§ 20. Атом Бора. Реитгеновские лучи

В этом разделе используются данные таблиц 3 и 19 $_{
m HB}$ ножения. В задачах 20.5, 20.33 дан авторский вариант решения

20.1. Найти раднусы r_k трех первых боровских электронных орбит в атоме водорода и скорости ν_k электрона на них.

Решение:

На электрон, движущийся в атоме водорода по k -й боровской орбите, действует кулоновская сила $F=\frac{e^2}{4\pi\varepsilon_0r_k^2}$ (1), где e— заряд электрона. Эта сила является центростремительной и сообщает электрону нормальное ускорение $a_n=\frac{v_k^2}{r_k}$ — (2), где v_k — скорость электрона на k -й орбите. По второму закону Ньютона $F=ma_n$ — (3). Подставляя (1) и (2) в (3), получим $\frac{e^2}{4\pi\varepsilon_0r_k^2}=\frac{mv_k^2}{r_k}$, откуда $r_k=\frac{e^2}{4\pi\varepsilon_0mv_k^2}$ — (4). Согласно первому постулату Бора движение электрона вокруг ядра возможно только по определенным орбитам, радиусы которых удовлетворяют соотношению $mv_kr_k=k\frac{h}{2\pi}$ — (5). Решая совместно урав-

нения (4) и (5), пайдем $v_k = \frac{e^2}{2\varepsilon_0 kh}$ и $r_k = \frac{\varepsilon_0 k^2 h^2}{\pi m e^2}$. По ре-

зультатам вычислений составим таблицу.

k	1	2	.3
v, 10° v c	2,18	1,08	0.73
r, 10 ⁻¹² M	52.9	211,6	476,!

20.2. Найти кинетическую W_{κ} , потенциальную W_{κ} и полную **у** энергии электрона на первой боровской орбите.

Решение:

Скорость движения электрона по k -й орбите $v_k = \frac{e^2}{2\varepsilon_0 kh}$ — (1) (см. задачу 20.1). Кинетическая энергия электрона на k -й орбите $W_{\kappa(k)} = \frac{mv_k^2}{2}$ — (2). Подставляя (1) в (2), получим $W_{\kappa(k)} = \frac{me^4}{8\varepsilon_0^2h^2k^2}$. По условию k=1. Подставляя числовые данные, получим $W_{\kappa(l)} = 21.78\cdot 10^{-19}\,\mathrm{Дж} = 13.6\,\mathrm{эB}$. Потенциальная энергия электрона $W_{\kappa(l)} = -2W_{\kappa(l)} = -27.2\,\mathrm{эB}$. Полная энергия электрона $W_{\kappa(l)} = W_{\kappa(l)} = -13.6\,\mathrm{эB}$.

20.3. Найти кинетическую энергию W_{κ} электрона, находяшегося на k-й орбите атома водорода, для k=1,2,3 и ∞ .

Решение:

Кинетическая энергия электрона на k -й орбите $W_{\kappa(k)} = \frac{mv_k^2}{2}$ (см. задачу 20.2). Если k=1, то $W_{\kappa(1)}=13.6$ эВ. Если k=2, то $W_{\kappa(1)}=3.4$ эВ. Если k=3, то $W_{\kappa(1)}=1.51$ эВ. Если $k=\infty$, то $W_{\kappa(1)}=0$.

20.4. Найти период T обращения электрона на первой боровекой орбите атома водорода и его угловую скорость ω .

Решение:

Радиус k -й боровской орбиты электрона в атоме водорода и скорость движения электрона по k -й орбите соответ-

ственно равны
$$r_k = \frac{\varepsilon_0 k^2 h^2}{\pi m e^2}$$
 — (1) и $v_k = \frac{e^2}{2\varepsilon_0 kh}$ — (2) (см. задачу 20.1). Период обращения электрона $T_k = \frac{2m_k}{v_k}$ — (3). Подставляя (1) и (2) в (3), получим $T_k = \frac{4\varepsilon_0^2 k^3 h^3}{m e^4}$ — (4). Для $k=1$ найдем $T_i = 1.52 \cdot 10^{-16} \, \text{с.}$ Угловая скорость движения электрона по k -й орбите $\omega_k = \frac{2\pi}{T_k}$ — (5). Подставляя (4) в (5), получим $\omega_k = \frac{\pi m e^4}{2\varepsilon^2 k^3 h^3}$. Для $k=1$

20.5. Найти наименьшую λ_{min} и наибольшую λ_{max} длины воли спектральных линий водорода в видимой области спектра.

Решение:

найдем $\omega_1 = 4.13 \cdot 10^{16}$ рад/с.

Длины волн спектральных линий водорода всех серий определяются формулой $\frac{1}{\hat{\lambda}} = R \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$ — (1).

k	n	Серия	Область
1	2.3.4	Лаймана	Ультрафиолетовая
2	3.4.5	Бальмера	видимая
3	4.5,6	Паппена	инфракрасная
4	5,6,7	Бреккета	инфракрасная
5	6.7.8	Пфунда	инфракрасная

Таким образом, видимая облаеть спектра соответствует значениям k=2 и $n=3,\ 4,\ 5$... Очевидно, наименьшая 480

длина волны спектральных лиций этой серии будет при $n = \infty$. Тогда из (1) имсем $\frac{1}{\lambda_{min}} = \frac{R}{4}$ или $\lambda_{min} = \frac{4}{R} = 365$ нм (с точностью до грегьей значащей цифры). Наибольшая длина волны соответствует n = 3, при этом $\lambda_{min} = 656$ нм.

