Capítulo III

Funções: limite e continuidade

Neste capítulo vamos estudar funções reais de varivel real, dando particular atenção às noções de *limite* e de *continuidade*, bem como aos resultados envolvendo estes conceitos.

1 Noções elementares

Genericamente, representamos uma função real de domínio D por $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$. O contra-domínio de uma tal função é o conjunto constituído por todas as imagens de f,

$$f(D) = \{ f(x) : x \in D \}. \tag{1}$$

Igualdade de funções

Duas funções $f \colon D_1 \longrightarrow \mathbb{R} \ \text{e} \ g \colon D_2 \longrightarrow \mathbb{R}$ dizem-se iguais quando

$$D_1 = D_2 = D \quad \land \quad f(x) = g(x), \ \forall x \in D. \tag{2}$$

Exemplo 1

- (a) As funções $f(x) = |x|, x \in \mathbb{R}^-$, e $g(x) = -x, x \in \mathbb{R}^+$, não são iguais. De facto, embora seja f(x) = g(x) = -x, as funções têm domínios diferentes.
- (b) Já as funções $h(x)=|x|\ x\in\mathbb{R}^-,\ {\rm e}\ j(x)=\sqrt{x^2},\ x\in\mathbb{R}^-,\ {\rm são}$ iguais. Repare-se que, para $x\in\mathbb{R}^-,\ {\rm vem}\ h(x)=j(x)=-x>0$.

Vocabulário variado

Uma função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ diz-se:

(a) majorada quando

$$\exists M \in \mathbb{R} : \ \forall x \in D, \ f(x) \le M, \tag{3a}$$

ou seja, quando

$$\exists M \in \mathbb{R} : \ \forall x \in D, \ f(x) \in]-\infty, M]; \tag{3b}$$

(b) minorada quando

$$\exists m \in \mathbb{R} : \ \forall x \in D, \ f(x) \ge m, \tag{4a}$$

ou seja, quando

$$\exists m \in \mathbb{R} : \forall x \in D, \ f(x) \in [m, +\infty[;$$
 (4b)

(c) limitada quando é majorada e minorada, ou seja quando

$$\exists m, M \in \mathbb{R} : \forall x \in D, f(x) \in [m, M], \tag{5a}$$

ou equivalentemente, quando

$$\exists M \in \mathbb{R} : \ \forall x \in D, \ |\ f(x)| \le M; \tag{5b}$$

(d) crescente quando

$$\forall x, y \in D, \ x < y \implies f(x) \le f(y); \tag{6a}$$

em particular, estritamente crescente se

$$\forall x, y \in D, \ x < y \implies f(x) < f(y); \tag{6b}$$

(e) decrescente quando

$$\forall x, y \in D, \ x < y \implies f(x) \ge f(y); \tag{7a}$$

em particular, estritamente decrescente se

$$\forall x, y \in D, \ x < y \implies f(x) > f(y); \tag{7b}$$

- (f) monótona se é crescente ou decrescente; em particular, estritamente monótona se é estritamente crescente ou estritamente decrescente;
- (g) enquadrada pelas funções g e h, tais que D(g) = D(h) = D, quando

$$\forall x \in D, \ g(x) \le f(x) \le h(x); \tag{8}$$

(h) par quando

$$\forall x \in D, \quad -x \in D \quad \land \quad f(-x) = f(x); \tag{9}$$

(i) *impar* quando

$$\forall x \in D, \quad -x \in D \quad \land \quad f(-x) = -f(x); \tag{10}$$

(j) periódica de período T quando

$$\forall x \in D, \quad x + T \in D \quad \land \quad f(x + T) = f(x); \tag{11}$$

(k) injectiva quando a objectos distintos em D correspondem imagens distintas em \mathbb{R} , ou seja, quando

$$\forall x, y \in D, \quad x \neq y \Longrightarrow f(x) \neq f(y),$$
 (12a)

ou ainda, quando

$$\forall x, y \in D, \quad f(x) = f(y) \Longrightarrow x = y;$$
 (12b)

(l) sobrejectiva quando o seu contra-domínio coincide com o conjunto de chegada, ou seja, quando

$$\forall y \in \mathbb{R} \,, \ \exists x \in D : \ f(x) = y; \tag{13}$$

(m) bijectiva quando é, simultaneamente, injectiva e sobrejectiva.

Exemplo 2

- (a) A função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^2$ é par, não é periódica, não é injectiva porque f(-x) = f(x), nem é sobrejectiva porque $f(\mathbb{R}) = [0, +\infty[$ e, portanto, dado y < 0, não existe $x \in \mathbb{R}$ tal que f(x) = y. Além disso, f é minorada mas não é majorada. Não é monótona, embora seja estritamente crescente em $[0, +\infty[$ e estritamente decrescente em $]-\infty,0]$.
- (b) Sobre a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = \sin x$, podemos dizer que é ímpar, periódica de período 2π , não é injectiva porque $g(x) = g(x + 2\pi)$, nem é sobrejectiva porque $g(\mathbb{R}) = [-1, 1]$. Podemos ainda dizer que g é limitada e que não é monótona, embora seja estritamente crescente, por exemplo, em $[0, \pi/2]$ e estritamente decrescente, por exemplo, em $[\pi/2, \pi]$.
- (c) Consideremos agora a função $h: \mathbb{R} \longrightarrow \mathbb{R}$ definida por h(x) = 2x + 1. Trata-se de uma função que não é par, não é ímpar, nem é periódica. É injectiva porque $h(x) = h(y) \Rightarrow 2x + 1 = 2y + 1 \Rightarrow x = y$. Também é sobrejectiva porque $h(\mathbb{R}) = \mathbb{R}$. De facto, dado arbitrariamente $y \in \mathbb{R}$, basta tomar x = (y-1)/2 para ter h(x) = y. Logo, h é bijectiva. Podemos ainda dizer que h não é majorada nem minorada, e que é estritamente crescente.

Restrição e extensão

Sejam $f\colon D\longrightarrow \mathbb{R}$ uma função e A,S dois conjuntos tais que $A\subset D\subset S$. Chama-se restrição de f ao conjunto A à função (única)

$$f|_{A}: A \longrightarrow \mathbb{R} \text{ tal que } (f|_{A})(x) = f(x), \forall x \in A,$$
 (14)

e extensão de f a S a qualquer função

$$f^*: S \longrightarrow \mathbb{R}$$
 tal que $f^*(x) = f(x); \ \forall x \in D.$ (15)

Exemplo 3

- (a) Consideram-se frequentemente as restrições do seno e do coseno, ambas de domínio \mathbb{R} , aos intervalos $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ e $[0, \pi]$, respectivamente.
- (c) A função $f(x) = \frac{1}{x}$, $x \in \mathbb{R} \setminus \{0\}$, pode ser estendida à origem pondo, por exemplo,

$$f^*(x) = \begin{cases} \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Claro que f admite uma infinidade de extensões a todo \mathbb{R} , diferentes de f^* , basta modificar o valor atribuído na origem.

Imagem e imagem recíproca

Consideremos uma função $f\colon D\longrightarrow \mathbb{R}$ e dois conjuntos $A\subset D$ e $B\subset \mathbb{R}$. Chama-se imagem de A por f ao conjunto

$$f(A) = \{ f(x) : x \in A \}$$
 (16)

e imagem recíproca de B por f ao conjunto

$$f^{-1}(B) = \{ x \in D : f(x) \in B \}.$$
 (17)

Exemplo 4

Consideremos a função $f(x) = x^2, x \in \mathbb{R}$. Tem-se

$$f(\,]-1,1[\,)=[0,1[\,,\quad f(\,[-4,2]\,)=[0,16]\,,\quad f(\,]1,3]\,)=]1,9]$$

$$f^{-1}(\,\{1\}\,)=\{-1,1\}\,,\quad f^{-1}(\,]-2,-1[\,)=\emptyset,\quad f^{-1}(\,]-2,1]\,)=f^{-1}(\,[0,1]\,)=[-1,1]. \quad \blacksquare$$

Composição de funções

Dadas $f: D \longrightarrow \mathbb{R}$ e $g: B \longrightarrow \mathbb{R}$ tais que $f(D) \subset B$, define-se a função composta

$$g \circ f \colon D \longrightarrow \mathbb{R} \quad \text{por} \quad (g \circ f)(x) = g(f(x)), \ \forall x \in D.$$
 (18)

Exercício Considerar as funções

$$\begin{array}{ll} f\colon \mathbb{R} \longrightarrow \mathbb{R} \;, & f(x) = x^2 & g\colon \mathbb{R}_0^+ \longrightarrow \mathbb{R} \;, & g(x) = \sqrt{x} \\ k\colon \mathbb{R}_0^- \longrightarrow \mathbb{R} \;, & k(x) = x^2 & h\colon \mathbb{R}_0^- \longrightarrow \mathbb{R} \;, & h(x) = \sqrt{-x} \\ u\colon \mathbb{R}_0^- \longrightarrow \mathbb{R} \;, & u(x) = -x^2 & v\colon \mathbb{R}_0^+ \longrightarrow \mathbb{R} \;, & v(x) = -\sqrt{x} \end{array}$$

- (a) Determinar o contra-domínio de cada uma delas.
- (b) Verificar que não é possível definir cada uma das funções

$$k \circ g$$
, $h \circ f$, $g \circ u$, $u \circ g$, $u \circ h$, $k \circ h$, $h \circ k$, $v \circ u$.

(c) Definir as compostas

$$f \circ g$$
, $f \circ v$, $f \circ h$, $g \circ k$, $h \circ u$, $k \circ v$, $v \circ k$, $u \circ v$, $v \circ f$, $g \circ f$.

- (d) Verificar que as funções $f \circ g$, $f \circ v$ e $k \circ v$ são iguais entre si mas diferentes da função $v \circ k$.
- (e) Verificar que as funções $g \circ k$, $f \circ h$ e $h \circ u$ são iguais entre si mas diferentes da função $u \circ v$.

