Discrete-Time Signals

A sequence (ordering) of (real, complex) numbers, n^{th} element is x[n], $n \in \mathbb{Z}$.

May have been obtained by sampling a continuous-time signal, i.e., $x[n] = x_C(t)|_{t=nT}$, $n \in \mathbb{Z}$

Let T = 0.001 sec = 1 msec. <u>Ex</u>:

 $\dots, x[-0.001], x[0], x[0.001], x[0.002] \dots!$ We do NOT write

 $\dots, x[-1], x[0], x[1], x[2] \dots$ We write

Delay <u>Ex</u>:

We do NOT have sth. like x[n-2.15]

UNIT SAMPLE SEQUENCE:

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

 $\underline{\text{Ex}}$: Let x[n] be

Can be written as:

$$x[n] = -\delta[n+2] - 0.5\delta[n+1] + \delta[n] - \delta[n-2]$$

In general, any seq. can be written as

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

This is the fundamental expression in the derivation of the fact that the output of a LTI system is the convolution of the input and the system's impulse response.

UNIT STEP SEQUENCE:

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

$$\underline{\mathbf{E}}\mathbf{x}: \ u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

(convolution of u[n] and $\delta[n]$)

or

$$\underline{\mathrm{Ex}}: \ u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

(like integration in cont. time)

on the other hand

$$\underline{\operatorname{Ex}} \colon \delta[n] = u[n] - u[n-1]$$

(like differentation in cont. time)

EXPONENTIAL SEQUENCES (real valued): They appear in the solution and analysis of LTI systems.

$$x[n] = A\alpha^n$$

if $|\alpha| > 1$ then |x[n]| grows as $n \to \infty$

TRUNCATED EXPONENTIAL SEQUENCE:

$$x[n] = \begin{cases} A\alpha^n & n \ge 0 \\ 0 & n < 0 \end{cases} = A\alpha^n u[n]$$

Note that, $x_1[n]$ and $x_2[n]$ cannot be related by a simple time shift.

EXPONENTIAL SEQUENCES (complex valued):

$$x[n] = A\alpha^n$$
 $A, \alpha \in C$

$$A = |A|e^{j\phi} \qquad \alpha = |\alpha|e^{j\omega_0}$$

$$\Rightarrow A\alpha^{n} = |A||\alpha|^{n} e^{j\phi} e^{j\alpha_{0}n} = |A||\alpha|^{n} e^{j(\alpha_{0}n+\phi)}$$

$$\Rightarrow A\alpha^n = |A||\alpha|^n \left(\cos(\omega_0 n + \phi) + j\sin(\omega_0 n + \phi)\right)$$

$$\Rightarrow A\alpha^{n} = |A||\alpha|^{n} \cos(\omega_{0}n + \phi) + j|A||\alpha|^{n} \sin(\omega_{0}n + \phi)$$

COMPLEX EXPONENTIAL SEQUENCES:

Let $|\alpha| = 1$, $A\alpha^n = Ae^{j\omega_0 n} = |A|e^{j(\omega_0 n + \phi)}$ is called a complex exponential sequence.

$$\Rightarrow Ae^{j\omega_0 n} = |A|\cos(\omega_0 n + \phi) + j|A|\sin(\omega_0 n + \phi)$$

A sinusoidal sequence can be expressed in terms of a complex exponential sequence.

$$M\cos(\omega_{0}n+\phi) = Re\{Ae^{j\omega_{0}n}\} = \frac{1}{2}(Ae^{j\omega_{0}n} + A^{*}e^{-j\omega_{0}n}); \quad A = Me^{j\phi}, \qquad M \in R$$

$$M\sin(\omega_0 n + \phi) = Im\{Ae^{j\omega_0 n}\} = \frac{1}{2j} \left(Ae^{j\omega_0 n} - A^*e^{-j\omega_0 n}\right); \quad A = Me^{j\phi}, \qquad M \in R$$

 ω_0 : frequency (radians/sample or radians)

 ϕ : phase shift (radians)

