1.1 Good to know $(\nabla^d + \nabla^d)^{\frac{1}{2}}$	region around x classified as x's class?	E2E verification : init empty queue, add full
$ x _p = \left(\sum_{i=1}^d x_i ^p\right)^{\frac{1}{p}} x _\infty = \max_{i \in \{1, \dots, d\}} x_i $	5 Certification of Neural Networks	problem without splits, for problem in queue:
Softmax $\sigma(z)_i = e^{z_i} / \sum_{j=1}^D e^{z_j}$	Given NN N, pre-condition ϕ , post-condition ψ	try to verify, if not verified: pick neuron to split
CE: $H(\vec{p}, \vec{q}) = -\sum_{i=1}^{n} p_i \cdot \log q_i$	prove: $\forall i \in I : i \models \phi \implies N(i) \models \psi$ or return a	and add subproblems to queue
CE loss: $L(\vec{x}, \vec{y}) = H(\text{one-hot}(y), \text{softmax} \circ g(\vec{x}))$	violation.	5.2 Complete Methods Encode NN as MILP instance.
Implication: $\phi \implies \psi \iff \neg \phi \lor \psi$	Sound: Algorithms outputs true only when true. Complete: Algorithm allways output	- Affine: $y = Wx + b$ direct MILP constraint.
Mean value: $f(y) = f(x) + \nabla f(z)^T (y - x)$	true when true.	- $ReLU(x)$: $y \le x - l_x \cdot (1-a), y \ge x, y \le u_x \cdot a$,
Gauss : $\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{(2\pi)^d}} exp(-\frac{(x-\mu)^2}{2 \cdot \sigma^2})$	5.1 Incomplete Methods:	$y \ge 0$, $a \in \{0,1\}$, for neuron bound $x \in [l,u]$.
CDF: $\Phi(v; \mu, \sigma^2) = \int_{-\infty}^{v} \mathcal{N}(y; \mu, \sigma^2) dy = \Phi(\frac{v - \mu}{\sqrt{\sigma^2}}; 0, 1)$	Over-approx. ϕ using relaxation, then push approx. through NN via bound propagation.	$-\phi = B_{\epsilon}^{\infty}(x) \colon x_i - \epsilon \le x_i' \le x_i + \epsilon, \forall i$
Lap: $\mathbb{P}(Lap(\mu,\sigma) = t) = \frac{1}{2\sigma} \cdot exp(-\frac{ t-\mu }{\sigma})$	Box: $\hat{x_i} = [l, u]$, i.e. $l \le x_i \le u$. $AT^{\#}$:	- precomp. Box bounds: $l_i \le x_i^p \le u_i$ - $\psi = o_0 > o_1$: MILP objective min $o_0 - o_1$. If
Subadditivity of $\sqrt{:} \sqrt{x+y} \le \sqrt{x} + \sqrt{y}$	[a,b] + #[c,d] = [a+b,c+d]; -#[a,b] = [-b,-a];	$\min o_0 - o_1 > 0, \ \psi \text{ holds.}$
The state of the s	$ReLU^{\#}[a,b] = [ReLU(a), ReLU(b)];$	6 Certified Defenses
Cauchy Schwarz: $\langle x, y \rangle \le x _2 \cdot y _2$ Triangel Inequalities: $ a + b \le a + b $,	$\lambda \cdot^{\#} [a, b] = [\lambda a, \lambda b] \ (\lambda > 0)$	6.1 DiffAl DiffAl Contifed DCD Defenses minimize
$ a-b \ge a - b $	DeepPoly: $\mathcal{O}(n^3L^2)$, $n := \max$ neurons in a	DiffAI Certified PGD Defense: minimize $\rho(\theta) = \mathbb{E}_{(x,y)\sim D} \left[\max L(\theta,z,y) \right]$
Weak duality: $max_xmin_y \leq min_ymax_x$	layer, $L := \text{Layers.}$ For each x_i keep:	$z \in \gamma(NN^{\#}(S(x)))$
2 Norm Inequalities	• interval constraints $l_i \leq x_i, x_i \leq u_i$	Use abstract loss $L^{\#}(\vec{z}, y)$, where $y = \text{target}$
