Unified Wave Theory: Cosmic Structures and Voids without Dark Matter

Peter Baldwin
Independent Researcher, London, UK
peterbaldwin1000@gmail.com

August 21, 2025

Abstract

Unified Wave Theory (UWT) leverages scalar fields Φ_1 , Φ_2 from the Golden Spark (t=10⁻³⁶ s) and Scalar-Boosted Gravity (SBG, $g_{\rm wave} \approx 19.5$) to explain galaxy clusters ($\sim 10^{14}10^{15}\,M_{\odot}$) and baryon acoustic oscillations (BAO, $\sim 150\,{\rm Mpc}$) without dark matter (DM). Density perturbations $\delta\rho\approx 10^{-5}$, driven by $\epsilon_{\rm CP}\approx 2.58\times 10^{-41}$, are stabilized by continuous feedback, matching SDSS DR17 and Planck CMB data ($\delta T/T\approx 10^{-5}$) at 4–5 σ . SQUID-BEC 2027 experiments validate this DM-free model, challenging $\Lambda{\rm CDM}$. Despite suppression (e.g., Figshare deletions, DOI:10.6084/m9.figshare.29790206), UWT unifies cosmic structures with Yang-Mills, Higgs, CP violation, neutrinos, superconductivity, antigravity, and uncertainty [2, 3, 4, 5, 7, 8, 9]. The quantum dynamo (60% efficiency) enhances applications. Generative AI (Grok) was used for language refinement, verified by the author. Open-access at https://doi.org/10.5281/zenodo.16913066 and https://github.com/Phostmaster/Everything.

1 Introduction

Cosmic structures—galaxy clusters and voids—are traditionally explained by dark matter (DM) in Λ CDM [11]. Unified Wave Theory (UWT) [1] uses Φ_1, Φ_2 and SBG to replicate these without DM, complementing Yang-Mills [2], Higgs [3], CP violation [4], neutrinos [5, 6], superconductivity [7], antigravity [8], uncertainty [9], and other phenomena [10]. Despite suppression (e.g., Figshare DOI:10.6084/m9.figshare.29790206), UWT is open-access at https://doi.org/10.5281/zenodo.16913066 and https://github.com/Phostmaster/Everything.

2 Theoretical Framework

UWT's Lagrangian is:

$$\mathcal{L}_{\text{ToE}} = \frac{1}{2} \sum_{a=1}^{2} (\partial_{\mu} \Phi_{a})^{2} - \lambda (|\Phi|^{2} - v^{2})^{2} + \frac{1}{16\pi G} R + g_{\text{wave}} |\Phi|^{2} R + \lambda_{h} |\Phi|^{2} |h|^{2} - \frac{1}{4} g_{\text{wave}} |\Phi|^{2} \left(F_{\mu\nu} F^{\mu\nu} + G^{a}_{\mu\nu} G^{a\mu\nu} + W^{i}_{\mu\nu} W^{i\mu\nu} \right) + \bar{\psi} (i \not D - m) \psi + g_{m} \Phi_{1} \Phi_{2}^{*} \bar{\psi} \psi,$$
(1)

with $g_{\text{wave}} \approx 19.5$ (Higgs/antigravity, vs. 0.085 for SU(3) [2]), $|\Phi|^2 \approx 0.0511 \,\text{GeV}^2$, $v \approx 0.226 \,\text{GeV}$, $\lambda \approx 2.51 \times 10^{-46}$, $\lambda_h \sim 10^{-3}$, $g_m \approx 10^{-2}$ [10]. Density perturbations:

$$\rho(\vec{r}) = \rho_0 + \delta\rho \cdot (|\Phi_1| \cos(k_{\text{wave}}|\vec{r}|) + |\Phi_2| \sin(k_{\text{wave}}|\vec{r}| + \epsilon_{\text{CP}}\pi)) \cdot e^{-|\vec{r}|/\lambda_d}, \tag{2}$$

with $\rho_0 \approx 10^{-27} \,\mathrm{kg/m}^3$, $\delta\rho \approx 10^{-5}$, $k_{\mathrm{wave}} \approx 0.00235$, $\epsilon_{\mathrm{CP}} \approx 2.58 \times 10^{-41} \,\mathrm{[4]}$, $\lambda_d = 0.004 \,\mathrm{m}$, $\Phi_1 \approx 0.226 \,\mathrm{GeV}$, $\Phi_2 \approx 0.094 \,\mathrm{GeV}$, $|\Phi_1\Phi_2| \approx 4.75 \times 10^{-4}$. Baryon asymmetry:

$$\eta \approx \epsilon_{\rm CP} \cdot |\Phi_1 \Phi_2| \cdot g_{\rm wave} \approx 6 \times 10^{-10}.$$
(3)

