Mathmod - библиотека программ для численного моделирования

Баранов С.В.

30.12.2024

Содержание

Mathmod - библиотека программ для численного моделирования	1
Теория погрешностей	1
Решение нелинейных уравнений	
Постановка задачи	2
Основные вопросы	2
1. Метод Ньютона	3
2. Упрощённый метод Ньютона	3
3. Метод секущих	5
4. Метод ложного положения	8
5. Метод бисекций	10
6. Метод простой итерации	10
Решение систем линейных алгебраических уравнений (СЛАУ)	12
Постановка задачи	12
Основные вопросы	
Прямые методы	16
Итерационные методы	31
Приближение функций	38
Vстановка	40

Mathmod - библиотека программ для численного моделирования

Теория погрешностей

Пусть a - точное решение. a^* - приближенное значение. Тогда абсолютная погрешность:

Абсолютная погрешность:

$$\Delta(a^*) = |a - a^*|$$

Относительная погрешность:

$$\delta(a^*) = \frac{|a-a^*|}{|a|} = \frac{\Delta(a^*)}{|a|}$$

Верная цифра - значащая цифра числа a^* , абсолютная погрешность которой не превосходит единицы разряда, соответствующей этой цифре.

Округление - замена числа a его другим числом a^* с меньшим количеством значащих цифр.

При округлении возникает погрешность округления.

Решение нелинейных уравнений

Постановка задачи

Задача отыскания корней нелинейного уравнения с одним неизвестным вида:

$$f(x) = 0$$

Корень уравнения - значение \overline{x} , при котором $f(\overline{x})=0$. Геометрически, \overline{x} является абсциссой точки пересечения графика f(x) с осью Ox.

Для заданной точности ϵ требуется найти приближенное значение корня \overline{x}^* такое, что:

$$|\overline{x} - \overline{x}^*| \le \epsilon$$

Пусть функция f(x) дифференцируема m>1 раз в точке \overline{x} , тогда:

Простой корень - корень уравнения \overline{x} называется простым, если $f'(\overline{x}) \neq 0$.

Кратный корень - корень уравнения \overline{x} называется простым, если $f'(\overline{x})=0$. Целое число m назовем кратностью корня \overline{x} , если $f^{(k)}(\overline{x})=0$, для k=1,2,...,m-1 и $f^{(m)}(\overline{x})\neq 0$.

Этапы решения уравнения: 1. Локализация корня; 2. Вычисление корня с заданной точностью.

Отрезок локализации - отрезок [a, b], который содержит 1 корень уравнения.

Основные вопросы

Сходящийся итерационный процесс - метод отыскания корня \overline{x} , заключающийся в построении последовательности приближений к нему $x^{(0)}, x^{(1)}, ..., x^{(k)}, ...$ такой, что:

$$\lim_{k\to\infty} x^{(k)} = \overline{x}$$

Порядок сходимости:

Пусть в некоторой малой окрестности корня \overline{x} уравнения f(x)=0 итерационная поледовательность удовлетворяет неравенству:

$$|\overline{x}-x^{(k)}| \leq C|\overline{x}-x^{(k-1)}|^p$$

, где > 0 и $p \ge 1$ - постоянные. Тогда p называется порядком сходимости.

Порядок сходимости - скорость уменьшения погрешности между последовательными приближениями решения.

Одношаговый итерационный метод - метод, у которого очередное приближение $x^{(k+1)}$ находится только через одно предыдущее $x^{(k)}$. Для его работы нужно знать только одно начальное приближение $x^{(0)}$. (Пример - метод Ньютона)

Многошаговый итерационный метод (l - шаговый) - метод, у которого очередное приближение $x^{(k+1)}$ находится l предыдущих $x^{(k)}, x^{(k-1)}, ..., x^{(k-l+1)}$. Для него следует задать l начальных приближений $x^{(0)}, x^{(1)}, ..., x^{(l-1)}$. (Пример - метод секщих)

Интервал неопределенности - окрестность $(\overline{x}-\epsilon,\overline{x}+\epsilon)$ внутри которой любую точку можно принять за приближение к корню.

Figure 1: Интерал неопределенности

1. Метод Ньютона

- Быстрый итерационный метод для нахождения корня уравнения f(x) = 0.
- Требует предоставления функции f(x) и её производной f'(x).
- Функция: newton(f, df, x, epsilon=1e-6)
- Описание параметров:
 - f Функция, корень которой нужно найти;
 - df Производная функции;
 - х Начальное приближение корня;
 - epsilon Заданная точность (по умолчанию 10^{-6}).

from mathmod.nonlinear_equations import newton

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

Сходимость метода: квадратичная (при выборе начального приближения из достаточно малой окрестности). Критерий окончания:

$$|x^{(n+1)} - x^{(n)}| < \varepsilon$$

2. Упрощённый метод Ньютона

• Упрощённая версия метода Ньютона, где производная функции вычисляется только один раз.

1. Метод касательных. Выведем расчетную формулу метода для

Puc. 4.9

решения нелинейного уравнения (4.1) из простых геометрических соображений. Соответствующая иллюстрация приведена на рис. 4.9.

Пусть $x^{(0)}$ — заданное начальное приближение к корню \overline{x} . В точке $M^{(0)}$ с координатами $(x^{(0)}, f(x^{(0)}))$ проведем касательную к графику функции y = f(x) и за новое приближение $x^{(1)}$ примем абсциссу точки пересечения этой касательной с осью Ox. Аналогич-

но, за приближение $x^{(2)}$ примем абсциссу точки пересечения с осью Ox касательной, проведенной к графику в точке $M^{(1)}$ с координатами $(x^{(1)}, f(x^{(1)}))$. Продолжая этот процесс далее, получим последовательность $x^{(0)}, x^{(1)}, x^{(2)}, ..., x^{(n)}, ...$ приближений к корню \overline{x} .

Напомним, что уравнение касательной, проведенной к графику функции y = f(x) в точке $(x^{(n)}, f(x^{(n)}))$, имеет вид

$$y = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}). \tag{4.35}$$

Полагая в равенстве (4.35) y=0, замечаем, что при выполнении условия $f'(x^{(n)}) \neq 0$ абсцисса $x^{(n+1)}$ точки пересечения касательной с осью Ox удовлетворяет равенству

$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)}).$$
(4.36)

Выражая из него $x^{(n+1)}$, получаем расчетную формулу $nemoda\ Hьюто-нa$:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}, \quad n \ge 0.$$
(4.37)

Благодаря такой геометрической интерпретации этот метод часто называют *методом касательных*.

Figure 2: Метод Ньютона

- Функция: simplified_newton(f, df, x0, epsilon=1e-6)
- Описание параметров:
 - f Функция, корень которой нужно найти;
 - df Производная функции;
 - х Начальное приближение корня;
 - epsilon Заданная точность (по умолчанию 10^{-6}).

from mathmod.nonlinear_equations import simplified_newton

x, iteration = simplified_newton(f, df, x0, epsilon=1e-6)

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(0)})}$$

Сходимость метода: скорость сходимости тем выше, чем ближе начальное приближение $x^{(0)}$ к решению \overline{x} . Критерий окончания:

$$|x^{(n+1)} - x^{(n)}| < \varepsilon$$

3. Метод секущих

- Не требует аналитической производной функции.
- Использует приближённую производную.
- Функция: secant(f, x_minus_1, x_n, epsilon=1e-6)
- Описание параметров:
 - f Функция, корень которой нужно найти;
 - x_minus_1 Первой начальное приближение;
 - х Второе начальное приближение;
 - epsilon Заданная точность (по умолчанию 10^{-6}).

from mathmod.nonlinear_equations import secant

x, iteration = secant(f, x_minus_1, x_n, epsilon=1e-6)

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{x^{(n-1)} - x^{(n)}}{f(x^{(n-1)}) - f(x^{(n)})} f(x^{(n)})$$

Сходимость метода: $p=\frac{\sqrt{5}+1}{2}\approx 1.618$ - сверхлинейная, если вычисляется простой корень. При неудачном выборе приближения, метод расходится. Поэтому требуется выбор двух близких к \overline{x} начальных приближений $x^{(0)}$ и $x^{(1)}$.

Критерий окончания:

$$|x^{(n+1)}-x^{(n)}|<\varepsilon$$

1. Упрощенный метод Ньютона. Если производная f'(z) непрерывна, то ее значение вблизи простого корня \bar{x} почти постоянно. Поэтому можно попытаться вычислить f' лишь однажды в точке $x^{(0)}$, а затем заменить в формуле (4.37) значение $f'(x^{(n)})$ постоянной $f'(x^{(0)})$. В результате получим расчетную формулу упрощенного метода Ньютона: 112

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(0)})}, \quad n \ge 0.$$
(4.46)

Геометрическая иллюстрация метода приведена на рис. 4.11. В точке $(x^{(0)}, f(x^{(0)}))$ к графику функции y = f(x) проводится касательная lo и за приближение $x^{(1)}$ принимается абсцисса точки пересечения этой касательной с осью Ox (как в методе Ньютона). Каждое следующее приближение $x^{(n+1)}$ получается здесь как абсцисса точки пересечения с осью Ox прямой, проходящей через точку $M^{(n)}$ с координатами $(x^{(n)}, f(x^{(n)}))$ и

параллельной касательной l_0 .

Puc. 4.11

Упрощение вычислений по сравнению с методом Ньютона достигается здесь ценой резкого падения скорости сходимости. Сходимость этого метода является уже не квадратичной, а линейной.

