

中华人民共和国国家标准

GB/T 33133.1—2016

信息安全技术 祖冲之序列密码算法 第 1 部分:算法描述

Information security technology—ZUC stream cipher algorithm— Part 1: Algorithm description

2016-10-13 发布 2017-05-01 实施

目 次

前言	\blacksquare
引言	IV
1 范围	1
2 规范性引用文件	1
3 术语和定义	1
4 符号和缩略语	2
4.1 运算符	2
4.2 符号	2
4.3 缩略语	2
5 算法流程	2
5.1 算法结构	
5.2 线性反馈移位寄存器 LFSR	
5.3 比特重组 BR ···································	
5.4 非线性函数 F ······	
5.5 密钥装入	
5.6 算法运行	5
附录 A (规范性附录) S 盒 ··································	6
附录 B (资料性附录) 模 $2^{31}-1$ 乘法和模 $2^{31}-1$ 加法的实现	8
附录 C (资料性附录) 算法计算实例 ····································	9
会 支 文 献	19

前 言

GB/T 33133《信息安全技术 祖冲之序列密码算法》分为以下 3 部分:

- ——第1部分:算法描述;
- ——第2部分:保密性算法;
- ---第3部分:完整性算法。

本部分为 GB/T 33133 的第1部分。

本部分按照 GB/T 1.1-2009 给出的规则起草。

本部分由国家密码管理局提出。

本部分由全国信息安全标准化技术委员会(SAC/TC 260)归口。

本部分起草单位:北京信息科学技术研究院、中国科学院软件研究所、中国科学院数据与通信保护研究教育中心、北京创原天地科技有限公司。

本部分主要起草人:冯登国、林东岱、冯秀涛、周春芳、刘辛越。

 \blacksquare

引 言

本部分的目标是保证祖冲之序列密码算法使用的正确性,为国内企业正确研发使用祖冲之算法的相关设备提供指导。

本部分修改采用如下国际标准:

ETSI/SAGE TS 35.221. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 1:128-EEA3 and 128-EIA3 Specification.

ETSI/SAGE TS 35.222. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3, Document 2: ZUC Specification.

ETSI/SAGE TS 35.223. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.Document 3:Implementor's Test Data.

ETSI/SAGE TR 35.924. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report.

本文件的发布机构请注意,声明符合本文件时,可能涉及《一种序列密码实现方法和装置》(专利号: ZL200910086409.9)和《一种完整性认证方法》(专利号: ZL200910243440.9)相关专利的使用。

本文件的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利的持有人已向本文件的发布机构保证,他愿意同任何申请人在合理且无歧视的条款和条件下,就该专利授权许可进行谈判。该专利的持有人已在本文件的发布机构备案。相关信息可以通过以下联系方式获得:

专利持有人姓名:中国科学院数据与通信保护研究教育中心、中国科学院软件研究所 地址:北京市海淀区闵庄路甲89号邮编:100093、北京市中关村南四街4号邮编:100190

请注意除上述专利外,本文件的某些内容仍可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

信息安全技术 祖冲之序列密码算法 第 1 部分:算法描述

1 范围

GB/T 33133 的本部分给出了祖冲之序列密码算法的一般结构,基于该结构可实现本标准其他各部分所规定的密码机制。

本部分适用于祖冲之序列密码算法相关产品的研制、检测和使用,可应用于涉及非国家秘密范畴的商业应用领域。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 25069-2010 信息安全技术术语

3 术语和定义

GB/T 25069-2010 界定的以及下列术语和定义适用于本文件。

3.1

祖冲之序列密码算法 ZUC Stream Cipher

祖冲之序列密码算法是中国自主研制的流密码算法,是运用于下一代移动通信 4G 网络中的国际标准密码算法,该算法包括祖冲之算法、保密性算法和完整性算法三个部分。

3.2

位 bit

- 二进制数字 binary digit
- 二进制计数制中使用的数字 0 或 1。

3.3

字节 byte

一种由若干位组成的串,视作一个单位,通常代表一个字符或字符的一部分。

注 1: 对一个给定的数据处理系统,一个字节中的位数是固定的。

注2:一个字节通常是8位。

3.4

字 word

由2个以上(包含2个)比特组成的比特串。

本部分主要使用 31 比特字和 32 比特字。

3.5

字表示 word representation

本部分字默认采用十进制表示。当字采用其他进制表示时,总是在字的表示之前或之后添加指示符。例如,前缀 0x 指示该字采用十六进制表示,后缀下角标 2 指示该字采用二进制表示。

