Fizika i

Elektrosztatika 2

Az elektromos erőtér

Térerősség vektorok

$$F = k \frac{q_1 q_2}{r^2} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r^2}$$

Erővonalak

Dipólusok

Dipólus homogén elektromos térben

$$M = dqEsin\alpha = pEsin\alpha$$
 $\overrightarrow{M} = \overrightarrow{p} \times \overrightarrow{E}$

Elektromos dipólmomentum:

$$\vec{p} = q\vec{\ell}$$

Dipólus inhomogén elektromos térben

Töltéssűrűség

$$\lambda = \frac{q}{\ell} \quad \left(ill. \quad \lambda = \lim_{\Delta \ell \to 0} \frac{\Delta q}{\Delta \ell} \right)$$

$$\sigma = \frac{q}{A}$$
 (ill. $\sigma = \lim_{\Delta A \to 0} \frac{\Delta q}{\Delta A}$)

$$\rho = \frac{q}{V} \quad \left(\text{ill.} \quad \rho = \lim_{\Delta V \to 0} \frac{\Delta q}{\Delta V} \right)$$

Lineáris töltéseloszlás tere

$$E = k \frac{\Delta Q}{R^2} = k \frac{\lambda \Delta x}{R^2}$$

$$E_{eredő} = \sum \Delta E cos \alpha$$

$$R = \frac{r}{\cos \alpha} \qquad \Delta x = \frac{R \Delta \alpha}{\cos \alpha}$$

$$E_{ered\%} = \sum k \frac{\lambda R \Delta \alpha}{R^2 cos \alpha} cos \alpha = \sum k \frac{\lambda \Delta \alpha}{R}$$

$$E_{eredő} = k\lambda \sum \frac{\cos\alpha}{r} \Delta\alpha$$

$$E_{eredő} = \frac{k\lambda}{r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\alpha \ d\alpha$$

$$E_{eredő} = \frac{k\lambda}{r} \left[sin\alpha \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$E_{eredő} = \frac{2k\lambda}{r}$$

Az elektromos fluxus

Az erővonalak sűrűsége (egységnyi, merőleges felületen áthaladó erővonalak száma) arányos a térerősség nagyságával.

A nagyságú, merőleges felületen áthaladó erővonalak száma arányos a

$$\phi = EA$$

mennyiséggel.

$$[\phi] = \frac{Nm^2}{C}$$

$$\phi = \sum E_i A_i cos \vartheta_i$$

Az elektromos Gauss törvény

A fluxus az S₁ (gömb) felületen:

$$\phi_1 = E(r) \sum \Delta A_i$$

$$\phi_1 = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} 4r^2 \pi = \frac{Q}{\varepsilon_0}$$

A fluxus ugyanakkora a többi zárt felületen is, mivel Az áthaladó erővonalak száma ugyanaz

Általánosítás szuperpozícióval:

$$\overline{E}_i = \overline{E_i^1} + \overline{E_i^2} + \overline{E_i^3}$$

$$\phi_{zsqrt} = \sum \overline{E}_i \Delta \overline{A}_i$$

$$\phi_{z\acute{a}rt} = \frac{1}{\varepsilon_0} \sum Q_{bez\acute{a}rt}$$

Zárt felület fluxusa egyenlő a bezárt eredő töltés $1/\epsilon_0$ – szorosával.

Gauss-tétel alkalmazása

$$A = 2r\pi l \qquad Q = l\lambda \quad k = \frac{1}{4\pi\varepsilon_0}$$

$$E2r\pi l = \frac{l\lambda}{\varepsilon_0}$$
; $E = \frac{\lambda}{2r\pi\varepsilon_0} = \frac{2k\lambda}{r}$

$$E \propto r$$

$$E \propto \frac{1}{r^2}$$

$$R \qquad 2R$$

$$A = 4r^2\pi$$

$$A = 4r^2\pi \quad Q = \frac{4r^3\pi}{3}\varrho$$

$$E = \frac{\varrho}{3\varepsilon_0}r$$

$$\int \vec{E} \, d\vec{A} = 2EA = \frac{\sigma A}{\varepsilon_0} \implies E = \frac{\sigma}{2\varepsilon_0}$$

$$\frac{1}{2} \rightarrow I$$

Elektromos potenciál és energia I.

