O que são redes de sensores sem fio (RSSF)?

- Uma rede de sensores sem fio (RSSF) é uma rede sem fio que utiliza sensores para monitorar cooperativamente as condições físicas ou ambientais
- Redes de dispositivos sem fio normalmente pequenos, alimentados por bateria (geralmente MUITOS, às vezes heterogêneos)
 - Processamento a bordo,
 - Comunicação, e
 - Capacidades de detecção.

Ou...

- Sensoriamento sem fio + rede de dados!
 - Grupo de sensores ligados por meio sem fio para realizar tarefas de detecção distribuída

Esquemas de dispositivos WSN

Conectividade sem fio IoT

Tal como acontece com o wireless em geral, vários padrões com propriedades diferentes

IoT Wireless Connectivity Technology

Multiple standards, different attributes

Enabling an Intelligent Planet

AD\4NTECH

CM 23/24

MIoT e HIoT são diferentes

- A IoT tem vários cenários, desde ambientes orientados para humanos até orientados para máquinas, e desde ambientes industriais até ambientes florestais
- As RSSF precisam se adaptar a esses ambientes.

	Manufacturing IoT	Consumer IoT Consumer Centric	
Goal	Manufacturing-industry Centric		
Devices	Machines, Sensors, Controllers, Actuators, Smart meters	Consumer devices and Smart appliances	
Working Environment	Harsh (vibration, noisy, extremely high/low temperature)	Moderate	
Data rate	High (usually)	Low or average	
Delay	Delay sensitive	Delay tolerant	
Mission	Mission-critical	Non-mission-critical	

Tipos de redes sem fio

MANET – Rede Ad-hoc Móvel

WS
O architecturé
erprotocolol
conceitos tanto de
MANETs (móveis
redes ad hoc)
e de celular
redes.

Rede de sensores sem fio

• Focar em:

- Computação ubíqua
- Rede onipresente

• (frequentemente) Centro humano

Onipresente

- A qualquer momento
- Qualquer um
- Em qualquer lugar
- Qualquer dispositivo
- Acessível
- Toda a segurança
- Qualquer informação/serviço

MAC: desafios para redes sem fio

- MAC é uma camada crítica para rede
- Problemas tradicionais
 - Justiça
 - Latência
 - Taxa de transferência
- Para Redes de Sensores, mais problemas são adicionados
 - Eficiência energética
 - Escalabilidade

Desafios MAC para WSN

- As redes de sensores são implantadas de forma ad hoc, com nós individuais permanecendo em grande parteinativo por longos períodos de tempo, mas depois se tornandode repente ativoquando algo é detectado.
- Estas características das redes de sensores e aplicações motivam um MAC diferente dos MACs sem fio tradicionais:
 - Conservação de energiaeautoconfiguração são objetivos primários.
 - A justiça e a latência por nó são menos importantes.

Desafios em RSSFs

- ➤Energia e consumo de energia
- ➤ Auto-organização
- Heterogeneidade de comunicação
- **→**Adaptabilidade
- **>**Segurança
- **E**scalabilidade

Desafios de design

Por que as RSSFs são desafiadoras/únicas?e?

- Normalmente, com severa restrição de energia.
 - Fontes de energia limitadas (por exemplo, baterias).
 - Trade-off entre desempenho e vida útil.
- Auto-organização e autocura.
 - Implantações remotas.
- Escalável.
 - Número arbitrariamente grande de nós.

Desafios de design

- Heterogeneidade.
 - Dispositivos com capacidades variadas.
 - Sensores diferentes.
 - Implantações hierárquicas.
- Adaptabilidade.
 - Ajuste às condições operacionais e às mudanças nos requisitos da aplicação.
- Segurança e privacidade.
 - Informações potencialmente confidenciais.
 - Ambientes hostis.

Protocolos MAC de rede de sensores

- As principais fontes de desperdício de energia são:
 - Colisões*–pacotes interferentes*
 - Ouvindo ouvindo mais do que o necessário de um pacote
 - Controlar a sobrecarga de pacotes controle versus dados
 - Escuta ociosa ouvindo por nada

Soluções típicas em MACs sem fio

- Detecção de Portadora
 - Somente durante baixa carga de tráfego.
- Contenção
 - RTS-CTS somente durante alta carga de tráfego.
- Para trás
 - A retirada na camada de aplicação é desejada diferente da camada MAC.

