

IOPPOIADA

Cleared for public release; SER

UNCLASSIFIED 4

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO	<u> </u>
AD-420	4 402
4 TITLE (and Subtitle)	S. TYPE OF ROOT & PERIOD COVERED
Navy Technology Transfer Program FY 79 Summary Statistics	Annual FY 1979
Damanary Doublestics	6 PERFORMING ONG. REPORT NUMBER
7. AUTHOR(a)	8 CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Headquarters Naval Material Command (MAT 078)	65804N 20835-SL
Washington, DC 20360	03004M 20033-SI
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT BATE
(16)ZØ835)	1988
	1 Vol.
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15 SECURITY CLASS. (of this report)
	UNCLASSIFIED
$(12.)$ $\frac{1}{2}$ $\frac{83}{2}$	154 DECLASSIFICATION DOWNGRADING SCHEDULE
6 DISTRIBUTION STATEMENT (of this Report,	
Dignessia	
DISTRIBUTION 3	
Approved for guilt releases Distribution Unlimited	
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro	an Report)
Cleared for public release; Destribution	unlimited
8 SUPPLEMENTARY NOTES	· · · · · · · · · · · · · · · · · · ·
	[
9 KEY WORDS (Continue on reverse side if necessary and identify by block number)	
	1
Navy; Technology Transfer	
	ì
ABSTRACT (Continue on reverse side if necessary and identify by block number)	
This book summarizes the 261 projects, which in FY 1979 for sponsors from federal agency	ich the Navy undertook cies (includes DOD),
state and local governments, industry and	small businesses, and
non-profit institutions. The Program also	provided unique ser-
vices not in competition with the private scope does not encompass controls or fore:	
in any sense	ign technology transfer
D I JAN 73 1473 N EDITION OF I NOV 65 IS OBSOLETE	401.7/2

\$ N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Reserved)

FY 1979 TECHNOLOGY TRANSFER PROJECTS -- BY GEOGRAPHICAL AREA

XDD

NTIS GRA&I
DIIC TAB
Unannounced
Justification

Accession For

NUMBER OF PROJECTS	93	1	7	11	117	38
NUMBER OF PERFORMING ACTIVITIES	Ø	;	~	Ν.	12	4
REGION	Far West	Mid-Continent	Mid-West	Northeast	Mid-Atlantic	Southeast

Availability Codes

By Distribution/ Avail and/or

Special

京中

FOREWORD

These reports also are the basis for the annual report to the Secretary of This publication provides details about the FY 1979 Navy Technology Transfer Program. contents of the book are derived from the reports submitted by Navy activities engaged in the Navy required by SECNAVINST 5700.14 and OPNAVINST 5700.13. technology transfer.

nomprofit institutions. The Program also provided unique services not available from the private This book summarizes the 261 projects, which the Navy undertook in FY 1979 for sponsors from federal agencies (includes DOD), state and local governments, industry and small businesses, and sector and not in competition with the private sector. The book's scope does not encompass export controls or foreign technology transfer in any sense.

Transfer Program has been oriented toward local government and the public sector, in general, and The Navy instituted a formal Technology Transfer Program in 1972, as a result of successful Program is chartered "to establish a systematic and comprehensive policy for the transfer of development of coming technologies of both military and civilian interest." The Technology appropriate technology...to the civilian sector and for the identification and cooperative is now also emphasizing programs for small business and industry in cooperation with such experimental technology transfer programs organized in the late 1960s and early 1970s. organizations as the Department of Commerce and the National Science Foundation. Substantial benefits were realized through this program during FY 1979. New product markets million in cost avoidance by American industry in Calendar Year 1978. Navy technology transfer included such fundamental and important areas as firefighting, medical, and pollution abatement The Government-Industry Data Exchange Program documented savings of over \$24 technology to the civilian sector. Results were constructive and illustrated the continuing The Technology Transfer Program enhanced the improvement of existing products and processes and promoted were opened, for example, by transferring ocean farm technology to industry. potential of the Navy Technology Transfer Program. standardization.

TABLE OF CONTENTS

		Pages
oreword .		.ml
ection 1.	How To Use This Book	1-11-
ection 2.	FY 1979 Technology Transfer Summary Statistics	2-12-(
ection 3.	FY 1979 Technology Transfer Projects, Listed by Technological Area	3-13-
ection 4.	FY 1979 Technology Transfer Projects, Listed by Performing Activity	4-14-
ection 5.	FY 1979 Inventions and Patents	5-15-
ndex I	FY 1979 Technology Transfer Projects, Indexed by Sponsors	III
ppendix A	Navy Technology Transfer Focal Points	A-1A-
ppendix B	FY 1979 Technology Transfer Projects, Lists of Sponsors	B-1B-
ppendix C	ppendix C Abbreviations and Acronyms	C-1C-

SECTION 1

1

HOW TO USE THIS BOOK

This section acquaints the reader with the other major sections of the book, noting information that the reader can obtain from each section and alerting the reader to any idiosyncracies of the information. An internal table of contents appears at the beginning of each major section of the document These internal tables of contents itemize (with the exceptions of Appendices A and C). information available in the larger sections.

Comments, criticisms, or suggestions for further improvements are strongly encouraged and should Changes have been made to increase the amount of information accessed to the reader. be forwarded to MAT 078.

Section 2: FY 1979 Technology Transfer Summary Statistics

Program. The tables organize the data by type of sponsor, individual sponsors, technological This section provides a condensed statistical overview of the Navy Technology Transfer area, and performing activity.

higher than the actual total, since joint sponsors received credit as if each had individually The number of projects in tables that are organized around individual sponsors will be sponsored the project.

Section 3: FY 1979 Technology Transfer Projects, Listed by Technological Area

sponsor (federal first, state and local, industry and small business, and nonprofit institution). best describes the project. Projects are loosely grouped within technological area by type of Section 3 lists all reported technology transfer projects by the technological area that Details provided include: project description, a note on Navy technology applied, a progress report, and funding and man-year levels for FY 1979 and FY 1980 (estimated).

A '0' in funding or man-year columns can indicate a reported '0' or a nonresponse.

generally includes projects that offered across-the-technological-board advice on technological Technological guidance Technological area categories are generally self-explanatory. problems requiring solutions.

Section 4: FY 1979 Technology Transfer Projects, Listed by Performing Activity

undertook the project. Projects are listed under each activity alphabetically by technological area. Details provided include project description, a notation on Navy technology applied, Section 4 lists all technology projects by the particular laboratory or activity that progress report, and funding and man-year allocations for FY 1979 and FY 1980 (estimated).

A '0' in funding or man-year columns can indicate a reported '0' or a nonresponse.

Section 5: FY 1979 Inventions and Patents

listing them alphabetically by technological areas (same as those used in Section 3). Details include the patent application or patent number, purpose of the patent, and potential commercial This section describes all reported patent applications and granted patents for FY 1979, applications.

INDEX 1: FY 1979 Technology Transfer Projects, Indexed by Sponsors

The index is keyed to Sections 5 and 6, which list all reported technology transfer projects by technological area and performing activity, respectively.

The index alphabetically lists individual sponsors within type-of-sponsor categories (federal, state and local, industry and small business, nonprofit institution). indicates which pages contain projects funded by individual sponsors.

Appendix A: Navy Technology Transfer Focal Points

Appendix A lists Navy activities participating in the Technology Transfer Program and provides addresses and phone numbers (commercial and Autovon) for all activities. This appendix also identifies each activity's Technology Transfer Focal Point, who is the person to contact for further information about the activity's technology transfer projects/ capabilities.

Names of activities in this section are current.

Appendix B: FY 1979 Technology Transfer Projects, List of Sponsors

Appendix B identifies all sponsors of FY 1979 technology transfer projects, alphabetically listing them within type-of-sponsor categories (federal, state and local, industry and small business, nonprofit institution).

Appendix C: Abbreviations and Acronyms

Appendix E notes all abbreviations and acronyms used in this document and provides the corresponding complete names.

Abbreviations are listed alphabetically by their abbreviated form.

SECTION 2

TABLE OF CONTENTS

Pages

2-22-6	2-72-12	2-132-1	2-152-1	2-182-2	2-232-3	2-372-5	2-512-6
Summary of FY 1979 Technology Transfer Projects, Listed by Type of Sponsor and Technological Area	Summary of FY 1979 Technology Transfer Projects, Listed by Type of Sponsor and Performing Activity	Summary of FY 1979 Technology Transfer Projects, Listed by Technological Area and Type of Sponsor	Summary of FY 1979 Technology Transfer Projects, Listed by Performing Activity and Type of Sponsor	Summary of FY 1979 Technology Transfer Projects, Listed by Performing Activity and Technological Area	Summary of FY 1979 Technology Transfer Projects, Listed by Individual Sponsor and Technological Area	Summary of FY 1979 Technology Transfer Projects, Listed by Individual Sponsor and Performing Activity	Summary of FY 1979 Technology Transfer Projects, Listed by Technological Area and Performing Activity
	2	ů.	4	Š.	•		œ
able 1.	able 2.	able 3.	able 4.	able 5.	able 6.	able 7.	able 8.
ap	ap	ap	ab	ap	ab	ab	ab a

SECTION 2

TABLE 1

SUMMARY OF PY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND TECHNOLOGICAL AREA

FEDERAL SPONSORS		FUNDING (SK)	(\$K)	MAN	MAN-YEARS
TECHNOLOGICAL AREA NUM	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Analysis and Testing	36	5891	5253	49.3	45.2
Communications	17	2606	2750	31.7	26.9
Computer Technology	14	3132	3380	29.3	26.7
Energy	22	2901	2156	26.5	25.9
Environment	16	1225	932	14.4	9.5
Fire and Safety	83	201	199	2.4	2.1
General Assistance	ø	250	255	1.9	1.5
Health and Medicine	23	946	1212	14.2	6.8
Instrumentation	19	1678	1134	16.9	11.4
Law Enforcement	m	1282	2150	4.2	7.0
Marine Technology	13	892	657	9.6	8.
Technological Guidance	10	3360	2985	34.0	34.2
Transportation	17	5774	19750	37.4	26.3
SUBTOTAL:	.: 207	30138	42813	271.2	228.3

SECTION 2

TABLE 1

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND TECHNOLOGICAL AREA

	FY79 FY80 FY79 FY80	0.0 0.0 0	0.0 0.0	0.0 0.0
FUNI	ומ	0	01	0
	REA NUMBER OF PROJECT	1	ing 1	SUBTOTAL: 2
FOREIGN SPONSORS	TECHNOLOGICAL AREA	Energy	Analysis and Testing	

SECTION 2

TABLE 1

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND TECHNOLOGICAL AREA

SPONSORS	
BUSINESS	
AND SMALL	
INDUSTRY	1

TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FUNDING (5K) S FY79 FY80	VG (\$K) FY80	FY79	MAN-YEARS 9 FY80
	I				
Analysis and Testing	12	418	119	1.5	1.4
Health and Medicine	7	40	0	0.1	0.1
Instrumentation	7	18	36	0.0	0.0
Marine Technology	7	0	7	0.1	0.0
General Assistance	-]	°	9	0.0	0.0
O1	SUBTOTAL: 23	476	156	1.7	1.5

SECTION 2

TABLE 1

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND TECHNOLOGICAL AREA

NONPROPIT INSTITUTION SPONSORS		FUNDI	FUNDING (\$K)	MAN	MAN-YEARS
TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Analysis and Testing	7	20	0	0.3	0.0
Realth and Medicine	7	7	4	0.1	0.1
Technological Guidance	•	48	15	1.0	0.0
Marine Technology	7	12	0	0.2	0.0
Communications	1	0	0	0.0	0.0
Energy	7	•	0	0.0	0.0
Environment	1	15	0	0.0	0.0
General Assistance	۲	4	%	1.0	1.0
SUBTOTAL:	15	136	26	2.6	1.1

SECTION 2

ī

TABLE 1

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND TECHNOLOGICAL AREA

STATE AND LOCAL SPONSORS		FUND	FUNDING (\$K)	MAN	MAN-YEARS
TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Environment	7	18	0	0.2	0.0
Health and Medicine	7	0	0	0.1	0.1
Instrumentation	м	0	т	0.0	0.0
Technological Guidance	ĸ	63	09	2.1	2.0
General Assistance	1	20	20	0.3	0.3
Marine Technology	п	51	0	1.0	0.0
Computer Technology	7	0	•	0.0	0.0
Fire and Safety	٦	٥	9	0:0	0.0
SUBTOTAL:	14	152	82	3.7	2.4
TOTAL:	261	30902	43107	279.2	233.3

SECTION 2

TABLE 2

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND PERFORMING ACTIVITY PEDERAL SPONSORS

		FUNDI	FUNDING (\$K)	MAN-	MAN-YEARS
PERFORMING ACTIVITY	NUMBER OF PROJECTS	21/3	LIBO	611/3	100
Civil Engineering Laboratory	9	929	238	3.5	2.0
David W. Taylor Naval Ship Research and Development Center	23	5617	21073	34.1	34.6
Government-Industry Data Exchange Program	٦	1700	2000	10.0	11.0
Joint Cruise Missiles Project Office	8	0	0	0.0	0.0
Naval Air Development Center	4	1331	420	8.0	1.6
Naval Air Engineering Center	2	9	47	1.5	1.5
Naval Air Systems Command	S	425	125	9.0	3.0
Naval Air Test Station	1	0	o	0.0	0.0
Naval Biosciences Laboratory, Naval Supply Center	m	173	30	3.5	9.0
Naval Coastal Systems Center	•	1812	2692	8.5	11.7
Naval Health Research Center	7	30	•	8.0	0.5
Naval Mine Engineering Facility	1	•	0	0.1	0.0
Naval Ocean Research and Development Activity	ø	1648	1203	15.7	10.8
Naval Ocean Systems Center	19	3284	1949	29.9	16.0

. .

SECTION 2

TABLE 2

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND PERFORMING ACTIVITY

FEDERAL SPONSORS (Continued)

		PUNDI	PUNDING (\$K)	MAN	MAN-YEARS
PERFORMING ACTIVITY	NUMBER OF PROJECTS	FY79	FY80	PY79	FY80
Naval Oceanographic Office	10	114	63	6.3	6.2
Naval Postgraduate School	m	33	0	4.0	0.0
Naval Research and Development Command	on	46	1011	6.2	4.5
Naval Research Laboratory	36	5272	6159	50.8	52.4
Naval Sea Systems Command	4	2930	2400	36.0	30.0
Naval Ship Weapons Engineering Station	м	94	20	1.0	1.0
Naval Surface Weapons Center	Ħ	870	542	10.1	6.0
Naval Training Equipment Center	м	425	225	8.5	4.5
Naval Underwater Systems Center	ı	0	0	0.0	0.0
Naval Weapons Center	20	2108	1620	12.8	10.9
Naval Weapons Support Center	7	•	0	0.0	0.0
Navy Personnel Research and Development Center	2	0	30	0.0	1.0
Office of Naval Research	14	834	873	14.1	16.3
U.S. Naval Academy	7	7	0	0.4	0.0
SUBTOTAL:	207	30138	42814	271.2	228.3

POREIGN SPONSORS

		FUNDIN	IG (\$K)	MAN-	FEARS
PERFORMING ACTIVITY	NUMBER OF PROJECTS	PY79	FY79 FY80	6LX4	FY79 FY80
Naval Air Engineering	1	o	9	0.0	0.0
Naval Ocean⇔raphic Office	нi	01	01	0:0	0:0
SUBTOTAL:	8	0	0	0.0	0.0

-

I

SECTION 2

TABLE 2

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND PERFORMING ACTIVITY INDUSTRY AND SMALL BUSINESS SPONSORS

		FUNDIN	FUNDING (\$K)	MAN	MAN-YEARS
PERFORMING ACTIVITY	NUMBER OF PROJECTS	6/X.4	FY80	FY79	FY80
David W. Taylor	т.	•	95	0.1	6.0
Naval Health Research Center	1	9	0	0.1	0.1
Naval Ocean Systems Center	1	22	24	0.5	0.5
Naval Oceanographic Office	66	18	37	0.1	0.0
Naval Sea Systems Command	1	0	0	0.0	0.0
Naval Weapons Center	707	392	ا•	6.0	0.
SUBTOTAL:	AL: 23	476	156	1.7	1.5

SUMMARY OF BY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND PERFORMING ACTIVITY

NONPROFIT INSTITUTION SPONSORS

		PUNDIN	PUNDING (\$K)	MAN-	MAN-YEARS
PERFORMING ACTIVITY	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
David W. Taylor	1	97	0	0.1	0.0
Naval Health Research Center	æ	1	п	0.1	0.1
Naval Ocean Systems Center	3	37	15	1.4	0.0
Naval Oceanographic Office	1	0	0	0.0	0.0
Naval Research Laboratory	2	40	40	1.0	1.0
Naval Underwater Systems Center	₹	33	0	0.0	0.0
Naval Weapons Center	٦,	15	9	0.0	0:0
	SUBTOTAL: 15	136	26	2.6	1.1

The state of the s

SECTION 2

TABLE 2

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TYPE OF SPONSOR AND PERFORMING ACTIVITY STATE AND LOCAL SPONSORS

		FUNDI	FUNDING (\$K)	-NAN-	MAN-YEARS
PERFORMING ACTIVITY	NUMBER OF PROJECTS	PY79	FY80	FY79	FY80
Naval Health Research Center	1	0	0	0.1	0.1
Naval Ocean Systems Center	2	54	0	1.1	0.0
Naval Oceanographic Office	1	0	7	0.0	0.0
Naval Postgraduate School	3	0	0	0.0	0.0
Naval Underwater Systems Center	æ	0	0	0.0	0.0
Naval Weapons Center	7	18	0	0.2	0.0
Navy Personnel Research and Development Center	rd.	09	09	2.0	2.0
U.S. Maval Academy	11	8	읾	0.3	0.3
	SUBTOTAL: 14	152	81	3.7	2.4
	TOTAL: 261	30902	43107	279.2	233.3

SECTION 2

TABLE 3

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND TYPE OF SPONSOR

	40	ç Ç	SHOOT ORGING COMMENT	FUNDIN	FUNDING (\$K)	MAN-)	MAN-YEARS
TECHNOLOGICAL AKEA	TIPE OF SPONSON	TO COLO	NUMBER OF FRANKES				
Analysis and Testing	Federal		36	5891 0	5253 0	49.3	45.2
	Industry		12	418	119	1.5	1.4
	Nonprofit		8	20	0	0.3	0.0
	•	Subtotal	27	6329	5372	51.1	46.6
Communications	Pederal		17	5606	2750	31.7	26.9
	Nonprofit	Subtotal	18	0 2606	0 2750	$\frac{0.0}{31.7}$	0.0 26.9
			7.	21.33	3380	20 3	7 76
Computer Technology	rederal		•	7775			
	State	Subtotal	<u>15</u>	3132	3380	29.3	26.7
Sprets	Federal		22	2901	2156	26.5	25.9
76 701	Foreign		٦,	0	0	0.0	0.0
	Nonprofit		7	٥	0		0.0
		Subtotal	22	2901	2156	26.5	25.9
Environment	Federal		16	1225	932	14.4	9.5
	Nonprofit		٦,	51 5	0 (0.0	0.0
	State	Subtotal	2 <mark> </mark> 5	18 1258	932	14.6	9.5
			,	;	:		,
Fire and Safety	Federal		** -	707 707	661	* 0	7.0
	State	Subtotal	110	201	199	2.4	21:
General Assistance	Federal		6	250	255	1.9	1.5
	Industry		н,	۰ و	0 9	0.0	0.6
	Nonprofit State			2 8	3 €	0.3	0.3
		Subtotal	12	310	316	3.2	2.8

--

Ī

SECTION 2

TABLE 3

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND TYPE OF SPONSOR

				PUNDING (\$K)	G (\$K)	MAN-YEARS	EARS
TECHNOLOGICAL AREA	TYPE OF SPONSOR	ONSOR	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Health and Medicine	Federal Industry Nonprofit State	Subtotal	23 1 2 2 28	946 40 1 0 987	1212 0 1 1 1213	14.2 0.1 0.1 14.5	6.8 0.1 0.1 7.1
Instrumentation	Federal Industry State	Subtotal	19 7 7 27	1678 18 0 1696	36 36 1711	16.9 0.0 0.0 16.9	0.0
Law Enforcement	Federal	Subtotal	ะเพ	1282 1282	2150 2150	4.2	7.0
Marine Technology	Federal Industry Nomprofit State	Subtotal	13 2 2 1 1 18	892 0 12 51 51 955	657 1 0 0 658	9.0 0.1 0.2 1.0 10.3	4 0 0 0 4 8 0 0 0 8
Technological Guidance	Pederal Nonprofit State	Subtotal	10 4 4 4 19	3360 48 63 3471	2985 15 60 3060	34.0 1.0 2.1 37.1	34.2
Transportation	Pederal	Subtotal	17	5774	19750 19750	37.4	26.3
		Total	261	30902	43107	279.2	233.3

SECTION 2

TABLE 4

SUBBMARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TYPE OF SPONSOR	LOGY TRANSFER	PROJECTS,	LISTED BY PERFORMING	ACTIVITY	AND TYPE O	F SPONSOR	
PERFORMING ACTIVITY	TYPE OF SPO	SPONSOR	NUMBER OF PROJECTS	PUNDIN FY 79	FUNDING (SK)	MAN-YEARS FY79 FY	EARS FY80
Civil Engineering Laboratory	Federal	Subtotal	صا ب	929 929	238	3.5	2.0
David W. Taylor	Federal Industry Nonprofit	Subtotal	23 25 25	5617 4 10 5631	21073 95 0 21168	34.1 0.1 34.3	34.6 0.0 35.5
Government-Industry Data Exchange Program	Federal	Subtotal	ald	1700	2000	10.0	11.0
Joint Cruise Missiles Project Office	Federal	Subtotal	ભાભ	010	010	0.0	0.0
Naval Air Development Center	Federal	Subtotal	कांच	1331	450 450	8.0	1.6
Naval Air Engineering Center	Federal Foreign	Subtotal	N HIM	9 0 9 9	47 0 47	1.5	1.5
Naval Air Systems Command	Federal	Subtotal	ស]ហ	425 425	125 125	0.6	3.0
Naval Air Test Station	Federal	Subtotal	-1 - 1	010	010	000	0.0
Naval Biosciences Laboratory	Federal	Subtotal	mlm	173 173	30	3.5	0.8
Naval Coastal Systems Center	Pe deral	Subtotal	কাক	1812	2692 2692	8 5	11.7
Naval Health Research Center	Federal Industry Nomprofit State	Subtotal	7 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 9 1 0 IT	404010	0.8	0.5

The second

SECTION 2

TABLE 4

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY PERPORMING ACTIVITY AND TYPE OF SPONSOR

PERFORMING ACTIVITY	TYPE OF SPONSOR		NUMBER OF PROJECTS	FY79	FUNDING (\$K)	FY79 FYE	FY80
Naval Mine Engineering Facility	Federal	Subtotal	нH	414	ою	0.1	0.0
Naval Ocean Research and Development Activity	Federal	Subtotal	കിത	1648	1203 1203	15.7	10.8
Naval Ocean Systems Center	Federal Industry Nonprofit State	Subtotal	19 3 2 2 2 3	3284 22 37 37 54 3397	1949 24 15 0 1988	29.9 0.5 1.4 1.1 32.9	16.0 0.5 0.0 16.5
Naval Oceanographic Office	Federal Foreign Industry Nonprofit State	Subtotal	10 1 1 2 22	114 0 18 0 0	62 0 37 100	6.0000	900000
Naval Postgraduate School	Federal State	Subtotal	๓ ๓ ๒	۳) و ۳	0 010	4.00	0.00
Naval Research and Development Command	Federal	Subtotal	ø∤ø.	486	1071	6.2	4.5
Naval Research Laboratory	Federal Nonprofit	Subtotal	38 38	5272 40 5312	6159 6199	50.8	52.4 1.0 53.4
Naval Sea Systems Command	Federal Industry	Subtotal	☞ 떠[50	2930 2930 2930	2400 2400	36.0 36.0	30.0
Naval Ship Weapon Systems Engineering Station	Federal	Subtotal	młm	4 6 6	06 05 06 05	1.0	7.0

SECTION 2

TABLE 4

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TYPE OF SPONSOR

PERFORMING ACTIVITY	TYPE OF SPONSOR		NUMBER OF PROJECTS	FY79 FY80	G (SK) FY80	FY79	MAN-YEARS
Naval Surface Weapons Center	Federal	Subtotal	1111	870 870	542 542	10.1	8.0
Naval Training Equipment Center	Federal	Subtotal	mlm	425	225 225	8.5	4.5
Naval Underwater Systems Center	Federal Nonprofit State	Subtotal	ન ય છ જ	310 330	00010	00000	0.000
Naval Weapons Center	Federal Industry Nonprofit State	Subtotal	$\begin{array}{c} 20\\10\\1\\3\\\hline{3}\end{array}$	2108 392 15 18 2533	1620 0 0 1620	12.8 0.9 0.0 0.2 13.9	0.0
Naval Weapons Support Center	Federal	Subtotal	010	010	olo	0.0	0.0
Navy Personnel Research and Development Center	P ederal State	Subtotal	пыр	0 00	900	2.0	1.0
Office of Naval Research	Pederal	Subtotal	14	834 834	873 873	14.1	16.3
U.S. Naval Academy	Pederal State	Subtotal	o He	1 8 1	0 7 1 1 0 5 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	6.0	0.0
		Total	261	30902	43107	279.2	233.3

SECTION 2

TABLE 5

SUMMARY OF BY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TECHNOLOGICAL AREA

PERFORMING ACTIVITY	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79 FY80	(\$K)	FY79 FY8	FY80
Civil Engineering Laboratory	Energy Health and Medicine Marine Technology Transportation Subtotal	1 1 1 3 5tal 6	616 138 50 125 929	120 83 0 0 238	0.9	0.000.0000.0000000000000000000000000000
David W. Taylor	Analysis and Testing Computer Technology Energy Environment Fire and Safety Marine Technology Technological Guidance Transportation Subtotal	10 1 1 2 2 3 3 3	891 400 35 749 70 211 175 3100 5631	717 700 104 590 94 248 315 18400 21168	8.8 2.0 0.3 7.9 2.0 2.0 10.0	7.3 6.0 7.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
Government-Industry Data Exchange Program	Analysis and Testing Subtotal	$\frac{1}{1}$	1700	2000	10.0	11.0
Joint Cruise Missiles Project Office	Transportation Subtotal	$\frac{2}{2}$	010	010	0.0	0.0
Naval Air Development Center	Computer Technology Health and Medicine Instrumentation Technological Guidance Subtotal	l l l stal	26 350 955 1331	0 0 0 420 420	0.0 2.0 3.6 8.0	0.00
Naval Air Engineering Center	Analysis and Testing Environment Subtotal	2 1 3	94 0 14	₽ 0 ₽	1.5	1.5

SECTION 2

TABLE 5

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TECHNOLOGICAL AREA

			PUNDING (SE)	(2)	MAN-YEARS	ARS
PERFORMING ACTIVITY	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79 F	FY80	FY79	FY80
Naval Air Systems Command	Communications Fire and Safety General Assistance Instrumentation Transportation]]]] Subtotal 5	0 35 360 425	0 0 35 30 60 125	0.0 1.0 1.0 9.0	0.0 0.1 1.0 3.0
Naval Air Test Center	Fire and Safety	Subtotal $\frac{1}{1}$	010	010	0.0	0.0
Naval Biosciences Laboratory	Environment Health and Medicine	$\frac{2}{3}$ Subtotal $\frac{1}{3}$	143 30 173	୦ ଜାନ୍ତ	2.7	0.00
Naval Coastal Systems Center	Energy Environment Instrumentation Law Enforcement	1 1 1 Subtotal 4	300 95 197 1220 1812	152 150 240 2150 2692	8.0 1.0 8.5	2.5 1.0 1.2 7.0
Naval Bealth Research Center	Health and Medicine Technological Guidance S	11 ee <u>1</u> Subtotal 12	۲۰ <u>۱</u> ۲	n Oln	1.1	0.00
Naval Medical Research and Development Command	Health and Medicine	Subtotal $\frac{9}{9}$	486	1071	6.2	4.5
Naval Mine Engineering Facility	Analysis and Testing	$\frac{1}{1}$ Subtotal $\frac{1}{1}$	4 4	010	0.1	0.0
Naval Ocean Research and Development Facility	Computer Technology Energy Instrumentation Marine Technology	1 1 6 Subtotal 9	283 300 1005 60 1648	237 75 811 80 1203	1.0 2.0 11.9 0.8 15.7	1.0 1.0 8.2 0.6

SECTION 2

TABLE 5

SUMMARY OF BY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TECHNOLOGICAL AREA

PERFORMING ACTIVITY	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FUNDING (\$K)	G (\$K)	FY79	MAN-YEARS 9 FY80
Naval Ocean Systems Center	Analysis and Testing	च	400	124	6.0	1.5
	Communications	.	1254	611	12.3	5.0
	Environment	0 81	106	170	1.1	1.6
	Fire and Safety	7	15	0	0.5	0.0
	Health and Medicine	a	192	14	 	
	Law Enforcement	۱ اسم	7 7	0 0	7.5) r
	Marine Technology	, 0	700	329 	P. C	7.0
	Technological Guidance	71 (100	125	1 4	, .
	Transportation Sub	Subtotal 25	3397	1988	32.9	16.5
Naval Oceanographic Office	Communications	1	0	9	4.0	4.0
•	Computer Technology	-1	32	32	7.0	7.0
	Energy	2	70	Ŋ	0.3	0.2
	Environment	7	22	22	1.0	1.0
	Instrumentation	13	89	40	0.0	0.0
	Marine Technology	→ k	0 (2)	- (<u>)</u>		مارد مارد
	gns	Subtotal 22	757	3	•	1.0
Naval Postgraduate School	Computer Technology	~	•	0	0.0	0.0
•	Fire and Safety	Т	ø	Q	0.0	0.0
	General Assistance	m r	en c	۵ (•	
	Health and Medicine Sub	Subtotal 6	3),c	ei e	4.0	0.0
Naval Research Laboratory	Analysis and Testing	&	1042	1004	13.4	13.8
	Communications	6	2216	2630	21.0	20.9
	Computer Technology	7	434	1110	2.0	3.6
	Energy	G	1290	1405	14.1	0.41
	Fire and Safety	1	0	9	0.0	0.0
	General Assistance	٣	4 0	\$	٥٠٢	1.0
	Health and Medicine	м	8	or ·	6.3	1.0
	Instrumentation	7 -	0 9	o 4		9 0
	Marine Technology	+ ~-	9 9	, a	0.0	
	december of the detailed	1 -	26.0	•		0.0
	Transporter ton	Subtotal 38	5312	619	51.8	53.4

SECTION 2

TABLE 5

SUMMARY OF PY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TECHNOLOGICAL AREA

PERFORMING ACTIVITY	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79 FY80	G (\$K) FY80	MAN-Y FY79	MAN-YEARS
Naval Sea Systems Command	General Assistance Technological Guidance Transportation	1 3 1 Subtotal 5	2230 700 2930	0 2250 150 2400	0.0 28.0 8.0 36.0	0.0 28.0 2.0 30.0
Naval Ship Weapons Systems Engineering Station	Instrumentation	3 Subtotal 3	46 46	200	1.0	1.0
Naval Surface Weapons Center	Analysis and Testing Computer Technology Energy Fire and Safety Law Enforcement Transportation	2 1 2 1 1 Subtotal 11	80 300 127 16 50 50 297	80 220 65 5 172 542	1.1 3.2 1.7 0.3 1.0 2.8	1.1 3.3 0.5 0.0 3.0
Naval Training Equipment Center	Communications Computer Technology Technological Guidance	$\begin{array}{c} 1\\1\\1\\\text{Subtotal} \end{array}$	200 225 425	225 225 225	8.5 0.0 5.8	0.0 4.5 4.5
Naval Underwater Systems Center	Communications Energy Technological Guidance	1 2 2 Subtotal 8	333 0 0	º o olo	0.00	0.00
Naval Weapons Center	Analysis and Testing Energy Environment General Assistance Health and Medicine	22 3 4 4 3 3 Subtotal 33	2151 98 88 182 2533	1400 0 220 0 1620	12.1 0.7 0.5 0.5	10.0 0.0 0.0 0.0 0.0
Naval Weapons Support Center	Communications Environment	1 1 Subtotal 2	000	000	0.00	0.00

SECTION 2

TABLE 5

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY PERFORMING ACTIVITY AND TECHNOLOGICAL AREA

FY80	3.0	0.04.20.00.00.00.00.00.00.00.00.00.00.00.00.	16.3 0.3 0.0
MAN-YEARS FY79 FY8	0.0 2.0 2.0	0.1 2.2 3.3 2.5 1.0	14.1 0.3 0.4
FY80	୭ ଓ ଓ	120 245 245 200 0 100	208 873 21 21 21
FY79 FY80	0 0 0	15 140 204 125 100 45	150 20 21 21 41
NUMBER OF PROJECTS	1 Subtotal 3	н е е е е е	Subtotal 14 Subtotal 2 Subtotal 3
		6	
TECHNOLOGICAL AREA	Energy Technological Guidance	Analysis and Testing Communications Computer Technology Energy Environment	Marine Technology Transportation General Assistance Marine Technology
Vintitude Constitution	Navy Personnel Research and Development Center	Office of Naval Research	U.S. Maval Academy

SUMMARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

			FUNDIN	FUNDING (\$K)	MAN-Y	MAN-YEARS
FEDERAL SPONSOR	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79	FY80	FY79	PY8 0
Pederal		8	70	0.0	1.0	1.0
Maritime Administration	Analysis and Testing Energy	3 1 Subtotal 4	106 35 141	0 104 104	1.2	0.0
Federal Railroad Administration	Analysis and Testing	Subtotal $\frac{1}{1}$	100	100	0.5	0.5
U.S. Coast Guard	Analysis and Testing Computer Technology Environment Health and Medicine Instrumentation Marine Technology Technological Guidance	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1035 352 249 86 350 211 1095 698 3358	527 111 260 0 248 465 650 650	10.1 3.9 3.2 3.2 2.1 2.0 2.6 5.4 5.4	6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Department of Commerce	Analysis and Testing Energy Instrumentation	1 1 Subtotal 3	0 0 7 Z	o u mlo	0.0	0.0
Naval Sea Systems Command	Analysis and Testing Communications Computer Technology Bnergy Environment Fire and Safety Bealth and Medicine Instrumentation Marine Technology Technological Guidance Transportation	2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	495 700 365 0 39 22 26 700 4520	95 495 920 310 0 0 2250 150 150	0.2 10.0 3.9 3.9 0.0 0.7 0.7 0.0 8.0 8.0	0.9 7.3 0.0 0.0 2.2 2.2 5.2

SECTION 2

TABLE 6

SUMMARY OF PY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

				FUNDING (\$K)	G (\$K)	MAN-Y	MAN-YEARS
PEDERAL SPONSOR	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	PROJECTS	FY79	FY80	FY79	FY80
Joint Logistics Command	Analysis and Testing	Subtotal		1700	2000 2000	10.0	11.0
NASA Langley Research Center	Analysis and Testing	Subtotal	Ind	2 2	0 10	0.1	0.1
NASA Ames Research Center	Analysis and Testing Fire and Safety	Subtotal	m culse	173 15 188	46 0 46	2.0	0.0
NASA Goddard Space Flight Center	Analysis and Testing	Subtotal		37	ଓ ଓ	0.5	0.6
NASA Lewis Research Center	Computer Technology	Subtotal		010	9 0	0.0	000
NASA Lyndon B. Johnson Space Center	Energy Health and Medicine Transportation	Subtotal		52 26 87	65 0 70	3.2	0.0
NASA	Analysis and Testing	Subtotal	-1 -16	37 92 92	86 o 88	0.3	0.00
NASAKennedy Space Center		Subtotal		116	0 lo	1.6	0.0
NASAGeorge C. Marshall Space Flight Center	Transportation	Subtotal		32	35	0.5	0.5

