

Puerto Rico - IDeA Networks of Biomedical Research Excellence

Python3 Part 3 – Crash Course in Python3 for Future STEM Coders

Judith S. Rodriguez-Martinez, MSc, PhD

Penn State University – University Park Campus jzr5814@psu.edu

PennState

the Life Sciences

- The following material is the result of PR-INBRE research and curriculum development effort to provide a set of educational materials for research training and curriculum changes in biology programs across the island to support PR-INBRE efforts to establish a Community of Practice in Bioinformatics that offers a fruitful environment to increase computational and bioinformatics skills among traditional researchers and students (undergraduate and graduate) in the island. They have been developed as a part of the NIH funded project "Puerto Rico IDeA Network Biomedical Research Excellence (PRINBRE)" (Award Number 5P20GM103475).
- Unless otherwise specified, all the information contained within is Copyrighted © by University of Puerto Rico. Permission is granted for use, modify, and reproduce these materials for research and teaching purposes. A copy of the modified material should be sent to help@hpcf.upr.edu.
- Most recent versions of these presentations can be found at http://inbre.hpcf.upr.edu/.

Competencies

June 2, 2025 - Record and write simple and common **Python scripts to deal with Bioinformatic needs for biological data analyses** using a Jupyter Notebook

June 3, 2025 — Exploit datatypes that can record objects, as well as, reason logical statements

Today – create your own dataset using Python

Objectives

- Create a dataset
- Open and Read data of different file formats using either a for loop or a Python Library
 - TXT File
 - CSV File
- Write to different file formats
 - TXT File
 - CSV File
- Import a Python Library to your code
- Using Panda Library, create a **Pandas DataFrame** with columns and **export the DataFrame as a CSV File**

Objectives

- Continue to use Google Colab as an environment to practice and learn common Python lines of code.
- Create a new file using the function open()
- Write information to a file using the write() function
- Using for Loops analyze lines of a file
 - **import** python libraries

Target Audience

• This training is addressed to beginners, highly motivated (eager to learn what is needed in order to be competitive without the tendency to self-limit when learning computational skills by saying that is difficult) wanting to become familiar with the Python programming language and become the Script Master of their bioinformatic analysis.

The importance of Python

- R is great; however, you'll eventually run into the Python language
- No matter your field, python will be a necessity (chemistry, biology, engineering, ecology, mathematics, etc)
- Knowing Python gives you an edge when job searching and navigating graduate research
- The majority bioinformatic tools are python-based and will lead you to understand under the hood code in order to successfully execute said program's purpose.

Lesson 3.0.0 Create Files

Indicate with 'w' that you want to write to this file

[21] with open('first_file.txt', 'w') as f:

Assign a variable to this new file


```
[21] with open('first_file.txt', 'w') as f:
```



```
[21] with open('first_file.txt', 'w') as f:
    f.write('hola mundo')
```


Use write() to write 'hola mundo' to your new file called f

Success! Check out your first file!

Exercise 3.0.0 Create a file with gene names found in a List

input is a list

```
[28] crtam_genes_list = ['CRTAM_HUMAN','CRTAM_MOUSE','CADM1_HUMAN']
    print(crtam_genes_list)
```


input is a list

```
[28] crtam_genes_list = ['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
    print(crtam_genes_list)

['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
```


output the following txt file

input is a list

```
[31] crtam_genes_list = ['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
    print(crtam_genes_list)

['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
```

Answer

input is a list

```
[31] crtam_genes_list = ['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
    print(crtam_genes_list)

['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
```

Answer

Tip: Use '\n' to indicate a new line

input is a list

```
[31] crtam_genes_list = ['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']
    print(crtam_genes_list)

['CRTAM_HUMAN', 'CRTAM_MOUSE', 'CADM1_HUMAN']

[32] with open('crtam_genes.txt', 'w') as f:
    for gene in crtam_genes_list:
        f.write(gene)
        f.write('\n')
```


Lesson 3.1.0 Reading in your newly created files

Lesson 3.1.1 Read in the lines of a file using a For Loop


```
crtam_genes_file = open('crtam_genes.txt','r')
Use open()
function
```


crtam_genes_file = open('crtam_genes.txt','r')