TWO FUNDAMENTAL PROPERTIES OF COMPLEX EXPONENTIAL (SINUSOIDAL) DISCRETE-TIME SEQUENCES

FIRST: For any frequency value ω_0 , $\omega_0 + k2\pi$ (k: integer) is an equivalent frequency value, i.e.,

if
$$x[n] = Ae^{j\omega_0 n}$$
 and $y[n] = Ae^{j(\omega_0 + k2\pi)n}$

then
$$x[n] = y[n] \quad \forall n \in \mathbb{Z}$$

In other words, the elements of the set $\{\omega | \omega = \omega_0 + k2\pi, \omega_0 \in R, k \in Z\}$ are equivalent if they are considered as the frequencies of discrete-time complex exponentials/sinusoids.

Note that
$$\cos(\omega_0 n) = \cos(\omega_0 n + k2\pi n)$$
 and $\sin(\omega_0 n) = \sin(\omega_0 n + k2\pi n)$

$$\underline{\mathbf{E}}\underline{\mathbf{x}}: \qquad \dots = \cos\left(-\frac{9\pi}{5}n\right) = \cos\left(\frac{\pi}{5}n\right) = \cos\left(\frac{11\pi}{5}n\right) = \cos\left(\frac{21\pi}{5}n\right) = \dots$$

Ex: ... =
$$e^{-j\frac{9\pi}{5}n} = e^{j\frac{\pi}{5}n} = e^{j\frac{11\pi}{5}n} = e^{j\frac{21\pi}{5}n} = \cdots$$

Therefore an interval of 2π (indeed an interval of π ! Why?) covers all distinct frequencies.

Ex:
i)
$$\cos(416.31\pi n) = \cos(208.155(2\pi n)) = \cos(0.155(2\pi n)) = \cos(0.31\pi n)$$

ii)
$$\sin(416.31\pi n) = \sin(208.155(2\pi n)) = \sin(0.155(2\pi n)) = \sin(0.31\pi n)$$

Ex:
i)
$$\cos(417.31\pi n) = \cos(208.655(2\pi n)) = \cos(0.655(2\pi n)) = \cos(1.31\pi n) = \cos(0.69\pi n)$$

ii) $\sin(417.31\pi n) = \sin(208.655(2\pi n)) = \sin(0.655(2\pi n)) = \sin(1.31\pi n) = -\sin(0.69\pi n)$ (minus sign!!!)

çiloğlu 8

Practically, it is sufficient consider

since

$$\cos(f\pi n) = \cos((2-f)\pi n)$$

and

$$\sin(f\pi n) = -\sin((2-f)\pi n)$$

 $\cos(f\pi n)$, $\sin(f\pi n)$ for $0 \le f \le 1$

Ex: Consider $x[n] = \cos(0.8\pi n)$ obtained by sampling a 100 MHz signal $x_C(t) = \cos(2 \times 10^8 \pi t)$ at a sampling rate of 250 MHz (i.e. sampling period is $T = \frac{1}{250\,000\,000} = 4$ pico sec.). Find another continuous-time (CT) sinusoid that would yield the same discrete-time sinusoid (i.e., x[n]) at this sampling frequency. How many other CT sinusoids would yield the same DT sequence?

Solution:

We know that

$$x[n] = \cos(0.8\pi n) = x_C(t)|_{t=nT} = \cos(2 \times 10^8 \pi T n).$$

Note that

$$x[n] = \cos(0.8\pi n) = \cos(0.4 \times 2\pi n) = \cos(f_0 T 2\pi n)$$

i.e., $f_0T = 0.4$ where $f_0 = 10^8$ Hz.

Remember that

$$\cos(0.4 \times 2\pi n) = \cos(1.4 \times 2\pi n) = \cos(2.4 \times 2\pi n) = \cdots$$

Therefore, for example selecting $\cos(1.4 \times 2\pi n)$ yields

$$\cos(1.4 \times 2\pi n) = \cos(f_0'T2\pi n)$$

$$f_0' = \frac{1.4}{T} = 350 \text{ MHz}$$

(indeed all CT sinusoids at frequencies 350 MHz, 600 MHz, 850 MHz, ... yield the same DT sinusoid for this sampling frequency. Their frequencies can be expressed as $\frac{(k+0.4)}{T} = (k+0.4)250$ MHz.)

