Scilab Textbook Companion for Material Science by V. Rajendran¹

Created by
Laxman Ghanasham Sole
B.Tech
Electronics Engineering
Vishwakarma Institute of Technology, Pune
College Teacher
Prof. Vijay Mane
Cross-Checked by
Lavitha Pereira

November 2, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Material Science

Author: V. Rajendran

Publisher: Tata Mcgraw Hill, New Delhi

Edition: 1

Year: 2012

ISBN: 0-07-132897-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Materials Properties and Requirements	11
2	Crystal Structure	13
3	Characterisation of material	29
4	Cohesion between atoms	33
5	Crystal Imperfections	34
6	Classification of solids	36
7	Electron theory of Solids	38
8	Statics and Band theory of Solids	45
10	Transport Properties of Semiconductors	56
11	Mechanical Properties	7 4
12	Thermal Properties	77
14	Luminescence	83
15	Display Devices	85
16	Photoconductivity	87

18 Dielectric Materials	89
19 Magnetic Materials	101
20 Super Conducting Materials	107
23 Polymer Materials	109

List of Scilab Codes

Exa 1.1	Resistance of the wire	11
Exa 1.2	Extension of a wire	11
Exa 2.2	Lattice spacing from Miller indices	13
Exa 2.3	Lattice constant of Sodium	13
Exa 2.4	Avogadro Constant	14
Exa 2.5	Lattice spacing from Miller indices	14
Exa 2.6	Lattice spacing from Miller indices	15
Exa 2.7	Lattice spacing from Miller indices	15
Exa 2.8	Lattice spacing from Miller indices	16
Exa 2.13	Lattice spacing from Miller indices	16
Exa 2.15	Lattice spacing from Miller indices	17
Exa 2.16	Number of atoms in Al foil	18
Exa 2.17	no of unit cells in 1 kg metal	18
Exa 2.18	percentage volume change during structural changes .	18
Exa 2.19	Copper Density	19
Exa 2.20	Atomic Radius	19
Exa 20.21	Lattice constant	20
Exa 2.22	Glancing angle	20
Exa 2.23	Lattice constant	21
Exa 2.24	Plane Drawing	21
Exa 2.25	Interplanar spacing	22
Exa 2.26	Lattice spacing and deBroglie wavelength	24
Exa 2.27	Lattice constant and atomic radius	24
Exa 2.28	energy of the neutron	25
Exa 2.29	InterPlanar Spacing	25
Exa 2.30	Lattice spacing from Miller indices	26
Exa 2.31	Number of atoms in Al foil	26
Exa 2.32	energy of the neutron	27

Exa 2.35	deBroglie wavelength of electrons
Exa 2.36	Lattice spacing from Miller indices
Exa 2.38	Plane Drawing
Exa 3.1	wavelength and frequency of Xrays
Exa 3.2	wavelength and velocity of electrons
Exa 3.3	wavelength and angle for 2nd order bragg reflection
Exa 3.4	Grating spacing and glancing angle
Exa 3.5	wavelength of radiation
Exa 3.6	Energy of thermal neutron
Exa 3.8	temperature of thermal neutron
Exa 4.1	Coulomb interatomic energy
Exa 5.1	Average distance between dislocations
Exa 5.2	Schottky defects per unit cell
Exa 6.1	Wavelength of light emitted from LED
Exa 6.2	Band gap of given GaAsP
Exa 7.1	mobility of electrons in copper
Exa 7.2	resistivity of copper
Exa 7.3	resistivity of sodium
Exa 7.4	mobility of electrons in meatls
Exa 7.5	drift velocity of electrons
Exa 7.6	mobility of electrons
Exa 7.7	Lorentz Number
Exa 7.8	Lorentz Number
Exa 7.9	conductivity of copper
Exa 7.10	drift velocity of electrons in silver piece
Exa 7.11	resistivity of copper
Exa 7.12	mobility and drift velocity of electrons
Exa 8.1	Fermi energy
Exa 8.2	Density of States
Exa 8.3	Nordheims Coefficient
Exa 8.4	Conductivity of Al
Exa~8.5	Fermi distribution Function
Exa 8.6	Fermi temperature
Exa 8.7	Density of States
Exa 8.8	Fermi Velocity
Exa 8.9	Fermi Energy
Exa 8.10	Fermi Energy
Exa 8.11	Fermi distribution Function

Exa 8.12	theorotical example
Exa 8.13	theorotical example 51
Exa 8.14	Energies for different probabilities 51
Exa 8.15	Fermi distribution Function
Exa 8.16	Fermi Energy
Exa 8.17	Fermi distribution Function
Exa 8.18	Electron density
Exa 8.19	concentration of free electrons
Exa 8.20	carrier density and fermi velocity
Exa 10.1	Intrinsic concentration conductivity and resistivity 56
Exa 10.2	Fermi Energy
Exa 10.3	Resistance of Germanium
Exa 10.4	conductivity of Intrinsic semiconductor
Exa 10.5	Intrinsic Resistivity
Exa 10.6	electrical conductivity of boron doped semiconductor . 59
Exa 10.7	Hole concentration conductivity and Resistance 59
Exa 10.8	Band Gap of Ge
Exa 10.9	carrier concentration of intrinsic semiconductor 61
Exa 10.10	Electrical conductivity of Si 61
Exa 10.11	Fermi energy of Silicon
Exa 10.12	effect of temperature on Fermi level 62
Exa 10.13	Conductivity of Ge
Exa 10.14	Fermi Energy level
Exa 10.15	Conductivity of Ge
Exa 10.16	Intrinsic concentration of Si
Exa 10.17	Drift Velocity
Exa 10.18	average no of electron per Cu atom 65
Exa 10.19	Mobility of Ge
Exa 10.20	Hall Potential Difference 66
Exa 10.21	Mobility of Si
Exa 10.22	Electron concentration and Mobility 67
Exa 10.23	Hall voltage
Exa 10.24	Relaxation time
Exa 10.25	Electron mobility in Silver 69
Exa 10.26	Electron mobility and electric field 69
Exa 10.27	Electron mobility
Exa 10.28	Electron mobility and electric field
Exa 10.29	Electron mobility and conductivity

LXa 10.30	Drift Velocity	71
	Relaxation time	71
Exa 10.32	Electron mobility in Al	72
Exa 10.33	drift and thermal velocity	72
Exa 11.1	Stress produced in an Al	74
Exa 11.2	perentage elongation and reduction	74
Exa 11.3	Brinell Hardness Number	75
Exa 11.4	Tensile strength and fatigue limit of Steel plate	75
Exa 12.1	Change in length due to heating	77
Exa 12.2	Change in length due to heating	77
Exa 12.3	Steady state heat Transfer	78
Exa 12.4	Compression Stress due to Heating	78
Exa 12.5	Heat flux transmitted	79
Exa 12.6	Youngs Modulus	79
Exa 12.7	temperature Change	80
Exa 12.8	compressive Sress	80
Exa 12.9	limit to compression stress	81
Exa 12.10	Heat energy Requirement	81
Exa 14.1	Penetration depth of electron	83
Exa 14.2	Luminescent lifetime	83
Exa 15.1	wavelength of light	85
Exa 15.2	Band Gap of GaAsP	85
Exa 16.1	Pairs generated per second	87
Exa 16.2	Wavelength of emitted radiation	87
Exa 18.1	Dilectric constant of KCl	89
Exa 18.2	Electronic polarisability of Se atom	89
Exa 18.3	ratio between electronic and ionic polarability	90
Exa 18.4	Dielectric constant of Ne gas	90
Exa 18.5	Charge on Capacitor	91
Exa 18.6	Dielectric constant of Ar gas	91
Exa 18.7	Energy stored in capacitor and polarising the capacitor	91
Exa 18.8	ratio of internal field to the applied field	92
Exa 18.9	Relative permittivity of NaCl	92
Exa 18.10	Polarisability of Ar	93
Exa 18.11	Polarisability of He atom	93
Exa 18.12	Polarisability of Ar	94
-Au 10.12		94
Exa 18.13	energy stored in dielectric	34

Exa 18.15	energy stored in capacitor
Exa 18.16	Polarisation produced in NaCl 96
Exa 18.17	Relative permitivity of NaCl 96
Exa 18.18	Electric field strength
Exa 18.19	Polarisability of He atom
Exa 18.20	Electric field strength
Exa 18.21	Dilectric Displacement
Exa 18.22	Polarisation produced in NaCl 98
Exa 18.23	Polarisation produced in NaCl 99
Exa 18.24	Voltage across Capacitor
Exa 18.25	Charge on Capacitor
Exa 18.26	Dilectric Constant
Exa 19.1	Relative permiability and magnetic force 101
Exa 19.2	magnetisation and flux density 101
Exa 19.3	Flux density
Exa 19.4	Permiability
Exa 19.5	Magnetic Moment
Exa 19.6	Avrage magnetisation
Exa 19.7	System Temperature
Exa 19.8	Saturation Magnetic field of Gd
Exa 19.9	Saturation Magnetisation 105
Exa 19.10	Saturation Magnetisation and saturation flux density . 105
Exa 19.11	Saturation Magnetisation of Gadolinium 106
Exa 19.12	Magnetic Flux density
Exa 20.2	Critical Field
Exa 20.3	Critical field through a wire
Exa 20.4	Critical Temperature for metal
Exa 23.1	Sulphur required for final rubber product 109
Exa 23.2	Photon energy to break C C bond 109

List of Figures

2.1	Plane Drawing														22
	Plane Drawing														23

Chapter 1

Materials Properties and Requirements

Scilab code Exa 1.1 Resistance of the wire

```
1 // Example 1.1, page no-8
2 clear
3 clc
4
5 r=0.45*10^-3 //m
6 L=0.3 //m
7 rho=17*10^-9 //ohm-m
8 // Calculations
9 R=rho*(L/(%pi*r^2))
10 printf("The Resistance of the wire is %.3f ohm",R)
```

Scilab code Exa 1.2 Extension of a wire

```
1 // Example 1.2, page no-8
2 clear
3 clc
```

```
4
5    r=1.25*10^-3 //m
6    L=3 //m
7    F=4900 //Newton
8    e=2.05*10^11 //Pa
9    s=F/(%pi*r^2*e)
10    printf("strain = %.3 f\nTherefore, extension = %.3 f", s,s*3)
```

Chapter 2

Crystal Structure

Scilab code Exa 2.2 Lattice spacing from Miller indices

```
1 // Example 2.2, page no-29
2 clear
3 clc
4 // Intercepts are in the ratio 3a:4b along X,Y and parallel to Z axis
5 //x intercept 3,y intercept 4 and z intercept infinity
6 a=2*10^-10// 2 Angstrom
7 h=4
8 k=3
9 l=0
10 d=a/sqrt(h^2+k^2+l^2)
11 printf("The lattice spacing for the plane 430 is %.1 f*10^-10 m",d*10^10)
```

Scilab code Exa 2.3 Lattice constant of Sodium

```
1 // \text{Example } 2.3, \text{ page no} -31
```

```
2 clear
3 clc
4
5 d=9.6*10^2//kg/m^3
6 awt=23
7 n=2
8 avg=6.023*10^26
9 m=n*awt/avg
10 a=(m/d)^(1/3)
11 printf("The lattice constant od sodium is %.1f A ", a*10^10)
```

