第2章 空间描述和变换 1. 外积

计算方法

2. 旋转矩阵和齐次变换矩阵

 $[p_x]^{\hat{}}[q_x] \quad [0 \quad -p_z \quad p_y][q_x]$

 $[p_z] [q_z] [-p_y p_x 0 [q_z]$

 $\begin{vmatrix} p_x & p_y & p_z \end{vmatrix}$ 或 $P \times Q = \begin{vmatrix} p_y & q_y \end{vmatrix} = \begin{vmatrix} p_z & 0 & -p_x \end{vmatrix} \begin{vmatrix} q_y & \text{对任何R都只有 2 组解。若} r_{11} + r_{22} + r_{33} > -1$,可解得:

 ${}_{A}^{B}\boldsymbol{T} = \begin{bmatrix} {}_{A}^{B}\boldsymbol{R} & {}^{B}\boldsymbol{O}_{A} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} = \begin{bmatrix} {}_{B}^{A}\boldsymbol{R}^{T} & -{}_{B}^{A}\boldsymbol{R}^{T}{}^{A}\boldsymbol{O}_{B} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} = {}_{B}^{A}\boldsymbol{T}^{-1} \quad {}^{A}\boldsymbol{P} = {}^{A}\boldsymbol{O}_{B} + {}_{B}^{A}\boldsymbol{R}^{B}\boldsymbol{P}$ 3. 姿态的欧拉角和固定角表示(欧拉角绕联体坐标系,固定角绕参考坐标系)

1) 基本旋转矩阵 (x横滚 roll y俯仰 pitch z偏摆 yaw)

$$R_{z'y'z'}(\alpha,\beta,\gamma) = \begin{bmatrix} c_{\alpha}c_{\beta}c_{\gamma} - s_{\alpha}s_{\gamma} & -c_{\alpha}c_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta} \\ s_{\alpha}c_{\beta}c_{\gamma} + c_{\alpha}s_{\gamma} & -s_{\alpha}c_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta} \\ -s_{\beta}c_{\gamma} & s_{\beta}s_{\gamma} & c_{\beta} \end{bmatrix}$$
③ **固定角** $R_{xyz}(\gamma,\beta,\alpha) = R_{z}(\alpha)R_{y}(\beta)R_{x}(\gamma) = R_{z'y'x'}(\alpha,\beta,\gamma)$
④ **性质**: \mathbf{zyx} 欧拉角 $\beta \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$; \mathbf{zyz} 欧拉角 $\beta \in [0,\pi]$

总有 2 姿态无法唯一表达(只能确定 $\alpha \pm \gamma$): 非对称 $\beta = \pm \pi/2$ 对称 $\beta = 0/\pi$ 姿态的等效轴角表示(表示大范围旋转时, K会跳变) ① 等效轴角旋转矩阵 $(k_x^2 + k_y^2 + k_z^2 = 1, v = 1 - c, R_K(\theta) = R_{-K}(-\theta))$

 ${}^{A}_{B}R = R_{K}(\boldsymbol{\theta}) = \begin{vmatrix} k_{x}k_{y}v + k_{z}s & k_{y}^{2}v + c & k_{y}k_{z}v - k_{x}s \end{vmatrix}$

 $R_z(\pm \pi + \alpha)R_v(\pm \pi - \beta)R_x(\pm \pi + \gamma) = R_z(\alpha)R_v(\beta)R_x(\gamma)$ $R_z(\pm \pi + \alpha)R_v(-\beta)R_z(\pm \pi + \gamma) = R_z(\alpha)R_v(\beta)R_z(\gamma)$

 $\begin{bmatrix} k_x^2 v + c & k_x k_y v - k_z s & k_x k_z v + k_y s \end{bmatrix}$

 $k_x k_z v - k_y s$ $k_y k_z v + k_x s$ $k_z^2 v + c$ 列题: 已知 $\{A\}$ 中的 $^{A}P(0)$,求绕 ^{A}K 旋转 θ 后的 $^{A}P(1)$:设 $\{B\}$ 初始与 ${A}$ 重合,一起旋转, ${}^{A}P(1) = {}^{A}O_{B} + {}^{A}_{B}R^{B}P = R_{K}(\theta){}^{A}P(0)$

② **计算**: 令 $\theta \in [0,\pi]$,有 $\theta = \arccos[(r_{11} + r_{22} + r_{33} - 1)/2]$ $\theta \in (0,\pi)$ $\theta = \pi$.

 $[r_{32} - r_{23}]$ $[\sqrt{(r_{11} + 1)/2}]$ $\begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}, \quad \pm \begin{bmatrix} \sqrt{(r_{11} + 1)/2} \\ r_{12}/\sqrt{2(r_{11} + 1)} \end{bmatrix},$ 任意单位向量(无穷解)

③ 绕^AK:^A_BR(1) = $\mathbf{R}_{K}(\boldsymbol{\theta})^{A}_{B}R(0)$ 绕^BK:^A_BR(1) = $^{A}_{B}R(0)\mathbf{R}_{K}(\boldsymbol{\theta})$ (4) 齐次变换矩阵: (相对于参考坐标系(A)的旋转会引起(B)的位置变化)

$$T = egin{bmatrix} R_K(oldsymbol{ heta}) & \mathbf{F} \ \mathbf{F}$$

 $T_{\theta}^{A}T$ --{B}绕 ^{A}K 转 θ ,再平移 ^{A}P $^{B}T_{\theta}^{A}T$ --{B}平移 ^{B}P ,再绕 ^{B}K 转 θ 姿态的单位四元数表示(单位四元数的乘积仍是~)

 $(ac - b_1d_1 - b_2d_2 - b_3d_3) + i(ad_1 + b_1c + b_2d_3 - b_3d_2) +$

 $j(ad_2 - b_1d_3 + b_2c + b_3d_1) + k(ad_3 + b_1d_2 - b_2d_1 + b_3c)$

① 四元数: $i^2 = j^2 = k^2 = ijk = -1$ (乘法不满足交换律) ij = k, jk = i, ki = j kj = -i, ji = -k, ik = -j $(a+ib_1+jb_2+kb_3)(c+id_1+jd_2+kd_3) =$

工作空间: 机器人末端工具联体坐标系原点所能到达的范围 灵巧工作空间: 机器人末端工具能够以任何姿态到达的区域

 $=\pm\frac{1}{2}\begin{vmatrix}sgn(r_{32}-r_{23})\sqrt{r_{11}-r_{22}-r_{33}+1}\\sgn(r_{13}-r_{31})\sqrt{-r_{11}+r_{22}-r_{33}+1}\end{vmatrix}$ $sgn(r_{21}-r_{12})\sqrt{-r_{11}-r_{22}+r_{33}+1}$

