Indicare l'esatto corrispondente in binario di 728_{10} Domanda 30 $\ \, \boxed{\ \ \, 000001101110_{2}}$ Nessuna delle altre risposte 001011011000_2 000001101101_2 000111011000_2 728 | 0

Risposta: $728_{10} = 001011011000_2 \rightarrow \text{Opzione} \# 3.$

Domanda 30	Come si rappresenta in d	ecimale il num	ero binario	00100110 ₂ ?
\square 76 ₁₀				
Nessuna de	elle altre risposte			
38_{10}				
100_{10}				
25_{10}				
	$00100110_2 = 1 \times 2^1$	$+1\times2^2+1\times2$	2^5	
	= 2 + 4 +	- 32		
	= 38			

Risposta: $00100110_2 = 38_{10} \rightarrow \text{Opzione} \# 3.$

Indicare l'esatto corrispondente in binario di $3429_{10}\,$ Domanda 30 Nessuna delle altre risposte 110101100101_2 $\boxed{101001101011_2}$ $] 010101101101_2$ | 1

Risposta: $3429_{10} = 110101100101_2 \rightarrow \text{Opzione} \# 3.$

Domanda 30	Come si rappresenta in decimale il numero binario 1011011011002?
Nessuna de	lle altre risposte
2924_{10}	
4044044044	22 4 23 4 25 4 26 4 28 4 29 4 211
1011011011	$00_2 = 1 \times 2^2 + 1 \times 2^3 + 1 \times 2^5 + 1 \times 2^6 + 1 \times 2^8 + 1 \times 2^9 + 1 \times 2^{11}$
	= 4 + 8 + 32 + 64 + 256 + 512 + 2048
	= 2924

Risposta: $101101101100_2 = 2924_{10} \rightarrow \text{Opzione} \# 3.$

Domanda 1 Usando la rappresentazione binaria, svolgere la somma 623 + 412

```
Nessuna delle altre risposte
   623_{10} + 412_{10} = 101100000100_2
  ] 623_{10} + 412_{10} = 010000001011_2
623
    1
                  412
                     0
311
    1
                  206
                      0
155
    1
                  103
                      1
77
    1
                  51
                      1
                  25
38
    0
                      1
19
                  12
    1
9
    1
                   6
                      0
4
                   3
                      1
    0
2
    0
                      1
    1
        1
             0
                   1
     1
                      1
                0
                  1
```

Risposta: $(623 + 412)_{10} = 010000001011_2 \rightarrow \text{Opzione} \# 5.$

							1		1	1	1		
1	0	0	0	0	1	0	0	1	0	1	1	1	0
	1	1	1	1	0	0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1	0	1	1	1	0	0

Risposta: $(8494 + 7726)_{10} = 00111111101011100_2 \rightarrow \text{Opzione } \# 5.$

1000	1000	an o		1 1000	1100	200	sand 0100		la 0101	rap 0100	-	senta)1	zion	ıe	bina	ria,	S	volge	ere	la	sottrazione
])100)110			-														
[011	.000	a del 0100	0010	0101	100_{2}	ste													
l	0	011	.0100	0100	0010	0000	1002					0					0				
	0 1	0	1	1 1	0	0	1	1	1	0	1	1	0	0	0	1	1	0	0	1	
_	0	1	0	0	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	
	0	1	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	

Risposta: $01101001000010000100_2 \rightarrow \text{Opzione} \# 5.$

Domanda 21 Svolgere in binario la moltiplicazione: 21×11 Nessuna delle altre risposte 11100111_2 $\boxed{10010111_2}$ $\boxed{10011010_2}$ 11110011₂ 21 | 1 11 | 1 10 0 5 1 2 0 2 0 1 1 1 $0 \quad 1 \quad 0 \quad 1$ 0 1

Risposta: $(21 \times 11)_{10} = 11100111_2 \rightarrow \text{Opzione } \# 2.$

0 0

1 0 1

0 0

0

0 1 1 1

```
Domanda 21
                Svolgere in binario la moltiplicazione: 85\times19
 Nessuna delle altre risposte
   011001001111_2
   \boxed{100001001101_2}
   ] 011100101101_{2}
   010111001111_2
 85
                      19 | 1
 42
                          1
 21
                      4
     1
                          0
 10
    0
                      2
                          0
 5
                          1
 2
     0
     1
                        1
                           0
                              1
              0
                 1
                     0
                     0
                  1
                        0
                               1
           1
              0
                  1
                     0
                        1
                            0
                               1
           0
                  0
                     1
                        0
              1
        0
    0
             0
                  0
    0
       0
              0
           0
                  0
                     0
                 0 1 1 1 1
```

Risposta: $(85 \times 19)_{10} = 011001001111_2 \rightarrow \text{Opzione} \# 2.$

