SEMICONDUCTOR 5

TELINK SEMICONDUCTOR

Datasheet for Telink BLE Multi-Standard Wireless SoC TLSR8273

DS-TLSR8273-E1

Version 0.1.0

2019-12-26

Key Words:

BLE; BLE Mesh; 2.4GHz; Features; Typical Applications; Ordering Info;

Brief:

This datasheet is dedicated for Telink BLE multi-standard SoC TLSR8273 (VID: 0x00). In this datasheet, key features, working mode, main modules, electrical specification and application of TLSR8273 are introduced.

Published by

Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor

All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without further notice to this document or any products herein. This document may contain technical inaccuracies or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein.

Copyright © 2019 Telink Semiconductor (Shanghai) Ltd, Co.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com telinkcnsupport@telink-semi.com

Revision History

Version 0.1.0 (2019-04)

This is the Initial release.

Contents

Re	visior	n History	[,]	2
1.	Ove	erview		6
	1.1	Blo	ock Diagram	6
	1.2	Ke	ey Features	8
		1.2.1	General Features	8
		1.2.2	RF Features	9
		1.2.3	Features of Power Management Module	9
		1.2.4	USB Features	10
		1.2.5	Flash Features	10
		1.2.6	BLE Features	10
		1.2.7	BLE Mesh Features	10
		1.2.8	Concurrent Mode Feature	11
	1.3	Ту	pical Applications	11
	1.4	Or	dering Information	11
	1.5	Pa	ackage	12
	1.6	Pir	n Layout	13
2.	Ref	erence [Design	21
	2.1	Sc	hematic of TLSR8273F512ET48	21
	2.2	ВС	DM(Bill of Material)	21

Contents of Figures

Figure 1-1 Block Diagram of the System	7
Figure 1-3 Package of TLSR8273F512ET48	12
Figure 1-4 Pin Assignment for TLSR8273F512ET48	14
Figure 2-1 Schematic	21

Contents of Tables

Table 1-1 Ordering Information of the TLSR8273	.11
Table 1-2 Mechanical Dimension of TLSR8273F512ET48	.13
Table 1-3 Pin Function of TLSR8273F512ET48	.14
Table 1-4 GPIO Pin Mux	.16
Table 1-5 PWM Signal Description	.17
Table 1-6 I2C Signal Description	.17
Table 1-7 I2S Signal Description	.17
Table 1-8 UART Signal Description	.18
Table 1-9 Audio Output Signal Description	.18
Table 1-10 SPI Signal Description	.18
Table 1-11 7816 Signal Description	.18
Table 1-12 DMIC Signal Description	.18
Table 1-13 SWIRE Signal Description	.18
Table 1-14 AOA/AOD Signal Description	.19
Table 1-15 External Power Amplifier, Low Noise Amplifier Signal	.19
Table 1-16 USB Signal Description	.19
Table 1-17 DODEC Signal Description	.19
Table 1-18 Audio_in Signal Description	.19
Table 1-19 Low Current Comparator Signal Description	.19
Table 1-20 SAR ADC Signal Description	.20
Table 1-21 Strong Pull Up Signal Description	.20
Table 1-22 Crystal Signal Description	.20
Table 2-1 BOM Table	.21

1. Overview

The TLSR8273 is Telink-developed Bluetooth LE wireless SoC solution with internal Flash and audio support, which combines the features and functions needed for all 2.4GHz IoT standards into a single SoC. It's completely RoHS-compliant and 100% lead (Pb)-free.

The TLSR8273 combines the radio frequency (RF), digital processing, protocols stack software and profiles for multiple standards into a single SoC. The chip supports standards and industrial alliance specifications including Bluetooth Low Energy (up to Bluetooth 5.1), BLE Mesh, ANT and 2.4GHz proprietary standard. The TLSR8273's embedded FLASH enables dynamic stack and profile configuration, and the final end product functionality is configurable via software, providing ultimate flexibility. The TLSR8273 also has hardware OTA upgrades support and multiple boot switching, allowing convenient product feature roll outs and upgrades.

