Function = Let A and B be two non-empty sets. A relation f from A to B, i.e., a sub-set of $A \times B$, is called a function (or a mapping or a map) from A to B, if

- (i) for each $a \in A$ there exists $b \in B$ such that $(a,b) \in f$
- (ii) $(a,b) \in f$ and $(a,c) \in f \Rightarrow b = c$

If $(a,b) \in f$, then 'b' is called the image of 'a' under f

If a function f is expressed as the set of ordered pairs, the domain f is the set of all first components of members of f and the range of f is the set of second components of members of f.

Q2

Function = Let A and B be two non-empty sets. Then a function 'f' from set A to set B is a rule or method or correspondence which associates elements of set A to elements of set B such that:

- (i) all elements of set A are associated to element in set B.
- (ii) an element of se A is associated to a unique element in set B.

In other words, a function 'f' from a set A to set B associates each element of set A to a unique element of set b.

Q3

Function is a type of relation. But in a function no two ordered pairs have the same first element. For eg: R_1 and R_2 are two relations.

Clearly, R_1 is a function, but R_2 is not a function because two ordered pairs (1,2) and (1,4) have the same first element.

This means every function is a relation but every relation is not a function.

We have,

$$f\left(x\right) = x^2 - 2x - 3$$

Now,

$$f(-2) = (-2)^{2} - 2(-2) - 3$$

$$= 4 + 4 - 3$$

$$= 5$$

$$f(-1) = (-1)^{2} - 2(-1) - 3$$

$$= 1 + 2 - 3$$

$$= 0$$

$$f(-0) = (-0)^{2} - 2 \times 0 - 3$$

$$f(1) = (1)^{2} - 2 \times 1 - 3$$
$$= 1 - 2 - 3$$

$$f(2) = (2)^{2} - 2 \times 2 - 3$$
$$= 4 - 4 - 3$$
$$= -3$$

(a) Rang
$$(f) = \{-4, -3, 0, 5\}$$

(b) Clearly, pre-images of 6,-3 and 5 is ϕ , $\{0,2\}$,-2 respectively.

Q5

We have,

$$f\left(x\right) = \begin{cases} 3x - 2, \ x < 0 \\ 1, \ x = 0 \\ 4x + 1, \ x > 0 \end{cases}$$

$$f(1) = 4 \times 1 + 1 = 5$$
,

$$f(-1) = 3 \times (-1) - 2 = -3 - 2 = -5$$
,

$$f(0) = 1$$
,

and,
$$f(2) = 4 \times 2 + 1 = 9$$

$$f(1) = 5, f(-1) = -5,$$

$$f(0) = 1, f(2) = 9,$$

We have,

$$f(x) = x^2$$

--- (i)

- (a) clearly range of $f = R^+$ (set of all real numbers greater than or equal to zero)
- (b) we have,

$$\{x: f(x) = 4\}$$

$$\Rightarrow$$
 $f(x) = 4$

--- (ii)

Using equation (i) and equation (ii), we get

$$x^2 = 4$$

$$\Rightarrow \qquad x = \pm 2$$

$$(x:f(x)=4)=\{-2,2\}$$

(c)
$$\{y : f(y) = -1\}$$

$$\Rightarrow f(y) = -1$$

--- (iii)

Clearly,
$$x^2 \neq -1$$
 or $x^2 \ge 0$
 $\Rightarrow f(y) \ne -1$

$$\Rightarrow$$
 $f(y) \neq -1$

$$\therefore \quad \left\{ y:f\left(y\right)=-1\right\} =\emptyset$$

We have,

$$f = R^+ \to R$$
 and
$$f(x) = \log_e x \qquad ---(i)$$

(a) Now,

$$f = R^+ \rightarrow R$$

 \therefore the image set of the domain of f = R

(b) Now,

$$\{x : f(x) = -2\}$$

$$\Rightarrow f(x) = -2 \qquad ---(ii)$$

Using equation (i) and equation (ii), we get

$$\log_e x = -2$$

$$\Rightarrow$$
 $x = e^{-2}$

$$\{x: f(x) = -2\} = \{e^{-2}\}$$

(c) Now,

....

$$f(xy) = \log_e(xy)$$

= $\log_e x + \log_e y$

$$f(x) + f(y)$$

$$f(xy) = f(x) + f(y)$$

Yes,
$$f(xy) = f(x) + f(y)$$
.

 $\left[v \log_{\mathbf{a}} b = c \Rightarrow b = \mathbf{a}^c \right]$

$$[f(x) = \log_e x]$$

 $\left[v \log mn = \log m + \log n \right]$

(a) we have,

$$\{(x,y) = y = 3x, x \in \{1,2,3\}, y \in \{3,6,9,12\}\}$$

Putting x = 1,2,3 in y = 3x, we get

$$y = 3, 6, 9$$
 respectively

$$R = \{(1,3), (2,6), (3,9)\}$$

Yes, it is a function.

(b) we have,

$$\{(x,y): y > x+1, x=1,2 \text{ and } y=2,4,6\}$$

Putting x = 1, 2 in y > x + 1, we get

$$y > 2$$
, $y > 3$ respectively.

$$R = \{(1,4), (1,6), (2,4), (2,6)\}$$

It is not a function from A to B because two ordered pairs in R have the same first element.

(c) we have,

$$\left\{ \left(x,y\right) =x+y=3,\ x,y\in \left\{ 0,1,2,3\right\} \right\}$$

Now,

$$y = 3 - x$$

Putting x = 0, 1, 2, 3, we get

$$y = 3, 2, 1, 0$$
 respectively

$$R = \{(0,3), (1,2), (2,1), (3,0)\}$$

Yes, this relation is a function.

Q9

We have,

$$f: R \to R \text{ and } g: c \to c$$

- .. Domain (f) = R and Domain (g) = c
- \therefore Domain $(f) \neq$ Domain (g) = c
- f(x) and g(x) are not equal functions.

