การคำนวณจำนวนฟิโบนักชีโดยใช้การยกกำลังเมทริกซ์

0, 1, 1, 2, 3, 5, 8, ... เป็นลำดับของจำนวนฟิโบนักซี ($F_0 = 0$, $F_1 = 1$, $F_2 = 1$, ...) วิธีหนึ่งในการหา F_n คือคำนวณ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n$ ได้ผลเป็นเมทริกซ์ขนาด 2×2 มี F_n ที่มุมขวาบนของเมทริกซ์ เช่น $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^4 = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ จงเขียนฟังก์ชัน $\mathbf{fib}(\mathbf{n}, \mathbf{k})$ เพื่อคำนวณ F_n % \mathbf{k} ด้วยวิธีข้างต้นนี้ โดยใช้ คำสั่งใช้ numpy เพื่อการคูณเมทริกซ์ (หมายเหตุ : หลังการคูณเมทริกซ์ทุกครั้ง ให้นำผลที่ได้มา % \mathbf{k} numpy จะทำ % \mathbf{k} แบบ element-wise ในเมทริกซ์)

ข้อมูลนำเข้า

จำนวนเต็ม 2 ค่า n กับ k (0 ≤ n ≤ 10000, 0 ≤ k ≤ 10000)

ข้อมูลส่งออก

แสดงค่า F_n % ${f k}$

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
0 10	0
1 10	1
2 10	1
3 10	2
4 10	3
5 10	5
6 10	8
89 10	9
11111 111	55