Метод (4.46) можно рассматривать как метод простой итерации с итерационной функцией $\varphi(x)=x-rac{f(x)}{f'(x^{(0)})}.$ Так как $\varphi'(x)=1$ — $-\frac{f'(x)}{f'(x^{(0)})}$, то для знаменателя q соответствующей геометрической прогрессии имеем $q \approx \left| 1 - \frac{f'(\bar{x})}{f'(\bar{x}^{(0)})} \right|$. Следовательно, скорость сходимости тем выше, чем ближе начальное приближение $x^{(0)}$ к решению x.

Figure 3: Упрощенный метод Ньютона

том выправния точка c к x.

3. Метод секущих. Замена в формуле метода Ньютона производной $f'(x^{(n)})$ приближением $\frac{f(x^{(n-1)}) - f(x^{(n)})}{x^{(n-1)} - x^{(n)}}$ приводит к расчетной формуле метода секущих:

$$x^{(n+1)} = x^{(n)} - \frac{x^{(n-1)} - x^{(n)}}{f(x^{(n-1)}) - f(x^{(n)})} f(x^{(n)}), \quad n \ge 1.$$
 (4.49)

Заметим, что этот метод двухшаговый, так как для нахождения очередного приближения $x^{(n+1)}$ требуется знание двух предыдущих приближений $x^{(n)}$ и $x^{(n-1)}$. В частности, для того чтобы начать вычисления, необходимо задать два начальных приближения $x^{(0)}$ и $x^{(1)}$. Все рассмотренные ранее методы требовали для вычисления $x^{(n+1)}$ только знание $x^{(n)}$, т. е. были одношаговыми.

На рис. 4.13 приведена геометрическая иллюстрация метода. Очередное приближение $x^{(n+1)}$ получается здесь как абсцисса точек пересечения с осью Ox секущей, соединяющей точки $M^{(n-1)}$ и $M^{(n)}$ графика функции f(x) с координатами $(x^{(n-1)}, f(x^{(n-1)}))$ и $(x^{(n)}, f(x^{(n)}))$.

Примечательно то, что эта модификация метода Ньютона сохраняет свойство сверхлинейной сходимости, если вычисляется простой корень — т. Точнее, верно следующее утверждение.

Теорема 4.9. Пусть \bar{x} — простой корень уравнения f(x)=0, в некоторой окрестности которого функция f дважды непрерывно дифференцируема, причем $f'(\bar{x})\neq 0$. Тогда существует σ -окрестность корня \bar{x} такая, что при произвольном выборе приближений $x^{(0)}$ и $x^{(1)}$ из этой σ -окрестности метод секущих сходится c порядком $p=\frac{\sqrt{5}+1}{2}\approx 1.618$, т. е. для $n\geqslant 1$ справедлива оценка

$$|x^{(n+1)} - \overline{x}| \le c|x^{(n)} - \overline{x}|^p, p = \frac{\sqrt{5} + 1}{2}.$$

Так как одна итерация метода секущих требует только одного нового вычисления значения функции f, а метод Ньютона — двух вычислений значений функций (f и f'), то трудоемкость двух итераций метода секущих приблизительно эквивалентна трудоемкости одной итерации по Ньютону. Две итерации метода секущих дают порядок $p^2 \approx 2.618 > 2$, поэтому его можно расценивать как более быстрый по сравнению с методом Ньютона.

К сожалению, метод обладает, вообще говоря, только локальной сходимостью. Он требует выбора двух близких к \overline{x} (в общем случае — очень близких) начальных приближений $x^{(0)}$ и $x^{(1)}$. Если эти приближения выбраны неудачно, то метод расходится (рис. 4.14).

Puc. 4.14

115

4. Метод ложного положения

- Функция: false_position(f, a, b, epsilon=1e-6)
- Описание параметров:
- f: Функция, корень которой нужно найти;
- а: Левый конец начального отрезка локализации корня;
- b: Правый конец начального отрезка локализации корня;
- epsilon: Заданная точность (по умолчанию 10^{-6}).

from mathmod.nonlinear_equations import false_position

x, iteration = false_position(f, a, b, epsilon=1e-6)

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{c - x^{(n)}}{f(c) - f(x^{(n)})} f(x^{(n)})$$

, где c - некторая точнка из окрестности корня.

Сходимость метода: линейная. Для достижения заданной точности требуется тем меньше итераций, чем ближе к корню лежит точка c.

Критерий окончания:

$$|x^{(n+1)}-x^{(n)}|<\varepsilon$$

Метод ложного положения. В основе этой и следующих двух модификаций метода Ньютона лежит приближенное равенство

$$f'(x^{(n)}) \approx \frac{f(z^{(n)}) - f(x^{(n)})}{z^{(n)} - x^{(n)}}$$
 (4.47)

Оно верно при условии $z^{(n)} \approx x^{(n)}$ и следует из определения производной: $f'(z) = \lim_{z \to z} \frac{f(z) - f(z)}{z - x}$.

Пусть c — фиксированная точка, расположенная в окрестности простого корня \bar{x} . Заменим в расчетной формуле метода Ньютона (4.37) производную $f'(x^{(n)})$ правой частью приближенного равенства (4.47), полагая $z^{(n)} = c$. В результате придем к расчетной формуле метода ложного положения:

113

$$x^{(n+1)} = x^{(n)} - \frac{c - x^{(n)}}{f(c) - f(x^{(n)})} f(x^{(n)}), \quad n \ge 0.$$
 (4.48)

Геометрическая иллюстрация метода приведена на рис. 4.12. Очередное приближение $x^{(n+1)}$ получается здесь как абсцисса точки пересечения с осью Ox прямой, проведенной через расположенные на графике функции y = f(x) точки M и $M^{(n)}$ с координатами (c, f(c)) и $(x^{(n)}, f(x^{(n)}))$.

Puc. 4.12

Puc. 4.13

Метод (4.48) обладает только линейной сходимостью. Его можно рассматривать как метод простой итерации с итерационной функцией $\varphi(x) = x - \frac{c - x}{f(c) - f(x)} f(x)$. Так как скорость сходимости определя-

ется вблизи корня величиной $q \approx \left| \varphi'(\overline{x}) \right| = \left| 1 - \frac{(c-x) - f'(\overline{x})}{f(c) - f(\overline{x})} \right|$, то она

тем выше, чем ближе окажется выбранная точка c к \overline{x} .

5. Метод бисекций

- Работает на основе деления отрезка, учитывая значения функции.
- Требует, чтобы начальный отрезок [a,b] удовлетворял условию f(a)*f(b)<0. Функция: bisection(f, a, b, epsilon)

Описание параметров: - f - Функция, корень которой нужно найти; - a - Левый конец начального отрезка локализации корня; - b - Правый конец начального отрезка локализации корня; - epsilon - Заданная точность (по умолчанию 10^{-6}).

from mathmod.nonlinear_equations import bisection

x, iteration = bisection(f, a, b, epsilon=1e-6)

Расчетная формула:

$$c = \frac{a+b}{2}$$

Сходимость метода: со скоростью геометрической прогрессии, знаменатель которой $q = \frac{1}{2}$.

Критерий окончания:

$$b^{(n)} - a^{(n)} < 2\varepsilon$$

Тогда $x^{(n)}=rac{a^{(n)}+b^{(n)}}{2}$ является искомым приближением к корню с точностью $\epsilon.$

6. Метод простой итерации

Функция: simple_iteration_method(phi, x0, epsilon=1e-6)

Описание параметров: - phi - Итерационная функция $\phi(x)$, преобразующая исходное уравнение f(x) = 0 к виду $x = \phi(x)$; - x0 - Начальное приближение корня; - epsilon - Заданная точность (по умолчанию 10^{-6}).

from mathmod.nonlinear_equations import simple_iteration_method

x, iteration = simple_iteration_method(phi, x0, epsilon=1e-6)

Расчетная формула:

$$x^{(n+1)} = \phi(x^{(n)})$$

Теорема о сходимости:

Если в окрестности корня функция $\phi(x)$ непрерывно дифференцируема и удовлетворяет условию:

$$\max_{x \in [a,b]} |\phi(x)| \leq q$$

где $0 \le q < 1$ - постоянная

Тогда независимо от выбора начального приближения $x^{(0)}$ из указанной окрестности корня итерационная последовательность не выходит из этой окрестности, метод сходится со скоростью геометрической прогресии и справедлива следующая оценка погрешности (априорная оценка):

Априорная оценка - показывет, что итерационный метод сходится

$$|x^{(n)}-\overline{x}| \leq q^n |x^{(0)}-\overline{x}|$$

§ 4.3. Метод бисекции

1. Описание метода. Пусть требуется с заданной точностью $\varepsilon > 0$ найти корень \overline{x} уравнения (4.1). Отрезок локализации [a, b] (т. е. отрезок, содержащий только один корень \overline{x}) будем считать заданным. Предположим, что функция f непрерывна на отрезке [a, b] и на его концах принимает значения разных знаков, т. е.

$$f(a) f(b) < 0.$$
 (4.13)

На рис. 4.5 изображен случай, когда f(a) < 0 и f(b) > 0.

