Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

October 14, 2017

Format: $characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects))$ TODO define || abs cross-product and other missing refs TODO define **args for comparison callbacks, predicate args, norms and or placeholders TODO link thms?

1 Mathematical Analysis

1.0.1 Formal Logic

$statement(s,(RegEx)) \Longleftrightarrow well\text{-}formedString(s,())$	(1)
$propositionig((p,t),()ig) \Longleftrightarrow \Big(statementig(p,()ig)\Big) \land$	
$(t = eval(p)) \wedge$	
$(t = true \underline{\lor} t = false)$	(2)
$operator\bigg(o,\Big((p)_{n\in\mathbb{N}}\Big)\bigg) \Longleftrightarrow proposition\bigg(o\Big((p)_{n\in\mathbb{N}}\Big),()\bigg)$	(3)
$operator \big(\neg, (p_1) \big) \Longleftrightarrow \Big(proposition \big((p_1, true), () \big) \Longrightarrow \big((\neg p_1, false), () \big) \Big) \land$	
$\Big(propositionig((p_1,false),()ig)\Longrightarrowig((\lnot p_1,true),()ig)\Big)$	
/	(4)
# an operator takes in propositions and returns a proposition	(4)
$\begin{array}{c} \textit{operator}(\neg) \Longleftrightarrow \textbf{NOT} \; ; \; \textit{operator}(\lor) \Longleftrightarrow \textbf{OR} \; ; \; \textit{operator}(\land) \Longleftrightarrow \textbf{AND} \; ; \; \textit{operator}(\stackrel{\lor}{\smile}) \Longleftrightarrow \textbf{XOR} \\ \textit{operator}(\Longrightarrow) \Longleftrightarrow \textbf{IF} \; ; \; \textit{operator}(\Longleftrightarrow) \Longleftrightarrow \textbf{OIF} \; ; \; \textit{operator}(\Longleftrightarrow) \Longleftrightarrow \textbf{IFF} \end{array}$	(5)
$\begin{array}{c} proposition \big((false \Longrightarrow true), true, ()\big) \land proposition \big((false \Longrightarrow false), true, ()\big) \\ \# \ truths \ based \ on \ a \ false \ premise \ is \ not \ false; \ ex \ falso \ quodlibet \ principle \end{array}$	(6)
$(\text{THM}): (a \Longrightarrow b \Longrightarrow c) \Longleftrightarrow (a \Longrightarrow (b \Longrightarrow c)) \Longleftrightarrow ((a \land b) \Longrightarrow c)$	(7)
$predicate(P,(V)) \Longleftrightarrow \forall_{v \in V} \left(proposition((P(v),t),())\right)$	(8)
$0thOrderLogicig(P,()ig) & \iff propositionig((P,t),()ig) \ & \# \ ext{individual proposition}$	(9)
$1stOrderLogic\big(P,(V)\big) \Longleftrightarrow \bigg(\forall_{v \in V} \Big(0thOrderLogic\big(v,()\big)\Big)\bigg) \land$	

$\bigg(\forall_{v\in V}\bigg(proposition\Big(\big(P(v),t\big),()\Big)\bigg)\bigg)$ # propositions defined over a set of the lower order logical statements	(10)
$\begin{aligned} quantifier\big(q,(p,V)\big) &\Longleftrightarrow \Big(predicate\big(p,(V)\big)\Big) \wedge \\ & \left(proposition\Big(\big(q(p),t\big),()\Big) \right) \\ & \# \text{ a quantifier takes in a predicate and returns a proposition} \end{aligned}$	(11)
$\begin{aligned} \textit{quantifier} \big(\forall, (p, V) \big) &\Longleftrightarrow \textit{proposition} \bigg(\Big(\land_{v \in V} \big(p(v) \big), t \Big), () \Big) \\ & \# \text{ universal quantifier} \end{aligned}$	(12)
$\begin{aligned} quantifier\big(\exists,(p,V)\big) &\Longleftrightarrow proposition\bigg(\Big(\vee_{v\in V}\big(p(v)\big),t\Big),()\Big) \\ &\# \text{ existential quantifier} \end{aligned}$	(13)
$ \frac{quantifier\big(\exists!,(p,V)\big)}{\Longleftrightarrow} \exists_{x\in V} \bigg(P(x) \land \neg \Big(\exists_{y\in V\setminus \{x\}} \big(P(y)\big)\Big) \bigg) $ # uniqueness quantifier	(14)
$(\operatorname{THM}): \forall_x p(x) \Longleftrightarrow \neg \exists_x \neg p(x)$ $\# \text{ De Morgan's law}$	(15)
$(\text{THM}): \forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg \big(\forall_x p(x,y)\big) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable	(16)
======== N O T = U P D A T E D ========	(17)
proof=truths derived from a finite number of axioms and deductions	(18)
elementary arithmetics=system with substitutions, and some notion of addition, multiplication, and prime nuumbers for encoding metamathematics	(19)
Gödel theorem \Longrightarrow axiomatic systems equivalent in power to elementary mathematics either has unprovable statements or has contradictions	(20)
$sequenceSet((A)_{\mathbb{N}},(A)) \Longleftrightarrow (Amapinputn)((A)_{\mathbb{N}} = \{A(1),A(2),A(3),\ldots\})$	(21)
TODO: define union, intersection, complement, etc.	(22)
======== N O T = U P D A T E D ========	(23)

1.1 Axiomatic Set Theory

======== N O T = U P D A T E D ========	(24)
ZFC set theory=standard form of axiomatic set theory	(25)
$A \subseteq B = \forall_x x \in A \Longrightarrow x \in B$	(26)
$(A=B)=A\subseteq B\land B\subseteq A$	(27)
$\in \mathbf{basis} \Longrightarrow \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(28)
\in and sets works following the 9 ZFC axioms:	(29)
$\forall_x \forall_y \big(x \in y \veebar \neg (x \in y)\big) \ \# \ \mathrm{E} : \in \mathrm{is} \ \mathrm{only} \ \mathrm{a} \ \mathrm{proposition} \ \mathrm{on} \ \mathrm{sets}$	(30)
$\exists_{\emptyset} \forall_y \neg y \in \emptyset \ \# \ \mathrm{E}$: existence of empty set	(31)
$\forall_x\forall_y\exists_m\forall_uu\!\in\!m\Longleftrightarrow u\!=\!x\!\vee\!u\!=\!y\;\#\;\text{C: pair set construction}$	(32)
$\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \Longrightarrow y \in u) \ \# \ \text{C: union set construction}$	(33)
$x\!=\!\{\{a\},\{b\}\}\ \#\ { m from\ the\ pair\ set\ axiom}$	(34)
$u = \cup x = \cup \{\{a\}, \{b\}\} = \{a, b\}$	(35)
$\forall_x \exists !_y R(x,y) \ \# \ ext{functional relation} \ R$	(36)
$\exists_i \forall_x \exists !_y R(x,y) \Longrightarrow y \in i \ \# \ \text{C: image } i \text{ of set } m \text{ under a relation } R \text{ is assumed to be a set}$ $\Longrightarrow \{y \in m \mid P(y)\} \ \# \text{ Restricted Comprehension} \Longrightarrow \{y \mid P(y)\} \ \# \text{ Universal Comprehension}$	(37)
$\forall_{x \in m} P(x) = \forall_x \big(x \in m \Longrightarrow P(x) \big) \text{ $\#$ ignores out of scope} \neq \forall_x \big(x \in m \land P(x) \big) \text{ $\#$ restricts entirety}$	(38)
$\forall_m \forall_n \exists_{\mathcal{P}(m)} \big(n \subseteq m \Longrightarrow n \subseteq \mathcal{P}(m) \big) \ \# \ \text{C: existence of power set}$	(39)
$\exists_{I} \Big(\emptyset \in I \land \forall_{x \in I} \big(\{x\} \in I\big)\Big) \ \# \text{ I: axiom of infinity } ; I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \Longrightarrow \mathbb{N} \text{ is a set}$	(40)
$\forall_x \Big(\big(\emptyset \notin x \land x \cap x' = \emptyset \big) \Longrightarrow \exists_y (\mathbf{set of each e} \in x) \Big) \ \# \ \mathrm{C: axiom of choice}$	(41)
$\forall_x x \neq \emptyset \Longrightarrow x \notin x \# F$: axiom of foundation covers further paradoxes	(42)
======== N O T = U P D A T E D ========	(43)

1.2 Classification of sets

```
space((set, structure), ()) \iff structure(set)
                                                        # a space a set equipped with some structure
# various spaces can be studied through structure preserving maps between those spaces
                                                                                                                      (44)
                                                          map(\phi, (A, B)) \iff (\forall_{a \in A} \exists !_{b \in B} (\phi(a, b))) \lor
                                                                                     (\forall_{a \in A} \exists !_{b \in B} (b = \phi(a)))
                                               \# maps elements of a set to elements of another set
                                                                                                                      (45)
                                                          domain(A, (\phi, A, B)) \iff (map(\phi, (A, B)))
                                                                                                                      (46)
                                                       codomain \big(B, (\phi, A, B)\big) \Longleftrightarrow \Big(map \big(\phi, (A, B)\big)\Big)
                                                                                                                      (47)
                                          image(B,(A,q,M,N)) \iff (map(q,(M,N)) \land A \subseteq M) \land
                                                                           \left(B = \{ n \in N \mid \exists_{a \in A} (q(a) = n) \} \right)
                                                                                                                      (48)
                                      preimage(A, (B, q, M, N)) \iff (map(q, (M, N)) \land B \subseteq N) \land
                                                                         \left(A = \{ m \in M \mid \exists_{b \in B} (b = q(m)) \} \right)
                                                                                                                      (49)
                                                       injection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                             \forall_{u,v\in M} (q(u)=q(v) \Longrightarrow u=v)
                                                                          \# every m has at most 1 image
                                                                                                                      (50)
                                                      surjection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                                      \forall_{n \in N} \exists_{m \in M} (n = q(m))
                                                                       \# every n has at least 1 preimage
                                                                                                                      (51)
                                                 bijection\big(q,(M,N)\big) \Longleftrightarrow \Big(injection\big(q,(M,N)\big)\Big) \land
                                                                                   (surjection(q,(M,N)))
                                                         \# every unique m corresponds to a unique n
                                                                                                                      (52)
                                         isomorphicSets((A,B),()) \iff \exists_{\phi}(bijection(\phi,(A,B)))
                                                                                                                      (53)
                                        infiniteSet(S,()) \iff \exists_{T \subset S} (isomorphicSets((T,S),()))
                                                                                                                      (54)
                                             finiteSet(S,()) \iff (\neg infiniteSet(S,())) \lor (|S| \in \mathbb{N})
                                                                                                                      (55)
         countablyInfinite(S,()) \iff (infiniteSet(S,())) \land (isomorphicSets((S,\mathbb{N}),()))
                                                                                                                      (56)
```

