R code for figures

Raphael Eisenhofer

30/11/2020

R code used to generate figures for the paper: Signatures of landscape and captivity in the gut microbiota of Southern Hairy-nosed Wombats (Lasiorhinus latifrons)

Load libraries

```
library(phyloseq)
library(qiime2R)
library(svglite)
library(cowplot)
library(gplots)
library(ggplot2)
library(scales)
library(ggpubr)
library(tidyr)
library(knitr)
library(wicrobiome)
library(vennDiagram)
library(ggVennDiagram)
library(eulerr)
```

Import data

```
ps <- qza_to_phyloseq(</pre>
  features = "QIIME2_outputs/SHNW-gut-table-final.qza",
  tree = "QIIME2_outputs/sepp-tree.qza",
  taxonomy = "QIIME2_outputs/SHNW-gut-SILVA-132.qza",
  metadata = "QIIME2_outputs/SHNW_2019_Gut_Metadata.txt"
#PCoA matrices
pcoa_uwUniFrac_all <- read_qza(</pre>
  "QIIME2_outputs/SHNW-gut-Core-metrics-final-filtered-table-36346/unweighted_unifrac_pcoa_results.qza")
pcoa_wUniFrac_all <- read_qza(</pre>
  "QIIME2_outputs/SHNW-gut-Core-metrics-final-filtered-table-36346/weighted_unifrac_pcoa_results.qza")
pcoa_uwUniFrac_wild <- read_qza(</pre>
  "QIIME2_outputs/SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/unweighted_unifrac_pcoa_results.qza")
pcoa wUniFrac wild <- read qza(</pre>
  "QIIME2_outputs/SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/weighted_unifrac_pcoa_results.qza")
#Alpha divresity data
faithsPD <- read.csv("QIIME2_outputs/faithsPD.tsv", sep = '\t')</pre>
ObsFeat <- read.csv("QIIME2_outputs/observed_otus.tsv", sep = '\t')
#Venn diagram data (skip second column, which is frequency of ASVs)
captive.asvs <- read.csv("QIIME2_outputs/feature-frequency-detail-captive-200.csv", header = FALSE, row.names = 1)
wild.asvs <- read.csv("QIIME2_outputs/feature-frequency-detail-wild-750.csv", header = FALSE, row.names = 1)
brookfield.asvs <- read.csv(</pre>
```

```
"QIIME2_outputs/feature-frequency-detail-Brookfield.csv", header = FALSE, row.names = 1)
kooloola.asvs <- read.csv(
   "QIIME2_outputs/feature-frequency-detail-Kooloola.csv", header = FALSE, row.names = 1)
wonga.asvs <- read.csv(
   "QIIME2_outputs/feature-frequency-detail-Wonga.csv", header = FALSE, row.names = 1)</pre>
```

Alpha diversity plots (figure 2):

```
#This sets the order in which you wish to display the samples
level_order_adiv <- c('Kooloola', 'Brookfield', 'Wonga', 'Captive')</pre>
#Plot the data!
sp_adiv_fig_faithsPD <- ggplot(faithsPD, aes(x = factor(Population, level=level_order_adiv), y=faith_pd))</pre>
sp_adiv_fig_ObsFeat <- ggplot(ObsFeat, aes(x = factor(Population, level=level_order_adiv), y=observed_otus))</pre>
#Colour vision deficiency-friendly palette
cbp2_adiv <- c("orange", "black", "red", "blue")</pre>
#Faith's PD
#add jitterm, size, and colour
sp_adiv_fig_faithsPD +
  #Boxplot
  geom_boxplot(size=2, outlier.shape=4, outlier.size=3, outlier.stroke=3, aes(colour=Population)) +
  #Jitter, size, colour
  geom_jitter(position=position_dodge2(0.3), size=5, aes(colour=Population)) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_adiv) +
  #Tick labels
  theme(axis.text.x = element_text(face="bold", size=20),
        axis.text.y = element_text(face="bold", size=20),
        axis.title.x = element_text(size=24, face="bold"),
        axis.title.y = element_text(size=24, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.position = "none") +
  #legend.title = element_text(size=0),
  #legend.text = element_text(size=0),
  #legend.key = element_rect(fill = "white", color = NA),
  #legend.key.size = unit(0, "line")) +
  #Axis labels
  scale_y_continuous(breaks=seq(0,400,25)) +
  labs(x = "\nPopulation") +
  labs(y = "Faith's Phylogenetic Diversity\n")
```