② 旋转矩阵 \leftrightarrow 单位四元数 $a + ib_1 + jb_2 + kb_3 \in S^3$

 $[2(a^2+b_1^2)-1 \quad 2(b_1b_2-ab_3) \quad 2(b_1b_3+ab_2)]$

 $2(b_1b_3-ab_2)$ $2(b_2b_3+ab_1)$ $2(a^2+b_3^2)-1$

 $\sqrt{r_{11} + r_{22} + r_{33} + 1}$

 $\mathbf{R}_{h}(\mathbf{a}) = \begin{bmatrix} 2(b_1b_2 + ab_3) & 2(a^2 + b_2^2) - 1 & 2(b_2b_3 - ab_1) \end{bmatrix}$

(1) 若单位四元数
$$a,b,c$$
满足 $ab=c$,则 $R(a)R(b)=R(c)$ (2) ${}^{A}P=[x_1\ y_1\ z_1]^T,{}^{B}P=[x_2\ y_2\ z_2]^T,q=a+ib_1+jb_2+kb_3$ 原点不动时,有 ${}^{A}P={}^{B}R^BP=R_b(a)^BP$,则**向量转换公式**为:

 $ix_1 + jy_1 + kz_1 = q(ix_2 + jy_2 + kz_2)q^*$ ③ 等效轴角 $R_K(\theta) \leftrightarrow$ 四元数 $R_b(a)$

④ 欧拉参数: 定义四维向量[a b₁ b₂ b₃]^T ∈ R⁴, 与四元数 $a + ib_1 + jb_2 + kb_3 \in \mathbb{H}$ 一对应。定义**格拉斯曼积**:

第3章 机器人运动学

$$\begin{bmatrix} a \\ \vec{b} \end{bmatrix} \oplus \begin{bmatrix} c \\ \vec{d} \end{bmatrix} = \begin{bmatrix} ac - \vec{b}^T \vec{d} \\ a\vec{d} + c\vec{b} + \vec{b} \times \vec{d} \end{bmatrix} = \begin{bmatrix} a & -b_1 - b_2 & -b_3 \\ b_1 & a & -b_3 & b_2 \\ b_2 & b_3 & a & -b_1 \\ b_3 & -b_2 & b_1 & a \end{bmatrix} \begin{bmatrix} c \\ d_1 \\ d_2 \\ d_3 \end{bmatrix} = A \begin{bmatrix} c \\ d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
 若是单位四元数则 $A^TA = I$; 内积、来角和长度定义同普通向量

 $\mathbf{a} = \cos(\theta/2), \quad \vec{\mathbf{b}} = \vec{K}\sin(\theta/2)$

1. 定义 ① 串联机构:多个连杆通过关节以串联形式连成首尾不封闭的结构 为确定末端执行器在3维空间的位姿,串联机器人至少需要6个关节

- ② 几何连杆 $\vec{r}_{0_{i-1}P_i}$ 连杆转角 α_{i-1} 连杆长度 a_{i-1} 连杆偏距 d_i 关节角 θ_i ③ **非标准 D-H 方法**: (若转动 1 接平动2, \hat{X}_1 垂直于两轴平面, 将 \hat{Y}_1 沿 d_2)
- (1)轴i和i + 1相交: O_i -两轴交点 \hat{X}_i -垂直于两轴平面 **(2)不相交**: O_i -公垂线与轴i的交点 \hat{X}_i -沿公垂线 2. 相邻连杆联体坐标系的变换
- ① $\{i-1\}$ 变换到 $\{i\}: \hat{X}_i$ 移 $a_{i-1} \to \hat{X}_i$ 转 $a_{i-1} \to \hat{Z}_i$ 移 $d_i \to \hat{Z}_i$ 转 θ_i

第4章 机器人逆运动学 1. 定义

可达工作空间: 机器人**末端**工具以**至少一种**姿态到达的区域 ① 灵巧工作空间是可达工作空间的子集;

- ② 若目标在灵巧工作空间内,则逆运动学问题的解存在; ③ 若目标不在可达工作空间内,则逆运动学问题的解不存在;
- ④ 操作臂自由度少于6时,三维空间内不能达到全部位姿 2. 逆运动学求解(计算最短行程要加权, 侧重于移动小连杆)
- ① 含转动/移动关节的串联 6 自由度臂可解(一般是数值解)
- (2) 6 自由度**有解析解**的特性: 有多个正交关节轴或多个α_i = 0/±90°
- ③ 6 转动关节有封闭解的充分条件:有相邻3个关节轴线平行/交于一点
- (4) $\mathbf{x}\mathbf{k}\mathbf{k}_{1}\mathbf{c}_{\theta} + \mathbf{k}_{2}\mathbf{s}_{\theta} = \mathbf{l}$: $\diamondsuit r = \sqrt{k_{1}^{2} + k_{2}^{2}}, \gamma = \arctan 2(k_{2}, k_{1})$ $\bar{q}k_1 = r\cos\gamma, k_2 = r\sin\gamma$ 故 $c_{\nu}c_{\theta} + s_{\nu}s_{\theta} = \cos(\gamma - \theta) = \frac{l}{2}$

第5章 微分运动学与静力学

- 1. 定义 ① ${}^{B}V_{o} = d^{B}Q/dt$, ${}^{A}({}^{B}V_{o}) = {}^{A}R^{B}V_{o}$ 是 ${}^{B}V_{o}$ 在 A 中的描述 $v_C = {}^UV_{CORC}$, 表示{C}的原点相对于世界坐标系{U}的速度,
- ${}^{A}\boldsymbol{v}_{C} = {}^{A}_{II}R\boldsymbol{v}_{C} = {}^{A}_{II}R{}^{U}\boldsymbol{V}_{CORG} \neq {}^{A}\boldsymbol{V}_{CORG} \quad {}^{C}\boldsymbol{v}_{C} = {}^{C}_{II}R\boldsymbol{v}_{C} = {}^{C}_{II}R{}^{U}\boldsymbol{V}_{CORG}$ ② $\{B\}$ 在 $\{A\}$ 中的定点转动→绕瞬时转动轴的转动,用**角速度向量** $^{A}\Omega_{o}$ 表 示,其**方向**=瞬轴在 $\{A\}$ 中的方向,**大小**=旋转角速度 ${}^{C}({}^{A}\Omega_{R}) = {}^{C}_{A}R^{A}\Omega_{R} \ \boldsymbol{\omega}_{C} = {}^{U}\Omega_{C} \ {}^{A}\boldsymbol{\omega}_{C} = {}^{A}_{U}R\omega_{C} \ {}^{C}\boldsymbol{\omega}_{C} = {}^{C}_{U}R\omega_{C}$
- 2. 线速度与角速度 ① 旋转矩阵的导数 $({}_{B}^{A}S = {}^{A}\Omega_{B}^{\hat{}} = {}_{B}^{A}R_{B}^{A}R^{T})$