Identify your
file of
interest

Use a for loop to loop through the lines in a file


```
crtam_genes_file = open('crtam_genes.txt','r')
for crtam_genes_line in crtam_genes_file:
    print(crtam_genes_line)
```



```
crtam_genes_file = open('crtam_genes.txt','r')
for crtam_genes_line in crtam_genes_file:
    print(crtam_genes_line)
crtam_genes_file.close()
```


close() a file is
important to
prevent xyz


```
0
```

```
crtam_genes_file = open('crtam_genes.txt','r')
for crtam_genes_line in crtam_genes_file:
    print(crtam_genes_line)
crtam_genes_file.close()
```

CRTAM_HUMAN

CRTAM_MOUSE

CADM1_HUMAN

How many lines are being printed out?


```
crtam_genes_file = open('crtam_genes.txt','r')
for crtam_genes_line in crtam_genes_file:
    print(crtam_genes_line)
crtam_genes_file.close()
```

CRTAM_HUMAN

CRTAM_MOUSE

CADM1_HUMAN

How many lines are being printed out?

```
crtam_genes_file = open('crtam_genes.txt','r')
 for crtam_genes_line in crtam_genes_file:
   print(crtam_genes_line)
 crtam_genes_file.close()
OCRTAM_HUMAN
2 CRTAM_MOUSE
3
4 CADM1_HUMAN
```


Remove these blank lines using strip()

```
crtam_genes_file = open('crtam_genes.txt','r')
 for crtam_genes_line in crtam_genes_file:
   print(crtam_genes_line)
 crtam_genes_file.close()
OCRTAM_HUMAN
2 CRTAM_MOUSE
3
4 CADM1_HUMAN
```


Remove these blank lines using strip()

Lesson 3.1.2 Read in the lines of a file using a While Loop

Read in your file using a while loop

crtam_genes_file = open('crtam_genes.txt','r')

Use open()
function

Read in your file using a while loop

crtam_genes_file = open('crtam_genes.txt','r')
crtam_genes_lines = crtam_genes_file.readline()

Using readline() function will allow you to while loop the lines of a file

crtam_genes_file = open('crtam_genes.txt','r')
crtam_genes_lines = crtam_genes_file.readline()
while crtam_genes_lines:

Perform while loop through lines of this file


```
crtam_genes_file = open('crtam_genes.txt','r')
crtam_genes_lines = crtam_genes_file.readline()
while crtam_genes_lines:
  print(<u>crtam_genes_lines</u>.strip('\n'))
              Strip and print
                 each line
```


crtam_genes_file = open('crtam_genes.txt','r')
crtam_genes_lines = crtam_genes_file.readline()
while crtam_genes_lines:
 print(crtam_genes_lines.strip('\n'))
 crtam_genes_lines = crtam_genes_file.readline()


```
crtam_genes_file = open('crtam_genes.txt','r')
crtam_genes_lines = crtam_genes_file.readline()
while crtam_genes_lines:
    print(crtam_genes_lines.strip('\n'))
    crtam_genes_lines = crtam_genes_file.readline()
crtam_genes_file.close()
```



```
crtam_genes_file = open('crtam_genes.txt','r')
crtam_genes_lines = crtam_genes_file.readline()
while crtam_genes_lines:
    print(crtam_genes_lines.strip('\n'))
    crtam_genes_lines = crtam_genes_file.readline()
crtam_genes_file.close()
OCRTAM_HUMAN
1CRTAM_MOUSE
2CADM1_HUMAN
```


Lesson 3.2.0 Manipulate files the Panda way

Lesson 3.2.1 Import the Panda Library


```
[39] import pandas as pd

Call import to use a library
```


Lesson 3.2.2 Read in a CSV file using Panda Library

Lesson 3.2.2a Reading in a CSV file with a header using Panda Library

gene, length CRTAM_HUMAN, 393 CRTAM_MOUSE, 781 CADM1_HUMAN, 442


```
crtam_with_header.csv

gene, length
CRTAM_HUMAN, 393
CRTAM_MOUSE, 781
CADM1_HUMAN, 442
```

```
[66] pd.read_csv('crtam_with_header.csv',header=0,delimiter=',')
```



```
crtam_with_header.csv

gene, length
CRTAM_HUMAN, 393
CRTAM_MOUSE, 781
CADM1_HUMAN, 442
```

```
[66] pd.read_csv('crtam_with_header.csv',header=0,delimiter=',')
```

