Neural Network Basics

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid

2021

CONTENTS 2

Contents

1		tilayer Perceptrons			
	1.1	Basic Modeling			
	1.2	Regression Basics			
	1.3	Cross Validation, Bias and Variance			
	1.4	Basic Classification			
2	Mul	Multilayer Perceptrons			
		Rosenblatt's Perceptrons			
	2.2	Classical MLPs			
	2.3	MLP Regularization			
	2.4	Unconstrained Smooth Optimization			
		Computational Costs of MLPs			

1 Multilayer Perceptrons

1.1 Basic Modeling

What Is Machine Learning (ML)?

- Lofty definition: make machines learn!!!
 - Have to make "machines" and "learn" more precise
- The machines of ML: mathematical input–output processes that lend themselves to some form of (numerical) parameterization
- The learning process: adjust the machine's parameters until a goal is reached
- New thing: "goal"?
 - At first sight, get something done
 - Ultimately, to minimize some error measure
- Summing things up: a ML process tries to find a concrete mathematical/algorithmic input-output
 parameterized transformation that minimizes an error measure by iteratively adjusting the
 transformation's parameters

Where Lies ML?

- In the middle of a possibly long process chain
- · Before ML starts we must
 - Go from raw to organized data: accessing, gathering, cleaning, formatting, ...
 - Go from organized to (potentially) informative data: extracting basic and derived features
- · After ML finishes and start applying a model, we must perform
 - Outcome evaluation: how good/actionable is
 - Outcome exploitation: collect, organize, act
 - Individual model maintenance: monitor performance, tune hyper-parameters
 - Modeling life cycle maintenance: discard old models, introduce new ones and communicate our work/results

Supervised/Unsupervised Models

- ML model types: supervised, unsupervised
- Supervised models:
 - Targets y^p are known and the model tries to predict or estimate them
 - These known targets guide, or supervise, model building
 - Main emphasis here

- Unsupervised models:
 - There are no predetermined or supervising outputs
 - But nevertheless the model is supposed to learn relations or find structure in the data
 - Often as a first step towards a supervised model
- Semisupervised models lie in between: some patterns have targets, some don't

Regression and Classification

- Problems (usually) to be solved by ML models: regression, classification
- In both patterns come in pairs (x, y)
 - x: inputs, predictors, features, independent variables
 - y: target, response, dependent variable; numerical in regression, class labels in classification
- **Regression**: the desired output y is **regressed** into the inputs x to derive a model $\hat{y} = f(x)$
 - We want $y \simeq \hat{y}$ so having $y \hat{y}$ "small" is the natural goal
- Classification: inputs are derived from several classes C_1, \ldots, C_K , to which labels ℓ_k are assigned
 - The model now assigns a label $\ell(x)$ to an input x
 - If x is derived from C_k we want to have $\ell(x) = \ell_k$
 - Here having $\ell(x)-\ell_k$ "small" may not make sense

The Boston Housing Regression Problem

- This is a first, widely used "toy" problem
- We want to estimate the median of house values over an area from some information about it
 which we believe relevant
- Features x: several real estate-related variables of Boston areas
 - CRIM: per capita crime rate by town
 - RM: average number of rooms per dwelling
 - NOX: nitric oxides concentration (parts per 10 million)
 - AGE: proportion of owner-occupied units built prior to 1940
 - LSTAT: % lower status of the population
 - ..
- Target y: MEDV, median value of owner-occupied homes in \$1,000's

The MNIST Classification Problem

• This is a well known benchmark, moderately large classification problem

- We have 28×28 grey scale image rasters with handwritten digits 0 to 9
- We want to build a classifier that assigns each raster to one of the 0 to 9 digits
- Features $x: 28 \times 28$ image matrices
- Target *y*: labels [0, 1, ..., 9]
- Examples (0-padded to 32×32):

Model Parameterization

- Often individual models are selected through (ideally optimal) parameter sets
 - The parameters (weights) $w \in \mathbb{R}^M$ select a concrete f in a model family \mathcal{F}
- Parametric models have a fixed functional form f(x) = f(x; W)
 - Simplest example: **linear regression**, where x has dimension d, M=d+1 and $W=(w_0,w)$

$$f(x; w_0, w) = w_0 + \sum_{j=1}^{d} w_j x_j = w_0 + w \cdot x$$

- Semi-parametric models: also use weights but without a predefined functional form
 - MLPs but also RF or GBR
- Non parametric models do not use weights nor follow any broad functional form; Nearest Neighbor models

Issues in Model Building

- There are some initial questions when working with models from a given family \mathcal{F} :
 - Which assumptions do they make?
 - How do they work on the input features?
 - How we do build them?
- In turn, these questions lead to another two:
 - How do we select the best model from the given family for the problem at hand?
 - How do we control the model building procedure?
- All of them address fundamental issues that require a **moderately deep** understanding of what is going on under the model's hood
- This understanding is usually framed in mathematical language

1.2 Regression Basics

How to Build Regression Models

- In general we have a sample $S = \{x^p, y^p\}, 1 \le p \le N$, with x^p the **features** and y^p the **targets**
- We want to build a model $\widehat{y} = f(x)$ so that $\widehat{y}^p = f(x^p) \simeq y^p$;
 - I.e., we want to **regress** y to the f(x)
- The concrete f is chosen within a certain family \mathcal{F}
 - Examples here: linear regression, multilayer perceptrons (MLPs)
 - And also: SVMs, Random Forests (RF), Gradient Boosting (GB), nearest neighbor (NN)
- Natural option to ensure $f(x^p) \simeq y^p$: choose f to minimize the sample **Mean Square Error** (MSE)

$$\widehat{e}(f) = \widehat{e}_S(f) = \frac{1}{2N} \sum_{p=1}^{N} (y^p - f(x^p))^2$$

• Thus, the model we select is $\hat{f} = \hat{f}_S = \arg\min_{f \in \mathcal{F}} \hat{e}_S(f)$

Model Estimation as Error Minimization

- For a parametric or semiparametric f(x;W) we can write $\widehat{e}_S(f)=\widehat{e}_S(f(\cdot;W))=\widehat{e}_S(W)$
- The problem to solve becomes

$$\widehat{W}^* = \widehat{W}_S^* = \arg\min_{W} \widehat{e}_S(W), \text{ i.e., } \widehat{e}_S(\widehat{W}^*) \leq \widehat{e}_S(W) \; \forall W$$

• In linear regression (LR) the sample error is

$$\widehat{e}(w_0, w) = \frac{1}{2N} \sum_{p} (y^p - w_0 - w \cdot x^p)^2$$

i.e., the sample error, with a corresponding population error

$$e(w_0, w) = \frac{1}{2} E_{x,y}[(y - f(x))^2] = \frac{1}{2} E[(y - w_0 - w \cdot x)^2 p(x, y) dx dy]$$

• LR reduces to minimize the quadratic form $\widehat{e}_S(W)$

Regression Assumptions

- **Key assumption**: x and y are related as $y = \phi(x) + n$ where
 - $\phi(x)$ is the **true** underlying function
 - n is **additive noise** with 0 mean and finite variance σ_N^2
- Our sample is just a particular instance of a deeper sample generation process
- Thus x, n are produced by random variables X, N

- And so is y, given by $Y = \phi(X) + N$
- Moreover, X and N are **independent distributions** with densities q(x), $\nu(n)$
- Thus, X and Y (or X and N) have a joint density

$$p(x,y) = p(x,\phi(x) + n) = q(x) \ \nu(n) = q(x) \ \nu(y - \phi(x))$$

MSE Decomposition

• We can decompose the MSE error of any model f as

$$\begin{aligned} 2 \mathrm{mse}(f) &= E_{x,y}[(y-f(x))^2] = \int (n+\phi(x)-f(x))^2 q(x) \nu(n) dx dn \\ &= \int \left(n^2 + 2 n (\phi(x)-f(x)) + (\phi(x)-f(x))^2 \right) q(x) \nu(n) dx dn \\ &= \int n^2 \nu(n) dn + \int (\phi(x)-f(x))^2 q(x) dx + \\ &= 2 \left(\int n \nu(n) dn \right) \left(\int (\phi(x)-f(x)) q(x) dx \right) \\ &= \sigma_N^2 + E_x[(\phi(x)-f(x))^2] \end{aligned}$$

- Thus for any model we have $\mbox{mse}(f) \geq \sigma_N^2$ always
- And we should focus on achieving on $f \simeq \phi$ (which we don't know!!)

The Best Regression Model

• It is easy to see that the best f is simply $f(x) = E_y[y|x]$, for

$$E_y[y|x] = E_n[\phi(x) + n] = \int (\phi(x) + n) \nu(n) dn = \phi(x)$$

- Have we finished? In theory yes; in practice, not at all!!!
 - We do not know ν and, thus, cannot compute the required integral
 - If we would have several M values y^j for any x, we could try $\widehat{\phi}(x) = \frac{1}{M} \sum_1^M y^j$
 - But this doesn't happen either
- Now we have two options:
 - Try to stretch the E[y|x] approach, for instance, by k-NN Regression
 - Forget about it and get back to get models f such that $f \simeq \phi$

From The Best Regressor to k-NN

• The left hand side shows the ideal situation but the right one is what we should expect

k-NN Regression

- We can try to use the y^p values of several x^p close to a new x
- We fix k neighbors x^{p_1},\dots,x^{p_k} of x and estimate $\hat{y}=\hat{y}(x)$ as

$$\hat{y}(x) = \frac{1}{k} \sum_{j=1}^{k} y^{p_j}$$

- $\hat{y}(x) = \hat{Y}_k^{NN}(x)$ is the k-Nearest Neighbor (NN) regressor
 - This can be refined to weighted versions, such as

$$\hat{y}(x) = \frac{1}{C_k(x)} \sum_{j=1}^k \frac{1}{\|x^{p_j} - x\|^2} y^{p_j}$$

with
$$C_k(x) = \sum_{j=1}^k \frac{1}{\|x^{p_j} - x\|^2}$$
 a normalizing constant

- But we need that close predictors give predictions that are also close, **and** that there are enough of them close by
 - This is very unlikely

The Curse of Dimensionality

• Even for low dimensions and large samples, the sample space is essentially empty

- 9
- Assume we have 1,000 d-dimensional x patterns whose features have values between 1 and 10
 - In dimension d=1 there are 100 patterns per unit length
 - But when d=3 we have just 1 pattern per volume unit
 - And if d=6 we have just 1 pattern per 1,000 units of volume
 - And in dimension 10 (not a big one nowadays) we have just ... !!!
- Thus, for most problems, there never will be enough close points
- As a consequence, to get k observations we may go too far away from x and the average will not be meaningful
- Therefore, unless we deal with violently non–linear problems, a simple linear model may be better than *k*–NN regression for moderate dimensions

Linear Models

• Assuming $x \in \mathbb{R}^d$, the basic linear model is

$$f(x) = w_0 + \sum_{i=1}^{d} w_i x_i = w_0 + w \cdot x$$

- w_0 complicates notation; to drop it we center x and y so that $E[x_i] = E[y] = 0$; then $w_0 = 0$
- Then we are left with the simpler **homogeneous** model $f(x) = w \cdot x$
- In practice we will always normalize x, for instance to have 0 mean and 1 standard deviation (std) on each feature
 - But not y if we may help it (or it is easy to reverse this)
- But: how do we find w?

