微分積分の応用

2022.9.26

微分の応用

関数の増減

- 関数 y = f(x)
- xが右に動くにつれて
 - (i) yの値が増えていくとき

増加の状態

(ii) yの値が減っていくとき減少の状態

関数の増減

- 関数 y = f(x)
- x が右に動くにつれて
 - (i) yの値が増えていくとき

増加の状態

(ii) yの値が減っていくとき減少の状態

課題 0926-1 図で次の状態である点の番号をすべてあげよ.

[1] 増加の状態 [2] 減少の状態 [3] どちらでもない

• 接線の傾きは導関数の値(微分係数)

• 接線の傾きは導関数の値(微分係数)

(i) 増加の状態のとき

(ii) 減少の状態のとき

- 接線の傾きは導関数の値(微分係数)
 - (i) 増加の状態のとき 接線の傾きは正 y'>0
 - (ii) 減少の状態のとき 接線の傾きは負 y' < 0

- 接線の傾きは導関数の値(微分係数)
 - (i) 増加の状態のとき 接線の傾きは正 y'>0
 - (ii) 減少の状態のとき 接線の傾きは負 y' < 0
- 増加減少が変化する点
 - (i) 増加から減少に変わるとき 極大
 - (ii) 減少から増加に変わるとき 極小

- 接線の傾きは導関数の値(微分係数)
 - (i) 増加の状態のとき 接線の傾きは正 y'>0
 - (ii) 減少の状態のとき 接線の傾きは負 y' < 0
- 増加減少が変化する点
 - (i) 増加から減少に変わるとき 極大 その近くでは最大
 - (ii) 減少から増加に変わるとき 極小

- 接線の傾きは導関数の値(微分係数)
 - (i) 増加の状態のとき 接線の傾きは正 y'>0
 - (ii) 減少の状態のとき 接線の傾きは負 y' < 0
- 増加減少が変化する点
 - (i) 増加から減少に変わるとき
 - (ii) 減少から増加に変わるとき

極大 その近くでは最大

極小 その近くでは最小

● 極大 (極小) となる点を極値点

- 極大 (極小) となる点を極値点
- ullet 極値点では y'=0

- 極大 (極小) となる点を極値点
- ullet 極値点では y'=0 極大点 増加から減少に変わる

- 極大 (極小) となる点を極値点
- 極値点では y' = 0
 極大点 増加から減少に変わる
 極小点 減少から増加に変わる

- 極大 (極小) となる点を極値点
- 極値点では y' = 0
 極大点 増加から減少に変わる
 極小点 減少から増加に変わる
- ullet y'=0でも極値点でない点もある

- 極大 (極小) となる点を極値点
- y'=0 極値点では y'=0 極大点 増加から減少に変わる 極小点 減少から増加に変わる
- ullet y'=0でも極値点でない点もある

- 極大 (極小) となる点を極値点
- y'=0 極値点では y'=0 極大点 増加から減少に変わる 極小点 減少から増加に変わる

ullet y'=0でも極値点でない点もある

例
$$y=x^3-3x^2$$

「導関数の意味」を用いてグラフを描けばよい.

- 極大 (極小) となる点を極値点
- 極値点では y' = 0
 極大点 増加から減少に変わる
 極小点 減少から増加に変わる
- ullet y'=0でも極値点でない点もある

例
$$y=x^3-3x^2$$

「導関数の意味」を用いてグラフを描けばよい.

計算では
$$y'=3x^2-6x=3x(x-2)$$

- 極大 (極小) となる点を極値点
- 極値点では y' = 0
 極大点 増加から減少に変わる
 極小点 減少から増加に変わる
- $\bullet \ y' = 0$ でも極値点でない点もある

例
$$y=x^3-3x^2$$

「導関数の意味」を用いてグラフを描けばよい.

計算では
$$y'=3x^2-6x=3x(x-2)$$
 $y'=0$ となる点は, $x(x-2)=0$ より $x=0$

極値点(課題1)

アプリ「導関数の意味」を用いよ

課題 0926-2 次の関数について,極値点を求めよ.

$$[1] \ y = x^3 - 6x^2 + 9x$$

[2]
$$y = x^4 - 2x^2 + 1$$

$$[3] y = x^2 e^x$$

極値点 (課題2)

アプリ「導関数の意味」を用いよ

課題 0926-3 次の関数について,極値点を求めよ.

