Classical Mechanics by John R. Taylor Notes

Chris Doble

August 2023

Contents

1	Newton's Laws of Motion		
	1.2	Space and Time	1
	1.4	Newton's First and Second Laws; Inertial Frames	1
	1.5	The Third Law and Conservation of Momentum	2
	1.7	Two-Dimensional Polar Coordinates	2
2			2
	2.1	Air Resistance	2
	2.2	Linear Air Resistance	4

1 Newton's Laws of Motion

1.2 Space and Time

• In cartesian coordinates the basis vectors don't depend on time so their derivatives are **0**. This means that

$$\begin{split} \frac{d}{dt}(x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}) &= \frac{dx}{dt}\hat{\mathbf{x}} + x\frac{d\hat{\mathbf{x}}}{dt} + \frac{dy}{dt}\hat{\mathbf{y}} + y\frac{d\hat{\mathbf{y}}}{dt} + \frac{dz}{dt}\hat{\mathbf{z}} + z\frac{d\hat{\mathbf{z}}}{dt} \\ &= \frac{dx}{dt}\hat{\mathbf{x}} + \frac{dy}{dt}\hat{\mathbf{y}} + \frac{dz}{dt}\hat{\mathbf{z}} \end{split}$$

as expected. However, in order coordinate systems (e.g. polar, spherical) the basis vectors may depend on time and their derivatives aren't $\mathbf{0}$.

1.4 Newton's First and Second Laws; Inertial Frames

- Newton's second law $\mathbf{F} = m\mathbf{a}$ can be restated as $\mathbf{F} = \dot{\mathbf{p}}$.
- An inertial frame is one where Newton's first law holds. Typically this means the frame isn't accelerating or rotating.

1.5 The Third Law and Conservation of Momentum

- Forces that act along the line joining two objects are called **central forces**.
- The **principle of conservation of momentum** states that if the net external force \mathbf{F}_{ext} on an N-particle system is zero, the system's total momentum \mathbf{P} is constant.

1.7 Two-Dimensional Polar Coordinates

• In two-dimensional polar coordinates, the unit vectors $\hat{\bf r}$ and $\hat{\phi}$ depend on position and thus time. Their derivatives are

$$\frac{d\hat{\mathbf{r}}}{dt} = \dot{\phi}\hat{\boldsymbol{\phi}}$$
$$\frac{d\hat{\boldsymbol{\phi}}}{dt} = -\dot{\phi}\hat{\mathbf{r}}.$$

Consequently, the derivatives of the position vector $\mathbf{r} = r\hat{\mathbf{r}}$ are

$$\begin{aligned} \frac{d\mathbf{r}}{dt} &= \frac{d}{dt}(r\hat{\mathbf{r}}) \\ &= \dot{r}\hat{\mathbf{r}} + r\frac{d\hat{\mathbf{r}}}{dt} \\ &= \dot{r}\hat{\mathbf{r}} + r\dot{\phi}\hat{\boldsymbol{\phi}} \end{aligned}$$

and

$$\begin{split} \frac{d^2\mathbf{r}}{dt^2} &= \frac{d}{dt}(\dot{r}\hat{\mathbf{r}} + r\dot{\phi}\hat{\boldsymbol{\phi}}) \\ &= \ddot{r}\hat{\mathbf{r}} + \dot{r}\frac{d\hat{\mathbf{r}}}{dt} + \dot{r}\dot{\phi}\hat{\boldsymbol{\phi}} + r\ddot{\phi}\hat{\boldsymbol{\phi}} + r\dot{\phi}\frac{d\hat{\boldsymbol{\phi}}}{dt} \\ &= \ddot{r}\hat{\mathbf{r}} + \dot{r}\dot{\phi}\hat{\boldsymbol{\phi}} + \dot{r}\dot{\phi}\hat{\boldsymbol{\phi}} + r\ddot{\phi}\hat{\boldsymbol{\phi}} - r\dot{\phi}^2\hat{\mathbf{r}} \\ &= (\ddot{r} - r\dot{\phi}^2)\hat{\mathbf{r}} + (r\ddot{\phi} + 2\dot{r}\dot{\phi})\hat{\boldsymbol{\phi}}. \end{split}$$

• In light of the above, Newton's second law in polar coordinates can be written

$$F_r = m(\ddot{r} - r\dot{\phi}^2)$$

$$F_{\phi} = m(r\ddot{\phi} + 2\dot{r}\dot{\phi}).$$

2 Projectiles and Charged Particles

2.1 Air Resistance

• Air resistance depends on the speed v of the moving object. For many objects the direction of the air resistance force \mathbf{f} is opposite to \mathbf{v} , but not always. For example, the air resistance force on an airplane causes lift.

