7 - Jan 30 Lecture

- Review of standard basis vector
- Linear transformations as matrix multiplication
- Rotation & projection transformations
- Kernel(T) & Range(T)
- Onto & one-to-one

Standard Basis Vector	Recall from Lecture 6 that:		
	where $0 < i < \mathbb{R}^i$ space The standard basis vector \vec{e}_i is a column vector with 1 in the i^{th} position and 0s in		
	The standard basis vector e; is a column vector with 1 in the ith position and 0s in		
	all other positions.		
	In \mathbb{R}^2 : $\vec{e_2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. In \mathbb{R}^3 : $\vec{e_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\vec{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$		
	As well, it is true that.		
	$\begin{vmatrix} x_1 \\ x_2 \\ \vdots \end{vmatrix} = x_1 \overrightarrow{e}_1 + x_2 \overrightarrow{e}_2 + \dots + x_n \overrightarrow{e}_n$		
	x _n x _n		
	No are with those transfer and the second to the south to the second to		
	We can write linear transformations as matrix multiplication.		
	Let $T \cdot \mathbb{R}^n \to \mathbb{R}^m$ be linear. Then, there exists a matrix A such that $T(\vec{v}) = A\vec{v}$.		
	This $A = [T(e_i) \ T(e_2) \dots \ T(e_n)]$. So, $T(\overline{e_i})$ is the i^{th} column of matrix A.		
	3 2		
	Consider $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by:		
	Tr y = r y where r is a constant.		
	Tr y = r y where r is a constant.		
	We want to find the matrix A which corresponds to this.		
	[r] [0]		
	We know $A = [T(\vec{e_1}) \ T(\vec{e_2}) \ T(\vec{e_3})]$, so $T(\vec{e_1}) = 0$, $T(\vec{e_2}) = r$, and $T(\vec{e_3}) = 0$.		
	We know $A = \begin{bmatrix} T(\vec{e_1}) & T(\vec{e_2}) & T(\vec{e_3}) \end{bmatrix}$, so $T(\vec{e_1}) = \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix}$, $T(\vec{e_2}) = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix}$, and $T(\vec{e_3}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Then, $A = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}$. Then, $A = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}$. Then, $A = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}$. Together into one matrix		
	Then, A= 0 r 0 for get by "squishing		
	to gether into one matrix		

Rotation Transformation	Let $T_0: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation of rotating vectors around the origin counter-clockwise by an angle θ	
	Think about the unit circle	
	(0,1) [cos 0]	
	$\left(\cos(\theta + \frac{\pi}{2}), \sin(\theta + \frac{\pi}{2})\right) \qquad (\cos\theta, \sin\theta) \implies T(\vec{e_1}) = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$	
	$\Rightarrow T(\vec{e_2}) = \begin{bmatrix} \cos(\theta + \frac{\pi}{2}) \\ \sin(\theta + \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$	
	From this we get the several matrix for matellines:	
	From this, we get the general matrix for rotations:	
	$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	
Projection Transformation	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the "projection transformation" which zeroes out at least one	
The state of the s	component (in this case, the =).	
	(5.7) 5.7 5.7 5.7 5.7 5.7	
	$T\left(\begin{vmatrix} x \\ y \end{vmatrix}\right) = \begin{vmatrix} x \\ y \end{vmatrix} \rightarrow T(\vec{e_1}) = \begin{vmatrix} 1 \\ 0 \end{vmatrix} T(\vec{e_2}) = \begin{vmatrix} 0 \\ 1 \end{vmatrix} T(\vec{e_3}) = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \rightarrow A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$	
Kernel	Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.	
	The set of all vectors \vec{x} such that $T(\vec{x}) = \vec{0}$ is called the "kernel" and is denoted Ker(T).	
	1) 0 is always in the kerne! Zero vector is always in Ker(T).	
	2) v in Ker(T) ⇒ cv in Ker(T) if vector v is in Ker(T), all multiples of v are in Ker(T).	
	3) \vec{u} , \vec{v} in Ker(T) $\Rightarrow \vec{u} + \vec{v}$ in Ker(T) if vectors \vec{u} and \vec{v} are in Ker(T), sum $\vec{u} + \vec{v}$ is in Ker(T)	
_	A constant table lasts on the state of the s	
Ex:	As an example, let's look again at the projection transformation above:	
	T Y = y Vectors like 0 and 0 are in the kernel.	
	T 9 = 9 Vectors like 0 and 0 are in the kernel.	
	Note: Ker(T) and Range(T) are always subspaces.	
	WOLD BELLEY AND KANGE IT ARE ALWAYS SUBSPACES.	

