Medida do Tempo de Execução de um Programa

Livro "Projeto de Algoritmos" – Nívio Ziviani Capítulo 1 – Subseção 1.3.1 http://www2.dcc.ufmg.br/livros/algoritmos/ (slides adaptados)

Objetivos

- n Comportamento Assintótico
- n Notações O, Ω, Θ
- n Principais Classes de Problemas
- n Algoritmos Polinomiais vs. Exponenciais

Comportamento Assintótico de Funções

- n O parâmetro n fornece uma medida da dificuldade para se resolver o problema.
- n Algoritmos são parecidos para n pequenos escolha não é crítica.
- n Análise de algoritmos é realizada para valores grandes de n.
- n Comportamento assintótico de f(n): limite do comportamento do custo quando n cresce.
- n Interesse: como o custo aumenta quando n vai para o limite.

n Definição: Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para n ≥ m, temos |g(n)| ≤ c|f(n)|.

Exemplo 1:

n Sejam $f(n) = n^2 e g(n) = n$

f(n) domina assintóticamente g(n) se $|g(n)| \le c|f(n)|$ para $n \ge m$ e c > 0

n f(n) domina assintoticamente g(n) desde que

$$|g(n)| \le c|f(n)|$$
 para $n \ge m$ e c > 0

$$c = 1 e m = 1$$

n	g(n)	f(n)
0	0	0
1	1	1
2	2	4
3	3	9

Exemplo 2:

```
n Sejam f(n) = n^2 e g(n) = (n+1)^2
```

f(n) domina assintóticamente g(n) se $|g(n)| \le c|f(n)|$ para $n \ge m$ e c > 0

n f(n) domina assintoticamente g(n)?

$$c = 4 e n \ge 1$$

$$g(n) \le cf(n)$$

$$(n+1)^2 \le 4n^2$$

$$n^2 + 2n + 1 \le 4n^2$$

$$n + 2 + 1/n \le 4n$$

Exemplo 2:

```
n Sejam f(n) = n^2 e g(n) = (n+1)^2
```

f(n) domina assintóticamente g(n) se $|g(n)| \le c|f(n)|$ para $n \ge m$ e c > 0

n g(n) domina assintoticamente f(n): $c = 1 e n \ge 1$

$$n^2 \le (n+1)^2$$

$$n^2 \le n^2 + 2n + 1$$

$$1 \le 1 + 2/n + 1/n^2$$

f(n) e g(n) dominam assintoticamente uma a outra

Exemplo 3:

```
n Sejam f(n) = n e g(n) = n^2
```

f(n) domina assintóticamente g(n) se $|g(n)| \le c|f(n)|$ para $n \ge m$ e c > 0

n f(n) domina assintoticamente g(n) desde que

$$|g(n)| \le c|f(n)|$$
 para $n \ge m$ e c > 0

$$n^2 \le cn$$

 $n \le c$ (x) (ou seja, f(n) não domina assintoticamente g(n))

Notação Assintótica

- O especifica um limite superior para g(n).
 g(n) = O(f(n))
- Ω especifica um limite inferior para g(n). g(n) = Ω (f(n))
- Θ especifica um limite firme para g(n).
 g(n) = Θ(f(n))

Notação O

- n Escrevemos g(n) = O(f(n)) se
 - n **f**(n) domina assintoticamente **g**(n). Lê-se **g**(n) é da ordem no máximo **f**(n).
- n Exemplo: quando dizemos que o tempo de execução **f**(n) de um programa é **O**(n²), significa que existem constantes **c** e **m** tais que, para valores de **n≥m**, **f**(n) ≤ **cn**².

Notação O

n **Definição**: Uma função g(n) é O(f(n)) se existem duas constantes positivas c e m tais que $g(n) \le cf(n)$, para todo $n \ge m$.

n **Exemplo 4**: $g(n) = (n + 1)^2$.

g(n) é O(f(n)) se $g(n) \le cf(n)$, para todo $n \ge m$, onde m e c são positivas

- Logo g(n) é $O(n^2)$, quando m = 1 e c = 4.
- Isto porque $(n + 1)^2$ ≤ $4n^2$ para $n \ge 1$.

n **Exemplo 4**:
$$g(n) = (n + 1)^2$$
.

