CS544 Introduction to Network Science Introduction

Most slides adapted from Konstantinos Pelechrinis course on Network Science & Analysis, University of Pittsburgh

The Internet

Social Networks

Human Disease Network

Neuro Networks

Genetic interaction network

Road and Airlines Network

Other Data as Graphs

ON CAMPA

Image credit: math.hws.edu

Image credit: Maximilian Nickel et al

Knowledge Graphs

Regulatory Networks

Scene Graphs

Image credit: MDPI

Code Graphs

Molecules

3D Shapes

Why Networks?

- Nothing happens in isolation: "everything is connected, caused by, and interacting with a huge number of other pieces of a complex universal puzzle" (AL Barabasi, "Linked")
- The power of the network is in the links
- However, most people don't see the links till they are exposed to them

Why Network Science?

- Study of the structural evolution of large networks
- It studies networks holistically
- Modeling phenomena around us using networks can be done in multiple ways and at different levels/depths
 - Macroscopic World
 - Contains the things that we can see with our eyes
 - In language world, grammar rules and vocabularies
 - Microscopic World
 - Contains the building blocks of matters like atoms, molecules etc.
 - In language world, utterances (syllables, phonemes, graphemes)
 - Mesoscopic World
 - An intermediate between the macroscopic and microscopic level
 - In language world, linguistic entities like letters, words and phrases

Why Network Science?

- Networks have shifted from simple and small to complex and extremely large (data explosion)
- Network modeling transitioned from static graphs to dynamic graphs
- Network nodes (objects) to be studied transitioned from one type to a variety of data types (multimodal data)

Books

Main text book

- Will Hamilton, "Graph Representation Learning"
- M.J.E. Newman, "Networks: An Introduction", Oxford University Press (2010)

Other possible references

- D. Easley and J. Kleinberg, "Networks, Crowds and Markets: Reasoning About a Highly Interconnected World", Cambridge University Press (2010)
- T.G. Lewis, "Network Science: Theory and Applications", Wiley (2009)
- D.J. Watts, "Six Degrees: The Science of a Connected Age", W.W. Norton & Company (2003)
- Research papers (pointers will be provided)

Assignments and codes

- Codes will be in Python
- Libraries
 - NetworkX
 - PyTorch Geometric (PyG)
 - DeepSNAP
 - GraphGym
 - SNAP.py

Mathematics of Networks

The representation of networks

- The network consists of entities connected with each other
- The structure of these connections are represented through graphs
- A graph is represented by two sets
 - A vertex set V of the entities participating in the network. In the rest of the slides typically, n will be the number of vertices
 - ✓ Also called node or actor set
 - An edge set E of the connections between vertices. In the rest of the slides typically, m will be the number of edges
 - ✓ Also called link or tie set

Graph terminology

- A graph whose vertices are connected by at most one link is called <u>simple network</u> or <u>simple graph</u>
 - Most of the graphs we will examine will be simple
- When two nodes connect with more than one edge, we refer to all those edges collectively as <u>multiedge</u>
 - The corresponding graph is called <u>multigraph</u>
- Depending on the type of connection a node might be connected to itself
 - Self-edges or self-loops

Example

The adjacency matrix

- If we label the nodes with IDs 1, 2, ... n we can denote each edge as a pair (i,j)
 - This is an <u>edge list</u> specification
 - Good for storing and processing networks in computers, but not for mathematical development
- The adjacency matrix A of a simple graph is a matrix with elements A_{ii} such that:

$$A_{ij} = \begin{cases} 1, & \text{if there is an edge between vertices i and j} \\ 0, & \text{otherwise} \end{cases}$$

Example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Observations

- For the (typical) case of no self-loops, the diagonal of the matrix is all 0
- For undirected networks, since the existence of edge (i,j) assumes the existence of the edge (j,i), matrix A is symmetric
- If node i has a self edge then we set A_{ii}=2 (why?)
- Multiedges are represented by setting the corresponding entry equal to the number of distinct edges