1-dimensional Linear Regression (LR)

- Assume that features X and target Y are **centered**, i.e., have 0 means
- For 1-dimensional patterns x the LR model then becomes f(x) = w x
- And the error is then the function

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p=1}^{N} (w \, x^p - y^p)^2 = \frac{1}{2N} \sum_{p} \left(w^2 \, (x^p)^2 - 2x^p \, y^p \, w + (y^p)^2 \right)$$

$$= w^2 \left(\frac{1}{2N} \sum_{p} (x^p)^2 \right) - w \left(\frac{1}{N} \sum_{p} x^p \, y^p \right) + \frac{1}{2N} \sum_{p} (y^p)^2$$

- Thus, $\widehat{e}(w) = aw^2 + bw + c$ with a > 0 and it has obviously a minimum w^*
- To find it we just solve $\hat{e}'(w) = 0$

Solving $\widehat{e}'(w) = 0$

• We first compute $\hat{e}'(w)$, for which we have

$$\widehat{e}'(w) = w\left(\frac{1}{N}\sum_{p}(x^{p})^{2}\right) - \frac{1}{N}\sum_{p}x^{p}y^{p}$$

• The optimal w^* solves $\widehat{e}'(w) = 0$ and is given by

$$w^* = \frac{\frac{1}{N} \sum_p x^p y^p}{\frac{1}{N} \sum_p (x^p)^2} = \frac{\frac{1}{N} X^t Y}{\frac{1}{N} X^t X} = \frac{\operatorname{covar}(x, y)}{\operatorname{var}(x)} = (\operatorname{var}(x))^{-1} \operatorname{covar}(x, y)$$

where X and Y denote the $N \times d$ data matrix (vector here) and the $N \times 1$ target vector

General Linear Regression

- Assume again that X and Y are centered
- The LR model becomes now $f(x) = \sum_1^d w_i x_i = w \cdot x$
- If Y is the $N \times 1$ target vector and we organize the sample S in a $N \times d$ data matrix X, the sample mse is given by

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p} (w \cdot x^{p} - y^{p})^{2} = \frac{1}{2N} (Xw - Y)^{t} (Xw - Y)$$
$$= \frac{1}{2N} (w^{t} X^{t} X w - 2w^{t} X^{t} Y + Y^{t} Y)$$

- Now we have to solve $\nabla \widehat{e}(w)=0$, i.e., $\frac{\partial \widehat{e}}{\partial w_i}(w)=0$
- It is easy to see that

$$\nabla \widehat{e}(w) = \frac{1}{N} X^t X w - \frac{1}{N} X^t Y = \widehat{R} w - \widehat{b}$$

Solving the Linear Equations

• The optimal \widehat{w}^* must verify $\nabla \widehat{e}(\widehat{w}) = \widehat{R} \ \widehat{w} - \widehat{b} = 0,$ where

$$\widehat{R} = \frac{1}{N} X^t X, \ \widehat{b} = \frac{1}{N} X^t Y$$

• Over the original, non-centered data matrix we have

$$\widehat{R} = \frac{1}{N} (X - \overline{X})^t (X - \overline{X});$$

i.e., \widehat{R} is the sample covariance matrix

• If \widehat{R} is invertible, we just solve the linear system \widehat{R} $\widehat{w}=\widehat{b}$

• And obtain the sample-dependent optimal \widehat{w}^* as

$$\hat{w}^* = \hat{R}^{-1}\hat{b} = (X^t X)^{-1} X^t Y = \text{covar}(X)^{-1} \text{covar}(X, Y)$$

• \widehat{R} is oftent inverted through the **Singular Value Decomposition** (SVD) of the data matrix X

SVD

- The Singular Value Decomposition (SVD) of a $N \times d$ matrix X is $X = UDV^t$ where
 - U, V are orthonormal matrices with dimensions $N \times d$ and $d \times d$
 - D is a $d \times d$ diagonal matrix with diagonal elements $\delta_1 \geq \delta_2 \geq \dots$
- The columns of U and V are called the left and right singular vectors; the elements δ_i are the singular values
- Then $X^tX = VDU^tUDV^t = VD^2V^t$ and $(X^tX)^{-1} = VD^{-2}V^t$
 - D^{-2} is a diagonal matrix with $(D^{-2})_{ii} = 1/D_{ii}^2$
- The columns of \boldsymbol{U} and \boldsymbol{V} are unique up to a sign change
 - So different packages may give seemingly different U and V

SVD II

- Sometimes U is given as an $N \times N$ orthogonal matrix and D as an $N \times d$ matrix with zeros in its last N-d rows
- We can represent graphically such a SVD decomposition as follows:

Taken from Wikipedia

- We may see this as M performing first a rotation with V^* (our V^t), then feature dilations with Σ (our D) and, finally, another rotation with U
 - Actually both are a roto-reflections

Gradient Descent MSE Minimization

• Computing the covariance matrix has a $O(N \times d^2)$ cost and invert it has a $O(d^3)$ cost

- 12
- For big data problems it may not possible to solve analytically the normal equation $\nabla \widehat{e}(w) = 0$
- The simplest numerical alternative is **gradient descent**:
 - Starting from some random w^0 , we iteratively compute

$$w^{k+1} = w^k - \rho_k \nabla \widehat{e}(w^k) = w^k - \frac{\rho}{n_B} \left(\widehat{X}_B^t \widehat{X}_B w^k - \widehat{X}_B^t Y \right)$$

over a **mini-batch** B with n_B samples

- Component wise: $w_i^{k+1} = w_i^k \rho_k \frac{\partial \widehat{e}}{\partial w_i}(w^k)$
- ρ_k is the learning rate
- If $w^k \to w^*$, then $\nabla \widehat{e}(w^*) = 0$
 - Since our problems have obviously minima, this should be enough

By the Way ...

- We have just built our first neural network: the linear regression architecture can be seen as a multilayer perceptron (MLP) with no hidden layers
- Thinking of this as an MLP seems far-fetched, as we are missing the hidden layers and the much more complicated gradient computation
- But the layer architecture is there and we also have learning as iterative error minimization, i.e., training
- In fact, we will see that MLPs perform linear regression on the last hidden layer outputs
- And the process from the input to the last hidden layer produces an enhanced feature set upon which the regresion error should be better

Measuring Model Fit

- First option: Root Square Error $RSE = \sqrt{\frac{1}{N} \sum (y^p \widehat{y}^p)^2}$
- OK, but how to compare this? We must always have a base model to benchmark our results
- Simplest "model": a constant w_0 , which yields the mean $\overline{y} = \frac{1}{N} \sum_{1}^{N} y^p$, with square error

$$\frac{1}{N}\sum (y^p - \overline{y})^2 = \operatorname{Var}(y)$$

• We can compare our model against this base model by computing

$$\frac{\sum (y^p - \hat{y}^p)^2}{\sum (y^p - \overline{y})^2} = \frac{RSE^2}{\text{Var}(y)}$$

- The widely used R^2 coefficient is simply $R^2=1-\frac{RSE^2}{\mathrm{Var}(y)}$

Regularization

- 13
- Our regression solution $\widehat{w}^* = (X^t X)^{-1} X^t Y$ won't work if $X^t X$ is not invertible
 - For instance, when some features are correlated
- We could fix this working instead with $X^tX + \alpha I$ for some $\alpha > 0$
 - It is then always positive definite and we can thus invert it
- To make this practical, note that $\widehat{w}^* = \left(X^tX + \alpha I\right)^{-1}X^tY$ minimizes

$$e_R(w) = \frac{1}{2N} \sum_{p} (y^p - w \cdot x^p)^2 + \frac{\alpha}{2} ||w||^2,$$

- This is the **Ridge Regression** problem
 - Our first example of **regularization**, a key technique in Machine Learning
 - All ML models must be regularized in some way
- Important issue: how to find the right choice for α ?

Takeaways on Linear Regression

- 1. We introduced **supervised** models
- 2. We have reviewed the essentials of the linear regression model (always the first thing to try)
- 3. We have considered model estimation as a problem on **error minimization**
- 4. We have seen how to build linear models analytically and numerically
- 5. We have seen how to measure model fit
- 6. We have introduced **regularization**

1.3 Cross Validation, Bias and Variance

Sample Bias and Variance

- All built models are sample dependent
- With several **independent** samples S_1, \ldots, S_M , it is natural to use as our best final model the average of their associated $\hat{f}_{S_m}(x)$ models, i.e.,

$$\frac{1}{M} \sum_{1}^{M} \widehat{f}_{S_m}(x) \simeq E_S[\widehat{f}_S(x)] = \widehat{f}_N(x)$$

- Here we take the (theoretical) expectation $E_S[\widehat{f}_S(x)]$ over all samples S of size N
- $\hat{f}_N(x) = E_S[\hat{f}_S(x)]$ is our ideal **best model**
- The **variance** of the $\widehat{f}_S(x)$ estimates is then

$$V_N(x) = E_S [(\hat{f}_S(x) - \hat{f}_N(x))^2]$$

Bias Versus Variance

- Recall that our goal is to estimate ϕ in our regression model $y = \phi(x) + n$
- Ideally we would like to have a model such that

$$\widehat{f}_N(x) - \phi(x) \simeq 0,$$

i.e., a model with small bias

- This should be achievable if we have rich, highly flexible models
- Or with essentially no regularization (or both!)
- But we would also like to have a robust model building procedure which results in a small variance $V_N(x) \simeq 0$
 - This should be achievable if models are simple with few parameters
 - Or with more severe regularization if not
- · Obviously both goals are contradictory to a large extent

The Bias-Variance Tradeoff

• There is thus a **tradeoff** between bias (low for complex models) and variance (low for simple models)

Taken from Hastie et al., p. 38

• Recall that in k-NN regression we choose the k nearest neighbors x^{p_1}, \ldots, x^{p_k} of x and estimate $\hat{y} = \hat{y}(x)$ as

$$\hat{y}(x) = \frac{1}{k} \sum_{j=1}^{k} y^{p_j}$$

- Here the parameter that controls the tradeoff is just k
- If k=N, the sample size, the N-NN estimator is just the mean: $Y_N^{NN}=\overline{y}$, with very small variance but large bias (it's an obviously bad model!!)
- If k=1, the 1–NN estimator will have smaller bias but a large variance: changing the sample is very likely to change the sample point nearest to x

Bias vs Variance in Ridge Regression

• Recall that the Ridge Regression loss is

$$e_R(w) = \frac{1}{2N} \sum_p (y^p - w \cdot x_p^p)^2 + \frac{\alpha}{2} ||w||^2,$$

- Here the parameter that controls the tradeoff is α
- If $\alpha \gg 1$, any non zero w implies a large regularization penalty
 - It is thus likely that $w\simeq 0$ and the Ridge model reduces again to the mean \overline{y} , with small variance but possibly a large bias
- But if $\alpha \simeq 0$, w can wander on the entire \mathbf{R}^d
 - The bias will be then smaller, but the weights w_S and $w_{S'}$ from different samples may be very different, particularly if the covariance is nearly singular

