1 General	2. Train model: $\hat{w}_{i,m} = \underset{CO}{\operatorname{arg min}}_{w} \hat{R}_{train}^{(i)}(w)$.	True label	matrices are some kernel.
P-Norm: $ x _p = (\sum_{i=1}^n x_i ^p)^{\frac{1}{p}}$	3. Estimate error: $\hat{R}_m^{(i)} = \hat{R}_{val}^{(i)}(\hat{w}_{i,m})$.	Positive Negative Σ Positive TP FP p_+	$\begin{bmatrix} k(x_1,x_1) & \dots & k(x_1,x_n) \end{bmatrix}$
Frobenious Norm: $ A _F = \sqrt{\sum_{i,j} a_{ij}^2}$	Select model: $\hat{m} = \underset{m}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^{k} \hat{R}_{m}^{(i)}$. Ridge regression: Regularization (corresponds	Positive Negative Σ Positive TP FP p_+ Negative FN TN p $\Sigma \qquad n_{\perp} \qquad n_{-}$	$K = \begin{bmatrix} \vdots & \ddots & \vdots \end{bmatrix}$
Chain rule: $D(f(g(x))) = Df(g(x)) * Dg(x)$	Ridge regression: Regularization (corresponds)	$\Delta \Sigma n_{\pm} n_{\pm}$	$\begin{bmatrix} k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix}$
Positive (semi_)definiteness: $A \subseteq \mathbb{R}^{n \wedge n}$ is	to MAP estimation): $\min_{w} \frac{1}{n} \sum_{i=1}^{n} (y_i - w_w^T x_i)^2 + \lambda w _2^2.$		For k_1, k_2 kernel, $c > 0$ and f polyn. with
$\forall x \in \mathbb{R}^n.x^TAx > (\geq)0.$	Closed form: $\hat{w} = (X^T X + \lambda I)^{-1} X^T y$	Accuracy. $TP+TN+FP+FN$, Precision: TP TPR Recall: TP	pos. coef. or exp. $k_1 + k_2$, $k_1 \cdot k_2$, $c \cdot k_1$ and $f(k_1(x,x'))$ are kernels.
Joint distribution: X, Y are RVs $F_{X,Y}(x,y) =$	Closed form: $\hat{w} = (X^TX + \lambda I)^{-1}X^Ty$ Gradient: $-2\sum_{i=1}^n r_i x_i^T + 2\lambda w$ Standardization : Goal: each feature: $\mu = 0$,	The solution $TP+FP$, TTK , Recall. $TP+FN$,	Poly. degree $= d (x^T x')^d$
$I(\Lambda \leq x, I \leq y)$		FPR: $\frac{FP}{TN+FP}$, F1 score: $\frac{2TP}{2TP+FP+FN}$ Precision Recall Curve : Precision (y-axis) vs.	Poly. degree $\leq d (x^T x' + 1)^d$
Joint density: $f_{X,Y}(x,y) = \frac{\delta^2 F}{\delta x \delta y}(x,y)$	$\hat{\sigma} = 1. \ \omega_{i,j} = \hat{\sigma}_{i}$ with	Recall (x-axis). Precision = 1 and Recall = 1 is	Gaussian(RBF) $\exp(-\ x - x'\ _2^2/(2h^2))$
Conditional Probability: $P(A B) = \frac{P(A \cap B)}{P(B)}$		optimal. Area under curve (AUC) can be used	Lapacian $\exp(-\ x-x'\ _1^2/h)$
Total probability: $P(B) = \sum_{i=1}^{n} P(B A_i) \tilde{P}(A_i)$	3 Classification 0/1 loss: $\ell_{0/1}(w; x, y) = [y \neq \text{sign}(w^T x)]$	for comparison of algos. Receiver Operator Characteristic (ROC)	Lapacian $\exp(-\ x-x'\ _1^2/h)$ Note: $h > 0$ is bandwidth, $h \to 0$ overfits. k-NN : $y = \operatorname{sign}(\sum_{i=1}^{n} y_i [x_i \text{ is k-NN of } x])$ No training, but depends on all data. Can use kernel as <i>similarity function</i> : $y =$
Bayes rule: $P(A B) = P(B A) \frac{P(A)}{P(B)}$	Perc loss: $\ell(u; x, y) = [y / \sin(u \cdot x)]$	Curve: TPR (y-axis) vs. FPR (x-axis). Ran-	No training, but depends on all data.