Scilab code Exa 2.4 Avogadro Constant

```
1 // Example 2.4, page no-31
2 clear
3 clc
4
5 d=4*10^3//kg/m^3
6 awtcs=132.9
7 awtcl=35.5
8 a=4.12*10^-10
9 m=d*a^3
10 N=(awtcs+awtcl)/m
11 printf("The value of Avogadro Constant %.4f *10^26 per kg mole",N*10^-26)
```

Scilab code Exa 2.5 Lattice spacing from Miller indices

```
1 // Example 2.5, page no-31
2 clear
3 clc
4 lam=1.5418*10^-10//m
```

```
5 theta=30//in degrees
6 h=1
7 k=1
8 l=1
9 a=lam*sqrt(h^2+k^2+l^2)/(2*sin(theta*%pi/180))
10 printf("The lattice constant is %.4f *10^-10 m",a *10^10)
```

Scilab code Exa 2.6 Lattice spacing from Miller indices

Scilab code Exa 2.7 Lattice spacing from Miller indices

Scilab code Exa 2.8 Lattice spacing from Miller indices

```
1 // Example 2.8, page no -34
2 clear
3 clc
4 ///(i)
5 h=1
6 k=0
71=1
8 a=4.2*10^-10
9 d=a/sqrt(h^2+k^2+1^2)
10 printf("\nThe lattice spacing for the plane(101) is
      \%.3 \text{ f}*10^-10 \text{ m}, d*10^10)
11 ///(ii)
12 h = 2
13 k=2
14 1=1
15 \quad a=4.12*10^-10
16 d=a/sqrt(h^2+k^2+1^2)
17 printf("\nThe lattice spacing for the plane (220) is
      \%.1 \; f*10^-10 \; m, d*10^10)
```

Scilab code Exa 2.13 Lattice spacing from Miller indices

```
1 // Example 2.13, page no-37
2 clear
3 clc
4 //(i)
5 h=1
6 k=1
7 l=1
```

```
8 a=4.12*10^-10
9 d=a/sqrt(h^2+k^2+1^2)
10 printf("\nFor (111) plane\nThe lattice spacing is %
       .3 f*10^-10 m, d*10^10)
11 //(ii)
12
13 h = 1
14 \, k = 1
15 1=2
16 \quad a=4.12*10^-10
17 d=a/sqrt(h^2+k^2+1^2)
18 printf("\n nFor (112) plane nThe lattice spacing is
      \%.3 \text{ f}*10^-10 \text{ m}, d*10^10)
19 //(iii)
20
21 h = 1
22 k=2
23 \quad 1 = 3
24 \quad a=4.12*10^-10
25 d=a/sqrt(h^2+k^2+1^2)
26 printf("\n nFor (123) plane nThe lattice spacing is
      \%.3 \text{ f}*10^-10 \text{ m}, d*10^10)
```

Scilab code Exa 2.15 Lattice spacing from Miller indices

```
1 // Example 2.15, page no-38
2 clear
3 clc
4 h=2
5 k=2
6 l=0
7 a=4.938*10^-10
8 d=a/sqrt(h^2+k^2+l^2)
9 printf("\nThe lattice spacing for (220) plane is %.3
f*10^-10 m", d*10^10)
```

Scilab code Exa 2.16 Number of atoms in Al foil

```
1 // Example 2.16, page no-39
2 clear
3 clc
4 a=0.405*10^-10//m
5 t=0.005//m
6 A=25*10^-2//m
7 n=t*A/a^3
8 printf("The number of atoms in the Al foil is %.2 f * 10^28",n*10^-28)
```

Scilab code Exa 2.17 no of unit cells in 1 kg metal

```
1 // Example 2.17, page no-39
2 clear
3 clc
4 a=2.88*10^-10//
5 d=7200//k/m^3
6 n=1/(d*a^3)
7 printf("The number of unit cell present in 1 kg metal is %.4 f *10^24",n*10^-24)
```

Scilab code Exa 2.18 percentage volume change during structural changes

```
1 // Example 2.18, page no-39
2 clear
3 clc
4 rbcc=0.1258*10^-9
```

```
5 rfcc=0.1292*10^-9
6 a=4*rbcc/sqrt(3)
7 vbcc=(a^3)/2
8 a1=4*rfcc/sqrt(2)
9 vfcc=(a1^3)/4
10 vp=(vbcc-vfcc)
11 vp=floor(vp*10^32)
12 vp=vp*10^-32/vbcc
13 printf("The volume change in %% duringg the structural change is %.4f",vp*100)
```

Scilab code Exa 2.19 Copper Density

```
1 // Example 2.19, page no-40
2 clear
3 clc
4 awt=63.5*10^-3//g
5 avg=6.023*10^26
6 r=1.273*10^-10
7 n=4
8 a=4*r/sqrt(2)
9 d=n*awt/(avg*a^3)
10 printf("The density of copper is %.4 f gm/m^3",d)
```

Scilab code Exa 2.20 Atomic Radius

```
1 // Example 2.20, page no-41
2 clear
3 clc
4 d=7860
5 m=55.85
6 n=2
7 avg=6.023*10^26
```

Scilab code Exa 20.21 Lattice constant

Scilab code Exa 2.22 Glancing angle

```
1 // Example 2.22, page no-42
2 clear
3 clc
4 a=3.81*10^-10//m
5 h=1
6 k=3
7 l=2
8 lam=0.58*10^-10
9 n=2
10 d=a/sqrt(h^2+k^2+l^2)
11 theta=asin(n*lam/(2*d))
```

12 printf("The angle of glancing at which 2nd order diffraction pattern of NaCl occurs is %.2 f ", theta*180/%pi)

Scilab code Exa 2.23 Lattice constant

```
1 // Example 2.23, page no-43
2 clear
3 clc
4 h=3
5 k=0
6 l=2
7 theta=35//in degrees
8 lam=0.7*10^-10//m
9 n=1
10 d=n*lam/(2*sin(theta*%pi/180))
11 printf("\nThe interplanar distance for (302) plane is %.3 f*10^-11 m",d*10^11)
12 a=d*sqrt(h^2+k^2+l^2)
13 printf("\nThe lattice constance is %.2 f*10^-10 m",a *10^10)
```

Scilab code Exa 2.24 Plane Drawing

```
1 // Example 2.24, page no-44
2 clear
3 clc
4 ///for plane (0,0,1)
5 deff('z=f(x,y)', 'z=x^0-y^0')
6 x=0:0.2:3; y=x;
7 // clf();
```


Figure 2.1: Plane Drawing

```
8 subplot (311)
9 fplot3d(x,y,f,alpha=5,theta=31)
10
11 ///For plane (1,0,1)
12 deff('z=f(x,y)', 'z=x^1-y^0')
13 x=0:0.2:3 ; y=x ;
14 // clf();
15 subplot (312)
16 fplot3d(x,y,f,alpha=5,theta=31)
17
18 ///For plane (1,1,1)
19 deff('z=f(x,y)', 'z=x^1-y^1')
20 x = 0:0.2:3 ; y=x ;
21 //clf();
22 subplot (313)
23 fplot3d(x,y,f,alpha=5,theta=31)
```

Scilab code Exa 2.25 Interplanar spacing

Figure 2.2: Plane Drawing

```
1 // Example 2.25, page no-45
2 clear
3 clc
4 theta=12//in degrees
5 lam=2.82*10^-10//m
6 n=1
7 d=n*lam/(2*sin(theta*%pi/180))
8 printf("The interplanar spacing is %.3 f *10^-10 m",d *10^10)
```

Scilab code Exa 2.26 Lattice spacing and deBroglie wavelength

Scilab code Exa 2.27 Lattice constant and atomic radius

```
1 // Example 2.27, page no-46
2 clear
3 clc
```

Scilab code Exa 2.28 energy of the neutron

```
1 // Example 2.28, page no-47
2 clear
3 clc
4 theta=22//in degrees
5 d=1.8*10^-10//m
6 n=1
7 h=6.626*10^-34
8 m=9.1*10^-31//kg
9 e=1.6*10^-19//C
10 lam=2*d*sin(theta*%pi/180)/n
11 E=(1/(2*m))*(h/lam)^(2)
12 printf("\nThe deBroglie wavelength of the neutron is %.3 f *10^-10\nthe energy of the neutron is %.2 f eV", lam*10^10, E/e)
```

Scilab code Exa 2.29 InterPlanar Spacing

```
5 h=1
6 k=1
7 l=1
8 a=3*10^-10
9 d=a/sqrt(h^2+k^2+l^2)
10 printf("\nThe interplanar spacing for the plane(101)
    is %.3 f*10^-10 m", d*10^10)
```

Scilab code Exa 2.30 Lattice spacing from Miller indices

```
1 // Example 2.30, page no-48
2 clear
3 clc
4 h=3
5 k=2
6 l=1
7 rfcc=0.1278*10^-9//m
8 a=4*rfcc/sqrt(2)
9 d=a/sqrt(h^2+k^2+1^2)
10 printf("\nThe lattice constant = %.3 f *106-10\nThe interplanar spacing for the plane(321) is %.3 f *10^-11 m",a*10^10,d*10^11)
```

Scilab code Exa 2.31 Number of atoms in Al foil

```
1 // Example 2.31, page no-49
2 clear
3 clc
4 a=0.4049*10^-10//m
5 t=0.005//m
6 A=25*10^-2//m
7 n=t*A/a^3
```

```
8 printf("The number of atoms in the Al foil is \%.2 \, f * 10^28",n*10^-28)
```

Scilab code Exa 2.32 energy of the neutron

```
1 // Example 2.32, page no-49
2 clear
3 clc
4 theta=20//in degrees
5 d=2*10^-10//m
6 n=1
7 h=6.626*10^-34
8 m=1.67*10^-27//kg
9 e=1.6*10^-19//C
10 lam=2*d*sin(theta*%pi/180)/n
11 E=(1/(2*m))*(h/lam)^(2)
12 printf("\nThe deBroglie wavelength of the neutron is %.3 f *10^-10\nthe energy of the neutron is %.4 f eV", lam*10^10, E/e)
```

Scilab code Exa 2.35 deBroglie wavelength of electrons

```
1 // Example 2.35, page no-51
2 clear
3 clc
4 e=1.6*10^-19//C
5
6 h=6.626*10^-34
7 m=9.1*10^-31//kg
8 ek=235.2*e
9 n=1
10 theta=9.21
11 lam=h/sqrt(2*m*ek)
```

```
12 d=n*lam/(2*sin(theta*%pi/180))
13 printf("\nThe deBroglie wavelength of electron is % .3 \text{ f }*10^{-}-11 \text{ m}\nThe interplanar spacing is }\%.3 \text{ f}
*10^{-}-10 \text{ m",lam*10^11,d*10^10}
```

Scilab code Exa 2.36 Lattice spacing from Miller indices

```
1 // Example 2.36, page no-52
2 clear
3 clc
4 // Intercepts are in the ratio 3a:4b along X,Y and parallel to Z axis
5 //x intercept 3,y intercept 4 and z intercept infinity
6 a=2*10^-10// 2 Angstrom
7 h=4
8 k=3
9 l=0
10 d=a/sqrt(h^2+k^2+l^2)
11 printf("The lattice spacing for the plane 430 is %.1 f*10^-10 m",d*10^10)
```