Evaluating Expected Performance

- It is obvious that before we start applying a model, we should have a reasonably accurate idea of its performance in practice
- I.e., we want to estimate the model's generalization performance
- ullet Estimating the generalization performance only over the sample S used for training results in misleading error values
- The preceding suggests to have M independent subsamples S_m and then
 - To compute $\widehat{f}_M(x) = \frac{1}{M} \sum_m \widehat{f}_{S_m}(x) \simeq \widehat{f}_N(x)$
 - To get the error estimate $\widehat{e}=\frac{1}{N}\sum_p(y^p-\widehat{f}_M(x^p))^2$ over a new, **unseen** sample $S'=\{(x^p,y^p)\}$
- But since usually we only have a single S, we "simulate" this by **Cross Validation** (CV) to get our first realistic generalization error estimates

- In Cross Validation (CV) we
 - Randomly split the sample S in M subsets S_1, \ldots, S_M
 - Work with M folds: pairs (S_m, S_m^c) , with

$$S_m^c = S - S_m = \cup_{i \neq m} S_i$$

- Build M different models using the S_m^c as training subsets
- Compute their errors e_m on the folds' validation subsets S_m
- Use these errors' average as a first estimate of the true model performance
- CV can and must be used in any model building procedure
 - Most data science packages have tools to simplify this
- We will also use CV to find **optimal model hyper-parameters** such as α in Ridge Regression

Grid Hyper-parameter Selection

- Consider for Ridge regression a hyperparameter range $[\epsilon, A]$, with $0 < \epsilon < A$
 - In general $\epsilon \simeq 0, A \gg 1$
 - $\alpha = \epsilon$: essentially no penalty, small bias and high variance
 - $\alpha = \Lambda$: large penalty, small variance but high bias
- Select an L+1 point grid $\{\alpha_0 = \epsilon, \alpha_1, \dots, \alpha_L = A\}$
 - The α_j can be equi-spaced, log equi-spaced, random, ...
- At each α_{ℓ}
 - Train M models on the S_m^c using the hyperparameter α_ℓ
 - Average their test errors e_m on the S_m to get the error $e(\alpha_\ell)$ at α_ℓ
- And choose the final (hopefully) optimal hyperparameter α^* as

$$\alpha^* = \arg\min_{0 \le \ell \le L} e(\alpha_\ell)$$

• α^* gives the model with the **best expected generalization among all possible** α **choices**

Takeaways on Bias, Variance and CV

- We have stressed that any model estimation is sample-dependent and that this has to be controlled
- 2. We have introduced the bias and variance as the two key components of any model error
- 3. We have discussed bias-variance trade-off
- We have introduced Cross Validation here as a tool to estimate a model's generalization performance
- 5. We have also introduced Cross Validation as a tool to estimate a model's hyper-parameters

1.4 Basic Classification

Regression vs Classification

- Recall that in regression we have numerical continuous targets y and want our predictions \hat{y} to be as close to y as possible
- But in classification we have a finite number of labelled targets for which "selection by closeness" doesn't make sense
- Natural alternative: select the **most probable** label given the pattern x we have just received
 - The concrete labels used for targets do not matter much anymore
 - Model learning should thus be "target" agnostic
 - And good probability estimates should be quite useful
- Let's analyze this in an example

A First Problem: Pima Indian Diabetes

- We want to diagnose whether a person may have diabetes from some clinical measures
- Features x: clinical measures
 - numPregnant
 - bloodPress
 - massIndex
 - age ...
- Target y: 0 (no diabetes), 1 (diabetes)
- · Clear goal but perhaps too radical
- Better: try to estimate the probability P(1|x) of having diabetes depending on the features x we measure

Classification Setup

- We have random patterns ω from M classes, $C_1, \ldots C_M$
- Over each pattern we "measure" d features $x = x(\omega) \in \mathbb{R}^d$
 - x inherits the randomness in ω and becomes a random variable
- A ω has a **prior probability** π_m of belonging to C_m
- Inside each class C_m there is a **conditional class density** f(x|m) that "controls" the appearance of a given x
- The π_m and f(x|m) determine the **posterior probability** P(m|x) that x comes from class C_m

• Intuition: we should assign x to the class with the largest P(m|x), that is, work with the classifier

$$\delta(x) = \arg\max_{m} P(m|x)$$

Computing Posterior Probabilities I

- Bayes rule: $P(B|A) = \frac{P(A \cap B)}{P(A)}$
- This requires to work with probabilities, not densities, but $P(\{x\}) = P(m \cap \{x\}) = 0$ and

$$P(m|x) = \frac{P(m \cap \{x\})}{P(\{x\})} = \frac{0}{0} = \dots???$$

• But we can use the approximation

$$P(m|x) \simeq P(m|B_r(x)) = \frac{P(C_m \cap B_r(x))}{P(B_r(x))} = \frac{P(B_r(x)|m)P(C_m)}{P(B_r(x))}$$
$$= \frac{\pi_m P(B_r(x)|m)}{P(B_r(x))} = \pi_m \frac{\int_{B_r(x)} f(y|m)dy}{\int_{B_r(x)} f(z)dz}$$

where we assume that features x are measured independently from classes m

Computing Posterior Probabilities II

• Remember the Fundamental Theorem of Calculus: if $F(x) = \int_a^x f(y) dy$,

$$\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{x_0 - \epsilon}^{x_0 + \epsilon} f(y) dy = \frac{dF}{dx}(x_0) = f(x_0)$$

• In d dimensions it becomes

$$g(w) = \lim_{r \to 0} \frac{1}{|B_r(w)|} \int_{B_r(w)} g(z) dz$$

• Putting everything toghether, we arrive

$$\begin{split} P(m|x) &= \lim_{r \to 0} P(m|B_r(x)) = \pi_m \lim_{r \to 0} \frac{\int_{B_r(x)} f(y|m) dy}{\int_{B_r(x)} f(z) dz} \\ &= \pi_m \lim_{r \to 0} \frac{\frac{1}{|B_r(x)|} \int_{B_r(x)} f(y|m) dy}{\frac{1}{|B_r(x)|} \int_{B_r(x)} f(z) dz} = \frac{\pi_m f(x|m)}{f(x)} \end{split}$$

The Obviously Optimal Classifier

• This suggests that a natural choice is the **classifier** δ_B

$$\delta_B(x) = \arg \max_m P(m|x) = \arg \max_m \frac{\pi_m f(x|m)}{f(x)}$$

$$= \arg \max_m \pi_m f(x|m)$$

- 19
- With some extra work we can show that this **Bayes Classifier** δ_B defines an optimal solution (in some precise sense) of the classification problem
- But ... this doesn't look too practical, for we do not know either π_m or (much harder) f(x|m)

Approximating the Bayes Classifier

- To define δ_B we need to know the prior probabilities π_m and the prior densities f(x|m)
- A reasonable choice for π_m is $\widehat{\pi}_m = \frac{N_m}{N}$, where N_m is the number of patterns of C_m in the sample
- But effective multidimensional density estimates are rather difficult, because of the curse of dimensionality
 - Densities generalize histograms
 - Good histograms need accurate counts of elements nearby
 - But in high dimensions there won't be nearby elements!!
- Options:
 - Restrict possible density models: logistic regression
 - Assume no model and apply a Nearest Neighbor (NN) strategy

The k-NN Classifier

- Very simple: at any x consider the subset $N_k(x)$ of its k closest sample points and
 - Let $n_m(x)$ the number of elements of class m in $N_k(x)$
 - Notice that $0 \le n_m(x) \le k$
 - Define $\delta_{kNN}(x) = \arg \max_{m} n_m(x)$
- That is, $\delta_{kNN}(x)$ assigns x to the class that has more patterns in $N_k(x)$
- · We can partially justify this definition from a Bayesian point of view
- Assume that $B_r(x)$ is the smallest ball that contains $N_k(x)$ and consider the approximations
 - $P(B_r(x)|m) \simeq \frac{n_m(x)}{N_m}$
 - Similarly, $P(B_r(x)) \simeq \frac{k}{N}$
 - And $\pi_m \simeq \frac{N_m}{N}$

k-NN and the Bayes Classifier

• We then have

$$\begin{split} P(m|x) & \simeq & P(m|B_r(x)) = \frac{\pi_m P(B_r(x)|m)}{P(B_r(x))} \\ & \simeq & \frac{N_m}{N} \frac{n_m(x)}{N_m} \; \frac{1}{\frac{k}{N}} = \frac{n_m(x)}{k} \end{split}$$

• Therefore δ_{kNN} might be close to δ_B , for

$$\begin{array}{lcl} \delta_{kNN}(x) & = & \arg\max_{m} \, n_m(x) = \arg\max_{m} \frac{n_m(x)}{k} \\ \\ & \simeq & \arg\max_{m} \, P(m|x) = \delta_B(x) \end{array}$$

Some *k*–NN Issues

- Q1: How do we choose k? Using CV, of course
- There are no closed form solution and we have to deal again with the bias-variance tradeoff
 - Small variance with large k: if k = N, k-NN classification returns the majority class
 - Small bias with small k: if k = 1 a point very close to x should be in the same class
 - But also large variance: the nearest point to x in another sample may well belong to a different class
- Q2: Is k-NN always meaningful?
 - Well, only if classes are concentrated and far from each other
 - In other words, when the classification problem is easy!!

Measuring Classifier Accuracy

- Consider a two class problem with labels y = 0, 1
- We will call patterns with label 1 positive and those with label 0 negative
 - Usually the positive patterns are the interesting ones: sick people, defaulted loans, ...
- Let $\widehat{y} = \widehat{y}(x)$ the label predicted at x; we say that x is a
 - **True Positive** (TP) if $y = \hat{y} = 1$
 - True Negative (TN) if $y = \hat{y} = 0$
 - False Positive (FP) if y = 0 but $\hat{y} = 1$
 - False Negative (FN) if y = 1 but $\hat{y} = 0$
- These values are combined in many performance measures

Classifier Metrics

- The classifier accuracy is $acc = \frac{TP + TN}{N}$
 - The first thing to measure but ...
- It may not be too significant when the number N_0 of negatives is $\gg N_1$, the number of positives; then
 - The classifier $\delta(x) = 0$ will have a high accuracy $N_0/N \simeq 1$

- But it will also be useless!!
- First variant: Precision, Recall
 - Recall: TP/(TP + FN), i.e., the fraction of positives detected
 - **Precision**: TP/(TP + FP), i.e., the fraction of true alarms issued
- Recall measures how many positive cases we recover, i.e., how effective is our method
- Precision measures the effort we need for that, i.e., its efficiency
- Ideally: high recall, high precision (i.e., effective and efficient!!)
- Another way of presenting the performance is through the **confusion matrix**

The Confusion Matrix

· Standard layout

	P'	N'
	(Predicted)	(Predicted)
Р	True Positive	False Negative
(Actual)		
N	False Positive	True Negative
(Actual)		

- · Other layouts:
 - Positives (with label 1) at bottom (as done in confusion_matrix of sklearn)
 - Predicted values in rows, real values in columns
- · Accuracy and the confusion matrix can be extended to multi-class problems
 - But not other concepts such as recall or precision

Linear Regression for Classification?

