Anàlisi Complexa - Laboratori 1

Christian José Soler

28 de febrero de 2016

1. Demostreu que per tot $z \in \mathbb{C}$

$$|Re(z)| + |Im(z)| \le \sqrt{2}|z|$$

Resolució:

Sigui z un nombre complex de la forma $z=x+iy=|z|(\cos(\alpha)+i\sin(\alpha))$. Amb aquestes notacions, |Re(z)|=|x| i |Im(z)|=|y|.

Ara bé, tenim que:

$$|x| = |z| |\cos(\alpha)|$$

$$|y| = |z||\sin(\alpha)|$$

A més a més,

$$|x| + |y| = |z|(|\cos(\alpha)| + |\sin(\alpha)|)$$

Per arribar a la desigualtat que volem, busquem els màxims de l'expressió $|\cos(\alpha)| + |\sin(\alpha)|$. Per fer-ho, notem que podem treure els valors absoluts i suposar que α és del primer quadrant per la periodicitat de les funcions sin i cos.

Definim llavors $f(\alpha) = \cos(\alpha) + \sin(\alpha)$. Derivem i igualem a 0:

$$f'(\alpha) = \cos(\alpha) - \sin(\alpha) = 0 \Leftrightarrow \cos(\alpha) = \sin(\alpha)$$

que ens dóna la solució $\alpha = \frac{\pi}{4}$. Podem comprovar que és el màxim absolut.

Tenim llavors que

$$|x| + |y| = |z| \left(|\cos(\alpha)| + |\sin(\alpha)| \right) \le |z| \left(\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) \right) =$$
$$= |z| \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) = |z| \sqrt{2}$$

Com volíem veure.

- 2. Sigui Ω un domini i f una funció holomorfa en Ω . Proveu que les següents condicions són equivalents.
 - a) Re(f) és constant en Ω
 - b) Im(f) és constant en Ω
 - c) La funció conjugada de f, \bar{f} , és holomorfa en Ω

- d) f és constant en Ω
- e) |f| és constant en Ω

Resolució:

Per veure les equivalències, es veu trivialment que l'enunciat d) implica tota la resta de enunciats. Ara veïem les implicacions contràries:

a) $(a) \Rightarrow (d)$:

Tenim que $f(x+yi) = k_1 + v(x,y)i, k_1 \in \mathbb{C}$

Llavors

$$Df(x,y) = \begin{pmatrix} 0 & 0 \\ v_x(x,y) & v_y(x,y) \end{pmatrix} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

D'aquí veiem que $v_x(x,y) = v_y(x,y) = 0 \Leftrightarrow v(x,y) = k_2 \in \mathbb{C}$ Com volíem veure.

 $b) (b) \Rightarrow (d)$:

Es pot veure anàlogament, però en aquest cas és la segona fila de la matriu jacobiana que és de 0s.

c) $(c) \Rightarrow (d)$:

Si
$$Df(x,y) = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$
 Tenim que: $D\bar{f}(x,y) = \begin{pmatrix} \alpha & -\beta \\ -\beta & -\alpha \end{pmatrix}$

Perquè la matriu compleixi les equacions de Cauchy Riemann, tenim que $\alpha=-\alpha$ i $-\beta=\beta$ que només pot passar si $\alpha=\beta=0 \Rightarrow f$ és constant.

d) $(e) \Rightarrow (d)$:

Si |f| és constant també l'és $|f|^2(x,y)=u(x,y)^2+v(x,y)^2=K\in\mathbb{C}$ Llavors

$$\frac{\partial(u^2+v^2)}{\partial x} = 0 = \frac{\partial(u^2+v^2)}{\partial y}$$

Això implica que:

$$u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x} = 0 = u\frac{\partial u}{\partial y} + v\frac{\partial v}{\partial y}$$

Si apliquem les equacions de Cauchy-Riemann arribem a:

$$u\frac{\partial v}{\partial y} + v\frac{\partial v}{\partial x} = 0 = -u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}$$

$$(u^2 + v^2)\frac{\partial v}{\partial y} = 0$$

Si $u^2 + v^2 = 0$, llavors f = 0 i ja tenim que f és constant.

Si $u^2+v^2\neq 0$, llavors $\frac{\partial v}{\partial y}=0$ que ens dóna $\frac{\partial v}{\partial x}=0$. D'aqui veïem un

altre cop que $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ que ens torna a donar que f és constant.

3. Sigui $u(x,y)=x^2-y^2+x$. Trobeu v(x,y) de manera que la funció f(x+iy)=u(x,y)+iv(x,y) sigui holomorfa a $\mathbb C$ i compleixi f(0)=i.

Resolució:

Anem a escriure la matriu jacobiana de f:

$$Df(x,y) = \begin{pmatrix} u_x(x,y) & u_y(x,y) \\ v_x(x,y) & v_y(x,y) \end{pmatrix} = \begin{pmatrix} u_x(x,y) & u_y(x,y) \\ -u_y(x,y) & u_x(x,y) \end{pmatrix} =$$
$$= \begin{pmatrix} 2x+1 & -2y \\ 2y & 2x+1 \end{pmatrix}$$

Tenim llavors que

a)
$$v_x(x,y) = 2y \Rightarrow v(x,y) = y^2 + c(x)$$

b)
$$v_n(x,y) = 2x + 1 \Rightarrow v(x,y) = x^2 + x + c(y)$$

on c(x), c(y) són constants que depenen només de x i de y respectivament.

D'aqui podem concluïr que $v(x,y) = y^2 + x^2 + x + K$ on K és una constant que no depèn ni de x ni de y. Fem servir la última hipòtesi per trobar aquesta K:

$$f(0+0i) = i = u(0,1) + iv(0,1) \Rightarrow v(0,1) = 1$$

Trobem que $K = 0 \Rightarrow v(x, y) = y^2 + x^2 + x$