SECTION 2

TABLE 6

SUMMARY OF PY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

Communications and Testing Communications Communica		AND TOUTOUT ADEA	NIMBER OF PROTECTS	E	FUNDING (\$K)	MAN-YEARS	FY80
Malysis and Testing 2 366 517 2.3	FEDERAL SPANSOR	TECHNOLOGICAL AKEN	Morben of theory			}	1
Mailysis and Testing 1 136 0 0.5	Description of Branchottation	Analysis and Testing	N	366	517	2.3	7
Health and Medicine		Communications	ત	20	0	0.5	ċ
Transportation 1 1 350 0 0 2.0 Transportation Subtotal 2 101 955 420 3.6 Analysis and Testing Subtotal 1 2 180 100 100 10.6 Analysis and Testing Subtotal 1 2 84 141 0.8 Analysis and Testing Subtotal 1 2 84 141 0.8 Analysis and Testing Subtotal 1 2 84 141 0.8 Analysis and Testing Subtotal 1 2 0.0 0.1 Analysis and Testing Subtotal 1 2 0.0 0.1 Analysis and Testing Subtotal 1 0.0 0.0 Communications Subtotal 1 0.0 0.0 Communica		Health and Medicine		138	83	1,2	Ö
Transportation Subtotal 2 101 81 0.4 Transportation Subtotal 2 101 100 1103 10.0 Emergy		Instrumentation	.	350	0	5.0	Ö
Transportation Subtotal 2 1910 83 0.4 Analysis and Testing 2 1662 1960 1103 10.6 Environment		Technological Guidance	7	955	420	3.6	<u>ښ</u>
Analysis and Testing 2 1960 1103 10.0 Environment		Transportation		101	83	4.0	اه
Analysis and Testing 2 917 508 3.1 Energy				1960	1103	10.0	'n
Analysis and Testing 2 1651 508 3.1 Energy							
Energy Energy 2 1661 892 10.6 Marine Technology Subtotal 13 2808 1450 16.4 Analysis and Testing Subtotal 1 100 100 1.0 Analysis and Testing Subtotal 1 100 100 1.0 Subtotal 1 100 100 1.0 Subtotal 1 100 100 1.0 Energy Subtotal 1 155 150 0.1 Energy Energy Subtotal 1 155 150 0.0 Fire and Safety 2 2 61 47 16 General Assistance 2 620 60 7.0 Instrumentation Subtotal 13 1532 1572 15.6 Transportation Subtotal 13 1532 1572 15.6 Transportation Subtotal 13 1532 1572 15.6 Transportation Testing Testi	Department of Energy	Analysis and Testing	74	416	508	3.1	m
Marine Technology 1 1 2808 1410 16.3 Manine Technology Subtotal 13 2808 1410 16.3 Analysis and Testing Subtotal 1 1 100 100 1.4 Analysis and Testing Subtotal 1 1 100 100 1.4 Analysis and Testing Subtotal 1 1 100 100 1.4 Analysis and Testing Subtotal 1 1 100 100 1.4 Analysis and Testing Subtotal 1 1 100 100 1.4 Analysis and Testing Subtotal 1 1 100 100 1.4 Analysis and Testing Subtotal 1 1 155 150 2.0 Analysis and Testing 1 1 155 150 2.0 Analysis and Testing 1 1 155 150 2.0 Analysis and Testing 1 1 1 1 1 1 1 1 Analysis and Testing 1 1 1 1 1 1 1 1 1		Phore	80	1661	892	10.6	<u>ر</u>
Main Technology 1 1 1 1 1 1 1 1 1		Environment	. 73	180	S	2.8	0
Analysis and Testing Subtotal I3 2808 1450 16.9 Analysis and Testing Subtotal 1 100 100 1.00 1.00 1.00 The stand Communications Communication Subtotal 1 2 0 0.1 Energy Subtotal 1 2 0 0.1 Communication Subtotal 1 0 0.0 General Assistance Instrumentation Subtotal I3 155 150 2.0 Transportation Subtotal I3 15512 1572 15.6 Transportation Subtotal I3 15312 1672 15.6		Marine Technology	-	S	0	9. 0	0
Analysis and Testing Subtotal 2 84 141 0.8 Analysis and Testing Subtotal 1 70 0 0 1.0 Analysis and Testing Subtotal 1 100 100 1.4 Streety Sherey 2 0 0.0 Fire and Safety General Assistance Transportation Subtotal 13 1532 1572 15.6 Transportation Subtotal 13 1532 1572 15.6		The state of the s		2808	1450	16.9	l≓
Analysis and Testing Subtotal 1 70 0 100 1.0 0.8 Analysis and Testing Subtotal 1 100 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1			,	3	14.	ď	
Analysis and Testing Subtotal 1 100 100 1.4 1.0 1.0 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Department of Energy	Analysis and Testing		8 8		18	نابن
Analysis and Testing Subtotal 1 70 0 1.0 Dry Analysis and Testing Subtotal 1 100 100 1.4 Dry Energy Subtotal 1 27 0 0.1 Communications Communications 2 61 47 1 6 Energy 2 61 47 1 6 Communications 2 61 47 1 6 Computer Technology 1 0 0 0 Energy 2 61 47 1 6 Computer Technology 1 155 150 2.0 Fire and Safety 2 61 47 1 6 General Assistance 1 35 150 2.0 Instrumentation 2 620 60 7.0 Transportation 2 620 60 7.0 Transportation 2 620 60 7.0 Tisstend 13 <th>títut</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	títut						
Analysis and Testing Subtotal I 100 100 1.4 Subtotal I 100 100 1.4 Subtotal I 27 0 0 0.1 Subtotal I 27 0 0 0.1 Communications Computer Technology I 1 0 0 0.0 Fire and Safety I 155 150 2.0 General Assistance I 2 620 60 7.0 Transportation Subtotal I 3 15.6	Constant of Washington	Analysis and Testing	1	02	0	1.0	ol
Analysis and Testing Subtotal 1 100 100 100 1.4 Shergy Subtotal 1 27 0 0 0.1 Subtotal 1 27 0 0 0.1 Communications Communications Computer Technology Bnergy Brite and Safety 1 155 150 2.0 General Assistance 1 2 620 60 0.0 Transportation Subtotal 13 1532 1672 15.6	Lawrence Livermore			12	10	1.0	0
Analysis and Testing Subtotal 1 100 100 100 1.4 Defice	Laboratory						
Energy Subtotal 1 100 100 1.00	Department of Energy	Analysis and Testing		001	5	7]7	-il-
Energy 1 27 0 0.1	Los Alamos Scientific Laboratory			001	301	•	i
Energy 1 27 0 0.1							1
Analysis and Testing 2 61 47 1 6	Department of Energy	Energy		212	olc	0 0	olo
Command Analysis and Testing 2 61 47 1 6 Communications 1 0 0 0 0 0 Computer Technology 2 434 1110 2.0 0 0 0.0 Energy 1 155 150 2.0 0 0.0 0.0 Fire and Safety 1 35 35 1.0 0.0 0.0 General Assistance 2 227 270 2.0 2.0 Instrumentation 2 620 60 7.0 Transportation Subtotal 13 1572 15.6				i	•	•	5
Subtotal 13 155 1672 15.6	•	Analysis and Testing	7 -	19 °	Ç c	1 6	.i 6
1 155 150 2.0 2 0 0 0.0 1 35 35 1.0 2 227 270 2.0 3ubtotal 13 1532 1672 15.6		Communications Computer Technology	. 73	434	1110	2.0	m
2 0 0 0.0 0.0 1 35 35 1.0 2 227 270 2.0 2 620 60 7.0 Subtotal 13 IS32 1672 15.6		Energy	1	155	150	2.0	~i ·
2 227 270 2.0 2 620 60 7.0 Subtotal 13 IS32 1672 15.6		Fire and Safety	7 -	o v	o ř	0.0	o -
Subtotal 13 620 60 7.0 1532 1672 15.6		General Assistance Instrumentation	, 79	227	270	2.0	2.
13 1532 1672 15.6		Transportation	•	620	9	2.0	~i ;
				1532	1672	15.6	Ξ.

SECTION 2

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

FEDERAL SPONSOR	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FUNDING (SK)	(SK) FY80	MAN-YEARS FY79 FY8	FY80
Nuclear Regulatory Commission	Analysis and Testing Energy Fire and Safety	1 1 Subtotal 3	2 250 16 <u>268</u>	8 250 5 263	0.0 3.5 9.3 9.3	3.0
Office of Naval Research	Analysis and Testing Communications Computer Technology Environment Fire and Safety Health and Medicine Marine Technology Transportation	6 5 3 3 1 1 2 2 2 2 2 2 5 5 5 5 7 7 7 7 7 7 7 7 7 7	1005 259 204 275 68 100 25 63 150	936 165 245 500 0 100 0 0 208	12.8 3.8 1.2 1.0 1.0 1.3 3.0	13.2 3.8 4.3 7.0 0.0 0.0 0.0 4.0
Strategic Systems Project Office	Analysis and Testing	חוח	35	9 9	0.5	9.00
CNO Security Assistant Training Program	Communications	~ -	010	olo	0.4	4.0
Naval Material Command	Communications Computer Technology Environment General Assistance	1 1 1 Subtotal 5	200 225 0 0 430	225 0 0 225	4.0 0.0 0.0 8.6	0.0
Naval Electronic Systems Command	Communications Instrumentation	3 1 Subtotal 4	1602 0 1602	2000 0 2000	0.0	9.6
Rome Air Development Center	Communications	3 Subtotal 3	490 490	400	5.0	4 4

SECTION 2

TABLE 6

SUMMARY OF PY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

	ABGA TACTOR ABBA	STORED OF BROTES	FUNDING (SK)	3 (\$K)	MAN-YEARS	EARS FY80
FEDERAL SPONSON	Technological with					
EPA National Environmental Research Center	Energy Environment	$\frac{1}{2}$ Subtotal $\frac{1}{2}$	46 141	0 150 150	4.0	1.0
Naval Research Laboratory	Communications General Assistance Instrumentation	$ \begin{array}{ccc} 1 & & & \\ 1 & & & \\ 2 & & & \\ Subtotal & & & \\ \end{array} $	0 12 12	21 2 0	0.00	0.00
Defense Mapping Agency	Computer Technology Instrumentation	1 4 Subtotal 5	283 48 331	237	0.0	1.0
Naval Avionics Command	Computer Technology Environment Instrumentation	l l 3 Subtotal §	32 22 54 0	32 25 26 0	1.0	1.0
National Science Poundation	Computer Technology General Assistance	$\frac{1}{2}$ Subtotal $\frac{1}{2}$	70 182 252	220 220	0.6	0.0
U.S. Postal Service	Computer Technology	Subtotal $\frac{1}{1}$	832 832	200	7.8	0 0
Federal Laboratory Consortium	Energy Technical Guidance	1 1 Subtotal 7	ဝေမျာ	3 0 30	0.00	1.0
National Oceanic and Atmospheric Administration	Environment Marine Technology	$\frac{1}{2}$ Subtotal $\frac{2}{3}$	99 8	S 0 S	0.5	4.00
Defense Construction Supply Center	Fire and Safety	olo	56	ᇷ	6.0	1.0

SECTION 2

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

					S o	MAN-VEARS	SARS
PEDERAL SPONSOR	TECHNOLOGICAL AREA	NUMBER	NUMBER OF PROJECTS	FY79 FY80	FYBO	FY79	FY80
IRED/TU	General Assistance	Subtotal	010	010	010	0.0	0.0
Naval Facilities Engineering Command	General Assistance Marine Technology	Subtotal	24 m/m	88 51	0 010	0.0	0.00
U.S. Forest Service	General Assistance	Subtotal	حام	010	010	0.0	0.0
Sea Grant College Program	Health and Medicine	Subtotal	rla	ଛାଛ	ଜାନ୍ଧ	0.8	8.0
Veterans Administration	Health and Medicine	Subtotal	ผเล	107	15	1.3	0.2
Navy Medical Research and Development Command	Health and Medicine	Subtotal	01 01	<u>\$11</u>	1071	6.5	4.5
Various	Health and Medicine	Subtotal	414	414	mlm	0.2	0.2
U.S. Army Instrumentation for Behavioral Sciences	Health and Medicine	Subtotal	세뉴	010	010	000	0.0
Health, Education, and Welfare	Health and Medicine	Subtotal	حام	2 2	010	0.2	0.0
Pood and Drug Administration	Health and Medicine	Subtotal	નાન	ଛାଛ	9 9	0.3	0.1
Maval Ocean Research and Development Activity	Instrumentation Marine Technology	Subtotal	45.	923 60 983	80 870	11.0 0.8 11.8	9.0 8.3

SECTION 2

TABLE 6

SUMMARY OF PY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

PEDERAL SPONSOR	TECHNOLOGICAL AREA	NUMBER	NUMBER OF PROJECTS	FY79 FY80	G (\$K) FY80	FY79	MAN-YEARS
Naval Postgraduate School	General Assistance	Subtotal	-11-1	ហេយ	010	0.1	0.0
NOAA Data Buoy Office	Instrumentation	Subtotal	710	72	mlm	0.7	0.0
NATO Seasparrow	Instrumentation	Subtotal	ala	<u> </u>	<u>20</u>	0.3	0.3
Physical Security Systems ESD/AFSC/USAF	Law Enforcement	Subtotal	חות	1220 1220	2150 2150	3.0	7.0
DOT Pederal Highway Administration Law Enforcement	Law Enforcement	Subtotal	HI.	2 2	010	1.0	0.0
Department of Justice Immigra- tion and Naturalization Service	Law Enforcement	Subtotal	ala	212	olo	0.5	0.0
Department of Interior U.S. Geological Survey	Marine Technology	Subtote	10	282	329	2.3	2.5
Department of Interior Bureau and Land Management	Marine Technology	Subtotal	rir.	95	olo	0.3	0.0
National Marine Fisheries	Marine Technology	Subtotal	rlr.	12	010	0.5	0.0
Defense Nuclear Agency	Technological Guidance	Subtotal	717	35	270 270	0.6	4.0
Naval Training Equipment Center	Technological Guidance	Subtotal	rlr.	010	010	0 0.0	0.0
Federal Aviation Administration	Transportation	Subtota1	2 2	108	27 77	0.7	0.1

SECTION 2

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

				FUNDIA	FUNDING (\$K)	MAN-YEARS	EARS
FEDERAL SPONSOR	TECHNOLOGICAL AREA	NUMBER	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Defense Advanced Research Projects Agency	Transportation	Subtotal	alc	3100	18400	10.0	10.0
U.S. Air Porce	Transportation	Subtotal	-1-	010	010	0.0	0.0
Joint Cruise Missiles Project Office	Transportation	Subtotal	414	010	010	0.0	0.0
DOT Pederal Railroad Administration	Transportation	Subtotal	ala	250 250	120	2.0	2.0
DOT Pederal Office Hazardous Material	Transportation	Subtotal	ᆒ	७।७	12	0.2	4.0

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

			FUNDIN	G (SK)	MAN-	EARS
FOREIGN SPONSOR	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79 FY80	FY80	FY79	FY80
Great Britain	Analysis and Testing	l Subtotal I	010	010	0.0 0.0	0.0
International Government	Energy	l Subtotal I	90	010	0.0	0.0

SECTION 2

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

INDUSTRY SPONSOR	TECHNOLOGICAL AREA	NUMBER	NUMBER OF PROJECTS	FY79 FY80	G (\$K) FY80	MAN-YEARS PY79 FY	FY80
Various	General Assistance	Subtotal	1 1	0 0	00	0.0	0.0
Industry	Analysis and Testing	Subtotal	- 1-1	22	24	0.5	0.5
Avondale	Analysis and Testing Instrumentation	Subtotal	ط دا ری	4. ⊣∣≀∪	95 96	0.0	0.0
Royal Industries, Inc.	Analysis and Testing	Subtotal	ᆔ	33	0 10	0.1	0.0
Explosive Technical, Inc.	Analysis and Testing	Subtotal	<u>1 1 1 1 1 1 1 1 1 1 </u>	7 7	010	0.1	0.0
Hughes Aircraft	Analysis and Testing	Subtotal	พเพ	2 2	٥١٥	0.0	0.0
General Dynamics Convair	Analysis and Testing	Subtotal	rla	ᆱ	010	0.2	0.0
Aeroject Ordnance and Manufacturing Company	Analysis and Testing	Subtotal	rin	34 33	9 10	0.1	0.0
Voight Helicopter Inc.	Analysis and Testing	Subtotal	ele.	諨	010	0.1	0.0
Firestone Coated Fabrics, Inc.	Analysis and Testing	Subtotal	ria.	2 2	olo	0.0	0.0
Martin-Marietta Aerospace	Analysis and Testing	Subtotal	-la	ଔଷ	olo	0.5	0.0
American Safety Flight System	Analysis and Testing	Subtotal	નાત	ala	010	0.0	0.0

SECTION 2

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

			FUNDING (\$K)	(\$K)	MAN-YEARS	EARS
INDUSTRY SPONSOR	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Upjohn International and Navy	Health and Medicine	Subtotal $\frac{1}{1}$	40 04	010	0.1	0.1
Production Control Systems, Inc.	Instrumentation	Subtotal $\frac{1}{1}$	111	717	0.0	0.0
Bay Technical Associates, Inc.	Instrumentation	Subtotal $\frac{1}{1}$	0 0	0 0	0.0	0.0
Louisiana Power and Light	Instrumentation	l Subtotal I	wļw	10	0.0	0.0
Mississippi Power and Light	Instrumentation	Subtotal $\frac{1}{1}$	212	10	0.0	000
MRS Manufacturing Company	Instrumentation	Subtotal $\frac{1}{1}$	пI	m lm	0.0	0.0
NUS Corporation	Instrumentation	Subtotal $\frac{1}{1}$	ထ (ထ	10	0.0	0.0
Raychem Corporation	Marine Technology	Nubtotal 1	o lo	010	0.1	0.0
Bechman Instruments, Inc.	Marine Technology	l Subtotal 1	010	ala	0.0	0.0

SECTION 2

TABLE 6

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

NON SPONSOR	TECHNOLOGICAL AREA	NUMBER OF	OF PROJECTS	FUNDING (\$K)	(\$K) FY80	MAN-YEARS FY79 FY8	EARS FY80
Social Naval Architecture and Engineering	Analysis and Testing	Subtotal	حام	의의	010	00.1	000
Applied Physics Laboratory/ Johns Ropkins University	Analysis and Testing Environment	Subtotal	<u>5</u> 11 1	10 22 28	0 010	0.0	0.00
Local Government Assistance Task Porce (FLC-Par West Region)	Health and Medicine	Subtotal	حاء	ala	নান	0.1	0.1
Various POW Organizations	Health and Medicine	Subtotal	a a	010	010	0.0	0.0
Victoria Behavioral Research Assn, Ltd.	Technological Guidance	Subtotal	리니	010	010	0.0	0.0
CTIP	General Assistance Technological Guidance	Subtotal	7 1 17	40 73 73	하이	1000	0.0
NUSC New England Innovation Group, & Public Technology, Inc.	Technological Guidance Communications	Subtotal	7 1 1	o o lo	0 010	0 0 0	0.00
Pacific Northwest Innovation Group	Technological Guidance	Subtotal	7 7	15 15	<u>15</u>	1.0	1.0
International Research Group on Wood Preservation	Marine Technology	Subtotal	리트	010	010	000	0.0
Institute for Acoustic Research	Marine Technology	Subtotal	чь	0 lo	0 lo	0.0	0.0
Rhode Island League of Cities and Towns	Communications	Subtotal	ria	01o	010	000	000

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

			FUNDING ((\$K)	MAN-II	CV CV
	TECHNOLOGICAL AREA	NUMBER OF PROJECTS	FY79 FY80	7,80	FY79 FY80	FYBU
NONPHOFIL SPONSON			c	0	0.0	0.0
NUSC/University of Conn.	Energy	Subtotal 1) (0	10	0.0	0.0
		•	o	0	0.0	0.
Metal Properties Council	Energy	Subtotal I	ф	ю	0.0	0.0

SECTION 2

TABLE 6

SUMMAR! OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND TECHNOLOGICAL AREA

STATE SPONSOR	TECHNOLOGICAL AREA	NUMBER	NUMBER OF PROJECTS	FY79 FY80	FY80	FY79 FY6	EARS FY80
Sante Fe, NM	Computer Technology	Subtotal	~ L	0 lO	010	000	0.0
Western Kansas Ground Water District #1	Environment	Subtotal	नांद	18	010	0.5	0.0
California Santa Barbara County	Env:ronment	Subtotal	ala	o lo	Q10	000	0.0
University of Cailfornia BuMed & Surgery	Marine Technology Health and Medicine	Subtotal	ਰ ਕੀ ਟ	51 51 0	0 010	1.0	0.00
City & County of San Diego	Technological Guidance	Subtotal	กเก	ଆଞ	0909	2.1	2.0
Carson City, Nevada	Fire and Safety Health and Medicine	Subtotal	7,1	0 0 0	906	0.00	0.00
Anne Arundel County Schools	General Assistance	Subtotal	пh	2 2	2 <u> </u> 21	e.0	0.0
South Carolina Wildlife and Marine Resources Department	Instrumentation	Subtotal	ala	010	ala	0.0	0.0
Connecticut General Assistance	Technological Guidance	Subtotal	~ -	010	0 0	0.0	0.0
Conference of Municipalities	Technological Guidance	Subtotal	ala ala	010	olo	0.0	0.0
Naval Underwater Systems Center	Technological Guidance	Subtota1	al-	010	o 10	0.0	0.0

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				FUNDING (\$K)	(5K)	MAN-	MAN-YEARS
FEDERAL SPONSOR	PERFORMING ACTIVITY	LVITY	NUMBER OF PROJECTS	FY79	FY80	FY79	FY80
Nace Nir Costons Command	NAB		1	46	47	1.5	1.5
DIPHOND CHIEF TO TOADN	MRL		ı so	864	1260	4.2	5.6
	NAVAIR		S	425	125	9.0	3.0
	NATO		-	0	0	0.0	0.0
	MCSC	Subtotal	13	197 1532	240 1672	15.7	11.3
National Material Command	NAEC		-	0	0	0.0	0.0
Mayar Saretana	NPS		٦	S	0	0.1	0.0
	NRL NTEC		-1 2 Ju	425	225 225	0.0	0.414
		Subtotal	n	00 4	677	•	;
Naval Pacilities	NPS USNA	Subtotal	લ નામ	33 57 81	0 010	0.3	0 0 0
National Oceanic & Atmospheric Administration	USNA NRL DWT	Subtotal	MP P P	. 0 9 9	2000	0.00	0 0 0 0
Naval Postgraduate School	NPS	Subtotal	r Ir	w lw	010	0.1	0.0
U.S. Forest Service	NPS	Subtotal	ala	010	olo	00.0	0.0
Naval Sea Systems Command	LMG		. 3	404	795	2.1	6.0
	NSWSES		1 0	26	30	0.7	0.7
	NAVSEA		4	2930	2400	36.0	30.0
	NWSC		7	0	0	0.0	0.0
	NRL		S	860	805	13.9	13.2
	NSWC		т	300	220	3.2	e .
	NATRED	Subtotal	1 S	39 4563	4250	<u> 56.7</u>	52.1

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				PUNDING	(SK)	MAN-YEARS	EARS
FEDERAL SPONSOR	PERFORMING ACTIVITY	IVITY	NUMBER OF PROJECTS	FY79 FY80	FY80	FY79	FY80
Pederal Laboratory Consortium	NP RDC NUSC	Subtotal	m relior	62 0 62	8 º 8	200.0	3.0
U.S. Coast Guard	NOSC DWT NADC	Subtotal	7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1560 1211 1305 4076	981 860 420 2261	14.6 13.0 5.6 33.2	8.9 1.6 1.6
Veterans Administration	NOSC	Subtotal	7 TK	106	# 1 S	1.2 0.1 1.3	0.1
Department of Justice Immigration and Naturalization Services	NOSC	Subtotal	ala	2 2	olo	0.5	0.0
U.S. Department Interior Bureau of Land Management	NOSC	Subtotal	ala	શક	010	0.3	0.0
U.S. Geological Survey	NOSC NOC	Subtotal	ન નાલ	282 282	329 329	2.3	2.2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

FEDERAL SPONSOR	PERFORMING ACTIVITY	FIVITY	NUMBER OF PROJECTS	FUNDING (SK)	(\$K) FY80	MAN-)	MAN-YEARS	
National Aeronautic and Space Administration, Kennedy Space Center	NWC	Subtotal	0 1 m	92 208	34 0 34	0.5	0.0	
Ames Research Center	NOSC	Subtotal	ਜ ਨ ਵਾ	15 173 188	4 4 4 6	2.0	0.0	
Langley Research Center	NSWC	Subtotal	ᆐ	1912	10	0.1	0.1	
Lyndon B. Johnson Center	NSWC NADC	Subtotal	ผาไต	61 87	0 <u>0</u> <u>0</u>	3.2	0.0	
George C. Marshall Space Flight Center	NSWC	Subtotal	rle.	32	35	0.5	0.5	
Goddard Space Flight Center	NWC	Subtotal	ПП	37	20	0.5	0.0	
Levis Research Center	NADC	Subtotal	리	010	0 0	000	000	
National Marine Fisheries	NOSC	Subtotal	ala	2 2	0 lo	0.2	000	
Department of Transportation	NOSC NWC CEL NADC	Subtotal	ପର୍ବର	134 366 155 1305	75 517 91 420 1103	0.6 2.3 1.5 5.6	0.5 0.9 1.6 5.5	
National Science Foundation	NOSC NWC NPRDC	Subtotal	ਕਿਕਿ ਜ m	70 182 60 312	220 60 280	0.6 0.5 3.1	0.0	

I

I

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				FUNDING (\$K)	(\$K)	MAN-YEARS	EARS
PRDERAL, SPONSOR	PERFORMING ACTIVITY		NUMBER OF PROJECTS	FY79	F780	1779	F780
U.S. Postal Service	NOSC NSWC NCSC NB IOL NORDA NWC	Subtotal	44 H H H H H	832 75 300 130 917 2554	500 0 152 0 75 508 1235	7.8 1.0 4.0 2.5 2.0 3.1	4.0 0.0 2.5 0.0 1.0 11.0
Department of Energy	NRL CEL S	Subtotal	ଳ ଜୀନ	370 666 1036	545 120 665	1.3	1.0
Safety/Isotape Fuel Branch	NOSC	Subtotal	ᆔ	20 20	શ્રીજ	0.3	0 3
Los Alamos Scientífic Laboratory	NWC	Subtotal	1 1	100	100	1.4	1.4
Nevada Operations Office	NWC	Subtotal	пH	27	010	0.1	0.0
Solar Energy Research Institute	NWC	Subtotal	010	8 8 8 4	141	0.8	1.6
Lawrence Livermore Laboratory	NWC	Subtotal	пIП	2 2	010	1:0	0.0
Department of Transportation Eighway Administration	NSWC DWT	Subtotal	ત નાળ	50 100 150	0 100 100	1.0	0.0
Railroad Administration	NSWC	Subtotal	r r	250	120 120	2.0	2.0
Hazardous Material	NSWC	Subtotal	~ ~	wiw	12	0.2	000

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

PEDERAL SPONSOR	PERFORMING ACTIVITY	IVITY	NUMBER OF PROJECTS	FY79 FY80	(\$K) FY80	MAN-YEARS FY79 FY8	FY80
Naval Training Equipment Center	NTEC	Subtotal	 I⊓	010	010	0.0	0.0
Independent Research and Development/Technology Utilization Office	NWC	Subtotal	win	010	010	0.0	0.0
Health, Education and Welfare	NAC	Subtotal	nin	14	010	0.2	0.0
National Environmental Research (EPA) Center	NWC NCSC	Subtotal	711	46 141	0 150 150	4.0	1.0
Sea Grant College Program	NBIOL	Subtotal	r r	30	8 8	8.0	0.8
Joint Logistics Commanders	FLTAC	Subtotal	리는	1700	2000	10.0	11.0
U.S. Air Force	JCM	Subtotal	ત્નાન	010	olo	0.0	0.0
Joint Cruise Missiles Project Office	JCM	Subtotal	નાન	010	010	0.0	0.0
Perkin Bimer	NRL	Subtotal	ala	010	010	0.0	0.0
Federal	NSWC	Subtotal	п п п	5 o 5	00 <u>07</u>	1.0	0.0
Various	NEERC	Subtotal	ক(ক	4 4	MJm	4.0	4.0

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				(AS) SMICHAE	(8.8)	MAN-	MAN-VEARS
PEDERAL SPONSOR	PERFORMING ACTIVITY	LIVITY	NUMBER OF PROJECTS	6/X4	FY80	EX79	PY80
Nava! Research Laboratory	NRL NORDA NB I OL	Subtotal	લનના∕જ	12 0 28 13 12 0	21 21 21	0.000	0.00
Food and Drug Administration Bureau of Radiological Health	NRL	Subtotal	ala	ଞ୍ଚାଞ୍ଚ	व्यव	0.3	0.1
Naval Electronics System Command	NRL	Subtotal	414	1602	2000	0.6	9.6
Nuclear Regulatory Commission	NPL NSWC	Subtotal	NHM	252 16 268	258 263	3.5	3.0
Office of Naval Research	WRL ONR WHRC	Subtotal	1 8 8 53 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1259 834 25 2118	1221 873 873 2094	16.7 14.1 0.3 31.1	17.0 16.3 0.0 33.3
Rome Air Development Center	NRL	Subtotal	પના જ	490 490	400	5.0	0.04
Strategic Systems Project Office	NRL	Subtotal		35	909	0.5	0.6
Mavy NATO Seaspartow	NSWSBS	Subtotal		2 2	2 2	0.3	0.3
Pederal Aviation Administration	NOSC	Subtotal	H Olm	50 108 158	0 27 27	0.5	0 0 0 0
Naval Medical Research and Development Command	NAGRE D	Subtotal	2 2	<u>511</u> 511	351	6.5	212

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				PUNDING (\$K)	(\$K)	MAN-YEARS	EARS
FEDERAL SPONSOR	PERFORMING ACTIVITY	CTIVITY	NUMBER OF PROJECTS	FY79	7780	67.73	FY80
Defense Mapping Agency	NORDA	Subtotal	-1 4 - 10	283 48 331	237 237	1.0	1.0
Chief Naval Operations Security Assistant Training Program	NOC	Subtotal	rd Ird	0 lo	ρlo	0.4	0.4
Naval Avionics Command	NOC	Subtotal	ഹിഹ	312	5 54 54	2.0	2.0
Department of Commerce National Data Buoy Office	NOC	Subtotal	1 1 K	89 p	w 0 lw	0.3	0.0
Physical Security Systems Directorate BSD/NFSC/USAF	NCSC	Subtotal	HIH	1220 1220	2150 2150	3.0	7.0
U.S. Army Institute for Behavioral & Social Sciences	NHRC	Subtotal	ala	010	olo	0.0	0.00
Defense Advanced Research Projects Agency	DWT	Subtotal	ala	3100	18400	10.0	10.0
Naval Ocean Research and Development Activity	NORDA	Subtotal	ស]ហ	983	870	11.8	8.8
Defense Construction Supply Center	Der	Subtotal	ele	99	61	8 0 8 0	8.0
Defense General Supply Center	r Ma	Subtotal	rd (r	# C	27	0.1	0.5
Maritime Administration	Dert	Subtotal	4 4	쾖	104	1.5	0.7

i

SECTION 2

TABLE 7

SUPPLARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				FUNDING	(\$K)	MAN-	EARS
FEDERAL SPONSOR	PERFORMING ACTIVITY	IVITY	NUMBER OF PROJECTS	FY79 FY80	FY80	FY79	FY80
Department of Commerce	DWT	Subtotal	- I	90	010	0.0	0.0
Navy	NHRC	Subtota]	H H	6 6	010	0.1	0.1

SECTION 2

TABLE 7

SUMMARY OF PY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERPORMING ACTIVITY

				FUNDING	(\$K)	MAN-Y	EARS
POREIGN SPONSOR	PERFORMING ACTIVITY		NUMBER OF PROJECTS	FY79 FY80	FY80	6LX.	FY80
International Government	NOC	Subtotal	નીન	010	010	0.0	0.0
Great Britain	NABC	Subtotal	пIH	010	010	000	0.0

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

		,					:
INDUSTRY SPONSOR	PERFORMING ACTIVITY	TIVITY	NUMBER OF PROJECTS	FY79 FY8	FY80	FY79	MAN-YEARS
Industry	NSWC	Subtotal	7 7 7 7	70 92 92	70 24 94	1.0	1.0
Various	NAVSEA	Subtotal	ri.	010	010	0.0	0.0
Production Control Systems Inc.	MOC	Subtotal	리니	ᆔ	010	0.0	0.0
Avondale Shipyard, New Orleans	NOC	Subtotal	1 1 1 2	~ 4. ₹	1 95 96	0.0	0.0
Bay Technical Associates, Inc.	NOC	Subtotal	ᆔ	010	olo	0.0	0.0
Louisiana Power & Light	NOC	Subtotal	નાન	io Jio	10	0.0	0.0
Mississippi Power and Light	NOC	Subtotal	ala	212	9 2	0.0	0.0
M-R-S Manufacturing Company	NOC	Subtotal	ᆔᄺ	пIП	mlm	0.0	0.0
NUS Corporation	NOC	Subtotal		ထ (ထ	9 19	0.0	0.0
Raychem Corporation Houston	NOC N	Subtotal	пIT	olo	010	0.1	0.0
Beckman Instruments, Inc.	NOC	Subtotal	레다	010	ᆌ	0.0	0.0

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				FUNDING	(SK)	MAN-	MAN-YEARS
INDUSTRY SPONSOR	PERFORMING ACTIVITY	LIVITY	NUMBER OF PROJECTS	FY79 FY80	FY80	FY79	FY80
Upjohn International	NOC	Subtotal	-H	40	o lo	0.1	0.1
Royal Industries, Inc.	NWC	Subtotal	чH	33	0 0	0.1	0.0
Explosive Technology, Inc.	NWC	Subtotal	디디	14	010	0.1	000
Hughes Aircraft	NWC	Subtotal	nın	2 2	010	0.0	0.00
General Dynamics Command	NWC	Subtotal	rlr	= =	010	0.2	0.00
Aerojet Ordnance & Manufacturing Co.	NWC	Subtotal	מות	88 88	olo	0.1	0.00
Vought Helicopter Inc.	NWC	Subtotal	ᄱ	===	010	0.1	0.0
Firestone Coated Pabrics Company, Inc.	NWC	Subtotal	r I r	<u>72</u>	010	0.1	0.00
Martin-Marietta Aerospace	NWC	Subtotal	чн	<u>09</u>	90	0.2	0.0
American Safety Plight System	NWC	Subtotal	r r	## E	010	0.0	0.0

SECTION 2

TABLE 7

SUBMARY OF PY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				FUNDING	(\$K)	MAN-	MAN-YEARS
NON PROPIT SPONSOR	PERFORMING ACTIVITY	IVITY	NUMBER OF PROJECTS	FY79 FY80	FY80	FY79	FY80
Society of Naval Architects and Engineers	DWT	Subtotal	H I	웨	010	0.1	000
Rhode Island League of Cities and Towns	NUSC	Subtotal	ala	010	010	0.0	0.0
New England Innovation Group	NUSC	Subtota1	иka	0 lo	olo	0.0	0.0
NUSC/University of Connecticut	NUSC	Subtotal	ala	910	010	0.0	0.0
CTIP	NUSC	Subtotal	מוד ה	# 4 E	o 3 3	0.0	1.0
Public Technology, Inc.	NUSC	Subtotal	ra (ra	010	010	0.0	0.0
Metal Properties Council	NRL	Subtotal	rifi	olo	olo	0:0	0.0
Applied Physics Laboratory/ Johns Hopkins University	NOSC	Subtotal	러	웨	olo	0.5	0.0
Institute for Acoustic Research	NOSC	Subtotal	mint	212	e lo	0.5	0.0
Pacific Worthwest Innovations	NOSC	Subtotal	rdird	श्र	श	1:0	0.0
International Research Group on Wood Preservation	NO NO	Subtotal	rd (rd	o lo	olo	0.0	0.0
Local Government Assistance Task Force	MERC	Subtotal	МIM	레	ala	0.1	0.1

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

				PUNDING	(\$K)	MAN-Y-	MAN-YEARS
NONPROFIT SPONSOR	PERFORMING ACTIVITY	CTIVITY	NUMBER OF PROJECTS	FY79 FY80	PY80	FY79	FY80
Various POW Organizations	NHRC	Subtotal	ᄱᅜ	90	010	0.0	00
Victoria Behaviorial Research Assn, LTD	NHRC	Subtotal	તાન	010	010	0.0	00.0
Johns Bopkins University	NWC	Subtotal	데데	15 15	010	000	0.0

SECTION 2

TABLE 7

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY INDIVIDUAL SPONSOR AND PERFORMING ACTIVITY

STATE SPONSOR	PERFORMING ACTIVITY	IVITY	NUMBER OF PROJECTS	FUNDING (\$K)	(\$K) FY80	MAN-YEARS FY79 FY8	EARS FY80
Anne Arundel County Schools	USNA	Subtotal	пII	<u>20</u>	캶	0.3	0.3
City and County of San Diego	NPRDC NOSC	Subtotal	ન નાત	3 m [8	09 09	2.0	2.0
University of California BuMed and Surgery	NOSC	Subtotal	tv	31° 21	000	0.1	0.0
Santa Pe, New Mexico	NPS	Subtotal	ale	010	010	0.0	0.0
Carson City, Nevada	NPS	Subtotal	ભાવ	010	010	000	0.0
Connecticut General Assembly	NUSC	Subtota1	-l-	010	010	0.0	0.0
Connecticut Conference of Municipalities	NUSC	Subtotal	તાત	olo	olo	0.0	000
Naval Underwater Systems Center	NUSC	Subtotal	ala	0 0	010	0.0	0.0
Santa Barbara County	NWC	Subtota1	ਜ਼ੀਜ	010	o 0	0.0	000
Western Ransas Ground Water District #1	NWC	Subtotal	નાન	18	olo	0.2	0.0
South Carolina and Marine Resources Department	NOC	Subtotal	ala	910	пIП	0.0	0.0

SECTION 2

TABLE 8

SUMMARY OF PY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERPORMING ACTIVITY

ANALYSIS AND TESTING		NUMBER OF	žo «	FUNDI	FUNDING (\$K)	MAN	MAN-YEARS
PERFORMING ACTIVITY	121	PROJECTS	SPONSORS	PY79	FY80	PY79	1.x80
David W. Taylor		10	∞	891	7117	8.8	7.3
Government-Industry Data Exchange Program Naval Pleet Analysis Center	e D	-	٦	1700	2000	10.0	11.0
Naval Mine Engineering Facility		7	7	4	0	0.1	0.0
Naval Surface Weapons Center		8	7	80	80	1.0	1.0
Naval Weapons Center		22	70	2173	1400	12.1	10.4
Naval Ocean Systems Center		•	m	4 00	124	4.0	1.5
Naval Research Laboratory		60	'n	1042	1004	13.4	13.8
Office of Naval Research		~	7	15	0	0,1	0.0
Naval Air Engineering Center		77	71	\$	=	1:5	1.5
	Subtotal	51	1 3	6351	5372	51.0	46.5

eranga.

