

Another, very in-depth linear algebra review from CS229 is available here:

http://cs229.stanford.edu/section/cs229-linalg.pdf

And a video discussion of linear algebra from EE263 is here (lectures 3 and 4):

http://see.stanford.edu/see/lecturelist.aspx?coll=17005383-19c6-49ed-9497-2ba8bfcfe5f6

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. We'll define some common uses. and standard operations on them.

3

Vector

• A column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

• A row vector $\mathbf{v}^T \in \mathbb{R}^{1 \times n}$ where

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

 ${\cal T}$ denotes the transpose operation

Vector

We'll default to column vectors in this class

$$\mathbf{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

- You'll want to keep track of the orientation of your vectors when programming in MATLAB
- You can transpose a vector V in MATLAB by writing V'.
 (But in class materials, we will always use V^T to indicate transpose, and we will use V' to mean "V prime")

Vectors have two main uses

- Vectors can represent an offset in 2D or 3D space
- Points are just vectors from the origin

 Data (pixels, gradients at an image keypoint, etc) can also be treated as a vector

 Such vectors don't have a geometric interpretation, but calculations like "distance" can still have value

Matrix

• Almatrix $A \in \mathbb{R}^{m \times n}$ is an array of mumbers with size n by \downarrow , by n - p we and overtunate columns.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

•• If m=n , we say that ${\bf A}$ is square.

Images

- MATLAB represents an image as a matrix of pixel brightnesses
- Note that matrix coordinates are NOT
 Cartesian coordinates. The upper left corner is
 [y,x] = (1,1)

Color Images

- Grayscale images have one number per pixel, and are stored as an m × n matrix.
- Color images have 3 numbers per pixel red, green, and blue brightnesses
- Stored as an m × n × 3 matrix

Basic Matrix Operations

- We will discuss:
 - Addition
 - Scaling
 - Dot product
 - Multiplication
 - Transpose
 - Inverse / pseudoinverse
 - Determinant / trace

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a+1 & b+2 \\ c+3 & d+4 \end{bmatrix}$$

 Can only add a matrix with matching dimensions, or a scalar.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 7 = \begin{bmatrix} a+7 & b+7 \\ c+7 & d+7 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times 3 = \begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}$$

- Inner product (dot product) of vectors
 - Multiply corresponding entries of two vectors and add up the result
 - $-x\cdot y$ is also $|x||y|\cos(the angle between x and y)$

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i \quad \text{(scalar)}$$

- Inner product (dot product) of vectors
 - If B is a unit vector, then A⋅B gives the length of A which lies in the direction of B

Fei-Fei Li

13

Multiplication

The product AB is:

- Each entry in the result is (that row of A) dot product with (that column of B)
- Many uses, which will be covered later

Multiplication example:

 Each entry of the matrix product is made by taking the dot product of the corresponding row in the left matrix, with the corresponding column in the right one.

Powers

- By convention, we can refer to the matrix product
 AA as A², and AAA as A³, etc.
- Obviously only square matrices can be multiplied that way

16

 Transpose – flip matrix, so row 1 becomes column 1

$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 0 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix}$$

A useful identity:

$$(ABC)^T = C^T B^T A^T$$

Determinant

- $-\det(\mathbf{A})$ returns a scalar
- Represents area (or volume) of the parallelogram described by the vectors in the rows of the matrix

- For
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\det(\mathbf{A}) = ad - bc$

- Properties:
$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{B}\mathbf{A})$$
$$\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$$
$$\det(\mathbf{A}^{T}) = \det(\mathbf{A})$$
$$\det(\mathbf{A}) = 0 \Leftrightarrow \mathbf{A} \text{ is singular}$$

18

Trace

 $\operatorname{tr}(\mathbf{A}) = \operatorname{sum of diagonal elements}$ $\operatorname{tr}(\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}) = 1 + 7 = 8$

- Invariant to a lot of transformations, so it's used sometimes in proofs. (Rarely in this class though.)
- Properties:

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$

 $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$

Special Matrices

Identity matrix I

- Square matrix, 1's along diagonal,
 0's elsewhere
- I [another matrix] = [that matrix]

Γ1	0	0
0	1	0
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Diagonal matrix

- Square matrix with numbers along diagonal, 0's elsewhere
- A diagonal [another matrix] scales the rows of that matrix

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}$$

Special Matrices

Symmetric matrix

$$\mathbf{A}^T = \mathbf{A}$$

Skew-symmetric matrix

$$\mathbf{A}^T = -\mathbf{A}$$

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 7 \\ 5 & 7 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -5 \\ 2 & 1 & -7 \\ 5 & 7 & 1 \end{bmatrix}$$

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

Matrix multiplication can be used to transform vectors. A matrix used in this way is called a transformation matrix.

Transformation

- Matrices can be used to transform vectors in useful ways, through multiplication: x'= Ax
- Simplest is scaling:

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

(Verify to yourself that the matrix multiplication works out this way)

- How can you convert a vector represented in frame "0" to a new, rotated coordinate frame "1"?
- Remember what a vector is: [component in direction of the frame's x axis, component in direction of y axis]

- So to rotate it we must produce this vector: [component in direction of new x axis, component in direction of new y axis]
- We can do this easily with dot products!
- New x coordinate is [original vector] dot [the new x axis]
- New y coordinate is [original vector] dot [the new y axis]

- Insight: this is what happens in a matrix*vector multiplication
 - Result x coordinate is [original vector] dot[matrix row 1]
 - So matrix multiplication can rotate a vector p:

- Suppose we express a point in a coordinate system which is rotated left
- If we use the result in the **same** coordinate system, we have rotated the point right

 Thus, rotation matrices can be used to rotate vectors. We'll usually think of them in that sense-- as operators to rotate vectors

2D Rotation Matrix Formula

Counter-clockwise rotation by an angle θ

$$x' = \cos \theta x - \sin \theta y$$

 $y' = \cos \theta y + \sin \theta x$

$$P' = R P$$

Transformation Matrices

 Multiple transformation matrices can be used to transform a point:
 p'=R₂R₁S p

- The effect of this is to apply their transformations one after the other, from right to left.
- In the example above, the result is (R₂(R₁(S p)))
- The result is exactly the same if we multiply the matrices first, to form a single transformation matrix:

$$p' = (R_2 R_1 S) p$$

 In general, a matrix multiplication lets us linearly combine components of a vector

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- This is sufficient for scale, rotate, skew transformations.
- But notice, we can't add a constant! □

– The (somewhat hacky) solution? Stick a "1" at the end of every vector:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

- Now we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)
- This is called "homogeneous coordinates"

 In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added.

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

 Generally, a homogeneous transformation matrix will have a bottom row of [0 0 1], so that the result has a "1" at the bottom too.

- One more thing we might want: to divide the result by something
 - For example, we may want to divide by a coordinate, to make things scale down as they get farther away in a camera image
 - Matrix multiplication can't actually divide
 - So, **by convention**, in homogeneous coordinates, we'll divide the result by its last coordinate after doing a matrix multiplication.

$$\begin{bmatrix} x \\ y \\ 7 \end{bmatrix} \Rightarrow \begin{bmatrix} x/7 \\ y/7 \\ 1 \end{bmatrix}$$

2D Translation

2D Translation using Homogeneous Coordinates

$$\mathbf{P} = (x, y) \to (x, y, 1)$$

$$\mathbf{t} = (t_{x}, t_{y}) \to (t_{x}, t_{y}, 1)$$

$$\mathbf{p}' \to \begin{bmatrix} x + t_{x} & 1 & 1 & 0 & t_{x} & 1 \\ y + t_{y} & 1 & 1 & 0 & t_{y} & 1 \end{bmatrix}$$

$$\mathbf{P}' \to \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{P}' \to \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{I} & \mathbf{t} & \mathbf{t} \\ 1 & 1 & 1 & 1 \end{bmatrix} \cdot \mathbf{P} = \mathbf{T} \cdot \mathbf{P}$$