$ x _{\infty} \le x _1 \le d \cdot x _{\infty}$	• relational constraints: $a_i^{\leq} \leq x_i, x_i \leq a_i^{\geq}$	label, \vec{z} = vector of logits:
$ x _{\infty} \le x _2 \le \sqrt{d} \cdot x _{\infty}$ => if a classifier is safe for a l_2 region of size	where a_i^{\leq}, a_i^{\geq} are of the form $\sum_j w_j \cdot x_j + \nu$	$-L(z,y) = \max_{q \neq y} (z_q - z_y)$: Compute
$=>$ if a classifier is safe for a l_2 region of size ϵ , it is also safe for a l_∞ region of size $\frac{\epsilon}{\sqrt{d}}$	$AT^{\#}$: Affine is exact	$d_c = z_c - z_y \forall c \in \mathcal{C}$ where \mathcal{C} set of classes and z
3 Adversarial Attacks	-Affine#: rel: $\sum_{j} w_{j}^{p} \cdot x_{j} + \nu^{p} + \sum_{j} w_{j}^{q} \cdot x_{j} + \nu^{q} =$	z_c the abstract logit shape of class i. Then compute box bounds of d_c and compute max upper
T-FGSM: $x' = x - \eta$, $\eta = \epsilon \cdot sign(\nabla_x loss_t(x))$	$\sum_{j} (w_j^p + w_j^q) \cdot x_j + (\nu^p + \nu^q);$	bound: $\max_{c \in \mathcal{C}} (\max(box(d_c)))$
U-FGSM: $x' = x + \eta, \ \eta = \epsilon \cdot sign(\nabla_x loss_s(x))$	int: backsubstitution up to some layer. Then	- $L(z,y) = CE(z,y)$: Compute box bounds
Guarantees $\eta \in [x - \epsilon, x + \epsilon]$, η not minimized.	replace neurons of that layer with its correct interval constraint (like Box bounds).	$[l_c, u_c]$ of logit shapes z_c . $\forall c \in \mathcal{C}$ pick u_c if
C&W: Find adv sample $x' = x + \eta \in [0,1]^n$	Backsub: sum up all components!	$c \neq y$, pick l_c if $c = y$. Then apply softmax
and minimize $ \eta _p$ via relaxation s.t. $f(x') = t$.	- $x_j = \text{ReLU}^{\#}(x_i)$: interval constr. $x_i \in [l_i, u_i]$:	to vector $v = [u_0, u_1,, l_c,, u_{ \mathcal{C} }]$ and compute
obj_t : $obj_t(x+\eta) \le 0 \Leftrightarrow f(x+\eta) = t$.	$u_i \leq 0$: $a_i^{\leq} = a_i^{\geq} = 0, l_j = u_j = 0$;	CE(v', y) with $v' = softmax(v)$.
Minim. $ \eta _p + c \cdot obj_t(x+\eta)$ s.t. $x+\eta \in [0,1]^n$	$l_i \ge 0$: $a_i \le a_i \le a_i \le x_i, l_j = l_i, u_j = u_i;$	Cheap relaxations (box) scale but introduce lots of infeasible points: substantial drop in stan-
E.g. $obj_t = \{CE(x', t) - 1; max(0, 0.5 - p_f(x')_t)\}$	$l_i < 0, u_i > 0$: $\lambda = u_i/(u_i - l_i),$	dard accuracy. More complex relaxations make
$ \nabla_{\eta} \eta _p$ is suboptimal \to use proxy	Relaxation with $\alpha \in [0,1]$:	it worse \rightarrow counter-intuitive!!t
l_{∞} : proxy $L(\eta) = \sum_{i} max(0, \eta_{i} - \tau)$. Itera-	$a_i^{\leq} = \alpha \cdot x_i, \ a_i^{\leq} = \lambda \cdot x_i - \lambda \cdot l_i$	Comparison: Adv train: Good Acc, Worse ve-
tively decrease τ until $L(\eta) > 0$. Then do GD	Rule of thumb: $\mathbf{u_i} \leq -\mathbf{l_i} : \alpha = 0$, else $\alpha = 1$	rifiablity, easier opt prob Certified Def: Worse Acc, Good verifiability, harder opt prob