② 线速度变换 $^BV_O \rightarrow ^AV_O$

 $0 \quad -\Omega_z \quad \Omega_y$ ${}^{A}_{B}\dot{R} = \left| \Omega_{z} \right| \quad 0 \quad -\Omega_{x} \left| {}^{A}_{B}R \right| = {}^{A}_{B}S^{A}_{B}R = {}^{A}\Omega^{\wedge}_{B}{}^{A}_{B}R = {}^{A}\Omega_{B} \times {}^{A}_{B}R$ $\left[-\Omega_{v} \quad \Omega_{x} \quad 0\right]$

$${}^AV_Q = {}^AV_{BORG} + {}^A_BR^BV_Q + {}^A_B\dot{R}^BQ$$

$$= {}^AV_{BORG} + {}^A_BR^BV_Q + {}^A\Omega_B \times {}^A_BR^BQ$$
 $\{B\}$ 原点线速度 $+Q$ 在 $\{B\}$ 中的线速度 $+\{B\}$ 对 $\{A\}$ 旋转形成的切向线速度

③ 角速度变换: ${}^{A}\Omega_{C} = {}^{A}\Omega_{B} + {}^{A}({}^{B}\Omega_{C}) = {}^{A}\Omega_{B} + {}^{A}_{B}R^{B}\Omega_{C}$ ④ 连杆间速度传递(注意不是;;R,要从;;T转置得到)

$^{l+1}\omega_{i+1}$	$^{i+1}_{i}R^{i}\boldsymbol{\omega}_{i} + \theta_{i+1}^{i+1}Z_{i+1}$	$^{l+1}_{i}R^{i}\boldsymbol{\omega_{i}}$				
$^{i+1}v_{i+1}$	${}^{i+1}_{i}R({}^{i}\boldsymbol{v_{i}}+{}^{i}\boldsymbol{\omega_{i}}^{i}P_{i+1})$	(同左) + $\dot{d}_{i+1}^{i+1}\hat{Z}_{i+1}$				
5 向外迭代法 (N为 连杆 数(关节数+1), {N}为末端辅助坐标系)						
t = 0 $t = 0$ $t =$						

- \rightarrow 求 $_{N}^{0}T$,则[$^{0}\omega_{N}$ $^{0}v_{N}$] = $_{N}^{0}R[^{N}\omega_{N}$ $^{N}v_{N}$] 3. 几何雅可比矩阵
- ① 定义: $\begin{bmatrix} v \\ \omega \end{bmatrix} = J(\Phi)\dot{\Phi}$ (不能直接对运动学方程求导得到 ω) ② 向量积构造法 (2;是{0}中的坐标,从?T中得到)
- 转动型关节 平动型关节 $\hat{Z}_i \times (O_N - O_i) \dot{\theta}_i$ $\boldsymbol{\omega}_{\scriptscriptstyle N}^{(i)}$ $\hat{Z}_i \dot{\boldsymbol{\theta}}_i$ ③ 参考系变换

$$\begin{bmatrix} {}^{i}\boldsymbol{\nu}_{N} \\ {}^{i}\boldsymbol{\omega}_{N} \end{bmatrix} = {}^{i}\boldsymbol{J}(\boldsymbol{\Phi})\dot{\boldsymbol{\Phi}} \qquad {}^{i}\boldsymbol{J}(\boldsymbol{\Phi}) = \begin{bmatrix} {}^{i}\boldsymbol{R} & \boldsymbol{0} \\ \boldsymbol{0} & {}^{i}\boldsymbol{R} \end{bmatrix} \boldsymbol{J}(\boldsymbol{\Phi})$$

分运动学和奇异性

- 4. 逆微分运动学和奇异性 ① **定义**:对于 6x6的J和某个 ϕ ,若 $J(\phi)$ 可逆,则对于笛卡尔速度向量
- v_N , 由 $\dot{\boldsymbol{\Phi}} = \boldsymbol{J}^{-1}(\boldsymbol{\Phi})v_N$ 可计算产生 v_N 的各关节转速。 ② 奇异位形: 使 6x6 的/不可逆(不满秩),或末端在笛卡尔空间中失去
 - **自由度**(如只能沿垂直连杆的方向运动)的 ϕ , 分为边界/内点奇异性 5. 分析雅可比矩阵
 - ① **定义**: 将最小表示的运动学方程对关节变量微分得到(P = v) $\dot{\mathbf{X}} = \left[\dot{\mathbf{P}}(\Phi) \dot{\mathbf{\Psi}}(\Phi)\right]^T = I_a(\Phi)\dot{\Phi}$ 其中 $\mathbf{\Psi}(\Phi)$ 为固定角/欧拉角表示 旋转矩阵R → 刚体角速度ω (可用于计算几何雅可比):

 $(\omega_x = \dot{r}_{31}r_{21} + \dot{r}_{32}r_{22} + \dot{r}_{33}r_{23})$ $\dot{R}R^T = \omega^{\hat{}} \rightarrow \left\{ \omega_{\gamma} = \dot{r}_{11}r_{31} + \dot{r}_{12}r_{32} + \dot{r}_{13}r_{33} \right\}$ $\left(\omega_z = \dot{r}_{21}r_{11} + \dot{r}_{22}r_{12} + \dot{r}_{23}r_{13}\right)$ $\mathbf{R} = \mathbf{R}_{\mathbf{z}'\mathbf{y}'\mathbf{z}'} \to \boldsymbol{\omega} = \begin{bmatrix} \omega_{\mathbf{x}} \\ \omega_{\mathbf{y}} \\ \omega_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} 0 & c_{\alpha} & s_{\alpha}s_{\beta} \\ 1 & 0 & c_{\beta} \end{bmatrix} \boldsymbol{\Psi} = B_{a}(\boldsymbol{\Psi})\boldsymbol{\Psi}$

③ zyz 欧拉角速率 $\Psi(\Phi)$ →刚体角速度 ω :

④ 分析雅可比↔几何雅可比:

$$J(\phi) = \begin{bmatrix} I & 0 \\ 0 & B_a(\psi) \end{bmatrix} J_a(\phi) \leftrightarrow J_a(\phi) = \begin{bmatrix} I & 0 \\ 0 & B_a^{-1}(\psi) \end{bmatrix} J(\phi) = T_a J(\phi)$$

