Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού.

Ιωάννα Γέμου

Το Πρόβλημα

- Μία φαρμακευτική εταιρία καλείται να κατασκευάσει ένα νέο φαρμακευτικό προϊόν.
- Έχει στην διάθεση της ένα σύνολο ουσιών, των οποίων γνωρίζει το κόστος τους και την αποτελεσματικότητά τους.
- Υπάρχουν περιορισμοί συμβατότητας μεταξύ των διαφόρων ουσιών.
- Πρέπει να επιλεγεί ο καλύτερος συνδυασμός ουσιών για το σκεύασμα, με απώτερο σκόπο να μεγιστοποιήσουμε την αποτελεσματικότητά του, μειώνοντας παράλληλα το κόστος.

Πρόβλημα Μίξης

Επίσημη Διατύπωση

Δοθέντος ενός συνόλου A με τις ποσότητες n ουσιών και C με το κόστος τους, βρείτε τον κατάλληλο συνδυασμό ουσιών ώστε η αντικειμενική συνάρτηση

$$\sum_{i=1}^{n} a_i c_i$$

να ελαχιστοποείται.

Εξειδίκευση Προβλήματος

- Σε κάθε φαρμακευτικό σκεύασμα το άθροισμα των ποσοτήτων όλων των ουσιών είναι 1.
- Δεν χρειάζεται να επιλεγούν όλες οι ουσίες.
- Η ελαχιστοποίηση του κόστους δεν είναι ο μόνος στόχος,
 αλλά μας ενδιαφέρει και η αποτελεσματικότητα του
 προϊόντος.
- Λαμβάνουμε υπόψιν περιορισμούς συμβατότητας των ουσιών.

Datasets

Listing: File format

```
1    name, cost, efficacy
2    s1,0.5,0.4
3    s2,0.5,0.5
4    s3,0.1,0.01
5    name, s1, s2, s3
7    s1,0,-2,0
8    s2,-2,0,1
9    s3,0,1,0
```

Συμβατότητα Ουσιών

- Benzylpenicillin and Aminoglycosides: αντιβιοτικά, δεν πρέπει να αναμιγνύονται λόγω της πιθανής χημικής αλληλεπίδρασης που μπορεί να μειώσει την αποτελεσματικότητά τους.
- Amoxicillin and Clavulanic Acid: αντιβιοτικό και οξύ. Το οξύ αυτό χρησιμοποιείται σε συνδυασμό με το αντιβιοτικό για την ενίσχυση του φάσματος δράσης του.

Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού. \bot Εισαγωγή

Σχήμα: Το pipeline της εργασίας μας.

__Μοντελοποίηση

Μεταβλητές και Σταθερές

Μεταβλητές και σταθερές προβλήματος

Μεταβλητές

Ε : συνολική αποτελεσματικότητα

C : συνολικό κόστος

 f_i : ύπαρξη της ουσίας i στο σκεύασμα

 $Z_{i,j}$: παρουσία ουσίας i και ουσίας j στο τελικό σκεύασμα.

 a_i : ποσότητα της ουσίας i

Σταθερές

S : σύνολο ουσιών

 $R_{i,j}$: συμβατότητα της ουσίας i με την ουσία j

 c_i : κόστος της ουσίας i

 e_i : αποτελεσματικότητα της ουσίας i

Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού.

- Μοντελοποίηση

Μεταβλητές και Σταθερές

Παράμετρος

Συντελεστής Εξισορρόπησης: Με τον συντελεστή εξισορρόπησης επιλέγουμε πόσο βάρος θέλουμε να δώσουμε στο κόστος και την αποτελεσματικότητα. Τον συμβολίζουμε με e.

Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού.

