Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD78C10A, 78C11A, 78C12A

8-BIT SINGLE-CHIP MICROCOMPUTER (WITH A/D CONVERTER)

DESCRIPTION

The μ PD78C11A is a CMOS 8-bit microprocessor which can integrate 16-bit ALU, ROM, RAM, an A/D converter, a multi-function timer/event counter, and a general-purpose serial interface into a single chip, then expand the memory (ROM/RAM) up to 60K bytes externally. The μ PD78C10A is a ROM-less product of the μ PD78C11A, and can directly address the external memory up to 64k bytes. The μ PD78C12A is a product which has more built-in ROM capacity than the μ PD78C11A, and its memory (ROM/RAM) can be externally extended up to 56K bytes. The μ PD78C10A, μ PD78C11A, and μ PD78C12A operated at low power consumption, because they have a CMOS construction. Also, they can hold data with low power consumption by using standby function.

On-chip PROM products, μ PD78CP14 and μ PD78CP18 which are ideal for evaluation or preproduction use during system development, early start-up and short-run multiple-device production of application sets, are available.

FEATURES

- Abundant 159 types of instructions : 87AD series instruction set, multiplication/division instructions,
 16-bit operation instructions
- Instruction cycle: 0.8 μs (at 15 MHz operation)
- On-chip ROM : $4096W \times 8$ (μ PD78C11A), $8192W \times 8$ (μ PD78C12A) Non (μ PD78C10A)
- On-chip RAM : 256W × 8
- High-precision 8-bit A/D converter: 8 analog inputs
- · General-purpose serial interface : Asynchronous, synchronous, I/O interface mode
- Multi-function 16-bit timer/event counter
- Two 8-bit timers
- I/O lines : 32 (μPD78C10A), 44 (μPD78C11A, 78C12A)
- Interrupt function (external 3, internal 8): Non-maskable interrupt × 1, maskable interrupt × 10
- Standby function: HALT mode, hardware/software STOP mode
- Zero-cross detection function: (2 inputs)
- On-chip pull-up resistor (port A, B, C: μPD78C11A, 78C12A only) by mask option

Caution The μ PD78C10A does not have a mask option.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Ordering Code	Package	On-Chip ROM
μPD78C10ACW	64-pin plastic shrink DIP (750 mil)	None
μPD78C10AGF-3BE	64-pin plastic QFP (14 × 20 mm)	None
μPD78C10AGQ-36	64-pin plastic QUIP	None
μPD78C10AL	68-pin plastic QFJ (☐ 950 mil)	None
μ PD78C11ACW- $\times\times$	64-pin plastic shirink DIP (750 mil)	Mask ROM
μ PD78C11AGF- $\times \times \times$ -3BE	64-pin plastic QFP (14 \times 20 mm)	Mask ROM
μ PD78C11AGQ-×××-36	64-pin plastic QUIP	Mask ROM
μ PD78C11AGQ-×××-37	64-pin plastic QUIP straight	Mask ROM
μ PD78C11AL- $\times\times$	68-pin plastic QFJ (☐ 950 mil)	Mask ROM
μ PD78C12ACW- $\times\times$	64-pin plastic shrink DIP (750 mil)	Mask ROM
μ PD78C12AGF- \times \times -3BE	64-pin plastic QFP (14 $ imes$ 20 mm)	Mask ROM
μ PD78C12AGQ-×××-36	64-pin plastic QUIP	Mask ROM
μ PD78C12AGQ- $\times\times$ -37	64-pin plastic QUIP straight	Mask ROM
μ PD78C12AL- $\times\!\times$	68-pin plastic QFJ (☐ 950 mil)	Mask ROM

PIN CONFIGURATION (TOP VIEW)

• For μPD78C10ACW, μPD78C10AGQ-36, μPD78C11ACW-xxx, μPD78C11AGQ-xxx-36/37, μPD78C12ACW-xxx, μPD78C12AGQ-xxx-36/37.

• For μPD78C10AGF-3BE, μPD78C11AGF-xxx-3BE, μPD78C12AGF-xxx-3BE

• For μ PD78C10AL, μ PD78C11AL- $\times \times \times$, μ PD78C12AL- $\times \times \times$

BLOCK DIAGRAM

WR

ALE MODE1 MODE0 RESET

STOP

 V_{DD}

Vss

The $\mu \rm PD78C11A$ has 4K bytes, and the $\mu \rm PD78C12A$ has 8K bytes.

The $\mu \mathrm{PD78C10A}$ does not incorporate a program memory.

2. An on-chip pull-up resistor is available by mask option (μ PD78C11A, 78C12A only).

NEC

CONTENTS

1.	PIN FUNCTIONS	/
	1.1 LIST OF PIN FUNCTION	7
	1.2 PIN INPUT/OUTPUT CIRCUITS	9
	1.3 PIN MASK OPTIONS	14
	1.4 RECOMMENDED CONNECTION OF UNUSED PINS	14
2.	DIFFERENCES BETWEEN μ PD78C10A AND μ PD78C11A, 78C12A	15
3.	RESET OPERATIONS	17
4.	INSTRUCTION SET	20
	4.1 IDENTIFIER/DESCRIPTION OF OPERAND	20
	4.2 SYMBOL DESCRIPTION OF OPERATION CODE	21
	4.3 INSTRUCTION EXECUTION TIME	22
5.	LIST OF MODE REGISTERS	34
6.	ELECTRICAL SPECIFICATIONS	35
7.	CHARACTERISTIC CURVES (REFERENCE VALUES)	47
В.	DIFFERENCES IN 87AD SERIES PRODUCTS	50
9.	PACKAGE INFORMATION	54
10.	RECOMMENDED SOLDERING CONDITIONS	60
۸DI	DENDLY DEVELOPMENT TOOLS	62

1. PIN FUNCTIONS

1.1 LIST OF PIN FUNCTION (1/2)

Pin Name	I/O	Function			
PA7 to PA0 (Port A)	Input/Output	8-bit input-output port, which can specify input/output bit-wise.			
PB7 to PB0 (Port B)	Input/Output	8-bit input-output port, which can specify input/output bit-wise.			
PC0/TxD	Input-output/ Output		Transmit Data Output pin for serial data.		
PC1/RxD	Input-output/ Input		Receive Data Input pin for serial data.		
PC2/ SCK	Input-output/ Input-output		Serial Clock Input-output pin for serial clock. It becomes output clock for the internal clock use, and input for the external.		
PC3/INT2/TI	Input-output/ Input/Input	Port C 8-bit input-output port, which can specify input/output bit-wise	Interrupt Request/Timer Input Maskable interrut input pin of the edge trigger (falling edge), or an external clock input pin for a timer. Also, it can be used as a zero-cross detection pin for AC input.		
PC4/TO	Input-output/ Output		Timer Output Square wave defining one cycle of internal clock or timer counter time as half cycle is output.		
PC5/CI	Input-output/		Counter Input External pulse input pin to timer/event counter.		
PC6/CO0 PC7/CO1	Input-output/ Output		Counter Output 0, 1 Programmable rectangle wave output by timer/event counter.		
PD7 to PD0/ AD7 to AD0	Input-output/ Input-output	Port D 8-bit input-output port, which can specify input-output in byte units (μPD78C11A).	Address/Data Bus When external memory is used, it becomes multiplexed address/data bus.		
PF7 to PF0/ AB15 to AB8	Input-output/ Output	Port F 8-bit input-output port, which can specify input-output bit-wise.	Address Bus When external memory is used, it be- comes address bus.		
WR (Write Strobe)	Output	Strobe signal which is output for write operation of external memory. It becomes high any cycle other than the data write machine cycle of external memory. When RESET sig is either low or in the hardware STOP mode, this signal becomes output high-impedan			
RD (Read Strobe)	Output	Strobe signal which is output for read operation of external memory. It becomes high in an cycle other than the read machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance.			
ALE (Address Latch Enable)	Output	Strobe signal to latch externally the lower address information which is output to PD7 to PD0 pins to access external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance.			

1.1 LIST OF PIN FUNCTION (2/2)

Pin Name	I/O	Function				
		μ PD78C11A and 78C12A sets MODE0 pin to "0" (low level), and MODE1 pin to "1" (high level*) μ PD78C10A allows you to set MODE0, MODE1 pins to select 4K, 16K, or 64K bytes for the size of the memory which is installed externally.				
MODE0 MODE1	Input-output	MODE0 MODE1 External Memory				
(Mode)		0 0 4K bytes 1 0 16K bytes 1 1 64K bytes				
		Also, when each of MODE0 and MODE1 pins is set to "1"*, it is synchronized to ALE to output a control signal.				
NMI (Non-Maskable Interrupt)	Input	Non-maskable interrupt input pin of the edge trigger (falling edge)				
INT1 (Interrupt Request)	Input	A maskable interrupt input pin of the edge trigger (rising edge). Also, it can be used as a zero-cross detection pin for AC input.				
AN7 to AN0 (AnalogInput)	Input	8 pins of analog input to A/D converter. AN7 to AN4 can be used as edge detection (falling edge) input.				
V _{AREF} (Reference Voltage)	Input	A common pin serving both as a standard voltage input pin for A/D converter and as a control pin for A/D converter operation.				
AV _{DD} (Analog V _{DD})		Power supply pin for A/D converter.				
AVss (Analog Vss)		GND pin for A/D converter.				
X1, X2 (Crystal)		Crystal connection pins for system clock oscillation. X1 should be input when a clock is supplied from outside. Input the clock of the reverse phase of X1 to X2.				
RESET (Reset)	Input	Low-level active system reset input.				
STOP (Stop)		Control signal input pin in hardware STOP mode. The oscillation stops when a clock is supplied from outside.				
V _{DD}		Positive power supply pin.				
Vss		GND pin.				

^{*} Pull-up. Pull-up resister R is 4 [k Ω] \leq R \leq 0.4 tcyc [k Ω] (tcyc is ns unit).

Remarks The μ PD78C11A and μ PD78C12A are pull-up resistor incorporation specifiable by mask option at ports A, B and C.

+

1.2 PIN INPUT/OUTPUT CIRCUITS

Tables 1-1 and 1-2, and figures (1) to (15) show input- output circuits of each pin in a partially simplified form.

Table 1-1 Pin Type No. (μ PD78C10A)

Pin Name	Type No.	Pin Name	Type No.
PA7 to PA0	5	RESET	2
PB7 to PB0	5	RD	4
PC1 to PC0	5	WR	4
PC2/SCK	8	ALE	4
PC3/INT2	10	STOP	2
PC7 to PC4	5	MODE0	11
PD7 to PD0	5	MODE1	11
PF7 to PF0	5	AN3 to AN0	7
NMI	5	AN7 to AN4	12
INT1	2	Varef	13

Table 1-2 Pin Type No. (μ PD78C11A and 78C12A)

Pin Name	Type No.	Pin Name	Type No.
PA7 to PA0	5-A	RESET	2
PB7 to PB0	5-A	RD	4
PC1 to PC0	5-A	WR	4
PC2/SCK	8-A	ALE	4
PC3/INT2	10-A	STOP	2
PC7 to PC4	5-A	MODE0	11
PD7 to PD0	5	MODE1	11
PF7 to PF0	5	AN3 to AN0	7
NMI	2	AN7 to AN4	12
INT1	9	Varef	13

(1) Type 1

(2) Type 2

(3) Type 4

(4) Type 4-A

(5) Type 5

(6) Type 5-A

(7) Type 7

(8) Type 8

(9) Type 8-A

(10) Type 9

(11) Type 10

(12) Type 10-A

(13) Type 11

(14) Type 12

(15) Type 13

1.3 PIN MASK OPTIONS

 μ PD78C11A and 78C12A has the following mask options, which can be selected bit-wise according to the application.

Pin Name	Mask Options
PA7 to PA0	
PB7 to PB0	Pull-up resistor incorporated Pull-up resistor get incorporated
PC7 to PC0	Pull-up resistor not incorporated

Cautions

- 1. Zero-cross function can not be operated normally if pull-up resistor is incorporated in PC3
- 2. μ PD78C10A has no mask option.