Scilab code Exa 2.38 Plane Drawing

```
1 // Example 2.38, page no-53
2 clear
3 clc
4 printf("Same as example 2.24 of the same chapter")
```

Chapter 3

Characterisation of material

Scilab code Exa 3.1 wavelength and frequency of Xrays

Scilab code Exa 3.2 wavelength and velocity of electrons

```
3 clc
4 v = 10000 / V
5 i=2*10^-3 /A
6 \text{ e=1.6*10^--19//C}
7 t = 1
8 \text{ m} = 9.1 * 10^{-31} / \text{kg}
9 //(i)
10 \text{ n=i*t/e}
11 printf ("The no of electrons striking the target per
      second = \%.2 f *10^16, n*10^-16)
12 //(ii)
13 v1=sqrt(2*e*v/m)
14 //(iii)
15 \quad lam = 12400/v
16 printf("\n(ii)\nThe velocity of electron =%.2 f*10^7
      m/s n(iii) nWavelength of x-rays=\%.2 f A ",v1
      *10^-7, lam)
```

Scilab code Exa 3.3 wavelength and angle for 2nd order bragg reflection

```
1  // Example 3.3, page no-90
2  clear
3  clc
4  d=5.6534*10^-10
5  theta=13.6666 //in degrees
6  n=1
7  //(i)
8  lam=2*d*sin(theta*%pi/180)/n
9  printf("\n(i)\nLambda =\%.3 f*10^-10 m", lam*10^10)
10  //(ii)
11  n=2
12  theta=asin(n*lam/(2*d))
13  theta=theta*180/%pi
14  printf("\n(ii)\n2nd order Bragg reflection at angle Theta2 = %f", theta)
```

Scilab code Exa 3.4 Grating spacing and glancing angle

```
1 // \text{Example } 3.4, \text{ page no-}91
2 clear
3 clc
4 v = 24800
5 n=1
6 lam=1.54*10^--10//m
7 ga=15.8 //degree
8 //(i)
9 d=n*lam/(2*sin(ga*%pi/180))
10 printf("\n(i)\ngrating spacinf for NaCl crystal =%f
      *10^-10 m", d*10^10
11 //(ii)
12 \ lam_min = 12400/v
13 \quad lam_min = lam_min * 10^-10
14 theta=asin(n*lam_min/(2*d))
15 theta=theta*180/%pi
16 printf("\n(ii)\nglancing angle for minimum
      wavelength = \%f degrees, theta)
```

Scilab code Exa 3.5 wavelength of radiation

Scilab code Exa 3.6 Energy of thermal neutron

```
1 // Example 3.6, page no-92
2 clear
3 clc
4 lam=10^-10//m
5 h=6.626*10^-34
6 m=1.675*10^-27
7 e1=1.602*10^-19//ev
8 e=(h^2)/(2*m*lam^2)
9 e=e/e1
10 printf("\nThe energy of thermal neutron with wavelength 1 A is %f eV",e)
```

Scilab code Exa 3.8 temperature of thermal neutron

```
1 // Example 3.8, page no-94
2 clear
3 clc
4 lam=0.1//nm
5 T=(2.516^2)/(lam)^2
6 printf("temperature of thermal neutron corresponding to 1A is %.0 f K",T)
```

Chapter 4

Cohesion between atoms

Scilab code Exa 4.1 Coulomb interatomic energy

```
1 // Example 4.1, page no-92
2 clear
3 clc
4 R=2.81*10^-10 //m
5 e=1.6*10^-19
6 eps=8.854*10^-12
7 U=-(e^2)/(4*%pi*eps*R)
8 printf("The Coulomb interatomic energy is %.2 f eV", U *10^19/1.6)
```

Chapter 5

Crystal Imperfections

Scilab code Exa 5.1 Average distance between dislocations

```
1 // Example 5.1, page no-130
2 clear
3 clc
4
5 a=3.615*10^-10//m
6 t_ang=0.75 //in degree
7 h=1
8 k=1
9 l=0
10 d_110=a/sqrt(h^2+k^2+l^2)
11 D=d_110/tan(t_ang*%pi/(180*2))
12 printf("The average distance between the dislocations is %.3 f A ",D*10^6)
```

Scilab code Exa 5.2 Schottky defects per unit cell

```
3 clc
4 lp=4.0185*10^-10//m
5 dens=4285//kg/m^3
6 avg=6.022*10^26
7 wt_cs=132.9
8 wt_cl=35.5
9 N=(dens*avg*lp^3)/(wt_cs+wt_cl)
10 sd=(1-N)*100/1
11 printf("The number of Schottky defects per unit cell
= %.3f%%",sd)
```

Chapter 6

Classification of solids

Scilab code Exa 6.1 Wavelength of light emitted from LED

```
1 // Example 6.1, page no-143
2 clear
3 clc
4 e=1.609*10^-19//C
5 eg=1.8 //eV
6 h=6.626*10^-34
7 c=3*10^8//m/s
8 E=e*eg
9 lamda=h*c/E
10 printf("The wavelength of light emitted from given LED is %.3 f m",lamda*10^7)
```

Scilab code Exa 6.2 Band gap of given GaAsP

```
1 // Example 6.2, page no-144
2 clear
3 clc
4 lam=6715*10^-10//m
```

Chapter 7

Electron theory of Solids

Scilab code Exa 7.1 mobility of electrons in copper

```
1 // Example 7.1, page no-160
2 clear
3 clc
4 rho = 1.73 * 10^{-8} / Ohm - m
5 z = 63.5
6 \ d=8.92*10^3 \ // kg/m^3
7 \text{ avg} = 6.023 * 10^26
8 e=1.6*10^-19/C
9 \text{ m} = 9.11 * 10^{-31} / \text{Kg}
10
11 n=avg*d/z
12 \text{ sig=1/rho}
13 tau=sig*m/(n*e^2)
14 mu=sig/(n*e)
15
16 printf("Mobility of electrons in copper is %.2 f
       *10^{-3} \text{ m}^2/\text{V-s}, mu*10^{3})
```

Scilab code Exa 7.2 resistivity of copper

```
1 // Example 7.2, page no-161
2 clear
3 clc
4 r=1.85*10^-10//m
5 t=3*10^-14//s
6 m=9.11*10^-31//Kg
7 e=1.6*10^-19//C
8 a=r*(4/sqrt(3))
9 ne=2/a^3
10 rho=m/(ne*t*e^2)
11 printf("Resistivity of copper is %.3f*10^-8 Ohm-m", rho*10^8)
```

Scilab code Exa 7.3 resistivity of sodium

```
1 // Example 7.3, page no-161
2 clear
3 clc
4
5 r=1.85*10^-10//m
6 t=3.1*10^14//s
7 m=9.11*10^-31//Kg
8 e=1.6*10^-19//C
9 n=25.33*10^27
10 rho=m/(n*t*e^2)
11 printf("The electric Resistivity of sodium at 0 C is %.3 f*10^-36 Ohm-m", rho*10^36)
```

Scilab code Exa 7.4 mobility of electrons in meatls

```
1 // Example 7.4, page no-162 2 clear 3 clc
```

Scilab code Exa 7.5 drift velocity of electrons

```
1 // Example 7.5, page no-163
2 clear
3 clc
4
5 rho=1.54*10^-8//ohm-m
6 E=100//V/m
7 n=5.8*10^28//m^-3
8 e=1.6*10^-19//C
9 mu=1/(rho*n*e)
10 vd=mu*E
11 printf("\nMobility of electron in silvetr is %.4f
     *10^-3 m^2/v-s\n\nThe drift velocity of the
     electron in silver is %.5 f m/s ",mu*10^3,vd)
```

Scilab code Exa 7.6 mobility of electrons

Scilab code Exa 7.7 Lorentz Number

```
1 // Example 7.7, page no-164
2 clear
3 clc
4 sig=5.87*10^7
5 k=390//W/m-k
6 T=293
7 L=k/(sig*T)
8 printf("The Lorentz number is %.3 f *10^-8 W.Ohm/K^2", L*10^8)
```

Scilab code Exa 7.8 Lorentz Number

Scilab code Exa 7.9 conductivity of copper

```
1 // Example 7.9, page no-165
2 clear
3 clc
4
5 d=8900 //kg/m^3
6 cu=63.5
7 t=10^-14 //s
8 avg=6.023*10^23
9 n=avg*d*1000/cu
10 m=9.1*10^-31//kg
11 e=1.6*10^-19
12
13 sig=(n*t*e^2)/m
14 printf("The electrical conductivity is %.3 f *10^7 / Ohm-m", sig*10^-7)
```

Scilab code Exa 7.10 drift velocity of electrons in silver piece

```
1 // \text{Example } 7.10, \text{ page no} -166
2 clear
3 clc
4 rho=1.6*10^-8 //Ohm-m
5 \text{ e=1.6*10}^-19/\text{C}
6 fe=5.5*e//J
7 \text{ avg} = 6.023 * 10^2 3
8 d=1.05*10^4/density
9 wt=107.9*10^-3//atomic weight
10 m=9.1*10^-31/kg
11 c = 3*10^8 / m/s
12 \text{ sig=1/rho}
13 n = avg*d/wt
14 t=sig*m/(n*e^2)
15 printf("\nThe conductivity of silver piece is %.2 f
       *10^7 per Ohm-m\n\nThe relaxation time is \%.2 f
      *10^-14 \text{ s}, sig*10^-7, t*10^14)
16 \quad lam = c * t
17 \text{ vd=sig*100/(n*e)}
18 printf("\n\nThe driftt velocityy of electrons in the
        silver piece is \%.2 \, \text{f m/s}, vd)
```

Scilab code Exa 7.11 resistivity of copper

```
1 // Example 7.11, page no-167
2 clear
3 clc
4 r1=1.7*10^-8
5 t2=300
6 t1=700+273
7 r2=r1*sqrt((t1/t2))
8 printf("The resistivityy of the copper wire is %.4f
     *10^-8 Ohm-m",r2*10^8)
```

Scilab code Exa 7.12 mobility and drift velocity of electrons

```
1 // \text{Example } 7.12, page no -168
2 clear
3 clc
4
5 \text{ rho}=1.54*10^-8
6 e=1.6*10^-19 //C
7 ef=5.5*e//J
8 n=5.8*10^28///per cubic meter
9 m=9.1*10^-31/kg
10
11 //(i)
12 t=m/(rho*n*e^2)
13 \text{ mu=e*t/m}
14 printf("\n(i)\nThe relaxation time is \%.2 \text{ f}*10^-14 \text{ s}\
      nThe mobility of the electrons is \%.4\,\mathrm{f} *10^-3 m
       ^2/V-s", t*10^14, mu*10^3)
15
16 //(ii)
17 \text{ vd=e*t*100/m}
18 printf("\n\ii)\nthe drift velocity of electron is %
       .5 f m/s, vd)
19
20 //(iii)
21 \text{ vf} = \text{sqrt} (2*\text{ef/m})
22 printf("\n\n(iii)\nFermi velocity is %.2 f*10^6 m/s",
      vf *10^-6)
23
24 //(iv)
25 \quad lam = vf * t
26 printf("\n\n(iv)\nThe mean free path is \%.3 f*10^-8 m
      ",lam *10^8)
```

