CSCI 4100 Assignment 4 Boliang Yang 661541863

1. Exercise 2.4 in LFD

(a) We can construct a nonsingular $(d+1)\times (d+1)$ matrix whose rows represent the (d+1) points, that is, put (d+1) input vectors $x_n\in R^{d+1}$ to be $X\in R^{(d+1)\times (d+1)}$ whose rows represent x_n , then we define the target vector $y\in R^{d+1}$.

Suppose
$$G = \begin{bmatrix} w^T x_1 \\ \vdots \\ w^T x_{d+1} \end{bmatrix} = Xw$$
, where $w \in R^{d+1}$ since there's hypothesis $g(x_i) = x_i$

 $sign(w^Tx_i)$. To show that (d+1) points in X that the perceptron can shatter we

can show that
$$\operatorname{sign}(G) = \begin{bmatrix} \operatorname{sign}(w^T x_1) \\ \vdots \\ \operatorname{sign}(w^T x_{d+1}) \end{bmatrix} = \operatorname{sign}(Xw) = y$$
 has solution for w, that

is, we show G = Xw has solution for w where sign(G) = y. Since there exists a X such that X is nonsingular, and $w = X^{-1}G$, we can then construct a linearly

$$\text{independent matrix: } \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}. \text{ Thus we show } (d+1) \text{ points in } X$$

that the perceptron can shatter and therefore, $d_{vc} \ge d + 1$.

(b) Suppose input space X is (d+1) dimension, $x_1, x_2, \ldots, x_{d+1}$ are linearly independent and form a basis for X. Now there is a x_{d+2} , by the fact that any d+2 vectors of length d+1 have to be linearly dependent. Then there exists $a_1, a_2, \ldots, a_{d+1} \in R$ such that $x_{d+2} = a_1x_1 + \cdots + a_{d+1}x_{d+1}$. Then $g(x_{d+2}) = \operatorname{sign}(w^Tx_{d+2}) = \operatorname{sign}(w^Ta_1x_1 + \cdots + w^Ta_{d+1}x_{d+1}) = \operatorname{sign}(\sum_{i=1}^{d+1} a_iw^Tx_i)$. Now we assign $g(x_i)$ to +1 if $a_i > 0$ and $g(x_i)$ to -1 if $a_i < 0$. Then when $a_i > 0$, $g(x_i) = +1$, $w^Tx_i > 0$, and $a_iw^Tx_i > 0$; when $a_i < 0$, $g(x_i) = -1$, $w^Tx_i < 0$, and $a_iw^Tx_i > 0$. Now we have $\sum_{i=1}^{d+1} a_iw^Tx_i > 0$, $g(x_{d+2}) = +1$. When we choose the class of other vectors carefully like this way, then the classification of x_{d+2} is dictated: here $g(x_{d+2}) = +1$ and cannot be -1. Thus, d+2 points cannot be shattered, and $d_{vc} \le d+1$.

2. Problem 2.3 in LFD

(a) Positive or negative rays:

For N points, there are N+1 regions and the rays have two endpoints which can be put into N+1 regions. To compute $m_H(N)$, we consider to add both ends are in same point, then $m_H(N) = \binom{N+1}{2} + 1 = \frac{N(N+1)}{2} + 1$. Since $\frac{N(N+1)}{2} + 1 \leq \sum_{i=0}^2 \binom{N}{i}$, then by Theorem 2.4, $d_{vc} = k - 1 = 2$.

(b) Positive or negative interval:

To compute $m_H(N)$, we have $\binom{N+1}{2}$ choices with two sets of values (+1, -1).

Thus, $m_H(N)=2\left(\binom{N+1}{2}+1\right)=N^2+N+2$. Since $N^2+N+2\leq \sum_{i=0}^3\binom{N}{i}$, then by Theorem 2.4, $d_{vc}=k-1=3$.

(c) Two concentric spheres in \mathbb{R}^d :

This problem is same as positive intervals, because we can rewrite the problem as $r=\sqrt{x_1^2+\cdots+x_d^2}$, where $a\leq r\leq b$. Then, $m_H(N)=\binom{N+1}{2}+1=\frac{1}{2}N^2+\frac{1}{2}N+1$. Since $\frac{1}{2}N^2+\frac{1}{2}N+1\leq \sum_{i=0}^2\binom{N}{i}$, then by Theorem 2.4, $d_{vc}=k-1=2$.

3. Problem 2.8 in LFD

We can verify if the function is possible growth function by Theorem 2.4.

$$1+N$$
: Possible, $m_H(N) \leq \sum_{i=0}^1 {N \choose i} = 1+N$.

$$1 + N + \frac{N(N-1)}{2}$$
: Possible, $m_H(N) \le \sum_{i=0}^{2} {N \choose i} = 1 + N + \frac{N(N-1)}{2}$.

 2^N : Possible, if no break point exists, then $m_H(N) = 2^N$.

 $2^{\left|\sqrt{N}\right|}$: Impossible, break point is 2 since $m_H(2)=2^{\left|\sqrt{2}\right|}=2<2^2$. Then by Theorem 2.4 we have $m_H(N)\leq \sum_{i=0}^{2-1}{N\choose i}=1+N$, but $m_H(25)=2^{\left|\sqrt{25}\right|}=2^5=32>1+25$. Thus, there is a contradiction.

 $2^{\lfloor N/2 \rfloor}$: Impossible, break point is 2 since $m_H(2) = 2^{\lfloor 2/2 \rfloor} = 2 < 2^2$. Then by Theorem 2.4 we have $m_H(N) \leq \sum_{i=0}^{2-1} \binom{N}{i} = 1 + N$, but $m_H(6) = 2^{\lfloor 6/2 \rfloor} = 2^3 = 8 > 1 + 6$. Thus, there is a contradiction.

$$1 + N + \frac{N(N-1)(N-2)}{6}$$
: Impossible, break point is 2 since $m_H(2) = 1 + 2 = 3 < 2^2$.

Then by Theorem 2.4 we have $m_H(N) \leq \sum_{i=0}^{2-1} {N \choose i} = 1 + N$, but $m_H(3) = 1 + 3 + 1 = 5 > 1 + 3$. Thus, there is a contradiction.

4. Problem 2.10 in LFD

Suppose $m_H(N)=k>0$ where k is the maximum number of dichotomies that H can implement on N points. Then for any 2N points, it can be first N points plus a second N points, each of which have at most k dichotomies. Thus, for 2N points we at most can implement $k\times k$ combinations, then $m_H(2N)\leq k^2=m_H(N)^2$.

Then from generalization bound, we have $E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}} \leq$

$$E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(N)^2}{\delta}}.$$

5. Problem 2.12 in LFD

From generalization bound, we have $N \geq \frac{8}{\epsilon^2} \ln \frac{4((2N)^{d_{vc}}+1)}{\delta}$, where $d_{vc}=10, \delta=$

$$1 - 0.95 = 0.05$$
, $\epsilon = 0.05$. Then $N \ge \frac{8}{0.05^2} \ln \frac{4((2N)^{10} + 1)}{0.05}$.

For N = 10000, then $N \ge 330934$.

For N = 330934, then $N \ge 442912$.

For N = 442912, then $N \ge 452239$.

For N = 452239, then $N \ge 452906$.

For N = 452906, then $N \ge 452953$.

For N = 452953, then $N \ge 452956$.

For N = 452956, then $N \ge 452956$.

Sample size N converges to 452956. Thus, $N \ge 452957$.