- _ Μοντελοποίηση
 - Μεταβλητές και Σταθερές

Περιορισμοί

Το άθροισμα όλων των ουσιών στο φαρμακευτικό σκεύασμα πρέπει να είναι ίσο με 1.

$$\sum_{a \in S} a_i = 1, \forall i \in S \tag{1}$$

Η συμβατότητα μεταξύ δύο ουσιών ορίζεται τον πίνακα σχετικής αποτελεσματικότατας R. Για κάθε ουσία έχουμε μία δυαδική μεταβλητή που εκφράζει την υπαρξή της στο σκεύασμα.

$$f_i = \begin{cases} 0 & a_i = 0 \\ 1 & a_i > 0 \end{cases}$$
 (2)

Μεταβλητές και Σταθερές

Περιορισμοί

 Ο τρόπος με τον οποίο μια τέτοια μεταβλητή ορίζεται σε πρόγραμμα GMPL είναι ο εξής:

$$a_i \cdot M \ge f_i \tag{3}$$
$$f_i > a_i \tag{4}$$

$$f_i \geq a_i$$
 (4)

(στην εφαρμογή μας M=100). Για παράδειγμα, αν $a_i=0$ τότε έχουμε:

$$0 \ge f_i \tag{5}$$

$$f_i \geq 0 \tag{6}$$

Έτσι, $f_i=0$. Εναλακτικά, αν $a_i>0$, οι ανισότητες γίνονται

$$\infty \geq f_i$$
 (7)

$$f_i \ge a_i > 0 \tag{8}$$

Όμως f_i δυαδική μεταβλητή, θα έχουμε $f_i = 1$.

∟Μεταβλητές και Σταθερές

Περιορισμοί

Παρουσία ουσιών i, j στο σκεύασμα.

$$Z_{i,j} = f_i \wedge f_j \tag{9}$$

Η παραπάνω λογική πράξη μοντελοποείται ως εξής:

$$Z_{i,j} \le f_i \tag{10}$$

$$Z_{i,j} \le f_j \tag{11}$$

$$Z_{i,j} \ge f_i + f_j - 1 \tag{12}$$

Δηλαδή, αν $f_i = f_j = 1$ τότε $Z_{i,j} = 1$, αλλιώς $Z_{i,j} = 0$.

- Μοντελοποίηση

Μεταβλητές και Σταθερές

Αντικειμενική Συνάρτηση

Έχουμε λάβει υπόψιν δύο στόχους, το κόστος του σκευάσματος και την αποτελεσματικότητά του.

$$E = \sum_{i,j \in S} e_i a_i + R_{i,j} Z_{i,j}$$
 (13)

$$C = \sum_{i \in S} c_i a_i \tag{14}$$

Επομένως ορίζουμε ως αντικειμενική συνάρτηση:

$$\max Z = eE - (1 - e)C \tag{15}$$

∟Παράδειγμα Επίλυσης

Παράδειγμα-Ι

Listing: File format

```
1    name, cost, efficacy
2    s1,0.5,0.4
3    s2,0.5,0.5
4    s3,0.1,0.01
5    name,s1,s2,s3
7    s1,0,-2,0
8    s2,-2,0,1
9    s3,0,1,0
```

- _ Μοντελοποίηση
 - Παράδειγμα Επίλυσης

Παράδειγμα-ΙΙ

- Σχουμε τις ουσίες με ονόματα (name) s_1, s_2, s_2 . Καθεμία από αυτές τις ουσίες έχει ένα συγκεκριμένο κόστος (cost), 0.5, 0.5, 0.1 και ένα μέτρο αποτελεσματικότητας (efficacy) 0.4, 0.5, 0.01.
- Νοτακας αποτελεσματικότητας συνδυασμών ουσιών $N \times N$, όπου N το πλήθος των διαθέσιμων ουσιών.

$$R = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \tag{16}$$

Η Τελική Μίξη

Η βέλτιστη λύση αυτού του προβλήματος (N=3) είναι η εξής: $a_1=0, a_2=0.99, a_3=0.01, Z=1.6$ Δηλαδή:

- Δεν επιλέγεται η s₁.
- Επιλέγονται 0.9 units από την ουσία s₂
- Επιλέγεται 0.1 unit από την ουσία s₃

- _ Μοντελοποίηση
 - Παράδειγμα Επίλυσης

Παρατηρήσεις

- οι ουσίες s₁, s₂ έχουν το ίδιο κόστος, επομένως επιλέγεται η
 s₂ αφού έχει μεγαλύτερη αποτελεσματικότητα.
- Ο συνδυασμός της s₂ με την ουσία s₃ θα αυξήσει στην αποτελεσματικότητα του τελικού σκευάσματος.
- Ο συνδυασμός των ουσιών s₁, s₂, θα έχει αρνητικό αποτέλεσμα στο τελικό προϊόν.
- Ο συνδυασμός s_1, s_2 , δέν θα ήταν τόσο καλός όσο ο s_1, s_3 , σύμφωνα με τον πίνακα συμβατότητας.

