感受运动之美

DS 二合一系列驱动 器快速上手指南

V2.0

北京和利时电机技术有限公司

DS 二合一系列驱动器快速上手指南

CANopen 协议速度控制模式

● ★功能说明

该例展示了如何为二合一驱动器的一个轴配置一个 RPDO 和两个 TPDO,其中 RPDO 用于接收主站发送的速度值,用户的主站通过向驱动器发送 RPDO 报文实时更新电机转速;TPDO1 用于向主站上报<mark>电机转速</mark>和码盘位置,TPDO2 用于向主站上报状态字和电机负载率。主站定时下发同步报文,驱动器接到同步报文后向主站发送 TPDO1 和 TPDO2,将电机转速、码盘位置、状态字和电机负载率等信息告知用户主站,具体配置过程如下。

● 关键参数

模式: F0.1.002=20 F1.1.002=20 20 表示 CANOpen 控制模式

站号: Pn.5.006 例如: 301 表示 1#轴站号为 1, 2#轴站号为 3

波特率: Pn.5.007 例如: 500 表示 500kHz

断线保护时间: Pn.5.00B 例如: 5 表示从第一帧报文开始, 每隔 5ms 必须向驱动器发送一帧数据, 否则按 Pn5.00C

动作

断线保护动作: Pn.5.00C 0: 报警 1: 关使能 2: 零速

❷ 激活

发送: 00 00 00 00 01 01

❸ 模式配置

发送: 00 00 06 01 2F 60 60 00 03 00 00 00 注: 03 表示协议速度模式 即 PV 模式

回复: 00 00 05 81 60 60 60 00 03 00 00 00

母 加减速设定

发送: 00 00 06 01 23 83 60 00 E8 03 00 00 注:加速时间对应对象字典 0x6083

回复: 00 00 05 81 60 83 60 00 E8 03 00 00

发送: 00 00 06 01 23 84 60 00 E8 03 00 00 注: 减速时间对应对象字典 0x6084

回复: 00 00 05 81 60 84 60 00 E8 03 00 00

⑤ TPDO1 配置帧: 6069(电机实际转速) /6063(电机码盘位置)

发送: 00 00 06 01 2F 00 1A 00 00 00 00 00

回复: 00 00 05 81 60 00 1A 00 00 00 00

发送: 00 00 06 01 23 00 1A 01 20 00 69 60 注: 实际转速对应对象字典 0x6069

回复: 00 00 05 81 60 00 1A 01 20 00 69 60

发送: 00 00 06 01 23 00 1A 02 20 00 63 60 注: 码盘位置对应对象字典 0x6063

回复: 00 00 05 81 60 00 1A 02 20 00 63 60

发送: 00 00 06 01 2F 00 1A 00 02 00 00 00

回复: 00 00 05 81 60 00 1A 00 02 00 00 00

发送: 00 00 06 01 2F 00 18 02 01 00 00 00

回复: 00 00 05 81 60 00 18 02 01 00 00 00

发送: 00 00 06 01 2F 00 18 03 02 00 00 00

回复: 00 00 05 81 60 00 18 03 02 00 00 00

发送: 00 00 06 01 2F 00 18 05 02 00 00 00

回复: 00 00 05 81 60 00 18 05 02 00 00 00

⑥ TPDO2 配置帧: 0x6041(电机状态字)/0x5002(Dn 02 负载转矩率)

