Mathematics for Computer Science Linear Algebra (Part 2) Eigen Values & Eigen Vectors

Karl Southern

Durham University

January 20th, 2025

Thanks to Andrei Krokhin and Billy Moses for use of some slides.

Outline

- Recap & Plan for Today
- 2 Understanding eigenvalues and eigenvectors
- 3 Finding eigenvalues and eigenvectors
- 4 Principal Component Analysis (PCA)
- Wrapping Things Up

Name of slide

Last Week

U decomposition - what is it/how to use it

This Week

- eigenvalues
- eigenvectors
- Oharacteristic equation/polynomial
- Principal Component Analysis

Outline

- Recap & Plan for Today
- 2 Understanding eigenvalues and eigenvectors
- 3 Finding eigenvalues and eigenvectors
- 4 Principal Component Analysis (PCA)
- Wrapping Things Up

Intuition

- eigen proper, characteristic, own
- Consider some linear mapping A
- When applied to a vector v, it might cause rotation and scaling
- 4 All those vectors v that are only scaled: eigenvectors
- ⑤ How much a eigenvector v is scaled by: corresponding eigenvalue

Definition

Let A be an $n \times n$ matrix. A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A (or, equivalently, of the operator $T_A : \mathbb{R}^n \to \mathbb{R}^n$) if, for some scalar λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently, $T_A(\mathbf{x}) = \lambda \mathbf{x}$.)

Definition

Let A be an $n \times n$ matrix. A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A (or, equivalently, of the operator $T_A : \mathbb{R}^n \to \mathbb{R}^n$) if, for some scalar λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently, $T_A(\mathbf{x}) = \lambda \mathbf{x}$.)

In this case, λ is called an eigenvalue of A (and of T_A), and \mathbf{x} is an eigenvector corresponding to λ .

Definition

Let A be an $n \times n$ matrix. A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A (or, equivalently, of the operator $T_A : \mathbb{R}^n \to \mathbb{R}^n$) if, for some scalar λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently, $T_A(\mathbf{x}) = \lambda \mathbf{x}$.)

In this case, λ is called an eigenvalue of A (and of T_A), and \mathbf{x} is an eigenvector corresponding to λ .

- The assumption $\mathbf{x} \neq \mathbf{0}$ is necessary to avoid the case $A\mathbf{0} = \lambda \mathbf{0}$ which always holds.
- The meaning of the notion is that T_A does not change the direction of \mathbf{x} (up to reversal), it only scales \mathbf{x} by λ .

Definition

Let A be an $n \times n$ matrix. A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A (or, equivalently, of the operator $T_A : \mathbb{R}^n \to \mathbb{R}^n$) if, for some scalar λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently, $T_A(\mathbf{x}) = \lambda \mathbf{x}$.)

Definition

Let A be an $n \times n$ matrix. A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A (or, equivalently, of the operator $T_A : \mathbb{R}^n \to \mathbb{R}^n$) if, for some scalar λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently, $T_A(\mathbf{x}) = \lambda \mathbf{x}$.)

In this case, λ is called an eigenvalue of A (and of T_A), and \mathbf{x} is an eigenvector corresponding to λ .

Definition

Let A be an $n \times n$ matrix. A non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A (or, equivalently, of the operator $T_A : \mathbb{R}^n \to \mathbb{R}^n$) if, for some scalar λ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently, $T_A(\mathbf{x}) = \lambda \mathbf{x}$.)

In this case, λ is called an eigenvalue of A (and of T_A), and \mathbf{x} is an eigenvector corresponding to λ .

Example: vector $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$ corr. to eigenvalue 3. Indeed.

$$A\mathbf{x} = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 3\mathbf{x}.$$

Consider linear operators T_A on \mathbb{R}^2 where A is one of the following matrices:

$$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

They correspond to reflections of \mathbb{R}^2 about y-axis, x-axis, and line x=y, resp.

