#### Chapter 11

# Millimeter-Wave Flip-Chip Transitions

National Taiwan University of Science and Technology

Chun-Long Wang

#### **Outline**

- Introduction
- Conventional Flip-chip Transition
- Resonant Flip-chip Transition
- Inductive Compensation Flip-chip Transition
- Locally Matching Flip-chip Transition
- On Chip Design and Measurement Correction
- Conclusions

- Bonding Wire → Inductive
  - Multiple Bonding Wires [1]
  - Ribbon Wire [1]-[2]
    - Up to 40 GHz
  - Capacitive Matching Circuit[3]-[4]
    - Sacrifice of chip areas
    - Requirement of precise fabrication



- [1] J. Y. Kim et al., IEEE APMC'00, pp. 1265-1268.
- [2] A. Sutono et al., IEEE Advanced Packaging-24, pp. 595-603, 2001.
- [3] U. Goebel, IEEE EPEP'94, pp. 182-185.
- [4] T. P. Budka, IEEE MTT-49, pp. 715-718, 2001.

- Why Flip-chip over Bonding Wire
  - Short and Stable Electrical Interconnection [5]
    - Lower insertion loss
  - Good Power Distribution Fidelity [6]
  - Good Heat Sinking Ability [7]
  - Good Surface Wave Immunity [8]
  - Available Fabrication in Millimeter-wave Frequencies[9]

- [5] T. Krems et al., IEEE MTT-S'96, pp. 247-250.
- [6] H. Hashemi et al., IEEE EPEP'96, pp. 24-26.
- [7] E. Wolf, Proc. Semiconductor Packaging Symposium, 2000.
- [8] T. Krems et al., IEEE MTT-S'97, pp. 987-990.
- [9] Y. Arai et al., IEEE MTT-45, pp. 2261-2266, 1997.

- Flip-chip → Capacitive
  - Geometry of the Bumps
  - e.g. Bump pad and height [10] Bump cross section [11]
  - Structure of the Transitions
  - e.g. Staggered structure [12] Resonant structure [13]
  - Impedance Matching
  - e.g. Compensated structure [11]
    Locally matching structure [14]



- [10] W. Heinrich et al., IEEE MTT-S'98, p. 1083.
- [11] A. Jentzsch et al., IEEE MTT-S'99, pp. 637-640.
- [12] H. H. M. Ghouz et al., IEEE MTT-44, p. 2550, 1996.
- [13] C. L. Wang et al., IEEE MTT-S'99, pp. 1423-1426.
- [14] C. L. Wang et al., IEEE MTT-S'02, pp. 1397-1400.

- Various Structure Achievement
  - Two Resonant Designs
    - Control of the large return loss region
    - Optimization up to millimeter-wave frequencies
  - Inductive Compensation Design
    - A systematic design rule for implementing the inductive circuit
  - Locally Matching Technique
    - Enhancement of the frequencies above millimeter-wave
  - On Real Chip Design
    - Consideration of the conductor thickness.
    - A procedure for acquiring the correct return loss level

- Configuration
  - Use Rectangular Bump Cross Section [10]



 $H_{C}\!\!=\!\!H_{M}\!\!=\!\!0.36\mathrm{mm},\ W\!\!=\!\!S\!\!=\!\!0.12\mathrm{mm},\ H_{B}\!\!=\!\!D_{B}\!\!=\!\!0.12\mathrm{mm},\ L_{P}\!\!=\!\!O_{B}\!\!=\!\!0\mathrm{mm}\ ,\ \varepsilon_{rM}\!\!=\!\!12.9,\ \varepsilon_{rB}\!\!=\!\!1,\ \varepsilon_{rC}\!\!=\!\!12.9.$ 

Comparison between Different Methods



•  $S_{11}$  Plotted on the Admittance Smith Chart



- Equivalent Circuit Model [12]
  - Extracted Using ABCD Matrix by Least Square Method