The TLSR8273 supports concurrent multi-standards. For some use cases, the TLSR8273 can "concurrently" run two standards, for example, stacks such as BLE and 2.4G can run concurrently with one application state but dual radio communication channels for interacting with different devices. The end product working in this mode can maintain active Bluetooth Smart connections to smart phones or other BLE devices while control and communicate with other 2.4GHz devices at the same time. In this case, it's compatible with Bluetooth standard, supports BLE specification up to Bluetooth 5.1, allows easy connectivity with Bluetooth Smart Ready mobile phones, tablets, laptops, which supports BLE slave and master mode operation, including broadcast, encryption, connection updates, and channel map updates. At the same time, it also supports 2.4G standard, and is perfect for creating interoperable solution for use within the home combined with leading 2.4G software stack. This feature enables products to bridge the smartphone and home automation world with a single chip and no requirement for an external hub.

The TLSR8273 integrates hardware acceleration to support the complicated security operations required by Bluetooth, up to and including 5.0 standard, without the requirement for an external DSP, thereby significantly reducing the product eBOM.

The TLSR8273 supports single-channel analog microphone or dual-channel digital microphone, and stereo audio output with enhanced voice performance for voice search and other such applications. The TLSR8273 also includes a full range of on-chip peripherals for interfacing with external components such as LEDs, sensors, touch controllers, keyboards, and motors. This makes it an ideal single-chip solution for IoT (Internet of Things) and HID (Human Interface Devices) application such as wearable devices, smart lighting, smart home devices, advanced remote controls, and wireless toys.

The TLSR8273 series have passed ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan) certification.

1.1 Block Diagram

The TLSR8273 is designed to offer high integration, ultra-low power application capabilities. The system's block diagram is as shown in figure below.

DS-TLSR8273-E1 6 Ver.0.1.0

Figure 1-1 Block Diagram of the System

Note:

- Modules marked with different colors belong to different power domains. Power state of each power domain can be controlled independent of other power domains, for example, the audio module (including I2S, DMIC, AMIC) can be independently powered on or powered down irrespective of other modules such as power management module, clock, and etc.
- The BLE/802.15.4/2.4GHz Radio, USB and Audio (I2S, DMIC, AMIC) are powered down by default.
- The power management module and clock should be always powered on, even in deep sleep.
- · In deep sleep, except for the power management and clock, all other modules should be powered down.

The TLSR8273 integrates a power-balanced 32-bit MCU, BLE/2.4GHz Radio, 64kB (16k+16k+32k) SRAM, 512kB internal Flash, single-channel analog microphone input, dual-channel digital microphone input, stereo audio output, 6-channel PWM (1-channel IR/IR FIFO/IR DMA FIFO), one quadrature decoder (QDEC), abundant and flexible GPIO interfaces, and nearly all the peripherals needed for IoT (Internet of Things) and HID (Human Interface Devices) application development (e.g. Bluetooth Low Energy). The TLSR8273 also includes multi-stage power management design allowing ultra-low power operation and making it the ideal candidate for wearable and power-constraint applications.

With the high integration level of TLSR8273, few external components are needed to satisfy customers' ultra-low cost requirements.

DS-TLSR8273-E1 7 Ver.0.1.0

1.2 Key Features

1.2.1 General Features

General features are as follows:

