# Hyperparameter Tuning with Bayesian Optimization: mlr3mbo



https://mlr-org.com/ https://github.com/mlr-org



#### Structure

- 1. mlr3 basics
- 2. Bayesian Optimization
- 3. mlr3tuning
- 4. mlr3mbo + mlr3tuning (exercise!)

#### mlr3verse



# Intro

• R gives you access to many machine learning methods

- R gives you access to many machine learning methods
- · ...but without a unified interface

- R gives you access to many machine learning methods
- · ...but without a unified interface
- $\boldsymbol{\cdot}$  things like performance evaluation are cumbersome

- R gives you access to many machine learning methods
- · ...but without a unified interface
- things like performance evaluation are cumbersome

#### Example:

```
# Specify what we want to model in a formula: target ~ features
svm_model = e1071::svm(Species ~ ., data = iris)
```

- · R gives you access to many machine learning methods
- · ...but without a unified interface
- things like performance evaluation are cumbersome

# Specify what we want to model in a formula: target ~ features

#### Example:

#### library("mlr3")

#### Ingredients:

- · Data / Task
- · Learning Algorithms
- Performance Evaluation
- Performance Comparison

R6

mlr3 uses the R6 class system. Some things may seem unusual if you see them for the first time.

· Objects are created using <Class>\$new().

```
task = TaskClassif$new("iris", iris, "Species")
```

mlr3 uses the R6 class system. Some things may seem unusual if you see them for the first time.

Objects are created using <Class>\$new().

```
task = TaskClassif$new("iris", iris, "Species")
```

· Objects have fields that contain information about the object.

```
task$nrow
## [1] 150
```

mlr3 uses the R6 class system. Some things may seem unusual if you see them for the first time.

· Objects are created using <Class>\$new().

```
task = TaskClassif$new("iris", iris, "Species")
```

· Objects have fields that contain information about the object.

```
task$nrow
## [1] 150
```

· Objects have methods that are called like functions:

```
task$filter(rows = 1:10)
```

mlr3 uses the R6 class system. Some things may seem unusual if you see them for the first time.

· Objects are created using <Class>\$new().

```
task = TaskClassif$new("iris", iris, "Species")
```

· Objects have fields that contain information about the object.

```
task$nrow
## [1] 150
```

· Objects have methods that are called like functions:

```
task$filter(rows = 1:10)
```

· Methods may change ("mutate") the object (reference semantics)!

```
task$nrow
## [1] 10
```

### **R6 and Active Bindings**

Some fields of R6-objects may be "Active Bindings". Internally they are realized as functions that are called whenever the value is set or retrieved.

· Active bindings for read-only fields

```
task$nrow = 11
## Error: Field/Binding is read-only
```

### **R6 and Active Bindings**

Some fields of R6-objects may be "Active Bindings". Internally they are realized as functions that are called whenever the value is set or retrieved

· Active bindings for read-only fields

```
task$nrow = 11
## Error: Field/Binding is read-only
```

Active bindings for argument checking

```
task$properties = NULL
## Error in assert_set(rhs, .var.name = "properties"): Assertion on
'properties' failed: Must be of type 'character', not 'NULL'.
task$properties = c("property1", "property2") # works
```

## mlr3 Philosophy

- · Overcome limitations of S3 with the help of R6
  - · Truly object-oriented: data and methods live in the same object
  - · Make use of inheritance
  - · Reference semantics

### mlr3 Philosophy

- · Overcome limitations of S3 with the help of R6
  - Truly object-oriented: data and methods live in the same object
  - · Make use of inheritance
  - · Reference semantics
- · Embrace data.table, both for arguments and internally
  - · Fast operations for tabular data
  - List columns to arrange complex objects in tabular structure

### mlr3 Philosophy

- · Overcome limitations of S3 with the help of R6
  - · Truly object-oriented: data and methods live in the same object
  - · Make use of inheritance
  - · Reference semantics
- · Embrace data.table, both for arguments and internally
  - · Fast operations for tabular data
  - · List columns to arrange complex objects in tabular structure
- Be light on dependencies:
  - · R6, data.table, lgr, uuid, mlbench, digest
  - Plus some of our own packages (backports, checkmate, ...)

· Tabular data



- · Tabular data
- · Features -



- · Tabular data
- Features
- Target / outcome to predict ~



- · Tabular data
- Features
- Target / outcome to predict
  - · discrete for classification
  - continuous for regression



- · Tabular data
- Features
- Target / outcome to predict ~
  - · discrete for classification
  - · continuous for regression
  - ⇒ target determines the machine learning "Task"



- · Tabular data
- Features
- Target / outcome to predict
  - · discrete for classification
  - · continuous for regression
  - ⇒ target determines the machine learning "Task"

```
th Petal.Width Species
```

```
print(iris) # included in R

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## ...
```

- · Tabular data
- Features
- Target / outcome to predict ~
  - · discrete for classification
  - · continuous for regression
  - ⇒ target determines the machine learning "Task"

```
print(iris) # included in R

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2
## ## ...
```

- · Tabular data
- Features
- Target / outcome to predict ~
  - · discrete for classification
  - continuous for regression
  - ⇒ target determines the machine learning "Task"

```
print(iris) # included in R

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## ...
```

```
task = TaskClassif$new("iris", iris, "Species")
```

- · Tabular data
- Features
- Target / outcome to predict -
  - discrete for classification
  - continuous for regression
  - ⇒ target determines the machine learning "Task"

```
print(iris) # included in R
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
              5.1
                           3.5
                                        1.4
                                                     0.2
                                                          setosa
##
              4.9
                           3.0
                                        1.4
                                                     0.2
                                                          setosa
##
```

```
Task ID

task = TaskClassif$new("iris", iris, "Species")
```

- · Tabular data
- Features
- Target / outcome to predict -
  - discrete for classification
  - continuous for regression
  - ⇒ target determines the machine learning "Task"

```
print(iris) # included in R
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
              5.1
                           3.5
                                        1.4
                                                     0.2
                                                          setosa
##
              4.9
                           3.0
                                        1.4
                                                     0.2
                                                          setosa
##
```

```
Task ID data
↓

task = TaskClassif$new("iris", iris, "Species")
```

