Spéciales $\mathrm{MP^*}-22/23$ – Préparation à l'oral Exercices posés à l'oral des Mines en 2022

Algèbre générale

- **1. a.** Soit $a \in \mathbb{N}^*$, $a \ge 2$. On suppose trouvé $m \in \mathbb{N}^*$ tel que $a^m + 1$ soit premier. Montrer que a est pair, et que m est une puissance de 2.
 - **b.** Pour tout $n \in \mathbb{N}$, on pose $F_n = 2^{2^n} + 1$. Montrer que $\forall n \in \mathbb{N}^*$ $F_n = 2 + \prod_{k=0}^{n-1} F_k$.
 - c. Montrer que, si p et q sont deux naturels distincts, alors $F_p \wedge F_q = 1$. En déduire une démonstration du fait que l'ensemble des nombres premiers est infini.
- **2.** Soient G et H deux groupes cycliques, de cardinaux respectifs p et q. Montrer que $G \times H$ est cyclique si et seulement si $p \wedge q = 1$.
- **3.** Soit p un nombre premier; on pose $G_p = \{z \in \mathbb{C}^* \mid \exists k \in \mathbb{N} \mid z^{p^k} = 1 \}.$
 - **a.** Montrer que G_p est un sous-groupe de (\mathbb{C}^*, \times) .
 - **b.** Soit H un sous-groupe de G_p , distinct de G_p et de $\{1\}$. Montrer que H est cyclique.
- **4.** Soit A un anneau commutatif; soit I un idéal de A. On pose $\sqrt{I} = \{a \in A \mid \exists n \in \mathbb{N}^* \mid a^n \in I\}$.
 - a. Montrer que \sqrt{I} est un idéal de A, qui contient I.
 - **b.** Déterminer \sqrt{I} si I est un idéal de \mathbb{Z} .
- 5. Soit $n \in \mathbb{N}^*$. Soit A_n l'ensemble des polynômes P à coefficients entiers, unitaires et de degré n, et dont toutes les racines sont de module 1. Montrer que A_n est fini.
- **6.** Soient $n \ge 2$, $P \in \mathbb{R}[X]$ de degré n, scindé à racines simples, et $\lambda \in \mathbb{R}$. Montrer que $P' + \lambda P$ est scindé à racines simples.
- 7. Soit $(a_1, \ldots, a_n) \in \mathbb{R}^n$; soit $P = \prod_{i=1}^n (X a_i)$. Calculer $\sum_{i=1}^n \frac{1}{P'(a_i)}$ et $\sum_{i=1}^n \frac{1}{a_i P'(a_i)}$ en précisant les conditions d'existence.

Algèbre linéaire élémentaire

- **8.** Soit $n \in \mathbb{N}^*$. On donne 2n réels vérifiant $x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n$.
 - **a.** Soit $P \in \mathbb{R}_{n-1}[X]$ vérifiant $\forall i \in [1, n]$ $\int_{x_i}^{y_i} P(t) dt = 0$. Montrer que P = 0.
 - **b.** Montrer qu'il existe $P \neq 0$ dans $\mathbb{R}_n[X]$ vérifiant $\forall i \in [1, n]$ $\int_{x_i}^{y_i} P(t) dt = 0$.
- **9.** Soit $n \in \mathbb{N}^*$. Soit $F = \{ P \in \mathbb{R}_n[X] \mid \sum_{k=0}^n P^{(k)}(1) = 0 \}$.
 - a. Montrer que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$, et donner sa dimension.
 - **b.** Donner une base de F.
- 10. Soit E un \mathbb{K} -espace vectoriel de dimension finie; soit $u \in \mathcal{L}(E)$.

Montrer que $u^2 = 0$ si et seulement s'il existe un projecteur p de E tel que $p \circ u - u \circ p = u$.

- 11. Soit $n \in \mathbb{N}^*$. Soit V un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. On pose $p = \max\{\operatorname{rg} M ; M \in V\}$, et on suppose $1 . Le but de l'exercice est de démontrer que <math>\dim V \leq np$.
 - **a.** Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$, avec $A \in \mathrm{GL}_p(\mathbb{R})$. Montrer que $\Phi : \begin{pmatrix} X \\ Y \end{pmatrix} \longmapsto Y$ réalise un isomorphisme de Ker M sur $\mathrm{Ker}(D CA^{-1}B)$.

En déduire que rg M = p si et seulement si $D = CA^{-1}B$.

- **b.** Pourquoi peut-on supposer que $\begin{pmatrix} I_p & 0 \\ 0 & 0 \end{pmatrix} \in V$?
- c. On note W l'ensemble des matrices de la forme $\begin{pmatrix} 0 & B \\ B^{\top} & A \end{pmatrix}$, où $A \in \mathcal{M}_{n-p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,n-p}(\mathbb{R})$. Montrer que $V \cap W = \{0\}$. Conclure.

