Série 20

1. Soit \mathcal{C} une conique dépendante d'un paramètre réel m.

$$C: \frac{(x-1)^2}{m-1} + \frac{(y-m)^2}{(m-1)(m-2)} - 1 = 0.$$

- a) Déterminer m pour que la conique \mathcal{C} vérifie les deux conditions suivantes :
 - \bullet \mathcal{C} est une hyperbole d'axe réel vertical,
 - une des asymptotes de \mathcal{C} passe par l'origine O.
- b) On fixe m=-1. Déterminer l'équation cartésienne de l'ellipse $\mathcal E$ vérifiant les deux conditions suivantes :
 - les axes de symétrie de \mathcal{E} et \mathcal{C} coïncident,
 - \mathcal{E} et \mathcal{C} se coupent orthogonalement en M(0; 2).
- 2. Dans le plan muni d'un repère orthonormé, on considère l'hyperbole $\,\mathcal{H}\,$ d'équation $x^2-y^2-9=0$.

Soient A et A' les deux sommets de \mathcal{H} , (A d'abscisse positive) et M un point courant de cette hyperbole.

On considère la tangente t à \mathcal{H} en M, la perpendiculaire n à t passant par A et la droite d passant par A' et M.

Soit P le point d'intersection des droites n et d.

Déterminer l'équation cartésienne du lieu de P lorsque le point M décrit l'hyperbole \mathcal{H} . Caractériser avec précision la nature géométrique de ce lieu.

3. Dans le plan, on considère une droite d et un point A, $A \notin d$.

Un point D parcourt la droite d.

Soit M un point de la perpendiculaire à d passant par D tel que la distance de M à d soit égale à la distance de A à D.

- a) Choisir un repère orthonormé adapté au problème.
- b) Déterminer l'équation cartésienne, dans le repère choisi, du lieu de $\,M\,$ lorsque $\,D\,$ parcourt la droite $\,d\,.$
- c) Représenter sur un dessin soigné le lieu de M.

4. Un segment AB de longueur constante 2d se déplace sur l'axe Ox. Des points A et B, on mène les tangentes au cercle γ d'équation : $x^2 + y^2 - 2Ry = 0$. On considère le point M intersection des tangentes distinctes de l'axe Ox.

- a) Déterminer l'équation cartésienne du lieu des points M.
- b) Etudier la nature de ce lieu en fonction de d.

Indications:

- Choix des paramètres : a abscisse du point A et b abscisse du point B, liés par l'équation |a-b|=2d.
- Elimination des paramètres : exprimer a+b et ab en fonction de x et y, puis utiliser l'équation de liaison sous la forme $4d^2 = (a-b)^2 = (a+b)^2 - 4ab$.
- 5. On donne un point du plan par ses coordonnées cartésiennes. Déterminer ses coordonnées homogènes.
 - a) A(3; 2),

- b) $B(-3; \frac{1}{2})$, c) C(0; 1), d) $D(\frac{2}{3}; -\frac{5}{4})$.
- 6. On donne un point à l'infini du plan par les composantes d'un de ses vecteurs directeurs ou par sa pente. Déterminer ses coordonnées homogènes.
 - a) $\vec{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$,
- b) $\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, c) $\vec{c} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$,

- d) $m_D = 2$,
- e) $m_E = -\frac{7}{3}$,
- f) $m_F = 0$.
- 7. On donne des points du plan par leurs coordonnées homogènes. Déterminer les coordonnées cartésiennes de chaque point ou un vecteur directeur si le point est à l'infini.
 - a) A(-2; 1; -3) b) B(2; 0; 0) c) C(4; -2; 6) d) D(6; 4; 0)

- e) E(1; 0; 0) f) F(2; -1; 3) g) G(3; 2; 0) h) $H(-\frac{1}{3}; \frac{1}{6}; -\frac{1}{2})$

Indiquer les points qui sont confondus.

Réponses de la série 20

1. a) m = -2.

b)
$$\mathcal{E}$$
: $\frac{(x-1)^2}{4} + \frac{(y+1)^2}{12} - 1 = 0$.

- **2.** Equation cartésienne du lieu des points $P: \frac{(x+1)^2}{4} + \frac{y^2}{12} 1 = 0$.
- **3.** a) L'origine O est confondue avec le point A et l'axe Ox est perpendiculaire à la droite d.

b) Lieu de
$$M: \frac{(x-a)^2}{a^2} - \frac{y^2}{a^2} - 1 = 0$$
.

4. a) Equation cartésienne du lieu des points M:

$$R^{2}x^{2} + (R^{2} - d^{2})y^{2} + 2R(2d^{2} - R^{2})y - 4R^{2}d^{2} = 0$$

$$\Leftrightarrow \quad R^2 \, x^2 + (R^2 - d^2) \left[y + \frac{R \, (2d^2 - R^2)}{R^2 - d^2} \right]^2 - \frac{R^6}{R^2 - d^2} = 0 \, , \, \left(R \neq d \right) .$$

- b) Si d < R, le lieu de M est une ellipse.
 - Si d = R, le lieu de M est une parabole.
 - Si d > R, le lieu de M est une hyperbole.
- **5.** a) A(3;2;1) b) B(-6;1;2) c) C(0;1;1) d) D(8;-15;12)
- **6.** a) A(1;3;0) b) B(0;1;0) c) C(1;2;0)
 - d) D(1;2;0) e) E(3;-7;0) f) F(1;0;0)
- 7. $A \equiv C \equiv F \equiv H(\frac{2}{3}; -\frac{1}{3})$

 $B \equiv E$: point à l'infini de vecteur directeur $\left(\begin{array}{c} 1 \\ 0 \end{array}\right)$

 $D \equiv G$: point à l'infini de vecteur directeur $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$