- ① **力偶**:两个大小相等、方向相反且不共线的平行力组成的力系,(f, -f)
- 对点O的力矩为 $r_{OA} \times f + r_{OB} \times (-f) = r_{BA} \times f$, 对刚体上的任何点力偶矩 不变,可在刚体上任意转移,有刚体上 A 点的力 = B 点的力 + $r_{s,a} \times f$
- ② 连杆静力传递: $\begin{cases} {}^{i}f_{i} = {}^{i}_{i+1}{}^{i}R^{i+1}f_{i+1} \\ {}^{i}n_{i} = {}^{i}_{i+1}{}^{i}R^{i+1}n_{i+1} + {}^{i}P_{i+1} \times {}^{i}f_{i} \end{cases}$
- ③ 向内迭代法: 设 $^{N}f_{N} = [f_{x} f_{y} f_{z}]^{T}$, $^{N}n_{N} = [n_{x} n_{y} n_{z}]^{T}$, $\hat{p}^{i}f_{i}^{i}n_{i}$ 最后得到**转动型**的主动力矩 $\tau_i = {}^t n_i^{Ti} \hat{Z}_i$,**平动型**的主动力 $\tau_i = {}^t f_i^{Ti} \hat{Z}_i$ ④ 力域雅可比: $\tau = {}^{N}J^{TN}F$ (6x1 笛卡尔力+力矩→关节力矩, 注意设 ${}^{N}F$ 要用 第6章 机器人轨迹规划 NI^T : $\partial^0 F$ 要用 $\partial^0 I^T$: NF_N 是末端对环境的力)
 - 1. 三次多项式 $\phi(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$, 系数解为 $\dot{\phi}_{0} - \frac{3\phi_{0} - 3\phi_{f} + (2\dot{\phi}_{0} + \dot{\phi}_{f})t_{f}}{t_{r}^{2}} \frac{2\phi_{0} - 2\phi_{f} + (\dot{\phi}_{0} + \dot{\phi}_{f})t_{f}}{t_{r}^{3}}$
 - 2. 五次多项式 $\phi(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$ 3. 考虑关节中间点的三次多项式

确定**中间点的期望关节速度**的方法: ① **直接指定**: 以 $\dot{\phi}_{01} = \Delta \phi / \Delta t$ 为每段平均速度。若 $\dot{\phi}_{01} = \dot{\phi}_{12}$ 同号, $\dot{\phi}_{1}$

取为两者平均;若异号,取 $\dot{\phi}_1 = 0$ 。② 保证相邻两段多项式**加速度**连续

4. 带抛物线过渡的直线段 抛物线方程: $\phi(t) = a_0 + a_1 t + \frac{1}{2} \ddot{\phi} t^2$

有解条件: $\ddot{\phi} \geq 4(\phi_f - \phi_0)/t_f^2$ 5. 考虑关节中间点的带抛物线过渡的直线段

① 起始 $\dot{\phi}_1 = SGN(\phi_2 - \phi_1) |\dot{\phi}_1| \quad t_1 = t_{d12} - \sqrt{t_{d12}^2 - \frac{2(\phi_2 - \phi_1)}{\dot{\phi}_2}}$

$$\dot{\phi}_{12} = \frac{\phi_2 - \phi_1}{t_{d12} - \frac{1}{2}t_1} \quad t_{12} = t_{d12} - t_1 - \frac{1}{2}t_2 \quad \text{2phi} \dot{\phi}_j = SGN(\dot{\phi}_{jk} - \dot{\phi}_{ij}) |\dot{\phi}_j|$$

 $\boldsymbol{t_j} = \frac{\dot{\phi}_{jk} - \dot{\phi}_{ij}}{\ddot{\phi}_i} \quad \dot{\boldsymbol{\phi}_{jk}} = \frac{\phi_k - \phi_j}{t_{dik}} \quad \boldsymbol{t_{jk}} = t_{djk} - \frac{t_j + t_k}{2}$

③末尾 $\dot{\phi}_n = SGN(\phi_{n-1} - \phi_n) |\dot{\phi}_n| \quad t_n = t_{d(n-1)n} - \sqrt{t_{d(n-1)n}^2 - \frac{2(\phi_{n-1} - \phi_n)}{\lambda}}$

 $\dot{\phi}_{(n-1)n} = \frac{\phi_n - \phi_{n-1}}{t_{d(n-1)n} - \frac{1}{2}t_n} \qquad t_{(n-1)n} = t_{d(n-1)n} - t_n - \frac{1}{2}t_{n-1}$

6. 笛卡尔直线运动

1) →令 $\mathbf{k} = \mathbf{K}(\mathbf{t}) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$ →列方程求解系数 ②姿态规划: 用等效轴角表示姿态 $K = \begin{bmatrix} k_x k_y k_z \end{bmatrix}^T = \theta \begin{bmatrix} \hat{k}_x \hat{k}_y \hat{k}_z \end{bmatrix}^T$ 即 转动量×单位转动轴,选 $\|K_0-(heta-360n)[\widehat{k}_x\,\widehat{k}_y\,\widehat{k}_z]^T\|$ 最小的n,对三个k插值

①**位置规划**:设始末位置为 P_0 和 $P_1 \rightarrow P(k) = (1-k)P_0 + kP_1(0 \le k \le 1)$

7. 姿态的四元数(欧拉参数)插值 ①Slerp 公式: 设 $p \in [0,1], \theta = \cos^{-1}(r_0, r_1)$ 有 $r_p = \frac{\sin[(1-p)\theta]}{\sin\theta} r_0 + \frac{\sin(p\theta)}{\sin\theta} r_1$,令p = P(t)……

(2) $r_0 \rightarrow r_1$ 等效于 $r_0 \rightarrow -r_1$, 选取夹角为锐角的进行插值 第7章 机器人动力学

第 7 章 机器人动力学
1. 加速度的传递
$$\mathbb{Q}^{A'Q} = {}^{A'RB}Q_Q + {}^{A}R^BV_Q + {}^{A}\Omega_B \times {}^{A}R^BQ + {}^{A}\Omega_B \times ({}^{A}\Omega_B \times {}^{A}R^BQ)$$

②
$${}^{A}\dot{\Omega}_{C}={}^{A}\dot{\Omega}_{B}+{}^{A}_{B}R^{B}\dot{\Omega}_{C}+{}^{A}\Omega_{B}\times{}^{A}_{B}R^{B}\Omega_{C}$$
2. 惯性张量(C 是质心坐标系,若质量均匀则换成 $M(y^{2}+z^{2})\rho(x,y,z)dxdydz$)

$$c_I = \sum \begin{bmatrix} m_i(y_i^2 + z_i^2) & -m_i x_i y_i & -m_i x_i z_i \\ -m_i x_i y_i & m_i(x_i^2 + z_i^2) & -m_i y_i z_i \\ -m_i x_i z_i & -m_i y_i z_i & m_i(x_i^2 + y_i^2) \end{bmatrix} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}$$
 旋转刚体的欧拉方程: $c_i^2 N = c_i^2 \Gamma_i^2 \omega_c + c_i^2 \omega_c \times c_i^2 \Gamma_i^2 \omega_c \quad (\omega_c = U_{\Omega_c})$ 3.牛顿-欧拉法迭代动力学方程基于动力学分析连杆间约束力/力矩平衡

