

EEL 6591 Wireless Networks

Radio Resource Management (RRM)

Outline

- Overview of Radio Resource Management (RRM)
- Family of RRM functions
 - power control
 - channel allocation (channel assignment)
 - admission control
 - handover control (mobility management)

Discuss Later

RRM Overview

- RRM is an elementary part in 3G (and beyond) wireless cellular networks.
- The importance of RRM is due to the feature of cellular system in that
 - bandwidth-limited
 - range-limited
 - interference-limited
- RRM is responsible for efficient utilization of network resources to
 - guarantee QoS
 - * maintain the coverage area
 - optimize the cell capacity

Introduction

Definition of power control

"Power control, broadly speaking, is the intelligent selection of transmitter power output in a communication system to achieve good performance within the system. [Wikipedia]"

- ☐ Intelligent Selection: an optimization algorithm
- ☐ Communication System: cellular networks, WLANs, wireless sensor networks and etc.
- ☐ Good Performance: link data rate, network capacity, outage probability, lifetime of networks, geographic coverage and etc.

Introduction

- Objective of power control in cellular networks
 - ☐ Maintain link quality of uplink and downlink by controlling transmission powers
 - ☐ Prevent near-far effect (e.g. W-CDMA system)
 - ☐ Minimize effect of channel fading
 - ☐ Minimize interference in networks

Near-far problem in uplink of W-CDMA system

Introduction

Let's give a demonstrative example to show the uplink power control optimization in a UMTS/WCDMA system.

minimize
$$\sum_i p_i$$
 For instance, minimizing to subject to $\mathsf{SIR}_i(\mathbf{p}) \geq \gamma_i, \ \forall i$ transmitting powers while variables \mathbf{p} satisfying each user's SIR.

For instance, minimizing total satisfying each user's SIR.

- Problem formulation
 - Mobiles: (M1,M2, ..., MM)
 - BSs: (1,2,..., B)
 - Codes: (1,2,...,C)

Introduction

- Problem formulation (cont)
 - Link gain: Gij between BS i and mobile j, G=(Gij)
 - Pj: transmitting power used by mobile terminal j
 - θjm: normalized cross-correlation factor between signals (codes) from mobiles j and m
 - N: receiver noise power
 - Γj: SIR at the BS receiver j
 - γ: the desired SIR to maintain the QoS

Introduction

• Problem formulation (cont): choose the BS i, the codes (channels), the powers so that for all mobile j we have

$$\Gamma_j = rac{P_j G_{ij}}{\sum_m P_m G_{im} heta_{jm} + N} \geq \gamma$$

Problem Formulation

• Power control: Given BS i and the channel, find power set P_j such that

$$\Gamma_j = \frac{P_j G_{ij}}{\sum_m P_m G_{im} \theta_{jm} + N} \ge \gamma$$

- Variation: Given the BS i and the channel, find power set Pj so that PjGij=PmGim for j,m in the cell I
- Minimization: minimize the total power with power constraints

• Standard interference function

$$P_{j} \ge rac{\gamma \sum_{m} P_{m} G_{im} \theta_{jm} + N}{G_{ij}} = I_{j}(P)$$

 $P = (P_{1}, P_{2}, \dots, P_{M}), I(P) = (I_{1}(P), I_{2}(P), \dots, I_{M}(P))$

A interference function I(P) is *standard* if for all $P \ge 0$, we have

- Positivity: I(P) > 0
- Monotonicity: If $P \ge P'$, then $I(P) \ge I(P')$
- Scalability: For all $\alpha > 1$, $I(\alpha P) < \alpha I(P)$

• New problem formulation: Find the power set P such that

$$P >= I(P)$$

- a vector P is said to be feasible if P satisfies the above inequality
- I(P) is feasible if there exists a feasible P
- Theorem: If I(P) is a feasible standard interference function, then power control algorithm P_{n+1}=I(P_n) will converge to the unique fixed point P': P'=I(P')

Observations

- the fixed point P' has the following property: PjGij are all equal--received powers are all equal
- powers are synchronously updated for all mobiles

Optimization problem

- minimize the total received power: enough is good
- minimize the total transmitted power: stingy is good
- Power control with adaptive sectorization: JSAC paper by Yener (2001)

