The VLT-FLAMES Tarantula Survey

XVIII. Classifications and radial velocities of the B-type stars

C. J. Evans¹, M. B. Kennedy², P. L. Dufton², I. D. Howarth³; N. R. Walborn⁴, N. Markova⁵, J. S. Clark⁶, S. E. de Mink^{7,8,9*}, A. de Koter^{7,10}, P. R. Dunstall², V. Hénault-Brunet¹¹, J. Maíz Apellániz^{12**}, C. M. McEvoy², H. Sana¹³, S. Simón-Díaz^{14,15}, W. D. Taylor¹, J. S, Vink¹⁶

- UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
- Department of Physics & Astronomy, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK
- Dept. of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
- ⁵ Institute of Astronomy with NAO, Bulgarian Academy of Sciences, PO Box 136, 4700 Smoljan, Bulgaria
- Department of Physics & Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
- ⁷ Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA
- ⁹ Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
- ¹⁰ Institute voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
- Department of Physics, Faculty of Engineering & Physical Sciences University of Surrey Guildford, GU2 7XH, UK
- ¹² Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain
- ¹³ ESA/STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA
- ¹⁴ Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
- Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
- Armagh Observatory, College Hill, Armagh, BT61 9DG, UK

ABSTRACT

We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of $271.6 \pm 12.2 \,\mathrm{km \ s^{-1}}$ from 273 presumed single stars. Employing a 3- σ criterion we identify nine candidate runaway stars (2.9 % of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (\geq 345 km s⁻¹) or small (\leq 65 km s⁻¹) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity ($-106.9 \pm 16.2 \,\mathrm{km \ s^{-1}}$), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of $12 + \log (\mathrm{N/H}) \gtrsim 8.5$. Combined with a large rotational velocity ($v_e \sin i = 345 \pm 22 \,\mathrm{km \ s^{-1}}$), this is suggestive of past binary interaction for this star.

Key words. open clusters and associations: individual: NGC 2060, NGC 2070, Hodge 301, SL 639 – stars: early-type – stars: fundamental parameters

1. Introduction

The VLT-FLAMES Tarantula Survey (VFTS) is a European Southern Observatory (ESO) Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). An overview of the survey, including details of the stellar photometry, spectroscopic observations and data reduction, was given by Evans et al. (2011; hereafter Paper I).

The VFTS observations are the first optical spectroscopy for many of the targets, and provide a wealth of new morphologi-

Send offprint requests to: C. J. Evans at chris.evans@stfc.ac.uk

cal information on the high-mass population of 30 Dor, which will underpin quantitative analyses of the spectra in future papers. Detailed classifications for the 352 O-type spectra (with discussion of notable morphological groups) were presented by Walborn et al. (2014), while classifications for the smaller samples of Wolf–Rayet and late-type stars were given in Paper I. Here we present spectral classifications for 438 B-type objects from the survey. Of these, only 74 (17%) have previously published classifications based on digital data, many of which were obtained at a lower spectral resolving power.

To complement the spectral classifications, we also present estimates of radial velocities for the B-type sample. These estimates provide insights into the different populations within 30 Dor, and enable identification of candidate runaway stars that have been ejected from their birth sites. In the context of runaway stars, the size of the VFTS sample is unprecedented for a

^{*} Einstein Fellow

^{**} Current address: Departamento de Astrofísica, Centro de Astrobiología (INTA-CSIC), Campus ESA, Apartado Postal 78, 28 691 Villanueva de la Cañada, Madrid, Spain

single, young star-forming region. The survey has revealed $\sim\!20$ O-type runaway candidates (Evans et al. 2010, Sana et al., in prep.), with an apparent connection with rapid rotation (Walborn et al. 2014, Sana et al., in prep.). There are also a number of stars with moderate (projected) rotational velocities in the peripheral regions of 30 Dor, which could perhaps be very rapid rotators (but with low inclinations; see Walborn et al. 2014, for a discussion of their spectra). For completeness, we note that two additional O2-type stars near 30 Dor, Sk -68° 137 and BI 253 (= VFTS 072), were suggested as runaways by Walborn et al. (2002a) on the basis of their remote locations for their apparent youth.

In his pioneering study, Blaauw (1961) noted that the fractional incidence of Galactic runaways is larger among O stars than among B stars, a result substantiated by subsequent authors, and which also emerged in the simulations from Portegies Zwart (2000). In this paper we therefore complement the studies of the O-type runaways in the VFTS with analysis of the B-type stars. In particular, the number and mass spectrum of the ejected runaways from 30 Dor will provide important constraints on models of cluster formation and evolution (e.g. Fujii & Portegies Zwart 2011). The estimated radial velocities presented here, combined with those from the O-type stars (Sana et al. 2013), will also provide an important input for comparisons with theoretical predictions, e.g. in the context of simulations to investigate the initial conditions leading to the distinct clump identified to the northeast of R136 (Sabbi et al. 2012).

In Section 2 we summarise the relevant features of the VFTS data and their post-processing. Section 3 sets out the framework within which the spectra were classified and discusses notable objects. Section 4 details the methods we used to estimate radial velocities for each target, followed by a discussion of members of the two oldest clusters in the survey region (Hodge 301 and SL 639) in Section 5. Finally, in Section 6, we use our velocity estimates to identify candidate single-star and binary runaways and discuss their nature and potential origins. In parallel to this study, Dunstall et al. (in prep.) have exploited the multi-epoch VFTS observations to investigate the multiplicity properties of the B-type sample.

2. Observations and data processing

All of the VFTS data discussed here were obtained using the Medusa–Giraffe mode of the Fibre Large Array Multi-Element Spectrograph (FLAMES) instrument on the Very Large Telescope (VLT). The Medusa fibres (which subtend 1"2 on the sky) were used to relay light from up to 130 targets simultaneously to the Giraffe spectrograph (see Pasquini et al. 2002).

Full details of the observational strategy and reduction of the data are given in Paper I. In brief, the ESO Common Pipeline Library FLAMES recipes were used to undertake bias subtraction, fibre location, summed extractions of each object, division by a normalised flat-field, and wavelength calibration. Subsequent processing included correction of the spectra to the heliocentric frame, sky subtraction, and rejection of significant cosmic rays.

The Medusa observations used three of the standard Giraffe settings (LR02, LR03, and HR15N), providing spectral coverage of $\lambda 3960\text{-}5071\,\text{Å}$ (at resolving powers, R, of 7 000 to 8 500), and $\lambda 6442\text{-}6817\,\text{Å}$ (at $R=16\,000$). These resolutions are greater than for most published standards so, for the purposes of classification, the data were degraded to an effective resolving power of $R=4\,000$, ensuring consistency with the approach to the classification of the O-type stars by Walborn et al. (2014).

For stars that appear to be single (Dunstall et al., in prep.) the LR02 and LR03 spectra were normalised then merged, with the σ -clip levels for cosmic rejection and relative weightings based on the signal-to-noise (S/N) ratios of the individual spectra. Finally, for classification, the merged LR02 and LR03 spectra were combined, then smoothed and rebinned to $R=4\,000$. For stars identified as having significant but relatively modest velocity variations ($\Delta\,v_{\rm r} \leq 40\,{\rm km~s^{-1}}$), the individual spectra were similarly co-added and degraded (as the variations were within the effective velocity resolution of the rebinned data). For single-lined binaries with $\Delta\,v_{\rm r} > 40\,{\rm km~s^{-1}}$, the single-epoch LR02 and LR03 spectra with the best S/N ratio were combined and then smoothed/rebinned. We were careful in these cases to ensure that any velocity offsets between features in the small overlap region between the LR02 and LR03 data were not misinter-preted. The small number of double-lined binaries were classified from inspection of the individual spectra.

3. Spectral classification

The spectra were classified by visual comparison to the B-type Galactic standards from Sota et al. (2011) and Sana et al. (in prep.), while also taking into account the effects of the reduced metallicity of the LMC compared to the Galaxy (which can affect the appearance of both the metal and helium absorption lines; e.g. Markova et al. 2009). This was achieved for the luminous, low-gravity objects by interpolating between the available Galactic standards and those for supergiants in the Small Magellanic Cloud (Lennon 1997), and with reference to the framework developed for the LMC by Fitzpatrick (1988, 1991). Classifications of the dwarfs and giants were also informed by comparisons with the standards from Walborn & Fitzpatrick (1990) and the LMC stars classified by Evans et al. (2006).

The primary diagnostic lines are the ionisation ratios of silicon, while also taking into account the appearance of the helium and magnesium (λ 4481) lines. For reference, the primary temperature-sequence criteria used to classify the VFTS sample are summarised in Tables 1 and 2 (for supergiants and dwarfs, respectively). Example temperature sequences for supergiants, giants and dwarfs are shown in Figures A.1, A.2 and A.3, respectively. At a given spectral type, luminosity classes were assigned from the width of the Balmer lines and (at the earliest types) from the intensity of the silicon absorption lines, while also taking into account the possible effects of rotational broadening on the spectra. Example luminosity sequences for B0.2, B1, and B2.5 types are shown in Figures A.4, A.5, and A.6, respectively.

The supergiants and bright giants (i.e. class I and II objects) have rich absorption-line spectra. Given the importance of spectral peculiarities in the context of CNO abundances, and the influence of metallicity effects, these luminous objects were classified independently by three of the authors (CJE, NM, and NRW) with a typical consistency of 0.5 subtypes/luminosity class from the first pass; final types were adopted following discussion of individual objects as required. The larger sample of dwarfs and giants, which exhibited a considerable range in data quality, was classified by CJE. In many instances these classifications are less precise than those possible for the luminous objects, but they should provide sufficient morphological information to enable robust subdivisions of the sample in future analyses.

Each merged spectrum was classified in the framework described above. After initial classification of all the spectra, careful checks were undertaken to ensure self-consistency within

Table 1. Primary temperature-sequence criteria for B-type supergiants.

Type	Criteria
В0	Si IV $\lambda\lambda4089,4116>>$ Si III $\lambda4553>$ He II $\lambda4542$
B0.2	Si IV $\lambda 4089 > \text{Si III } \lambda 4553 >> \text{He II } \lambda 4542$
B0.5	Si IV $\lambda 4089 > \text{Si III } \lambda 4553$; He II $\lambda 4542$ absent/marginal
B0.7	Si IV $\lambda 4089 \sim$ Si III $\lambda 4553$; He II $\lambda 4686$ absent/marginal
B1	Marginal Si IV λ 4116; Si III λ 4553 > Si IV λ 4089
B1.5	Weak/marginal Si IV λ 4089, weak Mg II λ 4481
B2	Si III $\lambda 4553 > \text{Mg II } \lambda 4481$; Si IV $\lambda 4089$ absent
B2.5	Si III $\lambda 4553 \sim \text{Mg}$ II $\lambda 4481$; weak Si II $\lambda \lambda 4128-32$
В3	Si III $\lambda 4553 < \text{Mg II } \lambda 4481$; Si II $\lambda \lambda 4128-32$ present
B5	He I $\lambda 4471 > \text{Mg II } \lambda 4481$; Si II $\lambda \lambda 4128-32 \sim \text{He I } \lambda 4121$
B8	He I λ 4471 \sim Mg II λ 4481; Si II $\lambda\lambda$ 4128-32 \sim He I λ 4144
B9	He I λ 4471 < Mg II λ 4481; Si II $\lambda\lambda$ 4128-32 > He I λ 4144

Notes. Example spectra are shown in Figure A.1.

Table 2. Primary temperature-sequence criteria for B-type dwarfs.

Type	Criteria
B0	Si IV $\lambda 4089 >$ Si III $\lambda 4553 >$ He II $\lambda 4542$
B0.2	Si IV $\lambda 4089 >$ Si III $\lambda 4553$; He II $\lambda 4542$ marginal
B0.5	He II $\lambda 4542$ absent; Si III $\lambda 4116$ marginal/absent
B0.7	He II λ 4686 marginal/absent; Si III λ 4116 marginal/absent
B1	Si III $\lambda 4553 >$ Si IV $\lambda 4089$; Si IV $\lambda 4116$, He II $\lambda 4686$ absent
B1.5	Si IV $\lambda 4089$ absent; Si III $\lambda 4553 \sim \text{Mg}$ II $\lambda 4481$
B2	Si III $\lambda 4553 < Mg$ II $\lambda 4481$
B2.5	Si III $\lambda 4553$ absent; Si II $\lambda \lambda 4128-32$ marginal

Notes. Example spectra are shown in Figure A.3.

the sample. An overlapping sample of ten B0-type stars was classified independently (by NRW) for the study by Walborn et al. (2014), with excellent agreement (to within one luminosity class) in all instances.

The catalogue of classifications and radial-velocity estimates for the B-type objects from the VFTS is presented in Table 7 (available online). For convenience, supplementary information is also provided for each star on its binary status (from Dunstall et al., in prep.), $H\alpha$ morphology (see Section 3.1), optical photometry (from Paper I), alternative identifications used in the literature, and previous spectral classifications.

The S/N ratios of the supergiant spectra were particularly good (typically > 100 for both the LR02 and LR03 regions; see Figure A.1). This allowed us to provide consistent indications of the nitrogen enhancement/deficiency compared to morphologically-normal stars (via Nstr and Nwk qualifiers), as diagnosed from the CNO absorption features in the $\lambda\lambda$ 4640-4650 region (Walborn 1976). The significant differences in CNO morphology are illustrated by the two B1.5 Ia spectra in Figure 1. Atmospheric analysis of the supergiants, including estimates of nitrogen abundances and a thorough study of the line-broadening in their spectra, will be presented by McEvoy et al. (2015) and Simón-Díaz et al. (in prep.), respectively.

Given the wide range in quality of the dwarf and giant spectra, we do not comment on CNO morphologies in their classifications. Equally, while we employ the 'n' and '(n)' indications of broadening (see e.g. Table 3 from Sota et al. 2011) at all luminosity classes, there are likely to be some lacunae (cf. the quantitative $v_e \sin i$ estimates from Dufton et al. 2013).

3.1. Emission-line objects

Where appropriate, spectra were initially classified as 'Be+' on the basis of Fe II emission lines in the LR02 and LR03 spectra (see discussion by Evans et al. 2006); the Fe II lines were preferred over the blue-violet Balmer lines owing to the significant (and variable) contamination of the latter by nebular emission.

Independently of the blue-region classifications, we inspected the ${\rm H}\alpha$ profiles of every target to investigate their morphologies. The greater resolution of the ${\rm H}\alpha$ observations and the extended wings from disc emission made it easier to distinguish contributions from Be-type Balmer emission and nebular contamination than in the blue, but these classifications should still be treated with some caution. The ${\rm H}\alpha$ morphologies are encoded in the fourth column of Table 7 (with the notation explained in the corresponding footnote).

Objects classified as 'Be+' from the LR02/LR03 spectra were seen to display $H\alpha$ emission in all cases. Approximately 30 additional stars display Be-like $H\alpha$ emission without Fe II emission. The $H\alpha$ emission in luminous supergiants most likely arises from their stellar winds, but for less luminous objects such emission is the primary Be diagnostic. To preserve the distinction of the lines seen in emission, the standard 'e' suffix is used in the classifications for the (non-supergiant) stars where only $H\alpha$ is seen in emission.

The complex star-formation history of 30 Dor means that our sample will span a range of stellar ages, so we are unable to comment on the incidence of the Be-phenomenon for a single, co-eval population. Nonetheless, we note that the incidence of the Be-type classifications for the dwarf and giant stars is 18% (70/388 objects). This is in good agreement with the Galactic fraction ($\geq 17\%$, Zorec & Briot 1997), and that reported for the field population near NGC 2004 in the LMC (of 16 and 17.5%, from Evans et al. 2006 and Martayan et al. 2006, respectively).

3.1.1. B[e]-type spectra

Two targets in the Medusa–Giraffe sample show forbidden-line emission characteristic of the B[e] category. VFTS 698 is a double-lined binary system with a B[e]-like spectrum, comprising what appears to be an early B-type secondary in orbit around a veiled, more massive companion (see Dunstall et al. 2012). The second B[e] object is VFTS 822, shown in Figure 2 together with VFTS 1003 (the B[e]-like object from Paper I). Given the intensity of its Si II $\lambda\lambda$ 4128-32 and Mg II λ 4481 absorption, the spectrum of VFTS 822 was classified as mid-late B[e] (~B5-8); further discussion of its possible pre-main-sequence nature was given by Kalari et al. (2014).

Although the nature of VFTS 1003 remains uncertain at present, the number of evolved B[e] stars (at most two) in the VFTS is clearly small compared to the number of normal supergiants. This is in keeping with the small number of sgB[e] stars in Galactic clusters (see the appendix of Clark et al. 2013), arguing that the B[e] phenomenon in evolved supergiants must be a relatively brief phase or originate from a rare process.

3.1.2. VFTS 766: A peculiar emission-line star

VFTS 766 displays strong $H\alpha$ emission and inspection of its blue-region spectrum (see Figure 2) revealed it as a peculiar object. At first glance its spectrum appears to be that of a mid-late B-type supergiant (B5-B8, as traced by e.g. Si II, Mg II), but with superimposed metallic absorption lines, which are consistent with a cooler component. This seemingly composite appear-

Fig. 1. Differing CNO morphologies in early B-type supergiants illustrated by VFTS 431 ('Nstr') and VFTS 578 ('Nwk'). In addition to the Balmer lines, the absorption features identified are: C II λ 4267; He I λ λ 4009, 4026, 4121, 4144, 4388, 4471, 4713; Mg II λ 4481; N II λ λ 3995, 4601-07-14-21-31, 4640-43 (blended with O II); O II λ λ 4070, 4254, 4317-19, 4350, 4367, 4414-17, 4591-96, 4650, 4661, 4674-76; Si III λ λ 4553-68-74.

ance can indicate a circumstellar shell or disc observed edge-on, and this hypothesis is supported by the twin-peaked H β shell-like emission profile. Its near- and mid-IR colours¹ place it in the region in the J, J = [3.6] colour-magnitude diagram which is occupied by early-type stars associated with free-free/bound-free emission, and we find no evidence of hot dust (cf. Bonanos et al. 2009).

Similar emission profiles are observed in some low-luminosity supergiant B[e] stars (e.g. S59, Gummersbach et al. 1995), with examples that also appear to lack dusty discs (Graus et al. 2012, although none have yet been discovered in the edge-on orientation required to yield shell profiles). However, we speculate that VFTS 766 is a classical Be star, in which the twin-peaked emission in the wings of the Balmer profiles gives rise to the supergiant-like appearance. An example of this effect is the development of a circumstellar disc in the classical edge-on Be star *o* And, which conspires to yield a narrower absorption feature than the underlying photospheric profile (Clark et al. 2003). Another example is provided by the Be star 48 Lib (see Rivinius et al. 2013, and references therein), which has previously been classified as a supergiant (Houk & Smith-Moore 1988).

This possible explanation for the nature of VFTS 766 is supported by its magnitude relative to other stars in our sample. Spectroscopic monitoring to identify an episode of disc loss, during which the (uncontaminated) photospheric Balmer line profiles might be observed, would clarify its luminosity type and true evolutionary status.

3.1.3. Blue hypergiants

We identifed five blue hypergiants (BHGs) in our sample, namely: VFTS 003 (B1 Ia $^+$), 424 (B9 Ia $^+$ p), 430 (B0.5 Ia $^+$ ((n)) Nwk), 458 (B5 Ia $^+$ p) and 533 (B1.5 Ia $^+$ p Nwk). Recent theoretical and observational studies suggest that early-type BHGs might be massive stars which have passed through a blue

supergiant phase and are about to enter a luminous blue variable (LBV) phase (Clark et al. 2012; Groh et al. 2014). This suggests that VFTS 003, 430, and 533 might be on the verge of LBV-like behaviour, although we note that VFTS 430 appears somewhat subluminous compared to the blue supergiants in 30 Dor, and is significantly fainter than VFTS 533 (even accounting for its apparently greater line-of-sight extinction, see photometry in Table 7). Later-type BHGs have been observed to undergo LBV-like photometric and spectroscopic behaviour (e.g. Smith et al. 2004; Clark et al. 2012, with potential implications for VFTS 424 and 458 here), suggesting that these two evolutionary phases are essentially synonymous for such stars.

On further inspection of their spectra, broad emission wings were identified in the H β profiles of each of the BHGs, except for VFTS 430. This H β morphology is seen in some LBVs and other luminous supergiants (e.g. Walborn & Fitzpatrick 2000), and is also present in VFTS 739 in our sample (classified as A0 Ip but, given its omission from Paper I, included here in the B-type sample). The spectra and evolutionary status of these potential LBV precursors/candidates will be discussed in more depth by Walborn et al. (in prep.).

3.1.4. Comparisons with X-Ray observations

We compared our sample with the point-source detections from observations in 30 Dor with the *Chandra X-ray Observatory* (Townsley et al. 2006, 2014); none of the VFTS B-type stars is detected in the extant X-ray data. A new X-ray Visionary Project is now underway, 'The Tarantula Revealed by X-rays (T-ReX)', which will observe 30 Dor with *Chandra* for 2 Ms. This will push far deeper than the existing data, and we will revisit the VFTS sample once the T-ReX observations and analysis are complete.

¹ VFTS 766: J = 15.14, H = 15.01, $K_s = 14.76$ (from Paper I); [3.6] = 14.28, [4.5] = 14.06, [5.8] = 13.64 (from Meixner et al. 2006).

Fig. 2. Spectra of three peculiar Be-type stars from the VFTS, in which each spectrum has been smoothed and rebinned to $R=4\,000$ for clarity. In addition to the Balmer lines, the emission lines identified in VFTS 1003 are [S II] $\lambda4069$; Fe II $\lambda\lambda4173$, 4179, 4233, 4303, 4352, 4385, 4481, 4491, 4508, 4515, 4520-23, 4549, 4556; [Fe II] $\lambda\lambda4244$, 4277, 4287, 4358-59, 4414-16. Emission lines identified in VFTS 822 are Fe II $\lambda\lambda4584$, 4620.5, 4629. Absorption lines identified in VFTS 766 are He I $\lambda\lambda4009$, 4026, 4121, 4144, 4388, 4471, 4713; Si II $\lambda\lambda4128-32$; Mg II $\lambda4481$.

4. Stellar radial velocities

4.1. Single stars

Radial-velocity estimates for the stars identified as apparently single by Dunstall et al. (in prep.) were obtained from Gaussian fits to selected absorption lines in the merged LR02 and LR03 spectra of each object (at the native resolution of the data, without the degrading applied for classification purposes). This approach is consistent with that used by Sana et al. (2013) for analysis of the O-type stars, albeit (necessarily) using a different subset of absorption lines. We note that the choice of Gaussian profiles may not be appropriate for fitting the wings of the lines in the presence of different broadening mechanisms, but they should suffice for robust estimates of the centres of our chosen lines.

We also considered a cross-correlation method to estimate the radial velocities. However, given the range in temperature and luminosity of the sample, as well as the varying data quality and problems of nebular contamination, the selection of suitable template spectra for cross-correlation was not trivial and would have introduced additional uncertainties (relating to e.g. the projected rotational velocities, $v_{\rm e} \sin i$). Thus, we did not pursue this approach further.

4.1.1. Line selection

The large range in $v_{\rm e} \sin i$ and effective temperature for the sample meant that it was not possible to use a single set of diagnostic lines for all stars. Moreover, the large intrinsic width and nebular contamination of the Balmer lines precluded their use; similarly, nebular emission affects some of the stronger He I lines.

Following the approach taken by Dufton et al. (2013), we used different sets of diagnostic lines (as summarised in Table 3) depending on the $v_{\rm e} \sin i$ of the star.

For narrow-lined spectra (defined as $v_{\rm e} \sin i \lesssim 150\,{\rm km~s}^{-1}$), we used three non-diffuse He I lines and four isolated metal lines listed as 'Set 1' in Table 3. Where possible, radial velocities were estimated from Si III $\lambda 4553$ in both the merged LR02 and LR03 spectra, giving up to eight individual estimates for the narrow-lined objects.

We note that He I λ 4121 is potentially affected by blending with O II $\lambda\lambda$ 4120.28/54. In many instances these features could be resolved and a double Gaussian profile was fitted to estimate the He I and O II line centres; in cases where the O II lines were weaker or unresolved, they do not appear to have unduly influenced the results (see Table 3, in which the residual for He I λ 4121 is consistent with the other lines).