Chapter 8

Statics and Band theory of Solids

Scilab code Exa 8.1 Fermi energy

```
1 // Example 8.1, page no-208
2 clear
3 clc
4 d_cu=8.96*10^3//density of cu
5 a_cu=63.55//Atomic weight of cu
6 d_z = 7100
7 a_z=65.38
8 d_al = 2700
9 a_al = 27
10 avg=6.023*10^26
11 h=6.626*10^{-34}
12 m=9.1*10^-31/kg
13 \text{ e=1.6*10}^-19/\text{C}
14
15 //(i)
16 n_cu=d_cu*avg/a_cu
17 e_cu=(h^2/(8*m))*(3*n_cu/\%pi)^(2/3)
18 e_cu=e_cu/e
19 printf("\n(i)For Cu\nThe electron concentration in
```

```
Cu is \%.4 f*10^28 per m<sup>3</sup>\nFermi energy at 0 k = \%
      .4 f eV ", n_cu*10^-28, e_cu)
20
21 //(ii)
22 \quad n_z=d_z*avg*2/a_z
23 e_z=(h^2/(8*m))*(3*n_z/\%pi)^(2/3)
24 \text{ e_z=e_z/e}
25 printf("\n(i)For \nCn\nThe electron concentration in
      Zn is \%.4 f*10^28 per m<sup>3</sup>\nFermi energy at 0 k = \%
      .4 f eV ", n_z*10^-28, e_z)
26
27 //(i)
28 \quad n_al=d_al*avg*3/a_al
29 e_al=(h^2/(8*m))*(3*n_al/\%pi)^(2/3)
30 e_al=e_al/e
31 printf("\n(i)) For Al\nThe electron concentration in
      Al is \%.4 f*10^28 per m<sup>3</sup>\nFermi energy at 0 k = \%
      .4 f eV ", n_al*10^-28, e_al)
```

Scilab code Exa 8.2 Density of States

```
1 // Example 8.2, page no-210
2 clear
3 clc
4 avg=6.023*10^26
5 h=6.626*10^-34
6 m=9.1*10^-31//kg
7 e=1.6*10^-19//C
8 n=8.4905*10^28
9
10 ef=(h^2/(8*m))*(3*n/%pi)^(2/3)
11 ef=ef/e
12 gam=6.82*10^27
13 x=(gam*sqrt(ef))/2
14 printf("The density of states for Cu at the Fermi
```

Scilab code Exa 8.3 Nordheims Coefficient

```
1 // Example 8.3, page no-210
2 clear
3 clc
4 rni=63//n Ohm.m
5 rcr=129
6 k=1120
7 c=(k*10^-9)/(0.8*(1-0.8))
8 printf("The Nordheims coeeficient is %.0 f *10^-6 Ohm -m", c*10^6)
```

Scilab code Exa 8.4 Conductivity of Al

Scilab code Exa 8.5 Fermi distribution Function

```
1 // Example 8.5, page no-211
2 clear
3 clc
4 e1=0.01//eV
5 e=1.6*10^-19//C
6 ed=e*e1
7 T=200//K
8 E=1/(1+%e^(ed/(T*1.38*10^-23)))
9 printf("The Fermy distribution function for energy E is %.4 f",E)
```

Scilab code Exa 8.6 Fermi temperature

```
1 // Example 8.6, page no-212
2 clear
3 clc
4
5 v=0.86*10^6//m/s
6 m=9.1*10^-31//Kg
7 e=1.6*10^-19//C
8 k=1.38*10^-23 //J/K
9 E=(m*v^2)/2
10 T=E/k
11 printf("\nThe fermi energy is %.3f*10^-19 J\nThe Fermi Temperature Tf is %.2f*10^4 K",E*10^19,T *10^-4)
```

Scilab code Exa 8.7 Density of States

```
3 clc
4
5 m=9.1*10^-31//Kg
6 dE=0.01 //eV
7 h=6.63*10^-34///Js
8 eF=3//eV
9 e=1.6*10^-19//C
10 E1=eF*e
11 E2=E1+e*dE
12
13 n=(4*%pi*(2*m)^(1.5))/h^3
14 k=((2*0.3523/3)*((E2^(1.5)-(E1^(1.5)))))
15 n=n*k
16 printf("The number of states lying between the energy level is %.2f*10^25",n*10^-25)
```

Scilab code Exa 8.8 Fermi Velocity

```
1 // Example 8.8, page no-214
2 clear
3 clc
4 Tf=24600//K
5 m=9.11*10^-31//Kg
6 k=1.38*10^-23
7 vf=sqrt(2*k*Tf/m)
8 printf("The Fermi Velocity is %.4 f *10^6 m/s", vf *10^-6)
```

Scilab code Exa 8.9 Fermi Energy

```
1 // Example 8.9, page no-214 2 clear 3 clc
```

```
4 n=18.1*10^28//per cubic m
5 h=6.62*10^-34//Js
6 m=9.1*10^-31//Kg
7 e=1.6*10^-19//C
8 ef=((3*n/(8*%pi))^(2/3))*((h^2)/(2*m))
9 ef=ef/e
10 printf("The Fermi energy at 0 K is %.2f eV ",ef)
```

Scilab code Exa 8.10 Fermi Energy

```
1 // Example 8.10, page no-215
2 clear
3 clc
4 n=18.1*10^28//per cubic m
5 h=6.62*10^-34//Js
6 m=9.1*10^-31//Kg
7 e=1.6*10^-19//C
8 ef=((3*n/(8*%pi))^(2/3))*((h^2)/(2*m))
9 ef=ef/e
10 printf("The Fermi energy at 0 K is %.2 f eV ",ef)
```

Scilab code Exa 8.11 Fermi distribution Function

```
1 // Example 8.11, page no-215
2 clear
3 clc
4 e=1.6*10^-19//C
5 Ed=0.5*e
6 k=1.38*10^-23
7 x=0.01
8 T=Ed/(k*log((1/x)-1))
9
```

```
10 printf("Temperature at which there is 1\%\% probability that a state with 0.5 eV energy occupied above the Fermi energy level is \%.1\,\mathrm{f} K", T)
```

Scilab code Exa 8.12 theoretical example

```
1 // Example 8.12, page no-216
2 clear
3 clc
4 printf("Theorotical Exam[ple")
```

Scilab code Exa 8.13 theoretical example

```
1 // Example 8.1, page no-217
2 clear
3 clc
4 printf("Theorotical Exam[ple")
```

Scilab code Exa 8.14 Energies for different probabilities

```
1 // Example 8.14, page no-218
2 clear
3 clc
4 ef=2.1
5 k=1.38*10^-23
6 T=300//K
7 e=1.6*10^-19//c
8 //(i)
9 p1=0.99
```

```
10 E1=ef+(k*T*log(-1+1/p1))/e
11
12 //(ii)
13 p2=0.01
14 E2=ef+(k*T*log(-1+1/p2))/e
15
16 //(iii)
17 p3=0.5
18 E3=ef+(k*T*log(-1+1/p3))/e
19
20 printf("\nThe energies for the occupying of
      delectrons at %d K for the probability of %.2f is
      \%.2\;\mathrm{f"} ,T ,p1 ,E1)
21
22 printf("\nThe energies for the occupying of
      delectrons at %d K for the probability of %.2f is
      \%.2 \, f", T, p2, E2)
23
24 printf("\nThe energies for the occupying of
      delectrons at %d K for the probability of %.2f is
      \%.2 \,\mathrm{f} ",T,p3,E3)
```

Scilab code Exa 8.15 Fermi distribution Function

```
1 // Example 8.15, page no-219
2 clear
3 clc
4 e=1.6*10^-19 //C
5 ed=0.02*e
6 T1=200
7 T2=400
8 k=1.38*10^-23
9 fe1=1/(1+%e^(ed/(k*T1)))
10 fe2=1/(1+%e^(ed/(k*T2)))
11 printf("\nThe Fermi distribution function for the
```

```
given energy at %d K is %.4f",T1,fe1)
12 printf("\nThe Fermi distribution function for the given energy at %d K is %.4f",T2,fe2)
```

Scilab code Exa 8.16 Fermi Energy

```
1 // Example 8.16, page no-220
2 clear
3 clc
4 d=10500//density
5 avg=6.022*10^26
6 awt=107.9
7 n=d*avg/awt//per cubic m
8 h=6.62*10^-34//Js
9 m=9.1*10^-31//Kg
10 e=1.6*10^-19//C
11 ef=((3*n/(8*%pi))^(2/3))*((h^2)/(2*m))
12 ef=ef/e
13 printf("The Fermi energy for given metal is %.2 f eV", ef)
```

Scilab code Exa 8.17 Fermi distribution Function

```
1 // Example 8.17, page no-221
2 clear
3 clc
4 e=1.6*10^-19 //C
5 ed=0.2*e
6 T1=300
7 T2=1000
8 k=1.38*10^-23
9 fe1=1/(1+%e^(ed/(k*T1)))
10 fe2=1/(1+%e^(ed/(k*T2)))
```

Scilab code Exa 8.18 Electron density

```
1 // Example 8.18, page no-221
2 clear
3 clc
4
5 h=6.62*10^-34//Js
6 m=9.1*10^-31//Kg
7 e=1.6*10^-19//C
8 ef=3*e
9 k=((3/(8*%pi))^(2/3))*((h^2)/(2*m))
10 k=ef/k
11 n=k^(1.5)
12 printf("The number of free electrons concentration in metal is %.2f *10^28 per cubic meter",n
     *10^-28)
```

Scilab code Exa 8.19 concentration of free electrons

```
1 // Example 8.18, page no-221
2 clear
3 clc
4
5 h=6.62*10^-34//Js
6 m=9.1*10^-31//Kg
7 e=1.6*10^-19//C
8 ef=5.5*e
9 k=((3/(8*%pi))^(2/3))*((h^2)/(2*m))
```

```
10 k=ef/k
11 n=k^(1.5)
12 printf("The number of free electrons concentration
      in metal is %.3f *10^28 per cubic meter ",n
      *10^-28)
```

Scilab code Exa 8.20 carrier density and fermi velocity

```
1 // Example 8.18, page no-221
2 clear
3 clc
5 h=6.62*10^{-34} / J_s
6 \text{ m=9.1*10}^-31/\text{Kg}
7 e=1.6*10^-19/C
8 \text{ ef} = 7 * e
9 k=((3/(8*\%pi))^{(2/3)})*((h^2)/(2*m))
10 \text{ k=ef/k}
11 n=k^{(1.5)}
12 printf("The number of free electrons concentration
       in metal is \%.2 \, \mathrm{f} *10^2 \, \mathrm{28} per cubic meter ",n
       *10^-28)
13 vth = sqrt(2*ef/m)
14 printf("\nThe termal velocity of electrons in copper
        is \%.3 f *10^6 m/s, vth*10^-6)
```

Chapter 10

Transport Properties of Semiconductors

Scilab code Exa 10.1 Intrinsic concentration conductivity and resistivity

```
1 // \text{Example } 10.1, \text{ page no} -267
2 clear
3 clc
4 T = 300 / K
5 mue = 0.4 / \text{m}^2 \text{V-s}
6 \text{ muh} = 0.2
7 e=1.6*10^-19/C
8 eg=0.7*e//J
9 m=9.1*10^-31//kg
10 \text{ me} = 0.55
11 \, \text{mh} = 0.37
12 h=6.626*10^{-34}
13 k=1.38*10^-23
14 ni=2*(2*\%pi*k*T/(h^2))^(1.5)
15 ni=ni*(m^1.5)*(mh*me)^(3/4)
16 ni=ni*%e^(-eg/(k*T))
17 printf("\nThe intrinsic concentration ni=\%.3\,\mathrm{f} *10^13
        /m^3", ni *10^-13)
18
```

