Formalisation of Ground Resolution and CDCL in Isabelle/HOL

Mathias Fleury and Jasmin Blanchette

March 16, 2016

Contents

1	Transitions	5
	1.1 More theorems about Closures	. 5
	1.2 Full Transitions	
	1.3 Well-Foundedness and Full Transitions	
	1.4 More Well-Foundedness	. 9
2	Various Lemmas	11
3	More List	12
	$3.1 upt \dots \dots$. 12
	3.2 Lexicographic Ordering	. 15
	3.3 Remove and Multiset equality	. 15
4	Logics	16
•	4.1 Definition and abstraction	
	4.2 properties of the abstraction	
	4.3 Subformulas and properties	
	4.4 Positions	
5	Semantics over the syntax	26
6	Rewrite systems and properties	27
	6.1 Lifting of rewrite rules	
	6.2 Consistency preservation	
	6.3 Full Lifting	. 31
		31
_		
7	Transformation testing	
7	7.1 Definition and first properties	. 31
7	7.1 Definition and first properties	. 31 . 34
7	7.1 Definition and first properties	. 31 . 34 . 34
	7.1 Definition and first properties	31343435
8	7.1 Definition and first properties	313435
	7.1 Definition and first properties	. 31 . 34 . 34 . 35 . 37
	7.1 Definition and first properties	. 31 . 34 . 35 . 37 . 37
	7.1 Definition and first properties	31 34 34 35 37 37 39 40

		8.5.1	Only o												-									61
		8.5.2	Push (
		8.5.3	Push I)isjunc	ction								٠				•		•		•		•	65
9	The	full tr	ansfor	matio	ns																			65
	9.1		ct Prop			teriz	zing	tha	t or	nlv :	som	e co	onn	ect	ive	are	in	side	e t	he	ot	he	rs	65
		9.1.1	Definit																					65
	9.2	Conjur	nctive N																					68
		9.2.1	Full C																					68
	9.3	Disjune	ctive N																					69
		9.3.1	Full D																					69
10	Mor	e aggr	essive	\mathbf{simpl}	ificat	ion	s: I	Ren	ov	ing	$\operatorname{tr}\iota$	ie a	and	l fa	alse	at	tł	ıe l	be	\mathbf{gi}	nn	in	g	70
	10.1	Transfe	ormatio	n																				70
	10.2	More in	nvarian	ts																				71
	10.3	The ne	w CNF	and I	ONF t	tran	sfor	$_{ m mat}$	ion															76
		~.																						
11		tial Cla		_																				77
		Clause																						77
	11.2	Partial	_																					77
			Consis																					77
			Atoms																					77
			Totalit																					79
			Interp																					82
			Satisfia																					83
			Entailı																					84
			Tautol																					86
			Entailı					-	-															88
		Subsur	-																					93
	11.4	Remov	ing Du	plicate	S																			94
		Set of a																						94
	11.6	Experi	ment: I	Expres	sing t	he l	Enta	ilm	ents	sas	Loc	ale	S .											97
	11.7	Entailr	ment to	be ex	tende	d .																		98
10	T. 1	• • •	3 T 1/1	. 37																				00
12		with																						99
		Transfo																						99
	12.2	Equisa	tisfiabil	ity of	the tv	vo \	/ersi	on.					•				•		•		•		•	99
13	Reso	olution	1																					102
10		Simplif		Rules																				
		Uncons																						
	19.2		Subsur																					
	13.3	Inferen		_																				
		Lemma																						
		Resolu			-																			
	10.0		Invaria																					
			well-fo																					
		10.0.4	W C11-10	anunc	ולו בו כוכ	110 1	CIAU.	TUIL																140

14	Part	tial Clausal Logic 14	3
	14.1	Marked Literals	.3
		14.1.1 Definition	.3
		14.1.2 Entailment	4
		14.1.3 Defined and undefined literals	6
	14.2	Backtracking	
	14.3	Decomposition with respect to the marked literals	8
	14.4	Negation of Clauses	5
		Other	
	14.6	Abstract Clause Representation	0
15	Mea	asure 16	2
16		Γ's CDCL	
	16.1	Auxiliary Lemmas and Measure	6
	16.2	Initial definitions	6
		16.2.1 The state	6
		16.2.2 Definition of the operation	0
	16.3	DPLL with backjumping	1
		16.3.1 Definition	2
		16.3.2 Basic properties	3
		16.3.3 Termination	5
		16.3.4 Normal Forms	0
	16.4	CDCL	7
		16.4.1 Learn and Forget	
		16.4.2 Definition of CDCL	
	16.5	CDCL with invariant	
		Termination	
		16.6.1 Restricting learn and forget	
	16.7	CDCL with restarts	
		16.7.1 Definition	
		16.7.2 Increasing restarts	
	16.8	Merging backjump and learning	
	20.0	16.8.1 Instantiations	
17	DPI	LL as an instance of NOT 24	6
	17.1	DPLL with simple backtrack	6
		Adding restarts	
18	DPI	${f LL}$	3
	18.1	Rules	3
	18.2	Invariants	3
		Termination	
		Final States	
		Link with NOT's DPLL	
	10.0	18.5.1 Level of literals and clauses	
		18.5.2 Properties about the levels	

19	Wei	denbach's CDCL	273	3
	19.1	The State	. 273	3
	19.2	CDCL Rules	. 282	2
	19.3	Invariants	. 289	9
		19.3.1 Properties of the trail	. 289	9
		19.3.2 Better-Suited Induction Principle	. 293	3
		19.3.3 Compatibility with $op \sim \dots$. 29'	7
		19.3.4 Conservation of some Properties		
		19.3.5 Learned Clause		
		19.3.6 No alien atom in the state		
		19.3.7 No duplicates all around		
		19.3.8 Conflicts and co		
		19.3.9 Putting all the invariants together		
		19.3.10 No tautology is learned		
	19.4	CDCL Strong Completeness		
		Higher level strategy		
	10.0	19.5.1 Definition		
		19.5.2 Invariants		
		19.5.3 Literal of highest level in conflicting clauses		
		19.5.4 Literal of highest level in marked literals		
		19.5.5 Strong completeness		
		19.5.6 No conflict with only variables of level less than backtrack level		
		19.5.7 Final States are Conclusive		
	10.6	Termination		
		No Relearning of a clause		
		Decrease of a measure		
	19.0	Decrease of a measure	. 30.	,
20	Sim	ple Implementation of the DPLL and CDCL	392	2
		Common Rules	. 392	2
		20.1.1 Propagation	. 392	2
		20.1.2 Unit propagation for all clauses		
		20.1.3 Decide		
	20.2	Simple Implementation of DPLL	. 39	õ
		20.2.1 Combining the propagate and decide: a DPLL step		
		20.2.2 Adding invariants		
		20.2.3 Code export		
	20.3	CDCL Implementation		
		20.3.1 Definition of the rules		
		20.3.2 The Transitions		
		20.3.3 Code generation		
21	Link	k between Weidenbach's and NOT's CDCL	436	3
		Inclusion of the states		
	21.2	More lemmas conflict—propagate and backjumping	. 438	3
		21.2.1 Termination	. 438	3
		21.2.2 More backjumping		
	21.3	CDCL FW	. 455	2
	21.4	FW with strategy	. 45	7
		21.4.1 The intermediate step	. 45'	7

	21.5 Adding Restarts	. 491
22	Link between Weidenbach's and NOT's CDCL	503
	22.1 Inclusion of the states	. 503
	22.2 Additional Lemmas between NOT and W states	. 507
	22.3 More lemmas conflict—propagate and backjumping	. 508
	22.4 CDCL FW	
23	Incremental SAT solving	516
24	2-Watched-Literal	526
	24.1 Datastructure and Access Functions	. 526
	24.2 Invariants	. 528
	24.3 Abstract 2-WL	
	24.4 Instanciation of the previous locale	
25	Invariants for 2 Watched-Literals	547
	25.1 Interpretation for $conflict$ -driven-clause-learning _W . $cdcl_W$. 547
	25.1.1 Direct Interpretation	
	25.1.2 Opaque Type with Invariant	
	25.2 We can now define the rules of the calculus	
the	cory Wellfounded-More	. 001
	ports Main	
be	gin	

1 Transitions

This theory contains more facts about closure, the definition of full transformations, and well-foundedness.

1.1 More theorems about Closures

```
This is the equivalent of ?r \le ?s \implies ?r^{**} \le ?s^{**} for tranclp lemma tranclp-mono-explicit: r^{++} \ a \ b \implies r \le s \implies s^{++} \ a \ b using rtranclp-mono by (auto dest!: tranclpD intro: rtranclp-into-tranclp2) lemma tranclp-mono: assumes mono: \ r \le s shows r^{++} \le s^{++} using rtranclp-mono[OF mono] mono by (auto dest!: tranclpD intro: rtranclp-into-tranclp2) lemma tranclp-idemp-rel: R^{++++} \ a \ b \longleftrightarrow R^{++} \ a \ b apply (rule iffI) prefer 2 apply blast by (induction\ rule: tranclp-induct) auto Equivalent of ?r^{****} = ?r^{**} lemma trancl-idemp: (r^{+})^{+} = r^{+}
```

```
by simp
```

lemmas tranclp-idemp[simp] = trancl-idemp[to-pred]

This theorem already exists as $?r^{**}$?a ? $b \equiv ?a = ?b \lor ?r^{++}$?a ?b (and sledgehammer uses it), but it makes sense to duplicate it, because it is unclear how stable the lemmas in Nitpick are.

```
lemma rtranclp-unfold: rtranclp r \ a \ b \longleftrightarrow (a = b \lor tranclp \ r \ a \ b)
 by (meson rtranclp.simps rtranclpD tranclp-into-rtranclp)
lemma tranclp-unfold-end: tranclp r \ a \ b \longleftrightarrow (\exists a'. \ rtranclp \ r \ a \ a' \land r \ a' \ b)
  by (metis rtranclp.rtrancl-reft rtranclp-into-tranclp1 tranclp.cases tranclp-into-rtranclp)
lemma tranclp-unfold-begin: tranclp r \ a \ b \longleftrightarrow (\exists \ a'. \ r \ a \ a' \land r tranclp \ r \ a' \ b)
  by (meson\ rtranclp-into-tranclp2\ tranclpD)
lemma trancl-set-tranclp: (a, b) \in \{(b, a). P \ a \ b\}^+ \longleftrightarrow P^{++} \ b \ a
  apply (rule iffI)
   apply (induction rule: trancl-induct; simp)
  apply (induction rule: tranclp-induct; auto simp: trancl-into-trancl2)
  done
lemma tranclp-rtranclp-rtranclp-rel: R^{++**} a b \longleftrightarrow R^{**} a b
  by (simp add: rtranclp-unfold)
lemma tranclp-rtranclp-rtranclp[simp]: R^{++**} = R^{**}
 by (fastforce simp: rtranclp-unfold)
lemma rtranclp-exists-last-with-prop:
  assumes R x z
  and R^{**} z z' and P x z
  shows \exists y \ y'. \ R^{**} \ x \ y \land R \ y \ y' \land P \ y \ y' \land (\lambda a \ b. \ R \ a \ b \land \neg P \ a \ b)^{**} \ y' \ z'
  using assms(2,1,3)
proof (induction arbitrary: )
  case base
  then show ?case by auto
  case (step z'z'') note z = this(2) and IH = this(3)[OF\ this(4-5)]
 show ?case
   apply (cases P z' z'')
      apply (rule exI[of - z'], rule exI[of - z''])
      using z \ assms(1) \ step.hyps(1) \ step.prems(2) \ apply \ auto[1]
   using IH z rtranclp.rtrancl-into-rtrancl by fastforce
qed
lemma rtranclp-and-rtranclp-left: (\lambda \ a \ b. \ P \ a \ b \land Q \ a \ b)^{**} \ S \ T \Longrightarrow P^{**} \ S \ T
```

1.2 Full Transitions

We define here properties to define properties after all possible transitions.

```
abbreviation no-step step S \equiv (\forall S'. \neg step S S')
```

by (induction rule: rtranclp-induct) auto

```
definition full1 :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow 'a \Rightarrow bool where full1 transf = (\lambda S S'. tranclp transf S S' \land (\forall S''. \neg transf S' S''))
```

```
definition full:: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow 'a \Rightarrow bool where
full transf = (\lambda S S'. rtranclp transf S S' \wedge (\forall S''. \neg transf S' S''))
\mathbf{lemma}\ rtranclp	ext{-}full11:
  R^{**} \ a \ b \Longrightarrow full1 \ R \ b \ c \Longrightarrow full1 \ R \ a \ c
  unfolding full1-def by auto
\mathbf{lemma}\ tranclp	ext{-}full1I:
  R^{++} a b \Longrightarrow full1 \ R \ b \ c \Longrightarrow full1 \ R \ a \ c
  unfolding full1-def by auto
lemma rtranclp-fullI:
  R^{**} \ a \ b \Longrightarrow full \ R \ b \ c \Longrightarrow full \ R \ a \ c
  unfolding full-def by auto
lemma tranclp-full-full1I:
  R^{++} a b \Longrightarrow full R b c \Longrightarrow full R a c
  unfolding full-def full1-def by auto
lemma full-fullI:
  R \ a \ b \Longrightarrow full \ R \ b \ c \Longrightarrow full 1 \ R \ a \ c
  unfolding full-def full1-def by auto
lemma full-unfold:
  full\ r\ S\ S' \longleftrightarrow ((S = S' \land no\text{-step}\ r\ S') \lor full1\ r\ S\ S')
  unfolding full-def full1-def by (auto simp add: rtranclp-unfold)
lemma full1-is-full[intro]: full1 R S T \Longrightarrow full R S T
  by (simp add: full-unfold)
lemma not-full1-rtranclp-relation: \neg full1 \ R^{**} \ a \ b
  by (meson full1-def rtranclp.rtrancl-refl)
lemma not-full-rtranclp-relation: \neg full\ R^{**}\ a\ b
  by (meson full-fullI not-full1-rtranclp-relation rtranclp.rtrancl-refl)
{\bf lemma}\ full 1-tranclp-relation-full:
  full1 R^{++} a b \longleftrightarrow full1 R a b
  \mathbf{by} \ (\textit{metis converse-tranclpE full1-def reflclp-tranclp} \ \textit{rtranclp-idemp rtranclp-reflclp}
    tranclp.r-into-trancl tranclp-into-rtranclp)
\mathbf{lemma}\ \mathit{full-tranclp-relation-full}:
  full R^{++} \ a \ b \longleftrightarrow full R \ a \ b
  by (metis full-unfold full1-tranclp-relation-full tranclp.r-into-trancl tranclpD)
\mathbf{lemma}\ rtranclp	ext{-}full1	ext{-}eq	ext{-}or	ext{-}full1	ext{:}
  (full1\ R)^{**}\ a\ b\longleftrightarrow (a=b\lor full1\ R\ a\ b)
proof -
  have \forall p \ a \ aa. \ \neg p^{**} \ (a::'a) \ aa \lor a = aa \lor (\exists ab. \ p^{**} \ a \ ab \land p \ ab \ aa)
    by (metis rtranclp.cases)
  then obtain aa :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a where
    f1: \forall p \ a \ ab. \neg p^{**} \ a \ ab \lor a = ab \lor p^{**} \ a \ (aa \ p \ a \ ab) \land p \ (aa \ p \ a \ ab) \ ab
    by moura
  { assume a \neq b
```

```
{ assume \neg full1\ R\ a\ b\land a\neq b then have a\neq b\land a\neq b\land \neg full1\ R\ (aa\ (full1\ R)\ a\ b)\ b\lor \neg\ (full1\ R)^{**}\ a\ b\land a\neq b using f1\ by (metis\ (no\text{-}types)\ full1\text{-}def\ full1\text{-}tranclp\text{-}relation\text{-}full) then have ?thesis using f1\ by blast\ } then have ?thesis by auto\ } then show ?thesis by fastforce qed

lemma tranclp\text{-}full1\text{-}full1\text{:} (full1\ R)^{++}\ a\ b\longleftrightarrow full1\ R\ a\ b by (metis\ full1\text{-}def\ rtranclp\text{-}full1\text{-}eq\text{-}or\text{-}full1\ tranclp\text{-}unfold\text{-}begin})
```

1.3 Well-Foundedness and Full Transitions

```
lemma wf-exists-normal-form:
 assumes wf:wf \{(x, y). R y x\}
 shows \exists b. R^{**} \ a \ b \land no\text{-step} \ R \ b
proof (rule ccontr)
 \mathbf{assume} \ \neg \ ?thesis
 then have H: \bigwedge b. \neg R^{**} a b \vee \neg no-step R b
 def F \equiv rec-nat a \ (\lambda i \ b. \ SOME \ c. \ R \ b \ c)
 have [simp]: F \theta = a
   unfolding F-def by auto
 have [simp]: \bigwedge i. F(Suc\ i) = (SOME\ b.\ R(F\ i)\ b)
   using F-def by simp
  { fix i
   have \forall j < i. R (F j) (F (Suc j))
     proof (induction i)
       case \theta
       then show ?case by auto
     next
       case (Suc\ i)
       then have R^{**} a (F i)
         by (induction i) auto
       then have R(Fi) (SOME b. R(Fi) b)
         using H by (simp \ add: some I-ex)
       then have \forall j < Suc \ i. \ R \ (F \ j) \ (F \ (Suc \ j))
         using H Suc by (simp add: less-Suc-eq)
       then show ?case by fast
     qed
 then have \forall j. R (F j) (F (Suc j)) by blast
 then show False
   using wf unfolding wfP-def wf-iff-no-infinite-down-chain by blast
qed
lemma wf-exists-normal-form-full:
 assumes wf:wf \{(x, y). R y x\}
 shows \exists b. full R \ a \ b
 using wf-exists-normal-form[OF assms] unfolding full-def by blast
```

1.4 More Well-Foundedness

 $wf \colon wf R \text{ and }$

A little list of theorems that could be useful, but are hidden:

 $(?f(Suc k), ?fk) \notin ?r \Longrightarrow ?thesis \implies ?thesis$ **lemma** wf-if-measure-in-wf: $wf R \Longrightarrow (\bigwedge a \ b. \ (a, \ b) \in S \Longrightarrow (\nu \ a, \ \nu \ b) \in R) \Longrightarrow wf S$ by (metis in-inv-image wfE-min wfI-min wf-inv-image) lemma wfP-if-measure: fixes $f :: 'a \Rightarrow nat$ shows $(\bigwedge x \ y. \ P \ x \Longrightarrow g \ x \ y \implies f \ y < f \ x) \Longrightarrow wf \ \{(y,x). \ P \ x \land g \ x \ y\}$ apply(insert wf-measure[of f])**apply**(simp only: measure-def inv-image-def less-than-def less-eq) apply(erule wf-subset) apply auto done **lemma** *wf-if-measure-f*: assumes wf r**shows** $wf \{(b, a). (f b, f a) \in r\}$ using assms by (metis inv-image-def wf-inv-image) **lemma** wf-wf-if-measure': assumes wf r and H: $(\bigwedge x \ y. \ P \ x \Longrightarrow g \ x \ y \Longrightarrow (f \ y, f \ x) \in r)$ **shows** $wf \{(y,x). P x \wedge g x y\}$ proof have $wf \{(b, a), (f b, f a) \in r\}$ using assms(1) wf-if-measure-f by auto then have $wf \{(b, a). P a \land g a b \land (f b, f a) \in r\}$ using wf-subset[of - $\{(b, a). P \ a \land g \ a \ b \land (f \ b, f \ a) \in r\}$] by auto **moreover have** $\{(b, a). P a \land g a b \land (f b, f a) \in r\} \subseteq \{(b, a). (f b, f a) \in r\}$ by auto moreover have $\{(b, a). \ P \ a \land g \ a \ b \land (f \ b, f \ a) \in r\} = \{(b, a). \ P \ a \land g \ a \ b\}$ using H by auto ultimately show ?thesis using wf-subset by simp qed **lemma** wf-lex-less: wf (lex $\{(a, b). (a::nat) < b\}$) have $m: \{(a, b), a < b\} = measure id$ by auto show ?thesis apply (rule wf-lex) unfolding m by auto \mathbf{qed} lemma wfP-if-measure2: fixes $f :: 'a \Rightarrow nat$ shows $(\bigwedge x \ y. \ P \ x \ y \Longrightarrow g \ x \ y \Longrightarrow f \ x < f \ y) \Longrightarrow wf \ \{(x,y). \ P \ x \ y \land g \ x \ y\}$ $apply(insert\ wf-measure[of\ f])$ **apply**(simp only: measure-def inv-image-def less-than-def less-eq) apply(erule wf-subset) apply auto done **lemma** lexord-on-finite-set-is-wf: assumes *P-finite*: $\bigwedge U$. P $U \longrightarrow U \in A$ and finite: finite A and

• link between wf and infinite chains: wf $?r = (\nexists f. \forall i. (f (Suc i), f i) \in ?r), \llbracket wf ?r; \land k.$

```
trans: trans R
 shows wf \{(T, S). (P S \wedge P T) \wedge (T, S) \in lexord R\}
proof (rule wfP-if-measure2)
 fix TS
 assume P: P S \wedge P T and
 s-le-t: (T, S) \in lexord R
 let ?f = \lambda S. \{U.(U, S) \in lexord\ R \land P\ U \land P\ S\}
 have ?f T \subseteq ?f S
    using s-le-t P lexord-trans trans by auto
 moreover have T \in ?f S
   using s-le-t P by auto
 moreover have T \notin ?f T
   using s-le-t by (auto simp add: lexord-irreflexive local.wf)
 ultimately have \{U.\ (U,\ T)\in lexord\ R\land P\ U\land P\ T\}\subset \{U.\ (U,\ S)\in lexord\ R\land P\ U\land P\ S\}
   by auto
 moreover have finite \{U.(U, S) \in lexord \ R \land P \ U \land P \ S\}
   using finite by (metis (no-types, lifting) P-finite finite-subset mem-Collect-eq subsetI)
 ultimately show card (?f T) < card (?f S) by (simp add: psubset-card-mono)
qed
lemma wf-fst-wf-pair:
 assumes wf \{(M', M). R M' M\}
 shows wf \{((M', N'), (M, N)). R M' M\}
proof
 have wf (\{(M', M), R M' M\} < *lex* > \{\})
   using assms by auto
 then show ?thesis
   by (rule wf-subset) auto
qed
lemma wf-snd-wf-pair:
 assumes wf \{(M', M), R M' M\}
 shows wf \{((M', N'), (M, N)). R N' N\}
proof -
 have wf: wf \{((M', N'), (M, N)). R M' M\}
   using assms wf-fst-wf-pair by auto
  then have wf: \bigwedge P. \ (\forall x. \ (\forall y. \ (y, x) \in \{((M', N'), M, N). \ R \ M' \ M\} \longrightarrow P \ y) \longrightarrow P \ x) \Longrightarrow All \ P
   unfolding wf-def by auto
 show ?thesis
   unfolding wf-def
   proof (intro allI impI)
     fix P :: 'c \times 'a \Rightarrow bool \text{ and } x :: 'c \times 'a
     assume H: \forall x. (\forall y. (y, x) \in \{((M', N'), M, y). R N' y\} \longrightarrow P y) \longrightarrow P x
     obtain a b where x: x = (a, b) by (cases x)
     have P: P \ x = (P \circ (\lambda(a, b), (b, a))) \ (b, a)
       unfolding x by auto
     show P x
       using wf[of P \ o \ (\lambda(a, b), (b, a))] apply rule
         using H apply simp
       unfolding P by blast
   qed
qed
```

 $\textbf{lemma} \ \textit{wf-if-measure-f-notation2} :$

```
assumes wf r
 shows wf \{(b, h a) | b a. (f b, f (h a)) \in r\}
 apply (rule wf-subset)
  using wf-if-measure-f[OF \ assms, \ of \ f] by auto
lemma wf-wf-if-measure'-notation2:
assumes wf r and H: (\bigwedge x y. P x \Longrightarrow g x y \Longrightarrow (f y, f (h x)) \in r)
shows wf \{(y,h x)| y x. P x \wedge g x y\}
proof -
 have wf \{(b, h, a) | b, a, (f, b, f, (h, a)) \in r\} using assms(1) wf-if-measure-f-notation2 by auto
  then have wf \{(b, h \ a) | b \ a. \ P \ a \land g \ a \ b \land (f \ b, f \ (h \ a)) \in r\}
   using wf-subset[of - \{(b, h \ a) | \ b \ a. \ P \ a \land g \ a \ b \land (f \ b, f \ (h \ a)) \in r\}] by auto
  moreover have \{(b, h \ a)|b \ a. \ P \ a \land g \ a \ b \land (f \ b, f \ (h \ a)) \in r\}
   \subseteq \{(b, h \ a) | b \ a. \ (f \ b, f \ (h \ a)) \in r\} by auto
  moreover have \{(b, h \ a) | b \ a. \ P \ a \land g \ a \ b \land (f \ b, f \ (h \ a)) \in r\} = \{(b, h \ a) | b \ a. \ P \ a \land g \ a \ b\}
   using H by auto
  ultimately show ?thesis using wf-subset by simp
qed
end
theory List-More
imports Main ../lib/Multiset-More
begin
Sledgehammer parameters
sledgehammer-params[debug]
      Various Lemmas
```

$\mathbf{2}$

Close to $(\land n. \ \forall m < n. \ ?P \ m \implies ?P \ n) \implies ?P \ ?n$, but with a separation between zero and non-zero, and case names.

```
thm nat-less-induct
lemma nat-less-induct-case[case-names 0 Suc]:
 assumes
   P \theta and
```

 $\bigwedge n. \ (\forall m < Suc \ n. \ P \ m) \Longrightarrow P \ (Suc \ n)$ shows P n

apply (induction rule: nat-less-induct)

by (rename-tac n, case-tac n) (auto intro: assms)

This is only proved in simple cases by auto. In assumptions, nothing happens, and ${}^{\circ}P$ (if ${}^{\circ}Q$ then ?x else ?y) = $(\neg (?Q \land \neg ?P ?x \lor \neg ?Q \land \neg ?P ?y))$ can blow up goals (because of other if expression).

```
lemma if-0-1-qe-0[simp]:
  0 < (if P then a else (0::nat)) \longleftrightarrow P \land 0 < a
 by auto
```

Bounded function have not been defined in Isabelle.

```
definition bounded where
bounded f \longleftrightarrow (\exists b. \forall n. f n \leq b)
abbreviation unbounded :: ('a \Rightarrow 'b::ord) \Rightarrow bool where
unbounded f \equiv \neg bounded f
```

```
\mathbf{lemma}\ not\text{-}bounded\text{-}nat\text{-}exists\text{-}larger:
 fixes f :: nat \Rightarrow nat
 assumes unbound: unbounded f
 shows \exists n. f n > m \land n > n_0
proof (rule ccontr)
 assume H: \neg ?thesis
 have finite \{f \mid n \mid n. \ n \leq n_0\}
   by auto
 have \bigwedge n. f n \leq Max (\{f n | n. n \leq n_0\} \cup \{m\})
   apply (case-tac n \leq n_0)
   apply (metis (mono-tags, lifting) Max-ge Un-insert-right (finite \{f \mid n \mid n. n \leq n_0\})
     finite-insert insertCI mem-Collect-eq sup-bot.right-neutral)
   by (metis (no-types, lifting) H Max-less-iff Un-insert-right (finite \{f \mid n \mid n \in n_0\})
     finite-insert insertI1 insert-not-empty leI sup-bot.right-neutral)
 then show False
   using unbound unfolding bounded-def by auto
qed
lemma bounded-const-product:
 fixes k :: nat and f :: nat \Rightarrow nat
 assumes k > 0
 shows bounded f \longleftrightarrow bounded (\lambda i. \ k * f i)
 unfolding bounded-def apply (rule iffI)
  using mult-le-mono2 apply blast
 by (meson assms le-less-trans less-or-eq-imp-le nat-mult-less-cancel-disj split-div-lemma)
```

This lemma is not used, but here to show that a property that can be expected from bounded holds.

```
lemma bounded-finite-linorder:
 fixes f :: 'a \Rightarrow 'a :: \{finite, linorder\}
 shows bounded f
proof -
 have \bigwedge x. f x \leq Max \{f x | x. True\}
   by (metis (mono-tags) Max-ge finite mem-Collect-eq)
 then show ?thesis
   unfolding bounded-def by blast
qed
```

3 More List

3.1 upt

The simplification rules are not very handy, because $[?i.. < Suc ?j] = (if ?i \le ?j then [?i.. < ?j]$ @ [?i] else []) leads to a case distinction, that we do not want if the condition is not in the context.

```
lemma upt-Suc-le-append: \neg i \leq j \Longrightarrow [i.. < Suc \ j] = []
 by auto
lemmas upt-simps[simp] = upt-Suc-append upt-Suc-le-append
declare upt.simps(2)[simp \ del]
```

```
lemma
 assumes i \leq n - m
 shows take i [m..< n] = [m..< m+i]
 \mathbf{by}\ (\mathit{metis}\ \mathit{Nat.le-diff-conv2}\ \mathit{add.commute}\ \mathit{assms}\ \mathit{diff-is-0-eq'}\ \mathit{linear}\ \mathit{take-upt}\ \mathit{upt-conv-Nil})
The counterpart for this lemma when n-m < i is length ?xs < ?n \implies take ?n ?xs = ?xs. It
is close to ?i + ?m < ?n \Longrightarrow take ?m [?i..<?n] = [?i..<?i + ?m], but seems more general.
lemma take-upt-bound-minus[simp]:
 assumes i \leq n - m
 shows take i [m.. < n] = [m .. < m+i]
 using assms by (induction i) auto
lemma append-cons-eq-upt:
 assumes A @ B = [m.. < n]
 shows A = [m ... < m + length A] and B = [m + length A... < n]
proof -
 have take (length A) (A @ B) = A by auto
 moreover
   have length A \leq n - m using assms linear calculation by fastforce
   then have take (length A) [m..< n] = [m ..< m + length A] by auto
 ultimately show A = [m ... < m + length A] using assms by auto
 show B = [m + length A... < n] using assms by (metis append-eq-conv-conj drop-upt)
qed
lemma length-list-Suc-\theta:
 length W = Suc \ 0 \longleftrightarrow (\exists L. \ W = [L])
 apply (cases W)
   apply simp
 apply (rename-tac a W', case-tac W')
 apply auto
 done
lemma length-list-2: length S = 2 \longleftrightarrow (\exists a \ b. \ S = [a, b])
 apply (cases S)
  apply simp
 apply (rename-tac \ a \ S')
 apply (case-tac S')
 by simp-all
The converse of ?A @ ?B = [?m.. < ?n] \implies ?A = [?m.. < ?m + length ?A]
?A @ ?B = [?m.. < ?n] \implies ?B = [?m + length ?A.. < ?n] does not hold, for example if B is
empty and A is [\theta::'a]:
lemma A @ B = [m.. < n] \longleftrightarrow A = [m .. < m + length A] \land B = [m + length A.. < n]
oops
A more restrictive version holds:
\mathbf{lemma}\ B \neq [] \Longrightarrow A @ B = [m.. < n] \longleftrightarrow A = [m\ .. < m + length\ A] \land B = [m\ + length\ A.. < n]
 (is ?P \implies ?A = ?B)
proof
 assume ?A then show ?B by (auto simp add: append-cons-eq-upt)
next
 assume ?P and ?B
 then show ?A using append-eq-conv-conj by fastforce
```

```
qed
```

```
lemma append-cons-eq-upt-length-i:
 assumes A @ i \# B = [m..< n]
 shows A = [m .. < i]
proof -
 have A = [m ... < m + length A] using assms append-cons-eq-upt by auto
 have (A @ i \# B) ! (length A) = i by auto
 moreover have n - m = length (A @ i \# B)
   using assms length-upt by presburger
 then have [m..< n] ! (length A) = m + length A by simp
 ultimately have i = m + length A using assms by auto
 then show ?thesis using \langle A = [m .. < m + length A] \rangle by auto
qed
lemma append-cons-eq-upt-length:
 assumes A @ i \# B = [m..< n]
 shows length A = i - m
 using assms
{f proof}\ (induction\ A\ arbitrary:\ m)
 case Nil
 then show ?case by (metis append-Nil diff-is-0-eq list.size(3) order-reft upt-eq-Cons-conv)
next
 case (Cons\ a\ A)
 then have A: A @ i \# B = [m + 1... < n] by (metis append-Cons upt-eq-Cons-conv)
 then have m < i by (metis Cons.prems append-cons-eq-upt-length-i upt-eq-Cons-conv)
 with Cons.IH[OF A] show ?case by auto
qed
lemma append-cons-eq-upt-length-i-end:
 assumes A @ i \# B = [m..< n]
 shows B = [Suc \ i ... < n]
proof -
 have B = [Suc \ m + length \ A... < n] using assms append-cons-eq-upt of A @ [i] B m n] by auto
 have (A @ i \# B) ! (length A) = i by auto
 moreover have n - m = length (A @ i \# B)
   using assms length-upt by auto
 then have [m..< n]! (length A) = m + length A by simp
 ultimately have i = m + length A using assms by auto
 then show ?thesis using \langle B = [Suc \ m + length \ A... < n] \rangle by auto
qed
lemma Max-n-upt: Max (insert 0 \{ Suc \ 0... < n \} ) = n - Suc \ 0
proof (induct n)
 case \theta
 then show ?case by simp
next
 case (Suc\ n) note IH = this
 have i: insert \theta {Suc \theta...< Suc n} = insert \theta {Suc \theta...< n} \cup {n} by auto
 show ?case using IH unfolding i by auto
\mathbf{qed}
lemma upt-decomp-lt:
 assumes H: xs @ i \# ys @ j \# zs = [m .. < n]
 shows i < j
```

```
\begin{array}{l} \mathbf{proof} - \\ \mathbf{have} \ \mathit{xs:} \ \mathit{xs} = [\mathit{m} \ ..< \mathit{i}] \ \mathbf{and} \ \mathit{ys:} \ \mathit{ys} = [\mathit{Suc} \ \mathit{i} \ ..< \mathit{j}] \ \mathbf{and} \ \mathit{zs:} \ \mathit{zs} = [\mathit{Suc} \ \mathit{j} \ ..< \mathit{n}] \\ \mathbf{using} \ \mathit{H} \ \mathbf{by} \ (\mathit{auto} \ \mathit{dest:} \ \mathit{append-cons-eq-upt-length-i} \ \mathit{append-cons-eq-upt-length-i-end}) \\ \mathbf{show} \ \mathit{?thesis} \\ \mathbf{by} \ (\mathit{metis} \ \mathit{append-cons-eq-upt-length-i-end} \ \mathit{assms} \ \mathit{lessI} \ \mathit{less-trans} \ \mathit{self-append-conv2} \\ \mathit{upt-eq-Cons-conv} \ \mathit{upt-rec} \ \mathit{ys}) \\ \mathbf{qed} \\ \end{array}
```

3.2 Lexicographic Ordering

```
lemma lexn-Suc:
```

```
(x \# xs, y \# ys) \in lexn \ r \ (Suc \ n) \longleftrightarrow (length \ xs = n \land length \ ys = n) \land ((x, y) \in r \lor (x = y \land (xs, ys) \in lexn \ r \ n))
by (auto simp: map-prod-def image-iff lex-prod-def)
```

lemma lexn-n:

```
n > 0 \Longrightarrow (x \# xs, y \# ys) \in lexn \ r \ n \longleftrightarrow (length \ xs = n-1 \land length \ ys = n-1) \land ((x, y) \in r \lor (x = y \land (xs, ys) \in lexn \ r \ (n-1))) apply (cases \ n) apply simp
```

by (auto simp: map-prod-def image-iff lex-prod-def)

There is some subtle point in the proof here. 1 is converted to $Suc\ \theta$, but 2 is not: meaning that 1 is automatically simplified by default using the default simplification rule $lexn\ ?r\ \theta = \{\}$

lexn ?r (Suc ?n) = map-prod ($\lambda(x, xs)$. x # xs) ($\lambda(x, xs)$. x # xs) ' (?r < *lex* > lexn ?r ?n) $\cap \{(xs, ys). \ length \ xs = Suc ?n \land length \ ys = Suc ?n\}$. However, the latter needs additional simplification rule.

lemma lexn2-conv:

```
([a, b], [c, d]) \in lexn \ r \ 2 \longleftrightarrow (a, c) \in r \lor (a = c \land (b, d) \in r)
by (auto simp: lexn-n simp del: lexn.simps(2))
```

lemma lexn3-conv:

```
([a, b, c], [a', b', c']) \in lexn \ r \ 3 \longleftrightarrow (a, a') \in r \lor (a = a' \land (b, b') \in r) \lor (a = a' \land b = b' \land (c, c') \in r)
by (auto simp: lexn-n simp del: lexn.simps(2))
```

3.3 Remove and Multiset equality

lemma remove1-mset-single-add:

```
a \neq b \Longrightarrow remove1\text{-}mset\ a\ (\{\#b\#\} + C) = \{\#b\#\} + remove1\text{-}mset\ a\ C remove1\text{-}mset\ a\ (\{\#a\#\} + C) = C \mathbf{by}\ (auto\ simp:\ multiset\text{-}eq\text{-}iff)
```

This is the sams as remove1 under the assumptions of non-duplication inside a clause.

```
fun remove1-cond where
```

```
remove1-cond f [] = [] | remove1-cond f (C' \# L) = (if f C' then L else C' \# remove1-cond f L)
```

lemma *mset-map-mset-remove1-cond*:

```
mset\ (map\ mset\ (remove1\text{-}cond\ (\lambda L.\ mset\ L=mset\ a)\ C)) = remove1\text{-}mset\ (mset\ a)\ (mset\ (map\ mset\ C))
by (induction\ C)\ (auto\ simp:\ ac\text{-}simps\ remove1\text{-}mset\text{-}single\text{-}add)
```

fun removeAll-cond where

```
removeAll\text{-}cond\ f\ []=[]\ |
removeAll\text{-}cond f (C' \# L) =
 (if f C' then removeAll-cond f L else C' \# removeAll-cond f L)
\mathbf{lemma}\ \mathit{mset-map-mset-removeAll-cond}\colon
  mset\ (map\ mset\ (removeAll-cond\ (\lambda b.\ mset\ b=mset\ a)\ C))
   = removeAll\text{-}mset\ (mset\ a)\ (mset\ (map\ mset\ C))
 by (induction C) (auto simp: ac-simps mset-less-eqI multiset-diff-union-assoc)
Take from ../lib/Multiset_More.thy, but named:
abbreviation union-mset-list where
union-mset-list xs ys \equiv case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, \|)
lemma union-mset-list:
 mset \ xs \ \# \cup \ mset \ ys = \ mset \ (union-mset-list \ xs \ ys)
proof -
 have \bigwedge zs. mset (case-prod append (fold (\lambda x (ys, zs)). (remove1 x ys, x # zs)) xs (ys, zs))) =
     (mset \ xs \ \# \cup \ mset \ ys) + mset \ zs
   by (induct xs arbitrary: ys) (simp-all add: multiset-eq-iff)
 then show ?thesis by simp
qed
end
theory Prop-Logic
imports Main
begin
```

4 Logics

In this section we define the syntax of the formula and an abstraction over it to have simpler proofs. After that we define some properties like subformula and rewriting.

4.1 Definition and abstraction

The propositional logic is defined inductively. The type parameter is the type of the variables.

```
\begin{array}{l} \textbf{datatype} \ 'v \ propo = \\ FT \mid FF \mid FVar \ 'v \mid FNot \ 'v \ propo \mid FAnd \ 'v \ propo \ 'v \ propo \mid FOr \ 'v \ propo \ 'v \ propo \\ \mid FImp \ 'v \ propo \ 'v \ propo \mid FEq \ 'v \ propo \ 'v \ propo \end{array}
```

We do not define any notation for the formula, to distinguish properly between the formulas and Isabelle's logic.

To ease the proofs, we will write the formula on a homogeneous manner, namely a connecting argument and a list of arguments.

```
datatype 'v connective = CT \mid CF \mid CVar \mid V \mid CNot \mid CAnd \mid COr \mid CImp \mid CEq

abbreviation nullary-connective \equiv \{CF\} \cup \{CT\} \cup \{CVar \mid x \mid x. \mid True\}

definition binary-connectives \equiv \{CAnd, COr, CImp, CEq\}
```

We define our own induction principal: instead of distinguishing every constructor, we group them by arity.

```
lemma propo-induct-arity[case-names nullary unary binary]: fixes \varphi \psi :: 'v \ propo assumes nullary: (\bigwedge \varphi \ x. \ \varphi = FF \lor \varphi = FT \lor \varphi = FVar \ x \Longrightarrow P \ \varphi) and unary: (\bigwedge \psi . \ P \ \psi \Longrightarrow P \ (FNot \ \psi)) and binary: (\bigwedge \varphi \ \psi 1 \ \psi 2. \ P \ \psi 1 \Longrightarrow P \ \psi 2 \Longrightarrow \varphi = FAnd \ \psi 1 \ \psi 2 \lor \varphi = FOr \ \psi 1 \ \psi 2 \lor \varphi = FImp \ \psi 1 \ \psi 2 \lor \varphi = FEq \ \psi 1 \ \psi 2 \Longrightarrow P \ \varphi) shows P \ \psi apply (induct rule: propo.induct) using assms by metis+
```

The function conn is the interpretation of our representation (connective and list of arguments). We define any thing that has no sense to be false

```
fun conn :: 'v \ connective \Rightarrow 'v \ propo \ list \Rightarrow 'v \ propo \ where \ conn \ CT \ [] = FT \ | \ conn \ CF \ [] = FF \ | \ conn \ (CVar \ v) \ [] = FVar \ v \ | \ conn \ CNot \ [\varphi] = FNot \ \varphi \ | \ conn \ CAnd \ (\varphi \ \# \ [\psi]) = FAnd \ \varphi \ \psi \ | \ conn \ COr \ (\varphi \ \# \ [\psi]) = FOr \ \varphi \ \psi \ | \ conn \ CImp \ (\varphi \ \# \ [\psi]) = FImp \ \varphi \ \psi \ | \ conn \ CEq \ (\varphi \ \# \ [\psi]) = FEq \ \varphi \ \psi \ | \ conn \ - - = FF
```

We will often use case distinction, based on the arity of the 'v connective, thus we define our own splitting principle.

```
lemma connective-cases-arity[case-names nullary binary unary]: assumes nullary: \bigwedge x.\ c = CT \lor c = CF \lor c = CVar\ x \Longrightarrow P and binary: c \in binary\text{-connectives} \Longrightarrow P and unary: c = CNot \Longrightarrow P shows P using assms by (cases c) (auto simp: binary-connectives-def) lemma connective-cases-arity-2[case-names nullary unary binary]: assumes nullary: c \in nullary\text{-connective} \Longrightarrow P and unary: c \in CNot \Longrightarrow P
```

shows P using assms by (cases c, auto simp add: binary-connectives-def)

and binary: $c \in binary\text{-}connectives \Longrightarrow P$

Our previous definition is not necessary correct (connective and list of arguments) , so we define an inductive predicate.

```
inductive wf-conn :: 'v connective \Rightarrow 'v propo list \Rightarrow bool for c :: 'v connective where wf-conn-nullary[simp]: (c = CT \lor c = CF \lor c = CVar\ v) \Rightarrow wf-conn c [] | wf-conn-unary[simp]: c = CNot \Rightarrow wf-conn c [\psi] | wf-conn-binary[simp]: c \in binary-connectives \Rightarrow wf-conn c (\psi \# \psi' \# []) thm wf-conn.induct lemma wf-conn-induct[consumes 1, case-names CT CF CVar CNot COr CAnd CImp CEq]: assumes wf-conn c x and (\land v. \ c = CT \Rightarrow P\ []) and (\land v. \ c = CF \Rightarrow P\ []) and (\land v. \ c = CVar\ v \Rightarrow P\ []) and (\land \psi. \ c = CNot \Rightarrow P\ [\psi]) and (\land \psi. \ c = CNot \Rightarrow P\ [\psi]) and (\land \psi. \ v. \ c = COr \Rightarrow P\ [\psi, \psi']) and
```

4.2 properties of the abstraction

First we can define simplification rules.

```
lemma wf-conn-conn[simp]:
  wf-conn CT \ l \Longrightarrow conn \ CT \ l = FT
  wf-conn CF \ l \Longrightarrow conn \ CF \ l = FF
  wf-conn (CVar\ x) l \Longrightarrow conn\ (<math>CVar\ x) l = FVar\ x
  apply (simp-all add: wf-conn.simps)
  unfolding binary-connectives-def by simp-all
lemma wf-conn-list-decomp[simp]:
  wf-conn CT \ l \longleftrightarrow l = []
  wf-conn CF l \longleftrightarrow l = []
  wf-conn (CVar x) l \longleftrightarrow l = []
  wf-conn CNot (\xi @ \varphi \# \xi') \longleftrightarrow \xi = [] \land \xi' = []
  apply (simp-all add: wf-conn.simps)
       unfolding binary-connectives-def apply simp-all
  by (metis append-Nil append-is-Nil-conv list.distinct(1) list.sel(3) tl-append2)
lemma wf-conn-list:
  wf-conn c \ l \Longrightarrow conn \ c \ l = FT \longleftrightarrow (c = CT \land l = [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FF \longleftrightarrow (c = CF \land l = [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FVar \ x \longleftrightarrow (c = CVar \ x \land l = [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FAnd \ a \ b \longleftrightarrow (c = CAnd \land l = a \# b \# [])
  \textit{wf-conn } c \ l \Longrightarrow \textit{conn } c \ l = FOr \ a \ b \longleftrightarrow (c = COr \land l = a \# b \# [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FEq \ a \ b \longleftrightarrow (c = CEq \land l = a \# b \# [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FImp \ a \ b \longleftrightarrow (c = CImp \land l = a \# b \# [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FNot \ a \longleftrightarrow (c = CNot \land l = a \# [])
  apply (induct l rule: wf-conn.induct)
  unfolding binary-connectives-def by auto
```

In the binary connective cases, we will often decompose the list of arguments (of length 2) into two elements.

```
lemma list-length2-decomp: length l = 2 \Longrightarrow (\exists \ a \ b. \ l = a \# b \# []) apply (induct l, auto) by (rename-tac l, case-tac l, auto)
```

wf-conn for binary operators means that there are two arguments.

```
lemma wf-conn-bin-list-length:
fixes l: 'v propo list
assumes conn: c \in binary-connectives
shows length l=2 \longleftrightarrow wf-conn c l
proof
assume length l=2
then show wf-conn c l using wf-conn-binary list-length2-decomp using conn by metis
next
```

```
assume wf-conn c l
  then show length l = 2 (is ?P l)
   proof (cases rule: wf-conn.induct)
     case wf-conn-nullary
     then show ?P [] using conn binary-connectives-def
       using connective. distinct(11) connective. distinct(13) connective. distinct(9) by blast
   next
     fix \psi :: 'v \ propo
     case wf-conn-unary
     then show ?P[\psi] using conn binary-connectives-def
       using connective distinct by blast
   next
     fix \psi \ \psi' :: \ 'v \ propo
     show ?P [\psi, \psi'] by auto
   qed
qed
lemma wf-conn-not-list-length[iff]:
 fixes l :: 'v \ propo \ list
 shows wf-conn CNot l \longleftrightarrow length \ l = 1
 apply auto
 apply (metis append-Nil connective distinct (5,17,27) length-Cons list size (3) wf-conn. simps
   wf-conn-list-decomp(4))
 by (simp add: length-Suc-conv wf-conn.simps)
Decomposing the Not into an element is moreover very useful.
lemma wf-conn-Not-decomp:
 fixes l :: 'v \ propo \ list \ \mathbf{and} \ a :: 'v
 assumes corr: wf-conn CNot l
 shows \exists a. l = [a]
 by (metis (no-types, lifting) One-nat-def Suc-length-conv corr length-0-conv
   wf-conn-not-list-length)
The wf-conn remains correct if the length of list does not change. This lemma is very useful
when we do one rewriting step
lemma wf-conn-no-arity-change:
 length \ l = length \ l' \Longrightarrow wf\text{-}conn \ c \ l \longleftrightarrow wf\text{-}conn \ c \ l'
proof -
 {
   fix l l'
   have length l = length \ l' \Longrightarrow wf\text{-}conn \ c \ l \Longrightarrow wf\text{-}conn \ c \ l'
     apply (cases c l rule: wf-conn.induct, auto)
     by (metis wf-conn-bin-list-length)
 then show length l = length \ l' \Longrightarrow wf\text{-}conn \ c \ l = wf\text{-}conn \ c \ l' by metis
qed
lemma wf-conn-no-arity-change-helper:
 length (\xi @ \varphi \# \xi') = length (\xi @ \varphi' \# \xi')
 by auto
The injectivity of conn is useful to prove equality of the connectives and the lists.
lemma conn-inj-not:
 assumes correct: wf-conn c l
 and conn: conn c l = FNot \psi
```

```
shows c = CNot and l = [\psi]
 apply (cases c l rule: wf-conn.cases)
 using correct conn unfolding binary-connectives-def apply auto
 apply (cases c l rule: wf-conn.cases)
 using correct conn unfolding binary-connectives-def by auto
lemma conn-inj:
 fixes c ca :: 'v connective and l \psi s :: 'v propo list
 assumes corr: wf-conn ca l
 and corr': wf-conn c \psi s
 and eq: conn \ ca \ l = conn \ c \ \psi s
 shows ca = c \wedge \psi s = l
 using corr
proof (cases ca l rule: wf-conn.cases)
 case (wf\text{-}conn\text{-}nullary\ v)
 then show ca = c \wedge \psi s = l using assms
     by (metis\ conn.simps(1)\ conn.simps(2)\ conn.simps(3)\ wf-conn-list(1-3))
next
 case (wf-conn-unary \psi')
 then have *: FNot \psi' = conn \ c \ \psi s  using conn-inj-not eq assms by auto
 then have c = ca by (metis\ conn-inj-not(1)\ corr'\ wf-conn-unary(2))
 moreover have \psi s = l using * conn-inj-not(2) corr' wf-conn-unary(1) by force
 ultimately show ca = c \wedge \psi s = l by auto
next
 case (wf-conn-binary \psi' \psi'')
 then show ca = c \wedge \psi s = l
   using eq corr' unfolding binary-connectives-def apply (cases ca, auto simp add: wf-conn-list)
   using wf-conn-list(4-7) corr' by metis+
qed
```

4.3 Subformulas and properties

A characterization using sub-formulas is interesting for rewriting: we will define our relation on the sub-term level, and then lift the rewriting on the term-level. So the rewriting takes place on a subformula.

```
inductive subformula :: 'v propo \Rightarrow 'v propo \Rightarrow bool (infix \leq 45) for \varphi where subformula-refl[simp]: \varphi \leq \varphi | subformula-into-subformula: \psi \in set\ l \Longrightarrow wf\text{-}conn\ c\ l \Longrightarrow \varphi \leq \psi \Longrightarrow \varphi \leq conn\ c\ l
```

On the *subformula-into-subformula*, we can see why we use our *conn* representation: one case is enough to express the subformulas property instead of listing all the cases.

This is an example of a property related to subformulas.

```
lemma subformula-in-subformula-not: shows b: FNot \ \varphi \preceq \psi \Longrightarrow \varphi \preceq \psi apply (induct rule: subformula.induct) using subformula-into-subformula wf-conn-unary subformula-refl list.set-intros(1) subformula-refl by (fastforce intro: subformula-into-subformula)+ lemma subformula-in-binary-conn: assumes conn: c \in binary-connectives shows f \preceq conn \ c \ [f, \ g] and g \preceq conn \ c \ [f, \ g] proof -
```

```
have a: wf-conn c (f\# [g]) using conn wf-conn-binary binary-connectives-def by auto
  moreover have b: f \leq f using subformula-refl by auto
  ultimately show f \leq conn \ c \ [f, \ g]
    by (metis append-Nil in-set-conv-decomp subformula-into-subformula)
next
  have a: wf-conn c ([f] @ [g]) using conn wf-conn-binary binary-connectives-def by auto
  moreover have b: g \leq g using subformula-reft by auto
  ultimately show g \leq conn \ c \ [f, g] using subformula-into-subformula by force
qed
\mathbf{lemma}\ subformula\mbox{-}trans:
 \psi \preceq \psi' \Longrightarrow \varphi \preceq \psi \Longrightarrow \varphi \preceq \psi'
  apply (induct \psi' rule: subformula.inducts)
  by (auto simp: subformula-into-subformula)
lemma subformula-leaf:
  fixes \varphi \psi :: 'v \ propo
  assumes incl: \varphi \leq \psi
  and simple: \psi = FT \lor \psi = FF \lor \psi = FVar x
  shows \varphi = \psi
  using incl simple
  by (induct rule: subformula.induct, auto simp: wf-conn-list)
lemma subfurmula-not-incl-eq:
  assumes \varphi \leq conn \ c \ l
  and wf-conn c l
  and \forall \psi. \ \psi \in set \ l \longrightarrow \neg \ \varphi \preceq \psi
  shows \varphi = conn \ c \ l
  using assms apply (induction conn c l rule: subformula.induct, auto)
  using conn-inj by blast
lemma wf-subformula-conn-cases:
  wf-conn c \ l \implies \varphi \leq conn \ c \ l \longleftrightarrow (\varphi = conn \ c \ l \lor (\exists \psi. \ \psi \in set \ l \land \varphi \leq \psi))
  apply standard
    using subfurmula-not-incl-eq apply metis
  by (auto simp add: subformula-into-subformula)
lemma subformula-decomp-explicit[simp]:
  \varphi \leq FAnd \ \psi \ \psi' \longleftrightarrow (\varphi = FAnd \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi') \ (is \ ?P \ FAnd)
  \varphi \leq FOr \ \psi \ \psi' \longleftrightarrow (\varphi = FOr \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi')
  \varphi \preceq \mathit{FEq} \ \psi \ \psi' \longleftrightarrow (\varphi = \mathit{FEq} \ \psi \ \psi' \lor \varphi \preceq \psi \lor \varphi \preceq \psi')
  \varphi \leq FImp \ \psi \ \psi' \longleftrightarrow (\varphi = FImp \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi')
proof -
  have wf-conn CAnd [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ CAnd \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ CAnd \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FAnd by auto
next
  have wf-conn COr [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ COr \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ COr \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FOr by auto
next
```

```
have wf-conn CEq [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ CEq \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ CEq \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FEq by auto
next
  have wf-conn CImp [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ CImp \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ CImp \ [\psi, \psi'] \lor (\exists \psi''. \ \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FImp by auto
qed
lemma wf-conn-helper-facts[iff]:
  wf-conn CNot [\varphi]
  wf-conn CT
  wf-conn CF []
  wf-conn (CVar x)
  wf-conn CAnd [\varphi, \psi]
  wf-conn COr [\varphi, \psi]
  wf-conn CImp [\varphi, \psi]
  wf-conn CEq [\varphi, \psi]
  using wf-conn.intros unfolding binary-connectives-def by fastforce+
lemma exists-c-conn: \exists c l. \varphi = conn c l \land wf\text{-}conn c l
  by (cases \varphi) force+
lemma subformula-conn-decomp[simp]:
  assumes wf: wf-conn c l
  shows \varphi \leq conn \ c \ l \longleftrightarrow (\varphi = conn \ c \ l \lor (\exists \ \psi \in set \ l. \ \varphi \leq \psi)) (is ?A \longleftrightarrow ?B)
proof (rule iffI)
  {
    fix \xi
    have \varphi \leq \xi \Longrightarrow \xi = conn \ c \ l \Longrightarrow wf\text{-}conn \ c \ l \Longrightarrow \forall x :: 'a \ propo \in set \ l. \ \neg \ \varphi \leq x \Longrightarrow \varphi = conn \ c \ l
      apply (induct rule: subformula.induct)
        apply simp
      using conn-inj by blast
  moreover assume ?A
  ultimately show ?B using wf by metis
next
  assume ?B
  then show \varphi \leq conn \ c \ l \ using \ wf \ wf-subformula-conn-cases \ by \ blast
lemma \ subformula-leaf-explicit[simp]:
  \varphi \preceq FT \longleftrightarrow \varphi = FT
  \varphi \preceq FF \longleftrightarrow \varphi = FF
  \varphi \leq FVar \ x \longleftrightarrow \varphi = FVar \ x
  apply auto
  using subformula-leaf by metis +
The variables inside the formula gives precisely the variables that are needed for the formula.
primrec vars-of-prop:: v propo \Rightarrow v set where
vars-of-prop\ FT = \{\} \mid
```

```
vars-of-prop\ FF = \{\} \mid
vars-of-prop (FVar x) = \{x\} \mid
vars-of-prop \ (FNot \ \varphi) = vars-of-prop \ \varphi \ |
vars-of-prop \ (FAnd \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop \ (FOr \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop \ (FImp \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi
vars-of-prop \ (FEq \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi
lemma vars-of-prop-incl-conn:
  fixes \xi \xi' :: 'v \text{ propo list and } \psi :: 'v \text{ propo and } c :: 'v \text{ connective}
 assumes corr: wf-conn c l and incl: \psi \in set l
 shows vars-of-prop \psi \subseteq vars-of-prop (conn \ c \ l)
proof (cases c rule: connective-cases-arity-2)
  case nullary
  then have False using corr incl by auto
  then show vars-of-prop \psi \subseteq vars-of-prop (conn \ c \ l) by blast
next
  case binary note c = this
  then obtain a b where ab: l = [a, b]
    using wf-conn-bin-list-length list-length2-decomp corr by metis
  then have \psi = a \vee \psi = b using incl by auto
  then show vars-of-prop \psi \subseteq vars-of-prop (conn \ c \ l)
    using ab c unfolding binary-connectives-def by auto
next
  case unary note c = this
  \mathbf{fix} \ \varphi :: \ 'v \ propo
 have l = [\psi] using corr c incl split-list by force
 then show vars-of-prop \psi \subseteq vars-of-prop (conn c l) using c by auto
The set of variables is compatible with the subformula order.
{f lemma}\ subformula-vars-of-prop:
  \varphi \preceq \psi \Longrightarrow vars-of-prop \ \varphi \subseteq vars-of-prop \ \psi
 apply (induct rule: subformula.induct)
 apply simp
  using vars-of-prop-incl-conn by blast
        Positions
4.4
Instead of 1 or 2 we use L or R
datatype sign = L \mid R
We use nil instead of \varepsilon.
fun pos :: 'v \ propo \Rightarrow sign \ list \ set \ where
pos FF = \{[]\}
pos FT = \{[]\} \mid
pos(FVar x) = \{[]\}
pos (FAnd \varphi \psi) = \{ [] \} \cup \{ L \# p \mid p. p \in pos \varphi \} \cup \{ R \# p \mid p. p \in pos \psi \} \}
pos(FOr \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \}
pos (FEq \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FImp \varphi \psi) = \{ [] \} \cup \{ L \# p \mid p. p \in pos \varphi \} \cup \{ R \# p \mid p. p \in pos \psi \} \mid
pos (FNot \varphi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\}
lemma finite-pos: finite (pos \varphi)
 by (induct \varphi, auto)
```

```
lemma finite-inj-comp-set:
  fixes s :: 'v \ set
  assumes finite: finite s
 and inj: inj f
 shows card (\{f \mid p \mid p. p \in s\}) = card s
  using finite
proof (induct s rule: finite-induct)
  show card \{f \mid p \mid p. \mid p \in \{\}\} = card \{\} by auto
next
 fix x :: 'v and s :: 'v set
 assume f: finite s and notin: x \notin s
 and IH: card \{f \mid p \mid p. p \in s\} = card s
 have f': finite \{f \mid p \mid p. p \in insert \ x \ s\} using f by auto
 have notin': f x \notin \{f \mid p \mid p. p \in s\} using notin inj injD by fastforce
 have \{f \mid p \mid p. \ p \in insert \ x \ s\} = insert \ (f \ x) \ \{f \mid p \mid p. \ p \in s\} by auto
  then have card \{f \mid p \mid p. p \in insert \ x \ s\} = 1 + card \{f \mid p \mid p. p \in s\}
   using finite card-insert-disjoint f' notin' by auto
  moreover have \dots = card (insert \ x \ s) using notin \ f \ IH by auto
  finally show card \{f \mid p \mid p. p \in insert \ x \ s\} = card \ (insert \ x \ s).
qed
lemma cons-inject:
  inj (op \# s)
 by (meson injI list.inject)
lemma finite-insert-nil-cons:
 finite s \Longrightarrow card\ (insert\ []\ \{L\ \#\ p\ | p.\ p\in s\}) = 1 + card\ \{L\ \#\ p\ | p.\ p\in s\}
 using card-insert-disjoint by auto
lemma cord-not[simp]:
  card (pos (FNot \varphi)) = 1 + card (pos \varphi)
by (simp add: cons-inject finite-inj-comp-set finite-pos)
lemma card-seperate:
  assumes finite s1 and finite s2
 shows card (\{L \# p \mid p. p \in s1\}) \cup \{R \# p \mid p. p \in s2\}) = card (\{L \# p \mid p. p \in s1\})
          + card(\lbrace R \# p \mid p. p \in s2 \rbrace)  (is card(?L \cup ?R) = card?L + card?R)
proof -
 have finite ?L using assms by auto
  moreover have finite ?R using assms by auto
 moreover have ?L \cap ?R = \{\} by blast
  ultimately show ?thesis using assms card-Un-disjoint by blast
qed
definition prop-size where prop-size \varphi = card (pos \varphi)
lemma prop-size-vars-of-prop:
 fixes \varphi :: 'v \ propo
 shows card (vars-of-prop \varphi) \leq prop-size \varphi
  unfolding prop-size-def apply (induct \varphi, auto simp add: cons-inject finite-inj-comp-set finite-pos)
proof -
  \mathbf{fix} \ \varphi 1 \ \varphi 2 :: 'v \ propo
```

```
assume IH1: card (vars-of-prop \varphi 1) \leq card (pos \varphi 1)
   and IH2: card\ (vars-of-prop\ \varphi 2) \leq card\ (pos\ \varphi 2)
   let ?L = \{L \# p \mid p. p \in pos \varphi 1\}
   let ?R = \{R \# p \mid p. p \in pos \varphi 2\}
   have card (?L \cup ?R) = card ?L + card ?R
       using card-seperate finite-pos by blast
    moreover have ... = card (pos \varphi 1) + card (pos \varphi 2)
       by (simp add: cons-inject finite-inj-comp-set finite-pos)
   moreover have ... \geq card \ (vars-of-prop \ \varphi 1) + card \ (vars-of-prop \ \varphi 2) using IH1 IH2 by arith
   then have ... \geq card (vars-of-prop \varphi 1 \cup vars-of-prop \varphi 2) using card-Un-le le-trans by blast
    ultimately
       show card (vars-of-prop \varphi 1 \cup vars-of-prop \varphi 2) \leq Suc (card (?L \cup ?R))
                 card\ (vars-of-prop\ \varphi 1 \cup vars-of-prop\ \varphi 2) \leq Suc\ (card\ (?L \cup ?R))
                card\ (vars-of-prop\ \varphi 1 \cup vars-of-prop\ \varphi 2) \leq Suc\ (card\ (?L \cup ?R))
                 card\ (vars-of-prop\ \varphi 1\ \cup\ vars-of-prop\ \varphi 2) < Suc\ (card\ (?L\ \cup\ ?R))
       by auto
qed
value pos (FImp (FAnd (FVar P) (FVar Q)) (FOr (FVar P) (FVar Q)))
inductive path-to :: sign\ list \Rightarrow \ 'v\ propo \Rightarrow \ 'v\ propo \Rightarrow \ bool\ where
path-to-reft[intro]: path-to [] \varphi \varphi |
path-to-l: c \in binary-connectives \lor c = CNot \Longrightarrow wf-conn c (\varphi \# l) \Longrightarrow path-to p \varphi \varphi' \Longrightarrow path-to-like \varphi = vf-connectives \varphi = v
   path-to (L\#p) (conn\ c\ (\varphi\#l))\ \varphi'
path-to-r: c \in binary-connectives \implies wf-conn c (\psi \# \varphi \# []) \implies path-to p \varphi \varphi' \implies
   path-to (R\#p) (conn c (\psi\#\varphi\#[])) \varphi'
There is a deep link between subformulas and pathes: a (correct) path leads to a subformula
and a subformula is associated to a given path.
lemma path-to-subformula:
   path-to p \varphi \varphi' \Longrightarrow \varphi' \preceq \varphi
   apply (induct rule: path-to.induct)
       apply simp
     apply (metis list.set-intros(1) subformula-into-subformula)
   using subformula-trans\ subformula-in-binary-conn(2) by metis
lemma subformula-path-exists:
   fixes \varphi \varphi' :: 'v \ propo
   shows \varphi' \preceq \varphi \Longrightarrow \exists p. path-to p \varphi \varphi'
proof (induct rule: subformula.induct)
   case subformula-refl
   have path-to [] \varphi' \varphi' by auto
   then show \exists p. path-to p \varphi' \varphi' by metis
   case (subformula-into-subformula \psi l c)
   note wf = this(2) and IH = this(4) and \psi = this(1)
    then obtain p where p: path-to p \psi \varphi' by metis
    {
       \mathbf{fix} \ x :: \ 'v
       assume c = CT \lor c = CF \lor c = CVar x
       then have False using subformula-into-subformula by auto
       then have \exists p. path-to p (conn c l) \varphi' by blast
   moreover {
       assume c: c = CNot
```

```
then have l = [\psi] using wf \psi wf-conn-Not-decomp by fastforce
    then have path-to (L \# p) (conn c l) \varphi' by (metis c wf-conn-unary p path-to-l)
   then have \exists p. path-to p (conn c l) \varphi' by blast
  moreover {
    assume c: c \in binary\text{-}connectives
    obtain a b where ab: [a, b] = l using subformula-into-subformula c wf-conn-bin-list-length
      list-length2-decomp by metis
    then have a = \psi \lor b = \psi using \psi by auto
    then have path-to (L \# p) (conn c l) \varphi' \vee path-to (R \# p) (conn c l) \varphi' using c path-to-l
      path-to-r p ab by (metis wf-conn-binary)
    then have \exists p. path-to p (conn c l) \varphi' by blast
 ultimately show \exists p. path-to p (conn c l) \varphi' using connective-cases-arity by metis
qed
fun replace-at :: sign list \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow 'v propo where
replace-at \ [] - \psi = \psi
replace-at (L \# l) (FAnd \varphi \varphi') \psi = FAnd (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FAnd \varphi \varphi') \psi = FAnd \varphi (replace-at l \varphi' \psi)
replace-at (L # l) (FOr \varphi \varphi') \psi = FOr (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FOr \varphi \varphi') \psi = FOr \varphi (replace-at l \varphi' \psi) |
replace-at (L \# l) (FEq \varphi \varphi') \psi = FEq (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FEq \varphi \varphi') \psi = FEq \varphi (replace-at l \varphi' \psi)
replace-at (L \# l) (FImp \varphi \varphi') \psi = FImp (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FImp \varphi \varphi') \psi = FImp \varphi (replace-at l \varphi' \psi)
replace-at (L \# l) (FNot \varphi) \psi = FNot (replace-at l \varphi \psi)
```

5 Semantics over the syntax

Given the syntax defined above, we define a semantics, by defining an evaluation function *eval*. This function is the bridge between the logic as we define it here and the built-in logic of Isabelle.

```
fun eval :: ('v \Rightarrow bool) \Rightarrow 'v \ propo \Rightarrow bool \ (infix \models 50) \ where \ \mathcal{A} \models FT = True \mid \ \mathcal{A} \models FF = False \mid \ \mathcal{A} \models FVar \ v = (\mathcal{A} \ v) \mid \ \mathcal{A} \models FNot \ \varphi = (\neg(\mathcal{A} \models \varphi)) \mid \ \mathcal{A} \models FAnd \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \land \mathcal{A} \models \varphi_2) \mid \ \mathcal{A} \models FOr \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \lor \mathcal{A} \models \varphi_2) \mid \ \mathcal{A} \models FImp \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \to \mathcal{A} \models \varphi_2) \mid \ \mathcal{A} \models FEq \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \longleftrightarrow \mathcal{A} \models \varphi_2)
definition evalf \ (infix \models f50) \ where \ evalf \ \varphi \ \psi = (\forall A. \ A \models \varphi \longrightarrow A \models \psi)
```

The deduction rule is in the book. And the proof looks like to the one of the book.

```
theorem deduction-theorem:
```

```
(\varphi \models f \psi) \longleftrightarrow (\forall A. \ (A \models \mathit{FImp} \ \varphi \ \psi)) proof assume H \colon \varphi \models f \psi {
\text{fix } A \\ \text{have } A \models \mathit{FImp} \ \varphi \ \psi \\ \text{proof} \ (\mathit{cases} \ A \models \varphi)
```

```
case True
       then have A \models \psi using H unfolding evalf-def by metis
        then show A \models FImp \varphi \psi by auto
      next
        case False
        then show A \models FImp \varphi \psi by auto
      qed
  then show \forall A. A \models FImp \varphi \psi by blast
 assume A: \forall A. A \models FImp \varphi \psi
 show \varphi \models f \psi
    proof (rule ccontr)
      assume \neg \varphi \models f \psi
      then obtain A where A \models \varphi and \neg A \models \psi using evalf-def by metis
      then have \neg A \models FImp \varphi \psi by auto
      then show False using A by blast
    qed
qed
A shorter proof:
lemma \varphi \models f \psi \longleftrightarrow (\forall A. A \models FImp \varphi \psi)
 by (simp add: evalf-def)
definition same-over-set:: ('v \Rightarrow bool) \Rightarrow ('v \Rightarrow bool) \Rightarrow 'v \ set \Rightarrow bool where
same-over-set\ A\ B\ S=(\forall\ c{\in}S.\ A\ c=B\ c)
If two mapping A and B have the same value over the variables, then the same formula are
satisfiable.
lemma same-over-set-eval:
 assumes same-over-set A B (vars-of-prop \varphi)
 shows A \models \varphi \longleftrightarrow B \models \varphi
  using assms unfolding same-over-set-def by (induct \varphi, auto)
end
```

begin

This file is devoted to abstract properties of the transformations, like consistency preservation and lifting from terms to proposition.

6 Rewrite systems and properties

6.1 Lifting of rewrite rules

theory Prop-Abstract-Transformation imports Main Prop-Logic Wellfounded-More

We can lift a rewrite relation r over a full formula: the relation r works on terms, while propo-rew-step works on formulas.

```
inductive propo-rew-step :: ('v propo \Rightarrow 'v propo \Rightarrow bool) \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool for r :: 'v propo \Rightarrow 'v propo \Rightarrow bool where global-rel: r \varphi \psi \Longrightarrow propo-rew-step r \varphi \psi \mid propo-rew-one-step-lift: propo-rew-step r \varphi \varphi' \Longrightarrow wf-conn c (\psi s @ \varphi \# \psi s')
```

```
\implies propo-rew-step r (conn c (\psi s @ \varphi \# \psi s')) (conn c (\psi s @ \varphi' \# \psi s'))
```

Here is a more precise link between the lifting and the subformulas: if a rewriting takes place between φ and φ' , then there are two subformulas ψ in φ and ψ' in φ' , ψ' is the result of the rewriting of r on ψ .

This lemma is only a health condition:

```
lemma propo-rew-step-subformula-imp: shows propo-rew-step r \varphi \varphi' \Longrightarrow \exists \psi \psi'. \psi \preceq \varphi \wedge \psi' \preceq \varphi' \wedge r \psi \psi' apply (induct rule: propo-rew-step.induct) using subformula.simps subformula-into-subformula apply blast using wf-conn-no-arity-change subformula-into-subformula wf-conn-no-arity-change-helper in-set-conv-decomp by metis
```

The converse is moreover true: if there is a ψ and ψ' , then every formula φ containing ψ , can be rewritten into a formula φ' , such that it contains φ' .

```
\mathbf{lemma}\ propo-rew-step-subformula-rec:
  fixes \psi \ \psi' \ \varphi :: \ 'v \ propo
  shows \psi \preceq \varphi \Longrightarrow r \psi \psi' \Longrightarrow (\exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ \varphi \ \varphi')
proof (induct \varphi rule: subformula.induct)
  case subformula-refl
  hence propo-rew-step r \psi \psi' using propo-rew-step.intros by auto
  moreover have \psi' \leq \psi' using Prop-Logic.subformula-refl by auto
  ultimately show \exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ \psi \ \varphi' by fastforce
next
  case (subformula-into-subformula \psi'' l c)
  note IH = this(4) and r = this(5) and \psi'' = this(1) and wf = this(2) and incl = this(3)
  then obtain \varphi' where *: \psi' \preceq \varphi' \land propo-rew-step \ r \ \psi'' \ \varphi' by metis
  moreover obtain \xi \xi' :: 'v \ propo \ list \ where
    l: l = \xi @ \psi'' \# \xi'  using List.split-list \psi'' by metis
  ultimately have propo-rew-step r (conn c l) (conn c (\xi @ \varphi' \# \xi'))
    using propo-rew-step.intros(2) wf by metis
  moreover have \psi' \leq conn \ c \ (\xi @ \varphi' \# \xi')
    \mathbf{using} \ wf * wf\text{-}conn\text{-}no\text{-}arity\text{-}change \ Prop\text{-}Logic.subformula-into\text{-}subformula}
    by (metis (no-types) in-set-conv-decomp l wf-conn-no-arity-change-helper)
  ultimately show \exists \varphi'. \psi' \preceq \varphi' \land propo-rew-step \ r \ (conn \ c \ l) \ \varphi' by metis
qed
lemma propo-rew-step-subformula:
  (\exists \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi') \longleftrightarrow (\exists \varphi'. \ propo-rew-step \ r \ \varphi \ \varphi')
  {\bf using} \ propo-rew-step-subformula-imp \ propo-rew-step-subformula-rec \ {\bf by} \ met is +
lemma consistency-decompose-into-list:
  assumes wf: wf-conn c l and wf': wf-conn c l'
  and same: \forall n. (A \models l! n \longleftrightarrow (A \models l'! n))
  shows (A \models conn \ c \ l) = (A \models conn \ c \ l')
proof (cases c rule: connective-cases-arity-2)
  case nullary
  thus (A \models conn \ c \ l) \longleftrightarrow (A \models conn \ c \ l') using wf wf' by auto
  case unary note c = this
  then obtain a where l: l = [a] using wf-conn-Not-decomp wf by metis
  obtain a' where l': l' = [a'] using wf-conn-Not-decomp wf' c by metis
  have A \models a \longleftrightarrow A \models a' using l \ l' by (metis \ nth\text{-}Cons\text{-}0 \ same)
  thus A \models conn \ c \ l \longleftrightarrow A \models conn \ c \ l' \ using \ l \ l' \ c \ by \ auto
```

```
case binary note c = this
  then obtain a b where l: l = [a, b]
    using wf-conn-bin-list-length list-length2-decomp wf by metis
  obtain a' b' where l': l' = [a', b']
    using wf-conn-bin-list-length list-length2-decomp wf' c by metis
 have p: A \models a \longleftrightarrow A \models a' A \models b \longleftrightarrow A \models b'
    using l \ l' same by (metis diff-Suc-1 nth-Cons' nat.distinct(2))+
 show A \models conn \ c \ l \longleftrightarrow A \models conn \ c \ l'
    using wf c p unfolding binary-connectives-def l l' by auto
qed
Relation between propo-rew-step and the rewriting we have seen before: propo-rew-step r \varphi \varphi'
means that we rewrite \psi inside \varphi (ie at a path p) into \psi'.
lemma propo-rew-step-rewrite:
  fixes \varphi \varphi' :: 'v \ propo \ and \ r :: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool
 assumes propo-rew-step r \varphi \varphi'
 shows \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ \varphi \ \psi \land replace-at \ p \ \varphi \ \psi' = \varphi'
 using assms
proof (induct rule: propo-rew-step.induct)
  \mathbf{case}(\mathit{global}\text{-}\mathit{rel}\ \varphi\ \psi)
  moreover have path-to [] \varphi \varphi by auto
 moreover have replace-at [ \varphi \psi = \psi \text{ by } auto ]
  ultimately show ?case by metis
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi') note rel = this(1) and IH0 = this(2) and corr = this(3)
 obtain \psi \psi' p where IH: r \psi \psi' \wedge path-to p \varphi \psi \wedge replace-at p \varphi \psi' = \varphi' using IH0 by metis
  {
     \mathbf{fix} \ x :: \ 'v
     assume c = CT \lor c = CF \lor c = CVar x
     hence False using corr by auto
     hence \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \ \# \ \xi'))) \ \psi
                       \land replace-at p (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn \ c (\xi @ (\varphi' \# \xi'))
       by fast
  }
  moreover {
     \mathbf{assume}\ c{:}\ c = \mathit{CNot}
     hence empty: \xi = [] \xi' = [] using corr by auto
     have path-to (L\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
       using c empty IH wf-conn-unary path-to-l by fastforce
     moreover have replace-at (L\#p) (conn\ c\ (\xi@\ (\varphi\ \#\xi')))\ \psi' = conn\ c\ (\xi@\ (\varphi'\ \#\xi'))
       using c empty IH by auto
     ultimately have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \# \xi'))) \ \psi
                                \land replace-at p (conn c (\xi@ (\varphi # \xi'))) \psi' = conn\ c (\xi@ (\varphi' # \xi'))
     using IH by metis
  }
  moreover {
     assume c: c \in binary\text{-}connectives
     have length (\xi @ \varphi \# \xi') = 2 using wf-conn-bin-list-length corr c by metis
     hence length \xi + length \ \xi' = 1 by auto
     hence ld: (length \xi = 1 \land length \ \xi' = 0) \lor (length \xi = 0 \land length \ \xi' = 1) by arith
     obtain a b where ab: (\xi=[] \land \xi'=[b]) \lor (\xi=[a] \land \xi'=[])
       using ld by (case-tac \xi, case-tac \xi', auto)
```

next

```
{
        assume \varphi: \xi = [] \land \xi' = [b]
        have path-to (L \# p) (conn c (\xi @ (\varphi \# \xi'))) \psi
          using \varphi c IH ab corr by (simp add: path-to-l)
        moreover have replace-at (L\#p) (conn\ c\ (\xi@\ (\varphi\ \#\ \xi')))\ \psi' = conn\ c\ (\xi@\ (\varphi'\ \#\ \xi'))
          using c IH ab \varphi unfolding binary-connectives-def by auto
        ultimately have \exists \psi \ \psi' \ p. \ r \ \psi \ \psi' \land path-to \ p \ (conn \ c \ (\xi@ \ (\varphi \# \xi'))) \ \psi
          \land replace-at p (conn c (\xi@ (\varphi \# \xi'))) \psi' = conn \ c (\xi@ (\varphi' \# \xi'))
          using IH by metis
     }
     moreover {
        assume \varphi: \xi = [a] \xi' = []
        hence path-to (R\#p) (conn c (\xi@ (\varphi \# \xi'))) \psi
          using c IH corr path-to-r corr \varphi by (simp add: path-to-r)
        moreover have replace-at (R \# p) (conn c (\xi @ (\varphi \# \xi'))) \psi' = conn c (\xi @ (\varphi' \# \xi'))
          using c IH ab \varphi unfolding binary-connectives-def by auto
        ultimately have ?case using IH by metis
     ultimately have ?case using ab by blast
  }
  ultimately show ?case using connective-cases-arity by blast
qed
6.2
         Consistency preservation
We define preserves-un-sat: it means that a relation preserves consistency.
definition preserves-un-sat where
preserves-un-sat r \longleftrightarrow (\forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow (\forall A. \ A \models \varphi \longleftrightarrow A \models \psi))
{f lemma}\ propo-rew-step-preservers-val-explicit:
\textit{propo-rew-step } r \not \phi \psi \Longrightarrow \textit{preserves-un-sat } r \Longrightarrow \textit{propo-rew-step } r \not \phi \psi \Longrightarrow (\forall A. \ A \models \varphi \longleftrightarrow A \models \psi)
  unfolding preserves-un-sat-def
proof (induction rule: propo-rew-step.induct)
 {\bf case}\ global\text{-}rel
  thus ?case by simp
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi') note rel = this(1) and wf = this(2)
    and IH = this(3)[OF\ this(4)\ this(1)] and consistent = this(4)
    \mathbf{fix} A
    from IH have \forall n. (A \models (\xi @ \varphi \# \xi') ! n) = (A \models (\xi @ \varphi' \# \xi') ! n)
      by (metis (mono-tags, hide-lams) list-update-length nth-Cons-0 nth-append-length-plus
        nth-list-update-neq)
    hence (A \models conn \ c \ (\xi @ \varphi \# \xi')) = (A \models conn \ c \ (\xi @ \varphi' \# \xi'))
      by (meson consistency-decompose-into-list wf wf-conn-no-arity-change-helper
        wf-conn-no-arity-change)
 thus \forall A. A \models conn \ c \ (\xi @ \varphi \# \xi') \longleftrightarrow A \models conn \ c \ (\xi @ \varphi' \# \xi') by auto
qed
lemma propo-rew-step-preservers-val':
  assumes preserves-un-sat r
  shows preserves-un-sat (propo-rew-step r)
```

```
lemma preserves-un-sat-OO[intro]:
preserves-un-sat f \Longrightarrow preserves-un-sat g \Longrightarrow preserves-un-sat (f OO g)
unfolding preserves-un-sat-def by auto

lemma star-consistency-preservation-explicit:
assumes (propo-rew-step r)^*** \varphi \psi and preserves-un-sat r
shows \forall A. A \models \varphi \longleftrightarrow A \models \psi
using assms by (induct rule: rtranclp-induct)
(auto simp add: propo-rew-step-preservers-val-explicit)

lemma star-consistency-preservation:
preserves-un-sat r \Longrightarrow preserves-un-sat (propo-rew-step r)^***
by (simp add: star-consistency-preservation-explicit preserves-un-sat-def)
```

6.3 Full Lifting

In the previous a relation was lifted to a formula, now we define the relation such it is applied as long as possible. The definition is thus simply: it can be derived and nothing more can be derived.

```
lemma full-ropo-rew-step-preservers-val[simp]: preserves-un-sat r \Longrightarrow preserves-un-sat (full (propo-rew-step r)) by (metis full-def preserves-un-sat-def star-consistency-preservation) lemma full-propo-rew-step-subformula: full (propo-rew-step r) \varphi' \varphi \Longrightarrow \neg (\exists \ \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi') unfolding full-def using propo-rew-step-subformula-rec by metis
```

7 Transformation testing

7.1 Definition and first properties

To prove correctness of our transformation, we create a *all-subformula-st* predicate. It tests recursively all subformulas. At each step, the actual formula is tested. The aim of this *test-symb* function is to test locally some properties of the formulas (i.e. at the level of the connective or at first level). This allows a clause description between the rewrite relation and the *test-symb*

```
definition all-subformula-st :: ('a propo \Rightarrow bool) \Rightarrow 'a propo \Rightarrow bool where all-subformula-st test-symb \varphi \equiv \forall \psi. \ \psi \preceq \varphi \longrightarrow \text{test-symb } \psi
```

```
lemma test-symb-imp-all-subformula-st[simp]:
test-symb FT \implies all-subformula-st test-symb FF
test-symb (FVar x) \implies all-subformula-st test-symb (FVar x)
unfolding all-subformula-st-def using subformula-leaf by metis+

lemma all-subformula-st-test-symb-true-phi:
all-subformula-st test-symb \varphi
unfolding all-subformula-st-def by auto
```

```
lemma all-subformula-st-decomp-imp:
  wf-conn c \ l \Longrightarrow (test-symb (conn \ c \ l) \land (\forall \varphi \in set \ l. \ all-subformula-st test-symb (\varphi)
  \implies all-subformula-st test-symb (conn c l)
  unfolding all-subformula-st-def by auto
To ease the finding of proofs, we give some explicit theorem about the decomposition.
lemma all-subformula-st-decomp-rec:
  all-subformula-st test-symb (conn c l) \Longrightarrow wf-conn c l
    \implies (test-symb (conn c l) \land (\forall \varphi \in set l. all-subformula-st test-symb <math>\varphi))
  unfolding all-subformula-st-def by auto
lemma all-subformula-st-decomp:
  fixes c :: 'v \ connective \ and \ l :: 'v \ propo \ list
  assumes wf-conn c l
  shows all-subformula-st test-symb (conn c l)
    \longleftrightarrow (test-symb (conn c l) \land (\forall \varphi \in set \ l. \ all-subformula-st test-symb \varphi))
  using assms all-subformula-st-decomp-rec all-subformula-st-decomp-imp by metis
lemma helper-fact: c \in binary-connectives \longleftrightarrow (c = COr \lor c = CAnd \lor c = CEq \lor c = CImp)
  unfolding binary-connectives-def by auto
\mathbf{lemma}\ all\text{-}subformula\text{-}st\text{-}decomp\text{-}explicit[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows all-subformula-st test-symb (FAnd \varphi \psi)
      \longleftrightarrow (test-symb (FAnd \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
  and all-subformula-st test-symb (FOr \varphi \psi)
     \longleftrightarrow (test\text{-}symb \ (FOr \ \varphi \ \psi) \land \ all\text{-}subformula\text{-}st \ test\text{-}symb \ \varphi \land all\text{-}subformula\text{-}st \ test\text{-}symb \ \psi)
  and all-subformula-st test-symb (FNot \varphi)
     \longleftrightarrow (test\text{-}symb\ (FNot\ \varphi) \land all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi)
  and all-subformula-st test-symb (FEq \varphi \psi)
     \longleftrightarrow (test\text{-}symb \ (FEq \ \varphi \ \psi) \land \ all\text{-}subformula\text{-}st \ test\text{-}symb \ } \varphi \land all\text{-}subformula\text{-}st \ test\text{-}symb \ } \psi)
  and all-subformula-st test-symb (FImp \varphi \psi)
     \longleftrightarrow (test\text{-}symb \ (FImp \ \varphi \ \psi) \land all\text{-}subformula\text{-}st \ test\text{-}symb \ \varphi \land all\text{-}subformula\text{-}st \ test\text{-}symb \ \psi)
proof -
  have all-subformula-st test-symb (FAnd \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CAnd [\varphi, \psi])
  moreover have ... \longleftrightarrow test-symb (conn CAnd [\varphi, \psi])\land(\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb
\xi)
    using all-subformula-st-decomp wf-conn-helper-facts(5) by metis
  finally show all-subformula-st test-symb (FAnd \varphi \psi)
    \longleftrightarrow (test-symb (FAnd \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FOr \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn COr [\varphi, \psi])
    by auto
  moreover have \ldots \longleftrightarrow
    (test\text{-}symb\ (conn\ COr\ [\varphi,\,\psi]) \land (\forall \xi \in set\ [\varphi,\,\psi].\ all\text{-}subformula-st\ test\text{-}symb\ \xi))
    using all-subformula-st-decomp wf-conn-helper-facts (6) by metis
  finally show all-subformula-st test-symb (FOr \varphi \psi)
    \longleftrightarrow (test\text{-}symb \ (FOr \ \varphi \ \psi) \land all\text{-}subformula\text{-}st \ test\text{-}symb \ \varphi \land all\text{-}subformula\text{-}st \ test\text{-}symb \ \psi)
    by simp
  have all-subformula-st test-symb (FEq \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CEq [\varphi, \psi])
    by auto
  moreover have ...
```

```
\longleftrightarrow (test-symb (conn CEq [\varphi, \psi]) \land (\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(8) by metis
  finally show all-subformula-st test-symb (FEq \varphi \psi)
    \longleftrightarrow (test-symb (FEq \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FImp \varphi \psi) \longleftrightarrow all-subformula-st test-symb (conn CImp [\varphi, \psi])
    by auto
  moreover have ...
    \longleftrightarrow (test-symb (conn CImp [\varphi, \psi]) \land (\forall \xi \in set [\varphi, \psi]. all-subformula-st test-symb \xi))
    using all-subformula-st-decomp wf-conn-helper-facts (\gamma) by metis
  finally show all-subformula-st test-symb (FImp \varphi \psi)
    \longleftrightarrow (test-symb (FImp \varphi \psi) \land all-subformula-st test-symb \varphi \land all-subformula-st test-symb \psi)
    by simp
  have all-subformula-st test-symb (FNot \varphi) \longleftrightarrow all-subformula-st test-symb (conn CNot [\varphi])
    by auto
  moreover have ... = (test\text{-}symb\ (conn\ CNot\ [\varphi]) \land (\forall \xi \in set\ [\varphi].\ all\text{-}subformula\text{-}st\ test\text{-}symb\ \xi))
    using all-subformula-st-decomp wf-conn-helper-facts(1) by metis
  finally show all-subformula-st test-symb (FNot \varphi)
    \longleftrightarrow (test\text{-}symb\ (FNot\ \varphi) \land all\text{-}subformula\text{-}st\ test\text{-}symb\ \varphi)\ \mathbf{by}\ simp
qed
As all-subformula-st tests recursively, the function is true on every subformula.
\mathbf{lemma}\ subformula-all-subformula-st:
  \psi \preceq \varphi \Longrightarrow all\text{-subformula-st test-symb } \varphi \Longrightarrow all\text{-subformula-st test-symb } \psi
  by (induct rule: subformula.induct, auto simp add: all-subformula-st-decomp)
The following theorem no-test-symb-step-exists shows the link between the test-symb function
and the corresponding rewrite relation r: if we assume that if every time test-symb is true, then
a r can be applied, finally as long as \neg all-subformula-st test-symb \varphi, then something can be
rewritten in \varphi.
lemma no-test-symb-step-exists:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x :: 'v
  and \varphi :: 'v \ propo
  assumes test-symb-false-nullary: \forall x. test-symb FF \land test-symb FT \land test-symb (FVar\ x)
  and \forall \varphi' . \varphi' \prec \varphi \longrightarrow (\neg test\text{-symb } \varphi') \longrightarrow (\exists \psi. r \varphi' \psi) and
  \neg all-subformula-st test-symb \varphi
  shows (\exists \psi \ \psi'. \ \psi \preceq \varphi \land r \ \psi \ \psi')
  using assms
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  thus \exists \psi \ \psi' . \ \psi \leq \varphi \wedge r \ \psi \ \psi'
    using wf-conn-nullary test-symb-false-nullary by fastforce
  case (unary \varphi) note IH = this(1)[OF\ this(2)] and r = this(2) and nst = this(3) and subf =
  from r IH nst have H: \neg all-subformula-st test-symb \varphi \Longrightarrow \exists \psi. \ \psi \preceq \varphi \land (\exists \psi'. \ r \ \psi \ \psi')
    by (metis subformula-in-subformula-not subformula-refl subformula-trans)
    assume n: \neg test\text{-}symb \ (FNot \ \varphi)
    obtain \psi where r (FNot \varphi) \psi using subformula-refl r n set by blast
    moreover have FNot \varphi \leq FNot \varphi using subformula-refl by auto
    ultimately have \exists \psi \ \psi'. \psi \leq FNot \ \varphi \land r \ \psi \ \psi' by metis
```

}

```
moreover {
    assume n: test-symb (FNot \varphi)
    hence \neg all-subformula-st test-symb \varphi
      using all-subformula-st-decomp-explicit(3) nst subf by blast
    hence \exists \psi \ \psi' . \ \psi \leq FNot \ \varphi \wedge r \ \psi \ \psi'
      using H subformula-in-subformula-not subformula-refl subformula-trans by blast
  ultimately show \exists \psi \ \psi'. \psi \leq FNot \ \varphi \land r \ \psi \ \psi' by blast
next
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1-0 = this(1)[OF\ this(4)] and IH\varphi 2-0 = this(2)[OF\ this(4)] and r = this(4)
    and \varphi = this(3) and le = this(5) and nst = this(6)
  obtain c :: 'v \ connective \ \mathbf{where}
    c: (c = CAnd \lor c = COr \lor c = CImp \lor c = CEq) \land conn \ c \ [\varphi 1, \varphi 2] = \varphi
    using \varphi by fastforce
  hence corr: wf-conn c [\varphi 1, \varphi 2] using wf-conn.simps unfolding binary-connectives-def by auto
  have inc: \varphi 1 \preceq \varphi \varphi 2 \preceq \varphi using binary-connectives-def c subformula-in-binary-conn by blast+
  from r \ IH \varphi 1-0 have IH \varphi 1: \neg \ all-subformula-st test-symb \varphi 1 \Longrightarrow \exists \ \psi \ \psi'. \ \psi \preceq \varphi 1 \ \land \ r \ \psi \ \psi'
    using inc(1) subformula-trans le by blast
  from r \ IH\varphi 2\text{-}0 have IH\varphi 2: \neg \ all\text{-subformula-st} \ test\text{-symb} \ \varphi 2 \Longrightarrow \exists \ \psi. \ \psi \preceq \varphi 2 \ \land \ (\exists \ \psi'. \ r \ \psi \ \psi')
    using inc(2) subformula-trans le by blast
  have cases: \neg test-symb \varphi \lor \neg all-subformula-st test-symb \varphi 1 \lor \neg all-subformula-st test-symb \varphi 2
    using c nst by auto
  show \exists \psi \ \psi' . \ \psi \preceq \varphi \wedge r \ \psi \ \psi'
    using IH\varphi 1 IH\varphi 2 subformula-trans inc subformula-refl cases le by blast
qed
```

7.2 Invariant conservation

If two rewrite relation are independent (or at least independent enough), then the property characterizing the first relation *all-subformula-st test-symb* remains true. The next show the same property, with changes in the assumptions.

The assumption $\forall \varphi' \psi$. $\varphi' \preceq \Phi \longrightarrow r \varphi' \psi \longrightarrow all$ -subformula-st test-symb $\varphi' \longrightarrow all$ -subformula-st test-symb ψ means that rewriting with r does not mess up the property we want to preserve locally.

The previous assumption is not enough to go from r to propo-rew-step r: we have to add the assumption that rewriting inside does not mess up the term: $\forall c \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \ \leq \ \Phi \longrightarrow propo-rew$ -step $r \ \varphi \ \varphi' \longrightarrow wf$ -conn $c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test$ -symb $(conn \ c \ (\xi \ @ \ \varphi' \ \# \ \xi'))$ test-symb $(conn \ c \ (\xi \ @ \ \varphi' \ \# \ \xi'))$

7.2.1 Invariant while lifting of the rewriting relation

The condition $\varphi \leq \Phi$ (that will by used with $\Phi = \varphi$ most of the time) is here to ensure that the recursive conditions on Φ will moreover hold for the subterm we are rewriting. For example if there is no equivalence symbol in Φ , we do not have to care about equivalence symbols in the two previous assumptions.

```
lemma propo-rew-step-inv-stay': fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v \ and \ \varphi \ \psi \ \Phi:: 'v \ propo
```

```
assumes H: \forall \varphi' \psi. \varphi' \leq \Phi \longrightarrow r \varphi' \psi \longrightarrow all\text{-subformula-st test-symb } \varphi'
    \longrightarrow all-subformula-st test-symb \psi
  and H': \forall (c:: 'v connective) \xi \varphi \xi' \varphi'. \varphi \leq \Phi \longrightarrow propo-rew-step \ r \varphi \varphi'
    \longrightarrow wf-conn c (\xi @ \varphi \# \xi') \longrightarrow test-symb (conn c (\xi @ \varphi \# \xi')) \longrightarrow test-symb \varphi'
    \longrightarrow test-symb (conn c (\xi @ \varphi' \# \xi')) and
    propo-rew-step r \varphi \psi and
    \varphi \leq \Phi and
    all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using assms(3-5)
proof (induct rule: propo-rew-step.induct)
  case global-rel
  thus ?case using H by simp
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and \varphi = this(2) and corr = this(3) and \Phi = this(4) and nst = this(5)
  have sq: \varphi \prec \Phi
    using \Phi corr subformula-into-subformula subformula-refl subformula-trans
    by (metis in-set-conv-decomp)
  from corr have \forall \psi. \psi \in set \ (\xi @ \varphi \# \xi') \longrightarrow all\text{-subformula-st test-symb } \psi
    using all-subformula-st-decomp nst by blast
  hence *: \forall \psi. \ \psi \in set \ (\xi @ \varphi' \# \xi') \longrightarrow all\text{-subformula-st test-symb} \ \psi \text{ using } \varphi \text{ sq by } fastforce
  hence test-symb \varphi' using all-subformula-st-test-symb-true-phi by auto
  moreover from corr nst have test-symb (conn c (\xi @ \varphi \# \xi'))
    using all-subformula-st-decomp by blast
  ultimately have test-symb: test-symb (conn c (\xi \otimes \varphi' \# \xi')) using H' sq corr rel by blast
  have wf-conn c (\xi @ \varphi' \# \xi')
    by (metis wf-conn-no-arity-change-helper corr wf-conn-no-arity-change)
  thus all-subformula-st test-symb (conn c (\xi \otimes \varphi' \# \xi'))
    using * test-symb by (metis all-subformula-st-decomp)
qed
The need for \varphi \leq \Phi is not always necessary, hence we moreover have a version without inclusion.
lemma propo-rew-step-inv-stay:
  fixes r:: 'v propo \Rightarrow 'v propo \Rightarrow bool and test-symb:: 'v propo \Rightarrow bool and x :: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi' \psi. \ r \ \varphi' \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi' \longrightarrow all\text{-subformula-st test-symb} \ \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi'))
       \longrightarrow test\text{-symb }\varphi' \longrightarrow test\text{-symb }(conn\ c\ (\xi\ @\ \varphi'\ \#\ \xi')) and
    propo-rew-step r \varphi \psi and
    all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using propo-rew-step-inv-stay'[of \varphi r test-symb \varphi \psi] assms subformula-reft by metis
The lemmas can be lifted to full (propo-rew-step r) instead of propo-rew-step
```

7.2.2 Invariant after all rewriting

```
lemma full-propo-rew-step-inv-stay-with-inc:

fixes r:: \ 'v \ propo \Rightarrow \ 'v \ propo \Rightarrow \ bool \ and \ test-symb:: \ 'v \ propo \Rightarrow \ bool \ and \ x:: \ 'v \ and \ \varphi \ \psi :: \ 'v \ propo \ assumes \ H: \ \forall \ \varphi \ \psi. \ propo-rew-step \ r \ \varphi \ \psi \longrightarrow \ all-subformula-st \ test-symb \ \varphi
```

```
\longrightarrow all-subformula-st test-symb \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ \varphi \leq \Phi \longrightarrow propo-rew-step \ r \ \varphi \ \varphi'
       \longrightarrow wf-conn c (\xi @ \varphi \# \xi') \longrightarrow test-symb (conn c (\xi @ \varphi \# \xi')) \longrightarrow test-symb \varphi'
      \longrightarrow test\text{-symb} (conn \ c \ (\xi @ \varphi' \# \xi')) \text{ and }
      \varphi \leq \Phi and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using assms unfolding full-def
proof -
  have rel: (propo-rew-step \ r)^{**} \ \varphi \ \psi
    using full unfolding full-def by auto
  thus all-subformula-st test-symb \psi
    using init
    proof (induct rule: rtranclp-induct)
      case base
      then show all-subformula-st test-symb \varphi by blast
      case (step b c) note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
      then have all-subformula-st test-symb b by metis
      then show all-subformula-st test-symb c using propo-rew-step-inv-stay' H H' rel one by auto
    qed
qed
lemma full-propo-rew-step-inv-stay':
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \psi. propo-rew-step \ r \varphi \psi \longrightarrow all-subformula-st \ test-symb \ \varphi
         \rightarrow all-subformula-st test-symb \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ propo-rew-step \ r \ \varphi \ \varphi' \longrightarrow wf-conn \ c \ (\xi @ \varphi \# \xi')
       \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi \# \xi')) \longrightarrow test\text{-symb} \ \varphi' \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi' \# \xi')) \ \text{and}
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  using full-propo-rew-step-inv-stay-with-inc of r test-symb \varphi assms subformula-reft by metis
lemma full-propo-rew-step-inv-stay:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x:: 'v
  and \varphi \psi :: 'v \ propo
  assumes
    H: \forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi \longrightarrow all\text{-subformula-st test-symb} \ \psi and
    H': \forall (c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi') \longrightarrow test-symb \ (conn \ c \ (\xi \ @ \ \varphi \ \# \ \xi'))
        \rightarrow test\text{-symb} \ \varphi' \longrightarrow test\text{-symb} \ (conn \ c \ (\xi @ \varphi' \# \xi')) \ \text{and}
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
  unfolding full-def
proof -
  have rel: (propo-rew-step \ r)^* * \varphi \psi
    using full unfolding full-def by auto
  thus all-subformula-st test-symb \psi
    using init
    proof (induct rule: rtranclp-induct)
      case base
```

```
thus all-subformula-st test-symb \varphi by blast
    next
      case (step \ b \ c)
      note star = this(1) and IH = this(3) and one = this(2) and all = this(4)
      hence all-subformula-st test-symb b by metis
      thus all-subformula-st test-symb c
        using propo-rew-step-inv-stay subformula-refl H H' rel one by auto
    \mathbf{qed}
\mathbf{qed}
lemma full-propo-rew-step-inv-stay-conn:
  fixes r:: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ and \ test-symb:: 'v \ propo \Rightarrow bool \ and \ x :: 'v
 and \varphi \psi :: 'v \ propo
 assumes
    H: \forall \varphi \ \psi. \ r \ \varphi \ \psi \longrightarrow all\text{-subformula-st test-symb} \ \varphi \longrightarrow all\text{-subformula-st test-symb} \ \psi and
    H': \forall (c:: 'v \ connective) \ l \ l'. \ wf\text{-}conn \ c \ l \longrightarrow wf\text{-}conn \ c \ l'
       \longrightarrow (test\text{-}symb\ (conn\ c\ l) \longleftrightarrow test\text{-}symb\ (conn\ c\ l')) and
    full: full (propo-rew-step r) \varphi \psi and
    init: all-subformula-st test-symb \varphi
  shows all-subformula-st test-symb \psi
proof -
  have \bigwedge(c:: 'v \ connective) \ \xi \ \varphi \ \xi' \ \varphi'. \ wf-conn \ c \ (\xi @ \varphi \ \# \ \xi')
    \implies test-symb (conn c (\xi @ \varphi \# \xi')) \implies test-symb (conn c (\xi @ \varphi' \# \xi'))
    using H' by (metis wf-conn-no-arity-change-helper wf-conn-no-arity-change)
  thus all-subformula-st test-symb \psi
    using H full init full-propo-rew-step-inv-stay by blast
qed
theory Prop-Normalisation
imports Main Prop-Logic Prop-Abstract-Transformation ../lib/Multiset-More
```

Given the previous definition about abstract rewriting and theorem about them, we now have the detailed rule making the transformation into CNF/DNF.

8 Rewrite Rules

The idea of Christoph Weidenbach's book is to remove gradually the operators: first equivalencies, then implication, after that the unused true/false and finally the reorganizing the or/and. We will prove each transformation separately.

8.1 Elimination of the equivalences

The first transformation consists in removing every equivalence symbol.

```
inductive elim-equiv :: 'v \ propo \Rightarrow 'v \ propo \Rightarrow bool \ \mathbf{where} elim-equiv[simp]: elim-equiv \ (FEq \ \varphi \ \psi) \ (FAnd \ (FImp \ \varphi \ \psi) \ (FImp \ \psi \ \varphi)) lemma elim-equiv-transformation-consistent: A \models FEq \ \varphi \ \psi \longleftrightarrow A \models FAnd \ (FImp \ \varphi \ \psi) \ (FImp \ \psi \ \varphi) by auto
```

```
lemma elim-equiv-explicit: elim-equiv \varphi \ \psi \Longrightarrow \forall A. \ A \models \varphi \longleftrightarrow A \models \psi by (induct rule: elim-equiv.induct, auto)

lemma elim-equiv-consistent: preserves-un-sat elim-equiv unfolding preserves-un-sat-def by (simp add: elim-equiv-explicit)

lemma elimEquv-lifted-consistant: preserves-un-sat (full (propo-rew-step elim-equiv)) by (simp add: elim-equiv-consistent)
```

This function ensures that there is no equivalencies left in the formula tested by no-equiv-symb.

```
fun no-equiv-symb :: 'v propo \Rightarrow bool where no-equiv-symb (FEq - -) = False \mid no-equiv-symb - = True
```

Given the definition of *no-equiv-symb*, it does not depend on the formula, but only on the connective used.

```
lemma no-equiv-symb-conn-characterization[simp]:

fixes c :: 'v \ connective \ and \ l :: 'v \ propo \ list

assumes wf :: wf-conn \ c \ l

shows no-equiv-symb (conn c \ l) \longleftrightarrow c \neq CEq

by (metis connective.distinct(13,25,35,43) wf no-equiv-symb.elims(3) no-equiv-symb.simps(1)

wf-conn.cases \ wf-conn-list(6))
```

definition no-equiv where no-equiv = all-subformula-st no-equiv-symb

```
lemma no-equiv-eq[simp]:
fixes \varphi \psi :: 'v \ propo
shows
\neg no-equiv \ (FEq \ \varphi \ \psi)
no-equiv \ FT
no-equiv \ FF
using no-equiv-symb.simps(1) all-subformula-st-test-symb-true-phi unfolding no-equiv-def by auto
```

The following lemma helps to reconstruct *no-equiv* expressions: this representation is easier to use than the set definition.

```
lemma all-subformula-st-decomp-explicit-no-equiv[iff]: fixes \varphi \psi :: 'v propo shows no-equiv (FNot \varphi) \longleftrightarrow no-equiv \varphi no-equiv (FAnd \varphi \psi) \longleftrightarrow (no-equiv \varphi \wedge no-equiv \psi) no-equiv (FOr \varphi \psi) \longleftrightarrow (no-equiv \varphi \wedge no-equiv \psi) no-equiv (FImp \varphi \psi) \longleftrightarrow (no-equiv \varphi \wedge no-equiv \psi) by (auto simp: no-equiv-def)
```

A theorem to show the link between the rewrite relation elim-equiv and the function no-equiv-symb. This theorem is one of the assumption we need to characterize the transformation.

```
lemma no-equiv-elim-equiv-step:

fixes \varphi :: 'v propo

assumes no-equiv: \neg no-equiv \varphi

shows \exists \psi \ \psi'. \psi \preceq \varphi \land elim-equiv \psi \ \psi'

proof -

have test-symb-false-nullary:

\forall x::'v. no-equiv-symb FF \land no-equiv-symb FT \land no-equiv-symb (FVar\ x)
```

```
unfolding no-equiv-def by auto
  moreover {
    fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
      assume a1: elim-equiv (conn c l) \psi
      have \bigwedge p pa. \neg elim-equiv (p::'v \ propo) pa \lor \neg no-equiv-symb p
        using elim-equiv.cases no-equiv-symb.simps(1) by blast
      then have elim-equiv (conn c l) \psi \Longrightarrow \neg no-equiv-symb (conn c l) using a1 by metis
  }
  moreover have H': \forall \psi. \neg elim-equiv FT \psi \forall \psi. \neg elim-equiv FF \psi \forall \psi x. \neg elim-equiv (FVar x) \psi
    using elim-equiv.cases by auto
  moreover have \bigwedge \varphi. \neg no-equiv-symb \varphi \Longrightarrow \exists \psi. elim-equiv \varphi \psi
    by (case-tac \varphi, auto simp: elim-equiv.simps)
  then have \bigwedge \varphi'. \varphi' \preceq \varphi \Longrightarrow \neg no\text{-}equiv\text{-}symb \ \varphi' \Longrightarrow \exists \psi. elim\text{-}equiv \ \varphi' \ \psi by force
  ultimately show ?thesis
    using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-equiv-def by blast
qed
Given all the previous theorem and the characterization, once we have rewritten everything,
there is no equivalence symbol any more.
lemma no-equiv-full-propo-rew-step-elim-equiv:
 full (propo-rew-step elim-equiv) \varphi \psi \Longrightarrow no-equiv \psi
 \mathbf{using} \ \mathit{full-propo-rew-step-subformula} \ \mathit{no-equiv-elim-equiv-step} \ \mathbf{by} \ \mathit{blast}
8.2
        Eliminate Implication
After that, we can eliminate the implication symbols.
inductive elim-imp :: 'v propo \Rightarrow 'v propo \Rightarrow bool where
[simp]: elim-imp (FImp \varphi \psi) (FOr (FNot \varphi) \psi)
lemma elim-imp-transformation-consistent:
  A \models FImp \ \varphi \ \psi \longleftrightarrow A \models FOr \ (FNot \ \varphi) \ \psi
  by auto
lemma elim-imp-explicit: elim-imp \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: elim-imp.induct, auto)
lemma elim-imp-consistent: preserves-un-sat elim-imp
  unfolding preserves-un-sat-def by (simp add: elim-imp-explicit)
lemma elim-imp-lifted-consistant:
  preserves-un-sat (full (propo-rew-step elim-imp))
 by (simp add: elim-imp-consistent)
fun no-imp-symb where
no\text{-}imp\text{-}symb \ (FImp - -) = False \ |
no\text{-}imp\text{-}symb - = True
lemma no-imp-symb-conn-characterization:
  wf-conn c \ l \Longrightarrow no-imp-symb (conn \ c \ l) \longleftrightarrow c \neq CImp
  by (induction rule: wf-conn-induct) auto
definition no-imp where no-imp \equiv all-subformula-st no-imp-symb
declare no\text{-}imp\text{-}def[simp]
lemma no\text{-}imp\text{-}Imp[simp]:
```

```
\neg no\text{-}imp \ (FImp \ \varphi \ \psi)
  no\text{-}imp\ FT
  no-imp FF
  unfolding no-imp-def by auto
lemma all-subformula-st-decomp-explicit-imp[simp]:
  fixes \varphi \psi :: 'v \ propo
  shows
    no\text{-}imp\ (FNot\ \varphi) \longleftrightarrow no\text{-}imp\ \varphi
    no\text{-}imp\ (FAnd\ \varphi\ \psi) \longleftrightarrow (no\text{-}imp\ \varphi \land no\text{-}imp\ \psi)
    no\text{-}imp\ (FOr\ \varphi\ \psi) \longleftrightarrow (no\text{-}imp\ \varphi \land no\text{-}imp\ \psi)
  by auto
Invariant of the elim-imp transformation
lemma elim-imp-no-equiv:
  elim-imp \ \varphi \ \psi \implies no-equiv \ \varphi \implies no-equiv \ \psi
  by (induct \varphi \psi rule: elim-imp.induct, auto)
lemma elim-imp-inv:
  fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim-imp) \varphi \psi and no-equiv \varphi
  shows no-equiv \psi
  using full-propo-rew-step-inv-stay-conn[of elim-imp no-equiv-symb \varphi \psi] assms elim-imp-no-equiv
    no-equiv-symb-conn-characterization unfolding no-equiv-def by metis
lemma no-no-imp-elim-imp-step-exists:
  fixes \varphi :: 'v \ propo
  assumes no-equiv: \neg no-imp \varphi
  shows \exists \psi \ \psi' . \ \psi \leq \varphi \land elim-imp \ \psi \ \psi'
proof -
  have test-symb-false-nullary: \forall x. \ no\text{-}imp\text{-}symb\ FF \land no\text{-}imp\text{-}symb\ FT \land no\text{-}imp\text{-}symb\ (FVar\ (x:: 'v))
    by auto
  moreover {
     \mathbf{fix} \ \mathit{c} \hdots \ 'v \ \mathit{connective} \ \mathbf{and} \ \mathit{l} \hdots \ 'v \ \mathit{propo} \ \mathit{list} \ \mathbf{and} \ \psi \hdots \ 'v \ \mathit{propo}
     have H: elim-imp (conn c l) \psi \Longrightarrow \neg no-imp-symb (conn c l)
        by (auto elim: elim-imp.cases)
    }
  moreover
    have H': \forall \psi. \neg elim-imp\ FT\ \psi\ \forall \psi. \neg elim-imp\ FF\ \psi\ \forall \psi\ x. \neg elim-imp\ (FVar\ x)\ \psi
       by (auto elim: elim-imp.cases)+
  moreover
    have \bigwedge \varphi. \neg no-imp-symb \varphi \Longrightarrow \exists \psi. elim-imp \varphi \psi
       by (case-tac \varphi) (force simp: elim-imp.simps)+
    then have (\bigwedge \varphi' . \varphi' \preceq \varphi \Longrightarrow \neg no\text{-}imp\text{-}symb \ \varphi' \Longrightarrow \exists \ \psi. \ elim\text{-}imp \ \varphi' \ \psi) by force
  ultimately show ?thesis
    using no-test-symb-step-exists no-equiv test-symb-false-nullary unfolding no-imp-def by blast
qed
lemma no-imp-full-propo-rew-step-elim-imp: full (propo-rew-step elim-imp) \varphi \psi \implies no-imp \psi
```

using full-propo-rew-step-subformula no-no-imp-elim-imp-step-exists by blast

8.3 Eliminate all the True and False in the formula

Contrary to the book, we have to give the transformation and the "commutative" transformation. The latter is implicit in the book.

```
inductive elimTB where
ElimTB1: elimTB (FAnd \varphi FT) \varphi |
ElimTB1': elimTB (FAnd FT \varphi) \varphi
ElimTB2: elimTB (FAnd \varphi FF) FF
Elim TB2': elim TB (FAnd FF \varphi) FF |
ElimTB3: elimTB (FOr \varphi FT) FT
ElimTB3': elimTB (FOr FT \varphi) FT |
Elim TB4: elim TB (FOr \varphi FF) \varphi
Elim TB4': elim TB (FOr FF \varphi) \varphi
ElimTB5: elimTB (FNot FT) FF |
ElimTB6: elimTB (FNot FF) FT
lemma elimTB-consistent: preserves-un-sat elimTB
proof -
    fix \varphi \psi:: 'b propo
    have elimTB \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi by (induction rule: elimTB.inducts) auto
  then show ?thesis using preserves-un-sat-def by auto
qed
inductive no-T-F-symb :: 'v propo \Rightarrow bool where
no\text{-}T\text{-}F\text{-}symb\text{-}comp: c \neq CF \Longrightarrow c \neq CT \Longrightarrow wf\text{-}conn \ c \ l \Longrightarrow (\forall \varphi \in set \ l. \ \varphi \neq FT \land \varphi \neq FF)
  \implies no\text{-}T\text{-}F\text{-}symb \ (conn \ c \ l)
lemma wf-conn-no-T-F-symb-iff[simp]:
  wf-conn c \psi s \Longrightarrow
    no\text{-}T\text{-}F\text{-}symb\ (conn\ c\ \psi s) \longleftrightarrow (c \neq CF \land c \neq CT \land (\forall\ \psi \in set\ \psi s.\ \psi \neq FF \land \psi \neq FT))
  unfolding no-T-F-symb.simps apply (cases c)
          using wf-conn-list(1) apply fastforce
         using wf-conn-list(2) apply fastforce
        using wf-conn-list(3) apply fastforce
       \mathbf{apply}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{hide-lams})\ \mathit{conn-inj}\ \mathit{connective}. \mathit{distinct}(5,17))
      using conn-inj apply blast+
  done
lemma wf-conn-no-T-F-symb-iff-explicit[simp]:
  no-T-F-symb (FAnd \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no-T-F-symb (FOr \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no-T-F-symb (FEq \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
  no-T-F-symb (FImp \varphi \psi) \longleftrightarrow (\forall \chi \in set [\varphi, \psi]. \chi \neq FF \land \chi \neq FT)
     apply (metis\ conn.simps(36)\ conn.simps(37)\ conn.simps(5)\ propo.distinct(19)
       wf-conn-helper-facts(5) wf-conn-no-T-F-symb-iff)
    apply (metis \ conn.simps(36) \ conn.simps(37) \ conn.simps(6) \ propo.distinct(22)
      wf-conn-helper-facts(6) wf-conn-no-T-F-symb-iff)
   \mathbf{using}\ \mathit{wf-conn-no-T-F-symb-iff}\ \mathbf{apply}\ \mathit{fastforce}
  by (metis\ conn.simps(36)\ conn.simps(37)\ conn.simps(7)\ propo.distinct(23)\ wf-conn-helper-facts(7)
    wf-conn-no-T-F-symb-iff)
```

```
lemma no-T-F-symb-false[simp]:
 fixes c :: 'v \ connective
 shows
    \neg no\text{-}T\text{-}F\text{-}symb \ (FT :: 'v \ propo)
   \neg no\text{-}T\text{-}F\text{-}symb \ (FF :: 'v \ propo)
   by (metis\ (no-types)\ conn.simps(1,2)\ wf-conn-no-T-F-symb-iff\ wf-conn-nullary)+
lemma no-T-F-symb-bool[simp]:
 fixes x :: 'v
 shows no-T-F-symb (FVar x)
 using no-T-F-symb-comp wf-conn-nullary by (metis connective distinct (3, 15) conn. simps (3)
    empty-iff\ list.set(1)
lemma no-T-F-symb-fnot-imp:
  \neg no\text{-}T\text{-}F\text{-}symb \ (FNot \ \varphi) \Longrightarrow \varphi = FT \lor \varphi = FF
proof (rule ccontr)
 assume n: \neg no\text{-}T\text{-}F\text{-}symb (FNot \varphi)
 assume \neg (\varphi = FT \lor \varphi = FF)
 then have \forall \varphi' \in set [\varphi]. \ \varphi' \neq FT \land \varphi' \neq FF by auto
 moreover have wf-conn CNot [\varphi] by simp
 ultimately have no-T-F-symb (FNot \varphi)
   using no-T-F-symb.intros by (metis conn.simps(4) connective.distinct(5,17))
 then show False using n by blast
ged
lemma no-T-F-symb-fnot[simp]:
  no\text{-}T\text{-}F\text{-}symb \ (FNot \ \varphi) \longleftrightarrow \neg(\varphi = FT \lor \varphi = FF)
 using no-T-F-symb.simps no-T-F-symb-fnot-imp by (metis conn-inj-not(2) list.set-intros(1))
Actually it is not possible to remover every FT and FF: if the formula is equal to true or false,
we can not remove it.
inductive no-T-F-symb-except-toplevel where
no-T-F-symb-except-toplevel-true[simp]: no-T-F-symb-except-toplevel FT
no-T-F-symb-except-toplevel-false[simp]: no-T-F-symb-except-toplevel FF
noTrue-no-T-F-symb-except-toplevel[simp]: no-T-F-symb \varphi \implies no-T-F-symb-except-toplevel \varphi
lemma no-T-F-symb-except-toplevel-bool:
 fixes x :: 'v
 shows no-T-F-symb-except-toplevel (FVar x)
 by simp
lemma no-T-F-symb-except-toplevel-not-decom:
  \varphi \neq FT \Longrightarrow \varphi \neq FF \Longrightarrow no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FNot }\varphi)
 by simp
lemma no-T-F-symb-except-toplevel-bin-decom:
 fixes \varphi \psi :: 'v \ propo
 assumes \varphi \neq FT and \varphi \neq FF and \psi \neq FT and \psi \neq FF
 and c: c \in binary\text{-}connectives
 shows no-T-F-symb-except-toplevel (conn c [\varphi, \psi])
  by (metis (no-types, lifting) assms c conn.simps(4) list.discI no True-no-T-F-symb-except-toplevel
   wf-conn-no-T-F-symb-iff no-T-F-symb-fnot set-ConsD wf-conn-binary wf-conn-helper-facts(1)
   wf-conn-list-decomp(1,2))
```

```
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}if\text{-}is\text{-}a\text{-}true\text{-}false\text{:}}
  fixes l :: 'v \text{ propo list and } c :: 'v \text{ connective}
  assumes corr: wf-conn c l
  and FT \in set\ l\ \lor\ FF \in set\ l
  shows \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (conn c l)
  by (metis assms empty-iff no-T-F-symb-except-toplevel.simps wf-conn-no-T-F-symb-iff set-empty
    wf-conn-list(1,2))
lemma no-T-F-symb-except-top-level-false-example[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \lor \psi = FT \lor \varphi = FF \lor \psi = FF
  shows
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FAnd <math>\varphi \psi)
    \neg no-T-F-symb-except-toplevel (FOr \varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FImp <math>\varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FEq <math>\varphi \psi)
  using assms no-T-F-symb-except-toplevel-if-is-a-true-false unfolding binary-connectives-def
    by (metis\ (no-types)\ conn.simps(5-8)\ insert-iff\ list.simps(14-15)\ wf-conn-helper-facts(5-8))+
lemma no-T-F-symb-except-top-level-false-not[simp]:
  fixes \varphi \ \psi :: 'v \ propo
  assumes \varphi = FT \vee \varphi = FF
  shows
     \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (FNot <math>\varphi)
  by (simp add: assms no-T-F-symb-except-toplevel.simps)
This is the local extension of no-T-F-symb-except-toplevel.
definition no-T-F-except-top-level where
no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \equiv all\text{-}subformula\text{-}st\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel
This is another property we will use. While this version might seem to be the one we want to
prove, it is not since FT can not be reduced.
definition no-T-F where
no\text{-}T\text{-}F \equiv all\text{-}subformula\text{-}st\ no\text{-}T\text{-}F\text{-}symb
lemma no-T-F-except-top-level-false:
  fixes l :: 'v \text{ propo list and } c :: 'v \text{ connective}
  assumes wf-conn c l
  and FT \in set \ l \lor FF \in set \ l
  shows \neg no-T-F-except-top-level (conn c l)
  by (simp add: all-subformula-st-decomp assms no-T-F-except-top-level-def
    no-T-F-symb-except-toplevel-if-is-a-true-false)
lemma no-T-F-except-top-level-false-example[simp]:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi = FT \lor \psi = FT \lor \varphi = FF \lor \psi = FF
  shows
    \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FAnd <math>\varphi \psi)
    \neg no-T-F-except-top-level (FOr \varphi \psi)
    \neg no-T-F-except-top-level (FEq \varphi \psi)
    \neg no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FImp <math>\varphi \psi)
  \mathbf{by}\ (metis\ all\text{-}subformula\text{-}st\text{-}test\text{-}symb\text{-}true\text{-}phi\ assms\ no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\text{-}}def
    no-T-F-symb-except-top-level-false-example)+
```

```
lemma no-T-F-symb-except-toplevel-no-T-F-symb:
    no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel } \varphi \Longrightarrow \varphi \neq FF \Longrightarrow \varphi \neq FT \Longrightarrow no\text{-}T\text{-}F\text{-}symb } \varphi
   by (induct rule: no-T-F-symb-except-toplevel.induct, auto)
The two following lemmas give the precise link between the two definitions.
\mathbf{lemma}\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}all\text{-}subformula\text{-}st\text{-}no\text{-}}T\text{-}F\text{-}symb\text{:}
    no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\ }\varphi \Longrightarrow \varphi \neq FF \Longrightarrow \varphi \neq FT \Longrightarrow no\text{-}T\text{-}F\ \varphi
   unfolding no-T-F-except-top-level-def no-T-F-def apply (induct \varphi)
    using no-T-F-symb-fnot by fastforce+
lemma no-T-F-no-T-F-except-top-level:
    no\text{-}T\text{-}F \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \varphi
   unfolding no-T-F-except-top-level-def no-T-F-def
   unfolding all-subformula-st-def by auto
lemma\ no-T-F-except-top-level-simp[simp]:\ no-T-F-except-top-level\ FF\ no-T-F-except-top-level\ FT
    unfolding no-T-F-except-top-level-def by auto
lemma no-T-F-no-T-F-except-top-level'[simp]:
    no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level\ }\varphi\longleftrightarrow (\varphi=FF\lor\varphi=FT\lor no\text{-}T\text{-}F\ \varphi)
   \textbf{using} \ \textit{no-T-F-symb-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-symb} \ \textit{no-T-F-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-except-top-level-all-subformula-st-no-T-F-exc
   by auto
lemma no-T-F-bin-decomp[simp]:
   assumes c: c \in binary\text{-}connectives
   shows no-T-F (conn\ c\ [\varphi,\ \psi]) \longleftrightarrow (no-T-F\ \varphi \land no-T-F\ \psi)
proof -
   have wf: wf-conn c [\varphi, \psi] using c by auto
    then have no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F-symb (conn c [\varphi, \psi]) \land no-T-F \varphi \land no-T-F \psi)
       by (simp add: all-subformula-st-decomp no-T-F-def)
   then show no-T-F (conn c [\varphi, \psi]) \longleftrightarrow (no-T-F \varphi \land no-T-F \psi)
       \textbf{using} \ c \ \textit{wf all-subformula-st-decomp list.discI} \ \textit{no-T-F-def no-T-F-symb-except-toplevel-bin-decom}
           no-T-F-symb-except-toplevel-no-T-F-symb\ no-T-F-symb-false (1,2)\ wf-conn-helper-facts (2,3)
           wf-conn-list(1,2) by metis
qed
lemma no-T-F-bin-decomp-expanded[simp]:
   assumes c: c = CAnd \lor c = COr \lor c = CEq \lor c = CImp
   shows no-T-F (conn\ c\ [\varphi,\psi])\longleftrightarrow (no-T-F\ \varphi\land no-T-F\ \psi)
   using no-T-F-bin-decomp assms unfolding binary-connectives-def by blast
lemma no-T-F-comp-expanded-explicit[simp]:
   fixes \varphi \psi :: 'v \ propo
   shows
        no\text{-}T\text{-}F \ (FAnd \ \varphi \ \psi) \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
       \textit{no-T-F} \ (\textit{FOr} \ \varphi \ \psi) \ \longleftrightarrow (\textit{no-T-F} \ \varphi \ \land \ \textit{no-T-F} \ \psi)
       no\text{-}T\text{-}F \ (FEq \ \varphi \ \psi) \ \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
       no\text{-}T\text{-}F \ (FImp \ \varphi \ \psi) \longleftrightarrow (no\text{-}T\text{-}F \ \varphi \land no\text{-}T\text{-}F \ \psi)
    using assms conn.simps(5-8) no-T-F-bin-decomp-expanded by (metis (no-types))+
lemma no-T-F-comp-not[simp]:
   fixes \varphi \psi :: 'v \ propo
   shows no\text{-}T\text{-}F (FNot \varphi) \longleftrightarrow no\text{-}T\text{-}F \varphi
```

```
no-T-F-symb-false(1,2) no-T-F-symb-fnot-imp)
lemma no-T-F-decomp:
  fixes \varphi \psi :: 'v \ propo
  assumes \varphi: no-T-F (FAnd \varphi \psi) \vee no-T-F (FOr \varphi \psi) \vee no-T-F (FEq \varphi \psi) \vee no-T-F (FImp \varphi \psi)
  shows no-T-F \psi and no-T-F \varphi
  using assms by auto
lemma no-T-F-decomp-not:
  fixes \varphi :: 'v \ propo
  assumes \varphi: no-T-F (FNot \varphi)
 shows no-T-F \varphi
  using assms by auto
lemma no-T-F-symb-except-toplevel-step-exists:
 fixes \varphi \psi :: 'v \ propo
 assumes no-equiv \varphi and no-imp \varphi
  shows \psi \leq \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. \ elimTB \ \psi \ \psi'
proof (induct \psi rule: propo-induct-arity)
  case (nullary \varphi'(x))
  then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
  then show ?case by blast
next
  case (unary \psi)
  then have \psi = FF \lor \psi = FT using no-T-F-symb-except-toplevel-not-decom by blast
  then show ?case using ElimTB5 ElimTB6 by blast
\mathbf{next}
  case (binary \varphi' \psi 1 \psi 2)
 note IH1 = this(1) and IH2 = this(2) and \varphi' = this(3) and F\varphi = this(4) and n = this(5)
    assume \varphi' = FImp \ \psi 1 \ \psi 2 \lor \varphi' = FEq \ \psi 1 \ \psi 2
    then have False using n F \varphi subformula-all-subformula-st assms
      by (metis\ (no\text{-}types)\ no\text{-}equiv\text{-}eq(1)\ no\text{-}equiv\text{-}def\ no\text{-}imp\text{-}Imp(1)\ no\text{-}imp\text{-}def)
    then have ?case by blast
  moreover {
    assume \varphi': \varphi' = FAnd \ \psi 1 \ \psi 2 \lor \varphi' = FOr \ \psi 1 \ \psi 2
    then have \psi 1 = FT \vee \psi 2 = FT \vee \psi 1 = FF \vee \psi 2 = FF
     \textbf{using} \ \textit{no-T-F-symb-except-toplevel-bin-decom} \ \textit{conn.simps} (5,6) \ \textit{n} \ \textbf{unfolding} \ \textit{binary-connectives-deform} \\
      by fastforce+
    then have ?case using elimTB.intros \varphi' by blast
 ultimately show ?case using \varphi' by blast
qed
{f lemma} no-T-F-except-top-level-rew:
 fixes \varphi :: 'v \ propo
 assumes noTB: \neg no-TF-except-top-level \varphi and no-equiv: no-equiv \varphi and no-imp: no-imp \varphi
 shows \exists \psi \ \psi' . \ \psi \preceq \varphi \land elimTB \ \psi \ \psi'
proof -
  have test-symb-false-nullary: \forall x. no-T-F-symb-except-toplevel (FF:: 'v propo)
    \land no-T-F-symb-except-toplevel (FVar (x:: 'v)) by auto
 moreover {
     fix c:: 'v \ connective \ {\bf and} \ \ l:: 'v \ propo \ list \ {\bf and} \ \psi:: 'v \ propo
```

 $\textbf{by} \ (\textit{metis all-subformula-st-test-symb-true-phi no-}T\text{-}F\text{-}\textit{def})$

```
have H: elimTB (conn c l) \psi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel (conn c l)
      by (cases (conn c l) rule: elimTB.cases, auto)
  }
 moreover {
    \mathbf{fix} \ x :: \ 'v
    have H': no-T-F-except-top-level FT no-T-F-except-top-level FF
       no-T-F-except-top-level (FVar x)
      by (auto simp: no-T-F-except-top-level-def test-symb-false-nullary)
  }
 moreover {
    fix \psi
    have \psi \preceq \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. elimTB \psi \psi'
      using no-T-F-symb-except-toplevel-step-exists no-equiv no-imp by auto
  ultimately show ?thesis
   using no-test-symb-step-exists noTB unfolding no-T-F-except-top-level-def by blast
qed
lemma elimTB-inv:
  fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step elim TB) \varphi \psi
 and no-equiv \varphi and no-imp \varphi
  shows no-equiv \psi and no-imp \psi
proof -
  {
    \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
    have H: elimTB \varphi \psi \Longrightarrow no\text{-}equiv \varphi \Longrightarrow no\text{-}equiv \psi
      by (induct \varphi \psi rule: elimTB.induct, auto)
  then show no-equiv \psi
   using full-propo-rew-step-inv-stay-conn[of elimTB no-equiv-symb \varphi \psi]
     no-equiv-symb-conn-characterization assms unfolding no-equiv-def by metis
next
    \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
    have H: elimTB \varphi \psi \Longrightarrow no\text{-}imp \varphi \Longrightarrow no\text{-}imp \psi
      by (induct \varphi \psi rule: elimTB.induct, auto)
  then show no-imp \psi
   using full-propo-rew-step-inv-stay-conn[of elimTB no-imp-symb \varphi \psi] assms
     no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
lemma elimTB-full-propo-rew-step:
  fixes \varphi \psi :: 'v \ propo
  assumes no-equiv \varphi and no-imp \varphi and full (propo-rew-step elimTB) \varphi \psi
 shows no-T-F-except-top-level \psi
  using full-propo-rew-step-subformula no-T-F-except-top-level-rew assms elimTB-inv by fastforce
8.4
        PushNeg
Push the negation inside the formula, until the litteral.
inductive pushNeq where
PushNeg1[simp]: pushNeg (FNot (FAnd \varphi \psi)) (FOr (FNot \varphi) (FNot \psi))
```

 $PushNeg2[simp]: pushNeg (FNot (FOr \varphi \psi)) (FAnd (FNot \varphi) (FNot \psi)) |$

```
PushNeg3[simp]: pushNeg (FNot (FNot \varphi)) \varphi
```

```
{\bf lemma}\ pushNeg-transformation-consistent:
A \models FNot \ (FAnd \ \varphi \ \psi) \longleftrightarrow A \models (FOr \ (FNot \ \varphi) \ (FNot \ \psi))
A \models FNot (FOr \varphi \psi) \longleftrightarrow A \models (FAnd (FNot \varphi) (FNot \psi))
A \models FNot (FNot \varphi) \longleftrightarrow A \models \varphi
  by auto
lemma pushNeg-explicit: pushNeg \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: pushNeg.induct, auto)
lemma pushNeg-consistent: preserves-un-sat pushNeg
  unfolding preserves-un-sat-def by (simp add: pushNeq-explicit)
lemma pushNeq-lifted-consistant:
preserves-un-sat (full (propo-rew-step pushNeg))
  by (simp add: pushNeg-consistent)
fun simple where
simple FT = True
simple FF = True \mid
simple (FVar -) = True \mid
simple - = False
lemma simple-decomp:
  simple \ \varphi \longleftrightarrow (\varphi = FT \lor \varphi = FF \lor (\exists x. \ \varphi = FVar \ x))
  by (cases \varphi) auto
{\bf lemma}\ subformula\mbox{-}conn\mbox{-}decomp\mbox{-}simple:
  fixes \varphi \psi :: 'v \ propo
  assumes s: simple \psi
  shows \varphi \leq FNot \ \psi \longleftrightarrow (\varphi = FNot \ \psi \lor \varphi = \psi)
proof -
  have \varphi \prec conn \ CNot \ [\psi] \longleftrightarrow (\varphi = conn \ CNot \ [\psi] \lor (\exists \ \psi \in set \ [\psi]. \ \varphi \prec \psi))
    using subformula-conn-decomp wf-conn-helper-facts(1) by metis
  then show \varphi \leq FNot \ \psi \longleftrightarrow (\varphi = FNot \ \psi \lor \varphi = \psi) using s by (auto simp: simple-decomp)
qed
\mathbf{lemma}\ subformula\text{-}conn\text{-}decomp\text{-}explicit[simp]:
  fixes \varphi :: 'v \ propo \ {\bf and} \ x :: 'v
  shows
    \varphi \leq FNot \ FT \longleftrightarrow (\varphi = FNot \ FT \lor \varphi = FT)
    \varphi \leq FNot \ FF \longleftrightarrow (\varphi = FNot \ FF \lor \varphi = FF)
    \varphi \leq FNot \ (FVar \ x) \longleftrightarrow (\varphi = FNot \ (FVar \ x) \lor \varphi = FVar \ x)
  by (auto simp: subformula-conn-decomp-simple)
fun simple-not-symb where
simple-not-symb (FNot \varphi) = (simple \varphi)
simple-not-symb - = True
```

```
simple-not = all-subformula-st\ simple-not-symb
declare simple-not-def[simp]
lemma simple-not-Not[simp]:
  \neg simple-not (FNot (FAnd \varphi \psi))
  \neg simple-not (FNot (FOr \varphi \psi))
 by auto
lemma simple-not-step-exists:
  fixes \varphi \psi :: 'v \ propo
 assumes no-equiv \varphi and no-imp \varphi
 shows \psi \leq \varphi \Longrightarrow \neg simple-not-symb \ \psi \Longrightarrow \exists \ \psi'. \ pushNeg \ \psi \ \psi'
 apply (induct \psi, auto)
 apply (rename-tac \psi, case-tac \psi, auto intro: pushNeg.intros)
  by (metis\ assms(1,2)\ no-imp-Imp(1)\ no-equiv-eq(1)\ no-imp-def\ no-equiv-def
    subformula-in-subformula-not\ subformula-all-subformula-st)+
lemma simple-not-rew:
  fixes \varphi :: 'v \ propo
 assumes no TB: \neg simple-not \varphi and no-equiv: no-equiv \varphi and no-imp: no-imp \varphi
 shows \exists \psi \ \psi'. \psi \leq \varphi \land pushNeg \ \psi \ \psi'
  \mathbf{have} \ \forall \ x. \ simple-not-symb \ (FF:: \ 'v \ propo) \ \land \ simple-not-symb \ FT \ \land \ simple-not-symb \ (FVar \ (x:: \ 'v))
    by auto
  moreover {
     fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
     have H: pushNeg (conn c l) \psi \Longrightarrow \neg simple\text{-not-symb} (conn c l)
       by (cases (conn c l) rule: pushNeg.cases) auto
 moreover {
     \mathbf{fix} \ x :: \ 'v
     have H': simple-not\ FT\ simple-not\ FF\ simple-not\ (FVar\ x)
       by simp-all
  }
 moreover {
     fix \psi :: 'v \ propo
     have \psi \prec \varphi \Longrightarrow \neg simple-not-symb \psi \Longrightarrow \exists \psi'. pushNeg \psi \psi'
       using simple-not-step-exists no-equiv no-imp by blast
 ultimately show ?thesis using no-test-symb-step-exists noTB unfolding simple-not-def by blast
qed
lemma no-T-F-except-top-level-pushNeg1:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FNot (FAnd <math>\varphi \psi)) \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FOr (FNot <math>\varphi))
 using no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb-no-T-F-comp-not-no-T-F-decomp(1)
    no-T-F-decomp(2) no-T-F-no-T-F-except-top-level by (metis\ no-T-F-comp-expanded-explicit(2)
      propo.distinct(5,17))
lemma no-T-F-except-top-level-pushNeq2:
  no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FNot (FOr <math>\varphi \psi)) \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level (FAnd (FNot <math>\varphi) (FNot \psi))
 by auto
lemma no-T-F-symb-pushNeq:
  no-T-F-symb (FOr (FNot \varphi') (FNot \psi'))
  no-T-F-symb (FAnd (FNot \varphi') (FNot \psi'))
```

```
no-T-F-symb (FNot (FNot \varphi'))
  by auto
\mathbf{lemma}\ propo-rew-step-pushNeg-no-T-F-symb:
  propo-rew-step pushNeg \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}symb } \psi \Longrightarrow no\text{-}T\text{-}F\text{-}symb } \psi
  apply (induct rule: propo-rew-step.induct)
 apply (cases rule: pushNeg.cases)
 \mathbf{apply}\ simp\text{-}all
 apply (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}pushNeg(1))
 apply (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}pushNeg(2))
 apply (simp, metis all-subformula-st-test-symb-true-phi no-T-F-def)
proof -
  fix \varphi \varphi':: 'a propo and c:: 'a connective and \xi \xi':: 'a propo list
  assume rel: propo-rew-step pushNeg \varphi \varphi'
  and IH: no-T-F \varphi \Longrightarrow no-T-F-symb \varphi \Longrightarrow no-T-F-symb \varphi'
 and wf: wf-conn c (\xi @ \varphi \# \xi')
 and n: conn\ c\ (\xi\ @\ \varphi\ \#\ \xi') = FF\ \lor\ conn\ c\ (\xi\ @\ \varphi\ \#\ \xi') = FT\ \lor\ no\ T-F\ (conn\ c\ (\xi\ @\ \varphi\ \#\ \xi'))
  and x: c \neq CF \land c \neq CT \land \varphi \neq FF \land \varphi \neq FT \land (\forall \psi \in set \ \xi \cup set \ \xi', \psi \neq FF \land \psi \neq FT)
  then have c \neq CF \land c \neq CF \land wf\text{-}conn\ c\ (\xi @ \varphi' \# \xi')
    using wf-conn-no-arity-change-helper wf-conn-no-arity-change by metis
  moreover have n': no-T-F (conn c (\xi @ \varphi # \xi')) using n by (simp add: wf wf-conn-list(1,2))
  moreover
  {
    have no-T-F \varphi
      by (metis Un-iff all-subformula-st-decomp list.set-intros(1) n' wf no-T-F-def set-append)
    moreover then have no-T-F-symb \varphi
      by (simp add: all-subformula-st-test-symb-true-phi no-T-F-def)
    ultimately have \varphi' \neq FF \land \varphi' \neq FT
      using IH no-T-F-symb-false(1) no-T-F-symb-false(2) by blast
    then have \forall \psi \in set \ (\xi @ \varphi' \# \xi'). \ \psi \neq FF \land \psi \neq FT \ using \ x \ by \ auto
 ultimately show no-T-F-symb (conn c (\xi \otimes \varphi' \# \xi')) by (simp add: x)
qed
\mathbf{lemma} \ propo-rew-step-pushNeg-no-T-F:
  propo-rew-step pushNeg \varphi \psi \Longrightarrow no\text{-}T\text{-}F \varphi \Longrightarrow no\text{-}T\text{-}F \psi
proof (induct rule: propo-rew-step.induct)
 {\bf case}\ global\text{-}rel
  then show ?case
    by (metis (no-types, lifting) no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb
      no-T-F-def no-T-F-except-top-level-pushNeq1 no-T-F-except-top-level-pushNeq2
      no-T-F-no-T-F-except-top-level \ all-subformula-st-decomp-explicit(3) \ pushNeg.simps
      simple.simps(1,2,5,6))
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and IH = this(2) and wf = this(3) and no-T-F = this(4)
 moreover have wf': wf-conn c (\xi @ \varphi' \# \xi')
    using wf-conn-no-arity-change wf-conn-no-arity-change-helper wf by metis
  ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi'))
    using all-subformula-st-test-symb-true-phi
    by (fastforce simp: no-T-F-def all-subformula-st-decomp wf wf')
qed
```

lemma pushNeg-inv:

```
fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step pushNeg) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi
proof -
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   assume rel: propo-rew-step pushNeg \varphi \psi
   and no: no-T-F-except-top-level \varphi
   then have no-T-F-except-top-level \psi
     proof -
       {
         assume \varphi = FT \vee \varphi = FF
         from rel this have False
           apply (induct rule: propo-rew-step.induct)
             using pushNeg.cases apply blast
           using wf-conn-list(1) wf-conn-list(2) by auto
         then have no-T-F-except-top-level \psi by blast
       }
       moreover {
         assume \varphi \neq FT \land \varphi \neq FF
         then have no-T-F \varphi
           by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
         then have no-T-F \psi
           using propo-rew-step-pushNeg-no-T-F rel by auto
         then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       }
       ultimately show no-T-F-except-top-level \psi by metis
     qed
  }
 moreover {
    fix c :: 'v \ connective \ {\bf and} \ \xi \ \xi' :: 'v \ propo \ list \ {\bf and} \ \zeta \ \zeta' :: 'v \ propo
    assume rel: propo-rew-step pushNeg \zeta \zeta'
    and incl: \zeta \leq \varphi
    and corr: wf-conn c (\xi \otimes \zeta \# \xi')
    and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
    and n: no-T-F-symb-except-toplevel \zeta'
    have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
    proof
      have p: no-T-F-symb (conn c (<math>\xi @ \zeta \# \xi'))
        using corr wf-conn-list(1) wf-conn-list(2) no-T-F-symb-except-toplevel-no-T-F-symb no-T-F
        bv blast
      have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
      from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: pushNeg.cases, auto)
        \mathbf{by}\ (\textit{metis assms}(4)\ \textit{no-T-F-symb-except-top-level-false-not no-T-F-except-top-level-def})
          all-subformula-st-test-symb-true-phi subformula-in-subformula-not
          subformula-all-subformula-st\ append-is-Nil-conv\ list.\ distinct(1)
          wf-conn-no-arity-change-helper wf-conn-list(1,2) wf-conn-no-arity-change)+
      then have \forall \varphi \in set \ (\xi \otimes \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
      moreover have c \neq CT \land c \neq CF using corr by auto
      ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
        by (metis corr no-T-F-symb-comp wf-conn-no-arity-change wf-conn-no-arity-change-helper)
```

```
qed
  ultimately show no-T-F-except-top-level \psi
    \textbf{using} \ \textit{full-propo-rew-step-inv-stay-with-inc} [\textit{of} \ \textit{pushNeg} \ \textit{no-T-F-symb-except-toplevel} \ \varphi] \ \textit{assms}
      subformula-refl unfolding no-T-F-except-top-level-def full-unfold by metis
next
  {
    \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
    have H: pushNeg \varphi \psi \Longrightarrow no-equiv \varphi \Longrightarrow no-equiv \psi
      by (induct \varphi \psi rule: pushNeg.induct, auto)
  }
 then show no-equiv \psi
    using full-propo-rew-step-inv-stay-conn[of pushNeg no-equiv-symb \varphi \psi]
    no-equiv-symb-conn-characterization assms unfolding no-equiv-def full-unfold by metis
next
    \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
    have H: pushNeg \varphi \psi \Longrightarrow no\text{-imp } \varphi \Longrightarrow no\text{-imp } \psi
      by (induct \varphi \psi rule: pushNeg.induct, auto)
  then show no-imp \psi
    using full-propo-rew-step-inv-stay-conn[of pushNeq no-imp-symb \varphi \psi] assms
      no-imp-symb-conn-characterization unfolding no-imp-def full-unfold by metis
qed
lemma pushNeg-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
  assumes
    no-equiv \varphi and
    no-imp \varphi and
    full (propo-rew-step pushNeg) \varphi \psi and
    no-T-F-except-top-level \varphi
  shows simple-not \psi
  using assms full-propo-rew-step-subformula pushNeg-inv(1,2) simple-not-rew by blast
8.5
        Push inside
inductive push-conn-inside :: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool
  for c c':: 'v connective where
\textit{push-conn-inside-l[simp]: } c = \textit{CAnd} \, \vee \, c = \textit{COr} \Longrightarrow c' = \textit{CAnd} \, \vee \, c' = \textit{COr}
  \implies push\text{-}conn\text{-}inside\ c\ c'\ (conn\ c\ [conn\ c'\ [\varphi 1,\ \varphi 2],\ \psi])
        (conn\ c'\ [conn\ c\ [\varphi 1,\ \psi],\ conn\ c\ [\varphi 2,\ \psi]])
push-conn-inside-r[simp]: c = CAnd \lor c = COr \Longrightarrow c' = CAnd \lor c' = COr
  \implies push\text{-}conn\text{-}inside\ c\ c'\ (conn\ c\ [\psi,\ conn\ c'\ [\varphi 1,\ \varphi 2]])
    (conn\ c'\ [conn\ c\ [\psi, \varphi 1],\ conn\ c\ [\psi, \varphi 2]])
lemma push-conn-inside-explicit: push-conn-inside c c' \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
  by (induct \varphi \psi rule: push-conn-inside.induct, auto)
lemma push-conn-inside-consistent: preserves-un-sat (push-conn-inside c c')
  unfolding preserves-un-sat-def by (simp add: push-conn-inside-explicit)
lemma propo-rew-step-push-conn-inside[simp]:
 \neg propo-rew-step (push-conn-inside c c') FT \psi \neg propo-rew-step (push-conn-inside c c') FF \psi
```

```
proof -
  {
    {
       fix \varphi \psi
       have push-conn-inside c\ c'\ \varphi\ \psi \Longrightarrow \varphi = FT\ \lor \varphi = FF \Longrightarrow False
         by (induct rule: push-conn-inside.induct, auto)
    } note H = this
    fix \varphi
    have propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow \varphi = FT \lor \varphi = FF \Longrightarrow False
       apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1) wf-conn-list(2))
       using H by blast+
  }
  then show
    \neg propo-rew-step \ (push-conn-inside \ c \ c') \ FT \ \psi
     \neg propo-rew-step (push-conn-inside c c') FF \psi by blast+
qed
inductive not-c-in-c'-symb:: 'v connective \Rightarrow 'v connective \Rightarrow 'v propo \Rightarrow bool for c c' where
not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l[simp]: wf\text{-}conn \ c \ [conn \ c' \ [\varphi, \varphi'], \ \psi] \implies wf\text{-}conn \ c' \ [\varphi, \varphi']
  \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [conn\ c'\ [\varphi,\ \varphi'],\ \psi])\ |
\textit{not-c-in-c'-symb-r[simp]: wf-conn } c \ [\psi, \ \textit{conn } c' \ [\varphi, \ \varphi']] \Longrightarrow \textit{wf-conn } c' \ [\varphi, \ \varphi']
  \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\ conn\ c'\ [\varphi,\ \varphi']])
abbreviation c-in-c'-symb c c' \varphi \equiv \neg not-c-in-c'-symb c c' \varphi
lemma c-in-c'-symb-simp:
  not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \xi \Longrightarrow \xi = FF\ \lor\ \xi = FT\ \lor\ \xi = FVar\ x\ \lor\ \xi = FNot\ FF\ \lor\ \xi = FNot\ FT
    \forall \ \xi = FNot \ (FVar \ x) \Longrightarrow False
  apply (induct rule: not-c-in-c'-symb.induct, auto simp: wf-conn.simps wf-conn-list(1-3))
  using conn-inj-not(2) wf-conn-binary unfolding binary-connectives-def by fastforce+
lemma c-in-c'-symb-simp'[simp]:
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ FF
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ FT
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FVar\ x)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ FF)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ FT)
  \neg not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (FNot\ (FVar\ x))
  using c-in-c'-symb-simp by metis+
definition c-in-c'-only where
c\text{-in-}c'\text{-only }c\ c' \equiv all\text{-subformula-st }(c\text{-in-}c'\text{-symb }c\ c')
lemma c-in-c'-only-simp[simp]:
  c-in-c'-only c c' FF
  c-in-c'-only c c' FT
  c-in-c'-only c c' (FVar x)
  c-in-c'-only c c' (FNot FF)
  c-in-c'-only c c' (FNot FT)
  c-in-c'-only c c' (FNot (FVar <math>x))
  unfolding c-in-c'-only-def by auto
```

```
lemma not-c-in-c'-symb-commute:
  not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \xi \Longrightarrow wf\text{-}conn\ c\ [\varphi,\,\psi] \Longrightarrow \xi = conn\ c\ [\varphi,\,\psi]
    \implies not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\,\varphi])
proof (induct rule: not-c-in-c'-symb.induct)
  case (not-c-in-c'-symb-r \varphi' \varphi'' \psi') note H = this
  then have \psi: \psi = conn \ c' \ [\varphi'', \psi'] using conn-inj by auto have wf-conn \ c' \ [\varphi'', \psi'], \ \varphi]
    using H(1) wf-conn-no-arity-change length-Cons by metis
  then show not-c-in-c'-symb c c' (conn c [\psi, \varphi])
    unfolding \psi using not-c-in-c'-symb.intros(1) H by auto
next
  case (not\text{-}c\text{-}in\text{-}c'\text{-}symb\text{-}l\ \varphi'\ \varphi''\ \psi') note H=this
  then have \varphi = conn \ c' \ [\varphi', \varphi''] using conn-inj by auto
  moreover have wf-conn c [\psi', conn c' [\varphi', \varphi'']]
    using H(1) wf-conn-no-arity-change length-Cons by metis
  ultimately show not-c-in-c'-symb c c' (conn c [\psi, \varphi])
    using not-c-in-c'-symb.intros(2) conn-inj not-c-in-c'-symb-l.hyps
      not-c-in-c'-symb-l.prems(1,2) by blast
qed
lemma not-c-in-c'-symb-commute':
  wf-conn c [\varphi, \psi] \implies c-in-c'-symb c c' (conn c [\varphi, \psi]) \longleftrightarrow c-in-c'-symb c c' (conn c [\psi, \varphi])
  using not-c-in-c'-symb-commute wf-conn-no-arity-change by (metis length-Cons)
lemma not-c-in-c'-comm:
  assumes wf: wf-conn c [\varphi, \psi]
  shows c-in-c'-only c c' (conn c [\varphi, \psi]) \longleftrightarrow c-in-c'-only c c' (conn c [\psi, \varphi]) (is ?A \longleftrightarrow ?B)
proof -
  have ?A \longleftrightarrow (c\text{-in-}c'\text{-symb } c \ c' \ (conn \ c \ [\varphi, \psi])
                \land (\forall \xi \in set \ [\varphi, \psi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
    using all-subformula-st-decomp wf unfolding c-in-c'-only-def by fastforce
  also have ... \longleftrightarrow (c\text{-in-}c'\text{-symb }c\ c'\ (conn\ c\ [\psi,\ \varphi])
                      \land (\forall \xi \in set \ [\psi, \varphi]. \ all\text{-subformula-st} \ (c\text{-in-}c'\text{-symb} \ c \ c') \ \xi))
    using not-c-in-c'-symb-commute' wf by auto
  also
    have wf-conn c [\psi, \varphi] using wf-conn-no-arity-change wf by (metis length-Cons)
    then have (c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ c\ [\psi,\ \varphi])
              \land (\forall \xi \in set \ [\psi, \varphi]. \ all-subformula-st \ (c-in-c'-symb \ c \ c') \ \xi))
            \longleftrightarrow ?B
      using all-subformula-st-decomp unfolding c-in-c'-only-def by fastforce
  finally show ?thesis.
qed
lemma not-c-in-c'-simp[simp]:
  fixes \varphi 1 \varphi 2 \psi :: 'v \text{ propo and } x :: 'v
  shows
  c-in-c'-symb c c' FT
  c-in-c'-symb c c' FF
  c-in-c'-symb c c' (FVar x)
  wf-conn c [conn c' [\varphi 1, \varphi 2], \psi] \Longrightarrow wf-conn c' [\varphi 1, \varphi 2]
    \implies \neg c\text{-in-}c'\text{-only }c\ c'\ (conn\ c\ [conn\ c'\ [\varphi 1,\ \varphi 2],\ \psi])
  apply (simp-all add: c-in-c'-only-def)
  using all-subformula-st-test-symb-true-phi not-c-in-c'-symb-l by blast
```

lemma c-in-c'-symb-not[simp]:

```
fixes c\ c':: 'v\ connective\ {\bf and}\ \psi:: 'v\ propo
  shows c-in-c'-symb c c' (FNot \psi)
proof -
    fix \xi :: 'v propo
    have not-c-in-c'-symb c c' (FNot \psi) \Longrightarrow False
      apply (induct FNot \psi rule: not-c-in-c'-symb.induct)
      using conn-inj-not(2) by blast+
then show ?thesis by auto
qed
lemma c-in-c'-symb-step-exists:
  fixes \varphi :: 'v \ propo
  assumes c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows \psi \preceq \varphi \Longrightarrow \neg c\text{-in-}c'\text{-symb }c\ c'\ \psi \Longrightarrow \exists\ \psi'.\ push\text{-conn-inside }c\ c'\ \psi\ \psi'
  apply (induct \psi rule: propo-induct-arity)
  apply auto[2]
proof -
  fix \psi 1 \ \psi 2 \ \varphi' :: 'v \ propo
  assume IH\psi 1: \psi 1 \leq \varphi \Longrightarrow \neg c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \psi 1 \Longrightarrow Ex\ (push-conn\text{-}inside\ c\ c'\ \psi 1)
  and IH\psi 2: \psi 1 \leq \varphi \implies \neg c\text{-in-}c'\text{-symb } c \ c' \ \psi 1 \implies Ex \ (push-conn-inside \ c \ c' \ \psi 1)
  and \varphi': \varphi' = FAnd \ \psi 1 \ \psi 2 \lor \varphi' = FOr \ \psi 1 \ \psi 2 \lor \varphi' = FImp \ \psi 1 \ \psi 2 \lor \varphi' = FEq \ \psi 1 \ \psi 2
  and in\varphi: \varphi' \preceq \varphi and n\theta: \neg c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ \varphi'
  then have n: not-c-in-c'-symb c c' \varphi' by auto
    assume \varphi': \varphi' = conn \ c \ [\psi 1, \psi 2]
    obtain a b where \psi 1 = conn \ c' [a, b] \lor \psi 2 = conn \ c' [a, b]
      using n \varphi' apply (induct rule: not-c-in-c'-symb.induct)
      using c by force+
    then have Ex (push-conn-inside c c' \varphi')
      unfolding \varphi' apply auto
      using push-conn-inside.intros(1) c c' apply blast
      using push-conn-inside.intros(2) c c' by blast
  }
  moreover {
     assume \varphi': \varphi' \neq conn \ c \ [\psi 1, \psi 2]
     have \forall \varphi \ c \ ca. \ \exists \varphi 1 \ \psi 1 \ \psi 2 \ \psi 1' \ \psi 2' \ \varphi 2'. \ conn \ (c::'v \ connective) \ [\varphi 1, \ conn \ ca \ [\psi 1, \ \psi 2]] = \varphi
              \vee conn \ c \ [conn \ ca \ [\psi 1', \psi 2'], \varphi 2'] = \varphi \vee c - in - c' - symb \ c \ ca \ \varphi
       by (metis not-c-in-c'-symb.cases)
     then have Ex (push-conn-inside c c' \varphi')
       by (metis (no-types) c c' n push-conn-inside-l push-conn-inside-r)
  ultimately show Ex (push-conn-inside c c' \varphi') by blast
qed
lemma c-in-c'-symb-rew:
  fixes \varphi :: 'v \ propo
  assumes noTB: \neg c\text{-}in\text{-}c'\text{-}only\ c\ c'\ \varphi
  and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
  shows \exists \psi \ \psi'. \psi \leq \varphi \land push-conn-inside \ c \ c' \ \psi \ \psi'
proof -
  have test-symb-false-nullary:
    \forall x. \ c\text{-in-}c'\text{-symb} \ c \ c' \ (FF:: 'v \ propo) \land c\text{-in-}c'\text{-symb} \ c \ c' \ FT
```

```
\land c\text{-in-}c'\text{-symb}\ c\ c'\ (FVar\ (x::\ 'v))
    by auto
  moreover {
    \mathbf{fix} \ x :: \ 'v
    have H': c-in-c'-symb c c' FT c-in-c'-symb c c' FF c-in-c'-symb c c' (FVar x)
      by simp+
 moreover {
    fix \psi :: 'v \ propo
    have \psi \leq \varphi \Longrightarrow \neg c\text{-in-}c'\text{-symb }c\ c'\ \psi \Longrightarrow \exists\ \psi'.\ push-conn-inside\ c\ c'\ \psi\ \psi'
      by (auto simp: assms(2) \ c' \ c-in-c'-symb-step-exists)
  }
  ultimately show ?thesis using noTB no-test-symb-step-exists[of c-in-c'-symb c c']
    unfolding c-in-c'-only-def by metis
qed
\mathbf{lemma} \ push\text{-}conn\text{-}insidec\text{-}in\text{-}c'\text{-}symb\text{-}no\text{-}T\text{-}F\text{:}
 fixes \varphi \psi :: 'v \ propo
  shows propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow no\text{-}T\text{-}F \varphi \Longrightarrow no\text{-}T\text{-}F \psi
proof (induct rule: propo-rew-step.induct)
  case (global-rel \varphi \psi)
  then show no-T-F \psi
    by (cases rule: push-conn-inside.cases, auto)
next
  case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
  note rel = this(1) and IH = this(2) and wf = this(3) and no\text{-}T\text{-}F = this(4)
  have no-T-F \varphi
    \textbf{using} \ \textit{wf no-T-F} \ \textit{no-T-F-def subformula-into-subformula subformula-all-subformula-st}
    subformula-refl by (metis (no-types) in-set-conv-decomp)
  then have \varphi': no-T-F \varphi' using IH by blast
 have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta by (metis wf no-T-F no-T-F-def all-subformula-st-decomp)
  then have n: \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ no-T-F \ \zeta \ using \ \varphi' \ by \ auto
  then have n': \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ \zeta \neq FF \land \zeta \neq FT
    using \varphi' by (metis\ no\text{-}T\text{-}F\text{-}symb\text{-}false(1)\ no\text{-}T\text{-}F\text{-}symb\text{-}false(2)\ no\text{-}T\text{-}F\text{-}def
      all\text{-}subformula\text{-}st\text{-}test\text{-}symb\text{-}true\text{-}phi)
  have wf': wf-conn c (\xi @ \varphi' \# \xi')
    using wf wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
  {
    \mathbf{fix} \ x :: \ 'v
    assume c = CT \lor c = CF \lor c = CVar x
    then have False using wf by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by blast
  }
  moreover {
    assume c: c = CNot
    then have \xi = [] \xi' = [] using wf by auto
    then have no-T-F (conn c (\xi \otimes \varphi' \# \xi'))
      using c by (metis \varphi' conn.simps(4) no-T-F-symb-false(1,2) no-T-F-symb-fnot no-T-F-def
        all-subformula-st-decomp-explicit(3) all-subformula-st-test-symb-true-phi self-append-conv2)
  }
  moreover {
    assume c: c \in binary\text{-}connectives
    then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi')) using wf' n' no-T-F-symb.simps by fastforce
```

```
then have no-T-F (conn c (\xi @ \varphi' \# \xi'))
     \mathbf{by}\ (\mathit{metis}\ \mathit{all-subformula-st-decomp-imp}\ \mathit{wf'}\ \mathit{n}\ \mathit{no-T-F-def})
 }
 ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using connective-cases-arity by auto
qed
lemma simple-propo-rew-step-push-conn-inside-inv:
propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow simple \varphi \Longrightarrow simple \psi
 apply (induct rule: propo-rew-step.induct)
 apply (rename-tac \varphi, case-tac \varphi, auto simp: push-conn-inside.simps)[]
 by (metis append-is-Nil-conv list.distinct(1) simple.elims(2) wf-conn-list(1-3))
\mathbf{lemma}\ simple-propo-rew-step-inv-push-conn-inside-simple-not:
 fixes c c' :: 'v connective and \varphi \psi :: 'v propo
 shows propo-rew-step (push-conn-inside c c') \varphi \psi \implies simple-not \varphi \implies simple-not \psi
proof (induct rule: propo-rew-step.induct)
 case (global-rel \varphi \psi)
 then show ?case by (cases \varphi, auto simp: push-conn-inside.simps)
next
 case (propo-rew-one-step-lift \varphi \varphi' ca \xi \xi') note rew = this(1) and IH = this(2) and wf = this(3)
  and simple = this(4)
 \mathbf{show}~?case
   proof (cases ca rule: connective-cases-arity)
     case nullary
     then show ?thesis using propo-rew-one-step-lift by auto
   next
     case binary note ca = this
     obtain a b where ab: \xi @ \varphi' \# \xi' = [a, b]
       using wf ca list-length2-decomp wf-conn-bin-list-length
       by (metis (no-types) wf-conn-no-arity-change-helper)
     have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). simple-not \zeta
       by (metis wf all-subformula-st-decomp simple simple-not-def)
     then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). simple-not \ \zeta \ using \ IH \ by \ simp
     moreover have simple-not-symb (conn ca (\xi @ \varphi' \# \xi')) using ca
     by (metis\ ab\ conn.simps(5-8)\ helper-fact\ simple-not-symb.simps(5)\ simple-not-symb.simps(6)
         simple-not-symb.simps(7) simple-not-symb.simps(8))
     ultimately show ?thesis
       by (simp add: ab all-subformula-st-decomp ca)
   next
     case unary
     then show ?thesis
        using rew simple-propo-rew-step-push-conn-inside-inv[OF rew] IH local.wf simple by auto
   qed
qed
\mathbf{lemma}\ propo-rew-step-push-conn-inside-simple-not:
 fixes \varphi \varphi' :: 'v \text{ propo and } \xi \xi' :: 'v \text{ propo list and } c :: 'v \text{ connective}
   propo-rew-step (push-conn-inside c c') \varphi \varphi' and
   wf-conn c (\xi @ \varphi \# \xi') and
   simple-not-symb (conn c (\xi @ \varphi \# \xi')) and
   simple-not-symb \varphi'
  shows simple-not-symb (conn c (\xi @ \varphi' \# \xi'))
```

```
using assms
proof (induction rule: propo-rew-step.induct)
print-cases
 case (global-rel)
 then show ?case
   by (metis conn.simps(12,17) list.discI push-conn-inside.cases simple-not-symb.elims(3)
     wf-conn-helper-facts(5) wf-conn-list(2) wf-conn-list(8) wf-conn-no-arity-change
     wf-conn-no-arity-change-helper)
next
  case (propo-rew-one-step-lift \varphi \varphi' c' \chi s \chi s') note tel = this(1) and wf = this(2) and
   IH = this(3) and wf' = this(4) and simple' = this(5) and simple = this(6)
 then show ?case
   proof (cases c' rule: connective-cases-arity)
     case nullary
     then show ?thesis using wf simple simple' by auto
   next
     case binary note c = this(1)
     have corr': wf-conn c (\xi @ conn c' (\chi s @ \varphi' # \chi s') # \xi')
       using wf wf-conn-no-arity-change
       by (metis wf' wf-conn-no-arity-change-helper)
     then show ?thesis
       using c propo-rew-one-step-lift wf
       by (metis\ conn.simps(17)\ connective.distinct(37)\ propo-rew-step-subformula-imp
         push-conn-inside.cases\ simple-not-symb.elims(3)\ wf-conn.simps\ wf-conn-list(2,8))
   next
     case unary
     then have empty: \chi s = [ ] \chi s' = [ ] using wf by auto
     then show ?thesis using simple unary simple' wf wf'
       by (metis connective.distinct(37) connective.distinct(39) propo-rew-step-subformula-imp
         push-conn-inside.cases\ simple-not-symb.elims(3)\ tel\ wf-conn-list(8)
         wf-conn-no-arity-change wf-conn-no-arity-change-helper)
   qed
qed
\mathbf{lemma} \ \textit{push-conn-inside-not-true-false} :
 push-conn-inside c c' \varphi \psi \Longrightarrow \psi \neq FT \land \psi \neq FF
 by (induct rule: push-conn-inside.induct, auto)
lemma push-conn-inside-inv:
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step (push-conn-inside c c')) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
proof -
  {
    {
       \mathbf{fix}\ \varphi\ \psi::\ 'v\ propo
       have H: push-conn-inside c c' \varphi \psi \Longrightarrow all-subformula-st simple-not-symb \varphi
         \implies all-subformula-st simple-not-symb \psi
         by (induct \varphi \psi rule: push-conn-inside.induct, auto)
    } note H = this
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow all-subformula-st simple-not-symb \varphi
     \implies all-subformula-st simple-not-symb \psi
```

```
apply (induct \varphi \psi rule: propo-rew-step.induct)
using H apply simp
proof (rename-tac \varphi \varphi' ca \psi s \psi s', case-tac ca rule: connective-cases-arity)
 fix \varphi \varphi' :: 'v \text{ propo and } c:: 'v \text{ connective and } \xi \xi':: 'v \text{ propo list}
 and x:: 'v
 assume wf-conn c (\xi @ \varphi \# \xi')
 and c = CT \lor c = CF \lor c = CVar x
 then have \xi @ \varphi \# \xi' = [] by auto
 then have False by auto
 then show all-subformula-st simple-not-symb (conn c (\xi \otimes \varphi' \# \xi')) by blast
 fix \varphi \varphi' :: 'v \text{ propo and } ca:: 'v \text{ connective and } \xi \xi':: 'v \text{ propo list}
 and x :: 'v
 assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
 and \varphi-\varphi': all-subformula-st simple-not-symb \varphi \Longrightarrow all-subformula-st simple-not-symb \varphi'
 and corr: wf-conn ca (\xi @ \varphi \# \xi')
 and n: all-subformula-st simple-not-symb (conn ca (\xi @ \varphi \# \xi'))
 and c: ca = CNot
 have empty: \xi = [\xi' = [using \ c \ corr \ by \ auto]
 then have simple-not:all-subformula-st simple-not-symb (FNot \varphi) using corr c n by auto
 then have simple \varphi
   using all-subformula-st-test-symb-true-phi simple-not-symb.simps(1) by blast
 then have simple \varphi'
   using rel simple-propo-rew-step-push-conn-inside-inv by blast
 then show all-subformula-st simple-not-symb (conn ca (\xi @ \varphi' \# \xi')) using c empty
   by (metis simple-not \varphi-\varphi' append-Nil conn.simps(4) all-subformula-st-decomp-explicit(3)
     simple-not-symb.simps(1))
next
 fix \varphi \varphi' :: 'v \text{ propo and } ca :: 'v \text{ connective and } \xi \xi' :: 'v \text{ propo list}
 and x :: 'v
 assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
 and n\varphi: all-subformula-st simple-not-symb \varphi \implies all-subformula-st simple-not-symb \varphi'
 and corr: wf-conn ca (\xi @ \varphi \# \xi')
 and n: all-subformula-st simple-not-symb (conn ca (\xi @ \varphi \# \xi'))
 and c: ca \in binary\text{-}connectives
 have all-subformula-st simple-not-symb \varphi
   using n \ c \ corr \ all-subformula-st-decomp by fastforce
 then have \varphi': all-subformula-st simple-not-symb \varphi' using n\varphi by blast
 obtain a b where ab: [a, b] = (\xi @ \varphi \# \xi')
   using corr c list-length2-decomp wf-conn-bin-list-length by metis
 then have \xi @ \varphi' \# \xi' = [a, \varphi'] \lor (\xi @ \varphi' \# \xi') = [\varphi', b]
   using ab by (metis (no-types, hide-lams) append-Cons append-Nil append-Nil2
     append-is-Nil-conv\ butlast.simps(2)\ butlast-append\ list.sel(3)\ tl-append2)
 moreover
    fix \chi :: 'v \ propo
    have wf': wf-conn ca [a, b]
      using ab corr by presburger
    have all-subformula-st simple-not-symb (conn ca [a, b])
      using ab n by presburger
    then have all-subformula-st simple-not-symb \chi \vee \chi \notin set \ (\xi @ \varphi' \# \xi')
      using wf' by (metis (no-types) \varphi' all-subformula-st-decomp calculation insert-iff
        list.set(2))
```

```
then have \forall \varphi. \ \varphi \in set \ (\xi @ \varphi' \# \xi') \longrightarrow all\text{-subformula-st simple-not-symb} \ \varphi
           by (metis (no-types))
       moreover have simple-not-symb (conn ca (\xi \otimes \varphi' \# \xi'))
         using ab conn-inj-not(1) corr wf-conn-list-decomp(4) wf-conn-no-arity-change
           not-Cons-self2 self-append-conv2 simple-not-symb.elims(3) by (metis (no-types) c
           calculation(1) wf-conn-binary)
       moreover have wf-conn ca (\xi @ \varphi' \# \xi') using c calculation(1) by auto
       ultimately show all-subformula-st simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
         by (metis all-subformula-st-decomp-imp)
     qed
  }
 moreover {
    fix ca :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \varphi \ \varphi' :: 'v \ propo
    have propo-rew-step (push-conn-inside c c') \varphi \varphi' \Longrightarrow wf-conn ca (\xi @ \varphi \# \xi')
      \implies simple-not-symb (conn ca (\xi @ \varphi \# \xi')) \implies simple-not-symb \varphi'
      \implies simple-not-symb (conn ca (\xi @ \varphi' \# \xi'))
      \mathbf{by} \ (\mathit{metis} \ \mathit{append-self-conv2} \ \mathit{conn.simps}(4) \ \mathit{conn-inj-not}(1) \ \mathit{simple-not-symb.elims}(3)
        simple-not-symb.simps(1) simple-propo-rew-step-push-conn-inside-inv
        wf-conn-no-arity-change-helper wf-conn-list-decomp(4) wf-conn-no-arity-change)
  }
  ultimately show simple-not \ \psi
   using full-propo-rew-step-inv-stay'[of push-conn-inside c c' simple-not-symb] assms
   unfolding no-T-F-except-top-level-def simple-not-def full-unfold by metis
next
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: propo-rew-step (push-conn-inside c c') \varphi \psi \Longrightarrow no-T-F-except-top-level \varphi
     \implies no-T-F-except-top-level \psi
     proof -
       assume rel: propo-rew-step (push-conn-inside c c') \varphi \psi
       and no-T-F-except-top-level \varphi
       then have no-T-F \varphi \vee \varphi = FF \vee \varphi = FT
         by (metis\ no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
       moreover {
         assume \varphi = FF \vee \varphi = FT
         then have False using rel propo-rew-step-push-conn-inside by blast
         then have no-T-F-except-top-level \psi by blast
       }
       moreover {
         assume no-T-F \varphi \land \varphi \neq FF \land \varphi \neq FT
         then have no-T-F \psi using rel push-conn-insidec-in-c'-symb-no-T-F by blast
         then have no-T-F-except-top-level \psi using no-T-F-no-T-F-except-top-level by blast
       ultimately show no-T-F-except-top-level \psi by blast
     qed
  }
 moreover {
    fix ca :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \varphi \ \varphi' :: 'v \ propo
    assume rel: propo-rew-step (push-conn-inside c c') \varphi \varphi'
    assume corr: wf-conn ca (\xi @ \varphi \# \xi')
    then have c: ca \neq CT \land ca \neq CF by auto
    assume no-T-F: no-T-F-symb-except-toplevel (conn ca (\xi @ \varphi \# \xi'))
    have no-T-F-symb-except-toplevel (conn ca (\xi \otimes \varphi' \# \xi'))
```

```
proof
      have c: ca \neq CT \land ca \neq CF using corr by auto
      have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). \zeta \neq FT \land \zeta \neq FF
        using corr no-T-F no-T-F-symb-except-toplevel-if-is-a-true-false by blast
      then have \varphi \neq FT \land \varphi \neq FF by auto
      from rel this have \varphi' \neq FT \land \varphi' \neq FF
        apply (induct rule: propo-rew-step.induct)
        by (metis\ append-is-Nil-conv\ conn.simps(2)\ conn-inj\ list.distinct(1)
          wf-conn-helper-facts(3) wf-conn-list(1) wf-conn-no-arity-change
          wf-conn-no-arity-change-helper push-conn-inside-not-true-false)+
      then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). \ \zeta \neq FT \land \zeta \neq FF \ using \ \zeta \ by \ auto
      moreover have wf-conn ca (\xi @ \varphi' \# \xi')
        using corr wf-conn-no-arity-change by (metis wf-conn-no-arity-change-helper)
      ultimately show no-T-F-symb (conn ca (\xi @ \varphi' \# \xi')) using no-T-F-symb intros c by metis
    qed
 }
 ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay'[of push-conn-inside c c' no-T-F-symb-except-toplevel]
   assms unfolding no-T-F-except-top-level-def full-unfold by metis
next
  {
   \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
   have H: push-conn-inside c c' \varphi \psi \Longrightarrow no-equiv \varphi \Longrightarrow no-equiv \psi
     by (induct \varphi \psi rule: push-conn-inside.induct, auto)
  }
 then show no-equiv \psi
   using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-equiv-symb] assms
   no-equiv-symb-conn-characterization unfolding no-equiv-def by metis
next
   fix \varphi \psi :: 'v \ propo
   have H: push-conn-inside c\ c'\ \varphi\ \psi \implies no\text{-imp}\ \varphi \implies no\text{-imp}\ \psi
     by (induct \varphi \psi rule: push-conn-inside.induct, auto)
 then show no-imp \psi
   using full-propo-rew-step-inv-stay-conn[of push-conn-inside c c' no-imp-symb] assms
   no-imp-symb-conn-characterization unfolding no-imp-def by metis
qed
lemma push-conn-inside-full-propo-rew-step:
 fixes \varphi \ \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no-imp \varphi and
   full (propo-rew-step (push-conn-inside c c')) \varphi \psi and
   no-T-F-except-top-level <math>\varphi and
   simple-not \varphi and
   c = \mathit{CAnd} \lor c = \mathit{COr} and
   c' = CAnd \lor c' = COr
  shows c-in-c'-only c c' \psi
  using c-in-c'-symb-rew assms full-propo-rew-step-subformula by blast
```

8.5.1 Only one type of connective in the formula (+ not)

```
inductive only-c-inside-symb :: 'v connective \Rightarrow 'v propo \Rightarrow bool for c:: 'v connective where
simple-only-c-inside[simp]: simple \varphi \implies only-c-inside-symb \ c \ \varphi \ |
simple-cnot-only-c-inside[simp]: simple \varphi \implies only-c-inside-symb \ c \ (FNot \ \varphi)
only-c-inside-into-only-c-inside: wf-conn c \ l \implies only-c-inside-symb c \ (conn \ c \ l)
lemma only-c-inside-symb-simp[simp]:
  only-c-inside-symb c FF only-c-inside-symb c FT only-c-inside-symb c (FVar x) by auto
definition only-c-inside where only-c-inside c = all-subformula-st (only-c-inside-symb c)
lemma only-c-inside-symb-decomp:
  only-c-inside-symb c \psi \longleftrightarrow (simple \psi)
                                 \vee (\exists \varphi'. \psi = FNot \varphi' \wedge simple \varphi')
                                 \vee (\exists l. \ \psi = conn \ c \ l \land wf\text{-}conn \ c \ l))
  by (auto simp: only-c-inside-symb.intros(3)) (induct rule: only-c-inside-symb.induct, auto)
lemma only-c-inside-symb-decomp-not[simp]:
  fixes c :: 'v \ connective
  assumes c: c \neq CNot
 shows only-c-inside-symb c (FNot \psi) \longleftrightarrow simple \psi
  apply (auto simp: only-c-inside-symb.intros(3))
  by (induct FNot \psi rule: only-c-inside-symb.induct, auto simp: wf-conn-list(8) c)
lemma only-c-inside-decomp-not[simp]:
  assumes c: c \neq CNot
  shows only-c-inside c (FNot \psi) \longleftrightarrow simple \psi
  by (metis (no-types, hide-lams) all-subformula-st-def all-subformula-st-test-symb-true-phi c
    only-c\text{-}inside\text{-}def \ only-c\text{-}inside\text{-}symb\text{-}decomp\text{-}not \ simple\text{-}only\text{-}c\text{-}inside
    subformula-conn-decomp-simple)
lemma only-c-inside-decomp:
  only-c-inside c \varphi \longleftrightarrow
    (\forall \psi. \ \psi \preceq \varphi \longrightarrow (simple \ \psi \lor (\exists \ \varphi'. \ \psi = FNot \ \varphi' \land simple \ \varphi')
                    \vee (\exists l. \ \psi = conn \ c \ l \wedge wf\text{-}conn \ c \ l)))
   \textbf{unfolding} \ \ only\text{-}c\text{-}inside\text{-}def \ \ \textbf{by} \ \ (auto \ simp: \ all\text{-}subformula\text{-}st\text{-}def \ only\text{-}c\text{-}inside\text{-}symb\text{-}decomp}) 
lemma only-c-inside-c-c'-false:
  fixes c c' :: 'v connective and l :: 'v propo list and \varphi :: 'v propo
  assumes cc': c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
 and only: only-c-inside c \varphi and incl: conn c' l \preceq \varphi and wf: wf-conn c' l
 shows False
proof -
 let ?\psi = conn \ c' \ l
  have simple ?\psi \lor (\exists \varphi'. ?\psi = FNot \varphi' \land simple \varphi') \lor (\exists l. ?\psi = conn \ c \ l \land wf\text{-}conn \ c \ l)
    using only-c-inside-decomp only incl by blast
  moreover have \neg simple ?\psi
    using wf simple-decomp by (metis c' connective.distinct(19) connective.distinct(7,9,21,29,31)
      wf-conn-list(1-3))
  moreover
      fix \varphi'
```

```
have ?\psi \neq FNot \varphi' using c' conn-inj-not(1) wf by blast
 ultimately obtain l: 'v propo list where ?\psi = conn \ c \ l \land wf\text{-}conn \ c \ l by metis
 then have c = c' using conn-inj wf by metis
 then show False using cc' by auto
qed
lemma only-c-inside-implies-c-in-c'-symb:
 assumes \delta: c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
 shows only-c-inside c \varphi \Longrightarrow c-in-c'-symb c c' \varphi
 apply (rule ccontr)
 apply (cases rule: not-c-in-c'-symb.cases, auto)
 by (metis \delta c c' connective.distinct(37,39) list.distinct(1) only-c-inside-c-c'-false
   subformula-in-binary-conn(1,2) wf-conn.simps)+
lemma c-in-c'-symb-decomp-level1:
 fixes l :: 'v \text{ propo list and } c \ c' \ ca :: 'v \ connective
 shows wf-conn ca l \implies ca \neq c \implies c-in-c'-symb c c' (conn ca l)
proof -
 have not\text{-}c\text{-}in\text{-}c'\text{-}symb\ c\ c'\ (conn\ ca\ l) \implies wf\text{-}conn\ ca\ l \implies ca = c
   by (induct conn ca l rule: not-c-in-c'-symb.induct, auto simp: conn-inj)
 then show wf-conn ca l \Longrightarrow ca \neq c \Longrightarrow c-in-c'-symb c c' (conn ca l) by blast
qed
lemma only-c-inside-implies-c-in-c'-only:
 assumes \delta: c \neq c' and c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr
 shows only-c-inside c \varphi \Longrightarrow c-in-c'-only c c' \varphi
 unfolding c-in-c'-only-def all-subformula-st-def
 using only-c-inside-implies-c-in-c'-symb
   by (metis all-subformula-st-def assms(1) c c' only-c-inside-def subformula-trans)
lemma c-in-c'-symb-c-implies-only-c-inside:
 assumes \delta: c = CAnd \lor c = COr c' = CAnd \lor c' = COr c \neq c' and wf: wf-conn c [\varphi, \psi]
 and inv: no-equiv (conn c l) no-imp (conn c l) simple-not (conn c l)
 shows wf-conn c \ l \Longrightarrow c-in-c'-only c \ c' \ (conn \ c \ l) \Longrightarrow (\forall \psi \in set \ l. \ only-c-inside c \ \psi)
using inv
proof (induct conn c l arbitrary: l rule: propo-induct-arity)
 case (nullary x)
 then show ?case by (auto simp: wf-conn-list assms)
next
 case (unary \varphi la)
 then have c = CNot \wedge la = [\varphi] by (metis\ (no-types)\ wf-conn-list(8))
 then show ?case using assms(2) assms(1) by blast
next
 case (binary \varphi 1 \varphi 2)
 note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and \varphi = this(3) and only = this(5) and wf = this(4)
   and no-equiv = this(6) and no-imp = this(7) and simple-not = this(8)
 then have l: l = [\varphi 1, \varphi 2] by (meson \ wf\text{-}conn\text{-}list(4-7))
 let ?\varphi = conn \ c \ l
 obtain c1 l1 c2 l2 where \varphi 1: \varphi 1 = conn c1 l1 and wf \varphi 1: wf-conn c1 l1
   and \varphi 2: \varphi 2 = conn \ c2 \ l2 and wf \varphi 2: wf-conn c2 \ l2 using exists-c-conn by metis
  then have c-in-only \varphi 1: c-in-c'-only c c' (conn c1 l1) and c-in-c'-only c c' (conn c2 l2)
```

```
using only l unfolding c-in-c'-only-def using assms(1) by auto
have inc\varphi 1: \varphi 1 \leq ?\varphi and inc\varphi 2: \varphi 2 \leq ?\varphi
   using \varphi 1 \varphi 2 \varphi local wf by (metric conn.simps(5-8) helper-fact subformula-in-binary-conn(1,2))+
have c1-eq: c1 \neq CEq and c2-eq: c2 \neq CEq
   unfolding no-equiv-def using inc\varphi 1 inc\varphi 2 by (metis \varphi 1 \varphi 2 wf\varphi 1 wf\varphi 2 assms(1) no-equiv
       no-equiv-eq(1) no-equiv-symb.elims(3) no-equiv-symb-conn-characterization wf-conn-list(4,5)
       no\text{-}equiv\text{-}def\ subformula\text{-}all\text{-}subformula\text{-}st) +
have c1-imp: c1 \neq CImp and c2-imp: c2 \neq CImp
   using no-imp by (metis \varphi 1 \varphi 2 all-subformula-st-decomp-explicit-imp(2,3) assms(1)
       conn.simps(5,6) l no-imp-Imp(1) no-imp-symb.elims(3) no-imp-symb-conn-characterization
       wf\varphi 1 \ wf\varphi 2 \ all-subformula-st-decomp \ no-imp-symb-conn-characterization) +
have c1c: c1 \neq c'
   proof
       assume c1c: c1 = c'
       then obtain \xi 1 \ \xi 2 where l1: l1 = [\xi 1, \xi 2]
           by (metis assms(2) connective.distinct(37,39) helper-fact wf \varphi1 wf-conn.simps
               wf-conn-list-decomp(1-3)
       have c-in-c'-only c c' (conn c [conn c' l1, \varphi 2]) using c1c l only \varphi 1 by auto
       moreover have not-c-in-c'-symb c c' (conn c [conn c' l1, \varphi 2])
           using l1 \varphi 1 c1c l local.wf not-c-in-c'-symb-l wf \varphi 1 by blast
       ultimately show False using \varphi 1 c1c l l1 local.wf not-c-in-c'-simp(4) wf\varphi 1 by blast
 qed
then have (\varphi 1 = conn \ c \ l1 \land wf\text{-}conn \ c \ l1) \lor (\exists \psi 1. \ \varphi 1 = FNot \ \psi 1) \lor simple \ \varphi 1
   by (metis \ \varphi 1 \ assms(1-3) \ c1-eq c1-imp simple.elims(3) \ wf \ \varphi 1 \ wf-conn-list(4) wf-conn-list(5-7))
moreover {
   assume \varphi 1 = conn \ c \ l1 \ \land \ wf\text{-}conn \ c \ l1
   then have only-c-inside c \varphi 1
       by (metis IH\varphi 1 \varphi 1 all-subformula-st-decomp-imp inc\varphi 1 no-equiv no-equiv-def no-imp no-imp-def
           c\text{-}in\text{-}only\varphi 1 \ only\text{-}c\text{-}inside\text{-}def \ only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside \ simple\text{-}not \ simple\text{-}not\text{-}def \ only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside \ simple\text{-}not\text{-}def \ only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside \ simple\text{-}not\text{-}def \ only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside \ simple\text{-}not\text{-}def \ only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}only\text{-}c\text{-}inside\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}c\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-}only\text{-
           subformula-all-subformula-st)
}
moreover {
   assume \exists \psi 1. \varphi 1 = FNot \psi 1
   then obtain \psi 1 where \varphi 1 = FNot \ \psi 1 by metis
   then have only-c-inside c \varphi 1
       by (metis all-subformula-st-def assms(1) connective distinct (37,39) inc\varphi 1
            only-c-inside-decomp-not simple-not simple-not-def simple-not-symb.simps(1))
}
moreover {
   assume simple \varphi 1
   then have only-c-inside c \varphi 1
       by (metis\ all-subformula-st-decomp-explicit(3)\ assms(1)\ connective.distinct(37,39)
           only-c-inside-decomp-not only-c-inside-def)
ultimately have only-c-inside \varphi 1: only-c-inside c \varphi 1 by metis
have c-in-only\varphi 2: c-in-c'-only c c' (conn c2 l2)
   using only l \varphi 2 wf \varphi 2 assms unfolding c-in-c'-only-def by auto
have c2c: c2 \neq c'
   proof
       assume c2c: c2 = c'
       then obtain \xi 1 \ \xi 2 where l2: l2 = [\xi 1, \xi 2]
         by (metis assms(2) wf\varphi 2 wf-conn.simps connective.distinct(7,9,19,21,29,31,37,39))
       then have c-in-c'-symb c c' (conn c [\varphi 1, conn c' l2])
```

```
using c2c\ l\ only\ \varphi 2\ all-subformula-st-test-symb-true-phi\ unfolding\ c-in-c'-only-def\ by\ auto
     moreover have not-c-in-c'-symb c c' (conn c [<math>\varphi 1, conn c' l2])
       using assms(1) c2c l2 not-c-in-c'-symb-r wf\varphi2 wf-conn-helper-facts(5,6) by metis
     ultimately show False by auto
   qed
  then have (\varphi 2 = conn \ c \ l2 \land wf\text{-}conn \ c \ l2) \lor (\exists \psi 2. \ \varphi 2 = FNot \ \psi 2) \lor simple \ \varphi 2
   using c2-eq by (metis \varphi 2 assms(1-3) c2-eq c2-imp simple.elims(3) wf\varphi 2 wf-conn-list(4-7))
  moreover {
   assume \varphi 2 = conn \ c \ l2 \land wf\text{-}conn \ c \ l2
   then have only-c-inside c \varphi 2
     by (metis IH\varphi 2 \varphi 2 all-subformula-st-decomp inc\varphi 2 no-equiv no-equiv-def no-imp no-imp-def
       c\text{-}in\text{-}only\varphi2\ only\text{-}c\text{-}inside\text{-}def\ only\text{-}c\text{-}inside\text{-}into\text{-}only\text{-}c\text{-}inside\ simple\text{-}not\ simple\text{-}not\text{-}def\ only\text{-}}
       subformula-all-subformula-st)
  }
 moreover {
   assume \exists \psi 2. \ \varphi 2 = FNot \ \psi 2
   then obtain \psi 2 where \varphi 2 = FNot \ \psi 2 by metis
   then have only-c-inside c \varphi 2
     by (metis all-subformula-st-def assms(1-3) connective.distinct(38,40) inc\varphi 2
       only-c-inside-decomp-not simple-not-def simple-not-symb.simps(1))
 moreover {
   assume simple \varphi 2
   then have only-c-inside c \varphi 2
     by (metis\ all-subformula-st-decomp-explicit(3)\ assms(1)\ connective.distinct(37,39)
       only-c-inside-decomp-not only-c-inside-def)
  }
 ultimately have only-c-inside \varphi 2: only-c-inside \varphi \varphi 2 by metis
 show ?case using l only-c-inside\varphi 1 only-c-inside\varphi 2 by auto
qed
         Push Conjunction
8.5.2
definition pushConj where pushConj = push-conn-inside CAnd COr
lemma pushConj-consistent: preserves-un-sat pushConj
 unfolding pushConj-def by (simp add: push-conn-inside-consistent)
definition and-in-or-symb where and-in-or-symb = c-in-c'-symb CAnd COr
definition and-in-or-only where
and-in-or-only = all-subformula-st (c-in-c'-symb CAnd\ COr)
lemma pushConj-inv:
 fixes \varphi \psi :: 'v \ propo
 assumes full (propo-rew-step pushConj) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
 using push-conn-inside-inv assms unfolding pushConj-def by metis+
lemma pushConj-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no-imp \varphi and
```

```
full (propo-rew-step pushConj) \varphi \psi and
   no-T-F-except-top-level \varphi and
   simple-not \varphi
  shows and-in-or-only \psi
  using assms push-conn-inside-full-propo-rew-step
  unfolding pushConj-def and-in-or-only-def c-in-c'-only-def by (metis (no-types))
8.5.3 Push Disjunction
definition pushDisj where pushDisj = push-conn-inside COr CAnd
lemma pushDisj-consistent: preserves-un-sat pushDisj
 unfolding pushDisj-def by (simp add: push-conn-inside-consistent)
definition or-in-and-symb where or-in-and-symb = c-in-c'-symb COr CAnd
definition or-in-and-only where
or-in-and-only = all-subformula-st (c-in-c'-symb COr CAnd)
lemma not-or-in-and-only-or-and[simp]:
  \sim or-in-and-only (FOr (FAnd \psi 1 \ \psi 2) \ \varphi')
 unfolding or-in-and-only-def
 by (metis all-subformula-st-test-symb-true-phi conn.simps(5-6) not-c-in-c'-symb-l
   wf-conn-helper-facts(5) wf-conn-helper-facts(6))
lemma pushDisj-inv:
 fixes \varphi \ \psi :: 'v \ propo
 assumes full (propo-rew-step pushDisj) \varphi \psi
 and no-equiv \varphi and no-imp \varphi and no-T-F-except-top-level \varphi and simple-not \varphi
 shows no-equiv \psi and no-imp \psi and no-T-F-except-top-level \psi and simple-not \psi
 using push-conn-inside-inv assms unfolding pushDisj-def by metis+
lemma pushDisj-full-propo-rew-step:
 fixes \varphi \psi :: 'v \ propo
 assumes
   no-equiv \varphi and
   no\text{-}imp\ \varphi\ \mathbf{and}
   full (propo-rew-step pushDisj) \varphi \psi and
   no-T-F-except-top-level <math>\varphi and
   simple-not \varphi
  shows or-in-and-only \psi
 using assms push-conn-inside-full-propo-rew-step
 unfolding pushDisj-def or-in-and-only-def c-in-c'-only-def by (metis (no-types))
```

9 The full transformations

9.1 Abstract Property characterizing that only some connective are inside the others

9.1.1 Definition

```
The normal is a super group of groups
```

```
inductive grouped-by :: 'a connective \Rightarrow 'a propo \Rightarrow bool for c where simple-is-grouped[simp]: simple \varphi \Longrightarrow grouped-by c \varphi |
```

```
simple-not-is-grouped[simp]: simple \varphi \Longrightarrow grouped-by \ c \ (FNot \ \varphi) \ |
connected-is-group[simp]: grouped-by c \varphi \implies grouped-by c \psi \implies wf-conn c [\varphi, \psi]
  \implies grouped-by c (conn c [\varphi, \psi])
lemma simple-clause[simp]:
  grouped-by c FT
  grouped-by c FF
  grouped-by c (FVar x)
  grouped-by c (FNot FT)
  grouped-by c (FNot FF)
  grouped-by c (FNot (FVar x))
  by simp+
lemma only-c-inside-symb-c-eq-c':
  \textit{only-c-inside-symb } c \; (\textit{conn} \; c' \; [\varphi 1, \, \varphi 2]) \Longrightarrow c' = \textit{CAnd} \; \lor \; c' = \textit{COr} \Longrightarrow \textit{wf-conn} \; c' \; [\varphi 1, \, \varphi 2]
    \implies c' = c
 by (induct conn c'[\varphi 1, \varphi 2] rule: only-c-inside-symb induct, auto simp: conn-inj)
lemma only-c-inside-c-eq-c':
  only-c-inside c (conn c' [\varphi 1, \varphi 2]) \Longrightarrow c' = CAnd \lor c' = COr \Longrightarrow wf\text{-conn } c' [\varphi 1, \varphi 2] \Longrightarrow c = c'
  unfolding only-c-inside-def all-subformula-st-def using only-c-inside-symb-c-eq-c' subformula-refl
  by blast
lemma only-c-inside-imp-grouped-by:
 assumes c: c \neq CNot and c': c' = CAnd \lor c' = COr
 shows only-c-inside c \varphi \Longrightarrow grouped-by c \varphi (is ?O \varphi \Longrightarrow ?G \varphi)
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  then show ?G \varphi by auto
next
  case (unary \psi)
  then show ?G (FNot \psi) by (auto simp: c)
next
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and \varphi = this(3) and only = this(4)
  have \varphi-conn: \varphi = conn \ c \ [\varphi 1, \varphi 2] and wf: wf-conn c \ [\varphi 1, \varphi 2]
    proof -
      obtain c'' l'' where \varphi-c'': \varphi = conn \ c'' \ l'' and wf: wf-conn \ c'' \ l''
        using exists-c-conn by metis
      then have l'': l'' = [\varphi 1, \varphi 2] using \varphi by (metis \ wf\text{-}conn\text{-}list(4-7))
      have only-c-inside-symb c (conn c'' [\varphi 1, \varphi 2])
        \mathbf{using} \ only \ all\text{-}subformula\text{-}st\text{-}test\text{-}symb\text{-}true\text{-}phi
        unfolding only-c-inside-def \varphi-c" l" by metis
      then have c = c''
        by (metis \varphi \varphi-c" conn-inj conn-inj-not(2) l" list.distinct(1) list.inject wf
          only-c-inside-symb.cases\ simple.simps(5-8))
      then show \varphi = conn \ c \ [\varphi 1, \ \varphi 2] and wf-conn c \ [\varphi 1, \ \varphi 2] using \varphi-c" wf l" by auto
    qed
  have grouped-by c \varphi 1 using wf IH \varphi 1 IH \varphi 2 \varphi-conn only \varphi unfolding only-c-inside-def by auto
 moreover have grouped-by c \varphi 2
    using wf \varphi IH\varphi1 IH\varphi2 \varphi-conn only unfolding only-c-inside-def by auto
  ultimately show ?G \varphi using \varphi-conn connected-is-group local.wf by blast
qed
```

```
lemma grouped-by-false:
  grouped-by c (conn c'[\varphi, \psi]) \Longrightarrow c \neq c' \Longrightarrow wf\text{-conn } c'[\varphi, \psi] \Longrightarrow False
  apply (induct conn c'[\varphi, \psi] rule: grouped-by.induct)
 apply (auto simp: simple-decomp wf-conn-list, auto simp: conn-inj)
 by (metis\ list.distinct(1)\ list.sel(3)\ wf-conn-list(8))+
Then the CNF form is a conjunction of clauses: every clause is in CNF form and two formulas
in CNF form can be related by an and.
inductive super-grouped-by:: 'a connective \Rightarrow 'a connective \Rightarrow 'a propo \Rightarrow bool for c c' where
grouped-is-super-grouped[simp]: grouped-by c \varphi \Longrightarrow super-grouped-by c c' \varphi
connected-is-super-group: super-grouped-by c\ c'\ \varphi \Longrightarrow super-grouped-by\ c\ c'\ \psi \Longrightarrow wf\text{-}conn\ c\ [\varphi,\ \psi]
  \implies super-grouped-by c c' (conn \ c' \ [\varphi, \ \psi])
lemma simple-cnf[simp]:
  super-grouped-by c c' FT
  super-grouped-by c c' FF
  super-grouped-by\ c\ c'\ (FVar\ x)
  super-grouped-by c c' (FNot FT)
  super-grouped-by \ c \ c' \ (FNot \ FF)
  super-grouped-by\ c\ c'\ (FNot\ (FVar\ x))
  by auto
lemma c-in-c'-only-super-grouped-by:
  assumes c: c = CAnd \lor c = COr and c': c' = CAnd \lor c' = COr and cc': c \neq c'
  shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow c-in-c'-only c c' \varphi
    \implies super-grouped-by c c' \varphi
    (is ?NE \varphi \implies ?NI \varphi \implies ?SN \varphi \implies ?C \varphi \implies ?S \varphi)
proof (induct \varphi rule: propo-induct-arity)
  case (nullary \varphi x)
  then show ?S \varphi by auto
next
  case (unary \varphi)
  then have simple-not-symb (FNot \varphi)
    using all-subformula-st-test-symb-true-phi unfolding simple-not-def by blast
  then have \varphi = FT \vee \varphi = FF \vee (\exists x. \varphi = FVar x) by (cases \varphi, auto)
  then show ?S (FNot \varphi) by auto
  case (binary \varphi \varphi 1 \varphi 2)
  note IH\varphi 1 = this(1) and IH\varphi 2 = this(2) and no-equiv = this(4) and no-imp = this(5)
    and simpleN = this(6) and c\text{-}in\text{-}c'\text{-}only = this(7) and \varphi' = this(3)
    assume \varphi = FImp \ \varphi 1 \ \varphi 2 \lor \varphi = FEq \ \varphi 1 \ \varphi 2
    then have False using no-equiv no-imp by auto
    then have ?S \varphi by auto
  moreover {
    assume \varphi: \varphi = conn \ c' \ [\varphi 1, \varphi 2] \land wf\text{-}conn \ c' \ [\varphi 1, \varphi 2]
    have c-in-c'-only: c-in-c'-only c c' \varphi1 \wedge c-in-c'-only c c' \varphi2 \wedge c-in-c'-symb c c' \varphi
      using c-in-c'-only \varphi' unfolding c-in-c'-only-def by auto
    have super-grouped-by c c' \varphi 1 using \varphi c' no-equiv no-imp simpleN IH\varphi 1 c-in-c'-only by auto
    moreover have super-grouped-by c c' \varphi 2
      using \varphi c' no-equiv no-imp simple N IH \varphi2 c-in-c'-only by auto
    ultimately have ?S \varphi
      using super-grouped-by.intros(2) \varphi by (metis c wf-conn-helper-facts(5,6))
```

```
}
  moreover {
   assume \varphi: \varphi = conn \ c \ [\varphi 1, \varphi 2] \land wf\text{-}conn \ c \ [\varphi 1, \varphi 2]
   then have only-c-inside c \varphi 1 \wedge only-c-inside c \varphi 2
     using c-in-c'-symb-c-implies-only-c-inside c c' c-in-c'-only list.set-intros(1)
        wf-conn-helper-facts(5,6) no-equiv no-imp simpleN last-ConsL last-ConsR last-in-set
       list.distinct(1) by (metis (no-types, hide-lams) cc')
   then have only-c-inside c (conn c [\varphi 1, \varphi 2])
     unfolding only-c-inside-def using \varphi
     by (simp add: only-c-inside-into-only-c-inside all-subformula-st-decomp)
   then have grouped-by c \varphi using \varphi only-c-inside-imp-grouped-by c by blast
   then have S \varphi using super-grouped-by.intros(1) by metis
 ultimately show ?S \varphi by (metis \varphi' c c' cc' conn.simps(5,6) wf-conn-helper-facts(5,6))
qed
9.2
        Conjunctive Normal Form
definition is-conj-with-TF where is-conj-with-TF == super-grouped-by COr CAnd
lemma or-in-and-only-conjunction-in-disj:
  \mathbf{shows} \ \textit{no-equiv} \ \varphi \Longrightarrow \textit{no-imp} \ \varphi \Longrightarrow \textit{simple-not} \ \varphi \Longrightarrow \textit{or-in-and-only} \ \varphi \Longrightarrow \textit{is-conj-with-TF} \ \varphi
  using c-in-c'-only-super-grouped-by
  unfolding is-conj-with-TF-def or-in-and-only-def c-in-c'-only-def
  by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-cnf where
is\text{-}cnf \ \varphi \equiv is\text{-}conj\text{-}with\text{-}TF \ \varphi \land no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \ \varphi
          Full CNF transformation
9.2.1
The full CNF transformation consists simply in chaining all the transformation defined before.
definition cnf-rew where cnf-rew =
  (full\ (propo-rew-step\ elim-equiv))\ OO
  (full\ (propo-rew-step\ elim-imp))\ OO
  (full\ (propo-rew-step\ elim\ TB))\ OO
  (full\ (propo-rew-step\ pushNeg))\ OO
  (full\ (propo-rew-step\ pushDisj))
lemma cnf-rew-consistent: preserves-un-sat cnf-rew
  \mathbf{by} (simp add: cnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
   preserves-un-sat-OO pushDisj-consistent pushNeg-lifted-consistant)
lemma cnf-rew-is-cnf: cnf-rew \varphi \varphi' \Longrightarrow is-cnf \varphi'
 apply (unfold cnf-rew-def OO-def)
 apply auto
proof -
  \mathbf{fix} \ \varphi \ \varphi Eq \ \varphi Imp \ \varphi TB \ \varphi Neg \ \varphi Disj :: \ 'v \ propo
  assume Eq: full (propo-rew-step elim-equiv) \varphi \varphi Eq
  then have no-equiv: no-equiv \varphi Eq using no-equiv-full-propo-rew-step-elim-equiv by blast
  assume Imp: full (propo-rew-step elim-imp) \varphi Eq \varphi Imp
  then have no-imp: no-imp \varphiImp using no-imp-full-propo-rew-step-elim-imp by blast
  have no-imp-inv: no-equiv \varphiImp using no-equiv Imp elim-imp-inv by blast
```

```
assume TB: full (propo-rew-step elim TB) \varphiImp \varphiTB
 then have no TB: no-T-F-except-top-level \varphi TB
   using no-imp-inv no-imp elimTB-full-propo-rew-step by blast
 have no TB-inv: no-equiv \varphi TB no-imp \varphi TB using elim TB-inv TB no-imp no-imp-inv by blast+
 assume Neg: full (propo-rew-step pushNeg) \varphi TB \varphi Neg
 then have noNeg: simple-not \varphiNeg
   using noTB-inv noTB pushNeg-full-propo-rew-step by blast
 have noNeg-inv: no-equiv \varphiNeg no-imp \varphiNeg no-T-F-except-top-level \varphiNeg
   using pushNeg-inv Neg noTB noTB-inv by blast+
 assume Disj: full (propo-rew-step pushDisj) \varphiNeg \varphiDisj
 then have no-Disj: or-in-and-only \varphi Disj
   using noNeq-inv noNeq pushDisj-full-propo-rew-step by blast
 have noDisj-inv: no-equiv \varphiDisj no-imp \varphiDisj no-T-F-except-top-level \varphiDisj
   simple-not \varphi Disj
 using pushDisj-inv Disj noNeq noNeq-inv by blast+
 moreover have is-conj-with-TF \varphi Disj
   using or-in-and-only-conjunction-in-disj noDisj-inv no-Disj by blast
 ultimately show is-cnf \varphi Disj unfolding is-cnf-def by blast
qed
9.3
       Disjunctive Normal Form
definition is-disj-with-TF where is-disj-with-TF \equiv super-grouped-by CAnd COr
```

```
lemma and-in-or-only-conjunction-in-disj:
  shows no-equiv \varphi \Longrightarrow no-imp \varphi \Longrightarrow simple-not \varphi \Longrightarrow and-in-or-only \varphi \Longrightarrow is-disj-with-TF \varphi
  using c-in-c'-only-super-grouped-by
  unfolding is-disj-with-TF-def and-in-or-only-def c-in-c'-only-def
  by (simp add: c-in-c'-only-def c-in-c'-only-super-grouped-by)
definition is-dnf :: 'a propo \Rightarrow bool where
is\text{-}dnf \ \varphi \longleftrightarrow is\text{-}disj\text{-}with\text{-}TF \ \varphi \land no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \ \varphi
```