Inversa de uma função

Dadas as funções $f: D \longrightarrow \mathbb{R}$ e $g: B \longrightarrow \mathbb{R}$, com $f(D) \subset B$ e $g(B) \subset D$, dizemos que g é inversa de f quando $g \circ f = \mathrm{id}_D$ e $f \circ g = \mathrm{id}_B$, isto é, quando

$$(g \circ f)(x) = x, \ \forall x \in D \quad \land \quad (f \circ g)(x) = x, \ \forall x \in B.$$
 (19)

Exercício Considerar as funções reais de variável real definidas por

$$f(x) = \frac{1}{x-1}$$
, $x > 1$ e $g(x) = \frac{1+x}{x}$, $x > 0$.

- (a) Determinar o contra-domínio de f e o contra-domínio de g.
- (b) Verificar que f e g são inversas uma da outra.
- (c) Justificar que as funções $f \circ g \in g \circ f$ não são iguais.

Máximos e mínimos

Dizemos que uma função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ possui um:

(a) $m \acute{a} ximo local em a \in D$ se

$$\exists \varepsilon > 0: \ \forall x \in [a - \varepsilon, a + \varepsilon], \ f(x) \le f(a);$$
 (20)

(b) máximo absoluto em $a \in D$ se

$$\forall x \in D, \ f(x) \le f(a) \tag{21}$$

(c) mínimo local em $a \in D$ se

$$\exists \varepsilon > 0: \ \forall x \in]a - \varepsilon, a + \varepsilon[, \ f(x) > f(a); \tag{22}$$

(d) mínimo absoluto em $a \in D$ se

$$\forall x \in D, \ f(x) \ge f(a). \tag{23}$$

Um ponto onde a função f atinge um extremo diz-se um ponto extremante de f, podendo tratar-se de um maximizante ou de um minimizante.

Exemplo 5

(a) Consideremos a função f definida em $D = [a, +\infty]$, cuja representação gráfica é

A função f possui máximos locais em a, x_2 e x_4 , que são f(a), $f(x_2)$ e $f(x_4)$, respectivamente. Não possui máximo absoluto. Possui mínimos locais em x_1 , x_3 e x_5 , que são $f(x_1)$, $f(x_3)$ e $f(x_5)$, respectivamente, e um mínimo absoluto em x_3 .

(b) Consideremos agora a função g definida em \mathbb{R} , cuja representação gráfica é

A função g não possui extremos locais (nem absolutos).

(c) Seja agora a função h definida em \mathbb{R} , cuja representação gráfica é

A função h não possui máximos locais (nem absolutos) mas possui um mínimo absoluto na origem, que é h(0).

Exercício

1. Considere as funções

$$f(x) = -2 \cos x, \quad x \in [0, 5\pi],$$

$$g(x) = \sin\left(x - \frac{\pi}{2}\right), \quad x \in [-\pi, 4\pi],$$

$$h(x) = 1 + |x - 2|, \quad x \in [-3, 12].$$

Indique, se existirem, os extremos locais e absolutos de f, g e h.

2. Considere a função $f\colon \mathbb{R} \longrightarrow \mathbb{R}$. Esboce o gráfico da função definida por: $x \longmapsto |x|$

(a)
$$g(x) = f(x) + 2, x \in \mathbb{R};$$
 (b) $h(x) = f(x+2), x \in \mathbb{R};$

(c)
$$i(x) = 2f(x), x \in \mathbb{R};$$
 (d) $j(x) = f(2x), x \in \mathbb{R};$

(e)
$$k(x) = \max\{f(x), 2\}, x \in \mathbb{R};$$
 (f) $\ell(x) = \min\{f(x), 1\}, x \in \mathbb{R}.$

Analise, graficamente, a paridade e a existência de extremos (locais e absolutos) de cada função. Para cada uma das funções, defina uma restrição bijectiva e caracterize a correspondente inversa.

2 Limite de uma função

Nesta secção vamos estudar a noção mais importante do cálculo – o limite de uma função. No Capítulo II, no contexto das sucessões de números reais, estudámos a forma mais simples do limite tratava-se de uma função de domínio \mathbb{N} e o limite era analisado para $n \to +\infty$. Vamos agora estender esta noção, considerando uma função de domínio $D \subset \mathbb{R}$, mais genérico, e falando do limite quando x tende para certo $a \in \mathbb{R}$ ou $a = \pm \infty$.

2.1 Ideia intuitiva de limite

Dada uma função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, vamos interessar-nos por limite de f(x) quando x tende para a, que indicamos por

$$\lim_{x \to a} f(x),\tag{24}$$

ou seja, pelos valores que f assume em pontos x próximos de a e ver se, à medida que x se aproxima de a sem nunca o atingir, tais valores se aproximam, tanto quanto se queira, de algum número $\ell \in \mathbb{R}$. Repare-se que, tal ponto a pode pertencer ou não ao domínio de f; se pertencer, o valor f(a) que a função assume em a não interfere na existência nem no valor do limite. Tudo depende exclusivamente daquilo que se passa em pontos $x \neq a$ nas vizinhanças de a. É assim necessário que f esteja definida em tais pontos f0 volta de f1. Dito de outra forma, é necessário que f3 seja um f4 seja um f6 pontos f6 de f7. Dito de outra forma, é necessário que f6 seja um f6 pontos f7 de f8 seja um f9 pontos f9 de f9 de f9.

Exemplo 6 [Análise intuitiva]

Analisemos, intuitivamente, a existência de limite na origem para as seguintes funções:

$$f: \mathbb{R} \longrightarrow \mathbb{R} \qquad g: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \qquad x \neq 0 \longmapsto 3x \qquad x \neq 0 \longmapsto 3x \qquad x \neq 0 \longmapsto 2$$

Para todas elas, 0 é ponto de acumulação do respectivo domínio. Quando, em particular, analisamos $\lim_{x\to 0} f(x)$ ou $\lim_{x\to 0} h(x)$, em nada interfere o valor f(0) ou h(0). Apenas nos interessa o que se passa com f, com g e com h, enquanto $x\to 0$ mas sempre $x\neq 0$. Observamos que cada uma das funções se aproxima de 0, tanto quanto se queira, desde que se tome x suficientemente próximo de 0, sempre com $x\neq 0$, pelo que somos levados a conjecturar que seja (cf. o Exemplo 7 para a prova)

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = \lim_{x \to 0} h(x) = 0.$$
 (25)

2.2 Definição de limite

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função de domínio D e a um ponto de acumulação de D. Dizemos que o número real ℓ é o limite de f(x) quando x tende para a, e escrevemos

$$\lim_{x \to a} f(x) = \ell,\tag{26}$$

se for possível tornar os valores f(x) arbitrariamente próximos de ℓ , desde que o genérico x se torne suficientemente próximo de a, percorrendo apenas pontos do domínio D mas sem nunca atingir o ponto a. Simbolicamente,

$$\lim_{x \to a} f(x) = \ell$$
 se e só se $\forall \delta > 0, \exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow |f(x) - \ell| < \delta.$

Exemplo 7

Consideremos as funções do Exemplo 6. Vejamos que, de acordo com a definição (27), se tem $\lim_{x\to 0}h(x)=0$. Seja então $\delta>0$. Para $x\neq 0$, tem-se |h(x)-0|=|3x|=3|x-0|, pelo que, tomando $\varepsilon=\delta/3$, resulta $|h(x)-0|<\delta$ sempre que $|x-0|<\varepsilon$.

Analogamente, mostra-se que $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$, uma vez que as três funções coincidem para $x\neq 0$.

Exemplo 8

Seja $f(x) = x^2, x \in \mathbb{R}$. Mostremos que $\lim_{x \to 2} f(x) = 4$. Como

$$|f(x) - 4| = |x^2 - 4| = |x - 2||x + 2| = |x - 2||x - 2 + 4| \le |x - 2|(|x - 2| + 4)$$

ter-se-á $|f(x)-4|<\varepsilon(\varepsilon+4)=\varepsilon^2+4\varepsilon$, sempre que $|x-2|<\varepsilon$. Consequentemente, dado $\delta>0$, arbitrário, basta tomar $\varepsilon>0$ tal que $\varepsilon^2+4\varepsilon=\delta$, ou seja, $\varepsilon=-2+\sqrt{4+\delta}$, para que se cumpra a condição (27) com a=2 e $\ell=4$.

2.3 Propriedades do limite

Usando a definição (27) de limite, estabelem-se alguns resultados fundamentais, entre os quais destacamos as seguintes.

Teorema 1 [Unicidade do limite]

Sejam
$$f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$$
 e $a \in D'$. Se $\lim_{x \to a} f(x) = \ell_1$ e $\lim_{x \to a} f(x) = \ell_2$ então $\ell_1 = \ell_2$.

Demonstração

Seja $\delta>0$, arbitrário. Por um lado, por ser $\lim_{x\to a}f(x)=\ell_1$, da definição (27), sai que

$$\exists \alpha > 0: (x \in D \land 0 < |x - a| < \alpha) \Longrightarrow |f(x) - \ell_1| < \frac{\delta}{2}.$$
 (28a)

Por outro lado, por ser $\lim_{x\to a} f(x) = \ell_2$, sai que

$$\exists \beta > 0: (x \in D \land 0 < |x - a| < \beta) \Longrightarrow |f(x) - \ell_1| < \frac{\delta}{2}. \tag{28b}$$

Seja $\varepsilon = \min\{\alpha, \beta\}$. Para $y \in D$ e $0 < |y - a| < \varepsilon$, valem simultaneamente as condições (28*a-b*). Logo,

$$|\ell_1 - \ell_2| = |\ell_1 - f(y) + f(y) - \ell_2| \le |f(y) - \ell_1| + |f(y) - \ell_2| < \frac{\delta}{2} + \frac{\delta}{2} = \delta,$$

donde

$$|\ell_1 - \ell_2| < \delta$$
. $\forall \delta > 0$

e, consequentemente, $\ell_1 - \ell_2 = 0$, ou seja, $\ell_1 = \ell_2$.

Teorema 2 [Mantém-se o limite para restrições]

Sejam $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, $a \in D'$ e $A \subset D$ com $a \in A'$. Se $\lim_{x \to a} f(x) = \ell$ então também $\lim_{x \to a} f|_A(x) = \ell$.

A demonstração é imediata.

Teorema 3

Sejam $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, $a \in D'$ e A, B subconjuntos de D tais que $a \in A' \cap B'$. Se $\lim_{\substack{x \to a \\ x \in A}} f(x) = \ell_1$ e $\lim_{\substack{x \to a \\ x \in B}} f(x) = \ell_2$, com $\ell_1 \neq \ell_2$, então não existe $\lim_{x \to a} f(x)$.