(i) We have,

$$f(x) = x^2$$

Range of $f(x) = R^+$ (set of all real numbers greater than or equal to zero) $= \{x \in R \mid x \ge 0\}$

(ii) We have,

$$g(x) = \sin x$$

Range of $g(x) = \{x \in \mathbb{R} : -1 \le x \le 1\}$

(iii) We have,

$$h\left(x\right)=x^2+1$$

Range of $h(x) = \{x \in R : x \ge 1\}$

Q11

(a) We have,

$$f_1 = \big\{ \big(1,1\big), \ \, \big(2,11\big), \ \, \big(3,1\big), \ \, \big(4,15\big) \big\}$$

 f_1 is a function from X to Y.

(b) We have,

$$f_2 = \{(1,1), (2,7), (3,5)\}$$

 f_2 is not a function from X to Y because there is an element $4 \in X$ which is not associated to any element of Y.

(c) We have,

$$f_3 = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$$

 f_3 is not a function from X to Y because an element $2 \in X$ is associated to two elements 9 and 11 in Y.

```
We have,
         f(x) = highest prime factor of x.
         12 = 3 \times 4
ž.,
          13 = 13 \times 1,
          14 = 7 \times 2
          15 = 5 \times 3,
          16 = 2 \times 8
          17 = 17 \times 1
       f = \{(12,3), (13,13), (14,7), (15,5), (16,2), (17,17)\}
\therefore Range (f) = \{3,13,7,5,2,17\}
Q13
 We know that,
          if f: A \rightarrow 13
 such that y \in 3. Then,
           f^{-1}(y) = \{x \in A : f(x) = y\}. In other words, f^{-1}(y) is the set of pre-images of y.
 Let f^{-1}\{17\} = x. Then, f(x) = 17
 \Rightarrow \qquad x^2 + 1 = 17
 \Rightarrow x^2 = 17 - 1 = 16
 \Rightarrow x = \pm 4
Let f^{-1}\{-3\} = x. Then, f(x) = -3
 \Rightarrow x^2 + 1 = -3
\Rightarrow x^2 = -3 - 1 = -4
 \Rightarrow \qquad x = \sqrt{-4}
f^{-1}\left\{ -3\right\} =\theta
```

We have,

$$A = \{p,q,r,s\}$$
 and $B = \{1,2,3\}$

(a) Now,

$$R_1 = \{(p, 1), (q, 2), (r, 1), (s, 2)\}$$

 R_1 is a function

(b) Now,

$$R_2 = \{(p, 1), (q, 1), (r, 1), (s, 1)\}$$

 R_2 is a function

(c) Now,

$$R_3 = \{(p,1), (q,2), (p,2), (s,3)\}$$

 R_3 is not a function because an element $p \in A$ is associated to two elements 1 and 2 in B.

(d) Now,

$$R_4 = \{(p,2), (q,3), (r,2), (s,2)\}$$

 R_4 is a function.

Q15

We have,

f(n) = the highest prime factor of n.

Now,

70

$$9 = 3 \times 3$$

$$10 = 5 \times 2,$$

$$11 = 11 \times 1$$
,

$$12 = 3 \times 4$$

$$13 = 13 \times 1$$

$$f = \{(9,3), (10,5), (11,11), (12,3), (13,13)\}$$

Clearly, range $(f) = \{3, 5, 11, 13\}$

We have,

$$f(x) = \begin{cases} x^2, & 0 \le x \le 3 \\ 3x, & 3 \le x \le 10 \end{cases}$$
 and,
$$g(x) = \begin{cases} x^2, & 0 \le x \le 2 \\ 3x, & 2 \le x \le 10 \end{cases}$$

Now,
$$f(3) = (3)^2 = 9$$
 and $f(3) = 3 \times 3 = 9$
and, $g(2) = (2)^2 = 4$ and $g(2) = 3 \times 2 = 6$

We observe that f(x) takes unique value at each point in its domain [0,10]. However g(x) does not takes unique value at each point in its domain [0,10].

Hence, g(x) is not a function.

Q17

Given
$$f(x) = x^2$$

$$f(1.1) = 1.21$$

$$f(1) = 1$$

$$\frac{f(1.1) - f(1)}{(1.1) - 1} = \frac{1.21 - 1}{1.1 - 1}$$

$$= \frac{0.21}{0.1}$$

$$= 2.1$$

Q18

$$f: X \rightarrow R$$
 given by $f(x) = x^3 + 1$

$$f(-1) = (-1)^3 + 1 = -1 + 1 = 0$$

$$f(0) = (0)^3 + 1 = 0 + 1 = 1$$

$$f(3) = (3)^3 + 1 = 27 + 1 = 28$$

$$f(9) = (9)^3 + 1 = 81 + 1 = 82$$

$$f(7) = (7)^3 + 1 = 343 + 1 = 344$$

Set of ordered pairs are $\{(-1,0),(0,1),(3,28),(9,82),(7,344)\}$

We have,

$$f(x) = x^2 - 3x + 4$$

Now,

$$f(2x+1) = (2x+1)^{2} - 3(2x+1) + 4$$
$$= 4x^{2} + 1 + 4x - 6x - 3 + 4$$
$$= 4x^{2} - 2x + 2$$

It is given that

$$f(x) = f(2x + 1)$$

$$\Rightarrow x^2 - 3x + 4 = 4x^2 - 2x + 2$$

$$\Rightarrow 0 = 4x^2 - x^2 - 2x + 3x + 2 - 4$$

$$\Rightarrow 3x^2 + x - 2 = 0$$

$$\Rightarrow 3x^2 + 3x - 2x - 2 = 0$$

$$\Rightarrow 3x(x+1) - 2(x+1) = 0$$

$$\Rightarrow (x+1)(3x-2)=0$$

$$\Rightarrow x+1=0 \qquad \text{or} \qquad 3x-2=0$$

$$\Rightarrow$$
 $x = -1$ or $x = \frac{2}{3}$

Q2

We have,

$$f(x) = (x - a)^2 (x - b)^2$$

$$f(a+b) = (a+b-a)^{2}(a+b-b)^{2}$$
$$= b^{2}a^{2}$$
$$\Rightarrow f(a+b) = a^{2}b^{2}$$