 $g(n) \notin O(f(n))$ se $g(n) \le cf(n)$, para todo $n \ge m$, onde $m \in c$ são positivas

- Logo g(n) é $O(n^2)$, quando m = 1 e c = 4.
- Isto porque $(n + 1)^2$ ≤ $4n^2$ para $n \ge 1$.

$$(n+1)^2 \le cn^2$$

 $n^2 + 2n + 1 \le cn^2$
 $1 + 2/n + 1/n^2 \le c$

n **Exemplo 5**:
$$g(n) = n e f(n) = n^2$$
.

– Sabemos que g(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.

n **Exemplo 4**:
$$g(n) = (n + 1)^2$$
.

 $g(n) \notin O(f(n))$ se $g(n) \le cf(n)$, para todo $n \ge m$, onde $m \in c$ são positivas

- Logo g(n) é $O(n^2)$, quando m = 1 e c = 4.
- Isto porque $(n + 1)^2$ ≤ $4n^2$ para $n \ge 1$.

$$(n+1)^2 \le cn^2$$

 $n^2 + 2n + 1 \le cn^2$
 $1 + 2/n + 1/n^2 \le c$

n **Exemplo 5**:
$$g(n) = n e f(n) = n^2$$
.

- Sabemos que g(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.
- Entretanto f(n) não é O(n).

n **Exemplo 4**:
$$g(n) = (n + 1)^2$$
.

 $g(n) \notin O(f(n))$ se $g(n) \le cf(n)$, para todo $n \ge m$, onde $m \in c$ são positivas

- Logo g(n) é $O(n^2)$, quando m = 1 e c = 4.
- Isto porque $(n + 1)^2$ ≤ $4n^2$ para $n \ge 1$.

$$(n+1)^2 \le cn^2$$

 $n^2 + 2n + 1 \le cn^2$
 $1 + 2/n + 1/n^2 \le c$

n **Exemplo 5**: $g(n) = n e f(n) = n^2$.

- Sabemos que g(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.
- Entretanto f(n) não é O(n).
- Suponha que existam constantes c e m tais que para todo $n \ge m$, $n^2 \le cn$.
- Logo, $c \ge n$ para qualquer $n \ge m$, e não existe uma constante c que possa ser maior ou igual a n para todo n.

n**Exemplo 6**:
$$g(n) = 3n^3 + 2n^2 + n \in O(n^3)$$
.

g(n) é O(f(n)) se $g(n) \le cf(n)$, para todo $n \ge m$, onde m e c são positivas

- Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 1$.
- A função $g(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca do que dizer que g(n) é $O(n^3)$.

$$3n^3 + 2n^2 + n \le cn^4$$

 $3 + 2/n + 1/n^2 \le cn, c = 6, m = 1$

n **Exemplo 7**: $2^{n+1} \notin O(2^n)$?

Operações com a Notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Operações com a Notação O

Exemplo 8: regra da soma O(f(n)) + O(g(n)).

n Suponha três trechos cujos tempos de execução são O(n), $O(n^2)$ e $O(n \log n)$.

n O tempo de execução dos dois primeiros trechos é $O(\max(n, n^2))$, que é $O(n^2)$.

n O tempo de execução de todos os três trechos é então $O(\max(n^2, n \log n))$, que é $O(n^2)$.

Operações com a Notação O

Exemplo 9:
$$[n + O(1)][n + O(\log n) + O(1)]$$

 $n^2 + O(n \log n) + O(n) + O(n) + O(\log n) + O(1)$
 $O(n^2)$

Notação Ω

- Especifica um limite inferior para g(n).
- Definição: Uma função g(n) é Ω(f(n)) se existirem duas constantes c e m tais que

$$g(n) \ge cf(n)$$
, para todo $n \ge m$.