Population

```
#Save image as .svg
ggsave(filename = "Fig_AlphaDiv-FaithsPD.svg", width = 20, height = 11, dpi = 300)
#Observed OTUs
#add jitterm, size, and colour
sp_adiv_fig_ObsFeat +
  #Boxplot
  geom_boxplot(size=2, outlier.shape=4, outlier.size=3, outlier.stroke=3, aes(colour=Population)) +
  #Jitter, size, colour
  geom_jitter(position=position_dodge2(0.3), size=5, aes(colour=Population)) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_adiv) +
  #Tick labels
  theme(axis.text.x = element_text(face="bold", size=20),
        axis.text.y = element text(face="bold", size=20),
        axis.title.x = element_text(size=24, face="bold"),
        axis.title.y = element_text(size=24, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.position = "none") +
  #legend.title = element_text(size=0),
  #legend.text = element_text(size=0),
  #legend.key = element_rect(fill = "white", color = NA),
  #leqend.key.size = unit(0, "line")) +
  #Axis labels
  scale_y_continuous(breaks=seq(0,1000,100)) +
  labs(x = "\nPopulation") +
  labs(y = "Observed features\n")
```


Population

```
#Save image as .svg
ggsave(filename = "Fig_AlphaDiv-ObservedFeatures.svg", width = 20, height = 11, dpi = 300)
```

