

SCHWEIZERISCHE EIDGENOSSENSCHAFT CONFÉDÉRATION SUISSE CONFEDERAZIONE SVIZZERA

REC'D		JUL	2004
WIPO		PCT	

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

Attestazione

I documenti allegati sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern

2 9. Juni 2004

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Eidgenössisches Institut für Geistiges Eigentum Institut Fédéral de la Propriété Intellectuelle Istituto Federale della Proprietà Intellettuale

Patentverfahren Administration des brevets Amministrazione dei brevetti

H. Jenne

Heinz Jenni

Hinterlegungsbescheinigung zum Patentgesuch Nr. 01274/03 (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang des unten näher bezeichneten schweizerischen Patentgesuches.

Titel:

alpha-beta-ungesättigten Amidverbindungen und Verfahren zu deren Herstellung.

Patentbewerber: Siegfried Ltd. Untere Brühlstrasse 4 4800 Zofingen

Vertreter: Braun & Partner Patent-, Marken-, Rechtsanwälte Reussstrasse 22 CH-4054 Basel

Anmeldedatum: 21.07.2003

Voraussichtliche Klassen: C07C

Unveränderliches Exemplar Exemplaire invariable Esemplare immutabile

P1229CH

Siegfried Ltd.

α , β -ungesättigten Amidverbindungen und Verfahren zu deren Herstellung

Die vorliegende Erfindung betrifft neue α , β -ungesättigten Amidverbindungen sowie Verfahren zu deren Herstellung bzw. Verfahren zur Einführung einer α , β -ungesättigten Doppelbindung in Verbindungen, welche eine Amidgruppierung enthalten, indem man die entsprechende gesättigte Amidverbindung in der α , β -Stellung dehydriert.

Die vorliegende Erfindung betrifft α , β -ungesättigten Amidverbindungen der allgemeinen Formel (I):

$$\begin{array}{c|c}
R5 & R3 \\
R2 & O
\end{array}$$
R4 (I)

worin

5

15

R₁ und R₂ unabhängig voneinander Wasserstoff; gegebenen20 falls mit Hydroxy, Halogen, Phenyl, substituiertem Phenyl,
oder mit einer Estergruppe [-C(0)OAlkyl] oder einer Amidgruppe [-C(0)NH₂ oder -C(0)NHAlkyl], substituiertes lineares oder verzweigtes (C₁-C₁₈)-Alkyl oder (C₁-C₁₈)-Alkenyl;
gegebenenfalls mit Halogen substituiertes Phenyl;
oder ---

entweder R₁ oder R₂ einen Rest Y-R₆; worin
Y Sauerstoff (-O-); Schwefel (-S-); -NR₇-; Dialkylsilyl
[-(Alkyl)₂Si-];

R₆ Wasserstoff, gegebenenfalls mit Hydroxy, Halogen,
Phenyl, substituiertem Phenyl oder mit einer Estergruppe [C(0)OAlkyl] oder einer Amidgruppe [-C(0)NH₂] oder
[-C(0)NHAlkyl], substituiertes lineares oder verzweigtes
(C:-C:0)-Alkyl: gegebenenfalls mit Halogen substituiertes

5 (C₁-C₁₈)-Alkyl; gegebenenfalls mit Halogen substituiertes Phenyl;

 R_7 (C_1-C_{18})-Alkyl oder -N(R_6)(R_7) einen 5- oder 6-gliedrigen heterocyclischen Ring; oder

10 R_1 zusammen mit R_3 eine direkte Bindung oder einen Rest der Formel -(CH_2)_n-; worin

n eine ganze Zahl von 1 bis 12; oder

R₁ zusammen mit R₂ Cyclohexyliden;

15 oder

R₁ zusammen mit R₅ Cyclohexenyl (wobei R₅ = Wasserstoff); oder

 R_1 zusammen mit R_5 und der eingeschlossenen (C=C)-Doppelbindung einen Rest eines einfach-ungesättigten Bicyclischen

20 Ringes;

 R_3 Wasserstoff, gegebenenfalls durch Phenyl, Hydroxyl, oder Halogen substituiertes lineares oder verzweigtes (C_1 - C_{12})-Alkyl, welches gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, (C_5 - C_8)-Cycloalkyl oder

 (C_5-C_8) -Cycloalkenyl, welche gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen sind; gegebenenfalls durch Halogen oder Hydroxyl substituiertes Phenyl; oder R_3 zusammen mit R_1 eine direkte Bindung oder einen Rest der Formel $-(CH_2)_n-$;

30 R_4 eine der Bedeutungen von R_3 , vorzugsweise Wasserstoff, gegebenenfalls durch Phenyl, Hydroxyl, oder Halogen substituiertes lineares oder verzweigtes (C_1-C_{12}) -Alkyl, gegebenenfalls durch Halogen oder Hydroxyl substituiertes Phenyl; oder

- 3 -

 $-NR_3R_4$ einen 5- oder 6-gliedrigen heterocyclischen Ring; R_5 Wasserstoff, tert.-Butyl oder gegebenenfalls durch Halogen oder Hydroxyl substituiertes Phenyl; bedeuten.

