Analisi dataset mtcars

David Marabottini

2025-10-15

```
library(corrplot)
## corrplot 0.95 loaded
library(data.table)
printn <- function(..., mode = "", sameLn=FALSE) {</pre>
 endColumn = ifelse(sameLn == T, "", "\n")
 if (knitr::is_latex_output() || mode == "") {
   cat(..., endColumn)
 } else {
    cat(paste0("\033[", mode, "m"), ..., "\033[0m", endColumn, sep = "")
 }
}
data("mtcars")
head(mtcars)
##
                    mpg cyl disp hp drat
                                           wt qsec vs am gear carb
## Mazda RX4
                    21.0 6 160 110 3.90 2.620 16.46 0 1
## Mazda RX4 Wag
                    21.0 6 160 110 3.90 2.875 17.02 0 1
## Datsun 710
                    22.8 4 108 93 3.85 2.320 18.61 1 1
                                                                   1
                    21.4 6 258 110 3.08 3.215 19.44 1 0
## Hornet 4 Drive
                                                                   2
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
## Valiant
                    18.1 6 225 105 2.76 3.460 20.22 1 0
str(mtcars)
                   32 obs. of 11 variables:
## 'data.frame':
   $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

I valori sono tutti numerici

Dalla documentazione

help(mtcars)

avvio in corso del server httpd per la guida ... fatto

A data frame with 32 observations on 11 (numeric) variables.

Miles/(US) gallon	Variabile quantitativa
	continua, consumo auto
cyl Number of cylinders	Variabile quantitativa
	discreta, numero di cilindri
disp Displacement (cu.in.)	Variabile quantitativa
	continua, Volume totale
	spazzato dal pistone
hp Gross horsepower	Variabile quantitativa
	discreta, Cavalli
drat Rear axle ratio	Variabile quantitativa
	continua, rapporto tra il numero
	di rotazioni compiute dall'albero
	di trasmissione e il numero di
	rotazioni compiute dall'asse della
	ruota (o semiasse) posteriore.
wt Weight (1000 lbs)	Variabile quantitativa
	continua, peso
qsec $1/4$ mile time	Variabile quantitativa
	continua, Migli per quarto di
	secondo
vs Engine $(0 = V-shaped, 1 =$	Variabile Bernoulliana, Tipo
straight)	di motore
Transmission (0 = automatic, 1 = manual)	Variabile Bernoulliana, Tipo
	di cambio
Number of forward gears	Variabile quantitativa
-	discreta, nr marce
Number of carburetors	Variabile quantitativa
	discreta, nr carburatori
	Number of cylinders Displacement (cu.in.) Gross horsepower Rear axle ratio Weight (1000 lbs) 1/4 mile time Engine (0 = V-shaped, 1 = straight) Transmission (0 = automatic, 1 = manual) Number of forward gears

L'unica variabile qualitativa presente è l'indice che indica marca e modello auto volendo si potrebbero creare variabili aggiuntive

```
which(is.na(mtcars))
```

integer(0)

Non sono presenti variabili a null

```
to_factorize = c('cyl', 'hp', 'vs', 'am', 'gear', 'carb')
mtcars_factorized <- unserialize(serialize(mtcars, NULL))</pre>
```

```
for(i in to_factorize) {
 name = paste(i, '_factorized')
 printn(i, mode="1;36")
 mtcars_factorized[[name]] = factor(mtcars[[i]])
 printn(mtcars_factorized[[i]])
## cyl
## 110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215 230 66 52 65 97 150 150 245 175 66 91 1
## 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1
## 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
## gear
## carb
## 4 4 1 1 2 1 4 2 2 4 4 3 3 3 4 4 4 1 2 1 1 2 2 4 2 1 2 2 4 6 8 2
Calcolo media, mediana, deviazione standard e range per tutte le variabili di cui ha senso farlo
to_describe = c('mpg', 'cyl', 'disp', 'hp', 'drat', 'wt', 'qsec', 'gear', 'carb')
for (i in to describe){
 curcol = mtcars_factorized[[i]]
 printn(i, mode="1;36")
 summary = summary(curcol)
 for (name in names(summary)) {
   printn(name, ": ", mode="1", sameLn = T)
   printn(summary[[name]])
 printn('Deviazione Standard', mode="1", sameLn = T)
 printn(sd(curcol))
 printn("Range:" , mode="1", sameLn = T)
 printn(diff(range(curcol)))
 printn('--
}
## mpg
## Min. : 10.4
## 1st Qu. : 15.425
## Median : 19.2
## Mean : 20.09062
## 3rd Qu. : 22.8
## Max. : 33.9
## Deviazione Standard 6.026948
## Range: 23.5
## -----
## cyl
## Min. : 4
## 1st Qu. : 4
```

Median : 6

```
## Mean : 6.1875
## 3rd Qu. : 8
## Max. : 8
## Deviazione Standard 1.785922
## Range: 4
## -----
## disp
## Min. : 71.1
## 1st Qu. : 120.825
## Median : 196.3
## Mean : 230.7219
## 3rd Qu. : 326
## Max. : 472
## Deviazione Standard 123.9387
## Range: 400.9
## -----
## hp
## Min. : 52
## 1st Qu. : 96.5
## Median : 123
## Mean : 146.6875
## 3rd Qu. : 180
## Max. : 335
## Deviazione Standard 68.56287
## Range: 283
## -----
## drat
## Min. : 2.76
## 1st Qu. : 3.08
## Median : 3.695
## Mean : 3.596563
## 3rd Qu. : 3.92
## Max. : 4.93
## Deviazione Standard 0.5346787
## Range: 2.17
## -----
## wt
## Min. : 1.513
## 1st Qu. : 2.58125
## Median : 3.325
## Mean : 3.21725
## 3rd Qu. : 3.61
## Max. : 5.424
## Deviazione Standard 0.9784574
## Range: 3.911
## -----
## qsec
## Min. : 14.5
## 1st Qu. : 16.8925
## Median : 17.71
## Mean : 17.84875
## 3rd Qu. : 18.9
## Max. : 22.9
```

Deviazione Standard 1.786943