 $uncountably Infinite(S,()) \iff \left(infiniteSet(S,())\right) \land \left(\neg isomorphicSets((S,\mathbb{N}),())\right)$ $inverseMap(q^{-1},(q,M,N)) \iff (bijection(q,(M,N))) \land$ $\left(map\left(q^{-1},(N,M)\right)\right)\wedge$ $\left(\forall_{n\in\mathbb{N}}\exists!_{m\in\mathbb{M}}\left(q(m)=n\Longrightarrow q^{-1}(n)=m\right)\right)$ (58) $mapComposition(\phi \circ \psi, (\phi, \psi, A, B, C)) \iff map(\psi, (A, B)) \land map(\phi, (B, C)) \land$ $\forall_{a \in A} \Big(\phi \circ \psi(a) = \phi(\psi(a)) \Big)$ (59) $equivalence Relation (\sim (\$1,\$2),(M)) \iff (\forall_{m \in M} (m \sim m)) \land$ $(\forall_{m,n\in M}(m\sim n\Longrightarrow n\sim m))\land$ $(\forall_{m,n,p\in M}(m \sim n \land n \sim p \Longrightarrow m \sim p))$ # behaves as equivalences should (60) $equivalenceClass([m]_{\sim},(m,M,\sim)) \iff [m]_{\sim} = \{n \in M \mid n \sim m\}$ # set of elements satisfying the equivalence relation with m(61) $(THM): a \in [m]_{\sim} \Longrightarrow [a]_{\sim} = [m]_{\sim}; [m]_{\sim} = [n]_{\sim} \veebar [m]_{\sim} \cap [n]_{\sim} = \emptyset$

 $quotientSet(M/\sim,(M,\sim)) \iff M/\sim = \{equivalenceClass([m]_\sim,(m,M,\sim)) \in \mathcal{P}(M) \mid m \in M\}$ # set of all equivalence classes (63)

(THM): axiom of choice $\Longrightarrow \forall_{[m]_{\sim} \in M/\sim} \exists_r (r \in [m]_{\sim})$ # well-defined maps may be defined in terms of chosen representative elements r (65)

equivalence class properties

(62)

1.3 Construction of number sets

 $S^0 = id ; n \in \mathbb{N}^* \Longrightarrow S^n = S \circ S^{P(n)}$ (71)addition = $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} = +(m,n) = m+n = S^n(m)$ (72) $S^x = id = S^0 \Longrightarrow x = additive identity = 0$ (73) $S^n(x) = 0 \Longrightarrow x = \text{additive inverse} \notin \mathbb{N} \# \text{ git gud smh} - -$ (74) $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$, s.t.: $(m,n)\sim(p,q)\iff m+q=p+n \# \text{ span } \mathbb{Z} \text{ using differences then group equal differences}$ (75) $\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$ (76) $+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \ \#$ well-defined and consistent (77) $\operatorname{multiplication} \dots M^x = id \Longrightarrow x = \operatorname{multiplicative} \operatorname{identity} = 1 \dots \operatorname{multiplicative} \operatorname{inverse} \notin \mathbb{N}$ (78) $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*)/\sim$, s.t.: $(x,y) \sim (u,v) \iff x \cdot v = u \cdot y$ (79)

 $\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{Q}} q \rightarrow [(q, 1)] ; \dots \{x \mid x^2 = 2\} \notin \mathbb{Q}$ (80)

 $\mathbb{R} = \mathbf{almost\ homomorphisms\ on\ } \mathbb{Z}/\!\sim \ \# \ \mathrm{http://blog.sigfpe.com/2006/05/defining-reals.html} \tag{81}$

1.4 Topology

 $topology(\mathcal{O},(M)) \Longleftrightarrow (\mathcal{O} \subseteq \mathcal{P}(M)) \land \\ (\emptyset, M \in \mathcal{O}) \land \\ ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \Longrightarrow \cap F \in \mathcal{O}) \land \\ (C \subseteq \mathcal{O} \Longrightarrow \cup C \in \mathcal{O}) \\ \text{$\#$ topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc.} \\ \text{$\#$ arbitrary unions of open sets always result in an open set} \\ \text{$\#$ open sets do not contain their boundaries and infinite intersections of open sets may approach and} \\ \text{$\#$ induce boundaries resulting in a closed set (83)} \\ \text{$topologicalSpace}((M,\mathcal{O}),()) \Longleftrightarrow topology(\mathcal{O},(M)) \ (84)} \\ \text{$open(S,(M,\mathcal{O})) \Longleftrightarrow (topologicalSpace((M,\mathcal{O}),())) \land \\ (S \subseteq M) \land (S \in \mathcal{O})} \\ \text{$\#$ an open set do not contains its own boundaries} \ (85)}$

 $closed\big(S,(M,\mathcal{O})\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ (S\subseteq M) \land \big(S\in\mathcal{P}(M)\setminus\mathcal{O}\big)$ # a closed set contains the boundaries an open set (86)

$$clopen(S, (M, \mathcal{O})) \iff (closed(S, (M, \mathcal{O}))) \land (open(S, (M, \mathcal{O})))$$
 (87)

 $neighborhood(U,(a,\mathcal{O})) \iff (a \in U \in \mathcal{O})$ # another name for open set containing a (88)

$$M = \{a, b, c, d\} \land \mathcal{O} = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\} \Longrightarrow$$

$$\left(open(X, (M, \mathcal{O})) \iff X = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\}\right) \land$$

$$\left(closed(Y, (M, \mathcal{O})) \iff Y = \{\emptyset, \{a, b, d\}, \{c, d\}, \{a, b\}, \{d\}, M\}\right) \land$$

$$\left(clopen(Z, (M, \mathcal{O})) \iff Z = \{\emptyset, \{a, b\}, \{c, d\}, M\}\right) \tag{89}$$

$$chaoticTopology(M) = \{0, M\}$$
; $discreteTopology = \mathcal{P}(M)$ (90)

1.5 Induced topology

$$metric\Big(d\big(\$1,\$2\big),(M)\Big) \Longleftrightarrow \left(map\Big(d,\Big(M\times M,\mathbb{R}_0^+\Big)\Big)\right)$$

$$\Big(\forall_{x,y\in M}\big(d(x,y)=d(y,x)\big)\Big) \wedge$$

$$\Big(\forall_{x,y\in M}\big(d(x,y)=0\Longleftrightarrow x=y\big)\Big) \wedge$$

$$\Big(\forall_{x,y,z}\Big(\big(d(x,z)\leq d(x,y)+d(y,z)\big)\Big)\Big)$$
behaves as distances should (91)

$$metricSpace((M,d),()) \iff metric(d,(M))$$
 (92)

$$openBall \big(B, (r, p, M, d)\big) \Longleftrightarrow \Big(metricSpace\big((M, d), ()\big)\Big) \land \big(r \in \mathbb{R}^+, p \in M\big) \land \big(B = \{q \in M \mid d(p, q) < r\}\big)$$
(93)

$$\begin{split} & metricTopology\big(\mathcal{O},(M,d)\big) \Longleftrightarrow \Big(metricSpace\big((M,d),()\big)\Big) \land \\ & \Big(\mathcal{O} = \{U \in \mathcal{P}(M) \,|\, \forall_{p \in U} \exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \land B \subseteq U\Big)\}\Big) \end{split}$$

every point in the neighborhood has some open ball that is fully enclosed in the neighborhood (94)

$$metricTopologicalSpace((M, \mathcal{O}, d), ()) \iff metricTopology(\mathcal{O}, (M, d))$$
 (95)

$$limitPoint(p,(S,M,d)) \iff (S \subseteq M) \land \forall_{r \in \mathbb{R}^+} \Big(openBall(B,(r,p,M,d)) \cap S \neq \emptyset\Big)$$
every open ball centered at p contains some intersection with S (96)

