Soient

$$e(u_1) = \sum_{k=1}^{K} \exp(\mathrm{i}k\xi u_1)$$

un signal harmonique « source » et $u_1 \mapsto \alpha(u_1)$ un difféomorphisme; on définit $e_{\alpha}(u_1) = (e \circ \alpha)(u_1)$ la source déformée. De même, on part d'un « filtre » $h(u_1)$ et d'un difféomorphisme $t \mapsto \beta(u_1)$ pour définir $h_{\beta}(u_1) = (h \circ \beta)(u_1)$. Le modèle source-filtre déformé est le signal $x(u_1) = [e_{\alpha} * h_{\beta}](u_1)$.

Lemme. Pour tout λ_1 tel que

- (1) $\|\ddot{\beta}/\dot{\beta}\|_{\infty} \ll \lambda_1/Q$ (filtre lentement variable) et
- (2) $\|\hat{h}/\hat{h}\|_{\infty} \|1/\dot{\beta}\|_{\infty} \ll Q/\lambda_1$ (profil spectral régulier), on a

$$[h_{\beta} * \psi_{\gamma}](u_1) \approx \hat{h}(\dot{\beta}(u_1)\lambda_1)\psi_{\lambda_1}\left(\frac{\beta(u_1)}{\dot{\beta}(u_1)}\right)$$

Démonstration. Grâce à la première hypothèse, on développe $\beta(u_1 - u) \approx \beta(u_1) - \dot{\beta}(u_1) \times u$ sur le support de $\psi_{\lambda_1}(u_1)$. Le changement de variable $u' = \dot{\beta}(t) \times u$ conduit à

$$[h_{\beta} * \psi_{\lambda_1}](u_1) = \int_{\mathbb{R}} h(\beta(u_1) - u') \psi_{\lambda_1} \left(\frac{u'}{\dot{\beta}(u_1)}\right) \frac{\mathrm{d}u'}{\dot{\beta}(u_1)}.$$

L'ondelette ψ_{λ_1} vérifiant $\psi_{\lambda_1}(\dot{\beta}(u_1)^{-1}u') = \dot{\beta}(u_1)\psi_{\dot{\beta}(u_1)^{-1}\lambda_1}(u')$, on peut convertir le facteur de dilatation $\dot{\beta}(u_1)$ en une transposition fréquentielle. D'où $[h_{\beta}*\psi_{\lambda_1}](u_1) = [h*\psi_{\dot{\beta}(u_1)^{-1}\lambda_1}](u_1)$, ce qui s'écrit comme un produit dans le domaine de Fourier :

$$[h_{\beta} * \psi_{\lambda_1}](u_1) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{h}(\omega_1) \hat{\psi}_{\dot{\beta}(u_1)^{-1}\lambda_1}(\omega_1) \exp(\mathrm{i}\omega_1 \beta(u_1)) \, \mathrm{d}u'.$$

Grâce à la seconde hypothèse, on approxime $\hat{h}(\omega_1)$ par la constante $\hat{h}(\lambda_1)$ sur le support fréquentiel de $\hat{\psi}_{\dot{\beta}(u_1)^{-1}\lambda_1}$. Dès lors, l'intégrale ci-dessus peut être vue comme la transformée de Fourier inverse de $\hat{\psi}_{\dot{\beta}(u_1)^{-1}\lambda_1}(\omega_1)$ évaluée en $\beta(u_1)$. On conclut en revenant à l'ondelette ψ_{λ_1} avec l'équation $\dot{\beta}(u_1)^{-1}\psi_{\dot{\beta}(u_1)^{-1}\lambda_1}(\beta(u_1)) = \psi_{\lambda_1}(\beta(u_1)/\dot{\beta}(u_1))$.

Proposition 1. Soit λ_1 de la forme $k\xi$, avec $k \leq K$. Si les conditions suivantes sont vérifiées :

- (1) $\|\ddot{\beta}/\dot{\beta}\|_{\infty} \ll \lambda_1/Q$ (filtre lentement variable),
- (2) $\|\hat{h}/\hat{h}\|_{\infty} \|1/\hat{\beta}\|_{\infty} \ll Q/\lambda_1$ (réponse fréquentielle régulière),
- (3) $\|\ddot{\alpha}/\dot{\alpha}\|_{\infty} \ll \lambda_1/Q$ (source lentement variable) et
- (4) k < Q/2 (partiel de rang faible),

alors le module de la transformée en ondelettes du modèle source-filtre déformé

$$|e_{\alpha} * h_{\beta} * \psi_{\lambda_1}|(t) \approx E(\log_2 \lambda_1 - \log_2 \dot{\alpha}(t))H(\log_2 \lambda_1 - \log_2 \dot{\beta}(t))$$

est localement séparable en une réponse de source $E(\log_2 \lambda_1) = |\widehat{\psi_{\lambda_1}}(k\xi)|$ et une réponse de filtre $H(\log_2 \lambda_1) = \hat{h}(\lambda_1)$, chacune en mouvement rigide sur l'axe log-fréquentiel $\gamma = \log_2 \lambda_1$; le mouvement de E (resp. H) étant régi par le signal $\log_2 \dot{\alpha}(t)$ (resp. $\log_2 \dot{\beta}(t)$).