[1]
$$y = \log x - x$$
 (0 < $x \le 3$)
入力書式 $\log(x)-x^2(2)x=+,5$

[2]
$$y = \sin x + \cos x$$
 $(0 \le x \le 2\pi)$
入力書式 $\sin(x) + \cos(x) = 0,2pi$

$$[3] y = \sin^2 x \ (0 \le x \le \pi)$$

入力書式 sin(2,x)x=0,pi

[2] [3] 解はπを整数で割った形

 $\bullet \ y'=0$ となる点と間の範囲での増減の様子を書いた表

 $\bullet \ y' = 0$ となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

 $\bullet \ y' = 0$ となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

(1)
$$y'$$
を求める、 $y'=3x^2-6x=3x(x-2)$

 $\bullet \ y' = 0$ となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

$$(1)\; y'$$
を求める、 $y'=3x^2-6x=3x(x-2)$

$$(2)$$
 $y'=0$ となる点を求める. $y'=0$ より $x=0,2$

 $\bullet y' = 0$ となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- $(1)\; y'$ を求める、 $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる

ullet y'=0となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- $(1)\; y'$ を求める、 $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる

x	0	2	
y'			
$oldsymbol{y}$			

 $\bullet y' = 0$ となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- $(1)\; y'$ を求める. $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる

$oldsymbol{x}$	• • •	0	• • •	2	• • •
y'					
$oldsymbol{y}$					

 $\bullet y' = 0$ となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- $(1)\; y'$ を求める. $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる
- (4) (3) の x の下に 0 を書く

$oldsymbol{x}$	• • •	0	• • •	2	• • •
y'		0		0	
$oldsymbol{y}$					

ullet y'=0となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- $(1)\; y'$ を求める、 $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる
- (4) (3) の x の下に 0 を書く
- (5) 各範囲のy'の符号を書く

$oldsymbol{x}$	• • •	0	• • •	2	• • •
y'		0		0	
$oldsymbol{y}$					

ullet y'=0となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- $(1)\; y'$ を求める、 $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる
- (4) (3) の x の下に 0 を書く
- (5) 各範囲の y' の符号を書く $x=-1,\,y'>0,\,...$

\boldsymbol{x}	• • •	0	• • •	2	• • •
y'	+	0	1	0	+
$oldsymbol{y}$					

 \bullet y'=0となる点と間の範囲での増減の様子を書いた表

例
$$y=x^3-3x^2$$

- (1) y'を求める. $y'=3x^2-6x=3x(x-2)$
- (2) y'=0 となる点を求める. y'=0 より x=0,2
- (3) 増減表を書き,y'=0となる点を書き入れる
- (4) (3) の x の下に 0 を書く
- (5) 各範囲の y' の符号を書く $x=-1,\,y'>0,\,...$
- (6) + は増加, は減少

$oldsymbol{x}$	• • •	0	• • •	2	• • •
y'	+	0	1	0	+
$oldsymbol{y}$	1		X		1

増減表 (課題)

課題 0926-4 関数 $y=x^4-4x^3$ について,問いに答えよ.

- $[1] \ y' = 4x^2(x-3)$ となることを示せ
- [2] y'=0 となるxを求めよ
- [3] 増減の1行目に入れる数式記号を左から順に書け
- [4] 増減の2行目に入れる数式記号を左から順に書け
- [5] 増減の3行目に入れる矢印記号を左から順に書け
 - ··· 点々 {\nearrow}

hspace*2zw/ 右上 {\nearr

✓ 右下 {\searrow}

	\boldsymbol{x}			
?	y }			
	y			
,				

 $|| \triangleleft$

積分の応用

定積分と面積

面積
$$S$$
,定積 $eta I = \int_a^b f(x) \, dx$

ullet $a \leq x \leq b$ でf(x)が正のとき $oxed{S=I}$

定積分と面積

面積
$$S$$
,定積 $eta I = \int_a^b f(x) \, dx$

 $oldsymbol{a} = a \leq x \leq b$ でf(x) が正のとき S = I $S = \int_1^2 (4-x^2) \, dx = \left[4x - rac{1}{3}x^3
ight]_1^2 = rac{5}{3}$

定積分と面積

面積
$$S$$
,定積 $eta I = \int_a^b f(x) \, dx$

- ullet $a \leq x \leq b$ で f(x) が正のとき S = I $S = \int_1^2 (4-x^2) \, dx = \left[4x rac{1}{3}x^3
 ight]_1^2 = rac{5}{3}$
- ullet $a \leqq x \leqq b$ でf(x)が負のとき S=-I

