Internationales Būro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

A1

(11) Internationale Veröffentlichungsnummer:

WO 94/08969

C07D 231/16, 231/38 A61K 7/13

(43) Internationales Veröffentlichungsdatum:

28. April 1994 (28.04.94)

(21) Internationales Aktenzeichen:

PCT/EP93/02644

(22) Internationales Anmeldedatum:

29. September 1993 (29.09.93)

(30) Prioritätsdaten:

P 42 34 885.4

16. Oktober 1992 (16.10.92) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): WELLA AKTIENGESELLSCHAFT [DE/DE]; Berliner Allee 65, D-64274 Darmstadt (DE).

(72) Erfinder; und

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): NEUNHOEFFER, Hans [DE/DE]; Auf dem Sand 1, D-64367 Mühltal (DE). GERSTUNG, Stefan [DE/DE]; Schäferweg 27, D-64354 Reinheim (DE). CLAUSEN, Thomas [DE/DE]; Ernst-Pasqué-Strasse 35 A, D-64665 Alsbach (DE). BALZER, Wolfgang, R. [DE/DE]; Im Kiesling 12, D-64665 Alsbach (DE). bach (DE).

AKTIENGESELL-(74) Gemeinsamer Vertreter: WELLA SCHAFT; Berliner Allee 65, D-64274 Darmstadt (DE).

(81) Bestimmungsstaaten: BR, JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: PROCESS FOR PRODUCING 4,5-DIAMINO PYRAZOLE DERIVATIVES, THEIR USE FOR COLOURING HAIR AND NOVEL PYRAZOLE DERIVATIVES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON 4,5-DIAMINOPYRAZOL-DERIVATEN DEREN VERWEN-DUNG ZUM FÄRBEN VON HAAREN SOWIE NEUE PYRAZOL-DERIVATE

(57) Abstract

The present invention relates to a process for producing 4,5-diamino pyrazole derivatives of general formula (I) in which R₁ and R₂ are mutually independently hydrogen, a C₁ to C₆ alkyl residue or a C₂ to C₄ hydroxy alkyl residue, which may be used as colorant pre-products, e.g. for hair colorants, and novel pyrzole derivatives. The use of the process of the invention makes it possible to obtain 4,5-diamino pyrazole derivatives of general formula (I) without isomers and with good yields.

(57) Zusammenfassung

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I) in der R1 und R2 unabhängig voneinander Wasserstoff, einen C1- bis C6-Alkylrest oder einen C2- bis C4-Hydroxyalkylrest bedeuten, die als Farbstoffvorstufen, zum Beispiel für Haarfarbstoffe, verwendet werden können sowie neue Pyrazol-Derivate. Durch Anwendung des erfindungsgemäßen Verfahrens können 4,5-Diaminopyrazol-Derivate der allgemeinen Formel (I) isomerenrein und in guten Ausbeuten erhalten werden.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FI	Finnland	MR	Mauritanien
AU	Australien	FR	Frankreich	MW	Malawi
BB	Barbados	GA	Gabon	NE	Niger
BE	Belgien	GB	Vereinigtes Königreich	NL	Nicderlando
BF	Burkina Faso	GN	Guinea	NO	Norwegen
BG	Bulgarien	GR	Griechenland	NZ	Neusceland
BJ	Benin	HU	Ungarn	PL	Polen
BR	Brasilien	1E	Irland	PT	Portugal
BY	Belarus	ÏT	Italien .	RO	Rumänien
ČÁ	Kanada	JP	Japan	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SD	Sudan
œ	Kongo	KR	Republik Korea	SE	Schweden
CH	Schweiz	KZ	Kasachstan	SI	Slowenien .
CI	Côte d'Ivoire	ũ	Liechtenstein	SK	Slowakischen Republik
CM	Kamerun	ī.k	Sri Lanka	SN	Senegal
CN	China	พ	Luxemburg	TD	Tschad
	Tschechoslowakei	LV	Lettland	TG	Togo
cs		MC	Monaco	ÜĀ	Ukraine
CZ	Tschechischen Republik			US	Verginigte Staaten von Amerika
DE	Deutschland	MG	Madagaskar	UZ	Ushekistan
DK	Dânemark	ML.	Mali		
ES	Spanien	MN	Mongolei	VN	Victnam

PCT/EP93/02644

1

Beschreibung

Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten, deren Verwendung zum Färben von Haaren sowie neue Pyrazol-Derivate

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I)

$$N = NH_{2}$$

$$NHR_{2}$$

$$R_{1}$$

$$NHR_{2}$$

in der R₁ und R₂ unabhängig voneinander Wasserstoff, einen C₁- bis C₆-Alkylrest oder einen C₂- bis C₄-Hydroxyalkylrest bedeuten, sowie neue Pyrazol-Derivate, unter anderem 4,5-Diaminopyrazol-Derivate, die als Farbstoffvorstufen, zum Beispiel für Haarfarbstoffe, verwendet werden können.

Es sind in der Literatur bereits mehrere Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der Formel (I) bekannt. Diese Verfahren sind jedoch in vielerlei Hinsicht unbefriedigend.

So wird beispielsweise nach H. Dorn et al., Chem. Ber. 98, S. 3368 (1965), ausgehend von Ethoxymethylen-cyanessigsäureethylester und Methylhydrazin die 5-Amino-1-methylpyrazol-4-carbonsäure erhalten, aus der durch

Decarboxylierung, in einer Gesamtausbeute von 40 Prozent, das 5-Amino-1-methylpyrazol entsteht.

In der DE-OS 2 141 700 ist ein Einstufenverfahren beschrieben, nach dem aus N,N-Dimethylaminoacrylnitril und Methylhydrazin das 5-Amino-1-methylpyrazol in einer Ausbeute von 71 Prozent erhalten werden kann.

Nach M.A. Khan et al., Can. J. Chem. <u>49</u>, S. 3566 (1971), läßt sich das nach den beschriebenen Verfahren erhaltene 5-Amino-1-methylpyrazol mit einer Ausbeute von 23 Prozent zum 5-Amino-1-methyl-4-nitropyrazol umsetzen. Katalytische Reduktion dieses Produktes liefert nach V.P. Perevalov et al., Khim. Geterotsicl. Soedin. <u>8</u>, S. 1090 (1985), 1-Methyl-4,5-diaminopyrazol-dihydrochlorid in einer Ausbeute von ca. 79 Prozent. Die Gesamtausbeute über die genannten Stufen beträgt 7 bis 13 Prozent.

Gesamtausbeuten von bis zu 46 Prozent werden erhalten, wenn man das 5-Amino-1-methylpyrazol nach H. Dorn et al., Liebigs Ann. Chem. 717, S. 118 (1968), mit Isoamylnitrit zum 5-Amino-1-methyl-4-nitropyrazol umsetzt und mit Zinn(II)chlorid zum 4,5-Diamino-1-methylpyrazol reduziert.

Aus der DE-OS 38 43 892 ist ein Verfahren zur Herstellung von 4,5-Diamino-1-methylpyrazol bekannt, in dem 2-Chloracrylnitril mit Hydrazin (G. Ege, Angew. Chem, 86, S. 237 (1974)) cyclisiert wird. Nach Acetylierung der Aminogruppe, Nitrierung und Abspaltung der Schutzgruppe erhält man die tautomeren Verbindungen 3-Amino-4-nitropyrazol und 5-Amino-4-nitropyrazol in einer Gesamtausbeute von ca. 41 Prozent. Alkyliert man das Tautomerengemisch mit Dimethylsulfat, so erhält man in 70 prozentiger Ausbeute ein Isomerengemisch, das sich chromatographisch in die isomeren Verbindungen 5-Amino-1-me-

thyl-4-nitropyrazol (25 Prozent) und 3-Amino-1-methyl-4-nitropyrazol (45 Prozent) auftrennen läßt. Durch Reduktion können die entsprechenden Diamino-Verbindungen erhalten werden. Die Gesamtausbeute von 1-Methyl-4,5-diaminopyrazol beträgt weniger als 10 Prozent.

Aus der DE-OS 3 432 983 ist ein Verfahren zur Herstellung von 5-Amino-1-(2'-hydroxyethyl)-4-nitropyrazol bekannt. Ausgehend von 5-Amino-1-(2'-hydroxyethyl)pyrazol-4-carbonsäure wird die Verbindung durch Decarboxylierung, anschließender Nitrosierung und Hydrierung, in einer Ausbeute von 59 Prozent erhalten.

