# Distributed Information Systems Class questions

## Marc Bourqui

May 3, 2015

| Part I                                                                                                                                                                                   | The state of a database is independent of the lifetime.                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction                                                                                                                                                                             | <ul> <li>of a program</li> <li>The same logical database can be stored in different<br/>ways on a storage medium</li> </ul>                                                                                                                |
| An Overview                                                                                                                                                                              | Information Management                                                                                                                                                                                                                     |
| Information Systems (Week 1) Functions in models ① Are always computable ○ Can always be represented as data ○ Can be constrained by axioms                                              | <ul> <li>7. Grouping Twitter users according to their interest by analyzing the content of their tweets is</li> <li>A retrieval task</li> <li>A data mining task</li> <li>An evaluation task</li> <li>A monitoring task</li> </ul>         |
| 2. Interpretation relationships                                                                                                                                                          | Distributed Information Systems                                                                                                                                                                                                            |
| <ul><li>Are always computable</li><li>Relate constants to real-world entities</li><li>Are uniquely defined</li></ul>                                                                     | <ul> <li>8. Creating a web portal for comparing product prices is (primarily) a problem of</li> <li>Distributed data management</li> </ul>                                                                                                 |
| Data Management                                                                                                                                                                          | <ul> <li>Heterogeneous data integration</li> </ul>                                                                                                                                                                                         |
| 3. What is not specified in the data definition language ?                                                                                                                               | <ul> <li>Collaboration among autonomous systems</li> </ul>                                                                                                                                                                                 |
| The structure of a relational table                                                                                                                                                      | Distributed Data Management                                                                                                                                                                                                                |
| <ul> <li>The query of user</li> <li>A constraint on a relational table</li> <li>Logical data independence means</li> <li>An abstract data type is implemented using different</li> </ul> | <ul> <li>9. When you open a Web page with an embedded Twitter stream, the communication model used by Twitter is</li> <li>Push, unicast and conditional</li> <li>Pull, multicast and ad-hoc</li> <li>Push, multicast and ad-hoc</li> </ul> |
| data structures  A new view is computed without changing an existing database schema                                                                                                     | O Pull, unicast and conditional                                                                                                                                                                                                            |
| A model can be represented in different data modelling formalisms                                                                                                                        | Heterogeneity  10. Creating a web portal for comparing product prices requires to address                                                                                                                                                  |
| Data Management Tasks                                                                                                                                                                    | Syntactic heterogeneity                                                                                                                                                                                                                    |
| <ul><li>5. Which is wrong ? An index structure</li><li> Is created as part of physical database design</li></ul>                                                                         | <ul><li>Semantic heterogeneity</li><li>Both</li></ul>                                                                                                                                                                                      |
| <ul><li>Is selected during query optimization</li><li>Accelerates search queries</li></ul>                                                                                               | <ul><li>11. An ontology is a</li><li>Sdatabase</li><li>database schema</li></ul>                                                                                                                                                           |
| <ul> <li>Accelerates tuple insertion</li> <li>Persistence means that</li> <li>A change of a transaction on a database is never loct.</li> </ul>                                          | <ul><li>data model</li><li>data modeling formalism</li></ul>                                                                                                                                                                               |

 $\bigcirc$  model

O A change of a transaction on a database is never lost

after it is completed

### Autonomy

- 12. Trust is
  - A quality of information
  - A quality of a user
  - A quality of the relationship among user and information
  - A quality of the relationship among users

## Part II

# Storage

## Distributed Data Management

### Schema Fragmentation

#### **Relational Databases**

- 13. At which phase of the database lifecycle is fragmentation performed ?
  - $\sqrt{\ }$  At database design time
  - Ouring distributed query processing
  - Ouring updates to a distributed database
- 14. The reconstruction property expresses that
  - In case of a node failure the data can be recovered from a fragment from another node
  - $\sqrt{\phantom{a}}$  The original data can be fully recovered from the fragments
  - Every data value of the original data can be found in at least one fragment

### Primary Horizontal Fragmentation (Week 2)

- 15. Example: application A1 accesses
  - 1. Fragment F1: with frequency 3
  - 2. Fragment F2: with frequency 1

A1 accesses the whole relation with frequency



- $\sqrt{13/7}$
- $\bigcirc$  4/7
- $\bigcirc$  14/7

16. Consider the access frequencies below: How many horizontal fragments would a minimal and complete fragmentation have?