20.6. Найти напбольшую длипу волны λ_{min} в ультрафиолетовой области спектра водорода. Какую наименьшую скорость ν_{min} должны иметь электроны, чтобы при возбуждении атомов водорода ударами электронов появилась эта линия?

Решение:

Длины волн спектральных линий водорода всех серий определяются формулой $\frac{1}{\lambda} = R \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$ — (1). В ультрафиолетовой области k=1, n=2, 3, 4 ... — серия Лаймана. Наибольшая длина волны соответствует n=2, тогда из (1) имеем $\frac{1}{\lambda_{max}} = \frac{3R}{4}$ или $\lambda_{max} = \frac{4}{3R}$, где $R=1,1\cdot10^7\,\mathrm{M}^{-1}$ — постоянная Ридберга. Подставляя числовые данные, получим $\lambda_{max} = 121\,\mathrm{nm}$. С другой стороны, из соотношения де Брой-

ля для релятивистских частиц
$$\lambda_{m,x} = \frac{h}{mv_{min}} \sqrt{1 - \frac{v_{min}^2}{c^2}}$$
 — (3).

Приравнивая правые части соотношений (2) и (3), нолучим $\frac{4}{3R} = \frac{h}{mv} \sqrt{1 - \frac{v_{n+1}^2}{c^2}}, \text{ откуда наименьшая скорость, необ-$

ходимая для появления данной спектральной линии, равна

$$v_{min} = \frac{3Rhc}{\sqrt{16m^2c^2 + 9R^2h^2}} = 1.88 \cdot 10^6 \text{ m/c}.$$

16-3269 481

20.7. Найти потенциал понизации U_{j} атома водорода.

Решение:

Потенциал ионизации U_i атома определяется соотновшением $eU_i = A_i$, где A_i — работа по удалению электрона с пормальной орбиты на бесконечность. Для атома волорода $A_i = h \, v = h R c \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$. При k=1 и $n=\infty$ имеем $A_i = h R c$, потенциал ионизации $U_i = \frac{A_i}{e} = \frac{h R c}{e} = 13.6 \, \mathrm{B}$.

20.8. Найти первый потенциал возбуждения U_1 атома во дорода.

Решение:

Первый потенциал возбуждения атома водорода определяется из закона сохранения энергии $W_{\rm n(1)}=W_{\rm k(1)}-W_{\rm k(2)}$, где $W_{\rm n(1)}=eU_1$ — (2) — потенциальная энергия электропа.

необходимая для возбуждения.
$$W_{K(k)} = \frac{me^4}{8\varepsilon_0^2h^2k^2}$$
 — (3) (см. задачу 20.2) — кинетическая энергия электрона на по k -й орбите. Подставляя (2) и (3) в (1), получим $eU_1 = \frac{me^4}{8\varepsilon_0^2h^2} \left(\frac{1}{k_1^2} - \frac{1}{k_2^2}\right)$, откуда, учитывая, что $k_1 = 1$ и $k_2 = 2$, найдем $U_1 = \frac{3me^3}{32\varepsilon_0^2h^2} = 10.2$ В.

20.9. Какую наименьшую энергию W_{mm} (в электронво в (2x)) должны иметь электроны, чтобы при возбуждении атомов (5,2)0-рода ударами этих электронов появились все линии всех серей спектра водорода? Какую наименьшую скорость v_{mm} должны иметь эти электроны?

Решение:

Все линии всех серий спектра водорода появятся при ионизации атома водорода. Следовательно, наименьшая

энергия
$$W_{mm} = eU_i = \frac{mv_{mm}^2}{2}$$
 — (1). Поскольку $W_{mm} = 13.6 \text{ pB}$

(см
$$v$$
 задачу 20.7). то из (1) найдем $i_m = \sqrt{\frac{2eU}{m}} = 2.2 \cdot 10^6 \text{ м/c}.$

• 20.10. В каких пределах должна лежать энергия бомбардирующих электронов, чтобы при возбуждении атома водорода ударами этих электронов спектр водорода имел только одну спектральную линию?

Решение:

Энергия, необходимая для перевода атома в первое возбужденное состояние, $W_1 = 10.2 \, \mathrm{эB}$ (см. задачу 20.8). Энергия, необходимая для перевода атома во второе возбужденное состояние (k=1, n=3), $W_2 = 12.1 \, \mathrm{эB}$. Таким образом, спектр водорода будет иметь только одну спектральную линию, если энергия бомбардирующих электронов лежит в интервале $10.2 \le W \le 12.1 \, \mathrm{эB}$.

20.11. Какую наименьшую эцергию W_{min} (в электронвольтах) должны иметь электроны, чтобы при возбуждении атомов волорода ударами этих электронов спектр водорода имел три спектральные линии? Найти длины волн λ этих линий.

Решение:

Длины волн спектральных линий водорода для всех серий определяются формулой $\frac{1}{\lambda} = R \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$ — (1). Для серий

Лаймона первые две линии будут иметь следующие длины волн: 1) Если k=1 и n=2, то $\lambda_1=121$ нм. 2) Если k=1 и n=3, то $\lambda_2=102.6$ нм. Кроме того, первая линия в серии

Бальмера при k=2 и n=3 будет иметь длину во изы $\lambda_3=656.3$ им. Наименьшая энергия бомбардирующих электронов, исобходимая для возникновения дание х спектральных линий, W_{min} по закону сохранения энергии будет равна энергии, необходимой для перевода атома из основного во второе возбужленное состояние, \pm е, $W_{min}=W_{k(1)}-W_{k(3)}=12,03$ эВ.

