

VE KOMBINAT

PRACITRONIC
DRESDEN · STAMMBETRIEB

ELEKTRONISCHE MESSGERÄTE

ebs 4.1

RC-GENERATOR

BAUANLEITUNG

Inhaltsverzeichnis

	Seite
Vorwort	2
1. Funktionserläuterungen	3
1.1 Schaltungsbeschreibung	3
1.2 Technische Daten	4
2. Anwenderhinweise	6
2.1 Frequenzänderungen	6
2.2 Variable Ausgangsspannung	7
3. Montageanweisungen	11
3.1 Schaltteilliste	12
3.2 Bohrvorschrift	12
3.3 Inbetriebnahme	14
3.4 Farocode Tabelle	15

Ausgabe März 1984

Änderungen im Sinne des technischen Fortschritts behalten
wir uns vor.

Vorwort

Der vorliegende Bausatz ist Teil eines Elektronischen Baukasten-systems und basiert auf bewährten Industrieschaltungen.

Das Sortiment umfaßt folgende Baugruppen:

ebs 1	- Zählerbaustein	ebs 5	- NF-Verstärker 35 W
ebs 2	- NF-Verstärker 5 W		mit Netztrafo
ebs 3	- Analog-Digital-Wandler	ebs 6	- NF-Verstärker 35 W ohne Netztrafo
ebs 4 1	- RC-Generator	ebs 7	- Stromversorgungsbaustein +5 V / +13 V / -13 V

Für die angegebenen Schaltungen wird keine Garantie für die Rechtsmängelfreiheit gegeben.

Die Schaltungen und Bausteine des ebs-Systems dürfen nicht für kommerzielle Zwecke weiterverwendet werden.

Wir wünschen Ihnen viel Freude beim Aufbau Ihrer Heimelektronik.

1. Funktionserläuterungen

1.1 Schaltungsbeschreibung

Der vorliegende Bausatz ermöglicht den Aufbau eines universell einsetzbaren Wienbrückengenerators, dessen Funktion nachfolgend kurz erläutert werden soll.

Im Mitkopplungszweig ("+"Eingang) des Operationsverstärkers VI 1 (B 082 D) befindet sich die Wien-Brücke mit den Brückenkomponenten R 1/C 1 und R 2/C 2. Mit dieser Bestückung schwingt der Generator mit der Frequenz $f = 125$ Hz. Im Rückkopplungszweig ("-"Eingang) ist die Amplitudenstabilisierung mit dem Spannungsteiler (R 5 + R 6)/(R 3 + R 4) und dem Regel-FET VT 1 angeordnet. Die Bereitstellung der erforderlichen Gatespannung für den FET erfolgt durch eine Gleichrichtung der Ausgangsspannung. Durch Parallelschalten von zwei gleichen Widerständen zu R 1 (Anschlüsse 6...7) und R 2 (Anschlüsse 3...7) kann die Schwingfrequenz erhöht werden. Die Betriebsspannung ist im Bereich von ± 6 V... ± 18 V wählbar.

1.2 Technische Daten

Gemessen bei	$U_B = \pm 18 \text{ V}$
Betriebsspannung	$U_B = \pm 6 \text{ V} \dots \pm 18 \text{ V}$
Stromaufnahme	$I_B \leq \pm 10 \text{ mA}$
Frequenzen	$f = 125 \text{ Hz} \dots 10 \text{ kHz}$
Ausgangsspannung	ca. 2 V, Kurzschlußfest
Ausgangsspannungsstab.	$\frac{\Delta U}{U} \leq \pm 1 \%$
$R_L = 1 \text{ kOhm}$	
Klirrfaktor	$\leq 1 \%, \text{ typ. } 0,5 \%$
Lastwiderstand minimal	100 Ohm