5

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I), welches dadurch gekennzeichnet ist, dass man

(A) in einer Verbindung der allgemeinen Formel (II):

10

15

$$R1 \xrightarrow{R5} N \xrightarrow{R3} R4$$
 (II)

worin R₁, R₂, R₃ und R₄ entsprechend die oben angegebenen Bedeutungen haben und die entsprechende gesättigte Verbindung darstellt, Schutzgruppen einführt, so dass eine Verbindung der allgemeinen Formel (III) entsteht:

$$\begin{array}{c}
R1 \\
\downarrow \\
R2
\end{array}$$

$$\begin{array}{c}
R3 \\
R9
\end{array}$$
(III)

worin

 R_8 Trialkylsilyl, oder (wenn R_4 = Wasserstoff) zusammen mit R_9 den Rest -C(0)-C(0) - und

R9 (wenn R4 = Wasserstoff) Alkyloxycarbonyl oder Phenyloxycarbonyl, vorzugsweise Boc (= tert.-Butyloxycarbonyl); oder Trialkylsilyl, oder zusammen mit R8 den
Rest -C(O)-C(O)-, bedeuten,

und worin für den Fall, dass in der Verbindung der allgemeinen Formel (II) Hydroxyl anwesend ist, dieses gegebenenfalls mit einer monovalenten Schutzgruppe R₈ und/oder R₉ reagiert hat;

- (B) die [gemäss Schritt (A)] erhaltene Verbindung in Gegenwart (i) eines Dehydrierungskatalysators und in Gegenwart von (ii) gegebenenfalls substituiertem Benzochinon, Allylmethylcarbonat, Allylethylcarbonat und/oder Allylpropylcarbonat, umsetzt, wobei die α , β -Doppelbindung in die α , β -Stellung eingeführt wird, und
 - (C) die Schutzgruppen R₈ und R₉ entfernt.

30

R₁ und R₂ bedeuten unabhängig voneinander vorzugsweise

10 Wasserstoff; gegebenenfalls mit Hydroxy, Phenyl, mit
Halogen oder Hydroxy substituiertem Phenyl, oder mit einer
(C₁₋₄)Alkyl-Estergruppe [-C(O)O(C₁₋₄)Alkyl] oder einer Amidgruppe [-C(O)NH₂] oder (C₁₋₄)Alkyl-Amidgruppe
[-C(O)NH(C₁₋₄)Alkyl] substituiertes lineares oder verzweig15 tes (C₁-C₈)-Alkyl oder (C₁-C₈)-Alkenyl; gegebenenfalls mit
Halogen substituiertes Phenyl; vorzugsweise lineares oder
verzweigtes (C₁-C₈)-Alkyl oder (C₁-C₈)-Alkenyl; Benzyl oder
Phenyl.

Vorzugsweise bedeutet R_2 Wasserstoff und R_1 vorzugsweise lineares oder verzweigtes (C_1-C_8) -Alkyl oder (C_1-C_8) -Alkenyl; Benzyl oder Phenyl oder Y-R₆, wobei für Y-R₆ die im weiteren gegebenen Definitionen und Einschränkungen gelten oder R_1 bedeutet Wasserstoff und R_2 hat die breite (vorgehend für R_1 angegebene) Bedeutung.

Bevorzugt sind auch die Bedeutungen, worin R_1 zusammen mit R_3 die direkte Bindung oder einen Rest der Formel $-(CH_2)_n$ - und n eine ganze Zahl von 1 bis 12; oder R_1 zusammen mit R_2 Cyclohexyliden; oder R_1 zusammen mit R_5 Cyclohexenyl, bedeuten.

- 5 -

Bedeutet entweder R_1 oder R_2 einen Rest Y- R_6 , so bedeutet darin Y vorzugsweise Sauerstoff (-O-).

 R_{6} bedeutet vorzugsweise Wasserstoff, gegebenenfalls mit Hydroxy, Halogen, Phenyl, mit Halogen substituiertem Phenyl, oder mit einer (C_{1-4}) Alkyl-Estergruppe [-C(0)O(C_{1-4})-Alkyl] oder einer Amidgruppe [-C(O)NH2] oder einer (C_{1-4}) Alkyl-Amidgruppe [-C(O)NH(C_{1-4})Alkyl] substituiertes lineares oder verzweigtes (C_1-C_8) -Alkyl; gegebenenfalls mit

Halogen substituiertes Phenyl; vorzugsweise Wasserstoff, 10 gegebenenfalls mit Phenyl, oder mit einer (C1-4) Alkyl-Estergruppe oder einer Amidgruppe oder einer (C1-4) Alkyl-Amidgruppe substituiertes lineares oder verzweigtes (C_1 -C₈)-Alkyl; oder Phenyl; vorzugsweise Wasserstoff, lineares oder verzweigtes (C1-C8)-Alkyl oder Phenyl.