Weighted networks

- Some relations are not simple on/off (1/0) relations
- In a <u>weighted network</u> links can have weights
 - The corresponding adjacency matrix entry is equal to the weight
 - Weights can represent the frequency of contacts between the actors, the capacity of a channel connecting two routers etc.
- When weights are integer it might be convenient to think of the weight as multiedges

Directed networks

- In some phenomena the direction of the underlying relation between two nodes matters → relations are not reciprocal
 - E.g., twitter connections, world wide web links, paper citations etc.
- These relations are captured through <u>directed</u> <u>networks/graphs</u>
- The adjacency matrix of a directed graph (or a digraph) is
 given by:

 A is in general not symmetric

$$A_{ij} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, if there is an edge from j to is 0 , otherwise

Self edges are represented by setting A_{ii}=1

Example

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Co-citation coupling

- The co-citation of two edges i and j in a directed network is the number of nodes that have outgoing edges pointing to both nodes i and j
 - So in order for node k to contribute to the co-citation of i and j, the following needs to be true: A_{ik}A_{ik}=1
 - Hence the co-citation of nodes i and j is:

$$C_{ij} = \mathop{\bigcirc}_{k=1}^{n} A_{ik} A_{jk} = \mathop{\bigcirc}_{k=1}^{n} A_{ik} A_{kj}^{T}$$

 The nxn adjacency matrix of the corresponding co-citation network is:

$$C = AA^T$$

Co-citation coupling

The non-diagonal elements can be larger than 1

 Either we consider it as a weighted undirected graph or we map every non-diagonal entry greater than 1 to 1

The diagonal elements of C can be non zero

Since A_{ik}=0 or A_{ik}=1 (assuming a simple graph – no multiedges)

$$C_{ii} = \overset{n}{\overset{n}{\circlearrowleft}} A_{ik}^2 = \overset{n}{\overset{n}{\circlearrowleft}} A_{ik}$$

- \mathbf{C}_{ii} provides the number of nodes that point to node i
 - ✓ In constructing the co-citation network we set by definition all the diagonal elements to zero!

Bibliographic coupling

- The bibliographic coupling of two edges i and j in a directed network is the number of nodes that they both point to
 - So in order for node k to contribute to the bibliographic coupling of i and j, the following needs to be true: A_{ki}A_{ki}=1
 - Hence the bibliographic coupling of nodes i and j is:

$$B_{ij} = \mathop{\bigcirc}_{k=1}^{n} A_{ki} A_{kj} = \mathop{\bigcirc}_{k=1}^{n} A_{ik}^{T} A_{kj}$$

 The nxn adjacency matrix of the corresponding bibliographic coupling network is:

$$B = A^T A$$

Bibliographic coupling

- The diagonal elements of B can be non zero
 - Since A_{ki}=0 or A_{ki}=1 (assuming a simple graph no multiedges)

$$B_{ii} = \mathop{\bigcirc}_{k=1}^{n} A_{ki}^{2} = \mathop{\bigcirc}_{k=1}^{n} A_{ki}$$

- B_{ii} provides the number of nodes that node i points to
 - ✓ Again when considering the bibliographic coupling network, we set by definition all the diagonal elements to zero!
- The off diagonal elements of B can again be greater than 0 and hence, we can define a weighted undirected network
 - We can also map any positive off diagonal element to 1

Notes on coupling

- While both coupling methods are similar they can give completely different structures
 - Co-citation is heavily based on incoming edges, while bibliographic coupling on outgoing edges
- They can be used for vertex similarity
 - E.g., the highest the co-citation of two papers in a paper citation network, the more possible is that these papers deal with similar topics
- While these coupling methods help us convert an directed network to undirected, we lose some structural information during this transformation

Problem 1

- Consider certain papers and the references that they cite
 - $1 \rightarrow \{2,4,5\}$
 - $2 \rightarrow \{3,4,5\}$
 - $3 \rightarrow \{4\}$
 - **4** →{}
- Which of these papers do you expect to be likely of similar topic?