定積分と面積

面積
$$S$$
,定積 $eta I = \int_a^b f(x) \, dx$

- ullet $a \leq x \leq b$ で f(x) が正のとき S = I $S = \int_1^2 (4-x^2) \, dx = \left[4x rac{1}{3}x^3
 ight]_1^2 = rac{5}{3}$
- ullet $a \leq x \leq b$ で f(x) が負のとき S = -I $I = \int_2^3 (4-x^2) \, dx = \left[4x rac{1}{3}x^3
 ight]_2^3 = -rac{7}{3}$ $S = -I = rac{7}{3}$

$$S = S_1 - S_2 = \int_a^b (f(x) - g(x)) dx$$

$$S = S_1 - S_2 = \int_a^b (f(x) - g(x)) dx$$

$$S = S_1 - S_2 = \int_a^b (f(x) - g(x)) dx$$

$$S = S_1 - S_2 = \int_a^b (f(x) - g(x)) dx$$

区間
$$a \le x \le b$$
 で $f(x) \ge g(x)$ とする

上から下の関数を引いて積分

例題)
$$y=x^2-2x$$
 と $y=2x-3$ で囲まれる図形

解) 交点を求める

$$x^2 - 2x - (2x - 3) = 0$$
 より $x^2 - 4x + 3 = 0$ $(x - 1)(x - 3) = 0$

これから x=1, 3

図より、
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x-3-x^2+2x)\,dx = rac{4}{3}$$

例題)
$$y=x^2-2x$$
 と $y=2x-3$ で囲まれる図形

$$x^2-2x-(2x-3)=0$$
より $x^2-4x+3=0$ $(x-1)(x-3)=0$ これから $x=1,3$

図より,
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

例題)
$$y=x^2-2x$$
 と $y=2x-3$ で囲まれる図形

$$x^2-2x-(2x-3)=0$$
 より $x^2-4x+3=0$ $(x-1)(x-3)=0$ これから $x=1,3$

図より,
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

例題) $y=x^2-2x$ と y=2x-3 で囲まれる図形

$$x^2-2x-(2x-3)=0$$
 より $x^2-4x+3=0$ $(x-1)(x-3)=0$ これから $x=1,3$

図より,
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

例題)
$$y=x^2-2x$$
 と $y=2x-3$ で囲まれる図形

$$x^2-2x-(2x-3)=0$$
 より $x^2-4x+3=0$ $(x-1)(x-3)=0$ これから $x=1,3$

図より,
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

例題) $y=x^2-2x$ と y=2x-3 で囲まれる図形

$$x^2-2x-(2x-3)=0$$
より $x^2-4x+3=0$ $(x-1)(x-3)=0$ これから $x=1,3$

図より,
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

例題)
$$y=x^2-2x$$
 と $y=2x-3$ で囲まれる図形

$$x^2 - 2x - (2x - 3) = 0$$
 より $x^2 - 4x + 3 = 0$ $(x - 1)(x - 3) = 0$

図より、
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x-3-x^2+2x)\,dx = rac{4}{3}$$

例題)
$$y=x^2-2x$$
 と $y=2x-3$ で囲まれる図形

$$x^2-2x-(2x-3)=0$$
 より $x^2-4x+3=0$ $(x-1)(x-3)=0$ これから $x=1,3$

図より,
$$1 \le x \le 3$$
のとき $2x-3 \le x^2-2x$

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

例題) $y=x^2-2x$ と y=2x-3 で囲まれる図形

解)交点を求める

$$x^2 - 2x - (2x - 3) = 0$$
 より $x^2 - 4x + 3 = 0$ $(x - 1)(x - 3) = 0$

これから x=1, 3

したがって
$$S = \int_1^3 (2x - 3 - x^2 + 2x) \, dx = rac{4}{3}$$

課題(曲線で囲まれる図形の面積1)

アプリ「関数のグラフ」を用いよ.

- 課題 0926-5 曲線 $y=x^2-4x$ について,問いに答えよ
 - [1] 曲線とx軸との交点のx座標を求めよ
 - [2] 曲線とx軸で囲まれる図形の面積Sを求めよ
- 課題 0926-6 $y=-x^2+2$ と y=x で囲まれる図形を考える
 - [1] 曲線と直線の交点のx座標を求めよ
 - [2] 面積 S を積分で表せ
 - [3] 面積 S を求めよ

課題(曲線で囲まれる図形の面積2)

アプリ「関数のグラフ」を用いよ.

課題 0926-7 $y=\sin x$ と $y=\cos x$ で囲まれる図形を考え る. ただし, $0 \le x \le 2\pi$ とする.

- [1] 2 曲線の交点のx 座標を求めよ
- [2] 面積 S を積分で表せ
- [3] 面積 S を求めよ
- 注) 次の積分公式とアプリ「三角関数の値」を用いよ

$$\int \sin x \, dx = -\cos x, \ \int \cos x \, dx = \sin x$$

課題(曲線で囲まれる図形の面積3)

アプリ「関数のグラフ」を用いよ.

課題 0926-8 曲線 $y=e^x$, $y=e^{-x}$ と y 軸に平行な直線 x=1で囲まれる図形を考える.

- [1] 2 曲線の交点のx 座標を求めよ
- [2] 面積 S を積分で表せ
- [3] 面積 S を求めよ
- 注)次の積分公式を用いよ

$$\int e^x\,dx=e^x,\;\int e^{-x}\,dx=-e^{-x}$$