Demonstração

Basta conjugar os Teoremas 1 e 2.

Exemplo 9

(a) Seja
$$f(x) = \frac{|x|}{x}, x \neq 0.$$

Não existe $\lim_{x\to 0} f(x)$, porque (Teorema 3) $\lim_{\substack{x\to 0\\x>0}} f(x) = \lim_{x\to 0} 1 = 1 \qquad \text{e} \qquad \lim_{\substack{x\to 0\\x<0}} f(x) = \lim_{x\to 0} (-1) = -1.$

$$\lim_{x \to 0 \atop x \to 0} f(x) = \lim_{x \to 0} 1 = 1$$

$$\lim_{\substack{x \to 0 \\ x \neq 0}} f(x) = \lim_{x \to 0} (-1) = -1$$

(b) Seja
$$h(x) = \operatorname{sen}\left(\frac{1}{x}\right), x \in \mathbb{R} \setminus \{0\}.$$

Não existe $\lim_{x\to 0} h(x)$. De facto, considerando

$$A = \left\{ x \in \mathbb{R} : x = \frac{1}{\frac{\pi}{2} + 2n\pi} , n \in \mathbb{N} \right\}, \quad \text{e} \quad B = \left\{ y \in \mathbb{R} : y = \frac{1}{\frac{3\pi}{2} + 2n\pi} , n \in \mathbb{N} \right\},$$

tem-se

$$\frac{1}{x} = \frac{\pi}{2} + 2n\pi , n \in \mathbb{N}$$
 e $\frac{1}{y} = \frac{3\pi}{2} + 2n\pi , n \in \mathbb{N},$

donde

$$\operatorname{sen}\left(\frac{1}{x}\right) = \operatorname{sen}\left(\frac{\pi}{2} + 2n\pi\right) = 1, \ \forall n \in \mathbb{N}$$

$$\operatorname{sen}\left(\frac{1}{y}\right) = \operatorname{sen}\left(\frac{3\pi}{2} + 2n\pi\right) = -1, \ \forall n \in \mathbb{N}$$

e, portanto, o limite em causa não existe, uma vez que (Teorema 3)

$$\lim_{\substack{x \to 0 \\ x \in A}} h(x) = 1$$
 e $\lim_{\substack{x \to 0 \\ x \in B}} h(x) = -1$.

(c) Seja $j(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \\ |x| & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Tem-se $\lim_{x\to 0} j(x)$, porque

$$\lim_{\substack{x \to 0 \\ x \in Q}} j(x) = \lim_{x \to 0} 0 = 0 \qquad \land \qquad \lim_{\substack{x \to 0 \\ x \in \mathbb{R} \setminus Q}} j(x) = \lim_{x \to 0} |x| = 0.$$

Exemplo 10

(a) Vejamos que

$$\lim_{x \to a} f(x) = 0 \text{ se e s\'o se } \lim_{x \to a} |f(x)| = 0.$$
 (29)

Da definição (27), tem-se sucessivamente

$$\lim_{x \to a} |f(x)| = 0 \iff \forall \delta > 0, \ \exists \varepsilon > 0: \ (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow ||f(x)| - 0| < \delta$$

$$\iff \forall \delta > 0, \ \exists \varepsilon > 0: \ (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow |f(x)| < \delta$$

$$\iff \forall \delta > 0, \ \exists \varepsilon > 0: \ (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow |f(x) - 0| < \delta$$

$$\iff \lim_{x \to a} f(x) = 0$$

(b) Seja $\ell \neq 0$. Vejamos que

$$\lim_{x \to a} f(x) = \ell \iff \lim_{x \to a} |f(x)| = |\ell|. \tag{30}$$

• Basta atender a que a implicação recíproca é falsa.

Considere-se, por exemplo, $f(x)=\left\{\begin{array}{ccc} 1 & \text{se } x\geq 0 \\ -1 & \text{se } x<0 \end{array}\right.$ e a=0. Tem-se $|f(x)|=1, \ \forall x\in \mathbb{R}, \ \text{donde} \lim_{x\to 0}|f(x)|=1$. No entanto, não existe $\lim_{x\to 0}f(x),$ já que

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1$$
 e $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -1$.

• Porém, convém notar que, em (30), a implicação directa é verdadeira.

De facto, atendendo à Propriedade 5 (j) sobre o valor absoluto, Capítulo I, tem-se

$$||f(x)| - |\ell|| \le |f(x) - \ell|$$
 (31)

pelo que

$$\lim_{x \to a} f(x) = \ell \iff \forall \delta > 0, \ \exists \varepsilon > 0: \ (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow |f(x) - \ell| < \delta$$

$$\stackrel{\text{(31)}}{\Longrightarrow} \ \forall \delta > 0, \ \exists \varepsilon > 0: \ (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow ||f(x)| - |\ell|| < \delta$$

$$\iff \lim_{x \to a} |f(x)| = |\ell|$$

71

Teorema 4 [Limitação de funções com limite]

Sejam $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D'$. Se existir $\ell \in \mathbb{R}$ tal que $\ell = \lim_{x \to a} f(x)$ então a função fé limitada numa vizinhança do ponto a, isto é,

$$\exists M > 0, \ \exists \varepsilon > 0: \ (x \in D, \ 0 < |x - a| < \varepsilon) \Longrightarrow |f(x)| \le M.$$
 (32)

Demonstração

Como $\lim_{x\to a} f(x) = \ell$, da definição (27) considerando, em particular, $\delta=1$, sai que

$$\exists \varepsilon > 0: (x \in D, 0 < |x - a| < \varepsilon) \Longrightarrow |f(x) - \ell| < 1,$$

donde, atendendo à condição (31), vem também

$$\exists \varepsilon > 0: \quad (x \in D, \quad 0 < |x - a| < \varepsilon) \quad \Longrightarrow \quad ||f(x)| - |\ell|| < 1$$

$$\Longrightarrow \quad -1 < |f(x)| - |\ell| < 1$$

$$\Longrightarrow \quad |f(x)| < |\ell| + 1.$$
(33)

Basta então tomar $M = |\ell| + 1$ para garantir que se verifique a condição (32).

Corolário

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função que se torna ilimitada em qualquer vizinhança de certo ponto $a \in D'$. Então não existe $\ell \in \mathbb{R}$ tal que $\ell = \lim_{x \to a} f(x)$.

Exemplo 11

(a) Não existe $\lim_{x\to 1}\frac{1}{x-1}$. A função $f(x)=\frac{1}{x-1},\,x\in\mathbb{R}\setminus\{1\}$, torna-se ilimitada em qualquer vizinhança do ponto 1.

(b) Analogamente, também não existe $\lim_{x\to 0} \frac{\cos x}{x^2}$.

A função $f(x) = \frac{\cos x}{x^2}$, $x \in \mathbb{R} \setminus \{0\}$, torna-se ilimitada em qualquer vizinhança do ponto 0.

Exemplo 11a: $f(x) = \frac{1}{x-1}, x \neq 1.$

Exemplo 11b: $f(x) = \frac{\cos x}{x^2}, x \neq 0.$

Teorema 5

Sejam $f,g\colon D\subset\mathbb{R}\to\mathbb{R}$ e $a\in D'$. Se $\lim_{x\to a}f(x)=0$ e g é limitada em $D\setminus\{a\}$ então l

$$\lim_{x \to a} f(x) g(x) = 0. \tag{34}$$

 $Demonstraç\~ao$

Como g é limitada em $D \setminus \{a\}$, existe L > 0 tal que

$$|g(x)| \le L, \ \forall x \in D \setminus \{a\}.$$

Dado $\delta>0$, arbitrário, também $\delta/L>0$. Por ser $\lim_{x\to a}f(x)=0$, resulta que

$$\exists \varepsilon > 0 : (x \in D \land |x - a| < \varepsilon) \implies |f(x)| < \frac{\delta}{L}.$$

Consequentemente, para este ε , conclui-se que

$$(x \in D \land |x - a| < \varepsilon) \implies |f(x)g(x)| < L\frac{\delta}{L} = \delta,$$

o que prova a condição (34).

Exemplo 12

(a) $\lim_{x \to 0} x \sec \frac{1}{x} = 0$.

Não existe $\lim_{x\to 0} \sin\frac{1}{x}$, Exemplo 9(b), mas a conclusão é justificada pelo Teorema 5, uma vez que $-1 \le \sin\frac{1}{x} \le 1$, $\forall x \in \mathbb{R} \setminus \{0\}$.

(b) Sejam
$$f(x) = 3x$$
, $x \in \mathbb{R}$, e $g(x) = \begin{cases} 2 & \text{se } x = 0, \\ 5\frac{|x|}{x} & \text{se } x \neq 0. \end{cases}$

Não existe $\lim_{x\to 0} g(x)$, porque $\lim_{x\to 0 \atop x>0} g(x) = \lim_{x\to 0} 5 = 5$ e $\lim_{x\to 0 \atop x<0} g(x) = \lim_{x\to 0} (-5) = -5$.

Mas g é limitada, já que $|g(x)| \leq 5$, $\forall x \in \mathbb{R}$. Pelo Teorema 5, sai que $\lim_{x \to 0} f(x)g(x) = 0$.

(c) Sejam
$$f(x) = 3x, x \in \mathbb{R}$$
, e $g(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q}, \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Não existe $\lim_{x\to 0}g(x)$. Mas como g é limitada, pelo Teorema 5, sai que $\lim_{x\to 0}f(x)g(x)=0$.

¹Repare-se que a conclusão do Teorema 5 é válida ainda que não exista $\lim_{x\to a} g(x)$.

Teorema 6 [Aritmética dos limites]

- 1. (a) Se k é uma constante e $a \in \mathbb{R}$ então $\lim_{x \to a} k = k$.
 - (b) Se $a \in \mathbb{R}$ então $\lim_{x \to a} x = a$.
- 2. Sejam $f,g\colon D\subset\mathbb{R}\longrightarrow\mathbb{R}$ e $a\in D'$. Suponhamos que existem $\ell=\lim_{x\to a}f(x)$ e $m=\lim_{x\to a}g(x)$. Então:
 - (a) $\lim_{x \to a} (f+g)(x) = \ell + m;$ (b) $\lim_{x \to a} (f-g)(x) = \ell m;$
 - (c) $\lim_{x \to a} (f \cdot g)(x) = \ell \cdot m;$ (d) $\lim_{x \to a} \frac{f}{g}(x) = \frac{\ell}{m}$, sempre que $m \neq 0$.

