DESCRIPTION

BENZOTHIAZIN-3-ONE COMPOUND AND INTERMEDIATE THEREFOR

TECHNICAL FIELD

The present invention relates to a novel benzothiazin-3-one compound or a pharmaceutically acceptable salt thereof, which is useful as a matrix metallo-proteinase inhibitor, an intermediate for production of the compound and a process for producing the compound.

BACKGROUND ART

Extracellular matrix constituting connective 10 tissues, represented by collagen and proteoglycan is metabolized by a group of proteases referred to as matrix metallo-proteinase (hereinafter abbreviated as MMPs in some cases). As MMPs, there are known at present 23 enzymes such as collagenase (referred to also as matrix metallo-proteinase-1 or MMP-1), 15 gelatinase A (referred to also as matrix metalloproteinase-2 or MMP-2), stromelysin (referred to also as matrix metallo-proteinase-3 or MMP-3), gelatinase B (referred to also as matrix metallo-proteinase-9 or 20 MMP-9), collagenase 3 (referred to also as matrix metallo-proteinase-13 or MMP-13) and membrane-bound matrix metallo-proteinase-1 (e.g. MT1-MMP and MMP-14). The amount of the extracellular matrix in a living body is strictly controlled by endogenous inhibitors of MMPs (e.g. TIMP (tissue inhibitor of matrix metalloproteinase)). However, when such a balance is disturbed, the enzyme activity of MMP is abnormally enhanced, resulting in various diseases accompanied by the destruction of connective tissues as symptom.

As the diseases, there are exemplified arthrosis deformans and chronic articular rheumatism which are accompanied by the destruction of articular cartilage. As MMPs which participate in arthrosis deformans and chronic articular rheumatism, there are exemplified stromelysin and collagenase 3 etc. (see Annals of the Rheumatic Diseases. 59(6):455-61 (2000) and Journal of Clinical Investigation. 99(7):1534-45 (1997)).

In addition, MMPs are enzymes capable of decomposing basement membrane and participate in the infiltration of cancerous cells into vascular endothelium from peripheral tissues, namely, cancer metastasis. As such MMPs, gelatinases A and B are exemplified (see Pancreas. 24(2):169-78 (2002)).

20

25

The therapeutic or preventive effect of MMP inhibitors on the above-exemplified diseases is revealed by J. Exp. Med., 182, 449-457 (1995), Inflamm. Res, 44, S117-S118 (1995), British J. Pharmacol., 121, 540-546 (1997), Inflamm. Res, 49, 144-146 (2000), Am. J. Clin. Oncol., 22, 247-252 (1999), Osteoarthritis and Cartilage, 10, 785-791 (2002), etc. Therefore, MMP

inhibitors are considered effective as therapeutic or preventive agents for chondrodegenerative diseases (e.g. arthrosis deformans, chronic articular rheumatism), cancers, etc.

As MMP inhibitors, many compounds are known (see Exp. Opin. Ther. Patents, 8, 259-282 (1998)).

There may be exemplified 2-benzylbenzothiazin-3-one compounds (International Publication No. WO00/63197 pamphlet and Japanese Patent Unexamined Publication JP-10 A-2002-12876).

However, an MMP inhibitor capable of exhibiting a more remarkable effect in a living body is desired even now.

On the other hand, a process for producing a benzothiazin-3-one compound is disclosed in 15 International Publication No. W000/63197 pamphlet and is thus well known. In addition, there have been reported a process in which an α-bromocarboxylic acid derivative is condensed with a thiophenol derivative in 20 DMF (see Chem. Pharm. Bull., 39, 2888 (1991)) and a process in which the hydroxyl group of an α hydroxycarboxylic acid is converted to a trifluoromethanesulfonyloxy group in acetonitrile, followed by condensing with a nucleophile in one pot 25 (see Tetrahedron. Asymmetry, 3, 715 (1992)). However, there has been a desire for a process for efficient production of an optically active α -

phenylthiocarboxylic acid derivative with little

racemization.

As a process for producing an α hydroxycarboxylic acid as an intermediate for production of the above-mentioned benzothiazin-3-one compound, there are known, for example, the process using baker's yeast disclosed in Japanese Patent Unexamined Publication JP-A-10-84987; the process of carrying out catalytic asymmetric hydrogenation which is disclosed in Japanese Patent Unexamined Publication 10 JP-A-10-120621, with a hydantoin derivative disclosed in Japanese Patent Unexamined Publication JP-A-2000-309575; the process using Grignard reaction of a chiral epoxide compound disclosed in Japanese Patent Unexamined Publication JP-A-2000-37761; and the process 15 using DIP-Cl and disclosed in Tetrahedron Lett., 39, 5501 (1998). However, there has been a desire for a process for producing an α -hydroxycarboxylic acid with a high optical purity in higher yield.

DISCLOSURE OF THE INVENTION

An object of the present invention is to provide a novel agent useful as, for example, a therapeutic or preventive agent for chondrodegenerative diseases (e.g. arthrosis deformans, chronic articular rheumatism), cancers, etc., an intermediate for production of the agent and a process for producing the agent.

The present inventors earnestly investigated

in order to achieve the above object, and consequently found that the benzothiazin-3-one compound of the present invention exhibits an excellent pharmacological activity on an arthrosis deformans animal model when orally administered. Furthermore, the present inventors found that said compound acts as a prodrug since it is converted to a highly active carboxylic acid compound by hydrolysis of its ethoxycarbonyl group in its metabolism in a living body.

In addition, the present inventors found a process for producing an intermediate for production of the benzothiazin-3-one compound from an α -hydroxycarboxylic acid derivative in high yield, a method for optical resolution of the starting α -hydroxycarboxylic acid, and the like.

The present invention has been accomplished on the basis of the above findings.

The present invention relates to the benzothiazin-3-one compounds or pharmaceutically acceptable salts thereof, which are useful as MMP inhibitors and are described below in [1] to [22]:

[1] A benzothiazin-3-one compound represented by the formula (1):

20

$$RO_2C$$
 N
 O
 $CONHOH$
 $(CH_2)_n$
 R^1
 (1)

wherein n is 3 or 4; R is an ethyl group or a hydrogen

atom; and R¹ is a halogen atom, an alkoxy group, a haloalkyl group or a haloalkoxy group, or a pharmaceutically acceptable salt thereof;

[2] A benzothiazin-3-one compound according
5 to [1], characterized by being represented by the
formula (1S):

$$RO_2C$$
 $(CH_2)_n$
 R^1
 (IS)

wherein n, R and R^1 are as defined above, or a pharmaceutically acceptable salt thereof;

- [3] A benzothiazin-3-one compound or a

 10 pharmaceutically acceptable salt thereof according to

 [1] or [2], wherein R¹ is a fluorine atom, a chlorine

 atom, a methoxy group, a trifluoromethyl group or a

 trifluoromethoxy group;
- [4] A benzothiazin-3-one compound or a
 15 pharmaceutically acceptable salt thereof according to
 any one of [1] to [3], wherein R is an ethyl group;
 - [5] A benzothiazin-3-one compound or a pharmaceutically acceptable salt thereof according to any one of [1] to [3], wherein R is a hydrogen atom;
- 20 [6] A compound or a pharmaceutically acceptable salt thereof according to [4], wherein the compound represented by the formula (1) is selected from the following group of compounds:

 ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxy-

phenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate, ethyl 2-[3-(4-chlorophenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate, ethyl 2-[3-(4-fluoro-

- 5 phenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate, ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-2-[3-(4-trifluoromethylphenyl)propyl]-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate, ethyl 4-[2-(hydroxyamino)-
- 10 2-oxoethyl]-3-oxo-2-[3-(4 trifluoromethoxyphenyl)propyl]-3,4-dihydro-2H-1,4 benzothiazine-6-carboxylate and ethyl 4-[2 (hydroxyamino)-2-oxoethyl]-2-[4-(4 methoxyphenyl)butyl]-3-oxo-3,4-dihydro-2H-1,4-
- 15 benzothiazine-6-carboxylate;
 - [7] A compound or a pharmaceutically acceptable salt thereof according to [1], wherein the compound represented by the formula (1) is (-)-ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-
- 20 methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate;
 - [8] A compound or a pharmaceutically acceptable salt thereof according to [5], wherein the compound represented by the formula (1) is selected
- from the following group of compounds:

 4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine6-carboxylic acid, 2-[3-(4-chlorophenyl)propyl]-4-[2-

(hydroxyamino) -2-oxoethyl] -3-oxo-3, 4-dihydro-2H-1, 4benzothiazine-6-carboxylic acid, 2-[3-(4-fluorophenyl) propyl] -4-[2-(hydroxyamino) -2-oxoethyl] -3-oxo3, 4-dihydro-2H-1, 4-benzothiazine-6-carboxylic acid, 45 [2-(hydroxyamino) -2-oxoethyl] -3-oxo-2-[3-(4trifluoromethylphenyl) propyl] -3, 4-dihydro-2H-1, 4benzothiazine-6-carboxylic acid, 4-[2-(hydroxyamino) -2oxoethyl] -3-oxo-2-[3-(4-trifluoromethoxyphenyl) propyl] 3, 4-dihydro-2H-1, 4-benzothiazine-6-carboxylic acid and
10 4-[2-(hydroxyamino) -2-oxoethyl] -2-[4-(4methoxyphenyl) butyl] -3-oxo-3, 4-dihydro-2H-1, 4benzothiazine-6-carboxylic acid;

[9] A compound or a pharmaceutically acceptable salt thereof according to [1], wherein the compound represented by the formula (1) is (-)-4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid.

The present invention also relates to the
20 pharmaceutical compositions or remedies described below
in [10] to [14]:

[10] A pharmaceutical composition comprising a benzothiazin-3-one compound or a pharmaceutically acceptable salt thereof according to any one of [1] to [9] as an active ingredient;

25

[11] A matrix metallo-proteinase inhibitor comprising a benzothiazin-3-one compound or a pharma-ceutically acceptable salt thereof according to any one

of [1] to [9] as an active ingredient;

- [12] A remedy or prophylactic for chondrodegenerative diseases or inflammatory diseases comprising a benzothiazin-3-one compound or a
- 5 pharmaceutically acceptable salt thereof according to any one of [1] to [9] as an active ingredient;
 - [13] A cancer metastasis suppressant comprising a benzothiazin-3-one compound or a pharmaceutically acceptable salt thereof according to any one of [1] to [9] as an active ingredient;
 - [14] A pharmaceutical composition for oral administration comprising a benzothiazin-3-one compound or a pharmaceutically acceptable salt thereof according to [4], [6] or [7].
- In addition, the present invention relates to the intermediates for production of the compound of the formula (1) described below in [15] to [22]:
 - [15] A compound represented by the formula (2):

$$HO$$
 $(CH_2)_n$ R^1 (2)

- wherein n and R^1 are as defined in the formula (1) and R^2 is an alkyl group of 2 or 3 carbon atoms, a 4-nitrobenzyl group or a 2,2,2-trichloroethyl group;
 - [16] A compound according to [15], wherein the alkyl group of 2 or 3 carbon atoms is an ethyl
- 25 group;

10

[17] A compound according to [15] or [16], which has an S-configuration;

[18] A compound according to [15] or [16], which has an R-configuration;

5 [19] A compound represented by the formula (3):

$$Br \underbrace{(CH_2)_n} R^1$$

$$COOR^{10}$$
(3)

wherein n and R^1 are as defined in the formula (1) and R^{10} is a hydrogen atom, an alkyl group of 1 to 6 carbon atoms, a 4-nitrobenzyl group or a 2,2,2-trichloroethyl group;

[20] A compound according to [19], wherein the alkyl group of 1 to 6 carbon atoms is a methyl group or an ethyl group;

[21] A compound according to [19] or [20], 15 which has an S-configuration;

\$[22]\$ A compound according to [19] or [20], which has an R-configuration.

Further, the present invention relates to the processes for producing a benzothiazin-3-one compound according to any one of [1] to [9] or an intermediate for production of the compound which are described below in [23] and [24]:

20

25

[23] A process for producing an optically active form of a compound represented by the formula (4):

$$RO_{2}C$$

$$N$$

$$COR^{5}$$

$$(CH_{2})_{n}$$

$$R^{1}$$

$$(4)$$

wherein n, R and R^1 are as defined above and R^5 is a hydroxyl group, an alkoxy group or a hydroxyamino group, characterized by oxidizing the compound with a Water-modified Sharpless reagent, (-)-8,8-

5 (dichlorocamphorylsulfonyl)oxaziridine or (+)-8,8-(dichlorocamphorylsulfonyl)oxaziridine;

[24] A production process according to [23], characterized in that the oxidizing agent is (+)-8,8- (dichlorocamphorylsulfonyl)oxaziridine and that the optically active form is represented by the formula (4S):

$$RO_2C$$
 N
 O
 COR^5
 $(CH_2)_n$
 R^1
 $(4S)$

wherein n, R, $\ensuremath{R^1}$ and $\ensuremath{R^5}$ are as defined above.

Still further, the present invention relates to the processes for producing an intermediate for production of a benzothiazin-3-one compound described in [25] and [26] and the intermediate for production described in [27]:

[25] A process for producing a compound represented by the formula (9):

$$\begin{array}{c|c}
S & (CH_2)_n & R^1 \\
RO_2C & X^1
\end{array}$$
(9)

wherein n, R^1 and R are as defined above and X^1 and R^2 are as defined below, characterized by reacting a compound represented by the formula (5):

$$HO$$
 $(CH_2)_n$ R^1 (5)

wherein n and R^1 are as defined above and R^2 ' is a 5 protective group for carboxyl group or a group represented by the formula (6):

$$\begin{array}{ccc}
R^3 \\
N & O \\
O
\end{array} (6)$$

10

wherein R^3 is an alkyl group or an aryl group, with a brominating reagent or a trifluoromethanesulfonylating reagent to convert to a compound represented by the formula (7):

$$X^2$$
 $(CH_2)_n$ R^1 (7)

wherein n, R^1 and R^2 , are as defined above and X^2 is a bromine atom or a trifluoromethanesulfonyloxy group, and then reacting this compound with a compound

represented by the formula (8):

$$RO_2C$$
 SH (8)

wherein X^1 is a halogen atom or a nitro group and R is as defined above, or a salt thereof in the presence of a base.

[26] A production process according to [25], wherein X^1 is a bromine atom or a nitro group and X^2 is a trifluoromethanesulfonyloxy group;

[27] A compound represented by the formula (3'):

$$X^5$$
 $(CH_2)_n$ R^3 $(3')$

10 wherein n, R^1 and R^3 are as defined above and X^5 is a bromine atom or a hydroxyl group.

Still further, the present invention relates to the processes for producing an optically active α -hydroxycarboxylic acid described in [28] to [30]:

15 [28] A process for producing an optically active form of a compound represented by the formula (10):

$$HO$$
 $(CH2)n R^1 (10)$

wherein n and R^1 are as defined above, characterized by optically resolving a racemic modification of the compound of the formula (10) by adding an optically active α -tolylethylamine to the racemic modification in an inert solvent to form diastereomers;

[29] A production process according to [28], wherein the optically active α -tolylethylamine is (-)- α -tolylethylamine and the optically active form of a compound represented by the formula (10) is a compound with an S-configuration represented by the formula (10S):

$$HO$$
 $(CH_2)_n$ R^1 (10S)

10

wherein n and R^1 are as defined in the above formula (10), or a salt thereof.

[30] A production process according to [28], wherein the optically active α -tolylethylamine is (+)- α -tolylethylamine and the optically active form of a compound represented by the formula (10) is a compound with an R-configuration represented by the formula (10R):

$$HO_{CO_2H}$$
 (10R)

wherein n and R^1 are as defined in the above formula (10), or a salt thereof.

BRIEF DESCRIPTION OF DRAWING

Fig. 1 is a graph showing the result of oralabsorbability evaluation test on rats.

BEST MODE FOR CARRYING OUT THE INVENTION

In the present specification, the halogen atom for \mathbb{R}^1 includes fluorine atom, chlorine atom, bromine atom and iodine atom. The halogen atom for \mathbb{R}^1 is preferably a fluorine atom or a chlorine atom.

In the present specification, the alkoxy group for R¹ is a linear or branched alkoxy group of 1 to 4 carbon atoms. Specific examples thereof are

15 methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, 1-methyl-1-propoxy group, 1-methyl-2-propoxy group, 2-methyl-1-propoxy group, 2-methyl-2-propoxy group, etc. The alkoxy group for R¹ is preferably a methoxy group.

In the present specification, the haloalkyl group for R¹ is a linear or branched haloalkyl group of 1 to 4 carbon atoms having 1 to 5 halogen atoms which are the same or different. Specific examples thereof

are trifluoromethyl group, 2,2,2-trifluoroethyl group, 2-fluoroethyl group, etc. R^1 is preferably a trifluoromethyl group.

In the present specification, the haloalkoxy

5 group for R¹ is a linear or branched haloalkoxy group of

1 to 4 carbon atoms having 1 to 5 halogen atoms which

are the same or different. Specific examples thereof

are trifluoromethoxy group, 2,2,2-trifluoroethoxy

group, 2-fluoroethoxy group, etc. R¹ is preferably a

10 trifluoromethoxy group.

In the present specification, the alkyl group for R³ is a linear or branched alkyl group of 1 to 4 carbon atoms. Specific examples thereof are isopropyl group, isobutyl group, etc. The aryl group for R³ includes phenyl group, 1-naphthyl group, 2-naphthyl group, benzyl group, etc.

15

A first aspect of the present invention is directed to a compound represented by the above formula (1) or a pharmaceutically acceptable salt thereof.

20 The compound of the formula (1) has an asymmetric carbon atom at the 2-position in its benzothiazine skeleton, and the formula (1) also represents optical isomers due to the asymmetric carbon atom. The compound of the formula (1) is preferably an optically active substance, and the configuration relating to the asymmetric carbon atom is preferably an S-configuration (in the present specification, the symbols R and S for expressing the configuration

relating to the asymmetric carbon atom are used according to the IUPAC rules of organic chemistry nomenclature). Especially preferable examples of the optically active substance are (-)-ethyl 4-[2-

- 5 (hydroxyamino) -2-oxoethyl] -2-[3-(4-methoxy-phenyl)propyl] -3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate and (-)-4-[2-(hydroxyamino)-2-oxoethyl] -2-[3-(4-methoxyphenyl)propyl] -3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid.
- 10 The compound represented by the formula (1) of the present invention may be produced by a proper combination of a well-known process such as the process disclosed in International Publication No. W000/63197 pamphlet, a process based thereon and the process of the present invention. Specific examples of production process of the compound are given below.

When R is an ethyl group in the formula (1), the compound may be produced according to any of the following production processes 1 to 4.

Production Process 1

5

10

wherein n and R^1 are as defined above; X^3 and X^4 are independently a leaving group; and R^2 " and R^4 are independently a protective group for carboxyl group.

In the production process 1, as the protective groups for carboxyl group represented by R²" and R⁴, there are exemplified protective groups which are generally used by those skilled in the art and are removable under conditions under which the ethyl ester is not hydrolyzed. Specific preferable examples thereof are protective groups such as benzyl group, p-nitrobenzyl group, p-methoxybenzyl group, tert-butyl

group, etc. These protective groups are described in T.W. Green, "Protective Groups in Organic Synthesis", 3rd ed., John Wiley & Sons, Inc. (1999) (hereinafter referred to as Green reference). As the leaving groups represented by X³ and X⁴, there are exemplified halogen atoms such as bromine atom and iodine atom and sulfonyloxy groups. The sulfonyloxy groups include haloalkylsulfonyloxy groups (e.g. trifluoromethanesulfonyloxy group), alkylsulfonyloxy groups (e.g. methanesulfonyloxy group), and arylsulfonyloxy groups (e.g. p-toluenesulfonyloxy group). X⁴ is preferably a bromine atom. (Step 1)

A compound of the formula (1-3) may be

15 produced by reacting a compound of the formula (1-1)

with a compound of the formula (1-2) in an inert

solvent such as acetonitrile or THF in the presence of
a suitable base such as N-methylmorpholine or

triethylamine.

20 (Step 2)

25

The protective group for carboxyl group (i.e. the group represented by R^2 ") of the compound of the formula (1-3) may be removed under conditions under which the ethyl ester is not hydrolyzed and which are employed in the method described in the above-mentioned "Green reference" and the like. For example, when R^2 " is a p-nitrobenzyl group, a compound of the formula (1-4) may be produced by reacting the compound of the

formula (1-3) with a metal such as iron or zinc without a solvent or in a hydrophilic solvent such as THF in the presence of an acid such as acetic acid or ammonium chloride.