- \bullet k-NN Classifier is simple but also crude; have to look elsewhere
- Building a regression model with targets given by some coding of class labels usually doesn't make sense
- However, for a binary 0–1 response, it can be shown that the $w_0 + w \cdot x$ obtained using linear regression is in fact an estimate of P(1|x)
 - We may thus fix a threshold δ_0 and decide 0 if $w_0 + w\dot{x} < \delta_0$ and 1 otherwise
 - However, we may end up with probability estimates less than 0 o bigger than 1!!!

- 22
- Better idea: try to transform the linear output $w_0 + w \cdot x \in (-\infty, \infty)$ into a probability $P(1, x) \in (0, 1)$
 - Logistic regression does this through the **logistic** or **sigmoid** function

Logistic Regression (LogR)

• We assume

$$P(1|x) = P(1|x; w_0, w) = \frac{1}{1 + e^{-(w_0 + w \cdot x)}}$$

- Then $0 \le P(1|x) \le 1$ for any x
- We then have

$$P(0|x) = 1 - P(1|x) = \frac{e^{-(w_0 + w \cdot x)}}{1 + e^{-(w_0 + w \cdot x)}} = \frac{1}{1 + e^{w_0 + w \cdot x}}$$

- Notice that if $w_0 + w \cdot x = 0$, P(1|x) = P(0|x) = 0.5
- The ratio $\frac{P(1|x)}{P(0|x)} = e^{w_0 + w \cdot x}$ is called the **odds** of x and its log the **log odds** or **logit**
- Thus, the basic assumption in LogR is that the **logit is a linear function** $w_0 + w \cdot x$ of x
- We have the model f(x; w); we need a **loss** function $L(w_0, w)$ to minimize for which we use the sample's **likelihood**

Estimating w_0^*, w^*

- Assume a single sample x, y and two possible model coefficients w_0, w and w'_0, w'
- Denoting by $p = P(y|x; w_0, w)$ and $p' = P(y|x; w'_0, w')$, it is clear that we should prefer w_0, w if p > p' and w'_0, w' if not
 - In other words, we prefer the coefficients that give a higher posterior probability
- For an **independent** sample $S = \{(x^p, y^p)\}$, its joint probability under a posterior model $p = P(y|, x, w_0, w)$ is

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|x^p; w_0, w)$$

• And, again, given two possible model coefficients w_0 , w and w'_0 , w', we should prefer w_0 , w iff

$$P(Y|X; w_0, w) > P(Y|X; w'_0, w')$$

Sample's Likelihood

• Therefore, we can estimate the optimal w_0^*, w^* as

$$w_0^*, w^* = \arg\max_{w_0, w} P(Y|X; w_0, w)$$

• By the independence assumption we have

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|x^p; w_0, w)$$

$$= \left\{ \prod_{y^p=1} P(1|x^p) \right\} \left\{ \prod_{y^p=0} P(0|x^p) \right\}$$

$$= \prod_{p=1}^{N} P(1|x^p)^{y^p} P(0|x^p)^{1-y^p}$$

because

- If
$$y^p=1$$
, $P(1|x^p)=P(1|x^p)^{y^p}=P(1|x^p)^{y^p}$ $P(0|x^p)^{1-y^p}$, and - If $y^p=0$, $P(0|x^p)=P(0|x^p)^{1-y^p}=P(1|x^p)^{y^p}$ $P(0|x^p)^{1-y^p}$

Max Log-Likelihood Estimation

• The **log-likelihood** of w_0, w given S is then

$$\ell(w_0, w; S) = \log P(Y|X; w_0, w)$$

$$= \sum_{p} \{y^p \log p(1|x^p) + (1 - y^p) \log p(0|x^p)\}$$

$$= \sum_{p} y^p \log \frac{p(1|x^p)}{p(0|x^p)} + \sum_{p} \log p(0|x^p)$$

$$= \sum_{p} y^p (w_0 + w \cdot x^p) - \sum_{p} \log(1 + e^{w_0 + w \cdot x^p})$$

• We can thus estimate the optimal $\widehat{w}_0^*, \widehat{w}^*$ as

$$\widehat{w}_0^*, \widehat{w}^* = \arg\min_{w_0, w} \ -\ell(w_0, w; S)$$

• Extra bonus: $-\ell$ is a convex differentiable function of (w_0, w) and, thus, it is enough to solve $\nabla \ell(w_0, w) = 0$

Newton-Raphson Solution

- However, $\nabla \ell(w_0, w) = 0$ doesn't admit a closed form solution, but only an iterative, numerical one
- We apply the **Newton–Raphson** iterative method, here equivalent to the general Newton method for function minimization
- For a general weight vector w, and starting with an initial random w^0 , Newton's iterations are

$$w^{k+1} = w^k + (\mathcal{H}_{\ell}(w^k))^{-1} \nabla \ell(w^k)$$

• $\mathcal{H}_{\ell}(w^k)$ denotes the **Hessian** of ℓ at w^k , which may or may not be invertible

- 24
- Everything is fine if the w^k are close enough to the optimum w^* but far away things may get tricky
- Just as before, we can add a regularization term $\frac{\alpha}{2}||w||^2$ to avoid invertibility problems
- The iterations in Logistic Regression are again typical of many of the model building methods used in Machine Learning

Recap: Learning in ML

- The general approach to **learning** is the following:
 - A model f(x; w) is chosen
 - Given a sample $S = \{(x^1, y^1), \dots, (x^N, y^N)\}$, we define a sample dependent loss function

$$L(w) = L(w|S) = L(y^1, \dots, y^N, f(x^1; w), \dots, f(x^N; w))$$

• L(w) is often minimized from some w^0 by **iterations**

$$w^{k+1} = w^k - \rho_k G(w^k, S)$$

with ρ_k a **learning rate** and G some vectorial function

- When $G(w) = \nabla L(w)$ we have gradient descent
- When $G(w) = \mathcal{H}(w)^{-1} \nabla L(w)$ we obtain **Newton's method**
- When the entire sample S is used at each iteration, we speak of **batch learning**
- When only single patterns (x^p,y^p) or small subsamples are used, we speak of **on-line** or **mini-batch learning**

Takeaways on Classification

- 1. We have introduced the classification problem as one of **computing posterior probabilities**
- 2. We have found the optimal Bayes classifier and approximated it by k-NN
- 3. We have introduced several measures of classifier performance
- We have introduced Logistic Regression and the numerical minimization of its (minus) loglikelihood
- 5. We have put Logistic Regression modeling in the general framework of Machine Learning models

2 Multilayer Perceptrons

2.1 Rosenblatt's Perceptrons

Basic Neural Models

• Basic model: Ramón y Cajal's neuron (1900)

- Basic behavior: the neuron either fires or stays at rest depending basically on its inputs
- This translates into an electrical nerve impulse or action potential
- The brain has about 10^{11} neurons
 - Each one has about 7,000 connections
 - These connections are often **recurrent**

Hodgkin-Huxley

- They developed (circa 1935) the first electro-physiological model to describe the generation and propagation of action potentials in neurons
- They used the giant squid axon for this

From Wikipedia's Squid Giant Synapse

Electronic Neuron

- Electronic version: McCulloch–Pitts (1940)
 - Since $I=\frac{V}{R}=wV,$ with w the conductance, the McCulloch–Pitts neuron output is

$$H\left(\sum_{j=1}^{d} w_j V_j + I\right) = V$$

with the Heaviside function H ensuring a 0-1 output

• The **perceptron** is a mathematical formulation of the McC–P neuron where **the conductances** are to be learned

Rosenblatt's Perceptron

• Given a sample $S = \{(x^p, y^p)\}$ with $y^p = \pm 1$, Rosenblatt's Perceptrons (PCPs) are linear machines $w \cdot x$ such that

$$w \cdot x^p > 0$$
 if $y^p = 1$
 $w \cdot x^p < 0$ if $y^p = -1$

- This can be seen as a homogeneous classification problem
- ullet In more compact form we want for all p

$$y^p \ w \cdot x^p > 0$$

- If such a separating w exists, it can be computed in many ways
- But Rosenblatt's goal was to **learn** w, i.e., to arrive at a separating w by repeatedly examining the (x^p, y^p) and adjusting w if necessary

Rosenblatt's Delta Rule

• The Delta Rule algorithm

Start with
$$w=0$$
 While stopping condition not met: Get a new pattern $(x^p,y^p)=\left(x^{p(t)},y^{p(t)}\right)$ if $y^pw\cdot x^p\leq 0$ then: $w=w+y^px^p$

• Writing w for the new vector and w' for the previous one, notice that

$$y^p \ w \cdot x^p = y^p \ w' \cdot x^p + ||x^p||^2 > y^p \ w' \cdot x^p$$

- 27
- It states that if the sample S is **linearly separable**, the Delta rule yields a separating w in a **finite** number of steps
 - I.e., it learns!!
- More precisely, if for some separating hyperplane w with $\|w\|=1$ we have $\min_p y^p w \cdot x^p=\gamma>0$, then a separating w' can be found after at most $T=R^2/\gamma^2$ wrong classifications, where $R=\max_p \|x^p\|$
- Notice that γ is the **margin** of the w hyperplane. Thus, if

$$\gamma^* = \max_{\|w\|=1} m(w, S) = \max_{\|w\|=1} \min_{p} y^p w \cdot x^p$$

is the **maximum margin**, we will need at most $R^2/(\gamma^*)^2$ iterations to train a Perceptron

- The maximum margin hyperplane gives the best (smallest) Novikov bound
- And problems with smaller margins require more iterations

Margins and Generalization

• Intuitively, when the margin is large, the problem is easier

Distance to a Line

- ullet The margin of w is just the smallest distance between sample points and the hyperplane defined by w
- This extends to the multidimensional case: if ||w|| = 1 and b = 0, the distance of x to the hyperplane defined by w is $|w \cdot x| = yw \cdot x$

• Thus the Delta Rule corrects weight vectors with negative margins

Novikov's Proof Sketch

- Assume x^t is the t-th pattern such that $y^t w^{t-1} \cdot x^t \leq 0$
- Then $\|w^t\|^2 = \|y^t x^t + w^{t-1}\|^2 \le \|x^t\|^2 + \|w^{t-1}\|^2$ and, thus,

$$||w^t||^2 \le ||x^t||^2 + \ldots + ||x^1||^2 + ||w^0||^2 \le tR^2$$

if $w^0 = 0$ and $||x^p|| \le R$ for all p

• Also, if w' is a 1-norm separating hyperplane i.e., $\min_p y^p w' \cdot x^p = \gamma > 0$ for all p, we have

$$w^{t} \cdot w' = (y^{t}x^{t} + w^{t-1}) \cdot w' \ge \gamma + w^{t-1} \cdot w' \ge \ldots \ge t\gamma + w^{0} \cdot w'$$

• Putting both together we have for all t for which x^t is erroneous

$$t\gamma \le w^t \cdot w' \le ||w^t|| \le \sqrt{t}R$$

which implies $t \leq R^2/\gamma^2$

• Thus, the Delta Rule will stop after at most R^2/γ^2 iterations

Problems with Perceptrons

- Rosenblatt's Perceptron caused a big stir on the feasibility of **Conexionist Artificial Intelligence** but soon its first winter came
- Observation 1: A PCP can learn (obviously) only linearly separable problems; for instance, it can learn the AND and OR predicates
- But a PCP cannot learn the XOR predicate