1.4 RECOMMENDED CONNECTION OF UNUSED PINS

Pin	Recommended Connection			
PA7 to PA0				
PB7 to PB0				
PC7 to PC0	Connect to Vss or VDD via resistor			
PD7 to PD0				
PF7 to PF0				
RD				
WR	Leave open			
ALE				
STOP	Connect to VDD			
INT1, NMI	Connect to Vss or VDD			
AV _{DD}	Connect to VDD			
AVAREF				
AVss	Connect to Vss			
AN7 to AN0	Connect to AVss or AVDD			

2. DIFFERENCES BETWEEN μ PD78C10A AND μ PD78C11A, 78C12A

The difference between the μ PD78C10A and μ PD78C11A, 78C12A is whether or not there is an on-chip mask programmable ROM. The memory map differs accordingly as described below.

(1) μ PD78C10A

Since the μ PD78C10A does not have an on-chip ROM, all memory, except the on-chip RAM area (addresses FF00H to FFFFH) can be installed outside. The size of this external memory can be selected from among 4K bytes (0000H to 0FFFH), 16K bytes (0000H to 3FFFH), and 64K bytes (0000H to FEFFH) by MODE0 and MODE1 pin setting as shown in the following table and Fig. 2-1.

	Control Pin		F	0.011.011	
Operation Mode	MODE1	MODE0	External Memory	On-Chip RAM	
4K bytes access	0	0	4K bytes (address 0000H to 0FFFH)	Address FF00H to FFFFH	
16K bytes access	0	1	16K bytes (address 0000H to 3FFFH)	Address FF00H to FFFFH	
64K bytes access	1	1	64K bytes (address 0000H to FEFFH)	Address FF00H to FFFFH	

External memory is accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and the RD, WR, and ALE signals. When 4K-byte or 16K-byte external memory is accessed PF7 to PF0 not used as address lines can be used as general purpose input/output ports.

The size of external memory can be specified by MODE0 and MODE1 pin setting. Preset each bit of MEMORY MAPPING reisters MM2, MM1, and MM0 to "0".

(2) μ PD78C11A and 78C12A

The μ PD78C11A has an on-chip mask programmable ROM at addresses 0000H to 0FFFH and RAM at addresses FF00H to FFFFH. Externally, memory can be extended up to 60K bytes (addresses 1000H to FEFFH) in steps. The μ PD78C12A has an on-chip mask programmable ROM at address 0000H to 1FFFH and RAM at address FF00H to FFFFH. Externally, memory can be extended up to 56K bytes (address 2000H to FEFFH) in steps. The size of the external extension memory can be selected from among no external memory, 256 bytes, 4K bytes, 16K bytes, and 56K/60K bytes* by MEMORY MAPPING register setting. External memory can be accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and the $\overline{\text{RD}}$, $\overline{\text{WR}}$, and ALE signals. Programs and data can be stored in external memory. PF7 to PF0 become address lines corresponding to the size of external memory. The remaining pins can be used as general purpose input/output ports.

PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	External Memory
Port	Maximam 256 bytes							
Port	Port	Port	Port	AB11	AB10	AB9	AB8	Maximum 4K bytes
Port	Port	AB13	AB12	AB11	AB10	AB9	AB8	Maximum 16K bytes
AB15	AB14	AB13	AB12	AB11	AB10	AB9	AB8	Maximum 56K/60K bytes*

^{*} μ PD78C11A: 60K bytes, μ PD78C12A: 56K bytes

Fig. 2-1 $\,\mu$ PD78C10A Memory Map

3. RESET OPERATIONS

When RESET Input becomes low, the system reset is activated to create the following status.

- INTERRUPT ENABLE F/F is reset and interrupt is disabled.
- All the interrupt mask registers are set (1) and interrupt is masked.
- An interrupt request flag is reset (0) and hold interrupt is eliminated.
- Each bit of PSW is reset (0).
- 0000H is loaded into the program counter (PC).
- The MODE A, MODE B, MODE C, and MODE F registers are set to FFH and the bits (MM0, 1, and 2) of the MODE CONTROL C and MEMORY MAPPING registers are respectively reset (0), then all the ports (A, B, C, D, and F) become input port (output high-impedance).
- All the test flags but SB flag are reset (0).
- A timer mode register is set to FFH, and TIMER F/F is reset.
- The mode register (ETMM, EOM) of a timer/event counter is reset (0).
- The serial mode high register(SMH) of serial interface is reset (0), while the serial mode low register (SML) is set to 48H.
- The A/D channel mode register of the A/D converter is reset (0).
- WR, RD, ALE signals become high-impedance.
- The ZC1, ZC2 bits of the zero-cross mode register (ZCM) are set (1).
- The internal timing generator is initialized.
- Data memory and the following register contents are undefined:

Stack pointer (SP)

Expansion accumulator (EA, EA'), accumulator (A, A')

General register (B, C, D, E, H, L, B', C', D', E', H', L')

Output latch of each port

TIMER REG0, 1 (TM0, TM1)

TIMER/EVENT COUNTER REG0, 1 (ETM0, ETM1)

RAE bit of MEMORY MAPPING register

SB flag of test flag

When RESET input becomes high, the reset status is released. Then, execution of the program is started from 0000H. The contents of various kinds of registers must be initialized or re-initialized in the program, if necessary.

Table 3-1 shows the state of each hardware after reset.

Table 3-2 shows the state of each pin after reset.

Table 3-1 State of Each Hardware after Reset

		State after Reset		
	Power-on reset			Previous contents held.
Internal data memory	Reset input during normal operation Reset input in sta	Writing by CPU Address data other than the aboove Operation other than writing by CPU		Previous contents held.
Expansion accumula		· ·		
Accumulator (A, A')				
General register (B, (C, D, E, H, L, B', C'	, D', E', H	', L')	Undefined
Working register ved			<u> </u>	
Program counter (PC				0000H
Stack pointer (SP)				Undefined
	Mode register (M	IA, MB, N	IC, MF)	FFH
Port	MCC register			00H
	MM register (bits	MM0 to	0	
Output latch of each	port			Undefined
	INTERRUPT ENA	BLE F/F	0	
Interrupt	Request flag		0	
	Mask register		FFH	
Test flag (except SB flag)				0
	Power-on reset		1	
Standby flag (SB)	Standby mode		Previous contents held.	
	Reset input durin	g normal	Contents immediately before RESET input held	
	Timer mode regi	ster (TMN	FFH	
Timer	Timer F/F			0
	Timer register (T	M0, TM1)		Undefined
	Timer/event cour	nter mode	register (ETMM)	— 00H
	Timer/event cour	nter outpu	it mode register (EOM)	0011
Timer/event counter	Timer/event cour	nter regist	er (ETM0, ETM1)	
	Timer/event counter capture register (ECPT)			Undefined
	Timer/event counter (ECNT)			
Serial interface	Serial mode high register (SMH)			00H
	Serial mode low register (SML)			48H
A/D channel mode register (ANM)				00H
MM register (MM3; F	RAE bit)		Undefined	
Zero cross mode reg	ister (ZC1, ZC2 bit	s)		1

Table 3-2 State of Each Pin after Reset

Pin	State after Reset	
WR		
RD	High-impedance	
ALE	riigii-iiiipedance	
All ports (PA, PB, PC, PD, PF)		

4. INSTRUCTION SET

4.1 IDENTIFIER/DESCRIPTION OF OPERAND

Identifier	Description
r r1 r2	V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, H, L A, B, C
sr sr1 sr2 sr3 sr4	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TXB, TM0, TM1, ZCM PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CR0, CR1, CR2, CR3 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM ETM0, ETM1 ECNT, ECPT
rp rp1 rp2 rp3	SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H
rpa rpa1 rpa2 rpa3	B, D, H, D+, H+, D-, H- B, D, H B, D, H, D+, H+, D-, H-, D+byte, H+A, H+B, H+EA, H+byte D, H, D++, H++, D+byte, H+A, H+B, H+EA, H+byte
wa	8 bit immediate data
word byte bit	16 bit immediate data 8 bit immediate data 3 bit immediate data
f	CY, HC, Z
irf	NMI*, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB

^{*} NMI can also be described as FNMI.

Remarks

1. sr to sr4 (special register)

PA	:	PORT A	ETMM	:	TIMER/EVENT
РВ	:	PORT B			COUNTER MODE
PC	:	PORT C	EOM	:	TIMER/EVENT
PD	:	PORT D			COUNTER OUTPUT
PF	:	PORT F			MODE
MA	:	MODE A	ANM	:	A/D CHANNEL MODE
MB	:	MODE B	CR0	:	A/D CONVERSION
MC	:	MODE C	to		RESULT 0 to 3
MCC	:	MODE CONTROL C	CR3		
MF	:	MODE F	TXB	:	Tx BUFFER
MM	:	MEMORY MAPPING	RXB	:	Rx BUFFER
TM0	:	TIMER REG0	SMH	:	SERIAL MODE High
TM1	:	TIMER REG1	SML	:	SERIAL MODE Low
TMM	:	TIMER MODE	MKH	:	MASK High
ETM0	:	TIMER/EVENT	MKL	:	MASK Low
		COUNTER REGO	ZCM	:	ZERO CROSS MODE
ETM1	:	TIMER/EVENT			
		COUNTER REG1			
ECNT	:	TIMER/EVENT			
		COUNTER UPCOUNTER			
ECPT	:	TIMER/EVENT			
		COUNTER CAPTURE			

2. rp to rp3 (register pair)

 SP
 : STACK POINTER

 B
 : BC

 D
 : DE

 H
 : HL

 V
 : VA

 EA
 : EXTENDED

 ACCUMULATOR

3. rpa to rpa3 (rp addressing)

В	:	(BC)
D	:	(DE)
Н	:	(HL)
D+	:	(DE)+
H+	:	(HL)+
D-	:	(DE)-
H-	:	(HL)-
D++	:	(DE)++
H++	:	(HL)++
D + byte	:	(DE + byte)
H + A	:	(HL + A)
H + B	:	(HL + B)
H + EA	:	(HL + EA)
H + byte	:	(HL + byte)

4. f (flag)

CY : CARRY HC : HALF CARRY Z : ZERO

5. irf (interrupt flag)

NMI : NMI INPUT FT0 : INTFT0 FT1 : INTFT1 F1 : INTF1 F2 : INTF2 FEO : INTFEO FE1 : INTFE1 FEIN : INTFEIN FAD : INTFAD FSR : INTFSR FST : INTFST : ERROR : OVERFLOW AN4 : ANALOG INPUT 4 to 7 to AN7 SB : STANDBY

4.2 SYMBOL DESCRIPTION OF OPERATION CODE

T ₁	То	reg
0	0	EAH
0	1	EAL
1	0	B C
1	1	C
0	0	D E
0	1	E
1	0	Н
1	1	L
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

rpa

Аз	A ₂	A 1	A ₀	addressing			
0 0 0 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 1 0 1 1 1	0 0 1 1 0 0 1 1 1 0 0 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1	(BC) (DE) (HL) (DE)+ (HL)+ (DE)- (HL)- (DE + byte) (HL + A) (HL + B) (HL + EA) (HL + byte)	rpa ↓	rpa1 <u>↓</u>	rpa2

rpa	rpa3										
	Сз	C ₂	C ₁	Co	addressing						
	0 0 0 0 1 1 1 1	0 0 1 1 0 1 1 1	1 1 0 0 1 0 0 1 1	0 1 0 1 1 0 1 0	(DE) (HL) (DE)++ (HL)++ (DE + byte) (HL + A) (HL + B) (HL + EA) (HL + byte)						

sr4	
Vo	special-reg
0	ECNT
1	ECPT

irf					
14	lз	l ₂	l1	lo	INTF
0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0	0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	NMI FT0 FT1 F1 F2 FE0 FE1 FEIN FAD FSR FST ER OV AN4 AN5 AN6 AN7 SB

1	ſр				_		
	P ₂	P ₁	P ₀	reg-pair			
Ī	0	0	0	SP	Ī	Ā	
ı	0	0	1	BC	l l		Ā
ı	0	1	0	DE	rp	rp2	rp3
ı	0	1	1	HL	★		_ ★
l	1	0	0	EA		¥	
					-		

Q ₂	Q ₁	Q ₀	reg-pair
0	0	0	VA
0	0	1	BC
0	1	0	DE
0	1	1	HL
1	0	0	EA
	0 0	0 0 0 0 0 1 0 1	0 0 0 0 0 1 0 1 0 0 1 1

f				
F	2	F ₁	Fo	flag
)	0	0	
()	1	0	CY
()	1	1	HC
	1	0	0	Z

NEC

4.3 INSTRUCTION EXECUTION TIME

1 state shown here is composed of 3 clock cycles. When a clock cycle of 15 MHz is used, the execution time should be 200 ns (= $3 \times 1/15 \,\mu$ s). In this case, the 4-state instruction which is the minimum execution time should be execution time of 0.8 μ s.