Для дальнейшего будет удобно обозначить отрезок [a, b] через $[a^{(0)}, b^{(0)}]$. Примем за приближенное значение корня середину отрезка — точку $x^{(0)} = (a^{(0)} + b^{(0)})/2$. Так как положение

корня \bar{x} на отрезке $[a^{(0)}, b^{(0)}]$ неизвестно, то можно лишь утверждать, что погрешность этого приближения не превышает половины длины отрезка (рис. 4.5):

$$|x^{(0)} - \overline{x}| \le (b^{(0)} - a^{(0)})/2.$$

Уменьшить погрешность приближения можно, уточняя отрезок локализации, т. е. заменяя начальный отрезок $[a^{(0)}, b^{(0)}]$ отрезком $[a^{(1)}, b^{(1)}]$ меньшей длины. Согласно методу бисекции (половинного деления) в качестве $[a^{(1)}, b^{(1)}]$ берут тот из отрезков $[a^{(0)}, x^{(0)}]$ и $[x^{(0)}, b^{(0)}]$, на концах которого выполняется условие $f(a^{(1)})$ $f(b^{(1)}) \leq 0$. Этот отрезок содержит искомый корень. Действительно, если $f(a^{(1)})$ $f(b^{(1)}) < 0$, то наличие корня следует из теоремы 4.1; если же $f(a^{(1)})$ $f(b^{(1)}) = 0$, то корнем является один из концов отрезка. Середина полученного отрезка $x^{(1)} = (a^{(1)} + b^{(1)})/2$ дает теперь приближение к корню, оценка погрешности которого составляет

$$|x^{(1)} - \overline{x}| \leq (b^{(1)} - a^{(1)})/2 = (b - a)/2^2.$$

Figure 4: Метод бисекций

Чем меньше q, тем выше скорость сходимости.

Апостериорная оценка - критерий окончания итерационного процесса

$$|x^{(n)}-x^{(n-1)}| \leq \frac{1-q}{q}\epsilon$$

Если это условие выполнено, то можно считать, что $x^{(n)}$ является приближением к \overline{x} с точностью ϵ .

Решение систем линейных алгебраических уравнений (СЛАУ)

Постановка задачи

Система уравнений в общем виде:

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1m}x_m &= b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \cdots + a_{2m}x_m &= b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \cdots + a_{3m}x_m &= b_3, \\ & & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \cdots + a_{mm}x_m &= b_m. \end{aligned}$$

В матричной форме эта система принимает вид:

$$A\mathbf{x} = \mathbf{b}$$

, где

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3m} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_m \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

m - порядок матрицы;

A - невырожденная матрица ($\Delta A \neq 0$, т.е. \exists единственное решение);

x - вектор неизвестных;

b - вектор свободных членов;

Пусть \overline{x} - точное решение, x^* - приближенное решение.

$$\overline{\mathbf{x}} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \overline{x}_3 \\ \vdots \\ \overline{x}_m \end{bmatrix} \quad \mathbf{x}^* = \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_m^* \end{bmatrix}$$

Тогда вектор $\epsilon = \overline{x} - x^*$ называется вектором погрешности.

Задача:

Найти решение системы Ax = b с точностью ϵ . Это означает, что нужно найти вектор x^* такой, что $||\overline{x} - x^*|| \le \epsilon$, где $||\cdot||$ - одна из норм (единичная, евклидова, бесконечности).

§ 4.4. Метод простой итерации

1. Описание метода. Чтобы применить метод простой итерации для решения нелинейного уравнения (4.1), необходимо преобразовать это уравнение к следующему виду:

93

$$x = \varphi(x). \tag{4.15}$$

Это преобразование (приведение уравнения к виду, удобному для итерации) можно выполнить различными способами; некоторые из них будут указаны ниже. Функцию φ далее будем называть итерационной функцией.

Выберем каким-либо образом приближенное значение корня $x^{(0)}$ и подставим его в правую часть уравнения (4.15). Получим значение $x^{(1)} = \varphi(x^{(0)})$. Подставляя теперь $x^{(1)}$ в правую часть уравнения (4.15), имеем $x^{(2)} = \varphi(x^{(1)})$. Продолжая этот процесс неограниченно, получим последовательность приближений к корню, вычисляемых по формуле

$$x^{(n+1)} = \varphi(x^{(n)}), \quad n \ge 0.$$
 (4.16)

Очевидно, что метод простой итерации — одношаговый (см. § 4.1).

Если существует предел построенной последовательности $\bar{x} = \lim_{n \to \infty} x^{(n)}$, то, переходя к пределу в равенстве (4.16) и предполагая функцию φ непрерывной, получим равенство

$$\overline{x} = \varphi(\overline{x}). \tag{4.17}$$

Это значит, что \bar{x} — корень уравнения (4.15).

Figure 5: Метод простой итерации

Основные вопросы

Прямой метод - метод, который позволяет получить решение после выполнения конечного числа элементарных операций;

Итерационный метод - метод, который строит последовательность приближений к решению;

Норма - будем говорить, что в R^m введена норма, если каждому вектору $x \in R^m$ сопоставлено вещественное число, обозначаемое ||x||.

1. Нормы векторов:

$$\|\boldsymbol{x}\|_{1} = \sum_{i=1}^{m} \|x_{i}\|, \|\boldsymbol{x}\|_{2} = \left(\sum_{i=1}^{m} \|x_{i}\|^{2}\right)^{1/2}, \|\boldsymbol{x}\|_{\infty} = \max_{1 \leq i \leq m} \|x_{i}\|.$$
 (5.4)

Figure 6: Нормы векторов

Свойства норм векторов:

1°)
$$\| \boldsymbol{x} \| \ge 0$$
, причем $\| \boldsymbol{x} \| = 0$ тогда и только тогда, когда $\boldsymbol{x} = 0$; 2°) $\| \alpha \boldsymbol{x} \| = |\alpha| \| \boldsymbol{x} \|$ для любого вектора \boldsymbol{x} и любого числа α ; 3°) $\| \boldsymbol{x} + \boldsymbol{y} \| \le \| \boldsymbol{x} \| + \| \boldsymbol{y} \|$ для любых векторов \boldsymbol{x} и \boldsymbol{y} ;

Figure 7: Свойства норм векторов

2. Нормы матриц:

Свойства норм матриц:

3. Абсолютна и относительная погрешность векторов и матриц:

• Погрешность векторов:

$$\Delta x^* = ||\overline{x} - x^*||$$
 - абсолютная погрешность; $\delta x^* = rac{\Delta x^*}{||x^*||}$ - относительная погрешность;

4. **Вектор невязки** - вектор, показывающий насколько найденное решение СЛАУ отклоняется от точного решения.

$$r = b - Ax^*$$

Число обусловленности - коэффициент возможного возрастания относительной погрешности решения, вызванное погрешностью задания правой части.

Пусть \overline{x} - точное решение системы $A\overline{x}=b,$ а x^* - решение системы. Тогда верны следующие оценки:

$$\delta(x^*) \le \nu_{\delta}(\delta(A^*) + \delta(b^*))$$

, где

$$\nu_{\delta} = ||A|| * ||A^{-1}|| \quad \delta(A^*) = \frac{||A - A^{-1}||}{||A||}|$$

$$\|A\|_{1} = \max_{1 \leq j \leq m} \sum_{i=1}^{m} |a_{ij}|,$$
126

$$||A||_2 = \max_{1 \le j \le m} \sqrt{\lambda_j(A^{\mathrm{T}}A)},\tag{5.12}$$

где $\lambda_i(A^TA)$ — собственные числа¹ матрицы A^TA ;

$$\|A\|_{\infty} = \max_{1 \leqslant i \leqslant m} \sum_{j=1}^{m} |a_{ij}|.$$
 (5.13)

Figure 8: Нормы матриц

- 1^{0}) $\|A\|\geqslant 0$, причем $\|A\|=0$ тогда и только тогда, когда A=0.
- 2^0) $\|\alpha A\| = |\alpha| \cdot \|A\|$ для любой матрицы A и любого числа α .
- 3^{0}) $\|A + B\| \le \|A\| + \|B\|$ для любых матриц A и B.

Дополнительно к этому верны следующие свойства:

- 4°) $||A \cdot B|| ≤ ||A|| \cdot ||B||$ для любых матриц A и B;
- 5^{0}) для любой матрицы \emph{A} и любого вектора \emph{x} справедливо неравенство

$$||Ax|| \leq ||A|| \cdot ||x||. \tag{5.10}$$

Figure 9: Свойства норм матриц

 $\nu(A) = cond(A) = ||A^{-1}|| * ||A||$ - стандартное число обусловленности.

Матрица *плохо* обусловлена, если cond(A) >> 1. Следовательно, тогда существует решение, обладающее черезвычайно высокой чувствительностью к малым погрешностям входного данного b.

Прямые методы

Прямой метод - метод, который позволяет получить решение после выполнения конечного числа элементарных операций.

- 1. Метод Гаусса (схема единственного деления)
 - Функция: gauss_single_division(A, b)
 - А Матрица левой части;
 - b Вектор правой части;

Трудоемкость метода - $\frac{2}{2}m^3$

- Прямой ход матрица A преобразуется к треугольному виду (m-1 шагов).
- Обратный ход вычисляются значения неизвестных, начиная с последнего уравнения (m^2 шагов).

Условие применимости - схема единственного деления не может быть реализована, если один из главных элементов равен нулю.

Описание метода:

1. Схема единственного деления. Рассмотрим сначала простейший вариант метода Гаусса, называемый схемой единственного деления.

 Π рямой ход состоит из m-1 шагов исключения.

1-й шаг. Целью этого шага является исключение неизвестного x_1 из уравнений с номерами i=2,3,...,m. Предположим, что коэффициент $a_{11} \neq 0$. Будем называть его *главным* (или ведущим) элементом 1-го шага.

