AMELIOREZ LE PRODUIT IA DE VOTRE START-UP

Présentation "Projet 6" chez "OPENCLASSROOM" Jaoid KRAIRI (Décembre 2021)

SOMMAIRE

Compréhension de la problématique métier

Description des jeux de données

Visualisations graphiques

Conclusion sur la faisabilité

Remerciements

Compréhension de la problématique métier : 1/ Rappel du contexte

Rappel du contexte

- ✓ Améliorer sa plateforme avec une nouvelle fonctionnalité de collaboration,
- Détecter les sujets d'insatisfaction,
- ✓ Labelliser automatiquement les photos postées,
- ✓ L'objectif.

Présentation de la problèmatique : 2/ Problèmatique

- Pas assez de données sur la plateforme Avis Restau,
- S'assurer de la possibilité de collecter de nouvelles données.

Description des jeux de données : 1/ Les documents mise à ma disposition

- ☐ Les documents fourni sont composés de six fichiers Json plus un dossier image :
- √ yelp_academic_dataset_business.json
- √ yelp_academic_dataset_review.json
- √ yelp_academic_dataset_checkin.json
- √ yelp_academic_dataset_tip.json
- √ yelp_academic_dataset_user.json
- √ photos.ison
- √ dossier photos
- ☐ Les trois documents utiles plus le dossier image sont :
- √ yelp_academic_dataset_business.json,
- yelp_academic_dataset_review.json,
- ✓ photos.json,
- Un dossier photos.

Description des jeux de données : 2/ Importer sur API Yelp les avis clients des restaurants de Londres.

- ☐ S'assurer de la possibilité de collecter de nouvelles données :
- ✓ Collecter les informations relatives à environ 2032 restaurants de Londres,
- ✓ Créer un compte sur API Yelp et une application,
- ✓ Inscription à la version beta du développeur,
- ✓ 2 variables fixes comportant l'identité du client et la clé API,
- ✓ Effectuer sur mon notebook une requête Graphql,
- ✓ Définir le répertoire, transformé les données en fichier csv et sauvegarder.

Description des jeux de données : 3/ Définir mes 2 jeux de données(textuelles)

☐ Créer 2 jeux de données :

- ✓ Décompresser le dossier 'yelp_dataset.tar',
- ✓ Intégrer le fichier 'yelp_academic_dataset_business.json',
- √ Sélectionner uniquement la catégorie Restaurants,
- ✓ Le jeu de données comporte 163 observations et 14 variables,
- ✓ Garder uniquement 2 variables et supprimer les autres,
- ✓ Intégrer le fichier 'yelp_academic_dataset_review.json' par une fonction de rèduction de dimension et de filtre.

Description des jeux de données : 4/ Assembler mes 3 jeux de données

- ☐ Créer un seul jeu de données d'avis d'insatisfaction client:
- ✓ 2 jeux de données créé précédemment,
- ✓ Plus le jeu de données importer d'API yelp,
- ✓ Assembler mes 2 premiers jeux de données,
- ✓ Les 2 jeux restant,
- ✓ Extraire les avis d'insatisfaction client,
- ✓ La variable 'stars' < 3.
 </p>

Description des jeux de données : 5/ Extraire le jeu de données utile(image)

- ☐ Créer un seul jeu de donnée brute en fichiers csv:
- ✓ Le fichier est trop volumineux,
- ✓ Instancier 5 variables(datafile, img_dir, outputfile, outputfile_raw et chunksize),
- ✓ Définir une boucle for,
- ✓ Récupérer mon second fichier csv(P6_01_fichiercsv_photos_02.csv),
- ✓ Le jeu de données contient 200 000 images,
- √ 5 catégories (interior, food, outside, menu et drink).

Description des jeux de données : 6/ Extraire le jeu de données d'entraiment(image)

- ☐ Un seul jeu de donnée d'entrainement utilisable en fichiers csv:
- ✓ Créer une variable 'label_num',
- ✓ Un jeu de données d'entrainement partiel de 500 images par catégorie,
- ✓ Créer une variable 'fichiers_photo',
- ✓ Supprimer la variable 'photo_id',
- ✓ Sauvegarder mon jeu de données d'entrainement(P6_01_fichiercsv_photos_03_train.csv)

1/ Analyser les commentaires pour détecter les différents sujets d'insatisfaction

1-A / Nuage de mots

1/ Analyser les commentaires pour détecter les différents sujets d'insatisfaction

1-B / Exemple de nettoyage sur un texte

'Ordered all veggies, because of my clean eating regimen and as I returned to work from my 1hr lunch I discovered that ALL my veggies were literally swimming in OIL & GREASE!!! I was more than pissed, but knew it would be a lost effort to attempt to take anything back. I did in turn call the business and make a complaint. Wont return. #LostCustomer'