1

3.6

高低位顺序 bit ordering

本部分规定字的最高位总是位于字表示中的最左边,最低位总是位于字表示中的最右边。

4 符号和缩略语

4.1 运算符

下列运算符适用于本文件:

- + 算术加法运算
- ab 整数 a 和 b 的乘积
- = 赋值操作符
- mod整数模运算
- ⊕ 按比特位逐位异或运算
- 田 模 232 加法运算
- 字符串或字节串连接符
- •н 取字的最高 16 比特
- •L 取字的最低 16 比特
- 〈〈〈k 32 比特字循环左移 k 位
- ⟩⟩k
 32 比特字右移 k 位
- $a \rightarrow b$ 向量 a 赋值给向量 b,即按分量逐分量赋值

4.2 符号

下列符号适用于本文件:

 $s_0, s_1, s_2, \dots, s_{15}$ 线性反馈移位寄存器的 16 个 31 比特寄存器单元变量

 X_0 , X_1 , X_2 , X_3 比特重组输出的 4 个 32 比特字

 R_1, R_2 非线性函数 F 的 2 个 32 比特记忆单元变量

W 非线性函数 F 输出的 32 比特字

 W_1 R_1 与 X_1 进行模 2^{32} 加法运算输出的 32 比特字 W_2 R_2 与 X_2 按比特位逐位异或运算输出的 32 比特字

Z 算法每拍输出的 32 比特密钥字

 k
 初始种子密钥

 iv
 初始向量

 d_i 15 比特的字符串常量, $i=0,1,2,\dots,15$

 F
 非线性函数

 L
 輸出密钥字长度

4.3 缩略语

下列缩略语适用于本文件:

LFSR 线性反馈移位寄存器(Linear Feedback Shift Register)

BR 比特重组(Bit Reorganization)

5 算法流程

5.1 算法结构

祖冲之算法由线性反馈移位寄存器(LFSR)、比特重组(BR)和非线性函数 F 组成,见图 1。

图 1 祖冲之算法结构图

5.2 线性反馈移位寄存器 LFSR

5.2.1 概述

LFSR 包括 $16 \uparrow 31$ 比特寄存器单元变量 s_0, s_1, \dots, s_{15} 。 LFSR 的运行模式有 $2 \uparrow m$:初始化模式和工作模式。

5.2.2 初始化模式

LFSR 接收 1 个 31 比特字 u 的输入,对寄存器单元变量 s_0 , s_1 ,…, s_{15} 进行更新,计算过程如下:LFSRWithInitialisationMode(u)

```
{
(1) \ v = 2^{15} s_{15} + 2^{17} s_{13} + 2^{21} s_{10} + 2^{20} s_4 + (1+2^8) s_0 \mod (2^{31}-1);
(2) \ s_{16} = (v+u) \mod (2^{31}-1);
(3) \ \text{MR} \ s_{16} = 0, \text{MB} \ s_{16} = 2^{31}-1;
(4) \ (s_1, s_2, \dots, s_{15}, s_{16}) \rightarrow (s_0, s_1, \dots, s_{14}, s_{15}).
}
```

模 2³¹-1 乘法和模 2³¹-1 加法的实现参见附录 B。

5.2.3 工作模式

LFSR 无输入,直接对寄存器单元变量 s_0 , s_1 , ..., s_{15} 进行更新, 计算过程如下:

GB/T 33133.1-2016

```
LFSRWithWorkMode()
{
    (1) s_{16} = 2^{15} s_{15} + 2^{17} s_{13} + 2^{21} s_{10} + 2^{20} s_4 + (1+2^8) s_0 \mod (2^{31}-1);
    (2) 如果 s_{16} = 0,则置 s_{16} = 2^{31}-1;
    (3) (s_1, s_2, \dots, s_{15}, s_{16}) \rightarrow (s_0, s_1, \dots, s_{14}, s_{15})_{\circ}
}
```