Consider linear operators T_A on \mathbb{R}^2 where A is one of the following matrices:

$$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

They correspond to reflections of \mathbb{R}^2 about y-axis, x-axis, and line x=y, resp.

- Eigenvectors: all non-zero vectors (x,0) and (0,y), corr. to eigenvalues -1 and 1, resp.
- 2 Eigenvectors: all non-zero vectors (x,0) and (0,y), corr. to eigenvalues 1 and -1, resp.

Consider linear operators T_A on \mathbb{R}^2 where A is one of the following matrices:

$$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

They correspond to reflections of \mathbb{R}^2 about y-axis, x-axis, and line x=y, resp.

- Eigenvectors: all non-zero vectors (x,0) and (0,y), corr. to eigenvalues -1 and 1, resp.
- ② Eigenvectors: all non-zero vectors (x,0) and (0,y), corr. to eigenvalues 1 and -1, resp.
- **3** Eigenvectors: all non-zero vectors (x,x) and (-x,x), corr. to eigenvalues 1 and -1, resp.

Consider linear operators T_A on \mathbb{R}^2 where A is one of the following matrices:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

They correspond to orthogonal projections of \mathbb{R}^2 onto x-axis and y-axis, resp.

Consider linear operators T_A on \mathbb{R}^2 where A is one of the following matrices:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

They correspond to orthogonal projections of \mathbb{R}^2 onto x-axis and y-axis, resp.

- Eigenvectors: all non-zero vectors (x,0) and (0,y), corr. to eigenvalues 1 and 0, resp.
- 2 Eigenvectors: all non-zero vectors (x,0) and (0,y), corr. to eigenvalues 0 and 1, resp.

Consider the linear operator T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right).$$

The corresponding linear map T_A satisfies

$$T_A(x, y) = (x', y') = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$

This corresponds to the rotation of \mathbb{R}^2 by angle θ counterclock-wise.

Consider the linear operator T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right).$$

The corresponding linear map T_A satisfies

$$T_A(x, y) = (x', y') = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$

This corresponds to the rotation of \mathbb{R}^2 by angle θ counterclock-wise.

This linear map has no eigenvectors for any $0 < \theta < 180^{\circ}$.

Consider linear operators T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right).$$

This is contraction (if k < 1) or dilation (if k > 1) of \mathbb{R}^2 .

Consider linear operators T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right).$$

This is contraction (if k < 1) or dilation (if k > 1) of \mathbb{R}^2 .

The eigenvectors are all non-zero vectors, corresponding to eigenvalue k.

Consider linear operators T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} k & 0 \\ 0 & 1 \end{array}\right).$$

They correspond to compressions (if k < 1) and expansions (if k > 1) of \mathbb{R}^2 along x-axis.

Consider linear operators T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} k & 0 \\ 0 & 1 \end{array}\right).$$

They correspond to compressions (if k < 1) and expansions (if k > 1) of \mathbb{R}^2 along x-axis.

The eigenvectors are all non-zero vectors (x, 0) and (0, y), corresponding to eigenvalues k and 1, respectively.

Consider the transformation T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right).$$

The transformation T_A satisfies $T_A(x,y) = (x+ky,y)$. For $k \neq 0$, it corresponds to shear of \mathbb{R}^2 in the x-direction with factor k.

Consider the transformation T_A on \mathbb{R}^2 where A is the following matrix:

$$\left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right).$$

The transformation T_A satisfies $T_A(x,y) = (x+ky,y)$. For $k \neq 0$, it corresponds to shear of \mathbb{R}^2 in the x-direction with factor k.

The eigenvectors are all non- $\mathbf{0}$ vectors (x,0), corresponding to eigenvalue 1.

Outline

- Recap & Plan for Today
- 2 Understanding eigenvalues and eigenvectors
- 3 Finding eigenvalues and eigenvectors
- 4 Principal Component Analysis (PCA)
- Wrapping Things Up

Theorem

If A is an $n \times n$ matrix then λ is an eigenvalue of A iff it satisfies $det(\lambda I - A) = 0$.