Note 1	Mnemor	nic	Operand		Operation (Code		State	Operation	Skip
N _N	 		Operana	B1	B2	В3	B4	Ctate		Condition
			r1, A	0 0 0 1 1 T ₂ T ₁ T ₀				4	r1 ← A	
			A, r1	0 0 0 0 1 T ₂ T ₁ T ₀				4	A ← r1	
	MOV	*	sr, A	0 1 0 0 1 1 0 1	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀			10	$sr \leftarrow A$	
	IVIOV	*	A, sr1	0 1 0 0 1 1 0 0	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀			10	A ← sr1	
			r, word	0 1 1 1 0 0 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	Low Adrs	High Adrs	17	$r \leftarrow (word)$	
			word, r	0 1 1 1 0 0 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	Low Adrs	High Adrs	17	$(word) \leftarrow r$	
ions	B 40 //	*	r, byte	0 1 1 0 1 R ₂ R ₁ R ₀	← Data →			7	$r \leftarrow \text{byte}$	
8-bit data transfer instructions	MVI		sr2, byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 0 S ₂ S ₁ S ₀	Data		14	$sr2 \leftarrow byte$	
sfer in	MVIW	*	wa, byte	0 1 1 1 0 0 0 1	← Offset →	Data		13	$(V. wa) \leftarrow byte$	
trans	MVIX	*	rpa1, byte	0 1 0 0 1 0 A ₁ A ₀	← Data — ►			10	$(rpa1) \leftarrow byte$	
t data	STAW	*	wa	0 1 1 0 0 0 1 1	← Offset →			10	$(V. wa) \leftarrow A$	
8-bi	LDAW	*	wa	0 0 0 0 0 0 0 1	← Offset →			10	$A \leftarrow (V.\ wa)$	
	STAX	*	rpa2	A ₃ 0 1 1 1 A ₂ A ₁ A ₀	Data* 1			7/13 *3	(rpa2) ← A	
	LDAX	*	rpa2	A ₃ 0 1 0 1 A ₂ A ₁ A ₀	Data* 1			7/13* 3	$A \leftarrow (rpa2)$	
	EXX			0 0 0 1 0 0 0 1				4	$\begin{cases} B \leftrightarrow B', C \leftrightarrow C', D \leftrightarrow D' \\ E \leftrightarrow E', H \leftrightarrow H', L \leftrightarrow L' \end{cases}$	
	EXA			0 0 0 1 0 0 0 0				4	$V,A \leftrightarrow V',A',EA \leftrightarrow EA'$	
	EXH			0 1 0 1 0 0 0 0				4	$H, L \leftrightarrow H', L'$	
	BLOCK			0 0 1 1 0 0 0 1				13 (C + 1)	(DE) [†] ← (HL) [†] , C ← C − 1 End if borrow	
te 2	DMOV		rp3, EA	1 0 1 1 0 1 P ₁ P ₀				4	rp3L ← EAL, rp3н ← EAH	
Note	DMOV		EA, rp3	1 0 1 0 0 1 P ₁ P ₀				4	EAL ← rp3∟, EAH ← rp3н	

2. 16-bit data transfer instructions

te 1	Mnemonic	Operand			Operation (Code				State	Operation	Skip
Note		Operana	B1		B2	В:	3	Е	34	Otato		Condition
	DMOV	sr3, EA	0 1 0 0 1 0 0	0	1 1 0 1 0 0 1 U ₀					14	sr3 ← EA	
	DMOV	EA, sr4			1 1 0 0 0 0 0 V ₀					14	EA ← sr4	
	SBCD	word	0 1 1 1 0 0 0	0	0 0 0 1 1 1 1 0	Low A	Adrs	High	Adrs	20	$(word) \leftarrow C, (word + 1) \leftarrow B$	
	SDED	word			0 0 1 0 1 1 1 0					20	$(word) \leftarrow E, (word + 1) \leftarrow D$	
	SHLD	word			0 0 1 1 1 1 1 0					20	$(word) \leftarrow L, (word + 1) \leftarrow H$	
tions	SSPD	word			0 0 0 0 1 1 1 0	ļ		,	Ī	20	$(word) \leftarrow SP_L, (word + 1) \leftarrow SP_H$	
16-bit data transfer instructions	STEAX	rpa3	0 1 0 0 1 0 0	0	1 0 0 1 C ₃ C ₂ C ₁ C ₀	Data	a *2			* 3 14/20	$(rpa3) \leftarrow EAL, (rpa3 + 1) \leftarrow EAH$	
sfer ir	LBCD	word	0 1 1 1 0 0 0	0	0 0 0 1 1 1 1 1	Low A	Adrs	High	Adrs	20	$C \leftarrow (word), B \leftarrow (word + 1)$	
a tran	LDED	word			0 0 1 0 1 1 1 1					20	$E \leftarrow (word),D \leftarrow (word+1)$	
oit dat	LHLD	word			0 0 1 1 1 1 1 1					20	$L \leftarrow (word), H \leftarrow (word + 1)$	
16-b	LSPD	word			0 0 0 0 1 1 1 1			,		20	$SP_L \leftarrow (word), SP_H \leftarrow (word + 1)$	
	LDEAX	rpa3	0 1 0 0 1 0 0	0	1 0 0 0 C ₃ C ₂ C ₁ C ₀	Data	a *2			* 3 14/20	$EAL \leftarrow (rpa3), EAH \leftarrow (rpa3+1)$	
	PUSH	rp1	1 0 1 1 0 Q ₂ Q	Q1 Q0						13	$(SP - 1) \leftarrow rp1H$, $(SP - 2) \leftarrow rp1L$ $SP \leftarrow SP - 2$	
	POP	rp1	1 0 1 0 0 Q ₂ Q	Q1 Q0						10	rp1 $_{L}$ ← (SP), rp1 $_{H}$ ← (SP + 1) SP ← SP + 2	
	LXI *	rp2, word	0 P ₂ P ₁ P ₀ 0 1 0	0	Low Byte →	High E	Byte			10	$rp2 \leftarrow word$	
	TABLE		0 1 0 0 1 0 0	0	1 0 1 0 1 0 0 0					17	$C \leftarrow (PC + 3 + A)$ B \leftarrow (PC + 3 + A + 1)	
	ADD	A, r	0 1 1 0 0 0 0	0	1 1 0 0 0 R ₂ R ₁ R ₀					8	$A \leftarrow A + r$	
Note 2	AUU	r, A			0 1 0 0					8	$r \leftarrow r + A$	
Not	ADC	A, r			1 1 0 1					8	$A \leftarrow A + r + CY$	
	ADC	r, A			0 1 0 1					8	$r \leftarrow r + A + CY$	

2. 8-bit operation instructions (register)

Note	Mnemonic	Operand			Oper	ation (Code	_	State	tate Operation	Skip
ž	Willettionic	Operana	B1		B2		В3	B4	Otato	Operation	Condition
	ADDNIC	A, r	0 1 1 0 0 0	0 0	1 0 1 0 0 R ₂	R₁ R₀			8	$A \leftarrow A + r$	No Carry
	ADDNC	r, A			0 0 1 0				8	r ← r + A	No Carry
	SUB	A, r			1 1 1 0				8	A ←A − r	
	306	r, A			0 1 1 0				8	$r \leftarrow r - A$	
	SBB	A, r			1 1 1 1				8	$A \leftarrow A - r - CY$	
	288	r, A			0 1 1 1				8	$r \leftarrow r - A - CY$	
er)	SUBNB	A, r			1 0 1 1				8	$A \leftarrow A - r$	No Borrow
8-bit operation instructions (register)		r, A			0 0 1 1	,			8	r ← r − A	No Borrow
ions (ANA	A, r			1 0 0 0 1 R ₂	R1 R0			8	$A \leftarrow A \wedge r$	
struct		r, A			0 0 0 0				8	$r \leftarrow r \wedge A$	
ion in	ORA	A, r			1 0 0 1				8	$A \leftarrow A \vee r$	
perat	ONA	r, A			0 0 0 1	,			8	$r \leftarrow r \lor A$	
3-bit o	XRA	A, r			1 0 0 1 0 R ₂	R1 R0			8	$A \leftarrow A \forall r$	
~	ANA	r, A			0 0 0 1	,			8	$r \leftarrow r \leftrightarrow A$	
	GTA	A, r			1 0 1 0 1 R ₂	R ₁ R ₀			8	A – r – 1	No Borrow
		r, A			0 0 1 0				8	r – A – 1	No Borrow
		A, r			1 0 1 1				8	A – r	Borrow
	LTA	r, A			0 0 1 1				8	r – A	Borrow
	NEA	A, r			1 1 1 0				8	A – r	No Zero
	NEA	r, A		,	0 1 1 0	,			8	r – A	No Zero

Note	Mnemonic	Operand —			Oper	ation C	Code	State	Operation	Skip
\Box		Орегана	B1		B2		В3	B4 State	Орегалоп	Condition
ister)	FO.4	A, r 0	0 1 1 0 0 0 0 0		1 1 1 1 1 R ₂ R ₁ R ₀			8	A – r	Zero
tion s (reg	EQA	r, A			0 1 1 1			8	r – A	Zero
8-bit operation instructions (register)	ONA	A, r			1 1 0 0			8	A∧r	No Zero
8-bit instru	OFFA	A, r	.		1 1 0 1			8	A∧r	Zero
	ADDX	rpa 0	1 1 1 0 0	0 0	1 1 0 0 0 A ₂	A1 A0		11	A ← A + (rpa)	
	ADCX	rpa			1 1 0 1			11	A ← A + (rpa) + CY	
	ADDNCX	rpa			1 0 1 0			11	A ← A + (rpa)	No Carry
	SUBX	rpa			1 1 1 0			11	A ← A − (rpa)	
nory)	SBBX	rpa			1 1 1 1			11	A ← A − (rpa) − CY	
8-bit operation instructions (memory)	SUBNBX	rpa			1 0 1 1			11	A ← A − (rpa)	No Borrow
ctions	ANAX	rpa			1 0 0 0 1 A ₂	A1 A0		11	$A \leftarrow A \wedge (rpa)$	
nstru	ORAX	rpa			1 0 0 1			11	$A \leftarrow A \lor (rpa)$	
ation i	XRAX	rpa			1 0 0 1 0 A ₂	A1 A0		11	$A \leftarrow A \leftrightarrow (rpa)$	
opera	GTAX	rpa			1 0 1 0 1 A ₂	A1 A0		11	A – (rpa) – 1	No Borrow
8-bit	LTAX	rpa			1 0 1 1			11	A – (rpa)	Borrow
	NEAX	rpa			1 1 1 0			11	A – (rpa)	No Zero
	EQAX	rpa			1 1 1 1			11	A – (rpa)	Zero
	ONAX	rpa			1 1 0 0			11	A ∧ (rpa)	No Zero
	OFFAX	rpa	<u> </u>		1 1 0 1			11	A ∧ (rpa)	Zero