Problem 2

 Consider a product website that maintains a purchase profile of the users over a time period T. A snap shot of the same for 4 users are as follows:

- $A \rightarrow \{1,2,3\}$
- B \rightarrow {1,3}
- $C \rightarrow \{1,2,3,4\}$
- □ D \rightarrow { 3,4}

 If A purchases an unknown product (say 5), can you say which other user will most likely purchase the same product?

Acyclic directed networks

- A <u>cycle</u> in a directed network is a closed loop of edges with the arrows on each of the edges pointing the same way around the loop
 - Networks without cycles are called acyclic, while those with cycles are called cyclic
 - Self edges also count as cycles

 An acyclic network can be drawn with all edges pointing downward (not necessarily unique drawing)

Determining if a network is acyclic

- A simple algorithm for determining whether a network is acyclic is:
 - Find a vertex with no outgoing edges (step 1)
 - If no such vertex exists, the network is <u>cyclic</u>. Otherwise, if such a vertex does exist, remove it and all its incoming edges from the network (step 2)
 - If all vertices have been removed, the network is <u>acyclic</u>.
 Otherwise go back to step 1

Adjacency matrix of an acyclic network

- If we construct an ordering of the vertices of an acyclic graph as per the previous algorithm, there can be an edge from vertex i to vertex j only if j > i
 - Adjacency matrix is triangular (only the elements above the diagonal have non zero entries)
 - ✓ More precisely, since the acyclic graph does not have self loops, the diagonal elements are zero → strictly triangular matrix
- All of the eigenvalues of an adjacency matrix are zero if and only if the network is acyclic

Bipartite networks

- In bipartite networks (aka two-mode networks) there are two kinds of vertices
 - One type represents that original vertices (e.g., people) and the other represents the groups – or affiliations or foci – that the first type of vertices belong to (e.g., company)
- The edges of a bipartite network run only between nodes of different type
- A bipartite network is defined by the incidence matrix B. If there are n number of actors and g number of groups:

$$B_{ij} = \begin{cases} 1, & \text{if vertex j belongs to group i} \\ 0, & \text{otherwise} \end{cases}$$

One-mode projections

- We can use the bipartite network to infer connections between nodes of the same type
 - Projection on the actors → n-vertex network, where nodes are the actors of the original bipartite graph and an edge between two actors exists if they participate to at least one common group
 - Projection on the groups → g-vertex network, where nodes are the groups of the original bipartite graph and an edge between two groups exists if they include at least one common actor
- One mode projections discard a lot of the information present in the structure of the original bipartite graph

Projections

Mathematics of actors one-mode projection

- Two actors i and j belong to group k iff B_{ki}B_{ki}=1
 - The total number of groups P_{ii} that i and j belong is given by:

$$P_{ij} = \mathop{\bigcirc}\limits_{k=1}^{g} B_{ki} B_{kj} = \mathop{\bigcirc}\limits_{k=1}^{g} B_{ik}^{T} B_{kj}$$

- The nxn matrix P=B^TB is similar to the adjacency matrix for the weighted one-mode projection onto the n vertices (actors)
 - Why only similar and not the same?

Trees

Connected, undirected network with no closed loops

- They are usually drawn in a rooted manner
 - ✓ A root node at the top and a branching structure going down
 - ✓ Vertices at the bottom of the tree, connected only to one other vertex are called *leaves*

Trees

- Since there are no closed loops there is exactly one path from every vertex to any other
 - This property is important because it makes some calculations particularly simple
- A tree with n vertices has exactly n-1 edges
 - Reverse is also true!