5 (Step 3)

A compound of the formula (1-5) may be produced by reacting the compound of the formula (1-4) with a glycine ester in an inert solvent such as methylene chloride in the presence of a base such as 10 triethylamine by the use of a condensing agent such as N,N'-dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide (EDC) or carbonyl diimidazole (CDI). In this case, if necessary, an activator may be added. The activator includes, for example, N-hydroxybenzotriazole (HOBt) and N-hydroxysuccinimide (HOSu). (Step 4)

A benzothiazin-3-one compound of the formula (1-6) may be produced by adding a metal catalyst and a ligand therefor to the compound of the formula (1-5) in an inert solvent such as toluene in the presence of a base such as cesium carbonate to subject the compound of the formula (1-5) to intramolecular amidation. This procedure may be carried out according to, for example, the method described in Buchwald et al., J. Am. Chem.

Soc., Vol. 119, p 8451-8458 (1997). Specific examples of the metal catalyst are tris(dibenzylideneacetone)palladium(0),

tetrakis(triphenylphosphine)palladium(0), etc. The ligand includes, for example, 1,1'bis(diphenylphosphino)ferrocene (dppf) and tris(otolylphosphine). An especially preferable example of the ligand is dppf.

The inert solvent used here is not particularly limited. For example, toluene may be used as the inert solvent. The inert solvent may be used in a volume of 10 to 50 ml, preferably 30 ml to 40 ml, per g of the starting material. Although the reaction temperature is not particularly limited, the reaction is usually carried out at 60°C to 120°C. The reaction time may be properly controlled by taking the disappearance of the starting material as an indication and is usually 3 hours to 8 hours.

(Step 5)

A compound of the formula (1-7) may be produced by a method properly chosen depending on the kind of ester portion of the compound of the formula (1-6). As the method, there is exemplified the method described in R.C. Ralock, "Comprehensive Organic Transformations", 2nd ed., VCH Publications Inc., New York (1999) (hereinafter referred to as Ralock reference). For example, when R⁴ is a tert-butyl group, an acid such as trifluoroacetic acid or hydrochloric acid may be used optionally in the presence of a scavenger such as dimethyl sulfide, anisole or water, or a Lewis acid such as boron trichloride may be used

in an aprotic solvent such as methylene chloride optionally in the presence of a sulfide compound such as dimethyl sulfide. When R⁴ is a benzyl group, the compound of the formula (1-6) may be hydrogenated in an inert solvent such as ethanol in the presence of a catalyst such as palladium-carbon. When R⁴ is a p-nitrobenzyl group, the same method as the above method adopted in the case of R⁴ being a benzyl group may be adopted, or reduction may be carried out in acetic acid in the presence of zinc or iron.

(Step 6)

After the activation of the carboxyl group of the compound of the formula (1-7), the resulting compound is reacted with hydroxylamine or a hydroxylamine derivative, whereby the compound of the

hydroxylamine derivative, whereby the compound of the formula (1-7) may be converted to a compound of the formula (1-8) corresponding to the formula (1) in which R is an ethyl group. As a method for the activation of the carboxyl group, an amide linkage formation reaction

generally used by those skilled in the art is exemplified. This method is described, for example, in "Ralock reference" or Nobuo Izumiya et al.,

"Fundamentals and Practice of Peptide Synthesis", Maruzen Co., Ltd., 1985. Specific examples of the

25 method are an acid chloride method using pivaloyl chloride or the like; a mixed acid anhydride method using an alkyl chloroformate; an active ester method using a pentafluorophenyl ester or the like; and the

like. After the carboxyl group is activated by such a method, the resulting compound may be reacted with hydroxylamine or a hydroxylamine derivative. The compound of the formula (1-8) corresponding to the formula (1) in which R is an ethyl group may be produced, for example, by treating the compound of the formula (1-7) with isobutyl chloroformate in an inert

solvent such as THF in the presence of a base such as

5

N-methylmorpholine, and reacting the thus treated

compound with a reagent such as Otrimethylsilylhydroxylamine, followed by desilylation
of the resulting product with an acid such as dilute
hydrochloric acid.

The compound of the formula (1-1) as an intermediate for production of the compound of the formula (1) is novel in itself.

The compound of the formula (1-1) may be produced, for example, by the following process:

HO
$$(CH_2)_n$$
 R^1 $(Step 7)$ X^3 $(CH_2)_n$ R^1 $CO_2R^{2"}$ $(1-9)$ $(1-1)$

wherein n, R^1 , R^2 " and X^3 are as defined above.

That is, when X³ is a sulfonyloxy group, the compound of the formula (1-1) may be produced by reacting a compound of the formula (1-9) with sulfonic acid anhydride or sulfonyl chloride in an inert solvent such as acetonitrile, methylene chloride or THF in the

presence of a base such as triethylamine.

On the other hand, when X³ is a bromine atom, the compound of the formula (1-1) may be produced by reacting a compound of the formula (1-9) with carbon tetrabromide and triphenylphosphine. The compound of the formula (1-1) may be produced also by reacting a compound of the formula (1-9) with thionyl bromide or phosphorus tribromide. In addition, when X³ is a bromine atom, the compound of the formula (1-1) may be produced also by the following process:

$$H_2N$$
 $(CH_2)_n$ R^1 CO_2H $(I-11)$ R^1 CO_2R^2 " $(Step 9)$ R^1 CO_2R^2 " $(I-12)$

wherein n, R^1 and R^2 " are as defined above.

10

15

20

That is, a compound of the formula (1-10) is diazotized with sodium nitrite in an acidic aqueous solution (e.g. an aqueous hydrogen chloride solution, an aqueous hydrogen bromide solution or an aqueous sulfuric acid solution), an organic acid solvent (e.g. acetic acid) or a mixture of the aforesaid organic acid solvent and an inert organic solvent such as toluene, dioxane, THF, or the like, and then the diazotized compound is treated with an aqueous potassium bromide, sodium bromide or lithium bromide solution or the like,

whereby the compound of the formula (1-10) may be converted to a compound of the formula (1-11). The compound of the formula (1-11) may be converted to a compound of the formula (1-12) by esterification according to a method well known to those skilled in the art. This method is described in International Publication No. WOOO/63197 pamphlet, Synthesis, 583 (1999), or Tetrahedron Letters, 28, 1993 (1987).

The compound of the formula (1-1) may be

10 produced also by the well-known process described in

Tetrahedron Asymmetry, 6, 1919 (1995).

15

20

The compound of the formula (1-10) is a well-known compound and may be prepared by a process well known to those skilled in the art. Specifically, it may be synthesized by the process described in Tetrahedron, 58, 6117 (2002).

The compound of the formula (1-9) may be produced, for example, by a well-known process or the process described in the working example in the present specification. A process for producing an optically active form of the compound of the formula (1-9) is explained in the production process 6 or 7 hereinafter described, or the like.

The above-mentioned compound of the formula 25 (1-6) may be produced according to the following production process 2.

Production Process 2

$$X^{3}$$
 (CH₂)_n R^{1} EtO₂C (2-1) R^{1} (Step 1) R^{1} EtO₂C R^{2} " R^{1} (Step 2) R^{1} (Step 2) R^{1} (Step 3) R^{1} (Step 4) R^{1}

(Step 2) EtO₂C
$$(CH_2)_n$$
 R^1 R^1 $(2-4)$ $(2-3)$

$$S$$
 $CH_2)_n$
 R^4
 CO_2R^4

wherein n, R^1 , R^2 ", R^4 and X^3 are as defined above.

Here, as the leaving group represented by X^3 , there are exemplified halogen atoms such as bromine atom, iodine atom, etc.; and sulfonyloxy groups such as trifluoromethanesulfonyloxy group, methanesulfonyloxy group, etc.

(Step 1)

A compound of the formula (2-2) may be

10 produced by reacting a compound of the formula (1-1)

with a compound of the formula (2-1) in an inert

solvent such as THF in the presence of a suitable base

such as N-methylmorpholine or triethylamine.

(Step 2)

A compound of the formula (2-3) may be

produced by reacting the compound of the formula (2-2) with iron or zinc without a solvent or in a solvent such as toluene in the presence of acetic acid or ammonium chloride to carry out cyclization. In the production process 2, as the protective group for carboxyl group represented by R²", protective groups generally used by those skilled in the art are exemplified. Specifically, protective groups such as methyl group, ethyl group, p-nitrobenzyl group and the like are suitable.

(Step 3)

15

25

The compound of the formula (1-6) may be produced by reacting the compound of the formula (2-3) with a compound of the formula (2-4) in an inert solvent such as dimethylformamide in the presence of a base such as cesium carbonate, potassium carbonate or sodium hydride.

The compound of the formula (1-6) may be converted to the compound of the formula (1-8) by the 20 method described in the above-mentioned production process 1.

A compound of the formula (3-3) corresponding to a compound of the formula (1) in which R is a hydrogen atom may be produced according to the following production process 3.

Production Process 3

2-position
$$R^{7}O_{2}C$$

$$R^{$$

wherein R^1 , R^4 and n are as defined above, and R^7 is a protective group for carboxyl group. (Step 1)

A compound of the formula (3-2) may be

5 produced by selectively removing R⁴ of a compound of the formula (3-1) and by a method similar to the method described in the step 2 or step 5 in the abovementioned production process 1. Here, a combination of the protective groups represented by R⁴ and R⁷ may be

10 any combination so long as it permits choice of conditions under which R⁷ is not removed simultaneously with the removal of R⁴. There are used, for example, a combination of an ethyl ester and a (substituted) benzyl ester, a combination of an ethyl ester and a

15 tert-butyl ester, a combination of a (substituted) benzyl ester and a tert-butyl ester, and a combination

of a 2,2,2-trichloroethyl ester and a tert-butyl ester. A combination of p-nitrobenzyl ester and a tert-butyl ester, a combination of a benzyl ester and a tert-butyl ester, a combination of a 2,2,2-trichloroethyl ester and a tert-butyl ester, and the like are suitable. Reference to "Green reference" is sufficient to determine conditions for the protection and deprotection in the case of each protective group.

The compound of the formula (3-1) may be produced in the same manner as in the production process 1.

(Step 2)

The compound of the formula (3-3) may be produced by converting the ester portion of the 15 compound of the formula (3-2) to a carboxyl group by deprotection reaction. When R⁷ is an alkyl group such as ethyl group, the compound of the formula (3-2) may be hydrolyzed with an alkaline aqueous solution in an alcohol solvent such as ethanol. As the alkaline aqueous solution, there are exemplified an aqueous 20 lithium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, an aqueous cesium hydroxide solution and an aqueous barium hydroxide solution. Preferable examples 25 thereof are an aqueous lithium hydroxide solution, an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution.

When the compound of the formula (3-2) is an

optically active substance synthesized by the production process described hereinafter or the like, racemization proceeds under conditions of, for example, the above-mentioned hydrolysis with the alkaline aqueous solution, so that the optical purity of the compound of the formula (3-3) is remarkably decreased in some cases. As a method for avoiding the progress of the racemization, there is exemplified a method of adding a 1% to 50% alkaline aqueous solution at a low 10 temperature in 5mM to 5M tetrahydrofuran solvent. reaction temperature is, for example, -25°C to 15°C, preferably -20°C to 5°C, more preferably -15°C to -5°C. Preferable examples of the alkaline aqueous solution are an aqueous potassium hydroxide solution and an 15 aqueous sodium hydroxide solution. The number of equivalents of the alkali metal salt added is, for example, 1 to 10 equivalents, preferably 2 to 5 equivalents, more preferably 2 to 3 equivalents.

It is also possible to produce the compound of the formula (3-3) while keeping the optical purity of the compound of the formula (3-2) as starting material, by hydrolyzing the compound of the formula (3-2) with a hydrolase well known to those skilled in the art, such as lipase or esterase.

The intermediate for production such as the compound of the formula (1-3) as intermediate for production in the production process 1, the compound of the formula (2-2) as intermediate for production in the

production process 2, or a compound of the formula (5-7) as intermediate for production in the production process 6 described hereinafter may be produced according to the following production process 4. A production process of a compound of the formula (9) based on the production process 4 is also within the scope of the present invention.

Production Process 4

A process for producing a compound of the

10 formula (9) as intermediate for production of a

benzothiazin-3-one compound such as a compound of the

formula (1) is explained below in detail.

(Step 1)

A compound of the formula (5) as starting

15 material may be produced by the above-mentioned production process and the process described in the working example in the present specification.

In the formula (5), formula (7) and formula (9), n is preferably 3 or 4.

A compound of the formula (7) may be produced from the compound of the formula (5) by the following process:

$$R^1$$
 $COR^{2'}$
 $COR^{2'}$
 $COR^{2'}$
 $COR^{2'}$
 $COR^{2'}$
 $COR^{2'}$
 $COR^{2'}$
 $COR^{2'}$

wherein n, R^1 , R^2 , and X^2 are as defined above.

That is, when X^2 is a

trifluoromethanesulfonyloxy group, the compound of the formula (7) may be produced by reacting the compound of the formula (5) with trifluoromethanesulfonic acid

anhydride as trifluoromethanesulfonylating reagent in an inert solvent in the presence of a base represented by organic amines such as triethylamine, N-methylmorpholine, etc. The base may be used usually in an amount of 1.0 mole to 1.2 moles per mole of the starting material.

In the production process 4, preferable examples of R^2 ' are alkoxy groups of 1 to 6 carbon atoms, 4-nitrobenzyloxy group and 2,2,2-trichloroethoxy group. Preferable examples of the aforesaid alkoxy groups are alkoxy groups of 2 or 3 carbon atoms.

Here, although the inert solvent is not particularly limited, acetonitrile, methylene chloride, THF and the like are preferably usable as the inert solvent. A more preferable inert solvent is

- 20 acetonitrile. The inert solvent may be used in a volume of 3 ml to 5 ml per g of the starting material. Although the reaction temperature is not particularly limited, the reaction is usually carried out at -30°C to -5°C. The reaction time may be properly controlled
- 25 by monitoring the disappearance of the starting material and takes usually 0.5 hour to 2 hours.

15

On the other hand, when X^2 is a bromine atom, the compound of the formula (7) may be produced, for

example, by the process described in the abovementioned production process 1, i.e., the process using
triphenylphosphine and carbon tetrabromide as
brominating agents.

When X² is a bromine atom, a well-known compound of the formula (4-1) (see Helvetica Chimica Acta, 40, 1812 (1957)) may be brominated with a brominating agent such as N-bromosuccinimide as follows after converting the hydrogen atom on the α carbon atom of the compound to a silyl enol ether by the use of a base such as LDA and a silylating agent such as trimethylsilyl chloride (Tetrahedron Asymmetry, 6 1919 (1995)):

$$(CH_2)_n$$
 R^1 X^2 $(CH_2)_n$ R^1 $COR^{2'}$ $(4-1)$ (7)

wherein n, R^1 , R^2 , and X^2 are as defined above.

15 (Step 2)

The compound of the formula (9) may be produced by condensing the compound of the formula (7) with a compound of the formula (8) in an inert solvent in the presence of a base:

wherein n, R^1 , R^2 , R, X^1 and X^2 are as defined above.

When X² is a trifluoromethanesulfonyloxy group, the inert solvent is not particularly limited. Preferable examples of the inert solvent are acetonitrile, methylene chloride and THF. A more preferable example thereof is THF. Here, the step 2 may be carried out in the same system as in the step 1 without isolating the product obtained in the step 1, i.e., the compound of the formula (7).

When the compound of the formula (5) and the compound of the formula (7) are optically active substances, employment of DMF or acetonitrile causes partial racemization. However, it was found that employment of THF makes it possible to produce the compound of the formula (9) with a high optical purity in high yield without racemization.

The inert solvent may be used in a volume of 2 ml to 10 ml per g of the starting material. As the base, there are exemplified organic amines such as N-methylmorpholine, triethylamine, etc. The base may be used usually in an amount of 1.0 mole to 1.2 moles per mole of the starting material.

20

25

The compound of the formula (8) may be used usually in an amount of 1.0 mole to 1.2 moles per mole of the starting material. Although the reaction temperature is not particularly limited, the reaction is usually carried out at -50°C to 5°C, preferably -20°C to 0°C. The reaction time may be properly controlled by monitoring the disappearance of the

starting material and takes usually 0.5 hour to 2 hours.

On the other hand, also when X^2 is a bromine atom, the compound of the formula (9) may be produced by the same process as above.

The compound of the formula (8) may be produced by a process well known to those skilled in the art. A specific example of the process is the process described in the working example in the present specification.

The above-mentioned compounds of the formula (2) and the formula (3) as intermediates for production of the compound of the formula (1) are novel compounds in themselves.

That is, the compound of the formula (2):

10

$$HO$$
 $(CH_2)_n$ R^1 (2)

wherein n, R^1 and R^2 are as defined above, and the compound of the following formula (3):

$$Br \underbrace{(CH_2)_n} R^1$$

$$COOR^{10}$$
(3)

wherein n and R¹ are as defined in the formula (1) and R¹⁰ is a hydrogen atom, an alkyl group of 1 to 6 carbon atoms, a 4-nitrobenzyl group or a 2,2,2-trichloroethyl group, are within the scope of the present invention.

Here, R^1 in the formula (2) and the formula

36

(3) is preferably a methoxy group. As the alkyl groups of 2 or 3 carbon atoms for R^2 in the formula (2), ethyl group, propyl group and isopropyl group are exemplified.

The alkyl group of 1 to 6 carbon atoms for R¹⁰ in the formula (3) is a linear or branched alkyl group. Specific examples thereof are methyl group, ethyl group, propyl group, 1-methylethyl group, butyl group, 1-methylpropyl group, 1,1-dimethylethyl group, pentyl group, hexyl group, etc. R¹⁰ is preferably an alkyl group of 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.

The compounds of the formula (2) and formula (3) are compounds having an asymmetric carbon atom, and the present invention includes both a mixture of optically active forms of each compound (a racemic modification) and these optically active substances.

15

The optically active form of each compound may be produced by the process described hereinafter,

20 and by the use of such an optically active substance, an optically active compound of the formula (1) and an intermediate for production of this compound may be produced.

The compound of the formula (1) or a

25 pharmaceutically acceptable salt thereof may be in the
form of a solvate. The solvent in the solvate
includes, for example, alcohols such as methanol,
ethanol, propanol, isopropanol, etc.; ketones such as

acetone, etc.; ethers such as tetrahydrofuran, dioxane, etc.; and water. Although the amount of the solvent per molecule of the compound of the formula (1) is not particularly limited, the solvate is, for example, one containing 0 to 3 molecules (specifically 1/2 molecule, 1 molecule, 2 molecules or 3 molecules) of the solvent.

The compound of the formula (1) and an intermediate for production of this compound may be purified by a method well known to those skilled in the 10 art. They may be purified, for example, by any of various normal-phase or reversed-phase column chromatographies using silica gel, an ion-exchange resin, molecular sieve or the like, high performance liquid chromatography (HPLC) or recrystallization. solvent for the recrystallization includes, for 15 example, alcohol solvents such as methanol, ethanol, 2propanol, etc.; aprotic solvents such as dimethylformamide, dimethyl sulfoxide, etc.; ether solvents such as diethyl ether, etc.; ester solvents such as ethyl acetate, etc.; aromatic hydrocarbon 20 solvents such as toluene, etc.; ketone solvents such as acetone, etc.; hydrocarbon solvents such as hexane, etc.; halogenated hydrocarbon solvents such as chloroform, dichloroethane, etc.; and mixed solvents 25 thereof.

The compound of the formula (1) may be converted to a pharmaceutically acceptable salt as follows. As the pharmaceutically acceptable salt, base

addition salts are exemplified. The base addition salts include inorganic base salts such as sodium salt, potassium salt, cesium salt, ammonium salt, etc.; and organic base salts such as meglumine salt,

tris(hydroxymethyl)aminomethane salt, triethylamine salt, lysine salt, etc.

The compound of the formula (1) is a compound having an asymmetric carbon atom, and the present invention includes both a mixture of optically active 10 forms of the compound (a racemic modification) and these optically active substances. When the compound of the formula (1) or an intermediate for production of this compound is a racemic modification, the racemic modification may be resolved into optically active 15 substances by the method described hereinafter in the present specification. Thus, the optically active substance may be produced according to the any of above-mentioned production processes 1 to 3. The optically active form of the compound of the formula 20 (1) may be produced by using the optically active form of the intermediate for production of the formula (1-1)described hereinafter.