Variance: $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] =$	Hinge loss: $\ell_{xx}(w, x, y) = \max(0, 1 - yw^Tx)$	dom guessing achieves TPR = FPR line. TPR > FPR is better than random guessing. TPR =	sign $(\sum_{i=1}^{n} y_i \alpha_i k(x_i, x))$, Improved perfor-
$\mathbb{E}[X^2] - \mathbb{E}[X]^2 > 0$ Gaussian and Multivariate (2D) Gaussian:	Hinge loss: $\ell_H(w; x, y) = \max(0, 1 - yw^T x)$ $\nabla_w \ell_p = \begin{cases} 0, & \text{if } w^T x_i y_i \ge 0 \text{ (1 if } \ell_H) \\ -y_i x_i & \text{else} \end{cases}$	1 and FPR = 0 is optimal. Area under curve	mance, depends only on wrongly classified
$f(x) = \frac{1}{x^2} exp(-\frac{(x-\mu)^2}{x^2})$	$v^{wcp}y_i x_i$ else	(AUC) can be used for comparison of algos. Theorem: Alg 1 dominates Alg 2 in terms of	data, can capture global trends, but requires
$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2}),$ $f(x) = \frac{1}{2\pi\sqrt{ \Sigma }} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}.$	Fisher consistency : A surrogate loss ψ : $Y \times S \to \mathbb{R}$, is said to be consistent to the		training. Parametric vs. nonparametric learning:
$f(x) \equiv \frac{1}{2\pi\sqrt{ \Sigma }}e^{-2x}$	$loss L: Y \times S \to \mathbb{R}$, if every minimizer f of	of Precision Recall curve. One-vs-all: c classifiers, one for each class,	Parametric have finite set of parameters (re-
Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ is convex \Leftrightarrow	surrogate risk function $R_{\psi}(f)$ is also a mini-	!	gression, perceptron), while nonparametric in-
$x_1, x_2 \in \mathbb{R}^d, \lambda \in [0, 1]: f(\lambda x_1 + (1 - \lambda)x_2) \le f(\lambda x_1 + (1 - \lambda)x_2)$	mizer of risk function $R_L(f)$. E.g. hinge and		crease complexity with size of data (kernelized
$\lambda f(x_1) + (1 - \lambda) f(x_2).$ A twice differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is	logistic losses are consistent with $0/1$ loss. SGD : GD requires sum over all data \rightarrow slow.	One-vs-one $c(c-1)/2$ classifiers, voting	perceptron, k-NN). Can kernelize other tasks, such as
convex iff $\forall x \in \mathbb{R}^d$ its Hessian is $\mathbf{n} \in \mathbb{R}^d$	1 Change mandam initial $a \in \mathbb{D}^d$	scheme with highest number of positive pre-	SVM: $\arg\min_{\alpha = n} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - 1\}$
If $w_i > 0$ and f_i an conv., then $f_i = w_i f_i$ conv.	(a) (Thoose $(x, y) \in D$ ii a r (w) replacement)	diction wins: no confidence needed. Ideally $\mathcal{O}(\log c)$ classifiers, theor. optimum.	$\{y_i \alpha^T k_i\} + \lambda \alpha^T D_y K D_y \alpha \text{ with } k_i = 1$