- · Tabular data
- Features
- Target / outcome to predict -
  - discrete for classification
  - continuous for regression
  - ⇒ target determines the machine learning "Task"

```
print(iris) # included in R
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
              5.1
                           3.5
                                        1.4
                                                     0.2
                                                          setosa
##
              4.9
                           3.0
                                         1.4
                                                     0.2
                                                          setosa
##
```

```
Task ID data target name

task = TaskClassif$new("iris", iris, "Species")
```

```
task = TaskClassif$new("iris", iris, "Species")
```

```
print(task)

# <TaskClassif:iris> (150 x 5)

# * Target: Species

# * Properties: multiclass

# * Features (4):

# - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
```

```
task$ncol task$head(n = ) task$select(cols = )
task$nrow task$truth(row_ids = ) task$filter(rows = )
task$feature_names task$data(rows = , task$cbind(data = )
task$target_names cols = ) task$rbind(data = )
```

# Dictionaries

### **Dictionaries**

Ordinary constructors: TaskClassif\$new() / LearnerClassifRpart\$new()

#### **Dictionaries**

- Ordinary constructors: TaskClassif\$new() / LearnerClassifRpart\$new()
- ⇒ mlr3 offers Short Form Constructors that are less verbose

### **Dictionaries**

- Ordinary constructors: TaskClassif\$new() / LearnerClassifRpart\$new()
- ⇒ mlr3 offers Short Form Constructors that are less verbose
  - They access Dictionary of objects:

### **Dictionaries**

- Ordinary constructors: TaskClassif\$new() / LearnerClassifRpart\$new()
- $\Rightarrow$  mlr3 offers Short Form Constructors that are less verbose
  - They access **Dictionary** of objects:

| Object     | Dictionary      | Short Form |
|------------|-----------------|------------|
| Task       | mlr_tasks       | tsk()      |
| Learner    | mlr_learners    | lrn()      |
| Measure    | mlr_measures    | msr()      |
| Resampling | mlr_resamplings | rsmp()     |

Dictionaries can get populated by add-on packages (e.g. mlr3learners)

### **Dictionaries**

```
# list items
tsk()
## <DictionaryTask> with 10 stored values
## Keys: boston_housing, breast_cancer, german_credit, iris, mtcars, pima,
##
   sonar, spam, wine, zoo
# retrieve object
tsk("iris")
## <TaskClassif:iris> (150 x 5)
## * Target: Species
## * Properties: multiclass
## * Features (4):
## - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
```

### Short Forms and Dictionaries

as.data.table(<DICTIONARY>) creates a data.table with metadata about objects in
dictionaries:

```
mlr_learners_table = as.data.table(mlr_learners)
mlr learners table[1:10, c("key", "packages", "predict types")]
#
                     key packages predict_types
#
                  <char>
                           st>
                                         st>
#
           classif.debug
  1:
                                  response, prob
  2: classif.featureless
                                  response, prob
  3:
           classif.rpart
                         rpart response, prob
        regr.featureless
                            stats response, se
  5:
              regr.rpart
                            rpart
                                       response
#
  6:
                    <NA>
 7:
                    <NA>
  8:
                    <NA>
  9:
                    <NA>
 10:
                    <NA>
```

















 $\cdot$  Get a **Learner** provided by mlr

```
learner = lrn("classif.rpart")
```

 $\cdot$  Get a **Learner** provided by mlr

```
learner = lrn("classif.rpart")
```

· Train the Learner

```
learner$train(task)
```

Get a Learner provided by mlr

```
learner = lrn("classif.rpart")
```

· Train the Learner

```
learner$train(task)
```

• The **\$model** is the **rpart** model: a decision tree

```
print(learner$model)
## n = 150
##
  node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
##
  1) root 150 100 setosa (0.333 0.333 0.333)
##
    2) Petal.Length< 2.5 50 0 setosa (1.000 0.000 0.000) *
    3) Petal.Length>=2.5 100 50 versicolor (0.000 0.500 0.500)
##
##
      6) Petal.Width< 1.8 54 5 versicolor (0.000 0.907 0.093) *
      7) Petal.Width>=1.8 46 1 virginica (0.000 0.022 0.978) *
##
```

### Hyperparameters

Learners have hyperparameters

```
as.data.table(learner$param set)[, 1:6]
                                                levels nlevels
##
                   id
                        class lower upper
                     <char> <num> <num>
##
               <char>
                                                st>
                                                          <num>
##
    1:
             minsplit ParamInt
                                   1 Inf
                                                            Inf
##
            minbucket ParamInt
                                      Inf
                                                            Inf
##
                   cp ParamDbl
                                                            Inf
##
           maxcompete ParamInt
                                     Inf
                                                            Inf
##
    5:
        maxsurrogate ParamInt
                                     Inf
                                                            Tnf
                                   1
##
             maxdepth ParamInt
                                       30
                                                             30
         usesurrogate ParamInt
                                                              3
##
                                   0
##
       surrogatestyle ParamInt
                                                            Inf
##
                 xval ParamInt
                                       Inf
##
           keep model ParamLgl
                                  NA
                                        NA
                                            TRUE.FALSE
  10:
```

### Hyperparameters

Learners have hyperparameters

```
as.data.table(learner$param set)[, 1:6]
##
                  id
                       class lower upper
                                               levels nlevels
              <char> <char> <num> <num>
##
                                               st>
                                                        <num>
##
   1:
            minsplit ParamInt
                                  1 Inf
                                                          Tnf
           minbucket ParamInt
                                  1 Inf
                                                          Tnf
##
##
                  cp ParamDbl
                                                          Inf
##
          maxcompete ParamInt
                                  0 Inf
                                                          Inf
   5:
        maxsurrogate ParamInt
                                  0 Inf
                                                          Tnf
##
##
   6:
            maxdepth ParamInt
                                     30
                                                           30
         usesurrogate ParamInt
##
   7:
      surrogatestyle ParamInt
##
##
                xval ParamInt
                                      Inf
                                                          Inf
           keep model ParamLgl
                                      NA
                                           TRUE.FALSE
##
  10:
                                 NA
```

Changing them changes the Learner behavior

```
learner$param_set$values = list(maxdepth = 1, xval = 0)
learner$train(task)
```

