SISTEMA BINARIO

Los números decimales, para poder ser almacenados en el ordenador deben ser representados en código binario, es decir, como sumas de potencias de 2.

• Pasar de decimal a binario el número 23.

OPCIÓN 1: El método es dividir sucesivamente entre 2 hasta que el cociente sea 1

A continuación, se escribe el último cociente y los restos de derecha a izquierda 10111 Se concluye que: $23_{(10} = 10111_{(2)}$

<u>OPCIÓN 2</u>: Se colocan las potencias de 2 y se van poniendo "1" debajo, de modo que la suma de las potencias en donde haya un "1", sea el número que se intenta pasar a binario.

16	8	4	2	1	
1	0	1	1	1	= 16 + 4 + 2 + 1 = 23

Ejercicios (he puesto el resultado para que podáis comprobarlo)

Pasar de decimal a binario los siguientes números:

- $16_{(10} = 10000_{(2)}$
- $93_{(10} = 1011101_{(2)}$
- $47_{(10} = 1011111_{(2)}$
- $52_{(10} = 110100_{(2)}$
- $101_{(10} = 1100101_{(2)}$

Pasar de binario a decimal los siguientes números:

- $11011110_{(2} = 110_{(10)}$
- $1100_{(2} = 12_{(10)}$
- $111101_{(2} = 61_{(10)}$
- $1000101_{(2} = 69_{(10)}$
- $10101001_{(2} = 169_{(10)}$

SISTEMA OCTAL

Es el sistema de numeración en base 8. Los números incluidos en este sistema son: {0, 1, 2, 3, 4, 5, 6, 7}

• Paso de decimal a octal

Se divide el número entre 8, tomándose los restos y el último cociente, de derecha a izquierda Ejemplo: $8361_{(10)} = 20251_{(8)}$

Paso de octal a decimal

Se multiplica cada cifra del número por la potencia de 8 equivalente a su posición. Ejemplo:

$$5721_{(8} = 5*8^3 + 7*8^2 + 2*8^1 + 1*8^0 = 5*512 + 7*64 + 2*8 + 1*1 = 3025_{(10)}$$

Ejercicios (he puesto el resultado para que podáis comprobarlo) Pasar a octal los siguientes números decimales:

- $23_{(10} = 27_{(8)}$
- 54₍₁₀ = 66₍₈
- $776_{(10} = 1410_{(8)}$
- 8400₍₁₀ = 20320₍₈

Pasar de octal a decimal los siguientes números:

- 403₍₈ = 259₍₁₀
- $63_{(8} = 51_{(10)}$
- $5_{(8} = 5_{(10)}$

• Paso de octal a binario

Opción 1: Se pasa de octal a decimal y de decimal a binario

Opción 2: Considerando que ocho es potencia de 2 ($8 = 2^3$), se traduce cada dígito octal a su correspondiente binario de 3 bits.

Paso de binario a octal

Se toman grupos de tres dígitos de derecha a izquierda y se busca la correspondencia en octal. Si faltan dígitos a la izquierda se rellenan con ceros hasta conseguir los 3 bits.

Octal	Binario		
0	000		
1	001		
2	010		
3	011		
4	100		
5	101		
6	110		
7	111		

Pasar de octal a binario:

- $41_{(8} = 100001_{(2)}$
- \bullet 352₍₈ = 011101010₍₂
- $76_{(8} = 111110_{(2)}$

Ejercicios (he puesto el resultado para que podáis comprobarlo)

Pasar a binario los siguientes números en octal:

- $41_{(8} = 33_{(10} = 100001_{(2)}$
- $352_{(8} = 234_{(10} = 11101010_{(2)}$
- $76_{(8)} = 65_{(10)} = 1111110_{(2)}$
- 1593₍₈ = No es octal por contener el número

Pasar de binario a octal los siguientes números:

- 110110₍₂ = 66₍₈
- $100101_{(2} = 45_{(8)}$
- 1010101₍₂ = 125₍₈
- 10011101₍₂ = 235₍₈
- 1101₍₂ = 15₍₈

SISTEMA HEXADECIMAL

Corresponde a un sistema de numeración en base 16. Los dígitos que faltan desde el 10 se suplen con letras del abecedario. Los dígitos hexadecimales son: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Paso de hexadecimal a decimal

Se multiplica cada cifra por la correspondiente potencia de 16, en función del lugar que ocupe en la propia cifra

Ejemplo: A70D4₍₁₆ = $10*16^4 + 7*16^3 + 0*16^2 + 13*16^1 + 4*16^0 = 684244_{(10)}$

• Paso de binario a hexadecimal

Con la tabla de conversión, se toman de 4 en 4 dígitos de derecha a izquierda, supliendo con ceros las carencias de dígitos a la izquierda.

Hexadecimal	Binario	Hexadecimal	Binario
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Paso de decimal a hexadecimal

- → **Opción 1:** Sucesivas divisiones entre 16, quedándonos con los restos y el último cociente, escritos luego de derecha a izquierda.
- → **Opción 2:** Pasar el decimal a binario y luego con la tabla anterior pasar de binario a hexadecimal.

Paso de octal a hexadecimal

Se pasa de octal a binario (3 bits), y de este a hexadecimal (4 bits) usando también la tabla.

Paso de hexadecimal a octal

Se pasa de hexadecimal a binario (4 bits) usando la tabla, y de este a octal (3 bits).