

0-90

Two forces having magnitude A and are perpendicular to each other. The magnitude of their resultant is:

[JEE Mains 2023]

- $\frac{1}{4}$
- $\frac{\sqrt{5}A}{2}$
- $\frac{5A}{2}$
- $\frac{\sqrt{5}A^2}{2}$

At any instant the velocity of a particle of mass 500g is $(2t \hat{i} + 3t^2 \hat{j})$ m s⁻¹. If the force acting on the particle at t = 1s is $(\hat{i} + x \hat{j})$ N. Then the value of x will be:

[JEE Mains 2023]

- 3
- 2 4
- 3 2
- **4** 6

$$Q = \frac{Jv}{Jt} = 2\frac{J+i}{J+}i + 3\frac{J+2}{J+}\hat{j}$$

$$= 2\hat{i} + 3(2t)\hat{j}$$

$$Q = \frac{Jv}{J+} = 2\hat{j} + 3(2t)\hat{j}$$

$$Q = 2\hat{i} + 6t\hat{j}$$

When vector $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$ is subtracted from vector \vec{B} it gives a vector equal to $2\hat{\jmath}$. Then the magnitude of vector \vec{B} will be:

[JEE Mains 2023]

- 1 √5
- 2 3
- $\sqrt{6}$
- **4** √33

$$\vec{A} = 2i + 3I + 2i\hat{k}$$

$$\vec{B} - \vec{A} = 2\hat{J}$$

$$\vec{B} = 2\hat{J} + \hat{A}$$

$$= 2\hat{J} + 2i + 3\hat{J} + 2i\hat{k}$$

A vector in x-y plane makes an angle of 30° with y-axis. The magnitude of y-component of vector is $2\sqrt{3}$. The magnitude of x-component of the vector will be:

- $1/\sqrt{3}$
- **2** 6
- 3 2
- $\sqrt{4}$ $\sqrt{3}$

The position vector of a particle related to time t is given by $\vec{r} = (10t\hat{\imath} + 15t^2\hat{\jmath} + 7\hat{k})m$. The direction of net force experienced by the particle is:

[JEE Mains 2023]

- Positive x-axis
- 2 In x-y plane
- 3 Positive y-axis // Avg
- 4 Positive z-axis

$$\frac{3}{3} = 10 = 10 = 15(24) + 7 \times 6$$

$$\frac{3}{3} = 1 = 10 = 15(24) + 0 \times 6$$

$$\frac{3}{3} = 10 = 10 = 15(24) + 0 \times 6$$

$$\frac{3}{3} = \frac{3}{3} = 0 + 30 \times 17$$

$$\frac{3}{3} = \frac{3}{3} = 0 + 30 \times 17$$

Vectors $a\hat{i} + b\hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j} + 4\hat{k}$ are perpendicular to each other when 3a + 2b = 7, the ratio of a to b is $\frac{x}{2}$. The value of x is _____.

$$\left(2i+bf+k\right)\cdot\left(2i-37+4k\right)=0$$

If two vectors $\vec{P} = \hat{\imath} + 2m\hat{\jmath} + m\hat{k}$ and $\vec{Q} = 4\hat{\imath} - 2\hat{\jmath} + m\hat{k}$ are perpendicular to each other. Then, the value of m will be

- **1** −1
- 2 2
- 3 3
- 4 1

If $\vec{P} = 3\hat{\imath} + \sqrt{3}\hat{\jmath} + 2\hat{k}$ and $\vec{Q} = 4\hat{\imath} + \sqrt{3}\hat{\jmath} + 2.5\hat{k}$ then, the unit vector in the direction of $\vec{P} \times \vec{Q}$ is $\frac{1}{x}(\sqrt{3}\hat{\imath} + \hat{\jmath} - 2\sqrt{3}\hat{k})$. The value of x is _____. [JEE Mains 2023]