Найдем величины

$$\mu_{i1} = a_{i1}/a_{11} \ (i = 2, 3, ..., m),$$
 (5.29)

называемые *множителями* 1-*10 шага*. Вычтем последовательно из второго, третьего, ..., m-го уравнений системы (5.1) первое уравнение, умноженное соответственно на μ_{21} , μ_{31} , ..., μ_{m1} . Это позволит обратить в

Figure 10: Метод Гаусса (схема единственного деления)

from mathmod.linear_systems import gauss_single_division
x = gauss_single_division(A, b)

Пример:

нуль коэффициенты при x_1 во всех уравнениях, кроме первого. В результате получим эквивалентную систему

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1m}x_{m} = b_{1} ,$$

$$a_{21}^{(1)} x_{2} + a_{23}^{(1)} x_{3} + \dots + a_{2m}^{(1)} x_{m} = b_{2}^{(1)} ,$$

$$a_{32}^{(1)} x_{2} + a_{33}^{(1)} x_{3} + \dots + a_{3m}^{(1)} x_{m} = b_{3}^{(1)} ,$$

$$\vdots \\ a_{m2}^{(1)} x_{2} + a_{m3}^{(1)} x_{3} + \dots + a_{mm}^{(1)} x_{m} = b_{m}^{(1)} .$$

$$(5.30)$$

в которой $a_{ij}^{(1)}$ и $b_{i}^{(1)}$ $(i,\,j=2,\,3,\,...,\,m)$ вычисляются по формулам

$$a_{ij}^{(1)} = a_{ij} - \mu_{i1} a_{1j}, \quad b_{i}^{(1)} = b_{i} - \mu_{i1} b_{1}.$$
 (5.31)

2-й шаг. Целью этого шага является исключение неизвестного x_2 из уравнений с номерами $i=3,\ 4,\ ...,\ m$. Пусть $a_{22}^{(1)}\neq 0$, где $a_{22}^{(1)}=$ коэффициент, называемый главным (или ведущим) элементом 2-го шага. Вычислим множители 2-го шага

$$\mu_{i2} = a_{i2}^{(1)}/a_{22}^{(1)}$$
 (i = 3, 4, ..., m)

и вычтем последовательно из третьего, четвертого, ..., m-го уравнений системы (5.30) второе уравнение, умноженное соответственно на μ_{32} , μ_{42} , ..., μ_{m2} . В результате получим систему

Здесь коэффициенты $a_{ij}^{(2)}$ и $b_{i}^{(2)}$ (i, j=3, 4, ..., m) вычисляются по формулам

$$a_{ij}^{(2)} = a_{ij}^{(1)} - \mu_{i2} a_{2j}^{(1)}$$
, $b_{i}^{(2)} = b_{i}^{(1)} - \mu_{i2} b_{2}^{(1)}$.

Аналогично проводятся остальные шаги. Опишем очередной *k*-й шаг.

k-й шаг. В предположении, что главный (ведущий) элемент k-го шага $a_{kk}^{(k-1)}$ отличен от нуля, вычислим множители k-го шага

$$\mu_{ik} = a_{ik}^{(k-1)} / a_{ik}^{(k-1)}$$
 $(i = k + 1, ..., m)$

Figure 11: Метод Гаусса (схема единственного деления)

и вычтем последовательно из (k+1)-го, ..., m-го уравнений полученной на предыдущем шаге системы k-е уравнение, умноженное соответственно на $\mu_{k+1,k}, \mu_{k+2,k}, ..., \mu_{mk}$.

После (m-1)-го шага исключения получим систему уравнений

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1m}x_{m} = b_{1} ,$$

$$a_{21}^{(1)}x_{2} + a_{23}^{(1)}x_{3} + \dots + a_{2m}^{(1)}x_{m} = b_{2}^{(1)} ,$$

$$a_{33}^{(2)}x_{3} + \dots + a_{3m}^{(2)}x_{m} = b_{3}^{(2)} ,$$

$$a_{mm}^{(m-1)}x_{m} = b_{m}^{(m-1)} .$$

$$(5.33)$$

матрица $A^{(m-1)}$ которой является верхней треугольной. На этом вычисления прямого хода заканчиваются.

Обратный ход. Из последнего уравнения системы (5.33) находим x_m . Подставляя найденное значение x_m в предпоследнее уравнение, получим x_{m-1} . Осуществляя обратную подстановку, далее последовательно находим x_{m-2} , x_{m-3} , ..., x_1 . Вычисления неизвестных здесь проводятся по формулам

$$\begin{split} x_m &= b_m^{(m-1)} / a_{mm}^{(m-1)}, \\ x_k &= (b_k^{(k-1)} - a_{k,k+1}^{(k-1)} x_{k+1} - \dots - a_{km}^{(k-1)} x_m) / a_{k,k}^{(k-1)}, \ (k = m-1, ..., 1). \end{split}$$
 (5.34)

Figure 12: Метод Гаусса (схема единственного деления)

$$2x_1 + x_2 - x_3 = 1,$$

$$4x_1 + 3x_2 - x_3 = 7,$$

$$8x_1 + 7x_2 + 3x_3 = 25.$$

В матричной форме система записывается так:

$$\left[\begin{array}{ccc|c}
2 & 1 & -1 & 1 \\
4 & 3 & -1 & 7 \\
8 & 7 & 3 & 25
\end{array}\right]$$

Прямой ход

Шаг 1: Приведение первого столбца

Делим первую строку на ведущий элемент $a_{11}=2$:

$$\left[\begin{array}{ccc|c}
1 & 0.5 & -0.5 & 0.5 \\
4 & 3 & -1 & 7 \\
8 & 7 & 3 & 25
\end{array}\right]$$

Обнуляем элементы ниже ведущего элемента в первом столбце, используя формулу:

$$a_{ij} \leftarrow a_{ij} - \mu_{ik} \cdot a_{kj}, \quad b_i \leftarrow b_i - \mu_{ik} \cdot b_k,$$

, где
$$\mu_{ik}=rac{a_{ik}}{a_{kk}}$$

Для второй строки:

$$\mu_{21} = 4, \quad a_{2j} \leftarrow a_{2j} - 4 \cdot a_{1j}$$

Для третьей строки:

$$\mu_{31} = 8, \quad a_{3j} \leftarrow a_{3j} - 8 \cdot a_{1j}$$

Получаем:

$$\left[\begin{array}{ccc|c} 1 & 0.5 & -0.5 & 0.5 \\ 0 & 1 & 1 & 5 \\ 0 & 3 & 7 & 21 \end{array}\right]$$

Шаг 2: Приведение второго столбца

Делим вторую строку на ведущий элемент $a_{22}=1$ (он уже равен 1):

$$\left[\begin{array}{ccc|c} 1 & 0.5 & -0.5 & 0.5 \\ 0 & 1 & 1 & 5 \\ 0 & 3 & 7 & 21 \end{array}\right]$$

Обнуляем элементы ниже ведущего элемента во втором столбце:

$$\mu_{32} = 3, \quad a_{3i} \leftarrow a_{3i} - 3 \cdot a_{2i}$$

Получаем:

$$\left[\begin{array}{ccc|c} 1 & 0.5 & -0.5 & 0.5 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 4 & 6 \end{array}\right]$$

Обратный ход

Решаем треугольную систему методом подстановки.

Шаг 1: Найдем x_3 :

$$x_3 = \frac{6}{4} = 1.5$$

Шаг 2: Найдем x_2 :

$$x_2 = 5 - 1 \cdot x_3 = 5 - 1 \cdot 1.5 = 3.5$$

Шаг 3: Найдем x_1 :

$$x_1 = 0.5 - 0.5 \cdot x_2 - 0.5 \cdot x_3 = 0.5 - 0.5 \cdot 3.5 + 0.5 \cdot 1.5 = -0.5$$

Решение системы:

$$x_1 = -0.5, \quad x_2 = 3.5, \quad x_3 = 1.5$$

2. Метод Гаусса (схема частичного выбора)

• Функция: gauss_partial_pivot(a, b)

Трудоемкость метода - $\frac{2}{3}m^3$

Описание метода:

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \mu_{ik} a_{kj}^{(k-1)}, \ b_{i}^{(k)} = b_{i}^{(k-1)} - \mu_{ik} b_{k}^{(k-1)}, \ i = k+1, ..., \ m. \ (5.42)$$

Figure 13: Метод Гаусса (схема частичного деления)

Отличие от *схемы единственного деления* заключается в том, что на k-м шаге исключение в качестве главного элемента выбирают **максимальный** по модулю коэффициент a_{i_kk} .

Вычислительная устойчивость:

Гарантия ограниченности роста элементов матрицы делает схему частиного выбора вычислительно устойчивой. Становится справедлива оценка погрешности:

$$\delta(x^*) \lesssim f(m) cond_E(A) \epsilon_M$$

, где:

 x^* - вычисленное ЭВМ решение системы. $\delta(x^*) = \frac{||x-x^*||_2}{||x||_2}$ - относительная погрешность;

 $cond_E(A) = ||A||_E ||A^{-1}||_E$ - числро обусловленности;

 ϵ_M - машинный эпсилон;

 $f(m) = C(m)\phi(m)$, где C(m) - некоторая медленно растущая функция, зависящая от порядка стистемы; $\phi(m)$ - коэффициент роста.

Далее исключение неизвестного x_k производят, как в схеме единственного деления.

from mathmod.linear_systems import gauss_partial_pivot

x = gauss_partial_pivot(A,b)

Пример:

Рассмотрим систему:

$$A = \begin{bmatrix} 2 & -9 & 5 \\ 0 & 3.5 & -10 \\ 0 & 0.0001 & 3 \end{bmatrix} \quad b = \begin{bmatrix} -4 \\ -6.5 \\ 3.0001 \end{bmatrix}$$

После вычисления $\mu_{32}=0.0001/3.5\approx 2.85714\cdot 10^{-5}$ последнее уравнение системы преобразуется к виду $3.00029\, x_3=3.00029$.

Обратный ход. Из последнего уравнения находим $x_3 = 1$. Далее, имеем $x_2 = (-6.5 + 10x_3)/3.5 = 1$, $x_1 = (-4 + 9x_2 - 5x_3)/2 = (-4 + 9 - 5)/2 = 0$. В данном случае ответ получился точным.