- 12. Soit E un \mathbb{K} -espace vectoriel admettant une base dénombrable $(e_n)_{n\in\mathbb{N}}$. On note u l'endomorphisme de E défini par $\forall n\in\mathbb{N}$ $u(e_n)=e_{n+1}$. Soit $\Phi:\mathcal{L}(E)\longmapsto\mathcal{L}(E),\,v\longmapsto u\circ v-v\circ u$.
 - a. Montrer que Φ est un endomorphisme non injectif de $\mathcal{L}(E)$.
 - **b.** Montrer que Ker Φ est de dimension infinie.
 - **c.** Soient $x \in E$ et $w \in \mathcal{L}(E)$. Montrer qu'il existe $v \in \mathcal{L}(E)$ vérifiant $v(e_0) = x$ et $\Phi(v) = w$.
- 13. Soit $n \in \mathbb{N}^*$. Soit \mathcal{D} l'ensemble des matrices $M = (m_{ij}) \in \mathcal{M}_n(\mathbb{C})$ vérifiant $m_{ij} = 0$ pour tout couple (i,j) tel que i+j est impair.
 - **a.** Montrer que \mathcal{D} est une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$.
 - **b.** Soit $M \in GL_n(\mathbb{C})$. Montrer que $M \in \mathcal{D}$ si et seulement si sa comatrice est dans \mathcal{D} .
- **14.** Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{C})$, vérifiant f(AB) = f(BA) pour tout $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Montrer qu'il existe $\lambda \in \mathbb{C}$ tel que $f = \lambda$ tr.

Réduction des endomorphismes

- **15.** Soit $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ vérifiant $AB = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Montrer que BA est diagonalisable.
- **16.** Pour tout $t \in \mathbb{R}$, on pose $A_t = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & t \end{pmatrix}$.
 - **a.** Montrer que, pour tout $t \in \mathbb{R}$, A_t est diagonalisable. On note a(t), b(t) et c(t) ses valeurs propres, avec $a(t) \leq b(t) \leq c(t)$.
 - **b.** Montrer que a(t) < 0 < b(t) < 2 < c(t).
 - c. Déterminer les limites respectives de a(t), b(t) et c(t) quand t tend vers $+\infty$.
 - **d.** Donner un équivalent simple de c(t) quand t tend vers $+\infty$.
- 17. Soit $A \in GL_n(\mathbb{K})$, soient C_1, \ldots, C_n ses colonnes. On pose $B = (C_2 \ C_3 \ \cdots \ C_n \ 0)$. Montrer que $A^{-1}B$ et BA^{-1} sont de rang n-1, et n'admettent que 0 comme valeur propre.
- **18.** Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} A & A^2 \\ I_n & A \end{pmatrix}$.
 - a. Déterminer le polynôme minimal de B en fonction de celui de A.
 - **b.** Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.
- 19. Soit E l'espace des fonctions de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} . On note D l'endomorphisme de E qui à une fonction associe sa dérivée.
 - Montrer qu'il n'existe aucun endomorphisme $\varphi \in \mathcal{L}(E)$ tel que $\varphi \circ \varphi = D$; on pourra considérer les ensembles $E_{\lambda} = \text{Ker}(D \lambda \text{Id}_{E})$.
- **20.** Soit $n \in \mathbb{N}^*$. Soient A_1, \ldots, A_n des matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$, qui commutent deux à deux. Montrer que $A_n A_{n-1} \cdots A_2 A_1 = 0$.
- **21.** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que A est diagonalisable si et seulement si

$$\forall P \in \mathbb{C}[X] \quad (P(A))^n = 0 \implies P(A) = 0$$

- **22.** Pour quels entiers n existe-t-il $f \in \mathcal{L}(\mathbb{R}^n)$ tel que $f^3 f = \mathrm{Id}_{\mathbb{R}^n}$ et $\mathrm{tr} f \in \mathbb{Q}$?
- 23. Soient E un \mathbb{K} -espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$, et $\lambda \in \operatorname{Sp}(u)$, de multiplicité q. Montrer que dim $E_{\lambda}(u) = q$ si et seulement si $E = E_{\lambda}(u) \oplus \operatorname{Im}(u \lambda \operatorname{Id}_{E})$.
- **24.** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $f : \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C})$, $M \longmapsto AM$.
 - a. Étudier le lien entre l'inversibilité de A et celle de f.
 - **b.** Étudier le lien entre la diagonalisabilité de A et celle de f.
- **25.** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $f : \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C})$, $M \longmapsto AMA^{\top}$.
 - a. Montrer que f est un isomorphisme si et seulement si A est inversible.
 - **b.** Soit $(X_1, \ldots, X_n, Y_1, \ldots, Y_n) \in \mathbb{C}^{2n}$. Montrer que (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) sont des bases de \mathbb{C}^n , si et seulement si $(X_iY_i^\top)_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{C})$.
 - **c.** Montrer que, si A est diagonalisable, alors f l'est aussi.
 - **d.** Soit Y un vecteur propre de A. Montrer que $F = \{XY^\top; X \in \mathbb{C}^n\}$ est stable par f.
 - e. Montrer que, si f est diagonalisable, alors A l'est aussi.