- 1. 4-byte Chip UID (Unique ID).
- 2. Embedded 32-bit proprietary microcontroller.
 - Better power-balanced performance than ARM M0
 - ♦ Instruction cache controller
 - Maximum running speed up to 48MHz
- Program memory: internal 512kB Flash.
- 4. Data memory: 64kB on-chip SRAM
 - ♦ Up to 32kB SRAM with retention in deep sleep
 - ♦ One 32kB SRAM without retention in deep sleep.
- 5. RTC and other timers:
 - Clock source of 24MHz and 32kHz/24MHz embedded RC oscillator
 - ♦ Three general 32-bit timers with four selectable modes in active mode
 - ♦ Watchdog timer
 - A low-frequency 32kHz timer available in low power mode
- 6. A rich set of I/Os:
 - ♦ Up to 14 GPIOs. All digital IOs can be used as GPIOS.
 - → Dual-channel DMIC (Digital Mic).
 - ♦ Single-channel AMIC (Analog Mic).
 - → I2S.
 - ♦ Stereo Audio output.
 - ♦ SPI.
 - ♦ UART with hardware flow control and 7816 protocol support.
 - ♦ USB.
 - ♦ Swire debug Interface.
 - Manchester decoder interface selectable as wakeup source
- Up to 6 channels of differential PWM:
 - ♦ PWM1~PWM5: 5-channel normal PWM output.
 - → PWM0: 1 channel with normal mode as well as additional IR/IR FIFO/IR DMA FIFO mode for IR generation.
- 8. Sensor:
 - → 14bit 10-channel (only GPIO input) SAR ADC
 - ♦ Temperature sensor
- 9. One quadrature decoder.
- 10. Embedded hardware AES and AES-CCM.
- 11. Embedded hardware acceleration for Elliptical curve cryptography (ECC), supports Bluetooth standard up to and including BLE5.0.
- 12. Embedded low power comparator.
- 13. Embedded TRNG (True Random Number Generator).
- 14. Operating temperature range:
 - ♦ ET version: -40°C~+85°C

- ♦ AT version: -40°C~+125°C
- 15. Supports all 2.4GHz IoT standards into a single SoC, including BLE, BLE Mesh, ANT, and 2.4GHz proprietary technologies without the requirement for an external DSP.

1.2.2 RF Features

RF features include:

- 1. BLE/2.4GHz RF transceiver embedded, working in worldwide 2.4GHz ISM band.
- 2. Bluetooth 5.1 Compliant, 1Mbps, 2Mbps, Long Range 125kbps and 500kbps.
- 3. 2.4GHz proprietary 1Mbps/2Mbps/250kbps/500kbps mode with Adaptive Frequency Hopping feature support.
 - ♦ Support flexible GFSK/FSK modulation index configuration
 - ♦ Support 1-N receiver capability
- 4. Automatic Rate Detection mode
 - ♦ 2.4GHz 250kbps standard mode with packet format
 - → High data rate modes up to 2Mbps, e.g. 500kbps, 1Mbps, 2Mbps, with the same packet header
- 5. ANT mode.
- Rx Sensitivity: -96.5dBm@BLE 1Mbps, -100dBm@ IEEE802.15.4 250kbps, -94dBm
 BLE 2Mbps mode, -99dBm @ BLE 500kbps mode, -101dBm @ BLE 125kbps mode.
- 7. Tx output power: up to +10dBm.
- 8. Single-pin antenna interface.
- 9. RSSI monitoring with +/-1dB resolution.
- 10. Auto acknowledgement, retransmission and flow control.
- 11. Support full-function BLE AoA and AoD location features.
- 12. Integrated load inductor.
- 13. PTA interface with 2/3/4-wire support.

1.2.3 Features of Power Management Module

Features of power management module include:

- 1. Embedded LDO and DCDC.
 - ♦ DCDC for 1.8V flash with bypass LDO
 - ♦ DCDC for chip with bypass LDO
 - ♦ USB LDO with power supply of 4.5V~5.5V
- 2. Battery monitor: Supports low battery detection.
- 3. Power supply: 1.8V~3.6V. USB 4.5V ~ 5.5V
- 4. Multiple stage power management to minimize power consumption.
- 5. Low power consumption:
 - ♦ Whole Chip RX mode: 5.3mA with DCDC, 10mA with LDO
 - ♦ Whole Chip TX mode @ 0dBm: 4.8mA with DCDC, 9.5mA with LDO

DS-TLSR8273-E1 9 Ver.0.1.0

- Deep sleep with external wakeup (without SRAM retention): 0.4uA
- ♦ Deep sleep with SRAM retention: 1uA (with 16kB SRAM retention), 1.4uA (with 32kB SRAM retention)

1.2.4 USB Features

USB features include:

- 1. Compatible with USB2.0 Full speed mode.
- 2. Supports 9 endpoints including control endpoint 0 and 8 configurable data endpoints.
- 3. Independent power domain.
- 4. Supports ISP (In-System Programming) via USB port.