Note	Mnemonic		Operand		Operation	Code	State	ate Operation	Skip	
ž	WITICITIOTII			B1	B2	В3	B4	Otate	Operation	Condition
		*	A, byte	0 1 0 0 0 1 1 0	← ——Data——→			7	$A \leftarrow A + byte$	
	ADI		r, byte	0 1 1 1 0 1 0 0	0 1 0 0 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r + byte$	
			sr2, byte	0 1 1 0	S ₃ 1 0 0 0 S ₂ S ₁ S ₀			20	$sr2 \leftarrow sr2 + byte$	
	_	*	A, byte	0 1 0 1 0 1 1 0	← Data — →			7	$A \leftarrow A + byte + CY$	
	ACI		r, byte	0 1 1 1 0 1 0 0	0 1 0 1 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r + byte + CY$	
			sr2, byte	0 1 1 0	S ₃ 1 0 1 0 S ₂ S ₁ S ₀			20	$sr2 \leftarrow sr2 + byte + CY$	
ctions		*	A, byte	0 0 1 0 0 1 1 0	← Data — →			7	$A \leftarrow A + byte$	No Carry
Immediate data operation instructions	ADINC		r, byte	0 1 1 1 0 1 0 0	0 0 1 0 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r + byte$	No Carry
ation i			sr2, byte	0 1 1 0	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2 + byte	No Carry
opera	_	*	A, byte	0 1 1 0 0 1 1 0	← Data →			7	$A \leftarrow A - byte$	
data	SUI		r, byte	0 1 1 1 0 1 0 0	0 1 1 0 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r - byte$	
ediate			sr2, byte	0 1 1 0	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	\		20	sr2 ← sr2 – byte	
lm m	_	*	A, byte	0 1 1 1 0 1 1 0	← Data — →			7	$A \leftarrow A - byte - CY$	
	SBI		r, byte	0 1 1 1 0 1 0 0	0 1 1 1 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r - byte - CY$	
			sr2, byte	0 1 1 0	S ₃ 1 1 1 0 S ₂ S ₁ S ₀	\		20	$sr2 \leftarrow sr2 - byte - CY$	
		*	A, byte	0 0 1 1 0 1 1 0	← Data →			7	$A \leftarrow A - byte$	No Borrow
	SUINB		r, byte	0 1 1 1 0 1 0 0	0 0 1 1 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r - \text{byte}$	No Borrow
			sr2, byte	0 1 1 0	S ₃ 0 1 1 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2 – byte	No Borrow
		*	A, byte	0 0 0 0 0 1 1 1	Data			7	$A \leftarrow A \wedge \text{byte}$	
	ANI		r, byte	0 1 1 1 0 1 0 0	0 0 0 0 1 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r \wedge byte$	

Note	Mnemonic	Operand		Operation (Code		State	Operation	Skip
ž	WITTETTTOTTIC	Operand	B1	B2	В3	B4	State	Operation	Condition
	ANI	sr2, byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	Data		20	$sr2 \leftarrow sr2 \wedge byte$	
	*	A, byte	0 0 0 1 0 1 1 1	← Data →			7	$A \leftarrow A \lor \text{byte}$	
	ORI	r, byte	0 1 1 1 0 1 0 0	0 0 0 1 1 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r \vee byte$	
		sr2, byte	0 1 1 0	S ₃ 0 0 1 1 S ₂ S ₁ S ₀	\		20	sr2 ← sr2 ∨ byte	
	*	A, byte	0 0 0 1 0 1 1 0	← Data →			7	$A \leftarrow A \not \!$	
	XRI	r, byte	0 1 1 1 0 1 0 0	0 0 0 1 0 R ₂ R ₁ R ₀	Data		11	r ← r ∨ byte	
tions		sr2, byte	0 1 1 0	S ₃ 0 0 1 0 S ₂ S ₁ S ₀			20	sr2 ← sr2 ∨ byte	
nstru	*	A, byte	0 0 1 0 0 1 1 1	← —Data — →	·		7	A – byte– 1	No Borrow
Immediate data operation instructions	GTI	r, byte	0 1 1 1 0 1 0 0	0 0 1 0 1 R ₂ R ₁ R ₀	Data		11	r – byte – 1	No Borrow
opera		sr2, byte	0 1 1 0	S ₃ 0 1 0 1 S ₂ S ₁ S ₀	•		14	sr2 – byte – 1	No Borrow
data	*	A, byte	0 0 1 1 0 1 1 1	← ——Data ——			7	A – byte	Borrow
ediate	LTI	r, byte	0 1 1 1 0 1 0 0	0 0 1 1 1 R ₂ R ₁ R ₀	Data		11	r – byte	Borrow
lmm		sr2, byte	0 1 1 0	S ₃ 0 1 1 1 S ₂ S ₁ S ₀	\		14	sr2 – byte	Borrow
	*	A, byte	0 1 1 0 0 1 1 1	← Data →			7	A – byte	No Zero
	NEI	r, byte	0 1 1 1 0 1 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	Data		11	r – byte	No Zero
		sr2, byte	0 1 1 0	S ₃ 1 1 0 1 S ₂ S ₁ S ₀			14	sr2 – byte	No Zero
	*	A, byte	0 1 1 1 0 1 1 1	← Data →			7	A – byte	Zero
	EQI	r, byte	0 1 1 1 0 1 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	Data		11	r – byte	Zero
		sr2, byte	0 1 1 0	S ₃ 1 1 1 1 S ₂ S ₁ S ₀			14	sr2 – byte	Zero

Note	Mnemonic	Operand		Operation	Code		State	te Operation	Skip
ž		Орегина	B1	B2	В3	B4	Otato	Орогиион	Condition
	*	A, byte	0 1 0 0 0 1 1 1	← —Data — →			7	A ∧ byte	No Zero
tions	ONI	r, byte	0 1 1 1 0 1 0 0	0 1 0 0 1 R ₂ R ₁ R ₀	Data		11	r ∧ byte	No Zero
Immediate data operation instructions		sr2, byte	0 1 1 0	S ₃ 1 0 0 1 S ₂ S ₁ S ₀	.		14	sr2 ∧ byte	No Zero
diate ation i	*	A, byte	0 1 0 1 0 1 1 1	← —Data — →			7	A ∧ byte	Zero
Imme	OFFI	r, byte	0 1 1 1 0 1 0 0	0 1 0 1 1 R ₂ R ₁ R ₀	Data		11	r ∧ byte	Zero
		sr2, byte	0 1 1 0	S ₃ 1 0 1 1 S ₂ S ₁ S ₀	.		14	sr2 ∧ byte	Zero
	ADDW	wa	0 1 1 1 0 1 0 0	1 1 0 0 0 0 0 0	offset		14	$A \leftarrow A + (V. wa)$	
	ADCW	wa		1 1 0 1			14	$A \leftarrow A + (V. wa) + CY$	
	ADDNCW	wa		1 0 1 0			14	A ← A + (V. wa)	No Carry
Su	SUBW	wa		1 1 1 0			14	A ← A − (V. wa)	
nctio.	SBBW	wa		1 1 1 1			14	$A \leftarrow A - (V. wa) - CY$	
Working register operation instructions	SUBNBW	wa		1 0 1 1			14	$A \leftarrow A - (V. wa)$	No Borrow
eratio	ANAW	wa		1 0 0 0 1 0 0 0			14	$A \leftarrow A \wedge (V. \ wa)$	
er op	ORAW	wa		1 0 0 1			14	$A \leftarrow A \lor (V. \ wa)$	
regist	XRAW	wa		1 0 0 1 0 0 0 0			14	$A \leftarrow A \rightarrow (V. wa)$	
rking	GTAW	wa		1 0 1 0 1 0 0 0			14	A – (V. wa) – 1	No Borrow
No N	LTAW	wa		1 0 1 1			14	A – (V. wa)	Borrow
	NEAW	wa		1 1 1 0			14	A – (V. wa)	No Zero
	EQAW	wa		1 1 1 1			14	A – (V. wa)	Zero
	ONAW	wa		1 1 0 0			14	A ∧ (V. wa)	No Zero

Note	Mnemonic	Operand	Operation Code					State	Operation	Skip		
ž		Operand	B1		В	2	E	33	B4	State		Condition
	OFFAW	wa	0 1 1 1 0 1	0 0	1 1 0 1	1 0 0 0	Off	set		14	A ∧ (V. wa)	Zero
ctions	ANIW *	wa, byte	0 0 0 0 0 1	0 1	← —Offs	set——→	Da	nta		19	$(V. \ wa) \leftarrow (V. \ wa) \land \ byte$	
nstru	ORIW *	wa, byte	0 0 0 1							19	$(V. \ wa) \leftarrow (V. \ wa) \lor \ byte$	
operation instructions	GTIW *	wa, byte	0 0 1 0							13	(V. wa) – byte – 1	No Borrow
opera	LTIW *	wa, byte	0 0 1 1							13	(V. wa) – byte	Borrow
gister	NEIW *	wa, byte	0 1 1 0							13	(V. wa) – byte	No Zero
ng re	EQIW *	wa, byte	0 1 1 1							13	(V. wa) – byte	Zero
Working register	ONIW *	wa, byte	0 1 0 0							13	(V. wa) ∧ byte	No Zero
	OFFIW	wa, byte	0 1 0 1		ļ			\		13	(V. wa) ∧ byte	Zero
	EADD	EA, r2	0 1 1 1 0 0	0 0	0 1 0 0	0 0 R ₁ R ₀				11	$EA \leftarrow EA + r2$	
	DADD	EA, rp3	0 1	0 0	1 1 0 0	0 1 P ₁ P ₀				11	EA ← EA + rp3	
	DADC	EA, rp3			1 1 0 1					11	EA ← EA + rp3 +CY	
16-bit operation instructions	DADDNC	EA, rp3			1 0 1 0	•				11	EA ← EA + rp3	No Carry
instru	ESUB	EA, r2	0 0	0 0	0 1 1 0	0 0 R ₁ R ₀				11	$EA \leftarrow EA - r2$	
ation	DSUB	EA, rp3	0 1	0 0	1 1 1 0	0 1 P ₁ P ₀				11	$EA \leftarrow EA - rp3$	
oper	DSBB	EA, rp3			1 1 1 1					11	$EA \leftarrow EA - rp3 - CY$	
16-bit	DSUBNB	EA, rp3			1 0 1 1	•				11	EA ← EA – rp3	No Borrow
	DAN	EA, rp3			1 0 0 0	1 1 P ₁ P ₀				11	EA ← EA ∧ rp3	
	DOR	EA, rp3			1 0 0 1	•				11	EA ← EA ∨ rp3	
	DXR	EA, rp3			1 0 0 1	0 1 P ₁ P ₀				11	EA ← EA ∨ rp3	

te 1	Mnemonic	onic Operand		Operation C	ode		State	Operation	Skip
Note		Operana	B1	B2	В3	B4	Otato		Condition
suc	DGT	EA, rp3	0 1 1 1 0 1 0 0	1 0 1 0 1 1 P ₁ P ₀			11	EA – rp3 – 1	No Borrow
truction	DLT	EA, rp3		1 0 1 1			11	EA – rp3	Borrow
n ins	DNE	EA, rp3		1 1 1 0			11	EA – rp3	No Zero
eratio	DEQ	EA, rp3		1 1 1 1			11	EA – rp3	Zero
16-bit operation instructions	DON	EA, rp3		1 1 0 0			11	EA ∧ rp3	No Zero
16-	DOFF	EA, rp3		1 1 0 1			11	EA ∧ rp3	Zero
Note 2	MUL	r2	0 1 0 0 1 0 0 0	0 0 1 0 1 1 R ₁ R ₀			32	$EA \leftarrow A \times r2$	
Not	DIV	r2	<u> </u>	0 0 1 1			59	$EA \leftarrow EA \div r2, r2 \leftarrow Remainder$	
,	INR	r2	0 1 0 0 0 0 R ₁ R ₀				4	r2 ← r2 + 1	Carry
Increment/decrement instructions	INRW *	wa	0 0 1 0 0 0 0 0	← Offset →			16	(V. wa) ← (V. wa) + 1	Carry
instru	10.07	rp	0 0 P ₁ P ₀ 0 0 1 0				7	rp ← rp + 1	
ment	INX	EA	1 0 1 0 1 0 0 0				7	EA ← EA + 1	
decre	DCR	r2	0 1 0 1 0 0 R ₁ R ₀				4	r2 ← r2 − 1	Borrow
ment/	DCRW *	wa	0 0 1 1 0 0 0 0	Offset →			16	(V. wa) ← (V. wa) – 1	Borrow
Increi	DOV	rp	0 0 P ₁ P ₀ 0 0 1 1				7	rp ← rp − 1	
	DCX	EA	1 0 1 0 1 0 0 1				7	EA ← EA − 1	
	DAA		0 1 1 0 0 0 0 1				4	Decimal Adjust Accumulator	
e 3	STC		0 1 0 0 1 0 0 0	0 0 1 0 1 0 1 1			8	CY ← 1	
Note	CLC			0 0 1 0 1 0 1 0			8	CY ← 0	
	NEGA			0 0 1 1 1 0 1 0			8	$A \leftarrow \overline{A} + 1$	

