Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

ECE-374-B: Lecture 4 - NFAs

Instructer: Nickvash Kani

January 26, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that ${f do}$ not contain the subsequence 111000

Tangential Thought

Does luck allow us to solve unsolvable problems?

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M₂ is a "lucky" machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b

Program on M_1 (Dijkstra's algorithm):

```
Initialize for each node v, \operatorname{Dist}(s,v) = d'(s,v) = \infty

Initialize X = \emptyset, d'(s,s) = 0

for i = 1 to |V| do

Let v be node realizing d'(s,v) = \min_{u \in V - X} d'(s,u)

\operatorname{Dist}(s,v) = d'(s,v)

X = X \cup \{v\}

Update d'(s,u) for each u in V - X as follows:

d'(s,u) = \min \Big( d'(s,u), \operatorname{Dist}(s,v) + \ell(v,u) \Big)
```

Lucky machine programs

Problem: Find shortest path from a to b

Program on M_2 (Blind luck):

```
path = []
current = a
While(not at b)
    take an outgoing edge from current node
    current = new location
    path += current
return path
```

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M₂ is a "lucky" machine that will always make the right choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M₂ is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

Non-determinism in computing

In computer science, a nondeterministic machine is a theoretical device that can have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

(NFA) Introduction

Non-deterministic finite automata

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not deterministic.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

• Is 010110 accepted?

NFA acceptance: Wait! what about the ϵ ?!

Is 010110 accepted?

Is 010110 accepted?

• Is 010110 accepted?

- Is 010110 accepted?
- Is 010 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by *N*?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by *N*?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by *N*?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

Formal definition of NFA

Definition

A non-deterministic finite automata (NFA) $N=(Q,\Sigma,\delta,s,A)$ is a five tuple where

Definition

A non-deterministic finite automata (NFA) $N=(Q,\Sigma,\delta,s,A)$ is a five tuple where

Q is a finite set whose elements are called states,

Definition

A non-deterministic finite automata (NFA) $N=(Q,\Sigma,\delta,s,A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- ullet Σ is a finite set called the input alphabet,

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

$$\mathcal{P}(Q)$$
?

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example
$$Q = \{1, 2, 3, 4\}$$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \left\{1, 2, 3, 4\right\}, \\ \left\{2, 3, 4\right\}, \left\{1, 3, 4\right\}, \left\{1, 2, 4\right\}, \left\{1, 2, 3\right\}, \\ \left\{1, 2\right\}, \left\{1, 3\right\}, \left\{1, 4\right\}, \left\{2, 3\right\}, \left\{2, 4\right\}, \left\{3, 4\right\}, \\ \left\{1\right\}, \left\{2\right\}, \left\{3\right\}, \left\{4\right\}, \\ \left\{\right\} \end{array} \right\} \right\}$$

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q,a)$ for $a\in\Sigma\cup\{arepsilon\}$ is a subset of Q — a set of states.

- Q =
- Σ =
- δ =

- s =
- A =

Extending the transition function to

strings

• NFA $N = (Q, \Sigma, \delta, s, A)$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the $\epsilon \mathrm{reach}(q)$ is the set of all states that q can reach using only ε -transitions.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε -transitions.

Definition

For $X \subseteq Q$: $\epsilon \operatorname{reach}(X) = \bigcup_{x \in X} \epsilon \operatorname{reach}(x)$.

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \operatorname{reach}(a)} \delta(p, a)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$:

$$\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$$

• if w = ax:

$$\delta^*(q, w) = \epsilon \operatorname{reach} \left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$

Find δ^* ($q_0, 11$):

Find
$$\delta^*$$
 ($q_0, 11$):

$$\delta^*(q,w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\right)\right)$$

We know
$$w=11=ax$$
 so $a=1$ and $x=1$
$$\delta^*(q_0,11)=\epsilon\mathrm{reach}\left(\bigcup_{p\in\epsilon\mathrm{reach}(q_0)}\left(\bigcup_{r\in\delta^*(p,1)}\delta^*(r,1)\right)\right)$$

$$\epsilon$$
reach $(q_0) = \{q_0\}$ $\delta^*(q_0, 11) = \epsilon$ reach $\left(igcup_{p \in \{q_0\}} \left(igcup_{r \in \delta^*(p, 1)} \delta^*(r, 1)
ight)
ight)$

Simplify:

$$\delta^*(q_0,11) = \epsilon \mathsf{reach}\left(igcup_{r \in \delta^*(\{q_0\},1)} \delta^*(r,1)
ight)$$

Need
$$\delta^*(q_0, 1) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right) = \epsilon \operatorname{reach}(\delta(q_0, 1))$$
:
$$= \epsilon \operatorname{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\}$$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1)\right)$$

$$\begin{split} & \mathsf{Need} \ \delta^*(q_0,1) = \epsilon \mathsf{reach}\Big(\bigcup_{p \in \epsilon \mathsf{reach}(q)} \delta(p,a)\Big) = \epsilon \mathsf{reach}\big(\delta\left(q_0,1\right)\big) : \\ & = \epsilon \mathsf{reach}\big(\{q_0,q_1\}\big) = \{q_0,q_1,q_2\} \\ & \delta^*(q_0,11) = \epsilon \mathsf{reach}\left(\bigcup_{r \in \{q_0,q_1,q_2\}} \delta^*(r,1)\right) \end{split}$$

Simplify

$$\delta^*(q_0,11) = \epsilon \mathsf{reach}(\delta^*(q_0,1) \cup \delta^*(q_1,1) \cup \delta^*(q_2,1))$$

Transition for strings: w = ax

$$\delta^*(q,w) = \epsilon \operatorname{reach} \left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p,a)} \delta^*(r,x) \right) \right)$$

- $R = \epsilon \operatorname{reach}(q) \implies$ $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$
- $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(q,w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r,x)\right)$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N=(Q,\Sigma,\delta,s,A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N=(Q,\Sigma,\delta,s,A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

$$\quad \bullet \quad \delta^*(s,\epsilon) =$$

- $\bullet \ \delta^*(s,\epsilon) =$
- $\delta^*(s,0) =$

- $\delta^*(s,\epsilon) =$
- $\delta^*(s,0) =$
- $\delta^*(b,0) =$

- $\delta^*(s,\epsilon) =$
- $\delta^*(s,0) =$
- $\delta^*(b,0) =$
- $\delta^*(b,00) =$

Constructing generalized NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers.

Examples: 154, 345.75332, 534677567.1

 $L = \{ \text{bitstrings that have a 1 three positions from the end} \}$

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the $L = 0^* + 1^*$.

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

NFAs capture Regular Languages

Example

Example

Example

Final NFA simplified slightly to reduce states

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

Equivalence

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.