发送: 00 00 06 01 2F 01 1A 00 00 00 00 00

回复: 00 00 05 81 60 01 1A 00 00 00 00 00

发送: 00 00 06 01 23 01 1A 01 10 00 41 60 注: 状态字对应对象字典 0x6041

回复: 00 00 05 81 60 01 1A 01 10 00 41 60

发送: 00 00 06 01 23 01 1A 02 10 00 02 50 注: 负载转矩率对应对象字典 0x5002

回复: 00 00 05 81 60 01 1A 02 10 00 02 50

发送: 00 00 06 01 2F 01 1A 00 02 00 00 00

回复: 00 00 05 81 60 01 1A 00 02 00 00 00

发送: 00 00 06 01 2F 01 18 02 01 00 00 00

回复: 00 00 05 81 60 01 18 02 01 00 00 00

发送: 00 00 06 01 2F 01 18 03 02 00 00 00

回复: 00 00 05 81 60 01 18 03 02 00 00 00

发送: 00 00 06 01 2F 01 18 05 02 00 00 00

回复: 00 00 05 81 60 01 18 05 02 00 00 00

发送: 00 00 06 01 2F 02 16 00 00 00 00 00

回复: 00 00 05 81 60 02 16 00 00 00 00 00

发送: 00 00 06 01 23 02 16 01 10 00 FF 60

回复: 00 00 05 81 60 02 16 01 10 00 FF 60

发送: 00 00 06 01 2F 02 16 00 01 00 00 00

回复: 00 00 05 81 60 02 16 00 01 00 00 00

❸ 同步帧

发送: 00 00 00 80 注: 发送完同步帧,驱动器向主站上报 TPDO1 帧和 TPDO2 帧

⑨ 下发 RPDO3 速度值

发送: 00 00 04 01 64 00 00 00 注: 对象字典 0x6040 单位为: 0.1rpm, 因此实际转速为: 100*0.1=10rpm

● 电机使能

发送: 00 00 06 01 2B 40 60 00 06 00 00 00 注:向对象字典 0x6040 依次写 6、7、F 则驱动器使能

回复: 00 00 05 81 60 40 60 00 06 00 00 00

发送: 00 00 06 01 2B 40 60 00 07 00 00 00

回复: 00 00 05 81 60 40 60 00 07 00 00 00

发送: 00 00 06 01 2B 40 60 00 0F 00 00 00

回复: 00 00 05 81 60 40 60 00 0F 00 00 00

RS232/RS485 串口双读/双写指令

● 关键参数

模式: F0.1.002=1 F1.1.002=1 1表示 "内部速度" 控制模式

站号: Pn.5.000 (RS232) Pn.5.003 (RS485) 1 表示站号为 1

波特率: Pn.5.001 (RS232) Pn.5.003 (RS485) 设定值定义如下:

0	1	2	3	4	5	6
2400bps	9600bps	19200bps	38400bps	57600bps	115200bps	512000bps

❷ 同时读取两个不同地址的数据

主控发送指令格式:

站 号	命令字	地址 1 (高)	地址 1 (低)	地址 2 (高)	地址 2 (低)	CRC	CRC
0x01	0x43	0x23	0x18	0x33	0x18	0xDB	0x7C

驱动器返回指令格式:

社 是	站号 命令字	地址 1	地址 1	地址 2	地址 2	值1	值1	值 2	值2	CRC	CRC
<u> </u>	(高)	(低)	(高)	(低)	(高)	(低)	(高)	(低)	CKC	CIC	
0x01	0x43	0x23	0x18	0x33	0x18	0x00	0x00	0x00	0x00	0xFB	0x3C

常用指令汇总:

◆ 读取两轴速度 (单位: rpm)

发送: 01 43 50 00 51 00 68 95 注: 1#轴电机转速地址 0x5000, 2#轴电机转速地址 0x5100

回复: 01 43 50 00 51 00 00 64 FF 9C 0C 0A 注: 1#轴速度值为 0x0064 (100rpm), 2#轴速度值为 0xFF9C (-100rpm)

◆ 读取两轴负载率

发送: 01 43 50 02 51 02 48 94 注: 1#轴电机负载率地址 0x5002, 2#轴电机负载率地址 0x5102

回复: 01 43 50 02 51 02 00 64 00 64 16 78 注: 1#轴负载率值为 0x0064, 2#轴负载率值为 0x0064 (额定电流的 10%)

注: 该参数表示负载率的千分数,值 100 表示当前负载率为额定电流的 10%。

◆ 读取两轴码盘值

发送: 01 43 50 04 51 04 28 97 注: 1#轴电机编码器反馈数据地址 0x5004, 2#轴电机编码器反馈数据地址

0x5104

回复: 01 43 50 04 51 04 13 88 07 D0 3F 4E 注: 1#轴电机编码器反馈值为 0x1388, 2#轴电机编码器反馈值为 0x07D0