Scilab code Exa 10.2 Fermi Energy

```
1 // Example 10.2, page no-268
2 clear
3 clc
4 ni=1.45*10^10//cm^-3
5 nd=10^16//cm^-3
6 k=1.38*10^-23
7 T=300
8 e=1.6*10^-19//C
9 Ef=k*T*log(nd/ni)
10 Ef=Ef/e
11 printf("The Fermi energyy with respect to Ef in intrinsic Si = %.3 f eV", Ef)
```

Scilab code Exa 10.3 Resistance of Germanium

```
1 // Example 10.3, page no-269
2 clear
3 clc
4 ni=2.5*10^19//m^-3
5 mue=0.39//m^2/V-s
6 muh=0.19
7 l=10^-2//m
8 e=1.6*10^-19//C
9 sig=ni*e*(mue+muh)
10 R=1/(sig*10^-6)
```

```
11 printf("The conductivity of intrinsic Ge is %.2 f / ohm-m\nThe Resistance is %.0 f", sig, R)
```

Scilab code Exa 10.4 conductivity of Intrinsic semiconductor

```
1 // Example 10.4, page no-269
2 clear
3 clc
4 ni=1.5*10^16//m^-3
5 mue=0.13//m^2/V-s
6 muh=0.05
7 e=1.6*10^-19//C
8 sig=ni*e*(mue+muh)
9 printf("The conductivity of intrinsic Ge is %.2f *10^-4 /ohm-m", sig*10^4)
```

Scilab code Exa 10.5 Intrinsic Resistivity

```
1 // Example 10.5, page no-270
2 clear
3 clc
4 ni=2.15*10^13//cm^-3
5 mue=3900//cm^2/V-s
6 muh=1900
7 e=1.6*10^-19//C
8 sig=ni*e*(mue+muh)
9 r=1/sig
10
11 printf("The conductivity of intrinsic Ge is %.2f
     *10^-2 /ohm-cm\n The intrinsic resistivity is %.0
     f Ohm-cm", sig*10^2,r)//answers not matching with
     book's ans.
```

Scilab code Exa 10.6 electrical conductivity of boron doped semiconductor

```
1 // Example 10.6, page no-270
2 clear
3 clc
4 ni=2.1*10^19//m^-3
5 mue=0.4//m^2/V-s
6 muh=0.2
7 e=1.6*10^-19//C
8 p=4.5*10^23//m^-3
9 sig=ni*e*(mue+muh)
10 r=p*e*muh
11
12 printf("The conductivity of intrinsic Ge is %.3 f
    *10^-2 /ohm-cm\nThe intrinsic resistivity is %.2 f
    *10^4", sig,r*10^-4)
```

Scilab code Exa 10.7 Hole concentration conductivity and Resistance

```
1 // Example 10.7, page no-271
2 clear
3 clc
4 n=5*10^28//m^-3
5 ni=1.45*10^13//m^-3
6 mue=1.35//m^2/V-s
7 muh=0.45
8 e=1.6*10^-19//C
9 p=4.5*10^23//m^-3
10 sig=ni*e*(mue+muh)
11 rho=1/sig
12 //rho=rho*10^12
```

```
13    r=rho*10^12
14    nd=n/10^9
15    p=(ni^2)/nd
16    sig2=nd*e*mue
17
18    printf("\nThe intrinsic conductivity is %.2 f *10^-6
        /ohm-cm\n\nThe intrinsic resistivity is %.2 f
        *10^-50hm-m\n\nResistance = %.2 f*10^7 Ohm\n\
        nDonar concentration is %.0 f*10^19\n\
        nConcentration of hole is %.1 f*10^6 m^-3\n\
        nConductivity = %.1 f per ohm-m", sig*10^6, rho
        *10^-5, r*10^-17, nd*10^-19, p*10^-6, sig2)
```

Scilab code Exa 10.8 Band Gap of Ge

```
1 // Example 10.8, page no-272
2 clear
3 clc
4
5 T = 300 / K
6 \text{ rho} = 2.12 / \text{ohm} - \text{m}
7 mue = 0.36 / / \text{m}^2 / \text{V-s}
8 \text{ muh} = 0.17
9 e=1.6*10^-19/C
10 m=9.1*10^-31/kg
11 h=6.626*10^-34
12 \text{ sig=1/rho}
13 ni=sig/(e*(muh+mue))
14 printf("\nConductivity = \%.6 f per Ohm-m\nIntrinsic
       carrier concentration, ni=\%.5 f*10^18", sig, ni
       *10^-18)
15
16 k=1.38*10^-23
17 Nc=2*(2*\%pi*k*T/h^{(2)})^{(1.5)}
18 Nc=Nc*(0.5*m)^{(1.5)}
```

Scilab code Exa 10.9 carrier concentration of intrinsic semiconductor

```
1 // Example 10.9, page no-273
2 clear
3 clc
4 e=1.6*10^-19//C
5 m=9.1*10^-31//kg
6 h=6.626*10^-34
7 k=1.38*10^-23
8 eg=0.7*e
9 T=300//K
10 ni=2*(2*%pi*m*k*T/(h^(2)))^(1.5)
11 ni=ni*%e^(-eg/(2*k*T))
12 printf("The carrier concentration of an intrinsic semiconductor is = %.2 f*10^18 per m^3",ni*10^-18)
```

Scilab code Exa 10.10 Electrical conductivity of Si

```
1 // Example 10.9, page no-273
2 clear
3 clc
4 e=1.6*10^-19//C
5 m=9.1*10^-31//kg
6 h=6.626*10^-34
7 k=1.38*10^-23
```

```
8  eg=1.1*e
9  mue=0.48//m^2/V.s
10  muh=0.013//m^2/V.s
11  T=300//K
12  ni=2*(2*%pi*m*k*T/(h^(2)))^(1.5)
13  ni=ni*%e^(-eg/(2*k*T))
14
15  sig=ni*e*(mue+muh)
16  printf("\nThe carrier concentration of an intrinsic semiconductor is = %.2 f*10^16 per m^3\n the electrical conductiivity od Si is %.3 f*10^-3 per Ohm-m", ni*10^-16, sig*10^3)
```

Scilab code Exa 10.11 Fermi energy of Silicon

```
1 // Example 10.11, page no-275
2 clear
3 clc
4 e=1.6*10^-19//C
5 eg=1.12
6 me=0.12
7 mh=0.28
8 T=300
9 k=1.38*10^-23
10
11 ef=(eg/2)+(3*k*T/4)*log(mh/me)
12 printf("The Fermi energy of Si at 300 K is %.3 f eV", ef)
```

Scilab code Exa 10.12 effect of temperature on Fermi level

Scilab code Exa 10.13 Conductivity of Ge

```
1 // Example 10.13, page no-276
2 clear
3 clc
4
5 e=1.6*10^-19//C
6 ni=2.4*10^19 //m^-3
7 mue=0.39//m^2/V-s
8 muh=0.19//m^2/V-s
9 sig=ni*e*(mue+muh)
10 printf("The conductivity of Ge at 300 K is %.2f per Ohm-m", sig)
```

Scilab code Exa 10.14 Fermi Energy level

```
1 // Example 10.14, page no-277
2 clear
3 clc
4
5 e=1.6*10^-19//C
6 T1=300//K
7 T2=330//K
```

```
8 eg=0.3
9 eg2=eg*T2/T1
10 printf("E_c-E_f330=%.2 f eV\n\nAt 330 K, the Fermi energy level lies %.2 f eV, bellow the conduction band.",eg2,eg2)
```

Scilab code Exa 10.15 Conductivity of Ge

```
1 // Example 10.15, page no-277
2 clear
3 clc
4 e=1.6*10^-19 //C
5 eg=0.72*e//eV
6 t1=293//K
7 t2=313//K
8 k=1.38*10^-23
9 sig1=2
10 n=(t2/t1)*%e^((eg/(2*k))*((1/t1)-(1/t2)))
11 sig2=sig1*n
12 printf("The conductivity of Ge at 40 C is %.3 f per Ohm-m", sig2)
```

Scilab code Exa 10.16 Intrinsic concentration of Si

```
1 // Example 10.16, page no-278
2 clear
3 clc
4 e=1.6*10^-19//C
5 m=9.1*10^-31//kg
6 mm=0.31*m//kg
7 h=6.626*10^-34
8 k=1.38*10^-23
9 eg=1.1*e
```

```
10 T=300//K
11 ni=2*(2*%pi*mm*k*T/(h^(2)))^(1.5)
12 ni=ni*%e^(-eg/(2*k*T))
13 printf("The intrinsic concentration of Si at %d K is %.4 f * 10^15 electrons per m^3",T,ni*10^-15)
```

Scilab code Exa 10.17 Drift Velocity

```
1 // Example 10.17, page no-279
2 clear
3 clc
4 hc=0.55*10^-10//m^3//A-s
5 cc=5.9*10^7//per Ohm-m
6 T=300//K
7 dm=hc*cc
8 printf("The drift mobility is given by mu_d = %.1 f * 10^-3 m^2/V-s", dm*10^3)
```

Scilab code Exa 10.18 average no of electron per Cu atom

```
1 // Example 10.18, page no-279
2 clear
3 clc
4
5 sig=5.9*10^7//per Ohm-m
6 e=1.6*10^-19//C
7 mu=3.2*10^-3//m^2/V-s
8 d=8900//density
9 avg=6.022*10^23
10 ni=sig/(e*mu)
11 awt=63.5
12 n=avg*d*1000/awt
13 k=ni/n
```

```
14 printf("Concentration of free electron in pure Cu is %.2f*10^28\nThe average number of electrons contributed per Cu atom is %.2f i.e. %.0f",n *10^-28,k,k)
```

Scilab code Exa 10.19 Mobility of Ge

```
1 // \text{Example } 10.19, \text{ page no} -280
2 clear
3 clc
4 i=5*10^{-3}/A
5 v = 1.35 / v
6 1 = 0.01 / m
7 b=5*10^-3
8 t=10^{-3}/m
9 a=5*10^-6/m^2
10 \text{ vy} = 20 * 10^{-3}
11 H=0.45 / Wb/m^2
12
13 rho=v*a/(1*i)
14 \text{ Ey=vy/t}
15 j=i/a
16 k=Ey/(H*j)
17 Rh = 3 * \%pi * k / 8
18 mu=Rh/rho
19 printf ("The mobility of the Ge sample is %.2 f m^2/V-
       s", mu)
```

Scilab code Exa 10.20 Hall Potential Difference

```
1 // Example 10.20, page no-282
2 clear
3 clc
```

```
4 I=200//A
5 H=1.5//Wb/m^2
6 n=8.4*10^28//electronsper m^3
7 d=1.0*10^-3 //m
8 e=1.6*10^-19//C
9 v=I*H/(n*d*e)
10 printf("The Hall potential difference appearance between the ship is %.0 f v",v*10^6)
```