 Asynchronous power control algorithm: update whenever requested

$$P_j(n+1) = \left\{ egin{aligned} I_j(P(au^j(n)), & n \in T^j \ p_j(t), & ext{otherwise} \end{aligned}
ight.$$

where T^j denotes the set of times at which j mobile updates power, $\tau^j(n)$ denotes the most time instant the mobile j knows power level

• Theorem: If I(P) is feasible, the asynchronous power control will converge to the unique equilibrium point P': P'=I(P')

Power Control

- CDMA Standard (IS-95) power control
 - Open-Loop Power Control:
 MS observes the forward
 link pilot signal strength and
 determines the power to
 transmit--pilot signal
 strength indicates the
 distance between MS and
 BS

- CDMA Standard (IS-95) power control
 - Centralized Closed-Loop
 Power Control: BS observes
 link quality such as energy-to-interference ratio EIR
 - if measured EIR is greater than the current target EIR, BS informs the MS to decrease its power by 1 dB;
 - Otherwise, BS informs the MS to increase its power by 1 dB.
 - Convergence is slow (sluggish)

RRM for Current Systems

• Next, let's take a look at current 4G/LTE system and its radio resource management (RRM) functions.

Overview of 4G/LTE

- LTE is the successor technology for UMTS/WCDMA.
- LTE provides high data rate and low latency services.
 - 300Mbps peak downlink
 - 75Mbps peak uplink
 - 10ms minimum latency
- LTE incorporates several new techniques.
 - Orthogonal Frequency-Division Multiple Access (OFDMA)
 - Multiple-input and multiple-output (MIMO)
 - Small cell (i. terogeneous network (HetNet))

RRM in 4G/LTE

- LTE uses multi-carrier OFDM for downlink
 - Total carrier bandwidths range from 1.4MHz to 20MHz.
 - BS (a.k.a. eNB) allocates resource blocks (RBs) to mobiles (a.k.a.
 UE) to transmit data.
 - Resource block is in the form of time-frequency grid.
 - Advantages
 - Robust to fading and interference
 - Drawbacks
 - High peak-to-average ratio
 - Sensitive to frequency offset
- RRM in downlink LTE mainly focuses on RBs allocation.

RRM in 4G/LTE

For instance, finding the optimal subcarrier and power allocation to achieve max. throughput. (a.k.a. rate adaptive (RA) optimization)

$$\max_{c_{k,n}, p_{k,n}} R_T = \frac{B}{N} \sum_{k=1}^{K} \sum_{n=1}^{N} c_{k,n} \log_2 \left(1 + \frac{p_{k,n} h_{k,n}^2}{N_0 \frac{B}{N}} \right)$$

subject to:

C1:
$$c_{k,n} \in \{0,1\}, \ \forall k,n$$

$$C2: \sum_{k=1}^{K} c_{k,n} = 1, \ \forall n$$
Each subcarrier is only assigned to one user.

C3:
$$p_{k,n} \ge 0$$
, $\forall k, n \longrightarrow$ Power should be positive.

C3:
$$p_{k,n} \ge 0$$
, $\forall k, n \longrightarrow$ Power should be positive.
C4: $\sum_{k=1}^{K} \sum_{n=1}^{N} c_{k,n} p_{k,n} \le P_{total}$, \longrightarrow Total power has a budget.

RRM in 4G/LTE

- In specific, the optimal solution is obtained if each subcarrier is assigned to the user with the **best channel gain** on it and the power is distributed using **water-filling** policy.
 - Good subcarriers get more power than poor subcarriers. (The rich becomes richer.)

RRM for Future Systems

- Future wireless systems (e.g. 5G) have the following demands
 - high bandwidth: multimedia applications or Internet applications tend to require high data rate
 - bursty data traffic: Internet traffic tends to be bursty
 - mixed traffic: voice, data, video/audio, images, ...
 - QoS: different traffic may need different QoS requirements
- The diversity and heterogeneity of device & data traffic (e.g. from smart cities and IoT) along with multi-dimensional radio resource intertwining makes RRM for future system challenging!
- New problems and new solutions!