```
## Range: 8.4
## -----
## gear
## Min. : 3
## 1st Qu. : 3
## Median : 4
## Mean : 3.6875
## 3rd Qu. : 4
## Max. : 5
## Deviazione Standard 0.7378041
## Range: 2
## -----
## carb
## Min. : 1
## 1st Qu. : 2
## Median : 2
## Mean : 2.8125
## 3rd Qu. : 4
## Max. : 8
## Deviazione Standard 1.6152
## Range: 7
## -----
for (i in to_describe){
 printn(i, mode="1;36")
 outliers = boxplot(mtcars_factorized[[i]], plot=F)$out
 message = paste('sono presenti i seguenti outliers: ', outliers, sep = ' ')
 if(length(outliers) == 0) {
   printn('Non sono presnti outliers', mode="1")
   printn("sono presenti i seguenti outlier: ", mode="1", sameLn = T)
   printn(paste(outliers, sep = ", "))
 printn('----')
## mpg
## Non sono presnti outliers
## -----
## cyl
## Non sono presnti outliers
## -----
## disp
## Non sono presnti outliers
## -----
## hp
## sono presenti i seguenti outlier: 335
## drat
## Non sono presnti outliers
## -----
## sono presenti i seguenti outlier: 5.424 5.345
## -----
```

Boxplot di consumo

Dal boxplot si evince che sebbene l'area tra il primo e il terzo percentile sia abbastanza equilibrata, e la mediana risulta ben posizionata in base a queste 2 aree, il grafico presenta una coda leggermente più lunga verso destra, anche se i valori si presentano ben posizionati dentro il range della normalità e non si segnalano outliers

plot(mtcars_factorized\$mpg, mtcars_factorized\$hp, main="consumo vs potenza", xlab="Consumo", ylab="Potenta", xlab="Consumo", ylab="Potenta", xlab="consumo", xlab="consumo", ylab="plot(mtcars_factorized\$hp, main="consumo", xlab="consumo", xlab="consumo",

consumo vs potenza


```
modello <- lm(hp ~ log(mpg), data = mtcars_factorized)</pre>
modello
##
## Call:
## lm(formula = hp ~ log(mpg), data = mtcars_factorized)
## Coefficients:
## (Intercept)
                    log(mpg)
##
         684.3
                      -181.8
summary_model = summary(modello)
m = summary_model$coefficients[, 1][['log(mpg)']]
q = summary_model$coefficients[, 1][['(Intercept)']]
plot(mtcars_factorized$mpg, mtcars_factorized$hp, main="consumo vs potenza", xlab="Consumo", ylab="Potential")
curve(q + m * log(x),
      add = TRUE, col = "red", lwd = 2)
```

consumo vs potenza

Dal grafico si vede che esiste approssimare l'esistena di una relazione logaritmica negativa tra consumo e potenza del tipo

potenza è circa 684-181*log(consumo) nelle macchine di questo grafico

```
cormap = cor(mtcars, use = "complete.obs")
corrplot(cormap,
    method = "number",
    type = "lower",
    number.cex = 1.0)
```


cormap[1:5, 'mpg']

```
## mpg cyl disp hp drat
## 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.6811719
```

le 5 colonne che hanno le relazioni lineari più forti con mpg sono:

cyl: relazione lineare inversa di 0.852, molto forte

disp: relazione lineare inversa di 0.847, molto forte

hp: relazione lineare inversa di 0.77, garantisce una buona correlazione

drat: relazione lineare diretta di 0.68, garantisce una discreta correlazione lineare

```
mod = lm(mpg ~ wt + hp + cyl, data = mtcars)
summary(mod)
```

```
##
## Call:
## lm(formula = mpg ~ wt + hp + cyl, data = mtcars)
##
## Residuals:
## Min    1Q Median    3Q    Max
## -3.9290 -1.5598 -0.5311    1.1850    5.8986
##
```

```
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.75179
                          1.78686 21.687 < 2e-16 ***
              -3.16697
                          0.74058 -4.276 0.000199 ***
## wt
## hp
              -0.01804
                          0.01188 -1.519 0.140015
## cyl
              -0.94162
                          0.55092 -1.709 0.098480 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.512 on 28 degrees of freedom
## Multiple R-squared: 0.8431, Adjusted R-squared: 0.8263
## F-statistic: 50.17 on 3 and 28 DF, p-value: 2.184e-11
```

Da questa analisi ho notato quanto segue:

- il consumo è pressappoco inversamente proporzionale a cilindrata, grandezza del pistone, potenza (con scala logaritmica) e direttamente influenzato da rear axle ratio (non so cosa sia)
- Ho notato un pattern interessante nella relazione tra consumo e potenza, come se il decrescere del risparmio energetico si smorzi a tendere
- Il dataset è molto piccolo (32 sole marche) ed è improbabile che questa quantità sia significativa nel mondo delle auto