Question Number	Scheme	Marks
	$\left(1+\frac{x}{3}\right)^{\frac{1}{4}} = 1 + \frac{1}{4} \times \frac{x}{3} + \frac{\frac{1}{4} \times \left(-\frac{3}{4}\right)}{2!} \left(\frac{x}{3}\right)^{2} + \frac{\frac{1}{4} \times \left(-\frac{3}{4}\right)\left(-\frac{7}{4}\right)}{3!} \left(\frac{x}{3}\right)^{3}$	M1
	$=1+\frac{x}{12}-\frac{x^2}{96}+\frac{7}{3456}x^3$ oe for each coeff	A2 (-1 ee) (3)
(b)	$\left[\left(1 - \frac{x}{3} \right)^{-\frac{1}{4}} = 1 + \left(-\frac{1}{4} \right) \times \left(-\frac{x}{3} \right) + \frac{\left(-\frac{1}{4} \right) \times \left(-\frac{5}{4} \right)}{2!} \left(-\frac{x}{3} \right)^{2} + \frac{\left(-\frac{1}{4} \right) \times \left(-\frac{5}{4} \right) \left(-\frac{9}{4} \right)}{3!} \left(-\frac{x}{3} \right)^{3} \right]$	M1
	$=1+\frac{x}{12}+\frac{5}{288}x^2+\frac{5}{1152}x^3 \text{ oe for each coeff}$	A2 (-1 ee) (3)
(c)	x < 3	B1 (1)
(d)	$\left(\frac{3+x}{3-x}\right)^{\frac{1}{4}} = \left(\frac{1+\frac{x}{3}}{1-\frac{x}{3}}\right)^{\frac{1}{4}} = \left(1+\frac{x}{3}\right)^{\frac{1}{4}} \times \left(1-\frac{x}{3}\right)^{-\frac{1}{4}}$	M1
	$= \left(1 + \frac{x}{12} - \frac{x^2}{96} + \frac{7}{3456}x^3\right) \times \left(1 + \frac{x}{12} + \frac{5}{288}x^2 + \frac{5}{1152}x^3\right)$	
	$=1+\frac{x}{12}+\frac{5}{288}x^2+\frac{x}{12}+\frac{x^2}{144}-\frac{x^2}{96}$	M1
	$=1+\frac{x}{6}+\frac{x^2}{72}$ oe for each coeff	A1 (3)

(e)
$$\int_0^{0.6} \left(\frac{3+x}{3-x} \right) dx = \int_0^{0.6} \left(1 + \frac{x}{6} + \frac{x^2}{72} \right) dx$$

$$= \left[x + \frac{x^2}{12} + \frac{x^3}{216} \right]_0^{0.6}$$

$$= 0.6 + \frac{0.6^2}{12} + \frac{0.6^3}{216} - 0$$

$$= 0.631$$
A1

(4)

[14]

Notes

(a)

M1 for using a correct binomial expansion at least up to the term in x^2 . If there are errors in substitution, withhold this mark if the formula is not seen. Each term, must have at least, the correct power of $\frac{x}{3}$. The expansion must start with 1.

A1 for 1 + the term in x correct, and either term in x^2 or x^3 correct, need not be simplified.

A1 for the expansion correct as shown above. Accept equivalent fractions.

(b)

M1 for using a correct binomial expansion at least up to the term in x^2 . If there are errors in substitution, withhold this mark if the formula is not seen. Each term, must have at least, the correct power of $\frac{x}{3}$. The expansion must start with 1.

A1 for 1 + the term in x correct, and either term in x^2 or x^3 correct, need not be simplified.

A1 for the expansion fully correct as shown above. Accept equivalent fractions.

(c)

B1 for
$$-3 < x < 3$$
 or $|x| < 3$

(d)

M1 for setting $\left(\frac{3+x}{3-x}\right)^{\frac{1}{4}} = \left(1+\frac{x}{3}\right)^{\frac{1}{4}} \times \left(1-\frac{x}{3}\right)^{-\frac{1}{4}}$ or their (a) × their (b) {only need terms as far as x^2 } If there is a 3 or a 9 present, M0

M1 for multiplying out their (a) \times (b). (Ignore the presence of a 3 or a 9 for this mark) Check that they have multiplied out fully. There are six terms in total up to and including terms in x^2 .

A1 for the answer as shown (oe)

(e)

M1 for using their answer in part (d) to form an integral of a quadratic expression. Ignore limits and condone a missing dx.

A1 for a correct integration (no ft)

M1d for correct substitution of 0.6. Allow missing 0

A1 0.631 cso

If 0.631 is seen without working, **no marks** in part (e). (Not 'hence obtain....')