Radial-velocity estimates for stars with broader lines were more difficult, particularly for spectra with significant nebular contamination. In these cases, velocities were estimated by fitting the five He I lines listed as 'Set 2' in Table 3, for which the profiles are expected to be effectively symmetric².

Representative examples are shown in Figure 3. The lower panel shows fits to the Si III triplet for two narrow-lined stars, VFTS 053 and 159, which have $v_{\rm e} \sin i \le 40$ (i.e. less than the velocity resolution of the data) and $96 \pm 9 \, \rm km \, s^{-1}$, respectively (from Dufton et al. 2013). As an example of a spectrum of a rapidly-rotating star which also suffers nebular contamination,

 $^{^2}$ He I 3P \rightarrow 3D transitions were excluded because of the presence of significant 3P \rightarrow 3F components.

Table 3. Rest wavelengths used to estimate radial velocities (v_r) for the narrow- and broad-lined stars (Sets 1 and 2, respectively). Values in the final column are average differences (Δ) between the velocity estimates for each line and the final velocity for each star.

Ion	λ [Å]	$\Delta [{ m km \ s^{-1}}]$
	S	et 1
He I	4120.82	-0.8 ± 6.7
C II	4267.13	1.1 ± 5.1
He I	4437.55	-0.4 ± 5.4
Si III	4552.62	$0.3 \pm 6.1 (LR02)$
		$-1.6 \pm 5.8 \text{ (LR03)}$
Si III	4567.84	-0.8 ± 6.4
Si III	4574.76	-1.7 ± 7.0
He I	4713.15	2.1 ± 4.5
	S	et 2
He I	4009.26	-0.8 ± 11.3
He I	4143.76	0.1 ± 9.0
He I	4387.93	2.7 ± 9.1
He I	4713.15	2.8 ± 7.1
He I	4921.93	-3.5 ± 8.7

Notes. Wavelengths are taken from the NIST atomic spectra database (Kramida et al. 2012); the adopted value for C II is the average of the two stronger transitions.

the upper panel of Figure 3 shows the Gaussian fit to He I λ 4388 for VFTS 636 ($v_{\rm e} \sin i = 371 \pm 35 \, {\rm km \ s^{-1}}$; Dufton et al. 2013).

For three stars with later/peculiar types – VFTS 272 (possible shell star), 739 (A0 Ip), and 766 (B5-8e, see Section 3.1.2) – we employed weak Fe II and Ti II absorption lines to estimate velocities, although we note that in VFTS 272 and 766 they might not be representative of the true (stellar) radial velocity, as these lines could trace cooler features associated with a disc of material (see e.g. the discussion of VFTS 698 by Dunstall et al. 2012).

4.1.2. Mean velocities

Radial-velocity estimates for the single stars were obtained by calculating an average of the n individual measurements (v_i) , weighted by the estimated central depth (d_i) from the Gaussian fit of each line, i.e.

$$v_{\rm r} = \frac{\sum_{i=1}^{n} v_i d_i}{\sum_{i=1}^{n} d_i} \,. \tag{1}$$

The sample standard deviation (σ) for each star was similarly calculated as a weighted average:

$$\sigma^2 = \frac{\sum_{i=1}^n (v_i - v_r)^2 d_i}{\sum_{i=1}^n d_i} .$$
 (2)

In cases where the central depths of the absorption lines were less than twice the inverse of the continuum S/N ratio, the individual estimates were excluded from the above calculations (to avoid their larger uncertainties degrading the results from stronger lines). For stars with estimates from three (or more) absorption lines, we present their estimated mean velocities and standard deviations in columns 7 and 8 of Table 7. For completeness, the line-by-line estimates from Sets 1 and 2 for the single stars are detailed in Tables A.1 and A.2, respectively; the mean uncertainty of the estimates for the 307 (presumed) single stars is 7.8 km s⁻¹ (and with a median uncertainty of 6.2 km s⁻¹).

As a check on our results, we used the methods described above to analyse a sample of the late O-type stars from the

Fig. 3. Examples of Gaussian fits used to estimate radial velocities (v_r) for the B-type sample. *Upper panel:* Fit to He I λ 4388 in a rapidly-rotating object (VFTS 636) with nebular contamination. *Lower panel:* Fits to the Si III triplets ($\lambda\lambda$ 4553-68-74) of VFTS 053 and 159.

VFTS, finding excellent agreement between our velocity estimates and those from Sana et al. (2013, see discussion in Section A.2.1). We also investigated the internal consistency of our results from the selected lines by calculating the average difference (Δ) of the individual measurements for each line compared to the adopted mean velocity for each target. The means and standard deviations of these differences are given in column 3 of Table 3, with no significant shifts seen for any of the diagnostic lines compared to the adopted radial velocities.

4.2. Radial velocities of the binaries

To complement the analysis of the single stars, we also investigated the radial velocities of the single-lined binaries in the sample. We obtained single-epoch velocity estimates ($v_{\rm single}$) for each system using measurements from the best LR02 spectra (in terms of S/N ratio of the co-added exposures from a given night, which span three hours at most).

Given the reduced spectral coverage of the LR02 data compared to the full LR02 + LR03 range, we used all of the available lines from Table 3 to estimate $v_{\rm single}$ (except for He I $\lambda4121$, given the nearby O II feature and the lower S/N ratio of the single-epoch spectra compared to the quality of the co-added spectra of the single stars). Line-by-line estimates and the date for which they were measured are listed in Table A.3. Mean ve-

locities and standard deviations for the selected epoch were then estimated using the same methods as for the single stars.

The mean single-epoch velocities serve as an absolute reference point for the inter-epoch differential velocities calculated by Dunstall et al. (in prep.) yielding absolute estimates for each epoch. We then calculated the mean and standard deviation of the multi-epoch estimates to obtain a velocity estimate for each single-lined binary. These values are presented in Table 7, and are flagged as 'B' (binary) in the ninth column. We note that the typical uncertainty on the cross-correlation results from Dunstall et al. was less than $5\,\mathrm{km\ s^{-1}}$, while the typical error on the absolute estimates determined here from the single-epoch data was $9\,\mathrm{km\ s^{-1}}$; i.e. the uncertainties in our estimates will generally be dominated by the analysis presented here.

Full orbital solutions are presently unavailable for the B-type binaries, so we strongly caution the reader that the velocity estimates in Table 7 are not their centre-of-mass, systemic velocities (although, as discussed in the Appendix, in many instances they may provide reasonable estimates).

4.3. Spatial distribution

In addition to NGC 2070 (the main 30 Dor cluster, which includes R136 at its core) and NGC 2060 (the association to the south-west), there are two smaller clusters in the VFTS survey: Hodge 301 (Hodge 1988) and SL 693 (Shapley & Lindsay 1963); their relative locations are shown in Figure 4. Both clusters appear older than NGC 2060 and 2070 as they contain evolved supergiants, from B- through to M-types.

We calculated weighted mean velocities ($\overline{v_r}$, and their standard deviations) for the full sample of single stars, for the subsamples associated with the four distinct stellar associations in the survey region (NGC 2060, NGC 2070, Hodge 301, and SL 639, as defined in Table 4), and for the field population of stars outside the four clusters. These results, which exclude candidate runaway stars (see Section 6), are summarised in Table 4.

The results for the two younger star-forming regions (i.e. NGC 2060 and 2070) are in excellent agreement with the field population of B-type stars in the region, but the two older clusters (Hodge 301 and SL 639) appear at slightly lower recession velocities, suggesting that they are kinematically distinct from the rest of the sample. The weighted mean velocity for the 273 single stars excluding these two clusters (and potential runaways) is $\overline{v_r} = 271.6 \pm 12.2 \, \mathrm{km \ s^{-1}}$.

5. Spectral content of the older clusters

The VFTS data comprise the first comprehensive spectroscopy in Hodge 301 and SL 639, so we briefly discuss these clusters in turn.

5.1. Hodge 301

There are 20 VFTS targets within a 20'' radius (chosen to conservatively identify likely members, and corresponding to \sim 4.9 pc, assuming a distance modulus of 18.5 mag). Fifteen of these were classified as B-type and their likely membership of the cluster is indicated in the final column of Table 7^3 .

From analysis of *Hubble Space Telescope (HST)* imaging, Grebel & Chu (2000) estimated Hodge 301 to be 20-25 Myr old. From narrow-band imaging they also identified 19 Be-type stars, eight of which (VFTS 272, 276, 279, 282, 283, 287, 293, and 301) have spectroscopy from the VFTS. The $H\alpha$ spectra of each of these contain significant nebular emission (with multiple components in all sightlines except towards VFTS 293). Nonetheless, broad Be-like $H\alpha$ emission is present in each object, except for VFTS 276 (GC00-Be2).

Grebel & Chu (2000) noted two potential blue stragglers in the cluster, which they argued were too luminous for the main-sequence population (but less luminous than expected for supergiants). The first, VFTS 270 (WB97-2), is a seemingly unremarkable B3 Ib star. The second is VFTS 293 (WB97-9, GC00-Be1), classified here as B2 III-II(n)e. From two previous observations, Walborn & Blades (1997) noted small shifts of its absorption features (relative to superimposed nebular emission) and possible weak He II λ 4686 emission at one epoch. If the He II emission were real, Walborn & Blades speculated that it might be an X-ray binary. There is no evidence of λ 4686 emission in the LR03 FLAMES spectra (albeit all taken on the same night, see Paper I), but small line-profile variations are seen in the absorption features in the multi-epoch LR02 spectra.

More intriguing is VFTS 310 on the periphery of the cluster and classified as O9.7 V: (Walborn et al. 2014). With such a classification, VFTS 310 would be expected to be significantly younger than the other cluster members, as shown by its location in the Hertzsprung–Russell (H–R) diagram of the cluster (Figure 5, see Section 5.3 for details). The star appears otherwise unremarkable, with a low projected rotational velocity ($v_{\rm e} \sin i \le 40 \, {\rm km \ s^{-1}}$, Dufton et al. 2013) and a radial velocity ($v_{\rm r} = 272.3 \pm 2.8 \, {\rm km \ s^{-1}}$, Sana et al. 2013) which is consistent with those in NGC 2070 and the local field population. Moreover, it does not appear to be a runaway from Hodge 301 (see Section 6). Whether this is a true blue straggler or simply a line-of-sight coincidence remains uncertain at this time.

5.2. SL 639

Adopting a 20" radius (\sim 4.9 pc), sixteen of the VFTS targets are within SL 693. Fourteen are in the B-type sample, with their membership of SL 639 indicated in the final column of Table 7⁴. Ten of these stars are early-B dwarfs/giants, with six of them displaying Be-like H α emission. The remaining four are comprised of two supergiants (VFTS 827, B1.5 Ib; VFTS 831, B5 Ia) and two bright giants (VFTS 826, B1 IIn; VFTS 829, B1.5-2 II).

There are previous age estimates for SL 693. From consideration of its main-sequence turn-off, Hodge (1983) estimated its age to be 18 Myr (although he noted a large uncertainty compared to the theoretical models of the time). A larger estimate of 30 Myr was given by Santos et al. (1995) from its reddening-corrected, integrated $(U-B)_0$ colour and adopting an empirical calibration of colour vs. age from Bica et al. (1990).

5.3. H-R diagram

Motivated by the apparent similarities of the two clusters in terms of their spectral content, we constructed an H-R dia-

³ The five others are: VFTS 310 (O9.7 V:, Walborn et al. 2014) and VFTS 271, 281, 289, and 294 (A7 II, Mid-late K, Late G/Early K, and A0 Ib, respectively, from Paper I). Three additional stars (VFTS 263, 291, and 317) are also nearby, at radii from the adopted centre of \sim 25".

 $^{^4}$ The two others are VFTS 820 and 828 (A0 Ia and Early M, respectively, from Paper I). The only other VFTS target within a 35 $^{\prime\prime}$ (8.5 pc) radius is VFTS 839 at $\sim\!25^{\prime\prime}$ (6 pc), classified as G-type in Paper I. All three of these cooler objects have radial velocities consistent with membership of the LMC.

Fig. 4. Spatial distribution of the B-type single stars (cyan circles) and spectroscopic binaries (open blue squares) with radial-velocity estimates; the nine candidate runaways, labelled by their VFTS identifiers, are marked in red. The spatial extents of NGC 2070, NGC 2060, SL 639, and Hodge 301 (as defined in Table 4), are indicated by the overlaid dashed circles. The underlying image is from a V-band mosaic taken with ESO's Wide Field Imager on the 2.2 m telescope at La Silla.

gram in order to compare the properties of their likely members. Ahead of detailed quantitative analysis of the VFTS spectra and pending extinction analysis of the whole sample, we adopted effective temperatures ($T_{\rm eff}$) on the basis of the spectral types in Table 3 using the calibrations of Trundle et al. (2007), and interpolating between the Galactic and SMC temperatures for A-type supergiants from Evans & Howarth (2003); cooler objects were omitted given the larger uncertainties in their spectral classifications. Stellar luminosities were estimated using the optical photometry from Paper I, intrinsic colours from Fitzgerald (1970), bolometric corrections from Balona (1994), and assuming $R_V=3.5$ (see Appendix C of Doran et al. 2013).

The H–R diagram is shown in Figure 5, with SL 639 and Hodge 301 members indicated by the filled black and open red circles, respectively. Evolutionary tracks and isochrones (for non-rotating models) from Brott et al. (2011) are also plotted for comparison. As noted earlier, the late O-type star in Hodge 301, VFTS 310, stands out as a blue straggler with $T_{\rm eff} > 30 \, \rm kK$.

Tailored atmospheric and extinction analyses of these objects should help to provide further insight in due course. Nonetheless, the stars in SL 639 appear marginally younger than those in Hodge 301. From qualitative comparison with the isochrones, we estimate an age in the range of 10-15 Myr for SL 639, significantly younger than the estimate of 30 Myr from Santos et al. (1995). There is a larger spread in the inferred ages

Table 4. Mean radial velocities ($\overline{v_r}$) and standard deviations (σ) of the stellar associations identified within 30 Doradus.

Region	No. of stars	Radius	α	δ	$\overline{v_{ m r}} \pm \sigma$
		[']	[J20	[0.000	
All	298		• • •	• • •	270.4 ± 12.4
NGC 2070	78	2.40	05 38 42.0	-690602.0	271.2 ± 12.4
NGC 2060	22	2.40	05 37 45.0	$-69\ 10\ 15.0$	273.7 ± 13.4
Hodge 301	14	0.33	05 38 17.0	-690401.0	261.8 ± 5.5
SL 639	11	0.33	05 39 39.4	-691152.1	253.5 ± 3.9
Field	173		• • •	• • •	271.3 ± 11.8
All (excl. H 301/SL 639)	273		• • •	• • •	271.6 ± 12.2

Notes. These statistics exclude the nine candidate runaways identified in Table 5. For consistency, the central positions adopted for NGC 2060 and NGC 2070 are those used by Sana et al. (2013). Approximate centres for Hodge 301 and SL 639 were adopted using the coordinates of WB97-5 (Walborn & Blades 1997) and VFTS 828, respectively.

Fig. 5. Hertzsprung–Russell diagram for the VFTS objects observed in SL 639 (black circles) and Hodge 301 (red, open circles). Also plotted are evolutionary tracks for initial masses of 8, 10, 12, 15, 20, 25 M_{\odot} (solid lines), the zero-age main sequence (dashed line), and isochrones (3, 5, 10, 15, 20, and 25 Myr, dotted lines) for the non-rotating models from Brott et al. (2011). The apparent blue straggler in Hodge 301 (VFTS 310) is a late O-type star.

for the stars in Hodge 301 of 15 ± 5 Myr, overlapping with the lower estimate of 20 Myr from the photometric study of Grebel & Chu (2000). Adopting isochrones calculated for the rotating models from Brott et al. had little impact on these results; e.g. assuming an intial rotational velocity of 301 km s⁻¹, the inferred ages were only marginally younger (by ~ 1 Myr).

6. Candidate runaways

6.1. Single stars

To identify candidate runaways in the B-type sample we compared the radial-velocity estimates for each star with the initial weighted mean and standard deviation calculated for the stars in

NGC 2060, NGC 2070, and the surrounding field population (i.e. excluding Hodge 301 and SL 639). Employing a threshold of $|\delta v_r| > 3\sigma$ we identified eight candidate runaways and then recalculated the mean velocities (and dispersions) excluding these objects. Reapplying a 3- σ threshold provided one additional candidate, while a second iteration did not reduce the velocity dispersion further. The mean velocities and dispersions for the different spatial samples (excluding potential runaways) are presented in Table 4. The cumulative distribution of the velocity estimates for the 307 single stars is shown in Figure 6, with the $\pm 3\sigma$ threshold (i.e. $\pm 36.6\,\mathrm{km~s}^{-1}$) for identification of runaway stars indicated by the vertical dotted lines.

Our adopted velocity threshold is comparable in magnitude to the limit used by Blaauw (1961), which was that candidate runaways have a *space velocity* which differs by more than $40\,\mathrm{km\,s^{-1}}$ from the systemic velocity of the region in which they formed. (In this context, our radial-velocity estimates should serve as lower limits to the 3-D space velocities.) In contrast, Portegies Zwart (2000) adopted a lower threshold of 25 km s⁻¹ in his theoretical study of the origins and characteristics of runaways. Given the limitations of the B-type data and the relatively small number of lines available for some objects, we did not consider a comparably low threshold.

Details of the nine candidate runaways are summarised in Table 5, and their locations are shown in Figure 4. Four of the candidates have differential velocities in the range of 3.2-3.6 σ , thus their status as candidates will depend strongly on the adopted velocity criteria. Moreover, our adopted velocity threshold (the dispersion of the weighted mean velocities in the sample) was employed without consideration of the uncertainty on the radial-velocity estimate for a given star. Thus, VFTS 467, although formally with a radial velocity of 4.2σ from the systemic value, has a large uncertainty on its estimated velocity. Indeed, only three He I lines were available for this star and the $\lambda4144$ estimate (277.5 km s⁻¹) is comparable to the systemic value.

The choice to use weighted means to investigate the spatially-different samples in Section 4.3 was motivated by the fact that approximately $10\,\%$ of our velocity estimates have uncertainties of $\geq 15\,\mathrm{km~s^{-1}}$ (each of which is a broad-lined star, i.e. used the Set 2 lines from Table 3). To investigate the dependence of the number and identity of the candidate runaways on these adopted means, we repeated the above steps for both the (unweighted) mean and median velocities of the sample. The mean velocity for the 281 stars (not including those in Hodge 301 and SL 639) was 269.8 = 16.4 km s $^{-1}$, with a median value of 270.7 km s $^{-1}$. Adopting either of these systemic values

Table 5. Candidate runaway stars identified from the radial-velocity analysis of the VFTS B-type spectra.

VFTS	Classification	$v_{ m r}$	$(v_{\rm r} - \overline{v}_{\rm r})$	$ v_{\rm r} - \overline{v}_{\rm r} /\sigma$	$v_{\rm e} \sin i$	1	$r_{ m d}$
		$[{\rm km}\ {\rm s}^{-1}]$	$[{\rm km}\ {\rm s}^{-1}]$		$[{\rm km}\ {\rm s}^{-1}]$	[']	[pc]
242	B0 V-IV	216.0 ± 3.6	-55.6 ± 12.7	4.6	≤40	5.96	86.6
298	B1-2 V-IIIe+	332.1 ± 4.0	60.5 ± 12.8	5.0	431 ± 15	3.92	57.1
358	B0.5: V	164.7 ± 10.7	-106.9 ± 16.2	8.8	345 ± 22	3.02	44.0
368	B1-3 V	229.6 ± 12.4	-42.0 ± 17.4	3.4	380:	1.20	17.5
467	B1-2 Ve+	322.3 ± 30.2	50.7 ± 32.6	4.2	355 ± 29	9.54	138.7
616	B0.5: V	227.4 ± 10.7	-44.2 ± 16.2	3.6	≤40	1.26	18.3
625	B1.5 V	310.7 ± 9.2	39.1 ± 15.3	3.2	64 ± 12	2.57	37.4
831	B5 Ia	210.4 ± 6.2	-61.2 ± 13.7	5.0	41	7.91	115.0
851	B2 III	229.4 ± 0.3	-42.2 ± 12.2	3.5	\leq 40	7.18	104.4

Notes. Estimates of $v_e \sin i$ are from Dufton et al. (2013) except for VFTS 831, which is taken from McEvoy et al. (2015). Projected distances from the core of R136 are from Paper I.

and a $3-\sigma$ threshold (taking the dispersion as $16.4\,\mathrm{km\ s}^{-1}$) led to identification of the five most significant runaways from Table 5 (i.e. VFTS 242, 298, 358, 467, and 831), with a second iteration providing one additional candidate (VFTS 616). The final mean velocity from these calculations is 270.1 ± 13.9 , in good agreement with the equivalent subsample in the final row of Table 4. From these checks we conclude that the four most significant candidates (VFTS 242, 298, 358, and 831) are secure as potential runaways, with five more tenative candidates as discussed above

For the members of Hodge 301, VFTS 309 is a potential outlier (at 3.6σ) compared to the mean velocity for the cluster in Table 4. Indeed, excluding its $v_{\rm r}$ estimate from the calculated mean and dispersion for Hodge 301 gives $\overline{v_{\rm r}} = 261.5 \pm 5.0 \, {\rm km \ s^{-1}}$, such that VFTS 309 is then a 4.1σ outlier. However, its velocity is also in reasonable agreement with those for stars in NGC 2060 and NGC 2070, so we are unable to confirm it as a potential runaway from Hodge 301. Finally, we note that the velocity estimate for VFTS 310 is not significant as a potential runaway from Hodge 301.

With our adopted velocity criteria, the nine candidate runaways correspond to 2.9 % of the sample of 307 single stars with radial-velocity estimates. This lower fractional share of runaways compared to the O-type stars (Sana et al., in prep.) is in qualitative agreement with recent N-body predictions for the mass-spectrum of runaways (Banerjee et al. 2012; Banerjee & Kroupa 2012), although quantitative comparison with the predictions is complicated by the different criteria employed (e.g. Banerjee et al. used a radial distance threshold for a star to be considered a runaway). We note that the distribution in Figure 6 is slightly asymmetric, with two thirds of the candidates having negative differential velocities. This could point to veiling of more distant runaways by the nebula, although this is not seen in the results for the O-type stars (in which a greater fraction are seen to have positive differential velocities, Sana et al., in prep.), suggesting that small-number statistics likely explain the asymmetry.

6.2. Rotational velocities of candidate runaways

Estimated projected rotational velocities (from Dufton et al. 2013; McEvoy et al. 2015) for our candidate B-type runaways are included in Table 5. There appears to be a dichotomy in their rotation rates, as highlighted by Fig. 7. Five stars have small rotational velocities, with the estimates for four stars effectively limited by the velocity resolution of the data (i.e. \sim 40 km s⁻¹)

Fig. 6. Cumulative distribution of estimated radial velocities for the 307 single B-type stars. The dashed vertical line indicates the weighted mean velocity of the sample, $v_{\rm r}=271.6\,{\rm km~s^{-1}}$ (calculated excluding stars in the two older clusters and the candidate runaways). The vertical dotted lines are the 3σ thresholds adopted for identification of potential runways ($\pm 36.6\,{\rm km~s^{-1}}$).

and the fifth with $v_{\rm e} \sin i = 64 \pm 12 \, {\rm km \ s^{-1}}$. Meanwhile, the remaining four stars each have estimates of $v_{\rm e} \sin i \geq 345 \, {\rm km \ s^{-1}}$. To investigate the significance of these results, we ran Monte Carlo simulations using the $v_{\rm e} \sin i$ distributions from Dufton et al. (2013). We note that the results from Dufton et al. were for the unevolved B-type sample (i.e. dwarf and giant objects), so we exclude VFTS 831 from the following discussion.

We generated random rotational velocities for eight stars drawn from the distribution of Dufton et al., and repeated this 10^6 times to estimate the probability of recovering rotational velocities consistent with our eight (non-supergiant) runaway candidates (i.e. four stars with $v_{\rm e}\sin i \leq 65$, and four with $v_{\rm e}\sin i \geq 345~{\rm km~s^{-1}}$). We then repeated these runs 10^4 times to estimate the dispersion on the probabilities. In a second test we limited the low velocity subsample to the three stars with $v_{\rm e}\sin i \leq 40~{\rm km~s^{-1}}$ (i.e. excluding VFTS 625, which has the least significant runaway velocity), together with the four rapid rotators. We found low probabilities for recovering the observed $v_{\rm e}\sin i$ values from both tests (as summarised in Table 6), with significance levels of 3.0 and 3.2σ , respectively.

