

<u>Course</u> > <u>Unit 2:</u> ... > <u>4 Eigen</u>... > 9. Trace

9. Trace

Let us take a quick detour to discuss the relationship between eigenvalues and the trace and determinant of a matrix.

Definition 9.1 The **trace** of a square matrix $\bf A$ is the sum of the entries along the main diagonal. That is, for

$$egin{array}{lll} \mathbf{A} & = & egin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & & \ddots & dots \ a_{n1} & \cdots & \cdots & a_{nn} \ \end{pmatrix}.$$

the trace is

$$trA = a_{11} + a_{22} + \cdots + a_{nn}.$$

Example 9.2 If
$$A = \begin{pmatrix} 4 & 6 & 9 \\ 1 & 7 & 8 \\ 2 & 3 & 5 \end{pmatrix}$$
 , then $\mathbf{tr} A = 4 + 7 + 5 = 16$.

Warning: Recall that trace and determinant make sense only for **square** matrices.

Problem 9.3 For an $n \times n$ matrix A, how do tr(-A) and det(-A) relate to trA and detA?

Solution

Negating A negates in particular all diagonal entries of A, so tr(-A) = -trA.

On the other hand, negating $\bf A$ amounts to multiplying every row by -1, which multiplies $\det {\bf A}$ by $(-1)^n$ because there is one factor of -1 for each row. Thus

- If n is even, then $\det(-\mathbf{A}) = \det \mathbf{A}$.
- If n is odd, then $\det(-\mathbf{A}) = -\det \mathbf{A}$.

<u>Hide</u>

Trace of sums

1/1 point (graded)

If $\bf A$ and $\bf B$ are both $\bf 5 \times \bf 5$ matrices and $\bf tr A = 7$, $\bf tr B = 16$, what is the value of $\bf tr (A + B)$?

$$\mathbf{tr}(\mathbf{A} + \mathbf{B}) = \boxed{23}$$

$$\mathbf{23}$$
Answer: 23

Solution:

Denote the entries of ${f A}$ and ${f B}$ at the $i^{
m th}$ row and $j^{
m th}$ column by a_{ij} and b_{ij} respectively. Then

$$egin{array}{lll} {
m tr}({f A}+{f B}) &= (a_{11}+b_{11})+(a_{22}+b_{22})+\cdots+(a_{55}+b_{55}) \ &= (a_{11}+\cdots+a_{55})+(b_{11}+\cdots+b_{55}) \ &= {
m tr}{f A}+{
m tr}{f B} &= 7+16 &= 23. \end{array}$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Trace of scalar multiple

1/1 point (graded)

Let ${\bf A}$ be an ${\bf 5} \times {\bf 5}$ matrix. If ${\bf tr}{\bf A} = -{\bf 2}$, what is the trace of ${\bf 4A}$?

$$\operatorname{tr}(4\mathbf{A}) = \begin{bmatrix} -8 \\ -8 \end{bmatrix}$$
 \checkmark Answer: -8

Solution:

Again denote the entries of ${f A}$ and ${f B}$ at the $i^{
m th}$ row and $j^{
m th}$ column by a_{ij} and b_{ij} respectively. Then

$$\operatorname{tr}(4\mathbf{A}) \ = \ 4a_{11} + \cdots + 4a_{55} \ = \ 4\left(a_{11} + \cdots + a_{55}\right) \ = \ 4\operatorname{tr}(\mathbf{A}) \ = \ -8.$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Trace of identity matrix

1/1 point (graded)

Let ${\bf I}$ be the $n \times n$ identity matrix. Compute ${\bf tr}({\bf I})$.

Submit

You have used 1 of 3 attempts

✓ Correct (1/1 point)

Trace and determinant of products of matrices

2/2 points (graded)

Let \mathbf{A} , \mathbf{B} be $n \times n$ matrices.

True or False? The trace of ${f AB}$ is the product of the individual traces:

$$\mathrm{tr}\left(\mathbf{A}\mathbf{B}
ight)=\left(\mathrm{tr}\mathbf{A}
ight)\left(\mathrm{tr}\mathbf{B}
ight)$$

True

True or False? The determinant of \mathbf{AB} is the product of the individual determinants:

$$\det (\mathbf{AB}) = (\det \mathbf{A}) (\det \mathbf{B}).$$

- True
- False

Solution:

- The trace of ${f AB}$ is **NOT** the product of the individual traces. Consider the matrix ${f J}=egin{pmatrix}0&-1\\1&0\end{pmatrix}$. We see that ${f J}^2=-{f I}$, so ${f tr}({f J}^2)=-2$ even though ${f tr}({f J})=0$.
- We told you in the previous lecture that $\det(\mathbf{AB}) = (\det \mathbf{A}) (\det \mathbf{B})$.

Submit

You have used 1 of 2 attempts

- **1** Answers are displayed within the problem
- 9. Trace

Hide Discussion

Topic: Unit 2: Linear Algebra, Part 2 / 9. Trace

Add a Post

Show all posts

7

by recent activity ▼

There are no posts in this	topic yet.	
×		
	Learn About Verified Certificates	
	Learn About verified Certificates	© All Rights Reserved