Declutter and resample: Towards parameter free denoising.

Jiayuan Wang Joint work with: Mickaël Buchet Tamal K. Dey Yusu Wang

Outline-Parameter-free denoising algorithm

- Parameter-free denoising algorithm
 - Introduction
 - Preliminaries
 - Declutter algorithm
 - Parameter-free algorithm
 - Discussions

Introduction

Introduction

Introduction

- Deconvolution noise model/parameter
- Thresholding parameter

Outline-Parameter-free denoising algorithm

- Parameter-free denoising algorithm
 - Introduction
 - Preliminaries
 - Declutter algorithm
 - Parameter-free algorithm
 - Discussions

Preliminaries – sampling condition

- Metric space (\mathbb{X} , $d_{\mathbb{X}}$)
- k-distance to a point set $P:d_{P,k}(x)=\sqrt{\frac{1}{k}\sum_{i=1}^k d_{\mathbb{X}}\big(x,p_i(x)\big)^2}$
- P is an ϵ_k -noisy sample of K if:
 - $\forall x \in K, d_{P,k}(x) \le \epsilon_k$
 - $\forall x \in \mathbb{X}, d_{\mathbb{X}}(x, K) \leq d_{P,k}(x) + \epsilon_k$

Preliminaries – adaptive sampling condition

- Metric space (\mathbb{X} , $d_{\mathbb{X}}$)
- k-distance to a point set $P:d_{P,k}(x)=\sqrt{\frac{1}{k}\sum_{i=1}^k d_{\mathbb{X}}\big(x,p_i(x)\big)^2}$
- P is an ϵ_k -adaptive noisy sample of K if:
 - $\forall x \in K, d_{P,k}(x) \le \epsilon_k f(x)$
 - $\forall y \in \mathbb{X}, d_{\mathbb{X}}(y, K) \leq d_{P, k}(y) + \epsilon_k f(\bar{y})$

Outline-Parameter-free denoising algorithm

- Parameter-free denoising algorithm
 - Introduction
 - Sampling condition
 - Declutter algorithm
 - Parameter-free algorithm
 - Discussions

• One parameter is needed


```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
          if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
5
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
          if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
5
```



```
Algorithm 1: Declutter(P,k)
  Data: Point set P, parameter k
  Result: Denoised point set Q
1 begin
      sort P such that d_{P,k}(p_1) \leq \cdots \leq d_{P,k}(p_{|P|}).
     Q_0 \longleftarrow \emptyset
     for i \leftarrow 1 to |P| do
4
         if Q_{i-1} \cap B(p_i, 2d_{P,k}(p_i)) = \emptyset then
```


Theorem Given a point set P which is an ϵ_k -noisy sample of a compact set $K \subseteq \mathbb{X}$, Algorithm Declutter returns a set $Q \subseteq P$ such that $\delta_H(K,Q) \leq 7\epsilon_k$.

Hausdorff distance δ (K, Q) between K and Q Infimum of δ such that:

$$\forall p \in Q, d_{\mathbb{X}}(p, K) \leq \delta,$$

 $\forall x \in K, d_{\mathbb{X}}(x, Q) \leq \delta$

Declutter algorithm - adaptive version

Theorem Given an ϵ_k -adaptive noisy sample P of a compact set $K \subseteq \mathbb{X}$ with feature size f, Algorithm Declutter returns a sample $Q \subseteq P$ of K where $\delta_H^f(Q,K) \leq 7\epsilon_k$.

Infimum of δ such that:

$$\forall p \in Q, d_{\mathbb{X}}(p, K) \leq \delta f(\bar{p}),$$

 $\forall x \in K, d_{\mathbb{X}}(x, Q) \leq \delta f(x)$

Declutter algorithm – experiment

Figure 4: From left to right, the ground truth, the noisy input and the output of Algorithm Declutter for k = 81 and k = 148

