Actividad 1

Temas Selectos I Simulación Estocástica Dr. Rubén Blancas Rivera

Otoño 2025

Introducción

- Lenguaje de programación: Todos los ejercicios deben resolverse utilizando el lenguaje de programación Python. Asegúrate de que el código esté bien estructurado, comentado y que funcione correctamente.
- 2. Presentación del trabajo:
 - La entrega debe realizarse en un archivo en formato PDF.
 - El documento debe incluir:
 - Los **enunciados** de los ejercicios seleccionados.
 - Las soluciones escritas (resolución matemática o justificación conceptual, si aplica).
 - El código en Python correspondiente a cada ejercicio.
 - Capturas de pantalla o salidas del programa que evidencien su funcionamiento.
 - En los ejercicios 13 y 14, se debe incluir también el **algoritmo en pseudocódigo**, ya sea en forma de lista o dentro de un bloque claramente estructurado.
- 3. Selección de ejercicios: Equipos máximo de 3 deben elegir resolver únicamente los ejercicios pares o impares, pero no ambos. Esta elección debe indicarse claramente al inicio del documento.

Ejercicios

- 1. Si $x_0 = 5$ y $x_n = 2x_{n-1} \mod 150$. Encontrar $x_1, ..., x_{10}$.
- 2. Si $x_0 = 3$ y $x_n = (5x_{n-1} + 7) \mod 200$. Encontrar $x_1, ..., x_{10}$.

En los siguientes ejercicios utiliza la simulación para aproximar las siguientes integrales. Compara tu estimación con la respuesta exacta si es conocida.

3. $\int_0^1 exp(e^x)dx$

Verano I 2

- 4. $\int_0^1 (1-x^2)^{3/2} dx$
- 5. $\int_{-2}^{2} e^{x+x^2} dx$
- 6. $\int_0^\infty e^{-x} dx$
- 7. $\int_0^\infty x(1+x^2)^{-2}dx$
- 8. $\int_{-\infty}^{\infty} e^{-x^2} dx$
- 9. $\int_0^1 \int_0^1 e^{(x+y)^2} dy dx$
- 10. $\int_0^\infty \int_0^x e^{-(x+y)} dy dx$
- 11. Use simulación para aproximar $Cov(U, e^U)$, donde $U \sim \mathcal{U}(0, 1)$. Compare su aproximación con la respuesta exacta.
- 12. Sea $U \sim \mathcal{U}(0,1)$. Use simulación para aproximar lo siguiente:
 - a) $Corr(U, \sqrt{1 U^2})$ (correlación)
 - b) $Corr(U^2, \sqrt{1-U^2})$
- 13. Para variables aleatorias uniformes (0,1) $U_1, U_2, ...$ defina $N = \min \left[n : \sum_{i=1}^n U_i > 1 \right]$. Es decir, N es igual al número de números aleatorios que deben sumarse para superar 1.
 - a) Estimar E[N] generando 100 valores de N.
 - b) Estimar E[N] generando 1000 valores de N.
 - c)Estimar ${\cal E}[N]$ generando 10,000 valores N
 - d) ¿Qué valor piense que es E[N]?
- 14. Sea U_i , $i \ge 1$ números aleatorios. Defina N por $N = \max \left[n : \prod_{i=1}^n U_i \ge e^{-3} \right]$, donde $\prod_{i=1}^0 U_i = 1$.
 - a) Encontrar ${\cal E}[N]$ por simulación.
 - b) Encontrar P[N=i] para i=0,1,2,3,4,5,6 por simulación.