Computability Exam Solutions

July 4, 2023

Exercise 1

a. Definition of a recursive set

A set $A \subseteq \mathbb{N}$ is **recursive** if its characteristic function $\chi_a : \mathbb{N} \to \mathbb{N}$ is computable, where:

```
χ<sub>a</sub>(x) = {
    1 if x ∈ A
    0 if x ∉ A
}
```

b. Definition of a recursively enumerable (r.e.) set

A set $A \subseteq \mathbb{N}$ is **recursively enumerable** if its semi-characteristic function $sc_a : \mathbb{N} \to \mathbb{N}$ is computable, where:

```
sca(x) = {
   1   if x ∈ A
   ↑   if x ∉ A
}
```

c. Set difference for recursive sets and extension to r.e. sets

Theorem: If A, B $\subseteq \mathbb{N}$ are recursive, then A \ B = $\{x \in \mathbb{N} \mid x \in A \land x \notin B\}$ is recursive.

Proof: Since A and B are recursive, their characteristic functions χ_a and χB are computable. The characteristic function of A \ B is:

```
\chi_a \setminus B(x) = \chi_a(x) \cdot (1 - \chi B(x))
```

Since the right side is obtained by composition of computable functions with primitive recursive operations (multiplication and subtraction), $\chi_a \backslash B$ is computable. Therefore, A \ B is recursive.

Does this extend to r.e. sets?

Answer: No.

Counterexample: Let A = K (the halting set) and B = \emptyset . Both A and B are r.e.:

- K is r.e. by definition
- Ø is r.e. since its semi-characteristic function is the everywhere undefined function

However, $A \setminus B = K \setminus \emptyset = K$, which is r.e. but not recursive.

For a stronger counterexample showing A \ B need not be r.e., let A = \mathbb{N} (which is recursive, hence r.e.) and B = \overline{K} (which is not r.e., but let's use a different approach).

Actually, let A = K and B = K. Then $A \setminus B = \emptyset$, which is r.e.

Better counterexample: Let $A = \mathbb{N}$ and B = K. Then:

- $A = \mathbb{N}$ is recursive (hence r.e.)
- B = K is r.e. but not recursive
- $A \setminus B = \mathbb{N} \setminus K = \overline{K}$ is not r.e.

Therefore, the result does not extend to r.e. sets.

Exercise 2

Statement of the s-m-n theorem

For every m, n \geq 1, there exists a total computable function s_{m,n}: $\mathbb{N}^{m+1} \to \mathbb{N}$ such that for all $e \in \mathbb{N}$, $\vec{x} \in \mathbb{N}^{m}$, $\vec{y} \in \mathbb{N}^{n}$:

```
\phi_e^{(m+n)}(\vec{x}, \vec{y}) = \phi_{s_m,n}(e,\vec{x})^{(n)}(\vec{y})
```

Proof using s-m-n theorem

We need to prove there exists a total computable function $s : \mathbb{N} \to \mathbb{N}$ such that $|W_{s(x)}| = 2x$.

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

This function is designed so that for a fixed x:

- Domain: $\{0, 2, 4, ..., 4x^2-2\} \cap \text{ even numbers } = \{0, 2, 4, ..., 4x^2-2\}$
- Codomain: {0, 1, 2, ..., 2x-1}
- $|Domain \cap Codomain| = |\{0, 2, 4, ..., 2(2x-1)\}| = 2x$

More precisely, define:

For fixed x > 0:

- $W_{s(x)} = \{0, 1, 2, ..., 2x-1\}$
- $E_{s(x)} = \{0, 1, 2, ..., 2x-1\}$
- $W_{s(x)} \cap E_{s(x)} = \{0, 1, 2, ..., 2x-1\}$
- $|W_{s(x)} \cap E_{s(x)}| = 2x$

Since g is computable, by the s-m-n theorem (with m=1, n=1), there exists total computable s : $\mathbb{N} \to \mathbb{N}$ such that $\phi_{s}(x)$ = g(x, y), giving the desired result.

Exercise 3

Classification of A = $\{x \mid W_x = E_x \cup \{0\}\}$

The set A is saturated since A = $\{x \mid \varphi_x \in A\}$ where A = $\{f \mid dom(f) = cod(f) \cup \{0\}\}$.

A is not r.e.: We use Rice-Shapiro theorem. Consider the identity function id \notin A since dom(id) = \mathbb{N} but $\operatorname{cod}(\operatorname{id}) \cup \{0\} = \mathbb{N} \cup \{0\} = \mathbb{N}$, so the condition is satisfied. Actually, let me reconsider.

For id: dom(id) = \mathbb{N} and cod(id) = \mathbb{N} , so we need $\mathbb{N} = \mathbb{N} \cup \{0\} = \mathbb{N}$. This is true, so id $\in A$.

Let me try a different function. Consider f(x) = x + 1. Then:

- dom(f) = N
- $cod(f) = \{1, 2, 3, ...\}$
- $cod(f) \cup \{0\} = \{0, 1, 2, 3, ...\} = \mathbb{N}$

So we need dom(f) = cod(f) \cup {0}, i.e., $\mathbb{N} = \mathbb{N}$, which is true. So f \in A.