4 ·

SECTION 2

TABLE 8

SUMMARY OF BY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

COMMUNICATIONS		NUMBER OF	N OF	FUNDING (\$K)	G (SK)	MAN-YEARS	EARS
PERPORMING ACTIVITY	E	PROJECTS	SPONSORS	FY79	PY80	FX79	287
Naval Air Systems Command		ส	,	0	0	0.0	0.0
Maval Oceanographic Office		-	п	0	0	4.0	4.0
Naval Training Equipment Center		т.	7	200	0	4.0	0.0
Naval Underwater Systems Center			æ	0	0	0.0	0.0
Naval Weapons Support Center		1	1	0	0	0.0	0.0
Naval Ocean Systems Center		1	7	20	0	0.5	0.0
Naval Research Laboratory		σ	ហ	2216	2630	21.0	20.9
Office of Naval Research		۳Į	٦١	140	120	2.2	2.0
	Subtotal	18	15	2606	2750	31.7	26.9

SECTION 2

TABLE 8

SUPPLARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERPORMING ACTIVITY

COMPUTER TECHNOLOGY							
		NUMBER OF	R OF	FUNDI	FUNDING (\$K)	MAN-	MAN-YEARS
PERFORMING ACTIVITY	E	PROJECTS	SPONSORS	6LX.4	FY80	FY79	FY80
David W. Taylor		-	1	400	700	2.0	4.0
Naval Air Development Center		7	1	0	0	0.0	0.0
Naval Ocean Research and Development Activity	يد	-	7	283	237	1.0	1.0
Naval Oceanographic Office			7	32	32	1.0	1.0
Naval Surface Weapons Center		7	т	300	220	3.2	3.3
Naval Training Equipment Center		7	-	225	225	4.5	4.5
Naval Ocean Systems Center		٣	e	1254	611	12.3	5.0
Naval Research Laboratory		7	7	434	1110	2.0	3.6
Office of Naval Research		м	~	204	245	3.3	3.3
Naval Postgraduate School		٦١	71	°	•	0.0	0.0
ns	Subtotal	15	77	3132	3380	29.3	25.7

SECTION 2

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

ENERGY	NUMB	NUMBER OF	FUNDI	FUNDING (\$K)	MAN-	MAN-YEARS
PERFORMING ACTIVITY	PROJECTS	SPONSORS	PY79	PY80	PY79	F780
Civil Engineering Laboratory	7	7	616	120	6.0	1.0
David W. Taylor	1	1	35	104	0.3	0.7
Naval Coastal Systems Center		1	300	152	4.0	2.5
Naval Ocean Research and Development Command	1	ત	300	75	2.0	1.0
Naval Oceanographic Office	71	7	10	'n	0.3	0,2
Naval Surface Weapons Center	7	7	127	92	1.7	0.5
Naval Underwater Systems Center	8	7	0	0	0.0	0.0
Naval Weapons Center	m	m	86	0	0.7	0.0
Navy Personnel Research and Development Center	1	~	0	30	0.0	1.0
Naval Research Laboratory	65	•	1290	1405	14.1	13.2
Office of Naval Research	7	٦١	125	200	2.5	5.0
Subtotal	otal 25	22	2901	2156	26.5	25.1

SECTION 2

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

ENVIRONMENT		NUMBER OF	ě.	FUNDIN	FUNDING (\$K)	MAN-YEARS	EARS
PERFORMING ACTIVITY	PROP	PROJECTS	SPONSORS	FY79	FY80	FY79	FY80
David W. Taylor	ĸ		m	749	290	7.9	5.9
Naval Biosciences Laboratory	2		7	143	•	2.7	0.0
Naval Coastal Systems Center	2		7	111	172	1.5	2.0
Naval Weapons Center	₹		4	88	0	4.0	0.0
Naval Weapons Support Center	1		7	0	0	0.0	0.0
Naval Ocean Systems Center	7		7	901	170	1.1	1.6
Office of Naval Research	7		ı	55	0	1.0	0.0
Naval Air Engineering Center	디		٦١	0	୍ଧ	0.0	0.0
	Subtotal 19		16	1258	932	14.6	9.5

<u>.</u>

I

SECTION 2

A CONTRACT OF THE PARTY OF THE

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

PINE AND SAPETY	NUMBER OF	IR OF	FUNDING (\$K)	G (SK)	MAN-YEARS	EARS
PERPORMING ACTIVITY	PROJECTS	SPONSORS	6CX			
Section of the section of	7	7	02	₹ 6	6.0	1.0
DEVIG W. PRINCE	-1	~	o	o	0.0	0.0
MAYAL ALI OYACHA COMMINISTER	~	7	•	0	0.0	0.0
NAME OF THE PERSON OF THE PERS	٦	1	16	'n	0.3	0.1
	ч	7	15	0	0.2	0.0
RAVAL CCCCI: Systems Correct Mana: December 1 haborator	1	-4	0	O	0.0	0.0
Naval recent of Naval Research	H	-	100	100	1.0	1.0
Maval Postgraduate School	ыI	пI	0	9	0.0	0.0
	Subtotal 9	•	201	199	2.4	2.1

SECTION 2

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

GENERAL ASSISTANCE		NUMBER OF	80	FUNDIA	FUNDING (SK)	MAN	MAN-YEARS
PERFORMING ACTIVITY) AND INC.	PROJECTS	SPONSORS	FY79	FY80	FY79	FY80
Naval Air Systems Command		1	7	35	35	1.0	1.0
Naval Sea Systems Command		ı	7	0	0	0.0	0.0
Naval Weapons Center		٣	7	182	220	0.5	0.5
U.S. Naval Academy		ı	1	20	21	0.3	0.3
Naval Research Laboratory		æ	4	40	4	1.0	1.0
Naval Postgraduate School	'	m	ارم	33	0	4:0	0.0
	Subtotal 12	77	14	310	316	3.2	2.8

--- I

SECTION 2

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERPORMING ACTIVITY

HEALTH AND MEDICINE		NUMBER OF	A OF	FUNDING (\$K)	G (\$K)	MAN-YEARS	EARS
PERFORMING ACTIVITY	اتقا	PROJECTS	SPONSORS	FY79	FY80	FY79	FY80
Civil Engineering Laboratory		7	7	138	83	1,2	0.8
Naval Air Development Center		7	7	56	0	2.4	0.0
Naval Biosciences Laboratory			~	30	30	8,0	8.0
Naval Health Research Center		ដ	a n	п	s	1.1	0.8
Naval Medical Research and Development Command		σı	7	486	1011	6.2	4.5
Naval Weapons Center		ч	7	14	0	0.2	0.0
Naval Ocean Systems Center		7	2	192	14	2.3	0.1
Naval Research Laboratory		4	4	30	10	0.3	0.1
Naval Postgraduate School		٦-	~	9	0	0.0	91
	Subtotal	28	19	987	1213	14.5	7.1

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

INSTRUMENTATION	N.	NUMBER OF	FUNDING (\$K)	G (\$K)	MAN-YEARS	EARS
PERPORMING ACTIVITY	PROJECTS	SPONSORS	FY79	FY80	27	2014
Mayal Air Development Center	7	п	350	0	2.0	0.0
Naval Air Systems Command	7	٦	30	30	1.0	1.0
Naval Coastal Systems Center	τ	-	197	240	1.0	1.2
Mayal Ocean Research and Dayel Coment Activity	9	4	1005	811	11.9	8.2
Mayal Oceangraphic Office	13	12	89	39	0.0	0.0
Naval Ship Weapon Systems Engineering Station	m	0	46	20	1.0	1.0
Maval Research Laboratory	2 Subtotal 27	73 [7	1696	1170	16.9	0:0

SECTION 2

TABLE 8

SUBBARY OF PY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

LAW ENPORCEMENT	~	NUMBER OF	FUNDIN		MAN-YEARS	EARS
PERPORMING ACTIVITY	PROJECTS	SPONSORS	FY79 FY80		FY79	LYBC
Naval Coastal Systems Center	7	7	1220	2150	3.0	7.0
Manal Surface Weapons Center	7	٦	20	0	1.0	0.0
Naval Ocean Systems Center	ط ا	તા	77	٩	0.2	0:0
	Subtotal 3	m	1282	2150	4.2	7.0

SECTION 2

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

MARINE TECHNOLOGY	NUMBER OF	\$0 x	FUNDIN	FUNDING (\$K)	MAN-	MAN-YEARS
PERFORMING ACTIVITY	PROJECTS	SPONSORS	FY79	FY80	FY79	FY80
Civil Engineering Laboratory	1	п	20	0	4.0	0.0
David W. Taylor	7	7	211	248	2.0	2.0
Naval Ocean Research and Development Activity	~	-	09	80	0.8	9.0
Naval Oceanographic Office	4	₹	0	1	0.1	0.0
U.S. Maval Academy	7	٣	21	0	4.0	0.0
Naval Ocean Systems Center	و	9	268	329	5.6	2.2
Naval Research Laboratory	ı	7	•	0	0.0	0.0
Office of Naval Research	٦١	ᆌ	45	٥	1.0	0.0
Subtotal	81	19	955	658	10,3	8.

SECTION 2

TABLE 8

SUMMARY OF FY 1979 TECHNOLOGY TRANSFER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

TECHNOLOGICAL GUIDANCE		NUMBER OF	ů.	FUNDING (\$K)	G (\$K)	MAN	MAN-YEARS
PERFORMING ACTIVITY	PROJ	PROJECTS	SPONSORS	PY79	PY80	FY79	FY80
David W. Taylor	ε,		7	175	315	2.4	4.6
Naval Air Development Center	1		7	955	420	3.6	1.6
Naval Health Research Center	1		7	0	0	0.0	0.0
Naval Sea Systems Command	e		æ	2230	2250	28.0	28.0
Naval Training Equipment Center	1		7	0	0	0.0	0.0
Naval Underwater Systems Center	ις,		S	33	0	0.0	0.0
Naval Personnel Research and Development Center	7		œ	9	09	2.0	2.0
Naval Ocean Systems Center	2		7	18	15	1.1	0.0
Naval Research Laboratory	r]		٦١	°	0	0.0	0.0
	Subtotal 19		20	3471	3060	37.1	36.2

SECTION 2

TABLE 8

SUMMARY OF PY 1979 TECHNOLOGY TRANSPER PROJECTS, LISTED BY TECHNOLOGICAL AREA AND PERFORMING ACTIVITY

TRANSPORTATION	NUMB	NUMBER OF	FUNDI	FUNDING (SK)	MAN	MAN-YEARS
PERPORMING ACTIVITY	PROJECTS	SPONSORS	FY79	FY80	FY79	PY80
Civil Engineering Laboratory	æ	7	125	35	1.0	0.2
David W. Taylor	1	7	3100	18400	10.0	10.0
Joint Cruise Missiles Project Office	2	7	0	0	0.0	0.0
Naval Air Systems Command	1	н	360	09	7.0	1.0
Naval Sea Systems Command	7	1	700	150	8.0	2.0
Naval Surface Weapons Center	4	4	297	172	2.8	3.0
Naval Ocean Systems Center	е	~	782	725	9.6	6.1
Naval Research Laboratory	н	-	260	0	0.0	0.0
Office of Naval Research	٦,	٦í	150	208	3.0	4.0
Subto	Subtotal 17	15	5774	19750	37.4	26.3

SECTION 3

TABLE OF CONTENTS

3-23-6	3-73-8	3-93-10	3-113-1	3-143-1	3-17	3-183-1	3-203-2	3-233-2	3-26	3-273-2	3-293-3	3-323-3
•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	:		•	•
•	•	•	•	•	•	:	•	•	•	•	•	•
:	•	:	:	•	•	•	•	•	:	:	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	•	:	:	•	:	:	•	•
•		•	•	•	•	•	•	•	•	•	•	•
•	:	•	•	:	•	:	:	:	:	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	:	•	:	:	•		•
•	•		•	•	•	:	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•	•	•	•
:			·		:	:	:	:		:	:	•
•	•	•	•	•	•	•	٠	•	•	•	•	•
:			:	•	:	•	•	:	:	:	:	:
•	•	•	•	٠	•	•	•	•	•	•	•	•
٠ •	:	•	:	•	•	•	•	•	:	•	nce	:
t in	•	660	•	•	•	ø	ine	•	•	>-	1 da	•
Tes	• m	nol	•	•	4	tan	dic	6	Ħ	109	В	
Ę.	ion	ech	•		afe	818	Ě	ati	eBe	hho	cal	t 10
rd m	cat	H H	•	nen	vi vo	AB	and	ent	orc	Tec	ogi	rta
ysis	uni	ute	8	Lou	an a	ral	둠	3	Enf	ē	nol	80
nal		ďwo;	ner	'nvi	ire	ene	[ea]	nat	Ž	lari	ech.	ran
of.	of C	of O	of B	of R	¥.	of G	of H	of 1	J Jo	a. U	of 1	of 1
Projects in the Area of Analysis and Testing.	Projects in the Area of Communications	Projects in the Area of Computer Technology	Projects in the Area of Energy .	Projects in the Area of Environment	Projects in the Area of Fire and Safety	Projects in the Area of General Assistance .	Projects in the Area of Health and Medicine	Projects in the Area of Instrumentation	Projects in the Area of Law Enforcement	Projects in the Area of Marine Technology	Projects in the Area of Technological Guidance .	Projects in the Area of Transportation .
he 4	he A	he	he 7	hc. A	he A	he A	je P	ě	ę	re .	9	he J
Ë	7	Ë	Ë	Ë	ä	Ë t	Ë	ä	Ë	5	5	5
ω,	ω	ž,	ģ	89	en Si	6 9	9	M)	99	υń	23	9
ec.	ect	ec.	ě	ect) ec	ect	90)ec	5	90	ec.	5
Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro.	Lo	Pro	Pro	Pro	Pro
ısf)af.	38£	ısf	18f	ısf	18 É	38£	185	Je C	180	na f	18 f.
Frai	Frai	Fra	Fra	rai	Fran	Fran	ř.	Tre	Tra	Fra	Tre	ra
Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer	Technology Transfer
510	2,00	210	olo)lo	210	510	210	210	olo	ગુ	olo	210
;hnc	:hnc	, hn	;hnc	;hnc	żhnć	;hn	;hac	ţ	Ť,	Ř	ď.	ž
Jec	Tec	Tec	Tec	Tec	Je J	Tec	Tec	Ţě	Ě	i i	Ţ.	19 P

Sponsor	NPSoc. Nav. Arch. and Engrs.	FedMaritime Admin.	FedFed RR Admin.	FedMaritime Admin.	FedU.S. Coast Guard	IndAvondale Shipyards, Inc.	FedDept. Commerce	FedMaritime Admin.	FedNAVSEASYSCOM	FedU.S. Coast Guard	RedJoint Logistics Commanders
FY80	0.0	0.0	0.5	1	2.3	6.0	1	1	6.0	2.7	11.0
Man-Y	0.1	4. 0	0.5	9.0	0.9	0.1	1	0.2	0.1	0.8	
(\$K) FY80	0	0	100	1	200	95	1	1	95	227	2000 10.0
Funding (\$K) FY79 FY80	10	41	100	45	603	4	1	50	4	4	1700
Progress	Cavitation erosion tests complete,	Procedures are being developed. Samples have been tested.	Apparatus to monitor stress de- signed. Isolation mounts received.	Experiments made to evaluate tandem design. Report on propulsion tests.	Full-scale trials conducted in ice and open water. Some findings reported.	Report published. DINSRDC 79/084	Trials conducted to gather tug/ship interaction forces; report issued.	Trials run; parameters measured; report pub- lished.	Trials concluded and report published.	Tactical, maneuvering, speed-vs-shaft-RPM, and ice-breaking trails conducted.	\$24 million savings (cost avoidance) in CY 1978 plus intangibles.
Navy Technology Applied	Hydrodynamics	Hydrodynamics, Propeller Coating	Maintenance Reduction, Machinery Silencing	Propeller Design, Performance Testing	Propeller Loads and Stresses, Spindle Torque	Instrumentation of Trial	Instrumentation of Trial	Instrumentation of Trial	Instrumentation of Trial	Instrumentation of Trial	Computer Data Processing and Analysis, Com- munications Networking
Project Description	Effect of Radial Load Distribution on Propeller Cavitation Erosion	Evaluation of Effectiveness of Protective Coatings for Propellers	Stress Relaxation Characteristics of Elastomeric Isolation Mounts	Energy Conservation Study on Tandem Propellers	Pull-Scale Stress Measurements on Controlable Pitch Propeller	Avondale Shipyard Powering Instrumentation Trials, Provide Torsion- of Trial meter and Assist in In- stallation	Tanker Berthing Evaluation Instrumentation of Trial	Shallow Water Maneuvering Trials	HMG ADDIRIYAH (MSC-412) Standardization, Tacti- cal, and Fuel Economy Trials	KATMAI Bay (WTGB-101) Speed, Tactical, and Maneuvering Trials	GIDEP Operations Center
Technologi- cal Area	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing
Performing Activity	DWT 14	DMT 15	DWT 18	DMT 1.9	22 22	DWT 26	DMT 27	DWT 28	29 29	DAT 30	FLTAC 32

Funding (\$K) Man-Years FY79 FY80 FY80 Sponsor	4 0.1 FedNAVSEASYSCOM	10 10 0.1 0.1 FedNASA Langiey Research Ctr.	70 70 1.0 1.0	35 30 0.3 0.3	33 0 0.1 0.0	141 100 1.0 0.8 FedDept. Trans.	225 417 1.3 1.7 FedDept. Trans.	787 378 2.1 2.5 FedDept. Energy	14 0 0.1 0.0 IndExplosive Technology Inc.	on 15 16 0.2 0.2 FedNASA Ames Research Center
Progress	Gathers great commercial potential for use in seal vessels containing batteries.	Feasibility demon- strated for several polyamide resins.	Test services provided for Navy and industry.	Prepared test site and collection tunnel.	Fuel fire and fuel vapor ignition tests.	Burning behavior, detonation tests, vapor dispersion, concentration.	Nondispersive spectrophotometer evaluated for de- termining ammonia concentration. New data acquisi- tion system being specified.	Contractor bidding on 40-cum facility. Vapor concentration studies.	Test boosters at impact shock levels predicted for warhead.	Mechanism of formation of expitaxial films
Navy Technology Applied	Equipment Development	Composite Materials Nondestr. Testing	Hydroballistics	Aeronautics	Aeronautics	Atmospheric Physics, Safety and Chemical Engineering	Atmospheric Physics, Safety and Chemical Engineering	Atmospheric Physics, Safety and Chemical Engineering	Explosives/ Propellants	Solid-State Physics
Project Description	Hydrogen Evolution Rates, Dev. of Hydrogen Getter	Position Lifetime Tech- niqueMeasuring Moisture in Composites	Underwater Tank Tests Using Unique Facilities	Fire/Ballistic Tests of Composites; Fibers Re- leased From Graphite- Epoxy Composites	Drop Tank TestPart of Navy Acceptance	To Quantify Hazards with Large Spills of LNG and LPG, Spill Facility Completed	Ammonia Spill Tests; Extent of Hazard	Spill TestsING and LPG; Design Facility	Maverick Booster Testing for Explosive Technology Inc.	Physics of Crystalline Surfaces to Produce
Technologi- cal Area		Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Tes⁺ing	Analysis and Testing	Analysis
Perform- ing Activity	NAGE?	NSWC 115	NSWC 120	NWC 135	NWC 136	NWC 138	139	. NWC 140	NWC 141	NNC 143

Performing ing	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	FY80	Man-Years FY79 FY8	PY80	Sponsor
NWC 144		Optical Evaluation of Typical FLIR Spherical Mirror; To Measure Scattering	Optics	Mirror polished, coated, and measured. Continuing.	0	0	0.0	0.0	IndHughes Aircraft
NWC 145	Analysis and Testing	Mirror Surface Char- acterization for Large Optics	Optics	Surface quality evaluation in pro- cessing of ad- vanced optical materials.	11	0	0.2	0.0	IndGeneral Dynamics Convair
MAC 146	Analysis and Testing	Intrinsic Damage Thres- hold StudyStudy Laser Damage Phenomena	Optics	GoalMultilayer coatings with in- creased damage resistance. Sig- nificant progress in film produc- tion, etc.	130	900	1.0	1.0	Fed-f De pt. Energy
NVC 147	Analysis and Testing	Preparation and Characterization of Amorphous Silicon-More Efficient Solar Cells	Optics	Develop techniques useful in manufac- ture.	59	141	9.0	1.6	FedDept. Energy Solar Energy Research Inst.
NWC 151	Analysis and Testing	Synthesis Studies Employ New Oxidant Peroxydisulfuric Acid in Synthesis of New Compounds	Organic Chemistry	1,2,3,5-Tetranitro- benzene and Pentanitro- benzene synthesized.	02	0	1.0	0.0	FedDept. Energy Lawrence Livermore Lab.
NWC 152	Analysis and Testing	Surveillance; ROCOZ Optical Components For Rocket-Borne Ozonesonde ROCOZ	Atmospheric Physics	Spectrophotometric calibrations and requisite calculations of effective ozone absorption coefficients. Aging characteristics of interference filters.	37	20	0.5	9.	FedNASA Goddard Space Flight Ctr.
NWC 153	Analysis and Testing	Develop New Procedure to Synthesize TATB	Organic Chemistry	1,3,5-Triamino-2,4,5- Trinitrobenzene.	100	100	1.4	1.4	FedDept. Energy Los Alamos Scien. Lab.
NWC 154	Analysis and Testing	Establish Combustion Instability Characteris- tics for Space Shuttle Solid Rocket Motor	Propellants	Combustion stability of igniter propellants. Thrust perturbations of booster motor.	37	38	0.3	0.3	FedNASA
NWC 156	Analysis and Testing	CALM Submunitions Program To Perforate 8-Inch Triple-Reinforced Concrete	Explosives and Aeronautics	Perforation measurements. Ability of submunition fins to stabilize.	28	0	0.1	0.0	IndAerojet Ord- nance and Mfg. Co.

Man-Years FY79 FY80 Sponsor	0.1 0.0 IndVought Heli- copter Inc.	0.1 0.0 IndFirestone Coated Fabrics Co. Inc.	0.2 0.0 IndMartin-Marietta Aerospace	0.0 0.0 IndHughes Aircraft	1.5 0.0 FedNASA Ames Research Center	0.0 0.0 IndAmerican Safety Flight System	0.5 0.5 Industry	3.0 1.0 FedU.S. Coast Guard	C.3 0.0 FedU.S. Coast Guard	
(\$K)	0	0	0	0	0	•	24	100	c	
Funding FY79	111	72	09	70	123	13	22	310	28	
Progress	High-speed track test conducted.	Good results from 6 data runs.	Dynamic track test for submissile disper- sion and flight characteristics.	Cost estimate and test plan prepared.	High-speed drop test vehicles being modi- fied. Test instru- mentation being designed or procured.	Will be demonstrated for installation into T-2 aircraft on Japanese Air Self- Defense Force.	Services performed on individual basis.	10-year operational systems plan, catalog of required task capa- bilities for each platform class, and trade-offs developed.	Sea trials completed.	
Navy Technology Applied	Explosives and Aeronautics	Aeronautics	Explosives and Aeronautics	Aerodynamics	Aeronautics	Escape Systems	Evaluation	Operations Research	Marine Engineering	
Project Description	Vought Pree-Flight Rocket Track TestDispersion of Subpacks, Munitions Released in Pree-Flight	Firestone F-18 Fuel Tank TestStructural Infor- mation on Takeoff and Landing	Martin-Marietta Submissile Explosives and Dispersion Test; Dynamic Aeronautics Track Test	Assault Breaker, Verify Aerodynamics of Sub- munitions	NASA Galileo Probe; Verify Structural Integ- rity, etc., of Parachutes	Automatic Deployed Survival Kit	Calibration and Evaluation Evaluation Services (Work in Support of DOD Contracts)	Analysis of U.S. Coast Guard Systems, Coastal Surveillance	USCG Evaluation of SSP (Swath-Type) Kaimalino	
Perform- ing Technologi- Activity cal Area	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	
Perform- ing Activity	NWC 157	NWC 158	NWC 159	NWC 160	162	NAC 163	NOSC 177	NOSC 188	NOSC 194	

Technologi- cal Area	Navy Technology Applied	Progress	锕	FY80	Man-Years FY79 FY80	Y80 Sponsor 0.0 FedNuclear Regu-
Corrosion Resistance of Steel Piling	Materials Research Energy	Helped on design of foundation piling for nuclear power plant.	~	10		
Alloy Fracture Micro- mechanisms	 Microstructural Analysis	Analysis on propeller shaft failure on a commercial tanker (Coast Guard)	164	173	2.1	2.6 FedOff. Nav. Res.
Surface Analysis of Guid- ance System Components	Surface Analysis Techniques	Effort to identify source of noise in slip ring assemblies. New approaches to organic film identification.	35	09	5.0	0.6 PedStragetic Systems Project Office
Alloy Fracture Micro- mechanics (Bridge Wires)	Pailure Analysis, Fracture	Determine why wires on Mesana Narrows suspen- sion bridge breaking.	164	173	2.1	2.6 FedOff. Nav. Res.
Alloy Fracture Micro- mechanisms (Relicopter Rotor Spindle)	Failure Analysis	Remedy for Sikorsky H-3 rotor spindle fractures.	164	173	2.1	2.6 FedOff. Nav. Res.
Welding Metallurgy	Materials Research	Led conference on laser welding for Amer. Soc. Metals.	188	197		
Laser Processing of Materials, Improved Corrosion Resistance, Strength	Materials Research, Research Method- ology	Industry exploring NRL's laser-spray process and laser-melting of plasma-spray coatings.	310	220	3.7	2.6 FedOff. Nav. Res./ DARPA
Computer Program for Spectra Analysis	Materials Analysis	Computer operation speeded up with addition of fast approximation to complementary error function.	115	•	0.2	0.0 FedNAVAIRSYSCOM
Theory of Pault Diagnosis in Linear Systems	Blectronic Engineering	Established a measure of testability and an efficient algorithm for solving the fault diagnons equation.	15	ŀ	0.1	FedOff. Nav. Res.
Wear Debris Analysis	Wear Analysis	Characterization of wear in oil lubricated systems. Standardization of ferrographs.	;	1	1	ForeignGreat Britain
Infrared Thermography as Inspection Technique	Nondestructive Testing	Quantification of flow type size, and depth detectable in composites.	4	47	1.5	1.5 FedNAVAIRSYSCOM

Optic Imager/ Detector Detector Materials Research Sound Transducers
Design for gyrotron travelling wave amplifier operating at sec-
Materials Research Sou Transducers Electronics Development

		ċ	Lab.	X	Res.	WO.	Res.	Res.	Res.
!		Air t Cti	Res.	CSYSC	Nav.	ASYSC	Nav.	. Va Va	Nav.
	poneci	kome prime n	. ver	IAVEL	eff.	IAVSE	eff.	iff.)ff.
•		FedRome Air Development Ctr	PedNav. Res. Lab.	Fednavelcsyscom	FedOff. Nav. Res.	FedNAVSEASYSCOM	FedOff. Nav. Res	FedOff. Nav. Res	FedOff. Nav. Res.
ام	읾	0.0	0.0	5.0	1.4	و. و	2.0 F	0.0	0.0
Man-Years									
Men	2	0.0	0.0	5.0	1.6	495 10.0	2.0	0.0	0.2
(\$K)	22	0	0	400	06	495	120	0	•
21		0	0	400	8. 4.	495	120	0	20
Fun	12/3			4		4	4		•
		Computer program for calculating optimum operating parameters for gyrotron travelling wave amplifier.	yro-	Large-scale integration of speech processors. Psychoacoustic interactions.	ec- ring et	nded hops,	in- f		
	82	Computer program for calculating optimum operating parameters for gyrotron travell wave amplifier.	Exchange info on gyrotron. Raytheon to evaluate NRL beam collectors and tube processing.	Large-scale integrati of speech processors. Psychoacoustic inter- actions.	Obtain model of electromagnetic scattering patterns from the ocean. Radar target classification in ocean environments.	Annual review attended by industry, workshops, publications.	Rapid transfer to industry. Promise of economical plastic solar cells-a new option in solving energy crises.	de to	Provided how to improve production yield and perform- ance of gallium areenide microwave devices.
	Progress	Computer progra calculating opt operating param for gyrotron tr	Exchange info on ctron. Raytheon to evaluate NRL beam collectors and tub processing.	le ir procustíc	Obtain model of eitromagnetic scatte patterns from the ocean. Radar targiclassification in ocean environments	view ry, '	Rapid transfer to dustry. Promise economical plasti solar cells an eoption in solving energy crises.	Published how to improve metalic-ohmic contacts to gallium arsenide devices.	Provided how to improve production yield and perform- ance of gallium arsenide microwave devices.
ı	Ä	uter ulati ating gyrot ampl	Exchange in tron. Rayt evaluate NR collectors processing.	e-sca peech hoaco	in mo agnet erns n. B sific	Annual review by industry, publications.	1 tra	(shed ove m con tum a	ided yve p and of g nide
		Composal calcal coperation of the wave	Exchantron. evaluacollec	Large-sc of speec Psychoac actions.	Obtain tromagno patternocean.	Annu by in publ	Rapid tr dustry. economic solar ce option i	Publishe improve ohmic co gallium devices.	Provided improve yield ar ance of arsenide
λ 6	1				<u>.</u>		itry .y-	8	
Navy Technology	ē	ot nt	nt a	b	Electronics Radar, Communi- cations	Materials Research, Sonars, Trans- ducers	Polymer Chemistry Synthesis of Conducting Poly- mers	Electronic Engineering Electromagnetics	υ Ε
7 Tec	Applied	Electronics Development	Electronics Development	Signal Pro- cessing	Electronics Radar, Comm cations	Materials Research, Sonars, T ducers	mer C nesis actin	Electronic Engineering Electromagn	Electronic Engineering
Nav		Elec	Elec Deve	Signal	Electro Radar, cations	Materi Researd Sonars, ducers	Polymer Chem: Synthesis of Conducting Pomers	Electronic Engineering Electromagi	Electronic Engineerin
			Millimeter-Wave Power Tube Electronics Development Development			ñ	Based (CH) x.	an T	ory
		High-Power Millimeter- Wave Amplifier	Ower	ts 1	ing	Sonar Transducer Reliability Improvement Program (STRIP)	Conducting Polymers Based on Polyacetylene or (CH) _X	in Gallium	Gold-Germanium Refractory Contacts
ect	ptio	111im er	Ive P	Digital	ıtter	ucer Impro IP)	lyme. lene	a ri	g g
Project	Description	High-Power Mil Wave Amplifier	er-Wa	Rate	Microwave Scattering Patterns	Sonar Transduce Reliability Imp Program (STRIP)	Conducting Polymers on Polyacetylene or	Ohmic Contacts Arsenide	naniu
		Anp	Millimeter- Development	Low-Bit-Rate Speech	Microwav	Sonar Transd Reliability Program (STR)	Solya Polya	Ohmic Com Arsenide	Gold-Geri Contacts
	-	High	Mil. Deve	Low-Bi Speech	Mic	Son: Rel: Proc	Conc	Ohmi Ar se	Cont
Technologi-	rea	ica	1 ca-	ica-	ica-	ica-	ica-	ica-	ica-
outo	cal Area	Communica- tions	Communica- tions	Communica- tions	Communica- tions	Communica- tions	Communica- tions	Communica- tions	Communica- tions
ě	희	3 ∄	نه ی	ŭ ä	შ	Ψ	8 #	8 P	Ψ
Perform- ing	Activity	NRL 231	NRL 232	NRL 233	234 234	NRL 237	244 244	247	248 248

Perform- ing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	Funding (\$K) FY79 FY80		Man-Years FY79 FY8	FY80	Sponsor
DWT 08	Computer Technology	Computer-Aided Ship Design and Construction	Computer-Aided Ship Design	Development and dissemination of computer programs; available for Navy work.	400	700	2.0	4.0	FedNAVSEASYSCOM
NADC 36	Computer Technology	Predictive Codes for Engine Materials and Costs	Engine Cost Analysis	Modification of computer codes continuing.	0	0	0	0.0	FedNASA Lewis Research Center
NORDA 75	Computer Technology	Optical Character Recog- nition, Improve Capa- bility to Process Data	OCRComputer Hardware/Software	Cognitive handprinted input trained recursively analyzer (CHITRA) method of recognizing handwritten characters developed.	283	237	1.0	1.0	FedDefense Mapping Agency
NOC 87	Computer Technology	Automated Techniques for Detecting Ocean Thermal Fronts	Imagery Pattern Recognition	Papers released.	32	32	1.0	1.0	FedNAVOC
NSWC 111	Computer Technology	Cross-Tie Memory, High- Density, Nonvolatile	Thin-Film Memory	Transferred to industry, which is further developing.	300	220	3.2	3.3	FedNAVSEASYSCOM
NTEC 122	Computer Technology	Application of Voice Technology in Automated Systems	Voice Technology	Speech technology to replace keyboard data for flight plan amend- ments.	225	225	4 .5	٠.4	FedNAVMATCOM
NOSC 187	Computer Technology	Impact of a Formal Computer-Based Informa- tion System on Informal Info Networks	Information Transfer, Man- Machine Rela- tions	Groups of people, and computer-based systems, selected. Analyses under way.	02	•	9.0	0.0	FedNatl. Science Foundation
NOSC 189	Computer Technology	Small Boat Simulator, Training Operations	Display Devices and Equipment	Trailer delivered, consoles installed. Radar simulator, flying spot scanner, software nearly complete.	352	111	9.6	1.0	FedU.S. Coast Guard
NOSC 196	Computer Technology	Image Acquisition and Processing (for Automated Mail Handling)	Optics, Computer Science	Image capture and analysis system operating. Full-page images at 10 pages/sec acquired.	832	500	7.8	••	FedU.S. Postal Service
NRL 208	Computer Technology	Computer/Processors for EW/ESM	Technological Improvements	Determining redundancy allowable in EW analysis and evaluation.	94	110	0.5	9.0	Fednavairsyscom
KRL 209	Computer Technology	Automatic Radar Pattern Recognition	Data Base Management	Enhancement of signal- processing operations in ESM systems.	340	1000	1.5	3.0	Fednavairsyscom

j

J

I

Sponsor	FedDept. Energy and Navy	PedMaritime Admin.	FedDept. Energy	FedDept. Energy	Foreign-Inter- national Govt.	FedDept. Commerce National Data Buoy Office	FedDept. Energy	FedNASA Lyndon B. Johnson Space Center	NPNUSC/Univ. Conn.	Federal
FY80	1.0	0.7	2.5	1.0	1	0.2	0.0	5.0	1	1
Man-Years FY79 FY8	6.0	0.3	0.4	2.0	1	0.3	1.0	0.7	1	1
SK)	120	104	152	35	1	ហ	0	65	1	1
Funding PY79	616	35	300	300	1	10	75	22	1	1
Progress	No adverse effect on environment found; Navy- DOE agreement made.	Design requirements for test propellers being checked.	Testing and evaluation of in-situ biofouling countermeasures in potential materials continue.	Evaluation of candidate date designs for OTEC modular experimental platform.	Data on Sunda Strait and Makassar Strait gathered, processed, and delivered.	Prediction of macro- fouling organisms and effects over 30-yr. power plant life.	Prototype engines being evaluated. Specialized NITINOLS commercially available.	Evaluating process to synthesize; analytical procedures for assay of purity.	Technical energy briefs in response to specific needs.	Prepared Lighting Efficiency Program, Thermal Efficiency Program underway.
Navy Technology Applied	Air Conditioning, Heating, Light- ing Ventilation	Hydrodynamics, Tandem Propellers	Heat Exchanger Technology	Hi-Strength Fabrics	Airborne Magnetic Survey Capability	Marine Biology	Thermodynamics	Explosives Synthesis	Heating, Engineeting	Lighting, Heating, Audiovisual Lab.
Project Description	Organic Rankine Bottoming System for Diesels to De- crease Fuel Consumption	MARAD Tandem Propeller Follow-On Program	Ocean Thermal Energy Conversion (OTEC) Heat Exchanger Cleaning	OTEC Flexible Cold Water Pipe	Magneti: Survey Indonesia Straits; To Map Resources	OTEC Biofouling Experiment in the Gulf of Mexico; to determine harmful effect of marine organisms	NITINOL Heat Engines-Convert Low-Grade Thermal Energy to Useful Mech. or Elec. Energy	HNS Explosive Evaluation Hexanitrostilbene	Technical Energy Specialist (IPA) Scientific Consultant for Energy Extension Service	Energy Conservation in Public Buildings More Efficient Lighting, Heating, Education
Technologi- cal Area	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy
Perform- ing Activity	CEL 01	DMT 20	NCSC 47	NORDA 73	NOC 84	88 88	NSWC 112	NSWC 119	NUSC 125	NUSC 129