Degree

- The <u>degree</u> k_i of a vertex i in a graph is the number of edges connected to it
 - For undirected graphs we have:

$$k_i = \bigotimes_{j=1}^n A_{ij}$$

And the number of edges of a graph is given by:

$$m = \frac{1}{2} \overset{n}{\underset{i=1}{\circ}} k_i = \frac{1}{2} \overset{n}{\underset{i=1}{\circ}} \overset{n}{\underset{i=1}{\circ}} A_{ij}$$

• Mean degree c of a vertex in an undirected graph is:

$$c = \frac{1}{n} \mathop{a}_{i=1}^{n} k_i = \frac{2m}{n}$$

Connectance

The maximum number of possible edges in a simple graph is

 Connectance or density ρ of a graph is the fraction of these edges that are actually present:

$$r = \frac{m}{\underset{\stackrel{\circ}{\downarrow}}{\text{e}} n \overset{\circ}{=} \frac{2m}{n(n-1)}} = \frac{c}{n-1}$$

- A network for which the density ρ tends to a (positive) constant as n→∞ is called dense
- A network for which the density ρ tends to zero as n→∞ is called <u>sparse</u>
 - √ This basically means that in a sparse network c tends to a constant when n increases arbitrarily

Degrees in directed networks

- In a directed network each vertex is associated with two degrees
 - In-degree is the number of incoming edges to a vertex
 - Out-degree is the number of outgoing edges from a vertex

$$k_i^{in} = \mathop{a}\limits_{j=1}^n A_{ij}$$
 $k_i^{out} = \mathop{a}\limits_{j=1}^n A_{ji}$

• The total number of edges in a directed network is:

$$m = \mathop{\overset{n}{\overset{n}{\circ}}}_{i=1}^{n} k_i^{in} = \mathop{\overset{n}{\overset{n}{\circ}}}_{i=1}^{n} k_i^{out} = \mathop{\overset{n}{\circ}}_{ij}^{n} A_{ij}$$

Thus, mean in (c_{in}) and out (c_{out}) degrees are equal

$$c_{in} = \frac{1}{n} \stackrel{n}{\underset{i=1}{\circ}} k_i^{in} = \frac{1}{n} \stackrel{n}{\underset{i=1}{\circ}} k_i^{out} = c_{out} = c = \frac{m}{n}$$

Walks

- A sequence of vertices such that every consecutive pair of vertices in the sequence is connected by an edge in the network
 - For directed graphs the edges traversed from the path needs to be traversed in the correct direction
 - Walks that do not intersect with themselves are called <u>self-avoiding paths</u>
- Length of a walk is the number of edges traversed along the walk
 - When a walk traverses the same edge e two times, e is counted twice

Walks in undirected networks

- The product A_{ik}A_{kj} is 1 iff there is a path between i and j through k (a path of length 2)
 - Hence, if we want to find how many length 2 paths between i and j exist:

$$N_{ij}^{(2)} = \bigcap_{k=1}^{n} A_{ik} A_{kj} = [A^{2}]_{ij}$$

- This can easily be generalized to: $N_{ij}^{(r)} = [A^r]_{ij}$
- [A^r]_{ii} gives the number of length r paths that originate and end at node i (cycles)
 - Hence if we want to find the number L_r of length r cycles in a graph

$$L_r = \mathop{\mathring{a}}_{i:i}^{n} [A^r]_{ii} = TrA^r$$

Walks in undirected networks

A is symmetric → has n real, non-negative eigenvalues

- $A = UKU^T$
 - ✓ U orthogonal matrix of eigenvectors
 - K diagonal matrix with eigenvalues

$$A^r = (UKU^T)^r = UK^rU^T$$

$$L_r = TrA^r = Tr(UK^rU^T) = Tr(U^TUK^r) = TrK^r = \mathop{\mathring{a}}_{i} k_i^r$$

κ_i is the i-th eigenvalue of matrix A

Paths in directed networks

 The adjacency matrix of a directed network is in general non symmetric and hence not diagonalizable

- We will use the <u>Schur decomposition</u>
 - A=QTQ^T
 - √ Q is orthogonal
 - √ T is upper triangular
 - Its diagonal elements are its eigenvalues