Figure 14: Метод Гаусса (схема частичного деления)

3. Метод Холецкого (LLT-разложение)

- Для решения СЛАУ с симметрично положительно определённой матрицей.
- Функция: cholecky(A, b)

Трудоемкость метода - $\frac{1}{3}m^3$

Условия применимости - требуется, чтобы диагональные элементы l_{ii} матрицы L были положительными.

Достоинства метода:

- Гарантированная устойчивость;
- Требует вдвое меньше вычислительных затрат по сравнению с методом Гаусса;
- Позволяет экономично использовать память ЭВМ при записи исходных данных и результато вычислений за счет симметричности матрицы А.

Описание метода:

A - симетрично положительно определенная матроица ($A=A^T$ и $\forall x\neq 0$ скалярное произведение (Ax,x)>0).

L - нижнетреугольная матрица. L^T - транспонированная.

$$A = LL^T$$

, где

$$LL^T = \begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & \dots & 0 \\ l_{31} & l_{32} & l_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{m1} & l_{m2} & l_{m3} & \dots & l_{mm} \end{bmatrix} \cdot \begin{bmatrix} l_{11} & l_{21} & l_{31} & \dots & l_{m1} \\ 0 & l_{22} & l_{23} & \dots & l_{m2} \\ 0 & 0 & l_{33} & \dots & l_{m3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & l_{mm} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3m} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} \end{bmatrix}$$

Отсюда:

$$l_{k1}^2 + l_{k2}^2 + \dots + l_{kk}^2 = a_{kk}$$

$$l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{k,j}^2} \quad k = 2 \dots m$$

$$l_{ik} = \frac{a_{i,k} - \sum_{j=1}^{k-1} l_{i,j} \cdot l_{l,k}}{l_{k,k}} \quad i = k+1, \dots m$$

Если разложение получено, то решение системы:

$$Ly = b$$
 $L^T x = y$

from mathmod.linear_systems import cholecky

$$x = cholecky(A, b)$$

Пример:

Рассмотрим систему:

$$A = \begin{bmatrix} 6.25 & -1 & 0.5 \\ -1 & 5 & 2.12 \\ 0.5 & 2.12 & 3.6 \end{bmatrix} \quad b = \begin{bmatrix} 7.5 \\ -8.68 \\ -0.24 \end{bmatrix}$$

$$\begin{split} l_{11} &= \sqrt{(a_{11})} = \sqrt{6.25} = 2.5 \quad l_{21} = \frac{a_{21}}{l_{11}} = \frac{-1}{2.5} = -0.4 \\ l_{31} &= \frac{a_{31}}{l_{11}} = \frac{0.5}{2.5} = 0.2 \quad l_{22} = \sqrt{a_{22} - l_{21}^2} = \sqrt{5 - 0.16} = 2.2 \\ l_{32} &= a_{32} - l_{31}l_{21} = (2.12 - \frac{0.2 \cdot (-0.4)}{2.2}) = 1 \\ l_{33} &= \sqrt{a_{22} - l_{31}^2 - l_{32}^2} = \sqrt{3.6 - 0.2^2 - 1^2} = 1.6 \end{split}$$

Матрица L:

$$L = \begin{bmatrix} 2.25 & 0 & 0 \\ -0.4 & 2.2 & 0 \\ 0.2 & 1 & 1.6 \end{bmatrix}$$

Решение состоит из 2-х шагов:

- 1. Решаем Ly=b для y методом прямой подстановки. 2. Решаем $L^Tx=y$ для x методом обратной подстановки.

Решение:

1. Прямой ход для y:

$$Ly = b$$

$$\begin{bmatrix} 2.5 & 0 & 0 \\ -0.4 & 2.2 & 0 \\ 0.2 & 1 & 1.6 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 7.5 \\ -8.68 \\ -0.24 \end{bmatrix}$$

• Рассчитываем у:

$$\begin{aligned} 2.5 \cdot y_1 &= 7.5, \\ -0.4 \cdot y_1 + 2.2 \cdot y_2 &= -8.68, \\ 0.2 \cdot y_1 + y_2 + 1.6 \cdot y_3 &= -0.24 \end{aligned}$$

• Решая, получаем:

$$y_1 = 3, y_2 = -3.4, y_3 = 1.6$$

2. Обратный ход для x:

$$L^T x = y$$

$$\begin{bmatrix} 2.5 & -0.4 & 0.2 \\ 0 & 2.2 & 1 \\ 0 & 0 & 1.6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3.4 \\ 1.6 \end{bmatrix}$$

• Рассчитывем х:

$$\begin{split} 2.5 \cdot x_1 - 0.4 \cdot x_2 + 0.2 \cdot x_3 &= 3, \\ 2.2 \cdot x_2 + x_3 &= -3.4, \\ 1.6 \cdot x_3 &= 1.6. \end{split}$$

• Решая, получаем:

$$x_1=0.8, \quad x_2=-2, \quad x_3=1$$

4. Метод LU-разложения

• Функция: lu(A, b)

Трудоемкость метода - $\frac{2}{3}m^3 + m^2$

Теорема о возможности применения LU **- разложения** - если все главные миноры матрицы A отличны от нуля, то существуют единственная нижняя треугольная матрица L и верхняя треугольная матрица U такие, что:

$$A = LU$$

, где

$$L = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \mu_{21} & 1 & 0 & \dots & 0 \\ \mu_{31} & \mu_{32} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \mu_{m1} & \mu_{m2} & \mu_{m3} & \dots & 1 \end{bmatrix}$$

Описание метода:

§ 5.7. Метод Гаусса

и разложение матрицы на множители.

LU-разложение

Вернемся еще раз к методу Гаусса с тем, чтобы рассмотреть его с более общих позиций. Излагаемый ниже подход оказался чрезвычайно плодотворным и привел не только к более глубокому пониманию метода, но и позволил создать высокоэффективные машинные алгоритмы его реализации, а также рассматривать другие точные методы с единой точки зрения.

Рассмотрим сначала простейший вариант метода Гаусса для решения системы линейных алгебраических уравнений

$$\mathbf{A}\mathbf{x} = \mathbf{b}.\tag{5.51}$$

Figure 15: Метод LU - разложения

from mathmod.linear_systems import lu_solve

$$x = lu solve(A, b)$$

Пример:

Рассмотрим систмему:

$$A = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix} \quad b = \begin{bmatrix} -5 \\ 6 \\ 8 \end{bmatrix}$$

Мы хотим представить её в виде произведения:

$$A = LU$$

, где:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ \mu_{21} & 1 & 0 \\ \mu_{31} & \mu_{32} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

1. Схема единственного деления и *LU*-разложение. При выполнении вычислений 1-го шага исключения по схеме единственного деления система уравнений приводится к виду

$$A^{(1)} x = b^{(1)}, (5.52)$$

где

151

$$\mathbf{A}^{(1)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & \dots & a_{2m}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} & \dots & a_{3m}^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{m2}^{(1)} & a_{m3}^{(1)} & \dots & a_{mm}^{(1)} \end{bmatrix}, \quad \mathbf{b}^{(1)} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_3^{(1)} \\ \vdots \\ b_m^{(1)} \end{bmatrix},$$

а коэффициенты $a_{ij}^{(1)}$, $b_{i}^{(1)}$ (i, j=2, 3, ..., m) вычисляются по формулам (5.29), (5.31).

Введем матрицу

$$\mathbf{M}_{1} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ -\mu_{21} & 1 & 0 & \dots & 0 \\ -\mu_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -\mu_{m1} & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Как нетрудно проверить, справедливы равенства

$$A^{(1)} = M_1 A, \quad b^{(1)} = M_1 b,$$

т. е. преобразование системы (5.51) к виду (5.52) эквивалентно умножению левой и правой частей системы на матрицу M_1 .

Аналогично можно показать, что вычисления 2-го шага исключения приводят систему (5.52) к виду

$$A^{(2)} x = b^{(2)},$$

e
 $A^{(2)} = M_2 A^{(1)}, \quad b^{(2)} = M_2 b^{(1)},$

Figure 16: Метод LU - разложения

$$\mathbf{A}^{(2)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & \dots & a_{2m}^{(1)} \\ 0 & 0 & a_{33}^{(2)} & \dots & a_{3m}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & a_{m3}^{(2)} & \dots & a_{mm}^{(2)} \end{bmatrix}, \ \mathbf{M}_{2} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & -\mu_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -\mu_{m2} & 0 & \dots & 1 \end{bmatrix}, \ \mathbf{b}^{(2)} = \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2}^{(1)} \\ \mathbf{b}_{3}^{(2)} \\ \vdots \\ \vdots \\ \mathbf{b}_{m}^{(2)} \end{bmatrix}.$$

После (m-1)-го шага, завершающего прямой ход, система оказывается приведенной к виду

$$A^{(m-1)} x = b^{(m-1)} \tag{5.53}$$

с верхней треугольной матрицей $A^{(m-1)}$. Здесь 152

$$A^{(m-1)} = M_{m-1}A^{(m-2)}, \quad b^{(m-1)} = M_{m-1}b^{(m-2)},$$

$$A^{(m-1)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ 0 & a_{2}^{(1)} & a_{23}^{(1)} & \dots & a_{2m}^{(1)} \\ 0 & 0 & a_{33}^{(2)} & \dots & a_{3m}^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ b_{m}^{(m-1)} \end{bmatrix}, \quad M_{m-1} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{mm}^{(m-1)} \end{bmatrix},$$

$$M_{m-1} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & -\mu_{m,m-1} & 1 \end{bmatrix},$$

$$b^{(m-1)} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ b_3^{(2)} \\ \vdots \\ b_m^{(m-1)} \end{bmatrix}$$

Заметим, что матрица $A^{(m-1)}$ получена из матрицы A последовательным умножением на $M_1, M_2, ..., M_{m-1}$:

$$A^{(m-1)} = M_{m-1} \dots M_2 M_1 A. \tag{5.54}$$

Figure 17: Метод LU - разложения

$$b^{(m-1)} = M_{m-1} \dots M_2 M_1 b. \tag{5.55}$$

Из равенства (5.54) вытекает следующее представление:

$$A = M_1^1 M_2^{-1} \dots M_{m-1}^{-1} A^{(m-1)}. {(5.56)}$$

Как легко проверить,

$$\mathbf{M}_{1}^{1} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \mu_{21} & 1 & 0 & \dots & 0 \\ \mu_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mu_{m1} & 0 & 0 & \dots & 1 \end{bmatrix}, \ \mathbf{M}_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & \mu_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \mu_{m2} & 0 & \dots & 1 \end{bmatrix}, \dots,$$

$$\mathbf{\textit{M}}_{m-1}^{-1} = \left[\begin{array}{ccccc} 1 & 0 & 0 & \dots & 0 & & 0 \\ 0 & 1 & 0 & \dots & 0 & & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \dots & 1 & & 0 \\ 0 & 0 & 0 & \dots & \mu_{m,m-1} & 1 \end{array} \right].$$

Для этого достаточно перемножить матрицы $\mathbf{\textit{M}}_k^1$ и $\mathbf{\textit{M}}_k$ (k=1,...,m-1), в результате чего получится единичная матрица.

