

3

They are composed before the

University of Rajshahi

B.Sc. (Engg.) Part-2 (Odd Semester) Examination-2018

Course: MATH2111 (Matrix and Differential Equation)

Time: 3:00 Hours Marks: 52.5

[N.B. Answer any Six questions taking Three from each section.] Property of Seminar Library

Section-A

- 1.(a) Define matrix multiplication. Prove that matrix multiplication is associative.
- (b) Define a symmetric matrix with an example. For any matrix A, prove that AA' and A'A are 3
- Define inverse of a matrix. If A and B are invertible matrices then prove that $3(AB)^{-1} = B^{-1}A^{-1}$.
- 2.(a) For any *n*-square matrix A, prove that $adj(adj(A)) = |A|^{n-2}A$. Hence find |adj(adj(A))|. 3
- $\begin{pmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{pmatrix}$ into echelon form and determine its rank. 2.75 (b) Reduce the matrix
- (c) Find the inverse of $A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$, using elementary row operations. 3
- 3.(a) Solve the system of equations: 2x + 3y = 3x 2y = 53x + 2y = 7.2.75
- 3 (b) Determine the values of k such that the following system in unknowns x, y, z has (i) a unique solution, (ii) no solution, (iii) more than one solution: kx + y + z = 1x + ky + z = 1x + y + kz = 1.
- (c) Prove that all eigenvalues of a Hermitian matrix are real.
- 4.(a) Define similar matrices. Prove that if two matrices A and B are similar then they have the 2.75 same eigenvalues.
- (b) Let $A = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}$. Find a nonsingular matrix P such that $P^{-1}AP$ is diagonal. 3
- (c) If X_1 and X_2 are eigenvectors of a matrix belonging to distinct eigenvalues λ_1 and λ_2 then 3 prove that X_1 and X_2 are linearly independent.

Section-B

5.(a) Find the differential equations of all circles which have their centres on x axis and have a 3 given radius.

(b) Solve the differential equation: $\frac{dy}{dx} = x^3y^3 - xy$.

(c) Prove that the differential equation $(\sin x \cos y + e^{2x})dx + (\cos x \sin y + \tan y) dy = 0$ is 2.75 exact and solve it.

6. Solve the following differential equations:

(a) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = \sin 2x.$ (b) $(D^3 - 7D - 6)y = e^{2x} x^2.$ (c) $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4.$

- 7.(a) Solve the differential equation by the method of variation of parameters: 4 $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y = x^2 e^x.$
 - (b) Solve the differential equation by the method of operator factorization: $4.75 \ [xD^2 + (1-x)D 2(1+x)]y = e^{-x}(1-6x)$.
- 8.(a) Solve the partial differential equations by Charpit's method $z^2 = pqxy$.
 - (b) Solve the partial differential equation $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2)$ 4.75 by Lagrange's method and hence find its integral surface containing the straight line x + y = 0, z = 1.

Roll

University of Rajshahi

Department of Computer Science and Engineering

B.Sc.(Engg.) Part-2 (Odd Semester) Examination-2017

Course: MATH 2111 (Matrix and Differential Equation)

Time: 3 Hours

Marks: 52.5

(Answer any Six of the following questions taking three from each section.)

Section-A

- 1.(a) Define Horizontal matrix, Sub matrix, unit matrix and diagonal matrix with example. 2.75
- (b) Define periodic matrix and idempotent. If A is an idempotent matrix, show that the matrix B = 3 I A is also idempotent and AB = 0 = BA.
- (c) Define nilpotent matrix and orthogonal matrix with example. If A and B be two orthogonal matrices of same order, show that AB is also orthogonal.
- 2.(a) Define transposed matrix, symmetric matrix and skew-symmetric matrix. If A is any square matrix, show that A + A' is symmetric matrix.
- (b) Define rank of a matrix. Reduce the matrix

 /0 1 -3 -1

$$\begin{pmatrix}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{pmatrix}$$

to normal form and find its rank.

- (c) If A and B are two $n \times n$ matrices, show that $Adj(AB) = Adj B \cdot Adj A$. 2.75
- 3.(a) Define inverse of a matrix. Find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix}$$

(b) Find the solution of the system of equations 2.75

$$x + 2y - 3z = 1$$

2x + 5y - 8z = 4
3x + 8y + 3z = 7

using matrix method.