### Hyperparameters

· This gives a smaller decision tree

```
print(learner$model)

## n= 150

##

## node), split, n, loss, yval, (yprob)

##     * denotes terminal node

##

## 1) root 150 100 setosa (0.33 0.33 0.33)

## 2) Petal.Length< 2.5 50     0 setosa (1.00 0.00 0.00) *

## 3) Petal.Length>=2.5 100 50 versicolor (0.00 0.50 0.50) *
```

• Let's make a prediction for some new data, e.g.:

```
new_data
# Sepal.Length Sepal.Width Petal.Length Petal.Width
# 1 4 3 2 1
# 2 2 2 3 2
```

· Let's make a prediction for some new data, e.g.:

```
new_data
# Sepal.Length Sepal.Width Petal.Length Petal.Width
# 1     4     3     2     1
# 2     2     2     3     2
```

• To do so, we call the **\$predict\_newdata()** method using the new data:

```
prediction = learner$predict_newdata(new_data)
```

· Let's make a prediction for some new data, e.g.:

```
new_data
# Sepal.Length Sepal.Width Petal.Length Petal.Width
# 1     4     3     2     1
# 2     2     2     3     2
```

• To do so, we call the **\$predict\_newdata()** method using the new data:

```
prediction = learner$predict_newdata(new_data)
```

We get a Prediction object:

```
prediction
## <PredictionClassif> for 2 observations:
## row_id truth response
## 1 <NA> setosa
## 2 <NA> versicolor
```

· Let's make a prediction for some new data, e.g.:

```
new_data
# Sepal.Length Sepal.Width Petal.Length Petal.Width
# 1 4 3 2 1
2 2 2 3 2
```

 $\cdot$  To do so, we call the  $\operatorname{predict\_newdata}(\ )$  method using the new data:

```
prediction = learner$predict_newdata(new_data)
```

We get a Prediction object:

```
prediction
## <PredictionClassif> for 2 observations:
## row_id truth response
## { 1 <NA> setosa
2 <NA> versicolor
```

· Let's make a prediction for some new data, e.g.:

```
new_data
# Sepal.Length Sepal.Width Petal.Length Petal.Width
# 1 4 3 2 1
2 2 2 3 2
```

• To do so, we call the **\$predict\_newdata()** method using the new data:

```
prediction = learner$predict_newdata(new_data)
```

We get a Prediction object:

```
prediction
## <PredictionClassif> for 2 observations:
## row_id truth response
## setosa
## 2 <NA> versicolor
```

• We can make the **Learner** predict *probabilities* when we set **predict\_type**:

```
learner$predict_type = "prob"
learner$predict_newdata(new_data)

# <PredictionClassif> for 2 observations:

# row_id truth response prob.setosa prob.versicolor

# 1 <NA> setosa 1 0.0

# 2 <NA> virginica 0 0.5

# prob.virginica

# 0.0

# 0.5
```

What exactly is a **Prediction** object?

 $\cdot$  Contains predictions and offers useful access fields / methods

### What exactly is a Prediction object?

- · Contains predictions and offers useful access fields / methods
- $\Rightarrow$  Use as.data.table() to extract data

#### What exactly is a Prediction object?

- · Contains predictions and offers useful access fields / methods
- ⇒ Use as.data.table() to extract data

 $\Rightarrow$  Active bindings and functions that give further information: \$response, \$truth, ...

```
prediction$response
## [1] setosa versicolor
## Levels: setosa versicolor virginica
```

Performance



















· Prediction 'Task' with known data

#### Performance Evaluation

· Prediction 'Task' with known data

· Predict again

```
pred = learner$predict(known_truth_task)
pred

## <PredictionClassif> for 2 observations:
## row_id truth response
## 1 setosa setosa
## 2 setosa virginica
```

#### Performance Evaluation

· Prediction 'Task' with known data

· Predict again

```
pred = learner$predict(known_truth_task)
pred

## <PredictionClassif> for 2 observations:
## row_id truth response
## 1 setosa setosa
## 2 setosa virginica
```

· Score the prediction

```
pred$score(msr("classif.ce"))
## classif.ce
## 0.5
```

#### Performance Evaluation

· Prediction 'Task' with known data

· Predict again

```
pred = learner$predict(known_truth_task)
pred

## <PredictionClassif> for 2 observations:
## row_id truth response
## 1 setosa setosa
## 2 setosa virginica
```

· Score the prediction

```
pred$score(msr("classif.ce"))
## classif.ce
## 0.5
```



Learner



Learner

































· Resample description: How to split the data

```
cv5 = rsmp("cv", folds = 5)
```

· Resample description: How to split the data

```
cv5 = rsmp("cv", folds = 5)
```

• Use the **resample()** function for resampling:

```
rr = resample(task, learner, cv5)
```

· Resample description: How to split the data

```
cv5 = rsmp("cv", folds = 5)
```

· Use the resample() function for resampling:

```
rr = resample(task, learner, cv5)
```

• We get a ResamplingResult object:

```
print(rr)
## <ResampleResult> of 5 iterations
## * Task: iris
## * Learner: classif.rpart
## * Warnings: 0 in 0 iterations
## * Errors: 0 in 0 iterations
```

What exactly is a **ResamplingResult** object?

What exactly is a **ResamplingResult** object?

Remember Prediction:

What exactly is a ResamplingResult object?

Remember Prediction:

Get a table representation using as.data.table()

```
rr table = as.data.table(rr)
print(rr table)
#
                                                        resampling
                 task
                                        learner
#
               st>
                                                            st>
# 1: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 2: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 3: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 4: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 5: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
#
    iteration
                           prediction
        <int>
                               st>
#
            1 <PredictionClassif[19]>
# 1:
# 2:
            2 <PredictionClassif[19]>
            3 <PredictionClassif[19]>
# 3:
            4 <PredictionClassif[19]>
# 4:
# 5:
            5 <PredictionClassif[19]>
```

What exactly is a ResamplingResult object?