Demonstração

Os resultados 1.(a) e (b) são consequências imediatas da definição (27). Os resultados 2.(a)-(d) podem ser demonstrados seguindo um raciocínio análogo ao utilizado no Capítulo II para demonstrar o Teorema 9, que estabelece um resultado equivalente no contexto das sucessões (*cf.* a bibliografia recomendada, nomeadamente, a referência [4]).

Exemplo 13

(b) Para calcular $\lim_{x\to 0} x^4 \cos \frac{1}{x}$, o Teorema 6 não é aplicável, por não existir $\lim_{x\to 0} \cos \frac{1}{x}$. Mas recorendo ao Teorema 5, é imediato que $\lim_{x\to 0} x^4 \cos \frac{1}{x} = 0$.

Teorema 7 [Enquadramento]

Sejam $f, g, h \colon D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D'$ tais que

$$f(x) \le g(x) \le h(x), \quad \forall x \in D \setminus \{a\}.$$
 (35)

Se $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell$ então também $\lim_{x \to a} g(x) = \ell$.

Demonstração

Seja $\delta > 0$, arbitrário. Então:

$$\exists \alpha > 0 : (x \in D \land |x - a| < \alpha) \implies |f(x) - \ell| < \delta$$
$$\implies -\delta + \ell < f(x) < \ell + \delta; \tag{36a}$$

$$\exists \beta > 0: (x \in D \land |x - a| < \beta) \implies |h(x) - \ell| < \delta$$

$$\implies -\delta + \ell < h(x) < \ell + \delta.$$
 (36b)

Seja $\varepsilon = \min\{\alpha, \beta\}$. Para $x \in D$ e $|x - a| < \varepsilon$, valem simultaneamente as condições (36 a-b). Logo, atendendo também ao enquadramento (35), resulta que

$$(x \in D \land |x - a| < \varepsilon) \implies -\delta + \ell < f(x) \le g(x) \le h(x) < \ell + \delta$$

 $\implies |g(x) - \ell| < \delta$

que garante que $\lim_{x\to a} g(x) = \ell$.

Exemplo 14

(a)
$$\lim_{x\to 0} x^4 \cos\left(\frac{1}{\sqrt[3]{x}}\right) = 0.$$

Tem-se $-1 \le \cos\left(\frac{1}{\sqrt[3]{x}}\right) \le 1$, $x \ne 0$, pelo que $-x^4 \le x^4 \cos\left(\frac{1}{\sqrt[3]{x}}\right) \le x^4$, $x \ne 0$.
Como $\lim_{x\to 0} \left(-x^4\right) = 0 = \lim_{x\to 0} x^4$, o Teorema 7 garante que o limite proposto vale 0.

O Teorema 5 teria permitido obter a mesma conclusão.

(b) Seja
$$f(x) = \begin{cases} x^2 & \text{se } x \in \mathbb{Q}_0^+, \\ x^3 & \text{se } x \in \mathbb{Q}^-, \\ |x| & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$
 Então $\lim_{x \to 0} f(x) = 0$.

Para estudar o limite quando $x \to 0$, é suficiente considerar $x \in]-1,1[$, tendo-se

$$x^3 \le f(x) \le |x|, \quad \forall x \in]-1,1[.$$

Como

$$\lim_{x \to 0} x^3 = \lim_{x \to 0} |x| = 0,$$

o Teorema 7 garante que $\lim_{x\to 0} f(x) = 0$.

Teorema 8 [Permanência de sinal]

Sejam $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D'$ tais que $\lim_{x \to a} f(x) = \ell$ com $\ell > 0$. Então

$$\exists \varepsilon > 0 \colon (x \in D \land 0 < |x - a| < \varepsilon) \implies f(x) > 0. \tag{37}$$

Demonstração

Seja $\delta = \ell/2 > 0$. Então existe $\varepsilon > 0$ tal que, para $x \in D$,

$$0 < |x - a| < \varepsilon \Longrightarrow |f(x) - \ell| < \frac{\ell}{2} \Longrightarrow \frac{\ell}{2} < f(x) < \frac{3\ell}{2} \Longrightarrow f(x) > 0.$$

Corolario 1

Sejam $f, g: D \subset \mathbb{R} \longrightarrow \mathbb{R} \in a \in D'$.

(a) Se
$$\lim_{x \to a} f(x) = \ell$$
 e $\lim_{x \to a} g(x) = m$, com $\ell > m$, então
$$\exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \implies f(x) > g(x). \tag{38}$$

(b) Se
$$f(x) \leq g(x), \forall x \in D \setminus \{a\}, \lim_{x \to a} f(x) = \ell$$
 e $\lim_{x \to a} g(x) = m$ então $\ell \leq m$.

$Demonstraç\~ao$

- (a) Basta aplicar o Teorema 8 à função $h(x) = f(x) h(x), x \in D$.
- (b) Se fosse $\ell > m$, pelo resultado da parte (a), concluir-se-ia da existência de $\varepsilon > 0$ tal que

$$(x \in D \land 0 < |x - a| < \varepsilon) \implies f(x) > g(x)$$

o que contraria a hipótese. Logo tem que ser $\ell \leq m$.

Exercícios

- 1. Calcular $\lim_{x\to 0} \frac{\operatorname{sen}(1/x)}{1/x}$.
- 2. Calcular, caso existam, $\lim_{x\to 0} \frac{x+|x|}{2x}$ e $\lim_{x\to 1} \frac{x+|x|}{2}$.
- 3. Verificar que $\lim_{x\to 0} \frac{1-\cos x}{\sin x} = 0$.
- 4. Sejam $f(x) = x^2$, $x \in \mathbb{R}$, e $g(x) = \begin{cases} 2006 & \text{se } x \in \mathbb{Q}, \\ 2007 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Calcular, justificando devidamente, $\lim_{x \to 0} f(x)g(x)$.
- 5. Calcular $\lim_{t\to 0} \frac{\operatorname{sen}(\operatorname{tg} t)}{\operatorname{sen} t}$.
- 6. Sejam f(x) = x, $x \in \mathbb{R}$, $g(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q}, \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$ $h(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Z}, \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Z}. \end{cases}$
 - (a) Determinar o domínio das funções definidas por $\frac{f(x)}{g(x)}$, $\frac{g(x)}{f(x)}$, $\frac{f(x)}{h(x)}$, $\frac{h(x)}{f(x)}$.
 - (b) Verificar que $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$ e que $\lim_{x\to \sqrt{2}} \frac{f(x)}{g(x)} = \sqrt{2}$.
 - (c) Justificar que não existe $\lim_{x\to 0} \frac{g(x)}{f(x)}$ nem $\lim_{x\to \sqrt{2}} \frac{g(x)}{f(x)}$.
 - (d) Verificar que $\lim_{x\to 1/2} \frac{f(x)}{h(x)} = \frac{1}{2}$ e que $\lim_{x\to 1} \frac{f(x)}{h(x)} = 1$.
 - (e) Justificar que não existe $\lim_{x\to 0} \frac{h(x)}{f(x)}$ e que $\lim_{x\to 1} \frac{h(x)}{f(x)} = 1$.
- 7. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $\left| \frac{f(x)}{x} \right| \le 2007$, $\forall x \ne 0$. Será que existe $\lim_{x \to 0} f(x)$? Justificar devidamente.

2.4 Limites laterais

No estudo de limites é útil introduzir a noção de limite lateral. Na prática, em virtude do Teorema 2, ela intervém muitas vezes para mostrar que certos limites não existem. É o que se passa, por exemplo, com a função definida por

$$f(x) = \begin{cases} -1 & \text{se } x \le 0, \\ 1 & \text{se } x > 0, \end{cases}$$

para a qual se tem

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -1 \qquad e \qquad \lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1.$$

Estes limites representam precisamente os limites das restrições de f correspondentes a x < 0 e a x > 0. Noutras situações, pode até existir o limite "completo", digamos $\lim_{x \to a} f(x)$, mas ser conveniente considerar separadamente $\lim_{x \to a \atop x < a} f(x)$ e $\lim_{x \to a \atop x > a} f(x)$, o que é possível desde que a seja ponto de acumulação, de ambos os lados, do domínio de f. Estão em causa os chamados limites laterais, que passamos agora a definir.

Sejam $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D'_+ \cap D'_-$. Dizemos que o número real ℓ é o limite lateral à direita de f(x) quando x tende para a (por valores superiores a a) quando for possível tornar os valores de f(x) arbitrariamente próximos de ℓ , desde que o genérico x se torne suficientemente próximo de a, percorrendo apenas pontos do domínio D à direita de a e sem nunca atingir o ponto a. Simbolicamente, escrevemos

$$\lim_{x \to a^{+}} f(x) = \ell$$
se e só se $\forall \delta > 0, \exists \varepsilon > 0 : (x \in D \land 0 < x - a < \varepsilon) \Longrightarrow |f(x) - \ell| < \delta.$

Analogamente, para o limite lateral à esquerda de f(x) quando x tende para a (por valores inferiores a a). Escrevemos

$$\lim_{x \to a^{-}} f(x) = \ell$$
se e só se $\forall \delta > 0, \ \exists \varepsilon > 0 : \ (x \in D \land -\varepsilon < x - a < 0) \Longrightarrow |f(x) - \ell| < \delta$

A existência de um limite "completo" pode ser decidida com base nos limites laterais, através do seguinte resultado.