on η : $\eta = \eta - \gamma \nabla_{\eta} (L(\eta) + c \cdot obj_t(x + \eta))$ until $L(\eta) = 0$, then anneal τ and continue loop.	Symbolic bound: when proving $y_2 > y_1$, use	
Constraint $\eta_i \in [-x_i, 1-x_i]$: LBFGS-B, PGD	abstract shape of $y_2 - y_1$ and prove $l_{y_2 - y_1} > 0$	6.2 Convex Layerwise Adversarial Training COLT: PGD training with intermediate NN
PGD: Iterative FGSM with projection to find	Holder's inequality: $\frac{1}{p} + \frac{1}{q} = 1 \implies x* $	layer shapes S_i . Iterate over layers h_i and find
point in $x_o \pm \epsilon$ that max. loss (not guaranteed	$\underline{y} _1 \le x _p \underline{y} _q$	weights θ for layers $h_{i+1},,h_D$ that minimize
to be missclassification.	Bounds with other input norms:	the worst-case loss of $x_i \in S_i$. Weights of previous layers h_i are frequent
1. Init $x' = x + \epsilon \cdot rand[-1, 1];$	$- a _q\epsilon + ax' + c \leq min(a\hat{x} + c) \leq max(a\hat{x} + c) \leq$	vious layers $h_1,, h_i$ are frozen.
2. Repeat: $x' \leftarrow x' + \epsilon_{step} \cdot sgn(\nabla_{x'}loss_s(x'))$ (untargeted) 3. $x' = project(x', x_o, \epsilon)$;	$max(a\hat{x} + c) \leq a _q \epsilon + ax' + c;$ where $\hat{x} \in x, x - x' _p < \epsilon$	$ \min_{\substack{\theta \\ x_i \in S_i}} \max_{x_i \in S_i} L(h_D(h_{D-1}(h_{i+1}(x_i))), y_{true}) $
(untargeted) 5. $x = project(x, x_o, \epsilon)$, 4. Adversarial Defenses	KKT: $\max_{x}(f(x))$ (s.t. $g(x) \leq 0$)	The inner maximization requires projections. 7 Logic and Deep Learning (DL2)
Defense as Optimization: $\min_{\theta} \rho(\theta)$,	$max_x min_{\beta>0} f(x) - \beta \cdot g(x)$	7.1 Querying Neural Networks
$\rho(\theta) = \mathbb{E}_{(x,y) \sim D} \left[\max_{x' \in S(x)} L(\theta, x', y) \right],$	Positive split:	Use standard logic $(\forall, \exists, \land, \lor, f : \mathbb{R}^m \to \mathbb{R}^n,)$
$S(x) = \{x' : x - x' _{\infty} \le \epsilon\}$	$max_x(ax+c)$ $(s.tx \le 0) \le max_x min_\beta(ax+c)$	and high-level queries to impose constraints.
PGD Defense in practice:	$(c + \beta x) \le \min_{\beta} \max_{x} (ax + c + \beta x)$	$(class(NN(i)) = 9) = \bigwedge^{k} NN(i)[j] < NN(i)[9]$
1. Select mini batch B from D 2. $x_{max} = \frac{1}{2} \left(\frac{\partial P}{\partial x'} \right) \forall (x,y) \in B$	Negative split:	$j=1, j\neq 9$
$\arg\max_{x' \in S(x)} L(\theta, x', y), \forall (x, y) \in B$	$max_x(ax+c) (s.t. \ x \le 0) \le max_x min_\beta(ax+c) (s$	Use translation T of logical formulas into differentiable loss function $T(\phi)$ to be solved with
3. $\theta' = \theta - \frac{1}{ B_{max} } \sum_{(x_{max}, y) \in B_{max}} \nabla_{\theta} L(\theta, x_{max}, y)$	$(c - \rho x) \ge m n_{\beta} m a x_x (ax + c - \rho x)$	rentiable loss function $T(\phi)$ to be solved with