Table 6. Probability tests to investigate the rotational velocities of the candidate runaway stars compared to those for the full (unevolved) B-type sample from Dufton et al. (2013).

Test (from 10 ⁴ repeats of 10 ⁶ runs)	n	P
$4 \times v_{\rm e} \sin i \le 65 \& 4 \times v_{\rm e} \sin i \ge 345 \rm km s^{-1}$	10 ± 3	0.0010
$3 \times v_{\rm e} \sin i \le 40 \ \& \ 4 \times v_{\rm e} \sin i \ge 345 {\rm km s}^{-1}$	6 ± 2	0.0006
$4 \times v_e \le 100 \& 4 \times v_e \ge 340 \mathrm{km \ s^{-1}}$	395 ± 20	0.0395
$3 \times v_e \le 60 \& 4 \times v_e \ge 340 \mathrm{km s^{-1}}$	181 ± 13	0.0181

Notes. 'n': number of Monte Carlo runs (from 10^6 sets) for which the simulated rotational velocities are consistent with those of the candidate runaways (and translated into a fractional probability, P, in the final column); the quoted uncertainties are the standard deviations from 10^4 repeat runs.

Fig. 7. Comparison of the projected rotational velocities ($v_e \sin i$) with the differential radial velocities (δv_r) compared to the mean systemic velocity of the B-type sample. Uncertainties on $v_e \sin i$ of $\pm 10\%$ are adopted for VFTS 368 and 831 (with the latter plotted as an open symbol given its supergiant classification).

We also investigated the probabilities compared to the cumulative distribution function of unprojected rotational velocities (v_e) from Dufton et al. (their Table 6). In this case we are limited by the unknown inclination angles of our targets but, assuming some relatively conservative lower-limits, we repeated tests similar to those above (in which we adopt the nearest available value from Dufton et al. for our upper limit, i.e. $340 \, \mathrm{km \ s^{-1}}$). These tests are formally less significant (Table 6), but provide further support that the rotational velocities of our candidate runaways do not appear to be randomly drawn from the distribution for the larger B-type sample. We note that this agrees with similar conclusions regarding the rotational velocities of the O-type runaways (Walborn et al. 2014, Sana et al., in prep.).

6.3. Atmospheric analysis of two candidate runaways

Atmospheric analysis of the B-type spectra is now underway within the VFTS project. In the context of the current study, we were particularly motivated to investigate the properties of the two most noteworthy runaway candidates, VFTS 358 and 831; we now comment briefly on our findings for these two objects.

6.3.1. VFTS 358

This star has the largest differential velocity from the estimated systemic value ($\delta v_{\rm r} = -106.9 \pm 16.2 \, {\rm km \, s^{-1}}$) and also has a relatively large projected rotational velocity ($v_{\rm e} \sin i = 345 \pm 22 \, {\rm km \, s^{-1}}$; Dufton et al. 2013). This prompted us to investigate its physical properties, in part to see if there was any evidence of past binary interaction (see e.g. de Mink et al. 2014).

Detailed analysis was complicated by the rapid rotation, which made estimation of the atmospheric parameters and element abundances difficult. However, using similar methods as those used by Hunter et al. (2007), we undertook a preliminary analysis using a grid of model atmospheres calculated using the TLUSTY and SYNSPEC codes (Hubeny 1988; Hubeny & Lanz 1995; Hubeny et al. 1998; Lanz & Hubeny 2007); further details of the grids are given by Ryans et al. (2003) and Dufton et al. (2005)⁵.

We estimated the effective temperature $(T_{\rm eff})$ and gravity $(\log g)$ of VFTS 358 by fitting rotationally-broadened profiles to the H δ , H γ and He II λ 4686 lines, assuming solar helium abundances. This gave estimates of $T_{\rm eff} \simeq 29\,{\rm kK}$ and $\log g \simeq 3.5\,{\rm dex}$, although we were unable to estimate the microturbulence because of the paucity of observable metal lines (which also precluded use of the silicon ionisation balance to estimate the temperature).

Absorption from N II $\lambda 3995$ appears to be present in the spectrum (with an equivalent width of \sim 120 mÅ), although its identification is marginal, as shown in Figure 8. Rotationallybroadened model spectra for our adopted physical parameters (and an assumed microturbulence of 5 km s⁻¹) are shown for three nitrogen abundances: $12 + \log (N/H) = 6.9$ (the approximate baseline N-abundance for the LMC, see discussion by Hunter et al. 2007), 7.7, and 8.5 dex plotted in red, green, and blue, respectively. This comparison suggests significant nitrogen enrichment, with an abundance of $\gtrsim 8.5$ dex (the maximum abundance considered in our grid). Tests for theoretical profiles with a microturbulence of 20 km s⁻¹ (which is larger than normally found for stars with this gravity, e.g. Hunter et al. 2007) implied a similarly large nitrogen abundance. Fitting a rotationally-broadened profile to the N II $\lambda 3995$ line leads to $v_e \sin i = 342 \,\mathrm{km \ s^{-1}}$ (cf. 345 km s⁻¹ from the helium lines) and a central wavelength of 3995.06 Å (cf. the laboratory wavelength of 3995.00 Å). This agreement provides some support that the feature is indeed from N II absorption.

The neutral helium lines in the observed spectrum appear somewhat stronger than those in the best-fitting model (e.g. the He I $\lambda\lambda4009$, 4026 lines in Figure 8) suggesting that the helium abundance might also be enhanced. In turn, this would tend to decrease the $T_{\rm eff}$ estimated from the He II line (and the surface gravity). Tests using cooler models indicated that the change in nitrogen abundance would be modest. For example, a change in effective temperature of $-2\,{\rm kK}$ leads to a change in $12+\log{\rm (N/H)}$ of approximately $-0.2\,{\rm dex}$. Hence, the nitrogen abundance would still be significantly greater than the baseline value for the LMC.

At present we are limited by the quality of the VFTS spectrum but from this preliminary analysis there is evidence of significant nitrogen enrichment (and maybe also helium) in the photosphere of VFTS 358. Indeed, the estimated nitrogen abundance is the largest obtained so far from the VFTS survey (including results from the B-type supergiants from McEvoy et al. (2015).

⁵ See also http://star.pst.qub.ac.uk

Fig. 8. Section of the VFTS 358 spectrum showing, from left-to-right, the H ϵ , N II λ 3995, and He I $\lambda\lambda$ 4009, 4026 lines; we note that H ϵ is complicated by absorption from the interstellar Ca H line (as well as nebular emission). Model spectra for our adopted physical parameters and $12 + \log{(N/H)} = 6.9$, 7.7, and 8.5, are overplotted in red, green, and blue, respectively.

The large velocity offset, high rotation rate, enhanced nitrogen (and possibly helium) all fit, at least qualitatively, with a scenario in which VFTS 358 is the former secondary of an interacting binary that became unbound at the explosion of the primary star.

6.3.2. VFTS 831

VFTS 831 is remarkable in two regards. First as a luminous B-type supergiant, likely to be the evolved descendent of a formerly more massive O-type star, and secondly because, from the definition used in Table 4, it is located within SL 639 (\approx 12″.5 from the visual centre). With $v_{\rm r}=210.4\pm6.2\,{\rm km~s^{-1}}$ it also appears to be runaway compared to the other targets in SL639. A modelatmosphere analysis of the spectrum of VFTS 831 has been presented by McEvoy et al. (2015), who classified it as an apparently single star. It is one of the cooler objects in the supergiant sample, with $T_{\rm eff}=14,000\,{\rm K}$ and $\log g=2.1$.

Following the discussion in Section 6.2, VFTS 831 does not appear particularly remarkable in terms of stellar rotation. Indeed, it has a relatively low projected rotational velocity and a substantial contribution from macroturbulent broadening ($v_e \sin i$, $\Theta_{\rm RT}$) \sim (40, 65) km s⁻¹, as found in most B-type supergiants (see e.g. Markova et al. 2014; Simón-Díaz & Herrero 2014). From the intrinsically strong N II λ 3995 singlet transition, McEvoy et al. estimated a nitrogen abundance of $12 + \log{({\rm N/H})} = 7.94$. Although large, this is consistent with the other single supergiants in the sample, which have abundances spanning approximately 6.8 to 8.1 dex.

6.4. Single-lined binaries

For completeness we also investigated the velocities of single-lined binaries for potential runaway systems. In the final column of Table A.3 we include the observed range of velocities, $\delta v_{\rm r\,max}$, from Dunstall et al. (in prep.). Following the arguments laid out in Section A.3 of the Appendix, we adopt an estimated error on the true systemic velocity compared to the single-epoch

estimate of $0.15 \times \delta v_{\rm r\,max}$. For stars with $v_{\rm r}$ above (or below) the systemic velocity, we then subtract (or add) this estimated error, to give a corrected velocity estimate, $v_{\rm corr}$. Using the same 3σ criteria discussed above we then looked for potential runaways.

Only one single-lined system, VFTS 730, was found to be a potential runaway, with $v_{\rm corr}=324.0\,{\rm km~s}^{-1}$ (a $4.3\,\sigma$ outlier cf. the adopted systemic velocity). Its range of observed velocities is relatively small ($\delta v_{\rm r\,max}=16.6\,{\rm km~s}^{-1}$, thus only just above the detection threshold employed by Dunstall et al.) but it could be, for example, a long-period system with an eccentric orbit. Indeed, inspection of its velocity estimates as a function of epoch show them to be monotonically decreasing from 332 to 316 km s⁻¹, suggesting it as a long-period system. Further investigation of this (and other) binary systems will require comprehensive spectroscopic monitoring to determine their centre-of-mass velocities and other orbital parameters.

6.5. Origins of candidate runaways

The production of runaways is thought to be from one of two channels, with evidence in support of both mechanisms (Hoogerwerf et al. 2000). In the dynamical-ejection scenario the runaway is ejected via gravitational interaction between single-binary or binary-binary systems in a dense star cluster (Poveda et al. 1967). In the binary-ejection scenario, the primary star explodes as a supernova, leaving behind a neutron star or black hole. In most cases the compact object leaves the system depending on the magnitude and direction of the birth kick, and the companion is ejected with a velocity approximately equal to its orbital velocity (Blaauw 1961; Eldridge et al. 2011).

The complex star-formation history of 30 Dor makes it hard to cleanly attribute our candidate runaways to either of the two scenarios. R136 is sufficiently young (1–2 Myr; de Koter et al. 1998; Massey & Hunter 1998) that none of its members is thought to have undergone a supernova explosion. Thus, any runaways from R136 would have to be ejected via dynamical interactions. However, as noted above, the VFTS region contains several older subclusters and associations, including NGC 2060, which contains a supernova remnant (e.g. Chu et al. 1992), and Hodge 301 which was argued by Grebel & Chu (2000) as a likely site of tens of past supernovae from consideration of its mass function.

One of the important diagnostics might prove to be the connection with the observed rotational velocities (Fig. 7), in which the apparently rapid rotators could have a binary origin. For example, the theoretical discussions by de Mink et al. (2013), and the suggestion that the high- $v_{\rm e} \sin i$ tail of the distribution of the rotational velocities for the VFTS O-type stars could be accounted for by past binary interactions (Ramírez-Agudelo et al. 2013). Detailed dynamical analysis of the O-type stars in the survey has been underway in parallel to the current work, and the broader question of the origins of runaway stars from 30 Dor is discussed in more depth by Sana et al. (in prep.).

7. Summary

We have presented comprehensive spectral classifications and radial-velocity estimates for the B-type stars observed in the VFTS. We now briefly summarise our main findings:

 The members of the two older clusters, Hodge 301 and SL 639, appear kinematically distinct from those in the younger clusters and general field population.

- The preliminary H-R diagram for stars in Hodge 301 and SL 639 (Figure 5) suggests an age of \sim 10-15 Myr for the population of SL 639, slightly younger than that of Hodge 301 (15 \pm 5 Myr).
- The systemic velocity for 273 single stars, excluding those in the two older clusters and candidate runaways, is $\overline{v_r} = 271.6 \pm 12.2$ (s.d.) km s⁻¹.
- Employing a 3- σ velocity threshold, we identify nine single stars as candidate runaways (2.9 % of the single stars with radial-velocity estimates). These are mostly unevolved, early B-type objects, but include a B5-type supergiant (VFTS 831).
- There appears to a bimodal distribution of rotation rates in the candidate runaways. Five stars have $v_e \sin i < 65 \text{ km s}^$ while the others have $v_e \sin i > 345 \,\mathrm{km \ s}^{-1}$.
- Excluding VFTS 831 (because of its evolved nature), there is a remarkably small probability ($\sim 0.001\%$) that the projected rotational velocities for our other eight candidate runaways could be randomly drawn from those for the full (unevolved) B-type sample.
- VFTS 358 has the largest velocity offset from the systemic velocity of 30 Dor $(\delta v_r = -106.9 \pm 16.2 \,\mathrm{km \, s}^-)$ and appears to be rotating rapidly ($v_e \sin i = 345 \text{ km s}^{-1}$ Preliminary spectral analysis suggests evidence of significant nitrogen enrichment, perhaps indicative of past binary interaction.

The classifications presented here will underpin the quantitative analyses in progress on this substantial part of the VFTS data. For example, they will enable investigation of the mass/temperature dependence (if any) of the estimated $v_e \sin i$ results from Dufton et al. (2013), particularly when also combined with the results for the O-type stars from Ramírez-Agudelo et al. (2013). In the longer-term, the ongoing propermotion studies using HST imaging (programme GO12499, P.I. Lennon) will add another dimension to our studies of the complex dynamics in this region, by providing tangential velocities (see Sabbi et al. 2013).

Our radial-velocity estimates should also lend themselves to detailed investigation of the structural properties of the VFTS sample (e.g. using the techniques discussed by Parker et al. 2014; Wright et al. 2014), particularly when combined with the results for the O-type stars from Sana et al. (2013); this should provide further insights into the formation and evolutionary history of the massive-star population in the region.

Finally, there is an ongoing monitoring programme of FLAMES spectroscopy to characterise a subset of the O-type binaries (PI: Sana); a similar monitoring programme for the \sim 100 binaries discussed here and by Dunstall et al. (in prep.) would be valuable to determine the full orbital parameters of the lowermass population of binaries, while also providing robust estimates of centre-of-mass velocities to better explore their dynamics in the context of ejected runaways.

Acknowledgements. Based on observations at the European Southern Observatory Very Large Telescope in programme 182.D-0222. We thank Mark Gieles for helpful discussions regarding the candidate runaways, and the referee for their constructive comments. STScI is operated by AURA Inc., under NASA contract NAS 5-26555. SdM acknowledges support for this work by NASA through an Einstein Fellowship grant, PF3-140105. JMA acknowledges support by grants AYA2010-17631 and AYA2010-15081 of the Spanish Ministry of Economy and Competitiveness. SS-D acknowledges funding from the Spanish Government Ministerio de Economía y Competitividad (MINECO) through grants AYA2010-21697-C05-04, AYA2012-39364-C02-01 and Severo Ochoa SEV-2011-0187, and the Canary Islands Government under grant PID2010119.

```
References
Andrews, A. D. & Lindsay, E. M. 1964, Irish AJ, 6, 241
Balona, L. A. 1994, MNRAS, 267, 1060
Banerjee, S. & Kroupa, P. 2012, A&A, 547, A23
Banerjee, S., Kroupa, P., & Oh, S. 2012, ApJ, 746, 15
Bica, E., Santos, Jr., J. F. C., & Alloin, D. 1990, A&A, 235, 103
Blaauw, A. 1961, Bull. Astron. Inst. Netherlands, 15, 265
Bohannan, B. & Epps, H. W. 1974, A&AS, 18, 47
Bonanos, A. Z., Massa, D. L., Sewiło, M., et al. 2009, AJ, 138, 1003
Bosch, G. L., Terlevich, R., Melnick, J., & Selman, F. 1999, A&AS, 137, 21
Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A, 530, A115
Brunet, J. P., Imbert, M., Martin, N., et al. 1975, A&AS, 21, 109
Chu, Y.-H., Kennicutt, R. C., Schommer, R. A., & Laff, J. 1992, AJ, 103, 1545
Clark, J. S., Najarro, F., Negueruela, I., et al. 2012, A&A, 541, A145
Clark, J. S., Ritchie, B., & Negueruela, I. 2013, A&A, 560, A11
Clark, J. S., Tarasov, A. E., & Panko, E. A. 2003, A&A, 403, 239
de Koter, A., Heap, S. R., & Hubeny, I. 1998, ApJ, 509, 879
de Mink, S., Langer, N., Izzard, R. G., Sana, H., & de Koter, A. 2013, ApJ, 764,
   166
de Mink, S., Sana, H., Langer, N., Izzard, R. G., & Schneider, F. R. N. 2014,
   ApJ, 782, 7
Doran, E. I., Crowther, P. A., de Koter, A., et al. 2013, A&A, 558, A134
Dufton, P. L., Langer, N., Dunstall, P. R., et al. 2013, A&A, 550, A109
Dufton, P. L., Ryans, R. S. I., Trundle, C., et al. 2005, A&A, 434, 1125
```

Eldridge, J. J., Langer, N., & Tout, C. A. 2011, MNRAS, 414, 3501 Evans, C. J. & Howarth, I. D. 2003, MNRAS, 345, 1223 Evans, C. J., Lennon, D. J., Smartt, S. J., & Trundle, C. 2006, A&A, 456, 623

Dunstall, P. R., Fraser, M., Clark, J. S., et al. 2012, A&A, 542, A50

Evans, C. J., Taylor, W. D., Hénault-Brunet, V., et al. 2011, A&A, 530, A108; (Paper I) Evans, C. J., Walborn, N. R., Crowther, P. A., et al. 2010, ApJ, 715, L74 Feast, M. W., Thackeray, A. D., & Wesselink, A. J. 1960, MNRAS, 121, 337

Fitzgerald, M. P. 1970, A&A, 4, 234 Fitzpatrick, E. L. 1988, ApJ, 335, 703

Fitzpatrick, E. L. 1991, PASP, 103, 1123

Fujii, M. S. & Portegies Zwart, S. 2011, Sci, 334, 1380

Graus, A. S., Lamb, J. B., & Oey, M. S. 2012, ApJ, 759, 10

Grebel, E. K. & Chu, Y.-H. 2000, AJ, 119, 787

Groh, J., Meynet, G., Ekstrom, S., & Georgy, C. 2014, A&A, 564, A30 Gummersbach, C. A., Zickgraf, F.-J., & Wolf, B. 1995, A&A, 302, 409 Hodge, P. 1983, ApJ, 264, 470

Hodge, P. 1988, PASP, 100, 1051

Hoogerwerf, R., de Bruijne, J. H. J., & de Zeeuw, P. T. 2000, ApJ, 544, L133 Houk, N. & Smith-Moore, M. 1988, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars. Vol. 4, Declinations -26° to -12° (Department of Astronomy, University of Michigan)

Howarth, I. D. 2012, A&A, 548, A16

Howarth, I. D. 2013, A&A, 555, A141

Hubeny, I. 1988, Computer Physics Communications, 52, 103

Hubeny, I., Heap, S. R., & Lanz, T. 1998, in Astronomical Society of the Pacific Conference Series, Vol. 131, Properties of Hot Luminous Stars, ed. I. Howarth, 108

Hubeny, I. & Lanz, T. 1995, ApJ, 439, 875

Hunter, I., Dufton, P. L., Smartt, S. J., et al. 2007, A&A, 466, 277

Kalari, V. M., Vink, J. S., Dufton, P. L., et al. 2014, A&A, 564, L7

Kramida, A., Ralchenko, Y., & Reader, J. and NIST ASD Team. 2012, in NIST Atomic Spectra Database (v5.0); http://physics.nist.gov/asd (National Institute of Standards and Technology, Gaithersburg, MD.)

Lanz, T. & Hubeny, I. 2007, ApJS, 169, 83 Lennon, D. J. 1997, A&A, 317, 871

Markova, N., Bianchi, L., Efremova, B., & Puls, J. 2009, BlgAJ, 12, 21

Markova, N., Puls, J., Simón-Díaz, S., et al. 2014, A&A, 562, A37

Martayan, C., Hubert, A.-M., Floquet, M., et al. 2006, A&A, 445, 931

Massey, P. & Hunter, D. A. 1998, ApJ, 493, 180

McEvoy, C. M., Dufton, P. L., Evans, C. J., et al. 2015, A&A, arXiv:1412.2705 Meixner, M., Gordon, K. D., Indebetouw, R., et al. 2006, AJ, 132, 2268

Melnick, J. 1985, A&A, 153, 235

Parker, J. W. 1993, AJ, 106, 560

Parker, R. J., Wright, N. J., Goodwin, S. P., & Meyer, M. R. 2014, MNRAS, 438,

Pasquini, L., Avila, G., Blecha, A., et al. 2002, Msngr, 110, 1

Portegies Zwart, S. F. 2000, ApJ, 544, 437

Poveda, A., Ruiz, J., & Allen, C. 1967, Boletín de los Observatories to Tonantzintla y Tacubaya, 4, 86

Ramírez-Agudelo, O. H., Simón-Díaz, S., Sana, H., et al. 2013, A&A, 560, A29 Rivinius, T., Carciofi, A. C., & Martayan, C. 2013, A&ARv, 21, 69

Ryans, R. S. I., Dufton, P. L., Mooney, C. J., et al. 2003, A&A, 401, 1119

- Sabbi, E., Anderson, J., Lennon, D. J., et al. 2013, AJ, 146, 53
- Sabbi, E., Lennon, D. J., Gieles, M., et al. 2012, ApJ, 754, L37
- Sana, H., de Koter, A., de Mink, S. E., et al. 2013, A&A, 550, A107
- Sanduleak, N. 1970, Contrib. Cerro Tololo Inter-American Obs., No. 89
- Santos, Jr., J. F. C., Bica, E., Claria, J. J., et al. 1995, MNRAS, 276, 1155
- Schild, H. & Testor, G. 1992, A&AS, 92, 729
- Shapley, H. & Lindsay, E. M. 1963, IrAJ, 6, 74
- Simón-Díaz, S. & Herrero, A. 2014, A&A, 562, A135
- Smith, N., Vink, J. S., & de Koter, A. 2004, ApJ, 615, 475
- Sota, A., Maíz Apellániz, J., Walborn, N. R., et al. 2011, ApJS, 193, 24
- Testor, G., Llebaria, A., & Debray, B. 1988, Msngr, 54, 43
- Townsley, L. K., Broos, P. S., Feigelson, E. D., et al. 2006, AJ, 131, 2164
- Townsley, L. K., Broos, P. S., Garmire, G. P., et al. 2014, ApJS, 213, 1
- Trundle, C., Dufton, P. L., Hunter, I., et al. 2007, A&A, 471, 625
- Walborn, N. R. 1976, ApJ, 205, 419
- Walborn, N. R. 1984, in IAU Symp. 108, Structure and Evolution of the Magellanic Clouds, ed. S. van den Bergh & K. S. de Boer (Dordrecht: Reidel), 243
- Walborn, N. R. 1986, in IAU Symp. 116, Luminous Stars and Associations in Galaxies, ed. C. W. H. de Loore, A. J. Willis, & P. Laskarides (Dordrecht: Reidel), 185
- Walborn, N. R. & Blades, J. C. 1997, ApJS, 112, 457
- Walborn, N. R. & Fitzpatrick, E. L. 1990, PASP, 102, 379
- Walborn, N. R. & Fitzpatrick, E. L. 2000, PASP, 112, 50
- Walborn, N. R., Howarth, I. D., Lennon, D. J., et al. 2002a, AJ, 123, 2754
- Walborn, N. R., Maíz-Apellániz, J., & Barbá, R. H. 2002b, AJ, 124, 1601
- Walborn, N. R., Sana, H., Simón-Díaz, S., et al. 2014, A&A, 564, A40
- Wright, N. J., Parker, R. J., Goodwin, S. P., & Drake, J. J. 2014, MNRAS, 438, 639
- Zorec, J. & Briot, D. 1997, A&A, 318, 443

Table 7. Spectral classifications and radial velocities for B-type stars in the VFTS.