- √ **3**
- 4
- $\bigcirc$  6
- 17. Which of the following sets of simple predicates is complete?



- $\bigcirc$  Location = "Munich", Budget > 200000
- Location = "Munich", Location = "Bangalore"
- Location = "Paris", Budget ≤ 200000
- √ None of those
- 18. Which is true for MinFrag algorithm?
  - O The output is independent of the order of the input
  - It produces a monotonically increasing set of predicates
  - $\sqrt{}$  It always terminates
  - All of the above statements are true
- 19. When deriving a horizontal fragmentation for relation S from a horizontally fragmented relation R
  - $\sqrt{\ }$  Some primary key attribute in R must be a foreign key in S
  - $\bigcirc$  Some primary key attribute in S must be a foreign key in R
  - O Both are required

#### **Graph Databases**

#### Semi-structured Data (Week 3)

- 20. Semi-structured data
  - ( ) Is always schema-less
  - √ Always embeds schema information into the data
  - Must always be hierarchically structured
  - O Can never be indexed

| 21. | Why is XML a document model?  It supports application-specific markup  It supports domain-specific schemas                                                                       |     | <ul> <li>Every label of an outgoing edge of a node in the<br/>schema graph is unique</li> </ul>                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | ✓ It has a serialized representation  ○ It uses HTML tags                                                                                                                        |     | Part III                                                                                                                                              |
|     | Graph Data Model                                                                                                                                                                 |     | Search                                                                                                                                                |
| 22. | In a graph database  O There is a unique root node                                                                                                                               |     | Information Retrieval and Data                                                                                                                        |
|     | $\sqrt{}$ Each node has a unique identifier                                                                                                                                      |     | Mining                                                                                                                                                |
|     | O Data values in leaf nodes are unique                                                                                                                                           |     | Information Retrieval                                                                                                                                 |
|     | ○ The labels of edges leaving a node are different                                                                                                                               |     | Information Retrieval (Week 4)                                                                                                                        |
|     | ○ There is a unique path from the root to each leaf                                                                                                                              | 20  | ,                                                                                                                                                     |
| 23. | The simulation relationship is a relation  √ Among nodes in the data and schema graph                                                                                            | 29. | A retrieval model attempts to model  The interface by which a user is accessing information  The importance are referred to a rise of                 |
|     | Among edges in the data and schema graph                                                                                                                                         |     | √ The importance a user gives to a piece of information                                                                                               |
|     | Among sets of nodes in the data and schema graph                                                                                                                                 |     | ○ The formal correctness of a query formulation by user                                                                                               |
|     | Among sets of edges in the data and schema graph                                                                                                                                 |     | ○ All of the above                                                                                                                                    |
| 24. | Which is true?                                                                                                                                                                   | 30. | If the top 100 documents contain 50 relevant documents                                                                                                |
|     | $\bigcirc$<br>For each labelled edge in $S$ a corresponding edge in $D$                                                                                                          |     | $\bigcirc$ The precision of the system at 50 is 0.5                                                                                                   |
|     | can be identified                                                                                                                                                                |     | $\surd$ The precision of the system at 100 is 0.5                                                                                                     |
|     | $\bigcirc$ For each root node in $S$ a corresponding root node $D$ can be identified                                                                                             |     | ○ The recall of the system is 0.5                                                                                                                     |
|     | $\sqrt{}$ For each leaf node in $D$ a corresponding typed                                                                                                                        |     | ○ None of the above                                                                                                                                   |
|     |                                                                                                                                                                                  | 31. | If retrieval system A has a higher precision than system B  The top k documents of A will have higher similarity values than the top k documents of B |
| 25. | root node can be identified $ \begin{tabular}{l} If there exists a uniquely defined simulation relationship among a graph database $D$ and a schema graph $S$ \\ \end{tabular} $ |     | $\sqrt{}$ The top k documents of A will contain more relevant documents than the top k documents of B                                                 |
|     | $\bigcirc$ The data and schema graph are simulation equivalent $\checkmark$ Ambiguous classification cannot occur                                                                |     | $\bigcirc$ A will recall more documents above a given similarity threshold than B                                                                     |
|     | Multiple classification cannot occur                                                                                                                                             |     | Relevant documents in A will have higher similarity                                                                                                   |
| 26. | If schema graph $S_1$ subsumes $S_2$                                                                                                                                             |     | values than in B                                                                                                                                      |
|     | $\bigcirc$ Every graph database corresponding to $S_1$ corresponds also to $S_2$                                                                                                 |     | Text-based Information Retrieval                                                                                                                      |
|     | $\sqrt{S_2}$ simulates $S_1$                                                                                                                                                     | 32. | Full-text retrieval means that                                                                                                                        |
|     | $\bigcirc$ $S_1$ has fewer nodes than $S_2$                                                                                                                                      |     | <ul> <li>The document text is grammatically deeply analyzed<br/>for indexing</li> </ul>                                                               |
|     | Schema Extraction                                                                                                                                                                |     | <ul> <li>The complete vocabulary of a language is used to<br/>extract index terms</li> </ul>                                                          |
| 27. | Which is wrong? In a dataguide                                                                                                                                                   |     | $\sqrt{}$ All words of a text are considered as potential                                                                                             |
|     | Every path in the data graph occurs only once                                                                                                                                    |     | index terms                                                                                                                                           |
|     | √ Every node in the data graph occurs only in one<br>data guide node                                                                                                             | 22  | <ul> <li>All grammatical variations of a word are indexed</li> <li>The term-document matrix indicates</li> </ul>                                      |
|     | O Every data guide node has a unique set of nodes                                                                                                                                | JJ. | √ How many relevant terms a document contains                                                                                                         |
|     | <ul> <li>A leaf node in the data graph corresponds always to a<br/>leaf node in the data guide</li> </ul>                                                                        |     | ○ How relevant a term is for a given document                                                                                                         |
| 28. | In a non-deterministic schema graph                                                                                                                                              |     | √ How often a relevant term occurs in a document<br>collection                                                                                        |
|     | $\sqrt{}$ Every node of the data graph occurs exactly once                                                                                                                       |     | √ Which relevant terms are occurring in a document                                                                                                    |
|     | <ul> <li>Every path of the data graph occurs at most once</li> </ul>                                                                                                             |     | collection                                                                                                                                            |