Test accuracy: is test point x classified cor- => Summarize bounds by taking max

rectly? Adveserial accuracy: are points in Opt β with GD: $\beta_{t+1} = \beta_t - \alpha \nabla_{\beta} U B$

1 Basics

1.1 Good to know

e abstract loss $L^{\#}(\vec{z}, y)$, where y = targetMaximize $\rho(\theta) = \mathbb{E}_{s \sim D} [\forall z. \phi(z, s, \theta)].$ pel, \vec{z} = vector of logits: BUT: Universal quantifiers are difficult. **Reformulation:** get the worst violation of ϕ $L(z,y) = max_{q\neq y}(z_q - z_y)$: Compute and find θ that minimizes its effect. $=z_c-z_u\forall c\in\mathcal{C}$ where \mathcal{C} set of classes and minimize $\rho(\theta) = \mathbb{E}_{s \sim D} \left| T(\phi)(z_{worst}, s, \theta) \right|$ the abstract logit shape of class i. Then comte box bounds of d_c and compute max upper where $z_{worst} = \arg\min_{z} T(\neg \phi)(z, s, \theta)$ und: $\max_{c \in \mathcal{C}} (\max(box(d_c)))$ In practice, restrict z to a convex set with effi-C(z,y) = CE(z,y): Compute box bounds cient projections (closed form). One can then $[u_c]$ of logit shapes z_c . $\forall c \in \mathcal{C}$ pick u_c if remove the constraint from ϕ that restricts z on the convex set and do Projected-Gradient- $\neq y$, pick l_c if c = y. Then apply softmax Descent while projecting z onto the convex set. vector $v = [u_0, u_1, ..., l_c, ..., u_{|\mathcal{C}|}]$ and compute 8 Randomized Smoothing for Robustness E(v', y) with v' = softmax(v). Construct a classifier \mathbf{g} from a classifier \mathbf{f} s.t. \mathbf{g} eap relaxations (box) scale but introduce lots has certain statistical robustness guarantees. infeasible points: substantial drop in stan-Given base classifier $f: \mathbb{R}^d \to \mathcal{Y}$, construct ed accuracy. More complex relaxations make smoothed classifier g (where $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$): $worse \rightarrow counter-intuitive!!t$ omparison: Adv train: Good Acc, Worse ve $g(x) := \arg \max_{c \in \mathcal{Y}} \mathbb{P}_{\epsilon}(f(x + \epsilon) = c)$ ablity, easier opt prob <u>Certified Def:</u> Worse Robustness Guarantee: suppose $c_A \in \mathcal{Y}$ (most likely class), $p_A, \overline{p_B} \in [0, 1]$ satisfy: c, Good verifiability, harder opt prob

gradient-based optimization to minimize $T(\phi)$.

Theorem: $\forall x, T(\phi)(x) = 0 \iff x \models \phi \text{ Logical}$

Translation is recursive and $T(\phi)(x) \geq 0, \forall x, \phi$

Box constraints: ineffective in GD. Use L-

BFGS-B and give box constraints to optimizer.

7.2 Training NN with Background Knowledge

Incorporate logical property ϕ in NN training.

Problem statement: find θ that maximizes

Translation

 $\max(0, t_1 - t_2)$

 $1[t_1 = t_2]$

 $T(t_1 \le t_2 \land t_2 \le t_1)$

 $T(t_1 \leq t_2 \wedge t_1 \neq t_2)$

 $T(\phi) \cdot T(\psi)$

 $T(\phi) + T(\psi)$

Formula to Loss:

Logical Term

 $t_1 \leq t_2$

 $t_1 \neq t_2$

 $t_1 = t_2$

 $t_1 < t_2$

 $\phi \lor \psi$

 $\phi \wedge \psi$

the expected value of property.

 $\mathbb{P}_{\epsilon}(f(x+\epsilon)=c_A) \ge p_A \ge \overline{p_B} \ge$

with p_A a lower bound on the true highest pro-

bability and $\overline{p_B}$ an upper bound on the true se-

cond highest probability. In practice, get bounds

via sampling which gives statistical guarantees.

