Multi-armed bandits for resource efficient, online optimization of language model pre-training: the use case of dynamic masking

Iñigo Urteaga^{1,2,*}, Moulay-Zaïdane Draïdia³, Tomer Lancewicki^{4,†}, and Shahram Khadivi⁵

¹Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

²IKERBASQUE - Basque Foundation for Science, Bilbao, Spain

*Work done while at the Department of Applied Physics and Applied Mathematics and the Data Science Institute,

Columbia University, New York NY, USA

³Data Science Institute, Columbia University, New York NY, USA

⁴Walmart Global Tech, USA

[†]Work done while at eBay Inc., San Jose (CA), USA

⁵eBay Inc., Aachen, Germany

{iurteaga@bcamath.org, mad2314@columbia.edu, tomer.lancewicki@walmart.com, skhadivi@ebay.com}

May 30, 2023

Abstract

We design and evaluate a Bayesian optimization framework for resource efficient pre-training of Transformer-based language models (TLMs). TLM pre-training requires high computational resources and introduces many unresolved design choices, such as selecting its pre-training hyperparameters. We propose a multi-armed bandit framework for the sequential selection of TLM pre-training hyperparameters, aimed at optimizing language model performance, in a resource efficient manner. We design a Thompson sampling algorithm, with a surrogate Gaussian process reward model of the Masked Language Model (MLM) pre-training objective, for its sequential minimization. Instead of MLM pre-training with fixed masking probabilities, the proposed Gaussian process-based Thompson sampling (GP-TS) accelerates pre-training by sequentially selecting masking hyperparameters that improve performance. We empirically demonstrate how GP-TS pre-trains language models efficiently, i.e., it achieves lower MLM loss in fewer epochs, across a variety of settings. In addition, GP-TS pre-trained TLMs attain competitive downstream performance, while avoiding expensive hyperparameter grid search. GP-TS provides an interactive framework for efficient and optimized TLM pre-training that, by circumventing costly hyperparameter selection, enables substantial computational savings.

1 Introduction

In the field of Natural Language Processing (NLP), models for learning unsupervised representations from unlabeled text based on Transformer architectures (62) are the state-of-the-art on a variety of tasks (24).

Transformer-based language models (TLMs) like BERT (11), RoBERTa (36), and their linage of advanced models (4), rely on the combination of an unsupervised pre-training of the model, and a subsequent task-specific fine-tuning procedure. TLMs are pre-trained over large unlabeled text data using self-supervision, to learn the relationships between different sentences or words of the input. Once the TLM is pre-trained over large volumes of data, it can be used in various downstream tasks, by fine-tuning task-specific model layers. With pre-training, TLMs learn language representations that are useful across downstream tasks, minimizing the need and burden of retraining the entire model from scratch, again, for each task. Extensive pre-training can lead to downstream performance improvements, i.e., it is worth learning complex TLMs in huge natural language corpora before fine-tuning them for particular tasks.

Many have replicated the pre-train-then-fine-tune strategy in different domains, e.g., pre-training BERT with scientific (6) and biomedical corpora (3, 18, 34); or in-house, industry-specific TLMs (24). In addition, continual pre-training —taking a model pre-trained with general corpora to continue pre-training it with in-domain data— is of great value, yielding significant downstream gains (19).

Even if conceptually simple and empirically powerful, pre-training is challenging and expensive. Beyond the significant resources needed to pre-train the original BERT model by Devlin et al. (11), the improvements of RoBERTa (36) relied on orders of magnitude higher computational resources (26). In addition, the relationship between TLM architecture, training corpus, pre-training hyperparameters, and evaluation metrics is complex and obscure. Therefore, previously overlooked pre-training design choices, e.g., pre-training hyperparameter selection, result in significant performance differences.

With this work, we aim to improve the pre-training procedure of TLMs, by sequentially selecting hyperparameters that result in a more efficient and superior pre-training performance. We hypothesize that an interactive selection of pre-training hyperparameters can accelerate and improve pre-training, i.e., we can achieve a better metric value in fewer epochs. It is critical not only to achieve superior performance, but to reduce the computational cost, steering clear from time- and resource-expensive procedures. Increased efficiency in TLM pre-training is paramount amidst concerns pertaining to the carbon footprint of large language models (45); and specifically, the significant impact of hyperparameter selection on resource utilization and power consumption (48).

Our TLM pre-training use-case is *random* dynamic masking of Masked Language Models (MLMs) —in contrast to rule or task-based MLM dynamic masking solutions proposed in the literature (23, 57). Even though Liu et al. (36) showed the benefits of random dynamic masking, the search for optimal masking hyperparameters is often carried out based on heuristic techniques and grid-based search.

In machine learning (ML), hyperparameter selection is commonly addressed as a black-box optimization problem, which can be solved using evolutionary algorithms (67), entropy search methods (20, 21), and Bayesian optimization (BO) (13). In particular, BO can tackle the problem of optimizing an unknown objective function with possibly noisy evaluations (55), and of speeding up resource allocation to promising hyperparameter configurations (35). Aligned with the recent successes of Turner et al. (60) in hyperparameter selection via Bayesian optimization, we propose a BO framework for sequential tuning of MLM pre-training hyperparameters. Our framework is different from BO techniques that speed up hyperparameter set evaluations, such as Hyperband (35), which is a pure-exploration adaptive resource allocation algorithm for apportioning resources among configurations in the non-stochastic setting.

We here cast the TLM pre-training procedure as a sequential decision process, in which at each interaction, a reinforcement learning agent selects an action (e.g., pre-training hyperparameters) to maximize cumulative rewards (e.g., the pre-training metric of interest). To accommodate the black-box nature of the pre-training objective function, we fit a probabilistic surrogate model to the empirical evaluations of the pre-training metric, and propose a bandit-based technique for its sequential optimization. In the MLM dynamic masking use case, the bandit actions are the dynamic masking probabilities; and the MLM performance, the unknown function the bandit is trying to maximize, based on estimates computed in the validation set.

Contrary to dynamic masking techniques that decide which subsets of tokens to mask via combinatorial optimization and dynamic programming (63); we target online, sequential selection of masking hyperparameters for accelerated and improved pre-training. In contrast to proposals that adapt the language model's masking policy to a particular task of interest (25), we devise a generic online optimization framework that, by sequential selection of MLM design choices, provides fast and superior TLM pre-training performance, when pre-training —from-scratch and continually— across diverse corpora.

The contributions of this work are:

- To present a bandit-based framework for efficient online optimization of TLM pre-training. Specifically, to formulate a Gaussian Process based Thompson sampling (GP-TS) algorithm for sequential MLM loss minimization. The novelty lays on modeling TLM pre-training validation losses with a Gaussian process reward model, and on formulating a Thompson sampling policy that minimizes them.
- To showcase empirically how GP-TS pre-trains TLMs better and faster: both when pre-training from-scratch and continually, across a variety of corpora. Besides, to show that GP-TS pre-trained TLMs provide top fine-tuned performance across diverse in-domain tasks, in fewer interactions.

• To demonstrate that GP-TS's sequential selection of how many tokens of the input to mask —and how to mask them— results in improved and accelerated dynamic MLM pre-training, enabling significant resource utilization savings.

To the best of our knowledge, this work is the first to address online optimization of TLM pre-training with bandit-based Bayesian optimization, and to showcase its performance and resource efficiency benefits.