1.2.5 Flash Features

The TLSR8273 embeds Flash with features below:

- 1. Total 512kB (4Mbits).
- 2. Flexible architecture: 4kB per Sector, 64kB/32kB per block.
- 3. Up to 256 Bytes per programmable page.
- 4. Write protect all or portions of memory.
- 5. Sector erase (4kB).
- 6. Block erase (32kB/64kB).
- 7. Cycle Endurance: 100,000 program/erases.
- 8. Data Retention: typical 20-year retention.
- 9. Multi firmware encryption methods for anti-cloning protection.

1.2.6 BLE Features

- 1. Fully compliant with Bluetooth 5.1
- 2. Bluetooth SIG Mesh support
- 3. Telink proprietary Mesh support
- 4. BLE AoA/AoD location and up to 8-antenna indoor positioning support
- 5. Telink extended profile with audio support for voice command based searches

1.2.7 BLE Mesh Features

BLE Mesh features include:

- 1. Compatible with Bluetooth SIG Mesh specification 1.0, with additional features from Telink enhanced design.
- 2. Support flexible mesh control, e.g. N-to-1 and N-to-M.
- 3. Supports switch control for over 200 nodes without delay.
- 4. Supports real time status update for over 200 nodes.
- 5. Secure and safe control and scalable identification within network.

DS-TLSR8273-E1 10 Ver.0.1.0

- 6. 8/16 groups can be controlled at the same time.
- 128/256 nodes within mesh network.
- 8. Configurable to more or fewer hops (e.g. 4 hops) within mesh network, single hop delay less than 15ms.
- 9. Flexible RF channel usage with both BLE advertising channels and data channels for good anti-interference performance.

1.2.8 Concurrent Mode Feature

In concurrent mode, the chip supports multiple standard working concurrently.

Typical combination is BLE and 2.4G based stacks can run concurrently with one application state but dual radio communication channels for interacting with different devices.

1.3 Typical Applications

The TLSR8273 can be applied to IoT (Internet of Things) and HID (Human Interface Devices) applications, such as BLE smart devices, BLE mesh devices, 2.4GHz, RF4CE remote control /set-top box, and Zigbee systems. Its typical applications include, but are not limited to the following:

- Smartphone and tablet accessories;
- ♦ RF Remote Control;
- Sports and fitness tracking;
- ♦ Wearable devices;
- ♦ Wireless toys;
- ♦ Smart Lighting, Smart Home devices;
- Building Automation;
- ♦ Smart Grid;
- ♦ Intelligent Logistics/Transportation/City;
- ♦ Consumer Electronics;
- ♦ Industrial Control;
- ♦ Health Care.

1.4 Ordering Information

Table 1-1 Ordering Information of the TLSR8273

Product Series	Package Type	Temperature Range	Product Part No.	Packing Method	Minimum Order Quantity
TLSR8273F512	48-pin TQFN 7x7x0.75mm	-40°C~+85°C	TLSR8273F512ET48	TR	3000

DS-TLSR8273-E1 11 Ver.0.1.0

Note:

- 1: MSL (Moisture Sensitivity Level): The 8273 series is applicable to MSL3 (Based on JEDEC Standard J-STD-020).
- \diamond After the packing opened, the product shall be stored at <30 °C/ <60%RH and the product shall be used within 168 hours.
- When the color of the indicator in the packing changed, the product shall be baked before soldering.
- ♦ If baking is required, please refer to IPC/JEDEC J-STD-033 for baking procedure.
- 2: Packing method "TR" means tape and reel. The tape and reel material DO NOT support baking under high temperature.

1.5 Package

Package dimension of TLSR8273F512ET48 is shown below.

