# 1 Lagrange and Least Squares

#### 1.1 Function Fitting

#### 1.2 Linear Interpolation N = M

Problem statement:  $f(x_i) = \sum_{k=1}^{M} \phi_k(x_i) \alpha_k = y_i, \quad i = 1 \dots N$ To determine the coefficients, we solve the following system equations:

$$\Phi \vec{\alpha} = \vec{y}$$

$$\begin{pmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_M(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_M(x_2) \\ \vdots & & & \vdots \\ \phi_1(x_N) & \phi_2(x_N) & \dots & \phi_M(x_N) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_M \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$

#### 1.2.1 Lagrange Interpolation

Idea: Create basis functions such that the matrix above becomes the identity matrix.

- Polynomials of same degree as the number of data points
- Sensitive to noise
- Predictability issues
- Passes through all the points
- Lagrange polynomials form a basis of  $P_{N-1}$
- Choose  $x_n$  to be the roots of the Chebychev polynomials.

Construct N polynomials of degree N-1:  $\{l_k(x), k=1,\ldots,N\}$ , such that  $l_k(x_i)=\delta_{ki}$ .

$$l_k(x) = \prod_{\substack{1 \le i \le N \\ i \ne k}} \frac{x - x_i}{x_k - x_i} \quad \to \quad f(x) = \sum_{k=1}^N y_k l_k(x)$$

$$l_k(x,y) = \prod_{\substack{1 \le i \le N \\ i \ne k}} \frac{(x-x_i)^2 + (y-y_i)^2}{(x_k-x_i)^2 + (y_k-y_i)^2}$$
 Lagrange in 3D

$$|y(x) - f(x)| = \left| \frac{y^{(n)}(\xi)}{n!} \prod_{k=1}^{n} (x - x_k) \right|, \ x_1 \le \xi \le x_N$$
 Error

#### 1.3 Least Squares N < M

- Low order model of data
- Less sensitive to noise
- Higher computational complexity

Equation system, N data points, M unknown parameters:  $A\vec{x} = \vec{b}$  If the system is inconsistent,  $\vec{b} \notin \text{span}(A)$ . We are looking for  $\vec{x}$  which minimizes the error:  $E = ||A\vec{x} - \vec{b}||$ .

 $\rightarrow A\vec{x} - b$  has to be perpendicular to the column space of A:  $A\vec{y}$ .  $(A\vec{y})^T(A\vec{x} - b) = 0 \Rightarrow y^T[A^TA\vec{x} - A^T\vec{b}] = 0$ 

$$A^T A \vec{x} = A^T \vec{b}$$
  $\Rightarrow \vec{x} = (A^T A)^{-1} A^T b$ 

## 1.3.1 Least Squares Fitting of 3-D Data

This example can easily be applied to the 2-D data case.

Given set of N data  $\{x_i, y_i, z_i\}_{i=1}^N$ , we wish to fit to a linear function of 3 parameters A, B and C given by:

$$A + Bx_i + Cy_i \approx z_i \quad \text{or} \quad \begin{pmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ \vdots & \vdots & \vdots \\ 1 & x_N & y_N \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} \approx \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{pmatrix}$$

 $A^T A \bar{x} = A^T \vec{b}$  leads to the final system of equation (2D,  $z_i \to y_i$ ):

$$\begin{pmatrix} N & \sum x_i & \sum y_i \\ \sum x_i & \sum x_i^2 & \sum x_i y_i \\ \sum y_i & \sum x_i y_i & \sum y_i^2 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} \sum z_i \\ \sum z_i x_i \\ \sum z_i y_i \end{pmatrix}$$

# 1.3.2 The Projection Matrix P

Closest point to  $\vec{b}$  is:

$$A\bar{x} = \vec{p} = A(A^T A)^{-1} A^T \vec{b} \rightarrow P = A(A^T A)^{-1} A^T$$

The matrix P is idemptotent:  $P^2 = P$  and symmetric:  $P = P^T$ . Orthogonal case:  $A^T A = \mathbb{I}$ 

# 2 Splines

#### 2.1 Cubic Splines

We try to fit a cubic function  $f_i(x)$  between two data points with  $f'_i = f'_{i+1}$  and  $f''_i = f''_{i+1}$  at each node  $\{x_i, y_i\}$ .  $(i = 1 \cdots N)$ 