Full DNF transform 9.3.1

The full DNF transformation consists simply in chaining all the transformation defined before.

```
definition dnf-rew where dnf-rew \equiv
  (full (propo-rew-step elim-equiv)) OO
  (full\ (propo-rew-step\ elim-imp))\ OO
  (full\ (propo-rew-step\ elimTB))\ OO
  (full\ (propo-rew-step\ pushNeg))\ OO
  (full\ (propo-rew-step\ pushConj))
lemma dnf-rew-consistent: preserves-un-sat dnf-rew
  by (simp\ add:\ dnf-rew-def elimEquv-lifted-consistant elim-imp-lifted-consistant elimTB-consistent
   preserves-un-sat-OO pushConj-consistent pushNeg-lifted-consistant)
theorem dnf-transformation-correction:
   dnf\text{-}rew \ \varphi \ \varphi' \Longrightarrow is\text{-}dnf \ \varphi'
 apply (unfold dnf-rew-def OO-def)
 by (meson and-in-or-only-conjunction-in-disj elim TB-full-propo-rew-step elim TB-inv(1,2)
```

```
elim-imp-inv\ is-dnf-def\ no-equiv-full-propo-rew-step-elim-equiv\\ no-imp-full-propo-rew-step-elim-imp\ pushConj-full-propo-rew-step\ pushConj-inv(1-4)\\ pushNeg-full-propo-rew-step\ pushNeg-inv(1-3))
```

10 More aggressive simplifications: Removing true and false at the beginning

10.1 Transformation

We should remove FT and FF at the beginning and not in the middle of the algorithm. To do this, we have to use more rules (one for each connective):

```
inductive elimTBFull where
ElimTBFull1[simp]: elimTBFull (FAnd \varphi FT) \varphi
ElimTBFull1'[simp]: elimTBFull (FAnd FT \varphi) \varphi
ElimTBFull2[simp]: elimTBFull (FAnd \varphi FF) FF
ElimTBFull2'[simp]: elimTBFull (FAnd FF \varphi) FF
ElimTBFull3[simp]: elimTBFull (FOr \varphi FT) FT
ElimTBFull3'[simp]: elimTBFull (FOr FT \varphi) FT
ElimTBFull4[simp]: elimTBFull (FOr \varphi FF) \varphi
Elim TBFull4 '[simp]: elim TBFull (FOr FF \varphi) \varphi |
ElimTBFull5[simp]: elimTBFull (FNot FT) FF
ElimTBFull5'[simp]: elimTBFull (FNot FF) FT |
ElimTBFull6-l[simp]: elimTBFull (FImp FT <math>\varphi) \varphi
ElimTBFull6-l'[simp]: elimTBFull\ (FImp\ FF\ \varphi)\ FT
ElimTBFull6-r[simp]: elimTBFull\ (FImp\ \varphi\ FT)\ FT
ElimTBFull6-r'[simp]: elimTBFull (FImp \varphi FF) (FNot \varphi)
Elim TBFull7-l[simp]: elim TBFull (FEq FT \varphi) \varphi
ElimTBFull7-l'[simp]: elimTBFull (FEq FF \varphi) (FNot \varphi) |
ElimTBFull7-r[simp]: elimTBFull (FEq <math>\varphi FT) \varphi
ElimTBFull7-r'[simp]: elimTBFull (FEq \varphi FF) (FNot \varphi)
The transformation is still consistent.
lemma elimTBFull-consistent: preserves-un-sat elimTBFull
proof -
  {
   fix \varphi \psi:: 'b propo
   have elimTBFull \varphi \psi \Longrightarrow \forall A. A \models \varphi \longleftrightarrow A \models \psi
     by (induct-tac rule: elimTBFull.inducts, auto)
 then show ?thesis using preserves-un-sat-def by auto
qed
```

Contrary to the theorem $[no\text{-}equiv ?\varphi; no\text{-}imp ?\varphi; ?\psi \preceq ?\varphi; \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel} ?\psi] \implies \exists \psi'. elimTB ?\psi \psi'$, we do not need the assumption no-equiv φ and no-imp φ , since our transformation is more general.

```
lemma no-T-F-symb-except-toplevel-step-exists': fixes \varphi :: 'v propo
```

```
shows \psi \preceq \varphi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel }\psi \Longrightarrow \exists \psi'. \ elimTBFull \ \psi \ \psi'
proof (induct \psi rule: propo-induct-arity)
 case (nullary \varphi')
 then have False using no-T-F-symb-except-toplevel-true no-T-F-symb-except-toplevel-false by auto
 then show Ex (elimTBFull \varphi') by blast
next
 case (unary \psi)
 then have \psi = FF \lor \psi = FT using no-T-F-symb-except-toplevel-not-decom by blast
 then show Ex (elimTBFull (FNot \psi)) using ElimTBFull5 ElimTBFull5' by blast
next
 case (binary \varphi' \psi 1 \psi 2)
 then have \psi 1 = FT \vee \psi 2 = FT \vee \psi 1 = FF \vee \psi 2 = FF
   by (metis binary-connectives-def conn.simps (5-8) insert I1 insert-commute
     no-T-F-symb-except-toplevel-bin-decom\ binary.hyps(3))
 then show Ex\ (elimTBFull\ \varphi') using elimTBFull.intros\ binary.hyps(3) by blast
qed
```

The same applies here. We do not need the assumption, but the deep link between \neg no-T-F-except-top-level φ and the existence of a rewriting step, still exists.

```
lemma no-T-F-except-top-level-rew':
 fixes \varphi :: 'v \ propo
 assumes noTB: \neg no-T-F-except-top-level \varphi
 shows \exists \psi \ \psi' . \ \psi \leq \varphi \land elimTBFull \ \psi \ \psi'
proof -
 have test-symb-false-nullary:
   \forall x. \ no-T-F-symb-except-toplevel (FF:: 'v propo) \land no-T-F-symb-except-toplevel FT
     \land no-T-F-symb-except-toplevel (FVar (x:: 'v))
   by auto
  moreover {
   fix c:: 'v connective and l:: 'v propo list and \psi:: 'v propo
   have H: elimTBFull\ (conn\ c\ l)\ \psi \Longrightarrow \neg no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\ (conn\ c\ l)}
     by (cases (conn c l) rule: elimTBFull.cases) auto
  }
 ultimately show ?thesis
   using no-test-symb-step-exists of no-T-F-symb-except-toplevel \varphi elimTBFull noTB
   no-T-F-symb-except-toplevel-step-exists' unfolding no-T-F-except-top-level-def by metis
qed
```

```
lemma elimTBFull-full-propo-rew-step:
fixes \varphi \psi :: 'v propo
assumes full (propo-rew-step elimTBFull) \varphi \psi
shows no-T-F-except-top-level \psi
using full-propo-rew-step-subformula no-T-F-except-top-level-rew' assms by fastforce
```

10.2 More invariants

As the aim is to use the transformation as the first transformation, we have to show some more invariants for *elim-equiv* and *elim-imp*. For the other transformation, we have already proven it.

```
lemma propo-rew-step-ElimEquiv-no-T-F: propo-rew-step elim-equiv \varphi \psi \Longrightarrow no-T-F \varphi \Longrightarrow no-T-F \psi proof (induct rule: propo-rew-step.induct) fix \varphi':: 'v propo and \psi':: 'v propo
```

```
assume a1: no-T-F \varphi'
  assume a2: elim-equiv \varphi' \psi'
  have \forall x0 \ x1. \ (\neg \ elim-equiv \ (x1 :: 'v \ propo) \ x0 \ \lor \ (\exists \ v2 \ v3 \ v4 \ v5 \ v6 \ v7. \ x1 = FEq \ v2 \ v3
    \wedge x0 = FAnd (FImp \ v4 \ v5) (FImp \ v6 \ v7) \wedge v2 = v4 \wedge v4 = v7 \wedge v3 = v5 \wedge v3 = v6) ) 
      = (\neg elim-equiv x1 x0 \lor (\exists v2 v3 v4 v5 v6 v7. x1 = FEq v2 v3)
   \land x0 = FAnd \ (FImp \ v4 \ v5) \ (FImp \ v6 \ v7) \land v2 = v4 \land v4 = v7 \land v3 = v5 \land v3 = v6))
   by meson
  then have \forall p \ pa. \ \neg \ elim-equiv \ (p :: 'v \ propo) \ pa \ \lor \ (\exists \ pb \ pc \ pd \ pe \ pf \ pg. \ p = FEq \ pb \ pc
    \land pa = FAnd \ (FImp \ pd \ pe) \ (FImp \ pf \ pg) \ \land \ pb = pd \ \land \ pd = pg \ \land \ pc = pe \ \land \ pc = pf)
   using elim-equiv.cases by force
  then show no-T-F \psi' using a1 a2 by fastforce
next
  fix \varphi \varphi' :: 'v \text{ propo and } \xi \xi' :: 'v \text{ propo list and } c :: 'v \text{ connective}
  assume rel: propo-rew-step elim-equiv \varphi \varphi'
  and IH: no-T-F \varphi \Longrightarrow no-T-F \varphi'
 and corr: wf-conn c (\xi @ \varphi \# \xi')
 and no-T-F: no-T-F (conn c (\xi @ \varphi \# \xi'))
   assume c: c = CNot
   then have empty: \xi = [] \xi' = [] using corr by auto
   then have no-T-F \varphi using no-T-F c no-T-F-decomp-not by auto
   then have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c empty no-T-F-comp-not IH by auto
  }
  moreover {
   assume c: c \in binary\text{-}connectives
   obtain a b where ab: \xi @ \varphi \# \xi' = [a, b]
      using corr c list-length2-decomp wf-conn-bin-list-length by metis
   then have \varphi: \varphi = a \lor \varphi = b
      by (metis\ append.simps(1)\ append-is-Nil-conv\ list.distinct(1)\ list.sel(3)\ nth-Cons-0
        tl-append2)
   have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta
      using no-T-F unfolding no-T-F-def using corr all-subformula-st-decomp by blast
   then have \varphi': no-T-F \varphi' using ab IH \varphi by auto
   have l': \xi @ \varphi' \# \xi' = [\varphi', b] \lor \xi @ \varphi' \# \xi' = [a, \varphi']
      by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
        butlast-append list.distinct(1) list.sel(3))
   then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). no-T-F \zeta using \zeta \varphi' ab by fastforce
   moreover
      have \forall \zeta \in set \ (\xi @ \varphi \# \xi'). \ \zeta \neq FT \land \zeta \neq FF
       using \zeta corr no-T-F no-T-F-except-top-level-false no-T-F-no-T-F-except-top-level by blast
      then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi'))
       by (metis \varphi' l' ab all-subformula-st-test-symb-true-phi c list.distinct(1)
         list.set-intros(1,2) no-T-F-symb-except-toplevel-bin-decom
         no-T-F-symb-except-toplevel-no-T-F-symb no-T-F-symb-false(1,2) no-T-F-def wf-conn-binary
         wf-conn-list(1,2))
   ultimately have no-T-F (conn c (\xi \otimes \varphi' \# \xi'))
      by (metis\ l'\ all-subformula-st-decomp-imp\ c\ no-T-F-def\ wf-conn-binary)
  }
 moreover {
    \mathbf{fix} \ x
    assume c = CVar \ x \lor c = CF \lor c = CT
    then have False using corr by auto
    then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by auto
  }
```

```
ultimately show no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using corr wf-conn.cases by metis
qed
lemma elim-equiv-inv':
  fixes \varphi \psi :: 'v \ propo
  assumes full (propo-rew-step elim-equiv) \varphi \psi and no-T-F-except-top-level \varphi
  shows no-T-F-except-top-level \psi
proof -
  {
    fix \varphi \psi :: 'v \ propo
    have propo-rew-step elim-equiv \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \varphi
      \implies no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level \ \psi
      proof -
        assume rel: propo-rew-step elim-equiv \varphi \psi
       and no: no-T-F-except-top-level \varphi
          assume \varphi = FT \vee \varphi = FF
          from rel this have False
            apply (induct rule: propo-rew-step.induct, auto simp: wf-conn-list(1,2))
            using elim-equiv.simps by blast+
          then have no-T-F-except-top-level \psi by blast
        }
        moreover {
          \mathbf{assume}\ \varphi \neq \mathit{FT}\ \land\ \varphi \neq \mathit{FF}
          then have no-T-F \varphi
            by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
          then have no-T-F \psi using propo-rew-step-ElimEquiv-no-T-F rel by blast
          then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
        ultimately show no-T-F-except-top-level \psi by metis
      qed
  }
  moreover {
     fix c :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \zeta \ \zeta' :: 'v \ propo
     assume rel: propo-rew-step elim-equiv \zeta \zeta'
     and incl: \zeta \leq \varphi
     and corr: wf-conn c (\xi \otimes \zeta \# \xi')
     and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
     and n: no-T-F-symb-except-toplevel \zeta'
     have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
       have p: no-T-F-symb (conn c (<math>\xi \otimes \zeta \# \xi'))
         using corr\ wf\text{-}conn\text{-}list(1)\ wf\text{-}conn\text{-}list(2)\ no\text{-}T\text{-}F\text{-}symb\text{-}except\text{-}toplevel\text{-}no\text{-}T\text{-}F\text{-}symb\ no\text{-}T\text{-}F}
         by blast
       have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
         using corr wf-conn-no-T-F-symb-iff p by blast
       from rel incl have \zeta' \neq FT \land \zeta' \neq FF
         apply (induction \zeta \zeta' rule: propo-rew-step.induct)
         apply (cases rule: elim-equiv.cases, auto simp: elim-equiv.simps)
         by (metis append-is-Nil-conv list.distinct wf-conn-list(1,2) wf-conn-no-arity-change
           wf-conn-no-arity-change-helper)+
       then have \forall \varphi \in set \ (\xi @ \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
       moreover have c \neq CT \land c \neq CF using corr by auto
       ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
         by (metis corr wf-conn-no-arity-change wf-conn-no-arity-change-helper no-T-F-symb-comp)
```

```
qed
 ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc of elim-equiv no-T-F-symb-except-toplevel \varphi
     assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
lemma propo-rew-step-ElimImp-no-T-F: propo-rew-step elim-imp \varphi \ \psi \implies no-T-F \varphi \implies no-T-F \psi
proof (induct rule: propo-rew-step.induct)
 case (global-rel \varphi' \psi')
 then show no-T-F \psi'
   using elim-imp. cases no-T-F-comp-not no-T-F-decomp(1,2)
   by (metis\ no-T-F-comp-expanded-explicit(2))
next
 case (propo-rew-one-step-lift \varphi \varphi' c \xi \xi')
 note rel = this(1) and IH = this(2) and corr = this(3) and no-T-F = this(4)
   assume c: c = CNot
   then have empty: \xi = [] \xi' = [] using corr by auto
   then have no-T-F \varphi using no-T-F c no-T-F-decomp-not by auto
   then have no-T-F (conn c (\xi @ \varphi' \# \xi')) using c empty no-T-F-comp-not IH by auto
  }
  moreover {
   assume c: c \in binary\text{-}connectives
   then obtain a b where ab: \xi @ \varphi \# \xi' = [a, b]
     using corr list-length2-decomp wf-conn-bin-list-length by metis
   then have \varphi: \varphi = a \lor \varphi = b
     by (metis append-self-conv2 wf-conn-list-decomp(4) wf-conn-unary list.discI list.sel(3)
       nth-Cons-0 tl-append2)
   have \zeta: \forall \zeta \in set \ (\xi @ \varphi \# \xi'). no-T-F \zeta using ab c propo-rew-one-step-lift.prems by auto
   then have \varphi': no-T-F \varphi'
     using ab IH \varphi corr no-T-F no-T-F-def all-subformula-st-decomp-explicit by auto
   have \chi: \xi @ \varphi' \# \xi' = [\varphi', b] \lor \xi @ \varphi' \# \xi' = [a, \varphi']
     by (metis (no-types, hide-lams) ab append-Cons append-Nil append-Nil2 butlast.simps(2)
       butlast-append list.distinct(1) list.sel(3))
   then have \forall \zeta \in set \ (\xi @ \varphi' \# \xi'). no-T-F \zeta using \zeta \varphi' ab by fastforce
   moreover
     have no-T-F (last (\xi @ \varphi' \# \xi')) by (simp add: calculation)
     then have no-T-F-symb (conn c (\xi @ \varphi' \# \xi'))
       by (metis \chi \varphi' \zeta ab all-subformula-st-test-symb-true-phi c last.simps list.distinct(1)
         list.set-intros(1) no-T-F-bin-decomp no-T-F-def)
   ultimately have no-T-F (conn c (\xi \otimes \varphi' \# \xi')) using c \chi by fastforce
  }
 moreover {
   \mathbf{fix} \ x
   assume c = CVar \ x \lor c = CF \lor c = CT
   then have False using corr by auto
   then have no-T-F (conn c (\xi @ \varphi' \# \xi')) by auto
 ultimately show no-T-F (conn c (\xi @ \varphi' \# \xi')) using corr wf-conn.cases by blast
qed
```

```
\mathbf{lemma}\ \mathit{elim-imp-inv'}\!:
  fixes \varphi \ \psi :: 'v \ propo
 assumes full (propo-rew-step elim-imp) \varphi \psi and no-T-F-except-top-level \varphi
 shows no-T-F-except-top-level \psi
proof -
  {
      \mathbf{fix} \ \varphi \ \psi :: \ 'v \ propo
     have H: elim-imp \varphi \psi \Longrightarrow no-T-F-except-top-level \varphi \Longrightarrow no-T-F-except-top-level \psi
        by (induct \varphi \psi rule: elim-imp.induct, auto)
    } note H = this
    fix \varphi \psi :: 'v \ propo
    have propo-rew-step elim-imp \varphi \psi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \varphi \Longrightarrow no\text{-}T\text{-}F\text{-}except\text{-}top\text{-}level } \psi
     proof -
        assume rel: propo-rew-step elim-imp \varphi \psi
       and no: no-T-F-except-top-level \varphi
          assume \varphi = FT \vee \varphi = FF
          from rel this have False
            apply (induct rule: propo-rew-step.induct)
           by (cases rule: elim-imp.cases, auto simp: wf-conn-list(1,2))
          then have no-T-F-except-top-level \psi by blast
        }
        moreover {
          assume \varphi \neq FT \land \varphi \neq FF
          then have no-T-F \varphi
           by (metis no no-T-F-symb-except-toplevel-all-subformula-st-no-T-F-symb)
          then have no\text{-}T\text{-}F \psi
            using rel\ propo-rew-step-ElimImp-no-T-F by blast
          then have no-T-F-except-top-level \psi by (simp add: no-T-F-no-T-F-except-top-level)
       ultimately show no-T-F-except-top-level \psi by metis
      qed
  }
 moreover {
     fix c :: 'v \ connective \ and \ \xi \ \xi' :: 'v \ propo \ list \ and \ \zeta \ \zeta' :: 'v \ propo
     assume rel: propo-rew-step elim-imp ζ ζ
     and incl: \zeta \preceq \varphi
     and corr: wf-conn c (\xi \otimes \zeta \# \xi')
     and no-T-F: no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta \# \xi'))
     and n: no-T-F-symb-except-toplevel \zeta'
     have no-T-F-symb-except-toplevel (conn c (\xi \otimes \zeta' \# \xi'))
     proof
       have p: no-T-F-symb (conn c (\xi \otimes \zeta \# \xi'))
         by (simp\ add:\ corr\ no-T-F\ no-T-F\ symb-except-toplevel-no-T-F\ symb\ wf-conn-list(1,2))
       have l: \forall \varphi \in set \ (\xi @ \zeta \# \xi'). \ \varphi \neq FT \land \varphi \neq FF
        using corr wf-conn-no-T-F-symb-iff p by blast
       from rel incl have \zeta' \neq FT \land \zeta' \neq FF
        apply (induction \zeta \zeta' rule: propo-rew-step.induct)
        apply (cases rule: elim-imp.cases, auto)
        using wf-conn-list(1,2) wf-conn-no-arity-change wf-conn-no-arity-change-helper
        by (metis append-is-Nil-conv list.distinct(1))+
       then have \forall \varphi \in set \ (\xi @ \zeta' \# \xi'). \ \varphi \neq FT \land \varphi \neq FF \ using \ l \ by \ auto
       moreover have c \neq CT \land c \neq CF using corr by auto
```

```
ultimately show no-T-F-symb (conn c (\xi \otimes \zeta' \# \xi'))
       using corr wf-conn-no-arity-change no-T-F-symb-comp
       by (metis wf-conn-no-arity-change-helper)
    \mathbf{qed}
 }
 ultimately show no-T-F-except-top-level \psi
   using full-propo-rew-step-inv-stay-with-inc[of elim-imp no-T-F-symb-except-toplevel \varphi]
   assms subformula-refl unfolding no-T-F-except-top-level-def by metis
qed
10.3
        The new CNF and DNF transformation
The transformation is the same as before, but the order is not the same.
```

```
definition dnf\text{-}rew' :: 'a \ propo \Rightarrow 'a \ propo \Rightarrow bool \ \textbf{where}
dnf-rew' =
 (full (propo-rew-step elimTBFull)) OO
  (full\ (propo-rew-step\ elim-equiv))\ OO
  (full\ (propo-rew-step\ elim-imp))\ OO
  (full (propo-rew-step pushNeq)) OO
  (full (propo-rew-step pushConj))
lemma dnf-rew'-consistent: preserves-un-sat dnf-rew'
  \mathbf{by} (simp add: dnf-rew'-def elimEquv-lifted-consistant elim-imp-lifted-consistant
   elimTBFull-consistent preserves-un-sat-OO pushConj-consistent pushNeg-lifted-consistant)
theorem cnf-transformation-correction:
   dnf\text{-}rew' \varphi \varphi' \Longrightarrow is\text{-}dnf \varphi'
 unfolding dnf-rew'-def OO-def
 by (meson and-in-or-only-conjunction-in-disj elimTBFull-full-propo-rew-step elim-equiv-inv'
   elim-imp-inv elim-imp-inv' is-dnf-def no-equiv-full-propo-rew-step-elim-equiv
   no-imp-full-propo-rew-step-elim-imp\ push Conj-full-propo-rew-step\ push Conj-inv(1-4)
   pushNeg-full-propo-rew-step pushNeg-inv(1-3))
Given all the lemmas before the CNF transformation is easy to prove:
definition cnf\text{-}rew' :: 'a propo \Rightarrow 'a propo \Rightarrow bool where
cnf-rew' =
  (full (propo-rew-step elimTBFull)) OO
  (full (propo-rew-step elim-equiv)) OO
  (full (propo-rew-step elim-imp)) OO
  (full\ (propo-rew-step\ pushNeg))\ OO
  (full (propo-rew-step pushDisj))
lemma cnf-rew'-consistent: preserves-un-sat cnf-rew'
 by (simp add: cnf-rew'-def elimEquv-lifted-consistant elim-imp-lifted-consistant
   elimTBFull-consistent preserves-un-sat-OO pushDisj-consistent pushNeq-lifted-consistant)
theorem cnf'-transformation-correction:
  cnf\text{-}rew' \varphi \varphi' \Longrightarrow is\text{-}cnf \varphi'
  unfolding cnf-rew'-def OO-def
 by (meson elimTBFull-full-propo-rew-step elim-equiv-inv' elim-imp-inv elim-imp-inv' is-cnf-def
```

end

 $no-equiv-full-propo-rew-step-elim-equiv \ no-imp-full-propo-rew-step-elim-imp$ $or-in-and-only-conjunction-in-disj\ pushDisj-full-propo-rew-step\ pushDisj-inv(1-4)$ $pushNeg-full-propo-rew-step\ pushNeg-inv(1)\ pushNeg-inv(2)\ pushNeg-inv(3))$

11 Partial Clausal Logic

```
\begin{array}{l} \textbf{theory} \ \textit{Partial-Clausal-Logic} \\ \textbf{imports} \ ../lib/\textit{Clausal-Logic} \ \textit{List-More} \\ \textbf{begin} \end{array}
```

11.1 Clauses

```
Clauses are (finite) multisets of literals.

type-synonym 'a clause = 'a literal multiset

type-synonym 'v clauses = 'v clause set
```

11.2 Partial Interpretations

```
type-synonym 'a interp = 'a literal set  \begin{aligned} & \textbf{definition} \ true\text{-}lit :: 'a \ interp \Rightarrow 'a \ literal \Rightarrow bool \ (\textbf{infix} \models l \ 50) \ \textbf{where} \\ & I \models l \ L \longleftrightarrow L \in I \end{aligned}   \begin{aligned} & \textbf{declare} \ true\text{-}lit\text{-}def[simp] \end{aligned}
```

11.2.1 Consistency

```
definition consistent-interp :: 'a literal set \Rightarrow bool where consistent-interp I = (\forall L. \neg (L \in I \land -L \in I))
```

```
lemma consistent-interp-empty[simp]:
  consistent-interp {} unfolding consistent-interp-def by auto
```

```
lemma consistent-interp-single[simp]: consistent-interp \{L\} unfolding consistent-interp-def by auto
```

 $\mathbf{lemma}\ consistent\text{-}interp\text{-}subset:$

```
assumes A \subseteq B and consistent-interp B shows consistent-interp A using assms unfolding consistent-interp-def by auto
```

lemma consistent-interp-change-insert:

```
a \notin A \Longrightarrow -a \notin A \Longrightarrow consistent\text{-}interp \ (insert \ (-a) \ A) \longleftrightarrow consistent\text{-}interp \ (insert \ a \ A) unfolding consistent-interp-def by fastforce
```

```
lemma consistent-interp-insert-pos[simp]: a \notin A \Longrightarrow consistent-interp \ (insert \ a \ A) \longleftrightarrow consistent-interp \ A \land -a \notin A unfolding consistent-interp-def by auto
```

```
consistent-interp A \Longrightarrow a \notin A \Longrightarrow -a \notin A \Longrightarrow consistent-interp (insert a A) unfolding consistent-interp-def by auto
```

11.2.2 Atoms

```
definition atms-of-ms :: 'a literal multiset set \Rightarrow 'a set where atms-of-ms \psi s = \bigcup (atms-of '\psi s)
```

```
lemma atms-of-mmltiset[simp]:
  atms-of (mset a) = atm-of `set a
 by (induct a) auto
lemma atms-of-ms-mset-unfold:
  atms-of-ms (mset `b) = (\bigcup x \in b. atm-of `set x)
 unfolding atms-of-ms-def by simp
definition atms-of-s :: 'a literal set \Rightarrow 'a set where
  atms-of-s C = atm-of ' C
lemma atms-of-ms-emtpy-set[simp]:
  atms-of-ms \{\} = \{\}
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-memtpy[simp]:
  atms-of-ms \{\{\#\}\} = \{\}
 unfolding atms-of-ms-def by auto
{f lemma}\ atms	ext{-}of	ext{-}ms	ext{-}mono:
  A \subseteq B \Longrightarrow atms\text{-}of\text{-}ms \ A \subseteq atms\text{-}of\text{-}ms \ B
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-finite[simp]:
 finite \psi s \Longrightarrow finite (atms-of-ms \ \psi s)
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-union[simp]:
  atms-of-ms (\psi s \cup \chi s) = atms-of-ms \psi s \cup atms-of-ms \chi s
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-insert[simp]:
  atms-of-ms (insert \psi s \chi s) = atms-of \psi s \cup atms-of-ms \chi s
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-singleton[simp]: atms-of-ms \{L\} = atms-of L
 unfolding atms-of-ms-def by auto
lemma atms-of-atms-of-ms-mono[simp]:
  A \in \psi \Longrightarrow atms\text{-}of A \subseteq atms\text{-}of\text{-}ms \ \psi
 unfolding atms-of-ms-def by fastforce
lemma atms-of-ms-single-set-mset-atns-of[simp]:
  atms-of-ms \ (single \ `set-mset \ B) = atms-of \ B
 unfolding atms-of-ms-def atms-of-def by auto
lemma atms-of-ms-remove-incl:
 shows atms-of-ms (Set.remove a \psi) \subseteq atms-of-ms \psi
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-remove-subset:
  atms-of-ms (\varphi - \psi) \subseteq atms-of-ms \varphi
 unfolding atms-of-ms-def by auto
lemma finite-atms-of-ms-remove-subset[simp]:
```

```
finite (atms-of-ms A) \Longrightarrow finite (atms-of-ms (A - C))
 using atms-of-ms-remove-subset[of A C] finite-subset by blast
lemma atms-of-ms-empty-iff:
  atms-of-ms A = \{\} \longleftrightarrow A = \{\{\#\}\} \lor A = \{\}\}
 apply (rule\ iff I)
  apply (metis (no-types, lifting) atms-empty-iff-empty atms-of-atms-of-ms-mono insert-absorb
   singleton-iff singleton-insert-inj-eq' subsetI subset-empty)
 apply auto
 done
\mathbf{lemma}\ in\text{-}implies\text{-}atm\text{-}of\text{-}on\text{-}atms\text{-}of\text{-}ms\text{:}
 assumes L \in \# C and C \in N
 shows atm\text{-}of\ L\in atms\text{-}of\text{-}ms\ N
 using atms-of-atms-of-ms-mono[of C N] assms by (simp add: atm-of-lit-in-atms-of subset-iff)
lemma in-plus-implies-atm-of-on-atms-of-ms:
 assumes C + \{\#L\#\} \in N
 shows atm\text{-}of\ L\in atms\text{-}of\text{-}ms\ N
 using in-implies-atm-of-on-atms-of-ms[of - C + \{\#L\#\}] assms by auto
lemma in-m-in-literals:
 assumes \{\#A\#\} + D \in \psi s
 shows atm\text{-}of A \in atms\text{-}of\text{-}ms \ \psi s
 using assms by (auto dest: atms-of-atms-of-ms-mono)
lemma atms-of-s-union[simp]:
  atms-of-s (Ia \cup Ib) = atms-of-s Ia \cup atms-of-s Ib
 unfolding atms-of-s-def by auto
lemma atms-of-s-single[simp]:
  atms-of-s \{L\} = \{atm-of L\}
 unfolding atms-of-s-def by auto
lemma atms-of-s-insert[simp]:
  atms-of-s (insert\ L\ Ib) = \{atm-of\ L\} \cup\ atms-of-s\ Ib
 unfolding atms-of-s-def by auto
lemma in-atms-of-s-decomp[iff]:
  P \in atms\text{-}of\text{-}s \ I \longleftrightarrow (Pos \ P \in I \lor Neg \ P \in I) \ (\mathbf{is} \ ?P \longleftrightarrow ?Q)
proof
 assume ?P
 then show ?Q unfolding atms-of-s-def by (metis image-iff literal.exhaust-sel)
 assume ?Q
 then show ?P unfolding atms-of-s-def by force
qed
lemma atm-of-in-atm-of-set-in-uminus:
  atm\text{-}of\ L'\in atm\text{-}of\ `B\Longrightarrow L'\in B\lor -L'\in B
 using atms-of-s-def by (cases L') fastforce+
11.2.3
           Totality
definition total-over-set :: 'a interp \Rightarrow 'a set \Rightarrow bool where
total-over-set I S = (\forall l \in S. \ Pos \ l \in I \lor Neg \ l \in I)
```

```
definition total-over-m :: 'a literal set \Rightarrow 'a clause set \Rightarrow bool where
total-over-m \ I \ \psi s = total-over-set I \ (atms-of-ms \ \psi s)
lemma total-over-set-empty[simp]:
  total-over-set I \{ \}
  unfolding total-over-set-def by auto
lemma total-over-m-empty[simp]:
  total-over-m \ I \ \{\}
  unfolding total-over-m-def by auto
lemma total-over-set-single[iff]:
  total-over-set I \{L\} \longleftrightarrow (Pos \ L \in I \lor Neg \ L \in I)
  unfolding total-over-set-def by auto
lemma total-over-set-insert[iff]:
  total-over-set I (insert L Ls) \longleftrightarrow ((Pos\ L \in I \lor Neg\ L \in I) \land total-over-set I Ls)
  unfolding total-over-set-def by auto
lemma total-over-set-union[iff]:
  total-over-set I (Ls \cup Ls') \longleftrightarrow (total-over-set I Ls \land total-over-set I Ls')
  unfolding total-over-set-def by auto
\mathbf{lemma}\ total\text{-}over\text{-}m\text{-}subset:
  A \subseteq B \Longrightarrow total\text{-}over\text{-}m \ I \ B \Longrightarrow total\text{-}over\text{-}m \ I \ A
  using atms-of-ms-mono[of A] unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-sum[iff]:
  shows total-over-m I \{C + D\} \longleftrightarrow (total-over-m \ I \{C\} \land total-over-m \ I \{D\})
  using assms unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-union[iff]:
  total-over-m\ I\ (A\cup B)\longleftrightarrow (total-over-m\ I\ A\wedge total-over-m\ I\ B)
  unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-insert[iff]:
  total-over-m \ I \ (insert \ a \ A) \longleftrightarrow (total-over-set I \ (atms-of a) \land total-over-m \ I \ A)
  unfolding total-over-m-def total-over-set-def by fastforce
lemma total-over-m-extension:
  fixes I :: 'v \ literal \ set \ and \ A :: 'v \ clauses
 assumes total: total-over-m I A
 shows \exists I'. total-over-m (I \cup I') (A \cup B)
    \land (\forall x \in I'. \ atm\text{-}of \ x \in atm\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atm\text{-}of\text{-}ms \ A)
proof -
 let ?I' = \{Pos \ v \mid v. \ v \in atms-of-ms \ B \land v \notin atms-of-ms \ A\}
 have (\forall x \in ?I'. atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A) by auto
 moreover have total-over-m (I \cup ?I') (A \cup B)
    using total unfolding total-over-m-def total-over-set-def by auto
 ultimately show ?thesis by blast
qed
lemma total-over-m-consistent-extension:
 fixes I :: 'v \ literal \ set \ and \ A :: 'v \ clauses
```

```
assumes total: total-over-m I A
 and cons: consistent-interp I
 shows \exists I'. total-over-m (I \cup I') (A \cup B)
   \land (\forall x \in I'. \ atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A) \land consistent\text{-}interp \ (I \cup I')
proof -
  let ?I' = \{Pos \ v \mid v. \ v \in atms\text{-}of\text{-}ms \ B \land v \notin atms\text{-}of\text{-}ms \ A \land Pos \ v \notin I \land Neg \ v \notin I\}
 have (\forall x \in ?I'. atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A) by auto
 moreover have total-over-m (I \cup ?I') (A \cup B)
   using total unfolding total-over-m-def total-over-set-def by auto
 moreover have consistent-interp (I \cup ?I')
   using cons unfolding consistent-interp-def by (intro allI) (rename-tac L, case-tac L, auto)
 ultimately show ?thesis by blast
qed
lemma total-over-set-atms-of-m[simp]:
  total-over-set Ia (atms-of-s Ia)
  unfolding total-over-set-def atms-of-s-def by (metis image-iff literal.exhaust-sel)
lemma total-over-set-literal-defined:
  assumes \{\#A\#\} + D \in \psi s
 and total-over-set I (atms-of-ms \psi s)
  shows A \in I \vee -A \in I
  using assms unfolding total-over-set-def by (metis (no-types) Neg-atm-of-iff in-m-in-literals
   literal.collapse(1) uminus-Neg uminus-Pos)
lemma tot-over-m-remove:
  assumes total-over-m (I \cup \{L\}) \{\psi\}
 and L: \neg L \in \# \psi - L \notin \# \psi
 shows total-over-m I \{\psi\}
  unfolding total-over-m-def total-over-set-def
proof
 \mathbf{fix} l
  assume l: l \in atms\text{-}of\text{-}ms \{\psi\}
  then have Pos \ l \in I \lor Neg \ l \in I \lor l = atm\text{-}of \ L
   using assms unfolding total-over-m-def total-over-set-def by auto
  moreover have atm-of L \notin atms-of-ms \{\psi\}
   proof (rule ccontr)
     assume ¬ ?thesis
     then have atm\text{-}of\ L\in atms\text{-}of\ \psi by auto
     then have Pos (atm\text{-}of\ L) \in \#\ \psi \lor Neg\ (atm\text{-}of\ L) \in \#\ \psi
       using atm-imp-pos-or-neg-lit by metis
     then have L \in \# \psi \lor - L \in \# \psi by (cases L) auto
     then show False using L by auto
  ultimately show Pos l \in I \vee Neg \ l \in I using l by metis
qed
lemma total-union:
 assumes total-over-m I \psi
 shows total-over-m (I \cup I') \psi
 using assms unfolding total-over-m-def total-over-set-def by auto
lemma total-union-2:
  assumes total-over-m I \psi
 and total-over-m I' \psi'
```

```
shows total-over-m (I \cup I') (\psi \cup \psi') using assms unfolding total-over-m-def total-over-set-def by auto
```

11.2.4 Interpretations

```
definition true-cls :: 'a interp \Rightarrow 'a clause \Rightarrow bool (infix \models 50) where
 I \models C \longleftrightarrow (\exists L \in \# C. I \models l L)
lemma true-cls-empty[iff]: \neg I \models \{\#\}
  unfolding true-cls-def by auto
lemma true-cls-singleton[iff]: I \models \{\#L\#\} \longleftrightarrow I \models l L
  unfolding true-cls-def by (auto split:if-split-asm)
lemma true-cls-union[iff]: I \models C + D \longleftrightarrow I \models C \lor I \models D
  unfolding true-cls-def by auto
lemma true-cls-mono-set-mset: set-mset C \subseteq set-mset D \Longrightarrow I \models C \Longrightarrow I \models D
  unfolding true-cls-def subset-eq Bex-def by metis
lemma true-cls-mono-leD[dest]: A \subseteq \# B \Longrightarrow I \models A \Longrightarrow I \models B
  unfolding true-cls-def by auto
lemma
 assumes I \models \psi
 shows true-cls-union-increase[simp]: I \cup I' \models \psi
 and true-cls-union-increase'[simp]: I' \cup I \models \psi
 using assms unfolding true-cls-def by auto
lemma true-cls-mono-set-mset-l:
 assumes A \models \psi
 and A \subseteq B
 shows B \models \psi
 using assms unfolding true-cls-def by auto
lemma true-cls-replicate-mset [iff]: I \models replicate-mset \ n \ L \longleftrightarrow n \neq 0 \land I \models l \ L
  by (induct n) auto
lemma true-cls-empty-entails[iff]: \neg {} \models N
 by (auto simp add: true-cls-def)
{f lemma}\ true	ext{-}cls	ext{-}not	ext{-}in	ext{-}remove:
 assumes L \notin \# \chi
 and I \cup \{L\} \models \chi
 shows I \models \chi
  using assms unfolding true-cls-def by auto
definition true-clss :: 'a interp \Rightarrow 'a clauses \Rightarrow bool (infix \modelss 50) where
  I \models s \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models C)
lemma true-clss-empty[simp]: I \models s \{ \}
  unfolding true-clss-def by blast
lemma true-clss-singleton[iff]: I \models s \{C\} \longleftrightarrow I \models C
  unfolding true-clss-def by blast
```

```
lemma true-clss-empty-entails-empty[iff]: \{\} \models s \ N \longleftrightarrow N = \{\}
  unfolding true-clss-def by (auto simp add: true-cls-def)
lemma true-cls-insert-l [simp]:
  M \models A \Longrightarrow insert \ L \ M \models A
  unfolding true-cls-def by auto
lemma true-clss-union[iff]: I \models s \ CC \cup DD \longleftrightarrow I \models s \ CC \land I \models s \ DD
  unfolding true-clss-def by blast
lemma true-clss-insert[iff]: I \models s insert C DD \longleftrightarrow I \models C \land I \models s DD
  unfolding true-clss-def by blast
lemma true-clss-mono: DD \subseteq CC \Longrightarrow I \models s \ CC \Longrightarrow I \models s \ DD
  unfolding true-clss-def by blast
lemma true-clss-union-increase[simp]:
assumes I \models s \psi
shows I \cup I' \models s \psi
 using assms unfolding true-clss-def by auto
lemma true-clss-union-increase'[simp]:
 assumes I' \models s \psi
 shows I \cup I' \models s \psi
 using assms by (auto simp add: true-clss-def)
\mathbf{lemma}\ true\text{-}clss\text{-}commute\text{-}l:
  (I \cup I' \models s \psi) \longleftrightarrow (I' \cup I \models s \psi)
 by (simp add: Un-commute)
lemma model-remove[simp]: I \models s N \Longrightarrow I \models s Set.remove a N
  by (simp add: true-clss-def)
lemma model-remove-minus[simp]: I \models s N \Longrightarrow I \models s N - A
  by (simp add: true-clss-def)
lemma notin-vars-union-true-cls-true-cls:
  assumes \forall x \in I'. atm-of x \notin atms-of-ms A
  and atms-of L \subseteq atms-of-ms A
 and I \cup I' \models L
 shows I \models L
  using assms unfolding true-cls-def true-lit-def Bex-def
  by (metis Un-iff atm-of-lit-in-atms-of contra-subsetD)
\mathbf{lemma}\ not in\text{-}vars\text{-}union\text{-}true\text{-}clss\text{-}true\text{-}clss\text{:}
  assumes \forall x \in I'. atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A
  and atms-of-ms L \subseteq atms-of-ms A
 and I \cup I' \models s L
 shows I \models s L
  using assms unfolding true-clss-def true-lit-def Ball-def
  by (meson atms-of-atms-of-ms-mono notin-vars-union-true-cls-true-cls subset-trans)
11.2.5
            Satisfiability
```

satisfiable $CC \equiv \exists I. (I \models s \ CC \land consistent-interp \ I \land total-over-m \ I \ CC)$

definition satisfiable :: 'a clause set \Rightarrow bool where

```
lemma satisfiable-single[simp]:
  satisfiable \{\{\#L\#\}\}
 unfolding satisfiable-def by fastforce
abbreviation unsatisfiable :: 'a clause set \Rightarrow bool where
  unsatisfiable\ CC \equiv \neg\ satisfiable\ CC
lemma satisfiable-decreasing:
 assumes satisfiable (\psi \cup \psi')
 shows satisfiable \psi
 using assms total-over-m-union unfolding satisfiable-def by blast
lemma satisfiable-def-min:
 satisfiable CC
   \longleftrightarrow (\exists I.\ I \models s\ CC \land consistent-interp\ I \land total-over-m\ I\ CC \land atm-of`I = atms-of-ms\ CC)
   (is ?sat \longleftrightarrow ?B)
 assume ?B then show ?sat by (auto simp add: satisfiable-def)
next
 assume ?sat
 then obtain I where
   I\text{-}CC: I \models s \ CC \ \mathbf{and}
   cons: consistent-interp\ I and
   tot: total-over-m I CC
   unfolding satisfiable-def by auto
 let ?I = \{P. P \in I \land atm\text{-}of P \in atms\text{-}of\text{-}ms \ CC\}
 have I-CC: ?I \models s \ CC
   using I-CC in-implies-atm-of-on-atms-of-ms unfolding true-clss-def Ball-def true-cls-def
   Bex-def true-lit-def
   by blast
 moreover have cons: consistent-interp ?I
   using cons unfolding consistent-interp-def by auto
  moreover have total-over-m ?I CC
   using tot unfolding total-over-m-def total-over-set-def by auto
 moreover
   have atms-CC-incl: atms-of-ms CC \subseteq atm-of'I
     using tot unfolding total-over-m-def total-over-set-def atms-of-ms-def
     by (auto simp add: atms-of-def atms-of-s-def[symmetric])
   have atm\text{-}of '?I = atms\text{-}of\text{-}ms CC
     using atms-CC-incl unfolding atms-of-ms-def by force
 ultimately show ?B by auto
qed
11.2.6
           Entailment for Multisets of Clauses
definition true-cls-mset :: 'a interp \Rightarrow 'a clause multiset \Rightarrow bool (infix \models m \ 50) where
 I \models m \ CC \longleftrightarrow (\forall \ C \in \# \ CC. \ I \models C)
lemma true-cls-mset-empty[simp]: I \models m \{\#\}
  unfolding true-cls-mset-def by auto
lemma true-cls-mset-singleton[iff]: I \models m \{\# C\#\} \longleftrightarrow I \models C
 unfolding true-cls-mset-def by (auto split: if-split-asm)
```

```
lemma true-cls-mset-union[iff]: I \models m \ CC + DD \longleftrightarrow I \models m \ CC \land I \models m \ DD
  unfolding true-cls-mset-def by fastforce
\mathbf{lemma} \ \mathit{true-cls-mset-image-mset}[\mathit{iff}] \colon I \models \!\!\! \mathit{minage-mset} \ f \ A \longleftrightarrow (\forall \, x \in \!\!\! \# \ A. \ I \models f \ x)
  unfolding true-cls-mset-def by fastforce
lemma true-cls-mset-mono: set-mset DD \subseteq set-mset CC \Longrightarrow I \models m \ CC \Longrightarrow I \models m \ DD
  unfolding true-cls-mset-def subset-iff by auto
lemma true-clss-set-mset[iff]: I \models s set-mset CC \longleftrightarrow I \models m CC
  unfolding true-clss-def true-cls-mset-def by auto
lemma true-cls-mset-increasing-r[simp]:
  I \models_{m} CC \Longrightarrow I \cup J \models_{m} CC
 unfolding true-cls-mset-def by auto
theorem true-cls-remove-unused:
  assumes I \models \psi
 shows \{v \in I. \ atm\text{-}of \ v \in atm\text{s-}of \ \psi\} \models \psi
  using assms unfolding true-cls-def atms-of-def by auto
theorem true-clss-remove-unused:
  assumes I \models s \psi
 shows \{v \in I. atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\} \models s \ \psi
  unfolding true-clss-def atms-of-def Ball-def
proof (intro allI impI)
 \mathbf{fix} \ x
  assume x \in \psi
  then have I \models x
    using assms unfolding true-clss-def atms-of-def Ball-def by auto
  then have \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of \ x\} \models x
    by (simp\ only:\ true-cls-remove-unused[of\ I])
  moreover have \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of \ x\} \subseteq \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\}
    using \langle x \in \psi \rangle by (auto simp add: atms-of-ms-def)
  ultimately show \{v \in I. \ atm\text{-}of \ v \in atm\text{s-}of\text{-}ms \ \psi\} \models x
    using true-cls-mono-set-mset-l by blast
qed
A simple application of the previous theorem:
{\bf lemma}\ true\text{-}clss\text{-}union\text{-}decrease\text{:}
 assumes II': I \cup I' \models \psi
 and H: \forall v \in I'. atm-of v \notin atms-of \psi
 shows I \models \psi
proof -
  let ?I = \{v \in I \cup I'. atm-of v \in atms-of \psi\}
 have ?I \models \psi using true-cls-remove-unused II' by blast
  moreover have ?I \subseteq I using H by auto
  ultimately show ?thesis using true-cls-mono-set-mset-l by blast
lemma multiset-not-empty:
 assumes M \neq \{\#\}
 and x \in \# M
```

```
shows \exists A. \ x = Pos \ A \lor x = Neg \ A
 using assms literal.exhaust-sel by blast
lemma atms-of-ms-empty:
 fixes \psi :: 'v \ clauses
 assumes atms-of-ms \psi = \{\}
 shows \psi = \{\} \lor \psi = \{\{\#\}\}\
 using assms by (auto simp add: atms-of-ms-def)
lemma consistent-interp-disjoint:
assumes consI: consistent-interp I
and disj: atms-of-s A \cap atms-of-s I = \{\}
and consA: consistent-interp A
shows consistent-interp (A \cup I)
proof (rule ccontr)
 assume ¬ ?thesis
 moreover have \bigwedge L. \neg (L \in A \land -L \in I)
   using disj unfolding atms-of-s-def by (auto simp add: rev-image-eqI)
 ultimately show False
   using consA consI unfolding consistent-interp-def by (metis (full-types) Un-iff
     literal.exhaust-sel uminus-Neg uminus-Pos)
qed
\mathbf{lemma}\ total\text{-}remove\text{-}unused:
 assumes total-over-m I \psi
 shows total-over-m \{v \in I. atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\} \ \psi
 using assms unfolding total-over-m-def total-over-set-def
 by (metis (lifting) literal.sel(1,2) mem-Collect-eq)
lemma true-cls-remove-hd-if-notin-vars:
 assumes insert a M' \models D
 and atm-of a \notin atms-of D
 shows M' \models D
 using assms by (auto simp add: atm-of-lit-in-atms-of true-cls-def)
lemma total-over-set-atm-of:
 fixes I :: 'v interp and K :: 'v set
 shows total-over-set I K \longleftrightarrow (\forall l \in K. l \in (atm\text{-}of `I))
 unfolding total-over-set-def by (metis atms-of-s-def in-atms-of-s-decomp)
11.2.7
          Tautologies
definition tautology (\psi: 'v \ clause) \equiv \forall I. \ total-over-set \ I \ (atms-of \ \psi) \longrightarrow I \models \psi
lemma tautology-Pos-Neg[intro]:
 assumes Pos \ p \in \# \ A and Neg \ p \in \# \ A
 shows tautology A
 using assms unfolding tautology-def total-over-set-def true-cls-def Bex-def
 by (meson atm-iff-pos-or-neg-lit true-lit-def)
lemma tautology-minus[simp]:
 assumes L \in \# A and -L \in \# A
 shows tautology A
 by (metis assms literal.exhaust tautology-Pos-Neg uminus-Neg uminus-Pos)
lemma tautology-exists-Pos-Neg:
```

```
assumes tautology \psi
  shows \exists p. Pos p \in \# \psi \land Neg p \in \# \psi
proof (rule ccontr)
  assume p: \neg (\exists p. Pos p \in \# \psi \land Neg p \in \# \psi)
  let ?I = \{-L \mid L. \ L \in \# \ \psi\}
  have total-over-set ?I (atms-of \psi)
   unfolding total-over-set-def using atm-imp-pos-or-neg-lit by force
  moreover have \neg ?I \models \psi
   unfolding true-cls-def true-lit-def Bex-def apply clarify
   using p by (rename-tac x L, case-tac L) fastforce+
 ultimately show False using assms unfolding tautology-def by auto
qed
lemma tautology-decomp:
  tautology \ \psi \longleftrightarrow (\exists \ p. \ Pos \ p \in \# \ \psi \land Neg \ p \in \# \ \psi)
  using tautology-exists-Pos-Neg by auto
lemma tautology-false[simp]: \neg tautology {#}
  unfolding tautology-def by auto
lemma tautology-add-single:
  tautology (\{\#a\#\} + L) \longleftrightarrow tautology L \lor -a \in \#L
  unfolding tautology-decomp by (cases a) auto
lemma minus-interp-tautology:
  assumes \{-L \mid L. \ L \in \# \chi\} \models \chi
 shows tautology \chi
proof -
  obtain L where L \in \# \chi \land -L \in \# \chi
   using assms unfolding true-cls-def by auto
  then show ?thesis using tautology-decomp literal.exhaust uminus-Neg uminus-Pos by metis
qed
lemma remove-literal-in-model-tautology:
  assumes I \cup \{Pos \ P\} \models \varphi
 and I \cup \{Neg\ P\} \models \varphi
  shows I \models \varphi \lor tautology \varphi
  using assms unfolding true-cls-def by auto
lemma tautology-imp-tautology:
  fixes \chi \chi' :: 'v \ clause
  assumes \forall I. total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models \chi' \text{ and } tautology \ \chi
 shows tautology \chi' unfolding tautology-def
proof (intro allI HOL.impI)
  fix I :: 'v \ literal \ set
  assume totI: total-over-set I (atms-of \chi')
 \mathbf{let} \ ?I' = \{ \textit{Pos } v \mid v. \ v \in \textit{atms-of} \ \chi \ \land \ v \not \in \textit{atms-of-s} \ I \}
 have totI': total-over-m (I \cup ?I') \{\chi\} unfolding total-over-m-def total-over-set-def by auto
  then have \chi: I \cup ?I' \models \chi using assms(2) unfolding total-over-m-def tautology-def by simp
  then have I \cup (?I'-I) \models \chi' \text{ using } assms(1) \text{ } totI' \text{ by } auto
 moreover have \bigwedge L. L \in \# \chi' \Longrightarrow L \notin ?I'
   using totI unfolding total-over-set-def by (auto dest: pos-lit-in-atms-of)
  ultimately show I \models \chi' unfolding true-cls-def by auto
qed
```

11.2.8 Entailment for clauses and propositions

```
definition true\text{-}cls\text{-}cls: 'a clause \Rightarrow 'a clause \Rightarrow bool (infix \models f49) where
\psi \models f \chi \longleftrightarrow (\forall I. \ total \ over \ m \ I \ (\{\psi\} \cup \{\chi\}) \longrightarrow consistent \ interp \ I \longrightarrow I \models \psi \longrightarrow I \models \chi)
definition true-cls-clss :: 'a clause \Rightarrow 'a clauses \Rightarrow bool (infix \models fs 49) where
\psi \models fs \ \chi \longleftrightarrow (\forall I. \ total \ over \ m \ I \ (\{\psi\} \cup \chi) \longrightarrow consistent \ interp \ I \longrightarrow I \models \psi \longrightarrow I \models s \ \chi)
definition true-clss-cls :: 'a clauses \Rightarrow 'a clause \Rightarrow bool (infix \models p 49) where
N \models p \chi \longleftrightarrow (\forall I. \ total \ over \ m \ I \ (N \cup \{\chi\}) \longrightarrow consistent \ interp \ I \longrightarrow I \models s \ N \longrightarrow I \models \chi)
definition true\text{-}clss\text{-}clss: 'a clauses \Rightarrow 'a clauses \Rightarrow bool (infix \models ps 49) where
N \models ps \ N' \longleftrightarrow (\forall I. \ total\text{-}over\text{-}m \ I \ (N \cup N') \longrightarrow consistent\text{-}interp \ I \longrightarrow I \models s \ N \longrightarrow I \models s \ N')
lemma true-cls-refl[simp]:
  A \models f A
  unfolding true-cls-cls-def by auto
lemma true-cls-cls-insert-l[simp]:
  a \models f C \implies insert \ a \ A \models p \ C
  unfolding true-cls-def true-cls-def true-cls-def by fastforce
lemma true-cls-empty[iff]:
  N \models fs \{\}
  unfolding true-cls-clss-def by auto
lemma true-prop-true-clause[iff]:
  \{\varphi\} \models p \ \psi \longleftrightarrow \varphi \models f \ \psi
  unfolding true-cls-cls-def true-clss-cls-def by auto
lemma true-clss-clss-true-clss-cls[iff]:
  N \models ps \{\psi\} \longleftrightarrow N \models p \psi
  unfolding true-clss-cls-def true-clss-cls-def by auto
lemma true-clss-clss-true-cls-clss[iff]:
  \{\chi\} \models ps \ \psi \longleftrightarrow \chi \models fs \ \psi
  unfolding true-clss-clss-def true-cls-clss-def by auto
lemma true-clss-empty[simp]:
  N \models ps \{\}
  unfolding true-clss-clss-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}subset:
  A \subseteq B \Longrightarrow A \models p \ CC \Longrightarrow B \models p \ CC
  unfolding true-clss-cls-def total-over-m-union by (simp add: total-over-m-subset true-clss-mono)
lemma true-clss-cs-mono-l[simp]:
  A \models p \ CC \Longrightarrow A \cup B \models p \ CC
  by (auto intro: true-clss-cls-subset)
lemma true-clss-cs-mono-l2[simp]:
  B \models p \ CC \Longrightarrow A \cup B \models p \ CC
  by (auto intro: true-clss-cls-subset)
lemma true-clss-cls-mono-r[simp]:
  A \models p \ CC \Longrightarrow A \models p \ CC + CC'
```

```
unfolding true-clss-cls-def total-over-m-union total-over-m-sum by blast
lemma true-clss-cls-mono-r'[simp]:
  A \models p CC' \Longrightarrow A \models p CC + CC'
  unfolding true-clss-cls-def total-over-m-union total-over-m-sum by blast
lemma true-clss-clss-union-l[simp]:
  A \models ps \ CC \Longrightarrow A \cup B \models ps \ CC
 unfolding true-clss-clss-def total-over-m-union by fastforce
lemma true-clss-clss-union-l-r[simp]:
  B \models ps \ CC \Longrightarrow A \cup B \models ps \ CC
  unfolding true-clss-clss-def total-over-m-union by fastforce
lemma true-clss-cls-in[simp]:
  CC \in A \Longrightarrow A \models p \ CC
  unfolding true-clss-def true-clss-def total-over-m-union by fastforce
lemma true-clss-cls-insert-l[simp]:
  A \models p \ C \Longrightarrow insert \ a \ A \models p \ C
  unfolding true-clss-def true-clss-def using total-over-m-union
 by (metis Un-iff insert-is-Un sup.commute)
lemma true-clss-clss-insert-l[simp]:
  A \models ps \ C \Longrightarrow insert \ a \ A \models ps \ C
  unfolding true-clss-cls-def true-clss-def by blast
lemma true-clss-clss-union-and[iff]:
  A \models ps \ C \cup D \longleftrightarrow (A \models ps \ C \land A \models ps \ D)
proof
   fix A \ C \ D :: 'a \ clauses
   assume A: A \models ps \ C \cup D
   have A \models ps C
       unfolding true-clss-clss-def true-clss-cls-def insert-def total-over-m-insert
     proof (intro allI impI)
       \mathbf{fix}\ I
       assume
         totAC: total-over-m \ I \ (A \cup C) and
         cons: consistent-interp I and
         I: I \models s A
       then have tot: total-over-m I A and tot': total-over-m I C by auto
       obtain I' where
         tot': total-over-m (I \cup I') (A \cup C \cup D) and
         cons': consistent-interp (I \cup I') and
         H: \forall x \in I'. \ atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ D \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ (A \cup C)
         using total-over-m-consistent-extension [OF - cons, of A \cup C] tot tot' by blast
       moreover have I \cup I' \models s A using I by simp
       ultimately have I \cup I' \models s \ C \cup D using A unfolding true-clss-clss-def by auto
       then have I \cup I' \models s \ C \cup D by auto
       then show I \models s C using notin-vars-union-true-clss-true-clss[of I'] H by auto
     qed
  } note H = this
```

then show $A \models ps \ C \land A \models ps \ D$ using $H[of \ A]$ Un-commute[of $C \ D]$ by metis

assume $A \models ps \ C \cup D$

```
next
  assume A \models ps C \land A \models ps D
  then show A \models ps \ C \cup D
    unfolding true-clss-clss-def by auto
qed
lemma true-clss-clss-insert[iff]:
  A \models ps \ insert \ L \ Ls \longleftrightarrow (A \models p \ L \land A \models ps \ Ls)
  using true-clss-clss-union-and[of\ A\ \{L\}\ Ls] by auto
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}subset:
  A \subseteq B \Longrightarrow A \models ps \ CC \Longrightarrow B \models ps \ CC
  by (metis subset-Un-eq true-clss-clss-union-l)
lemma union-trus-clss-clss[simp]: A \cup B \models ps B
  unfolding true-clss-clss-def by auto
lemma true-clss-clss-remove[simp]:
  A \models ps \ B \Longrightarrow A \models ps \ B - C
  by (metis Un-Diff-Int true-clss-clss-union-and)
lemma true-clss-clss-subsetE:
  N \models ps \ B \Longrightarrow A \subseteq B \Longrightarrow N \models ps \ A
  by (metis sup.orderE true-clss-clss-union-and)
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}in\text{-}imp\text{-}true\text{-}clss\text{-}cls:
  assumes N \models ps \ U
  \mathbf{and}\ A\in\ U
  shows N \models p A
  using assms mk-disjoint-insert by fastforce
lemma all-in-true-clss-clss: \forall x \in B. \ x \in A \Longrightarrow A \models ps \ B
  unfolding true-clss-def true-clss-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}left\text{-}right:
  assumes A \models ps B
  and A \cup B \models ps M
  shows A \models ps M \cup B
  using assms unfolding true-clss-clss-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}generalise\text{-}true\text{-}clss\text{-}clss:
  A\,\cup\, C \models ps\ D \Longrightarrow B \models ps\ C \Longrightarrow A\,\cup\, B \models ps\ D
proof -
  assume a1: A \cup C \models ps D
  assume B \models ps \ C
  then have f2: \bigwedge M.\ M \cup B \models ps\ C
    by (meson true-clss-clss-union-l-r)
  have \bigwedge M. C \cup (M \cup A) \models ps D
    using a1 by (simp add: Un-commute sup-left-commute)
  then show ?thesis
    using f2 by (metis (no-types) Un-commute true-clss-clss-left-right true-clss-clss-union-and)
qed
\mathbf{lemma}\ true\text{-}cls\text{-}cls\text{-}or\text{-}true\text{-}cls\text{-}cls\text{-}or\text{-}not\text{-}true\text{-}cls\text{-}cls\text{-}or\text{:}
  assumes D: N \models p D + \{\#-L\#\}
```

```
and C: N \models p C + \{\#L\#\}
 shows N \models p D + C
  unfolding true-clss-cls-def
proof (intro allI impI)
  \mathbf{fix}\ I
  assume
    tot: total-over-m I(N \cup \{D + C\}) and
    consistent-interp I and
    I \models s N
  {
    assume L: L \in I \vee -L \in I
    then have total-over-m I \{D + \{\#-L\#\}\}
      using tot by (cases L) auto
    then have I \models D + \{\#-L\#\} using D \mid I \models s \mid N \rangle tot \langle consistent\text{-interp } I \rangle
      unfolding true-clss-cls-def by auto
    moreover
      have total-over-m I \{C + \{\#L\#\}\}\
        using L tot by (cases L) auto
      then have I \models C + \{\#L\#\}
        using C \langle I \models s N \rangle tot \langle consistent\text{-}interp \ I \rangle unfolding true-clss-cls-def by auto
    \textbf{ultimately have} \ I \models D + C \ \textbf{using} \ \langle \textit{consistent-interp} \ I \rangle \ \textit{consistent-interp-def} \ \textbf{by} \ \textit{fastforce}
  moreover {
    assume L: L \notin I \land -L \notin I
    let ?I' = I \cup \{L\}
    have consistent-interp ?I' using L \land consistent-interp I \land bv auto
    moreover have total-over-m ?I' \{D + \{\#-L\#\}\}
      using tot unfolding total-over-m-def total-over-set-def by (auto simp add: atms-of-def)
    moreover have total-over-m ?I' N using tot using total-union by blast
    moreover have ?I' \models s \ N \text{ using } \langle I \models s \ N \rangle \text{ using } true\text{-}clss\text{-}union\text{-}increase by } blast
    ultimately have ?I' \models D + \{\#-L\#\}
      using D unfolding true-clss-cls-def by blast
    then have ?I' \models D using L by auto
    moreover
      have total-over-set I (atms-of (D + C)) using tot by auto
      then have L \notin \# D \land -L \notin \# D
        using L unfolding total-over-set-def atms-of-def by (cases L) force+
    ultimately have I \models D + C unfolding true-cls-def by auto
  ultimately show I \models D + C by blast
qed
lemma true\text{-}cls\text{-}union\text{-}mset[iff]: I \models C \# \cup D \longleftrightarrow I \models C \lor I \models D
  unfolding true-cls-def by force
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}union\text{-}mset\text{-}true\text{-}clss\text{-}cls\text{-}or\text{-}not\text{-}true\text{-}clss\text{-}cls\text{-}or\text{:}
 assumes
    D: N \models p D + \{\#-L\#\} \text{ and }
    C: N \models p C + \{\#L\#\}
 shows N \models p D \# \cup C
  unfolding true-clss-cls-def
proof (intro allI impI)
 \mathbf{fix} I
  assume
    tot: total-over-mI~(N~\cup~\{D~\#\cup~C\}) and
```

```
consistent-interp I and
   I \models s N
  {
   assume L: L \in I \vee -L \in I
   then have total-over-m I \{D + \{\#-L\#\}\}
     using tot by (cases L) auto
   then have I \models D + \{\#-L\#\}
     using D (I \models s N) tot (consistent-interp I) unfolding true-clss-cls-def by auto
   moreover
     have total-over-m I \{C + \{\#L\#\}\}\
       using L tot by (cases L) auto
     then have I \models C + \{\#L\#\}
       using C \langle I \models s N \rangle tot \langle consistent\text{-}interp \ I \rangle unfolding true-clss-cls-def by auto
   ultimately have I \models D \# \cup C using \langle consistent\text{-}interp\ I \rangle unfolding consistent-interp-def
   by auto
  }
  moreover {
   assume L: L \notin I \land -L \notin I
   let ?I' = I \cup \{L\}
   have consistent-interp ?I' using L (consistent-interp I) by auto
   moreover have total-over-m ?I' \{D + \{\#-L\#\}\}
     using tot unfolding total-over-m-def total-over-set-def by (auto simp add: atms-of-def)
   moreover have total-over-m ?I' N using tot using total-union by blast
   moreover have ?I' \models s \ N \text{ using } (I \models s \ N) \text{ using } true\text{-}clss\text{-}union\text{-}increase by } blast
   ultimately have ?I' \models D + \{\#-L\#\}
     using D unfolding true-clss-cls-def by blast
   then have ?I' \models D using L by auto
   moreover
     have total-over-set I (atms-of (D + C)) using tot by auto
     then have L \notin \# D \land -L \notin \# D
       using L unfolding total-over-set-def atms-of-def by (cases L) force+
   ultimately have I \models D \# \cup C unfolding true-cls-def by auto
 ultimately show I \models D \# \cup C by blast
qed
lemma satisfiable-carac[iff]:
  (\exists I. \ consistent\ interp\ I \land I \models s\ \varphi) \longleftrightarrow satisfiable\ \varphi\ (is\ (\exists I.\ ?Q\ I) \longleftrightarrow ?S)
proof
 assume ?S
 then show \exists I. ?Q I unfolding satisfiable-def by auto
 assume \exists I. ?Q I
 then obtain I where cons: consistent-interp I and I: I \models s \varphi by metis
 let ?I' = \{Pos \ v \mid v. \ v \notin atms-of-s \ I \land v \in atms-of-ms \ \varphi\}
 have consistent-interp (I \cup ?I')
   using cons unfolding consistent-interp-def by (intro allI) (rename-tac L, case-tac L, auto)
 moreover have total-over-m (I \cup ?I') \varphi
   unfolding total-over-m-def total-over-set-def by auto
 moreover have I \cup ?I' \models s \varphi
   using I unfolding Ball-def true-clss-def true-cls-def by auto
  ultimately show ?S unfolding satisfiable-def by blast
qed
lemma satisfiable-carac'[simp]: consistent-interp I \Longrightarrow I \models s \varphi \Longrightarrow satisfiable \varphi
```

11.3 Subsumptions

```
{f lemma}\ subsumption\mbox{-}total\mbox{-}over\mbox{-}m:
  assumes A \subseteq \# B
 shows total-over-m I \{B\} \Longrightarrow total-over-m I \{A\}
  using assms unfolding subset-mset-def total-over-m-def total-over-set-def
 by (auto simp add: mset-le-exists-conv)
lemma atms-of-replicate-mset-replicate-mset-uminus[simp]:
  atms-of (D-replicate-mset\ (count\ D\ L)\ L-replicate-mset\ (count\ D\ (-L))\ (-L))
   = atms-of D - \{atm-of L\}
  by (fastforce simp: atm-of-eq-atm-of atms-of-def)
lemma subsumption-chained:
  assumes
   \forall I. \ total\text{-}over\text{-}m \ I \ \{D\} \longrightarrow I \models \mathcal{D} \longrightarrow I \models \varphi \ \text{and}
    C \subseteq \# D
 shows (\forall I. total\text{-}over\text{-}m \ I \ \{C\} \longrightarrow I \models C \longrightarrow I \models \varphi) \lor tautology \varphi
  using assms
proof (induct card {Pos v \mid v. v \in atms-of D \land v \notin atms-of C}) arbitrary: D
    rule: nat-less-induct-case)
  case \theta note n = this(1) and H = this(2) and incl = this(3)
  then have atms-of D \subseteq atms-of C by auto
  then have \forall I. total\text{-}over\text{-}m \ I \ \{C\} \longrightarrow total\text{-}over\text{-}m \ I \ \{D\}
   unfolding total-over-m-def total-over-set-def by auto
 moreover have \forall I. \ I \models C \longrightarrow I \models D \text{ using } incl \text{ } true\text{-}cls\text{-}mono\text{-}leD \text{ } by \text{ } blast
  ultimately show ?case using H by auto
\mathbf{next}
  case (Suc n D) note IH = this(1) and card = this(2) and H = this(3) and incl = this(4)
 let ?atms = \{Pos \ v \mid v. \ v \in atms\text{-}of \ D \land v \notin atms\text{-}of \ C\}
 have finite ?atms by auto
  then obtain L where L: L \in ?atms
   using card by (metis (no-types, lifting) Collect-empty-eq card-0-eq mem-Collect-eq
      nat.simps(3)
 let ?D' = D - replicate - mset (count D L) L - replicate - mset (count D (-L)) (-L)
  have atms-of-D: atms-of-ms \{D\} \subseteq atms-of-ms \{PD'\} \cup \{atm-of L\} by auto
  {
   \mathbf{fix} I
   assume total-over-m I \{?D'\}
   then have tot: total-over-m (I \cup \{L\}) \{D\}
      unfolding total-over-m-def total-over-set-def using atms-of-D by auto
   assume IDL: I \models ?D'
   then have I \cup \{L\} \models D unfolding true-cls-def by force
   then have I \cup \{L\} \models \varphi \text{ using } H \text{ tot by } auto
   moreover
     have tot': total-over-m (I \cup \{-L\}) \{D\}
       using tot unfolding total-over-m-def total-over-set-def by auto
      have I \cup \{-L\} \models D using IDL unfolding true-cls-def by force
      then have I \cup \{-L\} \models \varphi \text{ using } H \text{ tot' by } auto
   ultimately have I \models \varphi \lor tautology \varphi
      using L remove-literal-in-model-tautology by force
```

```
} note H' = this
 have L \notin \# C and -L \notin \# C using L atm-iff-pos-or-neg-lit by force+
 then have C-in-D': C \subseteq \# ?D' using (C \subseteq \# D) by (auto simp: subseteq-mset-def not-in-iff)
 have card \{Pos \ v \mid v. \ v \in atms-of ?D' \land v \notin atms-of C\} <
   card \{ Pos \ v \mid v. \ v \in atms\text{-}of \ D \land v \notin atms\text{-}of \ C \}
   using L by (auto intro!: psubset-card-mono)
  then show ?case
   using IH C-in-D' H' unfolding card[symmetric] by blast
         Removing Duplicates
11.4
lemma tautology-remdups-mset[iff]:
  tautology \ (remdups\text{-}mset \ C) \longleftrightarrow tautology \ C
 unfolding tautology-decomp by auto
lemma atms-of-remdups-mset[simp]: atms-of (remdups-mset <math>C) = atms-of C
  unfolding atms-of-def by auto
lemma true-cls-remdups-mset[iff]: I \models remdups-mset C \longleftrightarrow I \models C
 unfolding true-cls-def by auto
lemma true-clss-cls-remdups-mset [iff]: A \models p remdups-mset C \longleftrightarrow A \models p C
  unfolding true-clss-cls-def total-over-m-def by auto
         Set of all Simple Clauses
11.5
definition simple-clss :: 'v set \Rightarrow 'v clause set where
simple-clss\ atms = \{C.\ atms-of\ C \subseteq atms \land \neg tautology\ C \land distinct-mset\ C\}
lemma simple-clss-empty[simp]:
  simple-clss \{\} = \{\{\#\}\}
 unfolding simple-clss-def by auto
lemma simple-clss-insert:
 assumes l \notin atms
 shows simple-clss (insert\ l\ atms) =
   (op + \{\#Pos \ l\#\}) ' (simple-clss \ atms)
   \cup (op + \{\#Neg \ l\#\}) ' (simple-clss \ atms)
   \cup simple\text{-}clss atms(\mathbf{is} ?I = ?U)
proof (standard; standard)
 \mathbf{fix} \ C
 assume C \in ?I
 then have
   atms: atms-of C \subseteq insert\ l\ atms and
   taut: \neg tautology \ C and
   dist: distinct\text{-}mset \ C
   unfolding simple-clss-def by auto
 have H: \bigwedge x. \ x \in \# \ C \Longrightarrow atm\text{-}of \ x \in insert \ l \ atms
   using atm-of-lit-in-atms-of atms by blast
     (Add) L where L \in \# C and L = Neg \ l \lor L = Pos \ l
   | (No) Pos l \notin \# C Neg l \notin \# C
   by auto
  then show C \in ?U
```

```
proof cases
     case Add
     then have L \notin \# C - \{\#L\#\}
      using dist unfolding distinct-mset-def by (auto simp: not-in-iff)
     moreover have -L \notin \# C
      using taut Add by auto
     ultimately have atms-of (C - \{\#L\#\}) \subseteq atms
      using atms Add by (smt H atms-of-def imageE in-diffD insertE literal.exhaust-sel
        subset-iff uminus-Neg uminus-Pos)
     moreover have \neg tautology (C - \{\#L\#\})
      using taut by (metis Add(1) insert-DiffM tautology-add-single)
     moreover have distinct-mset (C - \{\#L\#\})
      using dist by auto
     ultimately have (C - \{\#L\#\}) \in simple\text{-}clss\ atms
      using Add unfolding simple-clss-def by auto
     moreover have C = \{\#L\#\} + (C - \{\#L\#\})
      using Add by (auto simp: multiset-eq-iff)
     ultimately show ?thesis using Add by auto
   next
     case No
     then have C \in simple\text{-}clss \ atms
      using taut atms dist unfolding simple-clss-def
      by (auto simp: atm-iff-pos-or-neg-lit split: if-split-asm dest!: H)
     then show ?thesis by blast
   ged
next
 \mathbf{fix} \ C
 assume C \in ?U
 then consider
     (Add)\ L\ C' where C=\{\#L\#\}+\ C' and C'\in simple\text{-}clss\ atms and
      L = Pos \ l \lor L = Neg \ l
   (No) \ C \in simple\text{-}clss \ atms
   by auto
 then show C \in ?I
   proof cases
     case No
     then show ?thesis unfolding simple-clss-def by auto
   next
     case (Add L C') note C' = this(1) and C = this(2) and L = this(3)
     then have
      atms: atms-of C' \subseteq atms and
      taut: \neg tautology C' and
      dist: distinct-mset C'
      unfolding simple-clss-def by auto
     have atms-of C \subseteq insert\ l\ atms
      using atms C'L by auto
     moreover have \neg tautology C
      using taut C' L by (metis assms atm-of-lit-in-atms-of atms literal.sel(1,2) subset-eq
        tautology-add-single uminus-Neg uminus-Pos)
     moreover have distinct-mset C
      using dist C' L
      by (metis assms atm-of-lit-in-atms-of atms contra-subsetD distinct-mset-add-single
        literal.sel(1,2)
     ultimately show ?thesis unfolding simple-clss-def by blast
```

```
qed
qed
lemma simple-clss-finite:
 fixes atms :: 'v set
 assumes finite atms
 shows finite (simple-clss atms)
 using assms by (induction rule: finite-induct) (auto simp: simple-clss-insert)
lemma simple-clssE:
 assumes
   x \in \mathit{simple-clss}\ \mathit{atms}
 shows atms-of x \subseteq atms \land \neg tautology x \land distinct-mset x
 using assms unfolding simple-clss-def by auto
lemma cls-in-simple-clss:
 shows \{\#\} \in simple\text{-}clss\ s
 unfolding simple-clss-def by auto
\mathbf{lemma}\ simple\text{-}clss\text{-}card\colon
 fixes atms :: 'v \ set
 assumes finite atms
 shows card (simple-clss\ atms) \le (3::nat) \cap (card\ atms)
 using assms
proof (induct atms rule: finite-induct)
 case empty
 then show ?case by auto
next
  case (insert l C) note fin = this(1) and l = this(2) and IH = this(3)
 have notin:
   \bigwedge C'. \{\#Pos\ l\#\} + C' \notin simple\text{-}clss\ C
   \bigwedge C'. \{\#Neg\ l\#\} + C' \notin simple\text{-}clss\ C
   using l unfolding simple-clss-def by auto
 have H: \bigwedge C' D. \{\#Pos \ l\#\} + C' = \{\#Neg \ l\#\} + D \Longrightarrow D \in simple-clss \ C \Longrightarrow False
   proof -
     fix C'D
     assume C'D: \{\#Pos\ l\#\} + C' = \{\#Neq\ l\#\} + D \text{ and } D: D \in simple-clss\ C
     then have Pos l \in \# D by (metis insert-noteg-member literal.distinct(1) union-commute)
     then have l \in atms-of D
      by (simp add: atm-iff-pos-or-neg-lit)
     then show False using D l unfolding simple-clss-def by auto
   qed
 let ?P = (op + \{\#Pos \ l\#\}) ' (simple-clss \ C)
 let ?N = (op + \{\#Neg \ l\#\}) ' (simple-clss \ C)
 let ?O = simple\text{-}clss \ C
 have card (?P \cup ?N \cup ?O) = card (?P \cup ?N) + card ?O
   apply (subst card-Un-disjoint)
   using l fin by (auto simp: simple-clss-finite notin)
 moreover have card (?P \cup ?N) = card ?P + card ?N
   apply (subst card-Un-disjoint)
   using l fin H by (auto simp: simple-clss-finite notin)
  moreover
   have card ?P = card ?O
     using inj-on-iff-eq-card[of ?O op + \{ \#Pos \ l\# \} ]
     by (auto simp: fin simple-clss-finite inj-on-def)
```

```
moreover have card ?N = card ?O
      using inj-on-iff-eq-card[of ?O op + \{ \#Neg \ l\# \} ]
      by (auto simp: fin simple-clss-finite inj-on-def)
  moreover have (3::nat) \widehat{} card (insert\ l\ C) = 3 \widehat{} (card\ C) + 3 \widehat{} (card\ C) + 3 \widehat{} (card\ C)
    using l by (simp add: fin mult-2-right numeral-3-eq-3)
  ultimately show ?case using IH l by (auto simp: simple-clss-insert)
qed
lemma simple-clss-mono:
 assumes incl: atms \subseteq atms'
 shows simple-clss atms \subseteq simple-clss atms'
  using assms unfolding simple-clss-def by auto
\mathbf{lemma}\ distinct\text{-}mset\text{-}not\text{-}tautology\text{-}implies\text{-}in\text{-}simple\text{-}clss\text{:}}
  assumes distinct-mset \chi and \neg tautology \chi
 shows \chi \in simple\text{-}clss (atms\text{-}of \chi)
  using assms unfolding simple-clss-def by auto
{f lemma}\ simplified\mbox{-}in\mbox{-}simple\mbox{-}clss:
  assumes distinct-mset-set \psi and \forall \chi \in \psi. \neg tautology \chi
 shows \psi \subseteq simple\text{-}clss (atms\text{-}of\text{-}ms \ \psi)
  using assms unfolding simple-clss-def
 by (auto simp: distinct-mset-set-def atms-of-ms-def)
          Experiment: Expressing the Entailments as Locales
11.6
locale entail =
 fixes entail :: 'a set \Rightarrow 'b \Rightarrow bool (infix \models e \ 50)
 assumes entail-insert[simp]: I \neq \{\} \implies insert\ L\ I \models e\ x \longleftrightarrow \{L\} \models e\ x \lor I \models e\ x
 assumes entail-union[simp]: I \models e A \Longrightarrow I \cup I' \models e A
begin
definition entails :: 'a set \Rightarrow 'b set \Rightarrow bool (infix \models es 50) where
  I \models es A \longleftrightarrow (\forall a \in A. I \models e a)
lemma entails-empty[simp]:
  I \models es \{\}
  unfolding entails-def by auto
lemma entails-single[iff]:
  I \models es \{a\} \longleftrightarrow I \models e \ a
  unfolding entails-def by auto
\mathbf{lemma}\ entails\text{-}insert\text{-}l[simp]\text{:}
  M \models es A \implies insert \ L \ M \models es A
  unfolding entails-def by (metis Un-commute entail-union insert-is-Un)
lemma entails-union[iff]: I \models es \ CC \cup DD \longleftrightarrow I \models es \ CC \land I \models es \ DD
  unfolding entails-def by blast
lemma entails-insert[iff]: I \models es insert CDD \longleftrightarrow I \models es DD
  unfolding entails-def by blast
lemma entails-insert-mono: DD \subseteq CC \Longrightarrow I \models es CC \Longrightarrow I \models es DD
  unfolding entails-def by blast
```

```
lemma entails-union-increase[simp]:
assumes I \models es \psi
 shows I \cup I' \models es \psi
 using assms unfolding entails-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}commute\text{-}l:
  (I \cup I' \models es \psi) \longleftrightarrow (I' \cup I \models es \psi)
 by (simp add: Un-commute)
lemma entails-remove[simp]: I \models es N \implies I \models es Set.remove \ a \ N
 by (simp add: entails-def)
lemma entails-remove-minus[simp]: I \models es N \Longrightarrow I \models es N - A
 by (simp add: entails-def)
end
interpretation true-cls: entail true-cls
  by standard (auto simp add: true-cls-def)
11.7
          Entailment to be extended
definition true-clss-ext :: 'a literal set \Rightarrow 'a literal multiset set \Rightarrow bool (infix \modelssext 49)
I \models sext \ N \longleftrightarrow (\forall \ J. \ I \subseteq J \longrightarrow consistent\text{-}interp \ J \longrightarrow total\text{-}over\text{-}m \ J \ N \longrightarrow J \models s \ N)
\mathbf{lemma}\ true\text{-}clss\text{-}imp\text{-}true\text{-}cls\text{-}ext:
  I \models s \ N \implies I \models sext \ N
 unfolding true-clss-ext-def by (metis sup.orderE true-clss-union-increase')
lemma true-clss-ext-decrease-right-remove-r:
 assumes I \models sext N
 shows I \models sext N - \{C\}
  unfolding true-clss-ext-def
proof (intro allI impI)
 fix J
  assume
   I \subseteq J and
   cons: consistent-interp\ J and
   tot: total-over-m J(N - \{C\})
 let ?J = J \cup \{Pos (atm-of P) | P. P \in \# C \land atm-of P \notin atm-of `J\}
  have I \subseteq ?J using \langle I \subseteq J \rangle by auto
  moreover have consistent-interp ?J
   using cons unfolding consistent-interp-def apply (intro allI)
   by (rename-tac L, case-tac L) (fastforce simp add: image-iff)+
  moreover have total-over-m ?J N
   using tot unfolding total-over-m-def total-over-set-def atms-of-ms-def
   apply clarify
   apply (rename-tac l a, case-tac a \in N - \{C\})
      apply auto
   using atms-of-s-def atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
   by (fastforce simp: atms-of-def)
  ultimately have ?J \models s N
   using assms unfolding true-clss-ext-def by blast
  then have ?J \models s N - \{C\} by auto
  have \{v \in ?J. \ atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ (N - \{C\})\} \subseteq J
```

```
using tot unfolding total-over-m-def total-over-set-def
   by (auto intro!: rev-image-eqI)
  then show J \models s N - \{C\}
   using true-clss-remove-unused [OF \langle ?J \models s N - \{C\} \rangle] unfolding true-clss-def
   by (meson true-cls-mono-set-mset-l)
qed
{f lemma} consistent-true-clss-ext-satisfiable:
 assumes consistent-interp I and I \models sext A
 shows satisfiable A
 by (metis Un-empty-left assms satisfiable-carac subset-Un-eq sup.left-idem
   total-over-m-consistent-extension total-over-m-empty true-clss-ext-def)
lemma not-consistent-true-clss-ext:
 assumes \neg consistent\text{-}interp\ I
 shows I \models sext A
 by (meson assms consistent-interp-subset true-clss-ext-def)
theory Prop-Logic-Multiset
\mathbf{imports}\ ../lib/Multiset\text{-}More\ Prop\text{-}Normalisation\ Partial\text{-}Clausal\text{-}Logic
begin
```

12 Link with Multiset Version

12.1 Transformation to Multiset

```
fun mset-of-conj :: 'a propo \Rightarrow 'a literal multiset where mset-of-conj (FOr \varphi \psi) = mset-of-conj \varphi + mset-of-conj \psi \mid mset-of-conj (FVar v) = \{\# Pos v \#\} \mid mset-of-conj (FNot (FVar v)) = \{\# Neg v \#\} \mid mset-of-conj FF = \{\#\}

fun mset-of-formula :: 'a propo \Rightarrow 'a literal multiset set where mset-of-formula (FAnd \varphi \psi) = mset-of-formula \varphi \cup mset-of-formula \psi \mid mset-of-formula (FOr \varphi \psi) = \{mset-of-conj (FOr \varphi \psi)\} \mid mset-of-formula (FVar \psi) = \{mset-of-conj (FVar \psi)\} \mid mset-of-formula (FNot \psi) = \{mset-of-conj (FNot \psi)\} \mid mset-of-formula FF = \{\{\#\}\} \mid mset-of-formula FT = \{\}
```

12.2 Equisatisfiability of the two Version

```
\begin{array}{l} \textbf{lemma} \ \textit{is-conj-with-TF-FNot:} \\ \textit{is-conj-with-TF} \ (\textit{FNot} \ \varphi) \longleftrightarrow (\exists \ v. \ \varphi = \textit{FVar} \ v \lor \varphi = \textit{FF} \lor \varphi = \textit{FT}) \\ \textbf{unfolding} \ \textit{is-conj-with-TF-def} \ \textbf{apply} \ (\textit{rule} \ \textit{iffI}) \\ \textbf{apply} \ (\textit{induction} \ \textit{FNot} \ \varphi \ \textit{rule:} \ \textit{super-grouped-by.induct}) \\ \textbf{apply} \ (\textit{induction} \ \textit{FNot} \ \varphi \ \textit{rule:} \ \textit{grouped-by.induct}) \\ \textbf{apply} \ \textit{simp} \\ \textbf{apply} \ \textit{simp} \\ \textbf{apply} \ (\textit{cases} \ \varphi; \ \textit{simp}) \\ \textbf{apply} \ \textit{auto} \\ \textbf{done} \\ \\ \\ \textbf{lemma} \ \textit{grouped-by-COr-FNot:} \\ \textit{grouped-by COr} \ (\textit{FNot} \ \varphi) \longleftrightarrow (\exists \ v. \ \varphi = \textit{FVar} \ v \lor \varphi = \textit{FF} \lor \varphi = \textit{FT}) \\ \textbf{unfolding} \ \textit{is-conj-with-TF-def} \ \textbf{apply} \ (\textit{rule} \ \textit{iffI}) \\ \end{array}
```

```
apply (induction FNot \varphi rule: grouped-by.induct)
    apply simp
   apply (cases \varphi; simp)
  apply auto
  done
lemma
  shows no\text{-}T\text{-}F\text{-}FF[simp]: \neg no\text{-}T\text{-}F FF and
    no-T-F-FT[simp]: \neg no-T-F FT
  unfolding no-T-F-def all-subformula-st-def by auto
\mathbf{lemma} \ \textit{grouped-by-CAnd-FAnd:}
  grouped-by CAnd (FAnd \varphi 1 \varphi 2) \longleftrightarrow grouped-by CAnd \varphi 1 \land grouped-by CAnd \varphi 2
 apply (rule iffI)
 apply (induction FAnd \varphi 1 \varphi 2 rule: grouped-by.induct)
 using connected-is-group of CAnd \varphi 1 \varphi 2 by auto
lemma grouped-by-COr-FOr:
  grouped-by COr (FOr \varphi1 \varphi2) \longleftrightarrow grouped-by COr \varphi1 \land grouped-by COr \varphi2
 apply (rule iffI)
 apply (induction FOr \varphi 1 \varphi 2 rule: grouped-by.induct)
  using connected-is-group of COr \varphi 1 \varphi 2 by auto
lemma grouped-by-COr-FAnd[simp]: \neg grouped-by COr (FAnd \varphi 1 \varphi 2)
  apply clarify
  apply (induction FAnd \varphi 1 \varphi 2 rule: grouped-by.induct)
  apply auto
  done
lemma grouped-by-COr-FEq[simp]: \neg grouped-by COr (FEq \varphi1 \varphi2)
 apply clarify
  apply (induction FEq \varphi1 \varphi2 rule: grouped-by.induct)
  apply auto
  done
lemma [simp]: \neg grouped-by COr (FImp \varphi \psi)
 apply clarify
 by (induction FImp \varphi \psi rule: grouped-by.induct) simp-all
lemma [simp]: \neg is-conj-with-TF (FImp \varphi \psi)
  unfolding is-conj-with-TF-def apply clarify
  by (induction FImp \varphi \psi rule: super-grouped-by.induct) simp-all
lemma [simp]: \neg grouped-by COr (FEq \varphi \psi)
  apply clarify
 by (induction FEq \varphi \psi rule: grouped-by.induct) simp-all
lemma [simp]: \neg is-conj-with-TF (FEq \varphi \psi)
  unfolding is-conj-with-TF-def apply clarify
 by (induction FEq \varphi \psi rule: super-grouped-by.induct) simp-all
lemma is-conj-with-TF-Fand:
  is\text{-}conj\text{-}with\text{-}TF \ (FAnd \ \varphi 1 \ \varphi 2) \implies is\text{-}conj\text{-}with\text{-}TF \ \varphi 1 \ \land \ is\text{-}conj\text{-}with\text{-}TF \ \varphi 2
  unfolding is-conj-with-TF-def
```

When a formula is in CNF form, then there is equisatisfiability. Remark that the definition for the entailment are slightly different: $op \models uses$ a function assigning True or False, while $op \models s$ uses a set where being in the list means entailment of a literal.

```
theorem
```

```
fixes \varphi :: 'v \ propo
 assumes is-cnf \varphi
 shows eval A \varphi \longleftrightarrow Partial\text{-}Clausal\text{-}Logic.true\text{-}clss} (\{Pos \ v | v. \ A \ v\} \cup \{Neg \ v | v. \ \neg A \ v\})
   (mset-of-formula \varphi)
 using assms
proof (induction \varphi)
 case FF
 then show ?case by auto
next
 case FT
 then show ?case by auto
next
  case (FVar\ v)
 then show ?case by auto
next
 case (FAnd \varphi \psi)
 then show ?case
 unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot dest: is-conj-with-TF-Fand
   dest!:is-conj-with-TF-FOr)
next
  case (FOr \varphi \psi)
 then have [simp]: mset-of-formula \varphi = \{mset-of-conj \varphi\} mset-of-formula \psi = \{mset-of-conj \psi\}
   unfolding is-cnf-def by (auto dest!:is-conj-with-TF-FOr simp: grouped-by-COr-mset-of-formula
     split: if-splits)
 have is-conj-with-TF \varphi is-conj-with-TF \psi
   using FOr(3) unfolding is-cnf-def no-T-F-def
   by (metis grouped-is-super-grouped is-conj-with-TF-FOr is-conj-with-TF-def)+
  then show ?case using FOr
   unfolding is-cnf-def by simp
next
 case (FImp \varphi \psi)
 then show ?case
   unfolding is-cnf-def by auto
next
```

```
case (FEq\ \varphi\ \psi) then show ?case unfolding is-cnf-def by auto next case (FNot\ \varphi) then show ?case unfolding is-cnf-def by (auto simp: is-conj-with-TF-FNot) qed end theory Prop-Resolution imports Partial-Clausal-Logic List-More Wellfounded-More
```

begin

13 Resolution

13.1 Simplification Rules

```
inductive simplify :: 'v clauses \Rightarrow 'v clauses \Rightarrow bool for N :: 'v clause set where
tautology-deletion:
          (A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}) \in N \implies simplify\ N\ (N - \{A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}\}))
condensation:
          (A + \{\#L\#\} + \{\#L\#\}) \in N \Longrightarrow simplify \ N \ (N - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\}) \mid A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\} \(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\}\(A + \{\#L\#\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\(A + \{\#L\#A\}\(A + \{\#L\#A\}\(A + \{\#L\#A\}\(A + \{\#L\#A\}\(A + \{\#L\#A\}\(A + \{\#AL\#A\}\(A + \{\#ALA\}\(A + 
subsumption:
          A \in N \Longrightarrow A \subset \# B \Longrightarrow B \in N \Longrightarrow simplify N (N - \{B\})
lemma simplify-preserves-un-sat':
     fixes N N' :: 'v \ clauses
    assumes simplify N N'
    and total-over-m\ I\ N
    \mathbf{shows}\ I \models s\ N' \longrightarrow I \models s\ N
     using assms
proof (induct rule: simplify.induct)
     case (tautology-deletion A P)
     then have I \models A + \{ \#Pos \ P\# \} + \{ \#Neg \ P\# \}
          by (metis total-over-m-def total-over-set-literal-defined true-cls-singleton true-cls-union
                true\text{-}lit\text{-}def\ uminus\text{-}Neg\ union\text{-}commute)
     then show ?case by (metis Un-Diff-cancel2 true-clss-singleton true-clss-union)
     case (condensation A P)
     then show ?case by (metis Diff-insert-absorb Set.set-insert insertE true-cls-union true-clss-def
           true-clss-singleton true-clss-union)
      case (subsumption A B)
    have A \neq B using subsumption.hyps(2) by auto
    then have I \models s N - \{B\} \Longrightarrow I \models A \text{ using } (A \in N) \text{ by } (simp add: true-clss-def)
     moreover have I \models A \Longrightarrow I \models B \text{ using } \langle A < \# B \rangle \text{ by } auto
     ultimately show ?case by (metis insert-Diff-single true-clss-insert)
qed
lemma simplify-preserves-un-sat:
    \mathbf{fixes}\ N\ N' :: \ 'v\ clauses
    assumes simplify N N'
    and total-over-m I N
```

```
shows I \models s N \longrightarrow I \models s N'
 using assms apply (induct rule: simplify.induct)
  using true-clss-def by fastforce+
lemma simplify-preserves-un-sat":
 fixes N N' :: 'v \ clauses
 assumes simplify N N'
 and total-over-m I N'
 shows I \models s N \longrightarrow I \models s N'
 using assms apply (induct rule: simplify.induct)
 using true-clss-def by fastforce+
{\bf lemma}\ simplify\mbox{-}preserves\mbox{-}un\mbox{-}sat\mbox{-}eq:
 fixes N N' :: 'v \ clauses
 assumes simplify N N'
 and total-over-m I N
 shows I \models s N \longleftrightarrow I \models s N'
 using simplify-preserves-un-sat simplify-preserves-un-sat' assms by blast
{\bf lemma}\ simplify\mbox{-}preserves\mbox{-}finite:
assumes simplify \psi \psi'
shows finite \psi \longleftrightarrow finite \psi'
using assms by (induct rule: simplify.induct, auto simp add: remove-def)
lemma rtranclp-simplify-preserves-finite:
assumes rtrancly simplify \psi \psi'
shows finite \psi \longleftrightarrow finite \psi'
using assms by (induct rule: rtranclp-induct) (auto simp add: simplify-preserves-finite)
lemma simplify-atms-of-ms:
 assumes simplify \psi \psi'
 shows atms-of-ms \ \psi' \subseteq atms-of-ms \ \psi
 using assms unfolding atms-of-ms-def
proof (induct rule: simplify.induct)
 case (tautology\text{-}deletion\ A\ P)
 then show ?case by auto
next
 case (condensation A P)
 moreover have A + \{\#P\#\} + \{\#P\#\} \in \psi \Longrightarrow \exists x \in \psi. \ atm\text{-}of \ P \in atm\text{-}of \ `set\text{-}mset \ x
   by (metis Un-iff atms-of-def atms-of-plus atms-of-singleton insert-iff)
 ultimately show ?case by (auto simp add: atms-of-def)
next
  case (subsumption A P)
 then show ?case by auto
qed
lemma rtranclp-simplify-atms-of-ms:
 assumes rtranclp simplify \psi \psi'
 shows atms-of-ms \psi' \subseteq atms-of-ms \psi
 using assms apply (induct rule: rtranclp-induct)
  apply (fastforce intro: simplify-atms-of-ms)
  using simplify-atms-of-ms by blast
lemma factoring-imp-simplify:
 assumes \{\#L\#\} + \{\#L\#\} + C \in N
```

```
shows \exists N'. simplify NN'
proof -
  have C + \{\#L\#\} + \{\#L\#\} \in N \text{ using } assms \text{ by } (simp \text{ add: } add.commute union-lcomm)
  from condensation[OF this] show ?thesis by blast
qed
          Unconstrained Resolution
13.2
type-synonym 'v uncon-state = 'v clauses
inductive uncon\text{-}res :: 'v \ uncon\text{-}state \Rightarrow 'v \ uncon\text{-}state \Rightarrow bool \ \mathbf{where}
resolution:
  \{\#Pos\ p\#\} + C \in N \Longrightarrow \{\#Neg\ p\#\} + D \in N \Longrightarrow (\{\#Pos\ p\#\} + C, \{\#Neg\ p\#\} + D) \notin A
already-used
   \implies uncon-res(N)(N \cup \{C+D\})
factoring: \{\#L\#\} + \{\#L\#\} + C \in N \Longrightarrow uncon\text{-res } N \ (N \cup \{C + \{\#L\#\}\})
lemma uncon-res-increasina:
 assumes uncon-res S S' and \psi \in S
 shows \psi \in S'
  using assms by (induct rule: uncon-res.induct) auto
lemma rtranclp-uncon-inference-increasing:
  assumes rtrancly uncon-res S S' and \psi \in S
  shows \psi \in S'
  using assms by (induct rule: rtranclp-induct) (auto simp add: uncon-res-increasing)
13.2.1
           Subsumption
definition subsumes :: 'a literal multiset \Rightarrow 'a literal multiset \Rightarrow bool where
subsumes \ \chi \ \chi' \longleftrightarrow
  (\forall I. total\text{-}over\text{-}m \ I \ \{\chi'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
 \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models \chi')
lemma subsumes-refl[simp]:
  subsumes \chi \chi
  unfolding subsumes-def by auto
{f lemma}\ subsumes-subsumption:
  assumes subsumes D \chi
 and C \subset \# D and \neg tautology \chi
  shows subsumes C \chi unfolding subsumes-def
  using assms subsumption-total-over-m subsumption-chained unfolding subsumes-def
 by (blast intro!: subset-mset.less-imp-le)
lemma subsumes-tautology:
  assumes subsumes (C + \{\#Pos P\#\} + \{\#Neg P\#\}) \chi
 shows tautology \chi
  using assms unfolding subsumes-def by (simp add: tautology-def)
13.3
         Inference Rule
type-synonym 'v state = 'v clauses \times ('v clause \times 'v clause) set
inductive inference-clause :: 'v state \Rightarrow 'v clause \times ('v clause \times 'v clause) set \Rightarrow bool
```

 $(infix \Rightarrow_{Res} 100)$ where

resolution:

```
\{\#Pos\ p\#\}\ +\ C\ \in\ N\ \Longrightarrow\ \{\#Neg\ p\#\}\ +\ D\ \in\ N\ \Longrightarrow\ (\{\#Pos\ p\#\}\ +\ C,\ \{\#Neg\ p\#\}\ +\ D)\ \notin\ A
already-used
  \implies inference-clause (N, already-used) (C + D, already-used \cup {({#Pos p#} + C, {#Neg p#} +
D)\}) \mid
factoring: \{\#L\#\} + \{\#L\#\} + C \in \mathbb{N} \Longrightarrow inference-clause\ (N,\ already-used)\ (C + \{\#L\#\},\ already-used)
inductive inference :: 'v state \Rightarrow 'v state \Rightarrow bool where
inference-step: inference-clause S (clause, already-used)
 \implies inference S (fst S \cup \{clause\}, already-used)
{\bf abbreviation}\ \mathit{already-used-inv}
 :: 'a literal multiset set \times ('a literal multiset \times 'a literal multiset) set \Rightarrow bool where
already-used-inv state \equiv
 (\forall (A, B) \in snd \ state. \ \exists \ p. \ Pos \ p \in \# \ A \land Neq \ p \in \# \ B \land
         ((\exists \chi \in \textit{fst state. subsumes } \chi ((A - \{\#\textit{Pos } p\#\}) + (B - \{\#\textit{Neg } p\#\})))
           \vee \ tautology \ ((A - \{\#Pos \ p\#\}) + (B - \{\#Neg \ p\#\}))))
{\bf lemma}\ in ference-clause-preserves-already-used-inv:
 assumes inference-clause S S'
 and already-used-inv S
 shows already-used-inv (fst S \cup \{fst \ S'\}, snd \ S'\})
 using assms apply (induct rule: inference-clause.induct)
 by fastforce+
lemma inference-preserves-already-used-inv:
 assumes inference S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms
proof (induct rule: inference.induct)
 case (inference-step S clause already-used)
 then show ?case
   using inference-clause-preserves-already-used-inv[of S (clause, already-used)] by simp
qed
lemma rtranclp-inference-preserves-already-used-inv:
 assumes rtrancly inference S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms apply (induct rule: rtranclp-induct, simp)
  using inference-preserves-already-used-inv unfolding tautology-def by fast
lemma subsumes-condensation:
 assumes subsumes (C + \{\#L\#\} + \{\#L\#\}) D
 shows subsumes (C + \{\#L\#\}) D
 using assms unfolding subsumes-def by simp
lemma simplify-preserves-already-used-inv:
 assumes simplify N N'
 and already-used-inv (N, already-used)
 shows already-used-inv (N', already-used)
 using assms
proof (induct rule: simplify.induct)
  case (condensation C L)
```

```
then show ?case
    using subsumes-condensation by simp fast
next
     fix a:: 'a and A:: 'a set and P
     have (\exists x \in Set.remove \ a \ A. \ P \ x) \longleftrightarrow (\exists x \in A. \ x \neq a \land P \ x) by auto
  } note ex-member-remove = this
    fix a \ a\theta :: 'v \ clause \ and \ A :: 'v \ clauses \ and \ y
    assume a \in A and a\theta \subset \# a
    then have (\exists x \in A. \ subsumes \ x \ y) \longleftrightarrow (subsumes \ a \ y \ \lor (\exists x \in A. \ x \neq a \land subsumes \ x \ y))
      by auto
  } note tt2 = this
  case (subsumption A B) note A = this(1) and AB = this(2) and B = this(3) and inv = this(4)
  show ?case
    proof (standard, standard)
      \mathbf{fix} \ x \ a \ b
      assume x: x \in snd (N - \{B\}, already-used) and [simp]: x = (a, b)
      obtain p where p: Pos p \in \# a \land Neg p \in \# b and
        q: (\exists \chi \in \mathbb{N}. \ subsumes \ \chi \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
          \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\}))
        using inv \ x by fastforce
      \mathbf{consider}\ (\mathit{taut})\ \mathit{tautology}\ (\mathit{a} - \{\#\mathit{Pos}\ \mathit{p\#}\} + (\mathit{b} - \{\#\mathit{Neg}\ \mathit{p\#}\}))\ |
        (\chi) \chi \text{ where } \chi \in N \text{ subsumes } \chi \text{ } (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\}))
          \neg tautology (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\}))
        using q by auto
      then show
        \exists p. \ Pos \ p \in \# \ a \land Neg \ p \in \# \ b
              \land ((\exists \chi \in \mathit{fst} \ (N - \{B\}, \ \mathit{already-used}). \ \mathit{subsumes} \ \chi \ (a - \{\#\mathit{Pos} \ p\#\} + (b - \{\#\mathit{Neg} \ p\#\}))) 
                 \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
        proof cases
          case taut
          then show ?thesis using p by auto
       next
          case \chi note H = this
          show ?thesis using p A AB B subsumes-subsumption [OF - AB H(3)] H(1,2) by auto
        qed
    qed
next
  case (tautology-deletion CP)
  then show ?case apply clarify
  proof -
    \mathbf{fix} \ a \ b
    assume C + \{ \# Pos \ P \# \} + \{ \# Neg \ P \# \} \in N
    assume already-used-inv (N, already-used)
    and (a, b) \in snd (N - \{C + \{\#Pos P\#\} + \{\#Neg P\#\}\}, already-used)
    then obtain p where
      Pos\ p\in \#\ a\ \land\ Neg\ p\in \#\ b\ \land
        ((\exists \chi \in fst \ (N \cup \{C + \{\#Pos \ P\#\} + \{\#Neg \ P\#\}\}, already-used)).
              subsumes \chi (a - {#Pos p#} + (b - {#Neg p#})))
          \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
      by fastforce
    moreover have tautology (C + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}) by auto
    ultimately show
      \exists \ p. \ Pos \ p \in \# \ a \ \land \ Neg \ p \in \# \ b
```

```
\land ((\exists \chi \in fst \ (N - \{C + \{\#Pos \ P\#\} + \{\#Neg \ P\#\}\}), \ already-used).
           subsumes \chi (a - {#Pos p#} + (b - {#Neg p#})))
         \vee \ tautology \ (a - \{\#Pos \ p\#\} + (b - \{\#Neg \ p\#\})))
     by (metis (no-types) Diff-iff Un-insert-right empty-iff fst-conv insertE subsumes-tautology
       sup-bot.right-neutral)
 qed
qed
lemma
 factoring-satisfiable: I \models \{\#L\#\} + \{\#L\#\} + C \longleftrightarrow I \models \{\#L\#\} + C and
 resolution-satisfiable:
    consistent-interp I \Longrightarrow I \models \{\#Pos\ p\#\} + C \Longrightarrow I \models \{\#Neg\ p\#\} + D \Longrightarrow I \models C + D and
   factoring-same-vars: atms-of (\{\#L\#\} + \{\#L\#\} + C) = atms-of (\{\#L\#\} + C)
 unfolding true-cls-def consistent-interp-def by (fastforce split: if-split-asm)+
lemma inference-increasing:
 assumes inference S S' and \psi \in fst S
 shows \psi \in fst S'
 using assms by (induct rule: inference.induct, auto)
lemma rtranclp-inference-increasing:
 assumes rtrancly inference S S' and \psi \in fst S
 shows \psi \in fst S'
 using assms by (induct rule: rtranclp-induct, auto simp add: inference-increasing)
lemma inference-clause-already-used-increasing:
 assumes inference-clause S S'
 shows snd S \subseteq snd S'
 using assms by (induct rule:inference-clause.induct, auto)
lemma inference-already-used-increasing:
 assumes inference S S'
 shows snd S \subseteq snd S'
 using assms apply (induct rule:inference.induct)
 using inference-clause-already-used-increasing by fastforce
{f lemma}\ inference-clause-preserves-un-sat:
 fixes N N' :: 'v \ clauses
 assumes inference-clause T T'
 and total-over-m \ I \ (fst \ T)
 and consistent: consistent-interp I
 shows I \models s \text{ fst } T \longleftrightarrow I \models s \text{ fst } T \cup \{\text{fst } T'\}
  using assms apply (induct rule: inference-clause.induct)
  unfolding consistent-interp-def true-clss-def by auto force+
lemma inference-preserves-un-sat:
 fixes N N' :: 'v \ clauses
 assumes inference T T'
 and total-over-m \ I \ (fst \ T)
 and consistent: consistent-interp I
 shows I \models s fst \ T \longleftrightarrow I \models s fst \ T'
 using assms apply (induct rule: inference.induct)
```

```
{\bf using} \ in ference \hbox{-} clause \hbox{-} preserves \hbox{-} un\hbox{-} sat \ {\bf by} \ fast force
```

```
lemma inference-clause-preserves-atms-of-ms:
  assumes inference-clause S S'
 shows atms-of-ms (fst (fst S \cup \{fst S'\}, snd S'\}) \subseteq atms-of-ms (fst <math>S \cup \{fst S'\}, snd S'\}
  using assms apply (induct rule: inference-clause.induct)
  apply auto
    apply (metis Set.set-insert UnCI atms-of-ms-insert atms-of-plus)
   apply (metis Set.set-insert UnCI atms-of-ms-insert atms-of-plus)
  apply (simp add: in-m-in-literals union-assoc)
 unfolding atms-of-ms-def using assms by fastforce
lemma inference-preserves-atms-of-ms:
 fixes N N' :: 'v \ clauses
 assumes inference T T'
 shows atms-of-ms (fst T') \subseteq atms-of-ms (fst T)
 using assms apply (induct rule: inference.induct)
 using inference-clause-preserves-atms-of-ms by fastforce
\mathbf{lemma}\ in ference\text{-}preserves\text{-}total\text{:}
 fixes N N' :: 'v \ clauses
 assumes inference (N, already-used) (N', already-used')
 shows total-over-m I N \Longrightarrow total-over-m I N'
   using assms inference-preserves-atms-of-ms unfolding total-over-m-def total-over-set-def
   by fastforce
\mathbf{lemma}\ rtranclp\text{-}inference\text{-}preserves\text{-}total:
 assumes rtrancly inference T T'
 shows total-over-m I (fst T) \Longrightarrow total-over-m I (fst T')
 using assms by (induct rule: rtranclp-induct, auto simp add: inference-preserves-total)
lemma rtranclp-inference-preserves-un-sat:
 assumes rtranclp inference N N'
 and total-over-m \ I \ (fst \ N)
 and consistent: consistent-interp I
 shows I \models s \text{ fst } N \longleftrightarrow I \models s \text{ fst } N'
 using assms apply (induct rule: rtranclp-induct)
 apply (simp add: inference-preserves-un-sat)
 using inference-preserves-un-sat rtranclp-inference-preserves-total by blast
lemma inference-preserves-finite:
 assumes inference \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 using assms by (induct rule: inference.induct, auto simp add: simplify-preserves-finite)
lemma inference-clause-preserves-finite-snd:
 assumes inference-clause \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms by (induct rule: inference-clause.induct, auto)
{\bf lemma}\ in ference \hbox{-} preserves \hbox{-} finite \hbox{-} snd :
 assumes inference \psi \psi' and finite (snd \psi)
```

```
shows finite (snd \psi')
 using assms inference-clause-preserves-finite-snd by (induct rule: inference.induct, fastforce)
lemma rtranclp-inference-preserves-finite:
 assumes rtrancly inference \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 \mathbf{using}\ assms\ \mathbf{by}\ (induct\ rule:\ rtranclp\text{-}induct)
   (auto simp add: simplify-preserves-finite inference-preserves-finite)
lemma consistent-interp-insert:
 assumes consistent-interp I
 and atm\text{-}of P \notin atm\text{-}of ' I
 shows consistent-interp (insert P I)
proof -
 have P: insert P I = I \cup \{P\} by auto
 show ?thesis unfolding P
 apply (rule consistent-interp-disjoint)
 using assms by (auto simp: image-iff)
qed
lemma simplify-clause-preserves-sat:
 assumes simp: simplify \ \psi \ \psi'
 and satisfiable \psi'
 shows satisfiable \psi
 using assms
proof induction
 case (tautology-deletion A P) note AP = this(1) and sat = this(2)
 let ?A' = A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}
 let ?\psi' = \psi - \{?A'\}
 obtain I where
   I: I \models s ? \psi' and
   cons: consistent-interp\ I and
   tot: total-over-m I ? \psi'
   using sat unfolding satisfiable-def by auto
  { assume Pos P \in I \lor Neg P \in I
   then have I \models ?A' by auto
   then have I \models s \psi using I by (metis insert-Diff tautology-deletion.hyps true-clss-insert)
   then have ?case using cons tot by auto
  }
  moreover {
   assume Pos: Pos P \notin I and Neg: Neg P \notin I
   then have consistent-interp (I \cup \{Pos \ P\}) using cons by simp
   moreover have I'A: I \cup \{Pos\ P\} \models ?A' by auto
   have \{Pos \ P\} \cup I \models s \ \psi - \{A + \{\#Pos \ P\#\} + \{\#Neg \ P\#\}\}\
     using \langle I \models s \psi - \{A + \{\#Pos P\#\}\} + \{\#Neg P\#\}\} \rangle true-clss-union-increase' by blast
   then have I \cup \{Pos \ P\} \models s \ \psi
     by (metis (no-types) Un-empty-right Un-insert-left Un-insert-right I'A insert-Diff
       sup-bot.left-neutral tautology-deletion.hyps true-clss-insert)
   ultimately have ?case using satisfiable-carac' by blast
  ultimately show ?case by blast
next
 case (condensation A L) note AL = this(1) and sat = this(2)
 have f3: simplify \psi (\psi – {A + {#L#} + {#L#}} \cup {A + {#L#}})
```

```
using AL simplify.condensation by blast
    obtain LL :: 'a literal multiset set \Rightarrow 'a literal set where
       f_4: LL (\psi - \{A + \{\#L\#\}\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\}) \models s \psi - \{A + \{\#L\#\}\} + \{\#L\#\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\}\} \cup \{A + \{\#L\#\}\} \cup \{A + \{\#L\#\}\} \(A + \{\#L\#\}\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}\}\(A + \{\#L\#A\}
+ \{ \#L\# \} \}
            \land consistent\text{-interp} (LL (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\}))
            \wedge \ total\text{-}over\text{-}m \ (LL \ (\psi - \{A + \{\#L\#\} + \{\#L\#\}\})\}
                                           \cup \{A + \{\#L\#\}\})) \ (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) \cup \{A + \{\#L\#\}\})
       using sat by (meson satisfiable-def)
    have f5: insert (A + \{\#L\#\} + \{\#L\#\}) (\psi - \{A + \{\#L\#\} + \{\#L\#\}\}) = \psi
       using AL by fastforce
    have atms-of (A + \{\#L\#\} + \{\#L\#\}) = atms-of (\{\#L\#\} + A)
       by simp
    then show ?case
       using f5 f4 f3 by (metis (no-types) add.commute satisfiable-def simplify-preserves-un-sat'
            total-over-m-insert total-over-m-union)
next
    case (subsumption A B) note A = this(1) and AB = this(2) and B = this(3) and sat = this(4)
   let ?\psi' = \psi - \{B\}
    obtain I where I: I \models s ?\psi' and cons: consistent-interp I and tot: total-over-m I ?\psi'
       using sat unfolding satisfiable-def by auto
    have I \models A using A I by (metis AB Diff-iff subset-mset.less-irrefl singletonD true-clss-def)
    then have I \models B using AB subset-mset.less-imp-le true-cls-mono-leD by blast
    then have I \models s \psi using I by (metis insert-Diff-single true-clss-insert)
    then show ?case using cons satisfiable-carac' by blast
qed
{\bf lemma}\ simplify\text{-}preserves\text{-}unsat:
    assumes inference \psi \psi'
   shows satisfiable (fst \psi') \longrightarrow satisfiable (fst \psi)
    using assms apply (induct rule: inference.induct)
    using satisfiable-decreasing by (metis fst-conv)+
lemma inference-preserves-unsat:
    assumes inference** S S'
    shows satisfiable (fst S') \longrightarrow satisfiable (fst S)
    using assms apply (induct rule: rtranclp-induct)
    apply simp-all
    using simplify-preserves-unsat by blast
datatype 'v sem-tree = Node 'v 'v sem-tree 'v sem-tree | Leaf
fun sem-tree-size :: 'v sem-tree \Rightarrow nat where
sem-tree-size Leaf = 0
sem-tree-size (Node - ag ad) = 1 + sem-tree-size ag + sem-tree-size ad
lemma sem-tree-size[case-names bigger]:
    (\bigwedge xs: \ 'v \ sem\text{-tree.} \ (\bigwedge ys: \ 'v \ sem\text{-tree.} \ sem\text{-tree-size} \ ys < sem\text{-tree-size} \ xs \Longrightarrow P \ ys) \Longrightarrow P \ xs)
    \implies P xs
   by (fact Nat.measure-induct-rule)
fun partial-interps :: 'v sem-tree \Rightarrow 'v interp \Rightarrow 'v clauses \Rightarrow bool where
partial-interps Leaf I \psi = (\exists \chi. \neg I \models \chi \land \chi \in \psi \land total\text{-}over\text{-}m \ I \{\chi\}) \mid
partial-interps (Node v ag ad) I \psi \longleftrightarrow
    (partial-interps\ ag\ (I \cup \{Pos\ v\})\ \psi \land partial-interps\ ad\ (I \cup \{Neg\ v\})\ \psi)
```

```
\mathbf{lemma}\ simplify\text{-}preserve\text{-}partial\text{-}leaf:
  simplify N N' \Longrightarrow partial-interps Leaf I N \Longrightarrow partial-interps Leaf I N'
 apply (induct rule: simplify.induct)
   using union-lcomm apply auto[1]
  apply (simp, metis atms-of-plus total-over-set-union true-cls-union)
 apply simp
 by (metis atms-of-ms-singleton mset-le-exists-conv subset-mset-def true-cls-mono-leD
   total-over-m-def total-over-m-sum)
{\bf lemma}\ simplify\mbox{-}preserve\mbox{-}partial\mbox{-}tree:
 assumes simplify N N'
 and partial-interps t I N
 shows partial-interps t I N'
 using assms apply (induct t arbitrary: I, simp)
 using simplify-preserve-partial-leaf by metis
lemma inference-preserve-partial-tree:
 assumes inference S S'
 and partial-interps t \ I \ (fst \ S)
 shows partial-interps t I (fst S')
 using assms apply (induct t arbitrary: I, simp-all)
  by (meson inference-increasing)
lemma rtranclp-inference-preserve-partial-tree:
 assumes rtrancly inference N N'
 and partial-interps t \ I \ (fst \ N)
 shows partial-interps t I (fst N')
 using assms apply (induct rule: rtranclp-induct, auto)
 using inference-preserve-partial-tree by force
function build-sem-tree :: 'v :: linorder set \Rightarrow 'v clauses \Rightarrow 'v sem-tree where
build-sem-tree atms \psi =
  (if \ atms = \{\} \lor \neg \ finite \ atms
 then Leaf
  else Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) \psi)
    (build\text{-}sem\text{-}tree\ (Set.remove\ (Min\ atms)\ atms)\ \psi))
by auto
termination
 apply (relation measure (\lambda(A, -), card A), simp-all)
 apply (metis Min-in card-Diff1-less remove-def)+
done
declare build-sem-tree.induct[case-names tree]
lemma unsatisfiable-empty[simp]:
  \neg unsatisfiable \{\}
  unfolding satisfiable-def apply auto
 using consistent-interp-def unfolding total-over-m-def total-over-set-def atms-of-ms-def by blast
```

lemma partial-interps-build-sem-tree-atms-general:

```
fixes \psi :: 'v :: linorder clauses and p :: 'v literal list
 assumes unsat: unsatisfiable \psi and finite \psi and consistent-interp I
 and finite atms
 and atms-of-ms \ \psi = atms \cup atms-of-s \ I \ and \ atms \cap atms-of-s \ I = \{\}
 shows partial-interps (build-sem-tree atms \psi) I \psi
 using assms
proof (induct arbitrary: I rule: build-sem-tree.induct)
 case (1 atms \psi Ia) note IH1 = this(1) and IH2 = this(2) and unsat = this(3) and finite = this(4)
   and cons = this(5) and f = this(6) and un = this(7) and disj = this(8)
 {
   assume atms: atms = \{\}
   then have atmsIa: atms-of-ms \ \psi = atms-of-s \ Ia \ using \ un \ by \ auto
   then have total-over-m Ia \psi unfolding total-over-m-def atmsIa by auto
   then have \chi: \exists \chi \in \psi. \neg Ia \models \chi
     using unsat cons unfolding true-clss-def satisfiable-def by auto
   then have build-sem-tree atms \psi = Leaf using atms by auto
   moreover
     have tot: \bigwedge \chi. \chi \in \psi \Longrightarrow total-over-m Ia \{\chi\}
     unfolding total-over-m-def total-over-set-def atms-of-ms-def atms-of-s-def
     using atmsIa atms-of-ms-def by fastforce
   have partial-interps Leaf Ia \psi
     using \chi tot by (auto simp add: total-over-m-def total-over-set-def atms-of-ms-def)
     ultimately have ?case by metis
 }
 moreover {
   assume atms: atms \neq \{\}
   have build-sem-tree atms \psi = Node (Min atms) (build-sem-tree (Set.remove (Min atms) atms) \psi)
      (build-sem-tree (Set.remove (Min atms) atms) \psi)
     using build-sem-tree.simps of atms \psi f atms by metis
   have consistent-interp (Ia \cup \{Pos (Min \ atms)\}) unfolding consistent-interp-def
     by (metis Int-iff Min-in Un-iff atm-of-uninus atms cons consistent-interp-def disj empty-iff
      f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
       uminus-Neg uminus-Pos)
   moreover have atms-of-ms \psi = Set.remove (Min atms) atms \cup atms-of-s (Ia \cup \{Pos (Min atms)\})
     using Min-in atms f un by fastforce
   moreover have disj': Set.remove (Min\ atms)\ atms \cap atms-of-s (Ia \cup \{Pos\ (Min\ atms)\}) = \{\}
     by simp (metis disj disjoint-iff-not-equal member-remove)
   moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
   ultimately have subtree1: partial-interps (build-sem-tree (Set.remove (Min atms) atms) \psi)
       (Ia \cup \{Pos \ (Min \ atms)\}) \ \psi
     using IH1[of Ia \cup {Pos (Min (atms))}] atms f unsat finite by metis
   have consistent-interp (Ia \cup \{Neq (Min \ atms)\}) unfolding consistent-interp-def
     by (metis Int-iff Min-in Un-iff atm-of-uninus atms cons consistent-interp-def disj empty-iff
      f in-atms-of-s-decomp insert-iff literal.distinct(1) literal.exhaust-sel literal.sel(2)
       uminus-Neg)
  moreover have atms-of-ms \psi = Set.remove (Min atms) atms \cup atms-of-s (Ia \cup \{Neq (Min atms)\})
      using \langle atms-of-ms \ \psi = Set.remove \ (Min \ atms) \ atms \cup \ atms-of-s \ (Ia \cup \{Pos \ (Min \ atms)\}) \rangle by
blast
   moreover have disj': Set.remove (Min \ atms) atms \cap atms-of-s (Ia \cup \{Neg \ (Min \ atms)\}) = \{\}
     using disj by auto
   moreover have finite (Set.remove (Min atms) atms) using f by (simp add: remove-def)
```

```
ultimately have subtree2: partial-interps (build-sem-tree (Set.remove (Min atms) atms) \psi)
       (Ia \cup \{Neg \ (Min \ atms)\}) \ \psi
     using IH2[of\ Ia \cup \{Neg\ (Min\ (atms))\}] atms f\ unsat\ finite\ by\ metis
   then have ?case
     using IH1 subtree1 subtree2 f local.finite unsat atms by simp
 ultimately show ?case by metis
qed
{\bf lemma}\ partial\ interps\ build\ sem\ tree\ atms:
 fixes \psi :: 'v :: linorder \ clauses \ and \ p :: 'v \ literal \ list
 assumes unsat: unsatisfiable \psi and finite: finite \psi
 shows partial-interps (build-sem-tree (atms-of-ms \psi) \psi) {} \psi
proof -
 have consistent-interp {} unfolding consistent-interp-def by auto
 moreover have atms-of-ms \psi = atms-of-ms \psi \cup atms-of-s \{\} unfolding atms-of-s-def by auto
 moreover have atms-of-ms \psi \cap atms-of-s \{\} = \{\} unfolding atms-of-s-def by auto
 moreover have finite (atms-of-ms \psi) unfolding atms-of-ms-def using finite by simp
 ultimately show partial-interps (build-sem-tree (atms-of-ms \psi) \psi) {} \psi
   using partial-interps-build-sem-tree-atms-general of \psi {} atms-of-ms \psi] assms by metis
qed
lemma can-decrease-count:
 fixes \psi'' :: 'v \ clauses \times ('v \ clause \times 'v \ clause \times 'v) \ set
 assumes count \chi L = n
 and L \in \# \chi and \chi \in fst \psi
 shows \exists \psi' \chi'. inference^{**} \psi \psi' \wedge \chi' \in fst \psi' \wedge (\forall L. L \in \# \chi \longleftrightarrow L \in \# \chi')
               \wedge \ count \ \chi' \ L = 1
               \land (\forall \varphi. \ \varphi \in \mathit{fst} \ \psi \longrightarrow \varphi \in \mathit{fst} \ \psi')
               using assms
proof (induct n arbitrary: \chi \psi)
  case \theta
  then show ?case by (simp add: not-in-iff[symmetric])
next
  case (Suc n \chi)
  note IH = this(1) and count = this(2) and L = this(3) and \chi = this(4)
   {
    assume n = 0
    then have inference^{**} \psi \psi
    and \chi \in fst \ \psi
    and \forall L. (L \in \# \chi) \longleftrightarrow (L \in \# \chi)
    and count \chi L = (1::nat)
    and \forall \varphi. \ \varphi \in fst \ \psi \longrightarrow \varphi \in fst \ \psi
      by (auto simp add: count L \chi)
    then have ?case by metis
  }
  moreover {
    assume n > 0
    then have \exists C. \chi = C + \{\#L, L\#\}
       by (smt L Suc-eq-plus1-left add.left-commute add-diff-cancel-left' add-diff-cancel-right'
         count-greater-zero-iff count-single local.count multi-member-split plus-multiset.rep-eq)
```

```
then obtain C where C: \chi = C + \{\#L, L\#\} by metis
     let ?\chi' = C + \{\#L\#\}
     let ?\psi' = (fst \ \psi \cup \{?\chi'\}, \ snd \ \psi)
     have \varphi: \forall \varphi \in \mathit{fst} \ \psi. (\varphi \in \mathit{fst} \ \psi \lor \varphi \neq ?\chi') \longleftrightarrow \varphi \in \mathit{fst} ?\psi' unfolding C by \mathit{auto}
     have inf: inference \psi ?\psi'
       using C factoring \chi prod.collapse union-commute inference-step by metis
     moreover have count': count ?\chi' L = n using C count by auto
     moreover have L\chi': L \in \# ?\chi' by auto
     moreover have \chi'\psi': ?\chi' \in fst ?\psi' by auto
     ultimately obtain \psi'' and \chi''
     where
       inference^{**} ?\psi' \psi'' and
       \alpha: \chi'' \in fst \ \psi'' and
       \forall La. (La \in \# ?\chi') \longleftrightarrow (La \in \# \chi'') and
       \beta: count \chi'' L = (1::nat) and
       \varphi' : \forall \varphi. \ \varphi \in fst \ ?\psi' \longrightarrow \varphi \in fst \ \psi'' and
       I\chi: I \models ?\chi' \longleftrightarrow I \models \chi'' and
       tot: \forall I'. \ total\text{-}over\text{-}m \ I' \{?\chi'\} \longrightarrow total\text{-}over\text{-}m \ I' \{\chi''\}
       using IH[of ?\chi' ?\psi'] count' L\chi' \chi'\psi' by blast
     then have inference^{**} \psi \psi''
     and \forall La. (La \in \# \chi) \longleftrightarrow (La \in \# \chi'')
     using inf unfolding C by auto
     moreover have \forall \varphi. \varphi \in \mathit{fst} \ \psi \longrightarrow \varphi \in \mathit{fst} \ \psi'' \ \text{using} \ \varphi \ \varphi' \ \text{by} \ \mathit{metis}
     moreover have I \models \chi \longleftrightarrow I \models \chi'' using I\chi unfolding true-cls-def C by auto
     moreover have \forall I'. total-over-m I' \{\chi\} \longrightarrow total-over-m I' \{\chi''\}
       using tot unfolding C total-over-m-def by auto
     ultimately have ?case using \varphi \varphi' \alpha \beta by metis
  ultimately show ?case by auto
qed
lemma can-decrease-tree-size:
  fixes \psi :: 'v \text{ state} and tree :: 'v \text{ sem-tree}
  assumes finite (fst \psi) and already-used-inv \psi
  and partial-interps tree I (fst \psi)
  shows \exists (tree':: 'v sem-tree) \psi'. inference** \psi \psi' \wedge partial-interps tree' I (fst \psi')
              \land (sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0)
  using assms
proof (induct arbitrary: I rule: sem-tree-size)
  case (bigger xs I) note IH = this(1) and finite = this(2) and a-u-i = this(3) and part = this(4)
    assume sem-tree-size xs = 0
    then have ?case using part by blast
  moreover {
    assume sn\theta: sem-tree-size xs > \theta
    obtain ag ad v where xs: xs = Node \ v \ ag \ ad \ using \ sn\theta \ by \ (cases \ xs, \ auto)
      assume sem-tree-size ag = 0 and sem-tree-size ad = 0
      then have ag: ag = Leaf and ad: ad = Leaf by (cases ag, auto) (cases ad, auto)
      then obtain \chi \chi' where
```

```
\chi: \neg I \cup \{Pos\ v\} \models \chi and
  tot \chi: total-over-m (I \cup \{Pos\ v\})\ \{\chi\} and
  \chi\psi: \chi\in fst\ \psi and
  \chi': \neg I \cup \{Neg\ v\} \models \chi' and
  tot\chi': total-over-m (I \cup \{Neg\ v\})\ \{\chi'\} and
  \chi'\psi \colon \chi' \in fst \ \psi
  using part unfolding xs by auto
have Posv: \neg Pos\ v \in \#\ \chi\ \mathbf{using}\ \chi\ \mathbf{unfolding}\ true\text{-}cls\text{-}def\ true\text{-}lit\text{-}def\ \mathbf{by}\ auto
have Negv: \neg Neg\ v \in \#\ \chi' using \chi' unfolding true-cls-def true-lit-def by auto
{
 assume Neg\chi: \neg Neg\ v \in \#\ \chi
 have \neg I \models \chi using \chi Posv unfolding true-cls-def true-lit-def by auto
  moreover have total-over-m I \{\chi\}
    using Posv Neg\chi atm-imp-pos-or-neg-lit tot\chi unfolding total-over-m-def total-over-set-def
    by fastforce
  ultimately have partial-interps Leaf I (fst \psi)
  and sem-tree-size Leaf < sem-tree-size xs
  and inference^{**} \psi \psi
    unfolding xs by (auto simp add: \chi\psi)
moreover {
  assume Pos\chi: \neg Pos\ v \in \#\ \chi'
 then have I\chi: \neg I \models \chi' using \chi' Posv unfolding true-cls-def true-lit-def by auto
  moreover have total-over-m I \{\chi'\}
    using Negv Pos\chi atm-imp-pos-or-neg-lit tot\chi'
    unfolding total-over-m-def total-over-set-def by fastforce
  ultimately have partial-interps Leaf I (fst \psi) and
    sem-tree-size Leaf < sem-tree-size xs and
    inference^{**} \psi \psi
    using \chi'\psi I\chi unfolding xs by auto
}
moreover {
  assume neg: Neg v \in \# \chi and pos: Pos v \in \# \chi'
  then obtain \psi' \chi 2 where inf: rtranclp inference \psi \psi' and \chi 2incl: \chi 2 \in \mathit{fst} \ \psi'
    and \chi\chi 2-incl: \forall L. L \in \# \chi \longleftrightarrow L \in \# \chi 2
    and count \chi 2: count \chi 2 (Neg v) = 1
    and \varphi: \forall \varphi: \forall v \text{ literal multiset. } \varphi \in fst \ \psi \longrightarrow \varphi \in fst \ \psi'
    and I\chi: I \models \chi \longleftrightarrow I \models \chi 2
    and tot-imp\chi: \forall I'. total-over-m I' \{\chi\} \longrightarrow total-over-m I' \{\chi 2\}
    using can-decrease-count of \chi Neg v count \chi (Neg v) \psi I \chi \psi \chi' \psi by auto
  have \chi' \in fst \ \psi' by (simp \ add: \chi'\psi \ \varphi)
  with pos
  obtain \psi'' \chi 2' where
  inf': inference^{**} \psi' \psi''
  and \chi 2'-incl: \chi 2' \in fst \psi''
  and \chi'\chi 2-incl: \forall L::'v \ literal. \ (L \in \# \chi') = (L \in \# \chi 2')
  and count\chi 2': count \chi 2' (Pos v) = (1::nat)
  and \varphi': \forall \varphi::'v literal multiset. \varphi \in fst \ \psi' \longrightarrow \varphi \in fst \ \psi''
  and I\chi': I \models \chi' \longleftrightarrow I \models \chi 2'
  and tot-imp\chi': \forall I'. total-over-m I'\{\chi'\} \longrightarrow total-over-m I'\{\chi 2'\}
  using can-decrease-count [of \chi' Pos v count \chi' (Pos v) \psi' I] by auto
  obtain C where \chi 2: \chi 2 = C + \{ \# Neg \ v \# \} and negC: Neg \ v \notin \# \ C and posC: Pos \ v \notin \# \ C
    proof -
```

```
have \bigwedge m. Suc 0 – count m (Neg v) = count (\chi 2 – m) (Neg v)
     by (simp add: count\chi 2)
    then show ?thesis
      using that by (metis (no-types) One-nat-def Posv Suc-inject Suc-pred \chi\chi 2-incl
        count-diff count-single insert-DiffM2 mem-Collect-eq multi-member-skip neg
        not-gr0 set-mset-def union-commute)
  qed
obtain C' where
  \chi 2' : \chi 2' = C' + \{ \# Pos \ v \# \}  and
  posC': Pos \ v \notin \# \ C' and
  negC': Neg\ v \notin \#\ C'
  proof -
    assume a1: \bigwedge C'. [\chi 2' = C' + \{\# Pos \ v\#\}; Pos \ v \notin \# C'; Neg \ v \notin \# C'] \implies thesis
    have f2: \land n. (n::nat) - n = 0
     by simp
    have Neg v \notin \# \chi 2' - \{ \# Pos \ v \# \}
      using Negv \chi'\chi2-incl by (auto simp: not-in-iff)
    have count \{ \#Pos \ v\# \} \ (Pos \ v) = 1
     by simp
    then show ?thesis
     by (metis \chi'\chi 2-incl \langle Neg\ v \notin \#\ \chi 2' - \{\#Pos\ v\#\} \rangle a1 count \chi 2' count-diff f2
        insert-DiffM2 less-numeral-extra(3) mem-Collect-eq pos set-mset-def)
  qed
have already-used-inv \psi'
  using rtranclp-inference-preserves-already-used-inv[of \psi \psi'] a-u-i inf by blast
then have a-u-i-\psi'': already-used-inv \psi''
  using rtranclp-inference-preserves-already-used-inv a-u-i inf' unfolding tautology-def
  by simp
have totC: total-over-m \ I \ \{C\}
  using tot-imp\chi tot\chi tot-over-m-remove[of I Pos v C] negC posC unfolding \chi 2
  by (metis total-over-m-sum uminus-Neg uminus-of-uminus-id)
have totC': total-over-m \ I \ \{C'\}
  using tot-imp\chi' tot\chi' total-over-m-sum tot-over-m-remove[of I Neg v C'] negC' posC'
  unfolding \chi 2' by (metis total-over-m-sum uminus-Neg)
have \neg I \models C + C'
  using \chi I\chi \chi' I\chi' unfolding \chi2 \chi2' true-cls-def by auto
then have part-I-\psi''': partial-interps Leaf I (fst \psi'' \cup \{C + C'\})
  using totC \ totC' by simp
    (metis \leftarrow I \models C + C') \ atms-of-ms-singleton \ total-over-m-def \ total-over-m-sum)
  assume (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C) \notin snd\ \psi''
  then have inf": inference \psi'' (fst \psi'' \cup \{C + C'\}, snd \psi'' \cup \{(\chi 2', \chi 2)\})
    using add.commute \varphi' \chi 2incl \langle \chi 2' \in fst \psi'' \rangle unfolding \chi 2 \chi 2'
    by (metis prod.collapse inference-step resolution)
  have inference<sup>**</sup> \psi (fst \psi'' \cup \{C + C'\}, snd \psi'' \cup \{(\chi 2', \chi 2)\})
    using inf inf' inf'' rtranclp-trans by auto
  moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
  ultimately have ?case using part-I-\psi''' by (metis fst-conv)
moreover {
  assume a: (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C) \in snd\ \psi''
  then have (\exists \chi \in fst \ \psi''. \ (\forall I. \ total\text{-}over\text{-}m \ I \ \{C+C'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
```

```
\land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C))
             \vee \ tautology \ (C' + C)
       proof -
         obtain p where p: Pos p \in \# (\{\#Pos \ v\#\} + C') and
         n: Neg \ p \in \# (\{\#Neg \ v\#\} + C) \ and
         decomp: ((\exists \chi \in fst \psi'')
                    (\forall I. total\text{-}over\text{-}m \ I \ \{(\{\#Pos \ v\#\} + C') - \{\#Pos \ p\#\}\})
                            + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\})\}
                        \longrightarrow total\text{-}over\text{-}m\ I\ \{\chi\})
                    \vee tautology ((\{\#Pos \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C) - \{\#Neg \ p\#\})))
           using a by (blast intro: allE[OF a-u-i-\psi'' unfolded subsumes-def Ball-def],
               of (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C)])
          { assume p \neq v
           then have Pos \ p \in \# \ C' \land Neg \ p \in \# \ C \ using \ p \ n \ by force
           then have ?thesis unfolding Bex-def by auto
         }
         moreover {
           assume p = v
           then have ?thesis using decomp by (metis add.commute add-diff-cancel-left')
         }
         ultimately show ?thesis by auto
       qed
      moreover {
        assume \exists \chi \in fst \ \psi''. (\forall I. \ total\text{-}over\text{-}m \ I \ \{C+C'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
         \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C)
       then obtain \vartheta where \vartheta: \vartheta \in \mathit{fst} \ \psi'' and
         tot-\vartheta-CC': \forall I. total-over-m \ I \ \{C+C'\} \longrightarrow total-over-m \ I \ \{\vartheta\} and
         \vartheta-inv: \forall I. total-over-m I \{\vartheta\} \longrightarrow I \models \vartheta \longrightarrow I \models C' + C by blast
       have partial-interps Leaf I (fst \psi'')
         using tot - \vartheta - CC' \vartheta \vartheta - inv \ tot C \ tot C' \lor \neg I \models C + C' \lor \ total - over - m - sum \ by \ fastforce
       moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
       ultimately have ?case by (metis inf inf' rtranclp-trans)
      moreover {
       assume tautCC': tautology (C' + C)
       have total-over-m I \{C'+C\} using totC totC' total-over-m-sum by auto
       then have \neg tautology (C' + C)
         using \langle \neg I \models C + C' \rangle unfolding add.commute[of C C'] total-over-m-def
         unfolding tautology-def by auto
        then have False using tautCC' unfolding tautology-def by auto
      ultimately have ?case by auto
   ultimately have ?case by auto
  ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
moreover {
  assume size-ag: sem-tree-size ag > 0
  have sem-tree-size ag < sem-tree-size xs unfolding xs by auto
  moreover have partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi)
   and partad: partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
```

}

```
using part partial-interps.simps(2) unfolding xs by metis+
     moreover have sem-tree-size ag < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
       \longrightarrow ( partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi) \longrightarrow
       (\exists tree' \psi'. inference^{**} \psi \psi' \land partial-interps tree' (I \cup \{Pos v\}) (fst \psi')
         \land (sem-tree-size tree' < sem-tree-size ag \lor sem-tree-size ag = 0)))
         using IH by auto
     ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ \ where
       inf: inference^{**} \psi \psi'
       and part: partial-interps tree' (I \cup \{Pos\ v\}) (fst\ \psi')
       and size: sem-tree-size tree' < sem-tree-size ag \lor sem-tree-size ag = 0
       using finite part rtranclp.rtrancl-refl a-u-i by blast
     have partial-interps ad (I \cup \{Neg\ v\}) (fst \psi')
       using rtranclp-inference-preserve-partial-tree inf partad by metis
     then have partial-interps (Node v tree' ad) I (fst \psi') using part by auto
     then have ?case using inf size size-ag part unfolding xs by fastforce
   moreover {
     assume size-ad: sem-tree-size ad > 0
     have sem-tree-size ad < sem-tree-size xs unfolding xs by auto
     moreover have partag: partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi) and
       partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
       using part partial-interps.simps(2) unfolding xs by metis+
     moreover have sem-tree-size ad < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
       \longrightarrow ( partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
       \longrightarrow (\exists tree' \psi'. inference^{**} \psi \psi' \land partial-interps tree' (I \cup \{Neg v\}) (fst \psi')
           \land (sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0)))
       using IH by auto
     ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ \ where
       inf: inference** \psi \psi'
       and part: partial-interps tree' (I \cup \{Neg\ v\}) (fst\ \psi')
       and size: sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0
       using finite part rtranclp.rtrancl-refl a-u-i by blast
     have partial-interps ag (I \cup \{Pos\ v\}) (fst \psi')
       using rtranclp-inference-preserve-partial-tree inf partag by metis
     then have partial-interps (Node v ag tree') I (fst \psi') using part by auto
     then have ?case using inf size size-ad unfolding xs by fastforce
   ultimately have ?case by auto
 ultimately show ?case by auto
qed
lemma inference-completeness-inv:
 fixes \psi :: 'v :: linorder state
 assumes
   unsat: \neg satisfiable (fst \psi) and
   finite: finite (fst \psi) and
   a-u-v: already-used-inv <math>\psi
 shows \exists \psi'. (inference** \psi \psi' \land \{\#\} \in fst \psi')
 obtain tree where partial-interps tree \{\} (fst \psi)
   using partial-interps-build-sem-tree-atms assms by metis
  then show ?thesis
```

}

```
using unsat finite a-u-v
   proof (induct tree arbitrary: \psi rule: sem-tree-size)
     case (bigger tree \psi) note H = this
       fix \chi
       assume tree: tree = Leaf
       obtain \chi where \chi: \neg {} \models \chi and tot\chi: total-over-m {} {\chi} and \chi\psi: \chi \in \mathit{fst}\ \psi
         using H unfolding tree by auto
       moreover have \{\#\} = \chi
         using tot\chi unfolding total-over-m-def total-over-set-def by fastforce
       moreover have inference^{**} \psi \psi by auto
       ultimately have ?case by metis
     moreover {
       fix v tree1 tree2
       assume tree: tree = Node \ v \ tree1 \ tree2
       obtain
         tree' \psi' where inf: inference^{**} \psi \psi' and
         part': partial-interps tree' \{\} (fst \psi') and
         decrease: sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0
         using can-decrease-tree-size[of \psi] H(2,4,5) unfolding tautology-def by meson
       have sem-tree-size tree' < sem-tree-size tree using decrease unfolding tree by auto
       moreover have finite (fst \psi') using rtranclp-inference-preserves-finite inf H(4) by metis
       moreover have unsatisfiable (fst \psi')
         using inference-preserves-unsat inf bigger.prems(2) by blast
       moreover have already-used-inv \psi'
         using H(5) inf rtranclp-inference-preserves-already-used-inv[of \psi \psi'] by auto
       ultimately have ?case using inf rtranclp-trans part' H(1) by fastforce
     ultimately show ?case by (cases tree, auto)
  qed
qed
\mathbf{lemma}\ in ference\text{-}completeness:
 \mathbf{fixes}\ \psi :: \ 'v :: linorder\ state
 assumes unsat: \neg satisfiable (fst \psi)
 and finite: finite (fst \psi)
 and snd \psi = \{\}
 shows \exists \psi'. (rtranclp inference \psi \ \psi' \land \{\#\} \in fst \ \psi')
proof -
 have already-used-inv \psi unfolding assms by auto
 then show ?thesis using assms inference-completeness-inv by blast
qed
{f lemma}\ inference\mbox{-}soundness:
 fixes \psi :: 'v :: linorder state
 assumes rtrancly inference \psi \psi' and \{\#\} \in fst \psi'
 shows unsatisfiable (fst \psi)
 using assms by (meson rtranclp-inference-preserves-un-sat satisfiable-def true-cls-empty
   true-clss-def)
{\bf lemma}\ in ference - soundness- and - completeness:
fixes \psi :: 'v :: linorder state
assumes finite: finite (fst \psi)
and snd \ \psi = \{\}
```

```
shows (\exists \psi'. (inference^{**} \psi \psi' \land \{\#\} \in fst \psi')) \longleftrightarrow unsatisfiable (fst \psi) using assms inference-completeness inference-soundness by metis
```

13.4 Lemma about the simplified state

```
abbreviation simplified \psi \equiv (no\text{-step simplify } \psi)
lemma simplified-count:
 assumes simp: simplified \psi and \chi: \chi \in \psi
 shows count \chi L \leq 1
proof -
  {
   let ?\chi' = \chi - \{\#L, L\#\}
   assume count \chi L \geq 2
   then have f1: count (\chi - \{\#L, L\#\} + \{\#L, L\#\}) L = count \chi L
     by simp
   then have L \in \# \chi - \{\#L\#\}
     by (metis (no-types) add.left-neutral add-diff-cancel-left' count-union diff-diff-add
       diff-single-trivial insert-DiffM mem-Collect-eq multi-member-this not-gr0 set-mset-def)
   then have \chi': ?\chi' + {#L#} + {#L#} = \chi
     using f1 by (metis diff-diff-add diff-single-eq-union in-diffD)
   have \exists \psi'. simplify \psi \psi'
     by (metis (no-types, hide-lams) \chi \chi' add.commute factoring-imp-simplify union-assoc)
   then have False using simp by auto
 then show ?thesis by arith
qed
lemma simplified-no-both:
 assumes simp: simplified \psi and \chi: \chi \in \psi
 shows \neg (L \in \# \chi \land -L \in \# \chi)
proof (rule ccontr)
 assume \neg \neg (L \in \# \chi \land - L \in \# \chi)
 then have L \in \# \chi \land - L \in \# \chi by metis
 then obtain \chi' where \chi = \chi' + \{\#Pos (atm\text{-}of L)\#\} + \{\#Neg (atm\text{-}of L)\#\}
   by (metis Neg-atm-of-iff Pos-atm-of-iff diff-union-swap insert-DiffM2 uminus-Neg uminus-Pos)
 then show False using \chi simp tautology-deletion by fastforce
qed
lemma simplified-not-tautology:
 assumes simplified \{\psi\}
 shows \sim tautology \psi
proof (rule ccontr)
 assume <sup>∼</sup> ?thesis
 then obtain p where Pos p \in \# \psi \land Neg \ p \in \# \psi using tautology-decomp by metis
 then obtain \chi where \psi = \chi + \{\#Pos \ p\#\} + \{\#Neg \ p\#\}
   by (metis insert-noteq-member literal.distinct(1) multi-member-split)
 then have \sim simplified \{\psi\} by (auto intro: tautology-deletion)
 then show False using assms by auto
qed
lemma simplified-remove:
 assumes simplified \{\psi\}
 shows simplified \{\psi - \{\#l\#\}\}
proof (rule ccontr)
```

```
assume ns: \neg simplified \{ \psi - \{ \#l \# \} \}
  {
   assume \neg l \in \# \psi
   then have \psi - \{\#l\#\} = \psi by simp
   then have False using ns assms by auto
  moreover {
   assume l\psi: l\in\#\psi
   have A: \Lambda A. A \in \{\psi - \{\#l\#\}\} \longleftrightarrow A + \{\#l\#\} \in \{\psi\} by (auto simp add: l\psi)
   obtain l' where l': simplify { \psi - {\#l\#} } l' using ns by metis
   then have \exists l'. simplify \{\psi\} l'
     proof (induction rule: simplify.induct)
      case (tautology-deletion \ A \ P)
      have \{\#Neg\ P\#\} + (\{\#Pos\ P\#\} + (A + \{\#l\#\})) \in \{\psi\}
        by (metis (no-types) A add.commute tautology-deletion.hyps union-lcomm)
      then show ?thesis
         by (metis simplify.tautology-deletion[of A+\{\#l\#\}\ P\ \{\psi\}] add.commute)
      case (condensation A L)
      have A + \{\#L\#\} + \{\#L\#\} + \{\#l\#\} \in \{\psi\}
        using A condensation.hyps by blast
      then have \{\#L, L\#\} + (A + \{\#l\#\}) \in \{\psi\}
        by (metis (no-types) union-assoc union-commute)
      then show ?case
        using factoring-imp-simplify by blast
     next
      case (subsumption A B)
      then show ?case by blast
   then have False using assms(1) by blast
 ultimately show False by auto
qed
lemma in-simplified-simplified:
 assumes simp: simplified \psi and incl: \psi' \subseteq \psi
 shows simplified \psi'
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain \psi'' where simplify \psi' \psi'' by metis
   then have \exists l'. simplify \psi l'
     proof (induction rule: simplify.induct)
      case (tautology-deletion \ A \ P)
      then show ?thesis using simplify.tautology-deletion[of A P \psi] incl by blast
     next
      case (condensation A L)
      then show ?case using simplify.condensation[of A L \psi] incl by blast
     next
      case (subsumption A B)
      then show ?case using simplify.subsumption[of A \psi B] incl by auto
 then show False using assms(1) by blast
qed
```

```
lemma simplified-in:
 assumes simplified \psi
 and N \in \psi
 shows simplified \{N\}
 using assms by (metis Set.set-insert empty-subset in-simplified-simplified insert-mono)
lemma subsumes-imp-formula:
 assumes \psi \leq \# \varphi
 shows \{\psi\} \models p \varphi
 unfolding true-clss-cls-def apply auto
 using assms true-cls-mono-leD by blast
{\bf lemma}\ simplified\mbox{-}imp\mbox{-}distinct\mbox{-}mset\mbox{-}tauto:
 assumes simp: simplified \psi'
 shows distinct-mset-set \psi' and \forall \chi \in \psi'. \neg tautology \chi
proof -
 show \forall \chi \in \psi'. \neg tautology \chi
   using simp by (auto simp add: simplified-in simplified-not-tautology)
 show distinct-mset-set \psi'
   proof (rule ccontr)
     assume ¬?thesis
     then obtain \chi where \chi \in \psi' and \neg distinct\text{-mset}\ \chi unfolding distinct-mset-set-def by auto
     then obtain L where count \chi L \geq 2
       unfolding distinct-mset-def
       by (meson count-greater-eq-one-iff le-antisym simp simplified-count)
     then show False by (metis Suc-1 \langle \chi \in \psi' \rangle not-less-eq-eq simp simplified-count)
   qed
qed
lemma simplified-no-more-full1-simplified:
 assumes simplified \psi
 shows \neg full1 simplify \psi \psi'
 using assms unfolding full1-def by (meson tranclpD)
         Resolution and Invariants
13.5
inductive resolution :: 'v state \Rightarrow 'v state \Rightarrow bool where
full1-simp: full1 simplify N N' \Longrightarrow resolution (N, already-used) (N', already-used)
inferring: inference (N, already-used) (N', already-used') \Longrightarrow simplified N
 \implies full simplify N' N'' \implies resolution (N, already-used) (N'', already-used')
13.5.1
           Invariants
lemma resolution-finite:
 assumes resolution \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 using assms by (induct rule: resolution.induct)
   (auto simp add: full1-def full-def rtranclp-simplify-preserves-finite
     dest: tranclp-into-rtranclp inference-preserves-finite)
lemma rtranclp-resolution-finite:
 assumes resolution** \psi \psi' and finite (fst \psi)
 shows finite (fst \psi')
 using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite)
```

```
lemma resolution-finite-snd:
 assumes resolution \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms apply (induct rule: resolution.induct, auto simp add: inference-preserves-finite-snd)
 using inference-preserves-finite-snd snd-conv by metis
lemma rtranclp-resolution-finite-snd:
 assumes resolution** \psi \psi' and finite (snd \psi)
 shows finite (snd \psi')
 using assms by (induct rule: rtranclp-induct, auto simp add: resolution-finite-snd)
lemma resolution-always-simplified:
assumes resolution \psi \psi'
shows simplified (fst \psi')
using assms by (induct rule: resolution.induct)
  (auto\ simp\ add:\ full 1-def\ full-def)
lemma tranclp-resolution-always-simplified:
 assumes trancly resolution \psi \psi'
 shows simplified (fst \psi')
 using assms by (induct rule: tranclp.induct, auto simp add: resolution-always-simplified)
lemma resolution-atms-of:
 assumes resolution \psi \psi' and finite (fst \psi)
 shows atms-of-ms (fst \psi') \subseteq atms-of-ms (fst \psi)
  using assms apply (induct rule: resolution.induct)
   apply(simp add: rtranclp-simplify-atms-of-ms tranclp-into-rtranclp full1-def)
 by (metis (no-types, lifting) contra-subsetD fst-conv full-def
   inference-preserves-atms-of-ms rtranclp-simplify-atms-of-ms subsetI)
lemma rtranclp-resolution-atms-of:
 assumes resolution** \psi \psi' and finite (fst \psi)
 shows atms-of-ms (fst \psi') \subseteq atms-of-ms (fst \psi)
 using assms apply (induct rule: rtranclp-induct)
 {\bf using} \ {\it resolution-atms-of\ rtranclp-resolution-finite\ by\ blast} +
lemma resolution-include:
 assumes res: resolution \psi \psi' and finite: finite (fst \psi)
 shows fst \ \psi' \subseteq simple-clss \ (atms-of-ms \ (fst \ \psi))
proof -
 have finite': finite (fst \psi') using local finite res resolution-finite by blast
 have simplified (fst \psi') using res finite' resolution-always-simplified by blast
 then have fst \ \psi' \subseteq simple\text{-}clss \ (atms\text{-}of\text{-}ms \ (fst \ \psi'))
   using simplified-in-simple-clss finite' simplified-imp-distinct-mset-tauto of fst \psi' by auto
  moreover have atms-of-ms (fst \psi') \subseteq atms-of-ms (fst \psi)
   using res finite resolution-atms-of [of \psi \psi'] by auto
  ultimately show ?thesis by (meson atms-of-ms-finite local.finite order.trans rev-finite-subset
   simple-clss-mono)
qed
lemma rtranclp-resolution-include:
  assumes res: trancly resolution \psi \psi' and finite: finite (fst \psi)
 shows fst \ \psi' \subseteq simple\text{-}clss \ (atms\text{-}of\text{-}ms \ (fst \ \psi))
  using assms apply (induct rule: tranclp.induct)
   apply (simp add: resolution-include)
```

```
by (meson simple-clss-mono order-class.le-trans resolution-include
   rtranclp-resolution-atms-of rtranclp-resolution-finite tranclp-into-rtranclp)
{\bf abbreviation}\ already-used-all-simple
 :: ('a \ literal \ multiset \times 'a \ literal \ multiset) \ set \Rightarrow 'a \ set \Rightarrow bool \ where
already-used-all-simple already-used vars \equiv
(\forall (A, B) \in already\text{-}used. simplified \{A\} \land simplified \{B\} \land atms\text{-}of A \subseteq vars \land atms\text{-}of B \subseteq vars)
lemma already-used-all-simple-vars-incl:
 assumes vars \subseteq vars'
 shows already-used-all-simple a vars \implies already-used-all-simple a vars'
 using assms by fast
{\bf lemma}\ in ference-clause-preserves-already-used-all-simple:
 assumes inference-clause S S'
 and already-used-all-simple (snd S) vars
 and simplified (fst S)
 and atms-of-ms (fst S) \subseteq vars
 shows already-used-all-simple (snd (fst S \cup \{fst \ S'\}, snd \ S')) vars
 using assms
proof (induct rule: inference-clause.induct)
 case (factoring L C N already-used)
  then show ?case by (simp add: simplified-in factoring-imp-simplify)
next
  case (resolution P \ C \ N \ D \ already-used) note H = this
 show ?case apply clarify
   proof -
     \mathbf{fix} \ A \ B \ v
     assume (A, B) \in snd (fst (N, already-used))
       \cup \{fst \ (C + D, \ already\text{-}used \ \cup \ \{(\{\#Pos \ P\#\} + C, \{\#Neg \ P\#\} + D)\})\},\
          snd\ (C + D,\ already-used \cup \{(\{\#Pos\ P\#\} + C, \{\#Neg\ P\#\} + D)\}))
     then have (A, B) \in already-used \vee (A, B) = (\{\#Pos \ P\#\} + C, \{\#Neg \ P\#\} + D) by auto
     moreover {
       assume (A, B) \in already-used
       then have simplified \{A\} \land simplified \{B\} \land atms\text{-}of A \subseteq vars \land atms\text{-}of B \subseteq vars
         using H(4) by auto
     moreover {
       assume eq: (A, B) = (\{\#Pos \ P\#\} + C, \{\#Neg \ P\#\} + D)
       then have simplified \{A\} using simplified-in H(1,5) by auto
       moreover have simplified \{B\} using eq simplified-in H(2,5) by auto
       moreover have atms-of A \subseteq atms-of-ms N
         using eq H(1)
         using atms-of-atms-of-ms-mono[of A N] by auto
       moreover have atms-of B \subseteq atms-of-ms N
         using eq H(2) atms-of-atms-of-ms-mono[of B N] by auto
       ultimately have simplified \{A\} \land simplified \{B\} \land atms-of A \subseteq vars \land atms-of B \subseteq vars
         using H(6) by auto
     ultimately show simplified \{A\} \land simplified \{B\} \land atms-of A \subseteq vars \land atms-of B \subseteq vars
       by fast
   qed
qed
```

 ${\bf lemma}\ in ference-preserves-already-used-all-simple:$

```
assumes inference S S'
 and already-used-all-simple (snd S) vars
 and simplified (fst S)
 and atms-of-ms (fst \ S) \subseteq vars
 shows already-used-all-simple (snd S') vars
 using assms
proof (induct rule: inference.induct)
 case (inference-step S clause already-used)
 then show ?case
   using inference-clause-preserves-already-used-all-simple of S (clause, already-used) vars
   by auto
qed
lemma already-used-all-simple-inv:
 assumes resolution S S'
 and already-used-all-simple (snd S) vars
 and atms-of-ms (fst S) \subseteq vars
 shows already-used-all-simple (snd S') vars
 using assms
proof (induct rule: resolution.induct)
 case (full1-simp NN')
 then show ?case by simp
next
 case (inferring N already-used N' already-used' N'')
 then show already-used-all-simple (snd (N", already-used')) vars
   using inference-preserves-already-used-all-simple of (N, already-used) by simp
qed
lemma rtranclp-already-used-all-simple-inv:
 assumes resolution** S S'
 and already-used-all-simple (snd S) vars
 and atms-of-ms (fst S) \subseteq vars
 and finite (fst\ S)
 shows already-used-all-simple (snd S') vars
 using assms
proof (induct rule: rtranclp-induct)
 case base
 then show ?case by simp
next
 case (step S'S'') note infstar = this(1) and IH = this(3) and res = this(2) and
   already = this(4) and atms = this(5) and finite = this(6)
 have already-used-all-simple (snd S') vars using IH already atms finite by simp
 moreover have atms-of-ms (fst S') \subseteq atms-of-ms (fst S)
   by (simp add: infstar local.finite rtranclp-resolution-atms-of)
 then have atms-of-ms (fst S') \subseteq vars using atms by auto
 ultimately show ?case
   using already-used-all-simple-inv[OF res] by simp
lemma inference-clause-simplified-already-used-subset:
 assumes inference-clause S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: inference-clause.induct, auto)
 \mathbf{using} \ \mathit{factoring-imp-simplify} \ \mathbf{by} \ \mathit{blast}
```

```
{\bf lemma}\ in ference-simplified-already-used-subset:
 assumes inference S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: inference.induct)
 by (metis inference-clause-simplified-already-used-subset snd-conv)
lemma resolution-simplified-already-used-subset:
 assumes resolution S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: resolution.induct, simp-all add: full1-def)
 apply (meson tranclpD)
 by (metis inference-simplified-already-used-subset fst-conv snd-conv)
lemma tranclp-resolution-simplified-already-used-subset:
 assumes trancly resolution S S'
 and simplified (fst S)
 shows snd S \subset snd S'
 using assms apply (induct rule: tranclp.induct)
  using resolution-simplified-already-used-subset apply metis
  \mathbf{by} \ (meson \ transler-resolution-always-simplified \ resolution-simplified-already-used-subset 
   less-trans)
abbreviation already-used-top vars \equiv simple-clss vars \times simple-clss vars
{\bf lemma}\ already-used-all-simple-in-already-used-top:
 assumes already-used-all-simple s vars and finite vars
 shows s \subseteq already-used-top vars
proof
 \mathbf{fix} \ x
 assume x-s: x \in s
 obtain A B where x: x = (A, B) by (cases x, auto)
 then have simplified \{A\} and atms-of A \subseteq vars using assms(1) x-s by fastforce+
  then have A: A \in simple\text{-}clss \ vars
   using simple-clss-mono[of atms-of A vars] \times assms(2)
   simplified-imp-distinct-mset-tauto[of {A}]
   distinct\text{-}mset\text{-}not\text{-}tautology\text{-}implies\text{-}in\text{-}simple\text{-}clss\ \mathbf{by}\ fast
  moreover have simplified \{B\} and atms-of B \subseteq vars using assms(1) x-s x by fast+
  then have B: B \in simple\text{-}clss \ vars
   using simplified-imp-distinct-mset-tauto[of {B}]
   distinct-mset-not-tautology-implies-in-simple-clss
   simple-clss-mono[of atms-of B vars] \ x \ assms(2) \ \mathbf{by} \ fast
  ultimately show x \in simple\text{-}clss\ vars \times simple\text{-}clss\ vars
   unfolding x by auto
qed
lemma already-used-top-finite:
 assumes finite vars
 shows finite (already-used-top vars)
 using simple-clss-finite assms by auto
lemma already-used-top-increasing:
 assumes var \subseteq var' and finite var'
```

```
shows already-used-top var \subseteq already-used-top var'
 using assms simple-clss-mono by auto
lemma already-used-all-simple-finite:
 fixes s :: ('a \ literal \ multiset \times 'a \ literal \ multiset) \ set \ {\bf and} \ vars :: 'a \ set
 assumes already-used-all-simple s vars and finite vars
 shows finite s
 using assms already-used-all-simple-in-already-used-top[OF assms(1)]
 rev-finite-subset[OF already-used-top-finite[of vars]] by auto
abbreviation card-simple vars \psi \equiv card (already-used-top vars -\psi)
lemma resolution-card-simple-decreasing:
 assumes res: resolution \psi \psi'
 and a-u-s: already-used-all-simple (snd \psi) vars
 and finite-v: finite vars
 and finite-fst: finite (fst \psi)
 and finite-snd: finite (snd \psi)
 and simp: simplified (fst \psi)
 and atms-of-ms (fst \psi) \subseteq vars
 shows card-simple vars (snd \psi') < card-simple vars (snd \psi)
proof -
 let ?vars = vars
 let ?top = simple-clss ?vars \times simple-clss ?vars
 have 1: card-simple vars (snd \psi) = card ?top - card (snd \psi)
   using card-Diff-subset finite-snd already-used-all-simple-in-already-used-top[OF a-u-s]
   finite-v by metis
 have a-u-s': already-used-all-simple (snd \psi') vars
   using already-used-all-simple-inv res a-u-s assms(7) by blast
 have f: finite (snd \psi') using already-used-all-simple-finite a-u-s' finite-v by auto
 have 2: card-simple vars (snd \psi') = card ?top - card (snd \psi')
   using card-Diff-subset[OF\ f] already-used-all-simple-in-already-used-top[OF\ a-u-s'\ finite-v]
 have card (already-used-top\ vars) \ge card\ (snd\ \psi')
   using already-used-all-simple-in-already-used-top[OF a-u-s' finite-v]
   card-mono[of\ already-used-top\ vars\ snd\ \psi']\ already-used-top-finite[OF\ finite-v]\ by\ metis
  then show ?thesis
   using psubset-card-mono [OF f resolution-simplified-already-used-subset [OF res simp]]
   unfolding 1\ 2 by linarith
qed
lemma tranclp-resolution-card-simple-decreasing:
 assumes trancly resolution \psi \psi' and finite-fst: finite (fst \psi)
 and already-used-all-simple (snd \psi) vars
 and atms-of-ms (fst \ \psi) \subseteq vars
 and finite-v: finite vars
 and finite-snd: finite (snd \psi)
 and simplified (fst \psi)
 shows card-simple vars (snd \psi') < card-simple vars (snd \psi)
 using assms
proof (induct rule: tranclp-induct)
 case (base \psi')
 then show ?case by (simp add: resolution-card-simple-decreasing)
next
```

```
case (step \psi' \psi'') note res = this(1) and res' = this(2) and a-u-s = this(5) and
   atms = this(6) and f-v = this(7) and f-fst = this(4) and H = this
  then have card-simple vars (snd \psi') < card-simple vars (snd \psi) by auto
  moreover have a-u-s': already-used-all-simple (snd \psi') vars
   using rtranclp-already-used-all-simple-inv[OF tranclp-into-rtranclp[OF res] a-u-s atms f-fst].
 have finite (fst \psi')
   by (meson finite-fst res rtranclp-resolution-finite tranclp-into-rtranclp)
 moreover have finite (snd \psi') using already-used-all-simple-finite [OF a-u-s' f-v].
 moreover have simplified (fst \psi') using res tranclp-resolution-always-simplified by blast
 moreover have atms-of-ms (fst \psi') \subseteq vars
   by (meson atms f-fst order.trans res rtranclp-resolution-atms-of tranclp-into-rtranclp)
 ultimately show ?case
   using resolution-card-simple-decreasing [OF res' a-u-s' f-v] f-v
   less-trans[of card-simple vars (snd \psi'') card-simple vars (snd \psi')
     card-simple vars (snd \psi)]
   by blast
qed
lemma tranclp-resolution-card-simple-decreasing-2:
 assumes trancly resolution \psi \psi'
 and finite-fst: finite (fst \psi)
 and empty-snd: snd \psi = \{\}
 and simplified (fst \psi)
 shows card-simple (atms-of-ms (fst \psi)) (snd \psi') < card-simple (atms-of-ms (fst \psi)) (snd \psi)
proof -
 let ?vars = (atms-of-ms\ (fst\ \psi))
 have already-used-all-simple (snd \psi) ?vars unfolding empty-snd by auto
 moreover have atms-of-ms (fst \psi) \subseteq ?vars by auto
 moreover have finite-v: finite ?vars using finite-fst by auto
 moreover have finite-snd: finite (snd \psi) unfolding empty-snd by auto
 ultimately show ?thesis
   using assms(1,2,4) tranclp-resolution-card-simple-decreasing of \psi \psi' by presburger
qed
          well-foundness if the relation
13.5.2
{f lemma} {\it wf-simplified-resolution}:
 assumes f-vars: finite vars
 shows wf \{(y: 'v: linorder state, x). (atms-of-ms (fst x) <math>\subseteq vars \land simplified (fst x)\}
   \land finite (snd x) \land finite (fst x) \land already-used-all-simple (snd x) vars) \land resolution x y}
proof -
  {
   \mathbf{fix} \ a \ b :: 'v:: linorder \ state
   assume (b, a) \in \{(y, x). (atms-of-ms (fst x) \subseteq vars \land simplified (fst x) \land finite (snd x)\}
     \land finite (fst x) \land already-used-all-simple (snd x) vars) \land resolution x y}
   then have
     atms-of-ms (fst a) \subseteq vars and
     simp: simplified (fst a) and
     finite (snd a) and
     finite (fst a) and
     a-u-v: already-used-all-simple (snd a) vars and
     res: resolution a b by auto
   have finite (already-used-top vars) using f-vars already-used-top-finite by blast
   moreover have already-used-top vars \subseteq already-used-top vars by auto
   moreover have snd b \subseteq already-used-top vars
```

```
using already-used-all-simple-in-already-used-top[of snd b vars]
     a-u-v already-used-all-simple-inv[OF\ res] <math>\langle finite\ (fst\ a) \rangle\ \langle atms-of-ms\ (fst\ a) \subseteq vars\rangle\ f-vars
     by presburger
   moreover have snd \ a \subset snd \ b using resolution-simplified-already-used-subset[OF res simp].
   ultimately have finite (already-used-top vars) \land already-used-top vars \subseteq already-used-top vars
     \land snd b \subseteq already-used-top vars <math>\land snd a \subseteq snd b by metis
 then show ?thesis using wf-bounded-set[of \{(y:: 'v:: linorder \ state, \ x).
   (atms-of-ms\ (fst\ x)\subseteq vars
   \land simplified (fst x) \land finite (snd x) \land finite (fst x)\land already-used-all-simple (snd x) vars)
   \land resolution x y \land \land already-used-top vars snd \mid by auto
qed
lemma wf-simplified-resolution':
 assumes f-vars: finite vars
 shows wf \{(y:: 'v:: linorder state, x). (atms-of-ms (fst x) \subseteq vars \land \neg simplified (fst x)\}
   \land finite (snd\ x) \land finite\ (fst\ x) \land already-used-all-simple\ (snd\ x)\ vars) \land resolution\ x\ y
 unfolding wf-def
  apply (simp add: resolution-always-simplified)
 by (metis (mono-tags, hide-lams) fst-conv resolution-always-simplified)
lemma wf-resolution:
 assumes f-vars: finite vars
 shows wf (\{(y:: 'v:: linorder state, x). (atms-of-ms (fst x) \subseteq vars \land simplified (fst x)\}
       \land finite (snd x) \land finite (fst x) \land already-used-all-simple (snd x) vars) \land resolution x y}
   \cup \{(y, x). (atms\text{-}of\text{-}ms (fst \ x) \subseteq vars \land \neg simplified (fst \ x) \land finite (snd \ x) \land finite (fst \ x) \}
      \land already-used-all-simple (snd x) vars) \land resolution x y}) (is wf (?R \cup ?S))
proof -
 have Domain ?R Int Range ?S = \{\} using resolution-always-simplified by auto blast
 then show wf (?R \cup ?S)
   using wf-simplified-resolution[OF f-vars] wf-simplified-resolution'[OF f-vars] wf-Un[of ?R ?S]
   by fast
qed
{\bf lemma}\ rtrancp\text{-}simplify\text{-}already\text{-}used\text{-}inv:
 assumes simplify** S S'
 and already-used-inv (S, N)
 shows already-used-inv (S', N)
 using assms apply induction
 using simplify-preserves-already-used-inv by fast+
lemma full1-simplify-already-used-inv:
 assumes full1 simplify S S'
 and already-used-inv (S, N)
 shows already-used-inv (S', N)
 \textbf{using} \ assms \ tranclp-into-rtranclp[of \ simplify \ S \ S'] \ rtrancp-simplify-already-used-inv}
 unfolding full1-def by fast
lemma full-simplify-already-used-inv:
 assumes full simplify S S'
 and already-used-inv (S, N)
 shows already-used-inv (S', N)
  using assms rtrancp-simplify-already-used-inv unfolding full-def by fast
lemma resolution-already-used-inv:
 assumes resolution S S'
```

```
and already-used-inv S
 shows already-used-inv S'
 using assms
proof induction
 case (full1-simp N N' already-used)
 then show ?case using full1-simplify-already-used-inv by fast
next
 case (inferring N already-used N' already-used' N''') note inf = this(1) and full = this(3) and
   a-u-v = this(4)
 then show ?case
   using inference-preserves-already-used-inv[OF inf a-u-v] full-simplify-already-used-inv full
qed
lemma rtranclp-resolution-already-used-inv:
 assumes resolution** S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms apply induction
 using resolution-already-used-inv by fast+
lemma rtanclp-simplify-preserves-unsat:
 assumes simplify^{**} \psi \psi'
 shows satisfiable \psi' \longrightarrow satisfiable \ \psi
 using assms apply induction
 \mathbf{using} \ \mathit{simplify-clause-preserves-sat} \ \mathbf{by} \ \mathit{blast} +
lemma full1-simplify-preserves-unsat:
 assumes full1 simplify \psi \psi'
 shows satisfiable \psi' \longrightarrow satisfiable \ \psi
 using assms rtanclp-simplify-preserves-unsat[of \psi \psi'] tranclp-into-rtranclp
 unfolding full1-def by metis
lemma full-simplify-preserves-unsat:
 assumes full simplify \psi \psi'
 shows satisfiable \psi' \longrightarrow satisfiable \psi
 using assms rtanclp-simplify-preserves-unsat of \psi \psi' unfolding full-def by metis
lemma resolution-preserves-unsat:
 assumes resolution \psi \psi'
 shows satisfiable (fst \psi') \longrightarrow satisfiable (fst \psi)
 using assms apply (induct rule: resolution.induct)
 using full1-simplify-preserves-unsat apply (metis fst-conv)
 using full-simplify-preserves-unsat simplify-preserves-unsat by fastforce
{\bf lemma}\ rtranclp\text{-}resolution\text{-}preserves\text{-}unsat:
 assumes resolution^{**} \psi \psi'
 shows satisfiable (fst \psi') \longrightarrow satisfiable (fst \psi)
 using assms apply induction
 using resolution-preserves-unsat by fast+
lemma rtranclp-simplify-preserve-partial-tree:
 assumes simplify** N N'
 and partial-interps t I N
 shows partial-interps t I N'
```

```
using assms apply (induction, simp)
  using simplify-preserve-partial-tree by metis
lemma\ full 1-simplify-preserve-partial-tree:
  assumes full1 simplify N N'
  and partial-interps t I N
  shows partial-interps t I N'
  \mathbf{using}\ assms\ rtranclp\text{-}simplify\text{-}preserve\text{-}partial\text{-}tree[of\ N\ N'\ t\ I]\ tranclp\text{-}into\text{-}rtranclp}
  unfolding full1-def by fast
lemma full-simplify-preserve-partial-tree:
  assumes full simplify N N'
 and partial-interps t I N
  shows partial-interps t I N'
  \mathbf{using}\ assms\ rtranclp\text{-}simplify\text{-}preserve\text{-}partial\text{-}tree[of\ N\ N'\ t\ I]\ tranclp\text{-}into\text{-}rtranclp}
  unfolding full-def by fast
lemma resolution-preserve-partial-tree:
  assumes resolution S S'
 and partial-interps t \ I \ (fst \ S)
 shows partial-interps t I (fst S')
  using assms apply induction
   using full1-simplify-preserve-partial-tree fst-conv apply metis
  using full-simplify-preserve-partial-tree inference-preserve-partial-tree by fastforce
{\bf lemma}\ rtranclp\text{-}resolution\text{-}preserve\text{-}partial\text{-}tree:}
  assumes resolution** S S'
 and partial-interps t I (fst S)
 shows partial-interps t I (fst S')
  using assms apply induction
  using resolution-preserve-partial-tree by fast+
  {f thm} nat-less-induct nat.induct
lemma nat-ge-induct[case-names 0 Suc]:
  assumes P \theta
 and (\bigwedge n. (\bigwedge m. m < Suc \ n \Longrightarrow P \ m) \Longrightarrow P \ (Suc \ n))
  \mathbf{using} \ assms \ \mathbf{apply} \ (induct \ rule: \ nat\text{-}less\text{-}induct)
 by (rename-tac n, case-tac n) auto
lemma wf-always-more-step-False:
 assumes wf R
 shows (\forall x. \exists z. (z, x) \in R) \Longrightarrow False
 using assms unfolding wf-def by (meson Domain.DomainI assms wfE-min)
lemma finite-finite-mset-element-of-mset[simp]:
 assumes finite\ N
 shows finite \{f \varphi L | \varphi L. \varphi \in N \land L \in \# \varphi \land P \varphi L\}
  using assms
proof (induction N rule: finite-induct)
  case empty
  show ?case by auto
next
  case (insert x N) note finite = this(1) and IH = this(3)
 \mathbf{have}\ \{f\ \varphi\ L\ | \varphi\ L.\ (\varphi = x \lor \varphi \in N) \land L \in \#\ \varphi \land P\ \varphi\ L\} \subseteq \{f\ x\ L\ |\ L.\ L \in \#\ x \land P\ x\ L\}
```

```
\cup \{f \varphi L | \varphi L. \varphi \in N \land L \in \# \varphi \land P \varphi L\}  by auto
  moreover have finite \{f \ x \ L \mid L. \ L \in \# \ x\} by auto
  ultimately show ?case using IH finite-subset by fastforce
qed
 value card
 value filter-mset
value \{\#count \ \varphi \ L \ | L \in \# \ \varphi. \ 2 \leq count \ \varphi \ L\#\}
value (\lambda \varphi. msetsum \{ \#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \# \})
syntax
  -comprehension1'-mset :: 'a \Rightarrow 'b \Rightarrow 'b \text{ multiset} \Rightarrow 'a \text{ multiset}
      ((\{\#\text{-/.} - : set of \text{-}\#\}))
translations
  \{\#e.\ x:\ set of\ M\#\} == CONST\ set-mset\ (CONST\ image-mset\ (\%x.\ e)\ M)
value \{\# \ a. \ a : set of \ \{\#1,1,2::int\#\}\#\} = \{1,2\}
definition sum-count-ge-2 :: 'a multiset set \Rightarrow nat (\Xi) where
sum-count-ge-2 \equiv folding.F(\lambda \varphi. op + (msetsum \{\#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \#\})) 0
interpretation sum-count-ge-2:
 folding (\lambda \varphi. op + (msetsum \{\#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \#\})) 0
rewrites
 folding.F (\lambda \varphi. op +(msetsum {#count \varphi L | L \in \# \varphi. 2 \leq count \varphi L \# \})) 0 = sum\text{-}count\text{-}qe\text{-}2
proof -
  show folding (\lambda \varphi. op + (msetsum (image-mset (count \varphi) \{ \# L \in \# \varphi. 2 \leq count \varphi L \# \})))
    by standard auto
  then interpret sum-count-ge-2:
    folding (\lambda \varphi. op + (msetsum \{\#count \varphi L | L \in \#\varphi. 2 \leq count \varphi L \#\})) 0.
  show folding. F(\lambda \varphi. op + (msetsum (image-mset (count \varphi) \{ \# L \in \# \varphi. 2 \leq count \varphi L \# \}))) 0
    = sum\text{-}count\text{-}ge\text{-}2 by (auto simp add: sum\text{-}count\text{-}ge\text{-}2\text{-}def)
qed
lemma finite-incl-le-setsum:
finite (B::'a \ multiset \ set) \Longrightarrow A \subseteq B \Longrightarrow \Xi \ A < \Xi \ B
proof (induction arbitrary: A rule: finite-induct)
  case empty
  then show ?case by simp
  case (insert a F) note finite = this(1) and aF = this(2) and IH = this(3) and AF = this(4)
  \mathbf{show} ?case
    proof (cases \ a \in A)
      assume a \notin A
      then have A \subseteq F using AF by auto
      then show ?case using IH[of A] by (simp add: aF local.finite)
      assume aA: a \in A
      then have A - \{a\} \subseteq F using AF by auto
      then have \Xi(A - \{a\}) \leq \Xi F using IH by blast
      then show ?case
         proof -
           obtain nn :: nat \Rightarrow nat \Rightarrow nat where
             \forall x0 \ x1. \ (\exists v2. \ x0 = x1 + v2) = (x0 = x1 + nn \ x0 \ x1)
```

```
by moura
         then have \Xi F = \Xi (A - \{a\}) + nn (\Xi F) (\Xi (A - \{a\}))
           by (meson \ \langle \Xi \ (A - \{a\}) \le \Xi \ F \rangle \ le-iff-add)
         then show ?thesis
           by (metis (no-types) le-iff-add aA aF add.assoc finite.insertI finite-subset
             insert.prems local.finite sum-count-ge-2.insert sum-count-ge-2.remove)
       qed
   \mathbf{qed}
qed
{\bf lemma}\ simplify\mbox{-}finite\mbox{-}measure\mbox{-}decrease:
 simplify N N' \Longrightarrow finite N \Longrightarrow card N' + \Xi N' < card N + \Xi N
proof (induction rule: simplify.induct)
  case (tautology-deletion A P) note an = this(1) and fin = this(2)
 let ?N' = N - \{A + \{\#Pos\ P\#\} + \{\#Neg\ P\#\}\}\
 have card ?N' < card N
   by (meson card-Diff1-less tautology-deletion.hyps tautology-deletion.prems)
 moreover have ?N' \subseteq N by auto
  then have sum-count-qe-2 ?N' \le sum-count-qe-2 N using finite-incl-le-setsum[OF fin] by blast
  ultimately show ?case by linarith
next
 case (condensation A L) note AN = this(1) and fin = this(2)
 let ?C' = A + \{\#L\#\}
 let ?C = A + \{\#L\#\} + \{\#L\#\}
 let ?N' = N - \{?C\} \cup \{?C'\}
 have card ?N' < card N
   using AN by (metis (no-types, lifting) Diff-subset Un-empty-right Un-insert-right card.remove
     card-insert-if card-mono fin finite-Diff order-refl)
 moreover have \Xi \{?C'\} < \Xi \{?C\}
   proof -
     have mset-decomp:
       \{\#\ La\in\#\ A.\ (L=La\longrightarrow La\in\#\ A)\ \land\ (L\neq La\longrightarrow 2\leq count\ A\ La)\#\}
       = \{ \# La \in \# A. L \neq La \land 2 \leq count A La \# \} +
         \{\# La \in \# A. L = La \land Suc \ 0 \leq count \ A \ L\#\}
         by (auto simp: multiset-eq-iff ac-simps)
     have mset-decomp2: \{\# La \in \# A. L \neq La \longrightarrow 2 \leq count \ A \ La\#\} =
       \{\# La \in \# A. L \neq La \land 2 < count A La\#\} + replicate-mset (count A L) L
       by (auto simp: multiset-eq-iff)
     show ?thesis
       by (auto simp: mset-decomp mset-decomp2 filter-mset-eq ac-simps)
  qed
 have \Xi ?N' < \Xi N
   proof cases
     assume a1: ?C' \in N
     then show ?thesis
      proof -
         have f2: \bigwedge m\ M.\ insert\ (m::'a\ literal\ multiset)\ (M-\{m\})=M\cup\{\}\vee m\notin M
          using Un-empty-right insert-Diff by blast
         have f3: \land m \ M \ Ma. insert (m::'a \ literal \ multiset) \ M - insert \ m \ Ma = M - insert \ m \ Ma
         then have f_4: \bigwedge M \ m. \ M - \{m: 'a \ literal \ multiset\} = M \cup \{\} \ \lor \ m \in M
          using Diff-insert-absorb Un-empty-right by fastforce
         have f5: insert (A + {\#L\#} + {\#L\#}) N = N
          using f3 f2 Un-empty-right condensation.hyps insert-iff by fastforce
         have \bigwedge m\ M. insert (m:'a\ literal\ multiset)\ M=M\cup\{\}\ \lor\ m\notin M
```

```
using f3 f2 Un-empty-right add.right-neutral insert-iff by fastforce
                      then have \Xi (N - \{A + \{\#L\#\} + \{\#L\#\}\}) < \Xi N
                          using f5 f4 by (metis Un-empty-right (\Xi \{A + \#L\#\}\}) < \Xi \{A + \#L\#\} + \#L\#\})
                               add.right-neutral add-diff-cancel-left' add-gr-0 diff-less fin finite.emptyI not-le
                               sum-count-ge-2.empty sum-count-ge-2.insert-remove trans-le-add2)
                      then show ?thesis
                           using f3 f2 a1 by (metis (no-types) Un-empty-right Un-insert-right condensation.hyps
                                insert-iff multi-self-add-other-not-self)
                 qed
        next
             assume ?C' \notin N
             have mset-decomp:
                 \{\# La \in \# A. (L = La \longrightarrow Suc \ 0 \leq count \ A \ La) \land (L \neq La \longrightarrow 2 \leq count \ A \ La)\#\}
                 = \{ \# La \in \# A. L \neq La \land 2 \leq count A La\# \} +
                      \{\# La \in \# A. L = La \land Suc \ 0 \leq count \ A \ L\#\}
                        by (auto simp: multiset-eq-iff ac-simps)
             have mset-decomp2: \{\# La \in \# A. L \neq La \longrightarrow 2 \leq count A La\#\} =
                 \{\# La \in \# A. L \neq La \land 2 \leq count A La\#\} + replicate-mset (count A L) L
                 by (auto simp: multiset-eq-iff)
             show ?thesis
                 using \langle \Xi \{A + \{\#L\#\}\} \rangle \subset \Xi \{A + \{\#L\#\}\} \rangle = \{\#L\#\}\} \rangle condensation.hyps fin
                 sum\text{-}count\text{-}ge\text{-}2.remove[of - A + \{\#L\#\} + \{\#L\#\}] \land ?C' \notin N \land ?C' \land ?C'
                 by (auto simp: mset-decomp mset-decomp2 filter-mset-eq)
    ultimately show ?case by linarith
next
    case (subsumption A B) note AN = this(1) and AB = this(2) and BN = this(3) and fin = this(4)
    have card\ (N - \{B\}) < card\ N\ using\ BN\ by\ (meson\ card-Diff1-less\ subsumption.prems)
    moreover have \Xi(N - \{B\}) \leq \Xi N
        by (simp add: Diff-subset finite-incl-le-setsum subsumption.prems)
     ultimately show ?case by linarith
qed
lemma simplify-terminates:
     wf \{(N', N). \text{ finite } N \land \text{ simplify } N N'\}
    using assms apply (rule wfP-if-measure[of finite simplify \lambda N. card N + \Xi N])
    using simplify-finite-measure-decrease by blast
lemma wf-terminates:
    assumes wf r
    shows \exists N'.(N', N) \in r^* \land (\forall N''. (N'', N') \notin r)
    let ?P = \lambda N. (\exists N'.(N', N) \in r^* \land (\forall N''. (N'', N') \notin r))
    have (\forall x. (\forall y. (y, x) \in r \longrightarrow ?P y) \longrightarrow ?P x)
        proof clarify
             \mathbf{fix} \ x
             assume H: \forall y. (y, x) \in r \longrightarrow ?P y
              { assume \exists y. (y, x) \in r
                 then obtain y where y: (y, x) \in r by blast
                 then have P y using H by blast
                 then have ?P \ x \ using \ y \ by \ (meson \ rtrancl.rtrancl-into-rtrancl)
             }
```

```
moreover {
       assume \neg(\exists y. (y, x) \in r)
       then have ?P x by auto
     ultimately show P x by blast
  moreover have (\forall x. (\forall y. (y, x) \in r \longrightarrow ?P y) \longrightarrow ?P x) \longrightarrow All ?P
   using assms unfolding wf-def by (rule allE)
 ultimately have All ?P by blast
 then show ?P \ N by blast
qed
lemma rtranclp-simplify-terminates:
 assumes fin: finite N
 shows \exists N'. simplify^{**} N N' \land simplified N'
proof -
 have H: \{(N', N), \text{ finite } N \land \text{ simplify } N N'\} = \{(N', N), \text{ simplify } N N' \land \text{ finite } N\} by auto
 then have wf: wf \{(N', N). \text{ simplify } N N' \land \text{ finite } N\}
   using simplify-terminates by (simp add: H)
 obtain N' where N': (N', N) \in \{(b, a) \text{. simplify } a \ b \land finite \ a\}^* and
   more: (\forall N''. (N'', N') \notin \{(b, a). \text{ simplify } a \ b \land \text{finite } a\})
   using Prop-Resolution.wf-terminates[OF wf, of N] by blast
 have 1: simplify^{**} N N'
   using N' by (induction rule: rtrancl.induct) auto
  then have finite N' using fin rtranclp-simplify-preserves-finite by blast
 then have 2: \forall N''. \neg simplify N' N'' using more by auto
 show ?thesis using 1 2 by blast
lemma finite-simplified-full1-simp:
 assumes finite N
 shows simplified N \vee (\exists N'. full1 \ simplify \ N \ N')
 using rtranclp-simplify-terminates[OF assms] unfolding full1-def
 by (metis Nitpick.rtranclp-unfold)
lemma finite-simplified-full-simp:
 assumes finite N
 shows \exists N'. full simplify NN'
 using rtranclp-simplify-terminates[OF assms] unfolding full-def by metis
lemma can-decrease-tree-size-resolution:
 fixes \psi :: 'v \ state \ {\bf and} \ tree :: 'v \ sem-tree
 assumes finite (fst \psi) and already-used-inv \psi
 and partial-interps tree I (fst \psi)
 and simplified (fst \psi)
 shows \exists (tree':: 'v sem-tree) \psi'. resolution** \psi \psi' \wedge partial-interps tree' I (fst \psi')
   \land (sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0)
 using assms
proof (induct arbitrary: I rule: sem-tree-size)
 case (bigger xs I) note IH = this(1) and finite = this(2) and a-u-i = this(3) and part = this(4)
   and simp = this(5)
  { assume sem-tree-size xs = 0
   then have ?case using part by blast
```

```
moreover {
 assume sn\theta: sem-tree-size xs > \theta
 obtain ag ad v where xs: xs = Node \ v \ ag \ ad \ using \ sn\theta \ by \ (cases \ xs, \ auto)
 {
    assume sem-tree-size ag = 0 \land sem-tree-size ad = 0
    then have ag: ag = Leaf and ad: ad = Leaf by (cases ag, auto, cases ad, auto)
    then obtain \chi \chi' where
      \chi: \neg I \cup \{Pos\ v\} \models \chi and
      tot\chi: total-over-m (I \cup \{Pos\ v\}) \{\chi\} and
      \chi\psi: \chi\in fst\ \psi and
      \chi': \neg I \cup \{Neg\ v\} \models \chi' and
      tot\chi': total-over-m (I \cup \{Neg\ v\})\ \{\chi'\} and \chi'\psi: \chi' \in fst\ \psi
      using part unfolding xs by auto
    have Posv: Pos v \notin \# \chi using \chi unfolding true-cls-def true-lit-def by auto
    have Negv: Neg v \notin \# \chi' using \chi' unfolding true-cls-def true-lit-def by auto
      assume Neg\chi: \neg Neg\ v \in \#\ \chi
      then have \neg I \models \chi using \chi Posv unfolding true-cls-def true-lit-def by auto
      moreover have total-over-m I \{\chi\}
        using Posv Neg\chi atm-imp-pos-or-neg-lit tot\chi unfolding total-over-m-def total-over-set-def
        by fastforce
      ultimately have partial-interps Leaf I (fst \psi)
      and sem-tree-size Leaf < sem-tree-size xs
      and resolution^{**} \psi \psi
        unfolding xs by (auto simp add: \chi \psi)
    moreover {
       assume Pos\chi: \neg Pos\ v \in \#\ \chi'
       then have I\chi: \neg I \models \chi' \text{ using } \chi' \text{ Posv unfolding true-cls-def true-lit-def by auto}
       moreover have total-over-m I \{\chi'\}
         using Negv Pos\chi atm-imp-pos-or-neg-lit tot\chi'
        unfolding total-over-m-def total-over-set-def by fastforce
       ultimately have partial-interps Leaf I (fst \psi)
       and sem-tree-size Leaf < sem-tree-size xs
       and resolution^{**} \psi \psi using \chi' \psi I \chi unfolding xs by auto
    moreover {
       assume neg: Neg v \in \# \chi and pos: Pos v \in \# \chi'
       have count \chi (Neg v) = 1
         using simplified-count [OF simp \chi\psi] neg
        by (simp add: dual-order.antisym)
       have count \chi'(Pos\ v) = 1
         using simplified-count [OF simp \chi'\psi] pos
        by (simp add: dual-order.antisym)
       obtain C where \chi C: \chi = C + \{\# Neg \ v\#\} and negC: Neg \ v \notin \# C and posC: Pos \ v \notin \# C
        by (metis (no-types, lifting) One-nat-def Posv Suc-eq-plus1-left (count \chi (Neg v) = 1)
           add-diff-cancel-left' count-diff count-greater-eq-one-iff count-single insert-DiffM
           insert-DiffM2 less-numeral-extra(3) multi-member-skip not-le not-less-eq-eq)
       obtain C' where
         \chi C' : \chi' = C' + \{ \# Pos \ v \# \}  and
```

}

```
posC': Pos \ v \notin \# \ C' and
                    negC': Neg v \notin \# C'
                    by (metis (no-types, lifting) One-nat-def Negv Suc-eq-plus1-left (count \chi' (Pos v) = 1)
                        add-diff-cancel-left' count-diff count-greater-eq-one-iff count-single insert-DiffM
                        insert-DiffM2 less-numeral-extra(3) multi-member-skip not-le not-less-eq-eq)
                 have totC: total-over-m \ I \ \{C\}
                    using tot\chi tot-over-m-remove[of I Pos v C] negC posC unfolding \chi C
                    by (metis total-over-m-sum uminus-Neg uminus-of-uminus-id)
                 have totC': total-over-m \ I \ \{C'\}
                    using tot\chi' total-over-m-sum tot-over-m-remove[of I Neg v C'] negC' posC'
                    unfolding \chi C' by (metis total-over-m-sum uminus-Neg)
                 have \neg I \models C + C'
                    using \chi \chi' \chi C \chi C' by auto
                 then have part-I-\psi''': partial-interps Leaf I (fst \psi \cup \{C + C'\})
                    using totC \ totC' \ (\neg I \models C + C') by (metis Un-insert-right insertI1
                        partial-interps.simps(1) total-over-m-sum)
                    assume (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C) \notin snd\ \psi
                    then have inf": inference \psi (fst \psi \cup \{C + C'\}, snd \psi \cup \{(\chi', \chi)\})
                       by (metis \chi'\psi \chi C \chi C' \chi \psi add.commute inference-step prod.collapse resolution)
                    obtain N' where full: full simplify (fst \psi \cup \{C + C'\}) N'
                       \mathbf{by} (metis finite-simplified-full-simp fst-conv inf" inference-preserves-finite
                           local.finite)
                    have resolution \psi (N', snd \psi \cup \{(\chi', \chi)\})
                        using resolution.intros(2)[OF - simp full, of snd \psi snd \psi \cup \{(\chi', \chi)\}] inf''
                       by (metis surjective-pairing)
                    \mathbf{moreover}\ \mathbf{have}\ \mathit{partial-interps}\ \mathit{Leaf}\ \mathit{I}\ \mathit{N}\,'
                        using full-simplify-preserve-partial-tree [OF full part-I-\psi'''].
                    moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
                    ultimately have ?case
                        by (metis (no-types) prod.sel(1) rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-reft)
                 moreover {
                    assume a: (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C) \in snd\ \psi
                    then have (\exists \chi \in fst \ \psi. \ (\forall I. \ total-over-m \ I \ \{C+C'\} \longrightarrow total-over-m \ I \ \{\chi\})
                           \wedge \ (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C)) \lor tautology \ (C' + C)
                       proof -
                           obtain p where p: Pos p \in \# (\{\#Pos \ v\#\} + C') \land Neg \ p \in \# (\{\#Neg \ v\#\} + C)
                                \wedge ((\exists \chi \in fst \ \psi. \ (\forall I. \ total-over-m \ I \ \{(\{\#Pos \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\}\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - \{\#Pos \ p\#\} + ((\{\#Neg \ v\#\} + C') - (\{\#Neg \ v\#\} + C') - (\{\#Neg \ v\#\} + C') + (\{\#Neg \ v\#\} +
+ \ C) - \{\# \textit{Neg p\#}\})\} \longrightarrow \textit{total-over-m } I \ \{\chi\}) \ \land \ (\forall \ I. \ \textit{total-over-m } I \ \{\chi\}) \longrightarrow I \models \chi \longrightarrow I \models (\{\# \textit{Pos proposition}\}) 
v\#\} + C' - \{\#Pos\ p\#\} + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\}))) \lor tautology\ ((\{\#Pos\ v\#\} + C') - \{\#Pos\ p\#\}))
\{\#Pos\ p\#\} + ((\{\#Neg\ v\#\} + C) - \{\#Neg\ p\#\})))
                              using a by (blast intro: allE[OF a-u-i]unfolded subsumes-def Ball-def],
                                      of (\{\#Pos\ v\#\} + C', \{\#Neg\ v\#\} + C)])
                           { assume p \neq v
                              then have Pos \ p \in \# \ C' \land Neg \ p \in \# \ C \ using \ p \ by force
                              then have ?thesis by auto
                           moreover {
                              assume p = v
                             then have ?thesis using p by (metis add.commute add-diff-cancel-left')
                           ultimately show ?thesis by auto
                        qed
```

```
moreover {
         assume \exists \chi \in fst \ \psi. \ (\forall I. \ total\text{-}over\text{-}m \ I \ \{C+C'\} \longrightarrow total\text{-}over\text{-}m \ I \ \{\chi\})
            \land (\forall I. \ total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models C' + C)
          then obtain \vartheta where
           \vartheta: \vartheta \in fst \ \psi and
            tot-\vartheta-CC': \forall I. total-over-m \ I \ \{C+C'\} \longrightarrow total-over-m \ I \ \{\vartheta\} and
           \vartheta-inv: \forall I. total-over-m I \{\vartheta\} \longrightarrow I \models \vartheta \longrightarrow I \models C' + C by blast
         have partial-interps Leaf I (fst \psi)
           using tot - \vartheta - CC' \vartheta \vartheta - inv \ tot C \ tot C' \lor \neg I \models C + C' \lor \ total - over - m - sum \ \mathbf{by} \ fastforce
         moreover have sem-tree-size Leaf < sem-tree-size xs unfolding xs by auto
         ultimately have ?case by blast
        }
       moreover {
         assume tautCC': tautology (C' + C)
         have total-over-m I \{C'+C\} using totC totC' total-over-m-sum by auto
         then have \neg tautology (C' + C)
           using \langle \neg I \models C + C' \rangle unfolding add.commute[of C C'] total-over-m-def
           unfolding tautology-def by auto
          then have False using tautCC' unfolding tautology-def by auto
       ultimately have ?case by auto
      ultimately have ?case by auto
   ultimately have ?case using part by (metis (no-types) sem-tree-size.simps(1))
}
moreover {
  assume size-ag: sem-tree-size ag > 0
  have sem-tree-size ag < sem-tree-size xs unfolding xs by auto
  moreover have partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi)
  and partad: partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
   using part partial-interps. simps(2) unfolding xs by metis+
  moreover
   have sem-tree-size ag < sem-tree-size xs \Longrightarrow finite (fst \psi) \Longrightarrow already-used-inv \psi
      \implies partial-interps ag (I \cup \{Pos\ v\}) (fst\ \psi) \implies simplified (fst\ \psi)
      \implies \exists tree' \ \psi'. \ resolution^{**} \ \psi \ \psi' \land partial-interps \ tree' \ (I \cup \{Pos \ v\}) \ (fst \ \psi')
          \land (sem-tree-size tree' < sem-tree-size aq \lor sem-tree-size aq = 0)
      using IH[of \ ag \ I \cup \{Pos \ v\}] by auto
  ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ where
    inf: resolution** \psi \psi'
   and part: partial-interps tree' (I \cup \{Pos\ v\}) (fst\ \psi')
   and size: sem-tree-size tree' < sem-tree-size ag \lor sem-tree-size ag = 0
   using finite part rtranclp.rtrancl-reft a-u-i simp by blast
  have partial-interps ad (I \cup \{Neg\ v\}) (fst \psi')
   using rtranclp-resolution-preserve-partial-tree inf partad by fast
  then have partial-interps (Node v tree' ad) I (fst \psi') using part by auto
  then have ?case using inf size size-ag part unfolding xs by fastforce
}
moreover {
  assume size-ad: sem-tree-size ad > 0
  have sem-tree-size ad < sem-tree-size xs unfolding xs by auto
  moreover
   have
      partag: partial-interps ag (I \cup \{Pos\ v\}) (fst \psi) and
```

```
partial-interps ad (I \cup \{Neg\ v\}) (fst \psi)
         using part partial-interps.simps(2) unfolding xs by metis+
     moreover have sem-tree-size ad < sem-tree-size xs \longrightarrow finite (fst \psi) \longrightarrow already-used-inv \psi
       \longrightarrow (partial-interps ad (I \cup \{Neg\ v\}) (fst \psi) \longrightarrow simplified (fst \psi)
       \longrightarrow (\exists tree' \psi'. resolution^{**} \psi \psi' \land partial-interps tree' (I \cup \{Neg v\}) (fst \psi')
             \land (sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0)))
       using IH by blast
     ultimately obtain \psi' :: 'v \ state \ and \ tree' :: 'v \ sem-tree \ \ where
       inf: resolution** \psi \psi'
       and part: partial-interps tree' (I \cup \{Neg\ v\}) (fst\ \psi')
       and size: sem-tree-size tree' < sem-tree-size ad \lor sem-tree-size ad = 0
       using finite part rtranclp.rtrancl-reft a-u-i simp by blast
     have partial-interps ag (I \cup \{Pos\ v\}) (fst \psi')
       using rtranclp-resolution-preserve-partial-tree inf partag by fast
     then have partial-interps (Node v ag tree') I (fst \psi') using part by auto
     then have ?case using inf size size-ad unfolding xs by fastforce
    ultimately have ?case by auto
 ultimately show ?case by auto
qed
lemma resolution-completeness-inv:
 fixes \psi :: 'v :: linorder state
 assumes
   unsat: \neg satisfiable (fst \psi) and
   finite: finite (fst \psi) and
   a-u-v: already-used-inv <math>\psi
 shows \exists \psi'. (resolution** \psi \psi' \land \{\#\} \in fst \psi')
proof -
  obtain tree where partial-interps tree \{\} (fst \psi)
   using partial-interps-build-sem-tree-atms assms by metis
  then show ?thesis
   using unsat finite a-u-v
   proof (induct tree arbitrary: \psi rule: sem-tree-size)
     case (bigger tree \psi) note H = this
     {
       fix \chi
       assume tree: tree = Leaf
       obtain \chi where \chi: \neg {} \models \chi and tot\chi: total-over-m {} {\chi} and \chi\psi: \chi \in fst \psi
         using H unfolding tree by auto
       moreover have \{\#\} = \chi
         using H atms-empty-iff-empty tot\chi
         unfolding true-cls-def total-over-m-def total-over-set-def by fastforce
       moreover have resolution^{**} \psi \psi by auto
       ultimately have ?case by metis
     moreover {
       fix v tree1 tree2
       assume tree: tree = Node \ v \ tree1 \ tree2
       obtain \psi_0 where \psi_0: resolution** \psi \psi_0 and simp: simplified (fst \psi_0)
         proof -
           { assume simplified (fst \psi)
            moreover have resolution** \psi \psi by auto
```

```
ultimately have thesis using that by blast
          moreover {
            assume \neg simplified (fst \ \psi)
            then have \exists \psi'. full 1 simplify (fst \psi) \psi'
              by (metis Nitpick.rtranclp-unfold bigger.prems(3) full1-def
                rtranclp-simplify-terminates)
            then obtain N where full 1 simplify (fst \psi) N by metis
            then have resolution \psi (N, snd \psi)
              using resolution.intros(1)[of fst \psi N snd \psi] by auto
            moreover have simplified N
              using \langle full1 \ simplify \ (fst \ \psi) \ N \rangle unfolding full1-def by blast
            ultimately have ?thesis using that by force
          ultimately show ?thesis by auto
         qed
      have p: partial-interps tree \{\} (fst \psi_0)
      and uns: unsatisfiable (fst \psi_0)
      and f: finite (fst \psi_0)
      and a-u-v: already-used-inv \psi_0
           using \psi_0 bigger.prems(1) rtranclp-resolution-preserve-partial-tree apply blast
          using \psi_0 bigger.prems(2) rtranclp-resolution-preserves-unsat apply blast
         using \psi_0 bigger.prems(3) rtranclp-resolution-finite apply blast
         using rtranclp-resolution-already-used-inv[OF \psi_0 bigger.prems(4)] by blast
       obtain tree' \psi' where
         inf: resolution^{**} \ \psi_0 \ \psi' and
         part': partial-interps tree' \{\} (fst \psi') and
         decrease: sem-tree-size tree' < sem-tree-size tree \lor sem-tree-size tree = 0
         using can-decrease-tree-size-resolution[OF f a-u-v p simp] unfolding tautology-def
         by meson
       have s: sem-tree-size tree' < sem-tree-size tree using decrease unfolding tree by auto
      have fin: finite (fst \psi')
         using f inf rtranclp-resolution-finite by blast
       have unsat: unsatisfiable (fst \psi')
         using rtranclp-resolution-preserves-unsat inf uns by metis
       have a-u-i': already-used-inv \psi'
         using a-u-v inf rtranclp-resolution-already-used-inv[of \psi_0 \psi'] by auto
      have ?case
         using inf rtranclp-trans[of resolution] H(1)[OF \ s \ part' \ unsat \ fin \ a-u-i'] \ \psi_0 by blast
     ultimately show ?case by (cases tree, auto)
  qed
{f lemma}\ resolution\mbox{-}preserves\mbox{-}already\mbox{-}used\mbox{-}inv:
 assumes resolution S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms
 apply (induct rule: resolution.induct)
  apply (rule full1-simplify-already-used-inv; simp)
 {\bf apply} \ (\textit{rule full-simplify-already-used-inv}, \ \textit{simp})
 apply (rule inference-preserves-already-used-inv, simp)
```

qed

```
apply blast
 done
\mathbf{lemma}\ rtranclp\text{-}resolution\text{-}preserves\text{-}already\text{-}used\text{-}inv:
 assumes resolution** S S'
 and already-used-inv S
 shows already-used-inv S'
 using assms
 apply (induct rule: rtranclp-induct)
  apply simp
 using resolution-preserves-already-used-inv by fast
\mathbf{lemma}\ resolution\text{-}completeness:
 fixes \psi :: 'v :: linorder state
 assumes unsat: \neg satisfiable (fst \ \psi)
 and finite: finite (fst \psi)
 and snd \psi = \{\}
 shows \exists \psi'. (resolution** \psi \psi' \land \{\#\} \in fst \psi')
proof -
 have already-used-inv \psi unfolding assms by auto
 then show ?thesis using assms resolution-completeness-inv by blast
qed
\mathbf{lemma}\ rtranclp\text{-}preserves\text{-}sat:
 assumes simplify** S S'
 and satisfiable S
 shows satisfiable S'
 using assms apply induction
  apply simp
 by (meson satisfiable-carac satisfiable-def simplify-preserves-un-sat-eq)
lemma resolution-preserves-sat:
 assumes resolution S S'
 and satisfiable (fst S)
 shows satisfiable (fst S')
 using assms apply (induction rule: resolution.induct)
  using rtranclp-preserves-sat tranclp-into-rtranclp unfolding full1-def apply fastforce
 by (metis fst-conv full-def inference-preserves-un-sat rtranclp-preserves-sat
   satisfiable-carac' satisfiable-def)
lemma rtranclp-resolution-preserves-sat:
 assumes resolution** S S'
 and satisfiable (fst S)
 shows satisfiable (fst S')
 using assms apply (induction rule: rtranclp-induct)
  apply simp
 using resolution-preserves-sat by blast
lemma resolution-soundness:
 fixes \psi :: 'v :: linorder state
 assumes resolution^{**} \psi \psi' and \{\#\} \in fst \psi'
 shows unsatisfiable (fst \psi)
 using assms by (meson rtranclp-resolution-preserves-sat satisfiable-def true-cls-empty
   true-clss-def)
```

```
{\bf lemma}\ resolution\hbox{-}soundness\hbox{-}and\hbox{-}completeness:
fixes \psi :: 'v :: linorder state
assumes finite: finite (fst \psi)
and snd: snd \psi = \{\}
shows (\exists \psi'. (resolution^{**} \psi \psi' \land \{\#\} \in fst \psi')) \longleftrightarrow unsatisfiable (fst \psi)
  using assms resolution-completeness resolution-soundness by metis
lemma simplified-falsity:
 assumes simp: simplified \psi
 and \{\#\} \in \psi
 shows \psi = \{ \{ \# \} \}
proof (rule ccontr)
  assume H: \neg ?thesis
  then obtain \chi where \chi \in \psi and \chi \neq \{\#\} using assms(2) by blast
  then have \{\#\} \subset \# \chi \text{ by } (simp \ add: mset-less-empty-nonempty)
  then have simplify \psi (\psi – {\chi})
   using simplify.subsumption[OF\ assms(2)\ \langle \{\#\} \subset \#\ \chi\rangle\ \langle \chi \in \psi\rangle] by blast
  then show False using simp by blast
qed
lemma simplify-falsity-in-preserved:
  assumes simplify \chi s \chi s'
 and \{\#\} \in \chi s
  shows \{\#\} \in \chi s'
  using assms
  by induction auto
lemma rtranclp-simplify-falsity-in-preserved:
  assumes simplify^{**} \chi s \chi s'
  and \{\#\} \in \chi s
 shows \{\#\} \in \chi s'
  using assms
  by induction (auto intro: simplify-falsity-in-preserved)
lemma resolution-falsity-get-falsity-alone:
  assumes finite (fst \psi)
 shows (\exists \psi'. (resolution^{**} \psi \psi' \land \{\#\} \in fst \psi')) \longleftrightarrow (\exists a\text{-}u\text{-}v. resolution^{**} \psi (\{\{\#\}\}, a\text{-}u\text{-}v))
   (is ?A \longleftrightarrow ?B)
proof
 assume ?B
  then show ?A by auto
next
  assume ?A
  then obtain \chi s a-u-v where \chi s: resolution** \psi (\chi s, a-u-v) and F: {#} \in \chi s by auto
  { assume simplified \chi s
   then have ?B using simplified-falsity[OF - F] \chi s by blast
  moreover {
   assume \neg simplified \chi s
   then obtain \chi s' where full 1 simplify \chi s \chi s'
       by (metis \chi s assms finite-simplified-full1-simp fst-conv rtranclp-resolution-finite)
   then have \{\#\} \in \chi s'
      unfolding full1-def by (meson F rtranclp-simplify-falsity-in-preserved
        tranclp-into-rtranclp)
```

```
then have ?B
     by (metis \chi s \langle full1 \ simplify \ \chi s \ \chi s' \rangle fst-conv full1-simp resolution-always-simplified
       rtranclp.rtrancl-into-rtrancl simplified-falsity)
 ultimately show ?B by blast
qed
lemma resolution-soundness-and-completeness':
 fixes \psi :: 'v :: linorder state
 assumes
   finite: finite (fst \psi)and
   snd: snd \ \psi = \{\}
  shows (\exists a \text{-}u \text{-}v. (resolution^{**} \ \psi (\{\{\#\}\}, a \text{-}u \text{-}v))) \longleftrightarrow unsatisfiable (fst \ \psi)
   using assms resolution-completeness resolution-soundness resolution-falsity-get-falsity-alone
   by metis
end
theory Partial-Annotated-Clausal-Logic
imports Partial-Clausal-Logic
begin
```

14 Partial Clausal Logic

We here define marked literals (that will be used in both DPLL and CDCL) and the entailment corresponding to it.