['ordered', 'all', 'veggies', 'because', 'of', 'my', 'clean', 'eating', 'regimen', 'and', 'as', 'i', 'returned', 'to', 'work', 'from', 'my', '1hr', 'lunch', 'i', 'discovered', 'that', 'all', 'my', 'veggies', 'were', 'literally', 'swimming', in', 'oil', 'grease', 'i', 'was', 'more', 'than', 'pissed', 'but', 'knew', 'it', 'would', 'be', 'a', 'lost', 'effort', 'to', 'attempt', 'to', 'take', 'anything', 'back', 'i', 'did', 'in', 'turn', 'call', 'the', 'business', 'and', 'make', 'a', 'complaint', 'wont', 'return', 'lostcustomer']

['ordered', 'all','veggie','because','of','my','clean','eating','regimen','and','a','i','returned','to', 'work', 'from', 'my', '1hr', 'lunch', 'i', 'discovered', 'that', 'all', 'my', 'veggie', 'were', 'literally', 'swimming', 'in', 'oil', 'grease', 'i', 'wa', 'more', 'than', 'pissed', 'but', 'knew', 'it', 'would', 'be', 'a', 'lost', 'effort', 'to', 'attempt', 'to', 'take', 'anything', 'back', 'i', 'did', 'in', 'turn', 'call', 'the', 'business', 'and', 'make', 'a', 'complaint', 'wont', 'return', 'lostcustomer']

['ordered', 'veggie', 'clean', 'eating', 'regimen', 'returned', 'work', '1hr', 'lunch', 'discovered', 'veggie', 'literally', 'swimming', 'oil', 'grease', 'pissed', 'knew', 'would', 'lost', 'effort', 'attempt', 'take', 'anything', 'back', 'turn', 'call', 'business', 'make', 'complaint', 'wont', 'return', 'lostcustomer']

[(11,1),(19,1),(60,1),(61,1),(62,1),(63,1),(64,1),(65,1),(66,1),(67,1),(68,1),(69,1),(70,1),(70,1),(71,1),(72,1),(73,1),(74,1),(75,1),(76,1),(77,1),(78,1),(79,1),(80,1),(81,1),(82,1),(83,1),(84,1),(85,2),(86,1),(87,1),(88,1)]

Texte brute

En minuscule, enlèvement des ponctuation, tokenisation du texte

Lemmatisation du texte tokeniser

Supprimer les mots vides et retirer les mots du texte lemmatiser de moins de 3 lettres

Représentation bag of words

1/ Analyser les commentaires pour détecter les différents sujets d'insatisfaction

1-C / Comparer 4 modéles (LDA, LDA mallet, NMF et K-Means)

Nbre Topics = 11 valeur de cohérence de 0.5284

Nbre Topics = 5 valeur de cohérence de 0. 3653

NMF

Nbre Topics = 16
valeur de cohérence de 0.4156

K-Means

Nbre de clusters = 2 valeur de silouhette de 0.464

2/ Analyser les photos pour déterminer les catégories des photos 2-1 / Démarche générale (SIFT)

Création descripteurs par image et toutes images

Création de clusters de descripteurs

Création histogramme par image Réduction dimension PCA / T-SNE Analyse visuelle: affichage T-SNE selon catégories d'images Analyse mesures: similarité entre catégories et clusters

2/ Analyser les photos pour déterminer les catégories des photos 2-1-1 / Création descripteurs par image et toutes images

- □ 1. Pour chaque image passage en gris et equalization
- 2. Création d'une liste de descripteurs par image qui sera utilisée pour réaliser les histogrammes par image
- □ 3. Création d'une liste de descripteurs pour l'ensemble des images qui sera utilisée pour créer les clusters de descripteurs

```
sift_keypoints_by_img = np.asarray(sift_keypoints)
sift_keypoints_all = np.concatenate(sift_keypoints_by_img, axis=0)
```

```
Nombre de descripteurs : (1174107, 128)
temps de traitement SIFT descriptor : 32.83 secondes
```


2/ Analyser les photos pour déterminer les catégories des photos 2-1-2 / Création de clusters de descripteurs

- ☐ Utilisation de MiniBatchKMeans pour obtenir des temps de traitement raisonnables
- Nombre de clusters = à la racine carrée du nombre total de descripteurs

```
1 # Détermination du nombre de clusters
 2 temps1=time.time()
 4 k = int(round(np.sqrt(len(sift keypoints all)),0))
 5 print("Nombre de clusters estimés : ", k)
 6 print("Création de",k, "clusters de descripteurs ...")
 8 # Clusterina
 9 kmeans = cluster.MiniBatchKMeans(n clusters=k, init size=3*k, random state=0)
10 kmeans.fit(sift keypoints all)
12 duration1=time.time()-temps1
13 print("temps de traitement kmeans : ", "%15.2f" % duration1, "secondes")
Nombre de clusters estimés : 1084
Création de 1084 clusters de descripteurs ...
C:\Users\JK253\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:887: UserWa
ry leak on Windows with MKL, when there are less chunks than available threads. Y
2 or by setting the environment variable OMP_NUM_THREADS=1
  warnings.warn(
temps de traitement kmeans :
                                       131.55 secondes
```