BF 244
S D
G

Bild 1: Schaltbild

2. Anwenderhinweise

2.1 Frequenzänderungen

Soll der Baustein mit anderen Frequenzen betrieben werden, dann können durch Zuschalten von zwei gleichen Widerständen – ausgehend von der Grundfrequenz von 125 Hz – Frequenzen bis ca. 25 kHz eingestellt werden. Die Widerstände R_p , die für eine gewünschte Frequenz den Anschlüssen 3...7 und 6...7 parallelgeschaltet werden müssen, errechnen sich mit

$$R_p = 3180 \frac{1}{f - 125} \quad f \text{ (Hz); } R_p \text{ (kOhm)}$$

Im Interesse einer hohen Ausgangsspannungsstabilität und eines niedrigen Klirrfaktors sollten die beiden Brückenwiderstände R_p untereinander eine Abweichung $\leq 1\%$ haben.

Eine variable Frequenzeinstellung ist zu erreichen, wenn man ein Doppelpotentiometer mit möglichst geringem Gleichlauffehler (<2 dB) entsprechend Bild 2 anschließt.

Bei Verwendung eines Stufenschalters und ausgemessenen Widerständen

erhält man einen Festfrequenzgenerator sehr hoher Genauigkeit (Bild 3).

Sollen Frequenzen unter 125 Hz erzeugt werden, dann müssen die Widerstände R 1/R 2 (25,5 kOhm) bzw. die Kondensatoren C 1/C 2 (49,9 nF) geändert werden. Die Frequenz errechnet sich dann nach der Formel

$$f_0 = \frac{1}{2\pi C \cdot R} \quad R = R_1 = R_2 \text{ (Ohm); } C = C_1 = C_2 \text{ (F)}$$

2.2 Variable Ausgangsspannung

Durch den Einsatz eines Doppeloperationsverstärkers ergibt sich die Möglichkeit einen Nachfolgeverstärker mit variabler Gegenkopplung dem Generator nachzuschalten. Gleichzeitig erfolgt damit eine sehr gute Entkopplung des Ausganges vom davorliegenden Generatorteil. Sollen größere Ausgangsleistungen entnommen werden, so eignet sich dazu die Schaltung nach Bild 4, in der der 5 W-Baustein des "ebs 2" verwendet wird.

Bild 2: Variable Frequenzeinstellung

Bild 3: Festfrequenzgenerator

Ausgangsspannung mit S1 und R1 einstellbar

* R1 in 43k ändern
R2 in 4,7k ändern
V=20 dB(10 fach) einstellen

Bild 4: 5W - Ausgangsleistung
mit variabler Einstellung

3. Montageanweisungen

Vor Beginn des Zusammenbaus empfiehlt sich eine Kontrolle der beiliegenden Bauteile auf Vollzähligkeit und Übereinstimmung mit der Schaltteilliste (für Widerstände beiliegende Farbcodetabelle benutzen). Entsprechend der Bohrvorschrift wird danach die Leiterplatte gebohrt. Durch die Steckfüsse bzw. Steckerleisten ist es möglich, mehrere Einzelleiterplatten auf einer Großleiterplatte ohne zusätzliche Verdrahtung zu einem kompletten Gerät zusammenzustellen.

Besondere Aufmerksamkeit ist dem Löten der Leiterplatten zu schenken. Grundsätzlich nur Lötkolben mit maximal 30 Watt und einer dünnen Lötspitze (etwa 2mm breit) verwenden und Lötzinn mit Kolophonium bzw. geeignete Löttinktur, kein Lötfett, für diese Arbeiten benutzen.

Besondere Vorsicht ist dem Umgang mit MOS-Bauelementen zu schenken:

- Bauelementanschlüsse nicht unnötig mit den Händen berühren
- Lötkolben beim Löten vom Netz bzw. von Stromversorgung trennen
- Lötkolben, Bauelement und Mensch müssen gleiches Potential besitzen, d.h. nötigenfalls sind Lötkolbengehäuse und Mensch zu erden ,