*They are equal with those of A (why?)

$$L_r = TrA^r = Tr(QT^rQ^T) = Tr(Q^TQT^r) = TrT^r = \mathop{\mathring{a}}_{i} k_i^r$$

Geodesic paths

- A geodesic path (shortest path) is a path between two vertices such that no shorter path exists
 - The length of this path is called <u>geodesic</u> (or shortest) distance
 - If two nodes are not connected with any path their geodesic distance is infinite
- By definition shortest paths are self avoiding (why?)
- <u>Diameter</u> of a network is the length of the longest geodesic path between any pair of vertices in the network for which a path actually exists
 - Other definitions are extensively used in the literature as well, such as, the average value of all geodesic paths in the network etc.

Eulerian and Hamiltonian paths

- An <u>Eulerian path</u> is a path that traverses each edge in a network exactly once
- A <u>Hamiltonian path</u> is a path that visits each vertex exactly once
 - Self avoiding

Konisberg Bridge Problem

Components

- A network for which there exists pairs of vertices that there is no path between them is called <u>disconnected</u>
 - If there exists a path between any possible pair of vertices in a network the latter is called <u>connected</u>
 A
 B

 <u>Component</u> is a *maximal* subset of vertices of a network such that there exists at least one path from every vertex of the subgroup to any other

How can the adjacency matrix of a network with more than one component be written?

Components in directed networks

- There are many different types of connected components that we can define for a directed network
- Assuming no direction on the edges, we can identify connected components as in an undirected graph
 - Weakly connected components
- Imposing a constrained on the direction of the edge we get the <u>strongly connected components</u>
 - Maximal subsets of vertices such that there is a directed path in both directions between every pair in the subset
 - ✓ Every vertex belonging to a strongly connected component with more than one vertex must belong to at least one cycle (why?)

Visually

Out-components

- The set of vertices that are reachable via directed paths from node A (including A), form its <u>out-component</u>
 - Out-component is a property of both the network and the starting vertex
 - ✓ Hence, a vertex can belong to more than one out-components.
- All members of the strongly connected component that A belongs to, are members of its out-component
- All vertices that are reachable from A are also reachable from any other member of its strongly connected component
 - Out-components really "belong" not to individual vertices but to strongly connected components

In-components

- The <u>in-component</u> of a specific vertex A is the set of all vertices (including A) from which there is a directed path to A
- All the members of a strongly connected component have the same in-component
- A's strongly connected component is the intersection of its out- and in-components

Independent paths and connectivity

- Two paths connecting a given pair of vertices are <u>edge</u> (<u>vertex</u>)-independent if they share no edges (vertices other than the starting and ending vertices)
 - Two vertex-independent paths are also edge-independent (the opposite is not true)
- The number of independent paths between a pair of vertices is called <u>connectivity</u> of the vertices
 - Edge- and vertex-connectivity

Cut set

- A <u>vertex cut set</u>, is a set of vertices whose removal will disconnect a specified pair of vertices
 - This set can be thought as the bottleneck for the connectivity of this specific pair of nodes
- An edge cut set, is a set of edges whose removal will disconnect a specified pair of vertices
- A minimum cut set is the smallest cut set that will disconnect a specified pair of vertices

Menger's theorem

- The size of the minimum vertex cut set that disconnects a given pair of vertices in a network is equal to the vertex connectivity of the same vertices
 - The same holds true for edges
- The edge version of the theorem is important for the maximum flow problem

Max-flow/min-cut theorem

- In the general case we have weighted networks
 - Minimum edge cut set is a cut set such that the sum of the weights on the edges has the minimum possible value
- The maximum flow between a given pair of vertices in a network is equal to the sum of the weights on the edges of the minimum edge cut set that separates the same two vertices
 - Intuitively, the "low" weight edges form bottlenecks that do not allow the flow between the two vertices to increase.