The manuscript is organized as follows: Section 2 provides the background on Bayesian optimization, multi-armed bandits and TLM pre-training; Section 3 describes the proposed GP-TS method for TLM pre-training optimization; with its empirical performance evaluated in Section 4. Concluding remarks are provided in Section 5.

2 Background

2.1 Bayesian optimization and bandits

Bayesian optimization (BO) is a framework to address hyperparameter optimization in ML (28, 55, 60), and many closely related applications (9, 10, 14, 22, 40). BO relies on a probabilistic surrogate model of the objective function, to tackle the problem of simultaneously fitting and optimizing a high-dimensional, non-convex function with unknown smoothness, and possibly noisy evaluations (13, 51). Due to the black-box nature of BO, the surrogate model must provide a measure of uncertainty, for which generative models, Bayesian neural networks and Gaussian processes are used (38). Using this surrogate model, an acquisition function determines the next promising candidate to evaluate. To address the challenge of learning about the environment (i.e., exploration) while simultaneously maximizing the observed outcomes (i.e., exploitation), the multi-armed bandit provides a useful framework (32).

The multi-armed bandit (MAB) is an abstraction for problems that require learning while simultaneously maximizing attained rewards, i.e., balancing the exploration-exploitation tradeoff (33). A MAB is a sequential decision process that requires decision-making under uncertainty (53).

At each interaction $t=1,\cdots,T$, a bandit agent chooses an action $a_t\in\mathcal{A}$ from a (not necessarily finite) set of actions \mathcal{A} , and it observes stochastic reward r_t drawn from an unknown distribution of the selected arm, a_t , often characterized parametrically, $r_t\sim p(\cdot|a_t,\theta)$. The MAB agent's goal is to maximize (expected) cumulative rewards, $R_T=\sum_{t=1}^T \mu_{a,t}$, with each arm's expected reward denoted as $\mu_a=\mathbb{E}_p\left\{r|a,\theta\right\}$. The challenge is on the lack of knowledge about the reward generating mechanism, which demands learning its properties (e.g., its parameters), as it interacts with the environment.

A plethora of MAB algorithms have been proposed and analyzed over the years, from computing optimal strategies (16) and greedy approaches (5), to upper confidence interval (27, 31) and Thompson sampling (58) algorithms. For models in the exponential family, the latter have been empirically and theoretically proven to perform competitively (1, 2, 27, 29, 31), and extensions have been proposed to model observed rewards via ensembles of models (37), Gaussian mixture models (42, 61), Gaussian processes (17, 56), and neural networks (43).

In the context of BO in general, and MABs in particular, reward uncertainty quantification is critical. Gaussian processes (49) provide not only adequate Bayesian uncertainty estimates, but a flexible solution for surrogate models that encode smoothness assumptions of the payoff function (7, 30, 41). We resort to a Gaussian process reward model in the proposed bandit-based BO framework for TLM pre-training.

2.2 Language model pre-training and the Masked Language Model

Pre-training enables learning representations that generalize across tasks, i.e., it allows for a language model to be better initialized for quick fine-tuning (while avoiding overfitting) to downstream tasks. TLMs learn language representations in pre-training based on one (or more) self-supervised task. Two popular pre-training objectives are Masked Language Model (MLM) and Next Sentence Prediction (NSP) (11). We focus on MLM pre-training as in (11, 36); where for an input sequence of words or tokens, a random sample of the tokens is replaced with the [MASK] token, and the goal is to predict them.

For an input sequence d of N tokens, with special tokens delimiting them,

$$d \equiv [CLS], q_1, \cdots, q_N, [EOS] \tag{1}$$

MLMs select a random sample of the tokens q_i , $i = \{1, \dots, N\}$, replace them with the mask, and learn to predict these masked tokens. For pre-training the original BERT model (11), a random but *static* subset of the input sequence tokens was replaced with the mask.

Liu et al. (36) proposed a *dynamic* masking procedure, which generates a new masking pattern (given a fixed probability of masking) for every input sequence. Liu et al. (36) demonstrate that this dynamic approach is beneficial when pre-training for more steps or with larger datasets.

Dynamic masking relies on several hyperparameters: (i) the probability ρ of replacing an input token with the mask, (ii) the probability γ that a masked token is left unmasked, and (iii) the probability λ of replacing a token with a random token, instead of with the mask. Online optimization of these hyperparameters $\psi = (\rho, \gamma, \lambda)$ is the use-case for our experiments in Section 4.

MLM pre-training aims at minimizing the MLM loss: a function of the original (D) and masked (\widehat{D}) datasets, the TLM architecture with its parameters $w \in W$, and pre-training hyperparameters $\psi \in \Psi$.

The MLM objective is the cross-entropy loss of predicting the masked tokens in the masked sequence $\widehat{d} \in \widehat{D}$, where we denote with $m_i = \{0, 1\}$ whether tokens $q_i, i = \{1, \dots, N\}$, from the original input sequence $d \in D$ have been masked in \widehat{d} :

$$l(d, \widehat{d}; w, \psi) = -\log p(d|\widehat{d}; w, \psi) = -\sum_{i=1}^{N} m_i \log p(q_i|\widehat{q}_i; w, \psi) = -\sum_{i=1}^{N} m_i \log \left(\frac{e^{\left(\chi(\widehat{q}_i; w, \psi)^{\top} \xi(q_i)\right)}}{\sum_{i'=1}^{N} e^{\left(\chi(\widehat{q}_i'; w, \psi)^{\top} \xi(q_i')\right)}} \right), \quad (2)$$

 $\chi(\widehat{q}_i; w, \psi)$ denotes the TLM's representation of the masked token q_i , and $\xi(q_i)$ is its original embedding.

The pre-training objective is to find the TLM that minimizes the MLM loss between the original dataset D and its masked version \widehat{D} . In practice, this minimization is executed via stochastic gradient-descent, run for $e = 1, \dots, E$, epochs with random mini-batches $D_e \in D$ per epoch $e, \widehat{w_e} = \operatorname{argmin}_{w \in W} l(D_e, \widehat{D_e}; w, \psi)$.

The analytical form of the MLM loss, a function of selected hyperparameters ψ and the data where it is evaluated, is in general complex and unknown. However, estimates of the MLM loss are available at every pre-training epoch e. Namely, an empirical estimate of the MLM loss can be computed in the validation set. For fair comparisons under different training setups (e.g., mini-batch sizes and hyperparameters), per-epoch averaged empirical MLM losses are computed in the validation dataset D_{val} ,

$$\bar{l}(D_{val}; \psi) = \bar{l}(D_{val}, \widehat{D_{val}}; w, \psi) = -\sum_{d \in D_{val}} \frac{\sum_{i=1}^{N_d} m_i \log p(q_i | \widehat{q_i}; w, \psi)}{\sum_{i'=1}^{N_d} m_{i'}},$$
(3)

where we drop the dependency with respect to TLM parameters w and the masked validation dataset \widehat{D}_{val} to avoid notation clutter.

3 Proposed bandit-based framework

We cast TLM pre-training as a sequential decision process, to be solved by a multi-armed bandit agent that interactively optimizes the analytically unknown pre-training loss, based on its sequentially observed empirical evaluations. We define pre-training steps, i.e., a fixed number of stochastic gradient updates u in the training set, as bandit interactions $t = 1, \dots, T$. The goal is to minimize the TLM pre-training objective $l(\cdot|\psi)$ given tunable hyperparameters ψ , with (stochastic) evaluations of the loss function in the validation set.