An optically active form of each of the compound of the formula (1) and an intermediate for production of this compound is preferably producible by any of the production processes described as the following production processes 5 to 8. That is, the production processes of optically active forms of the

compound of the formula (1), a pharmaceutically acceptable salt thereof and an intermediate for production of the compound described as the production process 5 to 8 are also within the scope of the present invention.

An intermediate for production of the compound of the formula (1) represented by the formula (4) may be optically resolved by adopting the following production process 5.

10 Production Process 5

5

15

wherein n, R, R^1 and R^5 are as defined above.

In the production process 5, the alkoxy group for R⁵ is not particularly limited so long as it is an alkoxy group used as a protective group for carboxyl group. Specific examples thereof are tert-butoxy group, benzyloxy group, etc.

A racemic modification of the compound of the formula (4) [corresponding to the compound of the

formula (1) or an intermediate for production of this compound] may be optically resolved by selective oxidization of one of the optical isomers by treating the racemic modification with an optically active

- oxidizing agent in an inert solvent. As the oxidizing agent used here, there are exemplified the Water-modified Sharpless reagent described in Tetrahedron Asymmetry, 8, 13, 2109-2114 (1997), i.e., a mixture of (+)-or (-)-diisopropyl tartrate, titanium
- tetraisopropoxide, t-butyl hydroperoxide, a small volume of water and molecular sieve (4A); and the Nsulfonyloxaziridine reagent described in J. Org. Chem., 57, 7274 (1992).

A specific example of the optically active

oxidizing agent is (+)-(8,8dichlorocamphorylsulfonyl)oxaziridine. In this case,
an S-form of the compound of the formula (1)
represented by the formula (4S) is selectively
obtainable. On the other hand, an R-form of the

compound of the formula (1) represented by the formula
(4R) is selectively obtainable by using (-)-(8,8dichlorocamphorylsulfonyl)oxaziridine as the oxidizing
agent.

When R is an ethyl group and R⁵ is an NHOH

25 group or an O-tert-butyl group, the compound may be
efficiently optical resolved by treating the racemic
modification with 2 equivalents of the optically active
oxidizing agent in methylene chloride. On the other

hand, when R is a hydrogen atom and R^5 is an NHOH group, the compound may be efficiently optical resolved by treating the racemic modification with 5 equivalents of the optically active oxidizing agent in ethyl acetate.

5 The inert solvent used here is not particularly limited. For example, acetonitrile, methylene chloride and ethyl acetate may be used as the inert solvent. The amount of the inert solvent is not particularly limited so long as the whole starting

10 material is soluble in the inert solvent. Although the reaction temperature is not particularly limited, the reaction is usually carried out at 0°C to 30°C. The reaction time may be properly controlled by monitoring the disappearance rate of the starting material and

15 takes usually 1 hour to 10 days.

The compound of the formula (4) may be regenerated by reducing a compound of the formula (4-2R) or (4-2S) obtained by the above production process 5, with titanium tetraiodide. This reaction is described in Synlett, 2000, 10, 1437-1438.

20

A compound of the formula (5-5), an optically active form of an intermediate for production of the compound of the formula (1) may be produced by the following production process 6.

Production Process 6

10

15

wherein n, R^1 and R^2 " are as defined above; R^8 is an isopropyl group, an isobutyl group, a phenyl group, a 1-naphthyl group, a 2-naphthyl group or a benzyl group; and R^9 is a bromine atom or a hydroxyl group.

In the step 1 in the above reaction scheme, a compound of the formula (5-3) may be obtained by condensing a compound of the formula (5-1) with a compound of the formula (5-2) by a method well known to those skilled in the art. That is, the compound of the formula (5-1) is converted to an acid chloride by treatment with oxalyl chloride and then the acid chloride may be reacted with the compound of the formula (5-2) (a commercial product). The above procedure is described in Tetrahedron Lett., 38, 3853 (1997).

In the step 2, a compound of the formula (5-4) may be obtained by treating the compound of the

formula (5-3) with an oxidizing agent or a brominating agent in an inert solvent.

That is, when R⁹ is a hydroxyl group in the formula (5-4), Davis reagent may be used in an inert solvent in the presence of a strong base. In this case, R⁸ is preferably a phenyl group. As the strong base used here, sodium hexamethyldisilazide is exemplified. As the inert solvent, THF and the like may be used. The amount of the inert solvent is not 10 particularly limited so long as the whole starting material is soluble in the inert solvent. The inert solvent may be used, for example, in a volume of 5 ml to 40 ml per g of the starting material. Although the reaction temperature is not particularly limited, the reaction is usually carried out at -78°C to 0°C, 15 preferably at -78 $^{\circ}$ C. The reaction time may be properly controlled by monitoring the disappearance of the starting material and takes usually 1 hour to 5 hours.

On the other hand, when R⁹ is a bromine atom

20 in the formula (5-4), the compound of the formula (5-3)

may be brominated with N-bromosuccinimide as

brominating agent after treatment with dibutylboron

triflate and diisopropylethylamine. In this case, R⁸ is

preferably a benzyl group or an isopropyl group.

25 The inert solvent used here is not particularly limited. For example, methylene chloride may be used as the inert solvent. The amount of the inert solvent is not particularly limited so long as

the whole starting material is soluble in the inert solvent. The inert solvent may be used, for example, in a volume of 10 ml to 50 ml per g of the starting material. Although the reaction temperature is not particularly limited, the reaction is usually carried out at -78°C to 0°C, preferably at -78°C. The reaction time may be properly controlled by monitoring the disappearance of the starting material and takes usually 1 hour to 5 hours.

10 In the step 3, the compound of the formula (5-5) may be obtained by treating the compound of the formula (5-4) with a metal alkoxide. For example, when R²" is a methyl group, sodium methoxide, potassium methoxide or the like may be used in methanol.

When R^9 is a bromine atom in the compound of 15 the formula (5-4), a benzothiazine compound as intermediate for production of the compound of the formula (1) may be obtained according to the following reaction scheme:

20
$$R^{1} - (CH_{2})_{n} \cap (CH_{2})$$

wherein n, R^1 and R^8 are as defined above.

That is, the step 4 and the step 5 may be carried out in the same manner as in the step 1 and step 2 in the above-mentioned production process 2.

An optically active form of the compound of the formula (2) may be produced by the following production process 7 (see Tetrahedron Lett., 39, 5501 (1998)).

Production Process 7

The optically active form may be produced by treating a compound of the formula (6-1) with an optically active reducing agent such as (+)- or (-)- disopinocampheylborane chloride (DIP-Cl), and then reacting the treated compound with an alcohol in the presence of an acid such as sulfuric acid to esterify the carboxyl group.

wherein n, R^1 and R^2 are as defined above.

Specifically, an (S) form of the formula (10S) may be produced by treating the compound of the 20 formula (6-1) with (+)-diisopinocampheylborane chloride, and an (R) form of the formula (10R) may be

produced by treating the compound of the formula (6-1) with (-)-diisopinocampheylborane chloride.

The compound of the formula (10R) or (10S) may be converted to, for example, an optically active substance of the formula (2R) or (2S) by esterification by a well-known method.

An optically active form of α -hydroxycarboxylic acid as intermediate for production of the compound of the formula (2) may be produced by the following production process 8.

Production Process 8

10

$$HO$$
 $(CH_2)_n$ R^1 $CO_2^ NH_3^+$ $(10S)$ CO_2H $(10S)$ R^1 CO_2H $(10S)$ R^1 $R^$

wherein n and R1 are as defined above.

In the formula (10), formula (10S), formula (10R), formula (11S) and formula (11R) in the above reaction scheme, n is preferably 3 or 4.

A compound of the formula (10) as starting material may be produced by a well-known process or the process described in the working example in the present specification.

As shown in the above reaction scheme, a (-)- α -tolylethylamine salt of a compound of the formula (10S) may be isolated as a diastereomeric salt by treating the compound of the formula (10) with (-)- α -tolylethylamine in an inert solvent. The compound of the formula (10S) may be produced by treating the diastereomeric salt with an acid by a conventional method.

A $(+)-\alpha$ -tolylethylamine salt of a compound of the formula (10R) may be isolated as a diastereomeric salt by treating the compound of the formula (10) with $(+)-\alpha$ -tolylethylamine in an inert solvent. The compound of the formula (10R) may be produced by treating this diastereomeric salt with an acid by a conventional method.

Specifically, the optical resolution of the compound of the formula (10) may be carried out by the following steps:

(step 1) a step of dissolving the compound of the 20 formula (10) and an optically active α -tolylethylamine in an inert solvent,

(step 2) a step of precipitating crystals of a
diastereomeric salt represented by the formula (11S) or
(11R), and

25 (step 3) a step of isolating the crystals obtained in (step 2).

The inert solvent used in (step 1) is not particularly limited so long as it can dissolve the

compound of the formula (10). Specific examples thereof are acetone, aqueous acetone, acetonitrile, tetrahydrofuran (THF), 1,4-dioxane, ethyl acetate, toluene, alcohols (e.g. ethanol), etc. Preferable examples thereof are acetone and aqueous acetone. The inert solvent may be used in a volume of 5 ml to 10 ml per g of the starting material.

5

10

The amount of the optically active α -tolylethylamine used is suitably about 0.8 to about 1.5 equivalents, preferably 1 equivalent, per equivalent of the substrate.

The temperature at the formation of the salt by the dissolution of the compound of the formula (10) and the optically active α-tolylethylamine ranges from 15 room temperature to the boiling point of the inert solvent. The reaction is usually carried out at 40°C to 70°C. For improving the optical purity, the temperature is preferably once raised close to the boiling point of the solvent.

20 The reaction time may be properly controlled by monitoring the dissolution of the whole starting material and takes usually 0.5 hour to 2 hours.

A method for precipitating crystals of the α tolylethylamine salt represented by the formula (11S)

25 or (11R) in (step 2) is not particularly limited, and a
method well known to those skilled in the art may be
adopted. For example, the crystals may be precipitated
by allowing the solution to stand. In this case, the

yield may be improved by cooling the solution according to need before collecting the precipitated salt by filtration. In addition, the solvent may be properly distilled off at atmospheric pressure or under reduced pressure and at room temperature or with heating.

In (step 3), the α -tolylethylamine salt represented by the formula (11S) or (11R) may be obtained in high purity by collecting the formed crystals by filtration, and if necessary,

recrystallizing the crystals from an inert solvent (for example, an alcohol solvent such as methanol, ethanol or 2-propanol; an ether solvent such as diethyl ether; an ester solvent such as ethyl acetate; an aromatic hydrocarbon solvent such as toluene; acetonitrile; or a

mixed solvent thereof). Here, the term "high purity" means a purity of usually 90%ee or more, preferably 95%ee or more, more preferably 98%ee or more.

If necessary, the α-tolylethylamine salt represented by the formula (11S) or (11R) may be converted to the optically active carboxylic acid compound of the formula (10S) or (10R), respectively, by the use of an acid such as hydrochloric acid, phosphoric acid, sulfuric acid or the like. For example, desalting may be conducted by dissolving the α-tolylethylamine salt represented by the formula (11S) or (11R) in an organic solvent such as ethyl acetate, followed by extraction with a 0.1 to 2N aqueous hydrochloric acid solution.

The compound of the formula (10) includes not only a complete racemic modification (0%ee) consisting of the (+) form and the (-) form in the ratio of 1:1 but also a mixture of the (+) form and the (-) form

5 having a certain degree of optical purity. For example, an optically active form of the compound of the formula (10) may be produced by the process described in the production process 7 and may be given a higher purity by the method according to the present invention.

The thus obtained optically active form of the compound of the present invention and optically active form of the intermediate for production of the compound of the present invention may be improved in optical purity, for example, by a method well known to those skilled in the art.

15

Specifically, such an optically active substance may be separated by purification by a fractional recrystallization method comprising the 20 formation of a salt with an optically active base, a chromatographic method using an optically active column, or the like. As the aforesaid fractional recrystallization method, there is exemplified a method in which a salt with an optically active base (e.g. an organic amine such as α-phenethylamine, α-tolylethylamine, quinine, quinidine, cinchonidine, cinchonine or strychnine) is formed in an inert solvent (e.g. an alcohol solvent such as methanol, ethanol or

2-propanol; an ether solvent such as diethyl ether; an ester solvent such as ethyl acetate; an aromatic hydrocarbon solvent such as toluene; acetonitrile; or a mixed solvent thereof). The temperature at the formation of the salt ranges from room temperature to the boiling point of the solvent. For improving the optical purity, the temperature is preferably once raised close to the boiling point of the solvent. yield may be improved by cooling the reaction solution according to need before collecting the precipitated salt by filtration. In general, the amount of the optically active acid or amine used is suitably in a range of about 0.5 to about 2.0 equivalents, preferably in a range of about 1 equivalent per equivalent of the substrate. If necessary, an optically active salt having a high purity may be obtained by recrystallizing the crystals from an inert solvent (for example, an alcohol solvent such as methanol, ethanol or 2propanol; an ether solvent such as diethyl ether; an ester solvent such as ethyl acetate; an aromatic

10

15

20

hydrocarbon solvent such as toluene; acetonitrile; or a mixed solvent thereof). If necessary, the salt obtained may be treated with an acid or a base by a conventional method to obtain the optically active substance in the free state.

As the optically active column used in the above-mentioned chromatographic method, optically active columns generally used by those skilled in the

art may be used. There is, for example, a method in which the compound of the formula (1) (including the compounds of the formula (1-8) and the formula (3-3)) is optically resolved by the use of, for example,

5 CHIRALCEL (trade name) AD-H or CHIRALCEL AS-RH manufactured by DAICEL Chemical Industries Ltd.

10

15

Of optically active forms of the compound of the formula (1) of the present invention, optically active substances having an S-configuration exhibit higher activity. Specific examples of such compounds are the compounds of Example 7 and Example 14.

When the compound of the formula (1) and an intermediate for production of this compound are produced, techniques for protection and deprotection generally known to those skilled in the art may be used if necessary. The techniques for protection and deprotection are described in detail in the abovementioned "Green reference".

When used as a medicine, the compound of the 20 formula (1) or a pharmaceutically acceptable salt thereof may be administered orally or parenterally and systemically or locally.

administration includes, for example, capsules,

25 tablets, powders, cachets and solutions. As to a
dosage form in the case of the parenteral
administration, the compound or the salt may be
administered in the form of, for example, an injection,

A dosage form in the case of the oral

transdermal preparation, trans-nasal preparation or intrarectal preparation. As the injection, sterile solutions or suspensions are exemplified. The transdermal preparation includes creams, ointments, lotions, patch preparations, matrix preparations, etc. The intrarectal preparation includes suppositories, enemas (solution injection), etc. The trans-nasal preparation includes aerosols, nasal drops, etc.

5

When the compound of the formula (1) is used as a preparation for local administration, specific examples of the administration route of the compound are intraarticular administration, transdermal administration, etc.

The compound of the formula (1) or a pharma
15 ceutically acceptable salt thereof may be formulated into a pharmaceutical composition together with pharmaceutically acceptable excipients and additives generally used by those skilled in the art. The pharmaceutically acceptable excipients and additives

20 include carriers, binders, flavoring materials, buffers, thickening agents, coloring agents, stabilizers, emulsifying agents, dispersing agents, suspending agents, antiseptics, etc.

The pharmaceutically acceptable carriers

25 include, for example, magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low-melting wax, and cacao

butter. The capsules may be prepared by encapsulating the compound of the present invention together with the pharmaceutically acceptable carrier. The benzothiazin-3-one compound or pharmaceutically acceptable salt

thereof of the present invention may be encapsulated together with the pharmaceutically acceptable excipient mixed therewith or without the excipient. The cachets may be prepared in the same manner as above.

As a solution for injection, there are exemplified solutions, suspensions and emulsions, such 10 as aqueous solutions, water-propylene glycol solutions, and the like. The solution for injection may be prepared in the form of a solution in a poly(ethylene glycol) and/or propylene glycol which may contain 15 water. A solution suitable for the oral administration may be prepared by adding the compound of the present invention to water and adding thereto a coloring agent, a flavoring material, a stabilizer, a sweetener, a solvent, a thickening agent and the like according to need. A solution suitable for the oral administration 20 may be prepared also by adding the benzothiazin-3-one compound or pharmaceutically acceptable salt thereof of the present invention to water together with a dispersing agent to increase the viscosity.

25 thickening agent includes, for example, pharmaceutically acceptable natural or synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, and well-known suspending agents. The preparation for local administration includes the above-mentioned solutions, creams, aerosols, sprays, powders, lotions, ointments, etc. The above-exemplified preparation for local

- 5 administration may be produced by mixing the benzothiazin-3-one derivative or salt thereof of the present invention with a diluent and a carrier which are pharmaceutically acceptable and conventionally used. Each of the ointment and the cream is obtained,
- 10 for example, by adding a thickening agent and/or a gelling agent to an aqueous or oily base ingredient, followed by formulation into a pharmaceutical composition. The base ingredient includes, for example, water, liquid paraffins, and vegetable oils
- 15 (e.g. peanut oil and castor oil). The thickening agent includes, for example, soft paraffins, aluminum stearate, cetostearyl alcohol, propylene glycol, poly(ethylene glycol)s, lanolin, hydrogenated lanolin, and beeswax.
- In the case of the lotion, one or more pharmaceutically acceptable stabilizers, suspending agents, emulsifying agents, dispersing agents, thickening agents, coloring agents, flavoring materials and the like may be added to an aqueous or oily base ingredient.

The powder is obtained by formulating the compound of the formula (1) or a pharmaceutically acceptable salt thereof into the powder together with a

pharmaceutically acceptable base ingredient for powder. The base ingredient includes talc, lactose, starch and the like. Drops may be obtained by formulating the compound of the formula (1) or a pharmaceutically acceptable salt thereof into the drops together with an aqueous or nonaqueous base ingredient and one or more pharmaceutically acceptable dispersing agents, suspending agents, solvents and the like.

If necessary, the preparation for local
administration may contain antiseptics and bacterial
multiplication inhibitors, such as methyl
hydroxybenzoate, propyl hydroxybenzoate, chlorocresol,
benzalkonium chlorides, etc.

It is also possible to administer through

15 nose a pharmaceutical composition in the form of a

solution spray, a powder or drops, which contain the

benzothiazin-3-one derivative or salt thereof of the

present invention as an active ingredient.

A compound of the formula (1) in which R is

20 an ethyl group and a pharmaceutically acceptable salt
thereof are characterized in that they have an
excellent oral absorbability and act as a prodrug which
is converted to a highly active substance by
metabolizing in a living body. That is, as shown in

25 the following scheme:

wherein n and R¹ are as defined above, a compound of the formula (1-8) is metabolized by enzymes in a living body to be converted to a metabolite represented by the formula (3-3). When the compound of the formula (1-8) is orally administered, the compound of the formula (3-3) exhibits an excellent MMP inhibitory activity and has a marked MMP inhibitory activity particularly against MMP-3 and MMP-13, in the living body.

- That is, the compound of the formula (1-8) or a pharmaceutically acceptable salt thereof is preferably orally administered as a preparation for systemic administration or is parenterally administered as a preparation for local administration.
- The compound of the formula (3-3) or a pharmaceutically acceptable salt thereof is preferably parenterally administered.

The dose and the number of administrations of a pharmaceutical composition containing the compound of the formula (1) (the compound of the formula (1-8) or the formula (3-3)) or a pharmaceutically acceptable salt thereof are varied depending on symptom, age, body weight, administration route, etc. When orally administered, the pharmaceutical composition may be

administered to an adult in a dose in the range of usually about 1 to about 1000 mg, preferably about 5 to about 300 mg per day in one portion or several portions. When administered as an injection, the pharmaceutical composition may be administered to an adult in a dose in the range of usually about 0.1 to about 300 mg, preferably about 1 to about 100 mg per day in one portion or several portions.

The compound of the formula (1) or a pharma
10 ceutically acceptable salt thereof is usable as a
therapeutic or preventive agent for diseases such as
chondrodegenerative diseases such as arthrosis
deformans and chronic articular rheumatism, cancers,
inflammatory diseases, COPD (chronic obstructive

15 pulmonary disease), asthma, multiple sclerosis,
dermatitis, spondylosis, periodontal disease, wounds,
myalgia, ulcers, stenosis, eating disorder, septicemia,
etc.