14.1 Marked Literals

14.1.1 Definition

```
datatype ('v, 'lvl, 'mark) marked-lit =
  is-marked: Marked (lit-of: 'v literal) (level-of: 'lvl)
 is-proped: Propagated (lit-of: 'v literal) (mark-of: 'mark)
lemma marked-lit-list-induct[case-names nil marked proped]:
 assumes P [] and
  \bigwedge L \ l \ xs. \ P \ xs \Longrightarrow P \ (Marked \ L \ l \ \# \ xs) and
 \bigwedge L \ m \ xs. \ P \ xs \Longrightarrow P \ (Propagated \ L \ m \ \# \ xs)
 shows P xs
 using assms apply (induction xs, simp)
 by (rename-tac a xs, case-tac a) auto
lemma is-marked-ex-Marked:
 is-marked L \Longrightarrow \exists K lvl. L = Marked K lvl
 by (cases L) auto
type-synonym ('v, 'l, 'm) marked-lits = ('v, 'l, 'm) marked-lit list
definition lits-of :: ('a, 'b, 'c) marked-lit set \Rightarrow 'a literal set where
lits-of Ls = lit-of ' Ls
abbreviation lits-of-l :: ('a, 'b, 'c) marked-lit list \Rightarrow 'a literal set where
lits-of-l Ls \equiv lits-of (set Ls)
```

```
lemma lits-of-l-empty[simp]:
  lits-of \{\} = \{\}
  unfolding lits-of-def by auto
lemma lits-of-insert[simp]:
  lits-of\ (insert\ L\ Ls) = insert\ (lit-of\ L)\ (lits-of\ Ls)
  unfolding lits-of-def by auto
lemma lits-of-l-append[simp]:
  lits-of (l \cup l') = lits-of l \cup lits-of l'
  unfolding lits-of-def by auto
lemma finite-lits-of-def[simp]:
 finite (lits-of-l L)
 unfolding lits-of-def by auto
abbreviation unmark where
unmark \equiv (\lambda a. \{ \#lit \text{-} of a \# \})
abbreviation unmark-s where
unmark-s M \equiv unmark ' M
abbreviation unmark-l where
unmark-l\ M \equiv unmark-s\ (set\ M)
lemma atms-of-ms-lambda-lit-of-is-atm-of-lit-of[simp]:
  atms-of-ms (unmark-l M') = atm-of ' lits-of-l M'
  unfolding atms-of-ms-def lits-of-def by auto
lemma lits-of-l-empty-is-empty[iff]:
  lits-of-l M = \{\} \longleftrightarrow M = []
 by (induct \ M) (auto \ simp: \ lits-of-def)
14.1.2 Entailment
definition true-annot :: ('a, 'l, 'm) marked-lits \Rightarrow 'a clause \Rightarrow bool (infix \models a 49) where
  I \models a C \longleftrightarrow (lits\text{-}of\text{-}l\ I) \models C
definition true-annots :: ('a, 'l, 'm) marked-lits \Rightarrow 'a clauses \Rightarrow bool (infix \models as 49) where
  I \models as \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models a \ C)
lemma true-annot-empty-model[simp]:
  \neg [] \models a \psi
  unfolding true-annot-def true-cls-def by simp
lemma true-annot-empty[simp]:
  \neg I \models a \{\#\}
  unfolding true-annot-def true-cls-def by simp
lemma empty-true-annots-def[iff]:
  [] \models as \ \psi \longleftrightarrow \psi = \{\}
  unfolding true-annots-def by auto
lemma true-annots-empty[simp]:
  I \models as \{\}
```

```
unfolding true-annots-def by auto
lemma true-annots-single-true-annot[iff]:
  I \models as \{C\} \longleftrightarrow I \models a C
  unfolding true-annots-def by auto
lemma true-annot-insert-l[simp]:
  M \models a A \Longrightarrow L \# M \models a A
 unfolding true-annot-def by auto
lemma true-annots-insert-l [simp]:
  M \models as A \Longrightarrow L \# M \models as A
  unfolding true-annots-def by auto
lemma true-annots-union[iff]:
  M \models as A \cup B \longleftrightarrow (M \models as A \land M \models as B)
  unfolding true-annots-def by auto
lemma true-annots-insert[iff]:
  M \models as \ insert \ a \ A \longleftrightarrow (M \models a \ a \land M \models as \ A)
  unfolding true-annots-def by auto
Link between \models as and \models s:
lemma true-annots-true-cls:
  I \models as \ CC \longleftrightarrow lits \text{-} of \text{-} l \ I \models s \ CC
  unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
lemma in-lit-of-true-annot:
  a \in lits\text{-}of\text{-}l\ M \longleftrightarrow M \models a \{\#a\#\}
  unfolding true-annot-def lits-of-def by auto
lemma true-annot-lit-of-notin-skip:
  L \# M \models a A \Longrightarrow lit\text{-}of L \notin \# A \Longrightarrow M \models a A
  unfolding true-annot-def true-cls-def by auto
{f lemma}\ true{-}clss{-}singleton{-}lit{-}of{-}implies{-}incl:
  I \models s \ unmark-l \ MLs \Longrightarrow lits-of-l \ MLs \subseteq I
  unfolding true-clss-def lits-of-def by auto
{f lemma} true-annot-true-clss-cls:
  MLs \models a \psi \Longrightarrow set (map \ unmark \ MLs) \models p \psi
  unfolding true-annot-def true-clss-cls-def true-cls-def
  by (auto dest: true-clss-singleton-lit-of-implies-incl)
lemma true-annots-true-clss-cls:
  MLs \models as \psi \implies set (map \ unmark \ MLs) \models ps \ \psi
  by (auto
    dest: true\text{-}clss\text{-}singleton\text{-}lit\text{-}of\text{-}implies\text{-}incl
    simp add: true-clss-def true-annots-def true-annot-def lits-of-def true-cls-def
    true-clss-clss-def)
lemma true-annots-marked-true-cls[iff]:
  map\ (\lambda M.\ Marked\ M\ a)\ M \models as\ N \longleftrightarrow set\ M \models s\ N
```

proof -

```
have *: lit-of ' (\lambda M. Marked M a) ' set M = set M unfolding lits-of-def by force
 show ?thesis by (simp add: true-annots-true-cls * lits-of-def)
qed
lemma true-annot-singleton[iff]: M \models a \{\#L\#\} \longleftrightarrow L \in \mathit{lits-of-l}\ M
  unfolding true-annot-def lits-of-def by auto
\mathbf{lemma}\ true\text{-}annots\text{-}true\text{-}clss\text{-}clss\text{:}
  A \models as \Psi \Longrightarrow unmark-l A \models ps \Psi
  unfolding true-clss-clss-def true-annots-def true-clss-def
  by (auto
    dest!: true-clss-singleton-lit-of-implies-incl
    simp add: lits-of-def true-annot-def true-cls-def)
\mathbf{lemma} true-annot-commute:
  M @ M' \models a D \longleftrightarrow M' @ M \models a D
  unfolding true-annot-def by (simp add: Un-commute)
lemma true-annots-commute:
  M @ M' \models as D \longleftrightarrow M' @ M \models as D
  unfolding true-annots-def by (auto simp add: true-annot-commute)
lemma true-annot-mono[dest]:
  set \ I \subseteq set \ I' \Longrightarrow I \models a \ N \Longrightarrow I' \models a \ N
  using true-cls-mono-set-mset-l unfolding true-annot-def lits-of-def
  by (metis (no-types) Un-commute Un-upper1 image-Un sup.orderE)
\mathbf{lemma}\ true\text{-}annots\text{-}mono:
  set \ I \subseteq set \ I' \Longrightarrow I \models as \ N \Longrightarrow I' \models as \ N
 unfolding true-annots-def by auto
            Defined and undefined literals
14.1.3
definition defined-lit :: ('a, 'l, 'm) marked-lit list \Rightarrow 'a literal \Rightarrow bool
defined-lit I L \longleftrightarrow (\exists l. Marked L l \in set I) \lor (\exists P. Propagated L P \in set I)
 \vee (\exists l. \ Marked \ (-L) \ l \in set \ I) \ \vee (\exists P. \ Propagated \ (-L) \ P \in set \ I)
abbreviation undefined-lit :: ('a, 'l, 'm) marked-lit list \Rightarrow 'a literal \Rightarrow bool
where undefined-lit I L \equiv \neg defined-lit I L
lemma defined-lit-rev[simp]:
  \textit{defined-lit} \; (\textit{rev} \; M) \; L \longleftrightarrow \textit{defined-lit} \; M \; L
  unfolding defined-lit-def by auto
lemma atm-imp-marked-or-proped:
  assumes x \in set\ I
  shows
    (\exists l. Marked (- lit-of x) l \in set I)
    \vee (\exists l. Marked (lit-of x) l \in set I)
    \vee (\exists l. \ Propagated \ (- \ lit - of \ x) \ l \in set \ I)
    \vee (\exists l. Propagated (lit-of x) l \in set I)
  using assms marked-lit.exhaust-sel by metis
lemma literal-is-lit-of-marked:
```

assumes L = lit - of x

```
shows (\exists l. \ x = Marked \ L \ l) \lor (\exists l'. \ x = Propagated \ L \ l')
  using assms by (cases x) auto
\mathbf{lemma}\ true\text{-}annot\text{-}iff\text{-}marked\text{-}or\text{-}true\text{-}lit:
  defined-lit I \ L \longleftrightarrow ((lits-of-l I) \models l \ L \lor (lits-of-l I) \models l \ -L)
  unfolding defined-lit-def by (auto simp add: lits-of-def rev-image-eqI
    dest!: literal-is-lit-of-marked)
lemma consistent-interp (lits-of-l I) \Longrightarrow I \models as N \Longrightarrow satisfiable N
  by (simp add: true-annots-true-cls)
lemma defined-lit-map:
  defined-lit Ls L \longleftrightarrow atm\text{-}of \ L \in (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set Ls
 unfolding defined-lit-def apply (rule iffI)
   using image-iff apply fastforce
 by (fastforce simp add: atm-of-eq-atm-of dest: atm-imp-marked-or-proped)
lemma defined-lit-uminus[iff]:
  defined-lit I (-L) \longleftrightarrow defined-lit I L
  unfolding defined-lit-def by auto
lemma Marked-Propagated-in-iff-in-lits-of-l:
  defined-lit I \ L \longleftrightarrow (L \in lits-of-l I \lor -L \in lits-of-l I)
  unfolding lits-of-def defined-lit-def
  by (auto simp: rev-image-eqI) (rename-tac x, case-tac x, auto)+
lemma consistent-add-undefined-lit-consistent[simp]:
  assumes
    consistent-interp (lits-of-l Ls) and
    undefined-lit Ls L
  shows consistent-interp (insert L (lits-of-l Ls))
  using assms unfolding consistent-interp-def by (auto simp: Marked-Propagated-in-iff-in-lits-of-l)
lemma decided-empty[simp]:
  \neg defined-lit [] L
  unfolding defined-lit-def by simp
14.2
          Backtracking
fun backtrack-split :: ('v, 'l, 'm) marked-lits
  \Rightarrow ('v, 'l, 'm) marked-lits \times ('v, 'l, 'm) marked-lits where
backtrack-split [] = ([], [])
backtrack-split (Propagated L P # mlits) = apfst ((op #) (Propagated L P)) (backtrack-split mlits) |
backtrack-split (Marked L l \# mlits) = ([], Marked L l \# mlits)
\textbf{lemma} \ backtrack\text{-}split\text{-}fst\text{-}not\text{-}marked: } a \in set \ (fst \ (backtrack\text{-}split \ l)) \Longrightarrow \neg is\text{-}marked \ a
  by (induct l rule: marked-lit-list-induct) auto
lemma backtrack-split-snd-hd-marked:
  snd\ (backtrack-split\ l) \neq [] \Longrightarrow is-marked\ (hd\ (snd\ (backtrack-split\ l)))
  by (induct l rule: marked-lit-list-induct) auto
lemma backtrack-split-list-eq[simp]:
  fst\ (backtrack-split\ l)\ @\ (snd\ (backtrack-split\ l)) = l
  by (induct l rule: marked-lit-list-induct) auto
```

```
lemma backtrack-snd-empty-not-marked:
  backtrack-split\ M=(M'', []) \Longrightarrow \forall\ l \in set\ M.\ \neg\ is-marked\ l
 by (metis append-Nil2 backtrack-split-fst-not-marked backtrack-split-list-eq snd-conv)
lemma backtrack-split-some-is-marked-then-snd-has-hd:
  \exists l \in set \ M. \ is-marked \ l \Longrightarrow \exists M' \ L' \ M''. \ backtrack-split \ M = (M'', L' \# M')
 by (metis backtrack-snd-empty-not-marked list.exhaust prod.collapse)
Another characterisation of the result of backtrack-split. This view allows some simpler proofs,
since take While and drop While are highly automated:
\mathbf{lemma}\ backtrack\text{-}split\text{-}take\ While\text{-}drop\ While}:
  backtrack-split M = (takeWhile (Not o is-marked) M, dropWhile (Not o is-marked) M)
proof (induct M)
 case Nil show ?case by simp
next
 case (Cons L M) then show ?case by (cases L) auto
qed
14.3
         Decomposition with respect to the marked literals
The pattern get-all-marked-decomposition [] = [([], [])] is necessary otherwise, we can call the
hd function in the other pattern.
\mathbf{fun}\ \textit{get-all-marked-decomposition} :: (\textit{'a}, \textit{'l}, \textit{'m})\ \textit{marked-lits}
  \Rightarrow (('a, 'l, 'm) marked-lits \times ('a, 'l, 'm) marked-lits) list where
get-all-marked-decomposition (Marked L l \# Ls) =
  (Marked\ L\ l\ \#\ Ls,\ [])\ \#\ get-all-marked-decomposition\ Ls\ []
get-all-marked-decomposition (Propagated L P# Ls) =
  (apsnd ((op \#) (Propagated L P)) (hd (get-all-marked-decomposition Ls)))
   \# tl (get-all-marked-decomposition Ls) |
get-all-marked-decomposition [] = [([], [])]
value get-all-marked-decomposition [Propagated A5 B5, Marked C4 D4, Propagated A3 B3,
  Propagated A2 B2, Marked C1 D1, Propagated A0 B0
lemma qet-all-marked-decomposition-never-empty[iff]:
  qet-all-marked-decomposition M = [] \longleftrightarrow False
 by (induct M, simp) (rename-tac a xs, case-tac a, auto)
lemma get-all-marked-decomposition-never-empty-sym[iff]:
  [] = get\text{-}all\text{-}marked\text{-}decomposition} \ M \longleftrightarrow False
 using get-all-marked-decomposition-never-empty[of M] by presburger
\mathbf{lemma}\ get-all-marked-decomposition-decomp:
  hd (get-all-marked-decomposition S) = (a, c) \Longrightarrow S = c @ a
proof (induct S arbitrary: a c)
 case Nil
 then show ?case by simp
  case (Cons \ x \ A)
 then show ?case by (cases x; cases hd (get-all-marked-decomposition A)) auto
\mathbf{lemma}\ \textit{get-all-marked-decomposition-backtrack-split}:
  backtrack-split\ S = (M, M') \longleftrightarrow hd\ (get-all-marked-decomposition\ S) = (M', M)
```

```
proof (induction S arbitrary: M M')
 case Nil
 then show ?case by auto
next
 case (Cons\ a\ S)
 then show ?case using backtrack-split-takeWhile-dropWhile by (cases a) force+
qed
\mathbf{lemma}\ \textit{get-all-marked-decomposition-nil-backtrack-split-snd-nil}:
 get-all-marked-decomposition S = [([], A)] \Longrightarrow snd (backtrack-split S) = []
 by (simp add: get-all-marked-decomposition-backtrack-split sndI)
\mathbf{lemma}\ \textit{get-all-marked-decomposition-length-1-fst-empty-or-length-1}:
 assumes get-all-marked-decomposition M = (a, b) \# []
 shows a = [] \lor (length \ a = 1 \land is\text{-marked} \ (hd \ a) \land hd \ a \in set \ M)
 using assms
proof (induct M arbitrary: a b rule: marked-lit-list-induct)
 case nil then show ?case by simp
next
 case (marked\ L\ mark\ M)
 then show ?case by simp
 case (proped\ L\ mark\ M)
 then show ?case by (cases get-all-marked-decomposition M) force+
\mathbf{lemma}\ get-all-marked-decomposition-fst-empty-or-hd-in-M:
 assumes get-all-marked-decomposition M = (a, b) \# l
 shows a = [] \lor (is\text{-marked } (hd \ a) \land hd \ a \in set \ M)
 using assms apply (induct M arbitrary: a b rule: marked-lit-list-induct)
   apply auto[2]
 \textbf{by} \ (\textit{metis UnCI backtrack-split-snd-hd-marked get-all-marked-decomposition-backtrack-split})
   get-all-marked-decomposition-decomp hd-in-set list.sel(1) set-append snd-conv)
\mathbf{lemma} \ \textit{get-all-marked-decomposition-snd-not-marked} :
 assumes (a, b) \in set (get-all-marked-decomposition M)
 and L \in set b
 shows \neg is-marked L
 using assms apply (induct M arbitrary: a b rule: marked-lit-list-induct, simp)
 by (rename-tac L' l xs a b, case-tac get-all-marked-decomposition xs; fastforce)+
lemma tl-get-all-marked-decomposition-skip-some:
 assumes x \in set (tl (get-all-marked-decomposition M1))
 shows x \in set (tl (get-all-marked-decomposition (M0 @ M1)))
 using assms
 by (induct M0 rule: marked-lit-list-induct)
    (auto\ simp\ add:\ list.set-sel(2))
lemma\ hd-qet-all-marked-decomposition-skip-some:
 assumes (x, y) = hd (get-all-marked-decomposition M1)
 shows (x, y) \in set (get-all-marked-decomposition (M0 @ Marked K i # M1))
 using assms
proof (induct M0)
 case Nil
 then show ?case by auto
```

```
next
 case (Cons\ L\ M0)
 then have xy: (x, y) \in set (get-all-marked-decomposition (M0 @ Marked K i # M1)) by blast
 show ?case
   proof (cases L)
     case (Marked \ l \ m)
     then show ?thesis using xy by auto
   next
     case (Propagated\ l\ m)
     then show ?thesis
      using xy Cons.prems
      by (cases get-all-marked-decomposition (M0 @ Marked K i \# M1))
         (auto dest!: get-all-marked-decomposition-decomp
            arg-cong[of get-all-marked-decomposition - - hd])
   qed
\mathbf{qed}
lemma qet-all-marked-decomposition-snd-union:
 set M = \{ (set 'snd 'set (get-all-marked-decomposition M)) \cup \{ L | L. is-marked L \land L \in set M \} \}
 (is ?MM = ?UM \cup ?LsM)
proof (induct M arbitrary:)
 case Nil
 then show ?case by simp
next
 case (Cons\ L\ M)
 show ?case
   proof (cases L)
     case (Marked a l) note L = this
     then have L \in ?Ls (L \# M) by auto
     moreover have ?U(L\#M) = ?UM unfolding L by auto
     moreover have ?M M = ?U M \cup ?Ls M using Cons.hyps by auto
     ultimately show ?thesis by auto
     case (Propagated a P)
     then show ?thesis using Cons.hyps by (cases (get-all-marked-decomposition M)) auto
   qed
\mathbf{qed}
{\bf lemma}\ in-get-all-marked-decomposition-in-get-all-marked-decomposition-prepend:
 (a, b) \in set (get-all-marked-decomposition M') \Longrightarrow
   \exists b'. (a, b' @ b) \in set (get-all-marked-decomposition (M @ M'))
 apply (induction M rule: marked-lit-list-induct)
   apply (metis append-Nil)
  apply auto[]
 by (rename-tac L' m xs, case-tac qet-all-marked-decomposition (xs @ M')) auto
{\bf lemma}\ \textit{get-all-marked-decomposition-remove-unmark-ssed-length}:
 assumes \forall l \in set M'. \neg is-marked l
 shows length (get-all-marked-decomposition (M' @ M''))
   = length (qet-all-marked-decomposition M'')
 using assms by (induct M' arbitrary: M" rule: marked-lit-list-induct) auto
\mathbf{lemma}\ qet	ext{-}all	ext{-}marked	ext{-}decomposition	ext{-}not	ext{-}is	ext{-}marked	ext{-}length:
 assumes \forall l \in set M'. \neg is-marked l
 shows 1 + length (get-all-marked-decomposition (Propagated <math>(-L) P \# M))
```

```
= length (get-all-marked-decomposition (M' @ Marked L l \# M))
using assms get-all-marked-decomposition-remove-unmark-ssed-length by fastforce
\mathbf{lemma}\ \textit{get-all-marked-decomposition-last-choice}:
 assumes tl (get-all-marked-decomposition (M' @ Marked L l \# M)) \neq []
 and \forall l \in set M'. \neg is-marked l
 and hd (tl (get-all-marked-decomposition (M' @ Marked L l \# M)) = (M0', M0)
 shows hd (get-all-marked-decomposition (Propagated (-L) P \# M)) = (M0', Propagated (-L) P \#
M0)
 using assms by (induct M' rule: marked-lit-list-induct) auto
{\bf lemma}\ get-all-marked-decomposition-except-last-choice-equal:
 assumes \forall l \in set M'. \neg is-marked l
 shows tl (get-all-marked-decomposition (Propagated (-L) P \# M))
   = tl \ (tl \ (qet-all-marked-decomposition \ (M' @ Marked \ L \ l \ \# \ M)))
 using assms by (induct M' rule: marked-lit-list-induct) auto
lemma qet-all-marked-decomposition-hd-hd:
 assumes get-all-marked-decomposition Ls = (M, C) \# (M0, M0') \# l
 \mathbf{shows}\ tl\ M = \mathit{M0'} \ @\ \mathit{M0}\ \land\ \mathit{is\text{-}marked}\ (\mathit{hd}\ \mathit{M})
 using assms
proof (induct Ls arbitrary: M C M0 M0' l)
 case Nil
 then show ?case by simp
next
 case (Cons a Ls M C M0 M0' l) note IH = this(1) and g = this(2)
 { fix L level
   assume a: a = Marked L level
   have Ls = M0' @ M0
     using q a by (force intro: qet-all-marked-decomposition-decomp)
   then have tl\ M = M0' @ M0 \land is\text{-marked } (hd\ M) using g\ a by auto
 moreover {
   \mathbf{fix} \ L \ P
   assume a: a = Propagated L P
   have tl\ M = M0' @ M0 \land is\text{-}marked\ (hd\ M)
     using IH Cons.prems unfolding a by (cases qet-all-marked-decomposition Ls) auto
 ultimately show ?case by (cases a) auto
qed
lemma get-all-marked-decomposition-exists-prepend[dest]:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows \exists c. M = c @ b @ a
 using assms apply (induct M rule: marked-lit-list-induct)
   apply simp
 by (rename-tac L' m xs, case-tac get-all-marked-decomposition xs;
   auto dest!: arg-cong[of get-all-marked-decomposition - - hd]
     qet-all-marked-decomposition-decomp)+
lemma get-all-marked-decomposition-incl:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows set b \subseteq set M and set a \subseteq set M
 using assms get-all-marked-decomposition-exists-prepend by fastforce+
```

```
lemma get-all-marked-decomposition-exists-prepend':
 assumes (a, b) \in set (get-all-marked-decomposition M)
 obtains c where M = c @ b @ a
  using assms apply (induct M rule: marked-lit-list-induct)
   apply auto[1]
 by (rename-tac L' m xs, case-tac hd (get-all-marked-decomposition xs),
   auto dest!: get-all-marked-decomposition-decomp simp add: list.set-sel(2))+
\mathbf{lemma} \ union\text{-}in\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}is\text{-}subset}:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows set a \cup set b \subseteq set M
 using assms by force
{\bf lemma}\ \textit{Marked-cons-in-get-all-marked-decomposition-append-Marked-cons}:
  \exists M1\ M2.\ (Marked\ K\ i\ \#\ M1\ M2) \in set\ (qet-all-marked-decomposition\ (c\ @\ Marked\ K\ i\ \#\ c'))
 apply (induction c rule: marked-lit-list-induct)
   apply auto[2]
 apply (rename-tac L m xs,
     case-tac hd (get-all-marked-decomposition (xs @ Marked K i \# c')))
 apply (case-tac get-all-marked-decomposition (xs @ Marked K i \# c'))
 by auto
definition all-decomposition-implies :: 'a literal multiset set
  \Rightarrow (('a, 'l, 'm) marked-lit list \times ('a, 'l, 'm) marked-lit list) list \Rightarrow bool where
all-decomposition-implies N S
  \longleftrightarrow (\forall (Ls, seen) \in set \ S. \ unmark-l \ Ls \cup N \models ps \ unmark-l \ seen)
lemma all-decomposition-implies-empty[iff]:
  all-decomposition-implies N \parallel unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-single[iff]:
  all-decomposition-implies N [(Ls, seen)]
   \longleftrightarrow unmark-l \ Ls \cup N \models ps \ unmark-l \ seen
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-append[iff]:
  all-decomposition-implies N (S @ S')
    \longleftrightarrow (all-decomposition-implies N S \land all-decomposition-implies N S \land
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-pair[iff]:
  all-decomposition-implies N ((Ls, seen) \# S')
      \rightarrow (all-decomposition-implies N [(Ls, seen)] \land all-decomposition-implies N S')
  unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-single[iff]:
  all-decomposition-implies N \ (l \# S') \longleftrightarrow
   (unmark-l (fst l) \cup N \models ps unmark-l (snd l) \land
     all-decomposition-implies N S')
 unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-trail-is-implied:
 assumes all-decomposition-implies N (qet-all-marked-decomposition M)
 shows N \cup \{unmark\ L\ | L.\ is\text{-marked}\ L \land L \in set\ M\}
   \models ps\ unmark\ `\bigcup (set\ `snd\ `set\ (get-all-marked-decomposition\ M))
```

```
using assms
proof (induct length (get-all-marked-decomposition M) arbitrary: M)
 then show ?case by auto
next
 case (Suc n) note IH = this(1) and length = this(2) and decomp = this(3)
 consider
     (le1) length (get-all-marked-decomposition M) \leq 1
   |(gt1)| length (get-all-marked-decomposition M) > 1
   by arith
 then show ?case
   proof cases
     case le1
     then obtain a b where g: get-all-marked-decomposition M = (a, b) \# []
      by (cases get-all-marked-decomposition M) auto
     moreover {
      assume a = []
      then have ?thesis using Suc.prems g by auto
     moreover {
      assume l: length a = 1 and m: is-marked (hd a) and hd: hd a \in set M
      then have unmark\ (hd\ a) \in \{unmark\ L\ | L.\ is\text{-}marked\ L \land L \in set\ M\} by auto
      then have H: unmark-l \ a \cup N \subseteq N \cup \{unmark \ L \ | L. \ is-marked \ L \land L \in set \ M\}
        using l by (cases a) auto
      have f1: unmark-l \ a \cup N \models ps \ unmark-l \ b
        using decomp unfolding all-decomposition-implies-def g by simp
      have ?thesis
        apply (rule true-clss-clss-subset) using f1 H g by auto
     ultimately show ?thesis
      using get-all-marked-decomposition-length-1-fst-empty-or-length-1 by blast
   next
     case at1
     then obtain Ls\theta seen\theta M' where
      Ls0: get-all-marked-decomposition M = (Ls0, seen0) \# get-all-marked-decomposition M' and
      length': length (get-all-marked-decomposition M') = n and
      M'-in-M: set M' \subseteq set M
      using length by (induct M rule: marked-lit-list-induct) (auto simp: subset-insertI2)
     let ?d = \bigcup (set `snd `set (get-all-marked-decomposition M'))
     let ?unM = \{unmark \ L \mid L. \ is\text{-marked} \ L \land L \in set \ M\}
     let ?unM' = \{unmark \ L \mid L. \ is\text{-marked} \ L \land L \in set \ M'\}
     {
      assume n = 0
      then have get-all-marked-decomposition M' = [] using length' by auto
      then have ?thesis using Suc.prems unfolding all-decomposition-implies-def Ls0 by auto
     moreover {
      assume n: n > 0
      then obtain Ls1 seen1 l where
        Ls1: get-all-marked-decomposition M' = (Ls1, seen1) \# l
        using length' by (induct M' rule: marked-lit-list-induct) auto
      have all-decomposition-implies N (get-all-marked-decomposition M')
        using decomp unfolding Ls\theta by auto
      then have N: N \cup ?unM' \models ps \ unmark-s ?d
```

```
\mathbf{using} \ \mathit{IH} \ \mathit{length'} \ \mathbf{by} \ \mathit{auto}
       have l: N \cup ?unM' \subseteq N \cup ?unM
         using M'-in-M by auto
       from true-clss-clss-subset[OF this N]
       have \Psi N: N \cup ?unM \models ps \ unmark-s ?d by auto
       have is-marked (hd Ls0) and LS: tl Ls0 = seen1 @ Ls1
         using get-all-marked-decomposition-hd-hd[of M] unfolding Ls0 Ls1 by auto
       have LSM: seen 1 @ Ls1 = M' using get-all-marked-decomposition-decomp[of M'] Ls1 by auto
       have M': set M' = ?d \cup \{L \mid L. \text{ is-marked } L \land L \in \text{set } M'\}
         using qet-all-marked-decomposition-snd-union by auto
         assume Ls\theta \neq [
         then have hd Ls\theta \in set M
          using qet-all-marked-decomposition-fst-empty-or-hd-in-M Ls0 by blast
         then have N \cup ?unM \models p \ unmark \ (hd \ Ls0)
          using (is-marked (hd Ls0)) by (metis (mono-tags, lifting) UnCI mem-Collect-eq
             true-clss-cls-in)
       } note hd-Ls\theta = this
       have l: unmark ' (?d \cup \{L \mid L. is-marked L \land L \in set M'\}) = unmark-s ?d \cup ?unM'
         by auto
       have N \cup ?unM' \models ps \ unmark \ (?d \cup \{L \mid L. \ is-marked \ L \land L \in set \ M'\})
         unfolding l using N by (auto simp: all-in-true-clss-clss)
       then have t: N \cup ?unM' \models ps \ unmark-l \ (tl \ Ls\theta)
         using M' unfolding LS LSM by auto
       then have N \cup ?unM \models ps \ unmark-l \ (tl \ Ls\theta)
         using M'-in-M true-clss-clss-subset[OF - t, of N \cup ?unM] by auto
       then have N \cup ?unM \models ps \ unmark-l \ Ls0
         using hd-Ls\theta by (cases Ls\theta) auto
       moreover have unmark-l Ls\theta \cup N \models ps unmark-l seen\theta
         using decomp unfolding Ls0 by simp
       moreover have \bigwedge M Ma. (M::'a \ literal \ multiset \ set) \cup Ma \models ps \ M
         by (simp add: all-in-true-clss-clss)
       ultimately have \Psi: N \cup ?unM \models ps \ unmark-l \ seen 0
         by (meson true-clss-clss-left-right true-clss-clss-union-and true-clss-clss-union-l-r)
       moreover have unmark ' (set seen0 \cup ?d) = unmark-l seen0 \cup unmark-s ?d
       ultimately have ?thesis using \Psi N unfolding Ls0 by simp
     ultimately show ?thesis by auto
   qed
qed
lemma all-decomposition-implies-propagated-lits-are-implied:
 assumes all-decomposition-implies N (qet-all-marked-decomposition M)
 shows N \cup \{unmark\ L\ | L.\ is\text{-marked}\ L \land L \in set\ M\} \models ps\ unmark\text{-}l\ M
   (is ?I \models ps ?A)
proof -
 have ?I \models ps \ unmark-s \{L \mid L. \ is-marked \ L \land L \in set \ M\}
   by (auto intro: all-in-true-clss-clss)
 moreover have ?I \models ps \ unmark \ ` \ \bigcup (set \ `snd \ `set \ (get-all-marked-decomposition \ M))
```

```
using all-decomposition-implies-trail-is-implied assms by blast
  ultimately have N \cup \{unmark \ m \mid m. \ is\text{-}marked \ m \land m \in set \ M\}
   \models ps\ unmark\ `\bigcup (set\ `snd\ `set\ (get-all-marked-decomposition\ M))
     \cup \ unmark \ `\{m \ | m. \ is\text{-}marked \ m \ \land \ m \in set \ M\}
     by blast
 then show ?thesis
   by (metis (no-types) get-all-marked-decomposition-snd-union[of M] image-Un)
qed
lemma all-decomposition-implies-insert-single:
  all-decomposition-implies N M \Longrightarrow all-decomposition-implies (insert C N) M
 unfolding all-decomposition-implies-def by auto
         Negation of Clauses
14.4
definition CNot :: 'v \ clause \Rightarrow 'v \ clauses \ \mathbf{where}
CNot \psi = \{ \{\#-L\#\} \mid L. \ L \in \# \psi \}
lemma in-CNot-uminus[iff]:
 shows \{\#L\#\} \in CNot \ \psi \longleftrightarrow -L \in \# \ \psi
 unfolding CNot-def by force
lemma
 shows
    CNot\text{-}singleton[simp]: CNot \{\#L\#\} = \{\{\#-L\#\}\} \text{ and }
    CNot\text{-}empty[simp]: CNot \{\#\} = \{\}  and
    CNot\text{-}plus[simp]: CNot (A + B) = CNot A \cup CNot B
 unfolding CNot-def by auto
lemma CNot\text{-}eq\text{-}empty[iff]:
  CNot\ D = \{\} \longleftrightarrow D = \{\#\}
 unfolding CNot-def by (auto simp add: multiset-eqI)
lemma in-CNot-implies-uminus:
 assumes L \in \# D and M \models as CNot D
 shows M \models a \{\#-L\#\} \text{ and } -L \in lits\text{-}of\text{-}l\ M
 using assms by (auto simp: true-annots-def true-annot-def CNot-def)
lemma CNot\text{-}remdups\text{-}mset[simp]:
  CNot \ (remdups-mset \ A) = CNot \ A
 unfolding CNot-def by auto
lemma Ball-CNot-Ball-mset[simp]:
  (\forall x \in CNot \ D. \ P \ x) \longleftrightarrow (\forall L \in \# \ D. \ P \ \{\#-L\#\})
unfolding CNot-def by auto
lemma consistent-CNot-not:
 assumes consistent-interp I
 shows I \models s \ CNot \ \varphi \Longrightarrow \neg I \models \varphi
 using assms unfolding consistent-interp-def true-clss-def true-cls-def by auto
lemma total-not-true-cls-true-clss-CNot:
 assumes total-over-m I \{\varphi\} and \neg I \models \varphi
 shows I \models s CNot \varphi
  using assms unfolding total-over-m-def total-over-set-def true-clss-def true-cls-def CNot-def
   apply clarify
```

```
by (rename-tac\ x\ L,\ case-tac\ L) (force\ intro:\ pos-lit-in-atms-of\ neg-lit-in-atms-of)+
\mathbf{lemma}\ total	ext{-}not	ext{-}CNot:
  assumes total-over-m I \{\varphi\} and \neg I \models s \ CNot \ \varphi
  shows I \models \varphi
  using assms total-not-true-cls-true-clss-CNot by auto
lemma atms-of-ms-CNot-atms-of[simp]:
  atms-of-ms (CNot\ C) = atms-of C
  unfolding atms-of-ms-def atms-of-def CNot-def by fastforce
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}contradiction\text{-}true\text{-}clss\text{-}cls\text{-}false:
  C \in D \Longrightarrow D \models ps \ CNot \ C \Longrightarrow D \models p \ \{\#\}
  unfolding true-clss-cls-def true-clss-cls-def total-over-m-def
 by (metis Un-commute atms-of-empty atms-of-ms-CNot-atms-of atms-of-ms-insert atms-of-ms-union
    consistent-CNot-not insert-absorb sup-bot.left-neutral true-clss-def)
lemma true-annots-CNot-all-atms-defined:
  assumes M \models as \ CNot \ T \ and \ a1: \ L \in \# \ T
  shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 by (metis assms atm-of-uminus image-eqI in-CNot-implies-uminus(1) true-annot-singleton)
\mathbf{lemma}\ true\text{-}annots\text{-}CNot\text{-}all\text{-}uminus\text{-}atms\text{-}defined:
  assumes M \models as \ CNot \ T \ and \ a1: -L \in \# \ T
 shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
  by (metis assms atm-of-uninus image-eqI in-CNot-implies-uninus(1) true-annot-singleton)
lemma true-clss-clss-false-left-right:
  assumes \{\{\#L\#\}\}\cup B\models p \{\#\}
  shows B \models ps \ CNot \ \{\#L\#\}
  unfolding true-clss-cls-def true-clss-cls-def
proof (intro allI impI)
 \mathbf{fix}\ I
 assume
    tot: total-over-m I (B \cup CNot \{\#L\#\}) and
    cons: consistent-interp I and
    I: I \models s B
  have total-over-m I (\{\{\#L\#\}\}\cup B) using tot by auto
  then have \neg I \models s insert \{\#L\#\} B
    using assms cons unfolding true-clss-cls-def by simp
  then show I \models s \ CNot \ \{\#L\#\}
    using tot I by (cases L) auto
qed
\mathbf{lemma} \ \mathit{true-annots-true-cls-def-iff-negation-in-model:}
  M \models as \ CNot \ C \longleftrightarrow (\forall \ L \in \# \ C. \ -L \in \ lits \text{-}of \text{-}l \ M)
  unfolding CNot-def true-annots-true-cls true-clss-def by auto
lemma true-annot-CNot-diff:
  I \models as \ CNot \ C \Longrightarrow I \models as \ CNot \ (C - C')
 by (auto simp: true-annots-true-cls-def-iff-negation-in-model dest: in-diffD)
{\bf lemma}\ consistent \hbox{-} CNot\hbox{-} not\hbox{-} tautology:
  consistent-interp M \Longrightarrow M \models s \ CNot \ D \Longrightarrow \neg tautology \ D
```

```
by (metis atms-of-ms-CNot-atms-of consistent-CNot-not satisfiable-carac' satisfiable-def
   tautology-def total-over-m-def)
lemma atms-of-ms-CNot-atms-of-ms: atms-of-ms (CNot \ CC) = atms-of-ms {CC}
 by simp
lemma total-over-m-CNot-toal-over-m[simp]:
  total-over-m \ I \ (CNot \ C) = total-over-set \ I \ (atms-of C)
 unfolding total-over-m-def total-over-set-def by auto
The following lemma is very useful when in the goal appears an axioms like -L=K: this
lemma allows the simplifier to rewrite L.
lemma uminus-lit-swap: -(a::'a \ literal) = i \longleftrightarrow a = -i
 by auto
lemma true-clss-cls-plus-CNot:
 assumes CC-L: A \models p CC + \{\#L\#\}
 and CNot\text{-}CC: A \models ps \ CNot \ CC
 shows A \models p \{\#L\#\}
 unfolding true-clss-cls-def true-clss-cls-def CNot-def total-over-m-def
proof (intro allI impI)
 fix I
 assume
   tot: total-over-set I (atms-of-ms (A \cup \{\{\#L\#\}\})) and
   cons: consistent-interp I and
   I: I \models s A
 let ?I = I \cup \{Pos \ P | P. \ P \in atms-of \ CC \land P \notin atm-of `I'\}
 have cons': consistent-interp ?I
   using cons unfolding consistent-interp-def
   by (auto simp: uminus-lit-swap atms-of-def rev-image-eqI)
 have I': ?I \models s A
   using I true-clss-union-increase by blast
 have tot-CNot: total-over-m ?I (A \cup CNot \ CC)
   \textbf{using} \ tot \ atms-of-s-def \ \textbf{by} \ (fastforce \ simp: \ total-over-m-def \ total-over-set-def)
  then have tot-I-A-CC-L: total-over-m ?I (A \cup \{CC + \{\#L\#\}\})
   using tot unfolding total-over-m-def total-over-set-atm-of by auto
  then have ?I \models CC + \#L\# using CC-L cons' I' unfolding true-clss-cls-def by blast
 moreover
   have ?I \models s \ CNot \ CC \ using \ CNot \cdot CC \ cons' \ I' \ tot \cdot CNot \ unfolding \ true \cdot clss \cdot def \ by \ auto
   then have \neg A \models p \ CC
     by (metis (no-types, lifting) I' atms-of-ms-CNot-atms-of-ms atms-of-ms-union cons'
       consistent-CNot-not tot-CNot total-over-m-def true-clss-cls-def)
   then have \neg ?I \models CC using \langle ?I \models s \ CNot \ CC \rangle \ cons' \ consistent-CNot-not \ by \ blast
  ultimately have ?I \models \{\#L\#\} by blast
  then show I \models \{\#L\#\}
   by (metis (no-types, lifting) atms-of-ms-union cons' consistent-CNot-not tot total-not-CNot
     total-over-m-def total-over-set-union true-clss-union-increase)
qed
lemma true-annots-CNot-lit-of-notin-skip:
 assumes LM: L \# M \models as \ CNot \ A \ and \ LA: \ lit-of \ L \notin \# A \ -lit-of \ L \notin \# A
 shows M \models as \ CNot \ A
 using LM unfolding true-annots-def Ball-def
proof (intro allI impI)
```

```
\mathbf{fix} l
 assume H: \forall x. \ x \in \mathit{CNot}\ A \longrightarrow L \# M \models ax \ \text{and}\ l: \ l \in \mathit{CNot}\ A
  then have L \# M \models a l by auto
  then show M \models a l \text{ using } LA l \text{ by } (cases L) (auto simp: CNot-def)
 qed
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}union\text{-}false\text{-}true\text{-}clss\text{-}clss\text{-}cnot\text{:}
  A \cup \{B\} \models ps \{\{\#\}\} \longleftrightarrow A \models ps \ CNot \ B
  using total-not-CNot consistent-CNot-not unfolding total-over-m-def true-clss-clss-def
  by fastforce
lemma true-annot-remove-hd-if-notin-vars:
  assumes a \# M' \models a D and atm\text{-}of (lit\text{-}of a) \notin atms\text{-}of D
 shows M' \models a D
  using assms true-cls-remove-hd-if-notin-vars unfolding true-annot-def by auto
lemma true-annot-remove-if-notin-vars:
  assumes M @ M' \models a D and \forall x \in atms\text{-}of D. x \notin atm\text{-}of ``lits\text{-}of\text{-}l M"
  shows M' \models a D
  using assms apply (induct M, simp)
  using true-annot-remove-hd-if-notin-vars by force+
\mathbf{lemma}\ true\text{-}annots\text{-}remove\text{-}if\text{-}notin\text{-}vars:
  assumes M @ M' \models as D and \forall x \in atms-of-ms D. x \notin atm-of `its-of-l M
  shows M' \models as D unfolding true-annots-def
  using assms true-annot-remove-if-notin-vars[of M M']
  unfolding true-annots-def atms-of-ms-def by force
lemma all-variables-defined-not-imply-cnot:
 assumes
    \forall s \in atms\text{-}of\text{-}ms \{B\}. \ s \in atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ A \ and \ }
    \neg A \models a B
 shows A \models as \ CNot \ B
  unfolding true-annot-def true-annots-def Ball-def CNot-def true-lit-def
proof (clarify, rule ccontr)
  \mathbf{fix} \ L
  assume LB: L \in \# B and \neg lits-of-l A \models l - L
  then have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ A
    using assms(1) by (simp add: atm-of-lit-in-atms-of lits-of-def)
  then have L \in lits-of-l A \lor -L \in lits-of-l A
    using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by metis
  then have L \in lits-of-l A using \langle \neg lits-of-l A \models l - L \rangle by auto
  then show False
    using LB assms(2) unfolding true-annot-def true-lit-def true-cls-def Bex-def
    by blast
qed
lemma CNot-union-mset[simp]:
  CNot \ (A \# \cup B) = CNot \ A \cup CNot \ B
  unfolding CNot-def by auto
14.5
          Other
abbreviation no-dup L \equiv distinct \ (map \ (\lambda l. \ atm-of \ (lit-of \ l)) \ L)
lemma no-dup-rev[simp]:
```

```
no-dup (rev M) \longleftrightarrow no-dup M
 by (auto simp: rev-map[symmetric])
lemma no-dup-length-eq-card-atm-of-lits-of-l:
 assumes no-dup M
 shows length M = card (atm-of 'lits-of-l M)
 using assms unfolding lits-of-def by (induct M) (auto simp add: image-image)
lemma distinct-consistent-interp:
 no-dup M \Longrightarrow consistent-interp (lits-of-l M)
proof (induct M)
 case Nil
 show ?case by auto
next
 case (Cons\ L\ M)
 then have a1: consistent-interp (lits-of-l M) by auto
 have a2: atm-of (lit-of L) \notin (\lambda l. atm-of (lit-of l)) 'set M using Cons.prems by auto
 have undefined-lit M (lit-of L)
   using a2 image-iff unfolding defined-lit-def by fastforce
 then show ?case
   using a1 by simp
qed
\mathbf{lemma}\ distinct\text{-} get\text{-}all\text{-}marked\text{-}decomposition\text{-}no\text{-}dup:
 assumes (a, b) \in set (get-all-marked-decomposition M)
 and no-dup M
 shows no-dup (a @ b)
 using assms by force
lemma true-annots-lit-of-notin-skip:
 assumes L \# M \models as \ CNot \ A
 and -lit-of L \notin \# A
 and no-dup (L \# M)
 shows M \models as \ CNot \ A
proof -
 have \forall l \in \# A. -l \in lits\text{-}of\text{-}l \ (L \# M)
   using assms(1) in-CNot-implies-uminus(2) by blast
 moreover
   have atm\text{-}of\ (lit\text{-}of\ L) \notin atm\text{-}of\ `lits\text{-}of\text{-}l\ M
     using assms(3) unfolding lits-of-def by force
   then have - lit-of L \notin lits-of-l M unfolding lits-of-def
     by (metis (no-types) atm-of-uminus imageI)
  ultimately have \forall l \in \# A. -l \in lits\text{-}of\text{-}l M
   using assms(2) by (metis\ insert-iff\ list.simps(15)\ lits-of-insert\ uminus-of-uminus-id)
 then show ?thesis by (auto simp add: true-annots-def)
qed
abbreviation true-annots-mset (infix \models asm 50) where
I \models asm \ C \equiv I \models as \ (set\text{-}mset \ C)
abbreviation true-clss-clss-m:: 'v clause multiset \Rightarrow 'v clause multiset \Rightarrow bool (infix \models psm 50)
I \models psm \ C \equiv set\text{-}mset \ I \models ps \ (set\text{-}mset \ C)
Analog of [?N \models ps ?B; ?A \subseteq ?B] \implies ?N \models ps ?A
```

```
lemma true\text{-}clss\text{-}clssm\text{-}subsetE: N \models psm\ B \Longrightarrow A \subseteq \#\ B \Longrightarrow N \models psm\ A
  using set-mset-mono true-clss-clss-subsetE by blast
abbreviation true-clss-cls-m:: 'a clause multiset \Rightarrow 'a clause \Rightarrow bool (infix \models pm \ 50) where
I \models pm \ C \equiv set\text{-}mset \ I \models p \ C
abbreviation distinct-mset-mset :: 'a multiset multiset \Rightarrow bool where
distinct-mset-mset \Sigma \equiv distinct-mset-set (set-mset \Sigma)
abbreviation all-decomposition-implies-m where
all-decomposition-implies-m A B \equiv all-decomposition-implies (set-mset A) B
abbreviation atms-of-mm :: 'a literal multiset multiset \Rightarrow 'a set where
atms-of-mm U \equiv atms-of-ms (set-mset U)
Other definition using Union-mset
lemma atms-of-mm U \equiv set\text{-mset} \ (\bigcup \# image\text{-mset} \ (image\text{-mset} \ atm\text{-}of) \ U)
  unfolding atms-of-ms-def by (auto simp: atms-of-def)
abbreviation true-clss-m:: 'a interp \Rightarrow 'a clause multiset \Rightarrow bool (infix \modelssm 50) where
I \models sm \ C \equiv I \models s \ set\text{-}mset \ C
abbreviation true-clss-ext-m (infix \models sextm 49) where
I \models sextm \ C \equiv I \models sext \ set\text{-mset} \ C
end
theory CDCL-Abstract-Clause-Representation
imports Main Partial-Clausal-Logic
begin
type-synonym 'v clause = 'v literal multiset
type-synonym 'v clauses = 'v clause multiset
```

14.6 Abstract Clause Representation

We will abstract the representation of clause and clauses via two locales. We expect our representation to behave like multiset, but the internal representation can be done using list or whatever other representation.

We assume the following:

• there is an equivalent to adding and removing a literal and to taking the union of clauses.

```
locale raw\text{-}cls =
fixes

mset\text{-}cls:: 'cls \Rightarrow 'v \ clause \ \mathbf{and}
insert\text{-}cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
remove\text{-}lit :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls
\mathbf{assumes}
insert\text{-}cls[simp]: mset\text{-}cls \ (insert\text{-}cls \ L \ C) = mset\text{-}cls \ C + \{\#L\#\} \ \mathbf{and}
remove\text{-}lit[simp]: mset\text{-}cls \ (remove\text{-}lit \ L \ C) = remove\text{1-mset} \ L \ (mset\text{-}cls \ C)
\mathbf{begin}
\mathbf{end}
\mathbf{locale} \ raw\text{-}ccls\text{-}union =
```

```
fixes mset\text{-}cls:: 'cls \Rightarrow 'v \ clause \ \mathbf{and} union\text{-}cls:: 'cls \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and} union\text{-}cls:: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and} insert\text{-}cls:: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and} remove\text{-}lit:: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \mathbf{assumes} insert\text{-}ccls[simp]: mset\text{-}cls \ (insert\text{-}cls \ L \ C) = mset\text{-}cls \ C + \{\#L\#\} \ \mathbf{and} mset\text{-}ccls\text{-}union\text{-}cls[simp]: mset\text{-}cls \ (union\text{-}cls \ C \ D) = mset\text{-}cls \ C \ \#\cup \ mset\text{-}cls \ D \ \mathbf{and} remove\text{-}clit[simp]: mset\text{-}cls \ (remove\text{-}lit \ L \ C) = remove1\text{-}mset \ L \ (mset\text{-}cls \ C) begin end
```

Instantiation of the previous locale, in an unnamed context to avoid polluating with simp rules

context

```
begin
```

```
interpretation list-cls: raw-cls mset
    op # remove1
    by unfold-locales (auto simp: union-mset-list ex-mset)

interpretation cls-cls: raw-cls id
    \lambda L C. C + {#L#} remove1-mset
    by unfold-locales (auto simp: union-mset-list)

interpretation list-cls: raw-ccls-union mset
    union-mset-list
    op # remove1
    by unfold-locales (auto simp: union-mset-list ex-mset)

interpretation cls-cls: raw-ccls-union id
    op #\cup \lambda L C. C + {#L#} remove1-mset
    by unfold-locales (auto simp: union-mset-list)

end
```

Over the abstract clauses, we have the following properties:

- We can insert a clause
- We can take the union (used only in proofs for the definition of *clauses*)
- there is an operator indicating whether the abstract clause is contained or not
- if a concrete clause is contained the abstract clauses, then there is an abstract clause

```
locale raw\text{-}clss =
raw\text{-}cls \; mset\text{-}cls \; insert\text{-}cls \; remove\text{-}lit
for
mset\text{-}cls:: 'cls \Rightarrow 'v \; clause \; \mathbf{and}
insert\text{-}cls:: 'v \; literal \Rightarrow 'cls \Rightarrow 'cls \; \mathbf{and}
remove\text{-}lit:: 'v \; literal \Rightarrow 'cls \Rightarrow 'cls \; +
fixes
mset\text{-}clss:: 'clss \Rightarrow 'v \; clauses \; \mathbf{and}
union\text{-}clss:: 'clss \Rightarrow 'clss \Rightarrow 'clss \; \mathbf{and}
in\text{-}clss:: 'cls \Rightarrow 'clss \Rightarrow bool \; \mathbf{and}
insert\text{-}clss:: 'cls \Rightarrow 'clss \Rightarrow 'clss \; \mathbf{and}
remove\text{-}from\text{-}clss:: 'cls \Rightarrow 'clss \Rightarrow 'clss \; +
```

```
assumes
         insert-clss[simp]: mset-clss \ (insert-clss \ L \ C) = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-clss \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C = mset-cls \ C + \{\#mset-cls \ L\#\} \ and \ C =
        union-clss[simp]: mset-clss \ (union-clss \ C \ D) = mset-clss \ C + mset-clss \ D \ and
         mset-clss-union-clss[simp]: mset-clss (insert-clss C'D) = \{\#mset-clss C'\#\} + mset-clss D and
         in\text{-}clss\text{-}mset\text{-}clss[dest]: in\text{-}clss\ a\ C \Longrightarrow mset\text{-}cls\ a \in \#\ mset\text{-}clss\ C and
         in\text{-}mset\text{-}clss\text{-}exists\text{-}preimage: }b \in \# mset\text{-}clss \ C \Longrightarrow \exists \ b'. \ in\text{-}clss \ b' \ C \land mset\text{-}cls \ b' = b \ and
         remove-from-clss-mset-clss[simp]:
             mset-clss (remove-from-clss a C) = mset-clss C - {\#mset-cls a\#} and
        in-clss-union-clss[simp]:
             in\text{-}clss\ a\ (union\text{-}clss\ C\ D)\longleftrightarrow in\text{-}clss\ a\ C\ \lor\ in\text{-}clss\ a\ D
begin
end
experiment
begin
    fun remove-first where
    remove-first - [] = [] []
    remove-first C(C' \# L) = (if mset C = mset C' then L else C' \# remove-first C L)
    lemma mset-map-mset-remove-first:
         mset\ (map\ mset\ (remove-first\ a\ C)) = remove1-mset\ (mset\ a)\ (mset\ (map\ mset\ C))
        by (induction C) (auto simp: ac-simps remove1-mset-single-add)
    interpretation clss-clss: raw-clss id \lambda L C. C + \{\#L\#\} remove1-mset
         id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove1\text{-}mset
        by unfold-locales (auto simp: ac-simps)
    interpretation list-clss: raw-clss mset
        op # remove1 \lambda L. mset (map mset L) op @ \lambda L C. L \in set C op #
        remove-first
        by unfold-locales (auto simp: ac-simps union-mset-list mset-map-mset-remove-first ex-mset)
end
end
theory CDCL-WNOT-Measure
imports Main
begin
```

15 Measure

This measure show the termination of the core of CDCL: each step improves the number of literals we know for sure.

This measure can also be seen as the increasing lexicographic order: it is an order on bounded sequences, when each element is bounded. The proof involves a measure like the one defined here (the same?).

```
definition \mu_C :: nat \Rightarrow nat \Rightarrow nat \ list \Rightarrow nat \ where
\mu_C \ s \ b \ M \equiv (\sum i=0... < length \ M. \ M!i * b \ (s+i-length \ M))
lemma \mu_C-nil[simp]:
\mu_C \ s \ b \ [] = 0
unfolding \mu_C-def by auto
lemma \mu_C-single[simp]:
```

```
\mu_C \ s \ b \ [L] = L * b \ \widehat{\ } (s - Suc \ \theta)
 unfolding \mu_C-def by auto
\mathbf{lemma}\ set\text{-}sum\text{-}atLeastLessThan\text{-}add:
  (\sum i=k..< k+(b::nat).\ f\ i)=(\sum i=\theta..< b.\ f\ (k+\ i))
 by (induction b) auto
\mathbf{lemma}\ set\text{-}sum\text{-}atLeastLessThan\text{-}Suc:
  (\sum i=1..<Suc\ j.\ f\ i)=(\sum i=0..<j.\ f\ (Suc\ i))
 using set-sum-atLeastLessThan-add[of - 1 j] by force
lemma \mu_C-cons:
 \mu_C \ s \ b \ (L \# M) = L * b \ \widehat{\ } (s-1 - length M) + \mu_C \ s \ b \ M
proof -
 have \mu_C \ s \ b \ (L \# M) = (\sum i = 0... < length \ (L \# M). \ (L \# M)! \ i * b^ (s + i - length \ (L \# M)))
   unfolding \mu_C-def by blast
 also have ... = (\sum i=0..<1. (L\#M)!i*b^(s+i-length (L\#M)))
                + (\sum i=1... < length (L\#M). (L\#M)! i * b^ (s+i-length (L\#M)))
    by (rule setsum-add-nat-ivl[symmetric]) simp-all
 finally have \mu_C \ s \ b \ (L \# M) = L * b \ (s - 1 - length M)
                + (\sum_{i=1}^{n} i=1..< length (L\#M). (L\#M)!i * b^ (s+i - length (L\#M)))
    by auto
 moreover {
   have (\sum i=1...< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M))) = (\sum i=0...< length\ (M).\ (L\#M)!(Suc\ i)*b^(s+(Suc\ i)-length\ (L\#M)))
    unfolding length-Cons set-sum-atLeastLessThan-Suc by blast
   also have ... = (\sum i=0.. < length(M). M!i * b^(s+i-length(M)))
   finally have (\sum i=1...< length\ (L\#M).\ (L\#M)!i*b^(s+i-length\ (L\#M))) = \mu_C\ s\ b\ M
     unfolding \mu_C-def.
 ultimately show ?thesis by presburger
qed
lemma \mu_C-append:
 assumes s > length (M@M')
 shows \mu_C \ s \ b \ (M@M') = \mu_C \ (s - length \ M') \ b \ M + \mu_C \ s \ b \ M'
proof
 have \mu_C \ s \ b \ (M@M') = (\sum i = 0... < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
   unfolding \mu_C-def by blast
 moreover then have ... = (\sum i=0.. < length M. (M@M')!i * b^ (s+i-length (M@M')))
                + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s+i - length \ (M@M')))
   by (auto intro!: setsum-add-nat-ivl[symmetric])
 moreover
   have \forall i \in \{0.. < length M\}. (M@M')!i * b^ (s+i-length (M@M')) = M!i * b^ (s-length M')\}
     + i - length M
     using \langle s \geq length \ (M@M') \rangle by (auto simp add: nth-append ac-simps)
     then have \mu_C (s - length M') b M = (\sum i=0.. < length M. (M@M')!i * b^ (s + i - length)
(M@M'))
     unfolding \mu_C-def by auto
 ultimately have \mu_C s b (M@M') = \mu_C (s - length M') b M
                 + (\sum i = length \ M.. < length \ (M@M'). \ (M@M')!i * b^ (s + i - length \ (M@M')))
    by auto
 moreover {
   \mathbf{have} \ (\sum i = length \ M.. < length \ (M@M'). \ (M@M')! \ i \ * \ b \ \char`(s+i - length \ (M@M'))) = 1 \ \ i \ \ (s+i - length \ (M@M')) \ \ i \ \ \ (s+i - length \ (M@M')) \ \ )
```

```
(\sum i=0..< length\ M'.\ M'!i*b^(s+i-length\ M'))
        unfolding length-append set-sum-atLeastLessThan-add by auto
      then have (\sum i=length\ M...< length\ (M@M').\ (M@M')!i*b^ (s+i-length\ (M@M'))) = \mu_C\ s\ b
         unfolding \mu_C-def.
   ultimately show ?thesis by presburger
qed
lemma \mu_C-cons-non-empty-inf:
   assumes M-ge-1: \forall i \in set \ M. \ i \geq 1 \ and \ M: \ M \neq []
   shows \mu_C \ s \ b \ M \ge b \ \widehat{} \ (s - length \ M)
   using assms by (cases M) (auto simp: mult-eq-if \mu_C-cons)
Copy of ~~/src/HOL/ex/NatSum.thy (but generalized to 0 \le k)
lemma sum-of-powers: 0 \le k \Longrightarrow (k-1) * (\sum_{i=0}^{n} i=0... < n. \ k^i) = k^n - (1::nat)
   apply (cases k = 0)
      apply (cases n; simp)
   by (induct n) (auto simp: Nat.nat-distrib)
In the degenerated cases, we only have the large inequality holds. In the other cases, the
following strict inequality holds:
lemma \mu_C-bounded-non-degenerated:
   fixes b :: nat
   assumes
      b > \theta and
      M \neq [] and
      M-le: \forall i < length M. M!i < b and
      s \geq length M
   shows \mu_C \ s \ b \ M < b \hat{s}
   consider (b1) b=1 | (b) b>1 using (b>0) by (cases b) auto
   then show ?thesis
      proof cases
         case b1
         then have \forall i < length M. M!i = 0 using M-le by auto
         then have \mu_C \ s \ b \ M = \theta unfolding \mu_C-def by auto
         then show ?thesis using \langle b > 0 \rangle by auto
      next
         case b
         have \forall i \in \{0..< length M\}. M!i * b^{(s+i-length M)} \leq (b-1) * b^{(s+i-length M)}
             using M-le \langle b > 1 \rangle by auto
         then have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ (b-1) * b^ (s+i-length \ M))
              using \langle M \neq [] \rangle \langle b > \theta \rangle unfolding \mu_C-def by (auto intro: setsum-mono)
         also
            have \forall i \in \{0.. < length M\}. (b-1) * b^{(s+i-length M)} = (b-1) * b^{(i+k-length M)}
                by (metis Nat.add-diff-assoc2 add.commute assms(4) mult.assoc power-add)
             then have (\sum i=0..< length\ M.\ (b-1)*b^ (s+i-length\ M))
                = (\sum_{i=0}^{n} i=0... < length M. (b-1)* b^i * b^i *
                by (auto simp add: ac-simps)
         also have ... = (\sum i=0..< length\ M.\ b^i) * b^k(s-length\ M) * (b-1)
              \mathbf{by}\ (simp\ add:\ setsum-left-distrib\ setsum-right-distrib\ ac\text{-}simps)
         finally have \mu_C \ s \ b \ M \le (\sum i=0... < length \ M. \ b^i) * (b-1) * b^i(s - length \ M)
             by (simp \ add: \ ac\text{-}simps)
```

```
also
      have (\sum i=0..< length\ M.\ b^i)*(b-1)=b^i(length\ M)-1
         using sum-of-powers[of b length M] \langle b > 1 \rangle
         by (auto simp add: ac-simps)
     finally have \mu_C \ s \ b \ M \le (b \ \widehat{\ } (length \ M) - 1) * b \ \widehat{\ } (s - length \ M)
       by auto
     also have ... < b \cap (length M) * b \cap (s - length M)
       using \langle b > 1 \rangle by auto
     also have ... = b \hat{s}
      by (metis assms(4) le-add-diff-inverse power-add)
     finally show ?thesis unfolding \mu_C-def by (auto simp add: ac-simps)
   qed
qed
In the degenerate case b = (\theta::'a), the list M is empty (since the list cannot contain any
element).
lemma \mu_C-bounded:
 fixes b :: nat
 assumes
   M-le: \forall i < length M. M!i < b and
   s \ge length M
   b > 0
 shows \mu_C \ s \ b \ M < b \ \hat{s}
proof -
  consider (M\theta) M = [ | (M) | b > \theta  and M \neq [ ]
   using M-le by (cases b, cases M) auto
  then show ?thesis
   proof cases
     case M0
     then show ?thesis using M-le \langle b > 0 \rangle by auto
   next
     case M
     show ?thesis using \mu_C-bounded-non-degenerated [OF M assms(1,2)] by arith
   ged
qed
When b = 0, we cannot show that the measure is empty, since 0^0 = 1.
lemma \mu_C-base-\theta:
 assumes length M \leq s
 shows \mu_C \ s \ \theta \ M \leq M!\theta
proof -
  {
   assume s = length M
   moreover {
     \mathbf{fix} \ n
     have (\sum i=0...< n.\ M ! i * (0::nat) ^i) \leq M ! 0
      apply (induction n rule: nat-induct)
      by simp (rename-tac n, case-tac n, auto)
   ultimately have ?thesis unfolding \mu_C-def by auto
  }
 moreover
   assume length M < s
   then have \mu_C \ s \ \theta \ M = \theta \ \text{unfolding} \ \mu_C \text{-}def \ \text{by} \ auto\}
```

```
ultimately show ?thesis using assms unfolding \mu_C-def by linarith qed end theory CDCL-NOT imports CDCL-Abstract-Clause-Representation List-More Wellfounded-More CDCL-WNOT-Measure Partial-Annotated-Clausal-Logic begin
```

16 NOT's CDCL

16.1 Auxiliary Lemmas and Measure

```
lemma no-dup-cannot-not-lit-and-uminus:
    no-dup M \Longrightarrow - lit-of xa = lit-of x \Longrightarrow x \in set \ M \Longrightarrow xa \notin set \ M
    by (metis atm-of-uminus distinct-map inj-on-eq-iff uminus-not-id')

lemma atms-of-ms-single-atm-of[simp]:
    atms-of-ms {unmark L \mid L. \mid P \mid L} = atm-of '{lit-of L \mid L. \mid P \mid L}
    unfolding atms-of-ms-def by force

lemma atms-of-uminus-lit-atm-of-lit-of:
    atms-of {# - lit-of x. \mid x \mid \in \# \mid A\# \mid \}} = atm-of '(lit-of '(set-mset \ A))
    unfolding atms-of-def by (auto simp add: Fun.image-comp)

lemma atms-of-ms-single-image-atm-of-lit-of:
    atms-of-ms (unmark-s \ A) = atm-of '(lit-of ' A)
    unfolding atms-of-ms-def by auto
```

16.2 Initial definitions

16.2.1 The state

We define here an abstraction over operation on the state we are manipulating.

```
locale dpll-state-ops =
  raw-clss mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss +
  fixes
     trail :: 'st \Rightarrow ('v, unit, unit) marked-lits  and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st
begin
```

```
notation insert-cls (infix !++ 50)
notation in-clss (infix ! \in ! 50)
notation union-clss (infix \oplus 50)
notation insert-clss (infix !++! 50)
abbreviation clauses_{NOT} where
clauses_{NOT} S \equiv mset\text{-}clss \ (raw\text{-}clauses \ S)
end
locale dpll-state =
  dpll-state-ops mset-cls insert-cls remove-lit — related to each clause
    mset-clss union-clss in-clss insert-clss remove-from-clss — related to the clauses
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} — related to the state
  \mathbf{for}
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st +
  assumes
    trail-prepend-trail[simp]:
      \bigwedgest L. undefined-lit (trail st) (lit-of L) \Longrightarrow trail (prepend-trail L st) = L # trail st
    tl-trail[simp]: trail(tl-trailS) = tl(trailS) and
    trail-add-cls_{NOT}[simp]: \land st \ C. \ no-dup \ (trail \ st) \Longrightarrow trail \ (add-cls_{NOT} \ C \ st) = trail \ st \ and
    trail-remove-cls_{NOT}[simp]: \land st C. trail (remove-cls_{NOT} C st) = trail st and
    clauses-prepend-trail[simp]:
      \bigwedge st\ L.\ undefined-lit\ (trail\ st)\ (lit-of\ L) \Longrightarrow
        clauses_{NOT} (prepend-trail L st) = clauses_{NOT} st
    clauses-tl-trail[simp]: \land st. clauses_{NOT} (tl-trail st) = clauses_{NOT} st and
    clauses-add-cls_{NOT}[simp]:
      \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow clauses_{NOT}\ (add\text{-}cls_{NOT}\ C\ st) = \{\#mset\text{-}cls\ C\#\} + clauses_{NOT}\ st\}
and
    clauses-remove-cls_{NOT}[simp]:
      \bigwedgest C. clauses<sub>NOT</sub> (remove-cls<sub>NOT</sub> C st) = removeAll-mset (mset-cls C) (clauses<sub>NOT</sub> st)
begin
function reduce-trail-to<sub>NOT</sub> :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to<sub>NOT</sub> FS =
  (if length (trail S) = length F \vee trail S = [] then S else reduce-trail-to<sub>NOT</sub> F (tl-trail S))
by fast+
```

```
declare reduce-trail-to_{NOT}.simps[simp\ del]
lemma
 shows
  reduce-trail-to<sub>NOT</sub>-nil[simp]: trail S = [] \Longrightarrow reduce-trail-to<sub>NOT</sub> F S = S and
 reduce-trail-to_{NOT}-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to_{NOT} F S = S
 by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma reduce-trail-to_{NOT}-length-ne[simp]:
  length (trail S) \neq length F \Longrightarrow trail S \neq [] \Longrightarrow
   reduce-trail-to<sub>NOT</sub> F S = reduce-trail-to<sub>NOT</sub> F (tl-trail S)
 by (auto simp: reduce-trail-to<sub>NOT</sub>.simps)
lemma trail-reduce-trail-to_{NOT}-length-le:
 assumes length F > length (trail S)
 shows trail (reduce-trail-to<sub>NOT</sub> FS) = []
 using assms by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-nil[simp]:
  trail\ (reduce-trail-to_{NOT}\ []\ S)=[]
 by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma clauses-reduce-trail-to<sub>NOT</sub>-nil:
  clauses_{NOT} (reduce-trail-to<sub>NOT</sub> [] S) = clauses_{NOT} S
 by (induction [] S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma trail-reduce-trail-to_{NOT}-drop:
  trail (reduce-trail-to_{NOT} F S) =
   (if \ length \ (trail \ S) \ge length \ F
   then drop (length (trail S) – length F) (trail S)
 apply (induction F S rule: reduce-trail-to_{NOT}.induct)
 apply (rename-tac F S, case-tac trail S)
  apply auto
 apply (rename-tac list, case-tac Suc (length list) > length F)
  prefer 2 apply simp
 apply (subgoal-tac Suc (length list) – length F = Suc (length list – length F))
  apply simp
 apply simp
 done
lemma reduce-trail-to_{NOT}-skip-beginning:
 assumes trail S = F' @ F
 shows trail (reduce-trail-to<sub>NOT</sub> FS) = F
 using assms by (auto simp: trail-reduce-trail-to<sub>NOT</sub>-drop)
lemma reduce-trail-to_{NOT}-clauses[simp]:
  clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F S) = clauses_{NOT} S
  by (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
  (simp\ add:\ less-imp\-diff-less\ reduce\-trail-to_{NOT}.simps)
```

termination by (relation measure $(\lambda(-, S)$). length (trail S))) auto

```
abbreviation trail-weight where
trail-weight\ S \equiv map\ ((\lambda l.\ 1 + length\ l)\ o\ snd)\ (get-all-marked-decomposition\ (trail\ S))
definition state\text{-}eq_{NOT}:: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow trail \; S = trail \; T \; \land \; clauses_{NOT} \; S = clauses_{NOT} \; T
lemma state-eq_{NOT}-ref[simp]:
  S \sim S
 unfolding state-eq_{NOT}-def by auto
lemma state-eq_{NOT}-sym:
  S \sim T \longleftrightarrow T \sim S
  unfolding state-eq_{NOT}-def by auto
lemma state-eq_{NOT}-trans:
  S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
  unfolding state-eq_{NOT}-def by auto
lemma
  shows
    state-eq_{NOT}-trail: S \sim T \Longrightarrow trail \ S = trail \ T and
    state\text{-}eq_{NOT}\text{-}clauses: S \sim T \Longrightarrow clauses_{NOT} S = clauses_{NOT} T
  unfolding state-eq_{NOT}-def by auto
lemmas state-simp_{NOT}[simp] = state-eq_{NOT}-trail\ state-eq_{NOT}-clauses
\mathbf{lemma} \ \textit{trail-eq-reduce-trail-to}_{NOT}\text{-}\textit{eq}\text{:}
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
 apply (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
 by (metis tl-trail reduce-trail-to<sub>NOT</sub>-eq-length reduce-trail-to<sub>NOT</sub>-length-ne reduce-trail-to<sub>NOT</sub>-nil)
lemma reduce-trail-to_{NOT}-state-eq_{NOT}-compatible:
 assumes ST: S \sim T
 shows reduce-trail-to<sub>NOT</sub> FS \sim reduce-trail-to<sub>NOT</sub> FT
proof -
  have clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F S) = clauses_{NOT} (reduce-trail-to<sub>NOT</sub> F T)
    using ST by auto
  moreover have trail (reduce-trail-to<sub>NOT</sub> F S) = trail (reduce-trail-to<sub>NOT</sub> F T)
    using trail-eq-reduce-trail-to_{NOT}-eq[of S T F] ST by auto
  ultimately show ?thesis by (auto simp del: state-simp_{NOT} simp: state-eq_{NOT}-def)
qed
lemma trail-reduce-trail-to_{NOT}-add-cls_{NOT}[simp]:
  no-dup (trail S) \Longrightarrow
    trail\ (reduce-trail-to_{NOT}\ F\ (add-cls_{NOT}\ C\ S)) = trail\ (reduce-trail-to_{NOT}\ F\ S)
  by (rule\ trail-eq\ reduce\ trail-to_{NOT}\ -eq)\ simp
lemma reduce-trail-to_{NOT}-trail-tl-trail-decomp[simp]:
  trail\ S = F' @ Marked\ K\ () \# F \Longrightarrow
     trail (reduce-trail-to_{NOT} F (tl-trail S)) = F
  apply (rule reduce-trail-to<sub>NOT</sub>-skip-beginning[of - tl (F' @ Marked K () \# [])])
  by (cases F') (auto simp add:tl-append reduce-trail-to<sub>NOT</sub>-skip-beginning)
lemma reduce-trail-to<sub>NOT</sub>-length:
  length\ M = length\ M' \Longrightarrow reduce\text{-}trail\text{-}to_{NOT}\ M\ S = reduce\text{-}trail\text{-}to_{NOT}\ M'\ S
```

```
apply (induction M S arbitrary: rule: reduce-trail-to<sub>NOT</sub>.induct) by (simp add: reduce-trail-to<sub>NOT</sub>.simps)
```

end

16.2.2 Definition of the operation

```
locale propagate-ops =
  dpll-state mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
     mset-cls:: 'cls \Rightarrow 'v \ clause \ \mathbf{and}
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ {\bf and}
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
     remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st +
  fixes
    propagate\text{-}cond :: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool
begin
inductive propagate_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool  where
propagate_{NOT}[intro]: C + \{\#L\#\} \in \# clauses_{NOT} S \Longrightarrow trail S \models as CNot C
    \implies undefined\text{-}lit (trail S) L
    \implies propagate-cond (Propagated L ()) S
    \implies T \sim prepend-trail (Propagated L ()) S
    \implies propagate_{NOT} S T
inductive-cases propagate_{NOT}E[elim]: propagate_{NOT} S T
end
locale decide-ops =
  dpll-state mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits  and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
```

```
add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st
inductive decide_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool where
decide_{NOT}[intro]: undefined-lit (trail\ S)\ L \Longrightarrow atm-of L \in atms-of-mm\ (clauses_{NOT}\ S)
  \implies T \sim prepend-trail (Marked L ()) S
  \implies decide_{NOT}\ S\ T
inductive-cases decide_{NOT}E[elim]: decide_{NOT} S S'
{\bf locale}\ backjumping{-}ops =
  dpll-state mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
     remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st +
     backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
{\bf inductive}\ \textit{backjump}\ {\bf where}
trail\ S = F' @ Marked\ K\ () \#\ F
   \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
   \implies C \in \# clauses_{NOT} S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit \ F \ L
   \implies atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)\ \cup\ atm\text{-}of\ ``(lits\text{-}of\text{-}l\ (trail\ S))
   \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump\text{-}conds\ C\ C'\ L\ S\ T
   \implies backjump \ S \ T
inductive-cases backjumpE: backjump S T
The condition atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \cup atm\text{-}of\ `its\text{-}of\text{-}l\ (trail\ S) is not
implied by the the condition clauses_{NOT} S \models pm C' + \{\#L\#\}  (no negation).
```

16.3 DPLL with backjumping

end

locale dpll-with-backjumping-ops =
 propagate-ops mset-cls insert-cls remove-lit

```
mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds +
  decide-ops mset-cls insert-cls remove-lit
     mset-clss union-clss in-clss insert-clss remove-from-clss
     trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ +
  backjumping-ops mset-cls insert-cls remove-lit
     mset-clss union-clss in-clss insert-clss remove-from-clss
     trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ backjump-conds
  for
     mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ {\bf and}
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT}:: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'cls \Rightarrow 'st \Rightarrow 'st and
     inv :: 'st \Rightarrow bool  and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate\text{-}conds :: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool +
  assumes
       bj-can-jump:
       \bigwedge S \ C \ F' \ K \ F \ L.
         inv S \Longrightarrow
         no-dup (trail S) \Longrightarrow
         trail\ S = F' @ Marked\ K\ () \# F \Longrightarrow
         C \in \# clauses_{NOT} S \Longrightarrow
         trail \ S \models as \ CNot \ C \Longrightarrow
         undefined-lit F L \Longrightarrow
         atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)\ \cup\ atm\text{-}of\ `(\ lits\text{-}of\text{-}l\ (F'\ @\ Marked\ K\ ()\ \#\ F))\Longrightarrow
         clauses_{NOT} S \models pm C' + \{\#L\#\} \Longrightarrow
         F \models as \ CNot \ C' \Longrightarrow
         \neg no\text{-step backjump } S
begin
```

We cannot add a like condition atms-of $C' \subseteq atms-of-ms$ N because to ensure that we can backjump even if the last decision variable has disappeared.

The part of the condition $atm\text{-}of\ L\in atm\text{-}of$ ' $lits\text{-}of\text{-}l\ (F'\ @\ Marked\ K\ ()\ \#\ F)$ is important, otherwise you are not sure that you can backtrack.

16.3.1 Definition

We define dpll with backjumping:

```
inductive dpll-bj :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where bj-decide_{NOT}: decide_{NOT} S S' \Longrightarrow dpll-bj S S' \mid bj-propagate_{NOT}: propagate_{NOT} S S' \Longrightarrow dpll-bj S S' \mid bj-backjump: backjump S S' \Longrightarrow dpll-bj S S'
```

```
lemmas dpll-bj-induct = dpll-bj.induct[split-format(complete)]
thm dpll-bj-induct[OF dpll-with-backjumping-ops-axioms]
lemma dpll-bj-all-induct[consumes\ 2, case-names\ decide_{NOT}\ propagate_{NOT}\ backjump]:
 fixes S T :: 'st
 assumes
    dpll-bj S T and
   inv S
   \bigwedge L T. undefined-lit (trail S) L \Longrightarrow atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
     \implies T \sim prepend-trail (Marked L ()) S
     \implies P S T  and
   \bigwedge C \ L \ T. \ C + \{\#L\#\} \in \# \ clauses_{NOT} \ S \Longrightarrow trail \ S \models as \ CNot \ C \Longrightarrow undefined-lit \ (trail \ S) \ L
     \implies T \sim prepend-trail (Propagated L ()) S
     \implies P S T  and
   \bigwedge C \ F' \ K \ F \ L \ C' \ T. \ C \in \# \ clauses_{NOT} \ S \Longrightarrow F' @ \ Marked \ K \ () \ \# \ F \models as \ CNot \ C
     \implies trail \ S = F' \ @ Marked \ K \ () \# F
     \implies undefined\text{-}lit\ F\ L
     \implies atm-of L \in atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (F' @ Marked K () # F))
     \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
     \implies F \models as \ CNot \ C'
     \implies T \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F S)
     \implies P S T
 shows P S T
 \mathbf{apply}\ (induct\ T\ rule:\ dpll-bj-induct[OF\ local.dpll-with-backjumping-ops-axioms])
    apply (rule \ assms(1))
   using assms(3) apply blast
  apply (elim \ propagate_{NOT}E) using assms(4) apply blast
 apply (elim\ backjumpE) using assms(5) \langle inv\ S \rangle by simp
16.3.2
           Basic properties
First, some better suited induction principle lemma dpll-bj-clauses:
 assumes dpll-bj S T and inv S
 shows clauses_{NOT} S = clauses_{NOT} T
 using assms by (induction rule: dpll-bj-all-induct) auto
No duplicates in the trail lemma dpll-bj-no-dup:
  assumes dpll-bj S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp add: defined-lit-map reduce-trail-to<sub>NOT</sub>-skip-beginning)
Valuations lemma dpll-bj-sat-iff:
 assumes dpll-bj S T and inv S
 shows I \models sm\ clauses_{NOT}\ S \longleftrightarrow I \models sm\ clauses_{NOT}\ T
 using assms by (induction rule: dpll-bj-all-induct) auto
Clauses lemma dpll-bj-atms-of-ms-clauses-inv:
 assumes
    dpll-bj S T and
   inv S
 shows atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
 using assms by (induction rule: dpll-bj-all-induct) auto
lemma dpll-bj-atms-in-trail:
```

```
assumes
   dpll-bj S T and
   inv S and
   atm-of ' (lits-of-l (trail S)) \subseteq atms-of-mm (clauses_{NOT} S)
  shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
  using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms reduce-trail-to_{NOT}-skip-beginning)
lemma dpll-bj-atms-in-trail-in-set:
 assumes dpll-bj S T and
   inv S and
  atms-of-mm (clauses_{NOT} S) \subseteq A and
  atm\text{-}of ' (lits\text{-}of\text{-}l (trail S)) \subseteq A
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
 using assms by (induction rule: dpll-bj-all-induct)
  (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
lemma dpll-bj-all-decomposition-implies-inv:
 assumes
    dpll-bj S T and
   inv: inv S and
   decomp: all-decomposition-implies-m (clauses_{NOT} S) (get-all-marked-decomposition (trail S))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
 using assms(1,2)
proof (induction rule:dpll-bj-all-induct)
 case decide_{NOT}
 then show ?case using decomp by auto
next
  case (propagate_{NOT} \ C \ L \ T) note propa = this(1) and undef = this(3) and T = this(4)
 let ?M' = trail (prepend-trail (Propagated L ()) S)
 let ?N = clauses_{NOT} S
 obtain a y l where ay: get-all-marked-decomposition ?M' = (a, y) \# l
   by (cases get-all-marked-decomposition ?M') fastforce+
  then have M': M' = y \otimes a using get-all-marked-decomposition-decomp of M' by auto
 have M: get-all-marked-decomposition (trail S) = (a, tl y) \# l
   using ay undef by (cases qet-all-marked-decomposition (trail S)) auto
 have y_0: y = (Propagated L()) \# (tl y)
   using ay undef by (auto simp add: M)
  from arg\text{-}cong[OF\ this,\ of\ set]\ \mathbf{have}\ y[simp]:\ set\ y=insert\ (Propagated\ L\ ())\ (set\ (tl\ y))
   by simp
 have tr-S: trail S = tl y @ a
   using arg-cong[OF M', of tl] y<sub>0</sub> M get-all-marked-decomposition-decomp by force
 have a-Un-N-M: unmark-l a \cup set-mset ?N \models ps \ unmark-l (tl \ y)
   using decomp ay unfolding all-decomposition-implies-def by (simp add: M)+
  moreover have unmark-l \ a \cup set\text{-}mset ?N \models p \{\#L\#\} \text{ (is } ?I \models p \text{-})
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p \ C + \{\#L\#\}
       using propa\ propagate_{NOT}.prems\ by (auto dest!: true\text{-}clss\text{-}in\text{-}imp\text{-}true\text{-}clss\text{-}cls)
   next
     have unmark-l ?M' \models ps \ CNot \ C
       using \langle trail \ S \models as \ CNot \ C \rangle undef by (auto simp add: true-annots-true-clss-clss)
     have a1: unmark-l \ a \cup unmark-l \ (tl \ y) \models ps \ CNot \ C
       using propagate_{NOT}.hyps(2) tr-S true-annots-true-clss-clss
       by (force simp add: image-Un sup-commute)
```

```
then have unmark-l \ a \cup set-mset \ (clauses_{NOT} \ S) \models ps \ unmark-l \ a \cup unmark-l \ (tl \ y)
      using a-Un-N-M true-clss-clss-def by blast
     then show unmark-l a \cup set-mset (clauses_{NOT} S) \models ps \ CNot \ C
      using a1 by (meson true-clss-clss-left-right true-clss-clss-union-and
        true-clss-clss-union-l-r)
   qed
  ultimately have unmark-l \ a \cup set\text{-mset } ?N \models ps \ unmark-l \ ?M'
   unfolding M' by (auto simp add: all-in-true-clss-clss image-Un)
  then show ?case
   using decomp T M undef unfolding ay all-decomposition-implies-def by (auto simp add: ay)
next
  case (backjump\ C\ F'\ K\ F\ L\ D\ T) note confl=this(2) and tr=this(3) and undef=this(4)
   and L = this(5) and N-C = this(6) and vars-D = this(5) and T = this(8)
 have decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-marked-decomposition F)
   using decomp unfolding tr all-decomposition-implies-def
   by (metis (no-types, lifting) get-all-marked-decomposition.simps(1)
     get-all-marked-decomposition-never-empty hd-Cons-tl insert-iff list.sel(3) list.set(2)
     tl-qet-all-marked-decomposition-skip-some)
 obtain a b li where F: get-all-marked-decomposition F = (a, b) \# li
   by (cases get-all-marked-decomposition F) auto
  have F = b @ a
   using get-all-marked-decomposition-decomp[of \ F \ a \ b] \ F by auto
 have a-N-b:unmark-l a \cup set-mset (clauses_{NOT} S) \models ps \ unmark-l b
   using decomp unfolding all-decomposition-implies-def by (auto simp add: F)
 have F-D:unmark-l F \models ps CNot D
   using \langle F \models as \ CNot \ D \rangle by (simp add: true-annots-true-clss-clss)
  then have unmark-l \ a \cup unmark-l \ b \models ps \ CNot \ D
   unfolding \langle F = b \otimes a \rangle by (simp add: image-Un sup.commute)
  have a-N-CNot-D: unmark-l a \cup set-mset (clauses_{NOT} S) \models ps CNot D \cup unmark-l b
   apply (rule true-clss-clss-left-right)
   using a-N-b F-D unfolding \langle F = b \otimes a \rangle by (auto simp add: image-Un ac-simps)
 have a-N-D-L: unmark-l a \cup set-mset (clauses_{NOT} S) \models p D + \{\#L\#\}
   by (simp \ add: N-C)
 have unmark-l a \cup set-mset (clauses_{NOT} S) \models p \{\#L\#\}
   using a-N-D-L a-N-CNot-D by (blast intro: true-clss-cls-plus-CNot)
  then show ?case
   using decomp T tr undef unfolding all-decomposition-implies-def by (auto simp add: F)
qed
16.3.3
          Termination
Using a proper measure lemma length-get-all-marked-decomposition-append-Marked:
 length (get-all-marked-decomposition (F' @ Marked K () \# F)) =
   length (get-all-marked-decomposition F')
   + length (get-all-marked-decomposition (Marked K () \# F))
    - 1
 by (induction F' rule: marked-lit-list-induct) auto
\mathbf{lemma}\ take\text{-}length\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}marked\text{-}sandwich\text{:}}
  take (length (get-all-marked-decomposition F))
     (map\ (f\ o\ snd)\ (rev\ (get-all-marked-decomposition\ (F'\ @\ Marked\ K\ ()\ \#\ F))))
    map\ (f\ o\ snd)\ (rev\ (get-all-marked-decomposition\ F))
```

```
proof (induction F' rule: marked-lit-list-induct)
 then show ?case by auto
next
 case (marked\ K)
  then show ?case by (simp add: length-qet-all-marked-decomposition-append-Marked)
next
 case (proped\ L\ m\ F') note IH=this(1)
 obtain a b l where F': get-all-marked-decomposition (F' @ Marked K () \# F) = (a, b) \# l
   by (cases get-all-marked-decomposition (F' \otimes Marked K () \# F)) auto
 have length (get-all-marked-decomposition F) – length l = 0
   \mathbf{using}\ length-get-all-marked-decomposition-append-Marked[of\ F'\ K\ F]
   unfolding F' by (cases get-all-marked-decomposition F') auto
 then show ?case
   using IH by (simp \ add: F')
qed
\mathbf{lemma}\ \mathit{length}\text{-}\mathit{get}\text{-}\mathit{all}\text{-}\mathit{marked}\text{-}\mathit{decomposition}\text{-}\mathit{length}\text{:}
  length (get-all-marked-decomposition M) \le 1 + length M
 by (induction M rule: marked-lit-list-induct) auto
\mathbf{lemma}\ length-in\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}bounded:}
 assumes i:i \in set (trail-weight S)
 shows i \leq Suc \ (length \ (trail \ S))
proof -
 obtain a b where
   (a, b) \in set (get-all-marked-decomposition (trail S)) and
   ib: i = Suc (length b)
   using i by auto
  then obtain c where trail S = c @ b @ a
   using get-all-marked-decomposition-exists-prepend' by metis
 from arg-cong[OF this, of length] show ?thesis using i ib by auto
qed
```

Well-foundedness The bounds are the following:

- 1 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the length of the list. As get-all-marked-decomposition appends an possibly empty couple at the end, adding one is needed.
- 2 + card (atms-of-ms A): card (atms-of-ms A) is an upper bound on the number of elements, where adding one is necessary for the same reason as for the bound on the list, and one is needed to have a strict bound.

```
abbreviation unassigned-lit :: 'b literal multiset set \Rightarrow 'a list \Rightarrow nat where unassigned-lit N M \equiv card (atms-of-ms N) — length M lemma dpll-bj-trail-mes-increasing-prop: fixes M :: ('v, unit, unit) marked-lits and N :: 'v clauses assumes dpll-bj S T and inv S and NA: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and MA: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
```

```
n-d: no-dup (trail S) and
   finite: finite A
 shows \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
   > \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
 using assms(1,2)
proof (induction rule: dpll-bj-all-induct)
 case (propagate_{NOT} \ C \ L) note CLN = this(1) and MC = this(2) and undef - L = this(3) and T = this(3)
this(4)
 have incl: atm-of 'lits-of-l (Propagated L () # trail S) \subseteq atms-of-ms A
   using propagate_{NOT} dpll-bj-atms-in-trail-in-set bj-propagate<sub>NOT</sub> NA MA CLN
   by (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
 have no-dup: no-dup (Propagated L () \# trail S)
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: qet-all-marked-decomposition (trail S) = (a, b) \# l
   by (cases get-all-marked-decomposition (trail S)) auto
 have b-le-M: length b < length (trail S)
   using qet-all-marked-decomposition-decomp[of trail S] by (simp add: M)
 have finite (atms-of-ms A) using finite by simp
 then have length (Propagated L () \# trail S) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-[OF no-dup]
   by (simp add: card-mono)
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L d \# b))
   using b-le-M by auto
 then show ?case using T undef-L by (auto simp: latm M \mu_C-cons)
next
 case (decide_{NOT} L) note undef-L = this(1) and MC = this(2) and T = this(3)
 have incl: atm-of 'lits-of-l (Marked L () # (trail S)) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set bj-decide_{NOT} decide_{NOT}. decide_{NOT}. decide_{NOT}. hyps] NA MA
MC
   by auto
 have no-dup: no-dup (Marked L () \# (trail S))
   using defined-lit-map n-d undef-L by auto
 obtain a b l where M: qet-all-marked-decomposition (trail S) = (a, b) \# l
   by (cases get-all-marked-decomposition (trail S)) auto
 then have length (Marked L () # (trail S)) \leq card (atms-of-ms A)
    \  \, \textbf{using} \  \, \textit{incl finite} \  \, \textbf{unfolding} \  \, \textit{no-dup-length-eq-card-atm-of-lits-of-l} [OF \  \, \textit{no-dup}] 
   by (simp add: card-mono)
 show ?case using T undef-L by (simp add: \mu_C-cons)
 case (backjump C F' K F L C' T) note undef-L = this(4) and MC = this(1) and tr-S = this(3)
and
   L = this(5) and T = this(8)
 have incl: atm-of 'lits-of-l (Propagated L () \# F) \subseteq atms-of-ms A
   using dpll-bj-atms-in-trail-in-set NA MA L by (auto simp: tr-S)
 have no-dup: no-dup (Propagated L () \# F)
   using defined-lit-map n-d undef-L tr-S by auto
 obtain a b l where M: get-all-marked-decomposition (trail S) = (a, b) \# l
   by (cases get-all-marked-decomposition (trail S)) auto
 have b-le-M: length b \leq length (trail S)
   using get-all-marked-decomposition-decomp[of trail S] by (simp add: M)
```

```
then have F-le-A: length (Propagated L () \# F) \leq card (atms-of-ms A)
   using incl finite unfolding no-dup-length-eq-card-atm-of-lits-of-l[OF no-dup]
   by (simp add: card-mono)
 have tr-S-le-A: length (trail\ S) \le (card\ (atms-of-ms\ A))
   using n-d MA by (metis fin-atms-A card-mono no-dup-length-eq-card-atm-of-lits-of-l)
 obtain a b l where F: get-all-marked-decomposition F = (a, b) \# l
   by (cases get-all-marked-decomposition F) auto
 then have F = b @ a
   using get-all-marked-decomposition-decomp[of Propagated L () \# F a
     Propagated L () \# b] by simp
 then have latm: unassigned-lit A b = Suc (unassigned-lit A (Propagated L () \# b))
    using F-le-A by simp
 obtain rem where
   rem:map\ (\lambda a.\ Suc\ (length\ (snd\ a)))\ (rev\ (get-all-marked-decomposition\ (F'\ @\ Marked\ K\ ()\ \#\ F)))
   = map \ (\lambda a. \ Suc \ (length \ (snd \ a))) \ (rev \ (get-all-marked-decomposition \ F)) \ @ \ rem
   using take-length-qet-all-marked-decomposition-marked-sandwich of F \lambda a. Suc (length a) F'(K)
   unfolding o-def by (metis append-take-drop-id)
 then have rem: map (\lambda a. Suc (length (snd a)))
     (get-all-marked-decomposition\ (F'\ @\ Marked\ K\ ()\ \#\ F))
   = rev \ rem \ @ \ map \ (\lambda a. \ Suc \ (length \ (snd \ a))) \ ((get-all-marked-decomposition \ F))
   by (simp add: rev-map[symmetric] rev-swap)
 have length (rev rem @ map (\lambda a. Suc (length (snd a))) (get-all-marked-decomposition F))
        \leq Suc (card (atms-of-ms A))
   using arg-cong[OF rem, of length] tr-S-le-A
   length-get-all-marked-decomposition-length[of F' @ Marked K () \# F] tr-S by auto
 moreover
   { fix i :: nat \text{ and } xs :: 'a list
     have i < length \ xs \Longrightarrow length \ xs - Suc \ i < length \ xs
      by auto
     then have H: i < length \ xs \implies rev \ xs \ ! \ i \in set \ xs
      using rev-nth of i xs unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
   } note H = this
   have \forall i < length rem. rev rem! i < card (atms-of-ms A) + 2
     using tr-S-le-A length-in-qet-all-marked-decomposition-bounded[of - S] unfolding <math>tr-S
     by (force simp add: o-def rem dest!: H intro: length-qet-all-marked-decomposition-length)
 ultimately show ?case
   using \mu_C-bounded of rev rem card (atms-of-ms A)+2 unassigned-lit A l T undef-L
   by (simp add: rem \mu_C-append \mu_C-cons F tr-S)
qed
lemma dpll-bj-trail-mes-decreasing-prop:
 assumes dpll: dpll-bj S T and inv: inv S and
 N-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
 M-A: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
 nd: no-dup (trail S) and
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
          < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
proof -
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
```

have fin-atms-A: finite (atms-of-ms A) using finite by simp

```
let ?\mu = \mu_C ?s ?b
 have M'-A: atm-of 'lits-of-l (trail T) \subseteq atms-of-ms A
   by (meson M-A N-A dpll dpll-bj-atms-in-trail-in-set inv)
  have nd': no-dup (trail T)
   using \langle dpll-bj \mid S \mid T \rangle \mid dpll-bj-no-dup \mid nd \mid inv \mid by \mid blast
  { fix i :: nat \text{ and } xs :: 'a \text{ list}
   have i < length xs \Longrightarrow length xs - Suc i < length xs
     by auto
   then have H: i < length \ xs \implies xs \ ! \ i \in set \ xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  \} note H = this
 have l-M-A: length (trail\ S) \le card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
 have l-M'-A: length (trail T) < card (atms-of-ms A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd')
  have l-trail-weight-M: length (trail-weight T) \leq 1 + card (atms-of-ms A)
    using l-M'-A length-qet-all-marked-decomposition-length[of trail T] by auto
  have bounded-M: \forall i < length (trail-weight T). (trail-weight T)! i < card (atms-of-ms A) + 2
   \mathbf{using}\ length-in\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}bounded[of\text{-}T]\ l\text{-}M'\text{-}A}
   by (metis (no-types, lifting) H Nat.le-trans add-2-eq-Suc' not-le not-less-eq-eq)
  from dpll-bj-trail-mes-increasing-prop[OF dpll inv N-A M-A nd fin-A]
 have \mu_C ?s ?b (trail-weight S) < \mu_C ?s ?b (trail-weight T) by simp
 moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight T) \leq ?b ^ ?s by auto
 ultimately show ?thesis by linarith
qed
lemma wf-dpll-bj:
 assumes fin: finite A
 shows wf \{ (T, S), dpll-bj S T \}
   \land atms-of-mm (clauses<sub>NOT</sub> S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
  (is wf ?A)
proof (rule wf-bounded-measure[of -
       \lambda-. (2 + card (atms-of-ms A))^(1 + card (atms-of-ms A))
       \lambda S. \ \mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ S)])
 \mathbf{fix} \ a \ b :: 'st
 let ?b = 2 + card (atms-of-ms A)
 let ?s = 1 + card (atms-of-ms A)
 let ?\mu = \mu_C ?s ?b
 assume ab: (b, a) \in ?A
 have fin-A: finite\ (atms-of-ms\ A)
   using fin by auto
 have
   dpll-bj: dpll-bj a b and
   N-A: atms-of-mm (clauses_{NOT} a) \subseteq atms-of-ms A and
   M-A: atm-of ' lits-of-l (trail\ a) \subseteq atms-of-ms\ A and
   nd: no-dup (trail a) and
   inv: inv a
   using ab by auto
 have M'-A: atm-of 'lits-of-l (trail b) \subseteq atms-of-ms A
```

```
by (meson M-A N-A (dpll-bj a b) dpll-bj-atms-in-trail-in-set inv)
  have nd': no-dup (trail b)
   using \langle dpll-bj \ a \ b \rangle \ dpll-bj-no-dup \ nd \ inv \ by \ blast
  { fix i :: nat and xs :: 'a list
   have i < length xs \Longrightarrow length xs - Suc i < length xs
     by auto
   then have H: i < length \ xs \implies xs \mid i \in set \ xs
     using rev-nth[of i xs] unfolding in-set-conv-nth by (force simp add: in-set-conv-nth)
  \} note H = this
 have l-M-A: length (trail\ a) \leq card\ (atms-of-ms\ A)
   by (simp add: fin-A M-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd)
 have l-M'-A: length (trail\ b) \leq card (atms-of-ms A)
   by (simp add: fin-A M'-A card-mono no-dup-length-eq-card-atm-of-lits-of-l nd')
  have l-trail-weight-M: length (trail-weight b) \leq 1 + card (atms-of-ms A)
    using l-M'-A length-qet-all-marked-decomposition-length[of trail b] by auto
  have bounded-M: \forall i < length (trail-weight b). (trail-weight b)! i < card (atms-of-ms A) + 2
   using length-in-qet-all-marked-decomposition-bounded [of - b] l-M'-A
   by (metis (no-types, lifting) Nat.le-trans One-nat-def Suc-1 add.right-neutral add-Suc-right
     le-imp-less-Suc less-eq-Suc-le nth-mem)
  from dpll-bj-trail-mes-increasing-prop[OF dpll-bj inv N-A M-A nd fin]
 have \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b) by simp
 moreover from \mu_C-bounded[OF bounded-M l-trail-weight-M]
   have \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s by auto
  ultimately show ?b \cap ?s \leq ?b \cap ?s \wedge
         \mu_C ?s ?b (trail-weight b) \leq ?b ^ ?s \wedge
         \mu_C ?s ?b (trail-weight a) < \mu_C ?s ?b (trail-weight b)
   by blast
qed
```

16.3.4 Normal Forms

We prove that given a normal form of DPLL, with some invariants, the either N is satisfiable and the built valuation M is a model; or N is unsatisfiable.

Idea of the proof: We have to prove tat satisfiable $N, \neg M \models as N$ and there is no remaining step is incompatible.

- 1. The decide rules tells us that every variable in N has a value.
- 2. $\neg M \models as N$ tells us that there is conflict.
- 3. There is at least one decision in the trail (otherwise, M is a model of N).
- 4. Now if we build the clause with all the decision literals of the trail, we can apply the backjump rule.

The assumption are saying that we have a finite upper bound A for the literals, that we cannot do any step no-step dpll-bj S

```
theorem dpll-backjump-final-state:
fixes A :: 'v \ literal \ multiset \ set and S \ T :: 'st
assumes
atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A and
atm-of ' lits-of-l \ (trail \ S) \subseteq atms-of-ms \ A and
```

```
no-dup (trail S) and
   finite A and
   inv: inv S and
   n-s: no-step dpll-bj S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-marked-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
 let ?N = set\text{-}mset (clauses_{NOT} S)
 let ?M = trail S
 consider
     (sat) satisfiable ?N and ?M \models as ?N
     (sat') satisfiable ?N and \neg ?M \modelsas ?N
     (unsat) unsatisfiable ?N
   by auto
 then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v \ literal \ set \ where
       I \models s ?N  and
       cons: consistent-interp I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     let ?I = I \cup \{P \mid P. P \in lits\text{-}of\text{-}l ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
     let ?O = \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
     have cons-I': consistent-interp ?I
       using cons using (no-dup ?M) unfolding consistent-interp-def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark-l ?M)
       using tot atm-I-N unfolding total-over-m-def total-over-set-def
       by (fastforce simp: image-iff lits-of-def)
     have \{P \mid P. P \in lits\text{-}of\text{-}l ? M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ? O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ? N \rangle true-clss-union-increase by force
     have tot': total-over-m ?I (?N \cup ?O)
       using atm-I-N tot unfolding total-over-m-def total-over-set-def
       by (force simp: lits-of-def dest!: is-marked-ex-Marked)
     have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of-l ?M
       proof (rule ccontr)
         assume ¬ ?thesis
         then obtain l :: 'v where
          l-N: l \in atms-of-ms ?N and
          l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of\text{-}l ?M
          by auto
         have undefined-lit ?M (Pos l)
           using l-M by (metis Marked-Propagated-in-iff-in-lits-of-l
             atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
         from bj-decide_{NOT}[OF\ decide_{NOT}[OF\ this]] show False
           using l-N n-s by (metis\ literal.sel(1)\ state-eq_{NOT}-ref)
       qed
```

```
have ?M \models as CNot C
 apply (rule all-variables-defined-not-imply-cnot)
 using \langle C \in set\text{-}mset \ (clauses_{NOT} \ S) \rangle \langle \neg \ trail \ S \models a \ C \rangle
     atms-N-M by (auto dest: atms-of-atms-of-ms-mono)
have \exists l \in set ?M. is\text{-}marked l
 proof (rule ccontr)
    let ?O = \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
    have \vartheta[iff]: \Lambda I. \ total-over-m \ I \ (?N \cup ?O \cup unmark-l ?M)
      \longleftrightarrow total\text{-}over\text{-}m\ I\ (?N\ \cup unmark\text{-}l\ ?M)
     unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
    assume ¬ ?thesis
    then have [simp]: \{unmark\ L\ | L.\ is\text{-}marked\ L \land L \in set\ ?M\}
      = \{unmark\ L\ | L.\ is\text{-marked}\ L\land L\in set\ ?M\land atm\text{-}of\ (lit\text{-}of\ L)\notin atms\text{-}of\text{-}ms\ ?N\}
     by auto
    then have ?N \cup ?O \models ps \ unmark-l \ ?M
     using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
    then have ?I \models s \ unmark-l \ ?M
      using cons-I' I'-N tot-I' (?I \models s ?N \cup ?O) unfolding \vartheta true-clss-clss-def by blast
    then have lits-of-l ?M \subseteq ?I
      unfolding true-clss-def lits-of-def by auto
    then have ?M \models as ?N
      using I'-N \ \langle C \in ?N \rangle \ \langle \neg ?M \models a \ C \rangle \ cons-I' \ atms-N-M
     by (meson \ \langle trail \ S \models as \ CNot \ C \rangle \ consistent-CNot-not \ rev-subsetD \ sup-ge1 \ true-annot-def
        true-annots-def true-cls-mono-set-mset-l true-clss-def)
    then show False using M by fast
 ged
from List.split-list-first-propE[OF\ this] obtain K:: 'v\ literal\ {\bf and}
  F F' :: ('v, unit, unit) marked-lit list where
  M-K: ?M = F' @ Marked K () # <math>F and
 nm: \forall f \in set \ F'. \ \neg is\text{-}marked \ f
 unfolding is-marked-def by (metis (full-types) old.unit.exhaust)
let ?K = Marked K () :: ('v, unit, unit) marked-lit
have ?K \in set ?M
 unfolding M-K by auto
let ?C = image\text{-mset lit-of } \{\#L \in \#mset ?M. is\text{-marked } L \land L \neq ?K\#\} :: 'v literal multiset
let ?C' = set\text{-mset} \ (image\text{-mset} \ (\lambda L::'v \ literal. \ \{\#L\#\}) \ (?C + unmark \ ?K))
have ?N \cup \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M\} \models ps\ unmark-l\ ?M
 \mathbf{using} \ \mathit{all-decomposition-implies-propagated-lits-are-implied}[\mathit{OF} \ \mathit{decomp}] \ \boldsymbol{.}
moreover have C': ?C' = \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M\}
 unfolding M-K by standard force+
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark-l \ ?M
 by auto
have N-M-False: ?N \cup (\lambda L. \ unmark \ L) ' (set \ ?M) \models ps \ \{\{\#\}\}\}
 using M \triangleleft ?M \models as \ CNot \ C \triangleleft \ \langle C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
 true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def
    true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
have undefined-lit F K using \langle no\text{-}dup ? M \rangle unfolding M-K by (simp add: defined-lit-map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
     have A: ?N \cup ?C' \cup unmark-l ?M = ?N \cup unmark-l ?M
        unfolding M-K by auto
     show ?thesis
```

```
using true-clss-clss-left-right[OF N-C-M, of {{#}}] N-M-False unfolding A by auto
         qed
       have ?N \models p image\text{-mset uminus } ?C + \{\#-K\#\}
         unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
         proof (intro allI impI)
           \mathbf{fix}\ I
           assume
             tot: total-over-set I (atms-of-ms (?N \cup \{image-mset\ uminus\ ?C+ \{\#-K\#\}\})) and
             cons: consistent-interp\ I and
             I \models s ?N
           have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
             using cons tot unfolding consistent-interp-def by (cases K) auto
           have \{a \in set \ (trail \ S). \ is-marked \ a \land a \neq Marked \ K \ ()\} =
             set (trail\ S) \cap \{L.\ is\text{-marked}\ L \land L \neq Marked}\ K\ ()\}
            by auto
           then have tot': total-over-set I
              (atm\text{-}of 'lit\text{-}of '(set ?M \cap \{L. is\text{-}marked } L \land L \neq Marked K ()\}))
             using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
           { \mathbf{fix} \ x :: ('v, unit, unit) \ marked-lit}
             assume
               a3: lit-of x \notin I and
               a1: x \in set ?M and
               a4: is-marked x and
               a5: x \neq Marked K ()
             then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
               using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
             moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
               by simp
             ultimately have - lit-of x \in I
               using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
                 literal.sel(1)
           } note H = this
           have \neg I \models s ?C'
             using \langle ?N \cup ?C' \models ps \{ \{\#\} \} \rangle \ tot \ cons \langle I \models s ?N \rangle
             unfolding true-clss-clss-def total-over-m-def
             by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
           then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
             unfolding true-cls-def true-cls-def using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
             by (auto dest!: H)
     moreover have F \models as \ CNot \ (image\text{-}mset \ uminus \ ?C)
       using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
     ultimately have False
       using bj-can-jump[of S F' K F C - K
         image-mset uminus (image-mset lit-of \{\# L : \# \text{ mset } ?M. \text{ is-marked } L \land L \neq Marked K ()\#\}\}
         \langle C \in ?N \rangle n-s \langle ?M \models as\ CNot\ C \rangle bj-backjump inv \langle no\text{-}dup\ (trail\ S) \rangle unfolding M-K by auto
       then show ?thesis by fast
   ged auto
qed
end
locale dpll-with-backjumping =
  dpll-with-backjumping-ops mset-cls insert-cls remove-lit
```

```
mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ inv\ backjump-conds
    propagate-conds
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    inv :: 'st \Rightarrow bool  and
    backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate\text{-}conds :: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool
  assumes dpll-bj-inv: \bigwedge S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T
begin
lemma rtranclp-dpll-bj-inv:
  assumes dpll-bj^{**} S T and inv S
 shows inv T
  using assms by (induction rule: rtranclp-induct)
    (auto simp add: dpll-bj-no-dup intro: dpll-bj-inv)
lemma rtranclp-dpll-bj-no-dup:
  assumes dpll-bj^{**} S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
  using assms by (induction rule: rtranclp-induct)
  (auto simp add: dpll-bj-no-dup dest: rtranclp-dpll-bj-inv dpll-bj-inv)
lemma rtranclp-dpll-bj-atms-of-ms-clauses-inv:
  assumes
    dpll-bj^{**} S T and inv S
  shows atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
  using assms by (induction rule: rtranclp-induct)
    (auto dest: rtranclp-dpll-bj-inv dpll-bj-atms-of-ms-clauses-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}atms\text{-}in\text{-}trail:
 assumes
    dpll-bj^{**} S T and
    inv S and
    atm\text{-}of \cdot (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S)
  shows atm-of ' (lits-of-l (trail\ T)) \subseteq atms-of-mm (clauses_{NOT}\ T)
  using assms apply (induction rule: rtranclp-induct)
  using dpll-bj-atms-in-trail dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv by auto
lemma rtranclp-dpll-bj-sat-iff:
```

```
assumes dpll-bj^{**} S T and inv S
 shows I \models sm \ clauses_{NOT} \ S \longleftrightarrow I \models sm \ clauses_{NOT} \ T
  using assms by (induction rule: rtranclp-induct)
   (auto dest!: dpll-bj-sat-iff simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-atms-in-trail-in-set:
 assumes
   dpll-bj^{**} S T and
   inv S
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of ' (lits-of-l (trail S)) \subseteq A
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq A
 using assms by (induction rule: rtranclp-induct)
  (auto dest: rtranclp-dpll-bj-inv
   simp: dpll-bj-atms-in-trail-in-set rtranclp-dpll-bj-atms-of-ms-clauses-inv rtranclp-dpll-bj-inv)
\mathbf{lemma}\ rtranclp\text{-}dpll\text{-}bj\text{-}all\text{-}decomposition\text{-}implies\text{-}inv:
 assumes
   dpll-bj^{**} S T and
   inv S
   all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-marked-decomposition (trail S))
  shows all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
  using assms by (induction rule: rtranclp-induct)
   (auto intro: dpll-bj-all-decomposition-implies-inv simp: rtranclp-dpll-bj-inv)
lemma rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl:
  \{(T, S).\ dpll-bj^{++}\ S\ T
   \land atms-of-mm (clauses<sub>NOT</sub> S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
    \subseteq \{(T, S). \ dpll-bj \ S \ T \land atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
       \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land no-dup (trail S) \land inv S}<sup>+</sup>
   (is ?A \subseteq ?B^+)
proof standard
 \mathbf{fix} \ x
 assume x-A: x \in ?A
 obtain S T::'st where
   x[simp]: x = (T, S) by (cases x) auto
 have
   dpll-bj^{++} S T and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}ms\ A and
   no-dup (trail S) and
    inv S
   using x-A by auto
  then show x \in ?B^+ unfolding x
   proof (induction rule: tranclp-induct)
     \mathbf{case}\ base
     then show ?case by auto
     case (step T U) note step = this(1) and ST = this(2) and IH = this(3)[OF this(4-7)]
       and N-A = this(4) and M-A = this(5) and nd = this(6) and inv = this(7)
     have [simp]: atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
       using step rtranclp-dpll-bj-atms-of-ms-clauses-inv tranclp-into-rtranclp inv by fastforce
     have no-dup (trail\ T)
```

```
using local.step nd rtranclp-dpll-bj-no-dup tranclp-into-rtranclp inv by fastforce
     moreover have atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}ms\ A
       by (metis inv M-A N-A local.step rtranclp-dpll-bj-atms-in-trail-in-set
         tranclp-into-rtranclp)
     moreover have inv T
        using inv local.step rtranclp-dpll-bj-inv tranclp-into-rtranclp by fastforce
     ultimately have (U, T) \in ?B using ST N-A M-A inv by auto
     then show ?case using IH by (rule trancl-into-trancl2)
   qed
qed
lemma wf-tranclp-dpll-bj:
  assumes fin: finite A
  shows wf \{(T, S). dpll-bj^{++} S T\}
   \land atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A
   \land no-dup (trail S) \land inv S}
  \mathbf{using} \ wf-trancl[OF \ wf-dpll-bj[OF \ fin]] \ rtranclp-dpll-bj-inv-incl-dpll-bj-inv-trancl
  by (rule wf-subset)
lemma dpll-bj-sat-ext-iff:
  dpll-bj \ S \ T \Longrightarrow inv \ S \Longrightarrow I \models sextm \ clauses_{NOT} \ S \longleftrightarrow I \models sextm \ clauses_{NOT} \ T
  by (simp add: dpll-bj-clauses)
\mathbf{lemma}\ \mathit{rtranclp-dpll-bj-sat-ext-iff}\colon
  dpll-bj^{**} S T \Longrightarrow inv S \Longrightarrow I \models sextm \ clauses_{NOT} S \longleftrightarrow I \models sextm \ clauses_{NOT} T
  by (induction rule: rtranclp-induct) (simp-all add: rtranclp-dpll-bj-inv dpll-bj-sat-ext-iff)
theorem full-dpll-backjump-final-state:
  fixes A :: 'v \ literal \ multiset \ set \ {\bf and} \ S \ T :: 'st
  assumes
   full: full dpll-bj S T and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
    decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-marked-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
  \vee (trail T \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
  have st: dpll-bj^{**} S T and no-step dpll-bj T
   using full unfolding full-def by fast+
  moreover have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
   using atms-S inv rtranclp-dpll-bj-atms-of-ms-clauses-inv st by blast
  moreover have atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
    using atms-S atms-trail inv rtranclp-dpll-bj-atms-in-trail-in-set st by auto
  moreover have no-dup (trail T)
   using n-d inv rtranclp-dpll-bj-no-dup st by blast
  moreover have inv: inv T
   using inv rtranclp-dpll-bj-inv st by blast
  moreover
   have decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
     using (inv S) decomp rtranclp-dpll-bj-all-decomposition-implies-inv st by blast
  ultimately have unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
```

```
using \langle finite \ A \rangle dpll-backjump-final-state by force
  then show ?thesis
   by (meson (inv S) rtranclp-dpll-bj-sat-iff satisfiable-carac st true-annots-true-cls)
qed
{\bf corollary}\ full-dpll-backjump-final-state-from-init-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   full: full dpll-bj S T and
   trail S = [] and
   clauses_{NOT} S = N and
   inv S
 shows unsatisfiable (set-mset N) \vee (trail T \models asm N \land satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of S T set-mset N by auto
\mathbf{lemma}\ tranclp-dpll-bj-trail-mes-decreasing-prop:
 assumes dpll: dpll-bj<sup>++</sup> S T and inv: inv S and
  N-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
  M-A: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
 n-d: no-dup (trail S) and
 fin-A: finite A
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T)
          < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
 using dpll
proof (induction)
 case base
 then show ?case
   using N-A M-A n-d dpll-bj-trail-mes-decreasing-prop fin-A inv by blast
 case (step\ T\ U) note st=this(1) and dpll=this(2) and IH=this(3)
 have atms-of-mm (clauses_{NOT} S) = atms-of-mm (clauses_{NOT} T)
   using rtranclp-dpll-bj-atms-of-ms-clauses-inv by (metis dpll-bj-clauses dpll-bj-inv inv st
     tranclpD)
  then have N-A': atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
    using N-A by auto
 moreover have M-A': atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms A
   \mathbf{by}\ (\mathit{meson}\ \mathit{M-A}\ \mathit{N-A}\ \mathit{inv}\ \mathit{rtranclp-dpll-bj-atms-in-trail-in-set}\ \mathit{st}\ \mathit{dpll}
     tranclp.r-into-trancl tranclp-into-rtranclp tranclp-trans)
 moreover have nd: no-dup (trail T)
   by (metis inv n-d rtranclp-dpll-bj-no-dup st tranclp-into-rtranclp)
 moreover have inv T
   by (meson dpll dpll-bj-inv inv rtranclp-dpll-bj-inv st tranclp-into-rtranclp)
 ultimately show ?case
   using IH dpll-bj-trail-mes-decreasing-prop[of T U A] dpll fin-A by linarith
qed
end
         CDCL
16.4
16.4.1
         Learn and Forget
locale learn-ops =
```

dpll-state mset-cls insert-cls remove-lit

```
mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
     mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ {\bf and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits  and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
     remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st +
    learn\text{-}cond :: 'cls \Rightarrow 'st \Rightarrow bool
begin
inductive learn: 'st \Rightarrow 'st \Rightarrow bool where
learn_{NOT}-rule: clauses_{NOT} S \models pm mset\text{-}cls C \implies
  atms-of (mset-cls\ C) \subseteq atms-of-mm\ (clauses_{NOT}\ S) \cup atm-of ' (lits-of-l\ (trail\ S)) \Longrightarrow
  learn\text{-}cond\ C\ S \Longrightarrow
  T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
  learn S T
inductive-cases learn_{NOT}E: learn S T
lemma learn-\mu_C-stable:
  assumes learn S T and no-dup (trail S)
  shows \mu_C A B (trail-weight S) = \mu_C A B (trail-weight T)
  using assms by (auto elim: learn_{NOT}E)
locale forget-ops =
  dpll-state mset-cls insert-cls remove-lit
     mset-clss union-clss in-clss insert-clss remove-from-clss
     trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
     mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss::'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
     remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st +
    forget\text{-}cond :: 'cls \Rightarrow 'st \Rightarrow bool
```

```
begin
inductive forget_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool  where
forget_{NOT}:
  removeAll\text{-}mset \ (mset\text{-}cls \ C)(clauses_{NOT} \ S) \models pm \ mset\text{-}cls \ C \Longrightarrow
  forget\text{-}cond\ C\ S \Longrightarrow
  C \mathrel{!}\in ! \mathit{raw-clauses} \ S \Longrightarrow
  T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow
  forget_{NOT} S T
inductive-cases forget_{NOT}E: forget_{NOT} S T
lemma forget-\mu_C-stable:
  assumes forget_{NOT} S T
  shows \mu_C \ A \ B \ (trail-weight \ S) = \mu_C \ A \ B \ (trail-weight \ T)
  using assms by (auto elim!: forget_{NOT}E)
end
locale learn-and-forget_{NOT} =
  learn-ops mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
    trail\ raw-clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}\ learn-cond\ +
  forget-ops mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ forget-cond
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'cls \Rightarrow 'st \Rightarrow 'st \text{ and }
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'cls \Rightarrow 'st \Rightarrow bool
begin
inductive learn-and-forget<sub>NOT</sub> :: 'st \Rightarrow 'st \Rightarrow bool
where
lf-learn: learn S T \Longrightarrow learn-and-forget_{NOT} S T
lf-forget: forget_{NOT} S T \Longrightarrow learn-and-forget<sub>NOT</sub> S T
end
16.4.2
             Definition of CDCL
locale conflict-driven-clause-learning-ops =
  dpll-with-backjumping-ops mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    inv\ backjump\text{-}conds\ propagate\text{-}conds\ +
  learn-and-forget_{NOT} mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ learn-cond
```

```
forget-cond
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ {\bf and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ {\bf and}
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'cls \Rightarrow 'st \Rightarrow bool
begin
inductive cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
c-dpll-bj: dpll-bj S S' \Longrightarrow cdcl_{NOT} S S'
c-learn: learn \ S \ S' \Longrightarrow cdcl_{NOT} \ S \ S'
c-forget<sub>NOT</sub>: forget<sub>NOT</sub> S S' \Longrightarrow cdcl_{NOT} S S'
lemma cdcl_{NOT}-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
    dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ \mathbf{and}
    learning:
       \bigwedge C T. clauses<sub>NOT</sub> S \models pm mset\text{-}cls \ C \Longrightarrow
       atms-of (mset-cls\ C) \subseteq atms-of-mm\ (clauses_{NOT}\ S) \cup atm-of ' (lits-of-l\ (trail\ S)) \Longrightarrow
       T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
       PST and
    forgetting: \bigwedge C T. removeAll-mset (mset-cls C) (clauses<sub>NOT</sub> S) \models pm mset-cls C \Longrightarrow
       C \in ! raw\text{-}clauses S \Longrightarrow
       T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow
       PST
  shows P S T
  using assms(1) by (induction rule: cdcl_{NOT}.induct)
  (auto intro: assms(2, 3, 4) elim!: learn_{NOT}E forget<sub>NOT</sub>E)+
lemma cdcl_{NOT}-no-dup:
  assumes
    cdcl_{NOT} S T and
    inv S and
    no-dup (trail S)
  shows no-dup (trail T)
  using assms by (induction rule: cdcl_{NOT}-all-induct) (auto intro: dpll-bj-no-dup)
Consistency of the trail lemma cdcl_{NOT}-consistent:
  assumes
    cdcl_{NOT} S T and
```

```
inv\ S and no\text{-}dup\ (trail\ S) shows consistent\text{-}interp\ (lits\text{-}of\text{-}l\ (trail\ T)) using cdcl_{NOT}\text{-}no\text{-}dup[OF\ assms]\ distinct\text{-}consistent\text{-}interp\ by\ fast
```

The subtle problem here is that tautologies can be removed, meaning that some variable can disappear of the problem. It is also possible that some variable of the trail are not in the clauses anymore.

```
anymore.
lemma cdcl_{NOT}-atms-of-ms-clauses-decreasing:
 assumes cdcl_{NOT} S Tand inv S and no-dup (trail S)
 shows atms-of-mm (clauses_{NOT} T) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
  using assms by (induction rule: cdcl_{NOT}-all-induct)
   (auto dest!: dpll-bj-atms-of-ms-clauses-inv set-mp simp add: atms-of-ms-def Union-eq)
lemma cdcl_{NOT}-atms-in-trail:
 assumes cdcl_{NOT} S Tand inv S and no-dup (trail S)
 and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
 shows atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S)
 using assms by (induction rule: cdcl<sub>NOT</sub>-all-induct) (auto simp add: dpll-bj-atms-in-trail)
lemma cdcl_{NOT}-atms-in-trail-in-set:
 assumes
   cdcl_{NOT} S T and inv S and no-dup (trail S) and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of ' (lits-of-l (trail S)) \subseteq A
  shows atm-of ' (lits-of-l (trail T)) \subseteq A
 using assms
 by (induction rule: cdcl_{NOT}-all-induct)
    (simp-all add: dpll-bj-atms-in-trail-in-set dpll-bj-atms-of-ms-clauses-inv)
lemma cdcl_{NOT}-all-decomposition-implies:
 assumes cdcl_{NOT} S T and inv S and n-d[simp]: no-dup (trail S) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-marked-decomposition (trail S))
  \mathbf{shows}
   all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
  using assms(1,2,4)
proof (induction rule: cdcl_{NOT}-all-induct)
  case dpll-bj
 then show ?case
    using dpll-bj-all-decomposition-implies-inv n-d by blast
\mathbf{next}
  case learn
 then show ?case by (auto simp add: all-decomposition-implies-def)
next
  case (forget<sub>NOT</sub> C T) note cls-C = this(1) and C = this(2) and T = this(3) and iniv = this(4)
and
   decomp = this(5)
 show ?case
   unfolding all-decomposition-implies-def Ball-def
   proof (intro allI, clarify)
     assume (a, b) \in set (get-all-marked-decomposition (trail <math>T))
     then have unmark-l a \cup set-mset (clauses<sub>NOT</sub> S) \models ps unmark-l b
       using decomp T by (auto simp add: all-decomposition-implies-def)
     moreover
```

```
have a1:mset-cls\ C \in set-mset\ (clauses_{NOT}\ S)
         using C by blast
       have clauses_{NOT} T = clauses_{NOT} (remove\text{-}cls_{NOT} \ C \ S)
        using T state-eq<sub>NOT</sub>-clauses by blast
       then have set-mset (clauses<sub>NOT</sub> T) \modelsps set-mset (clauses<sub>NOT</sub> S)
         using a 1 by (metis (no-types) clauses-remove-cls<sub>NOT</sub> cls-C insert-Diff order-refl
         set-mset-minus-replicate-mset(1) true-clss-clss-def true-clss-clss-insert)
      ultimately show unmark-l a \cup set-mset (clauses<sub>NOT</sub> T)
       \models ps \ unmark-l \ b
       using true-clss-clss-generalise-true-clss-clss by blast
   qed
\mathbf{qed}
Extension of models lemma cdcl<sub>NOT</sub>-bj-sat-ext-iff:
  assumes cdcl_{NOT} S Tand inv S and n-d: no-dup (trail S)
 shows I \models sextm \ clauses_{NOT} \ S \longleftrightarrow I \models sextm \ clauses_{NOT} \ T
  using assms
proof (induction rule: cdcl_{NOT}-all-induct)
  case dpll-bj
  then show ?case by (simp add: dpll-bj-clauses)
\mathbf{next}
  case (learn C T) note T = this(3)
  \{ \text{ fix } J \}
   assume
      I \models sextm\ clauses_{NOT}\ S and
      I \subseteq J and
      tot: total-over-m J (set-mset (\{\#mset-cls\ C\#\} + clauses_{NOT}\ S)) and
      cons: consistent-interp J
   then have J \models sm\ clauses_{NOT}\ S unfolding true\text{-}clss\text{-}ext\text{-}def by auto
   moreover
      with \langle clauses_{NOT} | S \models pm | mset\text{-}cls | C \rangle have J \models mset\text{-}cls | C
        using tot cons unfolding true-clss-cls-def by auto
   ultimately have J \models sm \{\#mset\text{-}cls \ C\#\} + clauses_{NOT} \ S \ by \ auto
 then have H: I \models sextm \ (clauses_{NOT} \ S) \Longrightarrow I \models sext \ insert \ (mset\text{-}cls \ C) \ (set\text{-}mset \ (clauses_{NOT} \ S))
   unfolding true-clss-ext-def by auto
  show ?case
   apply standard
     using T n-d apply (auto\ simp\ add:\ H)[]
   using T n-d apply simp
   by (metis Diff-insert-absorb insert-subset subsetI subset-antisym
      true-clss-ext-decrease-right-remove-r)
next
  case (forget_{NOT} \ C \ T) note cls\text{-}C = this(1) and T = this(3)
  \{ \text{ fix } J \}
   assume
      I \models sext \ set\text{-}mset \ (clauses_{NOT} \ S) - \{mset\text{-}cls \ C\} \ \mathbf{and}
      I \subseteq J and
      tot: total-over-m J (set-mset (clauses<sub>NOT</sub> S)) and
      cons: consistent-interp J
   then have J \models s \ set\text{-}mset \ (clauses_{NOT} \ S) - \{mset\text{-}cls \ C\}
      unfolding true-clss-ext-def by (meson Diff-subset total-over-m-subset)
```

moreover

```
with cls-C have J \models mset-cls C
       using tot cons unfolding true-clss-cls-def
       by (metis Un-commute forget_{NOT}.hyps(2) in-clss-mset-clss insert-Diff insert-is-Un order-refl
         set-mset-minus-replicate-mset(1))
   ultimately have J \models sm \ (clauses_{NOT} \ S) by (metis \ insert-Diff-single \ true-clss-insert)
  then have H: I \models sext \ set\text{-}mset \ (clauses_{NOT} \ S) - \{mset\text{-}cls \ C\} \Longrightarrow I \models sextm \ (clauses_{NOT} \ S)
   unfolding true-clss-ext-def by blast
 show ?case using T by (auto simp: true-clss-ext-decrease-right-remove-r H)
qed
end — end of conflict-driven-clause-learning-ops
16.5
         CDCL with invariant
locale conflict-driven-clause-learning =
  conflict-driven-clause-learning-ops +
 assumes cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT} S T \Longrightarrow inv S \Longrightarrow inv T
begin
sublocale dpll-with-backjumping
 apply unfold-locales
 using cdcl_{NOT}.simps \ cdcl_{NOT}.inv by auto
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
 by (induction rule: rtranclp-induct) (auto simp\ add:\ cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-no-dup:
 assumes cdcl_{NOT}^{**} S T and inv S
 and no-dup (trail S)
 shows no-dup (trail T)
 using assms by (induction rule: rtranclp-induct) (auto intro: cdcl_{NOT}-no-dup rtranclp-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-trail-clauses-bound:
 assumes
    cdcl: cdcl_{NOT}^{**} S T and
   inv: inv S and
   n-d: no-dup (trail S) and
   atms-clauses-S: atms-of-mm (clauses<sub>NOT</sub> S) \subseteq A and
   atms-trail-S: atm-of '(lits-of-l (trail S)) \subseteq A
 shows atm-of '(lits-of-l (trail T)) \subseteq A \land atms-of-mm (clauses<sub>NOT</sub> T) \subseteq A
 using cdcl
proof (induction rule: rtranclp-induct)
 case base
 then show ?case using atms-clauses-S atms-trail-S by simp
next
 case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
 have inv T using inv st rtranclp-cdcl_{NOT}-inv by blast
 have no-dup (trail\ T)
   using rtranclp-cdcl_{NOT}-no-dup[of S T] st cdcl_{NOT} inv n-d by blast
  then have atms-of-mm (clauses_{NOT} \ U) \subseteq A
   using cdcl_{NOT}-atms-of-ms-clauses-decreasing [OF cdcl_{NOT}] IH n-d \langle inv T \rangle by fast
 moreover
   have atm-of '(lits-of-l (trail U)) \subseteq A
     using cdcl_{NOT}-atms-in-trail-in-set[OF cdcl_{NOT}, of A] \langle no\text{-}dup \ (trail \ T) \rangle
     by (meson atms-trail-S atms-clauses-S IH \langle inv \ T \rangle \ cdcl_{NOT})
```

```
ultimately show ?case by fast
qed
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{all-decomposition-implies}:
 assumes cdcl_{NOT}^{**} S T and inv S and no-dup (trail S) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-marked-decomposition (trail S))
 shows
   all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
  using assms by (induction)
  (auto intro: rtranclp-cdcl_{NOT}-inv cdcl_{NOT}-all-decomposition-implies rtranclp-cdcl_{NOT}-no-dup)
lemma rtranclp-cdcl_{NOT}-bj-sat-ext-iff:
  assumes cdcl_{NOT}^{**} S Tand inv S and no-dup (trail S)
 shows I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
 using assms apply (induction rule: rtranclp-induct)
 using cdcl_{NOT}-bj-sat-ext-iff by (auto intro: rtranclp-cdcl_{NOT}-inv rtranclp-cdcl_{NOT}-no-dup)
definition cdcl_{NOT}-NOT-all-inv where
cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (finite A \land inv S \land atms-of-mm \ (clauses_{NOT} S) \subseteq atms-of-ms A
   \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land no-dup (trail S))
lemma cdcl_{NOT}-NOT-all-inv:
  assumes cdcl_{NOT}^{**} S T and cdcl_{NOT}-NOT-all-inv A S
 shows cdcl_{NOT}-NOT-all-inv A T
  using assms unfolding cdcl_{NOT}-NOT-all-inv-def
  by (simp add: rtranclp-cdcl_{NOT}-inv rtranclp-cdcl_{NOT}-no-dup rtranclp-cdcl_{NOT}-trail-clauses-bound)
abbreviation learn-or-forget where
learn-or-forget S T \equiv learn S T \vee forget_{NOT} S T
lemma rtranclp-learn-or-forget-cdcl_{NOT}:
 learn-or-forget** S T \Longrightarrow cdcl_{NOT}** S T
 using rtranclp-mono of learn-or-forget cdcl_{NOT} by (blast intro: cdcl_{NOT}.c-learn cdcl_{NOT}.c-forget cdcl_{NOT})
lemma learn-or-forget-dpll-\mu_C:
 assumes
   l-f: learn-or-forget** S T and
   dpll: dpll-bj \ T \ U \ \mathbf{and}
   inv: cdcl_{NOT}-NOT-all-inv \ A \ S
 shows (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
     -\mu_C \ (1+card \ (atms-of-ms \ A)) \ (2+card \ (atms-of-ms \ A)) \ (trail-weight \ U)
   < (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
      - \mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight S)
    (is ?\mu U < ?\mu S)
proof -
 have ?\mu S = ?\mu T
   using l-f
   proof (induction)
     case base
     then show ?case by simp
   \mathbf{next}
     case (step \ T \ U)
     moreover then have no-dup (trail T)
       using rtranclp-cdcl_{NOT}-no-dup[of\ S\ T]\ cdcl_{NOT}-NOT-all-inv-def inv
       rtranclp-learn-or-forget-cdcl_{NOT} by auto
```

```
ultimately show ?case
       using forget-\mu_C-stable learn-\mu_C-stable inv unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
   qed
  moreover have cdcl_{NOT}-NOT-all-inv A T
    using rtranclp-learn-or-forget-cdcl_{NOT} cdcl_{NOT}-NOT-all-inv l-f inv by blast
  ultimately show ?thesis
   using dpll-bj-trail-mes-decreasing-prop[of T U A, OF dpll] finite
   unfolding cdcl_{NOT}-NOT-all-inv-def by presburger
qed
lemma infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain:
  assumes
    \bigwedge i. \ cdcl_{NOT} \ (f \ i) \ (f(Suc \ i)) and
    inv: cdcl_{NOT}-NOT-all-inv \ A \ (f \ \theta)
  shows \exists j. \forall i \geq j. learn-or-forget (f i) (f (Suc i))
  using assms
proof (induction (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
    -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight (f 0))
   arbitrary: f
   rule: nat-less-induct-case)
  case (Suc n) note IH = this(1) and \mu = this(2) and cdcl_{NOT} = this(3) and inv = this(4)
     (dpll-end) \exists j. \ \forall i \geq j. \ learn-or-forget \ (f \ i) \ (f \ (Suc \ i))
    | (dpll\text{-}more) \neg (\exists j. \ \forall i \geq j. \ learn\text{-}or\text{-}forget \ (f \ i) \ (f \ (Suc \ i))) |
   by blast
  then show ?case
   proof cases
     case dpll-end
     then show ?thesis by auto
   next
     case dpll-more
     then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
     obtain i where
        \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
       \forall k < i. learn-or-forget (f k) (f (Suc k))
         obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
           using j by auto
         then have \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))\} \neq \{\}
         let ?I = \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
         let ?i = Min ?I
         have finite ?I
           by auto
         have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
           using Min-in[OF \langle finite?I \rangle \langle ?I \neq \{\} \rangle] by auto
         moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
           using Min.coboundedI[of \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i)\}
              (f(Suc\ i)), simplified
           by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land\ less-imp-le
              dual-order.trans not-le)
         ultimately show ?thesis using that by blast
       qed
     \mathbf{def}\ g \equiv \lambda n.\ f\ (n + Suc\ i)
```

```
have dpll-bj (f i) (g \theta)
       using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
       g-def by auto
       \mathbf{fix} \ j
       assume j \leq i
       then have learn-or-forget^{**} (f \ 0) (f \ j)
         apply (induction j)
          apply simp
         by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
           \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \rangle
     }
     then have learn-or-forget** (f \ \theta) \ (f \ i) by blast
     then have (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
           -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (g 0))
       <(2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
          -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight (f 0))
       using learn-or-forget-dpll-\mu_C[of f \ 0 \ f \ i \ g \ 0 \ A] inv \langle dpll-bj \ (f \ i) \ (g \ 0) \rangle
       unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
     moreover have cdcl_{NOT}-i: cdcl_{NOT}^{**} (f \ \theta) \ (g \ \theta)
       using rtranclp-learn-or-forget-cdcl_{NOT}[of f \ 0 \ f \ i] \ \langle learn-or-forget^{**} \ (f \ 0) \ (f \ i) \rangle
        cdcl_{NOT}[of \ i] unfolding g-def by auto
     moreover have \bigwedge i. \ cdcl_{NOT} \ (g \ i) \ (g \ (Suc \ i))
       using cdcl_{NOT} g-def by auto
     moreover have cdcl_{NOT}-NOT-all-inv A (g \theta)
       using inv cdcl_{NOT}-i rtranclp-cdcl_{NOT}-trail-clauses-bound g-def cdcl_{NOT}-NOT-all-inv by auto
     ultimately obtain j where j: \bigwedge i. i \ge j \implies learn\text{-}or\text{-}forget\ (g\ i)\ (g\ (Suc\ i))
       using IH unfolding \mu[symmetric] by presburger
     show ?thesis
       proof
           \mathbf{fix} \ k
           assume k \ge j + Suc i
           then have learn-or-forget (f k) (f (Suc k))
             using j[of k-Suc \ i] unfolding g-def by auto
         then show \forall k \ge j + Suc \ i. \ learn-or-forget \ (f \ k) \ (f \ (Suc \ k))
           \mathbf{by} \ auto
        qed
   qed
next
  case \theta note H = this(1) and cdcl_{NOT} = this(2) and inv = this(3)
  show ?case
   proof (rule ccontr)
     assume ¬ ?case
     then have j: \exists i. \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))
       by blast
     obtain i where
        \neg learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg forget_{NOT}\ (f\ i)\ (f\ (Suc\ i)) and
       \forall k < i. learn-or-forget (f k) (f (Suc k))
         obtain i_0 where \neg learn (f i_0) (f (Suc i_0)) \land \neg forget_{NOT} (f i_0) (f (Suc i_0))
           using j by auto
         then have \{i. i \leq i_0 \land \neg learn (f i) (f (Suc i)) \land \neg forget_{NOT} (f i) (f (Suc i))\} \neq \{\}
```

```
by auto
          let ?I = \{i. \ i \leq i_0 \land \neg \ learn \ (f \ i) \ (f \ (Suc \ i)) \land \neg forget_{NOT} \ (f \ i) \ (f \ (Suc \ i))\}
          let ?i = Min ?I
          have finite ?I
            by auto
          have \neg learn (f?i) (f(Suc?i)) \land \neg forget_{NOT} (f?i) (f(Suc?i))
            using Min-in[OF \langle finite\ ?I\rangle\ \langle ?I \neq \{\}\rangle] by auto
          moreover have \forall k < ?i. learn-or-forget (f k) (f (Suc k))
            using Min.coboundedI[of \{i.\ i \leq i_0 \land \neg \ learn\ (f\ i)\ (f\ (Suc\ i)) \land \neg\ forget_{NOT}\ (f\ i)
              (f(Suc\ i)), simplified
            by (meson \leftarrow learn\ (f\ i_0)\ (f\ (Suc\ i_0)) \land \neg\ forget_{NOT}\ (f\ i_0)\ (f\ (Suc\ i_0)) \land less-imp-le
              dual-order.trans not-le)
          ultimately show ?thesis using that by blast
        qed
      have dpll-bj (f i) (f (Suc i))
        using \langle \neg learn (f i) (f (Suc i)) \wedge \neg forget_{NOT} (f i) (f (Suc i)) \rangle cdcl_{NOT} cdcl_{NOT}.cases
        by blast
        \mathbf{fix}\ j
        assume j \leq i
        then have learn-or-forget** (f \ \theta) \ (f \ j)
          apply (induction j)
          apply simp
          by (metis (no-types, lifting) Suc-leD Suc-le-lessD rtranclp.simps
            \forall k < i. \ learn \ (f \ k) \ (f \ (Suc \ k)) \lor forget_{NOT} \ (f \ k) \ (f \ (Suc \ k)) \rangle
      then have learn-or-forget^{**} (f \ 0) \ (f \ i) by blast
      then show False
        using learn-or-forget-dpll-\mu_C[off\ 0\ f\ i\ f\ (Suc\ i)\ A]\ inv\ 0
        \langle dpll-bj\ (f\ i)\ (f\ (Suc\ i))\rangle unfolding cdcl_{NOT}-NOT-all-inv-def by linarith
    qed
qed
lemma wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
  assumes
    no-infinite-lf: \bigwedge f_i, \neg (\forall i > j. learn-or-forget (f_i) (f_i)
 shows wf \{(T, S). \ cdcl_{NOT} \ S \ T \land cdcl_{NOT}-NOT-all-inv \ A \ S\} (is wf \{(T, S). \ cdcl_{NOT} \ S \ T \ A \ Cdcl_{NOT} \ S \ T \ A \ S\})
        \land ?inv S\})
  {\bf unfolding}\ \textit{wf-iff-no-infinite-down-chain}
proof (rule ccontr)
  assume \neg \neg (\exists f. \forall i. (f (Suc i), f i) \in \{(T, S). cdcl_{NOT} S T \land ?inv S\})
  then obtain f where
    \forall i. \ cdcl_{NOT} \ (f \ i) \ (f \ (Suc \ i)) \land ?inv \ (f \ i)
    by fast
  then have \exists j. \ \forall i \geq j. \ learn-or-forget \ (f \ i) \ (f \ (Suc \ i))
    using infinite-cdcl_{NOT}-exists-learn-and-forget-infinite-chain [of f] by meson
  then show False using no-infinite-lf by blast
qed
lemma inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl__{NOT}-and-inv:
  cdcl_{NOT}^{++} S T \land cdcl_{NOT}-NOT-all-inv A S \longleftrightarrow (\lambda S T. cdcl_{NOT} S T \land cdcl_{NOT}-NOT-all-inv A
S)^{++} S T
  (is ?A \land ?I \longleftrightarrow ?B)
proof
```

```
assume ?A \land ?I
  then have ?A and ?I by blast+
  then show ?B
   apply induction
     apply (simp add: tranclp.r-into-trancl)
   by (subst tranclp.simps) (auto intro: cdcl_{NOT}-NOT-all-inv tranclp-into-rtranclp)
next
 assume ?B
 then have ?A by induction auto
 moreover have ?I using \langle ?B \rangle translpD by fastforce
 ultimately show ?A \land ?I by blast
qed
lemma wf-tranclp-cdcl_{NOT}-no-learn-and-forget-infinite-chain:
 assumes
    no\text{-}infinite\text{-}lf: \bigwedge f j. \neg (\forall i \geq j. learn\text{-}or\text{-}forget (f i) (f (Suc i)))
 shows wf \{(T, S). \ cdcl_{NOT}^{++} \ S \ T \land cdcl_{NOT}^{-} NOT - all - inv \ A \ S\}
 using wf-trancl[OF\ wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain[OF\ no-infinite-lf]]
 apply (rule wf-subset)
 by (auto simp: trancl-set-tranclp inv-and-tranclp-cdcl-_{NOT}-tranclp-cdcl_{NOT}-and-inv)
lemma cdcl_{NOT}-final-state:
 assumes
   n-s: no-step cdcl_{NOT} S and
   inv: cdcl_{NOT}-NOT-all-inv A S and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> S) (get-all-marked-decomposition (trail S))
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
 have n-s': no-step dpll-bj S
   using n-s by (auto simp: cdcl_{NOT}.simps)
 show ?thesis
   apply (rule dpll-backjump-final-state[of S[A])
   using inv \ decomp \ n-s' unfolding cdcl_{NOT}-NOT-all-inv-def by auto
qed
lemma full-cdcl_{NOT}-final-state:
 assumes
   full: full cdcl_{NOT} S T and
   inv: cdcl_{NOT}-NOT-all-inv A S and
   n-d: no-dup (trail S) and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-marked-decomposition \ (trail \ S))
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
proof
 have st: cdcl_{NOT}^{**} S T and n-s: no-step cdcl_{NOT} T
   using full unfolding full-def by blast+
 have n-s': cdcl_{NOT}-NOT-all-inv A T
   using cdcl_{NOT}-NOT-all-inv inv st by blast
 moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
   \mathbf{using}\ cdcl_{NOT}\text{-}NOT\text{-}all\text{-}inv\text{-}def\ decomp\ inv\ rtranclp\text{-}cdcl_{NOT}\text{-}all\text{-}decomposition\text{-}implies\ st\ \mathbf{by}\ auto
  ultimately show ?thesis
   using cdcl_{NOT}-final-state n-s by blast
qed
```

16.6 Termination

16.6.1 Restricting learn and forget

```
{\bf locale}\ conflict\mbox{-} driven\mbox{-} clause\mbox{-} learning\mbox{-} learning\mbox{-} before\mbox{-} backjump\mbox{-} only\mbox{-} distinct\mbox{-} learning\mbox{-}
  dpll-state mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
     trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ +
  conflict-driven-clause-learning mset-cls insert-cls remove-lit
     mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses\ prepend-trail\ tl-trail\ add-cls_{NOT}\ remove-cls_{NOT}
     inv backjump-conds propagate-conds
  \lambda C S. distinct-mset (mset-cls C) \wedge ¬tautology (mset-cls C) \wedge learn-restrictions C S \wedge
    (\exists F \ K \ d \ F' \ C' \ L. \ trail \ S = F' @ \textit{Marked} \ K \ () \ \# \ F \ \land \ \textit{mset-cls} \ C = C' + \{\#L\#\} \ \land \ F \models \textit{as} \ \textit{CNot}
       \land C' + \{\#L\#\} \notin \# clauses_{NOT} S)
  \lambda C S. \neg (\exists F' F K d L. trail S = F' @ Marked K () \# F \land F \models as CNot (remove1-mset L (mset-cls))
    \land forget-restrictions C S
    for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
     insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
     remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
     tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st \text{ and }
     inv :: 'st \Rightarrow bool and
     backjump\text{-}conds:: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ \mathbf{and}
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    learn-restrictions forget-restrictions :: 'cls \Rightarrow 'st \Rightarrow bool
lemma cdcl_{NOT}-learn-all-induct[consumes 1, case-names dpll-bj learn forget_{NOT}]:
  fixes S T :: 'st
  assumes cdcl_{NOT} S T and
     dpll: \bigwedge T. \ dpll-bj \ S \ T \Longrightarrow P \ S \ T \ and
    learning:
       \bigwedge C \ F \ K \ F' \ C' \ L \ T. \ clauses_{NOT} \ S \models pm \ mset\text{-}cls \ C \Longrightarrow
         atms-of (mset-cls\ C) \subseteq atms-of-mm\ (clauses_{NOT}\ S) \cup atm-of ' (lits-of-l\ (trail\ S)) \Longrightarrow
         distinct-mset (mset-cls C) \Longrightarrow
          \neg tautology (mset-cls C) \Longrightarrow
         learn-restrictions C S \Longrightarrow
         trail\ S = F' \ @\ Marked\ K\ () \ \#\ F \Longrightarrow
         mset\text{-}cls\ C = C' + \{\#L\#\} \Longrightarrow
          F \models as \ CNot \ C' \Longrightarrow
          C' + \{\#L\#\} \notin \# clauses_{NOT} S \Longrightarrow
```

```
T \sim add\text{-}cls_{NOT} \ C S \Longrightarrow
        P S T and
   forgetting: \bigwedge C T. removeAll-mset (mset-cls C) (clauses<sub>NOT</sub> S) \models pm mset-cls C \Longrightarrow
      C \in ! raw-clauses S \Longrightarrow
      \neg (\exists F' \ F \ K \ L. \ trail \ S = F' \ @ \ Marked \ K \ () \ \# \ F \land F \models as \ CNot \ (mset-cls \ C - \{\#L\#\})) \Longrightarrow
      T \sim remove\text{-}cls_{NOT} \ C S \Longrightarrow
      forget-restrictions C S \Longrightarrow
      PST
   shows P S T
  using assms(1)
  apply (induction rule: cdcl_{NOT}.induct)
   apply (auto dest: assms(2) simp add: learn-ops-axioms)[]
  apply (auto elim!: learn-ops.learn.cases[OF learn-ops-axioms] dest: assms(3))[]
  apply (auto elim!: forget-ops.forget_{NOT}.cases[OF\ forget-ops-axioms]\ dest!:\ assms(4))
  done
lemma rtranclp-cdcl_{NOT}-inv:
  cdcl_{NOT}^{**} S T \Longrightarrow inv S \Longrightarrow inv T
  apply (induction rule: rtranclp-induct)
  apply simp
  using cdcl_{NOT}-inv unfolding conflict-driven-clause-learning-def
  conflict-driven-clause-learning-axioms-def by blast
lemma learn-always-simple-clauses:
  assumes
   learn: learn S T and
   n-d: no-dup (trail S)
  shows set-mset (clauses_{NOT} T - clauses_{NOT} S)
   \subseteq simple\text{-}clss (atms\text{-}of\text{-}mm (clauses_{NOT} S) \cup atm\text{-}of `lits\text{-}of\text{-}l (trail S))
proof
  fix C assume C: C \in set\text{-}mset (clauses_{NOT} \ T - clauses_{NOT} \ S)
 have distinct-mset C \neg tautology C using learn C n-d by (elim learn<sub>NOT</sub>E; auto)+
  then have C \in simple\text{-}clss (atms\text{-}of C)
   using distinct-mset-not-tautology-implies-in-simple-clss by blast
  moreover have atms-of C \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of 'lits-of-l (trail S)
   using learn C n-d by (elim learn NOTE) (auto simp: atms-of-ms-def atms-of-def image-Un
      true-annots-CNot-all-atms-defined)
  moreover have finite (atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of 'lits-of-l (trail S))
    by auto
  ultimately show C \in simple\text{-}clss (atms\text{-}of\text{-}mm (clauses_{NOT} S) \cup atm\text{-}of `lits\text{-}of\text{-}l (trail S))
   using simple-clss-mono by (metis (no-types) insert-subset mk-disjoint-insert)
qed
definition conflicting-bj-clss S \equiv
   \{C+\{\#L\#\}\mid C\ L.\ C+\{\#L\#\}\in\#\ clauses_{NOT}\ S\ \land\ distinct\text{-mset}\ (C+\{\#L\#\})\}
  \land \neg tautology (C + \{\#L\#\})
    \land (\exists F' \ K \ F. \ trail \ S = F' @ Marked \ K \ () \# F \land F \models as \ CNot \ C) \}
lemma conflicting-bj-clss-remove-cls_{NOT}[simp]:
  conflicting-bj-clss\ (remove-cls_{NOT}\ C\ S) = conflicting-bj-clss\ S - \{mset-cls\ C\}
  unfolding conflicting-bj-clss-def by fastforce
lemma conflicting-bj-clss-remove-cls_{NOT} '[simp]:
  T \sim remove\text{-}cls_{NOT} \ C \ S \Longrightarrow conflicting\text{-}bj\text{-}clss \ T = conflicting\text{-}bj\text{-}clss \ S - \{mset\text{-}cls \ C\}
  unfolding conflicting-bj-clss-def by fastforce
```

```
lemma conflicting-bj-clss-add-cls_{NOT}-state-eq:
    T: T \sim add\text{-}cls_{NOT} C' S and
    n-d: no-dup (trail S)
  shows conflicting-bj-clss T
    = conflicting-bj-clss S
     \cup \ (\textit{if} \ \exists \ \textit{C} \ \textit{L}. \ \textit{mset-cls} \ \textit{C'} = \ \textit{C} \ + \{\#L\#\} \ \land \ \textit{distinct-mset} \ (\textit{C} + \{\#L\#\}) \ \land \ \neg tautology \ (\textit{C} + \{\#L\#\})
     \wedge (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Marked \ K \ () \ \# \ F \ \wedge \ F \models as \ CNot \ C)
     then \{mset\text{-}cls\ C'\}\ else\ \{\}\}
proof -
  \mathbf{def}\ P \equiv \lambda C\ L\ T.\ distinct\text{-mset}\ (C + \{\#L\#\}) \land \neg\ tautology\ (C + \{\#L\#\}) \land \neg
    (\exists F' \ K \ F. \ trail \ T = F' @ Marked \ K \ () \# F \land F \models as \ CNot \ C)
  have conf: \bigwedge T. conflicting-bj-clss T = \{C + \#L\#\} \mid CL.\ C + \#L\#\} \in \# clauses<sub>NOT</sub> T \land PC
    unfolding conflicting-bj-clss-def P-def by auto
  have P-S-T: \bigwedge C L. P C L T = P C L S
    using T n-d unfolding P-def by auto
  have P: conflicting-bj-clss T = \{C + \#L\#\} \mid C L. C + \#L\#\} \in \# clauses_{NOT} S \land P C L T\} \cup A
     \{C + \{\#L\#\} \mid C L. C + \{\#L\#\} \in \# \{\#mset\text{-}cls C'\#\} \land P C L T\}
    using T n-d unfolding conf by auto
 moreover have \{C + \#L\#\} \mid CL. C + \#L\#\} \in \#clauses_{NOT} S \land PCLT\} = conflicting-bj-clss
    using T n-d unfolding P-def conflicting-bj-clss-def by auto
  (if \exists C L. mset-cls C' = C + \{\#L\#\} \land P C L S \text{ then } \{\text{mset-cls } C'\} \text{ else } \{\}\}
    using n-d T by (force simp: P-S-T)
 ultimately show ?thesis unfolding P-def by presburger
lemma conflicting-bj-clss-add-cls_{NOT}:
  no-dup (trail S) \Longrightarrow
  conflicting-bj-clss\ (add-cls_{NOT}\ C'\ S)
    = conflicting-bj-clss S
     \cup \ (\textit{if} \ \exists \ \textit{C} \ \textit{L}. \ \textit{mset-cls} \ \textit{C'} = \ \textit{C} \ + \{\#L\#\} \land \ \textit{distinct-mset} \ (\textit{C} + \{\#L\#\}) \ \land \ \neg tautology \ (\textit{C} + \{\#L\#\})
     \land (\exists F' \ K \ d \ F. \ trail \ S = F' \ @ \ Marked \ K \ () \ \# \ F \land F \models as \ CNot \ C)
     then \{mset\text{-}cls\ C'\}\ else\ \{\}\}
  using conflicting-bj-clss-add-cls_{NOT}-state-eq by auto
lemma conflicting-bj-clss-incl-clauses:
   conflicting-bj-clss\ S \subseteq set-mset\ (clauses_{NOT}\ S)
  unfolding conflicting-bj-clss-def by auto
lemma finite-conflicting-bj-clss[simp]:
 finite\ (conflicting-bj-clss\ S)
  using conflicting-bj-clss-incl-clauses of S rev-finite-subset by blast
lemma learn-conflicting-increasing:
  no\text{-}dup\ (trail\ S) \Longrightarrow learn\ S\ T \Longrightarrow conflicting\text{-}bj\text{-}clss\ S \subseteq conflicting\text{-}bj\text{-}clss\ T
  apply (elim\ learn_{NOT}E)
  by (subst conflicting-bj-clss-add-cls_{NOT}-state-eq[of T]) auto
abbreviation conflicting-bj-clss-yet b S \equiv
  3 \hat{b} - card (conflicting-bj-clss S)
```

```
abbreviation \mu_L :: nat \Rightarrow 'st \Rightarrow nat \times nat where
 \mu_L b S \equiv (conflicting-bj-clss-yet b S, card (set-mset (clauses_{NOT} S)))
\mathbf{lemma}\ do\text{-}not\text{-}forget\text{-}before\text{-}backtrack\text{-}rule\text{-}clause\text{-}learned\text{-}clause\text{-}untouched\text{:}}
 assumes forget_{NOT} S T
 shows conflicting-bj-clss S = conflicting-bj-clss T
  using assms apply (elim forget_{NOT}E)
 apply auto
 unfolding conflicting-bj-clss-def
 apply clarify
 using diff-union-cancelR by (metis diff-union-cancelR)
lemma forget-\mu_L-decrease:
 assumes forget_{NOT}: forget_{NOT} S T
 shows (\mu_L \ b \ T, \mu_L \ b \ S) \in less-than < lex > less-than
proof -
 have card (set-mset (clauses<sub>NOT</sub> S)) > \theta
   using forget_{NOT} by (elim\ forget_{NOT}E) (auto simp: size-mset-removeAll-mset-le-iff card-gt-0-iff)
  then have card\ (set\text{-}mset\ (clauses_{NOT}\ T)) < card\ (set\text{-}mset\ (clauses_{NOT}\ S))
   using forget_{NOT} by (elim\ forget_{NOT}E) (auto\ simp:\ size-mset-removeAll-mset-le-iff)
  then show ?thesis
   unfolding do-not-forget-before-backtrack-rule-clause-learned-clause-untouched [OF\ forget_{NOT}]
   by auto
qed
lemma set-condition-or-split:
  \{a. (a = b \lor Q \ a) \land S \ a\} = (if \ S \ b \ then \ \{b\} \ else \ \{\}) \cup \{a. \ Q \ a \land S \ a\}
 by auto
lemma set-insert-neg:
 A \neq insert \ a \ A \longleftrightarrow a \notin A
 by auto
lemma learn-\mu_L-decrease:
  assumes learnST: learn S T and n-d: no-dup (trail S) and
  A: atms-of-mm (clauses_{NOT} S) \cup atm-of 'lits-of-l (trail S) \subseteq A and
  fin-A: finite A
 shows (\mu_L \ (card \ A) \ T, \mu_L \ (card \ A) \ S) \in less-than <*lex*> less-than
proof -
 have [simp]: (atms-of-mm (clauses_{NOT} T) \cup atm-of ' lits-of-l (trail T))
   = (atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ `lits-of-l \ (trail \ S))
   using learnST n-d by (elim\ learn_{NOT}E) auto
  then have card (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
   = card (atms-of-mm (clauses_{NOT} S) \cup atm-of `lits-of-l (trail S))
   by (auto intro!: card-mono)
  then have 3: (3::nat) \hat{} card (atms-of-mm\ (clauses_{NOT}\ T) \cup atm-of\ 'lits-of-l\ (trail\ T))
   = 3 \ \widehat{} \ card \ (atms-of-mm \ (clauses_{NOT} \ S) \cup atm-of \ (trail \ S))
   by (auto intro: power-mono)
  moreover have conflicting-bj-clss S \subseteq conflicting-bj-clss T
   using learnST n-d by (simp add: learn-conflicting-increasing)
  moreover have conflicting-bj-clss S \neq conflicting-bj-clss T
   using learnST
   proof (elim\ learn_{NOT}E,\ goal\text{-}cases)
     case (1 C) note clss-S = this(1) and atms-C = this(2) and inv = this(3) and T = this(4)
```

```
then obtain F K F' C' L where
       \textit{tr-S}: \textit{trail } S = F' @ \textit{Marked } K \ () \ \# \ F \ \textbf{and}
       C: mset-cls \ C = C' + \{\#L\#\} \ and
       F: F \models as \ CNot \ C' and
       C\text{-}S:C' + \{\#L\#\} \notin \# clauses_{NOT} S
       by blast
     moreover have distinct-mset (mset-cls C) \neg tautology (mset-cls C) using inv by blast+
     ultimately have C' + \{\#L\#\} \in conflicting-bj\text{-}clss\ T
       using T n-d unfolding conflicting-bj-clss-def by fastforce
     moreover have C' + \{\#L\#\} \notin conflicting-bj\text{-}clss \ S
       using C-S unfolding conflicting-bj-clss-def by auto
     ultimately show ?case by blast
   qed
 moreover have fin-T: finite (conflicting-bj-clss T)
   using learnST by induction (auto simp add: conflicting-bj-clss-add-cls_{NOT})
  ultimately have card (conflicting-bj-clss T) \geq card (conflicting-bj-clss S)
   using card-mono by blast
  moreover
   have fin': finite (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
     by auto
   have 1:atms-of-ms (conflicting-bj-clss T) \subseteq atms-of-mm (clauses<sub>NOT</sub> T)
     unfolding conflicting-bj-clss-def atms-of-ms-def by auto
   have 2: \bigwedge x. \ x \in conflicting-bj-clss \ T \Longrightarrow \neg \ tautology \ x \wedge \ distinct-mset \ x
     unfolding conflicting-bj-clss-def by auto
   have T: conflicting-bj-clss T
   \subseteq simple-clss \ (atms-of-mm \ (clauses_{NOT} \ T) \cup atm-of \ `lits-of-l \ (trail \ T))
     by standard (meson 1 2 fin' (finite (conflicting-bj-clss T)) simple-clss-mono
       distinct-mset-set-def simplified-in-simple-clss subsetCE sup.coboundedI1)
 moreover
   then have #: 3 \hat{} card (atms-of-mm (clauses<sub>NOT</sub> T) \cup atm-of 'lits-of-l (trail T))
       \geq card (conflicting-bj-clss T)
     by (meson Nat.le-trans simple-clss-card simple-clss-finite card-mono fin')
   have atms-of-mm (clauses_{NOT} \ T) \cup atm-of 'lits-of-l (trail \ T) \subseteq A
     using learn_{NOT}E[OF\ learnST]\ A by simp
   then have 3 \cap (card A) > card (conflicting-bj-clss T)
     using # fin-A by (meson simple-clss-card simple-clss-finite
       simple-clss-mono\ calculation(2)\ card-mono\ dual-order.trans)
  ultimately show ?thesis
   using psubset-card-mono[OF fin-T]
   unfolding less-than-iff lex-prod-def by clarify
     (meson \ (conflicting-bj-clss \ S \neq conflicting-bj-clss \ T)
       \langle conflicting\text{-}bj\text{-}clss\ S\subseteq\ conflicting\text{-}bj\text{-}clss\ T\rangle
       diff-less-mono2 le-less-trans not-le psubsetI)
qed
```

We have to assume the following:

- *inv S*: the invariant holds in the inital state.
- A is a (finite finite A) superset of the literals in the trail atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and in the clauses atms-of-mm ($clauses_{NOT}$ S) \subseteq atms-of-ms A. This can the set of all the literals in the starting set of clauses.
- no-dup (trail S): no duplicate in the trail. This is invariant along the path.

```
definition \mu_{CDCL} where
\mu_{CDCL} A T \equiv ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
             -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T),
           conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ T,\ card\ (set-mset\ (clauses_{NOT}\ T)))
lemma cdcl_{NOT}-decreasing-measure:
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atm\text{-}clss: atms\text{-}of\text{-}mm \ (clauses_{NOT} \ S) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   atm-lits: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
  shows (\mu_{CDCL} \ A \ T, \mu_{CDCL} \ A \ S)
           \in less-than <*lex*> (less-than <*lex*> less-than)
 using assms(1)
proof induction
 case (c-dpll-bj\ T)
 from dpll-bj-trail-mes-decreasing-prop[OF this(1) inv atm-clss atm-lits n-d fin-A]
 show ?case unfolding \mu_{CDCL}-def
   by (meson in-lex-prod less-than-iff)
next
 case (c-learn T) note learn = this(1)
 then have S: trail S = trail T
   using inv atm-clss atm-lits n-d fin-A
   by (elim\ learn_{NOT}E) auto
 show ?case
   using learn-\mu_L-decrease [OF learn n-d, of atms-of-ms A] atm-clss atm-lits fin-A n-d
   unfolding S \mu_{CDCL}-def by auto
 case (c\text{-}forget_{NOT}\ T) note forget_{NOT} = this(1)
 have trail S = trail\ T using forget_{NOT} by induction auto
 then show ?case
   using forget-\mu_L-decrease[OF\ forget_{NOT}] unfolding \mu_{CDCL}-def by auto
qed
lemma wf-cdcl_{NOT}-restricted-learning:
 assumes finite A
 shows wf \{(T, S).
   (atms-of-mm\ (clauses_{NOT}\ S)\subseteq atms-of-ms\ A\wedge atm-of\ `flits-of-l\ (trail\ S)\subseteq atms-of-ms\ A
   \wedge no-dup (trail S)
   \wedge inv S
   \land cdcl_{NOT} S T \}
 by (rule wf-wf-if-measure'[of less-than <*lex*> (less-than <*lex*> less-than)])
    (auto\ intro:\ cdcl_{NOT} - decreasing - measure[OF - - - - assms])
definition \mu_C':: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}':: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}' A T \equiv
 ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C{}'\ A\ T) * (1+3 \cap (atms-of-ms\ A)) *
 + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
 + card (set\text{-}mset (clauses_{NOT} T))
```

```
lemma cdcl_{NOT}-decreasing-measure':
 assumes
   cdcl_{NOT} S T and
   inv: inv S and
   atms-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A: finite A
 shows \mu_{CDCL}' A T < \mu_{CDCL}' A S
 using assms(1)
proof (induction rule: cdcl_{NOT}-learn-all-induct)
 case (dpll-bj\ T)
 then have (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A T
   < (2+card (atms-of-ms A)) ^{\sim} (1+card (atms-of-ms A)) ^{\sim} \mu_{C}
   using dpll-bj-trail-mes-decreasing-prop fin-A inv n-d atms-clss atms-trail
   unfolding \mu_C'-def by blast
 then have XX: ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) + 1
   \leq (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A)) - \mu_C' A S
   by auto
 from mult-le-mono1[OF this, of <math>(1 + 3 \cap card (atms-of-ms A))]
 have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) *
     (1 + 3 ^card (atms-of-ms A)) + (1 + 3 ^card (atms-of-ms A))
   \leq ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     * (1 + 3 \hat{} card (atms-of-ms A))
   unfolding Nat.add-mult-distrib
   by presburger
 moreover
   have cl-T-S: clauses_{NOT} T = clauses_{NOT} S
     using dpll-bj.hyps inv dpll-bj-clauses by auto
   have conflicting-bj-clss-yet (card (atms-of-ms A)) S < 1 + 3 and (atms-of-ms A)
   by simp
 ultimately have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
    *(1 + 3 \cap card (atms-of-ms A)) + conflicting-bj-clss-yet (card (atms-of-ms A)) T
   <((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ S)*(1+3 \cap card\ (atms-of-ms\ A))
A))
   by linarith
 then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
      * (1 + 3 \hat{} card (atms-of-ms A))
     + conflicting-bj-clss-yet (card (atms-of-ms A)) T
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
      * (1 + 3 \cap card (atms-of-ms A))
     + conflicting-bj-clss-yet (card (atms-of-ms A)) S
   by linarith
 then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T)
    * (1 + 3 \hat{} card (atms-of-ms A)) * 2
   + conflicting-bj-clss-yet (card (atms-of-ms A)) T * 2
   <((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
     * (1 + 3 \cap card (atms-of-ms A)) * 2
   + conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
   bv linarith
 then show ?case unfolding \mu_{CDCL}'-def cl-T-S by presburger
 case (learn C F' K F C' L T) note clss-S-C = this(1) and atms-C = this(2) and dist = this(3)
   and tauto = this(4) and learn-restr = this(5) and tr-S = this(6) and C' = this(7) and
   F-C = this(8) and C-new = this(9) and T = this(10)
```

```
have insert (mset-cls C) (conflicting-bj-clss S) \subseteq simple-clss (atms-of-ms A)
   proof -
     have mset-cls\ C \in simple-clss\ (atms-of-ms\ A)
       using C'
      by (metis (no-types, hide-lams) Un-subset-iff simple-clss-mono
        contra-subset D \ dist \ distinct-mset-not-tautology-implies-in-simple-clss
        dual-order.trans atms-C atms-clss atms-trail tauto)
     moreover have conflicting-bj-clss S \subseteq simple-clss (atms-of-ms A)
       proof
        \mathbf{fix} \ x :: 'v \ literal \ multiset
        assume x \in conflicting-bj-clss S
        then have x \in \# clauses_{NOT} S \wedge distinct\text{-}mset \ x \wedge \neg \ tautology \ x
          unfolding conflicting-bj-clss-def by blast
        then show x \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
          by (meson atms-clss atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
            distinct-mset-not-tautology-implies-in-simple-clss fin-A finite-subset
            set-rev-mp)
       qed
     ultimately show ?thesis
       by auto
   qed
  then have card (insert (mset-cls C) (conflicting-bj-clss S)) \leq 3 \widehat{} (card (atms-of-ms A))
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-card simple-clss-finite
     card-mono fin-A)
  moreover have [simp]: card (insert (mset-cls C) (conflicting-bj-clss S))
   = Suc (card ((conflicting-bj-clss S)))
   by (metis (no-types) C' C-new card-insert-if conflicting-bj-clss-incl-clauses contra-subsetD
     finite-conflicting-bj-clss)
  moreover have [simp]: conflicting-bj-clss (add-cls<sub>NOT</sub> CS) = conflicting-bj-clss S \cup \{mset\text{-}cls\ C\}
   using dist tauto F-C by (subst conflicting-bj-clss-add-cls<sub>NOT</sub>[OF n-d]) (force simp: C' tr-S n-d)
  ultimately have [simp]: conflicting-bj-clss-yet (card (atms-of-ms A)) S
   = Suc\ (conflicting-bj-clss-yet\ (card\ (atms-of-ms\ A))\ (add-cls_{NOT}\ C\ S))
     by simp
 have 1: clauses_{NOT} T = clauses_{NOT} (add-cls_{NOT} \ C \ S) using T by auto
 have 2: conflicting-bj-clss-yet (card (atms-of-ms A)) T
   = conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls_{NOT} C S)
   using T unfolding conflicting-bj-clss-def by auto
  have 3: \mu_C' A T = \mu_C' A (add\text{-}cls_{NOT} C S)
   using T unfolding \mu_C'-def by auto
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A (add-cls_{NOT} C S))
   * (1 + 3 \hat{\ } card (atms-of-ms A)) * 2
   = ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A S)
   *(1 + 3 \cap card (atms-of-ms A)) * 2
     using n-d unfolding \mu_C'-def by auto
 moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) (add-cls<sub>NOT</sub> CS)
     + card (set\text{-}mset (clauses_{NOT} (add\text{-}cls_{NOT} CS)))
     < conflicting-bj-clss-yet (card (atms-of-ms A)) S * 2
     + card (set\text{-}mset (clauses_{NOT} S))
     by (simp \ add: C' \ C\text{-}new \ n\text{-}d)
  ultimately show ?case unfolding \mu_{CDCL}'-def 1 2 3 by presburger
next
 case (forget_{NOT} \ C \ T) note T = this(4)
 have [simp]: \mu_C ' A (remove-cls<sub>NOT</sub> C S) = \mu_C ' A S
```

```
unfolding \mu_C'-def by auto
  have forget_{NOT} S T
   apply (rule forget_{NOT}.intros) using forget_{NOT} by auto
  then have conflicting-bj-clss\ T=conflicting-bj-clss\ S
   using do-not-forget-before-backtrack-rule-clause-learned-clause-untouched by blast
  moreover have card (set-mset (clauses<sub>NOT</sub> T)) < card (set-mset (clauses<sub>NOT</sub> S))
   by (metis T card-Diff1-less clauses-remove-cls_{NOT} finite-set-mset forget_{NOT}.hyps(2)
     in\text{-}clss\text{-}mset\text{-}clss\ order\text{-}refl\ set\text{-}mset\text{-}minus\text{-}replicate\text{-}mset(1)\ state\text{-}eq_{NOT}\text{-}clauses)
  ultimately show ?case unfolding \mu_{CDCL}'-def
   using T \langle \mu_C' A \text{ (remove-cls}_{NOT} C S \rangle = \mu_C' A S \rangle by (metis (no-types) add-le-cancel-left
     \mu_C'-def not-le state-eq<sub>NOT</sub>-trail)
qed
lemma cdcl_{NOT}-clauses-bound:
 assumes
   cdcl_{NOT} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   fin-A[simp]: finite\ A
 shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (clauses_{NOT} \ S) \cup simple-clss A
 using assms
proof (induction rule: cdcl_{NOT}-learn-all-induct)
 case dpll-bj
 then show ?case using dpll-bj-clauses by simp
next
  case forget_{NOT}
 then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def by auto
 case (learn C F K d F' C' L) note atms-C = this(2) and dist = this(3) and tauto = this(4) and
  T = this(10) and atms-clss-S = this(12) and atms-trail-S = this(13)
 have atms-of (mset-cls C) \subseteq A
   using atms-C atms-clss-S atms-trail-S by fast
  then have simple-clss (atms-of (mset-cls C)) \subseteq simple-clss A
   by (simp add: simple-clss-mono)
 then have mset-cls\ C \in simple-clss\ A
   using finite dist tauto by (auto dest: distinct-mset-not-tautology-implies-in-simple-clss)
 then show ?case using T n-d by auto
qed
lemma rtranclp-cdcl_{NOT}-clauses-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
 shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (clauses_{NOT} \ S) \cup simple-clss A
 using assms(1-5)
proof induction
 case base
 then show ?case by simp
\mathbf{next}
```

```
case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-7)] and
   inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
  have inv T
   using rtranclp-cdcl_{NOT}-inv st inv by blast
  moreover have atms-of-mm (clauses_{NOT} T) \subseteq A and atm-of 'lits-of-l (trail T) \subseteq A
   using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st] inv atms-clss-S atms-trail-S n-d by auto
  moreover have no-dup (trail T)
  using rtranclp-cdcl_{NOT}-no-dup[OF\ st\ \langle inv\ S \rangle\ n-d] by simp
  ultimately have set-mset (clauses<sub>NOT</sub> U) \subseteq set-mset (clauses<sub>NOT</sub> T) \cup simple-clss A
   using cdcl_{NOT} finite n-d by (auto simp: cdcl_{NOT}-clauses-bound)
 then show ?case using IH by auto
qed
lemma rtranclp-cdcl_{NOT}-card-clauses-bound:
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows card (set-mset (clauses<sub>NOT</sub> T)) \leq card (set-mset (clauses<sub>NOT</sub> S)) + 3 ^ (card A)
  using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] finite by (meson Nat.le-trans
   simple-clss-card\ simple-clss-finite\ card-Un-le\ card-mono\ finite-UnI
   finite-set-mset nat-add-left-cancel-le)
lemma rtranclp-cdcl_{NOT}-card-clauses-bound':
 assumes
   cdcl_{NOT}^{**} S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
  shows card \{C|C.\ C\in\#\ clauses_{NOT}\ T\land (tautology\ C\lor\neg distinct\text{-mset}\ C)\}
   \leq card \{C|C. C \in \# clauses_{NOT} S \land (tautology C \lor \neg distinct\text{-mset } C)\} + 3 \cap (card A)
   (is card ?T < card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound[OF assms] finite
proof -
 have ?T \subseteq ?S \cup simple\text{-}clss A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by force
  then have card ?T \leq card (?S \cup simple-clss A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
lemma rtranclp-cdcl_{NOT}-card-simple-clauses-bound:
 assumes
    cdcl_{NOT}^{**} S T and
   inv S and
   NA: atms-of-mm (clauses_{NOT} S) \subseteq A and
   MA: atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
```

```
shows card (set-mset (clauses<sub>NOT</sub> T))
  \leq card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct\text{-mset } C)\} + 3 \ \widehat{} \ (card \ A)
   (is card ?T \leq card ?S + -)
  using rtranclp-cdcl_{NOT}-clauses-bound[OF assms] finite
proof -
  have \bigwedge x. \ x \in \# \ clauses_{NOT} \ T \Longrightarrow \neg \ tautology \ x \Longrightarrow distinct-mset \ x \Longrightarrow x \in simple-clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by (metis (no-types, hide-lams) Un-iff NA
     atms-of-atms-of-ms-mono simple-clss-mono contra-subsetD subset-trans
     distinct-mset-not-tautology-implies-in-simple-clss)
  then have set-mset (clauses_{NOT} \ T) \subseteq ?S \cup simple-clss \ A
   using rtranclp-cdcl_{NOT}-clauses-bound [OF assms] by auto
  then have card(set\text{-}mset\ (clauses_{NOT}\ T)) \leq card\ (?S \cup simple\text{-}clss\ A)
   using finite by (simp add: assms(5) simple-clss-finite card-mono)
  then show ?thesis
   by (meson le-trans simple-clss-card card-Un-le local.finite nat-add-left-cancel-le)
qed
definition \mu_{CDCL}'-bound :: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-bound A S =
  ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))) * (1 + 3 ^ card (atms-of-ms A)) * 2
    + \ 2{*3} \ \widehat{\ } \ (\mathit{card}\ (\mathit{atms-of-ms}\ A))
    + card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct\text{-}mset \ C)\} + 3 \ \widehat{} \ (card \ (atms\text{-}of\text{-}ms \ A))
lemma \mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[simp]:
  \mu_{CDCL}'-bound A (reduce-trail-to<sub>NOT</sub> M S) = \mu_{CDCL}'-bound A S
  unfolding \mu_{CDCL}'-bound-def by auto
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>:
  assumes
    cdcl_{NOT}^{**} S T and
    inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite (atms-of-ms A) and
    U: U \sim reduce-trail-to<sub>NOT</sub> M T
  shows \mu_{CDCL}' A U \leq \mu_{CDCL}'-bound A S
proof -
  have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
    \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
   by auto
  then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A U)
       * (1 + 3 \cap card (atms-of-ms A)) * 2
    \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) * (1 + 3 \cap card (atms-of-ms A)) * 2
   using mult-le-mono1 by blast
  moreover
   have conflicting-bj-clss-yet (card (atms-of-ms A)) T*2 < 2*3 card (atms-of-ms A)
     by linarith
 moreover have card (set-mset (clauses<sub>NOT</sub> U))
     \leq card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg distinct\text{-mset } C)\} + 3 \cap card \ (atms\text{-}of\text{-ms} \ A)
   using rtranclp-cdcl_{NOT}-card-simple-clauses-bound [OF assms(1-6)] U by auto
  ultimately show ?thesis
   unfolding \mu_{CDCL}'-def \mu_{CDCL}'-bound-def by linarith
qed
```

```
lemma rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}^{**} S T and
    inv S and
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
    n-d: no-dup (trail S) and
    finite: finite (atms-of-ms A)
  shows \mu_{CDCL}' A T \leq \mu_{CDCL}'-bound A S
proof -
  have \mu_{CDCL}' A (reduce-trail-to<sub>NOT</sub> (trail T) T) = \mu_{CDCL}' A T
    unfolding \mu_{CDCL}'-def \mu_{C}'-def conflicting-bj-clss-def by auto
 then show ?thesis using rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[OF assms, of - trail T]
    state-eq_{NOT}-ref by fastforce
qed
lemma rtranclp-\mu_{CDCL}'-bound-decreasing:
  assumes
    cdcl_{NOT}^{**} S T and
    inv S and
    atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
    n-d: no-dup (trail S) and
    finite[simp]: finite\ (atms-of-ms\ A)
 shows \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
proof -
  have \{C.\ C \in \#\ clauses_{NOT}\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\}
    \subseteq \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg \ distinct\text{-mset} \ C)\} \ (is \ ?T \subseteq ?S)
    proof (rule Set.subsetI)
      fix C assume C \in ?T
      then have C-T: C \in \# clauses_{NOT} T and t-d: tautology C \vee \neg distinct\text{-mset } C
        by auto
      then have C \notin simple\text{-}clss (atms\text{-}of\text{-}ms A)
        by (auto dest: simple-clssE)
      then show C \in ?S
        \mathbf{using}\ \mathit{C-T}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{clauses-bound}[\mathit{OF}\ \mathit{assms}]\ \mathit{t-d}\ \mathbf{by}\ \mathit{force}
  then have card \{C.\ C \in \#\ clauses_{NOT}\ T \land (tautology\ C \lor \neg\ distinct\text{-mset}\ C)\} \le
    card \{C. \ C \in \# \ clauses_{NOT} \ S \land (tautology \ C \lor \neg \ distinct\text{-mset} \ C)\}
    by (simp add: card-mono)
  then show ?thesis
    unfolding \mu_{CDCL}'-bound-def by auto
qed
end — end of conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt
          CDCL with restarts
16.7
16.7.1
           Definition
locale restart-ops =
 fixes
    cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    restart :: 'st \Rightarrow 'st \Rightarrow bool
begin
inductive cdcl_{NOT}-raw-restart :: 'st \Rightarrow 'st \Rightarrow bool where
```

```
end
locale\ conflict-driven-clause-learning-with-restarts =
  conflict-driven-clause-learning mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    inv backjump-conds propagate-conds learn-cond forget-cond
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss::'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits  and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT}::'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds:: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    learn\text{-}cond\ forget\text{-}cond\ ::\ 'cls \Rightarrow 'st \Rightarrow bool
begin
lemma cdcl_{NOT}-iff-cdcl_{NOT}-raw-restart-no-restarts:
  cdcl_{NOT} \ S \ T \longleftrightarrow restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} \ (\lambda- -. False) S \ T
  (is ?C S T \longleftrightarrow ?R S T)
proof
  \mathbf{fix} \ S \ T
  assume ?CST
  then show ?R \ S \ T by (simp \ add: restart-ops.cdcl_{NOT}-raw-restart.intros(1))
next
  \mathbf{fix} \ S \ T
  assume ?R S T
  then show ?CST
    apply (cases rule: restart-ops.cdcl_{NOT}-raw-restart.cases)
    using \langle ?R \ S \ T \rangle by fast+
qed
lemma cdcl_{NOT}-cdcl_{NOT}-raw-restart:
  cdcl_{NOT} \ S \ T \Longrightarrow restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} restart S \ T
  by (simp add: restart-ops.cdcl<sub>NOT</sub>-raw-restart.intros(1))
end
```

 $cdcl_{NOT} \ S \ T \Longrightarrow cdcl_{NOT}\text{-raw-restart} \ S \ T \mid$ $restart \ S \ T \Longrightarrow cdcl_{NOT}\text{-raw-restart} \ S \ T$

16.7.2 Increasing restarts

To add restarts we needs some assumptions on the predicate (called $cdcl_{NOT}$ here):

• a function f that is strictly monotonic. The first step is actually only used as a restart to

clean the state (e.g. to ensure that the trail is empty). Then we assume that $(1::'a) \leq f$ n for $(1::'a) \leq n$: it means that between two consecutive restarts, at least one step will be done. This is necessary to avoid sequence. like: full – restart – full – ...