Scilab code Exa 10.21 Mobility of Si

```
1 // Example 10.21, page no-283
2 clear
3 clc
4 rh=3.66*10^-4//m^3/C
5 rho=8.93*10^-3//Ohm-m
6 e=1.6*10^-19//C
7 ni=1/(rh*e)
8 muh=rh/rho
9 printf("the carrier concentration of Si doped specimen is %.3 f *10^22 m^-3\n The mobility of Si doped specimen is %.5 f m^2/V-s",ni*10^-22,muh)
```

Scilab code Exa 10.22 Electron concentration and Mobility

```
1 // Example 10.22, page no-283
2 clear
3 clc
4 Rh=3.66*10^-11//m^2//A-s
5 sig=112*10^7//ohm-m
6 e=1.6*10^-19 //C
7 n=3*%pi/(8*Rh*e)
8 mu=sig/(n*e)
```

```
9 printf("\nThe concentration of electrons is \%.0 \, f *10^29 m^-3\nthe electron mobility at room temperature = \%.3 \, f m^2/V-s",n*10^-29,mu)
```

Scilab code Exa 10.23 Hall voltage

```
1 // Example 10.23, page no-284
2 clear
3 clc
4 I=50//A
5 B=1.5//T
6 t=0.5*10^-2
7 e=1.6*10^-19//C
8 d=2*10^-2
9 N=8.4*10^28//m^-3
10 v=B*I/(N*e*d)
11 printf("The Hall voltage is %.2f *10^-7 V",v*10^7)
```

Scilab code Exa 10.24 Relaxation time

```
1 // Example 10.24, page no-284
2 clear
3 clc
4 rho=1.54*10^-8//Ohm-m
5 ni=5.8*10^28//per m^3
6 m=9.1*10^-31//kg
7 e=1.6*10^-19//C
8 tau=m/(rho*ni*(e^2))
9 printf("The relaxation time of electrons in metal is %.2f*10^-14 s",tau*10^14)
```

Scilab code Exa 10.25 Electron mobility in Silver

```
1 // Example 10.25, page no-285
2 clear
3 clc
4 sig=6.22*10^7//per ohm-m
5 n=5.9*10^28//m^3
6 e=1.6*10^-19//C
7 mu=sig/(n*e)
8 printf("The mobility of electrons in Si is %.2f
    *10^-3 m^2/V-s", mu*10^3)
```

Scilab code Exa 10.26 Electron mobility and electric field

```
1 // Example 10.26, page no-285
2 clear
3 clc
4 rho=0.1//Ohm-m
5 ni=10^20//per m^3
6 vd=1//m/s
7 e=1.6*10^-19//C
8 mu=1/(rho*ni*e)
9 E=vd/mu
10 printf("\nThe mobility of the electrons in material is %.3 f m^2/V-s\nThe electric field is %.1 f V/m", mu,E)
```

Scilab code Exa 10.27 Electron mobility

```
1 // Example 10.27, page no-286
2 clear
3 clc
4 sig=6.22*10^7//per Ohm-m
```

```
5  n=5.9*10^28
6  e=1.6*10^-19
7  mu=sig/(n*e)
8  printf("The mobility of electrons in silver is %.2 f *10^-3 \text{ m}^2/\text{V-s}", mu*10^3)
```

Scilab code Exa 10.28 Electron mobility and electric field

```
1 // Example 10.28, page no-286
2 clear
3 clc
4 rho=0.1//Ohm-m
5 ni=10^20//per m^3
6 vd=1//m/s
7 e=1.6*10^-19//C
8 mu=1/(rho*ni*e)
9 E=vd/mu
10 printf("\nThe mobility of the electrons in material is %.3 f m^2/V-s\nThe electric field is %.1 f V/m", mu,E)
```

Scilab code Exa 10.29 Electron mobility and conductivity

```
1 // Example 10.29, page no-287
2 clear
3 clc
4
5 avg=6.023*10^23
6 m=9.1*10^-31//kg
7 e=1.6*10^-19//C
8 d=8.92*10^3 //kg/m^3
9 rho=1.73*10^-8//Ohm-m
10 z=63.5
```

Scilab code Exa 10.30 Drift Velocity

```
1 // Example 10.30, page no-288
2 clear
3 clc
4 rho=1.54*10^-8//ohm-m
5 E=100//V/m
6 ni=5.8*10^28//m^3
7 e=1.6*10^-19//C
8 mu=1/(rho*ni*e)
9 vd=mu*E
10 printf("The mobility of electrons in silver is %.4f
     *10^-3 m^2/V-s\nThe drift velocity id %.5 f m/s",
     mu*10^3,vd)
```

Scilab code Exa 10.31 Relaxation time

```
1 // Example 10.31, page no-288
2 clear
3 clc
4 rho=1.43*10^-8//Ohm-m
5 ni=6.5*10^28//per m^3
6 e=1.6*10^-19//C
```

```
7 m=9.1*10^-31//Kg
8 tau=m/(rho*ni*e^2)
9 printf("The relaxation time for electrons in the metal is %.2 f *10^-14 s",tau*10^14)
```

Scilab code Exa 10.32 Electron mobility in Al

```
1 // Example 10.32, page no-289
2 clear
3 clc
5 R = 60
6 rho = 2.7*10^-8/Ohm - m
7 i = 15 / /A.
8 1=5/m
9 m=3
10 e=1.6*10^-19/C
11 d=2.7*10^3/kg/m^3
12 awt=26.98
13 avg=6.023*10^23
14 \quad n=m*avg*1000*d/awt
15 printf("Free electron concentration is %.3f * 10^29"
      ,n*10^-29)
16 \text{ mu=1/(rho*n*e)}
17 printf("\nThe mobility of electron in aluminium is \%
      .4 f*10^-3 m^2/v-s, mu*10^3)
18 \text{ vd}=\text{mu}*\text{i}*\text{R}*\text{10}^-\text{-3/1}
19 printf("\nThe drift velocity of the electron in Al
      is \%.1 f*10^--4 m/s", vd*10^4)
```

Scilab code Exa 10.33 drift and thermal velocity

```
1 // \text{Example } 10.33, \text{ page no} -290
```

```
2 clear
3 clc
4 R=0.02/Ohm-m
5 i = 15 / A
6 mu=4.3*10^-3/m^2/V-s
7 1 = 2 / /m
8 k=1.38*10^-23
9 m=9.1*10^-31/kg
10 T = 300 / K
11 \quad v = i * R
12 E=v/1
13 \text{ vd=E*mu}
14 vth = sqrt(3*k*T/m)
15 printf("\nThe thermal velocity of the free electrons
       in copper is %.3 f mm/s\nThe drift velocity of
      electrons in copper is \%.3 \text{ f mm/s}", vth*10^-5, vd
      *10^3)
```

Mechanical Properties

Scilab code Exa 11.1 Stress produced in an Al

```
1 // Example 11.1, page no-332
2 clear
3 clc
4
5 ld=2000//kg
6 g=9.8//m/s^2
7 r=0.005
8 force=ld*g
9 stress= force/(%pi*r^2)
10 printf("The stress produce in an aluminium alloy is %.1 f MPa", stress*10^-6)
```

Scilab code Exa 11.2 perentage elongation and reduction

```
1 // Example 11.2, page no-332
2 clear
3 clc
4 lf=53.75*10^-3
```

```
5 10=50*10^-3
6 df=9.4*10^-3
7 d0=8.8*10^-3
8 pl=(lf-10)*100/10
9 pa=((%pi*df^2)-(%pi*d0^2))*100/(%pi*df^2)
10 printf("\nThe %% elongation is %.1f%% and \nthe %% reduction in area is %.3f%%",pl,pa)
```

Scilab code Exa 11.3 Brinell Hardness Number

```
1 // Example 11.3, page no-332
2 clear
3 clc
4 ts=937//MPa
5 bhn=ts/3.45
6 printf("The Brinell Hardness Number is %.2f",bhn)
```

Scilab code Exa 11.4 Tensile strength and fatigue limit of Steel plate

 $\mbox{printf("\nThe Fatigue limit of steel plate is \%.4f MPa",fl)}$

Thermal Properties

Scilab code Exa 12.1 Change in length due to heating

```
1 // Example 12.1, page no-350
2 clear
3 clc
4
5 alfe=8.8*10^-6//per k
6 lo=0.1//m
7 delT=973//K
8 delL=alfe*lo*delT
9 printf("The change in length produced by heating is %.3 f mm", delL*10^3)
```

Scilab code Exa 12.2 Change in length due to heating

```
1 // Example 12.2, page no-350
2 clear
3 clc
4
5 alfe=5.3*10^-6//per k
```

```
6 lo=0.1//m
7 delT=973//K
8 delL=alfe*lo*delT
9 printf("The change in length produced by heating is
%.3 f mm", delL*10^3)
```

Scilab code Exa 12.3 Steady state heat Transfer

```
1 // Example 12.3, page no-351
2 clear
3 clc
4 k=371//J/msk
5 delT=50//in degrees
6 delx=10*10^-3
7 ht=k*delT/delx
8 printf("The steady state heat transfer of 10 mm copper sheet is %.3 f *10^6 J.m^-2.s^-1",ht*10^-6)
```

Scilab code Exa 12.4 Compression Stress due to Heating

```
1 // Example 12.4, page no-351
2 clear
3 clc
4 alfe=8.8*10^-6//per K
5 t1=1300//K
6 t2=327//K
7 delT=t1-t2
8 E=370 //GPa
9 ep=alfe*delT
10 sig=ep*E
11 printf("\nThe unconstrained thermal expansion produced by the heating is %.4f *10^-3", ep*10^3)
```

12 printf("\nthe compression stress produced by heating is %.3 f GPa", sig)

Scilab code Exa 12.5 Heat flux transmitted

```
1 // Example 12.5, page no-352
2 clear
3 clc
4
5 K=120//W/m.K
6 t2=423
7 t1=323
8 delT=t2-t1
9 delx=7.5*10^-3//m
10 A=0.5//m^2
11 Q=K*A*(delT/delx)
12 hph=Q*3600
13 printf("The heat flux transmitted through a sheet per hour is %.2 f *10^9 J.h^-1",hph*10^-9)
```

Scilab code Exa 12.6 Youngs Modulus

```
1 // Example 12.6, page no-353
2 clear
3 clc
4
5 alfe=17*10^-6///per K
6 t2=293 //K
7 t1=233 //K
8 delT=t2-t1
9 st=119//MPa
10 k=alfe*delT
```

Scilab code Exa 12.7 temperature Change

```
1 // Example 12.7, page no-353
2 clear
3 clc
4
5 lo=11.6 //m
6 delx=5.4*10^-3//m
7 alfL=12*10^-6//per K
8 delT=delx/(lo*alfL)
9 printf("The maximum temperature cange can withstand without any thermal stress is %.2 f K",delT)
```

Scilab code Exa 12.8 compressive Sress

```
1 // Example 12.7, page no-354
2 clear
3 clc
4
5 lo=0.35//m
6 alfe=23.6*10^-6///per K
7 t2=358 //K
8 t1=288 //K
9 delT=t2-t1
10 ym=69//GPa
11 k=alfe*delT
```