 R_7 bedeutet vorzugsweise (C_1-C_4) -Alkyl. Der Substituent $-N(R_6)(R_7)$ als heterocyclischen Ring bedeutet vorzugsweise einen Rest von Pyrrolidin oder Piperidin.

20

25

15

5

Bedeuten R₁ zusammen mit R₃ eine direkte Bindung oder einen Rest der Formel -(CH2)n-, so bedeutet die Verbindung der Formel (I) vorzugsweise ein Lactam einer omega-Amino-Fettsäure, beispielsweise der omega-Aminobuttersäure (ω -Butyrolactam), der omega-Aminovaleriansäure (ω -Valerolactam), der omega-Aminocapronsäure (ω -Caprolactam), oder der omega-Aminolaurinsäure (ω -Laurinolactam), welche gemäss der Verbindung der allgemeinen Formel (I) eine α,β -

30

Bedeutet R_1 zusammen mit R_5 und der eingeschlossenen (C=C)-Doppelbindung einen Rest eines einfach ungesättigten Bicyclischen Ringes, so ist dies vorzugsweise ein gegebe-

. ungesättigte. Doppelbindung aufweisen.

nenfalls durch Hydroxyl oder Amino substituierter Norbornylrest, vorzugsweise einen Norbornylrest.

 R_3 bedeutet vorzugsweise Wasserstoff, gegebenenfalls durch Phenyl substituiertes lineares oder verzweigtes (C_1-C_4) - Alkyl, Cyclohexyl; Phenyl; oder R_3 zusammen mit R_1 eine direkte Bindung oder einen Rest der Formel $-(CH_2)_n$ -.

 R_4 bedeutet vorzugsweise Wasserstoff, gegebenenfalls durch 10 Phenyl substituiertes lineares oder verzweigtes (C_1-C_4) - Alkyl oder Phenyl, vorzugsweise Wasserstoff.

Der Rest $-NR_3R_4$ als heterocyclischer Ring bedeutet vorzugsweise einen Rest von Pyrrolidin oder Piperidin.

 R_5 bedeutet vorzugsweise Wasserstoff. R_8 bedeutet vorzugsweise Trimethylsilyl, oder zusammen mit R_9 den Rest--C(0)-C(0)-.

15

20 R₉ bedeutet vorzugsweise Boc, Trimethylsilyl, oder zusammen mit R₈ den Rest -C(O)-C(O)-. Vorzugsweise bedeutet R₉ Boc oder zusammen mit R₈ den Rest -C(O)-C(O)-.

R9 als Alkyloxycarbonyl bedeutet vorzugsweise Isobutyloxy25 carbonyl, tert.-Butyloxycarbonyl, tert.-Amyloxycarbonyl,
Cyclobutyloxycarbonyl, 1-Methylcylobutyloxycarbonyl, Cyclopentyloxycarbonyl, Cyclohexyloxycarbonyl, 1-Methylcyclohexyl, vorzugsweise tert.-Butyloxycarbonyl.

Dialkylsilyl bedeutet vorzugsweise Dimethylsilyl. Trialkylsilyl bedeutet vorzugsweise Trimethylsilyl. Halogen bedeutet vorzugsweise Fluor oder Chlor, vorzugsweise Fluor. Eine Alkyl-Estergruppe bedeutet vorzugsweise eine Methyl-, Ethyl-, Propyl- oder Butylestergruppe. Eine Alkylamidgruppe

- 7 -

bedeutet vorzugsweise eine Methyl-, Ethyl-, Propyl- oder Butylamidgruppe.

Verbindungen, welche erfindungsgemäss hergestellt und unter die allgemeine Formel (I) subsumiert werden können sind beispielsweise die entsprechenden α,β-ungesättigten Verbindungen von N,N-Dialkyl-alkylamiden, wie z.B. N,N-Dimethylbutylamid und homologen Verbindungen, oder von den vorgehend erwähnten Lactamen. Weitere Beispiel für die

10 erfindungsgemässe Herstellung sind:

oder

15 oder

oder

Zur Einführung der Schutzgruppe Trialkylsilyl, d.i. zur Silylierung der NH-Gruppe und/oder des Sauerstoffatoms bzw. der OH-Gruppe [gemäss Schritt (A)], verwendet man vorzugs-

weise ein (Alkyl)₃Si(Halogen), z.B. (CH₃)₃SiCl, oder Bistrimethylsilyltrihalogenacetamid, Bistrimethylsilylacetamid, Hexamethyldisilazan und/oder Bistrimethylharnstoff, vorzugsweise Bistrimethylsilyltrifluoroacetamid, oder ein Trialkylsilyl-trifluoromethansulfonat, vorzugsweise Trimethylsilyl-trifluoromethansulfonat. Die Reaktionsbedingungen für die Silylierung sind aus EP 0 473 226 bekannt.