 向外迭代: 计算从连杆1~N的联体坐标系的角速度、角+线加速度、 **质心线加速度**,最后求作用在**质心上的力和力矩**(以下用2代替:+12;...) 角速度:见 5-2 角加速度: $i+1\dot{\omega}_{i+1} = i+1iR^i\dot{\omega}_i + i+1iR^i\omega_i \times \dot{\theta}_{i+1}Z + \ddot{\theta}_{i+1}Z$

$$({}^t\boldsymbol{\omega}_l \times {}^tO_{l+1})] + 2^{l+1}\boldsymbol{\omega}_{l+1} \times \dot{d}_{l+1}Z + \ddot{d}_{l+1}Z$$
,转动型 $\dot{d}_{l+1} = \ddot{d}_{l+1} = 0$ 质心线加速度: ${}^t\dot{v}_{C_l} = {}^t\dot{v}_l + {}^t\dot{\omega}_l \times {}^tP_{C_l} + {}^t\boldsymbol{\omega}_l \times ({}^t\boldsymbol{\omega}_l \times {}^tP_{C_l})$

质心力+力矩:
$${}^{i}F_{i} = m_{i}{}^{i}\dot{v}_{C_{i}}{}^{i}N_{i} = {}^{c_{i}}l_{i}{}^{i}\dot{\omega}_{i} + {}^{i}\omega_{i} \times {}^{c_{i}}l_{i}{}^{i}\omega_{i} \ ({}^{i}N_{i} = {}^{i}({}^{c_{i}}N_{i}))$$
② **向内迭代:** 根据力和力矩平衡方程,算**连杆**N~1**上的力**,同时计算

产生它们所需的**关节力/力矩** ${}^{i}f_{i} = {}_{i+1}^{i}R^{i+1}f_{i+1} + {}^{i}F_{i}$

$$m{ au}_i = {}^{i} m{n}_i^{T} \hat{Z}_i$$
 (转动) $m{ au}_i = {}^{i} m{f}_i^{T} \hat{Z}_i$ (平动)

③ 初始值:未端不对外界施加力时, ${}^{N} m{f}_N = {}^{N} m{n}_N = [0 \ 0 \ 0]^T$;基座不转时, ${}^{0} m{\omega}_0 = {}^{0} \hat{\omega}_0 = [0 \ 0 \ 0]^T$;考虑重力时 ${}^{0} \dot{\nu}_0 = [0 \ g \ 0]^T$ 与重力方向相反

4. 拉格朗日方法 (基于能量项对系统变量及时间微分)

 ${}^{i}\mathbf{n}_{i} = {}^{i}N_{i} + {}^{i}_{i+1}R^{i+1}\mathbf{n}_{i+1} + {}^{i}P_{C_{i}} \times {}^{i}F_{i} + {}^{i}O_{i+1} \times ({}^{i}_{i+1}R^{i+1}f_{i+1})$

① 拉格朗日函数:
$$\mathcal{L}(\boldsymbol{\Phi}, \dot{\boldsymbol{\Phi}}) = k(\boldsymbol{\Phi}, \dot{\boldsymbol{\Phi}}) - u(\boldsymbol{\Phi}), k$$
-动能 u -势能 ② 动力学方程: $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{\Phi}}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{\Phi}} = \xi \rightarrow \frac{d}{dt} \frac{\partial k}{\partial \dot{\boldsymbol{\Phi}}} - \frac{\partial k}{\partial \boldsymbol{\Phi}} + \frac{\partial u}{\partial \boldsymbol{\Phi}} = \tau - B\dot{\boldsymbol{\Phi}}$

③ 动能:
$$\mathbf{k}_{l} = \frac{1}{2}m_{l}v_{C_{l}}^{T}v_{C_{l}} + \frac{1}{2}i\omega_{l}^{T}C_{l}I_{l}^{i}\omega_{l} \quad (^{i}\omega_{l} = {}^{i}_{0}R\omega_{l} = {}^{0}_{0}R^{T}\omega_{l})$$

由 $v_{C_i} = J_P^{(i)} \dot{\Phi}_i$, $\omega_i = J_O^{(i)} \dot{\Phi}_i$ ($J_P^{(i)} + J_O^{(i)}$ 表示第i个质心坐标系的雅可比矩阵) 有 $\mathbf{k} = \frac{1}{2}\dot{\mathbf{\Phi}}^T M(\mathbf{\Phi})\dot{\mathbf{\Phi}}$ (M为**惯性矩阵**(对称正定))

$$\mathbf{H}\mathbf{K} = \frac{1}{2}\mathbf{\Phi}^T \mathbf{M}(\mathbf{\Phi})\mathbf{\Phi} \quad (\mathbf{M}\mathbf{N}\mathbf{B}\mathbf{E}\mathbf{E}\mathbf{P}\mathbf{H}(\mathbf{N}\mathbf{K}\mathbf{E}\mathbf{E}))$$

$$M = \sum_{i=1}^{n} \left[m_i (J_P^{(i)})^T J_P^{(i)} + (J_O^{(i)})^T {}_0^R R^C I_1 {}_0^R R^T J_O^{(i)} \right]$$
④ 势能: ${}^0 g = [0, -g, 0]^T (与重力方向相同), \quad u = -\sum_{i=1}^N m_i {}^0 g^{T0} P_{Ci}$

 $g_i(\boldsymbol{\Phi}) = \frac{\partial u}{\partial a} = -\sum_{j=1}^N m_j \, {}^0\boldsymbol{g}^T \frac{\partial^0 P_{C_j}}{\partial a} \rightarrow \boldsymbol{G}(\boldsymbol{\Phi}) = [g_1(\boldsymbol{\Phi}) \dots]^T$ 也可以直接用 $\frac{\partial u}{\partial a}$ 得到

$$g_l(\boldsymbol{\Phi}) = \frac{\partial u}{\partial \theta_l} = -\sum_{j=1}^N m_j \, {}^0g^T \frac{\partial^{-1}C_j}{\partial \theta_l} \rightarrow \boldsymbol{G}(\boldsymbol{\Phi}) = [g_1(\boldsymbol{\Phi}) \dots]^T$$
 也可以直接用 $\frac{\partial u}{\partial \theta_l}$ 得到

(5) **完整方程** $\boldsymbol{M}(\boldsymbol{\Phi})\ddot{\boldsymbol{\Phi}} + \boldsymbol{C}(\boldsymbol{\Phi},\dot{\boldsymbol{\Phi}})\dot{\boldsymbol{\Phi}} + \boldsymbol{B}\dot{\boldsymbol{\Phi}} + \boldsymbol{G}(\boldsymbol{\Phi}) = \tau_{(\dot{M}-2C)}$ 反对称)

