Calibration for probabilistic classification Nick

Overview

The problem

some classifiers produce well-calibrated probabilities

- discriminant analysis
- ▶ logistic regression

others don't

- naive bayes
- SVMs
- anything with boosting
- tree methods
- sometimes neural networks

First of all, who cares?

- 1. people with asymmetric misclassification costs
- 2. people who are going to use the scores in post-processing
- 3. people who want to compare model outputs on a fair basis

Definitions: "classification"

in general, a classifier is a mapping function f such that

$$f: \vec{x} \mapsto c$$

where $\vec{x} \in \mathbb{R}^P$, but we're mostly interested in the intermediate step in where the function produces some membership score s_i for each instance \vec{x}_i

Definitions: "well-calibrated"

- for a model f and score s_i to be well-calibrated for class c_i , the empirical probability of a correct classification $P(c_i|f(c_i|x_i)=s_i)$ must converge to $f(c_i|x_i)=s_i$
- **example**: when $s_i = 0.9$, the probability of a correct classification should converge to $P(c_i|s_i = 0.9) = 0.9$. Otherwise, this isn't *really* a 'probability.'

Definitions: "calibration"

the calibration process is a separate mapping such that

$$g: s_i \mapsto P(c_i|s_i)$$

it's really important to note that we're fitting another model on top of our model output, where your feature matrix is just the vector of probability scores \vec{s} and the target variable is the vector of true class labels $\vec{y} \in \{0,1\}$

Common methods

Platt scaling

Pass s_i through the sigmoid

$$P(c_i|s_i) = \frac{1}{1 + \exp(As_i + B)}$$

where A and B are the solution to

$$\operatorname*{argmax}_{A,B} - \sum_{i} y_{i} \log(p_{i}) + (1 - y_{i}) \log(1 - p_{i})$$

Isotonic regression

A strictly-nondecreasing piecewise linear function m, where

$$y_i = m(s_i) + \epsilon$$

fit such that

$$\hat{m} = \operatorname{argmin}_{z} \sum_{i} y_{i} - z(s_{i})^{2}$$

- if we view the task of probabilistic classification as a vector-valued function, we can visualize the co-domain of this task as assigning the location of a prediction in a regular (unit) simplex. Δ^{K-1}
- why is this hard when K > 2?

Probabilistic classification as a simplex

trivial with Δ^1 because we're only concerned with one unknown value and its complement. With $\Delta^{K>2}$ the simplex becomes a triangle, tetrahedron, five-cell, etc.

Multi-class probability estimation

Figure 1: classification problem with k = 4

Strategy: decompose into separate binary classification problems

- one vs. all
- all pairs

One vs. all

Figure 2: one vs. all reduces to k-1 calibrations

All pairs

Figure 3: all pairs reduces to $\binom{K}{2}$ calibrations

Experimental results

Conclusion

Conclusion

References