- Note 1. Instruction Group
 - 2. Multiplication/division instructions
 - 3. Other operation instructions

Note	Mnemonic	Operand		Operation	Code		State	Operation	Skip
Ž			B1	B2	B3	B4			Condition
	RLD		0 1 0 0 1 0 0 0	0 0 1 1 1 0 0 0			17	Rotate Left Digit	
	RRD			1 0 0 1			17	Rotate Right Digit	
	RLL	r2		0 1 R ₁ R ₀			8	$r2_{m+1} \leftarrow r2_m, r2_0 \leftarrow CY, CY \leftarrow r2_7$	
s	RLR	r2		0 0 R ₁ R ₀			8	$r2_{m-1} \leftarrow r2_m, r2_7 \leftarrow CY, CY \leftarrow r2_0$	
nction	SLL	r2		0 0 1 0 0 1 R ₁ R ₀			8	$r2_{m+1} \leftarrow r2_m, r2_0 \leftarrow 0, CY \leftarrow r2_7$	
instru	SLR	r2		0 0 R ₁ R ₀			8	$r2_{m-1} \leftarrow r2_m, r2_7 \leftarrow 0, CY \leftarrow r2_0$	
/shift	SLLC	r2		0 0 0 0 0 1 R ₁ R ₀			8	$r2_{m+1} \leftarrow r2_m, r2_0 \leftarrow 0, CY \leftarrow r2_7$	Carry
Rotation/shift instructions	SLRC	r2		0 0 R ₁ R ₀			8	$r2_{m-1} \leftarrow r2_m, r2_7 \leftarrow 0, CY \leftarrow r2_0$	Carry
Ro	DRLL	EA		10110100			8	$EA_{n+1} \leftarrow EA_{n}, EA_{0} \leftarrow CY, CY \leftarrow EA_{15}$	
	DRLR	EA		0 0 0 0			8	$EA_{N-1} \leftarrow EA_n, EA_15 \leftarrow CY, CY \leftarrow EA_0$	
	DSLL	EA		1 0 1 0 0 1 0 0			8	$EA_{n+1} \leftarrow EA_{n}, EA_{0} \leftarrow 0, CY \leftarrow EA_{15}$	
	DSLR	EA		0 0 0 0			8	$EA_{n-1} \leftarrow EA_n, EA_{15} \leftarrow 0, CY \leftarrow EA_{0}$	
	JMP *	word	0 1 0 1 0 1 0 0	← Low Adrs →	High Adrs		10	PC ← word	
tions	JB		0 0 1 0 0 0 0 1				4	$PCH \leftarrow B, PCL \leftarrow C$	
Jump instructions	JR	word	1 1 ← jdisp 1				10	PC ← PC + 1 + jdisp 1	
ımp ir	JRE *	word	0 1 0 0 1 1 1	jdisp			10	PC ← PC + 2 + jdisp	
Jul.	JEA		0 1 0 0 1 0 0 0	0 0 1 0 1 0 0 0			8	PC ← EA	
tions	CALL *	word	0 1 0 0 0 0 0 0	Low Adrs	High Adrs		16	$(SP-1) \leftarrow (PC+3)H$, $(SP-2) \leftarrow (PC+3)L$ PC \leftarrow word, $SP \leftarrow SP-2$	
Call Instructions	CALB		0 1 0 0 1 0 0 0	0 0 1 0 1 0 0 1			17	$ \begin{array}{l} (SP-1) \leftarrow (PC+2)_H, (SP-2) \leftarrow (PC+2)_L \\ PC_H \leftarrow B, PC_L \leftarrow C, SP \leftarrow SP-2 \end{array} $	
Call Ir	CALF *	word	0 1 1 1 1	fa			13	$\begin{array}{l} (SP-1) \leftarrow (PC+2) \text{H, } (SP-2) \leftarrow (PC+2) \text{L} \\ PC_{15-11} \leftarrow 00001, \ PC_{10-0} \leftarrow fa, \ SP \leftarrow SP - \end{array}$	2

te 1	Mnemonic	Operand		Operation	Code	State	Operation	Skip
Note	winemonic	Operand	B1	B2	В3	B4 State		Condition
te 2	CALT	word	1 0 0 ← ta — →			16	$\begin{array}{l} (SP-1) \leftarrow (PC+1)_H, (SP-2) \leftarrow (PC+1)_L \\ PC \iota \leftarrow (128+2ta), PC_H \leftarrow (129+2ta), SP \leftarrow SP-2 \end{array}$	2
Note	SOFTI		0 1 1 1 0 0 1 0			16	(SP-1) ←PSW, (SP-2) ← (PC+1)H, (SP-3) ← (PC+1)L, PC ← 0060H, SP ← SP-3	
Suc	RET		1 0 1 1 1 0 0 0			10	$PCL \leftarrow (SP), PCH \leftarrow (SP + 1)$ $SP \leftarrow SP + 2$	
Return instructions	RETS		1 0 0 1			10	$PCL \leftarrow (SP), PCH \leftarrow (SP + 1), SP \leftarrow SP + 2$ $PC \leftarrow PC + n$	Uncondi- tional skip
Ret	RETI		0 1 1 0 0 0 1 0			13	$\begin{array}{l} PCL \leftarrow (SP), PCH \leftarrow (SP+1) \\ PSW \leftarrow (SP+2), SP \leftarrow SP+3 \end{array}$	
	BIT *	bit, wa	0 1 0 1 1 B ₂ B ₁ B ₀	← Offset →		10	Skip if (V. wa) bit = 1	(V. wa)bit = 1
ctions	SK	f	0 1 0 0 1 0 0 0	0 0 0 0 1 F ₂ F ₁ F ₀		8	Skip if f = 1	f = 1
Skip instructions	SKN	f		0 0 0 1		8	Skip if f = 0	f = 0
Skip i	SKIT	irf		0 1 0 4 3 2 1 0		8	Skip if irf = 1, then reset irf	irf = 1
	SKNIT	irf		0 1 1 14 13 12 11 10		8	Skip if irf = 0 Reset irf, if irf = 1	irf = 0
ions	NOP		0 0 0 0 0 0 0 0			4	No Operation	
struct	EI		1 0 1 0 1 0 1 0			4	Enable Interrupt	
control instructions	DI		1 0 1 1 1 0 1 0			4	Disable Interrupt	
	HLT		0 1 0 0 1 0 0 0	0 0 1 1 1 0 1 1		12	Set Halt Mode	
CPU	STOP		0 1 0 0 1 0 0 0	1 0 1 1 1 0 1 1		12	Set Stop Mode	

- * 1. Data is B2 if rpa2 = D + byte, H + byte.
 - 2. Data is B3 if rpa3 = D + byte, H + byte.
 - 3. In the State item, a figure is in the right side of slash if rpa2 and rpa3 are D + byte, H + A, H + B, H + EA, H + byte.

Remarks The idle state when each instruction is skipped is different from the execution state as shown below.

1-byte instruction : 4 states 3-byte instruction (with *) : 10 states 2-byte instruction (with *) : 7 states 3-byte instruction : 11 states 2-byte instruction : 8 states 4-byte instruction : 14 states

Note 1. Instruction Group 2. Call instructions

5. LIST OF MODE REGISTERS

Nan	ne of Mode Registers	Read/ Write	Function
MA	MODE A register	W	Specifies bit-wise the input/output of the port A.
MB	MODE B register	W	Specifies bit-wise the input/output of the port B.
МСС	MODE CONTROL C register	W	Specifies bit-wise the port/control mode of the port C.
MC	MODE C register	W	Specifies bit-wise the input/output of the port C which is in port mode.
MM	MEMORY MAPPING register	W	Specifies the port/extension mode of port D and port F.
MF	MODE F register	W	Specifies bit-wise the input/output of the port F which is in port mode.
TMM	Timer mode register	R/W	Specifies operating mode of timer.
ETMM	Timer/event counter mode register	W	Specifies the operating mode of timer/event counter.
EOM	Timer/event counter output mode register	R/W	Control the output level of CO0 and CO1.
SML	Carial made variates	W	
SMH	Serial mode register	R/W	Specifies the operating mode of serial interface.
MKL	1-4	DAA	
MKH	Interrupt mask register	R/W	Specifies the enable/disable of the interrupt request.
ANM	A/D channel mode register	R/W	Specifies the operating mode of A/D converter.
ZCM	Zero-cross mode register	W	Specifies the operation of zero-cross detector circuit.

6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
	V _{DD}		-0.5 to +7.0	V
Power supply voltage	AVDD		AVss to V _{DD} +0.5	V
	AVss		-0.5 to +0.5	٧
Input voltage	Vı		-0.5 to V _{DD} +0.5	V
Output voltage	Vo		-0.5 to V _{DD} +0.5	V
Output surrent law	lou	All output pins	4.0	mA
Output current low	IOL	Total of all output pins	100	mA
Output assessed high	Іон	All output pins	-2.0	mA
Output current high	IOH	Total of all output pins	-50	mA
A/D converter reference input voltage	Varef		-0.5 to AV _{DD} +0.3	V
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

Caution

Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product.

*

OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = AVdd = +5.0 V \pm 10 %, Vss = AVss = 0 V, Vdd -0.8 V \leq AVdd \leq Vdd, 3.4 V \leq Varef \leq AVdd)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	MAX.	UNIT
Ceramic*1 or crystal resonator*2	X1 X2	Oscillator frequency (fxx)	A/D converter not used	4	15	MHz
	C1 C2	Commuter frequency (1722)	A/D converter used	5.8	15	MHz
	X1 X2	X1 input frequency (fx)	A/D converter not used	4	15	MHz
External clock	HCMOS Inverter	AT input frequency (ix)	A/D converter used	5.8	15	MHz
CIOCK		X1 rise time, fall time (tr, tf)		0	20	ns
		X1 input high, low level width (tон, tог)		20	250	ns

Cautions 1. Place oscillator circuit as close as possible to X1, X2 pins.

2. Ensure that no other signal lines pass through the shadow area.

* 1. The ceramic oscillators and external capacitance given in the following table are recommended.