| 0   | Let the query be represented by the following vectors: $(1, 0, -1)$ $(0, -1, 1)$ ; the document by the vector $(1, 0, 1)$ |     | User Relevance Feedback                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
|     | Matches the query because it matches the first query vector                                                               | 41. | Can documents which do not contain any keywords of the original query receive a positive similarity coefficient after |
|     | $\sqrt{}$ Matches the query because it matches the second                                                                 |     | relevance feedback ?  No                                                                                              |
|     | query vector                                                                                                              |     | $\bigcirc$ Yes, independent of the values $\beta$ and $\gamma$                                                        |
|     | O Does not match the query because it does not match the first query vector                                               |     | $$ Yes, but only if $\beta > 0$                                                                                       |
|     | • •                                                                                                                       |     | $\bigcirc$ Yes, but only if $\gamma > 0$                                                                              |
|     | <ul> <li>Does not match the query because it does not match<br/>the second query vector</li> </ul>                        |     | Link-based Ranking                                                                                                    |
| 35. | Which is right? The term frequency is normalized                                                                          | 12  | A positive random jump value for exactly one node implie                                                              |
|     | $\sqrt{}$ By the maximal frequency of a term in the document                                                              | Τ∠. | that                                                                                                                  |
|     | O By the maximal frequency of a term in the document                                                                      |     | √ a random walker can leave the node even without<br>outgoing edges                                                   |
|     | collection  By the maximal frequency of a term in the vocabulary                                                          |     | a random walker can reach the node multiple times                                                                     |
|     | By the maximal term frequency of any document in the                                                                      |     | even without outgoing edges                                                                                           |
|     | collection                                                                                                                |     | √ a random walker can reach the node even without incoming edges                                                      |
| 36. | The inverse document frequency of a term can increase                                                                     |     | onone of the above                                                                                                    |
|     | O By adding the term to a document that contains the term                                                                 | 43. | Given the graph below and an initial hub vector of $(1,1,1)$                                                          |
|     | $\sqrt{}$ By adding a document to a document collection that does not contain the term                                    |     | The hub-authority ranking will result in the following  ① ②                                                           |
|     | O By removing a document from the document collection that does not contain the term                                      |     |                                                                                                                       |
|     | <ul> <li>By adding a document to a document collection that<br/>contains the term</li> </ul>                              |     | <u>3</u>                                                                                                              |
|     | Advanced Retrieval Models                                                                                                 |     | $\bigcirc$ authority vector $(0,0,1)$ ; hub vector $(1,1,0)$                                                          |
|     | Latent Semantic Indexing (Week 5)                                                                                         |     | $\bigcirc$ authority vector $(0,0,2)$ ; hub vector $(2,2,0)$                                                          |
| 7   | - ` ,                                                                                                                     |     | $\sqrt{}$ authority vector $(0,0,1)$ ; hub vector $(\frac{1}{2},\frac{1}{2},0)$                                       |
| 01. | In vector space retrieval each row of the matrix $\mathbf{M}^T$ corresponds to                                            |     | $\bigcirc$ authority vector $(0,0,2)$ ; hub vector $(1,1,0)$                                                          |
|     | A document                                                                                                                |     | Inverted Files (Week 6)                                                                                               |
|     | ○ A concept                                                                                                               | 44. | A posting indicates                                                                                                   |
|     | ○ A query                                                                                                                 |     | The frequency of a term in the vocabulary                                                                             |
|     | ○ A query result                                                                                                          |     | ○ The frequency of a term in a document                                                                               |
| 38. | Applying SVD to a term-document matrix <b>M</b> . Each                                                                    |     | $\sqrt{}$ The occurrence of a term in a document                                                                      |
|     | concept is represented  As a singular value                                                                               |     | ○ The list of terms occurring in a document                                                                           |
|     | √ As a linear combination of terms of the vocabulary                                                                      | 45. | When indexing a document collection using an inverted                                                                 |
|     | As a linear combination of documents in the document                                                                      |     | file, the main space requirement is implied by  The access structure                                                  |
| (   | collection                                                                                                                |     | The vocabulary                                                                                                        |
|     | $\bigcirc$ As a least square approximation of the matrix ${f M}$                                                          |     | The index file                                                                                                        |
| 39. | The number of term vectors in the SVD for LSI                                                                             |     | √ The postings file                                                                                                   |
| (   | $\bigcirc$ Is smaller than the number of rows in the matrix ${f M}$                                                       | 16  | Using a trie in index construction                                                                                    |
|     | $\sqrt{\ }$ Is the same as the number of rows in the matrix M                                                             | 40. | Helps to quickly find words that have been seen before                                                                |
|     | $\bigcirc$ Is larger than the number of rows in the matrix ${f M}$                                                        |     | Helps to quickly decide whether a word has not been                                                                   |
|     | A query transformed into the concept space for LSI has                                                                    |     | seen before                                                                                                           |
|     | $\sqrt{\ s}$ components (number of singular values)                                                                       |     | O Helps to maintain the lexicographic order of words see                                                              |
|     | $\bigcirc \ m$ components (size of vocabulary)                                                                            |     | in the documents                                                                                                      |
|     | $\bigcirc \ \ n$ components (number of documents)                                                                         |     | $\sqrt{}$ All of the above                                                                                            |