• Return Loss of Equivalent Circuit Model [11]

$$C_{eff} = (C_M + C_C) - \frac{L_S}{Z_0^2} = 29.11 \text{ (fF)}$$



• The Influence of Bump Diameter  $D_B$  on  $L_S$  and  $C_M(C_C)$ 

$$-H_{B}=0.12 \text{mm}, L_{p}=O_{B}=0 \text{mm} \qquad Z_{D}=\sqrt{L_{S}/(C_{M}+C_{C})}$$
 Effective Bump Impedance  $Z_{D}$  ( $\Omega$ )
$$-L_{S}$$

$$---C_{M}, C_{C}$$
Shunt Capacitan C

• The Influence of Bump Height  $H_B$  on  $L_S$  and  $C_M(C_C)$ 

 $-D_B = 0.12$ mm,  $L_P = O_B = 0$ mm Effective Bump Impedance  $Z_{p}$  ( $\Omega$ ) Series Inductance (pH) Shunt Capacitance (fF) 0.1 0.2 0.3 Bump Height  $H_{R}$  (mm)

• The Influence of Bump Pad Length  $L_P$  on  $L_S$  and  $C_M(C_C)$ 



• The Influence of Bump Offset  $O_B$  on  $L_S$  and  $C_M(C_C)$ 

 $-H_B = D_B = 0.12$ mm,  $L_P = 0$ mm Effective Bump Impedance  $Z_{n}$  ( $\Omega$ ) 46 48 36 38 40 42 44 120 30 110 28 Series Inductance (pH) Shunt Capacitance (fF) 100 26 90 80 70 22 60 50 20 0.06 0.12 0.18 0.00 0.24 0.30 0.36 Bump Offset  $O_R$  (mm)

#### Summary

- Three methods are in a good agreement.
- The equivalent circuit resembles a low pass prototype
- The conventional flip-chip possesses a capacitive effect
- Ways to lower down the capacitive effect:
  - Reduce the Bump Diameter
  - Lengthen the Bump Height
  - Minimize the Bump Pad Length
  - Maximize the Bump Offset

- Single Resonance Design
  - Simulated via FDTD
  - Control of Resonant Length  $(L_{stg}*2+D_B)$
  - Sacrifice of Chip Areas

 $W=S=D_B=0.12$ mm, other parameters are the same as conventional



Return Loss

|                             | $f_0$ (GHz) | 20dB BW (%) |
|-----------------------------|-------------|-------------|
| $L_{stg} = 0.24 \text{ mm}$ | 68.21       | 26.17       |
| $L_{stg} = 0.48 \text{ mm}$ | 38.91       | 17.65       |
| $L_{stg} = 0.96 \text{ mm}$ | 22.89       | 18.67       |



- Design Chart
  - $-\lambda_0/2$  versus Resonance Length  $(L_{stg}*2+D_B)$



• Insertion Loss

|                             | IL at $f_0(dB)$ | IL in 20dB BW (dB) |
|-----------------------------|-----------------|--------------------|
| $L_{stg} = 0.24 \text{ mm}$ | 0.81            | <1.46              |
| $L_{stg} = 0.48 \text{ mm}$ | 0.30            | < 0.47             |
| $L_{stg} = 0.96 \text{ mm}$ | 0.02            | < 0.06             |



- Radiation Loss
  - Severe above Millimeter-wave Frequencies



- Discrete Equivalent Circuit
  - Simulated by Sonnet and Extracted via LSM

| $C_{MI}$ (fF) | $L_I(pH)$ | $C_{CI}$ (fF) | $Z_{I}\left(\Omega\right)$ | $\mathcal{E}_{e\!f\!fl}$ | $C_{C2}$ (fF) | $L_2$ (pH) |
|---------------|-----------|---------------|----------------------------|--------------------------|---------------|------------|
| 21.01         | 48.04     | 14.42         | 40.07                      | 7.70                     | 22.83         | 65.17      |