												(Ξ.	J.	E	Va	an	se	et a	al.	.: `	VF	Γ	S:	C	Cla	iss	ifi	ica	ıti	or	S	&	ra	di	al	ve	elo	ci	tie	es 1	foi	r tl	he	B	-ty	pe	s1	tar	S												
Comments					:											Walborn et al. (2014)				Hlpha broad but weak			:			nd eiiissioii eateilas ieuwalus	_								<u>-</u>				B1 V [ST92]			<u>-</u>					-		Si Iv wk			Composite spectrum?	of the formal	B1 III [3192]		<u>-</u>				-	:	one you are bountage
ည		:	:		:	:			:	:		:	:		: ;	⋛			:	H		:	:			Ĕ	:		:	:	:			:	:		•	: 1	B	:		:	:	:			:	:	S	:			ל ל	Ω	:	:	:				:	:
et Alt. ID			$SK-69^{\circ}$ 224			:				:		:	:		::	:			::	::			:			:	:		•	:	:			::	:		CTO 1 01	. 5192 1-01	ST92 1-02	:		::	:			•	::	::	:	:		:		21921-17	:	:	:				::	
Set	2	1 -	_	C	1 0	7	7	C	11	В	_	٠,	7	α	ם ו	Я	Ω	۱ ر	7	:	_	٠,	Д	В	-	_	_		: -	_	В	_		7	В	2	I	: '	7	В) C	1 -	_	7	_	· -	٠.	_	7	-	_	· C	1 -	٠,	2	_	7	_	6	1 C	1 C	1
σ	4.2	j	7.7	10.8		7.0	1.6	9	6.5	21.6	3.0		4.3	305	0.00	31.0	11.9	16.2	10.5	:	4.4		5.11	42.5	_	† †	3.0		: 0	4.0	22.8	13.8	101	18.4	18.4	4	:	: ;	12.6	19.0	7	† (7./	3.3	2.0	i c	i c	7.0	19.9	14.3	7.7	24.0	, t	1. '	4.3	10.5	3.7	2.4	3.7	, c	2.0	;
v _r [km s	282.1	1000	265.2	283.1	1.000	0.787	281.1	271.2	271.3	293.2	1 787	1.707	290.9	0.876	0.000	280.9	279.2	0 040	730.0	:	7857		290.3	273.1	272 5	6.617	285.6			7.007	270.2	308.3	0 020	2/0.8	299.4	278.0		: ;	291.4	287.0	263.6	200.0	788.1	274.1	283.1	9 020	0.77.0	7,0.4	265.7	284.2	287.5	254.8	100	7.007	268.4	297.2	283.1	283.3	287.3	276.2	2.0.7	;
B-V	0.05	0.0	l	0.16	01.0	70.0	0.03	0.07	0.0	0.11	0.04	† ·	0.13	0.04	5.5	I	0.17	70.0	0.00	0.55	0.37	50.0	0.00	0.09	700	0.24	-0.02	0.10	07:0	0.00	0.02	0.13	01.0	0.10	90.0	0.0	05.0	20.0	0.10	0.14	-0.06	00.0	-0.0	0.14	0.18	0.07	0.0	0.09	0.21	0.62	0.15	77.0	0.7	0.17	0.03	0.03	0.21	-0.06	0.10	0.18	0.10	2
Λ	16.93	0000	I	16.87		10.23	16.74	16.02	76.01	16.18	16.79	10.17	16.36	16.20	10.70	1	16.62	05.21	10.70	16.67	16.02	20:01	16.18	14.71	12.40	13.40	16.73	16.34	- 2.51	10.41	16.20	16.14	16 61	10.01	15.79	16.54	2.5.1	14.72	16.85	16.94	16.40	10.1	10.62	16.72	16.77	17.55	14.0	12.28	16.60	16.12	16.27	15.65	2.00	95.51	16.65	16.93	16.63	13.61	15.91	16.84	16.04	2
Нα	~	3	b	۰ «	3	ಡ	d		ರ	ಡ	G	ತ	ಇ	o	ರ	ಡ	æ		. u	e	÷	-	ಡ	В	c	5	В	Ð			ಡ	ю		ಡ	В	8	s (ט	В	ಡ	: 0	3	ಡ	В	G	: 0	5 4	_	Ţ	В	~	3	٠ (, Ъ	В	В	В	В	~	5 0	3 0	3
Mult.?		:	:		:	:	:		:`	>		:	:	`	> `	>	>		:	:		: `	>	>		:	:		•	:	>	:		:	>	:	•	:	:	>		:	:	:	:		:	:	:	:		•	:	:	:	:	:	:		•	:	:
Spectral Type	B15.V	+::-	Bl la	B2 V		B2 v(n)	B1-2 V	BO 5: V(n)	DO.2. v (II)	B1-1.5 V	B2 V	D2 4	B1.5 V	BOSV	DO: 0	B0 V	B1.5 V	D) 5. 17(2)	D2.3. V(II)	B0-0.5 V-IIIe	ВО 2 ПІ-П	1 1 5 M	V C.1-18	B1 III-II	DO 7 Is March	DU. / Id INWK	B1V	B3-5e (shell)	D1 6 W	V C.1d	B1-1.5 V	B1.5 Ve	D1. 17.	BI: vn	B2 III:	B1.5 V	DO:0	DO.e	B1-2 Vn	B2: V	B2 V(n)	D2 (II)	B2 V	B1V	BOV	ВОЗШП	D0.2 III-II	BIIII	B0 V	B1.5 II-Ib((n))	B3 III	R1-1 50	DO 11-1-15	BU. / 10-1ab	B1: V	B1 V	B1V	B0.5 Ib-Iab	B1.5 V	B15 V	B1.5 V	
VFTS	001	100	003	004	- 100	COO	002	800	000	600	010	010	013	015	010	017	018	000	070	022	0.04	1 60	072	027	000	070	020	030	200	150	033	034	200	030	037	038	030	950	040	041	043	7	044 44	048	050	050	250	033	054	090	062	890	900	600	071	075	078	082	083	084	085	3

`	
0	Ē
-	Š
- 2	3
. 5	Ξ
	1
7	3
- %	Ξ,
_ (_
ď	
`	•
_	•
r	۰
4	ì
	2
7	5
-	
- 0	Ų

																																															continued on next page
Comments	Weak but broad H α emission	 B0 5 V [ST02]: Walborn et al. (2014)	DO.3 V [3172], Walbolli Ctal. (2017)	::	B1 V [ST92]			:	:	:	:	:	:	B1 V [ST92]		:			Broad, weak H α emission wings	B1 V [ST92]	:	:	B2 V [Paper I]; weak H α emission wings	:	B1: [ST92]	:	:	:	:		B1: [ST92]	:	:	:	:		B0 IV (Walborn et al. 2014)	:	B2 V [ST92]	:	:	:	:	B1 V [ST92]	B2 V [ST92]	÷	contin
Alt. ID	:	CT02 1-31	10-17/10		ST92 1-33			:		:	:	:	:	ST92 1-46	:	:		:	:	ST92 1-55	T88-10	:	:	:	T88-11, ST92 1-64	:	:	:	:		ST92 1-67	:	:	:	:	:	:	:	ST92 1-82	:	:	:	:	ST92 1-89	ST92 1-90	:	:
Set	7 -	<u>ب</u> م	۵	: c	1 (1	В	В	_	:	В	_	_	7	_	_	7	В	2	В	7	В	В	_	:	7	В	7	_	_	В		7	7	_	В	7		_	В	7	В	7	В	_	_	7 Z	۵
σ^{-1}	4.7	5.8 7.1		: -	8.4	13.3	23.7	4.2	:	15.9	3.9	2.8	17.6	2.2	5.6	5.5	15.2	9.4	52.5	3.1	14.5	12.6	2.9	:	18.3	24.4	19.3	6.1	7.9	14.8	10.0	5.6	5.0	2.7	6.4	11.9	1.7	10.6	6.69	13.0	12.9	7.1	:	8.0	2.3	6.8	
$v_{\rm r}$ σ $[{ m km s}^{-1}]$	284.0	294.3	4.00.7	257.6	277.3	281.8	294.5	272.0	:	302.2	275.8	283.4	260.7	289.4	254.1	243.3	293.5	262.8	270.9	284.0	281.8	259.6	274.3	:	283.8	284.0	285.7	267.5	262.6	283.7	300.4	274.4	286.9	278.7	294.5	278.9	256.1	264.3	274.0	277.9	268.1	271.9	:	253.6	276.6	272.8); }
B-V	90.0	-0.02 0.16	0.10	0.03	0.32	0.05	90.0	-0.08	0.08	0.20	0.07	90.0	0.24	0.24	-0.07	0.02	-0.02	0.02	0.01	0.11	0.00	0.25	0.25	0.08	0.44	-0.08	0.20	-0.03	0.24	0.02	0.35	0.16	0.01	0.15	0.00	0.15	0.38	0.11	0.10	0.12	90.0	0.05	-0.01	0.09	0.13	-0.02	5
Λ	15.24	16.00	12.01	89.9	16.39	16.43	16.68	14.40	16.19	16.21	16.36	15.96	16.53	16.61	16.78	16.93	16.03	16.85	16.01	16.85	16.81	16.24	15.32	16.95	16.26	16.69	15.33	15.61	69.91	16.49	16.54	16.93	16.07	16.03	16.93	16.24	16.51	15.79	16.31	80.91	98.91	15.58	16.91	14.83	16.16	16.77	21.5
$H\alpha$	(2)	ಡೇ		 		J	£	а	а	в	а	а	В	В	а	а	а	а	e	B	f	а	e	а	e	હ	e	в	в	в	e	e e	в	B	в	B	в	а	а	e	а	e	а	e	ਲ	ч.	3
Mult.?		: `	>	:	: :	>	>	:	>	>	:	:	:	:	:	:	>	:	>	. :	>	>	:	>	:	>	:	:	:	>	:	:	:	:	>	:	:	:	>	:	>	:	>	:	:	: `	>
Spectral Type	B0: V-III(n)	B0.2 V B0 IV	B2-2 5 V	B1 5 V	B0.7: Vne	B0.2 V	B1: V	B2 III	Early B + Early B	BIIV	B0.7 V	B1 IV	B1.5 V	B2.5 III	BIV	B2: V(n)	B0.5 V	B1 V(n)	B1: V-IIIne	B0.7 V	B0.7: V	B2: V	B2 IIIe	B0.7: V	B1-1.5 V-IIIe+	B2 V	B1-1.5 Ve+	B2.5 III	BIV	B0.7 V	B2: V-IIIe+	B2: V-IIIe+	BIV	B1IV	BIV	B0.5 V	B0 IV-III	B1IV	B0.7: V	B2 V-IIIe+	B0.5 V	B2 IIIe+	Early B+Early B	B1-1.5 IIIe+	B2 V	B1-1.5 V B2 III	D2 111
VFTS	880	09.5 700	660	100	101	106	107	1111	112	118	119	121	122	124	126	127	133	134	135	137	144	146	152	155	156	157	158	159	161	162	164	166	167	170	179	181	183	186	189	194	195	196	199	200	202	203	-

Table 7. continued

Comments			:	11.17	D1 V [3192]	÷	Ē.	:		::	•			Broad but weath Hot am (note cross contamination from VETC 507)	DIOAU OU WEAR ITC CHI. (DOSS. CLOSS-CORRAINMANON HOM VI 15 JO7)	.:	:	:	:	B2: [ST92]	:	:	:	:		Weak secondary He I in some LR02 epochs	B0 IV (Walborn et al. 2014)	B0 IV (Walborn et al. 2014)	•	:	:	:	:	:	:	m Hlpha asymmetric, possible weak P-Cygni?				Member of H 301	Member of H301	:	£	Only nebular H α emission?; member of H 301	Member of H 301	Member of H 301		J-Be4 B2 III [WB97]; known triple, inc. GC00-Be10; member of H 301	::	
Alt.ID	-	•	:		S1921-93 ST02106	S192 I-90	:		ST92 1-99	:	:	:	•	:	:	:	:	:	:	ST92 1-104	:	:	:	:	:		:	: :	:	:	:	:	:	:	:	:	:	:	R132, WB97-1	WB97-2	GC00-Be5	:	:	GC00-Be2	:	GC00-Be8	GC00-Be7	WB97-6, GC00-Be4	:	:
Set	æ	-	- <u>a</u>	ם כ	7 D	η -	⊣ د	η,	В	7	_	2	ı c	1 M	ם ב	ο 6	7	7	7	_	7	7	_	7	2	В	-	· —	В	7	В	7	В	В	_	_	7	_	 .	_	co	_	7	_	В	7	0 0	.7 -	- c	1
σ	36.8	2.00		1 0	2.7 0.0	0.71	T. (63.0	7.9	12.6	3.3	8.2	× × ×	2.7.0	0.01	7.1	6.5	11.0	7.5	2.5	11.9	10.3	10.5	13.5	6.5	52.6	8.7	3.6	28.8	4.1	35.8	5.6	65.4	11.9	5.9	2.2	16.8	14.5	2.1	2.3	4. 4.	4.9	14.1	5.9	12.8	14.1	19.7	0.9	3.9 4.4	-
$v_{\rm r}$ σ [km s ⁻¹]	2573	273.1	272.5	0.770	2.007	4.072	4.077	587.5	249.2	282.5	282.6				2.69.2	4.7.7	281.2	272.8	279.7	288.6	248.2	247.0	287.9	268.5	274.7	224.2	267.6	216.0	275.8	293.6	297.6	250.7	268.5	269.2	287.3	285.0	270.1	272.1		264.9	264.2	253.8	252.9	256.8	270.8	262.6	260.5	252.1	272.7	
B-V	0.15	90 0-	0.00	71.0	70.0	0.04	77.0	-0.03	0.38	0.04	0.03	-0.08	0.11	0.11	10.01	-0.09	-0.04	0.00	0.44	0.50	0.23	0.11	0.00	-0.01	0.02	0.01	-0.03	0.04	0.45	0.02	0.00	0.03	0.05	-0.04	0.10	0.03	0.05	0.11	0.05	-0.07	-0.01	0.03	-0.01	-0.13	-0.07	0.05	-0.06	-0.01	_0.02 _0.08	22.5
7	14.99	16.33	16.56	10.70	15.10	15.50	15.84	16.58	15.63	16.93	16.66	16.27	16.02	15.02	10.01	10.01	16.46	16.48	16.59	14.52	16.40	16.22	15.93	16.84	16.41	15.85	16.65	16.82	16.83	16.88	16.49	16.90	16.68	16.70	16.34	12.33	16.80	16.65	12.90	14.35	16.00	16.74	16.94	15.84	16.82	16.73	16.11	15.31	16.84	10.00
$_{ m H}^{lpha}$	~	, c	3 4	-	ત લ	ນ ເ	તા પ	-	ಡ	J	J	£	٠ ۵	, c	Y	٦,	—	Ţ	В	В	o	ಡ	o	J	6	: 13	ď	. J	ಡ	В	В	e	в	а	В	a?	e	e	d5	ಡ	e	а	а	а	f	e	o	o	ъ+	۱
Mult.?	>	•	: `	>	:\	>	:`	> `	>	:	:	;	:	: `	> `	>	:	:	:	:	:	:	:	:	:	>	. :	: :	>	÷	>	:	>	>	:	:	:	:	:	:	÷	÷	:	÷	>	:	÷	:	:	
Spectral Type	B3 III:	B1 V	B1 V	- In in	D1 III D2 III.5	52 III.e	BU IV-III	V C.18	B1.5 V	B3-5 V-III	B0.7 V	BIV	B1-2 V-IIIe⊥	B0 7 1 III II	DO./-1 III-II	D2 V	B0.7 V	B1.5 Vn	B1.5 III	B3 Ia	B1-2 V-IIIe	B1.5 V	B1-1.5 V-IVe	B2.5 V	BIV	B1-2 V (SB2)	B0 V-IV	B0 V-IV	B1 III	B2 V	B2: V	B1-2 Ve	B2: V	B0.7-1.5 V	B1.5 V	B5 Ia	B2: V-IIIe+	B1.5 Ve+	B8 Ia	B3 lb	B3: IIIe $+$ (shell?)	B2.5 V	B1 V(n)	B1.5 V	B2.5 V	B2: Ve+	B3-5 III(n)e	B1.5 V-III(n)e	B1 V B0 7 V	DO: /
VFTS	206	200	217	1 6	212	217 217	417	215	218	219	220	221	224	+ CC	277	177	278	229	230	232	233	234	237	238	239	240	241	242	246	247	248	254	255	257	258	261	263	268	269	270	272	273	274	276	278	279	282	283	284 286	207

	ζ	3
	c	
	- 2	٠
	-	3
	-	3
	-	
		-
	+	
		Ė
	-	•
	C	5
	÷	1
	•	_
п		
	r.	٦
	-	
	Q	ч
	•	
	٠	
	6	Ç
,	٠.	•

					B2p?, B2 V var. [WB97]; member of H 301							GC00-Be6 is $\sim 1''0$ NW: member of H 301						al. 2014)					Poss. double-peaked core H α em. in broad photospheric abs.			nission shoulders									4)								Poss. broad, weak H α em. (but strong nebular)	[WB97]			
Comments	Member of H301	:	B5:p [WB97]	Member of H301	B2p?, B2 V var. [W	:	:	Member of H 301	:		:	GC00-Be6 is $\sim 1''0$:		Member of H 301	Member of H 301	B0 IV (Walborn et al. 2014)		Be [Paper I]	, , :	:	Poss, double-peake			Broad, weak H α emission shoulders	:	:	:	B1:: V: [P93]	O9:: V: [P93]	:	:		Walborn et al. (2014)	:	:	:	:	:	B0.2: III [B99]	:	Poss. broad, weak l	B0 I [Mk]; O9.7 II [WB97]	:	:	:
Alt. ID	GC00-Be9	:	WB97-8	:	WB97-9, GC00-Be1	:	:	:	:	:	:	GC00-Be3		:	Sk-68° 136		:		:	:	P93-0003	P93-0006		P93-0009	P93-0014		:	P93-0050	P93-0053	P93-0075	P93-0076	P93-0088	P93-0097	P93-0099	P93-0116	P93-0118	P93-0125	P93-0136	P93-0138	P93-0141	P93-0158	:	P93-0176 (at \sim 0''5)	Mk 60, P93-0195	P93-0193	:	P93-0202
Set	2	2	В	7	_	7	_	_	7	В	7	2	ı —	В	-	_	7	-	_	7	2	7	В	В	17	2	-	В	7	В	В	7	В	7	_	7	7	В	_	7	7	В	:	_	В	7	:
σ	11.4	7.2	46.1	4.9	1.9	12.0	7.8	2.2	4.0	45.8	12.1	0.6	1.6	50.4	2.0	1.9	7.6	3.3	1.5	22.1	5.6	11.1	25.1	46.0	8.8	4.	7.3	17.3	2.2	14.7	11.1	16.2	43.4	9.3	2.5	4.0	7.7	24.9	3.3	12.3	10.7	10.5	:	2.9	29.9	10.9	:
$\frac{v_{\mathrm{r}}}{\left[\mathrm{km}\ \mathrm{s}^{-1}\right]}$	264.7	258.0	234.7	263.6	260.4	307.7	250.0	251.7	332.1	288.9	276.7	268.4	264.8	321.7	272.7	263.5	281.8	270.7	261.6	291.3	258.6	276.9	274.6	287.4	250.1	267.7	279.4	266.2	248.7	266.7	278.6	251.7	292.2	240.5	267.5	267.8	269.4	246.8	292.7	250.7	164.7	295.0	:	264.1	266.6	270.0	:
B-V	-0.08	0.13	0.12	-0.14	-0.04	-0.07	-0.01	0.04	0.24	-0.05	-0.03	ı	0.32	-0.10	-0.06	-0.01	0.00	0.07	0.03	0.23	-0.03	0.17	-0.13	-0.03	-0.06	0.18	-0.06	-0.06	0.18	0.00	0.14	0.24	-0.04	0.04	0.01	0.04	-0.03	0.08	0.13	0.00	0.00	0.03	0.44	-0.07	0.03	-0.02	-0.02
Λ	16.58	16.58	14.85	16.47	14.95	16.33	15.45	16.64	16.68	16.36	16.41		15.53	16.59	13.56	15.88	16.19	16.32	14.81	16.11	16.89	16.76	15.53	16.84	16.53	16.14	16.71	16.26	16.29	15.92	16.72	16.89	16.94	16.45	16.68	16.27	16.50	15.98	16.60	15.91	16.87	16.30	16.98	14.88	16.82	16.24	16.83
$H\alpha$	o	J	e	J	e	Ţ	а	J	e	В	ಡ	.	, d	В	. 4	ಡ	e(?)	ેલ	ಡ	e	ಡ	e	ಡ	Į.	, g	e e	а	в	В	J	e	J	в	J	а	а	J	а	а	В	J	J	e?	а	J	Į,	Ţ
Mult.?	:	:	>	:	:	:	:	:	:	>	. :		: :	>	. :	:	:	:	:	:	:	:	>	` >	. :	: :	:	>	:	>	>	:	>	:	:	:	:	>	:	:	:	>	:	:	>	:	:
Spectral Type	B2.5 Vne	B2.5 III:n	B5 II-Ib	B2.5 V(n)	B2 III-II(n)e	B0-0.5 V	B2 III	B1.5 V	B1-2 V-IIIe+	B0.5 V	B1-2 Vn	B2: Ve+	B1.5 Ib	B2: V	B1 II-Ib	B2 V	B2 V-III	B0 V-IV	B1 Ib	B1-2 V-IIIe+	B1: V	B1.5-2 Ve+	B0.2 V	BIV	B1-2 Vn	B2 III(n)e	B1.5 V	B0.7 V	B2.5 III	BIV	B2: V-IIIe+	B0.7 V	B1 V	B1-1.5 V	B0 V	B0.7 V	B1V	B0.5 V	B2 V-III	B0.5: Vn	B0.5: V	B0.5 V	B1-3 V-III	B0.2 III-II	B2.5: V	B2 V	B1-1.5 V
VFTS	287	288	291	292	293	295	296	297	298	299	300	301	302	305	307	308	309	313	315	320	321	322	324	325	326	330	331	334	335	336	337	340	342	343	347	348	349	351	353	354	358	359	362	363	364	365	366