Unstructured P2P Overlay Networks 47. Maintaining the order of document identifiers when partitioning the document collection is important 53. In an unstructured overlay network (such as Gnutella) a  $\sqrt{\ }$  In the index merging approach for single node peer receiving a "peer discovery" message (ping) machines Responds by sending a message to the originator of the message In the map-reduce approach for parallel clusters Responds by replying to the last forwarder of the ○ In both message In neither of the two Responds by sending a message to all its neighbors 54. If the largest city in the world has 16 Mio inhabitants, the Distributed Retrieval second largest 11.3 Mio inhabitants, the third largest 9.2 48. When applying Fagin's algorithm for a query with three Mio, the fourth largest 8.0 Mio, and so on, then this is different terms for finding the k top documents, the A Powerlaw distribution algorithm will scan  $\sqrt{A}$  A Zipf distribution 2 different lists None of the two √ 3 different lists 55. Assume that in a country the size of cities follows a powerlaw distribution with exponent 2. A city of 16 Mio  $\bigcirc$  k different lists inhabitants has probability of 1/256 to occur. Then a city it depends how many rounds are taken of 8 Mio inhabitants is Twice as probable 49. Once k documents have been identified that occur in all of  $\sqrt{}$  Four times as probable the lists Eight times as probable  $\bigcirc$  These are the top-k documents 56. Expanding ring search is particularly suitable to locate The top-k documents are among the documents  $\sqrt{}$  Frequent items seen so far Rare items  $\bigcirc$  The search has to continue in round-robin till the top-kdocuments are identified Does not matter 57. With the square root rule for replica allocation: given two Other documents have to be searched to complete the items that are accessed with probabilities  $p_1 > p_2$  that are top-k list replicated  $r_1$  and  $r_2$  times. Which is always true?  $\bigcap r_1 < r_2$ Peer-2-Peer Search  $\sqrt{r^{1}/p_{1}} < r^{2}/p_{2}$ Peer-2-Peer Systems  $\bigcap r_1 - p_1 < r_2 - p_2$ P2P Systems and Resource Location Hierarchical P2P Overlay Networks (Week 7) (Week 8) 50. Which resource is in Napster not shared in a P2P 58. The index information in a structured overlay network approach?  $\sqrt{}$  Provides references to route a search request within the overlay network File storage Provides for a given key the reference to the peer that √ File metadata storage stores the resource Network bandwidth Is replicated in routing tables to support redundant search paths Content rights 59. For the given routing table, the search request for the key 51. "Churn" refers to the fact that in a peer-to-peer system : 0101 is routed  $\sqrt{}$  Peers constantly join and leave the network Peers constantly add and remove resources O Peers constantly search for resources 01 52. An "overlay network" supports : 010 011 P3: 00110 Efficient routing to a given IP address 0111 P5: 01011 P6: 0100  $\sqrt{}$  Efficient routing to the location of a resource 01101 P7: 01110 identifier