Espaces euclidiens

- **26.** Soit $n \in \mathbb{N}^*$. Soit $\varphi : \mathbb{R}_{n-1}[X] \longrightarrow \mathbb{R}$, $P \longmapsto \sum_{k=0}^n (k^n P(k))^2$. Montrer que φ admet un minimum sur $\mathbb{R}_{n-1}[X]$, et calculer ce minimum.
- 27. Notons \mathbb{E} l'espace vectoriel $\mathcal{C}^{\infty}([0,1],\mathbb{R})$, que l'on munit du produit scalaire $(f,g) \longmapsto \int_0^1 f(t)g(t)dt$. Soit v l'application de \mathbb{E} dans lui-même qui, à toute $f \in \mathbb{E}$, associe sa primitive nulle en 0.
 - **a.** Montrer que v est un endomorphisme de E.
 - **b.** Montrer qu'il existe $w \in \mathcal{L}(E)$ tel que, pour tout couple $(f,g) \in E^2$, $\langle v(f),g \rangle = \langle f,w(g) \rangle$.
 - **c.** Quels sont les valeurs propres et vecteurs propres de $v \circ w$?
- **28.** Soit $E = C^1([0,1], \mathbb{R})$. Pour $(f,g) \in E^2$, on pose $B(f,g) = \int_0^1 [f(t)g(t) + f'(t)g'(t)] dt$. On pose d'autre part $F = \{f \in E \mid f(0) = f(1) = 0\}$ et $G = \{g \in C^2([0,1], \mathbb{R}) \mid g'' = g\}$.
 - a. Montrer que B est un produit scalaire.
 - **b.** Montrer que F et G sont deux sous-espaces vectoriels supplémentaires orthogonaux dans E.
 - **c.** Soit $(a,b) \in \mathbb{R}^2$; soit $E_{a,b} = \{ f \in E \mid f(0) = a \text{ et } f(1) = b \}$. Donner un élément f_0 de $E_{a,b}$, et déterminer le projeté orthogonal de f_0 sur G.
 - **d.** Déterminer inf $\left\{ \int_0^1 \left[f(t)^2 + f'(t)^2 \right] dt; f \in E_{a,b} \right\}$.
- **29.** Soient E un espace euclidien et $f \in \mathcal{L}(E)$. Montrer qu'il existe une base orthonormée de E dont l'image par f est une famille orthogonale.
- **30.** Soit f un endomorphisme autoadjoint défini positif d'un espace euclidien E. Montrer que $\forall x \in E$ (x|f(x)) $(x|f^{-1}(x)) \geqslant ||x||^4$. Cas d'égalité?
- **31.** Soit $n \in \mathbb{N}^*$. Soit $M \in \mathcal{O}_n(\mathbb{R})$, soit M' la matrice obtenue en remplaçant la dernière colonne de M par son opposée. Montrer que l'une au moins des deux matrices M et M' admet -1 pour valeur propre.
- **32.** Soit $A \in \mathcal{M}_n(\mathbb{R})$.
 - a. Montrer que A est antisymétrique si et seulement si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \quad X^{\top}AX = 0.$
 - **b.** Montrer que A est antisymétrique si et seulement si, pour toute matrice $P \in \mathcal{O}_n(\mathbb{R})$, les coefficients diagonaux de $P^{-1}AP$ sont tous nuls.

