Sistemi Operativi 2

Davide Pucci Marco Panunzio

2016

Indice

	Introduzione alla Shell		
1.1	Cenni	2	
1.2	Comandi essenziali	2	
1.3	Utenti	3	
1.4	FileSystem	4	
1.5	File	6	
1.6	Permessi	6	

Capitolo 1

Introduzione alla Shell

1.1 Cenni

La shell bash contiene una history. Atrtaverso di essa è possibile visitare tutti i comandi digitati. Con i tasti cursore è possibile invece navigare nei comandi. Digitando CTRL+R è possibile eseguire una sorta di query tra i comandi listati nella history. La Shell essenzialmente attende che l'utente digiti un comando (per questo viene spesso chiamata prompt). Il simbolo $\tilde{\ }$ indica la home directory.

1.2 Comandi essenziali

- man [sezione] comando: dà informazioni complete su un comando, includendone la sintassi, la descrizione, gli esempi e una larga documentazione.
- cd path: varia la current working directory attualmente in uso nella shell. Nel caso in cui path è .., la pwd varia nella directory precedente alla attuale. Il path . indica la directory attuale.
- **pwd**: indica la directory sulla quale quali si è posizionati all'interno della shell (*current working directory*).
- ls [opzioni] [path]: mostra il contenuto di una certa directory path (se non specificata, sottintende che sia la pwd). Tra le opzioni più importanti:
 - $-\,$ -a: visualizza i file nascosti (in Unix convenzionalmente i file nascosti iniziano con .).
 - -R: applica il comando ricorsivamente.
- mkdir [opzioni] [path]: crea una directory path. Tra le opzioni più importanti:

- -p: crea tutte le super-directory necessarie alla creazione della directory che si intende creare.
- touch file: crea il file file.
- **tree** [**opzioni**] [**path**]: mostra l'albero delle directory contenute in *path* (se non specificata, sottintende che sia la *pwd*).
- mount [opzioni] [partizione puntodimount]: se non viene passato alcun parametro, stampa la mappa di mount attualmente in uso. Se passati partizione e puntodimount, monta la partizione partizione sulla path puntodimount, rilevando automanticamente il filesystem utilizzato. Tra le opzioni più importanti:
 - -t tipofilesystem: specifica il filesystem (ext4, ext3, ntfs, hfs, nfs, e così via ...) da utilizzare nel mount della partizione specificata.
- cat [file] [>/>>outfile]: stampa a video il contenuto del file. Se non viene passato in input il file, aspetta l'arrivo di uno stdin (standard input e lo stampa, fino a che non viene segnalato l'EOF (end-of-file). Può far uso di opzioni particolari:
 - >: reindirizza lo *stdout* (*standard output*) rimpiazzandolo al contenuto del file *outfile*.
 - >>: reindirizza lo stdout aggiungendolo in coda al file outfile.
- stat file: stampa le diverse informazioni dell'inode relativo al file file.
- **chmod** [**opzioni**] **permessi file**: modifica i permessi sul file *file*, applicando quelli specificati in *permessi* (attraverso combinazioni alfabetiche o ottali). Tra le opzioni più importanti:
 - -R: applica il cambiamento dei permessi ricorsivamente (nel caso in cui file sia una directory.

1.3 Utenti

Dopo l'installazione di un OS è sempre necessario configurare un utente. Ogni utente appartiene sempre almeno ad un gruppo. Per ottenere i gruppi di cui fa parte l'utente che utilzza la shell, si utilizza il comando:

groups

Invece, per ottenere i gruppi di cui fa parte l'utente generico utente:

groups utente

Un gruppo importante è *sudo*. *sudo* è un comando che accetta comandi da elevare a privilegiati. Per cambiare utente da shell occorre eseguire il comando:

su -1 utente

Per aggiungere un utente ad un gruppo, occorre utilizzare il comando:

useradd utente gruppo

Un file importante in questo ambito è /etc/passwd, che contiene diverse informazioni sull'utente separate da : o , . Le informazioni sono:

- Username
- Password (cifrata e gestita in un altro file /etc/shadow)
- UID (User ID)
- GID (Group ID)
- Path della home directory
- Nome della shell associata all'utente

Analogamente, il file /etc/groups contiene le informazioni relative ai gruppi:

- Nome gruppo
- GID
- UID separati da , degli utenti membri del gruppo

1.4 FileSystem

Tutti i file e le directory sono contenuti direttamente o indirettamente nella directory di root, con la struttura di un albero. Le foglie di questo albero sono:

- Directory vuote
- File

All'interno di una directory non ci possono essere elementi con lo stesso nome (la differenza di case rende i nomi diversi). Il path assoluto, quindi una cosa fatta così indica il percorso totale per raggiungere il dato elemento all'interno dell'albero del filesystem (sostanzialmente una sequenza di directory separate da /). Quello relativo invece è la serie delle sole directory - separate da / necessarie per arrivare all'elemento desiderato a partire dalla current working directory. Il Filesystem di Linux è unico, contenuto interamente in / (Windows si divide in volumi). Ciononostante, può contenere elementi eterogenei:

- Dischi fisici
- Filesystem virtuali
- Filesystem di rete

• Filesystem in memoria principale (RAM)

Questo è possibile tramite il comando *mount*. Per esempio, /proc contiene informazioni su tutti i processi attualmente in esecuzione, attraverso i loro PID. Questa path è virtuale - non fisica - e viene montata automaticamente dal kernel all'avvio dell'OS. Ciascuna di queste directory contiene un file status che contiene informazioni sensibili:

- Nome del processo
- PID del processo
- PID del processo padre
- Così via ...

Solitamente il disco principale, sul quale viene installato l'OS è montato in /. Nei casi in cui ci sia un solo disco, è possibile partizionarlo in più parti, montandole ciascuna in un punto di mount differente. Partizionare un disco può molto spesso voler dire eliminare definitivamente i dati precendemente allocati. Esistono diversi programmi per gestire il partizionamento dei disci (come parted, gparted, fdisk, e così via ...). Tra i file importanti in questo ambito:

- /etc/mtab: equivalente dell'output del comando mount (mostra i punti di mount attualmente in uso)
- \bullet /etc/fstab: specifica le partizioni (o i dischi) da montare all'avvio dell'OS, con annesso il relativo punto di mount e filesystem.

Lo schema generico del filesystem è il seguente:

Dimensione	Spiegazione	Montata
/boot	Kernel e file di boot	NO
/bin	Binari (programmi eseguibili) di base	NO
/dev	Devices (periferiche) hardware e virtuali	boot
/etc	File di congurazione di sistema	NO
/proc	Dati e statistiche dei processi e parametri del kernel	boot
/sys	Informazioni e statistiche di device di sistema	boot
/media	Mountpoint per device di I/O (es: CD, DVD, USB pen)	quando necessario
/mnt	(come /media)	quando necessario
/sbin	Binari di sistema	NO
/var	File variabili (log le, code di stampa, mail)	NO
/tmp	File temporanei	NO
/lib	Librerie	NO

1.5 File

Ad ogni file del filesystem è associato un numero identificativo che ne indica l'*inode*, una struttura dati contenente informazioni specifiche al file stesso:

Attributo	Spiegazione
Type	Tipo del file
User ID	ID del proprietario
Group ID	ID del gruppo associato
Mode	Permessi di accesso per il proprietario, il gruppo e tutti gli altri
Size	Dimensione in byte del file
Timestamps	
	• ctime (inode changing time: cambiamento di un attributo)
	• mtime (content modification time: solo scrittura)
	• atime (content access time: anche lettura)
Link count	numero di hard links
Data pointers	Puntatore alla lista di blocchi che compongono il file

Ciascuna di queste informazioni possono essere visualizzate tramite apposite opzioni del comando $\mathit{ls}.$

1.6 Permessi

Ad ogni inode è associato un sistema che ne gestisce i permessi. I permessi sono di lettura, scrittura ed esecuzione. Nell'applicazione dell'impostazione dei permessi si può specificare il permesso tramite la lettera alfabetica $(r, w \circ x)$ o il valore ottale (r vale 4, w vale 2 e x vale 1: le varie combinazioni della somma dei vari valori compone i permessi associati al file) associati ad esso. Per modificare i permessi di un file si usa il comando chmod.

Permesso	Ottale	Significato
_	0	Non si può fare niente
-x	1	Si può settare come cwd; si può anche "attraversare", se già se ne
		conosce il contenuto (ad esempio, si può leggere un
		le o una directory al suo interno, se i permessi di questi ultimi
		contengono la lettura)
-W-	2	Non si può fare niente (per fare veramente modi
		che, occorrono i permessi di esecuzione)
-wx	3	Come il permesso 7, ma non si può listare il contenuto (con o
		senza attributi)
r–	4	Si può solo listarne il contenuto, ma senza vedere gli attributi dei
		le/directories contenuti (l'unica cosa che si può sapere è se si tratta
		di
		le o di directory); non può essere "attraversata"
r-x	5	Si può leggere (attributi compresi), settare come cwd ed attraver-
		sare; non è possibile cancellare o aggiungere
		file/directory
rw-	6	Come il permesso 4 (write senza execute è inutile)
rwx	7	Si può fare tutto: listare contenuto (attributi compresi), aggiunge-
		re le directory, cancellare le contenuti in essa (anche senza avere il
		permesso di scrittura sul file! correggibile con lo sticky bit, vedere
		più avanti), cancellare directory contenute in essa (ma occorrono
		tutti i permessi su tali directory)