation of CDS
 - · Forecast pools' cash flows
 - Estimate prepayment and default parameters
 - Forecast prepayment and default speeds
 - Calculate bonds' cash flows from waterfalls
 - Calculate CDSs' cash flows and value them

Waterfall for Principal Payments

- 1) Prepaid principals go to A bonds followed by M bonds
- 2) Defaults reduce principals from CE certificates first, then M bonds, followed by A bonds.

Waterfall

Bond Class	Bond Principal March 27, 2006 (\$000)	Bond Principal June, 30, 2009 (\$000)	Spr e ad To Libor
Al	396,254	Prepaid in Full	0.08
A2	171,485	107,769	0.18
A3	24,954	24,954	0.28
Ml	38,481	38,481	0.36
M2	30,150	30,150	0.38
М3	18,646	18,646	0.39
M4	16,265	16,265	0.51
M5	15,075	15,075	0.55
М6	13,488	13,488	0.62
M7	13,092	13,092	1.15
M8	11,505	619	1.4
М9	9,124	0	2.25
M10	10,315	0	2.25
CE Certificates	24,597	0	0
Certificates	24,391		,

Waterfall for Interest Payments

- CDS
 - Compensate for defaults. Make defaults look like prepayments.
 - Compensate for shortfalls in interest payments.

Waterfall for Interest Payments

- CDS
 - Compensate for defaults. Make defaults look like prepayments.
 - Compensate for shortfalls in interest payments.
- Each bond has a promised interest payment

Remaining balance × (LIBOR + spread)

Waterfall for Interest Payments

- CDS
 - Compensate for defaults. Make defaults look like prepayments.
 - Compensate for shortfalls in interest payments.
- Each bond has a promised interest payment

Remaining balance × (LIBOR + spread)

 In each period, interest payments go to A bonds first, followed by M bonds.

CDS payments

- Two CDS. One for M-2 bond and one for M-5 bond.
 - Which starts to pay first?
 - Which will more likely to pay more?

-Questions

Questions