Remember Prediction:

Get a table representation using as.data.table()

```
rr table = as.data.table(rr)
print(rr table)
                                                        resampling
#
                 task
                                        learner
#
               st>
                                                            st>
# 1: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 2: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 3: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 4: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
# 5: <TaskClassif[45]> <LearnerClassifRpart[32]> <ResamplingCV[19]>
#
    iteration
                           prediction
        <int>
                               st>
#
            1 <PredictionClassif[19]>
# 1:
# 2:
            2 <PredictionClassif[19]>
            3 <PredictionClassif[19]>
# 3:
            4 <PredictionClassif[19]>
# 4:
# 5:
            5 <PredictionClassif[19]>
```

· Active bindings and functions that make information easily accessible

· Calculate performance:

```
rr$aggregate(msr("classif.ce"))
## classif.ce
## 0.06
```

· Calculate performance:

```
rr$aggregate(msr("classif.ce"))
## classif.ce
## 0.06
```

· Get predictions

```
rr$prediction()
## <PredictionClassif> for 150 observations:
##
      row id truth response
##
          2 setosa setosa
         15 setosa setosa
##
##
       17
               setosa setosa
##
##
         142 virginica virginica
         143 virginica virginica
##
##
         148 virginica virginica
```

· Predictions of individual folds

```
predictions = rr$predictions()
predictions[[1]]
## <PredictionClassif> for 30 observations:
##
      row id truth response
##
          2 setosa setosa
         15 setosa setosa
##
##
   17 setosa setosa
##
        141 virginica virginica
##
##
         145 virginica virginica
         149 virginica virginica
##
```

· Predictions of individual folds

```
predictions = rr$predictions()
predictions[[1]]
## <PredictionClassif> for 30 observations:
##
      row id truth response
##
          2 setosa setosa
##
         15 setosa setosa
##
   17 setosa setosa
## ---
        141 virginica virginica
##
##
        145 virginica virginica
         149 virginica virginica
##
```

· Score of individual folds

Benchmark

# Performance Comparison



#### **Performance Comparison**

· Multiple Learners, multiple Tasks:

```
library("mlr3learners")
learners = list(lrn("classif.rpart"), lrn("classif.kknn"))
tasks = list(tsk("iris"), tsk("sonar"), tsk("wine"))
```

## **Performance Comparison**

Multiple Learners, multiple Tasks:

```
library("mlr3learners")
learners = list(lrn("classif.rpart"), lrn("classif.kknn"))
tasks = list(tsk("iris"), tsk("sonar"), tsk("wine"))
```

· Set up the design and execute benchmark:

```
design = benchmark_grid(tasks, learners, cv5)
bmr = benchmark(design)
```

## **Performance Comparison**

· Multiple Learners, multiple Tasks:

```
library("mlr3learners")
learners = list(lrn("classif.rpart"), lrn("classif.kknn"))
tasks = list(tsk("iris"), tsk("sonar"), tsk("wine"))
```

· Set up the design and execute benchmark:

```
design = benchmark_grid(tasks, learners, cv5)
bmr = benchmark(design)
```

• We get a **BenchmarkResult** object which shows that **kknn** outperforms **rpart**:

```
bmr_ag = bmr$aggregate()
bmr_ag[, c("task_id", "learner_id", "classif.ce")]
## task_id learner_id classif.ce
## <char> <char> <num>
## 1: iris classif.rpart 0.047
## 2: iris classif.kknn 0.047
## 3: sonar classif.rpart 0.269
## 4: sonar classif.kknn 0.144
## 5: wine classif.rpart 0.112
## 6: wine classif.kknn 0.050
```



What exactly is a **BenchmarkResult** object?

What exactly is a BenchmarkResult object?

Just like Prediction and ResamplingResult!

What exactly is a BenchmarkResult object?

Just like Prediction and ResamplingResult!

Table representation using as.data.table()

What exactly is a **BenchmarkResult** object?

Just like Prediction and ResamplingResult!

- Table representation using as.data.table()
- · Active bindings and functions that make information easily accessible

The  ${\tt mlr3viz}$  package contains  ${\tt autoplot()}$  functions for many mlr3 objects

library(mlr3viz)
autoplot(bmr)



Control of Execution

#### Control of Execution

#### Parallelization

```
future::plan("multicore")
```

- · runs each resampling iteration as a job
- · also allows nested resampling (although not needed here)

#### Encapsulation

```
learner$encapsulate = c(train = "callr", predict = "callr")
```

- · Spawns a separate R process to train the learner
- · Learner may segfault without tearing down the session
- · Logs are captured
- · Possibilty to have a fallback to create predictions



# How to get Help

- · Where to start?
  - · Check these slides
  - · Check the mlr3book https://mlr3book.mlr-org.com

# How to get Help

- · Where to start?
  - · Check these slides
  - · Check the mlr3book https://mlr3book.mlr-org.com
- · Get help for R6 objects?
  - 1. Find out what kind of R6 object you have:

```
class(bmr)
## [1] "BenchmarkResult" "R6"
```

2. Go to the corresponding help page:

?BenchmarkResult

New: open the corresponding man page with

learner\$help()

mlr3 Outro

#### mlr3 Overview

#### Ingredients:



#### Learning Algorithms



#### Performance Evaluation



#### Performance Comparison



TaskClassif,
TaskRegr,
tsk()

lrn() ⇒ Learner,
\$train(),
\$predict() ⇒ Prediction

 $\begin{tabular}{ll} rsmp(\ ) &\Rightarrow Resampling, \\ msr(\ ) &\Rightarrow Measure, \\ resample(\ ) &\Rightarrow ResamplingResult, \\ \$aggregate(\ ) \end{tabular}$ 

benchmark\_grid(),
benchmark() ⇒ BenchmarkResult

Black-Box Problems

#### Mathematical Problem Formulation

#### Optimization Problem:

$$y = f(x), \quad f: \mathcal{X} \to \mathbb{R}$$
  
 $x^* := \operatorname{argmin}_{x \in \mathcal{X}} f(x)$ 

But:

- Evaluation of f(x) takes > 30 mins.

**Note:** W.l.o.g. we consider minimization problems. Maximization of f is equivalent to minimizing -f.

# Naive Approaches I: Expert Knowledge

"Trial-and-Error" based on expert knowledge

- Can lead to fairly good outcomes for known problems
- Very (!) inefficient
- Poor reproducibility
- Chosen solution can also be far away from a global optimum
- What if there is no expert?

Grid search: Exhaustive search of a predefined grid of inputs



Grid search: Exhaustive search of a predefined grid of inputs



Random search: Evaluate uniformly sampled inputs



Latin hypercube sampling (LHS): inputs are sampled randomly, but no two inputs share the same value in a dimension.



# Model-based Optimization

#### Basic MBO Idea

Black-Box: No additional information for f.