- a measure μ : it should decrease under the assumptions bound-inv, whenever a $cdcl_{NOT}$ or a restart is done. A parameter is given to μ : for conflict- driven clause learning, it is an upper-bound of the clauses. We are assuming that such a bound can be found after a restart whenever the invariant holds.
- we also assume that the measure decrease after any $cdcl_{NOT}$ step.
- an invariant on the states $cdcl_{NOT}$ -inv that also holds after restarts.
- it is not required that the measure decrease with respect to restarts, but the measure has to be bound by some function μ -bound taking the same parameter as μ and the initial state of the considered $cdcl_{NOT}$ chain.

```
locale cdcl_{NOT}-increasing-restarts-ops =
  restart-ops cdcl_{NOT} restart for
    restart :: 'st \Rightarrow 'st \Rightarrow bool and
     cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool +
    f :: nat \Rightarrow nat  and
    bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
    \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
    \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat
  assumes
    f: unbounded f and
    f-ge-1:\bigwedge n. n \ge 1 \implies f n \ne 0 and
    bound-inv: \bigwedge A \ S \ T. \ cdcl_{NOT}-inv \ S \Longrightarrow bound-inv \ A \ S \Longrightarrow cdcl_{NOT} \ S \ T \Longrightarrow bound-inv \ A \ T and
     cdcl_{NOT}-measure: \bigwedge A S T. cdcl_{NOT}-inv S \Longrightarrow bound-inv A S \Longrightarrow cdcl_{NOT} S T \Longrightarrow \mu A T < \mu
A S  and
    measure-bound2: \bigwedge A \ T \ U. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T \Longrightarrow cdcl_{NOT}^{**} \ T \ U
        \implies \mu \ A \ U \leq \mu \text{-bound } A \ T \ \text{and}
     measure-bound4: \bigwedge A \ T \ U. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T \Longrightarrow cdcl_{NOT}^{**} \ T \ U
        \implies \mu-bound A \ U \leq \mu-bound A \ T and
     cdcl_{NOT}-restart-inv: \bigwedge A\ U\ V.\ cdcl_{NOT}-inv U\Longrightarrow restart\ U\ V\Longrightarrow bound-inv A\ U\Longrightarrow bound-inv
A V
     exists-bound: \bigwedge R S. cdcl_{NOT}-inv R \Longrightarrow restart R S \Longrightarrow \exists A bound-inv A S and
    cdcl_{NOT}-inv: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-inv T and
    cdcl_{NOT}-inv-restart: \bigwedge S T. cdcl_{NOT}-inv S \Longrightarrow restart S T \Longrightarrow cdcl_{NOT}-inv T
begin
lemma cdcl_{NOT}-cdcl_{NOT}-inv:
  assumes
    (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
    cdcl_{NOT}\text{-}inv\ S
  shows cdcl_{NOT}-inv T
  using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-inv)
lemma cdcl_{NOT}-bound-inv:
  assumes
    (cdcl_{NOT} \widehat{\hspace{1em}} n) S T and
```

```
cdcl_{NOT}-inv S
   bound-inv A S
  shows bound-inv A T
  using assms by (induction n arbitrary: T) (auto intro:bound-inv cdcl_{NOT}-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv:
  assumes
   cdcl_{NOT}^{**} S T and
   cdcl_{NOT}-inv S
 shows cdcl_{NOT}-inv T
  using assms by induction (auto intro: cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-bound-inv:
  assumes
    cdcl_{NOT}^{**} S T and
   bound\text{-}inv\ A\ S\ \mathbf{and}
    cdcl_{NOT}-inv S
  shows bound-inv A T
  using assms by induction (auto intro:bound-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-comp-n-le:
  assumes
   (cdcl_{NOT} \widehat{\hspace{1em}} (Suc\ n))\ S\ T and
   bound\text{-}inv\ A\ S
   cdcl_{NOT}-inv S
 shows \mu A T < \mu A S - n
 using assms
proof (induction n arbitrary: T)
  case \theta
  then show ?case using cdcl_{NOT}-measure by auto
  \mathbf{case}\ (\mathit{Suc}\ n)\ \mathbf{note}\ \mathit{IH} = \mathit{this}(1)[\mathit{OF}\ -\ \mathit{this}(3)\ \mathit{this}(4)]\ \mathbf{and}\ \mathit{S-T} = \mathit{this}(2)\ \mathbf{and}\ \mathit{b-inv} = \mathit{this}(3)\ \mathbf{and}
  obtain U: 'st where S-U: (cdcl_{NOT} \cap (Suc\ n)) S U and U-T: cdcl_{NOT} U T using S-T by auto
  then have \mu A U < \mu A S - n using IH[of U] by simp
 moreover
   have bound-inv A U
     using S-U b-inv cdcl_{NOT}-bound-inv c-inv by blast
   then have \mu A T < \mu A U using cdcl_{NOT}-measure [OF - - U-T] S-U c-inv cdcl_{NOT}-cdcl_{NOT}-inv
by auto
  ultimately show ?case by linarith
qed
lemma wf-cdcl_{NOT}:
  wf \{(T, S). \ cdcl_{NOT} \ S \ T \land \ cdcl_{NOT}\text{-}inv \ S \land \ bound\text{-}inv \ A \ S\} \ (\textbf{is} \ wf \ ?A)
 apply (rule wfP-if-measure2[of - - \mu A])
 using cdcl_{NOT}-comp-n-le[of \theta - - A] by auto
lemma rtranclp-cdcl_{NOT}-measure:
  assumes
    cdcl_{NOT}^{**} S T and
   bound-inv A S and
   cdcl_{NOT}-inv S
  shows \mu A T \leq \mu A S
  \mathbf{using}\ \mathit{assms}
```

```
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by auto
next
  case (step T U) note IH = this(3)[OF\ this(4)\ this(5)] and st = this(1) and cdcl_{NOT} = this(2)
and
   b-inv = this(4) and c-inv = this(5)
 have bound-inv A T
   by (meson\ cdcl_{NOT}\text{-}bound\text{-}inv\ rtranclp-}imp\text{-}relpowp\ st\ step.prems)
 moreover have cdcl_{NOT}-inv T
   using c-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv st by blast
 ultimately have \mu A U < \mu A T using cdcl_{NOT}-measure [OF - - cdcl_{NOT}] by auto
 then show ?case using IH by linarith
lemma cdcl_{NOT}-comp-bounded:
 assumes
   bound-inv A S and cdcl_{NOT}-inv S and m \geq 1 + \mu A S
 shows \neg(cdcl_{NOT} \frown m) \ S \ T
 using assms cdcl_{NOT}-comp-n-le[of m-1 S T A] by fastforce
    • f n < m ensures that at least one step has been done.
inductive cdcl_{NOT}-restart where
restart-step: (cdcl_{NOT} \widehat{\ } m) \ S \ T \Longrightarrow m \ge f \ n \Longrightarrow restart \ T \ U
  \implies cdcl_{NOT}\text{-}restart\ (S,\ n)\ (U,\ Suc\ n)\ |
restart-full: full1 cdcl_{NOT} S T \Longrightarrow cdcl_{NOT}-restart (S, n) (T, Suc n)
lemmas cdcl_{NOT}-with-restart-induct = cdcl_{NOT}-restart.induct[split-format(complete),
  OF\ cdcl_{NOT}-increasing-restarts-ops-axioms]
lemma cdcl_{NOT}-restart-cdcl_{NOT}-raw-restart:
  cdcl_{NOT}-restart S \ T \Longrightarrow cdcl_{NOT}-raw-restart** (fst S) (fst T)
\mathbf{proof}\ (induction\ rule:\ cdcl_{NOT}\text{-}restart.induct)
 case (restart-step m \ S \ T \ n \ U)
 then have cdcl_{NOT}^{**} S T by (meson\ relpowp-imp-rtranclp)
 then have cdcl_{NOT}-raw-restart** S T using cdcl_{NOT}-raw-restart.intros(1)
   rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart] by blast
 moreover have cdcl_{NOT}-raw-restart T U
   using \langle restart \ T \ U \rangle \ cdcl_{NOT}-raw-restart.intros(2) by blast
 ultimately show ?case by auto
next
  case (restart-full\ S\ T)
 then have cdcl_{NOT}^{**} S T unfolding full1-def by auto
 then show ?case using cdcl_{NOT}-raw-restart.intros(1)
   rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-raw-restart]\ \mathbf{by}\ auto
qed
lemma cdcl_{NOT}-with-restart-bound-inv:
 assumes
   cdcl_{NOT}-restart S T and
   bound-inv A (fst S) and
   cdcl_{NOT}-inv (fst S)
 shows bound-inv A (fst T)
  using assms apply (induction rule: cdcl_{NOT}-restart.induct)
```

```
prefer 2 apply (metis rtranclp-unfold fstI full1-def rtranclp-cdcl<sub>NOT</sub>-bound-inv)
  by (metis\ cdcl_{NOT}-bound-inv\ cdcl_{NOT}-cdcl_{NOT}-inv\ cdcl_{NOT}-restart-inv\ fst-conv)
lemma cdcl_{NOT}-with-restart-cdcl_{NOT}-inv:
  assumes
    cdcl_{NOT}-restart S T and
    cdcl_{NOT}-inv (fst S)
  shows cdcl_{NOT}-inv (fst \ T)
  using assms apply induction
    apply (metis cdcl_{NOT}-cdcl_{NOT}-inv cdcl_{NOT}-inv-restart fst-conv)
  apply (metis fstI full-def full-unfold rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
  done
lemma rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv:
  assumes
    cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S)
  shows cdcl_{NOT}-inv (fst T)
  using assms by induction (auto intro: cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma rtranclp-cdcl_{NOT}-with-restart-bound-inv:
  assumes
    cdcl_{NOT}-restart** S T and
    cdcl_{NOT}-inv (fst S) and
    bound-inv \ A \ (fst \ S)
  shows bound-inv A (fst T)
  using assms apply induction
  apply (simp\ add:\ cdcl_{NOT}-cdcl_{NOT}-inv\ cdcl_{NOT}-with-restart-bound-inv)
  using cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl<sub>NOT</sub>-with-restart-cdcl<sub>NOT</sub>-inv by blast
lemma cdcl_{NOT}-with-restart-increasing-number:
  cdcl_{NOT}-restart S \ T \Longrightarrow snd \ T = 1 + snd \ S
  by (induction rule: cdcl_{NOT}-restart.induct) auto
end
locale cdcl_{NOT}-increasing-restarts =
  cdcl_{NOT}-increasing-restarts-ops restart cdcl_{NOT} f bound-inv \mu cdcl_{NOT}-inv \mu-bound +
  dpll-state mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'cls \Rightarrow 'st \Rightarrow 'st and
```

```
f :: nat \Rightarrow nat and
   restart :: 'st \Rightarrow 'st \Rightarrow bool and
   bound-inv :: 'bound \Rightarrow 'st \Rightarrow bool and
   \mu :: 'bound \Rightarrow 'st \Rightarrow nat and
   cdcl_{NOT} :: 'st \Rightarrow 'st \Rightarrow bool and
    cdcl_{NOT}-inv :: 'st \Rightarrow bool and
   \mu-bound :: 'bound \Rightarrow 'st \Rightarrow nat +
  assumes
    measure-bound: \bigwedge A \ T \ V \ n. \ cdcl_{NOT}-inv T \Longrightarrow bound-inv A \ T
      \implies cdcl_{NOT}-restart (T, n) (V, Suc n) \implies \mu \ A \ V \leq \mu-bound A \ T and
   cdcl_{NOT}-raw-restart-\mu-bound:
      cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
         \Rightarrow \mu-bound A \ V \leq \mu-bound A \ T
begin
lemma rtranclp-cdcl_{NOT}-raw-restart-\mu-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu-bound A \ V \leq \mu-bound A \ T
  apply (induction rule: rtranclp-induct2)
  apply simp
  by (metis cdcl_{NOT}-raw-restart-\mu-bound dual-order.trans fst-conv
   rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv)
lemma cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
   \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (cases rule: cdcl_{NOT}-restart.cases)
     apply simp
   using measure-bound relpowp-imp-rtrancly apply fastforce
  by (metis full-def full-unfold measure-bound2 prod.inject)
lemma rtranclp-cdcl_{NOT}-raw-restart-measure-bound:
  cdcl_{NOT}-restart** (T, a) (V, b) \Longrightarrow cdcl_{NOT}-inv T \Longrightarrow bound-inv A T
    \implies \mu \ A \ V \leq \mu \text{-bound } A \ T
  apply (induction rule: rtranclp-induct2)
   apply (simp add: measure-bound2)
  by (metis dual-order.trans fst-conv measure-bound2 r-into-rtranclp rtranclp.rtrancl-refl
   rtranclp-cdcl_{NOT}-with-restart-bound-inv rtranclp-cdcl_{NOT}-with-restart-cdcl_{NOT}-inv
   rtranclp-cdcl_{NOT}-raw-restart-\mu-bound)
lemma wf-cdcl_{NOT}-restart:
  wf \{(T, S). \ cdcl_{NOT}\text{-restart} \ S \ T \land cdcl_{NOT}\text{-inv} \ (fst \ S)\}\ (\textbf{is} \ wf \ ?A)
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain g where
   g: \bigwedge i. \ cdcl_{NOT}-restart (g\ i)\ (g\ (Suc\ i)) and
   cdcl_{NOT}-inv-g: \bigwedge i. cdcl_{NOT}-inv (fst (g i))
   unfolding wf-iff-no-infinite-down-chain by fast
  have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
   apply (induct-tac i)
      apply simp
      by (metis Suc-eq-plus1-left add.commute add.left-commute
        cdcl_{NOT}-with-restart-increasing-number g)
  then have snd-g-\theta: \bigwedge i. i > 0 \Longrightarrow snd(g i) = i + snd(g \theta)
```

```
by blast
have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
 using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-q
   not-bounded-nat-exists-larger not-le le-iff-add)
{ fix i
 have H: \bigwedge T Ta m. (cdcl_{NOT} \curvearrowright m) T Ta \Longrightarrow no-step cdcl_{NOT} T \Longrightarrow m = 0
   apply (case-tac m) by simp (meson relpowp-E2)
 have \exists T m. (cdcl_{NOT} \cap m) (fst (g i)) T \land m \ge f (snd (g i))
   using g[of\ i] apply (cases rule: cdcl_{NOT}-restart.cases)
     apply auto
   using g[of Suc \ i] \ f-ge-1 apply (cases rule: cdcl_{NOT}-restart.cases)
   apply (auto simp add: full1-def full-def dest: H dest: tranclpD)
   using H Suc-leI leD by blast
} note H = this
obtain A where bound-inv A (fst (g 1))
 using g[of \ 0] \ cdcl_{NOT}-inv-g[of \ 0] apply (cases rule: cdcl_{NOT}-restart.cases)
   apply (metis One-nat-def cdcl_{NOT}-inv exists-bound fst-conv relpowp-imp-rtrancly
     rtranclp-induct)
   using H[of 1] unfolding full1-def by (metis One-nat-def Suc-eq-plus1 diff-is-0-eq' diff-zero
     f-ge-1 fst-conv le-add2 relpowp-E2 snd-conv)
let ?j = \mu-bound A (fst (g 1)) + 1
obtain j where
 j: f (snd (g j)) > ?j and j > 1
 using unbounded-f-g not-bounded-nat-exists-larger by blast
{
  fix i j
  have cdcl_{NOT}-with-restart: j \geq i \implies cdcl_{NOT}-restart** (g \ i) \ (g \ j)
    apply (induction j)
      apply simp
    by (metis g le-Suc-eq rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-reft)
\} note cdcl_{NOT}-restart = this
have cdcl_{NOT}-inv (fst (g (Suc \theta)))
 by (simp \ add: \ cdcl_{NOT} - inv-g)
have cdcl_{NOT}-restart** (fst (g\ 1), snd\ (g\ 1)) (fst (g\ j), snd\ (g\ j))
 using \langle j > 1 \rangle by (simp\ add:\ cdcl_{NOT}\text{-}restart)
have \mu A (fst (g j)) \leq \mu-bound A (fst (g 1))
 \mathbf{apply} \ (\mathit{rule} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{raw-restart-measure-bound})
 using \langle cdcl_{NOT}\text{-}restart^{**} \ (fst \ (g \ 1), \ snd \ (g \ 1)) \ (fst \ (g \ j), \ snd \ (g \ j)) \rangle apply blast
     apply (simp\ add:\ cdcl_{NOT}-inv-g)
     using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle apply simp
 done
then have \mu \ A \ (fst \ (g \ j)) \leq ?j
 by auto
have inv: bound-inv A (fst (g j))
 using \langle bound\text{-}inv \ A \ (fst \ (g \ 1)) \rangle \langle cdcl_{NOT}\text{-}inv \ (fst \ (g \ (Suc \ \theta))) \rangle
 \langle cdcl_{NOT}\text{-}restart^{**} \ (fst \ (g \ 1), \ snd \ (g \ 1)) \ (fst \ (g \ j), \ snd \ (g \ j)) \rangle
  rtranclp-cdcl_{NOT}-with-restart-bound-inv by auto
obtain T m where
  cdcl_{NOT}-m: (cdcl_{NOT} \curvearrowright m) (fst (g j)) T and
 f-m: f (snd (g j)) <math>\leq m
 using H[of j] by blast
have ?j < m
 using f-m j Nat.le-trans by linarith
```

```
then show False
   using \langle \mu \ A \ (fst \ (g \ j)) \leq \mu \text{-bound} \ A \ (fst \ (g \ 1)) \rangle
   cdcl_{NOT}-comp-bounded[OF inv cdcl_{NOT}-inv-g, of ] cdcl_{NOT}-inv-g cdcl_{NOT}-m
   \langle ?j < m \rangle by auto
qed
lemma cdcl_{NOT}-restart-steps-bigger-than-bound:
 assumes
   cdcl_{NOT}-restart S T and
   bound-inv A (fst S) and
   cdcl_{NOT}-inv (fst S) and
   f (snd S) > \mu-bound A (fst S)
 shows full1 cdcl_{NOT} (fst S) (fst T)
 using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
 case restart-full
 then show ?case by auto
  case (restart-step m S T n U) note st = this(1) and f = this(2) and bound-inv = this(4) and
   cdcl_{NOT}-inv = this(5) and \mu = this(6)
  then obtain m' where m: m = Suc \ m' by (cases \ m) auto
 have \mu A S - m' = 0
   using f bound-inv cdcl_{NOT}-inv \mu m rtranclp-cdcl_{NOT}-raw-restart-measure-bound by fastforce
 then have False using cdcl_{NOT}-comp-n-le[of m' S T A] restart-step unfolding m by simp
 then show ?case by fast
qed
lemma rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl<sub>NOT</sub>:
 assumes
   inv: cdcl_{NOT}-inv S and
   binv: bound-inv A S
 shows (\lambda S \ T. \ cdcl_{NOT} \ S \ T \land \ cdcl_{NOT}\text{-}inv \ S \land \ bound-inv \ A \ S)^{**} \ S \ T \longleftrightarrow \ cdcl_{NOT}^{**} \ S \ T
   (is ?A^{**} S T \longleftrightarrow ?B^{**} S T)
 apply (rule iffI)
   using rtranclp-mono[of ?A ?B] apply blast
 apply (induction rule: rtranclp-induct)
   using inv binv apply simp
 by (metis (mono-tags, lifting) binv inv rtranclp.simps rtranclp-cdcl_{NOT}-bound-inv
   rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv)
lemma no-step-cdcl_{NOT}-restart-no-step-cdcl_{NOT}:
 assumes
   n-s: no-step cdcl_{NOT}-restart S and
   inv: cdcl_{NOT}-inv (fst S) and
   binv: bound-inv A (fst S)
 shows no-step cdcl_{NOT} (fst S)
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain T where T: cdcl_{NOT} (fst S) T
 then obtain U where U: full (\lambda S T. cdcl_{NOT} S T \wedge cdcl_{NOT}-inv S \wedge bound-inv A S) T U
    using wf-exists-normal-form-full[OF wf-cdcl<sub>NOT</sub>, of A T] by auto
 moreover have inv-T: cdcl_{NOT}-inv T
   using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle \ cdcl_{NOT}-inv inv by blast
 moreover have b-inv-T: bound-inv A T
```

```
using \langle cdcl_{NOT} \ (fst \ S) \ T \rangle binv bound-inv inv by blast ultimately have full cdcl_{NOT} \ T \ U using rtranclp-cdcl_{NOT}-with-inv-inv-rtranclp-cdcl_{NOT} rtranclp-cdcl_{NOT}-bound-inv rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv unfolding full-def by blast then have full1 cdcl_{NOT} \ (fst \ S) \ U using T \ full-fullI \ by metis then show False by (metis \ n-s \ prod.collapse \ restart-full) qed end
```

16.8 Merging backjump and learning

```
locale \ cdcl_{NOT}-merge-bj-learn-ops =
  decide-ops mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ +
  forget-ops mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT} forget-cond +
  propagate-ops mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'cls \Rightarrow 'st \Rightarrow bool +
  fixes backjump-l-cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
begin
inductive backjump-l where
backjump-l: trail S = F' \otimes Marked K () # F
   \implies no\text{-}dup \ (trail \ S)
   \implies T \sim prepend-trail \ (Propagated \ L \ ()) \ (reduce-trail-to_{NOT} \ F \ (add-cls_{NOT} \ C'' \ S))
   \implies C \in \# clauses_{NOT} S
   \implies trail \ S \models as \ CNot \ C
   \implies undefined\text{-}lit \ F \ L
   \implies atm-of L \in atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of '(lits-of-l (trail S))
   \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
   \implies mset\text{-}cls\ C^{\prime\prime} =\ C^{\prime} +\ \{\#L\#\}
   \implies F \models as \ CNot \ C'
   \implies backjump-l\text{-}cond \ C\ C'\ L\ S\ T
   \implies backjump-l \ S \ T
```

```
Avoid (meaningless) simplification:
\operatorname{declare}\ reduce-trail-to_{NOT}-length-ne[simp\ del]\ Set.Un-iff[simp\ del]\ Set.insert-iff[simp\ del]
inductive-cases backjump-lE: backjump-l S T
thm backjump-lE
\operatorname{declare}\ reduce-trail-to_{NOT}-length-ne[simp]\ Set. Un-iff[simp]\ Set. insert-iff[simp]
inductive cdcl_{NOT}-merged-bj-learn :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>: decide_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>: propagate_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
cdcl_{NOT}-merged-bj-learn-backjump-l: backjump-l SS' \Longrightarrow cdcl_{NOT}-merged-bj-learn SS'
cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub>: forget_{NOT} S S' \Longrightarrow cdcl_{NOT}-merged-bj-learn S S'
lemma cdcl_{NOT}-merged-bj-learn-no-dup-inv:
  cdcl_{NOT}-merged-bj-learn S \ T \Longrightarrow no-dup (trail \ S) \Longrightarrow no-dup (trail \ T)
  apply (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
      using defined-lit-map apply fastforce
    using defined-lit-map apply fastforce
   apply (force simp: defined-lit-map elim!: backjump-lE)[]
  using forget_{NOT}.simps apply auto[1]
  done
end
locale\ cdcl_{NOT}-merge-bj-learn-proxy =
  cdcl_{NOT}-merge-bj-learn-ops mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ propagate-conds
    \lambda C~C'~L'~S~T.~backjump\text{-}l\text{-}cond~C~C'~L'~S~T
    \land distinct\text{-}mset \ (C' + \{\#L'\#\}) \land \neg tautology \ (C' + \{\#L'\#\})
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v clauses and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits  and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT}::'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds::('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    forget\text{-}cond :: 'cls \Rightarrow 'st \Rightarrow bool \text{ and }
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool +
  _{
m fixes}
    inv :: 'st \Rightarrow bool
  assumes
     bj-merge-can-jump:
     \bigwedge S \ C \ F' \ K \ F \ L.
       inv S
       \implies trail \ S = F' @ Marked \ K \ () \# F
       \implies C \in \# clauses_{NOT} S
```

```
\implies trail \ S \models as \ CNot \ C
                 \implies undefined\text{-}lit \ F \ L
                 \implies atm-of L \in atms-of-mm (clauses<sub>NOT</sub> S) \cup atm-of '(lits-of-l (F' @ Marked K () # F))
                \implies clauses_{NOT} S \models pm C' + \{\#L\#\}
                \implies F \models as \ CNot \ C'
                 \implies \neg no\text{-step backjump-l } S and
            cdcl-merged-inv: \bigwedge S T. cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow inv T
begin
abbreviation backjump-conds:: v clause \Rightarrow v
backjump\text{-}conds \equiv \lambda C \ C' \ L' \ S \ T. \ distinct\text{-}mset \ (C' + \{\#L'\#\}) \land \neg tautology \ (C' + \{\#L'\#\})
Without additional knowledge on backjump-l-cond, it is impossible to have the same invariant.
sublocale dpll-with-backjumping-ops mset-cls insert-cls remove-lit
          mset-clss union-clss in-clss insert-clss remove-from-clss
          trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}\ inv
          backjump\text{-}conds\ propagate\text{-}conds
proof (unfold-locales, goal-cases)
     case 1
     \{ \text{ fix } S S' \}
         assume bj: backjump-l S S' and no-dup (trail S)
         then obtain F' K F L C' C D where
              S': S' \sim prepend-trail (Propagated L ()) (reduce-trail-to_{NOT} F (add-cls_{NOT} D S))
                   and
              tr-S: trail S = F' @ Marked K () # F and
              C: C \in \# clauses_{NOT} S and
              tr-S-C: trail S \models as CNot C and
              undef-L: undefined-lit F L and
              atm-L:
                atm\text{-}of\ L \in insert\ (atm\text{-}of\ K)\ (atms\text{-}of\text{-}mm\ (clauses_{NOT}\ S) \cup atm\text{-}of\ `(lits\text{-}of\text{-}l\ F' \cup lits\text{-}of\text{-}l\ F))
              cls-S-C': clauses_{NOT} S \models pm C' + {\#L\#} and
              F-C': F \models as \ CNot \ C' and
              dist: distinct-mset (C' + \{\#L\#\}) and
              not-tauto: \neg tautology (C' + \{\#L\#\}) and
              cond: backjump-l-cond C C' L S S'
              mset-cls D = C' + \{\#L\#\}
              by (elim backjump-lE) metis
         interpret backjumping-ops mset-cls insert-cls remove-lit
          mset-clss union-clss in-clss insert-clss remove-from-clss
          trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
          backjump-conds
              by unfold-locales
         have \exists T. backjump S T
              apply rule
              apply (rule backjump.intros)
                                     using tr-S apply simp
                                 apply (rule state-eq_{NOT}-ref)
                               using C apply simp
                             using tr-S-C apply simp
                        using undef-L apply simp
                     using atm-L tr-S apply simp
                   using cls-S-C' apply simp
                 using F-C' apply simp
```

```
using dist not-tauto cond apply simp
       done
    } note H = this(1)
  then show ?case using 1 bj-merge-can-jump by meson
qed
end
locale \ cdcl_{NOT}-merge-bj-learn-proxy2 =
  cdcl_{NOT}-merge-bj-learn-proxy mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT} remove-cls_{NOT}
    propagate-conds forget-cond backjump-l-cond inv
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ and
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ {\bf and}
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits  and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'cls \Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'cls \Rightarrow 'st \Rightarrow bool \text{ and }
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    inv :: \ 'st \Rightarrow \ bool
begin
sublocale conflict-driven-clause-learning-ops mset-cls insert-cls remove-lit
     mset-clss union-clss in-clss insert-clss remove-from-clss
     trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
     inv backjump-conds propagate-conds
     \lambda C -. distinct-mset (mset-cls C) \wedge \neg tautology (mset-cls C)
     forget-cond
  by unfold-locales
end
locale \ cdcl_{NOT}-merge-bj-learn =
  cdcl<sub>NOT</sub>-merge-bj-learn-proxy2 mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    propagate\text{-}conds\ forget\text{-}cond\ backjump\text{-}l\text{-}cond\ inv
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
```

```
insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT}:: 'cls \Rightarrow 'st \Rightarrow 'st \text{ and }
    backjump-l-cond :: 'v clause \Rightarrow 'v clause \Rightarrow 'v literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool and
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    forget\text{-}cond :: 'cls \Rightarrow 'st \Rightarrow bool \text{ and }
    inv :: 'st \Rightarrow bool +
  assumes
     dpll-merge-bj-inv: \bigwedge S T. dpll-bj S T \Longrightarrow inv S \Longrightarrow inv T and
     learn-inv: \bigwedge S \ T. \ learn \ S \ T \Longrightarrow inv \ S \Longrightarrow inv \ T
begin
sublocale
   conflict-driven-clause-learning mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
     inv backjump-conds propagate-conds
     \lambda C -. distinct-mset (mset-cls C) \wedge \neg tautology (mset-cls C)
    forget-cond
  apply unfold-locales
  using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> cdcl-merged-inv learn-inv
  by (auto simp add: cdcl_{NOT}.simps dpll-merge-bj-inv)
lemma backjump-l-learn-backjump:
  assumes bt: backjump-l S T and inv: inv S and n-d: no-dup (trail S)
 shows \exists C' L D. learn S (add-cls_{NOT} D S)
    \land mset\text{-}cls \ D = (C' + \{\#L\#\})
    \land backjump (add-cls_{NOT} D S) T
    \land atms-of (C' + \{\#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l (trail S))
proof -
  obtain C F' K F L l C' D where
     tr-S: trail S = F' @ Marked K () # F and
     T: T \sim prepend-trail (Propagated L l) (reduce-trail-to_{NOT} F (add-cls_{NOT} D S)) and
     C-cls-S: C \in \# clauses_{NOT} S and
     tr-S-CNot-C: trail\ S \models as\ CNot\ C and
     undef: undefined-lit F L and
     \mathit{atm-L}: \mathit{atm-of}\ L \in \mathit{atms-of-mm}\ (\mathit{clauses}_{NOT}\ S) \cup \mathit{atm-of}\ ``(\mathit{lits-of-l}\ (\mathit{trail}\ S)) \ \ \mathbf{and}
     clss-C: clauses_{NOT} S \models pm mset-cls D  and
     D: mset-cls \ D = C' + \{\#L\#\}
     F \models as \ CNot \ C' and
     distinct: distinct-mset (mset-cls D) and
     not-tauto: \neg tautology (mset-cls D)
     using bt inv by (elim backjump-lE) simp
  have atms-C': atms-of C' \subseteq atm-of `(lits-of-l F)
     by (metis\ D(2)\ atms-of-def\ image-subset I\ true-annots-CNot-all-atms-defined)
  then have atms-of (C' + \{\#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of ' (lits-of-l \ (trail \ S))
     using atm-L tr-S by auto
  moreover have learn: learn S (add-cls<sub>NOT</sub> D S)
     apply (rule learn.intros)
        apply (rule\ clss-C)
```

```
using atms-C' atm-L D apply (fastforce simp add: tr-S in-plus-implies-atm-of-on-atms-of-ms)
    apply standard
     apply (rule distinct)
     apply (rule not-tauto)
     apply simp
    done
  moreover have bj: backjump (add-cls<sub>NOT</sub> D S) T
    \mathbf{apply} \ (\mathit{rule \ backjump.intros})
    using \langle F \models as \ CNot \ C' \rangle C-cls-S tr-S-CNot-C undef T distinct not-tauto n-d D
    by (auto simp: tr-S state-eq_{NOT}-def simp del: state-simp_{NOT})
  ultimately show ?thesis using D by blast
qed
lemma cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}:
  cdcl_{NOT}-merged-bj-learn S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}^{++} S T
proof (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
  case (cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> T)
  then have cdcl_{NOT} S T
   using bj-decide_{NOT} cdcl_{NOT}.simps by fastforce
  then show ?case by auto
next
 case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
 then have cdcl_{NOT} S T
   using bj-propagate<sub>NOT</sub> cdcl_{NOT}.simps by fastforce
  then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-forget_{NOT} T)
  then have cdcl_{NOT} S T
    using c-forget<sub>NOT</sub> by blast
  then show ?case by auto
next
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bt = this(1) and inv = this(2) and
  obtain C':: 'v literal multiset and L:: 'v literal and D:: 'cls where
    f3: learn S (add-cls_{NOT} D S) \wedge
      backjump \ (add\text{-}cls_{NOT} \ D \ S) \ T \ \land
      atms-of\ (C' + \{\#L\#\}) \subseteq atms-of-mm\ (clauses_{NOT}\ S) \cup atm-of\ `lits-of-l\ (trail\ S)\ and
    D: mset-cls \ D = C' + \{\#L\#\}
    using n-d backjump-l-learn-backjump[OF bt inv] by blast
  then have f_4: cdcl_{NOT} S (add-cls_{NOT} D S)
    using n-d c-learn by blast
  have cdcl_{NOT} (add-cls_{NOT} D S) T
    using f3 n-d bj-backjump c-dpll-bj by blast
  then show ?case
    using f4 by (meson tranclp.r-into-trancl tranclp.trancl-into-trancl)
qed
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv:
  cdcl_{NOT}-merged-bj-learn** S \rightarrow inv S \implies no-dup (trail S) \implies cdcl_{NOT}** S \rightarrow inv T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
 case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)[OF\ this(4-)] and
   inv = this(4) and n-d = this(5)
```

```
have cdcl_{NOT}^{**} T U
      using cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}[OF\ cdcl_{NOT}]\ IH
      rtranclp-cdcl_{NOT}-no-dup inv n-d by auto
   then have cdcl_{NOT}^{**} S U using IH by fastforce
   moreover have inv U using n-d IH \langle cdcl_{NOT}^{**} T U \rangle rtranclp-cdcl<sub>NOT</sub>-inv by blast
   ultimately show ?case using st by fast
qed
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}:
   cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow cdcl_{NOT}** S T
   using rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-inv:
   cdcl_{NOT}-merged-bj-learn** S T \Longrightarrow inv S \Longrightarrow no-dup (trail S) \Longrightarrow inv T
   using rtranclp-cdcl_{NOT}-merqed-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv by blast
definition \mu_C':: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_C' A T \equiv \mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
definition \mu_{CDCL}'-merged :: 'v literal multiset set \Rightarrow 'st \Rightarrow nat where
\mu_{CDCL}'-merged A T \equiv
  ((2+card\ (atms-of-ms\ A)) \cap (1+card\ (atms-of-ms\ A)) - \mu_C'\ A\ T) * 2 + card\ (set-mset\ (clauses_{NOT}) + card\ (set-mset) + card\ (set-mset) + card\ (set-mset) + card\ (set-mset) + car
T))
lemma cdcl_{NOT}-decreasing-measure':
   assumes
      cdcl_{NOT}-merged-bj-learn S T and
      inv: inv S and
      atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
      atm-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
      n-d: no-dup (trail S) and
      fin-A: finite A
   shows \mu_{CDCL}'-merged A T < \mu_{CDCL}'-merged A S
   using assms(1)
proof induction
   case (cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> T)
   have clauses_{NOT} S = clauses_{NOT} T
      using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub>.hyps by auto
   moreover have
      (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
           -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
        <(2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
           -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
      apply (rule dpll-bj-trail-mes-decreasing-prop)
      using cdcl_{NOT}-merged-bj-learn-decide_{NOT} fin-A atm-clss atm-trail n-d inv
      by (simp-all\ add:\ bj-decide_{NOT}\ cdcl_{NOT}-merged-bj-learn-decide_{NOT}.hyps)
   ultimately show ?case
      unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
   case (cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub> T)
  have clauses_{NOT} S = clauses_{NOT} T
      using cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps
      by (simp\ add:\ bj\text{-}propagate_{NOT}\ inv\ dpll\text{-}bj\text{-}clauses)
   moreover have
      (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
```

```
-\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
    <(2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
   apply (rule dpll-bj-trail-mes-decreasing-prop)
   using inv n-d atm-clss atm-trail fin-A by (simp-all add: bj-propagate<sub>NOT</sub>
     cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>.hyps)
 ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
 case (cdcl_{NOT}-merged-bj-learn-forget_{NOT} T)
 have card (set-mset (clauses_{NOT} T)) < card (set-mset (clauses_{NOT} S))
   using \langle forget_{NOT} \ S \ T \rangle by (metis card-Diff1-less clauses-remove-cls_{NOT} finite-set-mset
     forget_{NOT}.cases in-clss-mset-clss linear set-mset-minus-replicate-mset(1) state-eq_{NOT}.def)
 moreover
   have trail\ S = trail\ T
     using \langle forget_{NOT} \ S \ T \rangle by (auto elim: forget_{NOT} E)
   then have
     (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
      -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T)
     = (2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
       -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S)
     by auto
 ultimately show ?case
   unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by simp
next
 case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj-l = this(1)
 obtain C' L D where
   learn: learn S (add-cls<sub>NOT</sub> D S) and
   bj: backjump (add-cls<sub>NOT</sub> D S) T and
   atms-C: atms-of (C' + \{\#L\#\}) \subseteq atms-of-mm (clauses_{NOT} S) \cup atm-of `(lits-of-l (trail S))  and
   D: mset-cls \ D = C' + \{\#L\#\}
   using bj-l inv backjump-l-learn-backjump n-d atm-clss atm-trail by meson
 have card-T-S: card (set-mset (clauses_{NOT} T)) <math>\leq 1 + card (set-mset (clauses_{NOT} S))
   using bj-l inv by (force elim!: backjump-lE simp: card-insert-if)
   ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   <((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A))
         (trail-weight\ (add-cls_{NOT}\ D\ S)))
   apply (rule dpll-bj-trail-mes-decreasing-prop)
       using bj bj-backjump apply blast
      using cdcl_{NOT}. c-learn cdcl_{NOT}-inv inv learn apply blast
      using atms-C atm-clss atm-trail D apply (simp add: n-d) apply fast
     using atm-trail n-d apply simp
    apply (simp add: n-d)
   using fin-A apply simp
   done
 then have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight T))
   < ((2 + card (atms-of-ms A)) ^ (1 + card (atms-of-ms A))
     -\mu_C (1 + card (atms-of-ms A)) (2 + card (atms-of-ms A)) (trail-weight S))
   using n-d by auto
 then show ?case
   using card-T-S unfolding \mu_{CDCL}'-merged-def \mu_{C}'-def by linarith
```

```
lemma wf-cdcl_{NOT}-merged-bj-learn:
  assumes
   fin-A: finite A
  shows wf \{ (T, S).
   (inv\ S \land atms-of-mm\ (clauses_{NOT}\ S) \subseteq atms-of-ms\ A \land atm-of\ `itis-of-l\ (trail\ S) \subseteq atms-of-ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T
  apply (rule wfP-if-measure[of - - \mu_{CDCL}'-merged A])
  using cdcl_{NOT}-decreasing-measure' fin-A by simp
lemma tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp:
  assumes
    cdcl_{NOT}-merged-bj-learn^{++} S T and
    inv: inv S and
   atm-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
  shows (T, S) \in \{(T, S).
   (inv\ S\ \land\ atms-of-mm\ (clauses_{NOT}\ S)\subseteq atms-of-ms\ A\ \land\ atm-of\ ``lits-of-l\ (trail\ S)\subseteq atms-of-ms\ A
   \land no-dup (trail S))
   \land cdcl_{NOT}-merged-bj-learn S T \}^+ (is - \in ?P^+)
  using assms(1)
proof (induction rule: tranclp-induct)
  case base
  then show ?case using n-d atm-clss atm-trail inv by auto
  case (step T U) note st = this(1) and cdcl_{NOT} = this(2) and IH = this(3)
  have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using st cdcl_{NOT} inv n-d atm-clss atm-trail inv by auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st cdcl_{NOT} n-d atm-clss atm-trail inv by auto
  moreover have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
   \mathbf{using} \ \mathit{rtranclp-cdcl}_{NOT}\mathit{-trail-clauses-bound}[\mathit{OF} \ \langle \mathit{cdcl}_{NOT}^{***} \ S \ \mathit{T} \rangle \ \mathit{inv} \ \mathit{n-d} \ \mathit{atm-clss} \ \mathit{atm-trail}]
  moreover have atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ T))\subseteq atms\text{-}of\text{-}ms\ A
   using rtranclp-cdcl_{NOT}-trail-clauses-bound[OF \langle cdcl_{NOT}^{***} \mid S \mid T \rangle inv n-d atm-clss atm-trail]
   by fast
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \ \langle cdcl_{NOT}^{**} \ S \ T \rangle \ inv \ n-d] by fast
  ultimately have (U, T) \in P
   using cdcl_{NOT} by auto
  then show ?case using IH by (simp add: trancl-into-trancl2)
lemma wf-tranclp-cdcl_{NOT}-merged-bj-learn:
  assumes finite A
  shows wf \{(T, S).
   (inv\ S\ \land\ atms-of-mm\ (clauses_{NOT}\ S)\subseteq atms-of-ms\ A\ \land\ atm-of\ ``lits-of-l\ (trail\ S)\subseteq atms-of-ms\ A
   \land no\text{-}dup \ (trail \ S))
   \land cdcl_{NOT}-merged-bj-learn<sup>++</sup> S T}
```

```
apply (rule wf-subset)
  apply (rule wf-trancl[OF wf-cdcl_{NOT}-merged-bj-learn])
  using assms apply simp
  using tranclp-cdcl_{NOT}-cdcl_{NOT}-tranclp[OF - - - - - \langle finite A \rangle] by auto
lemma backjump-no-step-backjump-l:
  backjump \ S \ T \Longrightarrow inv \ S \Longrightarrow \neg no\text{-step backjump-l } S
 \mathbf{apply} \ (\mathit{elim} \ \mathit{backjumpE})
 apply (rule bj-merge-can-jump)
   apply auto[7]
 by blast
lemma cdcl_{NOT}-merged-bj-learn-final-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   n-s: no-step cdcl_{NOT}-merged-bj-learn S and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-marked-decomposition \ (trail \ S))
 shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (trail S \models asm\ clauses_{NOT}\ S \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ S)))
proof -
 let ?N = set\text{-}mset (clauses_{NOT} S)
 let ?M = trail S
 consider
     (sat) satisfiable ?N and ?M \models as ?N
     (sat') satisfiable ?N and \neg ?M \modelsas ?N
    (unsat) unsatisfiable ?N
   by auto
  then show ?thesis
   proof cases
     case sat' note sat = this(1) and M = this(2)
     obtain C where C \in ?N and \neg ?M \models a C using M unfolding true-annots-def by auto
     obtain I :: 'v literal set where
       I \models s ?N  and
       cons: consistent-interp\ I and
       tot: total-over-m I ?N and
       atm-I-N: atm-of 'I \subseteq atms-of-ms ?N
       using sat unfolding satisfiable-def-min by auto
     let ?I = I \cup \{P | P. P \in lits\text{-}of\text{-}l ?M \land atm\text{-}of P \notin atm\text{-}of `I'\}
     let ?O = \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
     have cons-I': consistent-interp ?I
       using cons using (no-dup ?M) unfolding consistent-interp-def
       by (auto simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def
         dest!: no-dup-cannot-not-lit-and-uminus)
     have tot-I': total-over-m ?I (?N \cup unmark-l ?M)
       using tot atms-of-s-def unfolding total-over-m-def total-over-set-def
       by (fastforce simp: image-iff)
     have \{P \mid P. P \in lits\text{-}of\text{-}l ? M \land atm\text{-}of P \notin atm\text{-}of `I\} \models s ? O
       using \langle I \models s ? N \rangle atm-I-N by (auto simp add: atm-of-eq-atm-of true-clss-def lits-of-def)
     then have I'-N: ?I \models s ?N \cup ?O
       using \langle I \models s ?N \rangle true-clss-union-increase by force
```

```
have tot': total-over-m ?I (?N \cup ?O)
 using atm-I-N tot unfolding total-over-m-def total-over-set-def
 by (force simp: image-iff lits-of-def dest!: is-marked-ex-Marked)
have atms-N-M: atms-of-ms ?N \subseteq atm-of ' lits-of-l ?M
 proof (rule ccontr)
   assume ¬ ?thesis
   then obtain l :: 'v where
     l-N: l \in atms-of-ms ?N and
     l\text{-}M: l \notin atm\text{-}of ' lits\text{-}of\text{-}l ?M
     by auto
   have undefined-lit ?M (Pos l)
     using l-M by (metis Marked-Propagated-in-iff-in-lits-of-l
       atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set literal.sel(1))
   have decide_{NOT} S (prepend-trail (Marked (Pos l) ()) S)
     by (metis (undefined-lit ?M (Pos l)) decide<sub>NOT</sub>.intros l-N literal.sel(1)
       state-eq_{NOT}-ref)
   then show False
     using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> n-s by blast
 qed
have ?M \models as CNot C
apply (rule all-variables-defined-not-imply-cnot)
 using atms-N-M \ (C \in ?N) \ (\neg ?M \models a \ C) \ atms-of-atms-of-ms-mono[OF \ (C \in ?N)]
 by (auto dest: atms-of-atms-of-ms-mono)
have \exists l \in set ?M. is\text{-}marked l
 proof (rule ccontr)
   let ?O = \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
   have \vartheta[iff]: \Lambda I. total-over-m I (?N \cup ?O \cup unmark-l ?M)
     \longleftrightarrow total\text{-}over\text{-}m\ I\ (?N \cup unmark\text{-}l\ ?M)
     unfolding total-over-set-def total-over-m-def atms-of-ms-def by blast
   assume ¬ ?thesis
   then have [simp]: \{unmark \ L \mid L. \ is\text{-marked} \ L \land L \in set \ ?M\}
     = \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M \land atm-of\ (lit-of\ L) \notin atms-of-ms\ ?N\}
   then have ?N \cup ?O \models ps \ unmark-l \ ?M
     using all-decomposition-implies-propagated-lits-are-implied [OF decomp] by auto
   then have ?I \models s \ unmark-l \ ?M
     using cons-I' I'-N tot-I' (?I \models s ?N \cup ?O) unfolding \vartheta true-clss-clss-def by blast
   then have lits-of-l?M \subseteq ?I
     unfolding true-clss-def lits-of-def by auto
   then have ?M \models as ?N
     \mathbf{using}\ I'\text{-}N\ \langle C\in\ ?N\rangle\ \langle \neg\ ?M\models a\ C\rangle\ cons\text{-}I'\ atms\text{-}N\text{-}M
     by (meson \langle trail\ S \models as\ CNot\ C \rangle\ consistent-CNot-not\ rev-subsetD\ sup-ge1\ true-annot-def
       true-annots-def true-cls-mono-set-mset-l true-clss-def)
   then show False using M by fast
from List.split-list-first-propE[OF this] obtain K :: 'v \ literal \ and \ d :: unit \ and
  F F' :: ('v, unit, unit) marked-lit list where
 M-K: ?M = F' @ Marked K () # <math>F and
 nm: \forall f \in set \ F'. \ \neg is\text{-}marked \ f
 unfolding is-marked-def by (metis (full-types) old.unit.exhaust)
let ?K = Marked K ()::('v, unit, unit) marked-lit
have ?K \in set ?M
```

```
unfolding M-K by auto
let ?C = image\text{-mset lit-of } \{\#L \in \#mset ?M. \text{ is-marked } L \land L \neq ?K\#\} :: 'v \text{ literal multiset}
let ?C' = set\text{-mset} \ (image\text{-mset} \ (\lambda L::'v \ literal. \ \{\#L\#\}) \ (?C + unmark \ ?K))
have ?N \cup \{unmark\ L\ | L.\ is-marked\ L \wedge L \in set\ ?M\} \models ps\ unmark-l\ ?M
 using all-decomposition-implies-propagated-lits-are-implied[OF decomp].
moreover have C': ?C' = \{unmark \ L \ | L. \ is-marked \ L \land L \in set \ ?M\}
 unfolding M-K apply standard
   apply force
 using IntI by auto
ultimately have N-C-M: ?N \cup ?C' \models ps \ unmark-l ?M
 by auto
have N-M-False: ?N \cup (\lambda L. \ unmark \ L) ' (set \ ?M) \models ps \ \{\{\#\}\}\}
 using M \triangleleft ?M \models as \ CNot \ C \triangleleft \ \langle C \in ?N \rangle unfolding true-clss-clss-def true-annots-def Ball-def
 true-annot-def by (metis consistent-CNot-not sup.orderE sup-commute true-clss-def
   true-clss-singleton-lit-of-implies-incl true-clss-union true-clss-union-increase)
have undefined-lit F 	ext{ } K 	ext{ using } \langle no\text{-}dup \text{ } ?M \rangle \text{ } unfolding \text{ } M\text{-}K \text{ } by \text{ } (simp \text{ } add: \text{ } defined\text{-}lit\text{-}map)
moreover
 have ?N \cup ?C' \models ps \{\{\#\}\}\}
   proof -
     have A: ?N \cup ?C' \cup unmark-l ?M = ?N \cup unmark-l ?M
        unfolding M-K by auto
     show ?thesis
       using true-clss-clss-left-right[OF\ N-C-M, of \{\{\#\}\}\}]\ N-M-False unfolding A by auto
 have ?N \models p \ image\text{-mset uminus} \ ?C + \{\#-K\#\}
   unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
   proof (intro allI impI)
     \mathbf{fix}\ I
     assume
       tot: total-over-set I (atms-of-ms (?N \cup {image-mset uminus ?C+ {#- K#}})) and
       cons: consistent-interp I and
        I \models s ?N
     have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
       using cons tot unfolding consistent-interp-def by (cases K) auto
     have \{a \in set \ (trail \ S). \ is-marked \ a \land a \neq Marked \ K\ ()\} =
      set (trail\ S) \cap \{L.\ is\text{-marked}\ L \land L \neq Marked}\ K\ ()\}
      by auto
     then have tot': total-over-set I
        (atm\text{-}of ' lit\text{-}of ' (set ?M \cap \{L. is\text{-}marked } L \land L \neq Marked K ()\}))
       using tot by (auto simp add: atms-of-uminus-lit-atm-of-lit-of)
     { \mathbf{fix} \ x :: ('v, unit, unit) \ marked-lit}
       assume
         a3: lit-of x \notin I and
         a1: x \in set ?M and
         a4: is\text{-}marked x  and
         a5: x \neq Marked K ()
       then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
         using a5 a4 tot' a1 unfolding total-over-set-def atms-of-s-def by blast
       moreover have f6: Neg (atm-of (lit-of x)) = - Pos (atm-of (lit-of x))
         by simp
       ultimately have - lit-of x \in I
         using f6 a3 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
           literal.sel(1))
     } note H = this
```

```
have \neg I \models s ?C'
             using \langle ?N \cup ?C' \models ps \{ \{ \# \} \} \rangle tot cons \langle I \models s ?N \rangle
             unfolding true-clss-clss-def total-over-m-def
             by (simp add: atms-of-uminus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
           then show I \models image\text{-mset uminus } ?C + \{\#-K\#\}
             unfolding true-clss-def true-cls-def Bex-def
             using \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
             by (auto dest!: H)
         qed
     moreover have F \models as \ CNot \ (image-mset \ uminus \ ?C)
       using nm unfolding true-annots-def CNot-def M-K by (auto simp add: lits-of-def)
     ultimately have False
       using bj-merge-can-jump of S F' K F C - K
         image-mset uminus (image-mset lit-of \{\# L : \# \text{ mset } ?M. \text{ is-marked } L \land L \neq Marked K ()\#\}\}
         \langle C \in ?N \rangle n-s \langle ?M \models as \ CNot \ C \rangle bj-backjump inv unfolding M-K
         by (auto simp: cdcl_{NOT}-merged-bj-learn.simps)
       then show ?thesis by fast
   qed auto
\mathbf{qed}
lemma full-cdcl_{NOT}-merged-bj-learn-final-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   full: full cdcl_{NOT}-merged-bj-learn S T and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail S) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   finite A and
   inv: inv S and
   decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-marked-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set-mset\ (clauses_{NOT}\ T)))
proof -
 have st: cdcl_{NOT}-merged-bj-learn** S T and n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full-def by blast+
  then have st: cdcl_{NOT}^{**} S T
   \mathbf{using} \ \mathit{inv} \ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{merged-bj-learn-is-rtranclp-cdcl}_{NOT}\text{-}\mathit{and-inv} \ \mathit{n-d} \ \mathbf{by} \ \mathit{auto}
 have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A and atm-of 'lits-of-l (trail T) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-trail-clauses-bound[OF st inv n-d atms-S atms-trail] by blast+
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup inv n-d st by blast
 moreover have inv T
   using rtranclp-cdcl_{NOT}-inv inv st by blast
 moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-all-decomposition-implies inv st decomp n-d by blast
 ultimately show ?thesis
   using cdcl_{NOT}-merged-bj-learn-final-state[of T A] \langle finite \ A \rangle n-s by fast
qed
end
```

16.8.1 Instantiations

 $\label{localecond} \begin{subarrate} \textbf{locale} & \textit{cdcl}_{NOT}\text{-}\textit{with-backtrack-and-restarts} = \\ & \textit{conflict-driven-clause-learning-learning-before-backjump-only-distinct-learnt} \\ \end{subarray}$

```
mset-cls insert-cls remove-lit
    mset-clss union-clss in-clss insert-clss remove-from-clss
    trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
    inv backjump-conds propagate-conds learn-restrictions forget-restrictions
     mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st \text{ and }
    inv :: 'st \Rightarrow bool and
    backjump\text{-}conds :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    propagate\text{-}conds:: ('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ and
    learn-restrictions forget-restrictions :: 'cls \Rightarrow 'st \Rightarrow bool
    +
  fixes f :: nat \Rightarrow nat
     unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \implies f n \geq 1 and
    inv\text{-}restart: \land S \ T. \ inv \ S \Longrightarrow \ T \sim reduce\text{-}trail\text{-}to_{NOT} \ ([]::'a \ list) \ S \Longrightarrow inv \ T
begin
lemma bound-inv-inv:
  assumes
    inv S and
    n-d: no-dup (trail S) and
    atms-clss-S-A: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    \mathit{atms\text{-}trail\text{-}S\text{-}A\text{:}atm\text{-}of} ' \mathit{lits\text{-}of\text{-}l} ( \mathit{trail} \mathit{S}) \subseteq \mathit{atms\text{-}of\text{-}ms} A and
    finite A and
    cdcl_{NOT}: cdcl_{NOT} S T
     atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and
    atm\text{-}of ' lits\text{-}of\text{-}l (trail T) \subseteq atms\text{-}of\text{-}ms A and
    finite A
proof -
  have cdcl_{NOT} S T
    using \langle inv S \rangle cdcl_{NOT} by linarith
  then have atms-of-mm (clauses_{NOT}\ T) \subseteq atms-of-mm (clauses_{NOT}\ S) \cup atm-of 'lits-of-l (trail\ S)
    using \langle inv S \rangle
    by (meson conflict-driven-clause-learning-ops.cdcl_{NOT}-atms-of-ms-clauses-decreasing
       conflict-driven-clause-learning-ops-axioms n-d)
  then show atms-of-mm (clauses<sub>NOT</sub> T) \subseteq atms-of-ms A
    using atms-clss-S-A atms-trail-S-A by blast
  show atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
    by (meson (inv S) atms-clss-S-A atms-trail-S-A cdcl_{NOT} cdcl_{NOT}-atms-in-trail-in-set n-d)
\mathbf{next}
```

```
show finite A
        using \langle finite \ A \rangle by simp
qed
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S cdcl_{NOT} f
    \lambda A S. atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A \wedge atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \wedge atm-of-ms A \wedge at
   \mu_{CDCL}' \lambda S. inv S \wedge no-dup (trail S)
   \mu_{CDCL}'-bound
   apply unfold-locales
                      apply (simp add: unbounded)
                    using f-ge-1 apply force
                  using bound-inv-inv apply meson
               apply (rule cdcl_{NOT}-decreasing-measure'; simp)
               apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound; simp)
              apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing; simp)
            apply auto
        apply auto[]
      using cdcl_{NOT}-inv cdcl_{NOT}-no-dup apply blast
    using inv-restart apply auto[]
    done
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound:
    assumes
        cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
        cdcl_{NOT}-inv:
            inv T
            no-dup (trail T) and
        bound-inv:
            atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
            atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
            finite A
   shows \mu_{CDCL}' A V \leq \mu_{CDCL}'-bound A T
    using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
    case (1 \ m \ S \ T \ n \ U) note U = this(3)
        apply (rule rtranclp-cdcl_{NOT}-\mu_{CDCL}'-bound-reduce-trail-to<sub>NOT</sub>[of S T])
                  using \langle (cdcl_{NOT} \ \widehat{\ } \ m) \ S \ T \rangle apply (fastforce dest!: relpowp-imp-rtranclp)
                using 1 by auto
next
    case (2 S T n) note full = this(2)
   show ?case
        apply (rule rtranclp-cdcl<sub>NOT</sub>-\mu_{CDCL}'-bound)
        using full 2 unfolding full1-def by force+
qed
lemma cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
         cdcl_{NOT}: cdcl_{NOT}-restart (T, a) (V, b) and
        cdcl_{NOT}-inv:
            inv T
            no-dup (trail T) and
        bound-inv:
            atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
```

```
atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
     finite A
  shows \mu_{CDCL}'-bound A \ V \leq \mu_{CDCL}'-bound A \ T
  using cdcl_{NOT}-inv bound-inv
proof (induction rule: cdcl_{NOT}-with-restart-induct[OF cdcl_{NOT}])
  case (1 \ m \ S \ T \ n \ U) note U = this(3)
  have \mu_{CDCL}'-bound A T \leq \mu_{CDCL}'-bound A S
    apply (rule rtranclp-\mu_{CDCL}'-bound-decreasing)
                                \hat{m} S T apply (fastforce dest: relpowp-imp-rtranclp)
        using \langle (cdcl_{NOT})^* \rangle
       using 1 by auto
  then show ?case using U unfolding \mu_{CDCL}'-bound-def by auto
next
  case (2 S T n) note full = this(2)
 show ?case
   \mathbf{apply} \ (\mathit{rule} \ \mathit{rtranclp-}\mu_{CDCL}{'}\text{-}\mathit{bound-}\mathit{decreasing})
   using full 2 unfolding full1-def by force+
qed
sublocale cdcl_{NOT}-increasing-restarts - - - - - - - - -
   \lambda S \ T. \ T \sim reduce-trail-to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}' \ cdcl_{NOT}
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
  apply unfold-locales
  using cdcl_{NOT}-with-restart-\mu_{CDCL}'-le-\mu_{CDCL}'-bound apply simp
  using cdcl_{NOT}-with-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound apply simp
  done
lemma cdcl_{NOT}-restart-all-decomposition-implies:
  assumes cdcl_{NOT}-restart S T and
    inv (fst S) and
   no-dup (trail (fst S))
    all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S)) (get-all-marked-decomposition (trail (fst S)))
    all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T)) (get-all-marked-decomposition (trail (fst T)))
  using assms apply (induction)
  using rtranclp-cdcl_{NOT}-all-decomposition-implies by (auto dest!: tranclp-into-rtranclp
   simp: full1-def)
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}restart\text{-}all\text{-}decomposition\text{-}implies:}
  assumes cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and
   n-d: no-dup (trail (fst S)) and
    decomp:
     all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S)) (get-all-marked-decomposition (trail (fst S)))
    all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T)) (get-all-marked-decomposition (trail (fst T)))
  using assms(1)
proof (induction rule: rtranclp-induct)
  case base
  then show ?case using decomp by simp
\mathbf{next}
```

```
case (step \ T \ u) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast
 moreover have no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast
  ultimately show ?case
   using cdcl_{NOT}-restart-all-decomposition-implies r IH n-d by fast
qed
lemma cdcl_{NOT}-restart-sat-ext-iff:
 assumes
   st: cdcl_{NOT}-restart S T and
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
 shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
 using assms
proof (induction)
 case (restart\text{-}step \ m \ S \ T \ n \ U)
 then show ?case
   using rtranclp-cdcl_{NOT}-bj-sat-ext-iff n-d by (fastforce dest!: relpowp-imp-rtranclp)
next
 case restart-full
 then show ?case using rtranclp-cdcl_{NOT}-bj-sat-ext-iff unfolding full1-def
 by (fastforce dest!: tranclp-into-rtranclp)
qed
lemma rtranclp-cdcl_{NOT}-restart-sat-ext-iff:
 assumes
   st: cdcl_{NOT}\text{-}restart^{**} \ S \ T \ \mathbf{and}
   n-d: no-dup (trail (fst S)) and
   inv: inv (fst S)
 shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
 using st
proof (induction)
 {f case}\ base
 then show ?case by simp
 case (step T U) note st = this(1) and r = this(2) and IH = this(3)
 have inv (fst T)
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by blast+
 moreover have no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv rtranclp-cdcl_{NOT}-no-dup st inv n-d by blast
  ultimately show ?case
   using cdcl_{NOT}-restart-sat-ext-iff [OF r] IH by blast
qed
theorem full-cdcl_{NOT}-restart-backjump-final-state:
 fixes A :: 'v \ literal \ multiset \ set \ and \ S \ T :: 'st
 assumes
   full: full cdcl_{NOT}-restart (S, n) (T, m) and
   atms-S: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of ' lits-of-l (trail\ S) \subseteq atms-of-ms\ A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A and
   inv: inv S and
```

```
decomp: all-decomposition-implies-m \ (clauses_{NOT} \ S) \ (get-all-marked-decomposition \ (trail \ S))
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
   \vee (lits-of-l (trail T) \models sextm clauses<sub>NOT</sub> S \wedge satisfiable (set-mset (clauses<sub>NOT</sub> S)))
proof -
 have st: cdcl_{NOT}\text{-}restart^{**} (S, n) (T, m) and
   n-s: no-step cdcl_{NOT}-restart (T, m)
   using full unfolding full-def by fast+
  have binv-T: atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A
   atm-of ' lits-of-l (trail\ T) \subseteq atms-of-ms\ A
   using rtranclp-cdcl_{NOT}-with-restart-bound-inv[OF st, of A] inv n-d atms-S atms-trail
   by auto
 moreover have inv-T: no-dup (trail\ T) inv\ T
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv[OF st] inv n-d by auto
 moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> T) (get-all-marked-decomposition (trail T))
   using rtranclp-cdcl_{NOT}-restart-all-decomposition-implies [OF st] inv n-d
    decomp by auto
  ultimately have T: unsatisfiable (set-mset (clauses<sub>NOT</sub> T))
   \vee (trail T \models asm\ clauses_{NOT}\ T \land satisfiable\ (set\text{-mset}\ (clauses_{NOT}\ T)))
   using no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of (T, m) A] n-s
   cdcl_{NOT}-final-state[of T A] unfolding cdcl_{NOT}-NOT-all-inv-def by auto
  have eq-sat-S-T:\bigwedge I. I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
   using rtranclp-cdcl_{NOT}-restart-sat-ext-iff[OF st] inv n-d atms-S
       atms-trail by auto
  have cons-T: consistent-interp (lits-of-l (trail T))
   using inv-T(1) distinct-consistent-interp by blast
  consider
     (unsat) unsatisfiable (set\text{-}mset\ (clauses_{NOT}\ T))
   |(sat)| trail T \models asm \ clauses_{NOT} \ T and satisfiable \ (set\text{-mset} \ (clauses_{NOT} \ T))
   using T by blast
  then show ?thesis
   proof cases
     case unsat
     then have unsatisfiable (set-mset (clauses<sub>NOT</sub> S))
       using eq-sat-S-T consistent-true-clss-ext-satisfiable true-clss-imp-true-cls-ext
       unfolding satisfiable-def by blast
     then show ?thesis by fast
   next
     case sat
     then have lits-of-l (trail T) \models sextm clauses<sub>NOT</sub> S
       using rtranclp-cdcl_{NOT}-restart-sat-ext-iff[OF st] inv n-d atms-S
       atms-trail by (auto simp: true-clss-imp-true-cls-ext true-annots-true-cls)
     moreover then have satisfiable (set-mset (clauses<sub>NOT</sub> S))
         using cons-T consistent-true-clss-ext-satisfiable by blast
     ultimately show ?thesis by blast
   qed
qed
end — end of cdcl_{NOT}-with-backtrack-and-restarts locale
The restart does only reset the trail, contrary to Weidenbach's version. But there is a forget
locale\ cdcl_{NOT}-merge-bj-learn-with-backtrack-restarts =
  cdcl_{NOT}-merge-bj-learn mset-cls insert-cls remove-lit
   mset-clss union-clss in-clss insert-clss remove-from-clss
   trail\ raw-clauses prepend-trail tl-trail add-cls_{NOT}\ remove-cls_{NOT}
   \lambda C C' L' S T. distinct-mset (C' + \{\#L'\#\}) \wedge backjump-l-cond C C' L' S T
```

```
propagate-conds forget-conds inv
  for
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ {\bf and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ {\bf and}
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss::'cls \Rightarrow 'clss \Rightarrow 'clss and
    trail :: 'st \Rightarrow ('v, unit, unit) marked-lits and
    raw-clauses :: 'st \Rightarrow 'clss and
    prepend-trail :: ('v, unit, unit) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls_{NOT} :: 'cls \Rightarrow 'st \Rightarrow 'st and
    propagate\text{-}conds::('v, unit, unit) \ marked\text{-}lit \Rightarrow 'st \Rightarrow bool \ \mathbf{and}
    inv :: 'st \Rightarrow bool and
    forget\text{-}conds :: 'cls \Rightarrow 'st \Rightarrow bool \text{ and }
    backjump\text{-}l\text{-}cond :: 'v \ clause \Rightarrow 'v \ clause \Rightarrow 'v \ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool
  fixes f :: nat \Rightarrow nat
  assumes
    unbounded: unbounded f and f-ge-1: \bigwedge n. n \geq 1 \Longrightarrow f n \geq 1 and
    inv\text{-restart:} \land S \ T. \ inv \ S \Longrightarrow T \sim reduce\text{-trail-to}_{NOT} \ [] \ S \Longrightarrow inv \ T
begin
definition not-simplified-cls A = \{ \# C \in \# A. \text{ tautology } C \vee \neg \text{distinct-mset } C \# \}
lemma simple-clss-or-not-simplified-cls:
  assumes atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
    x \in \# clauses_{NOT} S and finite A
  shows x \in simple\text{-}clss (atms\text{-}of\text{-}ms A) \lor x \in \# not\text{-}simplified\text{-}cls (clauses_{NOT} S)
proof -
  consider
       (simpl) \neg tautology x  and distinct-mset x
      (n\text{-}simp) tautology x \vee \neg distinct\text{-}mset x
    by auto
  then show ?thesis
    proof cases
      case simpl
      then have x \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
        by (meson assms atms-of-atms-of-ms-mono atms-of-ms-finite simple-clss-mono
           distinct-mset-not-tautology-implies-in-simple-clss finite-subset
           subsetCE)
      then show ?thesis by blast
    next
      case n-simp
      then have x \in \# not-simplified-cls (clauses<sub>NOT</sub> S)
         using \langle x \in \# \ clauses_{NOT} \ S \rangle unfolding not-simplified-cls-def by auto
      then show ?thesis by blast
    qed
qed
```

lemma $cdcl_{NOT}$ -merged-bj-learn-clauses-bound:

```
assumes
    cdcl_{NOT}-merged-bj-learn S T and
    inv: inv S and
   atms-clss: atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atms-trail: atm-of '(lits-of-l (trail S)) \subseteq atms-of-ms A and
   n-d: no-dup (trail S) and
   fin-A[simp]: finite A
  shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (not-simplified-cls (clauses_{NOT} \ S))
   \cup simple-clss (atms-of-ms A)
  using assms
proof (induction rule: cdcl_{NOT}-merged-bj-learn.induct)
  \mathbf{case}\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}decide}_{NOT}
  then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
next
  case cdcl_{NOT}-merged-bj-learn-propagate<sub>NOT</sub>
  then show ?case using dpll-bj-clauses by (force dest!: simple-clss-or-not-simplified-cls)
  case cdcl_{NOT}-merged-bj-learn-forget_{NOT}
  then show ?case using clauses-remove-cls_{NOT} unfolding state-eq_{NOT}-def
   by (force elim!: forget_{NOT}E dest: simple-clss-or-not-simplified-cls)
next
  case (cdcl_{NOT}-merged-bj-learn-backjump-l T) note bj = this(1) and inv = this(2) and
    atms-clss = this(3) and atms-trail = this(4) and n-d = this(5)
 have cdcl_{NOT}^{**} S T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT})
   using \langle backjump-l \ S \ T \rangle inv cdcl_{NOT}-merged-bj-learn.simps n-d by blast+
  have atm\text{-}of '(lits\text{-}of\text{-}l (trail T)) \subseteq atms\text{-}of\text{-}ms A
   using rtranclp-cdcl_{NOT}-trail-clauses-bound[OF \langle cdcl_{NOT}^{**} \in S \mid T \rangle] inv atms-trail atms-clss
    n-d by auto
  have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms \ A
   \mathbf{using}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{trail-clauses-bound}[\mathit{OF}\ \langle \mathit{cdcl}_{NOT}^{***}\ \mathit{S}\ \mathit{T}\rangle\ \mathit{inv}\ \mathit{n-d}\ \mathit{atms-clss}\ \mathit{atms-trail}]
  moreover have no-dup (trail T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \ \langle cdcl_{NOT}^{**} \ S \ T \rangle \ inv \ n-d] by fast
  obtain F' K F L l C' C D where
    tr-S: trail S = F' @ Marked K () # <math>F and
    T: T \sim prepend-trail \ (Propagated \ L \ l) \ (reduce-trail-to_{NOT} \ F \ (add-cls_{NOT} \ D \ S)) and
    C \in \# clauses_{NOT} S and
    trail S \models as CNot C  and
    undef: undefined-lit F L and
   clauses_{NOT} S \models pm C' + \{\#L\#\}  and
    F \models as \ CNot \ C' and
    D: mset-cls \ D = C' + \{\#L\#\} \ and
    dist: distinct\text{-}mset \ (C' + \{\#L\#\}) \ \mathbf{and}
   tauto: \neg tautology (C' + \{\#L\#\}) and
   backjump-l-cond C C' L S T
   using \langle backjump-l S T \rangle apply (elim\ backjump-lE) by auto
  have atms-of C' \subseteq atm-of ' (lits-of-l F)
   using \langle F \models as\ CNot\ C' \rangle by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uninus-in-set
      atms-of-def image-subset-iff in-CNot-implies-uminus(2))
  then have atms-of (C'+\{\#L\#\}) \subseteq atms-of-ms A
   using T \land atm\text{-}of \land lits\text{-}of\text{-}l \ (trail \ T) \subseteq atms\text{-}of\text{-}ms \ A \land tr\text{-}S \ undef \ n\text{-}d \ by \ auto
```

```
then have simple-clss (atms-of (C' + \{\#L\#\})) \subseteq simple-clss (atms-of-ms A)
   apply - by (rule simple-clss-mono) (simp-all)
  then have C' + \{\#L\#\} \in simple\text{-}clss (atms\text{-}of\text{-}ms A)
   using distinct-mset-not-tautology-implies-in-simple-clss[OF dist tauto]
   by auto
  then show ?case
   using T inv atms-clss undef tr-S n-d D by (force dest!: simple-clss-or-not-simplified-cls)
qed
lemma cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
 assumes cdcl_{NOT}-merged-bj-learn S T
 shows (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ T)) \subseteq \#\ (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ S))
 using assms apply induction
 prefer 4
 unfolding not-simplified-cls-def apply (auto elim!: backjump-lE forqet<sub>NOT</sub>E)[3]
 by (elim backjump-lE) auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing:
 assumes cdcl_{NOT}-merged-bj-learn** S T
 shows (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ T)) \subseteq \#\ (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ S))
  using assms apply induction
   apply simp
  by (drule\ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}not\text{-}simplified\text{-}decreasing})\ auto
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound:
 assumes
   cdcl_{NOT}-merged-bj-learn** S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of '(lits\text{-}of\text{-}l (trail S)) \subseteq atms\text{-}of\text{-}ms A and
   n-d: no-dup (trail S) and
   finite[simp]: finite A
  shows set-mset (clauses_{NOT} \ T) \subseteq set-mset (not-simplified-cls (clauses_{NOT} \ S))
   \cup simple-clss (atms-of-ms A)
 using assms(1-5)
proof induction
 case base
  then show ?case by (auto dest!: simple-clss-or-not-simplified-cls)
next
  case (step\ T\ U) note st=this(1) and cdcl_{NOT}=this(2) and IH=this(3)[OF\ this(4-7)] and
   inv = this(4) and atms-clss-S = this(5) and atms-trail-S = this(6) and finite-cls-S = this(7)
 have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by blast
 have inv T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-inv st n-d by blast
 moreover
   have atms-of-mm (clauses_{NOT} \ T) \subseteq atms-of-ms A and
     atm\text{-}of ' lits\text{-}of\text{-}l (trail\ T) \subseteq atms\text{-}of\text{-}ms\ A
     using rtranclp-cdcl_{NOT}-trail-clauses-bound [OF st'] inv atms-clss-S atms-trail-S n-d
 moreover moreover have no-dup (trail\ T)
   using rtranclp-cdcl_{NOT}-no-dup[OF \ \langle cdcl_{NOT}^{**} \ S \ T \rangle \ inv \ n-d] by fast
  ultimately have set-mset (clauses_{NOT} U)
   \subseteq set-mset (not-simplified-cls (clauses_{NOT} T)) \cup simple-clss (atms-of-ms A)
   \mathbf{using}\ cdcl_{NOT}\ finite\ \ cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}clauses\text{-}bound
```

```
by (auto intro!: cdcl_{NOT}-merged-bj-learn-clauses-bound)
  moreover have set-mset (not-simplified-cls (clauses<sub>NOT</sub> T))
   \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S))
   using rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing [OF\ st] by auto
  ultimately show ?case using IH inv atms-clss-S
   by (auto dest!: simple-clss-or-not-simplified-cls)
qed
abbreviation \mu_{CDCL}'-bound where
\mu_{CDCL}'-bound A T \equiv ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))) * 2
    + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses_{NOT} T)))
    + 3 \hat{} card (atms-of-ms A)
lemma rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card:
 assumes
   cdcl_{NOT}-merged-bj-learn** S T and
   inv S and
   atms-of-mm (clauses_{NOT} S) \subseteq atms-of-ms A and
   atm\text{-}of \ (lits\text{-}of\text{-}l \ (trail \ S)) \subseteq atms\text{-}of\text{-}ms \ A \ \mathbf{and}
   n-d: no-dup (trail S) and
   finite: finite A
 shows \mu_{CDCL}'-merged A T \leq \mu_{CDCL}'-bound A S
proof
 have set-mset (clauses_{NOT} \ T) \subseteq set-mset (not-simplified-cls(clauses_{NOT} \ S))
   \cup simple-clss (atms-of-ms A)
   using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound [OF assms].
  moreover have card (set-mset (not-simplified-cls(clauses_{NOT} S))
     \cup simple-clss (atms-of-ms A))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-card card-Un-le finite
     nat-add-left-cancel-le)
  ultimately have card (set-mset (clauses<sub>NOT</sub> T))
   \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls(clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
   by (meson Nat.le-trans atms-of-ms-finite simple-clss-finite card-mono
     finite-UnI finite-set-mset local.finite)
  moreover have ((2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) - \mu_C' A T) * 2
    \leq (2 + card (atms-of-ms A)) \cap (1 + card (atms-of-ms A)) * 2
   by auto
 ultimately show ?thesis unfolding \mu_{CDCL}'-merged-def by auto
sublocale cdcl_{NOT}-increasing-restarts-ops \lambda S T. T \sim reduce-trail-to<sub>NOT</sub> ([]::'a list) S
   cdcl_{NOT}-merged-bj-learn f
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
    \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged
   \lambda S. inv S \wedge no\text{-}dup (trail S)
  \mu_{CDCL}'-bound
  apply unfold-locales
             using unbounded apply simp
            using f-ge-1 apply force
           apply (blast dest!: cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl<sub>NOT</sub> tranclp-into-rtranclp
             rtranclp-cdcl_{NOT}-trail-clauses-bound)
          apply (simp\ add: cdcl_{NOT}-decreasing-measure')
         using rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card apply blast
```

```
\mathbf{apply}\ (drule\ rtranclp\text{-}cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn\text{-}not\text{-}simplified\text{-}decreasing})
          apply (auto dest!: simp: card-mono set-mset-mono)
      apply simp
      apply auto[]
     using cdcl_{NOT}-merged-bj-learn-no-dup-inv cdcl-merged-inv apply blast
   apply (auto simp: inv-restart)[]
   done
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound:
  assumes
    cdcl_{NOT}-restart T V
    inv (fst T) and
   no-dup (trail (fst T)) and
    atms-of-mm (clauses_{NOT} (fst T)) \subseteq atms-of-ms A and
   atm\text{-}of ' lits\text{-}of\text{-}l (trail (fst T)) \subseteq atms\text{-}of\text{-}ms A and
   finite A
  shows \mu_{CDCL}'-merged A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
  using assms
proof induction
  case (restart-full\ S\ T\ n)
  show ?case
   unfolding fst-conv
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound-card)
   using restart-full unfolding full1-def by (force dest!: tranclp-into-rtranclp)+
next
  case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
    n-d = this(5) and atms-clss = this(6) and atms-trail = this(7) and finite = this(8)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply - by (rule rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}) auto
  have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
      using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
  have atms-of-mm (clauses_{NOT} T) \subseteq atms-of-ms A
   \mathbf{using}\ \mathit{rtranclp-cdcl}_{NOT}\text{-}\mathit{trail-clauses-bound}[\mathit{OF}\ \mathit{st''}]\ \mathit{inv}\ \mathit{atms-clss}\ \mathit{atms-trail}\ \mathit{n-d}
   by simp
  then have atms-of-mm (clauses_{NOT} \ U) \subseteq atms-of-ms A
   using U by simp
  have not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> T)
   using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \mid \mid T \rangle by auto
  moreover have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   \mathbf{apply} (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-not-simplified-decreasing)
   using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ \widehat{} \ m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   by auto
  have (set\text{-}mset\ (clauses_{NOT}\ U))
   \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-clauses-bound)
        apply simp
       using \langle inv \ U \rangle apply simp
       using \langle atms\text{-}of\text{-}mm \ (clauses_{NOT} \ U) \subseteq atms\text{-}of\text{-}ms \ A \rangle apply simp
```

```
using U apply simp
    using U apply simp
   using finite apply simp
   done
 then have f1: card (set-mset (clauses<sub>NOT</sub> U)) \leq card (set-mset (not-simplified-cls (clauses<sub>NOT</sub> U))
   \cup simple-clss (atms-of-ms A))
   by (simp add: simple-clss-finite card-mono local.finite)
 moreover have set-mset (not-simplified-cls (clauses<sub>NOT</sub> U)) \cup simple-clss (atms-of-ms A)
   \subseteq set-mset (not-simplified-cls (clauses<sub>NOT</sub> S)) \cup simple-clss (atms-of-ms A)
   using U-S by auto
  then have f2:
    card\ (set\text{-}mset\ (not\text{-}simplified\text{-}cls\ (clauses_{NOT}\ U)) \cup simple\text{-}clss\ (atms\text{-}of\text{-}ms\ A))
     \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S)) \cup simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
   by (simp add: simple-clss-finite card-mono local.finite)
 moreover have card (set-mset (not-simplified-cls (clauses_{NOT} S))
     \cup simple-clss (atms-of-ms A))
   \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S))) + card \ (simple\text{-}clss \ (atms\text{-}of\text{-}ms \ A))
   using card-Un-le by blast
  moreover have card (simple-clss (atms-of-ms A)) \leq 3 ^ card (atms-of-ms A)
   using atms-of-ms-finite simple-clss-card local finite by blast
  ultimately have card (set-mset (clauses_{NOT} U))
    \leq card \ (set\text{-}mset \ (not\text{-}simplified\text{-}cls \ (clauses_{NOT} \ S))) + 3 \ \hat{} \ card \ (atms\text{-}of\text{-}ms \ A)
   by linarith
 then show ?case unfolding \mu_{CDCL}'-merged-def by auto
qed
lemma cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound:
 assumes
   cdcl_{NOT}-restart T V and
   no-dup (trail (fst T)) and
   inv (fst T) and
   fin: finite A
 shows \mu_{CDCL}'-bound A (fst V) \leq \mu_{CDCL}'-bound A (fst T)
 using assms(1-3)
proof induction
 case (restart-full S T n)
 have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
   using \langle full1\ cdcl_{NOT}-merged-bj-learn S\ T\rangle unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
 then show ?case by (auto simp: card-mono set-mset-mono)
next
 case (restart-step m S T n U) note st = this(1) and U = this(3) and n-d = this(4) and
   inv = this(5)
  then have st': cdcl_{NOT}-merged-bj-learn** S T
   by (blast dest: relpowp-imp-rtranclp)
  then have st'': cdcl_{NOT}^{**} S T
   using inv n-d apply - by (rule rtranclp-cdcl<sub>NOT</sub>-merged-bj-learn-is-rtranclp-cdcl<sub>NOT</sub>) auto
 have inv T
   apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-inv)
     using inv st' n-d by auto
  then have inv U
   using U by (auto simp: inv-restart)
```

```
have not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> T)
    using \langle U \sim reduce\text{-}trail\text{-}to_{NOT} \mid T \rangle by auto
  moreover have not-simplified-cls (clauses<sub>NOT</sub> T) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    apply (rule rtranclp-cdcl_{NOT}-merged-bj-learn-not-simplified-decreasing)
    using \langle (cdcl_{NOT}\text{-}merged\text{-}bj\text{-}learn \ ^{\sim} m) \ S \ T \rangle by (auto dest!: relpowp-imp-rtranclp)
  ultimately have U-S: not-simplified-cls (clauses<sub>NOT</sub> U) \subseteq \# not-simplified-cls (clauses<sub>NOT</sub> S)
    by auto
  then show ?case by (auto simp: card-mono set-mset-mono)
qed
sublocale cdcl_{NOT}-increasing-restarts - - - - - - - - f
   \lambda S \ T. \ T \sim reduce\text{-}trail\text{-}to_{NOT} \ ([]::'a \ list) \ S
  \lambda A \ S. \ atms-of-mm \ (clauses_{NOT} \ S) \subseteq atms-of-ms \ A
     \land atm-of 'lits-of-l (trail S) \subseteq atms-of-ms A \land finite A
  \mu_{CDCL}'-merged cdcl_{NOT}-merged-bj-learn
    \lambda S. inv S \wedge no\text{-}dup (trail S)
  \lambda A T. ((2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))) * 2
     + card (set\text{-}mset (not\text{-}simplified\text{-}cls(clauses_{NOT} T)))
     + 3 \hat{} card (atms-of-ms A)
  {\bf apply} \ {\it unfold-locales}
     using cdcl_{NOT}-restart-\mu_{CDCL}'-merged-le-\mu_{CDCL}'-bound apply force
    using cdcl_{NOT}-restart-\mu_{CDCL}'-bound-le-\mu_{CDCL}'-bound by fastforce
lemma cdcl_{NOT}-restart-eq-sat-iff:
  assumes
    cdcl_{NOT}\text{-}restart\ S\ T and
    no-dup (trail (fst S))
    inv (fst S)
  shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
  using assms
proof (induction rule: cdcl_{NOT}-restart.induct)
  case (restart-full\ S\ T\ n)
  then have cdcl_{NOT}-merged-bj-learn** S T
    by (simp add: tranclp-into-rtranclp full1-def)
  then show ?case
    using rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-full.prems(1,2)
    rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
next
  case (restart\text{-}step \ m \ S \ T \ n \ U)
  then have cdcl_{NOT}-merged-bj-learn** S T
    by (auto simp: tranclp-into-rtranclp full1-def dest!: relpowp-imp-rtranclp)
  then have I \models sextm\ clauses_{NOT}\ S \longleftrightarrow I \models sextm\ clauses_{NOT}\ T
    using rtranclp-cdcl_{NOT}-bj-sat-ext-iff restart-step.prems(1,2)
    rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT} by auto
  moreover have I \models sextm\ clauses_{NOT}\ T \longleftrightarrow I \models sextm\ clauses_{NOT}\ U
    using restart-step.hyps(3) by auto
  ultimately show ?case by auto
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_{NOT}\text{-}restart\text{-}eq\text{-}sat\text{-}iff\text{:}
  assumes
    cdcl_{NOT}-restart** S T and
    inv: inv (fst S) and n-d: no-dup(trail (fst S))
  shows I \models sextm\ clauses_{NOT}\ (fst\ S) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ T)
```

```
using assms(1)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
 case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
 have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
 then have I \models sextm\ clauses_{NOT}\ (fst\ T) \longleftrightarrow I \models sextm\ clauses_{NOT}\ (fst\ U)
   using cdcl_{NOT}-restart-eq-sat-iff cdcl by blast
 then show ?case using IH by blast
qed
lemma cdcl_{NOT}-restart-all-decomposition-implies-m:
 assumes
   cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-marked-decomposition\ (trail\ (fst\ S)))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
     (get-all-marked-decomposition\ (trail\ (fst\ T)))
 using assms
proof (induction)
 case (restart\text{-}full\ S\ T\ n) note full=this(1) and inv=this(2) and n\text{-}d=this(3) and
   decomp = this(4)
 have st: cdcl_{NOT}-merged-bj-learn** S T and
   n-s: no-step cdcl_{NOT}-merged-bj-learn T
   using full unfolding full1-def by (fast dest: tranclp-into-rtranclp)+
 have st': cdcl_{NOT}^{**} S T
   using inv rtranclp-cdcl_{NOT}-merged-bj-learn-is-rtranclp-cdcl_{NOT}-and-inv st n-d by auto
 have inv T
   using rtranclp-cdcl_{NOT}-cdcl_{NOT}-inv[OF\ st]\ inv\ n-d\ by\ auto
 then show ?case
   using rtranclp-cdcl_{NOT}-all-decomposition-implies [OF - - n-d decomp] st' inv by auto
 case (restart-step m S T n U) note st = this(1) and U = this(3) and inv = this(4) and
   n-d = this(5) and decomp = this(6)
 show ?case using U by auto
qed
lemma rtranclp-cdcl_{NOT}-restart-all-decomposition-implies-m:
 assumes
   cdcl_{NOT}-restart** S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
   decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-marked-decomposition\ (trail\ (fst\ S)))
 shows all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
     (get-all-marked-decomposition\ (trail\ (fst\ T)))
 using assms
proof (induction)
 case base
 then show ?case using decomp by simp
next
 case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)[OF\ this(4-)] and
   inv = this(4) and n-d = this(5) and decomp = this(6)
```

```
have inv (fst T) and no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using st inv n-d by blast+
  then show ?case
    using cdcl_{NOT}-restart-all-decomposition-implies-m[OF cdcl] IH by auto
qed
lemma full-cdcl_{NOT}-restart-normal-form:
  assumes
   full: full cdcl_{NOT}-restart S T and
   inv: inv (fst S) and n-d: no-dup(trail (fst S)) and
    decomp: all-decomposition-implies-m (clauses<sub>NOT</sub> (fst S))
     (get-all-marked-decomposition (trail (fst S))) and
    atms-cls: atms-of-mm (clauses_{NOT} (fst S)) \subseteq atms-of-ms A and
   atms-trail: atm-of 'lits-of-l (trail (fst S)) \subseteq atms-of-ms A and
   fin: finite A
  shows unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
    \vee lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
proof -
  have inv-T: inv (fst T) and n-d-T: no-dup (trail (fst T))
   using rtranclp-cdcl_{NOT}-with-restart-cdcl<sub>NOT</sub>-inv using full inv n-d unfolding full-def by blast+
  moreover have
    atms-cls-T: atms-of-mm (clauses_{NOT} (fst T)) \subseteq atms-of-ms A and
   atms-trail-T: atm-of ' lits-of-l (trail (fst T)) \subseteq atms-of-ms A
   using rtranclp-cdcl<sub>NOT</sub>-with-restart-bound-inv[of S T A] full atms-cls atms-trail fin inv n-d
   unfolding full-def by blast+
  ultimately have no-step cdcl_{NOT}-merged-bj-learn (fst T)
   apply -
   apply (rule no-step-cdcl<sub>NOT</sub>-restart-no-step-cdcl<sub>NOT</sub>[of - A])
      using full unfolding full-def apply simp
     apply simp
   using fin apply simp
   done
  moreover have all-decomposition-implies-m (clauses<sub>NOT</sub> (fst T))
   (get-all-marked-decomposition\ (trail\ (fst\ T)))
   \mathbf{using}\ \mathit{rtranclp-cdcl}_{NOT}\mathit{-restart-all-decomposition-implies-m}[\mathit{of}\ S\ T]\ \mathit{inv}\ \mathit{n-d}\ \mathit{decomp}
   full unfolding full-def by auto
  ultimately have unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst T)))
   \vee trail (fst T) \models asm clauses<sub>NOT</sub> (fst T) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst T)))
   apply (rule cdcl_{NOT}-merged-bj-learn-final-state)
   using atms-cls-T atms-trail-T fin n-d-T fin inv-T by blast+
  then consider
     (unsat) \ unsatisfiable \ (set\text{-}mset \ (clauses_{NOT} \ (fst \ T)))
     (sat) trail (fst T) \models asm clauses_{NOT} (fst T)  and satisfiable (set-mset (clauses_{NOT} (fst T)))
   by auto
  then show unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
    \vee lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S) \wedge satisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
   proof cases
     case unsat
     then have unsatisfiable (set-mset (clauses<sub>NOT</sub> (fst S)))
       unfolding satisfiable-def apply auto
       using rtranclp-cdcl_{NOT}-restart-eq-sat-iff [of S T ] full inv n-d
       consistent\hbox{-}true\hbox{-}clss\hbox{-}ext\hbox{-}satisfiable\ true\hbox{-}clss\hbox{-}imp\hbox{-}true\hbox{-}cls\hbox{-}ext
       unfolding satisfiable-def full-def by blast
     then show ?thesis by blast
```

```
next
     case sat
     then have lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst T)
       using true-cls-imp-true-cls-ext by (auto simp: true-annots-true-cls)
     then have lits-of-l (trail (fst T)) \models sextm clauses<sub>NOT</sub> (fst S)
       using rtranclp-cdcl<sub>NOT</sub>-restart-eq-sat-iff[of S T] full inv n-d unfolding full-def by blast
     moreover then have satisfiable\ (set\text{-}mset\ (clauses_{NOT}\ (fst\ S)))
       \mathbf{using}\ consistent\text{-}true\text{-}clss\text{-}ext\text{-}satisfiable\ distinct\text{-}consistent\text{-}interp\ n\text{-}d\text{-}T\ \mathbf{by}\ fast
     ultimately show ?thesis by fast
   qed
\mathbf{qed}
corollary full-cdcl_{NOT}-restart-normal-form-init-state:
 assumes
   init-state: trail S = [] clauses_{NOT} S = N and
   full: full cdcl_{NOT}-restart (S, \theta) T and
   inv: inv S
 shows unsatisfiable (set-mset N)
   \vee lits-of-l (trail (fst T)) \models sextm N \wedge satisfiable (set-mset N)
 using full-cdcl_{NOT}-restart-normal-form[of (S, \theta) T] assms by auto
end
end
theory DPLL-NOT
imports CDCL-NOT
begin
17
        DPLL as an instance of NOT
         DPLL with simple backtrack
```

We are using a concrete couple instead of an abstract state.

```
locale dpll-with-backtrack
begin
inductive backtrack :: ('v, unit, unit) marked-lit list \times 'v clauses
         \Rightarrow ('v, unit, unit) marked-lit list \times 'v clauses \Rightarrow bool where
backtrack-split (fst S) = (M', L \# M) \Longrightarrow is-marked L \Longrightarrow D \in \# snd S
         \implies fst S \models as\ CNot\ D \implies backtrack\ S\ (Propagated\ (-\ (lit-of\ L))\ ()\ \#\ M,\ snd\ S)
inductive-cases backtrackE[elim]: backtrack (M, N) (M', N')
lemma backtrack-is-backjump:
        fixes MM' :: ('v, unit, unit) marked-lit list
        assumes
                backtrack: backtrack (M, N) (M', N') and
                no-dup: (no-dup \circ fst) (M, N) and
                decomp: all-decomposition-implies-m \ N \ (get-all-marked-decomposition \ M)
                shows
                             \exists C F' K F L l C'.
                                          M = F' \otimes Marked K () \# F \wedge
                                          M' = Propagated \ L \ l \ \# \ F \land N = N' \land C \in \# \ N \land F' @ Marked \ K \ d \ \# \ F \models as \ CNot \ C \land M \land F' \land M \land M \land F' \land M \land M \land F' \land 
                                          undefined-lit \ F \ L \land atm-of \ L \in atms-of-mm \ N \cup atm-of \ `lits-of-l \ (F' @ Marked \ K \ d \ \# \ F) \land
                                          N \models pm \ C' + \{\#L\#\} \land F \models as \ CNot \ C'
proof -
       let ?S = (M, N)
```

```
let ?T = (M', N')
obtain F F' P L D where
 b-sp: backtrack-split M = (F', L \# F) and
 is-marked L and
 D \in \# \ snd \ ?S \ and
 M \models as \ CNot \ D and
 bt: backtrack ?S (Propagated (- (lit-of L)) P \# F, N) and
 M': M' = Propagated (- (lit-of L)) P \# F and
 [simp]: N' = N
using backtrackE[OF backtrack] by (metis backtrack fstI sndI)
let ?K = lit \text{-} of L
let ?C = image\text{-}mset\ lit\text{-}of\ \{\#K \in \#mset\ M.\ is\text{-}marked\ K\ \land\ K \neq L\#\}:: 'v\ literal\ multiset
let ?C' = set\text{-}mset \ (image\text{-}mset \ single \ (?C+\{\#?K\#\}))
obtain K where L: L = Marked K () using (is-marked L) by (cases L) auto
have M: M = F' @ Marked K () \# F
 using b-sp by (metis L backtrack-split-list-eq fst-conv snd-conv)
moreover have F' @ Marked K () \# F \models as CNot D
 using \langle M \models as \ CNot \ D \rangle unfolding M.
moreover have undefined-lit F(-?K)
 using no-dup unfolding M L by (simp add: defined-lit-map)
moreover have atm-of (-K) \in atms-of-mm \ N \cup atm-of 'lits-of-l (F' \otimes Marked \ K \ d \# F)
 by auto
moreover
 have set-mset N \cup ?C' \models ps \{\{\#\}\}
   proof -
     have A: set-mset N \cup ?C' \cup unmark-l M =
       \textit{set-mset} \ \ N \, \cup \, \textit{unmark-l} \, \, M
       unfolding M L by auto
     have set-mset N \cup \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\}
         \models ps \ unmark-l \ M
       using all-decomposition-implies-propagated-lits-are-implied [OF decomp].
     moreover have C': ?C' = \{ \# lit \text{-of } L \# \} \mid L. \text{ is-marked } L \land L \in set M \}
       unfolding ML apply standard
         apply force
       using IntI by auto
     ultimately have N-C-M: set-mset N \cup ?C' \models ps \ unmark-l \ M
       by auto
     have set-mset N \cup (\lambda L. \{\#lit\text{-of }L\#\}) \text{ '} (set M) \models ps \{\{\#\}\}\}
       unfolding true-clss-clss-def
       proof (intro allI impI, goal-cases)
         case (1 I) note tot = this(1) and cons = this(2) and I-N-M = this(3)
         have I \models D
           using I-N-M \langle D \in \# \ snd \ ?S \rangle unfolding true-clss-def by auto
         moreover have I \models s CNot D
           using \langle M \models as \ CNot \ D \rangle unfolding M by (metis 1(3) \langle M \models as \ CNot \ D \rangle
             true-annots-true-cls true-cls-mono-set-mset-l true-cls-def
             true-clss-singleton-lit-of-implies-incl true-clss-union)
         ultimately show ?case using cons consistent-CNot-not by blast
       aed
     then show ?thesis
       using true-clss-clss-left-right [OF N-C-M, of \{\{\#\}\}\}] unfolding A by auto
   qed
 have N \models pm \ image\text{-}mset \ uminus \ ?C + \{\#-?K\#\}
   unfolding true-clss-cls-def true-clss-clss-def total-over-m-def
```

```
proof (intro allI impI)
        \mathbf{fix} I
        assume
         tot: total-over-set I (atms-of-ms (set-mset N \cup \{image-mset\ uminus\ ?C + \{\#-\ ?K\#\}\})) and
          cons: consistent-interp I and
          I \models sm N
        have (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I)
          using cons tot unfolding consistent-interp-def L by (cases K) auto
        have \{a \in set \ M. \ is\text{-marked} \ a \land a \neq Marked \ K\ ()\} =
          set M \cap \{L. \text{ is-marked } L \land L \neq Marked K ()\}
          by auto
        then have
          tI: total\text{-}over\text{-}set\ I\ (atm\text{-}of\ `it\text{-}of\ `(set\ M\cap\{L.\ is\text{-}marked\ L\wedge L\neq Marked\ K\ d\}))
          using tot by (auto simp add: L atms-of-uminus-lit-atm-of-lit-of)
        then have H: \bigwedge x.
           lit\text{-}of \ x \notin I \Longrightarrow x \in set \ M \Longrightarrow is\text{-}marked \ x
            \implies x \neq Marked \ K \ d \implies -lit \text{-} of \ x \in I
          proof -
            \mathbf{fix} \ x :: ('v, unit, unit) \ marked-lit
           assume a1: x \neq Marked \ K \ d
            assume a2: is-marked x
            assume a3: x \in set M
            assume a4: lit-of x \notin I
           have atm\text{-}of\ (lit\text{-}of\ x) \in atm\text{-}of\ `lit\text{-}of\ `
              (set M \cap \{m. \text{ is-marked } m \land m \neq Marked \ K \ d\})
              using a3 a2 a1 by blast
            then have Pos (atm\text{-}of\ (lit\text{-}of\ x)) \in I \lor Neg\ (atm\text{-}of\ (lit\text{-}of\ x)) \in I
              using tI unfolding total-over-set-def by blast
            then show - lit-of x \in I
              using a4 by (metis (no-types) atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
                literal.sel(1,2)
          qed
        have \neg I \models s ?C'
          using \langle set\text{-}mset\ N\cup ?C' \models ps\ \{\{\#\}\}\rangle\ tot\ cons\ \langle I \models sm\ N\rangle
          unfolding true-clss-clss-def total-over-m-def
          by (simp add: atms-of-uninus-lit-atm-of-lit-of atms-of-ms-single-image-atm-of-lit-of)
        then show I \models image\text{-}mset\ uminus\ ?C + \{\#-\ lit\text{-}of\ L\#\}
          unfolding true-clss-def true-cls-def
          \mathbf{using} \ \langle (K \in I \land -K \notin I) \lor (-K \in I \land K \notin I) \rangle
          unfolding L by (auto dest!: H)
     qed
 moreover
    have set F' \cap \{K. \text{ is-marked } K \land K \neq L\} = \{\}
      using backtrack-split-fst-not-marked[of - M] b-sp by auto
    then have F \models as \ CNot \ (image-mset \ uminus \ ?C)
       unfolding M CNot-def true-annots-def by (auto simp add: L lits-of-def)
  ultimately show ?thesis
    using M' \langle D \in \# snd ?S \rangle L by force
lemma backtrack-is-backjump':
  fixes M M' :: ('v, unit, unit) marked-lit list
  assumes
    backtrack: backtrack S T and
```

qed

```
no-dup: (no-dup \circ fst) S and
   decomp: all-decomposition-implies-m \ (snd \ S) \ (get-all-marked-decomposition \ (fst \ S))
       \exists C F' K F L l C'.
         fst \ S = F' \ @ Marked \ K \ () \# F \land
         T = (Propagated \ L \ l \ \# \ F, \ snd \ S) \land C \in \# \ snd \ S \land fst \ S \models as \ CNot \ C
         \land undefined-lit F \ L \land atm-of L \in atm-of-mm (snd S) \cup atm-of ' lits-of-l (fst S) \land
         snd S \models pm C' + \{\#L\#\} \land F \models as CNot C'
 apply (cases S, cases T)
 using backtrack-is-backjump[of fst S snd S fst T snd T] assms by fastforce
{f sublocale}\ dpll-state
  id \lambda L C. C + \{\#L\#\} remove1-mset
  id \ op + op \in \# \lambda L \ C. \ C + \{\#L\#\} \ remove 1 - mset
 fst snd \lambda L (M, N). (L # M, N) \lambda(M, N). (tl M, N)
 \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
 by unfold-locales (auto simp: ac-simps)
sublocale backjumping-ops
  id \lambda L C. C + {\#L\#} remove1-mset
  id \ op + op \in \# \lambda L \ C. \ C + \{\#L\#\} \ remove 1 - mset
 fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
 \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll\text{-}mset\ C\ N) \lambda- - - S\ T. backtrack S\ T
 by unfold-locales
lemma reduce-trail-to<sub>NOT</sub>-snd:
  snd (reduce-trail-to_{NOT} F S) = snd S
 apply (induction F S rule: reduce-trail-to<sub>NOT</sub>.induct)
 by (cases S, rename-tac F Sa, case-tac Sa)
   (simp\ add:\ less-imp-diff-less\ reduce-trail-to_{NOT}.simps)
lemma reduce-trail-to<sub>NOT</sub>:
  reduce-trail-to<sub>NOT</sub> F S =
   (if \ length \ (fst \ S) \ge length \ F
   then drop (length (fst S) – length F) (fst S)
   else [],
   snd S) (is ?R = ?C)
proof -
 have ?R = (fst ?R, snd ?R)
   by auto
 also have (fst ?R, snd ?R) = ?C
   by (auto simp: trail-reduce-trail-to<sub>NOT</sub>-drop reduce-trail-to<sub>NOT</sub>-snd)
 finally show ?thesis.
lemma backtrack-is-backjump":
 fixes MM' :: ('v, unit, unit) marked-lit list
 assumes
   backtrack: backtrack S T and
   no-dup: (no-dup \circ fst) S and
   decomp: all-decomposition-implies-m (snd S) (get-all-marked-decomposition (fst S))
   shows backjump S T
proof -
 obtain C F' K F L l C' where
   1: fst S = F' @ Marked K () \# F and
```

```
2: T = (Propagated \ L \ l \ \# \ F, \ snd \ S) and
   3: C \in \# snd S and
   4: fst \ S \models as \ CNot \ C \ and
   5: undefined-lit F L and
   6: atm\text{-}of\ L\in atm\text{-}of\text{-}mm\ (snd\ S)\cup atm\text{-}of\ `its\text{-}of\text{-}l\ (fst\ S)\ and
    7: snd \ S \models pm \ C' + \{\#L\#\} \ and
   8: F \models as CNot C'
  using backtrack-is-backjump'[OF assms] by force
 show ?thesis
   apply (cases S)
   using backjump.intros[OF 1 - - 4 5 - - 8, of T] 2 backtrack 1 5 3 6 7
   by (auto simp: state-eq_{NOT}-def trail-reduce-trail-to<sub>NOT</sub>-drop
     reduce-trail-to<sub>NOT</sub> simp\ del:\ state-simp_{NOT})
qed
\mathbf{lemma} \ \ can\text{-}do\text{-}bt\text{-}step\text{:}
  assumes
    M: fst \ S = F' @ Marked \ K \ d \ \# \ F \ and
    C \in \# \ snd \ S \ \mathbf{and}
    C: fst \ S \models as \ CNot \ C
  shows \neg no-step backtrack S
proof -
 obtain L G' G where
   backtrack-split (fst S) = (G', L \# G)
   unfolding M by (induction F' rule: marked-lit-list-induct) auto
  moreover then have is-marked L
    by (metis\ backtrack-split-snd-hd-marked\ list.distinct(1)\ list.sel(1)\ snd-conv)
 ultimately show ?thesis
    using backtrack.intros[of S G' L G C] \langle C \in \# \text{ snd } S \rangle C unfolding M by auto
qed
end
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping-ops
   id \lambda L C. C + \{\#L\#\} remove1-mset
   id\ op\ +\ op\ \in \#\ \lambda L\ C.\ C\ +\ \{\#L\#\}\ remove 1\text{-}mset
   fst snd \lambda L (M, N). (L \# M, N)
  \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True
 apply unfold-locales
 by (metis (mono-tags, lifting) case-prod-beta comp-def dpll-with-backtrack.backtrack-is-backjump''
   dpll-with-backtrack.can-do-bt-step id-apply)
sublocale dpll-with-backtrack \subseteq dpll-with-backjumping
   id \lambda L C. C + {\#L\#} remove1-mset
   id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove 1\text{-}mset
   fst snd \lambda L (M, N). (L \# M, N)
  \lambda(M, N). (tl M, N) \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True
 apply unfold-locales
 using dpll-bj-no-dup dpll-bj-all-decomposition-implies-inv apply fastforce
```

```
done
{f context}\ dpll	ext{-}with	ext{-}backtrack
begin
\mathbf{term}\ \mathit{learn}
end
{f context}\ dpll	ext{-}with	ext{-}backtrack
begin
lemma wf-tranclp-dpll-inital-state:
 assumes fin: finite A
 shows wf \{((M'::('v, unit, unit) marked-lits, N'::'v clauses), ([], N))|M'N'N.
    dpll-bj^{++} ([], N) (M', N') \land atms-of-mm N \subseteq atms-of-ms A}
 using wf-tranclp-dpll-bj[OF assms(1)] by (rule wf-subset) auto
corollary full-dpll-final-state-conclusive:
 fixes M M' :: ('v, unit, unit) marked-lit list
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows unsatisfiable (set-mset N) \vee (M' \models asm N \wedge satisfiable (set-mset N))
 using assms full-dpll-backjump-final-state of ([],N) (M',N') set-mset N by auto
{\bf corollary}\ full-dpll-normal-form-from-init-state:
 fixes M M' :: ('v, unit, unit) marked-lit list
 assumes
   full: full dpll-bj ([], N) (M', N')
 shows M' \models asm \ N \longleftrightarrow satisfiable (set-mset \ N)
proof -
 have no-dup M'
   using rtranclp-dpll-bj-no-dup[of([], N)(M', N')]
   full unfolding full-def by auto
  then have M' \models asm N \implies satisfiable (set-mset N)
   using distinct-consistent-interp satisfiable-carac' true-annots-true-cls by blast
 then show ?thesis
 using full-dpll-final-state-conclusive [OF full] by auto
qed
interpretation conflict-driven-clause-learning-ops
   id \lambda L C. C + {\#L\#} remove1-mset
   id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove1\text{-}mset
   fst snd \lambda L (M, N). (L \# M, N)
 \lambda(M, N). (tl M, N) \lambda C (M, N). (M, {#C#} + N) \lambda C (M, N). (M, removeAll-mset C N)
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda- - - S T. backtrack S T
 \lambda- -. True \lambda- -. False \lambda- -. False
 by unfold-locales
interpretation conflict-driven-clause-learning
   id \lambda L C. C + {\#L\#} remove1-mset
   id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove1\text{-}mset
   fst snd \lambda L (M, N). (L \# M, N)
```

 $\lambda(M, N)$. (tl M, N) λC (M, N). (M, {#C#} + N) λC (M, N). (M, removeAll-mset C N) $\lambda(M, N)$. no-dup $M \wedge all$ -decomposition-implies-m N (get-all-marked-decomposition M)

 λ - - - S T. backtrack S T

```
\lambda- -. True \lambda- -. False \lambda- -. False apply unfold-locales using cdcl_{NOT}-all-decomposition-implies cdcl_{NOT}-no-dup by fastforce lemma cdcl_{NOT}-is-dpll: cdcl_{NOT} S T \longleftrightarrow dpll-bj S T by (auto simp: cdcl_{NOT}.simps learn.simps forget_{NOT}.simps) Another proof of termination: lemma wf \{(T, S). dpll-bj S T \land cdcl_{NOT}-NOT-all-inv A S\} unfolding cdcl_{NOT}-is-dpll[symmetric] by (rule wf-cdcl_{NOT}-no-learn-and-forget-infinite-chain) (auto simp: learn.simps forget_{NOT}.simps) end
```

17.2 Adding restarts

This was mainly a test whether it was possible to instantiate the assumption of the locale.

```
{f locale} \ dpll-with backtrack-and-restarts =
  dpll-with-backtrack +
 fixes f :: nat \Rightarrow nat
 assumes unbounded: unbounded f and f-ge-1:\land n. n \ge 1 \implies f n \ge 1
begin
 sublocale cdcl_{NOT}-increasing-restarts
   id \lambda L C. C + {\#L\#} remove1-mset
   id\ op + op \in \# \lambda L\ C.\ C + \{\#L\#\}\ remove1\text{-}mset
 fst snd \lambda L (M, N). (L \# M, N) \lambda (M, N). (tl M, N)
   \lambda C (M, N). (M, \{\#C\#\} + N) \lambda C (M, N). (M, removeAll-mset\ C\ N) f \lambda(-, N) S. S = ([], N)
  \lambda A\ (M,\ N).\ atms	ext{-}of	ext{-}mm\ N\subseteq atms	ext{-}of	ext{-}ms\ A\ \wedge\ atm	ext{-}of\ ``lits	ext{-}of	ext{-}l\ M\subseteq atms	ext{-}of	ext{-}ms\ A\ \wedge\ finite\ A
   \land all-decomposition-implies-m N (get-all-marked-decomposition M)
  \lambda A \ T. \ (2+card \ (atms-of-ms \ A)) \ \widehat{\ } \ (1+card \ (atms-of-ms \ A))
              -\mu_C (1+card (atms-of-ms A)) (2+card (atms-of-ms A)) (trail-weight T) dpll-bj
 \lambda(M, N). no-dup M \wedge all-decomposition-implies-m N (get-all-marked-decomposition M)
 \lambda A -. (2+card (atms-of-ms A)) \cap (1+card (atms-of-ms A))
 apply unfold-locales
         apply (rule unbounded)
        using f-ge-1 apply fastforce
       apply (smt dpll-bj-all-decomposition-implies-inv dpll-bj-atms-in-trail-in-set
         dpll-bj-clauses id-apply prod.case-eq-if)
      apply (rule dpll-bj-trail-mes-decreasing-prop; auto)
     apply (rename-tac A T U, case-tac T, simp)
    apply (rename-tac A T U, case-tac U, simp)
   using dpll-bj-clauses dpll-bj-all-decomposition-implies-inv dpll-bj-no-dup by fastforce+
end
end
theory DPLL-W
imports Main Partial-Clausal-Logic Partial-Annotated-Clausal-Logic List-More Wellfounded-More
  DPLL-NOT
begin
```

18 DPLL

18.1 Rules

```
type-synonym 'a dpll_W-marked-lit = ('a, unit, unit) marked-lit
type-synonym 'a dpll_W-marked-lits = ('a, unit, unit) marked-lits
type-synonym 'v dpll_W-state = 'v dpll_W-marked-lits \times 'v clauses
abbreviation trail :: 'v \ dpll_W-state \Rightarrow 'v \ dpll_W-marked-lits where
trail \equiv fst
abbreviation clauses :: 'v dpll_W-state \Rightarrow 'v clauses where
clauses \equiv snd
The definition of DPLL is given in figure 2.13 page 70 of CW.
inductive dpll_W :: 'v \ dpll_W \text{-state} \Rightarrow 'v \ dpll_W \text{-state} \Rightarrow bool \ \mathbf{where}
propagate: C + \#L\#\} \in \# clauses S \Longrightarrow trail S \models as CNot C \Longrightarrow undefined-lit (trail S) L
  \implies dpll_W \ S \ (Propagated \ L \ () \ \# \ trail \ S, \ clauses \ S)
decided: undefined-lit (trail S) L \Longrightarrow atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (clauses \ S)
  \implies dpll_W \ S \ (Marked \ L \ () \ \# \ trail \ S, \ clauses \ S) \ |
backtrack: backtrack-split (trail S) = (M', L \# M) \Longrightarrow is\text{-}marked L \Longrightarrow D \in \# clauses S
 \implies trail S \models as \ CNot \ D \implies dpll_W \ S \ (Propagated \ (- \ (lit-of \ L)) \ () \# M, \ clauses \ S)
18.2
         Invariants
lemma dpll_W-distinct-inv:
 assumes dpll_W S S'
 and no-dup (trail S)
 shows no-dup (trail S')
 using assms
proof (induct rule: dpll<sub>W</sub>.induct)
 case (decided L S)
 then show ?case using defined-lit-map by force
next
 case (propagate \ C \ L \ S)
 then show ?case using defined-lit-map by force
next
  case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and no\text{-}dup = this(5)
 show ?case
   using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
qed
lemma dpll_W-consistent-interp-inv:
 assumes dpll_W S S'
 and consistent-interp (lits-of-l (trail S))
 and no-dup (trail S)
 shows consistent-interp (lits-of-l (trail S'))
 using assms
proof (induct rule: dpll_W.induct)
 case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and marked = this(2) and D = this(4) and
   cons = this(5) and no\text{-}dup = this(6)
 have no-dup': no-dup M
   by (metis (no-types) backtrack-split-list-eq distinct.simps(2) distinct-append extracted
     list.simps(9) map-append no-dup snd-conv)
  then have insert (lit-of L) (lits-of-l M) \subseteq lits-of-l (trail S)
   using backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by auto
  then have cons: consistent-interp (insert (lit-of L) (lits-of-l M))
```

```
using consistent-interp-subset cons by blast
  moreover
   have lit\text{-}of\ L\notin lits\text{-}of\text{-}l\ M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] extracted
     unfolding lits-of-def by force
  moreover
   have atm\text{-}of\ (-lit\text{-}of\ L) \notin (\lambda m.\ atm\text{-}of\ (lit\text{-}of\ m)) 'set M
     using no-dup backtrack-split-list-eq[of trail S, symmetric] unfolding extracted by force
   then have -lit-of L \notin lits-of-lM
     unfolding lits-of-def by force
 ultimately show ?case by simp
qed (auto intro: consistent-add-undefined-lit-consistent)
lemma dpll_W-vars-in-snd-inv:
 assumes dpll_W S S'
 and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (clauses\ S)
 shows atm-of '(lits-of-l (trail S')) \subseteq atms-of-mm (clauses S')
 using assms
proof (induct rule: dpll_W.induct)
 case (backtrack S M' L M D)
  then have atm\text{-}of\ (lit\text{-}of\ L) \in atms\text{-}of\text{-}mm\ (clauses\ S)
   using backtrack-split-list-eq[of trail S, symmetric] by auto
 moreover
   have atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
     using backtrack(5) by simp
   then have \Lambda xb. xb \in set M \Longrightarrow atm-of (lit-of xb) \in atms-of-mm (clauses S)
     using backtrack-split-list-eq[symmetric, of trail S] backtrack.hyps(1)
     unfolding lits-of-def by auto
 ultimately show ?case by (auto simp : lits-of-def)
qed (auto simp: in-plus-implies-atm-of-on-atms-of-ms)
\mathbf{lemma}\ atms-of\text{-}ms\text{-}lit\text{-}of\text{-}atms\text{-}of\text{:}\ atms\text{-}of\text{-}ms\ ((\lambda a.\ \{\#lit\text{-}of\ a\#\})\ `\ c)=\ atm\text{-}of\ `\ lit\text{-}of\ `\ c
 unfolding atms-of-ms-def using image-iff by force
Lemma theorem 2.8.2 page 71 of CW
lemma dpll_W-propagate-is-conclusion:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 shows all-decomposition-implies-m (clauses S') (get-all-marked-decomposition (trail S'))
 using assms
proof (induct rule: dpll_W.induct)
  case (decided L S)
  then show ?case unfolding all-decomposition-implies-def by simp
next
  case (propagate C L S) note inS = this(1) and cnot = this(2) and IH = this(4) and undef =
this(3) and atms-incl = this(5)
 let ?I = set (map (\lambda a. \{\#lit\text{-}of a\#\}) (trail S)) \cup set\text{-}mset (clauses S)
 have ?I \models p C + \{\#L\#\} by (auto simp add: inS)
 moreover have ?I \models ps\ CNot\ C using true-annots-true-clss-cls cnot by fastforce
 ultimately have ?I \models p \{\#L\#\} using true-clss-cls-plus-CNot[of ?I \ C \ L] in by blast
   assume get-all-marked-decomposition (trail\ S) = []
   then have ?case by blast
  }
```

```
moreover {
   assume n: get-all-marked-decomposition (trail S) \neq []
   have 1: \bigwedge a b. (a, b) \in set (tl (get-all-marked-decomposition (trail S)))
     \implies (unmark-l a \cup set-mset (clauses S)) \models ps unmark-l b
     using IH unfolding all-decomposition-implies-def by (fastforce simp add: list.set-set(2) n)
   moreover have 2: \bigwedge a c. hd (qet-all-marked-decomposition (trail S)) = (a, c)
     \implies (unmark-l a \cup set-mset (clauses S)) \models ps (unmark-l c)
     by (metis IH all-decomposition-implies-cons-pair all-decomposition-implies-single
       list.collapse n)
   moreover have 3: \bigwedge a c. hd (get-all-marked-decomposition (trail S)) = (a, c)
     \implies (unmark-l \ a \cup set-mset \ (clauses \ S)) \models p \ \{\#L\#\}
     proof -
       \mathbf{fix} \ a \ c
      assume h: hd (get\text{-}all\text{-}marked\text{-}decomposition} (trail S)) = (a, c)
       have h': trail S = c @ a using qet-all-marked-decomposition-decomp h by blast
      have I: set (map (\lambda a. \{\#lit\text{-}of a\#\}) \ a) \cup set\text{-}mset (clauses S)
        \cup unmark-l \ c \models ps \ CNot \ C
        using \langle ?I \models ps \ CNot \ C \rangle unfolding h' by (simp add: Un-commute Un-left-commute)
        atms-of-ms (CNot C) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#}) a) \cup set-mset (clauses S))
        atms-of-ms (unmark-l c) \subseteq atms-of-ms (set (map (\lambda a. {#lit-of a#}) a)
          \cup set-mset (clauses S))
          apply (metis CNot-plus Un-subset-iff atms-of-atms-of-ms-mono atms-of-ms-CNot-atms-of
           atms-of-ms-union in S sup.cobounded I2)
        using inS atms-of-atms-of-ms-mono atms-incl by (fastforce simp: h')
      then have unmark-l a \cup set-mset (clauses S) \models ps \ CNot \ C
        using true-clss-clss-left-right[OF - I] h 2 by auto
       then show unmark-l a \cup set-mset (clauses S) \models p \{ \#L\# \}
        by (metis (no-types) Un-insert-right in Sinsert I1 mk-disjoint-insert in S
          true-clss-cls-in true-clss-cls-plus-CNot)
     qed
   ultimately have ?case
     by (cases hd (get-all-marked-decomposition (trail S)))
        (auto simp: all-decomposition-implies-def)
 ultimately show ?case by auto
next
 case (backtrack\ S\ M'\ L\ M\ D) note extracted = this(1) and marked = this(2) and D = this(3) and
   cnot = this(4) and cons = this(4) and IH = this(5) and atms-incl = this(6)
 have S: trail\ S = M' @ L \# M
   using backtrack-split-list-eq[of trail S] unfolding extracted by auto
 have M': \forall l \in set M'. \neg is-marked l
   using extracted backtrack-split-fst-not-marked[of - trail S] by simp
 have n: get-all-marked-decomposition (trail S) \neq [] by auto
 then have all-decomposition-implies-m (clauses S) ((L \# M, M')
         \# tl (qet-all-marked-decomposition (trail S)))
   by (metis (no-types) IH extracted qet-all-marked-decomposition-backtrack-split list.exhaust-sel)
  then have 1: unmark-l (L \# M) \cup set-mset (clauses S) \models ps(\lambda a.\{\#lit\text{-}of a\#\}) 'set M'
   by simp
  moreover
   have unmark-l\ (L\ \#\ M)\cup unmark-l\ M'\models ps\ CNot\ D
     by (metis (mono-tags, lifting) S Un-commute cons image-Un set-append
       true-annots-true-clss-clss)
```

```
then have 2: unmark-l\ (L \# M) \cup set\text{-mset}\ (clauses\ S) \cup unmark-l\ M'
     \models ps \ CNot \ D
   by (metis (no-types, lifting) Un-assoc Un-left-commute true-clss-clss-union-l-r)
ultimately
 have set (map (\lambda a. \{\#lit\text{-}of a\#\}) (L \# M)) \cup set\text{-}mset (clauses S) \models ps CNot D
   using true-clss-clss-left-right by fastforce
 then have set (map (\lambda a. \{\#lit\text{-}of a\#\}) (L \# M)) \cup set\text{-}mset (clauses S) \models p \{\#\}
   by (metis (mono-tags, lifting) D Un-def mem-Collect-eq
     true-clss-clss-contradiction-true-clss-cls-false)
 then have IL: unmark-l M \cup set-mset (clauses S) \models p \{\#-lit\text{-of }L\#\}
   using true-clss-clss-false-left-right by auto
show ?case unfolding S all-decomposition-implies-def
 proof
   \mathbf{fix} \ x \ P \ level
   assume x: x \in set (get-all-marked-decomposition
     (fst (Propagated (- lit-of L) P \# M, clauses S)))
   let ?M' = Propagated (-lit-of L) P \# M
   let ?hd = hd (get-all-marked-decomposition ?M')
   let ?tl = tl \ (get-all-marked-decomposition ?M')
   have x = ?hd \lor x \in set ?tl
     using x
     by (cases get-all-marked-decomposition ?M')
       auto
   moreover {
     assume x': x \in set ?tl
    have L': Marked (lit-of L) () = L using marked by (cases L, auto)
    have x \in set (get-all-marked-decomposition (M' @ L # M))
      \mathbf{using}\ x'\ get-all-marked-decomposition-except-last-choice-equal [of\ M'\ lit-of\ L\ P\ M]
      L' by (metis\ (no\text{-types})\ M'\ list.set\text{-sel}(2)\ tl\text{-Nil})
     then have case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set\text{-mset} (clauses S)
      \models ps \ unmark-l \ seen
      using marked IH by (cases L) (auto simp add: S all-decomposition-implies-def)
   }
   moreover {
    assume x': x = ?hd
    have tl: tl (qet-all-marked-decomposition (M' @ L \# M)) \neq []
      proof -
        have f1: \land ms. length (get-all-marked-decomposition (M' @ ms))
          = length (get-all-marked-decomposition ms)
          by (simp add: M' get-all-marked-decomposition-remove-unmark-ssed-length)
        have Suc (length (get-all-marked-decomposition M)) \neq Suc 0
          by blast
        then show ?thesis
          using f1 marked by (metis (no-types) get-all-marked-decomposition.simps(1) length-tl
            list.sel(3) \ list.size(3) \ marked-lit.collapse(1))
      \mathbf{qed}
     obtain M\theta' M\theta where
      L0: hd (tl (get-all-marked-decomposition (M' @ L \# M))) = (M0, M0')
      by (cases hd (tl (qet-all-marked-decomposition (M' @ L \# M))))
     have x'': x = (M0, Propagated (-lit-of L) P # M0')
      unfolding x' using get-all-marked-decomposition-last-choice tl M' L0
      by (metis\ marked\ marked-lit.collapse(1))
     obtain l-get-all-marked-decomposition where
      get-all-marked-decomposition (trail\ S) = (L \# M, M') \# (M0, M0') \#
        l-get-all-marked-decomposition
```

```
using get-all-marked-decomposition-backtrack-split extracted by (metis (no-types) L0 S
           hd-Cons-tl \ n \ tl)
       then have M = M0' @ M0 using get-all-marked-decomposition-hd-hd by fastforce
       then have IL': unmark-l\ M0 \cup set\text{-}mset\ (clauses\ S)
         \cup unmark-l M0' \models ps \{\{\#- lit-of L\#\}\}
         using IL by (simp add: Un-commute Un-left-commute image-Un)
       moreover have H: unmark-l M0 \cup set-mset (clauses S)
         ⊨ps unmark-l M0'
         using IH x^{\prime\prime} unfolding all-decomposition-implies-def by (metis (no-types, lifting) L0 S
           list.set-sel(1) list.set-sel(2) old.prod.case tl tl-Nil)
       ultimately have case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set-mset (clauses S)
         \models ps \ unmark-l \ seen
         using true-clss-left-right unfolding x'' by auto
     ultimately show case x of (Ls, seen) \Rightarrow
       unmark-l \ Ls \cup set-mset \ (snd \ (?M', \ clauses \ S))
         \models ps \ unmark-l \ seen
       unfolding snd-conv by blast
   qed
qed
Lemma theorem 2.8.3 page 72 of CW
theorem dpll_W-propagate-is-conclusion-of-decided:
 assumes dpll_W S S'
 and all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 shows set-mset (clauses S') \cup {{#lit-of L#} |L. is-marked L \land L \in set (trail S')}
   \models ps \ (\lambda a. \{\#lit\text{-}of \ a\#\}) \ `\{\} \ (set \ `set \ (qet\text{-}all\text{-}marked\text{-}decomposition} \ (trail \ S')))
  using all-decomposition-implies-trail-is-implied [OF\ dpll_W-propagate-is-conclusion [OF\ assms]].
Lemma theorem 2.8.4 page 72 of CW
\mathbf{lemma}\ only\text{-}propagated\text{-}vars\text{-}unsat:
 assumes marked: \forall x \in set M. \neg is\text{-marked } x
 and DN: D \in N and D: M \models as \ CNot \ D
 and inv: all-decomposition-implies N (get-all-marked-decomposition M)
 and atm-incl: atm-of 'lits-of-l M \subseteq atms-of-ms N
 shows unsatisfiable N
proof (rule ccontr)
 assume \neg unsatisfiable N
  then obtain I where
   I: I \models s N \text{ and }
   cons: consistent-interp I and
   tot: total-over-m I N
   unfolding satisfiable-def by auto
  then have I-D: I \models D
   using DN unfolding true-clss-def by auto
 have l0: \{\{\#lit\text{-}of\ L\#\}\ | L.\ is\text{-}marked\ L \land L \in set\ M\} = \{\}\ using\ marked\ by\ auto
 have atms-of-ms (N \cup unmark-l M) = atms-of-ms N
   using atm-incl unfolding atms-of-ms-def lits-of-def by auto
  then have total-over-m I(N \cup (\lambda a. \{\#lit\text{-of } a\#\}) `(set M))
   using tot unfolding total-over-m-def by auto
  then have I \models s (\lambda a. \{\#lit\text{-}of a\#\}) ' (set M)
   \mathbf{using} \ all\text{-}decomposition\text{-}implies\text{-}propagated\text{-}lits\text{-}are\text{-}implied[OF\ inv]}\ cons\ I
```

```
unfolding true-clss-clss-def l0 by auto
 then have IM: I \models s \ unmark-l \ M \ by \ auto
   \mathbf{fix} \ K
   assume K \in \# D
   then have -K \in lits-of-l M
     by (auto split: if-split-asm
       intro: allE[OF\ D[unfolded\ true-annots-def\ Ball-def],\ of\ \{\#-K\#\}])
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl by fastforce
 }
 then have \neg I \models D using cons unfolding true-cls-def consistent-interp-def by auto
 then show False using I-D by blast
qed
lemma dpll_W-same-clauses:
 assumes dpll_W S S'
 shows clauses S = clauses S'
 using assms by (induct rule: dpll<sub>W</sub>.induct, auto)
lemma rtranclp-dpll_W-inv:
 assumes rtranclp \ dpll_W \ S \ S'
 and inv. all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 and consistent-interp (lits-of-l (trail S))
 and no-dup (trail S)
 shows all-decomposition-implies-m (clauses S') (get-all-marked-decomposition (trail S'))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S') \subseteq atms\text{-}of\text{-}mm (clauses\ S')
 and clauses S = clauses S'
 and consistent-interp (lits-of-l (trail S'))
 and no-dup (trail S')
 using assms
proof (induct rule: rtranclp-induct)
 case base
 show
   all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S)) and
   atm-of ' lits-of-l (trail S) \subseteq atms-of-mm (clauses S) and
   clauses S = clauses S and
   consistent-interp (lits-of-l (trail S)) and
   no-dup (trail S) using assms by auto
next
 case (step S' S'') note dpll_W Star = this(1) and IH = this(3,4,5,6,7) and
   dpll_W = this(2)
 moreover
   assume
     inv: all-decomposition-implies-m (clauses S) (qet-all-marked-decomposition (trail S)) and
     atm-incl: atm-of ' lits-of-l (trail S) \subseteq atms-of-mm (clauses S) and
     cons: consistent-interp (lits-of-l (trail S)) and
     no-dup (trail S)
 ultimately have decomp: all-decomposition-implies-m (clauses S')
   (qet-all-marked-decomposition (trail <math>S')) and
   atm-incl': atm-of ' lits-of-l (trail S') \subseteq atms-of-mm (clauses S') and
   snd: clauses S = clauses S' and
   cons': consistent-interp (lits-of-l (trail S')) and
   no-dup': no-dup (trail S') by blast+
 show clauses S = clauses S'' using dpll_W-same-clauses [OF dpll_W] and by metis
```

```
show all-decomposition-implies-m (clauses S'') (get-all-marked-decomposition (trail S''))
   using dpll_W-propagate-is-conclusion [OF dpll_W] decomp atm-incl' by auto
 show atm-of 'lits-of-l (trail S'') \subseteq atms-of-mm (clauses S'')
   using dpll_W-vars-in-snd-inv[OF dpll_W] atm-incl atm-incl' by auto
 show no-dup (trail S'') using dpll_W-distinct-inv[OF dpll_W] no-dup' dpll_W by auto
 show consistent-interp (lits-of-l (trail S''))
   using cons' no-dup' dpll_W-consistent-interp-inv[OF dpll_W] by auto
qed
definition dpll_W-all-inv S \equiv
  (all-decomposition-implies-m \ (clauses \ S) \ (get-all-marked-decomposition \ (trail \ S))
 \land atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 \land consistent-interp (lits-of-l (trail S))
 \land no-dup (trail S))
lemma dpll_W-all-inv-dest[dest]:
 assumes dpll_W-all-inv S
 shows all-decomposition-implies-m (clauses S) (get-all-marked-decomposition (trail S))
 and atm\text{-}of ' lits\text{-}of\text{-}l (trail\ S) \subseteq atms\text{-}of\text{-}mm (clauses\ S)
 and consistent-interp (lits-of-l (trail S)) \land no-dup (trail S)
 using assms unfolding dpll_W-all-inv-def lits-of-def by auto
lemma rtranclp-dpll_W-all-inv:
 assumes rtranclp\ dpll_W\ S\ S
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-inv[OF\ assms(1)] unfolding dpll_W-all-inv-def\ lits-of-def\ by\ blast
lemma dpll_W-all-inv:
 assumes dpll_W S S'
 and dpll_W-all-inv S
 shows dpll_W-all-inv S'
 using assms rtranclp-dpll_W-all-inv by blast
lemma rtranclp-dpll_W-inv-starting-from-\theta:
 assumes rtranclp dpll<sub>W</sub> S S'
 and inv: trail\ S = []
 shows dpll_W-all-inv S'
proof -
 have dpll_W-all-inv S
   using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
 then show ?thesis using rtranclp-dpll_W-all-inv[OF\ assms(1)] by blast
lemma dpll_W-can-do-step:
 assumes consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set M) \subseteq atms-of-mm N
 shows rtranclp dpll_W ([], N) (map (\lambda M. Marked M ()) M, N)
 using assms
proof (induct M)
 case Nil
 then show ?case by auto
\mathbf{next}
```

```
case (Cons\ L\ M)
  then have undefined-lit (map (\lambda M. Marked M ()) M) L
   unfolding defined-lit-def consistent-interp-def by auto
  moreover have atm-of L \in atms-of-mm N using Cons.prems(3) by auto
  ultimately have dpll_W (map (\lambda M. Marked M ()) M, N) (map (\lambda M. Marked M ()) (L \# M), N)
   using dpll_W.decided by auto
 moreover have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-mm N
   using Cons. prems unfolding consistent-interp-def by auto
 ultimately show ?case using Cons.hyps by auto
qed
definition conclusive-dpll_W-state (S:: 'v dpll_W-state) \longleftrightarrow
  (trail\ S \models asm\ clauses\ S \lor ((\forall\ L \in set\ (trail\ S).\ \neg is\text{-}marked\ L)
 \land (\exists C \in \# clauses S. trail S \models as CNot C)))
lemma dpll_W-strong-completeness:
 assumes set M \models sm N
 and consistent-interp (set M)
 and distinct M
 and atm\text{-}of ' (set\ M)\subseteq atms\text{-}of\text{-}mm\ N
 shows dpll_{W}^{**} ([], N) (map (\lambda M. Marked M ()) M, N)
 and conclusive-dpll_W-state (map\ (\lambda M.\ Marked\ M\ ())\ M,\ N)
proof -
 show rtrancly dpll_W ([], N) (map (\lambda M. Marked M ()) M, N) using dpll_W-can-do-step assms by auto
 have map (\lambda M. Marked M ()) M \models asm N using assms(1) true-annots-marked-true-cls by auto
 then show conclusive-dpll<sub>W</sub>-state (map (\lambda M. Marked M ()) M, N)
   unfolding conclusive-dpll_W-state-def by auto
qed
lemma dpll_W-sound:
 assumes
   rtranclp \ dpll_W \ ([], \ N) \ (M, \ N) and
   \forall S. \neg dpll_W (M, N) S
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
proof
 let ?M' = lits - of - lM
 assume ?A
 then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
 ultimately show ?B by auto
next
 assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have (\exists L. \ undefined-lit \ M \ L \land \ atm-of \ L \in atms-of-mm \ N) \lor (\exists D \in \#N. \ M \models as \ CNot \ D)
       proof -
         obtain D :: 'a \ clause \ \mathbf{where} \ D : D \in \# \ N \ \mathbf{and} \ \neg \ M \models a \ D
           using n unfolding true-annots-def Ball-def by auto
         then have (\exists L. undefined-lit M L \land atm-of L \in atms-of D) \lor M \models as CNot D
           unfolding true-annots-def Ball-def CNot-def true-annot-def
           using atm-of-lit-in-atms-of true-annot-iff-marked-or-true-lit true-cls-def by blast
```

```
then show ?thesis
          by (metis Bex-def D atms-of-atms-of-ms-mono rev-subsetD)
      qed
     moreover {
      assume \exists L. undefined-lit M L \land atm\text{-}of L \in atms\text{-}of\text{-}mm N
      then have False using assms(2) decided by fastforce
     moreover {
      assume \exists D \in \#N. M \models as CNot D
      then obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D by auto
        assume \forall l \in set M. \neg is\text{-}marked l
        moreover have dpll_W-all-inv ([], N)
          using assms unfolding all-decomposition-implies-def dpllw-all-inv-def by auto
        ultimately have unsatisfiable (set-mset N)
          using only-propagated-vars-unsat[of M D set-mset N] DN MD
          rtranclp-dpll_W-all-inv[OF\ assms(1)] by force
        then have False using \langle ?B \rangle by blast
      }
      moreover {
        assume l: \exists l \in set M. is\text{-}marked l
        then have False
          using backtrack[of(M, N) - - D]DNMD assms(2)
            backtrack-split-some-is-marked-then-snd-has-hd[OF l]
         by (metis backtrack-split-snd-hd-marked fst-conv list.distinct(1) list.sel(1) snd-conv)
      }
      ultimately have False by blast
     ultimately show False by blast
    qed
qed
18.3
        Termination
definition dpll_W-mes M n =
 map (\lambda l. if is-marked l then 2 else (1::nat)) (rev M) @ replicate (n - length M) 3
lemma length-dpll_W-mes:
 assumes length M \leq n
 shows length (dpll_W - mes\ M\ n) = n
 using assms unfolding dpll_W-mes-def by auto
lemma distinct card-atm-of-lit-of-eq-length:
 assumes no-dup S
 shows card (atm-of 'lits-of-l S) = length S
 using assms by (induct S) (auto simp add: image-image lits-of-def)
lemma dpll_W-card-decrease:
 assumes dpll: dpll_W S S' and length (trail S') \leq card vars
 and length (trail S) \leq card vars
 shows (dpll_W-mes (trail\ S')\ (card\ vars),\ dpll_W-mes (trail\ S)\ (card\ vars))
   \in lexn \{(a, b). a < b\} (card vars)
 using assms
proof (induct rule: dpll_W.induct)
 case (propagate \ C \ L \ S)
 have m: map (\lambda l. if is-marked l then 2 else 1) (rev (trail <math>S))
```

```
@ replicate (card vars - length (trail S)) 3
    = map (\lambda l. if is-marked l then 2 else 1) (rev (trail S)) @ 3
       \# replicate (card vars - Suc (length (trail S))) 3
    using propagate.prems[simplified] using Suc-diff-le by fastforce
 then show ?case
   using propagate.prems(1) unfolding dpll_W-mes-def by (fastforce simp add: lexn-conv assms(2))
next
 case (decided \ S \ L)
 have m: map (\lambda l. if is\text{-marked } l then 2 else 1) (rev (trail S))
     @ replicate (card vars - length (trail S)) 3
   = map (\lambda l. if is-marked l then 2 else 1) (rev (trail S)) @ 3
     \# replicate (card vars - Suc (length (trail S))) 3
   using decided.prems[simplified] using Suc-diff-le by fastforce
 then show ?case
   using decided prems unfolding dpll_W-mes-def by (force simp add: lexn-conv assms(2))
next
 case (backtrack\ S\ M'\ L\ M\ D)
 have L: is-marked L using backtrack.hyps(2) by auto
 have S: trail\ S = M' @ L \# M
   using backtrack.hyps(1) backtrack-split-list-eq[of\ trail\ S] by auto
 \mathbf{show} ? case
   using backtrack prems L unfolding dpll_W-mes-def S by (fastforce simp add: lexn-conv assms(2))
qed
Proposition theorem 2.8.7 page 73 of CW
lemma dpll_W-card-decrease':
 assumes dpll: dpll_W S S'
 and atm-incl: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm (clauses S)
 and no-dup: no-dup (trail S)
 shows (dpll_W-mes (trail\ S')\ (card\ (atms-of-mm\ (clauses\ S'))),
        dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
proof
 have finite (atms-of-mm (clauses S)) unfolding atms-of-ms-def by auto
 then have 1: length (trail S) \leq card (atms-of-mm (clauses S))
   using distinct card-atm-of-lit-of-eq-length [OF no-dup] atm-incl card-mono by metis
 moreover
   have no-dup': no-dup (trail S') using dpll dpll_W-distinct-inv no-dup by blast
   have SS': clauses S' = clauses S using dpll by (auto dest!: dpll<sub>W</sub>-same-clauses)
   have atm-incl': atm-of 'lits-of-l (trail S') \subseteq atms-of-mm (clauses S')
     using atm-incl dpll dpll_W-vars-in-snd-inv[OF dpll] by force
   have finite (atms-of-mm (clauses S'))
     unfolding atms-of-ms-def by auto
   then have 2: length (trail S') \leq card (atms-of-mm (clauses S))
     using distinct card-atm-of-lit-of-eq-length [OF no-dup'] atm-incl' card-mono SS' by metis
 ultimately have (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S))),
     dpll_W-mes (trail S) (card (atms-of-mm (clauses S))))
   \in lexn \{(a, b). \ a < b\} \ (card \ (atms-of-mm \ (clauses \ S)))
   using dpll_W-card-decrease [OF assms(1), of atms-of-mm (clauses S)] by blast
 then have (dpll_W-mes (trail\ S')\ (card\ (atms-of-mm\ (clauses\ S))),
        dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))) \in lex \{(a, b), a < b\}
   unfolding lex-def by auto
 then show (dpll_W - mes \ (trail \ S') \ (card \ (atms-of-mm \ (clauses \ S'))),
       dpll_W-mes (trail\ S)\ (card\ (atms-of-mm\ (clauses\ S)))) \in lex\ \{(a,\ b).\ a < b\}
```

```
using dpll_W-same-clauses [OF assms(1)] by auto
qed
lemma wf-lexn: wf (lexn \{(a, b), (a::nat) < b\} (card (atms-of-mm (clauses S))))
proof -
 have m: \{(a, b), a < b\} = measure id by auto
 show ?thesis apply (rule wf-lexn) unfolding m by auto
qed
lemma dpll_W-wf:
 wf \{(S', S). dpll_W - all - inv S \wedge dpll_W S S'\}
 apply (rule wf-wf-if-measure' OF wf-lex-less, of - -
        \lambda S. \ dpll_W-mes (trail S) (card (atms-of-mm (clauses S)))])
 using dpll_W-card-decrease' by fast
lemma dpll_W-tranclp-star-commute:
  \{(S', S).\ dpll_W - all - inv\ S \land dpll_W\ S\ S'\}^+ = \{(S', S).\ dpll_W - all - inv\ S \land tranclp\ dpll_W\ S\ S'\}
   (is ?A = ?B)
proof
  \{ \text{ fix } S S' \}
   assume (S, S') \in ?A
   then have (S, S') \in ?B
     by (induct rule: trancl.induct, auto)
 then show ?A \subseteq ?B by blast
  \{ \text{ fix } S S' \}
   assume (S, S') \in ?B
   then have dpll_W^{++} S' S and dpll_W-all-inv S' by auto
   then have (S, S') \in ?A
     proof (induct rule: tranclp.induct)
       case r-into-trancl
       then show ?case by (simp-all add: r-into-trancl')
     next
       case (trancl-into-trancl S S' S'')
       then have (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ by blast
       moreover have dpll_W-all-inv S'
         \mathbf{using}\ rtranclp-dpll_W-all-inv[OF\ tranclp-into-rtranclp[OF\ trancl-into-trancl.hyps(1)]]
         trancl-into-trancl.prems by auto
       ultimately have (S'', S') \in \{(pa, p), dpll_W - all - inv p \land dpll_W p pa\}^+
         using \langle dpll_W - all - inv S' \rangle trancl-into-trancl.hyps(3) by blast
       then show ?case
         using (S', S) \in \{a. \ case \ a \ of \ (S', S) \Rightarrow dpll_W - all - inv \ S \land dpll_W \ S \ S'\}^+ \} by auto
 }
 then show ?B \subseteq ?A by blast
qed
lemma dpll_W-wf-tranclp: wf \{(S', S), dpll_W-all-inv S \wedge dpll_W^{++} S S'\}
 unfolding dpll_W-tranclp-star-commute[symmetric] by (simp add: dpll_W-wf wf-trancl)
lemma dpll_W-wf-plus:
 shows wf \{(S', ([], N)) | S'. dpll_W^{++} ([], N) S'\} (is wf ?P)
 apply (rule wf-subset[OF dpll_W-wf-tranclp, of ?P])
 using assms unfolding dpll_W-all-inv-def by auto
```

18.4 Final States

```
lemma dpll_W-no-more-step-is-a-conclusive-state:
  assumes \forall S'. \neg dpll_W S S'
 shows conclusive-dpll_W-state S
proof -
 have vars: \forall s \in atms\text{-}of\text{-}mm \ (clauses \ S). \ s \in atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S)
    proof (rule ccontr)
      assume \neg (\forall s \in atms\text{-}of\text{-}mm \ (clauses \ S). \ s \in atm\text{-}of \ `its\text{-}of\text{-}l \ (trail \ S))
      then obtain L where
        L-in-atms: L \in atms-of-mm (clauses S) and
        L-notin-trail: L \notin atm\text{-}of ' lits-of-l (trail S) by metis
      obtain L' where L': atm\text{-}of\ L' = L\ by\ (meson\ literal.sel(2))
      then have undefined-lit (trail S) L'
        unfolding Marked-Propagated-in-iff-in-lits-of-l by (metis L-notin-trail atm-of-uninus imageI)
      then show False using dpll_W.decided \ assms(1) \ L-in-atms \ L' by blast
    qed
  show ?thesis
    proof (rule ccontr)
      assume not-final: ¬ ?thesis
      then have
        \neg trail S \models asm clauses S  and
        (\exists L \in set \ (trail \ S). \ is\text{-}marked \ L) \lor (\forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C)
        unfolding conclusive-dpll_W-state-def by auto
      moreover {
       assume \exists L \in set \ (trail \ S). is-marked L
       then obtain L M' M where L: backtrack-split (trail S) = (M', L \# M)
          using backtrack-split-some-is-marked-then-snd-has-hd by blast
        obtain D where D \in \# clauses S and \neg trail S \models a D
          using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
        then have \forall s \in atms\text{-}of\text{-}ms \{D\}. s \in atm\text{-}of \text{ '} lits\text{-}of\text{-}l (trail S)
          using vars unfolding atms-of-ms-def by auto
        then have trail S \models as \ CNot \ D
          using all-variables-defined-not-imply-cnot [of D] \langle \neg trail \ S \models a \ D \rangle by auto
        moreover have is-marked L
          using L by (metis backtrack-split-snd-hd-marked list.distinct(1) list.sel(1) snd-conv)
        ultimately have False
          using assms(1) dpll_W.backtrack\ L\ \langle D\in\#\ clauses\ S\rangle\ \langle trail\ S\models as\ CNot\ D\rangle\ \mathbf{by}\ blast
      moreover {
       assume tr: \forall C \in \#clauses \ S. \ \neg trail \ S \models as \ CNot \ C
       obtain C where C-in-cls: C \in \# clauses S and trC: \neg trail S \models a C
          using \langle \neg trail \ S \models asm \ clauses \ S \rangle unfolding true-annots-def by auto
        have \forall s \in atms \text{-}of\text{-}ms \{C\}. s \in atm\text{-}of \text{ '}lits\text{-}of\text{-}l (trail S)
          using vars \langle C \in \# clauses S \rangle unfolding atms-of-ms-def by auto
        then have trail S \models as \ CNot \ C
          by (meson C-in-cls tr trC all-variables-defined-not-imply-cnot)
        then have False using tr C-in-cls by auto
      ultimately show False by blast
    qed
qed
lemma dpll_W-conclusive-state-correct:
 assumes dpll_{W}^{**} ([], N) (M, N) and conclusive-dpll_{W}-state (M, N)
  shows M \models asm N \longleftrightarrow satisfiable (set-mset N) (is ?A \longleftrightarrow ?B)
```

```
proof
 let ?M' = lits - of - lM
 assume ?A
 then have ?M' \models sm \ N by (simp \ add: true-annots-true-cls)
 moreover have consistent-interp ?M'
   using rtranclp-dpll_W-inv-starting-from-0[OF assms(1)] by auto
 ultimately show ?B by auto
next
 assume ?B
 show ?A
   proof (rule ccontr)
     assume n: \neg ?A
     have no-mark: \forall L \in set M. \neg is-marked L \exists C \in \# N. M \models as CNot C
      using n \ assms(2) unfolding conclusive-dpll_W-state-def by auto
     moreover obtain D where DN: D \in \# N and MD: M \models as \ CNot \ D using no-mark by auto
     ultimately have unsatisfiable (set-mset N)
      using only-propagated-vars-unsat rtranclp-dpll_W-all-inv[OF\ assms(1)]
      unfolding dpll_W-all-inv-def by force
     then show False using \langle ?B \rangle by blast
   qed
qed
         Link with NOT's DPLL
18.5
interpretation \textit{dpll}_{W}-\textit{NOT}: \textit{dpll-with-backtrack} .
declare dpll_{W-NOT}.state-simp_{NOT}[simp\ del]
lemma state-eq_{NOT}-iff-eq[iff, simp]: dpll_{W-NOT}.state-eq_{NOT} S T \longleftrightarrow S = T
 unfolding dpll_{W-NOT}.state-eq_{NOT}-def by (cases\ S,\ cases\ T) auto
lemma dpll_W-dpll_W-bj:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W S T
 shows dpll_W-_{NOT}.dpll-bj S T
 using dpll inv
 apply (induction rule: dpll_W.induct)
   apply (rule dpll_{W-NOT}. bj-propagate<sub>NOT</sub>)
   apply (rule dpll_W-_{NOT}.propagate_{NOT}.propagate_{NOT}; simp?)
   apply fastforce
  apply (rule dpll_{W-NOT}. bj-decide<sub>NOT</sub>)
  apply (rule dpll_{W-NOT}.decide_{NOT}.decide_{NOT}; simp?)
  apply fastforce
 apply (frule\ dpll_{W-NOT}.backtrack.intros[of - - - - -],\ simp-all)
 apply (rule dpll_W-_{NOT}.dpll-bj.bj-backjump)
 apply (rule dpll_{W-NOT}. backtrack-is-backjump",
   simp-all\ add:\ dpll_W-all-inv-def)
 done
lemma dpll_W-bj-dpll:
 assumes inv: dpll_W-all-inv S and dpll: dpll_W-NOT. dpll-bj S T
 shows dpll_W S T
 using dpll
 apply (induction rule: dpll_{W-NOT}.dpll-bj.induct)
   apply (elim dpll_W-_{NOT}.decide_{NOT}E, cases S)
   apply (frule decided; simp)
  apply (elim dpll_W-_{NOT}.propagate_{NOT}E, cases S)
  apply (auto intro!: propagate[of - - (-, -), simplified])[]
```

```
apply (elim dpll_{W-NOT}.backjumpE, cases S)
 by (simp\ add:\ dpll_W.simps\ dpll-with-backtrack.backtrack.simps)
lemma rtranclp-dpll_W-rtranclp-dpll_W-_{NOT}:
 assumes dpll_W^{**} S T and dpll_W-all-inv S
 shows dpll_{W-NOT}.dpll-bj^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: rtranclp-dpll_W-all-inv dpll_W-dpll_W-bj rtranclp.rtrancl-into-rtrancl)
lemma rtranclp-dpll-rtranclp-dpll_W:
 assumes dpll_{W-NOT}.dpll-bj^{**} S T and dpll_{W}-all-inv S
 shows dpll_W^{**} S T
 using assms apply (induction)
  apply simp
 by (auto intro: dpll_W-bj-dpll rtranclp.rtrancl-into-rtrancl rtranclp-dpll_W-all-inv)
lemma dpll-conclusive-state-correctness:
 assumes dpll_{W^{-}NOT}.dpll-bj^{**} ([], N) (M, N) and conclusive-dpll_{W^{-}}state (M, N)
 shows M \models asm N \longleftrightarrow satisfiable (set-mset N)
proof -
 have dpll_W-all-inv ([], N)
   unfolding dpll_W-all-inv-def by auto
 show ?thesis
   apply (rule dpll_W-conclusive-state-correct)
     apply (simp\ add: \langle dpll_W - all - inv\ ([],\ N)\rangle\ assms(1)\ rtranclp-dpll-rtranclp-dpll_W)
   using assms(2) by simp
qed
end
theory CDCL-W-Level
imports Partial-Annotated-Clausal-Logic
begin
```

18.5.1 Level of literals and clauses

Getting the level of a variable, implies that the list has to be reversed. Here is the function after reversing.

```
fun get-rev-level :: ('v, nat, 'a) marked-lits \Rightarrow nat \Rightarrow 'v literal \Rightarrow nat where get-rev-level [] - - = 0 | get-rev-level (Marked l level \# Ls) n L = (if atm-of l = atm-of L then level else get-rev-level Ls level L) | get-rev-level (Propagated l - \# Ls) n L = (if atm-of l = atm-of L then n else get-rev-level Ls n L)

abbreviation get-level M L \equiv get-rev-level (rev M) 0 L

lemma get-rev-level-uminus[simp]: get-rev-level M n(-L) = get-rev-level M n L by (induct arbitrary: n rule: get-rev-level.induct) auto

lemma atm-of-notin-get-rev-level-eq-0: assumes atm-of L \notin atm-of ' lits-of-l M shows get-rev-level M n L = 0 using assms by (induct M arbitrary: n rule: marked-lit-list-induct) auto
```

```
lemma get-rev-level-ge-0-atm-of-in:
 assumes get-rev-level M n L > n
 shows atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 using assms by (induct M arbitrary: n rule: marked-lit-list-induct)
 (fastforce\ simp:\ atm-of-notin-get-rev-level-eq-0)+
In get-rev-level (resp. get-level), the beginning (resp. the end) can be skipped if the literal is
not in the beginning (resp. the end).
lemma get-rev-level-skip[simp]:
 assumes atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M
 shows get-rev-level (M @ Marked K i \# M') n L = get-rev-level (Marked K i \# M') i L
 using assms by (induct M arbitrary: n i rule: marked-lit-list-induct) auto
lemma get-rev-level-notin-end[simp]:
 assumes atm\text{-}of \ L \notin atm\text{-}of \ ' \ lits\text{-}of\text{-}l \ M'
 shows get-rev-level (M @ M') n L = get-rev-level M n L
 using assms by (induct M arbitrary: n rule: marked-lit-list-induct)
  (auto simp: atm-of-notin-get-rev-level-eq-0)
If the literal is at the beginning, then the end can be skipped
lemma qet-rev-level-skip-end[simp]:
 assumes atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 shows get-rev-level (M @ M') n L = get-rev-level M n L
 using assms by (induct arbitrary: n rule: marked-lit-list-induct) auto
lemma get-level-skip-beginning:
 assumes atm\text{-}of L' \neq atm\text{-}of (lit\text{-}of K)
 shows get-level (K \# M) L' = get-level M L'
 using assms by auto
\mathbf{lemma} \ get\text{-}level\text{-}skip\text{-}beginning\text{-}not\text{-}marked\text{-}rev:
 assumes atm\text{-}of \ L \notin atm\text{-}of \ `lit\text{-}of \ `(set \ S)
 and \forall s \in set \ S. \ \neg is\text{-}marked \ s
 shows get-level (M @ rev S) L = get-level M L
 using assms by (induction S rule: marked-lit-list-induct) auto
lemma get-level-skip-beginning-not-marked[simp]:
 assumes atm-of L \notin atm-of 'lit-of '(set S)
 and \forall s \in set \ S. \ \neg is\text{-}marked \ s
 shows qet-level (M @ S) L = qet-level M L
 using get-level-skip-beginning-not-marked-rev[of L rev S M] assms by auto
lemma get-rev-level-skip-beginning-not-marked[simp]:
 assumes atm\text{-}of \ L \notin atm\text{-}of \ `lit\text{-}of \ `(set \ S)
 and \forall s \in set \ S. \ \neg is\text{-}marked \ s
 shows get-rev-level (rev S @ rev M) 0 L = get-level M L
 using get-level-skip-beginning-not-marked-rev[of L rev S M] assms by auto
lemma get-level-skip-in-all-not-marked:
 fixes M :: ('a, nat, 'b) marked-lit list and L :: 'a literal
 assumes \forall m \in set M. \neg is\text{-}marked m
 and atm\text{-}of \ L \in atm\text{-}of \ `lit\text{-}of \ `(set \ M)
 shows get-rev-level M n L = n
  using assms by (induction M rule: marked-lit-list-induct) auto
```

```
lemma get-level-skip-all-not-marked[simp]:
 fixes M
 defines M' \equiv rev M
 assumes \forall m \in set M. \neg is\text{-}marked m
 shows get-level ML = 0
proof -
 have M: M = rev M'
   unfolding M'-def by auto
 show ?thesis
   using assms unfolding M by (induction M' rule: marked-lit-list-induct) auto
qed
abbreviation MMax\ M \equiv Max\ (set\text{-}mset\ M)
the \{\#0::'a\#\} is there to ensures that the set is not empty.
definition get-maximum-level :: ('a, nat, 'b) marked-lit list \Rightarrow 'a literal multiset \Rightarrow nat
 where
\textit{get-maximum-level M D} = \textit{MMax} \ (\{\#0\#\} + \textit{image-mset (get-level M) D})
lemma get-maximum-level-ge-get-level:
 L \in \# D \Longrightarrow get\text{-}maximum\text{-}level \ M \ D \ge get\text{-}level \ M \ L
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-empty[simp]:
 get-maximum-level M \{\#\} = 0
 unfolding get-maximum-level-def by auto
lemma get-maximum-level-exists-lit-of-max-level:
 D \neq \{\#\} \Longrightarrow \exists L \in \# D. \ get\text{-level} \ M \ L = get\text{-maximum-level} \ M \ D
 unfolding get-maximum-level-def
 apply (induct D)
  apply simp
 by (rename-tac D x, case-tac D = \{\#\}) (auto simp add: max-def)
lemma qet-maximum-level-empty-list[simp]:
 get-maximum-level []D = 0
 unfolding get-maximum-level-def by (simp add: image-constant-conv)
lemma get-maximum-level-single[simp]:
 get-maximum-level M {\#L\#} = get-level M L
 unfolding get-maximum-level-def by simp
lemma qet-maximum-level-plus:
 get-maximum-level M (D + D') = max (get-maximum-level M D) (get-maximum-level M D')
 by (induct D) (auto simp add: get-maximum-level-def)
lemma get-maximum-level-exists-lit:
 assumes n: n > 0
 and max: get-maximum-level MD = n
 shows \exists L \in \#D. get-level ML = n
proof -
 have f: finite (insert 0 ((\lambda L. get-level M L) 'set-mset D)) by auto
 then have n \in ((\lambda L. \ get\text{-level } M \ L) \ `set\text{-mset } D)
   using n \max Max-in[OF f] unfolding get-maximum-level-def by simp
```

```
then show \exists L \in \# D. get-level ML = n by auto
qed
lemma get-maximum-level-skip-first[simp]:
 assumes atm-of L \notin atms-of D
 shows qet-maximum-level (Propagated L C \# M) D = qet-maximum-level M D
  using assms unfolding get-maximum-level-def atms-of-def
   atm\hbox{-} of\hbox{-} in\hbox{-} atm\hbox{-} of\hbox{-} set\hbox{-} iff\hbox{-} in\hbox{-} set\hbox{-} or\hbox{-} uminus\hbox{-} in\hbox{-} set
 by (smt\ atm\text{-}of\text{-}in\text{-}atm\text{-}of\text{-}set\text{-}in\text{-}uminus\ get\text{-}level\text{-}skip\text{-}beginning\ image\text{-}iff\ marked\text{-}lit.sel(2)}
   multiset.map-cong\theta)
\mathbf{lemma}\ \textit{get-maximum-level-skip-beginning}:
 assumes DH: atms-of D \subseteq atm-of 'lits-of-l H
 shows get-maximum-level (c @ Marked Kh i \# H) D = get-maximum-level H D
proof -
 have (get\text{-}rev\text{-}level\ (rev\ H\ @\ Marked\ Kh\ i\ \#\ rev\ c)\ 0) 'set-mset D
     = (get\text{-}rev\text{-}level (rev H) 0) \cdot set\text{-}mset D
   using DH unfolding atms-of-def
   by (metis (no-types, lifting) get-rev-level-skip-end image-cong image-subset-iff set-rev)
 then show ?thesis using DH unfolding get-maximum-level-def by auto
qed
lemma get-maximum-level-D-single-propagated:
 get-maximum-level [Propagated x21 x22] D = 0
proof -
 have A: insert 0 ((\lambda L. 0) '(set-mset D \cap \{L. atm\text{-}of x21 = atm\text{-}of L\})
     \cup (\lambda L. \ \theta) ' (set-mset D \cap \{L. \ atm\text{-of } x21 \neq atm\text{-of } L\})) = \{\theta\}
   by auto
 show ?thesis unfolding get-maximum-level-def by (simp add: A)
qed
lemma get-maximum-level-skip-notin:
 assumes D: \forall L \in \#D. atm\text{-}of L \in atm\text{-}of 'lits\text{-}of\text{-}l M
 shows get-maximum-level M D = get-maximum-level (Propagated x21 x22 \# M) D
proof -
 have A: (get-rev-level (rev M @ [Propagated x21 x22]) 0) 'set-mset D
     = (qet\text{-}rev\text{-}level (rev M) 0) \cdot set\text{-}mset D
   using D by (auto intro!: image-cong simp add: lits-of-def)
 show ?thesis unfolding get-maximum-level-def by (auto simp: A)
qed
lemma get-maximum-level-skip-un-marked-not-present:
 assumes \forall L \in \#D. atm\text{-}of \ L \in atm\text{-}of ' lits\text{-}of\text{-}l \ aa and
 \forall m \in set M. \neg is\text{-}marked m
 shows get-maximum-level aa D = get-maximum-level (M @ aa) D
 using assms by (induction M rule: marked-lit-list-induct)
  (auto intro!: get-maximum-level-skip-notin[of D - @ aa] simp add: image-Un)
lemma qet-maximum-level-union-mset:
  get-maximum-level M (A \# \cup B) = get-maximum-level M (A + B)
 unfolding get-maximum-level-def by (auto simp: image-Un)
fun get-maximum-possible-level:: ('b, nat, 'c) marked-lit list \Rightarrow nat where
get-maximum-possible-level [] = 0
get-maximum-possible-level \ (Marked \ K \ i \ \# \ l) = max \ i \ (get-maximum-possible-level \ l) \ |
```

```
get-maximum-possible-level (Propagated - - \# l) = get-maximum-possible-level l
lemma get-maximum-possible-level-append[simp]:
  get-maximum-possible-level (M@M')
   = max (get\text{-}maximum\text{-}possible\text{-}level M) (get\text{-}maximum\text{-}possible\text{-}level M')
 by (induct M rule: marked-lit-list-induct) auto
lemma get-maximum-possible-level-rev[simp]:
  get-maximum-possible-level (rev\ M) = get-maximum-possible-level M
 by (induct M rule: marked-lit-list-induct) auto
lemma get-maximum-possible-level-ge-get-rev-level:
  max (get\text{-}maximum\text{-}possible\text{-}level M) i \ge get\text{-}rev\text{-}level M i L
 by (induct M arbitrary: i rule: marked-lit-list-induct) (auto simp add: le-max-iff-disj)
lemma get-maximum-possible-level-ge-get-level[simp]:
  get-maximum-possible-level M \geq get-level M L
 using get-maximum-possible-level-ge-get-rev-level[of rev - \theta] by auto
lemma get-maximum-possible-level-ge-get-maximum-level[simp]:
  get-maximum-possible-level M \geq get-maximum-level M D
  using get-maximum-level-exists-lit-of-max-level unfolding Bex-def
 by (metis get-maximum-level-empty get-maximum-possible-level-ge-get-level le0)
fun get-all-mark-of-propagated where
qet-all-mark-of-propagated [] = []
get-all-mark-of-propagated (Marked - - \# L) = get-all-mark-of-propagated L |
get-all-mark-of-propagated (Propagated - mark \# L) = mark \# get-all-mark-of-propagated L
lemma get-all-mark-of-propagated-append[simp]:
  get-all-mark-of-propagated (A @ B) = get-all-mark-of-propagated A @ get-all-mark-of-propagated B
 by (induct A rule: marked-lit-list-induct) auto
          Properties about the levels
18.5.2
fun get-all-levels-of-marked :: ('b, 'a, 'c) marked-lit list \Rightarrow 'a list where
get-all-levels-of-marked [] = []
get-all-levels-of-marked (Marked l level \# Ls) = level \# get-all-levels-of-marked Ls
get-all-levels-of-marked (Propagated - - # Ls) = get-all-levels-of-marked Ls
lemma qet-all-levels-of-marked-nil-iff-not-is-marked:
 get-all-levels-of-marked xs = [] \longleftrightarrow (\forall x \in set \ xs. \ \neg is\text{-marked} \ x)
 using assms by (induction xs rule: marked-lit-list-induct) auto
lemma get-all-levels-of-marked-cons:
  get-all-levels-of-marked (a \# b) =
   (if is-marked a then [level-of a] else []) @ get-all-levels-of-marked b
  by (cases a) simp-all
lemma get-all-levels-of-marked-append[simp]:
  qet-all-levels-of-marked (a @ b) = qet-all-levels-of-marked a @ qet-all-levels-of-marked b
 by (induct a) (simp-all add: get-all-levels-of-marked-cons)
lemma in-get-all-levels-of-marked-iff-decomp:
  i \in set \ (get-all-levels-of-marked \ M) \longleftrightarrow (\exists \ c \ K \ c'. \ M = c \ @ Marked \ K \ i \ \# \ c') \ (is \ ?A \longleftrightarrow ?B)
proof
```

```
assume ?B
 then show ?A by auto
  assume ?A
 then show ?B
   apply (induction M rule: marked-lit-list-induct)
     apply auto[]
    apply (metis append-Cons append-Nil get-all-levels-of-marked.simps(2) set-ConsD)
   by (metis\ append\text{-}Cons\ get\text{-}all\text{-}levels\text{-}of\text{-}marked.simps}(3))
lemma get-rev-level-less-max-get-all-levels-of-marked:
  get-rev-level M n L \leq Max (set (n \# get-all-levels-of-marked M))
 by (induct M arbitrary: n rule: get-all-levels-of-marked.induct)
    (simp-all\ add:\ max.coboundedI2)
lemma get-rev-level-ge-min-get-all-levels-of-marked:
 assumes atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
 shows get-rev-level M n L \ge Min (set (n \# get-all-levels-of-marked M))
 using assms by (induct M arbitrary: n rule: get-all-levels-of-marked.induct)
   (auto simp add: min-le-iff-disj)
lemma\ get-all-levels-of-marked-rev-eq-rev-get-all-levels-of-marked[simp]:
  get-all-levels-of-marked (rev\ M) = rev\ (get-all-levels-of-marked M)
 by (induct M rule: get-all-levels-of-marked.induct)
    (simp-all add: max.coboundedI2)
\mathbf{lemma}\ \textit{get-maximum-possible-level-max-get-all-levels-of-marked}:
  get-maximum-possible-level M = Max (insert \ 0 \ (set \ (get-all-levels-of-marked M)))
 by (induct M rule: marked-lit-list-induct) (auto simp: insert-commute)
lemma get-rev-level-in-levels-of-marked:
  get-rev-level M n L \in \{0, n\} \cup set (get-all-levels-of-marked M)
 by (induction M arbitrary: n rule: marked-lit-list-induct) (force simp add: atm-of-eq-atm-of)+
lemma qet-rev-level-in-atms-in-levels-of-marked:
  atm\text{-}of \ L \in atm\text{-}of \ (lits\text{-}of\text{-}l \ M) \Longrightarrow
   get-rev-level M n L \in \{n\} \cup set (get-all-levels-of-marked M)
 by (induction M arbitrary: n rule: marked-lit-list-induct) (auto simp add: atm-of-eq-atm-of)
lemma get-all-levels-of-marked-no-marked:
  (\forall l \in set \ Ls. \ \neg \ is\text{-}marked \ l) \longleftrightarrow get\text{-}all\text{-}levels\text{-}of\text{-}marked} \ Ls = []
 by (induction Ls) (auto simp add: get-all-levels-of-marked-cons)
lemma get-level-in-levels-of-marked:
  get-level M L \in \{0\} \cup set (get-all-levels-of-marked M)
 using get-rev-level-in-levels-of-marked [of rev M \ 0 \ L] by auto
The zero is here to avoid empty-list issues with last:
lemma get-level-get-rev-level-get-all-levels-of-marked:
 assumes atm\text{-}of \ L \notin atm\text{-}of \ (lits\text{-}of\text{-}l \ M)
 shows
   get-level (K @ M) L = get-rev-level (rev K) (last (0 \# get-all-levels-of-marked (rev M))) L
 using assms
proof (induct M arbitrary: K)
```

```
case Nil
  then show ?case by auto
  case (Cons\ a\ M)
  then have H: \bigwedge K. get-level (K @ M) L
   = get\text{-}rev\text{-}level \ (rev \ K) \ (last \ (0 \ \# get\text{-}all\text{-}levels\text{-}of\text{-}marked \ (rev \ M))) \ L
   by auto
 have get-level ((K @ [a]) @ M) L
   = get\text{-}rev\text{-}level \ (a \# rev \ K) \ (last \ (0 \# get\text{-}all\text{-}levels\text{-}of\text{-}marked \ (rev \ M))) \ L
   using H[of K @ [a]] by simp
 then show ?case using Cons(2) by (cases a) auto
qed
lemma get-rev-level-can-skip-correctly-ordered:
 assumes
   no-dup M and
   atm\text{-}of \ L \notin atm\text{-}of \ (lits\text{-}of\text{-}l \ M) and
   qet-all-levels-of-marked M = rev [Suc \ 0... < Suc \ (length \ (qet-all-levels-of-marked M))]
 shows get-rev-level (rev M @ K) 0 L = \text{get-rev-level } K (length (get-all-levels-of-marked <math>M)) L
 using assms
proof (induct M arbitrary: K rule: marked-lit-list-induct)
 case nil
  then show ?case by simp
next
 case (marked L' i M K)
 then have
   i: i = Suc (length (get-all-levels-of-marked M)) and
   get-all-levels-of-marked\ M=rev\ [Suc\ 0..< Suc\ (length\ (get-all-levels-of-marked\ M))]
   by auto
 then have get-rev-level (rev M \otimes (Marked L' i \# K)) \ 0 \ L
   = get-rev-level (Marked L' i \# K) (length (get-all-levels-of-marked M)) L
   using marked by auto
  then show ?case using marked unfolding i by auto
next
  case (proped L' D M K)
 then have qet-all-levels-of-marked M = rev [Suc \ 0... < Suc \ (length \ (qet-all-levels-of-marked \ M))]
 then have get-rev-level (rev M @ (Propagated L' D \# K)) 0 L
   = get-rev-level (Propagated L' D \# K) (length (get-all-levels-of-marked M)) L
   using proped by auto
 then show ?case using proped by auto
qed
lemma get-level-skip-beginning-hd-get-all-levels-of-marked:
 assumes atm-of L \notin atm-of 'lits-of-l S and get-all-levels-of-marked S \neq []
 shows get-level (M@S) L = get-rev-level (rev M) (hd (get-all-levels-of-marked S)) L
 using assms
proof (induction S arbitrary: M rule: marked-lit-list-induct)
 then show ?case by (auto simp add: lits-of-def)
next
 case (marked\ K\ m) note notin=this(2)
 then show ?case by (auto simp add: lits-of-def)
next
  case (proped L l) note IH = this(1) and L = this(2) and neq = this(3)
```

```
 \begin{array}{l} \textbf{show} \ ? case \ \textbf{using} \ IH[of \ M@[Propagated \ L \ l]] \ L \ neq \ \textbf{by} \ (auto \ simp \ add: \ atm-of-eq-atm-of) \\ \textbf{qed} \\ \\ \textbf{end} \\ \textbf{theory} \ CDCL-W \\ \textbf{imports} \ CDCL-W \\ \textbf{imports} \ CDCL-Abstract-Clause-Representation \ List-More \ CDCL-W-Level \ Wellfounded-More \\ \textbf{begin} \end{array}
```

19 Weidenbach's CDCL

declare $upt.simps(2)[simp \ del]$

19.1 The State

We will abstract the representation of clause and clauses via two locales. We expect our representation to behave like multiset, but the internal representation can be done using list or whatever other representation.

```
locale state_W-ops =
  raw-clss mset-cls insert-cls remove-lit
     mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
  raw-ccls-union mset-ccls union-ccls insert-ccls remove-clit
     — Clause
     mset-cls:: 'cls \Rightarrow 'v \ clause \ {\bf and}
     insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
     remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
     — Multiset of Clauses
     mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
     insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
     remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
     mset\text{-}ccls:: 'ccls \Rightarrow 'v \ clause \ and
     union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
     insert\text{-}ccls :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
     remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls
  fixes
     ccls-of-cls :: 'cls \Rightarrow 'ccls and
     \mathit{cls\text{-}\mathit{of\text{-}\mathit{ccls}}} :: '\mathit{ccls} \Rightarrow '\mathit{cls} \ \mathbf{and}
     trail :: 'st \Rightarrow ('v, nat, 'v \ clause) \ marked-lits \ and
     hd-raw-trail :: 'st \Rightarrow ('v, nat, 'cls) marked-lit and
     raw-init-clss :: 'st \Rightarrow 'clss and
     raw-learned-clss :: 'st \Rightarrow 'clss and
     backtrack-lvl :: 'st \Rightarrow nat and
     raw-conflicting :: 'st \Rightarrow 'ccls option and
     cons-trail :: ('v, nat, 'cls) marked-lit \Rightarrow 'st \Rightarrow 'st and
     tl-trail :: 'st \Rightarrow 'st and
```

```
add-init-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
   add-learned-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
   remove\text{-}cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
   update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
   update-conflicting :: 'ccls option \Rightarrow 'st \Rightarrow 'st and
   init-state :: 'clss \Rightarrow 'st and
   restart-state :: 'st \Rightarrow 'st
 assumes
   mset-ccls-ccls-of-cls[simp]:
     mset-ccls (ccls-of-cls C) = mset-cls C and
   mset-cls-of-ccls[simp]:
     mset-cls (cls-of-ccls D) = mset-ccls D and
   ex-mset-cls: \exists a. mset-cls a = E
begin
fun mmset-of-mlit :: ('a, 'b, 'cls) marked-lit \Rightarrow ('a, 'b, 'v clause) marked-lit
 where
mmset-of-mlit (Propagated L C) = Propagated L (mset-cls C)
mmset-of-mlit (Marked L i) = Marked L i
lemma lit-of-mmset-of-mlit[simp]:
  lit-of\ (mmset-of-mlit\ a) = lit-of\ a
 by (cases a) auto
lemma lit-of-mmset-of-mlit-set-lit-of-l[simp]:
  lit-of ' mmset-of-mlit ' set M' = lits-of-l M'
 by (induction M') auto
lemma map-mmset-of-mlit-true-annots-true-cls[simp]:
 map mmset-of-mlit\ M' \models as\ C \longleftrightarrow M' \models as\ C
 by (simp add: true-annots-true-cls lits-of-def)
abbreviation init-clss \equiv \lambda S. mset-clss (raw-init-clss S)
abbreviation learned-clss \equiv \lambda S. mset-clss (raw-learned-clss S)
abbreviation conflicting \equiv \lambda S. map-option mset-ccls (raw-conflicting S)
notation insert-cls (infix !++ 50)
notation in-clss (infix ! \in ! 50)
notation union-clss (infix \oplus 50)
notation insert-clss (infix !++! 50)
notation union-ccls (infix ! \cup 50)
definition raw-clauses :: 'st \Rightarrow 'clss where
raw-clauses S = union-clss (raw-init-clss S) (raw-learned-clss S)
abbreviation clauses :: 'st \Rightarrow 'v clauses where
clauses S \equiv mset-clss (raw-clauses S)
end
locale state_W =
 state_W-ops
   — functions for clauses:
```

```
mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
  — functions for the conflicting clause:
  mset\text{-}ccls\ union\text{-}ccls\ insert\text{-}ccls\ remove\text{-}clit
  — Conversion between conflicting and non-conflicting
  ccls-of-cls cls-of-ccls
  — functions for the state:
    — access functions:
  trail hd-raw-trail raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
     — changing state:
  cons-trail tl-trail add-init-cls add-learned-cls remove-cls update-backtrack-lvl
  update-conflicting
    — get state:
  init-state
  restart-state
for
  mset-cls:: 'cls \Rightarrow 'v \ clause \ and
  insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ {\bf and}
  remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
  mset-clss:: 'clss \Rightarrow 'v \ clauses \ {\bf and}
  union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
  in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
  insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
  remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
  mset\text{-}ccls:: 'ccls \Rightarrow 'v \ clause \ \mathbf{and}
  union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
  insert\text{-}ccls :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
  remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
  ccls-of-cls :: 'cls \Rightarrow 'ccls and
  cls-of-ccls :: 'ccls \Rightarrow 'cls and
  trail :: 'st \Rightarrow ('v, nat, 'v clause) marked-lits and
  \textit{hd-raw-trail} :: 'st \Rightarrow ('v, \ \textit{nat}, \ '\textit{cls}) \ \textit{marked-lit} \ \textbf{and}
  raw-init-clss :: 'st \Rightarrow 'clss and
  raw-learned-clss :: 'st \Rightarrow 'clss and
  backtrack-lvl :: 'st \Rightarrow nat and
  raw-conflicting :: 'st \Rightarrow 'ccls option and
  cons-trail :: ('v, nat, 'cls) marked-lit \Rightarrow 'st \Rightarrow 'st and
  tl-trail :: 'st \Rightarrow 'st and
  add-init-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
  add-learned-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
  remove\text{-}cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
  update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
  update-conflicting :: 'ccls option \Rightarrow 'st \Rightarrow 'st and
  init-state :: 'clss \Rightarrow 'st and
  restart-state :: 'st \Rightarrow 'st +
```

```
assumes
  hd-raw-trail: trail S \neq [] \implies mmset-of-mlit (hd-raw-trail S) = hd (trail S) and
  trail-cons-trail[simp]:
    \bigwedge L st. undefined-lit (trail st) (lit-of L) \Longrightarrow
      trail\ (cons-trail\ L\ st) = mmset-of-mlit\ L\ \#\ trail\ st\ {\bf and}
  trail-tl-trail[simp]: \land st. trail (tl-trail st) = tl (trail st) and
  trail-add-init-cls[simp]:
    \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow trail\ (add\text{-}init\text{-}cls\ C\ st) = trail\ st\ \mathbf{and}
  trail-add-learned-cls[simp]:
    \bigwedge C st. no-dup (trail st) \Longrightarrow trail (add-learned-cls C st) = trail st and
  trail-remove-cls[simp]:
    \bigwedge C st. trail (remove-cls C st) = trail st and
  trail-update-backtrack-lvl[simp]: \bigwedge st\ C.\ trail\ (update-backtrack-lvl\ C\ st) = trail\ st\ \mathbf{and}
  trail-update-conflicting[simp]: \bigwedge C st. trail (update-conflicting C st) = trail st and
  init-clss-cons-trail[simp]:
    \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
      init-clss (cons-trail M st) = init-clss st
    and
  init-clss-tl-trail[simp]:
    \bigwedge st. \ init\text{-}clss \ (tl\text{-}trail \ st) = init\text{-}clss \ st \ \mathbf{and}
  init-clss-add-init-cls[simp]:
    \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow init\text{-}clss\ (add\text{-}init\text{-}cls\ C\ st) = \{\#mset\text{-}cls\ C\#\} + init\text{-}clss\ st\}
    and
  init-clss-add-learned-cls[simp]:
    \bigwedge C st. no-dup (trail st) \Longrightarrow init-clss (add-learned-cls C st) = init-clss st and
  init-clss-remove-cls[simp]:
    \bigwedge C st. init-clss (remove-cls C st) = removeAll-mset (mset-cls C) (init-clss st) and
  init-clss-update-backtrack-lvl[simp]:
    \bigwedge st\ C.\ init-clss\ (update-backtrack-lvl\ C\ st)=init-clss\ st\ and
  init-clss-update-conflicting[simp]:
    \bigwedge C st. init-clss (update-conflicting C st) = init-clss st and
  learned-clss-cons-trail[simp]:
    \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
      learned-clss (cons-trail M st) = learned-clss st and
  learned-clss-tl-trail[simp]:
    \bigwedge st.\ learned\text{-}clss\ (tl\text{-}trail\ st) = learned\text{-}clss\ st\ \mathbf{and}
  learned-clss-add-init-cls[simp]:
    \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow learned\text{-}clss\ (add\text{-}init\text{-}cls\ C\ st) = learned\text{-}clss\ st\ and
  learned-clss-add-learned-cls[simp]:
    \bigwedge C st. no-dup (trail st) \Longrightarrow
      learned-clss (add-learned-cls C st) = \{ \#mset-cls C\# \} + learned-clss st and
  learned-clss-remove-cls[simp]:
    \bigwedge C st. learned-clss (remove-cls C st) = removeAll-mset (mset-cls C) (learned-clss st) and
  learned-clss-update-backtrack-lvl[simp]:
    \bigwedge st\ C.\ learned\text{-}clss\ (update\text{-}backtrack\text{-}lvl\ C\ st) = learned\text{-}clss\ st\ and
  learned-clss-update-conflicting[simp]:
    \bigwedge C st. learned-clss (update-conflicting C st) = learned-clss st and
  backtrack-lvl-cons-trail[simp]:
    \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
      backtrack-lvl (cons-trail M st) = backtrack-lvl st and
  backtrack-lvl-tl-trail[simp]:
```

 $\bigwedge st.\ backtrack-lvl\ (tl-trail\ st) = backtrack-lvl\ st\ {\bf and}$

```
backtrack-lvl-add-init-cls[simp]:
      \bigwedge st\ C.\ no\text{-}dup\ (trail\ st) \Longrightarrow backtrack\text{-}lvl\ (add\text{-}init\text{-}cls\ C\ st) = backtrack\text{-}lvl\ st\ and}
    backtrack-lvl-add-learned-cls[simp]:
      \bigwedge C st. no-dup (trail st) \Longrightarrow backtrack-lvl (add-learned-cls C st) = backtrack-lvl st and
    backtrack-lvl-remove-cls[simp]:
      \bigwedge C st. backtrack-lvl (remove-cls C st) = backtrack-lvl st and
    backtrack-lvl-update-backtrack-lvl[simp]:
      \bigwedge st\ k.\ backtrack-lvl\ (update-backtrack-lvl\ k\ st)=k\ {\bf and}
    backtrack-lvl-update-conflicting[simp]:
      \bigwedge C st. backtrack-lvl (update-conflicting C st) = backtrack-lvl st and
    conflicting-cons-trail[simp]:
      \bigwedge M st. undefined-lit (trail st) (lit-of M) \Longrightarrow
        conflicting (cons-trail M st) = conflicting st  and
    conflicting-tl-trail[simp]:
      \bigwedge st. conflicting (tl\text{-trail }st) = conflicting st and
    conflicting-add-init-cls[simp]:
      \wedge st \ C. \ no-dup \ (trail \ st) \Longrightarrow conflicting \ (add-init-cls \ C \ st) = conflicting \ st \ and
    conflicting-add-learned-cls[simp]:
      \bigwedge C st. no-dup (trail st) \Longrightarrow conflicting (add-learned-cls C st) = conflicting st
      and
    conflicting-remove-cls[simp]:
      \bigwedge C st. conflicting (remove-cls C st) = conflicting st and
    conflicting-update-backtrack-lvl[simp]:
      \bigwedge st\ C.\ conflicting\ (update-backtrack-lvl\ C\ st) = conflicting\ st\ and
    conflicting-update-conflicting[simp]:
      \bigwedge C st. raw-conflicting (update-conflicting C st) = C and
    init-state-trail[simp]: \bigwedge N. trail (init-state N) = [] and
    init-state-clss[simp]: \bigwedge N. (init-clss (init-state N)) = mset-clss N and
    init-state-learned-clss[simp]: \bigwedge N. learned-clss (init-state N) = \{\#\} and
    init-state-backtrack-lvl[simp]: \bigwedge N. backtrack-lvl (init-state N) = 0 and
    init-state-conflicting[simp]: \bigwedge N. conflicting (init-state N) = None and
    trail-restart-state[simp]: trail (restart-state S) = [] and
    init-clss-restart-state[simp]: init-clss (restart-state S) = init-clss S and
    learned-clss-restart-state[intro]:
      learned\text{-}clss\ (restart\text{-}state\ S) \subseteq \#\ learned\text{-}clss\ S\ \mathbf{and}
    backtrack-lvl-restart-state[simp]: backtrack-lvl (restart-state S) = 0 and
    conflicting-restart-state[simp]: conflicting (restart-state S) = None
begin
lemma
  shows
    clauses-cons-trail[simp]:
      undefined-lit (trail\ S)\ (lit\text{-}of\ M) \Longrightarrow clauses\ (cons\text{-}trail\ M\ S) = clauses\ S\ and
    clss-tl-trail[simp]: clauses (tl-trail S) = clauses S and
    clauses-add-learned-cls-unfolded:
      no-dup (trail\ S) \Longrightarrow clauses\ (add-learned-cls U\ S) =
         \{\#mset\text{-}cls\ U\#\} + learned\text{-}clss\ S + init\text{-}clss\ S
      and
    clauses-add-init-cls[simp]:
      no-dup (trail S) \Longrightarrow
        clauses\ (add\text{-}init\text{-}cls\ N\ S) = \{\#mset\text{-}cls\ N\#\} + init\text{-}clss\ S + learned\text{-}clss\ S\ and
```

```
clauses-update-backtrack-lvl[simp]: clauses (update-backtrack-lvl k S) = clauses S and
       clauses-update-conflicting [simp]: clauses (update-conflicting D(S) = clauses(S) and
       clauses-remove-cls[simp]:
           clauses (remove-cls \ C \ S) = removeAll-mset (mset-cls \ C) (clauses \ S) and
       clauses-add-learned-cls[simp]:
           no\text{-}dup \ (trail \ S) \Longrightarrow clauses \ (add\text{-}learned\text{-}cls \ C \ S) = \{\#mset\text{-}cls \ C\#\} + clauses \ S \ and \ G \ add\text{-}learned \ S \ and \ G \ add\text{-}learned \ S \ add\text{-}
       clauses-restart[simp]: clauses (restart-state S) \subseteq \# clauses S and
       clauses-init-state[simp]: \bigwedge N. clauses (init-state N) = mset-clss N
       prefer 9 using raw-clauses-def learned-clss-restart-state apply fastforce
       by (auto simp: ac-simps replicate-mset-plus raw-clauses-def intro: multiset-eqI)
abbreviation state :: 'st \Rightarrow ('v, nat, 'v \ clause) \ marked-lit \ list \times 'v \ clauses \times 'v \ clauses
    \times nat \times 'v clause option where
state\ S \equiv (trail\ S,\ init-clss\ S,\ learned-clss\ S,\ backtrack-lvl\ S,\ conflicting\ S)
abbreviation incr-lvl :: 'st \Rightarrow 'st where
incr-lvl \ S \equiv update-backtrack-lvl \ (backtrack-lvl \ S + 1) \ S
definition state-eq :: 'st \Rightarrow 'st \Rightarrow bool (infix \sim 50) where
S \sim T \longleftrightarrow state \ S = state \ T
lemma state-eq-ref[simp, intro]:
   S \sim S
   unfolding state-eq-def by auto
lemma state-eq-sym:
    S \sim T \longleftrightarrow T \sim S
   unfolding state-eq-def by auto
lemma state-eq-trans:
    S \sim T \Longrightarrow T \sim U \Longrightarrow S \sim U
   unfolding state-eq-def by auto
lemma
   shows
       state-eq-trail: S \sim T \Longrightarrow trail \ S = trail \ T and
       state-eq-init-clss: S \sim T \Longrightarrow init-clss S = init-clss T and
       state-eq-learned-clss: S \sim T \Longrightarrow learned-clss S = learned-clss T and
       state-eq-backtrack-lvl: S \sim T \Longrightarrow backtrack-lvl S = backtrack-lvl T and
       state-eq-conflicting: S \sim T \Longrightarrow conflicting S = conflicting T and
       state-eq-clauses: S \sim T \Longrightarrow clauses S = clauses T and
       state-eq-undefined-lit: S \sim T \Longrightarrow undefined-lit (trail S) L = undefined-lit (trail T) L
    unfolding state-eq-def raw-clauses-def by auto
{f lemma}\ state-eq	ext{-}raw	ext{-}conflicting-None:
    S \sim T \Longrightarrow conflicting \ T = None \Longrightarrow raw-conflicting \ S = None
   unfolding state-eq-def raw-clauses-def by auto
lemmas state-simp[simp] = state-eq-trail state-eq-init-clss state-eq-learned-clss
    state-eq-backtrack-lvl\ state-eq-conflicting\ state-eq-clauses\ state-eq-undefined-lit
    state-eq-raw-conflicting-None
lemma atms-of-ms-learned-clss-restart-state-in-atms-of-ms-learned-clss [intro]:
    x \in atms\text{-}of\text{-}mm \ (learned\text{-}clss \ (restart\text{-}state \ S)) \Longrightarrow x \in atms\text{-}of\text{-}mm \ (learned\text{-}clss \ S)
   by (meson\ atms-of-ms-mono\ learned-clss-restart-state\ set-mset-mono\ subset CE)
```

```
function reduce-trail-to :: 'a list \Rightarrow 'st \Rightarrow 'st where
reduce-trail-to F S =
  (if \ length \ (trail \ S) = \ length \ F \lor trail \ S = [] \ then \ S \ else \ reduce-trail-to \ F \ (tl-trail \ S))
by fast+
termination
 by (relation measure (\lambda(\cdot, S)). length (trail S))) simp-all
declare reduce-trail-to.simps[simp del]
lemma
 shows
   reduce-trail-to-nil[simp]: trail S = [] \implies reduce-trail-to F S = S and
   reduce-trail-to-eq-length[simp]: length (trail S) = length F \Longrightarrow reduce-trail-to F S = S
 by (auto simp: reduce-trail-to.simps)
lemma reduce-trail-to-length-ne:
  length (trail S) \neq length F \Longrightarrow trail S \neq [] \Longrightarrow
   reduce-trail-to F S = reduce-trail-to F (tl-trail S)
 by (auto simp: reduce-trail-to.simps)
lemma trail-reduce-trail-to-length-le:
 assumes length F > length (trail S)
 shows trail\ (reduce-trail-to\ F\ S) = []
 using assms apply (induction F S rule: reduce-trail-to.induct)
  by (metis (no-types, hide-lams) length-tl less-imp-diff-less less-irreft trail-tl-trail
   reduce-trail-to.simps)
lemma trail-reduce-trail-to-nil[simp]:
  trail (reduce-trail-to [] S) = []
 apply (induction []::('v, nat, 'v clause) marked-lits S rule: reduce-trail-to.induct)
 by (metis length-0-conv reduce-trail-to-length-ne reduce-trail-to-nil)
lemma clauses-reduce-trail-to-nil:
  clauses (reduce-trail-to [] S) = clauses S
\mathbf{proof} (induction [] S rule: reduce-trail-to.induct)
 then have clauses (reduce-trail-to ([::'a \ list) \ (tl-trail Sa)) = clauses (tl-trail Sa)
   \vee trail Sa = []
   by fastforce
 then show clauses (reduce-trail-to ([]::'a list) Sa) = clauses Sa
   by (metis (no-types) length-0-conv reduce-trail-to-eq-length clss-tl-trail
     reduce-trail-to-length-ne)
qed
lemma reduce-trail-to-skip-beginning:
 assumes trail S = F' @ F
 shows trail (reduce-trail-to F S) = F
 using assms by (induction F' arbitrary: S) (auto simp: reduce-trail-to-length-ne)
lemma clauses-reduce-trail-to[simp]:
  clauses (reduce-trail-to F S) = clauses S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis clss-tl-trail reduce-trail-to.simps)
```

```
lemma conflicting-update-trail[simp]:
  conflicting (reduce-trail-to F S) = conflicting S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-tl-trail reduce-trail-to.simps)
lemma backtrack-lvl-update-trail[simp]:
  backtrack-lvl (reduce-trail-to F S) = backtrack-lvl S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis backtrack-lvl-tl-trail reduce-trail-to.simps)
lemma init-clss-update-trail[simp]:
  init-clss (reduce-trail-to F(S) = init-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis init-clss-tl-trail reduce-trail-to.simps)
lemma learned-clss-update-trail[simp]:
  learned-clss (reduce-trail-to F(S) = learned-clss S
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis learned-clss-tl-trail reduce-trail-to.simps)
lemma raw-conflicting-reduce-trail-to[simp]:
  raw-conflicting (reduce-trail-to F(S) = None \longleftrightarrow raw-conflicting S = None
 apply (induction F S rule: reduce-trail-to.induct)
 by (metis conflicting-update-trail map-option-is-None)
lemma trail-eq-reduce-trail-to-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to\ F\ S) = trail\ (reduce-trail-to\ F\ T)
 apply (induction F S arbitrary: T rule: reduce-trail-to.induct)
 by (metis trail-tl-trail reduce-trail-to.simps)
{\bf lemma}\ reduce\text{-}trail\text{-}to\text{-}state\text{-}eq_{NOT}\text{-}compatible\text{:}
 assumes ST: S \sim T
 shows reduce-trail-to F S \sim reduce-trail-to F T
proof -
 have trail (reduce-trail-to F(S) = trail (reduce-trail-to F(T))
   using trail-eq-reduce-trail-to-eq[of S T F] ST by auto
  then show ?thesis using ST by (auto simp del: state-simp simp: state-eq-def)
qed
lemma reduce-trail-to-trail-tl-trail-decomp[simp]:
  trail\ S = F' \otimes Marked\ K\ d\ \#\ F \Longrightarrow (trail\ (reduce-trail-to\ F\ S)) = F
 apply (rule reduce-trail-to-skip-beginning of - F' @ Marked K d # []])
 by (cases F') (auto simp add:tl-append reduce-trail-to-skip-beginning)
lemma reduce-trail-to-add-learned-cls[simp]:
 no-dup (trail S) \Longrightarrow
   trail\ (reduce-trail-to\ F\ (add-learned-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-add-init-cls[simp]:
  no-dup (trail S) \Longrightarrow
   trail\ (reduce-trail-to\ F\ (add-init-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
```

```
lemma reduce-trail-to-remove-learned-cls[simp]:
  trail\ (reduce-trail-to\ F\ (remove-cls\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-conflicting[simp]:
  trail\ (reduce-trail-to\ F\ (update-conflicting\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
lemma reduce-trail-to-update-backtrack-lvl[simp]:
  trail\ (reduce-trail-to\ F\ (update-backtrack-lvl\ C\ S)) = trail\ (reduce-trail-to\ F\ S)
 by (rule trail-eq-reduce-trail-to-eq) auto
\mathbf{lemma}\ in\text{-}get\text{-}all\text{-}marked\text{-}decomposition\text{-}marked\text{-}or\text{-}empty:}
 assumes (a, b) \in set (get-all-marked-decomposition M)
 shows a = [] \lor (is\text{-marked } (hd \ a))
 using assms
proof (induct M arbitrary: a b)
 case Nil then show ?case by simp
next
 case (Cons \ m \ M)
 show ?case
   proof (cases m)
     case (Marked l mark)
     then show ?thesis using Cons by auto
   next
     case (Propagated 1 mark)
     then show ?thesis using Cons by (cases get-all-marked-decomposition M) force+
   qed
qed
lemma reduce-trail-to-length:
 length M = length M' \Longrightarrow reduce-trail-to MS = reduce-trail-to M'S
 apply (induction M S arbitrary: rule: reduce-trail-to.induct)
 by (simp add: reduce-trail-to.simps)
lemma trail-reduce-trail-to-drop:
  trail (reduce-trail-to F S) =
   (if \ length \ (trail \ S) \ge length \ F
   then drop (length (trail S) – length F) (trail S)
   else [])
 apply (induction F S rule: reduce-trail-to.induct)
 apply (rename-tac F S, case-tac trail S)
  apply auto
 apply (rename-tac list, case-tac Suc (length list) > length F)
  prefer 2 apply (metis diff-is-0-eq drop-Cons' length-Cons nat-le-linear nat-less-le
    reduce-trail-to-eq-length trail-reduce-trail-to-length-le)
 apply (subgoal-tac\ Suc\ (length\ list) - length\ F = Suc\ (length\ list - length\ F))
 by (auto simp add: reduce-trail-to-length-ne)
lemma in-qet-all-marked-decomposition-trail-update-trail[simp]:
 assumes H: (L \# M1, M2) \in set (get-all-marked-decomposition (trail S))
 shows trail (reduce-trail-to M1 S) = M1
proof -
 obtain K mark where
   L: L = Marked K mark
```

```
obtain c where
   tr-S: trail S = c @ M2 @ L \# M1
   using H by auto
 show ?thesis
   by (rule reduce-trail-to-trail-tl-trail-decomp[of - c @ M2 K mark])
    (auto simp: tr-SL)
qed
lemma raw-conflicting-cons-trail[simp]:
 assumes undefined-lit (trail\ S)\ (lit\text{-}of\ L)
 shows
   raw-conflicting (cons-trail L(S) = None \longleftrightarrow raw-conflicting S = None
 using assms conflicting-cons-trail[of S L] map-option-is-None by fastforce+
lemma \ raw-conflicting-add-init-cls[simp]:
 no-dup (trail S) \Longrightarrow
   raw-conflicting (add-init-cls CS) = None \longleftrightarrow raw-conflicting S = None
 using map-option-is-None conflicting-add-init-cls[of S C] by fastforce+
lemma raw-conflicting-add-learned-cls[simp]:
 no-dup (trail S) \Longrightarrow
   raw-conflicting (add-learned-cls CS) = None \longleftrightarrow raw-conflicting S = None
 using map-option-is-None conflicting-add-learned-cls[of S C] by fastforce+
lemma raw-conflicting-update-backtracl-lvl[simp]:
 raw-conflicting (update-backtrack-lvl k S) = None \longleftrightarrow raw-conflicting S = None
 using map-option-is-None conflicting-update-backtrack-lvl[of k S] by fastforce+
end — end of state_W locale
19.2
         CDCL Rules
Because of the strategy we will later use, we distinguish propagate, conflict from the other rules
locale conflict-driven-clause-learning_W =
 state_W
   — functions for clauses:
   mset-cls insert-cls remove-lit
   mset-clss union-clss in-clss insert-clss remove-from-clss
   — functions for the conflicting clause:
   mset-ccls union-ccls insert-ccls remove-clit
   — conversion
   ccls-of-cls cls-of-ccls
   — functions for the state:
      — access functions:
   trail hd-raw-trail raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
      - changing state:
   cons-trail tl-trail add-init-cls add-learned-cls remove-cls update-backtrack-lvl
```

using H **by** (cases L) (auto dest!: in-get-all-marked-decomposition-marked-or-empty)

update-conflicting

- get state: init-state

```
restart\text{-}state
  for
     mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ {\bf and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
     mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
     union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
     in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
     insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    mset-ccls:: 'ccls \Rightarrow 'v \ clause \ {\bf and}
     union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
     insert\text{-}ccls :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
    remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
     ccls-of-cls :: 'cls \Rightarrow 'ccls and
    cls-of-ccls :: 'ccls \Rightarrow 'cls and
    trail :: 'st \Rightarrow ('v, nat, 'v clause) marked-lits and
    hd-raw-trail :: 'st \Rightarrow ('v, nat, 'cls) marked-lit and raw-init-clss :: 'st \Rightarrow 'clss and
     raw-learned-clss :: 'st \Rightarrow 'clss and
    backtrack-lvl :: 'st \Rightarrow nat and
    raw-conflicting :: 'st \Rightarrow 'ccls option and
    cons-trail :: ('v, nat, 'cls) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-init-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
     add-learned-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls:: 'cls \Rightarrow 'st \Rightarrow 'st and
     update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
     update-conflicting :: 'ccls option \Rightarrow 'st \Rightarrow 'st and
    init-state :: 'clss \Rightarrow 'st and
     restart-state :: 'st \Rightarrow 'st
begin
inductive propagate :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
propagate-rule: conflicting S = None \Longrightarrow
  E \in ! raw-clauses S \Longrightarrow
  L \in \# \ \mathit{mset-cls} \ E \Longrightarrow
  trail \ S \models as \ CNot \ (mset-cls \ (remove-lit \ L \ E)) \Longrightarrow
  undefined-lit (trail\ S)\ L \Longrightarrow
  T \sim cons-trail (Propagated L E) S \Longrightarrow
  propagate S T
inductive-cases propagateE: propagateS T
inductive conflict :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict-rule:
  conflicting S = None \Longrightarrow
  D \in ! raw-clauses S \Longrightarrow
```

 $trail \ S \models as \ CNot \ (mset\text{-}cls \ D) \Longrightarrow$

```
T \sim update\text{-}conflicting (Some (ccls-of\text{-}cls D)) S \Longrightarrow
  conflict S T
inductive-cases conflictE: conflict S T
inductive backtrack :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
backtrack-rule:
  raw-conflicting S = Some D \Longrightarrow
  L \in \# mset\text{-}ccls \ D \Longrightarrow
  (Marked\ K\ (i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S)) \Longrightarrow
  get-level (trail S) L = backtrack-lvl S \Longrightarrow
  get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) \Longrightarrow
  get-maximum-level (trail S) (mset-ccls (remove-clit L D)) \equiv i \Longrightarrow
  T \sim cons-trail (Propagated L (cls-of-ccls D))
            (reduce-trail-to M1
              (add-learned-cls (cls-of-ccls D)
                (update-backtrack-lvl i
                  (update\text{-}conflicting None S)))) \Longrightarrow
  backtrack S T
inductive-cases backtrackE: backtrack S T
thm backtrackE
inductive decide :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
decide-rule:
  conflicting S = None \Longrightarrow
  undefined-lit (trail S) L \Longrightarrow
  atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S) \Longrightarrow
  T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S) \Longrightarrow
  decide S T
inductive-cases decideE: decide S T
inductive skip :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
skip-rule:
  trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
   raw-conflicting S = Some \ E \Longrightarrow
   -L \notin \# mset\text{-}ccls E \Longrightarrow
   mset\text{-}ccls\ E \neq \{\#\} \Longrightarrow
   T \sim tl\text{-}trail \ S \Longrightarrow
   skip S T
inductive-cases skipE: skip S T
get-maximum-level (Propagated L (C + \{\#L\#\}\)) # M) D = k \vee k = 0 (that was in a previous
version of the book) is equivalent to get-maximum-level (Propagated L (C + \{\#L\#\}\}) \# M) D
= k, when the structural invariants holds.
inductive resolve :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
resolve-rule: trail S \neq [] \Longrightarrow
  hd-raw-trail S = Propagated L E \Longrightarrow
  L \in \# mset\text{-}cls \ E \Longrightarrow
  raw-conflicting S = Some D' \Longrightarrow
  -L \in \# mset\text{-}ccls D' \Longrightarrow
  qet-maximum-level (trail S) (mset-ccls (remove-clit (-L) D')) = backtrack-lvl S \Longrightarrow
  T \sim update-conflicting (Some (union-ccls (remove-clit (-L) D') (ccls-of-cls (remove-lit L E))))
```

```
(tl\text{-}trail\ S) \Longrightarrow
  resolve S T
inductive-cases resolveE: resolve S T
inductive restart :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: state S = (M, N, U, k, None) \Longrightarrow \neg M \models asm clauses S
  \implies T \sim \textit{restart-state } S
  \implies restart \ S \ T
inductive-cases restartE: restart S T
We add the condition C \notin \# init\text{-}clss S, to maintain consistency even without the strategy.
inductive forget:: 'st \Rightarrow 'st \Rightarrow bool where
forget-rule:
  conflicting S = None \Longrightarrow
  C ! \in ! raw\text{-}learned\text{-}clss S \Longrightarrow
  \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
  mset\text{-}cls \ C \notin set \ (get\text{-}all\text{-}mark\text{-}of\text{-}propagated} \ (trail \ S)) \Longrightarrow
  mset\text{-}cls\ C \notin \#\ init\text{-}clss\ S \Longrightarrow
  T \sim remove\text{-}cls \ C \ S \Longrightarrow
  forget S T
inductive-cases forgetE: forget S T
inductive cdcl_W-rf :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
restart: restart S T \Longrightarrow cdcl_W-rf S T
forget: forget S T \Longrightarrow cdcl_W-rf S T
inductive cdcl_W-bj :: 'st \Rightarrow 'st \Rightarrow bool where
skip: skip \ S \ S' \Longrightarrow cdcl_W - bj \ S \ S'
resolve: resolve S S' \Longrightarrow cdcl_W - bj S S'
backtrack: backtrack \ S \ S' \Longrightarrow cdcl_W \text{-bj} \ S \ S'
inductive-cases cdcl_W-bjE: cdcl_W-bj S T
inductive cdcl_W-o:: 'st \Rightarrow 'st \Rightarrow bool for S:: 'st where
decide: decide \ S \ S' \Longrightarrow cdcl_W \text{-}o \ S \ S' \mid
bj: cdcl_W-bj S S' \Longrightarrow cdcl_W-o S S'
inductive cdcl_W :: 'st \Rightarrow 'st \Rightarrow bool \text{ for } S :: 'st \text{ where}
propagate: propagate S S' \Longrightarrow cdcl_W S S'
conflict: conflict S S' \Longrightarrow cdcl_W S S'
other: cdcl_W-o S S' \Longrightarrow cdcl_W S S'
rf: cdcl_W - rf S S' \Longrightarrow cdcl_W S S'
lemma rtranclp-propagate-is-rtranclp-cdcl_W:
  propagate^{**} S S' \Longrightarrow cdcl_W^{**} S S'
  apply (induction rule: rtranclp-induct)
```

lemma $cdcl_W$ -all-rules-induct[consumes 1, case-names propagate conflict forget restart decide skip resolve backtrack]:

apply simp

apply (frule propagate)

using rtranclp- $trans[of cdcl_W]$ by blast

```
fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
    propagate: \bigwedge T. \ propagate \ S \ T \Longrightarrow P \ S \ T \ {\bf and}
    conflict: \bigwedge T. conflict S T \Longrightarrow P S T and
    forget: \bigwedge T. forget S \ T \Longrightarrow P \ S \ T and
    restart: \bigwedge T. restart S T \Longrightarrow P S T and
    decide: \bigwedge T. decide S T \Longrightarrow P S T and
    skip: \bigwedge T. \ skip \ S \ T \Longrightarrow P \ S \ T \ {\bf and}
    resolve: \bigwedge T. resolve S \ T \Longrightarrow P \ S \ T and
    backtrack: \bigwedge T. backtrack S T \Longrightarrow P S T
  shows P S S'
  using assms(1)
proof (induct S' rule: cdcl_W.induct)
  case (propagate S') note propagate = this(1)
  then show ?case using assms(2) by auto
next
  case (conflict S')
  then show ?case using assms(3) by auto
  case (other S')
  then show ?case
    proof (induct rule: cdcl_W-o.induct)
      case (decide\ U)
      then show ?case using assms(6) by auto
    next
      case (bj S')
      then show ?case using assms(7-9) by (induction rule: cdcl_W-bj.induct) auto
next
  case (rf S')
  then show ?case
    by (induct rule: cdcl_W-rf.induct) (fast dest: forget restart)+
qed
lemma cdcl_W-all-induct consumes 1, case-names propagate conflict forget restart decide skip
    resolve backtrack]:
  fixes S :: 'st
  assumes
    cdcl_W: cdcl_W S S' and
    propagateH: \land C \ L \ T. \ conflicting \ S = None \Longrightarrow
       C \in ! raw\text{-}clauses S \Longrightarrow
       L \in \# mset\text{-}cls \ C \Longrightarrow
       trail \ S \models as \ CNot \ (remove1\text{-}mset \ L \ (mset\text{-}cls \ C)) \Longrightarrow
       undefined-lit (trail\ S)\ L \Longrightarrow
       T \sim cons-trail (Propagated L C) S \Longrightarrow
       P S T and
    conflictH: \land D \ T. \ conflicting \ S = None \Longrightarrow
       D \in ! raw-clauses S \Longrightarrow
       trail \ S \models as \ CNot \ (mset\text{-}cls \ D) \Longrightarrow
       T \sim update\text{-conflicting (Some (ccls-of\text{-cls }D)) } S \Longrightarrow
       P S T and
    forgetH: \bigwedge C \ U \ T. \ conflicting \ S = None \Longrightarrow
      C \in ! raw-learned-clss S \Longrightarrow
      \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
```

```
mset-cls \ C \notin set \ (get-all-mark-of-propagated \ (trail \ S)) <math>\Longrightarrow
      mset\text{-}cls\ C \notin \#\ init\text{-}clss\ S \Longrightarrow
      T \sim remove\text{-}cls \ C \ S \Longrightarrow
      PST and
    restartH: \land T. \neg trail \ S \models asm \ clauses \ S \Longrightarrow
      conflicting S = None \Longrightarrow
       T \sim restart\text{-}state \ S \Longrightarrow
      PST and
    decideH: \bigwedge L \ T. \ conflicting \ S = None \Longrightarrow
      undefined-lit (trail\ S)\ L \Longrightarrow
      atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)\Longrightarrow
      T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S) \Longrightarrow
      P S T and
    skipH: \bigwedge L \ C' \ M \ E \ T.
      trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
      raw-conflicting S = Some E \Longrightarrow
      -L \notin \# mset\text{-}ccls E \Longrightarrow mset\text{-}ccls E \neq \{\#\} \Longrightarrow
      T \sim tl-trail S \Longrightarrow
      PST and
    resolveH: \bigwedge L \ E \ M \ D \ T.
      trail\ S = Propagated\ L\ (mset\text{-}cls\ E)\ \#\ M \Longrightarrow
      L \in \# mset\text{-}cls \ E \Longrightarrow
      hd-raw-trail S = Propagated L E \Longrightarrow
      raw-conflicting S = Some D \Longrightarrow
      -L \in \# mset\text{-}ccls D \Longrightarrow
      qet-maximum-level (trail S) (mset-ccls (remove-clit (-L) D)) = backtrack-lvl S \Longrightarrow
       T \sim update\text{-}conflicting
        (Some\ (union-ccls\ (remove-clit\ (-L)\ D)\ (ccls-of-cls\ (remove-lit\ L\ E))))\ (tl-trail\ S)\Longrightarrow
      PST and
    backtrackH: \bigwedge L D K i M1 M2 T.
      raw-conflicting S = Some D \Longrightarrow
      L \in \# mset\text{-}ccls \ D \Longrightarrow
      (Marked\ K\ (i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S)) \Longrightarrow
      get-level (trail S) L = backtrack-lvl S \Longrightarrow
      get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) \Longrightarrow
      get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i \Longrightarrow
       T \sim cons-trail (Propagated L (cls-of-ccls D))
                 (reduce-trail-to M1
                   (add-learned-cls (cls-of-ccls D)
                     (update-backtrack-lvl i
                        (update\text{-}conflicting\ None\ S)))) \Longrightarrow
       PST
  shows P S S'
  using cdcl_W
proof (induct S S' rule: cdcl_W-all-rules-induct)
  case (propagate S')
  then show ?case
    by (auto elim!: propagateE intro!: propagateH)
next
  case (conflict S')
  then show ?case
    by (auto elim!: conflictE intro!: conflictH)
next
  case (restart S')
  then show ?case
```

```
by (auto elim!: restartE intro!: restartH)
next
  case (decide\ T)
  then show ?case
   by (auto elim!: decideE intro!: decideH)
next
  case (backtrack S')
  then show ?case by (auto elim!: backtrackE intro!: backtrackH
    simp del: state-simp simp add: state-eq-def)
next
  case (forget S')
 then show ?case by (auto elim!: forgetE intro!: forgetH)
next
  case (skip S')
  then show ?case by (auto elim!: skipE intro!: skipH)
  case (resolve S')
  then show ?case
    using hd-raw-trail[of S] by (cases trail S) (auto elim!: resolveE intro!: resolveH)
qed
lemma cdcl_W-o-induct[consumes 1, case-names decide skip resolve backtrack]:
  fixes S :: 'st
  assumes cdcl_W: cdcl_W-o S T and
    decideH: \Lambda L \ T. \ conflicting \ S = None \Longrightarrow \ undefined-lit \ (trail \ S) \ L
      \implies atm\text{-}of\ L \in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
      \implies T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S)
      \implies P S T and
   skipH: \bigwedge L \ C' \ M \ E \ T.
      trail\ S = Propagated\ L\ C' \# M \Longrightarrow
      raw-conflicting S = Some E \Longrightarrow
      -L \notin \# mset\text{-}ccls E \Longrightarrow mset\text{-}ccls E \neq \{\#\} \Longrightarrow
      T \sim tl-trail S \Longrightarrow
      PST and
    resolveH: \land L \ E \ M \ D \ T.
      trail\ S = Propagated\ L\ (mset-cls\ E)\ \#\ M \Longrightarrow
      L \in \# mset\text{-}cls \ E \Longrightarrow
      hd-raw-trail S = Propagated L E \Longrightarrow
      raw-conflicting S = Some D \Longrightarrow
      -L \in \# mset\text{-}ccls D \Longrightarrow
      qet-maximum-level (trail S) (mset-ccls (remove-clit (-L) D)) = backtrack-lvl S \Longrightarrow
      T \sim update\text{-}conflicting
       (Some \ (union-ccls \ (remove-clit \ (-L) \ D) \ (ccls-of-cls \ (remove-lit \ L \ E)))) \ (tl-trail \ S) \Longrightarrow
      P S T and
    backtrackH: \bigwedge L D K i M1 M2 T.
      raw-conflicting S = Some D \Longrightarrow
      L \in \# mset\text{-}ccls \ D \Longrightarrow
      (Marked\ K\ (i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S)) \Longrightarrow
      qet-level (trail S) L = backtrack-lvl S \Longrightarrow
      get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) \Longrightarrow
      get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i \Longrightarrow
      T \sim cons-trail (Propagated L (cls-of-ccls D))
                (reduce-trail-to M1
                  (add-learned-cls (cls-of-ccls D)
                   (update-backtrack-lvl i
```

```
(update\text{-}conflicting\ None\ S)))) \Longrightarrow
      PST
 shows P S T
  using cdcl_W apply (induct T rule: cdcl_W-o.induct)
  using assms(2) apply (auto elim: decideE)[1]
 apply (elim\ cdcl_W-bjE\ skipE\ resolveE\ backtrackE)
   apply (frule skipH; simp)
   using hd-raw-trail[of S] apply (cases trail S; auto elim!: resolveE intro!: resolveH)
 apply (frule backtrackH; simp-all del: state-simp add: state-eq-def)
 done
thm cdcl_W-o.induct
lemma cdcl_W-o-all-rules-induct[consumes 1, case-names decide backtrack skip resolve]:
 fixes S T :: 'st
 assumes
   cdcl_W-o S T and
   \bigwedge T. decide S T \Longrightarrow P S T and
   \bigwedge T. backtrack S T \Longrightarrow P S T and
   \bigwedge T. \ skip \ S \ T \Longrightarrow P \ S \ T \ {\bf and}
   \bigwedge T. resolve S T \Longrightarrow P S T
 shows P S T
 using assms by (induct T rule: cdcl_W-o.induct) (auto simp: cdcl_W-bj.simps)
lemma cdcl_W-o-rule-cases[consumes 1, case-names decide backtrack skip resolve]:
 fixes S T :: 'st
 assumes
   cdcl_W-o S T and
   decide\ S\ T \Longrightarrow P and
   backtrack \ S \ T \Longrightarrow P \ {\bf and}
   skip S T \Longrightarrow P and
   resolve \ S \ T \Longrightarrow P
 shows P
 using assms by (auto simp: cdcl_W-o.simps cdcl_W-bj.simps)
```

19.3 Invariants

19.3.1 Properties of the trail

We here establish that: * the marks are exactly 1..k where k is the level * the consistency of the trail * the fact that there is no duplicate in the trail.