Pre-training hyperparameters at interaction t, ψ_t , are the bandit's arms, i.e., $a_t = \psi_t$. For MLM pre-training with dynamic masking, at each bandit interaction, the agent selects hyperparameters ψ (the proportion of tokens to mask and their masking probabilities), pre-trains the TLM for certain stochastic updates to minimize the MLM loss, and evaluates its performance in the validation subset, as per Equation (3). To accommodate the black-box nature of the pre-training objective, for which only stochastic evaluations are available, we formulate a surrogate reward function (leveraging empirical MLM validation loss estimates) for the bandit to maximize, as it sequentially selects which arm to play.

3.1 From MLM pre-training to Gaussian process-based regret minimization

We transform the empirical pre-training validation loss at each MAB interaction into a reward quantity for it's sequential minimization by the bandit agent. Specifically, we compute bandit rewards as the normalized difference in averaged empirical MLM losses between bandit interactions, i.e.,

$$r_t(\psi_t) = \frac{\left[-\bar{l}_t(D_{val}; \psi_t) \right] - \left[-\bar{l}_{t-1}(D_{val}; \psi_{t-1}) \right]}{\left[-\bar{l}_{t-1}(D_{val}; \psi_{t-1}) \right]} \ . \tag{4}$$

By normalizing reward differences per-interaction, we mitigate the potential non-stationary effect sequentially selected hyperparameters might have on TLM pre-training. With rewards as (normalized) empirical MLM loss differences, we capture how much (relative) improvement each action provides.

Rewards in Equation (4) are based on stochastic draws from an analytically unknown objective function, i.e., only empirical estimates $\bar{l}_t(\cdot)$ of the MLM objective are available. To accommodate these noisy observations of the unknown loss function $l(\cdot|\psi)$ —that we aim at optimizing with respect to its hyperparameters ψ — we model the bandit reward function via a Gaussian process (GP) model $f(\cdot;\theta)$ of the pre-training objective, with observed rewards independent and identically (i.i.d.) distributed as

$$r_t(\psi_t) = f(\psi_t; \theta) + \epsilon_t , \qquad (5)$$

where ϵ_t denotes the stochastic nature of each of the observed rewards —based on empirical estimates computed in Equation (4). Hence, we overcome the black-box nature of the pre-training objective (e.g., the MLM loss) by modeling observed rewards as realizations of a noisy surrogate GP model (49).

The mean $\mu(\cdot)$ and kernel functions $k(\cdot,\cdot)$ of a GP $f(\cdot) \sim GP(\mu(\cdot), k(\cdot,\cdot))$ determine the reward function class: i.e., the regularity and smoothness of the pre-training loss. These are parameterized prior-functions $\mu(\cdot|\theta_{\mu})$ and $k(\cdot,\cdot|\theta_{k})$, which can be fitted to the observed data $r_{1:T} = (r_{1}, \cdots, r_{T})$ at inputs $\psi_{1:T} = (\psi_{1}, \cdots, \psi_{T})$ (49). For instance, via Type-II maximum likelihood estimation (MLE) of the GP parameters $\theta = (\theta_{\mu}, \theta_{k})$, $\hat{\theta} = \operatorname{argmax}_{\theta} \log p\left(r_{1:T}|f(\psi_{1:T}|\theta)\right)$, where the data likelihood $p(r|f(\cdot;\theta))$ is a function of the observation noise probability distribution. Given a fitted GP, posterior inference —computing the predictive distribution of a new datapoint ψ' after observing $\psi_{1:T}$ — can be performed in closed or approximate form (12, 46, 59).

3.2 GP-Thompson sampling for TLM pre-training.

Leveraging the GP reward model in Equation (5), we devise a bandit-based interactive method that executes a Thompson sampling (TS) policy for TLM pre-training optimization. We resort to Thompson sampling (50) due to both its implementation flexibility and efficiency, as well as its competitive empirical performance with theoretical guarantees in many settings (2, 30, 41, 56).

The proposed Gaussian process-based Thompson sampling (GP-TS) —with pseudo-code provided in Algorithm 1— views the TLM pre-training objective as an unknown black-box function with inputs $a_t = \psi_t$ and outputs $r_t(\psi_t)$ as in Equation (4). GP-TS makes decisions on what bandit arm $a_t = \psi_t$ to play at each TLM pre-training interaction $t = 1, \dots, T$, informed by its GP reward model of Equation (5), to maximize its observed cumulative rewards $R_T = \sum_{t=1}^T r_t(\psi_t)$.

GP-TS accommodates continuous arms $a_t = \psi_t$, with dimensionality determined by the pre-training hyperparameter space $\psi \in \Psi$. Any TLM can be used within the proposed framework, as long as the hyperparameter space $\psi \in \Psi$ is identified, and rewards as in Equation (4) are computed for a pre-training objective $l(\cdot|\psi)$ of interest.

GP-TS draws predictive function samples for the next TLM pre-training interaction from its GP reward model posterior, updated at every bandit interaction as indicated in Step 7 of Algorithm 1. As in other TS methods, these samples are used to determine —in Step 8 of Algorithm 1— the arms (hyperparameters ψ_t) to be used in the next bandit interaction. After u pre-training steps¹, the model's MLM validation loss is computed to evaluate the observed bandit rewards $r_t(\psi_t)$ of Equation (4). After each interaction t, new evidence is collected in Step 12 to re-fit the GP model to the observed input (action)-output (rewards) history $\mathcal{H}_{1:t}$. For instance, via Type-II MLE as in Step 13 of Algorithm 1, although other GP parameter optimization procedures might be used —see Appendix A for details on GP models and posterior inference.

¹Note that u stochastic gradient updates might or might not correspond to a full pre-training epoch e.

Algorithm 1 GP-TS for TLM pre-training

```
1: Input: TLM and pre-training corpus
 2: Input: Pre-training hyperparameter space \Psi
3: Input: Number of pre-training interactions T, number of updates per-interaction u
4: Input: GP prior functions \mu(\cdot) and k(\cdot, \cdot),
    with initial hyperparameters \theta_0
5: Initialize: A = \Psi, \hat{\theta}_1 = \theta_0, \mathcal{H}_1 = \emptyset
6: for t = 1, \dots, T do
       Draw posterior sample from GP, \mu_a^{(t)} \sim f(\mu_t(a|\hat{\theta}_t), k_t(a, a'|\hat{\theta}_t)).
       Select arm based on drawn posterior sample, a_t = \operatorname{argmax}_{a' \in \mathcal{A}} \mu_{a'}^{(t)}.
8:
       Run TLM pre-training for u steps, with hyperparameters \psi_t = a_t.
9:
       Compute pre-trained TLM validation loss, \bar{l}_t(D_{val}; \psi_t) as in Equation (3).
10:
       Observe bandit reward, r_t(\psi_t) as in Equation (4).
11:
       Update bandit history \mathcal{H}_{1:t} = \mathcal{H}_{1:t-1} \cup \{a_t = \psi_t, r_t(\psi_t)\}.
12:
       Fit GP model with \mathcal{H}_{1:t}, \hat{\theta}_{t+1} = \operatorname{argmax}_{\theta} \log p\left(r_{1:t} | f(\psi_{1:t}; \theta)\right).
13:
14: end for
```

4 Experiments

4.1 Evaluation set-up

We probe the ability of the proposed GP-TS to, given a dataset, a TLM architecture, and a computational budget, efficiently pre-train well-performing language models. We scrutinize pre-training performance of a specific TLM architecture under equal experimental conditions and do not compare performance to state-of-the-art, large-scale TLMs.

