

CS 310: Algorithms

Lecture 25

Instructor: Naveed Anwar Bhatti

Few Slides taken from Dr. Imdad's CS 510 course

Chapter 8: NP and Computational Intractability

Section 8.3 : **NP-hard and NP-Complete**

NP-Complete vs **NP-Hard**

A problem X is NP-HARD, if every problem in NP is polynomial time reducible to X

$$\forall Y \in NP, Y \leq_{p} X$$

A problem $X \in NP$ is NP-Complete, if every problem in NP is polynomial time reducible to X

$$X \in NP$$
 AND $\forall Y \in NP$, $Y \leq_{p} X$

3

NP-Complete vs NP-Hard

A problem X is NP-HARD, if every problem in NP is polynomial time reducible to X

NP-Complete vs NP-Hard

A problem $X \in NP$ is NP-Complete, if every problem in NP is polynomial time reducible to X

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

$$\mathbf{P}\subseteq\mathbf{NP}$$

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

$$P \subseteq NP$$
 $NPC \subseteq NP$

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP \ Y \leq_p X$

$P \subseteq NP$ $NPC \subseteq NP$

- Take any $X \in NP$ and prove that it cannot be solved in poly time
 - You proved $P \neq NP$

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP \ Y \leq_p X$

$P \subseteq NP$ $NPC \subseteq NP$

- Take any $X \in NP$ and prove that it cannot be solved in poly time
 - You proved $P \neq NP$
- Take any $X \in NPC$ and solve it in poly time
 - \blacksquare You proved P = NP

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP \ Y \leq_p X$

Why should you prove a problem to be NP-COMPLETE?

A problem *X* is **NP-Complete**, if

- $X \in NP$
- $Y \in NP Y \leq_p X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard
- \blacksquare Unless your interest is proving P = NP stop trying finding efficient algorithm

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard
- \blacksquare Unless your interest is proving P = NP stop trying finding efficient algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard
- \blacksquare Unless your interest is proving P = NP stop trying finding efficient algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

I am too dumb!

▶ You are fired

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard
- \blacksquare Unless your interest is proving P = NP stop trying finding efficient algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

1 I am too dumb!

▶ You are fired

2 There is no fast algorithm! You claim that $P \neq NP$

▶ Need a proof

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP \ Y \leq_p X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard
- \blacksquare Unless your interest is proving P = NP stop trying finding efficient algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

1 I am too dumb!

▶ You are fired

2 There is no fast algorithm! You claim that $P \neq NP$

▶ Need a proof

3 I cannot solve it, but neither can anyone in the world!

▶ Need reduction

A problem X is **NP-Complete**, if

- $X \in NP$
- $Y \in NP Y \leq_{p} X$

What to tell your boss if you fail to find a fast algorithm for a problem?

Dealing with Hard Problems

 What to do when we find a problem that looks hard...

I couldn't find a polynomial-time algorithm; I guess I'm too dumb.

Dealing with Hard Problems

 Sometimes we can prove a strong lower bound... (but not usually)

I couldn't find a polynomial-time algorithm, because no such algorithm exists!

Dealing with Hard Problems

I couldn't find a polynomial-time algorithm, but neither could all these other smart people.

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

How to prove a problem NP-Complete?

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP Y \leq_p X$

How to prove a problem NP-Complete?

Can we do so many reductions?

A problem *X* is **NP-Complete**, if

- $X \in NP$
- $Y \in NP Y \leq_p X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

A problem *X* is **NP-Complete**, if

- $\mathbf{1} X \in NP$
- $Y \in NP \ Y \leq_p X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and

$$X \in NP$$

then X is NP-COMPLETE

$$Z \leq_p X$$

A problem *X* is **NP-Complete**, if

- $X \in NP$
- $Y \in NP Y \leq_p X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

Where to begin? we need a first NP-COMPLETE Problem

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP \ Y \leq_{p} X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

Theorem (The Cook-Levin theorem)

SAT(f) is NP-Complete

- Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became known later)
- Levin proved six NP-COMPLETE problems (in addition to other results)

A problem *X* is **NP-Complete**, if

- 1 $X \in NP$
- $Y \in NP \ Y \leq_p X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

Theorem (The Cook-Levin theorem)

SAT(f) is NP-Complete

CIRCUIT-SAT is NP-COMPLETE

What is Circuit SAT problem?