 $\mathbf{lemma}\ \mathit{backtrack-lit-skiped} \colon$

```
assumes

L: get-level \ (trail\ S)\ L = backtrack-lvl\ S \ and
M1: \ (Marked\ K\ (i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S)) \ and
no-dup: no-dup\ (trail\ S)\ and
bt-l: backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) \ and
order: get-all-levels-of-marked\ (trail\ S)
= rev\ [1..<(1+length\ (get-all-levels-of-marked\ (trail\ S)))]
shows\ atm-of\ L \notin atm-of\ '\ lits-of-l\ M1
proof\ (rule\ ccontr)
let\ ?M = trail\ S
assume\ L-in-M1:\ \neg atm-of\ L \notin atm-of\ '\ lits-of-l\ M1
obtain\ c\ where
Mc:\ trail\ S = c\ @\ M2\ @\ Marked\ K\ (i+1)\ \#\ M1
using\ M1\ by\ blast
```

```
have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ c
   using L-in-M1 no-dup unfolding Mc lits-of-def by force
 have g\text{-}M\text{-}eq\text{-}g\text{-}M1: get\text{-}level\ ?M\ L=get\text{-}level\ M1\ L
   using L-in-M1 unfolding Mc by auto
 have g: get-all-levels-of-marked M1 = rev [1..< Suc i]
   using order unfolding Mc by (auto simp del: upt-simps simp: rev-swap[symmetric]
     dest: append-cons-eq-upt-length-i)
 then have Max (set (0 \# get-all-levels-of-marked (rev M1))) < Suc i by auto
 then have get-level M1 L < Suc i
   using get-rev-level-less-max-get-all-levels-of-marked [of rev M1\ 0\ L] by linarith
 moreover have Suc \ i \leq backtrack-lvl \ S using bt-l by (simp \ add: Mc \ g)
 ultimately show False using L g-M-eq-g-M1 by auto
qed
lemma cdcl_W-distinctinv-1:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked\ (trail\ S) = rev\ [1..<1+length\ (get-all-levels-of-marked\ (trail\ S))]
 shows no-dup (trail S')
 using assms
proof (induct rule: cdcl_W-all-induct)
 case (backtrack\ L\ D\ K\ i\ M1\ M2\ T) note decomp = this(3) and L = this(4) and T = this(7) and
   n-d = this(8)
 obtain c where Mc: trail S = c @ M2 @ Marked K (i + 1) \# M1
   using decomp by auto
 have no-dup (M2 @ Marked K (i + 1) \# M1)
   using Mc n-d by fastforce
 moreover have atm\text{-}of \ L \notin (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M1
   using backtrack-lit-skiped[of S L K i M1 M2] L decomp backtrack.prems
   by (fastforce simp: lits-of-def)
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map)
 ultimately show ?case using decomp T n-d by simp
qed (auto simp: defined-lit-map)
lemma cdcl_W-consistent-inv-2:
 assumes
   cdcl_W S S' and
   no-dup (trail S) and
   backtrack-lvl S = length (get-all-levels-of-marked (trail S)) and
   get-all-levels-of-marked\ (trail\ S) = rev\ [1..<1+length\ (get-all-levels-of-marked\ (trail\ S))]
 shows consistent-interp (lits-of-l (trail S'))
 using cdcl_W-distinctinv-1 [OF assms] distinct-consistent-interp by fast
lemma cdcl_W-o-bt:
 assumes
   cdcl_W-o SS' and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked (trail\ S) =
     rev ([1..<(1+length (get-all-levels-of-marked (trail S)))]) and
   n\text{-}d[simp]: no-dup (trail S)
 shows backtrack-lvl S' = length (get-all-levels-of-marked (trail S'))
 using assms
```

```
proof (induct rule: cdcl_W-o-induct)
 case (backtrack\ L\ D\ K\ i\ M1\ M2\ T) note decomp = this(3) and T = this(7) and level = this(9)
 have [simp]: trail (reduce-trail-to M1 S) = M1
   using decomp by auto
 obtain c where M: trail\ S = c @ M2 @ Marked\ K\ (i+1) \# M1 using decomp by auto
 have rev (get-all-levels-of-marked (trail S))
   = [1..<1+ (length (get-all-levels-of-marked (trail S)))]
   using level by (auto simp: rev-swap[symmetric])
 moreover have atm\text{-}of \ L \notin (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M1
   using backtrack-lit-skiped[of S L K i M1 M2] backtrack(4,8,9) decomp
   by (fastforce simp add: lits-of-def)
 moreover then have undefined-lit M1 L
    by (simp add: defined-lit-map)
 moreover then have no-dup (trail T)
   using T decomp n-d by (auto simp: defined-lit-map M)
 ultimately show ?case
   using T n-d unfolding M by (auto dest!: append-cons-eq-upt-length simp del: upt-simps)
ged auto
lemma cdcl_W-rf-bt:
 assumes
   cdcl_W-rf S S' and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked\ (trail\ S) = rev\ [1..<(1+length\ (get-all-levels-of-marked\ (trail\ S)))]
 shows backtrack-lvl S' = length (get-all-levels-of-marked (trail <math>S'))
 using assms by (induct rule: cdcl_W-rf.induct) (auto elim: restartE forgetE)
lemma cdcl_W-bt:
 assumes
   cdcl_W S S' and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked (trail S)
   = rev ([1..<(1+length (get-all-levels-of-marked (trail S)))]) and
   no-dup (trail S)
 shows backtrack-lvl S' = length (get-all-levels-of-marked (trail S'))
 using assms by (induct rule: cdcl<sub>W</sub>.induct) (auto simp add: cdcl<sub>W</sub>-o-bt cdcl<sub>W</sub>-rf-bt
   elim: conflictE propagateE)
lemma cdcl_W-bt-level':
 assumes
   cdcl_W S S' and
   backtrack-lvl\ S = length\ (get-all-levels-of-marked\ (trail\ S)) and
   get-all-levels-of-marked (trail S)
     = rev ([1..<(1+length (get-all-levels-of-marked (trail S)))]) and
   n-d: no-dup (trail S)
 shows get-all-levels-of-marked (trail S')
   = rev [1..<1+length (get-all-levels-of-marked (trail <math>S'))]
 using assms
proof (induct rule: cdcl<sub>W</sub>-all-induct)
 case (decide L T) note undef = this(2) and T = this(4)
 let ?k = backtrack-lvl S
 let ?M = trail S
 let ?M' = Marked\ L\ (?k + 1) \# trail\ S
 have H: get-all-levels-of-marked ?M = rev [Suc 0..<1+length (get-all-levels-of-marked ?M)]
   using decide.prems by simp
```

```
have k: ?k = length (get-all-levels-of-marked ?M)
   using decide.prems by auto
 have get-all-levels-of-marked ?M' = Suc ?k \# get-all-levels-of-marked ?M by simp
 then have get-all-levels-of-marked ?M' = Suc ?k \#
     rev [Suc \ 0..<1+length \ (get-all-levels-of-marked \ ?M)]
   using H by auto
 moreover have ... = rev [Suc \ 0.. < Suc \ (1 + length \ (get-all-levels-of-marked ?M))]
   unfolding k by simp
 finally show ?case using T undef by (auto simp add: defined-lit-map)
next
 case (backtrack L D K i M1 M2 T) note decomp = this(3) and confli = this(1) and T = this(7)
and
   all-marked = this(9) and bt-lvl = this(8)
 have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
   using backtrack-lit-skiped[of S L K i M1 M2] backtrack(4,8-10) decomp
   by (fastforce simp add: lits-of-def)
 moreover then have undefined-lit M1 L
    by (auto simp: defined-lit-map lits-of-def)
 then have [simp]: trail T = Propagated L (mset-ccls D) # M1
   using T decomp n-d by auto
 obtain c where M: trail\ S = c @ M2 @ Marked\ K\ (i+1) \# M1 using decomp by auto
 have get-all-levels-of-marked (rev (trail S))
   = [Suc \ 0..<2 + length \ (get-all-levels-of-marked \ c) + (length \ (get-all-levels-of-marked \ M2)]
             + length (get-all-levels-of-marked M1))]
   using all-marked bt-lvl unfolding M by (auto simp: rev-swap[symmetric] simp del: upt-simps)
 then show ?case
   using T by (auto simp: rev-swap M simp del: upt-simps dest!: append-cons-eq-upt(1))
qed auto
We write 1 + length (qet-all-levels-of-marked (trail S)) instead of backtrack-lvl S to avoid non
termination of rewriting.
definition cdcl_W-M-level-inv :: 'st \Rightarrow bool where
cdcl_W-M-level-inv S \longleftrightarrow
 consistent-interp (lits-of-l (trail S))
 \land no-dup (trail S)
 \land backtrack-lvl S = length (get-all-levels-of-marked (trail <math>S))
 \land get-all-levels-of-marked (trail S)
     = rev [1..<1+length (get-all-levels-of-marked (trail S))]
lemma cdcl_W-M-level-inv-decomp:
 assumes cdcl_W-M-level-inv S
 shows
   consistent-interp (lits-of-l (trail S)) and
   no-dup (trail S)
 using assms unfolding cdcl_W-M-level-inv-def by fastforce+
lemma cdcl_W-consistent-inv:
 fixes S S' :: 'st
 assumes
   cdcl_W S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms cdcl<sub>W</sub>-consistent-inv-2 cdcl<sub>W</sub>-distinctinv-1 cdcl<sub>W</sub>-bt cdcl<sub>W</sub>-bt-level'
 unfolding cdcl_W-M-level-inv-def by meson+
```

```
lemma rtranclp-cdcl_W-consistent-inv:
 assumes
   cdcl_W^{**} S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by (induct rule: rtranclp-induct) (auto intro: cdcl<sub>W</sub>-consistent-inv)
lemma tranclp-cdcl_W-consistent-inv:
 assumes
   cdcl_W^{++} S S' and
   cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by (induct rule: tranclp-induct)
 (auto intro: cdcl_W-consistent-inv)
lemma cdcl_W-M-level-inv-S0-cdcl_W[simp]:
 cdcl_W-M-level-inv (init-state N)
 unfolding cdcl_W-M-level-inv-def by auto
\mathbf{lemma}\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}get\text{-}level\text{-}le\text{-}backtrack\text{-}lvl\text{:}}
 assumes inv: cdcl_W-M-level-inv S
 shows get-level (trail S) L \leq backtrack-lvl S
proof
 have get-all-levels-of-marked (trail\ S) = rev\ [1..<1 + backtrack-lvl\ S]
   using inv unfolding cdcl_W-M-level-inv-def by auto
 then show ?thesis
   using get-rev-level-less-max-get-all-levels-of-marked[of rev (trail S) 0 L]
   by (auto simp: Max-n-upt)
lemma backtrack-ex-decomp:
 assumes
   M-l: cdcl_W-M-level-inv S and
   i-S: i < backtrack-lvl S
 shows \exists K M1 M2. (Marked K (i + 1) \# M1, M2) \in set (get-all-marked-decomposition (trail S))
proof -
 let ?M = trail S
 have
   g: get-all-levels-of-marked (trail S) = rev [Suc 0... < Suc (backtrack-lvl S)]
   using M-l unfolding cdcl_W-M-level-inv-def by simp-all
 then have i+1 \in set (get-all-levels-of-marked (trail S))
   using i-S by auto
 then obtain c \ K \ c' where tr-S: trail \ S = c \ @ Marked \ K \ (i + 1) \ \# \ c'
   using in-get-all-levels-of-marked-iff-decomp[of i+1 trail S] by auto
 obtain M1 M2 where (Marked K (i + 1) # M1, M2) \in set (get-all-marked-decomposition (trail S))
   using Marked-cons-in-get-all-marked-decomposition-append-Marked-cons unfolding tr-S by fast
 then show ?thesis by blast
qed
```

19.3.2 Better-Suited Induction Principle

We generalise the induction principle defined previously: the induction case for backtrack now includes the assumption that $undefined-lit\ M1\ L$. This helps the simplifier and thus the automa-

tion.

```
lemma backtrack-induction-lev[consumes 1, case-names M-devel-inv backtrack]:
  assumes
   bt: backtrack S T and
   inv: cdcl_W-M-level-inv S and
   backtrackH: \bigwedge K \ i \ M1 \ M2 \ L \ D \ T.
     \textit{raw-conflicting } S = \textit{Some } D \Longrightarrow
     L \in \# mset\text{-}ccls \ D \Longrightarrow
     (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ S))\Longrightarrow
     qet-level (trail S) L = backtrack-lvl S \Longrightarrow
     qet-level (trail S) L = qet-maximum-level (trail S) (mset-ccls D) \Longrightarrow
     get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i \Longrightarrow
      undefined-lit M1 L \Longrightarrow
      T \sim cons-trail (Propagated L (cls-of-ccls D))
               (reduce-trail-to M1
                 (add-learned-cls (cls-of-ccls D)
                   (update-backtrack-lvl\ i
                     (update\text{-}conflicting\ None\ S)))) \Longrightarrow
     PST
 shows P S T
proof -
  obtain K i M1 M2 L D where
   decomp: (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S)) and
   L: get-level (trail S) L = backtrack-lvl S and
   confl: raw-conflicting S = Some D and
    LD: L \in \# mset\text{-}ccls \ D \ \mathbf{and}
   lev-L: get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) and
   lev-D: get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i and
    T: T \sim cons-trail (Propagated L (cls-of-ccls D))
               (reduce-trail-to M1
                 (add-learned-cls (cls-of-ccls D)
                   (update-backtrack-lvl i
                     (update\text{-}conflicting\ None\ S))))
   using bt by (elim backtrackE) metis
  have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
   using backtrack-lit-skiped[of S L K i M1 M2] L decomp bt confl lev-L lev-D inv
   unfolding cdcl_W-M-level-inv-def by force
  then have undefined-lit M1 L
   by (auto simp: defined-lit-map lits-of-def)
  then show ?thesis
    using backtrackH[OF\ confl\ LD\ decomp\ L\ lev-L\ lev-D\ -\ T] by simp
qed
lemmas\ backtrack-induction-lev2 = backtrack-induction-lev[consumes\ 2\ ,\ case-names\ backtrack]
lemma cdcl_W-all-induct-lev-full:
  fixes S :: 'st
 assumes
    cdcl_W: cdcl_W S S' and
   inv[simp]: cdcl_W-M-level-inv S and
   propagateH: \land C \ L \ T. \ conflicting \ S = None \Longrightarrow
       C \in ! raw\text{-}clauses S \Longrightarrow
      L \in \# mset\text{-}cls \ C \Longrightarrow
      trail \ S \models as \ CNot \ (remove1\text{-}mset \ L \ (mset\text{-}cls \ C)) \Longrightarrow
```

```
undefined-lit (trail\ S)\ L \Longrightarrow
      T \sim cons-trail (Propagated L C) S \Longrightarrow
      P S T and
  conflictH: \land D \ T. \ conflicting \ S = None \Longrightarrow
      D !\in ! raw\text{-}clauses S \Longrightarrow
      trail \ S \models as \ CNot \ (mset\text{-}cls \ D) \Longrightarrow
      T \sim update\text{-conflicting (Some (ccls-of\text{-cls }D)) } S \Longrightarrow
      P S T and
  forgetH: \bigwedge C \ T. \ conflicting \ S = None \Longrightarrow
     C \in ! raw-learned-clss S \Longrightarrow
     \neg(trail\ S) \models asm\ clauses\ S \Longrightarrow
     mset\text{-}cls \ C \notin set \ (get\text{-}all\text{-}mark\text{-}of\text{-}propagated} \ (trail \ S)) \Longrightarrow
     mset\text{-}cls\ C \notin \#\ init\text{-}clss\ S \Longrightarrow
     T \sim remove\text{-}cls \ C \ S \Longrightarrow
     PST and
  restartH: \land T. \neg trail \ S \models asm \ clauses \ S \Longrightarrow
     conflicting S = None \Longrightarrow
     T \sim restart\text{-}state \ S \Longrightarrow
     PST and
   decideH: \bigwedge L \ T. \ conflicting \ S = None \Longrightarrow
     undefined-lit (trail\ S)\ L \Longrightarrow
     atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S) \Longrightarrow
     T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S) \Longrightarrow
     P S T and
  skipH: \bigwedge L \ C' \ M \ E \ T.
     trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
     raw-conflicting S = Some E \Longrightarrow
     -L \notin \# mset\text{-}ccls E \Longrightarrow mset\text{-}ccls E \neq \{\#\} \Longrightarrow
     T \sim tl-trail S \Longrightarrow
     PST and
  resolveH: \land L \ E \ M \ D \ T.
     trail\ S = Propagated\ L\ (mset-cls\ E)\ \#\ M \Longrightarrow
     L \in \# mset\text{-}cls \ E \Longrightarrow
     hd-raw-trail S = Propagated L E \Longrightarrow
     raw-conflicting S = Some D \Longrightarrow
     -L \in \# mset\text{-}ccls D \Longrightarrow
     qet-maximum-level (trail S) (mset-ccls (remove-clit (-L) D)) = backtrack-lvl S \Longrightarrow
     T \sim update\text{-}conflicting
       (Some\ (union-ccls\ (remove-clit\ (-L)\ D)\ (ccls-of-cls\ (remove-lit\ L\ E))))\ (tl-trail\ S)\Longrightarrow
     PST and
  backtrackH: \bigwedge K \ i \ M1 \ M2 \ L \ D \ T.
     \textit{raw-conflicting } S = \textit{Some } D \Longrightarrow
     L \in \# mset\text{-}ccls \ D \Longrightarrow
     (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ S))\Longrightarrow
     get-level (trail S) L = backtrack-lvl S \Longrightarrow
     get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) \Longrightarrow
     get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i \Longrightarrow
     undefined-lit M1 L \Longrightarrow
     T \sim cons-trail (Propagated L (cls-of-ccls D))
                 (reduce-trail-to M1
                   (add-learned-cls (cls-of-ccls D)
                     (update-backtrack-lvl i
                        (update\text{-}conflicting\ None\ S)))) \Longrightarrow
     PST
shows P S S'
```

```
using cdcl_W
proof (induct S' rule: cdcl_W-all-rules-induct)
 case (propagate S')
 then show ?case
   by (auto elim!: propagateE intro!: propagateH)
next
 case (conflict S')
 then show ?case
   by (auto elim!: conflictE intro!: conflictH)
next
 case (restart S')
 then show ?case
   by (auto elim!: restartE intro!: restartH)
 case (decide T)
 then show ?case
   by (auto elim!: decideE intro!: decideH)
 case (backtrack S')
 then show ?case
   apply (induction rule: backtrack-induction-lev)
    apply (rule inv)
   by (rule\ backtrackH;
     fastforce simp del: state-simp simp add: state-eq-def dest!: HOL.meta-eq-to-obj-eq)
next
 case (forget S')
 then show ?case by (auto elim!: forgetE intro!: forgetH)
next
 case (skip S')
 then show ?case by (auto elim!: skipE intro!: skipH)
next
 case (resolve S')
 then show ?case
   using hd-raw-trail [of S] by (cases trail S) (auto elim!: resolveE intro!: resolveH)
qed
lemmas cdcl_W-all-induct-lev2 = cdcl_W-all-induct-lev-full[consumes 2, case-names propagate conflict
 forget restart decide skip resolve backtrack
lemmas cdcl_W-all-induct-lev = cdcl_W-all-induct-lev-full[consumes 1, case-names lev-inv propagate
  conflict forget restart decide skip resolve backtrack]
thm cdcl_W-o-induct
lemma cdcl_W-o-induct-lev[consumes 1, case-names M-lev decide skip resolve backtrack]:
 fixes S :: 'st
 assumes
   cdcl_W: cdcl_W-o S T and
   inv[simp]: cdcl_W-M-level-inv S and
   decideH: \land L \ T. \ conflicting \ S = None \Longrightarrow
     undefined-lit (trail S) L \Longrightarrow
     atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S) \Longrightarrow
     T \sim cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S) \Longrightarrow
     PST and
   skipH: \bigwedge L \ C' \ M \ E \ T.
     trail\ S = Propagated\ L\ C' \#\ M \Longrightarrow
```

```
raw-conflicting S = Some E \Longrightarrow
      -L \notin \# mset\text{-}ccls E \Longrightarrow mset\text{-}ccls E \neq \{\#\} \Longrightarrow
      T \sim tl\text{-}trail \ S \Longrightarrow
      PST and
    resolveH: \land L \ E \ M \ D \ T.
      trail\ S = Propagated\ L\ (mset-cls\ E)\ \#\ M \Longrightarrow
      L \in \# mset\text{-}cls \ E \Longrightarrow
      \textit{hd-raw-trail} \ S \ = \textit{Propagated} \ L \ E \Longrightarrow
      raw-conflicting S = Some D \Longrightarrow
      -L \in \# mset\text{-}ccls D \Longrightarrow
      get-maximum-level (trail S) (mset-ccls (remove-clit (-L) D)) = backtrack-lvl S \Longrightarrow
      T \sim update\text{-}conflicting
        (Some\ (union\text{-}ccls\ (remove\text{-}clit\ (-L)\ D)\ (ccls\text{-}of\text{-}cls\ (remove\text{-}lit\ L\ E))))\ (tl\text{-}trail\ S) \Longrightarrow
      P S T and
    backtrackH: \bigwedge K \ i \ M1 \ M2 \ L \ D \ T.
      raw-conflicting S = Some D \Longrightarrow
      L \in \# mset\text{-}ccls \ D \Longrightarrow
      (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (qet-all-marked-decomposition\ (trail\ S))\Longrightarrow
      get-level (trail S) L = backtrack-lvl S \Longrightarrow
      get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) \Longrightarrow
      get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i \Longrightarrow
      undefined-lit M1 L \Longrightarrow
      T \sim cons-trail (Propagated L (cls-of-ccls D))
                (reduce-trail-to M1
                  (add-learned-cls (cls-of-ccls D)
                    (update-backtrack-lvl i
                      (update\text{-}conflicting\ None\ S)))) \Longrightarrow
      PST
 shows P S T
  using cdcl_W
proof (induct S T rule: cdcl_W-o-all-rules-induct)
  case (decide\ T)
  then show ?case
    by (auto elim!: decideE intro!: decideH)
\mathbf{next}
  case (backtrack S')
  then show ?case
    apply (induction rule: backtrack-induction-lev)
    apply (rule inv)
    by (rule backtrackH;
      fastforce simp del: state-simp simp add: state-eq-def dest!: HOL.meta-eq-to-obj-eq)
next
  case (skip S')
  then show ?case by (auto elim!: skipE intro!: skipH)
next
  case (resolve S')
 then show ?case
    using hd-raw-trail [of S] by (cases trail S) (auto elim!: resolveE intro!: resolveH)
qed
lemmas cdcl_W-o-induct-lev2 = cdcl_W-o-induct-lev[consumes 2, case-names decide skip resolve
  backtrack
```

19.3.3 Compatibility with $op \sim$

lemma propagate-state-eq-compatible:

```
assumes
   propa: propagate S T  and
   SS': S \sim S' and
    TT': T \sim T'
 shows propagate S' T'
proof -
  obtain CL where
   conf: conflicting S = None  and
    C: C !\in ! raw\text{-}clauses S and
    L: L \in \# mset\text{-}cls \ C \text{ and }
   tr: trail \ S \models as \ CNot \ (remove1\text{-}mset \ L \ (mset\text{-}cls \ C)) and
   undef: undefined-lit (trail S) L and
    T: T \sim cons	ext{-}trail (Propagated L C) S
  using propa by (elim propagateE) auto
  obtain C' where
    CC': mset-cls C' = mset-cls C and
    C': C'!\in! raw-clauses S'
   using SS' C
    in\text{-}mset\text{-}clss\text{-}exists\text{-}preimage[of\ mset\text{-}cls\ C\ raw\text{-}learned\text{-}clss\ S']}
   in-mset-clss-exists-preimage[of mset-cls C raw-init-clss S']
   apply –
   apply (frule in-clss-mset-clss)
   by (auto simp: state-eq-def raw-clauses-def simp del: state-simp dest: in-clss-mset-clss)
  show ?thesis
   apply (rule propagate-rule[of - C'])
   \mathbf{using} \ \mathit{state-eq-sym} [\mathit{of} \ \mathit{S} \ \mathit{S'}] \ \mathit{SS'} \ \mathit{conf} \ \mathit{C'} \ \mathit{CC'} \ \mathit{L} \ \mathit{tr} \ \mathit{undef} \ \mathit{TT'} \ \mathit{T}
   by (auto simp: state-eq-def simp del: state-simp)
qed
lemma conflict-state-eq-compatible:
 assumes
    confl: conflict S T  and
    TT': T \sim T' and
   SS': S \sim S'
 shows conflict S' T'
proof -
  obtain D where
   conf: conflicting S = None  and
   D: D !\in ! raw\text{-}clauses S and
   tr: trail S \models as CNot (mset-cls D) and
    T: T \sim update\text{-conflicting (Some (ccls-of\text{-}cls D)) } S
  using confl by (elim conflictE) auto
  obtain D' where
    DD': mset-cls D' = mset-cls D and
   D': D' ! \in ! raw\text{-}clauses S'
   using D SS' in-mset-clss-exists-preimage by fastforce
  show ?thesis
   apply (rule conflict-rule [of - D'])
   using state-eq-sym[of S S'] SS' conf D' DD' tr TT' T
   by (auto simp: state-eq-def simp del: state-simp)
qed
```

```
lemma backtrack-levE[consumes 2]:
  backtrack \ S \ S' \Longrightarrow cdcl_W \text{-}M\text{-}level\text{-}inv \ S \Longrightarrow
  (\bigwedge K \ i \ M1 \ M2 \ L \ D.
     raw-conflicting S = Some D \Longrightarrow
     L \in \# mset\text{-}ccls \ D \Longrightarrow
     (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ S))\Longrightarrow
     get-level (trail S) L = backtrack-lvl S \Longrightarrow
     get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) \Longrightarrow
     get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i \Longrightarrow
     undefined-lit M1 L \Longrightarrow
     S' \sim cons-trail (Propagated L (cls-of-ccls D))
               (reduce-trail-to M1
                 (add-learned-cls (cls-of-ccls D)
                  (update-backtrack-lvl i
                    (update\text{-}conflicting\ None\ S)))) \Longrightarrow P) \Longrightarrow
 using assms by (induction rule: backtrack-induction-lev2) metis
thm \ all I
{\bf lemma}\ backtrack\text{-}state\text{-}eq\text{-}compatible\text{:}
 assumes
   bt: backtrack S T and
   SS': S \sim S' and
    TT': T \sim T' and
   inv: cdcl_W-M-level-inv S
 shows backtrack S' T'
proof -
 obtain D L K i M1 M2 where
   conf: raw\text{-}conflicting S = Some D \text{ and }
   L: L \in \# mset\text{-}ccls \ D \ \mathbf{and}
   decomp: (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S)) and
   lev: get-level (trail S) L = backtrack-lvl S and
   max: get-level (trail\ S)\ L = get-maximum-level (trail\ S)\ (mset-ccls\ D) and
   max-D: get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i and
   undef: undefined-lit M1 L and
    T: T \sim cons-trail (Propagated L (cls-of-ccls D))
               (reduce-trail-to M1
                 (add-learned-cls (cls-of-ccls D)
                  (update-backtrack-lvl i
                    (update\text{-}conflicting\ None\ S))))
  using bt inv by (elim backtrack-levE) metis
 obtain D' where
   D': raw-conflicting S' = Some D'
   using SS' conf by (cases raw-conflicting S') auto
 have [simp]: mset-ccls D = mset-ccls D'
   using SS' D' conf by (auto simp: state-eq-def simp del: state-simp)[]
 have T': T' \sim cons-trail (Propagated L (cls-of-ccls D'))
    (reduce-trail-to M1 (add-learned-cls (cls-of-ccls D')
    (update-backtrack-lvl i (update-conflicting None S'))))
   using TT' unfolding state-eq-def
   using decomp undef inv SS' T by (auto simp add: cdcl_W-M-level-inv-def)
 show ?thesis
```

```
apply (rule backtrack-rule[of - D'])
      apply (rule D')
     using state-eq-sym[of S S'] TT' SS' D' conf L decomp lev max max-D undef T
     apply (auto simp: state-eq-def simp del: state-simp)[]
     using decomp SS' lev SS' max-D max T' by (auto simp: state-eq-def simp del: state-simp)
qed
lemma decide-state-eq-compatible:
 assumes
   decide S T and
   S \sim S' and
   T \sim T'
 shows decide S' T'
 using assms apply (elim\ decideE)
 by (rule decide-rule) (auto simp: state-eq-def raw-clauses-def simp del: state-simp)
lemma skip-state-eq-compatible:
 assumes
   skip: skip S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows skip S' T'
proof -
 obtain L C' M E where
   tr: trail S = Propagated L C' \# M and
   raw: raw\text{-}conflicting \ S = Some \ E \ \mathbf{and}
   L: -L \notin \# mset\text{-}ccls \ E \ \mathbf{and}
   E: mset\text{-}ccls \ E \neq \{\#\} \ \mathbf{and}
   T: T \sim tl-trail S
 using skip by (elim \ skipE) \ simp
 obtain E' where E': raw-conflicting S' = Some E'
   using SS' raw by (cases raw-conflicting S') (auto simp: state-eq-def simp del: state-simp)
 show ?thesis
   apply (rule skip-rule)
     using tr raw L E T SS' apply (auto simp: simp del:)
     using E' apply simp
    using E'SS' L raw E apply (auto simp: state-eq-def simp del: state-simp)[2]
   using T TT' SS' by (auto simp: state-eq-def simp del: state-simp)
qed
lemma resolve-state-eq-compatible:
 assumes
   res: resolve S T and
   TT': T \sim T' and
   SS': S \sim S'
 shows resolve S' T'
proof -
 obtain E D L where
   tr: trail S \neq [] and
   hd: hd-raw-trail S = Propagated \ L \ E and
   L: L \in \# mset\text{-}cls \ E \text{ and }
   raw: raw-conflicting S = Some D and
   LD: -L \in \# mset\text{-}ccls \ D \ \mathbf{and}
   i: get-maximum-level (trail S) (mset-ccls (remove-clit (-L) D)) = backtrack-lvl S and
```

```
T: T \sim update\text{-}conflicting (Some (union\text{-}ccls (remove\text{-}clit (-L) D))
      (ccls-of-cls\ (remove-lit\ L\ E))))\ (tl-trail\ S)
  using assms by (elim resolveE) simp
  obtain E' where
   E': hd-raw-trail S' = Propagated L E'
   using SS' hd by (metis \langle trail \ S \neq [] \rangle hd-raw-trail is-proped-def marked-lit.disc(3)
     marked\text{-}lit.inject(2)\ mmset\text{-}of\text{-}mlit.elims\ state\text{-}eq\text{-}trail)
 have [simp]: mset-cls\ E = mset-cls\ E'
   using hd-raw-trail[of S] tr hd-raw-trail[of S'] tr SS' hd E'
   by (metis\ marked-lit.inject(2)\ mmset-of-mlit.simps(1)\ state-eq-trail)
 obtain D' where
   D': raw-conflicting S' = Some D'
   using SS' raw by fastforce
 have [simp]: mset-ccls D = mset-ccls D'
   using D'SS' raw state-simp(5) by fastforce
  have T'T: T' \sim T
   using TT' state-eq-sym by auto
 show ?thesis
   apply (rule resolve-rule)
         using tr SS' apply simp
         using E' apply simp
       using L apply simp
       using D' apply simp
      using D'SS' raw LD apply (auto simp add: state-eq-def simp del: state-simp)[]
     using D'SS' raw LD apply (auto simp add: state-eq-def simp del: state-simp)
    using raw SS' i apply (auto simp add: state-eq-def simp del: state-simp)[]
   using T T'T SS' by (auto simp: state-eq-def simp del: state-simp)
lemma forget-state-eq-compatible:
 assumes
   forget: forget S T and
   SS': S \sim S' and
   TT': T \sim T'
 shows forget S' T'
proof -
 obtain C where
   conf: conflicting S = None  and
   C !\in ! raw\text{-}learned\text{-}clss S  and
   tr: \neg(trail\ S) \models asm\ clauses\ S\ and
   C1: mset\text{-}cls\ C \notin set\ (get\text{-}all\text{-}mark\text{-}of\text{-}propagated\ (trail\ S))} and
   C2: mset-cls C \notin \# init-clss S and
   T: T \sim remove\text{-}cls \ C \ S
   using forget by (elim forgetE) simp
 obtain C' where
   C': C' !\in ! raw\text{-}learned\text{-}clss S' and
   [simp]: mset-cls C' = mset-cls C
   using \langle C \mid \in ! \text{ raw-learned-clss } S \rangle SS' in-mset-clss-exists-preimage by fastforce
  show ?thesis
   apply (rule forget-rule)
       using SS' conf apply simp
       using C' apply simp
      using SS' tr apply simp
```

```
using SS' C1 apply simp
    using SS' C2 apply simp
   using T TT' SS' by (auto simp: state-eq-def simp del: state-simp)
qed
lemma cdcl_W-state-eq-compatible:
 assumes
   cdcl_W S T and \neg restart S T and
   S \sim S'
   T \sim T' and
   cdcl_W-M-level-inv S
 shows cdcl_W S' T'
  using assms by (meson backtrack backtrack-state-eq-compatible bj cdcl_W.simps cdcl_W-o-rule-cases
   cdcl_W-rf. cases conflict-state-eq-compatible decide decide-state-eq-compatible forget
   forget\text{-}state\text{-}eq\text{-}compatible\ propagate\text{-}state\text{-}eq\text{-}compatible\ resolve\ resolve\text{-}state\text{-}eq\text{-}compatible\ propagate\text{-}}
   skip skip-state-eq-compatible state-eq-ref)
lemma cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj S T and cdcl_W-M-level-inv S
   T \sim T'
 shows cdcl_W-bj S T'
 using assms by (meson backtrack backtrack-state-eq-compatible cdcl_W-bjE resolve
   resolve-state-eq-compatible skip skip-state-eq-compatible state-eq-ref)
lemma tranclp-cdcl_W-bj-state-eq-compatible:
 assumes
   cdcl_W-bj^{++} S T and inv: cdcl_W-M-level-inv S and
   S \sim S' and
   T \sim T'
 shows cdcl_W-bj^{++} S' T'
 using assms
proof (induction arbitrary: S' T')
 case base
 then show ?case
   unfolding transler-unfold-end by (meson backtrack-state-eq-compatible cdcl_W-bj.simps
     resolve-state-eq-compatible rtranclp-unfold skip-state-eq-compatible)
next
 case (step\ T\ U) note IH = this(3)[OF\ this(4-5)]
 have cdcl_W^{++} S T
   using tranclp-mono[of\ cdcl_W-bj\ cdcl_W] step.hyps(1)\ cdcl_W.other\ cdcl_W-o.bj\ \mathbf{by}\ blast
  then have cdcl_W-M-level-inv T
   using inv tranclp-cdcl_W-consistent-inv by blast
  then have cdcl_W-bj^{++} T T'
   using \langle U \sim T' \rangle cdcl_W-bj-state-eq-compatible[of T U] \langle cdcl_W-bj T U \rangle by auto
  then show ?case
   using IH[of T] by auto
qed
19.3.4
          Conservation of some Properties
lemma cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
```

```
using assms by (induct rule: cdcl_W-o-induct-lev2) (auto simp: inv cdcl_W-M-level-inv-decomp)
lemma tranclp-cdcl_W-o-no-more-init-clss:
 assumes
   cdcl_W-o^{++} S S' and
   inv: cdcl_W-M-level-inv S
  shows init-clss S = init-clss S'
  using assms apply (induct rule: tranclp.induct)
 by (auto dest: cdcl_W-o-no-more-init-clss
   dest!: tranclp-cdcl_W-consistent-inv dest: tranclp-mono-explicit[of cdcl_W-o--cdcl_W]
   simp: other)
lemma rtranclp-cdcl_W-o-no-more-init-clss:
  assumes
   cdcl_W-o** S S' and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms unfolding rtranclp-unfold by (auto intro: tranclp-cdcl_W-o-no-more-init-clss)
lemma cdcl_W-init-clss:
 assumes
   cdcl_W S T and
   inv: cdcl_W-M-level-inv S
 shows init-clss S = init-clss T
 using assms by (induct rule: cdcl_W-all-induct-lev2)
  (auto simp: inv\ cdcl_W-M-level-inv-decomp not-in-iff)
lemma rtranclp-cdcl_W-init-clss:
  cdcl_{W}^{**} S T \Longrightarrow cdcl_{W} \text{-}M\text{-}level\text{-}inv } S \Longrightarrow init\text{-}clss \ S = init\text{-}clss \ T
 by (induct rule: rtranclp-induct) (auto dest: cdcl_W-init-clss \ rtranclp-cdcl_W-consistent-inv)
lemma tranclp\text{-}cdcl_W\text{-}init\text{-}clss:
  cdcl_W^{++} S T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
 using rtranclp-cdcl_W-init-clss [of S T] unfolding rtranclp-unfold by auto
```

19.3.5 Learned Clause

This invariant shows that:

- the learned clauses are entailed by the initial set of clauses.
- the conflicting clause is entailed by the initial set of clauses.
- the marks are entailed by the clauses. A more precise version would be to show that either these marked are learned or are in the set of clauses

```
definition cdcl_W-learned-clause (S:: 'st) \longleftrightarrow (init\text{-}clss \ S \models psm \ learned\text{-}clss \ S )

\land (\forall \ T. \ conflicting \ S = Some \ T \longrightarrow init\text{-}clss \ S \models pm \ T)

\land \ set \ (get\text{-}all\text{-}mark\text{-}of\text{-}propagated \ (trail \ S)) \subseteq set\text{-}mset \ (clauses \ S))

lemma cdcl_W-learned-clause-S0\text{-}cdcl_W[simp]:

cdcl_W-learned-clause \ (init\text{-}state \ N)

unfolding cdcl_W-learned-clause-def by auto
```

```
lemma cdcl_W-learned-clss:
 assumes
   cdcl_W S S' and
   learned: cdcl_W-learned-clause S and
   lev-inv: cdcl_W-M-level-inv S
 shows cdcl_W-learned-clause S'
 using assms(1) lev-inv learned
proof (induct rule: cdcl_W-all-induct-lev2)
 case (backtrack K i M1 M2 L D T) note decomp = this(3) and confl = this(1) and undef = this(7)
 and T = this(8)
 show ?case
   using decomp confl learned undef T unfolding cdcl_W-learned-clause-def
   by (auto dest!: get-all-marked-decomposition-exists-prepend
     simp: raw-clauses-def lev-inv cdcl<sub>W</sub>-M-level-inv-decomp dest: true-clss-clss-left-right)
next
 case (resolve L C M D) note trail = this(1) and CL = this(2) and confl = this(4) and DL = this(5)
   and lvl = this(6) and T = this(7)
 moreover
   have init-clss S \models psm \ learned-clss S
     using learned trail unfolding cdcl_W-learned-clause-def raw-clauses-def by auto
   then have init-clss S \models pm \text{ mset-cls } C + \{\#L\#\}
     using trail learned unfolding cdcl_W-learned-clause-def raw-clauses-def
     by (auto dest: true-clss-clss-in-imp-true-clss-cls)
 moreover have remove1-mset (-L) (mset-ccls\ D) + \{\#-L\#\} = mset-ccls\ D
   using DL by (auto simp: multiset-eq-iff)
 moreover have remove1-mset L (mset-cls C) + {\#L\#} = mset-cls C
   using CL by (auto simp: multiset-eq-iff)
 ultimately show ?case
   using learned T
   by (auto dest: mk-disjoint-insert
     simp\ add:\ cdcl_W-learned-clause-def raw-clauses-def
     intro!: true-clss-cls-union-mset-true-clss-cls-or-not-true-clss-cls-or[of - - L])
next
 case (restart \ T)
 then show ?case
   using learned learned-clss-restart-state[of T]
   by (auto
     simp: raw-clauses-def \ state-eq-def \ cdcl_W-learned-clause-def
     simp del: state-simp
     dest: true-clss-clssm-subsetE)
next
 case propagate
 then show ?case using learned by (auto simp: cdcl_W-learned-clause-def)
next
 case conflict
 then show ?case using learned
   by (fastforce\ simp:\ cdcl_W-learned-clause-def raw-clauses-def
     true-clss-clss-in-imp-true-clss-cls)
next
 case (forget U)
 then show ?case using learned
   by (auto simp: cdcl_W-learned-clause-def raw-clauses-def split: if-split-asm)
qed (auto simp: cdcl_W-learned-clause-def raw-clauses-def)
```

```
lemma rtranclp-cdcl_W-learned-clss:
 assumes
   cdcl_W^{**} S S' and
   cdcl_W-M-level-inv S
   cdcl_W-learned-clause S
 shows cdcl_W-learned-clause S'
 using assms by induction (auto dest: cdcl_W-learned-clss intro: rtrancl_P-cdcl<sub>W</sub>-consistent-inv)
19.3.6
           No alien atom in the state
This invariant means that all the literals are in the set of clauses.
definition no-strange-atm S' \longleftrightarrow (
   (\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-mm (init-clss S'))
 \land (\forall L mark. Propagated L mark \in set (trail S')
      \longrightarrow atms\text{-}of \ (mark) \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S'))
 \land atms-of-mm (learned-clss S') \subseteq atms-of-mm (init-clss S')
 \land atm-of ' (lits-of-l (trail S')) \subseteq atms-of-mm (init-clss S'))
lemma no-strange-atm-decomp:
 assumes no-strange-atm S
 shows conflicting S = Some \ T \Longrightarrow atms-of \ T \subseteq atms-of-mm \ (init-clss \ S)
 and (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S)
    \longrightarrow atms-of \ (mark) \subseteq atms-of-mm \ (init-clss \ S))
 and atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S)
 and atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S))\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
 using assms unfolding no-strange-atm-def by blast+
lemma no-strange-atm-S0 [simp]: no-strange-atm (init\text{-state }N)
 unfolding no-strange-atm-def by auto
lemma in-atms-of-implies-atm-of-on-atms-of-ms:
  C + \{\#L\#\} \in \#A \implies x \in atms\text{-}of\ C \implies x \in atms\text{-}of\text{-}mm\ A
  using multi-member-split by fastforce
lemma propagate-no-strange-atm-inv:
 assumes
   propagate S T  and
   alien: no-strange-atm S
 shows no-strange-atm T
 using assms(1)
proof (induction)
 case (propagate-rule C L T) note confl = this(1) and C = this(2) and C-L = this(3) and
    tr = this(4) and undef = this(5) and T = this(6)
 have atm-CL: atms-of (mset-cls C) \subseteq atms-of-mm (init-clss S)
   using C alien unfolding no-strange-atm-def
   by (auto simp: raw-clauses-def atms-of-ms-def dest!:in-clss-mset-clss)
 show ?case
   unfolding no-strange-atm-def
   proof (intro conjI allI impI, goal-cases)
     case 1
     then show ?case
       using confl T undef by auto
     case (2 L' mark')
```

then show ?case

```
using C-L T alien undef atm-CL
       unfolding no-strange-atm-def raw-clauses-def apply auto by blast
   next
     case (3)
     show ?case using T alien undef unfolding no-strange-atm-def by auto
   next
     case (4)
     show ?case
       using T alien undef C-L atm-CL unfolding no-strange-atm-def by (auto simp: atms-of-def)
   qed
qed
lemma in-atms-of-remove1-mset-in-atms-of:
 x \in atms\text{-}of \ (remove1\text{-}mset \ L \ C) \implies x \in atms\text{-}of \ C
 using in-diffD unfolding atms-of-def by fastforce
lemma cdcl_W-no-strange-atm-explicit:
 assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   conf: \forall T. \ conflicting \ S = Some \ T \longrightarrow atms-of \ T \subseteq atms-of-mm \ (init-clss \ S) \ and
   marked: \forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S)
      \longrightarrow atms\text{-}of\ mark \subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S) and
   learned: atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S) and
   trail: atm-of ' (lits-of-l (trail S)) \subseteq atms-of-mm (init-clss S)
 shows
   (\forall T. conflicting S' = Some T \longrightarrow atms-of T \subseteq atms-of-mm (init-clss S')) \land
   (\forall L \ mark. \ Propagated \ L \ mark \in set \ (trail \ S')
       \rightarrow atms\text{-}of \ (mark) \subseteq atms\text{-}of\text{-}mm \ (init\text{-}clss \ S')) \land
   atms-of-mm (learned-clss S') \subseteq atms-of-mm (init-clss S') \land
   atm\text{-}of ' (lits\text{-}of\text{-}l\ (trail\ S'))\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S')
   (is ?C S' \land ?M S' \land ?U S' \land ?V S')
  using assms(1,2)
proof (induct rule: cdcl_W-all-induct-lev2)
  case (propagate CLT) note confl = this(1) and C-L = this(2) and tr = this(3) and undef =
this(4)
 and T = this(5)
 show ?case
   \mathbf{using}\ propagate-rule[OF\ propagate.hyps(1-3)\ -\ propagate.hyps(5,6),\ simplified]
   propagate.hyps(4) propagate-no-strange-atm-inv[of S T]
   conf marked learned trail unfolding no-strange-atm-def by presburger
next
  case (decide\ L)
 then show ?case using learned marked conf trail unfolding raw-clauses-def by auto
 case (skip\ L\ C\ M\ D)
 then show ?case using learned marked conf trail by auto
  case (conflict D T) note D-S = this(2) and T = this(4)
```

have D: atm-of 'set-mset (mset-cls D) $\subseteq \bigcup (atms-of '(set-mset (clauses S)))$

assume a1: atm-of 'set-mset (mset-cls D) $\subseteq (\bigcup x \in set\text{-mset (init-clss S)})$. atms-of x)

using D-S by (auto simp add: atms-of-def atms-of-ms-def)

moreover {

 $\mathbf{fix} \ xa :: 'v \ literal$

```
\cup (\bigcup x \in set\text{-}mset \ (learned\text{-}clss \ S). \ atms\text{-}of \ x)
   assume a2:
     (\bigcup x \in set\text{-mset (learned-clss } S). \ atms\text{-}of \ x) \subseteq (\bigcup x \in set\text{-mset (init-clss } S). \ atms\text{-}of \ x)
   assume xa \in \# mset\text{-}cls D
   then have atm\text{-}of\ xa \in UNION\ (set\text{-}mset\ (init\text{-}clss\ S))\ atms\text{-}of
     using a2 a1 by (metis (no-types) Un-iff atm-of-lit-in-atms-of atms-of-def subset-Un-eq)
   then have \exists m \in set\text{-}mset \ (init\text{-}clss \ S). \ atm\text{-}of \ xa \in atms\text{-}of \ m
     by blast
   } note H = this
  ultimately show ?case using conflict.prems T learned marked conf trail
   unfolding atms-of-def atms-of-ms-def raw-clauses-def
   by (auto simp add: H)
next
 case (restart T)
 then show ?case using learned marked conf trail by auto
  case (forget C T) note confl = this(1) and C = this(4) and C-le = this(5) and
   T = this(6)
 have H: \bigwedge L mark. Propagated L mark \in set (trail\ S) \Longrightarrow atms-of\ mark \subseteq atms-of-mm\ (init-clss\ S)
   using marked by simp
 show ?case unfolding raw-clauses-def apply (intro conjI)
      using conf conft T trail C unfolding raw-clauses-def apply (auto dest!: H)[]
     using T trail C C-le apply (auto dest!: H)[]
    using T learned C-le atms-of-ms-remove-subset[of set-mset (learned-clss S)] apply auto[]
  using T trail C-le apply (auto simp: raw-clauses-def lits-of-def)[]
  done
next
  case (backtrack K i M1 M2 L D T) note confl = this(1) and LD = this(2) and decomp = this(3)
   undef = this(7) and T = this(8)
 have ?CT
   using conf T decomp undef lev by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover have set M1 \subseteq set (trail S)
   using decomp by auto
  then have M: ?M T
   using marked conf undef confl T decomp lev
   by (auto simp: image-subset-iff raw-clauses-def cdcl<sub>W</sub>-M-level-inv-decomp)
  moreover have ?UT
   \mathbf{using}\ learned\ decomp\ conf\ confl\ T\ undef\ lev\ \mathbf{unfolding}\ raw\text{-}clauses\text{-}def
   by (auto simp: cdcl_W-M-level-inv-decomp)
  moreover have ?V T
   using M conf confl trail T undef decomp lev LD
   by (auto simp: cdcl_W-M-level-inv-decomp atms-of-def
     dest!: get-all-marked-decomposition-exists-prepend)
 ultimately show ?case by blast
next
 case (resolve L C M D T) note trail-S = this(1) and confl = this(4) and T = this(7)
 let ?T = update\text{-}conflicting (Some ((remove\text{-}clit (-L) D) !\cup ccls\text{-}of\text{-}cls ((remove\text{-}lit L C))))
   (tl-trail\ S)
 have ?C ?T
   using confl trail-S conf marked by (auto dest!: in-atms-of-remove1-mset-in-atms-of)
  moreover have ?M ?T
   using confl trail-S conf marked by auto
 moreover have ?U ?T
   using trail learned by auto
```

19.3.7 No duplicates all around

This invariant shows that there is no duplicate (no literal appearing twice in the formula). The last part could be proven using the previous invariant moreover.

```
definition distinct\text{-}cdcl_W\text{-}state (S::'st)
  \longleftrightarrow ((\forall T. conflicting S = Some T \longrightarrow distinct-mset T)
    \land distinct-mset-mset (learned-clss S)
    \land distinct-mset-mset (init-clss S)
    \land (\forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct\text{-}mset \ (mark))))
lemma distinct\text{-}cdcl_W\text{-}state\text{-}decomp:
  assumes distinct\text{-}cdcl_W\text{-}state\ (S::'st)
  shows \forall T. conflicting S = Some \ T \longrightarrow distinct\text{-mset} \ T
 and distinct-mset-mset (learned-clss S)
 and distinct-mset-mset (init-clss S)
 and \forall L \ mark. \ (Propagated \ L \ mark \in set \ (trail \ S) \longrightarrow distinct-mset \ (mark))
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by blast+
lemma distinct-cdcl_W-state-decomp-2:
  assumes distinct\text{-}cdcl_W\text{-}state\ (S::'st)
  shows conflicting S = Some \ T \Longrightarrow distinct\text{-mset } T
  using assms unfolding distinct-cdcl<sub>W</sub>-state-def by auto
lemma distinct\text{-}cdcl_W\text{-}state\text{-}S0\text{-}cdcl_W[simp]:
  distinct-mset-mset (mset-clss N) \Longrightarrow distinct-cdcl<sub>W</sub>-state (init-state N)
  unfolding distinct\text{-}cdcl_W\text{-}state\text{-}def by auto
lemma distinct-cdcl_W-state-inv:
  assumes
    cdcl_W S S' and
    lev-inv: cdcl_W-M-level-inv S and
    distinct-cdcl_W-state S
  shows distinct\text{-}cdcl_W\text{-}state\ S'
  using assms(1,2,2,3)
proof (induct rule: cdcl_W-all-induct-lev2)
  case (backtrack L D K i M1 M2)
  then show ?case
    using lev-inv unfolding distinct-cdcl_W-state-def
    by (auto dest: get-all-marked-decomposition-incl simp: cdcl_W-M-level-inv-decomp)
next
```

```
case restart
  then show ?case
   unfolding distinct-cdclw-state-def distinct-mset-set-def raw-clauses-def
   using learned-clss-restart-state [of S] by auto
next
  case resolve
 then show ?case
   by (auto simp add: distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def raw-clauses-def
     distinct-mset-single-add
     intro!: distinct-mset-union-mset)
\mathbf{qed} (auto simp: distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def raw-clauses-def
  dest!: in-clss-mset-clss in-diffD)
lemma rtanclp-distinct-cdcl_W-state-inv:
 assumes
   cdcl_{W}^{**} S S' and
   cdcl_W-M-level-inv S and
   distinct-cdcl_W-state S
 shows distinct\text{-}cdcl_W\text{-}state\ S'
  using assms apply (induct rule: rtranclp-induct)
  using distinct-cdcl_W-state-inv rtranclp-cdcl_W-consistent-inv by blast+
```

19.3.8 Conflicts and co

This invariant shows that each mark contains a contradiction only related to the previously defined variable.

```
abbreviation every-mark-is-a-conflict :: 'st \Rightarrow bool where
every-mark-is-a-conflict S \equiv
\forall L \ mark \ a \ b. \ a \ @ \ Propagated \ L \ mark \ \# \ b = (trail \ S)
    \rightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark)
definition cdcl_W-conflicting S \equiv
  (\forall \ T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T)
 \land every-mark-is-a-conflict S
\mathbf{lemma}\ backtrack-atms-of-D-in-M1:
 fixes M1 :: ('v, nat, 'v clause) marked-lits
 assumes
   inv: cdcl_W-M-level-inv S and
   undef: undefined-lit M1 L and
   i: get-maximum-level (trail S) (mset-ccls (remove-clit L D)) \equiv i and
   decomp: (Marked K (Suc i) \# M1, M2)
      \in set (get-all-marked-decomposition (trail S)) and
   S-lvl: backtrack-lvl S = get-maximum-level (trail S) (mset-ccls D) and
   S-confl: raw-conflicting S = Some D and
   undef: undefined-lit M1 L and
    T: T \sim cons-trail (Propagated L (cls-of-ccls D))
               (reduce-trail-to M1
                (add-learned-cls (cls-of-ccls D)
                  (update-backtrack-lvl i
                    (update-conflicting None S)))) and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 shows atms-of (mset-ccls (remove-clit L D)) \subseteq atm-of 'lits-of-l (tl (trail T))
proof (rule ccontr)
 let ?k = get\text{-}maximum\text{-}level (trail S) (mset\text{-}ccls D)
```

```
let ?D = mset\text{-}ccls D
 let ?D' = mset\text{-}ccls \ (remove\text{-}clit \ L \ D)
 have trail S \models as \ CNot \ ?D \ using \ confl \ S\text{-confl} by auto
 then have vars-of-D: atms-of ?D \subseteq atm-of 'lits-of-l (trail S) unfolding atms-of-def
   by (meson image-subsetI true-annots-CNot-all-atms-defined)
 obtain M0 where M: trail\ S = M0\ @\ M2\ @\ Marked\ K\ (Suc\ i)\ \#\ M1
   using decomp by auto
 have max: ?k = length (get-all-levels-of-marked (M0 @ M2 @ Marked K (Suc i) # M1))
   using inv unfolding cdcl<sub>W</sub>-M-level-inv-def S-lvl M by simp
 assume a: \neg ?thesis
 then obtain L' where
   L': L' \in atms\text{-}of ?D' and
   L'-notin-M1: L' \notin atm-of 'lits-of-l M1
   using T undef decomp inv by (auto simp: cdcl_W-M-level-inv-decomp)
 then have L'-in: L' \in atm\text{-of} ' lits-of-l (M0 @ M2 @ Marked K (i + 1) \# [])
   using vars-of-D unfolding M by (auto dest: in-atms-of-remove1-mset-in-atms-of)
 then obtain L'' where
   L'' \in \# ?D' and
   L'': L' = atm\text{-}of L''
   using L'L'-notin-M1 unfolding atms-of-def by auto
 have lev-L'':
   get-level (trail S) L'' = get-rev-level (Marked K (Suc i) \# rev M2 @ rev M0) (Suc i) L''
   using L'-notin-M1 L'' M by (auto simp del: get-rev-level.simps)
 have qet-all-levels-of-marked (trail\ S) = rev\ [1..<1+?k]
   using inv S-lvl unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
 then have get-all-levels-of-marked (M0 @ M2) = rev [Suc (Suc i)... < Suc ?k]
   unfolding M by (auto simp:rev-swap[symmetric] dest!: append-cons-eq-upt-length-i-end)
 then have M: get-all-levels-of-marked M0 @ get-all-levels-of-marked M2
   = rev [Suc (Suc i)..<Suc (length (get-all-levels-of-marked (M0 @ M2 @ Marked K (Suc i) # M1)))]
   unfolding max unfolding M by simp
 have get-rev-level (Marked K (Suc i) \# rev (M0 @ M2)) (Suc i) L''
   > Min (set ((Suc i) # qet-all-levels-of-marked (Marked K (Suc i) # rev (M0 @ M2))))
   using get-rev-level-ge-min-get-all-levels-of-marked of L"
     rev (M0 @ M2 @ [Marked K (Suc i)]) Suc i] L'-in
   unfolding L'' by (fastforce simp add: lits-of-def)
 also have Min\ (set\ ((Suc\ i)\ \#\ get\mbox{-}all\mbox{-}levels\mbox{-}of\mbox{-}marked}\ (Marked\ K\ (Suc\ i)\ \#\ rev\ (M0\ @\ M2))))
   = Min (set ((Suc i) \# qet-all-levels-of-marked (rev (M0 @ M2))))) by auto
 also have ... = Min (set ((Suc i) # get-all-levels-of-marked M0 @ get-all-levels-of-marked M2))
   by (simp add: Un-commute)
 also have ... = Min (set ((Suc i) \# [Suc (Suc i)..<2 + length (get-all-levels-of-marked M0))
   + (length (get-all-levels-of-marked M2) + length (get-all-levels-of-marked M1))]))
   unfolding M by (auto simp add: Un-commute)
 also have ... = Suc\ i by (auto\ intro:\ Min-eqI)
 finally have get-rev-level (Marked K (Suc i) \# rev (M0 @ M2)) (Suc i) L'' \geq Suc i .
 then have get-level (trail S) L'' > i + 1
   using lev-L'' by simp
 then have get-maximum-level (trail S) ?D' \ge i + 1
   using get-maximum-level-ge-get-level [OF \langle L'' \in \# ?D' \rangle, of trail S by auto
 then show False using i by auto
qed
```

```
lemma distinct-atms-of-incl-not-in-other:
 assumes
   a1: no-dup (M @ M') and
   a2: atms-of D \subseteq atm-of 'lits-of-l M' and
   a3: x \in atms\text{-}of D
 shows x \notin atm\text{-}of ' lits\text{-}of\text{-}l M
proof -
 have ff1: \bigwedge l ms. undefined-lit ms l \vee atm-of l
   \in set \ (map \ (\lambda m. \ atm-of \ (lit-of \ (m:('a, 'b, 'c) \ marked-lit))) \ ms)
   by (simp add: defined-lit-map)
 have ff2: \bigwedge a. \ a \notin atms\text{-}of \ D \lor a \in atm\text{-}of \ `lits\text{-}of\text{-}l \ M'
   using a2 by (meson subsetCE)
 have ff3: \bigwedge a. a \notin set (map (\lambda m. atm-of (lit-of m)) M')
   \vee a \notin set \ (map \ (\lambda m. \ atm-of \ (lit-of \ m)) \ M)
   using a1 by (metis (lifting) IntI distinct-append empty-iff map-append)
 have \forall L \ a \ f. \ \exists \ l. \ ((a::'a) \notin f \ `L \lor (l::'a \ literal) \in L) \land (a \notin f \ `L \lor f \ l = a)
   by blast
 then show x \notin atm\text{-}of ' lits-of-l M
   using ff3 ff2 ff1 a3 by (metis (no-types) Marked-Propagated-in-iff-in-lits-of-l)
qed
lemma cdcl_W-propagate-is-conclusion:
 assumes
   cdcl_W S S' and
   inv: cdcl_W-M-level-inv S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T and
   alien: no-strange-atm S
 shows all-decomposition-implies-m (init-clss S') (qet-all-marked-decomposition (trail S'))
 using assms(1,2)
proof (induct rule: cdcl_W-all-induct-lev2)
 case restart
 then show ?case by auto
next
  case forget
 then show ?case using decomp by auto
next
 {\bf case}\ conflict
 then show ?case using decomp by auto
 case (resolve L C M D) note tr = this(1) and T = this(7)
 let ?decomp = get\text{-}all\text{-}marked\text{-}decomposition } M
 have M: set ?decomp = insert (hd ?<math>decomp) (set (tl ?decomp))
   by (cases ?decomp) auto
 show ?case
   using decomp tr T unfolding all-decomposition-implies-def
   \mathbf{by}\ (\mathit{cases}\ \mathit{hd}\ (\mathit{get-all-marked-decomposition}\ M))
      (auto\ simp:\ M)
  case (skip\ L\ C'\ M\ D) note tr=this(1) and T=this(5)
 have M: set (get-all-marked-decomposition M)
   = insert (hd (get-all-marked-decomposition M)) (set (tl (get-all-marked-decomposition M)))
   by (cases get-all-marked-decomposition M) auto
 show ?case
```

```
using decomp tr T unfolding all-decomposition-implies-def
   by (cases hd (get-all-marked-decomposition M))
      (auto simp add: M)
next
  case decide note S = this(1) and undef = this(2) and T = this(4)
 show ?case using decomp T undef unfolding S all-decomposition-implies-def by auto
next
 case (propagate CLT) note propa = this(2) and L = this(3) and undef = this(5) and T = this(6)
 obtain a y where ay: hd (get-all-marked-decomposition (trail S)) = (a, y)
   by (cases hd (get-all-marked-decomposition (trail S)))
  then have M: trail\ S = y\ @\ a\ using\ get-all-marked-decomposition-decomp\ by\ blast
 have M': set (get-all-marked-decomposition (trail S))
   =insert\ (a,\ y)\ (set\ (tl\ (get-all-marked-decomposition\ (trail\ S))))
   using ay by (cases get-all-marked-decomposition (trail S)) auto
 have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ S) \models ps \ unmark-l \ y
   using decomp ay unfolding all-decomposition-implies-def
   by (cases get-all-marked-decomposition (trail S)) fastforce+
  then have a-Un-N-M: unmark-l a \cup set-mset (init-clss S)
   \models ps \ unmark-l \ (trail \ S)
   unfolding M by (auto simp add: all-in-true-clss-clss image-Un)
 have unmark-l a \cup set-mset (init-clss S) \models p \{\#L\#\} (is ?I \models p-)
   proof (rule true-clss-cls-plus-CNot)
     show ?I \models p \ remove1\text{-}mset\ L\ (mset\text{-}cls\ C) + \{\#L\#\}
       apply (rule true-clss-cls-in-imp-true-clss-cls[of -
          set-mset (init-clss S) \cup set-mset (learned-clss S)])
       using learned propa L by (auto simp: raw-clauses-def cdcl<sub>W</sub>-learned-clause-def
         true-annot-CNot-diff)
   next
     have unmark-l (trail\ S) \models ps\ CNot\ (remove1-mset\ L\ (mset-cls\ C))
       using \langle (trail\ S) \models as\ CNot\ (remove1-mset\ L\ (mset-cls\ C)) \rangle true-annots-true-clss-clss
       by blast
     then show ?I \models ps \ CNot \ (remove1\text{-}mset \ L \ (mset\text{-}cls \ C))
       using a-Un-N-M true-clss-clss-left-right true-clss-clss-union-l-r by blast
   qed
  moreover have \bigwedge aa\ b.
     \forall (Ls, seen) \in set (get-all-marked-decomposition (y @ a)).
       unmark-l Ls \cup set-mset (init-clss S) <math>\models ps unmark-l seen
   \implies (aa, b) \in set (tl (get-all-marked-decomposition <math>(y @ a)))
   \implies unmark-l aa \cup set-mset (init-clss S) \modelsps unmark-l b
   by (metis (no-types, lifting) case-prod-conv get-all-marked-decomposition-never-empty-sym
     list.collapse\ list.set-intros(2))
  ultimately show ?case
   using decomp T undef unfolding ay all-decomposition-implies-def
   using M \langle unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ S) \models ps \ unmark-l \ y \rangle
    ay by auto
next
 case (backtrack K i M1 M2 L D T) note conf = this(1) and LD = this(2) and decomp' = this(3)
and
   lev-L = this(4) and undef = this(7) and T = this(8)
 let ?D = mset\text{-}ccls D
 let ?D' = mset\text{-}ccls \ (remove\text{-}clit \ L \ D)
 have \forall l \in set M2. \neg is\text{-}marked l
   using get-all-marked-decomposition-snd-not-marked decomp' by blast
```

```
obtain M0 where M: trail S = M0 @ M2 @ Marked K (i + 1) \# M1
 using decomp' by auto
show ?case unfolding all-decomposition-implies-def
 proof
   \mathbf{fix} \ x
   assume x \in set (get-all-marked-decomposition (trail T))
   then have x: x \in set (get-all-marked-decomposition (Propagated L ?D # M1))
    using T decomp' undef inv by (simp add: cdcl_W-M-level-inv-decomp)
   let ?m = get-all-marked-decomposition (Propagated L ?D \# M1)
   let ?hd = hd ?m
   let ?tl = tl ?m
   consider
      (hd) x = ?hd
      (tl) x \in set ?tl
    using x by (cases ?m) auto
   then show case x of (Ls, seen) \Rightarrow unmark-l Ls \cup set-mset (init-clss T)
    \models ps \ unmark-l \ seen
    proof cases
      case tl
      then have x \in set (get-all-marked-decomposition (trail S))
        using tl-get-all-marked-decomposition-skip-some[of x] by (simp \ add: \ list.set-sel(2) \ M)
      then show ?thesis
        using decomp learned decomp confl alien inv T undef M
        unfolding all-decomposition-implies-def cdcl_W-M-level-inv-def
        by auto
    next
      case hd
      obtain M1' M1" where M1: hd (get-all-marked-decomposition M1) = (M1', M1'')
        \mathbf{by}\ (\mathit{cases}\ \mathit{hd}\ (\mathit{get-all-marked-decomposition}\ \mathit{M1}))
      then have x': x = (M1', Propagated L?D \# M1'')
        using \langle x = ?hd \rangle by auto
      have (M1', M1'') \in set (get-all-marked-decomposition (trail S))
        using M1[symmetric] hd-get-all-marked-decomposition-skip-some[OF M1[symmetric],
          of M0 @ M2 - i + 1] unfolding M by fastforce
      then have 1: unmark-l M1' \cup set-mset (init-clss S) \models ps unmark-l M1"
        using decomp unfolding all-decomposition-implies-def by auto
      moreover
        have vars-of-D: atms-of ?D' \subseteq atm-of 'lits-of-l M1
         using backtrack-atms-of-D-in-M1[of S M1 L D i K M2 T] backtrack.hyps inv conf confl
         by (auto simp: cdcl_W-M-level-inv-decomp)
        have no-dup (trail S) using inv by (auto simp: cdcl_W-M-level-inv-decomp)
        then have vars-in-M1:
         \forall x \in atms\text{-}of ?D'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M0 @ M2 @ Marked K (i + 1) # [])}
         using vars-of-D distinct-atms-of-incl-not-in-other of
           M0 @ M2 @ Marked K (i + 1) \# [] M1] unfolding M by auto
        have trail S \models as\ CNot\ (remove1\text{-}mset\ L\ (mset\text{-}ccls\ D))
         using conf confl LD unfolding M true-annots-true-cls-def-iff-negation-in-model
         by (auto dest!: Multiset.in-diffD)
        then have M1 \models as \ CNot \ ?D'
         using vars-in-M1 true-annots-remove-if-notin-vars[of M0 @ M2 @ Marked K (i + 1) # []
            M1 CNot ?D' conf confl unfolding M lits-of-def by simp
        have M1 = M1'' @ M1' by (simp add: M1 get-all-marked-decomposition-decomp)
        have TT: unmark-l M1' \cup set-mset (init-clss S) \models ps CNot ?D'
          using true-annots-true-clss-cls[OF \land M1 \models as\ CNot\ ?D'\rangle] true-clss-clss-left-right[OF\ 1]
```

```
unfolding \langle M1 = M1'' @ M1' \rangle by (auto simp add: inf-sup-aci(5,7))
          have init-clss S \models pm ?D' + \{\#L\#\}
            using conf learned confl LD unfolding cdcl<sub>W</sub>-learned-clause-def by auto
          then have T': unmark-l M1' \cup set-mset (init-clss S) \models p ?D' + \{\#L\#\} by auto
          have atms-of (?D' + {\#L\#}) \subseteq atms\text{-of-mm} (clauses S)
            using alien conf LD unfolding no-strange-atm-def raw-clauses-def by auto
          then have unmark-l\ M1' \cup set\text{-}mset\ (init\text{-}clss\ S) \models p\ \{\#L\#\}
            using true-clss-cls-plus-CNot[OF\ T'\ TT] by auto
        ultimately show ?thesis
            using T' T decomp' undef inv unfolding x' by (simp add: cdcl_W-M-level-inv-decomp)
      qed
   qed
qed
lemma cdcl_W-propagate-is-false:
 assumes
   cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   learned: cdcl_W-learned-clause S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   confl: \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T and
   alien: no-strange-atm S and
   mark-confl: every-mark-is-a-conflict S
 shows every-mark-is-a-conflict S'
 using assms(1,2)
proof (induct\ rule:\ cdcl_W-all-induct-lev2)
 case (propagate C L T) note LC = this(3) and confl = this(4) and undef = this(5) and T = this(5)
this(6)
 show ?case
   proof (intro allI impI)
     \mathbf{fix}\ L'\ mark\ a\ b
     assume a @ Propagated L' mark \# b = trail T
     then consider
        (hd) a = [] and L = L' and mark = mset\text{-}cls\ C and b = trail\ S
      | (tl) tl \ a @ Propagated L' mark \# b = trail S
      using T undef by (cases a) fastforce+
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
       using mark-confl confl LC by cases auto
   qed
next
 case (decide L) note undef[simp] = this(2) and T = this(4)
 have \bigwedge a\ La\ mark\ b. a\ @\ Propagated\ La\ mark\ \#\ b = Marked\ L\ (backtrack-lvl\ S+1)\ \#\ trail\ S
     \Rightarrow tl a @ Propagated La mark \# b = trail S by (case-tac a) auto
 then show ?case using mark-conft T unfolding decide.hyps(1) by fastforce
next
 case (skip\ L\ C'\ M\ D\ T) note tr=this(1) and T=this(5)
 show ?case
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then have a @ Propagated L' mark \# b = M using tr T by simp
     then have (Propagated L C' # a) @ Propagated L' mark # b = Propagated L C' # M by auto
     moreover have \forall La \ mark \ a \ b. \ a \ @ \ Propagated \ La \ mark \ \# \ b = Propagated \ L \ C' \ \# \ M
       \longrightarrow b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# mark
```

```
using mark-confl unfolding skip.hyps(1) by simp
     ultimately show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark \ by \ blast
   qed
next
 case (conflict D)
 then show ?case using mark-confl by simp
 case (resolve L C M D T) note tr-S = this(1) and T = this(7)
 show ?case unfolding resolve.hyps(1)
   proof (intro allI impI)
     fix L' mark a b
     assume a @ Propagated L' mark \# b = trail T
     then have (Propagated\ L\ (mset\text{-}cls\ (L\ !++\ C))\ \#\ a)\ @\ Propagated\ L'\ mark\ \#\ b
      = Propagated \ L \ (mset-cls \ (L !++ \ C)) \ \# \ M
      using T tr-S by auto
     then show b \models as \ CNot \ (mark - \{\#L'\#\}) \land L' \in \# \ mark
      using mark-confl unfolding tr-S by (metis\ Cons-eq-appendI\ list.sel(3))
   qed
next
 case restart
 then show ?case by auto
next
 case forget
 then show ?case using mark-confl by auto
 case (backtrack K i M1 M2 L D T) note conf = this(1) and LD = this(2) and decomp = this(3)
and
   undef = this(7) and T = this(8)
 have \forall l \in set M2. \neg is\text{-}marked l
   using qet-all-marked-decomposition-snd-not-marked decomp by blast
 obtain M0 where M: trail S = M0 @ M2 @ Marked K (i + 1) \# M1
   using decomp by auto
 have [simp]: trail (reduce-trail-to M1 (add-learned-cls (cls-of-ccls (insert-ccls L D))
   (update-backtrack-lvl\ i\ (update-conflicting\ None\ S))))=M1
   using decomp lev by (auto simp: cdcl_W-M-level-inv-decomp)
 let ?D = mset\text{-}ccls D
 let ?D' = mset\text{-}ccls \ (remove\text{-}clit \ L \ D)
 show ?case
   proof (intro allI impI)
     fix La :: 'v literal and mark :: 'v literal multiset and
      a b :: ('v, nat, 'v literal multiset) marked-lit list
     assume a @ Propagated La mark \# b = trail T
     then consider
        (hd-tr) a = [] and
          (Propagated La mark :: ('v, nat, 'v literal multiset) marked-lit)
           = Propagated L ?D and
          b = M1
      |(tl-tr)| tl \ a \ @ Propagated \ La \ mark \ \# \ b = M1
      using M T decomp undef lev by (cases a) (auto simp: cdcl<sub>W</sub>-M-level-inv-def)
     then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
      proof cases
        case hd-tr note A = this(1) and P = this(2) and b = this(3)
        have trail S \models as \ CNot \ ?D using conf confl by auto
        then have vars-of-D: atms-of ?D \subseteq atm-of `lits-of-l (trail S)
          unfolding atms-of-def
```

```
by (meson image-subsetI true-annots-CNot-all-atms-defined)
         have vars-of-D: atms-of ?D' \subseteq atm-of `lits-of-l M1
          using backtrack-atms-of-D-in-M1 [of S M1 L D i K M2 T] T backtrack lev confl
          by (auto simp: cdcl_W-M-level-inv-decomp)
         have no-dup (trail S) using lev by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
         then have \forall x \in atms-of ?D'. x \notin atm-of 'lits-of-l (M0 @ M2 @ Marked K (i + 1) # [])
          using vars-of-D distinct-atms-of-incl-not-in-other[of
            M0 @ M2 @ Marked K (i + 1) \# [] M1] unfolding M by auto
         then have M1 \models as \ CNot \ ?D'
          using true-annots-remove-if-notin-vars[of M0 @ M2 @ Marked K (i + 1) \# []
            M1 CNot ?D' \mid \langle trail \ S \models as \ CNot \ ?D \rangle unfolding M lits-of-def
          by (simp add: true-annot-CNot-diff)
         then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
          using P LD b by auto
      next
         case tl-tr
         then obtain c' where c' @ Propagated La mark \# b = trail S
          unfolding M by auto
         then show b \models as \ CNot \ (mark - \{\#La\#\}) \land La \in \# \ mark
          using mark-confl by auto
       qed
   qed
\mathbf{qed}
lemma cdcl_W-conflicting-is-false:
 assumes
   cdcl_W S S' and
   M-lev: cdcl_W-M-level-inv S and
   confl-inv: \forall T. \ conflicting \ S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T \ and
   marked-confl: \forall L \text{ mark } a \text{ b. } a @ Propagated L \text{ mark } \# b = (trail S)
     \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) \ \mathbf{and}
   dist: distinct-cdcl_W-state S
 shows \forall T. conflicting S' = Some T \longrightarrow trail S' \models as CNot T
 using assms(1,2)
proof (induct rule: cdcl<sub>W</sub>-all-induct-lev2)
  case (skip L C' M D T) note tr-S = this(1) and confl = this(2) and L-D = this(3) and T =
 let ?D = mset\text{-}ccls D
 have D: Propagated L C' \# M \models as CNot (mset-ccls D) using assms skip by auto
 moreover
   have L \notin \# ?D
     proof (rule ccontr)
      assume ¬ ?thesis
       then have -L \in lits-of-lM
         using in-CNot-implies-uminus(2)[of L ?D Propagated L C' \# M]
         \langle Propagated \ L \ C' \# M \models as \ CNot \ ?D \rangle \ \mathbf{by} \ simp
      then show False
         by (metis (no-types, hide-lams) M-lev cdcl_W-M-level-inv-decomp(1) consistent-interp-def
          image-insert\ insert-iff\ list.set(2)\ lits-of-def\ marked-lit.sel(2)\ tr-S)
     qed
 ultimately show ?case
   using tr-S confl L-D T unfolding cdcl_W-M-level-inv-def
   by (auto intro: true-annots-CNot-lit-of-notin-skip)
\mathbf{next}
  case (resolve L C M D T) note tr = this(1) and LC = this(2) and confl = this(4) and LD = this(4)
```

```
this(5)
 and T = this(7)
 let ?C = remove1\text{-}mset\ L\ (mset\text{-}cls\ C)
 let ?D = remove1\text{-}mset (-L) (mset\text{-}ccls D)
 show ?case
   proof (intro allI impI)
     fix T'
     have the trail S = as \ CNot \ ?C \ using \ tr \ marked-confl \ by \ fastforce
     moreover
       have distinct-mset (?D + \{\#-L\#\}) using confl dist LD
        unfolding distinct-cdcl_W-state-def by auto
       then have -L \notin \# ?D unfolding distinct-mset-def
        by (meson \ (distinct\text{-}mset \ (?D + \{\#-L\#\})) \ distinct\text{-}mset\text{-}single\text{-}add)
       have M \models as \ CNot \ ?D
        proof -
          have Propagated L (?C + \{\#L\#\}) \# M \modelsas CNot ?D \cup CNot \{\#-L\#\}
            using confl tr confl-inv LC by (metis CNot-plus LD insert-DiffM2 option.simps(9))
          then show ?thesis
            using M-lev \langle -L \notin \#?D \rangle tr true-annots-lit-of-notin-skip
            unfolding cdcl_W-M-level-inv-def by force
     moreover assume conflicting T = Some T'
     ultimately
      show trail T \models as CNot T'
       using tr T by auto
qed (auto simp: M-lev cdcl_W-M-level-inv-decomp)
lemma cdcl_W-conflicting-decomp:
 assumes cdcl_W-conflicting S
 shows \forall T. conflicting S = Some \ T \longrightarrow trail \ S \models as \ CNot \ T
 and \forall L \ mark \ a \ b. \ a @ Propagated \ L \ mark \ \# \ b = (trail \ S)
    \longrightarrow (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \#mark)
 using assms unfolding cdcl<sub>W</sub>-conflicting-def by blast+
lemma cdcl_W-conflicting-decomp2:
 assumes cdcl_W-conflicting S and conflicting <math>S = Some \ T
 shows trail S \models as \ CNot \ T
 using assms unfolding cdcl_W-conflicting-def by blast+
lemma cdcl_W-conflicting-S0-cdcl_W[simp]:
  cdcl_W-conflicting (init-state N)
 unfolding cdcl_W-conflicting-def by auto
          Putting all the invariants together
19.3.9
lemma cdcl_W-all-inv:
 assumes
   cdcl_W: cdcl_W S S' and
   1: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W-M-level-inv S and
   5: no-strange-atm S and
   7: distinct-cdcl_W-state S and
   8: cdcl_W-conflicting S
 shows
```

```
all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv S' and
   no-strange-atm S' and
   distinct-cdcl_W-state S' and
   cdcl_W-conflicting S'
proof -
 show S1: all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S'))
   using cdcl_W-propagate-is-conclusion[OF cdcl_W 4 1 2 - 5] 8 unfolding cdcl_W-conflicting-def
   by blast
 show S2: cdcl_W-learned-clause S' using cdcl_W-learned-clss[OF cdcl_W 2 4].
 show S4: cdcl_W-M-level-inv S' using cdcl_W-consistent-inv[OF cdcl_W 4].
 show S5: no-strange-atm S' using cdcl_W-no-strange-atm-inv[OF cdcl_W 5 4].
 show S7: distinct-cdcl_W-state S' using distinct-cdcl_W-state-inv[OF cdcl_W 4 7].
 show S8: cdcl_W-conflicting S'
   using cdclw-conflicting-is-false[OF cdclw 4 - - 7] 8 cdclw-propagate-is-false[OF cdclw 4 2 1 -
   unfolding cdcl_W-conflicting-def by fast
qed
lemma rtranclp-cdcl_W-all-inv:
 assumes
   cdcl_W: rtranclp \ cdcl_W \ S \ S' and
   1: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   2: cdcl_W-learned-clause S and
   4: cdcl_W-M-level-inv S and
   5: no-strange-atm S and
   7: distinct\text{-}cdcl_W\text{-}state\ S and
   8: cdcl_W-conflicting S
 shows
   all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S')) and
   cdcl_W-learned-clause S' and
   cdcl_W-M-level-inv S' and
   no-strange-atm S' and
   distinct-cdcl_W-state S' and
   cdcl_W-conflicting S'
  using assms
proof (induct rule: rtranclp-induct)
 case base
   case 1 then show ?case by blast
   case 2 then show ?case by blast
   case 3 then show ?case by blast
   case 4 then show ?case by blast
   case 5 then show ?case by blast
   case 6 then show ?case by blast
next
 case (step S' S'') note H = this
   case 1 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 2 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 3 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
   case 4 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
      H by presburger
```

```
case 5 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
   case 6 with H(3-7)[OF\ this(1-6)] show ?case using cdcl_W-all-inv[OF\ H(2)]
       H by presburger
qed
lemma all-invariant-S0-cdcl_W:
 assumes distinct-mset-mset (mset-clss N)
 shows
   all-decomposition-implies-m (init-clss (init-state N))
                             (get-all-marked-decomposition\ (trail\ (init-state\ N))) and
   cdcl_W-learned-clause (init-state N) and
   \forall T. \ conflicting \ (init\text{-state } N) = Some \ T \longrightarrow (trail \ (init\text{-state } N)) \models as \ CNot \ T \ and
   no-strange-atm (init-state N) and
   consistent-interp (lits-of-l (trail (init-state N))) and
   \forall L \ mark \ a \ b. \ a \ @ \ Propagated \ L \ mark \ \# \ b = \ trail \ (init\text{-state } N) \longrightarrow
    (b \models as \ CNot \ (mark - \{\#L\#\}) \land L \in \# \ mark) \ \mathbf{and}
    distinct\text{-}cdcl_W\text{-}state \ (init\text{-}state \ N)
  using assms by auto
lemma cdcl_W-only-propagated-vars-unsat:
 assumes
   marked: \forall x \in set M. \neg is\text{-}marked x \text{ and }
   DN: D \in \# clauses S  and
   D: M \models as \ CNot \ D and
   inv: all-decomposition-implies-m N (get-all-marked-decomposition M) and
   state: state S = (M, N, U, k, C) and
   learned-cl: cdcl_W-learned-clause S and
   atm-incl: no-strange-atm S
 shows unsatisfiable (set-mset N)
proof (rule ccontr)
 assume \neg unsatisfiable (set-mset N)
  then obtain I where
   I: I \models s \ set\text{-}mset \ N \ \mathbf{and}
   cons: consistent-interp I and
   tot: total-over-m I (set-mset N)
   unfolding satisfiable-def by auto
 have atms-of-mm N \cup atms-of-mm U = atms-of-mm N
   using atm-incl state unfolding total-over-m-def no-strange-atm-def
    by (auto simp add: raw-clauses-def)
  then have total-over-m I (set-mset N) using tot unfolding total-over-m-def by auto
 moreover then have total-over-m I (set-mset (learned-clss S))
   using atm-incl state unfolding no-strange-atm-def total-over-m-def total-over-set-def
   by auto
  moreover have N \models psm\ U using learned-cl state unfolding cdcl_W-learned-clause-def by auto
  ultimately have I-D: I \models D
   using I DN cons state unfolding true-clss-def true-clss-def Ball-def
   by (auto simp add: raw-clauses-def)
 have l0: \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ M\} = \{\}\ using\ marked\ by\ auto
 have atms-of-ms (set-mset N \cup unmark-l M) = atms-of-mm N
   using atm-incl state unfolding no-strange-atm-def by auto
  then have total-over-m I (set-mset N \cup unmark-l M)
   using tot unfolding total-over-m-def by auto
```

```
then have I \models s \ unmark-l \ M
   using all-decomposition-implies-propagated-lits-are-implied [OF inv] cons I
   unfolding true-clss-clss-def l0 by auto
 then have IM: I \models s \ unmark-l \ M \ by \ auto
   \mathbf{fix} \ K
   assume K \in \# D
   then have -K \in lits-of-l M
     using D unfolding true-annots-def Ball-def CNot-def true-annot-def true-cls-def true-lit-def
     Bex-def by force
   then have -K \in I using IM true-clss-singleton-lit-of-implies-incl lits-of-def by fastforce }
 then have \neg I \models D using cons unfolding true-cls-def true-lit-def consistent-interp-def by auto
 then show False using I-D by blast
We have actually a much stronger theorem, namely all-decomposition-implies ?N (get-all-marked-decomposition
?M) \implies ?N \cup \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ ?M\} \models ps\ unmark-l\ ?M, \text{ that show that}
the only choices we made are marked in the formula
lemma
 assumes all-decomposition-implies-m N (qet-all-marked-decomposition M)
 and \forall m \in set M. \neg is\text{-}marked m
 shows set-mset N \models ps \ unmark-l \ M
proof -
 have T: \{unmark\ L\ | L.\ is-marked\ L \land L \in set\ M\} = \{\}\ using\ assms(2)\ by\ auto
 then show ?thesis
   using all-decomposition-implies-propagated-lits-are-implied [OF assms(1)] unfolding T by simp
qed
{f lemma}\ conflict	ext{-}with	ext{-}false	ext{-}implies	ext{-}unsat:
 assumes
   cdcl_W: cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   [simp]: conflicting S' = Some {\#} and
   learned: cdcl_W-learned-clause S
 shows unsatisfiable (set-mset (init-clss S))
 using assms
proof -
 have cdcl_W-learned-clause S' using cdcl_W-learned-clss cdcl_W learned lev by auto
 then have init-clss S' \models pm \ \{\#\} using assms(3) unfolding cdcl_W-learned-clause-def by auto
 then have init-clss S \models pm \{\#\}
   using cdcl_W-init-clss[OF\ assms(1)\ lev] by auto
 then show ?thesis unfolding satisfiable-def true-clss-cls-def by auto
qed
lemma conflict-with-false-implies-terminated:
 assumes cdcl_W S S'
 and conflicting S = Some \{\#\}
 shows False
 using assms by (induct rule: cdcl_W-all-induct) auto
```

19.3.10 No tautology is learned

This is a simple consequence of all we have shown previously. It is not strictly necessary, but helps finding a better bound on the number of learned clauses.

```
lemma learned-clss-are-not-tautologies:
  assumes
    cdcl_W S S' and
   lev: cdcl_W-M-level-inv S and
   conflicting: cdcl_W-conflicting S and
   no-tauto: \forall s \in \# learned\text{-}clss S. \neg tautology s
  shows \forall s \in \# learned\text{-}clss S'. \neg tautology s
  \mathbf{using}\ \mathit{assms}
proof (induct rule: cdcl_W-all-induct-lev2)
  case (backtrack \ K \ i \ M1 \ M2 \ L \ D \ T) note confl = this(1)
  have consistent-interp (lits-of-l (trail S)) using lev by (auto simp: cdcl_W-M-level-inv-decomp)
 moreover
   have trail S \models as CNot (mset-ccls D)
      using conflicting confl unfolding cdcl<sub>W</sub>-conflicting-def by auto
   then have lits-of-l (trail S) \modelss CNot (mset-ccls D)
      using true-annots-true-cls by blast
  ultimately have ¬tautology (mset-ccls D) using consistent-CNot-not-tautology by blast
  then show ?case using backtrack no-tauto lev
   by (auto simp: cdcl_W-M-level-inv-decomp split: if-split-asm)
next
  case restart
  then show ?case using learned-clss-restart-state state-eq-learned-clss no-tauto
   by (metis (no-types, lifting) set-mset-mono subsetCE)
qed (auto dest!: in-diffD)
definition final\text{-}cdcl_W\text{-}state (S:: 'st)
  \longleftrightarrow (trail S \models asm init-clss S
   \vee ((\forall L \in set (trail S). \neg is-marked L) \wedge
      (\exists C \in \# init\text{-}clss S. trail S \models as CNot C)))
definition termination-cdcl_W-state (S:: 'st)
   \longleftrightarrow (trail S \models asm init-clss S
    \vee ((\forall L \in atms\text{-}of\text{-}mm \ (init\text{-}clss \ S). \ L \in atm\text{-}of \ `its\text{-}of\text{-}l \ (trail \ S))
       \land (\exists C \in \# init\text{-}clss \ S. \ trail \ S \models as \ CNot \ C)))
         CDCL Strong Completeness
fun mapi :: ('a \Rightarrow nat \Rightarrow 'b) \Rightarrow nat \Rightarrow 'a \ list \Rightarrow 'b \ list where
mapi - - [] = [] |
mapi f n (x \# xs) = f x n \# mapi f (n - 1) xs
lemma mark-not-in-set-mapi[simp]: L \notin set M \Longrightarrow Marked L k \notin set (mapi Marked i M)
 by (induct M arbitrary: i) auto
lemma propagated-not-in-set-mapi[simp]: L \notin set M \Longrightarrow Propagated L k \notin set (mapi Marked i M)
  by (induct M arbitrary: i) auto
lemma image-set-mapi:
 f 'set (mapi\ g\ i\ M) = set\ (mapi\ (\lambda x\ i.\ f\ (g\ x\ i))\ i\ M)
 by (induction M arbitrary: i) auto
lemma mapi-map-convert:
 \forall x \ i \ j. \ f \ x \ i = f \ x \ j \Longrightarrow mapi \ f \ i \ M = map \ (\lambda x. \ f \ x \ \theta) \ M
 by (induction M arbitrary: i) auto
lemma defined-lit-mapi: defined-lit (mapi Marked i M) L \longleftrightarrow atm-of L \in atm-of 'set M
```

```
lemma cdcl_W-can-do-step:
 assumes
   consistent-interp (set M) and
   distinct M and
   atm\text{-}of ' (set M) \subseteq atms-of-mm (mset-clss N)
 shows \exists S. rtranclp \ cdcl_W \ (init\text{-state } N) \ S
   \land state S = (mapi \ Marked \ (length \ M) \ M, mset-clss \ N, \{\#\}, length \ M, None)
 using assms
proof (induct M)
 \mathbf{case}\ \mathit{Nil}
 then show ?case apply - by (rule exI[of - init\text{-state } N]) auto
 case (Cons L M) note IH = this(1)
 have consistent-interp (set M) and distinct M and atm-of 'set M \subseteq atms-of-mm (mset-clss N)
   using Cons.prems(1-3) unfolding consistent-interp-def by auto
  then obtain S where
   st: cdcl_{W}^{**} (init\text{-}state\ N)\ S \ and
   S: state S = (mapi \ Marked \ (length \ M) \ M, mset-clss \ N, \{\#\}, length \ M, None)
   using IH by blast
 let S_0 = incr-lvl \ (cons-trail \ (Marked \ L \ (length \ M + 1)) \ S
 have undefined-lit (mapi Marked (length M) M) L
   using Cons.prems(1,2) unfolding defined-lit-def consistent-interp-def by fastforce
  moreover have init-clss S = mset-clss N
   using S by blast
 moreover have atm-of L \in atms-of-mm (mset-clss N) using Cons.prems(3) by auto
 moreover have undef: undefined-lit (trail S) L
   using S (distinct (L\#M)) (calculation(1)) by (auto simp: defined-lit-map) defined-lit-map)
 ultimately have cdcl_W S ?S_0
   \mathbf{using}\ cdcl_W.other[OF\ cdcl_W-o.decide[OF\ decide-rule[of\ S\ L\ ?S_0]]]\ S
   by (auto simp: state-eq-def simp del: state-simp)
  then have cdcl_W^{**} (init-state N) ?S<sub>0</sub>
   using st by auto
 then show ?case
   using S undef by (auto intro!: exI[of - ?S_0] del: simp del:)
qed
lemma cdcl_W-strong-completeness:
 assumes
   MN: set M \models sm mset\text{-}clss N  and
   cons: consistent-interp (set M) and
   dist: distinct M and
   atm: atm-of `(set M) \subseteq atms-of-mm (mset-clss N)
 obtains S where
   state S = (mapi \ Marked \ (length \ M) \ M, \ mset-clss \ N, \{\#\}, \ length \ M, \ None) and
   rtranclp \ cdcl_W \ (init\text{-}state \ N) \ S \ and
   final-cdcl_W-state S
proof -
 obtain S where
   st: rtranclp\ cdcl_W\ (init\text{-}state\ N)\ S and
   S: state S = (mapi \ Marked \ (length \ M) \ M, mset-clss \ N, \{\#\}, length \ M, None)
   using cdcl_W-can-do-step[OF cons dist atm] by auto
 have lits-of-l (mapi Marked (length M) M) = set M
   by (induct M, auto)
```

by (induction M) (auto simp: defined-lit-map image-set-mapi mapi-map-convert)

```
then have mapi Marked (length M) M \models asm \ mset\text{-}clss \ N using MN true-annots-true-cls by metis
then have final-cdcl<sub>W</sub>-state S
using S unfolding final-cdcl<sub>W</sub>-state-def by auto
then show ?thesis using that st S by blast
qed
```

19.5 Higher level strategy

The rules described previously do not lead to a conclusive state. We have to add a strategy.

19.5.1 Definition

```
lemma tranclp-conflict:
  tranclp\ conflict\ S\ S' \Longrightarrow conflict\ S\ S'
 apply (induct rule: tranclp.induct)
  apply simp
 by (metis conflictE conflicting-update-conflicting option. distinct(1) option. simps(8,9)
   state-eq\text{-}conflicting)
lemma tranclp-conflict-iff[iff]:
 full1 conflict S S' \longleftrightarrow conflict S S'
proof -
 have tranclp conflict S S' \Longrightarrow conflict S S' by (meson tranclp-conflict rtranclpD)
 then show ?thesis unfolding full1-def
 by (metis conflict.simps conflicting-update-conflicting option.distinct(1) option.simps(9)
   state-eq-conflicting\ tranclp.intros(1))
qed
inductive cdcl_W-cp :: 'st \Rightarrow 'st \Rightarrow bool where
conflict'[intro]: conflict S S' \Longrightarrow cdcl_W - cp S S' \mid
propagate': propagate \ S \ S' \Longrightarrow cdcl_W - cp \ S \ S'
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}cp\text{-}rtranclp\text{-}cdcl_W\text{:}
  cdcl_W - cp^{**} S T \Longrightarrow cdcl_W^{**} S T
 by (induction rule: rtranclp-induct) (auto simp: cdcl_W-cp.simps dest: cdcl_W.intros)
lemma cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp S T and
   S \sim S' and
   T \sim T'
 shows cdcl_W-cp S' T'
 using assms
 apply (induction)
   using conflict-state-eq-compatible apply auto[1]
 using propagate' propagate-state-eq-compatible by auto
lemma tranclp-cdcl_W-cp-state-eq-compatible:
 assumes
   cdcl_W-cp^{++} S T and
   S \sim S' and
   T \sim T'
 shows cdcl_W-cp^{++} S' T'
 using assms
proof induction
```

```
case base
 then show ?case
   using cdcl_W-cp-state-eq-compatible by blast
next
  case (step \ U \ V)
 obtain ss :: 'st where
   cdcl_W-cp S ss \wedge cdcl_W-cp^{**} ss U
   by (metis\ (no\text{-}types)\ step(1)\ tranclpD)
 then show ?case
   by (meson\ cdcl_W\text{-}cp\text{-}state\text{-}eq\text{-}compatible\ rtranclp.rtrancl-into\text{-}rtrancl\ rtranclp-into\text{-}tranclp2
     state-eq-ref step(2) step(4) step(5)
qed
lemma option-full-cdcl_W-cp:
  conflicting S \neq None \Longrightarrow full \ cdcl_W \text{-}cp \ S \ S
 unfolding full-def rtranclp-unfold tranclp-unfold
 by (auto simp add: cdcl_W-cp.simps elim: conflictE propagateE)
lemma skip-unique:
  skip \ S \ T \Longrightarrow skip \ S \ T' \Longrightarrow T \sim T'
 by (fastforce simp: state-eq-def simp del: state-simp elim: skipE)
lemma resolve-unique:
  resolve \ S \ T \Longrightarrow resolve \ S \ T' \Longrightarrow \ T \sim \ T'
 by (fastforce simp: state-eq-def simp del: state-simp elim: resolveE)
lemma cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp S S'
 shows clauses S = clauses S'
 using assms by (induct rule: cdcl_W-cp.induct) (auto elim!: conflictE propagateE)
lemma tranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{++} S S'
 shows clauses S = clauses S'
 using assms by (induct rule: tranclp.induct) (auto dest: cdcl_W-cp-no-more-clauses)
lemma rtranclp-cdcl_W-cp-no-more-clauses:
 assumes cdcl_W-cp^{**} S S'
 shows clauses S = clauses S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-no-more-clauses)+
lemma no-conflict-after-conflict:
  conflict \ S \ T \Longrightarrow \neg conflict \ T \ U
 by (metis\ None-eq-map-option-iff\ conflictE\ conflicting-update-conflicting\ option.distinct(1)
   state-simp(5)
lemma no-propagate-after-conflict:
  conflict S T \Longrightarrow \neg propagate T U
  by (metis\ conflictE\ conflicting\ update\ conflicting\ map-option\ is\ None\ option\ distinct(1)
   propagate.cases state-eq-conflicting)
\mathbf{lemma}\ tranclp\text{-}cdcl_W\text{-}cp\text{-}propagate\text{-}with\text{-}conflict\text{-}or\text{-}not\text{:}
 assumes cdcl_W-cp^{++} S U
 shows (propagate^{++} S U \land conflicting U = None)
   \vee (\exists T D. propagate^{**} S T \wedge conflict T U \wedge conflicting U = Some D)
```

```
proof -
 have propagate^{++} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
   using assms by induction
   (force simp: cdcl<sub>W</sub>-cp.simps tranclp-into-rtranclp dest: no-conflict-after-conflict
      no-propagate-after-conflict)+
 moreover
   have propagate^{++} S U \Longrightarrow conflicting U = None
     unfolding tranclp-unfold-end by (auto elim!: propagateE)
 moreover
   have \bigwedge T. conflict T \ U \Longrightarrow \exists D. conflicting U = Some \ D
     by (auto elim!: conflictE simp: state-eq-def simp del: state-simp)
 ultimately show ?thesis by meson
qed
lemma cdcl_W-cp-conflicting-not-empty[simp]: conflicting S = Some \ D \implies \neg cdcl_W-cp S \ S'
 assume cdcl_W-cp \ S \ S' and conflicting \ S = Some \ D
 then show False by (induct rule: cdcl_W-cp.induct)
 (auto elim: conflictE propagateE simp: state-eq-def simp del: state-simp)
qed
lemma no-step-cdcl_W-cp-no-conflict-no-propagate:
 assumes no-step cdcl_W-cp S
 shows no-step conflict S and no-step propagate S
 using assms conflict' apply blast
 by (meson assms conflict' propagate')
CDCL with the reasonable strategy: we fully propagate the conflict and propagate, then we
apply any other possible rule cdcl_W-o S S' and re-apply conflict and propagate full cdcl_W-cp
S'S''
inductive cdcl_W-stgy :: 'st \Rightarrow 'st \Rightarrow bool for S :: 'st where
conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow \ cdcl_W - stgy \ S \ S'
other': cdcl_W-o S S' \implies no-step cdcl_W-cp S \implies full cdcl_W-cp S' S'' \implies cdcl_W-stqy S S''
19.5.2
          Invariants
These are the same invariants as before, but lifted
lemma cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: cdcl_W-cp.induct) (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{**} S S'
 shows learned-clss S = learned-clss S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl<sub>W</sub>-cp-learned-clause-inv)+
lemma tranclp-cdcl_W-cp-learned-clause-inv:
 assumes cdcl_W-cp^{++} S S'
 shows learned-clss S = learned-clss S'
 using assms by (simp add: rtranclp-cdcl_W-cp-learned-clause-inv tranclp-into-rtranclp)
lemma cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp S S'
 shows backtrack-lvl S = backtrack-lvl S'
```

```
using assms by (induct rule: cdcl_W-cp.induct) (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-backtrack-lvl:
 assumes cdcl_W-cp^{**} S S'
 shows backtrack-lvl S = backtrack-lvl S'
 using assms by (induct rule: rtranclp-induct) (fastforce dest: cdcl_W-cp-backtrack-lvl)+
lemma cdcl_W-cp-consistent-inv:
 assumes cdcl_W-cp S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms
proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict')
 then show ?case using cdcl_W-consistent-inv cdcl_W.conflict by blast
next
 case (propagate' S S')
 have cdcl_W S S'
   using propagate'.hyps(1) propagate by blast
 then show cdcl_W-M-level-inv S'
   using propagate'.prems(1) cdcl_W-consistent-inv propagate by blast
qed
lemma full1-cdcl_W-cp-consistent-inv:
 assumes full1 cdcl_W-cp S S
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
 by (metis\ rtranclp-cdcl_W\ -cp-rtranclp-cdcl_W\ rtranclp-unfold\ tranclp-cdcl_W\ -consistent-inv)
lemma rtranclp-cdcl_W-cp-consistent-inv:
 assumes rtranclp\ cdcl_W-cp\ S\ S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms unfolding full1-def
 by (induction rule: rtranclp-induct) (blast intro: cdcl_W-cp-consistent-inv)+
lemma cdcl_W-stgy-consistent-inv:
 assumes cdcl_W-stgy SS'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms apply (induct rule: cdcl_W-stgy.induct)
 unfolding full-unfold by (blast intro: cdcl_W-consistent-inv full1-cdcl_W-cp-consistent-inv
   cdcl_W.other)+
lemma rtranclp-cdcl_W-stgy-consistent-inv:
 assumes cdcl_W-stgy^{**} S S'
 and cdcl_W-M-level-inv S
 shows cdcl_W-M-level-inv S'
 using assms by induction (auto dest!: cdcl_W-stgy-consistent-inv)
lemma cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: cdcl_W-cp.induct) (auto elim: conflictE propagateE)
```

```
lemma tranclp-cdcl_W-cp-no-more-init-clss:
 assumes cdcl_W-cp^{++} S S'
 shows init-clss S = init-clss S'
 using assms by (induct rule: tranclp.induct) (auto dest: cdcl<sub>W</sub>-cp-no-more-init-clss)
lemma cdcl_W-stgy-no-more-init-clss:
 assumes cdcl_W-stgy S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct rule: cdcl_W-stgy.induct)
 unfolding full1-def full-def apply (blast dest: tranclp-cdcl<sub>W</sub>-cp-no-more-init-clss
   tranclp-cdcl_W-o-no-more-init-clss)
  by (metis\ cdcl_W-o-no-more-init-clss rtranclp-unfold tranclp-cdcl_W-cp-no-more-init-clss)
lemma rtranclp-cdcl_W-stgy-no-more-init-clss:
 assumes cdcl_W-stgy^{**} S S' and cdcl_W-M-level-inv S
 shows init-clss S = init-clss S'
 using assms
 apply (induct rule: rtranclp-induct, simp)
 using cdcl_W-stgy-no-more-init-clss by (simp add: rtranclp-cdcl_W-stgy-consistent-inv)
lemma cdcl_W-cp-drop While-trail':
 assumes cdcl_W-cp S S'
 obtains M where trail S' = M @ trail S and (\forall l \in set M. \neg is\text{-}marked l)
 using assms by induction (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-drop While-trail':
 assumes cdcl_W-cp^{**} S S'
 obtains M:: ('v, nat, 'v clause) marked-lit list where
   trail \ S' = M \ @ \ trail \ S \ {\bf and} \ \forall \ l \in set \ M. \ \neg is-marked \ l
 using assms by induction (fastforce dest!: cdcl<sub>W</sub>-cp-dropWhile-trail')+
lemma cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-marked l)
 using assms by induction (fastforce elim: conflictE propagateE)+
lemma rtranclp-cdcl_W-cp-drop While-trail:
 assumes cdcl_W-cp^{**} S S'
 shows \exists M. trail S' = M @ trail S \land (\forall l \in set M. \neg is-marked l)
 using assms by induction (fastforce dest: cdcl<sub>W</sub>-cp-drop While-trail)+
This theorem can be seen a a termination theorem for cdcl_W-cp.
{f lemma}\ length{\it -model-le-vars}:
 assumes
   no-strange-atm S and
   no-d: no-dup (trail S) and
   finite\ (atms-of-mm\ (init-clss\ S))
 shows length (trail\ S) \le card\ (atms-of-mm\ (init-clss\ S))
proof -
 obtain M N U k D where S: state S = (M, N, U, k, D) by (cases state S, auto)
 \mathbf{have}\ \mathit{finite}\ (\mathit{atm-of}\ \lq\ \mathit{lits-of-l}\ (\mathit{trail}\ S))
   using assms(1,3) unfolding S by (auto simp add: finite-subset)
 have length (trail\ S) = card\ (atm\text{-}of\ `lits\text{-}of\text{-}l\ (trail\ S))
```

```
using no-dup-length-eq-card-atm-of-lits-of-l no-d by blast
  then show ?thesis using assms(1) unfolding no-strange-atm-def
  by (auto simp add: assms(3) card-mono)
qed
lemma cdcl_W-cp-decreasing-measure:
  assumes
    cdcl_W: cdcl_W-cp S T and
   M-lev: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
  shows (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
      + (if conflicting S = None then 1 else 0)) S
   > (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
      + (if \ conflicting \ S = None \ then \ 1 \ else \ 0)) \ T
  using assms
proof -
 have length (trail T) \leq card (atms-of-mm (init-clss T))
   apply (rule length-model-le-vars)
      \mathbf{using}\ \mathit{cdcl}_W\,\text{-}no\text{-}\mathit{strange}\text{-}\mathit{atm}\text{-}\mathit{inv}\ \mathit{alien}\ \mathit{M}\text{-}\mathit{lev}\ \mathbf{apply}\ (\mathit{meson}\ \mathit{cdcl}_W\ \mathit{cdcl}_W.\mathit{simps}\ \mathit{cdcl}_W\text{-}\mathit{cp}.\mathit{cases})
      using M-lev cdcl_W cdcl_W-cp-consistent-inv cdcl_W-M-level-inv-def apply blast
      using cdcl_W by (auto simp: cdcl_W-cp.simps)
  with assms
 show ?thesis by induction (auto elim!: conflictE propagateE
    simp \ del: state-simp \ simp: state-eq-def)+
qed
lemma cdcl_W-cp-wf: wf {(b,a). (cdcl_W-M-level-inv a \land no-strange-atm a)
  \land cdcl_W - cp \ a \ b
 apply (rule wf-wf-if-measure' of less-than - -
      (\lambda S. \ card \ (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
       + (if \ conflicting \ S = None \ then \ 1 \ else \ 0))))
   apply simp
  using cdcl_W-cp-decreasing-measure unfolding less-than-iff by blast
\mathbf{lemma}\ \mathit{rtranclp-cdcl}_W\text{-}\mathit{all-struct-inv-cdcl}_W\text{-}\mathit{cp-iff-rtranclp-cdcl}_W\text{-}\mathit{cp}:
  assumes
   lev: cdcl_W-M-level-inv S and
    alien: no-strange-atm S
  shows (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a) \land cdcl_W - cp \ a \ b)^{**} \ S \ T
    \longleftrightarrow cdcl_W - cp^{**} S T
  (is ?IS T \longleftrightarrow ?CS T)
proof
  assume
    ?IST
  then show ?C S T by induction auto
next
  assume
    ?CST
  then show ?IST
   proof induction
      case base
      then show ?case by simp
   next
      case (step T U) note st = this(1) and cp = this(2) and IH = this(3)
      have cdcl_W^{**} S T
```

```
by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty cp st
         rtranclp-propagate-is-rtranclp-cdcl_W tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
     then have
       cdcl_W-M-level-inv T and
       no-strange-atm T
        using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: assms(1) \ rtranclp-cdcl_W-consistent-inv)
       using \langle cdcl_W^{**} \mid S \mid T \rangle alien rtranclp-cdcl_W-no-strange-atm-inv lev by blast
     then have (\lambda a \ b. \ (cdcl_W - M - level - inv \ a \land no - strange - atm \ a)
       \wedge \ cdcl_W - cp \ a \ b)^{**} \ T \ U
       using cp by auto
     then show ?case using IH by auto
   qed
qed
lemma cdcl_W-cp-normalized-element:
 assumes
   lev: cdcl_W-M-level-inv S and
   no-strange-atm S
 obtains T where full\ cdcl_W-cp\ S\ T
proof -
 let ?inv = \lambda a. (cdcl<sub>W</sub>-M-level-inv a \wedge no-strange-atm a)
 obtain T where T: full (\lambda a \ b. ?inv a \wedge cdcl_W-cp a \ b) S T
   using cdcl_W-cp-wf wf-exists-normal-form[of <math>\lambda a \ b. ?inv \ a \land cdcl_W-cp \ a \ b]
   unfolding full-def by blast
   then have cdcl_W-cp^{**} S T
     using rtranclp-cdcl_W-all-struct-inv-cdcl_W-cp-iff-rtranclp-cdcl_W-cp assms unfolding full-def
     \mathbf{by} blast
   moreover
     then have cdcl_W^{**} S T
       using rtranclp-cdcl_W-cp-rtranclp-cdcl_W by blast
     then have
       cdcl_W-M-level-inv T and
       no-strange-atm T
        using \langle cdcl_W^{**} \mid S \mid T \rangle apply (simp \ add: \ assms(1) \ rtranclp-cdcl_W-consistent-inv)
       \mathbf{using} \ \langle cdcl_W^{**} \ S \ T \rangle \ assms(2) \ rtranclp-cdcl_W-no-strange-atm-inv lev by blast
     then have no-step cdcl_W-cp T
       using T unfolding full-def by auto
   ultimately show thesis using that unfolding full-def by blast
qed
lemma always-exists-full-cdcl_W-cp-step:
 assumes no-strange-atm S
 shows \exists S''. full cdcl_W-cp S S''
 using assms
\mathbf{proof} (induct card (atms-of-mm (init-clss S) - atm-of 'lits-of-l (trail S)) arbitrary: S)
 case \theta note card = this(1) and alien = this(2)
 then have atm: atms-of-mm \ (init-clss \ S) = atm-of \ `ilts-of-l \ (trail \ S)
   \mathbf{unfolding}\ \mathit{no-strange-atm-def}\ \mathbf{by}\ \mathit{auto}
  { assume a: \exists S'. conflict S S'
   then obtain S' where S': conflict S S' by metis
   then have \forall S''. \neg cdcl_W-cp S'S''
     by (auto simp: cdcl_W-cp.simps elim!: conflictE propagateE
       simp del: state-simp simp: state-eq-def)
   then have ?case using a S' cdclw-cp.conflict' unfolding full-def by blast
  }
```

```
moreover {
     assume a: \exists S'. propagate SS'
     then obtain S' where propagate SS' by blast
     then obtain EL where
        S: conflicting S = None  and
        E: E !\in ! raw\text{-}clauses S  and
        LE: L \in \# mset\text{-}cls \ E \text{ and }
        tr: trail \ S \models as \ CNot \ (mset\text{-}cls \ (remove\text{-}lit \ L \ E)) and
        undef: undefined-lit (trail S) L and
        S': S' \sim cons-trail (Propagated L E) S
        by (elim propagateE) simp
     have atms-of-mm (learned-clss S) \subseteq atms-of-mm (init-clss S)
        using alien S unfolding no-strange-atm-def by auto
     then have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
        using E LE S undef unfolding raw-clauses-def by (force simp: in-implies-atm-of-on-atms-of-ms)
     then have False using undef S unfolding atm unfolding lits-of-def
        by (auto simp add: defined-lit-map)
   ultimately show ?case unfolding full-def by (metis cdcl_W-cp.cases rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl
next
   case (Suc n) note IH = this(1) and card = this(2) and alien = this(3)
   { assume a: \exists S'. conflict S S'
     then obtain S' where S': conflict S S' by metis
     then have \forall S''. \neg cdcl_W - cp S' S''
        by (auto simp: cdcl_W-cp.simps elim!: conflictE propagateE
           simp del: state-simp simp: state-eq-def)
     then have ?case unfolding full-def Ex-def using S' cdcl<sub>W</sub>-cp.conflict' by blast
   }
   moreover {}
     assume a: \exists S'. propagate SS'
     then obtain S' where propagate: propagate S S' by blast
     then obtain EL where
        S: conflicting S = None  and
        E: E !\in ! raw\text{-}clauses S  and
        LE: L \in \# mset\text{-}cls \ E \ \mathbf{and}
        tr: trail \ S \models as \ CNot \ (mset\text{-}cls \ (remove\text{-}lit \ L \ E)) and
        undef: undefined-lit (trail S) L and
        S': S' \sim cons-trail (Propagated L E) S
        by (elim propagateE) simp
     then have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ (trail \ S)
        unfolding lits-of-def by (auto simp add: defined-lit-map)
     moreover
        have no-strange-atm S' using alien propagate propagate-no-strange-atm-inv by blast
        then have atm\text{-}of\ L\in atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)
           using S' LE E undef unfolding no-strange-atm-def
           by (auto simp: raw-clauses-def in-implies-atm-of-on-atms-of-ms)
        then have \bigwedge A. \{atm\text{-}of\ L\}\subseteq atms\text{-}of\text{-}mm\ (init\text{-}clss\ S)-A\lor atm\text{-}of\ L\in A\ \text{by}\ force
     moreover have Suc\ n - card\ \{atm\text{-}of\ L\} = n\ \textbf{by}\ simp
     moreover have card (atms-of-mm (init-clss S) – atm-of 'lits-of-l (trail S)) = Suc n
       using card S S' by simp
     ultimately
        have card (atms-of-mm\ (init-clss\ S)-atm-of\ `insert\ L\ (lits-of-l\ (trail\ S)))=n
           by (metis (no-types) Diff-insert card-Diff-subset finite.emptyI finite.insertI image-insert)
        then have n = card (atms-of-mm (init-clss S') - atm-of 'lits-of-l (trail S'))
           using card S S' undef by simp
```

```
then have a1: Ex (full cdcl_W-cp S') using IH (no-strange-atm S') by blast
             have ?case
                   proof -
                          obtain S'' :: 'st where
                                ff1: cdcl_W-cp^{**} S' S'' \wedge no-step cdcl_W-cp S''
                                using a1 unfolding full-def by blast
                          have cdcl_W-cp^{**} S S''
                                using ff1 cdcl_W-cp.intros(2)[OF\ propagate]
                                \mathbf{by}\ (\textit{metis}\ (\textit{no-types})\ \textit{converse-rtranclp-into-rtranclp})
                          then have \exists S''. cdcl_W-cp^{**} S S'' \land (\forall S'''. \neg cdcl_W-cp S'' S''')
                                using ff1 by blast
                          then show ?thesis unfolding full-def
                                by meson
                   qed
      ultimately show ?case unfolding full-def by (metis cdcl_W-cp.cases rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl_P:rtrancl
qed
```

19.5.3 Literal of highest level in conflicting clauses

One important property of the $cdcl_W$ with strategy is that, whenever a conflict takes place, there is at least a literal of level k involved (except if we have derived the false clause). The reason is that we apply conflicts before a decision is taken.

```
abbreviation no-clause-is-false :: 'st \Rightarrow bool where
no-clause-is-false \equiv
  \lambda S. \ (conflicting \ S = None \longrightarrow (\forall \ D \in \# \ clauses \ S. \ \neg trail \ S \models as \ CNot \ D))
abbreviation conflict-is-false-with-level :: 'st \Rightarrow bool where
conflict-is-false-with-level S \equiv \forall D. conflicting S = Some D \longrightarrow D \neq \{\#\}
  \longrightarrow (\exists L \in \# D. \ get\text{-level (trail S)} \ L = backtrack\text{-lvl S})
{f lemma}\ not\text{-}conflict\text{-}not\text{-}any\text{-}negated\text{-}init\text{-}clss:
 assumes \forall S'. \neg conflict S S'
 shows no-clause-is-false S
proof (clarify)
  assume D \in \# local.clauses S and raw-conflicting S = None and trail S \models as CNot D
  moreover then obtain D' where
    mset-cls D' = D and
   D' \not\in ! raw-clauses S
   using in-mset-clss-exists-preimage unfolding raw-clauses-def by blast
  ultimately show False
   using conflict-rule[of S D' update-conflicting (Some (ccls-of-cls D')) S] assms
   by auto
lemma full-cdcl_W-cp-not-any-negated-init-clss:
 assumes full cdcl_W-cp S S'
  shows no-clause-is-false S'
  using assms not-conflict-not-any-negated-init-clss unfolding full-def by auto
lemma full1-cdcl_W-cp-not-any-negated-init-clss:
  assumes full1 cdcl_W-cp S S
  shows no-clause-is-false S'
  using assms not-conflict-not-any-negated-init-clss unfolding full1-def by auto
```

```
lemma cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stgy SS'
 shows no-clause-is-false S'
 using assms apply (induct rule: cdcl_W-stgy.induct)
 using full1-cdcl_W-cp-not-any-neqated-init-clss full-cdcl_W-cp-not-any-neqated-init-clss by metis+
lemma rtranclp-cdcl_W-stgy-not-non-negated-init-clss:
 assumes cdcl_W-stgy^{**} S S' and no-clause-is-false S
 shows no-clause-is-false S'
 using assms by (induct rule: rtranclp-induct) (auto simp: cdcl_W-stgy-not-non-negated-init-clss)
\mathbf{lemma}\ \mathit{cdcl}_W\textit{-stgy-conflict-ex-lit-of-max-level}\colon
 assumes cdcl_W-cp S S'
 and no-clause-is-false S
 and cdcl_W-M-level-inv S
 shows conflict-is-false-with-level S'
 using assms
\mathbf{proof}\ (induct\ rule:\ cdcl_W\text{-}cp.induct)
 case conflict'
 then show ?case by (auto elim: conflictE)
next
 case propagate'
 then show ?case by (auto elim: propagateE)
lemma no-chained-conflict:
 assumes conflict S S'
 and conflict S' S"
 shows False
 using assms unfolding conflict.simps
 by (metis\ conflicting-update-conflicting\ option.distinct(1)\ option.simps(9)\ state-eq-conflicting)
lemma rtranclp-cdcl_W-cp-propa-or-propa-confl:
 assumes cdcl_W-cp^{**} S U
 shows propagate^{**} S U \vee (\exists T. propagate^{**} S T \wedge conflict T U)
 using assms
proof induction
 case base
 then show ?case by auto
 case (step U V) note SU = this(1) and UV = this(2) and IH = this(3)
 consider (confl) T where propagate^{**} S T and conflict T U
   | (propa) propagate** S U using IH by auto
 then show ?case
   proof cases
     case confl
     then have False using UV by (auto elim: conflictE)
     then show ?thesis by fast
   next
     case propa
     also have conflict U \ V \ \vee \ propagate \ U \ V \ using \ UV \ by (auto simp add: cdcl_W-cp.simps)
     ultimately show ?thesis by force
   \mathbf{qed}
qed
```

```
lemma rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level:
   assumes full: full cdcl_W-cp S U
   and cls-f: no-clause-is-false S
   and conflict-is-false-with-level S
   and lev: cdcl_W-M-level-inv S
   shows conflict-is-false-with-level U
proof (intro allI impI)
   \mathbf{fix} D
   assume
       confl: conflicting U = Some D and
       D: D \neq \{\#\}
    consider (CT) conflicting S = None \mid (SD) D' where conflicting S = Some D'
       by (cases conflicting S) auto
    then show \exists L \in \#D. get-level (trail U) L = backtrack-lvl U
       proof cases
           case SD
           then have S = U
              \mathbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \textit{assms}(1) \ \textit{cdcl}_W\text{-}\textit{cp-conflicting-not-empty} \ \textit{full-def} \ \textit{rtranclpD} \ \textit{tranclpD})
           then show ?thesis using assms(3) confl D by blast-
       next
           case CT
           have init-clss U = init-clss S and learned-clss U = learned-clss S
              using full unfolding full-def
                  apply (metis\ (no-types)\ rtranclpD\ tranclp-cdcl_W-cp-no-more-init-clss)
              by (metis (mono-tags, lifting) full full-def rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv)
           obtain T where propagate^{**} S T and TU: conflict T U
              proof -
                  have f5: U \neq S
                      using confl CT by force
                  then have cdcl_W-cp^{++} S U
                     by (metis full full-def rtranclpD)
                  have \bigwedge p pa. \neg propagate p pa \lor conflicting pa =
                      (None::'v\ clause\ option)
                     by (auto elim: propagateE)
                  then show ?thesis
                      using f5 that tranclp-cdcl_W-cp-propagate-with-conflict-or-not[OF \langle cdcl_W-cp<sup>++</sup> S U\rangle]
                      full confl CT unfolding full-def by auto
              qed
           obtain D' where
               raw-conflicting T = None and
               D': D' !\in ! raw\text{-}clauses T  and
               tr: trail \ T \models as \ CNot \ (mset\text{-}cls \ D') \ \mathbf{and}
               U: U \sim update\text{-conflicting (Some (ccls-of\text{-}cls D'))} T
              using TU by (auto elim!: conflictE)
           have init-clss T = init-clss S and learned-clss T = learned-clss S
              using U \in Init-clss\ U = Init-clss\ S \cap Init-clss\ U = Init-clss\ S \cap Init-clss
           then have D \in \# clauses S
              using confl UD' by (auto simp: raw-clauses-def)
           then have \neg trail S \models as CNot D
              using cls-f CT by simp
           moreover
              obtain M where tr-U: trail U = M @ trail S and nm: \forall m \in set M. \neg is-marked m
                  by (metis\ (mono-tags,\ lifting)\ assms(1)\ full-def\ rtranclp-cdcl_W-cp-drop\ While-trail)
```

```
have trail\ U \models as\ CNot\ D
   using tr \ confl \ U by (auto \ elim!: \ conflictE)
ultimately obtain L where L \in \# D and -L \in lits-of-l M
 unfolding tr-U CNot-def true-annots-def Ball-def true-annot-def true-cls-def by force
moreover have inv-U: cdcl_W-M-level-inv U
 by (metis\ cdcl_W\text{-}stgy.conflict'\ cdcl_W\text{-}stgy\text{-}consistent\text{-}inv\ full\ full\text{-}unfold\ lev})
moreover
 have backtrack-lvl\ U = backtrack-lvl\ S
   using full unfolding full-def by (auto dest: rtranclp-cdcl_W-cp-backtrack-lvl)
moreover
 have no-dup (trail\ U)
   using inv-U unfolding cdcl_W-M-level-inv-def by auto
  { \mathbf{fix} \ x :: ('v, nat, 'v \ clause) \ marked-lit \ \mathbf{and}
     xb :: ('v, nat, 'v \ clause) \ marked-lit
   assume a1: atm\text{-}of\ L = atm\text{-}of\ (lit\text{-}of\ xb)
   moreover assume a2: -L = lit - of x
   moreover assume a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) ' set M
     \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ `set \ (trail \ S) = \{\}
   moreover assume a4: x \in set M
   moreover assume a5: xb \in set (trail S)
   moreover have atm\text{-}of (-L) = atm\text{-}of L
     by auto
   ultimately have False
     by auto
 then have LS: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ (trail \ S)
   \mathbf{using} \ \leftarrow L \in \mathit{lits-of-l}\ \mathit{M} \land (\mathit{no-dup}\ (\mathit{trail}\ \mathit{U})) \land \mathbf{unfolding}\ \mathit{tr-U}\ \mathit{lits-of-def}\ \mathbf{by}\ \mathit{auto}
ultimately have get-level (trail U) L = backtrack-lvl U
 proof (cases get-all-levels-of-marked (trail S) \neq [], goal-cases)
   case 2 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
     LS = this(5) and ne = this(6)
   have backtrack-lvl\ S=0
     using lev ne unfolding cdclw-M-level-inv-def by auto
   moreover have get-rev-level (rev M) \theta L = \theta
     using nm by auto
   ultimately show ?thesis using LS ne US unfolding tr\text{-}U
     by (simp add: get-all-levels-of-marked-nil-iff-not-is-marked lits-of-def)
 next
   case 1 note LD = this(1) and LM = this(2) and inv - U = this(3) and US = this(4) and
     LS = this(5) and ne = this(6)
   have hd (get-all-levels-of-marked (trail S)) = backtrack-lvl S
     using ne lev unfolding cdcl_W-M-level-inv-def
     by (cases get-all-levels-of-marked (trail S)) auto
   moreover have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
     using \langle -L \in lits-of-l M \rangle by (simp \ add: \ atm-of-in-atm-of-set-iff-in-set-or-uninus-in-set
       lits-of-def)
   ultimately show ?thesis
     using nm ne get-level-skip-beginning-hd-get-all-levels-of-marked[OF LS, of M]
       get-level-skip-in-all-not-marked[of rev M L backtrack-lvl S]
     unfolding lits-of-def US tr-U
     \mathbf{by} auto
   qed
```

```
\mathbf{using} \ \langle L \in \# \ D \rangle \ \mathbf{by} \ \mathit{blast}
   qed
qed
           Literal of highest level in marked literals
definition mark-is-false-with-level :: 'st \Rightarrow bool where
mark-is-false-with-level S' \equiv
 \forall D \ M1 \ M2 \ L. \ M1 @ Propagated \ L \ D \# M2 = trail \ S' \longrightarrow D - \{\#L\#\} \neq \{\#\}
    \longrightarrow (\exists L. \ L \in \# \ D \land get\text{-level (trail } S') \ L = get\text{-maximum-possible-level } M1)
definition no-more-propagation-to-do:: 'st \Rightarrow bool where
no-more-propagation-to-do S \equiv
 \forall D \ M \ M' \ L. \ D + \{\#L\#\} \in \# \ clauses \ S \longrightarrow trail \ S = M' @ M \longrightarrow M \models as \ CNot \ D

ightarrow undefined-lit M L 
ightarrow get-maximum-possible-level M < backtrack-lvl S
   \longrightarrow (\exists L. \ L \in \# \ D \land \ qet\text{-level (trail S)} \ L = qet\text{-maximum-possible-level M})
{\bf lemma}\ propagate-no-more-propagation-to-do:
  assumes propagate: propagate S S'
 and H: no-more-propagation-to-do S
 and lev-inv: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
  using assms
proof -
  obtain EL where
   S: conflicting S = None  and
   E: E !\in ! raw\text{-}clauses S  and
   LE: L \in \# mset\text{-}cls \ E \text{ and }
   tr: trail \ S \models as \ CNot \ (mset\text{-}cls \ (remove\text{-}lit \ L \ E)) and
   undefL: undefined-lit (trail S) L and
   S': S' \sim cons-trail (Propagated L E) S
   using propagate by (elim propagateE) simp
  let ?M' = Propagated\ L\ (mset\text{-}cls\ E)\ \#\ trail\ S
  show ?thesis unfolding no-more-propagation-to-do-def
   proof (intro allI impI)
     fix D M1 M2 L'
     assume
       D\text{-}L: D + \{\#L'\#\} \in \# \ clauses \ S' \ \mathbf{and}
       trail S' = M2 @ M1 and
       get-max: get-maximum-possible-level M1 < backtrack-lvl S' and
       M1 \models as \ CNot \ D \ \mathbf{and}
       undef: undefined-lit M1 L'
     have the M2 @ M1 = trail S \vee (M2 = [] \wedge M1 = Propagated L \ (mset-cls E) \# trail S)
       using \langle trail \ S' = M2 \ @ M1 \rangle \ S' \ S \ undefL \ lev-inv
       by (cases M2) (auto simp:cdcl_W-M-level-inv-decomp)
     moreover {
       assume tl M2 @ M1 = trail S
       moreover have D + \{\#L'\#\} \in \# clauses S
         using D-L S S' undefL unfolding raw-clauses-def by auto
       moreover have get-maximum-possible-level M1 < backtrack-lvl S
         using get-max S S' undefL by auto
       ultimately obtain L' where L' \in \# D and
         get-level (trail S) L' = get-maximum-possible-level M1
         using H \langle M1 \models as\ CNot\ D \rangle undef unfolding no-more-propagation-to-do-def by metis
       moreover
```

then show $\exists L \in \#D$. get-level (trail U) L = backtrack-lvl U

```
{ have cdcl_W-M-level-inv S'
            using cdcl_W-consistent-inv lev-inv cdcl_W.propagate[OF propagate] by blast
          then have no-dup ?M' using S' undefL unfolding cdcl_W-M-level-inv-def by auto
          moreover
            have atm\text{-}of\ L'\in atm\text{-}of ' (lits-of-l M1)
              using \langle L' \in \# D \rangle \langle M1 \models as \ CNot \ D \rangle by (metis atm-of-uninus image-eqI
                in-CNot-implies-uminus(2))
            then have atm\text{-}of\ L' \in atm\text{-}of\ `(lits\text{-}of\text{-}l\ (trail\ S))
              using \langle tl \ M2 \ @ \ M1 = trail \ S \rangle [symmetric] \ S \ undefL \ by \ auto
          ultimately have atm-of L \neq atm-of L' unfolding lits-of-def by auto
      ultimately have \exists L' \in \# D. get-level (trail S') L' = get-maximum-possible-level M1
        using SS' undefL by auto
     moreover {
      assume M2 = [] and M1: M1 = Propagated L (mset-cls E) # trail S
      have cdcl_W-M-level-inv S'
        using cdcl_W-consistent-inv[OF - lev-inv] cdcl_W.propagate[OF \ propagate] by blast
       then have get-all-levels-of-marked (trail S') = rev [Suc 0..<(Suc 0+backtrack-lvl S)]
        using S' undefL unfolding cdcl_W-M-level-inv-def by auto
       then have get-maximum-possible-level M1 = backtrack-lvl S'
        using get-maximum-possible-level-max-get-all-levels-of-marked of M1 S' M1 undefL
        by (auto intro: Max-eqI)
       then have False using get-max by auto
     }
     ultimately show \exists L. \ L \in \# \ D \land get\text{-level (trail } S') \ L = get\text{-maximum-possible-level } M1
  qed
qed
\mathbf{lemma}\ conflict-no-more-propagation-to-do:
 assumes
   conflict: conflict S S' and
   H: no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S\ and
   M: cdcl_W - M - level - inv S
 shows no-more-propagation-to-do S'
 using assms unfolding no-more-propagation-to-do-def by (force elim!: conflictE)
lemma cdcl_W-cp-no-more-propagation-to-do:
 assumes
   conflict: cdcl_W-cp S S' and
   H: no\text{-}more\text{-}propagation\text{-}to\text{-}do\ S\ and
   M: cdcl_W-M-level-inv S
 shows no-more-propagation-to-do S'
  using assms
 proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict' S S')
 then show ?case using conflict-no-more-propagation-to-do[of S S'] by blast
next
 case (propagate' S S') note S = this
 show 1: no-more-propagation-to-do S'
   using propagate-no-more-propagation-to-do [of SS'] S by blast
qed
lemma cdcl_W-then-exists-cdcl_W-stgy-step:
```

```
assumes
   o: cdcl_W-o S S' and
   alien: no-strange-atm S and
   lev: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W-stgy SS'
proof -
 obtain S'' where full cdcl_W-cp S' S''
   \mathbf{using}\ \ always-exists-full-cdcl_W-cp-step\ \ alien\ \ cdcl_W-no-strange-atm-inv\ \ cdcl_W-o-no-more-init-clss
    o other lev by (meson cdcl_W-consistent-inv)
  then show ?thesis
   using assms by (metis always-exists-full-cdcl<sub>W</sub>-cp-step cdcl<sub>W</sub>-stgy.conflict' full-unfold other')
qed
lemma backtrack-no-decomp:
 assumes
   S: raw-conflicting S = Some \ E and
   LE: L \in \# mset\text{-}ccls \ E \text{ and }
   L: qet-level (trail S) L = backtrack-lvl S and
   D: qet-maximum-level (trail S) (remove1-mset L (mset-ccls E)) < backtrack-lvl S and
   bt: backtrack-lvl\ S = get-maximum-level\ (trail\ S)\ (mset-ccls\ E) and
   M-L: cdcl_W-M-level-inv S
 shows \exists S'. \ cdcl_W \text{-}o \ S \ S'
proof -
 have L-D: get-level (trail S) L = get-maximum-level (trail S) (mset-ccls E)
   using L D bt by (simp add: get-maximum-level-plus)
 let ?i = get\text{-}maximum\text{-}level (trail S) (remove1\text{-}mset L (mset\text{-}ccls E))
 obtain K M1 M2 where
   K: (Marked\ K\ (?i+1)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ S))
   using backtrack-ex-decomp[OF M-L, of ?i] D S by auto
 show ?thesis using backtrack-rule OF S LE K L bt L bj cdcl<sub>W</sub>-bj.simps by auto
qed
lemma cdcl_W-stgy-final-state-conclusive:
 assumes
   termi: \forall S'. \neg cdcl_W \text{-stgy } S S' \text{ and }
   decomp: all-decomposition-implies-m \ (init-clss \ S) \ (get-all-marked-decomposition \ (trail \ S)) and
   learned: cdcl_W-learned-clause S and
   level-inv: cdcl_W-M-level-inv S and
   alien: no-strange-atm S and
   no-dup: distinct-cdcl_W-state S and
   confl: cdcl_W-conflicting S and
   confl-k: conflict-is-false-with-level S
 shows (conflicting S = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S)))
        \vee (conflicting S = None \wedge trail S \models as set\text{-mset (init-clss S))}
proof -
 let ?M = trail S
 let ?N = init\text{-}clss S
 let ?k = backtrack-lvl S
 let ?U = learned\text{-}clss S
 consider
     (None) raw-conflicting S = None
     (Some-Empty) E where raw-conflicting S = Some E and mset-ccls E = \{\#\}
   | (Some) E'  where raw-conflicting S = Some E'  and
     conflicting S = Some \ (mset\text{-}ccls \ E') \ \text{and} \ mset\text{-}ccls \ E' \neq \{\#\}
   by (cases conflicting S, simp) auto
```

```
then show ?thesis
 proof cases
   case (Some\text{-}Empty\ E)
   then have conflicting S = Some \{\#\} by auto
   then have unsatisfiable (set-mset (init-clss S))
     using assms(3) unfolding cdcl_W-learned-clause-def true-clss-cls-def
     by (metis (no-types, lifting) Un-insert-right atms-of-empty satisfiable-def
       sup-bot.right-neutral total-over-m-insert total-over-set-empty true-cls-empty)
   then show ?thesis using Some-Empty by auto
 next
   case None
   { assume \neg ?M \models asm ?N
     have atm\text{-}of ' (lits\text{-}of\text{-}l\ ?M)=atms\text{-}of\text{-}mm\ ?N\ (is\ ?A=?B)
         show ?A \subseteq ?B using alien unfolding no-strange-atm-def by auto
         show ?B \subseteq ?A
           proof (rule ccontr)
             assume \neg ?B \subseteq ?A
             then obtain l where l \in ?B and l \notin ?A by auto
             then have undefined-lit ?M (Pos\ l)
               using \langle l \notin ?A \rangle unfolding lits-of-def by (auto simp add: defined-lit-map)
             moreover have conflicting S = None
               using None by auto
             ultimately have \exists S'. \ cdcl_W \text{-}o \ S \ S'
               using cdcl_W-o.decide\ decide-rule \langle l \in ?B \rangle no-strange-atm-def
               by (metis literal.sel(1) state-eq-def)
             then show False
               \mathbf{using} \ \mathit{termi} \ \mathit{cdcl}_W\text{-}\mathit{then-exists-cdcl}_W\text{-}\mathit{stgy-step}[\mathit{OF-alien}] \ \ \mathit{level-inv} \ \mathbf{by} \ \mathit{blast}
           qed
       qed
     obtain D where \neg ?M \models a D \text{ and } D \in \# ?N
        using \langle \neg ?M \models asm ?N \rangle unfolding lits-of-def true-annots-def Ball-def by auto
     have atms-of D \subseteq atm-of ' (lits-of-l ?M)
       using \langle D \in \#?N \rangle unfolding \langle atm\text{-}of \cdot (lits\text{-}of\text{-}l?M) = atms\text{-}of\text{-}mm?N \rangle atms\text{-}of\text{-}ms\text{-}def
       by (auto simp add: atms-of-def)
     then have a1: atm-of 'set-mset D \subseteq atm-of 'lits-of-l (trail S)
       by (auto simp add: atms-of-def lits-of-def)
     have total-over-m (lits-of-l?M) {D}
       using \langle atms-of \ D \subseteq atm-of \ `(lits-of-l \ ?M) \rangle
       atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by (fastforce simp: total-over-set-def)
     then have ?M \models as \ CNot \ D
       using total-not-true-cls-true-clss-CNot \langle \neg trail \ S \models a \ D \rangle true-annot-def
       true-annots-true-cls by fastforce
     then have False
       proof -
         obtain S' where
           f2: full\ cdcl_W-cp S\ S'
           by (meson alien always-exists-full-cdcl<sub>W</sub>-cp-step level-inv)
         then have S' = S
           using cdcl_W-stgy.conflict'[of S] by (metis (no-types) full-unfold termi)
         then show ?thesis
           using f2 \langle D \in \# init\text{-}clss S \rangle None \langle trail S \models as CNot D \rangle
           raw-clauses-def full-cdcl<sub>W</sub>-cp-not-any-negated-init-clss by auto
       qed
   }
```

```
then have ?M \models asm ?N by blast
 then show ?thesis
   using None by auto
next
 case (Some E') note raw-conf = this(1) and LD = this(2) and nempty = this(3)
 then obtain L D where
   E'[simp]: mset\text{-}ccls \ E' = D + \{\#L\#\} \ and
   lev-L: get-level ?M L = ?k
   by (metis (mono-tags) confl-k insert-DiffM2)
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as \ CNot \ ?D \ using \ confl \ LD \ unfolding \ cdcl_W-conflicting-def by auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 have M: ?M = hd ?M \# tl ?M using (?M \neq []) list.collapse by fastforce
 have q-a-l: qet-all-levels-of-marked ?M = rev [1..<1 + ?k]
   using level-inv lev-L M unfolding cdcl_W-M-level-inv-def by auto
 have g-k: get-maximum-level (trail S) D \leq ?k
   using get-maximum-possible-level-ge-get-maximum-level[of ?M]
     get-maximum-possible-level-max-get-all-levels-of-marked[of ?M]
   by (auto simp add: Max-n-upt g-a-l)
   assume marked: is-marked (hd?M)
   then obtain k' where k': k' + 1 = ?k
     using level-inv M unfolding cdcl_W-M-level-inv-def
     by (cases hd (trail S); cases trail S) auto
   obtain L' l' where L': hd ?M = Marked L' l' using marked by (cases hd ?M) auto
   have marked-hd-tl: get-all-levels-of-marked (hd (trail\ S) \# tl (trail\ S))
     = rev [1..<1 + length (get-all-levels-of-marked ?M)]
     using level-inv lev-L M unfolding cdcl_W-M-level-inv-def M[symmetric]
     by blast
   then have l'-tl: l' \# get-all-levels-of-marked (<math>tl ? M)
     = rev [1..<1 + length (get-all-levels-of-marked ?M)] unfolding L' by simp
   moreover have ... = length (get-all-levels-of-marked ?M)
     \# rev [1..< length (get-all-levels-of-marked ?M)]
     using M Suc-le-mono calculation by (fastforce simp add: upt.simps(2))
   finally have
      l'-cons: l' \# qet-all-levels-of-marked (tl (trail S)) =
        length (get-all-levels-of-marked (trail S))
         # rev [1..<length (get-all-levels-of-marked (trail S))] and
     l' = ?k and
     g-r: get-all-levels-of-marked (tl (trail S))
       = rev [1.. < length (get-all-levels-of-marked (trail S))]
     using level-inv lev-L M unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
   have *: \bigwedge list. no-dup list \Longrightarrow
         -L \in \mathit{lits}	ext{-}\mathit{of}	ext{-}\mathit{l}\;\mathit{list} \Longrightarrow \mathit{atm}	ext{-}\mathit{of}\;L \in \mathit{atm}	ext{-}\mathit{of}\; ' \mathit{lits}	ext{-}\mathit{of}	ext{-}\mathit{l}\;\mathit{list}
     by (metis atm-of-uminus imageI)
   have L'-L: L' = -L
     proof (rule ccontr)
       assume ¬ ?thesis
      moreover have -L \in lits-of-l ?M using confl LD unfolding cdcl_W-conflicting-def by auto
       ultimately have get-level (hd (trail S) # tl (trail S)) L = get-level (tl ?M) L
        using cdcl_W-M-level-inv-decomp(1)[OF level-inv] L' M atm-of-eq-atm-of
        unfolding lits-of-def consistent-interp-def
        by (metis (mono-tags, hide-lams) marked-lit.sel(1) get-level-skip-beginning image-eqI
```

```
list.set-intros(1)
   moreover
     have length (get-all-levels-of-marked (trail S)) = ?k
       using level-inv unfolding cdcl_W-M-level-inv-def by auto
     then have Max (set (0 \# get\text{-all-levels-of-marked} (tl (trail S)))) = ?k - 1
       unfolding g-r by (auto simp add: Max-n-upt)
     then have get-level (tl ?M) L < ?k
       using get-maximum-possible-level-ge-get-level[of tl?M L]
      by (metis One-nat-def add.right-neutral add-Suc-right diff-add-inverse2
        get-maximum-possible-level-max-get-all-levels-of-marked k' le-imp-less-Suc
        list.simps(15)
   finally show False using lev-L M by auto
have L: hd ?M = Marked (-L) ?k using \langle l' = ?k \rangle L' - L L' by auto
have qet-maximum-level (trail S) D < ?k
 proof (rule ccontr)
   assume ¬ ?thesis
   then have get-maximum-level (trail S) D = \frac{9}{2}k using M g-k unfolding L by auto
   then obtain L'' where L'' \in \# D and L-k: get-level ?M L'' = ?k
     using get-maximum-level-exists-lit[of ?k ?M D] unfolding k'[symmetric] by auto
   have L \neq L'' using no-dup \langle L'' \in \# D \rangle
     unfolding distinct\text{-}cdcl_W\text{-}state\text{-}def LD
     \mathbf{by}\ (\mathit{metis}\ E'\ \mathit{add.right-neutral}\ \mathit{add-diff-cancel-right'}
       distinct-mem-diff-mset union-commute union-single-eq-member)
   have L^{\prime\prime} = -L
     proof (rule ccontr)
      assume ¬ ?thesis
       then have get-level ?M L'' = get-level (tl ?M) L''
        using M \langle L \neq L'' \rangle get-level-skip-beginning[of L'' hd ?M tl ?M] unfolding L
        by (auto simp: atm-of-eq-atm-of)
       then show False
        by (metis L-k Max-n-upt One-nat-def Suc-n-not-le-n \langle l' = backtrack-lvl S \rangle
          add-Suc-right add-implies-diff q-r
          get-all-levels-of-marked-rev-eq-rev-get-all-levels-of-marked list.set(2)
          get-rev-level-less-max-get-all-levels-of-marked k' l'-cons list.sel(1)
          rev-rev-ident semiring-normalization-rules(6) set-upt)
     ged
   then have taut: tautology (D + \{\#L\#\})
     using \langle L'' \in \# D \rangle by (metis add.commute mset-leD mset-le-add-left multi-member-this
       tautology-minus)
   have consistent-interp (lits-of-l?M)
     using level-inv unfolding cdcl_W-M-level-inv-def by auto
   then have \neg ?M \models as \ CNot \ ?D
     using taut by (metis \langle L'' = -L \rangle \langle L'' \in \# D \rangle add.commute consistent-interp-def
       diff-union-cancelR in-CNot-implies-uninus(2) in-diffD multi-member-this)
   moreover have ?M \models as \ CNot \ ?D
     using confl no-dup LD unfolding cdcl_W-conflicting-def by auto
   ultimately show False by blast
 \mathbf{ged} \ \mathbf{note} \ H = this
have get-maximum-level (trail S) D < get-maximum-level (trail S) (D + \{\#L\#\})
 using H by (auto simp: get-maximum-level-plus lev-L max-def)
moreover have backtrack-lvl S = get-maximum-level (trail S) (D + \{\#L\#\})
 using H by (auto simp: get-maximum-level-plus lev-L max-def)
ultimately have False
```

```
using backtrack-no-decomp[OF raw-conf - lev-L] level-inv termi
   cdcl_W-then-exists-cdcl_W-stgy-step[of S] alien unfolding E'
   by (auto simp add: lev-L max-def)
} note not-is-marked = this
moreover {
 let ?D = D + \{\#L\#\}
 have ?D \neq \{\#\} by auto
 have ?M \models as CNot ?D using confl LD unfolding cdcl_W-conflicting-def by auto
 then have ?M \neq [] unfolding true-annots-def Ball-def true-annot-def true-cls-def by force
 assume nm: \neg is\text{-}marked (hd ?M)
 then obtain L' C where L'C: hd-raw-trail S = Propagated L' C
   by (metis \langle trail \ S \neq [] \rangle \ hd-raw-trail is-marked-def mmset-of-mlit.elims)
 then have hd ?M = Propagated L' (mset-cls C)
   using \langle trail \ S \neq [] \rangle \ hd-raw-trail mmset-of-mlit.simps(1) by fastforce
 then have M: ?M = Propagated L' (mset-cls C) # tl ?M
   using \langle ?M \neq [] \rangle list.collapse by fastforce
 then obtain C' where C': mset-cls C = C' + \{\#L'\#\}
   using confl unfolding cdcl_W-conflicting-def by (metis append-Nil diff-single-eq-union)
 { assume -L' \notin \# ?D
   then have Ex (skip S)
     using skip-rule [OF M raw-conf] unfolding E' by auto
   then have False
    using cdcl_W-then-exists-cdcl_W-stgy-step[of S] alien level-inv termi
    by (auto dest: cdcl_W-o.intros cdcl_W-bj.intros)
 }
 moreover {
   assume L'D: -L' \in \# ?D
   then obtain D' where D': ?D = D' + \{\#-L'\#\} by (metis insert-DiffM2)
   have g-r: get-all-levels-of-marked (Propagated L' (mset-cls C) \# tl (trail S))
     = rev [Suc \ 0.. < Suc \ (length \ (get-all-levels-of-marked \ (trail \ S)))]
    using level-inv M unfolding cdcl_W-M-level-inv-def by auto
   have Max (insert 0
      (set (get-all-levels-of-marked (Propagated L'(mset-cls C) \# tl (trail S))))) = ?k
    using level-inv M unfolding g-r cdcl_W-M-level-inv-def set-rev
    by (auto simp add:Max-n-upt)
   then have get-maximum-level (trail S) D' \leq ?k
     using get-maximum-possible-level-ge-get-maximum-level[of
       Propagated L' (mset-cls C) \# tl ?M] M
     unfolding get-maximum-possible-level-max-get-all-levels-of-marked by auto
   then have get-maximum-level (trail S) D' = ?k
     \vee get-maximum-level (trail S) D' < ?k
    using le-neq-implies-less by blast
   moreover {
    assume g-D'-k: get-maximum-level (trail\ S)\ D' = ?k
     then have f1: get-maximum-level (trail S) D' = backtrack-lvl S
      using M by auto
     then have Ex (cdcl_W - o S)
      using f1 resolve-rule[of S L' C, OF \langle trail S \neq [] \rangle - - raw-conf] raw-conf g-D'-k
      L'C L'D unfolding C' D' E'
      by (fastforce simp add: D' intro: cdcl_W-o.intros cdcl_W-bj.intros)
     then have False
      by (meson\ alien\ cdcl_W-then-exists-cdcl_W-stgy-step termi level-inv)
   moreover {
```

```
assume a1: get-maximum-level (trail S) D' < ?k
          then have f3: get-maximum-level (trail S) D' < \text{get-level (trail S) } (-L')
           using a1 lev-L by (metis D' get-maximum-level-ge-get-level insert-noteq-member
             not-less)
          moreover have backtrack-lvl S = get-level (trail S) L'
           apply (subst\ M)
           unfolding rev.simps
           apply (subst get-rev-level-can-skip-correctly-ordered)
           using level-inv unfolding cdcl_W-M-level-inv-def
           apply (subst (asm) (2) M) apply (simp add: cdcl_W-M-level-inv-decomp)
           using level-inv unfolding cdcl_W-M-level-inv-def
           apply (subst (asm) (2) M) apply (auto simp: cdcl_W-M-level-inv-decomp lits-of-def)[]
           using level-inv unfolding cdcl_W-M-level-inv-def
           apply (subst (asm) (4) M) apply (auto simp add: cdcl_W-M-level-inv-decomp)[]
           using level-inv unfolding cdcl<sub>W</sub>-M-level-inv-def
           apply (subst (asm) (4) M) by (auto simp add: cdcl_W-M-level-inv-decomp)
          moreover
           then have get-level (trail S) L' = get-maximum-level (trail S) (D' + \{\#-L'\#\})
             using a1 by (auto simp add: get-maximum-level-plus max-def)
          ultimately have False
           using M backtrack-no-decomp[of S - -L', OF raw-conf]
            cdcl_W-then-exists-cdcl_W-stgy-step L'D level-inv termi alien
           unfolding D' E' by auto
        ultimately have False by blast
      ultimately have False by blast
     ultimately show ?thesis by blast
   qed
\mathbf{qed}
lemma cdcl_W-cp-tranclp-cdcl_W:
 cdcl_W-cp S S' \Longrightarrow cdcl_W^{++} S S'
 apply (induct\ rule:\ cdcl_W-cp.induct)
 by (meson\ cdcl_W.conflict\ cdcl_W.propagate\ tranclp.r-into-trancl\ tranclp.trancl-into-trancl)+
lemma tranclp-cdcl_W-cp-tranclp-cdcl_W:
 cdcl_W - cp^{++} S S' \Longrightarrow cdcl_W^{++} S S
 apply (induct rule: tranclp.induct)
  apply (simp add: cdcl_W-cp-tranclp-cdcl_W)
 by (meson\ cdcl_W - cp - tranclp - cdcl_W\ tranclp - trans)
lemma cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy S S' \Longrightarrow cdcl_W^{++} S S'
proof (induct\ rule:\ cdcl_W-stgy.induct)
 case conflict'
 then show ?case
  unfolding full1-def by (simp add: tranclp-cdcl_W-cp-tranclp-cdcl<sub>W</sub>)
 case (other' S' S'')
 then have S' = S'' \vee cdcl_W - cp^{++} S' S''
   by (simp add: rtranclp-unfold full-def)
 then show ?case
   using other' by (meson cdcl_W.other tranclp.r-into-trancl
```

```
tranclp-cdcl_W-cp-tranclp-cdcl_W tranclp-trans)
qed
lemma tranclp-cdcl_W-stgy-tranclp-cdcl_W:
  cdcl_W-stgy^{++} S S' \Longrightarrow cdcl_W^{++} S S'
 apply (induct rule: tranclp.induct)
  using cdcl_W-stgy-tranclp-cdcl_W apply blast
 by (meson\ cdcl_W-stgy-tranclp-cdcl<sub>W</sub> tranclp-trans)
lemma rtranclp-cdcl_W-stgy-rtranclp-cdcl_W:
  cdcl_W-stgy^{**} S S' \Longrightarrow cdcl_W^{**} S S'
 using rtranclp-unfold[of\ cdcl_W\ -stgy\ S\ S']\ tranclp-cdcl_W\ -stgy\ -tranclp-cdcl_W[of\ S\ S'] by auto
lemma not-empty-get-maximum-level-exists-lit:
 assumes n: D \neq \{\#\}
 and max: get\text{-}maximum\text{-}level\ M\ D=n
 shows \exists L \in \#D. get-level ML = n
 have f: finite (insert 0 ((\lambda L. get-level M L) 'set-mset D)) by auto
 then have n \in ((\lambda L. \ get\text{-}level \ M \ L) \ `set\text{-}mset \ D)
   using n max get-maximum-level-exists-lit-of-max-level image-iff
   unfolding get-maximum-level-def by force
  then show \exists L \in \# D. get-level ML = n by auto
qed
lemma cdcl_W-o-conflict-is-false-with-level-inv:
 assumes
   cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   confl-inv: conflict-is-false-with-level S and
   n-d: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S
 shows conflict-is-false-with-level S'
 using assms(1,2)
proof (induct rule: cdcl<sub>W</sub>-o-induct-lev2)
  case (resolve L C M D T) note tr-S = this(1) and confl = this(4) and LD = this(5) and T =
 have uL-not-D: -L \notin \# remove1-mset (-L) (mset-ccls D)
   using n-d confl unfolding distinct-cdcl<sub>W</sub>-state-def distinct-mset-def
   by (metis\ distinct-cdcl_W\ -state-def\ distinct-mem-diff-mset\ multi-member-last\ n-d\ option.simps(9))
  moreover have L-not-D: L \notin \# remove1-mset (-L) (mset-ccls D)
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L \in \# mset-ccls D
      by (auto simp: in-remove1-mset-neg)
     moreover have Propagated L (mset-cls C) \# M \modelsas CNot (mset-ccls D)
      using conflicting conflicting conflicting cdcl<sub>W</sub>-conflicting-def by auto
     ultimately have -L \in lits-of-l (Propagated L (mset-cls C) \# M)
      using in-CNot-implies-uminus(2) by blast
     moreover have no-dup (Propagated L (mset-cls C) \# M)
      using lev tr-S unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     ultimately show False unfolding lits-of-def by (metis consistent-interp-def image-eqI
       list.set-intros(1) lits-of-def marked-lit.sel(2) distinct-consistent-interp)
   qed
```

```
ultimately
   have g-D: get-maximum-level (Propagated L (mset-cls C) \# M) (remove1-mset (-L) (mset-ccls D))
     = get\text{-}maximum\text{-}level\ M\ (remove1\text{-}mset\ (-L)\ (mset\text{-}ccls\ D))
   proof -
     have \forall a \ f \ L. \ ((a::'v) \in f \ `L) = (\exists \ l. \ (l::'v \ literal) \in L \land a = f \ l)
      by blast
     then show ?thesis
      using get-maximum-level-skip-first[of L remove1-mset (-L) (mset-ccls D) mset-cls C M]
      unfolding atms-of-def
      by (metis (no-types) uL-not-D L-not-D atm-of-eq-atm-of)
   qed
 have lev-L[simp]: get-level\ M\ L=0
   apply (rule atm-of-notin-get-rev-level-eq-0)
   using lev unfolding cdcl_W-M-level-inv-def tr-S by (auto simp: lits-of-def)
 have D: get-maximum-level M (remove1-mset (-L) (mset-ccls D)) = backtrack-lvl S
   using resolve.hyps(6) LD unfolding tr-S by (auto simp: get-maximum-level-plus max-def g-D)
 have qet-all-levels-of-marked M = rev [Suc \ 0... < Suc \ (backtrack-lvl S)]
   using lev unfolding tr-S cdcl_W-M-level-inv-def by auto
 then have get-maximum-level M (remove1-mset L (mset-cls C)) \leq backtrack-lvl S
   using get-maximum-possible-level-ge-get-maximum-level | of M |
   get-maximum-possible-level-max-get-all-levels-of-marked of M by (auto simp: Max-n-upt)
 then have
   get-maximum-level M (remove1-mset (-L) (mset-ccls D) \# \cup remove1-mset L (mset-cls C)) =
     backtrack-lvl S
   by (auto simp: get-maximum-level-union-mset get-maximum-level-plus max-def D)
 then show ?case
   using tr-S not-empty-get-maximum-level-exists-lit[of
     remove1-mset (-L) (mset-ccls D) #<math>\cup remove1-mset L (mset-cls C) M T
   by auto
next
 case (skip L C' M D T) note tr-S = this(1) and D = this(2) and T = this(5)
 then obtain La where
   La \in \# mset\text{-}ccls \ D \ \mathbf{and}
   get-level (Propagated L C' \# M) La = backtrack-lvl S
   using skip confl-inv by auto
 moreover
   have atm-of La \neq atm-of L
     proof (rule ccontr)
      assume ¬ ?thesis
      then have La: La = L using \langle La \in \# mset\text{-}ccls D \rangle \langle -L \notin \# mset\text{-}ccls D \rangle
        by (auto simp add: atm-of-eq-atm-of)
      have Propagated L C' \# M \modelsas CNot (mset-ccls D)
        using conflicting tr-S D unfolding cdcl_W-conflicting-def by auto
      then have -L \in lits-of-l M
        using \langle La \in \# mset\text{-}ccls \ D \rangle \ in\text{-}CNot\text{-}implies\text{-}uminus(2)[of \ L \ mset\text{-}ccls \ D]}
          Propagated L C' \# M] unfolding La
        by auto
      then show False using lev tr-S unfolding cdcl_W-M-level-inv-def consistent-interp-def by auto
   then have get-level (Propagated L C' \# M) La = get-level M La by auto
 ultimately show ?case using D tr-S T by auto
next
 case backtrack
 then show ?case
```

```
by (auto split: if-split-asm simp: cdcl_W-M-level-inv-decomp lev) qed auto
```

19.5.5 Strong completeness

```
lemma cdcl_W-cp-propagate-confl:
 assumes cdcl_W-cp S T
 shows propagate^{**} S T \lor (\exists S'. propagate^{**} S S' \land conflict S' T)
 using assms by induction blast+
lemma rtranclp-cdcl_W-cp-propagate-conft:
 assumes cdcl_W-cp^{**} S T
 shows propagate^{**} S T \vee (\exists S'. propagate^{**} S S' \wedge conflict S' T)
 by (simp add: assms rtranclp-cdcl_W-cp-propa-or-propa-confl)
{\bf lemma}\ propagate-high-level E:
 assumes propagate S T
 obtains M'N'UkLC where
   state S = (M', N', U, k, None) and
   state T = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M',\ N',\ U,\ k,\ None) and
   C + \{\#L\#\} \in \# local.clauses S and
   M' \models as \ CNot \ C and
   undefined-lit (trail S) L
proof -
 obtain EL where
   conf: conflicting S = None  and
   E: E !\in ! raw\text{-}clauses S  and
   LE: L \in \# mset\text{-}cls \ E \text{ and }
   tr: trail \ S \models as \ CNot \ (mset-cls \ (remove-lit \ L \ E)) and
   undef: undefined-lit (trail S) L and
   T: T \sim cons-trail (Propagated L E) S
   using assms by (elim propagateE) simp
 obtain M N U k where
   S: state \ S = (M, N, U, k, None)
   using conf by auto
 show thesis
   using that[of M N U k L remove1-mset L (mset-cls E)] S T LE E tr undef
   by auto
qed
lemma cdcl_W-cp-propagate-completeness:
 assumes MN: set M \models s set-mset N and
 cons: consistent-interp (set M) and
 tot: total-over-m (set M) (set-mset N) and
 lits-of-l (trail S) \subseteq set M and
 init-clss S = N and
 propagate^{**} S S' and
 learned-clss S = {\#}
 shows length (trail\ S) \le length\ (trail\ S') \land lits-of-l\ (trail\ S') \subseteq set\ M
 using assms(6,4,5,7)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto
next
 case (step Y Z)
 note st = this(1) and propa = this(2) and IH = this(3) and lits' = this(4) and NS = this(5) and
```

```
learned = this(6)
 then have len: length (trail S) \leq length (trail Y) and LM: lits-of-l (trail Y) \subseteq set M
 obtain M'N'UkCL where
   Y: state \ Y = (M', N', U, k, None) and
   Z: state Z = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M', \ N', \ U, \ k, \ None) and
   C: C + \{\#L\#\} \in \# clauses \ Y \ and
   M'-C: M' \models as \ CNot \ C and
   undefined-lit (trail\ Y)\ L
   using propa by (auto elim: propagate-high-levelE)
 have init-clss S = init-clss Y
   using st by induction (auto elim: propagateE)
 then have [simp]: N' = N \text{ using } NS Y Z \text{ by } simp
 have learned-clss Y = \{\#\}
   using st learned by induction (auto elim: propagateE)
 then have [simp]: U = \{\#\} using Y by auto
 have set M \models s CNot C
   using M'-C LM Y unfolding true-annots-def Ball-def true-annot-def true-clss-def true-cls-def
   by force
 moreover
   have set M \models C + \{\#L\#\}
     using MN C learned Y NS (init-clss S = init-clss Y) (learned-clss Y = \{\#\})
     unfolding true-clss-def raw-clauses-def by fastforce
 ultimately have L \in set M by (simp \ add: cons \ consistent-CNot-not)
 then show ?case using LM len Y Z by auto
qed
lemma
 assumes propagate^{**} S X
 shows
   rtranclp-propagate-init-clss: init-clss X = init-clss S and
   rtranclp-propagate-learned-clss: learned-clss X = learned-clss S
 using assms by (induction rule: rtranclp-induct) (auto elim: propagateE)
lemma completeness-is-a-full1-propagation:
 fixes S :: 'st and M :: 'v literal list
 assumes MN: set M \models s set-mset N
 and cons: consistent-interp (set M)
 and tot: total-over-m (set M) (set-mset N)
 and alien: no-strange-atm S
 and learned: learned-clss S = \{\#\}
 and clsS[simp]: init-clss\ S = N
 and lits: lits-of-l (trail S) \subseteq set M
 shows \exists S'. propagate^{**} S S' \wedge full \ cdcl_W - cp \ S S'
proof -
 obtain S' where full: full cdcl_W-cp S S'
   using always-exists-full-cdcl_W-cp-step alien by blast
 then consider (propa) propagate** S S'
   \mid (confl) \exists X. propagate^{**} S X \land conflict X S'
   using rtranclp-cdcl_W-cp-propagate-confl unfolding full-def by blast
 then show ?thesis
   proof cases
     case propa then show ?thesis using full by blast
   next
```

```
case confl
      then obtain X where
       X: propagate^{**} S X and
       Xconf: conflict X S'
      \mathbf{bv} blast
      have clsX: init-clss\ X = init-clss\ S
       using X by (blast dest: rtranclp-propagate-init-clss)
      have learnedX: learned-clss\ X = \{\#\}
       using X learned by (auto dest: rtranclp-propagate-learned-clss)
      obtain E where
        E: E \in \# init\text{-}clss \ X + learned\text{-}clss \ X \ \mathbf{and}
       Not-E: trail\ X \models as\ CNot\ E
       using Xconf by (auto simp add: raw-clauses-def elim!: conflictE)
      have lits-of-l (trail X) \subseteq set M
       using cdcl_W-cp-propagate-completeness [OF assms(1-3) lits - X learned] learned by auto
      then have MNE: set M \models s \ CNot \ E
       using Not-E
       by (fastforce simp add: true-annots-def true-annot-def true-clss-def)
      have \neg set M \models s set-mset N
        using E consistent-CNot-not[OF cons MNE]
        unfolding learnedX true-clss-def unfolding clsX clsS by auto
      then show ?thesis using MN by blast
   qed
qed
See also cdcl_W - cp^{**} ?S ?S' \Longrightarrow \exists M. trail ?S' = M @ trail ?S \land (\forall l \in set M. \neg is-marked l)
lemma rtranclp-propagate-is-trail-append:
  propagate^{**} S T \Longrightarrow \exists c. trail T = c @ trail S
  by (induction rule: rtranclp-induct) (auto elim: propagateE)
\mathbf{lemma}\ rtranclp	ext{-}propagate	ext{-}is	ext{-}update	ext{-}trail:
  propagate^{**} S T \Longrightarrow cdcl_W \text{-}M\text{-}level\text{-}inv S \Longrightarrow
   init\text{-}clss\ S = init\text{-}clss\ T\ \land\ learned\text{-}clss\ S = learned\text{-}clss\ T\ \land\ backtrack\text{-}lvl\ S = backtrack\text{-}lvl\ T
   \wedge conflicting S = conflicting T
proof (induction rule: rtranclp-induct)
  case base
  then show ?case unfolding state-eq-def by (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
next
  case (step T U) note IH = this(3)[OF\ this(4)]
  moreover have cdcl_W-M-level-inv U
   \mathbf{using}\ \mathit{rtranclp-cdcl}_W\text{-}\mathit{consistent-inv}\ \langle \mathit{propagate}^{**}\ S\ T\rangle\ \langle \mathit{propagate}\ T\ U\rangle
   rtranclp-mono[of\ propagate\ cdcl_W]\ cdcl_W-cp-consistent-inv propagate'
   rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> step.prems by blast
   then have no-dup (trail U) unfolding cdcl_W-M-level-inv-def by auto
  ultimately show ?case using \(\rho propagate T U \rangle \) unfolding state-eq-def
   by (fastforce simp: elim: propagateE)
qed
lemma cdcl_W-stgy-strong-completeness-n:
  assumes
   MN: set M \models s set\text{-}mset (mset\text{-}clss N) and
   cons: consistent-interp (set M) and
   tot: total-over-m (set M) (set-mset (mset-clss N)) and
   \mathit{atm\text{-}incl:}\ \mathit{atm\text{-}of}\ \lq\ (\mathit{set}\ \mathit{M})\subseteq \mathit{atms\text{-}of\text{-}mm}\ (\mathit{mset\text{-}clss}\ \mathit{N}) and
    distM: distinct M and
```

```
length: n \leq length M
  shows
   \exists M' \ k \ S. \ length \ M' \geq n \ \land
     lits-of-lM' \subseteq set M \land
     no-dup M' <math>\wedge
     state\ S = (M',\ mset\text{-}clss\ N,\ \{\#\},\ k,\ None)\ \land
     cdcl_W-stgy** (init-state N) S
  using length
proof (induction \ n)
 case \theta
  have state (init-state N) = ([], mset-clss N, \{\#\}, 0, None)
   \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{state-eq-def}\ \mathit{simp}\ \mathit{del}\colon \mathit{state-simp})
  moreover have
   0 \leq length [] and
   lits-of-l [] \subseteq set M and
   cdcl_W\textit{-stgy}^{**}\ (\textit{init-state}\ N)\ (\textit{init-state}\ N)
   and no-dup []
   by (auto simp: state-eq-def simp del: state-simp)
  ultimately show ?case using state-eq-sym by blast
  case (Suc n) note IH = this(1) and n = this(2)
  then obtain M' k S where
   l-M': length <math>M' \geq n and
   M': lits-of-l M' \subseteq set M and
   n\text{-}d[simp]: no-dup M' and
   S: state S = (M', mset\text{-}clss N, \{\#\}, k, None) and
   st: cdcl_W - stgy^{**} \ (init\text{-}state \ N) \ \widetilde{S}
   \mathbf{by} auto
  have
    M: cdcl_W-M-level-inv S and
   alien: no-strange-atm S
     using cdcl_W-M-level-inv-S0-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv st apply blast
   using cdcl_W-M-level-inv-S0-cdcl<sub>W</sub> no-strange-atm-S0 rtranclp-cdcl<sub>W</sub>-no-strange-atm-inv
   rtranclp-cdcl_W-stgy-rtranclp-cdcl_W st by blast
  { assume no-step: \neg no-step propagate S
   obtain S' where S': propagate** S S' and full: full cdclw-cp S S'
     \mathbf{using}\ completeness\text{-}is\text{-}a\text{-}full1\text{-}propagation[OF\ assms(1-3),\ of\ S]\ alien\ M'\ S
     by (auto simp: comp-def)
   have lev: cdcl_W-M-level-inv S'
     using MS' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
   then have n\text{-}d'[simp]: no\text{-}dup\ (trail\ S')
     unfolding cdcl_W-M-level-inv-def by auto
   have length (trail\ S) \leq length\ (trail\ S') \wedge lits-of-l\ (trail\ S') \subseteq set\ M
     using S' full cdcl_W-cp-propagate-completeness[OF assms(1-3), of S] M' S
     by (auto simp: comp-def)
   moreover
     have full: full1 cdcl_W-cp S S'
       using full no-step no-step-cdcl_W-cp-no-conflict-no-propagate(2) unfolding full1-def full-def
       rtranclp-unfold by blast
     then have cdcl_W-stgy S S' by (simp\ add:\ cdcl_W-stgy.conflict')
   moreover
     have propa: propagate^{++} S S' using S' full unfolding full1-def by (metis \ rtranclpD)
     have trail S = M'
       using S by (auto simp: comp-def rev-map)
```

```
with propa have length (trail S') > n
     using l-M' propa by (induction rule: tranclp.induct) (auto elim: propagateE)
 moreover
   have stS': cdcl_W-stgy^{**} (init-state N) S'
     using st\ cdcl_W-stqy.conflict'[OF full] by auto
   then have init-clss S' = mset-clss N
     using stS' rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss by fastforce
 moreover
   have
     [simp]: learned-clss\ S' = \{\#\}\ and
     [simp]: init-clss S' = init-clss S and
     [simp]: conflicting S' = None
     using tranclp-into-rtranclp[OF \langle propagate^{++} S S' \rangle] S
     rtranclp-propagate-is-update-trail[of S S'] S M unfolding state-eq-def
     by (auto simp: comp-def)
   have S-S': state S' = (trail\ S',\ mset\text{-}clss\ N,\ \{\#\},\ backtrack\text{-}lvl\ S',\ None)
     using S by auto
   have cdcl_W-stqy^{**} (init-state N) S'
     apply (rule rtranclp.rtrancl-into-rtrancl)
     using st apply simp
     using \langle cdcl_W \text{-} stgy \ S \ S' \rangle by simp
 ultimately have ?case
   apply -
   apply (rule exI[of - trail S'], rule exI[of - backtrack-lvl S'], rule exI[of - S'])
   using S-S' by (auto simp: state-eq-def simp del: state-simp)
}
moreover {
 assume no-step: no-step propagate S
 have ?case
   proof (cases length M' \geq Suc \ n)
     case True
     then show ?thesis using l-M' M' st M alien S n-d by blast
     case False
    then have n': length M' = n using l-M' by auto
     have no-confl: no-step conflict S
      proof -
        { fix D
          assume D \in \# mset-clss N and M' \models as CNot D
          then have set M \models D using MN unfolding true-clss-def by auto
          moreover have set M \models s \ CNot \ D
           using \langle M' \models as \ CNot \ D \rangle \ M'
           by (metis le-iff-sup true-annots-true-cls true-clss-union-increase)
          ultimately have False using cons consistent-CNot-not by blast
        then show ?thesis
          using S by (auto simp: true-clss-def comp-def rev-map
            raw-clauses-def dest!: in-clss-mset-clss elim!: conflictE)
      qed
     have lenM: length M = card (set M) using distM by (induction M) auto
    have no-dup M' using S M unfolding cdcl_W-M-level-inv-def by auto
     then have card (lits-of-lM') = length M'
      by (induction M') (auto simp add: lits-of-def card-insert-if)
     then have lits-of-l M' \subset set M
      using n M' n' len M by auto
```

```
then obtain m where m: m \in set M and undef-m: m \notin lits-of-l M' by auto
      moreover have undef: undefined-lit M' m
        using M' Marked-Propagated-in-iff-in-lits-of-l calculation (1,2) cons
        consistent-interp-def by (metis (no-types, lifting) subset-eq)
      moreover have atm-of m \in atms-of-mm (init-clss S)
        using atm-incl calculation S by auto
      ultimately
        have dec: decide S (cons-trail (Marked m (k+1)) (incr-lvl S))
          using decide-rule[of S -
            cons-trail (Marked m (k + 1)) (incr-lvl S)] S
      let ?S' = cons\text{-trail} (Marked m (k+1)) (incr-lvl S)
      have lits-of-l (trail ?S') \subseteq set M using m M' S undef by auto
      moreover have no-strange-atm ?S'
        using alien dec M by (meson cdcl<sub>W</sub>-no-strange-atm-inv decide other)
      ultimately obtain S'' where S'': propagate^{**} ?S' S'' and full: full\ cdcl_W-cp ?S' S''
        using completeness-is-a-full1-propagation [OF assms(1-3), of ?S'] S undef
      have cdcl_W-M-level-inv ?S'
        using M dec rtranclp-mono[of decide cdcl_W] by (meson cdcl_W-consistent-inv decide other)
      then have lev'': cdcl_W-M-level-inv S''
        using S'' rtranclp-cdcl<sub>W</sub>-consistent-inv rtranclp-propagate-is-rtranclp-cdcl<sub>W</sub> by blast
      then have n\text{-}d'': no\text{-}dup\ (trail\ S'')
        unfolding cdcl_W-M-level-inv-def by auto
      have length (trail ?S') \leq length (trail S'') \wedge lits-of-l (trail S'') \subseteq set M
        using S'' full cdcl_W-cp-propagate-completeness [OF assms(1-3), of S' S''] m M' S undef
        \mathbf{bv} simp
      then have Suc n \leq length (trail S'') \wedge lits-of-l (trail S'') \subseteq set M
        using l-M' S undef by auto
      moreover
        have cdcl_W-M-level-inv (cons-trail (Marked m (Suc (backtrack-lvl S)))
          (update-backtrack-lvl (Suc (backtrack-lvl S)) S))
          using S (cdcl_W - M - level - inv (cons-trail (Marked m (k + 1)) (incr-lvl S))) by auto
        then have S'':
          state S'' = (trail\ S'', mset\text{-}clss\ N, \{\#\}, backtrack\text{-}lvl\ S'', None)
          using rtranclp-propagate-is-update-trail[OF S''] S undef n-d" lev"
        then have cdcl_W-stgy^{**} (init-state N) S''
          using cdcl_W-stgy.intros(2)[OF decide[OF \ dec] - full no-step no-confl st
          by (auto simp: cdcl_W-cp.simps)
      ultimately show ?thesis using S'' n-d" by blast
     qed
 }
 ultimately show ?case by blast
qed
lemma cdcl_W-stqy-strong-completeness:
 assumes
   MN: set M \models s set\text{-}mset (mset\text{-}clss N) and
   cons: consistent-interp (set M) and
   tot: total-over-m (set M) (set-mset (mset-clss N)) and
   atm-incl: atm-of ' (set M) \subseteq atms-of-mm (mset-clss N) and
   distM: distinct M
 shows
   \exists M' k S.
```

```
lits-of-lM' = setM \wedge
     state S = (M', mset\text{-}clss N, \{\#\}, k, None) \land
     cdcl_W-stgy^{**} (init-state N) S \wedge
     final-cdcl_W-state S
proof -
 from cdcl_W-stgy-strong-completeness-n[OF assms, of length M]
 obtain M' k T where
   l: length M \leq length M' and
   M'-M: lits-of-l M' \subseteq set M and
   no-dup: no-dup M' and
   T: state \ T = (M', mset-clss \ N, \{\#\}, k, None) and
   st: cdcl_W - stgy^{**} (init-state \ N) \ T
   by auto
 have card (set M) = length M using distM by (simp add: distinct-card)
 moreover
   have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-stgy-consistent-inv[OF st] T by auto
   then have card (set ((map (\lambda l. atm-of (lit-of l)) M'))) = length M'
     using distinct-card no-dup by fastforce
 moreover have card (lits-of-l M') = card (set ((map (\lambda l. atm-of (lit-of l)) M')))
   using no-dup unfolding lits-of-def apply (induction M') by (auto simp add: card-insert-if)
 ultimately have card (set M) \leq card (lits-of-l M') using l unfolding lits-of-def by auto
 then have set M = lits-of-l M'
   using M'-M card-seteq by blast
 moreover
   then have M' \models asm mset\text{-}clss N
     using MN unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
   then have final-cdcl_W-state T
     using T no-dup unfolding final-cdcl_W-state-def by auto
 ultimately show ?thesis using st T by blast
qed
```

19.5.6 No conflict with only variables of level less than backtrack level

This invariant is stronger than the previous argument in the sense that it is a property about all possible conflicts.

```
definition no-smaller-confl (S::'st) \equiv
  (\forall M \ K \ i \ M' \ D. \ M' \ @ \ Marked \ K \ i \ \# \ M = trail \ S \longrightarrow D \in \# \ clauses \ S
   \longrightarrow \neg M \models as \ CNot \ D)
lemma no-smaller-confl-init-sate[simp]:
  no-smaller-confl (init-state N) unfolding no-smaller-confl-def by auto
lemma cdcl_W-o-no-smaller-confl-inv:
 fixes S S' :: 'st
 assumes
   cdcl_W-o SS' and
   lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   smaller: no-smaller-confl S and
   no-f: no-clause-is-false S
 shows no-smaller-confl S'
 using assms(1,2) unfolding no-smaller-confl-def
proof (induct rule: cdcl_W-o-induct-lev2)
  case (decide L T) note confl = this(1) and undef = this(2) and T = this(4)
```

```
have [simp]: clauses T = clauses S
   using T undef by auto
 show ?case
   proof (intro allI impI)
     \mathbf{fix} \ M'' \ K \ i \ M' \ Da
     assume M'' @ Marked K i \# M' = trail T
     and D: Da \in \# local.clauses T
     then have tl M'' @ Marked K i \# M' = trail S
       \vee (M'' = [] \wedge Marked \ K \ i \# M' = Marked \ L \ (backtrack-lvl \ S + 1) \# trail \ S)
      using T undef by (cases M'') auto
     moreover {
      assume tl M'' @ Marked K i \# M' = trail S
      then have \neg M' \models as \ CNot \ Da
        using D T undef no-f confl smaller unfolding no-smaller-confl-def smaller by fastforce
     moreover {
      assume Marked\ K\ i\ \#\ M'=Marked\ L\ (backtrack-lvl\ S\ +\ 1)\ \#\ trail\ S
      then have \neg M' \models as \ CNot \ Da \ using \ no-f \ D \ confl \ T \ by \ auto
     ultimately show \neg M' \models as \ CNot \ Da \ by \ fast
  qed
next
 {f case}\ resolve
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
next
 case skip
 then show ?case using smaller no-f max-lev unfolding no-smaller-confl-def by auto
\mathbf{next}
  case (backtrack\ K\ i\ M1\ M2\ L\ D\ T) note confl=this(1) and LD=this(2) and decomp=this(3)
and
   undef = this(7) and T = this(8)
 obtain c where M: trail S = c @ M2 @ Marked K (i+1) \# M1
   using decomp by auto
 show ?case
   proof (intro allI impI)
     \mathbf{fix} \ M \ ia \ K' \ M' \ Da
     assume M' @ Marked K' ia \# M = trail T
     then have tl\ M'\ @\ Marked\ K'\ ia\ \#\ M=M1
      using T decomp undef lev by (cases M') (auto simp: cdcl_W-M-level-inv-decomp)
     let ?S' = (cons\text{-}trail\ (Propagated\ L\ (cls\text{-}of\text{-}ccls\ D))
               (reduce-trail-to M1 (add-learned-cls (cls-of-ccls D)
               (update-backtrack-lvl\ i\ (update-conflicting\ None\ S)))))
     assume D: Da \in \# clauses T
     moreover{
      assume Da \in \# clauses S
      then have \neg M \models as \ CNot \ Da \ using \langle tl \ M' @ \ Marked \ K' \ ia \# M = M1 \rangle \ M \ confl \ undef \ smaller
        unfolding no-smaller-confl-def by auto
     }
     moreover {
      assume Da: Da = mset\text{-}ccls D
      have \neg M \models as \ CNot \ Da
        proof (rule ccontr)
          assume ¬ ?thesis
```

```
then have -L \in lits-of-lM
            using LD unfolding Da by (simp \ add: in-CNot-implies-uminus(2))
          then have -L \in lits-of-l (Propagated L (mset-ccls D) \# M1)
            using UnI2 \langle tl \ M' \ @ Marked \ K' \ ia \# M = M1 \rangle
           by auto
          moreover
           have backtrack S ?S'
             using backtrack-rule[of S] backtrack.hyps
             by (force simp: state-eq-def simp del: state-simp)
            then have cdcl_W-M-level-inv ?S'
             using cdcl_W-consistent-inv[OF - lev] other [OF \ bj] by (auto intro: cdcl_W-bj.intros)
            then have no-dup (Propagated L (mset-ccls D) \# M1)
             using decomp undef lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
          ultimately show False
            using undef by (auto simp: Marked-Propagated-in-iff-in-lits-of-l)
        qed
     }
     ultimately show \neg M \models as \ CNot \ Da
      using T undef decomp lev unfolding cdcl_W-M-level-inv-def by fastforce
   qed
qed
lemma conflict-no-smaller-confl-inv:
 assumes conflict S S'
 and no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding no-smaller-confl-def by (fastforce elim: conflictE)
lemma propagate-no-smaller-confl-inv:
 assumes propagate: propagate S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 unfolding no-smaller-confl-def
proof (intro allI impI)
 \mathbf{fix}\ M'\ K\ i\ M''\ D
 assume M': M'' @ Marked K i \# M' = trail S'
 and D \in \# clauses S'
 obtain M N U k C L where
   S: state \ S = (M, N, U, k, None) \ and
   S': state S' = (Propagated\ L\ (C + \{\#L\#\})\ \#\ M,\ N,\ U,\ k,\ None) and
   C + \{\#L\#\} \in \# clauses S \text{ and }
   M \models as \ CNot \ C and
   undefined-lit M L
   using propagate by (auto elim: propagate-high-levelE)
 have tl \ M'' @ Marked \ K \ i \ \# \ M' = trail \ S \ using \ M' \ S \ S'
   by (metis Pair-inject list.inject list.sel(3) marked-lit.distinct(1) self-append-conv2
     tl-append2)
 then have \neg M' \models as \ CNot \ D
   using \langle D \in \# \ clauses \ S' \rangle n-l S S' raw-clauses-def unfolding no-smaller-confl-def by auto
 then show \neg M' \models as \ CNot \ D by auto
\mathbf{qed}
lemma cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp S S'
 and n-l: no-smaller-confl S
```

```
shows no-smaller-confl S'
 using assms
proof (induct\ rule:\ cdcl_W-cp.induct)
 case (conflict' S S')
 then show ?case using conflict-no-smaller-confl-inv[of S S'] by blast
next
 case (propagate' S S')
 then show ?case using propagate-no-smaller-confl-inv[of S S'] by fastforce
qed
lemma rtrancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{**} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: rtranclp-induct)
 case base
 then show ?case by simp
next
 case (step S' S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
qed
lemma trancp-cdcl_W-cp-no-smaller-confl-inv:
 assumes propagate: cdcl_W-cp^{++} S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms
proof (induct rule: tranclp.induct)
 case (r-into-trancl S S')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of SS'] by blast
next
 case (trancl-into-trancl\ S\ S'\ S'')
 then show ?case using cdcl_W-cp-no-smaller-confl-inv[of S' S''] by fast
qed
lemma full-cdcl_W-cp-no-smaller-confl-inv:
 assumes full cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full-def
 using rtrancp-cdcl_W-cp-no-smaller-confl-inv[of\ S\ S'] by blast
lemma full1-cdcl_W-cp-no-smaller-confl-inv:
 assumes full1 cdcl_W-cp S S'
 and n-l: no-smaller-confl S
 shows no-smaller-confl S'
 using assms unfolding full1-def
 using trancp-cdcl_W-cp-no-smaller-confl-inv[of S S'] by blast
lemma cdcl_W-stgy-no-smaller-confl-inv:
 assumes cdcl_W-stgy SS'
 and n-l: no-smaller-confl S
 and conflict-is-false-with-level S
 and cdcl_W-M-level-inv S
```

```
shows no-smaller-confl S'
 using assms
proof (induct\ rule:\ cdcl_W-stgy.induct)
 case (conflict' S')
 then show ?case using full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv[of SS'] by blast
next
 case (other' S' S'')
 have no-smaller-confl S'
   using cdcl_W-o-no-smaller-confl-inv[OF other'.hyps(1) other'.prems(3,2,1)]
   not\text{-}conflict\text{-}not\text{-}any\text{-}negated\text{-}init\text{-}clss\ other'.hyps(2)\ cdcl_W\text{-}cp.simps\ \mathbf{by}\ auto
 then show ?case using full-cdcl<sub>W</sub>-cp-no-smaller-confl-inv[of S'S''] other'.hyps by blast
qed
lemma is-conflicting-exists-conflict:
 assumes \neg(\forall D \in \#init\text{-}clss \ S' + learned\text{-}clss \ S'. \ \neg \ trail \ S' \models as \ CNot \ D)
 and conflicting S' = None
 shows \exists S''. conflict S' S''
 using assms raw-clauses-def not-conflict-not-any-negated-init-clss by fastforce
lemma cdcl_W-o-conflict-is-no-clause-is-false:
 fixes S S' :: 'st
 assumes
   cdcl_W-o S S' and
   lev: cdcl_W-M-level-inv S and
   max-lev: conflict-is-false-with-level S and
   no-f: no-clause-is-false S and
   no-l: no-smaller-confl S
 shows no-clause-is-false S'
   \vee (conflicting S' = None
        \longrightarrow (\forall D \in \# \ clauses \ S'. \ trail \ S' \models as \ CNot \ D
            \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
 using assms(1,2)
proof (induct rule: cdcl_W-o-induct-lev2)
 case (decide L T) note S = this(1) and undef = this(2) and T = this(4)
 show ?case
   proof (rule HOL.disjI2, clarify)
     \mathbf{fix} D
     assume D: D \in \# clauses T and M-D: trail T \models as CNot D
     let ?M = trail S
     let ?M' = trail T
     let ?k = backtrack-lvl S
     have \neg ?M \models as \ CNot \ D
         using no-f D S T undef by auto
     have -L \in \# D
       proof (rule ccontr)
         assume ¬ ?thesis
         have ?M \models as CNot D
           unfolding true-annots-def Ball-def true-annot-def CNot-def true-cls-def
           proof (intro allI impI)
            assume x: x \in \{\{\#-L\#\} \mid L. L \in \# D\}
            then obtain L' where L': x = \{\#-L'\#\}\ L' \in \#\ D by auto
            obtain L'' where L'' \in \# x and lits-of-l (Marked L (?k + 1) \# ?M) \models l L''
              using M-D x T undef unfolding true-annots-def Ball-def true-annot-def CNot-def
```

```
true-cls-def Bex-def by auto
            show \exists L \in \# x. lits-of-l ?M \modelsl L unfolding Bex-def
              using L'(1) L'(2) \leftarrow L \notin \!\!\!\!/ \!\!\!/ D \land L'' \in \!\!\!\!\!/ \!\!\!\!/ x \rangle
              (lits-of-l (Marked L (backtrack-lvl S + 1) # trail S) \modelsl L'' by auto
         then show False using \langle \neg ?M \models as \ CNot \ D \rangle by auto
       qed
     have atm\text{-}of \ L \notin atm\text{-}of \ `(lits\text{-}of\text{-}l \ ?M)
       using undef defined-lit-map unfolding lits-of-def by fastforce
     then have get-level (Marked L (?k + 1) # ?M) (-L) = ?k + 1 by simp
     then show \exists La. La \in \# D \land get\text{-level }?M'La = backtrack\text{-lvl } T
       using \langle -L \in \# D \rangle T undef by auto
   qed
next
 case resolve
 then show ?case by auto
next
  case skip
 then show ?case by auto
  case (backtrack K i M1 M2 L D T) note decomp = this(3) and undef = this(7) and T = this(8)
 show ?case
   proof (rule HOL.disjI2, clarify)
     \mathbf{fix} \ Da
     assume Da: Da \in \# clauses T
     and M-D: trail T \models as \ CNot \ Da
     obtain c where M: trail S = c @ M2 @ Marked K (i + 1) \# M1
       using decomp by auto
     have tr-T: trail\ T = Propagated\ L\ (mset-ccls\ D)\ \#\ M1
       using T decomp undef lev by (auto simp: cdcl_W-M-level-inv-decomp)
     have backtrack S T
       using backtrack-rule[of S] backtrack.hyps T
       by (force simp del: state-simp simp: state-eq-def)
     then have lev': cdcl_W-M-level-inv T
       using cdcl_W-consistent-inv lev other cdcl_W-bj.backtrack cdcl_W-o.bj by blast
     then have -L \notin lits-of-l M1
       using lev cdcl<sub>W</sub>-M-level-inv-def Marked-Propagated-in-iff-in-lits-of-l undef by blast
     { assume Da \in \# clauses S
       then have \neg M1 \models as \ CNot \ Da \ using \ no-l \ M \ unfolding \ no-smaller-confl-def \ by \ auto
     }
     moreover {
       assume Da: Da = mset-ccls D
       have \neg M1 \models as \ CNot \ Da \ \mathbf{using} \ (-L \notin \mathit{lits-of-l} \ M1) \ \mathbf{unfolding} \ Da
         using backtrack.hyps(2) in-CNot-implies-uminus(2) by auto
     ultimately have \neg M1 \models as \ CNot \ Da
       using Da T undef decomp lev by (fastforce simp: cdcl_W-M-level-inv-decomp)
     then have -L \in \# Da
       using M-D \leftarrow L \notin lits-of-l M1 \rightarrow T unfolding tr-T true-annots-true-cls true-cls-def
       by (auto simp: uminus-lit-swap)
     have g-M1: get-all-levels-of-marked M1 = rev [1..< i+1]
       using lev lev' T decomp undef unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     have no-dup (Propagated L (mset-ccls D) \# M1)
       using lev lev' T decomp undef unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
     then have L: atm-of L \notin atm-of 'lits-of-l M1 unfolding lits-of-def by auto
```

```
have get-level (Propagated L (mset-ccls D) \# M1) (-L) = i
       using get-level-get-rev-level-get-all-levels-of-marked [OF L,
         of [Propagated\ L\ (mset\text{-}ccls\ D)]]
       by (simp add: g-M1 split: if-splits)
     then show \exists La. La \in \# Da \land get\text{-level (trail } T) La = backtrack\text{-lvl } T
       using \langle -L \in \# Da \rangle T decomp undef lev by (auto simp: cdcl_W-M-level-inv-def)
   qed
qed
lemma full1-cdcl_W-cp-exists-conflict-decompose:
 assumes
   confl: \exists D \in \#clauses \ S. \ trail \ S \models as \ CNot \ D \ and
   full: full cdcl_W-cp S U and
   no-confl: conflicting S = None and
   lev: cdcl_W-M-level-inv S
 shows \exists T. propagate^{**} S T \land conflict T U
proof -
 consider (propa) propagate^{**} S U
       (confl) T where propagate** S T and conflict T U
  using full unfolding full-def by (blast dest:rtranclp-cdcl_W-cp-propa-or-propa-confl)
  then show ?thesis
   proof cases
     case confl
     then show ?thesis by blast
   next
     case propa
     then have conflicting U = None and
       [simp]: learned-clss\ U = learned-clss\ S and
       [simp]: init-clss U = init-clss S
       using no-confl rtranclp-propagate-is-update-trail lev by auto
     moreover
       obtain D where D: D \in \#clauses\ U and
         trS: trail S \models as CNot D
         using confl raw-clauses-def by auto
       obtain M where M: trail U = M @ trail S
         using full rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail unfolding full-def by meson
       have tr-U: trail U \models as \ CNot \ D
         apply (rule true-annots-mono)
         using trS unfolding M by simp-all
     have \exists V. conflict U V
       using \langle conflicting \ U = None \rangle \ D \ raw-clauses-def \ not-conflict-not-any-negated-init-clss \ tr-U
       by meson
     then have False using full cdcl<sub>W</sub>-cp.conflict' unfolding full-def by blast
     then show ?thesis by fast
   qed
\mathbf{qed}
lemma full1-cdcl_W-cp-exists-conflict-full1-decompose:
 assumes
   confl: \exists D \in \#clauses \ S. \ trail \ S \models as \ CNot \ D \ and
   full: full cdcl_W-cp S U and
   no-confl: conflicting S = Noneand
   lev: cdcl_W-M-level-inv S
  shows \exists T D. propagate^{**} S T \land conflict T U
   \land \ trail \ T \models as \ CNot \ D \ \land \ conflicting \ U = Some \ D \ \land \ D \in \# \ clauses \ S
```

```
proof -
 obtain T where propa: propagate^{**} S T and conf: conflict T U
   using full1-cdcl_W-cp-exists-conflict-decompose[OF\ assms] by blast
 have p: learned-clss T = learned-clss S init-clss T = init-clss S
    using propa lev rtranclp-propagate-is-update-trail by auto
 have c: learned-clss U = learned-clss T init-clss U = init-clss T
    using conf by (auto elim: conflictE)
 obtain D where trail T \models as \ CNot \ D \land conflicting \ U = Some \ D \land D \in \# \ clauses \ S
   using conf p c by (fastforce simp: raw-clauses-def elim!: conflictE)
 then show ?thesis
   using propa conf by blast
qed
lemma cdcl_W-stgy-no-smaller-confl:
 assumes
   cdcl_W-stgy S S' and
   n-l: no-smaller-confl S and
   conflict-is-false-with-level S and
   cdcl_W-M-level-inv S and
   no-clause-is-false S and
   distinct-cdcl_W-state S and
   cdcl_W-conflicting S
 shows no-smaller-confl S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 show no-smaller-confl S'
   using conflict'.hyps conflict'.prems(1) full1-cdcl<sub>W</sub>-cp-no-smaller-confl-inv by blast
 case (other' S' S'')
 have lev': cdcl_W-M-level-inv <math>S'
   using cdcl_W-consistent-inv other other'.hyps(1) other'.prems(3) by blast
 show no-smaller-confl S''
   using cdcl_W-stgy-no-smaller-confl-inv[OF cdcl_W-stgy.other'[OF other'.hyps(1-3)]]
   other'.prems(1-3) by blast
qed
lemma cdcl_W-stgy-ex-lit-of-max-level:
 assumes
   cdcl_W-stgy S S' and
   n-l: no-smaller-confi S and
   conflict-is-false-with-level S and
   cdcl_W-M-level-inv S and
   no-clause-is-false S and
   distinct-cdcl_W-state S and
   cdcl_W-conflicting S
 shows conflict-is-false-with-level S'
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S')
 have no-smaller-confl S'
   using conflict'.hyps\ conflict'.prems(1)\ full1-cdcl_W-cp-no-smaller-confl-inv\ by\ blast
 moreover have conflict-is-false-with-level S'
   using conflict'.hyps conflict'.prems(2-4)
   rtranclp-cdcl_W-co-conflict-ex-lit-of-max-level[of S S']
```

```
unfolding full-def full1-def rtranclp-unfold by presburger
then show ?case by blast
case (other' S' S'')
have lev': cdcl_W-M-level-inv S'
 using cdcl_W-consistent-inv other other'.hyps(1) other'.prems(3) by blast
moreover
 have no-clause-is-false S'
   \lor (conflicting S' = None \longrightarrow (\forall D \in \#clauses S'. trail S' \models as CNot D
        \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')))
   using cdcl_W-o-conflict-is-no-clause-is-false of S[S'] other'.hyps(1) other'.prems(1-4) by fast
moreover {
 assume no-clause-is-false S'
   assume conflicting S' = None
   then have conflict-is-false-with-level S' by auto
   moreover have full cdcl_W-cp S' S''
     by (metis\ (no-types)\ other'.hyps(3))
   ultimately have conflict-is-false-with-level S^{\,\prime\prime}
     \mathbf{using} \ \mathit{rtranclp-cdcl}_W \textit{-}\mathit{co-conflict-ex-lit-of-max-level} [\mathit{of} \ S' \ S''] \ \mathit{lev'} \ \langle \mathit{no-clause-is-false} \ S' \rangle \\
     by blast
  }
 moreover
  {
   assume c: conflicting S' \neq None
   have conflicting S \neq None using other'.hyps(1) c
     by (induct rule: cdcl_W-o-induct) auto
   then have conflict-is-false-with-level S'
     using cdcl_W-o-conflict-is-false-with-level-inv[OF other'.hyps(1)]
     other'.prems(3,5,6,2) by blast
   moreover have cdcl_W-cp^{**} S' using other'.hyps(3) unfolding full-def by auto
   then have S' = S'' using c
     by (induct rule: rtranclp-induct)
        (fastforce\ intro:\ option.exhaust)+
   ultimately have conflict-is-false-with-level S" by auto
 ultimately have conflict-is-false-with-level S'' by blast
moreover {
  assume
    confl: conflicting S' = None and
    D-L: \forall D \in \# clauses S'. trail S' \models as CNot D
       \longrightarrow (\exists L. \ L \in \# D \land get\text{-level (trail } S') \ L = backtrack\text{-lvl } S')
   { assume \forall D \in \#clauses S'. \neg trail S' \models as CNot D
    then have no-clause-is-false S' using confl by simp
    then have conflict-is-false-with-level S'' using calculation(3) by presburger
  }
  moreover {
    assume \neg(\forall D \in \#clauses S'. \neg trail S' \models as CNot D)
    then obtain TD where
      propagate^{**} S' T and
      conflict\ T\ S^{\prime\prime} and
      D: D \in \# \ clauses \ S'  and
      trail S'' \models as CNot D and
      conflicting S'' = Some D
```

```
using full1-cdcl_W-cp-exists-conflict-full1-decompose[OF - - confl]
  other'(3) lev' by (metis (mono-tags, lifting) conflictE state-eq-trail
    trail-update-conflicting)
obtain M where M: trail S'' = M @ trail S' and nm: \forall m \in set M. \neg is-marked m
  using rtranclp-cdcl_W-cp-dropWhile-trail\ other'(3) unfolding full-def by meson
have btS: backtrack-lvl S'' = backtrack-lvl S'
  using other'.hyps(3) unfolding full-def by (metis rtranclp-cdcl<sub>W</sub>-cp-backtrack-lvl)
have inv: cdcl_W-M-level-inv S''
  by (metis (no-types) cdcl<sub>W</sub>-stgy.conflict' cdcl<sub>W</sub>-stgy-consistent-inv full-unfold lev'
    other'.hyps(3)
then have nd: no\text{-}dup \ (trail \ S'')
 by (metis\ (no\text{-}types)\ cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}decomp(2))
have conflict-is-false-with-level S^{\prime\prime}
 proof cases
    assume trail S' \models as \ CNot \ D
    moreover then obtain L where
      L \in \# D and
      lev-L: qet-level (trail S') L = backtrack-lvl S'
      using D-L D by blast
    moreover
      have LS': -L \in lits-of-l (trail S')
        using \langle trail \ S' \models as \ CNot \ D \rangle \ \langle L \in \# \ D \rangle \ in\text{-}CNot\text{-}implies\text{-}uminus(2) by } \ blast
      \{ \mathbf{fix} \ x :: ('v, nat, 'v \ clause) \ marked-lit \ \mathbf{and} \}
          xb :: ('v, nat, 'v clause) marked-lit
        assume a1: x \in set \ (trail \ S') and
          a2: xb \in set M and
          a3: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
            = \{\} and
          a4: -L = lit - of x and
           a5: atm-of L = atm-of (lit-of xb)
        moreover have atm\text{-}of (lit\text{-}of x) = atm\text{-}of L
          using a4 by (metis (no-types) atm-of-uminus)
        ultimately have False
          using a5 a3 a2 a1 by auto
      then have atm\text{-}of\ L\notin atm\text{-}of ' lits\text{-}of\text{-}l\ M
        using nd LS' unfolding M by (auto simp add: lits-of-def)
      then have get-level (trail S'') L = get-level (trail S') L
        unfolding M by (simp add: lits-of-def)
    ultimately show ?thesis using btS \ (conflicting S'' = Some D) by auto
    assume \neg trail \ S' \models as \ CNot \ D
    then obtain L where L \in \# D and LM: -L \in lits\text{-}of\text{-}l\ M
      using \langle trail \ S'' \models as \ CNot \ D \rangle unfolding M
        by (auto simp add: true-cls-def M true-annots-def true-annot-def
              split: if-split-asm)
    { \mathbf{fix} \ x :: ('v, nat, 'v \ clause) \ marked-lit \ \mathbf{and}
        xb :: ('v, nat, 'v clause) marked-lit
      assume a1: xb \in set (trail S') and
        a2: x \in set M and
        a3: atm\text{-}of\ L = atm\text{-}of\ (lit\text{-}of\ xb) and
        a4: -L = lit - of x and
        a5: (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set M \cap (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set (trail \ S')
      moreover have atm\text{-}of\ (lit\text{-}of\ xb) = atm\text{-}of\ (-L)
```

```
using a\beta by simp
            ultimately have False
             by auto }
          then have LS': atm-of L \notin atm-of 'lits-of-l (trail S')
            using nd \langle L \in \# D \rangle LM unfolding M by (auto simp add: lits-of-def)
          show ?thesis
           proof cases
             assume ne: get-all-levels-of-marked (trail S') = []
             have backtrack-lvl\ S^{\prime\prime}=\ \theta
               using inv ne nm unfolding cdcl_W-M-level-inv-def M
               by (simp add: get-all-levels-of-marked-nil-iff-not-is-marked)
             moreover
               have a1: get-level ML = 0
                 using nm by auto
               then have get-level (M @ trail S') L = 0
                 by (metis LS' get-all-levels-of-marked-nil-iff-not-is-marked
                   get-level-skip-beginning-not-marked lits-of-def ne)
             ultimately show ?thesis using \langle conflicting S'' = Some D \rangle \langle L \in \# D \rangle unfolding M
               by auto
           \mathbf{next}
             assume ne: get-all-levels-of-marked (trail S') \neq []
             have hd (get-all-levels-of-marked (trail S')) = backtrack-lvl S'
               using ne lev' M nm unfolding cdcl_W-M-level-inv-def
               by (cases get-all-levels-of-marked (trail S'))
               (simp-all add: get-all-levels-of-marked-nil-iff-not-is-marked[symmetric])
             moreover have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ M
                using \langle -L \in \mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l}\ M \rangle
                by (simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set lits-of-def)
             ultimately show ?thesis
               using nm ne \langle L \in \#D \rangle \langle conflicting S'' = Some D \rangle
                 get-level-skip-beginning-hd-get-all-levels-of-marked [OF LS', of M]
                 get-level-skip-in-all-not-marked[of rev M L backtrack-lvl S']
               unfolding lits-of-def btS M
               by auto
           \mathbf{qed}
        qed
    ultimately have conflict-is-false-with-level S'' by blast
  }
 moreover
  {
   assume conflicting S' \neq None
   have no-clause-is-false S' using \langle conflicting S' \neq None \rangle by auto
   then have conflict-is-false-with-level S'' using calculation(3) by presburger
 ultimately show ?case by fast
qed
lemma rtranclp-cdcl_W-stqy-no-smaller-confl-inv:
  assumes
    cdcl_W-stgy^{**} S S' and
   n-l: no-smaller-confl S and
   cls-false: conflict-is-false-with-level S and
   lev: cdcl_W-M-level-inv S and
   no-f: no-clause-is-false S and
```

```
dist: distinct-cdcl_W-state S and
   conflicting: cdcl_W-conflicting S and
   decomp: all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S)) and
   learned: cdcl_W-learned-clause S and
   alien: no-strange-atm S
 shows no-smaller-confl S' \wedge conflict-is-false-with-level S'
 using assms(1)
proof (induct rule: rtranclp-induct)
 case base
 then show ?case using n-l cls-false by auto
 case (step S' S'') note st = this(1) and cdcl = this(2) and IH = this(3)
 have no-smaller-confl S' and conflict-is-false-with-level S'
   using IH by blast+
 moreover have cdcl_W-M-level-inv S'
   using st\ lev\ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W
   by (blast intro: rtranclp-cdcl_W-consistent-inv)+
 moreover have no-clause-is-false S'
   using st no-f rtranclp-cdcl<sub>W</sub>-stgy-not-non-negated-init-clss by presburger
 moreover have distinct\text{-}cdcl_W\text{-}state\ S'
   using rtanclp-distinct-cdcl_W-state-inv[of\ S\ S']\ lev\ rtranclp-cdcl_W-stay-rtranclp-cdcl_W[OF\ st]
   dist by auto
 moreover have cdcl_W-conflicting S'
   using rtranclp-cdcl_W-all-inv(6)[of SS'] st alien conflicting decomp dist learned lev
   rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
 ultimately show ?case
   using cdcl_W-stqy-no-smaller-confl[OF cdcl] cdcl_W-stqy-ex-lit-of-max-level[OF cdcl] by fast
qed
```

19.5.7 Final States are Conclusive

```
lemma full-cdcl_W-stgy-final-state-conclusive-non-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no-d: distinct-mset-mset (mset-clss N)
 and no-empty: \forall D \in \#mset\text{-}clss\ N.\ D \neq \{\#\}
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
proof -
 let ?S = init\text{-state } N
 have
    termi: \forall S''. \neg cdcl_W \text{-stgy } S' S'' \text{ and }
   step: cdcl_W-stgy** ?S S' using full unfolding full-def by auto
  moreover have
   learned: cdcl_W-learned-clause S' and
   level-inv: cdcl_W-M-level-inv S' and
   alien: no-strange-atm S' and
   no-dup: distinct-cdcl_W-state S' and
   confl: cdcl_W-conflicting S' and
   decomp: \ all-decomposition-implies-m \ (init-clss \ S') \ (get-all-marked-decomposition \ (trail \ S'))
   using no-d translp-cdcl<sub>W</sub>-stqy-translp-cdcl<sub>W</sub>[of SS'] step rtranslp-cdcl<sub>W</sub>-all-inv(1-6)[of SS']
   unfolding rtranclp-unfold by auto
  moreover
   have \forall D \in \#mset\text{-}clss \ N. \neg [] \models as \ CNot \ D \ using \ no\text{-}empty \ by \ auto
   then have confl-k: conflict-is-false-with-level S'
     using rtranclp-cdcl_W-stgy-no-smaller-confl-inv[OF step] no-d by auto
```

```
show ?thesis
   using cdcl<sub>W</sub>-stgy-final-state-conclusive[OF termi decomp learned level-inv alien no-dup confl
qed
lemma conflict-is-full1-cdcl_W-cp:
 assumes cp: conflict S S'
 shows full1 cdcl_W-cp S S'
proof
 have cdcl_W-cp \ S \ S' and conflicting \ S' \neq None
   using cp cdcl_W-cp.intros by (auto elim!: conflictE simp: state-eq-def simp del: state-simp)
 then have cdcl_W-cp^{++} S S' by blast
 moreover have no-step cdcl_W-cp S'
   using \langle conflicting S' \neq None \rangle by (metis\ cdcl_W\text{-}cp\text{-}conflicting\text{-}not\text{-}empty)
     option.exhaust)
 ultimately show full1 cdcl<sub>W</sub>-cp S S' unfolding full1-def by blast+
lemma cdcl_W-cp-fst-empty-conflicting-false:
 assumes
   cdcl_W-cp S S' and
   trail S = [] and
   conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl<sub>W</sub>-cp.induct) (auto elim: propagateE conflictE)
lemma cdcl_W-o-fst-empty-conflicting-false:
 assumes cdcl_W-o SS'
 and trail S = []
 and conflicting S \neq None
 shows False
 using assms by (induct rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-fst-empty-conflicting-false:
 assumes cdcl_W-stgy SS'
 and trail S = []
 and conflicting S \neq None
 shows False
 using assms apply (induct rule: cdcl_W-stgy.induct)
  using tranclpD cdcl_W-cp-fst-empty-conflicting-false unfolding full1-def apply metis
 using cdcl_W-o-fst-empty-conflicting-false by blast
thm cdcl_W-cp.induct[split-format(complete)]
lemma cdcl_W-cp-conflicting-is-false:
  cdcl_W-cp \ S \ S' \Longrightarrow conflicting \ S = Some \ \{\#\} \Longrightarrow False
 by (induction rule: cdcl_W-cp.induct) (auto elim: propagateE conflictE)
lemma rtranclp-cdcl_W-cp-conflicting-is-false:
  cdcl_W - cp^{++} S S' \Longrightarrow conflicting S = Some \{\#\} \Longrightarrow False
 apply (induction rule: tranclp.induct)
 by (auto dest: cdcl_W-cp-conflicting-is-false)
lemma cdcl_W-o-conflicting-is-false:
  cdcl_W-o S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
```

```
by (induction rule: cdcl_W-o-induct) auto
lemma cdcl_W-stgy-conflicting-is-false:
 cdcl_W-stgy S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow False
 apply (induction rule: cdcl_W-stgy.induct)
   unfolding full1-def apply (metis (no-types) cdcl_W-cp-conflicting-not-empty tranclpD)
 unfolding full-def by (metis conflict-with-false-implies-terminated other)
lemma rtranclp-cdcl_W-stgy-conflicting-is-false:
 cdcl_W-stgy^{**} S S' \Longrightarrow conflicting <math>S = Some \{\#\} \Longrightarrow S' = S
 apply (induction rule: rtranclp-induct)
   apply simp
 using cdcl_W-stgy-conflicting-is-false by blast
lemma full-cdcl_W-init-clss-with-false-normal-form:
 assumes
   \forall m \in set M. \neg is\text{-}marked m \text{ and }
   E = Some D and
   state S = (M, N, U, 0, E)
   full\ cdcl_W-stqy S\ S' and
   all-decomposition-implies-m (init-clss S) (get-all-marked-decomposition (trail S))
   cdcl_W-learned-clause S
   cdcl_W-M-level-inv S
   no\text{-}strange\text{-}atm\ S
   distinct-cdcl_W-state S
   cdcl_W-conflicting S
 shows \exists M''. state S' = (M'', N, U, \theta, Some {\#})
 using assms(10,9,8,7,6,5,4,3,2,1)
proof (induction M arbitrary: E D S)
 case Nil
 then show ?case
   using rtranclp-cdcl_W-stgy-conflicting-is-false unfolding full-def cdcl_W-conflicting-def
next
 case (Cons\ L\ M) note IH=this(1) and full=this(8) and E=this(10) and inv=this(2-7) and
   S = this(9) and nm = this(11)
 obtain K p where K: L = Propagated K p
   using nm by (cases L) auto
 have every-mark-is-a-conflict S using inv unfolding cdcl_W-conflicting-def by auto
 then have MpK: M \models as\ CNot\ (p - \{\#K\#\}) \text{ and } Kp: K \in \# p
   using S unfolding K by fastforce+
 then have p: p = (p - \{\#K\#\}) + \{\#K\#\}
   by (auto simp add: multiset-eq-iff)
 then have K': L = Propagated K ((p - \{\#K\#\}) + \{\#K\#\})
   using K by auto
 obtain p' where
   p': hd-raw-trail S = Propagated K <math>p' and
   pp': mset-cls p' = p
   using hd-raw-trail [of S] S K by (cases hd-raw-trail S) auto
 obtain raw-D where
   raw-D: raw-conflicting <math>S = Some \ raw-D
   using S E by (cases raw-conflicting S) auto
 then have raw-DD: mset-ccls raw-D = D
   using S E by auto
 consider (D) D = \{\#\} \mid (D') \ D \neq \{\#\}  by blast
```

```
then show ?case
   proof cases
     case D
     then show ?thesis
      using full rtranclp-cdcl_W-stqy-conflicting-is-false S unfolding full-def E D by auto
   next
     case D'
     then have no-p: no-step propagate S and no-c: no-step conflict S
      using S E by (auto elim: propagateE conflictE)
     then have no-step cdcl_W-cp S by (auto simp: cdcl_W-cp.simps)
     have res-skip: \exists T. (resolve S \ T \land no-step skip S \land full \ cdcl_W-cp T \ T)
       \vee (skip S T \wedge no-step resolve S \wedge full cdcl<sub>W</sub>-cp T T)
      proof cases
        assume -lit-of L \notin \# D
        then obtain T where sk: skip S T
          using SD'K skip-rule unfolding E by fastforce
        then have res: no-step resolve S
          using \langle -lit\text{-}of \ L \notin \# \ D \rangle \ S \ D' \ K \ hd\text{-}raw\text{-}trail[of \ S] \ unfolding \ E
          by (auto elim!: skipE resolveE)
        have full\ cdcl_W-cp\ T\ T
          using sk by (auto intro!: option-full-cdcl_W-cp elim: skipE)
        then show ?thesis
          using sk res by blast
      next
        assume LD: \neg -lit - of L \notin \# D
        then have D: Some D = Some ((D - \{\#-lit\text{-}of L\#\}) + \{\#-lit\text{-}of L\#\})
          by (auto simp add: multiset-eq-iff)
        have \bigwedge L. get-level M L = 0
          by (simp add: nm)
          then have get-maximum-level (Propagated K (p - \{\#K\#\} + \{\#K\#\}) \# M) (D - \{\#-\})
K\#\}) = 0
          using LD get-maximum-level-exists-lit-of-max-level
          proof -
            obtain L' where get-level (L\#M) L' = get-maximum-level (L\#M) D
              using LD qet-maximum-level-exists-lit-of-max-level[of D L#M] by fastforce
            then show ?thesis by (metis (mono-tags) K' get-level-skip-all-not-marked
              get-maximum-level-exists-lit nm not-qr0)
          qed
        then obtain T where sk: resolve S T
          using resolve-rule of S K p' raw-D S p' \langle K \in \# p \rangle raw-D LD
          unfolding K'DE pp'raw-DD by auto
        then have res: no-step skip S
          using LD S D' K hd-raw-trail[of S] unfolding E
          by (auto elim!: skipE resolveE)
        have full\ cdcl_W-cp\ T\ T
          using sk by (auto simp: option-full-cdcl<sub>W</sub>-cp elim: resolveE)
        then show ?thesis
         using sk res by blast
      qed
     then have step-s: \exists T. <math>cdcl_W-stgy S T
       using \langle no\text{-}step\ cdcl_W\text{-}cp\ S \rangle\ other' by (meson\ bj\ resolve\ skip)
     have get-all-marked-decomposition (L \# M) = [([], L \# M)]
      using nm unfolding K apply (induction M rule: marked-lit-list-induct, simp)
        by (rename-tac L l xs, case-tac hd (get-all-marked-decomposition xs), auto)+
```

```
then have no-b: no-step backtrack S
      using nm \ S by (auto \ elim: backtrackE)
     have no-d: no-step decide S
      using S E by (auto elim: decideE)
     have full-S-S: full cdcl_W-cp S
      using S E by (auto simp add: option-full-cdcl<sub>W</sub>-cp)
     then have no-f: no-step (full1 cdcl_W-cp) S
      unfolding full-def full1-def rtranclp-unfold by (meson tranclpD)
     obtain T where
      s: cdcl_W-stgy S T and st: cdcl_W-stgy^{**} T S'
      using full step-s full unfolding full-def by (metis rtranclp-unfold tranclpD)
     have resolve S T \lor skip S T
      using s no-b no-d res-skip full-S-S cdcl_W-cp-state-eq-compatible resolve-unique
      skip-unique unfolding cdcl_W-stqy.simps cdcl_W-o.simps full-unfold
      full1-def by (blast dest!: tranclpD elim!: cdcl_W-bj.cases)+
     then obtain D' where T: state T = (M, N, U, 0, Some D')
      using S E by (auto elim!: skipE resolveE simp: state-eq-def simp del: state-simp)
     have st-c: cdcl_W^{**} S T
      using E \ T \ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W s by blast
     have cdcl_W-conflicting T
      using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6,5,4,3,2,1)].
     show ?thesis
      apply (rule IH[of T])
               using rtranclp-cdcl_W-all-inv(6)[OF st-c inv(6.5.4.3.2.1)] apply blast
             using rtranclp-cdcl_W-all-inv(5)[OF st-c inv(6,5,4,3,2,1)] apply blast
            using rtranclp-cdcl_W-all-inv(4)[OF st-c inv(6,5,4,3,2,1)] apply blast
            using rtranclp-cdcl_W-all-inv(3)[OF st-c inv(6,5,4,3,2,1)] apply blast
           using rtranclp-cdcl_W-all-inv(2)[OF st-c inv(6,5,4,3,2,1)] apply blast
          using rtranclp-cdcl_W-all-inv(1)[OF st-c inv(6,5,4,3,2,1)] apply blast
         apply (metis full-def st full)
        using T E apply blast
       apply auto[]
      using nm by simp
   qed
qed
lemma full-cdcl_W-stgy-final-state-conclusive-is-one-false:
 fixes S' :: 'st
 assumes full: full cdcl_W-stgy (init-state N) S'
 and no-d: distinct-mset-mset (mset-clss N)
 and empty: \{\#\} \in \# (mset\text{-}clss\ N)
 shows conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss S'))
proof -
 let ?S = init\text{-}state\ N
 have cdcl_W-stgy** ?S S' and no-step cdcl_W-stgy S' using full unfolding full-def by auto
 then have plus-or-eq: cdcl_W-stgy<sup>++</sup> ?S S' \vee S' = ?S unfolding rtranclp-unfold by auto
 have \exists S''. conflict ?S S''
   using empty not-conflict-not-any-negated-init-clss[of init-state N] by auto
 then have cdcl_W-stgy: \exists S'. cdcl_W-stgy ?S S'
   using cdcl_W-cp.conflict'[of ?S] conflict-is-full1-cdcl_W-cp cdcl_W-stgy.intros(1) by metis
 have S' \neq ?S using \langle no\text{-}step\ cdcl_W\text{-}stgy\ S' \rangle\ cdcl_W\text{-}stgy\ \mathbf{by}\ blast
```

```
then obtain St:: 'st where St: cdcl_W-stgy ?S St and cdcl_W-stgy** St S'
 using plus-or-eq by (metis (no-types) \langle cdcl_W \text{-stgy}^{**} ?S S' \rangle converse-rtranclpE)
have st: cdcl_W^{**} ?S St
 by (simp add: rtranclp-unfold \langle cdcl_W-stgy ?S St\rangle cdcl_W-stgy-tranclp-cdcl_W)
have \exists T. conflict ?S T
  using empty not-conflict-not-any-negated-init-clss[of ?S] by force
then have fullSt: full1 \ cdcl_W-cp \ ?S \ St
 using St unfolding cdcl_W-stgy.simps by blast
then have bt: backtrack-lvl St = (0::nat)
 using rtranclp-cdcl_W-cp-backtrack-lvl unfolding full1-def
 by (fastforce dest!: tranclp-into-rtranclp)
have cls-St: init-clss St = mset-clss N
 using fullSt cdcl_W-stqy-no-more-init-clss[OF St] by auto
have conflicting St \neq None
 proof (rule ccontr)
   assume conf: \neg ?thesis
   obtain E where
     ES: E !\in ! raw\text{-}init\text{-}clss St  and
     E: mset-cls\ E = \{\#\}
     using empty cls-St by (metis in-mset-clss-exists-preimage)
   then have \exists T. conflict St T
     using empty cls-St conflict-rule[of St E] ES conf unfolding E
     by (auto simp: raw-clauses-def dest: in-mset-clss-exists-preimage)
   then show False using fullSt unfolding full1-def by blast
 qed
have 1: \forall m \in set (trail St). \neg is-marked m
 using fullSt unfolding full1-def by (auto dest!: tranclp-into-rtranclp
   rtranclp-cdcl_W-cp-drop\ While-trail)
have 2: full cdcl_W-stgy St S'
 using \langle cdcl_W \text{-}stgy^{**} \ St \ S' \rangle \langle no\text{-}step \ cdcl_W \text{-}stgy \ S' \rangle bt unfolding full-def by auto
have 3: all-decomposition-implies-m
   (init-clss\ St)
   (qet-all-marked-decomposition
      (trail\ St)
using rtranclp-cdcl_W-all-inv(1)[OF\ st]\ no-d\ bt\ by\ simp
have 4: cdcl_W-learned-clause St
 using rtranclp-cdcl_W-all-inv(2)[OF st] no-d bt by simp
have 5: cdcl_W-M-level-inv St
 using rtranclp-cdcl_W-all-inv(3)[OF\ st]\ no\text{-}d\ bt\ \mathbf{by}\ simp
have 6: no-strange-atm St
 using rtranclp-cdcl_W-all-inv(4)[OF\ st]\ no-d\ bt\ by\ simp
have 7: distinct\text{-}cdcl_W\text{-}state\ St
 using rtranclp-cdcl_W-all-inv(5)[OF\ st]\ no-d\ bt\ by\ simp
have 8: cdcl_W-conflicting St
 \mathbf{using}\ \mathit{rtranclp-cdcl}_W\text{-}\mathit{all-inv}(6)[\mathit{OF}\ \mathit{st}]\ \mathit{no-d}\ \mathit{bt}\ \mathbf{by}\ \mathit{simp}
have init-clss S' = init-clss St and conflicting S' = Some \{\#\}
  using \langle conflicting St \neq None \rangle full-cdcl_W-init-clss-with-false-normal-form [OF 1, of - - St]
   2 3 4 5 6 7 8 St apply (metis \( cdcl_W - stgy^{**} \) St S'\( rtranclp - cdcl_W - stgy - no-more-init-clss \)
 using (conflicting St \neq None) full-cdcl<sub>W</sub>-init-clss-with-false-normal-form [OF 1, of - - St -
   S' \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8  by (metis bt option.exhaust prod.inject)
```

```
using \langle cdcl_W \text{-stgy}^{**} \text{ (init-state N) } S' \rangle rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss by fastforce
  moreover have unsatisfiable (set-mset (mset-clss N))
   by (meson empty satisfiable-def true-cls-empty true-clss-def)
 ultimately show ?thesis by auto
qed
lemma full-cdcl_W-stgy-final-state-conclusive:
 fixes S' :: 'st
 assumes full: full cdcl<sub>W</sub>-stgy (init-state N) S' and no-d: distinct-mset-mset (mset-clss N)
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (init-clss <math>S')))
   \lor (conflicting S' = None \land trail S' \models asm init-clss S')
 using assms full-cdcl_W-stgy-final-state-conclusive-is-one-false
 full-cdcl_W-stgy-final-state-conclusive-non-false by blast
lemma full-cdcl_W-stgy-final-state-conclusive-from-init-state:
 fixes S' :: 'st
 assumes full: full cdcl_W-stqy (init-state N) S'
 and no-d: distinct-mset-mset (mset-clss N)
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (mset-clss N)))
  \lor (conflicting S' = None \land trail S' \models asm (mset-clss N) \land satisfiable (set-mset (mset-clss N)))
 have N: init-clss S' = (mset-clss N)
   using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss)
  consider
     (confl) conflicting S' = Some \{\#\} and unsatisfiable (set-mset (init-clss S'))
   | (sat) \ conflicting \ S' = None \ and \ trail \ S' \models asm \ init-clss \ S'
   using full-cdcl_W-stgy-final-state-conclusive[OF\ assms] by auto
  then show ?thesis
   proof cases
     case confl
     then show ?thesis by (auto simp: N)
     case sat
     have cdcl_W-M-level-inv (init-state N) by auto
     then have cdcl_W-M-level-inv S'
      using full rtranclp-cdclw-stqy-consistent-inv unfolding full-def by blast
     then have consistent-interp (lits-of-l (trail S')) unfolding cdcl_W-M-level-inv-def by blast
     moreover have lits-of-l (trail S') \models s set-mset (init-clss S')
      using sat(2) by (auto simp add: true-annots-def true-annot-def true-clss-def)
     ultimately have satisfiable (set-mset (init-clss S')) by simp
     then show ?thesis using sat unfolding N by blast
   qed
qed
end
end
theory CDCL-W-Termination
imports CDCL-W
begin
context conflict-driven-clause-learning<sub>W</sub>
begin
```

19.6 Termination

The condition that no learned clause is a tautology is overkill (in the sense that the no-duplicate condition is enough), but we can reuse *simple-clss*.