 $2_{nd}$  derivative is a piecewise linear function  $\rightarrow$  integrate twice:

$$f(x) = f_i'' \frac{(x_{i+1} - x)^3}{6\Delta_i} + f_{i+1}'' \frac{(x - x_i)^3}{6\Delta_i} + C_i(x - x_i) + D_i$$

evaluate at  $\{x_i, y_i = f(x_i)\}\$ and  $\{x_{i+1}, y_{i+1} = f(x_{i+1})\}\$ to get:

$$C_{i} = \left(\frac{y_{i+1} - y_{i}}{\Delta_{i}} - (f_{i+1}'' - f_{i}'')\frac{\Delta_{i}}{6}\right) \qquad D_{i} = \left(y_{i} - f_{i}''\frac{\Delta_{i}^{2}}{6}\right)$$

for  $x_i < x < x_{i+1}$ :

$$f'(x) = f''_{i+1} \left[ \frac{(x - x_i)^2}{2\Delta_i} - \frac{\Delta_i}{6} \right] - f''_i \left[ \frac{(x_{i+1} - x)^2}{2\Delta_i} - \frac{\Delta_i}{6} \right] + \frac{y_{i+1} - y_i}{\Delta_i}$$

for  $x_{i-1} < x < x_i$ 

$$f'(x) = f_i'' \left[ \frac{(x - x_{i-1})^2}{2\Delta_{i-1}} - \frac{\Delta_{i-1}}{6} \right] - f_{i-1}'' \left[ \frac{(x_i - x)^2}{2\Delta_{i-1}} - \frac{\Delta_{i-1}}{6} \right] + \frac{y_i - y_{i-1}}{\Delta_{i-1}}$$

With  $\Delta_i = x_{i+1} - x_i$ ,  $f''(x_i) = f''_i$  and the condition that f'(x) must be continuous  $f'(x_i) = f'(x_i)$  the equation that must be solved is:

$$\frac{\Delta_{i-1}}{6}f_{i-1}'' + (\frac{\Delta_{i-1} + \Delta_i}{3})f_i'' + \frac{\Delta_i}{6}f_{i+1}'' = \frac{y_{i+1} - y_i}{\Delta_i} - \frac{y_i - y_{i-1}}{\Delta_{i-1}}$$

$$\Rightarrow A_i f_{i-1}'' + B_i f_i'' + C_i f_{i+1}'' = D_i$$

Boundary conditions:

• Natural spline:  $f_1'' = f_N'' = 0$ 

• Splines with clamped boundaries:  $f'_1 = f'_N = 0$ 

• Parabolic runout:  $f_1'' = f_2''$  and  $f_N'' = f_{N-1}''$ 

General equation not valid for end points, except for periodic case

Example of system with N=4 and clamped boundaries:

$$\begin{pmatrix} B_1 & C_1 & 0 & 0 \\ A_2 & B_2 & C_2 & 0 \\ 0 & A_3 & B_3 & C_3 \\ 0 & 0 & A_4 & B_4 \end{pmatrix} \begin{pmatrix} f_1'' \\ f_2'' \\ f_3'' \\ f_4'' \end{pmatrix} = \begin{pmatrix} D_1 \\ D_2 \\ D_3 \\ D_4 \end{pmatrix}$$

• Goes through all control points.

• Only uses lower order polynomials.

• Continuous  $2_{nd}$  derivative.

# 2.2 B-splines and NURBS

General "B-spline approach" with free parameters  $\alpha_i$  to be determined:

$$S_{d,t}(x) = \sum_{i=1}^{M} \alpha_i B_{i,d,t}(x)$$
 Find  $\alpha_i$  with linear least squares.

N=M forces  $S_{d,t}(x)$  to go through all points. Change one point  $\to$  recompute all coefficients.

The B-spline  $B_{i,d,t}(x)$  is itself constructed as piecewise polynomials of degree d which is only non-zero for the range  $t_i \leq x \leq t_{i+d+1}$ . N data points lead to N splines  $(i=1,\ldots,N)$  with continuous derivatives up to degree d-1. The size of the knot vector t is therefore N+d+1.

$$B_{i,0,t}(x) = \begin{cases} 1 & \text{if } t_i \le x \le t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$B_{i,d,t}(x) = \frac{x - t_i}{t_{i+d} - t_i} B_{i,d-1,t}(x) + \frac{t_{i+d+1} - x}{t_{i+d+1} - t_{i+1}} B_{i+1,d-1,t}(x)$$

NURBS (Non-Uniform Rational B-Splines)

N data points  $\vec{p_i} = \{x_i, y_i\}, (i=1,\ldots,N)$  each weighted by  $w_i$ . The curve is parametrized as  $\vec{p}(s) = \{x(s), y(s)\}$  for  $t_{d+1} \le s \le t_{N+1}$  as follows:

$$\vec{p}(s) = \sum_{i=1}^{N} R_{i,d,t}(s) \vec{p_i} \quad \text{with} \quad R_{i,d,t}(s) = \frac{B_{i,d,t}(s) w_i}{\sum_{j=1}^{N} B_{j,d,t}(s) w_j}$$