2 Regression Linear Regression: Goal: Measure dis-	(b) Set $w_{t+1} = w_t - \eta_t \nabla \ell(w_t; x, y)$	Multi-class SVM: c weight vectors, $w^{(y)T}x \ge 1$	$[y_1k(x_1,x_i),,y_nk(x_n,x_i)].$ Linear regression : Training: $\hat{\alpha}=$
tance between predicted and target values	(b) Set $w_{t+1} = w_t - \eta_t \nabla \ell(w_t; x, y)$ SGD converges if $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$. Mini-batch: Choose multiple datapoints at ran-		
$f(x) = w_1 x_1 + \cdots + w_d x_d + w_0 = \widetilde{w}^T \widetilde{x}$ with			$\arg\min_{\alpha} \frac{1}{n} \ \alpha^T K - y\ _2^2 + \lambda \alpha^T K \alpha$, Closed
$(0) = (0)(1) \cdot (0)(1) \cdot (0)(1) \cdot (0)(1) \cdot (0) $	$\hat{w} = \arg\min_{w} \frac{1}{2} \sum_{i=1}^{n} \ell_n(w; x_i, y_i)$		form: $\hat{\alpha} = (K + n\lambda I)^{-1}y$, Prediction:
Residual: $r_i = y_i - w^T x_i, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$. Objective function (convex): $\hat{R}(w) = \sum_{i=1}^{n} x_i^2$	If data linearly separable finds separator.	Kernel trick : 1. Express problem s.t. it only	$\hat{y} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, x)$ Est. kernel parameters via CV. Choosing ker-
Residual: $r_i = y_i - w^T x_i$, $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$. Objective function (convex): $\hat{R}(w) = \sum_{i=1}^n r_i^2$. $w^* = \arg\min_w \sum_{i=1}^n (y_i - w^T x_i)^2$. Closed form solution: $w^* = (X^T X)^{-1} X^T y$.	we arg min $\frac{1}{n}\sum_{i=1}^{n}\ell_{p}(w;x_{i},y_{i})$ If data linearly, separable finds separator. SVM : SGD with ℓ_{H} and regularization. $\hat{w} = \arg\min_{w} \frac{1}{n}\sum_{i=1}^{n}\ell_{H}(w;x_{i},y_{i}) + \lambda w _{2}^{2}$	depends on inner products $x_i^2 x_i$.	nels requires domain knowledge. Deal w/ over-
	$ \omega_{t+1} - \omega_{t}(1 - 2\eta_{t}\lambda) + \eta_{t}x_{i}y_{i}[y_{i}\omega_{T}x_{i} < 1]$	Reformulate problem: Fundamental insignt:	fit by regularization. 7 Neural Networks
Cradient: $\nabla P(w) = 2 \sum_{n=0}^{n} m_n x^n$	Often $\eta_t = \frac{1}{\lambda t}$. Works on non-linearly separa-	Ontimal senarating hyperplane lives in the span	Parametrized feature maps. Can learn nonlin-
Non-linear functions: $f(x) = \sum_{i=1}^{D} w_i \phi_i(x)$. Gradient Descent : 1. Start $w_0 \in \mathbb{R}^d$.	ble data, finds best separator w.r.t. ℓ_H . 4 Feature selection Greedy : Greedily add (or remove) features to maximize cross-validated prediction accuracy w.r.t. cost $c: V \to \mathbb{R}$ of using features in subset of V . Forward (start with empty set) is faster	of data: $w = \sum_{i=1}^{n} \alpha_i y_i x_i$, e.g. Perceptron:	ear features. Forward propagation in layer ℓ :
Gradient Descent: 1. Start $w_0 \in \mathbb{R}^n$. 2. For $t = 1, 2,$ do $w_{t+1} = w_t - \eta_t \nabla \hat{R}(w_t)$.	Greedy : Greedily add (or remove) features to	$\hat{a} = \arg\min_{w \in \mathbb{R}} \underbrace{\lim_{i \to \infty} (0, -y_i w \cdot x_i)}_{i}$	$(v^{(0)} = x): v^{(\ell)} = \varphi(z^{(\ell)}) = \varphi(W^{(\ell)}v^{(\ell-1)}).$
