Projekt

ROBOTY MOBILNE

Dokumentacja

$\begin{array}{c} {\rm Line follower} \\ {\rm LF} \end{array}$

Skład grupy: Cyprian Hryniuk, 235512 Tomasz Masłoń, 235827

Termin: wtTP15

 $\frac{Prowadzący:}{\text{mgr inż. Michał BŁĘDOWSKI}}$

Spis treści

1	Opis projektu	2
2		2
	2.1 Konfiguracja pinów	4
	2.2 TIM3	4
	2.3 ADC	4
	2.4 DMA	5
3	Wykorzystane komponenty	5
	3.1 Mikrokontroler - STM32F103C8 [2]	5
	3.2 Mostek H - TB6612FNG [4]	
	3.3 Transoptor odbiciowy - CNY70 [5]	
	3.4 Stabilizator - LM7805 [3]	
	3.5 Stabilizator - LD1117V33 [1]	
4	Opis działania urządzenia	7
5	Podsumowanie	9
Βi	ibilografia	10

1 Opis projektu

Projekt ma na celu stworzenie linefollowera - robota klasy k(2,0) poruszającego się po wyznaczonej linii. Prace projektowe zawierać w sobie będą projekt i wykonanie układu mechanicznego i układu elektronicznego, wytworzenie oprogramowania oraz montaż robota.

Robot będzie wykrywać linię za pomocą zestawu czujników odbiciowych. Sygnał z czujników przekazywany będzie do mikrokontrolera, który w oparciu o dane z czujników, będzie sterował silnikami prądu stałego pełniącymi rolę napędową kół. Całość zasilana będzie akumulatorem litowo-polimerowym.

Sterowanie silnikami odbywać się będzie przy pomocy mostków-H. Algorytm sterujący wykorzystywać będzie regulator PD (w którym błąd będzie określany na podstawie sygnałów z czujników i odzwierciedlać będzie odbieganie toru jazdy od aktualnego kierunku, w którym linefollower się porusza), aby płynnie reagować na zmiany toru jazdy.

2 Konfiguracja mikrokontrolera

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

Poniżej zawarto konfiguracje pinów mikrokontrolera wraz z etykietami i trybem pracy.

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
2	PC13	GPIO_Output	Led_Pin
10	PA0	ADC1_IN0	SENSOR_1
11	PA1	ADC1_IN1	SENSOR_2
12	PA2	ADC1_IN2	SENSOR_3
13	PA3	ADC1_IN3	SENSOR_4
14	PA4	ADC1_IN4	SENSOR_5
18	PB0	TIM3_CH3	PWMB
19	PB1	TIM3_CH3	PWMA
34	PA13	SYS_JTMS-SWDIO	SYS_JTMS-SWDIO
37	PA14	SYS_JTCK-SWCLK	SYS_JTCK-SWCLK
41	PB5	GPIO_Output	AIN2
42	PB6	GPIO_Output	AIN1
43	PB7	GPIO_Output	STB
45	PB8	GPIO_Output	BIN1
46	PB9	GPIO_Output	BIN2

Tabela 1: Konfiguracja pinów mikrokontrolera

2.2 TIM3

Timer wykorzystywany był do generacji sygnału PWM przekazywanego na sterownik silników. Kanał 3 sterował kołem lewym, a kanał 4 kołem prawym.

Parametr	Wartość
Channel3	PWM Generation CH3
Channel4	PWM Generation CH4
Prescaler	0
Counter Period	500
Trigger Event Selection	Reset

Tabela 2: Konfiguracja peryferium TIM3

2.3 ADC

ADC umożliwia odczyt pomiarów dokonywanych przez transoptory odbiciowe. Każdy kanał odpowiada za obsługę jednego czujnika. Odczyt realizowany jest z wykorzystaniem DMA.