20.12. В каких пределах должны лежать длины воли λ монохроматического света, чтобы при возбуждении атома водорода квантами этого света наблюдались три спектральные линии?

Решение:

Для паблюдения трех спектральных линий необходимо, чтобы мог осуществляться переход электронов в атоме водорода с первого электрического уровня на третий. В этом случае будут наблюдаться две линии серии Лаймана и одна линия серии Бальмера. Формула, позволяющая найти длины волн, соответствующие линиям водородного спектра, имеет вид $\frac{1}{2} = R \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$, где k и n — помера орбит, $R = 1.097 \cdot 10^7 \, \mathrm{m}^{-1}$ — постоянная Ридберга. Гогла $\lambda = \frac{k^2 n^2}{R(n^2 - k^2)}$. Для мишимальной длины волны k = 1 и n=3 , следовательно. $\lambda_{min}=\frac{9}{9\,R}=102.6\,\mathrm{HM}$. Для максимальпой длины волны k=1 и n=3, следовательно, $\lambda_{mn}=\frac{0}{e_{D}}=\frac{1}{e_{D}}$ = 102.6 нм. Для максимальной длины волны k = 1 и n = 2. $\lambda_{min} = \frac{4}{3R} = 121.5 \,\text{нм}$. Таким образом. $102.6 \le \lambda \le 121.5 \text{ ms}$.

20.13. На сколько изменилась кинетическая энергия электрона в атоме водорода при излучении атомом фотона с длиной волны $\lambda = 486$ нм?

Решение:

Согласно второму постулату Бора частота излучения, соответствующая переходу электрона с одной орбиты на другую, определяется формулой $hv = \Delta W$ или $v = \frac{\Delta W}{h}$ —

(1). С другой стороны, $v = \frac{c}{\lambda}$ — (2), где $c = 3 \cdot 10^8 \, \text{м/c}$ — скорость света, λ — длина волны излученного атомом фотона. Приравнивая правые части уравнений (1) и (2), получаем $\frac{\Delta W}{h} = \frac{c}{\lambda}$, откуда изменение кинетической энергии электрона $\Delta W = \frac{ch}{\lambda} = 2,55 \, \text{эВ}$.

20.14. В каких пределах должны лежать длины воли λ моно-хроматического света, чтобы при возбуждении атомов водорода квантами этого света раднус орбиты r_{λ} электрона увеличился в 9 раз?

Решение:

Радиусы орбит, по которым возможно движение электронов в атоме водорода, согласно первому постулату Бора удовлетворяют соотношению $mv_kr_k=k\frac{h}{2\pi}$ — (1). где m — масса электрона, v_k — его скорость на k -й орбите. r_k — радиус этой орбиты, $h=6.62\cdot 10^{-34}$ Дж-е — постоянная Планка. На электроны действует кулоновская сила $F_K=\frac{e^2}{4\pi\varepsilon r^2}$ — (2), которая является центростремительной

и сообщает электронам нормальное ускорение $a_n = \frac{vk^2}{r_k}$

(3). По второму закону Ньютона $F_K = ma_n$ — (4). Подставляя (2) и (3) в (4), получаем $\frac{e^2}{4\pi\varepsilon_0 r_k^2} = m\frac{v_k^2}{r_k}$ — (5).

где $e = 1.6 \cdot 10^{-19} \, \text{K}_{\text{Л}}$ — элементарный заруд, $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{M}$. Решая совместно уравнения (1) и (5),

находим $r_k = \frac{\varepsilon_0 k^2 h^2}{\pi m e^2}$ — (6). По условию $\frac{r_0}{r_k} = 9$, тогда из

формулы (6) следует, что $\frac{n}{k} = 3$. Поскольку n = 3k, то нереход электронов осуществляется между первым и третьим энергетическими уровнями, тогда (см. задачу 20.12) длины воли $102.6 \le \lambda \le 121.5$ нм.

20.15. На дифракционную решетку нормально падает пусок света от разрядной трубки, наполненной атомариым водородом. Постоянная решетки d = 5 мкм. Какому переходу электрона соответствует спектральная линия, наблюдаемая при помощи ной решетки в спектре пятого порядка под углом $\phi = 41^{\circ}$?

Решение:

Согласно условию главных максимумов для дифракционной решетки $d\sin\varphi=k\lambda$ — (1). В нашем случае k=5, тогда из формулы (1) имеем $\lambda=\frac{d\sin\varphi}{k}$ — (2). Изменение кинетической энергии электрона при переходе с одной орбиты на другую (см. задачу 20.13) определяелся соотношением $\Delta W=\frac{ch}{\lambda}$ — (3). Подставляя (2) в (3). получ

чаем $\Delta W = \frac{chk}{d\sin\varphi} = 1,89$ эВ. Подбором находим. что такой переход возможен с n=3 на k=2 в серии Бальмера.

486

20.16. Найти длину волны де Бройля λ для электрона, пвижущегося по первой боровской орбите атома водорода.