Dichotomies

- Observation 2: for PCPs to be useful, linearly separable problems must be frequent
- Q: how frequent are they?
- A dichotomy for $S = \{x^1, x^2, \dots, x^N\}$ is any separation of S in two classes
- It corresponds to any asignment of the ± 1 values to the x^p
- The total number of dichotomies is 2^N
- Thus, the total number of 2-class problems over S is 2^N

Cover's Theorem

- We have to compare the total number of dichotomies with the number of dichotomies that are **linearly separable**
- The points in a sample S are said to be in **general position** if there are not d+1 patterns in a d-1-dimensional hyperplane
- Theorem If S is in general position, the number L(N,d) of linearly separable dichotomies is

$$L(N,d) = \left\{ \begin{array}{cc} 2^N & \text{si } N \le d+1 \\ \\ 2\sum_{i=0}^d \binom{N-1}{i} & \text{si } N \ge d+1 \end{array} \right\}$$

Points in General Position

• Consider d=2, 3=d+1 points and a 1=d-1-dimensional hyperplane

Points Not in General Position

2 MULTILAYER PERCEPTRONS

30

d=2

3 punts en
posición
general

X

• Consider now d=2 and 3=d+1 points **not** on a 1=d-1-dimensional hyperplane (i.e., a line)

$Thus \dots \\$

• Notice that for d fixed,

$$\frac{L\left(N,d\right)}{2^{N}}\rightarrow0$$

as
$$N \to \infty$$

- In practice we can expect $N\gg d$ and the fraction of separable dichotomies will be very small
- Thus, linear PCPs will not be useful

- 31
- But a **one hidden layer** PCP can solve XOR and, in fact, **separate any convex region** from the rest of the space
- And a two hidden layer PCP can separate any polyhedral region and hence solve any classification problem
- The same is essentially true for regression problems
- But: no algorithm is known to learn these 2-hidden layer PCPs

Why Not Try to Minimize Some Loss?

- Rosenblatt's Perceptrons are natural online machines:
 - Patterns appear sequentially and each may change the current weights
- We can also define a perceptron loss over a given sample as

$$L(w|S) = -\sum_{\{p:y^p w \cdot x^p < 0\}} y^p w \cdot x^p$$

- The local error would thus be $-y^pw\cdot x^p$ when $y^pw\cdot x^p<0$ and 0 otherwise
- Since $\nabla_w(-y^p\ w\cdot x^p)=-y^p\ x^p$, the Delta Rule can be seen as a kind of local gradient descent on the loss L(w|S):

$$w^{t} = w^{t-1} + y^{p(t)}x^{p(t)} = w^{t-1} - \nabla_{w} \left(-y^{p(t)} x^{p(t)} \cdot w \right)$$

• However L(w|S) is not differentiable and it is not clear what to make of $\nabla_w L(w|S)$...

What Can We Do?

- First option: work with linear models but somehow ensure that $d \gg N$
 - Transform the original d-dimensional features x in new D-dimensional ones such that $D\gg d$
 - We overcome then that, in practice, we usually have $N\gg d$
 - This is the goal of kernel-based Support Vector Machines
- Second option: build trainable PCPs replacing the Heaviside function
 - Work with differentiable PCP transfer function
 - Transform PCP training into a differentiable optimization problem
 - This is what we will do next
- · Before doing so, note that Rosenblatt's PCPs can be seen as the first Machine Learning model
- And modern ML started around 1985 along the PCP's ideas

2.2 Classical MLPs

Basic Neural Models

- Basic model: Ramón y Cajal's neuron (1900)
- Basic behavior: the neuron either fires or stays at rest depending basically on its inputs
- The brain has about 10^{11} neurons with each one having about 7,000 connections, often recurrent

Hodgkin-Huxley

- They developed (circa 1935) the first model to describe the generation and propagation of electrical **action potentials** in neurons
- They used the giant squid axon for this

From Wikipedia's Squid Giant Synapse

McCulloch-Pitts

• Idealized electronic version of a neuron's working (1943)

• Taking weights w=1/R as conductances, x as potentials and $wx=\frac{x}{R}$ as intensities, the McCulloch–Pitts neuron outputs a potential x_j

$$x_j = H\left(\sum_{j=1}^N w_{jk} x_k + I_j\right)$$

- The Heaviside function H ensures a 0, 1 output
- I.e., the neuron fires or does not fire

Basic Questions

- Q1: How to adjust the w_i and I values? I.e., how to "learn" them?
 - It will depend on the problem at hand but it is relatively easy for isolated neurons
- Q2: How to model and reproduce the joint behavior of groups of neurons?
 - Related to the previous questions but quite difficult!!
 - * It is very hard to measure the joint behavior of groups of neurons
 - * It is very hard to take into account the recurrence present in real neurons
- In Artificial Neural Networks (and in ML) one considers just Q1 and (usually) outside any neuro-computational framework

The Perceptron

• Proposed by Frank Rosenblatt (1957) as a first step to build an artificial retina

- Key step: separate two classes of vectors x labelled with a target $y=\pm 1$
- Want a weight vector w such that $w \cdot x > 0$ if y = 1 and $w \cdot x < -1$ if y = -1
- In a unified form we want $y \cdot w \cdot x > 0$
- First success: this can be done by learning

The Delta Rule

- Connectionist paradigm: learning means that weights change as new inputs are received
 - They go through a series of steps $w = w^k$ as they receive the k-th pair x^p, y^p
 - In the Perceptron's case, change w when y^p $w \cdot x^p \le 0$
- Perceptron's adaptive steps:

```
w = 0
while there remain wrongly classified patterns:
   get a new pattern (x_p, y_p)
   if y_p * w.dot(x_p) <= 0:
        # w's response was wrong so we change it
        w = w + y_p * x_p</pre>
```

- Then the Perceptron learns: if the patterns can be separated, after a finite number of steps we arrive at a w that separates the patterns
- But ...

The Connectionist Winter

- · Perceptron learning caused a lot of excitement at the time
- However, it could not solve simple separation problems such as the XOR:

$$01_1$$
 11_0 00_0 10_1

• This can be solved adding more layers to the basic Percetron

• But no algorithm to make them learn was found, and interest in PCPs decayed

MLP's Rebirth

- New proposal (circa 1985): keep the architecture but look to MLP learning as a form of error minimization
- MLP's General layout:
 - An input layer (input)
 - One or several hidden layers
 - One output layer
- · Feedforward connections only

• Example: TensorFlow Playground

MLP Connections

- · No feedback or lateral conections
- Fully connected layers
- Linear weight connections between units and (usually) non linear activations inside each unit
 - Combined effect of sucesive layers: potentially highly non-linear transformation
- · General processing: layered and feedforward
- In practice (1990s), one hidden layer and only sometimes two
- Later (around 2010): Deep Networks with "many" (from 3 to 10) layers
- Now: almost anything!

Unit Activation and Output

• The activations a_i^h of a unit in layer h receives the outputs o_j^{h-1} from processing in the previous layer

$$a_i^h = \sum_{j=1}^{n_{h-1}} w_{ij}^h o_j^{h-1} + b_i^h,$$

2 MULTILAYER PERCEPTRONS

36

• In matrix/vector form:

$$a^h = W^h o^{h-1} + b^h$$

- Output o_i^h of a unit: non linear processing $o_i^h = \varphi(a_i^h)$ of its activation
- In vector form:

$$o^h = \varphi(a^h),$$

where φ is applied over each unit

Activation Functions

- Choices for f:
 - Heaviside (in the very first Rosenblatt's Perceptrons): $\varphi(a)=0$ if $a\leq 0, \, \varphi(a)=1$ if a>0
 - Identity/linear: $\varphi(a) = a$
 - Sigmoid:

$$\varphi(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

- Hyperbolic tangent:

$$\varphi(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

– Rectified Linear Units (ReLUs): $\varphi(a) = r(a) = \max(0, a)$

Sigmoid, Hyperbolic Tangent, ReLUs

- Sigmoid and tanh: smooth version of Heaviside step function
- For ReLUs r'(x) is either 0 or 1 (hoping x = 0 never happens!!)
 - Many gradient elements will go to 0 and many units will have constant activations no matter their input

From Stanford's UFLDL Tutorial

• Usual activation choices:

- For hidden units: hyperbolic tangent and, currently, ReLU
- Linear outputs for regression, sigmoid/soft max outputs for classification

The Simplest MLP I

- The Single Hidden Layer (SHL) MLP
 - D inputs (determined by the problem at hand)
 - One hidden layer with H units (number to be chosen) and tanh (or what you prefer) activation
 - One linear or sigmoid output (according to the problem at hand)
- Input-hidden processing: denoting inputs by x and the hidden unit outure as o^H ,

$$o_h^H = anh \left(b_h^H + \sum_{j=1}^D W_{hj}^H x_j \right)$$

- In matrix/vector form: $o^H = \tanh (W^H x + b^H)$

The Simplest MLP II

• Hidden-output processing: since targets are 1-dimensional, we have for the outputs \hat{y}

$$\widehat{y} = \sum_{h=0}^{H} w_h^O o_h^H + b^O,$$

- In vector form: $\hat{y} = w^O \cdot o^H + b^O$
- That is, a **linear model** on the last hidden layer outputs o^H
- · Global process:

$$\hat{y} = f(x; w^O, W^H, b^O, b^H) = b^O + \sum_h w_h^O \tanh\left(b_h^H + \sum_j W_{hj}^H x_j\right)$$

- Or in matrix/vector form

$$\widehat{\boldsymbol{y}} = \boldsymbol{f}(\boldsymbol{x}; \boldsymbol{w}^O, \boldsymbol{W}^H, \boldsymbol{b}^O, \boldsymbol{b}^H) = \boldsymbol{b}^O + \boldsymbol{w}^O \cdot \tanh \ \left(\boldsymbol{b}^H + \boldsymbol{W}^H \boldsymbol{x}\right)$$

• Or in Python $y_pred = np.tanh(x.dot(w_H.T) + b_H).dot(w_O.T) + b_O$

MLPs and Universal Approximation

- Recall that the regression goal is to get $f \simeq \phi$
- We say that $\mathcal{F} = \{f(x; \mathcal{W})\}$ is a **Universal Approximation Family** over a domain \mathcal{R} if For any $\epsilon > 0$ and any reasonable ϕ , we can find an $f(x; \mathcal{W}_{\phi, \epsilon})$ s.t.

$$\int (\phi(x) - f(x; \mathcal{W}_{\phi, \epsilon}))^2 p(x) dx \le \epsilon$$

- · Notice that Universal Approximation is just what we need in regression
- In fact a Single Hidden Layer MLP with enough hidden units is an effective universal approximator
- But we have to be able to build them