If B-splines with "clamped" knots are used, the curve is guaranted to start at the first control point and end at the final one.

$$t = \{\underbrace{t_1, \dots, t_{d+1}}_{\text{d+1}}, \underbrace{t_{d+2}, \dots, t_N}_{\text{N-d knots}}, \underbrace{t_{N+1}, \dots, t_{N+d+1}}_{\text{d+1}}\}$$
equal knots
equal knots

Interval between two equal nodes is trivial. Does not produce a new spline.

#### 2.3 Multivariate Interpolation

Given  $z_k = Z(x_k, y_k)$  for k = 1, ..., N we must find a reasonable function f(x,y) such that  $z_k = f(x_k, y_k)$ 

#### 2.3.1 Gridded Data

In the case of gridded data we can use as functions the tensor products of functions in 1-dimension.

$$f(x_p, y_q) = Z(x_p, y_q) = \sum_{i} \sum_{j} \alpha_{ij} \cdot \phi_i(x_p) \cdot \phi_j(y_q)$$

Using Lagrange polynomials:

$$f(x_p, y_q) = \sum_{i} \sum_{j} Z(x_i, y_j) \cdot l_i(x_p) \cdot l_j(y_q)$$

Using NURBS surfaces: We define a "grid" of  $N \times M$  control points  $\vec{p}_{ij} = \{x_{ij}, y_{ij}, z_{ij}\}$ . The two dimensions of the grid of control points correspond to two parametric dimensions u and v. For each parametric dimension we fix the degree to be  $d_U$  and  $d_V$ , and define knot vectors  $t_U$  and  $t_V$ .

$$\vec{p}(u, v) = \sum_{i=1}^{N} \sum_{j=1}^{M} R_{i, d_U, t_U}(u) \cdot R_{j, d_V, t_V}(v) \cdot \vec{p}_{ij}$$

# 3 Choosing basis functions

## 3.1 Orthogonal Functions

Definition: 
$$\langle \phi_i \phi_j \rangle = \int_{-\infty}^{\infty} \phi_i \phi_j dx = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

Advantage: enable to add additional basis functions without recomputing previous parameters. Functional representation of y(x) is given by

$$y(x) = \sum_{i=1}^{M} \alpha_i \phi_i(x)$$

with the coefficients  $\alpha_i$  and orthonormal basis functions  $\phi_i$ :

$$\alpha_i = \int_{-\infty}^{\infty} y(x)\phi_i(x)dx$$

With a set of **experimental observations**  $\{x_i, y_i\}_{i=1,...,N}$  the basis functions must be orthonormal with respect of the probability density p(x):

$$p(x) \approx \frac{1}{N} \sum_{n=1}^{N} \delta(x - x_n)$$
$$\to \langle \phi_i(x), \phi_j(x) \rangle = \int_{-\infty}^{\infty} \phi_i(x) \phi_j(x) p(x) dx = \delta_{ij}$$

Which leads to a new formula for computing the coefficients and to the general discrete inner product:

$$\alpha_i \approx \frac{1}{N} \sum_{n=1}^{N} y_n \phi_i(x_n)$$

$$\langle f(x), g(x) \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)g(x_i)$$

Possible basis functions:

- Hermite polynomials, orthogonal with respect to  $e^{-x^2}$
- Laguerre polynomials, orthogonal with respect to  $e^{-x}$
- Chebyshev polynomials, orthogonal with respect to  $(1-x^2)^{-\frac{1}{2}}$

#### 3.1.1 Gram-Schmidt process

- Normalize first basis function:  $\phi_1 = \frac{g_1}{\langle g_1(x), g_1(x) \rangle^{1/2}}$
- Find orthogonal function  $\tilde{\phi}_2$  and normalize it to  $\phi_2$   $\tilde{\phi}_2 = g_2(x) \phi_1(x) \frac{1}{N} \sum_{n=1}^N \phi_1(x_n) g_2(x_n)$   $\phi_2 = \frac{\tilde{\phi}_2}{(\tilde{\phi}_2(x), \tilde{\phi}_2(x))^{1/2}}$
- Find third orthogonal function etc.