Решение:

Длина волны де Бройля для электрона (см. задачу 20.6)

определяется соотношением
$$\lambda = \frac{h}{mv_k} \sqrt{1 - \frac{v_k^2}{c^2}}$$
 -- (1). где

$$v_k = \frac{l^2}{2c_0kh}$$
 — (2) (см. задачу 20.1) — екорость электрона

на k-й орбите. Подставляя (2) в (1), получаем

$$\lambda = \frac{2\varepsilon_0 k h^2}{m l^2} \sqrt{1 - \frac{l^4}{4\varepsilon_0 k^2 h^2 c^2}} = 0.33 \text{ HM}.$$

20.17. Найти раднус r_1 первой боровской электронной орбиты для однократно понизированного гелия и скорость v_1 электрона на ней.

Решение:

В однократно ионизированном гелии на электрон, движущийся по первой боровской орбите, будет действовать

сила Кулона
$$F_K = \frac{Ze^2}{4\pi\varepsilon_0 r_1^2}$$
 — (1), где Z — порядковый

номер элемента в таблице Менделесва, $e = 1.6 \cdot 10^{-19} \, \text{Кл}$ — **заря**д электрона, r_1 — радиус первой боровской орбиты. **Эта с**ила является центростремительной и сообщает элект-

рону нормальное ускорение
$$a_n = \frac{v_1^2}{r}$$
 — (2), где v_1 — ско-

рость электрона на первой боровской орбите. По второму **Закону** Ньютона $F_K = ma_n - (3)$. Подставляя (1) и (2) в (3),

получаем
$$\frac{Ze^2}{4\pi\varepsilon_0 r_1^2} = \frac{mv_1^2}{r_1}$$
 — (4). Согласно первому посту-

лату Бора движение электрона вокруг ядра возможно

только по определенным орбитам, радиусы которых удовлетворяют соотношению $mv_k r_k = k \frac{h}{2\pi}$, где $k = \frac{h}{4\pi}$, где $k = \frac{h}{4\pi}$ мер орбиты. В нашем случае k = 1, поэтому $mv_l r_l = \frac{h}{2\pi}$ (5), где $h = 6.62 \cdot 10^{-34}$ Дж.с. — постоянная Планка. Ренад совместно уравнения (4) и (5), находим радиус первой боровской орбиты r_l и скорость электрона на ней, которые соответствению равны $r_l = \frac{\varepsilon_0 h^2}{\pi m Z e^2} = 26.47$ пм и $v_l = \frac{Z e^2}{2\varepsilon_0 h} = 4.37 \cdot 10^6$ м/с.

20.18. Найти первый потенциал возбуждения U_i : а) одиократно понизированного гелия; б) двукратно попизированного лития.

Согласно второму постулату Бора частота излучения, со-

Решение:

ответствующая переходу электрона с одной орбиты на другую, определяется формулой $hv=W_n-W_k$ — (1), гле k и n — номера орбит, причем n>k. В нашем случае n=2 и k=1. В водородоподобных ионах частоты определяются из соотношения $v=RcZ^2\left(\frac{1}{k^2}-\frac{1}{n^2}\right)$, где $R=1,097\cdot 10^7$ м — постоянная Ридберга. Подставляя значения k и n для нашего случая, получаем $v=\frac{3RcZ^2}{4}$ — (2). Подставляя (2) в (1), получаем $v=\frac{3RcZ^2h}{4}=W_n-W_k$ — (3). Для возбуждения водородоподобных ионов электроны должны обладать энергией $W=eU_1$, тогда по закону сохранения эпергии $eU_1=W_n-W_k$ — (4). Приравнивая левые части уравнии $eU_1=W_n-W_k$ — (4). Приравнивая левые части уравная

нений (3) и (4), получаем $eU_1 = \frac{3RcZ^2h}{4}$, откуда первый **потенциа**л возбуждения водородоподобного иона $U_1 = \frac{3RcZ^2h}{4e}$, а) Для однократно понизированного гелия Z=2, поэтому $U_1=40.8$ В. б) Для двукратно ионизированного лития Z=3, поэтому $U_2=91.8$ В.

20.19. Найти потенциал понизации U_i : а) однократно понизированного гелия: б) двукратно понизированного лития.

Решение:

Потенциал ионизации водородоподобного иона U_i , определяется уравнением $eU_i = A_i$ — (1), где A_i — работа удаления электрона с нормальной орбиты в бесконечность. Для водородоподобных ионов $A_i = hv$ — (2). где $v = RcZ^2\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$ — (3). Подставляя (3) в (2), получаем $A_i = hRcZ^2\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$ — (4). При k = 1 и $n = \infty$ формула (4) примет вид $A_i = hRcZ^2$ — (5). Подставляя (5) в (1), получаем ем $eU_i = hRcZ^2$, откуда потенциал ионизации $U_i = \frac{hRcZ^2}{e}$.

а) Для однократно ионизированного гелия Z = 2. поэтому $U_i = 54.5$ В. б) Для двукратно ионизированного лития Z = 3, поэтому $U_i = 122.8$ В.

20.20. Найти длину волны λ фотона, соответствующего переходу электрона со второй боровской орбиты на первую в однократно ионизированном атоме гелия.

Решение:

Частота излучения фотона водородоподобным ионом (см. задачу 20.18) при переходе электрона со второй боровской орбиты на первую равна $\nu = \frac{3RcZ^2}{4}$ — (1). С другой сто-

роны, $v = \frac{c}{\lambda}$ — (2), где λ — длина волны фотона. Прированивая правые части уравнений (1) и (2), получаем $\frac{c}{\lambda} = \frac{2RcZ^2}{4}$ или $\frac{1}{\lambda} = \frac{3RZ^2}{4}$, откуда длина волны $\lambda = \frac{4}{3RZ^2}$. Для однократно ионизированного гелия Z = 2,

 $\lambda = \frac{4}{3RZ^2}$. Для однократно ионизированного гелия Z = 2, поэтому $\lambda = 30.4$ нм.