MLP Error Function

• MSE is the standard error function for regression MLPs

$$e(\mathcal{W}) = \frac{1}{2} E_{x,y} \left[(y - f(x; \mathcal{W}))^2 \right] = E_{x,y} \left[e^{\ell}(x, y; \mathcal{W}) \right]$$
$$= \int e^{\ell}(x, y; \mathcal{W}) p(x, y) dx dy$$

with $e^{\ell}(x, y; \mathcal{W})$ denotes the **local error**

$$e^{\ell}(x, y; \mathcal{W}) = \frac{1}{2}(y - \widehat{y})^2 = \frac{1}{2}(y - f(x; \mathcal{W}))^2$$

MSE Gradient

• The general idea would be to obtain W^* as a solution of $\nabla e(W) = 0$, where we have

$$\nabla e(\mathcal{W}) = E_{x,y} \left[\nabla_{\mathcal{W}} e^{\ell}(x, y; \mathcal{W}) \right]$$

= $E_{x,y} \left[\nabla_{\mathcal{W}} f(x; \mathcal{W}) (f(x; \mathcal{W}) - y) \right]$

for we have

$$\nabla_{\mathcal{W}} e^{\ell}(x, y; \mathcal{W}) = -(y - f(x; \mathcal{W}) \nabla_{\mathcal{W}} f(x; \mathcal{W})$$
$$= \nabla_{\mathcal{W}} f(x; \mathcal{W}) (f(x; \mathcal{W}) - y)$$

- We have therefore two tasks:
 - Compute ∇e
 - Exploit it to build MLPs
- We will exploit $\nabla e(\mathcal{W})$ through **optimization methods** after we compute it

SHL Forward Pass I

- We need thus to compute ∇e , for which we need to compute quite a few auxiliary variables
- We apply the preceding to a single hidden layer (SHL) MLP with
 - A single output unit and input–to–hidden weight matrix $W^H=(W^H_{hj})$ and bias b^H vector and
 - A hidden–to–output weight vector $\boldsymbol{w}^O = (w_1^O, \dots, w_H^O)$ and scalar bias \boldsymbol{b}^O

• Recall that the forward pass can be computed as follows

$$\begin{split} & - a^H = W^H x + b^H, \, o^H = \varphi(a^H), \\ & - \text{ Or unit-wise: } a_h^H = \sum W_{hi}^H x_i + b_i^H, \, o_h^H = \varphi(a_h^H) \\ & - y = w^O \cdot o^H + b^O = \sum_h w_h^O o_h^H + b^O \end{split}$$

• Straightforward to program

SHL Forward Pass II

• Graphically we have the following scheme:

From Sebastian Raschka's A Visual Explanation of the Back Propagation Algorithm for Neural Networks, KDnuggets

- We turn next to the gradient computation
 - Do we need to work on that? Current Deep NN backends compute the error gradient "automatically"
 - But, as Andrej Karpathy says, Yes, you should understand backprop

Backprop's Basic Idea

- Key idea: use the activations \boldsymbol{a}_i^h as intermediate variables

- This suggests to apply the chain rule with the a_h in the next layer as intermediate variables
- Let w_{ij}^h be the weight connecting unit j in layer h-1 with unit i in layer h; then

$$\frac{\partial e^{\ell}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} \frac{\partial a_{i}^{h}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} o_{j}^{h-1}$$

• If we have already computed the generalized errors $\delta_k^{h+1}=\frac{\partial e^\ell}{\partial a_k^{h+1}}$ at the h+1 layer, we have

$$\begin{split} \frac{\partial e^{\ell}}{\partial a_{i}^{h}} &= \sum_{k} \frac{\partial e^{\ell}}{\partial a_{k}^{h+1}} \frac{\partial a_{k}^{h+1}}{\partial a_{i}^{h}} = \sum_{k} \delta_{k}^{h+1} \frac{\partial a_{k}^{h+1}}{\partial a_{i}^{h}} \\ &= \sum_{k} \delta_{k}^{h+1} \frac{\partial a_{k}^{h+1}}{\partial o_{i}^{h}} \frac{\partial o_{i}^{h}}{\partial a_{i}^{h}} = \left[\sum_{k} \delta_{k}^{h+1} w_{ki}^{h+1} \right] \sigma'(a_{i}^{h}) \end{split}$$

- It has a O(1) cost, as we can precompute the bracketed term
- Thus we start at the easy partials $\frac{\partial e^\ell}{\partial a_L^\mathcal{L}}$ and $\frac{\partial e^\ell}{\partial w_{Lj}^\mathcal{L}}$ at the last layer \mathcal{L} and go backwards

SHL Gradient Backprop I

- We refer to $\frac{\partial e^{\ell}}{\partial a_i} = \delta_i$ as the **generalized error**
- In the output layer $e^\ell = \frac{1}{2} (y \widehat{y})^2$ and $a^O = \widehat{y}$, and thus,

$$\delta^{O} = \frac{\partial e^{\ell}}{\partial a^{O}} = \frac{\partial e^{\ell}}{\partial \widehat{y}} = \widehat{y} - y$$

i.e., the generalized error δ^O is here the standard error

• Therefore, in the output layer we have

$$\frac{\partial e^{\ell}}{\partial w_{h}^{O}} = (\widehat{y} - y) \frac{\partial a^{O}}{\partial w_{h}^{O}} = (\widehat{y} - y) o_{h}^{H}$$

SHL Gradient Backprop II

• In the hidden layer we **backpropagate** the error $\delta^O = \hat{y} - y$:

$$\delta_h^H = \frac{\partial e^\ell}{\partial a_h^H} = \frac{\partial e^\ell}{\partial a^O} \frac{\partial a^O}{\partial a_h^H} = \delta^O \frac{\partial a^O}{\partial a_h^H} = (\widehat{y} - y) \frac{\partial a^O}{\partial a_h^H}$$

• And since $y=a^O=\sum_h w_h^O o_h + b^O=\sum_h w_h^O \varphi(a_h^H) + b^O$,

$$\frac{\partial a^O}{\partial a_h^H} = \frac{\partial a^O}{\partial o_h^H} \frac{\partial o_h^H}{\partial a_h^H} = \frac{\partial a^O}{\partial o_h^H} \varphi'(a_h^H) = w_h^O \varphi'(a_h^H)$$

• Moreover, $a_h^H = \sum_j w_{hj}^H x_j + b_h^H$, and

$$\frac{\partial e^{\ell}}{\partial w_{hj}^{H}} = \frac{\partial e^{\ell}}{\partial a_{h}^{H}} \frac{\partial a_{h}^{H}}{\partial w_{hj}^{H}} = \delta_{h}^{H} x_{j} = (\widehat{y} - y) w_{h}^{O} \varphi'(a_{h}^{H}) x_{j}$$

SHL Gradient Backprop III

• Graphically we have the following scheme:

From Sebastian Raschka's A Visual Explanation of the Back Propagation Algorithm for Neural Networks, KDnuggets

Backprop for Other Layers

- Once we analyze the SHL Backprop, we see that it can be extended easily to other layers
- Let's w_{ij}^h be the weight connecting unit j in layer h-1 with unit i in layer h; then

$$\frac{\partial e^{\ell}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} \frac{\partial a_{i}^{h}}{\partial w_{ij}^{h}} = \frac{\partial e^{\ell}}{\partial a_{i}^{h}} o_{j}^{h-1}$$

• And if we have already computed the generalized errors $\delta_k^{h+1}=rac{\partial e^\ell}{\partial a_k^{h+1}},$ we have

$$\frac{\partial e^{\ell}}{\partial a_{i}^{h}} = \sum_{k} \frac{\partial e^{\ell}}{\partial a_{k}^{h+1}} \frac{\partial a_{k}^{h+1}}{\partial a_{i}^{h}} = \sum_{k} \delta_{k}^{h+1} \frac{\partial a_{k}^{h+1}}{\partial a_{i}^{h}} \\
= \sum_{k} \delta_{k}^{h+1} \frac{\partial a_{k}^{h+1}}{\partial o_{i}^{h}} \frac{\partial o_{i}^{h}}{\partial a_{i}^{h}} = \left[\sum_{k} \delta_{k}^{h+1} w_{ki}^{h+1} \right] \sigma'(a_{i}^{h})$$

with a O(1) cost, as we can precompute the bracketed term

Neural Network Classification

- Recall that our Logistic Regression model gave us estimate of $P(0|x; w_0, w), P(1|x; w_0, w)$
- We then wrote the likelihood of a given sample as

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|x^p; w_0, w)$$

• And then derived the optimum parameters w_0^*, w^* as

$$w_0^*, w^* = \arg\max_{w_0, w} P(Y|X; w_0, w)$$

 Notice that we can see the output of a logistic regression model as that of an NN with no hidden layers and sigmoid outputs

Neural 2-class Classification

• We can follow the same path for a 2 class classification problem changing that output for the one

$$f(x; \mathcal{W}) = w_0 + w \cdot \Phi(x, \mathcal{W}^H)$$

with w_0, w the weights from the last hidden layer (LHL) to the output and $\Phi(x, \mathcal{W}^H)$ the map from inputs to the LHL outputs

• And now derive the optimum parameters \mathcal{W}^* as

$$\mathcal{W}^* = \arg\min_{\mathcal{W}} - \sum_{p=1}^{N} \log P(y^p | x^p; \mathcal{W})$$

$$= \underset{w_0, w, \mathcal{W}^H}{\arg\min} - \sum_{p} y^p \left(w_0 + w \cdot \Phi(x^p, \mathcal{W}^H) \right) + \sum_{p} \log(1 + e^{w_0 + w \cdot \Phi(x^p, \mathcal{W}^H)})$$

- · Forward and backpropagation are also straightforward here
- We change things a little bit for K class problems

MLPs for K-class Classification

- · We consider an input layer and a number of hidden layers
- Targets are the 1-hot encodings of class labels, so we use K outputs
- We want the MLP's k-th output to estimate the posterior P(k|x)
- The natural output layer activation is thus the **softmax function**

$$\sigma_j(o) = F_j(x; \mathcal{W}) = \frac{e^{w_j \cdot o}}{\sum_{1}^{K} e^{w_k \cdot o}}$$

- Here o are the last hidden layer outputs and w_j is the weight vector in \mathcal{W} which connects the last hidden layer with the network's j output
- Moreover $\sum_{j} F_j(x; \mathcal{W}) = 1$ and we assume $P(j|x) \simeq F_j(x; \mathcal{W})$
- For two classes this becomes $\sigma_1(o)=\frac{e^{w_1\cdot o}}{e^{w_0\cdot o}+e^{w_1\cdot o}}=\frac{1}{1+e^{(w_0-w_1)\cdot o}}$
 - We thus get the **sigmoid activation** of Logistic Regression

Multiclass Log-Loss NN Classification

- We change slightly the preceding for a K class classification problem
- We define an MLP $F(x; \mathcal{W}) \in \mathbf{R}^K$ with softmax outputs
 - Recall that $0 \le F_k(x; \mathcal{W}) \le 1$ and $\sum_k F_k(x; \mathcal{W}) = 1$

