C6250 Metody chemického výzkumu - praktikum

Infračervená a NMR spektroskopie
https://is.muni.cz/www/moravec/c6250_metody_chemickeho_
vyzkumu_-_praktikum/

Zdeněk Moravec, hugo@chemi.muni.cz

1 Průběh cvičení

Návod není nutné tisknout!

Cvičení probíhá v laboratořích A8/1S12 a C12/112. Doba cvičení je 3–4 hodiny.

- 1. Krátký úvod k NMR spektroskopii (A8/1S12)
- 2. Měření NMR spekter na benchtop NMR spektrometrech Magritek 60 MHz, Bruker Avance III 300 MHz a Bruker AvanceIIIHD 500 MHz
- 3. Interpretace NMR spekter
- 4. Krátký úvod k IR spektroskopii (A12/112)
- 5. Spuštění spektrometrů
- 6. Změření IR spektra atmosféry, stanovení vlhkosti uvnitř přístroje
- 7. Měření IR spekter vzorků v KBr tabletách a metodou ATR
- 8. Interpretace IR spekter

1.1 Protokol

Protokol zašlete na adresu hugo@chemi.muni.cz do dvou týdnů ode dne konání cvičení. Optimálním formátem je PDF.

1.1.1 Doporučená struktura protokolu

- 1. Hlavička (Jméno, datum konání cvičení)
- 2. Princip
- 3. Postup
- 4. Spektra (naměřená spektra studenti dostanou v textovém formátu)
- 5. Interpretace spekter
- 6. Závěr

2 Spektroskopie nukleární magnetické rezonance

- Měření bude probíhat na spektrometrech Magritek 60 MHz a Bruker Avance III 300 MHz a Bruker AvanceIIIHD 500 MHz.
- Cílem měření bude demonstrace vlivu síly magnetického pole na rozlišení NMR spektra a ukázka interpretace 1D a 2D spekter jednoduchých organických sloučenin.

2.1 Ethylbenzen

Prvním úkolem bude naměření $^1{\rm H},~^{13}{\rm C},~^1{\rm H}^{-1}{\rm H}$ COSY a $^1{\rm H}^{-13}{\rm C}$ HSQC NMR vzorku ethylbenzenu v C $_6{\rm D}_6.$ Na spektrech si ukážeme vliv síly magnetického pole na vzhled spektra.

2.2 Interakce rozpouštědel

Pomocí NMR můžeme pozorovat i interakce mezi jednotlivými rozpouštědly. To lze pěkně ilustrovat na směsi toluenu a chloroformu. Během cvičení změříme následujících pět vzorků.

$ m V_{Tol}~[cm^3]$	$ m V_{\it CHCl3}~[cm^3]$	δ_{CH3}	δ_{CHCl3}
0,5	0		
0,5	0,2		
0,5	0,4		
0,5	0,6		
0,5	0,8		

2.3 Vyhodnocení

Do protokolu vložte naměřená spektra kyseliny askorbové a interpretujte je.

Z naměřených dat v druhé úloze sestrojte křivku závislosti chemického posunu na koncentraci chloroformu v toluenu a proložte ji vhodnou křivkou. Vypočítejte rovnici regresní křivky.

3 Infračervená spektroskopie

3.1 Stanovení vlhkosti uvnitř IR spektrometru

Hodnota vlhkosti uvnitř spektrometru je důležitá, protože optika je citlivá na stopy vlhkosti. Pro stanovení vlhkosti nastavíme spektrometr následujícím způsobem:

Počet skenů (background)	16
Počet skenů (vzorek)	1
Rozlišení	$2~\mathrm{cm}^{-1}$

Po změření uložíme pozadí a odečteme hodnotu maximální intenzity (I_{MAX}) a hodnotu intenzity pásu 1559 cm $^{-1}$ (I_{1559}). Vlhkost pak vypočítáme:

$${\rm M_{REL}} = (1 - \frac{{\rm I_{1559}}}{{\rm I_{MAX}}}) \cdot 100\%$$

3.2 Měření IR spekter vzorků v suspenzi v KBr tabletách

 $1\hbox{--}3$ mg vzorku smícháme s cca 300 mg KBr a směs rozetřeme v achátové třecí misce. Získaný prášek nasypeme do lisovací matrice a lisujeme pod tlakem 8–9 tun po dobu cca 1 minuty.

3.3 Měření IR spekter vzorků metodou ATR

Vzorek nasypeme na krystal diamantu, přitlačíme hrotem a změříme spektrum. Vzorky není potřeba žádným způsobem upravovat.

3.4 Vyhodnocení

Studenti dostanou naměřená IR spektra v textovém formátu, úkolem bude vytvořit grafický záznam spektra (doporučuji využít Gnuplot) a přiřadit nejintenzivnější pásy vibracím vazeb v molekule vzorku.