ЧИСЛО ОСТОВОВ В СВЯЗНОМ ОБЫКНОВЕННОМ ГРАФЕ

Лемма 1. Пусть H — обыкновенный (n, n-1)-граф, $n \ge 2$, I — матрица инцидентности некоторой его ориентации, M — произвольный минор порядка n-1 матрицы I. Тогда

- 1) если H не является деревом, то M=0;
- 2) если H дерево, то $M = \pm 1$.

Доказательство. Заметим, что смена нумерации вершин и нумерации ребер графа *H* приводит к перестановке строк и перестановке столбцов матрицы *I*. Рассматриваемый минор при этом может сменить лишь знак.

Пусть v — вершина, соответствующая строке матрицы I, не вошедшей в матрицу минора M.

- 1) Пусть H не является деревом. Тогда граф H несвязен. Пусть v_1, \ldots, v_t множество вершин некоторой компоненты связности H_1 графа H, не содержащей v.
- **1.1.** Если t = 1, то v_1 изолированная вершина и в матрице минора M имеется нулевая строка, поэтому M = 0.

1.2. Пусть t > 1. С помощью подходящей перестановки вершин и ребер из H матрицу I приведем к клеточному виду, где I_1 — матрица инцидентности ориентации компоненты H_1 , а вершине v отвечает строка, не проходящая через I_1 .

Каждый столбец, проходящий через I_1 , содержит точно одну единицу и точно одну -1 (остальные элементы равны нулю).

Следовательно, сумма первых t строк равна 0. Так как они входят в матрицу минора M, имеем M=0.

2) Пусть H является деревом.

Заново перенумеруем вершины и ребра графа Н с помощью следующей процедуры.

В качестве v_1 возьмем одну из висячих вершин дерева H, отличную от v. Через e_1 обозначим инцидентное ей висячее ребро.

Рассмотрим дерево $H_1 = H - v_1$. Если его порядок $\geqslant 2$, то через v_2 обозначим одну из висячих вершин, отличных от v, а через e_2 — инцидентное ей висячее ребро. Положим $H_2 = H_1 - e_2$.

Продолжаем этот процесс до тех пор, пока не получим одноэлементное дерево H_{n-1} , единственной вершиной которого обязательно будет вершина v. Получим нумерацию вершин $v_1, \ldots, v_n = v$ и нумерацию ребер e_1, \ldots, e_{n-1} . В новой нумерации матрица I приведется к виду:

Теперь ясно, что $M = \pm 1$ и **лемма** доказана.

Пусть P и Q — соответственно $(s \times t)$ -матрица и $(t \times s)$ -матрица, где $s \leqslant t$.

Положим C = PQ.

Минор порядка s матрицы Q называется coombemcmbyющим минором минору порядка <math>s матрицы P, если множество номеров строк, составляющих матрицу минора матрицы Q, равно множеству номеров столбцов, составляющих матрицу минора матрийы P.

Формула Бине–Коши. Определитель матрицы C равен сумме всевозможных попарных произведений миноров порядка s матрицы P на соответствующие миноры матрицы Q.

Доказательство можно найти в книге Гантмахера «Теория матриц» на стр. 20.

Заметим, что при s=t формула Бине–Коши утверждает, что определитель произведения двух квадратных матриц порядка s равен произведению определителей этих матриц.

Теорема 1 (Кирхгоф, 1847). Число остовов в связном не одноэлементном обыкновенном графе G равно алгебраическому дополнению любого элемента его матрицы Кирхгофа.

Доказательство. Пусть G — произвольный связный обыкновенный (n, m)-граф, $n \ge 2$ и I — матрица инцидентности некоторой ориентации графа G. Заметим, что $m \ge n-1$ в силу связности графа G. В силу ранее доказанного выполняется

$$B = B(G) = I \cdot I^{\mathsf{T}}$$
.

Пусть B' — подматрица матрицы B, полученная удалением последней строки и последнего столбца, а J — подматрица матрицы I, полученная удалением последней строки. Тогда имеем

$$B' = J \cdot J^{\mathsf{T}},$$

где $J-((n-1)\times m)$ -матрица. Очевидно, $B_{nn}=\det B'$ есть алгебраическое дополнение элемента β_{nn} в матрице Кирхгофа B. В силу формулы Бине–Коши B_{nn} равно сумме квадратов всех миноров порядка n-1 матрицы J. Согласно лемме 1 каждый такой минор M равен ± 1 , если остовный подграф графа G, ребра которого соответствуют столбцам, вошедшим в матрицу минора M, является деревом, и равен 0 в другом случае.

Следовательно, B_{nn} равно числу остовов графа G. Осталось отметить, что алгебраические дополнения всех элементов матрицы Кирхгофа одинаковы.

Следствие. Число остовов в полном графе K_n равно n^{n-2}

Доказательство. Утверждение очевидно для n = 1 и n = 2. Пусть n > 2. Мы имеем

$$B(K_n) = \begin{bmatrix} n-1 & -1 \\ -1 & n-1 \\ -1 & -1 \end{bmatrix}$$

$$B_{1f} = \begin{vmatrix} n-1 & -1 & \dots & -1 \\ -1 & n-1 & \dots & -1 \\ -1 & -1 & \dots & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & \dots & 1 \\ -1 & n-1 & \dots & -1 \\ -1 & -1 & \dots & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & \dots & 1 \\ 0 & n & \dots & 0 \\ -1 & -1 & \dots & -1 \end{vmatrix} = n^{n-2}$$

Так как число остовов в полном графе Kn равно числу помеченных деревьев порядка n, т. е. числу деревьев на множестве вершин $1, 2, \ldots, n$, следствие эквивалентно следующему утверждению.

Теорема 2 (**Кели**, 1897). Число помеченных деревьев порядка n равно n^{-2}

Задача об остове минимального веса: построить алгоритм, который во взвешенном графе (G, w) находит остов минимального веса.

Так в K_n число остовов экспоненциально зависит от n, было бы нерационально решать задачу об остове минимального веса, основываясь на переборе всех остовов. Имеются алгоритмы, которые решают эту задачу за полиномиальное время.

Густав Роберт Кирхгоф.

Член Берлинской академии наук, иностранный член Лондонского королевского общества, член-корреспондент Петербургской академии наук, Парижской академии наук.

Дата и место рождения: 12 марта 1824 г., <u>Кёнигсберг</u>

Дата и место смерти: 17 октября 1887 г., <u>Берлин, Германия</u>

Полное имя: Gustav Robert Kirchhoff

Открытия: Цезий, Рубидий, Спектроскопия, теория электрических цепей

Теорему о числе остовов доказал в 22 года.

Артур Кэли

Дата и место рождения: 16 августа 1821 г., <u>Ричмонд,</u> Великобритания

Дата и место смерти: 26 января 1895 г., <u>Кембридж,</u> Великобритания

Области деятельности: Линейная алгебра (Гамильтона — Кэли), Алгебраическая геометрия, Теория групп, Математика и Химия