Only possibility: Selective evaluation of  $f(\mathbf{x})$  and acquiring knowledge of evaluated points  $(\mathbf{x}, \mathbf{y})$ .

Manted: Strategy to select **x** so that we get to the optimum quickly.

#### Basic MBO Idea

Black-Box: No additional information for f.

Only possibility: Selective evaluation of  $f(\mathbf{x})$  and acquiring knowledge of evaluated points  $(\mathbf{x}, \mathbf{y})$ .

Manted: Strategy to select **x** so that we get to the optimum quickly.

 $\Im$  Idea: Evaluate  $f(\mathbf{x})$  for some  $\mathbf{x}$  and then fit a regression model  $\hat{f}(\mathbf{x})$ .

#### Basic MBO Idea

Black-Box: No additional information for f.

Only possibility: Selective evaluation of f(x) and acquiring knowledge of evaluated points (x, y).

- Manted: Strategy to select **x** so that we get to the optimum quickly.
- $\mathcal{C}$  Hope: Maximum of  $\hat{f}(x)$  is close to maximum of f(x).

# Example Problem I: Robot Gait Optimization

Problems solved with MBO: Optimization the parametrized controller that steers robot's gait



· Goal: Find parameters s.t. velocity of the robot is maximized

# Example Problem II: Optimizing a Cookie Recipe

Problems solved with MBO: Optimization of a cookie recipe



https://www.bettycrocker.com

| Ingredient | Salt   | Total     | Brown     | Vanilla | Chip         | Chip         |
|------------|--------|-----------|-----------|---------|--------------|--------------|
|            | (tsp)† | Sugar (g) | Sugar (%) | (tsp)†  | Quantity (g) | Type         |
| Min        | 0      | 150       | 0         | 0.25    | 114          | {Dark, Milk, |
| Max        | 0.5    | 500       | 1         | 1       | 228          | White}       |

- · Goal: Find "optimal" amounts and composition of ingredients
- Evaluation: Cookies are baked according to the recipe, tested and rated by volunteers

#### Starting Point:

- · We evaluated f for a **some** inputs  $\mathbf{x} \in \mathcal{X}$
- · For now we assume that those evaluations are noise-free



(i) Fit a regression model (black) to extract maximum information from the design points and learn properties of f



Note: As we can evaluate f without noise, we fit an interpolating regression model.

(ii) Instead of the expensive f, we optimize the cheap model function (black) to **propose** a new point  $\mathbf{x}^{\text{new}}$  for evaluation



In the context of model-based optimization, the regression model is called **surrogate model**, because it is a cheap approximation of *f* that is iteratively trained.

(iii) And finally evaluate f on  $\mathbf{x}^{(\text{new})}$ 



After having evaluated the new point, we **adjust** the model on the expanded dataset via (slow) refitting or a (cheaper) online update



We repeat: (i) fit the model, (ii) propose a new point and, (iii) evaluate that point.



We repeat: (i) fit the model, (ii) propose a new point and, (iii) evaluate that point.



We repeat: (i) fit the model, (ii) propose a new point and, (iii) evaluate that point.



# Basic MBO Idea: Intermediate Summary



Figure 1: General SMBO approach.



In the example, the algorithm has converged. The sketched optimization procedure would return the point x=0.35.



The dashed green line is the "unknown" black-box function the sequential optimization procedure has been applied to.



We see: We ran into a local minimum. We did not "explore" the most crucial areas and missed the global minimum.



#### Goal:

Find a trade-off between **exploration** (explore areas we do not know well) and **exploitation** (exploit interesting areas)



O How can we avoid under-exploration?



- Use regression method (e.g. a Gaussian Process) to get a prediction for different x.
- Prediction of  $\hat{f}(x)$  does not help, as its optimum has already been evaluated.



- Use regression method (e.g. a Gaussian Process) to get a prediction for different x.
- Prediction of  $\hat{f}(x)$  does not help, as its optimum has already been evaluated.
- ♥ We need to explore: Use an uncertainty estimate ŝ(x) to find uncertain regions.



- Use regression method (e.g. a Gaussian Process) to get a prediction for different x.
- Prediction of  $\hat{f}(x)$  does not help, as its optimum has already been evaluated.
- However: "Bad" areas with high uncertainty uninteresting.



- Use regression method (e.g. a Gaussian Process) to get a prediction for different x.
- Prediction of  $\hat{f}(x)$  does not help, as its optimum has already been evaluated.
- However: "Bad" areas with high uncertainty uninteresting.



- Use regression method (e.g. a Gaussian Process) to get a prediction for different x.
- Prediction of  $\hat{f}(x)$  does not help, as its optimum has already been evaluated.
- However: "Bad" areas with high uncertainty uninteresting.



♀ Idea: Combine mean prediction and uncertainty via an infill criterion, that tells us where to search next.



- **♀ Idea**: Combine mean prediction and uncertainty via an **infill criterion**, that tells us where to search next.
- $\begin{array}{l} \boldsymbol{\cdot} \text{ The most prominent infill criterion is the} \\ \textbf{expected improvement } \textit{EI}(\textbf{x}) = \mathbb{E}(\textit{I}(\textbf{x})) \\ \text{with } \textit{I}(\textbf{x}) := \max \left\{ \hat{f}(\textbf{x}) \textit{y}_{\min}, 0 \right\} \end{array}$



- **♀ Idea**: Combine mean prediction and uncertainty via an **infill criterion**, that tells us where to search next.
- The most prominent infill criterion is the expected improvement  $El(x) = \mathbb{E}(l(x))$  with  $l(x) := \max \left\{ \hat{f}(x) y_{\min}, 0 \right\}$



- **♀ Idea**: Combine mean prediction and uncertainty via an **infill criterion**, that tells us where to search next.
- $\begin{array}{l} \boldsymbol{\cdot} \text{ The most prominent infill criterion is the} \\ \textbf{expected improvement } \textit{EI}(\textbf{x}) = \mathbb{E}(\textit{I}(\textbf{x})) \\ \text{with } \textit{I}(\textbf{x}) := \max \left\{ \hat{f}(\textbf{x}) \textit{y}_{\min}, 0 \right\} \end{array}$



- **♀ Idea**: Combine mean prediction and uncertainty via an **infill criterion**, that tells us where to search next.
- The most prominent infill criterion is the expected improvement  $El(x) = \mathbb{E}(l(x))$  with  $l(x) := \max \left\{ \hat{f}(x) y_{\min}, 0 \right\}$

#### Basic MBO Idea: Summary

- · Based on observed data D, fit a regression model (e.g. Kriging) that gives us
  - 1. a posterior mean  $\hat{\mu}(\mathbf{x})$  (which was our model prediction before) and
  - 2. a posterior variance  $\hat{s}(x)$  (model uncertainty)

for unknown x.

