Example of a "Least Squares Fitting" calculation for simple LR

Find the "least square fit" y = b0 + b1x for the experimental data points: {(1, 2), (3, 4), (2, 6), (4, 8), (5, 12), (6, 13), (7, 15)}

Solution:

Number of Point N=7 Mean-Values ("Mittelwerte"): $[M(x),M(y)] = [28/7;60/7] \sim [4;8,5714]$

Set up a table with the quantities included in the above formulas for b0 and b1 and also the quantities for the calculation of R2:

	neede	d for calcu	lation of bo	and b1		needed for calculation	SST = SSE + SSR ?	
i	X i	y i	x ; * y ;	X i ²	y(x :)	SSE=sum(yi-y(x;))²	SST=sum(yi-M(y))²	SSR=sum(y(xi) - M(y))²
1	1	2	2	1	2,0357	0,001274	43,1833	42,7101
2	3	4	12	9	6,3929	5,726	20,8977	4,7459
3	2	6	12	4	4,2143	3,1887	6,6121	18,9843
4	4	8	32	16	8,5715	0,3266	0,3265	0
5	5	12	60	25	10,7501	1,5623	11,7553	4,7467
6	6	13	78	36	12,9287	0,00661	19,6125	18,9861
7	7	15	105	49	15,1073	0,01151	41,3269	42,718
sum	28	60	301	140		10,822994	143,7143	132,8911

Substitute these values into Formula I and II:

bo = (140*60/7 -4*301)/(140 -7*16) = -28/196

= -1/7 ~ -0,14286

b1 = (301 -7*4*(60/7))/28 = 61/28 ~ 2,1786

----> Regression-Line: y = -1/7 + (61/28)*x

 $R^2 = 1 - Sum((yi-y(xi))^2)/Sum((yi-M(y))^2) = 1 - (10,822994 / 143,7143) \sim 0,9247$

Compare with Python

intercept: - 0.14285714285714057 slope: [2.17857143]

coeff. determination: 0.9247017892644135

4 8,571428571

xi - M(x)	yi - M(y)	[xi - M(x)]*[yi-M(y)]
-3	-6,571428571	19,71428571
-1	-4,571428571	4,571428571
-2	-2,571428571	5,142857143
0	-0,571428571	0
1	3,428571429	3,428571429
2	4,428571429	8,857142857
3	6,428571429	19,28571429
0	0	61

<u>Check of Proposition (P5.1)</u>: f(Mean(x)) = -1/7 + (61/28)*4 = -1/7 + 61/7 = 60/7 = Mean(y) q.e.d.

Example of a "Least Squares Fitting (LSF)" calculation for multiple LR (mLR)

Find the "least square fit" for z = a + b*x + c*y for the following training-set: [x,y] = [[0,1],[5,1],[15,2],[25,5],[35,11],[45,15],[55,34],[60,35]]; z = [4,15],[45,15

Solution: Number of Point N=8 Mean-Values ("Mittelwerte") = : $[M(x),M(y),M(z)] \sim [240/8, 104/8, 178/8] = [30; 13; 22,25]$ Set up a table with the quantities included in the above LSF formulas (I) and (II) for simple LR:

		nedded for the calculation of a, b and c											
ı	хi	y :	Zı	Xi:=xi-M(x)	Yi:=yi-M(y)	Zi:=zi-M(z)	Xi*Yi	Xi*Zi	Yi*Zi	Χi²	Yi²		
1	0	1	4	-30	-12	-18,25	360	547,50	219,00	900	144		
2	5	1	5	-25	-12	-17,25	300	431,25	207,00	625	144		
3	15	2	20	-15	-11	-2,25	165	33,75	24,75	225	121		
4	25	5	14	-5	-8	-8,25	40	41,25	66,00	25	64		
5	35	11	32	5	-2	9,75	-10	48,75	-19,50	25	4		
6	45	15	22	15	2	-0,25	30	-3,75	-0,50	225	4		
7	55	34	38	25	21	15,75	525	393,75	330,75	625	441		
8	60	35	43	30	22	20,75	660	622,50	456,50	900	484		
Sum	240	104	178	0	0	0,00	2070	2115,00	1284,00	3550	1406		