Démonstration. On part des hypothèses (a) et (b) pour affirmer le lemme précédent :

$$[e_{\alpha} * h_{\beta} * \psi_{\lambda_1}](u_1) = H\left(\log_2 \lambda_1 + \log_2 \dot{\beta}(t)\right) \times \int_{\mathbb{R}} e_{\alpha}(u_1 - u)\psi_{\lambda_1}\left(\frac{\dot{\beta}(u)}{\dot{\beta}(u)}\right) du.$$

Comme dans la preuve du lemme, on pose $u' = \dot{\alpha}(u_1) \times (\frac{\beta(u_1)}{\dot{\beta}(u_1)} + u - u_1)$, on développe et simplifie $\frac{\beta(u)}{\dot{\beta}(u)} \approx \frac{u'}{\dot{\alpha}(u_1)}$, et l'on convertit la dilatation temporelle en transposition fréquentielle avec l'équation $\dot{\alpha}(u_1)^{-1}\psi_{\lambda_1}(\dot{\alpha}(u_1)^{-1}u') = \psi_{\dot{\alpha}(t)^{-1}\lambda_1}(u')$:

$$\int_{\mathbb{R}} e_{\alpha}(t-u)\psi_{\lambda_{1}}\left(\frac{\beta(u)}{\dot{\beta}(u)}\right) du
= \int_{\mathbb{R}} e_{\alpha}\left(\frac{\beta(t)}{\dot{\beta}(t)} - \frac{u'}{\dot{\alpha}(t)}\right)\psi_{\dot{\alpha}(t)^{-1}\lambda_{1}}(u') du'$$

Avec l'hypothèse (3), on linéarise le difféomorphisme α autour de $\frac{\beta(t)}{\beta(t)}$, ce qui permet de voir l'intégrale ci-dessus comme la convolution $[e*\psi_{\dot{\alpha}(u_1)^{-1}\lambda_1}]$ évaluée en $\alpha(\frac{\beta(t)}{\dot{\beta}(t)})$. Puisque le banc de filtres a un facteur de qualité constant Q, la largeur de bande à la fréquence $k\xi\dot{\alpha}(u_1)$ est $k\xi\dot{\alpha}(u_1)Q^{-1}$. L'hypothèse (4) peut se réécrire $(k+1)\xi\dot{\alpha}(t)>k\xi+\frac{k\xi}{2Q}$; autrement dit, le $(k+1)^{\rm ème}$ partiel est hors de la bande passante de $\psi_{\dot{\alpha}(u_1)\lambda_1}$. Plus généralement, les partiels $k'\neq k$ ont une contribution négligeable à la transformée en ondelettes de e(t). En l'absence d'interférences, le module $|e*\psi_{\dot{\alpha}(t)^{-1}\lambda_1}|(t)$ se résume au seul terme $E(\log_2\lambda_1+\log_2\dot{\alpha}(t))$ où l'on a défini $E(\log_2\lambda_1)=|\widehat{\psi_{\lambda_1}}(k\xi)|$ sur un axe log-fréquentiel.

On peut calculer explicitement la réponse de source dans le cas d'un spectre harmonique :

$$E(\log_2 \lambda_1) = \sum_{k=1}^K \delta(\log_2(\lambda_1) - \log_2(k\xi)).$$

Soit $n \in \mathbb{N}$; pourvu que $\lambda_1 = k\xi$ soit tel que $k < 2^{-n}K$, on retrouve un partiel n octaves exactement au-dessus de la fréquence λ_1 : d'où $E(\log_2 \lambda_1 + n) = E(\log_2 \lambda_1)$. Par ailleurs, en supposant que la déviation maximale du changement de hauteur induit par $\ddot{\alpha}/\dot{\alpha}$ soit petite devant les variations typiques de la réponse de filtre $H(\log_2 \lambda_1)$, il est possible de remplacer cette dernière par une constante sur des chromas voisins $H(\log_2 \lambda_1) \approx H(\log_2 \lambda_1)$. Ce résultat suggère qu'il est possible de séparer les fonctions $\log_2 \dot{\alpha}(t)$ et $\log_2 \dot{\beta}(t)$ en décomposant leurs trajectoires sur les couples de variables temps-chroma et temps-octave.