Notação Ω

 $g(n) \in \Omega(f(n))$ se $g(n) \ge cf(n)$, para todo $n \ge m$, onde m e c são positivas

• **Exemplo 10**: Mostrar que $g(n) = 3n^3 + 2n^2 \in \Omega(n^3)$

basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 1$.

$$3 + 2/n \ge 1$$
 para $n \ge 1$

-

Notação Θ

• **Definição**: Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que

$$0 \le c_1 f(n) \le g(n) \le c_2 f(n)$$
, para todo $n \ge m$

- Para todo n ≥ m, a função g(n) é igual a f(n) a menos de uma constante.
- Neste caso, f(n) é um limite assintótico firme.

Notação Θ

Exemplo 11:

n Mostre que $g(n) = n^2/2 - 3n \in \Theta(n^2)$.

G(n) é $\Theta(f(n))$ se $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$, para todo n ≥ m, onde c1 e c2 são positivas.

$$c_1 n^2 \le n^2/2 - 3n \le c_2 n^2$$

 $c_1 \le 1/2 - 3/n \le c_2$

O lado direito é verdadeiro para $N \ge 1$ com $c_2 \ge 1/2$ e o lado esquerdo para $n \ge 7$ com $c_1 \le 1/14$.

Portanto, escolhendo $c_1 = 1/14$, $c_2 = 1/2$ e m = 7, $g(n) = \Theta(n^2)$.

Classes de Comportamento Assintótico

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica.
- Dominação assintótica permite comparar funções de complexidade
- Se as funções f e g dominam assintoticamente uma a outra, então os algoritmos associados são equivalentes.
 - •O comportamento assintótico não serve para comparar esses algoritmos

Exemplo:
$$f(n) = n^2 e g(n) = (n+1)^2$$

Classes de Comportamento Assintótico

n Por exemplo, considere dois algoritmos F e G aplicados à mesma classe de problemas, sendo que F leva três vezes o tempo de G ao serem executados, isto é, f(n) = 3g(n), sendo que O(f(n)) = O(g(n)).

n Logo, o comportamento assintótico não serve para comparar os algoritmos F e G, porque eles diferem apenas por uma constante.

n Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.

Comparação de Programas

n Um programa com tempo de execução O(n) é melhor que outro com tempo $O(n^2)$.

n Porém, as constantes de proporcionalidade podem alterar esta consideração.

n **Exemplo**: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$. Qual dos dois programas é melhor?

- -Depende do tamanho do problema:
- -Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n.

- f(n) = O(1)
 - Complexidade constante.
 - Uso do algoritmo independe de n.
 - As instruções do algoritmo são executadas um número fixo de vezes.

```
void algoritmo1(int *v, int n) {
int i, j, aux;

for(i = 0; i < 10; i++) {
    for(j = 0; j < 9; j++) {
        if(v[j]>v[j+1]) {
            aux=v[j]; v[j]=v[j+1]; v[j+1]=aux;
        }
    }
}
```

- f(n) = O(n)
 - Complexidade linear.
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada
 - Cada vez que n dobra de tamanho, o tempo de execução dobra.

```
int algoritmo2(int *v, int n, int k) {
  int i;

  for(i = 0; i < n; i++) {
     if(v[i] == k)
        return i;
  }
  return -1;
}</pre>
```

- $f(n) = O(\log n)$
 - Complexidade logarítmica.
 - Típico em algoritmos que transformam um problema em outros menores.
 - □ Quando n é mil, log₂n 10, quando n é 1 milhão, log₂n 20.
 - Exemplo: pesquisa binária

- $f(n) = O(n \log n)$
 - Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e ajuntando as soluções depois.
 - Exemplo: algoritmos de ordenação (mergesort, heapsort)

- $f(n) = O(n^2)$
 - Complexidade quadrática.
 - Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro de outro.
 - Úteis para problemas de tamanhos pequenos.

```
void algoritmo(int *v, int n) {
int i, j, aux;

for(i = 0; i < n; i++) {
    for(j = 0; j < n-1; j++) {
        if(v[j]>v[j+1]) {
            aux=v[j]; v[j]=v[j+1]; v[j+1]=aux;
        }
    }
}
```

- $f(n) = O(n^3)$
 - Complexidade cúbica.
 - Úteis apenas para resolver pequenos problemas.
 - Quando n é 100, o número de operações é da ordem de 1 milhão.
 - Exemplo: multiplicação de matrizes (algoritmo simples)

- $f(n) = O(2^n)$
 - Complexidade exponencial.
 - Geralmente não são úteis sob o ponto de vista prático.
 - Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
 - Quando n é 20, o tempo de execução é cerca de 1 milhão.
 Quando n dobra, o tempo fica elevado ao quadrado.

