MERC 2023 - Session 3

SURVEY DESIGN AND DATA MANAGEMENT

Outline

Signal Processing

Data Sampling

Calibration

Data Formats

Software

Signal Processing

- Signal Processing is the science of receiving, analyzing and manipulating physical measurements to extract useful information.
 - Measurements are usually a function of time or position in space.

Signal Processing in Borehole Geophysics

- Instruments will poll for a measurement at a pre-defined sampling rate.
- These measurements are reported as voltages (potential differences) or counts per second (CPS).
- Through calibration, **CPS** and/or voltages are then converted into physical measurements (more on this later).

- It is up to the data analyst to determine what the best filter or filters to apply to the raw data.
- Depends on the goals data acquisition.
 - What is more important?
 - Large overall trends.
 - Small changes.
 - Somewhere in between?

Signal Processing - Aliasing

- When sampling from a higher frequency signal, it is important to consider the sampling rate, otherwise aliasing may occur.
- Aliasing is when a high frequency signal can get mapped to a lower frequency signal.
- The minimum sampling rate must be at least twice the rate of the source frequency you want to resolve.
 - i.e. Source frequency is 40 Hz –
 Sampled frequency must be at least 80 Hz.

Data Sampling

- Instruments are continuously sampling at regular time intervals.
- We need to convert a time sample to a depth downhole sample.

Data Sampling

- Instruments are continuously sampling at regular time intervals.
- We need to convert a time sample to a depth downhole sample.
- There is a depth encoder at surface that is time synced with the logging console.
- Based on the specifications of the survey the counts are averaged over a period of distance traveled by the probe.

Data Sampling

- Instruments are continuously sampling at regular time intervals.
- We need to convert a time sample to a depth downhole sample.
- There is a depth encoder at surface that is time synced with the logging console.
- Based on the specifications of the survey the counts are averaged over a period of distance traveled by the probe.
- The number of measurements during this period is a function of the winch speed.
 - Higher Speed Fewer measurements
 - Lower Speed → More measurements.
 - Time is money.

Depth Sampling and Aliasing

- Choosing the correct sampling rate is important.
- The smallest interval you can reliably map would be twice the sampling rate.
 - i.e. Sample Rate is 0.2 m, smallest unit is 0.4 m.

Depth Sampling and Aliasing

 Highlighted areas show the low sample rate log completely missed the response of the blue zone.

Calibrations

- <u>Importance</u>
- Standards
 - Auditable Trail
 - Process
- Types of Calibration
 - Factory Calibration
 - Field/jig calibration
 - Calibration holes
 - On site versus established
- Temperature drift
- Hole size
- Fluid conditions
- Measurement Range

Calibrations

- Sign off certificates
- Calibrate and document regularly

_		_				
Test	#1	- Δ	lum	inum	Block	

Aluminum Block (g/cc): 2.6

Test File Name:

446_MSDT_5167_4081CO_Aluminum_011718

Near Density	g/cc	Far Density	g/cc
Min:	2.628	Min:	2.586
Max:	2.766	Max:	2.811
Average:	2.701	Average:	2.699
Difference:	0.101	Difference:	0.099

Total number of sample data points:

1118

Test Results:

~

Passed

Needs Re-calibration

Test #2 - Hardy Test Hole 200m-370m

Reference Average (g/cc): 2.942

Test File Name:

000_MSDT_5167_4081CO_u1_011818

Near Density	g/cc	Far Density	g/cc
Average:	2.942	Average:	2.942
Difference Average Values:	-0.001	Difference Average Values:	0.000

Total number of sample data points:

1669

Test Results:

V

Passed

Needs Re-calibration

Calibration

Data Formats - TFD

- Most slim-line probes will create a TFD file.
 - This file format is the primary format for Advanced Logic Technology (ALT) and Mont Sopris Instruments (MSI).
 - ALT is the developer of WellCAD and Logger Suite software.
 - They also perform research and development of acquisition systems and new probes.
 - MSI is a popular manufacturer of probes, winches and logging consoles.
 - They work in partner with several development firms (includes ALT) to manufacture probes.
 - TFD is a proprietary binary file format, that can only be read by WellCAD software.
 - The header information of the file can be viewed in plaintext in a text editor.
- Only used for RAW data, processed data is never stored in this format.

```
DriverName=Multich
;9-25-06 2SMA modem modified with ALT telemetry, auto voltage
. **********************************
; Data browsers
;replaced MSIProc with MCHProc
Process1=mch\MchProc.exe
Process2=mch\MChNum.exe
Process3=mch\MChCurve.exe
Process4=mch\RecDebug.exe
[Process Info]
Process1=Processor, Start
Process2=Browser, Start
Process3=Browser, Start
Process4=Browser, NoStart
. **********************************
; Tool default power-up settings
[Default]
TimeSamplingRate=1000
TimeSamplingRateMin=200
TimeSamplingRateMax=100000
DepthSamplingRate=0.1
. *********************************
; Tool power supply requirements
[PowerSupply]
Voltage=130
Current=200
ToolTopNominalVoltage=100
ToolTopNominalCurrent=110
AutoAdjust=yes
VoltMeterYellow=90
VoltMeterGreen=135
VoltMeterRed=150
AmpMeterYellow=180
AmpMeterGreen=225
AmpMeterRed=275
. **********************
; Tool telemetry protocol
[Protocol]
NbOfProtocol=1
SerialMode=Asynchronous
LengthMode=VariableWord
LengthAddress=0
LengthMultiplier=1
LengthOffset=0
LengthMax=104
ChecksumMode=none
TimeOut1=800
```


Data Formats - WCL

- WellCAD is by far the most common software to view and process data acquired from borehole logging for slimline logging.
- WCL is proprietary binary file format that can be only opened in the fully licensed and reader versions of WellCAD.
- Support for almost any type of data that can be acquired within a borehole.
 - Point, Interval and Array data.
 - Categorical
 - Images.
 - Annotations and Text.
- Commonly used to format logs into plots for printing to PDF or paper.

	DG OSCIENCE IN		PRF	• 1:50FT
COMPANY:			DATE:	04/25/23
PROJECT:			DEPTH - DRILLER:	1197.50 FT
STATE:	UTAH		DEPTH - LOGGER:	
COUNTRY:	USA		LOG TOP:	492.20 FT
Lat. UTM-N:			LOG BOTTOM:	797.10 FT
Long. UTM-E:			BIT SIZE:	HQ
			CASING - DRILLER:	
PERMANENT DA	ATUM		CASING - LOGGER:	29 FT
DRILL MEASUR	ED FROM		CASING O.D.:	
LOG MEASURE	D FROM		CASING TYPE:	STEEL
ELEVATION - GI	L		FLUID TYPE:	WATER
MAGNETIC DEC	L:		FLUID LEVEL:	590 FT
			RECORDED BY:	
OTHER SERVIC	ES		WITNESSED BY:	
REMARKS:				
UTM coordinates	not provided. EC	OH converted from 365	5 m (~ 1197.50 ft.).	
	•		. , ,	

Data Formats - LAS

- Has existed as a file format for several decades.
 - Some say was originally based on punch cards.
- Developed by the Canadian Well Logging Society.
 - The current version is 3.0
 - The most supported version is <u>2.0</u>.
 - Version 2.0 only supports regularly sampled numeric data.
 - Version 3.0 has support for irregularly sampled data, as well as categorical and array data.
- Includes a header section for metadata.
- Supported in most geologic software packages.

~Well In	nformation Section	
#MNEM.UN	NIT VALUE/NAME	DESCRIPTION
#		
STRT.M	635.0000	:START DEPTH
STOP.M	400.0000	:STOP DEPTH
STEP.M	-0.125	:STEP
NULL.	-999.25	: NULL VALUE
COMP.	ANY OIL COMPANY INC	: COMPANY
WELL.	ANY ET AL 12-34-12-3	34 :WELL
FLD .	WILDCAT	:FIELD
LOC .	12-34-12-34W5M	: LOCATION
PROV.	ALBERTA	: PROVINCE
SRVC.	ANY LOGGING COMPANY INC	:SERVICE COMPANY
LIC .	12345	:ERCB LICENCE NUMBER
DATE.	13-DEC-86	:LOG DATE
UWI .	100123401234W500	:UNIQUE WELL ID

	re Informat	cion a						
#MNEN	I.UNIT		AP:	C	DDE			Curve Description
#								
DEPT	. M					:	1	DEPTH
RHOB	.K/M3	45	350	02	00	:	2	BULK DENSITY
NPH	. VOL/VO	42	890	00	00	:	3	NEUTRON POROSITY - SANDSTONE
MSFL	. OHMM	20	270	01	00	:	4	Rxo RESISTIVITY
SFLA	. OHMM	07	222	01	00	:	5	SHALLOW RESISTIVITY
ILM	. OHMM	07	120	44	00	:	6	MEDIUM RESISTIVITY
ILD	. OHMM	07	120	46	00	:	7	DEEP RESISTIVITY
SP	. MV	07	010	01	00	:	8	SPONTANEOUS POTENTIAL
GR	.GAPI	45	310	01	00	:	9	GAMMA RAY
CALI	. MM	45	280	01	00	:	10	CALIPER