$$interiorPoint\big(p,(S,M,d)\big) \Longleftrightarrow (S \subseteq M) \land \bigg(\exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \subseteq S \Big) \bigg)$$

```
# there is an open ball centered at p that is fully enclosed in S
                                                                                                                                                                                                                                                                                                                                                                                                  (97)
                                                                                                                   closure(\bar{S},(S,M,d)) \iff \bar{S} = S \cup \{limitPoint(p,(S,M,d)) | p \in M\}
                                                                                                                                                                                                                                                                                                                                                                                                  (98)
                                                                                                             dense\big(S,(M,d)\big) \Longleftrightarrow (S \subseteq M) \land \bigg( \forall_{p \in M} \Big( p \in closure\big(\bar{S},(S,M,d)\big) \Big) \bigg)
                                                                                                                                                                \# every of point in M is a point or a limit point of S
                                                                                                                                                                                                                                                                                                                                                                                                  (99)
                                                                                                                                                         eucD(d,(n)) \iff (\forall_{i \in \mathbb{N} \land i \leq n} (x_i \in \mathbb{R})) \land \left(d = \sqrt[2]{\sum_{i=1}^n x_i^2}\right)
                                                                                                                                                                                                                                                                                                                                                                                             (100)
                                                                                                                                               metricTopology \Big( standardTopology, \Big( \mathbb{R}^n, eucD \big( d, (n) \big) \Big) \Big)
                                                                                                                          ==== N O T = U P D A T E D =======
                                                         L1: \forall_{p \in U = \emptyset}(...) \Longrightarrow \forall_p ((p \in \emptyset) \Longrightarrow ...) \Longrightarrow \forall_p ((\mathbf{False}) \Longrightarrow ...) \Longrightarrow \emptyset \in \mathcal{O}_{standard}
                                                                                                                                                                                        L2: \forall_{p \in \mathbb{R}^n} B(r, p, \mathbb{R}^n, d) \subseteq \mathbb{R}^n \Longrightarrow M \in \mathcal{O}_{standard}
                                                                          L4: C \subseteq \mathcal{O}_{standard} \Longrightarrow \forall_{U \in C} \forall_{p \in U} \exists_{r \in \mathbb{R}^+} (B_r(p) \subseteq U \subseteq \cup C) \Longrightarrow \cup C \in \mathcal{O}_{standard}
                                                                                                                                                         L3: U, V \in \mathcal{O}_{standard} \Longrightarrow p \in U \cap V \Longrightarrow p \in U \land p \in V \Longrightarrow
                                                                                                                                                                                                      \exists_{r \in \mathbb{R}^+} B(r, p, \mathbb{R}^n, d) \land \exists_{s \in \mathbb{R}^+} B(s, p, \mathbb{R}^n, d) \Longrightarrow
                                                                                                                                       B(min(r,s), p, \mathbb{R}^n, eucD) \subseteq U \land B(min(r,s), q, \mathbb{R}^n, d) \subseteq V \Longrightarrow
                                                                                                                                                             B(min(r,s), p, \mathbb{R}^n, eucD) \in U \cap V \Longrightarrow U \cap V \in \mathcal{O}_{standard}
                                                                                                                                                                                                                                                                     # natural topology for \mathbb{R}^d
                                                                                                                                                         \# could fail on infinite sets since min could approach 0
                                                                                                                                                   = N O T = U P D A T E D =========
                                                                                                                                                                                                                                                                                                                                                                                             (101)
                 subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N)) \iff topology(\mathcal{O},(M)) \land (N \subseteq M) \land (\mathcal{O}|_{N} = \{U \cap N \mid U \in \mathcal{O}\})
                                                                                                                                                                                                                                                              \# crops open sets outside N
                                                                                                                                                                                                                                                                                                                                                                                             (102)
                                                                                                          (THM): subsetTopology(\mathcal{O}|_N, (M, \mathcal{O}, N)) \land topology(\mathcal{O}|_N, (N)) \Leftarrow
                                                                                                           ===== N O T = U P D A T E D ========
                                                                                                                                                                                              L1: \emptyset \in \mathcal{O} \Longrightarrow U = \emptyset \Longrightarrow \emptyset \cap N = \emptyset \Longrightarrow \emptyset \in \mathcal{O}|_{N}
                                                                                                                                                                         L2: M \in \mathcal{O} \Longrightarrow U = M \Longrightarrow M \cap N = N \Longrightarrow N \in \mathcal{O}|_{N}
                                       L3: S, T \in \mathcal{O}|_N \Longrightarrow \exists_{U \in \mathcal{O}} (S = U \cap N) \land \exists_{V \in \mathcal{O}} (T = V \cap N) \Longrightarrow S \cap T = (U \cap N) \cap (V \cap N)
                                                                                                                                                                                                             =(U\cap V)\cap N\wedge U\cap V\in\mathcal{O}\Longrightarrow S\cap T\in\mathcal{O}|_{N}
                                                                                                                                                                                                                                                                   L4: TODO: EXERCISE
                                                                                                                    (103)
productTopology\Big(\mathcal{O}_{A\times B}, \big((A,\mathcal{O}_A),(B,\mathcal{O}_B)\big)\Big) \Longleftrightarrow \Big(topology\big(\mathcal{O}_A,(A)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big
                                                                                                                                                       (\mathcal{O}_{A\times B} = \{(a,b)\in A\times B \mid \exists_S(a\in S\in\mathcal{O}_A)\exists_T(b\in T\in\mathcal{O}_B)\})
                                                                                                                                                                                                                                                  # open in cross iff open in each
                                                                                                                                                                                                                                                                                                                                                                                             (104)
```

1.6 Convergence

$$sequence (q,(M)) \Longleftrightarrow map(q,(\mathbb{N},M)) \quad (105)$$

$$sequence Converges To((q,a),(M,\mathcal{O})) \Longleftrightarrow (topological Space((M,\mathcal{O}),())) \land (sequence(q,(M))) \land (a \in M) \land (\forall_{U \in \mathcal{O}|a \in U} \exists_{N \in \mathbb{N}} \forall_{n > N} (q(n) \in U))$$
each neighborhood of a has a tail-end sequence that does not map to outside points (106)

(THM): convergence generalizes to: the sequence $q: \mathbb{N} \to \mathbb{R}^d$ converges against $a \in \mathbb{R}^d$ in \mathcal{O}_S if:
$$\forall_{r > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} (||q(n) - a|| < \epsilon) \text{ $\#$ distance based convergence} \qquad (107)$$

1.7 Continuity

$$\begin{array}{c} continuous(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}_{M}),()\big)\Big) \land \\ \\ \Big(topologicalSpace\big((N,\mathcal{O}_{N}),()\big)\Big) \land \Big(\forall_{V \in \mathcal{O}_{N}}\Big(preimage\big(A,(V,\phi,M,N)\big) \in \mathcal{O}_{M}\Big)\Big) \\ \\ \# \ preimage \ of \ open \ sets \ are \ open \end{array}$$

$$\begin{array}{c} homeomorphism(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})) \Longleftrightarrow \Big(inverseMap\Big(\phi^{-1},(\phi,M,N)\Big)\Big) \\ \\ \Big(continuous\big(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})\big)\Big) \land \Big(continuous\Big(\phi^{-1},(N,\mathcal{O}_{N},M,\mathcal{O}_{M})\big)\Big) \\ \\ \# \ structure \ preserving \ maps \ in \ topology, \ ability \ to \ share \ topological \ properties \end{array}$$

$$\begin{array}{c} isomorphicTopologicalSpace\Big(\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big),(\big)\Big) \Longleftrightarrow \\ \\ \exists_{\phi}\Big(homeomorphism\big(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})\big)\Big) \end{array}$$

$$(110)$$

1.8 Separation

$$T0Separate \big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y} \exists_{U\in\mathcal{O}}\Big(\big(x\in U\land y\notin U\big)\lor \big(y\in U\land x\notin U\big)\Big)\Big) \\ \# \ \text{each pair of points has a neighborhood s.t. one is inside and the other is outside} \ \ (111)$$

$$T1Separate\big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\Big(\big(x\in U\land y\notin U\big)\land \big(y\in V\land x\notin V\big)\Big)\Big) \\ \# \ \text{every point has a neighborhood that does not contain another point} \ \ \ (112)$$

$$T2Separate\big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\big(U\cap V=\emptyset\big)\Big) \\ \# \ \text{every point has a neighborhood that does not intersect with a nhbhd of another point - Hausdorff space} \ \ \ (113)$$

1.9 Compactness

$$openCover(C,(M,\mathcal{O})) \iff \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land (C \subseteq \mathcal{O}) \land (\cup C = M)$$
collection of open sets whose elements cover the entire space (115)

$$finiteSubcover\Big(\widetilde{C},(C,M,\mathcal{O})\Big) \Longleftrightarrow \Big(\widetilde{C} \subseteq C\Big) \land \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \land \\ \Big(openCover\big(\widetilde{C},(M,\mathcal{O})\big)\Big) \land \Big(finiteSet\big(\widetilde{C},()\big)\Big) \\ \# \text{ finite subset of a cover that is also a cover}$$
 (116)

$$compact((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land$$

$$\Big(\forall_{C\subseteq\mathcal{O}}\Big(openCover\big(C,(M,\mathcal{O})\big) \Longrightarrow \exists_{\widetilde{C}\subseteq C}\Big(finiteSubcover\big(\widetilde{C},(C,M,\mathcal{O})\big)\Big)\Big)\Big)$$
every covering of the space is represented by a finite number of nhbhds (117)

$$compactSubset(N,(M,\mathcal{O}_d,d)) \Longleftrightarrow \left(compact((M,\mathcal{O}),())\right) \wedge \left(subsetTopology(\mathcal{O}|_N,(M,\mathcal{O},N))\right)$$
(118)

$$bounded(N,(M,d)) \iff \left(metricSpace((M,d),())\right) \land (N \subseteq M) \land$$

$$\left(\exists_{r \in \mathbb{R}^+} \forall_{p,q \in n} (d(p,q) < r)\right)$$
(119)

$$(\text{THM}) \text{ HeineBorel: } \underbrace{metricTopologicalSpace} \big((M, \mathcal{O}_d, d), () \big) \Longrightarrow \\ \forall_{S \in \mathcal{P}(M)} \bigg(\Big(\underbrace{closed} \big(S, (M, \mathcal{O}_d) \big) \wedge \underbrace{bounded} \big(S, (M, \mathcal{O}_d) \big) \Big) \Longleftrightarrow \underbrace{compactSubset} \big(S, (M, \mathcal{O}_d) \big) \bigg) \\ \# \text{ when metric topologies are involved, compactness is equivalent to being closed and bounded}$$
 (120)

