Степаненко Денис 1384, вариант 15.

Теория:

- 1) Оператором называется отображение $A: F \to G$, где F, G некоторые пространства.
- 2) Оператор $A: X \to Y$ действующий из линейного пространства X в линейное пространство Y называется **линейным**, если:

$$A(k_1x_1 + k_2x_2) = k_1Ax_1 + k_2Ax_2 \ \forall \ k_1, k_2 \in \mathbb{C} \ \ \forall \ x_1, x_2 \in X$$

3) **Нормой** оператора $A: X \to Y$ называется число

$$||A|| = \sup\{||Ax||: ||x|| < 1\}$$

- 4) Линейный оператор A, отображающий пространство X на себя, называется **обратимым**, если существует $B: X \to X$ такой, что AB = BA = I, где I единичный (тождественный) оператор.
- 5) В конечномерных пространствах: **критерий обратимости** оператор обратим тогда и только тогда, когда ядро оператора содержит только нулевой элемент.
- 6) Оператор А: X \to Y называется **непрерывным**, если $\forall x_n \in X$, $||x_n x_0|| \underset{n \to \infty}{\longrightarrow} 0$, выполнено $||Ax_n Ax_0|| \underset{n \to \infty}{\longrightarrow} 0$.
- 7) Пусть A линейный непрерывный оператор в гильбертовом пространстве H. **Сопряженным** к нему называется оператор A*, определяемый соотношением $(Ax, y) = (x, A^*y)$ для любых x, y \in H
- 8) Теорема: для любого линейного оператора А если сопряженный к нему оператор А* существует, то оператор А* линейный. Пусть $x,y\in E, \alpha,\beta\in R$. Тогда для любого $z\in E$: $(A^*(\alpha x+\beta y),z)=((\alpha x+\beta y),Az)=\alpha(x,Az)+\beta(y,Az)=\alpha(A^*x,z)+\beta(A^*y,z)=(\alpha A^*x+\beta A^*y,z)$ Так как вектор z любой, то справедливо: $A^*(\alpha x+\beta y)=\alpha A^*x+\beta A^*y$
- 9) Числом обусловленности линейного оператора A называется: $cond(A) = \|A\| \cdot \|A^{-1}\|$
- 10) (Следствие теоремы о достаточном условии обратимости оператора) Пусть линейный непрерывный оператор A отображает банахово пространство X в себя. Если уравнение Ax=b после перезаписи (I-B)x=b допускает оценку $\|\mathbf{B}\|=q<1$, то последовательность $x_{n+1}=b+Bx_n, n\in\overline{1:n}, x_0$ произвольный элемент пространства X.
- 11) Неравенство для оценки относительной погрешности:

$$\frac{\|\Delta x\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \cdot \frac{\|\Delta b\|}{\|b\|}$$

Дано:

$$\mathsf{A} = \begin{pmatrix} 18.4286 & -6.8571 & 10.2857 & -3.4286 \\ -30.2143 & 6.4286 & 57.8571 & -55.2857 \\ 4.7143 & 3.4286 & 32.1429 & -19.7143 \\ 36 & 0 & -54 & 63 \end{pmatrix}$$

Решение:

1. Вычислим нормы оператора A в пространствах $\,l_4^1$ и $\,l_4^\infty$.

В $l_4^\infty\colon \|A\| = \sup_m \sum_k \left|a_{(m,k)}\right|$ — максимум строковых сумм;

||A|| = 154.2857

Достигается на векторе, где: $x_k = sign(a_{4,k})$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

$\sum_{m} a_{(m,1)} $	$\sum_m a_{(m,2)} $	$\sum_m \bigl a_{(m,3)}\bigr $	$\sum_m a_{(m,4)} $
39	149.7857	60	153

В l_4^1 : $\|A\| = sup_k \sum_m \left| a_{(m,k)} \right|$ – максимум столбцовых сумм;

 $\|A\| = 153$

Достигается на векторе, где: $x_k = \begin{cases} 0 \text{, если k} \neq n \text{, где достигается масимум} \\ 1 \text{, если k} \neq n \text{, где достигается масимум} \end{cases}$

Достигается на векторе: $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

$\sum_k a_{(1,k)} $	$\sum_k a_{(2,k)} $	$\sum_k a_{(3,k)} $	$\sum_k a_{(4,k)} $
89.3571	16.7143	154.2857	141.4286

2. Вычисление нормы обратного оператора в пространствах l_4^1 и l_4^∞ .

$$A^{-1} = \begin{pmatrix} 0.1429 & 0.0847 & -0.127 & 0.0423 \\ 0.1561 & 0.2063 & -0.2169 & 0.1217 \\ -0.1146 & -0.0423 & 0.1499 & 0.0035 \\ -0.1799 & -0.0847 & 0.2011 & -0.0053 \end{pmatrix}$$

В l_4^{∞} : $||A^{-1}|| = 0.7011$ – максимум строковых сумм;

Достигается на векторе:
$$\begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$$

$\sum_m \bigl a_{(m,1)}\bigr $	$\sum_m \bigl a_{(m,2)}\bigr $	$\sum_m \bigl a_{(m,3)}\bigr $	$\sum_m \bigl a_{(m,4)}\bigr $
0.3968	0.7011	0.3104	0.4709

В l_4^1 : $||A^{-1}|| = 0.6949$ — максимум столбцовых сумм;