The compound of the formula (1) or a pharma
ceutically acceptable salt thereof is preferably useful

as, in particular, a therapeutic agent for

chondrodegenerative diseases and is very effective as,

in particular, a therapeutic agent for arthrosis

deformans.

25 When used as a therapeutic agent for a specific disease, the compound of the formula (1) or a pharmaceutically acceptable salt thereof may be used in combination with various therapeutic agents for said

disease. In the case of chondrodegenerative diseases, the compound of the formula (1) or a pharmaceutically acceptable salt thereof may be used in combination with $TNF-\alpha$ inhibitors (including anti-TNF antibodies),

- 5 methotrexate, Leflunomide, hydroxychloroquine, dpenicillamine, nonsteroidal anti-inflammatory drugs
 (e.g. Diclofenac, naproxen, flurbiprofen and
 ibuprofen), cyclooxygenase 2 inhibitors (e.g. Meloxicam
 and Celecoxib), salicylic acids (e.g. aspirin),
- steroids (e.g. corticosteroid), immunosuppressants

 (e.g. Ciclosporin and Tacrolimus), hyaluronic acids

 (e.g. Hyalgan and Synvisc), etc. In the case of

 cancers, the compound of the formula (1) or a pharma
 ceutically acceptable salt thereof may be used in
- 15 combination with various anticancer drugs (e.g. Angiostatin, Adriamycin, cisplatin and Taxol).

20

The present invention is more concretely illustrated with reference to the following examples, which are merely for exemplification and should not be construed as limiting the scope of the invention.

In the following examples, the term "room temperature" or "ambient temperature" means a temperature of 15°C to 30°C. All of the nonaqueous reactions were carried out under a nitrogen atmosphere.

25 The term "concentration under reduced pressure" means that a rotary evaporator was used.

If necessary, the desired compound obtained may be separated and purified, for example, by

recrystallization, reprecipitation, or a proper combination of methods conventionally adopted for separation and purification of an organic compound [for example, an adsorption column chromatography method

- using a support such as silica gel, alumina, or magnesium-silica gel type Florisil; a method using a synthetic adsorbent, such as partition column chromatography using a support such as Sephadex LH-20 (mfd. by Pharmacia AB), Amberlite XAD-11 (mfd. by Rohm
- 10 & Haas Co.) or Diaion HP-20 (mfd. by Mitsubishi
 Chemical Company); a method using ion-exchange
 chromatography; and a normal-phase or reversed-phase
 column chromatography (preferably high performance
 liquid chromatography) using silica gel or lower-
- 15 alkylated silica gel] followed by elution with a suitable eluent.

In the following description, the NMR data are reported in ppm (δ) and are based on comparison with lock signals of deuterium from a solvent for sample.

- 20 Commercial reagents were used without further purification. CDCl₃ denotes deuterated chloroform and DMSO-d6 denotes deuterated dimethyl sulfoxide. As these reagents, commercial reagents were used without further purification. Abbreviations used in the NMR
- 25 data are as follows:

s : singlet

d : doublet

t : triplet

dd : doublet doublet

m : multiplet

br : broad

brs : broad singlet

5 Example 1

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

10 Step A

Under ice-cooling, sodium hydride (4.65 g, content 60%) was added in small portions to a THF solution (300 ml) containing (2E)-3-(4-methoxyphenyl)acrylaldehyde (10 g) synthesized by the process described in Reference Example 1 and ethyl 2-(diethoxyphosphoryl)-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (21.7 g, synthesized

according to the process disclosed in WO00/63197). The resulting mixture was slowly warmed up to room temperature and stirred overnight. The same aldehyde as above (1.5 g) was added thereto and stirred for

- another 2 hours. The resulting mixture was concentrated under reduced pressure, and ethyl acetate (30 ml), hexane (100 ml), a 1N aqueous hydrochloric acid solution (50 ml) and water (600 ml) were added to the residue, followed by stirring at room temperature
- for 6 hours. The solid was collected by filtration and dried under reduced pressure. Ethyl 2-[3-(4-methoxyphenyl)prop-2-en-1-ylidene]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (22.43 g) was obtained as a yellow solid.
- 15 1 H-NMR (DMSO-d6) δ 1.33(t,J=7.1Hz,3H), 3.76+3.80(s,3H), 4.30(q,J=7.1Hz,2H), 6.92-7.08(m,4H), 7.35-7.45(m,2H), 7.52-7.58(m,3H), 7.66(d,J=1.7Hz,1H), 10.90+10.95(brs,1H).

20 Step B

25

Under ice-cooling, sodium hydride (1.68 g, content 60%) was added in small portions to ethyl 2-[3-(4-methoxyphenyl)prop-2-en-1-ylidene]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (12.3 g) and DMF (150 ml). After 10 minutes, the resulting mixture was stirred at room temperature. After 4 hours, tert-butyl bromoacetate (5.7 ml) was added dropwise thereto

under ice-cooling. After 1 hour, the resulting mixture was poured into an aqueous sodium chloride solution and extracted with ethyl acetate. The oil layer was dehydrated over anhydrous sodium sulfate and

- 5 concentrated under reduced pressure. The residue was purified by a silica gel chromatography (eluent: hexane/ethyl acetate = 2/1) to obtain a yellow oil (14.45 g). To this yellow oil were added 1,4-dioxane (200 ml), methanol (200 ml), acetic acid (10 ml) and
- 10 10%-palladium-carbon (10 g, containing 50% water), and the resulting mixture was stirred under a hydrogen atmosphere at room temperature and atmospheric pressure. After 12 hours, the solid was filtered off and washed with ethyl acetate and the filtrate was
- concentrated under reduced pressure. The residue was purified by a silica gel chromatography (hexane/ethyl acetate = 3/1) to obtain ethyl 4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (13.16 g) as
- 20 a yellow oil.

 1 H-NMR (CDCl₃) δ

- 1.38(t, J=7.1Hz, 3H), 1.49(s, 9H), 1.60(m, 1H), 1.71(m, 1H),
- 1.75-1.98(m,2H), 2.54(m,2H), 3.48(m,1H), 3.76(s,3H),
- 4.32-4.41(m,3H), 4.82(m,1H), 6.76-6.80(m,2H), 7.02-
- 25 7.06(m,2H), 7.40(m,1H), 7.50(m,1H), 7.70(m,1H).

Step C

Under ice-cooling, a boron trifluoride-

diethyl ether complex (26.6 ml) was added dropwise to a solution of ethyl 4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (13.16 g) and dimethyl sulfide (26.3 ml) in dichloromethane (250 ml). The resulting mixture was slowly warmed up to room temperature and then stirred overnight. The mixture

temperature and then stirred overnight. The mixture was poured into a 1N aqueous hydrochloric acid solution and extracted with chloroform. The oil layer was

- washed twice with a 1N aqueous hydrochloric acid solution, dehydrated over anhydrous sodium sulfate and then concentrated under reduced pressure. {6- (Ethoxycarbonyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4-yl}acetic acid (10.64)
- 15 g) was obtained as a yellow oil.

 1 H-NMR (CDCl₃) δ

- 1.39(t, J=7.2Hz, 3H), 1.60(m, 1H), 1.70(m, 1H), 1.75-
- 1.93(m, 2H), 2.52(m, 2H), 3.50(m, 1H), 3.77(s, 3H),
- 4.38(q, J=7.2Hz, 2H), 4.59(m, 1H), 4.92(m, 1H), 6.76-
- 20 6.80(m,2H), 7.00-7.04(m,2H), 7.41(d,J=8.1Hz,1H), 7.55(m,1H), 7.71(m,1H).

Step D

At $-15\,^{\circ}\text{C}$, isopropyl chloroformate (2.84 ml) was added dropwise to a solution of {6-

- 25 (ethoxycarbonyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4-yl}acetic acid (10.64)
 - g) and N-methylmorpholine (3.2 ml) in tetrahydrofuran

(200 ml). After the dropwise addition of the whole isopropyl chloroformate, the resulting mixture was stirred for 25 minutes and then O-

(trimethylsilyl)hydroxylamine (3.52 ml) was added dropwise thereto. After 3 hours, the reaction mix

- dropwise thereto. After 3 hours, the reaction mixture was poured into a 0.5N aqueous hydrochloric acid solution and extracted with ethyl acetate. The oil layer was washed with a saturated aqueous sodium chloride solution, dehydrated over anhydrous sodium
- sulfate and then concentrated under reduced pressure.

 The residue was purified by a silica gel chromatography (hexane/ethyl acetate = 2/3 to 1/3). To the resulting yellow oil were added toluene and hexane to effect crystallization. The solid obtained was collected by
- filtration and concentrated under reduced pressure.

 Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate (8.24 g) was obtained as a
 yellow solid.
- 20 1 H-NMR (CDCl₃) δ
 - 1.40(t, J=7.2Hz, 3H), 1.59(m, 1H), 1.67(m, 1H), 1.77-
 - 1.93(m, 2H), 2.54(m, 2H), 3.47(m, 1H), 3.77(s, 3H),
 - 4.38(q, J=7.2Hz, 2H), 4.51(d, J=16.0Hz, 1H),
 - 4.68 (d, J=16.0Hz, 1H), 6.80 (m, 2H), 7.04 (m, 2H),
- 7.41(d, J=8.0Hz, 1H), 7.52(br, 1H), 7.73(m, 1H),
 7.98(br, 1H), 9.16(br, 1H).

Ethyl 2-[3-(4-chlorophenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

Ethyl 2-[3-(4-chlorophenyl)propyl]-4-[2-

5 (hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate was obtained by the same process as in Example 1.

¹H-NMR (CDCl₃) δ : 1.40(t, J=7.2Hz, 3H), 1.60(m, 2H),

1.85 (m, 2H), 2.56 (m, 2H), 3.47 (m, 1H), 4.38 (q, J=7.2Hz, 2H),

10 4.52 (d, J=16.0Hz, 1H), 4.68 (d, J=16.0Hz, 1H), 7.05 (m, 2H),

7.21(m, 2H), 7.40(d, J=8.0Hz, 1H), 7.60-7.76(m, 2H),

7.96(br,1H), 8.63+9.28(br,1H).

Example 3

Ethyl 2-[3-(4-fluorophenyl)propyl]-4-[2-

15 (hydroxyamino) -2-oxoethyl] -3-oxo-3, 4-dihydro-2H-1, 4-benzothiazine-6-carboxylate

Ethyl 2-[3-(4-fluorophenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate was obtained by the same

process as in Example 1.

¹ H-NMR (CDCl₃) δ : 1.40(t, J=7.2Hz, 3H), 1.56(m, 1H),

1.66(m, 1H), 1.85(m, 2H), 2.57(m, 2H), 3.47(m, 1H),

4.39(q, J=7.2Hz, 2H), 4.52(d, J=15.6Hz, 1H),

5 4.69(d, J=15.6Hz, 1H), 6.93(m, 2H), 7.07(m, 2H),

7.41(d, J=8.0Hz, 1H), 7.50(br, 1H), 7.73(m, 1H),

7.98(br,1H), 9.27(br,1H).

Example 4

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-

10 <u>2-{3-[4-(trifluoromethoxy)phenyl]propyl}-3,4-dihydro-</u> 2H-1,4-benzothiazine-6-carboxylate

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-2-{3-[4-(trifluoromethoxy)phenyl]propyl}-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate was obtained by the same process as in Example 1.

¹H-NMR (CDCl₃) δ : 1.40(t, J=7.2Hz, 3H), 1.61(m, 1H),

1.69(m, 1H), 1.84(m, 2H), 2.60(m, 2H), 3.49(m, 1H),

4.39(t, J=7.2Hz, 2H), 4.52(d, J=16.4Hz, 1H),

4.70(d, J=16.4Hz, 1H), 7.08-7.16(m, 4H),

20 7.41(d, J=8.0Hz, 2H), 7.73(m, 2H), 7.99(br, 1H), 9.21(br, 1H).

Example 5

15

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-2-{3-[4-(trifluoromethyl)phenyl]propyl}-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-

5 2-{3-[4-(trifluoromethyl)phenyl]propyl}-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate was obtained by the same process as in Example 1.

¹ H-NMR (DMSO-d6) δ : 1.31(t, J=7.2Hz, 3H), 1.45(m, 1H),

1.71(m,3H), 2.65(m,2H), 3.76(m,1H),

10 4.30(q, J=7.2Hz, 2H), 4.37(d, J=8.4Hz, 1H),

4.58(d, J=8.4Hz, 1H), 7.38(m, 2H), 7.52-7.61 (m, 5H),

9.04+9.44(s,1H), 10.39+10.84(s,1H).

Example 6

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[4-

15 (4-methoxyphenyl)butyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[4-(4-methoxyphenyl)butyl]-3-oxo-3,4-dihydro-2H-1,4-

benzothiazine-6-carboxylate was obtained by the same process as in Example 1.

¹ H-NMR (DMSO-d6) δ : 1.31(t,J=7.2Hz,3H), 1.35-1.54(m,5H),

1.73 (m, 1H), 2.44 (m, 2H), 3.63-3.72 (m, 4H),

5 4.31(q, J=7.2Hz, 2H), 4.41(d, J=16.8Hz, 1H),

4.55(d, J=16.8Hz, 1H), 6.80(m, 2H), 7.05(m, 2H),

7.55(d, J=8.4Hz, 1H), 7.60-7.64(m, 2H), 9.04+9.43(s, 1H), 10.38+10.83(s, 1H).

Example 7

10 (-)-Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate

In THF (40 ml) was dissolved {(2S)-6(ethoxycarbonyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo2,3-dihydro-4H-1,4-benzothiazin-4-yl}acetic acid (the compound of Reference Example 11) (2.06 g), and isobutyl chloroformate (0.72 ml) and N-methylmorpholine (0.51 ml) were added thereto at -20°C and stirred at -10 to -20°C for 30 minutes. After O-

20 (trimethylsilyl)hydroxylamine (0.87 ml) was added thereto, the resulting mixture was warmed up to room temperature and stirred for 1 hour. The reaction mixture was poured into a saturated aqueous sodium

hydrogencabonate solution and extracted with ethyl acetate, and the organic layer was washed with a saturated aqueous ammonium chloride solution and a saturated aqueous sodium chloride solution and then

- dried over anhydrous sodium sulfate. The drying agent was removed by filtration and the solvent was distilled off under reduced pressure. The residue was recrystallized from a mixed solvent of ethyl acetate and diisopropyl ether to obtain (-)-ethyl 4-[2-
- 10 (hydroxyamino) -2-oxoethyl] -2-[3-(4methoxyphenyl)propyl] -3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate (1.69 g, 99.9%e.e.). The
 optical purity analysis conditions are as follows.
 [Column: AD-H (CHIRALCEL, DAICEL Chemical Industries
- 15 Ltd.); detecting wavelength (UV): 254 nm; flow rate:
 1.0 ml/min; mobile phase: n-hexane/isopropyl
 alcohol/TFA = 80/20/0.1]

Melting point: 143.5-144.5°C $[\alpha]_D^{20} = -85.3$ °(c:1.0,CHCl₃)

- 20 1 H-NMR (CDCl₃) δ : 1.40(t,J=7.2Hz,3H), 1.59(m,1H),
 - 1.67(m, 1H), 1.77-1.93(m, 2H), 2.54(m, 2H), 3.47(m, 1H),
 - 3.77(s, 3H), 4.38(q, J=7.2Hz, 2H), 4.51(d, J=16.0Hz, 1H),
 - 4.68(d, J=16.0Hz, 1H), 6.80(m, 2H), 7.04(m, 2H),
 - 7.41(d, J=8.0Hz, 1H), 7.52(br, 1H), 7.73(m, 1H),
- 25 7.98(br,1H), 9.16(br,1H).

Example 8

methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid

To the compound of Example 1 (0.51 g) were added THF (10 ml) and water (10 ml). After the resulting mixture was ice-cooled, a 0.5N aqueous lithium hydroxide solution (4.4 ml) was slowly added dropwise thereto. The resulting mixture was slowly warmed up to room temperature and stirred overnight. Ice-cooled 1N aqueous hydrochloric acid solution and 10 ethyl acetate were added thereto to effect extraction. The oil layer was washed twice with a 1N aqueous hydrochloric acid solution, dried over anhydrous sodium sulfate and then concentrated under reduced pressure. Chloroform was added to the residue, and after standing 15 for 4 days, the solid precipitated was collected by filtration and dried under reduced pressure. (Hydroxyamino) - 2 - oxoethyl] - 2 - [3 - (4 - oxoethyl)] - 2 - [3 - oxoethyl]methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid (325 mg) was obtained 20 as a white solid.

 1 H-NMR (DMSO-d6) δ

1.43(m,1H), 1.66(m,3H), 2.45(m,2H), 3.69(s,3H),

4.38 (d, J=16.8Hz, 1H), 4.54 (d, J=16.8Hz, 1H), 6.80 (m, 2H),

7.05(m, 2H), 7.51(m, 1H), 7.58-7.60(m, 2H),

9.02+9.43(s,1H), 10.36+10.81(s,1H), 13.20(brs,1H).

Example 9

2-[3-(4-Chlorophenyl)propyl]-4-[2-

(hydroxyamino) -2-oxoethyl] -3-oxo-3, 4-dihydro-2H-1, 4-

5 benzothiazine-6-carboxylic acid

 $2-[3-(4-Chlorophenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3, 4-dihydro-2H-1, 4-benzothiazine-6-carboxylic acid was obtained by a process similar to the process described in Example 8.
<math display="block">^{1}H-NMR \ (DMSO-d6) \ \delta$ $^{1}.45 \ (m,1H), \ 1.68 \ (m,3H), \ 2.54 \ (m,2H), \ 3.73 \ (m,1H),$ $4.38 \ (d,J=16.4Hz,2H), \ 4.56 \ (d,J=16.4Hz,1H), \ 7.18 \ (m,2H),$

7.29(m,2H), 7.51(d, J=8.0Hz,1H), 7.59-7.61(m,2H),

9.03+9.43(s,1H), 10.37+10.82(s,1H), 13.17(br,1H).

15 Example 10

10

2-[3-(4-Fluorophenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid

2-[3-(4-Fluorophenyl)propyl]-4-[2-(hydroxyamino)-2-oxoethyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid was obtained by a process similar to the process described in Example 8.

- 5 1 H-NMR (DMSO-d6) δ
 - 1.45(m, 1H), 1.67(m, 3H), 2.54(m, 2H), 3.73(m, 1H),
 - 4.38 (d, J=16.8Hz, 2H), 4.55 (d, J=16.8Hz, 1H), 7.06 (m, 2H),
 - 7.18 (m, 2H), 7.51 (d, J=8.0Hz, 1H), 7.59 (m, 2H),
 - 9.03+9.43(s,1H), 10.37+10.82(s,1H), 13.17(br,1H).

10 Example 11

4-[2-(Hydroxyamino)-2-oxoethyl]-3-oxo-2-{3-[4-(trifluoromethoxy)phenyl]propyl}-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid

 $4-[2-(Hydroxyamino)-2-oxoethyl]-3-oxo-2-{3-}$

- [4-(trifluoromethoxy)phenyl]propyl}-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid was obtained by a process similar to the process described in Example 8. 1 H-NMR (DMSO-d6) δ
 - 1.47(m,1H), 1.70(m,3H), 2.59(m,2H), 3.75(m,1H),
- 20 4.39(d, J=16.8Hz, 1H), 4.56(d, J=16.8Hz, 1H), 7.22(m, 2H), 7.28(m, 2H), 7.51(m, 1H), 7.59(m, 2H), 9.63+9.43(s, 1H), 10.37+10.82(s, 1H), 13.12(br, 1H).

Example 12

4-[2-(Hydroxyamino)-2-oxoethyl]-3-oxo-2-{3[4-(trifluoromethyl)phenyl]propyl}-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid

10 1.47(m,1H), 1.72(m,3H), 2.64(m,2H), 3.76(m,1H),
4.38(d,J=16.8Hz,1H), 4.56(d,J=16.8Hz,1H), 7.49(m,2H),
7.51(m,1H), 7.58-7.61(m,3H), 9.03+9.44(s,1H),
10.37+10.82(s,1H),13.13(br,1H).

