

Basic R programing 11-12 Jan 2021

Lecture 5 (10:45-12:00): Categorical data analysis

Dr. Palang Chotsiri

palang@tropmedres.ac

What is categorical data

 A categorical variable has a measurement scale consisting of a set of categories.

Gender	Smoking status	Treatment response
□ Male	☐ Smoker	□ Poor
☐ Female	☐ Non-smoker	☐ Fair
		☐ Good
		□ Excellent

Gender	Smoking status	Treatment response
☐ Male	☐ Smoker	□ Poor
☐ Female	□ Non-smoker	☐ Fair
		☐ Good
		☐ Excellent

Ordinal variables

Statistical data analysis for nominal variables

One variable:

Using table

Alcohol consumption	Non drinker	Occasional drinker	Frequent drinker	Regular drinker
n	1078	718	152	52

Statistical data analysis for nominal variables

Using table

ggplot(alcohol) +

theme_bw()

Suppose now there are two categorical variables: X and Y, X has I categories & Y has I categories

• To study the relationship between X and Y ($X \Leftrightarrow Y$)

Contingency table

Frequency count

Evpocuro	Outo	Total	
Exposure	Yes	No	Total
Yes	a	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

Marginal frequencies: Row sum and Column sum Total number of people

• Examples:

• There was a dramatic increase in the no. of deaths due to lung cancer in England and Wales from 1922 to 1947.

• Examples:

• The London Fog is one of the attractions of London in early 20th century. Many people believe that the main cause is a general atmospheric pollution.

• Examples:

- However, two British researchers, Richard Doll and Bradford Hill, suspected that the smoking of tobacco might be the cause!
- To address the problem, they conducted a case-control study.

Examples:

709 subjects with Lung cancer

688 are smokers

709 subjects with Lung cancer

650 are smokers

- All subjects were interviewed about their past smoking habits along many other potential risk factors in 20 hospitals in London.
- The cases and controls had similar demographic characteristics (age and gender).

• Examples:

To study the relationship between lung cancer and smoking

Contingency table

- The exposure X has two categories: smokers or non-smokers
- The outcome Y has two categories: lung cancer or no lung cancer
- \rightarrow We need 2 \times 2 contingency table

• Examples:

To study the relationship between lung cancer and smoking

Contingency table

- The exposure X has two categories: smokers or non-smokers
- The outcome Y has two categories: lung cancer or no lung cancer
- \rightarrow We need 2 \times 2 contingency table

• Examples:

Exposure	Outo	Total	
	Yes	No	IOtai
Yes	а	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

Marginal frequencies: Row sum and Column sum Total number of people

• Examples:

Evposuro	Outcome		Total
Exposure	Yes	No	IOtai
Yes	688	650	1338
No	21	59	80
Total	709	709	1418

Marginal frequencies:
Row sum and Column sum

Total number of people

Condor	Heart disease		Total
Gender	Yes	No	IOtai
Male	π_{11}	π_{12}	π_{1+}
Female	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

Joint probability (π_{ij}) : ex. $Pr(Male, Heart \ disease)$

Condor	Heart disease		Total
Gender	Yes	No	IOtai
Male	π_{11}	π_{12}	π_{1+}
Female	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

Marginal probability (π_i, π_j) : ex. Pr(Male)

Condor	Heart disease		Total
Gender	Yes	No	IOtai
Male	π_{11}	π_{12}	π_{1+}
Female	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

Marginal probability (π_i, π_j) : ex. Pr(Male)

Gender	Heart disease		Total
Gender	Yes	No	IOtai
Male	π_{11}	π_{12}	π_{1+}
Female	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

Conditional probability: ex. Pr(*Heart disease* | *Male*)

Example

	No wind	Some wind	Strong wind	Storm
No rain	0.1	0.2	0.05	0.01
Light rain	0.05	0.1	0.15	0.04
Heavy rain	0.05	0.1	0.1	0.05