153

Введем обозначения $U = A^{(m-1)}$, $L = M_1^{-1}M_2^{-1}$... M_{m-1}^{-1} . Вычисляя матрицу L, убеждаемся в том, что она имеет следующий вид:

$$L = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \mu_{21} & 1 & 0 & \dots & 0 \\ \mu_{31} & \mu_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mu_{m1} & \mu_{m2} & \mu_{m3} & \dots & 1 \end{bmatrix}.$$
 (5.57)

Тогда равенство (5.56) в новых обозначениях примет вид

$$A = LU. (5.58)$$

Figure 18: Метод LU - разложения

Шаг 1: Прямой ход (разложение)

1. Выбираем первый элемент матрицы A как ведущий:

$$u_{11} = 2$$

Элементы верхней матрицы U:

$$u_{12} = -1, \quad u_{13} = -2.$$

2. Вычисляем коэффициенты для матрицы L:

$$\mu_{21} = \frac{a_{21}}{u_{11}} = \frac{-4}{2} = -2, \quad \mu_{31} = \frac{a_{31}}{u_{11}} = \frac{-4}{2} = -2.$$

3. Обновляем элементы второй строки:

$$u_{22} = a_{22} - \mu_{21} \cdot u_{12} = 6 - (-2) \cdot (-1) = 4,$$

$$u_{23} = a_{23} - \mu_{21} \cdot u_{13} = 3 - (-2) \cdot (-2) = -1.$$

4. Обновляем элементы третьей строки:

$$u_{32} = a_{32} - \mu_{21} \cdot u_{12} = -2 - (-2) \cdot (-1) = -4$$

$$u_{33} = a_{33} - \mu_{21} \cdot u_{13} = 8 - (-2) \cdot (-2) = 4$$

5. Промежуточные результаты:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & \mu_{32} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & -1 \\ 0 & -4 & 4 \end{bmatrix},$$

6. Вычисляем μ_{32} :

$$\mu_{32} = \frac{u_{32}}{u_{22}} = -1$$

7. Обновляем элементы третьей строки:

$$u_{33} = u_{33} - \mu_{32} \cdot u_{23} = 4 - (-1) \cdot (-1) = 3$$

8. Итоговые матрицы

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{bmatrix}.$$

Шаг 2: решение системы

Для решения системы Ax = b, где:

$$A = LU$$
,

Решение состоит из 2-х шагов:

- 1. Решаем Ly=b для y методом прямой подстановки.
- 2. Решаем Ux = y для x методом обратной подстановки.

Решение:

1. Прямой ход для y:

$$Ly = b$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 6 \\ 8 \end{bmatrix}$$

• Рассчитывем у:

$$\begin{aligned} y_1 &= -5, \\ -2 \cdot y_1 + y_2 &= 6, \\ -2 \cdot y_1 - 1 \cdot y_2 + y_3 &= 8. \end{aligned}$$

• Решая, получаем:

$$y_1 = -5, y_2 = -4, y_3 = -6$$

2. Обратный ход для x:

$$Ux = y$$

$$\begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -4 \\ -6 \end{bmatrix}$$

Рассчитывем x:

$$\begin{aligned} 2 \cdot x_1 - x_2 - 2 \cdot x_3 &= -5, \\ 4 \cdot x_2 - x_3 &= -4, \\ 3 \cdot x_3 &= -6. \end{aligned}$$

• Решая, получаем:

$$x_1 = -5.25, \quad x_2 = -1.5, \quad x_3 = -2$$

5. Метод прогонки

• Функция: three_diag(A,b)

Трудоемкость метода - 8m

Условие применимости - коэффициенты системы удовлетворяют условиям диагонального преобладания:

$$|b_k| \ge |a_k| + |c_k| \quad |b_k| > |a_k|$$

Тогда:

$$\gamma_i = b_i + a_i \alpha_{i-1} \neq 0 \quad |\alpha_i| \leq 1 \quad \forall i = 1, 2, \dots m$$

Описание метода:

A - терхдиагональная матрица:

$$A = \begin{bmatrix} b_1 & c_1 & 0 & \dots & \dots & 0 \\ a_2 & b_2 & c_2 & \dots & \dots & 0 \\ 0 & a_3 & b_3 & c_3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_m & b_m \end{bmatrix} \quad b = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ b_{m-1} \\ b_m \end{bmatrix}$$

• Прямой ход (прямая прогонка) - вычисление прогоночных коэффициентов

$$\alpha_i = -\frac{c_i}{\gamma_i} \quad \beta_i = \frac{d_i - \alpha_i \beta_{i-1}}{\gamma_i} \quad \gamma_i = b_i + a_i \alpha_{i-1}$$

• Обратная прогонка (обратная прогонка) - вычисление значения незвестных. Сначала $x_m = \beta_m$. Затем значения осталных неизветных по формуле:

$$x_i = \alpha_i x_{i+1} + \beta_i$$
 $i = m - 1, m - 2, \dots, 1$

from mathmod.linear_systems import three_diag

Пример:

Рассмотрим систмему:

$$A = \begin{bmatrix} 5 & -1 & 0 & 0 \\ 2 & 4.6 & -1 & 0 \\ 0 & 2 & 3.6 & -0.8 \\ 0 & 0 & 3 & 4.4 \end{bmatrix} \quad b = \begin{bmatrix} 2 \\ 3.3 \\ 2.6 \\ 7.2 \end{bmatrix}$$

Прямой ход

$$\begin{split} \gamma_1 &= b_1 = 5, \quad \alpha_1 = -c_1/\gamma_1 = 0.2, \quad \beta_1 = d_1/\gamma_1 = 2.0/5 = 0.4, \\ \gamma_2 &= b_2 + a_2\alpha_1 = 4.6 + 2.0 \cdot 0.2 = 5, \quad \alpha_2 = -c_2/\gamma_2 = 1/5 = 0.2, \\ \beta_2 &= (d_2 - a_2\beta_1)/\gamma_2 = (3.3 - 2.0 \cdot 0.4)/5 = 0.5, \\ \gamma_3 &= b_3 + a_3\alpha_2 = 3.6 + 2.0 \cdot 0.2 = 4, \quad \alpha_3 = -c_3/\gamma_3 = 0.8/4 = 0.2, \\ \beta_3 &= (d_3 - a_3\beta_2)/\gamma_3 = (2.6 - 2.0 \cdot 0.5)/4 = 0.4, \end{split}$$

$$\gamma_4 = b_4 + a_4 \alpha_3 = 4.4 + 3.0 \cdot 0.2 = 5, \quad \beta_4 = (d_4 - a_4 \beta_3) / \gamma_4 = (7.2 - 3.0 \cdot 0.4) / 5 = 1.2.$$

Обратный ход

$$x_4=\beta_4=1.2,$$

$$x_3=\alpha_3z_4+\beta_3=0.2\cdot 1.2+0.4=0.64,$$

$$x_2=\alpha_2z_3+\beta_2=0.2\cdot 0.64+0.5=0.628,$$

$$x_1=\alpha_1z_2+\beta_1=0.2\cdot 0.628+0.4=0.5256.$$

Итак, получаем решение:

$$x_1 = 0.5256, \quad x_2 = 0.628, \quad x_3 = 0.64, \quad x_4 = 1.2.$$

Итерационные методы

Итерационный метод - метод, который строит последовательность приближений к решению;

1. Метод Якоби

- Функция: jacobi(A, b, epsilon=1e-6, norma=1)
 - A Матрица коэффициентов (n x n);
 - b Вектор правой части;
 - epsilon Заданная точность (по умолчанию 10^{-6});
 - norma Hopмa, по которой считается критерий окончания (например, 1, 2, np.inf).