 $R := \frac{\sigma}{2}(\phi^{-1}(p_A) - \phi^{-1}(\overline{p_B})) \ge 0$ with ϕ^{-1} the

inverse Gaussian CDF. Certified radius R de-

Notes on CDF: If $x \sim \mathcal{N}(0,1), p \in [0,1]$, then

 $\phi^{-1}(p) = \nu \text{ s.t. } \phi(v) := \mathbb{P}_x(x \le \nu) = p; \ \phi^{-1}, \phi$

are monotone, i.e. for $p_A \geq \overline{p_B}$: $\phi^{-1}(p_A) \geq$

 $\phi^{-1}(\overline{p_B}); \frac{\phi^{-1}(p) = -\phi^{-1}(1-p), p \in [0, \overline{1}]}{}$

pends on input x since $p_A, \overline{p_B}$ depend on x.

Then: $g(x + \delta) = c_A$, for all $||\delta||_2 < R$,

 $\geq \max \mathbb{P}_{\epsilon}(f(x+\epsilon)=c)$

counts1 \leftarrow SampleUnderNoise (f, x, n_1, σ) $p_{\underline{a}} \leftarrow \text{LowerConfBound}(\text{counts1}[\hat{c}_A], n_1, 1-\alpha) g(\tilde{X}) = \frac{1}{|D_k|} \sum_{b,i} \tilde{X}_{e,b,i}, \mathcal{R} \text{ avg dist between}$ if $p_a > \frac{1}{2}$: return prediction \hat{c}_A , radius $\sigma \phi^{-1}(p_A)$ else: return ABSTAIN Notes: \hat{c}_A is not necessarily the correct test set label - Sample $2 \times (n \gg n_0)$ to prevent selection bias. - SampleUnderNoise evaluates f at $x + \epsilon_i$ for $i \in \{1, ..., n\}$, returns dict of class counts. - LowerConfBound returns probability p_l s.t. $p_l \leq p$ with probability $1 - \alpha$, assuming $k \sim Binomial(n, p)$ for unknown p. - $p_A > \frac{1}{2}$ ensures $\overline{p_B} < \frac{1}{2}$, thus $p_A \geq \overline{p_B}$ - With probability at least $1 - \overline{\alpha}$, if CERTIFY returns class \hat{c}_A and radius $R = \sigma \phi^{-1}(p_A)$, then $g(x + \delta) = \hat{c}_A$ for all $||\delta|| < R$. - To increase R, need to increase p_A . To increase p_A , get f to classify more noisy points to \hat{c}_A . $\overline{\text{Increasing the }\#\text{samples only slowly grows }R.}$ 8.2 Inference fuction PREDICT (f,σ,x,n,α) $counts \leftarrow SampleUnderNoise(f,x,n,\sigma)$ $\hat{c}_A, \hat{c}_B \leftarrow \text{top two indices from counts}$ $n_A, n_B \leftarrow \mathtt{counts}[\hat{c}_A], \mathtt{counts}[\hat{c}_B]$ if BinomPValue $(n_A, n_A + n_B, 0.5) < \alpha$: return \hat{c}_A else: return ABSTAIN - Null hypothesis: true probability of success of f returning \hat{c}_A is q=0.5- BinomPValue returns p-value of null hypothesis, evaluated on n iid samples with i successes. - Accept null hypothesis if p-value is $> \alpha$ extraction, membership inference

If $x \sim \mathcal{N}(\mu_x, \sigma_x^2), y \sim \mathcal{N}(\mu_y, \sigma_y^2)$, than $(x+y) \sim$

 $\mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$ and $c \cdot x \sim \mathcal{N}(c\mu_x, c^2\sigma_x^2)$

Certified Accuracy: Pick target radius T and

count #test points whose certified radius is

 $R \geq T$ and where the predicted c_A matches the

Standard Accuracy: Instantiate certified ac-

counts0 \leftarrow SampleUnderNoise (f, x, n_0, σ)

function CERTIFY($f, \sigma, x, n_0, n_1, \alpha$)

 $\hat{c}_A \leftarrow \text{top index in counts0}$

test set label.

curacy with T=0

8.1 Certification Procedure

Federated learning

FedSGD: Client: $g_k = \nabla_{\theta} L(f_{\theta}(x_k), y_k)$. Server:

 $\theta - = \alpha \frac{1}{N} \sum_{k=1:N} g_k$. Pro: convergence guaran-

teed. Cons: requires many rounds, not private.

