MW 22.10.11

Karbonizacja – proces przemiany, zazwyczaj poprzez pirolizę substancji organicznej (najczęściej w atmosferze inertnej) w materiał o wzrastającej zawartości węgla, zakończony utworzeniem pozostałości (materiału węglowego) zbudowanej niemal wyłącznie z węgla w temperaturze ok. $1300^{o}C$

Eliminacja heteroatomów ze struktury węglowej podczas ogrzewania:

- wodór do ~1300 ^{o}C (maksimum 670 720 ^{o}C) (najpierw wodór związany np. w $H_{2}O$)
- tlen do 1000 ${}^{o}C$ (zawsze jako tlen związany CO_2 , CO)
- azot 1000-1400 °C
- siarka 1400-2200 *°C*

Wzrost zawartości pierwiastka C - uwęglanie

Grafityzacja - przemiana strukturalna termodynamicznie niestabilnego materiału węglowego (turbostratycznego) w grafit w procesie aktywowanym termicznie zachodzącym w fazie stałej

Obrazek przedstawiający strukturę grafitu heksagonalnego i węgla turbostratycznego (też warswty ale powyginane i z defektami)

Warianty karbonizacji:

Substancja organiczna	Typ pirolizy
Surowce o budowie polimerycznej lub makromolekularnej (koplane paliwa stałem substancje lignocelulozowe, polimery syntetycnze)	piroliza w fazie stałej - chaotyczne ułożenie krystalitów, materiały węglowe niegrafityzujące
Mieszaniny węglowodorów, pochodzenie karbo- i petrochemiczne (paki węglowe i naftowe, smoły, ciężkie frakcje z przerobu ropy naftowej)	piroliza w fazie ciekłej - zorientowane ułożenie krystalitów

Gazy weglowodorowe:

- reakcje w fazie gazowej
 - fulereny
 - sadza
- · reakcje na powierzchni
 - węgiel pirolityczny (CVD)
 - nanowłókna i nanorurki (CCVD)
 - grafen

CVD - chemical/carbon vapour depostion

CCVD - catalytic chemical/**carbon** vapour deposition (pl.katalityczne osadzanie węgla z fazy gazowej Unikatowe właściwości materiałów węglowych π -elektronowych:

- stabilność termiczna do $T=3500^{o}C$ (bez dostępu tlenu)
- anizotropia właściwości chemicznych, fizycznych i mechanicznych
 - W płaszczyźnie warstwy grafenowej (||) dla grafitu:
 - Przewodnictwo cieplne >2000 $\frac{W \cdot K}{m}$
 - Wytrzymałość na rozciąganie ~20GPa (dla porównania stal max. 1.4 GPa)
 - Moduł Younga ~1000 GPA (stal ~200GPa)
- odporność na działanie większości czynników chemicznych, jednocześnie zdolność do tworzenia związków interkalacyjnych [1] i możliwość podstawienia atomów węgla w strukturze
- zdolność do tworzenia mikroporowatej tekstury o powierzchni wewnętrznej sięgającej 3000 $\frac{m^2}{g}$ (węgiel aktywny)

Mikroskopia optyczna w świetle odbitym:

- w świetle spolaryzowanym $\lambda=590nm$ klasyfikacja jednostek optycznie anizotropowych (>0.5 μm), analiza tekstury optycznej, histogramy
- w świetle niespolaryzowanym analiza tekstury porowatej (> $1\mu m$)

Schemat budowy mikroskopu polaryzacyjnego - układ polaryzator - analizator

Jest: "płytka opóźniająca", ma być: "płytka gipsowa", jest: "lusterko", ma być "lusterko półprzepuszczalne"

Przemiany termiczne węglowodorów (procesy rodnikowe):

Mechanizmy reakcji:

 rozerwanie wiązań C-H. rzadziej C-C, powoduje utworzenie reaktywnych wolnych rodników obrazek - reakcja inicjująca piroliże antracenu

przebudowa wewnątrzcząsteczkowa

Obrazki - sieciowany naftalen vs sieciowany antracen

Modelowe struktury występujące w substancjach pakowych otrzymanych w procesie pirolizy naftalenu i antracenu

Substancje pakowe - mieszanina węglowodorów z dominującym udziałem wielopierścieniowych węglowodorów aromatycznych:

- paki węglowe -stała pozostałość z destylacji smoły koksowniczej
- paki naftowe produkty termicznej lub termiczno-utleniającej obróbki oleju pirolitycznego i pozostałości po krakingu katalitycznym

Klasy związków występujących w substancjach pakowych

- WWA wielopierścieniowe węglowodory aromatyczne np. antracen
- alkilowane WWA
- WWA z pierścieniami 5-członowymi
- częściowo uwodornione WWA
- oligoaryle i oligoaryle z mostkami metylenowymi
- WWA z podstawnikami typu $-NH_2, -OH, = O$
- wielopierścieniowe związki heteroaromatyczne

Porównanie składu paku węglowego i naftowego

Właściwość	pak węglowy	pak naftowy
części nierozpuszczalne w benzenie (toluenie TI) %	28	4-25
części nierozpuszczalne w chinolinie (QI), %	8-13	<0.5
zawartość siarki % mas,	0.8-1.0	0.1-1.3
zawartość wodoru % mas.	4.5	4-7
podatność na grafityzację	+	++

Paki naftowe zawierają mniej części nierozpuszczalne w toluenie - TI, bo zawierają więcej związków naftenowo(? naftowo? naftalenowo?)-aromatycznych o mniejszym stopniu kondensacji, z większą liczbą i z dłuższymi łańcuchami węglowodorowymi w porównaniu z pakami węglowymi

1. Interkalacja - wniknięcie heteroatomów pomiędzy warstwy grafitu - często pożądana.₽