Теорема о сходимости:

Пусть выполнено условие:

Тогда решение системы \overline{x} существует и единственно при произволном приближении $x^{(0)}$ МПИ сходится и справедлива оценка погрешности (априорная оценка):

$$||x^{(n)} - \overline{x}|| \leq ||B||^n ||x^{(0)} - \overline{x}||$$

Апостериорная оценка:

$$||x^{(n)} - \overline{x}|| \leq \frac{||B||}{1 - ||B||} ||x^{(n)} - x^{(n-1)}||$$

Критерий окончания:

$$||x^{(n)}-x^{(n-1)}||\leq \epsilon_1$$

, где:

$$\epsilon_1 = \frac{||B||}{1 - ||B||} \epsilon$$

Более простой критерий окончания:

$$||x^{(n)}-x^{(n-1)}|| \leq \epsilon$$

Описание метода:

$$\begin{split} x_1^{k+1} &= b_{11} x_1^k + b_{12} x_2^k + b_{13} x_3^k + \dots + b_{1m} x_m^k + c_1, \\ x_2^{k+1} &= b_{21} x_1^k + b_{22} x_2^k + b_{23} x_3^k + \dots + b_{2m} x_m^k + c_2, \\ x_3^{k+1} &= b_{31} x_1^k + b_{32} x_2^k + b_{33} x_3^k + \dots + b_{3m} x_m^k + c_3, \\ & \dots \\ x_m^{k+1} &= b_{m1} x_1^k + b_{m2} x_2^k + b_{m3} x_3^k + \dots + b_{mm} x_m^k + c_m, \end{split}$$

from mathmod.linear_systems import jacobi

x, iteration_count = jacobi(A, b, epsilon=1e-6, norma=1)

2. Метод Гаусса-Зейделя

- Итерационный метод для решения СЛАУ с диагонально преобладающей матрицей.
- Функция: gauss_zeydel(A, b, epsilon=1e-6, norma=1)
 - A Матрица коэффициентов (n x n);
 - b Вектор правой части;
 - epsilon Заданная точность (по умолчанию 10^{-6});
 - norma Hopмa, по которой считается критерий окончания (например, 1, 2, np.inf).

3. Метод релаксации

- Функция: relaxation_method(A, b, epsilon=1e-6, omega=1, norma=1)
 - A Матрица коэффициентов (n x n);
 - b Вектор правой части;
 - epsilon Заданная точность (по умолчанию 10^{-6});
 - omega Параметр релаксации (по умолчанию 1.0 метод Зейделя);
 - norma Hopмa, по которой считается критерий окончания (например, 1, 2, np.inf).

§ 6.1. Метод простой итерации

1. Приведение системы к виду, удобному для итераций. Для того чтобы применить метод простой итерации к решению системы линейных алгебраических уравнений

$$Az = b \tag{6.1}$$

с квадратной невырожденной матрицей A, необходимо предварительно преобразовать эту систему к виду

$$\mathbf{z} = \mathbf{B}\mathbf{z} + \mathbf{c}.\tag{6.2}$$

Здесь B — квадратная матрица с элементами b_{ij} (i, j = 1, 2, ..., m), c — вектор-столбец с элементами c_i (i = 1, 2, ..., m).

В развернутой форме записи система (6.2) имеет следующий вид:

$$x_{1} = b_{11}x_{1} + b_{12}x_{2} + b_{13}x_{3} + \dots + b_{1m}x_{m} + c_{1},$$

$$x_{2} = b_{21}x_{1} + b_{22}x_{2} + b_{23}x_{3} + \dots + b_{2m}x_{m} + c_{2},$$

$$\vdots$$

$$x_{m} = b_{m1}x_{1} + b_{m2}x_{2} + b_{m3}x_{3} + \dots + b_{mm}x_{m} + c_{m},$$

$$(6.3)$$

Вообще говоря, операция приведения системы к виду, удобному для итераций (т.е. к виду (6.2)), не является простой и требует специальных знаний, а также существенного использования специфики системы. В некоторых случаях в таком преобразовании нет необходимости, так как сама исходная система уже имеет вид (6.2).

Самый простой способ приведения системы к виду, удобному для итераций, состоит в следующем. Из первого уравнения системы (6.1) выразим неизвестное x_1 :

$$x_1 = a_{11}^{-1} (b_1 - a_{12}x_2 - a_{13}x_3 - ... - a_{1m}x_m),$$

из второго уравнения — неизвестное x_2 :

$$x_2 = a_{22}^{-1} (b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2m}x_m),$$

и т.д. В результате получим систему

$$\begin{aligned}
 x_1 &= b_{1\,2} x_2 + b_{1\,3} x_3 + \dots + b_{1\,,m-1} x_{m-1} + b_{1\,m} x_m + c_1, \\
 x_2 &= b_{2\,1} x_1 + b_{2\,3} x_3 + \dots + b_{2\,,m-1} x_{m-1} + b_{2\,m} x_m + c_2, \\
 x_3 &= b_{3\,1} x_1 + b_{3\,2} x_2 + \dots + b_{3\,,m-1} x_{m-1} + b_{3\,m} x_m + c_3, \\
 \vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\
 x_m &= b_{m1} x_1 + b_{m2} x_2 + b_{m3} x_3 + \dots + b_{m,\,m-1} x_{m-1} + c_m,
 \end{aligned}$$
(6.4)

Figure 19: Метод простых итераций

в которой на главной диагонали матрицы B находятся нулевые элементы. Остальные элементы выражаются по формулам

175

$$b_{ij} = -a_{ij}/a_{ii}, c_i = b_i/a_{ii} (i, j = 1, 2, ..., m, j \neq i).$$
 (6.5)

Конечно, для возможности выполнения указанного преобразования необходимо, чтобы диагональные элементы матрицы \boldsymbol{A} были ненулевыми.

Часто систему (6.1) преобразуют к виду $\mathbf{z} = \mathbf{z} - \tau (\mathbf{A}\mathbf{z} - \mathbf{b})$, где τ — специально выбираемый числовой параметр (см. п. 5).

2. Описание метода. Выберем начальное приближение $\mathbf{z}^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_m^{(0)})^{\mathrm{T}}$. Подставляя его в правую часть системы (6.2) и вычисляя полученное выражение, находим первое приближение

$$\boldsymbol{x}^{(1)} = B\boldsymbol{x}^{(0)} + c.$$

Подставляя приближение $\mathbf{z}^{(1)}$ в правую часть системы (6.2), получим $\mathbf{z}^{(2)} = B\mathbf{z}^{(1)} + \mathbf{c}$.

Продолжая этот процесс далее, получим последовательность $\boldsymbol{z}^{(0)}$, $\boldsymbol{z}^{(1)}$, ..., $\boldsymbol{z}^{(n)}$, ... приближений, вычисляемых по формуле

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + c, k = 0, 1, 2, ...$$
 (6.6)

В развернутой форме записи формула (6.6) выглядит так:

Figure 20: Метод простых итераций

Пример 6.1. Используя метод простой итерации в форме Якоби, найдем решение системы

$$6.25x_1 - x_2 + 0.5x_3 = 7.5, -x_1 + 5x_2 + 2.12x_3 = -8.68, 0.5x_1 + 2.12x_2 + 3.6x_3 = -0.24.$$
(6.15)

с точностью $\varepsilon = 10^{-3}$ в норме $\| \cdot \|_{\infty}$.

Вычисляя коэффициенты по формулам (6.5), приведем систему к виду (6.4)

$$x_1 = 0.16x_2 - 0.08x_3 + 1.2,$$

 $x_2 = 0.2x_1 - 0.424x_3 - 1.736,$
 $x_3 = -0.1389x_1 - 0.5889x_2 - 0.0667.$
(6.16)

В последнем уравнении коэффициенты даны с точностью до погрешности округления. Здесь

179

$$\boldsymbol{B} = \begin{bmatrix} 0 & 0.16 & -0.08 \\ 0.2 & 0 & -0.424 \\ -0.1389 & -0.5889 & 0 \end{bmatrix}, \quad \boldsymbol{c} = \begin{bmatrix} 1.2 \\ -1.736 \\ -0.0667 \end{bmatrix}.$$

Достаточное условие сходимости метода простой итерации выполнено, так как $\|B\|_{\infty} = \max \{0.24, 0.624, 0.7278\} = 0.7278 < 1.$

Figure 21: Метод простых итераций

§ 6.2. Метод Зейделя

1. Описание метода. Пусть система (6.1) приведена к виду (6.4) с коэффициентами, вычисленными по формулам (6.5).

Метод Зейделя можно рассматривать как модификацию метода Якоби. Основная идея модификации состоит в том, что при вычислении очередного (k+1)-го приближения к неизвестному x_i при i>1 используют уже найденные (k+1)-е приближения к неизвестным x_1 , ..., x_{i-1} , а не k-е приближения, как методе Якоби.

На (k+1)-й итерации компоненты приближения $\mathbf{z}^{(k+1)}$ вычисляются по формулам

$$x_{1}^{(k+1)} = b_{12}x_{2}^{(k)} + b_{13}x_{3}^{(k)} + \dots + b_{1m}x_{m}^{(k)} + c_{1},$$

$$x_{2}^{(k+1)} = b_{21}x_{1}^{(k+1)} + b_{23}x_{3}^{(k)} + \dots + b_{2m}x_{m}^{(k)} + c_{2},$$

$$x_{3}^{(k+1)} = b_{31}x_{1}^{(k+1)} + b_{32}x_{2}^{(k+1)} + \dots + b_{3m}x_{m}^{(k)} + c_{3},$$

$$x_{m}^{(k+1)} = b_{m1}x_{1}^{(k+1)} + b_{m2}x_{2}^{(k+1)} + b_{m3}x_{3}^{(k+1)} + \dots + c_{m}.$$

$$(6.23)$$

Введем нижнюю и верхнюю треугольные матрицы

$$B_1 = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ b_{21} & 0 & 0 & \dots & 0 \\ b_{31} & b_{32} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 0 & b_{12} & b_{13} & \dots & b_{1m} \\ 0 & 0 & b_{23} & \dots & b_{2m} \\ 0 & 0 & 0 & \dots & b_{3m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Тогда расчетные формулы метода примут компактный вид:

Figure 22: Метод Зейделя

§ 6.3. Метод релаксации

Метод последовательной верхней релаксации является одним из наиболее эффективных и широко используемых итерационных методов для решения систем линейных алгебраических уравнений с симметричными положительно определенными матрицами A. Этот метод часто называют SOR-методом¹. Частично популярность SOR-метода можно объяснить его простотой и тем, что он хорошо известен широкому кругу прикладников.

