Sicurezza dei sistemi e delle reti Introduzione

Damiano Carra

Università degli Studi di Verona Dipartimento di Informatica

Riferimenti

- ☐ Cap. 8 di "Reti di calcolatori e Internet. Un approccio top-down", J. Kurose, K. Ross
- ☐ Dispense su Internet

http://infomsearchdata.wikispaces.com/file/view/myiOS.pdf/300514424/myiOS.pdf

http://www.provincia.foggia.it/upload_delibere/9/2007000002.pdf

- capitoli 1-4 e 20

Domande fondamentali

- 1. Quali risorse (o asset) vogliamo proteggere?
- 2. In che modo tali risorse sono minacciate?
- 3. Cosa bisogna fare per contrastare tali minacce?

3

1- Quali risorse (o asset) vogliamo proteggere?

- □ Hardware
 - Sistemi, componenti, dischi
 - Sicurezza "fisica"
- ☐ Software
 - Sistema Operativo e Applicativi
- □ Dati
 - File, database
- ☐ Rete
 - Collegamenti e apparati

Cosa vuol dire "proteggere"?

- ☐ Garantire le proprietà di
 - Confidenzialità
 - Integrità
 - Disponibilità
- ☐ In aggiunta
 - Autenticità
 - Tracciabilità (Accountability)

5

Confidenzialità

- ☐ Nessun utente deve poter ottenere o dedurre dal sistema informazioni che non è autorizzato a conoscere
- ☐ Riservatezza dei dati
 - Le informazioni confidenziali non devono essere rivelate o rilevabili da utenti non autorizzati
- □ Privacy
 - L'utente controlla o influenza quali informazioni possono essere collezionate e memorizzate

Integrità

- ☐ Impedire l'alterazione diretta o indiretta delle informazioni, sia da parte di utenti e processi non autorizzati, che a seguito di eventi accidentali
 - Se i dati vengono alterati è necessario fornire strumenti per poterlo verificare facilmente
- ☐ Integrità dei dati
 - Le informazioni e i programmi possono essere modificati solo se autorizzati
- ☐ Integrità del sistema
 - Il sistema funziona e non è compromesso

7

Disponibilità

- ☐ Rendere disponibili a ciascun utente abilitato le informazioni alle quali ha diritto di accedere, nei tempi e nei modi previsti
 - in determinate condizioni, in un preciso istante, in un intervallo di tempo
- ☐ Nei sistemi informatici, i requisiti di disponibilità includono prestazioni e robustezza

Autenticità

- ☐ Ciascun utente deve poter verificare l'autenticità delle informazioni
 - messaggi, mittenti, destinatari
- ☐ Si richiede di poter verificare se una informazione è stata manipolata
 - vale anche per informazioni non riservate

9

Tracciabilità

- ☐ Le azioni di un'entità devono essere tracciate in modo univoco in modo tale da supportare la non-ripudiabilità e l'isolamento delle responsabilità
 - Ad es., nessun utente deve poter ripudiare o negare in tempi successivi messaggi da lui spediti o firmati

2- In che modo le risorse sono minacciate?

☐ Le minacce compromettono le proprietà di

- Confidenzialità
- Integrità
- Disponibilità

□ Esempi

	Confidenzialità	Integrità	Disponibilità
HW			Calcolatore rubato
SW	Copia non autorizzata	Eseguibile modificato	Eseguibili cancellati
Dati	Lettura non autorizzata	File modificati	File cancellati
Rete	Lettura messaggi inviati	Messaggi modificati / ritardati / duplicati	Messaggi distrutti Rete fuori uso

11

Minacce e attacchi

Minacce e attacchi

- ☐ Una minaccia è una *possibile* violazione della sicurezza
- ☐ La violazione *effettiva* è chiamata attacco
- ☐ Gli attacchi possono essere
 - Attivi
 - Tentativi di alterare le risorse o modificare il funzionamento dei sistemi
 - Passivi
 - Tentativi di carpire informazioni e utilizzarle senza intaccare le risorse
 - Interni
 - · Iniziati da un'entità interna al sistema
 - Esterni
 - Iniziati da un'entità esterna, tipicamente attraverso la rete

13

Attacchi: esempi

Classi di minacce / attacchi

☐ Disclosure

- Accesso non autorizzato alle informazioni

Deception

- Accettazione di dati falsi

Disruption

- Interruzione o prevenzione di operazioni corrette

■ Usurpation

- Controllo non autorizzato di alcune parti del sistema

15

3- Cosa bisogna fare per contrastare le minacce?

☐ Questa è la domanda più difficile

- La complessità della sicurezza sta proprio qui
- Non esiste una risposta unica
- Le risposte cambiano nel tempo

☐ Sistemi complessi

- Le risorse da proteggere sono sistemi composti da sotto-sistemi
- Sicurezza di un sistema vs sicurezza dei suoi componenti
- Teoria vs pratica
 - Condizioni ideali e prevedibili / reali e imprevedibili

Sfide poste dalla sicurezza

☐ Attacchi potenziali

- Nella progettazione dei sistemi serve considerare i possibili attacchi
- ☐ Soluzioni contro-intuitive
 - Nello sviluppo dei meccanismi di sicurezza, dovuto alla complessita' del sistema e alle possibili minacce
- ☐ Dove usare i meccanismi di sicurezza?
 - Sia a livello fisico che logico (protocollare)
- ☐ La sicurezza dipende non solo algoritmi o protocolli, ma anche dagli utenti
 - informazioni possedute (ad es., password)
 - creazione, distribuzione e protezione di tali informazioni

17

Sfide poste dalla sicurezza (cont'd)