		r Infor	nation S						
#MNEN		T		Value			Descrip	tion	
#									
MUD			G	EL CHEM	:	Mud ty	pe		
BHT	. DEG	C		114.0000) :	Bottom	Hole To	emperature	
BS	. MM		2	22.0000		Bit Si	ze	•	
CSGL	м		_	345.7		Casing	Denth		
FD	.K/M	• • • • • • • • • • • • • • • • • • • •	•						
				99.9999			Density		
MDEN		13		2650.000				x Density	
MATR			_	AND	:		n Matri		
FNUM			1	.0000	:	Tortuo	sity Co	nst. Archie's	(a)
FEXP			2	.000	:	Cement	ation E	xp Archie's (n	n)
DFD	.K/M	13	1	200.0000	:	Mud We	ight	-	
DFV		_		0.0000	:		scosity		
DFL				.0000	:		uid Los:	•	
DFPH			_	0.00				•	
					:				
RMFS		IM		.8200				Resistivity	
EKB	. М		5	66.9700	:	Elevat		ly Bushing	
~A Log	data	section	-					ınd Level	
910.00									
					19.4086				
					-999.2500				
					-1.5010 11.1397				
					0.0000				
909.87		0.1504	0.0000	11.100/	0.0000	0.0000	0.0000		
		2712.6460	0.2886	23.3987	23.3987	13.6129	12.4744		
-1	.4720	90.2803	203.1093	18.7566	-999.2500	999.2500	3.7058		
					-1.4720				
					14.1428				
		0.1456	0.0000	14.1428	0.0000	0.0000	0.0000		
909.75		0600 0107	0 0700	00 5000	00 5000	10 6001			
-999	.2500	2692.8137	0.2730	22.5909	22.5909				
-000	2500	1 0207	201.9287	2076 4451	-1 4004	999.2502	0 1/25		
-999	0101	0.1435	0.2730	0 1/35	-1.4804 14.5674	0 2500	1 0000		
		0.1435			0.0000				
909.62	5000								
		2644.3650			18.4831				
					-999.2500				
					-1.5010				
	.0384				11.8600				
	.0000	0.1538	0.0000	11.8600	0.0000	0.0000	0.0000		
909.50	0000								

Data Formats - ASCII

- ASCII formats such as CSV and TXT formats are also common.
- These file formats are supported in many software packages.
 - Can easily view data in Excel.
- Lack support for metadata.
- Flexible formatting and can include data from multiple holes for compilation.
- Support for Categorical type data.