Range	The set of all vectors \vec{b} such that there exists \vec{y} in \mathbb{R}^n with $T(\vec{y}) = \vec{b}$ is called the	
	range of T and is denoted Range (T).	
	In other words:	
	\Rightarrow all the output vectors (\vec{b}) such that you can write \vec{b} as some transformation of \vec{y} .	
	→ all possible outputs of a transformation.	
Ex:	As an example, let's look again at the projection transformation above:	
	\[\x\\\[\x\]\\[\v\]\\\[\v\]\\\\\\\\\\\\\	
	$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} T(\vec{y}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ has no solution. Therefore, } \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ is not in range (T) (even though it's in the } \frac{\text{codomain}}{\text{codomain}}$	
	$T(\vec{y}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is possible if $(\vec{y}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is Range (T).	
	$T(\vec{y}) = 1$ is possible if $(\vec{y}) = 1$, so 1 is in Range (T).	
0nto	A transformation is "onto" if for every b in the codomain, there exists at least one	
	vector \vec{x} in the domain such that $T(\vec{x}) = \vec{b}$.	
	In other terms: Onto means that Range $(T) = codomain$ of T (rotation is an onto function)	
0ne-to-one	A transformation is one-to-one if for every \vec{b} in the codomain, there exists at most one vector \vec{x} in the domain such that $T(\vec{x}) = \vec{b}$.	
	In other words: "if the only thing that maps to $\vec{0}$ is $\vec{0}$, the function is one-to-one".	
	Note that functions can be: • onto & one-to-one • only onto	
	• only one-to-one	
	* neither onto nor one-to-one	
A trick for determining	1) For linear mappings to be onto, the dimension can't increase.	
if something is onto	2) For linear mappings to be one-to-one, the dimensions can't decrease.	
and for one-to-one	Note that these only work forwards!!	
	The more useful "backwards versions" of the above rules are:	
	1) If dimensions increase, the function is not onto.	
	2) If dimensions decrease, the function is not one-to-one.	

	Given linear transformation $T \cdot \mathbb{R}^n \to \mathbb{R}^m$ with corresponding matrix $A \dots$
	"iff"="if and only if"= proving one proves the others
Prove T is one-to-one	Prove T is one-to-one \iff Ker (T) = {}
	columns of A are linearly independant
	⇔ each column of A has a pivot position if A 1s in RREF
	codomain
Prove T is onto	Prove T is onto \Leftrightarrow Range (T) = \mathbb{R}^m
	iust need (columns of A span R m
	to prove \iff each row of A has a pivot position
	just need \iff columns of A span \mathbb{R}^m to prove \iff each row of A has a pivot position these! \iff $A\overrightarrow{x} = \overrightarrow{b}$ is consistent for all $b \in \mathbb{R}^m$
	• • • • • • • • • • • • • • • • • • • •
Ex 1:	Onto and one-to-one
	(6.5)
	$ \begin{array}{c c} T & x \\ y & x \\ \end{array} $
	7 7 32
Ex 2:	<u>Onto</u>
	Onto $ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x + y \\ 2y \end{bmatrix} $ Why? There is a \vec{v} other than $\vec{0}$ which maps to $\vec{0}$: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, therefore not 1:1.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(it is onto since every possible 2D vector has a 3D vector input)
	(C-1) (IT IS UTITUS SINCE EVERY POSSIBLE 20 VECTOR MAY AS TECTOR MAY AS
Fy 2 ·	One-to-one (it is one-to-one since any 2 distinct vector inputs will produce two
τν 3 <i>1</i>	the same and a same and
	$ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x \\ z \end{bmatrix} $ Not onto since dimension increased.
	2 NOT ONTO SINCE dimension increased.
	\(\tau_j\)
Ex 4:	Make the self-walk and to one
εx τ .	
	$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ x \\ y \end{bmatrix}$ Not onto since the output $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ is not possible. Not one-to-one since the input $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ gives the same output as $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.
	Not one-to-one since the input of gives the same output as 1.
	((2), (3)

Standard	basis V
wleu	0< i < 1R'
	ſ
	space
	٠,

$$\overrightarrow{e}_{i} = \begin{bmatrix} \overrightarrow{o} \\ \overrightarrow{o} \\ \overleftarrow{o} \end{bmatrix} \text{ 2 in ith pos.}$$

$$\overrightarrow{o} \text{ everywhere } \text{ else}$$

In
$$\mathbb{R}^2 : \overrightarrow{e_1} = \begin{bmatrix} i \\ 0 \end{bmatrix} \overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

In
$$\mathbb{R}^3$$
: $\overrightarrow{e_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overrightarrow{e_2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overrightarrow{e_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + \dots + x_n \overrightarrow{e_n}$$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear, then there exists a matrix A such that $T(\vec{v}) = A\vec{v}$

Can write lin. trans. as matrix. must."

