Chapter 7

Steady-State Errors

Test inputs for steadystate error analysis and design vary with target type

Figure 7.2
Steady-state error:
a. step input;
b. ramp input

©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e

Closed-loop control system error:

- a. general representation;
- **b.** representation for unity feedback systems

System with:

- **a.** finite steady-state error for a step input;
- **b.** zero steady-state error for step input

Figure 7.5 Feedback control system for

Example 7.2

Figure 7.6 Feedback control system for

Example 7.3

Figure 7.7
Feedback
control systems
for Example 7.4

Feedback control system for defining system type

A robot used in the manufacturing of semiconductor random-access memories (RAMs) similar to those in personal computers. Steady-state error is an important design consideration for assembly-line robots.

Feedback control system for Example 7.6

Figure 7.11 Feedback control system showing

disturbance

Figure 7.11 system rearranged to show disturbance as input and error as output, with R(s) = 0

Figure 7.13 Feedback control system for Example 7.7

Figure 7.14 System for Skill-Assessment

Exercise 7.4

Figure 7.15
Forming an equivalent unity feedback system from a general nonunity feedback system

Figure 7.16 Nonunity feedback control system for Example 7.8

Figure 7.17 Nonunity feedback control system with disturbance

Figure 7.18 Nonunity feedback system for Skill-Assessment Exercise 7.5

Feedback control system for Examples 7.10 and 7.11

Feedback control system for Example 7.12

System for Skill-Assessment Exercise 7.6

Video laser disc recording: control system for focusing write beam

Video disc laser recording:

- a. focus detector optics;
- **b.** linearized transfer function for focus detector

Figure 7.24
Video laser disc
recording focusing
system

Figure P7.13
Closed-loop
systems with
nonunity
feedback

Figure P7.18
System with input and disturbance

Figure P7.20 System with input and disturbance

Automobile guidance system

a. displacement control system;

b. velocity control loop

Figure P7.22 Block diagram of a paramagnetic oxygen analyzer

Figure P7.23
Space
station Freedom:
a. configuration
(© 1992 AIAA)
(figure continues)

Figure P7.23
(continued)
b. simplified block
diagram
c. alpha joint drive
train and control
system (©1992 AIAA)

Figure P7.24 Position control system

Boat tracked by ship's radar: **a.** physical arrangement; **b.** block diagram of tracking system

Figure P7.26 Simplified block diagram of a pilot in a loop (©1992 AIAA)

a. Force control mechanical loop under contact motion (©1996 IEEE);
b. block diagram (©1996 IEEE)