$$\tilde{\phi}_3 = g_3(x) - \frac{\phi_1(x)}{N} \frac{1}{N} \sum_{n=1}^{N} \phi_1(x_n) g_3(x_n) - \frac{\phi_2(x)}{N} \frac{1}{N} \sum_{n=1}^{N} \phi_2(x_n) g_3(x_n)$$

#### 3.2 Radial Basis Functions

Advantages:

- Extra terms added without increased divergence (since all basis functions are identical)
- Centers can be placed where needed

We choose a set of identical basis functions  $\phi$ , which depend on the distance from a set of "centers"  $c_i$  and on parameters  $\alpha_i$ :

$$y(x) = \sum_{i=1}^{N} \phi(|x - c_i|, \alpha_i) \quad \xrightarrow{\text{if linear}} \quad y(x) = \sum_{i=1}^{N} \alpha_i \phi(|x - c_i|)$$

Issues:

• Choice of  $\phi$ , for example:

$$\phi(r) = r$$
  $\phi(r) = r^n$   $\phi(r) = e^{-r^2}$ 

3-D Gaussian RBF:

$$\phi_i(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\left(\frac{(x-c_{xi})^2}{\sigma_x^2} + \frac{(y-c_{yi})^2}{\sigma_y^2}\right)\right\}$$

- Choice of  $c_i$ : Randomly, Uniformly or Data based?
- Linear or non-linear coefficients: For non-linear coefficients, iterations are necessary. For linear we need to solve a system as we did for Least Squares. Example:

$$\begin{pmatrix} |x_1 - c_1|^3 & |x_1 - c_2|^3 & \dots & |x_1 - c_M|^3 \\ |x_2 - c_1|^3 & |x_2 - c_2|^3 & \dots & |x_2 - c_M|^3 \\ \vdots & & & \vdots \\ |x_N - c_1|^3 & |x_N - c_2|^3 & \dots & |x_N - c_M|^3 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_M \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$

# 3.3 Overfitting / Underfitting



Using too many or too few parameters  $\rightarrow$  we need a method to select the right model  $\rightarrow$  Cross validation.

# 3.4 Cross Validation

- Divide the training data  $Z = \{x_i, y_i\}_{i=1,...,N}$  to k disjoint samples of roughly equal size  $(N/K), Z_1, ..., Z_K$
- For each validation sample  $Z_i$ 
  - Use the remaing data  $Z_l = \bigcup_{j \neq i} Z_i$  to construct an estimate of the model  $f_i$
  - For the estimated model  $f_i$ , average the square errors for the data in  $Z_i$ :

$$r_i = \frac{K}{N} \sum_{Z_i} (f_i(x) - y)^2$$

• Compute the estimate for the prediction error by averaging the  $r_i$  for  $Z_1, \ldots, Z_k$ 

$$R = \frac{1}{K} \sum_{i=1}^{K} r_i$$

If K=N we do leave one out cross validation.

# 4 Non-Linear Equations

General approach: 1. Bring the non-linear equation to the form f(x) = 0, where x is the unknown parameter. 2. Find the root of  $f(\vec{x})$ .

## 4.1 Conditioning for Root finding problems

If  $\frac{1}{|f'(x^*)|}$  is small, the problem is well conditioned. Thus if  $f(\tilde{x}) \approx 0$ ,  $\tilde{x}$  is sure to be close to  $x^*$ .

 $\tilde{x}$  calculated root,  $x^*$  true root

#### 4.2 Convergence rate

Many schemes proceed by iteratively improving an estimate  $x^{(k)} \approx x^*$ 

Error:  $E^{(k)} = x^{(k)} - x^*$ 

Sequence of  $x^{(k)}$  converges with rate r if  $\lim_{k\to\infty} \frac{\|E^{(k+1)}\|}{\|E^{(k)}\|^r} = C$ 

- r = 1: linear
- r > 1: superlinear
- r=2: quadratic

#### 4.3 Bisection Method

The method assumes, when f(a) is negative and f(b) positive, the root of f(x) must be in the range [a,b]. With this starting interval [a,b] after k iterations, the interval is  $(b-a)/2^k$ , so achieving an error tolerance of tol requires  $m = \log_2((b-a)/tol)$  steps, regardless of f.

Algorithm: Bisection Method while (b-a) > tol do  $m \leftarrow (a+b)/2$  if sign(f(a)) = sign(f(m)) then  $a \leftarrow m$  else  $b \leftarrow m$  end if

- Certain to converge but slow.
- Interval is cut in half every time.
- Linear convergence (r=1), C=0.5.
- Achieving error tolerance of tol: steps= $\log_2((b-a)/tol)$ .

