Manipulação em Árvore B

Prof. Joaquim Uchôa Profa. Juliana Greghi DAC/UFLA

Objetivo

Manipular uma árvore B, inserindo um conjunto de valores e depois removendo parte desses valores inseridos.

A árvore terá no mínimo 2 e no máximo 5 chaves em cada bloco, com ordenação crescente dos valores. Quando houver necessidade, o bloco será dividido antes da inserção.

Quando da remoção, em caso de rotação, a preferência será pelo irmão à esquerda, o mesmo vale para fusão.

Quando a remoção não é em nó folha, o valor é substituído pelo sucessor.

Valores a serem inseridos

100	61	46	40	66	43	72	24	7
52	23	5	65	27	84	55	38	62
45	33	68	10	29	3	92	11	32
53								

Situação Inicial:	•
Raiz vazia	

Situação Inicial: Raiz vazia

Em um arquivo, o cabeçalho da árvore B indicaria essa situação informando que a árvore não possui qualquer bloco válido e que a raiz ainda não foi gravada (ou teria um bloco com a raiz vazia em si). Situação Inicial: Raiz vazia

Ainda considerando implementação em arquivos, o cabeçalho poderia também estar num arquivo auxiliar. Mas geralmente, utiliza-se o início do arquivo da árvore B.

Informação mínima que ele armazena: endereço no disco da página (bloco) da raiz e o número de blocos utilizados (até para facilitar a inserção de novos blocos no final).

1 1 0 0		
LIGO		

100		
100		

A raiz é o único bloco em que é permitido um número menor de chaves que aquele especificado pela ordem da árvore.

Neste exemplo, a raiz é a única página que pode ter menos que 2 chaves.

|--|

Um bloco contém, pelo menos, as seguintes informações:

- número de chaves válidas
- a informação se é ou não folha
- no caso de não ser folha, o endereço dos filhos (geralmente um vetor com uma posição a mais que o número máximo de chaves)

100		

Aqui estamos falando em inserção de valores... Mas geralmente são registros grandes, com vários campos/atributos. E a ordenação é feita por um atributo específico, a **chave**.

Inserindo o segundo elemento (61)

100		

Quando da inserção, vamos até o último valor do bloco e verificamos se é maior ou não que o elemento a ser inserido. Se é maior, então ele é deslocado e repetimos o processo até achar a posição de inserção do valor.

Esse método é uma simplificação do Insertion Sort.

Inserindo o segundo elemento (61)

100		
100		

Com os valores maiores deslocados, temos o espaço para inserção liberado.

Inserindo o segundo elemento (61)

C1	100		
PT	100		

Inserindo mais 3 valores: 46, 40 e 66

61 100			
--------	--	--	--

A inserção dos 3 próximos valores é relativamente simples, aqui vamos pular o passo-a-passo, para agilizar o processo...

Para cada inserção basta achar a posição correta, para manter o bloco ordenado.

Inserindo mais 3 valores: 46, 40 e 66

40	46	61	66	100

40	46	61	66	100

Como o bloco em que o 43 será inserido está cheio, é necessário que ele seja dividido...

Isso pode ser feito de duas maneiras:

- O bloco é dividido ao meio antes da inserção.
- O valor é inserido, estourando temporariamente o bloco, que é dividido logo após a inserção.

40	46	61	66	100
				1

O "estouro" só pode ocorrer em memória... Um estouro em arquivos poderia fazer com que dados de um bloco sobrescrevessem o próximo.

Mas em geral árvores B são trabalhadas dessa forma: os dados são lidos do arquivo para a memória para que a operação desejada seja realizada (inserção, busca, remoção, etc.) o está

a inserção.

vidido logo

40	46	61	66	100

Quando a página tem um número ímpar de elementos, é mais fácil visualmente (e mais claro na implementação) dividir antes de inserir.

Quando é o oposto (o bloco tem um número par de elementos), pode ser mais fácil inserir antes (estourando) e dividir depois...

Indiferente da escolha, essa precisa ser adotada em todo o processo, sem ser modificada.

40	46	61	66	100

Vamos dividir antes de inserir, ...

Metade dos dados (a segunda metade) são copiados para um novo bloco e o elemento "central" é promovido para o bloco superior.

Se não há um bloco superior (a página sendo dividida é a raiz), então o valor promovido gera uma nova raiz

Com o bloco dividido, agora podemos fazer a inserção como de costume...

A ligação do bloco aos filhos é feita armazenando (geralmente em um array) a posição de cada filho.

Percebam que há um filho a mais que o número de chaves.

Inserindo 72, 24 e 7

Inserções normais, ...

Inserindo 72, 24 e 7

O bloco precisa ser dividido...

Nesse caso, vamos promover a chave central, com valor 40.

Essa chave é inserida no bloco superior usando a mesma abordagem de procurar a posição... Mas note que os valores e os filhos são movidos...

Inserindo 23, 5, 65, 27, 84 e 55

Inserindo 23, 5, 65, 27, 84 e 55

Inserindo 45, 33, 68, 10, 29, 3, 92 e 11

Inserções normais, ...

Inserindo 45, 33, 68, 10, 29, 3, 92 e 11

Inserindo 32

Inserindo 53

Inserindo 53

Valores a serem removidos

45 33 27 55 38 52 53

