

Commonsense Causal Reasoning between Short Texts

Zhiyi Luo, Yuchen Sha , Kenny Q.Zhu, Seung-won Hwang and Zhongyuan Wang

周云晓

Novermber 1, 2017

- Background
- Approach
- Experiments
- Conclusions

Task Definition

- What is Commonsense Causal Reasoning?
 - Capture and understand the causal dependencies amongst events and actions
 - Given a premise and two alternatives, select the more plausible alternative as a cause (or effect) of the premise

Task Definition

- Examples -- 1
 - *Premise*: I fainted this morning.

What was the *CAUSE* of this?

✓ *Alternative 1:* I did not eat for two days.

Alternative 2: My mobile is out of battery.

Task Definition

- Examples -- 2
 - Premise: I knocked on my neighbor's door.What happened as an *EFFECT*?
 - Alternative 1: My neighbor invited me in.
 Alternative 2: My neighbor left her house.

Key Challenge

- Premise: I knocked on my neighbor's door.
 - What happened as an **EFFECT**?
- ✓ *Alternative 1:* My neighbor invited me in.
 - Alternative 2: My neighbor left her house.

Harvest causality knowledge that the action of *knocking* is more likely to cause that of *invitation* than that of *leaving*.

- Background
- Approach
- Experiments
- Conclusions

Approach

Causality Network

Causal Strength Computation

Commonsense Causal Reasoning

 Causality can be identified by linguistic patterns known as causal cues

Examples

- (1) The [storm]_{CAUSE} [caused]_{PATTERN} a tremendous amount of [damage]_{EFFECT} on the landing beaches.
- (2) The team prepared GIS precipitation and contour maps of the area identifying the [flooding]_{EFFECT} and landslides [caused by]_{PATTERN} the [rainfall]_{CAUSE}.

Causal cues

Table 1: 53 Causal cues. A is a cause span, and B is an effect span. DET stands for a/an/the/one. BE stands for is/are/was/were.

intra-sentence		inter-sentence			
A lead to B	A leads to B	A led to B	If A, then B	If A, B	B, because A
A leading to B	A give rise to B	A gave rise to B	B because A	B because of A	Because A, B
A given rise to B	A giving rise to B	A induce B	A, thus B	A, therefore B	B, A as a consequence
A inducing B	A induces B	A induced B	Inasmuch as A, B	B, inasmuch as A	In consequence of A, B
A cause B	A causing B	A causes B	B due to A	Due to A, B	B in consequence of A
A caused B	B caused by A	A bring on B	B owing to A	B as a result of A	As a consequence of A, B
A brought on B	A bringing on B	A brings on B	A and hence B	Owing to A, B	B as a consequence of A
B result from A	B resulting from A	B results from A	A, hence B	A, consequently B	A and consequently B
B resulted from A	the reason(s) for/of B BE A		A, for this reason alone, B		
DET effect of A BE B	A BE DET reason(s) of/for B				

- \blacksquare A \rightarrow a text span that represents the cause
- \blacksquare B \rightarrow a text span that represents the effect
- Maximum length of A and B \rightarrow 10

- Causal pair (i_c, j_e)
 - $i_c \rightarrow \text{term i in A}$ $j_e \rightarrow \text{term j in B}$

Example:

The storm caused a tremendous amount of damage on the landing beaches.

(storm_c, tremendous_e), (storm_c, amount_e), (storm_c, damage_e), (storm_c, landing_e), (storm_c, beach_e)

Directed network of causal relations

Figure 1: A fragment of causal network

- Node:lemmatized term
- Directed edge: causal relation
- numbers:causalityco-occurrences

Causal Strength Computation

- Necessity causality
 - Cause *i* must be present in order for the effect *j* to take place \rightarrow (rainfall_c, flooding_e)
 - $\mathbf{p}(i_c|j_e)$
- Sufficiency causality
 - Cause *i* is all it takes bring about the effect j→ (storm_c, damage_e)
 - $\mathbf{p}(j_e | i_c)$

Causal Strength Computation

Necessity causality strength

$$CS_{nec}(i_c, j_e) = \frac{p(i_c|j_e)}{p^{\alpha}(i_c)}$$
$$= \frac{p(i_c, j_e)}{p^{\alpha}(i_c)p(j_e)}$$

Sufficiency causality strength

$$CS_{suf}(i_c, j_e) = \frac{p(j_e|i_c)}{p^{\alpha}(j_e)}$$
$$= \frac{p(i_c, j_e)}{p(i_c)p^{\alpha}(j_e)},$$

$$p(i_c) = \frac{\sum_{w \in W} f(i_c, w_e)}{M}$$
$$p(j_e) = \frac{\sum_{w \in W} f(w_c, j_e)}{M}$$
$$p(i_c, j_e) = \frac{f(i_c, j_e)}{N}$$