Call pandas library by its nickname


```
crtam_with_header.csv

gene, length
CRTAM_HUMAN, 393
CRTAM_MOUSE, 781
CADM1_HUMAN, 442
```



```
gene, length
CRTAM_HUMAN, 393
CRTAM_MOUSE, 781
CADM1_HUMAN, 442
```

```
[66] pd.read_csv('crtam_with_header.csv',header=0,delimiter=',')
```

Name your file of interest


```
gene, length
CRTAM_HUMAN, 393
CRTAM_MOUSE, 781
CADM1_HUMAN, 442
```

```
[66] pd.read_csv('crtam_with_header.csv',header=0,delimiter=',')
```

Indicate that there is a header exist


```
gene, ength
CRTAM_HUMAN, 893
CRTAM_MOUSE, 781
CADM1_HUMAN, 142
```

```
[66] pd.read_csv('crtam_with_header.csv',header=0,delimiter=',')
```

Indicate the type of delimiter is


```
crtam_with_header.csv

gene,length
CRTAM_HUMAN,393
CRTAM_MOUSE,781
CADM1_HUMAN,442
```

```
[66] pd.read_csv('crtam_with_header.csv',header=0,delimiter=',')

gene length header

0 CRTAM_HUMAN 393

1 CRTAM_MOUSE 781

2 CADM1_HUMAN 442
```


Lesson 3.2.2b Reading in a CSV file with no header using Panda Library


```
CRTAM_HUMAN 393
CRTAM_MOUSE 781
CADM1_HUMAN 442
```

```
[65] pd.read_csv('crtam_without_header.csv',header=None,delimiter='\t')
```



```
CRTAM_HUMAN 393
CRTAM_MOUSE 781
CADM1_HUMAN 442
```

```
[65] pd.read_csv('crtam_without_header.csv',header=None,delimiter='\t')
```

Indicate that there is no header exist


```
CRTAM_HUMAN 393
CRTAM_MOUSE 781
CADM1_HUMAN 442
```

```
[65] pd.read_csv('crtam_without_header.csv',header=None,delimiter='\t')
```

```
Indicate the type of delimiter is '\t'
```



```
CRTAM_HUMAN 393
CRTAM_MOUSE 781
CADM1_HUMAN 442
```

```
pd.read_csv('crtam_without_header.csv',header=None,delimiter='\t')

0 1 header

0 CRTAM_HUMAN 393

1 CRTAM_MOUSE 781

2 CADM1_HUMAN 442
```


Lesson 3.2.3 Create a DataFrame and export a new CSV file using Panda Library

Lesson 3.2.3a Create a Panda DataFrame from a single List

[80] crtam_genes_list = ['CRTAM_HUMAN','CRTAM_MOUSE','CADM1_HUMAN']


```
[80] crtam_genes_list = ['CRTAM_HUMAN','CRTAM_MOUSE','CADM1_HUMAN']
    df = pd.DataFrame(crtam_genes_list, columns=['gene'])
    df
                gene
       CRTAM_HUMAN
       CRTAM_MOUSE
       CADM1_HUMAN
   index
```


Lesson 3.2.3b Create a Panda DataFrame from multiple Lists


```
[81] crtam_human_list = ['CRTAM_HUMAN',393,'human']
    crtam_mouse_list = ['CRTAM_MOUSE',781,'mouse']
    cadm1_human_list = ['CADM1_HUMAN',442,'human']
```


