Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

TC 1	ъ 1
Кафедра	Геофизики
ташедра	i cominimi

«Исследование трансформации Сидорова-Тикшаева для многослойных проводящих сред»

АВТОРЕФЕРАТ ДИПЛОМНОЙ РАБОТЫ

Студента 6 курса 631 гру	VППЫ		
направления (специальности)	020302 Геоф	изика	
· /	код и наименование наг	правления (специальности)	
геологического факультета Сара-	говского националь	ного исследовательского	
государственного университета и	мени Н.Г.Чернышев	СКОГО	
наименование факультета, института, колледжа			
Прохоров Павел Андреевич			
фамилия, имя, отчество			
Научный руководитель			
		В. П. Губатенко	
доктор физмат. наук, профессор должность, уч. степень, уч. звание	дата, подпись	_ <u>D. 11. 1 убатенко</u> инициалы, фамилия	
должность, уч. степень, уч. звание	дата, подпись	инициалы, фамилии	
Заведующий кафедрой			
кандидат геолмин. наук, доцент		Е.Н. Волкова	
должность, уч. степень, уч. звание	дата, подпись	инициалы, фамилия	

Саратов_2016_год

Введение

В основе интерпретации данных становления поля лежит трансформация Сидорова-Тикшаева. Опыт применения этой трансформации для интерпретации полевых кривых показал, что кривые S_k кажущейся продольной проводимости хорошо коррелируют по профилю наблюдений и являются эффективным средством для расчленения геоэлектрического разреза. Вместе с тем, проверка возможностей трансформации Сидорова-Тикшаева исследована для небольшого числа проводящих слоев в разрезе. Представляет интерес изучения возможностей трансформации для достаточно большого числа слоев в случае контрастных и слабоконтрастных разрезов. Это и является целью настоящей дипломной работы.

Для достижения этой цели будут решены следующие задачи:

- 1 Формирование моделей контрастных и слабоконтрастных многослойных разрезов;
- 2 Расчет становления поля для этих моделей в случае установки петля в петле;
 - 3 Построение кривых S_k в зависимости от времени становления поля;
 - 4 Построение кривых S_k в зависимости от глубины исследований;
 - 5 Анализ результатов применения трансформации Сидорова-Тикшаева.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Среди модификаций зондирования становлением поля, различающихся типом установок, практическое применение получили две: зондирование в дальней (волновой) зоне электрического диполя (ЗС) и зондирование в ближней зоне магнитного диполя (ЗСБ). Первую из этих модификаций (ЗС) применяют главным образом для поисков нефтегазоносных структур, а вторую (ЗСБ) можно также использовать и для прямых поисков хорошо проводящих руд или для изучения геологической структуры рудных полей.

Трансформация Сидорова-Тикшаева базируется на решении задачи о становлении поля в присутствие проводящей плоскости.

Проводящей плоскостью (пленкой) называется однородный проводящий слой проводимости σ и мощности H такой, что при уменьшении H и увеличении σ имеем

$$\lim_{\substack{H\to 0\\ \mathbf{\sigma}\to\infty}} \mathbf{\sigma}H = S < \infty, \quad S \neq 0.$$

Величина S называется продольной проводимостью проводящей плоскости. Рассмотрим становление поля для проводящей плоскости.

Поместим проводящую плоскость на поверхности z=0 прямоугольной декартовой системы координат, как показано на рисунке 1, и будем считать вмещающее пространство изолятором. Введем круговую цилиндрическую систему координат ρ, ϕ, z , связанную с прямоугольными декартовыми координатами x, y, z соотношениями: $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z, $0 \le \rho < +\infty$, $0 \le \phi < 2\pi$, $-\infty < z < +\infty$.

Рисунок 1 - Схема возбуждения становления поля для проводящей плоскости

Пусть электромагнитное поле возбуждается ступенчатым выключением в момент времени t=0 тока силы J в круговой петле радиуса R с центром на оси OZ, расположенной на плоскости z=-h. Ступенчатое выключение тока означает, что сила тока J^{off} в петле изменяется по закону

$$J^{off}(t) = \begin{cases} J, & t < 0, \\ 0, & t > 0. \end{cases}$$

Будем также считать, что ток протекает по часовой стрелке, если смотреть на круговую петлю сверху из области z < -h. Другими словами, направление тока совпадает с направлением вектора \mathbf{e}_{ϕ} , входящего в тройку \mathbf{e}_{ϕ} , \mathbf{e}_{ρ} , \mathbf{e}_{z} единичных базисных векторов цилиндрической системы координат и касательного к координатной линии ϕ , на которой расположена круговая петля. В этом случае объемная плотность стороннего тока \mathbf{j}^{e} изменяется по закону

$$\mathbf{j}^e = \mathbf{e}_{\mathbf{p}} J \delta(\mathbf{p} - R) \delta(z + h) J^{off}(t),$$

где δ – дельта-функция Дирака.