2/ Analyser les photos pour déterminer les catégories des photos 2-1-3 / Création histogramme par image

- Pour chaque image :
- ✓ Prédiction des numéros de cluster de chaque descripteur
- ✓ Création d'un histogramme = au comptage pour chaque numéro de cluster du nombre de descripteurs de l'image

```
def build_histogram(kmeans, des, image_num):
    res = kmeans.predict(des)
    hist = np.zeros(len(kmeans.cluster_centers_))
    nb_des=len(des)
    if nb_des==0 : print("problème histogramme image : ", image_num)
    for i in res:
        hist[i] += 1.0/nb_des
    return hist
```


2/ Analyser les photos pour déterminer les catégories des photos 2-1-4 / Réduction dimension PCA / T-SNE

- □ PCA:
- ✓ Création de features décorrélées entre elles
- ✓ Maintien d'un niveau de variance expliquée élevé (99%)
- ✓ Diminution de la dimension :
- Meilleure séparation des données via le T-SNE
- Réduction du temps de traitement du T-SNE

```
Dimensions dataset avant réduction PCA : (2500, 1084)
Dimensions dataset après réduction PCA : (2500, 973)
```

- ☐ T-SNE:
- ✓ Réduction de dimension T-SNE en 2 composantes pour affichage en 2D des images

```
tsne = manifold.TSNE(n_components=2, perplexity=30,
n_iter=2000, init='random', random_state=6)
X_tsne = tsne.fit_transform(feat_pca)
```

2/ Analyser les photos pour déterminer les catégories des photos 2-1-5 / Analyse visuelle: affichage T-SNE selon catégories d'images

 Séparation partielle des classes food, outside et menu

2/ Analyser les photos pour déterminer les catégories des photos 2-1-6 / Analyse mesures: similarité entre catégories et clusters classique(1/2)

2/ Analyser les photos pour déterminer les catégories des photos 2-1-6 / Analyse mesures: similarité entre catégories et clusters réelle(2/2)

2/ Analyser les photos pour déterminer les catégories des photos 2-2 / CNN Transfer Learning

- Mettre en œuvre une démarche de pré-traitement des images basée sur du CNN Transfer Learning :
- ✓ Utilisation du modèle VGG-16 de deep learning pré-entraîné sur des millions d'images
- ✓ La stratégie utilisée est l'extraction de features, sans entraînement, faire un predict pour chaque image afin de créer des features
- ✓ Réaliser la même démarche de réduction de dimension effectuée précédemment avec le SIFT

2/ Analyser les photos pour déterminer les catégories des photos 2-2-1- / Analyse visuelle: affichage T-SNE selon catégories d'images

 Séparation partiel des classes food, drink, interior, outside et menu

2/ Analyser les photos pour déterminer les catégories des photos 2-2-2- / Analyse mesures: similarité entre catégories et clusters classique(1/2)

24

2/ Analyser les photos pour déterminer les catégories des photos 2-2-3 / Analyse mesures: similarité entre catégories et clusters réelle(2/2)

Conclusion sur la faisabilité

1/ Analyser les commentaires pour détecter les différents sujets

Mon choix: Modèle LDA avec 11 topics

'Ordered all veggies, because of my clean eating regimen and as I returned to work from my 1hr lunch I discovered that ALL my veggies were literally swimming in OIL & GREAS E!!! I was more than pissed, but knew it would be a lost effort to attempt to take anything back. I did in turn call the business and make a complaint. Wont return. #LostCus tomer'

- # Description du texte dans l'espace des topics
 doc_topics_test = model_LDA_choisie.get_document_topics(test_text_bow)
 print(doc_topics_test)

 [(0, 0.16274282), (1, 0.35151204), (4, 0.222328), (7, 0.02554437), (8, 0.21546227)]
- Avis d'insatisfaction clients
- Prédire le sujet dont parle client
- au service de restauration
- au lieu où l'on mange
- au site internet compliqué à comprendre
- au personnel mal organisé
- à la nourriture mauvaise
- au comportement du personnel

- au livraison avec un où plusieurs défaut sur le produit au gaspillage de nourriture
- a l'ambiance dans le restaurant
- au menu bourratif
- au menu trop légé

Conclusion sur la faisabilité

2/ Analyser les photos pour déterminer les catégories des photos

Mon choix: CNN Transfer Learning(VGG-16)

REMERCIEMENT

Merci de m'avoir écouter

REPONDRE AUX QUESTIONS