

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΦΑΙΝΟΜΕΝΩΝ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΟΔΙΑΣΤΑΤΟΥ ΤΟΙΧΩΜΑΤΟΣ

ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ: ΧΑΡΑΛΑΜΠΟΥΣ ΟΝΟΥΦΡΙΟΣ ΣΠΟΥΔΑΣΤΕΣ: ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΠΥΡΟΣ ΜΥΤΕΛΛΑΣ ΒΑΣΙΛΕΙΟΣ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ

ΤΟΜΗ ΤΟΙΧΩΜΑΤΟΣ

ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ

<u>ΓΕΝΙΚΗ ΔΙΑΦΟΡΙΚΗ ΕΞΙΣΩΣΗ ΕΝΕΡΓΕΙΑΣ</u> ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΚΑΤΑΣΤΑΣΗΣ

$$\frac{d}{dt}(\rho h) + \frac{d}{dt}(\rho uh) = \frac{d}{dx}\left(\frac{k}{c}\frac{dh}{dx}\right) + 8$$

$$\frac{d}{dt}(\rho h)$$
: Όρος αποθ. ενέργειας(μεταβατικός όρος)

$$\frac{d}{dt}$$
 (ρuh) : Όρος συναγωγής

$$\frac{d}{dx}\left(\frac{k}{c}\frac{dh}{dx}\right)$$
 : Όρος αγωγής

ΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ

ΣΥΝΑΓΩΓΗ ΑΕΡΑ – ΤΟΙΧΟΥ ΣΤΑ ΟΡΙΑ

$$q_1" = h_1(T\alpha_1 - Ts_1)$$

$$q_2" = h_2(T\alpha_2 - Ts_2)$$

$$h_1 = 7 W/m^2 K$$

$$h_2 = 22 \text{ W/m}^2\text{K}$$

$$T\alpha_1 = 22^{\circ}C$$

$$T\alpha_2 = ημιτονοειδής μεταβολή$$

ΘΕΡΜΟΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

ΥΛΙΚΟ	ΠΥΚΝΟΤΗΤΑ (ρ) (kg/m^3)	EΙΔΙΚΗ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΑ (Cp) (J/kg °K)	ΣΥΝΤΕΛΕΣΤΗΣ ΘΕΡΜΙΚΗΣ ΑΓΩΓΙΜΟΤΗΤΑΣ(k) (W/m°K)	
ΕΠΙΧΡΙΣΜΑ	1800	1000	0,87	
ΣΚΥΡΟΔΕΜΑ	1800	1000	1,15	

• Τα δεδομένα καταγράφηκαν από τον πίνακα 2 στην σελίδα 49 για το σκυρόδεμα και στην σελίδα 48 για το επίχρισμα του αρχείου ΤΟΤΕΕ-20701-2-FINAL-TEE.pdf .

ΑΡΧΙΚΕΣ ΣΥΝΘΗΚΕΣ

Η αρχική θερμοκρασία είναι 6°C σε χρόνο 00.00

```
<?xml version="1.0" standalone="yes"?>
<case>
<simulation>
          <start_time value="0" unit="s"/>
          <end_time value="432000" unit="s"/>
<time_step value="3600" unit="s"/>
<space_step value="0.01" unit="m"/>
          <initial_temperature value="279" unit="K"/>
</simulation>
<setup>
          <boundary name="internal">
                    <temperature value="295." unit="K"/>
<heat_transfer_coefficient value="7" unit="W/m2K"/>
                    <heat_flux value="0.0" unit="W/m2"/>
          </boundary>
          <layer name="plaster_in">
                    <geometry>
                               <thickness value="0.02" unit="m"/>
                     </geometry>
                     <material>
                               <conductivity value="0.87." unit="w/mκ"/>
<heat_capacity value="1000." unit="J/kgK"/>
<density value="1800." unit="kg/m3"/>
                    </material>
          </layer>
          <layér name="concrete">
                     <qeometry>
                               <thickness value="0.30" unit="m"/>
                     </qeometry>
                     <material>
                               <conductivity value="1.150." unit="w/mk"/>
<heat_capacity value="1000." unit="J/kgk"/>
                               <density value="1800." unit="kg/m3"/>
                     </material>
          </layer>
          <layer name="plaster_out">
                     <geometry>
                               <thickness value="0.02" unit="m"/>
                     </geometry>
                     <material>
                               <conductivity value="0.87." unit="W/mK"/>
```

```
<heat_capacity value="1000." unit="J/kgK"/>
                <density value="1800." unit="kg/m3"/>
        </material>
</layer>
<box><box<br/>name="external"></br>
        <temperature type="function">|
                <temperature_max value="283" unit="K"/>
                <temperature_min value="273" unit="K"/>
                <time_cycle value="86400" unit="s"/>
                <time_offset value="54000" unit="s"/>
         </temperature>
        <heat_transfer_coefficient value="22" unit="w/m2K"/>
                 <heat_flux value="0.0" unit="W/m2"/>
        </boundary>
</setup>
<output>
        <screen>
                 <time_step value="14400" unit="s"/>
        </screen>
        <file>
                 <time_step value="3600" unit="s"/>
                 <space_step value="0.02" unit="m"/>
        </file>
</output>
</case>
```