Domanda 5	Come è rappresentato -97 in complemento a 2 su 8 bit?
$ 10011111_2 $	
01100001_2	
Nessuna d	elle altre risposte
11100001_2	
97 1	
48 0	
$24 \mid 0$	
$12 \mid 0$	
6 0	
3 1	
1	
$97_{10} = 01100001_2$	
1 0 0 1	1 1 1 0

1 0 0 1 1 1 1 1

Risposta: $CA2(-97) = 100111111_2 \rightarrow \text{Opzione} \# 2.$

Domanda 5 Svolgere in complemento a 2 su 12 bit l'operazione 1957 - 2016

	11110000101_2								
1111111000101_2									
1111010111100_2									
Nessuna delle altre risposte									
0000001110112									
	2								
1957	1	2016	0						
978	0	1008	0						
489	1	504	0						
244	0	252	0						
122	0	126	0						
61	1	63	1						
30	0	31	1						
15	1	15	1						
7	1	7	1						
3	1	3	1						
	1		1						

 $2016_{10} = 0111111100000_2$

					1	1	1	1	1	1	
0	1	1	1	1	0	1	0	0	1	0	1
1	0	0	0	0	0	0	1	1	1	1	1
											1
1	1	1	1	1	1	0	0	0	1	0	1

Risposta: $(1957 - 2016)_{10} = 111111000101_2 \rightarrow \text{Opzione} \# 2.$

```
Svolgere in complemento a 2 su 8 bit l'operazione -34-53\,
Domanda 5
 11101101_2
 10101001_2
  00010011_2
   Nessuna delle altre risposte
   01010111_2
34 \mid 0
                      53 | 1
 17
                      26
                          0
                      13
                         1
 8
     0
 4
     0
                      6
                          0
 2
     0
                      3
                         1
    1
                         1
```

$$34_{10} = 00100010_2$$

 $53_{10} = 00110101_2$

Risposta: $(-34 - 53)_{10} = 10101001_2 \rightarrow \text{Opzione } \# 2.$

Domanda 58 Convertire in decimale il binario a virgola fissa 1001110.0011₂

 $\begin{array}{|c|c|c|c|c|}\hline & 1001110.0011_2 = 156.1875_{10}\\\hline & 1001110.0011_2 = 78.375_{10}\\\hline & 1001110.0011_2 = 156.375_{10}\\\hline & 1001110.0011_2 = 78.1875_{10}\\\hline & Nessuna delle altre risposte\\\hline \end{array}$

$$1001110.0011_2 = 1 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 1 \times 2^6 + 1 \times 2^{-3} + 1 \times 2^{-4}$$
$$= 2 + 4 + 8 + 64 + 0.125 + 0.0625$$
$$= 78.1875$$

Risposta: $1001110.0011_2 = 78.1875_{10} \rightarrow \text{Opzione } \# 4.$

```
Domanda 58
                Convertire in binario a virgola fissa il decimale 362.828125_{10}
  \  \  \, \boxed{ \  \  \, 362.828125_{10} = 010101101.101011_{2} } 
 \boxed{362.828125_{10} = 101101010.110101_2}
   Nessuna delle altre risposte
 362
     0
                      0.828125
                                1
 181
                      0.65625
                                1
      1
 90
      0
                      0.3125
                                0
 45
     1
                      0.625
                                1
 22
                                0
      0
                      0.25
                                1
 11
     1
                      0.5
  5
      1
  2
      0
      1
```

Risposta: $362.828125_{10} = 101101010.110101_2 \rightarrow \text{Opzione} \# 4.$

```
Domanda 58
             Riportare in binario il risultato della somma 10.5625_{10} + 1100.1011_2
 Nessuna delle altre risposte
 10 \mid 0
                   0.5625
                         1
                   0.125
                          0
 5
    1
 2
    0
                   0.25
                          0
   1
                   0.5
                          1
                     1
   1 0 1 0 . 1 0 0 1

    1
    1
    0
    0
    .
    1
    0
    1
    1

    0
    1
    1
    1
    .
    0
    1
    0
    0
```

Risposta: $10.5625_{10} + 1100.1011_2 = 10111.01_2 \rightarrow \text{Opzione} \# 4.$

Domanda 76 Rappresentare il decimale -1313.3125 secondo lo standard IEEE754.

Nessuna delle altre risposte									
01	100 0100 1010 0100	0010 101	0 0000 0000 0						
11	100 0100 1101 0010	0001 010	1 0000 0000						
1100 0100 1010 0100 0010 1010 0000 0000									
0100 0100 1101 0010 0001 0101 0000 0000									
1313	1	0.3125	0						
656	0	0.625	1						
328	0	0.25	0						
164	0	0.5	1						
82	0								
41	1								
20	0								
10	0								
5	1								
2	0								
	1								

- 1. Rappresentazione binaria: 10100100001.0101
- 2. Scorrere la virgola:

$$\begin{array}{c} 10100100001.0101 \rightarrow 1.01001000010101 \\ \Downarrow \\ p = 10 \end{array}$$