20.21. Решить предыдущую задачу для двукратно понизированного атома лития.

Решение:

Длина волны фотона, соответствующего переходу электрона со второй боровской орбиты на первую (см. задачу 20.20), равна $\lambda = \frac{4}{3RZ^2}$. Для двукратно ионизированного лития Z=3, поэтому $\lambda=13.5$ нм.

20.22. D -линия натрия излучается в результате такого перехода с одной орбиты атома на другую, при котором энергия атома уменьшается на $\Delta W = 3.37 \cdot 10^{-19}$ Дж. Найти длину во гил λ / D -линии натрия.

Решение:

Изменение кинетической энергии электрона при переходе с одной орбиты атома на другую (см. задачу 20.13) равно

$$\Delta W = \frac{ch}{\lambda}$$
, откуда длина волны D -линии натрия $\lambda = \frac{ch}{\Delta W} = 589$ нм.

20.23. На рисунке изображена схема прибора для определения резонансного потенциала натрия. Трубка содержит пары натрия. Электроды G и A имеют одинаковый потенциал. При какой наименьшей ускоряющей разности потенциалов U между катодом K и сеткой G наблюдается спектральная линия с плиной волны $\lambda = 589$ нм?

Решение:

По закону сохранения энергии потенциальная энергия электрического поля между катодом и анодом $W_n = eU$ —
(1) идет на изменение кинетической эпергии электронов при переходе с одной орбиты на другую, которое (см задачу 20.13) равно $\Delta W = \frac{ch}{\lambda}$ — (2), т. е. $W_n = \Delta W$ — (3).

Подставляя (1) и (2) в (3), получаем $eU = \frac{ch}{\lambda}$, откуда ускоряющая разность потенциалов $U = \frac{ch}{a^2} = 2.1 \, \mathrm{B}$.

20.24. Электрон, пройдя разность потенциалов $U=4.9\,\mathrm{B}$, сталкивается с атомом ртути и переводит его в первое возбужленное состояние. Какую длину волны λ имеет фотон, соответствующий переходу атома ртути в нормальное состояние?

Решение:

Ускоряющая разность потенциалов (см. задачу 20.23) равна $U = \frac{ch}{e\lambda}$. Отсюда длина волны фотона, соответствующего переходу атома ртути в нормальное состояние. $\lambda = \frac{ch}{aT} = 533$ нм.

20.25. На рисунке изображена установка для наблюдения офракции рештеновских лучей. При вращении кристалла C должко тот луч будет огражаться на фотографическую пластинку \mathcal{H}_{\perp} дина волны которого удовлетворяет уравнению Вульф Брэгга. При каком наименьшем угле ϕ между мощно го кристалла и пучком рентгеновских лучей были отражены рештеновские лучи с длиной волны $\lambda = 20$ пм? Постоянная рештельны кристалла d = 303 пм.

Решение:

Наименьший угол соответствует спектру первого поря ил, т. е. $\lambda=2d\sin\varphi$, откуда $\sin\varphi=\frac{\lambda}{2d}=0.033$; $\varphi\approx2^\circ$.

20.26. Найти постоянную решетки d каменной соли, там молярную массу $\mu = 0.058$ кг моль каменной соли и ее плотность $\rho = 2.2 \cdot 10^3$ кг м³. Кристаллы каменной соли обладают простой кубической структурой.

Решение:

Молярный объем каменной соли $V=\frac{\mu}{\rho}$. Количество ислов в молярном объеме равно $2N_{\rm A}$. Объем, приходящийся на один ион, $V_1=\frac{\mu}{2\rho N_+}$, отсюда расстояние между понилан-

и ин постоянная решетки, $d = \sqrt[3]{f_1'} = \sqrt[3]{\frac{\mu}{2\rho N_A}} = 281 \cdot 10^{-12}$ у

20.27. При экспериментальном определении посточност Планка \hat{n} при помощи рентгеновских дучей кристалл устава-492 вливается под некоторым углом φ , а разность потенциалов U, приложенная к электродам рентгеновской трубки, увеличивается до тех пор, нока не появится линия, соответствующая этому углу. Найти постоянную Планка h из следующих данных; кристалл каменной сели установлен под углом $\varphi = 14^{\circ}$; резность потенциалов, при которой впервые появилась линия, соответствующая этому углу. $U = 91\,\mathrm{kB}$; постоянная рещетки кристалти $d = 281\,\mathrm{mm}$.

Решение:

При увеличении разности потенциалов U, приложенной к электродам рентгеновской трубки, появляется спектральная линия в спектре первого порядка, длина волны которой

$$\lambda$$
 удовлетворяет уравнению $eU = hv = \frac{hc}{\lambda}$ — (1). Но по формуле Вульфа — Брэгга $\lambda = 2d\sin\varphi$ — (2). Из (1) и (2) находим $h = \frac{eU\lambda}{c} = \frac{eU \cdot 2d}{c}\sin\varphi = 6.6 \cdot 10^{-34}$ Дж.с.

20.28. К электродам рентгеновской трубки придожена разность потенциалов U = 60 kB. Наименьшая длина волны рентгеновских лучей, получаемых от этой грубки. $\lambda = 20.6 \text{ им}$. Найти из этих даиных постоянило h Плаика.