É necessário alcançar boa escalabilidade e capacidade de evitar colisões. ry

Desafios

1. Eficiência Energética:

- Os nós sensores não estão conectados a nenhuma fonte de energia.
- A eficiência energética é uma consideração dominante, independentemente do problema.
- Muitas soluções, tanto relacionadas a hardware quanto a software, foram propostas para otimizar o uso de energia.

2. Implantação ad hoc (adaptabilidade):

- A maioria dos nós sensores são implantados em regiões que não possuem infraestrutura.
- Devemos lidar com as mudanças de conectividade e distribuição.

Desafios

3. Operação autônoma:

- Geralmente, uma vez implantados os sensores, não há intervenção humana por um longo período.
- A rede de sensores deve ser reconfigurada sozinha quando ocorrem determinados erros.

4. Mudanças dinâmicas (autocorreção e escalabilidade)

• À medida que ocorrem mudanças na conectividade devido à adição de mais nós ou à falha de nós, a rede de sensores deve ser capaz de se adaptar às mudanças na conectividade, a um grande número arbitrário de nós.

5. Segurança

Tanto Sensores quanto Atuadores transportam informações confidenciais em um ambiente hostil

Sensor-MAC (S-MAC)

- S-MAC é um protocolo de controle de acesso ao meio (MAC) projetado para redes de sensores sem fio.
 - Explora soluções típicas também encontradas em muitos outros MACs de sensores.
 - Os nós dormem periodicamente e dormem durante as transmissões de outros nós
 - Nós próximos formam clusters virtuais para sincronizar seus períodos de despertar e dormir
 - Negociaçõeseficiência energética para menor rendimento e maior latência
 - A passagem de mensagens é usada para reduzir a latência de contenção e controlar a sobrecarga

802.15.4 e Zigbee

O que é ZigBee?

- Padrão Tecnológico Criado para Redes de Controle e Sensores
 - Baseado no padrão IEEE 802.15.4
 - Centrado em pequenos rádios
- Criado pela Aliança ZigBee
 - Mais de 200 membros
- História
 - Maio de 2003: IEEE 802.15.4 concluído
 - Dezembro de 2004: especificação ZigBee ratificada
 - Junho de 2005: disponibilidade pública

O que o ZigBee faz?

- Projetado para controles e sensores sem fio
 - Opera em redes de área pessoal (PANs) e redes dispositivo a dispositivo
 - Conectividade entre dispositivos de pacotes pequenos
 - Exemplos: controle de luzes, interruptores, termostatos, eletrodomésticos, etc.

Zigbee?

- Nomeado devido a padrões erráticos e em zigue-zague de abelhas entre as flores
- Simboliza a comunicação entre nós em uma rede mesh
- Componentes de rede "vistos como análogos" à abelha rainha, drones e abelhas operárias

Aplicativos de rede ZigBee

ZigBee e outras tecnologias sem fio

Market Name	ZigBee™		₩i-Ei™	Bluetooth™
Standard	802.15.4	GSM/GPRS CDMA/1xRTT	802.11b	802.15.1
Application Focus	Monitoring & Control	Wide Area Voice & Data	Web, Email, Video	Cable Replacement
System Resources	4KB - 32KB	16MB+	1MB+	250KB+
Battery Life (days)	100 - 1,000+	1-7	.5 - 5	1- 7
Network Size	Unlimited (2 ⁶ *)	1	32	7
Bandwidth (KB/s)	20 - 250	64 - 128+	11,000+	720
Transmission Range (meters)	1 - 100+	1,000+	1 - 100	1 - 10+
Success Metrics	Reliability, Power, Cost	Reach, Quality	Speed, Flexibility	Cost, Convenience

CM 23/24

Por que precisamos de outro padrão "WPAN"?

- Consumo de energia
 - ZigBee: 10mA <==> BT: 100mA
- Custos de produção
 - ZigBee: 1,1\$ <==> BT: 3\$
- Custos do desenvolvimento
 - Tamanho de código ZB/tamanho de código BT = ½
- Taxa de erro de bit (BER)
- Sensibilidade
- flexibilidade
 - Nº de nós suportados
 - ZigBee: 65536 (em uma malha) <==> BT: 7
- Segurança
- Requisitos de latência
- Faixa
 - ZigBee: até 75 m em condição LOS <==> BT: 10 m

