SOLUTIONS

YUQING SHI

1. WEEK 3, EXERCISE 3C

We show the bijectivity by defining a map

 $\mathcal{E} : E(M,N) := \{ \text{equivalence classes of extensions of } M \text{ by } N \} \to \operatorname{Ext}^1_R(M,N)$

such that E and \mathcal{E} are each other's inverses. Recall that E is the map from a) that sends an element $f \in \operatorname{Ext}^1_R(M,N)$ to an extension E(f).

Construction 1.1. Let $(E, i, p) : 0 \to N \xrightarrow{i} E \xrightarrow{p} M$ be an extension of M by N and $F_{\bullet} \to M$ be a free resolution of M. We want to obtain a map $f : F_1 \to N$.

Since p is surjective and F_0 is a free R module, we can lift the map ∂_0 to a map $\tau \colon F_0 \to E$ by choosing preimages. This gives us the following commutative diagram

$$\cdots \longrightarrow F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} m$$

$$\downarrow^{\tau} \qquad \qquad \downarrow_{\mathrm{id}}$$

$$0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0.$$

Thus we have that $\partial_0 \circ \partial_1 = p \circ r \circ \partial_1$. Recall that $\partial_0 \circ \partial_1 = 0$ and $\operatorname{im}(\partial_1) = \ker(\partial_0)$. Thus $\operatorname{im}(\partial_1) = \ker(p \circ r)$. We have that $\operatorname{im}(\tau \circ \partial_1) \subseteq \operatorname{im}(i)$, since the lower row is exact. Again, since F_1 is free and $i \colon N \to \operatorname{im}(N) \subseteq E$ is an *isomorphism*, we can lift $\tau \circ \partial_1$ uniquely (with respect to choices of τ) to a map $f_E \colon F_1 \to N$, by choosing preimages. This gives us the following commutative diagram

$$(*) \qquad F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} m$$

$$\downarrow^{f_E} \qquad \downarrow^{\tau} \qquad \parallel_{\mathrm{id}}$$

$$0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0.$$

Claim 1.2. Assigning to an extension (E, i, p) of M by N the map $f_E \colon F_1 \to N$ that constructed in Construction 1.1 induces a map

$$\mathcal{E} \colon E(M,N) \to \operatorname{Ext}_R^1(M,N)$$

 $[(E,i,p)] \mapsto [f_E],$

where " $[\bullet]$ " denotes the equivalence classes.

Proof. First we prove that the cohomology class represented by f_E does not dependent on the choice of τ .

Claim 1.3. In the situation of Construction 1.1, let $\tau^1, \tau^2 \colon F_0 \to E$ be two lifts of ∂_0 . Denote by f_E^i the lifts of $\tau^i \circ \partial_1$, for i = 1, 2. Then $[f_E^1] = [f_E^2] \in \operatorname{Ext}^1_R(M, N)$.

Date: 26.03.2019.

Proof of Claim 1.3. We want to find a map $g: F_0 \to E$ such that $\partial_0 \circ g = f_E^1 - f_E^2$. By commutativity of the diagram (*), we have that $p(\tau^1 - \tau^2) = 0$. In other words, $\operatorname{im}(\tau^1 - \tau^2) \subseteq \operatorname{im}(i)$. Since F_0 is free, we have that the map $\tau^1 - \tau^2 \colon F_0 \to E$ have a lift

 $g \colon F_0 \to N$, i.e., we have the following commutative diagram

 $N \xrightarrow{g} \downarrow_{\tau^1 - \tau^2}^{\Gamma_0}$ $N \xrightarrow{} E.$

Thus we have $i \circ (f_E^1 - f_E^2) = \partial_1 \circ \tau^1 - \partial_1 \circ \tau^2 = i \circ g \circ \partial_1$. Since i is injective, we have that $f_E^1 - f_E^2 = g \circ \partial_1$. In other words, we have $[f_E^1] = [f_E^2] \in \operatorname{Ext}^1_R(M, N)$.