5.3 比特重组 BR

输入为 LFSR 寄存器单元变量 s_0 , s_2 , s_5 , s_7 , s_9 , s_{11} , s_{14} , s_{15} , 输出为 4 个 32 比特字 X_0 , X_1 , X_2 , X_3 。 计算过程如下:

```
BitReconstruction() { (1) \ X_0 = s_{15\text{H}} \parallel s_{14\text{L}};
```

- (2) $X_1 = s_{11L} \parallel s_{9H}$;
- (3) $X_2 = s_{7L} \parallel s_{5H}$;
- $(4) X_3 = s_{2L} \parallel s_{0H} .$

}

5.4 非线性函数 F

F 包含 2 个 32 比特记忆单元变量 R_1 和 R_2 。

F 的输入为 3 个 32 比特字 X_0 、 X_1 、 X_2 ,输出为一个 32 比特字 W。计算过程如下:

$$F(X_{0}, X_{1}, X_{2})$$
{
$$(1) W = (X_{0} \oplus R_{1}) \boxplus R_{2};$$

$$(2) W_{1} = R_{1} \boxplus X_{1};$$

$$(3) W_{2} = R_{2} \oplus X_{2};$$

$$(4) R_{1} = S[L_{1}(W_{1L} \parallel W_{2H})];$$

$$(5) R_{2} = S[L_{2}(W_{2L} \parallel W_{1H})]_{0}$$

其中 S 为 32 比特的 S 盒变换,S 盒定义见附录 A; L_1 和 L_2 为 32 比特线性变换,定义如下:

$$L_1(X) = X \oplus (X \langle \langle \langle 2 \rangle) \oplus (X \langle \langle \langle 10 \rangle) \oplus (X \langle \langle \langle 18 \rangle) \oplus (X \langle \langle \langle 24 \rangle),$$

$$L_2(X) = X \oplus (X \langle \langle \langle 8 \rangle) \oplus (X \langle \langle \langle 14 \rangle) \oplus (X \langle \langle \langle 22 \rangle) \oplus (X \langle \langle \langle 30 \rangle)_{\circ}$$

5.5 密钥装入

将初始密钥 k 和初始向量 iv 分别扩展为 16 个 31 比特字作为 LFSR 寄存器单元变量 s_0 , s_1 , \cdots , s_{15} 的初始状态。步骤如下:

a) 设 k 和 iv 分别为

$$k_0 \parallel k_1 \parallel \cdots \parallel k_{15}$$

和

$$iv_0 \parallel iv_1 \parallel \cdots \cdots \parallel iv_{15}$$

其中 k_i 和 iv_i 均为_8 比特字节,0 $\leq i \leq 15$ 。

b) 对 $0 \le i \le 15$, 有 $s_i = k_i \parallel d_i \parallel iv_i$ 。这里 d_i 为 16 比特的常量串,定义如下:

```
d_0 = 100010011010111_2,
d_1 = 0100110101111100_2,
d_2 = 110001001101011_2,
d_3 = 0010011010111110_2,
d_4 = 1010111110001001_2,
d_5 = 0110101111100010_2,
d_6 = 111000100110101_2,
d_7 = 0001001101011111_2,
d_8 = 1001101011111000_2,
d_9 = 010111100010011_2,
d_{10} = 1101011111000100_2,
d_{11} = 0011010111110001_2,
d_{12} = 1011111000100110_2,
d_{13} = 011110001001101_2,
d_{14} = 111100010011010_2,
d_{15} = 100011110101100_2 \circ
```

5.6 算法运行

5.6.1 概述

祖冲之算法的输入参数为初始密钥 k、初始向量 iv 和正整数 L,输出参数为 L 个密钥字 Z。算法运行过程包含初始化步骤和工作步骤。

5.6.2 初始化步骤

- a) 按照 4.5 将初始密钥 k 和初始向量 iv 装入到 LFSR 的寄存器单元变量 s_0 , s_1 , …, s_{15} 中, 作为 LFSR 的初态;
- b) 令 32 比特记忆单元变量 R_1 和 R_2 为 0;
- c) 重复执行下述过程 32 次:
 - 1) BitReconstruction();
 - 2) $W = F(X_0, X_1, X_2);$
 - 3) 输出 32 比特字 W;
 - 4) LFSRWithInitialisationMode $(W\rangle\rangle1)_{\circ}$