We have,

$$y = f(x) = \frac{ax - b}{bx - a}$$

$$\Rightarrow y = \frac{ax - b}{bx - a}$$

$$\Rightarrow y (bx - a) = ax - b$$

$$\Rightarrow xyb - ay = ax - b$$

$$\Rightarrow xyb - ax = ay - b$$

$$\Rightarrow x (by - a) = ay - b$$

$$\Rightarrow x = \frac{ay - b}{by - a}$$

$$\Rightarrow x = f(y)$$

Hence, proved

$$f\left(X\right)=\frac{1}{1-X}$$

$$f\{f(x)\} = f\left\{\frac{1}{1-x}\right\}$$

$$= \frac{1}{1-\frac{1}{1-x}}$$

$$= \frac{1}{\frac{1-x-1}{1-x}}$$

$$= \frac{1-x}{-x}$$

$$= \frac{x-1}{x}$$

$$f\left[f\left\{x\right\}\right] = f\left\{\frac{x-1}{x}\right\}$$

$$= \frac{1}{1 - \left(\frac{x-1}{x}\right)}$$

$$= \frac{1}{\frac{x-x+1}{x}}$$

$$= \frac{x}{1}$$

$$f[f(x)] = x \text{ Hence, proved.}$$

We have,

$$f\left(X\right) = \frac{X+1}{X-1}$$

Now,

$$f[f(x)] = f\left(\frac{x+1}{x-1}\right)$$

$$= \frac{\left(\frac{x+1}{x-1}\right)+1}{\left(\frac{x+1}{x-1}\right)-1}$$

$$= \frac{\frac{x+1+x-1}{x-1}}{\frac{x+1-1(x-1)}{x-1}}$$

$$= \frac{\frac{2x}{x-1}}{\frac{x+1-x+1}{x-1}}$$

$$= \frac{2x}{2}$$

$$= x$$

$$f[f(x)] = x \quad \text{Hence, proved.}$$

Q6

We have,

$$f(x) = \begin{cases} x^2, & \text{when } x < 0 \\ x, & \text{when } 0 \le x \le 1 \\ \frac{1}{x}, & \text{when } x \ge 1 \end{cases}$$

(a)
$$f(1/2) = \frac{1}{2}$$

(b)
$$f(-2) = (-2)^2 = 4$$

(c)
$$f(1) = \frac{1}{1} = 1$$

(d)
$$f(\sqrt{3}) = \frac{1}{\sqrt{3}}$$

(e)
$$f(\sqrt{-3}) = \text{does not exist because } \sqrt{-3} \notin \text{domain}(f)$$
.

$$f(x) = x^3 - \frac{1}{x^3}$$
 ---(i)

Now,

$$f\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^3 - \frac{1}{\left(\frac{1}{x}\right)^3}$$

$$=\frac{1}{x^3}-\frac{1}{\frac{1}{x^3}}$$

$$\Rightarrow f\left(\frac{1}{x}\right) = \frac{1}{x^3} - x^3 \qquad ---(ii)$$

Adding equation (i) and equation (ii), we get

$$f(x) + f(\frac{1}{x}) = \left(x^3 - \frac{1}{x^3}\right) + \left(\frac{1}{x^3} - x^3\right)$$
$$= x^3 - \frac{1}{x^3} + \frac{1}{x^3} - x^3$$
$$= 0$$

$$f(x) + f(\frac{1}{x}) = 0$$
 Hence, proved.

Q8

We have,

$$f(x) = \frac{2x}{1+x^2}$$

$$f(\tan \theta) = \frac{2(\tan \theta)}{1 + \tan^2 \theta}$$
$$= \sin 2\theta$$

$$\left[\because \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} \right]$$

$$f(\tan \theta) = \sin 2\theta \qquad \text{Hence, proved.}$$

i.
$$= \frac{x-1}{x+1}$$

$$f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1} = \frac{\frac{1-x}{x}}{\frac{1+x}{x}} = \frac{1-x}{1+x} = -f(x)$$

ii.
$$f(x) = \frac{x-1}{x+1}$$

$$f\left(-\frac{1}{x}\right) = \frac{-\frac{1}{x}-1}{-\frac{1}{x}+1} = \frac{\frac{-1-x}{x}}{\frac{-1+x}{x}} = \frac{-1-x}{-1+x} = -\frac{1}{\frac{1+x}{x-1}} = -\frac{1}{f(x)}$$

We have,

$$f\left(x\right)=\left(a-x^{n}\right)^{1/n},\ a>0$$

$$f(f(x)) = f(a - x^n)^{1/n}$$

$$= \left[a - \left\{\left(a - x^n\right)^{1/n}\right\}^n\right]^{1/n}$$

$$= \left[a - \left(a - x^n\right)\right]^{1/n}$$

$$= \left[a - a + x^n\right]^{1/n}$$

$$= \left(x^n\right)^{1/n}$$

$$= \left(x\right)^{n \times \frac{1}{n}}$$

$$= x$$

$$f(f(x)) = x \quad \text{Hence, proved.}$$

$$af(x) + bf\left(\frac{1}{x}\right) = \frac{1}{x} - 5$$

$$\Rightarrow af\left(\frac{1}{x}\right) + bf(x) = \frac{1}{\frac{1}{x}} - 5$$

$$= x - 5$$

$$\Rightarrow af\left(\frac{1}{x}\right) + bf\left(x\right) = x - 5 \qquad --- \text{(ii)}$$

Adding equations (i) and (ii), we get

$$af(x) + bf(x) + bf\left(\frac{1}{x}\right) + af\left(\frac{1}{x}\right) = \frac{1}{x} - 5 + x - 5$$

$$\Rightarrow (a+b)f(x) + f\left(\frac{1}{x}\right)(a+b) = \frac{1}{x} + x - 10$$

$$\Rightarrow f(x) + f\left(\frac{1}{x}\right) = \frac{1}{a+b}\left[\frac{1}{x} + x - 10\right] \qquad ---(iii)$$