Figure 1-2 Package of TLSR8273F512ET48

TOP VIEW

BOTTOM VIEW

SIDE VIEW

Table 1-2 Mechanical Dimension of TLSR8273F512ET48

SYMBOL	MILLIMETER			
STMBOL	MIN	NOM	MAX	
A	0.70	0.75	0.80	
A1	0	0.02	0.05	
b	0. 20	0.25	0.30	
b1		0.18REF		
С	0.203REF			
D	6. 90	7.00	7. 10	
D2	3. 10	3. 20	3. 30	
e	0. 50BSC			
Ne	5. 50BSC			
Nd	5. 50BSC			
Е	6. 90	7. 00	7. 10	
E2	3. 10	3. 20	3. 30	
L	0.35	0.40	0. 45	
h	0.30	0. 35	0.40	

1.6 Pin Layout

Pin assignment for TLSR8273F512ET48 is shown below.

DS-TLSR8273-E1 13 Ver.0.1.0

Figure 1-3 Pin Assignment for TLSR8273F512ET48

Functions of 48 pins for TLSR8273F512ET48 are described in table below:

Table 1-3 Pin Function of TLSR8273F512ET48

No	Pin Name	Туре	Description
1	PD[7]	GPIO	GPIO PD[7], refer to Table 1-4 GPIO Pin Mux for pin mux function.
2	PA[0]	GPIO	GPIO PA[0], refer to Table 1-4 GPIO Pin Mux for pin mux function.
3	PA[1]	GPIO	GPIO PA[1], refer to Table 1-4 GPIO Pin Mux for pin mux function.
4	PA[2]	GPIO	GPIO PA[2], refer to Table 1-4 GPIO Pin Mux for pin mux function.
5	PA[3]	GPIO	GPIO PA[3], refer to Table 1-4 GPIO Pin Mux for pin mux function.
6	PA[4]	GPIO	GPIO PA[4], refer to Table 1-4 GPIO Pin Mux for pin mux function.
7	PA[5]	GPIO	GPIO PA[5], refer to Table 1-4 GPIO Pin Mux for pin mux function.
8	PA[6]	GPIO	GPIO PA[6], refer to Table 1-4 GPIO Pin Mux for pin mux function.
9	PA[7]	GPIO	GPIO PA[7], refer to Table 1-4 GPIO Pin Mux for pin mux function.
10	PB[0]	GPIO	GPIO PB[0], refer to Table 1-4 GPIO Pin Mux for pin mux function.
11	PB[1]	GPIO	GPIO PB[1], refer to Table 1-4 GPIO Pin Mux for pin mux function.
12	PB[2]	GPIO	GPIO PB[2], refer to Table 1-4 GPIO Pin Mux for pin mux function.

DS-TLSR8273-E1 14 Ver.0.1.0

No	Pin Name	Туре	Description	
13	PB[3]	GPIO	GPIO PB[3], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
14	DVSS	GND	Digital LDO ground	
15	VDD1V	PWR	Internal LDO generated power supply input for digital core	
16	VDD_IO	PWR	External 3.3V power supply input for IO	
17	VDCDC_S W	Analo g	Connected with VDCDC via external inductor	
18	VDCDC	Analo g	Connected with VDCDC_SW via external inductor	
19	VDD1V2	PWR	Internal DCDC generated power supply. Connect to GND via external capacitor. Route this 1.2V voltage power supply to AVDD1V2.	
20	AVDD1V2	PWR	Power supply input for internal RF Modules. Route from VDD1V2. Connect to GND via external capacitor.	
21	VDD_F	PWR	Internally generated power supply to flash. Connect to GND via external capacitor.	
22	PB[4]	GPIO	GPIO PB[4], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
23	PB[5]	GPIO	GPIO PB[5], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
24	PB[6]	GPIO	GPIO PB[6], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
25	PB[7]	GPIO	GPIO PB[7], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
26	VBUS	PWR	USB 5V supply	
27	VDD3	PWR	Connect to an external 3.3V power supply	
28	PC[0]	GPIO	GPIO PC[0], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
29	PC[1]	GPIO	GPIO PC[1], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
30	PC[2]	GPIO	GPIO PC[2], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
31	PC[3]	GPIO	GPIO PC[3], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
32	VMID	Analo g	Audio pin connecting to external decap	
33	XC2	Analo g	Crystal oscillator pin	
34	XC1	Analo g	Crystal oscillator pin	
35	PC[4]	GPIO	GPIO PC[4], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
36	PC[5]	GPIO	GPIO PC[5], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
37	PC[6]	GPIO	GPIO PC[6], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
38	PC[7]	GPIO	GPIO PC[7], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
39	RESETB	Reset	Power on reset, active low	
40	ANT	Analo g	Pin to connect to the Antenna through the matching network	
41	AVDD1V2	PWR	Supply for the radio IP	
42	PD[0]	GPIO	GPIO PD[0], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
43	PD[1]	GPIO	GPIO PD[1], refer to Table 1-4 GPIO Pin Mux for pin mux function.	
44	PD[2]	GPIO	GPIO PD[2], refer to Table 1-4 GPIO Pin Mux for pin mux function.	