Teorema 9

Tem-se $\ell = \lim_{x \to a} f(x)$ se e só se existem e são iguais a ℓ os correspondentes limites laterais, isto é,

$$\ell = \lim_{x \to a} f(x) \iff \left(\lim_{x \to a^{+}} f(x) = \ell \wedge \lim_{x \to a^{-}} f(x) = \ell \right). \tag{40}$$

Demonstração

(i) Suponhamos que existe $\ell \in \mathbb{R}$ tal que $\ell = \lim_{x \to a} f(x)$. Então (Teorem 2) $\lim_{x \to a^-} f(x) = \ell$ e $\lim_{x \to a^+} f(x) = \ell$, uma vez que se trata de limites, no mesmo ponto a, da restrição de f a $D \cap]-\infty, a[$ e da restrição de f a $D \cap]a, +\infty[$, respectivamente. (ii) Reciprocamente, seja $\delta > 0$, arbitrário.

Por um lado, como $\lim_{x\to a^-} f(x) = \ell$, tem-se que

$$\exists \alpha > 0: (x \in D \land -\alpha < x - a < 0) \Longrightarrow |f(x) - \ell| < \delta$$

Por outro lado, como $\lim_{x \to a^+} f(x) = \ell$,

$$\exists \beta > 0: \ (x \in D \land 0 < x - a < \beta) \implies |f(x) - \ell| < \delta$$

Consequentemente, para $\varepsilon = min\{\alpha, \beta\}$, resulta que

$$(x \in D \land 0 < |x - a| < \varepsilon) \implies |f(x) - \ell| < \delta$$

pelo que $\lim_{x \to a} f(x) = \ell$.

Observação 1

Para os limites laterais valem, com as devidas adaptações, os resultados apresentados na Subsecção 2.3 sobre o limite "completo".

Exemplo 15

(a) Não existe $\lim_{x\to 0} \frac{|x|}{x}$.

De facto, $\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1$ e $\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1$.

(b) Não existe $\lim_{x\to 0} \frac{1}{1+e^{1/x}}$

Repare-se que $\lim_{x\to 0^-}\frac{1}{1+e^{1/x}}=1$ porque 1/x torna-se ilimitada por valores negativos, levando a exponencial $e^{1/x}$ a tender para 0. Por outro lado, $\lim_{x\to 0^+}\frac{1}{1+e^{1/x}}=0$, porque 1/x torna-se ilimitada por valores positivos, levando também a exponencial $e^{1/x}$ a tornar-se ilimitada por valores positivos.

Exercícios

Estude a existência dos seguintes limites:

(a)
$$\lim_{x \to 1} \frac{|x-1|}{x-1}$$
, $\lim_{x \to -7} \frac{x+7}{|x+7|}$;

(b)
$$\lim_{x \to 1} e^{-1/(x-1)}$$
, $\lim_{x \to 0} e^{-1/x^4}$;

(c)
$$\lim_{x \to 0} f(x)$$
, para $f(x) = \begin{cases} 3x + 1 & \text{se } x > 0, \\ 50 & \text{se } x = 0, \\ x^5 + 1 & \text{se } x < 0; \end{cases}$

(d)
$$\lim_{x\to 0} g(x)$$
, para $g(x) = \begin{cases} e^{\sin x} & \text{se } x > 0, \\ 50 & \text{se } x = 0, \\ \lg(x + \frac{\pi}{4}) & \text{se } x < 0. \end{cases}$

2.5 Limites no infinito

Vamos agora dar significado à expressão $\lim_{x\to -\infty} f(x)$ quando D é ilimitado inferiormente, e à expressão $\lim_{x\to +\infty} f(x)$ quando D é ilimitado superiormente. Dizemos que o número real ℓ é o limite de f(x) quando x tende para $-\infty$, e escrevemos $\lim_{x\to -\infty} f(x)=\ell$, se for possível tornar f(x) arbitrariamente próximo de ℓ , desde que, em $D\cap]-\infty, a[$, o genérico x se torne suficientemente grande em valor absoluto. Simbolicamente,

$$\lim_{x \to -\infty} f(x) = \ell$$
 se e só se $\forall \delta > 0, \ \exists A > 0 : (x \in D \land x < -A) \Longrightarrow |f(x) - \ell| < \delta.$

De maneira análoga definimos o limite de f(x) quando x tende para $+\infty$,

$$\lim_{x \to +\infty} f(x) = \ell$$
 se e só se $\forall \delta > 0$, $\exists A > 0 : (x \in D \land x > A) \Longrightarrow |f(x) - \ell| < \delta$.

Observação 2

Para os limites no infinito valem, com as devidas adaptações, os resultados apresentados na Subsecção 2.3 sobre o limite para x a tender para certo $a \in \mathbb{R}$.

Exemplo 16

(a)
$$\lim_{x \to +\infty} \frac{1}{1 + e^{1/x}} = \frac{1}{2}$$
 e $\lim_{x \to -\infty} \frac{1}{1 + e^{1/x}} = \frac{1}{2}$.

De facto, $x \to \pm \infty \implies 1/x \to 0 \implies e^{1/x} \to 1$.

(b) Não existe $\lim_{x \to -\infty} \cos x$ nem $\lim_{x \to +\infty} \cos x$.

Sejam $A=\{x\in\mathbb{R}:x=2k\pi,\,k\in\mathbb{Z}\}$ e $B=\{x\in\mathbb{R}:x=\pi+2k\pi,\,k\in\mathbb{Z}\}$, ambos ilimitados inferior e superiormente. Tem-se

$$\lim_{\substack{x \to -\infty \\ x \in A}} \cos x = \lim_{\substack{x \to +\infty \\ x \in A}} \cos x = 1 \qquad \text{e} \qquad \lim_{\substack{x \to -\infty \\ x \in B}} \cos x = \lim_{\substack{x \to +\infty \\ x \in B}} \cos x = -1,$$

pelo que não pode existir nenhum dos limites em causa.

(c) Em \mathbb{R} , também não existe $\lim_{x\to -\infty} x^2$ nem existe $\lim_{x\to +\infty} x^2$ Basta atender a que x^2 se torna ilimitado quando $x\to -\infty$ ou quando $x\to +\infty$.

Exercício

Determinar, caso existam:

1. (a)
$$\lim_{x \to +\infty} \frac{1}{x}$$
; (b) $\lim_{x \to -\infty} \frac{1}{x}$; (c) $\lim_{x \to +\infty} \frac{\sin x}{x}$; (d) $\lim_{x \to -\infty} \frac{\sin x}{x}$;

2. (a)
$$\lim_{x \to +\infty} e^{\sin x}$$
; (b) $\lim_{x \to -\infty} e^{\sin x}$; (c) $\lim_{x \to +\infty} e^x \sin x$; (d) $\lim_{x \to -\infty} e^x \sin x$;

3. (a)
$$\lim_{x \to +\infty} x \operatorname{sen} x$$
; (b) $\lim_{x \to -\infty} \frac{x}{x + \operatorname{sen} x}$;

(c)
$$\lim_{x \to +\infty} \frac{x^2 + \cos x}{x^2 - \sin x}$$
; (d) $\lim_{x \to +\infty} \frac{2x^3 - \sin^2 x}{5e^x + \cos x}$.

2.6 Limites infinitos

Suponhamos que pretendemos averiguar a existência de $\lim_{x\to 0} h(x)$ e de $\lim_{x\to +\infty} g(x)$, onde

$$h(x) = \frac{1}{x^2}, \quad x \in \mathbb{R} \setminus \{0\}, \qquad g(x) = x^2, \quad x \in \mathbb{R}.$$

Como h se torna ilimitada quando $x \to 0$ e g se torna ilimitada quando $x \to +\infty$, os limites em causa não existem (cf. o Coroláriio do Teorema 4).

No entanto, estas funções tornam-se ilimitadas com um comportamento monótono, levando-nos a afirmar que h(x) tende para $+\infty$ quando x tende para 0 e que g(x) tende para $+\infty$ quando x tende para $+\infty$. Adoptando a notação utilizada anteriormente para o limite, escrevemos

$$\lim_{x\to 0} h(x) = +\infty \quad \mathrm{e} \quad \lim_{x\to +\infty} g(x) = +\infty \, .$$

Tratemos os casos gerais. Sejam $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D'$. Dizemos que f(x) tende para $+\infty$ quando x tende para a se for possível tornar f(x) arbitrariamente grande desde que x se torne suficientemente próximo de a, percorrendo apenas pontos de D, mas sem nunca atingir a. Escrevemos

$$\lim_{x \to a} f(x) = +\infty$$
 se e só se $\forall A > 0, \exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \implies f(x) > A.$

Analogamente:

$$\lim_{x \to a} f(x) = -\infty$$
 se e só se $\forall A > 0, \exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \implies f(x) < -A;$

$$\lim_{x \to a^+} f(x) = +\infty$$
 (43c) se e só se $\forall A > 0, \exists \varepsilon > 0 : (x \in D \land 0 < x - a < \varepsilon) \implies f(x) > A;$

$$\lim_{x \to a^+} f(x) = -\infty$$
 se e só se $\forall A > 0$, $\exists \varepsilon > 0$: $(x \in D \land 0 < x - a < \varepsilon) \implies f(x) < -A$;

$$\lim_{x \to a^{-}} f(x) = +\infty$$
 se e só se $\forall A > 0, \exists \varepsilon > 0 : (x \in D \land -\varepsilon < x - a < 0) \implies f(x) > A;$

$$\lim_{x \to a^{-}} f(x) = -\infty$$
se e só se $\forall A > 0, \exists \varepsilon > 0 : (x \in D \land -\varepsilon < x - a < 0) \Longrightarrow f(x) < -A;$

$$\lim_{x \to +\infty} f(x) = +\infty$$
 se e só se $\forall A > 0, \exists B > 0 : (x \in D \land x > B) \Longrightarrow f(x) > A;$ (43g)

$$\lim_{x \to +\infty} f(x) = -\infty$$
 (43h) se e só se $\forall A > 0, \exists B > 0 : (x \in D \land x > B) \Longrightarrow f(x) < -A;$

$$\lim_{x \to -\infty} f(x) = +\infty$$
 se e só se $\forall A > 0, \exists B > 0 : (x \in D \land x < -B) \Longrightarrow f(x) > A;$ (43*i*)

$$\lim_{x \to -\infty} f(x) = -\infty$$
 se e só se $\forall A > 0, \exists B > 0 : (x \in D \land x < -B) \Longrightarrow f(x) < -A.$

Muito brevemente, vejamos algumas propriedades dos limites infinitos.