802.11b, 802.15.x BER Comparison

Recursos ZigBee/IEEE 802.15.4

- Baixo consumo de energia
- Baixo custo
- Pacote pequeno
- Baixa taxa de transferência de mensagens oferecida
- Suporta grandes pedidos de rede (<= 65 mil nós)
- Garantias de QoS baixas ou nenhumas
- Design de protocolo flexível adequado para muitas aplicações

IEEE 802.15.4 - Visão geral

- WPAN de baixa taxa (LR-WPAN)
 - Por exemplo, redes de sensores
- Simples e de baixo custo
 - Protocolo de handshake totalmente
- Baixo consumo de energia
 - Anos de vida útil usando bateria padrão
- Topologias diferentes
 - Estrela, ponto a ponto, combinado
- Taxas de dados: 20-250 kbps
 - Suporte de baixa latência
- Opera em frequências diferentes
 - 868 MHz, 915 MHz, 2,4 GHz

Arquitetura ZigBee/802.15.4

- Aliança ZigBee
 - Empresas: fabricantes de semicondutores, provedores de IP, OEMs, etc.
 - Definindo as camadas superiores da pilha de protocolos: da rede à aplicação, incluindo perfis de aplicação
 - Primeiros perfis publicados em meados de 2003
- Grupo de Trabalho IEEE 802.15.4
 - Definindo camadas inferiores da pilha de protocolos: MAC e PHY

IEEE 802.15.4 e ZigBee no contexto

Fonte: http://www.zigbee.org/resources/documents/IWAS_presentation_Mar04_Designing_with_802154_and_zigbee.ppt

Pilha de protocolos

Como funciona o ZigBee

- Topologia
 - Estrela
 - Árvore de agrupamento
 - Malha
- Coordenador de rede, roteadores, dispositivos finais
- 2 ou mais dispositivos formam um PAN/WSN

Como funciona o ZigBee

- Estados de operação
 - Ativo
 - Dormir
- Dispositivos
 - Dispositivos de função completa (FFDs)
 - Dispositivos de função reduzida (RFDs)
- Modos de operação
 - Baliza
 - Sem farol
- Tipos de tráfego
 - Intermitente
 - Repetitivo
 - Periódico

Tipos de tráfego

- Os dados são periódicos
 - a aplicação determina a taxa (por exemplo, sensores)
- Os dados são intermitentes
 - aplicação ou estímulo determina a taxa (economia ideal de energia), por exemplo, interruptor de luz

- Os dados são repetitivos (taxa fixa a priori)
 - dispositivo obtém intervalo de tempo garantido (por exemplo, monitor cardíaco)

Modos de tráfego

Modo farol:

- farol enviado periodicamente
- O coordenador e o dispositivo final podem ir para a alimentação sa
- Menor consumo de energia
- Tempo preciso necessário
- Período de farol (ms-m)

Modo Farol

GTS – Horários Garantidos

Modos de tráfego

Modo sem Beacon:

• coordenador/roteadores precisam ficar acordados

(fonte de alimentação robusta necessária)

- rede heterogênea
- poder assimétrico

Tipos de nós ZigBee

Coordenador ZigBee (ZBC) (IEEE 802.15.4 FFD)

- apenas um em uma rede
- inicia rede
- armazena informações sobre a rede
- todos os dispositivos se comunicam com o ZBC
- funcionalidade de roteamento
- ponte para outras redes

Roteador ZigBee (ZBR) (IEEE 802.15.4 FFD)

- componente opcional
- rotas entre nós, backbone de rede
- estende a cobertura da rede
- gerencia a alocação/desalocação de endereço local

Dispositivo final ZigBee (ZBE) (IEEE 802.15.4 RFD)

- otimizado para baixo consumo de energia
- tipo de dispositivo mais barato
 - sensor seria implantado aqui

Lembre-se: FFD – Dispositivo de Função Completa RFD – Dispositivo de Função Reduzida

802.15.4/Arquitetura ZigBee

Noções básicas de IEEE 802.15.4

- 802.15.4 é um protocolo simples de pacotes de dados para redes sem fio leves
 - O acesso ao canal é feito através Carrier Sense Multiple Access com prevenção de colisão e intervalo de tempo opcional
 - Reconhecimento de mensagem e uma estrutura de beacon opcional
 - Segurança multinível
 - Funciona bem para
 - Bateria de longa duração, latência selecionável para controladores, sensores, monitoramento remoto e eletrônicos portáteis
 - Configurado para máxima vida útil da bateria, tem potencial para durar tanto quanto a vida útil da maioria das baterias