5

20

25

30

Für die Einführung einer Schutzgruppe, worin R₇ zusammen

10 mit R₈ den Rest -C(O)-C(O)- bedeuten, setzt man die Verbindung der allgemeinen Formel (II) bzw. die Laktamgruppierung [gemäss Schritt (A)] mit Oxalylchlorid (Oxalsäurechlorid) oder Malonylchlorid (Malonsäurechlorid) um, wobei Oxalylchlorid bevorzugt ist. Die Reaktionsbedingungen für die

15 Umsetzung mit Oxalylchorid sind EP 0 428 366 bekannt und sind für die Umsetzung mit Malonylchlorid oder analog reagierender Verbindungen in analoger Weise anzuwenden.

Für die Einführung einer Schutzgruppe, worin R₈ Alkyloxycarbonyl, z.B. tert.-Butyloxycarbonyl (Boc) bedeutet, geht man in an sich bekannter Weise vor, indem man die Verbindung der allgemeinen Formel (II) z.B. mit Boc-Anhydrid (Boc-O-Boc) {[(CH₃)₃C-O-C(O)]₂-O} oder mit Boc-Carbamat [(CH₃)₃C-O-C(O)-N(C₁₋₄-Alkyl)₂], umsetzt. Dabei steht hier Boc stellvertretend für die anderen gleich reagierenden Verbindungen, das heisst Verbindungen, worin der tert.-Butylrest ersetzt ist durch einen andern gleich reagierenden Rest, wie beispielsweise die genannten Reste tert.-Amyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Solche analogen Reaktionen sind zahlreich in der Fachliteratur beschrieben. Bedeutet R₈ Trialklylsilyl und R₉ Boc, so führt man zuerst die Schutzgruppe Boc ein und silyliert anschliessend.

3 13 1173

In Schritt (B) wird die gemäss Schritt (A) erhaltene Verbindung in Gegenwart (i) eines Dehydrierungskatalysators und in Gegenwart von (ii) gegebenenfalls substituiertem Benzochinon, Allylmethylcarbonat, Allylethylcarbonat und/oder Allylpropylcarbonat, umgesetzt, wobei die α,β -Doppel-5 bindung in $\alpha, \beta ext{-Stellung}$ eingeführt wird. Der Dehydrierungskatalysator ist vorzugsweise ausgewählt aus Verbindungen (Salze und Komplexe) der Gruppe der Übergangsmetalle des Periodensystems der Elemente, insbesondere ausgewählt aus Verbindungen der Metalle der VIII. Gruppe des Perioden-10 systems, insbesondere von Eisen (Fe), Ruthenium (Ru) und Osmium (Os); Cobalt (Co), Rhodium (Rh), und Iridium (Ir); Nickel (Ni), Palladium (Pd) und Platin (Pt) sowie der Gruppe IB, d.h. von Kupfer (Cu), Silber (Ag) und Gold (Au). Bevorzugt sind Verbindungen der Metalle der Gruppe VIII des 15 Periodensystems. Bevorzugt sind insbesondere Verbindungen bzw. Dehydrierungskatalysatoren auf der Basis von Rhodium (Rh), Palladium (Pd) und Platin (Pt). Bevorzugt sind Palladiumverbindungen. Beispiele für solche Palladiumverbindungen sind: Pd(0)-Verbindungen wie Tris(dibenzylidenaceton)-20 diPalladium-ChloroformKomplex und Pd(II)-Verbindungen wie PdCl₂, Pd(dppe)₂, [dppe = bis-(1,2-biphenylphosphino)ethan], $Pd(dppe)Cl_2$, $Pd(OAc)_2$, $Pd(dppe)(OAc)_2$, $\pi-Allyl-Pd-$ Komplexe, vorzugsweise π -Allyl-Pd-chlorid Dimer. Bevorzugt sind Pd(0)-Verbindungen, insbesondere Tris(dibenzyliden-25 aceton)diPalladium ChloroformKomplex. Diese Verbindungen, bzw. Salze und Komplexe, sind an sich bekannt und in der Literatur beschrieben worden.

Zur termischen Stabilisierung des Palladium-Komplexes kann ein zusätzlicher Komplexbildner wie 2,2'-Bipyridyl oder 1,10-Phenanthrolin eingesetzt werden, vorzugsweise 2,2'-Bipyridyl.

Als Chinon kann man auch ein substituiertes Chinon verwenden, beispielsweise ein durch C_{1-4} -Alkyl, Halogen, Cyano oder Nitro substituiertes Chinon. Solche Chinone sind an sich bekannt.