36

Scaling Equation

Fei-Fei Li

$$\mathbf{P} = (x, y) \rightarrow \mathbf{P'} = (s_x x, s_y y)$$

$$\mathbf{P} = (x, y) \to (x, y, 1)$$

$$\mathbf{P}' = (s_x x, s_y y) \to (s_x x, s_y y, 1)$$

$$\mathbf{P'} \rightarrow \begin{bmatrix} S_{x} X \\ S_{y} Y \\ 0 \end{bmatrix} = \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} X \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} S' & \mathbf{0} \\ 0 & \mathbf{1} \end{bmatrix} \cdot \mathbf{P} = \mathbf{S} \cdot \mathbf{P}$$

$$\downarrow \mathbf{S}$$

Scaling & Translating

Fei-Fei Li

$$P''=T \bullet P'=T \bullet (S \bullet P)=T \bullet S \bullet P=A \bullet P$$

Scaling & Translating

Translating & Scaling != Scaling & Translating

$$\mathbf{P'''} = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} \mathbf{S}_{\mathbf{x}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{t}_{\mathbf{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{\mathbf{y}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{t}_{\mathbf{y}} & \mathbf{0} & \mathbf{y} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix} = \mathbf{0}$$

Fei-Fei Li

Rotation Equations

Counter-clockwise rotation by an angle θ

$$x' = \cos \theta x - \sin \theta y$$

 $y' = \cos \theta y + \sin \theta x$

$$P' = R P$$

Rotation Matrix Properties

 Transpose of a rotation matrix produces a rotation in the opposite direction

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$
$$\det(\mathbf{R}) = 1$$

- The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
 - (and so are its columns)

Properties

A 2D rotation matrix is 2x2

Note: R belongs to the category of *normal* matrices and satisfies many interesting properties:

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$

 $\det(\mathbf{R}) = 1$

Fei-Fei Li

Rotation + Scaling + Translation

$$\mathbf{P'} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x | 1 \cos \theta & -\sin \theta & 0 | 1 s_x & 0 & 0 | 1 x | 1 \\ 1 & t_y | 1 & \sin \theta & \cos \theta & 0 | 1 & 1 & 0 \end{bmatrix} 0 \quad \mathbf{s}_y \quad \mathbf{0} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} 0 \quad \mathbf{0} \quad \mathbf$$

$$= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ 0 \end{bmatrix} = \begin{bmatrix} R & S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} R & S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Y \\ 0 & 1 \end{bmatrix}$$

This is the form of the general-purpose transformation matrix

45

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

The inverse of a transformation matrix reverses its effect

Inverse

Given a matrix A, its inverse A-1 is a matrix such that
 AA-1 = A-1A = I

• E.g.
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

- Inverse does not always exist. If A-1 exists, A is invertible or non-singular. Otherwise, it's singular.
- Useful identities, for matrices that are invertible:

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$\mathbf{A}^{-T} \triangleq (\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$

Matrix Operations

Pseudoinverse

- Say you have the matrix equation AX=B, where A and B are known, and you want to solve for X
- You could use MATLAB to calculate the inverse and premultiply by it: $A^{-1}AX=A^{-1}B \rightarrow X=A^{-1}B$
- MATLAB command would be inv(A)*B
- But calculating the inverse for large matrices often brings problems with computer floating-point resolution (because it involves working with very small and very large numbers together).
- Or, your matrix might not even have an inverse.

Matrix Operations

Pseudoinverse

- Fortunately, there are workarounds to solve AX=B in these situations. And MATLAB can do them!
- Instead of taking an inverse, directly ask MATLAB to solve for X in AX=B, by typing A\B
- MATLAB will try several appropriate numerical methods (including the pseudoinverse if the inverse doesn't exist)
- MATLAB will return the value of X which solves the equation
 - If there is no exact solution, it will return the closest one
 - If there are many solutions, it will return the smallest one

Matrix Operations

MATLAB example:

$$AX = B$$

$$A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

The rank of a transformation matrix tells you how many dimensions it transforms a vector to.