The invariant contains all the structural invariants that holds,

```
definition cdcl_W-all-struct-inv where
  cdcl_W-all-struct-inv S \longleftrightarrow
   no-strange-atm S \wedge
   cdcl_W-M-level-inv S \wedge
   (\forall s \in \# learned\text{-}clss S. \neg tautology s) \land
   distinct-cdcl_W-state S \wedge
   cdcl_W-conflicting S \wedge
   all-decomposition-implies-m \ (init-clss \ S) \ (get-all-marked-decomposition \ (trail \ S)) \ \land
   cdcl_W-learned-clause S
lemma cdcl_W-all-struct-inv-inv:
 assumes cdcl_W S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
 unfolding cdcl_W-all-struct-inv-def
proof (intro HOL.conjI)
  show no-strange-atm S'
   using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by auto
  show cdcl_W-M-level-inv S'
   using cdcl_W-all-inv[OF\ assms(1)]\ assms(2) unfolding cdcl_W-all-struct-inv-def\ by\ fast
 show distinct\text{-}cdcl_W\text{-}state\ S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
  show cdcl_W-conflicting S'
    using cdcl_W-all-inv[OF assms(1)] assms(2) unfolding cdcl_W-all-struct-inv-def by fast
 show all-decomposition-implies-m (init-clss S') (get-all-marked-decomposition (trail S'))
    using cdcl_W-all-inv[OF\ assms(1)]\ assms(2) unfolding cdcl_W-all-struct-inv-def\ by fast
 show cdcl_W-learned-clause S'
    using cdcl_W-all-inv[OF\ assms(1)]\ assms(2)\ unfolding\ cdcl_W-all-struct-inv-def\ by\ fast
 show \forall s \in \#learned\text{-}clss S'. \neg tautology s
   using assms(1) [THEN learned-clss-are-not-tautologies] assms(2)
   unfolding cdcl_W-all-struct-inv-def by fast
qed
lemma rtranclp-cdcl_W-all-struct-inv-inv:
  assumes cdcl_W^{**} S S' and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv S'
  using assms by induction (auto intro: cdcl_W-all-struct-inv-inv)
lemma cdcl_W-stgy-cdcl_W-all-struct-inv:
  cdcl_W-stgy S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (meson\ cdcl_W\ -stgy\ -tranclp\ -cdcl_W\ -tranclp\ -cdcl_W\ -all\ -struct\ -inv\ -inv\ rtranclp\ -unfold)
lemma rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv:
  cdcl_W-stgy** S T \Longrightarrow cdcl_W-all-struct-inv S \Longrightarrow cdcl_W-all-struct-inv T
 by (induction rule: rtranclp-induct) (auto intro: cdcl_W-stgy-cdcl_W-all-struct-inv)
```

19.7 No Relearning of a clause

```
lemma cdcl_W-o-new-clause-learned-is-backtrack-step: assumes learned: D \in \# learned-clss T and
```

```
new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-o S T and
  lev: cdcl_W-M-level-inv S
  shows backtrack S T \land conflicting <math>S = Some \ D
  using cdcl_W lev learned new
proof (induction rule: cdcl_W-o-induct-lev2)
 case (backtrack K i M1 M2 L C T) note decomp = this(3) and undef = this(6) and andef = this(7)
and
    T = this(8) and D-T = this(9) and D-S = this(10)
  then have D = mset\text{-}ccls \ C
   using not-gr0 lev by (auto simp: cdcl_W-M-level-inv-decomp)
  then show ?case
   using T backtrack.hyps(1-5) backtrack.intros[OF\ backtrack.hyps(1,2)] backtrack.hyps(3-6)
   by auto
qed auto
\mathbf{lemma}\ cdcl_W\text{-}cp\text{-}new\text{-}clause\text{-}learned\text{-}has\text{-}backtrack\text{-}step\text{:}}
  assumes learned: D \in \# learned-clss T and
  new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-stgy S T and
  lev: cdcl_W-M-level-inv S
  shows \exists S'. backtrack S S' \land cdcl_W-stgy** S' T \land conflicting S = Some D
  using cdcl_W learned new
proof (induction rule: cdcl_W-stgy.induct)
  case (conflict' S')
  then show ?case
   unfolding full1-def by (metis (mono-tags, lifting) rtranclp-cdcl_W-cp-learned-clause-inv
     tranclp-into-rtranclp)
next
  case (other' S' S'')
  then have D \in \# learned\text{-}clss S'
   unfolding full-def by (auto dest: rtranclp-cdcl_W-cp-learned-clause-inv)
  then show ?case
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - \langle D \notin \# \ learned-clss S \rangle \langle cdcl_W-o S S' \rangle]
   \langle full\ cdcl_W\text{-}cp\ S'\ S'' \rangle\ lev\ \mathbf{by}\ (metis\ cdcl_W\text{-}stgy.conflict'\ full-unfold\ r\text{-}into\text{-}rtranclp
     rtranclp.rtrancl-refl)
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}cp\text{-}new\text{-}clause\text{-}learned\text{-}has\text{-}backtrack\text{-}step\text{:}}
  assumes learned: D \in \# learned-clss T and
  new: D \notin \# learned\text{-}clss S  and
  cdcl_W: cdcl_W-stgy^{**} S T and
  lev: cdcl_W-M-level-inv S
  shows \exists S' S''. cdcl_W-stgy^{**} S S' \land backtrack S' S'' \land conflicting S' = Some D \land
   cdcl_W-stgy^{**} S'' T
  using cdcl_W learned new
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by blast
  case (step T U) note st = this(1) and o = this(2) and IH = this(3) and
    D\text{-}U = this(4) \text{ and } D\text{-}S = this(5)
  show ?case
   proof (cases \ D \in \# \ learned\text{-}clss \ T)
     {\bf case}\ {\it True}
```

```
then obtain S' S'' where
       st': cdcl_W \text{-}stgy^{**} \ S \ S' and
       bt: backtrack S' S" and
       confl: conflicting S' = Some D and
       st^{\prime\prime}: cdcl_W-stgy^{**} S^{\prime\prime} T
       using IH D-S by metis
     have cdcl_W-stgy^{++} S'' U
       using st'' o by force
     then show ?thesis
       by (meson bt confl rtranclp-unfold st')
   next
     case False
     have cdcl_W-M-level-inv T
       using lev rtranclp-cdcl_W-stgy-consistent-inv st by blast
     then obtain S' where
       bt: backtrack TS' and
       st': cdcl_W - stgy^{**} S' U and
       confl: conflicting T = Some D
       \mathbf{using}\ cdcl_W\text{-}cp\text{-}new\text{-}clause\text{-}learned\text{-}has\text{-}backtrack\text{-}step[\mathit{OF}\ D\text{-}U\ \mathit{False}\ o]}
        by metis
     then have cdcl_W-stgy^{**} S T and
       backtrack \ T \ S' and
       conflicting T = Some D  and
       cdcl_W-stgy^{**} S' U
       using o st by auto
     then show ?thesis by blast
   qed
qed
lemma propagate-no-more-Marked-lit:
  assumes propagate S S'
 shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
  using assms by (auto elim: propagateE)
\mathbf{lemma}\ conflict\text{-}no\text{-}more\text{-}Marked\text{-}lit:
  assumes conflict S S'
  shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
  using assms by (auto elim: conflictE)
lemma cdcl_W-cp-no-more-Marked-lit:
  assumes cdcl_W-cp S S'
  shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
  using assms apply (induct rule: cdcl_W-cp.induct)
  using conflict-no-more-Marked-lit propagate-no-more-Marked-lit by auto
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}cp\text{-}no\text{-}more\text{-}Marked\text{-}lit:
  assumes cdcl_W-cp^{**} S S'
 shows Marked K i \in set (trail\ S) \longleftrightarrow Marked\ K i \in set (trail\ S')
  using assms apply (induct rule: rtranclp-induct)
  using cdcl_W-cp-no-more-Marked-lit by blast+
lemma cdcl_W-o-no-more-Marked-lit:
  assumes cdcl_W-o S S' and lev: cdcl_W-M-level-inv S and \neg decide S S'
  shows Marked K i \in set (trail\ S') \longrightarrow Marked\ K i \in set (trail\ S)
  using assms
```

```
proof (induct rule: cdcl_W-o-induct-lev2)
 case backtrack note decomp = this(3) and undef = this(7) and T = this(8)
 then show ?case using lev by (auto simp: cdcl_W-M-level-inv-decomp)
next
 case (decide\ L\ T)
 then show ?case using decide-rule[OF decide.hyps] by blast
qed auto
lemma cdcl_W-new-marked-at-beginning-is-decide:
 assumes cdcl_W-stgy S S' and
 lev: cdcl_W-M-level-inv S and
 trail \ S' = M' @ Marked \ L \ i \ \# \ M \ and
 trail S = M
 shows \exists T. decide S T \land no-step cdcl_W-cp S
 using assms
proof (induct rule: cdcl_W-stgy.induct)
 case (conflict' S') note st = this(1) and no\text{-}dup = this(2) and S' = this(3) and S = this(4)
 have cdcl_W-M-level-inv S'
   using full1-cdcl_W-cp-consistent-inv no-dup st by blast
 then have Marked\ L\ i \in set\ (trail\ S') and Marked\ L\ i \notin set\ (trail\ S)
   using no-dup unfolding S S' cdcl<sub>W</sub>-M-level-inv-def by (auto simp add: rev-image-eqI)
 then have False
   using st rtranclp-cdcl<sub>W</sub>-cp-no-more-Marked-lit[of SS']
   unfolding full1-def rtranclp-unfold by blast
 then show ?case by fast
next
 case (other' T U) note o = this(1) and ns = this(2) and st = this(3) and no\text{-}dup = this(4) and
   S' = this(5) and S = this(6)
 have cdcl_W-M-level-inv U
   by (metis (full-types) lev cdcl<sub>W</sub>.simps cdcl<sub>W</sub>-consistent-inv full-def o
     other'.hyps(3) rtranclp-cdcl_W-cp-consistent-inv)
 then have Marked L i \in set (trail U) and Marked L i \notin set (trail S)
   using no-dup unfolding SS' cdcl_W-M-level-inv-def by (auto simp add: rev-image-eqI)
 then have Marked\ L\ i \in set\ (trail\ T)
   using st\ rtranclp-cdcl_W-cp-no-more-Marked-lit unfolding full-def by blast
 then show ?case
   using cdcl_W-o-no-more-Marked-lit[OF o] \langle Marked\ L\ i\notin set\ (trail\ S)\rangle ns lev by meson
qed
lemma cdcl_W-o-is-decide:
 assumes cdcl_W-o S T and lev: cdcl_W-M-level-inv S
 trail T = drop \ (length \ M_0) \ M' @ Marked \ L \ i \ \# \ H \ @ Mand
 \neg (\exists M'. trail S = M' @ Marked L i \# H @ M)
 shows decide S T
 using assms
proof (induction\ rule: cdcl_W-o-induct-lev2)
 case (backtrack K i M1 M2 L D T)
 then obtain c where trail S = c @ M2 @ Marked K (Suc i) # M1
   by auto
 show ?case
   using backtrack lev
   apply (cases drop (length M_0) M')
    apply (auto simp: cdcl_W-M-level-inv-decomp)
   using \langle trail \ S = c @ M2 @ Marked \ K \ (Suc \ i) \# M1 \rangle
   by (auto simp: cdcl_W-M-level-inv-decomp)
```

```
next
   show ?case using decide-rule[of S] decide(1-4) by auto
qed auto
lemma rtranclp-cdcl_W-new-marked-at-beginning-is-decide:
   assumes cdcl_W-stgy^{**} R U and
    trail\ U = M' @ Marked\ L\ i \ \#\ H\ @\ M\ and
    trail R = M and
    cdcl_W-M-level-inv R
   shows
       \exists S \ T \ T'. \ cdcl_W \text{-stgy**} \ R \ S \land \ decide \ S \ T \land \ cdcl_W \text{-stgy**} \ T \ U \land \ cdcl_W \text{-stgy**} \ S \ U \land 
           \textit{no-step cdcl}_W\textit{-cp }S \, \wedge \, \textit{trail }T = \textit{Marked L i} \, \# \, \textit{H} \, @ \, \textit{M} \, \wedge \, \textit{trail }S = \textit{H} \, @ \, \textit{M} \, \wedge \, \textit{cdcl}_W\textit{-stgy }S \, \, \textit{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \textit{M} \, \wedge \, \textit{cdcl}_W\textit{-stgy }S \, \, \textit{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \textit{M} \, \wedge \, \, \textit{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \textit{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \textit{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \textit{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \text{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \text{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \text{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \text{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \text{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, @ \, \text{M} \, \wedge \, \, \text{cdcl}_W\textit{-stgy }S \, \, \text{T'} \, \wedge \, \text{Trail }S = \textit{H} \, \ \text{Trail
           cdcl_W-stgy^{**} T' U
   using assms
proof (induct arbitrary: M H M' i rule: rtranclp-induct)
   case base
   then show ?case by auto
next
    case (step T U) note st = this(1) and IH = this(3) and s = this(2) and
        U = this(4) and S = this(5) and lev = this(6)
       proof (cases \exists M'. trail T = M' @ Marked L i \# H @ M)
           case False
           with s show ?thesis using U s st S
              proof induction
                  case (conflict' W) note cp = this(1) and nd = this(2) and W = this(3)
                  then obtain M_0 where trail W = M_0 @ trail T and nmarked: \forall l \in set M_0. \neg is-marked l
                      using rtranclp-cdcl<sub>W</sub>-cp-dropWhile-trail unfolding full1-def rtranclp-unfold by meson
                  then have MV: M' @ Marked L i \# H @ M = M_0 @ trail T unfolding W by <math>simp
                  then have V: trail \ T = drop \ (length \ M_0) \ (M' @ Marked \ L \ i \ \# \ H \ @ M)
                     by auto
                  have take While (Not o is-marked) M' = M_0 @ take While (Not o is-marked) (trail T)
                     using arg-cong[OF MV, of takeWhile (Not o is-marked)] nmarked
                     by (simp add: takeWhile-tail)
                  from arg-cong[OF this, of length] have length M_0 \leq length M'
                      unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
                          length-takeWhile-le)
                  then have False using nd V by auto
                  then show ?case by fast
                  case (other'\ T'\ U) note o=this(1) and ns=this(2) and cp=this(3) and nd=this(4)
                     and U = this(5) and st = this(6)
                  obtain M_0 where trail\ U = M_0\ @\ trail\ T' and nmarked:\ \forall\ l \in set\ M_0.\ \neg\ is-marked\ l
                      using rtranclp-cdcl<sub>W</sub>-cp-drop While-trail cp unfolding full-def by meson
                  then have MV: M' @ Marked L i \# H @ M = M_0 @ trail T' unfolding U by simp
                  then have V: trail \ T' = drop \ (length \ M_0) \ (M' @ Marked \ L \ i \ \# \ H \ @ M)
                  have take While (Not o is-marked) M' = M_0 @ take While (Not o is-marked) (trail T')
                      using arg-cong[OF MV, of takeWhile (Not o is-marked)] nmarked
                     by (simp add: takeWhile-tail)
                  from arg-cong[OF this, of length] have length M_0 \leq length M'
                     unfolding length-append by (metis (no-types, lifting) Nat.le-trans le-add1
                          length-take While-le)
                  then have tr-T': trail T' = drop (length M_0) M' @ Marked L i # H @ M using V by auto
```

```
then have LT': Marked L i \in set (trail T') by auto
         moreover
          have cdcl_W-M-level-inv T
            using lev rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv step.hyps(1) by blast
          then have decide T T' using o nd tr-T' cdclw-o-is-decide by metis
         ultimately have decide T T' using cdcl<sub>W</sub>-o-no-more-Marked-lit[OF o] by blast
         then have 1: cdcl_W-stqy^{**} R T and 2: decide T T' and 3: cdcl_W-stqy^{**} T' U
          using st other'.prems(4)
          by (metis cdcl<sub>W</sub>-stgy.conflict' cp full-unfold r-into-rtranclp rtranclp.rtrancl-refl)+
         have [simp]: drop\ (length\ M_0)\ M' = []
          using \langle decide\ T\ T' \rangle \langle Marked\ L\ i \in set\ (trail\ T') \rangle nd\ tr\text{-}T'
          by (auto simp add: Cons-eq-append-conv elim: decideE)
         have T': drop (length M_0) M' @ Marked L i # H @ M = Marked L i # trail T
          using \langle decide\ T\ T' \rangle \langle Marked\ L\ i \in set\ (trail\ T') \rangle \ nd\ tr\ T'
          by (auto elim: decideE)
         have trail\ T' = Marked\ L\ i\ \#\ trail\ T
          using \langle decide\ T\ T' \rangle \langle Marked\ L\ i \in set\ (trail\ T') \rangle\ tr\ T'
          by (auto elim: decideE)
         then have 5: trail\ T' = Marked\ L\ i \ \#\ H\ @\ M
            using append.simps(1) list.sel(3) local.other'(5) tl-append2 by (simp add: tr-T')
         have \theta: trail\ T = H @ M
          by (metis (no-types) \langle trail\ T' = Marked\ L\ i \# trail\ T \rangle
            (trail\ T'=drop\ (length\ M_0)\ M'\ @\ Marked\ L\ i\ \#\ H\ @\ M)\ append-Nil\ list.sel(3)\ nd
            tl-append2)
         have 7: cdcl_W-stgy^{**} T U using other'.prems(4) st by auto
         have 8: cdcl_W-stgy T U cdcl_W-stgy** U U
          using cdcl_W-stgy.other'[OF other'(1-3)] by simp-all
         show ?case apply (rule exI[of - T], rule exI[of - T'], rule exI[of - U])
          using ns 1 2 3 5 6 7 8 by fast
      qed
   next
     case True
     then obtain M' where T: trail T = M' @ Marked L i \# H @ M by metis
     from IH[OF this S lev] obtain S' S'' S''' where
       1: cdcl_W-stgy^{**} R S' and
       2: decide S'S'' and
       3: cdcl_W-stgy^{**} S^{\prime\prime} T and
       4: no\text{-}step \ cdcl_W\text{-}cp \ S' and
       6: trail S'' = Marked L i \# H @ M and
       7: trail S' = H @ M and
       8: cdcl_W-stgy^{**} S' T and
       9: cdcl_W-stqy S'S''' and
       10: cdcl_W-stgy^{**} S''' T
         by blast
     have cdcl_W-stgy^{**} S'' U using s \langle cdcl_W-stgy^{**} S'' T \rangle by auto
     moreover have cdcl_W-stgy^{**} S' U using 8 s by auto
     moreover have cdcl_W-stgy^{**} S''' U using 10 s by auto
     ultimately show ?thesis apply - apply (rule exI[of - S'], rule exI[of - S''])
       using 1 2 4 6 7 8 9 by blast
   \mathbf{qed}
qed
lemma rtranclp-cdcl<sub>W</sub>-new-marked-at-beginning-is-decide':
 assumes cdcl_W-stgy^{**} R U and
  trail\ U = M' @ Marked\ L\ i \ \#\ H\ @\ M\ and
```

```
trail R = M  and
  cdcl_W-M-level-inv R
 shows \exists y \ y'. \ cdcl_W-stgy** R \ y \land cdcl_W-stgy y \ y' \land \neg \ (\exists c. \ trail \ y = c \ @ \ Marked \ L \ i \ \# \ H \ @ \ M)
   \wedge (\lambda a \ b. \ cdcl_W \text{-stgy } a \ b \ \wedge (\exists c. \ trail \ a = c \ @ Marked \ L \ i \ \# \ H \ @ M))^{**} \ y' \ U
proof -
 fix T'
 obtain S' T T' where
   st: cdcl_W - stgy^{**} R S' and
   decide S' T and
    TU: cdcl_W \text{-} stgy^{**} \ T \ U \text{ and }
   no-step cdcl_W-cp S' and
   trT: trail\ T = Marked\ L\ i\ \#\ H\ @\ M and
   trS': trail S' = H @ M and
   S'U: cdcl_W - stgy^{**} S'U and
   S'T': cdcl_W-stqy S' T' and
    T'U: cdcl_W - stgy^{**} T'U
   using rtranclp-cdcl_W-new-marked-at-beginning-is-decide [OF assms] by blast
 have n: \neg (\exists c. trail S' = c @ Marked L i \# H @ M) using trS' by auto
 show ?thesis
   using rtranclp-trans[OF st] rtranclp-exists-last-with-prop[of <math>cdcl_W-stgy S' T'-
       \lambda a -. \neg (\exists c. trail \ a = c @ Marked \ L \ i \# H @ M), \ OF \ S'T' \ T'U \ n]
   by meson
qed
lemma beginning-not-marked-invert:
 assumes A: M @ A = M' @ Marked K i \# H and
 nm: \forall m \in set M. \neg is\text{-}marked m
 shows \exists M. A = M @ Marked K i \# H
proof -
 have A = drop \ (length \ M) \ (M' @ Marked \ K \ i \ \# \ H)
   using arg\text{-}cong[OF\ A,\ of\ drop\ (length\ M)] by auto
 moreover have drop\ (length\ M)\ (M'\@\ Marked\ K\ i\ \#\ H) = drop\ (length\ M)\ M'\@\ Marked\ K\ i\ \#\ H
   using nm by (metis (no-types, lifting) A drop-Cons' drop-append marked-lit.disc(1) not-gr0
     nth-append nth-append-length nth-mem zero-less-diff)
 finally show ?thesis by fast
qed
lemma cdcl_W-stgy-trail-has-new-marked-is-decide-step:
 assumes cdcl_W-stgy S T
  \neg (\exists c. trail S = c @ Marked L i \# H @ M) and
  (\lambda a \ b. \ cdcl_W-stqy a \ b \land (\exists c. \ trail \ a = c @ Marked \ L \ i \# H @ M))^{**} \ T \ U \ and
 \exists M'. trail U = M' @ Marked L i \# H @ M and
 lev: cdcl_W-M-level-inv S
 shows \exists S'. decide S S' \land full \ cdcl_W - cp \ S' \ T \land no\text{-step} \ cdcl_W - cp \ S
  using assms(3,1,2,4,5)
proof induction
 case (step \ T \ U)
 then show ?case by fastforce
next
  case base
 then show ?case
   proof (induction rule: cdcl_W-stgy.induct)
     case (conflict' T) note cp = this(1) and nd = this(2) and M' = this(3) and no\text{-}dup = this(3)
     then obtain M' where M': trail T = M' @ Marked L i \# H @ M by metis
     obtain M'' where M'': trail T = M'' @ trail S and nm: \forall m \in set M''. \neg is-marked m
```

```
using cp unfolding full1-def
      by (metis\ rtranclp-cdcl_W-cp-drop\ While-trail'\ tranclp-into-rtranclp)
     have False
      using beginning-not-marked-invert of M'' trail S M' L i H @ M M' nm nd unfolding M''
      by fast
     then show ?case by fast
   next
     case (other' TU') note o = this(1) and ns = this(2) and cp = this(3) and nd = this(4)
      and trU' = this(5)
     have cdcl_W-cp^{**} T U' using cp unfolding full-def by blast
     from rtranclp-cdcl_W-cp-drop While-trail[OF this]
     have \exists M'. trail T = M' @ Marked L i \# H @ M
      using trU' beginning-not-marked-invert[of - trail T - L i H @ M] by metis
     then obtain M' where M': trail T = M' @ Marked L i \# H @ M
      by auto
     with o lev nd cp ns
     show ?case
      proof (induction rule: cdcl_W-o-induct-lev2)
        case (decide L) note dec = this(1) and cp = this(5) and ns = this(4)
        then have decide\ S\ (cons-trail\ (Marked\ L\ (backtrack-lvl\ S\ +1))\ (incr-lvl\ S))
          using decide.hyps decide.intros[of S] by force
        then show ?case using cp decide.prems by (meson decide-state-eq-compatible ns state-eq-ref
          state-eq-sym)
      next
        case (backtrack K j M1 M2 L' D T) note decomp = this(3) and undef = this(7) and
          T = this(8) and trT = this(12)
        obtain MS3 where MS3: trail S = MS3 @ M2 @ Marked K (Suc j) \# M1
          using get-all-marked-decomposition-exists-prepend[OF decomp] by metis
        have tl \ (M' @ Marked \ L \ i \ \# \ H \ @ \ M) = tl \ M' \ @ Marked \ L \ i \ \# \ H \ @ \ M
          using lev trT T lev undef decomp by (cases M') (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
        then have M'': M1 = tl M' @ Marked L i \# H @ M
          using arg-cong[OF trT[simplified], of tl] T decomp undef lev
          by (simp \ add: \ cdcl_W - M - level - inv - decomp)
        have False using nd MS3 T undef decomp unfolding M'' by auto
        then show ?case by fast
      ged auto
     qed
ged
lemma rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end:
 assumes (\lambda a \ b. \ cdcl_W-stqy a \ b \land (\exists \ c. \ trail \ a = c \ @ Marked \ L \ i \ \# \ H \ @ M))^{**} \ T \ U and
 \exists\,M'.\ trail\ U\,=\,M'\,@\ Marked\ L\ i\ \#\ H\ @\ M
 shows \exists M'. trail T = M' @ Marked L i \# H @ M
 using assms by (induction rule: rtranclp-induct) auto
\mathbf{lemma}\ remove 1\text{-}mset\text{-}eq\text{-}remove 1\text{-}mset\text{-}same:
 remove1-mset\ L\ D = remove1-mset\ L'\ D \Longrightarrow L \in \#\ D \Longrightarrow L = L'
 by (metis diff-single-trivial insert-DiffM multi-drop-mem-not-eq single-eq-single
   union-right-cancel)
lemma cdcl_W-o-cannot-learn:
 assumes
   cdcl_W-o y z and
   lev: cdcl_W-M-level-inv y and
   trM: trail\ y = c\ @ Marked\ Kh\ i\ \#\ H\ {\bf and}
```

```
DL: D \notin \# learned\text{-}clss \ y \ \mathbf{and}
   LD: L \in \# D and
   DH: atms-of\ (remove1-mset\ L\ D)\subseteq atm-of\ 'lits-of-l\ H\ and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ 'lits\text{-}of\text{-}l \ H \ and
   learned: \forall T. conflicting y = Some T \longrightarrow trail y \models as CNot T and
   z: trail z = c' @ Marked Kh i # H
 shows D \notin \# learned\text{-}clss z
 using assms(1-2) trM DL DH LH learned z
proof (induction rule: cdcl_W-o-induct-lev2)
 case (backtrack\ K\ j\ M1\ M2\ L'\ D'\ T) note confl=this(1) and LD'=this(2) and decomp=this(3)
   and levL = this(4) and levD = this(5) and j = this(6) and undef = this(7) and T = this(8) and
   z = this(14)
 obtain M3 where M3: trail y = M3 @ M2 @ Marked K (Suc j) # M1
   using decomp get-all-marked-decomposition-exists-prepend by metis
 have M: trail y = c @ Marked Kh i \# H  using trM  by simp
 have H: get-all-levels-of-marked (trail y) = rev [1..<1 + backtrack-lvl y]
   using lev unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
 have c' \otimes Marked \ Kh \ i \# H = Propagated \ L' \ (mset-ccls \ D') \# trail \ (reduce-trail-to \ M1 \ y)
   using z decomp undef T lev by (force simp: cdcl_W-M-level-inv-def)
 then obtain d where d: M1 = d @ Marked Kh i \# H
   by (metis (no-types) decomp in-get-all-marked-decomposition-trail-update-trail list.inject
     list.sel(3) marked-lit.distinct(1) self-append-conv2 tl-append2)
 have i \in set (get-all-levels-of-marked (M3 @ M2 @ Marked K (Suc j) \# d @ Marked Kh i \# H))
   by auto
 then have i > 0 unfolding H[unfolded M3 d] by auto
 show ?case
   proof
     assume D \in \# learned\text{-}clss T
     then have DLD': D = mset\text{-}ccls D'
      using DL T neq0-conv undef decomp lev by (fastforce simp: cdcl_W-M-level-inv-def)
     have L-cKh: atm-of L \in atm-of ' lits-of-l (c @ [Marked Kh i])
      using LH learned M DLD'[symmetric] confl LD' LD
      apply (auto simp add: image-iff dest!: in-CNot-implies-uminus)
      apply (metis atm-of-uminus)+ done
     have get-all-levels-of-marked (M3 @ M2 @ Marked K (i + 1) \# M1)
      = rev [1..<1 + backtrack-lvl y]
      using lev unfolding cdcl_W-M-level-inv-def M3 by auto
     from arg-cong OF this, of \lambda a. (Suc j) \in set a have backtrack-lvl y \geq j by auto
     have DD'[simp]: remove1-mset L D = mset-ccls D' - {\#L'\#}
      proof (rule ccontr)
        assume DD': \neg ?thesis
        then have L' \in \# remove1\text{-}mset \ L \ D \text{ using } DLD' \ LD \text{ by } (metis \ LD' \ in-remove1\text{-}mset-neq)
        then have get-level (trail y) L' \leq get-maximum-level (trail y) (remove1-mset L D)
          using get-maximum-level-ge-get-level by blast
        moreover {
         have get-maximum-level (trail y) (remove1-mset L D) =
            get-maximum-level H (remove1-mset L D)
           using DH unfolding M by (simp add: get-maximum-level-skip-beginning)
           have get-all-levels-of-marked (trail\ y) = rev [1..<1 + backtrack-lvl\ y]
             using lev unfolding cdcl_W-M-level-inv-def by auto
           then have get-all-levels-of-marked H = rev [1... < i]
```

```
unfolding M by (auto dest: append-cons-eq-upt-length-i
          simp add: rev-swap[symmetric])
      then have get-maximum-possible-level H < i
        using qet-maximum-possible-level-max-qet-all-levels-of-marked [of H] \langle i > 0 \rangle by auto
     ultimately have get-maximum-level (trail y) (remove1-mset L D) < i
      by (metis (full-types) dual-order.strict-trans nat-neg-iff not-le
        get-maximum-possible-level-ge-get-maximum-level) }
   moreover
     have L \in \# remove1\text{-}mset\ L'\ (mset\text{-}ccls\ D')
      using DLD'[symmetric] DD' LD by (metis in-remove1-mset-neq)
     then have get-maximum-level (trail y) (remove1-mset L' (mset-ccls D')) \geq
      get-level (trail\ y)\ L
      using get-maximum-level-ge-get-level by blast
   moreover {
     have qet-all-levels-of-marked (c @ [Marked Kh i]) = rev [i..< backtrack-lvl y+1]
      using append-cons-eq-upt-length-i-end[of rev (get-all-levels-of-marked H) i
        rev (get-all-levels-of-marked c) Suc 0 Suc (backtrack-lvl y)] H
      unfolding M apply (auto simp add: rev-swap[symmetric])
        by (metis (no-types, hide-lams) Nil-is-append-conv Suc-le-eq less-Suc-eq list.sel(1)
          rev.simps(2) rev-rev-ident upt-Suc upt-rec)
     have get-level (trail y) L = get-level (c @ [Marked Kh i]) L
       using L-cKh LH unfolding M by simp
     have get-level (c @ [Marked Kh i]) L \ge i
      using L-cKh levL
        \langle get\text{-}all\text{-}levels\text{-}of\text{-}marked\ (c\ @\ [Marked\ Kh\ i]) = rev\ [i... < backtrack\text{-}lvl\ y\ +\ 1] \rangle
       calculation(1,2) by auto
     then have get-level (trail y) L \geq i
      using M \langle get\text{-level } (trail \ y) \ L = get\text{-level } (c @ [Marked \ Kh \ i]) \ L \rangle by auto }
   moreover
     have get-maximum-level (trail y) (remove1-mset L' (mset-ccls D'))
        < get-level (trail y) L
    using \langle j \leq backtrack-lvl \ y \rangle \ levL \ j \ calculation(1-4) by linarith
   ultimately show False using backtrack.hyps(4) by linarith
 qed
then have LL': L = L'
 using LD LD' remove1-mset-eq-remove1-mset-same unfolding DLD'[symmetric] by fast
have nd: no\text{-}dup \ (trail \ y) using lev unfolding cdcl_W\text{-}M\text{-}level\text{-}inv\text{-}def by auto
{ assume D: remove1-mset L (mset-ccls D') = {#}
 then have j: j = 0 using levD \ j by (simp \ add: LL')
 have \forall m \in set M1. \neg is\text{-}marked m
   using H unfolding M3j
   by (auto simp add: rev-swap[symmetric] get-all-levels-of-marked-no-marked
     dest!: append-cons-eq-upt-length-i)
 then have False using d by auto
moreover {
 assume D[simp]: remove1-mset L (mset-ccls D') \neq \{\#\}
 have i < j
   using H unfolding M3 d by (auto simp add: rev-swap[symmetric]
     dest: upt-decomp-lt)
 have j > \theta apply (rule ccontr)
   using H \langle i > \theta \rangle unfolding M3 d
   by (auto simp add: rev-swap[symmetric] dest!: upt-decomp-lt)
 obtain L'' where
```

```
L''D': get-level (trail y) L'' = get-maximum-level (trail y)
            (remove1-mset\ L\ (mset-ccls\ D'))
          using get-maximum-level-exists-lit-of-max-level[OF D, of trail y] by auto
        have L''M: atm\text{-}of\ L'' \in atm\text{-}of ' lits\text{-}of\text{-}l\ (trail\ y)
          \textbf{using} \ \textit{get-rev-level-ge-0-atm-of-in} [\textit{of} \ \textit{0} \ \textit{rev} \ (\textit{trail} \ \textit{y}) \ \textit{L''}] \ \langle \textit{j} {>} \textit{0} \rangle \ \textit{levD} \ \textit{L''D'}
           \langle j < backtrack-lvl y \rangle \ levL \ \mathbf{by} \ (simp \ add: \ LL' j)
        then have L'' \in lits-of-l (Marked Kh i \# d)
          proof -
            {
              assume L''H: atm\text{-}of\ L'' \in atm\text{-}of ' lits\text{-}of\text{-}l\ H
              have get-all-levels-of-marked H = rev [1..<<math>i]
                using H unfolding M
                by (auto simp add: rev-swap[symmetric] dest!: append-cons-eq-upt-length-i)
              moreover have get-level (trail y) L'' = \text{get-level } H L''
                using L''H unfolding M by simp
              ultimately have False
                using levD \langle j > 0 \rangle get-rev-level-in-levels-of-marked of rev H 0 L'' \langle i < j \rangle
                unfolding L''D'[symmetric] nd
                by (metis L''D' LL' Max-n-upt Nat.le-trans One-nat-def Suc-pred \langle 0 < i \rangle
                  get-all-levels-of-marked-rev-eq-rev-get-all-levels-of-marked
                  get-rev-level-less-max-get-all-levels-of-marked j lessI list.simps(15)
                  not-less rev-rev-ident set-upt)
            }
            moreover
              have atm\text{-}of\ L'' \in atm\text{-}of ' lits\text{-}of\text{-}l\ H
                using DD'DH (L'' \in \# remove1\text{-}mset\ L\ (mset\text{-}ccls\ D')) atm-of-lit-in-atms-of LL'\ LD
                LD' by fastforce
            ultimately show ?thesis
              using DD'DH (L'' \in \# remove1\text{-}mset\ L\ (mset\text{-}ccls\ D')) atm-of-lit-in-atms-of
              by auto
          qed
        moreover
          have atm\text{-}of L'' \in atms\text{-}of \ (remove1\text{-}mset \ L \ (mset\text{-}ccls \ D'))
            using \langle L'' \in \# remove1\text{-}mset \ L \ (mset\text{-}ccls \ D') \rangle by (auto simp: atms-of-def)
          then have atm\text{-}of\ L'' \in atm\text{-}of ' lits\text{-}of\text{-}l\ H
            using DH unfolding DD' unfolding LL' by blast
        ultimately have False
          using nd unfolding M3 d LL' by (auto simp: lits-of-def)
      ultimately show False by blast
    qed
qed auto
lemma cdcl_W-stgy-with-trail-end-has-not-been-learned:
 assumes
    cdcl_W-stgy y z and
    cdcl_W-M-level-inv y and
    trail\ y = c\ @\ Marked\ Kh\ i\ \#\ H\ {\bf and}
    D \notin \# learned\text{-}clss \ y \ \mathbf{and}
    LD: L \in \# D and
    DH: atms-of (remove1-mset L D) \subseteq atm-of ' lits-of-l H and
    LH: atm\text{-}of \ L \notin atm\text{-}of \ ' \ lits\text{-}of\text{-}l \ H \ \mathbf{and}
    \forall T. \ conflicting \ y = Some \ T \longrightarrow trail \ y \models as \ CNot \ T \ and
```

 $L'' \in \# remove1\text{-}mset \ L \ (mset\text{-}ccls \ D')$ and

```
trail\ z = c' @ Marked\ Kh\ i\ \#\ H
 shows D \notin \# learned\text{-}clss z
 using assms
proof induction
 case conflict'
 then show ?case
   unfolding full1-def using tranclp-cdcl<sub>W</sub>-cp-learned-clause-inv by auto
next
 case (other' T U) note o = this(1) and cp = this(3) and lev = this(4) and trY = this(5) and
   notin = this(\theta) and LD = this(\theta) and DH = this(\theta) and LH = this(\theta) and confl = this(\theta) and
   trU = this(11)
 obtain c' where c': trail T = c' @ Marked Kh i # H
   using cp beginning-not-marked-invert[of - trail T c' Kh i H]
     rtranclp-cdcl_W-cp-drop While-trail[of T U] unfolding trU full-def by fastforce
 show ?case
   using cdcl_W-o-cannot-learn[OF o lev trY notin LD DH LH confl c']
     rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv cp unfolding full-def by auto
qed
lemma rtranclp-cdcl_W-stgy-with-trail-end-has-not-been-learned:
 assumes
   (\lambda a \ b. \ cdcl_W-stgy a \ b \land (\exists c. \ trail \ a = c @ Marked \ K \ i \# H @ []))^{**} \ S \ z \ and
   cdcl_W-all-struct-inv S and
   trail\ S = c\ @\ Marked\ K\ i\ \#\ H\ {\bf and}
   D \notin \# learned\text{-}clss S \text{ and }
   LD: L \in \# D and
   DH: atms-of\ (remove1-mset\ L\ D)\subseteq atm-of\ `lits-of-l\ H\ and
   LH: atm\text{-}of \ L \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ H \ \mathbf{and}
   \exists c'. trail z = c' @ Marked K i \# H
 shows D \notin \# learned\text{-}clss z
 using assms(1-4,8)
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by auto[1]
  case (step T U) note st = this(1) and s = this(2) and IH = this(3)[OF\ this(4-6)]
   and lev = this(4) and trS = this(5) and DL-S = this(6) and trU = this(7)
 obtain c where c: trail T = c @ Marked K i \# H  using s by auto
 obtain c' where c': trail\ U = c'\ @ Marked\ K\ i\ \#\ H\ using\ trU\ by\ blast
 have cdcl_W^{**} S T
   proof -
     have \forall p \ pa. \ \exists s \ sa. \ \forall sb \ sc \ sd \ se. \ (\neg p^{**} \ (sb::'st) \ sc \ \lor \ p \ s \ sa \ \lor \ pa^{**} \ sb \ sc)
       \land (\neg pa \ s \ sa \lor \neg p^{**} \ sd \ se \lor pa^{**} \ sd \ se)
       by (metis (no-types) mono-rtranclp)
     then have cdcl_W-stgy^{**} S T
       using st by blast
     then show ?thesis
       using rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
   qed
  then have lev': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv[of S T] lev by auto
  then have confl': \forall Ta. \ conflicting \ T = Some \ Ta \longrightarrow trail \ T \models as \ CNot \ Ta
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by blast
 show ?case
   apply (rule cdcl_W-stgy-with-trail-end-has-not-been-learned [OF - - c - LD DH LH confl' c'])
```

```
using s \ lev' \ IH \ c \ unfolding \ cdcl_W-all-struct-inv-def by blast+
qed
lemma cdcl_W-stgy-new-learned-clause:
 assumes cdcl_W-stgy S T and
   lev: cdcl_W-M-level-inv S and
   E \notin \# learned\text{-}clss S  and
   E \in \# learned\text{-}clss T
 shows \exists S'. backtrack S S' \land conflicting S = Some E \land full cdcl_W - cp S' T
 using assms
proof induction
 case conflict'
 then show ?case unfolding full1-def by (auto dest: tranclp-cdcl<sub>W</sub>-cp-learned-clause-inv)
 case (other'\ T\ U) note o=this(1) and cp=this(3) and not\text{-}yet=this(5) and learned=this(6)
 have E \in \# learned-clss T
   using learned cp rtranclp-cdclw-cp-learned-clause-inv unfolding full-def by auto
  then have backtrack S T and conflicting S = Some E
   using cdcl_W-o-new-clause-learned-is-backtrack-step[OF - not-yet o] lev by blast+
 then show ?case using cp by blast
qed
lemma cdcl_W-stgy-no-relearned-clause:
 assumes
   invR: cdcl_W-all-struct-inv R and
   st': cdcl_W - stgy^{**} R S and
   bt: backtrack \ S \ T \ {\bf and}
   confl: raw-conflicting S = Some E and
   already-learned: mset\text{-}ccls\ E\in\#\ clauses\ S and
   R: trail R = []
 shows False
proof -
 have M-lev: cdcl_W-M-level-inv R
   using invR unfolding cdcl_W-all-struct-inv-def by auto
 have cdcl_W-M-level-inv S
   using M-lev assms(2) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by blast
  with bt obtain L M1 M2-loc K i where
    T: T \sim cons-trail (Propagated L (cls-of-ccls E))
      (reduce-trail-to M1 (add-learned-cls (cls-of-ccls E)
        (update-backtrack-lvl\ i\ (update-conflicting\ None\ S))))
     and
   decomp: (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2\text{-}loc) \in
              set (get-all-marked-decomposition (trail S)) and
   LD: L \in \# mset\text{-}ccls \ E \text{ and}
   k: get-level (trail S) L = backtrack-lvl S and
   level: get-level (trail S) L = get-maximum-level (trail S) (mset-ccls E) and
   confl-S: raw-conflicting S = Some E  and
   i: i = get\text{-}maximum\text{-}level (trail S) (remove1\text{-}mset L (mset\text{-}ccls E)) and
   undef: undefined-lit M1 L
   using confl by (induction rule: backtrack-induction-lev2) fastforce
  obtain M2 where
   M: trail \ S = M2 \ @ Marked \ K \ (Suc \ i) \ \# \ M1
  using get-all-marked-decomposition-exists-prepend [OF\ decomp]\ unfolding\ i\ by\ (metis\ append-assoc)
 let ?E = mset\text{-}ccls E
 let ?E' = remove1\text{-}mset\ L\ ?E
```

```
have invS: cdcl_W-all-struct-inv S
 using invR rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-stgy-rtranclp-cdcl_W st' by blast
then have conf: cdcl<sub>W</sub>-conflicting S unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
then have trail S \models as\ CNot\ ?E\ unfolding\ cdcl_W-conflicting-def confl-S by auto
then have MD: trail S \models as CNot ?E by auto
then have MD': trail S \models as CNot ?E' using true-annot-CNot-diff by blast
have lev': cdcl<sub>W</sub>-M-level-inv S using invS unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
have get-lvls-M: get-all-levels-of-marked (trail\ S) = rev\ [1.. < Suc\ (backtrack-lvl\ S)]
 using lev' unfolding cdcl_W-M-level-inv-def by auto
have lev: cdcl_W-M-level-inv R using invR unfolding cdcl_W-all-struct-inv-def by blast
then have vars-of-D: atms-of ?E' \subseteq atm-of 'lits-of-l M1
 using backtrack-atms-of-D-in-M1[OF lev' undef - decomp - - - T] conft-S conf T decomp k level
 lev' i \ undef \ unfolding \ cdcl_W-conflicting-def by (auto simp: cdcl_W-M-level-inv-decomp)
have no-dup (trail S) using lev' by (auto simp: cdcl_W-M-level-inv-decomp)
have vars-in-M1:
 \forall x \in atms\text{-}of ?E'. x \notin atm\text{-}of `lits\text{-}of\text{-}l (M2 @ [Marked K (i + 1)])
 unfolding Set.Ball-def apply (intro impI allI)
   apply (rule vars-of-D distinct-atms-of-incl-not-in-other[of
   M2 @ Marked K (i + 1) \# [] M1 ?E'])
   using \langle no\text{-}dup \ (trail \ S) \rangle \ M \ vars\text{-}of\text{-}D \ \textbf{by} \ simp\text{-}all
have M1-D: M1 \models as CNot ?E'
 using vars-in-M1 true-annots-remove-if-notin-vars of M2 @ Marked K (i + 1) \# [M1 \ CNot \ ?E']
 MD' M by simp
have get-lvls-M: get-all-levels-of-marked (trail\ S) = rev\ [1.. < Suc\ (backtrack-lvl\ S)]
 using lev' unfolding cdcl_W-M-level-inv-def by auto
then have backtrack-lvl S > 0 unfolding M by (auto split: if-split-asm simp add: upt.simps(2))
obtain M1'K'Ls where
 M': trail S = Ls @ Marked K' (backtrack-lvl S) # M1' and
 Ls: \forall l \in set \ Ls. \ \neg \ is\text{-}marked \ l \ \mathbf{and}
 set M1 \subseteq set M1'
 proof -
   let ?Ls = takeWhile (Not o is-marked) (trail S)
   have MLs: trail\ S = ?Ls \ @\ drop\ While\ (Not\ o\ is-marked)\ (trail\ S)
     by auto
   have drop While (Not o is-marked) (trail S) \neq [] unfolding M by auto
     from hd-dropWhile[OF this] have is-marked(hd (dropWhile (Not o is-marked) (trail S)))
       by simp
   ultimately
     obtain K' K'k where
       K'k: drop While (Not o is-marked) (trail S)
         = Marked K' K'k \# tl (drop While (Not o is-marked) (trail S))
       by (cases drop While (Not \circ is-marked) (trail S);
          cases hd (drop While (Not \circ is-marked) (trail S)))
         simp-all
   moreover have \forall l \in set ?Ls. \neg is\text{-marked } l \text{ using } set\text{-takeWhileD by } force
   moreover
     have get-all-levels-of-marked (trail S)
            = K'k \# qet-all-levels-of-marked(tl (dropWhile (Not \circ is-marked) (trail S)))
       apply (subst MLs, subst K'k)
       using calculation(2) by (auto simp add: get-all-levels-of-marked-no-marked)
```

```
then have K'k = backtrack-lvl S
     using calculation(2) by (auto\ split:\ if-split-asm\ simp\ add:\ get-lvls-M\ upt.simps(2))
   moreover have set M1 \subseteq set (tl (dropWhile (Not o is-marked) (trail S)))
     unfolding M by (induction M2) auto
   ultimately show ?thesis using that MLs by metis
  qed
have get-lvls-M: get-all-levels-of-marked (trail\ S) = rev\ [1.. < Suc\ (backtrack-lvl\ S)]
  using lev' unfolding cdcl_W-M-level-inv-def by auto
then have backtrack-lvl S > 0 unfolding M by (auto split: if-split-asm simp add: upt.simps(2) i)
have M1'-D: M1' \models as\ CNot\ ?E' using M1-D (set M1 \subseteq set\ M1') by (auto intro: true-annots-mono)
have -L \in lits-of-l (trail S) using conf confl-S LD unfolding cdcl_W-conflicting-def
  by (auto simp: in-CNot-implies-uminus)
have lvls-M1': get-all-levels-of-marked M1' = rev [1..<br/>backtrack-lvl S]
  using get-lvls-M Ls by (auto simp add: get-all-levels-of-marked-no-marked M' upt.simps(2)
   split: if-split-asm)
have L-notin: atm\text{-}of\ L\in atm\text{-}of\ `lits\text{-}of\text{-}l\ Ls\ \lor\ atm\text{-}of\ L=\ atm\text{-}of\ K'
  proof (rule ccontr)
   assume ¬ ?thesis
   then have atm-of L \notin atm-of 'lits-of-l (Marked K' (backtrack-lvl S) # rev Ls) by simp
   then have get-level (trail S) L = get-level M1' L
     unfolding M' by auto
   then show False using get-level-in-levels-of-marked [of M1' L] \langle backtrack-lvl S > 0 \rangle
   unfolding k lvls-M1' by auto
  ged
obtain YZ where
  RY: cdcl_W \text{-}stgy^{**} R Y \text{ and }
  YZ: cdcl_W-stgy YZ and
  nt: \neg (\exists c. trail \ Y = c @ Marked \ K' (backtrack-lvl \ S) \# M1' @ []) and
  Z: (\lambda a \ b. \ cdcl_W - stgy \ a \ b \land (\exists \ c. \ trail \ a = c \ @ Marked \ K' \ (backtrack-lvl \ S) \ \# \ M1' \ @ \ []))^{**} \ Z \ S
  using rtranclp-cdcl<sub>W</sub>-new-marked-at-beginning-is-decide' OF st' - - lev, of Ls K'
   backtrack-lvl S M1' []] unfolding R M' by auto
have [simp]: cdcl_W-M-level-inv Y
  using RY lev rtranclp\text{-}cdcl_W\text{-}stgy\text{-}consistent\text{-}inv by blast
obtain M' where trZ: trail Z = M' @ Marked K' (backtrack-lvl S) # M1'
  using rtranclp-cdclw-stqy-with-trail-end-has-trail-end[OF Z] M' by auto
have no-dup (trail Y)
  using RY lev rtranclp-cdcl_W-stqy-consistent-inv unfolding cdcl_W-M-level-inv-def by blast
then obtain Y' where
  dec: decide Y Y' and
  Y'Z: full cdcl_W-cp Y' Z and
  no-step cdcl_W-cp Y
  using cdcl_W-stgy-trail-has-new-marked-is-decide-step[OF YZ nt Z] M' by auto
have trY: trail\ Y = M1'
  proof -
   obtain M' where M: trail\ Z=M'\ @\ Marked\ K'\ (backtrack-lvl\ S)\ \#\ M1'
     using rtranclp-cdcl_W-stgy-with-trail-end-has-trail-end[OF Z] M' by auto
   obtain M" where M": trail Z = M" @ trail Y' and \forall m \in set M". \neg is-marked m
     using Y'Z rtranclp-cdcl_W-cp-drop While-trail' unfolding full-def by blast
   obtain M''' where trail Y' = M''' @ Marked K' (backtrack-lvl S) # M1'
     using M'' unfolding M
     by (metis (no-types, lifting) \forall m \in set M''. \neg is-marked m \land beginning-not-marked-invert)
   then show ?thesis using dec nt by (induction M''') (auto elim: decideE)
  qed
```

```
have Y-CT: conflicting Y = None \text{ using } \langle decide \ Y \ Y' \rangle \text{ by } (auto \ elim: \ decideE)
 have cdcl_{W}^{**} R Y by (simp add: RY rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub>)
  then have init-clss Y = init-clss R using rtranclp-cdcl_W-init-clss [of R Y] M-lev by auto
  { assume DL: mset\text{-}ccls\ E\in\#\ clauses\ Y
   have atm\text{-}of \ L \notin atm\text{-}of ' lits\text{-}of\text{-}l \ M1
     apply (rule backtrack-lit-skiped[of S])
     using decomp i k lev' unfolding cdcl<sub>W</sub>-M-level-inv-def by auto
   then have LM1: undefined-lit M1 L
     by (metis Marked-Propagated-in-iff-in-lits-of-l atm-of-uminus image-eqI)
   have L-trY: undefined-lit (trail Y) L
     using L-notin (no-dup (trail S)) unfolding defined-lit-map trY M'
     by (auto simp add: image-iff lits-of-def)
   obtain E' where
     E': E'!\in! raw-clauses Y and
     EE': mset-cls E' = mset-ccls E
     using DL in-mset-clss-exists-preimage by blast
   have Ex (propagate Y)
     using propagate-rule[of Y E' L] DL M1'-D L-trY Y-CT trY LD E'
     by (auto simp: EE')
   then have False using \langle no\text{-}step\ cdcl_W\text{-}cp\ Y\rangle\ propagate' by blast
  moreover {
   assume DL: mset\text{-}ccls\ E\notin\#\ clauses\ Y
   have lY-lZ: learned-clss\ Y = learned-clss\ Z
     using dec Y'Z rtranclp-cdcl<sub>W</sub>-cp-learned-clause-inv[of Y'Z] unfolding full-def
     by (auto elim: decideE)
   have invZ: cdcl_W-all-struct-inv Z
     by (meson\ RY\ YZ\ invR\ r\text{-}into\text{-}rtranclp\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
       rtranclp-cdcl_W-stgy-rtranclp-cdcl_W)
   have n: mset\text{-}ccls\ E\notin\#\ learned\text{-}clss\ Z
      using DL lY-lZ YZ unfolding raw-clauses-def by auto
   have ?E \notin \#learned\text{-}clss S
     apply (rule \ rtranclp-cdcl_W-stgy-with-trail-end-has-not-been-learned [OF Z \ invZ \ trZ])
         apply (simp \ add: \ n)
        using LD apply simp
       apply (metis (no-types, lifting) \langle set M1 \subseteq set M1' \rangle image-mono order-trans
         vars-of-D lits-of-def)
      using L-notin (no-dup (trail S)) unfolding M' by (auto simp add: image-iff lits-of-def)
   then have False
     using already-learned DL confl st' M-lev rtranclp-cdcl<sub>W</sub>-stgy-no-more-init-clss[of R S]
     unfolding M'
     by (simp add: \langle init\text{-}clss \ Y = init\text{-}clss \ R \rangle raw-clauses-def confl-S
       rtranclp-cdcl_W-stgy-no-more-init-clss)
 ultimately show False by blast
qed
lemma rtranclp-cdcl_W-stgy-distinct-mset-clauses:
 assumes
    invR: cdcl_W-all-struct-inv R and
   st: cdcl_W-stgy^{**} R S and
   dist: distinct-mset (clauses R) and
    R: trail R = []
 shows distinct-mset (clauses S)
 using st
```

```
proof (induction)
 case base
 then show ?case using dist by simp
next
 case (step S T) note st = this(1) and s = this(2) and IH = this(3)
 from s show ?case
   proof (cases rule: cdcl_W-stgy.cases)
     case conflict'
     then show ?thesis
      using IH unfolding full1-def by (auto dest: tranclp-cdcl<sub>W</sub>-cp-no-more-clauses)
   next
     case (other' S') note o = this(1) and full = this(3)
     have [simp]: clauses T = clauses S'
      using full unfolding full-def by (auto dest: rtranclp-cdcl<sub>W</sub>-cp-no-more-clauses)
     show ?thesis
      using o IH
      proof (cases rule: cdcl_W-o-rule-cases)
        case backtrack
        moreover
          have cdcl_W-all-struct-inv S
            using invR rtranclp-cdcl_W-stgy-cdcl_W-all-struct-inv st by blast
          then have cdcl_W-M-level-inv S
            unfolding cdcl_W-all-struct-inv-def by auto
        ultimately obtain E where
          conflicting S = Some E  and
          cls-S': clauses <math>S' = \{ \#E\# \} + clauses S
          using \langle cdcl_W \text{-}M\text{-}level\text{-}inv S \rangle
          by (induction rule: backtrack-induction-lev2) (auto simp: cdcl<sub>W</sub>-M-level-inv-decomp)
        then have E \notin \# clauses S
          using cdcl_W-stqy-no-relearned-clause R invR local.backtrack st by blast
        then show ?thesis using IH by (simp add: distinct-mset-add-single cls-S')
       qed (auto elim: decideE skipE resolveE)
   qed
\mathbf{qed}
lemma cdcl_W-stgy-distinct-mset-clauses:
   st: cdcl_W - stgy^{**} (init-state \ N) \ S \ {\bf and}
   no-duplicate-clause: distinct-mset (mset-clss N) and
   no-duplicate-in-clause: distinct-mset-mset (mset-clss N)
 shows distinct-mset (clauses\ S)
 using rtranclp-cdcl_W-stgy-distinct-mset-clauses [OF - st] assms
 by (auto simp: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
19.8
        Decrease of a measure
fun cdcl_W-measure where
cdcl_W-measure S =
 [(3::nat) \cap (card (atms-of-mm (init-clss S))) - card (set-mset (learned-clss S)),
   if conflicting S = None then 1 else 0,
   if conflicting S = N one then card (atms-of-mm \ (init-clss \ S)) - length \ (trail \ S)
   else length (trail S)
lemma length-model-le-vars-all-inv:
 assumes cdcl_W-all-struct-inv S
```

```
shows length (trail\ S) \le card\ (atms-of-mm\ (init-clss\ S))
 using assms length-model-le-vars [of S] unfolding cdcl_W-all-struct-inv-def
 by (auto simp: cdcl_W-M-level-inv-decomp)
end
context conflict-driven-clause-learning<sub>W</sub>
begin
lemma learned-clss-less-upper-bound:
 fixes S :: 'st
 assumes
   distinct-cdcl_W-state S and
   \forall s \in \# learned\text{-}clss S. \neg tautology s
 shows card(set\text{-}mset\ (learned\text{-}clss\ S)) \leq 3 \cap card\ (atms\text{-}of\text{-}mm\ (learned\text{-}clss\ S))
proof -
 have set-mset (learned-clss S) \subseteq simple-clss (atms-of-mm (learned-clss S))
   apply (rule simplified-in-simple-clss)
   using assms unfolding distinct-cdcl<sub>W</sub>-state-def by auto
  then have card(set\text{-}mset\ (learned\text{-}clss\ S))
   \leq card \ (simple-clss \ (atms-of-mm \ (learned-clss \ S)))
   by (simp add: simple-clss-finite card-mono)
  then show ?thesis
   by (meson atms-of-ms-finite simple-clss-card finite-set-mset order-trans)
qed
lemma cdcl_W-measure-decreasing:
 fixes S :: 'st
 assumes
   cdcl_W S S' and
   no\text{-}restart:
     \neg (learned\text{-}clss\ S \subseteq \#\ learned\text{-}clss\ S' \land [] = trail\ S' \land conflicting\ S' = None)
    no-forget: learned-clss S \subseteq \# learned-clss S' and
   no-relearn: \bigwedge S'. backtrack S S' \Longrightarrow \forall T. conflicting S = Some \ T \longrightarrow T \notin \# \ learned-clss \ S
     and
   alien: no-strange-atm S and
   M-level: cdcl_W-M-level-inv S and
   no-taut: \forall s \in \# learned-clss S. \neg tautology s and
   no-dup: distinct-cdcl_W-state S and
   confl: cdcl_W-conflicting S
  shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 using assms(1) M-level assms(2,3)
proof (induct rule: cdcl_W-all-induct-lev2)
 case (propagate C L) note conf = this(1) and undef = this(5) and T = this(6)
 have propa: propagate S (cons-trail (Propagated L C) S)
   using propagate-rule [OF propagate.hyps(1,2)] propagate.hyps by auto
  then have no-dup': no-dup (Propagated L (mset-cls C) \# trail S)
   using M-level cdcl_W-M-level-inv-decomp(2) undef defined-lit-map by auto
 let ?N = init\text{-}clss S
 have no-strange-atm (cons-trail (Propagated L C) S)
   using alien cdcl_W.propagate cdcl_W-no-strange-atm-inv propa M-level by blast
  then have atm-of 'lits-of-l (Propagated L (mset-cls C) \# trail S)
   \subseteq atms-of-mm (init-clss S)
```

```
using undef unfolding no-strange-atm-def by auto
 then have card (atm-of 'lits-of-l (Propagated L (mset-cls C) \# trail S))
   \leq card (atms-of-mm (init-clss S))
   by (meson atms-of-ms-finite card-mono finite-set-mset)
 then have length (Propagated L (mset-cls C) # trail S) \leq card (atms-of-mm ?N)
   using no-dup-length-eq-card-atm-of-lits-of-l no-dup' by fastforce
 then have H: card (atms-of-mm (init-clss S)) - length (trail S)
   = Suc (card (atms-of-mm (init-clss S)) - Suc (length (trail S)))
   by simp
 show ?case using conf T undef by (auto simp: H lexn3-conv)
next
 case (decide L) note conf = this(1) and undef = this(2) and T = this(4)
 moreover
   have dec: decide S (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using decide-rule decide.hyps by force
   then have cdcl_W:cdcl_W S (cons-trail (Marked L (backtrack-lvl S+1)) (incr-lvl S))
     using cdcl_W.simps\ cdcl_W-o.intros by blast
   have lev: cdcl_W-M-level-inv (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using cdcl_W M-level cdcl_W-consistent-inv[OF cdcl_W] by auto
   then have no-dup: no-dup (Marked L (backtrack-lvl S + 1) # trail S)
     using undef unfolding cdcl_W-M-level-inv-def by auto
   have no-strange-atm (cons-trail (Marked L (backtrack-lvl S + 1)) (incr-lvl S))
     using M-level alien calculation (4) cdcl_W-no-strange-atm-inv by blast
   then have length (Marked L ((backtrack-lvl S) + 1) # (trail S))
     < card (atms-of-mm (init-clss S))
     using no-dup undef
     length-model-le-vars[of\ cons-trail\ (Marked\ L\ (backtrack-lvl\ S\ +\ 1))\ (incr-lvl\ S)]
     by fastforce
 ultimately show ?case using conf by (simp add: lexn3-conv)
next
 case (skip L C' M D) note tr = this(1) and conf = this(2) and T = this(5)
 show ?case using conf T by (simp add: tr lexn3-conv)
next
 case conflict
 then show ?case by (simp add: lexn3-conv)
next
 case resolve
 then show ?case using finite by (simp add: lexn3-conv)
next
 case (backtrack K i M1 M2 L D T) note conf = this(1) and decomp = this(3) and undef = this(7)
and
   T = this(8) and lev = this(9)
 let ?S' = T
 have bt: backtrack S ?S'
   using backtrack.hyps backtrack.intros[of S D L K i] by auto
 have mset\text{-}ccls\ D \notin \#\ learned\text{-}clss\ S
   using no-relearn conf bt by auto
 then have card-T:
   card\ (set\text{-}mset\ (\{\#mset\text{-}ccls\ D\#\}\ +\ learned\text{-}clss\ S)) = Suc\ (card\ (set\text{-}mset\ (learned\text{-}clss\ S)))
   by simp
 have distinct\text{-}cdcl_W\text{-}state ?S'
   using bt M-level distinct-cdcl<sub>W</sub>-state-inv no-dup other cdcl_W-o.intros cdcl_W-bj.intros by blast
 moreover have \forall s \in \#learned\text{-}clss ?S'. \neg tautology s
   using learned-clss-are-not-tautologies [OF cdcl_W.other [OF cdcl_W-o.bj [OF
```

```
cdcl_W-bj.backtrack[OF bt]]]] M-level no-taut confl by auto
 ultimately have card (set-mset (learned-clss T)) \leq 3 \hat{} card (atms-of-mm (learned-clss T))
     by (auto simp: learned-clss-less-upper-bound)
   then have H: card (set\text{-}mset (\{\#mset\text{-}ccls D\#\} + learned\text{-}clss S))
     \leq 3 \hat{} card (atms-of-mm ({#mset-ccls D#} + learned-clss S))
     using T undef decomp M-level by (simp add: cdcl_W-M-level-inv-decomp)
 moreover
   have atms-of-mm (\{\#mset\text{-}ccls\ D\#\} + learned\text{-}clss\ S) \subseteq atms-of-mm (init-clss\ S)
     using alien conf unfolding no-strange-atm-def by auto
   then have card-f: card (atms-of-mm (\{\#mset-ccls D\#\} + learned-clss S))
     \leq card (atms-of-mm (init-clss S))
     by (meson atms-of-ms-finite card-mono finite-set-mset)
   then have (3::nat) ^ card (atms-of-mm\ (\{\#mset-ccls\ D\#\}\ +\ learned-clss\ S))
     \leq 3 \hat{} card (atms-of-mm (init-clss S)) by simp
 ultimately have (3::nat) \widehat{\ } card (atms-of-mm\ (init-clss\ S))
   \geq card (set\text{-}mset (\{\#mset\text{-}ccls D\#\} + learned\text{-}clss S))
   using le-trans by blast
 then show ?case using decomp undef diff-less-mono2 card-T T M-level
   by (auto simp: cdcl_W-M-level-inv-decomp lexn3-conv)
\mathbf{next}
 case restart
 then show ?case using alien by (auto simp: state-eq-def simp del: state-simp)
next
 case (forget C T) note no-forget = this(8)
 then have mset\text{-}cls\ C \in \#\ learned\text{-}clss\ S and mset\text{-}cls\ C \notin \#\ learned\text{-}clss\ T
   using forget.hyps by auto
 then show ?case using no-forget by (auto simp add: mset-leD)
qed
lemma propagate-measure-decreasing:
 fixes S :: 'st
 assumes propagate S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) propagate apply blast
         using assms(1) apply (auto simp\ add:\ propagate.simps)[3]
      using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def)
 done
lemma conflict-measure-decreasing:
 fixes S :: 'st
 assumes conflict S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) conflict apply blast
          using assms(1) apply (auto simp: state-eq-def simp \ del: state-simp \ elim!: <math>conflictE)[\beta]
       using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def elim:\ conflictE)
 done
lemma decide-measure-decreasing:
 fixes S :: 'st
 assumes decide\ S\ S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 apply (rule cdcl_W-measure-decreasing)
 using assms(1) decide other apply blast
```

```
using assms(1) apply (auto simp: state-eq-def simp del: state-simp elim!: <math>decideE)[3]
       using assms(2) apply (auto simp\ add:\ cdcl_W-all-struct-inv-def elim:\ decideE)
 done
lemma trans-le:
 trans \{(a, (b::nat)). a < b\}
 unfolding trans-def by auto
lemma cdcl_W-cp-measure-decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 using assms
proof induction
 case conflict'
 then show ?case using conflict-measure-decreasing by blast
next
 case propagate'
 then show ?case using propagate-measure-decreasing by blast
qed
lemma tranclp\text{-}cdcl_W\text{-}cp\text{-}measure\text{-}decreasing:
 fixes S :: 'st
 assumes cdcl_W-cp^{++} S S' and cdcl_W-all-struct-inv S
 shows (cdcl_W-measure S', cdcl_W-measure S) \in lexn \{(a, b), a < b\} 3
 using assms
proof induction
 case base
 then show ?case using cdcl_W-cp-measure-decreasing by blast
 case (step T U) note st = this(1) and step = this(2) and IH = this(3) and inv = this(4)
 then have (cdcl_W-measure T, cdcl_W-measure S) \in lexn \{a. case a of (a, b) \Rightarrow a < b\} 3 by blast
 moreover have (cdcl_W-measure U, cdcl_W-measure T) \in lexn \{a. case \ a \ of \ (a, b) \Rightarrow a < b\} 3
   using cdcl_W-cp-measure-decreasing [OF step] rtranclp-cdcl_W-all-struct-inv-inv inv
   tranclp-cdcl_W-cp-tranclp-cdcl_W[OF\ st]
   unfolding trans-def rtranclp-unfold
   by blast
 ultimately show ?case using lexn-transI[OF trans-le] unfolding trans-def by blast
lemma cdcl_W-stgy-step-decreasing:
 fixes R S T :: 'st
 assumes cdcl_W-stgy S T and
 cdcl_W-stgy^{**} R S
 trail R = [] and
 cdcl_W-all-struct-inv R
 shows (cdcl_W-measure T, cdcl_W-measure S) \in lexn \{(a, b). a < b\} 3
proof -
 have cdcl_W-all-struct-inv S
   using assms
   by (metis rtranclp-unfold rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv tranclp-cdcl<sub>W</sub>-stgy-tranclp-cdcl<sub>W</sub>)
 with assms show ?thesis
   proof induction
     case (conflict' V) note cp = this(1) and inv = this(5)
```

```
show ?case
       \mathbf{using} \ tranclp-cdcl_W\text{-}cp\text{-}measure\text{-}decreasing[OF\ HOL.conjunct1[OF\ cp[unfolded\ full1\text{-}def]]\ inv]}
   next
     case (other' T U) note st = this(1) and H = this(4,5,6,7) and cp = this(3)
     have cdcl_W-all-struct-inv T
      using cdcl_W-all-struct-inv-inv other other'.hyps(1) other'.prems(4) by blast
     from tranclp-cdcl_W-cp-measure-decreasing [OF - this]
     have le-or-eq: (cdcl_W-measure U, cdcl_W-measure T) \in lexn \{a. case a of (a, b) \Rightarrow a < b\} 3 \vee
      cdcl_W-measure U = cdcl_W-measure T
      using cp unfolding full-def rtranclp-unfold by blast
     moreover
      have cdcl_W-M-level-inv S
        using cdcl_W-all-struct-inv-def other'.prems(4) by blast
      with st have (cdcl_W-measure T, cdcl_W-measure S) \in lexn \{a. case \ a \ of \ (a, b) \Rightarrow a < b\} 3
      proof (induction\ rule: cdcl_W-o-induct-lev2)
        case (decide\ T)
        then show ?case using decide-measure-decreasing H decide.intros[OF decide.hyps] by blast
      next
        case (backtrack K i M1 M2 L D T) note conf = this(1) and decomp = this(3) and
          undef = this(7) and T = this(8)
        have bt: backtrack S T
          apply (rule backtrack-rule)
          using backtrack.hyps by auto
        then have no-relearn: \forall T. conflicting S = Some T \longrightarrow T \notin \# learned\text{-}clss S
          using cdcl_W-stgy-no-relearned-clause[of R S T] H conf
          unfolding cdcl_W-all-struct-inv-def raw-clauses-def by auto
        have inv: cdcl_W-all-struct-inv S
          using \langle cdcl_W - all - struct - inv S \rangle by blast
        show ?case
          apply (rule cdcl_W-measure-decreasing)
                using bt cdcl_W-bj.backtrack cdcl_W-o.bj other apply simp
                using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
                cdcl_W-M-level-inv-def apply auto[]
               using bt T undef decomp inv unfolding cdcl_W-all-struct-inv-def
                cdcl_W-M-level-inv-def apply auto[]
              using bt no-relearn apply auto[]
             using inv unfolding cdcl_W-all-struct-inv-def apply simp
            using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def apply simp
           using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdcl_W-all-struct-inv-def apply simp
          using inv unfolding cdcl_W-all-struct-inv-def by simp
      next
        case skip
        then show ?case by (auto simp: lexn3-conv)
        case resolve
        then show ?case by (auto simp: lexn3-conv)
      qed
     ultimately show ?case
      by (metis (full-types) lexn-transI transD trans-le)
   qed
qed
```

```
fixes R S T :: 'st
 assumes cdcl_W-stgy^{++} R S
  trail R = [] and
  cdcl_W-all-struct-inv R
 shows (cdcl_W-measure S, cdcl_W-measure R) \in lexn \{(a, b), a < b\} 3
  using assms
 apply induction
  using cdcl_W-stgy-step-decreasing[of R - R] apply blast
 \mathbf{using} \ \ cdcl_W\text{-}stgy\text{-}step\text{-}decreasing[of\text{---}R] \ \ tranclp\text{-}into\text{-}rtranclp[of\ cdcl_W\text{-}stgy\ R]}
  lexn-transI[OF trans-le, of 3] unfolding trans-def by blast
lemma tranclp\text{-}cdcl_W\text{-}stgy\text{-}S0\text{-}decreasing:
 fixes R S T :: 'st
 assumes
   pl: cdcl_W - stgy^{++} (init-state N) S and
   no-dup: distinct-mset-mset (mset-clss N)
 shows (cdcl_W-measure S, cdcl_W-measure (init-state N)) \in lexn \{(a, b). a < b\} 3
 have cdcl_W-all-struct-inv (init-state N)
   using no-dup unfolding cdcl_W-all-struct-inv-def by auto
  then show ?thesis using pl tranclp-cdcl_W-stgy-decreasing init-state-trail by blast
qed
lemma wf-tranclp-cdcl_W-stgy:
  wf \{(S::'st, init\text{-}state\ N)|
    S N. distinct\text{-mset-mset} (mset\text{-}clss N) \wedge cdcl_W\text{-}stgy^{++} (init\text{-}state N) S
 apply (rule wf-wf-if-measure'-notation2[of lexn \{(a, b). a < b\} 3 - - cdcl_W-measure])
  apply (simp add: wf wf-lexn)
  using tranclp-cdcl_W-stgy-S0-decreasing by blast
lemma cdcl_W-cp-wf-all-inv:
  wf \{(S', S). \ cdcl_W \text{-}all\text{-}struct\text{-}inv \ S \land cdcl_W \text{-}cp \ S \ S'\}
  (is wf ?R)
proof (rule wf-bounded-measure[of -
   \lambda S. \ card \ (atms-of-mm \ (init-clss \ S))+1
   \lambda S.\ length\ (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)],\ goal-cases)
 case (1 S S')
 then have cdcl_W-all-struct-inv S and cdcl_W-cp S S' by auto
 moreover then have cdcl_W-all-struct-inv S'
   using cdcl_W-cp.simps cdcl_W-all-struct-inv-inv conflict cdcl_W.intros cdcl_W-all-struct-inv-inv
   by blast+
 ultimately show ?case
   by (auto simp:cdcl_W-cp.simps state-eq-def simp del: state-simp elim!: conflictE propagateE
     dest: length-model-le-vars-all-inv)
qed
end
theory DPLL-CDCL-W-Implementation
imports Partial-Annotated-Clausal-Logic
begin
```

20 Simple Implementation of the DPLL and CDCL

20.1 Common Rules

20.1.1 Propagation

```
The following theorem holds:
lemma lits-of-l-unfold[iff]:
  (\forall c \in set \ C. \ -c \in lits\text{-}of\text{-}l \ Ms) \longleftrightarrow Ms \models as \ CNot \ (mset \ C)
  unfolding \ \textit{true-annots-def Ball-def true-annot-def CNot-def } \ \textbf{by} \ \textit{auto} \\
The right-hand version is written at a high-level, but only the left-hand side is executable.
definition is-unit-clause :: 'a literal list \Rightarrow ('a, 'b, 'c) marked-lit list \Rightarrow 'a literal option
 where
 is-unit-clause l\ M=
   (case List.filter (\lambda a. atm-of a \notin atm-of 'lits-of-l M) l of
     a \# [] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
definition is-unit-clause-code :: 'a literal list \Rightarrow ('a, 'b, 'c) marked-lit list
  \Rightarrow 'a literal option where
 is-unit-clause-code l M =
   (case List.filter (\lambda a. atm-of \ a \notin atm-of \ ' lits-of-l \ M) l of
     a \# [] \Rightarrow if (\forall c \in set (remove1 \ a \ l). -c \in lits-of-l \ M) then Some \ a \ else \ None
   | - \Rightarrow None \rangle
lemma is-unit-clause-is-unit-clause-code[code]:
  is-unit-clause l M = is-unit-clause-code l M
proof -
  have 1: \bigwedge a. (\forall c \in set \ (remove1 \ a \ l). - c \in lits-of-l \ M) \longleftrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
    using lits-of-l-unfold[of remove1 - l, of - M] by simp
  thus ?thesis
    unfolding is-unit-clause-code-def is-unit-clause-def 1 by blast
qed
lemma is-unit-clause-some-undef:
  assumes is-unit-clause l M = Some a
  shows undefined-lit M a
proof -
 have (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
           [a] \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
          | a \# ab \# xa \Rightarrow Map.empty xa) = Some a
    using assms unfolding is-unit-clause-def.
  \mathbf{hence}\ a \in set\ [a {\leftarrow} l\ .\ atm\text{-}of\ a \not\in atm\text{-}of\ ``lits\text{-}of\text{-}l\ M"]
    apply (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \text{ '} lits\text{-}of\text{-}l \ M])
      apply simp
    apply (rename-tac aa list; case-tac list) by (auto split: if-split-asm)
  hence atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M \ by \ auto
  thus ?thesis
    \mathbf{by}\ (simp\ add:\ Marked-Propagated-in-iff-in-lits-of-l
      atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
qed
lemma is-unit-clause-some-CNot: is-unit-clause l M = Some \ a \Longrightarrow M \models as \ CNot \ (mset \ l - \{\#a\#\})
  unfolding is-unit-clause-def
proof -
```

```
assume (case [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
          |a| \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
          \mid a \# ab \# xa \Rightarrow Map.empty xa) = Some a
  thus ?thesis
    apply (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M], simp)
      apply simp
    apply (rename-tac aa list, case-tac list) by (auto split: if-split-asm)
qed
lemma is-unit-clause-some-in: is-unit-clause l M = Some \ a \Longrightarrow a \in set \ l
 unfolding is-unit-clause-def
proof -
  assume (case [a \leftarrow l \ . \ atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M] \ of \ [] \Rightarrow None
         |a| \Rightarrow if M \models as CNot (mset l - \{\#a\#\}) then Some a else None
         | a \# ab \# xa \Rightarrow Map.empty xa) = Some a
 thus a \in set l
    by (cases [a \leftarrow l : atm\text{-}of \ a \notin atm\text{-}of \ `lits\text{-}of\text{-}l \ M])
       (fastforce dest: filter-eq-ConsD split: if-split-asm split: list.splits)+
qed
lemma is-unit-clause-nil[simp]: is-unit-clause [] M = None
  unfolding is-unit-clause-def by auto
20.1.2
            Unit propagation for all clauses
Finding the first clause to propagate
fun find-first-unit-clause :: 'a literal list list \Rightarrow ('a, 'b, 'c) marked-lit list
  \Rightarrow ('a literal \times 'a literal list) option where
find-first-unit-clause (a # l) M =
  (case is-unit-clause a M of
    None \Rightarrow find\text{-}first\text{-}unit\text{-}clause \ l \ M
  \mid Some L \Rightarrow Some (L, a)) \mid
\mathit{find}\text{-}\mathit{first}\text{-}\mathit{unit}\text{-}\mathit{clause}\ []\ \text{-}\ =\ \mathit{None}
lemma find-first-unit-clause-some:
 find-first-unit-clause\ l\ M = Some\ (a,\ c)
  \implies c \in set \ l \land M \models as \ CNot \ (mset \ c - \{\#a\#\}) \land undefined-lit \ M \ a \land a \in set \ c
 apply (induction \ l)
    apply simp
  by (auto split: option.splits dest: is-unit-clause-some-in is-unit-clause-some-CNot
         is-unit-clause-some-undef)
lemma propagate-is-unit-clause-not-None:
  assumes dist: distinct c and
  M: M \models as \ CNot \ (mset \ c - \{\#a\#\}) \ and
  undef: undefined-lit M a and
  ac: a \in set c
 shows is-unit-clause c M \neq None
proof -
  have [a \leftarrow c : atm\text{-}of \ a \notin atm\text{-}of \ `its\text{-}of\text{-}l \ M] = [a]
    using assms
    proof (induction c)
      case Nil thus ?case by simp
    next
      case (Cons\ ac\ c)
```

```
show ?case
       proof (cases \ a = ac)
         case True
         thus ?thesis using Cons
           by (auto simp del: lits-of-l-unfold
                simp add: lits-of-l-unfold[symmetric] Marked-Propagated-in-iff-in-lits-of-l
                  atm-of-eq-atm-of atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       next
         case False
         hence T: mset \ c + \{\#ac\#\} - \{\#a\#\} = mset \ c - \{\#a\#\} + \{\#ac\#\}\}
           by (auto simp add: multiset-eq-iff)
         show ?thesis using False Cons
           by (auto simp add: T atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
       qed
   qed
  thus ?thesis
   using M unfolding is-unit-clause-def by auto
qed
lemma find-first-unit-clause-none:
  distinct\ c \Longrightarrow c \in set\ l \Longrightarrow\ M \models as\ CNot\ (mset\ c - \{\#a\#\}) \Longrightarrow undefined-lit\ M\ a \Longrightarrow a \in set\ c
  \implies find-first-unit-clause l M \neq None
 by (induction \ l)
    (auto split: option.split simp add: propagate-is-unit-clause-not-None)
20.1.3
           Decide
fun find-first-unused-var :: 'a literal list list \Rightarrow 'a literal set \Rightarrow 'a literal option where
find-first-unused-var (a # l) M =
  (case List.find (\lambdalit. lit \notin M \wedge -lit \notin M) a of
    None \Rightarrow find\text{-}first\text{-}unused\text{-}var\ l\ M
   Some \ a \Rightarrow Some \ a)
find-first-unused-var [] - = None
lemma find-none[iff]:
  List find (\lambdalit. lit \notin M \land -lit \notin M) a = None \longleftrightarrow atm-of 'set a \subseteq atm-of ' M
  apply (induct a)
  using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
   by (force simp add: atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)+
lemma find-some: List.find (\lambdalit. lit \notin M \land -lit \notin M) a = Some \ b \Longrightarrow b \in set \ a \land b \notin M \land -b \notin M
  unfolding find-Some-iff by (metis nth-mem)
lemma find-first-unused-var-None[iff]:
 find-first-unused-var\ l\ M=None\longleftrightarrow (\forall\ a\in set\ l.\ atm-of\ `set\ a\subseteq atm-of\ `M)
 by (induct l)
    (auto split: option.splits dest!: find-some
      simp add: image-subset-iff atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set)
lemma find-first-unused-var-Some-not-all-incl:
 assumes find-first-unused-var\ l\ M = Some\ c
  shows \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M)
proof -
  have find-first-unused-var\ l\ M \neq None
   using assms by (cases find-first-unused-var l M) auto
  thus \neg(\forall a \in set \ l. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `M) by auto
```

```
lemma find-first-unused-var-Some:
 find\mbox{-}first\mbox{-}unused\mbox{-}var\ l\ M = Some\ a \Longrightarrow (\exists\ m\in set\ l.\ a\in set\ m\ \land\ a\notin M\ \land -a\notin M)
 by (induct l) (auto split: option.splits dest: find-some)
lemma find-first-unused-var-undefined:
 find-first-unused-var l (lits-of-l Ms) = Some \ a \Longrightarrow undefined-lit Ms a
 using find-first-unused-var-Some[of l lits-of-l Ms a] Marked-Propagated-in-iff-in-lits-of-l
 by blast
end
theory DPLL-W-Implementation
imports DPLL-CDCL-W-Implementation <math>DPLL-W \sim /src/HOL/Library/Code-Target-Numeral
begin
20.2
         Simple Implementation of DPLL
20.2.1
          Combining the propagate and decide: a DPLL step
definition DPLL-step :: int dpll_W-marked-lits \times int literal list list
 \Rightarrow int dpllw-marked-lits \times int literal list list where
DPLL\text{-}step = (\lambda(Ms, N).
 (case find-first-unit-clause N Ms of
   Some (L, -) \Rightarrow (Propagated L () \# Ms, N)
   if \exists C \in set \ N. \ (\forall c \in set \ C. \ -c \in lits \text{-of-} l \ Ms)
   then
     (case backtrack-split Ms of
       (-, L \# M) \Rightarrow (Propagated (- (lit-of L)) () \# M, N)
     | (-, -) \Rightarrow (Ms, N)
   else
   (case find-first-unused-var N (lits-of-l Ms) of
       Some a \Rightarrow (Marked \ a \ () \# Ms, \ N)
     | None \Rightarrow (Ms, N)))
Example of propagation:
value DPLL-step ([Marked (Neg 1) ()], [[Pos (1::int), Neg 2]])
We define the conversion function between the states as defined in Prop-DPLL (with multisets)
and here (with lists).
abbreviation toS \equiv \lambda(Ms::(int, unit, unit) marked-lit list)
                   (N:: int\ literal\ list\ list).\ (Ms,\ mset\ (map\ mset\ N))
abbreviation toS' \equiv \lambda(Ms::(int, unit, unit) marked-lit list,
                       N:: int \ literal \ list \ list). \ (Ms, \ mset \ (map \ mset \ N))
Proof of correctness of DPLL-step
lemma DPLL-step-is-a-dpll<sub>W</sub>-step:
 assumes step: (Ms', N') = DPLL-step (Ms, N)
 and neq: (Ms, N) \neq (Ms', N')
 shows dpll_W (toS Ms N) (toS Ms' N')
proof -
 let ?S = (Ms, mset (map mset N))
  { fix L E
```

```
assume unit: find-first-unit-clause N Ms = Some (L, E)
   hence Ms'N: (Ms', N') = (Propagated L () # <math>Ms, N)
     using step unfolding DPLL-step-def by auto
   obtain C where
     C: C \in set \ N  and
     Ms: Ms \models as \ CNot \ (mset \ C - \{\#L\#\}) \ {\bf and}
     undef: undefined-lit Ms \ L and
     L \in set \ C \ using \ find-first-unit-clause-some[OF \ unit] \ by \ met is
   have dpll_W (Ms, mset (map mset N))
       (Propagated\ L\ ()\ \#\ fst\ (Ms,\ mset\ (map\ mset\ N)),\ snd\ (Ms,\ mset\ (map\ mset\ N)))
     apply (rule dpll_W.propagate)
     using Ms undef C \langle L \in set \ C \rangle by (auto simp add: C)
   hence ?thesis using Ms'N by auto
 moreover
 { assume unit: find-first-unit-clause N Ms = None
   assume exC: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   then obtain C where C: C \in set \ N and Ms: Ms \models as \ CNot \ (mset \ C) by auto
   then obtain L M M' where bt: backtrack-split Ms = (M', L \# M)
     using step exC neq unfolding DPLL-step-def prod.case unit
     by (cases backtrack-split Ms, rename-tac b, case-tac b) auto
   hence is-marked L using backtrack-split-snd-hd-marked of Ms by auto
   have 1: dpll_W (Ms, mset (map mset N))
               (Propagated (- lit-of L) () \# M, snd (Ms, mset (map mset N)))
     apply (rule dpll_W.backtrack[OF - \langle is-marked L \rangle, of ])
     using C Ms bt by auto
   moreover have (Ms', N') = (Propagated (- (lit-of L)) () \# M, N)
     using step exC unfolding DPLL-step-def bt prod.case unit by auto
   ultimately have ?thesis by auto
 }
 moreover
 { assume unit: find-first-unit-clause N Ms = None
   assume exC: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   obtain L where unused: find-first-unused-var N (lits-of-l Ms) = Some L
     using step exC neq unfolding DPLL-step-def prod.case unit
     by (cases find-first-unused-var N (lits-of-l Ms)) auto
   have dpll_W (Ms, mset (map mset N))
            (Marked\ L\ ()\ \#\ fst\ (Ms,\ mset\ (map\ mset\ N)),\ snd\ (Ms,\ mset\ (map\ mset\ N)))
     apply (rule dpll_W.decided[of ?S L])
     using find-first-unused-var-Some[OF unused]
     by (auto simp add: Marked-Propagated-in-iff-in-lits-of-l atms-of-ms-def)
   moreover have (Ms', N') = (Marked L () \# Ms, N)
     using step exC unfolding DPLL-step-def unused prod.case unit by auto
   ultimately have ?thesis by auto
 ultimately show ?thesis by (cases find-first-unit-clause N Ms) auto
qed
lemma DPLL-step-stuck-final-state:
 assumes step: (Ms, N) = DPLL-step (Ms, N)
 shows conclusive-dpll_W-state (toS Ms N)
proof -
 have unit: find-first-unit-clause N Ms = None
   using step unfolding DPLL-step-def by (auto split:option.splits)
```

```
{ assume n: \exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C)
   hence Ms: (Ms, N) = (case \ backtrack-split \ Ms \ of \ (x, \parallel) \Rightarrow (Ms, N)
                      |(x, L \# M) \Rightarrow (Propagated (-lit of L) () \# M, N))
     using step unfolding DPLL-step-def by (simp add:unit)
 have snd (backtrack-split Ms) = []
   proof (cases backtrack-split Ms, cases snd (backtrack-split Ms))
     \mathbf{fix} \ a \ b
     assume backtrack-split\ Ms = (a, b) and snd\ (backtrack-split\ Ms) = []
     thus snd\ (backtrack-split\ Ms) = [] by blast
   next
     fix a b aa list
     assume
       bt: backtrack-split\ Ms=(a,\ b) and
       bt': snd\ (backtrack-split\ Ms) = aa\ \#\ list
     hence Ms: Ms = Propagated (-lit-of aa) () \# list using Ms by auto
     have is-marked aa using backtrack-split-snd-hd-marked of Ms bt bt by auto
     moreover have fst (backtrack-split Ms) @ aa \# list = Ms
       using backtrack-split-list-eq[of Ms] bt' by auto
     ultimately have False unfolding Ms by auto
     thus snd\ (backtrack-split\ Ms) = [] by blast
   qed
   hence ?thesis
     using n backtrack-snd-empty-not-marked of Ms unfolding conclusive-dpll_W-state-def
     by (cases backtrack-split Ms) auto
  }
 moreover {
   assume n: \neg (\exists C \in set \ N. \ Ms \models as \ CNot \ (mset \ C))
   hence find-first-unused-var N (lits-of-l Ms) = None
     using step unfolding DPLL-step-def by (simp add: unit split: option.splits)
   hence a: \forall a \in set \ N. \ atm\text{-}of \ `set \ a \subseteq atm\text{-}of \ `(lits\text{-}of\text{-}l \ Ms) by auto
   have fst (toS Ms N) \models asm \ snd \ (toS Ms N) unfolding true-annots-def CNot-def Ball-def
     proof clarify
       \mathbf{fix} \ x
       assume x: x \in set\text{-}mset (clauses (toS Ms N))
       hence \neg Ms \models as\ CNot\ x using n unfolding true-annots-def CNot-def Ball-def by auto
       moreover have total-over-m (lits-of-l Ms) \{x\}
         using a x image-iff in-mono atms-of-s-def
         {\bf unfolding}\ total\hbox{-}over\hbox{-}m\hbox{-}def\ total\hbox{-}over\hbox{-}set\hbox{-}def\ lits\hbox{-}of\hbox{-}def\ {\bf by}\ fastforce
       ultimately show fst (toS Ms N) \models a x
         using total-not-CNot[of lits-of-l Ms x] by (simp add: true-annot-def true-annots-true-cls)
     qed
   hence ?thesis unfolding conclusive-dpllw-state-def by blast
 ultimately show ?thesis by blast
qed
20.2.2
           Adding invariants
Invariant tested in the function function DPLL-ci :: int dpll_W-marked-lits \Rightarrow int literal list
  \Rightarrow int dpll<sub>W</sub>-marked-lits \times int literal list list where
DPLL-ci\ Ms\ N =
  (if \neg dpll_W - all - inv (Ms, mset (map mset N)))
  then (Ms, N)
```

```
else
  let (Ms', N') = DPLL\text{-}step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-ci Ms'(N)
 by fast+
termination
proof (relation \{(S', S), (toS'S', toS'S) \in \{(S', S), dpll_W-all-inv S \land dpll_W S S'\}\})
 show wf \{(S', S).(toS' S', toS' S) \in \{(S', S). dpll_W - all - inv S \land dpll_W S S'\}\}
   using wf-if-measure-f[OF dpll_W-wf, of toS'] by auto
next
 fix Ms :: int \ dpll_W-marked-lits and N \ x \ xa \ y
 assume \neg \neg dpll_W - all - inv (to S Ms N)
 and step: x = DPLL-step (Ms, N)
 and x: (xa, y) = x
 and (xa, y) \neq (Ms, N)
 thus ((xa, N), Ms, N) \in \{(S', S), (toS', S', toS', S') \in \{(S', S), dpll_W - all - inv, S \land dpll_W, S, S'\}\}
   using DPLL-step-is-a-dpll<sub>W</sub>-step dpll<sub>W</sub>-same-clauses split-conv by fastforce
qed
No invariant tested function (domintros) DPLL-part:: int dpll_W-marked-lits \Rightarrow int literal list list
 int\ dpll_W-marked-lits 	imes int\ literal\ list\ list\ {\bf where}
DPLL-part Ms N =
 (let (Ms', N') = DPLL\text{-}step (Ms, N) in
  if (Ms', N') = (Ms, N) then (Ms, N) else DPLL-part Ms'(N)
 by fast+
lemma snd-DPLL-step[simp]:
 snd\ (DPLL\text{-}step\ (Ms,\ N)) = N
 unfolding DPLL-step-def by (auto split: if-split option.splits prod.splits list.splits)
lemma dpll_W-all-inv-implieS-2-eq3-and-dom:
 assumes dpll_W-all-inv (Ms, mset (map mset N))
 shows DPLL-ci~Ms~N = DPLL-part~Ms~N \land DPLL-part-dom~(Ms, N)
 using assms
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N)
 have snd (DPLL\text{-step }(Ms, N)) = N by auto
 then obtain Ms' where Ms': DPLL-step (Ms, N) = (Ms', N) by (cases DPLL-step (Ms, N)) auto
 have inv': dpll_W-all-inv (toS\ Ms'\ N) by (metis\ (mono\text{-}tags)\ 1.prems\ DPLL\text{-}step\text{-}is\text{-}a\text{-}dpll_W\text{-}step)
   Ms' dpll_W-all-inv old.prod.inject)
 { assume (Ms', N) \neq (Ms, N)
   hence DPLL-ci~Ms'~N = DPLL-part~Ms'~N \land DPLL-part-dom~(Ms',~N) using 1(1)[of~-Ms'~N]
Ms'
     1(2) inv' by auto
   hence DPLL-part-dom (Ms, N) using DPLL-part.domintros Ms' by fastforce
   moreover have DPLL-ci Ms N = DPLL-part Ms N using 1.prems DPLL-part.psimps Ms'
     \langle DPLL\text{-}ci\ Ms'\ N = DPLL\text{-}part\ Ms'\ N \land DPLL\text{-}part\text{-}dom\ (Ms',\ N) \rangle \langle DPLL\text{-}part\text{-}dom\ (Ms,\ N) \rangle by
auto
   ultimately have ?case by blast
 moreover {
   assume (Ms', N) = (Ms, N)
   hence ?case using DPLL-part.domintros DPLL-part.psimps Ms' by fastforce
 }
 ultimately show ?case by blast
```

```
lemma DPLL-ci-dpll_W-rtranclp:
 assumes DPLL-ci Ms N = (Ms', N')
 shows dpll_W^{**} (toS Ms N) (toS Ms' N)
 using assms
proof (induct Ms N arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 \text{ Ms } N \text{ Ms' } N') note IH = this(1) and step = this(2)
 obtain S_1 S_2 where S:(S_1, S_2) = DPLL-step (Ms, N) by (cases DPLL-step (Ms, N)) auto
 { assume \neg dpll_W-all-inv (toS Ms N)
   hence (Ms, N) = (Ms', N) using step by auto
   hence ?case by auto
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) = (Ms, N)
   hence ?case using S step by auto
 moreover
 { assume dpll_W-all-inv (toS Ms N)
   and (S_1, S_2) \neq (Ms, N)
   moreover obtain S_1' S_2' where DPLL-ci S_1 N = (S_1', S_2') by (cases DPLL-ci S_1 N) auto
   moreover have DPLL-ci~Ms~N = DPLL-ci~S_1~N using DPLL-ci.simps[of~Ms~N] calculation
    proof -
      have (case (S_1, S_2) of (ms, lss) \Rightarrow
        if (ms, lss) = (Ms, N) then (Ms, N) else DPLL-ci ms N = DPLL-ci Ms N
        using S DPLL-ci.simps[of Ms N] calculation by presburger
      hence (if (S_1, S_2) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N) = DPLL-ci Ms N
        by fastforce
      thus ?thesis
        using calculation(2) by presburger
   ultimately have dpll_W^{**} (toS S_1'N) (toS Ms'N) using IH[of(S_1, S_2) S_1 S_2] S step by simp
   moreover have dpll_W (to S Ms N) (to S S_1 N)
     by (metis DPLL-step-is-a-dpll<sub>W</sub>-step S(S_1, S_2) \neq (Ms, N) \land prod.sel(2) snd-DPLL-step)
   ultimately have ?case by (metis (mono-tags, hide-lams) IH S (S_1, S_2) \neq (Ms, N))
     \langle DPLL\text{-}ci \ Ms \ N = DPLL\text{-}ci \ S_1 \ N \rangle \langle dpll_W\text{-}all\text{-}inv \ (toS \ Ms \ N) \rangle converse-rtranclp-into-rtranclp
     local.step)
 }
 ultimately show ?case by blast
qed
lemma dpll_W-all-inv-dpll_W-tranclp-irrefl:
 assumes dpll_W-all-inv (Ms, N)
 and dpll_W^{++} (Ms, N) (Ms, N)
 shows False
proof -
 have 1: wf \{(S', S), dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using dpll_W - wf - tranclp by auto
 have ((Ms, N), (Ms, N)) \in \{(S', S), dpll_W - all - inv S \wedge dpll_W^{++} S S'\} using assms by auto
 thus False using wf-not-refl[OF 1] by blast
\mathbf{qed}
```

 ${f lemma}$ DPLL-ci-final-state:

```
assumes step: DPLL-ci Ms N = (Ms, N)
 and inv: dpll_W-all-inv (toS Ms N)
 shows conclusive-dpll_W-state (toS Ms N)
proof -
 have st: dpll_W^{**} (to SMs N) (to SMs N) using DPLL-ci-dpll<sub>W</sub>-rtranclp[OF step].
 have DPLL-step (Ms, N) = (Ms, N)
   proof (rule ccontr)
    obtain Ms' N' where Ms'N: (Ms', N') = DPLL-step (Ms, N)
      by (cases DPLL-step (Ms, N)) auto
    assume ¬ ?thesis
    hence DPLL-ci Ms' N = (Ms, N) using step inv st Ms'N[symmetric] by fastforce
    hence dpll_W^{++} (toS Ms N) (toS Ms N)
     by (metis DPLL-ci-dpll<sub>W</sub>-rtranclp DPLL-step-is-a-dpll<sub>W</sub>-step Ms'N \land DPLL-step (Ms, N) \neq (Ms, N)
N)
        prod.sel(2) rtranclp-into-tranclp2 snd-DPLL-step)
    thus False using dpll_W-all-inv-dpll_W-tranclp-irreft inv by auto
 thus ?thesis using DPLL-step-stuck-final-state[of Ms N] by simp
qed
lemma DPLL-step-obtains:
 obtains Ms' where (Ms', N) = DPLL-step (Ms, N)
 unfolding DPLL-step-def by (metis (no-types, lifting) DPLL-step-def prod.collapse snd-DPLL-step)
lemma DPLL-ci-obtains:
 obtains Ms' where (Ms', N) = DPLL-ci Ms N
proof (induct rule: DPLL-ci.induct)
 case (1 Ms N) note IH = this(1) and that = this(2)
 obtain S where SN:(S, N) = DPLL-step (Ms, N) using DPLL-step-obtains by metis
 { assume \neg dpll_W-all-inv (toS Ms N)
   hence ?case using that by auto
 }
 moreover {
   assume n: (S, N) \neq (Ms, N)
   and inv: dpll_W-all-inv (toS Ms N)
   have \exists ms. DPLL\text{-step }(Ms, N) = (ms, N)
    by (metis \land hesisa. (\land S. (S, N) = DPLL\text{-step} (Ms, N) \Longrightarrow thesisa) \Longrightarrow thesisa)
   hence ?thesis
    using IH that by fastforce
 }
 moreover {
   assume n: (S, N) = (Ms, N)
   hence ?case using SN that by fastforce
 ultimately show ?case by blast
qed
lemma DPLL-ci-no-more-step:
 assumes step: DPLL-ci Ms N = (Ms', N')
 shows DPLL-ci Ms' N' = (Ms', N')
 using assms
proof (induct arbitrary: Ms' N' rule: DPLL-ci.induct)
 case (1 Ms N Ms' N') note IH = this(1) and step = this(2)
 obtain S_1 where S:(S_1, N) = DPLL-step (Ms, N) using DPLL-step-obtains by auto
```

```
{ assume \neg dpll_W-all-inv (toS Ms N)
   hence ?case using step by auto
 moreover {
   assume dpll_W-all-inv (toS Ms N)
   and (S_1, N) = (Ms, N)
   hence ?case using S step by auto
 }
 moreover
 { assume inv: dpll_W-all-inv (toS Ms N)
   assume n: (S_1, N) \neq (Ms, N)
   obtain S_1 where SS: (S_1, N) = DPLL-ci S_1 N using DPLL-ci-obtains by blast
   moreover have DPLL-ci\ Ms\ N=DPLL-ci\ S_1\ N
     proof -
      have (case\ (S_1,\ N)\ of\ (ms,\ lss)\Rightarrow if\ (ms,\ lss)=(Ms,\ N)\ then\ (Ms,\ N)\ else\ DPLL-ci\ ms\ N)
        = DPLL-ci Ms N
        using S DPLL-ci.simps[of Ms N] calculation inv by presburger
      hence (if (S_1, N) = (Ms, N) then (Ms, N) else DPLL-ci S_1 N) = DPLL-ci Ms N
        by fastforce
      thus ?thesis
        using calculation n by presburger
     qed
   moreover
     have DPLL-ci S_1' N = (S_1', N) using step IH[OF - S_1 SS[symmetric]] inv by blast
   ultimately have ?case using step by fastforce
 }
 ultimately show ?case by blast
qed
lemma DPLL-part-dpll_W-all-inv-final:
 fixes M Ms':: (int, unit, unit) marked-lit list and
   N :: int \ literal \ list \ list
 assumes inv: dpll_W-all-inv (Ms, mset (map mset N))
 and MsN: DPLL-part Ms N = (Ms', N)
 shows conclusive-dpll<sub>W</sub>-state (toS Ms' N) \wedge dpll<sub>W</sub>** (toS Ms N) (toS Ms' N)
 have 2: DPLL-ci Ms N = DPLL-part Ms N using inv dpll_W-all-inv-implieS-2-eq3-and-dom by blast
 hence star: dpll_W^{**} (toS Ms N) (toS Ms' N) unfolding MsN using DPLL-ci-dpll<sub>W</sub>-rtranclp by
blast
 hence inv': dpllw-all-inv (toS Ms' N) using inv rtranclp-dpllw-all-inv by blast
 \mathbf{show} \ ? the sis \ \mathbf{using} \ star \ DPLL-ci-final\text{-}state[OF \ DPLL-ci-no\text{-}more\text{-}step \ inv'] \ 2 \ \mathbf{unfolding} \ MsN \ \mathbf{by}
blast
qed
Embedding the invariant into the type
Defining the type typedef dpll_W-state =
   \{(M::(int, unit, unit, unit) marked-lit list, N::int literal list list).
       dpll_W-all-inv (toS M N)}
 morphisms rough-state-of state-of
   show ([],[]) \in \{(M,N), dpll_W-all-inv (toS M N)\} by (auto simp add: dpll_W-all-inv-def)
qed
```

```
lemma
  DPLL-part-dom ([], N)
 using assms dpll_W-all-inv-implieS-2-eq3-and-dom[of [] N] by (simp add: dpll_W-all-inv-def)
Some type classes instantiation dpll_W-state :: equal
begin
definition equal-dpll<sub>W</sub>-state :: dpll_W-state \Rightarrow dpll_W-state \Rightarrow bool where
equal-dpll_W-state SS' = (rough-state-of S = rough-state-of S')
instance
 by standard (simp add: rough-state-of-inject equal-dpll<sub>W</sub>-state-def)
end
DPLL definition DPLL-step' :: dpll_W-state \Rightarrow dpll_W-state where
 DPLL-step' S = state-of (DPLL-step (rough-state-of S))
declare rough-state-of-inverse[simp]
lemma DPLL-step-dpll_W-conc-inv:
  DPLL-step (rough-state-of S) \in \{(M, N). dpll_W-all-inv (to SMN)}
 by (smt DPLL-ci.simps DPLL-ci-dpll<sub>W</sub>-rtranclp case-prodE case-prodI2 rough-state-of
   mem-Collect-eq old.prod.case\ prod.sel(2)\ rtranclp-dpll_W-all-inv snd-DPLL-step)
lemma rough-state-of-DPLL-step'-DPLL-step[simp]:
  rough-state-of (DPLL-step' S) = DPLL-step (rough-state-of S)
  using DPLL-step-dpll_W-conc-inv DPLL-step'-def state-of-inverse by auto
function DPLL-tot:: dpll_W-state \Rightarrow dpll_W-state where
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S')
 by fast+
termination
proof (relation \{(T', T).
    (rough-state-of\ T',\ rough-state-of\ T)
       \in \{(S', S), (toS' S', toS' S)\}
            \in \{(S', S). dpll_W - all - inv S \wedge dpll_W S S'\}\}\}
 show wf {(b, a).
        (rough-state-of b, rough-state-of a)
          \in \{(b, a). (toS'b, toS'a)\}
            \in \{(b, a). dpll_W - all - inv \ a \land dpll_W \ a \ b\}\}
   using wf-if-measure-f[OF wf-if-measure-f[OF dpll_W-wf, of toS'], of rough-state-of].
next
 fix S x
 assume x: x = DPLL-step' S
 and x \neq S
 have dpll_W-all-inv (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
   by (metis (no-types, lifting) case-prodE mem-Collect-eq old.prod.case rough-state-of)
  moreover have dpll_W (case rough-state-of S of (Ms, N) \Rightarrow (Ms, mset (map mset N)))
                   (case rough-state-of (DPLL-step' S) of (Ms, N) \Rightarrow (Ms, mset (map mset N))
   proof -
     obtain Ms N where Ms: (Ms, N) = rough\text{-state-of } S by (cases rough\text{-state-of } S) auto
     have dpll_W-all-inv (toS'(Ms, N)) using calculation unfolding Ms by blast
     moreover obtain Ms' N' where Ms': (Ms', N') = rough\text{-}state\text{-}of (DPLL\text{-}step' S)
       \mathbf{by}\ (\mathit{cases}\ \mathit{rough\text{-}state\text{-}of}\ (\mathit{DPLL\text{-}step'}\ S))\ \mathit{auto}
```

ultimately have $dpll_W$ -all-inv (toS'(Ms', N')) unfolding Ms'

```
by (metis (no-types, lifting) case-prod-unfold mem-Collect-eq rough-state-of)
     have dpll_W (toS Ms N) (toS Ms' N')
      apply (rule DPLL-step-is-a-dpll<sub>W</sub>-step[of Ms' N' Ms N])
      unfolding Ms Ms' using \langle x \neq S \rangle rough-state-of-inject x by fastforce+
     thus ?thesis unfolding Ms[symmetric] Ms'[symmetric] by auto
   qed
 ultimately show (x, S) \in \{(T', T). (rough-state-of T', rough-state-of T)\}
   \in \{(S',\,S).\;(toS'\,S',\,toS'\,S)\in \{(S',\,S).\;dpll_W\text{-all-inv}\;S\,\wedge\,dpll_W\,\,S\,\,S'\}\}\}
   by (auto simp add: x)
qed
lemma [code]:
DPLL-tot S =
 (let S' = DPLL-step' S in
  if S' = S then S else DPLL-tot S') by auto
lemma DPLL-tot-DPLL-step-DPLL-tot (simp]: DPLL-tot (DPLL-step' S) = DPLL-tot S
 apply (cases DPLL-step' S = S)
 apply simp
 unfolding DPLL-tot.simps[of S] by (simp del: DPLL-tot.simps)
lemma DOPLL-step'-DPLL-tot[simp]:
 DPLL-step' (DPLL-tot S) = DPLL-tot S
 by (rule DPLL-tot.induct[of \lambda S. DPLL-step' (DPLL-tot S) = DPLL-tot S S])
    (metis (full-types) DPLL-tot.simps)
lemma DPLL-tot-final-state:
 assumes DPLL-tot S = S
 shows conclusive-dpll_W-state (toS'(rough-state-of S))
 have DPLL-step' S = S using assms[symmetric] DOPLL-step'-DPLL-tot by metis
 hence DPLL-step (rough-state-of S) = (rough-state-of S)
   unfolding DPLL-step'-def using DPLL-step-dpll<sub>W</sub>-conc-inv rough-state-of-inverse
   by (metis rough-state-of-DPLL-step'-DPLL-step)
 thus ?thesis
   by (metis (mono-tags, lifting) DPLL-step-stuck-final-state old.prod.exhaust split-conv)
qed
\mathbf{lemma}\ \mathit{DPLL-tot-star}\colon
 assumes rough-state-of (DPLL\text{-}tot\ S) = S'
 shows dpll_W^{**} (toS' (rough-state-of S)) (toS' S')
 using assms
proof (induction arbitrary: S' rule: DPLL-tot.induct)
 case (1 S S')
 let ?x = DPLL\text{-step'} S
 { assume ?x = S
   then have ?case using 1(2) by simp
 moreover {
   assume S: ?x \neq S
   have ?case
     apply (cases DPLL-step' S = S)
```

```
using S apply blast
     by (smt 1.IH 1.prems DPLL-step-is-a-dpll<sub>W</sub>-step DPLL-tot.simps case-prodE2
      rough-state-of-DPLL-step'-DPLL-step' rtranclp.rtrancl-into-rtrancl rtranclp.rtrancl-refl
      rtranclp-idemp split-conv)
 ultimately show ?case by auto
qed
lemma rough-state-of-rough-state-of-nil[simp]:
 rough-state-of (state-of ([], N)) = ([], N)
 apply (rule DPLL-W-Implementation.dpll_W-state.state-of-inverse)
 unfolding dpll_W-all-inv-def by auto
Theorem of correctness
lemma DPLL-tot-correct:
 assumes rough-state-of (DPLL-tot\ (state-of\ (([],\ N)))) = (M,\ N')
 and (M', N'') = toS'(M, N')
 \mathbf{shows}\ M' \models \mathit{asm}\ N'' \longleftrightarrow \mathit{satisfiable}\ (\mathit{set\text{-}mset}\ N'')
proof -
 have dpll_{W}^{**} (toS'([], N)) (toS'(M, N')) using DPLL-tot-star[OF assms(1)] by auto
 moreover have conclusive-dpll_W-state (toS'(M, N'))
   using DPLL-tot-final-state by (metis (mono-tags, lifting) DOPLL-step'-DPLL-tot DPLL-tot.simps
     assms(1)
 ultimately show ?thesis using dpll_W-conclusive-state-correct by (smt DPLL-ci.simps
   DPLL-ci-dpll_W-rtranclp\ assms(2)\ dpll_W-all-inv-def\ prod.case\ prod.sel(1)\ prod.sel(2)
   rtranclp-dpll_W-inv(3) rtranclp-dpll_W-inv-starting-from-0)
qed
20.2.3
          Code export
A conversion to DPLL-W-Implementation.dpll_W-state definition Con :: (int, unit, unit) marked-lit
list \times int \ literal \ list \ list
                  \Rightarrow dpll_W-state where
 Con xs = state-of (if dpll_W-all-inv (toS (fst xs) (snd xs)) then xs else ([], []))
lemma [code abstype]:
 Con (rough-state-of S) = S
 using rough-state-of [of S] unfolding Con-def by auto
 declare rough-state-of-DPLL-step[code abstract]
lemma Con-DPLL-step-rough-state-of-state-of[simp]:
 Con\ (DPLL\text{-}step\ (rough\text{-}state\text{-}of\ s)) = state\text{-}of\ (DPLL\text{-}step\ (rough\text{-}state\text{-}of\ s))
 unfolding Con-def by (metis (mono-tags, lifting) DPLL-step-dpll<sub>W</sub>-conc-inv mem-Collect-eq
   prod.case-eq-if)
A slightly different version of DPLL-tot where the returned boolean indicates the result.
definition DPLL-tot-rep where
DPLL-tot-rep S =
 (let (M, N) = (rough-state-of (DPLL-tot S)) in (\forall A \in set N. (\exists a \in set A. a \in lits-of-l (M)), M))
One version of the generated SML code is here, but not included in the generated document.
```

• export 'a literal from the SML Module Clausal-Logic;

The only differences are:

• export the constructor Con from DPLL-W-Implementation;

• export the *int* constructor from *Arith*.

All these allows to test on the code on some examples.

```
end
theory CDCL-W-Implementation
imports DPLL-CDCL-W-Implementation CDCL-W-Termination
begin
notation image-mset (infixr '# 90)
type-synonym 'a cdcl_W-mark = 'a literal list
type-synonym cdcl_W-marked-level = nat
type-synonym v \cdot cdcl_W-marked-lit = (v, cdcl_W-marked-level, v \cdot cdcl_W-mark) marked-lit
type-synonym 'v cdcl_W-marked-lits = ('v, cdcl_W-marked-level, 'v cdcl_W-mark) marked-lits
type-synonym v \ cdcl_W-state =
  'v\ cdcl_W-marked-lits 	imes 'v\ literal\ list\ list\ 	imes 'v\ literal\ list\ list\ 	imes nat\ 	imes
  'v literal list option
abbreviation raw-trail :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a where
raw-trail \equiv (\lambda(M, -), M)
abbreviation raw-cons-trail :: 'a \Rightarrow 'a \ list \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \ list \times 'b \times 'c \times 'd \times 'e
  where
raw-cons-trail \equiv (\lambda L (M, S), (L \# M, S))
abbreviation raw-tl-trail :: 'a list \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a list \times 'b \times 'c \times 'd \times 'e where
raw-tl-trail \equiv (\lambda(M, S), (tl M, S))
abbreviation raw-init-clss :: a \times b \times c \times d \times e \Rightarrow b where
raw-init-clss \equiv \lambda(M, N, -). N
abbreviation raw-learned-clss :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'c where
raw-learned-clss \equiv \lambda(M, N, U, -). U
abbreviation raw-backtrack-lvl :: 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'd where
raw-backtrack-lvl \equiv \lambda(M, N, U, k, -). k
abbreviation raw-update-backtrack-lvl :: 'd \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e
raw-update-backtrack-lvl \equiv \lambda k \ (M, N, U, -, S). \ (M, N, U, k, S)
abbreviation raw-conflicting :: a \times b \times c \times d \times e \Rightarrow e where
raw-conflicting \equiv \lambda(M, N, U, k, D). D
abbreviation raw-update-conflicting:: 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e \Rightarrow 'a \times 'b \times 'c \times 'd \times 'e
  where
raw-update-conflicting \equiv \lambda S (M, N, U, k, -). (M, N, U, k, S)
abbreviation raw-add-learned-cls where
raw-add-learned-cls \equiv \lambda C \ (M, N, U, S). \ (M, N, \{\#C\#\} + U, S)
abbreviation raw-remove-cls where
raw-remove-cls \equiv \lambda C (M, N, U, S). (M, removeAll-mset C N, removeAll-mset C U, S)
```

```
type-synonym 'v cdcl_W-state-inv-st = ('v, nat, 'v literal list) marked-lit list \times
  'v literal list list \times 'v literal list list \times nat \times 'v literal list option
abbreviation raw-S0-cdcl_W N \equiv (([], N, [], 0, None):: 'v cdcl_W-state-inv-st)
fun mmset-of-mlit':: ('v, nat, 'v literal list) <math>marked-lit \Rightarrow ('v, nat, 'v clause) marked-lit
mmset-of-mlit' (Propagated L C) = Propagated L (mset C)
mmset-of-mlit' (Marked\ L\ i) = Marked\ L\ i
lemma lit-of-mmset-of-mlit'[simp]:
 lit-of (mmset-of-mlit'xa) = lit-of xa
 by (induction xa) auto
abbreviation trail where
trail S \equiv map \ mmset-of-mlit' \ (raw-trail S)
abbreviation clauses-of-l where
clauses-of-l \equiv \lambda L. mset (map mset L)
global-interpretation state_W-ops
  mset::'v\ literal\ list \Rightarrow 'v\ clause
  op # remove1
  clauses-of-l op @ \lambda L C. L \in set C op # \lambda C. remove1-cond (\lambda L. mset L = mset C)
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, []))
  op # remove1
 id id
 \lambda(M, -). map mmset-of-mlit' M \lambda(M, -). hd M
 \lambda(-, N, -). N
 \lambda(-, -, U, -). U
 \lambda(-, -, -, k, -). k
 \lambda(-, -, -, -, C). C
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
 \lambda C (M, N, S). (M, C \# N, S)
 \lambda C \ (M, N, U, S). \ (M, N, C \# U, S)
 \lambda C (M, N, U, S). (M, filter (\lambda L. mset L \neq mset C) N, filter (\lambda L. mset L \neq mset C) U, S)
 \lambda(k::nat)\ (M,\ N,\ U,\ \text{--},\ D).\ (M,\ N,\ U,\ k,\ D)
 \lambda D \ (M, \ N, \ U, \ k, \ -). \ (M, \ N, \ U, \ k, \ D)
 \lambda N. ([], N, [], \theta, None)
 \lambda(-, N, U, -). ([], N, U, \theta, None)
 apply unfold-locales by (auto simp: hd-map comp-def map-tl ac-simps
   union-mset-list mset-map-mset-remove1-cond ex-mset)
lemma mmset-of-mlit'-mmset-of-mlit' l=mmset-of-mlit l
 apply (induct \ l)
 apply auto
 done
```

 ${\bf lemma}\ clauses-of-l-filter-remove All:$

```
clauses-of-l [L \leftarrow a : mset \ L \neq mset \ C] = mset \ (removeAll \ (mset \ C) \ (map \ mset \ a))
  by (induct a) auto
interpretation state_W
  mset::'v\ literal\ list \Rightarrow 'v\ clause
  op # remove1
  clauses-of-l op @ \lambda L C. L \in set C op \# \lambda C. remove1-cond (\lambda L. mset L = mset C)
  mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, [])
  op # remove1
  id id
 \lambda(M, -). map mmset-of-mlit' M \lambda(M, -). hd M
  \lambda(-, N, -). N
  \lambda(-, -, U, -). U
  \lambda(-, -, -, k, -). k
  \lambda(-, -, -, -, C). C
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
  \lambda C (M, N, S). (M, C \# N, S)
  \lambda C (M, N, U, S). (M, N, C \# U, S)
  \lambda C (M, N, U, S). (M, filter (\lambda L. mset L \neq mset C) N, filter (\lambda L. mset L \neq mset C) U, S)
  \lambda(k::nat) \ (M, N, U, -, D). \ (M, N, U, k, D)
  \lambda D (M, N, U, k, -). (M, N, U, k, D)
  \lambda N. ([], N, [], \theta, None)
  \lambda(-, N, U, -). ([], N, U, \theta, None)
 apply unfold-locales
  apply (rename-tac S, case-tac S)
 by (auto simp: hd-map comp-def map-tl ac-simps clauses-of-l-filter-removeAll
   mmset-of-mlit'-mmset-of-mlit)
{f global - interpretation} conflict-driven-clause-learning_W
  mset::'v\ literal\ list \Rightarrow 'v\ clause
  op # remove1
  clauses-of-l op @ \lambda L C. L \in set C op # \lambda C. remove1-cond (\lambda L. mset L = mset C)
  mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x # zs)) xs (ys, [])
  op # remove1
  id id
  \lambda(M, -). map mmset-of-mlit' M \lambda(M, -). hd M
  \lambda(-, N, -). N
  \lambda(-, -, U, -). U
 \lambda(-, -, -, k, -). k
 \lambda(-, -, -, -, C). C
 \lambda L (M, S). (L \# M, S)
 \lambda(M, S). (tl M, S)
 \lambda C (M, N, S). (M, C \# N, S)
 \lambda C \ (M, \ N, \ U, \ S). \ (M, \ N, \ C \ \# \ U, \ S)
```

```
\lambda C (M, N, U, S). (M, filter (\lambda L. mset L \neq mset C) N, filter (\lambda L. mset L \neq mset C) U, S)
 \lambda(k::nat) \ (M, N, U, -, D). \ (M, N, U, k, D)
 \lambda D (M, N, U, k, -). (M, N, U, k, D)
 \lambda N. ([], N, [], \theta, None)
 \lambda(-, N, U, -). ([], N, U, \theta, None)
 by intro-locales
declare state-simp[simp del] raw-clauses-def[simp] state-eq-def[simp]
notation state-eq (infix \sim 50)
term reduce-trail-to
\mathbf{lemma} \ \mathit{reduce-trail-to-map}[\mathit{simp}] :
  reduce-trail-to (map\ f\ M1) = reduce-trail-to M1
 by (rule ext) (auto intro: reduce-trail-to-length)
20.3
         CDCL Implementation
           Definition of the rules
20.3.1
Types lemma true-clss-remdups[simp]:
 I \models s \ (mset \circ remdups) \ `N \longleftrightarrow I \models s \ mset \ `N
 by (simp add: true-clss-def)
lemma satisfiable-mset-remdups[simp]:
  satisfiable \ ((mset \circ remdups) \ `N) \longleftrightarrow satisfiable \ (mset \ `N)
unfolding satisfiable-carac[symmetric] by simp
We need some functions to convert between our abstract state nat\ cdcl_W-state and the concrete
state v cdcl_W-state-inv-st.
abbreviation convertC :: 'a \ list \ option \Rightarrow 'a \ multiset \ option \ \ \mathbf{where}
convertC \equiv map\text{-}option \ mset
lemma convert-Propagated[elim!]:
 mmset-of-mlit' z = Propagated \ L \ C \Longrightarrow (\exists \ C'. \ z = Propagated \ L \ C' \land C = mset \ C')
 by (cases z) auto
lemma qet-rev-level-map-convert:
  qet-rev-level (map mmset-of-mlit' M) n x = qet-rev-level M n x
 by (induction M arbitrary: n rule: marked-lit-list-induct) auto
lemma get-level-map-convert[simp]:
  qet-level (map\ mmset-of-mlit'\ M) = qet-level M
 using get-rev-level-map-convert[of rev M] by (simp add: rev-map)
lemma get-rev-level-map-mmset of-mlit[simp]:
  get-rev-level (map\ mmset-of-mlit M) = get-rev-level M
 by (induction M rule: marked-lit-list-induct) (auto intro!: ext)
lemma get-level-map-mmsetof-mlit[simp]:
  get-level (map\ mmset-of-mlit M) = get-level M
 using get-rev-level-map-mmsetof-mlit[of rev M] unfolding rev-map by simp
lemma get-maximum-level-map-convert[simp]:
  get-maximum-level (map mmset-of-mlit'M) D = get-maximum-level MD
 \mathbf{by}\ (\mathit{induction}\ D)\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{get-maximum-level-plus})
```

```
lemma get-all-levels-of-marked-map-convert[simp]:
 get-all-levels-of-marked (map mmset-of-mlit' M) = (get-all-levels-of-marked M)
 by (induction M rule: marked-lit-list-induct) auto
lemma reduce-trail-to-empty-trail[simp]:
 reduce-trail-to F([], aa, ab, ac, b) = ([], aa, ab, ac, b)
 using reduce-trail-to.simps by auto
lemma raw-trail-reduce-trail-to-length-le:
 assumes length F > length (raw-trail S)
 shows raw-trail (reduce-trail-to F(S) = []
 using assms trail-reduce-trail-to-length-le [of SF]
 by (cases S, cases reduce-trail-to FS) auto
lemma reduce-trail-to:
 reduce-trail-to F S =
   ((if \ length \ (raw-trail \ S) \ge length \ F)
   then drop (length (raw-trail S) – length F) (raw-trail S)
   else []), raw-init-clss S, raw-learned-clss S, raw-backtrack-lvl S, raw-conflicting S)
   (is ?S = -)
proof (induction F S rule: reduce-trail-to.induct)
 case (1 F S) note IH = this
 show ?case
   proof (cases raw-trail S)
     case Nil
     then show ?thesis using IH by (cases S) auto
   next
     case (Cons\ L\ M)
     then show ?thesis
      apply (cases Suc (length M) > length F)
       prefer 2 using IH reduce-trail-to-length-ne[of S F] apply (cases S) apply auto[]
      apply (subgoal-tac Suc (length M) – length F = Suc (length M – length F))
      using reduce-trail-to-length-ne[of S F] IH by (cases S) (auto simp add:)
   qed
qed
Definition an abstract type
typedef'v\ cdcl_W-state-inv = \{S:: v\ cdcl_W-state-inv-st. cdcl_W-all-struct-inv S\}
 morphisms rough-state-of state-of
proof
 show ([],[], [], [], [], [], [], [], [], []
   by (auto simp add: cdcl_W-all-struct-inv-def)
qed
instantiation cdcl_W-state-inv :: (type) equal
definition equal-cdcl<sub>W</sub>-state-inv :: 'v cdcl<sub>W</sub>-state-inv \Rightarrow 'v cdcl<sub>W</sub>-state-inv \Rightarrow bool where
equal-cdcl_W-state-inv S S' = (rough-state-of S = rough-state-of S')
instance
 by standard (simp add: rough-state-of-inject equal-cdcl<sub>W</sub>-state-inv-def)
lemma\ lits-of-map-convert[simp]:\ lits-of-l\ (map\ mmset-of-mlit'\ M)=\ lits-of-l\ M
 by (induction M rule: marked-lit-list-induct) simp-all
```

```
lemma undefined-lit-map-convert[iff]:
  undefined-lit (map\ mmset-of-mlit'\ M)\ L \longleftrightarrow undefined-lit M\ L
 by (auto simp add: defined-lit-map image-image mmset-of-mlit'-mmset-of-mlit)
lemma true-annot-map-convert[simp]: map mmset-of-mlit' M \models a N \longleftrightarrow M \models a N
 by (induction M rule: marked-lit-list-induct) (simp-all add: true-annot-def
   mmset-of-mlit'-mmset-of-mlit lits-of-def)
lemma true-annots-map-convert[simp]: map mmset-of-mlit' M \models as N \longleftrightarrow M \models as N
  unfolding true-annots-def by auto
lemmas propagateE
lemma find-first-unit-clause-some-is-propagate:
 assumes H: find-first-unit-clause (N @ U) M = Some(L, C)
 shows propagate (M, N, U, k, None) (Propagated L C \# M, N, U, k, None)
 using assms
 by (auto dest!: find-first-unit-clause-some intro!: propagate-rule)
20.3.2
          The Transitions
Propagate definition do-propagate-step where
do-propagate-step S =
 (case S of
   (M, N, U, k, None) \Rightarrow
     (case find-first-unit-clause (N @ U) M of
       Some (L, C) \Rightarrow (Propagated \ L \ C \# M, N, U, k, None)
     | None \Rightarrow (M, N, U, k, None))
 \mid S \Rightarrow S)
lemma do-propgate-step:
  \textit{do-propagate-step } S \neq S \Longrightarrow \textit{propagate } S \; (\textit{do-propagate-step } S)
 apply (cases S, cases conflicting S)
 using find-first-unit-clause-some-is-propagate of raw-init-clss S raw-learned-clss S
 by (auto simp add: do-propagate-step-def split: option.splits)
lemma do-propagate-step-option[simp]:
  conflicting S \neq None \Longrightarrow do\text{-propagate-step } S = S
 unfolding do-propagate-step-def by (cases S, cases conflicting S) auto
thm prod-cases
lemma do-propagate-step-no-step:
 assumes dist: \forall c \in set \ (raw\text{-}clauses \ S). distinct c and
 prop-step: do-propagate-step S = S
 shows no-step propagate S
proof (standard, standard)
 \mathbf{fix} \ T
 assume propagate S T
 then obtain CL where
   toSS: conflicting S = None and
   C: C \in set (raw-clauses S) and
   L: L \in set \ C \ and
   MC: raw\text{-}trail\ S \models as\ CNot\ (mset\ (remove1\ L\ C)) and
   T: T \sim raw-cons-trail (Propagated L C) S and
   undef: undefined-lit (raw-trail S) L
   apply (cases S rule: prod-cases5)
   by (elim propagateE) simp
```

```
let ?M = raw\text{-}trail\ S
 let ?N = raw\text{-}init\text{-}clss S
 let ?U = raw\text{-}learned\text{-}clss S
 let ?k = raw\text{-}backtrack\text{-}lvl S
 let ?D = None
 have S: S = (?M, ?N, ?U, ?k, ?D)
   using toSS by (cases S, cases conflicting S) simp-all
 have find-first-unit-clause (?N @ ?U) ?M \neq None
   apply (rule dist find-first-unit-clause-none of C ?N @ ?U ?M L, OF -1)
       using C \ dist \ apply \ auto[]
      using C apply auto[1]
     using MC apply auto[1]
    using undef apply auto[1]
   using L by auto
 then show False using prop-step S unfolding do-propagate-step-def by (cases S) auto
qed
Conflict fun find-conflict where
find-conflict M [] = None []
find-conflict M (N \# Ns) = (if (\forall c \in set N. -c \in lits-of-l M) then Some N else find-conflict M Ns)
lemma find-conflict-Some:
 find-conflict M Ns = Some N \Longrightarrow N \in set Ns \land M \models as CNot (mset N)
 by (induction Ns rule: find-conflict.induct)
    (auto split: if-split-asm)
lemma find-conflict-None:
 find\text{-}conflict\ M\ Ns = None \longleftrightarrow (\forall\ N \in set\ Ns.\ \neg M \models as\ CNot\ (mset\ N))
 by (induction Ns) auto
lemma find-conflict-None-no-confl:
 find\text{-}conflict\ M\ (N@U) = None \longleftrightarrow no\text{-}step\ conflict\ (M,\ N,\ U,\ k,\ None)
 by (auto simp add: find-conflict-None conflict.simps)
definition do-conflict-step where
do-conflict-step S =
 (case S of
   (M, N, U, k, None) \Rightarrow
     (case find-conflict M (N @ U) of
       Some a \Rightarrow (M, N, U, k, Some a)
     | None \Rightarrow (M, N, U, k, None))
 \mid S \Rightarrow S \rangle
lemma do-conflict-step:
  do\text{-}conflict\text{-}step\ S \neq S \Longrightarrow conflict\ S\ (do\text{-}conflict\text{-}step\ S)
 apply (cases S, cases conflicting S)
 unfolding conflict.simps do-conflict-step-def
 by (auto dest!:find-conflict-Some split: option.splits simp: state-eq-def)
\mathbf{lemma}\ do\text{-}conflict\text{-}step\text{-}no\text{-}step:
  do\text{-}conflict\text{-}step\ S = S \Longrightarrow no\text{-}step\ conflict\ S
 apply (cases S, cases conflicting S)
 unfolding do-conflict-step-def
  using find-conflict-None-no-confl[of\ raw-trail S\ raw-init-clss S\ raw-learned-clss S
```

```
raw-backtrack-lvl S
  by (auto split: option.split elim: conflictE)
lemma do\text{-}conflict\text{-}step\text{-}option[simp]:
  conflicting S \neq None \Longrightarrow do\text{-}conflict\text{-}step S = S
  unfolding do-conflict-step-def by (cases S, cases conflicting S) auto
lemma do-conflict-step-conflicting[dest]:
  do\text{-}conflict\text{-}step\ S \neq S \Longrightarrow conflicting\ (do\text{-}conflict\text{-}step\ S) \neq None
  unfolding do-conflict-step-def by (cases S, cases conflicting S) (auto split: option.splits)
definition do-cp-step where
do\text{-}cp\text{-}step\ S =
  (do\text{-}propagate\text{-}step\ o\ do\text{-}conflict\text{-}step)\ S
lemma cp-step-is-cdcl_W-cp:
 assumes H: do\text{-}cp\text{-}step \ S \neq S
 shows cdcl_W-cp S (do-cp-step S)
proof -
  show ?thesis
  proof (cases do-conflict-step S \neq S)
   case True
   then have do-propagate-step (do-conflict-step S) = do-conflict-step S
     by auto
   then show ?thesis
     by (auto simp add: do-conflict-step do-conflict-step-conflicting do-cp-step-def True)
  next
   case False
   then have confl[simp]: do-conflict-step S = S by simp
   show ?thesis
     proof (cases do-propagate-step S = S)
       case True
       then show ?thesis
       using H by (simp \ add: \ do-cp-step-def)
     next
       case False
       let ?S = S
       let ?T = (do\text{-}propagate\text{-}step\ S)
       let ?U = (do\text{-}conflict\text{-}step\ (do\text{-}propagate\text{-}step\ S))
       have propa: propagate S?T using False do-propgate-step by blast
       moreover have ns: no-step conflict S using confl do-conflict-step-no-step by blast
       ultimately show ?thesis
         using cdcl_W-cp.intros(2)[of ?S ?T] confl unfolding do-cp-step-def by auto
     qed
  qed
qed
lemma do-cp-step-eq-no-prop-no-confl:
  do\text{-}cp\text{-}step\ S = S \Longrightarrow do\text{-}conflict\text{-}step\ S = S \land do\text{-}propagate\text{-}step\ S = S
  by (cases S, cases raw-conflicting S)
   (auto simp add: do-conflict-step-def do-propagate-step-def do-cp-step-def split: option.splits)
lemma no\text{-}cdcl_W\text{-}cp\text{-}iff\text{-}no\text{-}propagate\text{-}no\text{-}conflict:}
  no\text{-step } cdcl_W\text{-}cp \ S \longleftrightarrow no\text{-step } propagate \ S \land no\text{-step } conflict \ S
  by (auto simp: cdcl_W-cp.simps)
```

```
H: do\text{-}cp\text{-}step \ S = S \ \text{and}
   \forall c \in set \ (raw\text{-}init\text{-}clss \ S \ @ \ raw\text{-}learned\text{-}clss \ S). \ distinct \ c
  shows no-step cdcl_W-cp S
  unfolding no\text{-}cdcl_W\text{-}cp\text{-}iff\text{-}no\text{-}propagate\text{-}no\text{-}conflict
  using assms apply (cases S, cases conflicting S)
 using do-propagate-step-no-step[of S]
 by (auto dest!: do-cp-step-eq-no-prop-no-confl[simplified] do-conflict-step-no-step
   split: option.splits)
lemma cdcl_W-cp-cdcl_W-st: cdcl_W-cp S S' \Longrightarrow cdcl_W^{**} S S'
 by (simp\ add:\ cdcl_W-cp-tranclp-cdcl<sub>W</sub> tranclp-into-rtranclp)
lemma cdcl_W-all-struct-inv-rough-state[simp]: cdcl_W-all-struct-inv (rough-state-of S)
 using rough-state-of by auto
lemma [simp]: cdcl_W-all-struct-inv S \Longrightarrow rough-state-of (state-of S) = S
 by (simp add: state-of-inverse)
lemma rough-state-of-state-of-do-cp-step[<math>simp]:
  rough-state-of (state-of (do-cp-step (rough-state-of S))) = do-cp-step (rough-state-of S)
proof -
 have cdcl_W-all-struct-inv (do-cp-step (rough-state-of S))
   apply (cases do-cp-step (rough-state-of S) = (rough-state-of S))
     apply simp
   using cp-step-is-cdcl_W-cp[of\ rough-state-of S]\ cdcl_W-all-struct-inv-rough-state[of S]
   cdcl_W-cp-cdcl_W-st rtranclp-cdcl_W-all-struct-inv-inv by blast
 then show ?thesis by auto
qed
Skip fun do-skip-step :: 'v cdcl_W-state-inv-st \Rightarrow 'v cdcl_W-state-inv-st where
do-skip-step (Propagated L C \# Ls,N,U,k, Some D) =
  (if -L \notin set \ D \land D \neq []
 then (Ls, N, U, k, Some D)
  else (Propagated L C \#Ls, N, U, k, Some D)) |
do-skip-step <math>S = S
lemma do-skip-step:
  do\text{-}skip\text{-}step\ S \neq S \Longrightarrow skip\ S\ (do\text{-}skip\text{-}step\ S)
 apply (induction S rule: do-skip-step.induct)
 by (auto simp add: skip.simps)
lemma do-skip-step-no:
  do-skip-step S = S \Longrightarrow no-step skip S
 by (induction S rule: do-skip-step.induct)
    (auto simp add: other split: if-split-asm elim!: skipE)
lemma do-skip-step-trail-is-None[iff]:
  do\text{-skip-step }S=(a,\ b,\ c,\ d,\ None)\longleftrightarrow S=(a,\ b,\ c,\ d,\ None)
 by (cases S rule: do-skip-step.cases) auto
            fun maximum-level-code:: 'a literal list \Rightarrow ('a, nat, 'a literal list) marked-lit list \Rightarrow nat
Resolve
  where
```

lemma do-cp-step-eq-no-step:

assumes

```
maximum-level-code [] - = 0 |
maximum-level-code (L \# Ls) M = max (get-level M L) (maximum-level-code Ls M)
lemma maximum-level-code-eq-get-maximum-level[code, simp]:
 maximum-level-code D M = get-maximum-level M (mset D)
 by (induction D) (auto simp add: get-maximum-level-plus)
fun do-resolve-step :: 'v cdcl_W-state-inv-st \Rightarrow 'v cdcl_W-state-inv-st where
do-resolve-step (Propagated L C \# Ls, N, U, k, Some D) =
 (if -L \in set \ D \land maximum-level-code \ (remove1 \ (-L) \ D) \ (Propagated \ L \ C \# Ls) = k
 then (Ls, N, U, k, Some (remdups (remove1 L C @ remove1 (-L) D)))
 else (Propagated L C \# Ls, N, U, k, Some D))
do-resolve-step S = S
lemma do-resolve-step:
 cdcl_W-all-struct-inv S \Longrightarrow do-resolve-step S \neq S
 \implies resolve S \ (do-resolve-step S)
proof (induction S rule: do-resolve-step.induct)
 case (1 L C M N U k D)
 then have
   LD: -L \in set \ D and
   M: maximum-level-code (remove1 (-L) D) (Propagated L C \# M) = k
   by (cases\ mset\ D - \{\#-L\#\} = \{\#\},\
       auto dest!: get-maximum-level-exists-lit-of-max-level[of - Propagated L C \# M]
       split: if-split-asm)+
 have every-mark-is-a-conflict (Propagated L C \# M, N, U, k, Some D)
   using 1(1) unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by fast
 then have LC: L \in set \ C by fastforce
 then obtain C' where C: mset\ C = C' + \{\#L\#\}
   by (metis add.commute in-multiset-in-set insert-DiffM)
 obtain D' where D: mset\ D = D' + \{\#-L\#\}
   using \langle -L \in set D \rangle by (metis add.commute in-multiset-in-set insert-DiffM)
 have D'L: D' + \{\#-L\#\} - \{\#-L\#\} = D' by (auto simp add: multiset-eq-iff)
 have CL: mset\ C - \{\#L\#\} + \{\#L\#\} = mset\ C\ using\ \langle L \in set\ C \rangle\ by\ (auto\ simp\ add:\ multiset-eq-iff)
 have max: get-maximum-level (Propagated L (C' + {\#L\#}) \# map mmset-of-mlit' M) D' = k
   using M[simplified] unfolding maximum-level-code-eq-qet-maximum-level C[symmetric] CL
   by (metis\ D\ D'L\ qet\text{-}maximum\text{-}level\text{-}map\text{-}convert\ list.simps}(9)\ mmset\text{-}of\text{-}mlit'.simps}(1))
 have distinct-mset (mset C) and distinct-mset (mset D)
   using \langle cdcl_W - all - struct - inv \ (Propagated \ L \ C \ \# \ M, \ N, \ U, \ k, \ Some \ D) \rangle
   unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def
   by auto
 then have conf: (mset\ C - \{\#L\#\})\ \#\cup\ (mset\ D - \{\#-L\#\}) =
   remdups-mset (mset C - \{\#L\#\} + (mset D - \{\#-L\#\}))
   by (auto simp: distinct-mset-rempdups-union-mset)
 show ?case
   apply (rule resolve-rule)
   using LC LD max M conf C D by (auto simp: subset-mset.sup.commute)
ged auto
lemma do-resolve-step-no:
 do\text{-}resolve\text{-}step\ S = S \Longrightarrow no\text{-}step\ resolve\ S
 apply (cases S; cases (raw-trail S); cases raw-conflicting S)
 by (auto
   elim!: resolveE split: if-split-asm
```

```
dest!: union-single-eq-member
   simp del: in-multiset-in-set get-maximum-level-map-convert
   simp: get-maximum-level-map-convert[symmetric] do-resolve-step)
lemma rough-state-of-state-of-resolve[simp]:
  cdcl_W-all-struct-inv S \Longrightarrow rough-state-of (state-of (do-resolve-step S)) = do-resolve-step S
 apply (rule state-of-inverse)
 apply (cases do-resolve-step S = S)
  apply simp
  by (blast dest: other resolve bj do-resolve-step cdcl_W-all-struct-inv-inv)
lemma do-resolve-step-trail-is-None[iff]:
  do-resolve-step S = (a, b, c, d, None) \longleftrightarrow S = (a, b, c, d, None)
 by (cases S rule: do-resolve-step.cases) auto
Backjumping fun find-level-decomp where
find-level-decomp M \mid D \mid k = None \mid
find-level-decomp M (L \# Ls) D k =
 (case (get-level M L, maximum-level-code (D @ Ls) M) of
   (i, j) \Rightarrow if \ i = k \land j < i \ then \ Some \ (L, j) \ else \ find-level-decomp \ M \ Ls \ (L\#D) \ k
lemma find-level-decomp-some:
 assumes find-level-decomp M Ls D k = Some(L, j)
 shows L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ (remove1\ L\ (Ls\ @\ D))) = j \land get\text{-}level\ M\ L = k
 using assms
proof (induction Ls arbitrary: D)
 case Nil
 then show ?case by simp
 case (Cons L' Ls) note IH = this(1) and H = this(2)
 \mathbf{def} \ \mathit{find} \equiv (\mathit{if} \ \mathit{get-level} \ \mathit{M} \ \mathit{L'} \neq \mathit{k} \ \lor \ \neg \ \mathit{get-maximum-level} \ \mathit{M} \ (\mathit{mset} \ \mathit{D} + \mathit{mset} \ \mathit{Ls}) < \mathit{get-level} \ \mathit{M} \ \mathit{L'}
    then find-level-decomp M Ls (L' \# D) k
    else Some (L', get\text{-}maximum\text{-}level\ M\ (mset\ D\ +\ mset\ Ls)))
 have a1: \bigwedge D. find-level-decomp M Ls D k = Some(L, j) \Longrightarrow
    L \in set\ Ls \land get\text{-}maximum\text{-}level\ M\ (mset\ Ls + mset\ D - \{\#L\#\}) = j \land get\text{-}level\ M\ L = k
   using IH by simp
  have a2: find = Some(L, j)
   using H unfolding find-def by (auto split: if-split-asm)
  { assume Some (L', get\text{-}maximum\text{-}level\ M\ (mset\ D+mset\ Ls)) \neq find}
   then have f3: L \in set\ Ls and get-maximum-level M (mset Ls + mset\ (L' \# D) - \{\#L\#\} = j
     using a1 IH a2 unfolding find-def by meson+
   moreover then have mset\ Ls + mset\ D - \{\#L\#\} + \{\#L'\#\} = \{\#L'\#\} + mset\ D + (mset\ Ls
- \{ \#L\# \} )
     by (auto simp: ac-simps multiset-eq-iff Suc-leI)
   ultimately have f_4: get-maximum-level M (mset Ls + mset D - \{\#L\#\} + \{\#L'\#\}) = j
     by (metis add.commute diff-union-single-conv in-multiset-in-set mset.simps(2))
  } note f_4 = this
  have \{\#L'\#\} + (mset\ Ls + mset\ D) = mset\ Ls + (mset\ D + \{\#L'\#\})
     by (auto simp: ac-simps)
  then have
   (L = L' \longrightarrow get\text{-}maximum\text{-}level\ M\ (mset\ Ls + mset\ D) = j \land get\text{-}level\ M\ L' = k) and
   (L \neq L' \longrightarrow L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ Ls + mset \ D - \{\#L\#\} + \{\#L'\#\}) = j \land
     get-level M L = k)
```

```
using f4 a2 a1 [of L' \# D] unfolding find-def by (metis (no-types) add-diff-cancel-left'
     mset.simps(2) option.inject prod.inject union-commute)+
 then show ?case by simp
qed
lemma find-level-decomp-none:
 assumes find-level-decomp M Ls E k = None and mset (L\#D) = mset (Ls @ E)
 shows \neg(L \in set \ Ls \land get\text{-}maximum\text{-}level \ M \ (mset \ D) < k \land k = get\text{-}level \ M \ L)
 \mathbf{using}\ \mathit{assms}
proof (induction Ls arbitrary: E L D)
 case Nil
 then show ?case by simp
next
 case (Cons L' Ls) note IH = this(1) and find-none = this(2) and LD = this(3)
 have mset D + \{\#L'\#\} = mset E + (mset Ls + \{\#L'\#\}) \implies mset D = mset E + mset Ls
   by (metis add-right-imp-eq union-assoc)
 then show ?case
   using find-none IH[of L' \# E L D] LD by (auto simp add: ac-simps split: if-split-asm)
qed
fun bt-cut where
bt-cut i (Propagated - - \# Ls) = bt-cut i Ls
bt-cut i (Marked K k \# Ls) = (if k = Suc i then Some (Marked K k \# Ls) else bt-cut i Ls)
bt-cut i [] = None
lemma bt-cut-some-decomp:
  bt\text{-}cut\ i\ M = Some\ M' \Longrightarrow \exists\ K\ M2\ M1.\ M = M2\ @\ M' \land M' = Marked\ K\ (i+1)\ \#\ M1
 by (induction i M rule: bt-cut.induct) (auto split: if-split-asm)
lemma bt-cut-not-none: M = M2 @ Marked K (Suc i) \# M' \Longrightarrow bt-cut i M \neq None
 by (induction M2 arbitrary: M rule: marked-lit-list-induct) auto
lemma get-all-marked-decomposition-ex:
  \exists N. (Marked \ K \ (Suc \ i) \ \# \ M', \ N) \in set \ (get-all-marked-decomposition \ (M2@Marked \ K \ (Suc \ i) \ \# M')
M'))
 apply (induction M2 rule: marked-lit-list-induct)
   apply auto[2]
 by (rename-tac L m xs, case-tac qet-all-marked-decomposition (xs @ Marked K (Suc i) # M'))
  auto
\mathbf{lemma}\ bt\text{-}cut\text{-}in\text{-}get\text{-}all\text{-}marked\text{-}decomposition}:
  bt-cut i M = Some M' \Longrightarrow \exists M2. (M', M2) \in set (get-all-marked-decomposition M)
 by (auto dest!: bt-cut-some-decomp simp add: get-all-marked-decomposition-ex)
fun do-backtrack-step where
do-backtrack-step (M, N, U, k, Some D) =
  (case find-level-decomp MD [] k of
   None \Rightarrow (M, N, U, k, Some D)
 \mid Some (L, j) \Rightarrow
   (case bt-cut j M of
     Some (Marked - - # Ls) \Rightarrow (Propagated L D # Ls, N, D # U, j, None)
    - \Rightarrow (M, N, U, k, Some D)
do-backtrack-step S = S
```

```
\textbf{lemma} \ \textit{get-all-marked-decomposition-map-convert}:
 (get-all-marked-decomposition (map mmset-of-mlit' M)) =
   map \ (\lambda(a, b). \ (map \ mmset\text{-}of\text{-}mlit'\ a, \ map \ mmset\text{-}of\text{-}mlit'\ b)) \ (get\text{-}all\text{-}marked\text{-}decomposition}\ M)
 apply (induction M rule: marked-lit-list-induct)
   apply simp
 by (rename-tac L l xs, case-tac get-all-marked-decomposition xs; auto)+
lemma do-backtrack-step:
 assumes
   db: do-backtrack-step S \neq S and
   inv: cdcl_W-all-struct-inv S
 shows backtrack S (do-backtrack-step S)
 \mathbf{proof} (cases S, cases raw-conflicting S, goal-cases)
   case (1 \ M \ N \ U \ k \ E)
   then show ?case using db by auto
   case (2 M N U k E C) note S = this(1) and confl = this(2)
   have E: E = Some \ C using S confl by auto
   obtain L j where fd: find-level-decomp M C [] k = Some (L, j)
     using db unfolding S E by (cases C) (auto split: if-split-asm option.splits)
   have
     L \in set \ C \ and
     j: get\text{-}maximum\text{-}level\ M\ (mset\ (remove1\ L\ C)) = j\ and
     levL: get-level M L = k
     using find-level-decomp-some[OF fd] by auto
   obtain C' where C: mset\ C = mset\ C' + \{\#L\#\}
     using \langle L \in set \ C \rangle by (metis add.commute ex-mset in-multiset-in-set insert-DiffM)
   obtain M_2 where M_2: bt-cut j M = Some M_2
     using db fd unfolding S E by (auto split: option.splits)
   obtain M1 K where M1: M_2 = Marked K (Suc j) \# M1
     using bt-cut-some-decomp[OF M_2] by (cases M_2) auto
   obtain c where c: M = c @ Marked K (Suc j) \# M1
      using bt-cut-in-get-all-marked-decomposition [OF M_2]
      unfolding M1 by fastforce
   have get-all-levels-of-marked (map mmset-of-mlit' M) = rev [1..<Suc k]
     using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def S by auto
   from arg-cong[OF this, of \lambda a. Suc j \in set a] have j \leq k unfolding c by auto
   have max-l-j: maximum-level-code C'M = j
     using db fd M_2 C unfolding S E by (auto
        split: option.splits list.splits marked-lit.splits
        dest!: find-level-decomp-some)[1]
   have get-maximum-level M (mset C) \geq k
     using \langle L \in set \ C \rangle \ levL \ get\text{-maximum-level-ge-get-level} by (metis \ set\text{-mset-mset})
   moreover have get-maximum-level M (mset C) \leq k
     using get-maximum-level-exists-lit-of-max-level[of mset CM] inv
       cdcl_W-M-level-inv-get-level-le-backtrack-lvl[of S]
     unfolding C \ cdcl_W-all-struct-inv-def S \ by (auto dest: sym[of \ get-level - -])
   ultimately have get-maximum-level M (mset C) = k by auto
   obtain M2 where M2: (M_2, M2) \in set (get-all-marked-decomposition M)
     using bt-cut-in-get-all-marked-decomposition [OF M_2] by metis
   have decomp:
    (Marked\ K\ (Suc\ (get-maximum-level\ M\ (remove1-mset\ L\ (mset\ C))))\ \#\ (map\ mmset-of-mlit'\ M1),
     (map \ mmset-of-mlit' \ M2)) \in
```

```
set (get-all-marked-decomposition (map mmset-of-mlit' M))
     using imageI[of - \lambda(a, b). (map \ mmset-of-mlit' \ a, \ map \ mmset-of-mlit' \ b), \ OF \ M2] \ j
     unfolding S E M1 by (auto simp add: qet-all-marked-decomposition-map-convert)
   have red: (reduce-trail-to (map mmset-of-mlit' M1)
     (M, N, C \# U, get\text{-}maximum\text{-}level M (remove1\text{-}mset L (mset C)), None))
     = (M1, N, C \# U, get\text{-}maximum\text{-}level M (remove1\text{-}mset L (mset C)), None)
    using M2 M1 by (auto simp: reduce-trail-to)
   show ?case
     apply (rule backtrack-rule)
     using M_2 fd confl \langle L \in set \ C \rangle j decomp levL \langle get\text{-maximum-level} \ M \ (mset \ C) = k \rangle
     unfolding S E M1 apply (auto simp: mset-map)[6]
     {\bf unfolding} \ \textit{CDCL-W-Implementation.state-eq-def}
     \mathbf{using}\ M_2\ fd\ confl\ \langle L\in set\ C\rangle\ j\ decomp\ levL\ \langle get\text{-}maximum\text{-}level\ M\ (mset\ C)=k\rangle\ red
     unfolding S E M1
     by auto
qed
lemma map-eq-list-length:
 map\ f\ L = L' \Longrightarrow length\ L = length\ L'
 by auto
lemma map-mmset-of-mlit-eq-cons:
 assumes map mmset-of-mlit' M = a @ c
 obtains a' c' where
    M = a' @ c' and
    a = map \; mmset\text{-}of\text{-}mlit' \; a' \; and
    c = map \ mmset-of-mlit' c'
 using that [of take (length a) M drop (length a) M]
 assms by (metis append-eq-conv-conj append-take-drop-id drop-map take-map)
lemma do-backtrack-step-no:
 assumes
   db: do-backtrack-step S = S and
   inv: cdcl_W-all-struct-inv S
 shows no-step backtrack S
proof (rule ccontr, cases S, cases conflicting S, goal-cases)
 then show ?case using db by (auto split: option.splits elim: backtrackE)
next
 case (2 M N U k E C) note bt = this(1) and S = this(2) and confl = this(3)
 obtain K j M1 M2 L D where
   CE: raw-conflicting S = Some D and
   LD: L \in \# mset D and
   decomp: (Marked K (Suc j) \# M1, M2) \in set (get-all-marked-decomposition (trail S)) and
   levL: get-level (raw-trail S) L = raw-backtrack-lvl S and
   k: get-level (raw-trail S) L = get-maximum-level (raw-trail S) (mset D) and
   j: get-maximum-level (raw-trail S) (remove1-mset L (mset D)) \equiv j and
   undef: undefined-lit M1 L
   using bt apply clarsimp
   apply (elim backtrack-levE)
     using inv unfolding cdcl_W-all-struct-inv-def apply fast
   apply (cases S)
   by (auto simp add: get-all-marked-decomposition-map-convert)
 obtain c where c: trail S = c @ M2 @ Marked K (Suc j) \# M1
```

```
using decomp by blast
 have get-all-levels-of-marked (trail S) = rev [1..<Suc\ k]
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def S by auto
 from arg-cong[OF this, of \lambda a. Suc j \in set a] have k > j
   unfolding c by (auto simp: get-all-marked-decomposition-map-convert)
 have [simp]: L \in set D
   using LD by auto
 have CD: C = mset D
   using CE confl by auto
 obtain D' where
   E: E = Some D and
   DD': mset\ D = \{\#L\#\} + mset\ D'
   using that[of remove1 L D]
   using S CE confl LD by (auto simp add: insert-DiffM)
 have find-level-decomp MD [] k \neq None
   apply rule
   apply (drule\ find-level-decomp-none[of - - - L\ D'])
   using DD' \langle k > j \rangle mset-eq-set DS lev L unfolding k[symmetric] j[symmetric]
   by (auto simp: ac-simps)
 then obtain L'j' where fd-some: find-level-decomp MD \mid k = Some(L', j')
   by (cases find-level-decomp MD [] k) auto
 have L': L' = L
   proof (rule ccontr)
    assume ¬ ?thesis
    then have L' \in \# mset (remove1 \ L \ D)
      by (metis fd-some find-level-decomp-some in-set-remove1 set-mset-mset)
    then have get-level M L' \leq get-maximum-level M (mset (remove1 L D))
      using get-maximum-level-ge-get-level by blast
    then show False using (k > j) j find-level-decomp-some[OF fd-some] S DD' by auto
 then have j': j' = j using find-level-decomp-some [OF fd-some] j S DD' by auto
 obtain c' M1' where cM: M = c' @ Marked K (Suc j) # M1'
   apply (rule map-mmset-of-mlit-eq-cons of M c @ M2 Marked K (Suc j) # M1)
    using c S apply simp
   apply (rule map-mmset-of-mlit-eq-cons [of - [Marked \ K \ (Suc \ j)] \ M1])
   apply auto
   apply (rename-tac a b' aa b, case-tac aa)
   apply auto
   apply (rename-tac a b' aa b, case-tac aa)
   by auto
 have btc-none: bt-cut j M \neq None
   apply (rule\ bt\text{-}cut\text{-}not\text{-}none[of\ M\ ])
   using cM by simp
 show ?case using db unfolding S E
   by (auto split: option.splits list.splits marked-lit.splits
    simp\ add: fd-some\ L'\ j'\ btc-none
    dest: bt-cut-some-decomp)
qed
lemma rough-state-of-state-of-backtrack[simp]:
 assumes inv: cdcl_W-all-struct-inv S
 shows rough-state-of (state-of (do-backtrack-step S))= do-backtrack-step S
proof (rule state-of-inverse)
 have f2: backtrack S (do-backtrack-step S) \vee do-backtrack-step S = S
```

```
using do-backtrack-step inv by blast
  have \bigwedge p. \neg cdcl_W - o S p \lor cdcl_W - all - struct - inv p
    using inv \ cdcl_W-all-struct-inv-inv other by blast
  then have do-backtrack-step S = S \vee cdcl_W-all-struct-inv (do-backtrack-step S)
    using f2 inv cdcl_W-o.intros cdcl_W-bj.intros by blast
  then show do-backtrack-step S \in \{S. \ cdcl_W - all - struct - inv \ S\}
    using inv by fastforce
qed
Decide fun do-decide-step where
do\text{-}decide\text{-}step\ (M,\ N,\ U,\ k,\ None) =
  (case find-first-unused-var N (lits-of-l M) of
    None \Rightarrow (M, N, U, k, None)
  | Some L \Rightarrow (Marked L (Suc k) \# M, N, U, k+1, None)) |
do\text{-}decide\text{-}step\ S = S
lemma do-decide-step:
  fixes S :: 'v \ cdcl_W-state-inv-st
  assumes do-decide-step S \neq S
  shows decide\ S\ (do\ decide\ step\ S)
  using assms
 apply (cases S, cases conflicting S)
 defer
  apply (auto split: option.splits simp add: decide.simps Marked-Propagated-in-iff-in-lits-of-l
          dest: find-first-unused-var-undefined find-first-unused-var-Some
          intro:)[1]
proof -
  fix a :: ('v, nat, 'v literal list) marked-lit list and
        b :: 'v \ literal \ list \ list \ and \ c :: 'v \ literal \ list \ list \ and
        d :: nat  and e :: 'v  literal  list  option
    fix a :: ('v, nat, 'v literal list) marked-lit list and
        b:: 'v \ literal \ list \ list \ and \ c:: 'v \ literal \ list \ list \ and
        d :: nat  and x2 :: 'v  literal  and m :: 'v  literal  list
    assume a1: m \in set b
    assume x2 \in set m
    then have f2: atm\text{-}of \ x2 \in atm\text{-}of \ (mset \ m)
    have \bigwedge f. (f m::'v clause) \in f 'set b
      using a1 by blast
    then have \bigwedge f. (atms-of\ (f\ m)::'v\ set) \subseteq atms-of-ms\ (f\ `set\ b)
    then have \bigwedge n f. (n::'v) \in atms\text{-}of\text{-}ms \ (f \text{ '} set \ b) \lor n \notin atms\text{-}of \ (f \ m)
      by (meson\ contra-subsetD)
    then have atm\text{-}of \ x2 \in atms\text{-}of\text{-}ms \ (mset \ `set \ b)
      using f2 by blast
  } note H = this
    fix m :: 'v \ literal \ list \ and \ x2
    have m \in set \ b \Longrightarrow x2 \in set \ m \Longrightarrow x2 \notin lits \text{-} of \text{-} l \ a \Longrightarrow -x2 \notin lits \text{-} of \text{-} l \ a \Longrightarrow
      \exists aa \in set \ b. \ \neg \ atm - of \ `set \ aa \subseteq atm - of \ `lits - of - l \ a
      by (meson\ atm\text{-}of\text{-}in\text{-}atm\text{-}of\text{-}set\text{-}in\text{-}uminus\ contra\text{-}subsetD\ rev\text{-}image\text{-}eq}I)
  \} note H' = this
  assume do-decide-step S \neq S and
```

```
S = (a, b, c, d, e) and
    conflicting S = None
  then show decide S (do-decide-step S)
   using HH' by (auto split: option.splits simp: lits-of-def decide.simps
     Marked-Propagated-in-iff-in-lits-of-l
     dest!: find-first-unused-var-Some)
qed
lemma mmset-of-mlit'-eq-Marked[iff]: mmset-of-mlit' z = Marked x k \longleftrightarrow z = Marked x k
 by (cases z) auto
lemma do-decide-step-no:
  do\text{-}decide\text{-}step\ S = S \Longrightarrow no\text{-}step\ decide\ S
 apply (cases S, cases conflicting S)
 apply (auto simp: atms-of-ms-mset-unfold Marked-Propagated-in-iff-in-lits-of-l lits-of-def
     dest!: atm-of-in-atm-of-set-in-uminus
     elim!: decideE
     split: option.splits)+
using atm-of-eq-atm-of by blast
lemma rough-state-of-state-of-do-decide-step[simp]:
  cdcl_W-all-struct-inv S \Longrightarrow rough-state-of (state-of (do-decide-step S)) = do-decide-step S
proof (subst state-of-inverse, goal-cases)
 case 1
 then show ?case
   by (cases do-decide-step S = S)
     (auto dest: do-decide-step decide other intro: cdcl_W-all-struct-inv-inv)
qed simp
lemma rough-state-of-state-of-do-skip-step[simp]:
  cdcl_W-all-struct-inv S \Longrightarrow rough-state-of (state-of (do-skip-step S)) = do-skip-step S
 apply (subst state-of-inverse, cases do-skip-step S = S)
  apply simp
 by (blast dest: other skip bj do-skip-step cdcl_W-all-struct-inv-inv)+
20.3.3
          Code generation
Type definition There are two invariants: one while applying conflict and propagate and one
for the other rules
declare rough-state-of-inverse[simp add]
definition Con where
  Con xs = state-of (if cdcl_W-all-struct-inv xs then xs else ([], [], [], 0, None))
lemma [code abstype]:
 Con (rough-state-of S) = S
 using rough-state-of [of S] unfolding Con-def by simp
definition do-cp-step' where
do\text{-}cp\text{-}step' S = state\text{-}of (do\text{-}cp\text{-}step (rough\text{-}state\text{-}of S))
typedef'v\ cdcl_W-state-inv-from-init-state = \{S:: v\ cdcl_W-state-inv-st. cdcl_W-all-struct-inv S
 \land cdcl_W \text{-}stgy^{**} (raw\text{-}S0\text{-}cdcl_W (raw\text{-}init\text{-}clss S)) S
 morphisms rough-state-from-init-state-of state-from-init-state-of
proof
```

```
show ([],[], [], \theta, None) \in \{S. \ cdcl_W - all - struct - inv \ S \}
    \land cdcl_W \text{-}stgy^{**} (raw\text{-}S0\text{-}cdcl_W (raw\text{-}init\text{-}clss S)) S
    by (auto simp add: cdcl_W-all-struct-inv-def)
qed
instantiation cdcl_W-state-inv-from-init-state :: (type) equal
definition equal-cdcl<sub>W</sub>-state-inv-from-init-state :: 'v cdcl<sub>W</sub>-state-inv-from-init-state \Rightarrow
  v \ cdcl_W-state-inv-from-init-state \Rightarrow bool \ \mathbf{where}
 equal\text{-}cdcl_W\text{-}state\text{-}inv\text{-}from\text{-}init\text{-}state\ S\ S'\longleftrightarrow
  (rough-state-from-init-state-of\ S=rough-state-from-init-state-of\ S')
instance
  by standard (simp add: rough-state-from-init-state-of-inject
    equal-cdcl_W-state-inv-from-init-state-def)
end
definition ConI where
  ConI S = state-from-init-state-of (if cdcl_W-all-struct-inv S)
    \land cdcl_W-stgy** (raw-S0-cdcl<sub>W</sub> (raw-init-clss S)) S then S else ([], [], [], 0, None))
lemma [code abstype]:
  ConI (rough-state-from-init-state-of S) = S
  using rough-state-from-init-state-of [of S] unfolding ConI-def
 by (simp add: rough-state-from-init-state-of-inverse)
definition id-of-I-to:: v cdcl_W-state-inv-from-init-state \Rightarrow v cdcl_W-state-inv where
id\text{-}of\text{-}I\text{-}to\ S = state\text{-}of\ (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ S)
lemma [code abstract]:
  rough-state-of (id-of-I-to S) = rough-state-from-init-state-of S
  unfolding id-of-I-to-def using rough-state-from-init-state-of [of S] by auto
Conflict and Propagate function do-full1-cp-step :: v \ cdcl_W-state-inv \Rightarrow v \ cdcl_W-state-inv
where
do-full1-cp-step S =
  (let S' = do\text{-}cp\text{-}step' S in
   if S = S' then S else do-full1-cp-step S')
by auto
termination
proof (relation \{(T', T). (rough-state-of T', rough-state-of T) \in \{(S', S).
  (S', S) \in \{(S', S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - cp \ S \ S'\}\}\}, \ goal - cases)
  case 1
 show ?case
    using wf-if-measure-f[OF\ wf-if-measure-f[OF\ cdcl_W-cp-wf-all-inv, of ], of rough-state-of].
next
  case (2 S' S)
  then show ?case
    unfolding do-cp-step'-def
    apply simp
    by (metis\ cp\text{-}step\text{-}is\text{-}cdcl_W\text{-}cp\ rough\text{-}state\text{-}of\text{-}inverse})
qed
\mathbf{lemma}\ do\text{-}full1\text{-}cp\text{-}step\text{-}fix\text{-}point\text{-}of\text{-}do\text{-}full1\text{-}cp\text{-}step\text{:}
  do-cp-step(rough-state-of\ (do-full1-cp-step\ S)) = rough-state-of\ (do-full1-cp-step\ S)
  by (rule do-full1-cp-step.induct[of \lambda S. do-cp-step(rough-state-of (do-full1-cp-step S))
```

```
= rough\text{-}state\text{-}of (do\text{-}full1\text{-}cp\text{-}step S)])
   (metis (full-types) do-full1-cp-step.elims rough-state-of-state-of-do-cp-step do-cp-step'-def)
{f lemma} in-clauses-rough-state-of-is-distinct:
  c \in set \ (raw\text{-}init\text{-}clss \ (rough\text{-}state\text{-}of \ S) \ @ \ raw\text{-}learned\text{-}clss \ (rough\text{-}state\text{-}of \ S)) \implies distinct \ c
  apply (cases rough-state-of S)
  using rough-state-of of S by (auto simp add: distinct-mset-set-distinct cdcl_W-all-struct-inv-def
   distinct-cdcl_W-state-def)
lemma do-full1-cp-step-full:
 full\ cdcl_W-cp (rough-state-of S)
   (rough-state-of\ (do-full1-cp-step\ S))
 unfolding full-def
proof (rule conjI, induction S rule: do-full1-cp-step.induct)
 case (1 S)
 then have f1:
     cdcl_W-cp^{**} ((do-cp-step (rough-state-of S))) (
        (rough-state-of (do-full1-cp-step (state-of (do-cp-step (rough-state-of S))))))
     \vee state-of (do-cp-step (rough-state-of S)) = S
   using rough-state-of-state-of-do-cp-step[of S] unfolding do-cp-step'-def by fastforce
 have f2: \land c. (if c = state-of (do-cp-step (rough-state-of c))
      then c else do-full1-cp-step (state-of (do-cp-step (rough-state-of c))))
    = do-full1-cp-step c
   by (metis (full-types) do-cp-step'-def do-full1-cp-step.simps)
 have f3: \neg cdcl_W - cp \ (rough-state-of S) \ (do-cp-step \ (rough-state-of S))
   \vee state-of (do-cp-step (rough-state-of S)) = S
   \vee \ cdcl_W \text{-}cp^{++} \ (rough\text{-}state\text{-}of\ S)
       (rough-state-of\ (do-full1-cp-step\ (state-of\ (do-cp-step\ (rough-state-of\ S)))))
   using f1 by (meson rtranclp-into-tranclp2)
  { assume do-full1-cp-step S \neq S
   then have do-cp-step (rough-state-of S) = rough-state-of S
       \longrightarrow cdcl_W - cp^{**} \ (rough\text{-}state\text{-}of\ S) \ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ S))
     \vee do-cp-step (rough-state-of S) \neq rough-state-of S
       \land state-of (do-cp-step (rough-state-of S)) \neq S
     using f2 f1 by (metis (no-types))
   then have do-cp-step (rough-state-of S) \neq rough-state-of S
       \land state-of (do-cp-step (rough-state-of S)) \neq S
     \vee \ cdcl_W - cp^{**} \ (rough\text{-}state\text{-}of\ S) \ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ S))
     by (metis rough-state-of-state-of-do-cp-step)
   then have cdcl_W-cp^{**} (rough-state-of S) (rough-state-of (do-full1-cp-step S))
     using f3 f2 by (metis (no-types) cp-step-is-cdcl<sub>W</sub>-cp tranclp-into-rtranclp) }
  then show ?case
   by fastforce
next
 show no-step cdcl_W-cp (rough-state-of (do-full1-cp-step S))
   apply (rule do-cp-step-eq-no-step[OF do-full1-cp-step-fix-point-of-do-full1-cp-step[of S]])
   using in-clauses-rough-state-of-is-distinct unfolding do-cp-step'-def by blast
qed
lemma [code abstract]:
rough-state-of (do-cp-step' S) = do-cp-step (rough-state-of S)
unfolding do-cp-step'-def by auto
The other rules fun do-other-step where
do-other-step S =
```

```
(let T = do\text{-}skip\text{-}step S in
    if T \neq S
    then T
    else
      (let \ U = do\text{-}resolve\text{-}step \ T \ in
      if U \neq T
      then U else
      (let \ V = do\text{-}backtrack\text{-}step \ U \ in
      if V \neq U then V else do-decide-step V)))
lemma do-other-step:
 assumes inv: cdcl_W-all-struct-inv S and
 st: do\text{-}other\text{-}step \ S \neq S
 shows cdcl_W-o S (do-other-step S)
  using st inv by (auto split: if-split-asm
   simp add: Let-def
   intro: do-skip-step do-resolve-step do-backtrack-step do-decide-step
    cdcl_W-o.intros cdcl_W-bj.intros)
lemma do-other-step-no:
  assumes inv: cdcl_W-all-struct-inv S and
  st: do-other-step S = S
 shows no-step cdcl_W-o S
 using st inv by (auto split: if-split-asm elim: cdcl_W-bjE
   simp\ add: Let\text{-}def\ cdcl_W\text{-}bj.simps\ elim!: cdcl_W\text{-}o.cases
   dest!: do-skip-step-no do-resolve-step-no do-backtrack-step-no do-decide-step-no)
lemma rough-state-of-state-of-do-other-step[simp]:
  rough-state-of (state-of (do-other-step (rough-state-of S))) = do-other-step (rough-state-of S)
proof (cases do-other-step (rough-state-of S) = rough-state-of S)
 case True
 then show ?thesis by simp
next
 case False
 have cdcl_W-o (rough-state-of S) (do-other-step (rough-state-of S))
   by (metis False cdcl<sub>W</sub>-all-struct-inv-rough-state do-other-step[of rough-state-of S])
  then have cdcl_W-all-struct-inv (do-other-step (rough-state-of S))
   using cdcl_W-all-struct-inv-inv cdcl_W-all-struct-inv-rough-state other by blast
  then show ?thesis
   by (simp add: CollectI state-of-inverse)
qed
definition do-other-step' where
do-other-step' S =
 state-of\ (do-other-step\ (rough-state-of\ S))
lemma rough-state-of-do-other-step'[code abstract]:
rough-state-of (do-other-step' S) = do-other-step (rough-state-of S)
apply (cases do-other-step (rough-state-of S) = rough-state-of S)
  unfolding do-other-step'-def apply simp
using do-other-step [of rough-state-of S] by (auto intro: cdcl_W-all-struct-inv-inv
   cdcl_W-all-struct-inv-rough-state other state-of-inverse)
definition do\text{-}cdcl_W\text{-}stgy\text{-}step where
do\text{-}cdcl_W\text{-}stgy\text{-}step\ S =
```

```
(let T = do-full1-cp-step S in
    if T \neq S
    then T
    else
      (let \ U = (do\text{-}other\text{-}step'\ T)\ in
      (do-full1-cp-step\ U)))
definition do\text{-}cdcl_W\text{-}stgy\text{-}step' where
do-cdcl_W-stgy-step' S = state-from-init-state-of (rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S)))
lemma toS-do-full1-cp-step-not-eq: do-full1-cp-step S \neq S \Longrightarrow
   rough-state-of S \neq rough-state-of (do-full1-cp-step S)
proof -
 assume a1: do-full1-cp-step S \neq S
 then have S \neq do\text{-}cp\text{-}step' S
   by fastforce
  then show ?thesis
   by (metis (no-types) do-cp-step'-def do-full1-cp-step-fix-point-of-do-full1-cp-step
     rough-state-of-inverse)
qed
do-full1-cp-step should not be unfolded anymore:
declare do-full1-cp-step.simps[simp del]
Correction of the transformation lemma do\text{-}cdcl_W\text{-}stgy\text{-}step:
 assumes do\text{-}cdcl_W\text{-}stgy\text{-}step\ S \neq S
 shows cdcl_W-stgy (rough-state-of S) (rough-state-of (do-cdcl_W-stgy-step S))
proof (cases do-full1-cp-step S = S)
  case False
 then show ?thesis
   using assms do-full1-cp-step-full[of S] unfolding full-unfold do-cdcl_W-stgy-step-def
   by (auto intro!: cdcl_W-stgy.intros dest: toS-do-full1-cp-step-not-eq)
next
 case True
 have cdcl_W-o (rough-state-of S) (rough-state-of (do-other-step'S))
   by (smt\ True\ assms\ cdcl_W-all-struct-inv-rough-state do-cdcl_W-stgy-step-def do-other-step
     rough-state-of-do-other-step' rough-state-of-inverse)
 moreover
   have
     np: no-step propagate (rough-state-of S) and
     nc: no-step conflict (rough-state-of S)
      apply (metis True cdcl_W-cp.simps do-cp-step-eq-no-step
        do-full1-cp-step-fix-point-of-do-full1-cp-step in-clauses-rough-state-of-is-distinct)
     by (metis True do-conflict-step-no-step do-cp-step-eq-no-prop-no-confl
       do-full1-cp-step-fix-point-of-do-full1-cp-step)
   then have no-step cdcl_W-cp (rough-state-of S)
     by (simp\ add:\ cdcl_W\text{-}cp.simps)
 moreover have full cdcl_W-cp (rough-state-of (do-other-step' S))
   (rough-state-of\ (do-full1-cp-step\ (do-other-step'\ S)))
   using do-full1-cp-step-full by auto
  ultimately show ?thesis
   using assms True unfolding do-cdclw-stqy-step-def
   by (auto intro!: cdcl_W-stgy.other' dest: toS-do-full1-cp-step-not-eq)
qed
```

```
{f lemma}\ do-skip-step-trail-changed-or-conflict:
 assumes d: do-other-step S \neq S
 and inv: cdcl_W-all-struct-inv S
  shows trail S \neq trail (do-other-step S)
proof -
  have M: \bigwedge M \ K \ M1 \ c. \ M = c @ K \# M1 \Longrightarrow Suc (length M1) \leq length M
   by auto
  have cdcl_W-M-level-inv S
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  have cdcl_W-o S (do-other-step S) using do-other-step [OF inv d].
  then show ?thesis
   using \langle cdcl_W \text{-}M\text{-}level\text{-}inv S \rangle
   proof (induction do-other-step S rule: cdcl_W-o-induct-lev2)
     case decide
     then show ?thesis
       apply (cases S)
       apply (auto dest!: find-first-unused-var-Some
         simp: split: option.splits)
       by (meson atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set contra-subsetD)
   next
   case (skip)
   then show ?case
     by (cases S; cases do-other-step S) force
   next
     case (resolve)
     then show ?case
        by (cases S, cases do-other-step S) force
   next
       case (backtrack K i M1 M2 L D) note decomp = this(1) and confl-S = this(3) and undef =
this(6)
       and U = this(7)
     then show ?case
       apply (cases do-other-step S)
       apply (auto split: if-split-asm simp: Let-def)
           apply (cases S rule: do-skip-step.cases; auto split: if-split-asm)
          apply (cases S rule: do-skip-step.cases; auto split: if-split-asm)
         apply (cases S rule: do-backtrack-step.cases;
           auto\ split:\ if\text{-}split\text{-}asm\ option.splits\ list.splits\ marked\text{-}lit.splits
             dest!: bt-cut-some-decomp simp: Let-def)
       using d apply (cases S rule: do-decide-step.cases; auto split: option.splits)[]
       done
   qed
qed
\mathbf{lemma}\ do\text{-}full 1\text{-}cp\text{-}step\text{-}induct\text{:}
  (\bigwedge S. \ (S \neq do\text{-}cp\text{-}step'\ S \Longrightarrow P\ (do\text{-}cp\text{-}step'\ S)) \Longrightarrow P\ S) \Longrightarrow P\ a0
  using do-full1-cp-step.induct by metis
\mathbf{lemma}\ do\text{-}cp\text{-}step\text{-}neq\text{-}trail\text{-}increase:
  \exists c. \ raw-trail \ (do-cp-step \ S) = c \ @ \ raw-trail \ S \ \land (\forall m \in set \ c. \ \neg \ is-marked \ m)
  by (cases S, cases raw-conflicting S)
     (auto simp add: do-cp-step-def do-conflict-step-def do-propagate-step-def split: option.splits)
```

```
\exists c. \ raw-trail \ (rough-state-of \ (do-full1-cp-step \ S)) = c \ @ \ raw-trail \ (rough-state-of \ S)
   \land (\forall m \in set \ c. \ \neg \ is\text{-}marked \ m)
 apply (induction rule: do-full1-cp-step-induct)
 apply (rename-tac S, case-tac do-cp-step' S = S)
   apply (simp add: do-full1-cp-step.simps)
  by (smt Un-iff append-assoc do-cp-step'-def do-cp-step-neg-trail-increase do-full1-cp-step.simps
   rough-state-of-state-of-do-cp-step set-append)
lemma do-cp-step-conflicting:
  conflicting (rough-state-of S) \neq None \Longrightarrow do-cp-step' S = S
 unfolding do-cp-step'-def do-cp-step-def by simp
lemma do-full1-cp-step-conflicting:
  conflicting (rough-state-of S) \neq None \Longrightarrow do-full1-cp-step S = S
  unfolding do-cp-step'-def do-cp-step-def
 apply (induction rule: do-full1-cp-step-induct)
 by (rename-tac S, case-tac S \neq do-cp-step' S)
  (auto simp add: do-full1-cp-step.simps do-cp-step-conflicting)
\mathbf{lemma}\ do\text{-}decide\text{-}step\text{-}not\text{-}conflicting\text{-}one\text{-}more\text{-}decide\text{:}}
 assumes
   conflicting S = None  and
   do\text{-}decide\text{-}step\ S \neq S
 shows Suc (length (filter is-marked (raw-trail S)))
   = length (filter is-marked (raw-trail (do-decide-step S)))
  using assms unfolding do-other-step'-def
  by (cases S) (force simp: Let-def split: if-split-asm option.splits
    dest!: find-first-unused-var-Some-not-all-incl)
lemma do-decide-step-not-conflicting-one-more-decide-bt:
 assumes conflicting S \neq None and
  do\text{-}decide\text{-}step\ S \neq S
 shows length (filter is-marked (raw-trail S)) <
   length (filter is-marked (raw-trail (do-decide-step S)))
  using assms unfolding do-other-step'-def by (cases S, cases conflicting S)
   (auto simp add: Let-def split: if-split-asm option.splits)
\mathbf{lemma}\ do\text{-}other\text{-}step\text{-}not\text{-}conflicting\text{-}one\text{-}more\text{-}decide\text{-}bt\text{:}}
 assumes
   conflicting (rough-state-of S) \neq None and
   conflicting (rough-state-of (do-other-step' S)) = None and
   do-other-step' S \neq S
 shows length (filter is-marked (raw-trail (rough-state-of S)))
   > length (filter is-marked (raw-trail (rough-state-of (do-other-step'S))))
proof (cases S, goal-cases)
 case (1 \ y) note S = this(1) and inv = this(2)
 obtain M N U k E where y: y = (M, N, U, k, Some E)
   using assms(1) S inv by (cases y, cases conflicting y) <math>auto
 have M: rough-state-of (state-of (M, N, U, k, Some E)) = (M, N, U, k, Some E)
   using inv y by (auto simp add: state-of-inverse)
 have bt: do-other-step' S = state-of (do-backtrack-step (rough-state-of S))
   proof (cases rough-state-of S rule: do-decide-step.cases)
     case 1
     then show ?thesis
       using assms(1,2) by auto[]
```

```
next
     case (2 \ v \ vb \ vd \ vf \ vh)
     have f3: \land c. (if do-skip-step (rough-state-of c) \neq rough-state-of c
       then do-skip-step (rough-state-of c)
      else if do-resolve-step (do-skip-step (rough-state-of c)) \neq do-skip-step (rough-state-of c)
           then do-resolve-step (do-skip-step (rough-state-of c))
           else if do-backtrack-step (do-resolve-step (do-skip-step (rough-state-of c)))
            \neq do-resolve-step (do-skip-step (rough-state-of c))
           then do-backtrack-step (do-resolve-step (do-skip-step (rough-state-of c)))
           else do-decide-step (do-backtrack-step (do-resolve-step
            (do\text{-}skip\text{-}step\ (rough\text{-}state\text{-}of\ c)))))
      = rough\text{-}state\text{-}of (do\text{-}other\text{-}step'c)
      by (simp add: rough-state-of-do-other-step')
     have
       (raw-trail\ (rough-state-of\ (do-other-step'\ S)),
      raw-init-clss (rough-state-of (do-other-step'S)),
        raw-learned-clss (rough-state-of (do-other-step'S)),
        raw-backtrack-lvl (rough-state-of (do-other-step'S)), None)
      = rough-state-of (do-other-step' S)
      using assms(2) by (cases\ do\ other\ step'\ S) auto
     then show ?thesis
      using f3 2 by (metis (no-types) do-decide-step.simps(2) do-resolve-step-trail-is-None
        do-skip-step-trail-is-None rough-state-of-inverse)
   qed
 show ?case
   using assms(2) S unfolding bt y inv
   apply simp
   by (auto simp add: M bt-cut-not-none
        split: option.splits
        dest!: bt-cut-some-decomp)
qed
lemma do-other-step-not-conflicting-one-more-decide:
 assumes conflicting (rough-state-of S) = None and
 do-other-step' S \neq S
 shows 1 + length (filter is-marked (raw-trail (rough-state-of S)))
   = length (filter is-marked (raw-trail (rough-state-of (do-other-step'S))))
proof (cases S, goal-cases)
 case (1 \ y) note S = this(1) and inv = this(2)
 obtain M N U k where y: y = (M, N, U, k, None) using assms(1) S inv by (cases y) auto
 have M: rough-state-of (state-of (M, N, U, k, None)) = (M, N, U, k, None)
   using inv y by (auto simp add: state-of-inverse)
 have state-of (do-decide-step (M, N, U, k, None)) \neq state-of (M, N, U, k, None)
   using assms(2) unfolding do-other-step'-def y inv S by (auto simp add: M)
 then have f_4: do-skip-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis (full-types) do-skip-step.simps(4))
 have f5: do-resolve-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis (no-types) do-resolve-step.simps(4))
 have f6: do-backtrack-step (rough-state-of S) = rough-state-of S
   unfolding S M y by (metis\ (no-types)\ do-backtrack-step.simps(2))
 have do-other-step (rough-state-of S) \neq rough-state-of S
   using assms(2) unfolding S M y do-other-step'-def by (metis\ (no-types))
 then show ?case
   using f6 f5 f4 by (simp add: assms(1) do-decide-step-not-conflicting-one-more-decide
     do-other-step'-def)
```

```
lemma rough-state-of-state-of-do-skip-step-rough-state-of[simp]:
  rough-state-of (state-of (do-skip-step (rough-state-of S))) = do-skip-step (rough-state-of S)
  by (smt do-other-step.simps rough-state-of-inverse rough-state-of-state-of-do-other-step)
lemma conflicting-do-resolve-step-iff[iff]:
  conflicting\ (do\text{-}resolve\text{-}step\ S) = None \longleftrightarrow conflicting\ S = None
  by (cases S rule: do-resolve-step.cases)
  (auto simp add: Let-def split: option.splits)
lemma conflicting-do-skip-step-iff[iff]:
  conflicting (do-skip-step S) = None \longleftrightarrow conflicting S = None
  by (cases S rule: do-skip-step.cases)
     (auto simp add: Let-def split: option.splits)
lemma conflicting-do-decide-step-iff[iff]:
  conflicting\ (do\text{-}decide\text{-}step\ S) = None \longleftrightarrow conflicting\ S = None
  by (cases S rule: do-decide-step.cases)
     (auto simp add: Let-def split: option.splits)
lemma conflicting-do-backtrack-step-imp[simp]:
  do\text{-}backtrack\text{-}step \ S \neq S \Longrightarrow conflicting \ (do\text{-}backtrack\text{-}step \ S) = None
  by (cases S rule: do-backtrack-step.cases)
     (auto simp add: Let-def split: list.splits option.splits marked-lit.splits)
\mathbf{lemma}\ do-skip-step-eq-iff-trail-eq:
  do-skip-step S = S \longleftrightarrow trail (do-skip-step S) = trail S
  by (cases S rule: do-skip-step.cases) auto
lemma do-decide-step-eq-iff-trail-eq:
  do\text{-}decide\text{-}step\ S = S \longleftrightarrow trail\ (do\text{-}decide\text{-}step\ S) = trail\ S
  by (cases S rule: do-decide-step.cases) (auto split: option.split)
\mathbf{lemma}\ do\text{-}backtrack\text{-}step\text{-}eq\text{-}iff\text{-}trail\text{-}eq\text{:}
  do-backtrack-step S = S \longleftrightarrow raw-trail (do-backtrack-step S) = raw-trail S
  by (cases S rule: do-backtrack-step.cases)
     (auto split: option.split list.splits marked-lit.splits
       dest!: bt-cut-in-get-all-marked-decomposition)
lemma do-resolve-step-eq-iff-trail-eq:
  do\text{-}resolve\text{-}step\ S = S \longleftrightarrow trail\ (do\text{-}resolve\text{-}step\ S) = trail\ S
  by (cases S rule: do-resolve-step.cases) auto
\mathbf{lemma}\ do\text{-}other\text{-}step\text{-}eq\text{-}iff\text{-}trail\text{-}eq:
  do\text{-}other\text{-}step\ S = S \longleftrightarrow raw\text{-}trail\ (do\text{-}other\text{-}step\ S) = raw\text{-}trail\ S
  apply
  (auto simp add: Let-def do-skip-step-eq-iff-trail-eq
    do-decide-step-eq-iff-trail-eq do-backtrack-step-eq-iff-trail-eq
    do-resolve-step-eq-iff-trail-eq
 apply (simp add: do-resolve-step-eq-iff-trail-eq[symmetric]
     do-skip-step-eq-iff-trail-eq[symmetric])
 apply (simp add: do-skip-step-eq-iff-trail-eq[symmetric]
```

```
do\text{-}decide\text{-}step\text{-}eq\text{-}iff\text{-}trail\text{-}eq \ }do\text{-}backtrack\text{-}step\text{-}eq\text{-}iff\text{-}trail\text{-}eq}[symmetric]
   do-resolve-step-eq-iff-trail-eq[symmetric]
 done
lemma do-full1-cp-step-do-other-step'-normal-form[dest!]:
 assumes H: do-full1-cp-step (do-other-step' S) = S
 shows do-other-step' S = S \land do-full1-cp-step S = S
proof -
 let ?T = do\text{-}other\text{-}step' S
  { assume confl: conflicting (rough-state-of ?T) \neq None
   then have tr: trail\ (rough\text{-}state\text{-}of\ (do\text{-}full1\text{-}cp\text{-}step\ ?T)) = trail\ (rough\text{-}state\text{-}of\ ?T)
     using do-full1-cp-step-conflicting by fastforce
   have raw-trail (rough-state-of (do-full1-cp-step (do-other-step' S))) =
     raw-trail (rough-state-of S)
     using arg\text{-}cong[OF\ H,\ of\ \lambda S.\ raw\text{-}trail\ (rough\text{-}state\text{-}of\ S)].
   then have raw-trail (rough-state-of (do-other-step' S)) = raw-trail (rough-state-of S)
      using confl by (auto simp add: do-full1-cp-step-conflicting)
   then have do-other-step' S = S
     by (simp add: do-other-step-eq-iff-trail-eq[symmetric] do-other-step'-def
       del: do-other-step.simps)
  }
 moreover {
   assume eq[simp]: do\text{-}other\text{-}step' S = S
   obtain c where c: raw-trail (rough-state-of (do-full1-cp-step S)) =
     c \otimes raw-trail (rough-state-of S)
     using do-full1-cp-step-neq-trail-increase by auto
   moreover have raw-trail (rough-state-of (do-full1-cp-step S)) = raw-trail (rough-state-of S)
     using arg\text{-}cong[OF\ H,\ of\ \lambda S.\ raw\text{-}trail\ (rough\text{-}state\text{-}of\ S)]} by simp
   finally have c = [] by blast
   then have do-full1-cp-step S = S using assms by auto
   }
  moreover {
   assume confl: conflicting (rough-state-of ?T) = None and neq: do-other-step' S \neq S
   obtain c where
     c: raw-trail (rough-state-of (do-full1-cp-step ?T)) = c \otimes raw-trail (rough-state-of ?T) and
     nm: \forall m \in set \ c. \ \neg \ is\text{-}marked \ m
     using do-full1-cp-step-neq-trail-increase by auto
   have length (filter is-marked (raw-trail (rough-state-of (do-full1-cp-step ?T))))
      = length (filter is-marked (raw-trail (rough-state-of ?T)))
     using nm unfolding c by force
   moreover have length (filter is-marked (raw-trail (rough-state-of S)))
      \neq length (filter is-marked (raw-trail (rough-state-of ?T)))
     using do-other-step-not-conflicting-one-more-decide[OF - neq]
     do\text{-}other\text{-}step\text{-}not\text{-}conflicting\text{-}one\text{-}more\text{-}decide\text{-}bt[of\ S,\ OF\ -\ confl\ neq]}
     by linarith
   finally have False unfolding H by blast
 ultimately show ?thesis by blast
qed
lemma do-cdcl_W-stgy-step-no:
 assumes S: do\text{-}cdcl_W\text{-}stgy\text{-}step\ S = S
 shows no-step cdcl_W-stgy (rough-state-of S)
```

```
proof -
   fix S'
   assume full1 cdcl_W-cp (rough-state-of S) S'
   then have False
     using do-full1-cp-step-full[of S] unfolding full-def S rtranclp-unfold full1-def
     by (smt \ assms \ do-cdcl_W-stgy-step-def \ tranclpD)
  }
  moreover {
   fix S' S''
   assume cdcl_W-o (rough-state-of S) S' and
    no\text{-}step\ propagate\ (rough\text{-}state\text{-}of\ S) and
    no-step conflict (rough-state-of S) and
    full\ cdcl_W-cp\ S'\ S''
   then have False
     using assms unfolding do\text{-}cdcl_W\text{-}stgy\text{-}step\text{-}def
     by (smt\ cdcl_W\ -all\ -struct\ -inv\ -rough\ -state\ do\ -full\ 1\ -cp\ -step\ -do\ -other\ -step\ '-normal\ -form
        do-other-step-no rough-state-of-do-other-step')
 ultimately show ?thesis using assms by (force simp: cdcl<sub>W</sub>-cp.simps cdcl<sub>W</sub>-stgy.simps)
qed
\mathbf{lemma}\ to S-rough-state-of-state-of-rough-state-from-init-state-of[simp]:
  rough-state-of (state-of (rough-state-from-init-state-of S))
    = rough-state-from-init-state-of S
  using rough-state-from-init-state-of [of S] by (auto simp add: state-of-inverse)
lemma cdcl_W-cp-is-rtranclp-cdcl<sub>W</sub>: cdcl_W-cp S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-cp.induct)
  using conflict apply blast
  using propagate by blast
lemma rtranclp-cdcl_W-cp-is-rtranclp-cdcl_W: cdcl_W-cp** S T \Longrightarrow cdcl_W** S T
  apply (induction rule: rtranclp-induct)
   apply simp
  by (fastforce dest!: cdcl_W-cp-is-rtranclp-cdcl<sub>W</sub>)
lemma cdcl_W-stqy-is-rtranclp-cdcl<sub>W</sub>:
  cdcl_W-stgy S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-stgy.induct)
  using cdcl_W-stqy.conflict' rtranclp-cdcl_W-stqy-rtranclp-cdcl_W apply blast
  unfolding full-def by (fastforce dest!:other rtranclp-cdcl<sub>W</sub>-cp-is-rtranclp-cdcl<sub>W</sub>)
\mathbf{lemma}\ cdcl_W-stgy-init-clss: cdcl_W-stgy S\ T \Longrightarrow cdcl_W-M-level-inv S \Longrightarrow init-clss S = init-clss T
  using rtranclp-cdcl_W-init-clss cdcl_W-stgy-is-rtranclp-cdcl_W by fast
lemma clauses-toS-rough-state-of-do-cdcl_W-stgy-step[simp]:
  init-clss \ (rough-state-of \ (do-cdcl_W-stgy-step \ (state-of \ (rough-state-from-init-state-of \ S))))
    = init\text{-}clss (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of S) (is - = init\text{-}clss ?S)
proof (cases do-cdcl<sub>W</sub>-stgy-step (state-of ?S) = state-of ?S)
  case True
  then show ?thesis by simp
next
  case False
 have \bigwedge c. \ cdcl_W-M-level-inv (rough-state-of c)
```

```
using cdcl_W-all-struct-inv-def cdcl_W-all-struct-inv-rough-state by blast
  then have \bigwedge c. init-clss (rough-state-of c) = init-clss (rough-state-of (do-cdcl<sub>W</sub>-stgy-step c))
   \lor do\text{-}cdcl_W\text{-}stgy\text{-}step\ c = c
   using cdcl_W-stgy-no-more-init-clss do-cdcl<sub>W</sub>-stgy-step by blast
  then show ?thesis
   using False by force
qed
lemma raw-init-clss-do-cp-step[simp]:
 raw-init-clss (do-cp-step S) = raw-init-clss S
by (cases S) (auto simp: do-cp-step-def do-propagate-step-def do-conflict-step-def
 split: option.splits)
lemma raw-init-clss-do-cp-step'[simp]:
 raw-init-clss (rough-state-of (do-cp-step' S)) = raw-init-clss (rough-state-of S)
 by (simp add: do-cp-step'-def)
lemma raw-init-clss-rough-state-of-do-full1-cp-step[simp]:
  raw-init-clss (rough-state-of (do-full1-cp-step S))
 = raw\text{-}init\text{-}clss (rough\text{-}state\text{-}of S)
 apply (rule do-full1-cp-step.induct[of \lambda S.
   raw-init-clss (rough-state-of (do-full1-cp-step S))
  = raw\text{-}init\text{-}clss (rough\text{-}state\text{-}of S)])
 by (metis (mono-tags, lifting) do-full1-cp-step.simps raw-init-clss-do-cp-step')
lemma raw-init-clss-do-skip-def[simp]:
 raw-init-clss (do-skip-step S) = raw-init-clss S
 by (cases S rule: do-skip-step.cases) (auto simp: do-other-step'-def Let-def
  split: option.splits)
lemma raw-init-clss-do-resolve-def[simp]:
 raw-init-clss (do-resolve-step S) = raw-init-clss S
 by (cases S rule: do-resolve-step.cases) (auto simp: do-other-step'-def Let-def
  split: option.splits)
lemma raw-init-clss-do-backtrack-def[simp]:
  raw-init-clss (do-backtrack-step S) = raw-init-clss S
 by (cases S rule: do-backtrack-step.cases) (auto simp: do-other-step'-def Let-def
 split: option.splits list.splits marked-lit.splits)
lemma raw-init-clss-do-decide-def[simp]:
  raw-init-clss (do-decide-step S) = raw-init-clss S
 by (cases S rule: do-decide-step.cases) (auto simp: do-other-step'-def Let-def
  split: option.splits)
lemma raw-init-clss-rough-state-of-do-other-step'[simp]:
 raw-init-clss (rough-state-of (do-other-step' S))
  = raw\text{-}init\text{-}clss (rough\text{-}state\text{-}of S)
 by (cases S) (auto simp: do-other-step'-def Let-def do-skip-step.cases
 split: option.splits)
lemma [simp]:
  raw-init-clss (rough-state-of (do-cdcl<sub>W</sub>-stgy-step (state-of (rough-state-from-init-state-of S))))
 raw-init-clss (rough-state-from-init-state-of S)
```

```
unfolding do\text{-}cdcl_W\text{-}stgy\text{-}step\text{-}def by (auto simp: Let\text{-}def)
lemma rough-state-from-init-state-of-do-cdcl_W-stgy-step'[code abstract]:
 rough-state-from-init-state-of (do-cdcl<sub>W</sub>-stgy-step' S) =
   rough-state-of (do-cdcl_W-stgy-step (id-of-I-to S))
proof -
 let ?S = (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of S)
 have cdcl_W-stgy** (raw-S0-cdcl_W (raw-init-clss (rough-state-from-init-state-of S)))
    (rough-state-from-init-state-of S)
    using rough-state-from-init-state-of [of S] by auto
  moreover have cdcl_W-stgy^{**}
                  (rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\ S)
                  (rough-state-of\ (do-cdcl_W-stgy-step))
                    (state-of\ (rough-state-from-init-state-of\ S))))
     using do\text{-}cdcl_W\text{-}stqy\text{-}step[of\ state\text{-}of\ ?S]
     by (cases\ do-cdcl_W-stgy-step\ (state-of\ ?S) = state-of\ ?S) auto
  ultimately show ?thesis
    unfolding do-cdcl<sub>W</sub>-stqy-step'-def id-of-I-to-def
    by (auto intro: state-from-init-state-of-inverse)
\mathbf{qed}
All rules together function do-all-cdcl<sub>W</sub>-stgy where
do-all-cdcl_W-stgy S =
  (let \ T = do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S\ in
  if T = S then S else do-all-cdcl<sub>W</sub>-stgy T)
by fast+
termination
proof (relation \{(T, S).
    (cdcl_W-measure (rough-state-from-init-state-of T),
    cdcl_W-measure (rough-state-from-init-state-of S))
      \in lexn \{(a, b). a < b\} \ 3\}, goal-cases)
  case 1
  show ?case by (rule wf-if-measure-f) (auto intro!: wf-lexn wf-less)
next
  case (2 S T) note T = this(1) and ST = this(2)
 let ?S = rough-state-from-init-state-of S
  have S: cdcl_W - stgy^{**} (raw - SO - cdcl_W (raw - init - clss ?S)) ?S
    using rough-state-from-init-state-of [of S] by auto
  moreover have cdcl_W-stgy (rough-state-from-init-state-of S)
    (rough-state-from-init-state-of\ T)
    proof -
      have \bigwedge c. rough-state-of (state-of (rough-state-from-init-state-of c)) =
        rough-state-from-init-state-of c
        using rough-state-from-init-state-of by force
      then have do-cdcl_W-stqy-step (state-of (rough-state-from-init-state-of S))
        \neq state-of (rough-state-from-init-state-of S)
       \mathbf{using}\ ST\ T\ rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\text{-}inverse
        unfolding id-of-I-to-def do-cdcl<sub>W</sub>-stgy-step'-def
        by fastforce
      \mathbf{from} \ \textit{do-cdcl}_W\textit{-stgy-step}[\textit{OF this}] \ \mathbf{show} \ \textit{?thesis}
        by (simp\ add:\ T\ id\text{-}of\text{-}I\text{-}to\text{-}def\ rough\text{-}state\text{-}from\text{-}init\text{-}state\text{-}of\text{-}do\text{-}cdcl}_W\text{-}stgy\text{-}step')
    qed
  moreover
    have cdcl_W-all-struct-inv (rough-state-from-init-state-of S)
```

```
using rough-state-from-init-state-of [of S] by auto
   then have cdcl_W-all-struct-inv (raw-S0-cdcl_W (raw-init-clss (rough-state-from-init-state-of S)))
     by (cases rough-state-from-init-state-of S)
        (auto simp add: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def)
  ultimately show ?case
   by (auto intro!: cdcl_W-stqy-step-decreasing[of - - raw-S0-cdcl_W (raw-init-clss ?S)]
     simp\ del:\ cdcl_W-measure.simps)
qed
thm do-all-cdcl_W-stgy.induct
lemma do-all-cdcl_W-stgy-induct:
  (\bigwedge S. (do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S \neq S \Longrightarrow P\ (do\text{-}cdcl_W\text{-}stgy\text{-}step'\ S)) \Longrightarrow P\ S) \Longrightarrow P\ a0
 using do-all-cdcl_W-stgy.induct by metis
lemma [simp]: raw-init-clss (rough-state-from-init-state-of (do-all-cdcl<sub>W</sub>-stqy S)) =
  raw-init-clss (rough-state-from-init-state-of S)
  apply (induction rule: do-all-cdcl_W-stqy-induct)
  by (smt\ do-all-cdcl_W-stqy.simps\ do-cdcl_W-stqy-step-def\ id-of-I-to-def
    raw-init-clss-rough-state-of-do-full1-cp-step raw-init-clss-rough-state-of-do-other-step'
   rough-state-from-init-state-of-do-cdcl_W-stgy-step'
   to S{-}rough{-}state{-}of{-}state{-}of{-}rough{-}state{-}from{-}init{-}state{-}of)
lemma no-step-cdcl_W-stgy-cdcl_W-all:
  fixes S :: 'a \ cdcl_W-state-inv-from-init-state
  shows no-step cdcl_W-stay (rough-state-from-init-state-of (do-all-cdcl_W-stay S))
 apply (induction S rule: do-all-cdcl_W-stgy-induct)
  apply (rename-tac S, case-tac do-cdcl<sub>W</sub>-stgy-step' S \neq S)
proof -
  \mathbf{fix} \ Sa :: 'a \ cdcl_W-state-inv-from-init-state
  assume a1: \neg do\text{-}cdcl_W\text{-}stqy\text{-}step' Sa \neq Sa
  \{ \mathbf{fix} \ pp \}
   have (if True then Sa else do-all-cdcl<sub>W</sub>-stgy Sa) = do-all-cdcl<sub>W</sub>-stgy Sa
   then have \neg cdcl_W-stgy (rough-state-from-init-state-of (do-all-cdcl_W-stgy Sa)) pp
     using at by (smt\ do\ -cdcl_W\ -stgy\ -step\ -no\ id\ -of\ -I\ -to\ -def
        rough-state-from-init-state-of-do-cdcl_W-stgy-step'\ rough-state-of-inverse)
  then show no-step cdcl_W-stqy (rough-state-from-init-state-of (do-all-cdcl_W-stqy Sa))
   by fastforce
next
  \mathbf{fix} \ Sa :: 'a \ cdcl_W-state-inv-from-init-state
  assume a1: do\text{-}cdcl_W\text{-}stgy\text{-}step'\ Sa \neq Sa
    \implies no-step cdcl_W-stgy (rough-state-from-init-state-of
     (do-all-cdcl_W-stgy\ (do-cdcl_W-stgy-step'\ Sa)))
  assume a2: do\text{-}cdcl_W\text{-}stgy\text{-}step' Sa \neq Sa
  have do\text{-}all\text{-}cdcl_W\text{-}stgy\ Sa = do\text{-}all\text{-}cdcl_W\text{-}stgy\ (do\text{-}cdcl_W\text{-}stgy\text{-}step'\ Sa)}
   by (metis\ (full-types)\ do-all-cdcl_W-stgy.simps)
  then show no-step cdcl<sub>W</sub>-stgy (rough-state-from-init-state-of (do-all-cdcl<sub>W</sub>-stgy Sa))
   using a2 a1 by presburger
qed
lemma do-all-cdcl_W-stgy-is-rtranclp-cdcl_W-stgy:
  cdcl_W-stgy** (rough-state-from-init-state-of S)
    (rough-state-from-init-state-of\ (do-all-cdcl_W-stgy\ S))
proof (induction S rule: do-all-cdcl_W-stgy-induct)
  case (1 S) note IH = this(1)
```

```
show ?case
   proof (cases do-cdcl<sub>W</sub>-stgy-step' S = S)
     case True
     then show ?thesis by simp
   next
     case False
     have f2: do-cdcl_W-stgy-step \ (id-of-I-to \ S) = id-of-I-to \ S \longrightarrow
       rough-state-from-init-state-of (do-cdcl<sub>W</sub>-stgy-step' S)
       = rough-state-of (state-of (rough-state-from-init-state-of S))
      unfolding rough-state-from-init-state-of-do-cdcl_W-stgy-step'
       id-of-I-to-def by presburger
     have f3: do-all-cdcl_W-stgy \ S = do-all-cdcl_W-stgy \ (do-cdcl_W-stgy-step' \ S)
       by (metis (full-types) do-all-cdcl_W-stgy.simps)
     have cdcl_W-stgy (rough-state-from-init-state-of S)
        (rough-state-from-init-state-of\ (do-cdcl_W-stqy-step'\ S))
       = cdcl_W - stgy (rough - state - of (id - of - I - to S))
        (rough-state-of\ (do-cdcl_W-stgy-step\ (id-of-I-to\ S)))
       unfolding id-of-I-to-def rough-state-from-init-state-of-do-cdcl<sub>W</sub>-stqy-step'
       toS-rough-state-of-state-of-rough-state-from-init-state-of by presburger
     then show ?thesis
       using f3 f2 IH do-cdcl_W-stgy-step
       by (smt\ False\ toS-rough-state-of-state-of-rough-state-from-init-state-of\ tranclp.intros(1)
        tranclp-into-rtranclp transitive-closurep-trans'(2))
   qed
qed
Final theorem:
lemma consistent-interp-mmset-of-mlit[simp]:
  consistent-interp (lit-of 'mmset-of-mlit' 'set M') \longleftrightarrow
  consistent-interp (lit-of 'set M')
 by (auto simp: image-image)
lemma DPLL-tot-correct:
 assumes
   r: rough-state-from-init-state-of (do-all-cdcl<sub>W</sub>-stgy (state-from-init-state-of
     (([], map\ remdups\ N, [], \theta, None)))) = S and
   S: (M', N', U', k, E) = S
 shows (E \neq Some [] \land satisfiable (set (map mset N)))
   \vee (E = Some \mid \land unsatisfiable (set (map mset N)))
proof -
 let ?N = map \ remdups \ N
 have inv: cdcl_W-all-struct-inv ([], map remdups N, [], 0, None)
   unfolding cdcl_W-all-struct-inv-def distinct-cdcl<sub>W</sub>-state-def distinct-mset-set-def by auto
  then have S0: rough-state-of (state-of ([], map remdups N, [], 0, None))
   = ([], map \ remdups \ N, [], \theta, None) \ by \ simp
 have 1: full cdcl_W-stgy ([], ?N, [], 0, None) S
   unfolding full-def apply rule
     using do-all-cdcl_W-stgy-is-rtranclp-cdcl_W-stgy[ of
       state\textit{-from-init-state-of}\ ([],\ map\ remdups\ N,\ [],\ \theta,\ None)]\ inv
      by (auto simp del: do-all-cdcl<sub>W</sub>-stgy.simps simp: state-from-init-state-of-inverse
        r[symmetric] no-step-cdcl<sub>W</sub>-stgy-cdcl<sub>W</sub>-all)+
 moreover have 2: finite (set (map mset ?N)) by auto
 moreover have 3: distinct-mset-set (set (map mset ?N))
    unfolding distinct-mset-set-def by auto
 moreover
```

```
have cdcl_W-all-struct-inv S
     by (metis\ (no\text{-}types)\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}rough\text{-}state\ }r
       toS-rough-state-of-state-of-rough-state-from-init-state-of)
   then have cons: consistent-interp (lits-of-l M')
     unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def S[symmetric]
     by (auto simp: lits-of-def)
  moreover
   have [simp]:
     rough-state-from-init-state-of (state-from-init-state-of (raw-S0-cdcl<sub>W</sub> (map remdups N)))
     = raw-S0-cdcl_W \ (map \ remdups \ N)
     apply (rule \ cdcl_W - state - inv-from - init - state - from - init - state - of - inverse)
     using 3 by (auto simp: cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def
       image-image comp-def)
   have raw-init-clss ([], ?N, [], \theta, None) = raw-init-clss S
     using arq-cong[OF r, of raw-init-clss] unfolding S[symmetric]
     by (simp\ del:\ do-all-cdcl_W-stgy.simps)
   then have N': N' = map \ remdups \ N
     using S[symmetric] by auto
 have conflicting S = Some \{\#\} \land unsatisfiable (set-mset (init-clss S)) \lor
   conflicting S = None \land (case \ S \ of \ (M, \ uu-) \Rightarrow map \ mmset-of-mlit' \ M) \models asm \ init-clss \ S
   apply (rule full-cdcl_W-stgy-final-state-conclusive)
       using 1 apply simp
      using 2 apply simp
     using \beta by simp
  then have (E \neq Some [] \land satisfiable (set (map mset ?N)))
   \vee (E = Some [] \wedge unsatisfiable (set (map mset ?N)))
   using cons unfolding S[symmetric] N' apply (auto simp: comp-def)
   by (simp add: true-annots-true-cls)
 then show ?thesis by auto
qed
```