Az elektromos erőtér által végzett munka:

$$W_{AB} = \sum m{F}_i \Delta m{s}_i = q \sum m{E}_i \Delta m{s}_i$$
 $W_{AB} = q \sum |m{E}_i| |\Delta m{s}_i| cos m{arphi}$ sugárirányú elmozdulás

Ponttöltés terében a mező próbatöltésen végzett munkája Független az úttól, csak a kezdő és végpont helyzetétől függ.

A töltött részecske potenciális energiájának megváltozása: $\Delta E_p = -\int q \vec{E} \; \mathrm{d} \vec{s}$

Def.: az elektromos potenciálkülönbség:
$$\Delta U_{AB} = \frac{\Delta E_p}{q} = -\int_{A}^{D} \vec{E} \ \mathrm{d}\vec{s}$$

Elektromos potenciál és energia II.

Potenciális energiaváltozás: $\Delta E_p = q \Delta U$

Homogén térben: $\Delta U_{AB} = - \vec{E} \vec{s}$

A tér által végzett munka: $W_{tcute{e}r} = -q\Delta U_{AB}$

$$W_{t\acute{e}r} = \Delta E_k \qquad \text{ill.} \qquad -q\Delta U_{AB} = \frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2$$

Ponttöltés elektromos potenciálja

$$\Delta U_{AB} = -\int_{A}^{B} \vec{E} d\vec{s} = -\int_{A}^{B} k \frac{Q}{r^{2}} \vec{n} d\vec{s}$$

$$\Delta U_{AB} = kQ \left(\frac{1}{r_B} - \frac{1}{r_A} \right)$$

Ha az A pont a ∞ – ben van (${\sf r_A} = \infty$) és ${\sf r_B} = {\sf r}$: $U(r) = k \frac{Q}{r}$

$$U(r = \infty) = 0$$

Ponttöltések terében az elektromos potenciál

Láttuk: szuperpozíció

$$\vec{E} = \vec{E_1} + \vec{E_2} + \dots$$

$$\Delta U_{AB} = -\int_{A}^{B} \vec{E} \ d\vec{s} = -\int_{A}^{B} (\vec{E}_{1} + \vec{E}_{2} + \dots) \ d\vec{s} = -\int_{A}^{B} \vec{E}_{1} \ d\vec{s} - \int_{A}^{B} \vec{E}_{2} \ d\vec{s} - \dots$$

$$U(r) = \sum_{i} U_{i} = \sum_{i} k \frac{Q_{i}}{r_{i}}$$

Töltésrendszer elektrosztatikus energiája

$$U(r) = k \frac{Q_1}{r} \longrightarrow E_p(r) = Q_2 U(r) = k \frac{Q_1 Q_2}{r}$$

A Q_1 töltés helyén az elektromos potenciál: $U_{Q_1} = k \frac{Q_2}{r_{12}} + k \frac{Q_3}{r_{13}}$

$$U_{Q_1} = k \frac{Q_2}{r_{12}} + k \frac{Q_3}{r_{13}}$$

A Q₁ töltés potenciális energiája:

$$Q_1 U_{Q_1} = k \frac{Q_1 Q_2}{r_{12}} + k \frac{Q_1 Q_3}{r_{13}}$$

A töltésrendszer potenciális energiája:
$$E_p = k \frac{Q_1 Q_2}{r_{12}} + k \frac{Q_1 Q_3}{r_{13}} + k \frac{Q_2 Q_3}{r_{23}}$$

$$E_p = \frac{1}{2} \sum_{i,j=1}^{N} k \frac{Q_i Q_j}{r_{ij}}$$

$$i \neq j$$

Ált.:
$$E_p = \frac{1}{2} \sum_{i,j=1}^{N} k \frac{Q_i Q_j}{r_{ij}}$$
 ahol $i \neq j$ ill.: $E_p = \frac{1}{2} \int\limits_{V} \rho(\vec{r}) U(\vec{r}) \mathrm{d}V$

Elektromos erőtér származtatása az elektromos potenciálból

$$dU = -E_x dx$$

$$E_x = -\frac{dU}{dx}$$

$$\vec{E} = -\operatorname{grad}U(x, y, z)$$

$$\oint \vec{E} d\vec{s} = 0$$
 , mert $\operatorname{rot}(\vec{E}) = \operatorname{rot}(\operatorname{grad}(U(\vec{r}))) = 0$

Ekvipotenciális felületek ...