P1: 100 P2: 1100

P4: 0000

P8: 01111

P9: 01100

P10: 01100

P11: 01101

P12: 01101 replicas

Efficient exchange of large files

Efficient messaging in centralized social network

- $\sqrt{}$  Always to peer  $P_5$
- $\bigcirc$  Either to peer  $P_5$  or  $P_6$
- $\bigcirc$  Either to peer  $P_3$ ,  $P_4$ ,  $P_5$  or  $P_6$
- 60. When routing in Chord
  - $\sqrt{\phantom{a}}$  The next hop is always uniquely determined
  - The next hop can be chosen among a constant number of possible candidates
  - $\bigcirc$  The next hop can be chosen among  $\log n$  possible candidates
- 61. When adding q to the Chord ring : in the routing table of p



| i | $s_i$ |
|---|-------|
| 1 | $p_2$ |
| 2 | $p_2$ |
| 3 | $p_2$ |
| 4 | $p_3$ |
| 5 | $p_4$ |

- $\bigcirc$  Entries for i = 1, 2, 3, 4 change
- $\bigcirc$  The entry for i=4 changes
- $\bigcirc$  The entry for i = 5 changes
- √ No entry changes
- 62. When adding n peers to CAN the number of new zones
  - $\sqrt{}$  Is exactly n
  - O It depends what the keys of the peers were
  - It depends on the dimensionality of the key space

Solution: One zone per new peer.