Espaces vectoriels normés

- **33.** Pour toute fonction $f \in \mathcal{C}^0([0,1],\mathbb{R})$, on pose $||f||_1 = \int_0^1 |f(x)| \, dx$. Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. On pose, pour toute fonction $f \in E$, $N_2(f) = ||f||_1 + ||f'||_1$ et $N_3(f) = |f(0)| + ||f'||_1$.
 - **a.** Montrer que N_2 et N_3 sont des normes.
 - b. Ces deux normes sont-elles équivalentes?
- **34.** Soit E un espace vectoriel normé de dimension finie. On dit qu'un point a est un point d'accumulation pour une partie A si, pour tout r > 0, $B(a,r) \cap (A \setminus \{a\}) \neq \emptyset$.
 - Soit A une partie de E ayant un et un seul point d'accumulation a. Pour tout $n \in \mathbb{N}^*$, on pose $A_n = \{x \in A | n^{-1} \leq ||x a|| \leq n\}$; et on pose $A' = \bigcup_{n \in \mathbb{N}^*} A_n$.
 - **a.** Montrer que chaque partie A_n est finie.
 - **b.** Montrer que $A \cup \{a\} = A' \cup \{a\}$, puis que A est dénombrable.
- **35.** Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. Soit $G_f = \{(x, f(x)); x \in \mathbb{R}\}$ son graphe.
 - a. Montrer que, si f est continue, alors G_f est une partie fermée de \mathbb{R}^2 .
 - b. Montrer que la réciproque est fausse.
 - c. Montrer que, si f est bornée et G_f fermé, alors f est continue.
- **36.** Soit E un \mathbb{K} espace vectoriel normé de dimension finie. Soient $r \in [0,1[$ et (s_n) une suite réelle positive telle que $\sum s_n$ converge. Soit enfin (u_n) une suite de vecteurs de E vérifiant

$$\forall n \in \mathbb{N} \quad ||u_{n+2} - u_{n+1}|| \leq r||u_{n+1} - u_n|| + s_n$$

Montrer que la suite (u_n) converge.

- **37. a.** Soit $P \in \mathbb{R}[X]$, unitaire et de degré n. Montrer que P est scindé sur \mathbb{R} si et seulement si, pour tout $z \in \mathbb{C}, \quad |P(z)| \geqslant |\operatorname{Im} z|^n.$
 - **b.** Montrer que l'ensemble des matrices trigonalisables de $\mathcal{M}_n(\mathbb{R})$ est fermé.
 - c. Déterminer l'adhérence de l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$.
- 38. Soit E un K-espace vectoriel, A une partie de E et f une fonction continue de [0,1] dans E telle que $f(0) \in A \text{ et } f(1) \in E \setminus A.$

Montrer que l'intersection de la frontière de A et de f([0,1]) n'est pas vide.

- **39.** Soient $(E, \| \|)$ un \mathbb{R} -espace vectoriel normé. Soit $u \in \mathcal{L}_c(E)$, vérifiant $\|u\|_{\text{op}} \leqslant 1$. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{1}{n+1} \sum_{k=0}^{n} u^k$.
 - **a.** Pour tout $n \in \mathbb{N}$, calculer $(u \mathrm{Id}_E) \circ v_n$.
 - **b.** Montrer que $Ker(u Id_E)$ et $Im(u Id_E)$ sont en somme directe.
 - **c.** On suppose dans cette question que E est de dimension finie. Montrer que $Ker(u - Id_E)$ et $Im(u - Id_E)$ sont supplémentaires. Étudier la convergence simple de la suite (v_n) , puis sa convergence pour la norme $\| \|_{\text{op}}$.
 - **d.** On suppose désormais que E est de dimension infinie. Montrer que, si $Ker(u-Id_E) \oplus Im(u-Id_E) = E$, alors la suite (v_n) converge simplement, et $\text{Im}(u - \text{Id}_E)$ est fermé.
 - e. Étudier la réciproque.
- **40. a.** Soit G un sous-groupe de $(\mathbb{R},+)$. Montrer que l'on est dans l'un des deux cas suivants :
 - $\label{eq:continuous} \ \triangleright \ \ \text{il existe} \ a \in \mathbb{R}_+^* \ \ \text{tel que} \quad G = a\mathbb{Z} = \left\{pa \ ; \ p \in \mathbb{Z}\right\};$
 - $\triangleright G$ est dense dans \mathbb{R} .
 - **b.** Soit $\theta \in \mathbb{R}$ tel que $\theta/\pi \notin \mathbb{Q}$. Montrer que $\{p\theta + 2q\pi ; (p,q) \in \mathbb{Z}^2\}$ est dense dans \mathbb{Z} .
 - c. Donner les valeurs d'adhérence de la suite $(\cos(n\theta))$.
 - **d.** Donner les valeurs d'adhérence de la suite $(\cos(\sqrt{n}\theta))$.