Scilab code Exa 12.9 limit to compression stress

```
1 // Example 12.9, page no-355
2 clear
3 clc
4 alfe=20*10^-6//per K
5 t1=293//K
6 sig=172///MPa
7 E=100 //GPa
8 delT=(sig*10^6)/(E*alfe*10^9)
9 printf("\nTf-Ti=%.0f",delT)
10 printf("\n\nthe maximum temperature at which the rod may be heated without\nexceeding a compresssive stress of %.0f MPa is %.0f K",sig,delT+t1)
```

Scilab code Exa 12.10 Heat energy Requirement

```
1 // Example 12.10, page no-356
2 clear
3 clc
4 h_ir=444//J.kg^-1.K^-1
5 h_gr=711//J.kg^-1.K^-1
6 h_pl=1880//J.kg^-1.K^-1
7 t2=373//K
8 t1=300//K
9 delT=t2-t1
10 W=2 //Kg
```

```
11
12 //(a) For Iron
13 q=W*h_ir*delT
14
15 //(b) for Graphite
16 q1=W*h_gr*delT
17
18 //(b) for polypropylene
19 q2=W*h_pl*delT
20
21 printf("The heat energy required to raise temperature %.0 f K from its temperature of \niron , graphite and polypropylene is %.0 f,%.0 f,%.0 f J respectively", delT,q,q1,q2)
```

Luminescence

Scilab code Exa 14.1 Penetration depth of electron

```
1 // Example 14.1, page no-385
2 clear
3 clc
4 eb=10000//eV
5 k=1.2*10^-4
6 b=0.151
7 e=1.6*10^-19
8 rc=k*(eb*e)^b
9 printf("The penetration depth of the electron is %.4 f m",rc*10^6)
```

Scilab code Exa 14.2 Luminescent lifetime

```
6 kT=0.025//eV
7 q=10^8
8 r=q*%e^(-(ed/kT))
9 printf("The escape rate per unit time = %2.1f per sec\n Therefore, the luminescent lifetime is nearly %.0f sec",r,r)
```

Display Devices

Scilab code Exa 15.1 wavelength of light

```
1 // Example 15.1, page no-406
2 clear
3 clc
4
5 e=1.6*10^-19//C
6 eg=1.8//eV
7 E=e*eg
8 h=6.626*10^-34
9 c=3*10^8//m/s
10 lam=h*c/E
11 printf("The wavelenth of light emitted from given LED is %.4 f m",lam*10^6)
```

Scilab code Exa 15.2 Band Gap of GaAsP

Photoconductivity

Scilab code Exa 16.1 Pairs generated per second

```
1 // Example 16.1, page no-416
2 clear
3 clc
4
5 lam=0.4*10^-6//m
6 A=4*10^-6//m^2
7 in=200//W/m^2
8 h=6.626*10^-34
9 c=3*10^8//m/s
10 N=in*A*lam/(h*c)
11 printf("The number of pairs generated per second is %.3 f * 10^14", N*10^-14)
```

Scilab code Exa 16.2 Wavelength of emitted radiation

```
4
5 e=1.6*10^-19//C
6 eg=1.43 //eV
7 E=e*eg
8 h=6.626*10^-34
9 c=3*10^8//m/s
10 lam=h*c/E
11 printf("The wavelength of emitted radiation is %.2f m",lam*10^6)
```

Dielectric Materials

Scilab code Exa 18.1 Dilectric constant of KCl

```
1 // Example 18.1, page no-460
2 clear
3 clc
4 \text{ atom}=4
5 \text{ kci} = 0.629 * 10^{-9} / \text{m}
6 alfk=1.264*10^-40/m^2
7 alfCl=3.408*10^-40/m^2
8 \text{ eps0=8.854*10}^-12
9 pol=alfk+alfCl
10 N=atom/kci^3
11 epsr=(N*pol/eps0)+1
12 printf("\nThe electronic polarisability for KCL = \%
      .3 f *10^-40 F m^2 n, pol*10^40)
13 printf("\nThe no of Dipoles per m<sup>3</sup> = \%.3 \, f * 10^2 8
      atoms m^-3\n", N/10^28)
14 printf("\nThe dielectric constant of KCL is \%.3\,\mathrm{f}",
      epsr)
```

Scilab code Exa 18.2 Electronic polarisability of Se atom

```
1 // Example 18.2, page no-460
2 clear
3 clc
4 r=0.12*10^-9//m
5 eps=8.854*10^-12
6 alf=4*%pi*eps*r^3
7 printf("The electronic polarisability of an isolated Se is %.4 f * 10^-40 F m^2", alf*10^40)
```

Scilab code Exa 18.3 ratio between electronic and ionic polarability

```
1 // Example 18.3, page no-461
2 clear
3 clc
4
5 n=2.69
6 er=4.94
7 alfi_by_alfe=(((n+2)*(er-1))/((er+2)*(n-1)))-1
8 printf("The ratio of the electronic to ionic polariability is %.4f",1/alfi_by_alfe)
```

Scilab code Exa 18.4 Dielectric constant of Ne gas

```
1 // Example 18.4, page no-462
2 clear
3 clc
4 N= 2.7*10^25//atoms m^-3
5 alfe=0.35*10^-40 //F m^2
6 eps=8.854*10^-12
7 epsr=(1+(2*N*alfe)/(3*eps))/(1-(N*alfe)/(3*eps))
8 printf("The dielectric constant of Ne gas is %.8f", epsr)
```

Scilab code Exa 18.5 Charge on Capacitor

Scilab code Exa 18.6 Dielectric constant of Ar gas

```
1 // Example 18.6, page no-463
2 clear
3 clc
4 N=2.7*10^25//m^-3
5 d=0.384*10^-9//m
6 eps=8.854*10^-12
7 alfe=4*%pi*eps*d^3
8 epsr=(1+(2*N*alfe)/(3*eps))/(1-(N*alfe)/(3*eps))
9 printf("The dielectric constant of Ar is %.8f", epsr
)
```

Scilab code Exa 18.7 Energy stored in capacitor and polarising the capacitor

```
1 // Example 18.7, page no-464
2 clear
3 clc
4 c=2*10^-6//F
5 epsr=80
6 v=1000 //v
7 E1=(c*v^2)/2
8 c0=c/epsr
9 E2=(c0*v^2)/2
10 E=E1-E2
11 printf("\nThe Energy stored in capacitor =\mathcal{%}.0 f J",E1
)
12 printf("\nThe energy stored in polarising the capacitor =\mathcal{%}.4 f J",E)
```

Scilab code Exa 18.8 ratio of internal field to the applied field

```
1 // Example 18.8, page no-464
2 clear
3 clc
4 N=5*10^28 //m^-3
5 alfe=2*10^-40 //F m^2
6 eps=8.854*10^-12
7 P=N*alfe
8 E_ratio=1/(1-(P/(3*eps)))
9 printf("The ratio of the internal field to the applied field = %.4f", E_ratio)
```

Scilab code Exa 18.9 Relative permittivity of NaCl

```
4 E=1000//V.m^-1
5 P=4.3*10^-8 //C.m^-2
6 eps=8.854*10^-12 //F.m^-1
7 epsr=1+P/(eps*E)
8 printf("The relative permittivity of NaCl is %.2f", epsr)
```

Scilab code Exa 18.10 Polarisability of Ar

```
1 // Example 18.10, page no-466
2 clear
3 clc
4
5 epsr=1.0024
6 N=2.7*10^25 //atoms.m^-3
7 eps=8.854*10^-12//F.m^-1
8 alfe=eps*(epsr-1)/N
9 printf("The polarisability of argon atom is %.1f * 10^-40 F m^2",alfe*10^40)
```

Scilab code Exa 18.11 Polarisability of He atom

```
1 // Example 18.11, page no-466
2 clear
3 clc
4
5 epsr=1.0000684
6 N=2.7*10^25 //atoms.m^-3
7 eps=8.854*10^-12//F.m^-1
8 alfe=eps*(epsr-1)/N
9 printf("The electronic polarisability of He atom at NTP is %.3 f * 10^-41 F m^2", alfe*10^41)
```

Scilab code Exa 18.12 Polarisability of Ar

```
1  // Example 18.12, page no-467
2  clear
3  clc
4  epsr=12
5  N=5*10^28 //atoms.m^-3
6  eps=8.854*10^-12//F.m^-1
7  alfe=eps*(epsr-1)/N
8  printf("The electronic polarisability of given element is %.3 f * 10^-39 F m^2", alfe*10^39)
```

Scilab code Exa 18.13 energy stored in dielectric

```
1 // Example 18.13, page no-467
2 clear
3 clc
4
5 c=2*10^-6//F
6 v=1000//V
7 epsr=100
8 E=(c*v^2)/2
9 c0=c/epsr
10 e2=(c0*v^2)/2
11 E1=E-e2
12 printf("The energy stored in dielectric is %.2f J", E1)
```

Scilab code Exa 18.14 Electronic polarisability of Sulphur

```
1 // Example 18.14, page no-468
2 clear
3 clc
4 epsr=4.94
5 eps=8.854*10^-12
6 d=2.07*10^3//kg.m^-3
7 w=32.07
8 N=6.023*10^23*10^3*d/w
9 alfe=3*eps*(epsr-1)/(N*(epsr+2))
10 printf("The electronic polarisability of sulphur is %f * 10^-40 F.m^2", alfe*10^40)
```

Scilab code Exa 18.15 energy stored in capacitor

```
1 // \text{Example } 18.15, \text{ page no} -469
2 clear
3 clc
4 A=6.45*10^-4/m^2
5 d=2*10^-3/m
6 \text{ epsr=} 6
7 v = 10 / v
8 eps=8.85*10^-12/F/m
9 c=eps*epsr*A/d
10 printf ("Capaccitance of Capacitor = \%.3 \,\mathrm{f} pF", c
      *10^12)
11 q=c*v
12 E=v/d
13 p=eps*(epsr-1)*E
14 printf("\ncharge stored on the plate is \%.3 \text{ f }*10^-11
       C", q*10^11)
15 printf("\nPolarisation produce in the plate is %.3 f
      *10^{-7} \text{ Cm}^{-2}",p*10^7)
```

Scilab code Exa 18.16 Polarisation produced in NaCl

```
1 // Example 18.16, page no-470
2 clear
3 clc
4 E=600*10^3 //V/m
5 eps=8.854*10^-12 //F/m
6 epsr=6
7 p=eps*(epsr-1)*E
8 printf("Polarisation produced in NaCl is %.3f *10^-5 C.m^-2",p*10^5)
```

Scilab code Exa 18.17 Relative permitivity of NaCl

```
1 // Example 18.17, page no-470
2 clear
3 clc
4 E=1000 //V/m
5 p=4.3*10^-8
6 eps=8.854*10^-12
7 epsr=1+p/(eps*E)
8 printf("Relative permitivity of NaCl is %.2f",epsr)
```

Scilab code Exa 18.18 Electric field strength

```
1 // Example 18.18, page no-471
2 clear
3 clc
4 A=1000*10^-6 //m^2
5 d=5*10^-3
6 epsr=4
7 Q=3*10^-10
8 eps=8.854*10^-12
```

Scilab code Exa 18.19 Polarisability of He atom

```
1 // Example 18.19, page no-472
2 clear
3 clc
4 epsr=1.0000684
5 N=2.7*10^25//m^-3
6 eps=8.854*10^-12
7 alfe=eps*(epsr-1)/N
8 printf("The electronic polarisability of He atoms at NTP is %.3 f *10^-41 F.m^2", alfe*10^41)
```