Subtracting equation (ii) from equation (i), we get

$$af(x) - bf(x) + bf\left(\frac{1}{x}\right) - af\left(\frac{1}{x}\right) = \frac{1}{x} - 5 - x + 5$$

$$\Rightarrow (a - b)f(x) - f\left(\frac{1}{x}\right)(a - b) = \frac{1}{x} - x$$

$$\Rightarrow f(x) - f\left(\frac{1}{x}\right) = \frac{1}{a - b}\left[\frac{1}{x} - x\right]$$

Adding equations (iii) and (iv), we get

$$2f(x) = \frac{1}{a+b} \left[\frac{1}{x} + x - 10 \right] + \frac{1}{a-b} \left[\frac{1}{x} - x \right]$$

$$\Rightarrow 2f(x) = \frac{(a-b) \left[\frac{1}{x} + x - 10 \right] + (a+b) \left[\frac{1}{x} - x \right]}{(a+b)(a-b)}$$

$$\Rightarrow 2f(x) = \frac{\frac{a}{x} + ax - 10a - \frac{b}{x} - bx + 10b + \frac{a}{x} - ax + \frac{b}{x} - bx}{a^2 - b^2}$$

$$\Rightarrow 2f(x) = \frac{\frac{2a}{x} - 10a + 10b - 2bx}{a^2 - b^2}$$

$$\Rightarrow f(x) = \frac{1}{a^2 - b^2} \times \frac{1}{2} \left[\frac{2a}{x} - 10a + 10b - 2bx \right]$$

$$= \frac{1}{a^2 - b^2} \left[\frac{a}{x} - 5a + 5b - bx \right]$$

$$f(x) = \frac{1}{a^2 - b^2} \left[\frac{a}{x} - bx - 5a + 5b \right]$$

$$= \frac{1}{a^2 - b^2} \left[\frac{a}{x} - bx \right] - \frac{5(a - b)}{a^2 - b^2}$$

$$= \frac{1}{a^2 - b^2} \left[\frac{a}{x} - bx \right] - \frac{5(a - b)}{(a - b)(a + b)}$$

$$= \frac{1}{a^2 - b^2} \left[\frac{a}{x} - bx \right] - \frac{5}{a + b}$$

We have,

$$f(x) = \frac{1}{x}$$

Clearly, f(x) assumes real values for all real values for all x except for the values of x = 0

Hence, Domain $(f) = R - \{0\}$

We have,

$$f(x) = \frac{1}{x - 7}$$

Clearly, $\bar{t}(x)$ assumes real values for all real values for all x except for the values of x satisfying x-7=0 i.e., x=7

Hence, Domain $(f) = R - \{7\}$

We have,

$$f(x) = \frac{3x - 2}{x + 1}$$

We observe that f(x) is a rational function of x as $\frac{3x-2}{x+1}$ is a rational expression.

Clearly, f(x) assumes real values for all x except for the values of x for which x+1=0 i.e., x=-1

Hence, Domain = $R - \{-1\}$

We have,

$$f(x) = \frac{2x+1}{x^2-9}$$

$$= \frac{2x+1}{(x^2-3^2)}$$

$$= \frac{2x+1}{(x-3)(x+3)} \qquad \left[\because a^2-b^2 = (a-b)(a+b) \right]$$

We observe that f(x) is a rational function of x as $\frac{2x+1}{x^2-9}$ is a rational expression.

Clearly, f(x) assumes real values for all x except for all those values of x for which $x^2 - 9 = 0$ i.e., x = -3,3

Hence, Domain $(f) = R - \{-3, 3\}$.

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

$$= \frac{x^2 + 2x + 1}{x^2 - 6x - 2x + 12}$$

$$= \frac{x^2 + 2x + 1}{x(x - 6) - 2(x - 6)}$$

$$= \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

Clearly, f(x) is a rational function of x as $\frac{x^2+2x+1}{x^2-8x+12}$ is a rational expression in x. We observe that f(x) assumes real values for all x except for all those values of x for which $x^2-8x+12=0$ i.e., x=2,6

:. Domain $(f) = R - \{2, 6\}$

(i) We have,

$$f(x) = \sqrt{x-2}$$

Clearly, f(x) assumes real values, if

$$\Rightarrow x \in [2, \infty)$$

Hence, Domain $(f) = [2, \infty]$

(ii) We have,

$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$

Clearly, f(x) assumes real values, if

 $\left[\because a^2 - b^2 = (a - b)(a + b) \right]$

$$x^2 - 1 > 0$$

$$\Rightarrow$$
 $(x-1)(x+1)>0$

$$\Rightarrow x < -1 \text{ or } x > 1$$

$$\Rightarrow \qquad x < -1 \text{ or } x > 1$$

$$\Rightarrow \qquad x \in (-\infty, -1) \cup (1, \infty)$$

Hence, domain $(f) = (-\infty, -1) \cup (1, \infty)$

(iii) We have,

$$f(x) = \sqrt{9 - x^2}$$

Clearly, f(x) assumes real values, if

$$9-x^2\geq 0$$

$$\Rightarrow$$
 $9 \ge x^2$

$$\Rightarrow x^2 \le 9$$

$$\Rightarrow x \in [-3, 3]$$

Hence, domain (f) = [-3, 3]

(iv) We have,

$$f\left(x\right)=\sqrt{\frac{x-2}{3-x}}$$

Clearly, f(x) assumes real values, if

$$x - 2 \ge 0$$

$$3 - x > 0$$

$$\Rightarrow x \in [2,3]$$

Hence, domain (f) = [2, 3).

$$f(x) = \frac{ax + b}{bx - a}$$

We observe that f(x) is a rational function of x as $\frac{ax+b}{bx-a}$ is a rational expression.