В силу симметрии задачи, электромагнитное поле в круговой цилиндрической системе координат имеет только три отличные от нуля компоненты: $E_{\mathbf{\varphi}},\ H_{\mathbf{\rho}}$ и H_z .

При измерениях поля в плоскости z = -h имеем

$$E_{\phi}^{off} = \frac{3M}{\pi S} \frac{\rho(h + t/(\mu_0 S))}{\left[\rho^2 + 4(h + t/(\mu_0 S))^2\right]^{5/2}},$$
(1)

где $M = \pi R^2 J$ — магнитный момент круговой петли.

Рассмотрим теперь метод Сидорова-Тикшаева для решения обратной задачи в случае проводящей плоскости.

Пусть в плоскости z=-h для заданного разноса $\boldsymbol{\rho}$ известна компонента $E_{\boldsymbol{\varphi}}^{off}(t)$ электрического поля, определяемая выражением (1), но неизвестна продольная проводимость S и расстояние h магнитного диполя до проводящей плоскости. Для нахождения этих двух параметров запишем выражение (1) в виде

$$E_{\mathbf{\phi}}^{off} = \frac{k}{S} F(\overline{m}), \tag{2}$$

где
$$k = \frac{3M}{\pi \rho^3}$$
, $F(\overline{m}) = \frac{\overline{m}}{\left(1 + 4\overline{m}^2\right)^{5/2}}$, $\overline{m} = \frac{h}{\rho} + \frac{t}{\mu_0 S \rho}$.

Отсюда находим производную по времени t функции $E_{\mathbf{\phi}}^{off} = \frac{k}{S} F(\overline{m})$:

$$\frac{dE_{\mathbf{\varphi}}^{off}}{dt} = \dot{E}_{\mathbf{\varphi}}^{off} = \frac{k}{\mu_0 \rho S^2} F'(\overline{m}), \tag{3}$$

где $F'(\overline{m}) = \frac{1-16\overline{m}^2}{\left(1+4\overline{m}^2\right)^{7/2}}$. Исключая искомую величину S из уравнений (2) и

(3), получаем следующее нелинейное уравнение относительно \overline{m} :

$$\left(1 + 4\overline{m}^{2}\right)^{3/2} \left(\frac{1}{\overline{m}^{2}} - 16\right) - k\mu_{0}\rho \frac{\dot{E}_{\varphi}^{off}}{E_{\varphi}^{off^{2}}} = 0.$$
(4)

$$\varphi(\overline{m}) = \left(1 + 4\overline{m}^2\right)^{3/2} \left(\frac{1}{\overline{m}^2} - 16\right), \quad \overline{m} > 0$$

Функция $\varphi(\overline{m})$ монотонно убывающая и $-\infty < \varphi(\overline{m}) < +\infty$, поэтому существует единственное решение уравнения (4). После нахождения численного решения \overline{m} этого уравнения, из уравнения (3) определяют продольную проводимость

$$S = k \frac{F(\overline{m})}{E_{\phi}^{off}},\tag{5}$$

а затем – расстояние h от плоскости измерения поля (плоскости z=-h) до проводящей плоскости

$$h = \rho \overline{m} - \frac{t}{\mu_0 S}. \tag{6}$$

Интерпретация кривых становления поля для установки петля в петле проводится с помощью трансформации (качественной интерпретации) Сидорова-Тикшаева. В этой интерпретации предполагается, что в каждый отсчет времени t кривая $E_{\phi}^{\text{эксп}}(t)$ становления поля такая же, как и $E_{\phi}^{\text{off}}(t)$ для проводящей плоскости, расположенной в непроводящем пространстве, т.е. при нахождении S и h, соответствующих времени t, в уравнение (4) вместо $k\mu_0\rho\frac{\dot{E}_{\phi}^{\text{off}}}{E_{\phi}^{\text{off}}}$ подставляют $k\mu_0\rho\frac{\dot{E}_{\phi}^{\text{эксп}}}{E_{\phi}^{\text{эксп}}}$. После нахождения \overline{m} из этого уравнения,