- And also we assume that $P(k|x) \simeq F_k(x; \mathcal{W})$
- We label now the multiclass targets via the 1-hot encoding, with the target of class k being the vector $e_k=(0,\ldots,\underbrace{1}_k,\ldots,0)$
- Then, if $x \in C_k$, its label is $y = (y_1, \dots, y_K)^t$ is e_k , with $y_k = 1$, and

$$P(k|x) = P(k|x)^{1} = P(k|x)^{y_k} = \prod_{c=1}^{K} P(c|x)^{y_c} \simeq \prod_{c=1}^{K} F_c(x; \mathcal{W})^{y_c}$$

The Sample Likelihood

- We have a sample $S=\{x^p,y^p\}$ with (x^p,y^p) in class c(p) and, hence, $y^p=e_{c(p)}$
- We also consider a posterior model $P(c|x,w) = F_c(x,\mathcal{W})$, the probability of getting S = (X,Y) is

$$P(Y|X;\mathcal{W}) = \prod_{1}^{N} P(c(p)|x^{p};\mathcal{W}) = \prod_{1}^{N} \prod_{c=1}^{K} P(c|x^{p};\mathcal{W})^{y_{c}^{p}}$$

$$\simeq \prod_{1}^{N} \prod_{c=1}^{K} F_{c}(x;\mathcal{W})^{y_{c}^{p}}$$

• Thus, we estimate W by maximizing the sample's **likelihood**

$$\mathcal{P}(Y|X;\mathcal{W}) = \prod_{p=1}^{N} \prod_{c=1}^{K} F_c(x^p;\mathcal{W})^{y_c^p}$$

The Cross Entropy Loss

• As before, we will work with the sample's log-likelihood, i.e.

$$\ell(\mathcal{W}; S) = \log \mathcal{P}(Y|X; \mathcal{W}) = \sum_{p=1}^{N} \sum_{c=1}^{K} \log \left(F_c(x^p; \mathcal{W})^{y_c^p} \right)$$
$$= \sum_{p=1}^{N} \sum_{c=1}^{K} y_c^p \log F_c(x^p; \mathcal{W})$$

• The **cross-entropy** loss is now simply the negative log-likelihood $-\ell(W; S)$, i.e.,

$$L(\mathcal{W}) = -\ell(\mathcal{W}; S) = -\sum_{p=1}^{N} \sum_{c=1}^{K} y_c^p \log F_c(x^p; \mathcal{W})$$

• It is now straightforward to carry this into a NN setting

Takeaways on Clasical MLPs

- They have a layered structure with outputs computed in a forward pass using differentiable activations
- 2. Usual activations: ReLUs, sigmoid, tanh, linear
- 3. MLPs are **universal approximators**: this is indispensable for regression but has to be handled with care
- 4. MSE is the usual regression cost; we use a variant of cross entropy in classification
- 5. The error function gradients are computed by **backpropagation** of generalized errors
- 6. Backprop is basically a very simple procedure than can be largely automated
- 7. Regression and classification problems fit very well in this setting

2.3 MLP Regularization

Overfitting in MLPs

- Since MLPs are a UAF, they can also approximate the noise in the sample
 - Given $S = \{(x^p, y^p)\}$ if we allow enough hidden units in a SHL MLP we can arrive to a w^* s.t. $y^p = f(x^p; w^*)$
 - We get thus a sample error $\hat{e}(w^*) = 0$ but possibly with a very high generalization error
- I.e., MLPs may have very small bias but possibly large variance

(Ph.D. Thesis of Carlos Alaíz)

Regularization vs Overfitting

- Why is there overfitting?
 - Because we may end up having too many weights with respect to sample size
 - Because we allow these weights to explore the entire weight space
- We can avoid this wandering if we limit w's growth, for which we add a **regularization** term g(||w||) to e(w) with g(r) increasing
- Working with $e_R(w) = e(w) + g(\|w\|)$ we have to **balance** the minimization of e(w) and that of $g(\|w\|)$

· This balanced learning results in better generalization

L_2 Regularization

ullet The simplest regularization procedure adds a quadratic penalty to the square error e

$$e_R(w) = e(w) + \frac{\lambda}{2} ||w||^2,$$

with λ the **weight decay** factor

- Also known as Tikhonov's regularization (or Ridge Regression for linear models)
- The desired effect is to constrain the evolution of w:
 - In fact, the regularized loss is essentially the Lagrangian of the constrained problem

$$\min_{w} e(w)$$
 subject to $||w||^2 \le \rho$, $\rho > 0$

• The gradient becomes $\nabla e_R(w) = \nabla e(w) + \lambda w$ and gradient descent becomes

$$w^{k+1} = w^k - \rho_k(\nabla_w e(w^k) + \lambda w^k)$$

• And the Hessian is $\mathcal{H}_R(w) = \mathcal{H}(w) + \lambda I$

How to choose λ

- Again, the correct choice of λ is crucial
- A small $\lambda \ll 1$ results in a small regularization effect and overfitting risk appears
- A large $\lambda \gg 1$ causes learning to forget about e(w) and the model will be essentially constant and will underfit
- Usually λ is chosen by using CV by exploring a discrete set of values λ_i ,
- The same can essentially done for any other hyper–parameter:
 - Number of hidden layers and of hidden units?
 - Learning rate??
 - Minibatch size???

MLP Ensembles

- Recall that for MLPs e(w) does not have a single minimum
- Moreover, the final MLP depends on the random initial w^0
- And mini-batch training adds extra randomness to the final model
- Therefore, you may never get the same MLP twice!!!
- But we can turn this to our advantage by

- Starting from K independent initial weights and get K optimal weight sets w_k^*
- Giving as the output the average $f_e(x) = \frac{1}{K} \sum_1^K f(x; w_k^*)$
- We expect outputs of the form $\widehat{y}_k^p = y^p + \epsilon_k^p$ with the ϵ_k^p independent
- Hence $\frac{1}{K}\sum_k \epsilon_k^p \simeq 0$ and $\frac{1}{K}\sum_k \widehat{y}_k^p \simeq y^p$

Takeaways on MLP Regularization

- MLPs have a high risk of overfitting
- Thus, they must be **regularized** to avoid overfitting
 - The regularization hyperparameter is chosen through **cross validation**
- MLP training has two random components: the initial point and minibatch selection
 - Thus, each training will converge to a different optimum
- MLP ensembles can take advantage of this
 - They imply extra costs but ensembles are **embarrassingly parallelizable**

2.4 Unconstrained Smooth Optimization

Back to Optimization

- To build a ML model ≡ to minimize a loss function
- General optimization theory is a key tool in Machine Learning (ML)
- There are two optimization set ups in ML
 - Unconstrained optimization, slightly simpler and the one used for MLPs
 - Constrained optimization, wider and more complex
- In ML we have also to consider the optimization of differentiable and also non differentiable error functions
- MLP optimization: unconstrained and differentiable
- And also **batch**, i.e., over the entire sample, **mini-batch** over subsamples or **on line**, pattern by pattern

Gradient Descent

- We "stretch" the weight set $\mathcal W$ into a vector w
- We recall that $-\nabla e(w)$ is the maximum descent direction
- First idea: to build a (hopefully convergent) sequence w^k iterating (small) steps along $-\nabla e(w^k)$

Gradient Descent II

• In more detail, we start from a random \boldsymbol{w}^0 and compute

$$w^{k+1} = w^k - \rho_k \nabla_w e(w^k)$$

- ρ_k is the **learning rate** (LR)
- With a small ρ_k we ensure $e(w^{k+1}) < e(w^k)$ (although with possibly a very small descent)
- We can get a better iteration $w^{k+1} = w^k \rho_k^* \nabla_w e(w^k)$ using a ρ_k^* given by

$$\rho_k^* = \arg\min_{\rho} e(w^k - \rho \nabla_w e(w^k));$$

this is known as line minimization

• These GD methods are called **first order methods** in part because they only use ∇e

One Dimensional Newton's Method

- Assume a quadratic function $q(w) = aw^2 + bw + c$, with a > 0, and a minimum at w^*
- We can reach w^* from any w with a step Δw such that

$$0 = q'(w + \Delta w) = 2a(w + \Delta w) + b$$

• We have thus $\Delta w = \frac{-b-2aw}{2a}$, that is,

$$w^* = w - \frac{2aw + b}{2a} = w - \frac{1}{q''(w)}q'(w)$$

• This leads to **Newton's method**: minimize a general f iteratively using steps

$$w^{k+1} = w^k - \rho_k \frac{1}{f''(w^k)} f'(w^k)$$

with ρ_k a suitable learning rate

One Dimensional Newton's Method II

- Notice how the $\frac{1}{f''(w_k)}$ acts as a self adjusting learning rate
- When the parabola is very sharp (i.e., $a\gg 1$), we will be close to the minimum and the descent can overstep it
- But then $f''(w_k)$ will be big and, hence, $\frac{1}{f''(w_k)}$ moderates the gradient step
- Conversely, when the parabola is very wide (i.e., $a \simeq f''(w_k) \ll 1$), the minimum will be far away and the gradient step small descent will
- But then $f''(w_k)$ will be rather small and, hence, $\frac{1}{f''(w_k)}$ accelerates the gradient step
- We can extend this to several dimensions

Multidimensional Newton's Method

• For a d dimensional w, the Taylor expansion of e at an optimum w^* is

$$e(w) \approx e(w^*) + \frac{1}{2}(w - w^*)^t \cdot \mathcal{H}(w^*) \cdot (w - w^*)$$

- $\mathcal{H}(w^*)$ is the **Hessian** of e at w^* and $\nabla e(w^*) = 0$
- It follows that $\nabla e(w) \approx \mathcal{H}(w^*) \cdot (w w^*)$ and, therefore,

$$w^* \approx w - \mathcal{H}(w^*)^{-1} \nabla_w e(w)$$

• This suggest to derive the w^k by

$$w^{k+1} = w^k - \rho_k \mathcal{H}(w^k)^{-1} \nabla_w e(w^k)$$

which is known as Newton's Method (NM)

Variants of Newton's Method

- Theoretically NM converges very fast near w^* , but
 - Far from w^* convergence is not guaranteed
 - Moreover $\mathcal{H}(w^k)$ may not be invertible
 - Besides, computing $\mathcal{H}(w^k)$ is cumbersome and costly
- The Gauss-Newton (GN) approximation

$$\mathcal{H}(w) \simeq E[\nabla e(w)\nabla e(w)^{\tau}],$$

holds for any quadratic cost and simplifies the third problem

• The Levenberg-Marquardt (LM) method deals with the other two problems combining

- Gradient descent "away" from w^*
- Gauss-Newton "near" w*

although "away" and "near" have to be properly addressed

One-dimensional GN Approximation

• Assume $e(w) = \frac{1}{2} \int (f(x; w) - y)^2 p(x, y) dx dy$; then

$$e'(w) = \int (f(x;w) - y) \frac{\partial f}{\partial w}(x,y) p(x,y) dx dy;$$

$$e''(w) = \int \left(\frac{\partial f}{\partial w}\right)^2 p(x,y) dx dy$$

$$+ \int (f(x;w) - y) \frac{\partial^2 f}{\partial w^2}(x,y) p(x,y) dx dy$$

• Near a minimum w^* we may expect $f(x; w) \simeq y$ and, therefore,

$$e''(w) \simeq \int \left(\frac{\partial f}{\partial w}\right)^2 p(x,y) dx dy > 0$$