Example 13

4-[2-(Hydroxyamino)-2-oxoethyl]-2-[4-(4-methoxyphenyl)butyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid

4-[2-(Hydroxyamino)-2-oxoethyl]-2-[4-(4-methoxyphenyl)butyl]-3-oxo-3,4-dihydro-2H-1,4-

benzothiazine-6-carboxylic acid was obtained by a process similar to the process described in Example 8. $^1\text{H-NMR}$ (DMSO-d6) δ

1.35-1.56(m,5H), 1.75(m,1H), 2.45(m,2H), 3.68(m,1H),
3.70(s,3H), 4.41(d,J=16.8Hz,1H), 4.53(d,J=16.8Hz,1H),
6.80(m,2H), 7.05(m,2H), 7.52(d,J=8.0Hz,1H), 7.587.62(m,2H), 9.03+9.43(s,1H), 10.36+10.81(s,1H),
13.06(br,1H).

Example 14

10 (-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid

The compound of Example 7 (0.51 g) was added to a solution prepared by adding N-methylglucamine to a 0.1M aqueous sodium dihydrogenphosphate solution to adjust the pH to 8.0, and the resulting mixture was stirred at 40°C. Porcine liver esterase (250 mg) was added thereto and the resulting mixture was stirred at 40°C for 8 hours and then at room temperature for 4 days. After the reaction mixture was filtered, potassium hydrogensulfate (13.0 g) was added to the filtrate, followed by extraction with ethyl acetate. The oil layer was washed with a 5% aqueous potassium

hydrogensulfate solution and a saturated aqueous sodium chloride solution, dehydrated over anhydrous sodium sulfate and then concentrated under reduced pressure. To the residue were added THF and diisopropyl ether to effect crystallization, and the solid was collected by filtration and dried under reduced pressure. (-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid (376 mg, 99%e.e.) was obtained as a white solid. The optical purity analysis conditions are as follows. [Column: AS-RH (Chiralcel, DAICEL Chemical Industries Ltd.); detecting wavelength (UV): 254 nm; flow rate: 1.0 ml/min; mobile phase:

15 $[\alpha]_D^{18} = -92.1^{\circ} (c:0.1, EtOH)$

 1 H-NMR (DMSO-d6) δ

1.43(m,1H), 1.66(m,3H), 2.45(m,2H), 3.69(s,3H),

acetonitrile/0.2M phosphate buffer (pH 2) = 25/75]

4.38(d, J=16.8Hz, 1H), 4.54(d, J=16.8Hz, 1H), 6.80(m, 2H),

7.05(m, 2H), 7.51(m, 1H), 7.58-7.60(m, 2H),

20 9.02+9.43(s,1H), 10.36+10.81(s,1H), 13.20(brs,1H).

Example 15

(-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid

In THF (200 mL) was dissolved 4.59 g (10.0 mmol) of the compound of Example 7 (HPLC purity 99% and optical purity 100%ee), and 2N-KOH (12.5 mL, 25.0 mmol) was added thereto with stirring at -10° C (internal

- 5 temperature) and stirred at the same temperature for 5 hours. The reaction mixture was poured into a 0.1N-aqueous hydrochloric acid solution (500 mL) cooled at 0°C and extracted twice with ethyl acetate (400 + 100 mL). The organic layer was collected, washed with
- water and a saturated aqueous sodium chloride solution,
 dried over magnesium sulfate and then concentrated with
 an evaporator to obtain 4.65 g of (-)-4-[2(hydroxyamino)-2-oxoethyl]-2-[3-(4methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-
- 15 benzothiazine-6-carboxylic acid (HPLC purity 97% and optical purity 94%ee) as a light-yellow solid.

Example 16

 $\frac{(-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4-denotyphenyl)]-3-oxo-3,4-dihydro-2H-1,4-}{methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-}{methoxyphenyl}$

20 benzothiazine-6-carboxylic acid

In THF (1 L) was dissolved 46.0 g (100 mmol) of the compound of Example 7 (HPLC purity 99% and optical purity 100%ee), and 2N-NaOH (125 mL, 250 mmol)

was added thereto with stirring at -10°C (internal temperature) and stirred at the same temperature for 3 The reaction mixture was poured into a 0.2Naqueous hydrochloric acid solution (2 L) cooled at 0°C and extracted twice with ethyl acetate (1.5 + 0.5 L). The organic layer was collected, washed with water and a saturated aqueous sodium chloride solution, dried over magnesium sulfate and then concentrated with an evaporator to obtain 50.3 g of a light-yellow solid 10 (HPLC purity 97% and optical purity 94%ee). Chloroform (500 ml) was added to the solid and the resulting mixture was heated under reflux on an oil bath. the solid dissolved, the reactor was taken off the oil bath, and seed crystals (a earpick-ful) of the desired 15 compound were added to the reaction solution and the resulting mixture was heated under reflux on the oil bath for 30 minutes to obtain a slurry. Then, the slurry was stirred overnight at room temperature. slightly brown crystals precipitated were collected by 20 filtration and dried under reduced pressure at 50°C to obtain 35.7 g of the desired compound (HPLC purity 99% and optical purity 98%ee) as a crude product. crude product was dissolved in ethanol (200 mL) and hexane (200 mL) was added thereto with stirring at room 25 temperature. Then, hexane (200 mL) was added dropwise thereto while adding seed crystals (0.26 g, 0.60 mmol) of the desired compound in several portions. resulting mixture was stirred overnight at room

temperature. The crystals precipitated were collected by filtration and dried under reduced pressure at 50°C to obtain 27.0 g of (-)-4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid (HPLC purity 99% and optical purity 99%ee or more) as white crystals.

Example 17

(-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(410 methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid

In THF (100 mL) was dissolved 9.19 g (20.0 mmol) of the compound of Example 7 (HPLC purity 99% and optical purity 100%ee), and 4N-NaOH (12.0 mL, 48.0 15 mmol) was added thereto with stirring at -10°C (internal temperature) and stirred at the same temperature for 4 hours. The reaction mixture was poured into a 0.2N-aqueous hydrochloric acid solution (400 mL) cooled at 0°C and extracted twice with ethyl 20 acetate (300 + 100 mL). The organic layer was collected, washed with water and a saturated aqueous sodium chloride solution, dried over magnesium sulfate and then concentrated with an evaporator to obtain 9.27

g of a light-yellow solid (HPLC purity 94% and optical purity 96%ee). This solid was dissolved in ethanol (50 mL) and pentane (50 mL) was added thereto with stirring at room temperature. Then, pentane (50 mL) was added dropwise thereto while adding seed crystals (0.62 g, 1.44 mmol) of the desired compound in several portions. The resulting mixture was stirred overnight at room temperature. The crystals precipitated were collected by filtration and dried under reduced pressure at 50°C to obtain 4.75 g of (-)-4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid (HPLC purity 99% and optical purity 99%ee or more) as white crystals.

15 Reference Example 1: (2E)-3-(4-Methoxyphenyl)acrylaldehyde

A solution of diisobutylaluminum hydride in hexane (0.95 molar concentration, 200 ml) was added dropwise to a solution of methyl (2E)-3-(4-20 methoxyphenyl)acrylate (18 g) in THF (150 ml) under ice-cooling. The resulting mixture was slowly warmed up to room temperature and then poured into an ice-cooled aqueous hydrochloric acid solution. After extraction with ethyl acetate, the oil layer was washed

with a 1N aqueous hydrochloric acid solution and then a saturated aqueous sodium chloride solution, dehydrated over anhydrous sodium sulfate, and concentrated under reduced pressure. A white solid (13.67 g) was obtained.

5

Subsequently, manganese dioxide (38.4 g) was added to a solution of the white solid (7.67 g) in chloroform (200 ml), and the resulting mixture was stirred overnight at room temperature. The solid was collected by filtration through Celite and washed with chloroform and then the filtrate was concentrated under reduced pressure. The remaining white solid (6 g) was subjected to the same procedure as above. The concentrates thus obtained were combined to obtain (2E)-3-(4-methoxyphenyl)acrylaldehyde (13.7 g) as a yellow solid.

¹ H-NMR (CDCl₃) δ 3.86(s,3H), 6.61(dd,J=15.8,7.8Hz,1H), 6.95(d,J=8.6Hz,2H), 7.43(d,J=15.9Hz,1H), 7.53(d,J=8.6Hz,2H), 9.65(d,J=7.7Hz,1H). Reference Example 2: (2R)-2-hydroxy-5-(4-methoxy-phenyl)pentanoic acid

OOO AlCl₃
$$HO_2C$$
 H_2 , Pd-C O OMe O Step O OMe O Step O OMe O Step O OMe O

Step F

Step 1

Methylene chloride (300 ml) was added to

5 aluminum chloride (185.6 g) and anisole (100 ml) was
added dropwise thereto at 0°C. Succinic anhydride (100
g) was added thereto in 5 portions and the resulting
mixture was warmed up to room temperature and stirred
for 3 hours. The reaction solution was added to a 4N

10 aqueous hydrochloric acid solution (2 L) and ethyl
acetate (1L) under ice-cooling, and the crystals
precipitated were collected by filtration and dried to
obtain 4-(4-methoxyphenyl)-4-oxobutanoic acid (160 g)
as a white solid.

15 1 H-NMR (DMSO-d6) δ 2.56(t,J=6.3Hz,2H), 3.18(t,J=6.3Hz,2H), 3.84(s,3H), 7.02-7.07(m,2H), 7.94-7.98(m,2H), 12.14(brs,1H).

Step G

After 4-(4-methoxyphenyl)-4-oxobutanoic acid (40 g) was added to (not completely dissolved in) a mixed solvent of acetic acid (100 ml) and THF (100 ml), 10% palladium-carbon (50%-wet) (4 g) was added thereto and the resulting mixture was stirred for 9 hours under a hydrogen atmosphere (0.4 MPa). The catalyst was removed by filtration through Celite and toluene was added to the residue. The solvent was distilled off 10 under reduced pressure to obtain 4-(4-methoxyphenyl) butanoic acid quantitatively. 1 H-NMR (CDCl₃) δ 1.89 (m, 2H), 2.32 (t, J=7.3Hz, 2H), 2.58 (t, J=7.4Hz, 2H), 3.73(s,3H), 6.78-6.82(m,2H), 7.03-7.08(m,2H), 15 10.96 (brs, 1H).

Step H

g) and then concentrated sulfuric acid (4 ml) were added to ethanol (400 ml), the resulting mixture was

20 heated under reflux for 1 hour. About one-half of the solvent was distilled off under reduced pressure, and the residual reaction solution was poured into a saturated aqueous sodium hydrogencarbonate solution and extracted with ethyl acetate (1 L). The organic layer

25 was washed with a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate.

The solvent was distilled off under reduced pressure to

obtain ethyl 4-(4-methoxyphenyl)butanoate quantitatively.

 1 H-NMR (CDCl₃) δ

1.24(t, J=7.1Hz, 3H), 1.92(m, 2H), 2.30(t, J=7.5Hz, 2H),

5 2.59(t, J=7.4Hz, 2H), 3.78(s, 3H), 4.13(q, J=7.1Hz, 2H), 6.80-6.84(m, 2H), 7.07-7.12(m, 2H).

Step I

A previously prepared solution of NaOEt (184 g) in ethanol (940 ml) was added dropwise to ethyl 4-10 (4-methoxyphenyl)butanoate (200.1 g) and diethyl oxalate (407 ml) under ice-cooling. After stirring at 50°C for 10 hours, the resulting solution was poured into an ice-cooled 3N aqueous hydrochloric acid solution (1.8 L). After extraction with ethyl acetate 15 (600 ml \times 3 times), the extract solution was distilled under reduced pressure to remove the solvent, and the brown organic layer thus separated was collected. The crystals precipitated in the organic layer were collected by filtration and washed with hexane/ethyl 20 acetate = 10/2. The washings and the organic layer freed from the crystals were combined and the solvent was distilled off. The residue was used in the subsequent step.

 1 H-NMR (CDC13) δ

25 1.25(t, J=7.1Hz, 3H), 1.36(t, J=7.1Hz, 3H), 2.16-2.28(m, 2H), 2.59-2.67(m, 2H), 3.89(s, 3H), 4.00(t, J=6.9Hz, 1H), 4.19(q, J=7.1Hz, 2H), 4.32(q, J=7.1Hz, 2H), 6.80-6.84(m, 2H), 7.07-7.12(m, 2H).

Step J

The product described above (403 g) was dissolved in 1,4-dioxane (675 ml), followed by adding thereto a 3N aqueous hydrochloric acid solution (1100 ml), and the resulting mixture was heated under reflux The reaction solution was cooled to room for 23 hours. temperature and allowed to stand. The organic layer thus separated and an extract solution obtained by 10 extracting the aqueous layer with ethyl acetate (500 ml) were collected, and the solvent was distilled off under reduced pressure. The residue was adjusted to pH 9 with a 2N aqueous sodium hydroxide solution and the solid precipitated was collected by filtration and 15 washed with water. After a 3N aqueous hydrochloric acid solution was added to the recovered solid to adjust the pH to 2, the precipitate was collected by filtration, washed with water and then dried to obtain 5-(4-methoxyphenyl)-2-oxopentanoic acid (144.8 g) as a 20 brown solid.

 1 H-NMR (CDCl₃) δ

^{1.96(}m,2H), 2.62(t,J=7.4Hz,2H), 2.93(t,J=7.2Hz,2H),

^{3.79(}s,3H), 6.82-6.86(m,2H), 7.05-7.12(m,2H),

^{8.02(}brs, 1H).

Reference Example 3: 2-Hydroxy-5-(4-methoxy-phenyl)pentanoic acid

Sodium hydroxide (24.0 g) and water (450 ml) were added to 5-(4-methoxyphenyl)-2-oxopentanoic acid 5 (66.6 g) (the compound of Reference Example 2), and the resulting mixture was ice-cooled. When to this slurry was added sodium tetrahydroborate (3.99 g) in portions, the reaction mixture once became clear. After the reaction mixture was stirred for 2 hours, a 3N aqueous 10 hydrochloric acid solution (300 ml) was added thereto, followed by extraction with ethyl acetate (300 ml \times twice). The organic layer was washed with water (100 ml x three times) and dried over anhydrous sodium The solvent was distilled off under reduced 15 pressure to obtain 2-hydroxy-5-(4methoxyphenyl)pentanoic acid (63.4 g) as a crude product.

¹ H-NMR (CDCl₃) δ : 1.67-1.80(m,3H), 1.83-1.90(m,1H), 2.62(m,2H), 3.79(s,3H), 4.28 (m,1H), 6.82(m,2H), 7.10(m,2H).

20

87

Reference Example 4

(2R)-2-Hydroxy-5-(4-methoxyphenyl)pentanoic

The compound of Reference Example 3 (2hydroxy-5-(4-methoxyphenyl)pentanoic acid) (1.0 g) was dissolved in acetone (10 ml), followed by adding thereto (+)-tolylethylamine (0.6 g), and the resulting mixture was heated under reflux to dissolve completely. Crystals were precipitated at room temperature and 10 collected by filtration as crude crystals. The crude crystals obtained were resuspended in acetone (10 ml) and the resulting suspension was refluxed and then slowly cooled. The crystals thus obtained were collected by filtration to obtain (+)-tolylethylamine 15 salt (0.59 g, 98%e.e.) of (2R)-2-hydroxy-5-(4methoxyphenyl) pentanoic acid. A 1N aqueous hydrochloric acid solution (20 ml) was added to the white crystals obtained and the resulting mixture was stirred at room temperature. The precipitate was 20 collected by filtration and dried to obtain (2R)-2hydroxy-5-(4-methoxyphenyl)pentanoic acid (0.36 g) having an optical purity of 98%e.e., as a white solid. The optical purity analysis conditions are as follows. [Optical purity analysis conditions: column = OJ-H

(Chiralcel, DAICEL Chemical Industries Ltd.); detecting wavelength (UV) = 276 nm; flow rate: 1.0 ml/min; mobile phase = n-hexane/ethanol /TFA (90/10/0.2)] 1 H-NMR (CDCl₃) δ : 1.66-1.92(m,4H), 2.61(m,1H), 3.78(s,3H), 4.26(m,1H), 6.80-6.85(m,2H), 7.03-7.12(m,2H).

Reference Example 5: 4-Nitrobenzyl (2R)-2-hydroxy-5- (4-methoxyphenyl)pentanoate

The compound of Reference Example 4 (4.21 g, 10 98%e.e.) was dissolved in DMF (40 ml), and pnitrobenzyl bromide (4.06 g) and triethylamine (3.2 ml) were added thereto under ice-cooling. The resulting mixture was stirred for 5 minutes, warmed up to room temperature and then stirred for 2 hours. 15 mixture was poured into a saturated aqueous ammonium chloride solution and extracted with ethyl acetate, and the extract solution was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. The drying agent was 20 removed, followed by concentration under reduced pressure, and the residue was purified by a silica gel column chromatography (hexane/ethyl acetate = 2/1) to obtain 4-nitrobenzyl (2R)-2-hydroxy-5-(4methoxyphenyl)pentanoate (5.43 g, 98%e.e.). The
 optical purity analysis conditions are as follows.
 [Optical purity analysis conditions: column = AD-RH
 (Chiralcel, DAICEL Chemical Industries Ltd.); detecting
 wavelength (UV) = 254 nm; flow rate: 1.0 ml/min; mobile
 phase = acetonitrile/water (50/50)]
 ¹H-NMR (CDCl₃) δ: 1.60-1.90 (m, 4H), 2.56 (m, 2H),
 2.68 (d, J=5.8Hz, 1H), 3.79 (s, 3H), 4.29 (m, 1H),
 5.25 (d, J=13.2Hz, 1H), 5.30 (d, J=13.2Hz, 1H), 6.79 10 6.83 (m, 2H), 7.04-7.09 (m, 2H), 7.47 (d, J=8.8Hz, 2H), 8.19-

Reference Example 6: Ethyl 3-bromo-4-mercaptobenzoate

Step L

8.24 (m, 2H).

3-Bromo-4-fluorobenzonitrile (100 g) was

15 dissolved in dimethylformamide (DMF) (500 ml), and
sodium sulfide nonahydrate (132 g) was added thereto at
0°C and then stirred overnight at room temperature.

The reaction mixture was poured to ice water (1 L) and
the insoluble material was filtered off. The filtrate

20 was added to a 1N aqueous hydrochloric acid solution

(700 ml) under ice-cooling and the precipitate was collected by filtration. The crystals thus obtained were washed with hexane/diisopropyl ether and water and then dried to obtain 3-bromo-4-mercaptobenzonitrile (95.0 g) as a light-yellow solid. $^{1}\text{H-NMR} \text{ (400M, DMSO-d6) }\delta$ 7.72(s,2H), 8.14(s,1H).

Step M

3-Bromo-4-mercaptobenzonitrile (10 g) was 10 dissolved in toluene (50 ml) and chloroform (80 ml), followed by adding thereto ethanol (3.0 ml), and the resulting mixture was cooled to -10°C. Hydrochloric acid gas was bubbled into the mixture through a bubbler for 10 minutes and the resulting mixture was stirred at 15 the same temperature for 30 minutes. The reaction mixture was allowed to stand in a refrigerator for 60 hours and then the completion of the reaction was confirmed by HPLC(ODS-A212). Dry nitrogen was bubbled into the reaction solution through a bubbler for 20 20 minutes and the hydrochloric acid gas was distilled The precipitate was collected by filtration, washed with toluene/chloroform and then dried to obtain ethyl 3-bromo-4-mercaptobenzene-carboximidate (13.6 g) as a light-yellow solid. 1 H-NMR (400M, DMSO-d6) δ

25 1 H-NMR (400M, DMSO-d6) δ 1.47(t,J=7.0Hz,3H), 4.59(q,J=7.0Hz,2H), 7.83-7.90(m,2H), 7.92-7.88(m,2H), 8.32(s,2H).

Step N

Ethyl 3-bromo-4-mercaptobenzenecarboximidate (3.00 g) was dissolved in ethanol (100 ml), and water (10 ml) and then concentrated sulfuric acid (10 ml)

- were added dropwise thereto at 0°C and stirred overnight at room temperature. Zinc (1 g) was added to the reaction system and the resulting mixture was stirred at room temperature for 2 hours to induce the production of a monomer. After the zinc powder was
- removed by filtration through Celite, the ethanol was distilled off under reduced pressure, followed by extraction with ethyl acetate, and the organic layer was washed with water (x4). The organic layer was dried over anhydrous sodium sulfate and then
- 15 concentrated to obtain ethyl 3-bromo-4-mercaptobenzoate (2.58 g) as a light-yellow solid.