A csúcshatás

$$k\frac{Q_1}{R_1} = k\frac{Q_2}{R_2}$$

$$E_1 = \frac{Q_1}{R_1^2}$$
 ill. $E_2 = \frac{Q_2}{R_2^2}$

Pl.: Szent-Elmo tüze (koronakisülés)

$$\frac{E_1}{E_2} = \frac{R_2}{R_1}$$

Kapacitás

Mértékegység:

$$\left[F = \frac{C}{V}, farad\right]$$

Jelölés:

Síkkondenzátor I.

Láttuk, hogy nagy egyenletesen töltött sík tere:

$$E = \frac{\sigma}{2\varepsilon_{o}}$$

$$E = \frac{\sigma}{\varepsilon_{o}}$$

Síkkondenzátor II.

$$U = Ed = \frac{Qd}{\varepsilon_0 A} \qquad \qquad C = \frac{Q}{U} = \frac{\varepsilon_0 A}{d}$$

Példa: gömbkondenzátor, hengerkondenzátor

Kondenzátor energiája

$$W = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QU = \frac{1}{2} CU^2$$

Az elektromos mező energiája

$$\mathbf{W} = \frac{1}{2} \frac{\mathbf{Q}^2}{\mathbf{C}}$$

Síkkondenzátor:

$$E = \frac{Q}{\epsilon_o A} \longrightarrow Q = \epsilon_o AE$$

$$C = \frac{\varepsilon_0 A}{d}$$

$$W = \frac{1}{2} \varepsilon_o E^2 A d$$

Téfrogat: Ad

$$\varepsilon_E = \frac{1}{2}\varepsilon_o E^2$$

energiasűrűség

$$W = \int_{V} \epsilon_{E} dV$$

Sorosan kötött kondenzátorok

$$U_1 + U_2 = U$$

$$\mathbf{Q}_1 = \mathbf{Q}_2$$

$$U = \frac{Q}{C}$$

$$\frac{Q}{C_e} = \frac{Q}{C_1} + \frac{Q}{C_2}$$
 azaz $\frac{1}{C_e} = \frac{1}{C_1} + \frac{1}{C_2}$

$$\frac{1}{C_e} = \sum_{i} \frac{1}{C_i}$$

Párhuzamosan kötött kondenzátorok

$$Q = Q_1 + Q_2 \implies UC_e = UC_1 + UC_2$$
 tehát $C_e = C_1 + C_2$

$$C_e = \sum_i C_i$$

Egy szigetelő (dielektrikum) elektromos tér hiányában elektromosan semleges viselkedést mutat, és saját tere nincs.

Dielektrikumot elektromos térben: az anyag "válaszol" a külső térre, polarizálódik.

Poláros dielektrikum külső tér hiányában Poláros dielektrikum külső elektromos térben

hiányában

Nempoláros dielektrikum külső elektromos térben

Mind a poláros, mind a nem poláros dielektrikum esetében a polarizációs hatás a külső elektromos térrel arányos.

Az anyagban kialakuló dipólmomentum-sűrűség (az ún. polarizáció) a külső térrel egyenesen arányos:

 χ az adott anyagra jellemző **szuszceptibilitás**

Anyag	szuszceptibilitás
paraffin	0.9 - 1.2
csillám	3 - 7
üveg	4 - 15
porcelán	5
víz	80
etilalkohol	20
száraz levegő	0.00059

A dielektrikum dipólmomentuma:

$$\mathbf{p} = \mathbf{P} \mathbf{V} = \epsilon_0 \chi \mathbf{E} \mathbf{A} \mathbf{d} = \mathbf{Q}_{ind} \mathbf{d}$$

$$E = \frac{Q - Q_{ind}}{\epsilon_0 A} \qquad Q = Q_{ind} + \epsilon_0 EA = \epsilon_0 \chi EA + \epsilon_0 EA = \epsilon_0 (\chi + 1) EA$$

$$U = Ed \longrightarrow C = \frac{Q}{U} = \frac{\varepsilon_0(\chi + 1)EA}{Ed} \quad C = \frac{Q}{Ed}$$

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

relatív dielektromos állandó ill relatív permittivitás: $(\epsilon_r = \chi + 1)$