Clearly, f(x) assumes real values for all x except for the values of x for which bx - a = 0 i.e., bx = a

$$\Rightarrow x = \frac{a}{b}$$

$$\therefore \quad \mathsf{Domain}\left(f\right) = R - \left\{\frac{a}{b}\right\}$$

Range of f: Let f(x) = y

$$\Rightarrow \frac{ax + b}{bx - a} = y$$

$$\Rightarrow ax + b = y (bx - a)$$

$$\Rightarrow ax + b = bxy - ax$$

$$\Rightarrow$$
 ax + b = bxy - ax

$$\Rightarrow$$
 $b + ay = bxy - ax$

$$\Rightarrow b + ay = x (by - a)$$

$$\Rightarrow \frac{b+ay}{b-ay}=x$$

$$\Rightarrow \qquad x = \frac{b + ay}{by - a}$$

Clearly, x will take real value for all $x \in R$ except for

$$by - a = 0$$

$$\Rightarrow \qquad y = \frac{a}{b}$$

$$\therefore \text{ Range}(f) = R - \left\{\frac{a}{b}\right\}.$$

$$f(x) = \frac{ax - b}{cx - d}$$

We observe that f(x) is a rational function of x as $\frac{ax-b}{cx-d}$ is a rational expression.

Clearly, f(x) assumes real values for all x except for all those values of x for which cx - d = 0 i.e., cx = d

$$\Rightarrow \qquad x = \frac{d}{c}$$

$$\therefore \quad \mathsf{Domain}(f) = R - \left\{ \frac{d}{c} \right\}$$

Range: Let f(x) = y

$$\Rightarrow \frac{ax - b}{cx - d} = y$$

$$\Rightarrow \quad \text{ax } -b = y \left(cx - d \right)$$

$$\Rightarrow \quad \text{ax } -b = cxy - dy$$

$$\Rightarrow \quad dy - b = cxy - 9x$$

$$\Rightarrow$$
 ax - b = cxy - dy

$$\Rightarrow$$
 $dy - b = cxy - 9x$

$$\Rightarrow \qquad dy - b = x (cy - a)$$

$$\Rightarrow \frac{dy - b}{cy - a} = x$$

Clearly, x assumes real values for all y except

$$cy - a = 0$$
 i.e., $y = \frac{a}{c}$

Hence, range $(f) = R - \left\{ \frac{a}{c} \right\}$

$$f(x) = \sqrt{x-1}$$

Clearly, f(x) assumes real values, if

$$X-1\geq 0$$

$$\Rightarrow x \ge 1$$

$$\Rightarrow \qquad x \in [1, \infty)$$

Hence, domain $(f) = [1, \infty)$

Range: For $x \ge 1$, we have,

$$X-1\geq 0$$

$$\Rightarrow \sqrt{x-1} \ge 0$$

$$\Rightarrow$$
 $f(x) \ge 0$

Thus, f(x) takes all real values greater than zero.

Hence, range $(f) = [0, \infty)$

We have,

$$f\left(x\right)=\sqrt{x-3}$$

Clearly, f(x) assumes real values, if

$$\Rightarrow x \in [3, \infty)$$

Hence, domain $(f) = [3, \infty)$

Range: For $x \ge 3$, we have,

$$\Rightarrow \sqrt{x-3} \ge 0$$

$$\Rightarrow$$
 $f(x) \ge 3$

Thus, f(x) takes all real values greater than zero.

Hence, range $(f) = [0, \infty)$

$$f(x) = \frac{x-2}{2-x}$$

Domain of f: Clearly, f(x) is defined for all $x \in R$ except for which

$$2-x \neq 0$$
 i.e., $x \neq 2$

Hence, domain $(f) = R - \{2\}$

Range of f: Let f(x) = y

$$\Rightarrow \frac{x-2}{2-x} = y$$

$$\Rightarrow \frac{-1(2-x)}{2-x} = y$$

$$\Rightarrow$$
 $-1 = y$

$$\Rightarrow$$
 $y = -1$

: Range
$$(f) = \{-1\}$$

We have,

$$f(x) = |x - 1|$$

Clearly, f(x) is defined for all $x \in R$

$$\Rightarrow$$
 Domain $(f) = R$

Range: Let f(x) = y

$$\Rightarrow |x-1|=y$$

$$\Rightarrow f(x) \ge 0 \ \forall \ x \in R$$

It follows from the above relation that y takes all real values greater or equal to zero.

$$\therefore$$
 Range $(f) = [0, \infty)$

As |x|is defined for all real numbers, its domain is R and range is only negative numbers because, |x| is always positive real number for all real numbers and -|x| is always negative real numbers.

In order to have F(x) has defined value, term inside square root should always be greater than or equal to zero which gives domain as $-3 \le x \le 3$

Where as Range of above function is limited to [0, 3]

We have,
$$f(x) = x^3 + 1 \text{ and } g(x) = x + 1$$
Now,
$$f + g : R \to R \text{ given by } (f + g)(x) = x^3 + x + 2$$

$$f - g : R \to R \text{ given by } (f - g)(x) = x^3 + 1 - (x + 1)$$

$$= x^3 - x$$

$$cf : R \to R \text{ given by } (cf)(x) = c(x^3 + 1)$$

$$fg : R \to R \text{ given by } (fg)(x) = (x^3 + 1)(x + 1)$$

$$= x^4 + x^3 + x + 1$$

$$\frac{1}{f} : R - \{-1\} \to R \text{ given by } (\frac{1}{f})(x) = \frac{1}{x^3 + 1}$$

$$\frac{f}{g} : R - \{-1\} \to R \text{ given by } (\frac{f}{g})(x) = \frac{(x + 1)(x^2 - x + 1)}{x + 1}$$

$$= x^2 - x + 1$$

We have,

$$f(x) = \sqrt{x-1} \text{ and } g(x) = \sqrt{x+1}$$

$$f+g: (1,\infty) \to R \text{ defined by } (f+g)(x) = \sqrt{x-1} + \sqrt{x+1},$$

$$f-g: (1,\infty) \to R \text{ defined by } (f-g)(x) = \sqrt{x-1} - \sqrt{x+1},$$

$$cf: (1,\infty) \to R \text{ defined by } (cf)(x) = c\sqrt{x-1},$$

$$fg: (1,\infty) \to R \text{ defined by } (fg)(x) = (\sqrt{x-1})(\sqrt{x+1})$$

$$= \sqrt{x^2-1}$$

$$\frac{1}{f}: (1,\infty) \to R \text{ defined by } \left(\frac{1}{f}\right)(x) = \frac{1}{\sqrt{x-1}}$$

$$\frac{f}{g}: (1,\infty) \to R \text{ defined by } \left(\frac{f}{g}\right)(x) = \sqrt{\frac{x-1}{x+1}}$$

$$f(x) = 2x + 5$$
 and $g(x) = x^2 + x$

We observe that f(x) = 2x + 5 is defined for all $x \in R$.