Суть метода релаксации состоит в следующем. После вычисления очередной i-й компоненты (k+1)-го приближения по формуле метода Зейделя

$$\tilde{x}_{i}^{(k+1)} = b_{i1}x_{1}^{(k+1)} + b_{i2}x_{2}^{(k+1)} + \dots + b_{i,i-1}x_{i-1}^{(k+1)} + b_{i,i+1}x_{i+1}^{(k)} + \dots + \dots + b_{im}x_{m}^{(k)} + c_{i}$$

производят дополнительно смещение этой компоненты на величину $(\omega-1)(\tilde{x}_i^{(k+1)}-x_i^{(k)})$, где $\omega-$ параметр релаксации. Таким образом, i-я компонента (k+1)-го приближения вычисляется по формуле

$$x_i^{(k+1)} = \tilde{x}_i^{(k+1)} + (\omega - 1)(\tilde{x}_i^{(k+1)} - x_i^{(k)}) = \omega \tilde{x}_i^{(k+1)} + (1 - \omega)x_i^{(k)}.$$

На рис. 6.2 показано несколько первых итераций метода при значении параметра релаксации $\omega=1.25$.

187

from mathmod.linear systems import relaxation method

x, iteration_count = relaxation_method(A, b, epsilon=1e-6, omega=1, norma=1)

В обознач вычисления

$$\mathbf{z}^{(k+1)} = \mathbf{0}$$

Как нетр методом Зей последовате. довательной называют ме значений ω.

Если А - при любом з дится. Часто чтобы SOR-з Зейделя. Од задача. Во м

Существу страненный метров ω_i дл. го приближе

¹ От англ. successive over relaxation.

Приближение функций

Постановка задачи Известны значения некоторой функции f(x) только на множестве дискретных точек x_0, x_1, \dots, x_n , но само аналитическое выражение для функции неизвестно. Заменим функцию f(x) некоторой известной и достаточно легко вычисляемой функцией $\Phi(x)$ такой, что $\Phi(x) \approx f(x)$. Подобный процесс замены неизвестной функции некоторой близкой функцией называется **аппроксимацией**, а функция $\Phi(x)$ называется **аппроксимирующей функцией**.

Для аппроксимации функций широко используются классы функций вида:

$$\Phi_m(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_m \phi_m(x),$$

являющиеся линейными комбинациями фиксированного набора базисных функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$.

Функцию $\phi_m(x)$ называют обобщенным многочленом по системе функций $\phi_0(x),\phi_1(x),\dots,\phi_m(x)$

Число т - степенью многочлена.

Существуют два основных подхода в аппроксимации функций:

- 1. Пусть точки $f(x_i), i=0,1,\dots,n$ получены в результате достаточно точных измерений или вычислений, т.е. есть основания считать их лишенными ошибок. Тогда следует выбирать аппроксимирующую функцию $\phi(x)$ такой, чтобы она совпадала со значениями исходной функции в заданных точках. Геометрически это означает, что кривая $\phi(x)$ проходит через точки $(x_i, f(x_i))$ плоскости. Такой метод приближения называется интерполяцией.
- 2. Если точки $f(x_i), i=0,1,\ldots,n$ содержат ошибки (данные экспериментов, статистические данные и т.п.), то функция $\phi(x)$ выбирается из условия минимума некоторого функционала, обеспечивающего сглаживание ошибок. Такой прием называется **аппроксимацией** функции «в среднем». Геометрически это будет означать, что кривая $\phi(x)$ будет занимать некоторое «среднее» положение, не обязательно совпадая с исходными точками $(x_i, f(x_i))$ плоскости.

Постановка задачи интерполяции Пусть в точках x_0, x_1, \dots, x_n , расположенных на отрезке [a, b] и попарно различных.

Тогда задача итерполяции состоит в построении функции g(x), удовлетворяющей условию:

$$g(x) = y_i$$
 $(i = 0, 1, ..., n)$

Интерполяция - способ приближения функции f(x) путем построения функии g(x), график которой проходит через точки (x_i,y_i) .

Экстраполяция - способ приближения функции f(x) в точке $x < x_{min}$ или $x > x_{max}$.

 $[x_{min}, x_{max}]$ - минимальный и максимальный из узлов интерполяции.

Теорема о существовании и единственности интерполяционного многочлена:

Если m=n, то решение задачи интерполяции обобщенным многочленом ($\Phi_m(x)=a_0\phi_0(x)+a_1\phi_1(x)+\dots+a_m\phi_m(x)$) существует и единственно при любом наборе данных y_0,y_1,\dots,y_n , тогда и только тогда, когда системы функций $\phi_0(x),\phi_1(x),\dots,\phi_n(x)$ являются линейно независимыми в точках x_0,x_0,\dots,x_n .

Полиномиальная интерполяция. Многочлен Лагранжа

$$L_n(x) = \sum_{i=0}^n y_i l_{nj}(x)$$

, где:

$$l_{ij}(x) = \prod_{k=1 \atop k \neq j}^n \frac{(x-x_k)}{(x_j-x_i)} = \frac{(x-x_0)(x-x_1)\dots(x-x_{j-1})(x-x_{j+1})\dots(x-x_n)}{(x_j-x_0)(x_j-x_1)\dots(x_j-x_{j-1})(x_j-x_{j+1})\dots(x_j-x_n)}$$

Оценка погрешности:

$$\max_{[a,b]} |f(x) - P_n(x)| \leq \frac{M_{n+1}}{(n+1)!} \max_{[a,b]} |\omega_{n+1}(x)|$$

$$\omega_{n+1}(x)=(x-x_0)(x-x_1)\dots(x-x_n)$$

$$M_{n+1} = \max_{[a,b]} |f^{n+1}(x)|$$

или

$$\max_{[x_0,x_n]}|f(x)-P_n(x)|\leq \frac{M_{n+1}}{4(n+1)}h_{max}^{n+1}$$

$$h_{max} = \max_{1 \le i \le n} h_i$$

Эта формула позволяет утвержать, что для достаточно гладкой функции f при фиксированной степени интерполяционного многочлена погрешность интерполяции на отрезке $[x_0,x_n]$ при $h_{max} \to 0$ стрепится к нулю не медленее, чем некоторая величина, пропорциональная h_{max}^{n+1} .

Итерполяция многочленом n имеет (n+1)-й порядок точности относительно h_{max} .

Пример:

Пусть даны точки: - $x_0=0,\,y_0=1$ - $x_1=1,\,y_1=2$ - $x_2=2,\,y_2=4$

Построим интерполяционный многочлен Лагранжа:

$$L_2(x) = y_0 \cdot \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \cdot \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \cdot \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} + y_3 \cdot \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} + y_4 \cdot \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_2)} + y_4 \cdot \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_2)} + y_5 \cdot \frac{(x-x_0)(x-x_1)}{(x_1-x_0)(x_1-x_1)} + y_5 \cdot \frac{(x-$$

Подставляя значения:

$$\begin{split} L_2(x) &= 1 \cdot \frac{(x-1)(x-2)}{(0-1)(0-2)} + 2 \cdot \frac{(x-0)(x-2)}{(1-0)(1-2)} + 4 \cdot \frac{(x-0)(x-1)}{(2-0)(2-1)} \\ L_2(x) &= 1 \cdot \frac{(x-1)(x-2)}{2} - 2 \cdot \frac{x(x-2)}{1} + 2 \cdot \frac{x(x-1)}{2} \end{split}$$

Интерполяционный многочлен Ньютона с конечными разностями Пусть интерполируемая функция задана таблицей с постоянными шагом h, т.е. $x_i = x_0 + ih, i = 0, 1 \dots n$. Тогда введя безразмерную величину $t = \frac{x - x_0}{h}$, можно записать многочлен Ньютона:

$$P_n(x) = P_n(x+ht) = y_0 + \frac{\Delta y_0}{1!}t + \frac{\Delta^2 y_0}{2!}t(t-1) + \frac{\Delta^3 y_0}{3!}t(t-1)(t-2) + \ldots + \frac{\Delta^n y_0}{n!}t(t-1)(t-2) \ldots (t-n+1) + \ldots + \frac{\Delta^n y_0}{n!}t(t-1)(t-2) + \ldots + \frac{\Delta^n y_0}{n!}t($$

Метод наименьших квадратов Постановка задачи

Пусть даны точки x_0, x_1, \dots, x_n , и известны значения исходной фукнции $f_i = f(x_i), i = 0, 1, \dots n$. Требуется найти многочлен P_m заданной степени m(m=n) такой, чтобы величина среднеквадратического отклонения:

$$\sigma(P_m,f) = \sqrt{\frac{1}{1+n}\sum_{i=0}^n(P_m(x_i)-f_i)^2} = \sqrt{\frac{1}{1+n}\sum_{i=0}^n(\sum_{j=0}^na_jx_i^j-f_i)^2}$$

была минимальной

Нормальная система:

$$\sum_{j=0}^m a_j \sum_{i=0}^n x_i^{k+j} = \sum_{i=0}^n f_i x_i^k \quad k = 0, 1, \dots m$$

$$s_k = \sum_{i=0}^n x_i^k \quad b_k = \sum_{i=0}^n f_i x_i^k$$

Установка

Для использования библиотеки склонируйте репозиторий и установите необходимые зависимости: "bash git clone https://github.com/BaranovSerV/mathmod.git cd mathmod pip install -r requirements.txt