THE PERSON

Performing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) FY80	Man-Years FY79 FY8	FY80	Sponsor
NNC 133		Conversion of Solid Waste to Polymer Gasoline	Chemical Engineering	Pyrolysis gas purification subsystems greatly improved, some gasoline produced from organics derived from trash.	46	0	4.	0.0	FedEFA, Environ- mental Research Center
NWC 134	Bnergy	COSO GeothermalSupport Joint USN-DOE Drilling Program, Geothermal Reservoir Parameters	Ge∿logy and Mineralogy	Testing under way to determine param- eters, were productiv- ity.	72	0	0.1	0.0	PedDept. Energy Nevada Oper. Off.
NWC 137	Energy	Research into Pyrolysis of Pure Cellulose and Pure Lignin Powder; Toward Making Petrochem.	Chemical Engineering	Use China Lake entrained £low pyrolysis reactor	25	0	0.2	0.0	FedDept. Energy Solar Energy Re- search Institute
NPRDC 169	Energy	Energy Link; Catalog of Assistance Sources in Fed Consortium	Data Gathering and Analysis	Energy Link Catalog based on needs of cities and counties. Being edited for printing.	1	30	1	1.0	Fed-Fed. Lab. Consortium
NR.L 205	Energy	National Cladding/Duct Materials Development	Microstructural Analysis, Fracture Behavior	Fracture testing of irradiated steel alloys. Phase stability under irradiation determined.	09	75	0.7	8.	FedDept. Energy
NRL 211	Energy	Monitoring of Nuclear Airborne Materials	Nuclear Chemistry	Very-high-sensitivity carbon-14 detector. Monitoring or release levels associated with fuel processing.	210	270	1.0	1.0	FedDept. Energy
NRL 226	Energy	Fusion Materials Task Groups	Materials Research	Review of DOE Fusion Materials Program. Analysis of ferritic steels for fusion re- actors. Stability of irradiated titaniums.	100	200	1.0	1.5	FedDept. Energy
NRL 228	Energy	International Group on Cyclic Crack Growth Rate	Materials Analysis Fatigue Crack Growth Technology	study of effects of reactor operating conditions. Committee organized, research results distributed.	250	250	3.5	3.0	FedNuclear Regu- Latory Commission
NRL 227	Energy	Task Force on Crack Propagation Technology	Materials Research, Crack Propagation	Develop rules for implementation of crack growth method-ology into ASME Boiler & Pressure Vessel Code. Begun with 316 S.S.	0	0	0.0	0.0	NPMetal Properties Council

Performing	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K)		Man-Years FY79 FY8(FY80	Sponsor
NRL 212	Energy	Laser Chemistry. Effects of Laser Excitation on Catalytic Reactions	Materials Research, Chemical Kinetics	Prototype system, decomposition of formic acid on platinum, produces ∞ and ∞_2 ; studied under laser radiation.	150	150	2.0	2.0	FedOff. Nav. Res.
NRL 214	Energy	Hot Corrosion Prevention in Gas Turbines	Materials Research	Low-temp, not corrosion results from reaction of SO ₃ in engine gas with oxides on blade surface. Chromium effective against this.	365	310	3.9	3.7	FedNAVSEASYSCOM
NRL 215	Energy	Chelant Boiler Treatment, EDTA	Materials Research	Investigating source of copper in chelant-treated boilers. Onsite analytical procedure being developed.	1	1	ŀ	1	Fednavseasyscom
NRL 223	Energy	Fabrication of New Superconductors	Materials Research	Contract awarded to demonstrate industrial production of multifilamentary V_3 Ga wires.	155	150	2.0	2.0	Fednavairsyscom
ONR 242	Energy	Fuel-Water Emulsification	Chemical Engineering	Application of fuelwater emulsions to diesel engines and boilers. Reduced to fuel consumption and improved performance.	55	1	1.0	}	FedOff. Nav. Res.
ONTR 243	Energy	Rechargeable Lithium Batteries	Basic Research	Battery based on organic electrolyte containing cyclic ethers. Evaluation for Navy, commercial use.	70	200	1.5	0.0	FedOff. Nav. Res.

Sponsor	FedRome Air Dev. Cen.	FedU.S. Coast Guard	FedU.S. Coast Guard	FedU.S. Coast Guard	FedNatl. Oceanic and Atmospheric Admin.	FedDept. Energy	FedOff. Nav. Res.	FedEPA, Environ- mental Research Lab	FedNAVOC	StateSanta Barbara County
_ 		0.0 Fe	9.8 Gu	0.7 Fe	0.4 Fe an Adi	0.0 Fe	0.0 Fe	1.0 Fe	1.0 Fe	0.0 St
Man-Years FY79 FY80	0.4									
	5.0	0 0.4	5 1.5	5 0.5	0 0.5	0 2.5	0 0.2	0 0.5	22 1.0	0.0
(\$K) FY80	400	J	65	75	20			150	8	
Funding FY79	490	32	81	80	99	130	13	S	22	0
Progress	Methods to minimize entry of fibers into critical systems developed. Conformal coatings being evaluated.	Current capabilities and new technology being identified.	Constraint matrix for evaluation complete.	Emulsion stability tests performed. Out- line for engine room cleaning developed.	Current meters calibrated under atsea conditions.	Semiautomatic samplers for counting airborne bacteria used to evaluate ventilation.	Finger printing on board ship help to identify source of oil slick.	New seawater pumping system being designed EPA performs tests.	Sea-surface tempera- tures in Western North Atlantic pro- vided weekly.	Accumulation of pyrotechnic formula- tions can be reworked into use in opera-
Navy Technology Applied	Composite Materials	Ship Systems, Maintenance Logistics	Shipboard OWS Systems	Chemistry, Detergent Experience	Hydrodynamics, Environmental Measurements	Bacteriology, Expertise in collicating bacteria	Chemistry, Thin- Layer Chromatog- raphy	Test and Evaluation; Unique Pacility	Oceanographic Analysis	Inorganic Chemistry
Project Description	Environment Carbon Fiber Protection	USCG Marine Sanitation Devices Evaluation	Environment Recovery Device: 0il/ Water Separator (OWS)	Environment USCS Oil/Water Separator Detergent	Environment NOAA Current Sensor Experiments for Cable- Body Systems	Effect of Energy Conservation on Air Hygiene	Environment Development of an Oil Identification Kit	Environment Offshore Pollutant Effects Program; Test Facility	Environment Experimental Ocean Frontal Analysis Chart	Environment Silver Iodide Pyrotechnic Flates-Interaction of Mucleants With the
Technologi- cal Area	Environment	Environment USCG Marine Devices Eva	Environment	Environment	Environment	Environment Effect of vation on	Environment	Environment	Bry i ronment	Environment
Perform- ing Activity	DMT 09	DWT 10	DWT 11	DWT 12	DWT 23	NB IOL	NB IOL	NCSC 49	NOC 92	NWC 148

1		ter	us.	=	>1		. 80	
JOS		Btern ound Wa	Hopk in	EASYSCO)	. Energy otope- ch	Coast	Nav. R	Nav. Re
Sponsor	FedNASA	StateWestern Kansas Ground Water Dist. ‡1	NPJohns Hopkins Univ.	Pednavseasyscom	FedDept. Energy Safety/Isotope- Fuel Branch	Ped−-U.S. Coast Guard	FedOff. Nav. Res.	FedOff. Nav. Res.
FY80	0.0	0.0	0.0	1	6.3	1.3	1	0.0
Man-Years FY79 FY8	0.5	0.5	0.0	1	0.3	8.0	1.0	0.0
FY80	•	0	0	1	20	120	1	•
Funding FY79	55	18	15	1	20	95	55	0
Progress	Characterize aluminum oxide aerosols. Stabilized ground clouds from Kennedy Space Center mea-	Advise on pyrotechnic capability.	Provided support to APL as requested.	Incineration complex combined in the breakdown machines to make pilot plant. Operation proved technical soundness and feasibility environment acceptablity.	Samples being analyzed.	Background info on noise on U.S. merchant ships. Noise standards recommended.	Elimination of waste discharge from Navy vessels. Holding tank systems for all craft.	Acoustic current meter upgraded per- formance of new sewage treatment plant.
Navy Technology Applied	Atmospheric Physics	Atmospheric Physics	Atmospheric Physics	Chemical Engineering	Radiation Shielding	Acoustics, Buman Factors	Chemical Engineering, Pollution Abatement	Blectrical Engineering
Project Description	Environment Inadvertent Weather Modification from Shuttle Launches	Environment Western Kansas Ground Water StudyProvide Consulting Services	Environment Technical Support in Installation of Airborne Research Data System and Other Research Systems	Environment Method for Disposing of Red Phosphorus Composition from Markers, Signals	Environment Environmental Response and Effects (Following Accidental Marine De- position of Radioactive Material)	Environment Merchant Marine Occu- pational Noise	Environment Shipboard Solid and Liquid Chemical Waste Storage and Transfer Engineer Pollutio	Environment 3-D Water Flowmeter
Technologi- cal Area	Environment	Environment	Environme nt	Environment	Environment	Environment	Bnv ironment	Environment
Performing Activity	NWC 149	NWC 150	NWC 161	NWSC 166	NOSC 182	NOSC 190	ONR 241	253

Y80 Sponsor	100 Tubb
PY80	l
Funding (\$K) Man-Year B	} }
FY80	;
Fundin FY79	;
Progress	Development of exhaust noise suppressor configuration for test cells for out-of-air-frame engines. Air-rraft accustic en-
Navy Technology Applied	Testing jet engines
Project Description	Jet Engine Noise Suppression
Perform- ing Technologi- Activity cal Area	
Perform- ing Activity	NAEC 262

Perform- ing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	Punding FY79	(\$K) FY80	Man-Years FY79 FY8(FY80	Sponsor
Der 13		Inspection Testing Lifesaving Equipment	Inspection and Testing	Tests of individual items of lifesaving equipment (life jackets, life rafts, etc.).		67		8.0	FedDef. Const. Supply Ctr.
D6T 16	Fire and Safety	Fire Resistance Tests (Hydraulic Fluids for Shipboard)	Inspection	Has only facility (modified compression fire-resistant engine) to test shipboard hydraulic fluids for Navy.	10	27	0.1	0.2	Fed-Def. Gen. Supply Ctr.
NAVAIR 41	Fire and Safety	Swimmer Protective Helmet	Human Factors	May be utilized in underwater construc- tion, rescue, salvage operations.	1	1	1	1	FedNAVAIRSYSCOM
NATC 43	Fire and Safety	Head-Up Display to Simulate Aircraft	1	See NAVAIRSYSCOM	ŀ	1	1	1	FedNAVAIRSYSCOM
NSWC 117	Fire and Safety	Reactor Safety Studies, Bydrodynamic Loads from Accidents	Safety Engineering Hydrodynamic and Structural Comput.	Services provided as NRC requests, e.g., Three Mile Island, Clinch River	16	S	e .	0.1	FedNuclear Regulatory Commission
NOSC 185	Fire and Safety	Kerosene Jet Breakup Study (Pire Suppression Pollowing Crashes)	Fuels, Drag Reduction Additives	8 additives tested. General correlation of spray inhibition with drag reduction measurements shown.	15	0	0.2	0.0	FedNASA Ames Research Center
NRL 217	Fire and Safety	WorkshopControl of Ship- Damage Control board Damage	Damage Control	Seek participation of industry in formulating R&D program plan for fire protection and damage control on ships.	1	1	1	1	FedNAVSEASYSCOM
ONR 252	Fire and Safety	Fire Drill for Water from Ice	Electrical Engineering	Electrically, powered thermal drill for penetrating Arctic ice effective for winter firefighting.	100	100	1.0	1.0	FedOff. Nav. Res.
NPS 257	Fire and Safety	Nondisintegrable Burn Tower, CTIP Project, IPA assignment	Construction Engineering	Tower to stand up with repeated use constructed of porous concrete blocks reinforced with steel rod.	ŀ	1	}	1	StateCarson City, NV

Performing Activity	rechnologi-	Project Description	Navy Technology Applied	Progress	Funding (\$K)		Man-Years FY79 FY8	FY80	Sponsor
NAVAIR 39	General Assistance	Water Displacing Corrosion Prevention Compound	Materials Research and Development	New material for superior to prior corrosion-control com- pounds. Numerous potential applications.	35	35	1.0	1.0	FedNAVAIRSYSCOM
NAVSEA 103	General Assistance	Mid-Atlantic Region Technology and Business Opportunities Conference 20 Sep 79	Weaponry	Provided small business with potential oppor- tunities for NAVSEA procurement participa- tion.	1	1	1	ſ	IndVarious
NWC 142	General Assistance	Operation of the Federal Laboratory Consortium for Technology Transfer	Technology Transfer	Spring meeting held, Fall meeting planned. Workshops, seminars, newsletter.	182	220	8,0	0.5	FedNational Science Founda.
164	General Assistance	Rederal Laboratory Consortium for Technol- ogy TransferSanta Re, Oct 78 and NBS May 79	Technology Transfer	Semiannual meetings, executive committee meetings.	0	9	0.0	0.0	FedIndependent Research and Devel- opment/Technology Utilization (IRED/TU) Office
NWC 165	General Assistance	Technology Transfer Exhibit Energy Fair, State and Local Government	Technology Transfer	Fairs in LA, Hartford, supply state and local with info on NWC.	•	0	0.0	0.0	<i>Ped</i> IRED/TU Office
USNA 172	General Assistance	Enrichment Program for Gifted School Children Extend Education	Math., Physical Science, Comp. Sci.	7 minicourses Were taught. FY 80 Will concentrate on math and computer science.	20	22	0.3	0.3	StateAnne Arundel County Schools
NRC 235	General Assistance	Circuit-Riding Technology Agent in Community Tech- nology Initiatives Pro- gram (CTIP) (Rockville)	General Assistance	Service in local governments contributions in sewage disposal, water quality, air pollution, fire suppression, etc.	04	40	1.0	1.0	NPNational Science Pounda. (CTIP)
NRC 201	General Assistance	Blectronic Materials Technology	Metallography	Method developed to grow high-purity semi- insulating gallium arsenide single crys- tals, industry eval- uating, using.	1	1	1	;	FedNAVMATCOM
MRL 203	General Assistance	Ultrapurification of Gameous Hydrogen Pluoride	Chemical Engineering	Perfected method for removal of water and most carbonaceous contamination. Shared with industry.	•	0	0.0	0.0	RedNav. Res. Lab. and Perkin Elmer

Sponsor	AVPAC	Fed (NAVMATCOM, NAVPAC, NPS)	Fed (U.S. Forest Service
•	FedNAVFAC	Fed	Fed (U. Service
FY80	1		1
Man-Y	0 0.3	0 0.1	1
FY80	0	•	1
Funding (\$K) Man-Years FY79 FY80	88	ហ	1
Progress	Improve utilization of product from CEL. Evaluate current system. Effective technology transfer.	Technology transfer effort for the future should be one towards a pull for new technology.	To establish a national policy for utilization of Forest Service research results.
Navy Technology Applied	Research Utilization	Research Utilization	Research Utilization
Project Description	Utilization of RDT&E Investment at CEL	Technology Transfer Symposium on Research Utilization	Conference for the Forest Service
Perform- ing Technologi- Activity cal Area	General Assistance	General Assistance	General Assistance
Perform- ing Activity	NPS 254	NPS 255	NPS 256

; ;

Sponsor	FedDept. Trans.	FedNASA Lyndon B. Johnson Space Center	PedSea Grant College Program	FedVeterans Admin.	FedOff, Nav. Res. and NMR&D Comm.	FedVar ious	NPLocal Government Assistance Task Force (FLC- Far West Region)	StateUniv. Calif. BuMed and Surgery	FedVarious	FedVar ious	IndUpjohn Inter- national and Navy	FedU.S. Army Inst. for the Behavioral and Social Sciences
let												
Man-Years FY79 FY80	0.8	0.0	0.8	0.1	0.0	0.2	0.1	0.1	0.1	0.1	0.1	0.0
	1.2	2.4	0.8	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.0
(\$K) FY80	83	0	30	н	0	m	7	0	0	0	0	0
Funding FY79	138	56	30	-	25	m .:	7	0	0	0	40	0
Progress	Small primates being studied; injuries com- puter program written.	Human performance measured during centrifuge runs	Polysaccharide active in vitro; a protein with in vivo activity.	Continued consultation with VA, 5-year follow-up on Vietnam POWs; data collected.	Conference proceedings circulated	World literature on effects of life changes, development of illness-a major research endeavor.	Publicity continues and more data forthcoming.	Education continuing work shops.	College settings, media.	Consultation to physicians.	Proceedings being compiled, yearly meeting proposed.	Background on re- search supplied.
Navy Technology Applied	Bioengineering, Solid Mechanics	Stress Physiology	Virology Tissue Culture Expertise	Analysis, Medical Exams, Effects of Captivity	Behavior Science, Organizational Dev. Theory	Relationship between Stress and Illness	Epidemiological Research	Sleep and Sleep Disorders	Laboratory Research	Sleep Disorders, Effect on Per- formance	Work-Sleep Schedules	Sleep Deprivation
Project Description	Brain Model for Study of Response/Injury Relation- ship	Efficacy of Symptomatic G-Suit Inflation	Study of Antiherpesvirus Material from Algae	Program for Medical Care of POWs from All Wars	Conference on Navy Occupational Health	Research Findings in Areas of Stress-Related Illnesses	Stress-Related Dis- ability Retirements	Understanding Sleep DisordersEducation of Professionals	Education of Public in Sleep, Dreams, and Brain- wave Activity	Education of Physicians on Sleep, Sleep Disorders and Pills	Health and Safety of Shift WorkersInterna- tional Meeting Sep 79	Effects of Stress or Simulated Combat on Unit Readiness/Effectiveness
Technologi- cal Area	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine	Health and Medicine
Performing Activity	CEEE	NADC 37	NB IOL 45	NHRC 50	NERC 52	NHRC 53	NHRC 54	NHRC 55	NHRC 56	NEBC 57	NHRC 58	NHRC 59

Performing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) FY79 FY80	FY80	Kan-Ye	FY80	Sponsor
NHBC 60	Health and Medicine	POWsMedical Pollowup Research	Medical and Family Research on POWs	Prolonged Stress Branch continues medical followup.	0	0	0.0	0.0	NPVarious POW Organizations
MERC 61	Health and Medicine	Overview of Current Family Research Efforts in Navy Populations	Health of the Military Family	Overview of findings and methodologies of family research provided.	ı	0	0.0	0.0	FedVarious
NPR £D 62	Health and Medicine	Design and Test of an Integrated Modular Clini- cal Laboratory for Ship- board Use	Bioengineering, Medical Equipment	Extensive clinical laboratory testing.	58	}	6.0	1	FedNARED Comm.
NMR&D 63	Health and Medicine	Study of Louse Infesta- tation in Ethiopia	Entomology, Epidemiology	Physical, behavioral, cultural, physiological factors included in publication.	m	1	5.0	1	PedNMR&D Comm.
NVR&D 64	Health and Medicine	Recompression Treatment Tables Used Throughout the World by Government and Industry	Hyperbaric Physiology	World-wide recompression diving prosedures available (DTIC AD A056666).	39	1	0.7	1	FedNWRED Comm. and NAVSEASYSCOM
NURLD 65	Health and Medicine	Portable Field Kit for Rapid Disease Diagnosis	Microbiology Medical Instru- mentation	Kit undergoing extensive testing and evaluation.	23	92	8.0	6.0	FedNWR&D Comm.
NPRED 66	Health and Medicine	Navy Amphibious Medical Evacuation Simulation (NAMES II) Computer Model	Clinical Medi- cine, Operations Research	NAMES II expanded from combat zone to CONUS, Applicable to medical emergencies.	75	75	9.0	9.0	FedNWRED Comm.
NPR4D 67	Health and Medicine	Remote Medical Diagnosis System (RMDS) with Slow- Scan TV	Biomedical Engineering, Communications	RMDS for ships and diagnostic centers being spec'd. Video via satellite.	200	800	1.8	2.3	FedNWRED Comm.
NPR4D 68	Health and Medicine	Management of War Injuries to the Jaws and Related Structures Textbook	Clinical Medicine	Publication includes data since 1968, GPO Stock No. 008-045-00018-6.	1	1	1	1	FedNMR&D Comm.
NPR &D 69	Health and Medicine	Portable Life Support Stretcher Self-Contained Unit	Biomedical Enginecting, Medical Equip- ment	5 units fabricated and under evaluation.	20	9	0.7	0.3	PedNWR&D Comm.
NUR £D 70	Health and Medicine	Medical Backpack Transport Life Support to Shipboard Casualty	Medical and Bospital Equip- ment, Blomedi- cal Engineering	3-month evaluation by ships and research and rescue yielded favorable recommenda- tion.	ω	08	0.2	4.0	FedNMR&D Comm.

1::4

Per form-	Technologi-	Project	Navy Technology		Funding	(SK)	an-Yea	10	
ctivity	Activity cal Area	Descr	Applied	Progress	FY79 FY80 FY79 FY8(280	773 FI	FY80 Sponsor	lor.
NWC 155	Health and Medicine	Health and Automatic Tissue Culture Medicine Colony Counter	Optics	Improved second version of cell colony monitor. Consists of optics mechanical reticle and sample drive, electronics.	.s.	0	0 0.2	0.0 FedHEW	
NOSC 193	Health and Medicine	Crew Performance Assessment (Effect of Ship Motion)	Information Theory, Psychology	3 studies under way. 3 classes of ships under operating conditions.	98	0	0 1.1	0.0 FedU.S. Coast Guard	Coast
NOSC 197	Health and Medicine	Human Factors Technology TransferMobility for Paraplegics	Bioengineering Prothetics	Wheelchair ambulator completed. Wheel-chair to integrate fabricated. Whole system being tested.	106	4	14 1.2	0.1 FedVeterans Admin.	ans Admin.
NRL 236	Health and Medicine	Ultrasonic Pressure/ Intensity Levels Accept- able for Human Tissue	Acoustic Impulse Technology	Acoustic impulse from thick P2T plates has been narrowed to give an effective bandwidth of about 15 MHz.	30	10 0.3		0.1 FedFood and Drug Admin. Bureau of Radiological Health	and Drug eau of al Health
NPS 258	Health and Medicine	Health and Change in Asphalt Medicine Composition	Chemical Engineering, Environmental Health	New technology to eliminate use of carcinogens in asphalt.	1	1	;	StateCarson City, NV	nos

Sponsor	FedDept. Trans., U.S. Coast Guard	PedNAVAIRSYSCOM	Fednavairsyscom	FedNORDA	FedNOAA Data Buoy Office	FedNev. Res. Lab.	FedNORDA	FedNORDA	FedNORDA	FedDef. Mapping Agency, NAVOC	FedDef. Mapping Agency, NAVOC	FedDef. Marping Agency, NAVOC
FY80	0.0	1.0	1.2	1.5	1	0.3	2.7	1	3.7	1		1
Man-Years FY79 FY8	2.0	1.0	1.0	1.5	0.7	0.2	2.5	2.0	5.0	1	ł	ŀ
	•	30	240	100	}	21	170	1	520	ł	1	;
Funding (\$K) FY79 FY80	350	30	197	180	70	77	185	250	308	1	1	1
Progress	Radar delivered array evaluated, report submitted	Uses barnacle electrode measuring system. Potential wherever there is high-strength steel.	Aircraft-mounted sensor technique workable in bad weather.	Instrument in production, sampling techniques demonstrated. NAVOCEANO to include in surveys.	Design complete, array fabricated.	Optical and electronic, components fabricated, testing begun.	Design complete, fabrication begun.	Construction complete, preliminary tests made.	Development of versatile experimental KEVLAR array (VEKA) program.	2 large areas now being surveyed. Aid to Indonesian economy.	75% of both ROK coastlines complete. Surveys continue.	1.3K mile completed in Panama OPS.
Navy Technology Applied	Radar Systems, Sensor Develop- ment	Materials Research and Development	Electro-Optic Hydrographic Mapping	XBT Technology Geomagnetic Electro-Kineto- graph	Kevlar Cable, Semiconductor Sensors	Laser, Remote Sensing	Kevlar Cable, Semiconductor Sensors	Variable Buoy- ancy, Satellite Transmission	Navy Cable Development Technology	Coastal Hydro- graphic Surveys	Coastal Hydro- graphic Surveys	Coastal Hydro- graphic Surveys
Project Description	Retrodirective Array Development/Evaluation for All-Weather Iden- tification	Portable Hydrogen Measuring System	Determine Beach Traversability in an Amphibious Operational Area	Expendable Current Pro- filer, Instrumentation for Measurement of Hori- zontal Currents	Thermistor Array Development, Moored, Long-Term At-Sea Operation	Remote Ocean Subsurface Temperature Profiler	Towed Ocean Density System, Towed Sensor Array	Easily Deployable Subsurface-Tethered Vehicle That Can Sample the Water Column	Versatile Experimental Kevlar Array-for Deployment in Ocean	Indonesian/US Hydro- graphic Survey Operations	Joint US/Republic of Korean Survey Operations Coasts and Harbors	Hydrographic Survey Assistance Program for Other Governments
Technologi- cal Area	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation
Perform- ing Activity	NADC 35	NAVAIR 38	NCSC 48	NORDA 72	NORDA 74	NORDA 76	NORDA 77	NORDA 79	NORDA 80	NOC 82	NOC 83	180C 85

Sponsor	A, Dept.	Fedbef. Mapping Agency	IndProduction Control Systems Inc.	IndAvondale Ship- yard, New Orieans	IndBay Technical Associates Inc.	isiana d Light	sissippi d Light	တူ	Corp.	StateSo. Carolina Wildlife and Marine Resources Dept.	FedNAVSEASYSCOM
Special	FedNOAA, Commerce	FedDef Agency	IndProduction Control Systems	IndAvo yard, Ne	IndBay Techni Associates Inc.	IndLouisiana Power and Light	IndMississippi Power and Light	IndM-R-S Mfg. Co.	IndNUS Corp.	StateSo. Caro Wildlife and Ma Resources Dept.	FedNAV
FY80	ł	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
Man-Years FY79 FY8	ł	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
(\$K) FY80	m	1	7	7	0	10	10	m	10	7	'n
Funding FY79	N	4 .	-	1	0	ហ	~	1	&	•	7
Progress	Testing biological tracking enclosures. Repair underwater measurement system.	Extending transducer below bottom of launch improved data collection.	Meteorological wind and direction sensors calibrated.	Quick reaction for dead-weight testers.	Repaired and calibra- ted oscilloscopes, signal generators, efc.	100 items of general- purpose electronic test equipment pro- cessed. Ongoing	110 items processed. NRC requirements must be met.	Mechanical standards refurbished.	113 sensors calibrated. Used to monitor air quality in all major cities.	Deep-sea reversing thermometers calibrated	Building RF assembly for antenna assembly
Navy Technology Applied	Pressure Chamber Design	Hydrographic Coastal Survey, Ocean Engineering	Precision Measurement	Precision Measurement	Standards Laboratory	Standards Laboratory	Standards Laboratory	Precision Measurement	Precision Measurement	Precision Measurement	Microprocessor Technology
Project Description	Instrumentation Test Services	Instrumentation Transducer Performance Study of Bubble Sweepdown	Instrumentation Calibra- tion Services for Meteorological Systems	Calibration for Secondary Transfer Standards for Pressure Measurements	Repair and Calibration Services of General- Purpose Test Equipment	Repair and Calibration of Instruments to Monitor Nuclear Reactor Param- eters	Repair and Calibration of Instruments to Monitor Nuclear Reactor Parameters	Test and Calibration Services Mechanical Standards	Repair and Calibration of Meteorological Sensors	Calibration Services on Deep-Sea Reversing Thermometers	Two-Wire Telephone Data System Remote Control
Technologi- cal Area	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation
Performing Activity	89 80 80	90 80 80	NOC 95	86 96	NOC 97	38 88	NOC 88	100 100	NOC 101	102	NSWSES 108

FY80 Sponsor	0.5 FedNAVSEASYSCOM	20 0.3 0.3 FedNavy NATO SEASPARROW	FedNav. Res. Lab.	FedNAVELECSYSCOM
Y79	25 0.5	0.3	1	1
SK)	25	70	1	1
Funding (SK) Man-Years FY79 FY80 FY79 FY80	52	20	1	}
Progress	2 receivers com- pleted and tested, 5 under construction.	<pre>2 improved dynamic testers under con- struction.</pre>	procedure for in-situ etch of III-V compound substrates prior to growth by liquid phase epitaxy of III-V layers having electronics applications.	Controlled pore surface fabricated using modern microelectronic photolithography.
Navy Technology Applied	Microprocessor Technology	Microprocessor Technology	Metallurgy	Microwave Tube Components
- Project Description	Improved Low-Noise Telemetry Receiver Assembled From Modular PC Assembly	Dynamic Radio-Frequency Tester, Signal Simulates Missile in Plight	Semiconductor Materials, Preparation for Electronics Applications	. Controlled Porosity Dispenser Cathode Development

Instrumentation

NSWSES 109

Performing Technologi-Activity cal Area Instrumentation

NSWSES 110 Instrumentation

NRL 202 Instrumentation

NRL 204

NAVAL MATERIAL COMMAND WASHINGTON DC NAVY TECHNOLOGY TRANSFER PROGRAM FY 79 SUMMARY STATISTICS.(U) 1980 F/6 5/1 AD-A104 401 UNCLASSIFIED NL 2 ... 2 4.: 41:4401 END DATE FILMED O 8! DTIC

Sponsor	2150 3.0 7.0 FedPhysical Security Systems Directorate ESD/ AFSC/USAF	0 1.0 0.0 FedDOT Fed. Highway Admin.	RedDept. of Justice Immigra- tion and Naturali- zation Serv.
X80	7.0 # 20 DK	0.0 H	
N-Yea	0.	0.1	3.5
SK) M	: 150	•	0 0.2
Funding (\$K) Man-Years FY79 FY80 FY79 FY80	1220 2	20	12
Progress	3 sensors under development: bistatic doppler sonar, target detection, and acoustic interferometer wader.	20 system built and now being evaluated. Potential for traffic control.	System of state-of- the art components analyzed. A 5% error rate cannot be met with current sensor.
Navy Technology Applied	Automatic Electronic Sig- nal Processing	Magnetic Surveillance Technology	Optical Detection
Project Description	Waterborne Intrusion De- tection SystemSensors for Waterborne Intruders	Self-Powered Vehicle Detector, Detects Vehicles on Any Roadway	E/O Character Recognition Optical Study. Using Video Sig- Detectionals from Laser-Scanner TV System, Identify Alphanumeric Auto
Perform- ing Technologi- Activity cal Area	Law En- forcement	Law En- forcement	Law En- forcement
Performing Activity	NCSC 174	NSWC 114	NDSC 180

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80 FY79 FY8	(\$K) FY80	Man-Y FY79	FY80	Sponsor
CEL. 04	Marine Technology	Antifouling Marine Concrete to Line Ducts and for Floating Structure	Ocean Materials Science, En- vironment	Test cylinders exposed in fouling environment. Monthly evaluation continues.	20	•	4.0	0.0	PedDept. Energy
21	Marine Technology	Investigation of Seakeeping and Maneuvering Characteristics of Various Ships	Hydrodynamics, Rudder Roll Sta- bilization (RRS)	RRS improvements complete. Corrective actions being implemented on cutters.	211	248	2.0	2.0	FedU.S. Coast Guard
31.	Marine Technology	Integrated Tug/Barge Concept	Ship Concept Design	OPNAV directed more evaluation of concepts for destroyers and sub. tenders.	1	1	1	1	FedNAVSBASYSCOM
NORDA 78	Marine Technology	Fiber-Optics Applications to Specific Ocean Measurement Projects	Oceanographic Instrumentation	Technology summary in progress.	09	80		9.0	FedNORDA
NOC 86	Marine Technology	Screening Test of Marine Wood Preserva- tives (3 Marine Test Sites)	Marine Biology	Panels exposed for 2 years, exposures continuing for barer, fungi resistance tests	9	9	0.0	0.0	NPInternational Research Group on Wood Preservation
NOC 91	Marine Technology	Calibration Services for Temperature- Measuring Current Meters	Precision Measurement	10 current meters calibrated using unique facility for ocean environment simulation.	•	0	0.0	0.0	FedU.S. Geologi- cal Survey
NOC 93	Marine Technology	Plastic Teredo-Barriers for Marine Piling Control Marine Borers and Fungi	Marine Biology	No attack at 3 test sites. Program con- tinuing.	•	0	0.1	1	IndRaychem Corp., Kouston
NOC 94	Marine Technology	Instrumentation Calibration ServicesDet. Salinity of Unknown Samples	Precision Measurement	Samples analyzed.	0	H	0.0	0.0	IndBeckmen Instru- ments, Inc.
USNA 171	Marine Technology	European Dredging: A Review of the State of Art; to Improve Slip Maintenance by Navy	Sedimentation Control, Dredging	Attended conferences, visited experts, made site reviews, pre- pared report.	18	•	0.3	0.0	FedNAVFAC and Off. Nav. Res.
USN A 173	Marine Technology	Studies of Whales in Iceland and Their Manage- ment; Predict Arrival to Denmark Straits	Oceanography	Icelandic whaling operations observed, and film made.	m	0	0.1	0.0	FedNatl. Oceanic and Atmospheric Admin.