- **41.** Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{(-1)^k \ln(k)}{k}$; $v_n = \sum_{k=1}^{2n} \frac{\ln(k)}{k}$; $w_n = \sum_{k=1}^n \frac{\ln(2k)}{k}$; $H_n = \sum_{k=1}^n \frac{1}{k}$ et $x_n = \sum_{k=1}^n \frac{1}{n+k}$.
 - a. Montrer que la suite (u_n) converge. On note ℓ sa limite.
 - **b.** Trouver $a \in \mathbb{R}$ tel que $x_n = a + O\left(\frac{1}{n}\right)$.
 - **c.** Exprimer, pour $n \in \mathbb{N}^*$, u_{2n} à l'aide de v_n et w_n .
 - **d.** Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que $H_n = \lim_{n \to +\infty} \ln n + \gamma + o(1)$.
 - e. Exprimer ℓ à l'aide de γ .
- **42.** Soit (b_n) une suite strictement positive, strictement croissante et non majorée.
 - **a.** Soit (a_n) une suite convergente de limite ℓ . Montrer que $\frac{1}{b_n} \sum_{k=0}^{n-1} (b_{k+1} b_k) a_k \longrightarrow \ell$.
 - **b.** On ne fait plus d'hypothèses sur (a_n) . Montrer que $\frac{a_{n+1}-a_n}{b_{n+1}-b_n} \longrightarrow \ell \Longrightarrow \frac{a_n}{b_n} \longrightarrow \ell$.
- **43.** Soient $p \in \mathbb{N}^*$, et f une fonction continue sur \mathbb{R}_+ , à valeurs dans \mathbb{R}_+ .
 - **a.** Pour tout $n \in \mathbb{N}^*$, montrer qu'il existe un et un seul $a_n \in \mathbb{R}_+$ vérifiant $\int_0^{a_n} [f(t)+1]^{1/n} dt = \frac{1}{n^p}$.
 - **b.** Donner un équivalent de a_n quand n tend vers $+\infty$.
- **44.** Donner un équivalent de $u_n = \prod_{n=1}^{\infty} (k^2 + n^2)^{1/n}$.
- **45.** Pour tout $n \in \mathbb{N}^*$, soit $f_n : t \longmapsto nt^{n+1} (n+1)t^n$.

- a. Pour tout $n \in \mathbb{N}^*$, montrer que l'équation $f_n(x) = 1$ admet une seule solution x_n dans \mathbb{R}_+ .
- **b.** Calculer $f\left(1+\frac{2}{n}\right)$. Montrer que (x_n) converge et donner sa limite.
- **c.** Pour tout $n \in \mathbb{N}^*$, on pose $y_n = n(x_n 1)$; soit $h : t \longmapsto (t 1)e^t$. Montrer que $(h(y_n))$ a pour limite 1.
- **d.** Montrer que $x_n = 1 + \frac{a}{n} + o\left(\frac{1}{n}\right)$, où a est la solution de h(x) = 1.
- **46.** Soient P et Q deux polynômes de $\mathbb{K}[X]$ n'admettant aucune racine entière. Déterminer la nature de la série $\sum \ln \left| \frac{P(n)}{Q(n)} \right|$.
- **47. a.** Soit $(p_n)_{n\in\mathbb{N}^*}$ une suite croissante d'entiers telle que $p_1\geqslant 2$. Montrer que $\sum_{n\geqslant 1}\frac{1}{p_1p_2\cdots p_n}$ converge, et que sa somme appartient à]0,1].
 - **b.** Soit $x \in]0,1]$. Montrer qu'il existe une unique suite croissante $(p_n)_{n \in \mathbb{N}^*}$ d'entiers supérieurs ou égaux à 2 tel que $x = \sum_{n=1}^{+\infty} \frac{1}{p_1 p_2 \cdots p_n}$
 - c. Montrer que x est rationnel si, et seulement si, (p_n) est stationnaire.
- **48.** Pour $n \in \mathbb{N}^*$, soit $u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k}$. Étudier la nature de $\sum u_n$.
- 49. Soit $a \in \mathbb{R}$. Soit (u_n) une suite réelle qui ne s'annule pas, vérifiant $\frac{u_{n+1}}{u_n} = -1 + \frac{a}{n} + O\left(\frac{1}{n^2}\right)$. Discuter la convergence de $\sum u_n$ suivant les valeurs de a.

Analyse élémentaire

- **50.** Soit $]a,b[\subset \mathbb{R};$ soit $f\in \mathcal{C}^1(]a,b[,\mathbb{R})$ ayant pour limites $+\infty$ en a^+ et $-\infty$ en b^- , et vérifiant, pour tout $x\in]a,b[,-f'(x)+f(x)^2\geqslant -1.$
 - Montrer que $b-a\geqslant\pi$; donner un exemple pour lequel $b-a=\pi$.
- **51.** Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. Soit $G: x \in]0,1] \longmapsto \frac{1}{x} \int_0^x f(t) dt$.
 - ${\bf a.}\,$ Montrer que G est prolongeable par continuité en $0\,;$ on note toujours G ce prolongement.
 - **b.** Montrer que $\int_0^1 G(t)^2 dt \le 2 \int_0^1 G(t) f(t) dt$.
 - **c.** En déduire que $\int_0^1 G(t)^2 dt \leqslant \int_0^1 f(t)^2 dt$.
- **52.** Soit $f \in C^0([0,1], \mathbb{R})$.
 - **a.** Soit $n \in \mathbb{N}$. On suppose que $\forall k \in [0, n]$ $\int_0^1 t^k f(t) dt = 0$. Montrer que f s'annule au moins n+1 fois sur [0, 1].
 - **b.** On suppose que $\forall k \in \mathbb{N}$ $\int_0^1 t^k f(t) dt = 0$. Montrer que f est la fonction nulle.