Table 7. continued

VFTS	Spectral Type	Mult.?	$H\alpha$	Λ	B-V	$v_{ m r}$	ρ [-	Set	Alt. ID	Comments	1
	22.0					[km s -]	_ ;	(
368	B1-3 V	:	—	16.68	0.01	229.6	12.4	7	:	:	
374	B0 V(n)	>	а	16.36	0.19	291.5	21.7	В	:	:	
375	B0.5: V	>	ಡ	16.20	0.02	296.4	22.1	В	:		
376	B1: V	. :	£	16.33	0.04	271.6	7.2	_	P93-0260	B0.5: V [B99]	
377	B0-0 5 V	· >	· +	16.83	0.11		!				
378	B1 5: V	•	٠ بـ	16.98	0.26		:	:	P93-0271	:	
381	B15V	:	,	16.11	0.07	242.1	. «	: -	P93-0280	Star 4' in P93-293/304 field from Walhorn et al (2007h)	
383	B0.5: V	: >	उ ल	16.10	0.20	224.5	64.2	· 8			
384	B0 V-III	•	, ,	16.72	0.40	264.8	ر ا بر	· —	P93-0287	B2 V [B99]	C
387	B1-2 IIIe⊥	:	3 0	12.5	0.10	286.3	5,75	· c			. J
700	D1-2 IIIe+	:`	י ט	15.30	0.10	2.007	7:4	۱ ۲	 1903 0305	יייי אייי פייי	. Е
388	B0.3 V	> `	ਕ ਪ	10.47	0.00	7,07	C.Y	ρ	F93-0303	[86-0.3] v [50-0.3]	vd
391	B0.5: V	>	μ,	16.32	-0.02	: ;	: '	:	:		uis
394	B0.7 V	:	Ţ	16.93	-0.03	239.4	8.9	7	:	-	cı
395	B1:e	:	e	16.95	-0.18	:	:	:	:	Cross-cont. of fibre (on-sky) by VFTS 402; prob. broad shallow H α em.	aı.
396	B0.5 V	>	В	16.32	0.11	270.9	17.7	В	:		٠. ١
397	B1-2 V	:	В	16.68	0.01	276.7	13.2	7	P93-0338	B0.5-1.5 V [B99]	ν Γ
401	B1-2 IIIe+	:	e	15.48	0.17	269.7	23.3	7	:	Ξ.	13
403	B1-2 V	:	J	17.12	0.19	251.2	3.4	7	P93-0364		. ر
407	B0.5: V	:	Ŧ	16.97	0.08	:	:	:	:	Strong, structured H α nebular emission; poss. (not prob.) stellar em.	143
408	B2: V-IIIe+	:	o	16.32	0.05	:	:	:	P93-9011	ò	511
411	B1-3 V-III		· 4	16.93	60.0					Strong structured H α nebular emission; noss (not prob.) stellar em	100
413	B2 V	:		16.48	000	283.5	. 4	: -		sacras, sacrasca reasonam comosion, poss. (not proc.) secum com	uIC
414	B1-3 V-III	:	; (16.89	0.03	262.2	11.6	· c			1118
117	B7 II.	:	· +	15.51	0.0	260.2	2.5.5	1 -	· ·		α
1 5	D2 10 D0 5 1- M1-	:	1 4	15.51	45.0	7.007	C.71	٠.	 MILE 64 DO2 0400	\cdots	14
420	BU.5 Ia NWK	:	ц,	13.02	0.25	2/3.1	ئ 4. د	- (MIK 54, P93-0488	BU.5 Ia [IVIK & W86]; BU.5-U.7 Ia [WB97]	ulč
421	B2: V	:	ı °	10.42	-0.04 4.04	262.8	4. 4 8. 6	7 -			ıı V
473	BI Ia: NWK	:	e.	13.51	0.43	5.8/7	5.4		MK 52, P93-0493	B1 Ia [MK& W86]; BC1 Ia [WB9/]; prob. P-Cyg-like intrinsic emission	CI
424	B9 I ⁺ p	:	e;	11.74	0.33	263.2	5.6	<u> </u>	R138	A0: I: [F60], A0 I [W84]; A0 Ia [Mk]; prob. intrinsic H α emission	JUI
425	B0.5: V	:	+	16.50	90.0	276.2	13.6	7		:	ucs
426	B1.5 V	÷	J	17.04	90.0	270.7	7.6		P93-0511	<u> </u>	5 1(
428	B0.5 V	:	Ţ	16.19	0.01	286.5	8.5	7	P93-0525		πl
430	$B0.5 \text{ Ia}^+((n)) \text{ Nwk}$	>	e	15.11	0.64	218.3	48.7	В	P93-0538		110
431	B1.5 Ia Nstr	:	e3	12.05	0.11	270.2	2.4	_	R137, P93-0548	ssion	ט-
433	B1-3 V-III	:	J '	16.87	0.05	:	:	:	P93-0560	Strong, structured H α nebular emission; poss. (not prob.) stellar em.	ıyp
434	B1.5: V	>	'	16.13	0.16	:	:	:	P93-0572	:	C S
438	B1-3 V	:	Ţ	16.99	0.02	:	:	:	P93-0591	:	ıai
442	B1-2 V	>	в	16.66	0.08	:	:	:	P93-0616	•	3
447	B2 V	:	а	15.79	-0.15	264.6	2.8	7	:		
448	B1-3 V	:	J	16.85	0.33	267.0	9.5	7	P93-0632	÷	
449	B1-2 V	:	Ţ	16.91	0.03	265.8	12.3	7	:	·	
452	B1-2 V	÷	в	16.44	-0.04	265.4	4.0	_	:		
453	B0.5 V	:	а	15.31	-0.03	264.4	1.3	7	P93-0668	B0 III [WB97]; B0.2 V [B99]	
458	$B5 Ia^+p$:	e3	12.67	09.0	276.3	2.1	_	MkB, P93-0662	A0 Ia [Mk]; BN6 Iap [WB97]; poss. intrinsic H α em.	
459	B2 V	>	В	16.39	0.01	260.5	10.9	В	P93-0684	B0: I [B99]	
461	B1.5 V	:	В	16.83	-0.58	275.2	10.9	7	:		
462	B0.5-0.7 V	:	e,	16.27	-0.52	: (: !	: •	P93-9013	B2: V [P93]	
463	B0.7-1.5 V	:	+	16.92	-0.03	279.8	4.7	7	:	:	
ı										continued on next page	i

Table 7. continued

	CECH COMPETE	on from VFTS 507)														, 1 (O) (A)	alborn et al. (2014)															· ·	ed double-peaked em.?	ed double-peaked em.?	ed double-peaked em.?	ed double-peaked em.?	ed double-peaked em.?	ed double-peaked em.?	ed double-peaked em.?	ed double-peaked em.?	:d double-peaked em.?	xd double-peaked em.?	:d double-peaked em.?
Comments		Broad, shallow $H\alpha$ em. (likely cross-contamination from VFTS 507)	<u>:</u>	:	 B2 I ₃ [B99]	יין אין אין אין אין אין אין אין אין אין	: :			Walborn et al. (2014)	09-B0: V [B99]	O9-B0 V [B99]	:	:	:	The Court of the cook of the cook of the cook	O9 I [MK]; O9./ lab [W86]; OC9./ lb [WB9/]; Walborn et al. (2014)	B [F0U]; BU.2-U. / 1 [W84]; BU IA [MK]		:	 Walhorn et al (2014)	 Walborn et al. (2014) B0.5 Ia [P93]	 Walborn et al. (2014) B0.5 Ia [P93]	Walborn et al. (2014) B0.5 Ia [P93]	Walborn et al. (2014) B0.5 Ia [P93]	Walborn et al. (2014) B0.5 Ia [P93]	Walborn et al. (2014) B0.5 Ia [P93]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1: III: [B99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1: III: [B99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1: III: [B99] B1: III: V [B99] B1: III-IV [B99]; broad Hα abs. with embedded double-peaked em.?	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1: III: [B99] B0.2-1 III-IV [B99]; broad H\$\alpha\$ abs. with embedde Prob. intrinsic H\$\alpha\$ emission B1 Is IV B001. B1 II B001	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1:: III: [B99] B1.2 III-IV [B99]; broad Hα abs. with embedde Prob. intrinsic Hα emission B1 Ia [WB97]; B1: II-1 [B99] O9 5-R0 5 V [R99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1:: III: [B99] B0.2-1 III-IV [B99]; broad H α abs. with embedde Prob. intrinsic H α emission B1 Ia [WB97]; B1: II-I [B99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1:: III: [B99] B0.2-1 III-IV [B99]; broad H\alpha abs. with embedde Prob. intrinsic H\alpha emission B1 Ia [WB97]; B1: II-I [B99] O9.5-B0.5 V [B99] B2-3 III [WB97]; B0.5 IV [B99]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B0.2 III [B99] B1:: III: [B99] B0.2-1 III-IV [B99]; broad H\alpha abs. with embedde Prob. intrinsic H\alpha emission B1 Ia [WB97]; B1: II-I [B99] O9.5-B0.5 V [B99] B2-3 III [WB97]; B0.5 IV [B99] B0.5: [F60]; B0.5 I [W86]; BN0.5 Ia [WB97]	Walborn et al. (2014) B0.5 Ia [P93] B1: V [P93] B0.2 III [B99] B1: III: [B99] B1: III: [B99] B0.2-1 III-IV [B99]; broad H\alpha abs. with embedde Prob. intrinsic H\alpha emission B1 Ia [WB97]; B1: II-1 [B99] O9.5-B0.5 V [B99] B2-3 III [WB97]; B0.5 IV [B99] B0.5: [F60]; B0.5 I [W86]; BN0.5 Ia [WB97] B0.5 Ia [MR]; B0-0.5 Ia [W86]; B0 Ia [WB97]	Walborn et al. (2014) B0.5 Ia [P93] B1: V [P93] B1: V [P93] B1: III: [B99] B1: III: [B99] B0.2 I III-IV [B99]; broad Hα abs. with embedde Prob. intrinsic Hα emission B1 Ia [WB97]; B1: II-I [B99] O9.5-B0.5 V [B99] B2-3 III [WB97]; B0.5 IV [B99] B0.5: [F60]; B0.5 I [W86]; BN0.5 Ia [WB97] B2-3 III [WB97]; B0.5 I [W86]; B0 Ia [WB97]	Walborn et al. (2014) B0.5 Ia [P93] B1: V [P93] B1: V [P93] B1: III: [B99] B1: III: [B99] B1: III: [B99] B2-1 III-IV [B99]; broad Hα abs. with embedde Prob. intrinsic Hα emission B1 Ia [WB97]; B1: II-I [B99] O9.5-B0.5 V [B99] B2-3 III [WB97]; B0.5 IV [B99] B0.5: [F60]; B0.5 I [W86]; BN0.5 Ia [WB97]	Walborn et al. (2014) B0.5 Ia [P93] B1:: V [P93] B1:: V [P93] B1:: II: [B99] B1: III: [B99] B1: III: [B99] B2-1 III-IV [B99]; broad Hα abs. with embedde Prob. intrinsic Hα emission B1 Ia [WB97]; B1: II-I [B99] O9.5-B0.5 V [B99] B2-3 III [WB97]; B0.5 IV [B99] B0.5: [F60]; B0.5 I [W86]; BN0.5 Ia [WB97] B0.5 Ia [Mk]; B0-0.5 Ia [W86]; B0 Ia [WB97]	Walborn et al. (2014) B0.5 Ia [P93] B1: V [P93] B1: V [P93] B1: III: [B99] B1: III: [B99] B1: III: [B99] B1: III: [B99] B2-1 III-IV [B99] B0.5-1 III [WB97]; B1: II-I [B99] O9.5-B0.5 V [B99] B0.5: [F60]; B0.5 IV [B99] B0.5: [F60]; B0.5 I [W86]; B0.5 Ia [WB97] B0.5: Ia [MR]; B0-0.5 Ia [W86]; B0 Ia [WB97]
Alt. ID		P93-0714	: :	: :	P93-0738		: :		P93-9018	:	P93-0848	P93-0849	P93-0861			P93-0909	MK 38, P93-0930	K142, P93-098/		 P93-0995	P93-0995	 P93-0995 P93-9024	P93-0995 P93-9024 P93-9026	 P93-0995 P93-9026 	 P93-0995 P93-9026 	P.3. P93-0995 P93-9024 P93-9026	P93-0995 P93-0924 P93-9026	P93-0995 P93-0995 P93-9024 P93-9026	P93-0995 P93-0904 P93-9024 P93-9026 P93-9028 P93-1155	P93-0995 P93-9024 P93-9026 P93-9028 P93-9028 P93-1155	P33-0995 P93-0995 P93-9024 P93-9026 P93-9028 P93-1155 P93-1160	P93-0995 P93-9024 P93-9026 P93-9026 P93-9028 P93-1155 P93-1160	933-0995 93-09024 993-9026 993-9028 P93-1155 P93-1160	933-0995 93-0995 93-9024 993-9026 993-9028 P93-1155 P93-1160 993-1191	9.3-0995 9.3-0995 9.3-9024 9.3-9026 9.3-9028 9.3-1155 9.3-1172 9.3-1184 9.3-1184	P93-0995 P93-0904 P93-9024 P93-9026 P93-1155 P93-1160 P93-1191 P93-1217	P.30995 P.30924 P.39024 P.39026 P.39028 P.31155 P.31172 P.31160 P.31184 P.31217 P.31247	P93-0995 P93-0994 P93-9024 P93-9026 P93-9028 P93-1155 P93-1172 P93-1191 P93-1217 P93-1217 P93-1247 R141, P93-1253	P93-0995 P93-0995 P93-9024 P93-9026 P93-1155 P93-1172 P93-1160 P93-1191 P93-1217 P93-1247 P93-1247 Mk 12, P93-1253 Mk 12, P93-1257		993-0995 993-0994 993-9024 993-9026 993-9028 993-1155 993-1160 993-1191 993-1217 993-1247 993-1247 993-1253 Mk 12, P93-1257	P93-0995 P93-0904 P93-9024 P93-9026 P93-9125 P93-1155 P93-1160 P93-1191 P93-1217 P93-1247 R141, P93-1253 Mk 12, P93-1257	P93-0995 P93-0995 P93-9024 P93-9026 P93-1172 P93-1172 P93-1160 P93-1191 P93-1217 P93-1247 P93-1247 P93-1247 P93-1247 P93-1247 P93-1247 P93-1247 P93-1253 Mk 12, P93-1257
Set	7 -	_ ,	_ <	7 (7 -		7	2	2	В	7	В	_	_	В	2 5	უ -	_ <u>_</u>	2				1 2	M 2 1	7 B 7 1	- 2 B 2	7 - 7 B 7	: 2-2B2	ν: ν-ν α ν	00: 0-0 m 0		: -00: 0-0m	BB: -55: 5-5B5	-BB: -00: 0-0B0	л — д д ; и — и д и — и д и — и д и — и д и — и д и — и д и — и д и д	ли м ии :ии- : мм ии	дидии <u>:</u> ииидии		B-B00-BB: -00: 0-0B0	-B-B22-BB: 122: 2-2B2	B-B22-BB: 122: 2-2B2		
L	30.2	2.6	7.7	ر د د	4.0 ع د	7.5	. 4. 5. 8.	5.6	5.1	4.2	10.1	8.89	14.2	6.01	73.5	6.9	ر. د ،	4.4	1.6	7.5	7.5	7.5 2.7 3.1	7.5 2.7 3.1 0.3	7.5 2.7 3.1 0.3 8.5	2.7.5 2.7.5 3.1 0.3 8.5 7.1	2.7.5 2.7.5 0.3 8.5 7.1 4.6	22.7 22.7 33.1 0.3 0.3 0.2 0.2	7.5 7.5 7.5 0.3 7.1 0.2	3.1 3.1 3.1 3.3 3.3 3.3 3.3 3.3	7.5 7.5 7.5 3.3 7.1 7.1 7.1 7.1 6.9	2.7.7.3 3.3.1 7.1 7.1 7.1 7.1 7.1 7.3 3.3 3.3 4.1	2.7.7.3 3.3.1 7.1.1 7.1.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	2.77 2.77 2.77 3.11 10.3 10.2 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13	2.7.7.3.3.1.10.2.7.1.1.1.3.3.1.1.3.3.3.3.3.3.3.3.3.3.3.3	2.7.5. 2.7.7. 3.7.7. 3.3. 4.4. 4.4. 4.4. 4.4. 4.	2.5.5.08.2.3.0.3.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	7.7.6.0.8.7.4.0.1.6.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	22.7 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	8.8	2.5.2.2.3.3.5.2.3.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4	2.7.5.2.3.3.0.3.3.1.3.2.3.3.3.0.3.3.3.3.3.3.3.3.3.3.3.3.3.3		22.7.5 10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
m s_	3.3	• و	0	- -: -	- c	j (L) 4	0	. 6	9 1	1	7	\ \	00	7	0 \	1 0	- c		ı –	1 c	1 - 0 9	1 0 9 6	, 1096 1096 1096	1109667 1 1	, 1096 3 1096 3 1096	2 1 1 7 2 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33 7 6 0 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 100007 E2 1 E4 .	110000L&& 1&4 40	1100000	1-0900	1100007	1100007	1108001	211039997	2100000788 184 4008882178	1100000	2110	7100000
			797				275						251	256	278																												
	0.38	0.00	-0.10 0.00	-0.02	0.07	0.32	-0.05	0.28	-0.07	0.22	0.06	0.08	0.61	0.03	0.08	0.01	0.16	0.29	0.21	0.21	0.21	0.21 0.34 0.23 0.13	0.21 0.34 0.23 0.13 0.03	0.21 0.34 0.23 0.13 0.03 -0.02	0.21 0.34 0.23 0.13 0.03 -0.02 0.13	0.21 0.34 0.23 0.13 0.03 -0.02 0.13 0.13	0.21 0.34 0.23 0.13 0.03 0.03 0.04 0.06 0.06	0.21 0.34 0.23 0.13 0.03 0.03 0.03 0.04 0.04	0.21 0.34 0.23 0.13 0.03 0.03 0.03 0.04 0.04 0.04	0.21 0.34 0.23 0.13 0.03 -0.02 0.13 0.06 0.04 0.01 0.24 0.15	0.21 0.34 0.23 0.13 0.03 -0.02 0.13 0.06 0.04 0.01 0.24 0.15	0.21 0.34 0.23 0.13 0.03 0.03 0.04 0.04 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.21 0.34 0.23 0.13 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.04 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05	0.21 0.34 0.23 0.03 0.03 0.04 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.015 0.05	0.21 0.34 0.23 0.03 0.03 0.005 0.04 0.015 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.05	0.21 0.34 0.03 0.03 0.03 0.03 0.04 0.05	0.21 0.34 0.23 0.03 0.03 0.03 0.04 0.015 0.05
٠.	16.91	16.09	16.36	16.83	16.07	16.04	16.90	15.48	16.54	16.66	16.77	15.74	16.27	16.61	16.69	17.05	13.76	×	15.66	15.66	15.66	15.66 16.53 16.55 13.12	15.66 16.53 16.55 13.12	15.66 16.53 16.55 13.12 16.79	16.53 16.53 16.55 16.79 16.13 16.13	15.66 16.53 16.55 13.12 16.79 16.13 16.13	15.66 16.53 16.53 13.12 16.79 16.13 16.82 17.00 16.88	16.53 16.53 16.53 11.12 16.79 16.82 16.88 16.69	16.53 16.53 16.53 16.79 16.79 16.13 16.82 17.00 16.89 16.69	16.53 16.53 16.53 13.12 16.79 16.13 16.82 17.00 16.88 16.69	16.53 16.53 16.53 113.12 16.13 16.83 16.89 16.69 16.29 16.79	15.53 16.53 16.53 13.12 16.13 16.82 16.89 16.89 16.29 16.39	15.66 16.53 16.53 13.12 16.79 16.13 16.88 16.99 16.38 16.39 16.38 16.39 16.38	15.66 16.53 16.53 13.12 16.79 16.13 16.88 16.89 16.29 16.38 16.94 16.11 15.11	15.66 16.53 13.12 16.73 16.13 16.82 16.83 16.89 16.29 16.38 16.39 16.34	15.66 16.53 16.53 16.13 16.13 16.88 16.89 16.99 16.29 16.38 16.38 16.39 16.39 16.59	15.66 16.55 16.55 16.13 16.13 16.13 16.69 16.69 16.69 16.94 16.95 16.95 16.95 16.95 16.95 16.95 16.95 16.95 16.95 16.95	15.56 16.53 16.53 16.13 16.13 16.09 16.09 16.09 16.09 16.09 16.09 16.09 16.09 16.09 16.09 16.09 16.09 16.09	15.56 16.53 16.53 13.12 16.13 16.13 16.29 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39 16.39	15.56 16.53 16.53 13.12 16.13 16.13 16.88 16.69 16.70 16.70	15.55 16.55 16.79 16.13 16.79 16.88 16.69 16.70 16.70	15.55 16.55 16.73 16.73 16.73 16.83 16.69 16.94 16.94 16.95 16.95 16.95 16.94 16.95 16.95 16.95 16.94 16.95	15.55 16.53 16.53 16.13 16.13 16.63 16.69 16.94 16.94 16.94 16.95
па	o 8	f.;	ر ت	н (ನ ೧	3 4	, ,	ေ	· Ŧ	а	J	ಡ	J	ಡ	в	.	-	ς	י כ	ר מ →	7 a 4 4	ם ה ה ט	та н н в т	ранн рна	та тд т тат	та т д т в т	דמ דמ דמ ד דמ ד	ם הם הבם ההם ב	דם דם דם דלם ד	דמיים ההש מה מה מ	ה הדמ המ המים הדמב	יים א המ א מ א ה המ ה המ ה	 האלה הא הא הא הם הם הרם האשר האלה הא הא הא הא האם הא	ר.: הפייט אר מיד מיד מיד מיד מיד מיד מיד מיד	ארט פר א ארא ארא ארט ארט ארט ארט ארט ארט ארט	רם דים ארם דרם דרם ברם ברם בר הם דים ברם דרם דרם ברם ברם ברם ברם ברם ברם ברם ברם ברם ב	ם הם ההם ההם הם הם הרם ההם ב מיני:	ס א הא ה ה א ה ה א ה ה ה ה ה ה ה ב ה ה ב ב 				ם הרבתם שרב הרפ"ט ארם הם הם הם הרם הרם בים בר מים. 	
Mult.?	:	÷	:	÷	÷	:	: :		: :	>	÷	>	:	:	>	:`	>		: `	<u>:</u> >	i> :	i> ; ; ;	:> : : : :	:> : : : :>	i> : : : :> :	i> : : : :> : :	i> : : : :> : : :	i> : : : :> : : : :	i> : : : :> : : : : :	i> : : : :> : : : : : :	i> : : : :> : : : : : : :	i> : : : : > : : : : : : : : : : : : : :	i> : : : :> : : : : : : : :> \	i> : : : :> : : : : : : : :>>	i> : : : : > : : : : : : : : > > :	i> : : : :> : : : : : : : :>> : : :	i> : : : :> : : : : : : : :>> : : :>	i> : : : :> : : : : : : : :>> : : :> :	i> : : : :> : : : : : : : :>> : : :> :>	i> : : : :> : : : : : : : : :>> : : :> :>	i> : : : :> : : : : : : : : :>> : : :> :>	i> : : : :> : : : : : : : : :>> : : : :	i> : : : :> : : : : : : : : :>> : : :> :>
Spectral Type	B1-2 Ve+	B0 V	BI V	B2: V	B0.3: v(II) B0.7 V-III	B0 5. V	B1.5 V	B1-2ne+	B1 Vn	B0 Vn	B0.7 V	B0.5 V	B0.7 V	B1.5 V	B1: V (SB2?)	B1-3 V-III	B0 Ia	BI.5 Ia p NWK	ROIV	B0 IV B1-2 V-III	B0 IV B1-2 V-III B0 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 V B1 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 V B1 S-2 V B3 III	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 V B1 S-2 V B3 III B1 V(n)	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 V B1 S-2 V B3 III B1 S-2 V B3 III B1 V(n)	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 S-2 V B3 III B1 S-2 V B3 III B1 V(n)	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 S-2 V B3 III B1 V(n) B0.5: V B1 V	B0 IV B1-2 V-III B0 V B0 5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B3 III B1 V(n) B3 III B1 V(n) B3 III B1 V(n) B0-0.5 V B3 IV B1 V B1 V B1 V B1 V B1 V B1 V B1 V B1	B0 IV B1-2 V-III B0 V B0 5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B3 III B1 V(n) B1 V(n) B0-5: V B1 V B0-0.5 V B0-0.5 V B1 I Nwk	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B1 S1 III B1 V(n) B0.5: V B0.5: V B0.0.5 V B0-0.5 V B1 Ia Nwk B1.5 Ia Nwk	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B1 IV B1 V(n) B0.5: V B0.5: V B0.0: V B0.0: V B1 Ia Nwk B1 Ia Nwk B1.5 Ia Nwk B1.5 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B1 V B1 V B1 IV B3 III B1 V(n) B0.5: V B0.5 V B0.7 III B1 Ia Nwk B1.5 Ia Nwk B1.5 Ia Nwk B1.5 V B0.0.5 Vn	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B1 IV B1 IV B1 IV B1 IV B0.5: V B0.5: V B0.5: V B1 Ia Nwk B1.5 Ia Nwk B1.5 Ia Nwk B1.5 Ia Nwk B0.5 V B0.5 V B0.5 V B0.5 V B0.5 V B0.7 Iab	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B1 IV B3 III B1 V(n) B0.5: V B0.5: V B1 Ia Nwk B1.5 Ia Nwk B1.5 Ia Nwk B1.5 Ia Nwk B0-0.5 V B0-0.5 V B0-0.5 V B0-0.5 V B0-0.5 V B0-0.5 V B0-0.5 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 S III B1 V(n) B3 III B1 V(n) B0.5: V B0.5: V B0.0.5 V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 S V B3 III B1 V(n) B0.5: V B0.5: V B0.5: V B1 Ia Nwk B1.5 Ia Nwk B1.5 Ia Nwk B0.0.5 V B0.0.5 V	B0 IV B1-2 V-III B0 V B3-5 V-III B0-0.5 V B1 V B1 V B1 IV B3 III B1 V(n) B0.5: V B0.5: V	B0 IV B1-2 V-III B0 V B0.5 Ia Nwk B3-5 V-III B0-0.5 V B1 V B1 IV B1 IV B
VFTS	467	469	47.I	4/5	4 4 4 7 8 4 4	480	485	486	489	496	499	501	90	116	20	523	57.5	555																									