Neben den zum Teil geringen Ausbeuten haben die beschriebenen Verfahren weitere Nachteile. So sind viele Ausgangsverbindungen, wie zum Beispiel Ethoxymethylcyanessigsäureethylester oder N,N-Dimethylaminoacrylnitril, nicht käuflich erhältlich oder nur durch zum Teil aufwendige Synthesen herstellbar. Darüberhinaus werden Hydrazinderivate als giftig und zum Teil krebserregend eingestuft.

Die Herstellung von 4,5-Diaminopyrazol-Derivaten, die am Stickstoffatom der Aminogruppe in 5-Position substituiert sind, ist nicht beschrieben.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur isomerenreinen Herstellung von unterschiedlich substituierten 4,5-Diaminopyrazol-Derivaten zur Verfügung zu stellen.

Es wurde nunmehr gefunden, daß sich die gestellte Aufgabe durch ein Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I)

Δ

$$N = NH_{2}$$

$$NHR_{2}$$

$$NHR_{2}$$

$$R_{1}$$

in der R_1 und R_2 unabhängig voneinander Wasserstoff, einen C_1 - bis C_6 -Alkylrest oder einen C_2 - bis C_4 -Hydro-xyalkylrest bedeuten, dadurch gekennzeichnet, daß man

(A) 3,5-Dibrom-4-nitropyrazol mit einem C₁- bis C₆-Alkyl-, C₂- bis C₄-Hydroxyalkyl- oder Benzylhalogenid oder einem C₁- bis C₆-Alkyl, C₂- bis C₄-Hydroxyalkyl-oder Benzylsulfat zu Verbindungen der allgemeinen Formel (II)

in der R3 einen C1- bis C6-Alkylrest, einen C2- bis C4-Hydroxyalkylrest oder einen Benzylrest bedeutet, umsetzt,

(B) die Verbindungen der allgemeinen Formel (II) mit C₁bis C₆-Alkyl-, C₂- bis C₄-Hydroxyalkyl- oder Benzylamin zu Verbindungen der allgemeinen Formel (III)

in der R3 und R4 unabhängig voneinander einen C1bis C6-Alkylrest, einen C2- bis C4-Hydroxyalkylrest oder einen Benzylrest bedeuten, in 5-Position substituiert und sodann

(C) die Verbindungen der allgemeinen Formel (III) durch katalytische Hydrierung zu den Verbindungen der allgemeinen Formel (I) reduziert,

hervorragend lösen läßt. Das vorstehend aufgeführte Verfahren ist daher ein Gegenstand der Erfindung.

Das allgemeine Reaktionsschema ist nachstehend angegeben.

Br
$$NO_2$$
 Br NO_2 Br NO_2 Br NO_2 Br NO_2 Br NHR_4 NHR_4 (IV) (III)

Als Ausgangsverbindung für die Synthese von 4,5-Diaminopyrazol-Derivaten (I) dient das bekannte 3,5-Dibrom-4nitropyrazol (IV), welches auf folgende Weise dargestellt werden kann:

Nach R. Hüttel et al., Chem. Ber. 88, S. 1577 (1955), erhält man.durch Nitrierung von Pyrazol mit einem Schwefelsäure-Salpetersäure-Gemisch das 4-Nitropyrazol, das nach H.J. Klebe et al., Synthesis 1973, S. 294 unter milderen Bedingungen durch Nitrierung von Pyrazol zum N-Nitropyrazol und anschließender Umlagerung, mit Hilfe von Schwefelsäure (R. Hüttel et al., Chem. Ber. 88, S. 1586 (1955)), erhalten werden kann. Anschließende Bromierung nach J.P.H. Juffermanns et al., J. Org. Chem. 51, S. 4656 (1986), liefert das 3,5-Dibrom-4-nitropyrazol (IV).

7

Nach dem erfindungsgemäßen Verfahren wird zunächst das 3,5-Dibrom-4-nitropyrazol (IV) durch Umsetzung mit C₁-bis C₆-Alkyl-, C₂- bis C₄-Hydroxyalkyl- oder Benzylhalogeniden in Dimethylformamid (DMF) (Verfahren I) oder durch Umsetzung mit C₁- bis C₆-Alkyl-, C₂- bis C₄-Hydroxyalkyl- oder Benzylsulfat und Lauge (Verfahren II) in 1-Position alkyliert.

Nach Verfahren I wird zu einer Vorlage von Natriumhydrid in absolutem DMF, unter Rühren bei Raumtemperatur, eine äquimolare Menge von 3,5-Dibrom-4-nitropyrazol, gelöst in absolutem DMF, über einem Zeitraum von einer Stunde zugetropft. Nach Beendigung der Gasentwicklung tropft man eine äquimolare Menge C1- bis C6-Alkyl-, C2-bis C4-Hydroxyalkyl- oder Benzylhalogenid, bevorzugt -chlorid oder -bromid, gelöst in DMF, zu und erhitzt das Reaktionsgemisch drei Stunden lang auf 80 °C.

Anschließend wird das Lösungmittel im Vakuum abdestilliert und der Rückstand aus Methylenchlorid umkristallisiert.

Nach Verfahren II wird das 3,5-Dibrom-4-nitropyrazol in wäßriger Lauge, vorzugsweise 2N Natron- oder Kalilauge, gelöst und mit einer zwei- bis fünffachen molaren Menge an C₁-bis C₆-Alkyl-, C₂- bis C₄-Hydroxyalkyl- oder Benzylsulfat versetzt. Unter kräftigem Rühren läßt man 15 Stunden lang bei Raumtemperatur reagieren, filtriert anschließend das ausgefallene Produkt ab, wäscht mit Wasser bis die Waschlösung pH-neutral reagiert und trocknet im Vakuum.

Nach beiden Verfahren erhält man isomerenreine N-substi-, tuierte 3,5-Dibrom-4-nitropyrazole der allgemeinen Formel (II) in guten Ausbeuten. WO 94108969

In einem anschließenden Schritt ethitzt man die N-subschritt In einem anschliebenden währigen. alkoholischen oder währstitulerten 3,5-pibrom-4-nitropyrazole dex allgemeinen stitulerten in einer währigen. stituierten 3,5-Dibron-4-nitropyrazole der allgemeinen oder währigen, alkoholischen oder co-his einer währigen, bis ce-alkvi-. co-his rormel (II) in einer Lösung von ci- bis ce-alkoholischen ci- bis ce-alk Formel (II) in einer wäßtigen, alkoholischen oder wäßrormel (II) in einer wäßtigen, oder nam entrig-alkoholischen oder Renzvlamin oder in dem entrig-alkoholischen Lösung von Cl- bis C6-Alkyl- c2

Lösung von Cl- bis C6-Alkyl- care

in dem ent
in dem ent
in dem ent
ca-Hydroxyalkyl- oder ale raeinanemistal

ca-Hydroxyalkyl- eather ale raeinanemistal

ca-Hydroxyalkyl- eather C4-Hydroxyalkyl- oder Benzylamin oder in dem entsprechenden Amin solbst, sol sprechenden Amin selbet, als Lösungsmittel, auf ei Lösungsmittel, werden war ei Selbet, als Alkohole werden war einer von 60 bis 80 °C. Als Alkohole vorwender war erhanol verwender erhanol verwender erhanol verwender einer met havorgingt werhanol und/oder ethanol verwender havorgingt werhanol und/oder ethanol Temperatur von 60 bis 80 °C. Als Alkohole werden Nach
von 60 bis 80 °C. Ethanol verwendet.