MAKER	DDODLICT NAME	RECOMMENDED CONSTANT		
IVIANEN	PRODUCT NAME	C1[pF]	C2[pF]	
	CSA7.37MT	30	30	
	CST7.37MTW	On-chip	On-chip	
Murata Mfg. Co., Ltd	CSA12.0MT	30	30	
	CST12.0MTW	On-chip	On-chip	
	CSA15.00MX001	15	15	
	FCR8.0MC			
TDK Corp.	FCR10.0MC	On-chip	On-chip	
TDK Corp.	FCR12.0OMC	On-chip	On-chip	
	FCR15.0MC			

* 2. When a crystal oscillator is used, the following external capacitance is recommended.

$$C1 = C2 = 10 pF$$

NEC

CAPACITANCE (TA = 25 $^{\circ}$ C, V_{DD} = Vss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Сі	fc = 1 MHz			10	pF
Output capacitance	Со				20	pF
Input-output capacitance	Сю	Unmeasured pins returned to 0 V			20	pF

DC CHARACTERISTICS (TA = -40 to +85 °C, Vdd = AVdd = +5.0 V \pm 10 %, Vss = AVss = 0 V)

PARAMETER	SYMBOL	TEST COI	NDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage low	V _{IL1}	All except RESET, STO SCK, INT1, TI, AN4 to		0		0.8	V
Input voltage low	V _{IL2}	RESET, STOP, NMI, SC TI, AN4 to AN7	CK, INT1,	0		0.2 V _{DD}	V
Input voltage	V _{1IH}	All except RESET, STO SCK, INT1, TI, AN4 to		2.2		V _{DD}	V
high	V _{IH2}	RESET, STOP, NMI, SC TI, AN4 to AN7, X1, X2		0.8 V _{DD}		V _{DD}	V
Output voltage low	Vol	IoL = 2.0 mA				0.45	V
Output voltage	Vон	Іон = −1.0 mA		V _{DD} -1.0			V
high	VOH	Іон = -100 μΑ		V _{DD} -0.5			V
Input current	lı	INT1*1, TI(PC3)*2; 0 V	$1 \le V_1 \le V_{DD}$			±200	μΑ
Input leakage current	lu	All except INT1, TI (PC 0 V \leq V _I \leq V _{DD}	3),			±10	μΑ
Output leakage current	ILO	0 V ≤ Vo ≤ VDD				±10	μΑ
AV _{DD} power	Al _{DD1}	Operating mode fxx =	15 MHz		0.5	1.3	mA
supply current	Aldd2	STOP mode			10	20	μΑ
V _{DD} power	I _{DD1}	Operating mode fxx =	15 MHz		13	25	mA
supply current	I _{DD2}	HALT mode fxx = 15 M	Hz		7	13	mA
Data retention voltage	V _{DDDR}	Hardware/software ST	OP mode	2.5			V
Data retention		Hardware/software*3	VDDDR = 2.5 V		1	15	μΑ
current	Idddr	STOP mode	V _{DDDR} = 5 V ±10%		10	50	μΑ
Pull-up resistor*4	R∟	Ports A, B and C	$3.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{V}_{\text{I}} = 0 \text{ V}$	17	27	75	kΩ

Caution For a detailed description of the hardware STOP mode, refer to the 87AD Series mPD78C18 User's Manual.

- * 1. If self-bias should be generated by ZCM register.
 - 2. If the control mode is set by MCC register, and self-bias should be generated by ZCM register.
 - 3. If self-bias is not generated.
 - **4.** μ PD78C11A and 78C12A only.

AC CHARACTERISTICS (TA = -40 to +85 °C, Vdd = AVdd = +5.0 V ± 10 %, Vss = AVss = 0 V) Read/write Operation:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input cycle time	tcyc		66	250	ns
Address setup time (to ALE \downarrow)	tal		30		ns
Address hold time (from ALE \downarrow)	tLA	fxx = 15 MHz, CL = 100 pF	35		ns
$\overline{\text{RD}}\downarrow \text{delay time from address}$	tar		100		ns
Address float time from $\overline{\text{RD}}$ \downarrow	tafr	C _L = 100 pF		20	ns
Data input time from address	tad			250	ns
Data input time from ALE \downarrow	tLDR	f., 15 MHz C. 100 pF		135	ns
Data input time from $\overline{\text{RD}}$ \downarrow	trd	fxx = 15 MHz, C _L = 100 pF		120	ns
$\overline{\text{RD}}\downarrow$ delay time from ALE \downarrow	t LR		15		ns
Data hold time (from $\overline{\text{RD}}$ \uparrow)	t RDH	C _L = 100 pF	0		ns
ALE \uparrow delay time from $\overline{\text{RD}}$ \uparrow	trl	fxx = 15 MHz, CL = 100 pF	80		ns
RD low level width	trr	In Data Read fxx = 15 MHz, CL = 100 pF	215		ns
	thr	In OP Code Fetch fxx = 15 MHz, C _L = 100 pF	415		ns
ALE high level width	tll	fxx = 15 MHz, CL = 100 pF	90		ns
$\overline{\text{M1}}$ setup time (to ALE \downarrow)	tмL		30		ns
$\overline{\text{M1}}$ hold time (from ALE \downarrow)	tьм		35		ns
$\overline{\text{IO/M}}$ setup time (to ALE \downarrow)	tıL	fxx = 15 MHz	30		ns
IO/M hold time (from ALE ↓)	tu		35		ns
WR ↓ delay time from address	taw	(45 MIL 0 400 5	100		ns
Data output time from ALE \downarrow	tldw	fxx = 15 MHz, C _L = 100 pF		180	ns
Data output time from $\overline{ m WR}$ \downarrow	two	C _L = 100 pF		100	ns
$\overline{ m WR}$ \downarrow delay time from ALE \downarrow	tıw		15		ns
Data setup time (to $\overline{WR}\!\!\uparrow$)	tow		165		ns
Data hold time (from WR ↑)	t wdh	fxx = 15 MHz, CL = 100 pF	60		ns
ALE ↑ delay time from WR ↑	twL		80		ns
WR low level width	tww		215		ns

Serial Operation:

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	MAX.	UNIT
		SCK input	*1	800		ns
SCK cycle time	tcyĸ	3CK IIIput	*2	400		ns
		SCK output		1.6		μs
		SCK input	*1	335		ns
SCK low level width	t kkl	3CK IIIput	*2	160		ns
		SCK output		700		ns
	tккн	SCK input	*1	335		ns
SCK high level width		3CK IIIput	*2	160		ns
		SCK output		700		ns
RxD setup time (to SCK ↑)	trxk	*1		80		ns
RxD hold time (from SCK ↑)	tkrx	*1		80		ns
TxD delay time from SCK ↓	tктх	*1			210	ns

- * 1. If clock rate is \times 1 in asynchronous mode, synchronous mode, or I/O interface mode.
 - 2. If clock rate is \times 16 or \times 64 in asynchronous mode.

Remarks The numeric values in the table are those when fxx = 15 MHz, C_L = 100 pF.

Zero-Cross Characteristics:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
Zero-cross detection input	Vzx		1	1.8	VAC _{P-P}
Zero-cross accuracy	Azx	AC combination 60 Hz sine wave		±135	mV
Zero-cross detection input frequency	fzx	50 N2 5M6 Wave	0.05	1	kHz

Other Operation:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
TI high, low level width	tтıн, tтıL		6		tcyc
CI high, low level width	tciih, tciil	Event count mode	6		tcyc
	tci2H,tci2L	Pulse width test mode	48		tcyc
NMI high, low level width	tnih, tnil		10		μs
INT1 high, low level width	tiih, tiil		36		tcyc
INT2 high, low level width	t12H, t12L		36		tcyc
AN4 to AN7, low level width	tanh, tanl		36		tcyc
RESET high, low level width	trsh, trsl		10		μs

A/D CONVERTER CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = +5.0 V \pm 10 %, Vss = AVss = 0 V, Vdd -0.5 V \leq AVdd \leq Vdd, 3.4 V \leq Varef \leq AVdd)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			Bits
		3.4 V \leq VAREF \leq AVDD, 66 ns \leq tcyc \leq 170 ns			±0.8%	FSR
Absolute accuracy*		$4.0~V \le V_{AREF} \le AV_{DD}$, $66~ns \le t_{CYC} \le 170~ns$			±0.6%	FSR
		$T_A = -10 \text{ to } +70 \text{ °C},$ $4.0 \text{ V} \leq V_{AREF} \leq AV_{DD}, 66 \text{ ns} \leq t_{CYC} \leq 170 \text{ ns}$			±0.4%	FSR
		66 ns ≤ tcvc ≤ 110 ns	576			tcyc
Conversion time	tconv	110 ns ≤ tcvc ≤ 170 ns	432			tcyc
_	tsamp	66 ns ≤ tcvc ≤ 110 ns	96			tcyc
Sampling time		110 ns ≤ tcvc ≤ 170 ns	72			tcyc
Analog input voltage	VIAN	AN0 to AN7 (including unused pins)	-0.3		Varef +0.3	V
Analog input impedance	Ran			50		ΜΩ
Reference voltage	Varef		3.4		AV _{DD}	V
Vares current	laref1	Operating mode		1.5	3.0	mA
VAREF CUTTENT	laref2	STOP mode		0.7	1.5	mA
AV _{DD} power supply	Aldd1	Operating mode fxx = 15 MHz		0.5	1.3	mA
current	Aldd2	STOP mode		10	20	μΑ

^{*} Quantization error (\pm 1/2 LSB) is not included.

AC Timing Test Point

•

tcyc-Dependent AC Characteristics Expression

PARAMETER	EXPRESSION	MIN./MAX.	UNIT	
tal	2T – 100	MIN.	ns	
tla	T – 30	MIN.	ns	
tar	3T – 100	MIN.	ns	
tad	7T – 220	MAX.	ns	
tLDR	5T – 200	MAX.	ns	
trd	4T – 150	MAX.	ns	
tur	T – 50	MIN.	ns	
trl	2T – 50	MIN.	ns	
too	4T – 50 (In data read)	P. ALD.		
trr —	7T – 50 (In OP code fetch)	MIN.	ns	
tll	2T – 40	MIN.	ns	
tмL	2T – 100	MIN.	ns	
tьм	T – 30	MIN.	ns	
tıL	2T – 100	MIN.	ns	
tu	T – 30	MIN.	ns	
taw	3T – 100	MIN.	ns	
tldw	T + 110	MAX.	ns	
tıw	T – 50	MIN.	ns	
tow	4T – 100	MIN.	ns	
twdн	2T – 70	MIN.	ns	
twL	2T – 50	MIN.	ns	
tww	4T – 50	MIN.	ns	
	12T (SCK input)*1/6T (SCK input)*2	paint		
tcyk	24T (SCK output)	MIN.	ns	
ton	5T + 5 (SCK input)*1/2.5T + 5 (SCK input)*2	9.415.1		
tkkl	12T – 100 (SCK output)	MIN.	ns	
•	5T + 5 (SCK input)*1/2.5T + 5 (SCK input)*2	9.415.1		
t ккн	12T – 100 (SCK output)	MIN.	ns	

- * 1. If clock rate is \times 1, in asynchronous mode, synchronous mode, or I/O interface mode.
 - 2. If clock rate is 16×64 , in asynchronous mode.

Cautions 1. T = tCYC = 1/fXX

2. Other items which are not listed in this table are not dependent on oscillator frequency (fXX).

Timing Waveform Read operation

- * 1. When MODE1 pin is pulled up, M1 signal is output to MODE1 pin in the 1st OP code fetch cycle.
 - 2. When MODE0 pin is pulled up, $\overline{\text{IO}}/\text{M}$ signal is output to MODE0 pin in sr to sr2 register read cycle.

Write operation

* 3. When MODE0 pin is pulled up, \overline{IO}/M signal is output to MODE0 pin in sr to sr2 register write cycle.