5.6.3 工作步骤

- a) 执行下述过程:
 - 1) BitReconstruction();
 - 2) $F(X_0, X_1, X_2)$;
 - 3) LFSRWithWorkMode().
- b) 重复计算 L 次下述过程:
 - 1) BitReconstruction();
 - 2) $Z = F(X_0, X_1, X_2) \oplus X_3$;
 - 3) 输出 32 比特密钥字 Z;
 - 4) LFSRWithWorkMode()。

算法计算实例参见附录 C。

5AC

附 录 **A** (规范性附录) **S** 盒

32 比特 S 盒 S 由 4 个小的 8×8 的 S 盒并置而成,即 $S=(S_0,S_1,S_2,S_3)$,其中 $S_0=S_2$, $S_1=S_3$ 。 S_0 和 S_1 的定义分别见表 A.1 和表 A.2。设 S_0 (或 S_1)的 8 比特输入为 x。将 x 视作两个 16 进制数的连接,即 $x=h\parallel l$,则表 A.1(或表 A.2)中第 h 行和第 l 列交叉的元素即为 S_0 或 S_1)的输出 $S_0(x)$ [或 $S_1(x)$]。

设S 盒S 的 32 比特输入X 和 32 比特输出Y分别为:

 $X = x_0 \| x_1 \| x_2 \| x_3$

 $Y = y_0 \parallel y_1 \parallel y_2 \parallel y_3$

其中, x_i 和 y_i 均为8比特字节,i=0,1,2,3。则有 $y_i=S_i(x_i)$,i=0,1,2,3。

表 A.1 S_0 盒

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	3E	72	5B	47	CA	E0	00	33	04	D1	54	98	09	В9	6D	СВ
1	7B	1B	F9	32	AF	9D	6 A	A 5	В8	2D	FC	1D	08	53	03	90
2	4D	4E	84	99	E4	CE	D9	91	DD	В6	85	48	8B	29	6E	AC
3	CD	C1	F8	1E	73	43	69	C6	B5	BD	FD	39	63	20	D4	38
4	76	7D	B2	A7	CF	ED	57	C5	F3	2C	BB	14	21	06	55	9B
5	E3	EF	5E	31	4F	7F	5 A	A4	0D	82	51	49	5F	ВА	58	1C
6	4 A	16	D5	17	A8	92	24	1F	8C	FF	D8	AE	2E	01	D3	AD
7	3B	4B	DA	46	EB	C9	DE	9A	8F	87	D7	3A	80	6F	2F	С8
8	B1	В4	37	F7	0 A	22	13	28	7C	СС	3C	89	C7	СЗ	96	56
9	07	BF	7E	F0	0B	2B	97	52	35	41	79	61	A6	4C	10	FE
A	ВС	26	95	88	8A	В0	A3	FB	C0	18	94	F2	E1	E5	E9	5D
В	D0	DC	11	66	64	5C	EC	59	42	75	12	F5	74	9C	AA	23
С	0E	86	AB	BE	2A	02	E7	67	E6	44	A2	6C	C2	93	9F	F1
D	F6	FA	36	D2	50	68	9E	62	71	15	3D	D6	40	C4	E2	0F
Е	8E	83	77	6B	25	05	3F	0C	30	EA	70	В7	A1	E8	A9	65
F	8D	27	1A	DB	81	ВЗ	A 0	F4	45	7 A	19	DF	EE	78	34	60