❸ 同时写入两个不同地址数据

主控发送指令格式:

	站 号	命令字	地址 1	地址 1	地址 2	地址 2	值 1	值 1	值 2	值 2	CRC	CRC
Ī	0x01	0x44	0x23	0x18	0x33	0x18	0x00	0x64	0xFF	0x9C	0xDD	0x4A

注: 1#轴电机给定转速 0x0064 (100rpm), 2#轴电机给定转速 0xFF9C (-100rpm)。

驱动器返回指令格式:

站 号	命令	地址 1	地址 1	地址 2	地址 2	值1	值1	值 2	值 2	CRC	CRC
	字	(高)	(低)	(高)	(低)	(高)	(低)	(高)	(低)	Cite	Cite
0x01	0x44	0x23	0x18	0x33	0x18	0x00	0x64	0xFF	0x9C	0xDD	0x4A

常用指令汇总:

◆ 写两轴速度 (单位: rpm)

 发送: 01 44 23 18 33 18 00 64 00 32 1D 06
 注: 1#轴转速给定值 0x0064 (100rpm), 2#轴转速给定值

 0x0032 (50rpm)

回复: 01 44 23 18 33 18 00 64 00 32 1D 06

◆ 写两轴使能

发送: 01 44 21 00 31 00 **00 01 00 01** 75 34

回复: 01 44 21 00 31 00 00 01 00 01 75 34

◆ 写两轴失能

发送: 01 44 21 00 31 00 00 00 00 00 E5 34

回复: 01 44 21 00 31 00 00 00 00 00 E5 34

RS232/485 差速协议

● 关键参数

模式: F0.1.002=1 F1.1.002=1 1表示 "内部速度" 控制模式

站号: Pn.5.000 (RS232) Pn.5.003 (RS485) 1 表示站号为 1

波特率: Pn.5.001 (RS232) Pn.5.004 (RS485) 设定值定义如下:

0	1	2	3	4	5	6
2400bps	9600bps	19200bps	38400bps	57600bps	115200bps	512000bps

小车轮径 (mm): Pn6.00A

小车轮距 (mm): Pn6.00B

小车左右轮定义: Pn6.00C

❷ 同时读取两个不同地址

主控发送指令格式:

站号	命令字	小车线速度指	令 (mm/s)	小车角速度指	小车角速度指令 (mrad/s)		CRC
0x01	0xEA	0x64 (低)	0x00 (高)	0x02 (低)	0x00 (高)	0x06	0x4D

注:指令要求小车以 100mm/s 线速度, 2mrad/s 的角速度行驶。

驱动器返回指令格式:

站 号	命令字	小车实际线速度(mm/s)		小车实际角速	度 (mrad/s)	CRC	CRC
0x01	0xEA	0x5E (低)	0x00 (高)	0x01 (低)	0x00 (高)	0x0A	0x65

注 1: 小车实际线速度为 94mm/s, 实际角速度为 1mrad/s。

注 2: 驱动器收到主控指令数据后立即返回,主控不发送指令数据驱动器不会自动上传。

CAN 总线双读/双写指令

● 关键参数

模式: F0.1.002=1 F1.1.002=1 1 表示内部速度控制模式

注: 若控制模式为 CANopen 模式,即 F0.1.002=20、F1.1.002=20,则无法通过双写指令"0xE9"更新两轴电机

转速等

站号: Pn.5.006 例如: 301 表示 1#轴站号为 1, 2#轴站号为 3

波特率: Pn.5.007 例如: 500 表示 500kHz 1000 表示 1MHz

❷ 同时读取两个不同地址的数据

主控发送指令格式:

COB-ID	命令字	地址 (低)	地址 (高)	子索引	保留	保留	保留	保留
0x601	0xE8	0x04	0x50	0x00	0x00	0x00	0x00	0x00

注: CAN 总线双读功能地址填入 1#轴的地址即可,另一个地址默认为对应的 2#轴的地址。例如:填入 0x5000,

另一个地址默认为 0x5100;填入 0x5002,另一个地址默认为 0x5102。

驱动器返回指令格式:

COB-ID	命令字	地址 1	地址 1	子索引	数据 1	数据 1	数据 2	数据 2
COR-ID	mb 소구	(低)			(低)	(高)	(低)	(高)
0x581	0xE8	0x04	0x50	0x00	0xB7	0x13	0xAB	0x12

常用指令汇总:

◆ 读取两轴速度 (单位: rpm)

0x5100

回复: 00 00 05 81 E8 00 50 00 64 00 9C FF 注: 1#轴实际速度为 0x0064 (100rpm), 2#轴实际速度为

0xFF9C (-100rpm)

◆ 读取两轴负载率

发送: 00 00 06 01 E8 02 50 00 00 00 00 注:1#轴电机负载率地址 0x5002,2#轴电机负载率地址 0x5102

回复: 00 00 05 81 E8 02 50 00 64 00 64 00 注: 1#轴负载率为 0x0064, 2#轴负载率为 0x0064 (额定

注: 该参数表示负载率的千分数,值 100 表示当前负载率为额定电流的 10%。

❸ 同时写入两个不同地址数据

主控发送指令格式:

COB-ID	命令字	地址 (低)	地址 (高)	子索引	保留	保留	保留	保留
0x601	0xE9	0x18	0x23	0x00	0x36	0x00	0xCA	0xFF

注: CAN 总线双写功能地址填入 1#轴的地址即可,另一个地址默认为对应的 2#轴的地址。例如:填入 0x2318 (1#轴内部速度设定值),另一个地址默认为 0x3318 (2#轴内部速度设定值)。

驱动器返回指令格式:

COB-ID	命令字	地址 1	地址 1	フ赤さ	数据 1	数据 1	数据 2	数据 2
		(低)	(高)	子索引	(低)	(高)	(低)	(高)
0x581	0x60	0x18	0x23	0x00	0x36	0x00	0xCA	0xFF

常用指令汇总:

◆ 写两轴速度 (单位: rpm)

发送: 00 00 06 01 E9 18 23 00 64 00 9C FF 注: 1#轴电机转速设定地址 0x2318

回复: 00 00 05 81 60 18 23 00 64 00 9C FF 注: 1#轴速度为 0x0064 (100rpm), 2#轴速度为 0xFF9C

(-100rpm)

◆ 写两轴使能

发送: 00 00 06 01 E9 00 21 00 01 00 01 00 注: 1#轴电机使能地址 0x2100

回复: 00 00 05 81 60 00 21 00 01 00 01 00 注: 写 1 使能

◆ 写两轴失能

发送: 00 00 06 01 E9 00 21 00 00 00 00 注: 1#轴电机使能地址 0x2100

CAN 差速协议

● ★功能说明

用户仅需下发简单的"速度(mm/s)"和"角速度(mrad/s)"指令,驱动器根据用户设定的轮径和轮距参数,利用数学模型自主规划两轮的转速,实现对小车行进轨迹的准确控制。

● 关键参数

模式: F0.1.002=1 F1.1.002=1 1 表示内部速度控制模式

站号: Pn.5.006 例如: 301 表示 1#轴站号为 1, 2#轴站号为 3

波特率: Pn.5.007 例如: 500 表示 500kHz 1000 表示 1MHz

差速自动上报: Pn5.00D 0: 不上报 1: 上报

小车轮径 (0.1mm): Pn6.00A

小车轮距 (0.1mm): Pn6.00B

小车左右轮定义: Pn6.00C 设为 0 或者 1 可改变两个电机的左右定义

主控发送指令格式:

COB-ID	命令字	保留	保留	保留	小车线速度指令 (mm/s)			N车角速度指令 (mrad/s)	
							(11116	au/s)	
0x601	0xEA	0x00	0x00	0x00	0x01 (低)	0x06 (高)	0x00 (低)	0x00 (高)	

注:指令要求小车以 1537mm/s 线速度, 0mrad/s 的角速度行驶。

驱动器返回指令格式:

COB-ID	命令字	3-ID 命令字 保留 保留 保	保留	保留保留		小车实际	小车实际线速度		小车实际角速度	
662.15	, A 44	八田	八田	八田	(mr	n/s)	(mra	nd/s)		
0x181	0xEA	0x00	0x00	0x00	0xB7	0x02	0x03	0x00		

注 1: 小车实际线速度为 695mm/s, 实际角速度为 3mrad/s。

注 2: 如果参数 Pn5.00D 为 1,则驱动器收到主控指令后立即上报小车差速信息,主控不发送指令数据驱动器不会自动上传,如果 Pn5.00D 为 0,则不管主控发不发指令,驱动器都不会上报小车差速信息。

通讯报警清除

● ★功能说明

"通讯报警清除"功能的目的是使用户的上位机或主控系统在驱动器出现报警时,通过下发通讯指令的方式来 清除驱动器产生的报警。当驱动器产生报警时,参数 Pn6.002 为 1。

如果报警仅为偶发报警,一般来说通过报警清除操作可以使驱动器恢复初始上电时的状态。如果导致驱动器报警的客观条件暂未恢复正常,则报警清除操作后驱动器仍将处于报警状态。

● 关键参数

Pn6.002: 报警清除寄存器 报警时该参数为 1, 写 0 则清除报警

❷ CAN 总线 CANopen 协议下操作指令

主控发送指令格式:

COB-ID	命令字	地址 (低)	地址 (高)	子索引	数值 (低)	数值 (高)	保留	保留
0x601	0x2B	0x02	0x46	0x00	0x00	0x00	0x00	0x00

注:参数 Pn6.002 的地址为 0x4602,报警后该参数值为 1,通过写入 0 值来清除报警。

❸ 串行总线 Modbus 协议下操作指令

主控发送指令格式:

站号	命令字	地址 (高)	地址 (低)	数值 (高)	数值 (低)	CRC	CRC
0x01	0x06	0x46	0x02	0x00	0x00	0x3D	0x42

注:参数 Pn6.002 的地址为 0x4602,报警后该参数值为 1,通过写入 0 值来清除报警。

驱动器软复位功能

● ★功能说明

"驱动器软复位"功能的目的是使用户的上位机或主控系统在驱动器出现报警时,通过下发"复位"指令的方式来清除驱动器产生的报警。

如果报警仅为偶发报警,一般来说通过"复位"操作可以使驱动器恢复初始上电时的状态。如果导致驱动器报警的客观条件暂未恢复正常,则"复位"操作后驱动器仍将处于报警状态。

● 关键参数

Pn6.003: 驱动器软复位寄存器 写入值 1 则驱动器复位

❷ CAN 总线 CANopen 协议下操作指令

主控发送指令格式:

COB-ID	命令字	地址 (低)	地址 (高)	子索引	数值 (低)	数值 (高)	保留	保留
0x601	0x2B	0x03	0x46	0x00	0x01	0x00	00x0	00x0

注:参数 Pn6.003 的地址为 0x4603,写入值 1 后驱动器马上执行复位操作。

❸ 串行总线 Modbus 协议下操作指令

主控发送指令格式:

站号	命令字	地址 (高)	地址 (低)	数值 (高)	数值 (低)	CRC	CRC
0x01	0x06	0x46	0x03	0x00	0x01	0xAD	0x42

温度传感功能:

温度功能开关参数: Pn5.009 千位, 0: 关闭该功能 1: 打开该功能

Fx.1_1B: 温度设定阈值 单位: ℃

Fx.1_1C: 上拉电源电压 单位: 0.01V

报警代码对照表

驱动器面板显示	含义
ERX_01	编码器故障 ABZ 报警
ERX_02	编码器故障 UVW 报警
ERX_03	位置超差
ERX_04	失速
ERX_05	电流采样 (中点) 故障
ERX_06	过载
ERX_07	欠压
ERX_08	过压
ERX_09	过流
ERX_0A	放电报警瞬时功率大
ERX_0b	放电回路频繁动作平均功率大
ERX_0c	保留
ERX_0d	输入口功能定义重复
ERX_0E	CAN 通讯断线报警
ERX_0F	轮毂伺服电机温度过温