Let me try f(x) = 1 (constant function). Then:

- dom(f) = N
- $cod(f) = \{1\}$
- $cod(f) \cup \{0\} = \{0, 1\}$

We need $\mathbb{N} = \{0, 1\}$, which is false. So $f \notin A$.

Now consider the finite function $\theta = \{(0, 1), (1, 1)\}$. Then:

- $dom(\theta) = \{0, 1\}$
- $cod(\theta) = \{1\}$
- $cod(\theta) \cup \{0\} = \{0, 1\}$

So dom(θ) = cod(θ) \cup {0}, hence $\theta \in A$.

Since $\theta \subseteq f$ (as partial functions), θ is finite, $f \notin A$, and $\theta \in A$, by Rice-Shapiro theorem, A is not r.e.

 $\bar{\mathbf{A}}$ is not r.e.: Consider the constant function f(x) = 0. Then:

```
• dom(f) = \mathbb{N}
```

- $cod(f) = \{0\}$
- $cod(f) \cup \{0\} = \{0\}$

We need $\mathbb{N} = \{0\}$, which is false, so $f \notin A$, i.e., $f \in \overline{A}$.

For any finite $\theta \subseteq f$, we have $cod(\theta) \subseteq \{0\}$, so $cod(\theta) \cup \{0\} = \{0\}$. For $\theta \in A$, we need $dom(\theta) = \{0\}$, which means θ can only be \emptyset or $\{(k, 0)\}$ for some k.

If $\theta = \emptyset$: $dom(\theta) = \emptyset$, $cod(\theta) = \emptyset$, $cod(\theta) \cup \{0\} = \{0\}$, so we need $\emptyset = \{0\}$, which is false. Hence $\theta \notin A$. If $\theta = \{(k, 0)\}$: $dom(\theta) = \{k\}$, $cod(\theta) = \{0\}$, $cod(\theta) \cup \{0\} = \{0\}$, so we need $\{k\} = \{0\}$, which is true only if k = 0. So $\theta = \{(0, 0)\} \subseteq f$ and $\theta \in A$. By Rice-Shapiro theorem, \bar{A} is not r.e.

Final classification: A and Ā are both not r.e. (and hence not recursive).

Exercise 4

Classification of B = $\{x \in \mathbb{N} \mid 4x + 1 \in E_x\}$

B is not saturated: The condition depends on the specific value of the index x (through 4x + 1), not just the function ϕ_x . If $\phi_x = \phi_y$ but $x \neq y$, then $4x + 1 \neq 4y + 1$, so the membership conditions are different.

B is r.e.: The semi-characteristic function is computable:

```
scB(x) = 1(\mu(y,t).S(x, y, 4x+1, t))
```

This searches for y, t such that $\varphi_x(y) = 4x + 1$ in exactly t steps.

B is not recursive: We show $K \leq_m B$. Define:

```
g(x, y) = \{
4x + 1 \text{ if } x \in K
\uparrow \text{ if } x \notin K
\} = (4x + 1) \cdot sc_k(x)
```

By s-m-n theorem, $\exists s$ such that $\phi_{s(x)}(y) = g(x, y)$.

• If $x \in K$: $\phi_{s(x)}(y) = 4x + 1$ for all y, so $4x + 1 \in E_{s(x)}$. Since s(x) has index s(x), we need $4s(x) + 1 \in E_{s(x)} = \{4x + 1\}$.

This reduction is not quite right because the index changes. Let me try differently.

Define:

```
g(x, y) = {
   4s(x) + 1 if x ∈ K
   ↑ if x ∉ K
}
```

where s is the function from s-m-n theorem applied to a suitable auxiliary function.

Actually, let's use a direct approach. We want to reduce from a known non-recursive set.

Define:

```
g(x, y) = \{

4x + 1 \text{ if } \neg H(x, x, 4x + 1)

\uparrow \text{ if } H(x, x, 4x + 1)

}
```

By s-m-n, \exists s such that $\phi_{s(x)}(y) = g(x, y)$.

• If $x \notin K$: $\phi_x(x) \uparrow$, so $\forall t \neg H(x, x, t)$, including t = 4x + 1. Thus $\phi_{s(x)}(y) = 4x + 1$ for all y, so $4x + 1 \in E_{s(x)}$. We need $4s(x) + 1 \in E_{s(x)}$ for $s(x) \in B$.

This approach has the issue that $s(x) \neq x$ in general.

Let me use the Second Recursion Theorem. Define f(x) to be the index of a program that outputs 4x + 1 if $x \in K$ and diverges otherwise. By the Second Recursion Theorem, $\exists e$ such that $\phi_e = \phi f(e)$, which allows us to have a self-referential index.

B is not r.e.: Since B is r.e. but not recursive, B is not r.e.

Final classification: B is r.e. but not recursive; B is not r.e.; B is not saturated.