

M. Rizzo A. Frabetti A. Iacovelli R. Aitkaliyev L. Marcosignori

GOAL: Personalized Nudging Contents

1. STORYTELLING

2. PEER COMPARISON

3. FRAMING

8 Different Customer Personas

Incremental Models

SVM 1

2 GAUSSIAN KERNEL

Both analyzed with and without labels (dummy variables) in the training dataset

SVM: Support Vector Machine

- Support Vector
 Machine (SVM) is a
 type of algorithm for classification.
- Aims to obtain the best hyperplane line that divides data into two class in the input space.

SVM (No labels)

SVM (With labels)

FRAMING

PEER COMPARISON

STORYTELLING

Predicted Class

COMPARISON: Y/N labels?

Models with Labels:

→ ADVANTAGES:

Better models (less misclassifications)

→ DISADVANTAGES:

Tendency to recommend nothing rather than to recommend wrongly. Do we prefer that?

GAUSSIAN KERNEL

- SVM algorithm works non-linearly by looking for the hyperplane that is used to calculate the distance between data classes
- Using with dataset with a lot of features

GAUSSIAN KERNEL (No labels)

FRAMING

PEER COMPARISON

STORYTELLING

GAUSSIAN KERNEL (With labels)

FRAMING

PEER COMPARISON

Predicted Class

STORYTELLING

Predicted Class

CLASSIFICATION ERRORS

- FRAMING:
 - \circ (0.38892) \rightarrow (0.39003)
- PEER COMPARISON:
 - \circ (0.22923) \rightarrow (0.22878)
- STORY TELLING
 - \circ (0.34405) \rightarrow (0.34425)

The classification error is nearly identical

The confusion matrix are the same

The two models are pretty similar so we take the simplest

GAUSSIAN KERNEL (With labels)

Chunk = 50

Chunk = 150

THE BEST MODEL:

GAUSSIAN KERNEL

Best chunk number: 50 "in medio stat virtus"

Thanks for your attention!

Doubts?

angelica.iacovelli@mail.polimi.it alessandro.frabetti@mail.polimi.it marco4.rizzo@mail.polimi.it lucrezia.marcosignori@mail.polimi.it ramazan.aitkaliyev@mail.polimi.it