Beta diversity PCoA plots (figures 2 and 4):

```
#Load metadata
metadata_pcoa <- read.csv("QIIME2_outputs/SHNW_2019_Gut_Metadata.txt", sep = '\t')</pre>
#Colour palette
cbp2_beta <- c("orange", "black", "red", "blue")</pre>
#Plot PC1 vs. PC2 (uwUniFrac all)
pcoa_uwUniFrac_all$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC2, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_uwUniFrac_all$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC2: ", round(100*pcoa_uwUniFrac_all$data$ProportionExplained[2]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
```

```
legend.title = element_text(size=0),
legend.text = element_text(size=24),
legend.key = element_rect(fill = "white", color = NA),
legend.key.size = unit(3.5, "line"))
```



```
#Save image
ggsave(filename = "PC1-2_uwUniFrac_all.svg", width = 20, height = 11, dpi = 300)
#Plot PC1 vs. PC3 (uwUniFrac_all)
pcoa_uwUniFrac_all$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC3, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_uwUniFrac_all$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC3: ", round(100*pcoa_uwUniFrac_all$data$ProportionExplained[3]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.title = element_text(size=0),
        legend.text = element_text(size=24),
        legend.key = element_rect(fill = "white", color = NA),
        legend.key.size = unit(3.5, "line"))
```



```
ggsave(filename = "PC1-3_uwUniFrac_all.svg", width = 20, height = 11, dpi = 300)
#Plot PC1 vs. PC2 (wUniFrac_all)
pcoa_wUniFrac_all$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC2, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_wUniFrac_all$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC2: ", round(100*pcoa_wUniFrac_all$data$ProportionExplained[2]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        legend.title = element_text(size=0),
        legend.text = element_text(size=32),
        legend.key = element_rect(fill = "white", color = NA),
        legend.key.size = unit(3.5, "line"))
```



```
#Save image
ggsave(filename = "PC1-2_wUniFrac_all.svg", width = 25, height = 10, dpi = 300)
#Plot PC1 vs. PC3 (wUniFrac_all)
pcoa_wUniFrac_all$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC3, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_wUniFrac_all$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC3: ", round(100*pcoa_wUniFrac_all$data$ProportionExplained[3]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.title = element_text(size=0),
        legend.text = element_text(size=24),
        legend.key = element_rect(fill = "white", color = NA),
        legend.key.size = unit(3.5, "line"))
```



```
ggsave(filename = "PC1-3_wUniFrac_all.svg", width = 25, height = 10, dpi = 300)
#################
### WILD ONLY ###
#################
cbp2_beta_wild <- c("orange", "red", "blue")</pre>
#Plot PC1 vs. PC2 (uwUniFrac_wild)
pcoa_uwUniFrac_wild$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC2, color=Population)) +
  scale x reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_uwUniFrac_wild$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC2: ", round(100*pcoa_uwUniFrac_wild$data$ProportionExplained[2]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta_wild) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.title = element_text(size=0),
```

```
legend.text = element_text(size=32),
legend.key = element_rect(fill = "white", color = NA),
legend.key.size = unit(3.5, "line"))
```



```
ggsave(filename = "PC1-2_uwUniFrac_wild.svg", width = 25, height = 10, dpi = 300)
#Plot PC1 vs. PC3 (uwUniFrac_wild)
pcoa_uwUniFrac_wild$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC3, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_uwUniFrac_wild$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC3: ", round(100*pcoa_uwUniFrac_wild$data$ProportionExplained[3]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta_wild) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.title = element_text(size=0),
        legend.text = element_text(size=24),
        legend.key = element_rect(fill = "white", color = NA),
        legend.key.size = unit(3.5, "line"))
```



```
ggsave(filename = "PC1-3_uwUniFrac_wild.svg", width = 25, height = 10, dpi = 300)
#Plot PC1 vs. PC2 (wUniFrac_wild)
pcoa_wUniFrac_wild$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC2, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_wUniFrac_wild$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC2: ", round(100*pcoa_wUniFrac_wild$data$ProportionExplained[2]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta_wild) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        legend.title = element_text(size=0),
        legend.text = element_text(size=32),
        legend.key = element_rect(fill = "white", color = NA),
        legend.key.size = unit(3.5, "line"))
```



```
#Save image
ggsave(filename = "PC1-2_wUniFrac_wild.svg", width = 25, height = 10, dpi = 300)
#Plot PC1 vs. PC3 (wUniFrac_wild)
pcoa_wUniFrac_wild$data$Vectors %>%
  rename("X.SampleID"=SampleID) %>%
  left_join(metadata_pcoa) %>%
  ggplot(aes(x=PC1, y=PC3, color=Population)) +
  scale_x_reverse() +
  geom_point(size=7.5) +
  xlab(paste("PC1: ", round(100*pcoa_wUniFrac_wild$data$ProportionExplained[1]), "%")) +
  ylab(paste("PC3: ", round(100*pcoa_wUniFrac_wild$data$ProportionExplained[3]), "%")) +
  #Custom manual colours
  scale_colour_manual(values=cbp2_beta_wild) +
  theme(axis.text.x = element_text(face="bold", size=24),
        axis.text.y = element_text(face="bold", size=24),
        axis.title.x = element_text(size=30, face="bold"),
        axis.title.y = element_text(size=30, face="bold"),
        axis.line = element_line(colour = "black"),
        #Background panel
        panel.background = element_rect(fill = "White"),
        panel.grid.major = element_line(colour = "white"),
        panel.grid.minor = element_line(colour = "white"),
        #Legend
        legend.title = element_text(size=0),
        legend.text = element_text(size=24),
        legend.key = element_rect(fill = "white", color = NA),
        legend.key.size = unit(3.5, "line"))
```



```
#Save image
ggsave(filename = "PC1-3_wUniFrac_wild.svg", width = 25, height = 10, dpi = 300)
```

Venn diagrams (figures 3 and 5)

```
## [1] 1
```


Figure 1: Captive and Wild

```
#EulerR diagram for figure 5
euler.fig.5 <- euler(wild.comparison)

pdf(file = "Figure5.pdf")

plot(euler.fig.5,
    fills = c("orange", "red", "blue"),
    edges = TRUE,
    fontsize = 8,
    quantities = list(fontsize = 12,
    lwd = 10))</pre>
dev.off()
```

