2.1 Population & Community Ecological

Models

Jelena H. Pantel

Faculty of Biology University of Duisburg-Essen

jelena.pantel@uni-due.de

What is a model?

"A model is a representation of a particular thing, idea, or condition."

"The *modeling process* is the series of steps taken to convert an idea first into a conceptual model and then into a quantitative model"

What is ecology?

The study of interactions between organisms and their environment, and with one another

The science that investigates the abundance and distribution of organisms

Population ecology

Exponential growth

$$\frac{dn}{dt}=rn$$

Graphical techniques: develop a feeling for your model

Expected dynamics \rightarrow depends on r and n_0 (initial population size)

When r > 0?

When r < 0?

When r = 0?

parameter	
r	population growth rate

Population ecology

Exponential growth

$$\frac{dn}{dt} = rn$$

Graphical techniques: develop a feeling for your model

How did I develop a graph of population size over time for this equation?

I solved for values of n(t) at different points in time.

Let's solve the equation to get a formula for this: we'll need to integrate the formula

$$\frac{dn}{dt} = rn \longrightarrow \frac{dn}{n} = rdt \longrightarrow \int_{n_0}^{n(t)} \frac{dn}{n} = r \int_0^t dt \longrightarrow ln \frac{n(t)}{n_0} = rt \longrightarrow n(t) = n_0 e^{rt}$$

ANALYTIC

$$A = \int_{a}^{b} f(x) \ dx$$

The definite integral of f(x) between x=a & x=b

Table of Integrals

BASIC FORMS

(1)
$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}$$

$$(2) \qquad \int \frac{1}{x} dx = \ln x$$

(3)
$$\int u dv = uv - \int v dt$$

4)
$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$$

RATIONAL FUNCTIONS

(5)
$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln(ax+b)$$

(6)
$$\int \frac{1}{(x+a)^2} dx = \frac{-1}{x+a}$$

INTEGRALS WITH ROOTS

(18)
$$\int \sqrt{x-a} dx = \frac{2}{3} (x-a)^{3/2}$$

(19)
$$\int \frac{1}{\sqrt{x \pm a}} dx = 2\sqrt{x \pm a}$$

$$(20) \quad \int \frac{1}{\sqrt{a-x}} dx = 2\sqrt{a-x}$$

(21)
$$\int x\sqrt{x-a}dx = \frac{2}{3}a(x-a)^{3/2} + \frac{2}{5}(x-a)^{5/2}$$

(22)
$$\int \sqrt{ax+b} dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right) \sqrt{b+ax}$$

(23)
$$\int (ax+b)^{3/2} dx = \sqrt{b+ax} \left(\frac{2b^2}{5a} + \frac{4bx}{5} + \frac{2ax^2}{5} \right)$$

(24)
$$\int \frac{x}{-x} dx - \frac{2}{2}(x+2a)\sqrt{x+a}$$

Population ecology

Exponential growth

$$\frac{dn}{dt} = rn$$

Graphical techniques: develop a feeling for your model

Expected dynamics

When r > 0?

When r < 0?

When r = 0?

Population ecology

Exponential growth

$$\frac{dn}{dt}=rn$$

Logistic growth

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right)$$

Graphical techniques: develop a feeling for your model Expected dynamics

Expected dynamics

parameter	
r	population growth rate

parameter	
r	population growth rate
K	Carrying capacity

Population ecology

Exponential growth

$$\frac{dn}{dt} = rn \longrightarrow n(t) = n_0 e^{rt}$$

Graphical techniques: develop a feeling for your model Expected dynamics

Expected dynamics

parameter population growth rate

Logistic growth

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right) \longrightarrow n(t) = \frac{K}{1 + n_0 e^{-rt}}$$

parameter	
r	population growth rate
K	Carrying capacity