Now we prove that two equivalent extensions give the same cohomology class in $\operatorname{Ext}_R^1(M,N)$.

Claim 1.4. Let $\phi: (E', i', p') \to (E', i', p')$ be an isomorphism of two extensions of M by N. Then $[f'_{E}] = [f_{E}] \in \operatorname{Ext}^{1}_{R}(M, N)$.

Proof of Claim 1.4. By construction we have the following commutative diagram:

$$\cdots \longrightarrow F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\partial_{0}} m$$

$$f_{E} \downarrow \qquad \tau \downarrow \qquad \parallel$$

$$0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} m \longrightarrow 0$$

$$\parallel \qquad \phi \uparrow \cong \qquad \parallel$$

$$0 \longrightarrow N \xrightarrow{i'} E' \xrightarrow{p'} M \longrightarrow 0$$

$$f'_{E} \uparrow \qquad \tau' \uparrow \qquad \parallel$$

$$\cdots \longrightarrow F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\partial_{0}} m$$

Then we have a commutative diagram

$$\begin{array}{ccc}
F_1 & \xrightarrow{\partial_1} & F_0 \\
f_E - f_{E'} \downarrow & & \downarrow \tau - \phi \circ \tau' \\
N & \xrightarrow{i - \phi \circ i'} & E
\end{array}$$

with a lift g, because $\operatorname{im}(\tau - \phi \circ \tau') \subseteq \ker(p)$. Therefore $f_E - f_{E'} = g \circ \partial_1$. In other words, $[f'_E] = [f_E] \in \operatorname{Ext}^1_R(M, N).$

With Claim 1.3 and Claim 1.4, we prove that \mathcal{E} is well-defined.

Now we want to show that $\mathcal{E} \circ E = \mathrm{id}_{E(M,N)}$ and $E \circ \mathcal{E} = \mathrm{id}_{\mathrm{Ext}^1_D(M,N)}$.

Claim 1.5. In the situation of Construction 1.1, we have $f_E \circ \partial_2 = 0$.

Proof. By commutativity of the diagram (*), we have that $i \circ f_E \circ \partial_2 = \tau \circ \partial_1 \partial_2 = 0$. Since *i* is injective, we have that $f_E \circ \partial_2 = 0$.

Claim 1.6. In the situation of Construction 1.1, denote $V_E := \{(f(x), -\partial_1(x)) \in N \oplus F_0 \mid$ $x \in F_1$. We have that $E \cong (N \oplus F_0)/V_E$.

SOLUTIONS 3

Proof. Note that $(N \oplus F_0)/V_E$ is the pushout of the diagram $N \xleftarrow{f_E} F_1 \xrightarrow{\partial_1} E$. Since we have maps $i \colon N \to E$ and $\tau \colon F_0 \to E$ such that $\tau \circ \partial_1 = i \circ f_E$, we have a map $\phi \colon (N \oplus F_0)/V_E \to E$ and $p_E \colon (N \oplus F_0)/V_E \to E$ such that the following diagram commutess

Thus we have an morphism of short exact sequences

$$0 \longrightarrow N \stackrel{i}{\longleftarrow} E \stackrel{p}{\longrightarrow} m \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \uparrow \qquad \qquad \parallel$$

$$0 \longrightarrow N \stackrel{i_{E}}{\longrightarrow} (N \oplus F_{0})/V_{E} \stackrel{p_{E}}{\longrightarrow} M \longrightarrow 0$$

By five lemma, we have that ϕ is an isomorphism. Therefore $E \cong (N \oplus F_0)/V_E$.

The fact that $\mathcal{E} \circ E = \mathrm{id}_{E(M,N)}$ and $E \circ \mathcal{E} = \mathrm{id}_{\mathrm{Ext}^1_R(M,N)}$ follows from Claim 1.6. Therefore, the map $E \colon \mathrm{Ext}^1_R(M,N) \to E(M,N)$ is a bijection.