 $x_{rec} = argmin_{x'}d(\nabla_{\theta}L(f_{\theta}(x'), y'), g_k) + \alpha_{reg}$

FedAvg: Client: performs Epochs E * Bat-

ches B local SGD steps. Server: averages

the received models. Pros: less rounds, har-

der to attack. Attack: create opt variables

for each batch and epoch $X_{e,b}^k$, simulate Fe-

dAvg to get $\tilde{\theta}_{e,b} := argmin_{\tilde{X}^k} d(\tilde{\theta}_{e,b}, \theta) +$

attacker believe they caught you. M is (ϵ, δ) –

P if $P(M(a) \in S) \leq e^{\epsilon} P(M(a') \in S) + \delta$

 $\iff e^{-\epsilon}(P(M(a) \in S) - \delta) < P(M(a') \in S)$

Laplace M: $f(a) + Lap(0, \Delta_1/\epsilon)$ is $\epsilon - DP$

 $f(a')|_{p}$ largest possible change in output

Composition: $(M_1, M_2)is(\epsilon_1+\epsilon_2, \delta_1+\delta_2)-DP$

protected from infinite compute \vee side info.

 $\Delta_2 = C/L$. Yields $(qT\epsilon, qT\delta) - DP$.

 $argmax_i(n_i + Lap(0, 2/\epsilon) \rightarrow \Delta_1 = 2$

Generate new dataset with same statistics as

 $\alpha_{reg} \frac{1}{E^2} \sum_{e_1,e_2} \mathcal{R}(g(\tilde{X}_{e1,b}), g(\tilde{X}_{e2,b}))$

avg images between every epoch.

Differential Privacy

 $\forall S, (a, a') \in Neigh$

 $(\epsilon, \delta) - DP$

Synthetic Data

 $\sigma = \frac{\Delta_2}{\epsilon} \sqrt{2 \cdot log(1.25)/\delta}$

 $\mathcal{R}(x')$, where \mathcal{R} is prior domain knowledge

Notes:

- Reject null hypothesis if p-value is $< \alpha$ - α small: often accept null hypothesis and AB-STAIN, but more confident in predictions. - α large: more predictions but more mistakes. - PREDICT returns wrong class $\hat{c}_A \neq c_A$ with probability at most α 9 Privacy

weight of each edge, compute max spanning tree. $I(X,Y) = \sum_{x} \sum_{y} \frac{P(X=x,Y=y)}{P(X=x)P(Y=y)} + N(0,\sigma I)$ Inference: $P(X_1, X_2, X_3)$ **Types:** Model stealing, model inversion, data $P(X_1)P(X_2|X_1)P(X_3|X_1)$ if X_1 is parent of X_2 and X_3 .

10 Fairness X: features, Y: outcome, G: sensitive attribu-

tes. Model: for $x \in X : M(x) = \hat{Y} = \text{prob. dist. } 1, G = 1$). "Group fair does not imply individual fair." Individual fairness Similar input => similar output examples: Llipschitz: $D(M(x), M(x')) \leq Ld(x, x')$, IF as robustness: $\mathbb{1}[M(x) \neq M(x')] \leq L||x |x'|| \iff M(x) = M(x+\delta) \text{ for } ||\delta||_S < \frac{1}{\sqrt{L}}$ Can now use robustness theory. Fair Representation Learning: Regulator: determines fairness criteria and data source, Producer: computes fair representation f_{θ} , Consumer: Trains model h_{ψ} . Final $M := h_{\psi} \circ f_{\theta}$.