In Schritt (C) wird dann die erhaltene Verbindung in die Verbindung der Formel (I) umgewandelt, indem man die eingeführten Schutzgruppen entfernt. Dies geschieht vorzugsweise durch Behandlung mit einer geeigneten Säure, beispielsweise mit Ameisensäure, Essigsäure und/oder Trifluoressigsäure, vorzugsweise mit Ameisensäure. Methoden für die Isolierung der Verbindungen der allgemeinen Formel (I) aus dem Reaktionsgemisch sowie für deren weitere Reinigung sind dem Fachmann bekannt. Anschliessend können die erhaltene Verbindung weiter verarbeitet werden.

Für das beschriebene Verfahren mit den Schritten (A)-(C) können als Lösungsmittel zahlreiche organische wasserfreie Verbindungen verwendet werden, wie beispielsweise Toluol, Benzin, Hexan, Heptan, tert.-Butylalkohol, Diethylether, Aceton, Benzol, Dioxan, Tetrahydrofuran, Chloroform, Dimethylformamid oder Pyridin. Die folgenden Beispiele erläutern die Erfindung.

25

20

5

10

15

Beispiel 1 (Herstellung eines α,β-ungesättigten Butyramids)

Stufe 1 (Herstellung von Butyramid-Silylenolether):

Zu einer Lösung aus 10 g (0.085 Mol) N,N-Dimethylbutyramid

und 54 g absolutem Tetrahydrofuran (THF) werden bei einer

Innentemperatur von -80°C 46 ml einer 2 molaren (2M)
Lithium-diisopropylamid-Lösung (LDA-Lösung) vorsichtig zu
dosiert und etwa 1 Stunde bei -70 bis -80°C nachgerührt.

Danach werden bei gleicher Innentemperatur 28 g (0.255 Mol)
Trimethylchlorsilan zudosiert. Dabei scheidet sich LiCl ab.

Nach Zugabe des Silans wird das Kältebad entfernt. Den
Ansatz lässt man unter Stickstoff (N₂) über Nacht auf
Umgebungstemperatur erwärmen. Bei einer Innentemperatur von
70-90°C wird das Reaktionsgemisch unter N₂-Fluss destil-

Stufe 2 (Herstellung von α,β-ungesättigtemn Butyramid):
2 g (8 mMol) des Silylenolethers aus Stufe 1 werden unter Stickstoff mit 16 g absolutem Acetonitril, 2 g Chloroform,
2.9 g (0.024 Mol) Allylmethylcarbonat und 0.16 g (0.16 mMol) des Pd-Katalysators auf Rückflusstemperatur (Innentemperatur 75-80°C) erwärmt. Bereits beim Erwärmen setzt eine deutlich erkennbare Gasentwicklung ein. Die dunkelgrüne Lösung wird über Nacht gerührt. Die erhaltene schwarze Suspension wird filtriert und unter vermindertem Druck (nur bis p=80 mbar) eingeengt. Man erhält ca. 0.9 g ungesättigtes Butyramid.

 $^{1}\text{H-NMR}$ (200MHz, CDCl₃, δ): 6.88-6.72 (1H, m); 6.20(1H, d breit); 3.04 (3H, s); 2.98 (3H, s); 1.78(3H, d); MS (+EI): 114 (M+1, 40%); 98 (100%)

30

Beispiel 2 (Herstellung von α, β -ungesättigten Valerolactam)_-

Stufe 1 (Herstellug von N-bocyliertem Valerolactam): Zu einer Lösung aus 10 g (0.097 Mol) δ -Valerolactam und 44.5 g absolutem THF werden bei einer Innentemperatur von

-60°C 55 ml einer 2M LDA-Lösung vorsichtig zudosiert und etwa 1 Stunde bei -60 bis -70°C nachgerührt. Danach tropft man bei gleicher Innentemperatur eine Lösung bestehend aus 22.22 g (0.102 mol) Boc-Anhydrid und 18 g absolutem THF zu und lässt das Reaktionsgemisch über Nacht auf Umgebungstemperatur aufwärmen. Das erhaltene Gemisch wird zu einer Mischung bestehend aus 50 g Toluol und 100 g Wasser gegeben und ca. 30 Minuten gerührt. Die rote, organische Phase wird dreimal mit je 50 g Wasser gewaschen und dann destillativ soweit möglich unter vermindertem Druck eingeengt. Es resultieren 19 g eines dunklen Öls.