• Thus, for square errors, we can use first derivates to approximate e''(w)

General GN Approximation I

• In the general case we have

$$\nabla e(w) = E\left[\nabla f(x; w) \left(f(x; w) - y\right)\right]$$

· And, therefore,

$$\nabla^2 e(w) = E\left[\nabla^2 f(x; w) \left(f(x; w) - y\right)\right] + E\left[\nabla f(x; w) \nabla f(x; w)^{\tau}\right]$$

- The second term is easy to compute once we have ∇f
- If $w \approx w^*$, $f(x; w) \approx y$; therefore $f(x; w) y \approx 0$,
 - We can ignore the first, more complex, term

General GN Approximation II

• We arrive at $\nabla^2 e(w) \simeq E\left[\nabla f(x;w) \nabla f(x;w)^{\tau}\right]$ or, equivalently,

$$\mathcal{H}_{(i,j)(p,q)}(w) = \left(\frac{\partial^2 e}{\partial w_{ij} \partial w_{pq}}(w)\right) \simeq \left(E\left[\frac{\partial f}{\partial w_{pq}} \frac{\partial f}{\partial w_{ij}}\right]\right)_{(i,j)(p,q)}$$

- $\mathcal{J} = E\left[\nabla f(x;w)\nabla f(x;w)^{\tau}\right]$ is Fisher's information matrix
 - \mathcal{J} is semidefinite positive
 - And thus not necessarily invertible
- Often only its diagonal is considered and we have

$$\mathcal{H}_{(i,j)(i,j)}(w) = \left(\frac{\partial f}{\partial w_{ij}}\right)^2$$

Advanced Optimization

- There are many more proposals in unconstrained optimization
- The Conjugate Gradient (CG) and Quasi-Newton (QN) methods are important in classical MLP training
- The basic idea in CG is to replace gradient descent directions $g_k = -\nabla e(w_k)$ with new conjugate directions that try to keep somehow the previous "good directions"
- The basic idea in QN is to iterate as in NM but with simple approximations A_k to $\mathcal{H}^{-1}(w^k)$ that converge to $\mathcal{H}^{-1}(w^*)$
- When training "small" NNs the **Limited-memory Broyden–Fletcher–Goldfarb–Shanno** (L-BFGS) QN variant is often used

Accelerating Gradient Descent

- A possibility on the error surface of a NN is to have many long, narrow ravines
 - Gradients bounce in the narrow section, but may be very small along the wider one

Momentum

- Momentum pushes them forward in the wider section (but we have to cope with a new parameter)
- Momentum tries to maintain descent's inertia with a term $\Delta^k = w^k w^{k-1}$, i.e.,

$$w^{k+1} = w^k - \rho_k \nabla_w e(w^k) + \mu_k \Delta^k$$

- More or less, what a heavy ball would do
- The goal is to keep w^k advancing in "plateaux", i.e., small gradient zones
- Momentum can be seen as a crude approximation of a CG step
- Nice explanation at Why Momentum Really Works

Nesterov's Accelerated Gradient

- Let's rewrite momentum in two steps
 - 1. Define $\Delta^{k+1} = -\rho_k \nabla_w e(w^k) + \mu_k \Delta^k$ and
 - 2. Apply

$$w^{k+1} = w^k + \Delta^{k+1} = w^k - \rho_k \nabla_w e(w^k) + \mu_k \Delta^k$$

• Nesterov's Accelerated Gradient is a variant of this

$$\widetilde{\Delta}^{k+1} = -\rho_k \nabla_w e(w^k + \mu_k \widetilde{\Delta}^k) + \mu_k \widetilde{\Delta}^k;$$

$$w^{k+1} = w^k + \widetilde{\Delta}^{k+1}$$

• In convex optimization it improves GD and is often highly effective in Deep Network training

Adam

- · Adam is currently the most widely used gradient-descent method for deep NN training
- At each step t Adam uses a new random mini-batch to
 - Update **exponentially smoothed** averages m_t of the gradient g_t and v_t of the squared gradient $g_t^2 = g_t \odot g_t$ as

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) q_t, \ v_t = \beta_2 v_{t-1} + (1 - \beta_2) q_t^2;$$

- Since we have

$$E[m_t] \simeq (1 - \beta_1^t) E[g_t], \ E[v_t] \simeq (1 - \beta_2^t) E[g_t^2],$$

we compute bias corrections \widehat{m}_t , \widehat{v}_t as

$$\widehat{m}_t = \frac{1}{1 - \beta_1^t} m_t, \ \widehat{v}_t = \frac{1}{1 - \beta_2^t} v_t;$$

– Update weights as $W_t = W_{t-1} - \alpha \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$

Understanding Adam

- Default values $\alpha=0.001, \beta_1=0.9, \beta_2=0.999,$ and $\epsilon=10^{-8}$ usually work fine
- What is going on in Adam?
- At each step we work with estimates of the average local gradient:

$$\widehat{m}_t \simeq E[\nabla_W f]; \ \widehat{v}_t \simeq \sigma(g_t) \simeq E[(\nabla_W f)^2]$$

• Thus, we can first see the Adam iterations

$$W_t = W_{t-1} - \alpha \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

as a kind of "normalized" gradient descent

• And in more detail, since we can expect $E[(\nabla_W f)^2] \simeq E[\nabla_{W^2}^2 f]$, we can see Adam as a "dampened" variant of diagonal Gauss–Newton's steps

When to Stop Training

- Typically the $e(w_k)$ error diminishes towards an asymptotic minimum
 - If many units are used, we arrive to 0, which usually implies overfitting
- First solution: to use a separate validation subset V and stop training when the error in V, i.e., the validation error starts growing
 - But: How to choose V? What do we do for small samples?
- Second solution (better): get a good regularization (and forget about overfitting)
 - A low CV error is also a low validation error
 - Now training stops because of reasons such as computational cost, but not because of overfitting risk

Takeaways on MLP Optimization

- Gradient descent is the simplest method but possibly also the slowest
- Momentum can be used to speed it up
- Newton's method is much faster but may be very costly and difficult to apply in full form
- All the previous methods require the (usually tricky) selection of a learning rate
- Second order methods such as Conjugate Gradient and Quasi-Newton avoid learning rates and are more efficient but costlier
- Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) is currently the option of choice for "small" MLPs

2.5 Computational Costs of MLPs

MLPs and Big Data?

- Many Vs in Big Data: Volume, Velocity, Variety, Veracity, Value, ...
- · Velocity: information flows in data streams that require fast processing and feed back
 - MLPs are rather fast
 - Less than linear models but much more so than SVMs

- Volume is probably the greatest attractive of Big Data
 - Huge samples and/or very large pattern dimension
 - Large impact in model training

Volume in MLPs

- Parallelism is the first answer to Big Volume
- On a standalone machine it may be
 - Passive: let the SO distribute work among several CPU cores, or use GPUs with low level parallelized libraries such as Linpack or BLAS for linear algebra
 - Active: explicitly exploit a problem's parallelism programming an algorithm in, say, OpenMP
- It is easy to passively parallelize the training of several MLPs
 - But memory costs may multiply
- Training an isolated MLP is not CPU parallelizable:
 - There is a sequential layer dependence in Backprop
 - Each training iteration depends on the previous one
 - But matrix-vector multiplications can exploit GPU parallelism

Handling Huge Sample Training

- Two consequences of a large N are
 - Sample doesn't fit in memory and we have to split it somehow
 - Training gets "lost", for in the global gradient $\nabla e = E[\nabla e^{\ell}]$ we average many local gradients that may cancel each other out
- The fist problem has been always present in fields such as analog signal filtering
- Solution for both: adaptive or on line, i.e., pattern by pattern, weight updates
 - It also allows a relatively simple setting for a theoretical analysis
 - But not used today; instead, medium-to-large NNs are trained using mini-batches

MLP Complexity

- MLPs are fast to apply but costly to train
- How can we estimate this cost?
- MLP traning cost is determined by
 - Its **architecture**, that determines the number of weights to fit and that is also dependent on the input dimension D

- The full or mini-batch sample size N, that determines the cost of the averages to be computed
- The **training method**, with more or less iterations that, in turn, are more or less costly

Forward Pass Complexity

• The number of weights in a single hidden layer (SHL) MLP with D inputs, one output and one hidden layer with H units is

$$(D+1) \times H + (H+1) \simeq HD$$

- Each extra hidden layer pair with (H_1, H_2) units adds $(H_1 + 1) \times H_2 \simeq H_1 H_2$ weights
- The cost per pattern of the feedforward step between layers h-1, h is basically that of $H_{h-1} \times H_h$ floating point operations (FPOs)
- Thus, for a general MLP the cost in floating point operations of a forward pass is $\simeq N \times (\sum_h H_h \times H_{h-1})$
 - Very fast on GPUs as it theoretically becomes $O(N \times \sum_h H_h)$

The Cost of Computing ∇e^{ℓ}

- Computing a local gradient ∇e^{ℓ} in a SHL MLP with square error and one output essentially requires to compute
 - H components for the hidden to output connections, with a O(1) cost each, for $\frac{\partial e^{\ell}}{\partial w_h^O} = (\widehat{y} y)o_h$
 - DH components for the input to hidden connections with essentially an O(1) cost each, for $\frac{\partial e^{\ell}}{\partial w_{h,j}^H} = \left(\sum_{i=1}^L \delta_i w_{ih}^O\right) \sigma^{'}(a_h) x_j$
- In these we are omitting the cost of the partials with respect the bias, but they are much smaller
- Thus, the overall cost of computing ∇e^{ℓ} on a SHL MLP is essentially O(DH)
- More layers with H_h units add a cost $O(H_{h-1} \times H_h)$
 - $O(\sum_h H_h)$ on GPUs

The Cost of Computing ∇e

- For a mini-batch of size N_b , the cost of the mini-batch gradient ∇e of a SHL MLP is $O(N_b \times D \times H)$
- And extra layers add a cost $O(N_b \times H_{h-1} \times H_h)$
- This is of the same order of magnitude than the cost of the forward pass
- This also dominates the O(H_{h-1} × H_h) cost of updating the (H_{h-1}, H_h) weights in gradient descent

• And all these costs have to be multiplied by the number of training **epochs**

Training Complexity

- The important term in the overall training cost is nEps \times cost of ∇e , with nEps the number of epochs
 - One epoch = one pass on the entire sample
- Thus, the globally dominant term in a SHL MLP is

nEps × cost of
$$\nabla e = O(\text{nEps} \times N \times D \times H)$$

with N here the entire sample size

· And for each hidden layer we add an extra cost

$$O(nEps \times N \times H_{h-1} \times H_h)$$

- Thus, training many layered, large MLPs can be very costly
 - But linear in sample size N

Takeaways on MLP's Cost

- MLP complexity is determined by its architecture $\{H_h\}$, training procedure and sample size N
- The forward and backward MLP passes have basically the same complexity
- Their cost per pattern and layer is $H_{h-1} \times H_h$
- For gradient descent these costs are multiplied by the number nEps of epochs
- First order methods essentially do not add extra complexity
- Second order methods add extra per iteration costs but should require less iterations
- Single MLP training is not CPU parallelizable
- But GPUs can greatly improve MLP processing costs