Theorem

If A is an $n \times n$ matrix then λ is an eigenvalue of A iff it satisfies $det(\lambda I - A) = 0$.

The equation $det(\lambda I - A) = 0$ is called the characteristic equation of A.

Theorem

If A is an $n \times n$ matrix then λ is an eigenvalue of A iff it satisfies $det(\lambda I - A) = 0$.

The equation $det(\lambda I - A) = 0$ is called the characteristic equation of A.

Proof.

By definition, λ is an eigenvalue of A iff $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq \mathbf{0}$. We have

$$A\mathbf{x} = \lambda \mathbf{x} \quad \Leftrightarrow \quad A\mathbf{x} = \lambda I\mathbf{x} \quad \Leftrightarrow \quad (\lambda I - A)\mathbf{x} = \mathbf{0}.$$

Theorem

If A is an $n \times n$ matrix then λ is an eigenvalue of A iff it satisfies $det(\lambda I - A) = 0$.

The equation $det(\lambda I - A) = 0$ is called the characteristic equation of A.

Proof.

By definition, λ is an eigenvalue of A iff $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq \mathbf{0}$. We have

$$A\mathbf{x} = \lambda \mathbf{x} \quad \Leftrightarrow \quad A\mathbf{x} = \lambda I\mathbf{x} \quad \Leftrightarrow \quad (\lambda I - A)\mathbf{x} = \mathbf{0}.$$

By theorem about invertible matrices, the last equation has a solution $\mathbf{x} \neq \mathbf{0}$ iff $det(\lambda I - A) = 0$.

Example 12.1

Example: find eigenvalues of the matrix
$$A = \begin{pmatrix} 2 & -1 \\ 10 & -9 \end{pmatrix}$$
.

Characteristic polynomial of a matrix

• In general, the expression $det(\lambda I - A)$ is a polynomial

$$p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \ldots + c_{n-1} \lambda + c_n.$$

where n is the order of A. It is called the characteristic polynomial of A.

Characteristic polynomial of a matrix

• In general, the expression $det(\lambda I - A)$ is a polynomial

$$p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \ldots + c_{n-1} \lambda + c_n.$$

where n is the order of A. It is called the characteristic polynomial of A.

- Solving the equation $p(\lambda) = 0$ is difficult in general there is no closed formula or exact algorithm.
- There are numerical algorithms for computing eigenvalues approximately.

Characteristic polynomial of a matrix

• In general, the expression $det(\lambda I - A)$ is a polynomial

$$p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \ldots + c_{n-1} \lambda + c_n.$$

where n is the order of A. It is called the characteristic polynomial of A.

- Solving the equation $p(\lambda) = 0$ is difficult in general there is no closed formula or exact algorithm.
- There are numerical algorithms for computing eigenvalues approximately.
- If all coefficients of $p(\lambda)$ are integers and the equation $p(\lambda) = 0$ has an integer solution $\lambda = k$ then $k|c_n$. This can be used to find some eigenvalues.

Example 12.2

Example: find eigenvalues of
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$$
.

Eigenspaces and their bases

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .

Eigenspaces and their bases

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .
- The non-**0** vectors in this space are the eigenvectors of A corresponding to λ_0 .

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .
- The non-**0** vectors in this space are the eigenvectors of A corresponding to λ_0 .
- To find a basis in this subspace, use the algorithm for finding a basis in the null space of a matrix.

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .
- The non-0 vectors in this space are the eigenvectors of A corresponding to λ_0 .
- To find a basis in this subspace, use the algorithm for finding a basis in the null space of a matrix.

Find (a basis of) the eigenspace of
$$A=\begin{pmatrix}2&-1\\10&-9\end{pmatrix}$$
 corresponding to $\lambda=-8$.

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .
- The non-**0** vectors in this space are the eigenvectors of A corresponding to λ_0 .
- To find a basis in this subspace, use the algorithm for finding a basis in the null space of a matrix.