For our experiments, we incorporate RoBERTa (36) as implemented by Ott et al. (44) in our Python implementation of GP-TS² as in Algorithm 1—Appendix B.1 provides implementation and configuration details. We compare pre-training performance of RoBERTa models based on a grid-search over masking hyperparameters—as executed by Liu et al. (36)— to RoBERTa models pre-trained by GP-TS³. We focus our evaluation on MLM validation loss and downstream per-task accuracy metrics, and report the negligible computational overhead of pre-training with GP-TS in Appendix B.3.

We study two variants of GP-TS, depending on the masking hyperparameters it optimizes:

- 1. GP-TS ρ , where the bandit arm is the masking probability ρ of replacing an input token with the mask token (other hyperparameters are fixed to default $\gamma = 0.1$ and $\lambda = 0.1$ values as in Liu et al. (36)); and
- 2. GP-TS $\psi = (\rho, \gamma, \lambda)$, where GP-TS optimizes over all MLM dynamic masking hyperparameters: the bandit search space is a three-dimensional hypercube Ψ with no expert guidance.

Pre-training datasets. We gather three distinct datasets, two based on publicly available corpora, and one based on private data from eBay:

- wiki-c4: We pre-process and encode publicly available Wikitext-103 (39) and Google's c4 RealNews (68) datasets for pre-training, from scratch, each of TLM. This corpora is similar to those originally used by Devlin et al. (11) and Liu et al. (36).
- mimic: We pre-process and encode free-text clinical notes available in the public MIMIC-III Clinical database (47), which contains deidentified nursing and physician notes, ECG and imaging reports, and discharge summaries for patients who stayed in intensive care units at Beth Israel Deaconess Medical Center.
- e-commerce: We pre-process and encode a random subset of eBay marketplace inventories, which contains different product titles and descriptions provided by marketplace users, as well as category tags associated with each item and product reviews.

²Code available at https://github.com/iurteaga/gp_ts_nlp.

³We do not execute any other hyperparameter optimization.

Each dataset contains text of very different linguistic characteristics and sizes (see summary statistics in Appendix B.4), which we leverage to investigate TLM pre-training across a variety of settings.

We evaluate candidate TLMs (i) when pre-training from-scratch, i.e., from a randomly initialized architecture; and (ii) with continual pre-training, i.e., when continuing pre-training a TLM architecture previously trained in other NLP corpora (24). Continual pre-training results we present are for the RoBERTa-base architecture as pre-trained by Facebook Research (8) that we continue to pre-train in our domain-specific datasets, i.e., mimic and e-commerce.

Fine-tuning in downstream tasks. Pre-trained language models are most useful when applied to downstream tasks, as there is no need to retrain the entire model again. We evaluate pre-trained TLM's in the following in-domain tasks⁴:

- e-commerce title classification: A binary classification task to decide whether a pair of item titles belong to the same marketplace product. Item titles are instances of a product sold by a specific seller, which can have different attributes like condition or can exist as a special version (e.g., a signed book), yet refer to the same product.
- e-commerce title similarity: A task using the same title-pair data as above, but formulated as a similarity task. Namely, we learn a distance metric between item titles to help discriminate whether they belong or not to the same product.
- e-commerce title quality: A classification task that predicts if a title fulfills the marketplace requirements for it to be a product title. Titles must contain the product's main relevant information —the brand, the product name and/or type, and all distinguishable attributes, i.e., its key features— but should not contain conditions, marketing terms, or any other non-product related information.
- medical MLI: A natural language inference task annotated by doctors (52), which is grounded in the medical history of patients collected in MIMIC-III (47). It contains sentence pairs —the premise and the hypothesis statements— with a corresponding label indicating their inferential relationship (e.g., entailment, contradiction, or neutral).

Summary statistics for each in-domain per-task dataset are provided in Appendix B.6.

To elucidate how the pre-trained TLMs' quality evolves over pre-training interactions, we fine-tune (for ten epochs) the pre-trained RoBERTa models at each pre-training interaction t. We report the best classification accuracy of each fine-tuned model across pre-training interactions and fine-tuning epochs.

4.2 GP-TS pre-training of RoBERTa models

We compare from-scratch pre-training performance of all RoBERTa models —pre-trained with fixed hyperparameters or by GP-TS— in Figure 1, where we illustrate MLM validation losses of each model over pre-training interactions: GP-TS attains the lowest MLM loss values in fewer interactions. Recall that when pre-training TLMs, validation performance varies across training epochs; hence, we are interested in identifying the best pre-trained model —as per the lowest validation metric— instead of selecting the pre-trained TLM available at the last training epoch.

Results for *continual* pre-training are provided in Figure 2, where we observe that GP-TS continually pre-trains the best performing RoBERTa models —the fastest— for both in-domain datasets.

MLM validation losses for models pre-trained with GP-TS fluctuate across interactions, depending on the stochastic action (hyperparameter value) selected by the GP-TS agent.

We evaluate the influence of different realizations of GP-TS (with different random seeds) in Table 1, where we observe that GP-TS always pre-trains models with the lowest MLM loss, and in less interactions (indicated within parentheses). Practitioners are interested in using the model with the lowest validation MLM loss, which GP-TS consistently finds across all studied datasets and pre-training approaches, in fewer pre-training interactions.

⁴We abstain from fine-tuning RoBERTa-base models, pre-trained with wiki-c4 data only, in downstream Glue tasks (64), as these would not match state-of-the-art results due to both the size-limited pre-training dataset, and the model architecture used.

Figure 1: MLM validation loss comparison (lower is better) of grid-search and GP-TS based *from-scratch* pre-trained RoBERTa models, over interactions.

Figure 2: MLM validation loss comparison (lower is better) of grid-search and GP-TS based *continually* pre-trained RoBERTa models over interactions.

Table 1: Best MLM loss attained before interactions 20 and 30, when pre-training RoBERTa models continually in the medical domain corpora.

	By interaction 20	By interaction 30
Model	Best MLM loss	Best MLM loss
	(at interaction)	(at interaction)
$\rho = 0.05$	0.04 (18)	0.037(28)
$\rho = 0.10$	0.04 (18)	0.036 (27)
$\rho = 0.15$	0.044 (18)	0.038 (27)
$\rho = 0.20$	0.048 (18)	0.042 (28)
$\rho = 0.25$	0.054 (19)	0.046 (27)
$\rho = 0.30$	0.066 (18)	0.056 (27)
$\rho = 0.35$	0.076 (19)	0.064 (29)
$\rho = 0.40$	0.091 (19)	0.077 (29)
$\rho = 0.45$	0.113 (19)	0.095 (29)
$\rho = 0.50$	0.134 (19)	0.112 (27)
GP-TS ρ (seed 1)	0.037 (14)	0.033 (20)
GP-TS ρ (seed 2)	0.036 (19)	0.033 (28)
GP-TS ρ (seed 3)	0.038 (14)	0.032 (21)
GP-TS ρ (seed 4)	0.032 (18)	0.032 (18)
GP-TS ρ (seed 5)	0.038 (13)	0.032(20)
GP-TS ψ (seed 1)	0.027 (8)	0.019 (21)
GP-TS ψ (seed 2)	0.02 (15)	0.02 (15)
GP-TS ψ (seed 3)	0.02 (17)	0.019 (28)
GP-TS ψ (seed 4)	0.036 (14)	0.019 (21)
GP-TS ψ (seed 5)	0.02 (16)	0.018 (28)

GP-TS not only circumvents the need for costly grid searches, but enables improved performance: it attains reduced MLM loss at earlier interactions than grid-search baselines. Recall how GP-TS ψ outperforms all the alternatives in Table 1, as it pre-trains models with the lowest MLM, the fastest —even when no good initial guesses for the MLM hyperparameters $\psi = (\rho, \gamma, \lambda)$ are available.