Empirical risk minimization: Assumption:	maximize cross-validated prediction accuracy $V \rightarrow \mathbb{R}$ of using features in subset	$\max(0, -\sum_{i=1}^{n} \alpha_i y_i y_i x_i^T x_i).$	Output layer: $y = f = W^{(L-1)}v^{(L-1)}$. Weight optimization: Apply loss $\ell(y-1)$
Data set generated iid from unknown distribu-			$ f(x,W)\rangle$, optimize weights to minimize loss.
tion $P: (x_i, y_i) \sim P(X, Y)$. True risk: $R(w) = \int P(x, y)(y - y)$	but backward is more resilient to "dependent"		For multi-outputs sum losses.
$w^T x)^2 dx dy = \mathbb{E}_{x,y}[(y - w^T x)^2]$	features. Applies to any method, but slow b/c trains many models and can be suboptimal. L1-Regularization: regularize loss with $\ w\ _1$,	$\phi(x)^{T}\phi(x')$ efficiently as $k(x,x')$. Percentron example (Training):	Sigmoid: $\frac{1}{1+\exp(-z)}$, Tanh: $\frac{\exp(z)-\exp(-z)}{\exp(z)+\exp(-z)}$,
Emp. risk: $\hat{R}_D(w) = \frac{1}{ D } \sum_{(x,y) \in D} (y - w^T x)^2$	L1-Regularization : regularize loss with $ w _1$,	1. Initialize $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.	ReLu: $max(0, z)$. Sigmoid and Tanh: diff. ev-
Generalization error: $ R(w) - \hat{R}_D(w) $	automatic feature selection. Can be used for		erywhere, but gradient ≈ 0 if $x \neq 0$. ReLu: not diff at 0. $\alpha' = 1$ if $\alpha > 0$
Generalization error: $ R(w) - \hat{R}_D(w) $ Uniform convergence: $\sup_w R(w) - \hat{R}_D(w) $	regression (Lasso), classification (L1-SVM)	(b) Predict $\hat{y} = \text{sign} \left(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x_i) \right)$.	diff. at 0 , $\varphi' = 1$ if $z > 0$. Back prop.: $\delta^{(L)} = l'(f) = [l'(f_1),, l'(f_p)],$
$ \hat{R}_D(w) \to 0$ as $ D \to 0$	by replacing $ w _2$ with $ w _1$. Only works for	(c) If $\hat{y} \neq y_i$ set $\alpha_i \rightleftharpoons \alpha_i + \eta_t X \Rightarrow \mathbb{R}$ must be	and $\nabla_{W^{(L)}}\ell(W;y,x) = \delta^{(L)}v^{(L-1)T}$. For
In general, it holds that: $\mathbb{E}_D[R_D(\hat{w}_D)] \leq \hat{\mathbb{E}}_D[R_D(\hat{w}_D)]$	S Class illiparatice	symmetric: $k(x, x') = k(x', x)$	$\ell < L$: $\delta^{(\ell)} = \varphi'(z^{(\ell)}) \odot (W^{(\ell+1)T}\delta^{(\ell+1)})$ and
	Downsample loses data but fast, upsample random pertubation maybe unsafe. Use cost-	Gram matrix K must be p.s.d. $(\forall x.x^T Kx \ge 0)$	$\nabla \ell(W; y, x) = \delta(\ell) y(\ell-1)T$
$i=1\cdot k\cdot$	sensitive metrics controlling tradeoff:	Gram matrix K must be p.s.d. $(\forall x.x^TKx \ge 0)$ for any n , any set $\{x_1, \ldots, x_n\} \subseteq X$. All p.s.d.	Nơnconvex optimization, initialization matters.
1. Split data: $D = D_{train}^{(i)} \uplus D_{val}^{(i)}$.	$\ell_{CS} = c_y \ell(w; x, y).$		

