

Graphs in Machine Learning

Michal Valko

Inria Lille - Nord Europe, France

TA: Daniele Calandriello

Partially based on material by: Tomáš Kocák, Nikhil Srivastava, Yiannis Koutis, Joshua Batson, Daniel Spielman

November 30, 2015 MVA 2016/2017

Last Lecture

- Examples of applications of online SSL
- Analysis of online SSL
- SSL Learnability
- ▶ When does graph-based SSL provably help?
- Scaling harmonic functions to millions of samples

This Lecture

- Large-scale graph construction and processing (in class)
- Scalable algorithms:
 - Graph sparsification (presented in class)
 - Online face recognizer (to code in Matlab)
 - ▶ Iterative label propagation (to code in Matlab)

This Lecture/Lab Session

- AR: record a video with faces
- Short written report
- Questions to piazza
- Deadline: 12. 12. 2016
- http://researchers.lille.inria.fr/~calandri/teaching.html

Large scale Machine Learning on Graphs

http://blog.carsten-eickhoff.com

Botstein et al.

Are we large yet?

"One **trillion** edges: graph processing at Facebook-scale." Ching et al., VLDB 2015

Computational bottlenecks

In theory:

Space

 $[\mathcal{O}(m), \mathcal{O}(n^2)]$ to store

 $\mathcal{O}(n^2)$ to construct $\mathcal{O}(n^3)$ to run algorithms

Time

In practice:

▶ 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB) 128 Billion edges (331 GB)

Pagerank on Facebook Graph:

3 minutes per iteration, hundreds of iterations, tens of hours on 200 machines, run once per day

Two phases

1 Preprocessing:

From vectorial data: Collect a dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$, construct a graph \mathbf{G} using a similarity function Prepare the graph: Need to check if graph is connected, make it directed/undirected, build Laplacian Load it on the machine: On a single machine if possible, if

2 Run your algorithm on the graph

not find smart way to distribute it

Large scale graph construction

Main bottleneck: time

- ► Constructing k-nn graph takes $O(n^2 \log(n))$, too slow
- ▶ Constructing ε graph takes $O(n^2)$, still too slow
- ▶ In both cases bottleneck is the same, given a node finding close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.

- Iterative Quantization
- KD-Trees
- ► Locality Sensitive Hashing (LHS)

More general problem: learning good codeword representation

Storing graph in memory

Main bottleneck: **space**.

As a Fermi (back-of-the-envelope) problem

- Storing a graph with m edges require to store m tuples $(i, j, w_{i,j})$ of 64 bit (8 bytes) doubles or int.
- ► For standard cloud providers, the largest compute-optimized instances has 36 cores, but only 60 GB of memory.
- ▶ We can store $60 * 1024^3/(3 * 8) \sim 2.6 \times 10^9$ (2.6 billion) edges in a single machine memory.

Storing graph in memory

But wait a minute

- Natural graphs are sparse.
 - For some it is true, for some it is false (e.g. Facebook average user has 300 friends, Twitter averages 208 followers)
 - Subcomponents are very dense, and they grow denser over time
- ▶ I will construct my graph sparse
 - Losing large scale relationship, losing regularization
- ▶ I will split my graph across multiple machines
 - → Your algorithm does not know that.

What if it needs nonlocal data? Iterative algorithms?

More on this later

Graph Sparsification

Goal: Get graph G and find sparse H

What does sparse graph mean?

- ▶ average degree < 10 is pretty sparse
- for billion nodes even 100 should be ok
- ▶ in general: average degree < polylog n</p>

Are all edges important?

in a tree - sure, in a dense graph perhaps not

Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates *G* well iff $\forall S \subset V$, sum of edges on δS remains

 $\delta S = \text{edges leaving } S$

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: $\operatorname{cut}_G(S) = \sum_{i \in S, j \in \overline{S}} w_{i,j}$

Define G and H are $(1 \pm \varepsilon)$ -cut similar when $\forall S$

$$(1-\varepsilon)\operatorname{cut}_H(S) \leq \operatorname{cut}_G(S) \leq (1+\varepsilon)\operatorname{cut}_H(S)$$

Is this always possible?

