Text file to create

We need to set red words

The blue part can be omitted

■ Neural network setting 「NET.txt」

- Nedrai network setting 'NE nixt's						
CrossEntropy	Square or CrossEntropy					
BATCH_SIZE 50	Mini batch size					
EPOCH 10	Epoch number					
LAMBDA 0.000000	Load decay (weight decay)					
EPS 0.001000	Learning rate					
OPTIMIZER Adam	Optimizer					
VALIDATION_NUM 100	Number of Validation data					
ERROR_PLOT_STEP 10	Graph data output interval(gnuplot format)					
TEST_SAMPLE 10	Number of test data samples					
	·					
	*xoptimizer solver is listed on the final page					

^{*} Leave the setting of LAMBDA to 0 (there is a problem)

■ Layer setting 「LAYER.txt」

LAYER 4	Number of layers
1 [28, 28]	Input feature map from left, input unit width, input unit
	height
Each layer setting	
See layer description	※ Width and height are numbers when input units
	are regarded as a matrix
END	and regarded at the same

■ Describing layers Fully Connected layer

LAYER_TYPE_FullyConnected/layerName 1 [7, 7] -> [1, 10] Softmax	From the left, input of feature map, output unit width, output unit height, start function				
	X The width and height are the numbers when looking at the input device as a matrixX Activation function described on final page				

Convolutional layer

LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,					
20 [28, 28]->(5 , 5)->[28, 28] st 1 ReLU	convolution height, stride, activation function					

maxPooling layer

LAYER_TYPE_maxPooling/layerName	From the left, input feature map, convolution width,
20 [28, 28]->(4, 4)->[7, 7] st 4 Identity	convolution height, stride, activation function

Dropout layer

LAYER_TYPE_Dropout/layerName	From the	e left,0.5	is	the	dropout	rate,	activation
0.5 Identity	function						

ReLU

 $\frac{\tanh(x/2)+1}{2}$ Sigmoid

■Optimizer solver

Adam

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla E(\mathbf{w}^t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \nabla E(\mathbf{w}^t)^2$$

$$\hat{m} = \frac{m_{t+1}}{1 - \beta_1^t}$$

$$\hat{v} = \frac{v_{t+1}}{1 - \beta_2^t}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$$

 α =0.001, β 1 =0.9, β 2 =0.999, ϵ =10E-8

AdaGrad

$$egin{aligned} h_0 &= \epsilon \ h_t &= h_{t-1} +
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t}} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 ϵ =10E-8 ,η 0 =0.001

RMSprop

$$egin{aligned} h_t &= lpha h_{t-1} + (1-lpha)
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t} + \epsilon} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 α =0.99, ϵ =10E-8, η 0=0.01

AdaDelta

$$egin{aligned} h_t &=
ho h_{t-1} + (1-
ho)
abla E(\mathbf{w}^t)^2 \ v_t &= rac{\sqrt{s_t + \epsilon}}{\sqrt{h_t + \epsilon}}
abla E(\mathbf{w}^t) \ s_{t+1} &=
ho s_t + (1-
ho) v_t^2 \ \mathbf{w}^{t+1} &= \mathbf{w}^t - v_t \end{aligned}$$

 ρ =0.95, ϵ =10E-6

SGD

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta \frac{\partial E(\mathbf{w}^t)}{\partial \mathbf{w}^t}$$

η=0.01