The Code The SML code is skipped in the documentation, but stays to ensure that some version of the exported code is working. The only difference between the generated code and the one used here is the export of the constructor ConI.

```
end
theory CDCL-W-Merge
imports CDCL-W-Termination
begin
```

21 Link between Weidenbach's and NOT's CDCL

21.1 Inclusion of the states

```
context conflict-driven-clause-learning_W
begin

declare cdcl_W.intros[intro] cdcl_W-bj.intros[intro] cdcl_W-o.intros[intro]

lemma backtrack-no-cdcl_W-bj:

assumes cdcl: cdcl_W-bj T U and inv: cdcl_W-M-level-inv V

shows \neg backtrack V T

using cdcl inv

apply (induction\ rule:\ cdcl_W-bj.induct)

apply (elim\ skipE,\ force\ elim!:\ backtrack-levE[OF\ -\ inv]\ simp:\ cdcl_W-M-level-inv-def)
```

```
apply (elim resolveE, force elim!: backtrack-levE[OF - inv] simp: cdcl<sub>W</sub>-M-level-inv-def)
 apply standard
 apply (elim backtrack-levE[OF - inv], elim backtrackE)
 apply (force simp del: state-simp simp add: state-eq-def cdcl<sub>W</sub>-M-level-inv-decomp)
 done
inductive skip-or-resolve :: 'st \Rightarrow 'st \Rightarrow bool where
s-or-r-skip[intro]: skip S T \Longrightarrow skip-or-resolve S T
s-or-r-resolve[intro]: resolve S T \Longrightarrow skip-or-resolve S T
lemma rtranclp-cdcl_W-bj-skip-or-resolve-backtrack:
 assumes cdcl_W-bj^{**} S U and inv: cdcl_W-M-level-inv S
 shows skip-or-resolve** S \ U \lor (\exists \ T. \ skip-or-resolve** S \ T \land backtrack \ T \ U)
 using assms
proof (induction)
 case base
 then show ?case by simp
 case (step U V) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)]
 consider
     (SU) S = U
   | (SUp) \ cdcl_W - bj^{++} \ S \ U
   using st unfolding rtranclp-unfold by blast
  then show ?case
   proof cases
     case SUp
     have \bigwedge T. skip-or-resolve** S T \Longrightarrow cdcl_W** S T
       using mono-rtranclp[of skip-or-resolve cdcl_W]
       by (blast intro: skip-or-resolve.cases)
     then have skip-or-resolve** S U
       using bj IH inv backtrack-no-cdcl<sub>W</sub>-bj rtranclp-cdcl<sub>W</sub>-consistent-inv[OF - inv] by meson
     then show ?thesis
       using bj by (auto simp: cdcl_W-bj.simps dest!: skip-or-resolve.intros)
   next
     case SU
     then show ?thesis
       using bj by (auto simp: cdcl_W-bj.simps dest!: skip-or-resolve.intros)
   qed
qed
lemma rtranclp-skip-or-resolve-rtranclp-cdcl_W:
  skip\text{-}or\text{-}resolve^{**} \ S \ T \Longrightarrow cdcl_W^{**} \ S \ T
 by (induction rule: rtranclp-induct)
  (auto dest!: cdcl_W-bj.intros cdcl_W.intros cdcl_W-o.intros simp: skip-or-resolve.simps)
definition backjump-l-cond :: 'v\ clause \Rightarrow 'v\ clause \Rightarrow 'v\ literal \Rightarrow 'st \Rightarrow 'st \Rightarrow bool\ where
backjump\text{-}l\text{-}cond \equiv \lambda C \ C' \ L' \ S \ T. \ True
definition inv_{NOT} :: 'st \Rightarrow bool  where
inv_{NOT} \equiv \lambda S. \text{ no-dup (trail } S)
declare inv_{NOT}-def[simp]
end
```

21.2 More lemmas conflict-propagate and backjumping

21.2.1 Termination

```
lemma cdcl_W-cp-normalized-element-all-inv:
 assumes inv: cdcl_W-all-struct-inv S
 obtains T where full cdcl_W-cp S T
 using assms cdcl<sub>W</sub>-cp-normalized-element unfolding cdcl<sub>W</sub>-all-struct-inv-def by blast
thm backtrackE
lemma cdcl_W-bj-measure:
 assumes cdcl_W-bj S T and cdcl_W-M-level-inv S
 shows length (trail\ S) + (if\ conflicting\ S = None\ then\ 0\ else\ 1)
   > length (trail T) + (if conflicting T = None then 0 else 1)
  using assms by (induction rule: cdcl_W-bj.induct)
  (force\ dest:arg-cong[of - - length])
   intro:\ get-all-marked-decomposition-exists-prepend
   elim!: backtrack-levE skipE resolveE
   simp: cdcl_W-M-level-inv-def)+
lemma wf-cdcl_W-bj:
  wf \{(b,a). \ cdcl_W - bj \ a \ b \land cdcl_W - M - level - inv \ a\}
 apply (rule wfP-if-measure of \lambda-. True
     - \lambda T. length (trail T) + (if conflicting T = None then 0 else 1), simplified)
 using cdcl_W-bj-measure by simp
lemma cdcl_W-bj-exists-normal-form:
 assumes lev: cdcl_W-M-level-inv S
 shows \exists T. full \ cdcl_W-bj S T
proof
 obtain T where T: full (\lambda a b. cdcl_W-bj a b \wedge cdcl_W-M-level-inv a) S T
   using wf-exists-normal-form-full[OF wf-cdcl<sub>W</sub>-bj] by auto
  then have cdcl_W-bj^{**} S T
    by (auto dest: rtranclp-and-rtranclp-left simp: full-def)
 moreover
   then have cdcl_W^{**} S T
     using mono-rtranclp[of\ cdcl_W-bj\ cdcl_W] by blast
   then have cdcl_W-M-level-inv T
     using rtranclp-cdcl_W-consistent-inv lev by auto
 ultimately show ?thesis using T unfolding full-def by auto
qed
lemma rtranclp-skip-state-decomp:
 assumes skip^{**} S T and no-dup (trail S)
 shows
   \exists M. \ trail \ S = M @ \ trail \ T \land (\forall m \in set \ M. \ \neg is\text{-marked} \ m)
   init-clss S = init-clss T
   learned-clss S = learned-clss T
   backtrack-lvl S = backtrack-lvl T
   conflicting S = conflicting T
  using assms by (induction rule: rtranclp-induct)
  (auto simp del: state-simp simp: state-eq-def elim!: skipE)
```

21.2.2 More backjumping

Backjumping after skipping or jump directly lemma rtranclp-skip-backtrack-backtrack: assumes

```
skip^{**} S T and
   backtrack T W and
   cdcl_W-all-struct-inv S
 shows backtrack S W
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step T V) note st = this(1) and skip = this(2) and IH = this(3) and bt = this(4) and
   inv = this(5)
 have skip^{**} S V
   using st skip by auto
 then have cdcl_W-all-struct-inv V
   using rtranclp-mono[of\ skip\ cdcl_W]\ assms(3)\ rtranclp-cdcl_W-all-struct-inv-inv\ mono-rtranclp
   by (auto dest!: bj other cdcl_W-bj.skip)
 then have cdcl_W-M-level-inv V
   unfolding cdcl_W-all-struct-inv-def by auto
 then obtain K i M1 M2 L D where
   conf: raw-conflicting V = Some D and
   LD: L \in \# mset\text{-}ccls \ D \text{ and }
   decomp: (Marked\ K\ (Suc\ i)\ \#\ M1,\ M2) \in set\ (get-all-marked-decomposition\ (trail\ V)) and
   lev-L: get-level (trail V) L = backtrack-lvl V and
   max: get-level (trail\ V)\ L = get-maximum-level (trail\ V)\ (mset-ccls\ D) and
   max-D: get-maximum-level (trail V) (remove1-mset L (mset-ccls D)) \equiv i and
   undef: undefined-lit M1 L and
   W: W \sim cons-trail (Propagated L (cls-of-ccls D))
             (reduce-trail-to M1
               (add-learned-cls (cls-of-ccls D)
                (update-backtrack-lvl i
                  (update\text{-}conflicting\ None\ V))))
 using bt inv by (elim backtrack-levE) metis+
 obtain L' C' M E where
   tr: trail \ T = Propagated \ L' \ C' \# \ M \ and
   raw: raw-conflicting T = Some E and
   LE: -L' \notin \# mset\text{-}ccls \ E \text{ and}
   E: mset-ccls E \neq \{\#\} and
   V: V \sim tl-trail T
   using skip by (elim skipE) metis
 let ?M = Propagated L' C' \# trail V
 have tr-M: trail\ T = ?M
   using tr \ V by auto
 have MT: M = tl (trail T) and MV: M = trail V
   using tr V by auto
 have DE[simp]: mset-ccls D = mset-ccls E
   using V conf raw by (auto simp add: state-eq-def simp del: state-simp)
 have cdcl_{W}^{**} S T using bj cdcl_{W}-bj.skip mono-rtranclp[of skip cdcl_{W} S T] other st by meson
 then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdclw-all-struct-inv-inv inv by blast
 have M-lev: cdcl_W-M-level-inv T using inv' unfolding cdcl_W-all-struct-inv-def by auto
 then have n-d': no-dup ?M
   using tr-M unfolding cdcl_W-M-level-inv-def by auto
```

```
let ?k = backtrack-lvl\ T
have [simp]:
 backtrack-lvl\ V=?k
 using V by simp
have ?k > 0
  using decomp M-lev V tr unfolding cdcl_W-M-level-inv-def by auto
then have atm\text{-}of\ L\in atm\text{-}of ' lits\text{-}of\text{-}l\ (trail\ V)
  using lev-L get-rev-level-ge-0-atm-of-in[of 0 rev (trail V) L] by auto
then have L-L': atm\text{-}of L \neq atm\text{-}of L'
 using n-d' unfolding lits-of-def by auto
have L'-M: atm-of L' \notin atm-of 'lits-of-l (trail V)
 using n-d' unfolding lits-of-def by auto
have ?M \models as \ CNot \ (mset\text{-}ccls \ D)
 using inv' raw unfolding cdcl<sub>W</sub>-conflicting-def cdcl<sub>W</sub>-all-struct-inv-def tr-M by auto
then have L' \notin \# mset-ccls (remove-clit L D)
 using L-L' L'-M \langle Propagated L' C' \# trail V \models as CNot (mset-ccls D) \rangle
 unfolding true-annots-true-cls true-clss-def
 by (auto simp: uminus-lit-swap atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set dest!: in-diffD)
have [simp]: trail (reduce-trail-to M1 T) = M1
 using decomp undef tr W V by auto
have skip^{**} S V
 using st skip by auto
have no-dup (trail\ S)
 using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
then have [simp]: init-clss S = init-clss V and [simp]: learned-clss S = learned-clss V
 using rtranclp-skip-state-decomp[OF \langle skip^{**} S V \rangle] V
 by (auto simp del: state-simp simp: state-eq-def)
then have
  W-S: W \sim cons-trail (Propagated L (cls-of-ccls E)) (reduce-trail-to M1
  (add-learned-cls (cls-of-ccls E) (update-backtrack-lvl i (update-conflicting None T))))
 using W V undef M-lev decomp tr
 by (auto simp del: state-simp simp: state-eq-def cdcl_W-M-level-inv-def)
obtain M2' where
  decomp': (Marked\ K\ (i+1)\ \#\ M1,\ M2') \in set\ (get-all-marked-decomposition\ (trail\ T))
 using decomp V unfolding tr-M by (cases hd (qet-all-marked-decomposition (trail V)),
   cases get-all-marked-decomposition (trail V)) auto
moreover
 from L-L' have get-level ?M L = ?k
   using lev-L V by (auto split: if-split-asm)
moreover
 have atm\text{-}of\ L'\notin atms\text{-}of\ (mset\text{-}ccls\ D)
   by (metis DE LE L-L' \langle L' \notin \# mset\text{-}ccls \ (remove\text{-}clit \ L \ D) \rangle in-remove1-mset-neq remove-clit
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def)
 then have get-level ?M L = get-maximum-level ?M (mset-ccls D)
   using calculation(2) lev-L max by auto
moreover
 have atm\text{-}of\ L' \notin atms\text{-}of\ (mset\text{-}ccls\ (remove\text{-}clit\ L\ D))
   by (metis DE LE \langle L' \notin \# mset\text{-}ccls \ (remove\text{-}clit \ L \ D) \rangle
     atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set atms-of-def in-remove1-mset-neg remove-clit
     in-atms-of-remove1-mset-in-atms-of)
 have i = get-maximum-level ?M (mset-ccls (remove-clit L D))
   using max-D \langle atm\text{-}of L' \notin atms\text{-}of (mset\text{-}ccls (remove\text{-}clit L D)) \rangle by auto
```

```
apply -
   apply (rule backtrack-rule[of T - L K i M1 M2' W, OF raw])
   unfolding tr-M[symmetric]
       using LD apply simp
      apply simp
      apply simp
     apply simp
    apply auto[]
   using W-S by auto
 then show ?thesis using IH inv by blast
qed
\mathbf{lemma}\ \mathit{fst-get-all-marked-decomposition-prepend-not-marked}:
 assumes \forall m \in set MS. \neg is\text{-}marked m
 shows set (map\ fst\ (qet\text{-}all\text{-}marked\text{-}decomposition\ }M))
   = set (map fst (get-all-marked-decomposition (MS @ M)))
   using assms apply (induction MS rule: marked-lit-list-induct)
   apply auto[2]
   by (rename-tac L m xs; case-tac qet-all-marked-decomposition (xs @ M)) simp-all
See also [skip^{**} ?S ?T; backtrack ?T ?W; cdcl_W-all-struct-inv ?S] \implies backtrack ?S ?W
\mathbf{lemma}\ rtranclp\text{-}skip\text{-}backtrack\text{-}backtrack\text{-}end:
 assumes
   skip: skip^{**} S T and
   bt: backtrack S W and
   inv: cdcl_W-all-struct-inv S
 shows backtrack T W
 using assms
proof -
 have M-lev: cdcl_W-M-level-inv S
   using bt inv unfolding cdcl<sub>W</sub>-all-struct-inv-def by (auto elim!: backtrack-levE)
  then obtain K i M1 M2 L D where
   raw-S: raw-conflicting S = Some D and
   LD: L \in \# mset\text{-}ccls \ D \text{ and }
   decomp: (Marked K (Suc i) \# M1, M2) \in set (get-all-marked-decomposition (trail S)) and
   lev-l: qet-level (trail\ S)\ L = backtrack-lvl S and
   lev-l-D: get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) and
   i: get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i and
   undef: undefined-lit M1 L and
   W: W \sim cons-trail (Propagated L (cls-of-ccls D))
             (reduce-trail-to M1
               (add-learned-cls\ (cls-of-ccls\ D)
                 (update-backtrack-lvl i
                   (update\text{-}conflicting\ None\ S))))
   using bt by (elim backtrack-levE)
   (simp-all\ add:\ cdcl_W-M-level-inv-decomp\ state-eq-def\ del:\ state-simp)
 let ?D = remove1\text{-}mset\ L\ (mset\text{-}ccls\ D)
 have [simp]: no-dup (trail\ S)
   using M-lev by (auto simp: cdcl_W-M-level-inv-decomp)
 have cdcl_W-all-struct-inv T
   using mono-rtranclp[of skip cdcl_W] by (smt\ bj\ cdcl_W-bj.skip inv local.skip other
     rtranclp-cdcl_W-all-struct-inv-inv)
  then have [simp]: no-dup (trail\ T)
```

```
obtain MS M_T where M: trail S = MS @ M_T and M_T: M_T = trail T and nm: \forall m \in set MS.
\neg is-marked m
   using rtranclp-skip-state-decomp(1)[OF skip] raw-S M-lev by auto
  have T: state T = (M_T, init\text{-}clss S, learned\text{-}clss S, backtrack\text{-}lvl S, Some (mset\text{-}ccls D))
   using M_T rtranclp-skip-state-decomp[of S T] skip raw-S
   by (auto simp del: state-simp simp: state-eq-def)
 have cdcl_W-all-struct-inv T
   apply (rule rtranclp-cdcl_W-all-struct-inv-inv[OF - inv])
   using bj cdcl_W-bj.skip local.skip other rtranclp-mono[of skip \ cdcl_W] by blast
  then have M_T \models as \ CNot \ (mset\text{-}ccls \ D)
   unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def using T by blast
  then have \forall L \in \#mset\text{-}ccls D. atm\text{-}of L \in atm\text{-}of ' lits\text{-}of\text{-}l M_T
   by (meson atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
     true-annots-true-cls-def-iff-negation-in-model)
 moreover have no-dup (trail S)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
  ultimately have \forall L \in \#mset\text{-}ccls D. atm\text{-}of L \notin atm\text{-}of \text{ } lits\text{-}of\text{-}l MS
   unfolding M unfolding lits-of-def by auto
  then have H: \bigwedge L. L \in \#mset\text{-}ccls\ D \Longrightarrow get\text{-}level\ (trail\ S)\ L\ =\ get\text{-}level\ M_T\ L
   unfolding M by (fastforce simp: lits-of-def)
 have [simp]: get-maximum-level (trail S) (mset-ccls D) = get-maximum-level M_T (mset-ccls D)
   using \langle M_T \models as\ CNot\ (mset-ccls\ D) \rangle M nm by (metis true-annots-CNot-all-atms-defined
     get-maximum-level-skip-un-marked-not-present)
 have lev-l': get-level M_T L = backtrack-lvl S
   using lev-l LD by (auto simp: H)
 have [simp]: trail (reduce-trail-to M1 T) = M1
   using T decomp M nm by (smt M_T append-assoc beginning-not-marked-invert
     get-all-marked-decomposition-exists-prepend\ reduce-trail-to-trail-tl-trail-decomp)
 have W: W \sim cons-trail (Propagated L (cls-of-ccls D)) (reduce-trail-to M1
   (add-learned-cls (cls-of-ccls D) (update-backtrack-lvl i (update-conflicting None T))))
   using W T i decomp undef by (auto simp del: state-simp simp: state-eq-def)
  have lev-l-D': get-level M_T L = get-maximum-level M_T (mset-ccls D)
   using lev-l-D LD by (auto simp: H)
  have [simp]: get-maximum-level (trail\ S)\ ?D = get-maximum-level M_T\ ?D
   by (smt H get-maximum-level-exists-lit get-maximum-level-ge-get-level in-diffD le-antisym
     not-gr0 not-less)
  then have i': i = get-maximum-level M_T ?D
   using i by auto
 have Marked\ K\ (i+1)\ \#\ M1 \in set\ (map\ fst\ (get-all-marked-decomposition\ (trail\ S)))
   using Set.imageI[OF decomp, of fst] by auto
  then have Marked K (i + 1) \# M1 \in set (map fst (get-all-marked-decomposition M_T))
   using fst-get-all-marked-decomposition-prepend-not-marked [OF\ nm] unfolding M by auto
 then obtain M2' where decomp':(Marked\ K\ (i+1)\ \#\ M1,\ M2')\in set\ (get-all-marked-decomposition
   by auto
 then show backtrack T W
   using T decomp' lev-l' lev-l-D' i' W LD undef
   by (force intro!: backtrack.intros simp del: state-simp simp: state-eq-def)
qed
```

lemma $cdcl_W$ -bj-decomp-resolve-skip-and-bj:

```
assumes cdcl_W-bj^{**} S T and inv: cdcl_W-M-level-inv S
 shows (skip\text{-}or\text{-}resolve^{**} \ S \ T
   \vee (\exists U. \ skip-or-resolve^{**} \ S \ U \land backtrack \ U \ T))
 using assms
proof induction
 case base
  then show ?case by simp
next
  case (step T U) note st = this(1) and bj = this(2) and IH = this(3)
 have IH: skip-or-resolve** S T
   proof -
     { assume (\exists U. skip-or-resolve^{**} S U \land backtrack U T)
      then obtain V where
        bt: backtrack V T and
        skip-or-resolve** S V
        by blast
      have cdcl_{W}^{**} S V
        using \langle skip\text{-}or\text{-}resolve^{**} \mid S \mid V \rangle rtranclp-skip-or-resolve-rtranclp-cdcl<sub>W</sub> by blast
       then have cdcl_W-M-level-inv V and cdcl_W-M-level-inv S
        using rtranclp-cdcl_W-consistent-inv inv by blast+
       with bj bt have False using backtrack-no-cdclw-bj by simp
     then show ?thesis using IH inv by blast
   qed
 show ?case
   using bi
   proof (cases rule: cdcl<sub>W</sub>-bj.cases)
     case backtrack
     then show ?thesis using IH by blast
   qed (metis (no-types, lifting) IH rtranclp.simps skip-or-resolve.simps)+
\mathbf{qed}
lemma resolve-skip-deterministic:
 resolve S \ T \Longrightarrow skip \ S \ U \Longrightarrow False
 by (auto elim!: skipE resolveE dest: hd-raw-trail)
lemma backtrack-unique:
 assumes
   bt-T: backtrack S T and
   bt-U: backtrack S U and
   inv: cdcl_W-all-struct-inv S
 shows T \sim U
proof -
 have lev: cdcl_W-M-level-inv S
   using inv unfolding cdcl_W-all-struct-inv-def by auto
  then obtain K i M1 M2 L D where
   raw-S: raw-conflicting S = Some D and
   LD: L \in \# mset\text{-}ccls \ D \ \mathbf{and}
   decomp: (Marked\ K\ (Suc\ i)\ \#\ M1\ ,\ M2)\in set\ (qet-all-marked-decomposition\ (trail\ S)) and
   lev-l: get-level (trail S) L = backtrack-lvl S and
   lev-l-D: get-level (trail S) L = get-maximum-level (trail S) (mset-ccls D) and
   i: get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \equiv i and
   undef: undefined-lit M1 L and
   T: T \sim cons-trail (Propagated L (cls-of-ccls D))
              (reduce-trail-to M1
```

```
(add-learned-cls\ (cls-of-ccls\ D)
                 (update-backtrack-lvl\ i
                   (update\text{-}conflicting\ None\ S))))
   using bt-T by (elim\ backtrack-levE) (force\ simp:\ cdcl_W-M-level-inv-def)+
 obtain K'i'M1'M2'L'D' where
   raw-S': raw-conflicting S = Some D' and
   LD': L' \in \# mset\text{-}ccls \ D' and
   decomp': (Marked K' (Suc i') # M1', M2') \in set (get-all-marked-decomposition (trail S)) and
   lev-l: get-level (trail S) L' = backtrack-lvl S and
   lev-l-D: get-level (trail S) L' = get-maximum-level (trail S) (mset-ccls D') and
   i': get-maximum-level (trail S) (remove1-mset L' (mset-ccls D')) \equiv i' and
   undef': undefined-lit M1' L' and
   U: U \sim cons-trail (Propagated L' (cls-of-ccls D'))
             (reduce-trail-to M1'
               (add-learned-cls (cls-of-ccls D')
                 (update-backtrack-lvl i'
                   (update-conflicting\ None\ S))))
   using bt-U lev by (elim\ backtrack-levE) (force\ simp:\ cdcl_W-M-level-inv-def)+
 obtain c where M: trail S = c @ M2 @ Marked K (i + 1) \# M1
   using decomp by auto
 obtain c' where M': trail S = c' @ M2' @ Marked K' (i' + 1) # M1'
   using decomp' by auto
 have marked: get-all-levels-of-marked (trail S) = rev [1..<1+backtrack-lvl S]
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
 then have i < backtrack-lvl S
   unfolding M by (force simp add: rev-swap[symmetric] dest!: arg-cong[of - - set])
 have [simp]: L' = L
   proof (rule ccontr)
     assume ¬ ?thesis
     then have L' \in \# remove1\text{-}mset\ L\ (mset\text{-}ccls\ D)
      using raw-S raw-S' LD LD' by (simp add: in-remove1-mset-neg)
     then have get-maximum-level (trail S) (remove1-mset L (mset-ccls D)) \geq backtrack-lvl S
      using \langle qet\text{-}level \ (trail \ S) \ L' = backtrack\text{-}lvl \ S \rangle get-maximum-level-ge-get-level
     then show False using i' i < backtrack-lvl S  by auto
   qed
 then have [simp]: mset-ccls D' = mset-ccls D
   using raw-S raw-S' by auto
 have [simp]: i' = i
   using i i' by auto
Automation in a step later...
 have H: \bigwedge a \ A \ B. insert a \ A = B \Longrightarrow a : B
   by blast
 have get-all-levels-of-marked (c@M2) = rev [i+2..<1+backtrack-lvl S] and
   get-all-levels-of-marked (c'@M2') = rev [i+2..<1+backtrack-lvl S]
   using marked unfolding M
   using marked unfolding M'
   unfolding rev-swap[symmetric] by (auto dest: append-cons-eq-upt-length-i-end)
 from arg\text{-}cong[OF\ this(1),\ of\ set]\ arg\text{-}cong[OF\ this(2),\ of\ set]
   drop While (\lambda L. \neg is\text{-marked } L \lor level\text{-of } L \ne Suc\ i)\ (c @ M2) = [] and
```

```
drop While \ (\lambda L. \neg is\text{-}marked \ L \lor level\text{-}of \ L \ne Suc \ i) \ (c' @ M2') = []
     unfolding drop While-eq-Nil-conv Ball-def
     by (intro all!; rename-tac x; case-tac x; auto dest!: H simp add: in-set-conv-decomp)+
  then have [simp]: M1' = M1
   using arg-cong [OF M, of drop While (\lambda L. \neg is-marked L \vee level-of L \neq Suc i)]
   unfolding M' by auto
 show ?thesis using T U undef inv decomp by (auto simp del: state-simp simp: state-eq-def
   cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-decomp)
lemma if-can-apply-backtrack-no-more-resolve:
 assumes
   skip: skip^{**} S U and
   bt: backtrack S T and
   inv: cdcl_W-all-struct-inv S
 shows \neg resolve\ U\ V
proof (rule ccontr)
 assume resolve: \neg\neg resolve\ U\ V
 obtain L E D where
   U: trail \ U \neq [] and
   tr-U: hd-raw-trail U = Propagated L E and
   LE: L \in \# mset\text{-}cls \ E \ \mathbf{and}
   raw-U: raw-conflicting U = Some D and
   LD: -L \in \# mset\text{-}ccls \ D and
   get-maximum-level (trail U) (mset-ccls (remove-clit (-L) D)) = backtrack-lvl U and
   V: V \sim update\text{-}conflicting (Some (union\text{-}ccls (remove\text{-}clit (-L) D))
     (ccls-of-cls\ (remove-lit\ L\ E))))
     (tl-trail\ U)
   using resolve by (auto elim!: resolveE)
 have cdcl_W-all-struct-inv U
   using mono-rtranclp of skip cdcl_W by (meson bj cdcl_W-bj.skip inv local.skip other
     rtranclp-cdcl_W-all-struct-inv-inv)
  then have [iff]: no-dup (trail\ S)\ cdcl_W-M-level-inv S and [iff]: no-dup (trail\ U)
   using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by blast+
  then have
   S: init\text{-}clss \ U = init\text{-}clss \ S
      learned-clss U = learned-clss S
      backtrack-lvl \ U = backtrack-lvl \ S
      conflicting S = Some (mset-ccls D)
   using rtranclp-skip-state-decomp[OF skip] U raw-U
   by (auto simp del: state-simp simp: state-eq-def)
  obtain M_0 where
   tr-S: trail <math>S = M_0 @ trail U and
   nm: \forall m \in set M_0. \neg is\text{-}marked m
   using rtranclp-skip-state-decomp[OF skip] by blast
  obtain K'i'M1'M2'L'D' where
   raw-S': raw-conflicting S = Some D' and
   LD': L' \in \# mset\text{-}ccls \ D' and
   decomp': (Marked K' (Suc i') # M1', M2') \in set (get-all-marked-decomposition (trail S)) and
   lev-l: get-level (trail S) L' = backtrack-lvl S and
   lev-l-D: get-level (trail S) L' = get-maximum-level (trail S) (mset-ccls D') and
   i': get-maximum-level (trail S) (remove1-mset L' (mset-ccls D')) \equiv i' and
```

```
undef': undefined-lit M1' L' and
 R: T \sim cons-trail (Propagated L' (cls-of-ccls D'))
            (reduce-trail-to M1'
              (add-learned-cls (cls-of-ccls D')
               (update-backtrack-lvl i'
                  (update-conflicting\ None\ S))))
 using bt by (elim backtrack-levE) (fastforce simp: S state-eq-def simp del:state-simp)+
obtain c where M: trail S = c @ M2' @ Marked K' (i' + 1) \# M1
 using get-all-marked-decomposition-exists-prepend[OF decomp'] by auto
have marked: get-all-levels-of-marked (trail\ S) = rev\ [1..<1+backtrack-lvl\ S]
 using inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-M-level-inv-def by auto
then have i' < backtrack-lvl S
 unfolding M by (force simp add: rev-swap[symmetric] dest!: arg-cong[of - - set])
have U: trail U = Propagated L \ (mset-cls E) \# trail V
using tr-S hd-raw-trail[OF U] US V tr-U by (auto simp: lits-of-def)
have DD'[simp]: mset\text{-}ccls\ D' = mset\text{-}ccls\ D
 using raw-U raw-S' S by auto
have [simp]: L' = -L
 proof (rule ccontr)
   assume ¬ ?thesis
   then have -L \in \# remove1\text{-}mset\ L' \ (mset\text{-}ccls\ D')
     using DD' LD' LD by (simp add: in-remove1-mset-neq)
   moreover
     have M': trail S = M_0 @ Propagated L (mset-cls E) # trail V
       using tr-S unfolding U by auto
     have no-dup (trail S)
        using inv U unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
     then have atm\text{-}L\text{-}notin\text{-}M: atm\text{-}of\ L \notin atm\text{-}of\ `(lits\text{-}of\text{-}l\ (trail\ V))
       using M' U S by (auto simp: lits-of-def)
     have get-all-levels-of-marked (trail\ S) = rev\ [1..<1+backtrack-lvl\ S]
       using inv U unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
     then have get-all-levels-of-marked (trail U) = rev [1..<1+backtrack-lvl\ S]
       using nm M' U by (simp add: get-all-levels-of-marked-no-marked)
     then have get-lev-L:
       get-level(Propagated\ L\ (mset-cls\ E)\ \#\ trail\ V)\ L=backtrack-lvl\ S
       using qet-level-qet-rev-level-qet-all-levels-of-marked[OF atm-L-notin-M,
         of [Propagated\ L\ (mset\text{-}cls\ E)]]\ U\  by auto
     have atm\text{-}of \ L \notin atm\text{-}of \ (lits\text{-}of\text{-}l \ (rev \ M_0))
       using \langle no\text{-}dup \ (trail \ S) \rangle \ M' by (auto \ simp: \ lits\text{-}of\text{-}def)
     then have get-level (trail S) L = backtrack-lvl S
       by (metis M' get-lev-L get-rev-level-notin-end rev-append)
   ultimately
     have get-maximum-level (trail S) (remove1-mset L' (mset-ccls D')) \geq backtrack-lvl S
       by (metis get-maximum-level-ge-get-level get-rev-level-uminus)
   then show False
     using \langle i' < backtrack-lvl S \rangle i' by auto
 qed
have cdcl_{W}^{**} S U
 using bj cdcl_W-bj.skip local.skip mono-rtranclp[of skip cdcl_W S U] other by meson
then have cdcl_W-all-struct-inv U
 using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
then have Propagated L (mset-cls E) # trail V \models as\ CNot\ (mset\text{-}ccls\ D')
 using cdcl_W-all-struct-inv-def cdcl_W-conflicting-def raw-U U by auto
then have \forall L' \in \# (remove1\text{-}mset\ L'\ (mset\text{-}ccls\ D')). atm\text{-}of\ L' \in atm\text{-}of\ `its\text{-}of\ (Propagated\ L')
```

```
(mset-cls E) \# trail U)
   using U atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set in-CNot-implies-uminus(2)
   by (fastforce dest: in-diffD)
  then have qet-maximum-level (trail S) (remove1-mset L' (mset-ccls D')) = backtrack-lvl S
    using qet-maximum-level-skip-un-marked-not-present[of remove1-mset L' (mset-ccls D')
        trail U M_0 tr-S nm U
     (qet-maximum-level\ (trail\ U)\ (mset-ccls\ (remove-clit\ (-\ L)\ D)) = backtrack-lvl\ U)
    by (auto simp: S)
 then show False
   using i' \langle i' < backtrack-lvl S \rangle by auto
qed
\mathbf{lemma}\ \textit{if-can-apply-resolve-no-more-backtrack}:
 assumes
   skip: skip^{**} S U and
   resolve: resolve S T and
   inv: cdcl_W-all-struct-inv S
 shows \neg backtrack\ U\ V
 using assms
 \mathbf{by}\ (meson\ if\ can-apply-backtrack-no-more-resolve\ rtranclp.rtrancl-refl
   rtranclp-skip-backtrack-backtrack)
\mathbf{lemma}\ if\ can-apply\ backtrack\ skip\ or\ resolve\ is\ skip:
 assumes
   bt: backtrack S T and
   skip: skip-or-resolve^{**} S U and
   inv: cdcl_W-all-struct-inv S
 shows skip^{**} S U
 using assms(2,3,1)
 by induction (simp-all add: if-can-apply-backtrack-no-more-resolve skip-or-resolve.simps)
lemma cdcl_W-bj-bj-decomp:
 assumes cdcl_W-bj^{**} S W and cdcl_W-all-struct-inv S
 shows
   (\exists \ T \ U \ V. \ (\lambda S \ T. \ skip-or-resolve \ S \ T \ \land \ no-step \ backtrack \ S)^{**} \ S \ T
       \wedge (\lambda T U. resolve T U \wedge no-step backtrack T) T U
       \wedge skip^{**} U V \wedge backtrack V W
   \vee (\exists T \ U. \ (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ T
       \wedge (\lambda T \ U. \ resolve \ T \ U \wedge no\text{-step backtrack} \ T) \ T \ U \wedge skip^{**} \ U \ W)
   \vee (\exists T. skip^{**} S T \land backtrack T W)
   \vee skip^{**} S W (is ?RB S W \vee ?R S W \vee ?SB S W \vee ?S S W)
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step W X) note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4)] and inv = this(4)
 have \neg ?RB S W and \neg ?SB S W
   proof (clarify, goal-cases)
     case (1 \ T \ U \ V)
     have skip-or-resolve** S T
       using 1(1) by (auto dest!: rtranclp-and-rtranclp-left)
     then show False
       by (metis (no-types, lifting) 1(2) 1(4) 1(5) backtrack-no-cdcl<sub>W</sub>-bj
```

```
cdcl_W-all-struct-inv-def cdcl_W-all-struct-inv-inv cdcl_W-o.bj local.bj other
       resolve\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv\ rtranclp\text{-}skip\text{-}backtrack\text{-}backtrack}
       rtranclp-skip-or-resolve-rtranclp-cdcl_W step.prems)
 next
   case 2
   then show ?case by (meson assms(2) cdcl<sub>W</sub>-all-struct-inv-def backtrack-no-cdcl<sub>W</sub>-bj
     local.bj rtranclp-skip-backtrack-backtrack)
 qed
then have IH: ?R S W \lor ?S S W using IH by blast
have cdcl_W^{**} S W using mono-rtranclp[of cdcl_W-bj cdcl_W] st by blast
then have inv-W: cdcl_W-all-struct-inv W by (simp\ add: rtranclp-cdcl_W-all-struct-inv-inv
 step.prems)
consider
   (BT) X' where backtrack W X'
  (skip) no-step backtrack W and skip W X
 (resolve) no-step backtrack W and resolve W X
 using bj \ cdcl_W-bj.cases by meson
then show ?case
 proof cases
   case (BT X')
   then consider
       (bt) backtrack W X
     | (sk) \ skip \ W \ X
     using bj if-can-apply-backtrack-no-more-resolve of WWX'X inv-Wcdcl_W-bj.cases by fast
   then show ?thesis
     proof cases
       case bt
       then show ?thesis using IH by auto
     next
       case sk
       then show ?thesis using IH by (meson rtranclp-trans r-into-rtranclp)
     qed
 next
   case skip
   then show ?thesis using IH by (meson rtranclp.rtrancl-into-rtrancl)
   case resolve note no-bt = this(1) and res = this(2)
   consider
       (RS) T U where
         (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ T \ and
        resolve T U and
         no-step backtrack T and
         skip^{**} U W
     | (S) \ skip^{**} \ S \ W
     using IH by auto
   then show ?thesis
     proof cases
       case (RS \ T \ U)
       have cdcl_W^{**} S T
        using RS(1) cdcl_W-bj.resolve cdcl_W-o.bj other skip
         mono-rtranclp[of (\lambda S\ T.\ skip-or-resolve\ S\ T\ \wedge\ no-step\ backtrack\ S)\ cdcl_W\ S\ T]
        \mathbf{by}\ (meson\ skip\text{-}or\text{-}resolve.cases)
       then have cdcl_W-all-struct-inv U
        by (meson\ RS(2)\ cdcl_W-all-struct-inv-inv\ cdcl_W-bj.resolve\ cdcl_W-o.bj\ other
```

```
rtranclp-cdcl_W-all-struct-inv-inv step.prems)
  { fix U'
    assume skip^{**} U U' and skip^{**} U' W
    have cdcl_W-all-struct-inv U'
      using \langle cdcl_W - all - struct - inv \ U \rangle \langle skip^{**} \ U \ U' \rangle \ rtranclp - cdcl_W - all - struct - inv - inv
          cdcl_W-o.bj rtranclp-mono[of skip cdcl_W] other skip by blast
    then have no-step backtrack U'
      \mathbf{using} \ \textit{if-can-apply-backtrack-no-more-resolve} [\textit{OF} \ \langle \textit{skip}^{**} \ \textit{U'} \ \textit{W} \rangle \ | \ \textit{res} \ \mathbf{by} \ \textit{blast}
  with \langle skip^{**} \ U \ W \rangle
  have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ W
     \mathbf{proof}\ induction
       case base
       then show ?case by simp
      case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
       have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
         using skip by auto
       then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ U \ V
          using IH H by blast
       moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
         by (simp add: local.skip r-into-rtranclp st step.prems skip-or-resolve.intros)
       ultimately show ?case by simp
     qed
  then show ?thesis
    proof -
      have f1: \forall p \ pa \ pb \ pc. \neg p \ (pa) \ pb \lor \neg p^{**} \ pb \ pc \lor p^{**} \ pa \ pc
        by (meson converse-rtranclp-into-rtranclp)
      have skip-or-resolve T U \wedge no-step backtrack T
        using RS(2) RS(3) by force
      then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ T \ W
        proof -
          have (\exists vr19 \ vr16 \ vr17 \ vr18. \ vr19 \ (vr16::'st) \ vr17 \ \land \ vr19^{**} \ vr17 \ vr18
                \land \neg vr19^{**} vr16 vr18)
             \vee \neg (skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T)
             \vee \neg (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \land no-step \ backtrack \ uu)^{**} \ U \ W
             \vee (\lambda uu \ uua. \ skip-or-resolve \ uu \ uua \wedge no-step \ backtrack \ uu)^{**} \ T \ W
             by force
          then show ?thesis
             by (metis (no-types) \langle (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ U \ W \rangle
               \langle skip\text{-}or\text{-}resolve\ T\ U\ \land\ no\text{-}step\ backtrack\ T\rangle\ f1)
        qed
      then have (\lambda p \ pa. \ skip-or-resolve \ p \ pa \land no-step \ backtrack \ p)^{**} \ S \ W
        using RS(1) by force
      then show ?thesis
        using no-bt res by blast
    qed
next
  case S
  \{ \text{ fix } U' \}
    assume skip^{**} S U' and skip^{**} U' W
    then have cdcl_W^{**} S U'
      using mono-rtranclp[of skip cdcl_W \ S \ U'] by (simp add: cdcl_W-o.bj other skip)
    then have cdcl_W-all-struct-inv U'
```

```
by (metis\ (no\text{-}types,\ hide\text{-}lams)\ \langle cdcl_W\text{-}all\text{-}struct\text{-}inv\ S\rangle
               rtranclp-cdcl_W-all-struct-inv-inv)
           then have no-step backtrack U'
             using if-can-apply-backtrack-no-more-resolve [OF \langle skip^{**} \ U' \ W \rangle ] res by blast
         with S
         have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ W
            proof induction
              case base
              then show ?case by simp
             case (step V W) note st = this(1) and skip = this(2) and IH = this(3) and H = this(4)
              have \bigwedge U'. skip^{**} U' V \Longrightarrow skip^{**} U' W
                using skip by auto
              then have (\lambda S \ T. \ skip\text{-}or\text{-}resolve \ S \ T \land no\text{-}step \ backtrack \ S)^{**} \ S \ V
               using IH H by blast
              moreover have (\lambda S \ T. \ skip-or-resolve \ S \ T \land no-step \ backtrack \ S)^{**} \ V \ W
               by (simp add: local.skip r-into-rtranclp st step.prems skip-or-resolve.intros)
              ultimately show ?case by simp
            qed
         then show ?thesis using res no-bt by blast
       qed
   \mathbf{qed}
qed
The case distinction is needed, since T \sim V does not imply that R^{**} T V.
lemma cdcl_W-bj-strongly-confluent:
  assumes
    cdcl_W-bj^{**} S V and
    cdcl_W-bj^{**} S T and
    n-s: no-step cdcl_W-bj V and
    inv: cdcl_W-all-struct-inv S
  shows T \sim V \vee cdcl_W - bj^{**} T V
  using assms(2)
proof induction
 \mathbf{case}\ base
 then show ?case by (simp \ add: assms(1))
 case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3)
 have cdcl_W^{**} S T
   using st mono-rtranclp[of cdcl_W-bj cdcl_W] other by blast
  then have lev-T: cdcl_W-M-level-inv T
   using inv rtranclp-cdcl<sub>W</sub>-consistent-inv[of S T]
   unfolding cdcl_W-all-struct-inv-def by auto
 consider
      (TV) T \sim V
    | (bj-TV) \ cdcl_W-bj^{**} \ T \ V
   using IH by blast
  then show ?case
   proof cases
     case TV
     have no-step cdcl_W-bj T
       using \langle cdcl_W - M - level - inv \ T \rangle n-s cdcl_W - bj-state-eq-compatible [of T - V] TV
```

```
by (meson\ backtrack\text{-}state\text{-}eq\text{-}compatible\ cdcl}_W\text{-}bj.simps\ resolve\text{-}state\text{-}eq\text{-}compatible\ }
     skip-state-eq-compatible state-eq-ref)
  then show ?thesis
   using s-o-r by auto
\mathbf{next}
  case bj-TV
  then obtain U' where
    T-U': cdcl_W-bj \ T \ U' and
    cdcl_W-bj^{**} U' V
   using IH n-s s-o-r by (metis rtranclp-unfold tranclpD)
  have cdcl_{W}^{**} S T
   by (metis (no-types, hide-lams) bj mono-rtranclp[of cdcl_W-bj cdcl_W] other st)
  then have inv-T: cdcl_W-all-struct-inv T
   by (metis\ (no\text{-}types,\ hide\text{-}lams)\ inv\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv)
  have lev-U: cdcl_W-M-level-inv U
   using s-o-r cdcl_W-consistent-inv lev-T other by blast
  show ?thesis
   using s-o-r
   proof cases
     case backtrack
     then obtain V0 where skip^{**} T V0 and backtrack V0 V
       using IH if-can-apply-backtrack-skip-or-resolve-is-skip[OF backtrack - inv-T]
        cdcl_W-bj-decomp-resolve-skip-and-bj
        by (meson\ bj-TV\ cdcl_W-bj.backtrack\ inv-T\ lev-T\ n-s
          rtranclp-skip-backtrack-backtrack-end)
     then have cdcl_W-bj^{**} T V0 and cdcl_W-bj V0 V
       using rtranclp-mono[of skip cdcl_W-bj] by blast+
     then show ?thesis
       using \langle backtrack \ VO \ V \rangle \langle skip^{**} \ T \ VO \rangle \ backtrack-unique \ inv-T \ local.backtrack
       rtranclp-skip-backtrack-backtrack by auto
   next
     case resolve
     then have U \sim U'
       by (meson \ T\text{-}U' \ cdcl_W \text{-}bj.simps \ if-can-apply-backtrack-no-more-resolve inv-}T
         resolve-skip-deterministic resolve-unique rtranclp.rtrancl-refl)
     then show ?thesis
       using \langle cdcl_W - bj^{**} U' V \rangle unfolding rtranclp-unfold
       by (meson \ T-U' \ bj \ cdcl_W-consistent-inv lev-T other state-eq-ref state-eq-sym
         tranclp-cdcl_W-bj-state-eq-compatible)
   next
     case skip
     consider
         (sk) skip\ T\ U'
         (bt) backtrack T U'
       using T-U' by (meson\ cdcl_W-bj.cases\ local.skip\ resolve-skip-deterministic)
     then show ?thesis
       proof cases
         case sk
         then show ?thesis
           using \langle cdcl_W - bj^{**} \ U' \ V \rangle unfolding rtranclp-unfold
           by (meson \ T-U' \ bj \ cdcl_W-all-inv(3) \ cdcl_W-all-struct-inv-def \ inv-T \ local.skip \ other
             tranclp-cdcl_W-bj-state-eq-compatible skip-unique state-eq-ref)
       next
         case bt
```

```
have skip^{++} T U
              using local.skip by blast
            have cdcl_W-bj U U'
              by (meson \langle skip^{++} \mid T \mid U \rangle backtrack bt inv-T rtranclp-skip-backtrack-backtrack-end
                tranclp-into-rtranclp)
            then have cdcl_W-bj^{++} U V
              using \langle cdcl_W - bj^{**} \ U' \ V \rangle by auto
            then show ?thesis
              by (meson tranclp-into-rtranclp)
          qed
      \mathbf{qed}
   \mathbf{qed}
qed
lemma cdcl_W-bj-unique-normal-form:
 assumes
   ST: cdcl_W - bj^{**} S T  and SU: cdcl_W - bj^{**} S U  and
   n-s-U: no-step cdcl_W-bj U and
   n-s-T: no-step cdcl_W-bj T and
   inv: cdcl_W-all-struct-inv S
 shows T \sim U
proof
 have T \sim U \vee cdcl_W - bj^{**} T U
   using ST SU cdcl_W-bj-strongly-confluent inv n-s-U by blast
 then show ?thesis
   by (metis (no-types) n-s-T rtranclp-unfold state-eq-ref tranclp-unfold-begin)
qed
lemma full-cdcl_W-bj-unique-normal-form:
assumes full\ cdcl_W-bj\ S\ T and full\ cdcl_W-bj\ S\ U and
  inv: cdcl_W-all-struct-inv S
shows T \sim U
  using cdcl_W-bj-unique-normal-form assms unfolding full-def by blast
21.3
         CDCL FW
inductive cdcl_W-merge-restart :: 'st \Rightarrow 'st \Rightarrow bool where
fw-r-propagate: propagate S S' \Longrightarrow cdcl_W-merge-restart S S'
fw-r-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge-restart S \ U \ |
fw-r-decide: decide\ S\ S' \Longrightarrow cdcl_W-merge-restart S\ S'
fw-r-rf: cdcl_W-rf S S' \Longrightarrow cdcl_W-merge-restart S S'
lemma rtranclp-cdcl_W-bj-rtranclp-cdcl_W:
  cdcl_W-bj^{**} S T \Longrightarrow cdcl_W^{**} S T
 using mono-rtranclp[of\ cdcl_W-bj\ cdcl_W] by blast
lemma cdcl_W-merge-restart-cdcl_W:
 assumes cdcl_W-merge-restart S T
 shows cdcl_W^{**} S T
 using assms
proof induction
  case (fw-r-conflict S T U) note confl = this(1) and bj = this(2)
 have cdcl_W S T using confl by (simp \ add: \ cdcl_W.intros \ r-into-rtranclp)
 moreover
   have cdcl_W-bj^{**} T U using bj unfolding full-def by auto
```

```
then have cdcl_W^{**} T U using rtranclp-cdcl_W-bj-rtranclp-cdcl_W by blast
  ultimately show ?case by auto
qed (simp-all \ add: \ cdcl_W-o.intros \ cdcl_W.intros \ r-into-rtranclp)
lemma cdcl_W-merge-restart-conflicting-true-or-no-step:
  assumes cdcl_W-merge-restart S T
  shows conflicting T = None \lor no\text{-step } cdcl_W T
  using assms
proof induction
  case (fw-r-conflict S T U) note confl = this(1) and n-s = this(2)
  { fix D V
   assume cdcl_W U V and conflicting U = Some D
   then have False
     using n-s unfolding full-def
     by (induction rule: cdcl_W-all-rules-induct)
       (auto dest!: cdcl_W-bj.intros elim: decideE propagateE conflictE forgetE restartE)
  then show ?case by (cases conflicting U) fastforce+
\mathbf{qed} (auto simp add: cdcl_W-rf.simps elim: propagateE\ decideE\ restartE\ forgetE)
inductive cdcl_W-merge :: 'st \Rightarrow 'st \Rightarrow bool where
fw-propagate: propagate S S' \Longrightarrow cdcl_W-merge S S'
fw-conflict: conflict S T \Longrightarrow full \ cdcl_W-bj T \ U \Longrightarrow cdcl_W-merge S \ U \ |
fw-decide: decide \ S \ S' \Longrightarrow cdcl_W-merge S \ S'
fw-forget: forget S S' \Longrightarrow cdcl_W-merge S S'
lemma cdcl_W-merge-cdcl_W-merge-restart:
  cdcl_W-merge S T \Longrightarrow cdcl_W-merge-restart S T
  by (meson\ cdcl_W\text{-}merge.cases\ cdcl_W\text{-}merge-restart.simps\ forget)
lemma rtranclp-cdcl_W-merge-tranclp-cdcl_W-merge-restart:
  cdcl_W-merge** S T \Longrightarrow cdcl_W-merge-restart** S T
  using rtranclp-mono[of cdcl_W-merge cdcl_W-merge-restart] cdcl_W-merge-cdcl_W-merge-restart by blast
\mathbf{lemma}\ cdcl_W\text{-}merge\text{-}rtranclp\text{-}cdcl_W\text{:}
  cdcl_W-merge S T \Longrightarrow cdcl_W^{**} S T
  using cdcl_W-merge-cdcl_W-merge-restart cdcl_W-merge-restart-cdcl_W by blast
lemma rtranclp-cdcl_W-merge-rtranclp-cdcl_W:
  cdcl_W-merge** S T \Longrightarrow cdcl_W** S T
  using rtranclp-mono of cdcl_W-merge cdcl_W^{**} cdcl_W-merge-rtranclp-cdcl_W by auto
lemmas rulesE =
  skipE\ resolveE\ backtrackE\ propagateE\ conflictE\ decideE\ restartE\ forgetE
\mathbf{lemma} \ \ cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}tranclp\text{-}cdcl_W \text{-}merge\text{-}tranclp\text{-}cdcl_W \text{-}merge\text{-}cdcl_W \text{-}all\text{-}struct\text{-}inv\text{:}}
 assumes
    inv: cdcl_W-all-struct-inv b
    cdcl_W-merge^{++} b a
 shows (\lambda S \ T. \ cdcl_W - all - struct - inv \ S \wedge cdcl_W - merge \ S \ T)^{++} \ b \ a
  using assms(2)
proof induction
  case base
  then show ?case using inv by auto
\mathbf{next}
```

```
case (step c d) note st = this(1) and fw = this(2) and IH = this(3)
 have cdcl_W-all-struct-inv c
   using tranclp-into-rtranclp[OF\ st]\ cdcl_W-merge-rtranclp-cdcl_W
   assms(1) rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv rtranclp-mono[of cdcl<sub>W</sub>-merge cdcl<sub>W</sub>**] by fastforce
 then have (\lambda S \ T. \ cdcl_W-all-struct-inv S \wedge cdcl_W-merge S \ T)^{++} \ c \ d
   using fw by auto
 then show ?case using IH by auto
qed
lemma backtrack-is-full1-cdcl_W-bj:
 assumes bt: backtrack S T and inv: cdcl_W-M-level-inv S
 shows full1 cdcl_W-bj S T
  using bt inv backtrack-no-cdcl<sub>W</sub>-bj unfolding full1-def by blast
lemma rtrancl-cdcl_W-conflicting-true-cdcl_W-merge-restart:
 assumes cdcl_{W}^{**} S V and inv: cdcl_{W}-M-level-inv S and conflicting S = None
 shows (cdcl_W-merge-restart** S \ V \land conflicting \ V = None)
   \vee (\exists T U. cdcl_W-merge-restart** S T \wedge conflicting V \neq None \wedge conflict T U \wedge cdcl_W-bj** U V)
 using assms
proof induction
 case base
 then show ?case by simp
next
 case (step U V) note st = this(1) and cdcl_W = this(2) and IH = this(3)[OF\ this(4-)] and
   confl[simp] = this(5) and inv = this(4)
 from cdcl_W
 show ?case
   proof (cases)
     case propagate
     moreover then have conflicting U = None and conflicting V = None
      by (auto elim: propagateE)
     ultimately show ?thesis using IH cdcl_W-merge-restart.fw-r-propagate[of U V] by auto
     case conflict
     moreover then have conflicting U = None and conflicting V \neq None
      by (auto elim!: conflictE simp del: state-simp simp: state-eq-def)
     ultimately show ?thesis using IH by auto
   next
     case other
     then show ?thesis
      proof cases
        case decide
        then show ?thesis using IH cdcl_W-merge-restart.fw-r-decide[of U V] by (auto elim: decideE)
      next
        case bj
        moreover {
          assume skip-or-resolve U V
         have f1: cdcl_W - bj^{++} U V
           by (simp add: local.bj tranclp.r-into-trancl)
          obtain T T' :: 'st where
           f2: cdcl_W-merge-restart** S U
             \lor cdcl_W-merge-restart** S \ T \land conflicting \ U \neq None
               \wedge \ conflict \ T \ T' \wedge \ cdcl_W - bj^{**} \ T' \ U
           using IH confl by blast
          have conflicting V \neq None \land conflicting U \neq None
```

```
using \langle skip\text{-}or\text{-}resolve\ U\ V \rangle
              by (auto simp: skip-or-resolve.simps state-eq-def elim!: skipE resolveE
                simp \ del: state-simp)
            then have ?thesis
              by (metis (full-types) IH f1 rtranclp-trans tranclp-into-rtranclp)
          moreover {
            assume backtrack\ U\ V
            then have conflicting U \neq None by (auto elim: backtrackE)
            then obtain T T' where
              cdcl_W-merge-restart** S T and
              conflicting U \neq None and
              conflict \ T \ T' and
              cdcl_W-bj^{**} T' U
              using IH confl by meson
            have invU: cdcl_W-M-level-inv U
              using inv rtranclp-cdcl<sub>W</sub>-consistent-inv step.hyps(1) by blast
            then have conflicting V = None
              using \langle backtrack\ U\ V \rangle\ inv\ by\ (auto\ elim:\ backtrack-levE
                simp: cdcl_W - M - level - inv - decomp)
            \mathbf{have}\ \mathit{full}\ \mathit{cdcl}_W\text{-}\mathit{bj}\ \mathit{T'}\ \mathit{V}
              apply (rule rtranclp-fullI[of cdcl_W-bj T'UV])
                using \langle cdcl_W - bj^{**} T' U \rangle apply fast
              \mathbf{using} \ \langle backtrack \ U \ V \rangle \ backtrack-is\text{-}full1\text{-}cdcl_W\text{-}bj \ inv} U \ \mathbf{unfolding} \ full1\text{-}def \ full-def
              by blast
            then have ?thesis
              using cdcl_W-merge-restart.fw-r-conflict[of T T' V] \langle conflict T T' \rangle
              \langle cdcl_W \text{-}merge\text{-}restart^{**} \mid S \mid T \rangle \langle conflicting \mid V = None \rangle \text{ by } auto
          ultimately show ?thesis by (auto simp: cdcl<sub>W</sub>-bj.simps)
      qed
    \mathbf{next}
      case rf
      moreover then have conflicting U = None and conflicting V = None
        \mathbf{by} \ (\mathit{auto} \ \mathit{simp}: \ \mathit{cdcl}_W\text{-}\mathit{rf}.\mathit{simps} \ \mathit{elim}: \ \mathit{restartE} \ \mathit{forgetE})
      ultimately show ?thesis using IH cdcl_W-merge-restart.fw-r-rf[of U V] by auto
    qed
qed
\mathbf{lemma} \ \textit{no-step-cdcl}_W \textit{-no-step-cdcl}_W \textit{-merge-restart: no-step cdcl}_W \ S \implies \textit{no-step cdcl}_W \textit{-merge-restart}
 by (auto simp: cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps)
lemma no-step-cdcl_W-merge-restart-no-step-cdcl_W:
 assumes
    conflicting S = None  and
    cdcl_W-M-level-inv S and
    no-step cdcl_W-merge-restart S
  shows no-step cdcl_W S
proof -
  { fix S'
    assume conflict S S'
    then have cdcl_W S S' using cdcl_W.conflict by auto
    then have cdcl_W-M-level-inv S'
      using assms(2) cdcl_W-consistent-inv by blast
```

```
then obtain S'' where full\ cdcl_W-bj\ S'\ S''
     using cdcl_W-bj-exists-normal-form[of S'] by auto
   then have False
     using \langle conflict \ S \ S' \rangle \ assms(3) \ fw-r-conflict \ by \ blast
 then show ?thesis
   using assms unfolding cdcl_W.simps cdcl_W-merge-restart.simps cdcl_W-o.simps cdcl_W-bj.simps
   by (auto elim: skipE resolveE backtrackE conflictE decideE restartE)
qed
lemma cdcl_W-merge-restart-no-step-cdcl_W-bj:
 assumes
   cdcl_W-merge-restart S T
 shows no-step cdcl_W-bj T
 using assms
 by (induction rule: cdcl_W-merge-restart.induct)
  (force simp: cdcl_W-bj.simps cdcl_W-rf.simps cdcl_W-merge-restart.simps full-def
    elim!: rulesE)+
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}restart\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj\text{:}
 assumes
   cdcl_W-merge-restart** S T and
   conflicting S = None
  shows no-step cdcl_W-bj T
  using assms unfolding rtranclp-unfold
 apply (elim \ disjE)
  apply (force simp: cdcl_W-bj.simps cdcl_W-rf.simps elim!: rulesE)
 by (auto simp: tranclp-unfold-end simp: cdcl_W-merge-restart-no-step-cdcl_W-bj)
If conflicting S \neq None, we cannot say anything.
Remark that this theorem does not say anything about well-foundedness: even if you know that
one relation is well-founded, it only states that the normal forms are shared.
\mathbf{lemma}\ conflicting\text{-}true\text{-}full\text{-}cdcl_W\text{-}iff\text{-}full\text{-}cdcl_W\text{-}merge:}
 assumes confl: conflicting S = None and lev: cdcl_W-M-level-inv S
 shows full cdcl_W S V \longleftrightarrow full cdcl_W-merge-restart S V
  assume full: full cdcl_W-merge-restart S V
  then have st: cdcl_W^{**} S V
   using rtranclp-mono[of\ cdcl_W-merge-restart\ cdcl_W^{**}]\ cdcl_W-merge-restart-cdcl_W
   unfolding full-def by auto
 have n-s: no-step cdcl_W-merge-restart V
   using full unfolding full-def by auto
 have n-s-bj: no-step cdcl_W-bj V
   using rtranclp-cdcl_W-merge-restart-no-step-cdcl<sub>W</sub>-bj confl full unfolding full-def by auto
 have \bigwedge S'. conflict V S' \Longrightarrow cdcl_W-M-level-inv S'
   using cdcl_W.conflict cdcl_W-consistent-inv lev rtranclp-cdcl_W-consistent-inv st by blast
  then have \bigwedge S'. conflict V S' \Longrightarrow False
   using n-s n-s-bj cdcl_W-bj-exists-normal-form cdcl_W-merge-restart.simps by meson
  then have n-s-cdcl_W: no-step cdcl_W V
   using n-s-s-bj by (auto simp: cdcl_W.simps cdcl_W-o.simps cdcl_W-merge-restart.simps)
  then show full\ cdcl_W\ S\ V using st unfolding full-def by auto
  assume full: full cdcl_W S V
 have no-step cdcl_W-merge-restart V
```

```
using full no-step-cdcl_W-no-step-cdcl_W-merge-restart unfolding full-def by blast
  moreover
   consider
       (fw) cdcl_W-merge-restart** S V and conflicting V = None
     | (bj) T U  where
       cdcl_W-merge-restart** S T and
       conflicting V \neq None and
       conflict \ T \ U \ {\bf and}
       cdcl_W-bj^{**} U V
     using full rtrancl-cdcl<sub>W</sub>-conflicting-true-cdcl<sub>W</sub>-merge-restart confl lev unfolding full-def
     by meson
   then have cdcl_W-merge-restart** S V
     proof cases
       case fw
       then show ?thesis by fast
     next
       case (bj \ T \ U)
       have no-step cdcl_W-bj V
         using full unfolding full-def by (meson\ cdcl_W - o.bj\ other)
       then have full cdcl_W-bj U V
         using \langle cdcl_W - bj^{**} U V \rangle unfolding full-def by auto
       then have cdcl_W-merge-restart T V
         using \langle conflict \ T \ U \rangle \ cdcl_W-merge-restart.fw-r-conflict by blast
       then show ?thesis using \langle cdcl_W-merge-restart** S T \rangle by auto
 ultimately show full cdcl_W-merge-restart S V unfolding full-def by fast
qed
lemma init-state-true-full-cdcl_W-iff-full-cdcl_W-merge:
 shows full cdcl_W (init-state N) V \longleftrightarrow full\ cdcl_W-merge-restart (init-state N) V
 by (rule conflicting-true-full-cdcl_W-iff-full-cdcl_W-merge) auto
21.4
         FW with strategy
21.4.1
           The intermediate step
inductive cdcl_W-s' :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1 \ cdcl_W - cp \ S \ S' \Longrightarrow cdcl_W - s' \ S \ S' \mid
decide': decide \ S \ S' \Longrightarrow no\text{-step} \ cdcl_W\text{-cp} \ S \Longrightarrow full \ cdcl_W\text{-cp} \ S' \ S'' \Longrightarrow cdcl_W\text{-s'} \ S \ S'' \ |
bj': full1\ cdcl_W-bj\ S\ S' \Longrightarrow no-step cdcl_W-cp\ S \Longrightarrow full\ cdcl_W-cp\ S'\ S'' \Longrightarrow cdcl_W-s'\ S\ S''
inductive-cases cdcl_W-s'E: cdcl_W-s' S T
lemma rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stgy:
  cdcl_W-bj^{**} S S' \Longrightarrow full cdcl_W-cp S' S'' \Longrightarrow cdcl_W-stqy^{**} S S''
proof (induction rule: converse-rtranclp-induct)
 case base
 then show ?case by (metis cdcl_W-stgy.conflict' full-unfold rtranclp.simps)
next
  case (step T U) note st = this(2) and bj = this(1) and IH = this(3)[OF\ this(4)]
 have no-step cdcl_W-cp T
   using bj by (auto simp add: cdcl_W-bj.simps cdcl_W-cp.simps elim!: rulesE)
 consider
     (U) U = S'
   | (U') U'  where cdcl_W-bj U U' and cdcl_W-bj^{**} U' S'
   using st by (metis\ converse-rtranclpE)
```

```
then show ?case
   proof cases
     case U
     then show ?thesis
       using \langle no\text{-step } cdcl_W\text{-}cp | T \rangle cdcl_W\text{-}o.bj | local.bj | other' | step.prems | by | (meson r-into-rtranclp)
     case U' note U' = this(1)
     have no-step cdcl_W-cp U
       using U' by (fastforce simp: cdcl_W-cp.simps cdcl_W-bj.simps elim: rulesE)
     then have full cdcl_W-cp U U
       by (simp add: full-unfold)
     then have cdcl_W-stgy T U
       using \langle no\text{-}step\ cdcl_W\text{-}cp\ T \rangle\ cdcl_W\text{-}stgy.simps\ local.bj\ cdcl_W\text{-}o.bj\ \mathbf{by}\ meson
     then show ?thesis using IH by auto
   qed
\mathbf{qed}
lemma cdcl_W-s'-is-rtrancl_P-cdcl_W-stqy:
  cdcl_W-s' S T \Longrightarrow cdcl_W-stgy^{**} S T
 apply (induction rule: cdcl_W-s'.induct)
   apply (auto intro: cdcl_W-stgy.intros)[]
  apply (meson decide other' r-into-rtranclp)
 by (metis\ full1-def\ rtranclp-cdcl_W-bj-full1-cdclp-cdcl_W-stgy\ tranclp-into-rtranclp)
lemma cdcl_W-cp-cdcl_W-bj-bissimulation:
 assumes
   full\ cdcl_W-cp\ T\ U and
   cdcl_W-bj^{**} T T' and
   cdcl_W-all-struct-inv T and
   no-step cdcl_W-bj T'
 shows full cdcl_W-cp T' U
   \vee (\exists U' U''. full cdcl_W-cp T' U'' \wedge full cdcl_W-bj U U' \wedge full cdcl_W-cp U' U''
     \land \ cdcl_W - s'^{**} \ U \ U'')
 using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
  case base
 then show ?case by blast
next
 case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4,5)] and
   full = this(4) and inv = this(5)
 have cdcl_W-bj^{**} T T''
   using local.bj st by auto
  then have cdcl_W^{**} T T''
   using rtranclp-cdcl_W-bj-rtranclp-cdcl_W by blast
  then have inv-T'': cdcl_W-all-struct-inv T''
   using inv \ rtranclp-cdcl_W-all-struct-inv-inv by blast
 have cdcl_W-bj^{++} T T''
   using local.bj st by auto
 have full1 cdcl_W-bj T T''
   by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
   proof -
     obtain Z where cdcl_W-bj T Z
       using \langle cdcl_W - bj^{++} \ T \ T'' \rangle by (blast dest: tranclpD)
     { assume cdcl_W - cp^{++} T U
```

```
then obtain Z' where cdcl_W-cp T Z'
          by (meson\ tranclpD)
        then have False
          using \langle cdcl_W - bj \mid T \mid Z \rangle by (fastforce simp: cdcl_W - bj.simps \mid cdcl_W - cp.simps
            elim: rulesE)
      then show ?thesis
        using full unfolding full-def rtranclp-unfold by blast
  obtain U'' where full\ cdcl_W-cp\ T''\ U''
    using cdcl_W-cp-normalized-element-all-inv inv-T'' by blast
  moreover then have cdcl_W-stgy^{**} U U''
    \textbf{by} \; (\textit{metis} \; \langle T = U \rangle \; \langle \textit{cdcl}_W \text{-}\textit{bj} \stackrel{+}{+} \; T \; T'' \rangle \; \textit{rtranclp-cdcl}_W \text{-}\textit{bj-full1-cdclp-cdcl}_W \text{-}\textit{stgy} \; \textit{rtranclp-unfold})
  moreover have cdcl_W-s'** U~U^{\prime\prime}
    proof -
      obtain ss :: 'st \Rightarrow 'st where
        f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
      have \neg cdcl_W - cp \ U \ (ss \ U)
        by (meson full full-def)
      then show ?thesis
        using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \ bj' \ calculation(1)
          r-into-rtranclp)
    qed
  ultimately show ?case
    using \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \langle full \ cdcl_W - cp \ T'' \ U'' \rangle unfolding \langle T = U \rangle by blast
lemma cdcl_W-cp-cdcl_W-bj-bissimulation':
 assumes
    full\ cdcl_W-cp\ T\ U and
    cdcl_W-bj^{**} T T' and
    cdcl_W-all-struct-inv T and
    no-step cdcl_W-bj T'
  shows full cdcl_W-cp T' U
    \lor (\exists U'. full cdcl_W-bj U U' \land (\forall U''. full cdcl_W-cp U' U'' \longrightarrow full cdcl_W-cp T' U''
      \wedge \ cdcl_W - s'^{**} \ U \ U''))
  using assms(2,1,3,4)
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by blast
next
  case (step T' T'') note st = this(1) and bj = this(2) and IH = this(3)[OF\ this(4,5)] and
    full = this(4) and inv = this(5)
  have cdcl_W^{**} T T''
    by (metis local.bj rtranclp.simps rtranclp-cdcl<sub>W</sub>-bj-rtranclp-cdcl<sub>W</sub> st)
  then have inv-T'': cdcl_W-all-struct-inv T''
    using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
  have cdcl_W-bj^{++} T T''
    using local.bj st by auto
  have full1\ cdcl_W-bj T\ T^{\prime\prime}
    by (metis \langle cdcl_W - bj^{++} \ T \ T'' \rangle \ full 1-def \ step.prems(3))
  then have T = U
    proof -
      obtain Z where cdcl_W-bj T Z
```

```
using \langle cdcl_W - bj^{++} \ T \ T'' \rangle by (blast dest: tranclpD)
      { assume cdcl_W-cp^{++} T U
        then obtain Z' where cdcl_W-cp T Z'
          by (meson\ tranclpD)
        then have False
          using \langle cdcl_W-bj TZ \rangle by (fastforce simp: cdcl_W-bj.simps cdcl_W-cp.simps elim: rulesE)
      then show ?thesis
        using full unfolding full-def rtranclp-unfold by blast
  { fix U"
    assume full cdcl_W-cp T'' U''
    moreover then have \operatorname{cdcl}_W\operatorname{-stgy}^{**}\ U\ U^{\prime\prime}
      \textbf{by} \; (\textit{metis} \; \langle T = U \rangle \; \langle \textit{cdcl}_W \text{-}\textit{bj} \overset{\leftarrow}{+} \overset{\leftarrow}{+} \; T \; T^{\prime\prime} \rangle \; \textit{rtranclp-cdcl}_W \text{-}\textit{bj-full1-cdclp-cdcl}_W \text{-}\textit{stgy} \; \textit{rtranclp-unfold})
    moreover have cdcl_W-s'** U~U''
      proof -
        obtain ss :: 'st \Rightarrow 'st where
          f1: \forall x2. (\exists v3. cdcl_W - cp x2 v3) = cdcl_W - cp x2 (ss x2)
          by moura
        have \neg \ cdcl_W \text{-}cp \ U \ (ss \ U)
          by (meson \ assms(1) \ full-def)
        then show ?thesis
          using f1 by (metis (no-types) \langle T = U \rangle \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \ bj' \ calculation(1)
             r-into-rtranclp)
    ultimately have full1\ cdcl_W-bj\ U\ T^{\prime\prime} and \ cdcl_W-s^{\prime**}\ T^{\prime\prime}\ U^{\prime\prime}
      using \langle full1 \ cdcl_W - bj \ T \ T'' \rangle \langle full \ cdcl_W - cp \ T'' \ U'' \rangle unfolding \langle T = U \rangle
        apply blast
      by (metis \langle full \ cdcl_W \ -cp \ T'' \ U'' \rangle \ cdcl_W \ -s'. simps \ full-unfold \ rtranclp. simps)
  then show ?case
    using \langle full1 \ cdcl_W-bj T \ T'' \rangle full \ bj' unfolding \langle T = U \rangle full-def by (metis r-into-rtranclp)
lemma cdcl_W-stgy-cdcl_W-s'-connected:
  assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S
  shows cdcl_W-s' S U
    \vee (\exists U'. full1 \ cdcl_W-bj \ U \ U' \land (\forall U''. full \ cdcl_W-cp \ U' \ U'' \longrightarrow cdcl_W-s' \ S \ U''))
  using assms
proof (induction rule: cdcl_W-stgy.induct)
  case (conflict' T)
  then have cdcl_W-s' S T
    using cdcl_W-s'.conflict' by blast
  then show ?case
    by blast
next
  case (other' TU) note o = this(1) and n-s = this(2) and full = this(3) and inv = this(4)
  show ?case
    using o
    proof cases
      {f case}\ decide
      then show ?thesis using cdcl_W-s'.simps full n-s by blast
    next
      have inv-T: cdcl_W-all-struct-inv T
```

```
using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     consider
        (cp) full cdcl_W-cp T U and no-step cdcl_W-bj T
       | (fbj) T' where full1 cdcl_W-bj T T'
      apply (cases no-step cdcl_W-bj T)
       using full apply blast
       using cdcl_W-bj-exists-normal-form[of T] inv-T unfolding cdcl_W-all-struct-inv-def
       by (metis full-unfold)
     then show ?thesis
       proof cases
        case cp
        then show ?thesis
          proof -
            obtain ss :: 'st \Rightarrow 'st where
              f1: \forall s \ sa \ sb. \ (\neg full1 \ cdcl_W-bj \ s \ sa \ \lor \ cdcl_W-cp \ s \ (ss \ s) \ \lor \neg full \ cdcl_W-cp \ sa \ sb)
               \vee \ cdcl_W \text{-}s' \ s \ sb
              using bj' by moura
            have full1 cdcl_W-bj S T
              \mathbf{by}\ (simp\ add:\ cp(2)\ full1\text{-}def\ local.bj\ tranclp.r\text{-}into\text{-}trancl)
            then show ?thesis
              using f1 full n-s by blast
          qed
      next
        case (fbj U')
        then have full1\ cdcl_W-bj\ S\ U'
          using bj unfolding full1-def by auto
        moreover have no-step cdcl_W-cp S
          using n-s by blast
        moreover have T = U
          using full fbj unfolding full1-def full-def rtranclp-unfold
          by (force dest!: tranclpD simp:cdcl_W-bj.simps elim: rulesE)
        ultimately show ?thesis using cdcl_W-s'.bj'[of S U'] using fbj by blast
       qed
   \mathbf{qed}
\mathbf{qed}
lemma cdcl_W-stqy-cdcl_W-s'-connected':
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S
 shows cdcl_W-s' S U
   \vee (\exists U' U''. cdcl_W-s' S U'' \wedge full \ cdcl_W-bj U \ U' \wedge full \ cdcl_W-cp U' \ U'')
 using assms
proof (induction rule: cdcl_W-stgy.induct)
 case (conflict' T)
 then have cdcl_W-s' S T
   using cdcl_W-s'.conflict' by blast
  then show ?case
   by blast
 case (other' T U) note o = this(1) and n-s = this(2) and full = this(3) and inv = this(4)
 show ?case
   using o
   proof cases
     case decide
     then show ?thesis using cdcl_W-s'.simps full n-s by blast
   next
```

```
case bj
     have cdcl_W-all-struct-inv T
       using cdcl_W-all-struct-inv-inv o other other'.prems by blast
     then obtain T' where T': full cdcl_W-bj T T'
       using cdcl_W-bj-exists-normal-form unfolding full-def cdcl_W-all-struct-inv-def by metis
     then have full\ cdcl_W-bj\ S\ T'
       proof -
        have f1: cdcl_W - bj^{**} T T' \wedge no\text{-}step \ cdcl_W - bj \ T'
          \mathbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \textit{T'full-def})
        then have cdcl_W-bj^{**} S T'
          by (meson converse-rtranclp-into-rtranclp local.bj)
        then show ?thesis
          using f1 by (simp add: full-def)
       qed
     have cdcl_W-bj^{**} T T'
       using T' unfolding full-def by simp
     have cdcl_W-all-struct-inv T
       using cdcl<sub>W</sub>-all-struct-inv-inv o other other'.prems by blast
     then consider
        (T'U) full cdcl_W-cp T' U
       \mid (U) \; U' \; U'' \; \text{where}
          full cdcl_W-cp T' U'' and
          full1 \ cdcl_W-bj U \ U' and
          full\ cdcl_W-cp\ U'\ U'' and
          cdcl_W-s'** U U''
      using cdcl_W-cp-cdcl_W-bj-bissimulation[OF full <math>\langle cdcl_W-bj^{**} T T' \rangle] T' unfolding full-def
      by blast
     then show ?thesis by (metis T' cdcl_W-s'.simps full-fullI local.bj n-s)
   qed
qed
lemma cdcl_W-stgy-cdcl_W-s'-no-step:
 assumes cdcl_W-stgy S U and cdcl_W-all-struct-inv S and no-step cdcl_W-bj U
 shows cdcl_W-s' S U
 using cdcl_W-stgy-cdcl_W-s'-connected[OF assms(1,2)] assms(3)
 by (metis (no-types, lifting) full1-def tranclpD)
lemma rtranclp-cdcl_W-stgy-connected-to-rtranclp-cdcl<sub>W</sub>-s':
 assumes cdcl_W-stgy^{**} S U and inv: cdcl_W-M-level-inv S
 shows cdcl_W - s'^{**} S U \vee (\exists T. cdcl_W - s'^{**} S T \wedge cdcl_W - bj^{++} T U \wedge conflicting U \neq None)
 using assms(1)
proof induction
 case base
 then show ?case by simp
 case (step T V) note st = this(1) and o = this(2) and IH = this(3)
 from o show ?case
   proof cases
     case conflict'
     then have f2: cdcl_W - s' T V
       using cdcl_W-s'.conflict' by blast
     obtain ss :: 'st where
       f3: S = T \lor cdcl_W - stgy^{**} S ss \land cdcl_W - stgy ss T
       by (metis (full-types) rtranclp.simps st)
     obtain ssa :: 'st where
```

```
ssa: cdcl_W-cp T ssa
   using conflict' by (metis (no-types) full1-def tranclpD)
 have \forall s. \neg full \ cdcl_W \text{-}cp \ s \ T
   by (meson ssa full-def)
 then have S = T
   by (metis (full-types) f3 ssa cdcl<sub>W</sub>-stgy.cases full1-def)
 then show ?thesis
   using f2 by blast
next
 case (other' U) note o = this(1) and n-s = this(2) and full = this(3)
 then show ?thesis
   using o
   proof (cases rule: cdcl_W-o-rule-cases)
     {f case}\ decide
     then have cdcl_W-s'** S T
      using IH by (auto elim: rulesE)
     then show ?thesis
      by (meson decide decide' full n-s rtranclp.rtrancl-into-rtrancl)
   next
     case backtrack
     consider
        (s') cdcl_W-s'^{**} S T
      |(bj)| S' where cdcl_W - s'^{**} S S' and cdcl_W - bj^{++} S' T and conflicting T \neq None
      using IH by blast
     then show ?thesis
      proof cases
        case s'
        moreover
          have cdcl_W-M-level-inv T
           using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
          then have full1 cdcl_W-bj T U
           using backtrack-is-full1-cdcl_W-bj backtrack by blast
          then have cdcl_W-s' T V
           using full bj' n-s by blast
        ultimately show ?thesis by auto
      next
        case (bj S') note S-S' = this(1) and bj-T = this(2)
        have no-step cdcl_W-cp S'
          using bj-T by (fastforce simp: cdcl_W-cp.simps cdcl_W-bj.simps dest!: tranclpD
           elim: rulesE)
        moreover
          have cdcl_W-M-level-inv T
           using inv local.step(1) rtranclp-cdcl<sub>W</sub>-stgy-consistent-inv by auto
          then have full cdcl_W-bj T U
           using backtrack-is-full1-cdcl_W-bj backtrack by blast
          then have full1\ cdcl_W-bj\ S'\ U
           using bj-T unfolding full1-def by fastforce
        ultimately have cdcl_W-s' S' V using full by (simp add: bj')
        then show ?thesis using S-S' by auto
      qed
   \mathbf{next}
     case skip
     then have [simp]: U = V
      using full converse-rtranclpE unfolding full-def by (fastforce elim: rulesE)
     then have confl-V: conflicting V \neq None
```

```
using skip by (auto elim!: rulesE simp del: state-simp simp: state-eq-def)
        consider
            (s') cdcl_W-s'^{**} S T
          (bj) S' where cdcl_W - s'^{**} S S' and cdcl_W - bj^{++} S' T and conflicting T \neq None
          using IH by blast
        then show ?thesis
          proof cases
           case s'
           show ?thesis using s' confl-V skip by force
           case (bj S') note S-S' = this(1) and bj-T = this(2)
           have cdcl_W-bj^{++} S' V
             using skip bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.skip tranclp.simps)
            then show ?thesis using S-S' confl-V by auto
          qed
      next
        case resolve
        then have [simp]: U = V
          using full unfolding full-def rtranclp-unfold
          by (auto elim!: rulesE dest!: tranclpD
           simp\ del:\ state-simp\ simp:\ state-eq-def\ cdcl_W-cp.simps)
        have confl-V: conflicting V \neq None
          using resolve by (auto elim!: rulesE simp del: state-simp simp: state-eq-def)
        consider
           (s') cdcl_W - s'^{**} S T
          |(bj)| S' where cdcl_W - s'^{**} S S' and cdcl_W - bj^{++} S' T and conflicting T \neq None
          using IH by blast
        then show ?thesis
          proof cases
           case s'
           have cdcl_W-bj^{++} T V
             using resolve by force
           then show ?thesis using s' confl-V by auto
           case (bj S') note S-S' = this(1) and bj-T = this(2)
           have cdcl_W-bj^{++} S' V
             using resolve bj-T by (metis \langle U = V \rangle cdcl<sub>W</sub>-bj.resolve tranclp.simps)
           then show ?thesis using confl-V S-S' by auto
          qed
      qed
   qed
\mathbf{qed}
lemma n-step-cdcl_W-stgy-iff-no-step-cdcl_W-cl-cdcl_W-o:
 assumes inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-s' S \longleftrightarrow no-step cdcl_W-cp S \land no-step cdcl_W-o S (is ?S' S \longleftrightarrow ?C S \land ?O S)
proof
 assume ?CS \land ?OS
 then show ?S'S
   by (auto simp: cdcl_W-s'.simps full1-def tranclp-unfold-begin)
 assume n-s: ?S' S
 have ?CS
   proof (rule ccontr)
```

```
assume ¬ ?thesis
     then obtain S' where cdcl_W-cp S S'
     then obtain T where full1\ cdcl_W-cp\ S\ T
       using cdcl_W-cp-normalized-element-all-inv inv by (metis (no-types, lifting) full-unfold)
     then show False using n-s cdcl_W-s'.conflict' by blast
   qed
 moreover have ?OS
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain S' where cdcl_W-o S S'
       \mathbf{by} auto
     then obtain T where full cdcl_W-cp S' T
       using cdcl_W-cp-normalized-element-all-inv inv
       by (meson\ cdcl_W-all-struct-inv-def\ n-s
         cdcl_W-stgy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stgy-step)
     then show False using n-s by (meson \langle cdcl_W - o S S' \rangle cdcl_W-all-struct-inv-def
       cdcl_W-stqy-cdcl_W-s'-connected' cdcl_W-then-exists-cdcl_W-stqy-step inv)
   aed
 ultimately show ?C S \land ?O S by auto
qed
lemma cdcl_W-s'-tranclp-cdcl_W:
  cdcl_W-s' S S' \Longrightarrow cdcl_W<sup>++</sup> S S'
proof (induct rule: cdcl_W-s'.induct)
 case conflict'
 then show ?case
   by (simp add: full1-def tranclp-cdcl<sub>W</sub>-cp-tranclp-cdcl<sub>W</sub>)
next
 case decide'
 then show ?case
   using cdcl_W-stgy.simps cdcl_W-stgy-tranclp-cdcl_W by (meson cdcl_W-o.simps)
 case (bi' Sa S'a S'') note a2 = this(1) and a1 = this(2) and n-s = this(3)
 obtain ss :: 'st \Rightarrow 'st \Rightarrow ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st where
   \forall x0 \ x1 \ x2. \ (\exists \ v3. \ x2 \ x1 \ v3 \ \land \ x2^{**} \ v3 \ x0) = (x2 \ x1 \ (ss \ x0 \ x1 \ x2) \land \ x2^{**} \ (ss \ x0 \ x1 \ x2) \ x0)
  then have f3: \forall p \ s \ sa. \neg p^{++} \ s \ sa \lor p \ s \ (ss \ sa \ s \ p) \land p^{**} \ (ss \ sa \ s \ p) \ sa
   by (metis (full-types) tranclpD)
 have cdcl_W-bj^{++} Sa S'a \wedge no-step cdcl_W-bj S'a
   using a2 by (simp add: full1-def)
  then have cdcl_W-bj Sa (ss\ S'a\ Sa\ cdcl_W-bj) \land\ cdcl_W-bj** (ss\ S'a\ Sa\ cdcl_W-bj) S'a
   using f3 by auto
  then show cdcl_W^{++} Sa S''
   using a1 n-s by (meson bj other rtranclp-cdcl<sub>W</sub>-bj-full1-cdclp-cdcl<sub>W</sub>-stgy
     rtranclp-cdcl_W-stgy-rtranclp-cdcl_W rtranclp-into-tranclp2)
qed
lemma tranclp-cdcl_W-s'-tranclp-cdcl_W:
  cdcl_W-s'^{++} S S' \Longrightarrow cdcl_W<sup>++</sup> S S'
 apply (induct rule: tranclp.induct)
  using cdcl_W-s'-tranclp-cdcl_W apply blast
 by (meson\ cdcl_W - s' - tranclp - cdcl_W\ tranclp - trans)
lemma rtranclp-cdcl_W-s'-rtranclp-cdcl_W:
```

```
cdcl_W-s'^{**} S S' \Longrightarrow cdcl_W** S S'
  using rtranclp-unfold[of\ cdcl_W-s'\ S\ S']\ tranclp-cdcl_W-s'-tranclp-cdcl_W[of\ S\ S'] by auto
lemma full-cdcl_W-stgy-iff-full-cdcl_W-s':
 assumes inv: cdcl_W-all-struct-inv S
 shows full cdcl_W-stgy S T \longleftrightarrow full cdcl_W-s' S T (is ?S \longleftrightarrow ?S')
proof
 assume ?S'
 then have cdcl_W^{**} S T
   using rtranclp-cdcl_W-s'-rtranclp-cdcl_W[of\ S\ T] unfolding full-def by blast
  then have inv': cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-all-struct-inv-inv inv by blast
 have cdcl_W-stgy^{**} S T
   using \langle ?S' \rangle unfolding full-def
     using cdcl_W-s'-is-rtranclp-cdcl_W-stgy rtranclp-mono[of cdcl_W-s' cdcl_W-stgy**] by auto
 then show ?S
   using \langle ?S' \rangle inv' cdcl_W-stgy-cdcl_W-s'-connected' unfolding full-def by blast
 assume ?S
 then have inv-T:cdcl_W-all-struct-inv T
   by (metis\ assms\ full-def\ rtranclp-cdcl_W-all-struct-inv-inv\ rtranclp-cdcl_W-stgy-rtranclp-cdcl_W)
 consider
     (s') cdcl_W-s'^{**} S T
   (st) S' where cdcl_W - s'^{**} S S' and cdcl_W - bj^{++} S' T and conflicting T \neq None
   using rtranclp-cdcl_W-stgy-connected-to-rtranclp-cdcl_W-s'[of S T] inv \langle ?S \rangle
   unfolding full-def cdcl_W-all-struct-inv-def
   by blast
  then show ?S'
   proof cases
     case s'
     have no-step cdcl_W-s' T
       using \langle full\ cdcl_W-stgy S\ T \rangle unfolding full-def
       by (meson\ cdcl_W-all-struct-inv-def cdcl_W-s'E\ cdcl_W-stgy.conflict'
         cdcl_W-then-exists-cdcl_W-stgy-step inv-T n-step-cdcl_W-stgy-iff-n-step-cdcl_W-cl-cdcl_W-o)
     then show ?thesis
       using s' unfolding full-def by blast
   next
     case (st S')
     have full cdcl_W-cp T T
       using option-full-cdcl<sub>W</sub>-cp st(3) by blast
     moreover
       have n-s: no-step cdcl_W-bj T
         by (metis \ \langle full \ cdcl_W \text{-}stgy \ S \ T \rangle \ bj \ inv\text{-}T \ cdcl_W \text{-}all\text{-}struct\text{-}inv\text{-}def
           cdcl_W-then-exists-cdcl_W-stgy-step full-def)
       then have full1\ cdcl_W-bj S' T
         using st(2) unfolding full1-def by blast
     moreover have no-step cdcl_W-cp S'
       using st(2) by (fastforce dest!: tranclpD simp: cdcl_W-cp.simps cdcl_W-bj.simps
         elim: rulesE)
     ultimately have cdcl_W-s' S' T
       using cdcl_W-s'.bj'[of S' T T] by blast
     then have cdcl_W-s'** S T
       using st(1) by auto
     moreover have no-step cdcl_W-s' T
```

```
using inv-T \land full \ cdcl_W-cp \ T \ T \land (full \ cdcl_W-stgy \ S \ T \land \ \mathbf{unfolding} \ full-def
       by (metis\ cdcl_W\ -all\ -struct\ -inv\ -def\ cdcl_W\ -then\ -exists\ -cdcl_W\ -stgy\ -step
         n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
     ultimately show ?thesis
       unfolding full-def by blast
   qed
qed
lemma conflict-step-cdcl_W-stgy-step:
  assumes
    conflict S T
    cdcl_W-all-struct-inv S
 shows \exists T. \ cdcl_W \text{-} stgy \ S \ T
proof -
  obtain U where full\ cdcl_W-cp\ S\ U
   using cdcl_W-cp-normalized-element-all-inv assms by blast
  then have full cdcl_W-cp S U
   by (metis\ cdcl_W\text{-}cp.conflict'\ assms(1)\ full-unfold)
  then show ?thesis using cdcl<sub>W</sub>-stgy.conflict' by blast
qed
lemma decide-step-cdcl_W-stgy-step:
  assumes
    decide S T
    cdcl_W-all-struct-inv S
 shows \exists T. \ cdcl_W-stgy S \ T
proof -
  obtain U where full\ cdcl_W-cp\ T\ U
   using cdcl_W-cp-normalized-element-all-inv by (meson assms(1) assms(2) cdcl_W-all-struct-inv-inv
     cdcl_W-cp-normalized-element-all-inv decide other)
  then show ?thesis
   by (metis assms cdcl_W-cp-normalized-element-all-inv cdcl_W-stgy.conflict' decide full-unfold
      other')
qed
lemma rtranclp-cdcl_W-cp-conflicting-Some:
  cdcl_W - cp^{**} S T \Longrightarrow conflicting S = Some D \Longrightarrow S = T
  using rtranclpD tranclpD by fastforce
inductive cdcl_W-merge-cp :: 'st \Rightarrow 'st \Rightarrow bool where
conflict'[intro]: conflict \ S \ T \Longrightarrow full \ cdcl_W-bj \ T \ U \Longrightarrow cdcl_W-merge-cp \ S \ U \ |
propagate'[intro]: propagate^{++} S S' \Longrightarrow cdcl_W \text{-merge-cp } S S'
lemma cdcl_W-merge-restart-cases [consumes 1, case-names conflict propagate]:
 assumes
   cdcl_W-merge-cp S U and
   \bigwedge T. conflict S \ T \Longrightarrow full \ cdcl_W - bj \ T \ U \Longrightarrow P and
   propagate^{++} S U \Longrightarrow P
  shows P
  using assms unfolding cdcl_W-merge-cp.simps by auto
lemma cdcl_W-merge-cp-tranclp-cdcl<sub>W</sub>-merge:
  cdcl_W-merge-cp S T \Longrightarrow cdcl_W-merge<sup>++</sup> S T
  apply (induction rule: cdcl_W-merge-cp.induct)
   using cdcl_W-merge.simps apply auto[1]
```

```
using tranclp-mono[of\ propagate\ cdcl_W-merge]\ fw-propagate\ by\ blast
lemma rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W:
  cdcl_W-merge-cp^{**} S T \Longrightarrow cdcl_W^{**} S T
apply (induction rule: rtranclp-induct)
 apply simp
unfolding cdcl_W-merge-cp.simps by (meson cdcl_W-merge-restart-cdcl_W fw-r-conflict
  rtranclp-propagate-is-rtranclp-cdcl_W rtranclp-trans tranclp-into-rtranclp)
lemma full1-cdcl_W-bj-no-step-cdcl_W-bj:
 full1 cdcl_W-bj S T \Longrightarrow no-step cdcl_W-cp S
 unfolding full1-def by (metis rtranclp-unfold cdcl_W-cp-conflicting-not-empty option.exhaust
   rtranclp-cdcl_W-merge-restart-no-step-cdcl_W-bj tranclpD)
inductive cdcl_W-s'-without-decide where
conflict'-without-decide[intro]: full1 cdcl_W-cp S S' \Longrightarrow cdcl_W-s'-without-decide S S'
bj'-without-decide[intro]: full1 cdcl_W-bj S S' \Longrightarrow no-step cdcl_W-cp S \Longrightarrow full <math>cdcl_W-cp S' S''
     \implies cdcl_W-s'-without-decide S S''
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W:
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W** S \ T
 apply (induction rule: rtranclp-induct)
   apply simp
 by (meson\ cdcl_W - s'.simps\ cdcl_W - s'-tranclp-cdcl_W\ cdcl_W - s'-without-decide.simps
   rtranclp-tranclp-tranclp tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W-s':
  cdcl_W-s'-without-decide** S \ T \Longrightarrow cdcl_W-s'** S \ T
proof (induction rule: rtranclp-induct)
 case base
 then show ?case by simp
next
  case (step \ y \ z) note a2 = this(2) and a1 = this(3)
 have cdcl_W-s' y z
   using a2 by (metis (no-types) bj' cdcl_W-s'.conflict' cdcl_W-s'-without-decide.cases)
 then show cdcl_W-s'** S z
   using a1 by (meson r-into-rtrancly rtrancly-trans)
qed
lemma rtranclp-cdcl_W-merge-cp-is-rtranclp-cdcl_W-s'-without-decide:
   cdcl_W-merge-cp^{**} S V
   conflicting S = None
 shows
   (cdcl_W - s' - without - decide^{**} S V)
   \vee (\exists T. \ cdcl_W - s' - without - decide^{**} \ S \ T \land propagate^{++} \ T \ V)
   \vee (\exists T \ U. \ cdcl_W - s' - without - decide^{**} \ S \ T \land full 1 \ cdcl_W - bj \ T \ U \land propagate^{**} \ U \ V)
 using assms
proof (induction rule: rtranclp-induct)
 \mathbf{case}\ base
 then show ?case by simp
```

case (step U V) note st = this(1) and cp = this(2) and $IH = this(3)[OF\ this(4)]$

from cp show ?case

proof (cases rule: $cdcl_W$ -merge-restart-cases)

```
case propagate
     then show ?thesis using IH by (meson rtranclp-tranclp-tranclp tranclp-into-rtranclp)
     case (conflict U') note confl = this(1) and bj = this(2)
     have full1-U-U': full1 cdclw-cp U U'
       by (simp add: conflict-is-full1-cdcl<sub>W</sub>-cp local.conflict(1))
     consider
        (s') cdcl_W-s'-without-decide^{**} S U
        (propa) T' where cdcl_W-s'-without-decide** S T' and propagate^{++} T' U
       \mid (bj\text{-}prop) \ T' \ T'' \text{ where}
          cdcl_W-s'-without-decide** S T' and
          full1\ cdcl_W-bj\ T'\ T'' and
          propagate^{**} T^{\prime\prime} U
       using IH by blast
     then show ?thesis
       proof cases
        case s'
        have cdcl_W-s'-without-decide U U'
         using full1-U-U' conflict'-without-decide by blast
        then have cdcl_W-s'-without-decide** S U'
          using \langle cdcl_W \text{-}s'\text{-}without\text{-}decide^{**} S U \rangle by auto
        moreover have U' = V \vee full1 \ cdcl_W-bj U' \ V
          using bj by (meson full-unfold)
        ultimately show ?thesis by blast
       next
        case propa note s' = this(1) and T'-U = this(2)
        have full1\ cdcl_W-cp\ T'\ U'
          using rtranclp-mono[of propagate cdcl<sub>W</sub>-cp] T'-U cdcl<sub>W</sub>-cp.propagate' full1-U-U'
          rtranclp-full1I[of\ cdcl_W-cp\ T'] by (metis\ (full-types)\ predicate2D\ predicate2I
            tranclp-into-rtranclp)
        have cdcl_W-s'-without-decide** S U'
          using \langle full1 \ cdcl_W \text{-}cp \ T' \ U' \rangle \ conflict'\text{-}without\text{-}decide \ s' \ by \ force
        have full cdcl_W-bj U' V \vee V = U' using bj unfolding full-unfold by blast
        then show ?thesis
          using \langle cdcl_W - s' - without - decide^{**} S U' \rangle by blast
      next
        case bj-prop note s' = this(1) and bj-T' = this(2) and T''-U = this(3)
        have no-step cdcl_W-cp T'
          using bj-T' full1-cdcl_W-bj-no-step-cdcl_W-bj by blast
        moreover have full1 cdcl_W-cp T'' U'
          using rtranclp-mono of propagate cdcl_W-cp T''-U cdcl_W-cp. propagate' full1-U-U'
          rtranclp-full1I[of\ cdcl_W-cp\ T''] by blast
        ultimately have cdcl_W-s'-without-decide T' U'
          using bj'-without-decide[of T' T'' U'] bj-T' by (simp add: full-unfold)
        then have cdcl_W-s'-without-decide** S U'
          using s' rtranclp.intros(2)[of - S T' U'] by blast
        then show ?thesis
          using local.bj unfolding full-unfold by blast
       qed
   qed
qed
lemma rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp:
 assumes
   cdcl_W-s'-without-decide** S V and
```

```
confl: conflicting S = None
  \mathbf{shows}
   (cdcl_W - merge - cp^{**} S V \wedge conflicting V = None)
   \lor (cdcl_W - merge - cp^{**} \ S \ V \land conflicting \ V \neq None \land no\text{-step} \ cdcl_W - cp \ V \land no\text{-step} \ cdcl_W - bj \ V)
   \vee (\exists T. \ cdcl_W \text{-merge-} cp^{**} \ S \ T \land conflict \ T \ V)
  using assms(1)
proof (induction)
 case base
  then show ?case using confl by auto
next
 case (step U V) note st = this(1) and s = this(2) and IH = this(3)
 from s show ?case
   proof (cases rule: cdcl_W-s'-without-decide.cases)
     case conflict'-without-decide
     then have rt: cdcl_W-cp^{++} U V unfolding full1-def by fast
     then have conflicting U = None
      using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of U V]
       conflict by (auto dest!: tranclpD simp: rtranclp-unfold elim: rulesE)
     then have cdcl_W-merge-cp^{**} S U using IH by (auto elim: rulesE
       simp del: state-simp simp: state-eq-def)
     consider
        (propa) propagate^{++} U V
        | (confl') conflict U V
       \mid (propa-confl') \ U' \ \mathbf{where} \ propagate^{++} \ U \ U' \ conflict \ U' \ V
      using tranclp-cdcl<sub>W</sub>-cp-propagate-with-conflict-or-not[OF rt] unfolding rtranclp-unfold
      by fastforce
     then show ?thesis
      proof cases
        case propa
        then have cdcl_W-merge-cp UV
          by auto
        moreover have conflicting V = None
          using propa unfolding translp-unfold-end by (auto elim: rulesE)
        ultimately show ?thesis using \langle cdcl_W-merge-cp** S U \rangle by (auto elim!: rulesE
          simp del: state-simp simp: state-eq-def)
      next
        case confl'
        then show ?thesis using \langle cdcl_W-merge-cp^{**} S U\rangle by auto
      next
        case propa-confl' note propa = this(1) and confl' = this(2)
        then have cdcl_W-merge-cp U U' by auto
        then have cdcl_W-merge-cp^{**} S U' using \langle cdcl_W-merge-cp^{**} S U \rangle by auto
        then show ?thesis using \langle cdcl_W-merge-cp** S U \rangle confl' by auto
      qed
   next
     case (bj'-without-decide U') note full-bj = this(1) and cp = this(3)
     then have conflicting U \neq None
      using full-bj unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl_W-bj.simps
        elim: rulesE)
     with IH obtain T where
       S-T: cdcl_W-merge-cp** S T and T-U: conflict T U
      using full-bj unfolding full1-def by (blast dest: tranclpD)
     then have cdcl_W-merge-cp T U'
       using cdcl_W-merge-cp.conflict'[of T U U'] full-bj by (simp add: full-unfold)
     then have S-U': cdcl_W-merge-cp^{**} S U' using S-T by auto
```

```
consider
        (n-s) U' = V
       \mid (propa) \; propagate^{++} \; U' \; V
       | (confl') conflict U' V
       | (propa-confl') U'' where propagate<sup>++</sup> U' U'' conflict U'' V
      using tranclp-cdcl_W-cp-propagate-with-conflict-or-not cp
      unfolding rtranclp-unfold full-def by metis
     then show ?thesis
      proof cases
        case propa
        then have cdcl_W-merge-cp U' V by auto
        moreover have conflicting V = None
         using propa unfolding translp-unfold-end by (auto elim: rulesE)
        ultimately show ?thesis using S-U' by (auto elim: rulesE
          simp del: state-simp simp: state-eq-def)
      next
        case confl'
        then show ?thesis using S-U' by auto
      next
        case propa-confl' note propa = this(1) and confl = this(2)
        have cdcl_W-merge-cp U' U'' using propa by auto
        then show ?thesis using S-U' confl by (meson rtranclp.rtrancl-into-rtrancl)
      next
        case n-s
        then show ?thesis
         using S-U' apply (cases conflicting V = None)
          using full-bj apply simp
         by (metis cp full-def full-unfold full-bj)
      qed
   \mathbf{qed}
\mathbf{qed}
lemma no-step-cdcl<sub>W</sub>-s'-no-ste-cdcl<sub>W</sub>-merge-cp:
 assumes
   cdcl_W-all-struct-inv S
   conflicting S = None
   no-step cdcl_W-s' S
 shows no-step cdcl_W-merge-cp S
 using assms apply (auto simp: cdcl_W-s'.simps cdcl_W-merge-cp.simps)
   using conflict-is-full1-cdcl_W-cp apply blast
 using cdcl_W-cp-normalized-element-all-inv cdcl_W-cp.propagate' by (metis cdcl_W-cp.propagate'
   full-unfold tranclpD)
The no-step decide S is needed, since cdcl_W-merge-cp is cdcl_W-s' without decide.
lemma\ conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide:
 assumes
   confl: conflicting S = None and
   inv: cdcl_W-M-level-inv S and
   n-s: no-step cdcl_W-merge-cp S
 shows no-step cdcl_W-s'-without-decide S
proof (rule ccontr)
 assume \neg no-step cdcl_W-s'-without-decide S
 then obtain T where
   cdcl_W: cdcl_W-s'-without-decide S T
   by auto
```

```
then have inv-T: cdcl_W-M-level-inv T
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W[of S T]
   rtranclp-cdcl_W-consistent-inv inv by blast
  from cdcl_W show False
   proof cases
     case conflict'-without-decide
     have no-step propagate S
       \mathbf{using}\ \mathit{n\text{-}s}\ \mathbf{by}\ \mathit{blast}
     then have conflict S T
       using local.conflict' translp-cdcl<sub>W</sub>-cp-propagate-with-conflict-or-not[of S T]
       local.conflict'-without-decide unfolding full1-def rtranclp-unfold
      by (metis tranclp-unfold-begin)
     moreover
       then obtain T' where full\ cdcl_W-bj\ T\ T'
        using cdcl_W-bj-exists-normal-form inv-T by blast
     ultimately show False using cdcl_W-merge-cp.conflict' n-s by meson
   next
     case (bi'-without-decide S')
     then show ?thesis
       using confl unfolding full1-def by (fastforce simp: cdcl_W-bj.simps dest: tranclpD
         elim: rulesE)
   qed
qed
lemma conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp:
 assumes
   inv: cdcl_W-all-struct-inv S and
   n-s: no-step cdcl_W-s'-without-decide S
 shows no-step cdcl_W-merge-cp S
proof (rule ccontr)
 assume ¬ ?thesis
  then obtain T where cdcl_W-merge-cp S T
   by auto
  then show False
   proof cases
     case (conflict' S')
     then show False using n-s conflict'-without-decide conflict-is-full1-cdcl<sub>W</sub>-cp by blast
   next
     case propagate'
     moreover
      have cdcl_W-all-struct-inv T
        using inv by (meson local.propagate' rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv
          rtranclp-propagate-is-rtranclp-cdcl_W tranclp-into-rtranclp)
       then obtain U where full\ cdcl_W-cp\ T\ U
        using cdcl_W-cp-normalized-element-all-inv by auto
     ultimately have full1 cdcl_W-cp S U
       using tranclp-full-full1I[of cdcl_W-cp S T U] cdcl_W-cp.propagate'
       tranclp-mono[of propagate cdcl_W-cp] by blast
     then show False using conflict'-without-decide n-s by blast
   qed
\mathbf{qed}
lemma no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp:
  no\text{-step } cdcl_W\text{-}merge\text{-}cp \ S \Longrightarrow cdcl_W\text{-}M\text{-}level\text{-}inv \ S \Longrightarrow no\text{-step } cdcl_W\text{-}cp \ S
 using cdcl_W-bj-exists-normal-form cdcl_W-consistent-inv[OF cdcl_W.conflict, of S]
```

```
\mathbf{lemma}\ conflicting\text{-}not\text{-}true\text{-}rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj\text{:}}
 assumes
    conflicting S = None  and
    cdcl_W-merge-cp^{**} S T
  shows no-step cdcl_W-bj T
  using assms(2,1) by (induction)
  (fast force\ simp:\ cdcl_W\mbox{-}merge-cp.simps\ full-def\ tranclp-unfold-end\ cdcl_W\mbox{-}bj.simps
    elim: rulesE)+
\mathbf{lemma}\ conflicting\text{-}true\text{-}full\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}iff\text{-}full\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode};
  assumes
   confl: conflicting S = None and
   inv: cdcl_W-all-struct-inv S
 shows
   full\ cdcl_W-merge-cp S\ V\longleftrightarrow full\ cdcl_W-s'-without-decide S\ V\ (\mathbf{is}\ ?fw\longleftrightarrow ?s')
proof
 assume ?fw
 then have st: cdcl_W-merge-cp^{**} S V and n-s: no-step cdcl_W-merge-cp V
   unfolding full-def by blast+
 have inv-V: cdcl_W-all-struct-inv V
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W[of S V] \langle ?fw \rangle unfolding full-def
   by (simp\ add:\ inv\ rtranclp-cdcl_W-all-struct-inv-inv)
  consider
     (s') cdcl_W-s'-without-decide^{**} S V
    (propa) T where cdcl_W-s'-without-decide** S T and propagate<sup>++</sup> T V
   (bj) T U where cdcl_W-s'-without-decide** S T and full1 cdcl_W-bj T U and propagate** U V
   using rtranclp-cdcl_W-merge-cp-is-rtranclp-cdcl_W-s'-without-decide confl st n-s by metis
  then have cdcl_W-s'-without-decide** S V
   proof cases
     case s'
     then show ?thesis.
   next
     case propa note s' = this(1) and propa = this(2)
     have no-step cdcl_W-cp V
       using no-step-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-cp n-s inv-V
       unfolding cdcl_W-all-struct-inv-def by blast
     then have full1 cdcl_W-cp T V
       using propa tranclp-mono[of propagate cdcl_W-cp] cdcl_W-cp. propagate' unfolding full1-def
       by blast
     then have cdcl_W-s'-without-decide T V
       using conflict'-without-decide by blast
     then show ?thesis using s' by auto
     case bj note s' = this(1) and bj = this(2) and propa = this(3)
     have no-step cdcl_W-cp V
       using no-step-cdcl<sub>W</sub>-merge-cp-no-step-cdcl<sub>W</sub>-cp n-s inv-V
       unfolding cdcl_W-all-struct-inv-def by blast
     then have full cdcl_W-cp U V
       \mathbf{using} \ propa \ rtranclp-mono[of \ propagate \ cdcl_W-cp] \ cdcl_W-cp.propagate' \ \mathbf{unfolding} \ full-def
       by blast
     moreover have no-step cdcl_W-cp T
       using bj unfolding full1-def by (fastforce dest!: tranclpD \ simp: cdcl_W-bj.simps \ elim: \ rulesE)
     ultimately have cdcl_W-s'-without-decide T V
```

by $(metis\ cdcl_W - cp.\ cases\ cdcl_W - merge-cp.\ simps\ tranclp.intros(1))$

```
using bj'-without-decide[of T U V] bj by blast
     then show ?thesis using s' by auto
   qed
  moreover have no-step cdcl_W-s'-without-decide V
   proof (cases conflicting V = None)
     case False
      { fix ss :: 'st
       have ff1: \forall s \ sa. \ \neg \ cdcl_W - s' \ s \ sa \ \lor \ full1 \ cdcl_W - cp \ s \ sa
         \vee (\exists sb. \ decide \ s \ sb \land no\text{-step} \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa)
         \vee (\exists sb. full1 \ cdcl_W - bj \ s \ sb \land no\text{-step} \ cdcl_W - cp \ s \land full \ cdcl_W - cp \ sb \ sa)
         by (metis\ cdcl_W - s'.cases)
       have ff2: (\forall p \ s \ sa. \ \neg \ full1 \ p \ (s::'st) \ sa \lor p^{++} \ s \ sa \land no\text{-step} \ p \ sa)
         \land (\forall p \ s \ sa. \ (\neg p^{++} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full1 \ p \ sa)
         by (meson full1-def)
       obtain ssa :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
         ff3: \forall p \ s \ sa. \ \neg \ p^{++} \ s \ sa \ \lor \ p \ s \ (ssa \ p \ s \ sa) \ \land \ p^{**} \ (ssa \ p \ s \ sa) \ sa
         by (metis (no-types) tranclpD)
       then have a3: \neg cdcl_W - cp^{++} V ss
         using False by (metis option-full-cdcl<sub>W</sub>-cp full-def)
       have \bigwedge s. \neg cdcl_W - bj^{++} V s
         using ff3 False by (metis confl st
           conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj)
       then have \neg cdcl_W-s'-without-decide V ss
         using ff1 a3 ff2 by (metis cdcl_W-s'-without-decide.cases)
     then show ?thesis
       by fastforce
     next
       case True
       then show ?thesis
         using conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide n-s inv-V
         unfolding cdcl_W-all-struct-inv-def by simp
   qed
  ultimately show ?s' unfolding full-def by blast
next
  assume s': ?s'
  then have st: cdcl_W-s'-without-decide** S V and n-s: no-step cdcl_W-s'-without-decide V
    unfolding full-def by auto
  then have cdcl_W^{**} S V
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W st by blast
  then have inv-V: cdcl_W-all-struct-inv V using inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
  then have n-s-cp-V: no-step cdcl_W-cp V
   using cdcl_W-cp-normalized-element-all-inv[of V] full-fullI[of cdcl_W-cp V] n-s
   conflict'-without-decide\ conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp
   no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp
   unfolding cdcl_W-all-struct-inv-def by presburger
  have n-s-bj: no-step cdcl_W-bj V
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain W where W: cdcl_W-bj V W by blast
     have cdcl_W-all-struct-inv W
       using W \ cdcl_W.simps \ cdcl_W-all-struct-inv-inv \ inv-V \ by \ blast
     then obtain W' where full cdcl_W-bj V W'
       using cdcl_W-bj-exists-normal-form[of W] full-fullI[of cdcl_W-bj V W] W
       unfolding cdcl_W-all-struct-inv-def
```

```
by blast
     moreover
       then have cdcl_W^{++} V W'
         using tranclp-mono[of\ cdcl_W-bj\ cdcl_W]\ cdcl_W.other\ cdcl_W-o.bj\ unfolding\ full1-def\ by\ blast
       then have cdcl_W-all-struct-inv W'
         by (meson\ inv-V\ rtranclp-cdcl_W-all-struct-inv-inv\ tranclp-into-rtranclp)
       then obtain X where full cdcl_W-cp W'X
         using cdcl_W-cp-normalized-element-all-inv by blast
     ultimately show False
       using bj'-without-decide n-s-cp-V n-s by blast
   qed
 from s' consider
     (cp\text{-}true)\ cdcl_W\text{-}merge\text{-}cp^{**}\ S\ V\ and\ conflicting\ V=None
   |(cp\text{-}false)| cdcl_W-merge-cp^{**} S V and conflicting V \neq None and no-step cdcl_W-cp V and
        no-step cdcl_W-bj V
   | (cp\text{-}confl) \ T \ \text{where} \ cdcl_W\text{-}merge\text{-}cp^{**} \ S \ T \ conflict \ T \ V
   using rtranclp-cdcl_W-s'-without-decide-is-rtranclp-cdcl_W-merge-cp[of S V] confl
   unfolding full-def by meson
  then have cdcl_W-merge-cp^{**} S V
   proof cases
     case \textit{cp-confl} note \textit{S-T} = \textit{this}(1) and \textit{conf-V} = \textit{this}(2)
     have full cdcl_W-bj V
       using conf-V n-s-bj unfolding full-def by fast
     then have cdcl_W-merge-cp T V
       using cdcl_W-merge-cp.conflict' conf-V by auto
     then show ?thesis using S-T by auto
   qed fast+
 moreover
   then have cdcl_W^{**} S V using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl<sub>W</sub> by blast
   then have cdcl_W-all-struct-inv V
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then have no-step cdcl_W-merge-cp V
     using conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp s'
     unfolding full-def by blast
 ultimately show ?fw unfolding full-def by auto
qed
lemma\ conflicting-true-full1-cdcl_W-merge-cp-iff-full1-cdcl_W-s'-without-decode:
 assumes
   confl: conflicting S = None  and
   inv: cdcl_W-all-struct-inv S
 shows
   full1\ cdcl_W-merge-cp S\ V\longleftrightarrow full1\ cdcl_W-s'-without-decide S\ V
proof
 have full cdcl_W-merge-cp S V = full cdcl_W-s'-without-decide S V
   \mathbf{using} \ \ conflicting\text{-}true\text{-}full\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}iff\text{-}full\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decode} \ \ inv
   by simp
 then show ?thesis unfolding full-unfold full1-def tranclp-unfold-begin by blast
qed
lemma conflicting-true-full1-cdcl_W-merge-cp-imp-full1-cdcl_W-s'-without-decode:
   fw: full1 cdcl_W-merge-cp S V and
   inv: cdcl_W-all-struct-inv S
 shows
```

```
full1 cdcl_W-s'-without-decide S V
proof -
  have conflicting S = None
   using fw unfolding full1-def by (auto dest!: tranclpD simp: cdclw-merge-cp.simps elim: rulesE)
  then show ?thesis
    using conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-iff-full1-cdcl<sub>W</sub>-s'-without-decode fw inv by simp
qed
inductive cdcl_W-merge-stgy where
fw-s-cp[intro]: full1\ cdcl_W-merge-cp S\ T \Longrightarrow cdcl_W-merge-stgy S\ T
fw-s-decide[intro]: decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full \ cdcl_W-merge-cp T U
  \implies cdcl_W-merge-stgy S \ U
lemma cdcl_W-merge-stgy-tranclp-cdcl<sub>W</sub>-merge:
  assumes fw: cdcl_W-merge-stgy S T
  shows cdcl_W-merge^{++} S T
proof -
  \{ \mathbf{fix} \ S \ T \}
   assume full1 cdcl_W-merge-cp \ S \ T
   then have cdcl_W-merge<sup>++</sup> S T
     using tranclp-mono[of\ cdcl_W-merge-cp\ cdcl_W-merge^{++}]\ cdcl_W-merge-cp-tranclp-cdcl_W-merge
     unfolding full1-def
     by auto
  } note full1-cdcl_W-merge-cp-cdcl_W-merge = this
  show ?thesis
   using fw
   apply (induction rule: cdcl_W-merge-stgy.induct)
     using full1-cdcl_W-merge-cp-cdcl_W-merge apply simp
   unfolding full-unfold by (auto dest!: full1-cdcl_W-merge-cp-cdcl<sub>W</sub>-merge fw-decide)
qed
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-merge:
  assumes fw: cdcl_W-merge-stgy** S T
  shows cdcl_W-merge^{**} S T
  \mathbf{using} \ \mathit{fw} \ \mathit{cdcl}_W \textit{-merge-stgy-tranclp-cdcl}_W \textit{-merge} \ \mathit{rtranclp-mono}[\mathit{of} \ \mathit{cdcl}_W \textit{-merge-stgy} \ \mathit{cdcl}_W \textit{-merge}^{++}]
  unfolding translp-rtranslp-rtranslp by blast
lemma cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-merge-stgy.induct)
   using rtranclp-cdcl_W-merge-cp-rtranclp-cdcl<sub>W</sub> unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}cp\text{-}rtranclp\text{-}cdcl_W\ cdcl_W\text{-}o.decide\ cdcl_W.other\ \mathbf{unfolding}\ full\text{-}def
  by (meson r-into-rtranclp rtranclp-trans)
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W:
  cdcl_W-merge-stgy** S T \Longrightarrow cdcl_W** S T
  using rtranclp-mono[of\ cdcl_W-merge-styy\ cdcl_W^{**}]\ cdcl_W-merge-styy-rtranclp-cdcl_W by auto
lemma cdcl_W-merge-stgy-cases[consumes 1, case-names fw-s-cp fw-s-decide]:
  assumes
    cdcl_W-merge-stgy S U
   full1\ cdcl_W-merge-cp S\ U \Longrightarrow P
   \bigwedge T. decide S T \Longrightarrow no-step cdcl_W-merge-cp S \Longrightarrow full \ cdcl_W-merge-cp T U \Longrightarrow P
  shows P
```

```
using assms by (auto simp: cdcl_W-merge-stgy.simps)
inductive cdcl_W-s'-w :: 'st \Rightarrow 'st \Rightarrow bool where
conflict': full1\ cdcl_W-s'-without-decide\ S\ S' \Longrightarrow cdcl_W-s'-w\ S\ S'
decide': decide \ S \ S' \Longrightarrow no\text{-}step \ cdcl_W\text{-}s'\text{-}without\text{-}}decide \ S \Longrightarrow full \ cdcl_W\text{-}s'\text{-}without\text{-}}decide \ S' \ S''
  \implies cdcl_W - s' - w \ S \ S''
lemma cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w S T \Longrightarrow cdcl_W^{**} S T
  apply (induction rule: cdcl_W-s'-w.induct)
   using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full1-def
   apply (simp add: tranclp-into-rtranclp)
  using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W unfolding full-def
  by (meson decide other rtranclp-into-tranclp2 tranclp-into-rtranclp)
lemma rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W:
  cdcl_W-s'-w** S T \Longrightarrow cdcl_W** S T
  using rtranclp-mono[of\ cdcl_W-s'-w\ cdcl_W^{**}]\ cdcl_W-s'-w-rtranclp-cdcl_W by auto
lemma no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide}:
  assumes no-step cdcl_W-cp S and conflicting <math>S = None and inv: cdcl_W-M-level-inv S
  shows no-step cdcl_W-s'-without-decide S
  \mathbf{by} \ (\mathit{metis} \ \mathit{assms} \ \mathit{cdcl}_W\text{-}\mathit{cp}.\mathit{conflict'} \ \mathit{cdcl}_W\text{-}\mathit{cp}.\mathit{propagate'} \ \mathit{cdcl}_W\text{-}\mathit{merge-restart-cases} \ \mathit{tranclpD}
    conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
lemma no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart:
  assumes no-step cdcl_W-cp S and conflicting <math>S = None
  shows no-step cdcl_W-merge-cp S
  by (metis\ assms(1)\ cdcl_W-cp.conflict'\ cdcl_W-cp.propagate'\ cdcl_W-merge-restart-cases tranclpD)
lemma after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp:
  assumes cdcl_W-s'-without-decide S T
  shows no-step cdcl_W-cp T
  using assms by (induction rule: cdcl_W-s'-without-decide.induct) (auto simp: full1-def full-def)
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp}:
  cdcl_W-all-struct-inv S \Longrightarrow no-step cdcl_W-s'-without-decide S \Longrightarrow no-step cdcl_W-cp S
  by (simp add: conflicting-true-no-step-s'-without-decide-no-step-cdcl_W-merge-cp
    no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp\ cdcl_W-all-struct-inv-def)
\mathbf{lemma} \ \mathit{after-cdcl}_W\text{-}\mathit{s'-w-no-step-cdcl}_W\text{-}\mathit{cp} \text{:}
  assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
  shows no-step cdcl_W-cp T
  using assms
proof (induction rule: cdcl_W-s'-w.induct)
  case conflict'
  then show ?case
   by (auto simp: full1-def tranclp-unfold-end after-cdcl_W-s'-without-decide-no-step-cdcl_W-cp)
  case (decide' \ S \ T \ U)
  moreover
   then have cdcl_W^{**} S U
      using rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W [of T U] cdcl_W.other[of S T]
      cdcl_W-o.decide unfolding full-def by auto
   then have cdcl_W-all-struct-inv U
      using decide'.prems\ rtranclp-cdcl_W-all-struct-inv-inv by blast
```

```
ultimately show ?case
    using no-step-cdcl<sub>W</sub>-s'-without-decide-no-step-cdcl<sub>W</sub>-cp unfolding full-def by blast
qed
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-cp-or-eq:
  assumes cdcl_W-s'-w** S T and cdcl_W-all-struct-inv S
  shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
  using assms
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by simp
next
  case (step \ T \ U)
 moreover have cdcl_W-all-struct-inv T
   \mathbf{using}\ \mathit{rtranclp-cdcl}_W \cdot s' \cdot w \cdot \mathit{rtranclp-cdcl}_W [\mathit{of}\ S\ U]\ \mathit{assms}(2)\ \mathit{rtranclp-cdcl}_W \cdot \mathit{all-struct-inv-inv}
    rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1) by blast
  ultimately show ?case using after-cdcl_W-s'-w-no-step-cdcl_W-cp by fast
qed
\mathbf{lemma}\ rtranclp\text{-}cdcl_W\text{-}merge\text{-}stgy'\text{-}no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}or\text{-}eq:
  assumes cdcl_W-merge-stgy^{**} S T and inv: cdcl_W-all-struct-inv S
 shows S = T \vee no\text{-step } cdcl_W\text{-}cp T
  using assms
proof (induction rule: rtranclp-induct)
  case base
  then show ?case by simp
next
  case (step \ T \ U)
  moreover have cdcl_W-all-struct-inv T
   using rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W [of S U] assms(2) rtranclp-cdcl_W-all-struct-inv-inv
   rtranclp-cdcl_W-s'-w-rtranclp-cdcl_W step.hyps(1)
   by (meson\ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W)
  ultimately show ?case
   using after-cdcl_W-s'-w-no-step-cdcl<sub>W</sub>-cp inv unfolding cdcl_W-all-struct-inv-def
   by (metis\ cdcl_W\mbox{-}all\mbox{-}struct\mbox{-}inv\mbox{-}def\ cdcl_W\mbox{-}merge\mbox{-}stgy.simps\ full1\mbox{-}def\ full\mbox{-}def
     no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp rtranclp-cdcl_W-all-struct-inv-inv
     rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W tranclp.intros(1) tranclp-into-rtranclp)
qed
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj:
  assumes no-step cdcl_W-s'-without-decide S and inv: cdcl_W-all-struct-inv S
 shows no-step cdcl_W-bj S
proof (rule ccontr)
  assume ¬ ?thesis
  then obtain T where S-T: cdcl_W-bj S T
   by auto
  have cdcl_W-all-struct-inv T
   using S-T cdcl_W-all-struct-inv-inv inv other by blast
  then obtain T' where full cdcl_W-bj S T'
   using cdcl_W-bj-exists-normal-form[of T] full-fullI S-T unfolding cdcl_W-all-struct-inv-def
   by metis
  moreover
   then have cdcl_W^{**} S T'
     \mathbf{using} \ rtranclp-mono[of \ cdcl_W-bj \ cdcl_W] \ cdcl_W. other \ cdcl_W-o.bj \ tranclp-into-rtranclp[of \ cdcl_W-bj]
     unfolding full1-def by blast
```

```
then have cdcl_W-all-struct-inv T'
     using inv rtranclp-cdcl_W-all-struct-inv-inv by blast
   then obtain U where full\ cdcl_W-cp\ T'\ U
     using cdcl_W-cp-normalized-element-all-inv by blast
  moreover have no-step cdcl_W-cp S
   using S-T by (auto simp: cdcl_W-bj.simps elim: rulesE)
  ultimately show False
  using assms cdcl_W-s'-without-decide.intros(2)[of S T' U] by fast
qed
lemma cdcl_W-s'-w-no-step-cdcl_W-bj:
  assumes cdcl_W-s'-w S T and cdcl_W-all-struct-inv S
 shows no-step cdcl_W-bj T
  using assms apply induction
   \mathbf{using}\ rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
   no-step-cdcl<sub>W</sub>-s'-without-decide-no-step-cdcl<sub>W</sub>-bj unfolding full1-def
   apply (meson tranclp-into-rtranclp)
  \mathbf{using}\ rtranclp-cdcl_W-s'-without-decide-rtranclp-cdcl_W rtranclp-cdcl_W-all-struct-inv-inv
    no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}no\text{-}step\text{-}cdcl_W\text{-}bj unfolding full-def
  by (meson\ cdcl_W-merge-restart-cdcl<sub>W</sub> fw-r-decide)
lemma rtranclp-cdcl_W-s'-w-no-step-cdcl_W-bj-or-eq:
  assumes cdcl_W-s'-w** S T and cdcl_W-all-struct-inv S
  shows S = T \vee no\text{-step } cdcl_W\text{-bj } T
  using assms apply induction
   apply simp
  using rtranclp-cdcl_W-s'-w-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl_W-all-struct-inv-inv
    cdcl_W-s'-w-no-step-cdcl_W-bj by meson
\mathbf{lemma} \ rtranclp\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}without\text{-}decide\text{-}decomp\text{-}into\text{-}cdcl_W\text{-}merge:}
  assumes
    cdcl_W-s'** R V and
    conflicting R = None and
    inv: cdcl_W-all-struct-inv R
  shows (cdcl_W-merge-stgy** R \ V \land conflicting \ V = None)
  \lor (cdcl_W \text{-merge-stgy}^{**} R \ V \land conflicting \ V \neq None \land no\text{-step} \ cdcl_W \text{-bj} \ V)
  \vee (\exists S \ T \ U. \ cdcl_W-merge-stgy** R \ S \land no-step cdcl_W-merge-cp S \land decide \ S \ T
   \land cdcl_W-merge-cp^{**} T U \land conflict U V)
  \vee (\exists S \ T. \ cdcl_W \text{-merge-stgy}^{**} \ R \ S \land no\text{-step} \ cdcl_W \text{-merge-cp} \ S \land decide \ S \ T
   \land cdcl_W-merge-cp** T V
     \land conflicting V = None
  \vee (cdcl_W \text{-merge-}cp^{**} R \ V \wedge conflicting \ V = None)
  \vee (\exists U. \ cdcl_W \text{-merge-} cp^{**} \ R \ U \land conflict \ U \ V)
  using assms(1,2)
proof induction
  case base
  then show ?case by simp
  case (step V W) note st = this(1) and s' = this(2) and IH = this(3)[OF\ this(4)] and
   n-s-R = this(4)
  from s'
  show ?case
   proof cases
     case conflict'
     consider
```

```
(s') cdcl_W-merge-stgy** R V
 | (dec-confl) S T U where cdcl<sub>W</sub>-merge-stgy** R S and no-step cdcl<sub>W</sub>-merge-cp S and
     decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ U\ and\ conflict\ U\ V
 \mid (dec) \mid S \mid T  where cdcl_W-merge-stqy** R \mid S  and no-step cdcl_W-merge-cp S and decide \mid S \mid T
     and cdcl_W-merge-cp^{**} T V and conflicting V = None
   (cp) \ cdcl_W - merge - cp^{**} \ R \ V
  | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
 using IH by meson
then show ?thesis
 proof cases
 next
   case s'
   then have R = V
     by (metis full1-def inv local.conflict' translp-unfold-begin
      rtranclp-cdcl_W-merge-stqy'-no-step-cdcl_W-cp-or-eq)
   consider
      (V-W) V = W
     | (propa) propagate^{++} V W  and conflicting W = None
     | (propa-confl) V' where propagate** V V' and conflict V' W
     using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
     unfolding full-unfold full1-def by meson
   then show ?thesis
     proof cases
      \mathbf{case}\ \mathit{V-W}
      then show ?thesis using \langle R = V \rangle n-s-R by simp
     next
      case propa
      then show ?thesis using \langle R = V \rangle by auto
      case propa-confl
      moreover
        then have cdcl_W-merge-cp^{**} V V'
          by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' r-into-rtranclp)
      ultimately show ?thesis using s' \langle R = V \rangle by blast
     qed
 next
   case dec\text{-}confl note - = this(5)
   then have False using conflict' unfolding full1-def by (auto dest!: tranclpD elim: rulesE)
   then show ?thesis by fast
 next
   case dec note T-V = this(4)
   consider
       (propa) propagate^{++} V W  and conflicting W = None
      (propa-confl)\ V' where propagate^{**}\ V\ V' and conflict\ V'\ W
     using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of\ V\ W]\ conflict'
     unfolding full1-def by meson
   then show ?thesis
     proof cases
      case propa
      then show ?thesis
        by (meson T-V cdcl<sub>W</sub>-merge-cp.propagate' dec rtranclp.rtrancl-into-rtrancl)
     next
      case propa-confl
      then have cdcl_W-merge-cp^{**} T V'
        using T-V by (metis rtranclp-unfold cdcl_W-merge-cp.propagate' rtranclp.simps)
```

```
then show ?thesis using dec propa-confl(2) by metis
                qed
       next
            case cp
            consider
                     (propa) propagate^{++} V W  and conflicting W = None
                 | (propa-confl) V' where propagate** V V' and conflict V' W
                using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] conflict'
                unfolding full1-def by meson
            then show ?thesis
                proof cases
                    case propa
                    then show ?thesis by (meson cdcl<sub>W</sub>-merge-cp.propagate' cp
                         rtranclp.rtrancl-into-rtrancl)
                next
                    case propa-confl
                    then show ?thesis
                        using propa-confl(2) cp
                        by (metis\ (full-types)\ cdcl_W-merge-cp.propagate' rtrancl_P.rtrancl-into-rtrancl
                             rtranclp-unfold)
                qed
       next
            case cp-confl
            then show ?thesis using conflict' unfolding full1-def by (fastforce dest!: tranclpD
                elim!: rulesE)
       ged
next
    case (decide' V')
    then have conf-V: conflicting V = None
        by (auto elim: rulesE)
    consider
          (s') cdcl_W-merge-stgy** R V
        \mid (dec\text{-}confl) \mid S \mid T \mid U \text{ where } cdcl_W\text{-}merge\text{-}stgy^{**} \mid R \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}step \ cdcl_W\text{-}cp \mid S \text{ and } no\text{-}st
                decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ U\ and\ conflict\ U\ V
       \mid (dec) \mid S \mid T \mid where cdcl_W-merge-stgy** R \mid S \mid and no-step cdcl_W-merge-cp S \mid and decide \mid S \mid T \mid
                  and cdcl_W-merge-cp^{**} T V and conflicting V = None
            (cp) \ cdcl_W - merge - cp^{**} \ R \ V
         | (cp\text{-}confl) \ U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} \ R \ U \text{ and } conflict \ U \ V
        using IH by meson
    then show ?thesis
        proof cases
            case s'
            have confl-V': conflicting V' = None using decide'(1) by (auto elim: rulesE)
            have full: full1 cdcl_W-cp\ V'\ W\ \lor\ (V'=\ W\ \land\ no\text{-step}\ cdcl_W-cp\ W)
                using decide'(3) unfolding full-unfold by blast
            consider
                    (V'-W) \ V' = W
                | (propa) propagate^{++} V' W  and conflicting W = None
                | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
                using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V W] decide'
                  \langle full1\ cdcl_W - cp\ V'\ W\ \lor\ V' =\ W\ \land\ no\text{-step}\ cdcl_W - cp\ W\rangle\ \mathbf{unfolding}\ full1\text{-}def
                by (metis\ tranclp-cdcl_W-cp-propagate-with-conflict-or-not)
            then show ?thesis
                proof cases
                    case V'-W
```

```
then show ?thesis
        using confl-V' local.decide'(1,2) s' conf-V
        no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart[of\ V]}
        by auto
    \mathbf{next}
      case propa
      then show ?thesis using local.decide'(1,2) s' by (metis cdcl<sub>W</sub>-merge-cp.simps conf-V
        no\text{-}step\text{-}cdcl_W\text{-}cp\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}restart\ r\text{-}into\text{-}rtranclp})
    next
      case propa-confl
      then have cdcl_W-merge-cp^{**} V' V''
        \mathbf{by}\ (\mathit{metis}\ \mathit{rtranclp-unfold}\ \mathit{cdcl}_W\text{-}\mathit{merge-cp.propagate'}\ \mathit{r-into-rtranclp})
      then show ?thesis
        using local.decide'(1,2) propa-confl(2) s' conf-V
        no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart
        by metis
    qed
next
  case (dec) note s' = this(1) and dec = this(2) and cp = this(3) and ns-cp-T = this(4)
  have full\ cdcl_W-merge-cp\ T\ V
    unfolding full-def by (simp add: conf-V local.decide'(2)
      no-step-cdcl_W-cp-no-step-cdcl_W-merge-restart \ ns-cp-T)
  moreover have no-step cdcl_W-merge-cp V
     by (simp add: conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
  moreover have no-step cdcl_W-merge-cp S
    by (metis dec)
  ultimately have cdcl_W-merge-stgy S V
    using cp by blast
  then have cdcl_W-merge-stgy** R V using s' by auto
  consider
      (V'-W) \ V' = W
    | (propa) propagate^{++} V' W  and conflicting W = None
    | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
    using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V'W] decide'
    unfolding full-unfold full1-def by meson
  then show ?thesis
    proof cases
      case V'-W
      moreover have conflicting V' = None
        using decide'(1) by (auto elim: rulesE)
      ultimately show ?thesis
        \mathbf{using} \ \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ R \ V \rangle \ decide' \ \langle no\text{-}step \ cdcl_W \text{-}merge\text{-}cp \ V \rangle \ \mathbf{by} \ blast
    next
      case propa
      moreover then have cdcl_W-merge-cp V' W
        by auto
      ultimately show ?thesis
        using \langle cdcl_W-merge-stgy** R \ V \rangle \ decide' \langle no\text{-step} \ cdcl_W-merge-cp V \rangle
        by (meson r-into-rtranclp)
    next
      case propa-confl
      moreover then have \mathit{cdcl}_W\text{-}\mathit{merge\text{-}\mathit{cp}^{**}}\ \mathit{V'}\ \mathit{V''}
        by (metis cdcl<sub>W</sub>-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
      ultimately show ?thesis using \langle cdcl_W-merge-stgy** R \ V \rangle \ decide'
        \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
```

```
qed
   next
     case cp
     have no-step cdcl_W-merge-cp V
       using conf-V local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart by auto
     then have full cdcl_W-merge-cp R V
       unfolding full-def using cp by fast
     then have cdcl_W-merge-stgy** R V
       unfolding full-unfold by auto
     have full1 cdcl_W-cp\ V'\ W\ \lor\ (V'=\ W\ \land\ no\text{-}step\ cdcl_W-cp\ W)
       using decide'(3) unfolding full-unfold by blast
     consider
         (V'-W) \ V' = W
        (propa) propagate^{++} V' W and conflicting W = None
       | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
       using tranclp-cdcl_W-cp-propagate-with-conflict-or-not[of V' W] decide'
       unfolding full-unfold full1-def by meson
     then show ?thesis
       proof cases
         case V'-W
         moreover have conflicting V' = None
          using decide'(1) by (auto elim: rulesE)
         ultimately show ?thesis
          using \langle cdcl_W \text{-}merge\text{-}stgy^{**} R V \rangle decide' \langle no\text{-}step \ cdcl_W \text{-}merge\text{-}cp \ V \rangle  by blast
       next
         case propa
         moreover then have cdcl_W-merge-cp V'W
         ultimately show ?thesis using \langle cdcl_W-merge-stgy** R V \rangle decide'
           \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V\rangle\ \mathbf{by}\ (meson\ r\text{-}into\text{-}rtranclp)
         case propa-confl
         moreover then have cdcl_W-merge-cp^{**} V' V''
          by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
         ultimately show ?thesis using \langle cdcl_W-merge-stqy** R V \rangle decide'
           \langle no\text{-}step\ cdcl_W\text{-}merge\text{-}cp\ V \rangle by (meson\ r\text{-}into\text{-}rtranclp)
       qed
   next
     case (dec-confl)
     show ?thesis using conf-V dec-confl(5) by (auto elim!: rulesE
       simp del: state-simp simp: state-eq-def)
   next
     case cp-confl
     then show ?thesis using decide' apply - by (intro HOL.disjI2) (fastforce elim: rulesE
       simp del: state-simp simp: state-eq-def)
 qed
next
 case (bj' \ V')
 then have \neg no\text{-}step\ cdcl_W\text{-}bj\ V
   by (auto dest: tranclpD simp: full1-def)
 then consider
    (s') cdcl_W-merge-stgy** R V and conflicting V = None
   | (dec-confl) S T U where cdcl<sub>W</sub>-merge-stgy** R S and no-step cdcl<sub>W</sub>-merge-cp S and
```

```
decide\ S\ T\ {\bf and}\ cdcl_W-merge-cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
 \mid (dec) \mid S \mid T  where cdcl_W-merge-stgy** R \mid S  and no-step cdcl_W-merge-cp S and decide \mid S \mid T
     and cdcl_W-merge-cp^{**} T V and conflicting V = None
 |(cp)| cdcl_W-merge-cp^{**} R V and conflicting V = None
 | (cp\text{-}confl) U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} R U \text{ and } conflict U V
 using IH by meson
then show ?thesis
 proof cases
   case s' note - = this(2)
   then have False
     using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps
       elim: rulesE)
   then show ?thesis by fast
 next
   case dec note - = this(5)
   then have False
     using bj'(1) unfolding full1-def by (force dest!: tranclpD simp: cdcl_W-bj.simps
       elim: rulesE)
   then show ?thesis by fast
 next
   case dec-confl
   then have cdcl_W-merge-cp UV'
     using bj' cdcl_W-merge-cp.intros(1)[of U \ V \ V'] by (simp add: full-unfold)
   then have cdcl_W-merge-cp^{**} T V'
     using dec\text{-}confl(4) by simp
   consider
       (V'-W) V'=W
     | (propa) propagate^{++} V' W  and conflicting W = None
      (propa-confl) V'' where propagate** V' V'' and conflict V'' W
     using tranclp-cdcl_W-cp-propagate-with-conflict-or-not [of V'W] bj'(3)
     unfolding full-unfold full1-def by meson
   then show ?thesis
     proof cases
      case V'-W
      then have no-step cdcl_W-cp V'
        using bi'(3) unfolding full-def by auto
      then have no-step cdcl_W-merge-cp V'
        by (metis cdcl_W-cp.propagate' cdcl_W-merge-cp.cases tranclpD
          no-step-cdcl_W-cp-no-conflict-no-propagate(1)
      then have full cdcl_W-merge-cp T V'
        unfolding full1-def using \langle cdcl_W-merge-cp U V' \rangle dec-confl(4) by auto
      then have full cdcl_W-merge-cp T V'
        by (simp add: full-unfold)
      then have cdcl_W-merge-stgy S V'
        using dec\text{-}confl(3) cdcl_W-merge-stgy.fw-s-decide \langle no\text{-}step \ cdcl_W-merge-cp S \rangle by blast
      then have cdcl_W-merge-stgy** R V
        using \langle cdcl_W-merge-stgy** R S \rangle by auto
      show ?thesis
        proof cases
          assume conflicting W = None
          then show ?thesis using \langle cdcl_W-merge-stgy** R \ V' \rangle \langle V' = W \rangle by auto
          assume conflicting W \neq None
          then show ?thesis
            using \langle cdcl_W-merge-stgy** R\ V' \rangle\ \langle V' = W \rangle by (metis\ \langle cdcl_W-merge-cp U\ V' \rangle
```

```
conflictE\ conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
            dec\text{-}confl(5) map-option-is-None r-into-rtranclp)
      qed
   next
     case propa
     moreover then have cdcl_W-merge-cp V'W
      by auto
   rtranclp.rtrancl-into-rtrancl)
   next
     case propa-confl
     moreover then have cdcl_W-merge-cp^{**} V' V''
      by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
   ultimately show ?thesis by (meson \langle cdcl_W - merge - cp^{**} \mid T \mid V' \rangle dec - confl(1-3) rtranclp-trans)
   \mathbf{qed}
next
 case cp note - = this(2)
 then show ?thesis using bj'(1) \langle \neg no\text{-step } cdcl_W\text{-}bj V \rangle
   conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj by auto
\mathbf{next}
 case cp-confl
 then have cdcl_W-merge-cp U V' by (simp add: cdcl_W-merge-cp.conflict' full-unfold
   local.bj'(1)
 consider
     (V'-W) \ V' = W
   (propa) propagate^{++} V' W and conflicting W = None
   | (propa-confl) V'' where propagate** V' V'' and conflict V'' W
   using tranclp-cdcl_W-cp-propagate-with-conflict-or-not [of V'W] by
   unfolding full-unfold full1-def by meson
 then show ?thesis
   proof cases
     case V'-W
     show ?thesis
      proof cases
        assume conflicting V' = None
        then show ?thesis
          using V'-W \langle cdcl_W-merge-cp U V' \rangle cp-confl(1) by force
      next
        assume confl: conflicting V' \neq None
        then have no-step cdcl_W-merge-stgy V'
          by (fastforce simp: cdcl_W-merge-stgy.simps full1-def full-def
            cdcl_W-merge-cp.simps dest!: tranclpD elim: rulesE)
        have no-step cdcl_W-merge-cp V'
          using confl by (auto simp: full1-def full-def cdcl_W-merge-cp.simps
          dest!: tranclpD elim: rulesE)
        moreover have cdcl_W-merge-cp U W
          using V'-W \langle cdcl_W-merge-cp U V' \rangle by blast
        ultimately have full1 cdcl_W-merge-cp R V'
          using cp\text{-}confl(1) V'\text{-}W unfolding full 1\text{-}def by auto
        then have cdcl_W-merge-stgy R V'
        moreover have no-step cdcl_W-merge-stgy V'
          using confl \ (no\text{-}step \ cdcl_W\text{-}merge\text{-}cp \ V') by (auto \ simp: \ cdcl_W\text{-}merge\text{-}stgy.simps
           full1-def dest!: tranclpD elim: rulesE)
```

```
ultimately have cdcl_W-merge-stgy** R V' by auto
               { fix ss :: 'st
                 have cdcl_W-merge-cp U W
                   using V'-W \langle cdcl_W-merge-cp U V' \rangle by blast
                 then have \neg cdcl_W - bj W ss
                  by (meson\ conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
                    cp-confl(1) rtranclp.rtrancl-into-rtrancl step.prems)
                 then have cdcl_W-merge-stgy** R W \wedge conflicting W = None \vee
                   cdcl_W-merge-stgy** R \ W \land \neg \ cdcl_W-bj W \ ss
                  using V'-W \langle cdcl_W-merge-stgy** R V' \rangle by presburger }
               then show ?thesis
                 by presburger
            qed
          next
           case propa
           moreover then have cdcl_W-merge-cp V' W
             by auto
           ultimately show ?thesis using \langle cdcl_W-merge-cp U \ V' \rangle cp-confl(1) by force
          next
           case propa-confl
           moreover then have \operatorname{cdcl}_W\operatorname{-merge-cp}^{**}\ V'\ V''
             by (metis\ cdcl_W-merge-cp.propagate' rtranclp-unfold tranclp-unfold-end)
           ultimately show ?thesis
             using \langle cdcl_W-merge-cp U V' \rangle cp-confl(1) by (metis rtranclp.rtrancl-into-rtrancl)
               rtranclp-trans)
          ged
      \mathbf{qed}
   \mathbf{qed}
qed
lemma decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s':
 assumes
   dec: decide S T and
   cdcl_W-s'** T U and
   n-s-S: no-step cdcl_W-cp S and
   no-step cdcl_W-cp U
 shows cdcl_W-s'** S U
 using assms(2,4)
proof induction
 case (step U(V)) note st = this(1) and s' = this(2) and IH = this(3) and n-s = this(4)
 consider
     (TU) T = U
   | (s'-st) T' where cdcl_W-s' T T' and cdcl_W-s'^{**} T' U
   using st[unfolded rtranclp-unfold] by (auto dest!: tranclpD)
 then show ?case
   proof cases
     case TU
     then show ?thesis
      proof -
        assume a1: T = U
        then have f2: cdcl_W - s' T V
          using s' by force
        obtain ss :: 'st where
          ss: cdcl_W-s'** S T \vee cdcl_W-cp T ss
          using a1 step.IH by blast-
```

```
obtain ssa :: 'st \Rightarrow 'st where
           f3: \forall s \ sa \ sb. \ (\neg \ decide \ s \ sa \ \lor \ cdcl_W - cp \ s \ (ssa \ s) \ \lor \ \neg \ full \ cdcl_W - cp \ sa \ sb)
             \lor cdcl_W - s' s sb
           using cdcl_W-s'.decide' by moura
         have \forall s \ sa. \ \neg \ cdcl_W \ \neg s' \ s \ sa \ \lor \ full 1 \ cdcl_W \ \neg cp \ s \ sa \ \lor
           (\exists sb. \ decide \ s \ sb \land \ no\text{-step} \ cdcl_W\text{-}cp \ s \land full \ cdcl_W\text{-}cp \ sb \ sa) \lor
           (\exists sb. full1 \ cdcl_W - bj \ s \ sb \land no\text{-}step \ cdcl_W - cp \ s \land full \ cdcl_W - cp \ sb \ sa)
           by (metis\ cdcl_W - s'E)
         then have \exists s. \ cdcl_W - s'^{**} \ S \ s \land \ cdcl_W - s' \ s \ V
           using f3 ss f2 by (metis dec full1-is-full n-s-S rtranclp-unfold)
         then show ?thesis
           by force
       qed
   next
      case (s'-st T') note s'-T' = this(1) and st = this(2)
      have cdcl_W-s'** S T'
       using s'-T'
       proof cases
         case conflict'
         then have cdcl_W-s' S T'
            using dec\ cdcl_W-s'.decide'\ n-s-S by (simp\ add:\ full-unfold)
         then show ?thesis
            using st by auto
       \mathbf{next}
         case (decide' T'')
         then have cdcl_W-s' S T
            using dec\ cdcl_W-s'.decide'\ n-s-S by (simp\ add:\ full-unfold)
         then show ?thesis using decide' s'-T' by auto
       next
         case bj'
         then have False
           using dec unfolding full1-def by (fastforce dest!: tranclpD simp: cdcl_W-bj.simps
             elim: rulesE)
         then show ?thesis by fast
       qed
      then show ?thesis using s' st by auto
    qed
next
  case base
  then have full\ cdcl_W-cp\ T\ T
    by (simp add: full-unfold)
  then show ?case
    using cdcl_W-s'.simps dec n-s-S by auto
lemma rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s':
  assumes
    cdcl_W-merge-stgy** R V and
    inv: cdcl_W-all-struct-inv R
  shows cdcl_W-s'** R V
  using assms(1)
proof induction
  case base
  then show ?case by simp
\mathbf{next}
```

```
case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
  have cdcl_W-all-struct-inv S
   using inv rtranclp-cdcl_W-all-struct-inv-inv rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W st by blast
  from fw show ?case
   proof (cases rule: cdcl_W-merge-stgy-cases)
     case fw-s-cp
     have \bigwedge s. \neg full\ cdcl_W-merge-cp s\ S
       using fw-s-cp unfolding full-def full1-def by (metis tranclp-unfold-begin)
     then have S = R
       using fw-s-cp unfolding full1-def by (metis cdcl<sub>W</sub>-cp.conflict' cdcl<sub>W</sub>-cp.propagate'
         cdcl_W-merge-cp.cases tranclp-unfold-begin inv st
         rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
     then have full cdcl_W-s'-without-decide R T
       using inv local.fw-s-cp
       by (blast intro: conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-imp-full1-cdcl<sub>W</sub>-s'-without-decode)
     then show ?thesis unfolding full1-def
       by (metis (no-types) rtranclp-cdcl<sub>W</sub>-s'-without-decide-rtranclp-cdcl<sub>W</sub>-s' rtranclp-unfold)
     case (fw-s-decide S') note dec = this(1) and n-S = this(2) and full = this(3)
     moreover then have conflicting S' = None
       by (auto \ elim: rulesE)
     ultimately have full cdcl_W-s'-without-decide S' T
       by (meson \ (cdcl_W - all - struct - inv \ S) \ cdcl_W - merge - restart - cdcl_W \ fw - r - decide
         rtranclp-cdcl_W-all-struct-inv-inv
         conflicting-true-full-cdcl_W-merge-cp-iff-full-cdcl_W-s'-without-decode)
     then have a1: cdcl_W-s'** S' T
       unfolding full-def by (metis (full-types) rtranclp-cdcl<sub>W</sub>-s'-without-decide-rtranclp-cdcl<sub>W</sub>-s')
     have cdcl_W-merge-stgy** S T
       using fw by blast
     then have cdcl_W-s'** S T
       using decide-rtranclp-cdcl_W-s'-rtranclp-cdcl_W-s' a1 by (metis \langle cdcl_W-all-struct-inv S \rangle dec
         n-S no-step-cdcl_W-merge-cp-no-step-cdcl_W-cp cdcl_W-all-struct-inv-def
         rtranclp-cdcl_W-merge-stgy'-no-step-cdcl_W-cp-or-eq)
     then show ?thesis using IH by auto
   qed
qed
lemma rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses:
  assumes invR: cdcl_W-all-struct-inv R and
  st: cdcl_W-merge-stgy^{**} R S and
  dist: distinct-mset (clauses R) and
  R: trail R = []
 shows distinct-mset (clauses S)
  using rtranclp-cdcl_W-stgy-distinct-mset-clauses[OF invR - dist R]
  invR st rtranclp-mono[of\ cdcl_W-s'\ cdcl_W-stgy^{**}]\ cdcl_W-s'-is-rtranclp-cdcl_W-stgy
 by (auto dest!: cdcl_W-s'-is-rtranclp-cdcl_W-stgy rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-s')
lemma no\text{-}step\text{-}cdcl_W\text{-}s'\text{-}no\text{-}step\text{-}cdcl_W\text{-}merge\text{-}stgy:
 assumes
   inv: cdcl_W-all-struct-inv R and s': no-step cdcl_W-s' R
 shows no-step cdcl_W-merge-stgy R
proof -
  { fix ss :: 'st
   obtain ssa :: 'st \Rightarrow 'st \Rightarrow 'st where
     ff1: \land s \ sa. \ \neg \ cdcl_W-merge-styy s \ sa \lor full 1 \ cdcl_W-merge-cp s \ sa \lor decide \ s \ (ssa \ ssa)
```

```
using cdcl_W-merge-stgy.cases by moura
   obtain ssb :: ('st \Rightarrow 'st \Rightarrow bool) \Rightarrow 'st \Rightarrow 'st \Rightarrow 'st where
     ff2: \bigwedge p \ s \ sa. \ \neg \ p^{++} \ s \ sa \lor p \ s \ (ssb \ p \ s \ sa)
     by (meson tranclp-unfold-begin)
   obtain ssc :: 'st \Rightarrow 'st where
     ff3: \bigwedge s sa sb. (\neg cdcl_W - all - struct - inv <math>s \lor \neg cdcl_W - cp \ s sa \lor cdcl_W - s' \ s \ (ssc \ s))
       \land (\neg cdcl_W - all - struct - inv \ s \lor \neg cdcl_W - o \ s \ sb \lor cdcl_W - s' \ s \ (ssc \ s))
     using n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o by moura
   then have ff_4: \bigwedge s. \neg cdcl_W-o R s
     using s' inv by blast
   have ff5: \bigwedge s. \neg cdcl_W - cp^{++} R s
     using ff3 ff2 s' by (metis inv)
   have \bigwedge s. \neg cdcl_W - bj^{++} R s
     using ff4 ff2 by (metis bj)
   then have \bigwedge s. \neg cdcl_W-s'-without-decide R s
     using ff5 by (simp add: cdcl_W-s'-without-decide.simps full1-def)
   then have \neg cdcl_W - s'-without-decide<sup>++</sup> R ss
     using ff2 by blast
   then have \neg full1\ cdcl_W-s'-without-decide R ss
     by (simp add: full1-def)
   then have \neg cdcl_W-merge-stgy R ss
     using ff4 ff1 conflicting-true-full1-cdcl<sub>W</sub>-merge-cp-imp-full1-cdcl<sub>W</sub>-s'-without-decode inv
     by blast }
  then show ?thesis
   by fastforce
qed
end
We will discharge the assumption later.
locale \ conflict-driven-clause-learning_W-termination =
  conflict-driven-clause-learning_W +
  assumes wf-cdcl<sub>W</sub>-merge-inv: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge S T\}
begin
lemma wf-tranclp-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge<sup>++</sup> S T\}
  using wf-trancl[OF wf-cdcl<sub>W</sub>-merge-inv]
  apply (rule wf-subset)
  by (auto simp: trancl-set-tranclp
    cdcl_W-all-struct-inv-tranclp-cdcl_W-merge-tranclp-cdcl_W-merge-cdcl_W-all-struct-inv)
lemma wf-cdcl_W-merge-cp:
  wf\{(T, S).\ cdcl_W\text{-all-struct-inv}\ S \land cdcl_W\text{-merge-cp}\ S\ T\}
  using wf-tranclp-cdcl_W-merge by (rule wf-subset) (auto simp: cdcl_W-merge-cp-tranclp-cdcl_W-merge)
lemma wf-cdcl_W-merge-stgy:
  wf\{(T, S). \ cdcl_W - all - struct - inv \ S \land cdcl_W - merge - stgy \ S \ T\}
  using wf-tranclp-cdcl_W-merge by (rule wf-subset)
  (auto simp add: cdcl_W-merge-stgy-tranclp-cdcl_W-merge)
lemma cdcl_W-merge-cp-obtain-normal-form:
  assumes inv: cdcl_W-all-struct-inv R
  obtains S where full cdcl_W-merge-cp R S
proof -
  obtain S where full (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) R S
   using wf-exists-normal-form-full[OF wf-cdclw-merge-cp] by blast
```

```
then have
   st: (\lambda S \ T. \ cdcl_W-all-struct-inv S \land cdcl_W-merge-cp S \ T)^{**} \ R \ S and
   n-s: no-step (\lambda S T. cdcl_W-all-struct-inv S \wedge cdcl_W-merge-cp S T) S
   unfolding full-def by blast+
  have cdcl_W-merge-cp^{**} R S
   using st by induction auto
  moreover
   have cdcl_W-all-struct-inv S
     using st inv
     apply (induction rule: rtranclp-induct)
      apply simp
     \mathbf{by}\ (\mathit{meson}\ \mathit{r-into-rtranclp}\ \mathit{rtranclp-cdcl}_W\text{-}\mathit{all-struct-inv-inv}
       rtranclp-cdcl_W-merge-cp-rtranclp-cdcl_W)
   then have no-step cdcl_W-merge-cp S
     using n-s by auto
 ultimately show ?thesis
   using that unfolding full-def by blast
lemma no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s':
 assumes
   inv: cdcl_W-all-struct-inv R and
   confl: conflicting R = None and
   n-s: no-step cdcl_W-merge-stgy R
 shows no-step cdcl_W-s' R
proof (rule ccontr)
  assume ¬ ?thesis
 then obtain S where cdcl_W-s' R S by auto
  then show False
   proof cases
     case conflict'
     then obtain S' where full cdcl_W-merge-cp R S'
      proof -
        obtain R' :: 'e where
          cdcl_W-merge-cp R R'
          using inv unfolding cdcl_W-all-struct-inv-def by (meson confl
            cdcl_W-s'-without-decide.simps conflict'
            conflicting-true-no-step-cdcl_W-merge-cp-no-step-s'-without-decide)
        then show ?thesis
          using that by (metis cdcl_W-merge-cp-obtain-normal-form full-unfold inv)
     then show False using n-s by blast
   next
     case (decide' R')
     then have cdcl_W-all-struct-inv R'
       using inv cdcl_W-all-struct-inv-inv cdcl_W.other cdcl_W-o.decide by meson
     then obtain R'' where full cdcl_W-merge-cp R' R''
       using cdcl_W-merge-cp-obtain-normal-form by blast
     moreover have no-step cdclw-merge-cp R
       by (simp add: confl local.decide'(2) no-step-cdcl<sub>W</sub>-cp-no-step-cdcl<sub>W</sub>-merge-restart)
     ultimately show False using n-s cdcl_W-merge-stgy.intros local.decide'(1) by blast
     case (bi' R')
     then show False
       \mathbf{using} \ \mathit{confl} \ \mathit{no-step-cdcl}_W \textit{-}\mathit{cp-no-step-cdcl}_W \textit{-}\mathit{s'-without-decide} \ \mathit{inv}
```

```
unfolding cdcl_W-all-struct-inv-def by auto
   qed
qed
lemma rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj:
 assumes conflicting R = None and cdcl_W-merge-cp^{**} R S
 shows no-step cdcl_W-bj S
 using assms conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj by auto
lemma rtranclp-cdcl_W-merge-stgy-no-step-cdcl_W-bj:
 assumes confl: conflicting R = None and cdcl_W-merge-stgy** R S
 shows no-step cdcl_W-bj S
 using assms(2)
proof induction
 case base
 then show ?case
   using confl by (auto simp: cdcl_W-bj.simps elim: rulesE)
 case (step S T) note st = this(1) and fw = this(2) and IH = this(3)
 have confl-S: conflicting S = None
   using fw apply cases
   by (auto simp: full1-def cdcl_W-merge-cp.simps dest!: tranclpD elim: rulesE)
 from fw show ?case
   proof cases
    case fw-s-cp
    then show ?thesis
      using rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj confl-S
      by (simp add: full1-def tranclp-into-rtranclp)
   next
    case (fw-s-decide S')
    moreover then have conflicting S' = None by (auto elim: rulesE)
    ultimately show ?thesis
      using conflicting-not-true-rtranclp-cdcl_W-merge-cp-no-step-cdcl_W-bj
      unfolding full-def by meson
   \mathbf{qed}
qed
end
end
theory CDCL-W-Restart
imports CDCL-W-Merge
begin
21.5
        Adding Restarts
locale \ cdcl_W-restart =
 conflict-driven-clause-learning_W
   — functions for clauses:
   mset-cls insert-cls remove-lit
   mset-clss union-clss in-clss insert-clss remove-from-clss
   — functions for the conflicting clause:
   mset-ccls union-ccls insert-ccls remove-clit
   — conversion
```

```
ccls-of-cls cls-of-ccls
    — functions for the state:
       — access functions:
    trail hd-raw-trail raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
    cons-trail tl-trail add-init-cls add-learned-cls remove-cls update-backtrack-lvl
     update-conflicting
       — get state:
    init-state
    restart-state
  for
     mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss \text{ and }
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    mset\text{-}ccls:: 'ccls \Rightarrow 'v \ clause \ \mathbf{and}
    union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
    insert-ccls :: 'v literal \Rightarrow 'ccls \Rightarrow 'ccls and
    remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
    ccls-of-cls :: 'cls \Rightarrow 'ccls and
    cls-of-ccls :: 'ccls \Rightarrow 'cls and
    trail :: 'st \Rightarrow ('v, nat, 'v clause) marked-lits and
    hd-raw-trail :: 'st \Rightarrow ('v, nat, 'cls) marked-lit and
    raw-init-clss :: 'st \Rightarrow 'clss and
    raw-learned-clss :: 'st \Rightarrow 'clss and
    backtrack-lvl :: 'st \Rightarrow nat and
    raw-conflicting :: 'st \Rightarrow 'ccls option and
    cons-trail :: ('v, nat, 'cls) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-init-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    add-learned-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update-conflicting :: 'ccls option \Rightarrow 'st \Rightarrow 'st and
    init-state :: 'clss \Rightarrow 'st and
    restart-state :: 'st \Rightarrow 'st +
  fixes f :: nat \Rightarrow nat
  assumes f: unbounded f
begin
```

The condition of the differences of cardinality has to be strict. Otherwise, you could be in a strange state, where nothing remains to do, but a restart is done. See the proof of well-foundedness.

```
inductive cdcl_W-merge-with-restart where
restart-step:
   (cdcl_W-merge-stgy \widehat{\ }(card\ (set-mset\ (learned-clss\ T)) - card\ (set-mset\ (learned-clss\ S)))) S T
  \implies card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)) > f n
  \implies restart \ T \ U \implies cdcl_W-merge-with-restart (S, n) \ (U, Suc \ n)
restart-full: full1 cdcl_W-merge-stqy S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
lemma cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-merge-restart** (fst S) (fst T)
  by (induction rule: cdcl_W-merge-with-restart.induct)
   (auto dest!: relpowp-imp-rtranclp cdcl_W-merge-stgy-tranclp-cdcl_W-merge tranclp-into-rtranclp
       rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W-merge rtranclp-cdcl_W-merge-tranclp-cdcl_W-merge-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-tranclp-
      fw-r-rf cdcl_W-rf.restart
     simp: full1-def)
lemma cdcl_W-merge-with-restart-rtranclp-cdcl_W:
   cdcl_W-merge-with-restart S \ T \Longrightarrow cdcl_W^{**} (fst S) (fst T)
   by (induction rule: cdcl_W-merge-with-restart.induct)
   (auto dest!: relpowp-imp-rtranclp rtranclp-cdcl_W-merge-stqy-rtranclp-cdcl_W cdcl_W.rf
     cdcl_W-rf.restart tranclp-into-rtranclp simp: full1-def)
lemma cdcl_W-merge-with-restart-increasing-number:
   cdcl_W-merge-with-restart S T \Longrightarrow snd T = 1 + snd S
  by (induction rule: cdcl_W-merge-with-restart.induct) auto
lemma full cdcl_W-merge-stay S T \Longrightarrow cdcl_W-merge-with-restart (S, n) (T, Suc n)
   using restart-full by blast
lemma cdcl_W-all-struct-inv-learned-clss-bound:
  assumes inv: cdcl_W-all-struct-inv S
  shows set-mset (learned-clss S) \subseteq simple-clss (atms-of-mm (init-clss S))
proof
  \mathbf{fix} \ C
  assume C: C \in set\text{-}mset \ (learned\text{-}clss \ S)
  have distinct-mset C
     using C inv unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def distinct-mset-set-def
     by auto
  moreover have \neg tautology C
     using C inv unfolding cdcl<sub>W</sub>-all-struct-inv-def cdcl<sub>W</sub>-learned-clause-def by auto
  moreover
     have atms-of C \subseteq atms-of-mm (learned-clss S)
        using C by auto
     then have atms-of C \subseteq atms-of-mm (init-clss S)
     using inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def by force
   moreover have finite (atms-of-mm \ (init-clss \ S))
     using inv unfolding cdcl_W-all-struct-inv-def by auto
   ultimately show C \in simple-clss (atms-of-mm (init-clss S))
     using distinct-mset-not-tautology-implies-in-simple-clss simple-clss-mono
     by blast
qed
lemma cdcl_W-merge-with-restart-init-clss:
   cdcl_W-merge-with-restart S T \Longrightarrow cdcl_W-M-level-inv (fst S) \Longrightarrow
   init\text{-}clss\ (fst\ S) = init\text{-}clss\ (fst\ T)
   using cdcl_W-merge-with-restart-rtranclp-cdcl_W rtranclp-cdcl_W-init-clss by blast
```

```
lemma
  wf \{(T, S). \ cdcl_W - all - struct - inv \ (fst \ S) \land cdcl_W - merge - with - restart \ S \ T\}
proof (rule ccontr)
 assume ¬ ?thesis
   then obtain g where
   g: \Lambda i. \ cdcl_W-merge-with-restart (g \ i) \ (g \ (Suc \ i)) and
   inv: \Lambda i. \ cdcl_W-all-struct-inv (fst (g \ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  { fix i
   have init-clss (fst (g\ i)) = init-clss (fst (g\ 0))
     apply (induction i)
      apply simp
     using g inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-merge-with-restart-init-clss)
   } note init-g = this
 let ?S = q \theta
 have finite (atms-of-mm \ (init-clss \ (fst \ ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
   apply (induct-tac\ i)
     apply simp
   by (metis Suc-eq-plus1-left add-Suc cdcl_W-merge-with-restart-increasing-number g)
  then have snd-g-\theta: \bigwedge i. i > 0 \Longrightarrow snd (g i) = i + snd (g \theta)
   by blast
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-q
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
  { fix i
   assume no-step cdcl_W-merge-stgy (fst (g \ i))
   with q[of i]
   have False
     proof (induction rule: cdcl_W-merge-with-restart.induct)
      case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
      obtain S' where cdcl_W-merge-stgy SS'
        using H c by (metis gr-implies-not0 relpowp-E2)
      then show False using n-s by auto
     next
      case (restart-full S T)
      then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
  obtain m T where
   m: m = card \ (set\text{-}mset \ (learned\text{-}clss \ T)) - card \ (set\text{-}mset \ (learned\text{-}clss \ (fst \ (g \ k)))) and
   m > f (snd (g k)) and
   restart T (fst (g(k+1))) and
   cdcl_W-merge-stgy: (cdcl_W-merge-stgy ^{\sim} m) (fst (g \ k)) T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-merge-with-restart.simps full1-def)
 have cdcl_W-merge-stgy** (fst (g \ k)) T
   using cdcl_W-merge-stqy relpowp-imp-rtrancly by metis
```

```
then have cdcl_W-all-struct-inv T
   \mathbf{using} \ inv[of \ k] \ \ rtranclp-cdcl_W-all-struct-inv-inv \ rtranclp-cdcl_W-merge-stgy-rtranclp-cdcl_W
  moreover have card (set-mset (learned-clss T)) - card (set-mset (learned-clss (fst (q k))))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m > f (snd (g k)) \rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     by linarith
 moreover
   have init-clss (fst (g k)) = init-clss T
     \mathbf{using} \ \langle cdcl_W \text{-}merge\text{-}stgy^{**} \ (fst \ (g \ k)) \ T \rangle \ rtranclp\text{-}cdcl_W \text{-}merge\text{-}stgy\text{-}rtranclp\text{-}cdcl_W
     rtranclp-cdcl_W-init-clss inv unfolding cdcl_W-all-struct-inv-def by blast
   then have init-clss (fst ?S) = init-clss T
     using init-q[of k] by auto
 ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp\ add: \langle finite\ (atms-of-mm\ (init-clss\ (fst\ (q\ 0))))\rangle\ simple-clss-finite
     card-mono leD)
qed
lemma cdcl_W-merge-with-restart-distinct-mset-clauses:
 assumes invR: cdcl_W-all-struct-inv (fst R) and
  st: cdcl_W-merge-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
 case (restart-full S T)
 then show ?case using rtranclp-cdcl_W-merge-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
  case (restart\text{-}step\ T\ S\ n\ U)
 then have distinct-mset (clauses T)
   using rtranclp-cdcl_W-merge-stqy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: relpowp-imp-rtranclp)
  then show ?case using \langle restart \ T \ U \rangle by (metis clauses-restart distinct-mset-union fstI
    mset-le-exists-conv restart.cases state-eq-clauses)
qed
inductive cdcl_W-with-restart where
restart-step:
  (cdcl_W - stgy \frown (card (set-mset (learned-clss T)) - card (set-mset (learned-clss S)))) S T \Longrightarrow
    card\ (set\text{-}mset\ (learned\text{-}clss\ T)) - card\ (set\text{-}mset\ (learned\text{-}clss\ S)) > f\ n \Longrightarrow
    restart \ T \ U \Longrightarrow
   cdcl_W-with-restart (S, n) (U, Suc n)
restart-full: full1 cdcl_W-stgy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
lemma cdcl_W-with-restart-rtranclp-cdcl_W:
  cdcl_W-with-restart S \ T \Longrightarrow cdcl_W^{**} \ (fst \ S) \ (fst \ T)
  apply (induction rule: cdcl_W-with-restart.induct)
  by (auto dest!: relpowp-imp-rtranclp tranclp-into-rtranclp fw-r-rf
    cdcl_W-rf.restart rtranclp-cdcl_W-stgy-rtranclp-cdcl_W cdcl_W-merge-restart-cdcl_W
   simp: full1-def)
```

```
lemma cdcl_W-with-restart-increasing-number:
  cdcl_W-with-restart S T \Longrightarrow snd T = 1 + snd S
 by (induction rule: cdcl_W-with-restart.induct) auto
lemma full1 cdcl_W-stgy S T \Longrightarrow cdcl_W-with-restart (S, n) (T, Suc n)
 using restart-full by blast
lemma cdcl_W-with-restart-init-clss:
  cdcl_W-with-restart S T \implies cdcl_W-M-level-inv (fst S) \implies init-clss (fst S) = init-clss (fst T)
 using cdcl_W-with-restart-rtranclp-cdcl<sub>W</sub> rtranclp-cdcl<sub>W</sub>-init-clss by blast
  wf \{(T, S). \ cdcl_W - all - struct - inv \ (fst \ S) \land cdcl_W - with - restart \ S \ T\}
proof (rule ccontr)
 \mathbf{assume} \ \neg \ ?thesis
   then obtain g where
   g: \Lambda i. \ cdcl_W-with-restart (g \ i) \ (g \ (Suc \ i)) and
   inv: \bigwedge i. \ cdcl_W-all-struct-inv (fst (g\ i))
   unfolding wf-iff-no-infinite-down-chain by fast
  { fix i
   have init-clss\ (fst\ (g\ i))=init-clss\ (fst\ (g\ \theta))
     apply (induction i)
       apply simp
     using q inv unfolding cdcl_W-all-struct-inv-def by (metis cdcl_W-with-restart-init-clss)
   } note init-g = this
 let ?S = g \theta
 have finite (atms-of-mm \ (init-clss \ (fst \ ?S)))
   using inv unfolding cdcl_W-all-struct-inv-def by auto
 have snd-g: \bigwedge i. snd (g \ i) = i + snd (g \ \theta)
   apply (induct\text{-}tac\ i)
     apply simp
   by (metis\ Suc-eq-plus 1-left\ add-Suc\ cdcl_W-with-restart-increasing-number g)
  then have snd - g - \theta: \bigwedge i. i > \theta \Longrightarrow snd(g i) = i + snd(g \theta)
 have unbounded-f-g: unbounded (\lambda i. f (snd (g i)))
   using f unfolding bounded-def by (metis add.commute f less-or-eq-imp-le snd-q
     not-bounded-nat-exists-larger not-le le-iff-add)
 obtain k where
   f-g-k: f (snd (g k)) > card (simple-clss (atms-of-mm (init-clss (fst ?S)))) and
   k > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
   using not-bounded-nat-exists-larger[OF unbounded-f-g] by blast
The following does not hold anymore with the non-strict version of cardinality in the definition.
   assume no-step cdcl_W-stgy (fst (g i))
   with g[of i]
   have False
     proof (induction rule: cdcl_W-with-restart.induct)
       case (restart-step T S n) note H = this(1) and c = this(2) and n-s = this(4)
       obtain S' where cdcl_W-stgy S S'
         \mathbf{using}\ H\ c\ \mathbf{by}\ (\mathit{metis\ gr\text{-}implies\text{-}} \mathit{not0}\ \mathit{relpowp\text{-}} \mathit{E2})
       then show False using n-s by auto
     next
```

```
case (restart\text{-}full\ S\ T)
       then show False unfolding full1-def by (auto dest: tranclpD)
     qed
   } note H = this
  obtain m T where
   m: m = card (set\text{-}mset (learned\text{-}clss T)) - card (set\text{-}mset (learned\text{-}clss (fst (q k))))) and
   m > f (snd (g k)) and
   restart T (fst (g(k+1))) and
   cdcl_W\textit{-merge-stgy: } (cdcl_W\textit{-stgy} \ ^{\frown} \ m) \ (\textit{fst } (\textit{g } \textit{k})) \ \ T
   using g[of k] H[of Suc k] by (force simp: cdcl_W-with-restart.simps full1-def)
  have cdcl_W-stgy^{**} (fst (g \ k)) T
   using cdcl_W-merge-stgy relpowp-imp-rtranclp by metis
  then have cdcl_W-all-struct-inv T
   using inv[of k] rtranelp-cdel_W-all-struct-inv-inv rtranelp-cdel_W-stgy-rtranelp-cdel_W by blast
 moreover have card (set-mset (learned-clss T)) – card (set-mset (learned-clss (fst (q k))))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     unfolding m[symmetric] using \langle m \rangle f (snd (g \ k))\rangle f-g-k by linarith
   then have card (set-mset (learned-clss T))
     > card (simple-clss (atms-of-mm (init-clss (fst ?S))))
     by linarith
  moreover
   have init-clss (fst (g k)) = init-clss T
     \textbf{using} \  \  \langle cdcl_W\textit{-stgy}^{**} \  \, (fst \ (g \ k)) \  \, T \rangle \  \, rtranclp\textit{-cdcl}_W\textit{-stgy-rtranclp-cdcl}_W \  \, rtranclp\textit{-cdcl}_W\textit{-init-clss}
     inv unfolding cdcl_W-all-struct-inv-def
     by blast
   then have init-clss (fst ?S) = init-clss T
     using init-g[of k] by auto
  ultimately show False
   using cdcl_W-all-struct-inv-learned-clss-bound
   by (simp add: \langle finite\ (atms-of-mm\ (init-clss\ (fst\ (g\ 0))))\rangle simple-clss-finite
     card-mono leD)
qed
lemma cdcl_W-with-restart-distinct-mset-clauses:
 assumes invR: cdcl_W-all-struct-inv (fst R) and
  st: cdcl_W-with-restart R S and
  dist: distinct-mset (clauses (fst R)) and
  R: trail (fst R) = []
 shows distinct-mset (clauses (fst S))
 using assms(2,1,3,4)
proof (induction)
 case (restart-full\ S\ T)
 then show ?case using rtranclp-cdcl_W-stgy-distinct-mset-clauses[of S T] unfolding full1-def
   by (auto dest: tranclp-into-rtranclp)
next
 case (restart-step T S n U)
 then have distinct-mset (clauses T) using rtranclp-cdcl<sub>W</sub>-stgy-distinct-mset-clauses of S T
   unfolding full1-def by (auto dest: relpowp-imp-rtranclp)
 then show ?case using \langle restart \ T \ U \rangle by (metis\ clauses-restart\ distinct-mset-union\ fstI
    mset-le-exists-conv restart.cases state-eq-clauses)
qed
end
locale luby-sequence =
 fixes ur :: nat
```

```
assumes ur > 0
begin
lemma exists-luby-decomp:
 fixes i :: nat
 shows \exists k :: nat. (2 \hat{k} - 1) \le i \land i < 2 \hat{k} - 1) \lor i = 2 \hat{k} - 1
proof (induction i)
 case \theta
 then show ?case
   by (rule\ exI[of\ -\ 0],\ simp)
next
 case (Suc \ n)
 then obtain k where 2 \hat{k} (k-1) \leq n \wedge n < 2 \hat{k} - 1 \vee n = 2 \hat{k} - 1
   by blast
 then consider
     (st-interv) 2 \ \widehat{} (k-1) \le n \text{ and } n \le 2 \ \widehat{} k-2
   |(end\text{-}interv) \ 2 \ \widehat{} \ (k-1) \le n \text{ and } n=2 \ \widehat{} \ k-2
   |(pow2)| n = 2^k - 1
   by linarith
  then show ?case
   proof cases
     case st-interv
     then show ?thesis apply - apply (rule\ exI[of\ -\ k])
       by (metis (no-types, lifting) One-nat-def Suc-diff-Suc Suc-lessI
         \langle 2 \cap (k-1) \leq n \wedge n < 2 \cap k-1 \vee n = 2 \cap k-1 \rangle diff-self-eq-0
         dual-order.trans le-SucI le-imp-less-Suc numeral-2-eq-2 one-le-numeral
         one-le-power zero-less-numeral zero-less-power)
   \mathbf{next}
     case end-interv
     then show ?thesis apply - apply (rule exI[of - k]) by auto
     case pow2
     then show ?thesis apply - apply (rule exI[of - k+1]) by auto
   qed
\mathbf{qed}
```