Решение:

Частота $v_0 = \frac{c}{\lambda_{n+1}}$ — (1), соответствующая коротко-

волновой границе сплошного рентгеновского спектра, где λ_{mm} — наименьшая длина волны рентгеновских лучей, получаемых от этой трубки, может быть найдена из соотношения $\hbar v_0 = eU$ — (2). Подставляя (1) в (2),

получаем
$$\frac{hc}{\lambda_{min}} = eU$$
, откуда постоянная Планка

$$h = \frac{eU\lambda_{n_{ini}}}{c} = 6.62 \cdot 10^{-31} \text{ Дж·с.}$$

20.29. Найти длину волны λ , определяющую корствоволновую границу непрерывного рентгеновского спектра. Пря случаев, когда к рентгеновской трубке приложена раз ств потенциалов ℓ , равная; 30, 40, 50 кВ.

Решение:

Частота $v_1 = \frac{c}{\lambda}$ — (1), соответствующая коротководо одна границе силошного рентгеновского спектра (см. 30 гду 20.28), может быть найдена из соотношения $hv_1 = c^{\dagger}$ — (2) Подставляя (1) в (2), получаем $\frac{hc}{\lambda} = eU$, откуда да задаводны, определяющая коротковолновую границу воздеррывного рентгеновского спектра, $\lambda = \frac{hc}{eU}$. Если $U_1 = 3.7$ «В, то $\lambda_1 = 43.1$ пм. Если $U_2 = 40$ кВ, то $\lambda_2 = 31$ пм. 1 сли $U_1 = 50$ кВ, то $\lambda_3 = 24.8$ пм.

20.30. Найти длину волны λ , определяющую коротково повую границу пепрерывного рентгеновского спектра, если 1955 естню, что уменьшение приложенного к рентгеновской трубке напряжения на $\Delta U = 23 \ \mathrm{kB}$ убеличивает искомую длину во $4.37 \ \mathrm{g}$ раза.

Решение:

Длина волны, определяющая коротковолновую триницу испрерывного рентгеновского спектра (см. задачу 20029), равна $\lambda = \frac{hc}{eU}$ — (1). По условию $2\lambda = \frac{hc}{e(U - \Delta U)}$ — 2). Разделив (2) на (1), получаем $\frac{U}{U - \Delta U} = 2$, стеста $U = 2\Delta U = -1$ (3). Подставляя (3) в (1), получаем $\lambda = \frac{hc}{2e\Delta U} = 27$ нм.

20.31. Длина волны гамма-излучения радия $\lambda=1.6$ пм. Какую разность потенциалов U надо приложить к рентгеновской трубке, чтобы получить рентгеновские лучи с этой длиной волны?

Решение:

20.32. Какую наименьшую разность потенциалов U надо приложить к рентичновской трубке, чтобы получить все линии K-серии, если в качестве материала антикатода взять: а) медь: 6) серебро; в) вольфрам; г) платину?

Pemenne:

Все линии K-серин (а также линии остальных серий) появятся одновременно, как только будет удален электрон с K-орбиты атома. Для этого надо приложить разность потенциалов U, удовлетворяющую соотношению eU=hv=

$$=\frac{hc}{\lambda}$$
, где λ — длина волны, соответствующая переходу

бесконечно удаленного электрона на K-орбиту, т. е. длина волны, определяющая границу K-серии. Для нашего случал длина волны λ равна (см. таблицу 19): а) 138 пм; б) 48,4 пм; в) 17,8 пм; г) 15,8 пм. Искомая разность потенциалов найдется по формуле $U = \frac{hc}{e\lambda}$. Подстагляя числовые

данные, получим спедующие значения для разности потенциалов U ; а) 9 кВ; б) 25,3 кВ; в) 69 кВ; t 79 кВ.

20.33. Считая, что формула Мозли с достаточной степенью точности дает связь между длиной волны λ характеристических

рентгеновских лучей и порядковым помером элемента Z , n_3 даторого следан антикатод, найти наибольшую длину водис одлиний K-серии рентгеновских лучей, даваемых трубкой с артолом из ар железа: б) меди: в) модиблена: г) сер. од друганта (а) вольфрама; ж) платины. Для K-серии посте: адя экранирования b=1.

Решенис:

Имеем
$$\frac{1}{\lambda} = R(Z - h)^2 \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$$
 — (1). Наибольшая до ска

волны K -серии соответствует линии K_{α} . При этом в струмуле (1) мы должны положить b=1, k=1, n=2. Рег ая уравнение (1) относительно λ и подставляя числовые диниые, получим значения λ , равные: а) 194пм; б) 151 м; в) 72 пм; т) 57,4 пм; д) 23,4 пм; е) 22,8 пм; ж) 20,5 пм. женериментально найденные значения длин воли λ дании K_{α} следующие: а) 194 пм; б) 154 пм; в) 71.2 пм; г) 56.3 нм; д) 22 пм; е) 21.4 пм; ж) 19 пм.

20.34. Найти постоянную экранирования b для L-серии реиттеновских лучей, если известно, что при переходе элек зана в атоме вольфрама с M - на L-спой пепускаются реиттенов не лучи с длиной волны λ = 143 пм.

Решение:

Переход влектрона с M- на L-слой соответствует m вениям k=2 и n=3. Порядковый номер вольфрама в L і інне. Менделеева. Z=74 . Из. формулы. Мозли, не ем

$$\ell=2$$
 — Подетавляя числовые ден тех $\sqrt{2R(1-k^2-1-n^2)}$

figury what $\dot{D} = 5.5$.