Temperatur von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole werden

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 bis 80 °C. Als Alkohole verwendet.

einer von 60 °C. Als Alkohole verwendet.

einer von 60 °C. Als Alkohole verwendet.

einer von 60 °C. Als Alkohole verwendet.

e bevorzugt Methanol und oder Ethanol verwendet. Nach das devorzugt Methanol und oder Ethanol Stunden, son mi wasser und bis 20 Stunden, son mi wasser und auf 20 bis 150 ml wasser und einer Reaktionszeit von auf 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis 20 bis 150 ml wasser und auf 20 bis einer Reaktionszeit von 1 bis 20 bis 150 ml Wasser und ab abgekünzte Reaktionsgemisch auf 20 bis Anschließen abgekünzte abgekünzte das abgeschiedene produkt ab. abgekihlte Reaktionsgemisch auf 20 bis 150 ml Wasser und 20 ml was abgeschiedene produkt ab. Anschließend im 20 ml was ab. Anschließend i filtriert das abgeschiedene Produkt ab. Anschließend im trocknet im abgeschiedene Produkt ab. Anschließend im trocknet im was abgeschiedene Produkt ab. Anschließend im trocknet im was arhält isomerenreine 5-Amino-3-brom-4-nit was chi man arhält isomerenreine 5-Amino-3-brom-4-nit was chi man arhält isomerenreine 5-Amino-3-brom-4-nit was chi man arhält isomerenreine 5-Amino-3-brom-4-nit was chief to be a ch wäscht man mit Wasser (10 bis 20 ml) und trocknet im on the service of the servic Vakuum. Man erhält isomerenreine 5-Amino-3-brom-4-nitropyrazol-Derivate der allgemeinen Formel (III) in guten
pyrazol-Derivate der allgemeinen Formel (III) in guten Die Verbindungen der allgemeinen Formel (III) werden an-Die Verbindungen der allgemeinen Formel (III) werden anschließend, unter einem Palladiumanteil von 10 Gewichtsschließend, mit einem Palladiumanteil von 10 Gewichtsschließend, unter verwendung eines Palladium-Aktivkohleschließend, unter Palladiumanteil von 10 Gewichtspalladiumanteil von 10 Gewichtspalladiumanteil von 10 Gewichtspalladiumanteil von 10 Gewichtspalladium-Aktivkohlepalladiumpalladium-Aktivkohlepa Katalysators mit einem palladiumanteil von 10 Gewichtsprozent, mit Wasserstoff verfahren zur Verfinung Nach verfahren
prozent, zwei verfahren zur Prozent | mit Wasserstoff hydriert. Erfindungsgemäß ste.

Prozent | mit Wasserstoff hydriert | verfigung. | havorzunt | athanolischen | havorzunt | athanolischen | havorzunt hen dazu zwei verfahren zur verfügung. Nach verfahren Lö
nen dazu zwei verfahren zur bevorzugt ethanolischen, bevorzugt hen Formel (III) zwei

(1) wird der verbindung der allgemeinen sum einer verfahren zur verfügung. (1) Wird der alkoholischen, des katalvsators zugefügt und sung einer verbindung der algemeinen formel zugefügt und sung einer ca. 100 mg. Ausbeuten. sung einer verbindung der allgemeinen Formel (III) zwei und einer verbindung der allgemeinen Formel (III) zwei und bar des Katalysators zugefügt und bar des Katalysators zugefügt und bei 50 bar bei 50 bar iberführt. Bei 50 bar spatelspitzen, spatelspitzen, einen Autoklaven überführt. Bei 50 bar bar spatelspitzen, einen Autoklaven überführt. Spatelspitzen, ca. 100 mg, des Katalysators zugefügt, his der Ansatz in einen Autoklaven wird hei Raumtemmeratur, his der Ansatz in einen Autoklaven der Ansatz in einen Autoklaven überführt. Bei 50 bar 6

wird bei Raumtemperatur 1 bis 6

der Ansatz in einen Autoklaven überführt aerührt

der Ansatz in einen Autoklaven überführt aerührt

wäßerstoffatmosphäre wird bei A stunden nerührt

waßerstoffatmosphäre wird. 2 his 4 stunden nerührt Stunden lang bevorzugt 2 bis 4 Stunden, gerührt.

Stunden lang bevorzugt 2 bis 4 Stunden, gerührt.

Stunden lang bevorzugt 2 bis 4 Stunden, gerührt.

Anschließend wird der Katalysator über einer zur einer z Wasserstoffatmosphäre wird bei Raumtemperatur 1 bis
Wasserstoffatmosphäre wird bei Raumtemperatur 1 bis
Stunden, gerührt.

Stunden lang, bevorzugt 2 bis 4 stunder einen class
Stunden lang, wird der katalvsator über einen class
Anschlienend wird der katalvsator Anschließend wird der Katalysator über einen Glasfilterund das Produkt, mit einer Schwefeltiegel abfiltriert und das äquimolaren Menge Schwefelteren pyrazolverbindung tiegel abfiltriert und das produkt, mit einer zur einge schwefel- auch menge saure auch das produkt, mit einer zur einge schwefel- auch menge saure auch das produkt, mit einer zur einge schwefel- auch menge saure auch das produkt, mit einer zur einge schwefel- auch menge saure auch menge saur setzten pyrazolverbindung äquimolaren menge als Salz aussetzten pyrazolverbindung menge salzsäure mäßrigen lösung
werden der wäßrigen lösung
setzten oder zweifachmolaren (2) werden der wäßrigen säure oder wach verfahren säure oder zweifachmolaren Menge Salzsäure als Salz aussäure oder zweifachmolaren (2) werden der währigen (III) 2 snate)
gefällt. Nach Verfahren allgemeinen formel (III) gefällt. Nach Verfahren (2) werden der wäßrigen Lösung (III) 2 Spatelgefällt. Nach Verfahren allgemeinen Formel (III) 2 spatelgefällt. Nach Verfahren beschriebenen katalvsators und
einer Verbindung der abeschriebenen katalvsators einer verbindung der allgemeinen Formel (III) 2 Spatel
einer verbindung der allgemeinen Katalysators und schwefel
spitzen des vorstehend beschriebenen Menne schwefel
spitzen des vorstehend indunn ännimolare Menne schwefelspitzen des vorstehend beschriebenen Katalysators und spitzen des vorstehend beschriebenen katalysators und spitzen des vorstehend beschriebenen katalysators und seinem kundrierkolben spitzen des vorstehend beschriebenen katalysators und seinem kundrierkolben spitzen des vorstehend her Angaty in einem kundrierkolben spitzen spitzen des vorstehend her Angaty in einem kundrierkolben spitzen spit eine zur Ausgangsverbindung äguimolare Menge Schwefel-säure zugegeben und der Ansatz in einem Hydrierkolben bei Raumtemperatur unter Wasserstoffatomospäre (Normaldruck geschüttelt. Sobald die dünnschichtchromatographische Untersuchung der Reaktionsmischung keinen Hinweis mehr auf noch vorliegendes Edukt gibt, wird über das Reaktionsgemisch einen Glasfiltertiegel abfiltriert, das Filtrat eingeengt und das Produkt durch Zugabe von Ethanol auskristallisiert.

Man erhält nach beiden Verfahren isomerenreine 4,5-Diaminopyrazol-Derivate der allgemeinen Formel (I) in guten Ausbeuten.

Die Verbindungen der allgemeinen Formel (I), in denen R_1 Wasserstoff bedeutet, liegen als Tautomere vor. Die Positionen 3 und 5 im Pyrazolring sind nicht unterscheidbar.

Bei der Reduktion von Verbindungen der allgemeinen Formel (III), in der R3 einen Benzylrest oder R4 einen Benzyl- oder tert-Butylrest bedeuten, werden die N-Benzyl- und N-tert-Butylreste reduktiv abgespalten, so daß man Verbindungen der allgemeinen Formel (I) erhält, in der R1 bzw. R2 Wasserstoff statt Benzyl oder tert-Butyl bedeutet.

Gegenstand der vorliegenden Patentanmeldung sind ferner neue 3,5-Dibrom-4-nitropyrazol-Derivate der allgemeinen Formel (II)

$$\begin{array}{c|c}
Br & NO_2 \\
N & Br \\
R_3
\end{array}$$

in der R3 einen C1- bis C6-Alkylrest, einen C2- bis C4-Hydroxyalkylrest oder einen Benzylrest bedeutet. Beispiele für Verbindungen der Formel (II) sind 3,5-Dibrom-1-methyl-4-nitropyrazol, 3,5-Dibrom-1-ethyl-4-nitropyrazol, 3,5-Dibrom-1-isopropyl-4-nitropyrazol, 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol und 1-Benzyl-3,5-dibrom-4-nitropyrazol.

Ein weiterer Erfindungsgegenstand sind 3-Brom-5-amino-4-nitropyrazol-Derivate der allgemeinen Formel (III)

in der R3 und R4 unabhängig voneinander einen C_1 - bis C_6 -Alkylrest, C_2 - bis C_4 -Hydroxyalkylrest oder einen Benzylrest bedeuten.

Beispiele für Verbindungen der Formel (III) sind

- 3-Brom-1-methyl-5-methylamino-4-nitropyrazol,
- 3-Brom-5-(2'-hydroxyethyl)amino-1-methyl-4-nitropyrazol,
- 3-Brom-5-tertiärbutylamino-1-methyl-4-nitropyrazol,
- 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol,
- 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol,
- 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol,
- 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol,

3-Brom-1-(2'-hydroxyethyl)-5-methylamino-4-nitropyrazol,
5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitropyrazol
1-Benzyl-3-brom-5-methylamino-4-nitropyrazol,
1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol,
1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol
und 1-Benzyl-5-benzylamino-3-brom-4-nitropyrazol zu nennen sind.

