Importing Libraries

In [1]: import numpy as np
 import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

In [2]: df = pd.read_csv('admission_predict.csv')

In [3]: df.head()

Out[3]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [4]: df.tail()

Out[4]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
495	496	332	108	5	4.5	4.0	9.02	1	0.87
496	497	337	117	5	5.0	5.0	9.87	1	0.96
497	498	330	120	5	4.5	5.0	9.56	1	0.93
498	499	312	103	4	4.0	5.0	8.43	0	0.73
499	500	327	113	4	4.5	4.5	9.04	0	0.84

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	500 non-null	int64
1	GRE Score	500 non-null	int64
2	TOEFL Score	500 non-null	int64
3	University Rating	500 non-null	int64
4	SOP	500 non-null	float64
5	LOR	500 non-null	float64
6	CGPA	500 non-null	float64
7	Research	500 non-null	int64
8	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 35.3 KB

In [6]: df.describe().T

Out[6]:

	count	mean	std	min	25%	50%	75%	max	
Serial No.	500.0	250.50000	144.481833	1.00	125.7500	250.50	375.25	500.00	
GRE Score	500.0	316.47200	11.295148	290.00	308.0000	317.00	325.00	340.00	
TOEFL Score	500.0	107.19200	6.081868	92.00	103.0000	107.00	112.00	120.00	
University Rating	500.0	3.11400	1.143512	1.00	2.0000	3.00	4.00	5.00	
SOP	500.0	3.37400	0.991004	1.00	2.5000	3.50	4.00	5.00	
LOR	500.0	3.48400	0.925450	1.00	3.0000	3.50	4.00	5.00	
CGPA	500.0	8.57644	0.604813	6.80	8.1275	8.56	9.04	9.92	
Research	500.0	0.56000	0.496884	0.00	0.0000	1.00	1.00	1.00	
Chance of Admit	500.0	0.72174	0.141140	0.34	0.6300	0.72	0.82	0.97	

In [7]: df.isnull().any()

Out[7]: Serial No. False GRE Score False TOEFL Score False University Rating False SOP False LOR False **CGPA** False Research False Chance of Admit False

dtype: bool

Out[8]:

	Serial No.	GRE	TOEFL	University Rating	SOP	LOR	CGPA	Research	Probability
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

```
In [9]: fig = plt.hist(df['GRE'], rwidth=0.7)
    plt.title("Distribution of GRE Scores")
    plt.xlabel('GRE Scores')
    plt.ylabel('Count')
    plt.show()
```



```
In [10]: fig = plt.hist(df['TOEFL'], rwidth=0.7)
    plt.title('Distribution of TOEFL Scores')
    plt.xlabel('TOEFL Scores')
    plt.ylabel('Count')
    plt.show()
```


Data Cleaning

```
In [11]: df.drop('Serial No.', axis='columns', inplace=True)
    df.head()
```

Out[11]:

	GRE	TOEFL	University Rating	SOP	LOR	CGPA	Research	Probability
0	337	118	4	4.5	4.5	9.65	1	0.92
1	324	107	4	4.0	4.5	8.87	1	0.76
2	316	104	3	3.0	3.5	8.00	1	0.72
3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65

```
df_copy = df.copy(deep=True)
In [12]:
         df_copy[['GRE','TOEFL','University Rating','SOP','LOR','CGPA']] = df_copy[[
         df_copy.isnull().sum()
Out[12]: GRE
                               0
         T0EFL
                               0
         University Rating
                               0
         SOP
                               0
         LOR
                               0
                               0
         CGPA
         Research
         Probability
         dtype: int64
```

Modelling

```
In [13]: X = df_copy.drop('Probability', axis='columns')
y = df_copy['Probability']
```

```
In [14]: from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import Lasso
    from sklearn.svm import SVR
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.neighbors import KNeighborsRegressor
```

```
In [16]: from sklearn.model_selection import cross_val_score
    scores = cross_val_score(LinearRegression(), X, y, cv=5)
    print('Highest Accuracy : {}%'.format(round(sum(scores)*100/len(scores)), 3
```

Highest Accuracy: 81%