9.词典

(d2) 散列:排解冲突(2)

我真的以为 这样何尝不是一种所谓的解脱 要背负的辛苦又有谁能够清楚 那内心的冲突

邓俊辉

deng@tsinghua.edu.cn

Quadratic probing

+3 +5 以平方数 为距离,确定下一试探桶单元

[hash(key) + $\boxed{1^2}$] % M

[hash(key) + $\boxed{2^2}$] % M

[hash(key) + 3^2] % M

[hash(key) + 4^2] % M

优点、缺点及疑惑

❖ 数据聚集现象有所缓解

查找链上,各桶间距线性递增

一旦冲突,可聪明地跳离是非之地

❖ 若涉及 外存 , I/O将激增

4

+5

+3

(2)

❖ 只要有空桶,就...一定能...找出来吗?

//毕竟不是挨个 试探

装填因子,须足够小!

 \diamondsuit { 0, 1, 2, 3, 4, 5, ... }² % 12 = { 0, 1, 4, 9 }

M若为 合数: n² % M 可能的取值 必然 少于 [M/2] 种——此时,只要对应的桶均非空...

* { 0, 1, 2, 3, 4, 5, ... }² % 11 = { 0, 1, 4, 9, 5, 3 }

M若为 素数: n² % M 可能的取值 恰好 会有 [M/2] 种——此时,恰由查找链的 前 M/2 项 取遍

❖ 定理:若M是素数,且 λ ≤ 0.5,就一定能够找出;否则,不见得

查找链前缀,必足够长!

❖ 反证:假设存在 0 ≤ a < b < 「M/2] , 使得

沿着查找链,第a项和第b项被此冲突

❖ 于是:a²和b²自然属于M的某一同余类 , 亦即

$$a^2 \equiv b^2 \pmod{M}$$

$$b^2 - a^2 = (b + a) \cdot (b - a) \equiv 0 \pmod{M}$$

- ❖然而: 0 < b a < b + a < M 这与M为素数矛盾</p>
- ❖那么,另一半的桶,可否也利用起来呢...

双向平方试探

❖ 自冲突位置起,依次向后试探

- [hash(key) $+ 1^2$] % M
- [hash(key) -1^2] % M
- [hash(key) $+ 2^2$] % M
- [hash(key) 2²] % M
- [hash(key) $+ 3^2$] % M
- [hash(key) 3²] % M

• • •

查找链,彼此独立?

❖ 正向 和 逆向 的子查找链 , 各 包含 [M/2] 个 互异 的桶

 $-\lfloor M/2 \rfloor$, ... , -2 , -1 , $\boxed{0}$, 1 , 2 , ... , $\lfloor M/2 \rfloor$

± i^2		-36	-25	-16	-9	-4	-1	0	1	4	9	16	25	36
M	5					1	4	0	1	4				
	7				5	3	6	0	1	4	2			
	11		8	6	2	7	10	0	1	4	9	5	3	
	13	3	1	10	4	9	12	0	1	4	9	3	12	10

❖除了∅,这两个序列是否还有...其它公共的桶?

4k + 3

❖ 两类素数:

. . .

❖ 表长取作素数 M = 4×k + 3 , 必然可以保证查找链的前 M 项均互异

± i^2		-36	-25	-16	-9	-4	-1	0	1	4	9	16	25	36
M	5					1	4	0	1	4				
	7				5	3	6	0	1	4	2			
	11		8	6	2	7	10	0	1	4	9	5	3	
	13	3	1	10	4	9	12	0	1	4	9	3	12	10

❖ 反之, M = 4×k + 1 就... 必然不可使用?

双平方定理

★ Two-Square Theorem of Fermat

任一素数[p]可表示为一对整数的平方和,当且仅当

$$p \% 4 = 1$$

❖ 只要注意到:

$$(u^2 + v^2) \cdot (s^2 + t^2) = (us + vt)^2 + (ut - vs)^2$$

$$(2^2 + 3^2) \cdot (5^2 + 8^2) = (10 + 24)^2 + (16 - 15)^2$$

❖ 就不难推知:

任一自然数 可 可表示为一对整数的平方和,当且仅当

在其素分解中 , 形如 $M = 4 \times k + 3$ 的每一素因子均为 偶数 次方

(伪)随机试探法

❖原理: 自冲突位置起 , "随机"试探下一位置

若冲突,则继续试探

❖问题: 这样...可行吗?

进行操作前,如何才能找到目标词条呢? //请自己说服自己

◇ 同样,需要留意此方法跨平台的 兼容性 和 可移植性

再散列

❖ double hashing

第二散列函数: hash2()

发生冲突后,以 hash2(key) 为偏移增量,重新确定地址

[hash(key) + $\boxed{1}$ × hash2(key)] % M

[hash(key) + $\boxed{2}$ × hash2(key)] % M

[hash(key) + $\boxed{3}$ × hash2(key)] % M

...直到发现一个空桶

❖ hash2()为常值函数时,即退化为...

重散列

```
❖ template <typename K, typename V> //装填因子增大,将导致冲突激增
void <u>Hashtable</u><K, V>::|rehash|() { //必要时 , 需 "集体搬家" 至更大的表
   int old_capacity = M; Entry<K, V>** old_ht = ht; N = 0;
   ht = new <u>Entry</u><K, V>*[ M = <u>primeNLT( 2*M ) ]; //新表容量至少加倍</u>
   memset( ht, 0, sizeof( Entry<K, V>* ) * M ); //初始化各桶
   release(lazyRemoval); lazyRemoval = new <u>Bitmap(M); //新建位图,容量至少加倍</u>
   for ( int i = 0; i < old_capacity; i++ ) //扫描原桶数组
      if ( old_ht[i] ) //将非空桶中的词条逐一
         put( old_ht[i]->key, old_ht[i]->value ); //插入至新表
   release( old ht ); //释放原桶数组
```