In summary, the benefits of interactive GP-TS pre-training do not pertain to the attained MLM values only, but to an accelerated, efficient procedure. We emphasize the computational efficiency of GP-TS: it adds little to no overhead —details on the computational cost of GP-TS are provided in Appendix B.3— while providing clear benefits for language model pre-training. It attains best MLM pre-training performance in less interactions, avoiding computationally expensive hyperparameter search.

To the best of our knowledge, these experiments provide novel evidence that, instead of MLM pre-training with fixed masking hyperparameters, sequentially deciding which masking values to use is beneficial. Namely, GP-TS finds sequences of dynamic masking hyperparameters (when optimizing over ρ or a three-dimensional hyperparameter space $\psi \in \Psi$) that minimize MLM loss across datasets, when pre-training from-scratch and continually.

4.3 GP-TS pre-trained RoBERTa models for downstream fine-tuned tasks

We scrutinize how performant in-domain GP-TS pre-trained RoBERTa models are, when compared to grid-search based models, after in-domain per-task fine-tuning. We note that the downstream, fine-tuned performance of RoBERTa models pre-trained from-scratch with in-domain data is, as expected, lower than if continually pre-trained.

The fine-tuned accuracy of continually pre-trained models of Figure 2 are presented in Table 2: we showcase best (per-task) test-set accuracy for each fine-tuned model, and at which pre-training interaction was such value attained. Results are computed on each per-task test-set, i.e., a subset of each task's dataset (see details in Table 11) that has not been used for fine-tuning nor hyperparameter optimization.

Table 2: Best fine-tuned, downstream task test-set accuracy (higher is better) for continually pre-trained RoBERTa models. The first row corresponds to the fine-tuned performance of the RoBERTa model from which continual pre-training is started.

	e-commerce	e-commerce	e-commerce	medical
Model	title classification	title similarity	title quality	MLI
Model	Accuracy	Accuracy	Accuracy	Accuracy
	(at interaction)	(at interaction)	(at interaction)	(at interaction)
RoBERTa base	97.2 (0)	97.2 (0)	75.1 (0)	67.5 (0)
$\rho = 0.05$	97.8 (26)	97.8 (26)	77.6 (15)	72.9 (3)
$\rho = 0.10$	97.9 (27)	97.9 (27)	77.7 (15)	71.9 (9)
$\rho = 0.15$	97.8 (13)	97.8 (13)	77.7 (18)	72.5 (13)
$\rho = 0.20$	97.8 (8)	97.8 (8)	77.4 (10)	73.3 (14)
$\rho = 0.25$	97.9 (17)	97.9 (17)	77.7 (6)	72.9 (12)
$\rho = 0.30$	97.9 (19)	97.9 (19)	77.8 (7)	73.2 (7)
$\rho = 0.35$	97.9 (9)	97.9 (9)	77.8 (18)	72.8 (7)
$\rho = 0.40$	97.8 (9)	97.8 (9)	78.2 (24)	72.6 (9)
$\rho = 0.45$	97.8 (11)	97.8 (11)	78.3 (16)	72.9 (7)
$\rho = 0.50$	97.9 (8)	97.9 (8)	77.9 (7)	72.6 (9)
GP-TS ρ	97.9 (13)	97.9 (13)	77.5 (17)	72.6 (9)
GP-TS ψ	98.0 (10)	98.0 (10)	77.8 (20)	72.3 (6)

These results exhibit how GP-TS pre-trains performant language models —with top accuracy— often at earlier interactions than when pre-training with static hyperparameters: e.g., the continually pre-trained GP-TS ψ model (see last row of Table 2) provides best downstream accuracy for two e-commerce tasks and competitive accuracy in others, in just a few pre-training interactions.

This efficiency is of practical importance, due to the significant resource savings it affords. A pre-training hyperparameter grid-search does not provide significant downstream performance improvements, yet it demands high computational resources —the computational complexity of a grid-search over hyperparameters $\psi = (\rho, \gamma, \lambda)$ with n candidates per hyperparameter is $\mathcal{O}(3^n)$. On the contrary, by letting GP-TS pre-train TLMs, best pre-training MLM performance is achieved, with well-performing fine-tuned model accuracy across downstreams tasks, in fewer pre-training interactions.

5 Conclusion

We present a multi-armed bandit-based Bayesian optimization framework for the sequential selection of pre-training hyperparameters towards optimized Transformer-based language model performance. We develop and evaluate an interactive, Gaussian process-based Thompson sampling (GP-TS) framework for accelerated language model pre-training. We model noisy evaluations of the pre-training objective (e.g., the MLM loss) as drawn from a surrogate Gaussian process that the bandit agent aims to minimize.

We provide empirical evidence of how GP-TS, when applied to MLM dynamic masking, attains superior and accelerated (both from-scratch and continual) pre-training performance, along with excellent in-domain downstream metric values. While Liu et al. (36) randomly select —with fixed probability—which input tokens to mask, we show that sequentially adapting the masking hyperparameters with GP-TS results in enhanced and efficient pre-training. Notably, GP-TS interactively selects hyperparameters that result in top performing models faster, enabling significant resource efficiency, of critical importance in practice.

Building upon our formulation and the provided evidence, we envision follow-up work investigating the proposed method's ability to successfully pre-train large-scale models in general purpose corpora, as well as for optimizing domain-specific models.

Limitations

There are several limitations to account for in the presented work. First, the large GPU requirements for the execution and replication of the presented experiments. Second, the lack of empirical results beyond English-based text, and how morphologically and syntactically more complex corpora may affect the presented evidence. Third, our evaluation section compares GP-TS performance to the common hyperparameter grid-search alternative, yet we acknowledge that other Bayesian optimization techniques used in the machine learning community may provide suitable and competitive alternatives to explore. In addition, we have not run any hyperparameter tuning beyond MLM dynamic masking, which might improve all studied algorithms performance. Finally, our conclusions are limited to RoBERTa models pre-trained via MLM dynamic masking, and therefore, investigation of how GP-TS generalizes to other TLM pre-training approaches and architectures is lacking.

Ethics Statement

This work raises ethical and societal considerations associated with the use and biases of pre-collected natural language data, the energetic and environmental impact of extensive GPU resource usage, and the downstream applications of language models. We acknowledge the potential implicit biases within the publicly available datasets used. E.g., mimic reports are limited to the population attended at Beth Israel Deaconess Medical Center, and may contain implicit biases of health practitioners there. We have carefully sampled data for the e-commerce dataset to avoid biases over specific products, users and sellers. We are also aware of the rising concerns pertaining to the carbon footprint of large language models (45), and the significant impact hyperparameter selection techniques have on resource utilization and power consumption (48). Finally, we acknowledge the wide range of established and anticipated risks that language models pose to society (65).