20.35. При переходе электрона в атоме с L- на $K \sim \mathbb{R}^{31}$ пепускаются рештеновские лучи с длиной волиы $\lambda = 78\,\mathrm{GeV}$ Какой это атом? Для K-серии постоящия экранирования r+1 496

Решение:

Длина волны рентгеновских характеристических лучей может быть найдена по формуле Мозли $\frac{1}{\lambda} = R(Z - b)^2 \times$

$$\times \left(\frac{1}{k^2} - \frac{1}{n^2}\right)$$
 — (1), где Z — порядковый номер элемента, b — постояниая экранирования. При этом для K -серии

$$k = 1$$
 и $n = 2$. Из формулы (1) находим $Z = \frac{kn}{\sqrt{\lambda R(n^2 - k^2)}} +$

+b=40. По таблице Менделеева находим, что элемент с порядковым номером Z=40 — цирконий.

20.36. Воздух в некотором объеме V облучается рентгеновскими лучами. Экспозиционная доза излучения $D_5 = 4.5 \; \mathrm{P.}$ Какая доля атомов, находящихся в данном объеме, будет ионизирована этим излучением?

Решение:

По определению экспозиционной дозы излучения $D_s = \frac{\Delta Q}{\Delta m}$ — (1), где $\Delta Q = N_0 e$ — (2) — суммарный элект-

рический заряд всех нонов одного знака, созданных электронами, освобожденными в облучениом воздухе при условии полного использования ионизирующей спосо-

бности электронов,
$$\Delta m = \frac{N}{N_{\rm d}} \mu$$
 — (3) — масса воздуха.

Подетавляя (2) и (3) в (1), получаем $D_{s} = \frac{N_{s}N_{\Delta}e}{N\mu}$, откуда

доля атомов, ионизированных издучением. $\frac{N_{\perp}}{N} = \frac{\mu D_{\perp}}{N_{\perp} e}$. Воз-

Аух в первом приближении можно считать азотом с моляр-497 ной массой $\mu = 0.028$ кг/моль. Подставляя числовые даные, получим $\frac{N_0}{N} = 3.42 \cdot 10^{-10}$.

20.37. Рептгеновская трубка создает на некотором расстоянии мощность экспозиционной дозы $P_s = 2.58 \cdot 10^{-5}$ А/кг. Какое число N пар нонов в единицу времени создает эта трубка на единицу массы воздуха при данном расстоянии?

Решение:

По определсию мощности экспозиционной дозы излучения $P_3 = \frac{D_2}{\Delta t}$ — (1), где $D_3 = \frac{\Delta Q}{\Delta m}$ — (2) — экспозиционная доза излучения, Δt — интервал времени, за которое получена эта доза, Δm — масса ионизированного вещества, $\Delta Q = Ne$ — (3) — суммарный электрический заряд всех ионов одного знака. Подставляя (2) и (3) в (1), получаем $P_3 = \frac{Ne}{\Delta t \Delta m}$, откуда число пар ионов $N = \frac{P_2 \Delta t \Delta m}{e}$. По условию $\Delta t = 1$ с и $\Delta m = 1$ кг, тогда, подставляя значения, находим $N = 1,61\cdot10^{14}\,\mathrm{c}^{-1}\cdot\mathrm{kr}^{-1}$.

20.38. Воздух, находящийся при нормальных условиях в поинзационной камере объемом $V=6\,\mathrm{cm}^3$, облучается рештеновскими лучами. Мошность экспозиционной дозы рентгеловских лучей $P_s=0.48\,\mathrm{mP/4}$. Найти понизационный ток насыплания I_n .

Решение:

По определению мощности экспозиционной дозы из учения $P_3 = \frac{D_2}{\Delta t}$ — (1), где $D_3 = \frac{\Delta Q}{\Delta m}$ — (2) — экспозиционная доза излучения, Δt — интервал времени. За которое получена эта доза. Подставляя (2) в (1). получена

чаем $P_3 = \frac{\Delta Q}{\Delta m \Delta t}$ — (3). Ионизационный ток насыщения $I_{\rm H} = \frac{\Delta Q}{\Delta t}$, откуда суммарный электрическии заряд всех ионов одного знака $\Delta Q = I_{\rm H} \Delta t$ — (4). Подставляя (4) в (3), получаем $P_3 = \frac{I_{\rm H}}{\Delta m}$, откуда ионизационный ток насыщения $I_{\rm H} = P_3 \Delta m$ — (5). Из уравнения Менделеева — Клапейрона $pV = \frac{\Delta m}{\mu}RT$, учитывая, что молярная масса воздуха $\mu = 0.029\,{\rm kr/Mоль}$, получаем $\Delta m = \frac{pV\mu}{RT}$ — (6). Подставляя (6) в (5), окончательно находим $I_{\rm H} = \frac{P_3 pV\mu}{RT}$ или $I_{\rm H} = \frac{0.48 \cdot 10^{-3} \cdot 1.013 \cdot 10^5 \cdot 6 \cdot 10^{-6} \cdot 29 \cdot 10^{-3}}{3.6 \cdot 10^3 \cdot 8.31 \cdot 273} = 10^{-12}\,{\rm A}^*$.

20.39. Найти для алюминия толщину
$$x_{1/2}$$
 слоя половинного **осла**бления для рентгеновских лучей некоторой длины волны. **Масс**овый коэффициент поглощения алюминия для этой длины

Решение:

волны $\mu_{\rm M} = 5.3 \,{\rm M}^2/{\rm kr}$.

