Examen de Geometría I

Convocatoria Ordinaria - 15 de enero de 2020

- 1. [3 puntos]. Razónese si son verdaderas o falsas las afirmaciones siguientes:
 - a) Dado $p(x) \in \mathbb{R}_4[x]$ distinto del polinomio nulo, existe una base ordenada B de $\mathbb{R}_4[x]$ tal

que las coordenadas de p(x) en B son: $\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}.$

- b) Una aplicación lineal $f: V \to V'$ es inyectiva si y sólo si f^t es inyectiva.
- 2. [4 puntos]. Para cada $\lambda \in \mathbb{R}$, se considera el endomorfismo $f_{\lambda} : \mathbb{R}^3 \to \mathbb{R}^3$ cuya matriz asociada en la base usual es la siguiente:

$$\begin{pmatrix} 1 & 3/2 & \lambda - 1 \\ 0 & -1/2 & -1 \\ 0 & 1 - \lambda^2/2 & 1 \end{pmatrix}.$$

- (i) Hallar $\operatorname{Im}(f_{\lambda})$ y $\operatorname{Ker}(f_{\lambda})$, según los valores del parámetro λ . Decidir si f_{λ} es inyectiva, sobreyectiva o biyectiva.
- (ii) Obtener, según los valores de λ , una base de $\operatorname{Ker}(f_{\lambda}) \cap \operatorname{Im}(f_{\lambda})$ y de $\operatorname{Ker}(f_{\lambda}) + \operatorname{Im}(f_{\lambda})$. ¿Para qué valores $\mathbb{R}^3 = \operatorname{Ker}(f_{\lambda}) \bigoplus \operatorname{Im}(f_{\lambda})$?.
- (iii) Para los valores de λ que sea posible, encontrar bases de \mathbb{R}^3 tales que la matriz asociada a f_{λ} en esas bases sea la siguiente:

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

- 3. [3 puntos]. Calcúlese un endomorfismo f de $M_2(\mathbb{R})$ que verifique las siguientes tres propiedades:
 - $f \circ f = f$,
 - Im $f^t = \operatorname{an}(S_2(\mathbb{R}))$, y
 - Ker $f^t = \operatorname{an}(A_2(\mathbb{R})),$

donde $S_2(\mathbb{R})$ y $A_2(\mathbb{R})$ son los subespacios de matrices simétricas y antisimétricas, respectivamente, del espacio vectorial real $M_2(\mathbb{R})$ de las matrices cuadradas 2×2 .

Duración: 3 horas.