MTH207M (2024-25, ODD SEMESTER) PROBLEM SET 1

Notation: For a matrix A, by A^- we denote a g-inverse of A.

- 1. If (P,Q) is a rank-factorization of A, show that $(PT,T^{-1}Q)$ is a rank-factorization of A for all non-singular T and that every rank-factorization of A is of this form.
- 2. If $C(A) \subseteq C(B)$ and $R(A) \subseteq R(D)$, prove that A = BCD for some matrix C.
- 3. Show that $Q_1 = Q_2$ if (P, Q_1) and (P, Q_2) are rank-factorizations of A and $P_1 = P_2$ if (P_1, Q) and (P_2, Q) are rank-factorizations of A.
- 4. Let (P,Q) be a rank-factorization of a non-null square matrix A. Show that $A=A^2$ iff QP=I and that $\rho(A)=\rho(A^2)$ iff QP is non-singular.
- 5. Does a symmetric matrix A have a symmetric RF, i.e., an RF of the form (P, P^T) ?
- 6. Prove that if A is a symmetric matrix of rank 1, then $A = \alpha u u^T$ for some non-zero scalar α and some non-null vector u. Can α be dropped?
- 7. Show that $\rho(A) = \operatorname{tr}(A^-A)$.
- 8. Let *A* be an $m \times n$ matrix. Show that an $n \times m$ matrix *G* is a *g*-inverse of *A* iff $\rho(I GA) = n \rho(A)$.
- 9. For two matrices A and C, $\mathcal{R}(C) \subseteq \mathcal{R}(A)$ iff $CA^-A = C$.
- 10. Show that B^-A^- need not, in general, be a *g*-inverse of *AB*. However, if $\rho(AB) = \rho(A)$, show that $B(AB)^-$ is a *g*-inverse of *A* and that $B^-B(AB)^-$ is a *g*-inverse of *AB*.

11. Let *G* be a *g*-inverse of *A*. Then prove that

$$\{G + (I - GA)U + V(I - AG) \mid U, V \text{ arbitrary } \}$$

is the class of all *g*-inverses of *A*. (Hint: If *H* is a *g*-inverse of *A*, take U = H - G.)

- 12. Let B be an $m \times n$ matrix and G an $n \times m$ matrix. Then, for any $r \times m$ full column rank matrix A and $n \times p$ full row rank matrix C, G is a generalized inverse of ABC if and only if CGA = H for some generalized inverse H of B.
- 13. Show that if G is a g-inverse of X^TX , then
 - (a) G^T is a *g*-inverse of X^TX , and
 - (b) GX^T is a *g*-inverse of X.
- 14. Let $\rho(A + B) = \rho(A) + \rho(B)$. Then, show that
 - (a) $C(A) \subseteq C(A+B)$ and $C(B) \subseteq C(A+B)$, and
 - (b) for every g-inverse G of A + B, show that AGA = A and AGB = 0.
- 15. Let *A* and *B* be two matrices such that *AB* exists. Then, show that
 - (a) B^-A^- is a *g*-inverse of AB iff A^-ABB^- is idempotent.
 - (b) If A has full column rank and B has full row rank, then B^-A^- is a g-inverse of AB.
- 16. Show that for a matrix $A_{m \times n}$, $\mathcal{N}(A) = \mathcal{C}(I_n A^- A)$. Therefore, the set of all solutions of Ax = b when $b \in \mathcal{C}(A)$ is $\{A^-b + (I_n A^-A)z \mid z \in \mathbb{R}^n\}$.
- 17. Let $A_{m \times n}$ and $Q_{p \times n}$ be two matrices. Then Qx has a unique value for all x satisfying Ax = y, if and only if $QA^-A = Q$.
- 18. Let A and B be matrices having the same number of columns, and let $C(A^T) \cap C(B^T) = \{0\}$. Then, show that
 - (a) $\rho(A^T A + B^T B) = \rho(A) + \rho(B)$,
 - (b) $A^T A (A^T A + B^T B)^- A^T A = A^T A$ for any choice of *g*-inverse of $A^T A + B^T B$.
- 19. Prove or disprove: For two matrices A and B of the same order, C(A + B) = C(A) + C(B) implies the sum C(A) + C(B) is direct.