Causal Strength Computation

Causality strength computation

$$CS(i_c, j_e) = CS_{nec}(i_c, j_e)^{\lambda} CS_{suf}(i_c, j_e)^{1-\lambda}$$

 Compute the causal strength between every pair of terms in the causality network

Commonsense Causal Reasoning

• Goal:

Compute whether alternative a1 or a2 is more plausible with respect to the premise p

 Compute the causal strength from text T1 to text T2:

$$CS_T(T_1, T_2) = \frac{1}{|T_1| + |T_2|} \sum_{i \in T_1} \sum_{j \in T_2} CS(i, j)$$

Commonsense Causal Reasoning

• Compare the overall causality strength $CS_T(p, a1)$ and $CS_T(p, a2)$, assuming p is asking for an *effect*.

• Compare the overall causality strength $CS_T(a1, p)$ and $CS_T(a2, p)$, assuming p is asking for an *cause*.

- Background
- Approach
- Experiments
- Conclusions

- Extraction of Causality Network
 - A large web text corpus (a snapshot of Bing,
 10TB, 1.6billion web pages)
 - The number of unique lemmatized terms (nodes) is 64,436
 - The average frequency of pairs is 10.54

- COPA task dataset
 - Choice of Plausible Alternatives
 - Development question set \rightarrow 500
 - Test question set \rightarrow 500
 - Premise: I knocked on my neighbor's door.
 What happened as an EFFECT?
 - ✓ *Alternative 1:* My neighbor invited me in. *Alternative 2:* My neighbor left her house.

COPA results comparison

Data Source	Methods	Accuracy(%)
Web corpus	PMI (W=5)	61.6%
	PMI (W=10)	61.0%
	PMI (W=15)	60.4%
	PMI (W=25)	61.2%
	$CS_{\lambda=0.5}$	64.8%
Gutenberg	PMI (W=5)	58.8%
	PMI (W=25)	58.6%
LDC Gigaword	UTDHLT Bigram PMI	61.8%
	UTDHLT SVM	63.4%
ConceptNet	Fuzzy match	51.3%
1-Million Stories	PMI (W=25)	65.2%
10-Million Stories	PMI (W=25)	65.4%
CausaNet	$CS_{\lambda=1.0}$	70.2 %

COPA results comparison

Data Source	Methods	Accuracy(%)
Web corpus	PMI (W=5)	61.6%
	PMI (W=10)	61.0%
	PMI (W=15)	60.4%
	PMI (W=25)	61.2%
	$CS_{\lambda=0.5}$	64.8%
Gutenberg	PMI (W=5)	58.8%
	PMI (W=25)	58.6%
LDC Gigaword	UTDHLT Bigram PMI	61.8%
	UTDHLT SVM	63.4%
ConceptNet	Fuzzy match	51.3%
1-Million Stories	PMI (W=25)	65.2%
10-Million Stories	PMI (W=25)	65.4%
CausaNet	$CS_{\lambda=1.0}$	70.2 %

COPA results comparison

Data Source	Methods	Accuracy(%)
Web corpus	PMI (W=5)	61.6%
	PMI (W=10)	61.0%
	PMI (W=15)	60.4%
	PMI (W=25)	61.2%
	$CS_{\lambda=0.5}$	64.8%
Gutenberg	PMI (W=5)	58.8%
	PMI (W=25)	58.6%
LDC Gigaword	UTDHLT Bigram PMI	61.8%
	UTDHLT SVM	63.4%
ConceptNet	Fuzzy match	51.3%
1-Million Stories	PMI (W=25)	65.2%
10-Million Stories	PMI (W=25)	65.4%
CausaNet	$CS_{\lambda=1.0}$	70.2 %

Effect of web data size

• Effect of λ

Data Source	Methods	Accuracy(%)
Web corpus	$p(j_e i_c)$	58.2%
	$p(i_c j_e)$	62.8%
	$CS_{\lambda=0.5}$	64.8%
	$CS_{\lambda=0.7}$	63.4%
	$CS_{\lambda=0.9}$	63.0%
	$CS_{\lambda=1.0}$	63.0%
CausalNet	$p(j_e i_c)$	56.2%
	$p(i_c j_e)$	60.2%
	$CS_{\lambda=0.5}$	68.8%
	$CS_{\lambda=0.7}$	69.4%
	$CS_{\lambda=0.9}$	70.2%
	$CS_{\lambda=1.0}$	70.2%

Conclusion

- Automatically construct graph-based representation of a causality knowledge base
- Utilize both sufficiency and necessary causality evidences to model the causality strength between terms
- Outperform the previous best approach for solving COPA task

Thank you!