• Combine mean prediction and uncertainty via an **acquisition function**, that tells us where to search next.



Figure 2: General SMBO approach.

Note: Model-based optimization is also called Bayesian Optimization.

#### Basic MBO Idea: Summary

The user has three basic choices to make:

- What is the initial design?
- Which model should be used as surrogate model?
- **②** What is the **acquisition function**? I.e. how should posterior mean and posterior variance be "weighted"?

We will discuss the three choices in the following.



- $\cdot \text{ The initial design } \mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, y^{(i)}\right) \right\}_{i=1,\dots,m_{\text{init}}} \text{ is used to train the first regression model.}$
- Input space should be covered sufficiently; commonly used designs:
  - · Latin hypercube sampling (LHS)
  - · Maximin designs (Minimum distance between points is maximized)



Figure 3: Latin hypercube design (left) vs. a random design (right).

- Type of design usually has not the largest effect on MBO; unequal distances between points could even be beneficial
- More important: size of the initial design
  - $\cdot$  Too small  $\rightarrow$  bad initial fit
  - $\boldsymbol{\cdot}$  Too large  $\rightarrow$  spending too much budget without doing "intelligent" optimization
  - Recommendations are based on the dimension of the input space d: 2d, 4d, 10d



## Surrogate Models



## Surrogate Models

In general, any model that is capable of quantifying model uncertainty can be a suitable candidate.

We introduce two of the most commonly used surrogate models:

- · Gaussian Processes
- · Random Forests

#### **Gaussian Processes**

A function  $f(\mathbf{x})$  is generated by a GP  $\mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$  if for **any finite** set of inputs  $\{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}\}$ , the associated vector of function values  $\mathbf{f} = (f(\mathbf{x}^{(1)}), ..., f(\mathbf{x}^{(n)}))$  has a Gaussian distribution

$$f \sim \mathcal{N}\left(m,K\right),$$

with

$$\mathbf{m} \quad := \quad \left( m \left( \mathbf{x}^{(i)} \right) \right)_i, \quad \mathbf{K} := \left( k \left( \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right) \right)_{i,j}.$$

 $m(\mathbf{x})$  is called mean function and  $k(\mathbf{x}, \mathbf{x}')$  is called covariance function.

#### **Gaussian Processes**

This way a **distribution over functions** is specified. It allows us to draw functions from this distribution.













The "variance" of the remaining functions are captured as model uncertainty.



#### Covariance Function of a GP

Intuitively, the covariance function  $k(\mathbf{x}, \mathbf{x}')$  is a **similarity** measure between points:

- if two points are close in  $\mathcal{X}$ ,  $k(\mathbf{x}, \mathbf{x}')$  is usually high the correlation between the function values  $f(\mathbf{x})$ ,  $f(\mathbf{x}')$  is high
- if they are far away from each other, k(x, x') is small and the function values are not correlated that strongly

### Commonly used covariance functions



Random functions drawn from Gaussian processes with a Squared Exponential Kernel (left) and a Matern Kernel (right, l=1). The choice of the hyperparameter determines the "wiggliness" of the function.

### **Kernel Parameters**

The effect of the parametrization of the Gaussian Process on our previous example. Here with parameter l=0.1.



### **Kernel Parameters**

The effect of the parametrization of the Gaussian Process on our previous example. Here with parameter l=0.2.



## Gaussian Process Surrogate Model

- Posterior variance is modeled as "spatial" uncertainty: Uncertainty increases with distance to design points, and is 0 directly at design points.
- User can encode his assumptions about the shape of the function by specifying a covariance function.
- Common kernels cannot represent discrete and hierarchical search spaces.

## Surrogate Models: Random Forest



# Random Forest Surrogate Models i

• Problem: Kriging is not well suited for categorical search spaces



Figure 4: Example: Mixed search space

**②** What is the distance between Kernel Radial and Polynomial?

# Random Forest Surrogate Models ii



Figure 5: Example: Hierarchical search space

#### Ideas:

- Provided Develop special distance measures.
- - $\cdot \Rightarrow$  Random Forest Regression
  - Needs handling of missing values.
  - · Needs handling with factor variables.
  - Bad at learning interactions.



















Figure 6: Benchmark results show that MBO optimizers with random forest surrogates perform badly on numerical problems.

https://arxiv.org/abs/1703.03373

### **Random Forest Characteristics**

- Handles categorical data.
- Suited to represent hierarchical search spaces.
- No extrapolation
  - ⇒ Initial design important!
- Uncertainty only reflects signal variance.



## **Acquisition Functions**



# **Acquisition Functions**

Recall: The acquisition function balances posterior mean and the posterior variance.

There are many different ways of balancing posterior mean and variance. We will discuss two of the most common ones:

- · Expected Improvement
- · Lower Confidence Bound

**Goal:** Propose  $\mathbf{x}^{\text{new}}$  that maximizes the **expected improvement**:

$$EI(\mathbf{x}) = \mathbb{E}(\max\{y^{\min} - f(\mathbf{x}), 0\})$$

 $\mathbb{Q}$  Uncertainty only enters in the case of improvement  $y^{\min} - f(\mathbf{x}) > 0$ .



For a GP, i.e.  $f(x) \sim \mathcal{N}\left(\hat{\mu}(x), \hat{s}^2(x)\right)$ , we can express the EI(x) in closed-form as:

$$El(\mathbf{X}) = (\mathbf{y}^{\min} - \hat{\mu}(\mathbf{X}))\Phi\Big(\frac{\mathbf{y}^{\min} - \hat{\mu}(\mathbf{X})}{\hat{s}(\mathbf{X})}\Big) + \hat{s}(\mathbf{X})\phi\Big(\frac{\mathbf{y}^{\min} - \hat{\mu}(\mathbf{X})}{\hat{s}(\mathbf{X})}\Big),$$

where  $\phi(\cdot)$  denotes the density function of a standard normal random variable.