Christoffel 符号
$$m{c_{kji}} = rac{1}{2} \left(rac{\partial m_{ij}}{\partial m{\phi_k}} + rac{\partial m_{ik}}{\partial m{\phi_i}} - rac{\partial m_{jk}}{\partial m{\phi_i}}
ight) = c_{jki}$$
, $m{c_{ij}} = \sum_{k=1}^N m{c_{kji}} \dot{m{\phi_k}}$

第8章 机器人运动控制 1. 电机及驱动器 $R_{mi}I_{mi} + E_{mi} = R_{mi}I_{mi} + k_{ei}\omega_{mi} = U_{mi} = k_{ui}U_{ci}$

转矩+转速公式 $T_{ei} = C_{Ti}I_{mi}$ $\omega_{mi} = (k_{ui}/k_{ei})U_{ci} - (R_{mi}/k_{ei})I_{mi}$ 2. 减速器 $\theta_{mi} = \eta_i \theta_i$ $T_{ai} = \eta_i T_{li}$ $J_{ai} \dot{\omega}_i = T_{ai} - T_{ci} - b_{ai} \omega_i$

3. 关节模型 $J_{ci}\ddot{\theta} + B_{ci}\dot{\theta} = K_{ci}U_{ci} - T_{ci} \rightarrow = \frac{K_{ci}U_{ci}(s) - T_{ci}(s)}{2}$

4. 考虑阶跃输入的 PD 控制(把1/s和K-;左移可化简, 反馈包含0;的微分)

设计 K_p 和 K_n 使 \overline{A} 特征值有负实部,设正定阵 O_I 和 Γ_I ,存在正定阵 P_I ,满 定响应过程; 需要机器人有**关节力矩传感器**,选取较小的刚度和阻尼应对高刚度环境

$$\underbrace{\begin{array}{c}
\widetilde{\theta}_{t}(s) \\
\widetilde{\theta}_{t}(s)
\end{array}}_{U_{ct}(s)} \underbrace{K_{ct}}_{U_{ct}(s)} \underbrace{\begin{array}{c}
T_{ct}(s) \\
I_{ct}(s)
\end{array}}_{I_{ct}(s+B_{ct})} \underbrace{\begin{array}{c}
U_{ct}(s) \\
I_{ct}(s)
\end{array}}_{U_{ct}(s)}$$

 $(k_{Pi}s + k_{li})K_{ci}\theta_{di}(s) - sT_{ci}(s)$ $\theta_{i}(s) = \frac{(\kappa_{Pl}s + \kappa_{li}) - \kappa_{li}}{I_{ci}s^{3} + (B_{ci} + k_{Di}K_{ci})s^{2} + k_{Pi}K_{ci}s + k_{li}K_{ci}}$ 劳斯判据: k_{Pi} 、 k_{Ii} 、 $k_{Di} > 0$ 且 $(B_{ci} + k_{Di}K_{ci})k_{Pi} > J_{ci}k_{Ii}$

5. 考虑二阶可导输入的 PID 控制 通过前馈引入 θ_a 的一、二阶导数

7. 集中控制电机电流反馈(将电机视为出力而非运动部件,关注转矩T_{et}而非转速)

6. 计算转矩前馈控制 估计 $\hat{T}_{ci}(s)$, 在 $U_{ci}(s)$ 加入 $\hat{T}_{ci}(s)/K_{ci}$

记为 $\tau = \tau_A - B_e \Phi(B_e)$ 为对角阵),与动力学方程合并: $(L = B + B_e)$ $M(\boldsymbol{\Phi})\ddot{\boldsymbol{\Phi}} + C(\boldsymbol{\Phi},\dot{\boldsymbol{\Phi}})\dot{\boldsymbol{\Phi}} + L\dot{\boldsymbol{\Phi}} + G(\boldsymbol{\Phi}) = \boldsymbol{\tau}_d$ 需设计计算 $\boldsymbol{\tau}_d$ (即电流)的算法 ② 重力补偿 PD 控制 $\tau_d = \Lambda_P(\phi_d - \phi) - \Lambda_D\dot{\phi} + G(\phi)$ $\Lambda_P \pi \Lambda_D \to N$ 阶正定

诺夫函数 $V_L=rac{1}{2}\dot{m{\phi}}^Tm{M}\dot{m{\phi}}+rac{1}{2}\widetilde{m{\phi}}^Tm{\Lambda}_{m{p}}\widetilde{m{\phi}}$,可证 V_L 正定, $\dot{V}_L=-\dot{m{\phi}}^T(m{L}+m{\Lambda}_{m{D}})\dot{m{\phi}}$

半负定且不恒为零, $\|x\| \to \infty$ 时 $V_L \to \infty$,故原点平衡状态大范围渐近稳定 ③ 逆动力学控制(α – β分解, 反馈线性化, 系统参数必须精确已知)

对①中模型取控制律 $\tau_d = M(\mathbf{\Phi})\alpha_{\mathbf{\Phi}} + \mathcal{C}(\mathbf{\Phi},\dot{\mathbf{\Phi}})\dot{\mathbf{\Phi}} + L\dot{\mathbf{\Phi}} + \mathbf{G}(\mathbf{\Phi})$ 其中 $\alpha_{\Phi} = \ddot{\boldsymbol{\Phi}}_d + K_D \dot{\widetilde{\boldsymbol{\Phi}}} + K_D \dot{\widetilde{\boldsymbol{\Phi}}}$

4 鲁棒控制(参数全用估计,通过设计 B_r 来应对不确定性) $\tau_{d} = \widehat{M}(\boldsymbol{\Phi})\alpha_{\boldsymbol{\Phi}} + \widehat{C}(\boldsymbol{\Phi},\dot{\boldsymbol{\Phi}})\dot{\boldsymbol{\Phi}} + \widehat{L}\dot{\boldsymbol{\Phi}} + \widehat{\boldsymbol{G}}(\boldsymbol{\Phi}),\alpha_{\boldsymbol{\Phi}} = \dot{\boldsymbol{\Phi}}_{d} + K_{D}\dot{\boldsymbol{\Phi}} + K_{P}\boldsymbol{\tilde{\boldsymbol{\Phi}}} + B_{r}$

(5) **自适应控制**(模型采用参数线性化形式, α_σ同3, 参数估计同4)