Serial Operation

Timer Input Timing

Timer/Event Counter Input Timing

Interrupt Input Timing

Reset Input Timing

External Clock Timing

DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = -40 to +85 $^{\circ}\text{C})$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention power supply voltage	V _{DDDR}		2.5		5.5	V
Data retention power	lanan	VDDDR = 2.5 V		1	15	μΑ
supply current	IDDDR	VDDDR = 5 V ±10%		10	50	μΑ
V _{DD} rise/fall time	trvd, trvd		200			μs
STOP setup time (to V _{DD})	t sstvd		12T +0.5			μs
STOP hold time (from V _{DD})	thvdst		12T +0.5			μs

Data Retention Timing

7. CHARACTERISTIC CURVES (REFERENCE VALUES)

Iон vs Vон

Power Supply Voltage – Output Voltage High V_{DD} – VoH [V]

IDDDR VS VDDDR

Data Retention Power Supply Voltage VDDDR [V]

8. DIFFERENCES IN 87AD SERIES PRODUCTS (1/2)

Product Name	μPD7810	, 7811 *1	μPD7810H, 7811H	μPD78C10, 78C11 *1
Number of instructions		158 kinds		159 kinds (STOP instruction added)
On-chip ROM	ROM less ((μPD7810) (μPD7811)	ROM less (μPD7810H) 4K × 8 bits (μPD7811H)	ROM less (μ PD78C10) 4K \times 8 bits (μ PD78C11)
On-chip RAM			256 × 8 bits	
Nnmber of special registers		2	27	28 (ZCM register added)
Operating frequency	10 to 12 MHz	4 to 10 MHz	4 to 15 MHz	4 to 15 MHz* 2
Power supply voltage	5 V ±5 %	5 V ±10 %	5 V ±10 %	5 V ±10 %
Operating temperature range	−10 to +70 °C	-40 to +85 °C	−10 to +70 °C	−40 to +85 °C
Standby function	Thirty-two bytes of the on-chip RAM 256 bytes of data are held by low power supply voltage (3.2 V)		Three kinds: HALT mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5V) in software/hardware STOP mode.	
Number of HALT instruction state		1	l1	12
HALT CPU operation		M3 T2 cyc	le repeated	Stop
mode ALE	High level		Low level	
Zero crossing detector self-bias control	Self-bias control impossible		Self-bias control possible (by ZCM register specification)	
NMI, RESET noise elimination method		By clock	sampling	By analog delay
A/D converter operation control		Operation st	op impossible	Operation stop possible (VAREF pin operation)
A/D converter absolute accuracy (Unit: FSR)	0.4% (T _A = -10 0.6% (T _A = -40		0.4% (TA = -10 to +70 °C)*3	$0.4\% \qquad (T_{A} = -10 \text{ to } +70 \text{ °C},$ $V_{AREF} = 4.0 \text{ V to AVDD})$ $0.6\% \qquad (T_{A} = -40 \text{ to } +85 \text{ °C},$ $V_{AREF} = 4.0 \text{ V to AVDD})$ $0.8\% \qquad (T_{A} = -40 \text{ to } +85 \text{ °C}$ $V_{AREF} = 3.4 \text{ V to AVDD})$
V _{AREF} voltage range	AVcc to 0.5V to AVcc		3.4 V to AVDD	
Analog input voltage range	0V to VAREF			
Alcc/Aldd1	6 mA Typ.		0.5 mA Typ.	
Aldd2	_		10 μA Typ.	
laref/laref1	0.5 m	А Тур.	2.0 mA Typ.	1.5 mA Typ.
laref2		-		0.7 mA Typ.

- * 1. μ PD7810, 7811, 78C10 and 78C11 are maintenance products.
 - **2**. K, E, P masks apply from 4 MHz to 12 MHz.
 - 3. The μ PD7810HG and 7811HG G masks, μ PD7810HCW and 7811HCW K masks apply T_A = 0 to +70 °C.

ROM less	μPD78C10A, 78C11A, 78C12A	μPD78CP14	μPD78CP18		
4K × 8 bits (μPD78C11A) 8K × 8 bits (μPD78C12A) 256 × 8 bits 256 × 8 bits 28 (ZCM register added) 4 to 15 MHz 5 V ±10 % -40 to +85 °C Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode. 12 STOP Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (VAREF pin operation) 0.4% (TA = -10 to +70 °C, VAREF = 4.0 V to AVDD) 0.6% (TA = -40 to +85 °C, VAREF = 4.0 V to AVDD) 0.8% (TA = -40 to +85 °C, VAREF = 3.4 V to AVDD) -0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 μA Typ. 1.5 mA Typ.	159 kinds (STOP instruction added)				
28 (ZCM register added) 4 to 15 MHz 5 V ±10 % -40 to +85 °C Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode. 12 STOP Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (VAREF pin operation) 0.4% (Ta = -10 to +70 °C, VAREF = 4.0 V to AVDD) 0.6% (Ta = -40 to +85 °C, VAREF = 3.4 V to AVDD) 0.8% (Ta = -40 to +85 °C, VAREF = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 µA Typ. 1.5 mA Typ.	$4K \times 8$ bits (μ PD78C11A)	16K × 8 bits (PROM)	32K × 8 bits (PROM)		
4 to 15 MHz 5 V ±10 % -40 to +85 °C Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode. 12 STOP Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (VAREF pin operation) 0.4% (TA = -10 to +70 °C, VAREF = 4.0 V to AVDD) 0.6% (TA = -40 to +85 °C, VAREF = 4.0 V to AVDD) 0.8% (TA = -40 to +85 °C, VAREF = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 μA Typ. 1.5 mA Typ.	256 ×	8 bits	1024 × 8 bits		
5 V ±10 %		28 (ZCM register added)			
-40 to +85 °C -40 to AVDD -0.8% (TA = -40 to +85 °C, VAREF = 4.0 V to AVDD) -0.8% (TA = -40 to +85 °C, VAREF = 3.4 V to AVDD) -0.8% (TA = -40 to +85 °C, VAREF = 3.4 V to AVDD) -0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 μA Typ. 1.5 mA Typ.	4 to 15 MHz	6 to 15 MHz	4 to 15 MHz		
Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode. 12 STOP Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (VAREF pin operation) 0.4% (Ta = -10 to +70 °C, VAREF = 4.0 V to AVDD) 0.6% (Ta = -40 to +85 °C, VAREF = 4.0 V to AVDD) 0.8% (Ta = -40 to +85 °C, VAREF = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 \(\mu A Typ. \) 1.5 mA Typ.	5 V ±10 %	5 V ±5 %	5 V ±10 %		
on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode. 12 STOP Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (VAREF pin operation) 0.4% (TA = -10 to +70 °C, VAREF = 4.0 V to AVDD) 0.6% (TA = -40 to +85 °C, VAREF = 4.0 V to AVDD) 0.8% (TA = -40 to +85 °C, VAREF = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to VAREF + 0.3 V 0.5mA Typ. 10 μA Typ. 1.5 mA Typ.	−40 to +85 °C	−40 to +85 °C	−40 to +85 °C		
Low level Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (Varef pin operation) 0.4% (Ta = -10 to +70 °C, Varef = 4.0 V to AVdd) 0.6% (Ta = -40 to +85 °C, Varef = 4.0 V to AVdd) 0.8% (Ta = -40 to +85 °C, Varef = 3.4 V to AVdd) 3.4V to AVdd -0.3 V to Varef + 0.3 V 0.5mA Typ. 1.5 mA Typ.			in software/hardware STOP		
Self-bias control possible (by ZCM register specification) By analog delay Operation stop impossible (Varef pin operation) 0.4% (Ta = -10 to +70 °C, Varef = 4.0 V to AVDD) 0.6% (Ta = -40 to +85 °C, Varef = 4.0 V to AVDD) 0.8% (Ta = -40 to +85 °C, Varef = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to Varef + 0.3 V 0.5mA Typ. 10 \(\mu A \text{Typ.} \) 1.5 mA Typ.		STOP			
(by ZCM register specification) By analog delay Operation stop impossible (Varef pin operation) 0.4% (Ta = -10 to +70 °C, Varef = 4.0 V to AVDD) 0.6% (Ta = -40 to +85 °C, Varef = 4.0 V to AVDD) 0.8% (Ta = -40 to +85 °C, Varef = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to Varef + 0.3 V 0.5mA Typ. 10 \(\mu A \text{Typ.} 1.5 mA Typ.		Low level			
By analog delay Operation stop impossible (Varer pin operation) 0.4% (Ta = -10 to +70 °C, Varer = 4.0 V to AVDD) 0.6% (Ta = -40 to +85 °C, Varer = 4.0 V to AVDD) 0.8% (Ta = -40 to +85 °C, Varer = 3.4 V to AVDD) 3.4V to AVDD -0.3 V to Varer + 0.3 V 0.5mA Typ. 10 μA Typ. 1.5 mA Typ.		Self-bias control possible			
Operation stop impossible (Varef pin operation) 0.4% (Ta = -10 to +70 °C, Varef = 4.0 V to AVdd) 0.6% (Ta = -40 to +85 °C, Varef = 4.0 V to AVdd) 0.8% (Ta = -40 to +85 °C, Varef = 3.4 V to AVdd) 3.4V to AVdd -0.3 V to Varef + 0.3 V 0.5mA Typ. 10 \(\mu A Typ. \) 1.5 mA Typ.	(
0.4% (Ta = -10 to +70 °C, Varef = 4.0 V to AVdd) 0.6% (Ta = -40 to +85 °C, Varef = 4.0 V to AVdd) 0.8% (Ta = -40 to +85 °C, Varef = 3.4 V to AVdd) 3.4V to AVdd -0.3 V to Varef + 0.3 V 0.5mA Typ. 10 \(\mu A \text{Typ.} \) 1.5 mA Typ.		By analog delay			
0.6% (Ta = -40 to +85 °C, Varef = 4.0 V to AVdd) 0.8% (Ta = -40 to +85 °C, Varef = 3.4 V to AVdd) 3.4V to AVdd -0.3 V to Varef + 0.3 V 0.5mA Typ. 10 μA Typ. 1.5 mA Typ.	Operation	n stop impossible (Varer pin o	peration)		
-0.3 V to Varef + 0.3 V	0.6% (TA = -40 to $+85$ °C, Varef = 4.0 V to AVDD)				
0.5mA Typ. 10 μA Typ. 1.5 mA Typ.	3.4V to AV _{DD}				
10 μA Typ. 1.5 mA Typ.	-0.3 V to Varef + 0.3 V	-0.3 V to Varef + 0.3 V			
1.5 mA Typ.		0.5mA Typ.			
71		10 μA Typ.			
0.7 mA Typ.	1.5 mA Typ.				
	0.7 mA Typ.				

DIFFERENCES IN 87AD SERIES PRODUCTS (2/2)

Item	Product Name	μPD7810, 7811 *1	μPD7810H, 7811H	μPD78C10, 78C11* 1
RD/WR Operation ALE		High level		
		Outp	ut	High-impedance
during RES	PD/PF*4	Zero is output at the pin spec Other pins are high impedance	•	g
On-chip pu (Mask optic	II-up register on)		Impossible	
Device con	figuration	NMC	OS	CMOS
Ct Ill		3.2 mA (-10 to +70°C) MAX.	3.2 mA MAX.	50 μA MAX.
Standby cu	rrent	3.5 mA (-40 to +85°C) MAX.	3.2 MA WAX.	$(V_{DD} = 5 V \pm 10 \%)$
Current		203.2 mA (-10 to +70°C) MAX.	203.2 mA MAX.	25 mA MAX.
Current cor	isumption	223.5 mA (-40 to +85°C) MAX.		25 IIIA WAX.
SCK	Cycle time input	20T		
(Unit: ns)	Low level width	10T + 80	*	5
	High level width	10T – 80		
Bus	TLDW	T + 110		
timing	Two	100		
(Unit: ns)	Tow	4T – 100		
Hardware S	STOP mode restrictions	— Yes		Yes
l '	us mode restrictions ernal SCK input.	No	1	Yes
64-pin plastic shrink DIP Package 64-pin plastic QUIP straight*7 64-pin plastic QUIP		QUIP straight* 7	64-pin plastic shrink DIP 64-pin plastic QUIP straight*8 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm, 2.05 mm thickness) 64-pin plastic QFP (14 × 20 mm, 2.70 mm thickness) 68-pin plastic QFJ	
Pin connec	tion *10	Vcc (64-pin), Vpp (63-pin)		V _{DD} (64-pin), STOP (63-pin)

- * 1. μ PD7810, 7811, 78C10 and 78C11 are maintenance products.
 - **4**. For μ PD7810, 7810H, 78C10 and 78C10A.

