Abwägungen zu bewegbaren Kameras

Daniel Cermann

9. Oktober 2021

Inhaltsverzeichnis

1	Überblick	1
2	Vor- und Nachteile	2
3	Geschwindigkeit	2
	3.1 Drehen der Kamera	2
	3.2 Zoom und Fokus	3
	3.3 Software	3
	3.4 Camera-Framerate	3
4	Finanzielles	4
5	Raspberry Pi vs. Jetson Nano	4
6	Ein Computer vs. Cluster	4
7	Bilder	5

1 Überblick

Idee:

- Kameras können doch beweglich sein, aber anstatt linearer Bewegung auf Schienen: Kameras sidn seitlich oben und können gedreht werden
- \bullet Seien Bennenungen der beweglichen Kameras SideCams und die obere, zentrale Kamera heißt MainCam
- SideCams ersetzen MainCam nicht, sondern ergänzen sie nur
- Aufgaben der MainCam bzw. des Programms dazu

- alle Bienen auf Bild erkennen und tracken
- jeder Biene Wahrscheinlichkeit für Varroamilbe zuordnen (nur basierend auf Draufsicht)
- entscheiden, welche Bienen von SideCams näher untersucht werden

• Funktionen SideCams

- bei Bienen, wo MainCam unsicher ist nachprüfen
- testen, ob Milben an Seite der Biene sitzen (hoffentlich sind seitlich sitzende Milben auf Bildern der MainCam als etwas kleinere weiße Flecken zu erkennen, was zu höherer Varroa-Wahrscheinlichkeit und demnach Nachprüfen durch SideCams führt)

2 Vor- und Nachteile

Vorteile	Nachteile	
- seitliche Sicht auf Biene	- Preis der zusätzlichen Kameras	
- näherer Zoom an Biene möglich \Rightarrow	- mehr Rechenleistung zu Bildauswertung	
Bildqualität viel besser und wie Experimente	und zum Kontrollieren der Kameras benötigt	
gezeigt haben, Kontrast von Varroa zu Biene		
besser		
	- evt. laut	
	- evt. sehr langsam (siehe 3.)	

⇒ Wir sollten zusammen entscheiden, ob die bessere Bildqualität und die zusätzlichen Kamerawinkel wirklich so viel Aufwand wert sind.

3 Geschwindigkeit

Ideal wäre es, wenn wir durch die SideCams bis zu 10 Bienen je Sekunde scannen können. Die folgenden Abschnitte schätzen einige der limitierenden Faktoren ab.

3.1 Drehen der Kamera

Problem:

- Servo-Motoren sind evt. zu langsam und sind nicht für ständige, schnelle Be- und Entschleunigungen gedacht
- schnelles Abbremsen könnte zu verwackelten Bildern führen

3.2 Zoom und Fokus Daniel Cermann

Lösungsansätze:

• Auswahl der zu scannenden Bienen durch Algorithmus so, dass der Weg der Kamera optimiert ist

• Geschwindigkeit der Stepper-Motoren laut Datenblättern bis zu $60^{\circ} \frac{1}{0.2s} \Longrightarrow$ sollte für uns reichen, weil Winkel von ganz links, nach ganz recht auf dem Flugbrett ca. 60° beträgt, ABER: Was ist mit Be- und Entschleunigung?

Geschätztes Maximum für gescannte Bienen pro Sekunde: 10 (mit Optimierung der Bienenauswahl)

3.2 Zoom und Fokus

Problem:

- Zoom kann konstant bleiben, aber Fokus muss dauerhaft angepasst werden
- Ist das Fokussystem von Raspberry-Kameras schnell genug?

Lösungsansätze:

- Geschwindigkeit sehr schwer abzuschätzen :(
- Wir müssen jegliche Autofokus-Algorithmen abschalten ⇒ Wir können Abstand der Kamera zu Biene berechnen, wenn wir die Position der Biene auf Flugbrett wissen und dann den Fokus direkt Einstellen
- maximaler Unterschied der Strecke von Kamera zu Biene in unserem Prototyp: $14.6cm \Rightarrow$ für Zoom kein riesiger Unterschied
- zusätzlich: wieder Optimierung der Reihenfolge, in der Bienen gescannt werden

Geschätztes Maximum für gescannte Bienen pro Sekunde: I don't know, aber mit Optimierung bestimmt bis zu 5+

3.3 Software

Die Laufzeit des Programms könnte kritisch werden. Im Notfall müssen wir mehrere Raspis oder Jetson Nanos nehmen. Wir erschlagen das mit Rechenleistung ;)

3.4 Camera-Framerate

- übliche Raspi Kameras können ihre 12MP nur bei 7 fps ausnutzen
- ⇒ kein Problem, selbst wenn, kann einfach die Auflösung etwas nach unten gestellt werden; ist für die Software bestimmt sowieso nötig

4 Finanzielles

Wir haben zwei Möglichkeiten: ein fertiges Kit von Arducam zu bestellen oder wir bauen den Drehmechanismus für die Kamera selbst. Die zusätzlichen Kosten, nur für die SideCameras, wären mindestens:

Fertiges Kit

Artikel	Preis
2 x komplettes Kit; 13MP	2 x 100
Kamera	\$

oder wir nutzen nur die kleinen 8MP Kameras mit Objektiv. Dabei müssten wir uns aber noch irgendetwas für den Fokus einfallen lassen.

Artikel	Preis
2 x Kit für Bewegung der	2 x 25 \$
Kamera; 8MP Kamera	

Selbst bauen

Artikel	Preis
12MP Kamera mit Zoom	2 x 90 \$
oder 8MP Kamera	$2 \times 25 $ \$
2 x Servo Motor	2 x 20 \$
Servo Controller	15 \$

5 Raspberry Pi vs. Jetson Nano

Dazu muss ich mich noch besser belesen... Aber generell ist das Jetson Nano besser für Bildverarbeitung geeignet.

6 Ein Computer vs. Cluster

Grundsätzliche Idee: Das Einplatinenboard mit *MainCamera* ist 'Master' und sendet *SideCameras* Anweisungen, welche Biene wann gescannt wird. Die Verbindungen könnten durch LAN-Kabel (bei mehr als zwei Boards mit Switch/HUB) oder durch einen Wireless Access Point passieren.

Mit mehreren Boards müsten wir uns auch keine Gedanken mehr um zusätzliche Kamerakabel-Anschlüsse (an jedes Raspi bzw. Jetson Nano kann nur eine Kamera) zu machen.

7 Bilder

Abbildung 1: Seitliche Perspektive

Abbildung 2: Draufsicht