Substitute the values to the formulas (I) and (II) of LSF for mLR:

det = sum(Xi²)*sum(Yi²)-(sum(Xi*Yi))²=3550*1406-(2070) 2=706400

a = Mean(z

b = (1/det)

 $c = (1/det)^*(sum(Xi^2)^*sum(YiZi) - sum(XiYi)^*sum(XiZi)) = (1/det)^*(3550^*1284 - 2070^*2115) \\ \simeq 0.2550^* + 1.000^* + 1.0$

m(Xi ²)*sum(Yi ²)-(sum(Xi*Yi)) ² =3550*1406-(2070) 2=706400	Compare with Python-Pgm (next slides):
n(z)-b*Mean(x)-c*Mean(y) ~ 22,25-0,4471*30 + 0.25500 *13* ~ 5, 522	intercept: 5.52257927519819
et)*(sum(Yi²)*sum(XiZi) sum(XiYi)*sum(YiZi))=(1/det)*(1406*2115-2070*1284) ~ 0,4471	coefficients: [0.44706965 0.25502548]
0.714 0.071 0.0714 0.0711 (4.11.)4(0.00044044010.0004	

So we get the optimal mLR line: z = 5,522 + 0,4471*x + 0,255*y	
R ² = 1 - SSE/SST ~ 0,86159 (details see notes-page)	coefficient of determination: 0.861593925875677
> Adj.R ² = 1 -(1-R ²)*(7/5) ~ 0,8062 (details see notepage)	

Set up a table with the quantities included in the formulas for R² and Adj.R²:

	needed for calculation	SST = SSE + SSR ?		
z(xi,yi)	SSE=sum(zi-z(xi,yi))²	SST=sum(zi-M(z))²	SSR=sum(z(xi,yi)-M(z))²	
5,777	3,1577	333,0625	271,3597	
8,0125	9,0752	297,5625	202,7064	
12,7385	52,7294	5,0625	90,4686	
17,9745	15,7967	68,0625	18,2799	
23,9755	64,3926	95,0625	2,9774	
29,4665	55,7486	0,0625	52,0779	
38,7825	0,6123	248,0625	273,3236	
41,273	2,9825	430,5625	361,8745	
	204,4950	1477,5000	1273,0680	

sse+ssr: 1477,5630

	$R^2 = 1$ -SSE/SST = 1 - Sum((zi-z(xi,yi)) ²)/Sum((zi-M(z)) ²) = 1 -(204,495/1477,5)~0,86159
-	
Ε	> Adj.R ² = 1 -(1-R ²)*(7/5) ~ 0,8062

Check Corollary (C5.2) -"center of mass"

f(Mean(x), Mean(y))=5,522 + 0,4471*30 + 0,255*13 = 89/4 = 22,25= Mean(z) q.e.d.

xi*yi	sum[(xi - M(x))*(yi - M(y))]
0	360
5	300
30	165
125	40
385	-10
675	30
1870	525
2100	660
5190	2070

Check Proposition (P5.1-(iii)):

sum(xi*yi) = sum[(xi - M(x))*(yi - M(y))] + n*M(x)*M(y)5190=2070 + 8*30*13=2070+3120

Example of a "Least Squares Fitting" calculation for simple LR: "Student Examination"

Find "least square fit" y = b0 + b1x with {(exam prep.[h], score[pt.])} = {(7, 41), (3, 27), (5, 35), (3, 26), (8, 48), (7, 45), (10, 46), (3, 27), (5, 29), (3, 19)}

Number of Point N=10 Mean-Values ("Mittelwerte"): [M(x),M(y)] = [54/10; 343/10] = [5,4; 34,3]