Glorot (tanh): $w_{i,j} \sim \mathcal{N}(0, 1/n_{in})$ EKE where $E = \frac{1}{n}[1,...,1][1,...,1]^T$. Complexity grows with the # of data points. Autoencoder: NN where hidden layers usually kernels: $\hat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} \log(1 + i)$ $w_{i,j} \sim \mathcal{N}(0, 2/(n_{in} + n_{out}))$ $\left|\exp(-y_i\alpha^TK_i)\right| + \lambda\alpha^TK\alpha$ and $\hat{P}(y|x,\hat{\alpha}) =$ $w_{i,j} \sim \mathcal{N}(0, 2/(n_{in}))$ He (ReLU): $\frac{1}{1+\exp(-y\sum_{j=1}^{n}\alpha_{j}k(x_{j},x))} \text{ with } w = \sum_{i}\alpha_{i}x_{i}.$ smaller (k) than in- and output (d). Try to learn Learning rate η_t decreasing (e.g. identity function. Compr. from input to small $min(0.\overline{1}, 100/t)$) to prevent oscillation. M-class: $P(Y = i | x, w_{[c]}) = \frac{\exp(w_i^T x)}{\sum_{j=1}^c \exp(w_j^T x)}$ est HL, Decompr. from smallest HL to output. Momentum $(m < 1, a \leftarrow m \cdot a + \eta_t \nabla_w$ $\ell(W; y, x), W \leftarrow W - a)$, avoid local minima. Many parameters \rightarrow overfitting! Early stop $f(x;\theta) = f_{dec}(f_{enc}(x;\theta_1);\theta_2)$. If $\varphi(z) = z$ then autoencoder is equivalent to PCA. Can obtain class probablities, but dense sols. 10 Decision Theory 9 Probabilistic modeling or regularization $(\lambda \|W\|_F^2)$ to prevent. Also Have $P(y \mid x)$, actions \mathcal{A} and cost C: Bayes optimal predictor: $h^*(x) = \mathbb{E}[Y]$ *dropout*, randomly set weights to 0 with prob. $\mathcal{V} \times \mathcal{A} \to R$. Min. Exp. cost: $a^* = \arg\min_{a}$ X=x, unattainable in pr. Can try to estimate p, set $W = W \odot p$ after training. Batch normalization, standardize some batch conditional distr. $\hat{P}(Y \mid X)$. $\{x_{1...m}\}$ and set $y_i = \gamma \hat{x_i} + \beta = BN_{\gamma,\beta}(x_i)$. Parametric estimation: Have $P(Y \mid X, \theta)$, Then $\varphi(Wx) = \varphi(W(BN_{\gamma,\beta}(x)))$. Convolutional NN: Apply $m \ f \times f$ filters to MLE: $\theta^* = \arg \max_{\theta} P(Y \mid X, \theta) =$ $\begin{vmatrix} \arg\min_{\theta} - \sum_{i=1}^{n} \log \hat{P}(y_i \mid x_i, \theta) \\ \text{E.g. Gauss. noise, lin. reg.: } y_i \sim \mathcal{N}(w_i^T x_i, \sigma^2) \\ \arg\min_{\theta} = \frac{n}{2} \log(2\pi\sigma^2) \sum_{i=1}^{n} \frac{(y_i - w_i^T x_i)^2}{2\mathbf{q}^2 \mathbf{q}}, \end{aligned}$ $n \times n$ image, padding p and stride s: Leaves with $\alpha \times \alpha \times m$ output, where $\alpha = \frac{n+2p-f}{2}$. 8 Unsupervised Learning MLE equiv. to LSQ est.. In general, MLE with **k-Means** $\bar{\mathbf{clust}}$: Assign point $x_i \in \mathbb{R}^d$ gauss, noise with const, var. equiv. to LSQ sol. **Bias Variance Tradeoff**: Prediction error to nearest center $\mu_i \in \mathbb{R}^d$. $\hat{R}(\mu) =$ = Bias² + Variance + Noise. Bias: Risk of $\sum_{i=1}^{n} \min_{j \in [k]} \|x_{i} - \mu_{j}\|_{2}^{2}$, nonconvex. best model compared to minimal risk given Lloyd: Initialize $\mu^{(0)}$. Then assign x_i to closest P(X,Y). Variance: Risk due to estimating center $z_i^{(t)} = \arg\min_i ||x_i - \mu_i^{(t-1)}||_2^2$. Then model from limited data. Noise: Risk by optimal model. Trade bias and variance via model update mean: $\mu_j^{(t)} = \frac{1}{|i:z_i^{(t)} = j|} \sum_{i:z_i^{(t)} = j} x_j$. selection / regularization **MAP est.