Intégration

- **53.** Étudier la convergence de l'intégrale $\int_0^{+\infty} \frac{\sin x \ln x}{x} dx$.
- **54. a.** Soit $\lambda \in \mathbb{R}_+$. Calculer $\int_0^{\pi} \frac{dt}{1 + \lambda \sin^2 t} dt$.
 - **b.** Soit $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. Étudier la convergence de $\int_0^{+\infty} \frac{t^{\beta} dt}{1 + t^{\alpha} \sin^2 t}$.
- **55.** Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$, admettant une limite réelle ℓ en $-\infty$, et telle que $\int_0^{+\infty} f(t) dt$ converge. Soit $(a,b) \in \mathbb{R}^2$; calculer $\int_{-\infty}^{+\infty} \left[f(t+b) f(t+a) \right] dt$.
- **56.** Soit $f \in \mathcal{C}^0([1, +\infty[, \mathbb{R}), \text{ intégrable sur } [1, +\infty[; \text{ soit } \alpha > 0. \text{ Montrer que l'intégrale } \int_1^{+\infty} \frac{f(t)}{t^{\alpha}} dt)$ converge.
- **57. a.** Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{t^3 \sin t}{1 + t^4} dt$.

- **b.** Donner un équivalent quand n tend vers $+\infty$ de $\int_{n\pi}^{+\infty} \frac{t^3 \sin t}{1+t^4} dt$.
- **58.** Soit $f: x \longmapsto \int_x^{+\infty} \frac{\sin t}{t} dt$.
 - a. Montrer que f est définie et de classe C^1 sur \mathbb{R}_+ .
 - **b.** Calculer $\int_0^{+\infty} f(t) dt$.
- **59. a.** Montrer que $\forall \varepsilon > 0$ $\int_{\varepsilon}^{+\infty} \frac{\sin^3 t}{t^2} dt = \frac{3}{4} \int_{\varepsilon}^{3\varepsilon} \frac{\sin t}{t^2} dt$.
 - **b.** En déduire la valeur de $I = \int_0^{+\infty} \frac{\sin^3 t}{t^2} dt$.

Intégrales dépendant d'un paramètre

- **60.** Déterminer un équivalent de $\int_0^{+\infty} \frac{\cos t}{\sqrt{t}} e^{-nt} dt$ quand n tend vers $+\infty$.
- **61.** Déterminer un équivalent de $\int_1^{1+1/n} \sqrt{1+t^n} dt$ quand n tend vers $+\infty$.
- **62.** Déterminer la limite et un équivalent simple en 0^+ de $f(x) = \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$.
- **63.** Soit $\alpha \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{dt}{(1+t^{\alpha})^n}$.
 - **a.** Montrer que I_n est bien définie à partir d'un certain rang $n_0(\alpha)$.
 - **b.** Pour $n \ge n_0(\alpha)$, exprimer I_{n+1} en fonction de I_n .
 - c. Montrer que la suite (I_n) converge et donner sa limite.
 - **d.** Montrer qu'il existe une constante $K(\alpha) > 0$ telle que $I_n \underset{n \to +\infty}{\sim} \frac{K(\alpha)}{n^{1/\alpha}}$.
- **64.** Soit $f: x \in \mathbb{R}_+ \longmapsto \int_0^{+\infty} \frac{\cos t e^{-t}}{t} e^{-xt} dt$.
 - ${\bf a.}$ Étudier la continuité et la dérivabilité de f.
 - **b.** Calculer $\int_0^{+\infty} \frac{\cos t e^{-t}}{t} dt.$
- **65.** Déterminer les valeurs du paramètre réel α pour lesquelles l'intégrale $\int_{1}^{+\infty} \frac{t^{\alpha-1}-1}{t^{2} \ln(t)} dt$ converge. Calculer sa valeur en cas de convergence.

Suites et séries de fonctions

- **66.** Soit $f: x \longmapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$.
 - a. Montrer que f est définie et continue sur \mathbb{R}_+^* , et étudier son sens de variation.
 - **b.** Donner des équivalents simples de f(x) au voisinage de 0 et $+\infty$.
- **67.** Soient $f: x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{\operatorname{sh}(nx)}$ et $g: x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{\operatorname{sh}^2(nx)}$.
 - a. Déterminer les domaines de définitions de f et q.
 - **b.** Donner des équivalents simples de f(x) et g(x) au voisinage de 0^+ .
- **68. a.** Montrer que $h \sum_{n=1}^{+\infty} \frac{1}{1 + e^{nh}} \xrightarrow[h \to 0^+]{} \ln 2.$
 - **b.** En déduire la limite de $(1-t)\sum_{n=1}^{+\infty} \frac{t^n}{1+t^n}$ quand t tend vers 1^- .