Man-Years FY79 FY80 Sponsor	0.3 0.0 PedU.S. Dept. Interior Bureau of Land Mgmt.	1.0 0.0 StateUniv. Calif.	1.6 0.0 FedNASA Kennedy Space Ctr.	0.2 0.0 FedNational Marine Fisheries	2.3 2.2 FedDept. of Interior U.S. Geological Survey	0.2 0.0 NPInstitute for Acoustic Research	FedNational Oceanic and Atmospheric Admin.	1.0 PedOff. Nav. Res.
Funding (SK) FY79 FY80	95	0 15	116 0	12 0	282 329	12 0	1	45
Progress	6 aerial surveys yielded sonobuoy tape recordings of a number of Bowhead	Chief now active at Scripps Institute of Oceanography.	Two dewatering sets manufactured and acceptance tests witnessed.	Determining number of whales. Project complete.	Univ. of New Hampshire and NOSC vehicle platforms have undergone feasibility tests in water.	Project complete, Underwater projector installation.	Enhance structural reliability of OTEC cold water pipe by recommending design changes.	Seawater as motive fluid, axial turbine provides thrust to
Navy Technology Applied	Marine Biology	Deep Ocean Technology	Deep Ocean Technology	Acoustic Detection	Ocean Engineering	Underwater Acoustics	Mechanical Engineering	Ship Propulsion, Naval Architect- ure
Project Description	Bowhead Whale Acoustics (Are Whales Present in the Beaufort Sea)	Scripps Exchange (Provide a Chief Scientist for the Deep Sea Drilling Project)	Solid Rocket Booster (SRB) Deep Ocean Dewatering Contingency Technology Equipment (Space Shuttle Program)	Bowhead Whale Survey Arctic Alaska	Unmanned Free-Swimming Inspection Vehicle Technology	Acoustic Projector Installation	Ocean Thermal Energy Conversion	Bydraulic Transmission for Ship Propulsion
Technologi- cal Area	Narine Technology	Marine Technology	Marine Technology	Marine Technology	Mar ine Technology	Mar ine Technology	Marine Technology	Mar ine Technology
Performing Activity	ND6C 181	NDSC 178	NOSC 184	NOSC 186	NOSC 195	NOSC 198	NRL 239	240

Perform- ing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K)	Man-Years FY79 FY8	FY80	Sponsor
DMT 17	Technologi- cal Guid- ance	Investigate Bulk Cavitation Effects and Other Hull Loading Mechanisms for Ship Survivability	Bulk Cavitation Hull Loading	Literature review 50% complete.	35	270	9.0	4.0	FedDef. Nuclear Agency
DATE 24	Technologi- cal Guid- ance	Analysis of Helo Decks for 270- and 210-ft Ships, Strength Analyses	Finite Element Analyses	Finite element model for web bending, de- veloped. Deck strength analyzed.	50	10	0.7	0.1	FedU.S. Coast Guard
25	Technologi- cal Guíd- ance	Technologi- CORT Full-Scale Trials, cal Guid- Springing ance	Springing Phenomena	Instrumentation installed on ore carrier and shakedown trials performed.	06	35	1.1	0.5	FedU.S. Coast Guard
NADC 34	Technologi- cal Guid- ance	Technologi- AIREYE Sensor System for cal Guid- MRS Aircraft (Medium- ance Range Surveillance)	Avionic Systems Search and Rescue	Modification/integra- tion support complete. Development of active gated TV sensor continues.	955	420	3.6	1.6	FedDept. Trans., U.S. Coast Guard
NEEDC 51	Technologi- cal Guid- ance	Workshop on Organizational Climate for Persons Work- ing in Human Resource Management	Survey Methods and Instruments	Additional workshops scheduled.	•	0	0.0	0.0	NPVictoria Be- havioral Research Assn, LTD
NAVSEA 105	Technologi- cal Guid- ance	Technologi- Metal Matrix Materials, cal Guid- e.g., Graphite Alum. ance	Metallurgy	Graphite alum compos- ites have been pro- duced; transfer of technology to recrea- tion industry.	1300	2000 16.0	16.0	25.0	Fednavseasyscom
NAVSEA 106	Technologi- cal Guid- ance	Isotropic Graphite Program-Pine-Grained, Nonporous Test Billets	Materials	Billets for Tag to civilian sector on request.	009	l	8.0	ł	FedNAVSEASYSCOM
navsea 107	Technologi- cal Guid- ance	Boron Nitride Fiber Development, Temp Resist, Electric Nonconducting Window Material	Materials	Continuous boron nitride fibers pro- duced on lab scale. Scale-up under way.	330	250	4.0	3.0	Fednavseasyscom
NTEC 124	Technologi- cal Guid- ance	Technologi- MTEC/Industry Conference; cal Guid- Mil, C.S., Indus Acad. ance and Foreign; First Conf in 66	Training Methodology	Interservice conference continuing, Proceed- ings published (NAVTRAEQUIPCEN IH-306),	l	;	1	}	FedNTBC
126	Technologí- cal Guid- ance	Technological Information BourceAssigned as Staff Scientist	Computer Technology, Info Retrieval	Assisted in preparation of legislation, issued technical reports, developed software.	I	}	1	;	StateConnecticut General Assembly
				(**					

1			ğ .		o s		
Sponsor	NPCTIP	StateConnecticut Conference of Municipalities	NPNUSC New England Innovation Group, and Public Technol- ogy, Inc.	StateNUSC (fed, state, local)	StateCity and County of San Diego, Natl. Sci. Foun., Fed. Lab. Consortium	FedFed. Lab. Consortium	NPPacific Morthwest Innovation Group (funded by NSF)
FY80	1	1	1	1	2.0	1	0.0
Man-Years FY79 FY8	1	1	1	1	2.0	}	1.0
	1	1	1	1	9	1	15
Funding (\$K)	33	1		ŧ	09	1	15
Progress	In past year over 100 problems solved on variety of needs.	Brings resources from industry, federal, and university research to solve municipal problems. Throughout Connecticut, 107 cities and towns of all sizes have been provided service in 250 individual cages, in 2 years.	Gathering and disseminating scientific and technological information to local governments. Responds to specific problems from local govts.	accomplished acoustics, all emer- gency, water quality, inventory control, taxiology, heart pacemakers, etc.	Cost saving of \$200K per year. Strong and fully responsive city-wide technical support.	New needs caused by Proposition 13. Couple local needs with laboratory expertise.	Assigned to Pacific Northwest Innovations Group.
Navy Technology Applied	Communications, Management Methods	Communication, Instrumentation, Management, etc.	Computer Technology, Circuit Rider Technology Agent	Varied, Electronic, Computer Medical, Engineering, etc.	Support of Local Govt.	Local Government San Diego	Technological Guidance
Project Description	Community Technology Initialives Program— Circuit-Riding Technol- ogy Experts Small-City Needs	Technological Utiliza- tion Assistance Program to Help Identify and Solve Municipal Problems	Technologi- CTIP32 Cities and cal Guid- Counties Under 50,000 ance in Population	Technologi- Technical Volunteer Ser- cal Guid- vice; to Solve Problems ance of Local Governments; 200 Participants; First Project Nationwide	San Diego Technology Action Center (SANDTAC) Action-Oriented Utili- zation ProgramIPA	Technologi- Local Government Assis- cal Guid- tance Task Force ance	Technical Coordinator for Federal Laboratory Consortium Assigned to the PMIG (IPA)
Technologi- cal Area	Technologi- cal Guid- ance	Technologi- cal Guid- ance	Technologi- cal Guid- ance	Technologi- cal Guid- ance	Technologi- cal Guid- ance	Technologi- cal Guid- ance	Technologi- cal Guid- ance
Performing Activity	NUSC 127	128	130	131	NPRDC 168	NP RDC 170	NOSC 179

J	<u>o</u>	
	StateCity and County of San Diego	0 0.0 0.0 FedNAVSEASYSOOM
FY80	0.0	0.0
Funding (\$K) Man-Years FY79 FY80 FY79 FY80	0 0.1 0.0	0.0
Funding FY79	m	•
Progress	Many issues defined. Stress disability retirement and energy link major problems for detailed pursuit.	Extend capability of laser welding to more complex weldments variety of materials.
Navy Technology Applied	General Assistance	Materials Research
Project Description	Local	Technologi- Laser Welding cal Guid- ance
Technologi-	Technologi- cal Guid- ance	Technologi- cal Guid- ance
Perform- ing To Activity (NDSC 200	NRL 221

Sponsor	FedFFA	FedDept. Trans.	FedFFA	FedDef. Adv. Res. Proj. Agency	FedU.S. Air Force	Fed-Joint Cruise Missiles Project Off.	Fednavairsyscom	Fednavseasyscom	Fedbor Fed. RR Admin.	PedDOT Off. Hazardous Material	FedNASA Lyndon B. Johnson Space Center
101											
Man-Years FY79 FY80	0.1	0.1	0.0	10.0	1	1	1.0	2.0	2.0	4.0	0.1
	4.0	0.3	0.3	18400 10.0	ł	1	7.0	8.0	2.0	0.2	0.1
FYBO	27	æ	0	18400	1	1	09	150	120	12	so.
Funding (\$K)	4	71	€ 4€	3100	1	1	360	700	250	Ó	6 1
Progress	Research complete and research slab recommended. Other data being analyzed.	State-of-the-art survey report complete and sent to printing.	Samples from Chiho, CA; Big Bear, CA; and Payson, AZ airports indicated satisfactory. Criteria for these kinds of soils de- veloped.	Hybrid rotor/wing system flight-tested Potential high for short-haul transports, etc.	Version of Tomahawk sustainer engine will enter civilian market.	All 3 variants of the land-attack cruise missile use TERCOM.	Approach and landing phase potential to commercial.	Process for fabri- cating carbon-carbon composites in orthog- onal configurations essentially complete.	Thermal sensors and rail-contact sensors being evaluated.	Test requirements for drums and pails developed.	Explosive cartridge designed, developed and delivered to NASA.
Navy Technology Applied	Ceramics, Refractories	Civil Engineering Paints, Pavements	Civil Engineering	Analysis and Testing, Aero- dynamics	Aeronautics	Inertial Navigation	Instrumentation Design	Metallurgy	Sensors; Materials	Container and Packeging	Explosives Technology
Project Description	Shrinkage Compensating Cement for Airport Pavements	Survey on Traffic Markings for Runways, Taxiways, and Parking Aprons	Evaluation of Lime- Treated Native Soils for Base Courses at Airports	X-Wing Stopped-Rotor Aircraft	Small Turbofan Engine for Hi-Perform. Business Jet	Terrain Contour Matching (TERCOM) System for Navigation Update	Head-Up Display to Simulate Aircraft	Carbon-Carbon Composites for Navy Missile Applic.	DOT-STAR System for Train Accident Reduction	Hazardous Material Packaging, Develop Performance Standards	Structural Separation System Explosive- Actuated, for Space Shuttle
Technologi- cal Area	Transpor- tation	Transpor- tation	Transpor- tation	Transpor- tation	Transpor- tation	Transpor- tation	Transpor- tation	Transpor- tation	Transportation	Transpor- tation	Transpor- tation
Performing Activity	03 03	CEL 05	CRT.	DMT 07	33	JCM 175	MAVAIR 40	NAVSEA 104	NSWC 113	116	118

251

The same of the sa

NSWC

121

NOSC 183

1

fluid interfaces.

SECTION 4

TABLE OF CONTENTS

	4-3	4-44-6	4-7	8-1	4-9	4-10	4-11	4-12	4-13	4-14	4-15	4-164-1	4-18	4-19	4-20	4-214-2	4-244-2	4-27	4-284-3	4-33	4-34	4-35	4-364-3
	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•
	:	:	•	:	•	:	:	•	:	•	:	:	:	:	:	:	:	•	:	•	:	•	
	•	•	Z C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	(FL		:	:	·	:	:	:	:	·	:	:	:	:	:	•	•	:		:	
	:	:	er	:	:	•	:	•	:	•	•	•	•	:	•	•	•	•	•	:	:	:	•
	•	•	ent	•	•	•	•	•	•	•	•	•	6	•	~	•	•	•	•	•	ŝ	•	•
		:	sı	:	•	:	•	•	•	:	:	:	IMRE	•	₩Q.	•	•	•	:	•	WSE	•	
•		•	lysi	•	•	٠	•	•	•	•	•	:	2	•	ž	•	•	:	•	•	ž	•	•
•		•	Ana	6	•	•	•	•	•	•	•	•	man		ity	•	•	•	•	•	ion	•	
:		•	ë	Š	:	•	•	•	•	:	•	•	CO	•	tiv	:	•	•	:		tat	•	•
•		:	Fle	3	•	•	NO.	NO CO	•	•	•	•	int	Ē.	¥c	•	•	•	•	•	9 8	Q	ç
3			val	fice	်	ABC)	RSYS	ASY:	:	IOL)	ပ္ထ	ပွ	amqc	NME	Tent		:	:	:	ŷ	erir	Ę	Center (NIISC)
CEE		•	Z	Ö	NA NA	Ž	VAI	VSE	•	(NB)	S S S	(NH)	velc	τy	lopi	၀	8	S)	ũ	(NSI	ine	er	Ļ
ŗ		•	s.	ect	H	ter	N.	(NA	<u>و</u>	ŕΥ	ë	er	ğ	111	eve	ž	Z	Ž)	(NR	H	Eng	ent	4
ato		:	ם נ	Proj	ent	Cen	ng	Pu	NAT	ato	ent	ent	and	Fac	D D	iter	1ce	, o	ry	ent	SWS	4	
apo1		Ê	nte	es .	날	fng) IIII	S Marie	'n	ξ.	Si .	동	뎐	ing	ומר	Ç	O.E.	Scho	rato	22	yste	pme	to to
ų.		<u>\$</u>	S	si l	рше	eri	Ŭ m	Ŭ m	ent	S Ľ	ster	ear	Sea.	eer	ard	ems	hic	ţ	abo	apo]	Ś	qui	Š
rtn		Ŏ	eno.	Mis	elo	ine	tem	tem	ن بړ	nce	S	Res	Re	gin	ese	yst	rap	dua	ä	3	a Po	9	Underwater Systems
nee		[ay]	ati	36	Dev	Eng	Sya	Sys	Tes	cie	tal	ફ	ca1	B	r.	E S	four	gra	arc	80	3	nin	3
Engi		٠ غ	Opeı	Crui	Air	Air	Air	Sea	Ąir	3108	Coas	Heal	/edi	4ine	Cea	၁၄ဧရ	၁ငရေ	Post	Rese	Surf	Ship	raj	10.0
11.		/id	EP	int	'al	181	'al	'al	/a1	'a]]	/a1 (al	'a1 1	'a1 1	'a1 ('al	ra1	ral	'al	181	ral:	. E	
Technology Transfer Projects Performed by Civil Engineering Laboratory (CEL)		Transfer Projects Performed by David W. Taylor (DWT)	Technology Transfer Projects Performed by GIDEP Operations Center, U.S. Naval Fleet Analysis Center (FLTAC)	Technology Transfer Projects Performed by Joint Cruise Missiles Project Office (JCMPO)	Technology Transfer Projects Performed by Naval Air Development Center (NADC)	Transfer Projects Performed by Naval Air Engineerifng Center (NAEC)	Technology Transfer Projects Performed by Naval Air Systems Command (NAVAIRSYSCOM) .	Technology Transfer Projects Performed by Naval Sea Systems Command (NAVSEASYSCOM)	Technology Transfer Projects Performed by Naval Air Test Center (NATC)	Technology Transfer Projects Performed by Naval Biosciences Laboratory (NBIOL)	Transfer Projects Performed by Naval Coastal Systems Center (NCSC)	Transfer Projects Performed by Naval Health Research Center (NHRC)	Technology Transfer Projects Performed by Naval Medical Research and Development Command (NMR&D)	Transfer Projects Performed by Naval Mine Engineering Facility (NMEF)	Technology Transfer Projects Performed by Naval Ocean Research and Development Activity (NORDA)	Technology Transfer Projects Performed by Naval Ocean Systems Center (NOSC)	Technology Transfer Projects Performed by Naval Oceanographic Office (NOC)	Technology Transfer Projects Performed by Naval Postgraduate School (NPS)	Technology Transfer Projects Performed by Naval Research Laboratory (NRL)	Technology Transfer Projects Performed by Naval Surface Weapons Center (NSWC)	Technology Transfer Projects Performed by Naval Ship Weapon Systems Engineering Station (NSWSES)	Technology Transfer Projects Performed by Naval Training Equipment Center (NTEC)	Projects Performed by Naval
ል ሜ		Q D	Ā. 126	(A)	Ď.	₽ ₽	کر ک	Ď.	Ā V	Ā V	ď D	Ā K	Ā V	A V	<u>2</u>	Q pa	ğ. Pa	Ď.	Q Va	ଦ୍	ğ g	کر اکر	ž.
OFF	; }	OFT	orm	OKM	orm	orm	orm	orm	Orm	orm	orm.	orm	orm.	orna	or m	OKI	orm	OKTH	orm.	orm	or m	oraș	Ĭ
4	י ני	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	erf	946
18		50	14 15	80	80	80	рц. 13	8	д. 8)	g, g	e. Di	р. 18	ρ. 10	8	р. 10	р. 100	8	8	80 EL	р. 18	р. 100	101	9
į	2	ject	ject	ject	ject	ject	ject	ject	ect	ect	ject	ect	ect	ject	Ject	ect	Ject	Ject	ject	ect	ect	ect	ţ
Pro		Pro	Pro	Pro	Pro:	Pro	Pro:	Pro	Pro	Pro.	Pro	Pro	Pro	Pro	Pro	Pro.	Pro	Pro	Pro	Pro	Pro	Proj	3
e r		er	er	er	er	er	er	er	ë	er	er	er	er	er	er	er	er	er	er	er	i e	er	
ınsf		msf	ans f	ınsf	ınsf	ınaf	ınsf	ınsf	ınsf	ınsf	ınsf	ınsf	ınsf	ınsf	ınsf	ınsf	msf	ınsf	ınsf	ınsf	ınsf	ınaf	,
Tr.		Tre	, Tri	Tr.	Tr.		Tr.	Tr	Tr	Tre	. Tr		Tre	Tr:	Tra	Tr	, Tre	Tr.	Tr.	. Tra	Tr.	Tra	machan low Transfer
Logy		Technology	logy	logy	log y	Technology	logy	logy	logy	lo gy	1093	160	1093	(ogy	logy	1 60	logy	logy	logy	Moon	logy	7 60	į
hno		hno	hno	hno	pno	ouu	hno	hno	hno	ouu	hno	hno	out	hno	hno	ouq	hno	hno	hno	iond	lond.	out	5
Tec		Tec	Tec	Tecl	Tecl	Tecl	Tecl	Tecl	Tecl	Tecl	Technology	Technology	Tecl	Technology	Tecl	Tecl	Tecl	Tecl	Tecl	Tecl	Tecl	Tect	r C
-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TABLE OF CONTENTS

	4			4-45	
Pages	4-384-41	4-42	4-43	4-444-45	4-46
			•	_	•
	•	•	•	•	•
	•	•	•	:	:
	:				
	•	•	•	•	•
	•	•	•	•	•
	•	:		:	
	•	•	ð	•	•
	•	•	2	•	•
	:	:	ы		•
		•	ıte.	•	•
	•	•	Ö	•	•
	:	•	달	:	•
	•	_	E E	•	•
	•	ည္တ	019	•	•
	:	Ž	eve	ລ	•
	•	er	Ę.	NO.	•
	် ပွ	ent	r e	<u>۔</u> ع	æ
	Ž	ŭ	듄	rc.	SN
	er	tio	ear	ŝe	=
	ant.	슙	Res	æ	emy
	ŭ	ທົ	-	/a1	ಚಿತ್ರ
	one	ğuo	ě	N N	Ř.
	eap	eap	rso	of	ζ.
	3	3	Pe	8	ž
	Projects Performed by Naval Weapons Center (NWC)	Projects Performed by Naval Weapons Support Center (NWSC)	Projects Performed by Navy Personnel Research and Development Center (NPRDC)	Tachnology Transfer Projects Performed by Office of Naval Research (ONR)	Technology Transfer Projects Performed by U.S. Naval Academy (USNA)
	λq	by 1	γď	Ą	þ
	8	2	ğ	je	ē
	orn	or a	ora	L	or.
	erf	erf	erf	erf	erf
	ď,	Ď.	Ã.	<u>с</u>	ρ. m
	ţ	Ç	i,	Č	čť
	Ģ	. è			, ģ
	Pr	Ä	P.	P.	7
	fer	fer	fer	fer	fer
	ing.	in s	30.8	808	ans
	Technology Transfer	Technology Transfer	Technology Transfer	Ė	Ĭ
	\$;	į	į	, ķ
	2,0	0	9		10
	ř	ř	Ě	Ę	u do
	1	Ē	Ē	è	ě

PROJECTS PERFORMED BY THE CIVIL ENGINEERING LABORATORY, PORT HUBNER, CA LISTED BY TECHNOLOGICAL AREA

	hergy	Irans.	Shergy		Trans.	
Sponsor	RedDept. Energy and Navy	PedDept. Trans.	0.0 FedDept. Energy	0.1 FedFAA	0.1 FedDept. Trans.	0.0 PedPAA
FY80	1.0	8.0		0.1		
Kan-Ye	6.0	1.2	4.	••	0.3	0.3
(\$K) Man-Y FY80 FY79	120	83	0	7.2	&	•
Funding (\$K) Man-Years FX79 FX80 FY79 FY8	616	138	20	47	11	æ.
Progress	No adverse effect on environment found; Navy- DOE agreement made.	Small primates being studied; injuries com- puter program written.	Test cylinders exposed in fouling environment. Monthly evaluation continues.	Research complete and research slab recommended. Other data being analyzed.	State-of-the-art survey report complete and sent to printing.	Samples from Chino, CA; Big Bear, CA; and Payson, AZ airports indicated satisfactory. Criteria for these kinds of soils developed.
Navy Technology Applied	Air Conditioning, Heating, Light- ing Ventilation	Bioengineering, Solid Mechanics	Ocean Materials Science, En- vironment	Ceramics, Refractories	Civil Engineering Paints, Pavements	Civil Engineering
Project Description	Organic Rankine Bottoming System for Diesels to De- crease Fuel Consumption	Brain Model for Study of Response/Injury Relation- ship	Antifouling Marine Concrete to Line Ducts and for Floating Structure	Shrinkage Compensating Cement for Airport Pavements	Survey on Traffic Markings for Runways, Taxiways, and Parking Abrons	Evaluation of Lime- Treated Native Soils for Base Courses at Airports
Technologi-	Energy	Health and Medicine	Marine Technology	Transpor- tation	Transpor- tation	Transpor- tation
Perform- ing	CEL	05 05 07	CEL 04	CEL 03	CEL 05	90 CET

PROJECTS PERPORMED BY THE DAVID W. TAYLOR NAVAL SHIP RED CENTER, BETHESDA, MD LISTED BY TECHNOLOGICAL AREA

Performing	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80 FY79 FY8	(\$K) PY80	Man-Yea	FY80	Sponsor
DWT 14	Analysis and Testing	Effect of Radial Load Distribution on Propeller Cavitation Erosion	Hydrodynamics	Cavitation erosion tests complete.	10	0	0.1	0.0	NPSoc. Nav. Arch. and Engrs.
DWT 15	Analysis and Testing	Evaluation of Effectiveness of Protective Coatings for Propellers	Hydrodynamics, Propeller Coating	Procedures are being developed. Samples have been tested.	41	0	4.0	0.0	FedMaritime Admin.
DWT 18	Analysis and Testing	Stress Relaxation Characteristics of Elastomeric Isolation Mounts	Maintenance Reduction, Machinery Silencing	Apparatus to monitor stress de- signed. Isolation mounts received.	100	100	0.5	5.0	FedFed Railroad Admin.
DWT 19	Analysis and Testing	Energy Conservation Study on Tandem Propellers	Propeller Design, Performance Testing	Experiments made to evaluate tandem design. Report on propulsion tests.	45	1	9.0	1	FedMaritime Admin.
22 22	Analysis and Testing	Full-Scale Stress Measurements on Controllable Pitch Propeller	Propeller Loads and Stresses, Spindle Torque	Full-scale trials conducted in ice and open water. Some findings reported.	603	200	0.9	2.3	Guard Guard
DWT 26	Analysis and Testing	Avondale Shipyard Powering Instrumentation Trials, Provide Torsion- of Trial meter and Assist in Installation	Instrumentation of Trial	Report published. DINSRDC 79/084	4	95	0.1	6.0	IndAvondale Shipyards, Inc.
DWT 27	Analysis and Testing	Tanker Berthing Evaluation	ing Evaluation Instrumentation of Trial	Trials conducted to gather tug/ship interaction forces; report issued.	1	}	1	1	FedDept. Commerce
DWT 28	Analysis and Testing	Shallow Water Maneuvering Trials	Instrumentation of Trial	Trials run; parameters measured; report pub- lished.	20	1	0.2	1	FedMaritime Admin.
DWT 29	Analysis and Testing	HMS ADDIRIYAR (MSC-412) Standardization, Tacti- cal, and Fuel Economy Trials	Instrumentation of Trial	Trials concluded and report published.	4	95	0.1	6.0	FedNAVSEASYSCOM
30	Analysis and Testing	KATMAI Bay (WTGB-101) Speed, Tactical, and Maneuvering Trials	Instrumentation of Trial	Tactical, maneuvering, speed-vs-shaft-RPM, and ice-breaking trails conducted.	4	227	8.0	2.7	FedU.S. Coast Guard

PROJECTS PERFORMED BY THE DAVID W. TAYLOR NAVAL SHIP R&D CENTER, BETHESDA, MD LISTED BY TECHNOLOGICAL AREA

Performing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) FY80	Man-Years FY79 FY80	FY80	Sponsor
00 88 E	Computer Technology	Computer-Aided Ship Design and Construction	Computer-Aided Ship Design	Development and dissemination of computer programs; available for Navy work.	400	700	2.0	4.0	Pednavseasyscom
20 20	Energy	MARAD Tandem Propeller Follow-On Program	Hydrodynamics, Tandem Propellers	Design requirements for test propellers being checked.	35	104	0.3	0.7	FedMaritime Admin.
E 60	Rnvironment	Environment Carbon Fiber Protection	Composite Materials	Methods to minimize entry of fibers into critical systems developed. Conformal coatings being evaluated.	490	400	S. 0	4.	PedRome Air Dev. Cen.
10 10	Environment	Environment USCG Marine Sanitation Devices Evaluation	Ship Systems, Maintenance Logistics	Current capabilities and new technology being identified.	32	0	4.0	0.0	FedU.S. Coast Guard
11	Environment	Environment Recovery Device: Oil/ Water Separator (OMS)	Shipboard OMS Systems	Constraint matrix for evaluation complete.	81	9	1.5	8.	FedU.S. Coast Guard
12 12	Environment	Environment USCG Oil/Water Separator Detergent	Chemistry, Detergent Experience	Emulsion stability tests performed. Outline for engine room cleaning developed.	80	75	5.0	0.7	PedU.S. Coast Guard
23 23	Environment	Environment NOAA Current Sensor Experiments for Cable- Body Systems	Eydrodynamics, Environmental Measurements	Current meters calibrated under atsea conditions.	99	20	0.5	4.0	PedNational Oceanic and Atmospheric Admin.
13 13	Fire and Safety	Inspection Testing Lifesaving Equipment	Inspection and Testing	Tests of individual items of lifesaving equipment (life jackets, life rafts, etc.).	09	67	8.0	8 .0	Pedbef. Const. Supply Ctr.
16 16	Fire and Safety	Fire Resistance Tests (Rydraulic Fluids for Shipboard)	Inspection	Has only facility (modified compression fire-resistant engine) to test shipboard hydraulic fluids for Navy.	10	72	0.1	0.3	PedDef. Gen. Suppλy Ctr.
21 21	Mar ine Technology	Investigation of Sea- keeping and Maneuvering Characteristics of Various Ships	Hydrodynamics, Rudder Roll Sta- bilization (RRS)	RRS improvements complete. Corrective actions being implemented on cutters.	211	248	2.0	2.0	PedU.S. Coast Guard

PROJECTS PERFORMED BY THE DAVID W. TAYLOR NAVAL SHIP RED CENTER, BETHESDA, MD LISTED BY TECHNOLOGICAL AREA

Performing	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years	(\$K)	Man-Ye	FY80	Sponsor
DMT 31	Marine Integral Technology Concept	Integrated Tug/Barge Concept	Ship Concept Design	OPNAV directed more evaluation of concepts for destroyers and sub. tenders.	!	:	i	1	Pednavs ea syscom
DWT 17	Technologi- cal Guid- ance	Technologi- Investigate Bulk cal Guid- Cavitation Effects and ance Other Hull Loading Mechanisms for Ship Survivability	Bulk Cavitation Hull Loading	Literature review 50% complete.	35	270	9.0	• •	4.0 FedDef. Nuclear Agency
DWT 24	Technologi- cal Guid- ance	Technologi- Analysis of Helo Decks cal Guid- for 270- and 210-ft ance Ships, Strength Analyses	Finite Element Analyses	Finite element model for web bending, de- veloped. Deck strength analyzed.	20	10	7.0 01	0.1	0.1 FedU.S. Coast Guard
DMT 25	Technologi- cal Guid- ance	Technologi- ONT Full-Scale Trials, cal Guid- Springing ance	Springing Phenomena	Instrumentation installed on ore carrier and shakedown trials performed.	8	35	35 1.1	0.5	0.5 FedU.S. Coast Guard
DMT 07	Transpor- tation	X-Wing Stopped-Rotor Aircraft	Analysis and Testing, Aero- dynamics	Hybrid rotor/wing system flight-tested Potential high for short-haul transports, etc.	3100	18400	10.0	10.0	3100 18400 10.0 10.0 FedDARPA

PROJECTS PERFORMED BY GIDEP OPERATIONS CENTER, U.S. NAVAL FLEET ANALYSIS CENTER, CORONA, CA LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	Funding (\$K) Man-Years	FY80	Sponsor
FLTAC 32	Analysis and Testing	GIDEP Operations Center	Computer Data Processing and Analysis, Com- munications Networking	\$24 million savings (cost avoidance) in CY 1978 plus intan- gibles.	1700	2000 10.0	11.0	1700 2000 10.0 11.0 FedJoint Logistics Command

PROJECTS PERFORMED BY THE JOINT CRUISE MISSILES PROJECT OFFICE, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

	Force	uise ect
Sponsor	S. Air	int Cru s Proje
Sp	FedU.S. Air Force	FedJoint Cruise Missiles Project Off.
ry80	1	1
Van-Ye	1 .	1
(\$K) Man-Years FY80 FY79 FY80	1	{
Funding (\$K) Man-Years FY79 FY80 FY79 FY80	1	!
Progress	Version of Tomahawk sustainer engine will enter civilian market.	All 3 variants of the land-attack cruise missile use TERCOM.
Navy Technology Applied	Aeronautics	Inertial Navigation
Project Description	Small Turbofan Engine for Hi-Perform. Business Jet	Terrain Contour Matching (TERCOM) System for Navigation Update
Perform- ing Technologi- Activity cal Area	Transpor- tation	Transpor- tation
Perform- ing Activity	JONEO 33	JCMP0 175

PROJECTS PERFORMED BY THE NAVAL AIR DEVELOPMENT CENTER, WARMINSTER, PALISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80 FY79 FY8	(\$K) Man-Years FY80 FY79 FY80	lan-Ye Y79	ars FY80	Sponsor
NADC 36	Computer Technology	Predicti gine Mat	Engine Cost Analysis	Modification of computer codes continuing.	0	0	0	0.0	0.0 FedNASA Lewis Research Center
NADC 37	Health and Medicine	Health and Efficacy of Symptomatic Medicine G-Suit Inflation	Stress Physiology	Stress Physiology Human performance measured during centrifuge runs	5 6	•	0 2.4	0.0	0.0 FedNASA Johnson Space Center
NADC 35	Instrumen- tation	Instrumen- Retrodirective Array tation Development/Evaluation for All-Weather Iden- tification	Radar Systems, Sensor Develop- ment	Radar delivered array evaluated, report submitted	350	0	0 2.0		0.0 FedDept. Trans., U.S. Coast Guard
NADC 34	Technologi- cal Guid- ance	Technologi- AIREYE Sensor System for cal Guid- MRS Aircraft (Medium- ance Range Surveillance)	Avionic Systems Search and Rescue	Modification/integra- tion support complete. Development of active gated TV sensor continues.	955	420	420 3.6	1.6	<pre>1.6 FedDept. Trans., U.S. Coast Guard</pre>

PROJECTS PERFORMED BY THE NAVAL AIR ENGINEERING CENTER, LAKEHURST, NJ LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years	(\$K) Man-Years FY80 FY79 FY80	an-Ye	780	Sponsor
NAEC 260	Analysis and Testing	Wear Debris Analysis	Wear Analysis	Characterization of wear in oil lubricated systems. Standardization of ferrographs.	1	1	1	1	ForeignGreat Britain
KAE C 261	Analysis and Testing	Infrared Thermography as Inspection Technique	Nondestructive Testing	Quantification of flow type size, and depth detectable in com- posites.	46	47	1.5	1.5	47 1.5 1.5 FedNAVAIRSYSCOM
262	Bm ironment	Brvironment Jet Engine Noise Suppression	Testing jet engines	Development of exhaust noise suppressor configuration for test cells for out-of-air-frame engines. Air-craft acoustic encraft acoustic encraft.	1	1	1	1	Fednavmatcom

PROJECTS PERFORMED BY NAVAL AIR SYSTEMS COMMAND, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80	(\$K)	(\$K) Man-Years FYBO FY79 FYBO	FY80	Sponsor
NAVAIR 42	Communica- tions	Microstrip Dipole Antennas for Tactical Missile Use	Blectronics	Potential application to IV, radio, direction finding, aircraft altimeter, etc.	;	1	1	;	PedNAVAIRSYSCOM
NAVAIR 41	Fire and Safety	Swimmer Protective Helmet Human Factors	Human Factors	May be utilized in underwater construction, rescue, salvage operations.	1	1	ł	}	PedNAVAIRSYSCOM
NAVAIR 39	General Assistance	Water Displacing Corrosion Prevention Compound	Materials Research and Development	New material for superior to prior corrosion-control com- pounds. Numerous potential applications.	35	35	35 1.0	1.0	1.0 FedNAVAIRSYSCOM
NAVAIR 38	Instrumen- tation	Portable Bydrogen Measuring System	Materials Research and Development	Uses barnacle electrode measuring system. Potential wherever there is high-strength steel.	8	30	1.0	1.0	1.0 FedNAVAIRSYSCOM
NAVAIR 40	Transpor- tation	Head-Up Display to Simulate Aircraft	Instrumentation Design	Approach and landing phase potential to commercial.	360	9	60 7.0	1.0	1.0 PedNAVAIRSYSCOM

PROJECTS PERFORMED BY THE NAVAL AIR TEST CENTER, PATUXENT RIVER, MD LISTED BY TECHNOLOGICAL AREA

Sponsor	FedNAVAIRSYSCOM
	1
Man-Y	1
(\$K) FY80	1
Funding (\$K) Man-Years FY79 FY80	1
Progress	See NAVAIRSYSCOM
Navy Technology Applied	
Project Description	Head-Up Display to Simulate Aircraft
Technologi-	Fire and Safety
Performing 1 Activity	NATC 43

PROJECTS PERFORMED BY THE NAVAL BIOSCIENCES LABORATORY, NAVAL SUPPLY CENTER, GAKLAND, CA LISTED BY TECHNOLOGICAL AREA

Funding (\$K) Man-Years FY79 FY80 FY79 FY80		3 0 0.2 0.0 FedOff. Nav. Res.	30 30 0.8 0.8 RedSea Grant College Program
Fund i	130	13	m
Progress	Semiautomatic samplers for counting airborne bacteria used to evaluate ventilation.	Finger printing on board ship help to identify source of oil slick.	Polysaccharide active in vitro; a protein with in vivo activity.
Navy Technology Applied	Bacteriology, Expertise in col- lecting bacteria	Chemistry, Thin- Layer Chromatog- raphy	Virology Tissue Culture Expertise
Project Peactivition	Effect	Environment Development of an Oil Identification Kit	Ecalth and Study of Antiherpesvirus Medicine Material from Algae
-i pologi-	ricomment	y ironment	alth and dicine
Perform- ing Technologi-	Activity Co NB IOL Env	NG IOL En	NB TOL Be

PROJECTS PERFORMED BY THE NAVAL COASTAL SYSTEMS CENTER, PANAMA CITY, FL LISTED BY TECHNOLOGICAL AREA

g (\$K) Man-Years	152 4.0 2.5 FedDept. Energy	150 0.5 1.0 FedEPA, Environ- mental Research Lab	.0 1.2 FedNAVALRSYSCOM	.0 7.0 FedPhysical Security Systems Directorate RSD/ AFSC/USAF
(\$K) Mai	152 4	150 0	240 1.0	2150 3.0
Funding (\$K) Man-Years FY79 FY80 FY79 FY8	300	95	197	1220
Progress	Testing and evaluation of in-situ biofouling countermeasures in potential materials continue.	New seawater pumping system being designed EPA performs tests.	Aircraft-mounted sensor technique workable in bad weather.	3 sensors under development: bistatic doppler sonar, target detection, and acoustic
Navy Technology Applied	Heat Exchanger Technology	Test and Evaluation; Unique Facility	Blectro-Optic Bydrographic Mapping	Automatic Electronic Sig- nal Processing
Project Description	Ocean Thermal Energy Conversion (OTEC) Heat Exchanger Cleaning	Environment Offshore Pollutant Ef- fects Program; Test Facility	Determine Beach Traversa- bility in an Amphibious Operational Area	Waterborne Intrusion De- tection SystemSensors for Waterborne Intruders
Perform- ing Technologi- antitity on Area	ì	Shvironment	Instrumen- tation	Law En- forcement
Perform- ing 1	NCSC 1	NCSC 1	MCSC 48	MCSC 174