 $\tau_d = M(\boldsymbol{\Phi})\ddot{\boldsymbol{\Phi}} + C(\boldsymbol{\Phi},\dot{\boldsymbol{\Phi}})\dot{\boldsymbol{\Phi}} + L\dot{\boldsymbol{\Phi}} + G(\boldsymbol{\Phi}) = Y(\boldsymbol{\Phi},\dot{\boldsymbol{\Phi}},\ddot{\boldsymbol{\Phi}})\boldsymbol{\Psi}$ $\tau_d = \widehat{M}(\boldsymbol{\Phi})\alpha_{\boldsymbol{\Phi}} + \widehat{C}(\boldsymbol{\Phi}, \dot{\boldsymbol{\Phi}})\dot{\boldsymbol{\Phi}} + \widehat{L}\dot{\boldsymbol{\Phi}} + \widehat{\boldsymbol{G}}(\boldsymbol{\Phi}) = Y(\boldsymbol{\Phi}, \dot{\boldsymbol{\Phi}}, \alpha_{\boldsymbol{\Phi}})\widehat{\boldsymbol{\Psi}}$ 基于对Ψ的估计 $\hat{\mathbf{\Psi}}$ 改进控制, $\hat{\mathbf{\Psi}} = \mathbf{\Psi} - \hat{\mathbf{\Psi}}, \ \boldsymbol{\varphi} = \left[\tilde{\boldsymbol{\Phi}}^T \dot{\tilde{\boldsymbol{\Phi}}}^T\right]^T$,有

$$\dot{\boldsymbol{\varphi}} = \begin{bmatrix} 0 & I \\ -K_P & -K_D \end{bmatrix} \boldsymbol{\varphi} + \begin{bmatrix} 0 \\ I \end{bmatrix} \widehat{M}^{-1}(\boldsymbol{\Phi}) \boldsymbol{Y} (\boldsymbol{\Phi}, \dot{\boldsymbol{\Phi}}, \ddot{\boldsymbol{\varphi}}) \widetilde{\boldsymbol{\Psi}} = \overline{\boldsymbol{A}} \boldsymbol{\varphi} + \overline{\boldsymbol{D}} \widetilde{\boldsymbol{\Psi}}$$

足李~方程 $\overline{A}^T P_L + P_L \overline{A} = -Q_L$,用更新律 $\hat{\Psi} = \Gamma^{-1} \overline{D}^T P_L \varphi$,构造 $V_L = X$ $\varphi^T P_L \varphi + \widetilde{\Psi}^T \Gamma \widetilde{\Psi}$ 正定, $\dot{V}_L = -\varphi^T Q_L \varphi$ 半负定,说明 $\lim \widetilde{\Phi} = 0$, $\widetilde{\Psi}$ 有界 [第9章 机器人力控制

1. 力位混合控制 ① 坐标系和约束: 建立约束坐标系(未端固连在工件上则建在目标上, 若可

相对移动则建在末端)→根据接触情况确定**自然约束:不能运动**的方向

 $v_c/\omega_c = 0$,其余能运动方向 $F_a/n_a = 0$ (准静止)→根据自然约束确定人 **工约束**: v_a/ω_a 取任意值, F_c/n_c 取任意值(根据需要取 0/某值)。

		色创于	かん かんりょう かんしょう かんしゅ かんしゅ かんしゅ しゅうしゅ かんしゅ しゅうしゅ かんしゅ しゅうしゅ しゅう しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅう しゅうしゅ しゅうしゅ しゅうしゅう しゅうしゅう かんしゅう しゅうしゅう しゅう		
	自然约束	约束 空间= 0	可行运动空间=0		
	人工约束	可行运动空间任意值	约束空间任意值		
装配策略 :分解为多个子任务,当自然约束变化时切换					
2 力位混合控制器 位置/力参考输入是人工约束。位置反馈信号可能包含					

□ 位置/速度

柔顺控制,适用于要求接触力"保持比较小的状态",但不要求跟踪力轨迹的任务。 ② 机械阻抗: F(s)/X(s)(是导数)倒数为机械导纳,对质量-弹簧-阻尼系统 $M\ddot{x} + B\dot{x} + Kx = F \rightarrow \mathbf{Z}(\mathbf{s}) = M\mathbf{s} + B + K/\mathbf{s}$

低频响应主要由弹性项K决定,**高频**响应主要由惯性项M决定 理想位置控制器高阻抗(抵抗外力干扰)理想力控制器(低阻抗(抵抗位置变化干扰) ③ 控制目标: 考虑简单系统mx = F + F_{ext}(控制力+环境外力)目标是设

计F使得 $F_{ext} = M_d \ddot{\tilde{x}} + B_d \dot{\tilde{x}} + K_d \tilde{x}$, 让外力交互时像质-弹-阻系统一样 当 M_d 、 B_d 、 K_d 均小时为**低阻抗**,任意一个大时为**高阻抗** 第0章 杂七杂八神金小知识 **④ 阻抗控制**(基于**力**): 传感器测量 $x \to \tilde{x} = x - x_d$, 来调整控制力F的大小 **1.** $\forall R \in SO(3)$ (一般方阵不行), $P \in \mathbb{R}^3$, $O \in \mathbb{R}^3$, $far(P \times O) = RP \times RO$

 $\mathbf{F} = m\ddot{x}_d + (m - M_d)\ddot{\tilde{x}} - (B_d\dot{\tilde{x}} + K_d\tilde{x})$ $= m\ddot{x}_d - \frac{m}{H}(B_d\dot{\tilde{x}} + K_d\tilde{x}) + (\frac{m}{H} - 1)F_{ext}$ F_{aut} 控制器输入运动信

(5) **导纳控制**(基于位置): 物理系统接收位置输入, 表现出阻抗, 控制器 接收环境力并给出新的运动轨迹 x_m (机械导纳),根据下式计算加速度: $M_d(\ddot{\boldsymbol{x}}_m - \ddot{\boldsymbol{x}}_d) + B_d\dot{\tilde{\boldsymbol{x}}} + K_d\tilde{\boldsymbol{x}} = F_{ext} \rightarrow \ddot{\boldsymbol{x}}_m = \ddot{\boldsymbol{x}}_d + \frac{1}{M} \left(F_{ext} - B_d\dot{\tilde{\boldsymbol{x}}} - K_d\tilde{\boldsymbol{x}} \right)$

 $M(\Phi)\ddot{\phi} + V(\Phi,\dot{\Phi}) + G(\Phi) = \tau + J^T(\Phi)F$ 其中 $V = C(\Phi,\dot{\Phi})\dot{\phi} + B\dot{\phi}, F$ 是外力+力矩

