

FOLGEN

Fragen?

Konvergenz pendelt sich auf einer höhe ein Divergenz pendelt sich nicht auf aner Göhe ein geht eichtung + as und -as

bestimmt Divoquet: gelet enteredes nur Richtung + as och

nw Richtung -00

- * Folgen. Für folgende Folgen machen Sie bitte das Folgende:
 - Zeichnen Sie die Folgen in einem Graphen.

- Sind die Folgen beschränkt? a) nein 6. Ja c. Ja (nach water bedreckt)
 Sind die Folgen monoton wachsend oder monoton fallend? a.) w 6. If c.) middt wonoton
- Sind die Folgen konvergent (Grenzwert?), divergent oder bestimmt divergent?

b) $a_n = \frac{1}{n}$, $n \in \mathbb{N}$

c) $a_n = (-1)^n$, $n \in \mathbb{N}_0$

a) bd b.) konvergent c.) divergent

a) bd b.) konvergent c.) divergent

a) unifwed or $a_n \xrightarrow{n \to \infty} \infty$ oder $\lim_{n \to \infty} a_n = \infty$ b) $a_n \xrightarrow{n \to 0^+} 0^+$

Lösung.

Zinseszins. Sie legen auf ein Tagesgeldkonto ein Kapital $K_0 = 1000 \in zu$ einem Zinssatz von 2% p.a. an. Wie viel Kapital haben Sie nach n Jahren? Uberlegen Sie sich eine Folge K_n , wobei K_n das Kapital im Jahre n ist.

Lösung.

Lösung.

Nach o Jahrm
$$l_0 = 1000 \, \text{f}$$

Nach o Jahr $l_1 = l_0 + 0_102 \cdot l_0 = l_02 \cdot l_0$,

 $l_2 = l_1 + 0_102 \cdot l_1 = l_02 \cdot l_1 = l_02^2 \cdot l_0$

Nach o Jahr $l_0 = l_0 + 0_102 \cdot l_0 = l_02 \cdot l_0$,

 $l_1 = l_1 + 0_102 \cdot l_1 = l_02 \cdot l_1 = l_02^2 \cdot l_0$

Nach o Jahr $l_0 = l_0 + l_0$

Wurzelberechnung nach Heron. $a_0 = 2$ und $a_n = \frac{1}{2}(a_{n-1} + \frac{2}{a_{n-1}})$ für n > 0. Untersuchen Sie diese Folge auf Konvergenz und bestimmen Sie ggf. den Grenzwert. Implementieren Sie diese rekursive Folge als Funktion in Java.

Lösung.

Grenzwerte. Berechnen Sie folgende Grenzwerte für $n \to \infty$:

a)
$$a_{n} = \frac{4n^{2} - 5}{n^{2} + n + 1} = \frac{\sqrt{(1 - \frac{5}{\sqrt{\lambda}})}}{\sqrt{(1 + \frac{1}{N} + \frac{1}{N^{2}})}} = \frac{\sqrt{(1 - \frac{5}{N^{2}})}}{\sqrt{(1 + \frac{1}{N} + \frac{1}{N^{2}})}} = \frac{\sqrt{(1 + \frac{1}{N^{2}} + \frac{1}{N^{2}})}}{\sqrt{(1 + \frac{1}{N^{2}} + \frac{1}{N^{3}})}} = \frac{\sqrt{(1 + \frac{1}{N^{2}} + \frac{1}{N^{3}})}}{\sqrt{(1 + \frac{1}{N^{2}} + \frac{1}{N^{3}})}} = \frac{\sqrt{(1 + \frac{1}{N^{2}} + \frac{1}{N^{3}})}}{\sqrt{(1 + \frac{1}{N^{2}} + \frac{1}{N^{3}})}} = 0$$
Lösung.

Lösung.

Lösung.

Lösung.

Lösung.

Lösung.

Lösung.

Lösung.

Lösung.