cairo_pdf
2

Figure 2: Captive and Wild

sessionInfo()

```
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
##
```

```
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
## [3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
  [5] LC_TIME=English_Australia.1252
##
## attached base packages:
## [1] grid
                 stats
                            graphics grDevices utils
                                                           datasets methods
## [8] base
##
## other attached packages:
    [1] gdtools_0.2.2
                             eulerr_6.1.0
                                                  ggVennDiagram_0.3.3
    [4] VennDiagram_1.6.20
                             futile.logger_1.4.3 microbiome_1.10.0
##
                                                  ggpubr_0.4.0
    [7] knitr_1.29
                             tidyr_1.1.2
                             ggplot2_3.3.2
## [10] scales_1.1.1
                                                 gplots_3.1.0
## [13] cowplot 1.1.0
                             svglite_1.2.3.2
                                                 dplyr_1.0.2
## [16] qiime2R_0.99.34
                             phyloseq_1.32.0
##
## loaded via a namespace (and not attached):
                               colorspace_1.4-1
##
                                                    ggsignif_0.6.0
     [1] Rtsne_0.15
##
     [4] class_7.3-17
                               ellipsis_0.3.1
                                                    rio_0.5.16
##
     [7] htmlTable_2.1.0
                               XVector_0.28.0
                                                    base64enc_0.1-3
##
    [10] rstudioapi_0.11
                               farver_2.0.3
                                                    DT_0.15
##
    [13] codetools_0.2-16
                               splines_4.0.2
                                                    polyclip_1.10-0
##
    [16] ade4_1.7-15
                               Formula_1.2-3
                                                     jsonlite_1.7.1
##
    [19] broom_0.7.0
                               cluster_2.1.0
                                                    png_0.1-7
##
    [22] compiler_4.0.2
                               backports_1.1.9
                                                    Matrix_1.2-18
##
    [25] formatR_1.7
                               htmltools_0.5.0
                                                    tools_4.0.2
##
   [28] igraph_1.2.5
                               gtable_0.3.0
                                                    glue_1.4.2
##
                                                    carData_3.0-4
   [31] reshape2_1.4.4
                               Rcpp_1.0.5
##
    [34] Biobase_2.48.0
                               cellranger_1.1.0
                                                    vctrs_0.3.4
##
    [37] Biostrings_2.56.0
                               zCompositions_1.3.4
                                                    multtest_2.44.0
##
    [40] ape 5.4-1
                               nlme 3.1-148
                                                    iterators 1.0.12
                                                    stringr_1.4.0
##
   [43] polylabelr_0.2.0
                               xfun_0.17
                                                    gtools_3.8.2
##
    [46] openxlsx_4.2.2
                               lifecycle_0.2.0
##
    [49] rstatix_0.6.0
                               zlibbioc_1.34.0
                                                    MASS_7.3-51.6
##
    [52] hms_0.5.3
                               parallel_4.0.2
                                                    biomformat_1.16.0
##
    [55] rhdf5_2.32.2
                                                    RColorBrewer_1.1-2
                               lambda.r_1.2.4
##
    [58] yaml_2.2.1
                               curl_4.3
                                                    gridExtra_2.3
    [61] NADA_1.6-1.1
##
                               rpart_4.1-15
                                                    latticeExtra_0.6-29
##
    [64] stringi_1.5.3
                               S4Vectors_0.26.1
                                                    foreach_1.5.0
##
    [67] e1071_1.7-4
                               checkmate_2.0.0
                                                     permute_0.9-5
##
    [70] caTools_1.18.0
                               BiocGenerics_0.34.0
                                                    zip_2.1.1
##
    [73] truncnorm_1.0-8
                               cpp11_0.2.1
                                                    rlang_0.4.9
##
    [76] pkgconfig_2.0.3
                               systemfonts_0.3.1
                                                    bitops_1.0-6
##
    [79] evaluate_0.14
                               lattice_0.20-41
                                                    sf_0.9-6
##
    [82] purrr_0.3.4
                               Rhdf5lib_1.10.1
                                                    labeling_0.3
##
    [85] htmlwidgets_1.5.1
                               tidyselect_1.1.0
                                                    plyr_1.8.6
##
    [88] magrittr_1.5
                               R6_2.4.1
                                                    IRanges_2.22.2
##
    [91] generics 0.0.2
                               Hmisc 4.4-1
                                                    DBI 1.1.0
##
   [94] pillar_1.4.6
                               haven_2.3.1
                                                    foreign_0.8-80
   [97] withr_2.2.0
                               mgcv 1.8-31
                                                    units 0.6-7
## [100] survival_3.1-12
                               abind_1.4-5
                                                    nnet_7.3-14
                                                    car_3.0-9
## [103] tibble_3.0.3
                               crayon_1.3.4
## [106] futile.options_1.0.1 KernSmooth_2.23-17
                                                    rmarkdown_2.3
  [109] jpeg_0.1-8.1
                               readxl_1.3.1
                                                    data.table_1.13.0
  [112] vegan_2.5-6
                               forcats_0.5.0
                                                    classInt_0.4-3
## [115] digest_0.6.25
                               stats4_4.0.2
                                                    munsell_0.5.0
```