3.1

4

Let Q(n) be the predicate " $n^2 \le 30$."

a

Write Q(2), Q(-2), Q(7), and Q(-7), and indicate which of these statements are true and which are false.

✓ Answer ∨

 $Q(2): 4 \le 30 \text{ True}$

 $Q(-2):4\leq 30$ True

 $Q(7):49 \le 30 \; {\sf False}$

 $Q(-7): 49 \le 30$ False

b

Find the truth set of Q(n) if the domain of n is \mathbf{Z} , the set of all integers.

✓ Answer

 $||n|| \le \sqrt{30}$

 $\|n\| \leq 5$

 $n \in [-5,5]$

7

Find the truth set of each predicate.

C

Predicate: $1 \le x^2 \le 4$, domain: \mathbf{R}

✓ Answer

$$(1\leq x\leq 2)ee (1\leq -x\leq 2) \ x\in [-2,-1]\cup [1,2]$$

Predicate: $1 \le x^2 \le 4$, domain: **Z**

```
\checkmark Answer(1 \leq x \leq 2) \lor (1 \leq -x \leq 2) \ x \in [-2,-1] \cup [1,2]
```

12

Find counterexamples to show that the statement is false

 \forall real numbers x and y, $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$.

```
Let x=1 and y=1 \sqrt{1+1} \neq \sqrt{1} + \sqrt{1} \sqrt{2} \neq 2
```

17

Rewrite the following in the form " \exists ____ x such that ____."

b

Some real numbers are rational.

✓ Answer

 \exists some $x \in \mathbf{R}$ such that x is rational

20

Rewrite the following statement informally in at least two different ways without using variables or the symbol \forall or the words "for all."

 \forall real numbers x, if x is positive then the square root of x is positive.

✓ Answer

- If x is real and positive, then its square root is positive
- If x is positive and its square root is not positive, then x is not a real number

Rewrite the following in the form " $\forall \underline{\hspace{1cm}} x$, if $\underline{\hspace{1cm}}$ then $\underline{\hspace{1cm}}$."

a

All Java programs have at least 5 lines.

✓ Answer

 \forall Java programs x, x has at least 5 lines.

28

Rewrite each statement without using quantifiers or variables. Indicate which are true and which are false, and justify your answers as best as you can.

Let the domain of x be the set D of objects discussed in mathematics courses, and let $\operatorname{Real}(x)$ be "x is a real number," $\operatorname{Pos}(x)$ be "x is a positive real number," $\operatorname{Neg}(x)$ be "x is a negative real number," and $\operatorname{Int}(x)$ be "x is an integer."

a

Pos(0)

✓ Answer

0 is a positive real number.

b

 $orall x, \operatorname{Real}(x) \wedge \operatorname{Neg}(x) o \operatorname{Pos}(-x)$

✓ Answer

If the inverse of an object discussed in mathematics courses is not positive, then the object is either not a real number, or the object is not negative.

C

 $\forall x, \operatorname{Int}(x) \to \operatorname{Real}(x)$

✓ Answer

All integers are real.

d

 $\exists x \text{ s.t. } \operatorname{Real}(x) \wedge \neg \operatorname{Int}(x)$

✓ Answer

Some real numbers are not integers

3.2

1

Which of the following is a negation for "All discrete mathematics students are athletic"? More than one answer may be correct.

- 1. There is a discrete mathematics student who is nonathletic.
- 2. All discrete mathematics students are nonathletic.
- 3. There is an athletic person who is not a discrete mathematics student.
- 4. No discrete mathematics students are athletic.
- 5. Some discrete mathematics students are nonathletic.
- 6. No athletic people are discrete mathematics students.

✓ Answer

1, 5

5

Write a negation for each of the following statements.

a

Every valid argument has a true conclusion.

✓ Answer

There is an argument with a false conclusion

b

All real numbers are positive, negative, or zero.

✓ Answer

There is a real number that is neither positive, negative, or zero

12

Determine whether the proposed negation is correct. If it is not, write a correct negation.