Benczúr and Karger (1996): Yes!

 $\forall \varepsilon \exists (1+\varepsilon)$ -cut similar \widetilde{G} with $\mathcal{O}(n \log n/\varepsilon^2)$ edges s.t. $E_H \subseteq E$ and computable in $\mathcal{O}(m \log^3 n + m \log n/\varepsilon^2)$ time n nodes, m edges

H = d-regular (random)

How many edges?

$$|E_G| = \mathcal{O}(n^2)$$

$$|E_H| = \mathcal{O}(dn)$$

H = d-regular (random)

What are the cut weights for any *S*?

$$w_G(\delta S) = |S| \cdot |\overline{S}|$$
 $w_H(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\overline{S}|$
 $\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx \frac{n}{d}$

Could be large : What to do?

H = d-regular (random)

What are the cut weights for any *S*?

$$w_G(\delta S) = |S| \cdot |\overline{S}|$$
 $w_H(\delta S) \approx \frac{d}{n} \cdot \frac{n}{d} \cdot |S| \cdot |\overline{S}|$
 $\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx 1$

Benczúr & Karger: Can find such H quickly for any G!

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^\mathsf{T} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1-\varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1+\varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1-\varepsilon)\mathbf{f}^{\mathsf{T}}\mathsf{L}_{H}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathsf{L}_{G}\mathbf{f} \leq (1+\varepsilon)\mathbf{f}^{\mathsf{T}}\mathsf{L}_{H}\mathbf{f}$$

If we ask this only for $\mathbf{f} \in \{0,1\}^n o (1+arepsilon)$ -cut similar combinatorial Benezúr & Karger (1996)

If we ask this for all $\mathbf{f} \in \mathbb{R}^n \to (1+\varepsilon)$ -spectrally similar

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1-\varepsilon)\mathbf{f}^{\mathsf{T}}\mathsf{L}_{G}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathsf{L}_{H}\mathbf{f} \leq (1+\varepsilon)\mathbf{f}^{\mathsf{T}}\mathsf{L}_{G}\mathbf{f}$$

Eigenvalues are approximated well!

$$(1-\varepsilon)\lambda_i(G) \leq \lambda_i(H) \leq (1+\varepsilon)\lambda_i(G)$$

Using matrix ordering notation $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

As a consequence, $\arg\min_{\mathbf{x}} \|\mathbf{L}_H \mathbf{x} - \mathbf{b}\| \approx \arg\min_{\mathbf{x}} \|\mathbf{L}_G \mathbf{x} - \mathbf{b}\|$

Let us consider unweighted graphs: $w_{ij} \in \{0,1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j) (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j)^\mathsf{T} = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$

We look for a subgraph H

$$\mathbf{L}_H = \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}}$$
 where s_e is a new weight of edge e

We want
$$(1-\varepsilon)\mathbf{L}_G \leq \mathbf{L}_H \leq (1+\varepsilon)\mathbf{L}_G$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget **L**, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

Same as, given
$$\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}}$$
 find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} \preceq \kappa \cdot \mathbf{I}$

How to get it?
$$\mathbf{v}_e \leftarrow \mathbf{A}^{-1/2} \mathbf{a}_e$$

Then
$$\sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} \approx \mathbf{I} \iff \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^{\mathsf{T}} \approx \mathbf{A}$$

multiplying by $A^{1/2}$ on both sides

How does $\sum_{e \in F} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$ look like geometrically?

Decomposition of identity: $\forall \mathbf{u}$ (unit vector): $\sum_{e \in F} (\mathbf{u}^\mathsf{T} \mathbf{v}_e)^2 = 1$

moment ellipse is a sphere

What are we doing by choosing H?

We take a subset of these \mathbf{e}_e s and scale them!

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!

the blue eigenvalues are between 1 and κ

Example: What happens with K_n ?

 K_n graph

 $\sum_{e \in F} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$

It is already isotropic! (looks like a sphere)

rescaling $\mathbf{v}_e = \mathbf{L}^{-1/2}\mathbf{b}_e$ does not change the shape

Example: What happens with a dumbbell?