Depth m, natural gamma, near density, far density, compensated density, neutron ss counts, neutron ls cou 0.059, 126.606, Nan, Nan, Nan, 51.786, 39.116, Nan, Nan, Nan, Nan, 151.142, 24.389, Nan, Nan, Nan 0.259,143.729,NaN,NaN,NaN,58.347,36.345,NaN,NaN,NaN,NaN,85.622,26.953,NaN,NaN,NaN 0.459,158.569, Nan, Nan, Nan, 96.876,34.967, Nan, Nan, Nan, 56.644,23.129, Nan, Nan, Nan 0.659, 172.925, NaN, NaN, NaN, 167.026, 34.111, NaN, NaN, NaN, NaN, 47.189, 36.509, NaN, NaN, NaN 0.859, 186.833, NaN, NaN, NaN, 262.922, 34.339, NaN, NaN, NaN, NaN, 47.335, 47.977, NaN, NaN, NaN 1.059, 186.49, NaN, NaN, NaN, 423.449, 45.399, NaN, NaN, NaN, NaN, 45.876, 37.042, NaN, NaN, NaN 1.259, 189.525, NaN, NaN, NaN, 586.135, 54.828, NaN, NaN, NaN, NaN, 58.865, 35.989, NaN, NaN, NaN 1.459,209.426,2.983,NaN,2.062,737.533,62.132,NaN,NaN,NaN,94.615,42.94,NaN,NaN,NaN 1.659,223.085,2.959,215.142,2.021,837.233,108.123,NaN,NaN,NaN,NaN,135.069,42.896,NaN,NaN,NaN 1.859,232.573,2.954,228.068,1.937,906.557,158.56,NaN,NaN,NaN,NaN,197.179,46.039,NaN,NaN,NaN 2.059, 220.226, 2.98, 238.23, 1.931, 910.724, 178.135, NaN, NaN, NaN, NaN, 425.874, 59.538, NaN, NaN, NaN 2.259,209.432,2.98,243.488,2.068,935.954,198.242,NaN,NaN,NaN,OaN,O07.021,73.966,NaN,NaN,NaN 2.459,203.966,2.971,231.838,2.154,1001.743,218.852,NaN,NaN,NaN,NaN,733.928,88.938,NaN,NaN,NaN 2.659,230.307,2.947,214.853,2.21,998.563, NaN, NaN, NaN, NaN, 846.41,134.074, NaN, NaN, NaN 2.859, 268.9, 2.921, 212.32, 2.159, 972.515, NAN, NAN, NAN, NAN, NAN, 937.466, 178.659, NAN, NAN, NAN 3.059,234.672,2.892,217.863,2.033,1021.586,NaN,NaN,NaN,NaN,NaN,948.108,221.705,NaN,NaN,NaN 3.259,210.989,2.916,233.728,1.805,NaN,260.674,NaN,NaN,NaN,NaN,942.788,234.667,NaN,NaN,NaN 3.459,203.308,2.945,258.336,1.843,NaN,222.58,NaN,NaN,NaN,NaN,924.188,235.409,NaN,NaN,NaN 3.659,213.665,2.947,277.811,1.938,NaN,230.617,NaN,NaN,NaN,NaN,947.318,237.067,NaN,NaN,NaN 3.859,229.65,2.938,258.253,1.948,1004.542,232.457,NaN,NaN,NaN,NaN,958.514,243.555,NaN,NaN,NaN 4.059,244.336,2.921,250.859,1.955,989.786,215.338,NaN,NaN,NaN,NaN,924.527,256.469,NaN,NaN,NaN 4.259,265.394,2.917,254.798,1.957,978.525,NaN,NaN,NaN,NaN,NaN,917.977,266.069,NaN,NaN,NaN 4.459,293.467,2.918,255.603,1.841,970.669, NaN, NaN, NaN, NaN, NaN, 927.924,271.061, NaN, NaN, NaN 4.659,279.198,2.931,260.54,1.754,976.663, NaN, NaN, NaN, NaN, 916.05,254.681, NaN, NaN, NaN 4.859,259.5,2.941,280.195,1.836, NaN, 276.34, NaN, NaN, NaN, NaN, 918.861,237.504, NaN, NaN, NaN 5.059,251.778,2.95,277.624,1.884,NaN,251.793,NaN,NaN,NaN,950.38,219.552,NaN,NaN,NaN 5.259, 252.619, 2.943, 260.022, 1.909, NaN, 248.878, NaN, NaN, NaN, NaN, 957.442, 242.047, NaN, NaN, NaN 5.459,260.338,2.95,257.52,1.818,NaN,253.754,NaN,NaN,NaN,NaN,953.3,258.534,NaN,NaN,NaN 5.659,278.407,2.988,257.523,1.769,872.397,263.138,NaN,141.119,NaN,7086.203,935.948,233.512,NaN,NaN, 5.859,282.657,2.997,261.457,1.834,854.936,259.587,83.831,140.941,11928.753,7094.498,911.843,228.301

Data Management and Metadata

- For every single 'run' up and down a hole, a file is produced.
- It's critical to be consistent with file naming conventions and keep track of various metadata about the hole run.
 - Probe and equipment serial numbers.
 - Start and End Record Depths
 - Start and End Zero's
 - Probe Velocity and Depth Increments.
 - Probe Telemetry
 - Different parameters may require unique settings to keep track of.
 - Hole and Location

Software

- Logger Suite
 - Data Acquisition Software
- WellCAD
 - Processing and Interpretation
- Excel
 - Everyone's favourite spreadsheet
- Python
 - This has been a game changer the last
 10 years.

WeICAD™ THE BOREHOLE DATA TOOLBOX

Software - Python

- IDE's and Platforms
 - PyCharm
 - Python IDE
 - DataSpell
 - IDE with more focus on data analysis.
 - Integration of Jupyter Notebooks
 - DataLore
 - Cloud or hosted data analysis environment with emphasis on collaboration.
 - VSCode
 - Lightweight code editor with a huge eco system of plug-ins and extensions.

- Python Modules
 - PyWellCAD
 - Official Python library for automating WellCAD.
 - Welly
 - Extensive library for visualizing and analyzing well logs.
 - Pandas and/or Polars
 - Both are used for handling and transforming tabular data.
 - Polars is fairly new and gaining a lot of traction.
 - SciPy
 - Giant library of advanced numerical analysis.