Интенсивность пучка рентгеновских лучей, прошедших сквозь пластинку толщиной x, определяется формулой $I = I_0 e^{-\mu x}$ — (1), где I_0 — интенсивность пучка, падающего на пластинку, μ — линейный коэффициент поглощения. Массовый коэффициент поглощения $\mu_{\rm M}$ связан с линейным коэффициентом поглощения μ соотношением $\mu_{\rm M} = \frac{\mu}{\varrho}$, откуда $\mu = \mu_{\rm M} \rho$ — (2). Подставляя (2) в (1). полу-

[•] Ответ не совпадает с ответом первоисточника (2,7·10·16 A).

чаем $I = I_0 e^{-\mu_{\rm M} e^{\chi}}$ — (3). Пройдя поглощающий слон тотещиной, равной толщине слоя половинного ослабления $x_{1/2}$, рентгеновские лучи будут иметь интенсивность $I = \frac{I_0}{2}$ — (4). Подставляя (4) в (3), получаем $\frac{1}{2} = exp\left(-\mu_{\rm M}\rho\,x_{1/2}\right)$ — (5). Прологарифмировав выражение (5), получим искомое значение толщины слоя половинного ослабления. $x_{1/2} = \frac{\ln 2}{\mu_{\rm M} \rho} = 0.5$ мм.

20.40. Во сколько раз уменьшится интенсивность рептеновских лучей с длиной волны $\lambda=20\,\mathrm{nm}$ при прохождении слоя железа толщиной $d=0.15\,\mathrm{mm}$? Массовый коэффициент поглощения железа для этой длины волны $\mu_n=1.1\,\mathrm{m}^2/\mathrm{kr}$.

Решение:

Интенсивность пучка рентгеновских лучей, прошединах сквозь пластинку толщиной d (см. задачу 20.39), равна

$$I = I_{\rm tr} \exp(-\mu_{\rm M} \rho d)$$
, откуда $\frac{I_{\rm D}}{I} = \exp(\mu_{\rm M} \rho d) = 3.68$.

20.41. Найти толщину $x_{1/2}$ слоя половинного ослабления для железа в условиях предыдущей задачи.

Решение:

Толщина слоя половинного ослабления (см. задачу 20.59) $x_{1/2} = \frac{\ln 2}{\mu_0 \rho} = 79.76 \,\mathrm{Mkm}.$

20.42. В нижеследующей таблице приведены для некоторых материалов значения толщины слоя $x_{1/2}$ половинного ос...бления рентгеновских лучей, энергия которых $W=1\,\mathrm{MpB}$. Найти линейный μ и массовый μ_{N} коэффициенты поглошения эшх 500

материалов для данной энергии рентгеновских лучей. Для какой ядины волны λ рентгеновских лучей получены эти данные?

Вещество	Вода	Алюминий	Железо	Свинец
x _{1/2} , CM	10.2	4.5	1,56	0.87

Решение:

Толщина слоя половинного ослабления (см. задачу 20.39)

$$x_{1/2} = \frac{\ln 2}{\mu_{\rm M} \rho}$$
, откуда массовый коэффициент поглощения

$$\mu_{\text{M}} = \frac{\ln 2}{x_{1/2}\rho}$$
 — (1). С другой стороны, $\mu_{\text{M}} = \frac{\mu}{\rho}$ — (2). При-

равнивая правые части уравнений (1) и (2), получаем

$$\mu = \frac{\ln 2}{x_{1/2}}$$
 — (3). Подставляя числовые данные в формулы

(1) и (3), заполняем таблицу.

Вещество	Вода	Алюминий	Железо	Свинец
x _{1/2} , cM	10.2	4,5	1.56	0,87
<i>ρ</i> , κΓ/M ³	1000	2600	7900	11300
μ, м ⁻¹	6,7	16	44	77
$\mu_{\rm M}$, $10^{-3} {\rm m}^2/{\rm K}{\rm F}$	6,7	6.2	5,6	6.8

Энергия рентгеновских лучей равна $W=h\nu=h\frac{c}{\lambda}$, откуда

длина волны
$$\lambda = \frac{hc}{W} = 1.24$$
 пм.

20.43. Сколько слоев половинного ослабления необходимо **для** уменьшения интенсивности рентгеновских лучей в 80 раз?

Решение:

Интенсивность пучка рентгеновских лучей, прошедших сквозь пластинку толщиной d (см. задачу 20.39), равна

$$I = I_0 \exp(-\mu_{\scriptscriptstyle M} \rho d)$$
, откуда $\frac{I_0}{I} = \exp(\mu_{\scriptscriptstyle M} \rho d)$ — (1). По

условию $\frac{I_0}{I}$ = 80 — (2). Подставляя (2) в (1) и логариф. мируя полученное уравнение, находим $ln80 = \mu_{\rm M} \rho d$, откуда толщина слоя, необходимого для уменьшения интенсивности рентгеновских лучей в 80 раз, равна $d = \frac{ln80}{\mu_{\rm M} \rho}$ — (3). Толщина слоя половинного ослабления интенсивности рентгеновских лучей равна $x_{1/2} = \frac{ln2}{\mu_{\rm M} \rho}$ — (4). Количество слоев, необходимое для уменьшения интенсивности в 80 раз, равно $n = \frac{d}{x_{1/2}}$ — (5). Подставляя (3) и (4) в (5), получаем $n = \frac{ln80}{ln2} = 6.32$.