Acknowledgements

Iñigo Urteaga and Moulay-Zaïdane Draïdia were partially supported by funds from eBay's Research and University Partnership for Technology (eRUPT) program. We also acknowledge computing resources from Columbia University's Shared Research Computing Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York State Empire State Development, Division of Science Technology and Innovation (NYSTAR) Contract C090171. both awarded April 15, 2010.

References

- [1] S. Agrawal and N. Goyal. Analysis of Thompson Sampling for the multi-armed bandit problem. In *Conference on Learning Theory*, pages 39–1, 2012.
- [2] S. Agrawal and N. Goyal. Further Optimal Regret Bounds for Thompson Sampling. In *Artificial Intelligence and Statistics*, pages 99–107, 2013.
- [3] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and M. McDermott. Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323, 2019.
- [4] X. Amatriain. Transformer models: an introduction and catalog. arXiv preprint arXiv:2302.07730, 2023.
- [5] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 47(2-3):235–256, May 2002. ISSN 0885-6125. doi: 10.1023/A:1013689704352.
- [6] I. Beltagy, K. Lo, and A. Cohan. SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676, 2019.
- [7] I. Bogunovic, J. Scarlett, and V. Cevher. Time-varying gaussian process bandit optimization. In *Artificial Intelligence and Statistics*, pages 314–323. PMLR, 2016.
- [8] F. by Facebook Research. RoBERTa: A Robustly Optimized BERT Pretraining Approach, pre-trained model using the BERT-base architecture, Sept. 2022. Available online at https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz.
- [9] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth. Bayesian optimization for learning gaits under uncertainty. *Annals of Mathematics and Artificial Intelligence*, 76(1):5–23, 2016.
- [10] A. Candelieri, R. Perego, and F. Archetti. Bayesian optimization of pump operations in water distribution systems. *Journal of Global Optimization*, 71(1):213–235, 2018.
- [11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. URL https://arxiv.org/abs/1810.04805.
- [12] S. Flaxman, A. Wilson, D. Neill, H. Nickisch, and A. Smola. Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods. In F. Bach and D. Blei, editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pages 607–616, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/flaxman15.html.
- [13] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
- [14] P. I. Frazier and J. Wang. Bayesian optimization for materials design. In *Information science for materials discovery and design*, pages 45–75. Springer, 2016.
- [15] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. In Advances in Neural Information Processing Systems, 2018.

- [16] J. C. Gittins. Bandit Processes and Dynamic Allocation Indices. Journal of the Royal Statistical Society. Series B (Methodological), 41(2):148–177, 1979. ISSN 00359246.
- [17] S. Grünewälder, J.-Y. Audibert, M. Opper, and J. Shawe-Taylor. Regret Bounds for Gaussian Process Bandit Problems. In Y. W. Teh and M. Titterington, editors, *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*, pages 273–280, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/grunewalder10a.html.
- [18] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon. Domain-specific language model pretraining for biomedical natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1):1–23, 2021.
- [19] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A. Smith. Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. *arXiv* preprint, Apr. 2020.
- [20] P. Hennig and C. J. Schuler. Entropy Search for Information-Efficient Global Optimization. *Journal of Machine Learning Research*, 13(57):1809-1837, 2012. URL http://jmlr.org/papers/v13/hennig12a.html.
- [21] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive Entropy Search for Efficient Global Optimization of Black-box Functions. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/069d3bb002acd8d7dd095917f9efe4cb-Paper.pdf.
- [22] J. M. Hernández-Lobato, J. Requeima, E. O. Pyzer-Knapp, and A. Aspuru-Guzik. Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical space. In *International conference on machine learning*, pages 1470–1479. PMLR, 2017.
- [23] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. SpanBERT: Improving pre-training by representing and predicting spans. *Transactions of the Association for Computational Linguistics*, 8: 64–77, 2020.
- [24] K. S. Kalyan, A. Rajasekharan, and S. Sangeetha. Ammus: A survey of transformer-based pretrained models in natural language processing. arXiv preprint arXiv:2108.05542, 2021.
- [25] M. Kang, M. Han, and S. J. Hwang. Neural mask generator: Learning to generate adaptive word maskings for language model adaptation. arXiv preprint arXiv:2010.02705, 2020. URL https://arxiv. org/abs/2010.02705.
- [26] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
- [27] E. Kaufmann, O. Cappe, and A. Garivier. On Bayesian Upper Confidence Bounds for Bandit Problems. In N. D. Lawrence and M. Girolami, editors, Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learning Research, pages 592–600, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.
- [28] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. In A. Singh and J. Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pages 528–536, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR. URL http://proceedings.mlr.press/v54/klein17a.html.
- [29] N. Korda, E. Kaufmann, and R. Munos. Thompson Sampling for 1-Dimensional Exponential Family Bandits. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 1448–1456. Curran Associates, Inc., 2013.

- [30] A. Krause and C. Ong. Contextual Gaussian Process Bandit Optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/ 2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf.
- [31] T. L. Lai. Adaptive Treatment Allocation and the Multi-Armed Bandit Problem. *The Annals of Statistics*, 15(3):1091–1114, 1987. ISSN 00905364.
- [32] T. L. Lai and H. Robbins. Asymptotically Efficient Adaptive Allocation Rules. *Advances in Applied Mathematics*, 6(1):4–22, mar 1985. ISSN 0196-8858. doi: 10.1016/0196-8858(85)90002-8.
- [33] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
- [34] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. *Bioinformatics*, 36(4):1234–1240, 2020.
- [35] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. *Journal of Machine Learning Research*, 18(185):1-52, 2018. URL http://jmlr.org/papers/v18/16-558.html.
- [36] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. URL https://arxiv.org/abs/1907.11692.
- [37] X. Lu and B. V. Roy. Ensemble sampling. In *Advances in Neural Information Processing Systems*, pages 3258–3266, 2017.
- [38] W. J. Maddox, M. Balandat, A. G. Wilson, and E. Bakshy. Bayesian Optimization with High-Dimensional Outputs. arXiv preprint arXiv:2106.12997, 2021.
- [39] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016. URL https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/.
- [40] D. M. Negoescu, P. I. Frazier, and W. B. Powell. The knowledge-gradient algorithm for sequencing experiments in drug discovery. *INFORMS Journal on Computing*, 23(3):346–363, 2011.
- [41] V. Nguyen, V. Masrani, R. Brekelmans, M. Osborne, and F. Wood. Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 5764-5775. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/3f2dff7862a70f97a59a1fa02c3ec110-Paper.pdf.
- [42] ñigo Urteaga and C. H. Wiggins. Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit. arXiv preprint arXiv:1808.02932, 2018.
- [43] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep Exploration via Bootstrapped DQN. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 4026–4034. Curran Associates, Inc., 2016.
- [44] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In *Proceedings of NAACL-HLT 2019: Demonstrations*, 2019.
- [45] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, and J. Dean. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350, 2021.
- [46] G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson. Constant-Time Predictive Distributions for Gaussian Processes. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 4114-4123. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/pleiss18a.html.

