

ESTATICA Y RESISTENCIA DE MATERIALES

UNIDAD Nº12 TORSIÓN

MOMENTO TORSOR

Un elemento está sometido a un esfuerzo de torsión cuando existen fuerzas sobre él que tienden a hacer girar una sección con respecto a otra, es decir tiende a retorcerlo.

Se aplica un momento al eje central de la pieza.

La medida cuantitativa de la tendencia de una fuerza para causar o alterar la rotación de un cuerpo se denomina momento de torsión.

Momento de torsión= (magnitud de fuerza)x(brazo de palanca)

Para secciones no circulares que no son simétricas respecto al eje de la pieza, sus secciones transversales pueden albearse, es decir curvarse.

REGLA DE LA MANO DERECHA

TORSIÓN EN BARRAS DE SECCIÓN CIRCULAR

Considerando una viga de eje recto y de sección circular constante, empotrada en A y libre en B donde es solicitada por un momento torsor M, conocido.

Un punto C_1 de una fibra longitudinal de la sección B sufre respecto a otro punto C de la misma fibra pero de la sección A, separada L de la sección B, un desplazamiento C_1 - C_1 perpendicular a la fibra.

La deformación sufrida por el sólido muestra la existencia de fuerzas tangenciales, que referidas a la unidad de superficie de la sección, definen la TENSIÓN TANGENCIAL o de TORSIÓN, en el plano de la sección τ_{t} .

Por analogía con la ley de Hooke, y de acuerdo a resultados experimentales, puede establecerse que las deformaciones γ son proporcionales a estas tensiones.

$$\tau_{_t} = \gamma \cdot G$$

Siendo G el módulo de elasticidad transversal, expresado en Kg/cm^2 y equivalente aproximadamente a 2/5 de E; y $\gamma=\rho.\phi/L$

$$au_{_{t}}=rac{arphi}{L}\cdot G\cdot
ho$$
 (1)

Esta expresión muestra que las tensiones tangenciales de torsión son proporcionales a ρ , o sea a la distancia al centro de la sección; por consiguiente su máximo valor corresponde a las fibras exteriores del sólido, siendo nulo en el centro.

En la siguiente figura se ha representado por un triángulo rectángulo, cuyos catetos son τ_t y r.

La zona rayada muestra la distribución de las tensiones internas en la sección.

ECUACIÓN DE RESISTENCIA DE LA TORSIÓN

Recordando una de las hipótesis fundamentales de la resistencia de los materiales: *las* fuerzas exteriores dan origen en puntos interiores a fuerzas internas.

En cada punto de la sección se originan fuerzas tangenciales:

$$Q_{\scriptscriptstyle t} = au_{\scriptscriptstyle t} \cdot \Delta \Omega$$

Planteando la ecuación de equilibrio tomando momentos respecto a O1 será:

$$M_{t} = \sum \tau_{t} \cdot \Delta \Omega \cdot \rho$$

Reemplazando a τ_{+} recordando que I_{0} es el Momento de Inercia Polar:

$$M_{t} = \frac{\varphi}{l} \cdot G \sum \Delta \Omega \cdot \rho^{2}$$
 $I_{0} = \sum \Delta \Omega \cdot \rho^{2}$

$$I_0 = \sum \Delta \Omega \cdot \rho^2$$

$$M_{t} = \frac{\varphi}{l} \cdot G \cdot I_{0}$$

Podemos expresar el ángulo unitario de torsión en función de valores conocidos:

$$\frac{\varphi}{l} = \frac{M_t}{G \cdot I_0}$$

El producto $G \cdot I_0$ es el módulo de rigidez de torsión. Reemplazando en (1) el valor de *φ/I* nos queda:

$$\tau_{_t} = \frac{M_{_t}}{I_0} \cdot \rho \qquad (2)$$

Ecuación análoga a la de flexión simple. La tensión es máxima en el contorno donde $\rho = r$ y vale:

$$\tau_{\text{máx}} = \frac{M_{t}}{I_{0}} \cdot r$$

Para la sección circular:

$$I_0 = \frac{\pi \cdot d^4}{32}$$

$$I_0 = \frac{\pi \cdot d^4}{32} \qquad \tau_{m\acute{a}x} = \frac{16 \cdot M_t}{\pi \cdot d^3} \tag{3}$$

VERIFICACIÓN Y CÁLCULO DE ÁRBOLES CIRCULARES MACIZOS SOMETIDOS A TORSIÓN SIMPLE

Los árboles deben transmitir el movimiento de rotación que reciben del motor o desde la polea del otro árbol. El momento de rotación es el producto $P \cdot r$, siendo $P \cdot r$ la fuerza tangencial en la periferia de la polea motora y r su radio.