Circuit-SAT is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output **TRUE**

What is Circuit SAT problem?

Circuit-SAT is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output **TRUE**

If Z is NP-Complete, and

1
$$X \in NP$$

 $Z \leq_p X$

then X is NP-Complete

If Z is NP-Complete, and

$$X \in NP$$

then X is NP-COMPLETE

 $Z \leq_p X$

1) 3-SAT \in NP

Certificate:

T or F for each variable

Verifier:

- Check cert has the right format
- Check that formula evaluates to T

If Z is NP-Complete, and

1
$$X \in NP$$

then X is NP-Complete

$$Z \leq_p X$$

- 1) 3-SAT \in NP
- 2) NP-Complete \leq_p 3-SAT

Circuit-SAT
$$\leq_p$$
 3-SAT

2) NP-Complete $\leq_{\mathbf{p}}$ 3-SAT Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT

Assign variable for every gate

2) NP-Complete $\leq_{\mathbf{p}}$ 3-SAT Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT

Assign variable for every gate

NP-Complete $\leq_{\mathbf{p}}$ **3-SAT** Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT

Assign variable for every gate

For each **NOT** gate:

$$(x_u \vee x_v) \wedge (\overline{x_u} \vee \overline{x_v})$$

For each **OR** gate: x_w

$$(x_v \vee \overline{x_u}) \wedge (x_v \vee \overline{x_w}) \wedge (\overline{x_v} \vee x_u \vee x_w)$$

$$(\overline{x_v} \vee x_u) \wedge (\overline{x_v} \vee x_w) \wedge (x_v \vee \overline{x_u} \vee \overline{x_w})$$

NP-Complete $\leq_{\mathbf{p}}$ **3-SAT** Circuit-SAT $\leq_{\mathbf{p}}$ 3-SAT

Assign variable for every gate

For each **NOT** gate:

$$(x_u \vee x_v) \wedge (\overline{x_u} \vee \overline{x_v})$$

For each **OR** gate:

$$(x_v \vee \overline{x_u}) \wedge (x_v \vee \overline{x_w}) \wedge (\overline{x_v} \vee x_u \vee x_w)$$

$$(\overline{x_v} \vee x_u) \wedge (\overline{x_v} \vee x_w) \wedge (x_v \vee \overline{x_u} \vee \overline{x_w})$$

AND together clauses for every gate

2) NP-Complete \leq_{p} 3-SAT Circuit-SAT \leq_{p} 3-SAT

Assign variable for every gate

For each **NOT** gate:

$$(x_u \lor x_v \lor \text{FALSE}) \land (\overline{x_u} \lor \overline{x_v} \lor \text{FALSE})$$

For each **OR** gate:

$$(x_v \vee \overline{x_u} \vee \text{FALSE}) \wedge (x_v \vee \overline{x_w} \vee \text{FALSE}) \wedge (\overline{x_v} \vee \overline{x_u} \vee x_w)$$

For each **AND** gate:

AND together clauses for every gate

$$(\overline{x_v} \lor x_u \lor \text{FALSE}) \land (\overline{x_v} \lor x_w \lor \text{FALSE}) \land (x_v \lor \overline{x_u} \lor \overline{x_w})$$

2) NP-Complete \leq_{p} 3-SAT Circuit-SAT \leq_{p} 3-SAT

Thanks a lot

"In case I don't see you again, **Good Morning, Good Afternoon** and **Good Evening**" – Jim Carry