Set up a table with the quantities included in the above formulas for b0 and b1 and also the quantities for the calculation of R²:

	need	ed for calcu	ulation of b0 a	nd b1		needed for calculatio	SST = SSE + SSR ?	
student i	exam prep. x :	points y:	x i *y i	X i ²	y(x ;)	SSE=sum(yi-y(x;))²	SST=sum(yi-M(y))²	SSR=sum(y(xi) - M(y))²
1	7	41	287	49	40,269	0,534361	44,89	35,628961
2	3	27	81	9	25,325	2,805625	53,29	80,550625
3	5	35	175	25	32,797	4,853209	0,49	2,259009
4	3	26	78	9	25,325	0,455625	68,89	80,550625
5	8	48	384	64	44,005	15,960025	187,69	94,187025
6	7	45	315	49	40,269	22,382361	114,49	35,628961
7	10	46	460	100	51,477	29,997529	136,89	295,049329
8	3	27	81	9	25,325	2,805625	53,29	80,550625
9	5	29	145	25	32,797	14,417209	28,09	2,259009
10	3	19	57	9	25,325	40,005625	234,09	80,550625
sum	54	3/13	2063	3/18		13/12/17/19/1	922 10	787 214794

Substitute these values into Formula I and II:

bo = (348*34,3 -5,4*2063)/(348-10*5,42) = (3981/5)/(282/5) = 1327/94 ~14,117

b1 = (2063-10*5,4*34,3)/(282/5)= (1054/5)/(282/5)=527/141~3,7376

----> Regression-Line: y = 14,117 + 3,7376*x

 $R^2 = 1 - Sum((yi-y(xi))^2)/Sum((yi-M(y))^2) = 1 -$ (134,2172/922,1) ~ 0,8544

Question 1: 14,117 points.

Question 2: 14,117 + 37,38 = 51,497 = 50 points (grade= 1,0). Question 3: x= (25-14,117)/3,7376=2,91[h]

Compare with Python

14.11702127659574 slope: [3.73758865]

coeff. determination:

0.8544449495100991

Exam - Results

51.4929078

Check of Proposition (P5.1): f(Mean(x)) = 14,117 + 3,736*5,4 = 34,2914 ~ Mean(y) q.e.d.

	need				
student i	exam. prep. x :	points y :	x i* y i	X i ²	grade
1	7	41	287	49	2,0
2	3	27	81	9	3,7
3	5	35	175	25	2,8
4	3	26	78	9	3,8
5	8	48	384	64	1,2
6	7	45	315	49	1,6
7	10	46	460	100	1,4
8	3	27	81	9	3,7
9	5	29	145	25	3,5
10	3 19		57	9	4,7
sum	54	343	2063	348	2,8

Find "least square fit" y = b0 + b1x with {(homework[h], score[pt.])}= {(5, 41), (4, 27), (5, 35), (3, 26), (9, 48), (8, 45), (10, 46), (5, 27), (3, 29), (3, 19)}

921,431988

Number of Point N=10 Mean-Values ("Mittelwerte"): [M(x),M(y)] = [55/10; 343/10] = [5,5; 34,3] Set up a table with the quantities included in the above formulas for b0 and b1 and also the quantities for the calculation of R2:

	ne	eded for calc	ulation of b0 a	ind b1		needed for calculation	SST = SSE + SSR ?	
student i	exam prep. x :	points y:	x i* y i	X i ²	y(x i)	SSE=sum(yi-y(x ;))²	SST=sum(yi-M(y))²	SSR=sum(y(xi) - M(y))²
1	5	41	205	25	32,559	71,250481	44,89	3,031081
2	4	27	108	16	29,08	4,3264	53,29	27,2484
3	5	35	175	25	32,559	5,958481	0,49	3,031081
4	3	26	78	9	25,601	0,159201	68,89	75,672601
5	9	48	432	81	46,475	2,325625	187,69	148,230625
6	8	45	360	64	42,996	4,016016	114,49	75,620416
7	10	46	460	100	49,954	15,634116	136,89	245,047716
8	5	27	135	25	32,559	30,902481	53,29	3,031081
9	3	29	87	9	25,601	11,553201	28,09	75,672601
10	3	19	57	9	25,601	43,573201	234,09	75,672601
sum	55	343	2097	363		189,699203	922,10	732,258203

intercept:

b1 = (2097 -10*5,5*34,3)/(121/2) = 421/121~3,479

----> Regression-Line: y = 15,164 + 3,479*x

Substitute these values into Formula I and II:

 $R^2 = 1 - Sum((yi-y(xi))^2)/Sum((yi-M(y))^2) = 1 - (189,699 / 922,1) \sim$

bo = (363*34,3-5,5*2097)/(363-10*5,52) = (4587/5)/(121/2) =

Question 1: 15,164 points.