• Comparison for  $L_{stg}$ =0.24mm



• Comparison for  $L_{stg}$ =0.48mm



• Comparison for  $L_{stg}$ =0.96mm



#### • Optimum Results

|                  | $L_{stg} = 0.24 \text{ mm}$ | $L_{stg} = 0.48 \text{ mm}$ | $L_{stg} = 0.96 \text{ mm}$ |
|------------------|-----------------------------|-----------------------------|-----------------------------|
| $Z_{I}(\Omega)$  | 67.50                       | 59.10                       | 56.60                       |
| 20dB Bound (GHz) | 45.50                       | 36.30                       | 34.30                       |



- Transformer Design
  - Simulated via FDTD
  - Impedance Transformer Idea
  - Sacrifice of Chip Areas
  - Better Field Confinement

 $W=S=D_B=0.12$ mm, other parameters are the same as conventional



#### • Return Loss

- 20 dB Bandwidth: 11.5%

|                             | $f_0$ (GHz) |
|-----------------------------|-------------|
| $L_{stg}$ =0.24 mm          | 55.54       |
| $L_{stg} = 0.48 \text{ mm}$ | 36.32       |
| $L_{stg} = 0.96 \text{ mm}$ | 21.67       |



- Design Chart
  - $-\lambda_0/2$  versus Resonance Length  $(L_{stg}*2+D_B)$



- Insertion Loss
  - IL in 20 dB Bandwidth > 0.05 dB



- Radiation Loss
  - Severe above 60 GHz



- Discrete Equivalent Circuit
  - Simulated by Sonnet and Extracted via LSM

| $C_{M3}$ (fF) | $L_3(\mathrm{pH})$ | $C_{C3}$ (fF) | $Z_2(\Omega)$ | $\mathcal{E}_{e\!f\!f2}$ |
|---------------|--------------------|---------------|---------------|--------------------------|
| 23.05         | 41.42              | 18.32         | 37.78         | 8.45                     |



• Comparison for  $L_{stg}$ =0.24mm



• Comparison for  $L_{stg}$ =0.48mm



• Comparison for  $L_{stg}$ =0.96mm



#### • Optimum Results

|                  | $L_{stg} = 0.12 \text{ mm}$ | $L_{stg} = 0.24 \text{ mm}$ | $L_{stg} = 0.48 \text{ mm}$ | $L_{stg} = 0.96 \text{ mm}$ |
|------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| $Z_{I}(\Omega)$  | 96.80                       | 58.00                       | 55.60                       | 53.50                       |
| 20dB Bound (GHz) | 49.60                       | 33.40                       | 25.30                       | 18.20                       |



### Resonant Flip-chip Transition

#### Summary

- Single Resonance Design
  - 20 dB Bandwidth: 17.5 ~ 26 %
  - Insertion Loss in 20 dB BW: 1.5 dB
  - Optimum Design

|                  | $L_{stg}$ =0.24 mm | $L_{stg} = 0.48 \text{ mm}$ | $L_{stg} = 0.96 \text{ mm}$ |
|------------------|--------------------|-----------------------------|-----------------------------|
| 20dB Bound (GHz) | 45.50              | 36.30                       | 34.30                       |

- Transformer Design
  - 20 dB Bandwidth: 11.5 %
  - Insertion Loss in 20 dB BW: 0.05 dB
  - Optimum Design

|                  | $L_{stg} = 0.12 \text{ mm}$ | $L_{stg} = 0.24 \text{ mm}$ | $L_{stg} = 0.48 \text{ mm}$ | $L_{stg} = 0.96 \text{ mm}$ |
|------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 20dB Bound (GHz) | 49.60                       | 33.40                       | 25.30                       | 18.20                       |

- Structure Parameters
  - Introduce an Inductive Element to Compensate the Capacitive Effect



$$W_{C} = W_{M} = 200 \mu \text{m}, \ S_{C} = S_{M} = 70 \mu \text{m}, \ G_{C} = G_{M} = 600 \mu \text{m}, \ H_{C} = H_{B} = H_{M} = 127 \mu \text{m}, \ \varepsilon_{r} = 10.2.$$