**: $\underset{w}{\operatorname{arg}} \max_{w} P(w|x_{1:n}, y_{1:n}) = 1$ $\mathcal{O}(nkd)$ per it., converg. pot. slowly but mono- $\arg\max_{w} \frac{P(w)P(y_{1:n}|x_{1:n},w)}{P(y_{1:n}|x_{1:n})}$ tonically to local optimum \rightarrow Mult. iter. k-Means++: Let $\mu^{(0)} = x$ u.a.r. from X. As- $\arg \min_{w} - \log P(w) - \log P(y_{1:n}|x_{1:n}, w)$ sign centers $2 \dots k$ randomly, prop. to sq. dist. For Gaussian noise and Gaussian prior: MAP to closest sel. cent. $\mathbb{E}[\cos t]$ is $\mathcal{O}(\log k)$ of opt. = Ridge regression. Regularized estima- $\Pr[\mu_j = x_i] = \frac{1}{Z} \min_{k \in [j-1]} \|\mu_k - x_i\|_2^2$ Choosing k difficult. Heuristic: When k+1tion can often be understood as MAP inference: $\arg\min_{w}\sum_{i=1}^{n}\ell(w^Tx_i;x_i,y_i)$ + yields diminishing returns, or regularization $|C(w)| = \arg\max_{w} \prod_{i} P(y_i|x_i, w)P(w) =$ with λk . Only models circ. clust,: use kernels. $|\arg\max_{w} P(w|D)$ where $C(w) = -\log P(w)$ where $w_0 = \log \frac{p_+}{1-p_+} + \sum_{i=1}^d \frac{\mu_{-,i}^2 - \mu_{+,i}^2}{2\sigma_i^2}$ **Dimension Reduction**: Embed $\{x_1, \ldots, x_n\}$, $x_i \in \mathbb{R}^d$ in \mathbb{R}^k where $k \leq d$. and $\ell(w^T x_i; x_i, y_i) = -\log P(y_i | x_i, w)$. Choose likelihood function \exists loss function construct *emp. cov. matrix*: $\Sigma = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. 3. Optimize for MAP parameters, choose hyand $w_i = \frac{\mu_{+,i} - \mu_{-,i}}{\sigma^2}$. Cond. indep. assumpt. can make pred. overconfident. # parameters = perparameters through cross-validation 4. Make predictions via B. Decision Theory **Bayes optimal classifier**: $h^*(x) =$ PCA problem: $(W, z_1, \ldots, z_n) =$ O(cd), Compl. (mem. + inference) lin, in d. $\arg\min_{W,z} \sum_{i=1}^{n} \|Wz_{i} - x_{i}\|_{2}^{2}$ where W or-Categorical Naive Bayes: $P(X_i = c|Y =$ $|\arg\max_{y} P(Y = y \mid X = x)|$ thogonal, $z_i \in \mathbb{R}^k$ has sol. $z_i = W^T x_i$. $|y| = \theta_{c|y}^{(i)}$. MLE prior: $\hat{p}_y = \frac{\#y}{n}$, MLE feat. **Logistic regression:** P(Y = y|x) =Sol. for W is k principal eigenvectors of Σ . distr.: $\theta_{c|y}^{(i)} = \frac{\text{Count}(X_i = c, Y = y)}{\#y}$. Exponentially $\left|\frac{1}{1+\exp(-yw^Tx)}\right|$. Replaces Gauss. noise as- $W = (v_1|...|v_k)$ where $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^T$ with (in d) parameters, Way to overfit. Gaussian Bayes: $P(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y)$. sumption with Ber. noise: P(y|x,w) = $\lambda_1 \geq ... \geq \lambda_d \geq 0$. Can apply to any matrix $X = USV^T$, first k columns of V are first k $|\operatorname{Ber}(y; \sigma(w^T x))|$. MLE: $\hat{R}(w) = \sum_{i=1}^n \log(1 + i)$ MLE prior: $\hat{p}_y = \frac{\#y}{n}$, MLE feat. distr.: $\hat{\mu}_k =$ principal components. Choose k by CV for fea- $|exp(-y_i w^T x_i)\rangle$, is convex and $\nabla_w \ell_w =$ ture ind. or s.t. var is explained (see k-Means). $\frac{1}{\#y}\sum_{i:y_i=y}x_i$ and $\Sigma_y=\frac{1}{\#y}\sum_{i:y_i=y}(x_i-y_i)$ $\frac{1}{1+exp(-yw^Tx)}exp(-yw^Tx)(-yx)$, and Kernel PCA: $w = \sum_{j=1}^{n} \alpha_j \phi(x_j)$, $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, $\arg \max_{||w||_2=1} \sum_{i=1}^{n} (w^T \phi(x_i))^2 =$ $|\hat{\mu}_y|(x_i - \hat{\mu}_y)^T$. $f(x) = \log \frac{p}{1-p} + \frac{1}{2} [\log \frac{|\Sigma_-|}{|\hat{\Sigma}_+|} +$ $|exp(-yw^Tx)| = 1$ if misclassified. Thus $\nabla_w \ell_w = \frac{-yx}{1 + exp(yw^Tx)}$. With L2 regular- $|((x-\hat{\mu}_{-})^T\hat{\Sigma}_{-}^{-1}(x-\hat{\mu}_{-}))-((x-\hat{\mu}_{+})^T\hat{\Sigma}_{-}^{-1}(x-\hat{\mu}_{-}))|$ $\arg\max_{\alpha_T K \alpha = 1} \alpha^T K^T K \alpha, \alpha^{(i)} = v_i / \sqrt{\lambda_i}$ $|\hat{\mu}_+))$]. Capt. corr. of feat., no overconf., # izer, take step in direction $w(1-2\lambda\eta_t)$ – New point: $z_i = w^{(i)T}x = \sum_{j=1}^n \alpha_j^{(i)} k(x, x_j)$ Centering a kernel: K' = K - KE - EK + $|\eta_t \nabla_w \ell_w(y,x)|$. Nonlinear classification via param. = $O(cd^2)$, compl. quadr. in d.