Pros: efficient re-use, can use transfer learnig. Cons: less controll over fairness/accuracty trade off, overconfident fairness if consumer is adveserial, startup costs. M: data to output, S: set of all outputs where LCIFR: Regulator: encode a domain specific notion of similarity in a logical formula ϕ , such that $x, x' \models \phi$ iff x, x' are similar. Producer: We define $S_{\phi}(x) := \{x \in \mathbb{R}^N \mid \phi(x, x')\}$. Use DL2 or MILP to obtain δ s.t. $\forall x \in S_{\phi}(x)$: $|f_{\phi}(x) - f_{\phi}(x')|_{\infty} \leq \delta$ Consumer obtain x, ϵ and train classifier h_{ψ} to be robust against per-**Gauss** M: $f(a) + N(0, \sigma^2 I)$ is $(\epsilon, \delta) - DP$. turbation of magnitude ϵ around x. Sensitivity: $\Delta_p := max_{a,a' \in Neigh}(||f(a)| -$ **Producer opt:** Denote $\omega(x,x') := |f_{\phi}(x)|$ $|f_{\phi}(x')|_{\infty} \leq \delta$, encode differentiable loss **Post processing:** M $(\epsilon, \delta) - DP = f \circ M$ is $L_F = max_{x' \in S_+(x)} \mathcal{L}(\phi \implies \omega)(x, x')$ with with approximation by finding x^* $argmin_{x' \in S_{\phi}(x)} L(\neg(\phi \implies \omega)(x, x'),$ DP makes no assumption on attacker: still $L_C = CE_{x,y \sim D}(q(f_{\theta}(x)), y)$

tinuous features $S(x) = \{z + \alpha \cdot a_{haircolor}\}$

 $\alpha \in [\pm \epsilon]$. Ensures fairness with probability

Centre smoothing: RS in multidim. Smooth

DP-SGD: T iterations with random batch of $L = \lambda_F L_F + \lambda_C L_C + \lambda_T L_T$, q is classifier make size L, standard SGD with projection of each f_{θ} aware of h_{ψ} , g is decoder checks info in $f_{\theta}(x)$ gradient onto l_2 ball of size C, aggregate all gradients to one and add noise $\mathcal{N}(0, \sigma I)$, with Consumer opt: Assume f_{θ} , train h_{ψ} with $argmin_{\psi}E_{z\sim f_{\theta}(D)}[max_{\pi\in[+\delta]}L_{C}(h_{\psi}(z+\pi),y)]$ **PATE**: Train teacher model on private data **LASSI**: Extends LCIFR to high dim. **Producer**: (split data in m subsets and train a teacher maps point close together with high probability on each, final teacher by noisy voting), label with **center smoothing**. Consumer: ensures T public data instances with teacher, train robustness with high prob with randomized student. $(T\epsilon,0)-DP$. Noisy voting: f(x)=**smoothing**. Regulator: generative model defines similarity in latent space by varying con-

 $L_T = max_{x \sim D} ||x - g(f_{\theta}(x))||_p$

of $1 - \alpha_{RS} - \alpha_{CS}$. Problem: hard to transfer private dataset: select which marginals to measguarantees from generative world to real world. sure (:=#occurences of attritube combination), meassure marginals and add noise to them. Marginals Selection: init fully connected graph of all attributes, set mutual info as

pipeline, specialized solution for each task. Pre-processing methods: Pros: agnostic to dowstream steps, downstream does not need sensative attribute. Data: (x,s), encoder: f: (x,s) \rightarrow z, classifyer: g: z \rightarrow y, advesary: h: z \rightarrow s, conditional distributions: Z_s , distribution densities: $p_s = P(z|S=s).$

Fairness bounds of downstream classifier: Let $\Delta_{\mathcal{Z}_0,\mathcal{Z}_1}^{DP}(g) := |E_{z \sim \mathcal{Z}_0}[g(z)] - E_{z \sim \mathcal{Z}_1}[g(z)]| \in$ [0,1]; and $BA_{\mathcal{Z}_0,\mathcal{Z}_1}(h) := \frac{1}{2}(E_{z\sim\mathcal{Z}_0}[1-1])$ $h(z) + E_{z \sim \mathcal{Z}_1}[h(z)] = \int_{z} (p_0(z)(1 - h(z)) + \frac{1}{2} (p_0(z)(1 - h(z))) + \frac{1}{2} (p_0(z)($ $p_1(z)(h(z)) \in [0.5, 1]; h^* := \mathbb{1}[p_1(z) > p_0(z)].$ For any $g: \Delta_{Z_0,Z_1}^{DP}(g) \leq 2 \cdot BA_{Z_0,Z_1}(h^*) - 1$ LAFTR: jointly train