SECOND:

A DT sinusodal $(\cos(\omega_0 n + \phi))$ or complex exponential signal $e^{j(\omega_0 n + \phi)}$ is not necessarily periodic!

To be periodic,

 ω_0 must be a *rational* multiple of π ,

i.e.,

$$\omega_0 = \frac{p}{q}\pi, \quad p, q \in Z$$

Proof:

$$A\cos(\omega_0 n + \phi) \stackrel{?}{=} A\cos(\omega_0 (n + N) + \phi)$$

$$A\cos(\omega_0(n+N)+\phi) = A\cos(\omega_0n+\omega_0N+\phi)$$

For periodicity $\omega_0 N = k2\pi$ \Rightarrow $\omega_0 = \frac{k}{N} 2\pi$ or $\frac{\omega_0}{2\pi} = \frac{k}{N}$ $k \in \mathbb{Z}$

has to be satisfied.

<u>Ex</u>: $\cos(5n)$ $\omega_0 = 5$ $\frac{\omega_0}{2\pi} = \frac{5}{2\pi}$ is not rational so it is not periodic.

FUNDAMENTAL PERIOD, N, IS NOT NECESSARILY EQUAL TO $\frac{2\pi}{\omega_0}$

Corollary: Since, for periodic sinusoids,

$$\omega_0 N = k2\pi$$

i.e,

$$N=\frac{k2\pi}{\omega_0},$$

fundamental period, N, is not necessarily equal to $\frac{2\pi}{\omega_0}$.

Finding the Fundamental Period of a Sinusoid

Find the smallest $k,\,k_{min}$, so that $k_{min}\,\frac{2\pi}{\omega_0}$ is an integer.

Then, the fundamental period is

$$N = k_{min} \frac{2\pi}{\omega_0} .$$

$$\underline{\text{Ex}}: \cos\left(\frac{\pi}{5}n\right) \qquad \omega_0 = \frac{\pi}{5} \qquad \frac{\omega_0}{2\pi} = \frac{1}{10} \qquad N = k\frac{2\pi}{\omega_0} = k\frac{2\pi}{\frac{\pi}{5}} = 10 \quad (k=1)$$

Ex:
$$\cos\left(\frac{5\pi}{17}n\right)$$
 $\omega_0 = \frac{5\pi}{17}$ $\frac{\omega_0}{2\pi} = \frac{5}{34}$ $N = k\frac{34}{5} = 34 \quad (k = 5)$

Ex:
$$\cos\left(\frac{6\pi}{5}n\right)$$
 $\omega_0 = \frac{6\pi}{5}$ $\frac{\omega_0}{2\pi} = \frac{3}{5}$ $N = k\frac{5}{3} = 5$ $(k = 3)$

Ex: Let $x_1[n] = \cos(\omega_1 n)$ and $x_2[n] = \cos(\omega_2 n)$. Find two "frequencies" ω_1 and ω_2 such that $\omega_1 \neq \omega_2 + k2\pi$ for any integer k, and $x_1[n]$ and $x_2[n]$ are both periodic with fundamental period N=13.

$$N = 13 = k \frac{2\pi}{\omega}$$
, k: integer

$$\Rightarrow \omega = k \frac{2\pi}{13}$$

Choose, for example,
$$k = 1$$
 and $k = 2$ $\Rightarrow \omega_1 = \frac{2\pi}{13}, \ \omega_2 = \frac{4\pi}{13}$

Therefore,
DT sinusoids may have different "frequencies" although
their fundamental periods are the same!

What do the discrete-time sinusoids look like?

Some frequencies between 0 and π

çiloğlu

13

Fundamental period is *N*=260

çiloğlu

çiloğlu 18