1.10 Paracompactness

$$\begin{aligned} openRefinement\Big(\widetilde{C},(C,M,\mathcal{O})\Big) &\Longleftrightarrow \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \wedge \Big(openCover\Big(\widetilde{C},(M,\mathcal{O})\big)\Big) \wedge \\ \Big(\forall_{\widetilde{U} \in \widetilde{C}} \exists_{U \in C} \Big(\widetilde{U} \subseteq U\Big)\Big) \end{aligned}$$

a refined cover can be constructed by removing the excess nhbhds and points that lie outside the space (121)

$$(THM): finiteSubcover \Longrightarrow openRefinement$$
 (122)

$$locallyFinite(C,(M,\mathcal{O})) \Longleftrightarrow \Big(openCover(C,(M,\mathcal{O}))\Big) \land \\ \forall_{p \in M} \exists_{U \in \mathcal{O} | p \in U} \Big(finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\},())\Big)$$

each point has a neighborhood that intersects with only finitely many sets in the cover (123)

$$paracompact((M, \mathcal{O}), ()) \iff$$

1.11 Connectedness and path-connectedness

$$connected((M,\mathcal{O}),()) \iff \left(topologicalSpace((M,\mathcal{O}),())\right) \wedge \left(\neg \exists_{A,B \in \mathcal{O} \backslash \emptyset} (A \cap B \neq \emptyset \wedge A \cup B = M)\right)$$
if there is some covering of the space that does not intersect (130)

$$(THM) : \neg connected\left(\left(\mathbb{R} \backslash \{0\}, subsetTopology(\mathcal{O}_{standard}|_{\mathbb{R} \backslash \{0\}}, (\mathbb{R}, standardTopology, \mathbb{R} \backslash \{0\})\right)\right), ()\right)$$

$$\iff \left(A = (-\infty, 0) \in \mathcal{O}_{standard}|_{\mathbb{R} \backslash \{0\}}\right) \wedge \left(B = (0, \infty) \in \mathcal{O}_{standard}|_{\mathbb{R} \backslash \{0\}}\right) \wedge \left(A \cap B = \emptyset\right) \wedge \left(A \cup B = \mathbb{R} \backslash \{0\}\right) \qquad (131)$$

$$(THM) : connected((M, \mathcal{O}), ()) \iff \forall_{S \in \mathcal{O}}\left(clopen\left(S, (M, \mathcal{O}) \implies (S = \emptyset \vee S = M)\right)\right) \qquad (132)$$

$$pathConnected((M, \mathcal{O}), ()) \iff \left(subsetTopology(\mathcal{O}_{standard}|_{[0,1]}, (\mathbb{R}, standardTopology, [0,1]))\right) \wedge \left(\forall_{p,q \in M} \exists_{\gamma}\left(continuous\left(\gamma, \left([0,1], \mathcal{O}_{standard}|_{[0,1]}, M, \mathcal{O}\right)\right) \wedge \gamma(0) = p \wedge \gamma(1) = q\right)\right) \qquad (133)$$

 $(THM): pathConnected \Longrightarrow connected$ (134)

1.12 Homotopic curve and the fundamental group

$$homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \iff (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land (\gamma(0) \Rightarrow \delta(0) \land \gamma(1) \Rightarrow \delta(1)) \land (\gamma(0) \Rightarrow \delta(1) \land \gamma(0) \Rightarrow \delta(1)) \land (\gamma(0) \Rightarrow \delta(1) \land \gamma(0) \Rightarrow \delta(1)) \land (\gamma(0) \Rightarrow \delta(1) \land (\gamma(0) \Rightarrow \delta(1)) \land (\gamma(0) \Rightarrow \delta(1) \land (\gamma(0) \Rightarrow$$

1.13 Measure theory

$$sigma Algebra(\sigma,(M)) \Leftrightarrow (M \neq \emptyset) \land (\sigma \subseteq P(M)) \land (M \in \sigma) \land (\forall A \subseteq \sigma$$

$$standardSigma(\sigma_s, ()) \iff \left(borelSigmaAlgebra\left(\sigma_s, \left(\mathbb{R}^d, standardTopology\right)\right)\right)$$
 (157)

$$lebesgueMeasure(\lambda, ()) \iff \left(measure(\lambda, (\mathbb{R}^d, standardSigma)) \right) \land$$

$$\left(\lambda \left(\times_{i=1}^d ([a_i, b_i)) \right) = \sum_{i=1}^d \left(\sqrt[2]{(a_i - b_i)^2} \right) \right)$$
natural measure for \mathbb{R}^d (158)

$$\begin{aligned} measurableMap\big(f,(M,\sigma_{M},N,\sigma_{N})\big) &\iff \Big(measurableSpace\big((M,\sigma_{M}),()\big)\Big) \wedge \\ \Big(measurableSpace\big((N,\sigma_{N}),()\big)\Big) \wedge \Big(\forall_{B \in \sigma_{N}}\Big(preimage\big(A,(B,f,M,N)\big) \in \sigma_{M}\Big)\Big) \\ & \# \text{ preimage of measurable sets are measurable} \end{aligned} \tag{159}$$

$$pushForwardMeasure(f \star \lambda_{M}, (f, M, \sigma_{M}, \mu_{M}, N, \sigma_{N})) \iff \left(measureSpace((M, \sigma_{M}, \mu_{M}), ())\right) \land \left(measurableSpace((N, \sigma_{N}), ())\right) \land \left(measurableMap(f, (M, \sigma_{M}, N, \sigma_{N}))\right) \land \left(\forall_{B \in N} \left(f \star \lambda_{M}(B) = \mu_{M} \left(preimage(A, (B, f, M, N))\right)\right)\right) \land \left(measure(f \star \lambda_{M}, (N, \sigma_{N}))\right) \right)$$
natural construction of a measure based primarily on measurable map (160)

$$nullSet\big(A,(M,\sigma,\mu)\big) \Longleftrightarrow \Big(measureSpace\big((M,\sigma,\mu),()\big)\Big) \wedge (A \in \sigma) \wedge \big(\mu(A) = 0\big) \tag{161}$$

$$almostEverywhere(p,(M,\sigma,\mu)) \Longleftrightarrow \Big(measureSpace((M,\sigma,\mu),())\Big) \wedge \Big(predicate(p,(M))\Big) \wedge \Big(\exists_{A \in \sigma} \Big(nullSet(A,(M,\sigma,\mu)) \Longrightarrow \forall_{n \in M \setminus A} \Big(p(n)\Big)\Big)\Big)$$
the predicate holds true for all points except the points in the null set (162)

1.14 Lebesque integration

$$simpleTopology(\mathcal{O}_{simple}, ()) \iff \mathcal{O}_{simple} = subsetTopology(\mathcal{O}|_{\mathbb{R}_{0}^{+}}, (\mathbb{R}, standardTopology, \mathbb{R}_{0}^{+}))$$
 (163)

$$simpleSigma(\sigma_{simple}, ()) \iff borelSigmaAlgebra(\sigma_{simple}, (\mathbb{R}_{0}^{+}, simpleTopology))$$
 (164)

$$simpleFunction\big(s,(M,\sigma)\big) \Longleftrightarrow \left(\frac{measurableMap}{s} \left(s, \left(M, \sigma, \mathbb{R}_0^+, simpleSigma \right) \right) \right) \land \\ \left(\frac{finiteSet}{s} \left(\frac{image}{s} \left(B, \left(M, s, M, \mathbb{R}_0^+ \right) \right), () \right) \right) \right)$$

if the map takes on finitely many values on \mathbb{R}_0^+ (165)

$$characteristicFunction(X_A, (A, M)) \iff (A \subseteq M) \land \begin{pmatrix} map(X_A, (M, \mathbb{R})) \end{pmatrix} \land$$

$$\begin{pmatrix} \forall_{m \in M} \begin{pmatrix} X_A(m) = \begin{pmatrix} 1 & m \in A \\ 0 & m \notin A \end{pmatrix} \end{pmatrix}$$
 (166)

$$\left(\text{THM}\right) : simpleFunction\left(s,(M,\sigma_{M})\right) \Longrightarrow \left(finiteSet\left(image\left(Z,\left(M,s,M,\mathbb{R}_{0}^{+}\right)\right),()\right)\right) \land \left(characteristicFunction\left(X_{A},(A,M)\right)\right) \land \left(\forall_{m \in M}\left(s(m) = \sum_{z \in Z} \left(z \cdot X_{preimage\left(A,\left(\{z\},s,M,\mathbb{R}_{0}^{+}\right)\right)}(m)\right)\right)\right)$$
(167)

