Alocação Multi-objetivo Baseada em Recursos e Ocupação de Turmas em Laboratórios

Disciplina:

Simulação Discreta de Sistemas

Alunos:

Júlio Zomer Rudson Mendes

Código no GitHub: https://github.com/rudsonm/alocacao-turmas

Contexto

- Algumas disciplinas necessitam de recursos e artefatos para auxiliarem o estudo e completo entendimento de determinados assuntos.
- O mal uso do laboratório no que se diz respeito a ocupação é um problema recorrente, onde são alocadas disciplinas que possuem um número maior de alunos do que o laborátorio comporta, proporcionando uma má experiência aos envolvidos.

Problema

Minimizar o número de recursos não atendidos.

 Minimizar a fragmentação interna da ocupação dos alunos de uma turma para um laboratório, penalizando a sobrecarga quando houver.

Variáveis

- Para resolução do problema algumas variáveis devem ser estabelecidas.
- A alteração dessas variáveis influencia diretamente no resultado da solução de um problema.

Variáveis

Variáveis diretamente ligadas com o problema:

- Recursos
- Disciplinas (alunos, recursos necessários)
- Laboratórios (capacidade, recursos disponíveis)
- Peso do atendimento dos recursos
- Peso da ocupação de turmas em laboratórios

Variáveis

Variáveis ligadas com os métodos de resolução:

 Número de iterações: define quantas iterações a heurística fará.

Variáveis ligadas com ambiente de simulação

• Velocidade: define o intervalo de tempo entre cada iteração.

Pesquisa Operacional

Lida com a aplicação de métodos analíticos para o auxílio de tomada de decisões.

Emprega aspectos de modelagem matemática, análise estatística e otimização matemática.

Pesquisa Operacional consegue levar à soluções ótimas ou próximas para diversos problemas, tais como os de tomada de decisão baseados em recursos (Taha 1992).

Modelo Matemático

Minimizar:

$$\frac{1}{P_r + P_o} \sum_{l \in L} \sum_{d \in D} X_{ld} [P_r \Delta(A_d, C_l) + P_o(R_d \quad |R_d \cap S_l|)]$$

Restrições:

subject to:

$$\sum_{d \in D} X_{ld} \le O_l + 1 \qquad \forall l \mid l \in L$$

$$\sum_{l \in L} X_{ld} \le s + 1 \qquad \forall d \mid d \in D$$

$$P_r + P_o \ge 0$$

Heurística

Em diversos campos de estudo muitos problemas computacionais são resolvidos através de algoritmos. Entretanto para alguns problemas mais complexos, onde a complexidade é muito alta, estes algoritmos demandam demasiado tempo para serem resolvidos (Zong et al 2001, Eglese 1990).

Heurística nada mais é do que um método não exato para resolver um problema. Isto é, tende a se aproximar do objetivo, de maneira a entregar uma solução razoável num tempo computacional também aceitável. Permite uma troca flexível entre tempo computacional e qualidade de solução (Hansen and Zhou 2007).

Heurísticas Empregadas

- Para resolver o problema descrito foram adotadas quatro buscas heurísticas, sendo uma construtiva, uma monótona e duas não monótonas:
- Busca Construtiva
- Caminhada Aleatória
- Busca Iterada
- Busca Tabu

Estratégia de Vizinhança

Novas soluções são geradas a partir de uma solução incumbente, onde a diferença entre soluções vizinhas são somente uma alocação.

Para cada laboratório são alocadas todas as disciplinas, onde para cada alocação é gerada uma solução vizinha.

Soluções que não atendem às restrições impostas no modelo matemático são desconsideradas, portanto descartadas.

Busca Construtiva

O conjunto de disciplinas são ordenadas em ordem decrescente de acordo com o número de recursos que as mesmas necessitam.

Percorre-se todas as disciplinas, onde para cada é escolhida a melhor alocação para a mesma, ou seja, que possui a melhor contribuição para a solução.

Caminhada Aleatória

Dentre as soluções vizinhas são selecionadas as soluções onde o valor de avaliação seja melhor que o valor da solução incumbente.

De maneira aleatória é escolhida uma solução dentre o conjunto das melhores soluções da iteração corrente. A solução escolhida se torna a próxima solução incumbente.

A heurística tem por fim o momento em que não há solução vizinha melhor que a atual.

Busca Iterada

A cada iteração é selecionada uma solução vizinha a incumbente, a próxima solução é admitida pela melhor solução vizinha. Caso não haja uma melhora, a solução incumbente é perturbada de tal forma que algumas alocações são definidas aleatoriamente.