5. (Unit : ns)

		For the asyncronous mode with clock rate x1, syncronous mode, and I/O interface mode	For the asyncronous mode with clock rate $\times 16$ and $\times 64$
	Cycle time input	12T	6T
SCK	Low level width	5T + 5	2.5T + 5
	High level width	5T + 5	2.5T + 5

 $\label{eq:remarks} \textbf{Remarks} \quad T = tcyc = 1/f_{xx}$

μPD78C10A, 78C11A, 78C12A	μPD78CP14	μPD78CP18	
	High-impedance		
Only μPD78C11A, 78C12A possible (ports A, B, C)	Impos	esible	
	CMOS		
50 μA MAX. (V _{DD} = 5 V ±10 %)	1 mA MAX. (V _{DD} = 5 V ±5 %)	50 μA MAX. (V _{DD} = 5 V ±10 %)	
25 mA MAX.	32 mA MAX.	35 mA MAX.	
*5			
T + 110 T + 130			
1:	10	140	
4T –	100	4T – 140	
Yes*6	No	0	
	No		
64-pin plastic shrink DIP 64-pin plastic QUIP straight*9 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm, 2.70 mm thickness) 68-pin plastic QFJ	64-pin plastic shrink DIP 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm, 2.70 mm thickness) 68-pin plastic QFJ 64-pin ceramic shrink DIP with window 64-pin ceramic QUIP with window 64-pin ceramic WQFN	64-pin plastic shrink DIP 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm, 2.70 mm thickness) 64-pin ceramic shrink DIP with window 64-pin ceramic WQFN	
	V _{DD} (64-pin), STOP (63-pin)		

- * 6. K mask products only
 - **7**. μPD7811, 7811H only
 - **8.** μ PD78C11, only
 - **9.** μ PD78C11A, 78C12A only
 - **10.** Items in the parentheses are the pin numbers for the 64-pin plastic shrink DIP, 64-pin plastic QUIP straight and 64-pin plastic QUIP.

Caution Since the oscillator characteristics, I/O level, and some internal operation timing are different, be careful when studying direct replacement of the mPD78C10A, 78C11A, 78C12A and μ PD7810, 7811H, 78C10, 78C11.

-

9. PACKAGE INFORMATION

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} -0.05	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

P64GQ-100-37-1

64PIN PLASTIC QUIP (STRAIGHT)

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	41.5 ⁺⁸³	1.634-0008
С	16.5	0.650
D	30.0 ^{±04}	1.181 ^{±0.016}
E	35.1 ^{±0.4}	1.382 ^{±0.016}
Н	0.50 ^{±0.10}	0.020 - 8885
ı	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
К	1.27 (T.P.)	0.050 (T.P.)
М	1.1 - 8.75	0.043-886
N	0.25 -0.10	0.010 - 8.883
P	9.3 ^{±0.2}	0.366 ^{±8,888}
۵	6.75 ^{±0.2}	0.266 ^{+8.888}
S	3.6 ^{±0.1}	O.142 ^{+8.88\$}
Т	1.8 ^{±0.1}	0.071 -0.005
U	1.55 ^{±0.1}	0.061 ±0.004

64 PIN PLASTIC QUIP

P64GQ-100-36

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	41.5 ^{±83}	1.634 ^{±8.80}
С	16.5	0.650
Н	0.50 ^{±0.10}	0.020 ±8.88\$
ı	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
Κ	1.27 (T.P.)	0.050 (T.P.)
М	1.1 ±8.78	0.043 ± 88%
N	0.25 + 8.58	0.010 ^{±8.883}
Р	4.0 ^{±0.3}	0.157 = 8.813
S	3.6 ^{±0.1}	0.142 ^{±8.888}
W	24.13 ^{±1.05}	0.950 ^{±0.042}
X	19.05 ^{±1.05}	0.750 ^{±0.042}

64PIN PLASTIC QFP (14 \times 20) (UNIT: mm)

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

P64GF-100-3B8,3BE,3BR-1

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	$0.016^{+0.004}_{-0.005}$
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.12	0.005
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

ES 64PIN CERAMIC QFP (REFERENCE DRAWING) (UNIT: mm)

- Cautions 1. The metal cap is connected to pin 26 and is Vss (GND) level.
 - The bottom leads are tilted.
 - 3. Since cutting of the end of the leads is no process-controlled, the lead length is unspecified.

68PIN PLASTIC QFJ (☐ 950 mil) (UNIT: mm)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P68L-50A1-2

ITEM	MILLIMETERS	INCHES
А	25.2±0.2	0.992±0.008
В	24.20	0.953
С	24.20	0.953
D	25.2±0.2	0.992±0.008
Е	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173 ^{+0.009} _{-0.008}
Н	2.8±0.2	0.110+0.009
I	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±1.0	0.016+0.004
Ν	0.12	0.005
Р	23.12±0.20	0.910+0.009
Q	0.15	0.006
Т	R 0.8	R 0.031
U	$0.20^{+0.10}_{-0.05}$	0.008+0.004

★ 10. RECOMMENDED SOLDERING CONDITIONS

The μ PD78C10A, 78C11A, and 78C12A should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 10-1 Surface Mounting Type Soldering Conditions

(1) μ PD78C10AGF-3BE : 64-pin plastic QFP (14 × 20 mm) μ PD78C11AGF-xxx-3BE : 64-pin plastic QFP (14 × 20 mm) μ PD78C12AGF-xxx-3BE : 64-pin plastic QFP (14 × 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (210 °C min.), Number of times: 2 max. <points note="" to=""> (1) Start the second reflow after the device temperature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided.</points>	IR35-00-2
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (200 °C min.), Number of times: 2 max. <points note="" to=""> (1) Start the second reflow after the device temperature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided.</points>	VP15-00-2
Wave soldering	Solder bath temperature : 260 °C max., Duration : 10 sec. max., Number of times : 1 Pre-heating temperature : 120 °C max. (package surface temperature)	WS60-00-1
Pin part heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	

Caution Do not use two or more soldering methods in combination (except the pin part heating method).

(2) μ PD78C10AL : 68-pin plastic QFJ (\square 950 mil) μ PD78C11AL- $\times\times\times$: 68-pin plastic QFJ (\square 950 mil) μ PD78C12AL- $\times\times\times$: 68-pin plastic QFJ (\square 950 mil)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature : 230 °C, Duration : 30 sec. max. (210 °C min.), Number of times : 1	IR30-00-1
VPS	Package peak temperature : 215 °C, Duration : 40 sec. max. (200 °C min.), Number of times : 1	VP15-00-1
Pin part heating	Pin temperature : 300 °C max., Duration : 3 sec. max. (per device side)	

Caution Do not use two or more soldering methods in combination (except the pin part heating method).

Table 10-2 Inserted Type Soldering Conditions

(1) μ PD78C10ACW : 64-pin plastic shrink DIP (750 mil) μ PD78C11ACW-xxx : 64-pin plastic shrink DIP (750 mil) μ PD78C12ACW-xxx : 64-pin plastic shrink DIP (750 mil)

Soldering Method	Soldering Conditions		
Wave soldering	Solder bath temperature: 260 °C max.		
(pin only)	Duration: 10 sec. max.		
	Pin temperature: 300 °C max.		
Pin part heating	Duration: 3 sec. max. (per pin)		

Caution Ensure that the application of wave soldering is limited to the pins and no solder touches the main unit directly.

(2) μ PD78C11AGQ-xxx-37 : 64-pin plastic QUIP straight μ PD78C12AGQ-xxx-37 : 64-pin plastic QUIP straight

Soldering Method	thod Soldering Conditions		
Pin part heating	Pin temperature: 300 °C max.		
i in part neating	Duration: 3 sec. max. (per pin)		

APPENDIX DEVELOPMENT TOOLS

The following development tools are available to develop a system which uses 87AD series products.

Language Processor

87AD series relocatable assembler (RA87)	This is a program which converts a program written in mnemonic to an object code that micro-computer execution is possible. Besides, it contains a function to automatically create a symbol/table, and optimize a branch instruction.				
	Host Machine	os	Supply Medium	Ordering Code (Product Name)	
	PC-9800 series	MS-DOS™ Ver. 2.11 to Ver. 5.00A*	3.5-inch 2HD	μS5A13RA87	
			5-inch 2HD	μS5A10RA87	
	IBM PC/AT™	PC DOS™ (Ver. 3.1)	3.5-inch 2HC	μS7B13RA87	
			5-inch 2HC	μS7B10RA87	

PROM Write Tools

Hardware	PG-1500	With an provided board and an optional programmer adapter connected, this PROM programmer can manipulate from a stand-alone or host machine to perform programming on single-chip microcomputer which incorporates PROM. It is also capable of programming a typical PROM ranging from 256K to 4M bits.				
	PA-78CP14CW/ GF/GQ/KB/L	PROM programmer adapter for μ PD78CP14/78CP18. Used by connecting to PG-1500.				
	PA-78CP14CW	For μPD78CP14CW, 78CP14DW, 78CP18CW, 78CP18DW				
	PA-78CP14GF	For μPD78CP14GF-3BE, 78CP18GF-3BE				
	PA-78CP14GQ	For μPD78CP14G-36, 78CP14R, 78CP18GQ-36				
	PA-78CP14KB	For μPD78CP14KB, 78CP18KB				
	PA-78CP14L	For μPD78CP14L				
Software	PG-1500 controller PC-9	Connected PG-1500 to a host machine by using serial and parallel interface, to control the PG-1500 on a host machine.				
		Host Machine	OS	Supply Medium	Ordering Code (Product Name)	
		PC-9800 series	MS-DOS Ver. 2.11	3.5-inch 2HD	μS5A13PG1500	
		7 0 0000 301103	to Ver. 5.00A*	5-inch 2HD	μS5A10PG1500	
		IBM PC/AT	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10PG1500	

^{*} Ver. 5.00/5.00A has a task swap function, but this function cannot be used with this software.

Remarks Operation of assemblers and the PG-1500 controller are guaranteed only on the host machines and operating systems quoted above.

Debugging tools

An in-circuit emulator (IE-78C11-M) is available as a program debugging tool for 87AD series. The following table shows its system configuration.

Hardware	IE-78C11-M	The IE-78C11-M is an in-circuit emulator which works with 87AD series. Only the IE-78C11-M should be used for a plastic QUIP package, while it should be used with a conversion socket for a plastic shrink DIP package. It can be connected to a host machine to perform efficient debugging.			
	EV-9001-64	Conversion sockets for plastic shrink DIP. Used in combination with the IE-78C11-M.			
	EV-9200G-64	64-pin LCC socket. Can be used as a substitute for 64-pin plastic QFP products with window in combination with the μ PD78CP14KB/78CP18KB.			
Software	IE-78C11-M control program (IE controller)	Connects the IE-78C11-M to host machine by using the RS-232-C, then controls the IE-78C11-M on host machine.			
		Host Machine	OS	Supply Medium	Ordering Code (Product Name)
		PC-9800 series	MS-DOS Ver. 2.11	3.5-inch 2HD	μS5A13IE78C11
			to Ver. 3.30D	5-inch 2HD	μS5A10IE78C11
		IBM PC/AT	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10IE78C11

Remarks Operation of the IE controller is guaranteed only on the host machine and operating systems quoted above.

[MEMO]

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The customer must judge : μ PD78C11ACW-xxx, 78C11AGF-xxx-3BE, 78C11AGQ-xxx-36, 78C11AGQ-xxx-37,

the need for license μ PD78C11AL-xxx, 78C12ACW-xxx, 78C12AGF-xxx-3BE, 78C12AGQ-xxx-36,

 μ PD78C12AGQ- $\times\times$ -37, 78C12AL- $\times\times$

License not needed: $\mu PD78C10ACW$, 78C10AGF-3BE, 78C10AGQ-36, 78C10AL

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11

MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.