Outline-Parameter-free denoising algorithm

- Parameter-free denoising algorithm
 - Introduction
 - Sampling condition
 - Declutter algorithm
 - Parameter-free algorithm
 - Discussions

```
Algorithm 2: ParfreeDeclutter(P)

Data: Point set P

Result: Denoised point set P_0

1 begin

2 | Set i_* = \lfloor \log_2(|P|) \rfloor, and P_{i_*} \leftarrow P

3 | for i \leftarrow i_* to 1 do

4 | Q \leftarrow \text{Declutter}(P_i, 2^i)

5 | P_{i-1} \leftarrow \cup_{q \in Q} B(q, (10 + 2\sqrt{2})d_{P_i, 2^i}(q)) \cap P_i
```



```
Algorithm 2: ParfreeDeclutter(P)

Data: Point set P

Result: Denoised point set P_0

1 begin

2 | Set i_* = \lfloor \log_2(|P|) \rfloor, and P_{i_*} \longleftarrow P

3 | for i \longleftarrow i_* to 1 do

4 | Q \longleftarrow \text{Declutter}(P_i, 2^i)

5 | P_{i-1} \longleftarrow \cup_{q \in Q} B(q, (10 + 2\sqrt{2}) d_{P_i, 2^i}(q)) \cap P_i
```


Algorithm 2: ParfreeDeclutter(P) Data: Point set PResult: Denoised point set P_0 1 begin 2 | Set $i_* = \lfloor \log_2(|P|) \rfloor$, and $P_{i_*} \leftarrow P$ 3 | for $i \leftarrow i_*$ to 1 do 4 | $Q \leftarrow \text{Declutter}(P_i, 2^i)$ 5 | $P_{i-1} \leftarrow \cup_{q \in Q} B(q, (10 + 2\sqrt{2})d_{P_i, 2^i}(q)) \cap P_i$

k=128

k=2

Theorem Given a point set P and i_0 such that for all $i > i_0$, P is a weak uniform $(\epsilon_{2^i}, 2)$ -noisy sample of K and is also a uniform $(\epsilon_{2^{i_0}}, 2)$ -noisy sample of K, algorithm ParfreeDeclutter returns a point set $P_0 \subseteq P$ such that $\delta_H(P_0, K) \leq (87 + 16\sqrt{2})\epsilon_{2^{i_0}}$.

- P is a uniform (ϵ_k, c) -noisy sample of K if:
 - $\forall x \in K, d_{P,k}(x) \le \epsilon_k$
 - $\forall x \in \mathbb{X}, d_{\mathbb{X}}(x, K) \leq d_{P,k}(x) + \epsilon_k$
 - $\forall p \in P, d_{P,k}(p) \ge \frac{\epsilon_k}{c}$

Theorem Given a point set P and i_0 such that for all $i > i_0$, P is a weak uniform $(\epsilon_{2^i}, 2)$ -noisy sample of K and is also a uniform $(\epsilon_{2^{i_0}}, 2)$ -noisy sample of K, algorithm ParfreeDeclutter returns a point set $P_0 \subseteq P$ such that $\delta_H(P_0, K) \leq (87 + 16\sqrt{2})\epsilon_{2^{i_0}}$.

- P is a weak uniform (ϵ_k, c) -noisy sample of K if:
 - $\forall x \in K, d_{P,k}(x) \le \epsilon_k$
 - $\forall x \in \mathbb{X}, d_{\mathbb{X}}(x, K) \leq d_{P,k}(x) + \epsilon_{k}$
 - $\forall p \in P, d_{P,k}(p) \ge \frac{\epsilon_k}{c}$

- Example where the parameter-free algorithm doesn't work.
- non-uniform

Parameter-free algorithm-experiment

Figure 9: Experiment on a two dimensional manifold. From left to right, the ground truth, the noisy input, two intermediate steps of Algorithm ParfreeDeclutter and the final result.

Parameter-free algorithm-experiment

Swap noise:

Parameter-free algorithm-experiment

background noise:

1				Error(%)
2	Original	# Digit 1 1352	# Digit 7 1279	0.6564

7	Back. Noise	# Nois	y 1 250	# Noisy 7 250		1.1464
8		Di	git 1	Digit 7		
9		# Removed	# True Noise	# Removed	# True Noise	
10	L1 Denoising	294	250	277	250	0.7488

Outline-Parameter-free denoising algorithm

- Parameter-free denoising algorithm
 - Introduction
 - Sampling condition
 - Declutter algorithm
 - Parameter-free algorithm
 - Discussions

Discussions

- Relax the sampling conditions
- Estimate Hausdorff distance in a parameter free manner
- Adaptive theoretical guarantees for algorithm ParfreeDeclutter