No	Pin Name	Туре	Description
45	PD[3]	GPIO	GPIO PD[3], refer to Table 1-4 GPIO Pin Mux for pin mux function.
46	PD[4]	GPIO	GPIO PD[4], refer to Table 1-4 GPIO Pin Mux for pin mux function.
47	PD[5]	GPIO	GPIO PD[5], refer to Table 1-4 GPIO Pin Mux for pin mux function.
48	PD[6]	GPIO	GPIO PD[6], refer to Table 1-4 GPIO Pin Mux for pin mux function.

Table 1-4 GPIO Pin Mux

Pad	Default	Func1	Func2	Func3	Func4
PA[0]	GPIO	UART_RX	PWM0_N	DMIC_DI	PS_PE<0>/MDEC
PA[1]	GPIO	I2S_CLK	7816_CLK	DMIC_CLK	-
PA[2]	GPIO	PWM0	UART_TX	DO	-
PA[3]	GPIO	PWM1	UART_CTS	DI/SDA	-
PA[4]	GPIO	PWM2	UART_RTS	CK/SCL	-
PA[5]	GPIO	/	/	DM	-
PA[6]	GPIO	1	/	DP(SWS)	-
PA[7]	SWS	/	UART_RTS	SWS	-
PB[0]	GPIO	ATSEL1	UART_RX	PWM3	lc_comp_ain<0>/sar_aio<0>
PB[1]	GPIO	ATSEL2	UART_TX	PWM4	lc_comp_ain<1>/sar_aio<1>
PB[2]	GPIO	RX_CYC2L NA	UART_CTS	PWM5	lc_comp_ain<2>/sar_aio<2>
PB[3]	GPIO	TX_CYC2PA	UART_RTS	PWM0_N	lc_comp_ain<3>/sar_aio<3>
PB[4]	GPIO	-	PWM4	SDM_P0	lc_comp_ain<4>/sar_aio<4>
PB[5]	GPIO	-	PWM5	SDM_N0	lc_comp_ain<5>/sar_aio<5>
PB[6]	SPI_DI	UART_RTS	SPI_DI/SD A	SDM_P1	lc_comp_ain<6>/sar_aio<6>
PB[7]	SPI_D O	UART_RX	SPI_DO	SDM_N1	lc_comp_ain<7>/sar_aio<7> /MDEC
PC[0]	GPIO	UART_RTS	PWM4_N	I2C_SDA	-
PC[1]	GPIO	PWM0	PWM1_N	I2C_SCK	-
PC[2]	GPIO	I2C_SDA	7816_TRX/ UART_TX	PWM0	xtl_32k_out/audio_in
PC[3]	GPIO	I2C_SCK	UART_RX	PWM1	xtl_32k_in
PC[4]	GPIO	PWM0	UART_CTS	PWM2	sar_aio<8>/MDEC