 $exStandardSigma(\overline{\sigma_s},()) \iff \overline{\sigma_s} = \{A \subseteq \overline{\mathbb{R}} \mid A \cap R \in standardSigma\}$

ignores $\pm \infty$ to preserve the points in the domain of the measurable map (168)

$$nonNegIntegrable \big(f,(M,\sigma)\big) \Longleftrightarrow \Bigg(\frac{measurableMap}{measurableMap} \bigg(f, \bigg(M,\sigma, \overline{\mathbb{R}}, \underbrace{exStandardSigma} \bigg) \bigg) \bigg) \wedge \\ \bigg(\forall_{m \in M} \big(f(m) \geq 0\big) \bigg) \ \, (169)$$

$$nonNegIntegral\left(\int_{M}(fd\mu),(f,M,\sigma,\mu)\right) \Longleftrightarrow \left(measureSpace\left((M,\sigma,\mu),()\right)\right) \land \\ \left(measureSpace\left(\left(\overline{\mathbb{R}},exStandardSigma,lebesgueMeasure\right),()\right)\right) \land \\ \left(nonNegIntegrable(f,(M,\sigma))\right) \land \left(\int_{M}(fd\mu) = \sup(\left\{\sum_{z \in Z}\left(z \cdot \mu\left(preimage\left(A,\left(\{z\},s,M,\mathbb{R}_{0}^{+}\right)\right)\right)\right)\right) \mid \\ \forall_{m \in M}(s(m) \leq f(m)) \land simpleFunction(s,(M,\sigma)) \land finiteSet\left(image\left(Z,\left(M,s,M,\mathbb{R}_{0}^{+}\right)\right),()\right)\})) \\ \# \text{ lebesgue measure on } z \text{ reduces to } z \text{ (170)}$$

$$explicitIntegral \iff \int (f(x)\mu(dx)) = \int (fd\mu)$$
alternative notation for lebesgue integrals (171)

$$(\text{THM}): \textit{nonNegIntegral} \left(\int (fd\mu), (f, M, \sigma, \mu) \right) \wedge \textit{nonNegIntegral} \left(\int (gd\mu), (g, M, \sigma, \mu) \right) \Longrightarrow$$

$$(\text{THM}) \text{ Markov inequality: } \left(\forall_{z \in \mathbb{R}_0^+} \left(\int (fd\mu) \geq z \cdot \mu \left(\textit{preimage} \left(A, \left([z, \infty), f, M, \overline{\mathbb{R}} \right) \right) \right) \right) \right) \wedge$$

$$\left(\textit{almostEverywhere} \left(f = g, (M, \sigma, \mu) \right) \Longrightarrow \int (fd\mu) = \int (gd\mu) \right)$$

$$\left(\int (fd\mu) = 0 \Longrightarrow \textit{almostEverywhere} \left(f = 0, (M, \sigma, \mu) \right) \right) \wedge$$

$$\left(\int (fd\mu) \leq \infty \Longrightarrow \textit{almostEverywhere} \left(f < \infty, (M, \sigma, \mu) \right) \right)$$

$$(172)$$

(THM) Mono. conv.:
$$\left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \bigg(f_n, \bigg(M, \sigma, \overline{R}, exStandardSigma \bigg) \bigg) \land 0 \leq f_{n-1} \leq f_n \} \right) \land$$

$$\left(map \bigg(f, \bigg(M, \overline{\mathbb{R}} \bigg) \bigg) \right) \land \left(\forall_{m \in M} \bigg(f(m) = \sup \big(f_n(m) \mid f_n \in (f)_{\mathbb{N}} \big) \big) \right) \Longrightarrow \left(\lim_{n \to \infty} \left(\int_M (f_n d\mu) \right) = \int_M (f d\mu) \right)$$

$$\# \text{ lengths now depend on } M, \sigma \text{ and limits can be pulled in or out of an integral } (173)$$

$$(\text{THM}): nonNegIntegral} \bigg(\int (fd\mu), (f, M, \sigma, \mu) \bigg) \wedge nonNegIntegral \bigg(\int (gd\mu), (g, M, \sigma, \mu) \bigg) \Longrightarrow \\ \bigg(\forall_{\alpha \in \mathbb{R}_0^+} \bigg(\int \big((f + \alpha g) d\mu \big) = \int (fd\mu) + \alpha \int (gd\mu) \bigg) \bigg) \bigg)$$

integral acts linearly and commutes finite summations (174)

$$(\text{THM}): \left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \left(f_n, \left(M, \sigma, \overline{R}, exStandardSigma \right) \right) \land 0 \leq f_n \} \right) \Longrightarrow \left(\int \left(\left(\sum_{n=1}^{\infty} (f_n) \right) d\mu \right) = \sum_{n=1}^{\infty} \left(\int (f_n d\mu) \right) \right)$$

 $\# \sum_{n=1}^{\infty} f_n$ can be treated as $\lim_{n\to\infty} \sum_{i=1}^n f_n$ since $f_n \ge 0$ and it commutes with integral from monotone conv. (175)

$$integrable(f,(M,\sigma)) \Longleftrightarrow \left(measurableMap\Big(f,\Big(M,\sigma,\overline{\mathbb{R}},exStandardSigma\Big)\Big)\right) \land \\ \left(\forall_{m\in M}\Big(f(m)=max\big(f(m),0\big)-max\big(0,-f(m)\big)\Big)\right) \land \\ \left(measureSpace(M,\sigma,\mu) \Longrightarrow \left(\int \Big(max\big(f(m),0\big)d\mu\Big) < \infty \land \int \Big(max\big(0,-f(m)\big)d\mu\Big) < \infty \right)\right) \\ \# \text{ extra condition prevents the occurrence of the indeterminate } \infty - \infty \tag{176}$$

$$integral\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \Longleftrightarrow \left(nonNegIntegral\left(\int (f^+d\mu), \left(max(f, 0), M, \sigma, \mu\right)\right)\right) \land \left(nonNegIntegral\left(\int (f^-d\mu), \left(max(0, -f), M, \sigma, \mu\right)\right)\right) \land \left(integrable(f, (M, \sigma))\right) \land \left(\int (fd\mu) = \int (f^+d\mu) - \int (f^-d\mu)\right)$$
arbitrary integral in terms of nonnegative integrals (177)

 $(\text{THM}): \left(map(f, (M, \mathbb{C})) \right) \Longrightarrow \left(\int (fd\mu) = \int \left(Re(f)d\mu \right) - \int \left(Im(f)d\mu \right) \right) \tag{178}$

$$(\text{THM}): \operatorname{integral}\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \wedge \operatorname{integral}\left(\int (gd\mu), (g, M, \sigma, \mu)\right) \Longrightarrow \left(\operatorname{almostEverywhere}\left(f \leq g, (M, \sigma, \mu)\right) \Longrightarrow \int (fd\mu) \leq \int (gd\mu)\right) \wedge \left(\forall_{m \in M}\left(f(m), g(m), \alpha \in \mathbb{R}\right) \Longrightarrow \int \left((f + \alpha g)d\mu\right) = \int (fd\mu) + \alpha \int (gd\mu)\right)$$
(179)

1.15 Vector space and structures

$$vectorSpace ((V,+,\cdot),()) \Longleftrightarrow \Big(map \big(+, (V \times V,V) \big) \Big) \wedge \Big(map \big(\cdot, (\mathbb{R} \times V,V) \big) \Big) \wedge \\ \big(\forall_{v,w \in v} (v+w=w+v) \big) \wedge \\ \big(\forall_{v,w,x \in v} \big((v+w) + x = v + (w+x) \big) \Big) \wedge \\ \big(\exists_{\boldsymbol{o} \in V} \forall_{v \in V} (v+\boldsymbol{o} = v) \big) \wedge \\ \big(\forall_{v,v} \exists_{-v \in V} \big(v + (-v) = \boldsymbol{o} \big) \big) \wedge \\ \big(\forall_{a,b \in \mathbb{R}} \forall_{v \in V} \big(a(b \cdot v) = (ab) \cdot v \big) \Big) \wedge \\ \big(\forall_{a,b \in \mathbb{R}} \forall_{v \in V} \big((a+b) \cdot v = a \cdot v + b \cdot v \big) \Big) \wedge \\ \big(\forall_{a,b \in \mathbb{R}} \forall_{v,w \in V} \big(a \cdot (v+w) = a \cdot v + a \cdot w \big) \big) \\ \big(\forall_{a \in \mathbb{R}} \forall_{v,w \in V} \big(a \cdot (v+w) = a \cdot v + a \cdot w \big) \big) \\ \# \text{ behaves similar as vectors should i.e., additive, scalable, linear distributive}$$
 (181)

$$\begin{split} innerProduct\big(\langle\$1,\$2\rangle,(V,+,\cdot)\big) &\Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \wedge \Big(map\big(\langle\$1,\$2\rangle,(V\times V,\mathbb{R})\big)\Big) \wedge \\ &\qquad \qquad \Big(\forall_{v,w\in V}\big(\langle v,w\rangle = \langle w,v\rangle\big)\Big) \wedge \\ &\qquad \qquad \Big(\forall_{v,w,x\in V}\forall_{a,b\in\mathbb{R}}\big(\langle av+bw,x\rangle = a\langle v,x\rangle + b\langle w,x\rangle\big)\Big) \wedge \\ &\qquad \qquad \Big(\forall_{v\in V}\big(\langle v,v\rangle\big) \geq 0\Big) \wedge \Big(\forall_{v\in V}\big(\langle v,v\rangle\big) = 0 \Longleftrightarrow v = \textbf{0}\Big) \end{split}$$

the sesquilinear or 1.5 linear map inner product provides info. on distance and orthogonality (182)

$$innerProductSpace\Big((V,+,\cdot,\langle\$1,\$2\rangle),()\Big) \iff innerProduct\big(\langle\$1,\$2\rangle,(V,+,\cdot)\big)$$
 (183)

$$vectorNorm(||\$1||, (V, +, \cdot)) \iff \left(vectorSpace((V, +, \cdot), ())\right) \land \left(map(||\$1||, (V, \mathbb{R}_0^+))\right) \land \left(\forall_{v \in V} (||v|| = 0 \iff v = \mathbf{0})\right) \land \left(\forall_{v \in V} \forall_{s \in \mathbb{R}} (||sv|| = |s|||v||)\right) \land \left(\forall_{v, w \in V} (||v + w|| \le ||v|| + ||w||)\right)$$
magnitude of a point in a vector space (184)

$$normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \wedge \Big(vectorNorm\big(||\$1||,(V,+,\cdot)\big)\Big) \tag{185}$$

