

b-Tagged Dijet Analysis: Fit Function Studies

Laurie McClymont

UCL Meet 29 January 2016

Overview of Analysis

- On course for Moriond!
- Passed JDM group approval last friday
- Supporting documentation: CDS Entry
- Paper draft in place

Fit function studies

- Are we robust to changes in flavour fraction?
- Do we need an additional systematic for flavour fractions.

3 Analysis Intro

- Search for resonance in invariant mass spectrum of b-tagged jets
 - Fit QCD background using smoothly falling function.
 - Follows a similar path to dijet analysis
- In addition, b-tagging is applied.
 - Three categories 0, 1 and 2 b-tags
- Search for generic di-jet resonance
 - Gaussian with width similar to benchmark models.
 - Two benchmark models, which we will set limits on.
 - 1) **Z' => bb**, double b-jet final state. (Sequential SM Z')
 - 2) **b* => bg**, single b-jet final state.

- Many BSM models predict heavy particles that decay into bb or bg.
 - Z', b*, Randall-Sundrum graviton...
 - QCD background is dominated by light jets (u, d, s and gluon)
 - b-tagging can be used to increase sensitivity to these models.
- Generic search performed searching for high mass resonance decaying to b-tagged jets.
 - Performed at CDF and CMS (<u>CMS-PAS-EXO-12-023</u>)
 - No ATLAS result from Run-1

- Lowest unprescaled single jet trigger
- Event Selection (Full list in backup)
 - Same as dijet analysis
 - m_{ij} > 1100 GeV, on the trigger plateau.
 - $|y^*| < 0.6$, where $y^*=0.5^*(y_1 y_2)$
 - Central region more sensitive to BSM physics.
 - Jet |η| < 2.4
 - In tracking volume for b-tagging.

MV2c20

- Fixed cut 85% efficiency working point
- Loose WP provides best sensitivity compared to others.
- b-jet efficiency ~ 50% at jet-p_T ~ 1 TeV
- Light-jet rejection ~ 30
 - Approx. flat, good for background modelling.

- Mass spectra in three tag categories
 - 3.2 fb⁻¹ of data, full data set
 - Background fitted with <u>smoothly falling function</u>
- Bump Hunter searches for resonances using Gaussian signal
 - Searches for statistically significant deviations
- No excess found more significant than 2σ

Limit Setting

- 95% C.L. upper limits set for b* and Z'
 - Use bayesian approach for limit setting.
 - No correction for acceptance.
- Systematics:
 - Luminosity uncertainty 5% From luminosity group
 - Background uncertainty
 - Uncertainties on fit function choice and fit parameters
 - Signal uncertainty
 - JES and JER uncertainties
 - An additional BJES uncertainty
 - *b*-tagged scale factor uncertainty

Fitting Function Studies

Fitting Function

We use a smoothly falling fitting function to fit to background

$$f(x) = p_1 (1-x)^{p_2} (x)^{p_3+p_4 \ln x + p_5 \ln x^2}$$
 where, $x = m_{jj}/\sqrt{s}$

- This comes in a 3, 4 or 5 parameter versions
 - Setting p₄ and p₅ to zero

Varying Flavour Composition

- It is known that the fitting function can fit to the Monte-Carlo
- However MC is not a perfect prediction of reality
- What if there are more b-jets in the data than in the MC
 - Can we still fit to data in this case? Is our fitting function robust.

10 **Getting the Flavour Fractions**

- Flavour fractions are extracted from MC using truth information.
- The dijet mass spectrums for these flavour fractions are then scaled to 20fb⁻¹
- The dijet mass spectrums are fitted to using the 4-parameter fit function.

11 Stacking the Flavour Fractions

- We take the fits to the flavour fractions from previous slide
- These are then scaled to 3fb⁻¹ and stacked to create a dijet mass
- I also create the case where b-jet content is doubled (bb, bc and bl)

12 **Making Data-Like**

- By applying poisson fluctuations we can create 'data-like' distribution
- These are fitted using the 3, 4 and 5 parameter fit function

- By applying poisson fluctuations we can create 'data-like' distribution
- These are fitted using the 3, 4 and 5 parameter fit function

To calculate p-value of a fit:

- Take the fit function and apply poisson fluctuations. (Pseudo-experiment)
- 2. Re-fit to the pseudo-data using the same fit function.
- Compare quality of fit to pseudo-experiment to that of the original fit.
 - For a measure quality of fit I use negative log likelihood
- 4. Repeat 1000 times and count fraction of pseudo-experiments that have a worse quality of fit than the original fit.