#### Lower confidence bound (LCB):

$$LCB(\mathbf{x}) = \hat{\mu}(\mathbf{x}) - \tau \cdot \hat{\mathbf{s}}(\mathbf{x}).$$

 $\tau > 0$  is a constant that controls the "mean vs. uncertainty" trade-off.



The shaded area corresponds to  $\hat{\mu}(x) \pm \tau \cdot s(x)$ . Vertical lines are the minimum of  $\hat{\mu}(x) - \tau \cdot s(x)$ .

The lower au, the more we focus on pure mean minimization (here au= 0.2) ...



The lower au, the more we focus on pure mean minimization (here au= 0.2) ...



... the higher au, the more we concentrate on reducing variance (here au= 100).



... the higher au, the more we concentrate on reducing variance (here au= 100).





#### title

### Noisy Optimization Problem:

$$\begin{aligned} y &= f(\mathbf{x}) + \epsilon \;, \quad f: \mathcal{X} \to \mathbb{R} \\ \epsilon &\sim \mathcal{N}(0, \sigma_n^2) \\ \mathbf{x}^* &:= \mathsf{argmin}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \end{aligned}$$

#### Consequences:

- $\bullet$  EI not valid  $\Rightarrow$  use CB or AEI instead.
- Kriging needs to estimate  $\sigma_n^2$  as well.
- Best observed point will be overoptimistic.

## **Nugget Estimation**

Example with *Kriging* and **nuggest.estim=TRUE** and AEI as acquisition function.



#### **Not Covered**

#### Parallelization

- qCB (exercise!)
- □ ConstanLiar
- ☐ Asynchronous Approaches

Multi-Criteria Optimization

- ☐ ParEGO
- ☐ SMS-EGO

#### **Common Mistakes**

#### Avoid the following:

- A Initialize the design wrongly.
  - · too small vs. too many factor variables in search space
  - · use of wrong y values
- ▲ Decode (many) factor variables as integer.
- **A** No awareness of properties of the surrogate.
  - · Random Forest does not extrapolate
  - · Random Forest expresses observational variance
  - · Kriging depends on the scale / distance
  - Kriging expects deterministic outcomes (in default settings)



 $\cdot$  Behavior of most methods depends on hyperparameters

- $\cdot$  Behavior of most methods depends on *hyperparameters*
- · We want to choose them so our algorithm performs well

- $\cdot$  Behavior of most methods depends on *hyperparameters*
- · We want to choose them so our algorithm performs well
- $\cdot$  Good hyperparameters are data-dependent

- · Behavior of most methods depends on hyperparameters
- · We want to choose them so our algorithm performs well
- · Good hyperparameters are data-dependent
- $\Rightarrow$  We do black box optimization ("Try stuff and see what works")

- · Behavior of most methods depends on hyperparameters
- · We want to choose them so our algorithm performs well
- · Good hyperparameters are data-dependent
- $\Rightarrow$  We do black box optimization ("Try stuff and see what works")

#### Tuning toolbox for mlr3:

```
library("bbotk")
library("mlr3tuning")
```











































## Objects in Tuning



### **Objects in Tuning**







ParamSet\$new(list(param1, param2, ...))



ParamSet\$new(list(param1, param2, ...))

Numerical parameter Integer parameter Discrete parameter Logical parameter Untyped parameter ParamDbl\$new(id, lower, upper)
ParamInt\$new(id, lower, upper)
ParamFct\$new(id, levels)
ParamLgl\$new(id)
ParamUty\$new(id)

```
ParamSet$new(list(param1, param2, ...))
```

```
Numerical parameter ParamDbl$new(id, lower, upper)
Integer parameter ParamInt$new(id, lower, upper)
Discrete parameter ParamFct$new(id, levels)
Logical parameter ParamLgl$new(id)
Untyped parameter ParamUty$new(id)
```

```
library("paradox")
searchspace_knn = ParamSet$new(list(
  ParamInt$new("k", 1, 20)
))
```

#### Termination

· Tuning needs a termination condition: when to finish

#### Termination

- · Tuning needs a termination condition: when to finish
- Terminator class

#### Termination

- · Tuning needs a termination condition: when to finish
- Terminator class
- mlr\_terminators dictionary, trm() short form

### **Termination**

- · Tuning needs a termination condition: when to finish
- · Terminator class
- $\cdot$  mlr\_terminators dictionary, trm() short form

```
• as.data.table(mlr_terminators)
 ##
                     kev
 ##
                  <char>
              clock time
 ## 1:
 ## 2:
                   combo
                   evals
 ## 3:
 ## 4:
                    none
 ## 5:
        perf reached
 ## 6:
                run time
              stagnation
 ## 7:
 ## 8: stagnation_batch
```

#### **Termination**

- · Tuning needs a termination condition: when to finish
- · Terminator class
- $\cdot$  mlr\_terminators dictionary, trm() short form

```
as.data.table(mlr terminators)
 ##
                    kev
 ##
                 <char>
             clock time
 ## 1:
 ## 2:
                 combo
                  evals
 ## 3:
 ## 4:
                   none
 ## 5: perf reached
 ## 6:
               run time
             stagnation
 ## 7:
 ## 8: stagnation batch
```

```
trm("evals", n_evals = 20)
## <TerminatorEvals>
## * Parameters: n_evals=20
```

· need to choose a tuning method

- · need to choose a tuning method
- Tuner class

- · need to choose a tuning method
- Tuner class
- $\cdot$  mlr\_tuners dictionary, tnr() short form

- · need to choose a tuning method
- · Tuner class
- $\cdot$  mlr\_tuners dictionary, tnr() short form

```
as.data.table(mlr_tuners)

## key

## <char>
## 1: design_points

## 2: gensa

## 3: grid_search

## 4: nloptr

## 5: random_search
```

- · need to choose a tuning method
- · Tuner class
- mlr\_tuners dictionary, tnr() short form

```
as.data.table(mlr_tuners)

## key

## <char>
## 1: design_points

## 2: gensa
## 3: grid_search
## 4: nloptr
## 5: random_search
```

· Packages such as mlr3mbo extend the available tuners

load Tuner with tnr(), set parameters

· load Tuner with tnr(), set parameters

```
• gsearch = tnr("grid_search", resolution = 3)
print(gsearch)
## <TunerGridSearch>
## * Parameters: resolution=3, batch_size=1
## * Parameter classes: ParamLgl, ParamInt, ParamDbl, ParamFct
## * Properties: dependencies, single-crit, multi-crit
## * Packages: -
```