 $M(\Phi)\ddot{\phi} + V(\Phi,\dot{\Phi}) + G(\Phi) = \tau + I_a^T(\Phi)F_{a_I}$ 换用分析雅可比, $F_a = T_a^{-T}F$ 由 $\dot{X} = J_a \dot{\Phi} \rightarrow \ddot{X} = \dot{J}_a \dot{\Phi} + J_a \ddot{\Phi} \rightarrow \ddot{\Phi} = J_a^{-1} (\ddot{X} - \dot{J}_a \dot{\Phi})$, 得笛卡尔空间动力学模型: $M_X(\Phi)\ddot{X} + V_X(\Phi,\dot{\Phi}) + G_X(\Phi) = J_a^{-T}(\Phi)\tau + F_a$ (左乘 $J_a^{-T}(\Phi)$) 其中 $M_X = J_a^{-T} M J_a^{-1}$, $V_X = J_a^{-T} V - M_X J_a \dot{\Phi}$, $G_X = J_a^{-T} G$ 令笛卡尔控制律为 $\tau = I_a^T [M_x a_d + V_x + G_x - F_a]$, 有 $\ddot{X} = a_d$

 $\Rightarrow a_d = \ddot{X}_d + M_d^{-1} \left(-B_d \dot{X} - K_d \ddot{X} + F_a \right)$, 得到期望的阻抗关系 $M_d\tilde{X} + B_d\tilde{X} + K_d\tilde{X} = F_a$, 得到关节空间控制律

 $\tau = MJ_a^{-1} \left[\ddot{X}_d - \dot{J}_a \dot{\Phi} - M_d^{-1} \left(B_d \dot{\tilde{X}} + K_d \tilde{X} \right) \right] + V + G + J_a^T (M_X M_d^{-1} - I) F_a$

若无力/力矩传感器,取 $M_d = M_X = (J_o M^{-1} J_o^{-1})^{-1}$; K_d 反映末端执行器刚度,为主要调节 参数,决定环境接触力大小; B_d 不影响稳态,可以用来调节与环境交互的动态过程,决

① 机器人笛卡尔空间导纳控制: (1)输出位置信号, 而机器人通常有位置控 制模式,故无需建其动力学模型,但要求能测量环境力(2)需逆运动学,将笛卡尔映射

得 $x = \frac{f}{h} + x_e = \frac{(f_r - e)}{h} + x_e$, 代入可得 $m\ddot{e} + b\dot{e} + (k + k_e)e = kf_r - k_e k(x_d - x_e)$, 稳态 误差 $e_{ss} = \frac{k}{k+k} [f_r + k_e(x_e - x_d)]$,取参考位置 $x_d = x_e + \frac{f_r}{k}$ 可使 $e_{ss} = 0$ 间分量(噪声或约束坐标系 3. 控制方法对比 与实际控制模态不一致),

① 力位混合控制: (1)与刚性环境的接触限制机器人的运动自由度(2)机器人试 图讳反环境的几何约束,因此受到接触力(3)任务空间划分为正交子空间,分别在其中

讲行力/运动控制² **阻抗控制:(1)**环境看作发生微小有限形变的机械系统(2)两个

耦合动态系统(机器人和环境)间交互产生接触力(3)控制器指定力/运动之间的动态关系

4. 关节力/力矩控制 ① **电流环控制**: (1)使用直驱电机/减速比很小时, $\tau = k_{\tau}I$, 电压 \rightarrow 电流 \rightarrow 输出力

直驱电机要输出足够的力矩需要做成很大的尺寸,此方案在实际中不常用。 ② 应变片式力矩传感器:(1)减速器常用谐波减速器,有高减速比且消除空程 在输出端设计弹性体并装应变片。通过形变测量力矩。经反馈回路调节电流(2)精度高

3) 串联弹性驱动器 SEA: (1)包括电机、减速箱和输出端的弹性体, 很小,形变比应变片明显,测量扭转 $\Delta \phi \rightarrow \mathbb{R}$ 动器输出力矩 $k_{\phi}\Delta \phi \rightarrow \mathbb{R}$ 电机 柔性强, 适用人机交互任务, 但使得关节构型更加复杂, 增加了高

2. 求角度要用 $\theta = \arctan 2(y, x) = \arctan 2(\sin \theta, \cos \theta)$ 3.R $\rightarrow zyx$ 欧拉角 $[\alpha\beta\gamma] = at2 \left[(r_{21}, r_{11}) \left(-r_{31}, \sqrt{r_{32}^2 + r_{33}^2} \right) (r_{32}, r_{33}) \right]$

4. 静止/小范围旋转用欧拉/固定/轴角, 大范围用R/单位四元数

号,输出力信号,表 5. 求两直线~和[x y z] = [$-k_2 - 4, -2k_2 + 3, -k_2$]的公垂线长度: 取两个方向向量 $\vec{v}_2 = (1,2,1)$,取线上两点 $P_2 = (-4,3,0)$,设 $\vec{v}_3 = \vec{v}_1 \times \vec{v}_2$,有 $a = \frac{\|\vec{P_1P_2}\vec{v}_3\|}{\|\vec{v}_1\|}$ 现出阻抗; **物理系**

统表现出导纳

6. 平面机器人末端自由度为 3 维(位置 2+绕平面法线的旋转) **半角公式**: u= $\tan(\theta/2)$, $\cos\theta = (1-u^2)/(1+u^2)$, $\sin\theta = 2u/(1+u^2)$

7. 广义逆设A为 $m \times n$ 且行/列满秩, 伪逆为 A^+ : $m > n \to A^+ = (A^TA)^{-1}A^T$; $m < n \to A^+$

 $A^{+} = A^{T}(AA^{T})^{-1}$: **奇异点**:设m = 6(空间)/2(平面),N为关节数, $4r(I) < \min(m,N)$ $m = N \to \mathbb{Z}$ 大刀余, [不可逆; $m < N \to \mathbb{Z}$ 余, [不行满秩; $m > N \to \mathbb{Z}$ 8]

 位置控制器 PD(微分→更快响应);力用 PI(要求稳态误差小, 传感器噪声强, 不能 D) 当与环境的动态交互可忽略(不对环境做功),力位混控效果好,但不能

9.已知 $_{B}^{A}$ T和 $_{A}^{A}$ F = [$_{A}^{A}$ f $_{A}^{B}$ f], 求 $_{A}^{B}$ F: $_{A}^{B}$ f = $_{A}^{B}$ R $_{A}^{A}$ f, $_{A}^{B}$ O $_{A}$ = $_{A}^{B}$ R $_{A}^{A}$ O $_{B}$, $_{A}^{B}$ n = $_{A}^{B}$ O $_{A}$ × $_{A}^{B}$ f + $_{A}^{B}$ R $_{A}^{A}$ n

10. ${}^{i}f_{i} = {}^{i}f_{i+1}, \quad {}^{i}n_{i} = {}^{i}n_{i+1} + {}^{i}P_{i+1} \times {}^{i}f_{i+1}$

0 -(\frac{\pi}{2}-p')