表 A.2 S_1 盒

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	55	C2	63	71	3B	С8	47	86	9F	3C	DA	5B	29	AA	FD	77
1	8C	C5	94	0C	A6	1A	13	00	E3	A8	16	72	40	F9	F8	42
2	44	26	68	96	81	D9	45	3E	10	76	C6	A7	8B	39	43	E1
3	3A	В5	56	2A	C0	6D	ВЗ	05	22	66	BF	DC	0B	FA	62	48
4	DD	20	11	06	36	С9	C1	CF	F6	27	52	BB	69	F5	D4	87
5	7F	84	4C	D2	9C	57	A4	ВС	4F	9 A	DF	FE	D6	8D	7 A	EB
6	2B	53	D8	5C	A1	14	17	FB	23	D5	7D	30	67	73	08	09
7	EE	В7	70	3F	61	B2	19	8E	4 E	E5	4B	93	8F	5D	DB	A9
8	AD	F1	AE	2E	СВ	0D	FC	F4	2D	46	6E	1D	97	E8	D1	E9
9	4D	37	A 5	75	5E	83	9E	AB	82	9D	В9	1C	E0	CD	49	89
A	01	В6	BD	58	24	A2	5F	38	78	99	15	90	50	В8	95	E4
В	D0	91	C7	CE	ED	0F	B4	6F	A 0	CC	F0	02	4 A	79	С3	DE
С	A 3	EF	EA	51	E6	6B	18	EC	1B	2C	80	F7	74	E7	FF	21
D	5 A	6A	54	1E	41	31	92	35	C4	33	07	0 A	ВА	7E	0E	34
Е	88	B1	98	7C	F3	3D	60	6C	7B	CA	D3	1F	32	65	04	28
F	64	BE	85	9B	2F	59	8A	D7	В0	25	AC	AF	12	03	E2	F2

注: S_0 盒和 S_1 盒数据均为十六进制表示。

附录B

(资料性附录)

模 231-1 乘法和模 231-1 加法的实现

B.1 模 2³¹-1 乘法

两个 31 比特字模 $2^{31}-1$ 乘法可以快速实现。特别地,当其中一个字具有较低的汉明重量时,可以通过 31 比特的循环移位运算和模 $2^{31}-1$ 加法运算实现。例如,计算 $ab \mod (2^{31}-1)$,其中 $b=2^i+2^j+2^k$ 。则

 $ab \mod (2^{31}-1) = (a <<<<_{31} i) + (a <<<_{31} j) + (a <<<_{31} k) \mod (2^{31}-1) \\$ ······(B.1) 式中:</<>

B.2 模 2³¹-1加法

在 32 位处理平台上,两个 31 比特字 a 和 b 模 $2^{31}-1$ 加法运算 $c=a+b \mod (2^{31}-1)$ 可以通过下面的两步计算实现:

- a) c = a + b;
- b) c = (c & 0x7FFFFFFFF) + (c) > 31).

540

附 录 C (资料性附录) 算法计算实例

C.1 测试向量 1(全 0)

输入:

输出:

 $z_1: 27 \text{ bede } 74$

z₂:018082da

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	0044d700	0026bc00	00626b00	00135e00	00578900	0035e200	00713500	0009af00
8	004d7800	002f1300	006bc400	001af100	005e2600	003c4d00	00789a00	0047ac00
t	$X_{\scriptscriptstyle 0}$	$X_{\scriptscriptstyle 1}$	$X_{\scriptscriptstyle 2}$	X_3	$R_{\scriptscriptstyle 1}$	$R_{\scriptscriptstyle 2}$	W	$S_{\scriptscriptstyle 15}$
0	008f9a00	f100005e	af00006b	6b000089	67822141	62a3a55f	008f9a00	4563cb1b
1	8ac7ac00	260000d7	780000e2	5e00004d	474a2e7e	119e94bb	4fe932a0	28652a0f
2	50cacb1b	4d000035	13000013	890000c4	c29687a5	e9b6eb51	291f7a20	7464f744
3	e8c92a0f	9a0000bc	c400009a	e2000026	29c272f3	8cac7f5d	141698fb	3f5644ba
4	7eacf744	ac000078	f100005e	350000af	2c85a655	24259cb0	e41b0514	006a144c
5	00d444ba	cb1b00f1	260000d7	af00006b	cbfbc5c0	44c10b3a	50777f9f	07038b9b
6	0e07144c	2a0f008f	4d000035	780000e2	e083c8d3	7abf7679	0abddcc6	69b90e2b
7	d3728b9b	f7448ac7	9a0000bc	13000013	147e14f4	b669e72d	aeb0b9c1	62a913ea
8	c5520e2b	44ba50ca	ac000078	c400009a	982834a0	f095d694	8796020c	7b591cc0
9	f6b213ea	144ce8c9	cb1b00f1	f100005e	e14727d6	d0225869	5f2ffdde	70e21147
初	始化后线性	反馈移位寄存	字器状态:					
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	7ce15b8b	747ca0c4	6259dd0b	47a94c2b	3a89c82e	32b433fc	231ea13f	31711e42
8	4ccce955	3fb6071e	161d3512	7114b136	5154d452	78c69a74	4f26ba6b	3e1b8d6a