So, domain(f) = R

Clearly $g(x) = x^2 + x$ is defined for all $x \in R$

So, domain (g) = R

 \therefore Domain $(f) \cap$ Domain(g) = R

(i) Clearly, $(f+g): R \to R$ is given by (f+g)(x) = f(x) + g(x)= $2x + 5 + x^2 + x$ = $x^2 + 3x + 5$

Domain(f+g) = R

(ii) We find that $f-g:R\to R$ is defined as

$$(f-g)(x) = f(x) - g(x)$$

= $2x + 5 - (x^2 + x)$
= $2x + 5 - x^2 - x$
= $-x^2 + x + 5$

Domain(f-g) = R

(iii) We find that $fg: R \to R$ is given by

$$(fg)(x) = f(x) \times g(x)$$

$$= (2x + 5) \times (x^{2} + x)$$

$$= 2x^{3} + 2x^{2} + 5x^{2} + 5x$$

$$= 2x^{3} + 7x^{2} + 5x$$

$$Domain(fg) = R$$

$$g(x) = x^{2} + x$$

$$f(x) = 0 \Rightarrow x^{2} + x = 0$$

$$\Rightarrow x(x+1) = 0$$

$$\Rightarrow x = 0 \text{ or, } x = -1$$

So,
$$\operatorname{domain}\left(\frac{f}{g}\right) = \operatorname{domain}\left(f\right) \cap \operatorname{domain}\left(g\right) - \left\{x : g\left(x\right) = 0\right\}$$
$$= R - \left\{-\phi, 0\right\}$$

We find that,
$$\frac{f}{g}: R - \{-1, 0\} \to R$$
 is given by $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{2x + 5}{x^2 + x}$
Domain $\left(\frac{f}{g}\right) = R - \{-1, 0\}$

We have,

$$f\left(x\right) = \begin{cases} -1, & -2 \le x \le 0 \\ x - 1, & 0 < x \le 2 \end{cases}$$

$$f(|x|) = |x| - 1$$
, where $-2 \le x \le 2$

and
$$|f(x)| = \begin{cases} 1, & -2 \le x \le 0 \\ -(x-1), & 0 \le x \le 1 \\ (x-1), & 1 \le x \le 2 \end{cases}$$

$$g(x) = f(|x|) + |f(x)|$$

$$= \begin{cases} -x & -2 \le x \le 0 \\ 0, & 0 < x < 1 \\ 2(x-1), & 1 \le x \le 2 \end{cases}$$

$$f(x) = \sqrt{x+1}$$
 and $g(x) = \sqrt{9-x^2}$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain(f) = $[-1, \infty]$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9-x^2 \ge 0 \Rightarrow x^2-9 \le 0$$

$$\Rightarrow x^2 - 3^2 \le 0$$

$$\Rightarrow$$
 $(x-3)(x+3) \le 0$

$$\Rightarrow x \in [-3,3]$$

... domain
$$(g) = [-3,3]$$

Now,

domain
$$(f) \land$$
 domain $(g) = [-1, \infty] \land [-3, 3]$
= $[-1, 3]$

$$f+g:[-1,3]\to R$$
 is given by $(f+g)(x)=f(x)+g(x)=\sqrt{x+1}+\sqrt{9-x^2}$

We have,

$$f(x) = \sqrt{x+1}$$
 and $g(x) = \sqrt{9-x^2}$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain $(f) = [-1, \infty]$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9 - x^2 \ge 0 \Rightarrow x^2 - 9 \le 0$$

$$\Rightarrow x^2 - 3^2 \le 0$$

$$\Rightarrow x^2 - 3^2 \le 0$$

$$\Rightarrow (x - 3)(x + 3) \le 0$$

$$\Rightarrow x \in [-3,3]$$

$$\therefore \mathsf{domain}(g) = [-3,3]$$

domain
$$(f) \land$$
 domain $(g) = [-1, \infty] \land [-3, 3]$
$$= [-1, 3]$$

$$g - f : [-,3] \to R$$
 is given by $(g - f)(x) = g(x) - f(x) = \sqrt{9 - x^2} - \sqrt{x + 1}$

$$f(x) = \sqrt{x+1} \text{ and } g(x) = \sqrt{9-x^2}$$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain $(f) = [-1, \infty)$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9-x^2 \ge 0 \Rightarrow x^2-9 \le 0$$

$$\Rightarrow \qquad x^2 - 3^2 \le 0$$

$$\Rightarrow (x-3)(x+3) \le 0$$

$$\Rightarrow x \in [-3,3]$$

.. domain(g) =
$$[-3,3]$$

domain
$$(f) \land$$
 domain $(g) = [-1, \infty) \land [-3, 3]$
$$= [-1, 3]$$

$$fg: [-,3] \to R$$
 is given by $(fg)(x) = f(x) \times g(x) = \sqrt{x+1} \times \sqrt{9-x^2}$
$$= \sqrt{9+9x-x^2-x^3}$$

$$f(x) = \sqrt{x+1} \text{ and } g(x) = \sqrt{9-x^2}$$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain $(f) = [-1, \infty]$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9-x^2 \ge 0 \Rightarrow x^2-9 \le 0$$