Joint probability

• P(no wind, Light rain) = 0.05

Marginal probability

- P(no wind) = 0.1 + 0.05 + 0.05 = 0.2
- P(Light rain) = 0.05 + 0.1 + 0.15 + 0.04 = 0.34

Conditional probability

- P(no wind | Light rain) = $\frac{0.05}{0.34}$ = 0.147
- P(Light rain | no wind) = $\frac{0.05}{0.2}$ = 0.25

Type of Observational Study

- Cohort study
- Case-control study
- Cross sectional study

Cohort study

Exposure = Yes

Exposure = No

time

Cohort study

Exposure = Yes

Exposure = No

time

Cohort study

Exposure → Outcome

Incidence = no. of new case within a certain time period

Exposure = Yes

Exposure = No

Case-Control Study

Outcome = Yes

Outcome = No

Case-Control Study

Outcome → Exposure

time

Cross-Sectional Study

Exposure and outcome were selected at the same time!

Outcome Exposure

Prevalence = no. of case/no. of people

Type of study	Type of association
Cohort study	Relative risk (RR)
Case-control study	Odds Ratio (OR)
Cross-sectional study	Relative risk (RR)

Exposure	Outcome		Total
	Yes	No	IOtal
Yes	а	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

Risk a : Pr (having the outcome in the exposed group) = $\frac{a}{a+b}$

Risk c : Pr (having the outcome in the unexposed group) = $\frac{c}{c+d}$

Exposure	Outcome		Total
	Yes	No	IOtai
Yes	а	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

$$Relative\ Risk = \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$$

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}} = 1$$

Risk between two groups are the same. No association

Risk of exposed group > Risk of unexposed group

Being exposed → Higher risk

Risk of exposed group < Risk of unexposed group

Being exposed → Lower risk

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}} < 1$$

Is there any association?

Is there any association?

95% confidence interval

If 1 falls within 95% CI

No association

95% Confidence Interval

95% confidence interval

RR = 0.9

If not \rightarrow there is an association

95% CI of log(RR)

$$log(RR) \pm 1.96 \times SE(log(RR))$$

95% CI of RR

$$e^{[\log{(RR)}\pm1.96\times SE(\log{(RR)})]}$$

Vaccine study

ORIGINAL ARTICLE

Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

Fernando P. Polack, M.D., Stephen J. Thomas, M.D., Nicholas Kitchin, M.D., Judith Absalon, M.D., Alejandra Gurtman, M.D., Stephen Lockhart, D.M., John L. Perez, M.D., Gonzalo Pérez Marc, M.D., Edson D. Moreira, M.D., Cristiano Zerbini, M.D., Ruth Bailey, B.Sc., Kena A. Swanson, Ph.D., et al., for the C4591001 Clinical Trial Group*

A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo.

Question:

- Please construct a contingency table.
- Calculate the risk of having COVID positive when subjects received vaccine injection
- Calculate the risk of having COVID positive when subjects did not received vaccine injection
- Calculate the Relative risk with 95% CI of the COVID vaccine.

• If the Vaccine efficacy (VE) is determined by (1 - RR), what is the COVID vaccine efficacy

How do you discuss the results?

Function for calculating CI

```
> relative.risk = function(x, conf.level=0.95)
> {
\Rightarrow a = x[1,1]; b = x[1,2]; c = x[2,1]; d = x[2,2]
  RR < -(a/(a+b)) / (c/(c+d))
  ASE <- sqrt((b/(a*(a+b))) + (d/(c*(c+d))))
   CI \leftarrow exp(log(RR) + c(-1,1) * qnorm(0.5*(1+conf.level)) *ASE)
   list(estimator=RR,
        ASE=ASE,
        conf.interval=CI,
        conf.level=conf.level)
>}
```

Odds Ratio (OR)

• It is a ratio of Odds!!

• What is Odds?