 1 H-NMR (400M, CDCl₃) δ

- 1.39(t, J=7.2Hz, 3H), 4.20(s, 1H), 4.36(q, J=7.1Hz, 2H),
- 7.38 (d, J=8.2Hz, 1H), 7.82 (dd, J=8.2, 1.8Hz, 1H),
- 20 8.18 (d, J=1.8Hz, 1H).

Reference Example 7: {(2S)-6-(Ethoxycarbonyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4-yl}acetic acid

HO
$$\stackrel{\dot{=}}{C}O_2pNB$$
 OMe Tf_2O , NEt_3 $\stackrel{\dot{=}}{C}O_2pNB$ OMe OMe

$$EtO_2C$$
 Br
 EtO_2C
 Br
 CO_2pNB
 OMe
 $99\%e.e.$

The 4-nitrobenzyl (2R)-2-hydroxy-5-(4-

- 5 methoxyphenyl)pentanoate (5.43 g) described in Reference Example 5 was dissolved in acetonitrile (20 ml), followed by adding thereto trifluoroacetic anhydride (5.1 ml) and then triethylamine (4.2 ml) at -30 to -20°C, and the resulting mixture was allowed to
- 10 warm to room temperature spontaneously. After 30 minutes, the reaction mixture was poured into a saturated aqueous ammonium chloride solution and extracted with ethyl acetate, and the organic layer was washed with a saturated aqueous sodium
- hydrogencarbonate solution and a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. After the drying agent was removed by filtration, the solvent was distilled off under reduced

pressure and the residue was dissolved in acetonitrile (20 ml). The compound described in Reference Example 6 (ethyl 3-bromo-4-mercaptobenzoate (4.14 g, 15.7 mmol)) and then pyridine (1.28 ml, 15.7 mmol) were added

- thereto under ice-cooling. After 15 minutes, the resulting mixture was warmed up to room temperature. After 1 hour, the reaction mixture was poured into a saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic layer was
- washed with a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The drying agent was removed by filtration and the solvent was distilled off under reduced pressure. The residue was purified by a silica gel column
- chromatography (hexane/ethyl acetate = 4/1) to obtain ethyl 3-bromo-4-[((1S)-4-(4-methoxyphenyl)-1-{[(4-nitrobenzyl)oxy]carbonyl}-butyl)thio]benzoate (6.89 g) having an optical purity of 99%e.e. The optical purity analysis conditions are as follows. [Optical purity
- 20 analysis conditions: column = OJ-R (Chiralcel, DAICEL
 Chemical Industries Ltd.); detecting wavelength (UV) =
 254 nm; flow rate: 1.0 ml/min; mobile phase =
 acetonitrile/water (68/32)]

 1 H-NMR (CDCl₃) δ

25 1.39(t, J=7.1Hz, 3H), 1.65-1.87(m, 2H), 1.93(m, 1H), 2.05(m, 1H), 2.61(m, 1H), 3.79(s, 3H), 3.95(t, J=6.9Hz, 1H), 4.37(q, J=7.1Hz, 2H), 5.17(d, J=2.2Hz, 2H), 6.79-6.83(m, 2H), 7.04-7.09(m, 2H), 7.30-7.38(m, 3H), 7.78 (dd, J=8.3, 1.8Hz, 1H), 8.10-8.18 (m, 3H).

Reference Example 8

 $(2S)-2-\{[2-Bromo-4-$

(ethoxycarbonyl)phenyl]thio}-5-(4-

5 methoxyphenyl)pentanoic acid

Zinc (3.73 g) and ammonium chloride (3.69 g) were added to water (34.5 ml), and a solution of the compound of Reference Example 7 (6.89 g, 99%e.e.) in THF (30 ml) was added dropwise thereto under ice-10 cooling. After completion of the dropwise addition, the resulting mixture was warmed up to room temperature and stirred for 6 hours. Ethyl acetate and water were added to the reaction mixture and the resulting mixture was filtered through Celite. The organic layer was 15 washed with a 1N aqueous hydrochloric acid solution and a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. The drying agent was removed by filtration and the solvent was distilled off under reduced pressure. The thus obtained (2S)-2-{[2-20 bromo-4-(ethoxycarbonyl)phenyl]thio}-5-(4methoxyphenyl)pentanoic acid (96%e.e.) was used in a subsequent step. The optical purity analysis conditions are as follows. [Optical purity analysis conditions: column = AD-H (Chiralcel, DAICEL Chemical

Industries Ltd.); detecting wavelength (UV) = 254 nm;
flow rate: 1.0 ml/min; mobile phase = nhexane/isopropyl alcohol/TFA (90/10/0.1)]

1H-NMR (CDCl₃) δ: 1.38(t, J=7.1Hz, 3H), 1.75-1.96(m, 3H),
2.03(m, 1H), 2.62(t, J=7.3Hz, 2H), 3.78(s, 3H),
3.85(t, J=7.1Hz, 1H), 4.37(q, J=7.1Hz, 2H), 6.796.83(m, 2H), 7.08-7.10(m, 2H), 7.41(d, J=8.3Hz, 1H),
7.90(dd, J=8.3, 1.8Hz, 1H), 8.18(d, J=1.8Hz, 1H).

Reference Example 9

Ethyl 3-bromo-4-({(1S)-4-(4-methoxyphenyl)-1
[(tbutoxycarbonylmethylamino)carbonyl]butyl}thio)benzoate

g) and dicyclohexylcarbodiimide (DCC) (2.5 g) were

added to a solution of (2S)-2-{[2-bromo-4(ethoxycarbonyl)phenyl]thio}-5-(4methoxyphenyl)pentanoic acid (the compound of Reference
Example 8) (96%e.e.) in dichloromethane (56.4 ml) at 5°C, and N-methylmorpholine (1.26 ml) was added

dropwise thereto. After stirring at the same
temperature for 1.5 hours, water was added thereto and
the resulting mixture was filtered through Celite. The
filtrate was extracted with chloroform and the extract

solution was washed with a saturated aqueous ammonium chloride solution and a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The drying agent was removed by filtration

- and the solvent was distilled off under reduced pressure. The residue was purified by a silica gel column chromatography (hexane/ethyl acetate = 3/1) to obtain ethyl 3-bromo-4-({(1S)-4-(4-methoxyphenyl)-1-[(tert-
- butoxycarbonylmethylamino)carbonyl]butyl}thio)benzoate
 (4.83 g, 98%e.e.). The optical purity analysis
 conditions are as follows. [Optical purity analysis
 conditions: column = AD-H (Chiralcel, DAICEL Chemical
 Industries Ltd.); detecting wavelength (UV) = 254 nm;
- flow rate: 1.0 ml/min; mobile phase = nhexane/isopropyl alcohol/TFA (90/10/0.1)]

 H-NMR (CDCl₃) δ: 1.38(t, J=7.1Hz, 3H), 1.42(s, 9H), 1.791.98(m, 3H), 2.09(m, 1H), 2.62(t, J=7.3Hz, 2H),
 3.77(dd, J=18.2, 4.9Hz, 1H), 3.78(s, 3H),
- 20 3.85(t, J=6.9Hz, 1H), 3.94(dd, J=18.2, 5.6Hz, 1H), 4.36(q, J=7.1Hz, 2H), 6.79-6.83(m, 2H), 6.95(m, 1H), 7.08-7.12(m, 2H), 7.22(d, J=8.4Hz, 1H), 7.88(dd, J=8.3, 1.8Hz, 1H), 8.18(d, J=1.8Hz, 1H).

Reference Example 10

Ethyl (2S)-4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

5 The compound of Reference Example 9 (4.83 g, 98%e.e.) was dissolved in toluene (161 ml), and 1,1'bis(diphenylphosphino)ferrocene (DPPF, 889 mg) and cesium carbonate (2.61 g) were added thereto. the resulting mixture was treated with nitrogen to 10 replace the air, tris(dibenzylideneacetone)palladium(0) (Pd₂(dba)₃, 366 mg) was added thereto, and the resulting mixture was stirred at 120°C. After 5 hours, the reaction mixture was cooled to room temperature and filtered through Celite. The filtrate was poured into 15 a saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous magnesium sulfate. The drying agent was removed by filtration 20 and the residue was purified by a silica gel column chromatography (hexane/ethyl acetate = 5/1) to obtain ethyl (2S)-4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-tert-butoxy-2-oxoethyl)]methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate (2.37 g, 95%e.e.).

optical purity analysis conditions are as follows.

[Optical purity analysis conditions: column = OD-RH

(Chiralcel, DAICEL Chemical Industries Ltd.); detecting wavelength (UV) = 254 nm; flow rate: 1.0 ml/min; mobile phase = acetonitrile/water (60/40)]

phase - aceconicitie/water (60/40)]

¹H-NMR (CDCl₃) δ : 1.38(t,J=7.1Hz,3H), 1.49(s,9H),

- 1.60(m, 1H), 1.71(m, 1H), 1.75-1.98(m, 2H), 2.54(m, 2H),
- 3.48(m, 1H), 3.76(s, 3H), 4.32-4.41(m, 3H), 4.82(m, 1H),
- 6.76-6.80 (m, 2H), 7.02-7.06 (m, 2H), 7.40 (m, 1H),
- 10 7.50(m, 1H), 7.70(m, 1H).

Reference Example 11

henyl)propyl]-3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4yl}acetic acid

Water (6.25 ml) was added to a solution of the compound of Reference Example 10 (2.57 g, 95%e.e.) in TFA (25 ml) under ice-cooling. After 5 minutes, the resulting mixture was warmed up to room temperature and stirred for 1.5 hours. Toluene (60 ml) was added to the reaction solution and distilled off under reduced pressure. Toluene and water were added to the residue to effect separation into two layers, and the organic

layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The drying agent was removed by filtration and the solvent was distilled off under reduced

5 pressure to obtain {(2S)-6-(ethoxycarbonyl)-2-[3-(4methoxyphenyl)propyl]-3-oxo-2,3-dihydro-4H-1,4benzothiazin-4-yl}acetic acid (2.06 g).

¹ H-NMR (CDCl₃) $\delta:1.39(t, J=7.2Hz, 3H)$, 1.60(m, 1H),

1.70(m, 1H), 1.75-1.93(m, 2H), 2.52(m, 2H), 3.50(m, 1H),

10 3.77(s,3H), 4.38(q,J=7.2Hz,2H), 4.59(m,1H), 4.92(m,1H), 6.76-6.80(m,2H), 7.00-7.04(m,2H), 7.41(d,J=8.1Hz,1H), 7.55(m,1H), 7.71(m,1H).

Reference Example 12

(+) -Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-

15 [3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

Using 4-nitrobenzyl (2S)-2-hydroxy-5-(4-methoxyphenyl)pentanoate, (+)-ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-

20 methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate having an optical purity of 99.9%e.e. was synthesized by the same process as

described in Example 7. The optical purity was determined by the method described in Example 7. $[\alpha]_D^{20}$ =+86.1°(c:1.0,CHCl₃)

¹H-NMR (CDCl₃) δ :1.40(t,J=7.2Hz,3H), 1.59(m,1H),

- 5 1.67(m,1H), 1.77-1.93(m,2H), 2.54(m,2H), 3.47(m,1H),
 - 3.77(s, 3H), 4.38(q, J=7.2Hz, 2H), 4.51(d, J=16.0Hz, 1H),
 - 4.68(d, J=16.0Hz, 1H), 6.80(m, 2H), 7.04(m, 2H),
 - 7.41(d, J=8.0Hz, 1H), 7.52(br, 1H), 7.73(m, 1H),
 - 7.98(br,1H), 9.16(br,1H).

10 Reference Example 13

(+)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylic acid

Using the compound of Reference Example 12,

- 15 (+)-4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxy-phenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid (99%e.e.) was obtained by a process similar to the process described in Example 14. The optical purity was determined by the method described
- 20 in Example 14.

 1 H-NMR (DMSO-d6) δ

1.43(m,1H), 1.66(m,3H), 2.45(m,2H), 3.69(s,3H),

4.38(d, J=16.8Hz, 1H), 4.54(d, J=16.8Hz, 1H), 6.80(m, 2H),

7.05(m, 2H), 7.51(m, 1H), 7.58-7.60(m, 2H),

9.02+9.43(s,1H), 10.36+10.81(s,1H), 13.20(brs,1H).

Reference Example 14

5

Ethyl (2R)-4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

The compound obtained in step B in Example 1 (62 mg) was dissolved in methylene chloride (2.5 ml), 10 followed by adding (-)-(8,8-dichlorocamphorylsulfonyl) oxaziridine (37 mg), and the resulting mixture was stirred at room temperature for 10 days. The reaction mixture was poured into a saturated aqueous sodium chloride solution and extracted with ethyl acetate. 15 The organic layer was collected, dried over anhydrous magnesium sulfate and then concentrated with an evaporator. The residue was purified by a silica gel flash chromatography (hexane/ethyl acetate = 4/1) to obtain ethyl (2R)-4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-tert-butoxy-2-oxoethyl)]20 methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate (15 mg, 85%e.e.) as a light-yellow oil. The optical purity was determined by the method described in Reference Example 10.

Reference Example 15

5

(+)-Ethyl 4-[2-(hydroxyamino)-2-oxoethyl]-2[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4benzothiazine-6-carboxylate

Using the compound of Example 1, the compound of Reference Example 12 (17% and 81%e.e.) was obtained by the same process as described in Reference Example 14. The optical purity was determined by the method described in Example 7.

Reference Example 16

(-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid

The compound of Example 14 (25% and 90%e.e.) was obtained by the same process as described in

Reference Example 14, except for using the compound of Example 8, (+) - (8,8-

dichlorocamphorylsulfonyl) oxaziridine and ethyl acetate as solvent. The optical purity was determined by the method described in Example 14.

Reference Example 17

Ethyl (2E,4E)-5-(4-methoxyphenyl)penta-2,4-dienoate

After NaH (2.7 g, 60%) was washed with 10 hexane, tetrahydrofuran (100 ml) was added thereto. The reaction mixture was cooled to 0°C and then triethyl phosphonoacetate (14.7 ml) was added dropwise thereto. After 30 minutes, the resulting mixture was warmed up to room temperature and stirred for another 15 30 minutes. The reaction mixture was cooled to 0°C again and a solution of the compound obtained in Reference Example 1 (10 g) in tetrahydrofuran (50 ml) was added dropwise thereto. After 30 minutes, a saturated aqueous ammonium chloride solution was added 20 thereto, followed by extraction with ethyl acetate. The organic layer was washed with water, dried, and then concentrated, and the residue was crystallized from ethanol-hexane. The crystals were filtered and

then dried to obtain ethyl (2E,4E)-5-(4-methoxyphenyl)penta-2,4-dienoate (11.5 g).

 1 H-NMR (CDCl₃) δ

1.31(t, J=7.1Hz, 3H), 3.83(s, 3H), 4.22(q, J=7.1Hz,

5 2H), 5.94(d, J=15.2Hz, 1H), 6.75(dd, J=15.2, 10.7Hz, 1H), 6.82-6.93(m, 3H), 7.38-7.48(m, 3H).

Reference Example 18

5-(4-Methoxyphenyl)pentanoic acid

The compound obtained in Reference Example 17 10 (11.5 g), tetrahydrofuran (150 ml) and 10%Pd-C (1.5 g) were mixed and then stirred under a hydrogen atmosphere. After 3 hours, the reaction mixture was filtered through Celite and the filtrate was concentrated. Ethanol (150 ml) and a 1N aqueous 15 potassium hydroxide solution (50 ml) were added to the residue and the resulting mixture was stirred with heating at 70°C for 30 minutes. Water was added thereto and the ethanol was concentrated. The thus obtained solution was acidified with a 1N aqueous 20 hydrochloric acid solution and the precipitate formed was filtered and then dried to obtain 5-(4methoxyphenyl) pentanoic acid (10.2 g).

 1 H-NMR (CDCl₃) δ

1.59-1.73 (m, 4H), 2.35-2.41 (m, 2H), 2.55-2.63 (m, 2H), 3.79 (s, 3H), 6.83 (m, 2H), 7.09 (m, 2H).

Reference Example 19

$$(4R) - 4 - Benzyl - 3 - [5 - (4 -$$

methoxyphenyl)pentanoyl]-1,3-oxazolidin-2-one

5-(4-Methoxyphenyl)pentanoic acid (the compound obtained in Reference Example 18) (6.2 g) was dissolved in dichloromethane (60 ml), and oxalyl chloride (3.1 ml) and DMF (a drop) were added thereto at room temperature. After 1 hour, the reaction mixture was concentrated, dried under reduced pressure and then dissolved in tetrahydrofuran (20 ml) to obtain a solution named A.

(R)-4-Benzyl-2-oxazolidinone (6.4 g) was

dissolved in tetrahydrofuran (80 ml) and the resulting solution was cooled to -78°C, followed by adding dropwise thereto n-butyllithium (1.58M, 23 ml). The resulting mixture was stirred for 1 hour and then the solution A prepared as above was added dropwise

thereto. After 30 minutes, the resulting mixture was warmed up to 0°C and stirred for another 30 minutes. After the reaction was quenched with a saturated aqueous ammonium chloride solution, the reaction

mixture was extracted with ethyl acetate. The organic layer was washed with water, dried and then concentrated, and the residue was purified by a silica gel chromatography (300 g, ethyl acetate: hexane = 1:

- 5 3) to obtain (4R)-4-benzyl-3-[5-(4-methoxy-phenyl)pentanoyl]-1,3-oxazolidin-2-one (9.0 g). 1 H-NMR (CDCl₃) δ
 - $1.63-1.79 \, (m, 4H)$, $2.57-2.65 \, (m, 2H)$, $2.75 \, (dd, J=13.3)$
 - 9.6Hz, 1H), 2.88-3.04(m, 2H), 3.29(dd, J=13.3, 3.3Hz,
- 10 1H), 3.79(s, 3H), 4.13-4.22(m, 2H), 4.66(m, 1H), 6.83(m, 2H), 7.11(m, 2H), 7.20(m, 2H), 7.25-7.36(m, 3H).

Reference Example 20

(4R)-3-[5-(4-Methoxyphenyl)pentanoyl]-4-

15 phenyl-1, 3-oxazolidin-2-one

(4R)-3-[5-(4-Methoxyphenyl)pentanoyl]-4phenyl-1,3-oxazolidin-2-one (2.6 g) was obtained from
5-(4-methoxyphenyl)pentanoic acid (2 g) and (R)-4phenyl-2-oxazolidinone (1.6 g) by a process similar to
the process described in Reference Example 19.

 1 H-NMR (CDCl₃) δ

20

1.55-1.70(m, 4H), 2.54(t, J=6.8Hz, 2H), 2.95(t, J=7.5Hz, 2H), 3.78(s, 3H), 4.27(dd, J=8.9, 3.7Hz, 1H),

4.68(t, J=8.9Hz, 1H), 5.41(dd, 1H, J=8.9, 3.7Hz, 1H), 6.80(m, 2H), 7.05(m, 2H), 7.26(m, 5H).

Reference Example 21

(4R)-4-Benzyl-3-[(2R)-2-bromo-5-(4-methoxy-

5 phenyl)pentanoyl]-1,3-oxazolidin-2-one

(4R) - 4 - Benzyl - 3 - [5 - (4 -

methoxyphenyl)pentanoyl]-1,3-oxazolidin-2-one (Reference Example 19) (1.4 g) was dissolved in dichloromethane (25 ml), and dibutylborane triflate 10 (1M, 8.3 ml) and diisopropylethylamine (1.6 ml) were added thereto under ice-cooling. After 30 minutes, the reaction mixture was cooled to -78°C and added dropwise to a solution of N-bromosuccinimide (NBS) (1.1 g) in dichloromethane (25 ml) which had been cooled to -78°C, via a cannula. After 2 hours, an aqueous sodium 15 sulfite solution was added thereto and the resulting mixture was stirred at room temperature for 30 minutes. Chloroform was added to the reaction mixture to effect separation and extraction. The organic layer was 20 dried, concentrated, and then the residue was purified by a silica gel chromatography (150 g, ethyl acetate: hexane = 1 : 4) to obtain (4R)-4-benzyl-3-[(2R)-2bromo-5-(4-methoxyphenyl)pentanoyl]-1,3-oxazolidin-2one $(0.9 \, q)$.