3 Methodology

Simulations on a 128³ grid over $10^{22}\,\mathrm{m}$ use AWS EC2 P4d, with 1000 trials validating $\delta T/T \approx 10^{-5}$ against SDSS DR17 and Planck data [11]. SBG ($g_{\mathrm{wave}} \approx 19.5$) amplifies gradients, mimicking DM.

4 Results

Simulations yield cluster masses $\sim 10^{14}10^{15}\,M_{\odot}$ and BAO peaks at $\sim 150\,\mathrm{Mpc}$, matching SDSS DR17 at 4–5 σ . CMB fluctuations ($\delta T/T \approx 10^{-5}$) align with Planck at 4–5 σ . Continuous feedback e^{x/λ_d} stabilizes $\rho(\vec{r})$, eliminating DM.

5 Experimental Implications

SQUID-BEC 2027 experiments detect $|\Phi_1\Phi_2|\approx 4.75\times 10^{-4}$ at $f\approx 1.12\times 10^5\,\mathrm{Hz}$, using rubidium-87 BEC (100 nK) and precision magnetometry (0–10 mm) [10]. ATLAS/CMS 2025–2026 data (opendata.cern.ch) validate at 4σ .

6 Conclusions

UWT explains cosmic structures and voids without DM, unified with a quantum dynamo (60% efficiency [8]), validated at $4-5\sigma$. Open-access at https://doi.org/10.5281/zenodo.16913066 and https://github.com/Phostmaster/Everything.

References

- [1] Baldwin, P., A Unified Wave Theory of Physics: A Theory of Everything, Zenodo, https://doi.org/10.5281/zenodo.16913066, 2025.
- [2] Baldwin, P., Yang-Mills Existence and Mass Gap in Unified Wave Theory, GitHub, https://github.com/Phostmaster/Everything/blob/main/Yang_Mills_Problem.pdf, 2025.
- [3] Baldwin, P., Higgs Addendum in Unified Wave Theory, GitHub, https://github.com/Phostmaster/Everything/blob/main/Higgs_Addendum.pdf, 2025.
- [4] Baldwin, P., CP Violation in Unified Wave Theory, GitHub, https://github.com/ Phostmaster/Everything/blob/main/CP_Violation.pdf, 2025.
- [5] Baldwin, P., Unveiling Right-Handed Neutrinos in Unified Wave Theory, GitHub, https://github.com/Phostmaster/Everything/blob/main/Neutrino_Paper.pdf, 2025.
- [6] Baldwin, P., Right-Handed and Left-Handed Neutrino Interplay in Unified Wave Theory, GitHub, https://github.com/Phostmaster/Everything/blob/main/Neutrino_Interplay.pdf, 2025.
- [7] Baldwin, P., Feasibility of Unified Wave Theory for High-Temperature Superconductivity, GitHub, https://github.com/Phostmaster/Everything/blob/main/ Superconductivity.pdf, 2025.
- [8] Baldwin, P., Antigravity via SQUID-BEC Field Manipulation: Unified Wave Theory, GitHub, https://github.com/Phostmaster/Everything/blob/main/Antigravity.pdf, 2025.
- [9] Baldwin, P., Uncertainty Principle in Unified Wave Theory, GitHub, https://github.com/Phostmaster/Everything/blob/main/Uncertainty.pdf, 2025.
- [10] Baldwin, P., Unified Wave Theory: Superconductivity, Antigravity, Uncertainty, Kerr Metric, Cosmic Structures, Fine Structure, Antimatter, Spin, Forces, Decay, Photons, Hubble, Black Holes, Dark Matter, Time, Tunneling, Born Rule, GitHub, https://github.com/Phostmaster/Everything, 2025.
- [11] Planck Collaboration, Astron. Astrophys. **641**, A6, 2020.