Séries entières

- **69.** Soit $\alpha \in]1, +\infty[$. Pour tout $n \in \mathbb{N}^*$, on pose $a_n = \left(\frac{\sin n}{\alpha} + \alpha \sin \frac{1}{n}\right)^n$.
 - **a.** Étudier la convergence de la série $\sum a_n$.
 - **b.** Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1} a_n x^n$.

Équations différentielles

- **70.** Résoudre l'équation différentielle $y'' + 4y' + 4y = \frac{e^{-2t}}{1+t^2}$.
- 71. Soit $n \in \mathbb{N}$. On note E_n l'ensemble des applications f de classe \mathcal{C}^{∞} sur \mathbb{R} telles que $\sum_{k=0}^{n} \binom{n}{k} f^{(k)} = 0$.
 - a. Montrer que E_n est un espace vectoriel, et donner sa dimension.
 - **b.** Donner une base de E_n .
- **72.** Soit $\lambda \in \mathbb{R}_{+}^{*}$. Soit $(E): xy' + \lambda y = \frac{1}{1+x}$.
 - a. Résoudre (E) sur $]0,+\infty[$ à l'aide d'une expression intégrale.
 - **b.** Que peut-on dire des solutions ayant une limite finie en 0^+ ?
 - c. Déterminer les solutions développables en série entière au voisinage de 0.
 - **d.** Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{3n}(3n+1)}.$
- **73.** Soit $f: x \in \mathbb{R} \longmapsto \int_0^{2\pi} e^{x \sin t} dt$.
 - a. Montrer que f est solution de l'équation différentielle (E): xy'' + y' xy = 0.
 - b. Déterminer les solutions de (E) développables en série entière au voisinage de 0.
 - c. En déduire la valeur de $\int_0^{\pi/2} \sin^{2k} t \, dt$ pour $k \in \mathbb{N}^*$.
- 74. a. Déterminer les solutions développables en série entière de $(1+t^2)y'' + 4ty' + 2y = 0$
 - **b.** En déduire les solutions de $(1+t^2)y'' + 4ty' + 2y = \frac{1}{1+t^2}$
- **75.** Soit $T \in \mathbb{R}_+^*$. Soient a et b deux fonctions continues et T-périodiques de \mathbb{R} dans \mathbb{R} ; on suppose de plus $\int_0^T a(t) dt \neq 0$. Soit (E) l'équation différentielle y' + a(t)y = b(t).
 - a. Montrer que (E) admet une et une seule solution T-périodique.
 - **b.** Étudier le comportement asymptotique des solutions de (E).
- **76. a.** Soit f une fonction définie et continue de \mathbb{R}_+ dans \mathbb{R}_+ . Soit $c \in \mathbb{R}_+$; soit $F: x \longmapsto c + \int_0^x f(t) dt$. On suppose que $\forall x \in \mathbb{R}_+$ $xf(x) \leqslant F(x)$.

Étudier les variations de $x \mapsto \frac{F(x)}{x}$; en déduire que f est bornée.

- **b.** Soit g une solution sur \mathbb{R}_+ de l'équation y'' + xy = 0. En s'intéressant à g^2 , montrer que g est bornée.
- 77. Résoudre le système différentiel $\begin{cases} x' = (t+1)x + ty + e^t \\ y' = -tx + (1-t)y e^t \end{cases}$
- 78. Soit M une fonction continue de \mathbb{R} dans $\mathcal{S}_n(\mathbb{R})$, telle que, pour tout $t \in \mathbb{R}$, le spectre de M(t) soit inclus dans \mathbb{R}^* . Montrer que toutes les solutions du système X' = M(t)X ont pour limite 0 en $+\infty$.
- **79.** Soit M une fonction de classe \mathcal{C}^1 de \mathbb{R} dans $\mathrm{SO}_n(\mathbb{R})$. Montrer l'équivalence entre :
 - i. M est un morphisme de groupes de $(\mathbb{R}, +)$ dans $(SO_n(\mathbb{R}), \cdot)$;
 - ii. il existe une matrice $A \in \mathcal{M}_n(\mathbb{R})$, antisymétrique, telle que $\forall t \in \mathbb{R}$ $M(t) = e^{tA}$.