#### 4.4 Newton's Method

end while

Take a first guess for  $x^{(k)}$  so that  $f(x^{(k)})$  is "somewhere" around 0. Iterate several times with

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$
  $\epsilon_k = ||x_k - x_{k-1}||$ 

simple roots:  $(x-1)^1 \to r=2$ , higher multiplicity:  $(x-1)^2 + \to r=1$  until  $f(x^{(k+1)})$  goes below a certain tolerance. This method is derived by the taylor series  $f(x^{(k+1)}) = f(x^{(k)}) + f'(x^{(k)})(x^{(k+1)} - x^{(k)})$ . Since evaluating the derivation may be expensive or inconvenient, we can replace it with a finite difference approximation, the **Secant Method**.

$$f'(x^{(k)}) = \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}} \qquad r = 1.618$$

# 4.4.1 Solving systems of non-linear equations

$$\vec{F}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ \vdots \\ f_N(\vec{x}) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \vec{0}$$

The derivation f'(x) is replaced by the Jacobian matrix J which is a  $N \times N$  matrix with elements  $J(\vec{x})_{ij} = \partial f_i(\vec{x})/\partial x_j$ 

$$J(\vec{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}) & \dots & \frac{\partial f_1}{\partial x_N}(\vec{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1}(\vec{x}) & \dots & \frac{\partial f_N}{\partial x_N}(\vec{x}) \end{pmatrix}$$

So for the iteration process we get the equation:

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} - J^{-1}(\vec{x}^{(k)})\vec{F}(\vec{x}^{(k)})$$

For not computing the inverse of J we can solve

$$J(\vec{x}^{(k)})\vec{y}^k = -\vec{F}(\vec{x}^{(k)}) \xrightarrow{\text{update}} \vec{x}^{(k+1)} = \vec{x}^{(k)} + \vec{y}^k$$

Algorithm: Newton's Method

Input:

 $\vec{x}^{(0)}$ , {vector of length N with initial approximation} tol. {tolerance: stop if  $\|\vec{x}^{(k)} - \vec{x}^{(k-1)}\| < tol$  }  $k_{max}$ , {maximal number of iterations: stop if  $k > k_{max}$ } Output:  $\vec{x}^{(k)}$ , {solution of  $\vec{F}(x^{(k)}) = \vec{0}$  within tolerance tol} Steps:  $k \leftarrow 1$ while  $k \leq k_{max}$  do Calculate  $\vec{F}(\vec{x}^{(k-1)})$  and  $N \times N$  matrix  $J(\vec{x}^{(k-1)})$ Solve the  $N \times N$  linear system  $J(\vec{x}^{(k-1)})\vec{y} = -\vec{F}(\vec{x}^{(k-1)})$  $x^{(k)} \leftarrow \vec{x}^{(k-1)} + \vec{y}$ if  $\|\vec{y}\| < tol$  then break end if  $k \leftarrow k + 1$ end while

#### 4.4.2 Simplifications to reduce cost

- Modified Newton Method: Compute  $J^{(0)} = J(x^{(0)})$  only once and solve  $J^{(0)}\vec{y}^k = -\vec{F}(\vec{x}^{(k)})$ . This method can only succeed if J is not changing rapidly.
- Quasi Newton Method: J gets updated by using information from the steps. After the first step we know:  $\Delta \vec{x} = \vec{x}^{(1)} \vec{x}^{(0)}$  and  $\Delta \vec{F} = \vec{F}(\vec{x}^{(1)}) \vec{F}(\vec{x}^{(0)})$ . So derivatives of the  $f_i$  are in the direction of  $\Delta \vec{x}$ . Then the next  $J^{(1)}$  is adjusted to satisfy:

$$J^{(1)}\Delta \vec{x} = \Delta \vec{F}$$

$$J^{(1)} = J^{(0)} + \frac{(\Delta \vec{F} - J^{(0)} \Delta \vec{x})(\Delta \vec{x})^T}{(\Delta \vec{x})^T (\Delta \vec{x})}$$

# 5 Numerical Integration

If integral cannot be solved analytically, the function is known as a set of points.

$$I = \int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx \approx \sum_{i=0}^{N-1} I_{i}$$





Rectangle Rule:

Uses 2 intervals

$$I_{R_i} = f(\frac{x_i + x_{i+1}}{2})\Delta_i$$
 with  $\Delta_i = x_{i+1} - x_i$ 

Trapezoidal Rule:

$$I_{T_i} = \frac{f(x_i) + f(x_{i+1})}{2} \Delta_i$$

Simpson's Rule:

Uses 2 intervals

$$I_{S_i} = \frac{f(x_i) + 4f(\frac{x_i + x_{i+1}}{2}) + f(x_{i+1})}{6} \Delta_i$$