Find (a basis of) the eigenspace of
$$A=\begin{pmatrix}2&-1\\10&-9\end{pmatrix}$$
 corresponding to $\lambda=-8$.

Solution. Form the equation $(-8I - A)\mathbf{x} = \mathbf{0}$, or

$$\begin{pmatrix} -10 & 1 \\ -10 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{or} \quad \begin{array}{c} -10x_1 + x_2 = 0 \\ -10x_1 + x_2 = 0 \end{array}$$

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .
- The non-**0** vectors in this space are the eigenvectors of A corresponding to λ_0 .
- To find a basis in this subspace, use the algorithm for finding a basis in the null space of a matrix.

Find (a basis of) the eigenspace of
$$A=\begin{pmatrix}2&-1\\10&-9\end{pmatrix}$$
 corresponding to $\lambda=-8$.

Solution. Form the equation $(-8I - A)\mathbf{x} = \mathbf{0}$, or

$$\begin{pmatrix} -10 & 1 \\ -10 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{or} \quad \begin{array}{c} -10x_1 + x_2 & = & 0 \\ -10x_1 + x_2 & = & 0 \end{array}$$

The subspace consists of all vectors of the form (x, 10x). One basis is $\{(1, 10)\}$.

- Let λ_0 be an eigenvalue of A and consider the equation $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$.
- The null space of $\lambda_0 I A$ is called the eigenspace of A corresponding to λ_0 .
- The non-**0** vectors in this space are the eigenvectors of A corresponding to λ_0 .
- To find a basis in this subspace, use the algorithm for finding a basis in the null space of a matrix.

Find (a basis of) the eigenspace of
$$A=\begin{pmatrix}2&-1\\10&-9\end{pmatrix}$$
 corresponding to $\lambda=-8$.

Solution. Form the equation $(-8I - A)\mathbf{x} = \mathbf{0}$, or

$$\begin{pmatrix} -10 & 1 \\ -10 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{or} \quad \begin{array}{c} -10x_1 + x_2 & = & 0 \\ -10x_1 + x_2 & = & 0 \end{array}$$

The subspace consists of all vectors of the form (x, 10x). One basis is $\{(1, 10)\}$.

Exercise: Find the eigenspace of A corresponding to eigenvalue $\lambda = 1$.

Let λ_0 be an eigenvalue of a matrix A.

- The algebraic multiplicity of λ_0 is the power k with which $(\lambda \lambda_0)$ appears as a factor of $det(\lambda I A)$ the characteristic polynomial of A.
 - ► E.g. if $det(\lambda I A) = (\lambda 2)^3 \cdot (\lambda + 5)^2 \cdots$, then it's 3 for 2 and 2 for -5

Let λ_0 be an eigenvalue of a matrix A.

- The algebraic multiplicity of λ_0 is the power k with which $(\lambda \lambda_0)$ appears as a factor of $det(\lambda I A)$ the characteristic polynomial of A.
 - ► E.g. if $det(\lambda I A) = (\lambda 2)^3 \cdot (\lambda + 5)^2 \cdots$, then it's 3 for 2 and 2 for -5
- The geometric multiplicity of λ_0 is the dimension of the eigenspace corresponding to λ_0 .

Let λ_0 be an eigenvalue of a matrix A.

- The algebraic multiplicity of λ_0 is the power k with which $(\lambda \lambda_0)$ appears as a factor of $det(\lambda I A)$ the characteristic polynomial of A.
 - ► E.g. if $det(\lambda I A) = (\lambda 2)^3 \cdot (\lambda + 5)^2 \cdots$, then it's 3 for 2 and 2 for -5
- The geometric multiplicity of λ_0 is the dimension of the eigenspace corresponding to λ_0 .

Theorem

Let A be any square matrix. For every eigenvalue of A, its algebraic multiplicity is greater than or equal to its geometric multiplicity. (Proof omitted)

Let λ_0 be an eigenvalue of a matrix A.