834/55 ~15,164

Question 2: 15,164 + 34,79 = 49,954 = 50 points (grade= 1,0). Question 3: x= (25-15,164)/3,479=2,83[h]

Compare with Python

921,957406

15.163636363636353 slope: [3.47933884]

coeff. determination: 0.7942748361851003

49.95702479

Check of Proposition (P5.1): f(Mean(x)) = 15,164 + 3,479*5,5 = -34,2985 ~ Mean(y) q.e.d.

Example of a "Least Squares Fitting (LSF)" calculation for multiple LR (mLR)

Find "least square fit" $z = a + b^*x + c^*y$ with Training Set TS ={(x, y, z) | (exam prep.[h], homework[h]; score[pt.])}= {(7,5;41), (3,4;27), (5,5;35), (3,3;26), (8,9;48), (7,8;45), (10,10;46), (3,5;27), (5,3;29), (3,3;19)}

Solution:

Number of Point N=10 Mean-Values ("Mittelwerte") = : $[M(x); M(y); M(z)] \sim [5,4;5,5;34,3]$

Set up a table with the quantities included in the above LSF formulas (I) and (II) for simple LR:

		nedded for the calculation of a, b and c									
i	хi	y i	Z i	Xi:=xi-M(x)	Yi:=yi-M(y)	Zi:=zi-M(z)	Xi*Yi	Xi*Zi	Yi*Zi	Χi²	Yi²
1	7	5	41	1,6	-0,5	6,7	-0,80	10,7	-3,4	2,56	0,25
2	3	4	27	-2,4	-1,5	-7,3	3,60	17,5	11,0	5,76	2,25
3	5	5	35	-0,4	-0,5	0,7	0,20	-0,3	-0,4	0,16	0,25
4	3	3	26	-2,4	-2,5	-8,3	6,00	19,9	20,8	5,76	6,25
5	8	9	48	2,6	3,5	13,7	9,10	35,6	48,0	6,76	12,25
6	7	8	45	1,6	2,5	10,7	4,00	17,1	26,8	2,56	6,25
7	10	10	46	4,6	4,5	11,7	20,70	53,8	52,7	21,16	20,25
8	3	5	27	-2,4	-0,5	-7,3	1,20	17,5	3,7	5,76	0,25
9	5	3	29	-0,4	-2,5	-5,3	1,00	2,1	13,3	0,16	6,25
10	3	3	19	-2,4	-2,5	-15,3	6,00	36,7	38,3	5,76	6,25
Sum	54	55	343	0,0	0,0	0,0	51,00	210,8	210,5	56,40	60,50

Substitute the values to the formulas (I) and (II) of LSF for mLR:

 $det = sum(Xi^2)*sum(Yi^2)-(sum(Xi*Yi))^2 = 56,40*60,50-(51*51) = 811,20$

a = Mean(z)-b*Mean(x)-c*Mean(y) ~ 34,3-2,4875*5,4 - 1.3824*5,5 ~ 13,2643

 $b = (1/\det)^*(sum(Yi^2)^*sum(XiZi)^*sum(YiZi)) = (1/\det)^*(60,50^*210,8^*51^*210,5)^*(2,4875)^* = (1/\det)^*(sum(Yi^2)^*sum(XiZi)^*sum(YiZi)) = (1/\det)^*(sum(Yi^2)^*sum(XiZi)^*sum(XiZi)^*sum(YiZi)) = (1/\det)^*(sum(Yi^2)^*sum(XiZi)^*sum(XiZi)^*sum(YiZi)) = (1/\det)^*(sum(YiZi)^*sum(XiZi)$

 $c = (1/det)^* (sum(Xi^2)^* sum(YiZi)^- sum(XiYi)^* sum(XiZi)) = (1/det)^* (56,4^*210,5-51^*210,8) \\ \simeq 1,3824$

So we get the optimal mLR line: z = 13,264 + 2,488*x + 1,382*y

R² = 1 - SSE/SST ~ 0,8843 (details see notes-page)