(c) Determine the value of a so that the following system in unknown x, y and z has (i) no solution, (ii) more than one solution (iii) a unique solution:

$$x + y - z = 1$$
, $2x + 3y + az = 3$ and $x + ay + 3z = 2$

- 4.(a) Show that every matrix is zero of its characteristics polynomial.
 - (b) Define eigenvalue and eigenvector. Find all eigenvalues and the corresponding eigenvectors of 4.75 the matrix

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

Define order and degree of differential equation. Find the order and degree of the differential 5.(a) equation

$$2\frac{d^3y}{dx^3} + 3\left(\frac{d^2y}{dx^2}\right)^4 + \frac{dy}{dx} + y = \sin 4x$$

- 3 Define homogeneous ODE. Solve the ODE $(2xy + 3y^2)dx - (2xy + x^2)dy = 0$ (b) 3
- Define exact differential equation. Solve $3x(xy-2) + (x^3+2y)dy = 0$ (c)
- 2.75 6.(a) Define Bernoulli's equation. Solve $\frac{dy}{dx} + \frac{y}{x} log y = \frac{y}{x^2} (log y)^2$
- 3+3 Solve (i) $y + px = p^2x^4$ (ii) $y = 2px + y^2p^3$ where $p = \frac{dy}{dx}$ (b)
- 3+3Solve (i) $(D^3 - D^2 - 6D)y = 1 + x^2$ (ii) $(D^2 + 4)y = \cos x$ 7.(a)
- 2.75 Using variation of parameters to find the general solution $4y'' - 4y' - 8y = 8e^{-t}$ (b)
- 5.75 Define regular singular point. Find the general solution of $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2 + 2)y = 0$ in 8.(a) power of x about $x_0 = 0$
- 3 Define Laplace transformation. Fine the solution of f''(t) + 3f'(t) + 2f(t) = 4t where (b) f(0) = f'(0) = 0 using Laplace transformation.

University of Rajshahi

Department of Computer Science and Engineering
B. Sc. (Engg.) Part-2 Odd Semester Examination-2016
Course: MATH2111 (Matrix and Differential Equation)
Full Marks: 52.5 Duration: 3(Three) Hours
Answer 06(Six) questions taking any 03(Three) questions from each part.

Part-A

1.	(a) (b)	1 C 1 L. J Danie	3 3
	, ,	that the diagonal elements of a skew symmetric matrix are all zero.	
	(c)		2.75
	£ , n	$(AB)^{-1} = B^{-1}A^{-1}$.	
2.	(a)	For what value of λ , the system of equations fail to have a solution:	3
16	(-)	$3x - y + \lambda z = 1$	
		2x + y + z = 2	
		$x + 2y - \lambda z = -1$	
	(b)	State Cayley-Hamilton theorem and verify it for the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$.	. 3.
		$\begin{bmatrix} -2 & -1 & -3 \end{bmatrix}$	2.75
	(c)	Define linear dependence and linear independence of a set of vectors. Determine whether or not the vectors [1,2,3], [2,3,4], [3,5,7] are linearly dependent.	2.73
3.	(a)	Apply Cramer's rule to solve the equations:	4
٠.	(4)	x + y + z = 1, x + 2y + z = 2, x + y + 2z = 0	and the
		2, 1, 1, 1, 2	
	(b)	Determine the values of a and b so that the system of equations	4.75
	. ,	$x + 2y + z = 1$, $3x + y + 2z = b$, $ax - y + 4z = b^2$ has	
		(i) a unique solution, (ii) no solution and (iii) many solutions.	
4.	(a)	For any square metrix A define adi(B) Drove that Andi(A) = IAII	3
	(a)	For any square matrix A, define $adj(B)$. Prove that $Aadj(A) = A I$.	,
		, LU 1 51	
	(b)	Find the adjoint and inverse of the matrix 1 2 3	3
٠.	(5)	Find the adjoint and inverse of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$.	,
		13 1 13	
		[1 2 3]	
	(c)	Reduce the matrix \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 2 & 5 & 7 \end{pmatrix} to echelon form and find its rank.	2.75
		[3 5 7]	25

Part-B

5.	(a)	Define degree and order. Find the differential equation of the family of circles	3
		$x^2 + y^2 + 2gx + 2fy + c = 0$.	3
	. (b)	Identify and solve $(x^2 + y^2)dx - 2xydy = 0$.	3
	(c)	Solve by the variation of parameters: $v'' + v = \cos^2(r)$	2 75

Solve the following differential equations:

 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = x\mathrm{e}^{-x}.$ (a)

(b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos(x).$

(c) $\frac{d^2y}{dx^2} + a^2y = x\cos(ax).$

8.75

Define regular singular points. Find the general solution of $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$ by series method. Test the convergency of the series.

4.75 Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $u(x,0) = 3\sin(2\pi x)$, u(0,t) = 0, u(1,t) = 0 where 0 < x < 1, t > 0 by Laplace transformation.

