EC216 Summary:

Intermediate Macroeconomics & Data Analysis

Lewis Britton {201724452}

EC216: Intermediate Macroeconomics & Data Analysis

Academic Year 2018/2019

Word Count: {N/A}

EC216 Course Summary

Summary

- 1) Uncovered Interest Parity
- 2) Fisher's Real Interest Rate Hypothesis
- 3) Nature of Inflation Expectations
- 4) Okun's Law
- 1) Output/GDP
- 2) IS-LM Model (Short-Run)
 - Open & Closed Economies
 - Derivation of IS (Investment & Saving Demand)
 - Derivation of LM (Money Supplied & Demanded)
- 3) <u>IS-LM-PC</u> (Medium-Run)
 - Open & Closed Economies
 - Aggregate Supply
 - Original PC
 - Expectations Augmented PC
 - NAIRU/Change in Unemployment PC
 - Change in Output PC
- 4) <u>Labour Model (Medium-Run)</u>
 - Relative Wage & Price Setting
 - Expected Prices
 - Given Prices
 - Given Wages

In Short-Run, output is determined by demand. In the Medium-Run, output is determined by supply. In Medium-Run, all output, unemployment and real interest rate remain at their natural rates due to Central Bank Monetary Policy. Seen where change in inflation is equal to zero.

**CB raises r until it yields $[Y_n @ \Delta \pi = 0]$ **

Relationships

1: Uncovered Interest Parity

$$(1+i)=(1+i^*)\frac{E}{E^e}$$

2: Fisher's Real Interest Rate Hypothesis

$$r_t = i_t - \pi_{t+1}^e$$

- Where in the medium-run, the real interest rate must account for the expected inflation to give a true idea of the purchasing power

3: Nature of Inflation Expectations

$$\pi^e_{t+1} = heta \pi_{t-1}$$

Where $[\theta = 0]$: No Expectations (NAIRU) Where $[\theta = 1]$: Expectations Augmented Where $[\theta > 1]$: Expectations Greater Than Before

4: Okun's Law

$$(u_t - u_{t-1}) = -\beta(g_{Y_t} - \overline{g}_{Y})$$

- Relating change in unemployment to the change in output growth rate

Models

1: Output/GDP

$$Y = C(Y - T) + I(Y, i) + G + \left(X(Y^*, E) - IM(Y, E)\right)$$

$$Y = \text{Domestic Output/Income}$$

$$Y^* = \text{Foreign Output/Income}$$

$$T = \text{Tax}$$

$$(Y - T) = Y_D = \text{Disposable Income}$$

$$i = \text{Interest Rate}$$

$$E = \text{Nominal Domestic Exchange Rate}$$

$$C = \text{Consumption } \left((+) \text{ Corr. With } Y_D\right)$$

$$I = \text{Investment } \left((+) \text{ Corr. With } Y; (-) \text{ Corr. With } i\right)$$

$$G = \text{Government Spending}$$

$$X = \text{Domestic Exports } \left((+) \text{ Corr. With } Y^*; (-) \text{ Corr. With } E\right)$$

$$IM = \text{Domestic Imports } \left((+) \text{ Corr. With } Y; (+) \text{ Corr. With } E\right)$$

$$\epsilon = \frac{EP}{P^*} = \text{Real Domestic Exchange Rate}$$

2: IS-LM Model (Short-Run)

Monetary Expansion/Contraction (LM)

- CB changing the Money Supply therefore, Interest Rate

- **Expansion**: $M_s \uparrow$, Money Less Valuable $: i \downarrow$, $I \uparrow$, $C \uparrow$, $Z \uparrow$, $Y \uparrow$

- Contraction: $M_s \downarrow$, Money More Valuable $: i \uparrow, I \downarrow, C \downarrow, Z \downarrow, Y \downarrow$

Fiscal Expansion/Contraction (IS)

- Government changing the **Budget Deficit**

- **Expansion**: $(G - T) \uparrow$, Increase in Budget Deficit, $G \uparrow \& T \downarrow :: Y_D \uparrow, C \uparrow, I \uparrow, Y \uparrow$

- **Contraction**: $(G - T) \downarrow$, Increase in Budget Deficit, $G \downarrow \& T \uparrow :: Y_D \downarrow, C \downarrow, I \downarrow, Y \downarrow$

3: IS-LM-PC (Medium-Run) Phillips Curve Derivation

$$W_t = P^e(1 - \alpha u_t + z); P_t = W_t(1 + \mu)$$

Original PC:
$$P_t = P^e(1 + \mu)(1 - \alpha u_t + z)$$

Expectations Augmented PC:
$$\pi_t = \pi_{t+1}^e + (\mu + z) - \alpha u_t \left[\theta = 1; \ \pi_{t+1}^e = \theta \pi_{t-1}\right]$$
$$\pi_t - \pi_{t-1} = (\mu + z) - \alpha u_t$$

NAIRU/Change in Unemployment PC:
$$\pi_t - \pi_{t-1} = -\alpha(u_t - u_n)$$
 [MR: $\Delta u = 0$; $\Delta \pi = 0$]

Change in Output PC:
$$\pi_t - \pi_{t-1} = -\frac{\alpha}{L}(Y_t - Y_n) \ [\text{MR: } \Delta Y = 0; \ \Delta u = 0; \ \Delta \pi = 0]$$

- As t approaches n, everything returns to its Natural Rate

4: Labour Model (Medium-Run)

$$- \frac{W}{P^e} = (1 - u)$$
$$- \frac{W}{P} = \frac{1}{(1+\mu)}$$

$$- \frac{W}{P} = \frac{1}{(1+\mu)}$$