PROJECTS PERFORMED BY THE NAVAL HEALTH RESEARCH CENTER, SAN DIEGO, CA LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80 FY79 FY8	(\$K) FY80	Man-Y	FY80	Sponsor
NHRC 50	,	Program for Medical Care of POWs from All Wars	Analysis, Medical Exams, Effects of Captivity	Continued consultation with VA, 5-year follow-up on Vietnam POWs; data collected.	т	1	0.1	0.1	PedVeterans Admin.
NHRC 52	Health and Medicine	Conference on Navy Occupational Health	Behavior Science, Organizational Dev. Theory	Conference proceedings circulated	25	0	0.3	0.0	FedOff. Nav. Res. and NMR&D Comm.
NEIRC 53	Health and Medicine	Research Findings in Areas of Stress-Related Illnesses	Relationship between Stress and Illness	World literature on effects of life changes, development of illness-a major research endeavor.	m	e .	0.3	0.2	PedVarious
NHRC 54	Health and Medicine	Stress-Related Dis- ability Retirements	Epidemiological Research	Publicity continues and more data forthcoming.	н	1	0.1	0.1	NPLocal Govern- ment Assistance Task Force (FLC- Far West Region)
NERC 55	Health and Medicine	Understanding Sleep DisordersEducation of Professionals	Sleep and Sleep Disorders	Education continuing work shops.	0	0	0.1	0.1	StateUniv. Calif, BuMed and Surgery
NEIRC 56	Health and Medicine	Education of Public in Sleep, Dreams, and Brain- wave Activity	Laboratory Research	College settings, media.	0	•	0.1	0.1	FedVarious
NERC 57	Health and Medicine	Education of Physicians on Sleep, Sleep Disorders and Pills	Sleep Disorders, Effect on Per- formance	Consultation to physicians.	0	0	0.1	0.1	FedVarious
NHRC 58	Health and Medicine	Health and Safety of Shift WorkersInterna- tional Meeting Sep 79	Work-Sleep Schedules	Proceedings being compiled, yearly meeting proposed.	40	•	0.1	0.1	IndUpjohn Inter- national and Navy
NETRC 59	Health and Medicine	Effects of Stress or Simulated Combat on Unit Readiness/Effectiveness	Sleep Deprivation	Background on re- search supplied.	0	0	0.0	0.0	FedU.S. Army Inst. for the Behavioral and Social Sciences
NEERC 60	Health and Medicine	POMsMedical Followup Research	Medical and Family Research on POWs	Prolonged Stress Branch continues medical followup.	٥	0	0.0	0.0	NPVarious POW Organizations
NEBC 61	Health and Medicine	Overview of Current Family Research Efforts in Navy Populations	Health of the Military Family	Overview of findings and methodologies of family research pro- vided.	r	0	0.0	0.0	Fedvar ious

PROJECTS PERFORMED BY THE MAVAL HEALTH RESEARCH CENTER, SAN DIEGO, CA LISTED BY TECHNOLOGICAL AREA

FY80 FY79 FY80 Sponsor	havioral Research Assn, LTD
Funding (5K) Man-Years <u>FY79</u> FY80 FY79 FY80	•
Funding	•
Progress	Additional workshops scheduled.
Navy Technology Applied	Survey Methods and Instruments
Project Description	Technologi- Workshop on Organizational Survey Methods cal Guid- Climate for Persons Work- and Instruments ance Management
schnologi-	echnologi- al Guid- nce
Performing Technologi- Activity cal Area	MEETIC TO

PROJECTS PERFORMED BY THE NAVAL MEDICAL RESEARCH AND DEVELOPMENT COMM., NATIONAL MAYAL MEDICAL CENTER, BETHESDA, MD LISTED BY TECHNOLOGICAL AREA

Per rorming Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding PY79	(\$K)	Man-Years FY79 FY8	FY80	Sponsor
NDORED 62	Health and Medicine	Design and Test of an Integrated Modular Clinical Laboratory for Shipboard Use	Bloengineering, Medical Equipment	Extensive clinical laboratory testing.	895	1	6.0	1	FedNMRED Comm.
1862.6.D	Health and Medicine	Study of Louse Infesta- tation in Ethiopia	Entomology, Epidemiology	Physical, behavioral, cultural, physiological factors included in publication.	м	1	5.0	1	FedNWED Comm.
18/18_D 64	Realth and Medicine	Recompression Treatment Tables Used Throughout the World by Government and Industry	Hyperbaric Physiology	World-wide recom- pression diving procedures available (DTIC AD A056666).	39	1	0.7	ł	FedNWRED Comm. and NAVSEASYSCOM
MARLED 65	Realth and Medicine	Portable Field Kit for Rapid Disease Diagnosis	Microbiology Medical Instru- mentation	Kit undergoing extensive testing and evaluation.	53	76	e. 0	6.0	PedNMRED Comm.
19(R.E. D 66	Realth and Medicine	Navy Amphibious Medical Evacuation Simulation (NAMES II) Computer Model	Clinical Medi- cine, Operations Research	NAMES II expanded from combat zone to CONUS, Applicable to medical emergencies.	75	27	9.0	9.0	FedNWRLD Comm.
1913.4 D 67	Realth and Medicine	Remote Medical Diagnosis System (RMDS) with Slow- Scan TV	Biomedical Engineering, Communications	Name for ships and diagnostic centers being spec'd. Video via satellite.	200	800	1.8	2:3	FedNWRED Comm.
18 (8 68 68 68 68 68 68 68 68 68 68 68 68 68	Health and Medicine	Management of War In- juries to the Jaws and Related Structures Textbook	Clinical Medicine	Publication includes data since 1968, GPO Stock No. 008-045-00018-6.	1	1	1	}	FedWKED Comm.
69	Health and Medicine	Portable Life Support Stretcher Self-Contained Unit	Biomedical Engineering, Medical Equip-	5 units fabricated and under evaluation.	20	Q	0.7	0.3	FedWard Comm.
70	Heelth and Medicine	Medical Backpack Transport Life Support to Shipboard Casualty	Medical and Bospital Equip- ment, Blowedi- cal Engineering	3-month evaluation by ships and research and rescue yielded favorable recommenda- tion.	6	8	0.2	••	FedMared Comm.

PROJECTS PERFORMED BY THE NAVAL MINE ENGINEERING PACILITY, YORKTOWN, VA

A STATE OF THE PARTY OF THE PAR

FY80 Sponsor FedNAVSEASYSCOM	
FY80	
Funding (\$K) Man-reals FY79 FY80 FY79 FY80 4 0.1	
Funding FY79	
Progress	dainers yieng cial potential for use in seal vessels con- taining batteries.
olog	Equipment Development
Project Description	Bydrogen Evolution Rates, Equipment Dev. of Hydrogen Cetter Development
technological Area	Analysis and Testing
Perform- ing 1 Activity	NMET 7.1

PROJECTS PERFORMED BY THE NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY, NSTL STATION, MS

30E	PedDefense Mapping Agency	. Energy	at.	Data	Res.	er!			
Sponsor	PedDefer Agency	FedDept, Energy	fedNORDA	FedNOAA Data Buoy Office	FedNav. Res. Lab.	FedNORDA	FedNORDA	FedNORDA	FedNORDA
FY80	1.0	1.0	1.5	1	0.3	2.7	1	3.7	9.0
Man-Years FY79 FY8	1.0	2.0	1.5	0.1	0.2	2.5	2.0	5.0	9.0
(\$K)	237	75	100	1	21	170	1	520	80
Funding FY79	283	300	180	9 <u>r</u>	12	185	250	308	09
Progress	Cognitive handprinted input trained recursively analyzer (CHITRA) method of recognizing handwritten characters developed.	Evaluation of candidate designs for OTEC modular experimental platform.	Instrument in production, sampling techniques demonstrated. NAVOCEANO to include in surveys.	Design complete, array fabricated.	Optical and electronic, components fabricated, testing begun.	Design complete, fabrication begun.	Construction complete, prelim- inary tests made.	Development of versatile experimental KEVLAR array (VEKA) program.	Technology summary in progress.
Navy Technology Applied	OCRComputer Hardware/Software	Hi-Strength Fabrics	XBT Technology Geomagnetic Electro-Kineto- graph	Kevlar Cable, Semiconductor Sensors	Laser, Remote Sensing	Kevlar Cable, Semiconductor Sensors	Variable Buoy- ancy, Satellite Transmission	Navy Cable Development Technology	Oceanographic Instrumentation
Project Description	Optical Character Recognition, Improve Caparility to Process Data	OTEC Flexible Cold Water Pipe	Expendable Current Pro- filer, Instrumentation for Measurement of Hori- zontal Currents	Thermistor Array Development, Moored, Long-Term At-Sea Operation	Remote Ocean Subsurface Temperature Profiler	Towed Ocean Density System, Towed Sensor Array	Easily Deployable Subsurface-Tethered Vehicle That Can Sample the Water Column	Versatile Experimental Kevlar Arrayfor Deployment in Ocean	Fiber-Optics Applica- tions to Specific Ocean Measurement Projects
Technologi-	Computer Technology	Energy	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Instrumen- tation	Marine Technology
Perform- ing Activity	NORDA 75	NORDA 73	NORDA 72	NORDA 74	NORDA 76	NORDA 77	NORDA 79	NORDA 80	NORDA 78

PROJECTS PERFORMED BY THE NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA LISTED BY TECHNOLOGICAL AREA

Sponeor	Industry	rea-u.s. case Guard	FedU.S. Coast Guard	NPAPL/JHU	FAA FAA	PedNational Science Pound.	FedU.S. Coast Guard	FedU.S. Postal Service	FedDept. Energy Safety/Isotope- Fuel Branch
FY80	5.0	0.1	0.0	0.0	0.0	0.0	1.0	•••	0.3
Man-Years	6.5	O, m	0.3	0.5	o.s	9.0	9. 6.	7.8	0.3
7 (\$K) M		100	•	0	0	0	Ħ	200	20
Funding FY79	22	310	5 8	10	95	20	352	832	00
Progress	Services performed on individual basis.	10-year operational systems plan, catalog of required task capa- bilities for each platform class, and trade-offs developed.	Sea trials completed.	60 seawater samples analyzed for copper and zinc.	System using solar/ conospheric distur- bance techniques demonstrated to FAA.	Groups of people, and computer-based systems, selected. Analyses under way.	Trailer delivered, consoles installed. Radar simulator, flying spot scanner, software nearly complete.	Image capture and analysis system operating. Fullpage images at 10 pages/sec acquired.	Samples being analyzed.
Navy Technology Applied	Evaluation	Operations Research	Marine Engineering	Inorganic Chemistry	Blectromagnetic Environment Prediction	Information Transfer, Man- Machine Rela- tions	Display Devices and Equipment	Optics, Computer Science	Radiation Shielding
Project Description	Calibration and Evaluation Evaluation Services (Work in Support of DOD Contracts)	Analysis of U.S. Coast Guard Systems, Coastal Surveillance	USCG Evaluation of SSP (Swath-Type) Kaimalino	Methods for Trace Metals in Seawater by Plameless Atomic Absorption Spectro- photometry	Polar Communication Prediction System	Impact of a Formal Computer-Based Informa- tion System on Informal Info Networks	Small Boat Simulator, Training Operations	Image Acquisition and Processing (for Automated Mail Wandling)	Environment Environmental Response and Effects (Following Accidental Marine De- position of Radioactive Material)
	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Communica- tions	Computer Technology	Computer Technology	Computer Technology	Environment
Per form-	MOSC 177	NOSC 188	NOSC 194	NOSC 199	NOSC 176	NOSC 187	NOSC 189	NOSC 196	NOSC 182

PROJECTS PERFORMED BY THE NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA LISTED BY TECHNOLOGICAL AREA

ing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	FY79	FY 80	FY79 FY8	ry80	Sponsor
NOSC 190	Environment	Environment Merchant Marine Occu- pational Noise	Acoustics, Human Factors	Background info on noise on U.S. merchant ships. Noise standards recommended.	28	120	ø. 0	1.3	PedU.S. Coast Guard
NOSC 185	Fire and Safety	Kerosene Jet Breakup Study (Fire Suppression Following Crashes)	Fuels, Drag Reduction Additives	8 additives tested. General correlation of spray inhibition with drag reduction measurements shown.	15	0	0.5	0.0	FedNASA Ames Research Center
NOSC 193	Health and Medicine	Crew Performance Assessment (Effect of Ship Motion)	Information Theory, Psychology	3 studies under way. 3 classes of ships under operating conditions.	98	0	1.1	0.0	Fed-U.S. Coast Guard
NOSC 197	Health and Medicine	Human Pactors Technology TransferMobility for Paraplegics	Bioengineering Prothetics	Wheelchair ambulator completed. Wheel-chair to integrate fabricated. Whole system being tested.	106	7.	1.2	0.1	PedVeterans Admin.
NOSC 180	Law En- forcement	B/O Character Recognition Study. Using Video Sig- nals from Laser-Scanner TV System, Identify Alphanumeric Auto License Plates	Optical Detection	System of state-of- the art components analyzed. A 5% error rate cannot be met with current sensor.	77	•	0.2	1	FedDept. of Justice Immigra- tion and Naturali- zation Serv.
NOSC 181	Marine Technology	Bowhead Whale Acoustics (Are Whales Present in the Beaufort Sea)	Marine Biology	6 aerial surveys yielded sonobuoy tape recordings of a number of Bowhead	95	0	0.3	0.0	FedU.S. Dept. Interior Bureau of Land Mgmt.
NOSC 178	Mar ine Technology	Scripps Exchange (Provide a Chief Scientist for the Deep Sea Drilling Project)	Deep Ocean Technology	Chief now active at Scripps Institute of Oceanography.	51	0	1.0	0.0	StateUniv. Calif.
NOSC 184	Marine Technology	Solid Rocket Booster (SRB) Deep Ocean Dewatering Contingency Technology Equipment (Space Shuttle Program)	Deep Ocean Technology	Two dewatering sets manufactured and acceptance tests withessed.	116	0	1.6	0.0	FedNASA Kennedy Space Ctr.
NOSC 186	Marine Technology	Bowhead Whale Survey Arctic Alaska	Acoustic Detection	Determining number of whales. Project complete.	12	•	0.5	0.0	FedNational Marine Fisheries

PROJECTS PERFORMED BY THE NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years	FY80	Man-Yo	FY80	Sponsor
NDSC 195	Mar ine Technology	Unmanned Free-Swimming Inspection Vehicle Technology	Ocean Engineering	Univ. of New Hampshire and NOSC vehicle platforms have undergone feasibility tests in water.	282	329	2.3	2.2	Fed-Dept. of Interior U.S. Geological Survey
NOSC 198	Marine Technology	Acoustic Projector Installation	Underwater Accustics	Project complete, Underwater projector installation.	12	•	0.5	0.0	NPInstitute for Acoustic Research
NOSC 179	Technologi- cal Guid- ance	Technologi- Technical Coordinator cal Guid- for Pederal Laboratory ance Consortium Assigned to the PNIG (IPA)	Technological Guidance	Assigned to Pacific Northwest Innovations Group.	15	15	1.0	0.0	NPPacific Morthwest Innovations Group (funded by NSF)
NOGC 200	Technologi- cal Guid- ance	Technologi- Local Government Assis- cal Guid- tance Task Force ance	General Assistance	Many issues defined. Stress disability retirement and energy link major problems for detailed pursuit.	m	•	0.1	0.0	StateCity and County of San Diego
NOSC 183	Transpor- tation	Navigation Signal Monitor Navigation (Provide Aircraft Advisory Passive Sensors Information of OWEGA and VLF Disturb.)	Navigation Passive Sensors	Design, acquisition of components and brass boarding for extension of VLF communications signals.	&	25	0.1	8.	FedDept. Trans.
191	Transpor- tation	OMEGA Propagation	Navigation EM Wave Propagation	Consultation and propagation prediction; evaluated potential improvements to OMEGA.	625	565	₹.5	. .	PedU.S. Coast Guard
NOSC 192	Transpor- tation	Sea Bunt Equipment	Rescue Survival	Test and use trained pigeons to aid aerial searches over water in helicopters.	£7	89	1.0	1.1	FedU.S. Coast Guard

PROJECTS PERFORMED BY THE NAVAL OCEANOGRAPHIC OFFICE, NSTL STATION, MS LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) FY80	Man-Years	FY80	Sponsor
0 2	Communica- tions	Foreign Officer Training Program in Hydrographic Surveying/Coastal Oceanog- raphy	Marine Technology Hydrography	In FY 79, 19 officers from 6 countries trained.	1	1	0.	••	Fed-CNO Security Assistance Training Program
.	Computer Technology	Automated Techniques for Detecting Ocean Thermal Fronts	Imagery Pattern Recognition	Papers released.	32	32	1.0	1.0	FedNAVOC
	Energy	Magnetic Survey Indonesia Straits; To Map Resources	Airborne Magnetic Survey Capability	Data on Sunda Strait and Makassar Strait gathered, processed, and delivered.	ł	1	ł	1	ForeignInter- national Govt.
	Ene rgy	OTEC Biofouling Experi- ment in the Gulf of Mexico; to determine harmful effect of marine organisms	Marine Biology	Prediction of macro- fouling organisms and effects over 30-yr. power plant life.	10	ις	0.3	0.5	FedDept. Commerce National Data Buoy Office
	Environment	Environment Experimental Ocean Frontal Analysis Chart	Oceanographic Analysis	Sea-surface temperatures in Western North Atlantic provided weekly.	.	22	1.0	1.0	FedNAVOC
	Instrumen- tation	Indonesian/US Hydro- graphic Survey Operations	Coastal Hydro- graphic Surveys	2 large areas now being surveyed. Aid to Indonesian economy.	ŀ	1	1	ŀ	FedDef. Mapping Agency, NAVOC
	Instrumen- tation	Joint US/Republic of Korean Survey Operations Coasts and Harbors	Coastal Hydro- graphic Surveys	75% of both ROK coastlines complete. Surveys continue.	I	1	:	ł	FedDef. Mapping Agency, NAVOC
	Instrumen- tation	Hydrographic Survey Assistance Program for Other Governments	Coastal Bydro- graphic Surveys	1.3K mile completed in Panama OPS.	ł	1	1	1	FedDef. Mapping Agency, NAVOC
	Instrumen- tation	Instrumentation Test Services	Pressure Chamber Design	Testing biological tracking enclosures. Repair underwater measurement system.	ч	e	ŀ	1	Fed-WOAA, Dept. Commerce
	Instrumen- tation	Instrumentation Transducer Performance Study of Bubble Sweepdown	Hydrographic Coastal Survey, Ocean Engineering	Extending transducer below bottom of launch improved data collection.	89	1	6	0.0	FedDef. Mapping Agency

PROJECTS PERFORMED BY THE NAVAL OCEANOGRAPHIC OFFICE, NSTL STATION, MS LISTED BY TECHNOLOGICAL AREA

Performing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) FY80	Man-Ye FY 79	FY80	Sponsor
NOC 95	Instrumen- tation	Instrumentation Calibra- tion Services for Meteorological Systems	Precision Measurement	Meteorological wind and direction sensors calibrated.	1	7		0.0	IndProduction Control Systems Inc.
96 96	Instrumen- tation	Calibration for Secondary Transfer Standards for Pressure Measurements	Precision Measurement	Quick reaction for dead-weight testers.	т.	-	0.0	0.0	IndAvondale Ship- yard, New Orleans
NOC 97	Instrumen- tation	Repair and Calibration Services of General- Purpose Test Equipment	Standards Laboratory	Repaired and calibra- ted oscilloscopes, signal generators, etc.	•	•	0.0	0.0	IndBay Technical Associates Inc.
38 88	Instrumen- tation	Repair and Calibration of Instruments to Monitor Nuclear Reactor Parameters	Standards Laboratory	100 items of general- purpose electronic test equipment pro- cessed. Ongoing	'n	01	0.0	0.0	IndLouisiana Power and Light
96 80	Instrumen- tation	Repair and Calibration of Instruments to Monitor Nuclear Reactor Parameters	Standards Laboratory	110 items processed. NRC requirements must be met.	7	10	0.0	0.0	IndMississippi Power and Light
100 100	Instrumen- tation	Test and Calibration Services Mechanical Standards	Precision Measurement	Mechanical standards refurbished.	-	m	0.0	0.0	IndM-R-S Mfg. Co.
101 101	Instrumen- tation	Repair and Calibration of Meteorological Sensors	Precision Measurement	113 sensors calibrated. Used to monitor air quality in all major cities.	ω	10	0.0	0.0	IndMUS Corp.
102	Instrumen- tation	Calibration Services on Deep-Sea Reversing Thermometers	Precision Measurement	Deep-sea reversing thermometers calibrated.	0	Ħ	0.0	0.0	StateSo. Carolina Wildlife and Marine Resources Dept.
2 9 8 E	Mar ine Technology	Screening Test of Marine Wood Preserva- tives (3 Marine Test Sites)	Marine Biology	Panels exposed for 2 years, exposures continuing for barer, fungi resistance tests	0	0	0.0	0.0	NPInternational Research Group on Wood Preservation
91 91	Mar ine Technology	Calibration Services for Temperature— Measuring Current Meters	Precision Measurement	10 current meters calibrated using unique facility for ocean environment simulation.	0	•	0.0	0.0	FedU.S. Geologi- cal Survey
93 1	Mar ine Technology	Plastic Teredo-Barriers for Marine Piling Control Marine Borers and Fungi	Marine Biology	No attack at 3 test aites. Program con- tinuing.	•	•	0.1	1	IndRaychem Corp., Houston

!

PROJECTS PERFORMED BY THE NAVAL OCEANOGRAPHIC OFFICE, NSTL STATION, MS

	Instru-
Sponsor) 0.0 0.0 IndBeckman Instru- ments, Inc.
FY80	0.0
Funding (\$K) Man-Years FY79 FY80 FY79 FY80	1 0.0
Funding FY79	0
Progress	Samples analyzed.
Navy Technology Applied	Precision Measurement
Project Description	
Perform- ing Technologi- Activity cal Area	Mar ine Technology
Perform- ing ? Activity	25 F

PROJECTS PERFORMED BY THE NAVAL POSTGRADUATE SCHOOL, MONTERSY, CA LISTED BY TECHNOLOGICAL AREA

Sponsor	StateSanta Pe, NH	StateCarson City, NV	FegNAVPAC	Fed (NAVNATCOM, NAVFAC, NPS)	Fed (U.S. Forest Service	StateCarson City, NV
FY80	1	1	1	1	1	1
Man-Ye	}	;	0.3	0.1	1	;
(\$K) FY80	;	1	•	٥	ł	1
Funding (\$K) Man-Years FY79 FY80 FY79 FY8	1	1	58	W	1	1
Progress	Computerized Management information system for city of Santa Fe. Rec- ownended new equipment and software.	Tower to stand up with repeated use constructed of porous concrete blocks reinforced with steel rod.	Improve utilization of product from CEL. Evaluate current system. Effective technology transfer.	Technology transfer effort for the future should be one towards a pull for new technology.	To establish a national policy for utilization of Porest Service research results.	New technology to eliminate use of carcinogens in asphalt.
Navy Technology Applied	Computer Applications	Construction Engineering	Research Utilization	Research Utilization	Research Utilization	Chemical Engineering, Environmental Health
Project Description	City Computerized Management Information System	Mondisintegrable Burn Tower, CTIP Project, IPA assignment	Utilization of RDT&B Investment at CEL	Technology Transfer Symposium on Research Utilization	Conference for the Forest Service	Change in Asphalt Composition
Perform- ing Technologi- Activity cal Area	Computer Technology	Fire and Safety	General Assistance	General Assistance	General Assistance	Health and Medicine
Perform- ing Activity	NPS 259	NPS 257	NPS 254	255 255	NPS 256	NPS 258

PROJECTS PERFORMED BY THE NAVAL RESEARCH LABORATORY, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Sponsor	PedMuclear Regulatory Comm.	FedOff. Mav. Res.	PedStragetic Systems Project Office	FedOff. Mav. Res.	FedOff. Nav. Res.	FedOff. Mav. Res.	Ped-Off. Mav. Res./ DARPA	FedNAVAIRSYSCOM	PedNAVELCSYSCOM	PedNAVELCSYSCOM
FY80	0.0	5.6	9.0	2.6	5.6	.08	5.6	0.0	1.3	3.3
Man-Ye	0.0	2.1	e. 0	2.1	2.1	2.7	3.7	0.2	1.3	2.7
(\$K)	6 0	173	09	173	173	197	220	•	006	700
Funding (\$K) Man-Years FY79 FY80 FY79 FY8	N	164	35	164	164	188	310	13	9	762
Progress	Helped on design of foundation piling for nuclear power plant.	Analysis on propeller shaft failure on a com- mercial tanker (Coast Guard)	Effort to identify source of noise in slip ring assemblies. New approaches to organic film identification.	Determine why wires on Mesana Narrows suspen- sion bridge breaking.	Remedy for Sikorsky H-3 rotor spindle fractures.	Led conference on laser welding for Amer. Soc. Metals.	Industry exploring NRL's laser-spray pro- cess and laser-melting of plasma-spray coatings.	Computer operation speeded up with addition of fast approximation to complementary error function.	Characterization of expendable TWTs. Cathode structures elevated. Spectrometer membrane design.	Acoustio-optic techniques for DOA and TOA. Increase in imager dynamic range, investigate crystals.
Navy Technology Applied	Materials Research Energy	Microstructural Analysis	Surface Analysis Techniques	Failure Analysis, Fracture	Failure Analysis	Materials Research	Materials Research, Research Method- ology	Materials Analysis	Blectronic Countermeasures	Optic Imager/ Detector
Project Description	Corrosion Resistance of Steel Piling	Alloy Fracture Micro- mechanisms	Surface Analysis of Guid- ance System Components	Alloy Fracture Micro- mechanics (Bridge Wires)	Alloy Fracture Micro- mechanisms (Helicopter Rotor Spindle)	Welding Metallurgy	Laser Processing of Materials, Improved Corrosion Resistance, Strength	Computer Program for Spectra Analysis	Electronic Components for Expendable ECM	Acousto-Optics Technology Advancement
Technologi- cal Area	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Analysis and Testing	Communica- tions	Communica- tions
Performing	NRL 220	NRL 206	NRL 216	NRL 218	NRL 219	NRL 222	NRL 224	229	MPL 207	MRL 210

PROJECTS PERFORMED BY THE NAVAL RESEARCH LABORATORY, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(SK) FYB0	Man-Years FY79 FY8	FY80	Sponsor
NRL 225		Sonar Ceramic Stability	Materials Research Sound Transducers	New composite concept to improve sonar sensors. Important operation/logistic advantages.	35	45	4.0	→	FedOff. Nav. Res.
NEC 230	Communica- tions	Gyrotron Traveling Wave Amplifier	Electronics Development	pesign for gyrotron travelling wave amplifier operating at second cyclotron harmonic complete.	0	0	0.0	0.0	PedRome Air Development Ctr.
NPL 231	Communica- tions	High-Power Millimeter- Wave Amplifier	Electronics Development	Computer program for calculating optimum operating parameters for gyrotron travelling wave amplifier.	•	0	0.0	0.0	FedRome Air Development Ctr.
NRC 232	Communica- tions	Millimeter-Wave Power Tube Electronics Development Development	Electronics Development	Exchange info on gyrotron. Raytheon to evaluate NRL beam collectors and tube processing.	0	0	0.0	0.0	FedNav. Res. Lab.
233	Communica- tions	Low-Bit-Rate Digital Speech	Signal Pro- cessing	Large-scale integration of speech processors. Psychoacoustic interactions.	4 00	400	5.0	5.0	PedNAVELCSYSCOM
NRC. 234	Comunica- tions	Microwave Scattering Patterns	Blectronics Radar, Communi- cations	Obtain model of electromagnetic scattering patterns from the ocean. Radar target classification in ocean environments.	82 24.	96	1.6	1.4	PedOff, Nav. Res.
NBL 237	Communica- tions	Sonar Transducer Reliability Improvement Program (STRIP)	Materials Research, Sonars, Trans- ducers	Annual review attended by industry, workshops, publications.	495	495 10.0	0.01	e. 13.	Pednavseasyscom
NRC. 208	Computer Technology	Computer/Processors for EW/ESM	Technological Improvements	Determining redundancy allowable in EW analyysis and evaluation.	2	110	0.5	9.0	Pednavairsyscom
1682. 209	Computer Technology	Automatic Radar Pattern Recognition	Data Base Management	Enhancement of signal- processing operations in ESM systems.	340	1000	1.5	3.0	PedNAVAIRSYSCOM

PROJECTS PERFORMED BY THE NAVAL RESEARCH LABORATORY, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	Funding FY79		(\$K) Man-Years FY80 FY79 FY8	FY80	Sponsor
	Ene r gy	National Cladding/Duct Materials Development	Microstructural Analysis, Fracture Behavior	Fracture testing of irradiated steel alloys. Phase stability under irradiation determined.	09	75	0.7	.0	FedDept. Bnergy
	Energy	Monitoring of Nuclear Airborne Materials	Nuclear Chemistry	Very-high-sensitivity carbon-14 detector. Monitoring or release levels associated with fuel processing.	210	270	1.0	1.0	FedDept. Energy
	Energy	Fusion Materials Task Groups	Materials Research	Review of DOE Fusion Materials Program. Analysis of ferritic steels for fusion re- actors. Stability of irradiated titaniums.	100	200	1.0	1.5	FedDept. Bnergy
	Energy	International Group on Cyclic Crack Growth Rate	Materials Analysis Fatigue Crack Growth Technology	Study of effects of reactor operating conditions. Committee organized, research results distributed.	250	250	3.5	3.0	PedNuclear Regulatory Commission
	Energy	Task Force on Crack Propagation Technology	Materials Research, Crack Propagation	Develop rules for implementation of crack growth method-ology into ASME Boiler & Pressure Vessel Code. Begun with 316 S.S.	•	•	0.	0.0	NPMetal Properties Council
	Energy	Laser Chemistry. Effects of Laser Excitation on Catalytic Reactions	Materials Research, Chemical Kinetics	Prototype system, decomposition of formic acid on platinum, produces ω and ω_2 ; studied under laser radiation.	150	150	7.0	2.0	FedOff. Nav. Res.
	Ene r gy	Hot Corrosion Prevention in Gas Turbines	Materials Research	Low-temp, not corrosion results from re- action of 80 ₃ in engine gas with oxides on blade surface. Chro- mium effective against this.	365	310	9.6	3.7	Fednavseasyscom
	Bnergy	Chelant Boiler Treatment, EDIA	Materials Research	Investigating source of copper in chelant- treated boilers. On- site analytical proce- dure being developed.	i	1	}	1	PedNAVSRASYSOOM

PROJECTS PERFORMED BY THE NAVAL RESEARCH LABORATORY, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Sponsor	Pednavairsyscom	FedNAVSEASYSCOM	NPNational Sci. Found. (CTIP)	Pednavmatcom	FedNav. Res. Lab. and Perkin Blmer	FedFood and Drug Admin. Bureau of Radiological Bealth	FedNav. Res. Lab.	FedNAVELCSYSOOM
FY80	2.0	}	1.0	1	0.0	0.1	1	•
Man-Years FY79 FY8	2.0	1	1.0	1	0.0	0.3	1	1
(\$K) FY80	150	}	0	1	•	10	}	1
Funding FY79	155	1	40	1	0	30	1	;
Progress	Contract awarded to demonstrate industrial production of multifilamentary V ₃ Ga wires.	Seek participation of industry in formulating R&D program plan for fire protection and damage control on ships.	Service in local governments contributions in sewage disposal, water quality, air pollution, fire suppression, etc.	Method developed to grow high-purity semi- insulating gallium arsenide single crys- tals, industry eval- uating, using.	Perfected method for removal of water and most carbonaceous contamination.	Acoustic impulse from thick PZT plates has been narrowed to give an effective bandwidth of about 15 MHz.	Procedure for in-situ etch of III-V compound substrates prior to growth by liquid phase epitaxy of III-V layers having electronics applications.	Controlled pore surface face fabricated using modern microelectronic photolithography.
Navy Technology Applied	Materials Research	Damage Control	General Assistance	Metallography	Chemical Engineering	Acoustic Impulse Technology	Metallurgy	Microwave Tube Components
Project Description	Fabrication of New Superconductors	WorkshopControl of Ship- Damage Control board Damage	Circuit-Riding Technology Agent in Community Tech- nology Initiatives Pro- gram (CTIP) (Rockville)	Electronic Materials Technology	Ultrapurification of Gaseous Hydrogen Fluoride	Ultrasonic Pressure/ Intensity Levels Accept- able for Human Tissue	Semiconductor Materials, Preparation for Blectronics Applications	Controlled Porosity Dispenser Cathode Development
Technologi- cal Area		Fire and Safety	General Assistance	General Assistance	General Assistance	Health and Medicine	Instrumen- tation	Instrumen- tation
Perform- ing Activity	NRL 223	NRL 217	NRL 235	MRL, 201	NRL 203	NRL 236	NRL 202	NRL 204

1

PROJECTS PERFORMED BY THE NAVAL RESEARCH LABORATORY, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Performing Technologi- Activity Cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80 FY79 FY80	unding (\$K) Man-Years	Man-Ye	PY80	Sponsor
NRC 239	Marine Technology	Marine Ocean Thermal Energy Technology Conversion	Mechanical Engineering	Enhance structural reliability of OTEC cold water pipe by recommending design changes.	ŧ.	1	1	ł	FedNational Oceanic and Atmospheric Admin.
221 221	Technologi- cal Guid- ance	Technologi- Laser Welding cal Guid- ance	Materials Research	Extend capability of laser welding to more complex weldments variety of materials.	0	0	0.0	0.0	0 0.0 0.0 FedNAVSRASYSCOM
213	Transpor- tation	Bigh-Performance Composites and Adhesives for V/STOL Aircraft	Aerospace Materials Develop.	Predict resistance of composites and bonded points to flaw propagation.	260	0	ł	1	PedNAVAIRSYSCOM

PROJECTS PERFORMED BY THE NAVAL SHIP WEAPON SYSTEMS ENGINEERING STATION, PORT HUENEME, CA LISTED BY TECHNOLOGICAL AREA

Sponsor	5 0.2 0.2 FedNAVSEASYSCOM	25 0.5 0.5 FedNAVSEASYSCOM	0.3 FedNavy NATO SEASPARROM
(\$K) Man-Years FY80 FY79 FY80	0.2	0.5	0,3
Man-Y	0.5	0.5	20 0.3
(\$K) FY80	Ŋ	25	20
Funding (\$K) Man-Years - <u>FY79 FY80 FY8</u>	1	25	20
Progress	Building RF assembly for antenna assembly on top a ship's mast.	2 receivers com- pleted and tested, 5 under construction.	2 improved dynamic testers under con-struction.
Navy Technology Applied	Microprocessor Technology	Microprocessor Technology	Microprocessor Technology
Project Description	Two-Wire Telephone Data System Remote Control System to Start, Stop, Tune Receivers, Recorders	Improved Low-Noise Telemetry Receiver Assembled From Modular PC Assembly	Dynamic Radio-Frequency Tester, Signal Simulates Missile in Flight
Technologi- cal Area	Instrumen- tation	Instrumen- I tation A	Instrumen- tation
Perform- ing T Activity	NSWSES 108	NSWSES 109	NSWSES 110