Luby sequences are defined by:

- $2^k 1$, if $i = (2::'a)^k (1::'a)$
- luby-sequence-core $(i-2^{k-1}+1)$, if $(2::'a)^{k-1} \leq i$ and $i \leq (2::'a)^k (1::'a)$

Then the sequence is then scaled by a constant unit run (called ur here), strictly positive.

```
function luby-sequence-core :: nat \Rightarrow nat where luby-sequence-core i = (if \exists k. \ i = 2 \hat{k} - 1 \ then \ 2 \hat{k} - 1) = 2 \hat{k} - 1 then 2 \hat{k} - 1 = 2 \hat{k}
```

```
let ?k = (SOME \ k. \ 2 \ \widehat{} \ (k-1) \le i \land i < 2 \ \widehat{} \ k-1)
 have 2 \ \widehat{\ } (?k-1) \le i \land i < 2 \ \widehat{\ }?k-1
   apply (rule some I-ex)
   using 2 exists-luby-decomp by blast
  then show ?case
   proof -
     have \forall n \ na. \ \neg (1::nat) \leq n \lor 1 \leq n \ \widehat{\ } na
       by (meson one-le-power)
     then have f1: (1::nat) \le 2 \ (?k-1)
       using one-le-numeral by blast
     have f2: i - 2 \hat{\ } (?k - 1) + 2 \hat{\ } (?k - 1) = i
       using \langle 2 \, \widehat{} \, (?k-1) \leq i \wedge i < 2 \, \widehat{} \, ?k-1 \rangle le-add-diff-inverse2 by blast
     have f3: 2 \ \widehat{\ }?k - 1 \neq Suc \ 0
       using f1 \langle 2 \rangle (?k-1) \leq i \wedge i < 2 \rangle ?k-1 by linarith
     have 2^{?k} - (1::nat) \neq 0
       using \langle 2 \cap (?k-1) \leq i \wedge i < 2 \cap ?k-1 \rangle gr-implies-not0 by blast
     then have f4: 2 ?k \neq (1::nat)
       by linarith
     have f5: \forall n \ na. \ if \ na = 0 \ then \ (n::nat) \cap na = 1 \ else \ n \cap na = n * n \cap (na - 1)
       by (simp add: power-eq-if)
     then have ?k \neq 0
       using f4 by meson
     then have 2 \cap (?k-1) \neq Suc \ 0
       using f5 f3 by presburger
     then have Suc \ \theta < 2 \ \widehat{\ } (?k-1)
       using f1 by linarith
     then show ?thesis
       using f2 less-than-iff by presburger
   qed
qed
function natlog2 :: nat \Rightarrow nat where
natlog2 \ n = (if \ n = 0 \ then \ 0 \ else \ 1 + natlog2 \ (n \ div \ 2))
 using not0-implies-Suc by auto
termination by (relation measure (\lambda n. n)) auto
declare natlog2.simps[simp del]
declare luby-sequence-core.simps[simp del]
lemma two-pover-n-eq-two-power-n'-eq:
 assumes H: (2::nat) \hat{\ } (k::nat) - 1 = 2 \hat{\ } k' - 1
 shows k' = k
proof -
 have (2::nat) \hat{\ } (k::nat) = 2 \hat{\ } k'
   using H by (metis One-nat-def Suc-pred zero-less-numeral zero-less-power)
 then show ?thesis by simp
qed
lemma\ luby-sequence-core-two-power-minus-one:
  luby-sequence-core (2\hat{k}-1)=2\hat{k}-1 (is ?L=?K)
proof -
 have decomp: \exists ka. \ 2 \ \hat{k} - 1 = 2 \ \hat{k}a - 1
   by auto
```

```
have ?L = 2^{(SOME k'. (2::nat)^k - 1 = 2^k' - 1) - 1)}
   apply (subst luby-sequence-core.simps, subst decomp)
   by simp
 moreover have (SOME k'. (2::nat) k - 1 = 2k' - 1 = k
   apply (rule some-equality)
     apply simp
     using two-pover-n-eq-two-power-n'-eq by blast
 ultimately show ?thesis by presburger
qed
lemma different-luby-decomposition-false:
 assumes
   H: 2 \cap (k - Suc \ \theta) \leq i \text{ and }
   k': i < 2 \hat{k}' - Suc \theta and
   k-k': k > k'
 shows False
proof -
 have 2 \hat{k}' - Suc \theta < 2 \hat{k} - Suc \theta
   using k-k' less-eq-Suc-le by auto
 then show ?thesis
   using H k' by linarith
qed
\mathbf{lemma}\ \mathit{luby-sequence-core-not-two-power-minus-one}:
 assumes
   k-i: 2 \cap (k-1) \leq i and
   i-k: i < 2^k - 1
 shows luby-sequence-core i = luby-sequence-core (i - 2 \ (k - 1) + 1)
proof -
 have H: \neg (\exists ka. \ i = 2 \land ka - 1)
   proof (rule ccontr)
     assume ¬ ?thesis
     then obtain k'::nat where k': i = 2 \hat{k}' - 1 by blast
     have (2::nat) \hat{k}' - 1 < 2 \hat{k} - 1
      using i-k unfolding k'.
     then have (2::nat) \hat{k}' < 2 \hat{k}
      by linarith
     then have k' < k
      by simp
     have 2 \hat{\ } (k-1) \leq 2 \hat{\ } k' - (1::nat)
      using k-i unfolding k'.
     then have (2::nat) \hat{k} (k-1) < 2 \hat{k}'
      by (metis Suc-diff-1 not-le not-less-eq zero-less-numeral zero-less-power)
     then have k-1 < k'
      by simp
     show False using \langle k' < k \rangle \langle k-1 < k' \rangle by linarith
 have \bigwedge k \ k'. 2 \ (k - Suc \ 0) \le i \Longrightarrow i < 2 \ k - Suc \ 0 \Longrightarrow 2 \ (k' - Suc \ 0) \le i \Longrightarrow
   i < 2 \hat{k}' - Suc \ \theta \Longrightarrow k = k'
   by (meson different-luby-decomposition-false linorder-neqE-nat)
  then have k: (SOME \ k. \ 2 \ (k - Suc \ \theta) \le i \land i < 2 \ k - Suc \ \theta) = k
   using k-i i-k by auto
 show ?thesis
   apply (subst luby-sequence-core.simps[of i], subst H)
```

```
by (simp \ add: k)
qed
lemma unbounded-luby-sequence-core: unbounded luby-sequence-core
 unfolding bounded-def
proof
 assume \exists b. \forall n. luby-sequence-core n \leq b
 then obtain b where b: \bigwedge n. luby-sequence-core n \leq b
   by metis
 have luby-sequence-core (2^{(b+1)} - 1) = 2^{b}
   using luby-sequence-core-two-power-minus-one [of b+1] by simp
 moreover have (2::nat)^b > b
   by (induction b) auto
 ultimately show False using b[of 2^{(b+1)} - 1] by linarith
qed
abbreviation luby-sequence :: nat \Rightarrow nat where
luby-sequence n \equiv ur * luby-sequence-core n
lemma bounded-luby-sequence: unbounded luby-sequence
 using bounded-const-product[of ur] luby-sequence-axioms
 luby-sequence-def unbounded-luby-sequence-core by blast
lemma luby-sequence-core 0: luby-sequence-core 0 = 1
proof -
 have \theta: (\theta :: nat) = 2 \hat{\theta} - 1
   by auto
 show ?thesis
   by (subst 0, subst luby-sequence-core-two-power-minus-one) simp
qed
lemma luby-sequence-core n \geq 1
proof (induction n rule: nat-less-induct-case)
 case \theta
 then show ?case by (simp add: luby-sequence-core-\theta)
next
 case (Suc\ n) note IH = this
 consider
     (interv) k where 2 \ \widehat{} \ (k-1) \le Suc \ n and Suc \ n < 2 \ \widehat{} \ k-1
   |(pow2)| k where Suc n = 2 \hat{k} - Suc \theta
   using exists-luby-decomp[of Suc \ n] by auto
 then show ?case
    proof cases
     case pow2
     show ?thesis
       using luby-sequence-core-two-power-minus-one pow2 by auto
    next
     {\bf case}\ interv
     have n: Suc \ n - 2 \ \hat{\ } (k - 1) + 1 < Suc \ n
       by (metis Suc-1 Suc-eq-plus1 add.commute add-diff-cancel-left' add-less-mono1 gr0I
         interv(1) interv(2) le-add-diff-inverse2 less-Suc-eq not-le power-0 power-one-right
         power-strict-increasing-iff)
     show ?thesis
```

```
apply (subst luby-sequence-core-not-two-power-minus-one[OF interv])
          using IH n by auto
     qed
qed
end
locale \ luby-sequence-restart =
  luby-sequence ur +
  conflict-driven-clause-learning<sub>W</sub> — functions for clauses:
    mset-cls insert-cls remove-lit
    mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
    — functions for the conflicting clause:
    mset-ccls union-ccls insert-ccls remove-clit
     — conversion
    ccls-of-cls cls-of-ccls
     — functions for the state:
      — access functions:
    trail hd-raw-trail raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
       — changing state:
    cons\text{-}trail\ tl\text{-}trail\ add\text{-}init\text{-}cls\ add\text{-}learned\text{-}cls\ remove\text{-}cls\ update\text{-}backtrack\text{-}lvl
    update-conflicting
      — get state:
    init-state
    restart-state
  for
    ur :: nat and
    mset-cls:: 'cls \Rightarrow 'v \ clause \ and
    insert-cls :: 'v \ literal \Rightarrow 'cls \Rightarrow 'cls \ \mathbf{and}
    remove-lit :: 'v literal \Rightarrow 'cls \Rightarrow 'cls and
    mset-clss:: 'clss \Rightarrow 'v \ clauses \ and
    union\text{-}clss :: 'clss \Rightarrow 'clss \Rightarrow 'clss and
    in\text{-}clss :: 'cls \Rightarrow 'clss \Rightarrow bool \text{ and }
    insert-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    remove-from-clss :: 'cls \Rightarrow 'clss \Rightarrow 'clss and
    mset\text{-}ccls:: 'ccls \Rightarrow 'v \ clause \ and
    union\text{-}ccls :: 'ccls \Rightarrow 'ccls \Rightarrow 'ccls \text{ and }
    insert\text{-}ccls :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
    remove\text{-}clit :: 'v \ literal \Rightarrow 'ccls \Rightarrow 'ccls \ \mathbf{and}
    ccls-of-cls :: 'cls \Rightarrow 'ccls and
    cls-of-ccls :: 'ccls \Rightarrow 'cls and
    trail :: 'st \Rightarrow ('v, nat, 'v clause) marked-lits and
    hd-raw-trail :: 'st \Rightarrow ('v, nat, 'cls) marked-lit and
    raw-init-clss :: 'st \Rightarrow 'clss and
    raw-learned-clss :: 'st \Rightarrow 'clss and
    backtrack-lvl :: 'st \Rightarrow nat and
    raw-conflicting :: 'st \Rightarrow 'ccls option and
```

```
cons-trail :: ('v, nat, 'cls) marked-lit \Rightarrow 'st \Rightarrow 'st and
    tl-trail :: 'st \Rightarrow 'st and
    add-init-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    add-learned-cls :: 'cls \Rightarrow 'st \Rightarrow 'st and
    remove\text{-}cls:: 'cls \Rightarrow 'st \Rightarrow 'st and
    update-backtrack-lvl :: nat \Rightarrow 'st \Rightarrow 'st and
    update-conflicting :: 'ccls option \Rightarrow 'st \Rightarrow 'st and
    init-state :: 'clss \Rightarrow 'st and
    \textit{restart-state} :: \textit{'st} \Rightarrow \textit{'st}
begin
sublocale cdcl_W-restart - - - - - - - luby-sequence
 apply unfold-locales
 using bounded-luby-sequence by blast
end
end
theory CDCL-WNOT
imports CDCL-NOT CDCL-W-Termination CDCL-W-Merge
begin
```

22 Link between Weidenbach's and NOT's CDCL

Inclusion of the states 22.1

```
declare upt.simps(2)[simp \ del]
fun convert-marked-lit-from-W where
convert-marked-lit-from-W (Propagated L -) = Propagated L () |
convert-marked-lit-from-W (Marked L -) = Marked L ()
{\bf abbreviation} convert-trail-from-W::
  ('v, 'lvl, 'a) marked-lit list
   \Rightarrow ('v, unit, unit) marked-lit list where
convert-trail-from-W \equiv map \ convert-marked-lit-from-W
lemma lits-of-l-convert-trail-from-W[simp]:
  lits-of-l (convert-trail-from-W M) = lits-of-l M
 by (induction rule: marked-lit-list-induct) simp-all
\mathbf{lemma}\ \mathit{lit-of-convert-trail-from-W[simp]}:
 lit-of (convert-marked-lit-from-WL) = lit-of L
 by (cases L) auto
lemma no-dup-convert-from-W[simp]:
  no-dup (convert-trail-from-WM) \longleftrightarrow no-dup M
 by (auto simp: comp-def)
lemma convert-trail-from-W-true-annots[simp]:
  convert-trail-from-W M \models as C \longleftrightarrow M \models as C
  by (auto simp: true-annots-true-cls image-image lits-of-def)
lemma defined-lit-convert-trail-from-W[simp]:
  defined-lit (convert-trail-from-WS) L \longleftrightarrow defined-lit SL
```

```
by (auto simp: defined-lit-map image-comp)
The values \theta and \{\#\} are dummy values.
consts dummy-cls :: 'cls
fun convert-marked-lit-from-NOT
 :: ('a, 'e, 'b) \ marked-lit \Rightarrow ('a, nat, 'cls) \ marked-lit \ where
convert-marked-lit-from-NOT (Propagated L -) = Propagated L dummy-cls |
convert-marked-lit-from-NOT (Marked L -) = Marked L 0
abbreviation convert-trail-from-NOT where
convert-trail-from-NOT \equiv map\ convert-marked-lit-from-NOT
lemma undefined-lit-convert-trail-from-NOT[simp]:
  undefined-lit (convert-trail-from-NOT F) L \longleftrightarrow undefined-lit F L
 by (induction F rule: marked-lit-list-induct) (auto simp: defined-lit-map)
lemma lits-of-l-convert-trail-from-NOT:
  lits-of-l (convert-trail-from-NOT F) = lits-of-l F
 by (induction F rule: marked-lit-list-induct) auto
lemma convert-trail-from-W-from-NOT[simp]:
  convert-trail-from-W (convert-trail-from-NOT M) = M
 by (induction rule: marked-lit-list-induct) auto
lemma convert-trail-from-W-convert-lit-from-NOT[simp]:
  convert-marked-lit-from-W (convert-marked-lit-from-NOT L) = L
 by (cases L) auto
abbreviation trail_{NOT} where
trail_{NOT} S \equiv convert-trail-from-W (fst S)
\mathbf{lemma} \ undefined\text{-}lit\text{-}convert\text{-}trail\text{-}from\text{-}W[\mathit{iff}]:
  undefined-lit (convert-trail-from-W M) L \longleftrightarrow undefined-lit M L
 by (auto simp: defined-lit-map image-comp)
lemma lit-of-convert-marked-lit-from-NOT[iff]:
  lit-of (convert-marked-lit-from-NOT L) = lit-of L
 by (cases L) auto
sublocale state_W \subseteq dpll\text{-}state\text{-}ops
  mset\text{-}cls\ insert\text{-}cls\ remove\text{-}lit
  mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
  \lambda S. convert-trail-from-W (trail S)
  raw-clauses
  \lambda L \ S. \ cons-trail (convert-marked-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  by unfold-locales
context state_W
begin
\mathbf{lemma}\ convert\text{-}marked\text{-}lit\text{-}from\text{-}W\text{-}convert\text{-}marked\text{-}lit\text{-}from\text{-}NOT[simp]:
  convert-marked-lit-from-W (mmset-of-mlit (convert-marked-lit-from-NOT L)) = L
 by (cases L) auto
```

end

```
sublocale state_W \subseteq dpll-state
   mset\text{-}cls\ insert\text{-}cls\ remove\text{-}lit
   mset-clss union-clss in-clss insert-clss remove-from-clss
   \lambda S. convert-trail-from-W (trail S)
   raw-clauses
  \lambda L S. cons-trail (convert-marked-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  by unfold-locales (auto simp: map-tl o-def)
context state_W
begin
declare state-simp_{NOT}[simp\ del]
end
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-ops
  mset-cls insert-cls remove-lit
  mset\text{-}clss\ union\text{-}clss\ in\text{-}clss\ insert\text{-}clss\ remove\text{-}from\text{-}clss
  \lambda S. convert-trail-from-W (trail S)
  raw-clauses
  \lambda L S. cons-trail (convert-marked-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
  \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. raw-conflicting S = None
  \lambda C C' L' S T. backjump-l-cond C C' L' S T
   \land distinct\text{-mset} (C' + \{\#L'\#\}) \land \neg tautology (C' + \{\#L'\#\})
  by unfold-locales
thm cdcl_{NOT}-merge-bj-learn-proxy.axioms
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn-proxy
  mset-cls insert-cls remove-lit
  mset-clss union-clss in-clss insert-clss remove-from-clss
  \lambda S. convert-trail-from-W (trail S)
  raw-clauses
  \lambda L\ S.\ cons	ext{-}trail\ (convert	ext{-}marked	ext{-}lit	ext{-}from	ext{-}NOT\ L)\ S
  \lambda S. tl-trail S
  \lambda C S. add-learned-cls C S
 \lambda C S. remove-cls C S
  \lambda- -. True
  \lambda- S. raw-conflicting S = None
  backjump-l-cond
  inv_{NOT}
proof (unfold-locales, goal-cases)
  then show ?case using cdcl_{NOT}-merged-bj-learn-no-dup-inv by (auto simp: comp-def)
\mathbf{next}
```

```
case (1 C' S C F' K F L)
  moreover
    let ?C' = remdups\text{-}mset C'
    have L \notin \# C'
      using \langle F \models as \ CNot \ C' \rangle \ \langle undefined\text{-}lit \ F \ L \rangle \ Marked\text{-}Propagated\text{-}in\text{-}iff\text{-}in\text{-}lits\text{-}of\text{-}l}
      in-CNot-implies-uminus(2) by fast
    then have distinct-mset (?C' + \{\#L\#\})
      by (simp add: distinct-mset-single-add)
  moreover
    have no-dup F
      using \langle inv_{NOT} | S \rangle \langle convert\text{-trail-from-}W | (trail | S) = F' @ Marked | K | () # F \rangle
      unfolding inv_{NOT}-def
      by (smt\ comp-apply\ distinct.simps(2)\ distinct-append\ list.simps(9)\ map-append
        no-dup-convert-from-W)
    then have consistent-interp (lits-of-l F)
      using distinct-consistent-interp by blast
    then have \neg tautology (C')
      using \langle F \models as\ CNot\ C' \rangle consistent-CNot-not-tautology true-annots-true-cls by blast
    then have \neg tautology (?C' + {\#L\#})
      using \langle F \models as \ CNot \ C' \rangle \ \langle undefined\text{-}lit \ F \ L \rangle \ \mathbf{by} \ (metis \ CNot\text{-}remdups\text{-}mset
        Marked-Propagated-in-iff-in-lits-of-l\ add. commute\ in-CNot-uminus\ tautology-add-single
        tautology-remdups-mset true-annot-singleton true-annots-def)
  show ?case
    proof -
      have f2: no-dup (convert-trail-from-W (trail S))
        using \langle inv_{NOT} | S \rangle unfolding inv_{NOT}-def by (simp \ add: \ o\text{-def})
      have f3: atm\text{-}of \ L \in atm\text{-}of\text{-}mm \ (clauses \ S)
        \cup atm-of 'lits-of-l (convert-trail-from-W (trail S))
        using \langle convert\text{-trail-from-}W \ (trail \ S) = F' @ Marked \ K \ () \# F \rangle
        \langle atm\text{-}of\ L\in atm\text{-}of\text{-}mm\ (clauses\ S)\cup atm\text{-}of\ `its\text{-}of\text{-}l\ (F'\ @\ Marked\ K\ ()\ \#\ F) \rangle by auto
      have f_4: clauses S \models pm \ remdups\text{-mset} \ C' + \{\#L\#\}
        by (metis\ (no\text{-types})\ \langle L\notin\#\ C'\rangle\ \langle clauses\ S\models pm\ C'+\{\#L\#\}\rangle\ remdups\text{-mset-singleton-sum}(2)
          true-clss-cls-remdups-mset union-commute)
      have F \models as \ CNot \ (remdups-mset \ C')
        by (simp \ add: \langle F \models as \ CNot \ C' \rangle)
      obtain D where D: mset-cls D = remdups-mset C' + {\#L\#}
        using ex-mset-cls by blast
      have Ex\ (backjump-l\ S)
        apply standard
        apply (rule backjump-l.intros[OF - f2, of - - -])
        using f_4 f_3 f_2 \leftarrow tautology (remdups-mset <math>C' + \{\#L\#\})
        calculation(2-5,9) \langle F \models as \ CNot \ (remdups-mset \ C') \rangle
        state-eq<sub>NOT</sub>-ref D unfolding backjump-l-cond-def by blast+
      then show ?thesis
        by blast
   \mathbf{qed}
qed
sublocale conflict-driven-clause-learning<sub>W</sub> \subseteq cdcl<sub>NOT</sub>-merge-bj-learn-proxy2 - - - - - -
  \lambda S. convert-trail-from-W (trail S)
  raw-clauses
  \lambda L \ S. \ cons-trail (convert-marked-lit-from-NOT L) S
  \lambda S. tl-trail S
  \lambda C S. \ add-learned-cls C S
  \lambda C S. remove-cls C S
```

```
\lambda- -. True
 \lambda- S. raw-conflicting S = None \ backjump-l-cond \ inv_{NOT}
 by unfold-locales
sublocale conflict-driven-clause-learning_W \subseteq cdcl_{NOT}-merge-bj-learn - - - - - -
  \lambda S. \ convert-trail-from-W \ (trail \ S)
  raw-clauses
 \lambda L \ S. \ cons-trail (convert-marked-lit-from-NOT L) S
 \lambda S. tl-trail S
 \lambda C S. \ add-learned-cls C S
 \lambda C S. remove-cls C S
  backjump-l-cond
 \lambda- -. True
  \lambda- S. raw-conflicting S = None \ inv_{NOT}
 apply unfold-locales
  using dpll-bj-no-dup apply (simp add: comp-def)
 using cdcl_{NOT}. simps cdcl_{NOT}-no-dup no-dup-convert-from-W unfolding inv_{NOT}-def by blast
context conflict-driven-clause-learning<sub>W</sub>
begin
Notations are lost while proving locale inclusion:
notation state-eq<sub>NOT</sub> (infix \sim_{NOT} 50)
22.2
         Additional Lemmas between NOT and W states
lemma trail_W-eq-reduce-trail-to<sub>NOT</sub>-eq:
  trail\ S = trail\ T \Longrightarrow trail\ (reduce-trail-to_{NOT}\ F\ S) = trail\ (reduce-trail-to_{NOT}\ F\ T)
proof (induction F S arbitrary: T rule: reduce-trail-to<sub>NOT</sub>.induct)
 case (1 F S T) note IH = this(1) and tr = this(2)
  then have [] = convert-trail-from-W (trail S)
   \vee length F = length (convert-trail-from-W (trail S))
   \vee trail (reduce-trail-to<sub>NOT</sub> F (tl-trail S)) = trail (reduce-trail-to<sub>NOT</sub> F (tl-trail T))
   using IH by (metis (no-types) trail-tl-trail)
  then show trail (reduce-trail-to<sub>NOT</sub> F S) = trail (reduce-trail-to<sub>NOT</sub> F T)
   using tr by (metis\ (no-types)\ reduce-trail-to_{NOT}.elims)
qed
lemma trail-reduce-trail-to_{NOT}-add-learned-cls:
no-dup (trail S) \Longrightarrow
 trail\ (reduce-trail-to_{NOT}\ M\ (add-learned-cls\ D\ S)) = trail\ (reduce-trail-to_{NOT}\ M\ S)
by (rule\ trail_W-eq-reduce-trail-to_{NOT}-eq)\ simp
lemma reduce-trail-to_{NOT}-reduce-trail-convert:
  reduce-trail-to<sub>NOT</sub> C S = reduce-trail-to (convert-trail-from-NOT C) S
 apply (induction C S rule: reduce-trail-to<sub>NOT</sub>.induct)
 apply (subst reduce-trail-to<sub>NOT</sub>.simps, subst reduce-trail-to.simps)
 by auto
lemma reduce-trail-to-map[simp]:
  reduce-trail-to (map\ f\ M)\ S = reduce-trail-to M\ S
 by (rule reduce-trail-to-length) simp
lemma reduce-trail-to_{NOT}-map[simp]:
  reduce-trail-to<sub>NOT</sub> (map f M) S = reduce-trail-to<sub>NOT</sub> M S
 by (rule reduce-trail-to<sub>NOT</sub>-length) simp
```

```
{\bf lemma}\ skip-or-resolve-state-change:
 assumes skip-or-resolve** S T
 shows
   \exists M. \ trail \ S = M \ @ \ trail \ T \land (\forall m \in set \ M. \neg is-marked \ m)
   clauses S = clauses T
   backtrack-lvl S = backtrack-lvl T
 using assms
proof (induction rule: rtranclp-induct)
 case base
 case 1 show ?case by simp
 case 2 show ?case by simp
 case 3 show ?case by simp
next
 case (step T U) note st = this(1) and s-o-r = this(2) and IH = this(3) and IH' = this(3-5)
 case 2 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
 case 3 show ?case using IH' s-o-r by (auto elim!: rulesE simp: skip-or-resolve.simps)
 case 1 show ?case
   using s-o-r
   proof cases
     case s-or-r-skip
     then show ?thesis using IH by (auto elim!: rulesE simp: skip-or-resolve.simps)
   next
     case s-or-r-resolve
     then show ?thesis
      using IH by (cases trail T) (auto elim!: rulesE simp: skip-or-resolve.simps dest!:
      hd-raw-trail)
   qed
qed
```

22.3 More lemmas conflict-propagate and backjumping

22.4 CDCL FW

```
lemma cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W:cdcl_W-merge S T
 shows cdcl_{NOT}-merged-bj-learn S T
   \vee (no-step cdcl<sub>W</sub>-merge T \wedge conflicting T \neq None)
 using cdcl_W inv
proof induction
 case (fw-propagate S T) note propa = this(1)
 then obtain M N U k L C where
   H: state\ S = (M, N, U, k, None) and
   CL: C + \{\#L\#\} \in \# clauses \ S \ and
   M-C: M \models as CNot C  and
   undef: undefined-lit (trail S) L and
   T: state \ T = (Propagated \ L \ (C + \{\#L\#\}) \ \# \ M, \ N, \ U, \ k, \ None)
   by (auto elim: propagate-high-levelE)
 have propagate_{NOT} S T
   using H CL T undef M-C by (auto simp: state-eq_{NOT}-def state-eq-def raw-clauses-def
     simp del: state-simp)
 then show ?case
   using cdcl_{NOT}-merged-bj-learn.intros(2) by blast
```

```
next
 case (fw-decide S T) note dec = this(1) and inv = this(2)
 then obtain L where
   undef-L: undefined-lit (trail S) L and
   atm-L: atm-of L \in atms-of-mm (init-clss S) and
   T: T \sim cons-trail (Marked L (Suc (backtrack-lvl S)))
     (update-backtrack-lvl (Suc (backtrack-lvl S)) S)
   by (auto elim: decideE)
 have decide_{NOT} S T
   apply (rule decide_{NOT}.decide_{NOT})
     using undef-L apply simp
    using atm-L inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def raw-clauses-def
     apply auto[]
   using T undef-L unfolding state-eq-def state-eq<sub>NOT</sub>-def by (auto simp: raw-clauses-def)
 then show ?case using cdcl_{NOT}-merged-bj-learn-decide<sub>NOT</sub> by blast
 case (fw-forget S T) note rf = this(1) and inv = this(2)
 then obtain C where
    S: conflicting S = None and
    C-le: C \in ! raw-learned-clss S and
    \neg(trail\ S) \models asm\ clauses\ S\ {\bf and}
    mset-cls \ C \notin set \ (get-all-mark-of-propagated \ (trail \ S)) and
    C-init: mset-cls \ C \notin \# \ init-clss \ S \ \mathbf{and}
    T: T \sim remove\text{-}cls \ C \ S
   by (auto elim: forgetE)
 have init-clss S \models pm mset-cls C
   using inv C-le unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def raw-clauses-def
   by (meson in-clss-mset-clss true-clss-clss-in-imp-true-clss-cls)
 then have S-C: removeAll-mset (mset-cls C) (clauses S) \models pm mset-cls C
   using C-init C-le unfolding raw-clauses-def by (auto simp add: Un-Diff ac-simps)
 have forget_{NOT} S T
   apply (rule\ forget_{NOT}.forget_{NOT})
     using S-C apply blast
     using S apply simp
    using C-init C-le apply (simp add: raw-clauses-def)
   using T C-le C-init by (auto
     simp: state-eq-def Un-Diff state-eq<sub>NOT</sub>-def raw-clauses-def ac-simps
     simp del: state-simp)
 then show ?case using cdcl_{NOT}-merged-bj-learn-forget<sub>NOT</sub> by blast
next
 case (fw-conflict S T U) note confl = this(1) and bj = this(2) and inv = this(3)
 obtain C_S CT where
   confl-T: raw-conflicting T = Some \ CT and
   CT: mset-ccls CT = mset-cls C_S and
   C_S: C_S !\in! raw-clauses S and
   tr-S-C_S: trail S \models as CNot (mset-cls C_S)
   using confl by (elim conflictE) (auto simp del: state-simp simp: state-eq-def)
 have cdcl_W-all-struct-inv T
   using cdcl_W.simps\ cdcl_W-all-struct-inv-inv\ confl\ inv\ by blast
 then have cdcl_W-M-level-inv T
   unfolding cdcl_W-all-struct-inv-def by auto
 then consider
     (no-bt) skip-or-resolve^{**} T U
   \mid (bt) \ T' where skip-or-resolve** T \ T' and backtrack \ T' \ U
   using bj rtranclp-cdcl_W-bj-skip-or-resolve-backtrack unfolding full-def by meson
```

```
then show ?case
 proof cases
   case no-bt
   then have conflicting U \neq None
    using confl by (induction rule: rtranclp-induct)
     (auto simp del: state-simp simp: skip-or-resolve.simps state-eq-def elim!: rulesE)
   moreover then have no-step cdcl_W-merge U
    by (auto simp: cdcl_W-merge.simps elim: rulesE)
   ultimately show ?thesis by blast
 next
   case bt note s-or-r = this(1) and bt = this(2)
   have cdcl_W^{**} T T'
    using s-or-r mono-rtranclp of skip-or-resolve cdcl_W rtranclp-skip-or-resolve-rtranclp-cdcl_W
    by blast
   then have cdcl_W-M-level-inv T'
    using rtranclp-cdcl_W-consistent-inv \langle cdcl_W-M-level-inv T \rangle by blast
   then obtain M1 M2 i D L K where
     confl-T': raw-conflicting T' = Some D and
     LD: L \in \# mset\text{-}ccls \ D \ \mathbf{and}
     M1-M2:(Marked\ K\ (i+1)\ \#\ M1,\ M2)\in set\ (get-all-marked-decomposition\ (trail\ T')) and
     get-level (trail T') L = backtrack-lvl T' and
     get-level (trail T') L = get-maximum-level (trail T') (mset-ccls D) and
     get-maximum-level (trail T') (mset-ccls (remove-clit L D)) = i and
     undef-L: undefined-lit\ M1\ L\ {\bf and}
     U: U \sim cons-trail (Propagated L (cls-of-ccls D))
             (reduce-trail-to M1
                 (add-learned-cls (cls-of-ccls D)
                   (update-backtrack-lvl i
                      (update\text{-}conflicting\ None\ T'))))
    using bt by (auto elim: backtrack-levE)
   have [simp]: clauses S = clauses T
    using confl by (auto elim: rulesE)
   have [simp]: clauses T = clauses T'
    using s-or-r
    proof (induction)
      case base
      then show ?case by simp
    next
      case (step U V) note st = this(1) and s\text{-}o\text{-}r = this(2) and IH = this(3)
      have clauses U = clauses V
        using s-o-r by (auto simp: skip-or-resolve.simps elim: rulesE)
      then show ?case using IH by auto
    qed
   have inv-T: cdcl_W-all-struct-inv T
    by (meson\ cdcl_W\text{-}cp.simps\ confl\ inv\ r\text{-}into\text{-}rtranclp\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv
      rtranclp-cdcl_W-cp-rtranclp-cdcl_W)
   have cdcl_W^{**} T T'
    using rtranclp-skip-or-resolve-rtranclp-cdcl_W s-or-r by blast
   have inv-T': cdcl_W-all-struct-inv T'
    using \langle cdcl_W^{**} T T' \rangle inv-T rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
   have inv-U: cdcl_W-all-struct-inv U
    using cdcl_W-merge-restart-cdcl_W confl fw-r-conflict inv local.bj
    rtranclp-cdcl_W-all-struct-inv-inv by blast
   have [simp]: init-clss S = init-clss T'
```

```
\mathbf{using} \ \langle cdcl_W^{**} \ T \ T' \rangle \ cdcl_W-init-clss confl cdcl_W-all-struct-inv-def conflict inv
 by (metis \langle cdcl_W - M - level - inv T \rangle rtranclp - cdcl_W - init - clss)
then have atm-L: atm-of L \in atms-of-mm (clauses S)
 using inv-T' confl-T' LD unfolding cdcl<sub>W</sub>-all-struct-inv-def no-strange-atm-def
 raw-clauses-def
 by (simp add: atms-of-def image-subset-iff)
obtain M where tr-T: trail <math>T = M @ trail T'
 using s-or-r skip-or-resolve-state-change by meson
obtain M' where
 tr-T': trail T' = M' @ Marked K <math>(i+1) \# tl (trail U) and
 tr-U: trail\ U = Propagated\ L\ (mset-ccls\ D)\ \#\ tl\ (trail\ U)
 using UM1-M2 undef-L inv-T' unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
 by fastforce
\mathbf{def}\ M^{\prime\prime} \equiv M \ @\ M^{\prime}
have tr-T: trail S = M'' \otimes Marked K (i+1) \# tl (trail U)
 using tr-T tr-T' confl unfolding M''-def by (auto\ elim:\ rulesE)
have init-clss T' + learned-clss S \models pm mset-ccls D
 using inv-T' confl-T' unfolding <math>cdcl_W-all-struct-inv-def <math>cdcl_W-learned-clause-def
 raw-clauses-def by simp
have reduce-trail-to (convert-trail-from-NOT (convert-trail-from-W M1)) S =
 reduce-trail-to M1 S
 by (rule reduce-trail-to-length) simp
moreover have trail (reduce-trail-to M1 S) = M1
 apply (rule reduce-trail-to-skip-beginning[of - M @ - @ M2 @ [Marked K (Suc i)]])
 using conft M1-M2 \langle trail\ T=M\ @\ trail\ T' \rangle
   apply (auto dest!: get-all-marked-decomposition-exists-prepend
     elim!: conflictE)
   by (rule sym) auto
ultimately have [simp]: trail (reduce-trail-to<sub>NOT</sub> M1 S) = M1
 using M1-M2 confl by (subst reduce-trail-to<sub>NOT</sub>-reduce-trail-convert)
 (auto simp: comp-def elim: rulesE)
have every-mark-is-a-conflict U
 using inv-U unfolding cdcl_W-all-struct-inv-def cdcl_W-conflicting-def by simp
then have U-D: tl\ (trail\ U) \models as\ CNot\ (remove1-mset\ L\ (mset-ccls\ D))
 by (metis\ append-self-conv2\ tr-U)
thm backjump-l[of - - - - L cls-of-ccls D - remove1-mset L (mset-ccls D)]
have backjump-l S U
 apply (rule backjump-l[of - - - - L cls-of-ccls D - remove1-mset L (mset-ccls D)])
         using tr-T apply simp
        using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
        apply (simp add: comp-def)
     using U M1-M2 confl undef-L M1-M2 inv-T' inv undef-L unfolding cdcl_W-all-struct-inv-def
       cdcl_W-M-level-inv-def apply (auto simp: state-eq_{NOT}-def
         trail-reduce-trail-to<sub>NOT</sub>-add-learned-cls)
      using C_S apply auto[]
      using tr-S-C_S apply simp
     using U undef-L M1-M2 inv-T' inv unfolding cdclw-all-struct-inv-def
     cdcl_W-M-level-inv-def apply auto
    using undef-L atm-L apply (simp add: trail-reduce-trail-to_{NOT}-add-learned-cls)
   using (init-clss T' + learned-clss S \models pm \text{ mset-ccls } D) LD unfolding raw-clauses-def
   apply simp
  using LD apply simp
 apply (metis U-D convert-trail-from-W-true-annots)
 using inv-T' inv-U U confl-T' undef-L M1-M2 LD unfolding cdcl<sub>W</sub>-all-struct-inv-def
```

```
distinct-cdcl_W-state-def by (simp \ add: \ cdcl_W-M-level-inv-decomp \ backjump-l-cond-def)
     then show ?thesis using cdcl_{NOT}-merged-bj-learn-backjump-l by fast
   qed
qed
abbreviation cdcl_{NOT}-restart where
cdcl_{NOT}-restart \equiv restart-ops.cdcl_{NOT}-raw-restart cdcl_{NOT} restart
lemma cdcl_W-merge-restart-is-cdcl_{NOT}-merged-bj-learn-restart-no-step:
 assumes
   inv: cdcl_W-all-struct-inv S and
   cdcl_W:cdcl_W-merge-restart S T
 shows cdcl_{NOT}-restart** S \ T \lor (no\text{-step} \ cdcl_W\text{-merge} \ T \land conflicting \ T \ne None)
proof -
 consider
     (fw) \ cdcl_W-merge S \ T
   \mid (fw-r) \ restart \ S \ T
   using cdcl_W by (meson cdcl_W-merge-restart.simps cdcl_W-rf.cases fw-conflict fw-decide fw-forget
     fw-propagate)
  then show ?thesis
   proof cases
     case fw
     then have IH: cdcl_{NOT}-merged-bj-learn S \ T \lor (no\text{-step } cdcl_W\text{-merge } T \land conflicting \ T \ne None)
       using inv\ cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn by blast
     have invS: inv_{NOT} S
       using inv unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def by auto
     have ff2: cdcl_{NOT}^{++} S T \longrightarrow cdcl_{NOT}^{**} S T
         by (meson\ tranclp-into-rtranclp)
     have ff3: no-dup (convert-trail-from-W (trail S))
       using invS by (simp add: comp-def)
     have cdcl_{NOT} \leq cdcl_{NOT}-restart
       by (auto simp: restart-ops.cdcl_{NOT}-raw-restart.simps)
     then show ?thesis
       using ff3 ff2 IH cdcl_{NOT}-merged-bj-learn-is-tranclp-cdcl_{NOT}
       rtranclp-mono[of\ cdcl_{NOT}\ cdcl_{NOT}-restart]\ invS\ predicate2D\ \mathbf{by}\ blast
   next
     then show ?thesis by (blast intro: restart-ops.cdcl<sub>NOT</sub>-raw-restart.intros)
   qed
qed
abbreviation \mu_{FW} :: 'st \Rightarrow nat where
\mu_{FW} S \equiv (\textit{if no-step cdcl}_W - \textit{merge S then 0 else 1} + \mu_{CDCL}' - \textit{merged (set-mset (init-clss S)) S})
lemma cdcl_W-merge-\mu_{FW}-decreasing:
 assumes
   inv: cdcl_W-all-struct-inv S and
   fw: cdcl_W-merge S T
 shows \mu_{FW} T < \mu_{FW} S
proof -
 let ?A = init\text{-}clss S
 have atm-clauses: atms-of-mm (clauses S) \subseteq atms-of-mm ?A
   using inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def raw-clauses-def by auto
 have atm-trail: atm-of 'lits-of-l (trail S) \subseteq atms-of-mm ?A
   using inv unfolding cdcl_W-all-struct-inv-def no-strange-atm-def raw-clauses-def by auto
```

```
have n-d: no-dup (trail S)
      using inv unfolding cdcl_W-all-struct-inv-def by (auto simp: cdcl_W-M-level-inv-decomp)
    have [simp]: \neg no\text{-step } cdcl_W\text{-merge } S
      using fw by auto
    have [simp]: init-clss S = init-clss T
      using cdcl_W-merge-restart-cdcl_W [of S T] inv rtranclp-cdcl_W-init-clss
      unfolding cdcl_W-all-struct-inv-def
      by (meson\ cdcl_W\text{-}merge.simps\ cdcl_W\text{-}merge-restart.simps\ cdcl_W\text{-}rf.simps\ fw)
    consider
          (merged) \ cdcl_{NOT}-merged-bj-learn S \ T
      \mid (n-s) \text{ no-step } cdcl_W\text{-merge } T
      using cdcl_W-merge-is-cdcl_{NOT}-merged-bj-learn inv fw by blast
    then show ?thesis
      proof cases
          case merged
          then show ?thesis
             using cdcl_{NOT}-decreasing-measure' [OF - - atm-clauses, of T] atm-trail n-d
             by (auto split: if-split simp: comp-def image-image lits-of-def)
      next
          case n-s
          then show ?thesis by simp
      qed
\mathbf{qed}
lemma wf-cdcl<sub>W</sub>-merge: wf \{(T, S). cdcl_W-all-struct-inv S \wedge cdcl_W-merge S T\}
   apply (rule wfP-if-measure[of - - \mu_{FW}])
   using cdcl_W-merge-\mu_{FW}-decreasing by blast
\mathbf{sublocale}\ conflict\text{-}driven\text{-}clause\text{-}learning_W\text{-}termination
   by unfold-locales (simp add: wf-cdcl<sub>W</sub>-merge)
lemma full-cdcl_W-s'-full-cdcl_W-merge-restart:
   assumes
       conflicting R = None  and
       inv: cdcl_W-all-struct-inv R
   shows full cdcl_W-s' R V \longleftrightarrow full <math>cdcl_W-merge-stay R V (is ?s' \longleftrightarrow ?fw)
proof
   assume ?s'
   then have cdcl_W-s'** R V unfolding full-def by blast
   have cdcl_W-all-struct-inv V
      using \langle cdcl_W - s'^{**} \mid R \mid V \rangle inv rtranclp - cdcl_W - all - struct - inv - inv rtranclp - cdcl_W - s' - rtranclp - cdcl_W - rtranclp - cdcl_W - s' - rtranclp - cdcl_W - s' - rtranclp - cd
      by blast
    then have n-s: no-step cdcl_W-merge-stgy V
      using no-step-cdcl<sub>W</sub>-s'-no-step-cdcl<sub>W</sub>-merge-stgy by (meson \langle full\ cdcl_W-s' R\ V \rangle full-def)
   have n-s-bj: no-step cdcl_W-bj V
      by (metis \langle cdcl_W - all - struct - inv \ V \rangle \langle full \ cdcl_W - s' \ R \ V \rangle \ bj \ full - def
          n-step-cdcl<sub>W</sub>-stgy-iff-no-step-cdcl<sub>W</sub>-cl-cdcl<sub>W</sub>-o)
   have n-s-cp: no-step cdcl_W-merge-cp V
      proof -
          { fix ss :: 'st
             obtain ssa :: 'st \Rightarrow 'st where
                 ff1: \forall s. \neg cdcl_W - all - struct - inv \ s \lor cdcl_W - s' - without - decide \ s \ (ssa \ s)
                     \vee no-step cdcl_W-merge-cp s
                 using conflicting-true-no-step-s'-without-decide-no-step-cdcl<sub>W</sub>-merge-cp by moura
             have (\forall p \ s \ sa. \neg full \ p \ (s::'st) \ sa \lor p^{**} \ s \ sa \land no\text{-step} \ p \ sa) and
```

```
(\forall p \ s \ sa. \ (\neg p^{**} \ (s::'st) \ sa \lor (\exists s. \ p \ sa \ s)) \lor full \ p \ s \ sa)
        by (meson full-def)+
     then have \neg cdcl_W-merge-cp V ss
        \mathbf{using} \ \mathit{ff1} \ \mathbf{by} \ (\mathit{metis} \ (\mathit{no-types}) \ \land \mathit{cdcl}_W \ -\mathit{all-struct-inv} \ V \land \ \land \mathit{full} \ \mathit{cdcl}_W \ -\mathit{s'} \ \mathit{R} \ V \land \ \mathit{cdcl}_W \ -\mathit{s'}.\mathit{simps}
          cdcl_W-s'-without-decide.cases) }
   then show ?thesis
     \mathbf{by} blast
 qed
consider
   (fw-no-conft) cdcl_W-merge-stgy** R V and conflicting V = None
  |(fw\text{-}confl)| cdcl_W\text{-}merge\text{-}stgy^{**} R V  and conflicting V \neq None and no\text{-}step \ cdcl_W\text{-}bj \ V
  \mid (\mathit{fw-dec-confl}) \ \mathit{S} \ \mathit{T} \ \mathit{U} \ \mathbf{where} \ \mathit{cdcl}_{\mathit{W}}\text{-}\mathit{merge-stgy}^{**} \ \mathit{R} \ \mathit{S} \ \mathbf{and} \ \mathit{no-step} \ \mathit{cdcl}_{\mathit{W}}\text{-}\mathit{merge-cp} \ \mathit{S} \ \mathbf{and}
      decide\ S\ T\ {\bf and}\ cdcl_W\mbox{-}merge\mbox{-}cp^{**}\ T\ U\ {\bf and}\ conflict\ U\ V
  | (fw-dec-no-conf)| S T where cdcl_W-merge-stgy** R S and no-step cdcl_W-merge-cp S and
      decide\ S\ T\ and\ cdcl_W-merge-cp^{**}\ T\ V\ and\ conflicting\ V=None
  |(cp\text{-}no\text{-}confl)| cdcl_W\text{-}merge\text{-}cp^{**} R V \text{ and } conflicting V = None
 | (cp\text{-}confl) U \text{ where } cdcl_W\text{-}merge\text{-}cp^{**} R U \text{ and } conflict U V
 using rtranclp-cdcl_W-s'-no-step-cdcl<sub>W</sub>-s'-without-decide-decomp-into-cdcl<sub>W</sub>-merqe[OF]
   \langle cdcl_W - s'^{**} R V \rangle \ assms] by auto
then show ?fw
 proof cases
   case fw-no-confl
   then show ?thesis using n-s unfolding full-def by blast
 next
   case fw-confl
   then show ?thesis using n-s unfolding full-def by blast
 next
   case fw-dec-confl
   have cdcl_W-merge-cp UV
     using n-s-bj by (metis\ cdcl_W-merge-cp.simps\ full-unfold\ fw-dec-confl(5))
   then have full1 cdcl_W-merge-cp T V
     unfolding full1-def by (metis fw-dec-confl(4) n-s-cp tranclp-unfold-end)
   then have cdcl_W-merge-styy S V using (decide S T) (no-step cdcl_W-merge-cp S) by auto
   then show ?thesis using n-s < cdcl_W-merge-stgy** R > S unfolding full-def by auto
 \mathbf{next}
   case fw-dec-no-confl
   then have full cdcl_W-merge-cp T V
      using n-s-cp unfolding full-def by blast
   then have cdcl_W-merge-stgy S V using \langle decide\ S T \rangle \langle no-step cdcl_W-merge-cp\ S \rangle by auto
   then show ?thesis using n\text{-}s \langle cdcl_W\text{-}merge\text{-}stgy^{**} R S \rangle unfolding full-def by auto
 next
   case cp-no-confl
   then have full cdcl_W-merge-cp R V
     by (simp add: full-def n-s-cp)
   then have R = V \lor cdcl_W-merge-stgy<sup>++</sup> R V
     using fw-s-cp unfolding full-unfold fw-s-cp
     by (metis (no-types) rtranclp-unfold tranclp-unfold-end)
   then show ?thesis
     by (simp add: full-def n-s rtranclp-unfold)
 next
   case cp-confl
   have full cdcl_W-bj V
      using n-s-bj unfolding full-def by blast
   then have full1\ cdcl_W-merge-cp R\ V
     unfolding full1-def by (meson cdcl_W-merge-cp.conflict' cp-confl(1,2) n-s-cp
```

```
rtranclp-into-tranclp1)
     then show ?thesis using n-s unfolding full-def by auto
   qed
next
  assume ?fw
  then have cdcl_W^{**} R V using rtranclp-mono[of cdcl_W-merge-stgy cdcl_W^{**}]
   cdcl_W-merge-stgy-rtranclp-cdcl_W unfolding full-def by auto
  then have inv': cdcl<sub>W</sub>-all-struct-inv V using inv rtranclp-cdcl<sub>W</sub>-all-struct-inv-inv by blast
 have cdcl_W-s'^{**} R V
   using \langle fw \rangle by (simp add: full-def inv rtranclp-cdcl<sub>W</sub>-merge-stgy-rtranclp-cdcl<sub>W</sub>-s')
 moreover have no-step cdcl_W-s' V
   proof cases
     assume conflicting V = None
     then show ?thesis
       by (metis inv' \land full\ cdcl_W-merge-stgy R\ V \land full-def
        no-step-cdcl_W-merge-stgy-no-step-cdcl_W-s'
   next
     assume confl-V: conflicting V \neq None
     then have no-step cdcl_W-bj V
     using rtranclp-cdcl_W-merge-stgy-no-step-cdcl<sub>W</sub>-bj by (meson \ \langle full \ cdcl_W-merge-stgy R \ V \rangle
       assms(1) full-def)
     then show ?thesis using confl-V by (fastforce simp: cdcl<sub>W</sub>-s'.simps full1-def cdcl<sub>W</sub>-cp.simps
       dest!: tranclpD elim: rulesE)
 ultimately show ?s' unfolding full-def by blast
qed
lemma full-cdcl_W-stgy-full-cdcl_W-merge:
 assumes
   conflicting R = None  and
   inv: cdcl_W-all-struct-inv R
 shows full cdcl_W-stgy R V \longleftrightarrow full <math>cdcl_W-merge-stgy R V
 by (simp\ add:\ assms(1)\ full-cdcl_W-s'-full-cdcl_W-merge-restart\ full-cdcl_W-stgy-iff-full-cdcl_W-s'
   inv)
lemma full-cdcl_W-merge-stgy-final-state-conclusive':
 fixes S' :: 'st
 assumes full: full cdcl_W-merge-stgy (init-state N) S'
 and no-d: distinct-mset-mset (mset-clss N)
 shows (conflicting S' = Some \{\#\} \land unsatisfiable (set-mset (mset-clss N)))
   \vee (conflicting S' = None \wedge trail S' \models asm mset-clss N \wedge satisfiable (set-mset (mset-clss N)))
proof
 have cdcl_W-all-struct-inv (init-state N)
   using no-d unfolding cdcl_W-all-struct-inv-def by auto
 moreover have conflicting (init-state N) = None
   by auto
 ultimately show ?thesis
   using full full-cdcl_W-stgy-final-state-conclusive-from-init-state
   full-cdcl_W-stgy-full-cdcl<sub>W</sub>-merge no-d by presburger
\mathbf{qed}
end
end
theory CDCL-W-Incremental
imports CDCL-W-Termination
```

23 Incremental SAT solving

```
context conflict-driven-clause-learning<sub>W</sub> begin
```

This invariant holds all the invariant related to the strategy. See the structural invariant in $cdcl_W$ -all-struct-inv

```
definition cdcl_W-stgy-invariant where
cdcl_W-stgy-invariant S \longleftrightarrow
      conflict-is-false-with-level S
     \land no-clause-is-false S
     \land no-smaller-confl S
     \land no-clause-is-false S
lemma cdcl_W-stgy-cdcl_W-stgy-invariant:
      assumes
        cdcl_W: cdcl_W-stgy S T and
        inv-s: cdcl_W-stgy-invariant S and
        inv: cdcl_W-all-struct-inv S
     shows
            cdcl_W-stgy-invariant T
      unfolding cdcl_W-stqy-invariant-def cdcl_W-all-struct-inv-def apply (intro conjI)
          apply (rule cdcl_W-stqy-ex-lit-of-max-level[of S])
          using assms unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply auto[7]
          using cdcl_W cdcl_W-stgy-not-non-negated-init-clss apply simp
     apply (rule cdcl_W-stqy-no-smaller-confl-inv)
        using assms unfolding cdcl_W-stgy-invariant-def cdcl_W-all-struct-inv-def apply auto[4]
      using cdcl_W cdcl_W-stgy-not-non-negated-init-clss by auto
lemma rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant:
      assumes
        cdcl_W: cdcl_W-stgy^{**} S T and
        inv-s: cdcl_W-stgy-invariant S and
        inv: \ cdcl_W-all-struct-inv S
     shows
            cdcl_W-stgy-invariant T
      using assms apply (induction)
          apply simp
     \mathbf{using}\ cdcl_W\text{-}stgy\text{-}cdcl_W\text{-}stgy\text{-}invariant\ rtranclp\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}inv\text{-}in
     rtranclp-cdcl_W-stgy-rtranclp-cdcl_W by blast
abbreviation decr-bt-lvl where
decr-bt-lvl \ S \equiv update-backtrack-lvl \ (backtrack-lvl \ S - 1) \ S
When we add a new clause, we reduce the trail until we get to the first literal included in C.
```

When we add a new clause, we reduce the trail until we get to the first literal included in C Then we can mark the conflict.

```
fun cut-trail-wrt-clause where cut-trail-wrt-clause C [] S = S | cut-trail-wrt-clause C (Marked L - \# M) S = (if -L \in \# C then S else cut-trail-wrt-clause C M (decr-bt-lvl (tl-trail S))) | cut-trail-wrt-clause C (Propagated L - \# M) S =
```

```
(if -L \in \# C then S)
   else cut-trail-wrt-clause <math>C M (tl-trail S))
definition add-new-clause-and-update :: 'ccls \Rightarrow 'st \Rightarrow 'st where
add-new-clause-and-update CS =
  (if\ trail\ S \models as\ CNot\ (mset\text{-}ccls\ C)
  then update-conflicting (Some C) (add-init-cls (cls-of-ccls C)
   (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ S)\ S))
  else add-init-cls (cls-of-ccls C) S)
{f thm} cut-trail-wrt-clause.induct
lemma init-clss-cut-trail-wrt-clause[simp]:
  init-clss (cut-trail-wrt-clause C M S) = init-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma learned-clss-cut-trail-wrt-clause[simp]:
  learned-clss (cut-trail-wrt-clause C M S) = learned-clss S
 by (induction rule: cut-trail-wrt-clause.induct) auto
lemma conflicting-clss-cut-trail-wrt-clause[simp]:
  conflicting (cut-trail-wrt-clause C M S) = conflicting S
 by (induction rule: cut-trail-wrt-clause.induct) auto
\mathbf{lemma}\ \mathit{trail\text{-}cut\text{-}trail\text{-}wrt\text{-}clause} \colon
 \exists M. \ trail \ S = M \ @ \ trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ S) \ S)
proof (induction trail S arbitrary: S rule: marked-lit-list-induct)
 case nil
 then show ?case by simp
next
 case (marked\ L\ l\ M) note IH=this(1)[of\ decr-bt-lvl\ (tl-trail\ S)] and M=this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
next
 case (proped L \ l \ M) note IH = this(1)[of \ tl-trail \ S] and M = this(2)[symmetric]
 then show ?case using Cons-eq-appendI by fastforce+
qed
lemma n-dup-no-dup-trail-cut-trail-wrt-clause[simp]:
 assumes n-d: no-dup (trail\ T)
 shows no-dup (trail (cut-trail-wrt-clause C (trail T) T))
proof -
 obtain M where
   M: trail T = M @ trail (cut-trail-wrt-clause C (trail T) T)
   using trail-cut-trail-wrt-clause[of T C] by auto
 show ?thesis
   using n-d unfolding arg-cong[OF\ M,\ of\ no-dup] by auto
qed
lemma cut-trail-wrt-clause-backtrack-lvl-length-marked:
 assumes
    backtrack-lvl T = length (get-all-levels-of-marked (trail T))
 shows
  backtrack-lvl (cut-trail-wrt-clause C (trail T) T) =
    length (get-all-levels-of-marked (trail (cut-trail-wrt-clause C (trail T) T)))
 using assms
proof (induction trail T arbitrary: T rule: marked-lit-list-induct)
```

```
case nil
 then show ?case by simp
  case (marked L l M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
   and bt = this(3)
 then show ?case by auto
next
 case (proped L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt = this(3)
 then show ?case by auto
qed
\mathbf{lemma}\ \mathit{cut-trail-wrt-clause-get-all-levels-of-marked}:
  assumes get-all-levels-of-marked (trail T) = rev [Suc \theta..<
   Suc\ (length\ (get-all-levels-of-marked\ (trail\ T)))]
 shows
   get-all-levels-of-marked (trail ((cut-trail-wrt-clause C (trail T) T))) = rev [Suc 0..<
   Suc (length (get-all-levels-of-marked (trail ((cut-trail-wrt-clause C (trail T) T)))))]
 using assms
proof (induction trail T arbitrary: T rule: marked-lit-list-induct)
 case nil
 then show ?case by simp
next
 case (marked\ L\ l\ M) note IH=this(1)[of\ decr-bt-lvl\ (tl-trail\ T)] and M=this(2)[symmetric]
   and bt = this(3)
 then show ?case by (cases count CL = 0) auto
  case (proped L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt = this(3)
 then show ?case by (cases count CL = 0) auto
lemma cut-trail-wrt-clause-CNot-trail:
 assumes trail T \models as \ CNot \ C
 shows
   (trail\ ((cut\text{-}trail\text{-}wrt\text{-}clause\ C\ (trail\ T)\ T))) \models as\ CNot\ C
 using assms
proof (induction trail T arbitrary: T rule: marked-lit-list-induct)
 case nil
  then show ?case by simp
next
  case (marked L l M) note IH = this(1)[of decr-bt-lvl (tl-trail T)] and M = this(2)[symmetric]
   and bt = this(3)
 show ?case
   proof (cases count C (-L) = \theta)
     case False
     then show ?thesis
       using IH M bt by (auto simp: true-annots-true-cls)
   next
     case True
     obtain mma :: 'v literal multiset where
       f6 \colon (mma \in \{\{\#-l\#\} \mid l.\ l \in \#\ C\} \longrightarrow M \models a\ mma) \longrightarrow M \models as\ \{\{\#-l\#\} \mid l.\ l \in \#\ C\}
       using true-annots-def by blast
     have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
       using CNot-def M bt by (metis (no-types) true-annots-def)
     then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
       using f6 True M bt by (force simp: count-eq-zero-iff)
```

```
then show ?thesis
        using IH true-annots-true-cls M by (auto simp: CNot-def)
    qed
next
  case (proped L l M) note IH = this(1)[of\ tl-trail\ T] and M = this(2)[symmetric] and bt = this(3)
  show ?case
    proof (cases count C(-L) = 0)
      {f case} False
      then show ?thesis
        using IH M bt by (auto simp: true-annots-true-cls)
    next
      case True
      obtain mma :: 'v literal multiset where
        f6: (mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow M \models a \ mma) \longrightarrow M \models as \{\{\#-l\#\} \mid l. \ l \in \#\ C\}\}
        using true-annots-def by blast
      have mma \in \{\{\#-l\#\} \mid l. \ l \in \#\ C\} \longrightarrow trail\ T \models a\ mma
        using CNot-def M bt by (metis (no-types) true-annots-def)
      then have M \models as \{ \{ \# - l \# \} \mid l. \ l \in \# \ C \}
        using f6 True M bt by (force simp: count-eq-zero-iff)
      then show ?thesis
        using IH true-annots-true-cls M by (auto simp: CNot-def)
    qed
\mathbf{qed}
\mathbf{lemma}\ \mathit{cut-trail-wrt-clause-hd-trail-in-or-empty-trail}:
  ((\forall L \in \#C. -L \notin lits\text{-}of\text{-}l (trail T)) \land trail (cut\text{-}trail\text{-}wrt\text{-}clause C (trail T) T) = [])
    \vee (-lit\text{-}of \ (hd \ (trail \ (cut\text{-}trail\text{-}wrt\text{-}clause \ C \ (trail \ T) \ T))) \in \# \ C
       \land length (trail (cut-trail-wrt-clause C (trail T) T)) \geq 1)
  using assms
proof (induction trail T arbitrary: T rule: marked-lit-list-induct)
  case nil
  then show ?case by simp
  case (marked L \ l \ M) note IH = this(1)[of \ decr-bt-lvl \ (tl-trail \ T)] and M = this(2)[symmetric]
 then show ?case by simp force
next
  case (proped L | M) note IH = this(1)[of tl-trail T] and M = this(2)[symmetric]
  then show ?case by simp force
qed
We can fully run cdcl_W-s or add a clause. Remark that we use cdcl_W-s to avoid an explicit
skip, resolve, and backtrack normalisation to get rid of the conflict C if possible.
inductive incremental-cdcl<sub>W</sub> :: 'st \Rightarrow 'st \Rightarrow bool for S where
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ (mset-ccls \ C) \Longrightarrow \ conflicting \ S = None \Longrightarrow
   trail \ S \models as \ CNot \ (mset\text{-}ccls \ C) \Longrightarrow
  full\ cdcl_W-stgy
     (update\text{-}conflicting\ (Some\ C))
       (add\text{-}init\text{-}cls\ (cls\text{-}of\text{-}ccls\ C)\ (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ S)\ S)))\ T \Longrightarrow
   incremental\text{-}cdcl_W \ S \ T \ |
add-no-confl:
  trail \ S \models asm \ init-clss \ S \Longrightarrow \ distinct-mset \ (mset-ccls \ C) \Longrightarrow \ conflicting \ S = None \Longrightarrow
   \neg trail \ S \models as \ CNot \ (mset\text{-}ccls \ C) \Longrightarrow
  full\ cdcl_W-stgy (add-init-cls (cls-of-ccls C) S) T \implies
   incremental\text{-}cdcl_W S T
```

```
\mathbf{lemma}\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}add\text{-}new\text{-}clause\text{-}and\text{-}update\text{-}cdcl_W\text{-}all\text{-}struct\text{-}inv\text{:}}
    inv-T: cdcl_W-all-struct-inv T and
   tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail\ T \models as\ CNot\ (mset-ccls\ C) and
   [simp]: distinct-mset (mset-ccls C)
 shows cdcl_W-all-struct-inv (add-new-clause-and-update C T) (is cdcl_W-all-struct-inv ?T')
proof -
 let ?T = update\text{-}conflicting (Some C)
   (add\text{-}init\text{-}cls\ (cls\text{-}of\text{-}ccls\ C)\ (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ T)\ T))
 obtain M where
    M: trail T = M @ trail (cut-trail-wrt-clause (mset-ccls <math>C) (trail T) T)
     using trail-cut-trail-wrt-clause[of T mset-ccls C] by blast
 have H[dest]: \Lambda x. \ x \in lits-of-l (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)) \Longrightarrow
   x \in lits-of-l (trail\ T)
   using inv-T arg-cong[OF M, of lits-of-l] by auto
  have H'[dest]: \bigwedge x. \ x \in set \ (trail \ (cut-trail-wrt-clause \ (mset-ccls \ C) \ (trail \ T)) \Longrightarrow
   x \in set (trail T)
   using inv-T arg-cong[OF M, of set] by auto
  have H-proped: \bigwedge x. \ x \in set \ (get-all-mark-of-propagated \ (trail \ (cut-trail-wrt-clause \ (mset-ccls \ C)
  (trail\ T)\ T))) \Longrightarrow x \in set\ (get-all-mark-of-propagated\ (trail\ T))
  using inv-T arg-cong[OF M, of get-all-mark-of-propagated] by auto
 have [simp]: no-strange-atm ?T
   using inv-T unfolding cdcl_W-all-struct-inv-def no-strange-atm-def add-new-clause-and-update-def
   cdcl_W-M-level-inv-def by (auto 20 1)
 have M-lev: cdcl_W-M-level-inv T
   using inv-T unfolding cdcl_W-all-struct-inv-def by blast
  then have no-dup (M @ trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))
   unfolding cdcl_W-M-level-inv-def unfolding M[symmetric] by auto
  then have [simp]: no-dup (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ T)\ T))
   by auto
 have consistent-interp (lits-of-l (M @ trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)))
   using M-lev unfolding cdcl<sub>W</sub>-M-level-inv-def unfolding M[symmetric] by auto
  then have [simp]: consistent-interp (lits-of-l (trail (cut-trail-wrt-clause (mset-ccls C)
   (trail\ T)\ T)))
   unfolding consistent-interp-def by auto
 have [simp]: cdcl_W-M-level-inv ?T
   using M-lev cut-trail-wrt-clause-get-all-levels-of-marked[of T mset-ccls C]
   unfolding cdcl_W-M-level-inv-def by (auto dest: H H'
     simp: M-lev\ cdcl_W-M-level-inv-def\ cut-trail-wrt-clause-backtrack-lvl-length-marked)
 have [simp]: \land s. \ s \in \# \ learned\text{-}clss \ T \Longrightarrow \neg tautology \ s
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
 have distinct\text{-}cdcl_W\text{-}state\ T
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
  then have [simp]: distinct-cdcl_W-state ?T
   unfolding distinct-cdcl_W-state-def by auto
 have cdcl_W-conflicting T
```

```
using inv-T unfolding cdcl_W-all-struct-inv-def by auto
  have trail ?T \models as CNot (mset-ccls C)
    by (simp add: cut-trail-wrt-clause-CNot-trail)
  then have [simp]: cdcl_W-conflicting ?T
   unfolding cdcl_W-conflicting-def apply simp
   by (metis\ M\ \langle cdcl_W\ -conflicting\ T\rangle\ append\ -assoc\ cdcl_W\ -conflicting\ -decomp(2))
 have
   decomp-T: all-decomposition-implies-m (init-clss T) (get-all-marked-decomposition (trail T))
   using inv-T unfolding cdcl_W-all-struct-inv-def by auto
  have all-decomposition-implies-m (init-clss ?T)
   (get-all-marked-decomposition (trail ?T))
   unfolding all-decomposition-implies-def
   proof clarify
     \mathbf{fix} \ a \ b
     assume (a, b) \in set (get-all-marked-decomposition (trail ?T))
     \textbf{from} \ \ in-get-all-marked-decomposition-in-get-all-marked-decomposition-prepend [OF \ this, \ of \ M]
     obtain b' where
      (a, b' \otimes b) \in set (get-all-marked-decomposition (trail T))
      using M by auto
     then have unmark-l \ a \cup set\text{-}mset \ (init\text{-}clss \ T) \models ps \ unmark-l \ (b' @ b)
       using decomp-T unfolding all-decomposition-implies-def by fastforce
     then have unmark-l a \cup set-mset (init-clss ?T) \models ps unmark-l (b \otimes b')
      by (simp add: Un-commute)
     then show unmark-l a \cup set-mset (init-clss ?T) \models ps unmark-l b
      by (auto simp: image-Un)
   qed
 have [simp]: cdcl_W-learned-clause ?T
   using inv-T unfolding cdcl_W-all-struct-inv-def cdcl_W-learned-clause-def
   by (auto dest!: H-proped simp: raw-clauses-def)
 show ?thesis
   using \langle all\text{-}decomposition\text{-}implies\text{-}m \quad (init\text{-}clss ?T)
   (qet-all-marked-decomposition (trail ?T))
   unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
qed
lemma cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stgy-inv:
 assumes
   inv-s: cdcl_W-stgy-invariant T and
   inv: cdcl_W-all-struct-inv T and
   tr-T-N[simp]: trail T \models asm N and
   tr-C[simp]: trail T \models as CNot (mset-ccls C) and
   [simp]: distinct-mset (mset-ccls C)
 shows cdcl_W-stgy-invariant (add-new-clause-and-update C T)
   (is cdcl_W-stgy-invariant ?T')
proof
 have cdcl_W-all-struct-inv ?T'
   using cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl<sub>W</sub>-all-struct-inv assms by blast
  then have
   no-dup-cut-T[simp]: no-dup (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)) and
   n-d[simp]: no-dup (trail T)
   using cdcl_W-M-level-inv-decomp(2) cdcl_W-all-struct-inv-def inv
   n-dup-no-dup-trail-cut-trail-wrt-clause by blast+
  then have trail (add-new-clause-and-update C T) \models as CNot (mset-ccls C)
```

```
by (simp add: add-new-clause-and-update-def cut-trail-wrt-clause-CNot-trail
   cdcl_W-M-level-inv-def cdcl_W-all-struct-inv-def)
obtain MT where
 MT: trail T = MT @ trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)
 using trail-cut-trail-wrt-clause by blast
consider
   (false) \ \forall \ L \in \#mset\text{-}ccls \ C. - L \notin lits\text{-}of\text{-}l \ (trail \ T) \ and
     trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ T)\ T) = []
 | (not-false)
   - lit-of (hd (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))) \in \# (mset-ccls C) and
   1 < length (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))
 using cut-trail-wrt-clause-hd-trail-in-or-empty-trail[of mset-ccls C T] by auto
then show ?thesis
 proof cases
   case false note C = this(1) and empty-tr = this(2)
   then have [simp]: mset\text{-}ccls\ C = \{\#\}
     by (simp\ add:\ in\text{-}CNot\text{-}implies\text{-}uminus(2)\ multiset\text{-}eqI)
   show ?thesis
     using empty-tr unfolding cdcl_W-stgy-invariant-def no-smaller-confl-def
     cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
 \mathbf{next}
   case not-false note C = this(1) and l = this(2)
   let ?L = -lit\text{-of} (hd (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)))
   have get-all-levels-of-marked (trail (add-new-clause-and-update C T)) =
     rev [1..<1 + length (qet-all-levels-of-marked (trail (add-new-clause-and-update C T)))]
     using \langle cdcl_W-all-struct-inv ? T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
     by blast
   moreover
     have backtrack-lvl (cut-trail-wrt-clause (mset-ccls C) (trail T) T) =
       length (qet-all-levels-of-marked (trail (add-new-clause-and-update C T)))
       using \langle cdcl_W-all-struct-inv ?T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
       by (auto simp:add-new-clause-and-update-def)
   moreover
     have no-dup (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))
       using \langle cdcl_W-all-struct-inv ?T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
       by (auto simp:add-new-clause-and-update-def)
     then have atm\text{-}of ?L \notin atm\text{-}of `lits\text{-}of\text{-}l
       (tl\ (trail\ (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ T)\ T)))
       by (cases trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))
       (auto simp: lits-of-def)
   ultimately have L: get-level (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)) (-?L)
     = length (get-all-levels-of-marked (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)))
     using get-level-get-rev-level-get-all-levels-of-marked[OF
       \langle atm\text{-}of ?L \notin atm\text{-}of `lits\text{-}of\text{-}l (tl (trail (cut-trail-wrt-clause (mset-ccls C)))} \rangle
         (trail\ T)\ T))\rangle,
       of [hd (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))]]
       apply (cases trail (add-init-cls (cls-of-ccls C)
          (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ T)\ T));
        cases hd (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T)))
       using l by (auto split: if-split-asm
         simp:rev-swap[symmetric] add-new-clause-and-update-def)
```

have L': length (get-all-levels-of-marked (trail (cut-trail-wrt-clause (mset-ccls C)

```
(trail\ T)\ T)))
       = backtrack-lvl (cut-trail-wrt-clause (mset-ccls C) (trail T) T)
       using \langle cdcl_W-all-struct-inv ?T' \rangle unfolding cdcl_W-all-struct-inv-def cdcl_W-M-level-inv-def
      by (auto simp:add-new-clause-and-update-def)
     have [simp]: no-smaller-confl (update-conflicting (Some C))
       (add-init-cls (cls-of-ccls C) (cut-trail-wrt-clause (mset-ccls C) (trail T) T)))
       unfolding no-smaller-confl-def
     proof (clarify, goal-cases)
       case (1 \ M \ K \ i \ M' \ D)
       then consider
          (DC) D = mset\text{-}ccls C
         \mid (D-T) \mid D \in \# clauses \mid T
         by (auto simp: raw-clauses-def split: if-split-asm)
       then show False
         proof cases
          case D-T
          have no-smaller-confl T
            using inv-s unfolding cdcl<sub>W</sub>-stgy-invariant-def by auto
          have (MT @ M') @ Marked K i \# M = trail T
            using MT\ 1(1) by auto
          thus False using D-T (no-smaller-confl T) 1(3) unfolding no-smaller-confl-def by blast
         next
          case DC note -[simp] = this
          then have atm\text{-}of (-?L) \in atm\text{-}of (lits\text{-}of\text{-}l M)
            using 1(3) C in-CNot-implies-uminus(2) by blast
          moreover
            have lit-of (hd (M' @ Marked K i \# [])) = -?L
              using l 1(1)[symmetric] inv
              by (cases trail (add-init-cls (cls-of-ccls C)
                 (cut\text{-}trail\text{-}wrt\text{-}clause\ (mset\text{-}ccls\ C)\ (trail\ T)\ T)))
              (auto dest!: arg\text{-}cong[of - \# - - hd] simp: hd\text{-}append\ cdcl_W\text{-}all\text{-}struct\text{-}inv\text{-}def
                cdcl_W-M-level-inv-def)
            from arg-cong[OF this, of atm-of]
            have atm\text{-}of\ (-?L) \in atm\text{-}of\ `(lits\text{-}of\text{-}l\ (M'\ @\ Marked\ K\ i\ \#\ []))
              by (cases (M' @ Marked K i \# [])) auto
          moreover have no-dup (trail (cut-trail-wrt-clause (mset-ccls C) (trail T) T))
            using \langle cdcl_W - all - struct - inv ?T' \rangle unfolding cdcl_W - all - struct - inv - def
            cdcl_W-M-level-inv-def by (auto simp: add-new-clause-and-update-def)
          ultimately show False
            unfolding I(1)[symmetric, simplified] by (auto simp: lits-of-def)
      qed
     qed
     show ?thesis using L L' C
       unfolding cdcl_W-stgy-invariant-def
       unfolding cdcl_W-all-struct-inv-def by (auto simp: add-new-clause-and-update-def)
   qed
qed
lemma full-cdcl_W-stgy-inv-normal-form:
 assumes
   full: full cdcl_W-stgy S T and
   inv-s: cdcl_W-stgy-invariant S and
   inv: cdcl_W-all-struct-inv S
 shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss S))
```

```
\vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ S \wedge satisfiable (set-mset (init-clss \ S))
proof -
   have no-step cdcl_W-stgy T
      using full unfolding full-def by blast
   moreover have cdcl_W-all-struct-inv T and inv-s: cdcl_W-stgy-invariant T
      apply (metis rtranclp-cdcl<sub>W</sub>-stgy-rtranclp-cdcl<sub>W</sub> full full-def inv
         rtranclp-cdcl_W-all-struct-inv-inv)
      by (metis full full-def inv inv-s rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
   ultimately have conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
      \vee conflicting T = None \wedge trail T \models asm init-clss T
      using cdcl_W-stgy-final-state-conclusive [of T] full
      unfolding cdcl_W-all-struct-inv-def cdcl_W-stgy-invariant-def full-def by fast
   moreover have consistent-interp (lits-of-l (trail T))
      \mathbf{using} \ \langle cdcl_W \text{-}all \text{-}struct \text{-}inv \ T \rangle \ \mathbf{unfolding} \ cdcl_W \text{-}all \text{-}struct \text{-}inv \text{-}def \ cdcl_W \text{-}M \text{-}level \text{-}inv \text{-}def
      by auto
   moreover have init-clss S = init-clss T
      using inv unfolding cdcl_W-all-struct-inv-def
      by (metis\ rtranclp-cdcl_W-stgy-no-more-init-clss\ full\ full-def)
   ultimately show ?thesis
      by (metis satisfiable-carac' true-annot-def true-annots-def true-clss-def)
qed
lemma incremental\text{-}cdcl_W\text{-}inv:
   assumes
      inc: incremental\text{-}cdcl_W S T and
      inv: cdcl_W-all-struct-inv S and
      s-inv: cdcl_W-stgy-invariant S
   shows
       cdcl_W-all-struct-inv T and
      cdcl_W-stgy-invariant T
   using inc
proof (induction)
   case (add\text{-}confl\ C\ T)
   let ?T = (update\text{-}conflicting (Some C) (add\text{-}init\text{-}cls (cls\text{-}of\text{-}ccls C))
      (\mathit{cut\text{-}trail\text{-}wrt\text{-}clause}\ (\mathit{mset\text{-}ccls}\ C)\ (\mathit{trail}\ S)\ S)))
   have cdcl_W-all-struct-inv ?T and inv-s-T: cdcl_W-stqy-invariant ?T
      using add-confl.hyps(1,2,4) add-new-clause-and-update-def
      cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv inv apply auto [1]
      using add-confl.hyps(1,2,4) add-new-clause-and-update-def
       cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-stqy-inv inv s-inv by auto
   case 1 show ?case
        by (metis\ add\text{-}confl.hyps(1,2,4,5)\ add\text{-}new\text{-}clause\text{-}and\text{-}update\text{-}def
           cdcl_W -all-struct-inv-add-new-clause-and-update-cdcl_W -all-struct-inv
           rtranclp-cdcl_W-all-struct-inv-inv-rtranclp-cdcl_W-stgy-rtranclp-cdcl_W-full-def-inv)
   case 2 show ?case
      by (metis inv-s-T add-confl.hyps(1,2,4,5) add-new-clause-and-update-def
         cdcl_W-all-struct-inv-add-new-clause-and-update-cdcl_W-all-struct-inv full-def inv
         rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
next
   case (add-no-confl\ C\ T)
   have cdcl_W-all-struct-inv (add-init-cls (cls-of-ccls C) S)
      \mathbf{using} \ \mathit{inv} \ \langle \mathit{distinct-mset} \ (\mathit{mset-ccls} \ \mathit{C}) \rangle \ \mathbf{unfolding} \ \mathit{cdcl}_{\mathit{W}} \text{-}\mathit{all-struct-inv-def} \ \mathit{no-strange-atm-def} 
      cdcl_W - M - level - inv - def\ distinct - cdcl_W - state - def\ cdcl_W - conflicting - def\ cdcl_W - learned - clause - def\ cdcl_W - learned - def\ cdcl
```

```
by (auto 9 1 simp: all-decomposition-implies-insert-single raw-clauses-def)
  then show ?case
   using add-no-confl(5) unfolding full-def by (auto intro: rtranclp-cdcl<sub>W</sub>-stqy-cdcl<sub>W</sub>-all-struct-inv)
  have nc: \forall M. (\exists K \ i \ M'. \ trail \ S = M' @ Marked \ K \ i \ \# \ M) \longrightarrow \neg M \models as \ CNot \ (mset-ccls \ C)
   using \langle \neg trail \ S \models as \ CNot \ (mset\text{-}ccls \ C) \rangle
   by (auto simp: true-annots-true-cls-def-iff-negation-in-model)
 have cdcl_W-stgy-invariant (add-init-cls (cls-of-ccls C) S)
   using s-inv \langle \neg trail \ S \models as \ CNot \ (mset\text{-}ccls \ C) \rangle inv unfolding cdcl_W-stgy-invariant-def
   no-smaller-confl-def\ eq-commute[of\ -\ trail\ -]\ cdcl_W-M-level-inv-def\ cdcl_W-all-struct-inv-def
   by (auto simp: raw-clauses-def nc)
 then show ?case
   by (metis \( cdcl_W \)-all-struct-inv (add-init-cls (cls-of-ccls C) \( S \) \( add-no-confl.hyps(5) \) full-def
     rtranclp-cdcl_W-stgy-cdcl_W-stgy-invariant)
qed
lemma rtranclp-incremental-cdcl_W-inv:
 assumes
   inc: incremental - cdcl_W^{**} S T and
   inv: cdcl_W-all-struct-inv S and
    s-inv: cdcl_W-stgy-invariant S
  \mathbf{shows}
   cdcl_W-all-struct-inv T and
   cdcl_W-stgy-invariant T
    using inc apply induction
   using inv apply simp
  using s-inv apply simp
  using incremental\text{-}cdcl_W\text{-}inv by blast+
lemma incremental-conclusive-state:
 assumes
   inc: incremental\text{-}cdcl_W S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
   \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
 using inc
proof induction
 print-cases
 case (add-confl C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4) and
 full = this(5)
 have full\ cdcl_W-stgy T T
   using full unfolding full-def by auto
 then show ?case
   using full C conf dist tr
   by (metis\ full-cdcl_W\ -stqy\ -inv\ -normal\ -form\ incremental\ -cdcl_W\ .simps\ incremental\ -cdcl_W\ -inv(1)
     incremental\text{-}cdcl_W\text{-}inv(2) inv s\text{-}inv)
next
 case (add-no-conft C T) note tr = this(1) and dist = this(2) and conf = this(3) and C = this(4)
```

and full = this(5)

have $full\ cdcl_W$ -stgy T T

```
using full unfolding full-def by auto
  then show ?case
    by (meson\ C\ conf\ dist\ full\ full\ -cdcl_W\ -stgy\ -inv\ -normal\ -form\ incremental\ -cdcl_W\ .add\ -no\ -confl
       incremental-cdcl_W-inv(1) incremental-cdcl_W-inv(2) inv s-inv tr)
qed
\mathbf{lemma}\ tranclp\text{-}incremental\text{-}correct:
  assumes
    inc: incremental - cdcl_W^{++} S T and
   inv: cdcl_W-all-struct-inv S and
   s-inv: cdcl_W-stgy-invariant S
  shows conflicting T = Some \{\#\} \land unsatisfiable (set-mset (init-clss T))
    \vee conflicting T = None \wedge trail \ T \models asm \ init-clss \ T \wedge satisfiable (set-mset (init-clss \ T))
  using inc apply induction
  using assms incremental-conclusive-state apply blast
  by (meson\ incremental\text{-}conclusive\text{-}state\ inv\ rtranclp\text{-}incremental\text{-}cdcl_W\text{-}inv\ s\text{-}inv}
   tranclp-into-rtranclp)
end
end
```

24 2-Watched-Literal

theory CDCL-Two-Watched-Literals imports CDCL-WNOT begin

We will directly on the two-watched literals datastructure with lists: it could be also seen as a state over some abstract clause representation we would later refine as lists. However, as we need a way to select element from a clause, working on lists is better.

24.1 Datastructure and Access Functions

Only the 2-watched literals have to be verified here: the backtrack level and the trail that appear in the state are not related to the 2-watched algoritm.

```
datatype 'v twl-clause = TWL-Clause (watched: 'v literal list) (unwatched: 'v literal list)

datatype 'v twl-state = TWL-State (raw-trail: ('v, nat, 'v twl-clause) marked-lit list) (raw-init-clss: 'v twl-clause list) (backtrack-lvl: nat) (raw-conflicting: 'v literal list option)

fun mmset-of-mlit':: ('v, nat, 'v twl-clause) marked-lit \Rightarrow ('v, nat, 'v clause) marked-lit where mmset-of-mlit' (Propagated L C) = Propagated L (mset (watched C @ unwatched C)) | mmset-of-mlit' (Marked L i) = Marked L i

lemma lit-of-mmset-of-mlit'[simp]: lit-of (mmset-of-mlit' x) = lit-of x by (cases x) auto

lemma lits-of-mmset-of-mlit'[simp]: lits-of (mmset-of-mlit' 'S) = lits-of S
```

```
by (auto simp: lits-of-def image-image)
abbreviation trail where
trail S \equiv map \ mmset-of-mlit' \ (raw-trail S)
abbreviation clauses-of-l where
  clauses-of-l \equiv \lambda L. \ mset \ (map \ mset \ L)
definition raw-clause :: 'v twl-clause \Rightarrow 'v literal list where
  raw-clause C \equiv watched \ C @ unwatched \ C
abbreviation raw-clss :: 'v twl-state \Rightarrow 'v clauses where
  raw-clss S \equiv clauses-of-l (map \ raw-clause (raw-init-clss S @ raw-learned-clss S))
interpretation raw-cls
 \lambda C. mset (raw-clause C)
 \lambda L C. TWL-Clause (watched C) (L # unwatched C)
 \lambda L \ C. \ TWL-Clause [] (remove1 L (raw-clause C))
 apply (unfold-locales)
 by (auto simp:hd-map comp-def map-tl ac-simps
   mset-map-mset-remove1-cond ex-mset raw-clause-def
   simp del: )
lemma XXX:
  mset\ (map\ (\lambda x.\ mset\ (unwatched\ x) + mset\ (watched\ x))
   (remove1\text{-}cond\ (\lambda D.\ mset\ (raw\text{-}clause\ D) = mset\ (raw\text{-}clause\ a))\ Cs)) =
  remove1-mset (mset (raw-clause a)) (mset (map (\lambda x. mset (raw-clause x)) Cs))
  apply (induction Cs)
    apply simp
  by (auto simp: ac-simps remove1-mset-single-add raw-clause-def)
interpretation raw-clss
 \lambda C. mset (raw-clause C)
 \lambda L C. TWL-Clause (watched C) (L # unwatched C)
 \lambda L\ C.\ TWL\text{-}Clause\ []\ (remove1\ L\ (raw\text{-}clause\ C))
 \lambda C. clauses-of-l (map raw-clause C) op @
 \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove 1-cond \ (\lambda D. \ mset \ (raw-clause \ D) = mset \ (raw-clause \ C))
 apply (unfold-locales)
 \mathbf{using}\ XXX\ \mathbf{by}\ (auto\ simp:hd\text{-}map\ comp\text{-}def\ map\text{-}tl\ ac\text{-}simps\ raw\text{-}clause\text{-}def
   union-mset-list mset-map-mset-remove1-cond ex-mset
   simp del: )
lemma ex-mset-unwatched-watched:
 \exists a. mset (unwatched a) + mset (watched a) = E
proof -
 obtain e where mset e = E
   using ex-mset by blast
 then have mset (unwatched (TWL-Clause [] e)) + mset (watched (TWL-Clause [] e)) = E
   by auto
 then show ?thesis by fast
qed
\mathbf{thm}\ \mathit{CDCL}\text{-}\mathit{Two-Watched-Literals}.\mathit{raw-cls-axioms}
interpretation twl: state_W-ops
```

```
\lambda C. mset (raw-clause C)
 \lambda L C. TWL-Clause (watched C) (L # unwatched C)
 \lambda L\ C.\ TWL\text{-}Clause\ []\ (remove1\ L\ (raw\text{-}clause\ C))
 \lambda C. clauses-of-l (map raw-clause C) op @
  \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove 1-cond \ (\lambda D. \ mset \ (raw-clause \ D) = mset \ (raw-clause \ C))
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, []))
  op # remove1
 raw-clause \lambda C. TWL-Clause [] C
  trail \ \lambda S. \ hd \ (raw-trail \ S)
  raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
 apply unfold-locales apply (auto simp: hd-map comp-def map-tl ac-simps raw-clause-def
   union-mset-list mset-map-mset-remove1-cond ex-mset-unwatched-watched)
  done
declare CDCL-Two-Watched-Literals.twl.mset-ccls-ccls-of-cls[simp del]
lemma mmset-of-mlit'-mmset-of-mlit[simp]:
  twl.mmset-of-mlit L = mmset-of-mlit' L
 by (metis mmset-of-mlit'.simps(1) mmset-of-mlit'.simps(2) twl.mmset-of-mlit.elims raw-clause-def)
definition
  candidates-propagate :: 'v twl-state \Rightarrow ('v literal \times 'v twl-clause) set
where
  candidates-propagate S =
  \{(L, C) \mid L C.
    C \in set (twl.raw-clauses S) \land
    set (watched C) - (uminus `lits-of-l (trail S)) = \{L\} \land
    undefined-lit (trail\ S)\ L
definition candidates-conflict :: 'v twl-state \Rightarrow 'v twl-clause set where
  candidates-conflict S =
  \{C.\ C \in set\ (twl.raw-clauses\ S)\ \land
    set (watched C) \subseteq uminus `lits-of-l (trail S) 
primrec (nonexhaustive) index :: 'a list \Rightarrow 'a \Rightarrow nat where
index (a \# l) c = (if a = c then 0 else 1 + index l c)
lemma index-nth:
  a \in set \ l \Longrightarrow l \ ! \ (index \ l \ a) = a
 by (induction l) auto
         Invariants
```

24.2

We need the following property about updates: if there is a literal L with -L in the trail, and L is not watched, then it stays unwatched; i.e., while updating with rewatch it does not get swap with a watched literal L' such that -L' is in the trail.

```
\mathbf{primrec} \ \ watched\text{-}decided\text{-}most\text{-}recently :: ('v, 'lvl, 'mark) \ \ marked\text{-}lit \ list \Rightarrow
  'v \ twl\text{-}clause \Rightarrow bool
  where
watched-decided-most-recently M (TWL-Clause W UW) \longleftrightarrow
  (\forall L' \in set \ W. \ \forall L \in set \ UW.
     -L' \in lits-of-l M \longrightarrow -L \in lits-of-l M \longrightarrow L \notin \# mset W \longrightarrow
```

```
Here are the invariant strictly related to the 2-WL data structure.
primrec wf-twl-cls:: (v, 'lvl, 'mark) marked-lit list \Rightarrow 'v twl-clause \Rightarrow bool where
  wf-twl-cls M (TWL-Clause W UW) \longleftrightarrow
  distinct W \land length \ W \leq 2 \land (length \ W < 2 \longrightarrow set \ UW \subseteq set \ W) \land
  (\forall L \in set \ W. \ -L \in lits\text{-}of\text{-}l \ M \longrightarrow (\forall L' \in set \ UW. \ L' \notin set \ W \longrightarrow -L' \in lits\text{-}of\text{-}l \ M)) \land
   watched-decided-most-recently M (TWL-Clause W UW)
lemma size-mset-2: size x1 = 2 \longleftrightarrow (\exists a \ b. \ x1 = \{\#a, \ b\#\})
 apply (cases x1)
  apply simp
  by (metis (no-types, hide-lams) Suc-eq-plus1 one-add-one size-1-singleton-mset
  size-Diff-singleton size-Suc-Diff1 size-single union-single-eq-diff union-single-eq-member)
lemma distinct-mset-size-2: distinct-mset \{\#a, b\#\} \longleftrightarrow a \neq b
  unfolding distinct-mset-def by auto
\mathbf{lemma}\ wf-twl-cls-annotation-independant:
  assumes M: map lit-of M = map \ lit-of \ M'
 shows wf-twl-cls M (TWL-Clause W UW) \longleftrightarrow wf-twl-cls M' (TWL-Clause W UW)
proof -
  have lits-of-l M = lits-of-l M'
   using arg-cong[OF M, of set] by (simp add: lits-of-def)
  then show ?thesis
   \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{lits\text{-}of\text{-}def}\ M)
qed
lemma wf-twl-cls-wf-twl-cls-tl:
 assumes wf: wf\text{-}twl\text{-}cls\ M\ C\ and\ n\text{-}d:\ no\text{-}dup\ M
  shows wf-twl-cls (tl M) C
proof (cases M)
  case Nil
  then show ?thesis using wf
   by (cases C) (simp add: wf-twl-cls.simps[of tl -])
next
  case (Cons l M') note M = this(1)
 obtain W\ UW where C:\ C=TWL	ext{-}Clause\ W\ UW
   by (cases \ C)
  { \mathbf{fix} \ L \ L'
   assume
     LW: L \in set \ W \ {\bf and}
     LM: -L \in lits-of-l M' and
     L'UW: L' \in set\ UW and
     L' \notin set W
   then have
     L'M: -L' \in lits\text{-}of\text{-}lM
     using wf by (auto simp: CM)
   have watched-decided-most-recently M C
     using wf by (auto simp: C)
   then have
     index \ (map \ lit of \ M) \ (-L) \leq index \ (map \ lit of \ M) \ (-L')
     using LM L'M L'UW LW \langle L' \notin set W \rangle CM unfolding lits-of-def
     by (fastforce simp: lits-of-def)
   then have -L' \in lits-of-lM'
```

 $index \ (map \ lit - of \ M) \ (-L') \leq index \ (map \ lit - of \ M) \ (-L))$

```
using \langle L' \notin set \ W \rangle \ LW \ L'M by (auto simp: C M split: if-split-asm)
 }
 moreover
    {
     \mathbf{fix} \ L' \ L
     assume
       L' \in set \ W \ and
       L \in set\ UW and
       L'M: -L' \in lits-of-l M' and
       -L \in lits-of-l M' and
       L \notin set W
     moreover
       have lit-of l \neq -L'
       using n-d unfolding M
         by (metis (no-types) L'M M Marked-Propagated-in-iff-in-lits-of-l defined-lit-map
           distinct.simps(2) \ list.simps(9) \ set-map)
     moreover have watched-decided-most-recently M C
       using wf by (auto simp: C)
     ultimately have index (map lit-of M') (-L') \leq index (map lit-of M') (-L)
       by (fastforce simp: M C split: if-split-asm)
   }
 moreover have distinct W and length W \leq 2 and (length W < 2 \longrightarrow set \ UW \subseteq set \ W)
   using wf by (auto simp: C M)
 ultimately show ?thesis by (auto simp add: M C)
qed
definition wf-twl-state :: 'v twl-state <math>\Rightarrow bool where
  wf-twl-state S \longleftrightarrow (\forall C \in set \ (twl.raw-clauses \ S). \ wf-twl-cls (trail \ S) \ C) \land no-dup (trail \ S)
lemma wf-candidates-propagate-sound:
 assumes wf: wf\text{-}twl\text{-}state\ S and
   cand: (L, C) \in candidates-propagate S
 shows trail S \models as\ CNot\ (mset\ (removeAll\ L\ (raw-clause\ C))) \land undefined-lit\ (trail\ S)\ L
   (is ?Not \land ?undef)
proof
 \mathbf{def}\ M \equiv trail\ S
 \operatorname{\mathbf{def}} N \equiv raw\text{-}init\text{-}clss S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{raw-learned-clss}\ S
 \mathbf{note}\ \mathit{MNU-defs}\ [\mathit{simp}] = \mathit{M-def}\ \mathit{N-def}\ \mathit{U-def}
 have cw:
   C \in set (N @ U)
   set\ (watched\ C)\ -\ uminus\ `lits-of-l\ M=\{L\}
   undefined-lit M L
   using cand unfolding candidates-propagate-def MNU-defs twl.raw-clauses-def by auto
 obtain W UW where cw-eq: C = TWL-Clause W UW
   by (cases C)
 have l-w: L \in set W
   using cw(2) cw-eq by auto
 have wf-c: wf-twl-cls M C
   using wf cw(1) unfolding wf-twl-state-def by (simp add: twl.raw-clauses-def)
```

```
have w-nw:
 distinct W
 length W < 2 \Longrightarrow set UW \subseteq set W
 \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-l } M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-l } M
using wf-c unfolding cw-eq by (auto simp: image-image)
have \forall L' \in set \ (raw\text{-}clause \ C) - \{L\}. \ -L' \in \textit{lits-of-l } M
proof (cases length W < 2)
 case True
 moreover have size W \neq 0
   using cw(2) cw-eq by auto
 ultimately have size W = 1
   by linarith
 then have w: W = [L]
   using l-w by (auto simp: length-list-Suc-\theta)
 from True have set UW \subseteq set W
   using w-nw(2) by blast
 then show ?thesis
   using w \ cw(1) \ cw-eq by (auto simp: raw-clause-def)
\mathbf{next}
 case sz2: False
 show ?thesis
 proof
   fix L'
   assume l': L' \in set (raw\text{-}clause \ C) - \{L\}
   have ex-la: \exists La. La \neq L \land La \in set W
   proof (cases W)
     case w: Nil
     thus ?thesis
       using l-w by auto
   next
     case lb: (Cons Lb W')
     show ?thesis
     proof (cases W')
       case Nil
       thus ?thesis
         using lb sz2 by simp
     next
       case lc: (Cons Lc W'')
       thus ?thesis
         by (metis\ distinct-length-2-or-more\ lb\ list.set-intros(1)\ list.set-intros(2)\ w-nw(1))
     qed
   qed
   then obtain La where la: La \neq L La \in set W
     by blast
   then have La \in uminus ' lits-of-l M
     using cw(2)[unfolded\ cw-eq,\ simplified,\ folded\ M-def]\ \langle La\in set\ W\rangle\ \langle La\neq L\rangle by auto
   then have nla: -La \in lits\text{-}of\text{-}l\ M
     by (auto simp: image-image)
   then show -L' \in lits-of-l M
   proof -
     have f1: L' \in set (raw-clause C)
       using l' by blast
```

```
have f2: L' \notin \{L\}
         using l' by fastforce
       have \bigwedge l \ L. - (l::'a \ literal) \in L \lor l \notin uminus `L
         by force
       then show ?thesis
         using cw(1) cw-eq w-nw(3) raw-clause-def by (metis DiffI Un-iff cw(2) f1 f2 la(2) nla
           set-append twl-clause.sel(1) twl-clause.sel(2))
     qed
   qed
  qed
  then show ?Not
   unfolding true-annots-def by (auto simp: image-image Ball-def CNot-def)
 show ?undef
   using cw(3) M-def by blast
qed
lemma wf-candidates-propagate-complete:
  assumes wf: wf\text{-}twl\text{-}state\ S and
   c-mem: C \in set (twl.raw-clauses S) and
   l-mem: L \in set (raw-clause C) and
   unsat: trail S \models as CNot (mset\text{-set } (set (raw\text{-}clause C) - \{L\})) and
    undef: undefined-lit (trail S) L
  shows (L, C) \in candidates-propagate S
proof -
  \mathbf{def}\ M \equiv trail\ S
 \operatorname{\mathbf{def}} N \equiv \operatorname{raw-init-clss} S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{\mathit{raw-learned-clss}}\ S
 note MNU-defs [simp] = M-def N-def U-def
  obtain W UW where cw-eq: C = TWL-Clause W UW
   by (cases\ C,\ blast)
 have wf-c: wf-twl-cls M C
   using wf c-mem unfolding wf-twl-state-def by simp
  have w-nw:
   distinct W
   length \ W < 2 \Longrightarrow set \ UW \subseteq set \ W
   \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-l} \ M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-l} \ M
  using wf-c unfolding cw-eq by (auto simp: image-image)
  have unit-set: set W - (uminus ' lits-of-l M) = \{L\} (is ?W = ?L)
  proof
   show ?W \subseteq \{L\}
   proof
     \mathbf{fix} \ L'
     assume l': L' \in ?W
     hence l'-mem-w: L' \in set W
       by (simp add: in-diffD)
     have L' \notin uminus ' lits-of-lM
       using l' by blast
     then have \neg M \models a \{\#-L'\#\}
       by (auto simp: lits-of-def uminus-lit-swap image-image)
```

```
moreover have L' \in set \ (raw\text{-}clause \ C)
       using c-mem cw-eq l'-mem-w by (auto simp: raw-clause-def)
     ultimately have L' = L
       using unsat[unfolded CNot-def true-annots-def, simplified]
       unfolding M-def by fastforce
     then show L' \in \{L\}
       \mathbf{by} \ simp
   \mathbf{qed}
 next
   show \{L\} \subseteq ?W
   proof clarify
     have L \in set W
     proof (cases W)
       case Nil
       thus ?thesis
        using w-nw(2) cw-eq l-mem by (auto simp: raw-clause-def)
     next
       case (Cons La W')
      thus ?thesis
      proof (cases La = L)
        case True
        thus ?thesis
          using Cons by simp
      next
        case False
        have -La \in lits-of-l M
          using False Cons cw-eq unsat[unfolded CNot-def true-annots-def, simplified]
          by (fastforce simp: raw-clause-def)
        then show ?thesis
          using Cons cw-eq l-mem undef w-nw(3)
          by (auto simp: Marked-Propagated-in-iff-in-lits-of-l raw-clause-def)
      qed
     qed
     moreover have L \notin \# mset-set (uminus 'lits-of-l M)
       using undef by (auto simp: Marked-Propagated-in-iff-in-lits-of-l image-image)
     ultimately show L \in ?W
       by simp
   qed
 qed
 show ?thesis
   unfolding candidates-propagate-def using unit-set undef c-mem unfolding cw-eq M-def
   by (auto simp: image-image cw-eq intro!: exI[of - C])
\mathbf{lemma}\ \textit{wf-candidates-conflict-sound} :
 assumes wf: wf-twl-state S and
   cand: C \in candidates\text{-}conflict S
 shows trail S \models as CNot (mset (raw-clause C)) \land C \in set (twl.raw-clauses S)
proof
 \mathbf{def}\ M \equiv trail\ S
 \operatorname{\mathbf{def}} N \equiv \operatorname{raw-init-clss} S
 \operatorname{\mathbf{def}}\ U \equiv \operatorname{raw-learned-clss}\ S
 note MNU-defs [simp] = M-def N-def U-def
```

```
have cw:
   C \in set (N @ U)
   set (watched C) \subseteq uminus `lits-of-l (trail S)
   using cand[unfolded candidates-conflict-def, simplified] unfolding twl.raw-clauses-def by auto
 obtain W \ UW where cw-eq: C = TWL-Clause W \ UW
   by (cases\ C,\ blast)
 have wf-c: wf-twl-cls M C
   using wf cw(1) unfolding wf-twl-state-def by (simp add: comp-def twl.raw-clauses-def)
 have w-nw:
   distinct W
   length \ W < 2 \Longrightarrow set \ UW \subseteq set \ W
   \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits \text{-of-l } M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits \text{-of-l } M
  using wf-c unfolding cw-eq by (auto simp: image-image)
 have \forall L \in set \ (raw\text{-}clause \ C). \ -L \in lits\text{-}of\text{-}l \ M
 proof (cases W)
   \mathbf{case}\ \mathit{Nil}
   then have raw-clause C = []
     using cw(1) cw-eq w-nw(2) by (auto simp: raw-clause-def)
   then show ?thesis
     by simp
 next
   case (Cons La W') note W' = this(1)
   show ?thesis
   proof
     \mathbf{fix} \ L
     assume l: L \in set (raw-clause C)
     \mathbf{show} - L \in \mathit{lits-of-l}\ M
     proof (cases L \in set W)
       case True
       thus ?thesis
         using cw(2) cw-eq by fastforce
       case False
       thus ?thesis
         by (metis (no-types, hide-lams) M-def UnE W' contra-subsetD cw(2) cw-eq imageE
           insertI1\ l\ list.set(2)\ set-append\ twl-clause.sel(1)\ twl-clause.sel(2)
           uminus-of-uminus-id w-nw(3) raw-clause-def)
     qed
   qed
 qed
  then show trail S \models as \ CNot \ (mset \ (raw-clause \ C))
   unfolding CNot-def true-annots-def by auto
 show C \in set (twl.raw-clauses S)
   using cw unfolding twl.raw-clauses-def by auto
qed
lemma wf-candidates-conflict-complete:
 assumes wf: wf\text{-}twl\text{-}state\ S and
   c-mem: C \in set (twl.raw-clauses S) and
```

```
unsat: trail \ S \models as \ CNot \ (mset \ (raw-clause \ C))
 shows C \in candidates\text{-}conflict S
proof -
  \mathbf{def}\ M \equiv trail\ S
  \operatorname{\mathbf{def}} N \equiv twl.init\text{-}clss\ S
 \operatorname{\mathbf{def}}\ U \equiv twl.learned\text{-}clss\ S
 note MNU-defs [simp] = M-def N-def U-def
 obtain W UW where cw-eq: C = TWL-Clause W UW
   by (cases C, blast)
 have wf-c: wf-twl-cls M C
   using wf c-mem unfolding wf-twl-state-def by simp
  have w-nw:
    distinct W
   length W < 2 \Longrightarrow set UW \subseteq set W
   \bigwedge L \ L'. \ L \in set \ W \Longrightarrow -L \in lits - of - l \ M \Longrightarrow L' \in set \ UW \Longrightarrow L' \notin set \ W \Longrightarrow -L' \in lits - of - l \ M
  using wf-c unfolding cw-eq by (auto simp: image-image)
  have \bigwedge L. L \in set (raw\text{-}clause \ C) \Longrightarrow -L \in lits\text{-}of\text{-}l \ M
   unfolding M-def using unsat unfolded CNot-def true-annots-def, simplified by auto
  then have set (raw\text{-}clause\ C) \subseteq uminus\ ``lits\text{-}of\text{-}l\ M
   by (metis imageI subsetI uminus-of-uminus-id)
  then have set W \subseteq uminus 'lits-of-l M
   using cw-eq by (auto simp: raw-clause-def)
  then have subset: set W \subseteq uminus ' lits-of-l M
   by (simp \ add: w-nw(1))
 have W = watched C
   using cw-eq twl-clause.sel(1) by simp
  then show ?thesis
    using MNU-defs c-mem subset candidates-conflict-def by blast
qed
typedef 'v wf-twl = \{S:: 'v \ twl-state. \ wf-twl-state \ S\}
morphisms rough-state-of-twl twl-of-rough-state
proof -
 have TWL-State ([]::('v, nat, 'v twl-clause) marked-lits)
   [] [] 0 None \in \{S:: 'v \ twl-state. \ wf-twl-state \ S\}
   by (auto simp: wf-twl-state-def twl.raw-clauses-def)
 then show ?thesis by auto
qed
lemma [code abstype]:
  \textit{twl-of-rough-state} \; (\textit{rough-state-of-twl} \; S) \, = \, S
 by (fact CDCL-Two-Watched-Literals.wf-twl.rough-state-of-twl-inverse)
lemma wf-twl-state-rough-state-of-twl[simp]: wf-twl-state (rough-state-of-twl S)
  using rough-state-of-twl by auto
abbreviation candidates-conflict-twl :: 'v wf-twl \Rightarrow 'v twl-clause set where
candidates-conflict-twl S \equiv candidates-conflict (rough-state-of-twl S)
```

```
abbreviation candidates-propagate-twl :: 'v wf-twl \Rightarrow ('v literal \times 'v twl-clause) set where
candidates-propagate-twl S \equiv candidates-propagate (rough-state-of-twl S)
abbreviation raw-trail-twl: 'a wf-twl \Rightarrow ('a, nat, 'a twl-clause) marked-lit list where
raw-trail-twl S \equiv raw-trail (rough-state-of-twl S)
abbreviation trail-twl: 'a wf-twl \Rightarrow ('a, nat, 'a literal multiset) marked-lit list where
\mathit{trail\text{-}twl}\ S \equiv \mathit{trail}\ (\mathit{rough\text{-}state\text{-}of\text{-}twl}\ S)
abbreviation raw-clauses-twl :: 'a wf-twl \Rightarrow 'a twl-clause list where
raw-clauses-twl S \equiv twl.raw-clauses (rough-state-of-twl S)
abbreviation raw-init-clss-twl :: 'a wf-twl \Rightarrow 'a twl-clause list where
raw-init-clss-twl S \equiv raw-init-clss (rough-state-of-twl S)
abbreviation raw-learned-clss-twl :: 'a wf-twl \Rightarrow 'a twl-clause list where
raw-learned-clss-twl S \equiv raw-learned-clss (rough-state-of-twl S)
abbreviation backtrack-lvl-twl where
backtrack-lvl-twl\ S \equiv backtrack-lvl\ (rough-state-of-twl\ S)
abbreviation raw-conflicting-twl where
raw-conflicting-twl S \equiv raw-conflicting (rough-state-of-twl S)
{\bf lemma}\ \textit{wf-candidates-twl-conflict-complete}:
 assumes
   c-mem: C \in set (raw-clauses-twl S) and
   unsat: trail-twl \ S \models as \ CNot \ (mset \ (raw-clause \ C))
 shows C \in candidates-conflict-twl S
 using c-mem unsat wf-candidates-conflict-complete wf-twl-state-rough-state-of-twl by blast
abbreviation update-backtrack-lvl where
  update-backtrack-lvl k S \equiv
  TWL-State (raw-trail S) (raw-init-clss S) (raw-learned-clss S) k (raw-conflicting S)
abbreviation update-conflicting where
  update-conflicting C S \equiv
    TWL-State (raw-trail S) (raw-init-clss S) (raw-learned-clss S) (backtrack-lvl S) C
24.3
         Abstract 2-WL
definition tl-trail where
  tl-trail S =
  TWL-State (tl (raw-trail S)) (raw-init-clss S) (raw-learned-clss S) (backtrack-lvl S)
  (raw-conflicting S)
locale \ abstract-twl =
 fixes
   watch :: 'v \ twl\text{-state} \Rightarrow 'v \ literal \ list \Rightarrow 'v \ twl\text{-clause} and
   rewatch :: 'v \ literal \Rightarrow 'v \ twl-state \Rightarrow
     'v twl-clause \Rightarrow 'v twl-clause and
   restart-learned :: 'v twl-state \Rightarrow 'v twl-clause list
  assumes
    clause-watch: no-dup (trail S) \implies mset (raw-clause (watch S C)) = mset C and
   wf-watch: no-dup (trail S) \Longrightarrow wf-twl-cls (trail S) (watch S C) and
   clause-rewatch: mset (raw-clause (rewatch L' S C')) = mset (raw-clause C') and
```

```
wf-rewatch:
     no\text{-}dup\ (trail\ S) \Longrightarrow undefined\text{-}lit\ (trail\ S)\ (lit\text{-}of\ L) \Longrightarrow wf\text{-}twl\text{-}cls\ (trail\ S)\ C' \Longrightarrow
       wf-twl-cls (L \# trail S) (rewatch (lit-of L) <math>S C')
   restart-learned: mset (restart-learned S) \subseteq \# mset (raw-learned-clss S) — We need mset and not set
to take care of duplicates.
begin
definition
  cons-trail :: ('v, nat, 'v twl-clause) marked-lit \Rightarrow 'v twl-state \Rightarrow 'v twl-state
where
  cons-trail L S =
   TWL-State (L \# raw-trail S) (map (rewatch (lit-of L) S) (raw-init-clss S))
     (map (rewatch (lit-of L) S) (raw-learned-clss S)) (backtrack-lvl S) (raw-conflicting S)
definition
  add-init-cls :: 'v literal list \Rightarrow 'v twl-state \Rightarrow 'v twl-state
  add-init-cls C S =
   TWL-State (raw-trail S) (watch S C # raw-init-clss S) (raw-learned-clss S) (backtrack-lvl S)
    (raw-conflicting S)
definition
  add-learned-cls :: 'v literal list \Rightarrow 'v twl-state \Rightarrow 'v twl-state
where
  add-learned-cls C S =
   TWL-State (raw-trail S) (raw-init-clss S) (watch S C # raw-learned-clss S) (backtrack-lvl S)
    (raw-conflicting S)
definition
  remove\text{-}cls :: 'v \ literal \ list \Rightarrow 'v \ twl\text{-}state \Rightarrow 'v \ twl\text{-}state
where
  remove\text{-}cls\ C\ S =
   TWL-State (raw-trail S)
    (removeAll\text{-}cond\ (\lambda D.\ mset\ (raw\text{-}clause\ D) = mset\ C)\ (raw\text{-}init\text{-}clss\ S))
    (removeAll\text{-}cond\ (\lambda D.\ mset\ (raw\text{-}clause\ D) = mset\ C)\ (raw\text{-}learned\text{-}clss\ S))
     (backtrack-lvl S)
    (raw-conflicting S)
definition init-state :: 'v literal list list \Rightarrow 'v twl-state where
  init-state N = fold \ add-init-cls \ N \ (TWL-State \ [] \ [] \ [] \ 0 \ None)
lemma unchanged-fold-add-init-cls:
  raw-trail (fold add-init-cls Cs (TWL-State M N U k C)) = M
  raw-learned-clss (fold add-init-cls Cs (TWL-State M N U k C)) = U
  backtrack-lvl (fold add-init-cls Cs (TWL-State M N U k C)) = k
  raw-conflicting (fold add-init-cls Cs (TWL-State M N U k C)) = C
  by (induct Cs arbitrary: N) (auto simp: add-init-cls-def)
lemma unchanged-init-state[simp]:
  raw-trail (init-state N) = []
  raw-learned-clss (init-state N) = []
  backtrack-lvl (init-state N) = 0
  raw-conflicting (init-state N) = None
  unfolding init-state-def by (rule unchanged-fold-add-init-cls)+
```

```
\mathbf{lemma}\ \mathit{clauses-init-fold-add-init}:
  no-dup M \Longrightarrow
  twl.init-clss (fold add-init-cls Cs (TWL-State M N U k C)) =
   clauses-of-l \ Cs + clauses-of-l \ (map \ raw-clause \ N)
  by (induct Cs arbitrary: N) (auto simp: add-init-cls-def clause-watch comp-def ac-simps)
lemma init-clss-init-state[simp]: twl.init-clss (init-state N) = clauses-of-l N
  unfolding init-state-def by (subst clauses-init-fold-add-init) simp-all
definition restart' where
  restart' S = TWL\text{-}State \ [] \ (raw\text{-}init\text{-}clss \ S) \ (restart\text{-}learned \ S) \ 0 \ None
end
24.4
          Instanciation of the previous locale
definition watch-nat :: 'v \ twl-state \Rightarrow 'v \ literal \ list \Rightarrow 'v \ twl-clause \ \mathbf{where}
  watch-nat S C =
  (let
      C' = remdups C;
      neg\text{-}not\text{-}assigned = filter \ (\lambda L. -L \notin lits\text{-}of\text{-}l \ (raw\text{-}trail \ S)) \ C';
      neg-assigned-sorted-by-trail = filter (\lambda L. L \in set C) (map (\lambda L. -lit-of L) (raw-trail S));
      W = take\ 2\ (neg-not-assigned\ @\ neg-assigned-sorted-by-trail);
      UW = foldr \ remove1 \ W \ C
    in TWL-Clause W UW)
lemma list-cases2:
  fixes l :: 'a \ list
 assumes
    l = [] \Longrightarrow P and
    \bigwedge x. \ l = [x] \Longrightarrow P and
    \bigwedge x \ y \ xs. \ l = x \# y \# xs \Longrightarrow P
  shows P
 by (metis assms list.collapse)
\mathbf{lemma}\ \mathit{filter-in-list-prop-verifiedD}:
  assumes [L \leftarrow P : Q L] = l
  shows \forall x \in set \ l. \ x \in set \ P \land Q \ x
  using assms by auto
lemma no-dup-filter-diff:
  assumes n-d: no-dup M and H: [L \leftarrow map \ (\lambda L. - lit\text{-of } L) \ M. \ L \in set \ C] = l
  shows distinct l
  unfolding H[symmetric]
 apply (rule distinct-filter)
 using n-d by (induction M) auto
lemma watch-nat-lists-disjointD:
  assumes
    l: [L \leftarrow remdups \ C. - L \notin lits - of - l \ (raw - trail \ S)] = l \ and
    l': [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C] = l'
  shows \forall x \in set \ l. \ \forall y \in set \ l'. \ x \neq y
  by (auto simp: l[symmetric] l'[symmetric] lits-of-def image-image)
```

 $\mathbf{lemma}\ watch-nat\text{-}list\text{-}cases\text{-}witness[consumes\ 2,\ case\text{-}names\ nil\text{-}nil\ nil\text{-}single\ nil\text{-}other]$

```
single-nil single-other other]:
  fixes
     C :: 'v \ literal \ list \ \mathbf{and}
    S :: 'v \ twl-state
  defines
    xs \equiv [L \leftarrow remdups \ C. - L \notin lits - of - l \ (raw - trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C]
  assumes
    n\text{-}d: no\text{-}dup\ (raw\text{-}trail\ S) and
    nil-nil: xs = [] \Longrightarrow ys = [] \Longrightarrow P and
    nil-single:
       \bigwedge a. \ xs = [] \Longrightarrow ys = [a] \Longrightarrow a \in set \ C \Longrightarrow P \ and
     nil\text{-}other: \land a \ b \ ys'. \ xs = [] \Longrightarrow ys = a \ \# \ b \ \# \ ys' \Longrightarrow a \neq b \Longrightarrow P \ \text{and}
    single-nil: \land a. \ xs = [a] \Longrightarrow ys = [] \Longrightarrow P \text{ and }
    single-other: \land a \ b \ ys'. \ xs = [a] \Longrightarrow ys = b \ \# \ ys' \Longrightarrow a \neq b \Longrightarrow P \ {\bf and}
     other: \bigwedge a\ b\ xs'.\ xs = a\ \#\ b\ \#\ xs' \Longrightarrow a \neq b \Longrightarrow P
  shows P
proof -
  note xs-def[simp] and ys-def[simp]
  have dist: \bigwedge P. distinct [L \leftarrow remdups \ C \ . \ P \ L]
    by auto
  then have H: \Lambda a \ b \ P \ xs. \ [L \leftarrow remdups \ C \ . \ P \ L] = a \ \# \ b \ \# \ xs \Longrightarrow a \neq b
    by (metis distinct-length-2-or-more)
  show ?thesis
  apply (cases [L \leftarrow remdups \ C. - L \notin lits\text{-}of\text{-}l \ (raw\text{-}trail \ S)]
         rule: list-cases2;
       cases [L \leftarrow map\ (\lambda L. - lit\text{-}of\ L)\ (raw\text{-}trail\ S)\ .\ L \in set\ C]\ rule:\ list\text{-}cases2)
            using nil-nil apply simp
          using nil-single apply (force dest: filter-in-list-prop-verifiedD)
         using nil-other no-dup-filter-diff[OF n-d, of C]
         apply fastforce
        using single-nil apply simp
       using single-other xs-def ys-def apply (metis list.set-intros(1) watch-nat-lists-disjointD)
      using single-other unfolding xs-def ys-def apply (metis list.set-intros(1)
        watch-nat-lists-disjointD)
    using other xs-def ys-def by (metis\ H)+
qed
lemma watch-nat-list-cases [consumes 1, case-names nil-nil nil-single nil-other single-nil
  single-other other]:
  fixes
     C :: 'v \ literal \ list \ \mathbf{and}
    S :: 'v \ twl-state
  defines
    xs \equiv [L \leftarrow remdups \ C \ . \ - \ L \notin lits \text{-} of \text{-} l \ (raw \text{-} trail \ S)] and
    ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C]
  assumes
    n-d: no-dup (raw-trail S) and
    nil-nil: xs = [] \Longrightarrow ys = [] \Longrightarrow P and
       \bigwedge a. \ xs = [] \Longrightarrow ys = [a] \Longrightarrow \ a \in set \ C \Longrightarrow P \ and
    nil\text{-}other: \land a \ b \ ys'. \ xs = [] \Longrightarrow ys = a \# b \# ys' \Longrightarrow a \neq b \Longrightarrow P \text{ and }
    single-nil: \land a. \ xs = [a] \Longrightarrow ys = [] \Longrightarrow P \ \mathbf{and}
    single-other: \bigwedge a \ b \ ys'. xs = [a] \Longrightarrow ys = b \# ys' \Longrightarrow a \neq b \Longrightarrow P and
    other: \bigwedge a\ b\ xs'. xs = a \# b \# xs' \Longrightarrow a \neq b \Longrightarrow P
```

```
shows P
  using watch-nat-list-cases-witness[OF n-d, of C P]
  nil-nil nil-single nil-other single-nil single-other other
  unfolding xs-def[symmetric] ys-def[symmetric] by auto
\mathbf{lemma}\ \mathit{watch-nat-lists-set-union-witness}\colon
  fixes
    C :: 'v \ literal \ list \ \mathbf{and}
   S :: 'v \ twl-state
  defines
   xs \equiv [L \leftarrow remdups \ C. - L \notin lits - of - l \ (raw - trail \ S)] and
   ys \equiv [L \leftarrow map \ (\lambda L. - lit - of \ L) \ (raw - trail \ S) \ . \ L \in set \ C]
  assumes n-d: no-dup (raw-trail S)
  shows set C = set xs \cup set ys
  using n-d unfolding xs-def ys-def by (auto simp: lits-of-def comp-def uminus-lit-swap)
lemma mset-intersection-inclusion: A + (B - A) = B \longleftrightarrow A \subseteq \# B
 apply (rule iffI)
  apply (metis mset-le-add-left)
  by (auto simp: ac-simps multiset-eq-iff subseteq-mset-def)
lemma clause-watch-nat:
  assumes no-dup (raw-trail S)
  shows mset (raw-clause (watch-nat S C)) = mset C
  using assms
 apply (cases rule: watch-nat-list-cases [OF assms(1), of C])
 by (auto dest: filter-in-list-prop-verifiedD simp: watch-nat-def multiset-eq-iff raw-clause-def)
lemma index-uminus-index-map-uminus:
  -a \in set \ L \Longrightarrow index \ L \ (-a) = index \ (map \ uminus \ L) \ (a::'a \ literal)
 by (induction L) auto
lemma index-filter:
  a \in set \ L \Longrightarrow b \in set \ L \Longrightarrow P \ a \Longrightarrow P \ b \Longrightarrow
  index\ L\ a \leq index\ L\ b \longleftrightarrow index\ (filter\ P\ L)\ a \leq index\ (filter\ P\ L)\ b
  by (induction L) auto
lemma foldr-remove1-W-Nil[simp]: foldr remove1 W = [
 by (induct W) auto
lemma image-lit-of-mmset-of-mlit'[simp]:
  lit-of 'mmset-of-mlit'' 'A = lit-of' A
  by (auto simp: image-image comp-def)
lemma distinct-filter-eq:
  assumes distinct xs
 shows [L \leftarrow xs. \ L = a] = (if \ a \in set \ xs \ then \ [a] \ else \ [])
  using assms by (induction xs) auto
lemma no-dup-distinct-map-uminus-lit-of:
  no\text{-}dup \ xs \Longrightarrow distinct \ (map \ (\lambda L. - lit\text{-}of \ L) \ xs)
  by (induction xs) auto
lemma wf-watch-witness:
  fixes C :: 'v \ literal \ list and
```

```
S :: 'v \ twl-state
  defines
    ass: neg-not-assigned \equiv filter (\lambda L. -L \notin lits-of-l (raw-trail S)) (remdups C) and
    tr: neg-assigned-sorted-by-trail \equiv filter (\lambda L. \ L \in set \ C) \ (map \ (\lambda L. -lit-of \ L) \ (raw-trail \ S))
     W: W \equiv take \ 2 \ (neg-not-assigned @ neg-assigned-sorted-by-trail)
 assumes
   n-d[simp]: no-dup (raw-trail S)
 shows wf-twl-cls (trail S) (TWL-Clause W (foldr remove1 W C))
 unfolding wf-twl-cls.simps
proof (intro conjI, goal-cases)
 case 1
 then show ?case using n-d W unfolding ass tr
   apply (cases rule: watch-nat-list-cases-witness[of S C, OF n-d])
   by (auto simp: distinct-mset-add-single)
next
 case 2
 then show ?case unfolding W by simp
next
 case \beta
 show ?case using n-d
   proof (cases rule: watch-nat-list-cases-witness[of S C])
     case nil-nil
     then have set C = set [] \cup set []
      using watch-nat-lists-set-union-witness n-d by metis
     then show ?thesis
      by simp
   next
     case (nil\text{-}single\ a)
     moreover have \bigwedge x. set C = \{a\} \Longrightarrow -a \in lits-of-l (trail\ S) \Longrightarrow x \in set\ (remove1\ a\ C) \Longrightarrow
      using notin-set-remove1 by auto
     ultimately show ?thesis
      using watch-nat-lists-set-union-witness[of S C] 3 by (auto simp: W ass tr comp-def)
   next
     case nil-other
     then show ?thesis
      using 3 by (auto simp: W ass tr)
   next
     case (single-nil\ a)
     show ?thesis
      using watch-nat-lists-set-union-witness[of S C] 3
      by (fastforce simp add: W ass tr single-nil comp-def distinct-filter-eq
        no-dup-distinct-map-uminus-lit-of\ min-def)
   next
     case single-other
     then show ?thesis
      using 3 by (auto simp: W ass tr)
   next
     case other
     then show ?thesis
      using 3 by (auto simp: W ass tr)
   qed
\mathbf{next}
 case 4 note -[simp] = this
```

```
show ?case
   using n-d apply (cases rule: watch-nat-list-cases-witness[of S C])
    apply (auto dest: filter-in-list-prop-verifiedD
      simp: W ass tr lits-of-def filter-empty-conv)[4]
   using watch-nat-lists-set-union-witness[of S C]
   by (force dest: filter-in-list-prop-verifiedD simp: W ass tr lits-of-def)+
next
 case 5
 from n-d show ?case
   proof (cases rule: watch-nat-list-cases-witness[of S C])
    case nil-nil
    then show ?thesis by (auto simp: W ass tr)
   next
    case nil-single
    then show ?thesis
      using watch-nat-lists-set-union-witness[of S C] tr by (fastforce simp: W ass)
   next
    case nil-other
    then show ?thesis
      unfolding watched-decided-most-recently.simps Ball-def
      apply (intro \ all I \ imp I)
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-filter[of - - - \lambda L. L \in set C])
      by (auto dest: filter-in-list-prop-verifiedD
        simp: uminus-lit-swap lits-of-def o-def W ass tr dest: in-diffD)
   next
    case single-nil
    then show ?thesis
       using watch-nat-lists-set-union-witness[of S C] tr by (fastforce simp: W ass)
   next
    case single-other
    then show ?thesis
      unfolding watched-decided-most-recently.simps Ball-def
      apply (clarify)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def image-image o-def)
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)
      apply (subst index-filter[of - - \lambda L. L \in set C])
      by (auto dest: filter-in-list-prop-verifiedD
        simp: W ass tr uminus-lit-swap lits-of-def o-def dest: in-diffD)
   next
    case other
    then show ?thesis
      unfolding watched-decided-most-recently.simps
      apply clarify
      apply (subst index-uminus-index-map-uminus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)[1]
      apply (subst index-uninus-index-map-uninus,
        simp add: index-uminus-index-map-uminus lits-of-def o-def)[1]
```

```
apply (subst index-filter[of - - \lambda L. L \in set C])
       by (auto dest: filter-in-list-prop-verifiedD
          simp: index-uminus-index-map-uminus lits-of-def o-def uminus-lit-swap
           W \ ass \ tr)
   qed
qed
lemma wf-watch-nat: no-dup (raw-trail S) \implies wf-twl-cls (trail S) (watch-nat S C)
  using wf-watch-witness[of S C] watch-nat-def by metis
definition
  rewatch-nat::
  'v\ literal \Rightarrow 'v\ twl\text{-}state \Rightarrow 'v\ twl\text{-}clause \Rightarrow 'v\ twl\text{-}clause
where
  rewatch-nat\ L\ S\ C =
  (if - L \in set (watched C) then
      case filter (\lambda L', L' \notin set \ (watched \ C) \land - L' \notin insert \ L \ (lits-of-l \ (trail \ S)))
        (unwatched C) of
        [] \Rightarrow C
     \mid \ddot{L}' \# - \Rightarrow
        TWL-Clause (L' \# remove1 (-L) (watched C)) (-L \# remove1 L' (unwatched C))
    else
      C)
lemma clause-rewatch-nat:
  fixes UW :: 'v literal list and
   S :: 'v \ twl-state and
   L :: 'v \ literal \ \mathbf{and} \ C :: 'v \ twl\text{-}clause
  shows mset (raw-clause (rewatch-nat L S C)) = mset (raw-clause C)
  using List.set-remove1-subset[of -L watched C]
  apply (cases C)
  by (auto simp: raw-clause-def rewatch-nat-def ac-simps multiset-eq-iff
   split: list.split
   dest: filter-in-list-prop-verifiedD)
lemma filter-sorted-list-of-multiset-Nil:
  [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset\ M.\ p\ x] = [] \longleftrightarrow (\forall x \in \#\ M.\ \neg\ p\ x)
 by auto (metis empty-iff filter-set list.set(1) member-filter set-sorted-list-of-multiset)
lemma filter-sorted-list-of-multiset-ConsD:
  [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset M. p x] = x \# xs \Longrightarrow p x
  by (metis filter-set insert-iff list.set(2) member-filter)
lemma mset-minus-single-eq-mempty:
  a - \{\#b\#\} = \{\#\} \longleftrightarrow a = \{\#b\#\} \lor a = \{\#\}\}
  \mathbf{by}\ (\mathit{metis}\ \mathit{Multiset}. \mathit{diff-cancel}\ \mathit{add.right-neutral}\ \mathit{diff-single-eq-union}
   diff-single-trivial zero-diff)
lemma size-mset-le-2-cases:
  assumes size W < 2
  shows W = \{\#\} \lor (\exists a. \ W = \{\#a\#\}) \lor (\exists a \ b. \ W = \{\#a,b\#\})
  by (metis One-nat-def Suc-1 Suc-eq-plus1-left assms linorder-not-less nat-less-le
   not-less-eq-eq le-iff-add size-1-singleton-mset
   size-eq-0-iff-empty size-mset-2)
```

```
\mathbf{lemma}\ \mathit{filter-sorted-list-of-multiset-eqD}\colon
 assumes [x \leftarrow sorted\text{-}list\text{-}of\text{-}multiset A. p x] = x \# xs (is ?comp = -)
 shows x \in \# A
proof -
 have x \in set ?comp
   using assms by simp
 then have x \in set (sorted-list-of-multiset A)
   by simp
 then show x \in \# A
   by simp
qed
lemma clause-rewatch-witness':
 assumes
   wf: wf-twl-cls (trail S) C and
   n-d: no-dup (raw-trail S) and
   undef: undefined-lit (trail S) (lit-of L)
 shows wf-twl-cls (L \# trail S) (rewatch-nat (lit-of L) S C)
proof (cases - lit - of L \in set (watched C))
 case False
 then show ?thesis
   apply (cases C)
   using wf n-d undef unfolding rewatch-nat-def
   by (auto simp: uminus-lit-swap Marked-Propagated-in-iff-in-lits-of-l comp-def)
next
 case falsified: True
 let ?unwatched-nonfalsified =
   [L' \leftarrow unwatched\ C.\ L' \notin set\ (watched\ C) \land -L' \notin insert\ (lit-of\ L)\ (lits-of-l\ (trail\ S))]
 obtain W \ UW where C: \ C = TWL\text{-}Clause \ W \ UW
   by (cases C)
 show ?thesis
 proof (cases ?unwatched-nonfalsified)
   case Nil
   show ?thesis
     using falsified Nil
     apply (simp only: wf-twl-cls.simps if-True list.cases C rewatch-nat-def)
     apply (intro\ conjI)
     proof goal-cases
      case 1
      then show ?case using wf C by simp
     next
      case 2
      then show ?case using wf C by simp
     next
      case 3
      then show ?case using wf C by simp
     next
      case 4
      have \bigwedge p l. filter p (unwatched C) \neq [] \vee l \notin set UW \vee \neg p l
        unfolding C by (metis\ (no-types)\ filter-empty-conv\ twl-clause.sel(2))
      then show ?case
        using 4(2) C by auto
```

```
next
     case 5
     then show ?case
       using wf by (fastforce simp add: C comp-def uminus-lit-swap)
   qed
next
 case (Cons\ L'\ Ls)
 show ?thesis
   unfolding rewatch-nat-def
   using falsified Cons
   apply (simp only: wf-twl-cls.simps if-True list.cases C)
   apply (intro\ conjI)
   proof goal-cases
     case 1
     have distinct (watched (TWL-Clause W UW))
       using wf unfolding C by auto
     moreover have L' \notin set \ (remove1 \ (-lit\text{-}of \ L) \ (watched \ (TWL\text{-}Clause \ W \ UW)))
       using 1(2) not-qr0 by (fastforce dest: filter-in-list-prop-verifiedD in-diffD)
     ultimately show ?case
       by (auto simp: distinct-mset-single-add)
   next
     case 2
     have f2: [l \leftarrow unwatched \ (TWL\text{-}Clause \ W \ UW) \ . \ l \notin set \ (watched \ (TWL\text{-}Clause \ W \ UW))
       \land - l \notin insert (lit - of L) (lit s - of - l (trail S))] \neq []
       using 2(2) by simp
     then have \neg set UW \subseteq set W
        using 2 by (auto simp add: filter-empty-conv)
     then show ?case
       using wf C 2(1) by (auto simp: length-remove1)
   next
     case 3
     have W: length W \leq Suc \ 0 \longleftrightarrow length \ W = 0 \lor length \ W = Suc \ 0
     show ?case
       using wf C 3 by (auto simp: length-remove1 W length-list-Suc-0 dest!: subset-singletonD)
   next
     have H: \forall L \in set \ W. - L \in lits \text{-} of \text{-} l \ (trail \ S) \longrightarrow
       (\forall L' \in set\ UW.\ L' \notin set\ W \longrightarrow -L' \in lits\text{-}of\text{-}l\ (trail\ S))
       using wf by (auto simp: C)
     have W: length W \leq 2 and W-UW: length W < 2 \longrightarrow set \ UW \subseteq set \ W
       using wf by (auto simp: C)
     have distinct: distinct W
       using wf by (auto simp: C)
     show ?case
       using 4
       unfolding C watched-decided-most-recently.simps Ball-def twl-clause.sel
       apply (intro allI impI)
       apply (rename-tac \ xW \ xUW)
       apply (case-tac - lit-of L = xW; case-tac xW = xUW; case-tac L' = xW)
              apply (auto simp: uminus-lit-swap)[2]
            apply (force dest: filter-in-list-prop-verifiedD)
           using H distinct apply (fastforce split: if-split-asm)
         using distinct apply (fastforce split: if-split-asm)
         using distinct apply (fastforce split: if-split-asm)
```

```
apply (force dest: filter-in-list-prop-verifiedD)
        using H by (auto simp: uminus-lit-swap)
     next
       case 5
      have H: \forall x. \ x \in set \ W \longrightarrow -x \in lits-of-l \ (trail \ S) \longrightarrow (\forall x. \ x \in set \ UW \longrightarrow x \notin set \ W
        \longrightarrow -x \in lits\text{-}of\text{-}l \ (trail \ S))
        using wf by (auto simp: C)
      show ?case
        unfolding C watched-decided-most-recently.simps Ball-def
        proof (intro allI impI conjI, goal-cases)
          case (1 xW x)
          show ?case
            proof (cases - lit - of L = xW)
              case True
              then show ?thesis
               by (cases \ xW = x) \ (auto \ simp: uminus-lit-swap)
              case False note LxW = this
              have f9: L' \in set \ [l \leftarrow unwatched \ C. \ l \notin set \ (watched \ (TWL-Clause \ W \ UW))
                 \land - l \notin lits\text{-}of\text{-}l \ (L \# trail \ S)]
               using 1(2) 5 C by auto
              moreover then have f11: -xW \in lits-of-l(trail S)
               using 1(3) LxW by (auto simp: uminus-lit-swap)
              moreover then have xW \notin set W
               using f9\ 1(2)\ H by (auto simp: C)
              ultimately have False
               using 1 by auto
              then show ?thesis
               by fast
            qed
        \mathbf{qed}
     \mathbf{qed}
 qed
qed
interpretation twl: abstract-twl watch-nat rewatch-nat raw-learned-clss
 apply unfold-locales
 apply (rule clause-watch-nat; simp add: image-image comp-def)
 apply (rule wf-watch-nat; simp add: image-image comp-def)
 apply (rule clause-rewatch-nat)
 apply (rule clause-rewatch-witness'; simp add: image-image comp-def)
 apply (simp)
 done
interpretation twl2: abstract-twl\ watch-nat\ rewatch-nat\ \lambda-. []
 apply unfold-locales
 apply (rule clause-watch-nat; simp add: image-image comp-def)
 apply (rule wf-watch-nat; simp add: image-image comp-def)
 apply (rule clause-rewatch-nat)
 apply (rule clause-rewatch-witness'; simp add: image-image comp-def)
 apply (simp)
 done
```

25 Invariants for 2 Watched-Literals

 ${\bf theory}\ CDCL-Two-Watched-Literals-Invariant \\ {\bf imports}\ CDCL-Two-Watched-Literals\ DPLL-CDCL-W-Implementation \\ {\bf begin}$

25.1 Interpretation for conflict-driven-clause-learning_W. $cdcl_W$

We define here the 2-WL with the invariant and show the role of the candidates. context abstract-twl

begin

25.1.1 Direct Interpretation

```
lemma mset-map-removeAll-cond:
  mset\ (map\ (\lambda x.\ mset\ (raw-clause\ x))
   (removeAll\text{-}cond\ (\lambda D.\ mset\ (raw\text{-}clause\ D) = mset\ (raw\text{-}clause\ C))\ N))
  = mset (removeAll (mset (raw-clause C)) (map (\lambda x. mset (raw-clause x)) N))
 by (induction \ N) auto
\mathbf{lemma}\ \mathit{mset-raw-init-clss-init-state} \colon
  mset\ (map\ (\lambda x.\ mset\ (raw-clause\ x))\ (raw-init-clss\ (init-state\ (map\ raw-clause\ N))))
  = mset (map (\lambda x. mset (raw-clause x)) N)
 by (metis (no-types, lifting) init-clss-init-state map-eq-conv map-map o-def)
interpretation rough-cdcl: state_W
  \lambda C. mset (raw-clause C)
 \lambda L C. TWL-Clause (watched C) (L # unwatched C)
 \lambda L\ C.\ TWL\text{-}Clause\ []\ (remove1\ L\ (raw\text{-}clause\ C))
 \lambda C. clauses-of-l (map raw-clause C) op @
 \lambda L C. L \in set C op \# \lambda C. remove1-cond (\lambda D. mset (raw-clause D) = mset (raw-clause C))
  mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x # zs)) xs (ys, []))
  op # remove1
  raw-clause \lambda C. TWL-Clause [] C
  trail \lambda S. hd (raw-trail S)
  raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
  cons-trail tl-trail \lambda C. add-init-cls (raw-clause C) \lambda C. add-learned-cls (raw-clause C)
  \lambda C. remove-cls (raw-clause C)
  update-backtrack-lvl
  update-conflicting \lambda N. init-state (map raw-clause N) restart'
 apply unfold-locales
 apply (case-tac raw-trail S)
 apply (simp-all add: add-init-cls-def add-learned-cls-def clause-rewatch clause-watch
   cons-trail-def remove-cls-def restart'-def tl-trail-def map-tl comp-def
   ac-simps mset-map-removeAll-cond mset-raw-init-clss-init-state)
 apply (auto simp: mset-map image-mset-subseteq-mono[OF restart-learned])
 done
```

interpretation rough-cdcl: conflict-driven-clause-learning $_W$

```
\lambda C. mset (raw-clause C)
 \lambda L C. TWL-Clause (watched C) (L # unwatched C)
 \lambda L\ C.\ TWL\text{-}Clause\ []\ (remove1\ L\ (raw\text{-}clause\ C))
 \lambda C. clauses-of-l (map raw-clause C) op @
  \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove 1-cond \ (\lambda D. \ mset \ (raw-clause \ D) = mset \ (raw-clause \ C))
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x \# zs)) xs (ys, []))
  op # remove1
 \lambda C. raw-clause C \lambda C. TWL-Clause [] C
  trail \ \lambda S. \ hd \ (raw-trail \ S)
  raw-init-clss raw-learned-clss backtrack-lvl raw-conflicting
  cons-trail tl-trail \lambda C. add-init-cls (raw-clause C) \lambda C. add-learned-cls (raw-clause C)
  \lambda C. remove-cls (raw-clause C)
  update-backtrack-lvl
  update-conflicting \lambda N. init-state (map raw-clause N) restart'
  by unfold-locales
declare local.rough-cdcl.mset-ccls-ccls-of-cls[simp del]
           Opaque Type with Invariant
25.1.2
declare rough-cdcl.state-simp[simp del]
definition cons-trail-twl :: ('v, nat, 'v twl-clause) marked-lit \Rightarrow 'v wf-twl \Rightarrow 'v wf-twl
 where
cons-trail-twl L S \equiv twl-of-rough-state (cons-trail L (rough-state-of-twl S))
lemma wf-twl-state-cons-trail:
 assumes
   undef: undefined-lit (trail S) (lit-of L) and
   wf: wf\text{-}twl\text{-}state S
 shows wf-twl-state (cons-trail L S)
  using undef wf wf-rewatch[of S mmset-of-mlit' L] unfolding wf-twl-state-def Ball-def
  by (auto simp: cons-trail-def defined-lit-map comp-def image-def twl.raw-clauses-def)
lemma rough-state-of-twl-cons-trail:
  undefined-lit (trail-twl S) (lit-of L) \Longrightarrow
   rough-state-of-twl (cons-trail-twl L S) = cons-trail L (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-cons-trail
 unfolding cons-trail-twl-def by blast
abbreviation add-init-cls-twl where
add-init-cls-twl CS \equiv twl-of-rough-state (add-init-cls C (rough-state-of-twl S))
lemma wf-twl-add-init-cls: wf-twl-state S \Longrightarrow wf-twl-state (add-init-cls L S)
  unfolding wf-twl-state-def by (auto simp: wf-watch add-init-cls-def comp-def twl.raw-clauses-def
   split: if-split-asm)
lemma rough-state-of-twl-add-init-cls:
  rough-state-of-twl (add-init-cls-twl L S) = add-init-cls L (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-add-init-cls by blast
abbreviation add-learned-cls-twl where
add-learned-cls-twl CS \equiv twl-of-rough-state (add-learned-cls C (rough-state-of-twl S))
```

```
lemma wf-twl-add-learned-cls: wf-twl-state S \Longrightarrow wf-twl-state (add-learned-cls L(S))
  unfolding wf-twl-state-def by (auto simp: wf-watch add-learned-cls-def twl.raw-clauses-def
   split: if-split-asm)
lemma rough-state-of-twl-add-learned-cls:
  rough-state-of-twl (add-learned-cls-twl L S) = add-learned-cls L (rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-add-learned-cls by blast
abbreviation remove-cls-twl where
remove\text{-}cls\text{-}twl\ C\ S \equiv twl\text{-}of\text{-}rough\text{-}state\ (remove\text{-}cls\ C\ (rough\text{-}state\text{-}of\text{-}twl\ S))
lemma set-removeAll-condD: x \in set (removeAll-cond f xs) \Longrightarrow x \in set xs
 by (induction xs) (auto split: if-split-asm)
\mathbf{lemma} \ \textit{wf-twl-remove-cls:} \ \textit{wf-twl-state} \ S \Longrightarrow \textit{wf-twl-state} \ (\textit{remove-cls} \ L \ S)
  unfolding wf-twl-state-def by (auto simp: wf-watch remove-cls-def twl.raw-clauses-def comp-def
   split: if-split-asm dest: set-removeAll-condD)
lemma rough-state-of-twl-remove-cls:
  rough-state-of-twl (remove-cls-twl L(S)) = remove-cls L(rough-state-of-twl S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-remove-cls by blast
abbreviation init-state-twl where
init-state-twl N \equiv twl-of-rough-state (init-state N)
\mathbf{lemma} \ \textit{wf-twl-state-wf-twl-state-fold-add-init-cls}:
 assumes wf-twl-state S
 shows wf-twl-state (fold add-init-cls N S)
 using assms apply (induction N arbitrary: S)
  apply (auto simp: wf-twl-state-def)[]
 by (simp add: wf-twl-add-init-cls)
lemma wf-twl-state-epsilon-state[simp]:
  wf-twl-state (TWL-State [] [] (0 None)
 by (auto simp: wf-twl-state-def twl.raw-clauses-def)
lemma wf-twl-init-state: wf-twl-state (init-state N)
  unfolding init-state-def by (auto intro!: wf-twl-state-wf-twl-state-fold-add-init-cls)
lemma rough-state-of-twl-init-state:
 rough-state-of-twl (init-state-twl N) = init-state N
 by (simp add: twl-of-rough-state-inverse wf-twl-init-state)
abbreviation tl-trail-twl where
tl-trail-twl S \equiv twl-of-rough-state (tl-trail (rough-state-of-twl S))
lemma wf-twl-state-tl-trail: wf-twl-state S \Longrightarrow wf-twl-state (tl-trail S)
 by (auto simp add: twl-of-rough-state-inverse wf-twl-init-state wf-twl-cls-wf-twl-cls-tl
   tl-trail-def wf-twl-state-def distinct-tl map-tl comp-def twl.raw-clauses-def)
lemma rough-state-of-twl-tl-trail:
  rough-state-of-twl (tl-trail-twl S) = tl-trail (rough-state-of-twl S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-tl-trail by blast
```

```
abbreviation update-backtrack-lvl-twl where
update-backtrack-lvl-twl\ k\ S \equiv twl-of-rough-state\ (update-backtrack-lvl\ k\ (rough-state-of-twl\ S))
\mathbf{lemma}\ wf-twl-state-update-backtrack-lvl:
  wf-twl-state <math>S \implies wf-twl-state (update-backtrack-lvl k S)
 unfolding wf-twl-state-def by (auto simp: comp-def twl.raw-clauses-def)
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}update\text{-}backtrack\text{-}lvl:}
  rough-state-of-twl (update-backtrack-lvl-twl k S) = update-backtrack-lvl k
   (rough-state-of-twl\ S)
 using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-update-backtrack-lvl by fast
abbreviation update-conflicting-twl where
update-conflicting-twl k S \equiv twl-of-rough-state (update-conflicting k (rough-state-of-twl S))
lemma wf-twl-state-update-conflicting:
  wf-twl-state <math>S \implies wf-twl-state (update-conflicting <math>k S)
 unfolding wf-twl-state-def by (auto simp: twl.raw-clauses-def comp-def)
\mathbf{lemma}\ rough\text{-}state\text{-}of\text{-}twl\text{-}update\text{-}conflicting\text{:}
  rough-state-of-twl (update-conflicting-twl k S) = update-conflicting k
    (rough-state-of-twl\ S)
  using rough-state-of-twl twl-of-rough-state-inverse wf-twl-state-update-conflicting by fast
abbreviation raw-clauses-twl where
raw-clauses-twl S \equiv twl.raw-clauses (rough-state-of-twl S)
abbreviation restart-twl where
restart-twl S \equiv twl-of-rough-state (restart' (rough-state-of-twl S))
lemma mset-union-mset-setD:
 mset\ A\subseteq\#\ mset\ B\Longrightarrow set\ A\subseteq set\ B
 by auto
lemma wf-wf-restart': wf-twl-state S \implies wf-twl-state (restart' S)
  unfolding restart'-def wf-twl-state-def apply standard
  apply clarify
  apply (rename-tac \ x)
  apply (subgoal-tac wf-twl-cls (trail S) x)
   apply (case-tac \ x)
  using restart-learned by (auto simp: twl.raw-clauses-def comp-def dest: mset-union-mset-setD)
lemma rough-state-of-twl-restart-twl:
  rough-state-of-twl (restart-twl S) = restart' (rough-state-of-twl S)
 by (simp add: twl-of-rough-state-inverse wf-wf-restart')
\mathbf{sublocale}\ conflict\text{-}driven\text{-}clause\text{-}learning_W
 \lambda C. mset (raw-clause C)
 \lambda L C. TWL-Clause (watched C) (L # unwatched C)
 \lambda L \ C. \ TWL-Clause [] (remove1 L (raw-clause C))
 \lambda C. clauses-of-l (map raw-clause C) op @
 \lambda L \ C. \ L \in set \ C \ op \ \# \ \lambda C. \ remove1-cond \ (\lambda D. \ mset \ (raw-clause \ D) = mset \ (raw-clause \ C))
 mset \lambda xs ys. case-prod append (fold (\lambda x (ys, zs). (remove1 x ys, x # zs)) xs (ys, []))
  op # remove1
```

```
\lambda C. raw-clause C \lambda C. TWL-Clause [] C
  trail-twl \lambda S. hd (raw-trail-twl S)
  raw-init-clss-twl
  raw-learned-clss-twl
  backtrack-lvl-twl
  raw-conflicting-twl
  cons-trail-twl
  tl-trail-twl
  \lambda C. \ add\text{-}init\text{-}cls\text{-}twl \ (raw\text{-}clause \ C)
  \lambda C. \ add\text{-}learned\text{-}cls\text{-}twl \ (raw\text{-}clause \ C)
  \lambda C. remove-cls-twl (raw-clause C)
  update-backtrack-lvl-twl
  update	ext{-}conflicting	ext{-}twl
  \lambda N. init\text{-state-twl} \ (map \ raw\text{-clause} \ N)
  restart-twl
  apply unfold-locales
           using rough-cdcl.hd-raw-trail apply blast
        apply (simp-all add: rough-state-of-twl-cons-trail rough-state-of-twl-tl-trail
           rough-state-of\text{-}twl-add\text{-}init\text{-}cls\ rough-state-of\text{-}twl-add\text{-}learned\text{-}cls
           rough-state-of-twl-remove-cls\ rough-state-of-twl-update-backtrack-lvl
           rough-state-of-twl-update-conflicting)[7]
       \mathbf{using} \ rough\text{-}cdcl.init\text{-}clss\text{-}cons\text{-}trail \ rough\text{-}cdcl.init\text{-}clss\text{-}tl\text{-}trail
       rough-cdcl.init-clss-add-init-cls\ rough-cdcl.init-clss-remove-cls
       rough\text{-}cdcl.init\text{-}clss\text{-}add\text{-}learned\text{-}cls
       rough-cdcl.init-clss-update-backtrack-lvl
       rough-cdcl.init-clss-update-conflicting
      apply (auto simp add: rough-state-of-twl-cons-trail rough-state-of-twl-tl-trail
         rough-state-of-twl-add-init-cls rough-state-of-twl-add-learned-cls
         rough-state-of-twl-remove-cls rough-state-of-twl-update-backtrack-lvl
         rough-state-of-twl-update-conflicting comp-def)[7]
       {f using}\ rough\text{-}cdcl.learned\text{-}clss\text{-}cons\text{-}trail\ rough\text{-}cdcl.learned\text{-}clss\text{-}tl\text{-}trail
       rough-cdcl.learned-clss-add-init-cls\ rough-cdcl.learned-clss-remove-cls
       rough-cdcl.learned-clss-add-learned-cls
       rough-cdcl. learned-clss-update-backtrack-lvl\\
       rough-cdcl.learned-clss-update-conflicting
      apply (auto simp add: rough-state-of-twl-cons-trail rough-state-of-twl-tl-trail
         rough-state-of-twl-add-init-cls rough-state-of-twl-add-learned-cls
         rough-state-of\text{-}twl\text{-}remove\text{-}cls\ rough-state-of\text{-}twl\text{-}update\text{-}backtrack\text{-}lvl
         rough-state-of-twl-update-conflicting comp-def)[7]
      apply (auto simp add: rough-state-of-twl-cons-trail rough-state-of-twl-tl-trail
        rough-state-of-twl-add-init-cls rough-state-of-twl-add-learned-cls
        rough-state-of-twl-remove-cls\ rough-state-of-twl-update-backtrack-lvl
        rough-state-of-twl-update-conflicting comp-def)[14]
   using init-clss-init-state apply (auto simp: rough-state-of-twl-init-state)[5]
  using rough-cdcl.init-clss-restart-state rough-cdcl.learned-clss-restart-state
  apply (auto simp: rough-state-of-twl-restart-twl)[5]
  done
declare local.rough-cdcl.mset-ccls-ccls-of-cls[simp del]
abbreviation state-eq-twl (infix \sim TWL~51) where
state-eq-twl\ S\ S'\equiv rough-cdcl.state-eq\ (rough-state-of-twl\ S)\ (rough-state-of-twl\ S')
notation state-eq (infix \sim 51)
declare state-simp[simp \ del]
```

To avoid ambiguities:

```
no-notation state-eq-twl (infix \sim 51)
inductive propagate-twl :: 'v wf-twl \Rightarrow 'v wf-twl \Rightarrow bool where
propagate-twl-rule: (L, C) \in candidates-propagate-twl S \Longrightarrow
  S' \sim cons-trail-twl (Propagated L C) S \Longrightarrow
 raw-conflicting-twl S = None \Longrightarrow
 propagate-twl S S'
inductive-cases propagate-twlE: propagate-twl S T
thm propagateE
lemma distinct-filter-eq-if:
  distinct C \Longrightarrow length (filter (op = L) \ C) = (if \ L \in set \ C \ then \ 1 \ else \ 0)
 by (induction C) auto
lemma distinct-mset-remove1-All:
  distinct-mset C \Longrightarrow remove1-mset L C = removeAll-mset L C
 by (auto simp: multiset-eq-iff distinct-mset-count-less-1)
lemma propagate-twl-iff-propagate:
 assumes inv: cdcl_W-all-struct-inv S
 shows propagate S \ T \longleftrightarrow propagate twl \ S \ T \ (is \ ?P \longleftrightarrow \ ?T)
proof
 assume ?P
 then obtain L E where
   raw-conflicting-twl S = None and
   CL-Clauses: E \in set (twl.raw-clauses S) and
   LE: L \in \# mset (raw-clause E) and
   tr-CNot: trail-twl S \models as CNot (remove1-mset L (mset (raw-clause E))) and
   undef-lot[simp]: undefined-lit (trail-twl S) L and
    T \sim cons-trail-twl (Propagated L E) S
    by (blast elim: propagateE)
  have distinct (raw-clause\ E)
   using inv CL-Clauses unfolding cdcl<sub>W</sub>-all-struct-inv-def distinct-mset-set-def
   distinct\text{-}cdcl_W\text{-}state\text{-}def\ raw\text{-}clauses\text{-}def\ \mathbf{by}\ auto
  then have X: remove1-mset L (mset (raw-clause E)) = mset-set (set (raw-clause E) - \{L\})
   by (auto simp: multiset-eq-iff raw-clause-def count-mset distinct-filter-eq-if)
 have (L, E) \in candidates-propagate-twl S
   {\bf apply} \ (\textit{rule wf-candidates-propagate-complete})
        using rough-state-of-twl apply auto[]
       using CL-Clauses unfolding raw-clauses-def twl.raw-clauses-def
       apply auto
      using LE apply simp
     using tr-CNot X apply simp
    using undef-lot apply blast
    done
 show ?T
   apply (rule propagate-twl-rule)
      apply (rule \langle (L, E) \in candidates\text{-}propagate\text{-}twl S \rangle)
     using \langle T \sim cons\text{-}trail\text{-}twl \ (Propagated \ L \ E) \ S \rangle
     apply (auto simp: \langle raw\text{-}conflicting\text{-}twl \ S = None \rangle \ twl.state\text{-}eq\text{-}def)
   done
next
  assume ?T
 then obtain L C where
```

```
LC: (L, C) \in candidates-propagate-twl S and
   T: T \sim cons-trail-twl (Propagated L C) S and
   confl: raw-conflicting-twl\ S = None
   by (auto elim: propagate-twlE)
   C'S: C \in set (raw-clauses-twl S) and
   L: set (watched C) - uminus 'lits-of-l (trail-twl S) = \{L\} and
   undef: undefined-lit (trail-twl S) L
   using LC unfolding candidates-propagate-def raw-clauses-def by auto
  have dist: distinct (raw-clause C)
   using inv C'S unfolding cdcl_W-all-struct-inv-def distinct-cdcl_W-state-def
    distinct-mset-set-def twl.raw-clauses-def by fastforce
  then have C-L-L: mset-set (set (raw-clause C) - \{L\}) = mset (raw-clause C) - \{\#L\#\}
   by (metis distinct-mset-distinct distinct-mset-minus distinct-mset-set-mset-ident mset-remove1
     set-mset-mset set-remove1-eq)
 show ?P
   apply (rule propagate-rule[of S \ C \ L])
       using confl apply auto[]
      using C'S unfolding twl.raw-clauses-def apply (simp add: raw-clauses-def)
      using L unfolding candidates-propagate-def apply (auto simp: raw-clause-def)
     using wf-candidates-propagate-sound[OF - LC] rough-state-of-twl dist
     apply (simp add: distinct-mset-remove1-All)
    using undef apply simp
   using T undef by (smt backtrack-lvl-cons-trail confl init-clss-cons-trail
     learned-clss-cons-trail marked-lit.sel(2) raw-conflicting-cons-trail state-eq-def
     trail-cons-trail twl2.mmset-of-mlit.simps(1) twl2.mset-cls-cls-of-ccls)
qed
no-notation twl.state-eq-twl (infix \sim TWL 51)
inductive conflict-twl where
conflict-twl-rule:
C \in candidates\text{-}conflict\text{-}twl\ S \Longrightarrow
  S' \sim update\text{-conflicting-twl} (Some (raw-clause C)) S \Longrightarrow
 raw-conflicting-twl S = None \Longrightarrow
  conflict-twl S S'
inductive-cases conflict-twlE: conflict-twl S T
lemma conflict-twl-iff-conflict:
 shows conflict S \ T \longleftrightarrow conflict\text{-twl} \ S \ T \ (is \ ?C \longleftrightarrow ?T)
proof
 assume ?C
  then obtain D where
   S: raw\text{-}conflicting\text{-}twl\ S = None \ \mathbf{and}
   D: D \in set (raw-clauses S) and
   MD: trail-twl\ S \models as\ CNot\ (mset\ (raw-clause\ D)) and
   T: T \sim update\text{-}conflicting\text{-}twl (Some (raw-clause D)) S
   by (elim conflictE)
 have D \in candidates\text{-}conflict\text{-}twl\ S
   apply (rule wf-candidates-conflict-complete)
      apply simp
     using D apply (auto simp: raw-clauses-def twl.raw-clauses-def)[]
```

```
using MD S by auto
  moreover have T \sim twl-of-rough-state (update-conflicting (Some (raw-clause D))
  (rough-state-of-twl\ S))
   using T unfolding rough-cdcl.state-eq-def state-eq-def by auto
  ultimately show ?T
   using S by (auto intro: conflict-twl-rule)
next
 assume ?T
 then obtain C where
   C: C \in candidates\text{-}conflict\text{-}twl\ S\ and
   T: T \sim update\text{-}conflicting\text{-}twl (Some (raw\text{-}clause C)) S \text{ and}
   confl: raw-conflicting-twl\ S = None
   by (auto elim: conflict-twlE)
 have
   C \in set (raw\text{-}clauses S)
   using C unfolding candidates-conflict-def raw-clauses-def twl.raw-clauses-def by auto
moreover have trail-twl \ S \models as \ CNot \ (mset \ (raw-clause \ C))
   using wf-candidates-conflict-sound [OF - C] by auto
ultimately show ?C apply -
  apply (rule conflict.conflict-rule[of - C])
  using conft T unfolding rough-cdcl.state-eq-def by (auto simp del: map-map)
qed
inductive cdcl_W-twl :: 'v wf-twl \Rightarrow 'v wf-twl \Rightarrow bool for S :: 'v wf-twl where
propagate: propagate-twl S S' \Longrightarrow cdcl_W-twl S S'
conflict: conflict-twl S S' \Longrightarrow cdcl_W-twl S S'
other: cdcl_W-o S S' \Longrightarrow cdcl_W-twl S S'
rf: cdcl_W - rf S S' \Longrightarrow cdcl_W - twl S S'
lemma cdcl_W-twl-iff-cdcl_W:
 assumes cdcl_W-all-struct-inv S
 shows cdcl_W-twl\ S\ T\longleftrightarrow cdcl_W\ S\ T
 by (simp add: assms\ cdcl_W.simps\ cdcl_W-twl.simps\ conflict-twl-iff-conflict
   propagate-twl-iff-propagate del: map-map)
lemma rtranclp-cdcl_W-twl-all-struct-inv-inv:
 assumes cdcl_W-twl^{**} S T and cdcl_W-all-struct-inv S
 shows cdcl_W-all-struct-inv T
 using assms by (induction rule: rtranclp-induct)
  (simp-all\ add:\ cdcl_W\ -twl-iff-cdcl_W\ cdcl_W\ -all\ -struct-inv-inv\ del:\ map-map)
lemma rtranclp-cdcl_W-twl-iff-rtranclp-cdcl_W:
 assumes cdcl_W-all-struct-inv S
 shows cdcl_W-twl^{**} S T \longleftrightarrow cdcl_W^{**} S T (is ?T \longleftrightarrow ?W)
proof
 assume ?W
 then show ?T
   proof (induction rule: rtranclp-induct)
     case base
     then show ?case by simp
   next
     case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
     have cdcl_W-twl T U
       using assms st cdcl rtranclp-cdcl_W-all-struct-inv-inv cdcl_W-twl-iff-cdcl_W
       by blast
```

```
then show ?case using IH by auto
   qed
next
 assume ?T
 then show ?W
   proof (induction rule: rtranclp-induct)
     case base
     then show ?case by simp
   next
     case (step T U) note st = this(1) and cdcl = this(2) and IH = this(3)
     have cdcl_W T U
       \mathbf{using} \ assms \ st \ cdcl \ rtranclp-cdcl_W-twl-all-struct-inv-inv \ cdcl_W-twl-iff-cdcl_W
       by blast
     then show ?case using IH by auto
   qed
\mathbf{qed}
end
end
theory Prop-Superposition
imports Partial-Clausal-Logic ../lib/Herbrand-Interpretation
begin
sledgehammer-params[verbose]
no-notation Herbrand-Interpretation.true-cls (infix \models 50)
notation Herbrand-Interpretation.true-cls (infix \models h 50)
no-notation Herbrand-Interpretation.true-clss (infix \modelss 50)
notation Herbrand-Interpretation.true-clss (infix \models hs 50)
lemma herbrand-interp-iff-partial-interp-cls:
 S \models h \ C \longleftrightarrow \{Pos \ P \mid P. \ P \in S\} \cup \{Neg \ P \mid P. \ P \notin S\} \models C
 unfolding Herbrand-Interpretation.true-cls-def Partial-Clausal-Logic.true-cls-def
 by auto
lemma herbrand-consistent-interp:
  consistent-interp (\{Pos\ P|P.\ P\in S\} \cup \{Neg\ P|P.\ P\notin S\})
 unfolding consistent-interp-def by auto
lemma herbrand-total-over-set:
  total-over-set (\{Pos\ P|P.\ P\in S\} \cup \{Neg\ P|P.\ P\notin S\}) T
 unfolding total-over-set-def by auto
lemma herbrand-total-over-m:
  total-over-m (\{Pos\ P|P.\ P\in S\} \cup \{Neg\ P|P.\ P\notin S\}) T
 unfolding total-over-m-def by (auto simp add: herbrand-total-over-set)
\mathbf{lemma}\ \mathit{herbrand-interp-iff-partial-interp-clss}\colon
  S \models hs \ C \longleftrightarrow \{Pos \ P|P. \ P \in S\} \cup \{Neg \ P|P. \ P \notin S\} \models s \ C
 unfolding true-clss-def Ball-def herbrand-interp-iff-partial-interp-cls
  Partial-Clausal-Logic.true-clss-def by auto
definition clss-lt :: 'a::wellorder clauses \Rightarrow 'a clause \Rightarrow 'a clauses where
clss-lt N C = \{D \in N. D \# \subset \# C\}
```

```
notation (latex output)
 clss-lt (-<^bsup>-<^esup>)
{f locale} \ selection =
  fixes S :: 'a \ clause \Rightarrow 'a \ clause
  assumes
   S-selects-subseteq: \bigwedge C. S C \leq \# C and
   S-selects-neg-lits: \bigwedge C L. L \in \# S C \Longrightarrow is-neg L
{\bf locale}\ ground{\rm -}resolution{\rm -}with{\rm -}selection=
  selection S for S :: ('a :: wellorder) clause \Rightarrow 'a clause
begin
context
 fixes N :: 'a \ clause \ set
begin
We do not create an equivalent of \delta, but we directly defined N_C by inlining the definition.
function
 production :: 'a clause \Rightarrow 'a interp
where
  production C =
   \{A.\ C\in N\land C\neq \{\#\}\land Max\ (set\text{-mset}\ C)=Pos\ A\land count\ C\ (Pos\ A)\leq 1
    \land \neg (\bigcup D \in \{D. \ D \# \subset \# \ C\}. \ production \ D) \models h \ C \land S \ C = \{\#\}\}
termination by (relation \{(D, C). D \# \subset \# C\}) (auto simp: wf-less-multiset)
declare production.simps[simp del]
definition interp :: 'a \ clause \Rightarrow 'a \ interp \ \mathbf{where}
  interp C = (\bigcup D \in \{D. \ D \# \subset \# \ C\}. \ production \ D)
lemma production-unfold:
  production C = \{A. \ C \in N \land C \neq \{\#\} \land Max \ (set\text{-mset} \ C) = Pos \ A \land \ count \ C \ (Pos \ A) \leq 1 \land \neg
interp C \models h \ C \land S \ C = \{\#\}\}
 unfolding interp-def by (rule production.simps)
abbreviation productive A \equiv (production \ A \neq \{\})
abbreviation produces :: 'a clause \Rightarrow 'a \Rightarrow bool where
 produces\ C\ A \equiv production\ C = \{A\}
lemma producesD:
  produces C A \Longrightarrow C \in \mathbb{N} \land C \neq \{\#\} \land Pos A = Max (set-mset C) \land count C (Pos A) \leq 1 \land \neg
interp C \models h \ C \land S \ C = \{\#\}
  unfolding production-unfold by auto
lemma produces C A \Longrightarrow Pos A \in \# C
 by (simp add: Max-in-lits producesD)
lemma interp'-def-in-set:
  interp C = (\bigcup D \in \{D \in N. D \# \subset \# C\}. production D)
  unfolding interp-def apply auto
  unfolding production-unfold apply auto
  done
```

```
\mathbf{lemma}\ \mathit{production-iff-produces}\colon
 produces\ D\ A\longleftrightarrow A\in production\ D
 unfolding production-unfold by auto
definition Interp :: 'a clause \Rightarrow 'a interp where
  Interp C = interp \ C \cup production \ C
lemma
 assumes produces CP
 shows Interp C \models h C
 unfolding Interp-def assms using producesD[OF assms]
 by (metis Max-in-lits Un-insert-right insertI1 pos-literal-in-imp-true-cls)
definition INTERP :: 'a interp where
INTERP = (\bigcup D \in \mathbb{N}. \ production \ D)
lemma interp-subseteq-Interp[simp]: interp C \subseteq Interp C
 unfolding Interp-def by simp
lemma Interp-as-UNION: Interp C = (\bigcup D \in \{D, D \# \subseteq \# C\}, production D)
  unfolding Interp-def interp-def le-multiset-def by fast
lemma productive-not-empty: productive C \Longrightarrow C \neq \{\#\}
  unfolding production-unfold by auto
lemma productive-imp-produces-Max-literal: productive C \Longrightarrow produces\ C\ (atm-of\ (Max\ (set-mset\ C)))
  unfolding production-unfold by (auto simp del: atm-of-Max-lit)
lemma productive-imp-produces-Max-atom: productive C \Longrightarrow produces \ C \ (Max \ (atms-of \ C))
 unfolding atms-of-def Max-atm-of-set-mset-commute[OF productive-not-empty]
 by (rule productive-imp-produces-Max-literal)
lemma produces-imp-Max-literal: produces C A \Longrightarrow A = atm\text{-}of (Max (set\text{-}mset C))
 by (metis Max-singleton insert-not-empty productive-imp-produces-Max-literal)
lemma produces-imp-Max-atom: produces C A \Longrightarrow A = Max \ (atms-of \ C)
 by (metis Max-singleton insert-not-empty productive-imp-produces-Max-atom)
lemma produces-imp-Pos-in-lits: produces C A \Longrightarrow Pos A \in \# C
 by (auto intro: Max-in-lits dest!: producesD)
lemma productive-in-N: productive C \Longrightarrow C \in N
  unfolding production-unfold by auto
lemma produces-imp-atms-leq: produces C A \Longrightarrow B \in atms-of C \Longrightarrow B \leq A
 by (metis Max-ge finite-atms-of insert-not-empty productive-imp-produces-Max-atom
   singleton-inject)
lemma produces-imp-neg-notin-lits: produces C A \Longrightarrow \neg Neg A \in \# C
 by (rule pos-Max-imp-neg-notin) (auto dest: producesD)
lemma less-eq-imp-interp-subseteq-interp: C \# \subseteq \# D \Longrightarrow interp C \subseteq interp D
  unfolding interp-def by auto (metis multiset-order.order.strict-trans2)
```

```
lemma less-eq-imp-interp-subseteq-Interp: C \# \subseteq \# D \Longrightarrow interp C \subseteq Interp D
  unfolding Interp-def using less-eq-imp-interp-subseteq-interp by blast
lemma less-imp-production-subseteq-interp: C \# \subset \# D \Longrightarrow production C \subseteq interp D
  unfolding interp-def by fast
lemma less-eq-imp-production-subseteq-Interp: C \# \subseteq \# D \implies production C \subseteq Interp D
  unfolding Interp-def using less-imp-production-subseteq-interp
 by (metis multiset-order.le-imp-less-or-eq le-supI1 sup-ge2)
lemma less-imp-Interp-subseteq-interp: C \# \subset \# D \Longrightarrow Interp C \subseteq interp D
  unfolding Interp-def
 by (auto simp: less-eq-imp-interp-subseteq-interp less-imp-production-subseteq-interp)
lemma less-eq-imp-Interp-subseteq-Interp: C \# \subseteq \# D \Longrightarrow Interp C \subseteq Interp D
 using less-imp-Interp-subseteq-interp
 unfolding Interp-def by (metis multiset-order.le-imp-less-or-eq le-supI2 subset-refl sup-commute)
lemma false-Interp-to-true-interp-imp-less-multiset: A \notin Interp\ C \Longrightarrow A \in interp\ D \Longrightarrow C \# \subset \#
  using less-eq-imp-interp-subseteq-Interp multiset-linorder.not-less by blast
lemma false-interp-to-true-interp-imp-less-multiset: A \notin interp \ C \Longrightarrow A \in interp \ D \Longrightarrow C \# \subset \# D
 using less-eq-imp-interp-subseteq-interp multiset-linorder.not-less by blast
lemma false-Interp-to-true-Interp-imp-less-multiset: A \notin Interp\ C \Longrightarrow A \in Interp\ D \Longrightarrow C \# \subset \#
  using less-eq-imp-Interp-subseteq-Interp multiset-linorder.not-less by blast
lemma false-interp-to-true-Interp-imp-le-multiset: A \notin interp \ C \Longrightarrow A \in Interp \ D \Longrightarrow C \# \subseteq \# \ D
 using less-imp-Interp-subseteq-interp multiset-linorder.not-less by blast
lemma interp-subseteq-INTERP: interp \ C \subseteq INTERP
 unfolding interp-def INTERP-def by (auto simp: production-unfold)
lemma production-subseteq-INTERP: production C \subseteq INTERP
  unfolding INTERP-def using production-unfold by blast
lemma Interp-subseteq-INTERP: Interp C \subseteq INTERP
  unfolding Interp-def by (auto intro!: interp-subseteq-INTERP production-subseteq-INTERP)
This lemma corresponds to theorem 2.7.6 page 66 of CW.
lemma produces-imp-in-interp:
 assumes a-in-c: Neg A \in \# C and d: produces D A
 shows A \in interp \ C
proof -
  from d have Max (set\text{-}mset D) = Pos A
   using production-unfold by blast
 hence D \# \subset \# \{ \#Neg A \# \}
   by (auto intro: Max-pos-neg-less-multiset)
  moreover have \{\#Neg\ A\#\}\ \#\subseteq\#\ C
   by (rule less-eq-imp-le-multiset) (rule mset-le-single[OF a-in-c])
  ultimately show ?thesis
   using d by (blast dest: less-eq-imp-interp-subseteq-interp less-imp-production-subseteq-interp)
qed
```

```
lemma neg-notin-Interp-not-produce: Neg A \in \# C \Longrightarrow A \notin Interp D \Longrightarrow C \# \subseteq \# D \Longrightarrow \neg produces
D^{\prime\prime} A
 by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-Interp)
lemma in-production-imp-produces: A \in production \ C \Longrightarrow produces \ C \ A
 by (metis insert-absorb productive-imp-produces-Max-atom singleton-insert-inj-eq')
lemma not-produces-imp-notin-production: \neg produces C A \Longrightarrow A \notin production C
 by (metis in-production-imp-produces)
lemma not-produces-imp-notin-interp: (\bigwedge D. \neg produces D A) \Longrightarrow A \notin interp C
  unfolding interp-def by (fast intro!: in-production-imp-produces)
The results below corresponds to Lemma 3.4.
Nitpicking: If D = D' and D is productive, I^D \subseteq I_{D'} does not hold.
{f lemma} true-Interp-imp-general:
 assumes
   c\text{-}le\text{-}d: C \# \subseteq \# D and
   d-lt-d': D \# \subset \# D' and
   c-at-d: Interp D \models h \ C and
   subs:\ interp\ D'\subseteq (\bigcup\ C\in\ CC.\ production\ C)
 shows (\bigcup C \in CC. production C) \models h \ C
proof (cases \exists A. Pos A \in \# C \land A \in Interp D)
 case True
  then obtain A where a-in-c: Pos A \in \# C and a-at-d: A \in Interp D
   by blast
 from a-at-d have A \in interp D'
   using d-lt-d' less-imp-Interp-subseteq-interp by blast
 thus ?thesis
   using subs a-in-c by (blast dest: contra-subsetD)
next
  case False
  then obtain A where a-in-c: Neg A \in \# C and A \notin Interp D
   using c-at-d unfolding true-cls-def by blast
 hence \bigwedge D''. \neg produces D'' A
   using c-le-d neg-notin-Interp-not-produce by simp
  thus ?thesis
   using a-in-c subs not-produces-imp-notin-production by auto
qed
lemma true-Interp-imp-interp: C \# \subseteq \# D \implies D \# \subset \# D' \implies Interp D \models h C \implies interp D' \models h C
 using interp-def true-Interp-imp-general by simp
lemma true-Interp-imp-Interp: C \#\subseteq \# D \implies D \#\subset \# D' \implies Interp D \models h C \implies Interp D' \models h C
  using Interp-as-UNION interp-subseteq-Interp true-Interp-imp-general by simp
lemma true-Interp-imp-INTERP: C \# \subseteq \# D \Longrightarrow Interp D \models h C \Longrightarrow INTERP \models h C
  \mathbf{using}\ INTERP\text{-}def\ interp\text{-}subseteq\text{-}INTERP
   true-Interp-imp-general[OF - less-multiset-right-total]
 by simp
lemma true-interp-imp-general:
 assumes
   c\text{-}le\text{-}d: C \# \subseteq \# D and
   d-lt-d': D \# \subset \# D' and
```

```
c-at-d: interp D \models h C and
   subs: interp D' \subseteq (\bigcup C \in CC. production C)
 shows (\bigcup C \in CC. production C) \models h C
proof (cases \exists A. Pos A \in \# C \land A \in interp D)
  case True
 then obtain A where a-in-c: Pos A \in \# C and a-at-d: A \in interp D
   by blast
 from a-at-d have A \in interp D'
   using d-lt-d' less-eq-imp-interp-subseteq-interp[OF multiset-order.less-imp-le] by blast
  thus ?thesis
   using subs a-in-c by (blast dest: contra-subsetD)
next
  case False
 then obtain A where a-in-c: Neg A \in \# C and A \notin interp D
   using c-at-d unfolding true-cls-def by blast
 hence \bigwedge D''. \neg produces D'' A
   using c-le-d by (auto dest: produces-imp-in-interp less-eq-imp-interp-subseteq-interp)
   using a-in-c subs not-produces-imp-notin-production by auto
qed
This lemma corresponds to theorem 2.7.6 page 66 of CW. Here the strict maximality is important
lemma true-interp-imp-interp: C \# \subseteq \# D \implies D \# \subset \# D' \implies interp D \models h C \implies interp D' \models h C
 using interp-def true-interp-imp-general by simp
lemma true-interp-imp-Interp: C \not \models \bot D \implies D \not \models \bot D' \implies D \not \models \bot C \implies D \not \models \bot D' \implies D \not \models \bot D'
 using Interp-as-UNION interp-subseteq-Interp[of D'] true-interp-imp-general by simp
lemma true-interp-imp-INTERP: C \# \subseteq \# D \Longrightarrow interp D \models h C \Longrightarrow INTERP \models h C
  using INTERP-def interp-subseteq-INTERP
    true-interp-imp-general[OF - less-multiset-right-total]
 by simp
lemma productive-imp-false-interp: productive C \Longrightarrow \neg interp C \models h \ C
  unfolding production-unfold by auto
This lemma corresponds to theorem 2.7.6 page 66 of CW. Here the strict maximality is important
\mathbf{lemma}\ \mathit{cls-gt-double-pos-no-production}:
 assumes D: \{\#Pos\ P,\ Pos\ P\#\}\ \#\subset\#\ C
 \mathbf{shows} \neg produces \ C \ P
proof -
 let ?D = \{ \#Pos \ P, \ Pos \ P\# \}
 note D' = D[unfolded\ less-multiset_{HO}]
 consider
   (P) \ count \ C \ (Pos \ P) \ge 2
 | (Q) Q  where Q > Pos P  and Q \in \# C
   using HOL.spec[OF HOL.conjunct2[OF D'], of Pos P] by (auto split: if-split-asm)
  thus ?thesis
   proof cases
     case Q
     have Q \in set\text{-}mset\ C
       using Q(2) by (auto split: if-split-asm)
     then have Max (set\text{-}mset C) > Pos P
       using Q(1) Max-gr-iff by blast
     thus ?thesis
```

```
unfolding production-unfold by auto
   next
    case P
    thus ?thesis
      unfolding production-unfold by auto
   qed
qed
This lemma corresponds to theorem 2.7.6 page 66 of CW.
lemma
 assumes D: C+\{\#Neg\ P\#\}\ \#\subset\#\ D
 shows production D \neq \{P\}
proof -
 note D' = D[unfolded\ less-multiset_{HO}]
 consider
   (P) Neg P \in \# D
 | (Q) Q  where Q > Neg P  and count D Q > count (C + {\#Neg P\#}) Q
   using HOL.spec[OF HOL.conjunct2[OF D'], of Neg P] count-greater-zero-iff by fastforce
 thus ?thesis
   proof cases
    case Q
    have Q \in set\text{-}mset\ D
      using Q(2) gr-implies-not0 by fastforce
    then have Max (set\text{-}mset D) > Neg P
      using Q(1) Max-gr-iff by blast
    hence Max (set-mset D) > Pos P
      using less-trans[of Pos P Neg P Max (set-mset D)] by auto
    thus ?thesis
      unfolding production-unfold by auto
   next
    case P
    hence Max (set-mset D) > Pos P
      by (meson Max-ge finite-set-mset le-less-trans linorder-not-le pos-less-neg)
    thus ?thesis
      unfolding production-unfold by auto
   qed
qed
lemma in-interp-is-produced:
 assumes P \in INTERP
 shows \exists D. D + \{\#Pos P\#\} \in N \land produces (D + \{\#Pos P\#\}) P
 using assms unfolding INTERP-def UN-iff production-iff-produces Ball-def
 by (metis ground-resolution-with-selection.produces-imp-Pos-in-lits insert-DiffM2
   ground-resolution-with-selection-axioms not-produces-imp-notin-production)
end
end
abbreviation MMax\ M \equiv Max\ (set\text{-}mset\ M)
25.2
        We can now define the rules of the calculus
inductive superposition-rules :: 'a clause \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool where
factoring: superposition-rules (C + \#Pos P\#) + \#Pos P\#) B (C + \#Pos P\#)
```

superposition-l: superposition-rules $(C_1 + \{\#Pos\ P\#\})$ $(C_2 + \{\#Neg\ P\#\})$ $(C_1 + C_2)$

```
inductive superposition :: 'a clauses \Rightarrow 'a clauses \Rightarrow bool where
superposition: A \in N \Longrightarrow B \in N \Longrightarrow superposition-rules A \ B \ C
 \implies superposition N (N \cup \{C\})
definition abstract-red :: 'a::wellorder clause \Rightarrow 'a clauses \Rightarrow bool where
abstract-red C N = (clss-lt \ N \ C \models p \ C)
lemma less-multiset[iff]: M < N \longleftrightarrow M \# \subset \# N
  unfolding less-multiset-def by auto
lemma less-eq-multiset[iff]: M \leq N \longleftrightarrow M \# \subseteq \# N
  unfolding less-eq-multiset-def by auto
\mathbf{lemma}\ \mathit{herbrand-true-clss-true-clss-cls-herbrand-true-clss}:
 assumes
   AB: A \models hs B  and
   BC: B \models p C
 shows A \models h C
proof -
  let ?I = \{Pos \ P \mid P. \ P \in A\} \cup \{Neg \ P \mid P. \ P \notin A\}
 have B: ?I \models s B \text{ using } AB
   by (auto simp add: herbrand-interp-iff-partial-interp-clss)
 have IH: \bigwedge I. total-over-set I (atms-of C) \Longrightarrow total-over-m I B \Longrightarrow consistent-interp I
    \implies I \models s B \implies I \models C \text{ using } BC
   by (auto simp add: true-clss-cls-def)
  show ?thesis
   unfolding herbrand-interp-iff-partial-interp-cls
   by (auto intro: IH[of ?I] simp add: herbrand-total-over-set herbrand-total-over-m
     herbrand-consistent-interp B)
qed
lemma abstract-red-subset-mset-abstract-red:
  assumes
    abstr: abstract\text{-}red\ C\ N\ \mathbf{and}
   c-lt-d: C \subseteq \# D
 shows abstract-red D N
proof -
  have \{D \in N. \ D \# \subset \# \ C\} \subseteq \{D' \in N. \ D' \# \subset \# \ D\}
   using c-lt-d less-eq-imp-le-multiset by fastforce
  thus ?thesis
   using abstr unfolding abstract-red-def clss-lt-def
   by (metis (no-types, lifting) c-lt-d subset-mset.diff-add true-clss-cls-mono-r'
     true-clss-cls-subset)
qed
lemma true-clss-cls-extended:
  assumes
    A \models p B  and
   tot: total-over-m I(A) and
   cons: consistent-interp I and
   I-A: I \models s A
  shows I \models B
```

```
proof -
   let ?I = I \cup \{Pos \ P | P. \ P \in atms-of \ B \land P \notin atms-of-s \ I\}
   have consistent-interp ?I
       using cons unfolding consistent-interp-def atms-of-s-def atms-of-def
           apply (auto 1 5 simp add: image-iff)
       by (metis\ atm\text{-}of\text{-}uminus\ literal.sel(1))
    moreover have total-over-m ?I (A \cup \{B\})
       proof -
           obtain aa :: 'a \ set \Rightarrow 'a \ literal \ set \Rightarrow 'a \ where
               f2: \forall x0 \ x1. \ (\exists \ v2. \ v2 \in x0 \ \land \ Pos \ v2 \notin x1 \ \land \ Neg \ v2 \notin x1)
                     \longleftrightarrow (aa \ x0 \ x1 \in x0 \ \land \ Pos \ (aa \ x0 \ x1) \notin x1 \ \land \ Neg \ (aa \ x0 \ x1) \notin x1)
               by moura
           have \forall a. a \notin atms\text{-}of\text{-}ms \ A \lor Pos \ a \in I \lor Neg \ a \in I
               using tot by (simp add: total-over-m-def total-over-set-def)
           hence aa (atms\text{-}of\text{-}ms\ A\cup atms\text{-}of\text{-}ms\ \{B\})\ (I\cup \{Pos\ a\mid a.\ a\in atms\text{-}of\ B\wedge\ a\notin atms\text{-}of\text{-}s\ I\})
               \notin atms-of-ms \ A \cup atms-of-ms \ \{B\} \lor Pos \ (aa \ (atms-of-ms \ A \cup atms-of-ms \ \{B\})
                   (I \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\})) \in I
                      \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\}
                   \vee Neg (aa (atms-of-ms A \cup atms-of-ms \{B\})
                       (I \cup \{Pos \ a \mid a. \ a \in atms\text{-}of \ B \land a \notin atms\text{-}of\text{-}s \ I\})) \in I
                       \cup \{Pos \ a \mid a. \ a \in atms-of \ B \land a \notin atms-of-s \ I\}
         hence total-over-set (I \cup \{Pos \ a \mid a.\ a \in atms-of \ B \land a \notin atms-of-s \ I\}) (atms-of-ms A \cup atms-of-ms
\{B\})
               using f2 by (meson total-over-set-def)
           thus ?thesis
               by (simp add: total-over-m-def)
       qed
    moreover have ?I \models s A
       using I-A by auto
    ultimately have ?I \models B
       using \langle A \models pB \rangle unfolding true-clss-cls-def by auto
    thus ?thesis
oops
lemma
   assumes
        CP: \neg clss-lt \ N \ (\{\#C\#\} + \{\#E\#\}) \models p \ \{\#C\#\} + \{\#Neg \ P\#\} \ and
         \textit{clss-lt N} \ (\{\#C\#\} \ + \ \{\#E\#\}) \ \models p \ \{\#E\#\} \ + \ \{\#Pos \ P\#\} \ \lor \ \textit{clss-lt N} \ (\{\#C\#\} \ + \ \{\#E\#\}) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ + \ \{\#E\#\} \ ) \ \models p \ \{\#E\#\} \ ) \ \} \ 
\{\#C\#\} + \{\#Neg\ P\#\}
    shows clss-lt N (\{\#C\#\} + \{\#E\#\}) \models p \{\#E\#\} + \{\#Pos P\#\}
oops
locale\ ground-ordered-resolution-with-redundancy =
    ground-resolution-with-selection +
    fixes redundant :: 'a::wellorder clause \Rightarrow 'a clauses \Rightarrow bool
   assumes
       redundant-iff-abstract: redundant \ A \ N \longleftrightarrow abstract-red A \ N
begin
definition saturated :: 'a clauses \Rightarrow bool where
saturated\ N \longleftrightarrow (\forall\ A\ B\ C.\ A \in N \longrightarrow B \in N \longrightarrow \neg redundant\ A\ N \longrightarrow \neg redundant\ B\ N
    \longrightarrow superposition-rules A \ B \ C \longrightarrow redundant \ C \ N \lor C \in N)
lemma
```

assumes

```
saturated: saturated N and
   finite: finite N and
   empty: \{\#\} \notin N
 shows INTERP\ N \models hs\ N
proof (rule ccontr)
 let ?N_{\mathcal{I}} = INTERP N
 assume ¬ ?thesis
 hence not-empty: \{E \in \mathbb{N}. \neg ?\mathbb{N}_{\mathcal{I}} \models h E\} \neq \{\}
   unfolding true-clss-def Ball-def by auto
 \mathbf{def}\ D \equiv Min\ \{E \in \mathbb{N}.\ \neg ? N_{\mathcal{I}} \models h\ E\}
 have [simp]: D \in N
   unfolding D-def
   by (metis (mono-tags, lifting) Min-in not-empty finite mem-Collect-eq rev-finite-subset subset I)
 have not-d-interp: \neg ?N_{\mathcal{I}} \models h D
   unfolding D-def
   by (metis (mono-tags, lifting) Min-in finite mem-Collect-eq not-empty rev-finite-subset subset I)
 have cls-not-D: \bigwedge E. E \in N \Longrightarrow E \neq D \Longrightarrow \neg ?N_{\mathcal{I}} \models h E \Longrightarrow D \leq E
   using finite D-def by (auto simp del: less-eq-multiset)
 obtain CL where D: D = C + \{\#L\#\} and LSD: L \in \#SD \lor (SD = \{\#\} \land Max (set\text{-mset } D)
   proof (cases\ S\ D = \{\#\})
     case False
     then obtain L where L \in \#SD
       using Max-in-lits by blast
     moreover
       hence L \in \# D
         using S-selects-subseteq[of D] by auto
       hence D = (D - \{\#L\#\}) + \{\#L\#\}
     ultimately show ?thesis using that by blast
   \mathbf{next}
     let ?L = MMax D
     case True
     moreover
       have ?L \in \# D
         by (metis (no-types, lifting) Max-in-lits \langle D \in N \rangle empty)
       hence D = (D - \{\#?L\#\}) + \{\#?L\#\}
         by auto
     ultimately show ?thesis using that by blast
   qed
 have red: \neg redundant D N
   proof (rule ccontr)
     assume red[simplified]: \sim \sim redundant\ D\ N
     have \forall E < D. E \in N \longrightarrow ?N_{\mathcal{I}} \models h E
       using cls-not-D not-le by fastforce
     hence ?N_{\mathcal{I}} \models hs \ clss\text{-}lt \ N \ D
       unfolding clss-lt-def true-clss-def Ball-def by blast
     thus False
       using red not-d-interp unfolding abstract-red-def redundant-iff-abstract
       using herbrand-true-clss-true-clss-cls-herbrand-true-clss by fast
   qed
 consider
   (L) P where L = Pos \ P and S \ D = \{\#\} and Max \ (set\text{-}mset \ D) = Pos \ P
  | (Lneg) P  where L = Neg P
```

```
using LSD S-selects-neg-lits[of L D] by (cases L) auto
thus False
 proof cases
   case L note P = this(1) and S = this(2) and max = this(3)
   have count D L > 1
    proof (rule ccontr)
      assume ~ ?thesis
      hence count: count D L = 1
        unfolding D by (auto simp: not-in-iff)
      have \neg ?N_{\mathcal{I}} \models h D
       using not-d-interp true-interp-imp-INTERP ground-resolution-with-selection-axioms
         by blast
      hence produces \ N \ D \ P
       using not-empty empty finite \langle D \in N \rangle count L
         true-interp-imp-INTERP unfolding production-iff-produces unfolding production-unfold
       by (auto simp add: max not-empty)
      hence INTERP\ N \models h\ D
       unfolding D
       by (metis pos-literal-in-imp-true-cls produces-imp-Pos-in-lits
         production-subseteq-INTERP singletonI subsetCE)
      thus False
        using not-d-interp by blast
    qed
   then have Pos P \in \# C
    by (simp \ add: P \ D)
   then obtain C' where C':D = C' + \{\#Pos \ P\#\} + \{\#Pos \ P\#\}
    unfolding D by (metis (full-types) P insert-DiffM2)
   have sup: superposition-rules D D (D - \{\#L\#\})
    \mathbf{unfolding}\ C'\ L\ \mathbf{by}\ (\mathit{auto\ simp\ add:\ superposition-rules.simps})
   have C' + \{ \#Pos \ P\# \} \ \# \subset \# \ C' + \{ \#Pos \ P\# \} + \{ \#Pos \ P\# \} 
    by auto
   moreover have \neg ?N_{\mathcal{I}} \models h (D - \{\#L\#\})
    using not-d-interp unfolding C'L by auto
   ultimately have C' + \{\#Pos\ P\#\} \notin N
    by (metis (no-types, lifting) C' P add-diff-cancel-right' cls-not-D less-multiset
      multi-self-add-other-not-self not-le)
   have D - \{\#L\#\} \# \subset \# D
    unfolding C'L by auto
   have c'-p-p: C' + {\#Pos\ P\#} + {\#Pos\ P\#} - {\#Pos\ P\#} = C' + {\#Pos\ P\#}
    by auto
   have redundant (C' + \{\#Pos\ P\#\})\ N
    by blast
   moreover have C' + \{ \#Pos \ P\# \} \subseteq \# C' + \{ \#Pos \ P\# \} + \{ \#Pos \ P\# \} 
    by auto
   ultimately show False
    using red unfolding C' redundant-iff-abstract by (blast dest:
      abstract-red-subset-mset-abstract-red)
 next
   case Lneq note L = this(1)
   have P \in ?N_{\mathcal{I}}
    using not-d-interp unfolding D true-cls-def L by (auto split: if-split-asm)
   then obtain E where
    DPN: E + \{\#Pos \ P\#\} \in N \text{ and }
    prod: production N(E + \{\#Pos P\#\}) = \{P\}
```

```
using in-interp-is-produced by blast
have sup-EC: superposition-rules (E + \{\#Pos\ P\#\}) (C + \{\#Neg\ P\#\}) (E + C)
 using superposition-l by fast
hence superposition N (N \cup \{E+C\})
 using DPN \langle D \in N \rangle unfolding DL by (auto simp add: superposition.simps)
have
 PMax: Pos P = MMax (E + \{\#Pos P\#\}) and
 count (E + {\#Pos P\#}) (Pos P) \le 1 and
 S(E + {\#Pos P\#}) = {\#} and
  \neg interp\ N\ (E + \{\#Pos\ P\#\}) \models h\ E + \{\#Pos\ P\#\}
 using prod unfolding production-unfold by auto
have Neg\ P \notin \#\ E
 using prod produces-imp-neg-notin-lits by force
hence \land y. \ y \in \# \ (E + \{ \#Pos \ P\# \})
 \implies count (E + \{\#Pos P\#\}) (Neg P) < count (C + \{\#Neg P\#\}) (Neg P)
 using count-greater-zero-iff by fastforce
moreover have \bigwedge y. y \in \# (E + \{\#Pos P\#\}) \Longrightarrow y < Neg P
 using PMax by (metis DPN Max-less-iff empty finite-set-mset pos-less-neg
   set-mset-eq-empty-iff)
moreover have E + \{\#Pos\ P\#\} \neq C + \{\#Neg\ P\#\}
 using prod produces-imp-neg-notin-lits by force
ultimately have E + \{\#Pos\ P\#\}\ \#\subset\#\ C + \{\#Neg\ P\#\}
 unfolding less-multiset_{HO} by (metis\ count-greater-zero-iff\ less-iff-Suc-add\ zero-less-Suc)
have ce-lt-d: C + E #\subset# D
unfolding D L by (simp \ add: \langle \bigwedge y. \ y \in \# E + \{\#Pos \ P\#\} \Longrightarrow y < Neg \ P \rangle \ ex-gt-imp-less-multiset)
have ?N_{\mathcal{I}} \models h \ E + \{ \#Pos \ P \# \} 
 using \langle P \in ?N_{\mathcal{I}} \rangle by blast
have ?N_{\mathcal{I}} \models h \ C+E \lor C+E \notin N
 using ce-lt-d cls-not-D unfolding D-def by fastforce
have Pos P \notin \# C+E
 using D \land P \in ground-resolution-with-selection.INTERP S \mid N \rangle
   (count\ (E + \{\#Pos\ P\#\})\ (Pos\ P) \le 1)\ multi-member-skip\ not-d-interp
   by (auto simp: not-in-iff)
hence \bigwedge y. y \in \# C + E
 \implies count (C+E) (Pos P) < count (E + {\#Pos P\#}) (Pos P)
 using set-mset-def by fastforce
have \neg redundant (C + E) N
 proof (rule ccontr)
   assume red'[simplified]: \neg ?thesis
   have abs: clss-lt N (C + E) \models p C + E
     using redundant-iff-abstract red' unfolding abstract-red-def by auto
   have clss-lt\ N\ (C+E) \models p\ E + \{\#Pos\ P\#\} \lor clss-lt\ N\ (C+E) \models p\ C + \{\#Neg\ P\#\}
     proof clarify
       assume CP: \neg clss-lt\ N\ (C+E) \models p\ C + \{\#Neg\ P\#\}
       \{ \text{ fix } I \}
        assume
           total-over-m I (clss-lt N (C + E) \cup {E + {#Pos P#}}) and
           consistent-interp I and
          I \models s \ clss-lt \ N \ (C + E)
          hence I \models C + E
            using abs sorry
          moreover have \neg I \models C + \{\#Neg\ P\#\}
            using CP unfolding true-clss-cls-def
            sorry
```

```
ultimately have I \models E + \{\#Pos\ P\#\} by auto
            }
            then show clss-lt N(C + E) \models p E + \{\#Pos P\#\}
              unfolding true-clss-cls-def by auto
        moreover have clss-lt N (C + E) \subseteq clss-lt N (C + \{\#Neg\ P\#\})
          using ce-lt-d mult-less-trans unfolding clss-lt-def D L by force
        ultimately have redundant (C + \{\#Neg P\#\}) N \vee clss-lt N (C + E) \models p E + \{\#Pos P\#\}
          unfolding redundant-iff-abstract abstract-red-def using true-clss-cls-subset by blast
        show False sorry
      qed
     moreover have \neg redundant (E + \{\#Pos\ P\#\}) N
      sorry
     ultimately have CEN: C + E \in N
      \mathbf{using} \ \langle D \in N \rangle \ \langle E + \{\#Pos \ P\#\} \in N \rangle \ saturated \ sup\text{-}EC \ red \ \mathbf{unfolding} \ saturated\text{-}def \ D \ L
      by (metis union-commute)
     have CED: C + E \neq D
      using D ce-lt-d by auto
     have interp: \neg INTERP N \models h C + E
     sorry
     show False
        using cls-not-D[OF CEN CED interp] ce-lt-d unfolding INTERP-def less-eq-multiset-def by
auto
 qed
qed
end
lemma tautology-is-redundant:
 assumes tautology C
 shows abstract-red C N
 using assms unfolding abstract-red-def true-clss-cls-def tautology-def by auto
lemma subsumed-is-redundant:
 assumes AB: A \subset \# B
 and AN: A \in N
 shows abstract-red B N
proof
 have A \in clss-lt \ N \ B \ using \ AN \ AB \ unfolding \ clss-lt-def
   by (auto dest: less-eq-imp-le-multiset simp add: multiset-order.dual-order.order.iff-strict)
   using AB unfolding abstract-red-def true-clss-cls-def Partial-Clausal-Logic.true-clss-def
   by blast
qed
inductive redundant :: 'a clause \Rightarrow 'a clauses \Rightarrow bool where
subsumption: A \in N \Longrightarrow A \subset \# B \Longrightarrow redundant B N
lemma redundant-is-redundancy-criterion:
 fixes A :: 'a :: wellorder clause and N :: 'a :: wellorder clauses
 assumes redundant A N
 shows abstract-red A N
 using assms
proof (induction rule: redundant.induct)
  case (subsumption A B N)
```

```
\mathbf{thus}~? case
    \mathbf{using} \ \mathit{subsumed-is-redundant} [\mathit{of} \ \mathit{A} \ \mathit{N} \ \mathit{B}] \ \mathbf{unfolding} \ \mathit{abstract-red-def} \ \mathit{clss-lt-def} \ \mathbf{by} \ \mathit{auto}
qed
\mathbf{lemma}\ \mathit{redundant}\text{-}\mathit{mono}\text{:}
  redundant\ A\ N \Longrightarrow A \subseteq \#\ B \Longrightarrow \ redundant\ B\ N
 apply (induction rule: redundant.induct)
 \mathbf{by}\ (meson\ subset-mset.less-le-trans\ subsumption)
locale truc =
    selection \ S \ \mathbf{for} \ S :: nat \ clause \Rightarrow nat \ clause
begin
\quad \text{end} \quad
end
theory Weidenbach-Book
imports
  Prop	ext{-}Normalisation
  Prop\text{-}Resolution
  Prop\text{-}Superposition
  CDCL	ext{-}WNOT
begin
\mathbf{end}
```