Введение в искусственный интеллект. Современное компьютерное зрение Семинар 3. Несверточные слои

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

9 марта 2021 г.

План семинара

Сведение к свертке

План семинара

- Сведение к свертке
- О сигмоиде

ullet Предположим, что мы используем пакет размера ${\cal T}=1$ (здесь и далее опустим этот индекс)

- ullet Предположим, что мы используем пакет размера T=1 (здесь и далее опустим этот индекс)
- ullet Y_{ij}^k трехмерный тензор значений для некоторого слоя, где

- ullet Предположим, что мы используем пакет размера T=1 (здесь и далее опустим этот индекс)
- ullet Y_{ij}^k трехмерный тензор значений для некоторого слоя, где
 - $1 \leq i \leq H, 1 \leq j \leq W$ пространственные координаты (ширина и высота),
 - ullet $k=1\ldots K$ номер карты признаков.

- ullet Предположим, что мы используем пакет размера T=1 (здесь и далее опустим этот индекс)
- ullet Y_{ij}^k трехмерный тензор значений для некоторого слоя, где
 - $1 \le i \le H, 1 \le j \le W$ пространственные координаты (ширина и высота),
 - $\bullet \; k = 1 \dots K$ номер карты признаков.
- ullet Выход нормализованного слоя: $Z_{ij}^k = \gamma^k rac{Y_{ij}^k \mu_{avg}^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + eta^k$

4 / 11

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{avg}^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{avg}^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^{k}$$

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{\text{avg}}^{k}}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^{k}$$

ullet Т.о., получаем $Z^k_{ij}=G^kY^k_{ij}+g^k$, где

4 / 11

- $Z_{ij}^k = \gamma^k \frac{Y_{ij}^k \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$
- Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{avg}^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^{k}$$

- ullet Т.о., получаем $Z_{ij}^k = G^k Y_{ij}^k + g^k$, где
 - ullet Мультипликативный член $G^k = rac{\gamma^k}{\sqrt{\sigma_{
 m avg}^{2k} + \epsilon}},$

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{avg}^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{avg}^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^{k}$$

- ullet Т.о., получаем $Z_{ii}^k = G^k Y_{ii}^k + g^k$, где
 - ullet Мультипликативный член $G^k=rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k}+\epsilon}},$ ullet Аддитивный член $g^k=eta^k-rac{\gamma^k\mu_{avg}^k}{\sqrt{\sigma_{ak}^{2k}+\epsilon}}.$

Пакетная нормализация как свертка

Пакетная нормализация как свертка

• Значит, пакетная нормализация — это поканальная (depthwise, *см.* предыдущую лекцию) свертка с ядром размера $1 \times 1!$

Пакетная нормализация как свертка

- Значит, пакетная нормализация это поканальная (depthwise, *см.* предыдущую лекцию) свертка с ядром размера $1 \times 1!$
- А композиция сверток тоже свертка (Указание: предыдущее ДЗ)

• Обычно: сначала свертка, потом пакетная нормализация

6/11

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk},b^k} Y_{ij}^k \xrightarrow{G^k,g^k} Z_{ij}^k$$

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

• Выписываем еще раз формулы для свертки:

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

• Выписываем еще раз формулы для свертки:

$$Y_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} + b^{k}, \quad \forall k = 1 \dots K$$

и для пакетной нормализации:

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

• Выписываем еще раз формулы для свертки:

$$Y_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} + b^{k}, \quad \forall k = 1 \dots K$$

и для пакетной нормализации:

$$Z_{ij}^k = G^k Y_{ij}^k + g^k$$

6 / 11

• Объединяя, получим:

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

• Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

- Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):
 - Ядро $O_{uv}^{mk} = F_{uv}^{mk} \cdot rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}}$,

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

- Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):
 - Ядро $O_{uv}^{mk} = F_{uv}^{mk} \cdot rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}},$
 - ullet Аддитивный член $o^k = b^k + eta^k rac{\gamma^k \mu_{\mathsf{avg}}^k}{\sqrt{\sigma_{\mathsf{avg}}^{2k} + \epsilon}}.$