- [47] T. J. Pollard and A. E. Johnson. The MIMIC-III clinical database (version 1.4). The MIMIC-III Clinical Database. PhysioNet, 2016. URL https://doi.org/10.13026/C2XW26.
- [48] L. H. Puvis de Chavannes, M. G. K. Kongsbak, T. Rantzau, and L. Derczynski. Hyperparameter power impact in transformer language model training. In *Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing*, pages 96–118, Virtual, Nov. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.sustainlp-1.12. URL https://aclanthology.org/2021.sustainlp-1.12.
- [49] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005.
- [50] D. J. Russo, B. V. Roy, A. Kazerouni, I. Osband, and Z. Wen. A Tutorial on Thompson Sampling. Foundations and Trends[®] in Machine Learning, 11(1):1–96, 2018. ISSN 1935-8237. doi: 10.1561/2200000070. URL http://dx.doi.org/10.1561/2200000070.
- [51] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):148–175, 2015.
- [52] C. Shivade. MedNLI A Natural Language Inference Dataset For The Clinical Domain (version 1.0.0). PhysioNet. https://doi.org/10.13026/C2RS98, 2019.
- [53] A. Slivkins. Introduction to Multi-Armed Bandits. Foundations and Trends in Machine Learning, 12 (1-2):1-286, 2019. ISSN 1935-8237. doi: 10.1561/2200000068. URL http://dx.doi.org/10.1561/2200000068.
- [54] E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1257–1264. MIT Press, 2006.
- [55] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf.
- [56] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. In Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML'10, pages 1015–1022, USA, 2010. Omnipress. ISBN 978-1-60558-907-7.
- [57] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang. Ernie 2.0: A continual pre-training framework for language understanding. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 8968–8975, 2020.
- [58] W. R. Thompson. On the Theory of Apportionment. American Journal of Mathematics, 57(2):450–456, 1935. ISSN 00029327, 10806377.
- [59] M. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In D. van Dyk and M. Welling, editors, *Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics*, volume 5 of *Proceedings of Machine Learning Research*, pages 567–574, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR.
- [60] R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020. arXiv preprint arXiv:2104.10201, 2021.
- [61] I. Urteaga and C. Wiggins. Variational inference for the multi-armed contextual bandit. In A. Storkey and F. Perez-Cruz, editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 698–706, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR.

- [62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008, 2017.
- [63] T.-T. Vu, D. Phung, and G. Haffari. Effective unsupervised domain adaptation with adversarially trained language models. arXiv preprint arXiv:2010.01739, 2020. URL https://arxiv.org/abs/2010.01739.
- [64] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.
- [65] L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang, M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh, et al. Ethical and social risks of harm from language models. arXiv preprint arXiv:2112.04359, 2021.
- [66] A. Wilson and H. Nickisch. Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1775-1784, Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/wilson15.html.
- [67] X. Yu and M. Gen. Introduction to evolutionary algorithms. Springer Science & Business Media, 2010.
- [68] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi. Defending Against Neural Fake News. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf.

A Appendix: Gaussian process details

Gaussian processes. A GP is a stochastic process, $f(\psi): \psi \in \Psi$, such that for any finite set of elements $\psi_1, \dots, \psi_k \in \Psi$, the associated finite collection of random variables $f(\psi_1), \dots, f(\psi_k)$, has a multivariate Gaussian distribution (49).

A GP $f(\psi) \sim GP(\mu(\cdot), k(\cdot, \cdot))$ can be understood as a probability distribution over arbitrary functions, with $\mu(\psi) = \mathbb{E}[f(\psi)]$ its mean function, and $k(\cdot, \cdot)$ the covariance kernel, i.e., $k(\psi, \psi') = \mathbb{E}[(f(\psi) - \mu(\psi))^{\top}(f(\psi') - \mu(\psi'))]$.

The mean and kernel functions determine the GP function class: i.e., the regularity and smoothness assumptions of the modeled data. These are parameterized prior-functions $\mu(\cdot|\theta_{\mu})$ and $k(\cdot,\cdot|\theta_{k})$, which can be fitted to the observed data $r_{1:T} = (r_{1}, \dots, r_{T})$ at inputs $\psi_{1:T} = (\psi_{1}, \dots, \psi_{T})$.

For instance, via Type-II maximum likelihood estimation (MLE) of the GP model's hyperparameters $\theta = (\theta_{\mu}, \theta_{k}), \ \hat{\theta} = \operatorname{argmax}_{\theta} \log p (r_{1:T}|f(\psi_{1:T}|\theta))$, where the data likelihood $p(r|f(\cdot;\theta))$ is a function of the observation noise's probability distribution. Bayesian approaches to hyperparameter selection for GP model training can also be implemented (49).

Gaussian process posteriors. Given a fitted GP, posterior inference —computing the predictive distribution of a new datapoint ψ' after observing $\psi_{1:T}$ — can be performed in closed form for the Gaussian observation noise case. For example, when the noise in Equation (5) is i.i.d. drawn from $\epsilon_t \sim \mathcal{N}\left(\epsilon|0,\sigma_{\epsilon}^2\right)$.

Formally, given a set of observations $r_{1:T}$ at inputs $\psi_{1:T}$, the posterior distribution of f is a GP with the following mean and covariance functions:

$$\mu_{T}(\psi) = k_{T}(\psi)^{\top} (K_{T} + \sigma_{\epsilon}^{2} I)^{-1} r_{1:T} ,$$

$$k_{T}(\psi, \psi') = k(\psi, \psi') - k_{T}(\psi)^{\top} (K_{T} + \sigma_{\epsilon}^{2} I)^{-1} k_{T}(\psi') ,$$
with
$$\begin{cases} k_{T}(\psi) = (k(\psi_{1}, \psi), \dots, k(\psi_{T}, \psi))^{\top} ,\\ K_{T} = (k(\psi, \psi'))_{\forall \psi, \psi' \in \psi_{1:T}} . \end{cases}$$
(6)

These closed-form posterior inference expressions can be efficiently computed, both in exact and approximate ways (46, 49). Posterior inference with observation noise beyond the Gaussian assumption is an active research area, with many approximate techniques available for practitioners (12, 54, 59, 66).

B Appendix: Implementation and experimentation details

B.1 Gaussian process

We implement Gaussian process modules based on GPyTorch (15), and execute all experiments with a GP process prior and GP fitting details as described in Table 3.

Table 3: Gaussian Process prior and hyperparameters.

Hyperparameter	Initial Value	
GP Model		
Mean Function	Constant	
Prior constant	0	
Kernel Function	Scaled RBF Kernel	
Prior output-scale	1	
Prior length-scale	0.25	
Observation Model		
Likelihood function	Gaussian	
Noise variance	1	
Tr	aining details	
Loss function ExactMarginalLogLikelih		
train max iters	100	
loss epsilon 0.01		
Optimizer		
optimizer	adam	
lr	0.1	

We take the most conservative approach on GP-TS prior and hyperparameter selection: we utilize an uninformative prior, with no preference for any hyperparameter configuration. This is the less assuming yet more challenging experimental set-up, where we evaluate whether GP-TS can successfully learn —without any prior knowledge— to find good hyperparameters.

Based on bandit theory and practice, informative priors can accelerate convergence if properly specified (i.e., when more mass is put into favorable regions of the hyperparameter space); while slowing down convergence, if incorrectly specified (i.e., when mass is put in unfavorable regions of the space). Evaluating how different priors affect GP-TS are experiments left as future work.

B.2 RoBERTa pre-training

We pre-train all RoBERTa models as provided by Ott et al. (44), with the BERT-base architecture of 125M parameters, by minimizing the MLM loss with dynamic masking in a server with 8 Tesla V100-SXM2-32GB GPUs. We execute the RoBERTa pre-training procedure as described in Fairseq's RoBERTa pre-training tutorial⁵, with specific hyperparameters as described in Table 4.