Parametr	Wartość
Data Alignment	Right alignment
Scan Conversion Mode	Enabled
Enable Regular Conversions	Enable
Number Of Conversion	5
Rank	15
Sampling Time	71.5 Cycles

Tabela 3: Konfiguracja peryferium ADC

2.4 DMA

DMA skonfigurowano pod obsługę peryferium ADC.

Parametr	Wartość
DMA request	ADC1
Stream	DMA1_Channel1
Direction	Peripheral To Memory
Mode	Circular
Peripheral Increment	Disable
Memory Increment	Enable
Peripheral Data Width	Word
Memory Data Width	Word

Tabela 4: Konfiguracja peryferium DMA

3 Wykorzystane komponenty

3.1 Mikrokontroler - STM32F103C8 [2]

Tani i popularny mikrokontroler na płytce z oscylatorem i wyprowadzonymi pinami do programowania i debugowania. Znany pod nazwą *Blue pill* z uwagi na kolor soldermaski.

Parametr	Wartość
Zegar	72MHz
RAM	20KB
Pamięć flash	$64\mathrm{KB}/128\mathrm{KB}$

Tabela 5: Podstawowe parametry STM32F103

3.2 Mostek H - TB6612FNG [4]

Wydajny sterownik silników w małej obudowie SSOP24. Posiada zabezpieczenie przeciwko prądowi zwrotnemu z silników, wbudowany termiczny obwód odcinający, kondensatory filtrujące. Ma do wyboru cztery tryby pracy: swobodne hamowanie, gwałtowne hamowanie, napędzanie kół zgodnie z ruchem wskazówek zegara i przeciwnie do ruchu wskazówek zegara.

Parametr	Wartość
Zasilanie silników (VMOT)	od 4.5V do 13.5V
Zasilanie układu logicznego (VCC)	od 2.7V do 5.5V
Maks. prąd wyjściowy (na kanał)	3A
Ciągły prąd wyjściowy (na kanał)	1A
Maksymalna częstotliwość PWM	100kHz

Tabela 6: Podstawowe parametry TB6612FNG

3.3 Transoptor odbiciowy - CNY70 [5]

Czujnik wysyła wiązkę promieniowania przez diodę IR i następnie natężenie światła odbitego za pomocą fototranzystora. Wyjściem czujnika jest napięcie zależne od natężenia światła padającego na tranzystor. Im powierzchnia bardziej odbija światło (jest bardziej jasna) tym wyższe napięcie na wyjściu układu.

Parametr	Wartość
Napięcie zasilania diody	5V
Maks. prąd diody	$50 \mathrm{mA}$
Maks. napięcie kolektor-emiter	32V
Maks. prąd kolektora	$50 \mathrm{mA}$

Tabela 7: Podstawowe parametry CNY70

3.4 Stabilizator - LM7805 [3]

Stabilizator wykorzystywany do zasilania diody w czujnikach odbiciowych.

Parametr	Wartość
Napięcie wyjściowe ($\pm 2\%$)	5 V
Maks. prąd wyjściowy	1.5A
Maks. napięcie wejściowe	$35\mathrm{V}$

Tabela 8: Podstawowe parametry LM7805

3.5 Stabilizator - LD1117V33 [1]

Stabilizator wykorzystywany do zasilania mikrokontrolera oraz układu logicznego sterownika silników.

Parametr	Wartość
Napięcie wyjściowe ($\pm 2\%$)	3.3V
Maks. prąd wyjściowy	1.3A
Maks. napięcie wejściowe	15V

Tabela 9: Podstawowe parametry LD1117V33

4 Opis działania urządzenia

Na starcie dochodzi do inicjalizacji mikrokontrolera wraz z wszystkimi jego peryferiami. Zasilane są transoptory oraz sterownik silników. Po inicjalizacji sterownik silników przechodzi ze stanu uśpienia w stan gotowości (sygnał wysoki na pin STB). W tym momencie po zarejestrowaniu czarnej linii pod jednym z czujników robot zaczyna za nią podążąć. Jeżeli robot zgubi linie to zostaje zatrzymany swobodnym hamowaniem (PWM = 0%).

