## Specular Term (Blinn-Phong)

V close to mirror direction ⇔ half vector near normal

Measure "near" by dot product of unit vectors



Specular intensity depends on view direction, bright near mirror reflection direction

#### Cosine Power Plots

Increasing p narrows the reflection lobe



#### **Ambient Term**

Shading that does not depend on anything

- Add constant color to account for disregarded illumination and fill in black shadows
- This is approximate / fake!



### Blinn-Phong Reflection Model



$$L = L_a + L_d + L_s$$
  
=  $k_a I_a + k_d (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$ 

# **Shading Frequencies**

What caused the shading difference?



每个面做一次着色



每个顶点做一次着色 每个顶点计算其法线方向,顶点构成的三角形

内部颜色做插值计算



每个像素做一次着色

对每一个四边形或三角形的顶点求出法线,把 法线的方向在三角形内部进行插值,任何一个 像素都有自己的法线方向

Flat Shading 可使用三角形的两条边做叉 积,求出一个面的法线方向

如何求出一个顶点的法线? 对顶点周围的三角面的法线做一个加权平均,面积更大的三角形 贡献的更多



#### **Texture Mapping**

#### Visualization of Texture Coordinates

Each triangle vertex is assigned a texture coordinate (u,v)