有限状态机内部状态:

 $R_1 = 14$ cfd44c

 $R_2 = 8c6 de800$

GB/T 33133.1—2016

密钥流:

t	X_0	X_1	X_{2}	X_3	$R_{\scriptscriptstyle 1}$	R_{2}	z	S_{15}
0	7c37ba6b	b1367f6c	1e426568	dd0bf9c2	3512bf50	a0920453	286dafe5	7f08e141
1	fe118d6a	d4522c3a	e955463d	4c2be8f9	c7ee7f13	0c0fa817	27bede74	3d383d04
2	7a70e141	9a74e229	071e62e2	c82ec4b3	dde63da7	b9dd6a41	018082da	13d6d780

C.2 测试向量 2(全 1)

输入:

输出:

z₁:0657cfa0

z₂:7096398b

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	${S}_{1+i}$	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	7fc4d7ff	7fa6bcff	7fe26bff	7f935eff	7fd789ff	7fb5e2ff	7ff135ff	7f89afff
8	7fcd78ff	7faf13ff	7febc4ff	7f9af1ff	7fde26ff	7fbc4dff	7ff89aff	7fc7acff
t	X_0	X_{1}	X_{2}	X_3	R_{1}	$R_{{\scriptscriptstyle 2}}$	W	S_{15}
0	ff8f9aff	f1ffff5e	afffff6b	6bffff89	b51c2110	30a3629a	ff8f9aff	76e49a1a
1	edc9acff	26ffffd7	78ffffe2	5effff4d	a75b6f4b	1a079628	8978f089	5e2d8983
2	bc5b9a1a	4dffff35	13ffff13	89ffffc4	9810b315	99296735	35088b79	5b9484b8
3	b7298983	9affffbc	c4ffff9a	e2ffff26	4c5bd8eb	2d577790	c862a1cb	2db5c755
4	5b6b84b8	acffff78	f1ffff5e	35ffffaf	a13dcb66	21d0939f	4487d3e3	60579232
5	c0afc755	9a1afff1	26ffffd7	afffff6b	cc5ce260	0c50a8e2	83629fd2	29d4e960
6	53a99232	8983ff8f	4dffff35	78ffffe2	dada0730	b516b128	ac461934	5e02d9e5
7	bc05e960	84b8edc9	9affffbc	13ffff13	2bbe53a4	12a8a16e	1bf69f78	7904dddc
8	f209d9e5	c755bc5b	acffff78	c4ffff9a	4a90d661	d9c744b4	ec602baf	0c3c9016
9	1879dddc	9232b729	9a1afff1	f1ffff5e	76bc13d7	a49ea404	2cb05071	0b9d257b
初	始化后线性	反馈移位寄存	字器状态:					
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	09a339ad	1291d190	25554227	36c09187	0697773b	443cf9cd	6a4cd899	49e34bd0
8	56130b14	20e8f24c	7a5b1dcc	0c3cc2d1	1cc082c8	7f5904a2	55b61ce8	1fe46106

有限状态机内部状态:

 $R_1 = b8017bd5$

 $R_2 = 9 \text{ce} 2 \text{de} 5 \text{c}$

密钥流:

t	X_0	$X_{\scriptscriptstyle 1}$	X_{2}	X_3	$R_{\scriptscriptstyle 1}$	$R_{{\scriptscriptstyle 2}}$	z	S_{15}
0	3fc81ce8	c2d141d1	4bd08879	42271346	aa131b11	09 d 7706c	668b56df	13f56dbf
1	27ea6106	82c8f4b6	0b14d499	91872523	251e7804	caac5d66	0657cfa0	0c0fe353
2	181f6dbf	04a21879	f24c93c6	773b4aaa	d94e9228	91d88fba	7096398b	10f1eecf