The interactions for wiki-c4 and e-commerce contain 1000 updates each (i.e., u = 1000), while we reduce the number of updates per-interaction to u = 500 when pre-training with mimic notes.

Table 4: RoBERTa pre-training hyperparameters.

Hyperparameter	Value	
Architecture	RoBERTa base	
Task	masked lm	
Criterion	masked lm	
Model de	etails	
dropout	0.1	
attention-dropout	0.1	
weight-decay	0.01	
Training d	letails	
batch-size	32	
update-freq	16	
sample-break-mode	complete	
tokens-per-sample	512	
Optimi	zer	
optimizer	adam	
adam-betas	(0.9,0.98)	
adam-eps	1e-6	
clip-norm	1.0	
Learning		
lr	0.0005	
lr-scheduler	polynomial decay	
linear-warmup-updates	1000	
Dynamic masking		
mask-prob	ρ	
leave-unmasked-prob	0.1	
random-token-prob	0.1	

 $^{^5} A vailable\ at\ \texttt{https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.pretraining.md}$

B.3 Summary statistics of the computational cost

We provide in Table 5 summary statistics on the execution time of GP-TS pre-training in our experiments, as per details in Section B.2. The per-interaction, average execution time of pre-training is: 33,316 seconds for the wiki-c4 dataset; 37,392 seconds for the e-commerce data; and 1,489 seconds for MIMIC notes. It only takes about 20 seconds on average to execute GP-TS per-interaction. Hence, the overhead is of 0.05% for the biggest dataset, and 1% for the smallest one. We note that the TLM pre-training implementation of Ott et al. (44) leverages GPU computations, while GP-TS is executed within a single CPU —with no GPU acceleration.

Table 5: Per-interaction execution time of TLM pre-training and GP-TS: average time in seconds, plus-minus the standard deviation.

Dataset	Execution time in seconds		
Dataset	TLM Pre-training	GP-TS ρ	GP-TS ψ
wiki-c4	$33,316 \pm 395 \ s$	$19 \pm 6 \ s$	$21 \pm 6 \ s$
mimic	$1489 \pm 46 \ s$	$16 \pm 5 \ s$	$17 \pm 5 \ s$
e-commerce	$37,392 \pm 494 \ s$	$21 \pm 3 \ s$	$23 \pm 10 \ s$

B.4 Summary statistics of the pre-training datasets

We split each pre-training dataset into 80%-10%-10% training, validation and test sets for our experiments, with summary statistics of each set provided in Table 6.

Table 6: Summary statistics of the pre-training datasets.

Data	Dataset		Average words per sentence	
Training		4,517,625,794	35.9	
wiki-c4	Validation	735,950,955	35.6	
	Test	735,571,833	35.6	
	Training	402,720,632	216.7	
mimic	Validation	82,340,235	658.7	
	Test	18,735,884	187.3	
	Training	3,935,845,017	5.6	
e-commerce	Validation	494,802,278	5.5	
	Test	482,733,197	5.5	

B.5 RoBERTa fine-tuning

The specific RoBERTa hyperparameters used for the in-domain fine-tuning downstream tasks are described in Tables 7–10.

Table 7: RoBERTa fine-tuning hyperparameters for the e-commerce title classification downstream task.

Hyperparameter	Value	
Architecture	RoBERTa base	
Task		
Task	sentence prediction	
Criterion	sentence prediction	
num-classes	2	
max-positions	512	
init-token	0	
separator-token	2	
Model details	5	
dropout	0.1	
attention-dropout	0.1	
Dataset		
batch-size	32	
update-freq	1	
required-batch-size-multiple	1	
max-tokens	4400	
skip-invalid-size-inputs-valid-test	True	
Optimizer		
optimizer	adam	
weight-decay	0.1	
adam-betas	(0.9,0.98)	
adam-eps	1e-6	
Learning rate		
lr-scheduler	polynomial decay	
lr	1e-5	
linear-warmup-updates	1000	
max-updates	100000	
max-epoch	10	
clip-norm	0.0	

Table 8: RoBERTa fine-tuning hyperparameters for the e-commerce title similarity downstream task.

Hyperparameter	Value		
Architecture	RoBERTa base		
Task			
Task	sentence prediction		
Criterion	sentence prediction		
num-classes	2		
max-positions	512		
init-token	0		
separator-token	2		
Model details			
dropout	0.1		
attention-dropout	0.1		
Dataset			
batch-size	32		
update-freq	1		
required-batch-size-multiple	1		
max-tokens	4400		
skip-invalid-size-inputs-valid-test	True		
Optimizer			
optimizer	adam		
weight-decay	0.1		
adam-betas	(0.9,0.98)		
adam-eps	1e-6		
Learning rate			
lr-scheduler	polynomial decay		
lr	1e-5		
linear-warmup-updates	1000		
max-updates	100000		
max-epoch	10		
clip-norm	0.0		

Table 9: RoBERTa fine-tuning hyperparameters for the e-commerce title quality downstream task.

Hyperparameter	Value		
Architecture	RoBERTa base		
Task			
Task	sentence prediction		
Criterion	sentence prediction		
num-classes	2		
max-positions	512		
init-token	0		
separator-token	2		
Model details			
dropout	0.1		
attention-dropout	0.1		
Dataset			
batch-size	32		
update-freq	1		
required-batch-size-multiple	1		
max-tokens	4400		
skip-invalid-size-inputs-valid-test	True		
Optimizer			
optimizer	adam		
weight-decay	0.1		
adam-betas	(0.9,0.98)		
adam-eps	1e-6		
Learning rate			
lr-scheduler	polynomial decay		
lr	1e-5		
linear-warmup-updates	1000		
max-updates	100000		
max-epoch	10		
clip-norm	0.0		

Table 10: RoBERTa fine-tuning hyperparameters for the medical MLI downstream task.

Hyperparameter	Value		
Architecture	RoBERTa base		
Task			
Task	sentence prediction		
Criterion	sentence prediction		
num-classes	3		
max-positions	512		
init-token	0		
separator-token	2		
Model details			
dropout	0.1		
attention-dropout	0.1		
Dataset			
batch-size	32		
update-freq	1		
required-batch-size-multiple	1		
max-tokens	4400		
skip-invalid-size-inputs-valid-test	True		
Optimizer			
optimizer	adam		
weight-decay	0.1		
adam-betas	(0.9,0.98)		
adam-eps	1e-6		
Learning rate			
lr-scheduler	polynomial decay		
lr	1e-5		
linear-warmup-updates	1000		
max-updates	100000		
max-epoch	10		
clip-norm	0.0		

B.6 Summary statistics of the fine-tuning datasets

We split each per-task fine-tuning dataset into training, development and test sets for our experiments, with summary statistics of each set provided in Table 11.

Table 11: Summary statistics of the fine-tuning task datasets.

			Average words per sentence
Dataset		Total sentence count	Input0 - Input1
o gommongo +i+lo	Training	224,745	10.9 - 10.9
e-commerce title classification & similarity	Dev	6,035	10.9 - 10.8
Clubbilication w bimilarity	Test	12,311	10.9 - 10.8
	Training	49,420	10.6 – NA
e-commerce title quality	Dev	2,629	9.8 - NA
	Test	5,174	$9.8-\mathrm{NA}$
	Training	11,232	15.9 - 5.5
medical MLI	Dev	1,395	16.9 - 5.4
	Test	1,422	15.4 - 5.4