$$\Rightarrow \qquad x^2 - 3^2 \le 0$$

$$\Rightarrow (x-3)(x+3) \le 0$$

$$\Rightarrow x \in [-3,3]$$

$$\therefore$$
 domain $(g) = [-3,3]$

Now,

domain
$$(f) \cap$$
 domain $(g) = [-1, \infty] \cap [-3, 3]$
$$= [-1, 3]$$

We have, $g(x) = \sqrt{9 - x^2}$

$$9 - x^{2} = 0 \Rightarrow x^{2} - 9 = 0$$

$$\Rightarrow (x - 3)(x + 3) = 0$$

$$\Rightarrow (x-3)(x+3)=0$$

$$\Rightarrow x = \pm 3$$

So, domain
$$\left(\frac{f}{g}\right) = [-1,3] - [-3,3] = [-1,3]$$

$$\therefore \frac{f}{g}: [-1,3] \to R \text{ is given by } \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x+1}}{\sqrt{9-x^2}}$$

$$f(x) = \sqrt{x+1}$$
 and $g(x) = \sqrt{9-x^2}$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain
$$(f) = [-1, \infty]$$

Clearly,
$$g(x) = \sqrt{9 - x^2}$$
 is defined for

$$9 - x^2 \ge 0 \Rightarrow x^2 - 9 \le 0$$

$$\Rightarrow x^2 - 3^2 \le 0$$

$$\Rightarrow x^2 - 3^2 \le 0$$

$$\Rightarrow (x - 3)(x + 3) \le 0$$

$$\Rightarrow x \in [-3,3]$$

:. domain
$$(g) = [-3,3]$$

Now,

domain
$$(f) \cap \text{domain}(g) = [-1, \infty] \cap [-3, 3]$$

= $[-1, 3]$

We have,

$$f\left(x\right) = \sqrt{x+1}$$

$$\Rightarrow x+1=0$$

$$\Rightarrow x = -1$$

So, domain
$$\left(\frac{g}{f}\right) = \left[-1, 3\right] - \left\{-1\right\}$$
$$= \left[-1, 3\right]$$

$$\frac{g}{f}: [-1,3] \to R \text{ is given by } \frac{g}{f}(x) = \frac{g(x)}{f(x)} = \frac{\sqrt{9-x^2}}{\sqrt{x+1}}$$

$$f(x) = \sqrt{x+1}$$
 and $g(x) = \sqrt{9-x^2}$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain $(f) = [-1, \infty]$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9-x^2 \ge 0 \Rightarrow x^2-9 \le 0$$

$$\Rightarrow \qquad x^2 - 3^2 \le 0$$

$$\Rightarrow (x-3)(x+3) \le 0$$

$$\Rightarrow x \in [-3,3]$$

$$\text{domain}(g) = [-3,3]$$

Now,

domain
$$(f) \land$$
 domain $(g) = [-1, \infty] \land [-3, 3]$
$$= [-1, 3]$$

$$2f - \sqrt{5}g : [-,3] \to R$$
 defined by $(2f - \sqrt{5}g)(x) = 2\sqrt{x+1} - \sqrt{5}\sqrt{9-x^2}$
= $2\sqrt{x+1} - \sqrt{45-5x^2}$.

We have,

$$f(x) = \sqrt{x+1}$$
 and $g(x) = \sqrt{9-x^2}$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain(f) = $[-1,\infty]$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9 - x^2 \ge 0 \Rightarrow x^2 - 9 \le 0$$

$$\Rightarrow$$
 $x^2 - 3^2 \le 0$

$$\Rightarrow (x-3)(x+3) \le 0$$

comain
$$(f)$$
 \wedge domain $(g) = [-1, \omega] \wedge [-3, 3]$
$$= [-1, 3]$$

$$f^2 + 7f : [-1,\infty] \to R$$
 defined by $(f^2 + 7f)(x) = f^2(x) + 7f(x)$
$$\left[\because D(f) = [-1,\infty] \right]$$
$$- \left(\sqrt{x+1} \right)^2 - 7\sqrt{x-1}$$
$$= x + 1 + 7\sqrt{x+1}$$

$$f(x) = \sqrt{x+1} \text{ and } g(x) = \sqrt{9-x^2}$$

We observe that $f(x) = \sqrt{x+1}$ is defined for all $x \ge -1$

So, domain
$$(f) = [-1, \infty]$$

Clearly, $g(x) = \sqrt{9 - x^2}$ is defined for

$$9-x^2 \ge 0 \Rightarrow x^2-9 \le 0$$

$$\Rightarrow x^2 - 3^2 \le 0$$

$$\Rightarrow (x-3)(x+3) \le 0$$

$$\Rightarrow x \in [-3,3]$$

:. domain(g) =
$$[-3,3]$$

Now,

domain
$$(f) \cap$$
 domain $(g) = [-1, \infty] \cap [-3, 3]$
$$= [-1, 3]$$

We have,

$$g(x) = \sqrt{9 - x^2}$$

$$y - x^2 = 0 \Rightarrow x^2 - 9 = 0$$

$$\Rightarrow (x-3)(x+3)=0$$

$$\Rightarrow x = \pm 3$$

So, domain
$$\left(\frac{1}{g}\right) = \left[-3,3\right] - \left\{-3,3\right\}$$

= $\left(-3,3\right)$

$$\frac{5}{g} = (-3,3) \to R \text{ defined by } \left(\frac{5}{g}\right)(x) = \frac{5}{\sqrt{9-x^2}}$$

$$f(x) = \log_{e} (1 - x)$$

and g(x) = [x]

$$f(x) = \log_e (1-x)$$
 is defined, if $1-x > 0$

- ⇒ 1>*X*
- $\Rightarrow x < 1$
- \Rightarrow $X \in (-\infty, 1)$

 \therefore Domain $(f) = (-\infty, 1)$

$$g(x) = [x]$$
 is defined for all $x \in R$

 \therefore Domain(g) = R

$$\therefore \mathsf{Domain}(f) \cap R \; \mathsf{Domain}(g) = (-\infty, 1) \cap R$$
$$= (-\infty, 1)$$