- By applying poisson fluctuations we can create 'data-like' distribution
- These are fitted using the 3, 4 and 5 parameter fit function

15 **Many More Data-Like**

- Different sets of poisson fluctuations means a different 'data-like' spectrum
- Each 'data-like' dist. can be fitted to, giving a different p-value for each fit variation.
- 100 different data-like distributions have been studied

Mean p-values

	3-Para. Fit	4-Para. Fit	5-Para. Fit
Nominal	0.325 +/-	0.280 +/-	0.283 +/-
	0.024	0.023	0.022
b-jet	0.308 +/-	0.267 +/-	0.276 +/-
Doubled	0.024	0.022	0.022

UCL

- Dijet mass spectra fitted to using fit function
- No excesses more significant than 2σ
- Limits set on Z' and b* models

Fit Robust to Changes in Flavour Fractions

- Fitted to 'data-like' distributions.
- We see no drop in performance (p-value) in the case where b-jet content is doubled.
- Evidence that fit is robust to flavour fraction.
- Systematic from fit parameters and fit function choice

are enough.

Backup: b-Tagged Dijet Analysis

- Aiming for a paper for Moriond
- Documentation in Place
 - SVN Area
- Ed Board Assembled
 - A. Glazov (Chair), F. Parodi, L. Tompkins
 - First Ed Board Meet 11th November
 - Agenda can be found here
- Exotic Plenary Talk <u>here</u>

Data Used

25ns data with luminosity of 3.2 fb-1 (Periods D-J)

19 Data and Event/Jet Selection

- Exclude runs with IBL Off Due to huge drop in b-tagging performance.
- GRL: data15_13TeV.periodAllYear_DetStatus-v70-pro19-04_ DQDefects-00-01-02 PHYS StandardGRL All Good 25ns.xml

Trigger

HLT j360, lowest unprescaled single jet trigger

Event Selection

- Reject events with problematic calo. reconstruction (LAr, Tile and Core Errors)
- At least two jets.
- **Leading-jet** $p_T > 440$ **GeV**, Subleading jet $p_T > 50$ GeV
- m_{ii} > 1100 GeV, such that we are on the trigger plateau.
- $|y^*| < 0.6$, where $y^*=0.5^*(y_1 y_2)$
 - Central region more sensitive to BSM physics.

Jet Selection

- Standard jet calibration (with JES correction applied)
- 2015 loose jet quality cuts applied.

20 **Background Modelling**

b-tagged di-jet

Fit to background using smoothly falling function:

$$f(x) = p_1(1-x)^{p_2}(x)^{p_3+p_4\ln x + p_5\ln x^2}$$
 where, $x = m_{jj}/\sqrt{s}$

- This comes in 3, 4 and 5 parameter functions.
 - 3 and 4 parameter set $p_5 = 0$ and then $p_4 = 0$.
- Use Wilks' statistic to choose fit function
 - Default option is 3 parameter fit function.
 - Use Wilks' to test if we need to change function
 - MC tests show we expect to be able to use 3 parameter fit up to 10 fb⁻¹

Performing cross-checks confirming that we are robust to changes in flavour fraction

Luminosity - 9% uncertainty

21 List of Systematics

- Background
 - Fit function and fit parameters
- Signal
 - JES Uncertainty
 - Branches available in analysis nTuple
 - < 4%
 - JER Uncertainty
 - Assume to be negligible
 - BJES Uncertainty
 - Studies performed
 - B-tagging scale factor uncertainty
- Studies to be carried out
 - Then will be added to limit setting procedure.

- - Calculate using ratio of tracks within jet cone to reconstructed calo jet.
 - Use a double ratio between b-tagged jets and inclusive jets
 - Ongoing study
 - Further work required
 - Regularly presented in JES/JER Meetings

23 **Signal Models**

- Two benchmark models We can set limits here.
 - **Z'** => **bb** 1.25, 2, 3 and 4 TeV
 - **b*** => **b+X** 1.25, 2, 3, 4 and 5 TeV
 - Templates taken from MC samples

q* - 2.5, 3, 3.5 and 4.5 TeV