Unicidade

Se $\lim_{x\to a} f(x) = +\infty$ então não pode ser $\lim_{x\to a} f(x) = -\infty$ nem pode existir $\ell\in\mathbb{R}$ tal que $\lim_{x\to a} f(x) = \ell$.

Não limitação

Se $\lim_{x\to a} f(x) = +\infty$ então f é ilimitada em qualquer vizinhança do ponto a .

Permanência

Se $f(x) \leq g(x), \forall x \in D$, e $\lim_{x \to a} f(x) = +\infty$ então $\lim_{x \to a} g(x) = +\infty$.

Aritmética

- (a) Se $\lim_{x\to a} f(x) = +\infty$ e g é minorada então $\lim_{x\to a} \left(f(x) + g(x) \right) = +\infty$.
- (b) Se $\lim_{x\to a} f(x) = +\infty$ e g(x) > k > 0, $\forall x \in D$, então $\lim_{x\to a} f(x) g(x) = +\infty$.
- (c) Se f(x) > 0, $\forall x \in D$, então $\lim_{x \to a} f(x) = 0$ se e só se $\lim_{x \to a} \frac{1}{f(x)} = +\infty$.
- (d) Se f(x) > k > 0, $\forall x \in D$, $g(x) \ge 0$, $\forall x \in D$, e $\lim_{x \to a} g(x) = 0$ então $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$.
- (e) Se g(x) não tem sinal determinado, pode não existir $\lim_{x\to a} \frac{f(x)}{g(x)}$.
- (f) Se f é limitada, com $f(x) \ge 0$, $\forall x \in D$, e $\lim_{x \to a} g(x) = +\infty$ então $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$.

São válidos resultados análogos para $-\infty$ em vez de $+\infty$ e para a^+ ou a^- em vez de a.

Exercícios

- (a) Calcular, caso existam (comece por fazer um gráfico das funções em causa):

- $\begin{array}{lll} \text{(i)} & \lim_{x \to +\infty} \left(x + \sin x \right); & \text{(ii)} & \lim_{x \to +\infty} \left(e^{x^2} \sin x + 2 e^{x^2} \right); \\ \text{(iii)} & \lim_{x \to +\infty} e^x |\sin x + \cos x|; & \text{(iv)} & \lim_{x \to -\infty} \left. e^x \left(|\cos x| + |\sin x| \right). \end{array}$
- (b) Dizer se existe, finito ou infinito, $\lim_{x\to 0} (f(x) + g(x))$, para

$$f(x) = \frac{1}{|x|}, \ x \neq 0, \quad e \quad g(x) = \begin{cases} 1 & \text{se } x \geq 0, \\ 2 & \text{se } x < 0. \end{cases}$$

- (c) Em cada alínea, esboçar o gráfico de uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfazendo as condições indicadas:

 - (i) f(1) = 3, $\lim_{x \to 1} f(x) = 2$; (ii) f(1) = 3, $\lim_{x \to 1^{+}} f(x) = +\infty$, $\lim_{x \to 1^{-}} f(x) = 0$;
 - (iii) $\not\equiv \lim_{x \to +\infty} f(x)$, nem finito nem infinito;
 - (iv) $\not\equiv \lim_{x \to 0^+} f(x)$, $\not\equiv \lim_{x \to 0^-} f(x)$, finites ou infinites, $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$.
- (d) Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $\left| \frac{f(x)}{x} \right| \le \frac{1}{10^{2007}}, \ \forall x \in \mathbb{R} \setminus \{0\}.$

Diga se existem, finitos ou infinitos, $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to 0} f(x)$.

3 Continuidade

Vamos agora tratar a noção de continuidade que, como sabemos, está extremamente relacionada com o conceito de limite. Faremos primeiro uma abordagem sobre a continuidade pontual, isto é sobre a continuidade do ponto de vista *local*, e passaremos depois a um tratamento *global*, onde nos interessaremos pelas propriedades das funções contínuas em intervalos.

3.1 Definições e primeiros exemplos

Seja $f\colon D\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função e $a\in D$ um ponto do seu domínio. Dizemos que f é contínua em a quando

$$a$$
 é ponto isolado de D ou $a \in D'$ e $\lim_{x \to a} f(x) = f(a)$. (44a)

Simbolicamente, traduzimos a continuidade de f em a escrevendo que

$$\forall \delta > 0, \, \exists \varepsilon > 0: \, (x \in D \, \land \, |x - a| < \varepsilon) \implies |f(x) - f(a)| < \delta, \tag{44b}$$

com o significado de que os valores de f(x) se aproximam arbitrariamente de f(a), desde que o genérico x se aproxime suficientemente de a, percorrendo apenas pontos de D, não necessariamente distintos de a. Dizemos ainda que:

- f é contínua em A, com $A \subset D$, quando f é contínua em todo o ponto $a \in A$;
- f é contínua quando f é contínua em todo o domínio D.

Exemplo 17

(a) As funções f e g definidas a seguir são contínuas.

$$f: \mathbb{Z} \longrightarrow \mathbb{R}$$
$$x \longmapsto x$$

$$g: [0,2] \cup [4,6] \longrightarrow \mathbb{R}$$

$$x \longmapsto x$$

(b) Toda a função polinomial, $p: \mathbb{R} \longrightarrow \mathbb{R}$, definida como segue, é contínua

$$p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n , \quad n \in \mathbb{N}.$$
 (45)

Em particular, toda a função constante é contínua.

- (c) As funções seno, cosseno, tangente e cotangente são contínuas.
- (d) As funções e^x , $x \in \mathbb{R}$, e $\log x$, $x \in \mathbb{R}^+$, são contínuas.
- (e) A função $g \colon \mathbb{R} \to \mathbb{R}$ definida por $g(x) = \left\{ \begin{array}{ll} 0 & \text{se } x < 0 \\ 1 & \text{se } x \geq 0 \end{array} \right.$ é contínua em $\mathbb{R} \setminus \{0\}$.
- (f) A função definida por $h(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ não é contínua em ponto algum.
- (g) A função definida por $k(x) = \left\{ \begin{array}{ll} 0 & \text{se } x \in \mathbb{Q} \\ x & \text{se } x \in \mathbb{R} \backslash \mathbb{Q} \end{array} \right.$ é contínua, apenas, em a = 0.

3.2 Descontinuidades

Da definição (44*a-b*) de continuidade, uma função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ possui uma descontinuidade no ponto $a \in D$ quando se verificar uma das duas condições seguintes:

•
$$a \in D'$$
 e não existe $\lim_{x \to a} f(x);$ (46a)

•
$$a \in D'$$
, existe $\ell = \lim_{x \to a} f(x)$ mas $\ell \neq f(a)$. (46b)

Dizemos, em particular, que f possui uma descontinuidade removível, quando

$$\lim_{x \to a} f(x) = \ell \quad \land \quad \ell \neq f(a), \tag{47a}$$

caso em que, modificando o valor da função no ponto a, seria possível remover a descontinuidade, e que possui uma descontinuidade de salto, quando

$$\lim_{x \to a^+} f(x) = \ell_1 \quad \land \quad \lim_{x \to a^-} f(x) = \ell_2 \quad \land \quad \ell_1 \neq \ell_2. \tag{47b}$$

Simbolicamente, traduzimos uma descontinuidade de f num ponto $a \in D$, negando a afirmação (44b), ou seja, escrevendo

$$\exists \delta > 0: \ \forall \varepsilon > 0, \ \exists x_{\varepsilon} \in D, \ |x_{\varepsilon} - a| < \epsilon \ \land \ |f(x_{\varepsilon}) - f(a)| \ge \delta.$$
 (48)

Observação 3

Como consequência da definição (44a), uma função não pode possuir descontinuidades em pontos isolados do seu domínio. Cf. o Exemplo 17 (a), função f.

Exemplo 18

As funções apresentadas a seguir possuem uma descontinuidade na origem. Trata-se de uma descontinuidade removível no caso das funções f e ℓ e de uma descontinuidade de salto no caso das funções h e j. Para a função g, não existe o limite na origem porque a função tende para $+\infty$; para a função k, não existe nenhum dos limites laterais na origem (Exemplo 9 (b)).

(a)
$$f(x) = \begin{cases} 1 & \text{se } x \neq 0 \\ 2 & \text{se } x = 0 \end{cases}$$

(b)
$$g(x) = \begin{cases} 1/x^2 & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

(c)
$$h(x) = \begin{cases} \frac{x}{|x|} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

(d)
$$j(x) = \begin{cases} \frac{1}{1 + e^{1/x}} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

(e)
$$k(x) = \begin{cases} \operatorname{sen}(1/x) & \operatorname{se} x \neq 0 \\ 0 & \operatorname{se} x = 0 \end{cases}$$

(f)
$$\ell(x) = \begin{cases} x \operatorname{sen}(1/x) & \operatorname{se} x \neq 0 \\ 1 & \operatorname{se} x = 0 \end{cases}$$

Exemplo 18 (d), função j

Exemplo 18 (f), função ℓ

3.3 Continuidade lateral

A continuidade lateral é uma noção que assume algum interesse quando estão em causa pontos de acumulação do domínio da função, já que no caso de pontos isolados, a função é trivialmente contínua, pela própria definição. Assim, dizemos que uma função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é

- contínua à direita no ponto $a \in D \cap D'$ quando $\lim_{x \to a^+} f(x) = f(a);$ (49a)
- contínua à esquerda no ponto $a \in D \cap D'$ quando $\lim_{x \to a^-} f(x) = f(a)$. (49b)

Observação 4

É óbvio que uma função f é contínua em $a \in D \cap D'$ se e só se f é contínua à direita e à esquerda no ponto a.

Exemplo 19

A função j do Exemplo 18 (d) é contínua (apenas) à direita na origem. A função k do Exemplo 18 (e) não é contínua à esquerda nem à direita na origem porque não existe $\lim_{x\to 0^-} k(x)$ nem existe $\lim_{x\to 0^+} k(x)$.

3.4 Propriedades sobre a continuidade pontual

A partir da definição (44*a-b*) e dos resultados apresentados na Secção 2 sobre o limite de funções, extraem-se os seguintes resultados.

Teorema 10 [Continuidade de restrições]

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em $a \in D$. Então qualquer restrição de f a um subconjunto do domínio que contenha a é também contínua em a.

A demonstração é imediata.

