ESP 系列产品

FCC 认证说明

包括

ESP8266 系列 ESP32 系列 ESP32-S2 系列 ESP32-C3 系列

关于本手册

概述

本手册主要对 ESP 系列产品的 FCC 认证测试进行了说明。

发布说明

日期	版本	发布说明
2021.02	V1.0	首次发布

文档变更通知

用户可通过乐鑫官网订阅页面 <u>https://www.espressif.com/zh-hans/subscribe</u> 订阅技术文档变更的电子邮件通知。

目录

1. 测试准备	1
1.1 硬件准备	1
1.2 软件准备	1
2. 定频测试	3
2.1 下载定频固件	3
2.1.1 ESP32 系列	
2.1.2 ESP8266 系列	5
2. 1. 3 ESP32-S2 系列	5
2. 1. 4 ESP32-C3 系列	5
2.2 运行测试固件	5
2.2.1 ESP32 系列	5
2. 2. 2 ESP8266 系列	7
2. 2. 3 ESP32-S2 系列	7
2. 2. 4 ESP32-C3 系列	8
3. FAQ	9

1.

测试准备

1.1 硬件准备

FCC 认证需准备的硬件有三种,分别是待测样机,串口板和 USB 线,硬件说明如表 1-1 所示。 表 1-1. 硬件说明

名称	图片	数量	描述
待测样机	N/A	6	基于 ESP 芯片或模组设计的产品 具体准备见第 2 章环境搭建
串口板		1	用于连接 PC 的 USB 线和待测样机接 出来的杜邦线用于 USB-UART 转换,使 PC 端和待 测样机通信
USB 线		1	用于连接 PC 和串口板

说明:

为排除干扰和便于使用,可以在如下链接购买乐鑫串口板:

https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-22443450244.14.78335292M6wSB2&id=577134565637

1.2 软件准备

FCC 认证所需软件通过如下链接获得:

https://www.espressif.com/sites/default/files/tools/ESP32%26ESP8266 RF Performanc e Test CN 0.zip

软件说明如表 1-2 所示。

表 1-2. 软件说明

名称	描述		
ft232r-usb-uart.zip	乐鑫串口板的驱动程序		
ESP_RF_test_tool.zip	该压缩包包含了测试 bin,用于下载和运行测试 bin 的定频工具		

2.

定频测试

本章介绍基于 ESP 芯片或模组的产品,在 FCC 认证中的定频测试部分。定频测试操作分两部分,分别是下载测试固件和运行测试固件。

2.1 下载定频固件

2.1.1 ESP32 系列

2.1.1.1 硬件环境搭建

在硬件上,ESP₃₂ 芯片的 EN 脚通常在设计时通过 RC 延时电路连接到电源线 ₃V₃ 上。将芯片 TXDo,RXDo,GPIOo,₃V₃ 和 GND 通过杜邦线焊接出来,用于连接串口板对应的 pin 脚。串口板通过 USB 线连接到 PC,PC 通过串口板与待测样机通信并供电串口板。当测试传导时,RF cable 接到 ESP₃₂ RF 匹配后面,若 T型匹配后面同时有连接天线,则需要将天线断开。当测试辐射时,RF 匹配后面直接接天线。定频测试中待测样机的环境搭建框图见图 ₂₋₁。

图 2-1 环境搭建框图

对于基于 ESP₃₂ 模组设计的产品,RF 匹配包含在模组屏蔽罩内,测试传导时 RF cable 应焊接到屏蔽罩外,见图 2-2。

图 2-2 模组传导测试 RF cable 接线图

2.1.1.2 下载操作

下载测试 bin 文件:

- 按照图 2-1 环境搭建框图所示连接硬件
- 样机 IOo 接到 GND
- 打开串口板电源开关,显示灯变亮,如图 2-3 所示
- 解压并打开 EspRFTestTool,在界面选择对应的芯片类型,com 口和波特率 115200, Flash 和 ESP32_RF_TEST 40M 固件,点击 load bin 按钮,下载完成会显示 succ,操 作界面如图 2-4。

图 2-3 串口板连接

图 2-4 软件下载操作界面

2.1.2 ESP8266 系列

2.1.2.1 硬件环境连接

ESP8266 系列芯片的硬件环境搭建参考上述 ESP32 系列,将 ESP8266 的 GPIO15 接地,其他 硬件的连接和 ESP32 相同。

2.1.2.2 下载操作

ESP8266 系列芯片需要选择 ESP8266_RF_TEST_V130_26M 测试 bin 进行下载,下载操作步骤 请参考 ESP32 的下载部分,下载时芯片类型选择 ESP8266。