Gegenstand der vorliegenden Erfindung sind ferner neue 4,5-Diaminopyrazol-Derivate der allgemeinen Formel (V)

in der R_a und R_b Wasserstoff, einen C_1 - bis C_6 -Alkylrest oder einen C_2 - bis C_4 -Hydroxyalkylrest bedeuten, mit der Maßgabe, daß, wenn R_b Wasserstoff ist, R_a nicht Wasserstoff, Methyl oder 2-Hydroxyethyl ist.

Als Beispiele für Verbindungen der Formel (I) werden

4-Amino-1-methyl-5-methylaminopyrazol,

4-Amino-5-(2'-hydroxyethyl)amino-1-methylpyrazol,

4,5-Diamino-1-ethylpyrazol,

4,5-Diamino-1-isopropylpyrazol,

4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-pyrazol,

WO 94/08969 PCT/EP93/02644

12

- 4-Amino-1-(2'-hydroxyethyl)-5-methylaminopyrazol,
- 4-Amino-(3)5-methylaminopyrazol,
- 4-Amino-(3)5-ethylaminopyrazol und
- 4-Amino-(3)5-(2'-hydroxyethyl)aminopyrazol,

genannt.

Die Verbindungen der Formel (V) können als Farbstoffvorstufen in Oxidationshaarfärbemitteln zur Färbung von Haaren verwendet werden (siehe Verwendungsbeispiel).

Beispiele

- A) Herstellung von N-substituierten 3,5-Dibrom-4-nitropyrazolen der allgemeinen Formel (II)
 - a) Allgemeine Vorschrift, Verfahren I:

Zu 1,75 g (70 mmol) Natriumhydrid in 150 ml absolutem DMF (Dimethylformamid) tropft man über einen Zeitraum von 1 Stunde 19,0 g (70 mmol) 3,5-Dibrom-4-nitropyrazol, gelöst in 90 ml absolutem DMF, zu. Nach Beendigung der Gasentwicklung werden 70 mmol C1 bis C6-Alkyl-, C2 bis C4-Hydroxyalkyl- oder Benzylhalogenid in 30 ml DMF zugetropft und 3 Stunden lang auf 80 °C erhitzt. Anschließend destilliert man das Lösungsmittel im Vakuum ab und kristallisiert den Rückstand aus Methylenchlorid um.

b) Allgemeine Vorschrift, Verfahren II:

Zu einer Lösung von 5 g (18,5 mmol) 3,5-Dibrom-4nitropyrazol in 50 ml 2N Natronlauge gibt man
92,5 mmol C₁ bis C₆-Alkyl-, C₂ bis C₄-Hydroxyalkyl- oder Benzylsulfat, läßt 15 Stunden lang
bei Raumtemperatur kräftig rühren und filtriert
schließlich das ausgefallene Produkt ab, wäscht
mit Wasser bis die Waschlösung pH-neutral
reagiert und trocknet im Vakuum.

Herstellungsbeispiel 1: 3,5-Dibrom-1-methyl-4-nitropyrazol

Nach Verfahren II erhält man, unter Verwendung von Methylsulfat, 5,06 g (96 Prozent der Theorie) 3,5-Di-

brom-1-methyl-4-nitropyrazol in Form weißer Kristalle mit einem Schmelzpunkt von 154 °C.

 $^{1}\text{H-NMR}$ (60 MHz, DMSO-d6): = 3,90 ppm (s; 3H;-CH₃).

Für diese und alle folgenden ¹H-NMR-Spektren gilt: Die Angaben der chemischen Verschiebung erfolgt in delta (ppm), die der Kopplungskonstanten (J) erfolgt in Hertz. Standard: Tetramethylsilan s = Singulett, d = Dublett, t = Triplett, q = Quartett, m = Multiplett, Ph = Phenyl, Ring-H = Proton am Pyrazolring

 $MS (70eV):m/e=287 (M^+).$

Herstellungsbeispiel 2: 3,5-Dibrom-1-ethyl-4-nitropyrazol

Nach Verfahren II erhält man, unter Verwendung von Ethylsulfat, 3,59 g (65 Prozent der Theorie) 3,5-Dibrom-1-ethyl-4-nitropyrazol in Form weißer Kristalle mit einem Schmelzpunkt von 119 bis 121 °C.

Herstellungsbeispiel 3: 3,5-Dibrom-1-isopropyl-4-nitro-pyrazol

Nach Verfahren I erhält man, unter Verwendung von 2-Brompropan, 13,14 g (60 Prozent der Theorie) 3,5-Dibrom-1-isopropyl-4-nitropyrazol in Form braungelber Kristalle mit einem Schmelzpunkt von 72 bis 73 °C. 1_{H-NMR} (60 MHz, DMSO-d6): = 4,84 (dq; J=6,5 Hz; 1H; CH) und 1,42 ppm (d; J=6 Hz; 6H;-CH(<u>CH3</u>)2). MS (70eV):m/e=311 (M⁺).

Herstellungsbeispiel 4: 3,5-Dibrom-1-(2'-hydroxyethyl)4-nitropyrazol

Nach Verfahren I erhält man, unter Verwendung von 1-Brom-2-hydroxyethan, 14,77 g (67 Prozent der Theorie) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 103 bis 105 °C.

MS $(70eV):m/e=317 (M^+)$.

Herstellungsbeispiel 5: 1-Benzyl-3,5-dibrom-4-nitro-pyrazol

Nach Verfahren I erhält man, unter Verwendung von Benzylchlorid, 17,94 g (71 Prozent der Theorie) 1-Benzyl-3,5-dibrom-4-nitrobenzol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 128 °C.

 1_{H-NMR} (60 MHz, DMSO-d6): = 7,26-7,41 (m; 5H; Ph-H) und 5,51 ppm (s; 2H; -CH₂-). MS (70eV):m/e=363 (M⁺).

B) Herstellung von 5-Amino-3-brom-4-nitropyrazol-Derivaten der allgemeinen Formel (III)

Herstellungsbeispiel 6: 3-Brom-1-methyl-5-methylamino-4-nitropyrazol

2 g (7,02 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in 50 ml einer 40 prozentigen Lösung von Methylamin in Ethanol 4 Stunden lang auf Siedetemperatur erhitzt. Nach dem Abkühlen fügt man dem Reaktionsgemisch 100 ml Wasser zu, filtriert das abgeschiedene Produkt ab und wäscht mit wenig Wasser (20 ml). Nach dem Trocknen im Vakuum erhält man 1,45 g (88 Prozent der Theorie) 3-Brom-1-methyl-5-methylamino-4-nitropyrazol in Form gelber Kristalle mit einem Schmelzpunkt von 185 °C.

 $MS (70eV):m/e=236 (M^+).$

Herstellungsbeispiel 7: 3-Brom-5-(2'-hydroxyethylamino)l-methyl-4-nitropyrazol

3 g (10,5 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in einer Lösung von 30 ml Ethanolamin in 30 ml Ethanol 15 Stunden lang auf Siedetemperatur erhitzt. Anschließend gießt man das Reaktionsgemisch auf 200 ml Wasser, filtriert das abgeschiedene Produkt ab, wäscht mit Wasser (20 ml) und trocknet im Vakuum. Aus dem Filtrat kristallisiert in der Kälte (5 °C) weiteres Produkt aus.

Man erhält 2,25 g (81 Prozent der Theorie) 3-Brom-5-(2'-hydroxyethyl)amino-1-methyl-4-nitropyrazol in Form gelber Kristalle mit einem Schmelzpunkt von 150 °C.

 $MS (70eV):m/e=266 (M^+).$

Herstellungsbeispiel 8: 3-Brom-5-tert-butylamino-1-methyl-4-nitropyrazol

1,5 g (5,26 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in einer Lösung von 20 ml tert-Butylamin in 30 ml Ethanol 20 Stunden lang auf Siedetemperatur erhitzt.Nach dem Abkühlen gießt man das Reaktionsgemisch auf 150 ml Wasser, filtriert das abgeschiedene Produkt ab und wäscht mit 100 ml Wasser. Nach dem Trocknen im Vakuum erhält man 1,14 g (78 Prozent der Theorie)
3-Brom-5-tert-butylamino-1-methyl-4-nitropyrazol in Form blaßgelber Blättchen mit einem Schmelzpunkt von 75 bis 77 °C.

1H-NMR (60 MHz, DMSO-d6): = 5,35 (s; 1H; -NH; tauscht mit D2O aus), 3,75 (s; 3H; N-CH3) und 1,20 ppm (s; 9H; -C(CH3)3).