Αποτελέσματα

Προσπαθήσαμε στα πλαίσια της εργασίας να εισάγουμε στο μοντέλο μας μια ποικιλία από εισόδους.

Πίνακας: Αποτελέσματα επίλυσης των συνόλων δεδομένων τα οποία παρήγαμε.

Ουσίες	Χρόνος Επίλυσης (s)
3	0.0
5	0.0
10	0.1
20	4.7
30	19.5
40	134.1
50	1125.7
100	_

Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού. - Αποτελέσματα

L Χρόνος Επίλυσης

Για μεγαλύτερα datasets ο αριθμός μεταβλητών είναι υπερβολικά μεγάλος για να έχουμε αποτελέσματα σε ένα εύλογο χρονικό περιθώριο.

 Σ χήμα: Γραφική παράστασης του χρόνου εκτέλεσης σε συνάρτηση με τον αριθμό των ουσιών.

19 / 24

Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού. - Αποτελέσματα

Σχήμα: Γραφική παράστασης του τιμής της αντικειμενικής συνάρτησης σε συνάρτηση με την τιμή του συντελεστή εξισορρόπησης.

Επίλυση με χρήση ASP

```
relative_efficacy(X, X, 0):- substance(X).
relative_efficacy(X, Y, E):- relative_efficacy(Y, X, E).
1 { ammount(X, Y) : n(Y) } 1:- substance(X).
total_cost(TC):- TC = # sum{ C * Y, X : substance(X),ammount(X, Y),cost(X, C)}.
bonus_efficacy(X, E):- relative_efficacy(X, Y, E), ammount(Y, A), A > 0.
total_efficacy(TE):-BaseEfficacy = #sum{ E * Y, X :substance(X),ammount(X, Y),
efficacy(X, E) }, BonusEfficacy = #sum{ E * Y, X :substance(X),ammount(X, Y),
bonus_efficacy(X, E)},
TE = BaseEfficacy + BonusEfficacy.
:- not #sum{ A, X : substance(X), ammount(X, A) } == 10.
#minimize{ TC : total_cost(TC) }.
#maximize{ TE : total_efficacy(TE) }.
```

Το μειονέκτημα της προσέγγισης ASP είναι η ταχύτητα εκτέλεσης.

Πίνακας: Σύγκριση χρόνου εκτέλεσης επιλυτή γραμμικού προγραμματισμού και επιλυτή ASP για N=3 ουσίες.

Solver	Χρόνος Εκτέλεσης (s)
CBC	0.0
Clingo	17.95

Συμπεράσματα

- Αναλύθηκε και η μοντελοποιήθηκε ένα πρόβλημα μίξης ουσιών για την κατασκευή φαρμακευτικών σκευασμάτων με το μικρότερο δυνατό κόστος, λαμβάνοντας ωστόσο υπόψιν την αποτελεσματικότητα του παραγόμενου προϊόντος.
- Τα δεδομένα εισόδου παρήχθησαν με δικά μας εργαλεία.
- Ο αριθμός μεταβλητών είναι καθοριστικός για την ταχύτητα επίλυσης.
- Το μοντέλο γραμμικού προγραμματισμού εντόπισε με επιτυχία έναν βέλτιστο συνδυασμό ουσιών, που μεγιστοποιεί την αποτελεσματικότητα ελαχιστοποιώντας ταυτόχρονα το κόστος.

Βελτιστοποίηση της σύνθεσης φαρμάκων με χρήση μεθόδων γραμμικού προγραμματισμού. \bot Βελτιώσεις

Βελτιώσεις

- Ενσωμάτωση δεδομένων πραγματικού κόσμου, όπως αποτελέσματα κλινικών δοκιμών.
- Περιορισμοί ποσοτήτων ουσιών.
- Εξερεύνηση της βελτιστοποίησης πολλαπλών παραγόντων, όπως η ασφάλεια των ασθενών και ο περιβαλλοντικός αντίκτυπος.