A block of $\sqrt{3}$ kg is attached to a string whose other end is attached to the wall. An unknown force F is applied so that the string makes an angle of 30° with the wall. The tension T is; (Given $g = 10 \text{ m s}^{-2}$)

- 1 20 N
- 25 N
- 3 10 N
- 4 15 N

Expression for an electric field is given by $\vec{E} = 4000 \, x^2 \, \hat{i} \, \text{V m}^{-1}$. The electric flux through the cube of side 20 cm when placed in electric field (as shown in the figure) is [JEE Mains 2023]

1= 12 mm == m 0= E-A

$$\phi = 40000(\frac{1}{25}) \cdot (1)^{2}$$

A small particle moves to position $5\hat{\imath} - 2\hat{\jmath} + \hat{k}$ from its initial position $2\hat{\imath} + 3\hat{\jmath} - 4\hat{k}$ under the action of force $5\hat{\imath} + 2\hat{\jmath} + 7\hat{k}$ N. The value of work done will be _____ J.

[JEE Mains 2023]

$$W = F - S = (5i + 2J + 7i) \cdot (3i - 5i + 5i)$$

$$= 15 - 10 + 35$$

[**IEE Mains 2024**]

Position of an ant (S in metres) moving in Y-Z plane is given by $S = 2t^2\hat{j} + 5\hat{k}$ (where t is in second). The magnitude and direction of velocity of the ant at t = 1s will be:

- 16 m s⁻¹ in *y*-direction
- $\frac{2}{4}$ m s⁻¹ in x-direction
- $9 \text{ m s}^{-1} \text{ in } z\text{-direction}$
- 4 m s⁻¹ in y-direction

$$S = 2t^2 \hat{J} + 5\hat{K}$$

$$S = 2(2t)\hat{J} + 0$$

$$V = 4t\hat{J}$$

An electric field is given by $(6\hat{i} + 5\hat{j} + 3\hat{k})$ N C⁻¹. The electric flux through a surface area $30\hat{i}$ m² lying in YZ-plane (in SI unit) is:

- 90
- **2** 150
- 3 180
- 4 60

A vector has magnitude same as that of $\vec{A} = 3\hat{j} + 4\hat{j}$ and is parallel to $\vec{B} = 4\hat{i} + 3\hat{j}$. The x and y components of this vector in first quadrant are x and y respectively where x =____.

$$|A| = \sqrt{3} + 42$$

$$= \sqrt{25}$$

$$= |C| |C|$$

$$= |A| |B|$$

$$=5\left(\frac{41+35}{5}\right)$$

$$=5\left(\frac{41+35}{5}\right)$$

$$=\frac{5}{5}\left(\frac{41+35}{5}\right)$$

If two vectors \vec{A} and \vec{B} having equal magnitude R are inclined at an angle θ , then

[A] = [B] = R

[JEE Mains 2024]

$$\vec{A} - \vec{B} = \sqrt{2}R \sin \frac{\theta}{2}$$

$$\vec{A} + \vec{B} = 2R \sin \frac{\theta}{2}$$

$$\vec{A} + \vec{B} = 2R \cos \frac{\theta}{2}$$

$$\vec{A} - \vec{B} = 2R \cos \frac{\theta}{2}$$

Train A is moving along two parallel rail tracks towards north with 72 km h⁻¹ and train B is moving towards south with speed 108 km h⁻¹. Velocity of train B with respect to A and velocity of ground with respect to B are (in m s⁻¹):

[JEE Mains 2024]

- 1 –30 and 50
- 2 –50 and –30
- 3 –50 and 30 //
- 4 50 and -30

A body of mass 4 kg experiences two force $\vec{F}_1 = 5\hat{\imath} + 8\hat{\jmath} + 7\hat{k}$ and $\vec{F}_2 = 3\hat{\imath} - 4\hat{\jmath} - 3\hat{k}$. The acceleration acting on the body is:

$$2) 4\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$$

$$3 2\hat{\imath} + \hat{\jmath} + \hat{k}$$

$$2\hat{\imath} + 3\hat{\jmath} + 3\hat{k}$$

$$a = \frac{\hat{f_1} + \hat{f_2}}{m}$$

Two forces F_1 and F_2 are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between \vec{F}_1 and \vec{F}_2 is $\cos^{-1}\left(\frac{1}{n}\right)$. The value of |n| is ____. [JEE Mains 2024]