2.1.3 ESP32-S2 系列

2.1.3.1 硬件环境连接

ESP32-S2 系列芯片的硬件环境搭建和 ESP32 相同,请参考 ESP32 部分。

2.1.3.2 下载操作

ESP32-S2 系列芯片需要选择 ESP32-S2_RF_TEST_V200_40M 测试 bin 进行下载,下载操作步骤请参考 ESP32 的下载部分,下载时芯片类型选择 ESP32-S2。

2.1.4 ESP32-C3 系列

2.1.4.1 硬件环境连接

ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIOo,GPIO8 和 GPIO₉,ESP₃₂-C₃ 下载时无需操作 GPIO₉,需要将 GPIO₈ 拉高,GPIO₉ 接地,其余部分请参考 ESP₃₂ 部分。

2.1.4.2 下载操作

ESP₃₂-C₃ 系列芯片需要选择 ESP₃₂-C₃_RF_Test_Bin_V₃oo 测试 bin 进行下载,下载操作步骤 请参考 ESP₃₂ 的下载部分,下载时芯片类型选择 ESP₃₂-C₃。

2.2 运行测试固件

运行定频测试固件需要在定频工具界面操作,具体操作详见下文。

2.2.1 ESP32 系列

2.2.1.1 硬件环境连接

运行时的硬件环境搭建和下载时的硬件环境搭建的区别 GPIOo,下载时 GPIOo 需要接地,运行时 GPIOo 悬空。

2.2.1.2 运行操作

运行测试 bin 进行 WiFi 定频:

• 下载完 bin 以后,如果测试传导,则 RF cable 线先连接到仪器的 50 Ω port Ω , 如果 测

试辐射,则保证样机的天线附近无遮挡。

- 断开样机的 IOo,然后再拨动串口板电源开关重新上电。
- 在下载时打开的 EspRFTestTool 中点击 wifi Test,Test Mode 选择 TX continous。认证中

如果需要降功率,在 Attenuation 里填写数值来实现,单位为 0.25dB,如填写 20,则 表示从默认最大功率降低 20x0.25=5dB,Attenuation 的默认数值是 o,表示不衰减,默认的理想最大功率是 19.5dBm。其他选项根据实验室测试需要进行选择,选择完参数点击 start 即可定频测试,工具里会有相应的 log 显示,定频测试界面如图 2-5 所示。

图 2-5 WiFi 定频测试界面

运行测试 bin 进行蓝牙定频:

蓝牙下载的测试 bin 和 WiFi 相同,只需要在测试工具里点击 BT Test,power level 一般选择 4,其他设置根据实测需要来选择,运行时的界面见图 2-7。

图 2-7 蓝牙测试界面

2.2.2 ESP8266 系列

ESP8266 系列芯片的 WiFi 测试操作请参考 ESP32 部分,测试时只需将芯片类型选择为 ESP8266,其他部分的操作和 ESP32 相同。

ESP8266 系列芯片没有蓝牙, 所以无需测试。

2.2.3 ESP32-S2 系列

ESP₃₂-S₂ 系列芯片的 WiFi 测试操作请参考 ESP₃₂ 部分,测试时只需将芯片类型选择为 ESP₃₂-S₂,其他部分的操作和 ESP₃₂ 相同。

ESP32-S2 系列芯片没有蓝牙, 所以无需测试。

2.2.4 ESP32-C3 系列

ESP₃₂-C₃ 系列芯片的硬件环境搭建和 ESP₃₂ 的区别是 GPIO₉,GPIO₈ 和 GPIO₉,ESP₃₂-C₃ 运行时需要将 GPIO₈ 拉高,GPIO₉ 断开,测试时只需将芯片类型选择为 ESP₃₂-C₃,其余部分请参考 ESP₃₂ 部分。

ESP₃₂-C₃ 系列芯片的蓝牙只支持 BLE,测试时需将芯片类型选择为 ESP₃₂-C₃,功率等级根据实测选择,其他部分的操作参考 ESP₃₂ 部分。

3. FAQ

Q:

如何将认证测试的功率参数更新到应用固件。

A:

请参考 ESP32-Series_Power_Limit_Tool 文档。

Q:

定频测试辐射二次,三次,四次谐波超标。

A:

- 1. 对于基于 ESP 芯片的设计,则排查 RF layout, 匹配和 PA 供电部分,通过调整 RF 匹配, PA 电源线滤波网络来抑制谐波。
- 2. 对于基于 ESP 模组的产品,则模组下面放置底板,底板通常是产品的 PCB 板。
- 3. 在定频测试工具的 attenuation 里输入数值来降低功率。

Q:

Band Edge 和 RE in Restricted Band 超标。

A:

- 1. 确认 RF 匹配是否调试正确
- 2. 在定频测试工具的 attenuation 里输入数值来降低功率。

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此 声明。

版权归 © 2021 乐鑫所有。保留所有权利。