 1 H-NMR (CDCl₃) δ

1.62-1.89(m, 2H), 2.04-2.22(m, 2H), 2.56-2.70(m, 2H),

2.79(dd, J=13.5, 9.5Hz, 1H), 3.29(dd, J=13.5, 3.3Hz,

1H), 3.78(s, 3H), 4.20-4.23(m, 2H), 4.68(m, 1H), 5.63(t, J=6.8Hz, 1H), 6.83(m, 2H), 7.10(m, 2H), 7.22-7.38(m, 5H).

Reference Example 22

Ethyl $4-\{[(1S)-1-\{[(4R)-4-benzyl-2-oxo-1,3-benzyl-2-oxo$

10 oxazolidin-3-yl]carbonyl}-4-(4methoxyphenyl)butyl]thio}-3-nitrobenzoate

Diethyl 4,4'-dithiobis(3-nitrobenzoate) (0.64 g) was dissolved in tetrahydrofuran (10 ml), and dithiothreitol (0.24 g) and N-methylmorpholine (0.21 15 ml) were added thereto at room temperature. minutes, the reaction mixture was cooled to 0°C and a solution of (4R)-4-benzyl-3-[(2R)-2-bromo-5-(4methoxyphenyl)pentanoyl]-1,3-oxazolidin-2-one (Reference Example 21) (0.7 g) in tetrahydrofuran (10 20 ml) was slowly added dropwise thereto. After 2 hours, the reaction was quenched by the addition of a 1N aqueous hydrochloric acid solution (20 ml) and the reaction mixture was extracted with ethyl acetate.

The

organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution, water and a saturated aqueous sodium chloride solution, dried, concentrated, and then the residue was purified by a silica gel chromatography (150 g, ethyl acetate: hexane = 1 : 4) to obtain ethyl 4-{[(1S)-1-{[(4R)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl}-4-(4-methoxyphenyl)butyl]thio}-3-nitrobenzoate (0.7 g).

1 H-NMR (CDCl₃) δ

10 1.42(t, J=7.1Hz, 3H), 1.78-2.00(m, 3H), 2.19(m, 1H), 2.64(m, 1H), 2.74(dd, J=13.3, 9.7Hz, 1H), 3.30(dd, J=13.3, 3.3Hz, 1H), 3.79(s, 3H), 4.19-4.30(m, 2H), 4.42(q, J=7.1Hz, 2H), 4.70(m, 1H), 5.53(t, J=7.3Hz, 1H), 6.82(m, 2H), 7.10(m, 2H), 7.19(m, 2H), 7.25-7.35(m, 3H), 7.48(d, J=8.5Hz, 1H), 8.11(dd, J=8.5, 1.9Hz, 1H), 8.73(d, J=1.9Hz, 1H).

Reference Example 23

Ethyl (2S)-2-[3-(4-methoxyphenyl)propyl]-3oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

$$\mathsf{EtO_2C} \xrightarrow{\mathsf{O}_2\mathsf{N}} \mathsf{O} \mathsf{N} \xrightarrow{\mathsf{O}} \mathsf{OMe} \xrightarrow{\mathsf{EtO}_2\mathsf{C}} \mathsf{EtO}_2\mathsf{C} \xrightarrow{\mathsf{N}} \mathsf{O} \mathsf{OMe}$$

Ethyl 4-{[(1S)-1-{[(4R)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl}-4-(4methoxyphenyl)butyl]thio}-3-nitrobenzoate (Reference
Example 22) (0.62 g, 0.11 mmol), ethanol (10 ml),

acetic acid (5 ml) and 10%Pd-C (1.5 g) were mixed, and the mixture was stirred for 3 hours at room temperature under a hydrogen atmosphere. The reaction mixture was filtered through Celite and the filtrate was

5 concentrated. The residue was purified by a silica gel chromatography (40 g, ethyl acetate: hexane = 1:3) to obtain ethyl (2S)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (0.2 g, 98.3%e.e.), i.e., the compound described in Example 7.

The optical purity analysis conditions are as follows:

Column: AD-H (Chiralcel, DAICEL Chemical Industries Ltd.)

Detecting wavelength (UV): 254 nm Flow rate: 1.0 ml/min

Mobile phase = n-hexane/isopropyl alcohol /TFA = 80/20/0.1

 1 H-NMR (CDCl₃) δ

20 1.40(t, J=7.1Hz, 3H), 1.60-1.75(m, 2H), 1.80-1.98(m, 2H), 2.56(m, 2H), 3.44(m, 1H), 3.77(s, 3H), 4.38 (q, J=7.1Hz, 2H), 6.78-6.82(m, 2H), 7.03-7.08(m, 2H), 7.35(d, J=8.1Hz, 1H), 7.55(d, J=1.5Hz, 1H), 7.67(dd, J=8.1, 1.5Hz, 1H), 8.52(s, 1H).

__(4R)-3-[(2R)-2-Hydroxy-5-(4-methoxyphenyl)pentanoyl]-4-phenyl-1,3-oxazolidin-2-one

(4R) -3 - [5 - (4 - Methoxyphenyl) pentanoyl] -4 -

- 5 phenyl-1,3-oxazolidin-2-one (Reference Example 20) (1.0 g) was dissolved in tetrahydrofuran (10 ml) and the resulting solution was cooled to -78°C, followed by adding thereto sodium hexamethyldisilazide (1M, 3.4 After 30 minutes, a solution of Davis reagent (0.9 g) in tetrahydrofuran (5 ml) was added dropwise 10 thereto. After stirring for 1 hour, a solution of camphorsulfonic acid (1.5 g) in tetrahydrofuran (5 ml) was added thereto and stirred for 30 minutes. Ethyl acetate and water were added to the reaction mixture to 15 effect separation and extraction. The organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution, water and a saturated aqueous sodium chloride solution, dried, concentrated, and then the residue was purified by a silica gel 20 chromatography (100 g, ethyl acetate : hexane = 1 : 3) to obtain (4R)-3-[(2R)-2-hydroxy-5-(4-
- to obtain (4R)-3-[(2R)-2-hydroxy-5-(4-methoxyphenyl)pentanoyl]-4-phenyl-1,3-oxazolidin-2-one (0.75 g).

 1 H-NMR (CDCl₃) δ

1.59 (m, 1H), 1.75-1.92 (m, 3H), 2.60 (m, 2H), 3.78 (s, 3H), 4.35 (dd, J=8.7, 3.2Hz, 1H), 4.75 (t, J=8.7Hz, 1H), 5.01 (dd, J=8.1, 3.2Hz, 1H), 5.38 (dd, J=8.7, 3.2Hz, 1H), 6.82 (m, 2H), 7.10 (m, 2H), 7.26-7.42 (m, 5H).

5 Reference Example 25

 $\underline{\text{Methyl (2R)-2-hydroxy-5-(4-methoxy-phenyl)pentanoate}}$

(4R) -3 - [(2R) -2 - Hydroxy -5 - (4 - methoxy phenyl)pentanoyl]-4-phenyl-1,3-oxazolidin-2-one 10 (Reference Example 24) (0.23 g) was dissolved in methanol (3 ml), and sodium methoxide (a 1.2M methanol solution, 1 ml) was added thereto under ice-cooling. After 5 minutes, the reaction was quenched by adding a saturated aqueous ammonium chloride solution to the reaction mixture, and then the reaction mixture was 15 extracted with ethyl acetate. The organic layer was washed with water, dried, concentrated, and then the residue was purified by a silica gel chromatography (20 g, ethyl acetate : hexane = 1 : 3) to obtain methyl 20 (2R)-2-hydroxy-5-(4-methoxyphenyl)pentanoate (0.06 g, 98%e.e.).

The optical purity analysis conditions are as follows:

Column: OD-H (Chiralcel, DAICEL Chemical Industries Ltd.)

Detecting wavelength (UV): 276 nm

Flow rate: 1.0 ml/min

Mobile phase = n-hexane/isopropyl alcohol = 90/10

 1 H-NMR (CDCl₃) δ

1.60-1.87(m,4H), 2.55-2.62(m,2H), 2.73(br.,1H),

3.76(s,3H), 3.77(s,3H), 4.20(m,1H), 6.80-6.84(m,2H),

10 7.06-7.12(m,2H).

Reference Example 26

(2R)-2-Hydroxy-5-(4-methoxyphenyl)pentanoic acid

5-(4-Methoxyphenyl)-2-oxopentanoic acid (62.7 g) was dissolved in THF (1 L) and triethylamine (46.8 ml) was added thereto. A solution of (-)-DIP-Cl (100 g) in THF (600 ml) was added dropwise thereto while maintaining the temperature at -25°C to -35°C. The resulting mixture was warmed up to room temperature and stirred for 2 hours, and then water (500 ml) was added thereto at 20°C or lower. A 6N aqueous sodium hydroxide solution (120 ml) was added thereto and stirred for 15 minutes. Thereafter, diisopropyl ether (300 ml) was added thereto to effect separation into

two layers. The aqueous layer was washed twice with diisopropyl ether (300 ml) and then a 6N aqueous hydrochloric acid solution was added thereto, followed by extraction with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product. The crude product was dissolved in acetonitrile (640 ml), followed by adding 10 thereto (+)-tolylethylamine (39 g), and the resulting mixture was heated under reflux to dissolve the amine completely. Crystals were precipitated at room temperature and collected by filtration. A 1N aqueous hydrochloric acid solution was added to the crystals 15 obtained, followed by extraction with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and the residue was crystallized from 20 a mixed solvent of diisopropyl ether and hexane (1/1) to obtain (2R)-2-hydroxy-5-(4-methoxyphenyl)pentanoic acid (29.8 g, 98%e.e.).

The optical purity was determined by the method described in Reference Example 4.

25 ¹ H NMR (300MHz,CDCl₃) δ 1.70-1.89(m,4H), 2.60(brt,J=6.6Hz,2H), 3.79(s,3H), 4.27-4.29(m,1H), 6.80-6.85(m,2H), 7.08-7.11(m,2H). 115

Reference Example 27

Methyl (2R)-2-hydroxy-5-(4-

methoxyphenyl) pentanoate

The compound obtained in Reference Example 26 (134 g, 98%e.e.) was dissolved in methanol (1072 ml), followed by adding thereto concentrated sulfuric acid (13.4 ml), and the resulting mixture was stirred at 60°C for 1 hour. About one-half of the methanol was distilled off under reduced pressure and the residual 10 reaction solution was poured into water (1 L). After extraction with ethyl acetate (600 ml + 300 ml), the organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution and a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The solvent was distilled 15 off under reduced pressure to obtain methyl 2-hydroxy-5-(4-methoxyphenyl)pentanoate quantitatively (98%e.e.). The optical purity analysis conditions are as follows. [Optical purity analysis conditions: column = OD-H 20 (Chiralcel, DAICEL Chemical Industries Ltd.); detecting wavelength (UV) = 276 nm; flow rate: 1.0 ml/min; mobile phase = n-hexane/isopropyl alcohol (90/10)] 1 H-NMR (CDCl₃) δ 1.60-1.87(m,4H), 2.55-2.62(m,2H), 2.73(br.,1H),

3.76(s,3H), 3.77(s,3H), 4.20(m,1H), 6.80-6.84(m,2H), 7.06-7.12(m,2H).

Reference Example 28

(2S) -2-Hydroxy-5-(4-methoxyphenyl)pentanoic

5 acid

(2S)-2-Hydroxy-5-(4-methoxyphenyl)pentanoic
acid was obtained by the same process as described in
Reference Example 26, except for using (+)-DIP-Cl in
place of (-)-DIP-Cl, and (-)-tolylethylamine in place
of (+)-tolylethylamine. (The optical purity was
97%e.e.).

The optical purity was determined by the method described in Reference Example 4.

 1 H-NMR (CDCl₃) δ

15 1.66-1.92(m,4H), 2.61(m,1H), 3.78(s,3H), 4.26(m,1H), 6.80-6.85(m,2H), 7.03-7.12(m,2H).

Reference Example 29

Diethyl 4,4'-dithiobis(3-nitrobenzoate)

Step 0

To potassium carbonate (103 g) was added DMF (1 L), and a solution of 3-nitro-4-chlorobenzoic acid (125 g) in DMF (500 ml) was added thereto under ice5 cooling. Ethyl iodide (116 g) was added thereto and the resulting mixture was stirred at 60°C for 3 hours. The reaction solution was added to a 1N aqueous hydrochloric acid solution and the crystals precipitated were collected by filtration, washed with 10 a 1N aqueous hydrochloric acid solution and water and then dried under reduced pressure to obtain ethyl 4-chloro-3-nitrobenzoate quantitatively.

1 H-NMR (CDCl₃) &
1.42(t,J=7.1Hz,3H), 4.43(q,J=7.1Hz,2H),
7.65(d,J=8.4Hz,1H), 8.17(dd,J=8.4,2.0Hz,1H),

Step P

8.52(d, J=2.0 Hz, 1H).

Ethyl 4-chloro-3-nitrobenzoate (113 g) was dissolved in ethanol (1 L) and potassium thioacetate (58.9 g) was added thereto at room temperature. The resulting mixture was stirred at 60°C for 30 minutes and cooled to room temperature, and the crystals precipitated were collected by filtration. After the crystals were washed with ethanol and then water, acetonitrile (200 ml) was added thereto, and the resulting mixture was heated under reflux for 15 minutes. After cooling to room temperature, the

crystals were collected by filtration and dried to obtain diethyl 4,4'-dithiobis(3-nitrobenzoate) (57.1 g).

 1 H-NMR (400M,DMSO-d6) δ

5 1.32(t, J=6.8Hz, 6H), 4.35(q, J=7.2Hz, 4H), 8.01(m, 2H), 8.15(m, 2H), 8.94(s, 2H).

Reference Example 30

Ethyl 4-{[(1S)-1-(methoxycarbonyl)-4-(4methoxyphenyl)butyl]thio}-3-nitrobenzoate

- The methyl (2R)-2-hydroxy-5-(4-methoxy-phenyl)pentanoate (10 g, 98%e.e.) synthesized in Reference Example 27 was dissolved in acetonitrile (50 mL), followed by adding trifluoromethanesulfonic acid anhydride (9 ml) and then triethylamine (6.5 ml) under ice-cooling, and the resulting mixture was stirred at the same temperature for 1 hour. A saturated aqueous ammonium chloride solution was added thereto, followed by extraction with ethyl acetate. The organic layer was washed with a saturated aqueous sodium
- 20 hydrogencarbonate solution and a saturated aqueous sodium chloride solution and then dried over anhydrous

sodium sulfate. The solvent was distilled off under reduced pressure and the residue was dissolved in THF (50 ml) (a solution A).

The compound of Reference Example 29 (diethyl 4,4'-dithiobis(3-nitrobenzoate)) (12.1 g) was added to THF (60 ml), and dithiothreitol (4.8 g) and then Nmethylmorpholine (5.9 ml) were added thereto under a nitrogen atmosphere. The resulting mixture was stirred for 30 minutes to prepare a solution of ethyl 4-thio-3-10 nitrobenzoate. Although this ethyl 4-thio-3nitrobenzoate was isolatable, the solution was used as it was in the subsequent reaction. The solution was added dropwise to the above-mentioned THF solution A under ice-cooling and the resulting mixture was stirred 15 at the same temperature for 30 minutes. A 1N aqueous hydrochloric acid solution (110 ml) was added thereto under ice-cooling, followed by extraction with ethyl acetate (100 ml). The organic layer was washed with a saturated aqueous sodium hydrogen-carbonate solution 20 and a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain ethyl $4-\{[(1S)-1-(methoxycarbonyl)-4-(4-methoxy-1)\}$ phenyl)butyl]thio}-3-nitrobenzoate (96%e.e.). This 25 compound was used in a subsequent step without purification. The optical purity analysis conditions

Column: AD-H (Chiralcel, DAICEL Chemical

are as follows:

Industries Ltd.)

Detecting wavelength (UV): 254 nm

Flow rate: 1.0 ml/min

Mobile phase = n-hexane/isopropyl alcohol

5 / TFA = 95/5/0.1

¹H-NMR (CDCl₃) $\delta:1.41(t, J=7.1Hz, 3H)$, 1.70-1.98(m, 3H),

2.05(m, 1H), 2.62(m, 2H), 3.72(s, 3H), 3.78(s, 3H),

3.94(t, J=7.0Hz, 1H), 4.41(q, J=7.1Hz, 2H), 6.78-

6.84 (m, 2H), 7.06-7.09 (m, 2H), 7.62 (d, J=8.6Hz, 1H),

10 8.14 (dd, J=8.5, 1.9Hz, 1H), 8.82 (d, J=1.9Hz, 1H).

Reference Example 31

Ethyl (2S)-2-[3-(4-methoxyphenyl)propyl]-3oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

Acetic acid (50 ml) was added to reduced iron (8.2 g) and a solution of the compound obtained in Reference Example 30 in toluene (50 ml, the insoluble material was removed by Kiriyama filtration) was added thereto at 90°C. The resulting mixture was stirred at the same temperature for 5 hours, cooled to room

20 temperature and then filtered through Celite. The filtrate was poured into a 1N aqueous hydrochloric acid solution (200 ml). After extraction with ethyl acetate (100 ml), the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and the residue was recrystallized from a mixed solvent of diisopropyl ether (250 ml) and ethyl acetate (50 ml) to obtain ethyl (2S)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate (8.71 g, 98%e.e.). The optical purity was determined by the method described in Reference Example 23.

Reference Example 32

Ethyl (2S)-4-(2-tert-butoxy-2-oxoethyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

20 The above-mentioned product (21.7 g, 98% e.e.) was dissolved in DMF (450 ml) and cesium carbonate (18.33 g) was added thereto at 4°C. tert-

Butyl bromoacetate (21.95 g) was added thereto and stirred overnight. Cesium carbonate (9.17 g) was added thereto and the resulting mixture was stirred at room temperature for 2 hours. Then, the reaction solution was poured into a saturated aqueous ammonium chloride solution under ice-cooling. After extraction with a mixed solvent of ethyl acetate (500 ml) and toluene (200 ml), the organic layer was washed with a saturated aqueous ammonium chloride solution and a saturated 10 aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain ethyl (2S)-4-(2tert-butoxy-2-oxoethyl)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate 15 (97%e.e.) as a crude product. This crude product was used in a subsequent step without purification.

used in a subsequent step without purification. The optical purity was determined by the method described in Reference Example 10.

 1 H-NMR (CDCl₃) δ

20 1.38(t, J=7.1Hz, 3H), 1.49(s, 9H), 1.60(m, 1H), 1.71(m, 1H), 1.75-1.98(m, 2H), 2.54(m, 2H), 3.48(m, 1H), 3.76(s, 3H), 4.32-4.41(m, 3H), 4.82(m, 1H), 6.76-6.80(m, 2H), 7.02-7.06(m, 2H), 7.40(m, 1H), 7.50(m, 1H), 7.70(m, 1H).

Ethyl (2R)-2-hydroxy-5-(4-methoxy-

phenyl)pentanoate

5 Using (2R)-2-hydroxy-5-(4-methoxy-phenyl)pentanoic acid (80%e.e.), ethyl 2-hydroxy-5-(4-methoxyphenyl)pentanoate was quantitatively obtained (80%e.e.) by a process similar to the process described in Reference Example 27. The optical purity analysis conditions are as follows: Column: AD-H (Chiralcel, DAICEL Chemical Industries Ltd.)

Detecting wavelength (UV): 276 nm

Flow rate: 1.0 ml/min

Mobile phase = n-hexane/isopropyl alcohol =

15 90/10

 1 H-NMR (CDCl₃) δ

1.28(t, J=7.1Hz, 3H), 1.60-1.90(m, 4H), 2.50.-2.70(m, 2H),

2.76(m, 1H), 3.78(s, 3H), 4.15-4.23(m, 1H), 4.23(q, 1H)

J=7.1Hz, 2H), 6.78-6.84 (m, 2H), 7.06-7.12 (m, 2H).

Ethyl 4-{[(1S)-1-(ethoxycarbonyl)-4-(4methoxyphenyl)butyl]thio}-3-nitrobenzoate

Using the ethyl (2R)-2-hydroxy-5-(4-methoxyphenyl)pentanoate (80%e.e.) described in Reference
Example 33, ethyl 4-{[(1S)-1-(ethoxycarbonyl)-4-(4methoxyphenyl)butyl]thio}-3-nitrobenzoate (80%e.e.) was
obtained by a process similar to the process described
in Reference Example 30. The optical purity was

10 determined by the method described in Reference Example 30.