Call pandas library by its nickname

Call DataFrame()
function to start
a Pandas
Dataframe

List of Lists


```
[81] crtam_human_list = ['CRTAM_HUMAN',393,'human']
    crtam_mouse_list = ['CRTAM_MOUSE',781,'mouse']
    cadm1 human list = ['CADM1 HUMAN',442,'human']
    df = pd.DataFrame([crtam_human_list,crtam_mouse_list,cadm1_human_list],
                       columns=['gene','length','organisms'])
    df
                      length organisms
        CRTAM HUMAN
                         393
                                  human
        CRTAM MOUSE
                         781
                                  mouse
        CADM1_HUMAN
                         442
                                  human
```



```
[81] crtam_human_list = ['CRTAM_HUMAN',393,'human']
    crtam mouse list = ['CRTAM MOUSE',781,'mouse']
    cadm1 human list = ['CADM1 HUMAN',442,'human']
    df = pd.DataFrame([crtam human list,crtam mouse list,cadm1 human list],
                      columns=['gene','length','organisms'])
    df
                                                 column names
                gene length organisms
       CRTAM_HUMAN
                         393
                                  human
        CRTAM MOUSE
                         781
                                  mouse
     2 CADM1_HUMAN
                         442
                                  human
```



```
[81] crtam_human_list = ['CRTAM_HUMAN',393,'human']
    crtam mouse list = ['CRTAM MOUSE',781,'mouse']
    cadm1 human list = ['CADM1 HUMAN',442,'human']
    df = pd.DataFrame([crtam human list,crtam mouse list,cadm1 human list],
                      columns=['gene','length','organisms'])
    df
                      length organisms
                                                 crtam_human_list
        CRTAM_HUMAN
                         393
                                  human
        CRTAM MOUSE
                         781
                                  mouse
     2 CADM1_HUMAN
                         442
                                  human
```



```
[81] crtam_human_list = ['CRTAM_HUMAN',393,'human']
    crtam mouse list = ['CRTAM MOUSE',781,'mouse']
    cadm1 human list = ['CADM1 HUMAN',442,'human']
    df = pd.DataFrame([crtam human list,crtam mouse list,cadm1 human list],
                      columns=['gene','length','organisms'])
    df
                      length organisms
        CRTAM HUMAN
                         393
                                  human
        CRTAM_MOUSE
                                                  crtam_mouse_list
                         781
                                  mouse
       CADM1_HUMAN
                         442
                                  human
```



```
[81] crtam_human_list = ['CRTAM_HUMAN',393,'human']
    crtam mouse list = ['CRTAM MOUSE',781,'mouse']
    cadm1 human list = ['CADM1 HUMAN',442,'human']
    df = pd.DataFrame([crtam human list,crtam mouse list,cadm1 human list],
                      columns=['gene','length','organisms'])
    df
                      length organisms
       CRTAM_HUMAN
                         393
                                  human
        CRTAM MOUSE
                         781
                                  mouse
                                                 cadm1_human_list
       CADM1_HUMAN
                         442
                                  human
```


Lesson 3.2.3c Create a Pandas DataFrame from a Nested Dictionary

Lesson 3.2.4 Export a Panda DataFrame as a CSV File

		•	•
0	CRTAM_HUMAN	393	human
1	CRTAM_MOUSE	781	mouse
2	CADM1_HUMAN	442	human

			•	gene	len	gth	org	anism	7	
	0	CRTA	M_HU	MAN		393		human	1	
	1	CRTA	AM_MC	USE		781		mouse	•	
	2	CADI	M1_HU	MAN		442		human	1	
[90] df.to_csv('crtam_information.csv', sep=',')										
Call variable										
of	of your									
dat	dataframe									

Call to_csv()
function to start
a Pandas
Dataframe

		gene	length	organism	**
	0	CRTAM_HUMAN	393	human	
	1	CRTAM_MOUSE	781	mouse	
	2	CADM1_HUMAN	442	human	
[90]	df.	to_csv(' <mark>crtam</mark> _	informat	ion.csv',	sep=',')

Name your file of interest

	gene	length	organism
0	CRTAM_HUMAN	393	human
1	CRTAM_MOUSE	781	mouse
2	CADM1_HUMAN	442	human

[90] df.to_csv('crtam_information.csv', sep=',')

Indicate the type of separator or delimiter is

Check out your new CSV file!

,gene,length,organism
0,CRTAM_HUMAN,393,human
1,CRTAM_MOUSE,781,mouse
2,CADM1_HUMAN,442,human

Proficiency assessment Show off your new skills!

- 1. Read in the Fasta File called crtam.faa
- 2. Choose at least 3 of the following options below to create a dataframe with your columns of interest.
 - Gene_names
 - Length in amino acid
 - Length in it's DNA sequence
 - Total RSNNEETS
 - Total KAH
 - Total PGLRLRLLL
- 3. Export a file to import into Excel