Busca Tabu

São definidas restrições tabu, estas restrições possuem a princípio um tamanho fixo. Estas restrições são as melhores alocações encontradas, onde a cada iteração é escolhida a melhor alocação para ser adicionada ao conjunto de restrições tabu.

Caso o conjunto esteja completamente cheio, a entrada de uma nova restrição ocorre após a remoção de uma restrição tabu, gerando um ciclo.

15

Combinação de Heurística

É comum uma heurística partir de uma solução inicial, sendo essa muitas vezes responsável por levar a atingir um valor de melhor qualidade para o problema.

Uma busca construtiva constrói iterativamente uma solução, esta solução pode ser utilizada como variável de entrada para outras buscas.

Uma busca heurística aplicada em torno de uma solução inicial tende a levar a melhores resultados conforme um tempo computacional extra (Zilberstein 1996).

 Os laboratórios são representados por circulos preenchidos. A capacidade de cada laboratório reflete no tamanho do círculo, ou seja, quanto maior a capacidade de um laboratório maior será seu circulo.

 Disciplinas são representadas por círculos não preenchidos, somente possuindo bordas. A quantidade de alunos de uma disciplina reflete diretamente no tamanho do circulo que a representa.

 As alocações de turmas em laboratórios são representadas com ambas as representações de disciplinas em laboratórios, onde o círculo da disciplina sobrepõe ao circulo do laboratório, indicando que uma disciplina encontra-se alocada em um determinado laboratório.

 O gráfico representa a mudança da qualidade de soluções, cada ponto representa a melhor solução encontrada em determinada iteração. O índice mais alto é representado pela pior qualidade encontrada, enquanto em contra partida o ponto mais baixo é representado pela melhor qualidade. Linhas verdes representam uma melhora, linhas vermelhas uma piora na qualidade da solução.

Laboratórios:

Nome	Computadores	Recursos Disponíveis
Laboratorio 1	10	0, 4, 7
Laboratorio 2	25	2, 3, 4
Laboratorio 3	30	5, 6
Laboratorio 4	30	-
Laboratorio 5	25	0, 1, 4
Laboratorio 6	25	0, 4, 7
Laboratorio 7	10	2, 3, 4
Laboratorio 8	31	5, 6
Laboratorio 9	21	-
Laboratorio 10	25	0, 1, 4
Laboratorio 11	25	0, 1, 4

• Recursos:

Código	Recurso		
0	Portugol Studio	9	Open MP
1	Code Blocks	10	Logisim
2	NetBeans	11	Quartus II
3	Postgres	12	Mars
4	Enterprise Architect	13	Max+Plus
5	MatLab	14	Bipide
6	JFlap	15	XAMPP
7	Gals	16	NetLogo
8	Corel Draw	17	Balsamiq

Disciplinas:

Disciplina	Recursos Necessários
Algoritmos e Programacao I	0
Computação Basica	11
Algoritmos e Programacao II	1
Circuitos Digitais	10, 13
Arquitetura E Organização de Computadores I	1, 11, 12
Estruturas de Dados	1
Programação I	2, 4
Programação II	2, 14
Arquitetura E Organização de Computadores II	1, 9

Disciplinas:

Disciplina	Recursos Necessários
Calculo Númerico	-
Eng. De Software I	4
Banco de Dados I	3
Sistemas Operacionais	1, 5
Tópicos especiais em Programação	1
Banco de Dados II	3
Eng. De Software II	-
Simulacao Discreta de Sistemas	16
Grafos	-

Disciplinas:

Disciplina	Recursos Necessários
Discipilla	Recuisos Necessarios
Automatos e Linguagens Formais	2, 6, 7
Redes e Sistemas de Computadores I	5
Inteligencia Artificial I	-
Complexidade de Algoritmos	-
Compiladores	-
Eng. De Software III	-
Redes e Sistemas de Computadores II	5
Inteligencia Artificial II	-
Sistemas Distribuidos	-
Tópicos Especiais em Computação I	-
Eng. de Usabilidade	17
Tópicos Especiais em Computação II	-

Resultados

Heurística	Qualidade	Iterações
Construtiva	204.0000000000003	1
Iterada	583.33333333333	12
Tabu	422.3333333333333	8
Random Walker	497.666666666666	13
C Iterada	59.33333333333364	9
C Tabu	204.0000000000003	12
C Random Walker	60.0000000000014	14

Alocação Multi-objetivo Baseada em Recursos e Ocupação de Turmas em Laboratórios

Disciplina:

Simulação Discreta de Sistemas

Alunos:

Júlio Zomer Rudson Mendes

Código no GitHub: https://github.com/rudsonm/alocacao-turmas