$$vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \land \\ (metric\Big(d\big(\$1,\$2\big),(V)\big) \lor \Big(map\Big(d,\Big(V\times V,\mathbb{R}_0^+\Big)\Big)\Big) \\ \Big(\forall_{x,y\in V} \Big(d(x,y)=d(y,x)\big)\Big) \land \\ \Big(\forall_{x,y\in V} \Big(d(x,y)=0 \Longleftrightarrow x=y\Big)\Big) \land \\ \Big(\forall_{x,y,z\in V} \Big(\Big(d(x,z)\leq d(x,y)+d(y,z)\big)\Big)\Big) \\ \# \text{ behaves as distances should} \qquad (186)$$

$$metricVectorSpace\Big(\Big(V,+,\cdot,d\big(\$1,\$2\big)\Big),()\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \land \\ \Big(vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big)\Big) \tag{187}$$

$$innerProductNorm\Big(||\$1||, (V, +, \cdot, \langle\$1, \$2\rangle)\Big) \Longleftrightarrow \Big(innerProductSpace\Big((V, +, \cdot, \langle\$1, \$2\rangle), ()\Big)\Big) \land \\ \Big(\forall_{v \in V}\Big(||v|| = \sqrt[2]{\langle v, v \rangle}\Big) \Longrightarrow vectorNorm\big(||\$1||, (V, +, \cdot)\big)\Big)$$
(188)

$$normInnerProduct\Big(\langle\$1,\$2\rangle, \big(V,+,\cdot,||\$1||\big)\Big) \Longleftrightarrow \Big(normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big)\Big) \land \\ \Big(\forall_{u,v\in V}\Big(2||u||^2+2||v||^2=||u+v||^2+||u-v||^2\Big)\Big) \land \\ \Big(\forall_{v,w\in V}\Big(\langle v,w\rangle=\frac{||v+w||^2-||v-w||^2}{4}\Big) \Longrightarrow innerProduct\Big(\langle\$1,\$2\rangle,(V,+,\cdot)\Big)\Big)$$
(189)

$$normMetric\Big(d\big(\$1,\$2\big),\big(V,+,\cdot,||\$1||\big)\Big) \Longleftrightarrow \Big(normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big)\Big) \land \\ \Big(\forall_{v,w\in V}\big(d(v,w)=||v-w||\big) \Longrightarrow vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big)\Big) \qquad (190)$$

$$metricNorm\Big(||\$1||, \Big(V, +, \cdot, d\big(\$1, \$2\big)\Big)\Big) \Longleftrightarrow \Big(metricVectorSpace\Big(\Big(V, +, \cdot, d\big(\$1, \$2\big)\Big), ()\Big)\Big) \land \\ \Big(\forall_{u,v,w\in V}\forall_{s\in\mathbb{R}}\Big(d\big(s(u+w), s(v+w)\big) = |s|d(u,v)\Big)\Big) \land \\ \Big(\forall_{v\in V}\big(||v|| = d(v, \boldsymbol{\theta})\big) \Longrightarrow vectorNorm\big(||\$1||, (V, +, \cdot)\big)\Big)$$
(191)

$$orthogonal \Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow \Big(innerProductSpace \Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), () \Big) \Big) \wedge$$

$$(v, w \in V) \wedge \big(\langle v, w \rangle = 0 \big)$$

$$\# \text{ the inner product also provides info. on orthogonality}$$
 (192)

$$normal\Big(v, \left(V, +, \cdot, \langle\$1, \$2\rangle\right)\Big) \Longleftrightarrow \Big(innerProductSpace\Big(\big(V, +, \cdot, \langle\$1, \$2\rangle\big), ()\Big)\Big) \land (v \in V) \land \big(\langle v, v \rangle = 1\big)$$

(THM) Cauchy-Schwarz inequality:
$$\forall_{v,w \in V} (\langle v, w \rangle \leq ||v|| ||w||)$$
 (194)

$$basis((b)_n, (V, +, \cdot, \cdot)) \Longleftrightarrow \left(vectorSpace((V, +, \cdot), ())\right) \land \left(\forall_{v \in V} \exists_{(a)_n \in \mathbb{R}^n} \left(v = \sum_{i=1}^n (a_i b_i)\right)\right)$$
(195)

$$orthonormal Basis \Big((b)_n, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow \Big(inner Product Space \Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), () \Big) \Big) \wedge \\ \Big(basis \big((b)_n, (V, +, \cdot) \big) \Big) \wedge \Big(\forall_{v \in (b)_n} \Big(normal \Big(v, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Big) \Big) \wedge \\ \Big(\forall_{v \in (b)_n} \forall_{w \in (b)_n} \backslash \{v\} \Big(orthogonal \Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Big) \Big)$$
 (196)

1.16 Subvector space

$$subspace((U,\circ),(V,\circ)) \Longleftrightarrow \left(space((V,\circ),())\right) \land (U \subseteq V) \land \left(space((U,\circ),())\right)$$

$$(197)$$

$$subspaceSum(U+W,(U,W,V,+)) \Longleftrightarrow \left(subspace((U,+),(V,+))\right) \land \left(subspace((W,+),(V,+))\right) \land \left(U+W=\{u+w \mid u \in U \land w \in W\}\right)$$

$$(198)$$

$$subspaceDirectSum\big(U\oplus W,(U,W,V,+)\big) \Longleftrightarrow \big(U\cap W=\emptyset\big) \wedge \Big(subspaceSum\big(U\oplus W,(U,W,V,+)\big)\Big) \tag{199}$$

$$orthogonal Complement \Big(W^{\perp}, \big(W, V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow \\ \Big(subspace \Big(\big(W, +, \cdot, \langle \$1, \$2 \rangle \big), \Big(inner Product Space \Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), () \Big) \Big) \Big) \Big) \\ \Big(W^{\perp} = \{ v \in V \, | \, w \in W \land orthogonal \Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \big) \} \Big)$$
 (200)

$$orthogonal Decomposition \left(\left(W, W^{\perp} \right), \left(W, V, +, \cdot, \langle \$1, \$2 \rangle \right) \right) \Longleftrightarrow$$

$$\left(orthogonal Complement \left(W^{\perp}, \left(W, V, +, \cdot, \langle \$1, \$2 \rangle \right) \right) \right) \wedge \left(subspace Direct Sum \left(V, \left(W, W^{\perp}, V, + \right) \right) \right)$$
 (201)

(THM) if V is finite dimensional, then every vector has an orthogonal decomposition: (202)

1.17 Banach and Hilbert Space

$$cauchy((s)_{\mathbb{N}}, (V, d(\$1, \$2))) \Longleftrightarrow (metricSpace((V, d(\$1, \$2)), ())) \land ((s)_{\mathbb{N}} \subseteq V)$$

$$(\forall_{\epsilon > 0} \exists_{N \in \mathbb{N}} \forall_{m, n \geq N} (d(s_m, s_n) < \epsilon))$$
distances between some tail-end point gets arbitrarily small (203)

 $complete((V,d(\$1,\$2)),()) \Longleftrightarrow (\forall_{(s)_{\mathbb{N}} \subseteq V} \exists_{s \in V} (cauchy((s)_{\mathbb{N}},(V,d(\$1,\$2))) \Longrightarrow \lim_{n \to \infty} (d(s,s_n)) = 0))$ # or converges within the induced topological space # in complete spaces, the weaker notion of cauchy is enforced to be equivalent to convergence (204) $banachSpace((V,+,\cdot,||\$1||),()) \iff (normMetric(d(\$1,\$2),(V,||\$1||))) \land (complete(V,d(\$1,\$2)),())$ # a complete normed vector space (205) $hilbertSpace((V, +, \cdot, \langle \$1, \$2 \rangle), ()) \iff (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$2 \rangle)))) \land (innerProductNorm(||\$1||, (V, +, \cdot, \langle \$1, \$1||, (V, +, \cdot, \cdot, \langle \$1, \$1||, (V, +, \cdot, \langle \$1, \$1||, (V, +, \cdot, \cdot,$ $(normMetric(d(\$1,\$2),(V,||\$1||))) \land (complete(V,d(\$1,\$2)),())$ # a complete inner product space (206) $(THM): hilbertSpace \Longrightarrow banachSpace$ (207) $separable((V,d),()) \iff (\exists_{S \subset V}(dense(S,(V,d)) \land countablyInfinite(S,())))$ # only a countable subset needed to approximate any element in the entire space (208) $(\text{THM}): hilbertSpace\Big(\Big(\big(V,+,\cdot,\langle\$1,\$2\rangle\big),()\Big),()\Big) \Longrightarrow$ $(\bigg(\exists_{(b)_{\mathbb{N}}\subseteq V}\bigg(orthonormalBasis\Big((b)_{\mathbb{N}},\big(V,+,\cdot,\langle\$1,\$2\rangle\big)\Big)\wedge countablyInfinite\big((b)_{\mathbb{N}},()\big)\bigg)\bigg) \Longleftrightarrow$ $\left(separable \Big(\Big(V, \sqrt{\langle \$1 - \$2, \$1 - \$2 \rangle} \Big), () \Big) \right))$ # separability in hilbert spaces is equivalent to the existence of a countable orthonormal basis (209)