With constant  $\Delta_x$  all three formulas can be written as a weighted sum of  $f_i$ :  $I \approx \sum_{i=0}^N w_i f_i$ .

$$I_R \approx 2\Delta_x \sum_{\substack{i=1\\i=\text{odd}}}^{N-1} f_i \qquad I_T \approx \frac{\Delta_x}{2} \left( f_0 + 2 \sum_{i=1}^{N-1} f_i + f_N \right)$$

$$I_S \approx \frac{\Delta_x}{3} \left( f_0 + 4 \sum_{\substack{i=1\\i = \text{odd}}}^{N-1} f_i + 2 \sum_{\substack{i=1\\i = \text{even}}}^{N-2} f_i + f_N \right)$$

**Newton-Cotes formulas:** approximate the function using Lagrange polynomials, with n + 1 equidistant points in [a, b]

$$I \approx (b-a) \sum_{k=0}^{n} C_k^n f(x_k)$$
 with  $C_k^n = \frac{1}{b-a} \int_a^b l_k^n(x) dx$ 

$$\boxed{\sum_{k=0}^{n} C_k^n = 1 \qquad C_k^n = C_{n-k}^n} \text{ Properties of } C_k^n$$

Because Lagrange polynomials fit f(x)=1 perfectly  $\to \frac{I}{(b-a)}=1=\sum C_k\cdot 1$  for n=2 we get Simpsons rule

#### 5.1 Error analysis

Taylor's series around  $x_{i+0.5}$ :

$$f(x) = f(x_{i+0.5}) + (x - x_{i+0.5})f'(x_{i+0.5}) + \frac{1}{2}(x - x_{i+0.5})^2 f''(x_{i+0.5}) + \frac{1}{6}(x - x_{i+0.5})^3 f'''(x_{i+0.5}) + \dots$$

$$I_{i} = \int_{x_{i}}^{x_{i}+1} f(x) dx = \underbrace{f(x_{i+1/2})\Delta_{i}}_{I_{R_{i}}} + \underbrace{0 + \frac{1}{24} f''(x_{i+1/2})\Delta_{i}^{3} + 0 + O(\Delta_{i}^{5})}_{\text{error of rectangle rule}}$$

$$I_{T_i} = \frac{f(x_i) + f(x_{i+1})}{2} \Delta_i = \Delta_i \left( f(x_{i+1/2}) + \frac{1}{8} f''(x_{i+1/2}) \Delta_i^2 + \cdots \right)$$

When we consider the entire Taylor series in our scheme of integration, we can evaluate the error for the different methods:

$$I_{R_i} = I_i - \frac{1}{24} f''(x_{i+0.5}) \Delta_i^3 + \mathcal{O}(\Delta_i^5) + \dots$$

$$I_{T_i} = I_i + \frac{1}{12} f''(x_{i+0.5}) \Delta_i^3 + \mathcal{O}(\Delta_i^5) + \dots$$

$$I_{S_i} = \frac{2}{3} I_{R_i} + \frac{1}{3} I_{T_i} = I_i + \mathcal{O}(\Delta_i^5) + \dots$$

For the whole domain:

where  $N = (b - a)/\Delta_x$ 

$$\sum_{i=0}^{N-1} I_{Ri} = \sum_{i=0}^{N-1} \left( I_i - \frac{1}{24} f''(x_{i+1/2}) \Delta_x^3 + O(\Delta_x^5) + \cdots \right)$$

$$\left| \sum_{i=0}^{N-1} I_{Ri} - I \right| < N \frac{1}{24} \max_{i} \left( |f''(x_{i+1/2})| \right) \Delta_x^3 + NO(\Delta_x^5) + \cdots$$

$$= \frac{b-a}{24} \max_{i} \left( |f''(x_{i+1/2})| \right) \Delta_x^2 + O(\Delta_x^4) + \cdots$$