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

- Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):
 - Ядро $O_{uv}^{mk} = F_{uv}^{mk} \cdot rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}},$
 - ullet Аддитивный член $o^k = b^k + eta^k rac{\gamma^k \mu_{\mathsf{avg}}^k}{\sqrt{\sigma_{\mathsf{avg}}^{2k} + \epsilon}}.$
- ullet Из $X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$ получили $X_{ij}^m \xrightarrow{O_{uv}^{mk}, o^k} Z_{ij}^k.$

• Вопрос: Можно ли maxpooling представить как свертку?

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)

8 / 11

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Bonpoc: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Bonpoc: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):
 - ullet Пусть двухмерный (не обращаем внимание на карты) вход $X_{ij}, 1 \leq i \leq H, 1 \leq j \leq W$,

8 / 11

- Bonpoc: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Bonpoc: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):
 - ullet Пусть двухмерный (не обращаем внимание на карты) вход $X_{ij}, 1 \leq i \leq H, 1 \leq j \leq W$,
 - $GAP2D(X) = \frac{1}{HW} \sum_{i,j=1}^{H,W} X_{ij}$,

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):
 - Пусть двухмерный (не обращаем внимание на карты) вход $X_{ij}, 1 \leq i \leq H, 1 \leq j \leq W$,
 - $GAP2D(X) = \frac{1}{HW} \sum_{i,j=1}^{H,W} X_{ij}$,
 - Тогда свертка, соответствующая GAP2D(X) это свертка с ядром $F_{GAP} = \frac{1}{HW}\mathbbm{1}_{i,j=1}^{H,W}$ без аддитивного члена, с размером, как у входа $H \times W$, применяемая без добивки (паддинга) и в режиме "VALID"

О сигмоиде

• Вспомним три основных вида активации:

9/11

О сигмоиде

• Вспомним три основных вида активации:

① Сигмоида
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$
,

- Вспомним три основных вида активации:
 - lacksquare Сигмоида $\sigma(x)=rac{1}{1+\exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,

9/11

- Вспомним три основных вида активации:
 - lacksquare Сигмоида $\sigma(x)=rac{1}{1+\exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).

9/11

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.

- Вспомним три основных вида активации:
 - ① Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- Проблема: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).

- Вспомним три основных вида активации:
 - **1** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).
- Однако это не избавляет от главной проблемы исчезающих градиентов:
 - ① Производная $\sigma'(x) = \sigma(x)(1 \sigma(x))$,

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).
- Однако это не избавляет от главной проблемы исчезающих градиентов:
 - **①** Производная $\sigma'(x) = \sigma(x)(1 \sigma(x))$,
 - ② Для любых больших по модулю x $\sigma(x)$ стремится к 1 или 0, и соответственно его производная всегда к нулю.

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).
- Однако это не избавляет от главной проблемы исчезающих градиентов:
 - **①** Производная $\sigma'(x) = \sigma(x)(1 \sigma(x))$,
 - ② Для любых больших по модулю x $\sigma(x)$ стремится к 1 или 0, и соответственно его производная всегда к нулю.

• $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,

¹https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,
- ReLU(x) при x>0 дает константную производную (равную 1),

¹https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,
- ReLU(x) при x > 0 дает константную производную (равную 1),
- ReLU(x) потрясающе эффективен в реализации на конечном устройстве.

¹https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,
- ReLU(x) при x > 0 дает константную производную (равную 1),
- ReLU(x) потрясающе эффективен в реализации на конечном устройстве.
- Иллюстрация:

^{4 □ &}gt; 4 個 > 4 ∃ > 4 ∃ > ∃

- $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,
- ReLU(x) при x > 0 дает константную производную (равную 1),
- ReLU(x) потрясающе эффективен в реализации на конечном устройстве.
- Иллюстрация:

¹https://stats.stackexchange.com/a/422579

Спасибо за внимание!