C:\Windows\syste	m32\cmd.exe					- 0 X
time[s]	q1[W/m2]	[bark q2[W/m2]	0.2.0] Tinf1[K]	Tsurf1[K]	Tsurf2[K]	Tinf2[K]
0.00	112.00	-99.78	295.00	279.00	279.00	274.46
14400.00	67.89	-42.39	295.00	285.30	275.10	273.17
28800.00	58.43	5.13	295.00	286.65	276.47	276.71
43200.00	53.27	34.12	295.00	287.39	279.98	281.54 ≡
57600.00 72000.00	48.28 43.20	12.46 -43.14	295.00 295.00	288.10 288.83	282.26 281.25	282.83
86400.00	39.65	-81.41 -67.46	295.00	289.34	278.16	274.46
100800.00	38.74		295.00	289.47	276.24	273.17
115200.00	39.60	-17.76	295.00	289.34	277.51	276.71 —
129600.00	40.09	16.13	295.00	289.27	280.80	281.54
144000.00	38.78	-1.04	295.00	289.46	282.88	282.83
158400.00	36.29	-53.11	295.00	289.82	281.71	279.29
172800.00	34.60	-88.74	295.00	290.06	278.50	274.46
187200.00	35.04	-72.83	295.00	289.99	276.48	273.17
201600.00	36.89	-21.69	295.00	289.73	277.69	276.71
216000.00	38.11	13.25	295.00	289.56	280.93	281.54
230400.00	37.33	-3.15	295.00	289.67	282.97	282.83
244800.00	35.22	-54.65	295.00	289.97	281.78	279.29
259200.00	33.82	-89.87	295.00	290.17	278.55	274.46
273600.00	34.47	-73.66	295.00	290.08	276.52	273.17
time[s]	q1 [W/m2]	[bark q2[W/m2]	0.2.0] Tinf1[K]	Tsurf1[K]	Tsurf2[K]	Tinf2[K]
288000.00	36.48	-22.30	295.00	289.79	277.72	276.71
302400.00	37.80	12.81	295.00	289.60	280.95	281.54
316800.00 331200.00	37.10 35.06	-3.48 -54.89	295.00 295.00 295.00	289.70 289.99	282.99 281.79	282.83 279.29
345600.00	33.70	-90.04	295.00	290.19	278.56	274.46
360000.00	34.38	-73.79	295.00	290.09	276.52	273.17
374400.00	36.41	-22.39	295.00	289.80	277.72	276.71
388800.00	37.76	12.74	295.00	289.61	280.96	281.54
403200.00	37.07	-3.53	295.00	289.70	282.99	282.83
417600.00	35.03	-54.93	295.00	290.00	281.79	279.29
432000.00	33.68	-90.07	295.00	290.19	278.56	274.46
Nodes :	34					
Laboratory of Contact: onou	Heat Transf rios@teilar	er, TEILar .gr				

ΔΙΑΚΥΜΑΝΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΓΙΑ 24h

ΘΕΡΜΟΚΡΑΣΙΑΚΑ ΠΕΔΙΑ

ΘΕΡΜΟΚΡΑΣΙΑΚΑ ΠΡΟΦΙΛ ΓΙΑ 5 ΗΜΕΡΕΣ

• Παρατηρούμε από το παραπάνω διάγραμμα ότι μετά την 3^η μέρα, η διακύμανση της θερμοκρασίας αποκτά σταθερό προφίλ διότι όπως φαίνεται οι καμπύλες από εκεί και μετά συμπίπτουν.

Οι θερμικές απώλειες υπολογίζονται από τον τύπο:

$$Q = \int \dot{q} \, dt = \sum_{0h}^{24h} \dot{q} \Delta t$$

Μονάδες μέτρησης: q = W/m²

• Πραγματοποιήσαμε μια ολοκλήρωση των θερμικών απωλειών στο χρόνο και υπολογίσαμε 2 νούμερα. Ένα θετικό και ένα αρνητικό.

4	А	В	С	D	E
1	Civ,time[h]	qconv2[W/a	poleies 8ermo	titas eks	vteriko
2	0	-99.78	-359208		
3	1	-69.41	-249876		
4	2	-59.98	-215928		
5	3	-51.83	-186588		
6	4	-42.39	-152604		
7	5	-31.43	-113148		
8	6	-19.39	-69804		
9	7	-6.94	-24984		
10	8	5.13	18468		
11	9	15.99	57564		
12	10	24.86	89496		
13	11	31.07	111852		
14	12	34.12	122832		
15	13	33.73	121428		
16	14	29.84	107424		
17	15	22.61	81396		
18	16	12.46	44856		
19	17	-0.01	-36		
20	18	-14.03	-50508		
21	19	-28.71	-103356		
22	20	-43.14	-155304		
23	21	-56.39	-203004		
24	22	-67.63	-243468		
25	23	-76.14	-274104		
26			-1646604	>	

all	Α	В	С	D	E
1	Civ,time[h]	qconv1[W/ap	wleies eswteriko		
2	0	112	403200		
3	1	88.27	317772		
4	2	78.34	282024		
5	3	72.22	259992		
6	4	67.89	244404		
7	5	64.65	232740		
8	6	62.13	223668		
9	7	60.1	216360		
10	8	58.43	210348		
11	9	56.99	205164		
12	10	55.69	200484		
13	11	54.47	196092		
14	12	53.27	191772		
15	13	52.07	187452		
16	14	50.84	183024		
17	15	49.57	178452		
18	16	48.28	173808		
19	17	46.97	169092		
20	18	45.66	164376		
21	19	44.4	159840		
22	20	43.2	155520		
23	21	42.1	151560		
24	22	41.13	148068		
25	23	40.31	145116		
26			5000328		
27					

$$q_{conv_1} = 5000 \text{ kJ/m}^2 / 3600 = 1,39 \text{ kWh/m}^2$$

$$q_{conv 2} = -1646 \text{ kJ/m}^2 / 3600 = 0,46 \text{ kWh/m}^2$$

ΕΥΧΑΡΙΣΤΟΥΜΕ ΓΙΑ ΤΗΝ ΠΡΟΣΟΧΗ ΣΑΣ!