El momento así producido engendra en el árbol conducido un esfuerzo de torsión, por lo tanto el **momento torsor** que soporta el árbol es prácticamente equivalente al momento de rotación.

En las aplicaciones prácticas el diámetro del árbol debe calcularse conocida la potencia N en CV que debe transmitir. La potencia está dada por la fórmula:

$$N = \frac{P \cdot v}{75} \tag{4}$$

P: fuerza tangencial

v: velocidad periférica de la polea motora (1CV = 75kgm/seg)

$$v = \frac{2 \cdot \pi \cdot r \cdot n}{60}$$

r: radio de la polea motora

n: numero de vueltas por minuto de la polea y del árbol sobre el cual está montada.

Reemplazando v en (3)

$$N = \frac{P \cdot r \cdot 2 \cdot \pi \cdot n}{75 \cdot 60}$$

$$M_{t} = P \cdot r$$

$$N = \frac{M_t \cdot 2 \cdot \pi \cdot n}{75 \cdot 60}$$

Y expresando el momento torsor en kgcm:

$$N = \frac{M_t \cdot 2 \cdot \pi \cdot n}{75 \cdot 60 \cdot 100}$$

$$N = \frac{M_t \cdot 2 \cdot \pi \cdot n}{75 \cdot 60 \cdot 100} \bigg| M_t = \frac{N \cdot 60 \cdot 75 \cdot 100}{2 \cdot \pi \cdot n}$$

Reemplazando el valor de Mt en (3):

$$\tau_{m\acute{a}x} = \frac{16}{\pi \cdot d^3} \frac{N \cdot 60 \cdot 75 \cdot 100}{2 \cdot \pi \cdot n}$$

Despejando:

$$d = 71,45 \cdot 3 \sqrt{\frac{N}{n \cdot \tau_{m\acute{a}x}}} [cm]$$

TRABAJO PRÁCTICO Nº10: DIMENSIONAMIENTO A TORSIÓN

Ejercicio N°1:

Determinar la torsión máxima y el ángulo de rotación total de la barra de sección circular de 50cm de diámetro y de 2500 mm de longitud sometida a un momento torsor de 18,5kNm.

Datos:

Acero tipo F24 - Tensión de fluencia σ_f = 240 Mpa (2400 Kgf/cm²)

 $\sigma_{adm} = 1600 \text{ Kg/cm}^2 = 160 \text{ Mpa}$

 τ_{adm} = 900 Kg/cm² = 90 Mpa

 $E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$

 $G = 800000 \text{ Kg/cm}^2 = 80000 \text{ Mpa}$

 $M_t = 18,5 \text{ KNm} = 188776 \text{ Kgcm}$

$$\tau_{t} = \frac{16 \cdot M_{t}}{\pi \cdot d^{3}} = \frac{16 \cdot 188776 Kgcm}{\pi \cdot 50^{3} cm^{3}} = 7,69 \frac{Kg}{cm^{2}}$$

$$I_0 = \frac{\pi \cdot d^4}{32} = \frac{\pi \cdot 50^4 \, cm^4}{32} = 613592 \, cm^4$$

$$\varphi = \frac{M_t \cdot l}{G \cdot I_0} = \frac{188776 Kg cm \cdot 250 cm}{800000 \frac{Kg}{cm^2} \cdot 613592 cm^4}$$

$$\varphi = \frac{M_t \cdot l}{G \cdot I_0} = 9,61 \times 10^{-5} \, rad = 0^{\circ}0^{\circ}20^{\circ}$$

Ejercicio N°2:

Calcular el diámetro de un árbol de motor que debe transferir una potencia de 100 HP a 160 rpm.

Datos:

Acero tipo F24 - Tensión de fluencia σ_f = 240 Mpa (2400 Kgf/cm²) σ_{adm} = 1600 Kg/cm² = 160 Mpa τ_{adm} = 900 Kg/cm² = 90 Mpa E = 2100000 Kg/cm² = 210000 Mpa G = 800000 Kg/cm² = 80000 Mpa $\gamma_{máx}$ = 1/4º /m 100 HP = 101,39 CV

$$d = 71,45 \cdot 3 \sqrt{\frac{N}{n \cdot \tau_{m\acute{a}x}}}$$

$$d = 71,45 \cdot \sqrt{\frac{101,39CV}{160rpm \cdot 900 \frac{Kg}{cm^2}}} = 6,36cm$$