This A = [T(e,) T(e2)...T(en)]. So T(e) is the ith column of matrix A.

$$\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$$
where
$$r is a constant$$

Want to
Find what matrix A corresponds to this.

$$T(\vec{e_1}) = \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix} T(\vec{e_2}) = \begin{bmatrix} 0 \\ r \\ 0 \end{bmatrix} T(\vec{e_3}) = \begin{bmatrix} 0 \\ 0 \\ r \end{bmatrix}$$

Then
$$A = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}$$

Let $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation of rotating vectors around the origin counter-clockwise by an angle θ .

$$\Rightarrow T(\vec{e_2}) = \begin{bmatrix} \cos(\theta + \frac{\pi}{2}) \\ \sin(\theta + \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$

we get the general matrix for rotations

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

"projection" zeroes out 1+ components (in this case $\{\mu \ \vec{z}\)$ T: $\mathbb{R}^3 \to \mathbb{R}^3$ by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$T(\vec{e_1}) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad T(\vec{e_2}) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad T(\vec{e_3}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation

The set of all vectors \hat{x} s.t. $T(\hat{x}) = \hat{0}$ is called the "kernel" and is denoted ker (T).

- · O is always in the kernel
- · u in Ker(T) ⇒ cu in Ker(T) one v = all multiples in Ker
- · u, v in ker(T) ⇒ v+v in Ker(T) 2v in Ker → their sum in Ker

The set of all vectors \vec{b} s.t. there exists \vec{y} in \mathbb{R}^n with $T(\vec{y}) = \vec{b}$ is called the <u>range</u> of T and is denoted Range (T).

"all the output vectors (b) s.t. you can with bas some Trans of \$\vec{y}\$." "all possible outputs of a transformation"

"
$$T(\vec{y}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 has no solution"

not in range even though it's not in the codomain.

"Codomain: must have 3 rows in vector"

" # cols : input

vows: output? "

$$T(\hat{y}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ possible}$$

$$(\hat{y}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 in Range (T)

T is called "onto" if for every \vec{b} in the codomain there exists at least 1 vector \vec{x} in the domain s.t. $T(\vec{x}) = \vec{b}$.

Onto means Range (T) = codomain of T. (rotation is an onto function)

T is called "one-to-one" if for every \vec{b} in the codomain there exists at most 1 vector \vec{x} in the domain s.t. $T(\vec{x}) = \vec{b}$.

"If only thing that maps to 0 is 0, func. is 1:1"

Can be both / 1 of / neither 1:1 or onto.

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} y \\ x \\ 3z \end{bmatrix}$$
 this is 0nto

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 3x + y \\ 2y \end{bmatrix}$$

is there a \bar{v} other than \bar{o} that maps to \bar{o} ?

9es,
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \text{not } 1:1$$

Every possible 2D i has

Yes it is onto ??

a 3D vector input

$$T\left(\begin{bmatrix} x\\y\\y\\z\end{bmatrix}\right) = \begin{bmatrix} x\\y\\y\\not \ 1:1 \ \Rightarrow \begin{bmatrix} 0\\0\\0\end{bmatrix} \text{ same result as } \begin{bmatrix} 0\\0\\0\end{bmatrix}$$

$$T\left(\begin{bmatrix} x\\y\\z\\z\end{bmatrix}\right) = \begin{bmatrix} x\\y\\z\\z\end{bmatrix} \text{ not onto (also bic of disensions)}$$

$$T\left(\begin{bmatrix} x\\y\\z\\z\end{bmatrix}\right) = \begin{bmatrix} x\\x\\x\\z\\z\\z\end{bmatrix} \text{ not onto (also bic of disensions)}$$

$$1:1 \ 2:1 \ 2:1 \ 2:1 \ 2:1 \ 2:1 \ 2:1 \ 2:1 \ 2:1 \ 2:1 \ 3:1$$