51

Linear independence

- Suppose we have a set of vectors $v_1, ..., v_n$
- If we can express \mathbf{v}_1 as a linear combination of the other vectors $\mathbf{v}_2...\mathbf{v}_n$, then \mathbf{v}_1 is linearly dependent on the other vectors.
 - The direction \mathbf{v}_1 can be expressed as a combination of the directions $\mathbf{v}_2...\mathbf{v}_n$. (E.g. \mathbf{v}_1 = .7 \mathbf{v}_2 -.7 \mathbf{v}_4)
- If no vector is linearly dependent on the rest of the set, the set is linearly *independent*.
 - Common case: a set of vectors $\mathbf{v_1}$, …, $\mathbf{v_n}$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)

Linear independence

Linearly independent set

Not linearly independent

Matrix rank

Column/row rank

 $\operatorname{col-rank}(\mathbf{A}) = \operatorname{the\ maximum\ number\ of\ linearly\ independent\ column\ vectors\ of\ \mathbf{A}}$ row-rank $(\mathbf{A}) = \operatorname{the\ maximum\ number\ of\ linearly\ independent\ row\ vectors\ of\ \mathbf{A}}$

Column rank always equals row rank

Matrix rank

$$rank(\mathbf{A}) \triangleq col-rank(\mathbf{A}) = row-rank(\mathbf{A})$$

Matrix rank

- For transformation matrices, the rank tells you the dimensions of the output
- E.g. if rank of A is 1, then the transformation

maps points onto a line.

Here's a matrix with rank 1:

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ 2x+2y \end{bmatrix} - \text{All points get mapped to the line y=2x}$$

Matrix rank

- If an m x m matrix is rank m, we say it's "full rank"
 - Maps an m x 1 vector uniquely to another m x 1 vector
 - An inverse matrix can be found
- If rank < m, we say it's "singular"
 - At least one dimension is getting collapsed. No way to look at the result and tell what the input was
 - Inverse does not exist
- Inverse also doesn't exist for non-square matrices

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank

Fei-Fei Li

- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

- There are several computer algorithms that can "factor" a matrix, representing it as the product of some other matrices
- The most useful of these is the Singular Value Decomposition.
- Represents any matrix A as a product of three matrices: UΣV^T
- MATLAB command: [U,S,V]=svd(A)

$U\Sigma V^{T} = A$

• Where U and V are rotation matrices, and Σ is a scaling matrix. For example:

$$\begin{bmatrix} -.40 & .916 \\ .916 & .40 \end{bmatrix} \times \begin{bmatrix} 5.39 & 0 \\ 0 & 3.154 \end{bmatrix} \times \begin{bmatrix} -.05 & .999 \\ .999 & .05 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$$

Beyond 2D:

- In general, if **A** is $m \times n$, then **U** will be $m \times m$, **Σ** will be $m \times n$, and **V**^T will be $n \times n$.
- (Note the dimensions work out to produce m x n after multiplication)

$$\begin{bmatrix} -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- U and V are always rotation matrices.
 - Geometric rotation may not be an applicable concept, depending on the matrix. So we call them "unitary" matrices – each column is a unit vector.
- Σ is a diagonal matrix
 - The number of nonzero entries = rank of A
 - The algorithm always sorts the entries high to low

$$\begin{bmatrix} -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- We've discussed SVD in terms of geometric transformation matrices
- But SVD of an image matrix can also be very useful
- To understand this, we'll look at a less geometric interpretation of what SVD is doing

- Look at how the multiplication works out, left to right:
- Column 1 of U gets scaled by the first value from Σ.

$$\begin{bmatrix} -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \qquad \begin{bmatrix} 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

 The resulting vector gets scaled by row 1 of V^T to produce a contribution to the columns of A