--> Adj.R²= 1 - (1-R²)*(9/7) ~ 0.8512 (details see notepage)

coefficient of determination: 0.8843

ntercept: 13,2641

coefficients: [2.4875 1.3824]

Compare with Python-Pgm (next slides):

Set up a table with the quantities included in the formulas for $\,\,R^2$ and Adj. $\!R^2\!:$

	needed for calculation	SST = SSE + SSR ?		
z(xi,yi)	SSE=sum(zi-z(xi,yi))²	SST=sum(zi-M(z))²	SSR=sum(z(xi,yi)-M(z))²	
37,59	11,6281	44,8900	10,8241	
26,256	0,5535	53,2900	64,7059	
32,614	5,6930	0,4900	2,8426	
24,874	1,2679	68,8900	88,8495	
45,606	5,7312	187,6900	127,8256	
41,736	10,6537	114,4900	55,2941	
51,964	35,5693	136,8900	312,0169	
27,638	0,4070	53,2900	44,3822	
29,85	0,7225	28,0900	19,8025	
24,874	34,5039	234,0900	88,8495	
	106,7302	922,1000	815,3930	

3361331. 322,1231	
$R^2 = 1$ -SSE/SST = 1 - Sum((zi-z(xi,yi)) ²)/Sum((zi-M(z)) ²) = 1 -(106,7302/922,1) ~ 0,88425	
> Adj.R ² = 1 -(1-R ²)*(9/7) ~ 0,8512	

Check Corollary (C5.2) -"center of mass"

f(Mean(x), Mean(y))=13,264 + 2,488*5,4 + 1,382*5,5 ~ 34,30 = Mean(z) q.e.d.

Step 4: Get results

You can obtain the properties of the model the same way as in the case of simple linear regression:

```
In [4]: r_sq = model.score(x, y)
print('coefficient of determination:', r_sq)
print('intercept', model.intercept')
print('coefficients', model.coef_)
```

coefficient of determination: 0.8842531690055735 intercept: 13.264053254437865 coefficients: [2.48754931 1.38239645]

xi*yi sum[(xi - M(x))*(yi - M(y))]35 -0,80 12 3,60 25 9 0,20 6,00 72 56 100 9,10 4,00 20,70 15 15 1,00 9 6,00 348 51,00

Check Proposition (P5.1-(iii)):

sum(xi*yi) = sum[(xi - M(x))*(yi - M(y))] + n*M(x)*M(y)348 = 51 + 10*5,4*5,5 = 51 + 297 q.e.d.

Manuel calculation of two sLR-lines (green ,red) (Homework (H5.1_a) + Compare with optimal sLR-line (homewrk (H5.1_b) + Check Results with the new metric R2=SSR/SST

Decide what is the "better" sLR-Line: y = 1,5 + 0,5*x or y = 1,25+0,5*x ?

Solution: Number of Point N=3

Mean-Values ("Mittelwerte"): [M(x),M(y)] = [2; (7/3)] Set up a table with the quantities included in the above formulas for a and b and also the quantities for the calculation of R²:

With the defintion R2:=SSR/SST we get as an result that the green line is the best sLR-line of the three --> With R²=1-SSE/SST it was the yellow line

	needed for calculation of a and b					Needed for cal	SST = SSE + SSR ?			
i	хi	yi	x:*y:	X i 2	y(x i)	SSE=sum(yi-y(x1))2	SST=sum(yi-M(y))²	R²	SSR=sum(y(xi) - M(y))²	R²
1	1	2	2	1	2.00	0.0000000	0.111111	1.0000000	0.1111111	
2	3	3	9	9	3,00	0,0000000	0,444444	1,0000000	0,444444	
3	2	2	4	4	2,50	0,2500000	0,1111111	0,9000000	0,0277778	
sum	6	7	15	14		0,2500000	0,6666667	0,6250000	0,5833333	0,8750000
									0,8333333	<ssr +="" sse<="" td=""></ssr>

y = 1,5 + 0,5*x
 y = 1,25 + 0,5*x

(184) 3= 1,500,5x

	Needed for cal	SST = SSE + SSR ?	•				
y(x :)	SSE=sum(yi-y(x1))2	SST=sum(yi-M(y))²	R ²	SSR=sum(y(xi) - M(y)) ²	R ²		
1,75	0,0625000	0,1111111		0,3402778			
2,75	0,0625000	0,444444		0,1736111			
2,25	0,0625000	0,1111111		0,0069444			
	0,1875000	0,6666667	0,7187500	0,5208333	0,7812500		
0,7083333 <ssr+< td=""></ssr+<>							