 $|\mathbb{E}_{u}[C(y,a) \mid x]$. Asymmetric costs: As-**Conjugate distr.**: Posterior is same family as sume $A = \{-1, +1\}, c_{FP}, c_{FN} > 0$. Let prior. Ex.: Beta $(\theta, \alpha_+, \alpha_-)$ and Beta $(\theta, n_+ +$ $|P(y \mid x) = p$, then $\mathbb{E}_{y}[C(y, +1)] = (1 - p)c_{FP}$ 12' Generalized Mixture Models and $\mathbb{E}_{y}[C(y,-1)] = pc_{FN}$. Predict +1 when $p > \frac{c_{FP}}{c_{FP} + c_{FN}}$. Uncertainty sampling: Ask Labels maybe unknown, want to cluster data. Model $P(x,\theta)$ as conv. comb. of Gauss. user to label example we most uncertain about: distr.: $\sum_{i=1}^{c} w_i \mathcal{N}(x; \mu_i, \Sigma_i)$ with $w_i >$ $|i_t \in \arg\min_i |0.5 - \hat{P}(Y_i|x_i)|$. Active learning $|0 \text{ and } \sum_i^{i-1} w_i| = 1$. $(\mu^*, \Sigma^*, w^*) = 1$ violates i.i.d. assumption. 11 Generative Modeling $\operatorname{arg\,min} - \sum_{i=1}^{n} \log \sum_{j=1}^{k} w_j \mathcal{N}(x_i; \mu_j, \Sigma_j).$ Est. *joint distribution* P(X, Y) instead of Constr. (Σ p.s.d.) hard to maint. in SGD. Fit- $P(Y \mid X)$. Pred. y = sign(f(x))ting GMM = Train a GBC without labels. Hard-EM: E-step: Pred. most likely class for Cond. distr. derived from joint: 1. Est. |P(Y), 2. Est. $P(x|y)\forall y, 3$. Use Bayes' all x_i : $z_i^{(t)} = \arg \max_z P(z \mid x_i, \theta^{(t-1)}) = 0$ rule: P(y|x) = P(y)P(x|y)/P(x) where $\arg \max_{z} P(z|\theta^{(t-1)})P(x_i|z,\theta^{(t-1)})$ with $|P(x)| = \sum_{y'} P(x, y')$. For c = 2 discriminant $\theta^{(t)} = [w_{1:c}^{(t)}, \mu_{1:c}^{(t)}, \Sigma_{1:c}^{(t)}]$. M-step: Comp. $\theta^{(t)}$ as function $f(x) = \log \frac{P(Y=1|x)}{P(Y=-1|x)}$, which is +1 if MLE as for GBC: $\theta^{(t)} = \arg \max_{\theta} P(D^{(t)} \mid \theta)$. Too much info extr. from each label, overlap- $P(Y = 1 \mid x) > 0.5$. Naive Bayes: Model y as categorical, and ping clusters not detected, fixed label if model uncertain. k-Means Algo is equiv. to Hard-EM features conditionally independent given if $w_j \equiv 1/k$ and $\Sigma_j = I \cdot \sigma^2$. |y|, e.g. Gaussian NB, assumes $P(x_i|y) =$ **Soft-EM**: $\gamma_i(x)$ is prob. x in clust. j: $\gamma_i(x) =$ $|\mathcal{N}(x_i|\mu_{y,i},\sigma_{y,i}^2)$. Is linear class., equiv. to log.

