DETAILS ABOUT THE FUNCTIONS USED IN THE CODE:

1. function [] = ForwDyn()

USE: To calculate the forward dynamics

2. function [com_final,cm,P_final,L_final,P,L] = ForwKin(theta,T_mat,dq)

USE: Calculate the forward kinematics of the robot

3. function [] = ForwKin_Dyn(n)

USE: Updates the kinematics for the calculation of dynamics

4. function [T] = Hom_Trans(alp,a,d,theta)

USE: D-H Homogeneous Tranformation Matrix

5. function [f,t,tt] = InvDyn(n)

USE: To calculate the inverse dynamics

6. function [ret] = InvDyn_cal(n)

USE: To calculate the inverse dynamics

7. function [flag,q,Dq,pos,cdl,HG] =InvKin(x,y,z,part_Id,from,adj,theta)

USE: To calculate the inverse kinematics

8. function [flag,q,gg,pts] =

InvKin_com(x,y,z,tg,Tr_mat,enf,from,theta,com)

USE: To calculate the inverse kinematics on COM

9. function [flag,q,Dq,pos] = InvKin_mult(x1,y1,z1,part_Id1,x2,y2,z2,part_Id2,from,from2,adj,theta,dq)

USE: To check and obtain the inverse kinematics solution to reach one link from some other link

10. function [flag,q] = InvKin_mult2(x,y,z,parts,from,adj)

USE: To calculate the inverse kinematics on any link

11. function $[I_s] = Is(m,c,l)$

USE: Generate spatial inertia matrix

12 . function [J] = Jacob(u,p)

USE: Jacobian matrix generated

13. function [J_com] = Jacob_CoM ()

USE: Jacobian for calculating IK of COM trajectory

14. function $[x1,y1,z1] = LegTraj(l_pos,orie,sLen, sHt, sDisp, itr)$

USE: To generate the walking trajectory of the humanoid

15. function[h,AG,hG,vG] = M_mats(Tr_mat,com,dq)

USE: AG_CMM matrix obtained

16. function $[x,y,z] = Traj_1()$

USE: Trajectory generation

17. function $[x,y,z] = Traj_3()$

USE: Trajectory generation

18. function $[x,y,z] = Traj_4()$

USE: Trajectory generation

19. function [v,w] = calVW(pid,cid,dq,fr)

USE: Calculate link velocity and angular velocity w.r.t global frame

20. function [flag] = collision_check()

USE: Self collision between the parts

21. function [Idx] = find route(part Id, from)

USE: Finds the route from "from" (input) to the part id

21. function [] = follow traj(x,y,z,q,loop)

USE: simulation function

22. function [ZMP,q] = gen_gait()

USE: Walking gait generation

23. function[R] = gen_rand_num(arr,n)

USE: generating a sequence of random numbers lying in the range specified by "arr"

24. function [v_hat] = hat(v)

USE: hat operation (sxw = hat(s)w) [hat(s) is a 3x3 matrix]

25 function ji = invsvd(j)

USE: Calculate inverse of matrix using SVD

26. function JI = invsvd_lds(J,lamda)

USE: Inverse of a matrix using SVD-LDS

27. function [mi] = limits_2(str)

USE: Angle limits for each base

28. function [distance varargout] = line_to_line(p1, p2, p3, p4)

USE: Computes the minimum distance between two line segments

29. function [x,z,x h,z h] = new traj(n)

USE: Generating leg and hip trajectories

30. function d = point to line(pt, v1, v2)

USE: To calculate the perpendicular distance between the point and the line defined by the two vectors v1,v2

31. function[] = s_d(cm,com)

USE: To get the stick figure

32. function [] = sample_draw(p)

USE: generate the stick figures

33. function [v,w] = standing_vel(dq)

USE: To calculate the velocities during standinga and walking

34. function [v,w] = walking_vel(dq)
USE: To calculate the velocities during walking

LIST OF VARIOUS PARAMETERS USED IN THE CODE:

1. robot.parts(n).axis_loc - denotes the axis location of robot part n

2. robot.parts(n).joint_loc - denotes the joint location of the robot part n

3. robot.parts(n).Z_w - denotes the rotation axis in the global frame

4. robot.parts(n).R_mat - denotes the rotation matrix of robot part n

5. robot.parts(n).b - denotes the position of the child w.r.t parent in the local frame

6. robot.parts(n).a -axis of rotation in local frame of child w.r.t parent

7. robot.parts(n).ar - axis of rotation in local frame of parent w.r.t child

8. robot.parts(n).br - denotes the position in the local frame of the child w.r.t parent frame

9. robot.parts(n).mass - denotes the mass of the robot part n

10. robot.parts(n).l - denotes the inertia of the robot part in the global frame

11. robot.parts(n).com_g - denotes the COM of the robot part n in the global frame

12. robot.parts(n).com_l - denotes the COM of the robot part n in the local frame

13. robot.parts(n).v - denotes the linear velocity of the robot part n

14. robot.parts(n).w	 denotes the angular velocity of the robot part n
15. robot.parts(n).P	 denotes the linear momentum of the robot part n
16. robot.parts(n).L	 denotes the angular momentum of the robot part n
17. robot.parts(n).dq	 denotes the change of the angle of the robot link
18. robot.parts(n).ddq	-denotes the angular acceleration of the part n of the robot
19. P_Id	- denotes the parent Id
20 C_Id	-denotes the child Id
21 Xs	- denotes the transformation matrix for linear and angular momentum
22 Is	- Spatial matrix
23 w0	- Spatial a ngular velocity
24. v0	- Linear angular velocity
25.P0	-Spatial Linear momentum
26 L0	- Spatial angular momentum
27. u	-Joint torque
30 ld	- Part_id
31* Xpg	
32* dw	

- 32* dv0
- 33* sw
- 34* sv
- 35* dw0
- 36* f1
- 37 * t1
- 38 * tt1
- 39* f0
- 40* t0
- 41* tt0