Pad	Default	Func1	Func2	Func3	Func4
PC[5]	GPIO	ATSEL_0	UART_RX	PWM3_N	sar_aio<9>
PC[6]	GPIO	PWM4_N	ATSEL1	RX_CYC2LNA	-
PC[7]	GPIO	PWM5_N	ATSEL2	TX_CYC2PA	-
		7816_TRX/U			PS_PE<1>/MDEC
PD[0]	GPIO	ART_TX	-	RX_CYC2LNA	P3_PE<1>/IVIDEC
PD[1]	GPIO	UART_CTS	-	TX_CYC2PA	PS_PE<2>
	SPI_C				-
PD[2]	N	PWM3	I2S_LR	SPI_CN	
		7816_TRX/U			-
PD[3]	GPIO	ART_TX	I2S_SDI	PWM1_N	
PD[4]	GPIO	PWM2_N	I2S_SDO	SWM	-
PD[5]	GPIO	PWM0_N	-	PWM0	-
PD[6]	GPIO	ATSEL0	UART_RX	CN	-
	SPI_C	7816_TRX/U			DC DE 22.
PD[7]	K	ART_TX	I2S_BCK	SPI_CK/SCL	PS_PE<3>

Table 1-5 PWM Signal Description

Signal	Туре	Description
PWM0	DO	PWM channel 0 output
PWM0_N	DO	PWM channel 0 inversion output
PWM1	DO	PWM channel 1 output
PWM1_N	DO	PWM channel 1 inversion output
PWM2	DO	PWM channel 2 output
PWM2_N	DO	PWM channel 2 inversion output
PWM3	DO	PWM channel 3 output
PWM3_N	DO	PWM channel 3 inversion output
PWM4	DO	PWM channel 4 output
PWM4_N	DO	PWM channel 4 inversion output
PWM5	DO	PWM channel 5 output
PWM5_N	DO	PWM channel 5 inversion output

Table 1-6 I2C Signal Description

Signal	Туре	Description
I2C_SCK	DIO	I2C SCL
I2C_SDA	DIO	I2C SDA

Table 1-7 I2S Signal Description

Signal	Туре	Description
I2S_BCK	DO	I2S bit CLK
I2S_CLK	DO	I2S base CLK

Signal	Туре	Description
I2S_LR	DO	I2S left and right channel SEL
I2S_SDI	DI	I2S data IN
I2S_SDO	DO	I2S data OUT

Table 1-8 UART Signal Description

Signal	Туре	Description
UART_CTS	DI	UART Clear to Send signal
UART_RTS	DO	UART Ready to Send signal
UART_RX	DI	UART RX
UART_TX	DO	UART TX

Table 1-9 Audio Output Signal Description

Signal	Туре	Description
SDM_N0	DO	SDM0 diff output
SDM_N1	DO	SDM0 diff output
SDM_P0	DO	SDM1 diff output
SDM_P1	DO	SDM1 diff output

Table 1-10 SPI Signal Description

Signal	Туре	Description
SPI_CK	DIO	SPICLK
SPI_CN	DIO	SPI CN
SPI_DI	DIO	SPI DI
SPI_DO	DIO	SPI DO

Table 1-11 7816 Signal Description

Signal	Туре	Description
7816_CLK	DO	7816 CLK
7816_TRX	DIO	7816 TRX

Table 1-12 DMIC Signal Description

Signal	Туре	Description
DMIC_CLK	DO	DMIC CLK
DMIC_DI	DI	DMIC DATA IN

Table 1-13 SWIRE Signal Description

Table 1 10 OWINE Orginal Description			
Signal	Туре	Description	
SWM	DIO	swire master	

DS-TLSR8273-E1 18 Ver.0.1.0

	SWS	DIO	swire slave	
--	-----	-----	-------------	--

Table 1-14 AOA/AOD Signal Description

Signal	Туре	Description
ATSEL0	DO	Antena select signal 0
ATSEL1	DO	Antena select signal 1
ATSEL2	DO	Antena select signal 2

Table 1-15 External Power Amplifier, Low Noise Amplifier Signal

Signal	Туре	Description
RX_CYC2LNA	DO	External low noise amplifier
TX_CYC2PA	DO	External power amplifier

Table 1-16 USB Signal Description

Signal	Туре	Description
DP	DIO	USB DP
DM	DIO	USB DM

Table 1-17 DODEC Signal Description

Table 1 17 Debie eighar becompation			
Signal	Туре	Description	
MDEC	DIt	Manchester Decodec	