Statement: The product of any irrational number and any rational number is irrational.

Proposed negation: The product of any irrational number and any rational number is rational.

✓ Answer

False, There exists a product of some irrational number and some rational number that is not irrational.

17

Write a negation for each statement

orall integers d, if $rac{6}{d}$ is an integer, then d=3

✓ Answer

There exists an an integer d where if $\frac{6}{d}$, $d \neq 3$

29

Write the contrapositive, converse, and inverse. Indicate as best as you can which of these statements are true and which are false. Give a counterexample for each that is false.

 $\forall n \in \mathbb{Z}$, if n is prime then n is odd or n = 2.

✓ Answer

Contrapositive (True): $\forall n \in \mathbf{Z}$ if n is even and $n \neq 2$ then n is not prime Converse (False n=9): $\forall n \in \mathbf{Z}$ if n is odd or n=2 then n is prime Inverse (False n=9): $\forall n \in \mathbf{Z}$ if n is not prime then n is even and $n \neq 2$

Use the facts that the negation of a \forall statement is a \exists statement and that the negation of an if-then statement is an and statement to rewrite the statement without using the word necessary or sufficient.

Being a polynomial is not a sufficient condition for a function to have a real root.

\checkmark Answer $x \in \mathsf{set}$ of all functions P : x is a polynomial Q : x has a real root $P \land \neg Q$

3.3

2

Let G(x,y) be " $x^2 > y$ " Indicate which of the following statements are true and which are false.

a

G(2,3)

```
\checkmark Answer 4 > 3 True
```

b

G(1, 1)

✓ Answer

1 > 1 False

C

 $G\left(\frac{1}{2}, \frac{1}{2}\right)$

```
✓ Answer
```

$$\frac{1}{4} > \frac{1}{2}$$
 False

d

G(-2, 2)

✓ Answer

 $4>2\ {
m True}$

10

Determine whether each of the following statements is true or false.

a

 \forall student S, \exists a dessert D such that S chose D.

✓ Answer

True, Yuen chose a Pie, Tim chose a Pie and a Cake, and Uta chose a Pie

b

 \forall student S, \exists a salad T such that S chose T.

✓ Answer

False, Yuen did not choose a Salad

19

Rewrite the statement in English without using the symbol \forall or \exists or variables and expressing your answer as simply as possible. Also, write a negation for the statement.

 $\exists x \in \mathbf{R}$ such that for every real number y,

$$x + y = 0$$

✓ Answer

For every real number, there is another real number such that their sum is 0.

There is a real number that does not have another a real number where their sum is 0.

23

Rewrite the statement in English without using the symbol \forall or \exists or variables. Also, indicate whether the statement is true or false.

a

 \forall nonzero real number r, \exists a real number s such that rs = 1.

✓ Answer

Every nonzero real number has another real number where their product is 1.

True.

b

 \exists a real number r such that \forall nonzero real number s, rs = 1.

✓ Answer

There is a real number where multiplying it with any other real number results in 1. False, literally any number except 1.

3.4

2

Use universal instantiation or universal modus ponens to fill in valid conclusions for the argument

If an integer n equals 2k and k is an integer, then n is even. 0 equals 2×0 and 0 is an integer.

✓ Answer

0 is even.

The argument may be valid by universal modus ponens or universal modus tollens; others are invalid and exhibit the converse or the inverse error. State whether the argument is valid or invalid. Justify your answer.

If compilation of a computer program produces error messages, then the program is not correct. Compilation of this program does not produce error messages.

... This program is correct.

✓ Answer

This has an inverse error, this assumes the inverse.

22-24

Indicate whether the arguments in 22–24 are valid or invalid. Support your answers by drawing diagrams.

22

All discrete mathematics students can tell a valid argument from an invalid one.

All thoughtful people can tell a valid argument from an invalid one.

:. All discrete mathematics students are thoughtful.

False, assumes the converse of the second statement.

24

No vegetarians eat meat.

All vegans are vegetarian.

∴ No vegans eat meat.

True, by chain rule