 $min_{f,q} max_{h \in \mathcal{H}}(\mathring{L}_c(f(x,s),g) - \gamma L_{adv}(f(x,s),h))$ Pro: empirically good fairness. Cons: minmax problem is hard, only approximates h^* , E2E fairness is overestimated. **FNF**: learn 2 normalizing flows f_0 , f_1 as encoders for \mathcal{Z}_0 , \mathcal{Z}_1 . Sample $n(x_i, s_i)$, compute

0, G = 0) = $P(\hat{Y} = 1|Y = 0, G = 1)$ and

 $P(\hat{Y} = 1|Y = 1, G = 0) = P(\hat{Y} = 1|Y = 0)$

Equal opportunity: $M(x) \perp G|Y = 1$. Tre-

at only good candidates fairly. $P(\hat{Y} = 1|Y =$

Post-processing methods: Pros: classifyer

agnostic, efficient. Cons: no fairness/accuracy

tradeoff control, requires test-time access to

In-training methods: Pros: fairness/accuracy

tradeoff control, only training time access to

sensative att. Cons: needs access to training

1.G = 0 = $P(\hat{Y} = 1|Y = 1.G = 1)$.

sensative attributes.

estimate of q_0, q_1 , apply f_0, f_1 and compute $p_0(z), p_1(z)$. With this, we can estimate h^* find T s.t. $2 \cdot BA_{\mathcal{Z}_0,\mathcal{Z}_1}(h^*) - 1 \leq T$ with prob $(1-\epsilon)$ -Bound T only holds for estimated q_0, q_1 not for

real ones. + low empir. unfairness, safe downs. **FARE**: \mathcal{Z} space finite by using restricted encoders. Calculate BA exactly: $BA(h^*) =$ $\sum_{i=1}^{k} max(P_0(z = z_i), P_1(z = z_i)) =$ $\sum_{i=1}^{k} P(z = z_i) \max(\frac{P(s=0|z=z_i)}{2P(s=0)}, \frac{P(s=1|z=z_i)}{2P(s=1)})$

 $Gini_s(D)$) Goal: high unbal. dist. y, high bal.

dist. $s \implies$ provable unfairness upper bound

 $(fg)' = f'g + fg'; (f/g)' = (f'g - fg')/g^2$

Fairness aware decision tree with $FairGini(D) := (1 - \gamma)Gini_i(D) + \gamma(0.5 - \gamma)Gini_i(D)$

 $f(g(x))' = f'(g(x))g'(x); \log(x)' = 1/x$ mapping $x \to z$ around a centre point. $\partial_x \mathbf{b}^{\mathsf{T}} \mathbf{x} = \partial_x \mathbf{x}^{\mathsf{T}} \mathbf{b} = \mathbf{b}, \ \partial_x \mathbf{x}^{\mathsf{T}} \mathbf{x} = \partial_x ||\mathbf{x}||_2^2 = 2\mathbf{x},$ Group fairness **Demographic parity**: $M(x) \perp G$. Similar deci- $\partial_x \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = (\mathbf{A}^{\top} + \mathbf{A}) \mathbf{x}, \ \partial_x (\mathbf{b}^{\top} \mathbf{A} \mathbf{x}) = \mathbf{A}^{\top} \mathbf{b},$ sions on avrage across all groups. (Note M(x) = $\partial_X(\mathbf{c}^{\mathsf{T}}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\mathsf{T}}, \ \partial_X(\mathbf{c}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{b}) = \mathbf{b}\mathbf{c}^{\mathsf{T}},$ \hat{Y}) $P(\hat{Y} = 1|G = 0) = P(\hat{Y} = 1|G = 1)$.

 $\partial_x(\|\mathbf{x} - \mathbf{b}\|_2) = \frac{\mathbf{x} - \mathbf{b}}{\|\mathbf{x} - \mathbf{b}\|_2}, \ \partial_X(\|\mathbf{X}\|_F^2) = 2\mathbf{X},$ Equalized odds: $M(x) \perp G \mid Y$. Decision can $|\partial_x||\mathbf{x}||_1 = \frac{\mathbf{x}}{|\mathbf{x}|}, \ \partial_x ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \mathbf{2}(\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b}),$ only depend on G via true label. $P(\hat{Y} = 1|Y =$

11 Derivatives