• An air resistance force can be described by the equation

$$\mathbf{f} = -f(v)\hat{\mathbf{v}}$$

where $\hat{\mathbf{v}} = \mathbf{v}/|\mathbf{v}|$ gives the direction and f(v) gives the magnitude.

• f(v) can be approximated as

$$f(v) = f_{\text{lin}} + f_{\text{quad}} = bv + cv^2.$$

- The linear term f_{lin} arises from the viscous drag of the medium and is generally proportional to the projectile's linear size.
- The quadratic term f_{quad} arises from the fact that the projectile must accelerate the air with which it is continually colliding and it is proportional to the density of the medium and the cross-sectional area of the projectile.
- \bullet For a spherical projectile the coefficients b and c above have the form

$$b = \beta D$$
 and $c = \gamma D^2$

where D is the diameter of the sphere and the coefficients β and γ depend on the nature of the medium. In air at STP they have approximate values

$$\beta = 1.6 \times 10^{-4} \,\mathrm{N \, s/m^2}$$

and

$$\gamma = 0.25 \, \mathrm{N \, s^2/m^4}.$$

• Depending on the natures of the medium and projectile it's often possible to neglect one of the terms in f(v). To determine if this is the case we can calculate their ratio. For example, for a spherical projectile at STP

$$\frac{f_{\text{quad}}}{f_{\text{lin}}} = \frac{cv^2}{bv} = \frac{\gamma D}{\beta}v = (1.6 \times 10^3 \,\text{s/m}^2)Dv.$$

If the ratio is large f_{lin} can be ignored. If it's small f_{quad} can be ignored.

• The **Reynolds number** can be used to characterise the behaviour of an object in a fluid

$$R = \frac{\rho}{\mu} Dv$$

where ρ is the medium's density, μ is its viscosity, D is the linear dimension of the projectile (diameter for spherical projectiles), and v is the projectile's speed. The quadratic force $f_{\rm quad}$ is dominant when the Reynolds number R is large and the linear force $f_{\rm linear}$ is dominant when it is small.

2.2 Linear Air Resistance

• When the quadratic drag force is negligible the equation of motion becomes

$$\mathbf{F} = \mathbf{W} - \mathbf{f}$$
$$m\mathbf{a} = m\mathbf{g} - b\mathbf{v}$$
$$m\dot{\mathbf{v}} = m\mathbf{g} - b\mathbf{v}.$$

This is a first-order differential equation for ${\bf v}$ where the horizontal and vertical components can be separated to

$$m\dot{v}_x = -bv_x$$

$$m\dot{v}_y = mg - bv_y,$$

each of which is easily solvable.

• The **terminal speed** of an object undergoing freefall and experiencing only linear drag is

$$v_{\text{ter}} = \frac{mg}{b}$$
.

• The characteristic time

$$\tau = \frac{1}{k} = \frac{1}{b/m} = \frac{m}{b}$$

is a measure of the importance of air resistance.

- For horizontal motion with drag it's a measure of the time it takes for the projectile to reach 1/e of its initial velocity.
- For freefall with drag it's a measure of the time it would take the projectile to reach its terminal velocity if it didn't experience drag

$$v_{\rm ter} = g\tau$$
.

 For freefall with drag it can also be used to gauge what percentage of its terminal velocity a projectile will reach after a certain time:

Time t	Percent of v_{ter}
0	0
au	63%
2τ	86%
3τ	95%

From this it can be seen that after $t=3\tau$ the projectile has effectively reached its terminal velocity.

4