From Homework (H5.1_b) we get the data for the "optimal" sLR-line:

	needed for car	CUIACIOII OI N		331 - 33E + 33N !	
y(xi)	SSE=sum(yi-y(xi))2	SST=sum(yi-M(y))2	R ²	SSR=sum(y(xi) - M(y))2	R ²
11/6	(1/6)2=1/36	(-1/3)2=1/9		1/4	
17/6	(1/6)2=1/36	(2/3)2=4/9		1/4	
14/6	(-2/6)2=4/36	(1/3)2=1/9		0	
42/6=7	6/36=1/6	2/3	0,7500000	1/2	0,7500000
				0.666667	<ssr +="" ssf<="" td=""></ssr>

Which estimation (red or green) is better?

Example of a "Least Squares Fitting" calculation for simple LR: Homework 5.1_b"

Find "least square fit" y = a + b*x with Trainingset $TS := \{(x, y)\} = \{(1, 2), (3, 3), (2, 2)\}$

Solution:

Number of Point N=3 Mean-Values ("Mittelwerte"): [M(x),M(y)] = [2; (7/3)]

Set up a table with the quantities included in the above formulas for b0 and b1 and also the quantities for the calculation of R2:

	ne	needed for calculation of b0 and b1				needed for calculation of	SST = SSE + SSR ?	
i	хi	yi	x i* y i	X i ²	y(x i)	SSE=sum(yi-y(x ;))²	SST=sum(yi-M(y))²	SSR=sum(y(xi) - M(y))²
1	1	2	2	1	11/6	(1/6)2=1/36	(-1/3)2=1/9	1/4
2	3	3	9	9	17/6	(1/6)2=1/36	(2/3)2=4/9	1/4
3	2	2	4	4	14/6	(-2/6)2=4/36	(1/3)2=1/9	0
sum	6	7	15	14	42/6=7	6/36=1/6	2/3	1/2

Substitute these values into Formula I and II:

bo = ((7/3)*14 -2*15)/(14-12) = (8/3)/2= 4/3

b1 = (15 -3*2*(7/3))/2 = 1/2 = 0.5

----> Regression-Line: y = 4/3 + 1/2*x

 $R^2 = 1 - Sum((yi-y(xi))^2)/Sum((yi-M(y))^2) = 1 - (1/6)/(2/3)$ = 1 - (1*3)/(6*2)=1-3/12= 1-1/4=3/4

Check of Proposition (P5.1): f(Mean(x)) = (4/3) + (1/2)*2 = 7/3 = Mean(y) q.e.d.

Compare with Python

coefficient of determination: 0.7499999999999999

Coefficients a, b calculated with formulas of Theorem: "(sst=sse+ssr)=??=> optimal"

2 7/3

0,25	хі - М(х)	yi - M(y)	[xi - M(x)]*[yi-M(y)]
0,25	-1	-0,333333333	0,33333333
	1	0,666666667	0,66666667
	0	-0,333333333	0
0,50	0	-4,44089E-16	1

Coefficients a, b calculated with formulas of Theorem: "(sst=sse+ssr)=??=> optimal"

a= [(7/3)*14-(14/3)*6]/(14-3*4)= 14/(3*2) = 14/6=7/3 = M(y)

 $b = [(7/3)*6 - 3*2*(7/3)]/2 = [14-14]/2 = 0 \\ = = > y(x) = 7/3 + 0*x = > y(x) = 7/3 + 0*x = 10*x = 10$

SSR=0

SSE = (2-7/3)²+ (3-7/3)²+0=1/9+4/9=5/9; SST =6/9 > 5/9 = SSR + SSE

SST = 2/3 => R²=1-(5/9)/(2/3)= 1-15/18=3/18=1/6 not max. ! (SST<>sse+sst -> not counter-example !!!