Supplementary Material for "Optimal Electric Ship-to-Grid Dispatch Considering Electrochemical-Thermal-Coupled Battery Cell Constraints of Thermal and Voltage Limits"

Chao Lei, Member, IEEE, and Y. Christine Chen, Member, IEEE

I. DERIVATIONS OF (4A)

Substitute (1) into (2) and rearrange the resultant to yield

$$\widehat{T}_{i,j+1}^t = \left(1 - \frac{h_{c,i} A_{s,i} \Delta h}{m_i C_{p,i}}\right) T_{i,j}^t + \frac{\Delta h}{m_i C_{p,i}} (\epsilon H_{e,i}^{t+\Delta t} + h_{c,i} A_{s,i} T_{\text{amb}}), \quad \text{(I-1)}$$

where the variation of time-varying $H^t_{e,i}$ between time t and $t+\Delta t$ can be approximated by $\epsilon H^{t+\Delta t}_{e,i}$ with the constant coefficient ϵ set to 0.78. Further, substitute (1) into the corrector step in (3) to get

$$T_{i,j+1}^{t} = T_{i,j}^{t} + \frac{\Delta h}{2m_{i}C_{p,i}} \left(2\epsilon H_{e,i}^{t+\Delta t} + h_{c,i}A_{s,i}(2T_{\text{amb}} - T_{i,j}^{t} - \widehat{T}_{i,j+1}^{t})\right), \quad (\text{I-2})$$

Next, substitute (I-1) into (I-2) to get

$$T_{i,j+1}^t = \omega_1 T_{i,j}^t + \omega_2 H_{e,i}^{t+\Delta t} + \omega_3, \quad j = 0, 1, 2, ..., n-1, \quad \text{(I-3)}$$

with ω_1 , ω_2 , and ω_3 as expressed in (4b)–(4d), respectively. The recurrence relation in (I-3) can be evaluated in closed form as

$$T_i^{t+\Delta t} = \omega_1^n T_i^t + \frac{1 - \omega_1^{n-1}}{1 - \omega_1} (\omega_2 H_{e,i}^{t+\Delta t} + \omega_3), \tag{I-4}$$

with boundary conditions $T_i^t = T_{i,0}^t$ and $T_i^{t+\Delta t} = T_{i,n}^t$.

II. ERROR DISCUSSION FOR THERMAL CONSTRAINTS

The cell temperature error comes from the approximation of of $H_{e,i}^t$ in (2a). We plot the cell temperatures $T_i^{t+\Delta t}$ with respect to S_i^t and $p_{c,i}^t$ or $p_{d,i}^t$ from the PDE solver and our proposed discretized temperature equation (2a), where the cell temperature in the end of time period t is $T_i^t=27^{\circ}\mathrm{C}$ over $\Delta t=15\mathrm{min}$ in Fig.1(a) and (b). In Fig.1(a), the approximate cell temperature $T_i^{t+\Delta t}$ is active on the grey plane when $(S_i^t,p_{c,i}^t)$ is below the cut lines AB and CD, otherwise it is on the light red plane. For Fig.1(b), the approximate cell temperature $T_i^{t+\Delta t}$ is the intersection of two planes. It is clear that the approximate cell temperatures $T_i^{t+\Delta t}$ by (2a) is very close to the cell temperature surface by the PDE solver in two sub-figures. The maximum errors between cell temperatures by the PDE solver and the approximate temperatures in charging and discharging modes are less than 1.2°C and 1.8°C, which can be acceptable for the S2G dispatch problem.

Fig. 1. Estimation of cell temperature T_i^{t+1} : (a) charge; (b) discharge.

III. PARAMETERS FOR HEAT ESTIMATION AND ELECTROCHEMICAL KINETICS

In this study, the BESS in ES $_i$ consists of $N_i=41~{\rm LiFePO_4}$ battery modules arranged in series configuration, each with a capacity of 306.4 kWh. We select each battery cell capacity $I_{b,i}=314~{\rm Ah}$, nominal voltage $v_{{\rm flat},i}=3.4~{\rm V}$ with the operating voltage ranging from 2.5 V to 3.65 V, and current rate $C^t_{r,i}\in[0,\overline{C}_{r,i}]$ and $\overline{C}_{r,i}=1.5.$ For a battery cell, $\overline{p}_i\approx3.65\cdot0.314\cdot1.5\approx1.7~{\rm kW}$ and $\overline{v}=3.65~{\rm V}$ for a battery cell. Regarding thermal parameters, each battery cell has mass $m_i=5.529~{\rm kg}$ and heat capacity $C_{p,i}=1417.2~{\rm J/(kg\cdot K)}.$ The forced convection air cooling with four fans is available from four side openings of a battery cell with surface area $A_{{\rm s},i}=0.1271~{\rm m^2},$ and the heat transfer coefficient is $h_{c,i}=5.0~{\rm W/(m^2\cdot K)}.$ Other parameters for electrochemical kinetics are given in Tab.I (See next page).

TABLE I PARAMETERS FOR ELECTROCHEMICAL KINETICS

Parameter	Negative electrode	Separator	Positive electrode
electrode plate area (m^2)	0.163	0.163	0.163
electrode thickness (m)	$78 \cdot 10^{-6}$	$20 \cdot 10^{-6}$	$45 \cdot 10^{-6}$
Li^+ diffusion coefficient (m^2/s)	$3.9 \cdot 10^{-5}$	-	$1.8 \cdot 10^{-8}$
active electrode volume fraction (%)	0.6	-	0.6
electrolyte phase volume fraction (%)	0.3	-	0.3
max solid phase concentration (mol/m^3)	31507	-	49000
particle radius (m)	$6 \cdot 10^{-6}$	-	$5 \cdot 10^{-6}$
reaction rate efficiency (A/m^2)	$9.77 \cdot 10^{-2}$	-	$1.19 \cdot 10^{-2}$
exchange current density of side reaction (A/m^2)	10	-	10
initial electrolyte concentration (mol/m^3)	$1.25 \cdot 10^{4}$	$1.25 \cdot 10^{4}$	$1.25 \cdot 10^{4}$
Binder volume fraction(%)	0.1	-	0.1
Separator volume fraction(%)	-	0.4	-