Maximum Likelihood Estimator

Exercise 1 (Laplace Model)

Let $X_1, ..., X_n$ be a *n*-sample. We model our date using Laplace distribution with the unknown parameter $\theta \in \Theta = \mathbb{R}$. The density of Laplace distribution is :

$$f(\theta, x) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \theta|}{\sigma}\right),$$

where $\sigma > 0$ is **known** (for example, you can take $\sigma = 1$).

- 1) Write the likelihood function of the sample.
- 2) Write the associated log-likelihood.
- 3) Calculate the maximum likelihood estimator.

Exercise 2 (Cauchy Model)

Let $X_1, ..., X_n$ be a *n*-sample. We model our date using Cauchy distribution of unknown parameter $\theta \in \Theta = \mathbb{R}$. The density of Cauchy distribution is :

$$f(\boldsymbol{\theta}, x) = \frac{1}{\pi(1 + (x - \boldsymbol{\theta})^2)}.$$

- 1) Write the likelihood function of the sample.
- 2) Write the likelihood equation.
- 3) Is there a single maximum likelihood estimator?

Exercise 3 (Discrete distribution)

Let $\theta \in]0,1[$ be an unknown parameter. We denote by X a random variable with the following distribution

$$\mathbb{P}_{\theta}(X=k) = (k+1)(1-\theta)^2 \theta^k$$
, for all $k \in \mathbb{N}$.

We have that

$$\mathbb{E}_{\theta}[X] = \frac{2\theta}{1-\theta} \text{ and } \operatorname{Var}_{\theta}[X] = \frac{2\theta}{(1-\theta)^2}.$$

We want to estimate θ from a sample X_1, \dots, X_n with the same distribution as X.

- 1) Provide an estimator of θ using the method of moments.
- 2) Is the maximum likelihood estimator well defined?

Exercise 4 (Step-function density)

For any real θ , we define the function

$$f_{\theta}: x \in \mathbb{R} \mapsto \begin{cases} 1 - \theta & \text{if } -1/2 < x \le 0, \\ 1 + \theta & \text{if } 0 < x \le 1/2 \\ 0 & \text{if not.} \end{cases}$$

- 1) What conditions must θ satisfy for f_{θ} to be a probability density?
- 2) Let X_1, \ldots, X_n be a sample of density f_{θ} . Is the maximum likelihood estimator θ_n of θ well defined?
- 3) Under the conditions of question 1, is $\hat{\theta}_n$ unbiased? consistent? asymptotically normal?