Достигается на векторе:
$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$\sum_k a_{(1,k)} $	$\sum_{k} a_{(2,k)} $	$\sum_{k} a_{(3,k)} $	$\sum_k a_{(4,k)} $
0.5935	0.418	0.6949	0.1728

3. Число обусловленности оператора A в пространствах $\,l_4^1\,$ и $\,l_4^\infty.$

Число обусловленности для ограниченного оператора показывает, как сильно малые возмущения аргумента ($\pm\delta$) влияют на возмущения решения.

a) B
$$l_4^{\infty}$$
: $cond(A) = 153.0 \cdot 0.7011 = 107.2619$

b) B
$$l_4^1$$
: $cond(A) = 154.2857 \cdot 0.6949 = 107.2109$

4. Сформировать матрицу G=A*A, показать, что она положительно определена. Найти ее собственные числа и векторы.

Матрица G используется для расчета нормы оператора, отражающего в пространство l_4^2 , когда $A \neq A^{-1}$.

$$G = \begin{pmatrix} 504.1837 & 614.2041 & 191.0204 & -102.8571 \\ 614.2041 & 6492.3061 & 3251.0204 & -4955.5102 \\ 191.0204 & 3251.0204 & 4875.0612 & -5109.6122 \\ -102.8571 & -4955.5102 & -5109.6122 & 7425.9184 \end{pmatrix}$$

Положительную определенность матрица доказываем через критерий Сильвестра:

δ_1	δ_2	δ_3	δ_4
504.1837>0	2896068.0962>0	9315683475.3149>0	12569622362718.049>0

Все угловые миноры больше 0, следовательно, матрица положительно определена.

Собственные числа матрицы G:

Λ_1	Λ_2	Λ_3	Λ_4
15376.0599	2710.1661	350.3905	860.8528

Собственные векторы матрицы G:

e_1	e_2	e_3	e_4
$(0.0339 \ 0.1647 \ 0.9109 \ 0.3768)^T$	$(0.5556 \ 0.7966$ $- \ 0.2106 \ 0.111)^T$	$(0.4967 - 0.4967 - 0.2101 \ 0.6801)^T$	$(-0.666 \ 0.3026$ $-0.286 \ 0.619)^T$

5. Число обусловленности оператора A в пространстве l_4^2 .

$$cond(A) = ||A|| \cdot ||A^{-1}|| = \sqrt{\max_i \Lambda_i} \sqrt{(\min_i \Lambda_i)^{-1}} = 6.6244$$

Оценим норму линейного оператора А:

$$\|Ax\|^2 = (Ax,Ax) = (A^*Ax,x) = (Gx,x) = \left(\sum_{i=1}^4 x_i \, \Lambda_i e_i, \sum_{j=1}^4 x_j e_j\right) = \sum_{i=1}^4 \Lambda_i x_i^2 \leq \max_i \Lambda_i \, \|x\|^2.$$
 Отсюда $\|A\|^2 \leq \max_i \Lambda_i -> \|A\| \leq \max_i \Lambda_i.$

Если
$$x = \max_i e_i$$
, то $\|Ax\| = \left\|\max_i \Lambda_i \cdot \max_j e_j \right\| = \max_i \Lambda_i$. Таким образом, $\|A\| = \max_i \Lambda_i$

В случае пространства l_4^2 она будет вычислять по формуле $\sqrt{\max_i \Lambda_i}$, где Λ_i – собственные числа матрицы G. Так как для обратного оператора собственные числа обратные, то мы будем искать корень из максимального обратного собственного числа оператора G.

Вектора, на которых достигается нормы $\|A\|$ и $\left\|A^{-1}\right\|$ соответственно: e_1 и e_3 .

6. Методом итераций решить систему уравнений Ax = b. Начальное приближение $x_0 = (1,1,1,1)$, A = I - B, $B = G^{-1}$, b = (1/2,1/3,1/4,1/5). Найти точное решение и сравнить его с 5 и 10 итерациями.

Метод реализуется через итерационную последовательность, опирающуюся на свойство о допустимости оценки В (см. теорию).

$$\mathbf{B} = \begin{pmatrix} 0.0025 & -0.0004 & -0.0003 & -0.0005 \\ -0.0004 & 0.0004 & 0.0001 & 0.0003 \\ -0.0003 & 0.0001 & 0.0008 & 0.0006 \\ -0.0005 & 0.0003 & 0.0006 & 0.0007 \end{pmatrix}, \quad \|B\| = 0.0037 < 1, \text{ значит последовательность}$$

 $x_{n+1} = b + Bx_n$ сходится к решению уравнения х*.

$$x *= \begin{pmatrix} 0.501 \\ 0.3333 \\ 0.2502 \\ 0.2002 \end{pmatrix} \qquad x_5 = \begin{pmatrix} 0.501 \\ 0.3333 \\ 0.2502 \\ 0.2002 \end{pmatrix} \qquad x_{10} = \begin{pmatrix} 0.501 \\ 0.3333 \\ 0.2502 \\ 0.2002 \end{pmatrix}$$

Результаты на 5 и 10 итерациях совпадают с точным решением, т.к. скорость сходимости метода очень высокая (сходятся за 2 итерации) из-за небольшого значения нормы матрицы В (можно говорить также о спектральном радиусе).