NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech.

OPEN ELECTIVE

2ECOE53 - Arduino for Engineers

Lesson Plan

Course Outcomes (COs):

At the end of the course, the students will be able to –

- 1. Demonstrate programming proficiency using Embedded C for Arduino
- 2. Interface Analog and Digital peripherals with Arduino
- 3. Establish serial communication using I2C and SPI protocol
- 4. Demonstrate proficiency in developing Arduino based applications

Sr. No.	Topic	Hours	CO
1	Introduction to Arduino board and Programming	05	1
	The Arduino family	01	
	Arduino Uno board	01	
	 Atmega328p Microcontroller 	02	
	 Programming using Arduino IDE 	01	
2	I/O Programming and Interfacing	05	1
	 LED, push-button switch, 	02	
	 Hex keypad, Seven segment display 	02	
	LCD interfacing	01	
3	Serial Communication	06	3
	Basics of serial communication Asynchronous serial	02	
	communication and data framing, Serial port		
	programming,	02	
	I2C and SPI communications, I CD :	02	
4	LCD interfacing using I2C	06	2
4	Motor Control	06	2
	• Interfacing of DC and Stepper motor,	02	
	PWM for motor speed control, Relays	04	
5	DAC and Sensor Interfacing to Arduino Board	08	2,3,4
	 DAC interfacing 	01	
	 Ultrasonic distance sensor 	01	
	 Humidity and temperature sensor 	02	
	 Infrared sensor, Light sensor (LDR) 	02	
	Wifi and Bluetooth module	02	
	Total Hours	30	

The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings:

- 1. Simon Monk, Programming Arduino Getting Started with Sketches, McGraw Hill
- 2. Jeremy Blum, Exploring Arduino: Tools and Techniques for Engineering Wizardry, Wiley Publishers
- 3. Michael Margolis, Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects, Oreilly Media
- 4. Muhammad Mazidi, The 8051 Microcontroller and Embedded Systems using Assembly and C, Pearson Edu.

L = Lecture, T = Tutorial, P = Practical, C = Credit