- The algebraic multiplicity of λ_0 is the power k with which $(\lambda \lambda_0)$ appears as a factor of $det(\lambda I A)$ the characteristic polynomial of A.
 - ► E.g. if $det(\lambda I A) = (\lambda 2)^3 \cdot (\lambda + 5)^2 \cdots$, then it's 3 for 2 and 2 for -5
- The geometric multiplicity of λ_0 is the dimension of the eigenspace corresponding to λ_0 .

Theorem

Let A be any square matrix. For every eigenvalue of A, its algebraic multiplicity is greater than or equal to its geometric multiplicity. (Proof omitted)

Exercise: Find an example of A and its eigenvalue where the inequality in the theorem is strict.

Outline

- Recap & Plan for Today
- 2 Understanding eigenvalues and eigenvectors
- 3 Finding eigenvalues and eigenvectors
- 4 Principal Component Analysis (PCA)
- Wrapping Things Up

Purpose of This Section

- PCA Why study it?
 - Useful applications data compression
 - Uses eigenvalues and eigenvectors

Purpose of This Section

- PCA Why study it?
 - Useful applications data compression
 - Uses eigenvalues and eigenvectors
- What we care about:
 - General idea of PCA
 - Understanding how eigenvalues and eigenvectors are used

Purpose of This Section

- PCA Why study it?
 - Useful applications data compression
 - Uses eigenvalues and eigenvectors
- What we care about:
 - General idea of PCA
 - Understanding how eigenvalues and eigenvectors are used
- What we don't care about:
 - Completely understanding PCA
 - 2 Learning concepts used in PCA that are beyond the scope of this module

Principal Component Analysis

- Principal Component Analysis
- 2 eigen meaning: characteristic

- Principal Component Analysis
- eigen meaning: characteristic
- 3 So...finding the principal (most important) components (eigenvectors)...of some data set.

- Principal Component Analysis
- eigen meaning: characteristic
- So...finding the principal (most important) components (eigenvectors)...of some data set.
- O Data set? But couldn't we only find eigenvectors for square matrices?

- Principal Component Analysis
- 2 eigen meaning: characteristic
- So...finding the principal (most important) components (eigenvectors)...of some data set.
- Oata set? But couldn't we only find eigenvectors for square matrices?
- Concept beyond scope of module: covariance matrix

- Principal Component Analysis
- 2 eigen meaning: characteristic
- So...finding the principal (most important) components (eigenvectors)...of some data set.
- Data set? But couldn't we only find eigenvectors for square matrices?
- Oncept beyond scope of module: covariance matrix
- What does it do?

- Principal Component Analysis
- 2 eigen meaning: characteristic
- So...finding the principal (most important) components (eigenvectors)...of some data set.
- Data set? But couldn't we only find eigenvectors for square matrices?
- Oncept beyond scope of module: covariance matrix
- What does it do?
 - ▶ **Input:** data set in *n* dimensions (possibly *m* data points, $m \neq n$)
 - ▶ **Output:** $n \times n$ matrix, element e_{ij} shows how dimension i data varies with dimension j data.
 - ▶ Captures the **variance** of one dimension of the data with another.

Visual representation of principal components of data set (eigenvectors of its covariance matrix)

- Data set: m points of 2 dimensions (x & y); Covariance matrix $COV_{2\times 2}$
- \bullet Eigenvectors of $COV_{2\times2}$ (aka principal axes) axes which best capture variance of data
- \bullet Eigenvalues of $COV_{2\times2}$ (aka explained variance) amount of variance along eigenvectors

1 Pretend we have some covariance matrix $COV_{n \times n}$.

- **1** Pretend we have some covariance matrix $COV_{n \times n}$.
- ② Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$

- **1** Pretend we have some covariance matrix $COV_{n \times n}$.
- ② Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$
- Order eigenvalues in decreasing order. How much does each eigenvalue contribute to total explained variance/how important is each eigenvalue?