C.3 测试向量 3(随机)

输入:

密钥 k: 3d 4c 4b e9 6a 82 fd ae b5 8f 64 1d b1 7b 45 5b 初始向量 iv: 84 31 9a a8 de 69 15 ca 1f 6b da 6b fb d8 c7 66 输出:

 $z_1:14f1c272$

z₂:3279c419

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	1ec4d784	2626bc31	25e26b9a	74935ea8	355789de	4135e269	7ef13515	5709afca
8	5acd781f	47af136b	326bc4da	0e9af16b	58de26fb	3dbc4dd8	22f89ac7	2dc7ac66
t	$X_{\scriptscriptstyle 0}$	$X_{\scriptscriptstyle 1}$	X_{2}	X_3	$R_{\scriptscriptstyle 1}$	$R_{{\scriptscriptstyle 2}}$	W	S_{15}
0	5b8f9ac7	f16b8f5e	afca826b	6b9a3d89	9c62829f	5df00831	5b8f9ac7	3c7b93c0
1	78f7ac66	26fb64d7	781ffde2	5ea84c4d	3d533f3a	80ff1faf	4285372a	41901ee9
2	832093c0	4dd81d35	136bae13	89de4bc4	2ca57e9d	d1db72f9	3f72cca9	411efa99
3	823d1ee9	9ac7b1bc	c4dab59a	e269e926	0e8dc40f	60921a4f	8073d36d	24b3f49f
4	4967fa99	ac667b78	f16b8f5e	35156aaf	16c81467	da8e7d8a	a87c58e5	74265785
5	e84cf49f	93c045f1	26fb64d7	afca826b	50c9eaa4	3c3b2dfd	d9135e82	481c5b9d
6	90385785	1ee95b8f	4dd81d35	781ffde2	59857b80	be0fbdc1	fd2ceb1e	4b7f87ed
7	96ff5b9d	fa9978f7	9ac7b1bc	136bae13	9528f8ea	bcc7f7eb	8d89ddde	0e633ce7
8	1cc687ed	f49f8320	ac667b78	c4dab59a	c59d2932	e1098a64	46b676f2	643ae5a6
9	c8753ce7	5785823d	93c045f1	f16b8f5e	755ebae8	3f9e6e86	eef1a039	625ac5d7
初	始化后线性	反馈移位寄存	字器状态:					
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	10da5941	5b6acbf6	17060ce1	35368174	5cf4385a	479943df	2753bab2	73775d6a
8	43930a37	77b4af31	15b2e89f	24ff6e20	740c40b9	026a5503	194b2a57	7a9a1cff

GB/T 33133.1—2016

有限状态机内部状态:

 $R_1 = 860a7dfa$

 $R_2 = bf0e0ffc$

密钥流:

t	$X_{\scriptscriptstyle 0}$	$X_{\scriptscriptstyle 1}$	$oldsymbol{X}_2$	X_3	$R_{\scriptscriptstyle 1}$	$R_{\scriptscriptstyle 2}$	z	S_{15}
0	f5342a57	6e20ef69	5d6a8f32	0ce121b4	129d8b39	2d7cdce1	3ead461d	3d4aa9e7
1	7a951cff	40b92b65	0a374ea7	8174b6d5	ab7cf688	c1598aa6	14f1c272	71db1828
2	e3b6a9e7	550349fe	af31e6ee	385a2e0c	3cec1a4a	9053cc0e	3279c419	258937da

注:上述祖冲之算法计算实例中数据全部采用十六进制表示。

540

参考文献

- [1] ETSI/SAGE TS 35.221. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.Document 1:128-EEA3 and 128-EIA3 Specification.
- [2] ETSI/SAGE TS 35.222. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification.
- [3] ETSI/SAGE TS 35.223. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 3: Implementor's Test Data.
- [4] ETSI/SAGE TR 35.924. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report.

5AC