 $MS (70eV): m/e = 277 (M^+).$

Herstellungsbeispiel 9: 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol

2 g (7,02 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in einer Lösung von 11 g (0,1 mol) Benzylamin in 50 ml Ethanol 10 Stunden lang auf Siedetemperatur erhitzt. Nach dem Abkühlen gießt man das Reaktionsgemisch auf 100 ml Wasser, filtriert das abgeschiedene Produkt ab und wäscht mit Wasser (20 ml). Nach dem Trocknen im Vakuum erhält man 1,76 g (81 Prozent der Theorie) 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol in Form gelber Nadeln mit einem Schmelzpunkt von 133 °C.

MS (70eV): m/e = 312 (M^+) .

Herstellungsbeispiel 10: 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol

6,3 g (21 mmol) 3,5-Dibrom-1-ethyl-4-nitropyrazol werden in 10 ml Benzylamin 1 Stunde lang auf 80 °C erhitzt. Anschließend gießt man das Reaktionsgemisch auf 50 ml Wasser und trennt das abgeschiedene Öl ab, aus dem, nach Zugabe von 20 bis 30 ml Essigsäureethylester, das Produkt auskristallisiert. Nach einmaligem Umkristallisieren aus Methanol erhält man 5,2 g (76 Prozent der Theorie) 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol in Form hellgelber Nadeln mit einem Schmelzpunkt von 92 °C.

MS (70 eV): $m/e = 324 (M^+)$.

Herstellungsbeispiel 11: 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol

3,13 g (10 mmol) 3,5-Dibrom-1-isopropyl-4-nitropyrazol werden in 10 ml Benzylamin 1 Stunde lang auf 80 °C erhitzt. Anschließend gießt man das Reaktionsgemisch auf 50 ml Wasser und filtriert das abgeschiedene Produkt ab. Nach einmaligem Umkristallisieren aus einem Toluol/Petrolether-Gemisch (1:1) erhält man 2,3 g (68 Prozent der Theorie) 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol in Form hellgelber Kristalle mit einem Schmelzpunkt von 120 und 122 °C.

MS (70 eV): $m/e = 338 (M^+)$.

WO 94/08969 PCT/EP93/02644

20

Herstellungsb ispiel 12: 3-Brom-1-(2'-hydroxy thyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol

1,5 g (4,8 mmol) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol werden in einer Lösung von 0,58 g (9,6 mmol) Ethanolamin in 30 ml Ethanol 15 Stunden lang auf 80 °C erhitzt. Nach dem Abkühlen fügt man dem Reaktionsgemisch 50 ml Wasser zu und extrahiert drei mal mit je 70 ml Essigsäureethylester. Man gibt zu den vereinigten Extraktionslösungen 200 ml n-Hexan und destilliert das Lösungsmittelgemisch im Vakuum auf ein Drittel der ursprünglichen Menge ab. Danach fügt man erneut n-Hexan bis zur Trübung der Lösung zu. Anschließend filtriert man das auskristallisierte Produkt ab und wäscht mit n-Hexan (10 bis 20 ml). Man erhält 1,04 g (74 Prozent der Theorie) 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol in Form hellgelber Kristalle mit einem Schmelzpunkt von 132 bis 134 °C.

Herstellungsbeispiel 13: 3-Bron-1-(2'-hydroxyethyl)-5-methylamino-4-nitronvrazol 3,15 g (10 mmol) 3,5-Dibrom-1-(2,-hydroxyethyl)-4-nitroin 70 ml einer 30prozentiaen Lösuna von 3,15 g (10 mmol) 3,5-pibrom-1-(2,-hydroxyethyl)-4-nitro3,15 g (10 mmol) in 70 ml einer land auf 60 °C erwärmt

Pyrazol werden wasser 1 Stunde land auf 60 °C erwärmt

Methylamin in Wasser WO 94108969 Pyrazol werden in 70 ml einer 30prozentigen Lösung vol.

Rethylamin in Wasser 1 Stunde produkt in Form hollowith he fallt des produkt in Masser 1 methylamin harithlen fallt des produkt in Masser 1 methylamin harithlen fallt des produkt in Form hollowith des produkt in Form ho Methylamin in Wasser 1 Stunde lang auf 60 °C erwärmt.

Methylamin in Wasser fällt das Produkt von 158 his 160 °C

Nach dem Abkühlen schmelznunkt von 158 his 160 °C

Kristalle mit einem Schmelznunkt von 158 his 160 °C

Rethylamin in Wasser 1 Stunde lang auf 60 °C erwärmt. Nach dem Abkühlen fällt das Produkt in Form hellgelber
Schmelzpunkt von 158 bis 160°C,

Nach dem Abkühlen fällt das Prozent der mhenrie)

Kristalle, man erhält 2.4 n 191 prozent der mennie aus. Nan erhält 2,4 g (91 Prozent der Theorie)
3-Brom-1-(2, hydroxyethyl) 1H-NMR (300 MHZ DMSO-d6): "" 17. Don aus): 5.06 (5: 14. mit D20 aus); 5,06 (5; 1H; OH; tauscht mit D20 aus) 4,18 (ti 2Hi N-CH2-)! (ti 2Hi-CH2-OH) und 3,15 Ppm (di J 4,5 Hz; 3H; NH ch3; nach D20-Austausch s). Herstellungsbeispiel 14: 5-Benzylamino-3-brom-1-(2'-hy-droxyethyl)-4-nitropyraxol WE (10 eA); WIS = 566 (N+). 6,3 g (20 mmol) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitro-byrazol werden in 20 ml Benzylamin 2 stunden land 6,3 g (20 mmol) 3,5-Dibrom-l-(2,-hydroxyethyl)-4-nitro-ml Benzylamin 2 Stunden auf 50 ml in 20 ml Abkühlen aießt man auf 50 ml pyrazol werden Nach dem Abkühlen aießt man auf 50 ml 60°C erhitzt. Pyrazol werden in 20 ml Benzylamin 2 Stunden lang auf

Abkühlen gießt man auf an und

Byrazol werden Nach dem Abkühlen produkt an und

Was ahneschiedene produkt

60 c erhitzt. 60 °C erhitzt. Nach dem Abkühlen gießt man auf 50 ml
wasser, lieiert einmal auf moliolitieroin (1.1) um
krierallieiert einmal Wasser filtriert das abgeschiedene produkt ab und Man Toluol/Ligroin (1:1) um. 3Wasser filtriert einmal aus Toluol/Ligroin (3:1) um. 3Kristallisiert einmal der Theorie (50 prozent der Theorie) 5-Benzvlamino-3kristallisiert einmal der Theorie (50 prozent der Theorie) Kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

Kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

Kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he

kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man ne he erhält 4 g (59 prozent der mheorie) 5-Benzylamino-3-ber der mheorie) 5-Benzylamino-3-ber form gelber in form gelber in form gelber in form gelber in form 133 bis 135 °C.

erhält 4 g (59 prozent der mheorie) 5-Benzylamino-3-ber mit einem schmelzounkt von 133 bis 135 °C.

erhält 4 g (59 prozent der mheorie) 5-Benzylamino-3-ber menzylamino-3-ber mit einem schmelzounkt von 133 bis 135 °C. brom-1-(2'-hydroxyethyl)-4-nitropyrazol in Form gelber Kristalle mit einem Schmelzpunkt von 133 bis 135 °C.

WO 94/08969 PCT/EP93/02644

22

Herstellungsbeispiel 15: 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol

3,61 g (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in 100 ml einer 35prozentigen Lösung von Metyl-amin in Wasser 4 Stunden lang auf 60 °C erhitzt. Nach dem Abkühlen filtriert man den abgeschiedenen Niederschlag ab und kristallisiert einmal aus Ethanol um. Man erhält 2,7 g (87 Prozent der Theorie) 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol in Form farbloser Kristalle mit einem Schmelzpunkt von 116 °C.

1H-NMR (300 MHz,DMSO-d6): = 7,71 (s; 1H; -NH; tauscht mit D2O aus), 7,15-7,40 (m; 5H, Ph-H), 5,45 (s; 2H; -CH2-) und 3,02 ppm (s; 3H; -CH3).

MS (70 eV): $m/e = 312 (M^+)$.

MS (70 eV): $m/e = 340 (M^+)$.

