IEOR 263A PS 8

Read Chapter 7 (skip 7.9 and 7.10). Chapter 6 Problems: 1, 6 (add d: Determine E[time to go from state 4 to 0] assuming $\lambda_i \equiv \lambda$, $\mu_i \equiv \mu$, and $\lambda < \mu$), 15, 20 (add d: Give the generator matrix and e: Give ν and P^* for the uniformized process). Chapter 7 problems: 2, 4, 8 (optional) 9, 10, 12. Also:

- 1. A single technician is responsible for two machines. For machine i, the time to fail $\sim \exp(\lambda_i)$ and the time to repair $\sim \exp(\mu_i)$, and all such times are independent. Suppose preemption is permitted without penalty, i.e., the technician can stop repairing one machine and switch to the other at any time. For $\lambda_1 = 1$, $\lambda_2 = 2$, $\mu_1 = 1$, $\mu_2 = 3$, find the optimal preemptive repair policy (which machine should have priority when both machines are down), when the objective is
 - (a) Maximize the time both machines are working (a series system)
 - (b) Minimize the time neither machine is working (a parallel system)
 - (c) Maximize long-run average production rates, if machine i produces widgets at rate γ_i , $\gamma_1 = 2$, $\gamma_2 = 3$, and they operate independently.
- 2. If the mean value function of a renewal process $\{N(t)\}$ is given by m(t) = t/2, what is $P\{N(5) = 0\}$?