- **1** Pretend we have some covariance matrix $COV_{n\times n}$.
- ② Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$
- Order eigenvalues in decreasing order. How much does each eigenvalue contribute to total explained variance/how important is each eigenvalue?
- E.g., eigenvalues 6, 4, 2. 6 contributes 6/(6+4+2) = .5, 4 contributes .33, and 2 contributes .17.

- **1** Pretend we have some covariance matrix $COV_{n\times n}$.
- ② Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$
- Order eigenvalues in decreasing order. How much does each eigenvalue contribute to total explained variance/how important is each eigenvalue?
- E.g., eigenvalues 6, 4, 2. 6 contributes 6/(6+4+2) = .5, 4 contributes .33, and 2 contributes .17.
- If capturing 80% of the "explained variance" is good enough, then using just first two eigenvalues is enough (totally .83)

- **1** Pretend we have some covariance matrix $COV_{n\times n}$.
- ② Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$
- Order eigenvalues in decreasing order. How much does each eigenvalue contribute to total explained variance/how important is each eigenvalue?
- E.g., eigenvalues 6, 4, 2. 6 contributes 6/(6+4+2) = .5, 4 contributes .33, and 2 contributes .17.
- If capturing 80% of the "explained variance" is good enough, then using just first two eigenvalues is enough (totally .83)
- **1** Let $P_{n \times k}$ be matrix with k chosen eigenvectors as column vectors

- **1** Pretend we have some covariance matrix $COV_{n \times n}$.
- ② Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$
- Order eigenvalues in decreasing order. How much does each eigenvalue contribute to total explained variance/how important is each eigenvalue?
- E.g., eigenvalues 6, 4, 2. 6 contributes 6/(6+4+2) = .5, 4 contributes .33, and 2 contributes .17.
- If capturing 80% of the "explained variance" is good enough, then using just first two eigenvalues is enough (totally .83)
- **1** Let $P_{n \times k}$ be matrix with k chosen eigenvectors as column vectors
- Now we can represent original data (n dimensions) using less data (k dimensions) while possibly losing some information

• Preprocessing step: put data set (m rows of n dimensions) into "good form", call $A_{m \times n}$

- Preprocessing step: put data set (m rows of n dimensions) into "good form", call $A_{m \times n}$
- ② For $A_{m \times n}$, find its covariance matrix $COV_{n \times n}$

- Preprocessing step: put data set (m rows of n dimensions) into "good form", call $A_{m \times n}$
- ② For $A_{m \times n}$, find its covariance matrix $COV_{n \times n}$
- **3** Find the *n* eigenvalues & corresponding eigenvectors of $COV_{n \times n}$ and choose *k* principal components

- Preprocessing step: put data set (m rows of n dimensions) into "good form", call $A_{m \times n}$
- ② For $A_{m \times n}$, find its covariance matrix $COV_{n \times n}$
- **3** Find the n eigenvalues & corresponding eigenvectors of $COV_{n \times n}$ and choose k principal components
- Let $P_{n \times k}$ be matrix with k eigenvectors as column vectors

- Preprocessing step: put data set (m rows of n dimensions) into "good form", call $A_{m \times n}$
- ② For $A_{m \times n}$, find its covariance matrix $COV_{n \times n}$
- **3** Find the n eigenvalues & corresponding eigenvectors of $COV_{n \times n}$ and choose k principal components
- Let $P_{n \times k}$ be matrix with k eigenvectors as column vectors
- **9** Put data into new form: $A_{m \times n} P_{n \times k} = B_{m \times k}$

- Preprocessing step: put data set (m rows of n dimensions) into "good form", call $A_{m \times n}$
- ② For $A_{m \times n}$, find its covariance matrix $COV_{n \times n}$
- **9** Find the n eigenvalues & corresponding eigenvectors of $COV_{n \times n}$ and choose k principal components
- Let $P_{n \times k}$ be matrix with k eigenvectors as column vectors
- **9** Put data into new form: $A_{m \times n} P_{n \times k} = B_{m \times k}$
- Can retrieve old data (possibly with some loss): $A'_{m \times n} = B_{m \times k} P_{k \times n}^T$, then "un-preprocess A'"