- ☐ Continua battaglia tra amministratori e attaccanti
 - Per l'attaccante è sufficiente sfruttare una singola vulnerabilità, mentre gli amministratori si devono prevederle ed eliminarle tutte
- ☐ La sicurezza non viene percepita come un beneficio
 - Fino a quando non avviene un incidente di sicurezza
- ☐ La sicurezza richiede un controllo continuo delle risorse
- ☐ Meccanismi di sicurezza come elementi aggiuntivi
 - Invece che parte integrante della progettazione
- ☐ La sicurezza è vista come un impedimento / rallentamento del normale funzionamento dei sistemi

Principi fondamentali di progettazione della sicurezza

- ☐ Nonostante anni di ricerca, è difficile progettare sistemi che prevengono completamente le falle nella sicurezza
- ☐ Tuttavia, insiemi di pratiche e regole sono state codificate
 - Analogamente a quanto succede per ingegneria del software
 - Aspetti economici dei meccanismi, fail-safe default, progettazione aperta, tracciabilità delle operazioni, separazione dei privilegi, separazione delle funzionalità, isolamento dei sottosistemi, modularità

19

Principi fondamentali di progettazione della sicurezza

- ☐ Aspetti economici dei meccanismi
 - La progettazione delle misure di sicurezza deve essere il piu' semplice possibile
 - Da implementare e verificare
- ☐ Fail-safe default
 - Comportamenti non specificati devono prevedere un default sicuro
 - Ad es. permessi di accesso
- Progettazione aperta
 - Preferibile rispetto a codice segreto
- ☐ Tracciabilità delle operazioni
 - Qualsiasi operazione può essere ricostruita e il sistema ripristinat

Principi fondamentali di progettazione della sicurezza

☐ Separazione dei privilegi

- Differenziazione degli accessi
 - Alle risorse create da ciascun utente (file)
 - Alle risorse critiche

☐ Separazione delle funzionalità

- Distinzione dei ruoli nei diversi punti del sistema fisico e logico

☐ Isolamento dei sottosistemi

- Un sistema compromesso non dovrebbe compromettere gli altri

■ Modularità

- Meccanismi di sicurezza indipendenti, sostituibili, riusabili

21

Politiche di sicurezza

- ☐ Una politica di sicurezza è un'indicazione di cosa è e cosa non è permesso
- ☐ Le regole possono riguardare:
 - I dati
 - Protezione
 - Le operazioni possibili
 - Controllo
 - Gli utenti singoli e i profili
 - Controllo

Politiche e meccanismi

- ☐ Un meccanismo di sicurezza è un metodo (strumento/ procedura) per garantire una politica di sicurezza
- □ Data una politica, che distingue le azioni "sicure" da quelle "non sicure", i meccanismi di sicurezza devono prevenire, scoprire o recuperare da un attacco
- ☐ Prevenzione: il meccanismo deve rendere impossibile l'attacco
 - Spesso sono pesanti ed interferiscono con il sistema al punto da renderlo scomodo da usare
 - Esempio: richiesta di password come modo di autenticazione

23

Politiche e meccanismi

- ☐ Scoperta: il meccanismo è in grado di scoprire che un attacco è in corso
 - E' utile quando non è possibile prevenire l'attacco, ma può servire anche a valutare le misure preventive
 - Si usa solitamente un monitoraggio delle risorse del sistema, cercando eventuali tracce di attacchi
- ☐ Recupero da un attacco: si può fare in due modi
 - Fermare l'attacco e recuperare/ricostruire la situazione pre-attacco, ad esempio attraverso copie di backup
 - Continuare a far funzionare il sistema correttamente durante l'attacco (fault-tolerant)

Meccanismi e livelli

☐ In quale livello del computer conviene inserire un determinato meccanismo?

☐ Livelli bassi

 Meccanismi generali, semplici, grossolani, ma dimostrabili corretti

☐ Livelli alti

 Meccanismi ad hoc per gli utenti, sofisticati, difficili da dimostrare corretti

applicazioni
servizi
SO
kernel del SO
hardware

25

Meccanismi di sicurezza - Esempi

- ☐ Meccanismi specifici Legati ad uno specifico livello OSI
 - Crittografia
 - Trasformazione dei dati in un formato non intellegibile
 - Firma digitale e Integrità dei dati
 - Usata per provare la sorgente e l'integrità di dati o messaggi
 - Autenticazione e Controllo degli accessi
 - Gestione dei diritti degli utenti rispetto le risorse
- Meccanismi generali
 - Rilevamento degli eventi
 - Gestione degli Audit
 - Recovery

Come ottenere un sistema sicuro

☐ Fasi

- Specifica: descrizione del funzionamento desiderato del sistema
- Progetto: traduzione delle specifiche in componenti che le implementeranno
- Implementazione: creazione del sistema che soddisfa le specifiche
- ☐ E' indispensabile verificare continuamente la correttezza dell'implementazione

11.51.00

27

Considerazioni implementative

Analisi costi-benefici della sicurezza
Analisi dei rischi (valutare le probabilità di subire attacchi e i danni che possono causare)
Aspetti legali (ad esempio uso della crittografia negli USA) e morali
Problemi organizzativi (ad esempio la sicurezza non "produce" nuova ricchezza, riduce solo le perdite)
Aspetti comportamentali delle persone coinvolte

Cosa vedremo nelle prossime lezioni

- ☐ Panoramica di alcuni dei principali *meccanismi*
 - Crittografia, firma digitale, controllo degli accessi, autenticazione, ...
- ☐ Qualche esempio di possibile *attacco*
 - Oggetto dell'esercitazione di laboratorio
- ☐ Cosa NON vedremo
 - Come i meccanismi possono essere usati per creare una politica di sicurezza

29