 K_n graph

$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}} = \mathbf{L}_{\mathcal{G}}$$

The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critical

What it this rescaling $\mathbf{v}_e = \mathbf{L}_G^{-1/2} \mathbf{b}_e$ doing to the norm?

$$\|\mathbf{v}_{e}\|^{2} = \left\|\mathbf{L}_{G}^{-1/2}\mathbf{b}_{e}\right\|^{2} = \mathbf{b}_{e}^{\mathsf{T}}\mathbf{L}_{G}^{-1}\mathbf{b}_{e} = R_{\mathsf{eff}}(e)$$

reminder $R_{\rm eff}(e)$ is the potential difference between the nodes when injecting a unit current

In other words:

 $R_{\rm eff}(e)$ is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and the importance of the edge is its effective resistance $R_{\text{eff}}(e)$.

Edges with higher R_{eff} are more electrically significant!

Todo: Given $\mathbf{I} = \sum_{e} \mathbf{v}_{e} \mathbf{v}_{e}^{\mathsf{T}}$, find a sparse reweighting.

Randomized algorithm that finds s:

- ▶ Sample $n \log n/\varepsilon^2$ with replacement $p_i \propto \|\mathbf{v}_e\|^2$ (resistances)
- Reweigh: $s_i = 1/p_i$ (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

$$1 - \varepsilon \prec \lambda \left(\sum_{e} s_{e} \mathbf{v}_{e} \mathbf{v}_{e}^{\mathsf{T}} \right) \prec 1 + \varepsilon$$

finer bounds now available

What is the the biggest problem here? Getting the p_i s!

We want to make this algorithm fast.

How can we compute the effective resistances?

Solve a linear system
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{L}_G \mathbf{x} - \mathbf{b}_e\|$$
 and then $R_{\text{eff}} = \mathbf{b}_e^{\mathsf{T}} \hat{\mathbf{x}}$

Gaussian Elimination $\mathcal{O}(n^3)$ Fast Matrix Multiplication $\mathcal{O}(n^{2.37})$

Spielman & Teng (2004) $\mathcal{O}(m \log^{30} n)$

Koutis, Miller, and Peng (2010) $\mathcal{O}(m \log n)$

- Fast solvers for SDD systems:
 - use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large

Chicken and egg problem

We need $R_{\rm eff}$ to compute a sparsifier H \downarrow We need a sparsifier H to compute $R_{\rm eff}$

Sampling according to approximate effective resistances $R_{\rm eff} < R_{\rm eff} < \alpha R_{\rm eff}$ give approximate sparsifier $L_G \prec L_H \prec \alpha \kappa L_G$

Start with very poor approximation $R_{\rm eff}$ and poor sparsifier.

Use $\widetilde{R}_{\rm eff}$ to compute an improved approximate sparsifier H

 \downarrow Use the sparsifier H to compute improved approximate \widehat{R}_{eff}

Computing R_{eff} using the sparsifier is fast $(m = \mathbf{O}(n \log(n)))$, an not too many iterations are necessary.

What can I use sparsifiers for?

- Graph linear systems: minimum cut, maximum flow, Laplacian regression, SSL
- More in general, solving Strongly Diagonally Dominant (SDD) linear systems
 - electric circuit, fluid equations, finite elements methods
- Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?

Or if my boss does not trust approximation methods

Distributed graph processing

Large graphs do not fit in memory

Get more memory

□ Either slower but larger memory Or fast memory but divided among many machines

Many challenges

Needs to be scalable

iminimize pass over data / communication costs

Needs to be consistent

□ updates should propagate properly

Distributed graph processing

Different choices have different impacts: for example splitting the graph according to nodes or according to edges.