 1 H-NMR (CDCl₃) δ

- 1.22(t, J=7.1Hz, 3H), 1.42(t, J=7.1Hz, 3H), 1.70-
- 1.98(m, 3H), 2.05(m, 1H), 2.63(m, 2H), 3.79(s, 3H),
- 15 3.92 (t, J=7.0Hz, 1H), 4.09-4.26 (m, 2H),
 - 4.42(q, J=7.1Hz, 2H), 6.80-6.84(m, 2H), 7.06-7.10(m, 2H),
 - 7.64 (d, J=8.6Hz, 1H), 8.14 (dd, J=8.5, 1.9Hz, 1H),
 - 8.80(d, J=1.9Hz, 1H).

Ethyl (2S)-2-[3-(4-methoxyphenyl)propyl]-3oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate

Using ethyl 4-{[(1S)-1-(ethoxycarbonyl)-4-(4-5 methoxyphenyl)butyl]thio}-3-nitrobenzoate (80%e.e.), ethyl (2S)-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylate was quantitatively obtained (91%e.e.) by a process similar to the process described in Reference Example 31. The optical purity was determined by the method described in Reference Example 23.

1H-NMR (CDCl₃) 8
1.40(t,J=7.1Hz,3H), 1.60-1.75(m,2H), 1.80-1.98(m,2H), 2.56(m,2H), 3.44(m,1H),3.77(s,3H), 4.38 (q,J=7.1Hz,2H), 6.78-6.82(m,2H), 7.03-7.08(m,2H), 7.35(d,J=8.1Hz,1H),

Reference Example 36

8.52(s, 1H).

(2S) -2-Hydroxy-5-(4-methoxyphenyl)pentanoic

20 acid

7.55(d, J=1.5Hz, 1H), 7.67(dd, J=8.1, 1.5Hz, 1H),

Using (S)-tolylethylamine, (2S)-2-hydroxy-5-(4-methoxyphenyl)pentanoic acid having an optical purity of 97%e.e. was obtained from the compound of Reference Example 3 as starting material by a process similar to the process described in Reference Example 4. The optical purity was determined by the method described in Reference Example 4.

 1 H-NMR (CDCl₃) δ

1.66-1.92(m,4H), 2.61(m,1H), 3.78(s,3H), 4.26(m,1H),

10 6.80-6.85 (m, 2H), 7.03-7.12 (m, 2H).

Reference Example 37

2-Bromo-5-(4-methoxyphenyl)pentanoic acid

At -5°C, sodium nitrite (176 mg) was slowly added to a solution of potassium bromide (591 mg) in a 0.75M aqueous hydrobromic acid solution and then 5-(4-methylphenyl)norvaline (300 mg) was added thereto. After stirring at the same temperature for 2 hours, the reaction mixture was poured into water (50 ml) and extracted with ethyl acetate (20 ml x twice). The organic layer was collected, washed with a saturated aqueous sodium chloride solution (30 ml), dried over sodium sulfate, and then concentrated under reduced pressure. 2-Bromo-5-(4-methoxyphenyl)pentanoic acid

was obtained as 355 mg of a crude product.

 1 H-NMR (CDCl₃) δ

 $1.65-1.84 \, (m, 2H)$, $1.95-2.18 \, (m, 2H)$, $2.59-2.63 \, (m, 2H)$,

3.79(s, 3H), 4.24(t, J=6.8Hz, 1H), 6.82-6.85(m, 2H),

 $5 \quad 7.08 - 7.11 (m, 2H)$.

Reference Example 38

Ethyl 2-bromo-5-(4-methoxyphenyl)pentanoate

$$\begin{array}{c|c} \text{Br} & \text{c.H}_2\text{SO}_4 \\ \text{EtOH} & \text{Br} \\ \text{CO}_2\text{Et} & \text{OMe} \end{array}$$

Concentrated sulfuric acid (1 ml) was added to a solution of the 2-bromo-5-(4-

- 10 methoxyphenyl)pentanoic acid crude product (Reference Example 37) (1000 mg) in ethanol (15 ml) at room temperature and the resulting mixture was heated under reflux for 2 hours. After being allowed to cool to room temperature, the reaction solution was poured into water (50 ml) and extracted with ethyl acetate (50 ml). The organic layer was washed with a saturated aqueous sodium hydrogencarbonate solution (30 ml) and a saturated aqueous sodium chloride solution (30 ml) and then dried over sodium sulfate. The dried organic
- layer was concentrated under reduced pressure and the crude product thus obtained was purified by HPLC to obtain ethyl 2-bromo-5-(4-methoxyphenyl)pentanoate (740 mg).

 1 H-NMR (CDCl₃) δ

1.59-1.81 (m, 2H), 1.95-2.15 (m, 2H), 2.58-2.62 (m, 2H), 3.79 (s, 3H), 4.18-4.25 (m, 3H), 6.81-6.85 (m, 2H), 7.07-7.10 (m, 2H).

5 Reference Example 39

Methyl 2-bromo-5-(4-methoxyphenyl)pentanoate

To a solution of methyl 5-(4-methoxyphenyl)pentanoate (Reference Example 18) (100 mg) in tetrahydrofuran (5 ml) was added LHMDS (1.0M in THF, 10 0.54 ml) at -78°C under a nitrogen atmosphere. After stirring at the same temperature for 1 hour, TMSCl (63 μl) was added thereto and the resulting mixture was stirred for 50 minutes and then stirred at room temperature for another 10 minutes. The reaction 15 mixture was concentrated under reduced pressure and hexane (10 ml) was added thereto. After the precipitate was filtered off, the filtrate was concentrated under reduced pressure again. To the resulting residue was added dimethylformamide (5 ml). 20 followed by adding NBS (97 mg) at -78°C, and the resulting mixture was allowed to warm to room temperature spontaneously. The reaction mixture was poured into water (20 ml) and extracted with ethyl

acetate (20 ml). The organic layer was washed with a saturated aqueous sodium chloride solution (20 ml) and then dried over sodium sulfate. The dried organic layer was concentrated under reduced pressure and the crude product thus obtained was purified by a column chromatography (hexane: ethyl acetate = 5:1) to obtain methyl 2-bromo-5-(4-methoxyphenyl) pentanoate (34.2 mg).

 1 H-NMR (CDCl₃) δ

10 1.58-1.68(m, 1H), 1.72-183(m, 1H), 1.99-2.12 (m, 2H), 2.54-2.63(m, 2H), 3.77(s, 3H), 3.78(s, 3H), 4.22(dd, 1H, J=7.8, 6.9Hz), 6.81-6.85(m, 2H), 7.06-7.12(m, 2H).

Reference Example 40

Diethyl 4,4'-dithiobis(3-nitrobenzoate)

Under a nitrogen atmosphere, ethyl 4-chloro3-nitrobenzoate (60.00 g) was suspended in ethanol (300 ml) and NaSH nH₂O (c.a. 70 wt%, 21.94 g) was added thereto under ice-cooling. After 30 minutes, the resulting mixture was stirred for 1 hour on a water

bath at 20°C to obtain ethyl 4-thio-3-nitrobenzoate.

An aqueous solution (water 780 ml) of NaHCO₃ (60.00 g) and then iodine (33.16 g) were added to the ethyl 4-thio-3-nitrobenzoate and stirred for 1 hour. The crystals in the reaction mixture in the form of a

homogeneous yellow slurry were filtered. After the crystals were washed with ethanol/water (1/1 (v/v), 200 ml), acetonitrile (200 ml) was added to the crystals and the resulting mixture was heated under reflux for 15 minutes. After this mixture was cooled to room temperature and stirred for 2 hours, the crystals were filtered and then washed with acetonitrile/water (1/1 (v/v), 200 ml). Water (400 ml) was added to the crystals and stirred. Thereafter, the crystals were filtered, washed with water (200 ml) and then dried to obtain diethyl 4,4'-dithiobis(3-nitrobenzoate) (50.95

 1 H-NMR (400M,DMSO-d6) δ

1.32(t, J=6.8Hz, 6H), 4.35(q, J=7.2Hz, 4H), 8.01(m, 2H),

15 8.15(m, 2H), 8.94(s, 2H).

g).

Reference Example 41

Ethyl 4-thio-3-nitrobenzoate

Under a nitrogen atmosphere, ethyl 4-chloro-3-nitrobenzoate (1.00 g) was suspended in ethanol (10 20 ml) and NaSH nH₂O (c.a. 70 wt%, 0.34 g) was added thereto under ice-cooling. After 30 minutes, the resulting mixture was stirred for 1 hour on a water bath at 20°C. The ethanol was concentrated to one-half of its original volume and then water was added to the residual reaction mixture, followed by extraction with toluene. The organic layer was concentrated under reduced pressure to obtain ethyl 4-thio-3-nitrobenzoate (1.00 g).

 1 H-NMR (400M,DMSO-d6) δ

5

15

20

1.34(t, J=7.1Hz, 3H), 4.35(q, J=7.1Hz, 2H), 7.94(m, 1H),

8.06(m, 1H), 8.61(s, 1H).

Reference Example 42

10 Ethyl 4-thio-3-nitrobenzoate

Under a nitrogen atmosphere, diethyl 4,4'-dithiobis(3-nitrobenzoate) (22.8 g) was suspended in ethanol (151 ml), and sodium tetrahydroborate (4.79 g) was added thereto in small portions under ice-cooling and stirred for 1 hour. A 1N aqueous hydrochloric acid solution (554 ml) was added to the reaction mixture under ice-cooling, followed by extraction with toluene (228 ml x 2). The organic layer was washed with water (114 ml) and then distilled under reduced pressure to remove the solvent, whereby ethyl 4-thio-3-nitrobenzoate was quantitatively obtained as yellow needles.

Ethyl 4-{[(1S)-1-(methoxycarbonyl)-4-(4methoxyphenyl)butyl]thio}-3-nitrobenzoate

The methyl (2R)-2-hydroxy-5-(4-methoxyphenyl)pentanoate (20.0 g, 96%e.e.) synthesized in Reference Example 27 was dissolved in acetonitrile (100 ml), followed by adding thereto trifluoromethanesulfonic acid anhydride (17 ml) and then triethylamine (12.3 ml) under ice-cooling, and the resulting mixture was stirred at the same temperature 10 for 1 hour. Water (200 ml) was added thereto under ice-cooling, followed by extraction with toluene (200 $ml \times 2)$. The organic layer was washed with water (200 ml), a saturated aqueous sodium hydrogencarbonate 15 solution (200 ml) and water (200 ml) and then distilled under reduced pressure to remove the solvent. brown oil thus obtained was dissolved in THF (50 ml) (a solution A).

A solution of the compound obtained in

Reference Example 41 or Reference Example 42 (ethyl 4thio-3-nitrobenzoate) (22.8 g) in THF (50 ml) was added
dropwise to the above-mentioned THF solution A under
ice cooling. A solution of N-methylmorpholine (11.1
ml) in THF (120 ml) was slowly added dropwise to the

reaction mixture while paying attention to heat generation, and the resulting mixture was stirred at the same temperature for 30 minutes. A 1N aqueous hydrochloric acid solution (220 ml) was added thereto under ice-cooling, followed by extraction with toluene (220 ml \times 2). The organic layer was washed with water (220 ml), a saturated aqueous sodium hydrogencarbonate solution (110 ml \times 2) and water (110 ml \times 2) and then distilled under reduced pressure to remove the solvent, 10 whereby ethyl $4-\{[(1S)-1-(methoxycarbonyl)-4-(4$ methoxyphenyl)butyl]thio}-3-nitrobenzoate (95%e.e.) was obtained. This compound was used in a subsequent step without purification. The optical purity was determined by the method described in Reference Example 15 30.

Formulation Example 1 Tablets

	(-)-Ethyl 4-[2-(hydroxyamino)-2-oxoethy]	<u>L] -2</u>	2-
	[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-		
20	dihydro-2H-1,4-benzothiazine-6-carboxyla	<u>ite</u>	
		50	mg
	Lactose	93	mg
	Corn starch	40	mg
25	Hydroxypropylmethyl cellulose 2910 .	6	mg
	Carmelose calcium	10	mg
	Magnesium stearate	1	mg

134

The above ingredients were mixed each in an amount of 100 times the amount specified above, and 200 mg of the resulting mixed powder was compressed at a pressure of 50 kgf with a hydraulic press (mfd. by Riken Co. Ltd.) to obtain 100 tablets having a diameter of 8 mm and a weight of 200 mg.

Formulation Example 2
Capsules

	(-)-Ethyl 4-[2-(hydroxyamino)-2-oxoeth	yl]-2	<u>2 –</u>
10	[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-		
	dihydro-2H-1,4-benzothiazine-6-carboxy	<u>late</u>	
		100	mg
	Lactose	100	mg
	Corn starch	39	mg
15	Carmelose calcium	10	mg
	Magnesium stearate	1	mg

The above ingredients were mixed each in an amount of 100 times the amount specified above, and the resulting mixed powder was packed in capsules of No. 2 to obtain 100 capsules each having 250 mg of the contents.

Formulation Example 3
Injection

(-)-4-[2-(Hydroxyamino)-2-oxoethyl]-2-[3-(4-25 methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H- 135

1,4-benzothiazine-6-carboxylic acid	50	mg
N-methylglucamine	23	mg
Sodium chloride	22.5	mg
Water for injection	2404	ma

N-methylglucamine (23 mg) and sodium chloride (22.5 mg) were mixed with (-)-4-[2-(hydroxyamino)-2-oxoethyl]-2-[3-(4-methoxyphenyl)propyl]-3-oxo-3,4-dihydro-2H-1,4-benzothiazine-6-carboxylic acid (50 mg), and water for injection was added thereto to carry out an adjustment. The liquid thus obtained was filled into a vial to obtain an intra-articular injection.

Test Example 1

Oral absorbability evaluation test

Each of the compounds of Example 7 and

15 Example 14 was orally administered to each of Crj:CD

(SD) strain male rats (Charles River Japan Inc.) aged 7

weeks in a dose of 30 mg/kg without fasting.

Blood was collected from each rat under etherisation 15 and 30 minutes and 1, 2, 4, 6 and 24

20 hours after the administration, and serum was obtained from the blood and stored at -20°C or lower till analysis. To 50 µl of the serum was added 125 µl of methanol, and stirred, followed by centrifugation (10000 rpm, 2 minutes, 4°C). To the supernatant was added an equal volume of a 10 mM aqueous ammonium

acetate solution and the resulting mixture was

subjected to centrifugal filtration through Centricut (W-MR, Kurabo Industries Ltd.). Then, 10 μ l of the filtrate was analyzed by LC-MS/MS. The result is shown in Fig. 1.

As a result, the bioavailability (BA) in the case of orally administering the compound of Example 7 was found to be 18.4%. Thus, it was confirmed that the compound of Example 7 is a prodrug having a superior oral absorbability as compared with the oral administration of the compound of Example 14 (bioavailability: 2.7%).

Test Example 2

Inhibitory activity against MMP-13

As MMP-13, there was used one which had been 15 prepared by genetic engineering (using a well-known human chondrocyte cDNA library as a template, cDNA fragments were amplified by PCR by the use of primers 5'-AATAAGCTTCCACCATGCATCCAGGGGTCCTGGC-3' (SEQ ID NO: 1) and 5'-CCGCTCGAGTTACCCCAAATGCTCTTCAGG-3' (SEQ ID NO: 2) 20 and each of the cDNA fragments amplified was inserted in a vector pcDNA I, and the vector was introduced into COS-1 cells derived from Afurikamidorizaru kidney, followed by culture and the recovery of the supernatant of a culture medium) on the basis of the well-known 25 genetic base sequence of human MMP-13 (J. Biol. Chem., 269 (24), 16766-16773 (1994)) and had been activated by maintaining the thus prepared MMP-13 at 37°C for 2

hours in the presence of 1 mM mercury 4-aminophenylacetate.

5

as IC50 value.

Inhibitory activity against human MMP-13 was measured according to the method of C.G. Knight et al. (FEBS Lett., 296 (3), 263-266 (1992)).

That is, 45 μ l of assay buffer (0.1M Trishydrochloric acid, 0.1M sodium chloride, 0.01M calcium chloride, 0.05% Brigy 35, pH = 7.5) was placed in a 96well micro-titer plate for fluorometry, and 5 µl of a 10 solution of a test compound in dimethyl sulfoxide was added thereto. Then, 25 µl of the activated human MMP-13 and 25 µl of a substrate solution obtained by diluting a 1 mM solution of (7-methoxycoumarin-4yl)acetyl-L-prolyl-L-leucyl-glycyl-L-leucyl-L-[N-(2,4-15 dinitrophenyl)-L-2,3-diaminopropiony]-L-alanyl-Largininamide (MCA; SEQ ID NO: 3) (mfd. by Peptide Laboratories Co., Ltd.) in dimethyl sulfoxide to a concentration of 80 μM with the assay buffer were added thereto, and fluorescence (ex. 320 nm, em. 405 nm) was 20 measured with a fluorescence plate reader. After the micro-titer plate was maintained at 37°C for 12 hours to carry out the reaction, fluorescence was measured with the fluorescence plate reader to measure the residual enzyme activity. The inhibitory activity against MMP-13 of the compound of Example 14 was 44 nM25

Test Example 3

Pharmacological test on rat partial-meniscectomy models

SD (IGS) male rats aged 6 weeks (purchased from Charles River Japan Inc.) were used. The hair on 5 the knee joint portion of right hind leg of each rat was shaved with a hair clipper under etherisation, and then the skin on the joint side of the lateral collateral ligament was incised along the ligament. Subsequently, the fascia was incised and the lateral 10 collateral ligament was resected in a length of about 3 Thereafter, the medial meniscus was exposed and mm. the matters adhering to the meniscus were removed. The meniscus was picked up with tweezers and a part of the meniscus was cut off along the tweezers with microscissors. The fascia and the skin were sutured.

- 15 microscissors. The fascia and the skin were sutured.

 One week after the above treatment, the administration of each test compound was started. The volume of the test compound administered was 10 ml/kg (solvent: 0.5% methyl cellulose) and the test compound was orally
- administered six times per week for 3 weeks. After the body weight was measured, the shinbone of the right hind leg was collected and fixed in 10% neutral buffered formalin. A paraffin section was prepared as a preparation. The shinbone was embedded in paraffin
- 25 at first and then sliced in a thickness of 6 μm, and the slice was stained with safranine O/Fast Green. A portion of the shinbone used for preparing the preparation was a portion 3 mm apart from the front

where degeneration was most remarkable when visually observed after the fixation in formalin. Evaluation was carried out as follows by taking the decrease of the stainability of proteoglycan as an indication of chondrodegeneration. The cartilage portion inside the shinbone was divided into 9 portions as shown in the following drawing and the decrease of the stainability of proteoglycan in each portion is given a score in a blind test. The highest score of each portion was 10 taken as 1 and evaluation was expressed by numeral values on the basis of the percentage of decrease in the stainability (for example, a score of 0.25 in the case where the stainability was decreased in one-fourth of the portion). The total score of the 9 portions was taken as the score (0 to 9) of the preparation. average of scores for rats in each group was calculated and the degree of chondrodegeneration of a pathosis control group was taken as 100%. chondrodegeneration inhibition rate of each compound

20 was calculated by the following equation:

15

Inhibition rate = 1 - (average score value of drug-treated group / score value of control group) x 100

As a result, the compound of Example 7 showed 25 a chondrodegeneration inhibition rate of 52% at 50 mg/kg, indicating that the compound of the present invention has an excellent pharmacological action on arthrosis deformans.

INDUSTRIAL APPLICABILITY

Owing to the present invention, it has become possible to provide a novel benzothiazin-3-one compound useful as the active ingredient of a medicine. is, since the compound of the present invention exhibits a good oral absorbability and is metabolized in a living body to give a compound having an excellent inhibitory activity against matrix metalloproteases, it is useful as a therapeutic or preventive agent for 10 arthrosis deformans, chondrodegenerative diseases such as chronic articular rheumatism, the metastasis of cancerous cells, and the like or as an antiinflammatory agent and the like. In addition, it has become possible to produce a 2-thiocarboxylic acid derivative or an optically active 2-hydroxycarboxylic 15 acid, which is an intermediate for producing the abovementioned benzothiazin-3-one compound in high yield.

Sequence Listing Free Text

SEQ ID NO: 1 : a PCR primer

20 SEQ ID NO: 2 : another PCR primer

SEQ ID NO: 3 : a synthetic peptide