1.18 Matrices, Operators, and Functionals

$$\begin{array}{c} linearOperator(L,(V,+_{V},\cdot_{V},W,+_{W},\cdot_{W})) \Longleftrightarrow \Big(map(L,(V,W))\Big) \wedge \Big(vectorSpace\big((V,+_{V},\cdot_{V}),()\big)\Big) \wedge \\ \Big(vectorSpace\big((W,+_{W},\cdot_{W}),()\big)\Big) \wedge \Big(\forall_{v_{1},v_{2} \in V} \forall_{s_{1},s_{2} \in \mathbb{R}} \Big(L(s_{1} \cdot_{V} v_{1}+_{V} s_{2} \cdot_{V} v_{2}) = s_{1} \cdot_{W} L(v_{1}) +_{W} s_{2} \cdot_{W} L(v_{2})\Big) \Big) & (210) \\ \\ denseMap\Big(L,\big(D,H,+,\cdot,\langle\$1,\$2\rangle\big)\Big) \Longleftrightarrow \big(D \subseteq H\big) \wedge \Big(linearOperator\big(L,(D,+,\cdot,H,+,\cdot)\big)\Big) \wedge \\ \Big(innerProductTopology\Big(\mathcal{O},\big(H,+,\cdot,\langle\$1,\$2\rangle\big)\Big)\Big) \wedge \Big(dense\Big(D,\big(H,\mathcal{O},d(\$1,\$2)\big)\Big)\Big) & (211) \\ \\ mapNorm\Big(||L||,\big(L,V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\big)\Big) \Longleftrightarrow \\ \Big(linearOperator\big(L,(V,+_{V},\cdot_{V},W,+_{W},\cdot_{W})\big)\Big) \wedge \Big(normedVectorSpace\Big(\big(W,+_{W},\cdot_{W},||\$1||_{W}\big),(\big)\Big) \wedge \Big(\\ \||L|| = sup\Big(\Big\{\frac{||Lf||_{W}}{||f||_{V}}|f \in V\Big\}\Big) = sup\Big(\Big\{||Lf||_{W}|f \in V \wedge ||f|| = 1\Big\}\Big) \\ boundedMap\Big(L,\big(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\big)\Big) \Leftrightarrow \\ \Big(mapNorm\Big(||L||,\big(L,V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\big)\Big) \wedge \big(||L|| < \infty\big) \\ (213) \end{array}$$

$$\neg boundedMap\Big(L, \big(V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) \Longleftrightarrow (U \subset V) \land \Big(\infty = \max(||L||_{U}, \big(L, U, +_{U}, \cdot_{U}, ||\$1||_{U}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) \le ||L||\Big) \quad (214)$$

$$extensionMap(\widehat{L},(L,V,D,W)) \iff (D \subseteq V) \land \left(linearOperator(L,(D,+_{D},\cdot_{D},W,+_{W},\cdot_{W}))\right) \land \left(linearOperator(\widehat{L},(V,+_{V},\cdot_{V},W,+_{W},\cdot_{W}))\right) \land \left(\forall_{d \in D}(\widehat{L}(d) = L(d))\right)$$
(215)

$$adjoint\Big(L^{T}, \big(L, V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big) \Longleftrightarrow \Big(hilbertSpace\Big(\big(V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}\big), ()\Big)\Big) \land \Big(hilbertSpace\Big(\big(W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big), ()\Big)\Big) \land \Big(linearOperator\big(L, (V, +_{V}, \cdot_{V}, W, +_{W}, \cdot_{W})\big)\Big) \land \Big(\forall_{v \in V} \forall_{w \in W}\Big(\Big(\langle Lv, w \rangle_{W} = \langle v, L^{T}w \rangle_{V}\Big) \lor \Big((Lv)^{T}w = v^{T}L^{T}w\Big)\Big)\Big)$$

$$\# \text{ target operator that acts similar to the domain operator} \tag{216}$$

$$selfAdjoint\Big(L, \big(V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big) \Longleftrightarrow$$

$$L = adjoint\Big(L^{T}, \big(L, V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big)$$
also a generalization of symmetric matrices (217)

$$matrix(L,(n,m)) \iff \left(linearOperator(L,(\mathbb{R}^n,+_n,\cdot_n,\mathbb{R}^m,+_m,\cdot_m))\right)$$
 (218)

$$eigenvector\big(v,(L,V,+,\cdot)\big) \Longleftrightarrow \Big(linearOperator\big(L,(V,+,\cdot,V,+,\cdot)\big)\Big) \wedge \Big(\exists_{\lambda \in \mathbb{R}} \Big(L(v) = \lambda v\Big)\Big) \quad (219)$$

$$eigenvalue(\lambda, (v, L, +, \cdot)) \iff eigenvector(v, (L, V, +, \cdot))$$
 (220)

(THM) Spectral thm.:
$$\left(matrix(L,(n,n))\right) \wedge \left(selfAdjoint(L,(\mathbb{R}^n,+,\cdot,\langle\$1,\$2\rangle,\mathbb{R}^n,+,\cdot,\langle\$1,\$2\rangle))\right) \Longrightarrow$$

$$\left(E = \left\{v \in \mathbb{R}^n \mid eigenvector(v,(L,\mathbb{R}^n,+,\cdot))\right\}\right) \wedge \left(orthonormalBasis(E,(\mathbb{R}^n,+,\cdot,\langle\$1,\$2\rangle))\right)$$
DEFINE (221)

1.19 Function spaces call integral norm and sup norm

$$curLp(\mathcal{L}^{p},(p,M,\sigma,\mu)) \iff (p \in \mathbb{R}) \land (1 \le p < \infty) \land$$

$$\left(\mathcal{L}^{p} = \{map(f,(M,\mathbb{R})) \mid measurableMap(f,(M,\sigma,\mathbb{R},standardSigma)) \land \int (|f|^{p}d\mu) < \infty\}\right)$$
(222)

$$vecLp(\mathcal{L}^{p}, (+, \cdot, p, M, \sigma, \mu)) \iff \left(curLp(\mathcal{L}^{p}, (p, M, \sigma, \mu))\right) \wedge \left(\forall_{f, g \in \mathcal{L}^{p}} \forall_{m \in M} \left((f + g)(m) = f(m) + g(m) \right) \right) \wedge \left(\forall_{f \in \mathcal{L}^{p}} \forall_{s \in \mathbb{R}} \forall_{m \in M} \left((s \cdot f)(m) = (s)f(m) \right) \right) \wedge \left(vectorSpace\left((\mathcal{L}^{p}, +, \cdot), () \right) \right)$$

$$(223)$$

```
integralNorm\big(\wr\wr\$1\wr\wr,(+,\cdot,p,M,\sigma,\mu)\big) \Longleftrightarrow \Big(vecLp\big(\mathcal{L}^p,(+,\cdot,p,M,\sigma,\mu)\big)\Big) \wedge \bigg(map\bigg(\wr\wr\$1\wr\wr,\Big(\mathcal{L}^p,\mathbb{R}_0^+\Big)\bigg)\bigg) \wedge \bigg(map\bigg(\wr\wr\$1\wr\wr,\Big(\mathcal{L}^p,\mathbb{R}_0^+\Big)\bigg)\bigg)\bigg) \wedge \bigg(map\bigg(\wr\iota\$1\wr\wr,\Big(\mathcal{L}^p,\mathbb{R}_0^+\Big)\bigg)\bigg)\bigg) \wedge \bigg(map\bigg(\wr\iota\$1\wr\wr,\Big(\mathcal{L}^p,\mathbb{R}_0^+\Big)\bigg)\bigg)\bigg)
                                                                                                                              \left(\forall_{f\in\mathcal{L}^p}\left(0\leq \wr \wr f \wr \wr = \left(\int \left(|f|^p d\mu\right)\right)^{1/p}\right)\right)
                                                                                                                                                                                                                          (224)
                                                                                                         (THM): integralNorm( \wr \S 1 \wr \wr, (+, \cdot, p, M, \sigma, \mu)) \Longrightarrow
                                                                                     \left(\forall_{f \in \mathcal{L}^p} \Big( \wr \wr f \wr \wr = 0 \Longrightarrow almostEverywhere \big( f = \boldsymbol{0}, (M, \sigma, \mu) \big) \Big) \right)
                                                                                                                              \# not an expected property from a norm
                                                                                                                                                                                                                          (225)
                                                            Lp(L^p,((+,\cdot,p,M,\sigma,\mu))) \iff (integralNorm(\wr \wr \$1 \wr \wr,(+,\cdot,p,M,\sigma,\mu))) \land
                                                                                           \left(L^{p}\!=\!quotientSet\!\left(\mathcal{L}^{p}/\!\sim,\left(\mathcal{L}^{p},\left(\wr\wr\$1+\left(-\$2\right)\wr\wr=0\right)\right)\right)\right)
                                                                  \# functions in L^p that have finite integrals above and below the x-axis
                                                                                                                                                                                                                          (226)
                             (THM) \{\}\}\}, +, · can be inherited into L^p, thus it can be called a normed vector space:
                                                                                                                                                                                                                          (227)
                                                         (THM) L^{p=2} is complete or contains all its limit points w.r.t. to its norm:
                                                                                                                                                                                                                          (228)
                                                                                                                                           CONTHERE say thm banach (LP)
                                                                                                                                                                                                                          (229)
                                                       (THM): \mathcal{L} = \{f \mid boundedMap(f, (V, +_V, \cdot_V, ||\$1||_V, W, +_W, \cdot_W, ||\$1||_W))\} \Longrightarrow
                                                                                                                                                banachSpace(\mathcal{L}, +, \cdot, mapNorm)
                                                                 # INCOMPLETE: V can be any normed space but W must be Banach
                                                   # proof by construction of candidate limit map and cauchy sequences of maps
                                                                                                                                                                                                                          (230)
                                           (THM): ||L|| \ge \frac{||Lf||}{||f||} # from choosing an arbitrary element in the mapNorm sup
                                                                                                                                                                                                                         (231)
                            (THM): (cauchy((f)_{\mathbb{N}}, (\mathcal{L}, +, \cdot, mapNorm)) \Longrightarrow cauchy((f_nv)_{\mathbb{N}}, (W, +_W, \cdot_W, ||\$1||_W))) \Longleftrightarrow
                                                    (\forall_{\epsilon'>0}\forall_{v\in V}(||f_nv-f_mv||_W=||(f_n-f_m)v||_W\leq ||f_n-f_m||\cdot||v||_V)<\epsilon\cdot||v||_V=\epsilon')
                                                                 # a cauchy sequence of operators maps to a cauchy sequence of targets
                                                                                                                                                                                                                          (232)
         (THM) BLT: (dense(D, (V, \mathcal{O}, d_V)) \wedge boundedMap(A, (D, +_V, \cdot_V, ||\$1||_V, W, +_W, \cdot_W, ||\$1||_W))) \Longrightarrow ()
                                                                                                 (\exists!_{\widehat{A}}(extensionMap(\widehat{A},(A,V,D,W))) \land ||\widehat{A}|| = ||A||) \Leftarrow
                                                                                                               (\forall_{v \in V} \exists_{(v)_{\mathbb{N}} \subseteq D} (\lim_{n \to \infty} (v_n = v))) \land (\widehat{A}v = \lim_{n \to \infty} (Av_n))
                                 # INCOMPLERE: needs additional conditions such as Avn is cauchy and W is banach
```