#### 5.2 RICHARDSON EXTRAPOLATION AND ERROR ESTIMATION

Suppose we have a method of approximating a quantity G. The approximations depend on a parameter h so that we write  $G \approx G(h)$ . which can be expressed in terms of a Taylor series for h:

$$G(h) = G + c_1 h + c_2 h^2 + \dots$$

$$G(h/2) = G + \frac{1}{2}c_1 h + \frac{1}{4}c_2 h^2 + \dots$$

$$\Rightarrow G_1(h) = 2G(h/2) - G(h) = G + c_2' h^2 + c_3' h^3 + \dots$$

In general: 
$$G_n(h) = \frac{1}{2^n-1} \left( 2^n G_{n-1}(h/2) - G_{n-1}(h) \right) = G + \mathcal{O}(h^{n+1})$$

$$\begin{array}{ll} \epsilon(h/2) = G(0) - G(h/2) = & -\frac{1}{2}c_1h - \frac{1}{4}c_2h^2 + O(h^3) \\ \text{this is similar to } G(h/2) - G(h) = & -\frac{1}{2}c_1h - \frac{3}{4}c_2h^2 + O(h^3) \\ \rightarrow \text{to } 1_{st} \text{ order } \epsilon(h/2) \approx G(h/2) - G(h) \end{array}$$

If h is small, this will be a good estimate of the error. If the error is not small enough, then this tells the user to keep subdividing.

# 5.3 Romberg integration

Improve inaccurate integration methods by using Richardson's extrapolation. Using a set of trapezoidal approximations  $I_0^n$  for n= $1, 2, 4, 8, \ldots$  (*n* intervals), the method goes as follows:

$$I_0^n = \frac{b-a}{2n} \left( f(a) + f(b) + 2 \sum_{j=1}^{n-1} f\left(a+j\frac{b-a}{n}\right) \right)$$

Then we recursively calculate the higher order approximations according to the following expression:

$$I_k^n = \frac{4^k I_{k-1}^{2n} - I_{k-1}^n}{4^k - 1}$$

Note: 1. How many initial integrals  $I_0^k$  we need, depends on the accuracy we want to obtain. If we want to drop the first order  $O(h^2)$  term for instance, we only have to compute two initial approximations  $I_0^1$  and  $I_0^2$ .

2. The function values of f(x) must not be recomputed in every step. Think of the highest n you will need and calculate all values for this particular case. Then store them for the next computations of  $I_0^{n_{\text{max}}/2}, I_0^{n_{\text{max}}/4}, \dots, I_0^1$ . 3. Every iteration the accuracy increases by a factor of 2.

# 5.4 Adaptive Quadrature

Algorithm: Adaptive integration

Subdivide the interval of the integration into sub-intervals for all sub-intervals do

Compute sub-integral, estimate the error (Richardson)

if accuracy is worse than desired then

Subdivide the interval

else

Leave the interval untouched

end if

end for

Algorithm: Adaptive integration using recursion and Simpson

function ADAPTIVESIMPSON(a, b)apply Simson's rule in interval [a, b]subdivide the interval into [a, m] and [m, b] with m = (a + b)/2apply Simpson's rule in intervals [a, m] and [m, b]estimate error in [a, b] using Richardson's extrapolation if accuracy is worse than desired then **return** ADAPTIVESIMPSON(a, m) + ADAPTIVESIMPSON(m, b)else

return value of Simpson's rule (the accurate one) end if

end function

#### 5.5 Hermite Interpolation

Enhancement of Lagrance polynomials  $\rightarrow$  interpolate derivative too. Given  $y_i, y_i'$  find f(x) such that  $f(x_i) = y_i$  and  $f'(x_i) = y_i'$ .

$$f(x) = \sum_{k=1}^{n} U_K(x) \cdot y_k + \sum_{k=1}^{n} V_k(x) y'_k = H_I(x)$$

 $\begin{array}{ll} \text{requiered:} & U_k(x_j) = \delta_{jk} & U_k'(x_j) = 0 \\ & V_k(x_j) = 0 & V_k'(x_j) = \delta_{jk} \end{array}$ 

solution:  $U_k(x) = \begin{bmatrix} 1 - 2L'_k(x_k)(x - x_k) \end{bmatrix} L_k^2(x)$   $V_k(x) = (x - x_k) L_L^2(x)$ 

# 5.6 Gauss Quadrature

Good for smooth functions, if integrand is non-smooth divide in smooth parts. Optimal integration points → high accuracy

Method of indeterminate coefficients:  $\int_a^b f(x)dx \approx \sum \omega_i f(x_i)$ Thus n abscissas and n weights adjustable. Polynomials of degree 2n-1 should be exactly integrable. How to find those?