(i)
$$f+g:(-\infty,1)\to R$$
 defined by $(f+g)(x)=f(x)+g(x)$
= $\log_{\mathbb{R}}(1-x)+\lceil x\rceil$

(ii)
$$fg: (-\infty, 1) \to R$$
 defined by $(fg)(x) = f(x) \times g(x)$
= $\log_e (1-x) \times [x]$
= $[x] \log_e (1-x)$

(iii)
$$g(x) = [x]$$

$$\therefore \quad [x] = 0$$

$$\Rightarrow$$
 $X \in (0,1)$

So,
$$\operatorname{domain}\left(\frac{f}{g}\right) = \operatorname{domain}\left(f\right) \cap \operatorname{domain}\left(g\right) - \left\{x : g\left(x\right) = 0\right\}$$
$$= \left(-\infty, 0\right)$$

$$\frac{f}{g}: (-\infty, 0) \to R \text{ defined by } \left(\frac{f}{g}\right)(x) = \frac{\log_e (1-x)}{[x]}$$

$$f(x) = \log_e (1 - x)$$

$$\Rightarrow \frac{1}{f(x)} = \frac{1}{\log_e (1-x)}$$

$$\frac{1}{f(x)} \text{ is defined if } \log_e (1-x) \text{ is defined and } \log_e (1-x) \neq 0$$

$$\Rightarrow$$
 1-x>0 and 1-x \neq 0

$$\Rightarrow$$
 $x < 1$ and $x \neq 0$

$$\Rightarrow 1-x>0 \text{ and}$$

$$\Rightarrow x<1 \text{ and}$$

$$\Rightarrow x \in (-\infty,0) \cup (0,1)$$

$$\therefore \qquad \operatorname{domain}\left(\frac{g}{f}\right) = \left(-\infty, 0\right) \cup \left(0, 1\right)$$

$$\frac{g}{f}$$
: $(-\infty, 0) \cup (0, 1) \to R$ defined by $\left(\frac{g}{f}\right)(x) = \frac{[x]}{\log_e (1-x)}$

$$(f+g)(-1) = f(-1) + g(-1)$$

= $\log_e (1 - (-1)) + [-1]$
= $\log_e 2 - 1$

$$\Rightarrow (f+g)(-1) = \log_e 2 - 1$$

(v)
$$fg(0) = \log_{e}(1-0) \times [0]$$

(vi)
$$\left(\frac{f}{g}\right)\left(\frac{1}{2}\right)$$
 = does not exist

(vii)
$$\left(\frac{g}{f}\right)\left(\frac{1}{2}\right) = \frac{\left[\frac{1}{2}\right]}{\log_e\left(1 - \frac{1}{2}\right)} = 0$$

$$f(x) = \sqrt{x+1}, g(x) = \frac{1}{x}$$

and
$$h(x) = 2x^2 - 3$$

Clearly, f(x) is defined for $x + 1 \ge 0$

$$\Rightarrow x \in [-1, \infty]$$

$$\therefore \quad \mathsf{Domain}(f) = [-1, \infty]$$

g(x) is defined for $x \neq 0$

$$\Rightarrow x \in R - \{0\}$$

and, h(x) is defined for all $x \in R$

 $\therefore \ \, \mathsf{Dom\,ain}\big(f\big) \cap \mathsf{Dom\,ain}\big(g\big) \cap \mathsf{Dom\,ain}\big(h\big) = \big[-1,\infty\big] - \big\{0\big\}$

Clearly,

$$2f + g - h : [-1, \infty] - \{0\} \to R$$
 is given by $(2f + g - h)(x) = 2f(x) + g(x) - h(x)$

$$= 2\sqrt{x+1} + \frac{1}{x} - 2x^2 + 3$$

$$(2f+g-h)(1) = 2\sqrt{1+1} + \frac{1}{1} - 2 \times (1)^2 + 3$$

$$=2\sqrt{2}+1-2+3$$

$$= 2\sqrt{2} + 4 - 2$$

$$= 2\sqrt{2} + 2$$

and, (2f+g-h)(0) does not exist, it is not lies in the domain $x \in [-1,\infty]-\{0\}$.

Let,

$$y = f(x) = \begin{cases} 1 - x, & x < 0 \\ 1, & x = 0 \\ x + 1, & x > 0 \end{cases}$$

The graph of f(x) for x < 0 is the part of the line y = 1-x that lies to the left of origin. The graph of f(x) for x > 0 is the part of the line y = 1+x that lies to the right of origin. For x = 0, the graph of f(x) represents the point (0,1)

The graph of f(x) is shown below.

Q8

$$f: R \to R$$
 defined by $(f+g)(x) = 3x - 2$
 $f: R \to R$ defined by $(f-g)(x) = -x + 4$
 $f: R - \left\{\frac{3}{2}\right\} \to R$ defined by $\frac{f}{g}(x) = \frac{x+1}{2x-3}$

Q9

$$f+g:[0,\infty) \to R$$
 defined by $(f+g)(x) = \sqrt{x} + x$; $f-g:[0,\infty) \to R$ defined by $(f-g)(x) = \sqrt{x} - x$; $fg:[0,\infty) \to R$ defined by $(fg)(x) = x^{3/2}$; $\frac{f}{g}:[0,\infty) \to R$ defined by $\left(\frac{f}{g}\right)(x) = \frac{1}{\sqrt{x}}$;

 $(f+g): R \to [0, \infty)$ defined by $(f+g)(x) = x^2 + 2x + 1 = (x+1)^2$ $(f-g): R \to R$ defined by $(f-g)(x) = x^2 - 2x - 1$ $(fg): R \to R$ defined by $(fg)(x) = 2x^3 + x^2$ $\left(\frac{f}{g}\right): R \to R$ defined by $\left(\frac{f}{g}\right)(x) = \frac{x^2}{2x+1}$