• Lumped Element Compensation



 Comparison between Inductance Compensation and Conventional Transition



• High Impedance Transmission Line Compensation [11]



- High Impedance Transmission Line Compensation
  - Matching Condition

$$\sqrt{\frac{L_{HU}l}{C_{HU}l + C_{eff}}} = Z_0 \longrightarrow l = (\frac{\omega_H}{\beta_H})(\frac{Z_H Z_0^2 C_{eff}}{Z_H^2 - Z_0^2})$$

#### $\bullet Z_H = 100\Omega$

| βl  <sub>30GHz</sub> (°) | $W_T(\mu m)$ | $S_T(\mu m)$ | $L_T(\mu \mathrm{m})$ | $W_W(\mu \mathrm{m})$ | $S_W(\mu \mathrm{m})$ | $L_W(\mu \mathrm{m})$ |
|--------------------------|--------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 15.048                   | 30           | 155          | 185                   | 200                   | 410                   | 230                   |

#### $\bullet Z_H = 76\Omega$

| βl  <sub>30GHz</sub> (°) | $W_T(\mu m)$ | $S_T(\mu m)$ | $L_T(\mu m)$ | $W_W(\mu \mathrm{m})$ | $S_W(\mu m)$ | $L_W(\mu\mathrm{m})$ |
|--------------------------|--------------|--------------|--------------|-----------------------|--------------|----------------------|
| 25.554                   | 30           | 130          | 315          | 200                   | 240          | 340                  |

•  $Z_H = 100\Omega$ 



•  $Z_H = 76\Omega$ 



Experiment



Comparison between Simulation and Measurement



- Summary
  - Lumped Inductance
    - This can well compensate the capacitive effect at low frequencies
  - Ideal High Impedance Transmission Line
    - Higher impedance results in smaller length
    - Higher impedance can better represent the inductance
  - High Impedance Compensation
    - Thin strip has little discontinuity effect than wide slot
  - The Best Choice is to Adopt
    - higher impedance implemented with thin strip
  - Experiment
    - Return Loss is better than 15dB up to 20 GHz

• Ground Retreat on Mother Board [15]

- Make 
$$Z_D = \sqrt{L_S/(C_M + C_C)}$$
 Close to 50  $\Omega$ 



$$W_C = W_M = 200 \mu \text{m}, \ S_C = S_M = 70 \mu \text{m}, \ G_C = G_M = 600 \mu \text{m}, \ H_C = H_B = H_M = 127 \mu \text{m}, \ \varepsilon_r = 10.2.$$

#### Return Loss



• Equivalent Circuit Values versus  $\Delta_{M}$ 



Ground Retreats Both on Mother Board and Chip



$$W_C = W_M = 200 \mu \text{m}, S_C = S_M = 70 \mu \text{m}, G_C = G_M = 600 \mu \text{m}, H_C = H_B = H_M = 127 \mu \text{m}, \varepsilon_r = 10.2.$$

#### • Return Loss



• Equivalent Circuit Values versus  $\Delta_{M}$ 



• Design Chart  $f_{zero} = \frac{1}{2\pi} \sqrt{\frac{1}{L_s C_c^2}} (2C_C - \frac{L_s}{Z_o^2})$ 



- 10 times Scaled up Circuit
  - Fabricated on RT/Duroid6010 of  $\epsilon_r$ =10.2, and Measured with TRL Calibration.





Top view of the whole circuit

Local view of the bump area

Many thanks to Mr. Shih-Chieh Yen and Shih-Je Yang for helps on the fabrication. Many thanks to Mr. Wen-Hua Tu for the suggestions in the measurement.

Comparison between Simulation and Measurement



#### Summary

- Ground Retreat on Mother Board
  - The response of return loss does not change severely with  $\Delta_{\rm M}$
  - The performance is still restricted by  $C_C$  on the chip side
- Ground Retreats on Mother Board and Chip
  - This structure exhibits good transition when  $\Delta$  is chosen well to match the impedance.
  - The area occupied is in the transverse direction of propagation and the frequency band is wide.
  - A design graph built with four simulated points can be used to design the return loss level validated up to the resonant frequency.
  - Measurement results of the ten-times scaled up circuit show good agreement with the simulation results.