Teorema 11 [Limitação de funções contínuas]

Se $f: D \subset \mathbb{R} \to \mathbb{R}$ é contínua em a então f é limitada em alguma vizinhança de a, i.e.

$$\exists \varepsilon > 0, \ \exists M > 0: \ |f(x)| \le M, \ \forall x \in D \cap |a - \varepsilon, a + \varepsilon|.$$
 (50)

Demonstração

(i) Se a é ponto isolado de D então (a não é ponto de acumulação de D)

$$\exists \varepsilon > 0 :] a - \varepsilon, a + \varepsilon [\cap D = \{a\}]$$

e a é o único ponto de D no intervalo] $a - \varepsilon$, $a + \varepsilon$ [. Para este ε , basta tomar M = |f(a)| para garantir que se verifique a condição (50).

(ii) Se a é ponto de acumulação de D então $\lim_{x\to a} f(x) = f(a)$ e, pelo Teorema 4 sobre o limite de funções, f é limitada numa vizinhança de a.

Observação 5

Do Teorema 11, sai que se uma função f se torna ilimitada em qualquer vizinhança de certo ponto a então f não pode ser contínua em a. É o caso da função

$$f(x) = \begin{cases} \frac{1}{x} & \text{se } x \neq 0 \\ k & \text{se } x = 0 \end{cases}$$

onde k é uma constante arbitrária. Independentemente do valor de k, f não é contínua na origem, pelo facto se se tornar ilimitada em qualquer vizinhança de a = 0.

Teorema 12 [Permanência do sinal das funções contínuas]

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ contínua em $a \in D$ tal que f(a) > 0. Então existe um intervalo $J =]a - \varepsilon, a + \varepsilon[$ tal que f(x) > 0, $\forall x \in J \cap D$.

Demonstração

- (i) Se a é ponto isolado de D então $\exists \varepsilon > 0$: $]a \varepsilon, a + \varepsilon [\cap D = \{a\} \text{ e } a$ é o único ponto de D no intervalo $]a \varepsilon, a + \varepsilon [$. Basta então considerar $J =]a \varepsilon, a + \varepsilon [$.
- (ii) Se a é ponto de acumulação de D então $\lim_{x\to a} f(x) = f(a)$ e, pelo Teorema 8 sobre a permanência do sinal no limite, nomeadamente pelo Corolário 1, existe um intervalo aberto centrado em a, digamos J, tal que f é positiva em $J \cap D$.

Observação 6

Um resultado análogo ao do Teorema 12 é igualmente válido quando f(a) < 0.

Teorema 13 [Aritmética de funções contínuas]

Sejam $f,g\colon D\subset\mathbb{R}\to\mathbb{R}$ contínuas no ponto $a\in D$. Então as funções $f+g,\ f-g,\ f\cdot g$ são contínuas em a e a função $\frac{f}{g}$ é contínua em a, desde que $g(a)\neq 0$.

Demonstração

- (i) Se a é ponto isolado de D, o resultado é imediato.
- (ii) Se a é ponto de acumulação de D, basta usar o Teorema 6 sobre a aritmética dos limites. \blacksquare

Observação 7

Do Teorema 13 sai, em particular, que se f é contínua em a, então também são contínuas em a as funções kf, com k uma constante real, e ainda $\frac{1}{f}$, desde que $f(a) \neq 0$.

Teorema 14 [Continuidade da função composta]

Sejam $f: D \subset \mathbb{R} \to \mathbb{R}$ e $g: B \subset \mathbb{R} \to \mathbb{R}$ tais que $f(D) \subset B$. Se f é contínua em $a \in D$ e g é contínua em f(a) então $g \circ f$ é contínua em a.

Demonstração

Ponha-se b = f(a). Seja $\delta > 0$, arbitrário. Como q é contínua em $b \in B$,

$$\exists \alpha > 0: (y \in B \land |y - b| < \alpha) \Longrightarrow |g(y) - g(b)| < \delta. \tag{51}$$

Como f é contínua em $a \in D$, para este α ,

$$\exists \varepsilon > 0 : (x \in D \land |x - a| < \epsilon) \Longrightarrow |f(x) - f(a)| < \alpha. \tag{52}$$

Consequentemente, para este ε , encadeando as condições (51) e (52), resulta

$$(x \in D \land |x - a| < \varepsilon) \implies (f(x) \in B \land |f(x) - b| < \alpha)$$

$$\implies |g(f(x)) - g(b)| < \delta$$

$$\implies |(g \circ f)(x) - (g \circ f)(a)| < \delta.$$

Logo, $g \circ f$ é contínua no ponto a.

Observação 8

O Teorema 14 estabelece que a composta de duas funções contínuas é uma função contínua. No entanto, ainda que f ou g não sejam contínuas, pode acontecer que a composta seja contínua. Consideremos, por exemplo, as funções definidas por

$$f(x) = \begin{cases} -1 & \text{se } x \in \mathbb{Q}, \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases} \quad \text{e} \quad g(x) = \begin{cases} 2 & \text{se } x \in \mathbb{Q}, \\ 3 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

que não são contínuas em ponto algum de R. No entanto,

$$f(q(x)) = -1, \ \forall x \in \mathbb{R} \ \ e \ \ q(f(x)) = 2, \ \forall x \in \mathbb{R},$$

pelo que $f \circ g$ e $g \circ f$ são contínuas em \mathbb{R} .

Exercício

Defina funções $f, g: \mathbb{R} \to \mathbb{R}$ nas condições indicadas e explique porque não há qualquer contradição com o Teorema 14:

- (a) f contínua, g não contínua, $g \circ f$ contínua;
- (b) f não contínua, g contínua, $g \circ f$ contínua.

3.5 Resultados sobre funções contínuas

As funções contínuas em conjuntos "especiais" possuem propriedades fortes, que passamos agora a apresentar.

Teorema 15 [Teorema de Cantor]

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua. Se D é fechado e limitado então f(D) é fechado e limitado.

Demonstração: Omitida. Cf., por exemplo, a referência bibliográfica [4].

Exemplo 20

A função f(x) = 1, $\forall x \in [0, 4]$, é contínua. Tem-se D = [0, 4] e $f(D) = \{1\}$.

A função
$$g(x) = \begin{cases} x & \text{se } x \in [0,2] \\ 2 & \text{se } x \in [4,6] \end{cases}$$
 é contínua em $D = [0,2] \cup [4,6]$. Tem-se $f(D) = [0,2]$.

Teorema 16 [Teorema de Weierstrass]

Se $f: D \subset \mathbb{R} \to \mathbb{R}$ é contínua e D é fechado e limitado então f é limitada e atinge os seus extremos em D, isto é,

$$\exists a, b \in D: \quad f(a) < f(x) < f(b), \quad \forall x \in D. \tag{53}$$

Demonstração

Pelo Teorema 15, f(D) é fechado e limitado. Por f(D) ser limitado, existem $m = \inf f(D)$ e $M = \sup f(D)$, com $m \leq M$, pelo que $f(D) \subset [m, M]$. Mas $m \in \overline{f(D)}$ pois, caso contrário, existiria $\varepsilon > 0$ tal que $]m - \epsilon, m + \epsilon[\cap f(D) = \emptyset]$, e concluir-se-ia que $f(D) \subset [m + \epsilon, M]$, pelo que $m + \varepsilon$ seria um minorante de f(D) maior do que m, contrariando o facto de m ser o ínfimo de f(D). Analogamente também $M \in \overline{f(D)}$. Como f(D) é fechado, tem-se $\overline{f(D)} = f(D)$, pelo que $m, M \in f(D)$, resultando então $m = \min f(D)$ e $M = \max f(D)$. Consequentemente $\exists a, b \in D : f(a) = m \land f(b) = M$, completando-se a demonstração.

Observação 9

É fundamental que D seja fechado. Consideremos a função $f(x) = x, x \in]0, 5]$, que não atinge mínimo. Isto acontece porque]0, 5] não é fechado. Também é fundamental que D seja limitado. Consideremos a função $g(x) = x, x \in [0, +\infty[$, que não atinge máximo. Isto acontece porque $[0, +\infty[$ não é limitado.

Claro que o domínio pode não ser limitado ou não ser fechado, ou a função pode não ser contínua mas, ainda assim, os extremos serem atingidos.

- $h(x) = \operatorname{sen} x$, $x \in \mathbb{R}$, é uma função contínua num domínio fechado mas não limitado; ainda assim, os dois extremos são atingidos.
- $j(x) = |x|, x \in]-3,4]$ é uma função contínua num domínio limitado que não é fechado: mesmo assim, os dois extremos são atingidos.
 - $k(x), x \in]-\infty, b[$, representada na figura ao lado, não é contínua e o seu domínio não é fechado nem limitado; apesar de tudo isso, k atinge os dois extremos.

Teorema 17 [Teorema do valor intermédio (Bolzano-Cauchy)]

Seja $f: [a, b] \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua tal que $f(a) \neq (b)$. Se k é um número real estritamente compreendido entre f(a) e f(b), então existe $c \in [a, b]$ tal que f(c) = k.

Demonstração

Suponhamos que f(a) < k < f(b). Consideremos o conjunto $S = \{a \le x \le b : f(x) \le k\}$. Temos $S \ne \emptyset$, já que $a \in S$, e S limitado porque $S \subset [a,b]$. Então, em particular, S possui supremo, digamos M, pelo que $S \subset [a,M]$. Como $S \subset [a,b]$, tem-se $a \le M \le b$. Vejamos que f(M) = k. De facto, se fosse f(M) > k, então M > a e da continuidade de f existiria um intervalo $I =]M - \varepsilon$, M[tal que f(x) > k, $\forall x \in I$. Logo $S \subset [a, M - \varepsilon[$ e $M - \varepsilon$ seria um majorante de S inferior a M, contrariando o facto de M ser o supremo de S. Portanto, não pode ser f(M) > k. Por outro lado, se fosse f(M) < k, então M < b e novamente da continuidade de f, existiria um intervalo f(M) = [M] tal que f(M) < k. Consequentemente, f(M) < k en não seria um majorante de f(M). Assim, também não pode ser f(M) < k.

Está então encontrado o ponto c nas condições pretendidas ($c = M = \sup S$).