The angle between vector \vec{Q} and the resultant of $(2\vec{Q} + 2\vec{P})$ and $(2\vec{Q} - 2\vec{P})$ is:

[JEE Mains 2024]

1
$$\tan^{-1} \frac{(2\vec{Q}_1 - 2\vec{P})}{2\vec{Q} + 2\vec{P}}$$

$$3 tan^{-1}(P/Q)$$

4
$$\tan^{-1}(2Q/P)$$

A particle moves in x-y plane under the influence of a force \vec{F} such that its linear momentum is $\vec{p}(t) = \hat{\imath} \cos(kt) - \hat{\jmath} \sin(kt)$. If k is constant, the angle between \vec{F} and \vec{p} will be

- $1 \pi/4$
- 2 π/6
- $3 \pi/2$
- (4) $\pi/3$

$$F = \frac{dP}{dt} = -ksin(xt)\hat{i} - \kappa(os(xt)\hat{j})$$

$$(3) F = 0$$

For three vectors $\vec{A} = (-x\hat{\imath} - 6\hat{\jmath} - 2\hat{k})$, $\vec{B} = (-\hat{\imath} + 4\hat{\jmath} + 3\hat{k})$ and $\vec{C} = (-8\hat{\imath} - \hat{\jmath} + 3\hat{k})$, if $\vec{A} \cdot (\vec{B} \times \vec{C}) = 0$, then value of x is _____.

$$= i \left(12+3 \right) + f \left(-24+3 \right) + i \left(1+32 \right)$$

$$= \left(15i - 21f + 33k \right) \cdot \left(-2i - 61 - 2i \right) = 0$$

$$-15n + |26 - 66 = 0$$

$$15n = |26 - 66 = 0$$

$$|5n = |60 = 4$$

$$|5n = |60 = 4$$

Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is _____. [JEE Mains 2024]

If \vec{a} and \vec{b} makes an angle $\cos^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a} + \vec{b}| = \sqrt{2}|\vec{a} - \vec{b}|$ for $|\vec{a}| = n|\vec{b}|$. The integer value of n is 3/2.

Leave it

$$|\vec{a}+\vec{b}| = \sqrt{2}|\vec{a}-\vec{b}|$$
 $|\vec{a}+\vec{b}^2+206600| = \sqrt{2}\sqrt{2^2+5^2-206600}$
 $|\vec{a}+\vec{b}^2+206600| = \sqrt{2}\sqrt{2^2+5^2-206600}$
 $|\vec{a}+\vec{b}^2| = 2\vec{a}+2\vec{b}^2-406600 - 266600$
 $|\vec{a}+\vec{b}^2| = 666600$
 $|\vec{a}+\vec{b}^2| = 666600$
 $|\vec{a}+\vec{b}^2| = 666600$

$$3n^{2} - |ont3=0$$

$$3n^{2} - |ont3=0$$

$$3n(n-3) - |(n-3)=0$$

$$(n-3)(3n-1)=0$$

$$(n-3)(3n-1)=0$$

$$3n^{2} + 3 = |on|$$

$$3n^{2} - |ont3=0$$

$$(n-3)(3n-1)=0$$

$$3n^{2} + 3 = |ont3=0$$

$$3n^{2} - |ont3=0$$

A 1 kg mass is suspended from the ceiling by a rope of length 4 m. A horizontal force 'F' is applied at the mid point of the rope so that the rope makes an angle of 45° with respect to the vertical axis as shown in figure. The magnitude of F is: (Assume that the system is in equilibrium and $g = 10 \text{ m/s}^2$)

[JEE Mains 2024]

