Geometría Diferencial de Curvas y Superficies

Examen de abril de 2021

1. Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ una curva parametrizada por el arco y periódica, es decir, tal que $\alpha(s) = \alpha(s+A)$ para todo $s \in \mathbb{R}$, siendo A > 0 fijo.

- (a) Demuéstrese que dado $v \in \mathbb{R}^2$, existe un vector tangente a α y perpendicular a v.
- (b) Dedúzcase del apartado anterior que dado $w \in \mathbb{R}^2$, existe una recta tangente a α y paralela a w.
- (a) Sea $v \in \mathbb{R}$. Se considera la función

$$f \colon \mathbb{R} \longrightarrow \mathbb{R}$$
$$s \longmapsto f(s) = \langle \alpha(s), v \rangle$$

Fíjese cualquier $s \in \mathbb{R}$. Se tiene entonces f(s) = f(s+A). Además, f es continua en [s, s+A] y derivable en (s, s+A), así que por el teorema de Rolle, existe $c \in (s, s+A)$ tal que

$$f'(c) = 0 \iff \langle \alpha'(c), v \rangle = 0$$

luego $\alpha'(c)$ es un vector tangente a α y perpendicular a v.

(b) Sea $w = (w_1, w_2) \in \mathbb{R}^2$. Aplicando el teorema anterior a $w' = (-w_2, w_1)$, existe un vector $\alpha'(c)$ tangente a α y perpendicular a w'. Como w es perpendicular a w' y w' es perpendicular a $\alpha'(c)$, entonces w y $\alpha'(c)$ llevan la misma dirección. La recta que pasa por $\alpha(c)$ y lleva la dirección de $\alpha'(c)$ es tangente a α y paralela a w.

2. Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ una curva regular definida por $\alpha(t) = (e^t, e^{-t}, e^t + e^{-t})$. Calcúlese su curvatura y su torsión.

Se tiene que $\alpha'(t)=(e^t,-e^{-t},e^t-e^{-t})$, así que α no es parametrizada por el arco. La curvatura y la torsión serán entonces

$$k(t) = \frac{||\alpha'(t) \wedge \alpha''(t)||}{||\alpha'(t)||^3} \qquad \tau(t) = \frac{\det(\alpha'(t), \alpha''(t), \alpha'''(t))}{||\alpha'(t) \wedge \alpha''(t)||^2}$$

y el desafío que plantea este ejercicio es tener la voluntad de realizar un puñado de cálculos tediosos e insulsos.

3.

- (a) Defínanse los puntos críticos (o singulares) de una función $f: V \to \mathbb{R}$, siendo V un abierto de \mathbb{R}^3 .
- (b) Para cada $a \in \mathbb{R}$, se considera el conjunto $S_a = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 az^2 = a\}$. ¿Para qué valores de a es S_a una superficie regular?
- (a) Sea $f: V \to \mathbb{R}$ una función definida en un abierto de \mathbb{R}^3 . Un punto $p \in V$ se dice que es *punto crítico* (o *singular*) cuando la aplicación df_p es no sobreyectiva.
- (b) Para cada $a \in \mathbb{R}$, considérese la función $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = x^2 + y^2 az^2 a$. La matriz

$$Jf_p = \begin{pmatrix} 2x & 2y & -2az \end{pmatrix}_p$$

no tiene rango máximo si y solo si p = (0, 0, 0), es decir, df_p es no sobreyectiva si y solo si p = (0, 0, 0). Ahora bien, para todo $a \neq 0$ se tiene que $(0, 0, 0) \notin f^{-1}(0)$, luego 0 es valor regular y por tanto S_a es superficie regular. Si fuese a = 0, entonces el conjunto

$$S_0 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 0\} = \{(x, y, z) \in \mathbb{R}^3 : x = 0, y = 0\}$$

es el eje z, que no es una superficie regular. Se concluye que S_a es una superficie regular si y solo si $a \neq 0$.