Odds of an event =
$$\frac{Pr(\text{event will occur})}{Pr(\text{event will not occur)}}$$

Odds Ratio (OR)

Evnocuro	Outcome		Total
Exposure	Yes	No	IOtal
Yes	а	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

Odds of exposed person develops a disease $=\frac{a}{b}$

Odds of non-expose person develops a disease $=\frac{c}{d}$

Odds Ratio (OR)

Evnocuro	Outcome		Total
Exposure	Yes	No	IOtal
Yes	а	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

Odds Ratio
$$=\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \times d}{b \times c}$$

$$OR = \frac{\frac{a}{b}}{\frac{c}{d}} = 1$$

Risk between two groups are the same. No association

January 11-12, 2021

Risk of exposed group > Risk of unexposed group

Being exposed → Higher risk

Risk of exposed group < Risk of unexposed group

Being exposed → Lower risk

$$OR = \frac{\frac{a}{b}}{\frac{c}{d}} < 1$$

Is there any association?

Is there any association?

95% confidence interval

$$OR = 0.9$$

If 1 falls within 95% CI

No association

95% Confidence Interval

95% confidence interval

RR = 0.9

If not \rightarrow there is an association

95% CI of log(OR)

$$log(OR) \pm 1.96 \times SE(log(OR))$$

95% CI of RR

 $e^{[log(OR)\pm 1.96\times SE(log(OR))]}$

January 11-12, 2021

BNT162b2	COVID		Total
DIALI TOSDS	Positive	Negative	IOtai
Yes	8	21712	21720
No	162	21566	21728
Total	170	43278	43448

Odds of getting COVID for a vaccinated group = $\frac{8}{21712}$ = 0.000368

Odds of getting COVID for a non-vaccinated group $=\frac{162}{21566}=0.000751$

BNT162b2	COVID		Total
PIN I TOSDS	Positive	Negative	Total
Yes	8	21712	21720
No	162	21566	21728
Total	170	43278	43448

Odds Ratio =
$$\frac{0.000368}{0.000751} = 0.049$$

Odds Ratio =
$$\frac{0.000368}{0.000751} = 0.049$$

95% Confidence interval = 0.024 to 0.099

Negative association

Odds of getting COVID in a non-vaccinated group is about 20 times higher than it is for vaccinated group.

OR = 0.049 (0.024 - 0.099)

Barnard's test

Fisher's Exact test

Pearson's Chi square test

Pearson's Chi square test

Evnocuro	Outcome		Total
Exposure	Yes	No	Total
Yes	а	b	a+b
No	С	d	c+d
Total	a+c	b+d	a+b+c+d

Fisher's Exact test

Evnocuro	Outcome		Total
Exposure	Yes	No	Total
Yes	а	b	a+b
No	С	d	c+d_
Total	a+c	b+d	a+b+c+d

Barnard's test

No condition, but not popular

Step 1

 H_0 : There is **NO** association between exposure and outcome

 H_1 : There is association between exposure and outcome

Step 2

Performed hypothesis testing

Step 3

Check p-value!

If p-value < 0.05, reject $H_0 \rightarrow$ There is an association

If p-value > 0.05, do not reject $H_0 \rightarrow$ There is no association

Hypothesis testing in R

Barnard's test

Library(Exact)
exact.test(x)

Fisher's Exact test

fisher.test(x)

Pearson's Chi square test

chisq.test(x)

BNT162b2	COVID		Total
PIN I TOSDS	Positive	Negative	Total
Yes	8	21712	21720
No	162	21566	21728
Total	170	43278	43448

 H_0 : There is NO association between vaccination and getting COVID H_1 : There is association between vaccination and getting COVID

OR = 0.04905065 (0.02411292, 0.09977913) P-value < 2.2e-16

Summary

Type of study	Type of association	Hypothesis testing
Cohort study	Relative risk (RR)	Pearson's Chi square test Fisher's Exact test Barnard's test
Case-control study	Odds Ratio (OR)	Pearson's Chi square test Fisher's Exact test Barnard's test
Cross-sectional study	Relative risk (RR)	Pearson's Chi square test Fisher's Exact test Barnard's test