применяя формулу (5), определяют $S_{ au}(t) = k \frac{F(\overline{m})}{E_{oldsymbol{\phi}}^{ ext{\tiny эксп}}}$, называемую кажущейся

продольной проводимостью геоэлектрического разреза в момент времени t. Вместо h обычно вычисляют $H_k(t) = 0.75\overline{m}\rho$ — кажущуюся глубину исследования, где ρ - радиус измерительной петли. После расчета $S_{\tau}(t)$ и $H_k(t)$ для каждого отсчета времени t строят кривые кажущейся продольной проводимости $S_{\tau}(t)$ и кажущейся глубины исследования $H_k(t)$. После чего рассчитывается кривая $S_{\tau}(H_k)$.

Для проведения расчетов становления поля вертикального магнитного диполя, лежащего на дневной поверхности многослойной среды, с помощью генератора случайных чисел построено четыре 20-ти слойных геоэлектрических разреза. Первые два разреза являются контрастными по проводимости, и отличаются друг от друга только тем, что в одном случае основание разреза высокоомное, а в другом – низкоомное. Два других разреза – слабоконтрастные, так же отличающиеся между собой основаниями.

По результатам расчетов становления поля построены кривые кажущейся продольной проводимости $S_k(t)$, кривые $S_K(H_K)$ и теоретические кривые S(H). Эти кривые изображены на рисунках 2-9.

Рисунок 2 — Кажущаяся продольная проводимость $S_k(t)$ для контрастной среды

Рисунок 3 - теоретическая кривая S(H) и кривая $S_K(HK)$ для контрастного геоэлектрического разреза и высокоомного основания

Рисунок 4 — Кажущаяся продольная проводимость $S_k(t)$ для контрастной среды

Рисунок 5 - теоретическая кривая S(H) и кривая S_K (HK) для контрастного геоэлектрического разреза и низкоомного основания

Рисунок 6 — Кажущаяся продольная проводимость $S_k(t)$ для слабоконтрастной среды с высокоомным основанием

Рисунок 7 - теоретическая кривая S(H) и кривая $S_K(H_K)$ для слабоконтрастного геоэлектрического разреза и высокоомного основания

Рисунок 8 — Кажущаяся продольная проводимость $S_k(t)$ для слабоконтрастной среды с низкоомным основанием

Рисунок 9 - теоретическая кривая S(H) и кривая S_K (HK) для слабоконтрастного геоэлектрического разреза и низкоомного основания

В целом кривые неплохо определяют тренд теоретических кривых S(H). Однако кривые $S_K(HK)$ дают несколько заниженные значения продольной проводимости геоэлектрического разреза, хотя по точкам перегиба кривых $S_K(HK)$ хорошо определяются границы высокоомных и низкоомных горизонтов.

Заключение

В настоящей дипломной работе получены следующие результаты:

- 1. Рассмотрены теоретические основы метода становления поля.
- 2. Показаны особенности становления поля в дальней и ближней зонах.
- 3. Рассмотрены прямая и обратная задача становления поля вертикального магнитного диполя в присутствии проводящей плоскости.
- 4. Применяя генератор случайных чисел, построено четыре модели 20-ти слойных геоэлектрических разрезов: два разреза контрастных и два слабоконтрастных.
- 5. Проведены расчеты становления поля вертикального магнитного диполя для построенных разрезов.
- 6. Применена трансформация Сидорова-Тикшаева к рассчитанным кривым становления поля.
- 7. Построены кривые S_k кажущейся продольной проводимости от времени t .
- 8. Построены кривые H_k кажущейся глубины исследования.
- 9. Выполнено сравнение теоретических кривых продольной проводимости и кривых $S_k(H_k)$ для контрастных и слабоконтрастных разрезов.
- 10. По результатам численных расчетов сделан вывод о том, что применение трансформация Сидорова-Тикшаева для многослойных контрастных и слабоконтрастных разрезов дает неплохое соответствие теоретических кривых S(H) продольной проводимости и кривых $S_k(H_k)$ кажущейся продольной проводимости.

Все поставленные задачи во введении дипломной работы выполнены полностью.