Table 1-18 Audio_in Signal Description

Signal	Туре	Description
audio_in	AI	audio input for microphone or line in

Table 1-19 Low Current Comparator Signal Description

Signal	Туре	Description		
lc_comp_ain<0>	Al	low current comparator channel 0		
lc_comp_ain<1>	Al	low current comparator channel 1		
lc_comp_ain<2>	Al	low current comparator channel 2		
lc_comp_ain<3> AI		low current comparator channel 3		
lc_comp_ain<4> AI		low current comparator channel 4		
lc_comp_ain<5>	Al	low current comparator channel 5		
lc_comp_ain<6> Al		low current comparator channel 6		
lc_comp_ain<7> AI low		low current comparator channel 7		

Table 1-20 SAR ADC Signal Description

Signal	Туре	Description		
sar_aio<0>	Al	SAR ADC input channel 0		
sar_aio<1>	Al	SAR ADC input channel 1		
sar_aio<2>	Al	SAR ADC input channel 2		
sar_aio<3>	Al	SAR ADC input channel 3		
sar_aio<4>	Al	SAR ADC input channel 4		
sar_aio<5>	Al	SAR ADC input channel 5		
sar_aio<6>	Al	SAR ADC input channel 6		
sar_aio<7>	Al	SAR ADC input channel 7		
sar_aio<8>	Al	SAR ADC input channel 8		
sar_aio<9> AI SAR ADC input channel 9		SAR ADC input channel 9		

Table 1-21 Strong Pull Up Signal Description

Signal	Туре	Description	
PS_PE<0>	AO	strong pull up 0 enable	
PS_PE<1>	AO	strong pull up 1 enable	
PS_PE<2>	AO	strong pull up 2 enable	
PS_PE<3>	AO	strong pull up 3 enable	

Table 1-22 Crystal Signal Description

Signal	Туре	Description
xtl_32k_out	AO	32k xtl output pin
xtl_32k_in	Al	32k xtl input pin

Note:

DI: Digital input

· DO: Digital output

· DIO: Digital input/output

· Al: Analog input

· AO: Analog output

· AIO: Analog input/output

2. Reference Design

2.1 Schematic of TLSR8273F512ET48

Crystal

AMM-12F-43cpm

The control of the control

Figure 2-1 Schematic

2.2 BOM(Bill of Material)

Table 2-1 BOM Table

Quantity	Reference	Value	Description	PCB Footprint
7	C1,C2,C3,C7,C8 ,C10,C11	N.C.	Not mounted	0402
2	C4,C19	0.1uF	Capacitance,X5R,±10%	0402
1	C5	2.2uF	Capacitance,X5R,±10%	0402
1	C6	220pF	Capacitance,X7R,±10%	0402
8	C9,C12,C13,C1 4,C16,C18,C20, C21	1uF	Capacitance,X5R,±10%	0402
2	C15,C17	10uF	Capacitance,X5R,±10%	0603
1	J1	LEFT	Pin headers	hdr254f- 1x8x850
1	J2	RIGHT	Pin headers	hdr254f- 1x8x850

DS-TLSR8273-E1 21 Ver.0.1.0

Quantity	Reference	Value	Description	PCB	
				Footprint	
1	J3	DOWN	Pin headers	hdr254f-	
1				1x8x850	
1	L1	0R	Resistance,5%	0402	
1	L2	4.7uH	High frequency chip	2.5x2.0x1.	
'			inductor,SMD,20%	2mm	
1	R1	N.C.	Not mounted	0402	
1	U1		TLSR8273F5	Multi Ctondord Windoo on this	OFN 40
1		12ET48	Multi-Standard Wireless on chip	QFN-48	
1	Y1	24MHz	XTAL SMD 3225,24	XTAL_322	
'			MHz,CI=12pF,total tol.±20ppm	5	
	Y2	32.768KHz	XTAL RADIAL	VTAL 2ve	
1			2x6mm,32.768KHz,Cl=9pF,total	XTAL_2x6	
			tol.±20ppm	mm	