1.20 Underview

(234) $curve-fitting/explaining \neq prediction$ (235)

(233)

$ill-defined problem+solution space constraints \Longrightarrow well-defined problem$	(236)
$x \ \# \ ext{input} \ ; \ y \ \# \ ext{output}$	(237)
$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} $ # training set	(238)
$f_S(x) \sim y \# $ solution	(239)
$each(x,y) \in p(x,y) \ \# \text{ training data } x,y \text{ is a sample from an unknown distribution } p$	(240)
$V(f(x),y) = d(f(x),y) \; \# \; ext{loss function}$	(241)
$I[f] = \int_{X \times Y} V(f(x), y) p(x, y) dx dy \; \# \; \text{expected error}$	(242)
$I_n[f] = \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \; \# \; \text{empirical error}$	(243)
$probabilisticConvergence(X,()) \Longleftrightarrow \forall_{\epsilon>0} \lim_{n \to \infty} Pxn - x \leq \epsilon = 0$	(244)
I-Ingeneralization error	(245)
$well-posed \! := \! exists, unique, stable; elseill-posed$	(246)

2 Machine Learning

2.0.1 Overview

X # input ; Y # output ; $S(X,Y)$ # dataset	(247
learned parameters = parameters to be fixed by training with the dataset	(248
hyperparameters = parameters that depends on a dataset	(249
validation = partitions dataset into training and testing partitions, then evaluates the	
accuracy of the parameters learned from the training partition in predicting the	
outputs of the testing partition $\#$ useful for fixing hyperparameters	(250
cross-validation=average accuracy of validation for different choices of testing partition	(251
$\mathbf{L1} \! = \! \mathbf{scales}$ linearly; $\mathbf{L2} \! = \! \mathbf{scales}$ quadratically	(252
d = distance = quantifies the the similarity between data points	(253

$d_{L1}(A,B)\!=\!\sum_p A_p\!-\!B_p \ \#$ Manhattan distance	(254)
$d_{L2}(A,B)\!=\!\sqrt{\sum_p (A_p\!-\!B_p)^2}\;\#\; ext{Euclidean distance}$	(255)
\mathbf{kNN} classifier = classifier based on k nearest data points	(256)
$s\!=\!{ m class\ score}\!=\!{ m quantifies\ bias\ towards\ a\ particular\ class}$	(257)
$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(258)
$l\!=\!\mathbf{loss}\!=\!\mathbf{quantifies}$ the errors by the learned parameters	(259)
$l \! = \! rac{1}{ c_i } \sum_{c_i} l_i \; \#$ average loss for all classes	(260)
$l_{SVM_i} = \sum_{y_i \neq c_i} \max(0, s_{y_i} - s_{c_i} + 1) \ \# \ \text{SVM hinge class loss function:}$ # ignores incorrect classes with lower scores including a non-zero margin	(261)
$l_{MLR_i}\!=\!-\log\!\left(\frac{e^{s_{c_i}}}{\sum_{y_i}e^{y_i}}\right)\#\text{ Softmax class loss function}$ # lower scores correspond to lower exponentiated-normalized probabilities	(262)
$R = \mathbf{regularization} = \mathbf{optimizes}$ the choice of learned parameters to minimize test error	(263)
λ # regularization strength hyperparameter	(264)
$R_{L1}(W) \! = \! \sum_{W_i} \! W_i \; \# \; ext{L1 regularization}$	(265)
$R_{L2}(W) = \sum_{W_i} W_i^2 \# L2$ regularization	(266)
$L' = L + \lambda R(W) \# $ weight regularization	(267)
$ abla_W L = \overrightarrow{rac{\partial}{\partial W_i}} L = ext{loss gradient w.r.t. weights}$	(268)
$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \# \text{ loss gradient w.r.t. input weight in terms of external and local gradients}$	(269)
$s\!=\!{f forward~API}$; $rac{\partial L_L}{\partial W_I}\!=\!{f backward~API}$	(270)

$W_{t+1} \!=\! W_t \!-\! abla_{W_t} \!L \ \# \ \mathrm{weight} \ \mathrm{update} \ \mathrm{loss} \ \mathrm{minimization}$	(271)
TODO:Research on Activation functions, Weight Initialization, Batch Normalization	(272)
review 5 mean var discussion/hyperparameter optimization/baby sitting learning	(273)

TODO loss L or l ??

3 Glossary

${ m chaotic Topology}$	T1Separate	$\operatorname{simpleTopology}$	subspace
discreteTopology	T2Separate	simpleTopology	$\operatorname{subspaceSum}$
topology	openCover	simpleFunction	subspaceDirectSum
topologicalSpace	finiteSubcover	characteristic Function	orthogonalComplement
open	compact	exStandardSigma	orthogonalDecomposition
closed	compactSubset	$rac{ ext{exstandardsigma}}{ ext{nonNegIntegrable}}$	subspace
	bounded	nonNegIntegral	${ m subspaceSum}$
clopen			subspaceDirectSum
neighborhood	openCover	$rac{ ext{explicitIntegral}}{ ext{explicitIntegral}}$	
chaoticTopology	finiteSubcover	integrable	orthogonalComplement
$\operatorname{discreteTopology}$	compact	integral	$\operatorname{orthogonalDecomposition}$
metric	compactSubset	$ \frac{\text{simpleTopology}}{\text{output}} $	cauchy
metricSpace	bounded	$\operatorname{simpleSigma}$	complete
openBall	openRefinement	simpleFunction	banachSpace
metricTopology	locallyFinite	characteristicFunction	hilbertSpace
metricTopologicalSpace	paracompact	$\operatorname{exStandardSigma}$	separable
limitPoint	openRefinement	nonNegIntegrable	cauchy
interiorPoint	locallyFinite	nonNegIntegral	complete
closure	paracompact	${\rm explicitIntegral}$	banachSpace
dense	$\operatorname{connected}$	integrable	${ m hilbert Space}$
eucD	$\operatorname{path}\operatorname{Connected}$	integral	$\mathbf{separable}$
$\operatorname{standardTopology}$	$\operatorname{connected}$	vector Space	${ m linear Operator}$
$\operatorname{subset} \operatorname{Topology}$	$\operatorname{pathConnected}$	${\rm inner Product}$	m denseMap
$\operatorname{productTopology}$	$\operatorname{sigmaAlgebra}$	${\rm inner Product Space}$	${ m mapNorm}$
metric	${ m measurable Space}$	${ m vectorNorm}$	${ m boundedMap}$
$\operatorname{metricSpace}$	${ m measurable Set}$	${ m normed Vector Space}$	${\it extensionMap}$
${ m openBall}$	measure	${ m vectorMetric}$	$\operatorname{adjoint}$
$\operatorname{metricTopology}$	${ m measure Space}$	${ m metric Vector Space}$	$\operatorname{selfAdjoint}$
${\it metric Topological Space}$	${ m finite Measure}$	${\rm inner Product Norm}$	matrix
$\operatorname{limitPoint}$	${\it generated Sigma Algebra}$	${f normInnerProduct}$	${ m eigenvector}$
interior Point	${\it borel SigmaAlgebra}$	${f normMetric}$	${ m eigenvalue}$
closure	$\operatorname{standardSigma}$	$\operatorname{metric} \operatorname{Norm}$	linear Operator
dense	lebesgueMeasure	orthogonal	m dense Map
eucD	${ m measurable Map}$	$\overline{\mathrm{normal}}$	m mapNorm
$\operatorname{standardTopology}$	$\operatorname{pushForwardMeasure}$	basis	${ m boundedMap}$
$\operatorname{subsetTopology}$	$\operatorname{nullSet}$	${ m orthonormal Basis}$	${ m extensionMap}$
$\operatorname{productTopology}$	almostEverywhere	vectorSpace	adjoint
sequence	$\operatorname{sigmaAlgebra}$	${ m inner Product}$	$\operatorname{selfAdjoint}$
sequenceConvergesTo	${ m measurable Space}$	inner Product Space	matrix
sequence	measurableSet	$\operatorname{vectorNorm}$	$\operatorname{eigenvector}$
sequenceConvergesTo	measure	${ m normed Vector Space}$	eigenvalue
continuous	measureSpace	vectorMetric	curLp
homeomorphism	$_{ m finite Measure}$	metric Vector Space	vecLp
isomorphicTopologicalSpace	generated Sigma Algebra	innerProductNorm	integralNorm
continuous	borelSigmaAlgebra	${ m normInnerProduct}$	Lp
homeomorphism	$\operatorname{standardSigma}$	$ \frac{1}{1} $	-r curLp
isomorphicTopologicalSpace	lebesgueMeasure	m metric Norm	vecLp
T0Separate	measurableMap	orthogonal	integralNorm
T1Separate	pushForwardMeasure	normal	Lp
T2Separate	nullSet	basis	P
T0Separate	almostEverywhere	orthonormalBasis	
1 op charace	amiobolivery where	or anomor manbasis	