- 63. In CAN, for a fixed dimensionality d > 2, when moving from 1 to 2 realities
  - The number of entries in the routing table increases by 2
  - $\bigcirc$  The number of entries in the routing table increases by d
  - $\sqrt{\phantom{a}}$  The number of entries in the routing table doubles
- 64. In FreeNet the routing table is updated
  - When a search request message arrives
  - $\sqrt{\ }$  When a query answer message arrives
  - O When an insert file message arrives
- 65. For which of the following structured overlay networks the length of a search path is always guaranteed to be shorter than the length of the longest key
  - √ P-Grid
  - CAN

- FreeNet
- 66. The local clustering coefficient is the probability that two of my friends are also friends. If I have 10 friends and among them 15 friendships exist, my local clustering coefficient is
  - $\bigcirc$   $^{1}/_{6}$
  - $\sqrt{1/3}$
  - $\bigcirc$  2/3
  - $\bigcirc$   $^{3}/_{2}$

Solution: Look at the formula in the slides notes.

- 67. A random graph has
  - O High clustering and low diameter
  - O High clustering and high diameter
  - $\sqrt{\phantom{0}}$  Low clustering and low diameter
  - Low clustering and high diameter
- 68. In a three-dimensional Kleinberg small world network with  $\log n$  long range links the search cost is
  - $\sqrt{\log n}$
  - $\bigcirc \log^2 n$
  - $\bigcirc \log^3 n$

# Data Broadcasting in Mobile Networks (Week 9)

- 69. Latency is
  - The time a client is connected to a broadcast channel
  - The time a client listens actively on a broadcast channel
  - $\sqrt{\phantom{.}}$  The time a client waits for receiving a data item on a broadcast channel
- 70. Data Broadcast is beneficial when
  - Clients have a high upstream bandwidth
  - $\sqrt{\phantom{a}}$  Many clients are interested in the same information
  - Clients have many different requests
- 71. Assume the broadcast channel has one item accessed with frequency 9 and three others accessed with frequency 1. The expected delay for accessing the first item in an optimal broadcast organization will be
  - √ **1**
  - O 2
  - $\bigcirc$  3
- 72. Assume the broadcast channel has one item accessed with frequency 9 and three others accessed with frequency 1. The expected delay for accessing the second type of items will be
  - $\bigcirc$  1
  - √ **3**
  - O 6
- 73. When organizing a broadcast disk a "chunk"
  - Ocontains always all elements of the broadcast disk

- $\sqrt{\phantom{.}}$  Contains sometimes all elements of the broadcast disk
- O Contains never all elements of the broadcast disk
- 74. When organizing a broadcast disk, which is true?
  - √ The number of copies of different chunks in a broadcast disk is constant
  - The number of copies of different data items in a broadcast disk is constant
  - √ The number of data items in the chunks of one disk is constant
  - The data items in the chunks of one disk are always the same
- 75. Which is true?
  - √ LRU (least recently used) is not optimal because it does not consider the frequency of data items in a data broadcast
  - √ MPA (most probable accessed) is not optimal because it does not consider the frequency of data items in a data broadcast
  - $\surd$  Only PIX considers the frequency of data items in a data broadcast
- 76. Assume the broadcast and access pattern below. Assuming that c=1/2 what is the access frequency estimate for B at time 6 ?



- O 1/3
- $\sqrt{\frac{1}{4}}$
- 0 1/6
- O ½12

#### Solution:

At  $t_2$ , B has value  $\frac{1/2}{2-0}+0=\frac{1}{4}.$  At  $t_6$ , B has value  $\frac{1/2}{6-2}+\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{4}$ 

- 77. The minimal latency of a broadcast channel can be achieved
  - $\sqrt{}$  By not indexing the broadcast
  - O By indexing the broadcast only once
  - O By indexing the broadcast according to the (1,m) rule
- 78. The term "probe wait" refers to
  - The time for waiting for a data page
  - $\sqrt{\phantom{a}}$  The time for waiting for an index segment
  - O The time for waiting for a data segment

Week 10

- 79. Based on the analysis of search terms and subsequent link clicks, a search engine provider places ads on search results that are most likely to be clicked by the users. This task is an example of :
  - Local rule discovery
- 80. Let's assume that the transactions are stored in [...]

**Solution:** 1,2,3,1,2,4-\(\pmi\)1,2,3,4 1,2,5 -\(\pmi\) 1,2,3,5,1,2,4,5

## Credits

Quiz questions were taken from the lecture notes of Prof. K. Aberer. Answers are provided with no guarantee.