- Change the boundary of the integral:  $z = \frac{2x}{b-a} + 1 \frac{2b}{b-a}$ .
- If  $z_i$  and  $\omega_i$  given proceed with:

$$I \approx \frac{b-a}{2} \sum_{i=1}^{n} w_i f\left(\frac{b-a}{2}(z_i - 1) + b\right)$$

otherwise they are found as follows (proof):

- $\int_{-1}^{1} f(x)dx = \int_{-1}^{1} H_{I}(x)\omega(x)dx = \sum_{k=1}^{n} u_{k}f(x_{k}) + \sum_{k=1}^{n} v_{k}f'(x_{k})$  $u_{k} = \int_{-1}^{1} \omega(x)U_{k}(x)dx \qquad v_{k} = \int_{-1}^{1} \omega(x)V_{k}(x)dx$
- $v_k \stackrel{!}{=} 0$  to get the form  $I = \int_{-1}^1 f(x) dx = \sum_{i=1}^n \omega_i f(x_i)$  otherwise  $y'_{\cdot}$  which are generally unavailable would be needed

•  $L_k = \frac{C_k F(x)}{(x-x_k)} \to v_k = C_k \int_{-1}^1 F(x) L_k dx = 0$  $C_k = \prod_{i=1}^n \frac{1}{(x_i - x_k)}$   $F(x) = \prod_{i=1}^n (x - x_i)$ 

Therefore F(x) must be orthogonal to any  $L_k$ . The only solution to that is given by the Legendre polynomials  $P_n(x)$ .

$$\boxed{ \int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{nm} }$$
 Orthogonality

- $x_k$  are the zeros of  $P_n(x)$ .  $u_k = \frac{2}{(1-x_k^2)(P_n'(x_k))^2}$  $u_k$  are symmetric, since  $x_k$  are symmetric to the y-axis and  $P_n(x), P_n'(x)$
- have either even or odd symmetry. Error with n abscissas:  $\epsilon = \frac{2^{2n+1}(n!)^4}{(2n+1)(2n!)^3} f^{(2n)}(\xi)$

#### 5.6.1 Curse of dimensionality

If we increase the dimensions of our integral, the order of accuracy decreases. Example with Simpson's rule where we have n quadrature points and d dimensions (leading to  $M = n^d$  function evaluations):

One dimension 
$$(d = 1, M = n)$$
:  $I - I_s = \mathcal{O}(\Delta x^4)$  d dimensions:  $I - I_s = \mathcal{O}(M^{-4/d})$ 

#### 5.6.2 2 Point Gauss-rule

Exact result for  $3_{rd}$  order polynomial.

The method of indeterminate coefficients can be used to compute the integral of a 2n-1 polynomial:  $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$  with  $\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2}).$ 

Comparing the coefficients of  $a_i$  leads to the 2 point Gauss-rule:  $\int_a^b f(x)dx \approx$ 

$$\frac{b-a}{2}f\left(\left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}\right)+\frac{b-a}{2}f\left(\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}\right)$$

# 5.7 Monte Carlo Quadrature

The integral I is defined as follows, with M points  $x_i$  (samples) chosen randomly in  $\Omega$ .

$$\begin{split} I &= |\Omega| \langle f \rangle \\ \text{with } \langle f \rangle &= \frac{1}{|\Omega|} \int_{\Omega} f(\vec{x}) d\vec{x} \text{ and } |\Omega| = \int_{\Omega} 1 d\vec{x} \\ \langle f \rangle &\approx \langle f \rangle_{M} = \frac{1}{M} \sum_{i=1}^{M} f(x_{i}) \end{split}$$

Error estimation: The error does not depend on dimension d

$$\epsilon_{M} = \sqrt{\operatorname{Var}[\langle f \rangle_{M} - \langle f \rangle]} = \sqrt{\frac{\operatorname{Var}[f]}{M}} = \mathcal{O}(M^{-1/2})$$

$$\operatorname{Var}[X] = \langle X^{2} \rangle - \langle X \rangle^{2} = \langle (X - \langle X \rangle)^{2} \rangle$$

$$|\langle f \rangle - \langle f \rangle_{M}| < \begin{cases} \epsilon_{M}, & \text{with probability of } 68\% \\ 2\epsilon_{M}, & \text{with probability of } 95\% \\ 3\epsilon_{M}, & \text{with probability of } 99\% \end{cases}$$

Remark: To reduce error by factor n, one needs  $n^2$  more samples.

#### Monte Carlo recipe

- Draw random points  $x_i$  and evaluate the integrand f to get random variables  $f(x_i)$
- Store the number of samples M, the sum of values, and the sum
- Compute the mean as the estimate of the expectation (normalized integral)  $\langle f \rangle_M$
- Estimate the variance from the mean of squares and the error

$$\operatorname{Var}_{M}[f] = \frac{M}{M-1} \left( \langle f^{2} \rangle_{M} - \langle f \rangle_{M}^{2} \right) \quad \rightarrow \quad \epsilon_{M} \approx \sqrt{\frac{\operatorname{Var}_{M}[f]}{M}}$$