Esperimento di Equilibrio su un piano inclinato

Lorenzo Mauro Sabatino

Sommario

Gli obiettivi che ci prefiggiamo in questa esperienza sono:

- Studiare l'equilibrio di un corpo su di un piano inclinato, trascurando l'attrito;
- Determinare l'intensità della forza equilibrante che serve per mantenere in equilibrio il corpo sul piano inclinato.

1 Introduzione

Posizionare sul piano inclinato il carrellino, quindi collegare attraverso un filo passante per una carrucola il carrellino a un peso. L'esperimento dimostra che il carrello rimane in equilibrio sul piano inclinato. Infatti, la carrucola è in grado di cambiare la direzione della forza peso del pesetto che trascurando gli attriti è interamente trasferita alla tensione del filo. Ciò vuol dire, facendo riferimento alla figura, che la componente parallela della forza peso del carrello $\vec{P}_{//}$ è equilibrata dalla forza peso $\vec{P'}=m'g$, dove m' è la massa del contrappeso.

Figura 1: Diagramma delle forze

Figura 2: Setup esperimento

Per le considerazioni precedenti possiamo scrivere: $P_{//}=P'\Rightarrow P\sin\theta=P'\Rightarrow mg\sin\theta=m'g$ Quindi se il piano inclinato forma un angolo θ rispetto all'orizzontale tale che:

$$\sin \theta = \frac{m'}{m} \tag{1}$$

il sistema è in equilibrio.

2 Procedimento

Realizzare l'apparato come quello in figura (2);				
Utilizzare una massa o un carrellino da legare con un filo al contrappeso. Inziare con masse tra di loro confrontabili;				
Fare passare il filo sulla carrucola;				
Cercare la condizione in cui si instaura l'equilibrio. Bloccare il piano inclinato su certi valori di θ misurati con un goniometro e verificare se c'è equilibrio;				
Se si osserva che il sistema sembra rimanere immobile anche dopo aver cambiat l'angolo, provare a muovere delicatamente il carrellino per vincere le forze di attrit statico. In questo modo si può cercare con maggior precisione l'angolo;				
Ripetere più volte le misure, ripartendo a cercare θ dallo zero (oppure può essere utile partire da valori alti di θ);				
Verificare la legge 1.				
Opzionale: rifare l'esperimento usando massa m e contrappeso diversi. Può essere interessante usare un contrappeso con massa molto inferiore rispetto a quella sul piano inclinato.				

3 Tabelle e analisi dati

I dati devono essere raccolte in tabelle ordinate. Esempio di tabella:

		$m [g] e_m$	m' [g] $e_{m'}$	$\mid \theta \mid^{\circ} \mid$ $e_{\theta} \mid$	$\sin \theta$
	Mis. 1	土	土	土	
Peso 1	Mis. 2	土	土	土	
	Mis. 3	土	土	土	
	Mis. 1	土	土	土	
Peso 2	Mis. 2	土	土	土	
	Mis. 3	土	土	土	
		土	土	土	

3.1 Commenti sull'analisi dati

- □ Potete creare le tabelle nella maniera che preferite
- $\Box\,$ Fare un confronto tra l'angolo θ misurato e quello teorico che ci si aspetta dai calcoli.
- \square Riscrivendo la legge 1 come $m' = m \cdot \sin \theta$ si osserva una relazione lineare ($y = a \cdot x$) tra le grandezze. Costruire un grafico m' vs $\sin \theta$, è pertanto un modo per verificare tale relazione e permette di trovare il valore di m (massa del carrellino) attraverso l'inclinazione della retta "a". Provare a farlo.
- □ **Importante:** segnate sempre gli errori degli strumenti di misura (sensibilità). Ripetete le misure e calcolate media ed errore. Per propagare l'errore usate le formule viste a lezione.

Figura 3: Esempio analisi dati relazione lineare

4 Conclusioni e domande

- La legge è verificata?
- \bullet I valori di θ calcolati dalla formula 1 e quelli ottenuti dall'esperimento sono compatibili?
- L'ipotesi di trascurare la forza di attrito è corretta? Sarebbe stato meglio tenerla in considerazione? Come sarebbero cambiate le equazioni?