- f(n) = O(n!)
 - Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que O(2ⁿ).
 - Geralmente ocorrem quando se usa força bruta para na solução do problema.
 - $n = 20 \rightarrow 20! = 2432902008176640000$, um número com 19 dígitos.
 - \neg n = 40 \rightarrow um número com 48 dígitos.

Comparação de Funções de Complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

Comparação de Funções de Complexidade

Função de	Computador	Computador	Computador	
custo	atual	100 vezes	1.000 vezes	
de tempo	(tamanho)	mais rápido	mais rápido	
n	t_1	$100 \ t_1$	$1000 \ t_1$	
n^2	t_2	$10~t_2$	$31,6\;t_2$	
n^3	t_3	$4,6 \ t_3$	$10 \ t_{3}$	
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$	

Algoritmos Exponenciais x Polinomiais

- Algoritmo exponencial no tempo de execução tem função de complexidade O(cⁿ); c > 1.
- Algoritmo polinomial no tempo de execução tem função de complexidade O(p(n)), onde p(n) é um polinômio.
- A distinção entre estes dois tipos de algoritmos torna-se significativa quando o tamanho do problema a ser resolvido cresce.
- Por isso, os algoritmos polinomiais são muito mais úteis na prática do que os exponenciais.

Algoritmos Exponenciais x Polinomiais

- Algoritmos exponenciais são geralmente simples variações de pesquisa exaustiva.
- Algoritmos polinomiais são geralmente obtidos mediante entendimento mais profundo da estrutura do problema.
- Um problema é considerado:
 - □ **intratável**: se não existe um algoritmo polinomial para resolvê-lo.
 - bem resolvido: quando existe um algoritmo polinomial para resolvê-lo.

Algoritmos Exponenciais x Polinomiais - Exceções

- A distinção entre algoritmos polinomiais eficientes e algoritmos exponenciais ineficientes possui várias exceções.
- Exemplo: um algoritmo com função de complexidade f(n) = 2ⁿ é mais rápido que um algoritmo g(n) = n⁵ para valores de n menores ou iguais a 20.

Exemplo de Algoritmo Exponencial

- Um **caixeiro viajante** deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez
- Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem.

Exemplo de Algoritmo Exponencial

• A figura ilustra o exemplo para quatro cidades c1, c2, c3, c4, em que os números nos arcos indicam a distância entre duas cidades.

• O percurso < c1, c3, c4, c2, c1> é uma solução para o problema, cujo percurso total tem distância 24.

Exemplo de Algoritmo Exponencial

- Algoritmo simples: verificar todas as rotas e escolher a menor delas.
- Há (n 1)! rotas possíveis e a distância total percorrida em cada rota envolve n adições, logo o número total de adições é n!.
- No exemplo anterior teríamos 24 adições.
- Suponha agora 50 cidades: o número de adições seria $50! \approx 10^{64}$.
- Em um computador que executa 10⁹ adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10⁴⁵ séculos só para executar as adições.

Exercícios

Exercício 1:

 $g(n) \in O(f(n))$ se $g(n) \le cf(n)$, para todo $n \ge m$, onde $m \in c$ são positivas

n Mostre que $g(n) = \log_5 n \notin O(\log n)$.

$$\log_5 n \le c \log n$$
 (temos que $\log_5 n = \log n / \log 5$)

$$\log n / \log 5 \le c \log n$$

$$1/\log 5 \le c, \quad c = 1 \text{ e m} = 1$$