- Design Consideration
  - Simulated with Zero Conductor Thickness
    - $Z'_f = Z'_P = 52\Omega$
  - Measured with Real Conductor Thickness
    - $Z_P = 50\Omega$



 $Z_f$ : characteristic impedance of feed line

 $Z_P$ : characteristic impedance of port

Many thanks to Airwave Inc. for fabricating the real flip-chip circuits, and Mr. Kun-You Lin and Ping-Yu Chen for doing the on wafer measurements.

#### Chip Photo



TRL Calibration Kit



Back to Back Circuit

**Bump:**  $H_{R}$ =35µm,  $D_{R}$ =80µm

Mother Board (GCPW):  $H_M$ =381 $\mu$ m,  $\varepsilon_r$ =9.9, Chip (CPW):  $H_C$ =635 $\mu$ m,  $\varepsilon_r$ =12.9

- Ground Retreat on Mother Board Only  $\Delta_M = 50 \mu m$ 
  - Measured Based on  $Z_f = Z_p = 50\Omega$



**Mother Board:**  $W_M$ =100 $\mu$ m,  $S_M$ =50 $\mu$ m,  $G_M$ =200 $\mu$ m. **Chip:**  $W_C$ =100 $\mu$ m,  $S_C$ =50 $\mu$ m,  $G_C$ =200 $\mu$ m.

- Circuit for Acquiring the Correct Feedline Impedance
  - $-Z_f$  is Estimated to be 54  $\Omega$



**Equivalent Circuit** 

Comparison Result

- Ground Retreat on Mother Board Only  $\Delta_M = 50 \mu m$ 
  - Measured Based on  $Z_f = Z_p = 54\Omega$



- Ground Retreat on Both Sides  $\Delta_M = 75 \mu m$ ,  $\Delta_C = 50 \mu m$ 
  - Measured Based on  $Z_f = Z_p = 50\Omega$



- Ground Retreat on Both Sides  $\Delta_M = 75 \mu m$ ,  $\Delta_C = 50 \mu m$ 
  - Measured Based on  $Z_f = Z_p = 54\Omega$



- Summary
  - Simulation
    - zero conductor thickness based on  $Z'_f = Z'_P = 52\Omega$  is adopted
  - Measurement
    - Original measurement based on  $Z_f = Z_P = 50\Omega$  is calibrated to  $Z_f = Z_P = 54\Omega$
    - 4 to 10 dB error in RL is corrected
  - Ground Retreat on Mother Board Only
    - 15 dB RL up to 35 GHz
  - Ground Retreats on Both Sides
    - 25 dB RL up to 35 GHz

#### **Conclusions**

#### Conclusions

- Conventional Flip-chip Transition
  - This possesses a capacitive effect
- Resonant Flip-chip Transition
  - The resonant length is controlled to result in a resonant dip in the desired frequency band
  - Discrete equivalent circuit could be optimized up to millimeterwave frequencies
  - Chip areas are sacrificed in the longitudinal direction
- Inductive Compensation Flip-chip Transition
  - Lumped inductance could well compensate the capacitive effect
  - High impedance line with higher impedance and thin strip could result in the best performance and smallest size
  - This saves chip areas
  - This could only enhance the performance up to millimeter-wave frequencies

#### **Conclusions**

#### Conclusions

- Locally Matching Flip-chip Transition
  - Ground retreat on mother board could substantially improve the performance
  - Ground retreat on both sides could greatly improve the performance
  - Wide band performance are obtained with chip areas sacrificed in the transverse direction
- On Chip Design
  - Simulation considering conductor thickness with zero conductor thickness and somewhat higher impedance is adopted
  - Measurement correction procedures are required to calibrate the return loss level due to fabrication error