Herstellungsbeispiel 16: 1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol

3,61 (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in 120 ml einer 30prozentigen wäßrigen Ethylaminlösung 1 Stunde lang auf 60 °C erhitzt. Nach dem Abkühlen scheidet sich das Produkt in Form farbloser Kristalle mit einem Schmelzpunkt von 122 °C ab. Man erhält 2,88 g 89 Prozent der Theorie) 1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol.

MS (70 eV): $m/e = 326 (M^+)$.

Herstellungsbeispiel 17: 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol

3,61 g (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in 15 ml Ethanolamin 2 Stunden lang auf 80 °C erhitzt. Nach dem Abkühlen gießt man das Reaktionsgemisch auf 30 ml Wasser und filtriert den abgeschiedenen Niederschlag ab. Nach einmaligem Umkristallisieren aus Toluol erhält man 2,5 g (74 Prozent der Theorie) 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 110 bis 112 °C.

MS (70 eV): $m/e = 342 (M^+)$.

Herstellungsbeispiel 18: 1-Benzyl-5-benzylamino-3-brom-4-nitropyrazol

3,61 g (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in einer Lösung von 3,6 g Benzylamin 2 Stunden lang auf 60 °C erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch auf 20 ml Wasser gegossen und der abgeschiedene Niederschlag abfiltriert. Nach einmaligem Umkristallisieren aus einem Ligroin/Toluol-Gemisch (1:1) erhält man 2,6 g (68 Prozent der Theorie) 1-Benzyl-5-benzyl-amino-3-brom-4-nitropyrazol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 103 °C.

MS (70 eV): $m/e = 388 (M^+)$.

١ -

- C) Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I)
- a) Allgemeine Vorschrift, Verfahren (1):

Eine in den folgenden Herstellungsbeispielen angegebene Menge einer Verbindung der allgemeinen Formel (II) wird in 130 ml Ethanol gelöst und in einen Autoklaven (250 ml) überführt. Nach der Zugabe von 2 Spatelspitzen (ca. 100 mg) eines Palladium/Aktivkohle-Katalysators, mit einem Polladiumanteil von 10 Gewichtsprozent, wird über den in den nachfolgenden Herstellungsbeispielen angegebenen Zeitraum, bei 50 bar Wasserstoffatmosphäre, bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung mittels einer Wasserstrahlpumpe in einen Glaskolben überführt und der Katalysator sofort über einen Glasfiltertiegel abfiltriert. Danach fügt man dem Filtrat eine zur Ausgangsverbingung äquimolare Menge Schwefelsäure (97prozentig) oder die zweifachmolare Menge Salzsäure (36prozentig) zu.

b) Allgemeine Vorschrift, Verfahren (2):

Eine in den folgenden Herstellungsbeispielen angegebene Menge einer Verbindung der allgemeinen Formel (III) wird in einem Hydrierkolben mit einer äquimolaren Menge 97prozentiger Schwefelsäure, 2 Spatelspitzen Palladium/Aktivkohle-Katalysator (10 Gewichtsprozent Palladium) und der jeweils angegebenen Menge Wasser bei Raumtemperatur unter Wasserstoffatmosphäre (Normaldruck) über den in den nachfolgenden Herstellungsbeispielen angegebenen Zeitraum geschüttelt. Der Reaktionsverlauf wird mittels Dünnschichtchromatographie kontrolliert. Nach vollständiger Umsetzung des Eduktes wird das Reak-

tionsgemisch über einen Glasfiltertiegel abfiltriert. Nach dem Abdestillieren des Lösungsmittels wird das Produkt aus Ethanol kristallisiert.

Herstellungsbeispiel 19: 4-Amino-1-methyl-5-methylaminopyrazol

0,5 g (2,13 mmol) 3-Brom-1-methyl-5-methylamino-4-nitro-pyrazol werden in einer Lösung von 220 mg (2,13 mmol) Schwefelsäure in 20 ml Wasser, nach Zugabe des Katalysators, 14 Stunden lang, wie in Verfahren (2) beschrieben, hydriert. Nach dem Abfiltrieren des Katalysators engt man das Filtrat bis zur Trockene ein und kristallisiert den Rückstand aus Ethanol um. Man erhält 370 mg (78 Prozent der Theorie) 4-Amino-1-methyl-5-methylaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 185 bis 188 °C.

1H-NMR (60 MHz, DMSO-d6): = 8,53 (s; breit; 5H, -NH2;
-NH; H2SO4; mit D2O austausch-bar), 7,30 (s; 1H;
Ring-H 3,58 (s; 3H; N-CH3)
und 2,80 ppm (s; 3H;
-NH-CH3).

MS (70 eV): $m/e = 126 (M^+)$.

Herstellungsbeispiel 20: 4-Amino-5-(2'-hydroxyethyl)amino-1-methylpyrazol

1 g (3,77 mmol) 3-Brom-5-(2'-hydroxyethyl)amino-1-me-thyl-4-nitropyrazol werden in einer Lösung von 380 mg (3,77 mmol) Schwefelsäure in 50 ml Wasser 2 Stunden lang nach Verfahren (2) hydriert. Man erhält 720 mg (75 Prozent der Theorie) 4-Amino-5-(2'-hydroxyethyl)amino-1-me-

WO 94/08969 PCT/EP93/02644

27

thylpyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 94 bis 97 °C.

MS (70 eV): $m/e = 156 (M^+)$.

Herstellungsbeispiel 21: 4,5-Diamino-1-methylpyrazol

- a) 0,5 g (1,81 mmol) 3-Brom-5-tert-butylamino-1-methyl-4-nitropyrazol werden in einer Lösung von 1,84
 mg (1,81 mmol) Schwefelsäure in 20 ml Wasser, nach
 Zugabe des Katalysators, 48 Stunden lang nach Verfahren (2) hydriert. Man erhält, nach Abdestillieren
 des Lösungsmittels auf die Hälfte der ursprünglichen
 Menge und Zugabe einer äquivalenten Menge Ethanol,
 360 mg (87 Prozent der Theorie) 4,5-Diamino-1-methylpyrazol-hydrosulfat-hydrat in Form von weißen
 Kristallen mit einem Schmelzpunkt von 200 bis
 201 °C.
- b) 0,5 g (1,61 mmol) 5-Benzylamino-3-brom-1-methyl4-nitropyrazol werden in einer Lösung von 165 mg (161
 mmol) Schwefelsäure in 20 ml Wasser, nach Zugabe des
 Katalysators, 48 Stunden lang, wie im Verfahren (2)
 beschrieben, hydriert. Anschließend filtriert man
 den Katalysator ab und engt das Filtrat auf ca. 2 ml
 ein. Nach Zugabe von wenig Ethanol (ca. 2 ml) scheidet sich das Produkt in Form weißer Kristalle ab.
 Man erhält 330 mg (90 Prozent der Theorie) 4,5-Dia-

mino-1-methylpyrazol-hydrosulfat-hydrat in Form von weißen Kristallen mit einem Schmelzpunkt von 200 bis 201 °C.

Herstellungsbeispiel 22: 4,5-Diamino-1-ethylpyrazol

1,62 g (5,6 mmol) 3-Benzylamino-3-brom-1-ethyl-4-nitro-pyrazol werden über einen Zeitraum von 2 Stunden nach Vorschrift (1) hydriert. Nach Abfiltrieren des Katalysators fällt man durch Zugabe von 1 ml (11,6 mmol) konzentrierter Salzsäure (36prozentig) das Produkt als Dihydrochlorid aus. Man erhält 0,8 g (72 Prozent der Theorie) 4,5-Diamino-1-ethylpyrazol-dihydrochlorid in Form farbloser Kristalle mit einem Schmelzpunkt von 184 bis 186 °C.

Herstellungsbeispiel 23: 4,5-Diamino-1-isopropylpyrazol

0,5 g (1,6 mmol) 1-Benzylamino-3-brom-1-isopropyl-4-ni-tropyrazol werden 2 Stunden lang nach Vorschrift (1) hydriert. Nach Abfiltrieren des Katalysators wird das Produkt mit 0,3 ml (3,5 mmol) konzentrierter Salzsäure als Dihydrochlorid ausgefällt. Man erhält 0,25 g (73 Prozent der Theorie) 4,5-Diamino-1-isopropylpyrazoldihydrochlorid in Form farbloser Kristalle mit einem Schmelzpunkt von 164 °C.

Herstellungsbeispiel 24: 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)aminopyrazol

0,8 g (2,7 mmol) 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydro-xyethyl)amino-4-nitropyrazol werden nach Vorschrift (1) 4 Stunden lang hydriert. Nach Abfiltrieren des Katalysators fügt man 0,27 g (2,7 mmol) Schwefelsäure (97prozentig) zu. Nach Abkühlen auf - 30 °C erhält man 630 mg (82 Prozent der Theorie) 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)aminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 140 bis 142 °C.