Table 7. continued

R0 5_0 7 V		ಡ	16.73	0.17	245.8	5.8 8.4	2	P93-1354	B0-0.2 III [B99]
• /:0	:	В	16.53	0.20	÷	:	÷	:	
B0.5: V	:	а,	16.48	0.09	227.4	10.7	—	P93-1389	B1: V:: [B99]
B1-3 V	:	+	16.70	0.38	: 0	: •	: -	P93-1395	COORT I THE CO OR CECUMENT IN FR
B0.2 V B0.2 0 5 Vn	:	ಡ 4	16.10	0.14	C.807	V. 1. 9	- c	F93-141 <i>9</i>	B1 III [WB9/]; BU-U.2 III-I [B99]
B1.5 V	:	, <u>,</u>	16.91	0.11	310.7	6	1 —	 P93-1418	i :
B0.5: V	>	· J	16.64	0.0	250.8	62.7	В		
B1-2 Ve+	:	ပ	16.78	0.07	265.1	19.9	7		
B2 Vn	:	а	15.97	0.12	284.7	11.1	7	P93-1460	B0-2 V [B99]
B1V	:	в	16.50	0.19	274.0	7.2	7	P93-1464	
B0 Vn	:	а	16.53	90.0	241.5	5.2	7	:	÷
B1-2 V + Early B	>	в	16.61	0.04	299.3	32.3	В	:	:
B2 V	:	f	16.82	0.16	256.0	5.0	7	P93-1489	:
B0.5: I	:	1	13.09	0.16	÷	:	÷	Mk 11; P93-1500	B0.5 Ia [Mk]; B0-0.5 Ia [W86]; B0 Ib [WB97]; B0.2 III [B99]: see discussion in Paper I
B1.5 V	;		16.41	0.13	250.9	8.2	2	P93-1508	
B1-2 Ve		. u	16.62	0.15	248.6	20.2	2		
BO 5 III(n)	:	رم	14 94	0.12	263.9	4 5 5 8	10	P93-1527	B1 III [WB97]: B1 IV [R99]: nrob_broad H\alpha em_shoulders
B0.5 m(m) B1 5 V	:		16.98	-0.10	286.2	9.6	1 —		bi in [wb//], bi iv [b//], proc. grounite em. snounces
BO-0 5 V	:	٠ ،	16.63	0.10	1.001	?	-	 P93_1554	 O0: III:n [P03]
BO-0.3 V	:	ತ ೧	15.05	77.0	0.790	. 7	: ‹	123-1334 D03-1584	O2: 111.p [1.23] R0: V: fD031: R0-1 V fR001
DO-0.3 v (m)	: \	5 4	16.10	0.0	251.2	20.1	1 D	1001-071	DO: V: [1.72], DO-1 V [D77]
B0 5 V	> >	1	16.12	0.00	0.102	1.7.1	ם מ	 D03 1604	B1 V [B00]: kroad H $_{\odot}$ ake with mak ambaddad double neaked am
B0.5 V	>		16.45	0.08	2.4.7	10.1	a –	1 23-1004 D03-0036	DI V [D77], otoau iid abs. will prob. cilibeated double-peaked cili.
D0.5 V	:	ರ ೧	16.60	0.00	0.030	7	- -	1 23-2030 B02 1611	Ē.
> 1	:	ರ (10.00	0.10	202.7	C.7	٦ ,	F93-1011	 100 5 1 III (W.DOZ) - DO 2 0 5 III (DOO)
b0./ v	:	ಡ	10.02	0.15	780.1	5.0	۷ (F93-1021	BU.3-1 III [WB9/]; BU.2-U.3 III [B99]
B0./ V	:	в	16.43	-0.11	255.3	13.3	7 -		ioodi III ta modisti i nod
BO./ II NWK?	:	o,	14.59	0.23	5.672	3.2 7.	- -	P93-1661	BO./ la [WB9/]; B1 III [B99]
BIV	:`	,	16.98	0.03	277.1	C. I.	<u>ب</u> د	F93-1664	
BI lab Nwk	>	-	14.48	0.28	7.077	23.8	д (F93-16/4	B0.5-0.7 I [WB97]; B1 Ib [B99]
B0.7 V	:	в	16.52	0.07	272.1	18.7	7 (P93-1686	Ē.
B1: V	:	а	16.95	0.41	270.2	11.2	7	P93-1689	= = = = = = = = = = = = = = = = = = = =
B0.7 V	:	Ŧ	16.55	90.0	264.0	14.5	_	P93-1714	:
Ve	:	e	16.33	-0.10	271.1	15.7	7	:	Broad, shallow H α em. shoulders
B1-1.5 V	:	f	16.91	0.13	278.6	13.1	7	P93-1722	:
B1-3 V-IIIe+	:	e	16.64	0.21	243.4	22.5	7	:	=
B0.7 III	>	а	14.99	0.17	276.8	38.9	В	:	B0.5 III [WB97]; B1 II-III [B99]
B1.5 Ib((n)) Nwk	>	а	14.29	0.28	295.8	23.0	В	P93-1737	B1 Iab [P93]; B1 Iab [WB97]; B1.5 III [B99]
e (shell)	:	e	16.51	0.08	:	:	:	P93-1763	:
B0.2 V	:	а	16.46	0.0	272.7	14.7	_	P93-1772	
B0.2 V	:	J	16.17	0.05	271.2	2.5	_	P93-1786	:
B0.7 Ib-Iab Nwk	:	q?	12.73	-0.02	265.8	2.3	_	$Sk-68^{\circ}140$; BE74-422	:
B1-2 Ve	>	· •	16.55	0.18	263.7	8.3	В	P93-1799	=
Mid B + Early B	>	o	13.68	0.44	:	:	:	Mk 02, P93-1797; AL-377	Discussed in detail by Dunstall et al. (2012)
B0.2-0.5 Vn	. :	J	16.19	-0.05	264.4	12.0	2	P93-1805	
B0.7 V	: :	ţ.	16.60	92.0	266.6	101	C	P93-1820	
	:						,		

	~	
	0	ī
	:	ì
	-	
	tin	٠
		3
	-	3
	è	
	20	٦
	ċ	
	'	•
		•
- 1	ь	٠,
	•	
	đ	
	_	_
	-	
,		
	O	ċ
	•	٦

Comments	B1 V [P93]			:	 DO.: V. D021	DU Y. [F72]	Ē.	÷		:			Ē.	:	:	09-B0 III [WB97]; B0.7 IV [B99]	B1.5 [P93]	B1 Ia [Mk] · B2 I [B99]		<u> </u>		Work double moderal II a new	weak double-peaked fick ein.		÷ .	:	=	B0.5: V [P93]; prob. broad, shallow H α em. shoulders					÷		÷	÷			:			=	-	;		Dose broad weak Ho shoulders	1 055. 010dd, wedn ite silvaleis	-	Ē.	÷	•	Ē	
Alt. ID	P93-1840	P93-9041	P93-1859	173 1859 D03 1869	I 33-1808 B02 1875	F93-10/3	P93-9043	:	P93-1898	:	P93-1955	D03-1961	193-1901	÷	:	P93-1969	P93-9045	Mk 01 P93-1987 BI 256	P93-1991	1		030 000	SK-09 230	:	:	:	:	P93-2022	P93-2023	P93-2025		P93_2036	173-2030 AI -387: BE74-474	AL-382, DE/4-424	:	:	:	:	:	:	:	P93-2151	:				:	:	::	::		P93-2210	:
Set	_	C	ı —	, Д	a -	٦ ٦	Д 1	P	В	7	ĸ	ı –	٠,	7	_	_	В	_	. 2	ı –	٠, ر	1 c	o -	۰ ,	7	:	-	7	-	2	<u> </u>) c	1 -	٠ ,	۷ -	٠,	η,	_	В	7	7	В	7	В	, c	1 M) (٦ -	۰ ,	7 (71	Вς	7
σ	2.0	5	10.9	20.7	70.7	5.5	1.77	16.2	18.9	8.4	263	- ×	0.1	1.71	3.0	10.9	8.9	4	6.8	0.4	; =	<u>-</u>	. i.	I.9	10.9	:	3.7	2.5	3.6	7.2	403	4.0	7 t	5.2	0.0	0.71	5. O. 4	6.1	27.2	11.4	11.5	27.6	12.0	27.8	15.5	× ×	5.5	1.71	9.0	6.9	19.5		7.71
$\frac{v_{\mathrm{r}}}{\left[\mathrm{km}\ \mathrm{s}^{-1}\right]}$	275.0	265.5	255.2	9050	0.007	400.4	2/0.0	306.8	265.0	298.4	2392	287.2	260.0	749.7	272.9	268.6	326.5	5 292	263.7	268.0	287.7	1.107	2.00.2	207.3	263.2	:	275.7	270.2	260.4	264.8	258.8	240.2	281.6	0.107	4.0.7	0.627	255.2	723.7	258.9	243.4	272.7	312.4	274.0	280.7	263.6	278.3	0.070	7.0.7	270.1	284.9	247.1	270.7	7007
B-V	0.07	-0.07	0.21	300	0.23	0.33	-0.10	-0.06	0.08	-0.06	0.16	0.15	0.11	0.03	0.18	0.25	-0.10	0.19	0.15	0.43	5.0	20.0	10.0	0.35	0.29	-0.02	0.28	0.12	0.16	0.13	-0 12	900	0.20	00.0	07.0	0.22	-0.07	-0.01	0.19	-0.11	0.32	0.19	0.27	0.0	0.21	900-	0.00	5.0	0.41	0.00	0.44	0.10	0.24
Λ	15.59	16.58	16.13	16.60	10.00	10.01	16.64	15.99	17.00	16.74	16 19	15.27	10.01	10.40	16.74	14.97	15.41	13.03	16.31	16.30	17.55	75.51	12.20	16.50	16.97	16.93	16.59	15.28	16.78	16.76	16.48	16.55	17.50	16.70	10.70	10.40	15.34	16.89	15.46	16.73	15.66	16.83	16.53	16.15	16.88	15.06	15.00	15.00	16.35	16.89	16.71	16.86	15.69
$H\alpha$	а		, t	; (5 4	- T	μ,	—	J	J	ď	3 0	ರ	ಡ	В	а	ಡ	٦9		3) (، د	ט	ಡ	В	а	f	e3	ಡ	e		3 6	ট ব	4 ر	_	ಡ	o	ಡ	В	J	e	f	e	2		ಕ ೧	ತ ೧	ע	ಡ	e	ъ,	Ţ	υ U
Mult.?			• •	: \	>	:`	> `	>	>	:	>	•	:	:	:	:	>			•	:	:	:	:	:	>	÷	:	:	:	` `>	•	:	:	:	:	:	:	>	:	:	>	:	>		: `	>	:	:	:	:`	>	:
Spectral Type	B0.5 V	B2 5. V	B1 V	D2. V	D1 Ic. Mark	DI Id. IVWK	B1 V	B2.5 III	B1 V	B2 V	B0 5 V	B0.7 III	D0.7 III	V 7-19	B3 III	B0.2 III	B1 IV(n)	B1 5 Ian Nwk	B0.7 V	B1-2 III≏⊥	BO 5 IIIe	D0.5 IIIC⊤	AO IP	B0./ III	B2 V	B2 V	B2.5 II-Ib	B0.5 V	B0.7 V	B0.7 V	B2.V	B1 5 V	BO 5 III⊕⊥	D0.5 IIIC⊤ D3 III(n)	D5 III(II)	b1.5 v	B5-8e	B3-5 V-III	B1 II-lb	B1.5 V	B0.7: V-IIIe+	B1: V	B1-2 IIIe+	BIIII	BO 5-2 V	B3.5 Z	D1 2 V III.	D1-2 v-IIIC+	B1 III	BI-2 ve+	BIV	B0.5-0.7 V	B1-2 IIIe+
VFTS	707	209	717	71.7	717	7.14	CI/	7.18	719	720	723	725	7 6	07/	727	729	730	732	734	735	738	120	739	04/	741	742	745	747	748	749	752	754	157	157	13.1	70/	766	1/12	779	780	781	784	786	788	789	797	707	174	66/	96/	798	799	ann

Comments					:	:	Member of SL 639	R1 5 Ia [P93]		77.	Discussed in detail by Kalari et al. (2014)	Member of SL 639	Member of SL 639	Member of SI 630	MALINE OF OTHER	Member of SL 039	Member of SL 639	Member of SL 639	Manney of SI 630 noce Ho, she plue nabular am	THE COLUMN TO STATE AND STATE AND THE ADDRESS THAT AND THE ADDRESS	Member of SL 639	:	Member of SL 639	Member of SL 639	Member of CI Ago	Melliner of 3L 032	3	• •	Member of SL 639; spurious Si II abs.?		Be [Daper I]: member of QI 630	D 1 III (D0.2)	D1 III [F93]		B0.5: V [P93]; broad H α em. shoulders	3		Ē		=	=			=======================================	=======================================	÷	• •	÷	3			÷	Ē	Ē.		continued on next page
Alt. ID	:		:	:	:	:	:	P93-2252		:	:	:	:		::	:	:			:	:	:	:		•	:	:	:	:		:	D03 2305	COC7-C6J		P93-2313	:	:	:	:	:	:		•	•	:		BI 261	:	:	:	:	:	:	:	:	
Set	-	2	۰ -	٠,	7	_	7	ı -	-	:	:	7	7	c	1 (7	В		· -	٠,	7	7	В		٠ ,	4 ¢	R	7	7		· c	1 -	٦ ,	7 1	n ·	7	В	_	7	:	-	6	ı –	-		٠,	_	_	7	_	В	7	7	В	-	
σ	6.7	0.6	10.7	10.	/·T	9.1	5.4	× = 2	0:11	:	:	8.2	12.4	156	0.0	9.0	14.4	4.9	2	7 V	8.5 C.8	5.9	22.1	4	; -	- i	27.0	4.5	8.9	3.0	34.7	; -	† <u>-</u>	1. 1.	9.6	4.6	11.6	0.3	15.1	:	3.0	38	3.0	, ,) . (7.7	2.3	6.4	6.9	8.3	8.3	9.5	11.2	4.9	
$v_{\rm r}$ σ [km s ⁻¹]	278.0	256.5	V L L C	†://	2/4.5	271.6	255.7	251.9	2112	:	:	262.0	245.9	2500	2.70.0	247.8	254.3	261.4	210.4	4.0.7	703.0	277.0	240.3	251.9	252.2	233.3	287.5	263.4	236.7	258.0	244.8	0.44.0	259.9	4.007	7.867	247.7	256.9	229.4	258.9	:	248.8	255 4	2526	0.270	7.0.7	201.8	7/2./	261.5	288.8	285.5	274.9	252.7	251.0	236.7	275.7	
B-V	-0.07	0.05	30.0	0.00	-0.06	0.05	0.19	0.17	0.17	-0.14	0.37	0.17	0.36	0.33	0.00	0.17	0.31	0.41	000	0.23	0.3/	0.22	0.33	I	010	0.10	-0.09	0.28	0.24	0.89	0.33	0.33	0.15	0.11	-0.06	0.25	0.18	-0.09	0.33	0.10	0.27	0.17	0.13	0.05	0.03	-0.12	0.13	0.27	0.05	-0.07	0.05	-0.02	0.00	0.18	0.11	
Λ	15.94	17.03	16.56	10.50	16.34	16.81	16.68	15 53	16.03	10.03	15.60	16.06	16.36	16.20	14.95	14.85	15.34	15.13	13.07	10:01	16.50	16.96	15.19	ı	15 71	17.71	16.07	15.81	16.74	15.83	16.29	15.20	15.30	10./8	15.48	15.54	16.15	15.83	16.78	16.28	15.34	16.26	16.67	16.61	10.01	10.24	14.63	16.65	16.76	16.09	15.37	16.46	16.30	16.36	16.73	
$_{ m H}_{lpha}$	J	£		_g	e	а	ಡ	, ,	4	-	Д	e	e	đ	٠ د	o ,	J	8	c c	5	ಡ	В	ಡ	٩	, (ט	ಡ	В	e	æ	3 () (च ५	-	e	e	а	J	e	e	В	α	+	, ¢	-	ಡ	ಡ	а	В	а	e	J	e	e	J	
Mult.?	:	:	•	:	:	:	:		: `	>	:	:	:		:	:	>	;		:	:	:	>		:	:`	>	:	:		•	:	:	:`	>	:	>	:	:	:	:			:	:	:	:	:	:	:	>	:	:	>		
Spectral Type	B1.5 V	B2: V	D2 V	D2 <	B2.5 Ve	B2.5 V	B1.5 V	B1 III-II	BO V. IV	DU V-1V	Mid-late B[e]	B2-3 III:e	B1.5-2 Ve	B1 5 2 V III.	D1.7-2 v-IIIC	bl III	B1.5 Ib	B1.5-2 II	B5 La	DJ Id	BI V	B1-3 V	B1.5 III	B1 Ve	D1 5 III.	D17 IIIC	BI V	$B1: \Pi(n)$	B1.5: Ve	B2.5 La	B1-2 IIIe⊥	D1 II	D1 II	b2.5 v	B0.7-1 IIIne	B1.5 IIIe+	B1 III	B2 III	B1-2 Ve+	B1-3 V-IIIe+	B3 Ib	B1 5 V	B1 5 V	B15 V	V C.10	V C.13	BI Ib Nwk	B2 V	B1-1.5 V	B0 V-IV	B1.5 IIIe+	B2 V	B3-5 III(n)e	B1-3 V-IIIe+	B3 V-III	
VFTS	801	804	811	011	813	814	815	817	821	170	778	823	824	808	250	979	827	829	831	000	837	833	834	835	936	030	837	838	840	841	842	7 V 7 V	040	040 110	847	848	820	851	853	854	855	857	860	864	100	800	/98	898	698	872	874	875	928	877	879	

Table 7. continued

Comments										
ပိ	:	:	:	:	:	:	:	:	:	:
lt. ID										
Set A	:	:	:	:	:	:	:	:	:	3
	18.7	1.5	9.4	_ :	4.5	5.5	0.8	2.1	_ :	8.3
km s ⁻¹										
						258.4				
B-V	0.06	-0.06	-0.10	0.13	0.01	-0.04	-0.07	0.37	0.02	0.07
Λ	16.66	15.66	15.96	16.49	15.90	16.82	16.18	16.56	16.13	16.48
$H\alpha$	e	В	а	В	а	Ŧ	В	e	а	а
Mult.?	:	:	:	>	:	:	>	:	>	>
Spectral Type	B1-2 Ve (shell)	B0.5 III	B0 V(n)	B0.5 V	B1.5 V	B1V	B0.5 V	B1-2 Ve	B2 V	B2 V
VFTS										891

from a 'p' suffix, which simply indicates peculiar); (5) & (6) V and B - V photometry from Paper I; (7) & (8) estimated radial velocity (v_r) and standard deviation (σ) ; (9) method/lines used to estimate vr. 1' and 2' refer to the lines listed in Table 3, 3' indicates the three stars for which other metal lines were used, 'B' indicates that the estimate is the mean value from the multi-epoch data available (see Section 4.2, with the limitations of these as estimates of the centre-of-mass velocities discussed in Section A.3); (10) Alternative identifiers used in the literature; (11) Previous BI (Brunet et al. 1975); W84 (Walborn 1984); Mk (Melnick 1985); W86 (Walborn 1986); T88 (Testor et al. 1988); ST92 (Schild & Testor 1992); P93 (Parker 1993); WB97 (Walborn & Blades 1997); B99 (Bosch et al. 1999). The crosschecks with the catalogues from Andrews & Lindsay (1964) and Bohannan & Epps (1974) employed the updated astrometry from Howarth (2012, 2013). Notes. Column entries are: (1) VFTS identifier; (2) Spectral classification; (3) Binary status (from Dunstall et al., in prep.) (4) H α morphology: 'a' = (photospheric) absorption, 'e' = (stellar) emission; 't' = flat, with no indication of the nature of the line profiles outside the region of nebular emission (i.e. no strong, broad emission); 'q' = P-Cygni profile (used classically to distinguish classifications and other relevant comments. Aliases/past classifications are from: R/F60 (Feast et al. 1960); AL (Andrews & Lindsay 1964); Sk (Sanduleak 1970); BE74 (Bohannan & Epps 1974);

Appendix A: Ancillary material

A.1. Spectral montages

To illustrate the spectral sequences as a function of luminosity class, examples of VFTS B-type spectra are shown in Figures A.1, A.2, and A.3. The principal lines used in classification, as summarised in Tables 1 and 2 are indicated in each figure. Luminosity sequences at spectral types B0.2, B1 and B2.5 are shown in Figures A.4, A.5 and A.6, respectively. For clarity, the spectra in all six figures have been smoothed and rebinned to an effective resolving power of $R=4\,000$.

A.2. Detailed velocity estimates

For completeness, we list the individual velocity estimates from each line, calculated using the rest wavelengths given in Table 3. Tables A.1 and A.2 present the results for stars using the Set 1 and Set 2 diagnostic lines, respectively; results for the binary stars (following the discussion outlined in Section 4.2) are given in Table A.3.

A.2.1. Comparison with published velocity estimates

The methods and line sets adopted to estimate radial velocities $(v_{\rm r})$ for the B-type stars differ to those employed by Sana et al. (2013) for the O-type objects from the survey. As a consistency check between the two studies, we analysed 45 of the apparently-single, late O-type stars (with O9.5 and O9.7 types) and compared our velocity estimates with those from Sana et al. We find a mean and standard deviation between the two methods of $\Delta v = 0.5 \pm 6.2$ km s⁻¹ (where $\Delta v = v_{\rm r} - v_{\rm Sana}$).

The differential results (Δv) for the 45 stars are shown in Figure A.7 (with the standard deviations added in quadrature). For the purposes of global analysis of the sample and identification of potential runaways, these results are in excellent agreement. As a further check of any systematic trends arising from the different methods, the lower panel of Figure A.7 shows the same differential velocities, but now as a function of estimated $v_e \sin i$ (from Dufton et al. 2013); no obvious systematic difference is present.

A.3. Centre-of-mass velocities

We have investigated the expected differences between our mean values and centre-of-mass velocities using a Monte Carlo technique. We assumed a sinusoidal velocity curve (i.e. circular orbit) and, adopting the observational sampling of Field A of the survey (Table A.1 of Paper I), we calculated ranges of observed velocities (i.e. $\delta v_{\rm r\,max}$) and their resulting mean velocity. We assumed a random initial phase, and considered periods ranging from one day up to several years.

These simulated mean velocities provide us with an estimate of the expected error compared to the genuine centre-of-mass velocity. For a given period, we can then average these differences over the range of assumed phases to find a typical error. The ratio of this typical error to $\delta v_{\rm r\, max}$ is shown in Figure A.8. For binaries with periods of $\lesssim 250$ d, the expected error is approximately 12-15 % of $\delta v_{\rm r\, max}$, with this increasing for longer periods, and then tending to a value of $\sim\!\!25$ % for periods $\gtrsim 350$ d (greater than the maximum time-sampling of the real data).

These simplistic simulations (e.g. not taking into account potential eccentric orbits) have probably underestimated the uncertainties but, given the observational cadence of the survey,

Fig. A.7. Comparison of radial velocities (v_r) estimated using the methods in this paper with results from Sana et al. (2013), in which $\Delta v = v_r - v_{\rm Sana}$, and the plotted uncertainties are the standard deviations of both estimates added in quadrature. The upper panel shows the Δv results in the sequence of VFTS identifiers (i.e. increasing right ascension), while the lower panel shows Δv as a function of $v_e \sin i$.

Fig. A.8. Typical errors in the average radial velocities (calculated for the observational sampling of Field A of the VFTS) for simulated binaries compared to their true centre-of-mass velocities (as a percentage of the expected range in radial velocities, $\delta v_{\rm rmax}$, see text for details).

they illustrate that the mean multi-epoch $v_{\rm r}$ values should provide reasonable estimates of the centre-of-mass velocities for short-period systems ($\lesssim 250\,\rm d$), which display relatively small peak-to-peak variations.