(b) Write down Helmholtz's equation and solve it. 4

University of Rajshahi

Department of Computer Science & Engineering

B.Sc. (Engg.) Part-II Odd Semester Examination 2015 Course: MATH-2111 (Matrix and Differential Equation) Full Marks: 52.5 Duration: 3(Three) Hours

Answer 6 (Six) questions taking any 3(Three) from each part

Part-A

			2
.1.	a)	Define matrix multiplication. Prove that matrix multiplication is associative.	3
	b)	Prove that every square matrix can be expressed uniquely as a sum of a symmetric and a skew	3
			2.75
	c)	If A and B are n-square matrices then prove that A and B commute if and only if A-kl and B-kl	
		commute for scalar k.	
2	۵)	For any square matrix A and B prove that $adi(AB) = adi(B)adi(A)$.	3
۷.	aj	For any square matrix A and B, prove that $adj(AB)=adj(B)adj(A)$.	
	b)	Find the inverse of $A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$, using elementary row operations.	3
		1 3 4	2.75
	c)	Define linear dependence and independence of a set of vectors. Determine whether or not the	2.75
		following vectors are linearly dependent $x_1 = [1, 2, -3, 4], x_2 = [3, -1, 2, 1], x_3 = [1, -5, 8, -7]$	
ż	a)	Determine the value of k such that the system in unknowns x , y , z has (i) a unique solution	3
٥.	α)	(ii) no solution, (iii)more than one solution	
		x + y + kz = 2	
		3x + 4y + 2z = k	
		2x+3y-z=1	
		0 2 3 4 \ (a) a least form and determine its rank.	2.75
	b)	Reduce the matrix $A = \begin{pmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{pmatrix}$ into echelon form and determine its rank.	
	c)	Define an eigenvalue and associated vector of a square matrix. Find eigenvalues and associated	3
	٠,	eigenvectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.	
		eigenvectors of the matrix $A=\begin{pmatrix} 3 & 2 \end{pmatrix}$.	
1	- \	If x_1 and x_2 are eigenvectors of a matrix A belonging to m eigenvalue then prove that any linear	3
4.	a)	combination $c_1x_1+c_2x_2$ of x_1 and x_2 is also an eigenvector of Abelonging to the eigenvalue	
		λ provided $c_1x_1+c_2x_2\neq 0$.	
	b)	If A is an n-square matrix. Prove that A and A' have the same eigenvalues.	2.75
	رات ما	Let $A = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}$. Find a nonsingular matrix P such that P'AP is diagonal.	3
	c)	Let $A = \begin{pmatrix} 2 & -1 \end{pmatrix}$. Find a nonsingular matrix x such that x	3
,		Part-B	
			2
5.	a)	Define variable separable equation. Find an explicit solution of the initial value problem	3
		$x^2 \frac{dy}{dx} = y - xy, y(-1) = -1$ by separating variabless.	
	b)	Find the general solution of the differential equation $y' + 3x^2y = x^2$.	3
	-,	Give the largest interval over which the solution is defined. Is there any transient term in the	he
		general solution?	
	c)	Solve the equation by using an appropriate substitution $x \frac{dy}{dx} + y = \frac{1}{y^2}$.	2.75
	-,	ax y	
6.	S	Solve the following differential equations:	
		y'' + 4y' + 4y = 2x + 6	3
	b)	$y'' - y = x^2 e^x + 5$	275
		$y''-y'-12y=e^{4x}$	2.75

PART-B

3

3

3

3

2.75

5.(a) Define an idempotent matrix. Prove that the matrix

 $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ is idempotent.

(b) Define a Skew-Hermitian matrix. Prove that every complex square matrix can be uniquely expressed as a sum of a Hermitian and a Skew-Hermitian matrices.

(c) Prove that (AB)'=B'A'

6.(a) Prove that $A^{-1} = \frac{1}{|A|}(adjA)$

(b) Define rank of matrix. Find the rank of $A = \begin{bmatrix} 1 & 5 & 9 \\ 4 & 8 & 12 \\ 7 & 11 & 15 \end{bmatrix}$ 2.75

- (c) Find the inverse of $A = \begin{bmatrix} 2 & -4 & -2 \\ 4 & 6 & 2 \\ 0 & 10 & -4 \end{bmatrix}$
- 7.(a) Reduce $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$ to the normal form.
 - (b) For what values of λ the equations $x+y+z=1, \ x+2y+4z=\lambda \ and \ x+4y+10z=\lambda^2$ has a solution and solve them completely.
- (c) Solve the systems of equations 2.75 x+y+z=6, x-y+z=2 and 2x+y-z=1 by Krammer's rule/matrix method.
- 8.(a) Determine the eigen values and corresponding eigen vectors of the matrix 4.75 $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
 - (b) State and Prove Cayley-Hamilton theorem.