· load Tuner with tnr(), set parameters

```
 gsearch = tnr("grid_search", resolution = 3)
print(gsearch)
## <TunerGridSearch>
## * Parameters: resolution=3, batch_size=1
## * Parameter classes: ParamLgl, ParamInt, ParamDbl, ParamFct
## * Properties: dependencies, single-crit, multi-crit
## * Packages: -
```

· common parameter batch\_size for parallelization

## Calling the Tuner



# Calling the Tuner

```
Task
  Learner
Resampling
                                TuningInstanceSingleCrit
  Measure
 ParamSet
Terminator
inst = TuningInstanceSingleCrit$new(
 tsk("iris"), lrn("classif.kknn", kernel="rectangular"),
 rsmp("holdout"), msr("classif.ce"),
 searchspace knn, trm("none")
```

# Calling the Tuner

```
gsearch$optimize(inst)

## k learner_param_vals x_domain classif.ce
## <num> list> list> <num>
## 1: 10 <list[2]> <list[1]> 0.04
```

## **Tuning Results**

```
gsearch = tnr("grid_search", resolution = 20)
inst = TuningInstanceSingleCrit$new(
  tsk("iris"), lrn("classif.kknn", kernel="rectangular"), rsmp("holdout"),
 msr("classif.ce").searchspace knn. trm("none"))
gsearch$optimize(inst)
##
         k learner_param_vals x_domain classif.ce
##
     <niim>
                       clist> <list>
                                            <niim>
                    t[2]> t[1]>
## 1:
        11
                                           0.04
ggplot(inst$archive$data(),
  aes(x = k, y = classif.ce)) + geom line() + geom point()
```



· Sometimes we do not want to optimize over an evenly spaced range

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations
  - Part of ParamSet

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations
  - Part of ParamSet

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations
  - Part of ParamSet

#### Example:

1. optimize from  $log(1) \dots log(100)$  (k\_before\_trafo)

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations
  - Part of ParamSet

- 1. optimize from  $log(1) \dots log(100)$  (k\_before\_trafo)
- 2. transform by exp() in trafo function

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations
  - Part of ParamSet

- optimize from log(1)...log(100) (k\_before\_trafo)
- 2. transform by exp() in trafo function
- 3. don't forget to **round** (*k* must be integer)

- · Sometimes we do not want to optimize over an evenly spaced range
- k = 1 vs. k = 2 probably more interesting than k = 101 vs. k = 102
- ⇒ Transformations
  - Part of ParamSet

- optimize from log(1)...log(100) (k\_before\_trafo)
- 2. transform by exp() in trafo function
- 3. don't forget to **round** (*k* must be integer)

```
searchspace_knn_trafo = ParamSet$new(list(
  ParamDbl$new("k_before_trafo", log(1), log(50))
))
searchspace_knn_trafo$trafo = function(x, param_set) {
  return(list(k = round(exp(x$k_before_trafo))))
}
```

What is our transformation doing?



#### Tuning again...

```
ggplot(inst$archive$data(),
  aes(x = k_before_trafo, y = classif.ce)) + geom_line() + geom_point()
```



```
ggplot(inst$archive$data(unnest = "x_domain"),
  aes(x = x_domain_k, y = classif.ce)) + geom_line() + geom_point()
```





## Nested Resampling - Instructive Example

Tuning a hyperparameter that does not have any effect also shows imaginary "tuning sucess".

## `summarise()` regrouping output by 'data\_dim', 'tuning\_method'
(override with `.groups` argument)



- Need to perform nested resampling to estimate tuned learner performance
- ⇒ Treat tuning as if it were a Learner!
  - · Training:
    - Tune model using (inner) resampling
    - Train final model with best parameters on all (i.e. outer resampling) data
  - · Predicting: Just use final model



```
optlrn = AutoTuner$new(lrn("classif.kknn", kernel="rectangular"),
  rsmp("holdout"), msr("classif.ce"), searchspace knn,
  trm("none"), tnr("grid search", resolution = 10))
optlrn$train(tsk("iris"))
optlrn$model$learner
## Learner classif.kknn from package
## Type:
## Name: ; Short name:
## Class: LearnerClassifKKNN
## Properties: multiclass, twoclass
## Predict-Type:
## Hyperparameters:
```

Performance observed during tuning on the complete dataset.

```
ggplot(optlrn$model$tuning_instance$archive$data(),
  aes(x = k, y = classif.ce)) + geom_line() + geom_point()
```



Performance observed during tuning on the tuning dataset.

```
result = resample(tsk("iris"), optlrn, rsmp("holdout"),
   store_models = TRUE)
ggplot(result$learners[[1]]$
  model$tuning_instance$archive$data(),
  aes(x = k, y = classif.ce)) + geom_line() + geom_point()
```



mlr3tuning recap

# Tuning with mlr3tuning

### Tuning a Learner

- Construct a TuningInstanceSingleCrit
  - · Task-the Data to tune over
  - · Learner—the algorithm to tune
  - Resampling—the resampling method to use
  - · Measure—how to evaluate performance
  - · ParamSet—the search space, possibly with trafo
  - · Terminator—when to guit
- 2. Create a Tuner
  - · Usually using tnr()
  - May have some parameters, e.g. batch\_size
- 3. Call tuner\$optimize()

#### **Nested Resampling**

- 1. Construct an AutoTuner
  - · Constructor takes all arguments of a TuningInstanceSingleCrit except Task
  - · Also takes the Tuner as an argument
- 2. Use like a normal Learner in resample() and benchmark()



### mlr3mbo Conclusion

#### Key features

- · Highly customizable expensive Black-Box optimization
- Integrated parallelization
- · Multi-objective optimization
- · Seamless mlr3 integration

#### Resources

- Help:
  - https://mlr-org.github.io/mlr3mbo ⇒ under construction
  - · https://mlr3book.mlr-org.com/
- # Bug + Issue Tracker: https://github.com/mlr-org/mlr3mbo/issues
- Mattermost Chanel #mlr3mbo: https://lmmisld-lmu-stats-slds.srv.mwn.de/mlr/mlr3mbo