Fig. A.1. Example B-type supergiants (Class Ia). The primary diagnostic lines for spectral classification are identified. In the spectrum of VFTS 525 these are: He II $\lambda\lambda$ 4542, 4686; Si III $\lambda\lambda$ 4553-68-74; Si IV $\lambda\lambda$ 4089, 4116; those identified in VFTS 269 are: He I $\lambda\lambda$ 4009, 4026, 4121, 4144, 4388, 4471, 4713; Mg II λ 44481; Si II $\lambda\lambda$ 4128-32. The broad λ 4428 diffuse interstellar band is also evident in some sightlines.

Fig. A.2. Example B-type giants (Class III). The identified lines are the same as those in Figure A.1; nebular lines have been truncated in VFTS 335 as indicated.

Fig. A.3. Example B-type dwarfs (Class V). The identified lines are the same as those in Figure A.1; nebular lines have been truncated in three spectra as indicated.

Fig. A.4. Example luminosity sequence at B0.2. The identified lines are the same as those in Figure A.1; we note the greater intensity of the metallic lines with increasing luminosity (including the C III + O II features at $\sim \lambda 4650$).

Fig. A.5. Example luminosity sequence at B1. The identified He and Si lines are the same as those in Figure A.1.

Fig. A.6. Example luminosity sequence at B2.5. The identified He and Si lines are the same as those in Figure A.1 and the nebular lines have been truncated in VFTS 335 as indicated.

 Table A.1. Line-by-line radial-velocity estimates for single stars using the Set 1 absorption lines.

g	8	4 1	7	× ·	∞	S.	4 ,	9 1	_	∞	7	∞	∞	∞	7	5	∞	7	∞	9	9	∞	∞	∞	∞	∞	n	æ	· ∝	· ∞	_	~	m	· ∞	7	· ∞	4		· ∝	_	∞	∞	∞	7	S	7	7	т	∞	∞	∞	∞	∞	۲ ،	S	∞ (× ×	٥٥	٥ ٢	
ρ	2.1	3.9	4 4.	4 4.	3.0	4.	13.8	7.5	7.6	2.0	2.0	2.0	14.3	2.7	1.7	10.5	2.4	3.8	4.2	3.7	3.9	2.8	2.2	5.6	2.9	6.1	7.9	10.0	2.7	3.2	1.7	10.6	8.0	2.3	2.6	1.7	'n	6.5	2.5	17.3	2.4	10.5	8.7	3.6	2.1	5.9	2.2	14.5	2.1	2.3	4.9	5.9	3.9	1.9	8	2.2	9. 7	4 6	0.7	t page
$v_{ m r}$	265.2	287.1	285.7	273.5	285.6	280.0	308.3	288.1	242.2	283.1	279.8	276.4	284.2	287.5	280.7	297.2	283.3	294.3	272.0	280.2	275.8	283.4	289.4	254.1	274.3	267.5	262.6	300.4	278.7	284.5	256.1	264.3	253.6	276.6	273.1	275.4	282.6	191.2	2886	260.9	265.6	287.9	267.6	216.0	270.7	287.3	285.0	272.1	566.9	264.9	253.8	256.8	272.7	260.4	250.0	251.7	264.8	570.5	263.5	continued on next page
HeIλ4713	262.8	283.7	289.7	275.4	288.6	275.5	: 1	295.5	239.8	285.7	282.4	278.9	284.4	289.5	282.6	307.0	286.2	296.7	277.4	285.4	278.0	288.4	292.6	258.1	275.1	267.7	:	:	281.8	284.6	255.6	268.5	265.6	280.3	274.4	277.6		196.4	290 1	255.3	267.4	282.6	273.3	217.2	271.8	289.2	287.3	:	268.1	267.6	258.5	261.6	272.0	261.3	260.5	252.2	267.9	269.7	27.3.9	contin
$Si \Pi I \lambda_{4575}$	264.8	: 1	285.9	271.2	283.0	:	:	:	:	282.2	279.0	274.8	287.9	285.5	278.5	:	281.5	297.7	270.0	:	272.0	283.5	287.4	256.8	268.7	283.3	:	:	275.8	279.4	251.9	271.1	;	275.7	269.3	273.7		178.6	2822	295.5	262.0	281.4	259.0	206.0	:	:	286.3	:	268.6	262.9	238.1	253.1	269.5	262.8	:	246.9	265.2		6.0/2	:
$Si III_{\lambda 4568}$	264.0	291.5	281.5	274.2	280.6	: ;	297.7	: 3	261.0	284.5	279.0	274.4	295.2	289.1	7.672	278.5	281.2	284.5	273.3	281.9	270.3	282.2	287.4	254.0	268.0	253.6	:	:	275.1	281.0	257.8	267.7	;	277.5	271.3	273.8	281.2	186.0	287.1	285.1	263.0	287.8	260.8	217.0	:	281.9	284.2	249.5	265.5	262.3	250.7	250.7	267.4	:	:	248.0	262.6	200.8	2/0.9 261.8	1
Si III _{λ4553} (LR03)	263.9	281.2	291.2	273.9	284.6	: ;	329.1	271.9	236.0	281.4	280.5	278.6	298.6	281.6	280.1	:	283.6	294.7	265.4	277.5	272.8	279.8	287.1	251.2	271.7	265.0	252.6	292.7	276.6	281.9	257.0	254.2	:	275.8	268.1	274.2	282.9	185.2	287.2	:	264.3	279.9	268.2	214.5	270.7	277.3	282.6	280.9	262.5	261.8	250.9	258.3	268.5	261.7	245.2	250.9	264.4	200.0	269.8 258.7	;
Si III _{A4553} (LR02)	265.8	: (279.7	277.7	282.7	271.4	308.7	284.6	238.7	279.4	:	274.3	287.5	282.5	:	:	283.8	:	269.0	:	:	281.3	285.3	251.0	271.5	264.0	269.1	316.2	277.3	286.8	255.4	265.4	· } }	273.1		274.9	286.5	196.6	287.5	246.6	262.5	291.1	283.7	220.6	265.3	294.7	÷	282.0	263.4	260.9	254.5	273.2	273.2	257.2	241.8	249.9	264.0	284.8	2/3.9 261.8	1
Не І _{λ4438}	269.2	: :	284.2	268.0	289.5	292.9	: 1	287.6	230.1	282.7	280.7	279.2	299.4	288.2	280.1	284.1	282.7	296.1	273.4	277.0	281.9	285.8	289.9	255.3	274.5	265.3	:	:	280.5	285.0	253.9	274.5	:	274.9	275.2	275.8		182.9	283.8	259.4	269.0	278.6	268.4	218.4	269.1	299.0	280.6	:	263.8	263.8	253.4	252.1	278.0	261.7	243.2	255.7	266.0	2.77.	2/3.6 264.2	!
СПх4267	271.3	: :	282.8	280.0	284.5	292.6	296.6	285.3	248.5	283.8	278.7	277.0	286.1	286.1	285.7	292.7	288.9	296.5	276.7	276.1	277.8	282.3	290.1	252.0	278.2	274.9	268.5	296.7	275.6	293.5		280.0	247.7	274.3	273.6	272.2	276.1	197.1	291.0		269.5	279.3	275.3	:	:	288.2	286.4	:	269.2	265.1	255.9	256.2	276.0	260.6	246.6	252.8	264.1		278.7 266.0	: :
He I _{λ4121}	268.3	289.9	: ;	263.3	288.0	275.0	: 6	292.9	242.3	282.3	276.4	275.1	254.9	289.8	280.2	303.9	280.1	293.1	268.1	T.77.7	:	282.5	289.0	252.8	276.7	265.4	:	:	281.6	287.9	257.9	256.8	248.6	276.5	275.7	276.6		: :	290 3	244.5	266.0	306.5	257.0	215.8	272.4	285.5	284.1	:	267.4	266.3	256.3	252.7	278.4	259.0	:	252.6	265.1	269.7	2/4:2 264:1	:
VFTS	003	010	024	028	029	031	034	4 5	046	050	052	053	090	062	690	075	082	960	111	113	119	121	124	126	152	159	161	164	170	178	183	186	200	202	209	214	220	226	232	234	235	237	241	242	253	258	261	268	569	270	273	276	284	293	296	297	302	303	308 308	j b

Table A.1. continued

	=	∞	∞	∞	∞	∞	∞	∞	7	4	×	×	0	, د	n 1	- 0	×	4	∞	7	7	7	4	∞	9	0	0	0	× 0	×	4	4	4	S	∞	m	7	7	∞	7	4	· 00	· ∞	7	7	\mathfrak{C}	ϵ	∞	∞	∞	7	S	7	∞ •	× 0	00	o	٦ د	- ∞	9	∞	∞	
	ь	3.7	3.3	1.5	3.4	7.3	15.4	2.5	3.3	4.4	2.0	000	9	5 6	7. 0	8.0	c.c	4. 4.	12.5	3.4	4.3	5.6	2.6	2.4	4.0		1.7	0.7	11.2	3.3 5.3	4.6	6.3	14.2	10.9	4.4	7.5	2.7	3.1	4.6	1.9	13.1	4	4.9	6.2	3.7	2.7	3.0	4.5	10.7	14.5	1.9	9.5	2.9	10.7	v v	0.0	2.1	3 K	1.5	14.5	14.7	2.5	t page
	$v_{ m r}$	270.2	270.7	261.6	269.1	279.4	274.7	267.5	292.7	264.1	264.1	7627	234.6	21.0	0.177	242.1	264.8	283.5	260.7	273.1	278.3	263.2	270.7	270.2	265.4	2763	275.6	0.017	707.0	272.2	278.3	273.9	251.4	256.8	254.7	271.1	247.0	269.6	276.3	265.3	247.1	249.4	274.5	254.1	291.5	268.0	259.4	258.8	227.4	275.8	268.5	310.7	268.8	285.6	269.5	2007	255.5	2702	277.1	264.0	272.7	271.2	ned on nex
1 11	He1A4713	275.4	274.4	264.1	271.9	289.5	281.0	265.8	296.7	:	8 290	265.5	235.6	0.007	: 0	255.4	269.1	287.7	285.5	274.6	285.5	264.0	:	271.0	259.3	279.2	4.612	0.772	2/4.4	278.2	:	:	:	247.7	246.0	:	246.3	271.0	270.8	264.8	:	250.3	280.6	253.7	294.9	:	:	262.1	225.6	273.9	271.5	324.5	270.8	301.8	268.4	250.7	271.0	284.4	278.7	268.2	280.3	269.6	contin
111.0	M111114575	269.2	275.2	260.6	270.0	267.5	245.7	273.2	:	258.1	263.8	259.0	223.6	0.677	:	: 0	259.2	:	249.1	265.8	279.8	:	263.4	271.3		274.6	270.4.0	270.0	294.4	275.5	:	279.7	276.3	:	252.8	265.1	:	268.5	269.7	:	: :	241.8	277.1	249.0	:	:	:	252.6	220.5	255.9	270.1	:	258.8	279.8	253.7	283.0	2663	2,002	277.9	:	268.2	277.3	
111.0	Σ 11Πλ4568	268.1	268.7	261.1	263.0	274.7	268.3	267.4	290.8	266.2	965 9	7507	229.6	0.622	4.707	248.1	257.4	:	255.0	271.6	281.0	265.4	274.3	271.7		275.6	0.072	4.172	266.0	270.6	281.8	271.5	246.8	:	253.4	266.0	251.0	266.8	284.5	267.9	259.1	245.1	276.4	249.0	286.5	264.0	258.3	261.0	215.2	258.6	267.8	:	269.5	278.0	2/4.4	753.4	233.4	280.5	277.5	:	300.8	271.4	
	Si III $\lambda 4553$ (LR03)	265.4	271.5	260.2	267.0	277.9	265.1	270.7	290.4	269.1	2643	25.88	230.5	255.5	200.0	0.477	264.4	:	251.1	271.5	282.0	260.0	279.2	272.2	271.3	274.8	27.4.0	2.4.3	268.1	269.1	279.3	264.0	:	:	252.1	281.4	245.6	265.6	279.2	269.5	254.6	246.6	277.7	248.8	289.6	269.7	256.9	254.9	213.1	264.6	266.4	299.5	267.3	273.5	264.0	282.8	252.4	280.7	274.6	266.7	283.9	271.1	
	$\lambda_1 III \lambda_4 553$ (LR02)	269.9	269.4	262.1	267.1	270.0	263.4	265.2	289.0	:	264.7	267.1	231.8	201.0	283.0	740.7	264.4	:	252.3	275.7	274.1	256.9	261.8	269.3	263.8	273.1	773.1	273.7	263.0	270.8	279.3	:	273.9	273.7	259.8	:	246.9	273.3	272.1	263.7		251.0	273.2	263.3	281.3	269.9	263.8	259.1	243.4	267.6	267.8	302.8	: ;	273.4	267.1	283.3	253.4	274.1	277.1	280.1	269.4	272.3	
1.11	He I > 4438	268.7	270.5	261.8	275.6	278.6	260.4	268.4	289.8	:	2603	263.5	2.202	C: 177	: ;	241.8	256.2	283.7	254.5	274.5	271.8	259.3	:	266.1	268.9	274.0	0.4.7	577.5	261.9	267.6	:	:	:	264.6	256.0	:	240.6	271.6	277.6	266.6	228,3	249.3	265.9	262.0	292.9	:	:	267.7	237.4	282.2	:	:	270.5	289.3	269.6	750.7	256.0	27.02	275.2	275.4	270.3	274.6	
=	C III \ \ 4267	264.2	269.8	263.7	265.3	274.1	268.9	263.3	290.1	:	8 696	0.202	241.5	C:1+7	: 6	249.0	264.8	286.1	258.0	280.1	275.9	264.8	:	271.3	263.8	2777	. 07.0	279.1	2/1.3	268.8	284.7	:	:	241.1	260.7	:	252.0	274.7	274.9	264.3	:	246.8	272.5	266.5	291.3	:	:	251.8	237.6	Z77.7	268.3	316.9	265.3	288.1	270.2	1.182	236.8	2202	275.7	280.1	283.0	267.5	
1	He I \ 4121	272.8	265.5	259.5	269.1	286.5	296.8	267.6	296.8	260.0	2585	263.0	232.5	4:164	: .	240.9	275.3	277.2	271.1	:	:	265.1	:	265.2	268.2	2763	0.077	0.170	254.2	273.4	:	278.7	240.6	262.6	257.2	:	246.3	:	278.8	263.5	229.8	255.7	264.5	:	292.6	:	:	256.4	231.3	298.6	266.7	306.7	270.0	292.9	277.4	266.0	233.3	0:177	278.8	243.8	252.5	269.1	
OHAL!	VFIS	310	313	315	316	331	346	347	353	360	363	360	370	97.0	3/0	381	384	413	417	420	423	424	426	431	452	458	460	469	1/4	8/4	480	498	504	516	533	535	540	541	553	260	569	572	578	590	593	594	298	209	919	622	623	625	627	630	639	000	000	675	673	681	069	692	

Table A.1. continued

=	∞	∞	∞	7	∞	∞	S	∞	∞	∞	4	∞	∞	∞	∞	∞	5	С	9	5	9	7	S	7	4	7	∞	∞	∞	∞	2	∞	∞	7	∞	∞	∞	7	S	∞	7	∞
ρ	2.3	2.0	8.7	10.9	1.9	1.8	3.0	9.6	10.9	1.4	4.9	1.9	3.7	3.6	4.2	13.5	12.6	6.1	0.6	6.7	1.7	10.7	9.1	11.8	13.1	4.9	6.2	3.4	3.0	1.4	0.3	3.0	3.0	4.6	5.7	2.7	2.3	6.9	4.9	1.5	5.4	5.5
$v_{ m r}$	265.8	275.0	244.4	255.1	283.4	285.3	272.9	265.8	268.6	267.3	268.9	267.3	275.7	260.4	269.6	281.6	259.0	253.7	270.1	278.0	291.0	277.4	271.6	251.9	248.0	261.4	210.4	251.9	258.0	259.9	229.4	248.8	252.6	278.2	261.8	275.7	261.5	285.5	275.7	283.0	264.0	258.4
HeIλ4713	269.1	274.8	245.8	252.5	285.6	287.8	271.4	275.6	277.3	266.7	:	269.6	277.5	256.4	273.7	286.2	242.8	259.5	276.9	265.6	292.2	280.3	267.2	:	248.5	263.1	210.5	246.8	260.3	262.6	229.5	252.4	250.7	285.0	261.6	280.5	262.5	293.7	273.6	285.9	263.5	263.5
Si IIIλ4575	267.2	272.1	235.2	259.3	281.6	284.5	:	260.6	279.8	267.7	:	266.7	270.1	267.5	261.5	258.4	:	:	:	:	:	:	:	264.6	:	249.8	215.6	251.7	263.8	260.9	:	248.8	243.8	:	277.5	278.8	257.7	:	:	281.7	260.5	253.0
$Si \PiI \lambda 4568$	266.5	275.5	234.0	246.8	284.2	282.3	:	284.5	272.4	267.9	:	266.3	271.6	265.5	271.3	299.6	:	:	262.2	:	290.9	301.8	:	255.1	:	266.5	206.7	255.2	257.7	259.9	229.8	246.3	250.9	281.0	267.3	275.0	264.3	291.4	:	282.5	262.9	248.3
$Si \coprod_{\lambda 4553} (LR03)$	265.3	271.5	250.0	276.9	283.3	283.3	:	260.0	281.4	267.1	:	265.8	271.5	258.2	265.8	288.8	:	:	284.4	:	290.2	255.8	:	249.6	:	256.5	202.6	249.7	253.9	257.9	:	243.1	256.6	279.0	255.5	275.1	259.8	281.9	264.8	281.8	:	263.9
Si III λ4553 (LR02)	265.8	276.0	254.5	274.0	284.9	285.9	274.4	266.3	268.2	269.0	261.9	266.2	283.2	264.4	269.2	289.8	259.1	:	257.2	272.1	288.9	273.0	289.2	261.1	:	259.9	206.8	250.2	255.9	259.6	:	246.4	256.6	271.8	255.5	275.3	260.1	287.6	:	281.7	265.3	260.0
He I _{λ4438}	263.7	276.1	258.0	:	283.0	286.3	266.5	252.6	245.9	267.5	271.2	270.0	271.6	261.0	264.5	294.0	260.3	:	270.7	292.6	287.3	276.3	274.5	245.0	:	261.4	203.4	254.3	253.7	259.6	229.4	249.6	249.4	271.0	260.9	274.4	261.6	289.9	277.9	282.6	250.3	255.5
$CII_{\lambda4267}$	265.9	276.9	253.7	240.2	285.1	285.9	275.7	267.7	261.1	268.0	275.7	271.3	274.4	259.6	278.1	273.1	253.0	254.1	:	284.9	:	276.2	278.6	269.9	276.0	267.4	211.0	252.5	258.6	258.9	228.7	251.4	252.0	275.3	268.5	275.6	258.2	280.1	2.77.2	282.9	266.3	264.5
He I $_{\lambda4121}$	261.0	277.3	235.8	249.2	279.4	286.1	274.7	256.4	254.4	264.1	267.0	265.6	279.4	258.3	267.9	261.6	276.1	244.5	266.5	283.8	292.4	278.2	262.2	234.7	235.0	:	223.6	257.0	260.2	259.5	229.5	246.5	255.6	278.2	258.6	271.4	264.6	276.3	281.2	283.3	270.1	253.9
VFTS	969	707	711	712	714	725	727	728	729	732	735	740	745	748	753	756	762	772	795	801	807	811	814	817	823	829	831	835	841	845	851	855	860	864	998	867	898	872	879	881	885	988

Notes. Column entries are: (1) VFTS identifier; (2-10) estimated radial velocities from each line; (11) weighted mean velocity for each star (v_r , from eqn. 1); (12) standard deviation (σ , from eqn. 2); (13) number of lines (n) used in calculation of v_r and σ .

Table A.2. Line-by-line radial-velocity estimates for single stars using the Set 2 absorption lines.

٤	4	5	5	ω.	4 -	4 v	4	ъ	S	m =	4 4	· 10	S	4	S	4 v	o v	'n	5	4 -	1 "	υ 4	'n	4	æ	m.	4 0	ກ ∠	ۍ ۱	5	S.	m n	n (1	o v	4	4	S u	v 4	· w	5	n	ט ע	o v	8	2	es i	n 0	ט ער	4	Ś	v 4	7
ŧ	4.2	10.8	2.6	1.6	6.9	4. 4 6. 4	16.3	18.4	4.1	12.6	4. k.	19.9	13.6	24.0	12.5	4. c		3.7	3.8	3.6	 4	- 4 - ×	5.4	5.6	17.6	5.5	2.7	4. 4	5.2	8.8	9.6	18.3	5.6	5.0	11.9	8.5	8. 5	15.0	7.8	6.8	3.7	y, 4	2.5	12.6	8.2	25.8	6.5 C - 1	7.5	11.9	10.3	13.5	3
10	282.1	283.1	282.6	281.1	271.3	306.1	258.8	270.8	278.0	291.4	203.0	265.7	272.9	254.8	294.7	268.4	284.1	287.3	276.2	285.3	0.4.07	0.752	271.2	284.1	260.7	243.3	277.4	207.8	281.4	264.5	274.6	283.8	203.7	286.9	278.9	280.8	281.7	2719	284.9	272.8	278.7	2005	286.2	282.5	261.4	263.9	2.182	279.7	248.2	247.0	268.5	
Hel	276.5	269.0	278.4	: ;	264.5	307.2	235.3	:	283.0		269.6	242.6	254.1	232.5	312.1	263.5	2.62.2		273.2		7.77	281.2	268.5	278.2	238.2	: ;	268.7		278.2	263.8	270.3	:	:	289.8	297.4	279.1	268.6	7.667	: :	272.7	273.9	263.0	285.5	:	254.6	1:00	6.112	285.7	227.9	229.9	258.9 268.4	t.007
Heli	CT / #V - Av	281.2	282.0	:		295.5		:	279.6	:	:	266.5	242.3	:	291.9	: 0	285.4	:	277.4	287.3	:	:	280.3	:	:	:	:	:	287.3	289.0	265.1	:	:	290.2	:	:	269.1	283.0 283.0	:	251.7	280.4	282.6	292.4	:	276.7		231.5	267.4	:	262.3	261.7	:
Hel	283.3	280.1	285.6	279.2	276.2	310.8	272.9	289.4	272.5	297.8	239.7	289.0	282.7	243.2	280.6	270.9	2.67.5	282.8	273.5	281.0	293.4	269.5	268.1	283.5	281.2	242.7	272.9	2/4.1	285.2	257.1	282.1	308.9	280.1	285.1	273.8	270.7	280.9	278.4 278.4	276.8	275.7	279.6	283.2 289.4	284.1	270.2	263.3	299.2	2.672	271.3	256.3	247.5	269.4	1.707
Heli	279.4	293.7	284.0	282.6	266.1	306.2	271.9	273.4	278.4	273.7	278.9	283.3	274.1	273.7	286.2	274.1	289.7	290.5	276.3	289.9	265.1	280.1	277.1	293.3	259.8	249.4	279.5	7.927	284.4	268.9	287.0	269.0	267.0	290.6	271.9	294.1	284.3	267.1	293.4	272.8	278.1	296.1	288.0	298.5	566.9	258.4	782.7	286.4	251.1	256.9	292.5 779.7	1: / 11
Helt	287.9	299.2	281.7	282.1	282.6	2005	254.5	244.0	274.3	303.5	271.4	246.8	289.9	297.9	302.7	265.6	291.7	290.2	284.0	284.5	284.2	233.2	267.5	283.9	:	235.5	294.5	7880	271.3	258.0	259.7	272.0	275.3	275.4	267.4	284.1	312.8	264.5	290.2	278.5	286.0	2863	284.6	278.4	249.6	235.1	2/3.9	282.1	257.3	244.4	254.8	1::07
VETS	001	90	900	000	800	210	020	980	038	940	043 848	054	990	890	020	071	080	083	084	085	100	901	5 5	109	122	127	128	134	£ 1 141	148	149	156	156	167	181	187	188	19,5	201	203	202	210	212	219	221	224	877	230	233	234	238	107