PROJECTS PERFORMED BY THE NAVAL SURPACE WEAPONS CENTER, DAHLGREN, VA SILVER SPRING, MD LISTED BY TECHNOLOGICAL AREA

13 Real Position Composition Composi	ing	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) FY80	Man-Years FY79 FY8	FY80	Sponsor
Amalysis Underwater Tank Tests Hydroballistics for Navy and indusery. Computer Cross-Tie Memory, High- Thin-Film Memory Transferred to induse- Government Computer Cross-Tie Memory High- Thin-Film Memory Transferred to induse- Government Computer Cross-Tie Memory Department Computer Cross-Tie Memory Department Computer Cross-Tie Memory Department Computer Compu	NSWC 115	Analysis and Testing	Position Lifetime Tech- niqueMeasuring Moisture in Composites	Composite Materials Nondestr. Testing	Feasibility demon- strated for several polyamide resins.	10	10	0.1	0.1	FedNASA Langley Research Ctr.
Thermotory Density, Netwolatile Thin-Film Memory Transferred to industry. Comparted Convert Law Ency Convert Law Ency to Useful Mech. Energy MITINOL Beat Engines— Grower Law Ency Cantel Mech. Or Elec. Energy to Useful Mech. Fire and Mexicon Safety Studies, Safety and Proceeduse for Commercially available. Safety Electron Safety Studies, Safety in Merchanic and Companic Active Magneting Merchanic Safety Studies, Safety Magneting Merchanic Active Magnetic Magnet	NSWC 120	Analysis and Testing	Underwater Tank Tests Using Unique Facilities	Hydroballistics	Test services provided for Navy and industry.	02	70	1.0	1.0	Ped. and Ind.
Energy NITINOL Heat Engines— Convert Low-Coade Thermal Commercially available. Energy to Useful Mech. Or Elec. Energy Or Elec. Energy Or Elec. Energy Energy to Useful Mech. Fite and Rearbitostilbene Synthesis process problems for a same first analytic call proceedures for a safety from Accidents and Engineering Hyperoceas problems from Accidents and Engineering Hyperoceas analytic call from Accidents and Engineering Hyperoceas analytic Comput. Law En- Self-Powered Vehicle Magnetic Tomput. Law En- Self-Powered Vehicle Magnetic and Clinch River Comput. Law En- Self-Powered Vehicle Magnetic and Clinch River Comput. Law En- Self-Powered Vehicle Magnetic and Clinch River Comput. Transpor- Transpor- Engangements and Technology Technology and Contume and palls for traffic tation Performance Standards Technology Control Transpor- Structural Separation Explosives Explosive and Contume and Delince Contume and Delince Contume and Delince Contume and Contume Contume and Delince Contume and Delince Contume and Delince Contume Contume and Delince Contume	NSWC 111	Computer Technology		Thin-Film Memory	Transferred to industry, which is further developing.	300	220	3.2	3.3	PedNAVSEASYSCOM
BMS Explosive Evaluation Explosives Evaluating process 50.7 0.5 Fire and Reactor Safety Studies, Safety Evaluation Safety By-	NSWC 112	Energy	NITINOL Beat Engines Convert Low-Grade Thermal Energy to Useful Mech. or Elec. Energy	Thermodynamics	Prototype engines being evaluated. Specialized NITINOLS commercially available.	75	•	1.0	0.0	FedDept. Energy
Fire and Safety Reactor Safety Studies, Engineering By- Engineering By	NSWC 119	Bnergy	HNS Explosive Evaluation Hexanitrostilbene	Explosives Synthesis	Evaluating process to synthesize; analytical procedures for assay of purity.	52	65	0.7	0.5	FedNASA Lyndon B. Johnson Space Center
forcement Detector, Detects forcement Detector, Detects Transpor- Transpor- Bazardous Material Transpor- Structural Separation System Explosives Transpor- Structural Space Shuttle Destruct Linear Transpor- Structured System; Destruct Linear Transpor- Structured Space Shuttle Destruct Linear Transpor- Structured System; Destruct Linear Transpor- Stapeed Charges Transpor- Structured System; Destruct Linear Transpor- Stapeed Charges Transpor- S	117	Fire and Safety	Reactor Safety Studies, Hydrodynamic Loads from Accidents	Safety Engineering Hydrodynamic and Structural Comput.	Services provided as NRC requests, e.g., Three Mile Island, Clinch River	16	ហ	0.3	0.1	FedNuclear Regulatory Commission
Transpor- DOT-STAR System for Sensors; Thermal sensors and 250 120 2.0 2.0 tation Train Accident Reduction Materials rail-contact sensors being evaluated. Transpor- Bazardous Material Container and Test requirements 6 12 0.2 0.4 for drums and pails developed. Transpor- Structural Separation Explosives Explosive cartridge 9 5 0.1 0.1 cation System Explosive- Technology designed, developed and delivered to MASA. Transpor- Space Shuttle Destruct Linear Technology re-entry thermal conditions.	NSWC 114	Law En- forcement	Self-Powered Vehicle Detector, Detects Vehicles on Any Roadway	Magnetic Surveillance Technology		20	0	1.0	0.0	FedDOT Fed. Highway Admin.
Transpor- Bazardous Material Container and Test requirements 6 12 0.2 0.4 tation Packaging, Develop Packaging for drums and pails Performance Standards Geveloped. Transpor- Structural Separation Explosives Explosive cartridge 9 5 0.1 0.1 Actuated, for Space Actuated, for Space Shuttle Destruct Explosives Assessing effective- 32 35 0.5 0.5 Transpor- Space Shuttle Destruct Linear Technology re-entry thermal conditions.	NSWC 113	Transpor- tation	DOT-STAR System for Train Accident Reduction	Sensors; Materials	Thermal sensors and rail-contact sensors being evaluated.	250	120	2.0	2.0	FedDOT Fed. RR Admin.
Transpor- Structural Separation Explosives Explosive cartridge 9 5 0.1 0.1 tation System Explosive- Technology designed, developed and delivered to Shuttle Destruct Explosives Assessing effective- 32 35 0.5 0.5 tation System; Destruct Linear Technology re-entry thermal conditions.	NSWC 116	Transpor- tation			Test requirements for drums and pails developed.	φ	15	0.2	•••	FedDOT Off. Hazardous Material
Transpor- Space Shuttle Destruct Explosives Assessing effective- 32 35 0.5 0.5 tation System; Destruct Linear Technology ness of charges under shaped Charges Charges conditions.	NSWC 118	Transpor- tation	Structural Separation System Explosive- Actuated, for Space Shuttle	Explosives Technology	Explosive cartridge designed, developed and delivered to NASA.	ø	ĸ	0.1	0.1	FedNASA Lyndon B. Johnson Space Center
	NSWC 121	Transpor- tation	Space Shuttle Destruct System; Destruct Linear Shaped Charges	Explosives Technology	Assessing effectiveness of charges under re-entry thermal conditions.	32	35	0.5	0.5	FedNASA George C. Marshall Space Flight Center

FRECEDING FACE BLACK-NOT FILLED

PROJECTS PERPORMED BY THE NAVAL TRAINING EQUIPMENT CENTER, ORLANDO, PL LISTED BY TECHNOLOGICAL AREA

Sponsor	PedNAVMATCOM	225 4.5 4.5 RedNAVMATCOM	PedNTBC
FY80		4.5	1
Man-Y	4.0	4 .5	1
(\$K)	1	225	1
Funding (\$K) Man-Years <u>FY79 FY80 FY79 FY80</u>	200	225	1
Progress	Could have impact on visual system throughout aviation community	Speech technology to replace keyboard data for flight plan amend-ments.	Interservice conference continuing. Proceed- ings published (NAVTRAEGUIPCEN IH-306).
Navy Technology Applied	Visual Systems, Visual Simulation	Voice Technology	Training Methodology
Project Description	Communica- Extremely Wide Angle tions Visual Displays	Application of Voice Technology in Automated Systems	Technologi- NTEC/Industry Conference; Training cal Guid- Mil, C.S., Indus Acad. Methodoloance and Poreign; First Conf in 66
Technologi- cal Area	Communica- tions	Computer Technology	Technologi- cal Guid- ance
Perform- ing Activity	NTBC 123	NTEC 122	NTEC 124

PROJECTS PERFORMED BY THE NAVAL UNDERWATER SYSTEMS CENTER, NEW LONDON, CT LISTED BY TECHNOLOGICAL AREA

20	NPR.I. League of Cities and Towns, New England Innova- tion Group, Fed. Lab. Consortium	niv. Conn.		necticut Bembly		necticut of ties
Sponeor	NPR.I. League of Cities and Towns, New England Innova- tion Group, Ped. Lal Consortium	NPNUSC/Univ. Conn.	Federal	StateConnecticut General Assembly	NPCTIP	StateConnecticut Conference of Municipalities
FY80	1	1	1	1	i	!
Man-Ye	1	1	1	1	1	1
(\$K) FY80	1	1	1	}	1	1
Punding (\$K) Man-Years PY79 FY80 FY79 FY8	1	1	1	1	33	1
Progress	Training on Electronic Information Exchange System (EIES) as nucleus of a national innovation network.	Technical energy briefs in response to specific needs.	Prepared Lighting Efficiency Program, Thermal Efficiency Program underway.	Assisted in preparation of legislation, issued technical reports, developed software.	In past year over 100 problems solved on variety of needs.	Brings resources from industry, federal, and uni- versity research to solve municipal problems. Through- out Connecticut, 107 cities and towns of all sizes have been provided ser- vice in 250 indi- vidual cages, in 2 years.
Navy Technology Applied	Computer Technology	Beating, Engineering	Lighting, Heating, Audiovisual Lab.	Computer Technology, Info Retrieval	Communications, Management Methods	Communication, Instrumentation, Management, etc.
Project Description	Improve Information Retrieval Capabilities, New Methods of Communication	Technical Energy Specialist (IPA) Scientific Consultant for Energy Extension Service	Energy Conservation in Public Buildings More Efficient Lighting, Heating, Education	Technological Information SourceAssigned as Staff Scientist	Technologi- Community Technology cal Guid- Initiatives Program ance Circuit-Riding Technol- ogy Experts Small-City Needs	Technologi- Technological Utiliza- cal Guid- tion Assistance Program ance to Help Identify and Solve Municipal Problems
Technologi- cal Area	Communica- tions	Energy	Energy	Technologi- cal Guid- ance	Technologi- cal Guid- ance	Technologi- cal Guid- ance
Performing Activity	NUSC 132	NUSC 125	NUSC 129	NUSC 126	NUSC 127	128

PROJECTS PERFORMED BY THE NAVAL UNDERWATER SYSTEMS CENTER, NEW LONDON, CT LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years	9 (\$K) Man-Years FY80 FY79 FY80	An-Yea	780	Sponsor
NUSC 130	Technologi- cal Guid- ance	Technologi- CTIP32 Cities and cal Guid- Counties Under 50,000 ance in Population	Computer Technology, Circuit Rider Technology Agent	Gathering and disseminating scientific and technological information to local governments. Responds to specific problems from local govts.	1	1	1	1	NPNUSC New England Innovation Group, and Public Technol- ogy, Inc.
NUSC 131	Technologi- cal Guid- ance	Technologi- Technical Volunteer Ser- cal Guid- vice; to Solve Problems ance of Local Governments; 200 Participants; First Project Nationwide	Varied, Electronic, Computer Medical, Engi- neering, etc.	100 separate projects accomplished— acoustics, all emergency, water quality, inventory control, taxiology, heart pacemakers, etc.	1	1	1	1	StateNUSC (fed, state, local)

1

1

I

PROJECTS PERFORMED BY THE NAVAL WEAPONS CENTER, CHINA LAKE, CA LISTED BY TECHNOLOGICAL AREA

Performing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) PY80	Man-Years FY79 FY8	FY80	Sponsor
NNC 135	Analysis and Testing	Fire/Ballistic Tests of Composites; Fibers Re- leased From Graphite- Epoxy Composites	Aeronautics	Prepared test site and collection tunnel.	35	30	0.3	0.3	FedNASA Ames Research Center
NWC 136	Analysis and Testing	Drop Tank TestPart of Navy Acceptance	Aeronautics	Fuel fire and fuel vapor ignition tests.	33	•	0.1	0.0	IndRoyal Indus- tries, Inc.
138	Analysis and Testing	To Quantify Hazards with Large Spills of LNG and LPG, Spill Facility Completed	Atmospheric Physics, Safety and Chemical Engineering	Burning behavior, detonation tests, vapor dispersion, concentration.	141	100	1.0	0.8	FedDept. Trans.
139	Analysis and Testing	Ammonia Spill Tests; Extent of Hazard	Atmospheric Physics, Safety and Chemical Engineering	Nondispersive spectrophotometer evaluated for de- termining ammonia concentration. New data acquisi- tion system being specified.	225	417	1.3	1.7	FedDept. Trans.
NWC 140	Analysis and Testing	Spill TestsLMG and LPG; Design Facility	Atmospheric Physics, Safety and Chemical Engineering	Contractor bidding on 40-cum facility. Vapor concentration studies.	787	378	2.1	2.5	FedDept. Energy
141	Analysis and Testing	Maverick Booster Testing for Explosive Technology Inc.	Explosives/ Propellants	Test boosters at impact shock levels predicted for warhead.	14	0	0.1	0.0	IndExplosive Technology Inc.
NNC 143	Analysis and Testing	Physics of Crystalline Surfaces to Produce Better Thin-Film Devices	Solid-State Physics	Mechanism of formation of expitaxial films and nature of "clean" crystal surfaces. Publications.	15	16	0.5	0.2	FedNASA Ames Research Center
144	Analysis and Testing	Optical Evaluation of Typical FLIR Spherical Miror; To Measure Scattering	Optics	Mirror polished, coated, and measured. Continuing.	•	•	0.0	0.0	IndHughes Aircraft
145	Analysis and Testing	Mirror Surface Characterization for Large Optics	Optics	Surface quality evaluation in processing of advanced optical materials.	11	0	0.5	0.0	IndGeneral Dynamics Convair

PROJECTS PERFORMED BY THE NAVAL WEAPONS CENTER, CHINA LAKE, CA LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K) FY80	Man-Years FY79 FY8	FY80	Spongor
146	•	Intrinsic Damage Thres- hold StudyStudy Laser Damage Phenomena	Optics	GoalMultilayer coatings with in- creased damage resistance. Sig- nificant progress in film produc- tion, etc.	130	130	1.0	1.0	FedDept, Energy
NMC 147	Analysis and Testing	Preparation and Characterization of Amorphous SiliconMore Efficient Solar Cells	Optics	Develop techniques useful in manufac- ture.	58	141	9.0	1.6	FedDept. Energy Solar Energy Research Inst.
NWC 151	Analysis and Testing	Synthesis Studies Employ New Oxidant Peroxydisulfuric Acid in Synthesis of New Compounds	Organic Chemistry	1,2,3,5-Tetranitro- benzene and Pentanitro- benzene synthesized.	0,	•	1.0	0.0	FedDept. Energy Lawrence Livermore Lab.
152	Analysis and Testing	Surveillance; ROCOZ Optical Components For Rocket-Borne Ozonesonde ROCOZ	Atmospheric Physics	Spectrophotometric calibrations and requisite calculations of effective ozone absorption coefficients. Aging characteristics of interference filters.	37	000	5.0	9.0	FedNASA Goddard Space Flight Ctr.
NWC 153	Analysis and Testing	Develop New Procedure to Synthesize TATB	Organic Chemistry	1,3,5-Triamino-2,4,5- Trinitrobenzene.	100	100	1.4	1.4	FedDept. Bnergy Los Alamos Scien. Lab.
NWC 154	Analysis and Testing	Establish Combustion Instability Characteris- tics for Space Shuttle Solid Rocket Motor	Propellants	Combustion stability of igniter propellants. Thrust perturbations of booster motor.	37	38	0.3	0.3	FedNASA
156	Analysis and Testing	CADM Submunitions Program To Perforate 8-Inch Triple-Reinforced Concrete	Explosives and Aeronautics	Perforation measurements. Ability of submunition fins to stabilize.	88	•	0.1	0.0	IndAerojet Ord- nance and Mfg. Co.
NWC 157	Analysis and Testing	Vought Free-Flight Rocket Track TestDispersion of Subpacks, Munitions Released in Free-Flight	Explosives and Aeronautics	High-speed track test conducted.	111	•	0.1	0.0	IndVought Heli- copter Inc.
NWC 158	Analysis and Testing	Firestone F-18 Fuel Tank TestStructural Infor- mation on Takeoff and Landing	Aeronautics	Good results from 6 data runs.	27	•	0.1	0.0	IndFirestone Coated Fabrics Co. Inc.

PROJECTS PERFORMED BY THE NAVAL WEAPONS CENTER, CHINA LAKE, CA LISTED BY TECHNOLOGICAL AREA

Performing Activity	Technologi-	Project Description	Navy Technology Applied	Progress	Funding (\$K) FY79 FY80	(\$K) Man-Y FY80 FY79		PY80	Sponeor
NNC 159		Martin-Marietta Submissile Dispersion Test; Dynamic Track Test	Explosives and Aeronautics	Dynamic track test for submissile disper- sion and flight characteristics.	09	0	0.2	0.0	IndMartin-Marietta Aerospace
NWC 160	Analysis and Testing	Assault Breaker, Verify Aerodynamics of Sub- munitions	Aerodynamics	Cost estimate and test plan prepared.	20	•	0.0	0.0	IndHughes Aircraft
NWC 162	Analysis and Testing	WASA Galileo Probe; Verify Structural Integ- rity, etc., of Parachutes	Aeronautics	High-speed drop test vehicles being modi- fied. Test instru- mentation being designed or procured.	123	•	۲. د	0.0	Ped-NASA Ames Research Center
MC 163	Analysis and Testing	Automatic Deployed Survival Kit	Bacape Systems	Will be demonstrated for installation into T-2 aircraft on Japanese Air Self- Defense Force.	13	O	0.0	0.0	indAmerican Safety Flight System
133	Елегду	Conversion of Solid Waste to Polymer Gasoline	Chemical Engineering	Pyrolysis gas puri- fication subsystems greatly improved, some gasoline pro- duced from organics derived from trash.	9	•	••	0.0	FedEPA Environmental Research Center
134	Energy	COSC Geothermal-Support Joint USM-DOE Drilling Program, Geothermal Reservoir Parameters	Geology and Mineralogy	Testing under way to determine param- eters, were productiv- ity.	72	•	0.1	0.0	FedDept. Energy Nevada Oper. Off.
137	Energy	Research into Pyrolysis of Pure Cellulose and Pure Lignin Powder; Toward Making Petrochem.	Chemical Engineering	Use China Lake entrained flow pyrolysis resctor	22	•	0.3	0.0	FedDept. Energy Solar Energy Re- search Institute
148	Bnv i roment	Environment Silver Todide Pyrotechnic Flares—Interaction of Nucleants With the Atmosphere	Inorganic Chemistry	Accumulation of pyrotechnic formula- tions can be reworked into use in opera- tional programs.	•	•	0.0	0.0	StateSanta Barbara County
MC 149	Bry ir ormen t	Environment Inadvertent Weather Modification from Shuttle Launches	Atmospheric Physics	Characterize aluminum oxide aerosols. Stabilized ground clouds from Kennedy Space Center mea-	55	•	0.5	0.0	PedWASA

PROJECTS PERFORMED BY THE NAVAL WEAPONS CENTER, CHINA LAKE, CA LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding (\$K) Man-Years FY79 FY80 FY79 FY8	(\$K) Man-Ye FY80 FY79	(an-Ye	PY80	Sponsor
NWC 150	Environment	Environment Western Kansas Ground Water StudyProvide Consulting Services	Atmospheric Physics	Advise on pyrotechnic capability.	18	0	0.2	0.0	StateWestern Kansas Ground Water Dist. #1
NAC 161	Environment	Environment Technical Support in Installation of Airborne Research Data System and Other Research Systems	Atmospheric Physics	Provided support to APL as requested.	15	0	0.0	0.0	NPJohns Hopkins Univ.
MMC 142	General Assistance	Operation of the Federal Laboratory Consortium for Technology Transfer	Technology Transfer	Spring meeting held, Pall meeting planned. Workshops, seminars, hewsletter.	182	220 0.5	0.5	5.0	FedNational Science Found.
164 164	General Assistance	Federal Laboratory Consortium for Technol- ogy Transfer—Santa Fe, Oct 78 and NBS May 79	Technology Transfer	Semiannual meetings, executive committee meetings.	0	0	0.0	0.0	Ped-Independent Research and Devel- opment/Technology Utilization (IRED/TU) Office
NWC 165	General Assistance	Technology Transfer Exhibit Energy Fair, State and Local Government	Technology Transfer	Pairs in LA, Bartford, supply state and local with info on NWC.	0	•	0.0	0.0	PedIRED/TU Office
NWC 155	Health and Medicine	Automatic Tissue Culture Colony Counter	Optics	Improved second version of cell colony monitor. Consists of optics mechanical reticle and sample drive, electronics.		•	0.5	0.0	FedDept. Health Education, and Welfare

PROJECTS PERFORMED BY THE NAVAL WEAPONS SUPPORT CENTER, CRANE, IN LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Perform- ing Technologi- Activity cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	Funding (\$K) Man-Years FY79 FY80 FY79 FY80	1-Years	Sponsor
NWSC 167	Communica- tions	Communica- Submarine Signal Fuze tions for launching markers underwater.	Instrumentation	Uses seawater battery, activated in 6-8-ft water.	1	1	} 	Fednavseasyscom
166	Snv ir onment	Environment Method for Disposing of Red Phosphorus Composition from Markers, Signals	Chemical Engineering	Incineration complex combined in the breakdown machines to make pilot plant. Operation proved technical soundness and feasibility environment acceptablity.	1	1	1	FedNAVSEASYSCOM

PROJECTS PERFORMED BY THE NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER, SAN DIEGO, CA LISTED BY TECHNOLOGICAL AREA

Sponsor	<pre>1.0 Fed-Fed. Lab. Consortium</pre>	60 2.0 2.0 StateCity and County of San Diego, National Science Found., Fed. Lab. Consortium	FedFed. Lab. Consortium
8 8 8 8	0. 8 0	S S S S	2 8 1
1-Year	1	0	1
Funding (\$K) Man-Years FY79 FY80 FY79 FY80	30	60 2.	'
ls) fu			•
Funding FY79	1	09	1
Progress	Energy Link Catalog based on needs of cities and counties. Being edited for printing.	Cost saving of \$200K per year. Strong and fully responsive city-wide technical support.	New needs caused by Proposition 13. Couple local needs with laboratory expertise.
Navy Technology Applied	Data Gathering and Analysis	Support of Local Govt.	Local Government San Diego
Project Description	Energy Link; Catalog of Assistance Sources in Fed Consortium	Technologi- San Diego Technology cal Guid- Action Center (SAMDTAC) ance Action-Oriented Utili- zation ProgramIPA	Technologi- Local Government Assis- cal Guid- tance Task Force ance
Perform- ing Technologi- Activity cal Area	Bnergy	Technologi- cal Guid- ance	Technologi- cal Guid- ance
Perform- ing Activity	NP RDC 169	NPRDC 168	NPRDC 170

PROJECTS PERFORMED BY THE OFFICE OF NAVAL RESEARCH, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Perform- ing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79		(\$K) Man-Years	FY80	Sponsor	
ONR 245	Analysis and Testing	Theory of Pault Diagnosis in Linear Systems	Rlectronic Engineering	Established a measure of testability and an efficient algorithm for solving the fault diagnons equation.	15	1	0.1	1	Fed-Off, Nav. Res.	r. Res.
244 244	Communica- tions	Conducting Polymers Based on Polyacetylene or $(CR)_{x}$.	Polymer Chemistry Synthesis of Conducting Poly- mers	Rapid transfer to in- Clastry. Promise of economical plastic solar cells—a new option in solving energy crises.	120	120	5.0	2.0	FedOff. Mav. Res.	. Bes
ONR 247	Communica- tions	Ohmic Contacts in Gallium Arsenide	Electronic Engineering Electromagnetics	Published how to improve metalic-ohmic contacts to gallium arsenide devices.	0	0	0.0	0.0	FedOff. Mav. Res.	r. Res.
248	Communica- tions	Gold-Germanium Refractory Contacts	Blectronic Engineering	Provided how to improve production yield and performance of gallium arsenide microwave devices.	20	•	0.5	0.0	FedOff. Nav. Res.	. Res
ONR 246	Computer Technology	Monlinear Controllability	Theoretical Math	Complete solution to the controllability problem for a large class of nonlinear systems.	24	15	0.5	0.3	FedOff. Mav. Res.	7. Res.
249	Computer Technology	Data Base Machine	Electronic Engineering	New computer organization customized to perform data storage and retrieval. Order-of-magnitude increase in speed, more easily programmed.	9	9	יי די	1.1	Fed-Off. Mav. Res.	. Res.
250	Computer Technology	Personalized Graphics Systems for Automated Maintenance	Human Ractors Engineering	Computer-edited made- to-order movie to give expert consultation on repair problems. Re- flects viewer's knowl- edge.	120	170	2.0	3.0	FedOff. Nav. Res.	Y. Res

PROJECTS PERFORMED BY THE OFFICE OF NAVAL RESEARCH, WASHINGTON, DC LISTED BY TECHNOLOGICAL AREA

Performing Activity	Technologi- cal Area	Project Description	Navy Technology Applied	Progress	Funding FY79	(\$K)	Man-Years FY79 FY8	FY80	Sponsor	žg.	
242 242	Ene rgy	Fuel-Water Emulsification	Chemical Engineering	Application of fuel- water emulsions to diesel engines and boilers. Reduced to fuel consumption and improved performance.	55	1	1.0	;	FedOff. Nav. Res.	х >e >e	Res.
ONR 243	Energy	Rechargeable Lithium Batteries	Basic Research	Battery based on organic electrolyte containing cyclic ethers. Evaluation for Navy, commercial use.	0.0	200	1.5	5.0	FedOff. Nav. Res.	Nav.	Res.
ONR 241	Znvironment	Environment Shipboard Solid and Liquid Waste Storage and Transfer	Chemical Engineering, Pollution Abatement	Elimination of waste discharge from Navy vessels. Holding tank systems for all craft.	55	1	1.0	1	FedOff. Nav. Res.	Nav.	Res.
ONTR 253	Environment	Environment 3-D Water Flowmeter	Blectrical Bngineering	Acoustic current meter upgraded per- formance of new sewage treatment plant.	•	o	0.0	0.0	FedOff. Nav. Res.	Nav.	Res.
ONR 252	Fire and Safety	Fire Drill for Water from Ice	Blectrical Engineering	Electrically, powered thermal drill for penetrating Arctic ice effective for winter firefighting.	100	100	1.0	1.0	FedOff. Nav. Res.	Nav.	Res.
240	Marine Technology	Bydraulic Transmission for Ship Propulsion	Ship Propulsion, Naval Architect- ure	Seawater as motive fluid, axial turbine provides thrust to propeller. Substantial reductions in weight and space.	45	1	1.0	1	FedOff. Nav. Res.	Nav.	Res.
ONTR 251	Transpor- tation	Propagation of Acoustic Energy in the Arctic	Computer Technology	Computer program will compute propagation loss as a function of range and depth as well as pulse shapes. Will accommodate rough boundaries between fluid interfaces.	150	208	3.0	•	FedOff. Nav. Res.	Nav.	Res.

PROJECTS PERFORMED BY THE U.S. NAVAL ACADEMY, ANNAPOLIS, MD LISTED BY TECHNOLOGICAL AREA

1	nde L		nic
106	ne Arui nools	AC and Res.	. Ocea
Sponsor	0.3 StateAnne Arundel County Schools	0 0.3 0.0 FedNAVFAC and Off. Nav. Res.	0.0 FedNatl. Oceanic and Atmospheric Admin.
ļ	Stat	Fed.	FedNa and Atr Admin.
ears FY80	0.3	0.0	
Man-Y FY79	21 0.3	0.3	0 0.1
(\$K) Man-Years FY80 FY79 FY80	21	0	0
Funding (\$K) Man-Years FY79 FY80 FY79 EX80	50	18	m
Progress	7 minicourses were taught. FY 80 Will concentrate on math and computer science.	Attended conferences, visited experts, made site reviews, prepared report.	Icelandic whaling operations observed, and film made.
Navy Technology Applied	Math., Physical Science, Comp. Sci.	Sedimentation Control, Dredging	Oce anog raphy
Project Description	Enrichment Program for Gifted School Children Extend Education	European Dredging: A Review of the State of Art; to Improve Slip Maintenance by Navy	Studies of Whales in Iceland and Their Manage- ment; Predict Arrival to Denmark Straits
Perform- ing Technologi- Activity cal Area		Marine Technology	Marine Technology
Perform- ing Activity	USNA 172	USNA 171	USNA 173

TABLE OF CONTENTS

				Pages
ventions a	ind Pa	atents,	nventions and Patents, Analysis and Testing	5-2
ventions a	ind Pa	atents,	nventions and Patents, Communications	5-2
oventions a	ind P	atents,	Inventions and Patents, Computer Technology	5-3
nventions a	ind P	atents,	Inventions and Patents, Energy	5-35-
nventions a	ind P	atents,	Inventions and Patents, Environment	9-6
nventions a	ind P	atents,	nventions and Patents, General Assistance	9-9
nventions a	ınd P	atents,	Inventions and Patents, Health and Medicine	2-7
nventions a	ind Pa	atents,	Inventions and Patents, Instrumentation	5-75
nventions a	ind P	atents,	inventions and Patents, Marine Technology	5-85
nventions a	ind Pa	atents,	nventions and Patents, Transportation	6-9

FY 1979

		TUNENT	INVENTIONS AND PRIEMIS	
Technological Area	Performing Activity	Invention/Patent	Purpose	Potential Commercial Application
Analysis and Testing	CEL	Navy Case 62,357	Seafloor corer	Licensedevice to obtain high quality seafloor sediment cores 100 ft or greater
Analysis and Testing	DAT	Pat. 4,140,991 Underwater displacement probe	Measure movements of test model in water	Underwater model testing
Analysis and Testing	NWC	Navy Case 62,804 Adiabatic Laser Calorimeter	To measure absorptance of laser energy by a body	Testing and analysis
Communications	TIM	P. O. Serial 860586 "Cryptographic Systems and Method" Invention	New techniques for data encryption, authentications, and verification	Excellent
Communications	NORDA	Pat. 4,163,205 Acousto-Optical Device	To remove bubble pulse from reflected sonar signals	Underwater communications
Commications	NWSC	Pat. 4,164,186 Submarine Signal Fuze	Signal to be released underwater that releases markets for communication of the surface	Divers, Underwater Rescue
Communications	NWC	Navy Case 62,853 Phase Controlled Shuttering System	To synchronize the shutter of a motion picture camera with the vertical retrace of a TV raster	Stop-motion or slow-motion presentations
Comunications	NOSC	Pat. 4,160,169 Navy Case 61,031	Parallel scanning system	Excellent to scan microfiche
Communications	NRC	Navy Case 61,369	Laset-pulse anneal- ing technique for im- proving the detectivity of infrared phococonductors	goog
Communications	MRL	Navy Case 63,436	Optical fiber-to-fiber couplers	Good
Communications	NOL	Navy Case 63,423	V-Ga-Ti filament/ Cu-Ga-Al matrix super- conducting wires	Excellent

FY 1979

Purpose Potential Commercial Application	To prevent loss of Shift register users data stored in a shift register on occurrence of transients and power failure	Integrated optical Excellent matrix multiplier	High-speed manchester Excellent encoder	Digital-to-graphic Excellent, graphically represents character generator signal	Low barrier height Good epitaxial GeGaAs mixer diode	High-voltage generator Excellentutilizes generation of electrostatic charges on moving oil	Seawater motor Goodcommutating or distributing valve for timing and distributing high-pressure seawater to a number of individual pistons	Constant illumination Excellentconstant illumination level control system control for continuously adjusting the level of artificial illumination in an area of controlled lighting to complement available natural illumination	Solar energy collector Goodcollects solar radiation in form of heat and transfer it to a working fluid.	Solar energy window Goodenergy absorbing venetian blind type device for generating electricity providing heat, and sun shade	
Invention/Patent	Pat. 4,133,044 Failure-Resistant Pseudononvolatile Memory	Pat. 4,125,316 Navy Case 58,956	Pat. 4,100,541 Navy Case 59,430	Pat. 4,118,709 Navy Case 59,323	Navy Case 63,341	Pat. 4,123,697	Pat. 4,134,426	Pat. 4,135,116	Pat. 4,136,672	Pat. 4,137,098	
Performing Activity	NSHC	NOSC	NOSC	NOSC	NRL	THE C	19	CE	CEL	i	
months of the state of	Computer Technology	Computer Technology	Computer Technology	Computer Technology	Computer Technology	Sner gy	Bnet gy	Bnergy	Snergy	Rnergy	

FY 1979

Potential Commercial Application Fair—active circuit power line filter that provides superior filtering per- formance against power line anomalies and interference signals	Good-heat source for use in connection with a diver heater	Excellentoperate like galvanic cells and react rapidly and predictably with seawater to produce heat and hydrogen gas	Fairused to maximize energy conversion	Licenseseparates and removes oil and particulate solids from a dispersion oil and particulate solids in water or a water-based liquid	Fleets of vehicles	Fleets of vehicles	Molten lithium-chlorine gas electrochemical batteries	Alkaline electrolyte batteries
Purpose Active high-power band-pass filter	Diver heater	Supercorroding alloys	Sun tracker	Oil coalescer	Remote monitoring of lead-acid battery parameters	Remote monitoring of lead-acid battery parameters	To increase energy output per unit weight of electrochemical cells that use a molten lithium anode	Battery separator membranes resistant to oxidation and corrosion but with low electrical resistance
Invention/Patent Navy Case 62,926	Navy Case 64,177	Navy Case 64,178	Navy Case 62,664	Navy Case 63,306	Navy Case 61,536 AC Battery Monitor System for Electrolyte Level and Temperature	Navy Case 63,625 Battery Electrolyte Level and Circula- tion Sensor	Pat. 4,162,352 Battery with Boron Lithium Alloy Anode	Pat. 4,158,649 Polymeric Membranes Which Contain Polyphenylquino- alines and which are used as battery separators
Performing Activity CEL	CEL	TE O	CET	730	NSWSES	NSWSES	NSWC	NS MC
Technological Area Energy	Energy	Energy	Energy	Energy	Energy	Ene r gy	Ene r gy	Energy

Technological Area	Performing Activity	Invention/Patent	Purpose	Potential Commercial Application
Bhergy	NSWC	Navy Case 62,989 Mass-Transport Separator for Alkaline Nickel-Zinc Cells	To increase operating life of nickel-zine electrochemical cells	Alkaline nickel-zinc rechargeable electrochemical cells
Ene rgy	NSWC	Pat. 4,084,047 Stable Alkaline Zinc Electrode	To increase operating life of alkaline electrochemical cells which use zinc anodes	Variety of alkaline cells
Bne rgy	NMER	Navy Case 63,814 Hydrogen and Water Getter	To use in sealed, oxygen-containing environments with batteries	
Bhe <i>r</i> gy	NMISE	Navy Case 63,815 Hydrogen and Water Getter	To use in sealed environments containing batteries and little or no oxygen	
<u> Raergy</u>	NOSC	Pat. 4,166,884 Navy Case 62,235	Position insensitive battery	Excellentto obtain full utilization of lithium thionyl chloride battery
Energy	WRL	Navy Case 62,396	Cis-trans fluoropolyol polyacrylate polymer	Good
Energy	NRL	Navy Case 62,397	Alkanediamide-linked polyphthalocyanines coordinated with SNCl ₂	Excellent
Bhergy	NPC	Navy Case 63,502	Synthesis of Bis (3,4-dicyanophenoxy)-1,3-benzene	Excellent
Energy	NRL	Navy Case 63,050	Dicyanophenyl- bisphenol synthesis of polyphthalocyanine	Excellent
sner gy	NRL	Mavy Case 63,481	Fluorinated polyether network polymers	Excellent
shergy	NRL	Navy Case 63,501	Synthesis of a phthalonitrile monomer	Excellent
Shergy	WRL	Navy Case 63,049	Dicyanophenoxy Synthesis of polyphthalocyanine	Excellent

FY 1979

Technological Area	Performing Activity	Invention/Patent	Purpose	Potential Commercial Application
Ehergy	NRL	Navy Case 63,284	Polyphthalocyanine from (3,4- dicyanophenyl- bisphenol) phthalonitrile	Excellent
Bhy ironment	CEL	Pat. 4,156,648	Water cleaner	Goodmethods and apparatus for treating water/waste water to remove grit, suspended and colloidal solids of organic and inorganic nature
Bhy ir onment	E E	Pat. 4,130,446 Antifouling Coating for Aluminum Structures	Aluminum objects designed to be buried, submersed, submerged	Marine craft and pipelinesto reduce drag produced by the attachment of barnacles and other organisms
Environment	NADC	Pat. 4,101,497 Sealer-Primer Coating	Sealant-primer coating	License granted to advanced coatings and chemicals
Rhv i ronment	NADC	Pat. 3,993,510 Thirotropic Chemical Conversion Material for Cor- rosion Protection of Aluminum and Aluminum Alloys	MIL-C-81706, Class IA form NeV	License granted to AMCHEM Products Inc.
Environment	NADC	Pat. 4,157,991 Corrosion-Preventive Composition	Coating for metal surfaces	License granted to Bulk Chemical Distributors, Inc.
Bry ir onment	NSWC	Pat. 4,126,732 Surface Passivation of IV-VI Semiconductors with AS ₂ S ₃	To protect expitaxial films of lead chalcogenide from oxygen in air	Protection of semiconductors, etc., from air
E nvironment	MMSC	Pat, 4,163,682 Method for Disposing of Red Phosphorus Composition	To reclaim phosphoric acid from disposal of marine location markers	Limitedmethod for disposing pyrotechnic composition
General Assistance	MSWC	Pat. 4,125,725 Phenylated Carboxyquinoxalines	To provide strong low void adhesive joints	Fabrication

