4-1: MORE EXAMPLES

For each function and associated interval below, find any absolute maximum and absolute minimum or state that none exist.

1.
$$f(x) = (x^2 - 2x - 3)^{1/3}$$
 on $[0, 5]$

$$f'(x) = \frac{1}{3} \left(x^2 - 2x - 3 \right)^{-2/3} \left(2x - 2 \right) = \frac{2(x - 1)}{3 \left[(x - 3)(x + 1) \right]^{2/3}}$$

f un defined when x=3 orx=-1.

table of values end points critical pts

x	0	5		3	in
t(≺)	-∛3	∛ 12	-₹5	0	

absolute max: $y = \sqrt[3]{2}$ absolute min: $y = -\sqrt[3]{5}$

Rough sketch

2.
$$g(t) = \frac{\sqrt{t}}{1+t^2}$$
 on $[0,3]$.

$$g'(t) = ((1+t^2)(\frac{1}{2}t^{-1/2}) - t^{-1/2} \cdot 2t)$$
 216
$$((1+t^2)^2) = ((1+t^2)^2) = (1+t^2)^2$$

$$= \frac{1+t^2-4t^2}{24\Gamma(1+t^2)^2} = \frac{1-3t^2}{24\Gamma(1+t^2)^2}$$

$$g'=0$$
 when $t=\pm \sqrt{3}$

g'never undefined.

table of values

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline X & O & 3 & \sqrt{3} \\\hline \hline F(X) & O & \frac{13}{10} & \frac{3^{44}}{4} \\\hline \end{array}$$

absolute max: y = 379

absolute min: y=0

Poughskatch

asid:
$$\frac{1}{\sqrt{13}} = \frac{1}{\sqrt{3}} \cdot \frac{3}{4} =$$