Outline

- Recap & Plan for Today
- 2 Understanding eigenvalues and eigenvectors
- 3 Finding eigenvalues and eigenvectors
- 4 Principal Component Analysis (PCA)
- Wrapping Things Up

What we learnt today

- Eigenvalues and eigenvectors of matrices
- Examples in \mathbb{R}^2
- Characteristic equation of a matrix how to find eigenvalues
- Eigenspaces and how to find their bases
- Principal Component Analysis (PCA)

Next Week:

- Complex vector spaces.
- If you're unfamiliar with complex numbers, read up on them on this Wikipedia page and/or watch this video lecture by 3Blue1Brown in advance of the lecture.

Example: find eigenvalues of the matrix
$$A = \begin{pmatrix} 2 & -1 \\ 10 & -9 \end{pmatrix}$$
.

Example: find eigenvalues of the matrix $A=\left(\begin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}\right)$. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

Example: find eigenvalues of the matrix $A=\left(egin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}
ight)$. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

So, the characteristic equation of A is $\lambda^2 + 7\lambda - 8 = 0$.

Example: find eigenvalues of the matrix $A=\left(egin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}
ight)$. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

So, the characteristic equation of A is $\lambda^2 + 7\lambda - 8 = 0$.

Its solutions $\lambda_1 = 1$ and $\lambda_2 = -8$ are the eigenvalues of A.

Example: find eigenvalues of the matrix $A=\left(egin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}
ight)$. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

So, the characteristic equation of A is $\lambda^2 + 7\lambda - 8 = 0$.

Its solutions $\lambda_1 = 1$ and $\lambda_2 = -8$ are the eigenvalues of A.

Example: find eigenvalues of the matrix $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Example: find eigenvalues of the matrix $A=\left(\begin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}\right)$. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

So, the characteristic equation of A is $\lambda^2 + 7\lambda - 8 = 0$.

Its solutions $\lambda_1 = 1$ and $\lambda_2 = -8$ are the eigenvalues of A.

Example: find eigenvalues of the matrix $B=\left(egin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}
ight)$. We have

$$det(\lambda I - B) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1.$$

Example: find eigenvalues of the matrix $A=\left(\begin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}\right)$. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

So, the characteristic equation of A is $\lambda^2 + 7\lambda - 8 = 0$.

Its solutions $\lambda_1 = 1$ and $\lambda_2 = -8$ are the eigenvalues of A.

Example: find eigenvalues of the matrix $B=\left(egin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}
ight)$. We have

$$det(\lambda I - B) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1.$$

The characteristic equation of B is $\lambda^2 + 1 = 0$, so B has no (real) eigenvalues.

Example: find eigenvalues of
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$$
.

Example: find eigenvalues of
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$$
 . We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0.$$

Example: find eigenvalues of
$$A=\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{array}\right)$$
 . We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0.$$

If A has an integer eigenvalue then it is a divisor of -4, i.e., $\pm 1, \pm 2, \pm 4$.

Example: find eigenvalues of
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$$
 . We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0.$$

If A has an integer eigenvalue then it is a divisor of -4, i.e., $\pm 1, \pm 2, \pm 4$. Checking these numbers in turn, we find that $\lambda = 4$ is a solution.

Example: find eigenvalues of
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$$
. We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0.$$

If A has an integer eigenvalue then it is a divisor of -4, i.e., $\pm 1, \pm 2, \pm 4$. Checking these numbers in turn, we find that $\lambda = 4$ is a solution.

Divide
$$\lambda^3 - 8\lambda^2 + 17\lambda - 4$$
 by $\lambda - 4$ to get

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = (\lambda - 4)(\lambda^2 - 4\lambda + 1).$$

Solving the equation $\lambda^2 - 4\lambda + 1 = 0$, we get that the eigenvalues of A are

$$\lambda_1 = 4, \lambda_2 = 2 + \sqrt{3}, \text{ and } \lambda_3 = 2 - \sqrt{3}.$$

The End