Do Teorema 17 saem consequências importantes, entre as quais as seguintes.

Corolario 1

Se $f:[a,b] \longrightarrow \mathbb{R}$ é contínua e tal que f(a)f(b) < 0 então existe $c \in]a,b[$ para o qual f(c) = 0.

Demonstração

Basta considerar k = 0 no Teorema 17.

Corolario 2

Se $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua e I é um intervalo então f(I) é um intervalo.

Demonstração

Se f for constante, com f(x) = k, $\forall x \in I$, então $f(I) = \{k\} = [k, k]$.

Suponhamos que f não é constante. Se f(I) for limitado, ponha-se $m=\inf f(I)$ e $M=\sup f(I)$. Se f(I) não for limitado superiormente, ponha-se $M=+\infty$.

Mostremos que f(I) é o intervalo de extremos m e M. Das definições, tem-se $f(I) \subset [m,M]$ (será intervalo aberto no extremo infinito). Seja $d \in \mathbb{R}$ tal que m < d < M. Existem $a,b \in I$ tais que $m \le f(a) < d < f(b) \le M$. Pelo Teorema 17 do valor intermédio, conclui-se que existe $c \in [a,b]$ tal que f(c) = d.

Observação 10

- (a) Corolário 1 estabelece que uma função contínua num intervalo fechado e limitado não muda de sinal sem se anular (não diz qual é o ponto onde a função se anula nem quantas vezes se anula).
- (b) É fundamental que o domínio de f seja um intervalo. Consideremos a função $f(x) = \left\{ \begin{array}{cc} -1 & \text{se } x \in [-2,0] \\ 1 & \text{se } x \in [1,3], \end{array} \right.$

que é contínua mas que muda de sinal sem se anular.

Isto acontece precisamente porque o seu domínio não é um intervalo.

(c) É fundamental que f seja contínua. Consideremos a função $g(x) = \begin{cases} 1/x & \text{se } x \in [-2, 0[\cup]0, 2] \\ 1 & \text{se } x = 0, \end{cases}$

que está definida num intervalo e que muda de sinal sem se anular.

Isto acontece porque g não é contínua.

(d) Claro que a função pode não ser contínua nem estar definida num intervalo e, no entanto, anular-se sempre que muda de sinal. É o que acontece, por exemplo, com

mas o Corolário 1 não se refere a estes casos. Note-se, no entanto, que restrição de k ao intervalo [-1,1] já está nas condições do Corolário 1.

90

(e) Mais notável é o caso da função
$$h(x)=\left\{\begin{array}{ll} \operatorname{sen}\left(\frac{1}{x}\right) & \operatorname{se} x\neq 0\\ 0 & \operatorname{se} x=0 \end{array}\right.$$

cuja restrição a $\mathbb{R}\setminus\{0\}$ está representada no Exemplo 9 (b). Esta função não é contínua em intervalo algum do tipo [-a,a]. No entanto, sempre que h muda de sinal, passa por algum ponto onde se anula, devido ao facto de h "oscilar sem parar "entre -1 e 1 e as oscilações serem tanto mais rápidas quanto mais nos aproximamos da origem.

(f) A função h considerada em (e) mostra que a propriedade enunciada no Teorema 17 do valor intermédio, em particular no seu Corolário 1, não é exclusiva das funções contínuas.

Exemplo 21

Vejamos que a equação $\log x = \sin x + \frac{\pi}{2}$ possui uma raíz no intervalo $]\pi, 2\pi[$.

De facto, considerando a função $f(x) = \log x - \sin x - \frac{\pi}{2}, x \in [\pi, 2\pi]$, contínua, tem-se $f(\pi) < 0$ e $f(2\pi) > 0$. Logo (teorema do valor intermédio) existe $c \in]\pi, 2\pi[$ tal que f(c) = 0, ou seja tal que $\log c = \sec c + \frac{\pi}{2}$.

Exemplo 22

Seja $f: [0,1] \longrightarrow \mathbb{R}$ uma função contínua tal que $0 \le f(x) \le 1$, $\forall x \in [0,1]$. Vejamos que f possui um ponto fixo, ou seja que existe $c \in [0,1]$: f(c) = c.

Se f(0) = 0 ou se f(1) = 1 então está encontrado o ponto fixo c. No caso em que $f(0) \neq 0$ e que $f(1) \neq 1$, tem-se f(0) > 0 e f(1) < 1. Considerando a função auxiliar $g : [0,1] \longrightarrow \mathbb{R}$, g(x) = f(x) - x, $x \in [0.1]$, obviamente contínua, vem g(0) = f(0) > 0 e g(1) = f(1) - 1 < 0, pelo que (teorema do valor intermédio) existe $c \in [0,1]$ tal que g(c) = 0, ou seja, tal que f(c) = c.

Exemplo 23

Todo o polinómio de grau ímpar possui uma raíz real.

De facto, seja $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, $x \in \mathbb{R}$, com n ímpar e $a_n \neq 0$ (suponhamos que é $a_n > 0$). Então p é uma função contínua em \mathbb{R} , para a qual podemos escrever

$$p(x) = a_n x^n \underbrace{\left(\frac{a_0}{a_n} \frac{1}{x^n} + \frac{a_1}{a_n} \frac{1}{x^{n-1}} + \dots + \frac{a_{n-1}}{a_n} \frac{1}{x} + 1\right)}_{q(x)},$$

tendo-se $\lim_{x\to +\infty} q(x)=1$ e $\lim_{x\to -\infty} q(x)=1$. Como n é impar, resulta $\lim_{x\to +\infty} p(x)=+\infty$ e $\lim_{x\to -\infty} q(x)=-\infty$. Desta forma, existem $a,b\in\mathbb{R}$ tais que p(a)<0 e p(b)>0. Pelo teorema do valor intermédio, existe $c\in]a,b[$ tais que p(a)<0 e p(b)>0.

Do Corolário 2 ao Teorema 17 sai que uma função contínua transforma um intervalo I noutro intervalo f(I). Esta propriedade não é exclusiva das funções contínuas. De facto, por exemplo, para a função

$$f(x) = \begin{cases} x & \text{se } 0 \le x < 2\\ 6 - x & \text{se } 2 \le x \le 6 \end{cases}$$

tem-se I = [0, 6], f(I) = [0, 6] e, no entanto, f não é contínua.

Porém, atribuindo a f outra característica – a de ser monótona – pode garantir-se que f seja contínua. De facto, vale o seguinte resultado.

Teorema 18

Se $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ é monótona no intervalo I e f(I) é um intervalo, então f é contínua.

$Demonstraç\~ao$

Suponha-se que f é crescente. Admitindo que f possuia uma descontinuidade em certo $a \in I$, não se poderia ter

$$\ell = \lim_{x \to a^{-}} f(x) = f(a) = \lim_{x \to a^{+}} f(x) = L.$$

Como f é crescente, deveríamos ter $\ell < f(a)$ ou f(a) < L, ou seja, a função deveria apresentar um salto de ℓ para f(a) ou de f(a) para L. Como f não pode decrescer, concluir-se-ia que f não poderia, nunca mais, passar entre ℓ e f(a) ou entre f(a) e L, e f(I) não seria um intervalo.

Vejamos agora o que acontece, quanto à continuidade, à inversa de uma função contínua. Seja $f: D \subset \mathbb{R} \longrightarrow f(D)$ contínua e bijectiva. Define-se a inversa, $f^{-1}: f(D) \longrightarrow D$, que pode não ser contínua. É o caso da função g e da sua inversa,

$$g(x) = \begin{cases} x+1 & \text{se } 0 \le x < 1 \\ x & \text{se } 2 \le x \le 3 \end{cases} \qquad \text{e} \qquad g^{-1}(x) = \begin{cases} x-1 & \text{se } 1 \le x < 2 \\ x & \text{se } 2 \le x \le 3. \end{cases}$$

A primeira é contínua e bijectiva e a segunda não é contínua.

No entanto, se f for bijectiva e contínua num intervalo, então a inversa também é contínua. O resultado é o seguinte.

Teorema 19 [Continuidade da função inversa]

Seja $f: I \longrightarrow J$ uma função contínua e bijectiva no intervalo I. Então a sua inversa, $f^{-1}: J \longrightarrow I$, é contínua.

Demonstração

Da continuidade de f, sai que J é um intervalo. Por outro lado, a existência da inversa de f é consequência imediata da sua bijectividade. Sendo f contínua e bijectiva, então f é monótona. Como a monotonia se preserva por inversão, f^{-1} também é monótona. Assim, $f^{-1}: J \longrightarrow I$ é uma função monótona que transforma o intervalo J no intervalo I. Pelo Teorema 18, conclui-se que f^{-1} é contínua.

Exercícios

- 1. Mostrar que a equação $x (\sin x)^{17} = (\cos x)^{13}$ possui uma raíz no intervalo $[0, \pi/2]$.
- 2. Considerar a função polinomial $p(x) = 3x^5 + 5x^2 9$, $x \in \mathbb{R}$. Encontrar um intervalo da forma]z, z + 1[, com $z \in \mathbb{Z}$, que contenha um ponto c tal que p(c) = 0.
- 3. Seja $f(x) = \frac{x+3}{x}, x \neq 0$.
 - (a) Verificar que f(-1) < 0, que f(1) > 0 e que f não se anula em]-1,1[.
 - (b) Justificar que não há contradição com o teorema do valor intermédio.
- 4. Seja $q(x) = x^2 4x + 3$, $x \in \mathbb{R}$.
 - (a) Confirmar que se tem g(0) > 0, g(4) > 0 e g(c) = 0 para algum $c \in [0, 4]$.
 - (b) Justificar que não há contradição com o teorema do valor intermédio.
- 5. Dizer, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - (a) se $f: A \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua e A é fechado e limitado então f(A) = [m, M], onde $m \leq M$, $m, M \in \mathbb{R}$;
 - (b) se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua e limitada então f atinge um máximo e um mínimo.
 - (c) se $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua e existem $a, b \in D$ e $k \in \mathbb{R}$ tais que f(a) < k < f(b), então existe $c \in D$ tal que f(c) = k;
 - (d) se $f: D \longrightarrow \mathbb{R}$ é contínua e bijectiva então $f^{-1}: f(D) \longrightarrow D$ é contínua.