Deep learning
systems
deployment.
How to do
inference as fast
as hell.

So we have trained ML model. What's next?

Simple setup: user requests prediction for some data

What can go wrong with model.predict(...)?

Standard method **predict** in your favourite ML library/framework could not be the best choice for **production**

- Heavy loaded by python bindings, training modules, etc
- Naive computation on CPU
- Bad performance on parallel queries

How to improve performance?

Level 1: Make the most from your **Hardware**

All sorts of processor units

There is **no one main processor** to rule them all, there are a lot of different chips with **plenty of architectures**

- CPU x86, amd64, ARM, etc
- GPU Tesla, Pascal, TeraScale, RDNA, etc
- + TPU, FPGA, VPU, NPU, etc

Units fancy schemas - CPU

OUTPUT

Units fancy schemas - GPU

OUTPUT

Units fancy schemas - TPU (load)

OUTPUT

Units fancy schemas - TPU (compute)

OUTPUT

see: https://cloud.google.com/tpu/docs/intro-to-tpu

Compute-in-Memory

Processing unit & Conventional memory Pro

Processing unit & Computational memory

Analog computing

Ohm's law

U = IR

Analog computing

AVX-512 Vector Neural Network Instructions x86

Meet the OpenVINO

OpenVINO - Open Visual Inference and Neural network Optimization

Meet the OpenVINO

Two major components:

- Neural Network Compression Framework (NNCF)
- Inference Engine

• Leveraging processor units architecture capabilities

- Leveraging processor units architecture capabilities
- Inference Engine Async

Sync Mode

Async Mode

- Leveraging processor units architecture capabilities
- Inference Engine Async
- Throughput/Latency Mode for CPU

Conventional Approach

Every CNN op is internally parallelized over **full** number of CPU cores => bad for non-scalable ops

A lot of sync between many threads =>overhead

Only option to improve efficiency is batching

Streams

CPU cores are evenly distributed between execution streams (each 1-4 threads)

Less threads per stream => less sync, better locality, finer granularity

Requests are executed in parallel, each with small #threads

AYER-WISE THE STREAMS IMPLY MUCH LESS SYNCH

Large Batch Approach

All threads are doing all inputs at once

Assumes all layers are parallelized well

"Fat" requests are executed one by one

Streams

CPU cores are evenly distributed between (execution) streams

"Parallelize the outermost loop" rule of thumb

Individual requests are executed in parallel

INPUTS-WISE THE STREAMS ARE THE "TRANSPOSED" BATCH

- Leveraging processor units architecture capabilities
- Inference Engine Async
- Throughput/Latency Mode for CPU
- Heterogeneous mode single inference on different devices

How to improve performance?

Level 1: Make the most from your **Hardware**

Level 2: Make the most from your **Neural Network**

Repack NN

TorchScript - compiled language, optimized for run torch models

- No python dependency
 - Can be embedded into other native apps (e.g. in C++)
 - Do not lock GIL in python
- Faster execution due to statically typed, jit-compiled runtime

Repack NN

ONNX - Open Neural Network Exchange, unified format with common set of operators for NN

- Engine agnostic format enables you to convert any NN format to any other
- Can run on almost any inference engine for NN

- Quantization
- Pruning

- Quantization
- Pruning
- Format Intermediate Representation (IR)

Intermediate Representation (IR)

- Encode NN for different precisions (FP32, FP16, INT8, etc)
- Plenty of optimization techniques
 - Linear Operations Fusing
 - Specialized optimizations (ResNet optimization, Grouped Convolution Fusing for TF, etc)

Batch Normalization and Scale
Shift are just Mul → Add sequence
which can be fused into one layer

Benchmarking INT8 vs FP32 on different Intel Chips

How to improve performance?

Level 1: Make the most from your **Hardware**

Level 2: Make the most from your **Neural Network**

Level 3: Make the most from your **Cluster**

Naive and simple approach

One model to one GPU

Problems with naive approach

Uncontrolled workload can lead to OOM

Problems with naive approach

- Uncontrolled workload can lead to OOM
- Overload of one GPU and idling of remained cluster

Problems with naive approach

- Uncontrolled workload can lead to OOM
- Overload of one GPU and idling of remained cluster
- Model can be bigger than one GPU

Solution - make one **mega GPU** by **clustering** multiple simple GPUs

Meet the Nvidia Triton

Meet the Nvidia Triton

Features

- Spread models across all units (GPU & CPU)
- Combine individual inference requests together
- Use multi-node inference for large models (via NCCL)
- Autoscale cluster for workload

How to improve performance?

Level 1: Make the most from your Hardware

Level 2: Make the most from your **Neural Network**

Level 3: Make the most from your **Cluster**

Tip: move your NN to client's device

Native apps

- Core ML library for iOS
 - Runs natively on mobile devices
 - Has libs for NLP, CV, Speech and Sound Analysis
 - Can be accelerated by BNNS and Metal framework
- ML Kit library for Android
 - Runs natively on mobile devices
 - Has libs for common tasks object detection, language processing and for mobile specific - barcode scanning, digital inc recognition, selfie segmentation, etc
 - Can be accelerated by NPUs

Tensorflow JS

- Runs natively in web browser
- Has a lot of libraries by community
- Can be accelerated by WebGL

Credits for icons

Neural Network by Ian Rahmadi Kurniawan from NounProject.com

User by Heztasia from NounProject.com

Document by Heztasia from NounProject.com