- 3. Bit di segno: Numero negativo \rightarrow 1.
- 4. Esponente:

$$\begin{split} E &= bias + p \\ &= 127_{10} + 10_{10} \\ &= 137_{10} \\ & \Downarrow \\ E &= 10001001_2 \end{split}$$

5. Mantissa: 01001000010101 (ottenuta da (2))

\mathbf{S}	e	\mathbf{m}
1	10001001	01001000010101000000000

Risposta: $-1313.3125_{10} = 1100010010101001000010101000000000_2 \rightarrow \text{Opzione } \# 4.$

 $\begin{tabular}{ll} \bf Domanda~76 & A~quale~numero~decimale~corrisponde~la~cifra~esadecimale~0xE7E80000~codificata~secondo~lo~standard~IEEE754? \end{tabular}$

Nessuna delle altre risposte
Corrisponde al decimale -1.5625000×2^{16}
Corrisponde al decimale -1.5546875×2^{18}
Corrisponde al decimale -1.8125000×2^{80}
Corrisponde al decimale -1.8046875×2^{82}

1. Rappresentazione binaria di 0xE7E80000:

2. Identificazione di segno, esponente e mantissa

- 3. Bit di segno: 1 \rightarrow Numero negativo.
- 4. Esponente:

5. Mantissa:

$$\begin{split} M &= 1.1101_2 \\ &= 1 + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-4} \\ &= 1 + 0.5 + 0.25 + 0.0625 \\ &= 1.8125_{10} \end{split}$$

Risposta: $E7E80000_{16} = -1.8125 \times 2^{80} \rightarrow \text{Opzione } \# 4.$

Domanda 76	A quale delle seguente opzioni corrisponde la cifra decimale 3.5_{10}
Corrispond Corrispond Tutte le op	e al numero $1.11_2 \times 2^1$ e al numero 11.1_2 e al numero $111_2 \times 2^{-1}$ zioni sono corrette e al numero $0.111_2 \times 2^2$
Si procede a verif	icare ogni opzione:
1. Opzione # 1:	$1.11_2 \times 2^1 = (1 + 1 \times 2^{-1} + 1 \times 2^{-2}) \times 2$ $= (1 + 0.5 + 0.25) \times 2$ $= 1.75 \times 2$ $= 3.5_{10}$
2. Opzione # 2:	$11.1_2 = 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1}$ $= 2 + 1 + 0.5$ $= 3.5_{10}$
3. Opzione # 3:	$111_{2} \times 2^{-1} = (1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}) \times 2^{-1}$ $= (4 + 2 + 1) \times 0.5$ $= 7 \times 0.5$ $= 3.5_{10}$
4. Opzione # 5:	$0.111_2 \times 2^2 = (1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}) \times 2^2$ $= (0.5 + 0.25 + 0.125) \times 4$ $= 0.875 \times 4$

Risposta: Tutte le opzioni sono equivalenti \rightarrow Opzione # 4.

 $=3.5_{10}$

Domanda 76 A quale numero decimale corrisponde la seguente cifra binaria codificata secondo lo standard IEEE754?

- 1. Bit di segno: $1 \rightarrow$ Numero negativo.
- 2. Esponente: 10000101

3. Mantissa: 1110110101

$$1.1110110101 \rightarrow^{6} 1111011.0101$$

$$\Downarrow$$

$$1111011.0101_{2} = 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} + 1 \times 2^{6} + 1 \times 2^{-2} + 1 \times 2^{-4}$$

$$= 1 + 2 + 8 + 16 + 32 + 64 + 0.25 + 0.0625$$

$$= 123.3125$$

Domanda 76 Rappresentare il decimale 5462.875 secondo lo standard IEEE754.

□ N	essuna d	elle a	ltre ri	spost	e		
	100 0101	1101	0101	0101	1011	1000	0000
	100 0101	0101	0101	0110	1110	0000	0000
	100 0101	1010	1010	1011	0111	0000	0000
01	100 0101	0110	1010	1011	0111	0000	0000
5462	0			0.875	1		
2731	1			0.75	1		
1365	1			0.5	1		
682	0						
341	1						
170	0						
85	1						
42	0						
21	1						
10	0						
5	1						
2	0						
	1						

- 1. Rappresentazione binaria: 101010101010111.111
- 2. Scorrere la virgola:

$$1010101010110.111 \rightarrow 1.010101010110111$$

$$\downarrow \\
p = 12$$

- 3. Bit di segno: Numero positivo $\rightarrow 0$.
- 4. Esponente:

$$\begin{split} E &= bias + p \\ &= 127 + 12 \\ &= 139_{10} \\ &\Downarrow \\ E &= 10001011_2 \end{split}$$

5. Mantissa: 010101010110111100000000 (ottenuta da (2))

 $\textbf{Risposta:}\ 5462.875_{10} = 010001011010101010110111100000000_2 \rightarrow Opzione\ \#\ 4.$