01076006 Digital System Fundamentals 2563/1

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 5 BCD to 7Segment และวงจรนับ วัตถุประสงค์

- 1. เพื่อให้เข้าใจการทำงานของ BCD to 7 Segment
- 2. เพื่อให้สามารถออกแบบวงจรนับแบบ Synchronous ได้
- 3. เพื่อให้สามารถสร้างวงจรนับที่ออกแบบโดยใช้ JK Flip Flop ได้
- 4. เพื่อให้สามารถสร้างวงจรนับที่ออกแบบโดยใช้ โมดูล Counter ได้
- 5. เพื่อให้สามารถใช้งานโปรแกมช่วยออกแบบ ISE WebPack ได้

<u>บทนำ</u>

7 Segment Display

คือ ไดโอดเปล่งแสงแบบเลขเจ็ดส่วนเป็น LED (Light Emitting Diode) ที่นำมาจัดวางรูปแบบ แสดงผลตัวเลข และตัวอักษรภาษาอังกฤษบางตัว 7-Segment ประกอบด้วย LED จำนวนแปดตัว ดังรูปที่ 1 (ล่าง) คือ A, B, C, D, E, F, G, และ DP โดยเชื่อมต่อวงจรในสองแบบคือ Common Anode กับ Common Cathode ดังรูปที่ 1 (บน)

Common Anode คือจุดเชื่อมต่อของ LED ทั้งแปดดวงเชื่อมต่อกันหมดที่ขา Anode ส่วน Common Cathode คือจุดเชื่อมต่อของ LED ทั้งแปดดวงเชื่อมต่อกันหมดที่ขา Cathode หรือจำง่ายๆ ว่า Common Anode รวมจุดไฟบวกไว้ด้วยกัน Common Cathode รวมจุดไฟลบไว้ด้วยกัน

รูปที่ 1 แสดง 7 Segment Display

JK Flip Flop Characteristic Table

PRESET	<u>CLEAR</u>	J	K	Clk	Q	\overline{Q}	State
0	1	X	X	X	1	0	Set
1	0	X	X	X	0	1	Reset
0	0	X	X	X	1	1	Unused
1	1	0	1	lacksquare	0	1	Reset
1	1	1	0	lacksquare	1	0	Set
1	1	0	0	X	Q	\overline{Q}	Unchanged
1	1	1	1	1	\overline{Q}	Q	Toggle

JK Flip Flop Excitation Table

Present State	Next State	In	put	
Q	Q	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

7447/48

7447/48 เป็นไอซีที่ใช้ในการแปลงสัญญาณดิจิตอลขนาด 4 บิทไปเป็นสัญญาณที่ใช้ในการควบคุม 7 segment โดยให้ศึกษาการทำงานโดยละเอียดของไอซีเบอร์ 7447(48) ได้จาก Datasheet

7493 Synchronous 4-Bit Binary Counter

7493 คือ ไอซีที่ใช้เป็นวงจรนับแบบใบนารีขนาดสูงสุด 4 บิตแบบนับขึ้น โดยภายในบรรจุ JK Flip Flop เชื่อมต่อแบบ master/slave จำนวน 4 ตัว นอกจากนี้ไอซี 7493 มีสัญญาณรีเซต 2 สัญญาณ ได้แก่ $R_{0(1)}$ และ $R_{0(2)}$ เมื่อสัญญาณทั้งสองเป็นลอจิก 0 ทั้งคู่ JK Flip Flop ทุกตัวจะอยู่ในสถานะรีเซต ศึกษา รายละเอียดการทำงานเพิ่มเติมได้จาก datasheet

<u>การทดลอง</u>

- 1. ให้นักศึกษาออกแบบวงจรถอดรหัสเลขฐานสองขนาด 4 บิท ไปเป็นข้อมูลที่ใช้ขับสัญญาณให้ตัว 7 segment คล้ายกับไอซี 7447/48 แต่กำหนดให้แก้ไขการแสดงเลข 9 จาก ให้เป็น ส่วนแลข ยังคงเป็นเลขเดิม ไม่ใช่ แล้วทดสอบการทำงานบนบอร์ด FPGA
- 2. ให้นักศึกษาออกแบบวงจรนับขึ้นจาก 1 ไป 6 (1 2 3 4 5 6 1 . . .) แบบ Synchronous (1-to-6 Synchronous Counter) โดยทำทั้งแบบที่ใช้ JK Flip Flop และแบบที่ใช้ โมดูล Counter แล้วทดสอบ การทำงานบนบอร์ด FPGA
 - 1.1 สร้างตารางค่าการนับ (Output, State transition)
 - 1.2 สร้างตารางความจริง (Truth Table) ของทุกๆ อินพุตของฟลิบฟลอบทุกตัว
 - 1.3 หาสมการอินพุตของฟลิบฟลอบด้วยวิธีพีชคณิตบูลีนหรือ K-Map
 - 1.4 วาดไดอะแกรมของวงจรบน ISE WebPack โดยใช้ JK Flip Flop มาต่อกัน
 - 1.5 ทดสอบการโดยการ Download ลงบอร์ด FPGA
 - 1.6 วาดไดอะแกรมของวงจรบน ISE WebPack โดยใช้ โมดูล Counter
 - 1.7 ทดสอบการโดยการ Download ลงบอร์ด FPGA

001	•
0 I O	•
0	••
160	••
101	
110	•
\\\\\\\\\	• •
	• •
	•
	•

Logic Diagram (JK Flip Flop)
Logic Diagram (JK Flip Flop)
Logic Diagram (JK Flip Flop)
Logic Diagram (JK Flip Flop)

- 3. แก้ไขเพิ่มเติมวงจรนับในข้อ 2 โดยเพิ่ม การแสดงผลบน 7 segment โดยใช้วงจรถอดรหัสจากข้อ 1 แล้ว แสดงผลบน 7 segment บน FGPA โดยต่อสัญญาณ Clock ของวงจรนับเข้ากับสวิทซ์กดติดปล่อยดับ 1 ตัวบนบอร์ด FPGA
- 4. ทดสอบการทำงานให้สมบูรณ์ แล้วส่งตรวจ

ใบตรวจการทดลองที่ 5

วัน/เดือน/ปี	🗆 กลุ่มเช้า 🔲 กลุ่มบ่าย 🗆 กลุ่มเย็น กลุ่มที่
รหัสนักศึกษา	ชื่อ-นามสกุล
การตรวจการทดลอ	ง บันทึกคะแนนแล้ว
การทดลองข้อ 4	ลายเซ็นผู้คุมการทดลอง