Neural NLP Tutorial

Language Modeling: Models of P(text)

Are These Sentences

OK?

Jane went to the store.

- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.

Engineering Salutians

- store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.

Create a grammar of the language

morphology and Censider ons Septions Semantic preference categories,

What Can we Do w/

. Levre Sentences:

```
Jane went to the store . \rightarrow high store to Jane went the . \rightarrow low
```

(same as calculating loss for training)

Generate sentences:

while didn't choose end-of-sentence symbol: calculate probability sample a new word from the probability distribution

Calculating the Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
 $Next \quad Contex$
 $Word \quad t$

This is a classification problem over the next word!

$$P(x_i \mid x_1, \ldots, x_{i-1})$$

How do we do this?!?!

Count-based Language Models

Count up the frequency and

$$P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$$

https://books.goog le.com/ngrams Any problem?

Problems w/ Count-based

Models
 Cannot share strength among similar

wond shought a car she bought a bicycle she purchased a she purchased a bicycle car

Cannot handle long-distance

fdepande blaiss he wanted to buy his own racquet for programming class he wanted to buy his own computer

A Slight Simplification: Sentence Classification Models of P(label | text)

An Example Prediction Problem: Sentence Classification

Classification good hatethis movie neoutral bad very bad very good thi good movi neutral love S e bad very bad

Word Representation (task-specific)

- Each word has its own 5 elements corresponding to [very good, good, neutral, bad, very bad]
- "hate" will have a high value for "very bad", etc.

A First Try: Bag of Words (BOW)

Adversarial Examples

I don't love this movie

There's nothing I don't love about this movie

Combination Features

- Does it contain "don't" and "love"?
- Does it contain "don't", "i", "love", and "nothing"?

Idea 1: Neural Networks

Idea 2: Continuous Bag of Words (CBOW)

What do Our Vectors Represent?

- Each vector has "features" (e.g. is this an animate object? is this a positive word, etc.)
- We sum these features, then use these to make predictions
- Still no combination features: only the expressive power of a linear model, but dimension reduced

Revisiting LM

LM as a classification problem into words

CBO (Mikology et al. 2013)

Predict word based on sum of surrounding embeddings

Softma

 Convert scores in probabilities by taking the exponent and normalizing (softmax)

$$P(x_i \mid x_{i-n+1}^{i-1}) = \frac{e^{s(x_i \mid x_{i-n+1}^{i-1})}}{\sum_{\tilde{x}_i} e^{s(\tilde{x}_i \mid x_{i-n+1}^{i-1})}}$$

Skip-gram

(Mikolov et al. 2013)

Predict each word in the context given the word

Word Embeddings

 "What is the female equivalent of king?" is not easily accessible in many traditional resources

Visualization of Embeddings

 Reduce high-dimensional embeddings into 2/3D for visualization (e.g. Mikolov et al. 2013)

Time Delay Neural Network (Waibel et al. 1989)

Convolutional Networks

Parameter extraction performs a 2D sweep, not 1D

Poolin

- Calculate some recution function feature-wise
- Max pooling: "Did you see this feature anywhere in the range?" (most common)
- Average pooling: "How prevalent is this feature over the entire range"
- k-Max, Dynamic, ...

Weaknesses of CNNs

- CNNs are great for short-distance feature extractors
- But don't have holistic view of the sentence to capture long-distance dependencies

Long-distance Dependencies in Language • Agreement in number, gender, etc.

He does not have very much confidence in himself. She does not have very much confidence in herself.

Selectional preference

The **reign** has lasted as long as the life of the queen. The rain has lasted as long as the life of the clouds.

Remember History w/

RNIS What does processing a sequence look like?

Weaknesses of RNNs

- Indirect passing of information, credit assignment more difficult
 - Made better by LSTMs/GRUs/etc. but not perfect
- Can be slow, due to incremental processing