2. Estadística Descriptiva Univariant

Estadística Grau en Matemàtiques

Josep A. Sanchez Dept. Estadística i I.O.(UPC)

Estadística Descriptiva Univariant

En funció de la resposta, les variables aleatòries es classifiquen en:

- Qualitatives o categòriques
 - Nominals (Tipus de dieta)
 - Ordinals (Grau d'una determinada malaltia)
- Quantitatives
 - Discretes (nombre d'errades en compilar un programa, nombre dedefectes d'una peça)
 - Continues (pes, temperatura, temps)

Alerta: Les variables qualitatives a voltes poden semblar quantitatives perquè es codifiquen amb un nombre.

Observació: Una variable categòrica amb pocs nivells s'anomena **Factor**.

Exercici

De que tipus són les següents variables?

- Speed of cars registered at a certain point on a highway
- Number of cigarettes smoked by someone on one day
- Type of enterprise (S.L. or S.A.)
- Number of employees in a company
- Type of job at a university
- Weight of an animal
- Annual revenue of an enterprise
- Gender of a person
- Bank account number

Estadística Descriptiva

L'Estadística Descriptiva té dues parts:

- Resums Numèrics
 - Taules de freqüència per a variables categòriques
 - Càlcul d'Estadístics per a variables numèriques
- Representacions gràfiques

Resums Numèrics (v. categòriques)

Taula de freqüències:

- Freqüència absoluta de la categoria C_i : $n_i = \#\{x_i | x_i = C_i\}$
- Freqüència relativa de la categoria C_i : $f_i = \frac{n_i}{n}$

En cas de variables categòriques ordinals, té sentit calcular també:

- Freqüència absoluta acumulada de la categoria C_i : $N_i = \#\{x_i | x_i \le C_i\}$
- Freqüència relativa acumulada de la categoria C_i : $F_i = \frac{N_i}{n}$

Exemple de taula de frequències

```
## Sample: X={ D,B,E,D,A,E,D,B,B,D,D,D,E,D,C,D,E,B,E,B }
data.frame(cbind(ni=table(X),
     fi=prop.table(table(X)),
     Ni=cumsum(table(X)),
     Fi=cumsum(prop.table(table(X)))))
##
    ni
         fi Ni
                Fi
## A
     1 0.05 1 0.05
## B 5 0.25 6 0.30
## C 1 0.05 7 0.35
## D 8 0.40 15 0.75
## E 5 0.25 20 1.00
```

Representacions Gràfiques (v. categòriques)

• Diagrama de Sectors o de Pastís (*Pie Chart*): per variables nominals amb poques categories

pie(table(X))

Representacions Gràfiques (v. categòriques)

 Diagrama de Barres horizontal o vertical (Bar plot): per ordinals o nominals amb moltes categories

barplot(table(X))

Resums Numèrics (v. numèriques)

Càlcul d'estadístics a partir de la mostra

- Tipus d'estadístics:
 - de Tendència Central
 - Mitjana, mediana, mitjana retallada (trimmed mean),...
 - de Posició
 - Quartils, decils, percentils...
 - de Dispersió
 - Desviació Estàndar, Variància, Rang, IQR, Coeficient de Variació,...
 - de Forma
 - Coeficient d'Asimetria, Kurtosi,...

Estadístics de Tendència Central

Sample:X={ 15,4,11,14,8,4,5,15,3,1,6,5,14,13,19,13,3,3,20,7 }

Mitjana (*mean*, *average*): $\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$

mean(X)

[1] 9.15

Mediana (median): $X_{((n+1)/2)}$ n imparell, $\frac{X_{(n/2)}+X_{(n/2+1)}}{2}$ n parell median(X)

[1] 7.5

Mitjana retallada al $\alpha\%(\alpha \in [0, 0.5])$: Es treu els $(\alpha/2)\%$ inferior i superior de la mostra i es calcula la mitjana.

```
mean(X,trim=0.1)
```

[1] 8.75

Estadístics de Tendència Central

- La mitjana és sensible a la presència de dades atípiques, però fa servir tota la informació de la mostra
- La mediana és molt robusta si hi ha dades atípiques, però no fa servir massa informació de la mostra (només dels valors centrals)
- La mitjana retallada és un compromís entre les dues anteriors mesures: és robusta i fa servir més informació de la mostra que la mediana
 - ullet La mitjana retallada al 0 $\%=ar{X}$
 - La mitjana retallada al 50% = Median(X)

Estadístics de Posició

Es basen en els estadístics d'ordre $x_{(i)}$

Quartils: valors que separen la mostra ordenada en quatre parts

• Q_1 : Primer quartil, valor on un 25% de la mostra és inferior i un 75% superior

$$Q_1 = x_{([n/4])}$$

• Q_2 : Segon quartil, valor on un 50% de la mostra és inferior i un 50% superior (coincideix amb la Mediana)

$$Q_2 = x_{([n/2])}$$

• Q_3 : Tercer quartil, valor on un 75% de mostra és inferior i un 25% superior

Estadístics de Dispersió

Variància:
$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
; Desviació Estàndard: $S = \sqrt{S^2}$ c(var(X),sd(X))

[1] 34.028947 5.833434

Rang: $R = x_{(n)} - x_{(1)}$

diff(range(X))

[1] 19

Rang interquartílic: $IQR = Q_3 - Q_1$

IQR(X)

[1] 10

Coeficient de Variació: $CV = \frac{S}{\bar{\chi}}$

Estadístics de Forma

Coeficient d'asimetria:
$$\gamma = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{S^3}$$

Kurtosi:
$$\kappa = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{S^4}$$

- leptocúrtica, $\kappa > 3$: más apuntada y con colas más gruesas que la normal.
- platicúrtica, $\kappa < 3$: menos apuntada y con colas menos gruesas que la normal.
- mesocúrtica, $\kappa = 3$:: cuando tiene una distribución normal.

Representacions Gràfiques (v. numèriques)

Histograma

hist(X)

Representacions Gràfiques (v. numèriques)

• Diagrama de Caixa (Box-Plot)

boxplot(X)

Representacions Gràfiques (v. numèriques)