3.1 Schaltteilliste

R1	SW	25,5	k0hm	1%	C1	Kondens.	49,9 nF/0,5%/25 V
R2	SW	25,5	k0hm	1%	C2	Kondens.	49,9 nF/0,5%/25 V
R3	SW	12	k0hm	5%	C3	Elyt	10 µF/40 V
R4	SW	10	k0hm	5%	C4	Elyt	10 µF/40 V
R5	SWV	4,7	k0hm		C5	Elyt	22 µF/25 V
R6	SW	27	k0hm	5%	C6	Elyt	22 µF/25 V
R7	SW	100	k0hm	5%			
R8	SW	120	0hm	5%			
R9	SW	10	k0hm	5%	VT1	Sperrschiert-FET KP 303 D	
R10	SWV	22	k0hm		VD1	Diode	SAL 41
R11	SW	10	k0hm	5%	VI1	Doppeloperations-Verstärker	
R12	SW	120	0hm	5%			B 082 D

3.2 Bohrvorschrift

Bohr Ø für alle Steckfüße und R 5, R 6, R 10 1,3 mm
Bohr Ø für alle Bauelemente 1,0 mm

Ansicht Leiterseite

Bild 5: Bestückungsplan

3.3 Inbetriebnahme

Nach überprüfter Bestückung entsprechend beigelegtem Bestückungsplan wird R 5 auf 0 Ohm eingestellt (Schleifer steht in Richtung C 1). Danach kann die Betriebsspannung angelegt werden. Bei unbeschalteten Anschlüssen 3...7 und 6...7 muß sich am Pin 7 des Schaltkreises (Ausgang des Generators) eine Spannung von mindestens 900 mV einstellen. Bei kleineren Spannungen erfolgt eine Korrektur mit R 5. Die Spannungsmessung kann dabei mit einem Vielfachmesser erfolgen. Wenn vorhanden, wird die Spannung mit einem Oszilloskop überprüft.

Danach wird die Ausgangsspannung am Anschluß 4 mit R 10 auf 2 V (Vorzugswert) eingestellt. Beim Zuschalten von ausgemessenen Widerständen R_p zur Wienbrücke darf sich die Ausgangsspannung nicht mehr als $\pm 1\%$ ändern (linearer Frequenzgang des Spannungsmessers vorausgesetzt).

3.4. Farocode Tabelle für Widerstände

Farbe	1. Ring	2. Ring	3. Ring	4. Ring (Toleranz)
silber	-	-	10^{-2}	$\pm 10\%$
gold	-	-	10^{-1}	$\pm 5\%$
schwarz	-	0	10^0	-
braun	1	1	10^1	$\pm 1\%$
rot	2	2	10^2	$\pm 2\%$
orange	3	3	10^3	-
gelb	4	4	10^4	-
grün	5	5	10^5	-
blau	6	6	10^6	-
violett	7	7	10^7	-
grau	8	8	10^8	-
weiß	9	9	10^9	-
keine	-	-	-	$\pm 20\%$

Beim Aufbau von Netzteilen ist aus Sicherheitsgründen der Schutzklasse I (Schutzleiteranschluß) nach TGL 200-1643/01 der Vorrang zu geben. Aus diesem Grunde sollten nur Transformatoren mit einem gekennzeichneten Schutzleiteranschluß verwendet werden. Die Abnahme eines damit aufgebauten Gerätes hat grundsätzlich durch einen Fachmann zu erfolgen!

HSL-Nr.: 5468633

Artikel-Nr.: 30404

Vertragswerkstatt

Werter Kunde!

Sollten sich beim Zusammenbau Ihres elektronischen Bausteines
technische Fragen ergeben bzw. Sie stellen Mängel hinsichtlich der

- Vollständigkeit
- Funktion einzelner Bauelemente bzw.
- Funktion der kompletten Baugruppe

fest, richten Sie bitte Ihre Garantieforderung unter Beachtung
unserer Garantiebedingungen an unsere Vertragswerkstatt:

Elektromeister

Jörg Klebe

3561 Pretzier (Altm.)

Arendseestraße 102 a

Ihr VE Kombinat PRÄCITRONIC Dresden
- Stammbetrieb -

III/15/4