Many computation models (academic and commercial) each with its pros and cons

MapReduce

MPI

Pregel

Graphlab


```
In [1]: import sframe
In [2]: edges = sframe.SFrame.read_csv('/media/sf_share/td3_example_edges.csv')
In [3]: vertices = sframe.SFrame.read_csv('/media/sf_share/td3_example_vertices.csv')
In [4]: G = sframe.SGraph(edges= edges, vertices=vertices, src_field='src', dst_field='dst')
In [5]: G
Out[5]: SGraph({'num_edges': 26, 'num_vertices': 9})
    Vertex Fields:['__id', 'f']
    Edge Fields:['__src_id', '__dst_id', 'weight']
```


Under the hood: tabular representation

Columns:
__id int
f float

Rows: 9

Data:

+	f
5 7 10 2 6 9 3 1 4	0.51 0.82 0.08 0.82 0.85 0.85 0.83 0.18 0.35 0.36

[9 rows x 2 columns]

Columns:

__src_id int
__dst_id int
weight float

Rows: 26

Data:

src_id	dst_id	weight
7	5	0.13185
j 5	j 7	0.13185
7	7	0.026779
j 10	j 7	0.57121
j 7	j 10	0.57121
j 10	j 2	0.94047
7	6	0.64528
5	3	0.93374
j 10	3	0.31713
5	1	0.57796
4		

[26 rows x 3 columns]

Note: Only the head of the SFrame is printed.


```
In [1]: import sframe
In [2]: G = sframe.SGraph()
In [3]: G
Out[3]: SGraph({'num edges': 0, 'num vertices': 0})
        Vertex Fields:[' id']
        Edge Fields:[' src id', ' dst id']
In [1]: import sframe
In [2]: G = sframe.SGraph()
In [3]: G
Out[3]: SGraph({'num edges': 0, 'num vertices': 0})
        Vertex Fields:[' id']
        Edge Fields:[' src id', ' dst id']
In [4]: G.add edges(sframe.Edge(1,2))
Out[4]: SGraph({'num edges': 1, 'num vertices': 2})
        Vertex Fields:[' id']
```


- ► The graph is immutable. why?
- All computations are executed asyncronously
 - We do not know the order of execution
 We do not even know where the node is stored
 what data can we access?
- ▶ The data is stored in the graph itself
 - → only access local data
- Functional programming approach


```
triple\_apply(triple\_apply\_fn, \ mutated\_fields, \ input\_fields=None)
```

processes all edges asyncronously and in parallel

```
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR
```

- No guarantees on order of execution
- Updating (src,edge,dst) violates immutability
- triple_apply_fn receives a copy of (src,edge,dst)
 - returns an updated (src', edge', dst')
 use return values to build a new graph

triple_apply_fn is a pure function

Function in the mathematical sense, same input gives same output.

```
def triple_apply_fn(src, edge, dst):
    #can only access data stored in src, edge, and dst,
    #three dictionaries containing a copy of the
    #fields indicated in mutated_fields
    f = dst['f']

#inputs are copies, this does not change original edge
    edge['weight'] = g(f)

return ({'f': dst['f']}, edge, dst)
```


An example, computing degree of nodes

```
def degree_count_fn (src, edge, dst):
    src['degree'] += 1
    dst['degree'] += 1
    return (src, edge, dst)

G_count = G.triple_apply(degree_count_fn, 'degree')
```


Slightly more complicated example, suboptimal pagerank

```
1 #assume each node in G has a field 'degree' and 'pagerank'
  #initialize 'pagerank' = 1/n for all nodes
  def weight_count_fn (src, edge, dst):
      dst['degree'] += edge['weight']
5
      return (src, edge, dst)
6
7
  def pagerank_step_fn (src, edge, dst):
      dst['pagerank'] += (edge['weight']*src['pagerank']
9
                                         /dst['degree'])
      return (src, edge, dst)
12
  G_pagerank = G.triple_apply(weight_count_fn, 'degree')
14
  while not converged(G_pagerank):
      G_pagerank = G_pagerank.triple_apply(
16
                           pagerank_step_fn, 'pagerank')
17
```

How many iterations to convergence?

Michal Valko michal.valko@inria.fr ENS Paris-Saclay, MVA 2016/2017 SequeL team, Inria Lille — Nord Europe https://team.inria.fr/sequel/