1H-NMR (60 MHz, DMSO-d6): = 10,18 (s; breit; 7H;-NH;
-NH2; -OH; H2SO4; mit D2O
austauschbar), 7,37 (s; 1H;
Ring-H), 4,00 (m; 2H;
-CH2-), 3,53
(m; breit; 4H; -CH2-) und
3,13 ppm (m; 2H; -CH2-).
MS (70 eV): m/e = 186 (M+).

Herstellungsbeispiel 25: 4-Amino-1-(2'-hydroxyethyl)-5methylaminopyrazol

2,65 g (10 mmol) 3-Brom-1-(2'-hydroxyethyl)-5-methylami-no-4-nitropyrazol werden 4 Stunden lang nach Vorschrift (1) hydriert. Nach Zugabe von 1 g (10 mmol) Schwefel-säure und 10 ml Isopropanol scheidet sich das Produkt ab. Man erhält 1 g (40 Prozent der Theorie) 4-Amino-1-(2'-hydroxyethyl)-5-methylaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 138 bis 140 °C.

1,7 g (5 mmol) 5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitropyrazol werden 4 Stunden lang nach Vorschrift (1) hydriert. Nach Zugabe von 0,5 g (5 mmol) Schwefelsäure erhält man 0,8 g (62 Prozent der Theorie) 4,5-Diamino-1-(2'-hydroxyethyl)pyrazol-hydrosulfat-hydrat in Form farbloser Kristalle mit einem Schmelzpunkt von 158 bis 160 °C.

Herstellungsbeispiel 27: 4-Amino-(3)5-methylaminopyrazol

1 g (2,9 mmol) 1-Benzyl-3-brom-5-methylamino-4-nitro-pyrazol werden in einer Lösung von 0,29 g (2,9 mmol) Schwefelsäure in 50 ml Wasser gemäß Vorschrift (2) über einen Zeitraum von 8 Stunden hydriert. Nach Abfiltrieren des Katalysators und Zugabe von 50 ml Ethanol wird das Filtrat auf 30 ml eingeengt und auf - 30 °C abgekühlt. Man erhält 244 mg (40 % der Theorie) 4-Amino-(3)5-methylaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 182 °C.

Herstellungsbeispiel 28: 4-Amino-(3)5-ethylaminopyrazol

0,5 g (1,31 mmol) 1-Benzyl-3-Brom-5-ethylamino-4-nitropyrazol werden in einer Lösung von 130 mg (1,31 mmol) Schwefelsäure in 50 ml Wasser gemäß Vorschrift (2) über einen Zeitraum von 8 Stunden hydriert. Nach Abfiltrieren WO 94/08969 PCT/EP93/02644

32

des Katalysators wird das Filtrat auf 10 ml eingeengt. Anschließend gibt man 10 ml Ethanol hinzu, woraufhin das Produkt in Form farbloser Kristalle, mit einem Schmelzpunkt von 188 °C, auskristallisiert. Man erhält 0,1 g (34 Prozent der Theorie) 4-Amino-(3)5-ethylaminopyrazol-hydrosulfat.

MS (70 eV): m/e = 126 (M^+) .

Herstellungsbeispiel 29: 4-Amino-(3)5-(2'-hydroxyethyl) aminopyrazol

1 g (2,9 mmol) 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol werden in einer Lösung von 0,29 g (2,9 mmol) Schwefelsäure und 50 ml Wasser über einen Zeitraum von 3 Stunden gemäß Vorschrift (2) hydriert. Nach Abfiltrieren des Katalysators wird das Lösungsmittel im Vakuum abdestilliert. Das dabei auskristallisierte Produkt wird mit wenig (20 ml) Ethanol gewaschen und anschließend getrocknet. Man erhält 240 mg (35 Prozent der Theorie) 4-Amino-(3)5-(2'-hydroxyethyl)aminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 185 °C.

MS (70 eV): M7e - 142 (M):

Herstellungsbeispiel 30: 4,(3)5-Diaminopyrazol

1 g (2,4 mmol) 1-Benzyl-5-benzylamino-3-brom-4-nitro-pyrazol werden in einer Lösung von 0,25 g (2,4 mmol) Schwefelsäure und 50 ml Wasser über einen Zeitraum von 4 Stunden gemäß Vorschrift (2) hydriert. Nach Abfiltrieren des Katalysators fügt man dem Filtrat 50 ml Ethanol zu und kühlt auf - 30 °C ab. Man erhält 184 mg (39 Prozent der Theorie) 4,(3)5-Diaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 240 °C (Zersetzung).

Verwendungsbeispiel:

50 g des vorstehenden Haarfärbemittels werden unmittelbar vor Gebrauch mit 50 g Wasserstoffperoxidlösung (6-prozentig) gemischt. Das Gemisch wird anschließend auf blonde Naturhaare aufgetragen und 30 Minuten lang bei einer Temperatur von 40 °C einwirken gelassen. Das Haar wird anschließend mit Wasser gespült und getrocknet. Das Haar ist in einem modischen Purpurton gefärbt.

Patentansprüche

1) Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten den allgemeinen Formel (I)

$$NH_{2}$$

$$NHR_{2}$$

$$R_{1}$$

$$NHR_{2}$$

in der R_1 und R_2 unabhängig voneinander Wasserstoff, einen C_1 - bis C_6 -Alkylrest oder einen C_2 - bis C_4 -Hydroxyalkylrest bedeuten, dadurch gekennzeichnet, daß man

(A) 3,5-Dibrom-4-nitropyrazol mit einem C₁- bis C₆Alkyl-, C₂- bis C₄-Hydroxyalkyl- oder Benzylhalogenid oder einem C₁- bis C₆-Alkyl-, C₂- bis
C₄-Hydroxyalkyl- oder Benzylsulfat zu Verbindungen der allgemeinen Formel (II)

$$\begin{array}{c|c}
Br & NO_2 \\
N & Br \\
R_3 &
\end{array}$$

in der R3 einen C1- bis C6-Alkylrest, einen C2bis C4-Hydroxyalkylrest oder einen Benzylrest bedeutet, umsetzt,

(B) die Verbindungen der allgemeinen Formel (II) mit C₁- bis C₆-Alkyl-, C₂- bis C₄-Hydroxyalkyloder Benzylamin zu Verbindungen der allgemeinen Formel (III)

in der R3 und R4 unabhängig voneinander einen C1- bis C6-Alkylrest, einen C2- bis C4-Hydroxy-alkylrest oder einen Benzylrest bedeuten, in 5-Position substituiert und sodann

(C) die Verbindungen der allgemeinen Formel (III) durch katalytische Hydrierung zu den Verbindungen der allgemeinen Formel (I) reduziert. 2) Verbindungen der allgemeinen Formel (II)

in der R_3 einen C_1 - bis C_6 -Alkylrest, einen C_2 - bis C_4 -Hydroxyalkylrest oder einen Benzylrest bedeutet.

- 3) 3,5-Dibrom-1-methyl-4-nitropyrazol.
- 4) 3,5-Dibrom-1-ethyl-4-nitropyrazol.
- 5) 3,5-Dibrom-1-isopropyl-4-nitropyrazol.
- 6) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol.
- 7) 1-Benzyl-3,5-dibrom-4-nitropyrazol.
- 8) Verbindungen der allgemeinen Formel (III)

in der R3 und R4 unabhängig voneinander einen C1bis C6-Alkylrest, C2- bis C4-Hydroxyalkylrest oder einen Benzylrest bedeuten.

- 9) 3-Brom-1-methyl-5-methylamino-4-nitropyrazol.
- 10) 3-Brom-5-(2'-hydroxyethyl)amino-1-methyl-4-nitropyrazol.
- 11) 3-Brom-5-tertiärbutylamino-1-methyl-4-nitropyrazol.
- 12) 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol.
- 13) 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol.
- 14) 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol.
- 15) 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol.
- 16) 3-Brom-1-(2'-hydroxyethyl)-5-methylamino-4-nitro-pyrazol.
- 17) 5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitro-pyrazol
- 18) 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol.
- 19) 1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol.
- 20) 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitro-pyrazol.
- 21) 1-Benzyl-5-benzylamino-3-brom-4-nitropyrazol.

22) Verbindungen der allgemeinen Formel (V)

in der R_a und R_b Wasserstoff, einen C_1 - bis C_6 -Al-kylrest oder einen C_2 - bis C_4 -Hydroxyalkylrest bedeuten, mit der Maßgabe, daß, wenn R_b Wasserstoff ist, R_a nicht Wasserstoff, Methyl oder 2-Hydroxyethyl ist.