Table A.2. continued

CHLL	11.11	11.11	11.11	11.11	1 11			1
VFIS	He1 ₃₄₀₀₉	He I 34144	He1 ₂ 4388	He I > 4713	He1 ₃ 4922	$v_{\rm r}$	ο,	=
747	293.9	289.5	291.6	304.5	296.5	293.0	4. r	0 4
563	250.0	2,50.5	291.8	:	240.0	270.7	16.8	† ~
274	278.8	256.3	251.3	: :	235.6	252.9	14.1	4
622	242.1	266.4	278.5	256.7	:	262.6	14.1	4
282	241.5	253.5	242.3	265.8	289.3	260.5	19.7	S
583	260.0	248.2	257.3	241.7	248.6 284.5	252.1	0.0 4	υ 4
287	282.5	254.0	262.4	: :	:	264.7	11.4	ω.
288	264.2	246.4	261.0	269.5	257.6	258.0	7.2	S
292 205	256.9	261.9	300.2	2/5.3	322.7	307.7	6.4.0 0.01	n u
862	334.0	327.3	336.2	: :	i :	332.1	0.4	m
300	280.6	259.7	285.5	294.4	268.0	276.7	12.1	5
301	267.7	258.9	280.9	262.6	:	268.4	0.6	4
309	288.2	281.0	282.4	294.1	269.2	281.8	7.6	S
320	290.0	265.7	318.1	:	:	291.3	22.1	m c
175	263.4	251.2	262.3		:	0.867	0.6	<i>v</i> -
326	236.0	262 244.0	256.1	1:167	258.9	250.1		1 4
328	297.8	320.2	307.5	328.2	316.5	313.7		5
330	261.1	269.3	272.9	272.3	264.7	267.7	4.4	5
335	250.2	247.2	251.8	245.2	247.1	248.7	2.2	S
340	254.2	265.0	258.9	:	221.4	251.7	16.2	4 .
343	238.1	254.0	241.0	:	227.7	240.5	9.3	4 (
248	261.8	26/52	272.0			87.97	0. t	יט עי
354	250.2	265.1	259.5	7:607	234.8	250.4	1.7	J 4
358	148.3	165.1	175.4	: :); ;	164.7	10.7	· ω
365	273.1	266.0	262.9	301.9	265.4	270.0	10.9	'n
295	275.8	271.7	272.7	268.6	259.1	269.4	0.9	5
898	249.2	215.7	227.1	:	:	229.6	12.4	c
373	262.5	274.2	275.1	:	:	271.4	4.6	m c
207	246.6	294.3	308.0 228.1	:	:	280.3	2.4.2 0.8	0 11
397	279.4	259.1	290.2	:	:	776.7	13.2	J (L
101	262.1	246.4	301.2	: :	: :	269.7	23.3	'n
403	250.9	247.6	255.7	:	:	251.2	3.4	\mathcal{C}
414	285.2	261.9	254.3	:	:	264.2	11.6	\mathcal{C}
121	273.0	264.5	261.1	:	:	265.8	8.4	n
425 126	296.2	260.5	279.4	:	:	276.2	13.6	m c
674	264.6	284.0	266.6	2603	5 95 6	260.3	0. v	ט ע
‡ 1	229.0	281.0	269.0		256.9	267.0	09.5	4
449	276.0	269.6	275.1	:	246.7	265.8	12.3	4
452	262.9	261.5	258.0	258.9	252.7	258.6	3.6	2
553	263.2 252.8	266.0 283.9	263.6	:		264.4	1.3 10.9	υ 4
163	276.8	286.0	275.9	: :	; ; ;	279.8	7.4	ω
167	331.7	277.5	355.6	: :	: :	322.3	30.2	c
473	225.4	264.1	276.4	:	254.5	257.1	19.3	4
474	244.9	248.8	274.3	:	276.2	264.1	14.0	4 (
485 86	282.5	269.7	300.7	:	:	2/5.4	4. 7 . 8. 4	יו ני
189	282.6	247.2	277.2	: :	: :	268.9	15.1	, m
195	277.7	273.4	280.7	254.9	265.6	272.6	7.8	5
199	308.2	288.8	284.5	:	:	293.1	10.1	n
523	281.8	269.5	264.7	:	:	2/1.0	6.9	יו ני
539	294.8	258.7	289.2 269.2	: :	: :	290.3 271.5	7 7 7 7	u w
543	249.6	257.5	251.2	: :	: :	253.1	3.3	3
					contin	continued on next page	a page	

Table A.2. continued

VFTS	He Iλ4009	He $I_{\lambda4144}$	He1 _{λ4388}	He I _{A4713}	He1 _{λ4922}	$v_{ m r}$	ο	디
547	265.9	259.6	240.9	:	:	255.9	10.3	n
551	294.9	282.5	277.6	:	:	284.7	7.1	m c
556 556	266.9	2/4.9	272.5	:	345.0	260.5	2.9	<i>v</i> <
563	6.1.5	247.3	278.6	: :	271.2	267.5	12.4	t (C
567	283.5	7.772	279.4	: :	250.2	272.1	13.3	4
268	:	280.9	287.8	:	270.3	280.3	6.9	w
570	253.9	261.7	322.8		:	279.4	30.4	w r
5/4	268.2	26/.9	269.5	240.6	265.3	264.7	8. c	n
584	250.8	263.7 248.3	261.3	:	:	253.3	5.0	u u
592	234.4	268.0	261.2	: :	: :	257.4	13.2	, w
009	246.4	277.0	290.7	:	297.9	279.8	18.4	4
602	300.0	299.4	302.9	:	:	301.0	1.6	c
605	316.7	293.6	287.9	:	243.2	278.6	26.3	4
610	245.3	249.6	254.4	:	232.8	245.8	8.4	4
615	246.9	275.6	254.6	: ;	266.9	262.7	10.0	4 1
620	286.9	276.1	292.2	279.0	261.0	278.0	8.11	S.
624	260.9	200.9	259.9	:	2/1.9	265.3	4. 5 6. 6	4 c
630	285.4	237.7	287.9	3120	7.77.0	202.1	5.61 5.11	o v
250	203.4 274.8	201.4	279.4	2813	261.0	274.7	7.2	יי נ
636) i	237.8	248.7		237.7	241.5	5.2	, m
640	264.9	252.4	253.3	262.1	253.4	256.0	5.0	S
643	247.3	252.5	242.6	:	266.3	250.9	8.2	4
44	216.8	266.9	250.1	:	:	248.6	20.2	ε
646	255.4	261.5	270.1	:	264.6	263.9	8.4	4
629	265.5	264.3	265.7	252.2	269.0	264.9	4.6	S
099	:	278.3	260.2	:	242.0	257.1	14.7	\mathfrak{C}
670	285.5	269.7	278.7	304.1	305.2	286.1	13.8	ω.
6/1	251.3	2/4.6	254.4	:	237.3	255.3	13.3	4ι
0/0	295.0	249.7	5.11.5	:		272.1	18.7	υ -
0/0	263.7	266.0	263.8	365.8	258.9	2.0.7	7.11 8.1	1 v
683	261.5	261.9	263.6		299.4	271.1	15.7	, 4
684	:	270.2	269.4	: :	298.0	278.6	13.1	ω.
685	229.7	225.1	278.5	253.4	:	243.4	22.5	4
669	280.4	249.5	267.5	:	:	264.4	12.0	\mathcal{C}
701	281.6	263.6	256.2	:	:	266.6	10.1	c
709	258.1	271.6	259.3	: ;	272.2	265.5	6.5	4
720	294.0	301.0	292.4	306.1	302.0	298.4	4. č	v .
737	C. / 07	240.7	261.4	:	239.2	7.647.	17.1	4 4
738	272.6	273.8	302.7	:	6.0.3	284.4	7.5	† ~
741	269.1	270.5	255.5	284.1	248.6	263.2	10.9	'n
747	274.6	269.9	271.7	266.7	267.9	270.2	2.5	5
749	257.2	274.6	258.0	276.7	264.0	264.8	7.2	S
754	234.5	244.0	242.9	244.5	237.2	240.2	0.4	S I
100	264.9	275.3	271.4	285.8	279.5	2/3.4	6.3	n u
78.1	268.0	243.0	242.3	7.967	7.20.7	243.4	4.11	U (t
786	283.0	290.2	264.2	: :	262.0	274.0	12.0	. 4
789	245.2	283.6	261.0	: :	<u> </u>	263.6	15.5	· w
794	267.8	271.6	294.8	:	:	278.9	12.1	c
962	274.7	288.0	290.7	: !	:	284.9	6.9	m I
798	279.1	254.3	250.4	245.5	219.1	247.1	19.5	s c
800	7.11.1	247.2	280.3	:		208.9	7:/1	<i>o</i> c
813	271.1	271.8	268.5	: :	286.3	274.5	2.7	υ 4
815	252.1	259.9	248.9	266.3	257.4	255.7	5.4	Ŋ
823	259.8	253.1	:	255.9	272.1	262.0	8.2	4
					contin	continued on next page	xt page	i

Table A.2. continued

u	5	3	S	S	4	33	4	4	4	4	ĸ	4	ε	S	4	4	4	ĸ	4	4
ο	12.4	15.6	0.6	8.5	5.9	1.4	4.5	8.9	34.7	8.8	4.4	4.6	15.1	3.8	6.4	8.3	9.5	18.7	9.4	12.1
$v_{ m r}$	245.9	252.9	242.8	263.6	277.0	253.3	263.4	236.7	244.8	277.9	258.4	247.7	258.9	255.4	288.8	252.7	251.0	270.4	283.3	263.1
${ m HeI_{\lambda4922}}$	250.1	277.1	230.8	262.9	268.5	:	265.0	234.1	:	269.0	252.7	:	:	250.3	294.0	261.7	254.4	242.4	271.2	251.8
He I $_{\lambda4713}$	249.2	:	239.5	289.5	:	:	:	:	210.8	:	:	257.2	:	257.3	:	:	:	:	:	
${ m HeI}_{\lambda4388}$	248.9	241.8	256.5	258.5	276.4	255.1	258.2	244.7	277.9	275.2	262.7	249.9	272.8	260.5	283.1	259.1	235.9	280.6	287.0	265.9
He I $_{\lambda4144}$	258.8	244.1	243.1	262.4	277.0	251.8	260.2	225.1	260.6	281.0	260.4	246.4	264.5	256.7	283.1	242.8	261.1	285.1	296.1	255.1
$ ext{HeI}_{\lambda4009}$	223.0	:	241.6	259.6	286.6	252.7	270.3	246.9	192.8	295.3	:	242.5	237.0	253.6	298.0	245.8	254.1	:	280.1	284.5
VFTS	824	825	826	832	833	836	838	840	842	843	846	848	853	857	698	875	928	880	887	688

Notes. Column entries are: (1) VFTS identifier; (2-6) estimated radial velocity from each line; (7) weighted mean velocity for each star (v_r , from eqn. 1); (8) standard deviation (σ , from eqn. 2); (9) number of lines (n) used in calculation of v_r and σ .

Table A.3. Line-by-line radial-velocity estimates for single-lined binaries using absorption lines in the LR02 observations.

VETE	ATIV	Hol	Toll	HAL	H	IvI	ПоП	C: III			:	;	, , , ,
000	54017	2020	202 5	пс1,4169	202 8	700 7	ПС 1,74438	31 Π1λ4553	Vsingle	0 0	= 4	0r 702 7 ± 71 €	ovr max
900	54017	302.0	2,52.3	:	6.667	200.0	:	C.167	205.3	o. c	O 6	293.2 ± 21.0	52.0
017	54817	289.3	261.8	:	:	309.9 247.8	:	:	202.3	9.0	n 4	$2/8.0 \pm 30.5$	93.7
018	54860	292.8	295.5	: :	288.8	295.6	287.7	288.5	292.9	3.5	9 0	279.2 ± 21.9	21.4
025	54828	300.0	308.3	: :	0 :	299.0	::::	; ;	302.2	2.4	'n	290.3 ± 11.3	28.4
027	54748	327.1	335.3	340.5	347.0	329.8	:	374.6	343.3	18.0	9	273.1 ± 42.5	111.4
033	54748	255.2	252.5	:	:	263.7	:	:	257.5	4.9	ω (270.2 ± 22.8	51.2
037	54828	297.7	288.2	303.5		303.3		318.0	297.0	6.1	mι	299.4 ± 18.4 287.0 ± 19.0	56.3
097	54748	6.007	291.6	0.000	7:+:	303.6	C:(C7	318.1	308.7	10.6	· (r)	296.7 ± 11.5	23.8
106	54822	290.8	289.2	: :	: :	282.9	: :	:	287.0	3.5	m	281.8 ± 13.3	32.4
107	54822	289.0	282.0	:	:	281.2	:	:	283.2	3.0	3	294.5 ± 23.7	56.5
118	54824	272.8	281.7	294.7	281.6	273.4	286.2	286.0	279.2	6.4	7	302.2 ± 15.9	39.7
133	54824	294.8	302.8	:	292.5	299.2	:	290.8	298.2	4.0	5	293.5 ± 15.2	38.7
135	54817	257.9	263.1	:	:	280.6	:	:	269.0	6.6	n	270.9 ± 52.5	136.6
4	54815	277.8	274.6	:	270.6	273.2	:	:	274.3	2.2	4	281.8 ± 14.5	34.2
146	54748	238.1	270.0	:	:	256.5	:	:	255.4	12.8	m (259.6 ± 12.6	34.0
[5/ [5]	54828	256.4	243.8	:		290.5		6	200.5	7.07	n 4	284.0 ± 24.4	59.7
162	54813	302.1	282.0		297.5	292.9	290.9	300.8	203.1	1.0.1	0 1	283.7 # 14.8	52.5
6/1	54824	194.7	302.2	304.1	290.8	179.1	294.3	7.167	181.5	10.1	۰ ،	294.3 H 0.4 274.0 + 69.9	185.9
195	54824	277.1	281.5	:	275.5	279.6	283.7	7.07	0.151	2.6	9 6	268.1 + 12.9	78.7
199	54828	261.5	280.7	: :	: : :	282.9			275.9	9.7	'n	1 ::00	
204	54815	252.5	254.7	258.2	241.0	247.3	249.7	241.8	249.7	5.0	7	254.9 ± 12.7	31.0
206	54815	259.2	283.1	:	:	266.4	291.7	:	272.1	11.5	4	257.3 ± 36.8	84.5
211	54817	301.0	280.3	:	:	279.2	:	:	284.7	9.1	ϵ	272.0 ± 13.2	33.6
213	54804	270.7	273.4	264.4	279.9	273.2	:	268.5	272.4	3.3	9	276.4 ± 12.8	30.0
215	54822	342.7	358.3	: ;	364.9	353.5	338.3	: !	352.6	7.6	S	287.5 ± 63.0	121.7
218	54815	265.4	264.9	233.0	255.6	253.6	253.1	247.3	257.6	8.5	_	249.2 ± 7.9	20.0
225	54815	272.8	265.9	272.6	264.3	259.8	263.8	264.6	265.4	4. 3.	- '	289.2 ± 15.8	32.0
777	24804	284.9	2/4.8	:	:	135 3	2/0.8	67/07	4.1.12	7.0	n c	1.4 ± 9.1	23.1
240 246	54809	2,711	150.1	:	:	7303	:		255.1	0.7	o 4	224.2 ± 32.0 275.8 ± 38.8	132.1
248	54824	249.6	313.5	: :	: :	308.1	: :	: :	296.7	25.7	· "	297.6 ± 35.8	89.5
255	54804	276.3	255.7	:	: :	238.6	:	:	257.7	14.8	m	268.5 ± 65.4	163.8
257	54817	285.8	252.7	272.2	:	254.9	:	256.4	263.4	13.3	S	269.2 ± 11.9	27.8
278	54828	291.6	269.0	284.4	270.6	269.0	:	:	275.5	9.5	S	270.8 ± 12.8	33.0
291	54748	205.3	206.1	201.1	200.5	200.7	187.5	:	201.9	5.3	9	234.7 ± 46.1	103.5
299	54822	346.1	357.3	374.6	362.5	357.5	367.1	355.6	357.8	7.9	۲,	288.9 ± 45.8	107.8
303	24817	304.1	297.7	309.2	276.2	292.1	305.8		297.7	9.0	0 1	321.7 ± 50.4	123.3
324	54778	26.0	1.167	517.0	501.5	739.7	307.1	303.0	299.1	y. r		$2.74.0 \pm 2.1$	04.3
334	54817	244.2	273.3	: :	233.2	281.6	: :	309.6	268.7	21.5	·v	266.2 ± 17.3	40.8
336	54824	280.4	261.5		:	267.7	: :	252.4	267.4	8.3	4	266.7 ± 14.7	36.7
337	54809	287.4	297.1	:	:	260.4	:	:	282.2	15.6	Э	278.6 ± 11.1	31.8
342	54794	299.8	313.4	318.7	302.5	304.7	309.8	300.9	306.7	5.9	7	292.2 ± 43.4	103.6
351	54794	231.6	238.3	237.8	227.6	225.4	231.4	226.3	230.8	5.3	<u>_</u>	246.8 ± 24.9	57.8
359	54824	295.8	295.4	301.1	: 0	286.6	276.5	275.3	288.6	9.6	9 \	295.0 ± 10.5	25.6
304 405	24877	250.8	4.422	7.147	737.0	227.9	707.7	:	252.1	c. 51	، ه	266.6 ± 29.9	C./0
375	54809	280.4	320.3	: :	:	324.0	: :	: :	311.6	18.2	o (r	296.4 + 22.1	585
383	54809	315.9	325.0	: :	: :	319.9	: :	: :	320.5	3.7	· cc	224.5 + 64.2	168.0
388	54824	270.7	260.9	:	:	255.9	274.5	254.4	261.0	8.9	S	276.4 ± 9.5	25.4
396	54809	224.2	281.6	:	:	257.4	:	:	258.0	21.5	ж	270.9 ± 17.7	38.9
430	54824	193.2	207.7	:	:	211.7	:	216.0	208.1	8.0	4 (218.3 ± 48.7	120.8
459	54828	265.7	249.9	:	:	247.8	:	:	252.9	5.5	<i>m</i> (260.5 ± 10.9	29.1 35.5
496 103	51915	4.4	202 0	227.0	:	293.9	3125	9 200	217.0	12.2	n u	$2/9.9 \pm 14.2$	55.5 6.62
520	54822	280.6	274.4	521.9	254.2	251.5	2466	263.8	262.7	12.3	9	278.2 ± 73.5	180.0
525	54748	299.7	293.9	304.2	296.9	289.0	291.0	288.9	293.0	8.4	7	289.6± 9.5	25.4
534	54828	275.1	292.4	270.1	:	281.3	275.4	:	277.9	6.3	2	278.2 ± 23.1	58.7
												continued o	n next page

Table A.3. continued

VETC	CIM.	Ho.I.	U. I.	LoI.	CIL	DoI.	U. I.	C: III.		,	٤	10	501
6107	CC013	262.4	200 5	110174169	C 11 7 4 2 6 7	200.4	110 174438	2011174553	Osingle	2 -	=	070 L 0 5	ovr max
0 1	24047	4.707	C.767	: : :	: 0	4.667	: 6	7.667	1.007	į (t ,	C.0 H V.612	7.07
2/2	24878	2.79.8	7.78.6	232.3	225.9	2.74.9	219.1	:	6.977	5.4	9	263.4 ± 24.9	25.5
276	54815	285.4	287.6	288.5	282.1	284.9	274.9	289.8	285.7	3.8	7	262.0 ± 34.9	74.6
589	54794	:	:	223.8	204.8	201.3	208.8	206.7	205.8	6.3	5	314.5 ± 94.0	178.7
591	54804	285.6	288.1	285.8	294.3	286.9	278.7	:	286.8	2.8	9	277.7 ± 8.8	21.3
909	54828	255.1	264.2	:	264.0	270.4	266.7	286.5	266.7	8.0	9	265.6 ± 10.3	28.8
628	54824	236.6	265.7	:	:	263.7	:	:	257.9	11.9	ж	250.8 ± 62.7	152.7
637	54809	274.1	235.3	:	:	237.1	:	:	246.0	16.5	3	299.3 ± 32.3	103.1
662	54804	235.9	287.1	:	:	253.2	:	:	256.3	20.3	3	251.3 ± 39.1	100.8
999	54804	264.5	275.7	267.4	:	265.4	264.1	264.5	267.7	4.5	9	274.2 ± 16.1	37.2
675	54748	260.0	267.4	273.9	261.2	262.6	265.0	270.7	266.0	4.5	7	276.7 ± 23.8	59.5
989	54804	297.8	292.8	311.1	298.1	293.9	302.7	303.8	298.2	5.4	7	276.8 ± 38.9	0.06
289	54748	316.7	312.1	285.6	319.0	315.2	293.2	321.6	314.0	8.8	7	295.8 ± 23.0	56.8
269	54794	264.8	280.6	274.2	265.5	267.8	:	:	271.1	6.7	S	263.7 ± 8.3	20.8
705	54809	168.6	183.5	:	:	172.1	:	163.7	173.8	7.0	4	268.3 ± 80.8	174.9
713	54794	239.4	233.7	:	:	234.9	:	:	235.6	2.3	3	250.6 ± 38.7	100.9
715	54809	262.6	283.0	:	292.5	268.0	299.3	271.7	275.5	11.6	9	270.0 ± 22.1	53.1
718	54828	323.0	320.8	:	:	327.8	:	:	323.9	2.9	ε	306.8 ± 16.2	39.4
719	54804	230.7	253.5	:	239.9	226.9	232.5	240.1	237.0	10.4	9	265.0 ± 18.9	52.4
723	54794	279.6	283.7	294.0	279.3	280.5	271.6	279.8	281.3	4.8	7	239.2 ± 26.3	62.1
730	54822	326.8	333.0	:	377.0	326.4	:	:	332.1	12.6	4	326.5 ± 6.8	16.6
752	54817	261.7	260.5	:	:	267.6	247.8	241.8	260.7	7.7	5	258.8 ± 40.3	87.4
622	54809	248.0	248.7	244.2	246.7	245.2	249.4	250.8	247.7	2.1	7	258.9 ± 27.2	61.0
784	54748	339.3	259.2	:	:	274.6	:	:	286.2	31.9	3	312.4 ± 27.6	70.7
788	54824	295.6	314.4	:	:	292.9	:	308.1	302.0	9.4	4	280.7 ± 27.8	70.1
792	54815	265.0	281.9	285.5	265.3	267.0	276.5	:	271.9	7.7	9	278.3 ± 8.0	18.0
662	54809	281.3	276.6	281.6	270.2	263.3	271.2	265.3	271.6	7.0	7	270.7 ± 7.3	19.9
827	54828	244.8	245.6	260.4	243.1	238.2	236.9	241.2	243.1	5.5	7	254.3 ± 14.4	34.7
834	54809	211.0	207.1	:	219.4	219.3	:	214.9	213.8	5.0	S	240.3 ± 22.1	43.6
837	54828	306.0	301.8	:	:	315.2	:	:	308.4	2.8	ж	282.5 ± 27.0	0.99
847	54822	317.6	299.9	:	:	300.7	:	288.6	302.0	9.6	4	298.7 ± 9.6	26.2
850	54828	255.4	249.0	:	242.5	234.6	232.3	232.2	241.8	9.4	9	256.9 ± 11.6	27.1
874	54828	277.5	277.4	247.9	265.2	280.4	:	283.4	274.8	9.5	9	274.9 ± 8.3	20.0
211	54815	234.4	240.2	:	:	207.4	:	:	228.2	14.2	\mathcal{C}	236.7 ± 11.2	26.6
883	54828	254.6	301.7	:	:	295.5	:	:	289.9	17.3	ϵ	:	:
888	54815	317.6	326.7	334.2	316.7	314.2	:	330.5	321.4	7.1	9	238.3 ± 50.8	121.0
068	54828	:	304.9	:	:	302.2	:	316.2	305.8	5.3	ж		:
891	54815	289.1	278.7	278.3	283.3	271.3	279.9	275.6	279.0	6.1	7	273.6 ± 8.3	20.5

Notes. Column entries are: (1) VFTS identifier; (2) Modified Julian Date (MJD) of the co-added observations used for these measurements (see Appendix of Paper I for details of exposures); (3) weighted mean (single-epoch) velocity for each star ($v_{\rm single}$, from eqn. 1); (11) standard deviation (σ , from eqn. 2); (12) number of lines (n) used in calculation of $v_{\rm single}$ and σ ; (13) estimated mean $v_{\rm r}$ (and standard deviation) calculated from the multi-epoch measurements from Dunstall et al. (in prep.); (14) maximum difference ($\delta v_{\rm r, max}$) in the radial velocity estimates between the available epochs.