FY 1979

se Potential Commercial Application	rt Medical c	d Medical	bestos Identification of asbestos or ent	Excellentmeasures transfer immitances, impedance and admittance of a linear electrical network having one or more ports	Goodrings fabricated by a dielectric material rather than metal	ator of Control systems for submarines, aero- irol space vehicles, and industrial equipment capa- nuto- system	Generators, motors, and other horizon- otary tally mounted rotating machines	High-current (10,000-100,000 A) low- s voltage (30-300 V) switching applications cer or cations	i
Purpose	To protect heart against cardiac insults	Improved method	To identify asbestos in air, water, or other environment including blood of humans	Impedance meter	Corona rings	Provides operator of a machine control system with computational capability of an automatic control systematic control systematic control systematic control systematic control systematic control control systematic control control systematic control contr	To provide new liquid-metal rotary electrical- contact system	Small, compact, realiable, does not require water oil cooling system	Low-power, high- performance, accurate
Invention/Patent	Pat. 4,153,808 Novel Prostaglandin Derivatives	Navy Case 63,137 Method of Preparing Prostaglandin B ₁ Derivatives	Navy Case 63,872 Immunochemical Analysis for Asbestos	Pat. 4,156,842	Navy Case 62,786	Pat. 4,129,087 Combination Pursuit and Compensation Display System	Pat. 4,156,155 Combined Rotary Electrical Contact and Shaft Seal System	Pat. 4,163,135 High-Current Switches Using Multi-Louvered Contact Strips	Pat. 4,156,286 Solid State Data
Performing Activity	NADC	NALDC	NS NC	CEL	CET	T T T T T T T T T T T T T T T T T T T	Ling	Light	NSWC
Technological Area	Health and Medicine	Bealth and Medicine	Health and Medicine	Instrumentation	Instrumentation	Instrumentation	Instrumentation	Instrumentation	Instrumentation

FY 1979

Technological Area	Performing Activity	Invention/Patent	Purpose (co.) de contractor	Potential Commercial Application
Instrumentation	NOSC	4,117,967 Navy Case 60,034	SOlder extractor apparatus-to repair microelectric circuitry	Excellent
Instrumentation	NOSC	4,117,588 Navy Case 61,234	Method of manufactur- ing three-dimensional integrated circuits	Excellent
Instrumentation	NOSC	4,147,942	Fast recovery one- shot for generation of trigger pulses	Excellent
Instrumentation	MOSC	Navy Case 60,779	Method and article of manufacturing an optical fiber connector	Excellent
Instrumentation	NOSC	Navy Case 61,505	Commutating narrow- band filter	Excellent
Instrumentation	NOSC	Navy Case 62,047	Method of LED manufacture	Excellent
Instrumentation	NOSC	Navy Case 63,221	Rat-race mixer with improved intermediate- frequency extractor	Excellent
Instrumentation	NOSC	Navy Case 63,754	Three-dimensional integrated circuits	Excellent
Instrumentation	NOSC	Pat. 4,138,615 Navy Case 59,541	Presettable integrating timing circuits	Excellent to maintain vehicle speed below a level
Instrumentation	NOSC	Pat. 4,144,530 Navy Case 62,217	Combined intrusion sensor line	Excellentsecurity against intrusion into homes, plants
Marine Technology	100	Pat. 4,165,707	Deadweight anchor	Goodeliminates skating during free- fall
Marine Technology	1	Pat. 4,168,729	Underwater piling cutter	Excellentself-gripping scissors-type shear cutting device for pile cutting
Marine Technology	T-MG	Pat. 4,152,392 Chemical Cannister	To hold chemical to react with seawater to produce buoyant gas to supply to inflatable balloon	Underwater suspension systems

FY 1979

INVENTIONS AND PATENTS

Technological Area	Performing Activity	Invention/Patent	Purpose	Potential Commercial Application
Marine Technology	NORDA	Invention Disclosures for Linear Acoustic Array, Plexible Thermal Array, Buoy Anchoring System, Condition-Responsive Cable	To support development of acoustic array in support of ocean measurement programs	Marine cabling anchoring
Marine Technology	NOSC	Pat. 4,143,400 Navy Case 58,762	Real-time optical mapping system	Excellentto view underwater life, objects
Marine Technology	NOSC	Pat. 4,136,725 Navy Case 59,459	Motion compensating liquid holding tank	Excellentsmall swimming pools
Transportation	CEL	Pat. 4,143,440	Causeway connector	Fairpin connection system supporting a causeway section from a pipe piling
Transportation	CEL	Navy Case 61,552	Connector receiver for pontoon causeways	Faircauseway bridge receiver equipped with a two-sided guillotine locking mechanism
Transportation	13 0	Navy Case 62,783	Safety hook for elevated causeway	Fair
Transportation	īao	Navy Case 62,758	Buoy linkage	Goodallows most components to be over the side rather than on deck
Transportation	TEC	Navy Case 62,784	Breakaway pin release	Fairreleases a winch drum of a similar device
Transportation	CEL	Navy Case 63,961	Pile driver	Licensesystem to place piles into the seafloor using pressure differential as driving force
Transportation	Derr	Pat. 4,132,500 Controllable and Programmable Fluid Flow Modulation System	To allow helicopters to fly at higher forward speeds	Helicoptersvalve system to fly at forward velocities that are higher than conventional helicopters
Transportation	WTBC	Pat. 4,100,571 360 Nonprogrammed Visual System (See T ² 123)	Visual simulation for filght training	Visual systems throughout aviation community

.....

INDEX I

TABLE OF CONTENTS

121	1-5	1 -6	1-1	1-8
	gn Agency Sponsors	itry and Small Business Sponsors I-	cofit Institution Sponsors I-	1-8 Transfer Projects Indexed by State and Local Government Sponsors
Feder	Forei	Indus	Nonpr	State
Ž	Ą	þ	ρλ	à
Indexed	Indexed	Indexed	Indexed	Indexed
Projects	Projects	Projects	Projects	projects
Transfer	Transfer	Transfer	Transfer	To Post of Cort
Technology	Technology	rechnology	Technology	
	Technology Transfer Projects Indexed by Federal Agency Sponsors	Technology Transfer Projects Indexed by Pederal Agency Sponsors		Technology Transfer Projects Indexed by Pederal Agency Sponsors

INDEX I

FY 1979

TECHNOLOGY TRANSPER PROJECTS INDEXED BY FEDERAL AGENCY SPONSORS

	Pages
Ames Research Center, NASA	3-3, 3-5, 3-17, 4-22, 4-36, 4-38, 4-40
Bureau of Land Management, Dept. of Interior	3-28, 4-22
Bureau of Radiological Health, Food and Drug Administration	4-31
CNO Security Assistance Training Program	3-7, 4-24
Defense Advanced Research Projects Agency	3-6, 3-32, 4-6, 4-28
Defense Construction Supply Center	3-17, 4-5
Defense General Supply Center	4-5
Defense Mapping Agency	3-9, 3-23, 3-24, 4-20, 4-24
Defense Nuclear Agency	3-29, 4-6
Department of Commerce	3-2, 4-4
Department of Energy	3-3, 3-4, 3-11, 3-12, 3-14, 3-27, 4-1, 4-14, 4-15, 4-20, 4-30, 4-33, 4-38, 4-39, 4-40
Department of Health, Education, and Welfare	3-22, 4-41
Department of Transportation	3-3, 3-20, 3-23, 3-29, 3-32, 3-33, 4-1, 4-9, 4-23, 4-38
Environmental Research Laboratory, SPA	3-12, 3-14, 4-15, 4-40
Federal Aviation Administration, DOT	3-7, 3-32, 4-1, 4-21
Pederal Highway Administration, DOT	3-26, 4-33
Federal Laboratory Consortium for Technology Transfer	3-12, 3-30, 4-43
Pederal Railroad Administration, DOT	3-2, 3-31, 4-4, 4-33
Food and Drug Administration	3-22
George C. Marshall Space Flight Center, NASA	3-33, 4-33
Goddard Space Flight Center, NASA	3-4, 4-39

TECHNOLOGY TRANSFER PROJECTS INDEXED BY PEDERAL AGENCY SPONSORS

<u>Pages</u> 3-26, 4-22	3-18, 4-41 3-31, 4-8	3-2, 4-7	3-28, 4-22	3-3, 4-33	3-4, 4-39	3-9, 4-9	3-4, 4-39	3-11, 3-20, 3-31, 4-9, 4-33	3-2, 3-11, 404, 4-5	3-4, 3-15, 4-40	3-11, 3-23, 3-24, 4-20, 4-24		3-28, 4-22	3-14, 3-27, 3-28, 4-5, 4-32, 4-46	3-9, 3-18, 3-30, 4-21, 4-43	3-6, 3-7, 3-9, 3-13, 3-17, 3-18, 3-23, 3-31, 3-33, 4-10, 4-11, 4-13, 4-15, 4-28, 4-29, 4-31, 4-32	3-7, 3-8, 3-25, 4-28, 4-29, 4-31	3-19, 3-27, 4-27, 4-46	3-7, 3-9, 3-15, 3-18, 3-19, 4-10, 4-27, 4-31, 4-35
Immigration and Naturalization Service, Dept. of Justice	Independent Research and Development/Technology Utilization Office Joint Cruise Missiles Project Office	Joint Logistics Command	Kennedy Space Center, NASA	Langley Research Center, NASA	Lawrence Livermore Laboratory, DCE	Lewis Research Center, NASA	Los Alamos Scientific Laboratory, DOE	Lyndon B. Johnson Space Center, NASA	Maritime Administration	National Aeronautics and Space Agency	National Data Buoy Office, NOAA (Dept. of Commerce)	National Environmental Research EPA Center	National Marine Fisheries	National Oceanic and Atmospheric Administration	National Science Poundation	Naval Air Systems Command	Naval Electronics Systems Command	Naval Facilities Engineering Command	Naval Material Command

INDEX I

FY 1979

TECHNOLOGY TRANSPER PROJECTS INDEXED BY PEDERAL AGENCY SPONSORS

	Pages
Naval Medical Research and Development Command	3-20, 3-21, 4-16, 4-18
Naval Ocean Research and Development Activity	3-23, 3-27, 4-20
Naval Research Laboratory	3-18, 3-23, 3-25, 4-20, 4-29, 4-31
Naval Sea Systems Command	3-2, 3-3, 3-7, 3-8, 3-9, 3-13, 3-15, 3-17, 3-21, 3-21, 3-26, 3-27, 3-29, 3-31, 4-4, 4-5, 4-6, 4-12, 4-18, 4-19, 4-29, 4-30, 4-31, 4-32, 4-33, 4-34, 4-42
Naval Training Equipment Center	3-29, 4-35
Naval Underwater Systems Center	4-37
NAVOC	3-9, 3-14, 3-23, 4-24
Navy	4-1, 4-16
NAVY NATO SEASPARROW	3-25, 4-34
Nevada Operations Office, DOE	3-12, 4-40
Naval Postgraduate School	3-19, 4-27
Nuclear Regulatory Commission	3-6, 3-12, 3-17, 4-28, 4-30, 4-33
Office of Hazardous Material, DOT	3-31
Office of Naval Research	3-6, 3-7, 3-8, 3-10, 3-13, 3-14, 3-15 3-17, 3-20, 3-27, 3-28, 3-33, 4-14, 4-16, 4-28, 4-29, 4-30, 4-44, 4-45, 4-46
Physical Security Systems Directorate ESD/AFSC/USAF	3-26, 4-15
Rome Air Development Center, USAF	3-7, 3-8, 3-14, 4-5, 4-29
Safety/Isotope-Fuel Branch, DOE	3-15, 4-21
Sea Grant College Program	3-20, 4-14
Solar Energy Research Institute, DOE	3-12, 4-39, 4-40
Strategic Systems Project Office	3-6, 4-28

INDEX I

FY 1979

TECHNOLOGY TRANSFER PROJECTS INDEXED BY FEDERAL AGENCY SPONSORS

Pages	U.S. Air Force	U.S. Army Institute for the Behavioral and Social Sciences	U.S. Coast Guard	U.S. Porest Service	U.S. Geological Survey, Dept. of Interior 3-27, 3-28, 4-25	U.S. Postal Service	Veterans Administration
,,,	(*)	(*)					
	:	:	:	:	•	•	:
		•		•	•	•	
	•			•	•	•	
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
	:	•	:	•	•	:	
			•				
		•	•	•	•	•	•
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
	•	88	•	•	•	•	:
	:	e u	:	:	:	·	:
		Ġ					
		S	•	•	•	•	•
	•	, ed	•	•	•	•	•
	•	00	•	•	•	•	•
	•	υ 77	•	•	•	•	•
		ă			or or		
		-1		•	ri		
	•	ora	•	•	ţ	•	•
	•	Ž	•	•	Ä	•	•
	•	aha.	•	•	of	•	•
	:	Ä	:	:	ئە	:	•
	•	þe	•		e D		
	•		•	•	۵	•	-
	•	õ	•	•	è,	•	ior
	•	Q)	•	بو	Ž	gy.	it it
	•	tut	•	vic	Su	Vic	9tz
	ų.	til	ar.	erı	al	er	nis
	ĭrc	Sc	පු	ω.	710	S	ij
	1	<u>~</u>	St Ct	ast.	109	3	AC
	H	Ę	8	ori	9	60	8
	~	*	Ö	<u> </u>	G	Δ,	FZ
	u.s.	u.s.	v.s.	U.S.	v.s.	U.S.	Vete

INDEX I

FY 1979

TECHNOLOGY TRANSPER PROJECTS INDEXED BY FOREIGN AGENCY SPONSORS

Pages

INDEX I

FY 1979

TECHNOLOGY TRANSFER PROJECTS INDEXED BY INDUSTRY AND SMALL BUSINESS SPONSORS

	Pages
Aerojet Ordnance and Manufacturing Company	3-4, 4-39
American Safety Plight System	3-5, 4-40
Avondale Shipyards, Inc	3-2, 3-24, 4-4, 4-25
Bay Technical Associates, Inc	3-24, 4-25
Beckman Instruments, Inc	3-27, 4-26
Explosive Technology, Inc.	3-3, 4-38
Firestone Coated Fabrics Co., Inc	3~5, 4-39
General Dynamics Convair	3-4, 4-38
Hughes Aircraft	3-4, 3-5, 4-38, 4-40
Louisiana Power and Light	3-24, 4-25
Martin-Marietta Aerospace	3-5, 4-40
Mississippi Power and Light	3-24, 4-25
M-R-S Manufacturing Co	3-24, 4-25
NUS Corp	3-24, 4-25
Production Control Systems, Inc	3-24, 4-25
Raychem Corp	3-27, 4-25
Royal Industries, Inc	3-3, 4-38
Upjohn International	3-20, 4-16
Vought Helicopter, Inc	3-5, 4-39

INDEX I

FY 1979

TECHNOLOGY TRANSPER PROJECTS INDEXED BY NONPROPIT INSTITUTION SPONSORS

INDEX I

FY 1979

TECHNOLOGY TRANSPER PROJECTS INDEXED BY STATE AND LOCAL GOVERNMENT SPONSORS

	Pages	
Anne Arundel County Schools	3-18, 4-	46
Carson City, Nevada	3-17, 3-	22, 4-27
Connecticut Conference of Municipalities	3-30, 4-	36
Connecticut General Assembly	3-29, 4-	36
San Diego, California (city and county)	3-30, 3-4-43	31, 4-23,
Santa Barbara County	3-14, 4-	04
Santa Pe, New Mexico	3-10, 4-	27
South Caroling Wildlife and Marine Resources Dept3-24, 4-25	3-24, 4-	25
University of California	4-22	
University of California, BuMed and Surgery	3-20, 4-	16
Western Kansas Ground Water Dist. #1	3-15, 4-	4.1

APPENDIX A

NAVY TECHNOLOGY TRANSFER FOCAL POINTS

ANTISUBMARINE WARFARE SYSTEMS PROJECT OFFICE

The second secon

H. Magid (Berbert), Code ASW-114
Antisubmarine Warfare Systems Project Office
Mashington, DC 20362
Phone: (202) 692-9140
Autovon: 222-9140

CIVIL ENGINEERING LABORATORY

James Jenkins (Jim), Code L03C Civil Engineering Laboratory Naval Construction Battalion Center Port Hueneme, CA 93043 Phone: (805) 982-4110 Autovon: 360-4110

DAVID W. TAYLOR NAVAL SHIP RED CENTER

B. V. Nakonechny (Basil), Code 012.2
David W. Taylor Naval Ship Research and
Development Center
Bethesda, MD 20084
Phone: (202) 227-1083/1037
Autovon: 287-1083/1037

W. E. Arnitz (Bill), Director Government-Industry Data Exchange Program Operations Center Fleet Analysis Center - Naval Weapons Stat Seal Beach, Corona Annex

Pleet Analysis Center - Naval Weapons Station Seal Beach, Corona Annex Corona, CA 91720 Phone: (714) 736-4677 Autovon: 933-4677

MARINE CORPS DEVELOPMENT & EDUCATION COMMAND

J. Druzbick (John)
Technical Adviser, Development Center
Marine Corps Development and Education Command
Quantico, VA 22134
Phone: (703) 640-2412
Autovon: 278-2412

NAVAL AEROSPACE MEDICAL RESEARCH LABORATORY

CDR Lewis E. Waldelsen, Code Lil Plans & Programs Officer Naval Aerospace Medical Research Laboratory Phone: (904) 452-3286 Autovon: 922-3286

NAVAL AIR DEVELOPMENT CENTER

J. S. Bortman (Jerry), Code 7012 Naval Air Development Center Warminster, PA 18974 Phone: (215) 441-3100 Autovon: 441-3100

NAVAL AIR ENGINEERING CENTER

M. A. Palamar (Michael), Code 9011 Plans and Programs Office Naval Air Engineering Center Lakehurst, NJ 08733 Phone: (201) 323-2648/2391 Autovon: 624-2648/2391

NAVAL AIR PROPULSION CENTER

A. A. Martino (Albert), Code PE4
Naval Air Propulsion Center
Trenton, NJ 08628
Phone: (609) 896-5600, Ext. 758
Autovon: 443-5758

NAVAL AIR SYSTEMS COMMAND

Commander
Naval Air Systems Command
Research and Technology Group, Code AIR 3021
Attn: S. J. Gorman (John)
Washington, DC 20361
Mushington, 222-3064
Autovon: 222-3064

NAVAL AIR TEST CENTER

R. B. Siegel (Ralph)
Naval Air Test Center
Patuxent River, MD 20670
Phone: (301) 863-4601
Autovon: 356-4601

NAVAL AVIONICS CENTER

Terry Ising, Code 004
Naval Avionics Center
6000 East 21st Street
Indianapolis, IN 46218
Phone: (317) 353-3220
Autovon: 724-3220

NAVAL BIOSCIENCES LABORATORY

LCDR W. M. Coleman III Naval Biosciences Laboratory Naval Supply Center Oakland, CA 94625 Phone: (415) 832-5439 Autovon: 836-5439

NAVAL COASTAL SYSTEMS CENTER

J. Miller Epps, Code 700A
Naval Coastal Systems Center
Panama City, FL 32407
Phone: (904) 234-4209
Autovon: 436-4209

7

T

Ţ

NAVAL DENTAL RESEARCH INSTITUTE

LCDR L. D. Nelson (Lee)
Naval Dental Research Institute
Naval Base
Great Lakes, IL 60088
Phone: (312) 688-5647
Autovon: 792-5647

NAVAL ELECTRONIC SYSTEMS COMMAND

R. A. Wade (Ron), Code 30421
Naval Electronic Systems Command
Department of the Navy
National Center 1
National Center 1
Phone: (202) 692-8741
Autovon: 222-8741

NAVAL ELECTRONIC SYSTEMS ENGINEERING ACTIVITY

P. L. Bopkins (Preston), Code 02
Naval Electronic Systems Engineering Activity
Saint Inigoes, MD 20684
Phone: (301) 872-5021 (Direct Wash. No. 488-7704)
Autovon: 356-3512

NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY

LCDR Michael E. Brown
Naval Environmental Prediction Research Facility
Monterey, CA. 93940
Phone: (408) 646-2814
Autovon: 878-2814

NAVAL EXPLOSIVE ORDNANCE DISPOSAL FACILITY

L. A. Dickinson (Lione.)
Attn: Code D, Technical Director
Naval Explosive Ordnance Disposal Facility
Indian Head, MD 20640
Phone: (301) 743-4439
Autovon: 364-4330

NAVAL FACILITIES ENGINEERING COMMAND

Vance Hinch, Code 0311
Naval Facilities Engineering Command
200 Stoval Street
Alexandria, VA 22332
Phone: (202) 325-8533
Autovon: 221-8533

NAVAL HEALTH RESEARCH CENTER

Dr. M. Richlin (Milton), Code 8040 Naval Health Research Center San Diego, CA 92152 Phone: (714) 225-7393 Autovon: 933-7393

NAVAL MATERIAL COMMAND INDUSTRIAL RESOURCES DETACHMENT

B. S. Safier (Bill), Technical Director, Code 01
Naval Material Command Industrial Resources Detachment
Philadelphia, PA 19112
Phone: (215) 755-4891
Autovon: 443-4891

NAVAL MEDICAL RESEARCH & DEVELOPMENT COMMAND

N. Yanowsky (Nicholas), Code 49
Naval Medical Research & Development Command
Bethesda, MD 20014
Phone: (202) 295-1771
Autovon: 295-1771

NAVAL MEDICAL RESEARCH INSTITUTE

CDR Vernon Schinski
Director of Planning & Programming
Director of Planning & Programming
Naval Medical Research Institute
Betheeda, ND 20014
Phone: (301) 295-0057
Autovon: 295-0057

NAVAL OBSERVATORY

Dr. G. Westerhout (Gart), Science Director, Code 6C U. S. Maval Observatory 34th & Massachusetts Ave., NW Washington, DC 20390 Phone: (202) 254-4540 Autovon: 294-4540

NAVAL OCEAN RESEARCE & DEVELOPMENT ACTIVITY

George E. Stanford, Jr., Code 115T
Requirements, Programs, Analysis & Planning
Naval Ocean Research & Development Activity
NSTL Station, Bay St. Louis, NS 39529
Phone: (601) 688-4790
Autovon: 485-4790

NAVAL OCEAN SYSTEMS CENTER

D. H. Courter (Don), Code 013B Naval Ocean Systems Center San Diego, CA 92152 Phone: (714) 225-7455 Autovon: 933-7455

NAVAL OCEANOGRAPHIC OFFICE

C. D. Griffith (Clayton), Code 023 U. S. Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522 Phone: (601) 688-4368 Autovon: 485-4368

NAVAL ORDNANCE STATION (LOUISVILLE)

T. Peake (Thad), Code 2043
Manufacturing Technology Department
Naval Ordnance Station
Louisville, KY 40214
Phone: (502) 367-5641
Autovon: 989-5641

NAVAL POSTGRADUATE SCHOOL

J. W. Creighton (John), Code 54CF Naval Postgraduate School Monterey, CA 93940 Phone: (408) 646-2048 Autovon: 878-2048

I

NAVAL RESEARCH LABORATORY

į

Richard Pulper (Dick), Code 1434
Naval Research Laboratory
Washington, DC 20375
Phone: (202) 767-3744
Autovon: 297-3744

NAVAL SEA SUPPORT CENTER, ATLANTIC

R. T. McGrady (Raymond), Code 91C Naval Sea Support Center, Atlantic St. Juliens Creek Annex Portsmouth, VA 23702 Phone: (804) 393-7677 Autovon: 961-7677

NAVAL SEA SUPPORT CENTER, PACIFIC

D. A. Maslin (Don), Code 200
Mayal Sea Support Center, Pacific
P. O. Box 80548
San Diego, CA 92138
Phone: (714) 225-3268
Autowon: 957-3268

NAVAL SEA SYSTEMS COMPLAND

Stuart Marcus, Code SEA 003 Maval Sea Systems Command Washington, DC 20362 Phone: (202) 692-9767 Autowon: 222-9767

NAVAL SHIP WEAPON SYSTEMS ENGINEERING STATION

Richard E. Wetzel, Code 4001 Head, Ship Systems Assessment Directorate Naval Ship Weapon Systems Engineering Station Port Hueneme, CA 93043 Phone: (805) 982-4676 Autovon: 360-4676

NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY

C. R. Carey (Charles), Code 03
Special Assistant Programs & Plans
Naval Submarine Medical Research Laboratory
Groton, CT 06340
Phone: (203) 449-3266
Autovon: 241-3266

NAVAL SUPPLY SYSTEMS COMMAND

C. E. Emberger (Charles), Code 0431F Naval Supply Systems Command Department of the Navy Washington, DC 20376 Phone: (202) 697-4432 Autovon: 227-4561

NAVAL SURFACE WEAPONS CENTER

Bob Barash, Code D216
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910
Phone: (301) 394-3038
Autovon: 290-3038

NAVAL TRAINING BOUIPMENT CENTER

.

F. E. Wolf, Jr. (Franklin), Code N326 Naval Training Equipment Center Orlando, Fr. 32813 Phone: (305) 646-4493,5529 Autovon: 791-4493

NAVAL UNDERWATER SYSTEMS CENTER

Michael C. Ahrens, Code 0702
Naval Underwater Systems Center
New London Laboratory
New London, CT 06320
Phone: (203) 447-4908
Autovon: 636-4908

NAVAL WAR COLLEGE

Bannibal F. Costa
Deputy Dean of Administration
Naval War College
Newport, RI 02840
Phone: (401) 841-2260
Autovon: 948-2260

NAVAL WEAPONS CENTER

G. F. Linsteadt (George), Code 3203 Naval Weapons Center China Lake, CA 93555 Phone: (714) 939-2305 Autovon: 245-2305

NAVAL WEAPONS STATION (YORKTOWN)

John Zehmer (Peter), Code 50
Naval Weapons Station
Yorktown, VA 23691
Phone: (804) 887-4763,4715
Autovon: 953-4763,4715

NAVAL WEAPONS SUPPORT CENTER

C. D. Robinson (Dale), Code 50
Naval Weapons Support Center
Crane, IN 4752
Phone: (812) 854-1282,1358
Autovon: 482-1282,1358

NAVY ASRONAUTICS GROUP

CW04 W. R. McCoy (Bill), Code SPM-001 Navy Astronautics Group Point Mugu, CA 93042 Phone: (805) 982-8827 Autovon: 351-8827

NAVY CLOTHING AND TEXTILE RESEARCH PACILITY

J. A. Mylotte (John), Code 13
Navy Clothing and Textile Research Facility
21 Strathmore Rd.
Natick, MA 01760
Phone: (617) 653-2672
Phone: 955-2672

•

I

NAVY PERSONNEL RESEARCH & DEVELOPMENT CENTER

The second secon

Robert Thorpe, Code P401
Dr. F. Sands (Prank), Code P402
Navy Personnel Research & Development Center
San Diego, CA 92152
Phone: (714) 225-7109 (Sands)
Autovon: 933-7424 (Thorpe)
933-7109 (Sands)

OFFICE OF NAVAL RESEARCH

A. C. Williams (Ann), Code 305, Staff Patent Advisor (for information on invention licensing program) Office of Naval Research
Ballston Tower 1
800 N. Quincy St.
Arlington, VA 22217
Phone: (202) 696-4005
Autovon: 226-4005

OFFICE OF MAYAL RESEARCH

Dr. Jules W. Enig, Code 200B Office of Mayal Research 800 M. Quincy St. Arlington, VA 22217 Phone: (202) 696-4225 Autovon: 226-4225

OFFICE OF NAVAL RESEARCH - BOSTON

F. S. Gardner (Frank)
Office of Naval Research - Boston
Building 114, Section D
666 Summer St.
Boston, MA 02210
Phone: (617) 542-6000, Ext. 329/319/112
Autovon: 955-8329/8319/8112

OFFICE OF NAVAL RESEARCH - CHICAGO

Dr. G. Sandoz (George), Code 490 Office of Naval Research - Chicago 536 South Clark St., Room 286 Chicago, IL 60605 Phone: (312) 353-6067

OFFICE OF NAVAL RESEARCH - PASADENA

Dr. L. E. Larmore (Lewis)
Office of Naval Research - Pasadena
1030 East Green St.
Pasadena, CA 91106
Phone: (213) 795-5971
Autovon: 360-2410

PACIFIC MISSILE TEST CENTER

Paul Braan, Code 0123
Pacific Missile Test Center
Point Mugu, CA 93042
Phone: (805) 982-8741
Autovon: 351-8741

POLARIS MISSILE FACILITY - ATLANTIC

E. J. Durr (Edwin), Code SPC 053, Technical Staff Polaris Missile Facility - Atlantic Charleston, SC 29408 Phone: (803) 743-7851 Autovon: 794-7851

C. L. Adams (Ted), Code PM4
Naval Ordnance Station
Indian Head, MD 20640
Phone: (301) 743-4421

Autovon: 364-4421

NAVAL ORDNANCE STATION (INDIAN HEAD)

STRATEGIC WEAPONS PACILITY - PACIFIC

G. L. Fischer (Glenn), Code SPB 211
Strategic Weapons Facility - Pacific
Bremerton, NA 98315
Phone: (206) 396-4918
Autovon: 744-4918

TRIDENT SYSTEM PROJECT

J. L. Crone (John), Code PM2-001
Tech. Director, Scientific Development/Evaluation
c/o Project Manager, Trident System Project
Department of the Mavy
Washington, DC 20362
Phone: (202) 692-7202
Autovon: 222-7202

U. S. NAVAL ACADEMY

Dr. R. D. Mathieu (Richard)
Director of Research
U. S. Naval Academy
Annapolis, MD 21402
Phone: (301) 267-2504

III

Park 1. And

TABLE OF CONTENTS

																												L G
echnology	echnology Transfer Projects for Federal Agencies	Projects	for	Federal	Agencies .	•	•	•	:	•	:	•	•	•	•	•	:	•	:	•	•	:	•	•	:	•	•	B-2B-
echnology	echnology Transfer Projects for Foreign Governments	Projects	for	Foreign (Sovernment	Ø	:	•	:	•	:	•	•	•	•	•	:	•		•	•	•	•	•	:	•	•	B-5
echnology	echnology Transfer Projects for Industry and Small Business	Projects	for	Industry	and Small	Ę.	ısin	ess	•	•		•	•	:	•	•	:	•		•	•	:	•	•	:	•		B-6
echnology	echnology Transfer Projects for Nonprofit Institutions	Projects	for	Nonprofi	t Institut	tion	. 81	•	·	•	•	•	•	:	•	•	:	•		•	•	:	•	•	:	•		B-7
echnology	echnology Transfer Projects for State and Local Governments	Projects	for	State and	i Local G	ove:	nme	nts		•	•	•	•	•	•	•	:	•		•	•	•	•	•	:	•	•	B-8

FY 1979

TECHNOLOGY TRANSPER PROJECTS FOR PEDERAL AGENCIES LIST OF SPONSORS

Ames Research Center, NASA

Behavioral and Social Sciences, U.S. Army

Bureau of Land Management, Department of the Interior

Defense Advanced Research Projects

Defense Construction Supply Center

Defense General Supply Center

Defense Mapping Agency

Defense Nuclear Agency

Department of Commerce

Department of Energy

Federal Aviation Administration

Pederal Highway Administration, DOT

Federal Laboratory Consortium for Technology Transfer

Federal Railroad Administration, DOT

Food and Drug Administration

George C. Marshall Space Flight Center, NASA

Goddard Space Flight Center, NASA

Immigration and Naturalization, Department of Justice

Independent Research and Development/Technology Utilization

Joint Cruise Missiles Project Office

Joint Logistics Command

Lawrence Livermore Laboratory, ERDA

Lewis Research Center, NASA

Los Alamos Scientific Laboratory, Department of Energy

Lyndon B. Johnson Space Flight Center, NASA Maritime Administration National Aeronautics and Space Administration

National Data Buoy Project, NOAA

National Environmental Research Center, EPA

National Marine Pisheries Service

National Oceanic and Atmospheric Administration

National Science Foundation

Naval Air Systems Command

Naval Electronics Systems Command

Naval Pacilities Engineering Command

Naval Material Command

Naval Medical Research and Development Command

Naval Ocean Research and Development Activity

Naval Oceanographic Office

Naval Postgraduate School

Naval Research Center

Naval Sea Systems Command

Naval Training Equipment Center

NAVY NATO SEASPARROW

Nevada Operations Office, Department of Energy

Nuclear Regulatory Commission

Office of Hazardous Material, DOT

Office of Naval Research

Physical Security Systems Directorate ESD/AFSC/USAF

Rome Air Development Center, USAF

Safety/Isotope-Fuel, Department of Energy

Sea Grant College Program

Solar Research Institute, Department of Energy

Strategic Systems Project Office

U.S. Coast Guard

U.S. Geological Survey, Department of the Interior

U.S. Navy

U.S. Postal Service

Various

Veterans Administration

à

FY 1979

TECHNOLOGY TRANSFER PROJECTS FOR FOREIGN GOVERNMENTS LIST OF SPONSORS

Great Britain

International Government

FY 1979

TECHNOLOGY TRANSFER PROJECTS FOR INDUSTRY AND SMALL BUSINESS LIST OF SPONSORS

Aerojet Ordnance Manufacturing Company American Safety and Plight System

Avondale Shipyard, Inc.

Bay Technical Associates, Inc.

Beckman Instruments, Inc.

Explosive Technology, Inc.

Firestone Coated Fabrics Co., Inc.

General Dynamics

Hughes Aircraft Company

Louisiana Power and Light

Mississippi Power and Light

M-R-S Mfg. Co.

Nus Corp.

Production Control Systems, Inc.

Raychem Corp.

Royal Industries, Inc.

Upjohn International

Vought Helicopter, Inc.

FY 1979

TECHNOLOGY TRANSFER PROJECTS FOR NONPROFIT INSTITUTIONS LIST OF SPONSORS

T.

Institute for Acoustical Research

International Research Group on Wood Preservation

National Science Foundation

New England Innovation Group

Metal Properties Council

Pacific Northwest Innovations Group

Rhode Island League of Cities and Towns

University of Connecticut

terms that it is the terms to be a

i

FY 1979

TECHNOLOGY TRANSFER PROJECTS FOR STATE AND LOCAL GOVERNMENTS
LIST OF SPONSORS

California, San Diego (city and county)

California, Santa Barbara County

California, University of

California, University of BuMed and Surgery

Connecticut, Conference of Municipalities

Connecticut, General Assembly

Kansas Western Ground Water District #1

Maryland, Anne Arundel County Schools

Nevada, Carson City

New England Innovation Group

New Mexico, Santa Fe

South Carolina, Wildlife and Marine Resources Department

APPENDIX C

ABBREVIATIONS AND ACRONYMS

PL/JHU	Applied Physics Laboratory/Johns Hopkins University
,	Civil Engineering Laboratory
ARPA	Defense Advanced Research Projects
To the state of th	Department of Transportation
Ę.	David W. Taylor Naval Ship Research and Development Center
AA	Pederal Aviation Administration
LTC	Fleet Analysis Center
IDEP	Government-Industry Data Exchange Program
Ma	Department of Health, Education and Welfare
red/tu	Independent Research and Development/Technology Utilization
CMPO	Joint Cruise Missiles Project Office
ADC	Naval Air Development Center
AEC	Naval Air Engineering Center
ASA	National Aeronautics and Space Administration
ATC	Naval Air Test Center
AVAIRSYSCOM	Naval Air Systems Command
AVELECSYSCOM	Naval Electronics Systems Command
AVFAC	Naval Facilities Command
АУНАТСОН	Naval Material Command
AVOC	Naval Oceanographic Office
AVSEASYSCOM	Naval Sea Systems Command
BIOL	Naval Biosciences Laboratory
CSC	Naval Coastal Systems Center

NHRC	Naval Health Research Center
NMEF	Naval Mine Engineering Facility
NMR&D	Naval Medical Research and Development Command
NOAA	National Oceanic and Atmospheri c Administration
NOC	Naval Oceanographic Office
NORDA	Naval Ocean Research and Development Activity
NOSC	Naval Ocean Systems Center
NPRDC	Navy Personnel Research and Development Center
SAN	Naval Postgraduate School
NRL	Naval Research Laboratory
NSWC	Naval Surface Weapons Center
NSWSES	Naval Ship Weapons Engineering Station
NTEC	Navy Training Equipment Center
NUSC	Naval Underwater Systems Center
NWC	Naval Weapons Center
NWSC	Naval Weapons Support Center
ONR	Office of Naval Research
USNA	U.S. Naval Academy