Rysunek 3: Diagram obrazujący działanie urządzenia

Rysunek 4: Schemat układu

Part	Value	Device
$\frac{\Gamma}{\text{C1}}$	100nF	C-EU025-024X044
$\frac{\text{C1}}{\text{C2}}$	100nF	C-EU025-024X044 C-EU025-024X044
$\frac{\text{C2}}{\text{C3}}$	10uF	C-EU025-024X044 C-EU025-024X044
$\frac{\text{C3}}{\text{C4}}$	10uF	C-EU025-024X044 C-EU025-024X044
$\frac{\text{C4}}{\text{C5}}$	100r 100nF	
		C-EU025-024X044
IC2	LD117V33	LD117V33
IC3	7805	LM7805
PC1	CNY70	CNY70
PC2	CNY70	CNY70
PC3	CNY70	CNY70
PC4	CNY70	CNY70
PC5	CNY70	CNY70
R1	150	$\text{R-EU}_0204/5$
R2	150	R-EU_0204/5
R3	150	R-EU_0204/5
R4	150	R-EU_0204/5
R5	150	R-EU_0204/5
R6	330	R -EU $_0204/5$
R7	330	R-EU_0204/5
R8	330	R-EU_0204/5
R9	330	R-EU_0204/5
R10	330	R-EU_0204/5
R11	680	R-EU_0204/5
R12	10k	R-EU $0204/5$
R13	680	R-EU = 0204/5
R14	10k	R-EU = 0204/5
R15	680	R-EU = 0204/5
R16	10k	$R-EU_0204/5$
R17	680	R-EU = 0204/5
R18	10k	$\frac{-}{\text{R-EU}} \frac{-}{0204/5}$
R19	680	$\frac{-}{\text{R-EU}} \frac{-}{0204/5}$
R20	10k	R-EU 0204/5
	TL32PO	SWITCH
ST1	STM32F103C8	BLUE PILL
TB66121	TB6612FNG	TB6612FNG
	l .	

Tabela 10: Zestawienie komponentów

5 Podsumowanie

W końcowej fazie pracy nad projektem pojawił się problem, którego nie udało się nam rozwiązać. Jeden z silników ma zdecydowanie mniejszą moc niż drugi, co najprawdopodobniej jest wadą samego silnika. Przy ustawianiu tego samego wypełnienia do sterowania jednym i drugim silnikiem jest widoczna różnica w prędkości obrotu kół nawet jeżeli robot jest w powietrzu. Moc na wadliwym silniku jest na tyle mała, że nie jest on w stanie sam ruszyć robota (drugi silnik nie ma z tym najmniejszych problemów) przez co niemożliwe jest wysterowanie torem jazdy tak, aby podążał po linii, ponieważ robot zatrzymuje się w momencie kiedy korekcji toru jazdy musi dokonać wspomniany silnik.

Resztę projektu uznać można za udaną. Układ zasilający dobrze spełnia swoją rolę, dobrze działają pomiary czujników odbiciowych, sprawny silnik poprawnie reaguje na ustawienie linii, co razem z przeprowadzonymi przez nas testami sprawdzającymi wartości wypełnienia PWM w poszczególnych przypadkach ułożenia linii pozwala stwierdzić, że sterowanie również jest napisane poprawnie oraz przypuszczać, że przy wymianie silnika linefollower działałby w całości tak jak powinien.

Literatura

- [1] STMicroelectronics. LD117 Datasheet. 2013.
- [2] STMicroelectronics. RM0008 Reference manual STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx advanced Arm R -based 32-bit MCUs. 2018.
- [3] TI. LM7805 Datasheet. Maj 2003.
- [4] Toshiba. TB6612FNG Datasheet. 2018.
- [5] Vishay. CNY70 Datasheet. 2012.