

Estrutura da Matéria 2018-2 – Prof. Célio Aula 7 – Orbitais atômicos e Tabela periódica (cont.)

Tabela com os números quânticos para elétrons nos átomos

TABLE 1.3 Quantum Numbers for Electrons in Atoms

Name	Symbol	Values	Specifies	Indicates
principal	n	1, 2,	shell	size
orbital angular momentum*	l	$0, 1, \ldots, n-1$	subshell: $l = 0, 1, 2, 3, 4,$ $s, p, d, f, g,$	shape
magnetic	m_l	$l, l-1, \ldots, -l$	orbitals of subshell	orientation
spin magnetic	$m_{\mathcal{S}}$	$+\frac{1}{2}, -\frac{1}{2}$	spin state	spin direction

^{*}Also called the azimuthal quantum number.

Função de Distribuição Radial

Aparência em 3 dimensões dos orbitais s

Densidades de probabilidade para n=2

Átomos com muitos elétrons: Preenchimento dos orbitais atômicos

• Dados N elétrons, como eles se distribuem no átomo?

Princípio da construção

- Adicione elétrons, um após o outro, aos orbitais, na ordem da figura seguinte, porém não coloque mais de dois elétrons por orbital. → Princípio da exclusão de Pauli
- Se mais de um orbital em uma camada estiver disponível, adicione elétrons com spins paralelos aos diferentes orbitais daquela subcamada até completá-la, antes de emparelhar dois elétrons em um dos orbitais. → Regra de Hund

2 He $1s^2$

3 Li 1s²2s¹, [He]2s¹

4 Be $1s^22s^2$, [He] $2s^2$

5 B $1s^22s^22p^1$, [He] $2s^22p^1$

 $C 1s^2 2s^2 2p^2$, [He] $2s^2 2p^2$

7 N $1s^22s^22p^3$, [He] $2s^22p^3$

 $0 1s^2 2s^2 2p^4$, [He] $2s^2 2p^4$

9 F $1s^22s^22p^5$, [He] $2s^22p^5$

10 Ne $1s^22s^22p^6$, [He] $2s^22p^6$

Tabela Periódica

Propriedades periódicas Carga Efetiva

Propriedades Periódicas

Propriedades Periódicas

Propriedades Periódicas Energia de ionização

Propriedades Periódicas Afinidade eletrônica

Bibliografia

 Atkins e Jones, Princípios de Química, cap. 1, ed. Bookman (2012).