¹H-NMR (200MHz, CDCl₃, δ): 3.78-3.55 (2H, t); 2.55-2.42(2H, t); 1.90-1.72 (4H, m); 1.57-1.48 (9H, s) MS: 199 (M, <1%); 144 (46%); 57 (100%)

15

10

5

Stufe 2 (Herstellung von Boc-Valerolactam-Silylenolether): Zu einer Lösung bestehend aus 12 g (0.052 mol) N-Boc-Valerolactam aus Stufe 1 und 44.5 g absolutem THF werden bei einer Innentemperatur von -60°C 30 ml einer 2M LDA-Lö-20 sung vorsichtig zudosiert und etwa 1 Stunde bei -60°C bis -70°C nachgerührt. Danach werden bei gleicher Innentemperatur 6.2 g (0.057 mol) Trimethylchlorsilan zugegeben. Dabei scheidet sich LiCl ab. Nach Zugabe des Silans wird das Kältebad entfernt. Den Ansatz lässt man unter N2 über Nacht 25 auf Umgebungstemperatur erwärmen. Die Reaktionsmischung wird dann in ein Gemisch bestehend aus 50 g Toluol und 50 g Wasser gegossen, kurz gerührt und die organische Phase dreimal mit je 50 g Wasser gewaschen. Nach dem Einengen bleiben 14 g eines klaren Öls im Kolben zurück.

30 1 H-NMR (200MHz, CDCl₃, δ): 4.12 (1H, t); 3.03 (2H, t); 1.92-1.81 (2H, m); 1.55-1.40 (2H, m); 1.27(9H, s); 0.01 (9H, s)

Stufe 3: α , β -ungesättigtes Valerolactam

2g (0.0074 Mol) des Silylenolethers aus Stufe 2 werden zusammen mit 25 g absolutem Acetonitril, 0.4 g Pd-Katalysator
und 0.8 g p-Benzochinon über Nacht bei Raumtemperatur

5 gerührt. Die erhaltene schwarze Reaktionsmischung wird mit
50 g 5%iger NaOH-Lösung intensiv gerührt, mit 50g Toluol
extrahiert und die organische Phase soweit möglich
eingeengt. Es bleibt 1 g eines leicht beweglichen, dunklen
Öls im Kolben zurück.

10 ¹H-NMR (200MHz, CDCl₃, δ): 6.82-6.72 (1H, m); 5.97 (1H, d); 3.88 (2H, t); 2.46-2.35 (2H, m); 1.54 (9H, s)

Patentansprüche

1. α, β -ungesättigten Amidverbindungen der allgemeinen Formel (I):

$$R1 \xrightarrow{R5} N \xrightarrow{R3} R4$$
 (I)

worin

5

10 R₁ und R₂ unabhängig voneinander Wasserstoff; gegebenenfalls mit Hydroxy, Halogen, Phenyl, substituiertem Phenyl,
oder mit einer Estergruppe [-C(O)OAlkyl] oder einer Amidgruppe [-C(O)NH₂ oder -C(O)NHAlkyl] substituiertes lineares
oder verzweigtes (C₁-C₁₈)-Alkyl oder (C₁-C₁₈)-Alkenyl;

15 gegebenenfalls mit Halogen substituiertes Phenyl;
oder

entweder R₁ oder R₂ einen Rest Y-R₆; worin

Y Sauerstoff (-O-); Schwefel (-S-); -NR₇-; Dialkylsilyl [-(Alkyl)₂Si-];

20 R₆ Wasserstoff, gegebenenfalls mit Hydroxy, Halogen, Phenyl, substituiertem Phenyl, oder mit einer Estergruppe [-C(O)OAlkyl] oder einer Amidgruppe [-C(O)NH₂ oder -C(O)NHAlkyl] substituiertes lineares oder verzweigtes (C₁-C₁₈)-Alkyl; gegebenenfalls mit Halogen substituiertes

25 Phenyl;

 R_7 (C_1-C_{18})-Alkyl oder -N(R_6)(R_7) einen 5- oder 6-gliedrigen heterocyclischen Ring; oder

R₁ zusammen mit R₃ eine direkte Bindung oder einen Rest der

30 Formel $-(CH_2)_n-$; worin

n eine ganze Zahl von 1 bis 12;

oder

5

 R_1 zusammen mit R_2 Cyclohexyliden; oder

 R_1 zusammen mit R_5 Cyclohexenyl (wobei R_5 = Wasserstoff); oder

 R_1 zusammen mit R_5 und der eingeschlossenen (C=C)-Doppelbindung einen Rest eines einfach-ungesättigten Bicyclischen Ringes;

R₃ Wasserstoff, gegebenenfalls durch Phenyl, Hydroxyl,
10 oder Halogen substituiertes lineares oder verzweigtes
(C₁-C₁₂)-Alkyl, welches gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, (C₅-C₈)-Cycloalkyl oder (C₅-C₈)-Cycloalkenyl, welche gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen sind; gegebenen-

15 falls durch Halogen oder Hydroxyl substituiertes Phenyl; oder R_3 zusammen mit R_1 eine direkte Bindung oder einen Rest der Formel $-(CH_2)_n-;$

R₄ eine der Bedeutungen von R₃, vorzugsweise Wasserstoff, gegebenenfalls durch Phenyl, Hydroxyl, oder Halogen sub-

20 stituiertes lineares oder verzweigtes (C_1-C_{12}) -Alkyl, gegebenenfalls durch Halogen oder Hydroxyl substituiertes Phenyl; oder

-NR₃R₄ einen 5- oder 6-gliedrigen heterocyclischen Ring; R₅ Wasserstoff, tert.-Butyl oder gegebenenfalls durch Halogen oder Hydroxyl substituiertes Phenyl; bedeuten.

2. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I) nach Anspruch 1, dadurch gekennzeichnet

30 ist, dass man

(A) in einer Verbindung der allgemeinen Formel (II):

worin R₁, R₂, R₃ und R₄ entsprechend in Anspruch 1 angegebenen Bedeutungen haben und die entsprechende gesättigte Verbindung darstellt, Schutzgruppen einführt, so dass eine Verbindung der allgemeinen Formel (III) entsteht:

$$\begin{array}{c}
R1 \xrightarrow{R5} N \xrightarrow{R3} \\
R2 \xrightarrow{O}_{R8}
\end{array}$$
(III)

10

15

20

25

worin

 R_8 Trialkylsilyl, oder (wenn R_4 = Wasserstoff) zusammen mit R_9 den Rest -C(0)-C(0)- und

 R_9 (wenn R_4 = Wasserstoff) Alkyloxycarbonyl oder Phenyl-oxycarbonyl, vorzugsweise Boc (= tert.-Butyloxycarbonyl); oder Trialkylsilyl, oder zusammen mit R_8 den Rest -C(0)-C(0)-, bedeuten,

und worin für den Fall, dass in der Verbindung der allgemeinen Formel (II) Hydroxyl anwesend ist, dieses gegebenenfalls mit einer monovalenten Schutzgruppe R_8 und/oder R_9 reagiert hat;

- (B) die [gemäss Schritt (A)] erhaltene Verbindung in Gegenwart (i) eines Dehydrierungskatalysators und in Gegenwart von (ii) gegebenenfalls substituiertem Benzochinon, Allylmethylcarbonat, Allylethylcarbonat und/oder Allylpropylcarbonat, umsetzt, wobei die α , β -Doppelbindung in die α , β -Stellung eingeführt wird, und
- (C) die Schutzgruppen R₈ und R₉ entfernt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R_1 und R_2 unabhängig voneinander Wasserstoff, gegebenenfalls mit Hydroxy, Phenyl, mit Halogen oder Hydroxy substituiertem Phenyl, oder mit einer (C_{1-4}) Alkyl-Estergruppe oder einer Amidgruppe oder (C_{1-4}) Alkyl-Amidgruppe substituiertes lineares oder verzweigtes (C_1-C_8) -Alkyl oder (C_1-C_8) -Alkenyl, gegebenenfalls mit Halogen substituiertes Phenyl; vorzugsweise lineares oder verzweigtes (C_1-C_8) -Alkyl oder (C_1-C_8) -Alkenyl, Benzyl oder Phenyl, bedeuten.

5

10

15

25

- 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R_2 Wasserstoff und R_1 lineares oder verzweigtes (C_1 - C_8)-Alkyl oder (C_1 - C_8)-Alkenyl; Benzyl oder Phenyl oder Y- R_6 bedeuten.
- 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R_1 Wasserstoff und R_2 lineares oder verzweigtes (C_1 - C_8)-Alkyl oder (C_1 - C_8)-Alkenyl; Benzyl oder Phenyl oder Y- R_6 bedeuten.
 - 6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R_1 zusammen mit R_3 die direkte Bindung oder einen Rest der Formel $-(CH_2)_n$ und n eine ganze Zahl von 1 bis 12; oder R_1 zusammen mit R_2 Cyclohexyliden; oder R_1 zusammen mit R_5 Cyclohexenyl, bedeuten.
 - 7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass Y (im Rest Y- R_6) Sauerstoff bedeutet.
 - 8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R_6 Wasserstoff, gegebenenfalls mit Hydroxy, Halogen, Phenyl, mit Halogen substituiertem Phenyl, oder mit einer (C_{1-4}) Alkyl-Estergruppe oder einer Amidgruppe oder einer

- 10 9. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Substituent $-N(R_6)(R_7)$ als heterocyclischen Ring einen Rest von Pyrrolidin oder Piperidin bedeutet.
 - 10. Verfahren nach Anspruch 2, dadurch gekennzeichnet,
 dass die Verbindung der Formel (II) ein Lactam einer omegaAmino-Fettsäure darstellt, vorzugsweise der omegaAminobuttersäure, der omega-Aminovaleriansäure, der omegaAminocapronsäure, oder der omega-Aminolaurinsäure.
- 20 11. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass in der Verbindung der Formel (I) R₁ zusammen mit R₅ und der eingeschlossenen (C=C)-Doppelbindung einen Rest eines einfach ungesättigten bicyclischen Ringes bedeuten, vorzugsweise ein gegebenenfalls durch Hydroxyl oder Amino substituierter Norbornylrest, vorzugsweise ein Norbornylrest.
- 12. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R₃ und R₄ unabhängig voneinander Wasserstoff, gege-30 benenfalls durch Phenyl substituiertes lineares oder verzweigtes (C₁-C₄)-Alkyl, Phenyl; oder der Rest -NR₃R₄ einen Rest von Pyrrolidin oder Piperidin bedeuten.

13. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R_5 Wasserstoff, R_8 Trimethylsilyl, oder zusammen mit R_9 den Rest -C(0)-C(0)- und R_9 Boc, Trimethylsilyl, oder zusammen mit R_8 den Rest -C(0)-C(0)-, bedeutet.

14. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass R₉ als Alkyloxycarbonyl Isobutyloxycarbonyl, tert.-Butyloxycarbonyl, tert.-Amyloxycarbonyl, Cyclobutyloxycarbonyl, 1-Methylcylobutyloxycarbonyl, Cyclopentyl-oxycarbonyl, Cyclohexyloxycarbonyl, 1-Methylcyclohexyl, vorzugsweise tert.-Butyloxycarbonyl, bedeutet.

5

- 15. Verfahren nach einem der Ansprüche 1-14, dadurch gekennzeichent, dass der Dehydrierungskatalysator [in Schritt (B)] ausgewählt ist aus Verbindungen (Salze und Komplexe) der Gruppe der Übergangsmetalle des Periodensystems der Elemente, vorzugsweise aus Verbindungen der Metalle der VIII. Gruppe des Periodensystems, insbesondere von Eisen, Ruthenium und Osmium; Cobalt, Rhodium, und Iridium; Nickel, Palladium und Platin; Kupfer, Silber und Gold vorzugsweise von Verbindungen auf der Basis von Rhodium, Palladium und Platin.
- 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet,
 25 dass der Dehydrierungskatalysator eine Palladiumverbindung darstellt, vorzugsweise eine Pd(0)-Verbindung, vorzugsweise einen Tris (dibenzylidenaceton) diPalladium-ChloroformKomplex oder eine Pd(II)-Verbindung, vorzugsweise PdCl₂, Pd(dppe)₂, Pd(dppe) Cl₂, Pd(OAc)₂, Pd(dppe) (OAc)₂, π-Allyl-Pd-Komplexe,
 30 vorzugsweise π-Allyl-Pd-chlorid Dimer.
 - 17. Verfahren nach einem der Ansprüche 1-16, dadurch gekennzeichnet, dass zur termischen Stabilisierung des

Palladium-Komplexes ein zusätzlicher Komplexbildner zugesetzt wird, vorzugsweise 2,2'-Bipyridyl oder 1,10-Phenanthrolin.

5 18. Verfahren nach einem der Ansprüche 1-17, dadurch gekennzeichnet, dass als Chinon ein substituiertes Chinon verwendet wird, vorzugsweise ein durch C₁₋₄-Alkyl, Halogen, Cyano oder Nitro substituiertes Chinon.

Zusammenfassung

 α , β -ungesättigten Amidverbindungen der allgemeinen Formel 5 (I):

$$R1 \xrightarrow{R5} N \xrightarrow{R3} R4$$
 (I)

worin

 R_1 und R_2 unabhängig voneinander Wasserstoff; gegebenenfalls substituiertes (C_1-C_{18}) -Alkyl oder (C_1-C_{18}) -Alkenyl; gegebenenfalls substituiertes Phenyl; oder entweder R1 oder R₂ einen Rest Y-R₆; worin Y Sauerstoff; Schwefel; -NR7-; Dialkylsilyl; R6 Wasserstoff, gegebenenfalls sub-15 stituiertes (C₁-C₁₈)-Alkyl; gegebenenfalls substituiertes Phenyl; oder R₁ zusammen mit R₃ eine direkte Bindung oder einen Rest der Formel $-(CH_2)_n-$; worin n eine ganze Zahl von 1 bis 12; oder R_1 zusammen mit R_2 Cyclohexyliden; oder R_1 zusammen mit R_5 Cyclohexenyl (wobei R_5 = Wasserstoff); 20 oder R₁ zusammen mit R₅ und der eingeschlossenen (C=C)-Doppelbindung einen Rest eines einfach-ungesättigten Bicyclischen Ringes; R₃ Wasserstoff, gegebenenfalls (C_1-C_{12}) -Alkyl, (C_5-C_8) -Cycloalkyl oder (C_5-C_8) -Cycloalkenyl, gegebenenfalls substituiertes Phenyl; R4 eine der 25 Bedeutungen von R₃, oder -NR₃R₄ einen 5- oder 6-gliedrigen heterocyclischen Ring; R5 Wasserstoff, tert.-Butyl oder gegebenenfalls durch Halogen oder Hydroxyl substituiertes Phenyl, bedeuten, sowie Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I).

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.