第2回 不等式の証明 解答

※一部数 III の内容あり。

テーマ 2乗されたものは必ず0以上になる

問 1 $x^2 - 3x + 3 > 0$ を示せ。

$$x^{2} - 3x + 3 = \left(x - \frac{3}{2}\right)^{2} + \frac{3}{4} \ge \frac{3}{4} > 0$$

問 2 $(x^2-2x)^2+4(x^2-2x)+3\geq 0$ を示せ。

$$(x^{2}-2x)^{2}+4(x^{2}-2x)+3=\left\{(x^{2}-2x)+2\right\}^{2}-1$$

$$\texttt{ZZC} \quad (x^{2}-2x)+2=(x-1)^{2}+1\geq 1 \quad \texttt{\& 9}$$

$$\left\{(x^{2}-2x)+2\right\}^{2}-1\geq 1^{2}-1=0$$

問 3 $x^2 + 10y^2 - 6xy + 2x - 2y + 5 \ge 0$ を示せ。

また、等号が成り立つのはどのようなときか。

$$x^{2} + 10y^{2} - 6xy + 2x - 2y + 5 = x^{2} + (-6y + 2)x + 10y^{2} - 2y + 5$$
$$= \{x + (-3y + 1)\}^{2} + y^{2} + 4y + 4$$
$$= \{x + (-3y + 1)\}^{2} + (y + 2)^{2} \ge 0$$

等号が成り立つのはx + (-3y + 1)とy + 2が共に0、つまりx = -7, y = -2のとき

問 4 2x + y = 1(ただし $x \ge 0, y \ge 0$) のとき、 $x^2 + y^2 \le 1$ を示せ。

変数を一個消す。y=1-2x を与式に代入すれば、x だけの式となる。ただし、このままでは条件 $y\geq 0$ が自然消滅してしまうので、条件を x に引きつぐ。

$$y \ge 0 \to 1 - 2x \ge 0 \to x \le \frac{1}{2}$$

したがって、新たな条件は $0 \le x \le \frac{1}{2}$

(左辺) - (右辺) =
$$(x^2 + y^2) - 1$$

= $x^2 + (1 - 2x)^2 - 1$
= $5x^2 - 4x$
= $5\left(x - \frac{2}{5}\right)^2 - \frac{4}{5}$

これを $0 \le x \le \frac{1}{2}$ で調べると、上式は 0 以下になるはず。

問 5 a>b>0, c>d>0 ならば 2ac>ad+bc を示せ。

] 方針
$$a > b \rightarrow a - b > 0$$
, $c > d \rightarrow c - d > 0$

(左辺)
$$-$$
 (右辺) $= 2ac - ad - bc$
 $= (ac - ad) + (ac - bc)$
 $= a(c - d) + c(a - b)$
 $= \mathbb{E} \times \mathbb{E} + \mathbb{E} \times \mathbb{E} > 0$

テーマ 変数が正とわざわざ書いてあれば相加・相乗平均を疑え

問 6 a > 0, b > 0 のとき、 $(a+b)\left(\frac{1}{a} + \frac{4}{b}\right) \ge 9$ を示せ。 また、等号が成り立つのはどのようなときか。

(左辺)
$$-$$
 (右辺) $=$ $(a+b)\left(\frac{1}{a} + \frac{4}{b}\right) - 9$

$$= \frac{4a}{b} + \frac{b}{a} - 4$$

ここで $\frac{4a}{b} > 0$, $\frac{b}{a} > 0$ より相加・相乗平均の関係から

(左辺)
$$-$$
 (右辺) $= \frac{4a}{b} + \frac{b}{a} - 4 \ge 2\sqrt{\frac{4a}{b} \cdot \frac{b}{a}} - 4$
 $= 4 - 4 = 0$

等号条件は $\frac{4a}{b}=\frac{b}{a}$ 、 つまり $4a^2=b^2$ のとき

問 7 x > 2 のとき, $x + 1 + \frac{1}{x - 2} \ge 5$ を示せ。 また、等号が成り立つのはどのようなときか。

(左辺)
$$-$$
 (右辺) $=$ $\left(x+1+\frac{1}{x-2}\right)-5$ $= x-2+\frac{1}{x-2}-2$

ここでx-2>0より相加・相乗平均の関係から

(左辺)
$$-$$
 (右辺) $\geq 2\sqrt{(x-2) \cdot \frac{1}{x-2}} - 2$
= $2 - 2 = 0$

テーマ (左辺)-(右辺) がすべての基本

問 8 a>0, b>0 のとき, $\sqrt{8a+2b}\geq 2\sqrt{a}+\sqrt{b}$ を示せ。 また、等号が成り立つのはどのようなときか。

(左辺) > 0, (右辺) > 0より

(左辺)² - (右辺)² =
$$(8a + 2b) - (4a + b + 4\sqrt{ab})$$

= $4a - 4\sqrt{ab} + b$
= $(2\sqrt{a} - \sqrt{b})^2 \ge 0$

問 9 $4^x - 2^{x+2} \ge -4$ を示せ。

(左辺)
$$-$$
 (右辺) $= 4^x - 2^{x+2} + 4$
 $= 2^{2x} - 4 \cdot 2^x + 4$
 $= (2^x - 2)^2 > 0$

問 10 $\log_2(x+2) + \log_2(6-x) \le 4$ を示せ。

(右辺)
$$-$$
 (左辺) $= 4 - \log_2(x+2) - \log_2(6-x)$
 $= 4 - \log_2(x+2)(6-x)$
 $= 4 - \log_2\{-(x-2)^2 + 16\} \ge 4 - 4 = 0$

問 $11 \ x \ge 0$ のとき、 $x^3 + 16 \ge 12x$ を示せ。

$$f(x) = x^3 - 12x + 16 \ge UT$$

$$f'(x) = 3x^2 - 12$$
$$= 3(x+2)(x-2)$$

x	0		2	
f'(x)		_	0	+
f(x)		>	極小	7

増減表より $f(x) \ge f(2) = 0$

問 12 n が 3 以上の自然数で $0 \le x \le 1$ のとき、

$$\frac{1}{1+x^2} \leq \frac{1}{1+x^n} \leq 1$$

が成り立つことを利用して、

$$\frac{\pi}{4} < \int_0^1 \frac{1}{1+x^n} dx < 1$$

を示せ。

解答略