Scilab code Exa 18.20 Electric field strength

```
1 // Example 18.20, page no-472
2 clear
3 clc
4 A=3*10^-3//m^2
5 d=1*10^-3 //m
6 epsr=3.5
7 Q=20*10^-9//C
8 eps=8.854*10^-12 //F.m^-1
9 c=eps*epsr*A/d
10 E=Q/(c*d)
11 printf("The capacitance of capacitor is %.2 f pF\nThe electric field strength is %.2 f*10^3 V/m",c
     *10^12,E*10^-3)
```

Scilab code Exa 18.21 Dilectric Displacement

```
1 // Example 18.21, page no -473
2 clear
3 clc
4 A=7.54*10^-4 //m<sup>2</sup>
5 d=2.45*10^{-3} /m
6 \text{ epsr=} 6
7 v = 10 / V
8 eps=8.854*10^-12/F/m
9 c=eps*epsr*A/d
10 printf("\nThe capacitance of the capacitor is \%.3\,\mathrm{f}
      pF", c*10^12)
11 Q = c * v
12 E=v/d
13 p = eps*(epsr-1)*E
14 D=eps*epsr*E
15 printf("\nCharge stored on capacitor = \%.3 \, f *10^-11
      C\nE=\%.2 f*10^3 V/m\nPolarisation=\%.3 f*10^-7 Cm
      ^-2\ndielectric displacement = \%.3\,\mathrm{f}*10^-7 cm",Q
      *10^11,E*10^-3,p*10^7,D*10^7)
```

Scilab code Exa 18.22 Polarisation produced in NaCl

```
1 // Example 18.22, page no-475
2 clear
3 clc
4 E=500
5 epsr=6
6 eps=8.854*10^-12
7 p=eps*(epsr-1)*E
```

```
8 printf("The polarisation produced in NaCl is \%.3\,\mathrm{f}*10^--8~\mathrm{C.m}^--2",p*10^8)
```

Scilab code Exa 18.23 Polarisation produced in NaCl

```
1 // Example 18.23, page no-475
2 clear
3 clc
4
5 E=500
6 epsr=15
7 eps=8.854*10^-12
8 p=eps*(epsr-1)*E
9 printf("The polarisation produced in NaCl is %.3f * 10^-8 C.m^-2",p*10^8)
```

Scilab code Exa 18.24 Voltage across Capacitor

```
1 // Example 18.24, page no-475
2 clear
3 clc
4 A=650*10^-6 //mm^2
5 d=4 *10^-3//mm
6 epsr=3.5
7 eps=8.854*10^-12
8 q=2*10^-10//C
9 v=q*d/(eps*epsr*A)
10 printf("The voltage across capacitor is %.2f V",v)
```

Scilab code Exa 18.25 Charge on Capacitor

```
1 // Example 18.25, page no-476
2 clear
3 clc
4 A=5*10^-4 //m^2
5 d=1.5*10^-3//m
6 epsr=6
7 v=100
8 eps=8.854*10^-12
9 q=eps*epsr*A*v/d
10 printf("The charge on the capacitor is %.2f *10^-9 C ",q*10^9)
```

Scilab code Exa 18.26 Dilectric Constant

```
1 // Example 18.26, page no-476
2 clear
3 clc
4
5 d=2.08*10^3//kg-m^3
6 wt=32
7 ep=3.28*10^-40
8 eps=8.854*10^-15
9 k=(3*10^28*7*10^-40)/(3*eps)
10 epsr=2.5812/(1-0.7906)
11 printf("The dielectric constant of the given material is %.3 f", epsr)
```

Magnetic Materials

Scilab code Exa 19.1 Relative permiability and magnetic force

```
1 // Example 19.1, page no-541
2 clear
3 clc
4 M=2300//A/m
5 B=0.00314// Wb/m^2
6 mu=4*%pi*10^-7
7 H=(B/mu)-M
8 mur=(M/H)+1
9 printf("The magnetic force H is %.4 f A/m and the relative permeability mu_r is %.5 f",H,mur)
```

Scilab code Exa 19.2 magnetisation and flux density

```
1 // Example 19.2, page no-542
2 clear
3 clc
4 H=10^4 //A/m
5 sus=3.7*10^-3
```

```
6 mu=4*%pi*10^-7
7 M=sus*H
8 B=mu*(M+H)
9 printf("The magnetisation in the material is %.0 f A/
    m and flux density in the material is %.2 f *
    10^-2 Wb.m^-2", M, B*10^2)
```

Scilab code Exa 19.3 Flux density

```
1 // Example 19.3, page no-542
2 clear
3 clc
4 H=10^4 //A/m
5 sus=-0.8*10^-5
6 mu=4*%pi*10^-7
7 M=sus*H
8 B=mu*(M+H)
9 printf("The flux density in the material is %.2 f * 10^-2 Wb.m^-2", B*10^2)
```

Scilab code Exa 19.4 Permiability

```
1 // Example 19.4, page no-543
2 clear
3 clc
4
5 H=1800//A/m
6 fi=3*10^-5//Wb
7 A=0.2*10^-4//m^2
8
9 B=fi/A
10 mu=B/H
```

```
11 printf("\nThe magnetic flux is \%.1 \text{ f Wb/m}^2 \text{ nThe} permeability is \%.3 \text{ f}*10^-4 \text{ H/m}", B, mu*10^4)
```

Scilab code Exa 19.5 Magnetic Moment

```
1 // Example 19.5, page no-544
2 clear
3 clc
4
5 B=0.65 / Wb/m^2
6 r = 8906 / kg/m^3
7 M = 58.7
8 \text{ avg} = 6.023 * 10^2 6
9 mu=4*%pi*10^-7
10 k=9.27*10^-24/A.m^2
11 N=r*avg/M
12 \quad mu_m = B/(N*mu)
13 \quad mu_m = mu_m/k
14
15 printf("The magnetic moment of nickel atom is %.2 f
      Bohr magneton", mu_m)
```

Scilab code Exa 19.6 Avrage magnetisation

```
1 // Example 19.6, page no-545
2 clear
3 clc
4 a=2.5*10^-10//m
5 M=1.8*10^6//A/m
6 e=1.6*10^-19//C
7 n=2/a^3
8 m=9.1*10^-31//kg
9 h=6.625*10^-34
```

```
10 ma=M/n
11 beta1=e*h/(4*%pi*m)
12 printf("The average magnetisation contributed per
        atom = %.3 f Bohr Magneton", ma/beta1)
```

Scilab code Exa 19.7 System Temperature

```
1 // Example 19.7, page no-545
2 clear
3 clc
4
5 mu=9.4*10^-24
6 H=2
7 k=1.38*10^-23
8 T=2*mu*H/(k*log(2))
9 printf("The temperature of the system T is %.1f K",T
)
```

Scilab code Exa 19.8 Saturation Magnetic field of Gd

```
1 // Example 19.8, page no-547
2 clear
3 clc
4 ba=7.1//Bohr Magnetron
5 aw=1.8*10^6 //A/m
6 d=7.8*10^3
7 avg=6.023*10^26
8 M=157.26
9 mu=4*%pi*10^-7
10 k=9.27*10^-24 //Bohr Magnetron
11 N=d*avg/M
12 mm=N*ba*k
13 B=N*mu*k*7.1
```

14 printf("\nThe saturation magnetic field of Gd atom is %f Wb/m^2",B)

Scilab code Exa 19.9 Saturation Magnetisation

```
1 // Example 19.9, page no-547
2 clear
3 clc
4 bet=9.27*10^-24
5 V=0.839*10^-9
6 M=32*bet/V^3
7 printf("The saturation magnetisation is %.3 f *10^5 A /m", M*10^-5)
```

Scilab code Exa 19.10 Saturation Magnetisation and saturation flux density

```
1 // Example 19.10, page no-548
 2 clear
 3 clc
 4
 5 d=8900 / kg/m^3
 6 \text{ wt} = 58.71
 7 \text{ avg} = 6.022 * 10^2 6
 8 \text{ bet} = 9.27*10^-24
9 \text{ mu} = 4 * \% \text{pi} * 10^{-7}
10 \text{ mm} = 0.6 * bet
11 N=d*avg/wt
12 \text{ ms} = \text{mm} * \text{N}
13 \text{ bs=mu*ms}
14 printf("\nThe saturation magnetisation is \%.3 \text{ f} *10^5
         A/m\nThe saturation flux density is %.3 f Wb/m^2"
        ,ms*10^-5,bs)
```

Scilab code Exa 19.11 Saturation Magnetisation of Gadolinium

```
1 // Example 19.11, page no-548
2 clear
3 clc
4 awt=157.25//atomic weight
5 an=64//atomic number
6 d=7860//density
7 k=9.27*10^-24
8 avg=6.023*10^26
9 N=d*8*k*avg/awt
10 printf("The saturation magnetisation of gadolinium is %.2 f*10^6 A/m", N*10^-6)
```

Scilab code Exa 19.12 Magnetic Flux density

```
1 // Example 19.12, page no-549
2 clear
3 clc
4 H=1000 //A/m
5 sus=-0.3*10^-5
6 mu=4*%pi*10^-7
7 M=sus*H
8 B=mu*(M+H)
9 printf("The magnetic flux density inside the material is %.3 f T or Wb.m^-2", B*10^3)
```

Super Conducting Materials

Scilab code Exa 20.2 Critical Field

```
1 // Example 20.1, page no-568
2 clear
3 clc
4 h0=0.0306
5 t1=2.0
6 t2=3.7
7 he=h0*(1-((t1^2)/t2^2))
8 printf("The critical field at %d K is %.5 f T",t1,he)
```

Scilab code Exa 20.3 Critical field through a wire

```
1 // Example 20.3, page no-569
2 clear
3 clc
4
5 t1=4.2
6 t2=7.18
7 h0=6.5*10^4//A/m
```

```
8 he=h0*(1-((t1^2)/t2^2))
9 r=0.5*10^-3
10 I=2*%pi*he*r
11 printf("The critical current through a wire of lead
    is %.2 f A",I)
```

Scilab code Exa 20.4 Critical Temperature for metal

```
1 // Example 20.4, page no-570
2 clear
3 clc
4
5 tc1=4.185
6 m1=199.5
7 m2=203.4
8 tc2=tc1* sqrt(m1/m2)
9 printf("The critical temperature for metal with isotopic mass of %.1 f is %.3 f K",m2,tc2)
```

Polymer Materials

Scilab code Exa 23.1 Sulphur required for final rubber product

Scilab code Exa 23.2 Photon energy to break C C bond

```
1 // Example 23.2, page no-625
2 clear
3 clc
4 E=370*10^3//energy of c-c bond j/mol\
5 lam=3200*10^-10 //m
6 h=6.626*10^-34
7 c=3*10^8//m/s
```

```
8 E1=h*c/lam
9 Ec=E/(6.02*10^23)
10 printf("\nE=%.2f*10^-19 J",E1*10^19)
11 printf("\nThe Energy of c-c Bond = %.1f * 10^-19",Ec *10^19)
12 printf("\n\nThe UV light photon energy is sufficient to break a C-C bond.\nTherefore, the polymer deteriorates under the influence of UV light")
```