Each product of (column i of U) (value i from Σ) (row i of V) produces a component of the final A.

$$\begin{bmatrix} -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \begin{bmatrix} 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

$$\begin{bmatrix} V^T & A_{partial} \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

$$\begin{bmatrix} V^T & A_{partial} \\ 4 & 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \begin{bmatrix} -.6 & -.1 & .4 \\ .2 & 0 & -.2 \end{bmatrix}$$

- We're building A as a linear combination of the columns of U
- Using all columns of *U*, we'll rebuild the original matrix perfectly
- But, in real-world data, often we can just use the first few columns of *U* and we'll get something close (e.g. the first *A*_{partial}, above)

- We can call those first few columns of *U* the Principal Components of the data
- They show the major patterns that can be added to produce the columns of the original matrix
- The rows of **V**^T show how the *principal components* are mixed to produce the columns of the matrix

We can look at Σ to see that the first column has a large effect

while the second column has a much smaller effect in this example

- For this image, using only the first 10 of 300 principal components produces a recognizable reconstruction
- So, SVD can be used for image compression

Principal Component Analysis

$$\begin{bmatrix} -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \qquad \begin{bmatrix} A_{partial} \\ 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

- Remember, columns of **U** are the *Principal Components* of the data: the major patterns that can be added to produce the columns of the original matrix
- One use of this is to construct a matrix where each column is a separate data sample
- Run SVD on that matrix, and look at the first few columns of *U* to see patterns that are common among the columns
- This is called Principal Component Analysis (or PCA) of the data samples

Principal Component Analysis

$$\begin{bmatrix} -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \qquad \begin{bmatrix} A_{partial} \\ 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

- Often, raw data samples have a lot of redundancy and patterns
- PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data
- By representing each sample as just those weights, you can represent just the "meat" of what's different between samples.
- This minimal representation makes machine learning and other algorithms much more efficient

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm

Computers can compute SVD very quickly. We'll briefly discuss the algorithm, for those who are interested.

71

Addendum: How is SVD computed?

- For this class: tell MATLAB to do it. Use the result.
- But, if you're interested, one computer algorithm to do it makes use of Eigenvectors
 - The following material is presented to make SVD less of a "magical black box." But you will do fine in this class if you treat SVD as a magical black box, as long as you remember its properties from the previous slides.

Eigenvector definition

- Suppose we have a square matrix **A**. We can solve for vector x and scalar λ such that $\Delta x = \lambda x$
- In other words, find vectors where, if we transform them with **A**, the only effect is to scale them with no change in direction.
- These vectors are called eigenvectors (German for "self vector" of the matrix), and the scaling factors λ are called eigenvalues
- An m x m matrix will have ≤ m eigenvectors where λ is nonzero

Finding eigenvectors

- Computers can find an x such that $Ax = \lambda x$ using this iterative algorithm:
 - x=random unit vector
 - while(x hasn't converged)
 - x=Ax
 - normalize x
- x will quickly converge to an eigenvector
- Some simple modifications will let this algorithm find all eigenvectors

Finding SVD

- Eigenvectors are for square matrices, but SVD is for all matrices
- To do svd(A), computers can do this:
 - Take eigenvectors of AA^T (matrix is always square).
 - These eigenvectors are the columns of U.
 - Square root of eigenvalues are the singular values (the entries of Σ).
 - Take eigenvectors of A^TA (matrix is always square).
 - These eigenvectors are columns of **V** (or rows of **V**^T)

Finding SVD

- Moral of the story: SVD is fast, even for large matrices
- It's useful for a lot of stuff
- There are also other algorithms to compute SVD or part of the SVD
 - MATLAB's svd() command has options to efficiently compute only what you need, if performance becomes an issue

A detailed geometric explanation of SVD is here: http://www.ams.org/samplings/feature-column/fcarc-svd

What we have learned

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Singular Value Decomposition (SVD)
 - Use for image compression
 - Use for Principal Component Analysis (PCA)
 - Computer algorithm