reg. if assumpt. are met. $f(x) = w^T x + w_0$

 $P(Z=j\mid x, \Sigma, \mu, w) = \frac{w_j P(x|\Sigma_j, \mu_j)}{\sum_{\ell} w_{\ell} P(x|\Sigma_{\ell}, \mu_{\ell})}$ E-Step: Calculate prob $\gamma_i(\vec{x}_i)$ for all i, j based

to $\Sigma_{\dot{i}}^{(t)} \to \text{Wishart-prior.}$

label y_i : $\gamma_i^{(t)}(x_i) = [j = y_i]$

on $\mu^{(t-1)}$, $\Sigma^{(t-1)}$ and $w^{(t-1)}$.

M-Step: Adjust parameters: $w_i^{(t)} =$

 $\sum_{i=1}^{(t)} \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})(x_{i} - \mu_{j}^{(t)})^{T}$

 $\left| \frac{1}{n} \sum_{i=1}^{n} \gamma_j^{(t)}(x_i), \mu_j^{(t)} \right| = \frac{\sum_{i=1}^{n} \gamma_j^{(t)}(x_i) x_i}{\sum_{i=1}^{n} \gamma_i^{(t)}(x_i)} \text{ and }$

 $\Delta_j = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$. Init. sensitive, nonconvex objective. Init. w

with unif. distr., μ by k-means++ and Σ as

spherical (acc. to emp. var. in data). Choose

k via CV. Avoid degeneracy by add. term $\nu^2 I$

Semi-supervised learning: For points with

GANs: $\min_{w_G} \max_{w_D} \mathbb{E}_{x \sim \text{Data}} \log D(x; w_D) +$

 $\mathbb{E}_{x \sim \mathcal{N}} \log(1 - D(G(\bar{z}; w_G); w_D)), \text{ Mode Col-}$

lapse: gen. prod. limit. variety of samples,

Data memorization, Simult. training \rightarrow os-

cillations, Can't comp. likelih. on holdout set.

Fischer's LDA: Assume p = 0.5 and

 $|\hat{\mu}_{-}| + \frac{1}{2} \left(\hat{\mu}_{-}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{-} - \hat{\mu}_{+}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{+} \right).$

 $|\hat{\Sigma} - \hat{\Sigma}| = \hat{\Sigma} + \hat{\Sigma}$. Then $f(x) = x^T \hat{\Sigma}^{-1} (\hat{\mu}_+ - \hat{\mu}_+)$

Equiv. to log. reg. if assump. are met. LDA

can be viewed as proj. to a 1-dim. subsp. that

maxes ratio of between-class and within-class var.. PCA (k=1) maxes the var. of the res. 1-

dim. proj.. Gen. model, used to detect out-

liers, not rob. against viol. of normality of X