Mid-term Exam I Microelectronics (III) NCKUEE 10/26/2010

- (10%) 1. Feedback circuits can be classified into four basic topologies (e.g. Trans...amplifier). As shown in Fig. P1(a) and (b), please respectively specify which types the two configurations are. Explain your reasons.
- R_2 V_s V_s
- (20%) 2. The open-loop gain Bode plot of an op amp is shown in Fig. P2. It's a three-pole system with pole locations on $10^6 \ 10^8$ and $10^9 \ Hz$. If the op amp is connected in the non-inverting configuration, as shown in Fig. P1(a).
 - (a) What is the acceptable range of (R_2/R_1) to prevent the system from unstable operation? (10%)
 - (b) If the phase margin of 63° is required, please find the unity-gain bandwidth of loop gain (A β), and the closed-loop gain.(10%)

(15%) 3. Consider a closed-loop circuit shown in Fig. P3. Assume input resistance of the basic amplifier is infinite, open-loop gain $\mu=10^3$ V/V, $r_o=R_L=100$ k Ω , $R_1=R_2=50$ k Ω , $C_L=1$ p F, please calculate the DC-gain of the loop gain, and the dominant pole location of the loop gain.

- (20%) 4. Fig. P4(a) shows the simplified small-signal circuit of a two-stage OP before frequency compensation. Let $G_{m1}=1m$ A/V, $G_{m2}=2m$ A/V, $R_1=R_2=100k$ Ω , $C_1=0.5p$ F, $C_2=1p$ F.
 - (a) Calculate the pole locations of the system.
 - (b) C_A is added as shown in Fig. P4(b). To obtain a dominant pole located on 10k Hz, please find C_A.
 - (c) C_C is inserted as shown in Fig. P4(c). To obtain a dominant pole located on 10k Hz, please find C_C .
 - (d) Please explain the benefit of inserting C_C .

- (15%) 5. A folded-cascode OPAMP is shown in Fig. P5, where $I_{M11}=100\mu~A,~I_{M9}=I_{M10}=300\mu~A,~and~|V_{OV}|~for~all \\ transistors~is~0.2~V.~Assume~V_{DD}=3.3~V,~Vtn=0.7~V,\\ |Vtp|=0.8~V,~and~C_L=1p~F,~please~find$
 - (a) input common-mode range. (5%)
 - (b) slew rate. Explain your answer. (10%)

- (20%) 6. A cascode current mirror is shown in Fig. P6(a), and a wide-swing current mirror is shown in Fig. P6(b). The $|V_{OV}|$ for all transistors is 0.2 V and the $|V_t|$ is 0.7 V. All transistors are identical.
 - (a) Please calculate $V_{\text{bias}1}$, $V_{\text{bias}2}$ and the minimum value of V_O in Fig. P6(a). (10%)
 - (b) Please calculate $V_{\text{bias3}},\ V_{\text{bias4}}$ and the minimum value of V_O in Fig. P6(b). (10%)