- 23) 4-Amino-1-methyl-5-methylaminopyrazol.
- 24) 4-Amino-5-(2'-hydroxyethyl)amino-1-methylpyrazol.
- 25) 4,5-Diamino-1-ethylpyrazol.
- 26) 4,5-Diamino-1-isopropylpyrazol.
- 27) 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)aminopyrazol.
- 28) 4-Amino-1-(2'-hydroxyethyl)-5-methylaminopyrazol.
- 29) 4-Amino-(3)5-methylaminopyrazol.

- 30) 4-Amino-(3)5-ethylaminopyrazol.
- 31) 4-Amino-(3)5-(2'-hydroxyethyl)aminopyrazol.
- 32) Verwendung einer Verbindung der allgemeinen Formel (V) als Farbstoffvorstufe in Oxidationshaarfärbemitteln.

INTERNATIONAL SEARCH REPORT

International Application No
PCT, ... 93/02644

122A ED . A	FICATION OF SUBJECT MATTER		
ÎPC 5	C07D231/16 C07D231/38 A61K7/13		
According &	o International Patent Classification (IPC) or to both national classific	eation and IPC	
	SEARCHED		
Minimum de IPC 5	ocumentation searched (classification system followed by classification CO7D A61K	n symbols)	
Documentat	tion searched other than minimum documentation to the extent that su	ch documents are included in the fields searched	
Electronic d	tata base consulted during the international search (name of data base	and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages Relevant to claim No.	
A	EP,A,O 295 118 (MAY & BAKER LIMIT December 1988 see page 15; claim 1	ED) 14 8	
A	JOURNAL OF ORGANIC CHEMISTRY. vol. 51, no. 24, 28 November 108 EASTON US pages 4656 - 4660 J. P. H. JUFFERMANS ET AL 'Select thermolysis of bromo-1-nitro-1H-p Formation of 3-nitro-1H- vs. 4-nitro-1H-pyrazoles' cited in the application see table I	ive	
רט ביי	orther documents are listed in the continuation of box C.	Y Patent family members are listed in annex.	
		[A]	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or		T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled	
'P' docu	ment published prior to the international filing date but r than the priority date claimed	in the art. *&* document member of the same patent family	
	the actual completion of the international search 26 November 1993	Date of mailing of the international search report 7. 12. 73	
	d mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Td. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Voyiazoglou, D	

INTERNATIONAL SEARCH REPORT

International Application No
PCT, _. 93/02644

(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT	
stegory * Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
EP,A,O 375 977 (WELLA AKTIENGESELLSCHAFT) 4 July 1990 cited in the application see page 7; claims 1,13	1,8,22,
CHEMICAL ABSTRACTS, vol. 113, no. 24, 10 December 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' see abstract & JP,A,02 172 988 (LION CORP.)	22
CHEMICAL ABSTRACTS, vol. 104, no. 7, 17 February 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4-and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' page 517; cited in the application see abstract & KHIM. GETEROTSIKL. SOEDIN. no. 8, 1985 pages 1090 - 1094	22

INTERNATIONAL SEARCH REPORT

tnation on patent family members

International Application No
PCT, __ 93/02644

Patent document cited in search report	Publication date		t family ber(s)	Publication date
EP-A-0295118	14-12-88	AU-B- AU-A- JP-A- OA-A- US-A-	619469 1755388 63316770 8741 5232940	30-01-92 15-12-88 26-12-88 31-03-89 03-08-93
EP-A-0375977	04-07-90	DE-A- WO-A- US-A-	3843892 9007504 5061289	28-06-90 12-07-90 29-10-91
JP-A-02172988	04-07-90	NONE		

Form PCT/ISA/210 (petent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT, .º 93/02644

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 5 CO7D231/16 CO7D231/38 A61K7/13 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindessprüfstoff (Klassifikationssystem und Klassifikationssymbole) C07D A61K IPK 5 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* 8 EP,A,0 295 118 (MAY & BAKER LIMITED) 14. Dezember 1988 siehe Seite 15; Anspruch 1 2 JOURNAL OF ORGANIC CHEMISTRY. A Bd. 51, Nr. 24, 28. November 1086, EASTON US Seiten 4656 - 4660 J. P. H. JUFFERMANS ET AL 'Selective thermolysis of bromo-1-nitro-1H-pyrazoles. Formation of 3-nitro-1H- vs. 4-nitro-1H-pyrazoles' in der Anmeldung erwähnt siehe Tabelle I -/--Siche Anhang Patentfamilie X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X T Spätere Veröffentlichung, die nach dem internationalen Anmeldedaturn oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der entnehmen * Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dolument, das jedoch erst am oder nach dem internationalen Anmeldedahum veröffendicht worden ist "X" Veröffentichung von besonderer Bedeutung, die beanspruchte Erfind kam allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden **L* Veröffendichung, die gezignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffendichungsdatum einer anderen im Recherchenbericht genamten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindun kann nicht als auf erfinderischer Tätigkeit berühend betrachtet kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "O" Veröffentlichung, die sich auf eine mindliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Amneldedamm, aber nach dem beanspruchten Prioritätsdamm veröffentlicht worden ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche **- 7.** 12. 93 26. November 1993 Bevollmächtigter Bediensteter Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Voviazoglou, D Fax: (+31-70) 340-3016

1

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT, _- 93/02644

4. Juli 1990 in der Anmeldung erwähnt siehe Seite 7; Ansprüche 1,13 CHEMICAL ABSTRACTS, vol. 113, no. 24, 10. Dezember 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' siehe Zusammenfassung & JP,A,02 172 988 (LION CORP.)			PC1,_7 93	702044
A EP,A,O 375 977 (WELLA AKTIENGESELLSCHAFT) 4. Juli 1990 in der Anmeldung erwähnt siehe Seite 7; Ansprüche 1,13 A CHEMICAL ABSTRACTS, vol. 113, no. 24, 10. Dezember 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' siehe Zusammenfassung & JP,A,O2 172 988 (LION CORP.) A CHEMICAL ABSTRACTS, vol. 104, no. 7, 17. Februar 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4- and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' Seite 517; in der Anmeldung erwähnt siehe Zusammenfassung & KHIM. GETEROTSIKL. SOEDIN. Nr. 8, 1985				
4. Juli 1990 in der Anmeldung erwähnt siehe Seite 7; Ansprüche 1,13 A CHEMICAL ABSTRACTS, vol. 113, no. 24, 10. Dezember 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' siehe Zusammenfassung & JP,A,02 172 988 (LION CORP.) A CHEMICAL ABSTRACTS, vol. 104, no. 7, 17. Februar 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4- and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' Seite 517; in der Anmeldung erwähnt siehe Zusammenfassung & KHIM. GETEROTSIKL. SOEDIN. Nr. 8, 1985	Kategorie	Bezeichnung der Veroltentrichung, soweit erforderlich unter Angabe der in Betracht kon	nmenden Teile	Betr, Anspruch Nr.
10. Dezember 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' siehe Zusammenfassung & JP,A,02 172 988 (LION CORP.) CHEMICAL ABSTRACTS, vol. 104, no. 7, 17. Februar 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4- and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' Seite 517; in der Anmeldung erwähnt siehe Zusammenfassung & KHIM. GETEROTSIKL. SOEDIN. Nr. 8, 1985	A	4. Juli 1990 in der Anmeldung erwähnt		
17. Februar 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4-and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' Seite 517; in der Anmeldung erwähnt siehe Zusammenfassung & KHIM. GETEROTSIKL. SOEDIN. Nr. 8, 1985	A	10. Dezember 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' siehe Zusammenfassung		22
	A	17. Februar 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4-and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' Seite 517; in der Anmeldung erwähnt siehe Zusammenfassung & KHIM. GETEROTSIKL. SOEDIN. Nr. 8, 1985		22
			٠	
· · · · · · · · · · · · · · · · · · ·				

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung ist zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT, _. 93/02644

Im Recherchenbericht geführtes Patentdokument	Datum der Veröffentlichung 14-12-88	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP-A-0295118		AU-B- AU-A- JP-A- OA-A- US-A-	619469 1755388 63316770 8741 5232940	30-01-92 15-12-88 26-12-88 31-03-89 03-08-93
EP-A-0375977	04-07-90	DE-A- WO-A- US-A-	3843892 9007504 5061289	28-06-90 12-07-90 29-10-91
JP-A-02172988	04-07-90	KEINE		*****