- 10 N
- $\frac{10}{\sqrt{2}}$ N
- 3 1 N
- $\frac{1}{10 \times \sqrt{2}} \text{ N}$

The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} and its magnitude is half that of \vec{B} . The angle between vectors \vec{A} and \vec{B} is ____ °. [JEE Mains 2024]

The position vector of a moving body at any instant of time is given as $\vec{r} = (5t^2\hat{\imath} - 5t\hat{\jmath})m$. The magnitude and direction of velocity at t = 2s is:

[JEE Mains 2025]

- 1 5 $\sqrt{15}$ m/s, making an angle of tan⁻¹ 4 with –ve Y
- $\sqrt{2}$ $5\sqrt{15}$ m/s, making an angle of tan⁻¹ 4 with +ve X
- 3 5 $\sqrt{17}$ m/s, making an angle of tan⁻¹ 4 with +ve X
- $\sqrt{5\sqrt{17}}$ m/s, making an angle of tan⁻¹ 4 with -ve Y

The torque due to the force $(2\hat{\imath} + \hat{\jmath} + 2\hat{k})$ about the origin, acting on a particle whose position vector is $(\hat{\imath} + \hat{\jmath} + \hat{k})$, would be [JEE Mains 2025]

- (1) $\hat{i} \hat{k}$
- $\hat{i} + \hat{k}$
- $\hat{j} + \hat{k}$
- $\widehat{1} \widehat{j} + \widehat{k}$

The coordinates of a particle with respect to origin in a given reference frame is (1, 1, 1) meters. If a force of $\vec{F} = \hat{\imath} - \hat{\jmath} + \hat{k}$ acts on the particle, then the magnitude of torque (with respect to origin) in z-direction is ____. [JEE Mains 2021/22]

$$\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \times \left(\begin{array}{c} -2 \\ -1 \end{array} \right)$$

$$= -2 \times \left(\begin{array}{c} -2 \\ -2 \end{array} \right)$$

AS

 \vec{A} is a vector quantity such that \vec{A} = non-zero constant. Which of the following expression is true for \vec{A} ? [JEE Mains 2021/22]

- $\vec{A} \cdot \vec{A} = 0$
- $\vec{A} \times \vec{A} < 0$
- $\vec{A} \times \vec{A} = 0$
- $\vec{A} \times \vec{A} > 0$

Two vectors \vec{A} and \vec{B} have equal magnitudes. If magnitudes of $\vec{A} + \vec{B}$ is equal to two times the magnitude of $\vec{A} - \vec{B}$, then the angle between \vec{A} and \vec{B} will be

 $\frac{1}{\cos^{-1}\left(\frac{3}{5}\right)}$

$$\cos^{-1}\left(\frac{1}{3}\right)$$

$$3 \sin^{-1}\left(\frac{1}{3}\right)$$

[JEE Mains 2021/22]

$$|A+B| = 2|A-B|$$

$$|A^{7}+B^{7}+2|AB| = 2|A^{2}-B|$$

$$|A^{7}+B^{7}+2|AB| = 2|A^{2}-B|$$

Sym Br
$$A^{1}+B^{2}+21AB6050=9(A^{1})^{2}-2n^{1}$$

$$21/4+21/650=91/-81/650$$

$$[0(050)=63/8]$$

$$(0.10)=63/8$$

$$(0.10)=63/8$$

If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ m and $\vec{B} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ m. The magnitude of component of vector \vec{A} along vector \vec{B} will be ____ m. [JEE Mains 2021/22]

$$=\frac{2+6-2}{5+1}$$

1 2 Both are 18

If the projection of $2\hat{i} + 4\hat{j} - 2\hat{k}$ on $\hat{i} + 2\hat{j} + \alpha\hat{k}$ is zero. Then, the value of α will be ____.

[JEE Mains 2021/22]

2+8-24=0

5/-//X

If $\vec{P} \times \vec{Q} = \vec{Q} \times \vec{P}$, the angle between \vec{P} and \vec{Q} is θ (0° < θ < 360°). The value of θ will be _____.