802.15.4 Características gerais

- Taxas de dados de 250 kbps, 20 kbps e 40kpbs.
- Operação estrela ou ponto a ponto.
- Suporte para dispositivos de baixa latência.
- Acesso ao canal CSMA-CA, com detecção CCA
 - Avaliação de canal claro
- Endereçamento dinâmico de dispositivos.
- Protocolo totalmente handshake para confiabilidade de transferência.
- Baixo consumo de energia.
- 16 canais na banda ISM de 2,4 GHz
- 10 canais na banda ISM de 915 MHz
- um canal na banda europeia de 868 MHz.
- Ciclo de trabalho extremamente baixo (<0,1%)

Opera em bandas não licenciadas

- Banda Global ISM 2,4 GHz a 250 kbps
- Banda Europeia de 868 MHz a 20kbps
- Banda norte-americana de 915 MHz a 40kbps

Estrutura do quadro PHY

- Campos de pacote PHY
 - Preâmbulo (32 bits) sincronização
 - Delimitador de início do pacote (8 bits) deve ser formatado como "11100101"
 - Cabeçalho PHY (8 bits) –Comprimento PSDU
 - PSDU (0 a 127 bytes) campo de dados

Arquitetura 802.15.4 (MAC)

Drivers de design MAC IEEE 802.15.4

- Custo extremamente baixo
- Facilidade de implementação
- Transferência de dados confiável
- Operação de curto alcance
- Consumo de energia muito baixo

Protocolo simples, mas flexível

Classes de dispositivos

- Dispositivo de função completa (FFD)
 - Qualquer topologia
 - Coordenador de rede capaz
 - Fala com qualquer outro dispositivo
 - O FFD pode operar em três modos servindo
 - Dispositivo
 - Coordenador
 - Coordenador do PAN
- Dispositivo de função reduzida (RFD)
 - Limitado à topologia em estrela
 - Fala apenas com um coordenador de rede
 - Não é possível se tornar um coordenador de rede
 - Implementação muito simples

Topologia em estrela

Senhor de escravos

Topologias de malha (Peer-Peer) e árvore de cluster

Topologia Combinada

Estrelas agrupadas-por exemplo, existem nós de cluster entre quartos de um hotel e cada quarto possui uma rede em estrela para controle.

Pode ter uma estrutura de malha em alguns casos também

- Dispositivo com todas as funções
- Dispositivo de função reduzida

— Fluxo de comunicações

Estrutura Geral do Quadro

4 tipos de quadros MAC:

- Quadro de dados
- Quadro de farol
- Quadro de reconhecimento
- Quadro de comando MAC

Camada MAC

Gerenciando PANs

- Varredura de canal (detecção de energia, ativa, passiva, órfã verifica se ainda tem um pai)
- Detecção e resolução de conflitos de PAN ID
- Iniciando um PAN
- Enviando beacons
- Descoberta, associação/desassociação de dispositivos
- Sincronização (beacon/nonbeacon)
- Realinhamento de dispositivos órfãos

Tratamento de transferência

- Baseado em transação (transmissão indireta)
 - Indicação de farol
 - Votação
- Transmissão, Recepção, Rejeição, Retransmissão
 - Reconhecido / Não reconhecido
- Gestão GTS
 - Alocação/desalocação/Realocação
 - Uso

Superquadro

- Um coordenador em um PAN pode opcionalmente vincular o tempo do canal usando uma estrutura SuperFrame
 - vinculado por quadros de farol
- Um superquadro é dividido em duas partes
 - Inativo: todos os dispositivos dormem (incluindo o coordenador
 - Ativo:
 - Período ativo será dividido em 16 vagas
 - 16 slots podem ainda ser divididos em duas partes
 - Período de acesso à contenção
 - Período livre de contenção

CAP – Período de acesso de contenção

CFP – Período livre de contenção SD –

Duração do superframe

BI - Intervalo de Beacon

Superquadro

- Os faróis são usados para
 - iniciando superframes
 - sincronizando com dispositivos associados
 - anunciando a existência de um PAN
 - informando dados pendentes nos coordenadores
- Em uma rede habilitada para beacon,
 - Os dispositivos usam oCSMA/CA com fendamecanismo para competir pelo uso de canais
 - FFDs que exigem taxas fixas de transmissão podem solicitar garantir horários (GTS) do coordenador