STA201 运筹与优化 Homework 5

12112627 李乐平 Apr, 2023

1.

	x1	x2	x3	x4	x5	х6	x7	x8	Ъ
x6	1	-1	-2	3	-1	1	0	0	10
x7	1	0	-1	1	-2	0	1	0	17
x8	2*	-1	-6	7	-6	0	0	1	15
	-1	1	1	-1	0	M	M	M	0
	-1-4M	1+2M	1+9M	-1-11M	9M	0	0	0	-42M

	x1	x2	x3	x4	x5	x6	x7	x8	b
x6	0	-1/2	1*	-1/2	2	1	0	-1/2	5/2
x7	0	1/2	2	-5/2	1	0	1	-1/2	19/2
x1	1	-1/2	-3	7/2	-3	0	0	1/2	15/2
	0	1/2	-3M-2	3M+5/2	-3M-3	0	0	2M+1/2	-12M+15/2

	x1	x2	x3	x4	x5	x6	x7	b
х3	0	-1/2	1	-1/2	2	1	0	5/2
x7	0	3/2*	0	-3/2	-3	-2	1	9/2
x1	1	-2	0	2	3	3	0	15
	0	-1/2-3M/2	0	3M/2+3/2	3M+1	3M+2	0	-9M/2+25/2

	x1	x2	х3	x4	x5	x7	b
x3	0	0	1	-1	1	1/3	4
x2	0	1	0	-1	-2	2/3	3
x1	1	0	0	0	-1	4/3	21
	0	0	0	1	0	M+1/3	14

Feasible region unbounded because the elements in 4th column are all non-positive.

Optimal BFS: [21 3 4 0 0]^T, not unique

Maximum: 14

Generic Optimal Feasible Solution:

$$(21+t,3+2t,4-t,0,t), t \in [0,4]$$

Solution non-basic if $t \neq 0$ and $t \neq 4$.

	x1	x2	х3	x4	x5	х6	Ъ	b./x1
x4	1	2	0	1	0	0	5	5
x5	1*	1	-1	0	1	0	2	2*
x6	7	3	-5	0	0	1	20	20/7
	-3	-1	0	0	0	0	0	

	x1	x2	х3	x4	x5	x6	Ъ	b./x3
x4	0	1	1*	1	-1	0	3	3*
x1	1	1	-1	0	1	0	2	-2(Ignored)
x6	0	-4	2	0	-7	1	6	3
	0	2	-3	0	3	0	6	

	x1	x2	x3	x4	x5	x6	Ь	
x3	0	1	1	1	-1	0	3	
x1	1	2	0	1	0	0	5	
x6	0	-6	0	-2	-5	1	0	
	0	5	0	3	0	0	15	

Optimal BFS: [5 0 3 0 0 0] T , degenerate because basic variable x_6 = 0.

Maximum: 15

Generic Optimal Feasible Solution:

$$(5,0,3+t,0,t,5t), t \ge 0$$

Solution non-basic if $t \neq 0$.

3. Phase I:

	x1	x2	x3	x4	x5	x6	x7		b
x5	1	1	1	0	0	1	0		10
x6	1*	-1	0	-1	0	0	1		1
x7	2	3	1	0	1	0	0		20
	0	0	0	0	1	1	1		0
	-4	-3	-2	1	0	0	0		-31
		•							
	x1	x2	x3	x4	x5	x6	x7		b
x5	0	2	1	1	0	1	-1		9
x1	1	-1	0	-1	0	0	1		1
x7	0	5*	1	2	1	0	-2		18
	0	-7	-2	-3	0	0	4		-27
	•		'	,	·	•		-	
	x1	x2	x3	x4	x5	x6	x7		b
x5	0	0	3/5*	1/5	-2/5	1	-1/5		9/5
x1	1	0	1/5	-3/5	1/5	0	3/5		23/5
x2	0	1	1/5	2/5	1/5	0	-2/5		18/5
	0	0	-3/5	-1/5	7/5	0	6/5		-9/5
	x1	x2	x3	x4	x5	x6	x7		b
x3	0	0	1	1/3	-2/3	5/3	-1/3		3
x1	1	0	0	-2/3	1/3	-1/3	2/3		4
x2	0	1	0	1/3	1/3	0	-1/3		3
	0	0	0	0	1	1	1		0
Phase I	I:								
	x1	x2	x3	x4	x5				b
x3	0	0	1	1/3*	-2/3				3
x1	1	0	0	-2/3	1/3				4
x2	0	1	0	1/3	1/3				3
	-4	-5	3	0	0				0
	0	0	0	-2	5				22
	x1	x2	x3	x4	x5				b
x4	0	0	3	1	-2				9
x1	1	0	2	0	-1				10
x2	0	1	-1	0	1				0
_	0	0	6	0	1				40

Maximum: 40

Phase I:

x1	x2	х3	x4	Ъ
-1	2	-4	1	1
1	6	-5	2	19
1	-4	3	-1	0

↓ Paper operation

x1	x2	х3	x4	Ъ
-1	2	-4	1	1
3	2	3	0	17
0	-2	-1	-1	1

Initial tableau for phase I:

	x1	x2	х3	y1	b
y1	3	2*	3	1	17
	0	0	0	1	0
	-3	-2	-3	0	-17

Final tableau for phase I:

	x1	x2	x3	y1	b
x2	3/2	1	3/2	1/2	17/2
	0	0	0	1	0

Phase II:

	x1	x2	х3		b
5	3/2	1*	3/2		17/2
	0	-2	-1		1

	x1	x2	х3		Ъ
x2	3/2	1	3/2		17/2
	3	0	2		18

Maximum: 18

Optimal Feasible Solution: $[0\ 17/2\ 0\ -16]^T$

- (a) At direction $\overrightarrow{x_6}$, the feasible region is unbounded because the elements y in 6^{th} column are all non-positive.
- (b) The optimal solution is not unique because the number of 0 in the last row is greater than 3. By giving out the generic optimal feasible solution

$$(t,t,6-2t,0,0,0,0,2-3t), t \in [0,\frac{2}{3}],$$

we can easily get another optimal feasible solution

$$(\frac{1}{2}, \frac{1}{2}, 5, 0, 0, 0, 0, \frac{1}{2})$$
.