Statement I: If three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 are represented by three sides of a triangle and vector $\vec{F}_1 + \vec{F}_2 = -\vec{F}_3$, then these three forces are concurrent forces and satisfy the condition for equilibrium.

Statement II: A triangle made up of three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 as its sides were taken in the same order, hence satisfies the condition for translatory equilibrium.

- Both Statement I and Statement II are true.
- 2 Statement I is true but Statement II is false.
- Both Statement I and Statement II are false.
- Statement I is false but Statement II is true.

Statement I: Two forces $\vec{P} + \vec{Q}$ and $\vec{P} - \vec{Q}$ where $\vec{P} \perp \vec{Q}$, when act at an angle θ_1 each other, the magnitude of their resultant is $\sqrt{3(P^2 + Q^2)}$, when they act at an angle θ_2 , the magnitude of their resultant becomes $\sqrt{2(P^2 + Q^2)}$. This only when $\theta_1 < \theta_2$.

- $\theta_1 = 60^{\circ}$ and $\theta_2 = 90^{\circ}$
- Statement I is false but Statement II is true.
- 2 Both Statement I and Statement II are true
- Both Statement I and Statement II are false.
- 4 Statement I is true but Statement II is false.

The magnitude of vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} in the given figure are equal. The direction of $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC}$ with x-axis will be:

$$\tan^{-1}\frac{\left(\sqrt{3}-1+\sqrt{2}\right)}{\left(1+\sqrt{3}-\sqrt{2}\right)}$$

$$\tan^{-1}\frac{\left(1-\sqrt{3}-\sqrt{2}\right)}{\left(1+\sqrt{3}+\sqrt{2}\right)}$$

3
$$\tan^{-1} \frac{(\sqrt{3} - 1 + \sqrt{2})}{(1 - \sqrt{3} + \sqrt{2})}$$

tan⁻¹
$$\frac{(1-+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$$

The angle between vector (\vec{A}) and $(\vec{A} - \vec{B})$ is:

- $1 \tan^{-1} \left(\frac{B \cos \theta}{A B \sin \theta} \right)$
- $\tan^{-1}\left(\frac{\sqrt{3}B}{2A-B}\right)$
- $\frac{3}{A B\frac{\sqrt{3}}{2}}$
- 4 $\tan^{-1}\left(\frac{A}{0.7B}\right)$

Match List-I with List-II.

Choose the correct answer from the options given below:

- (a) \rightarrow (iv), (b) \rightarrow (i), (c) \rightarrow (iii), (d) \rightarrow (ii)
- (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (i), (d) \rightarrow (ii)
- (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (i)
- (a) \rightarrow (i), (b) \rightarrow (iv), (c) \rightarrow (ii), (d) \rightarrow (iii)

List-I

(a)
$$\vec{C} - \vec{A} - \vec{B} = 0$$

(b)
$$\vec{A} - \vec{C} - \vec{B} = 0$$

(c)
$$\vec{B} - \vec{A} - \vec{C} = 0$$

(d)
$$\vec{A} + \vec{B} = -\vec{C}$$

(ii)
$$\overrightarrow{\overrightarrow{A}}$$

(iii)
$$\vec{A}$$
 $\vec{\vec{B}}$

iv)
$$\vec{C}$$

Two vectors \vec{X} and \vec{Y} have equal magnitude. The magnitude of $(\vec{X} - \vec{Y})$ is n times the magnitude of $(\vec{X} + \vec{Y})$. The angle between \vec{X} and \vec{Y} is:

$$\cos^{-1}\left(\frac{-n^2-1}{n^2-1}\right)$$

$$\frac{2}{\cos^{-1}\left(\frac{n^2-1}{-n^2-1}\right)}$$

$$3 \quad \cos^{-1}\left(\frac{n^2+1}{-n^2-1}\right)$$

$$\cos^{-1}\left(\frac{n^2+1}{n^2-1}\right)$$

