

Konstantinos Michmizos Computational Brain Lab

Logistics

- Pitch Talk
 - what we are asking
 - what we want from you
 - Top-5

• Assignment 2

• Assignment 1 is due ... shortly

What does motor cortex encode

- Primary motor cortex neurons fire 5-100 msec before the onset of a movement
- Primary motor cortex encodes the force of a movement
- Primary motor cortex encodes the direction of movement
- Primary motor cortex encodes the extent of movement
- Primary motor cortex encodes the speed of movement

Hubel & Wiesel, 1959

1981: Nobel Prize in Physiology

Question

How you would combine simple cells to detect complex stimuli?

Questions

- How could we combine simple cells to detect complex stimuli?
- Why line detectors?
- Why orientation?
- How fast this process is?
 - How does the brain compensate for the lack of speed?

Encoding Data into Spikes

• Input = Spikes

Transduction of an image to spikes

- Efficient retinal representation
- Maintains the key aspects of the input signal, but removes some of the data
 - How to decide on data removal?
- Convert the input information to a spiking representation over time

Image to spikes

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.2	0.3	0.6	0.6	0.6	0.6	0.3	0	0	0	0
0	0	0	0	0.5	0.9	1	8.0	8.0	0.9	1		0.5	0	0	0
0	0	0	0.2	0.9	0.5	0.2	0.1	0	0.1	0.2	0.6	0.3	0	0	C
0	0	0	0.2	0.9	0.2	0	0	0	0	0	0.1	0.3	0	0	(
0	0	0	0	0.9	0.6	0	0	0	0	0.3	0.7	1	0.1	0	(
0	0	0	0	0.5	1	0.6	0.1	0.3	0.7		0.9	0.4	0	0	(
0	0	0	0	0	8.0		0.9	1	0.9	0.6	0.1	0	0	0	(
0	0	0	0	0	0.8	0.9	0.8	1	0.4	0	0	0	0	0	(
0	0	0	0	0.1	8.0	0.3	0	0.6	0.8	0.1	0	0	0	0	(
0	0	0	0	0	0.7	0.3	0	0	8.0	0.2	0	0	0	0	(
0	0	0	0	0	0.6	8.0	0.5	0.7	0.8	0.1	0	0	0	0	(
0	0	0	0	0	0.1	0.6	8.0	0.6	0.3	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(

Encoding Images as Neural Spikes

Encoding complicated images

Number of Spikes proportional to the

intensity level of the edge

Timing of the spikes does not matter – we are just counting them