Calcul différentiel

- 80. Soit $f:(x,y)\in\mathbb{R}^2\longmapsto (x^2-y^2)e^{-(x^2+y^2)}$. Montrer que f atteint un minimum et un maximum globaux sur \mathbb{R}^2 ; puis déterminer ces extremums.
- 81. On munit \mathbb{R}^n du produit scalaire canonique et de la norme associée. Soit φ une forme linéaire non nulle sur \mathbb{R}^n ; soit $f: x \longmapsto \varphi(x)e^{-\|x\|^2}$. Déterminer les extremums de f.
- 82. On munit \mathbb{R}^n du produit scalaire canonique.
 - **a.** Soit $a \in \mathbb{R}^n$; soit $\varphi : x \longmapsto (a|x)$. Déterminer le gradient de φ .
 - **b.** Soit $f \in C^0(\mathbb{R}^n, \mathbb{R})$ telle que f(x) tende vers $+\infty$ quand ||x|| tend vers $+\infty$. Montrer que f admet un minimum global.
 - **c.** Soit $g \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ telle que $\frac{f(x)}{\|x\|} \underset{\|x\| \to +\infty}{\longrightarrow} +\infty$. Montrer que $x \longmapsto \nabla f(x)$ est surjective.

Probabilités

83. Soient n et b deux entiers naturels non nuls. On considère une urne contenant n boules noires et b boules blanches. On tire les boules successivement et sans remise. On note X la variable aléatoire qui donne le rang du premier tirage donnant une boule noire.

Déterminer la loi et l'espérance de X.

84. Soit N une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$; soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires indépendantes, suivant toutes la même loi de Bernoulli de paramètre $p \in]0,1[$.

On pose $Y = \sum_{i=0}^{N} X_i$; autrement dit, $\forall \omega \in \Omega \quad Y(\omega) = \sum_{i=0}^{N(\omega)} X_i(\omega)$. Déterminer la loi de Y

85. Soient n > 1 entier et $m \in [1, n]$. Soient X et Y deux variables aléatoires indépendantes suivant la loi uniforme sur [1, n]. On définit la variable aléatoire Z par :

$$Z(\omega) = \begin{cases} X(\omega) & \text{si } Y(\omega) \leqslant m \\ Y(\omega) & \text{sinon} \end{cases}$$

- a. Déterminer la loi de Z; on remarquera que $\{Z=k\}=(\{X=k\}\cap\{Y\leqslant m\})\cup(\{Y=k\}\cap\{Y>m\})$.
- **b.** Calculer les espérances de X, Y et Z.
- c. Déterminer les valeurs de m qui maximisent l'espérance de Z.
- **86.** Soit $n \in \mathbb{N}^*$; soient X_1, \ldots, X_n des variables aléatoires deux à deux indépendantes, suivant la loi de Bernoulli de paramètre $p \in]0,1[$. On pose $S_n = X_1 + \cdots + X_n$.
 - **a.** Déterminer la loi conjointe du couple (X_1, S_n) .
 - **b.** Déterminer la loi conditionnelle de X_1 sachant $(S_n = k)$, où $k \in [0, n]$.
 - **c.** Déterminer la loi conditionnelle de S_n sachant $(X_1 = \varepsilon)$, où $\varepsilon \in \{0, 1\}$.
- 87. Soient a, b et m trois réels vérifiant $a \leq m \leq b$. On considère l'ensemble A des variables aléatoires discrètes X qui vérifient : E(X) = m et $a \leq X \leq b$.

Déterminer le maximum de $E(X^2)$ quand X décrit A.

88. On jette un dé deux fois; soit S la variable donnant la somme des deux résultats. On suppose que S suit la même loi que si le dé est équilibré; montrer que le dé est équilibré.

Indications

- **1. a.** Si m = pq avec q impair, factoriser $(a^p)^q + 1$ par Bernoulli. **b.** Utiliser $F_n = (F_{n-1} 1)^2 + 1$.
- **2.** Si $p \wedge q = 1$, c'est le théorème chinois. Sinon, l'ordre de $a \in G$ divise p, celui de $b \in H$ divise q, donc l'ordre de (a,b) divise...
- **3. b.** Commencer par montrer que H est fini; on notera pour cela que G_p est l'union croissante des \mathbb{U}_{p^k} . En considérant l'ordre des éléments, il est alors facile de montrer que les \mathbb{U}_n sont les seuls sous-groupes finis de \mathbb{C}^* .
- 5. Les relations entre coefficients et racines permettent de borner les coefficients.
- **6.** La fonction $t \mapsto e^{\lambda t}$ s'annule n fois, et a pour limite 0 en $-\infty$ ou $+\infty$.
- 7. Utiliser la formule A(a)/B'(a) pour le coefficient de 1/(X-a) dans la décomposition en éléments simples.
- **8. b.** Considérer les noyaux des formes linéaires $P \longmapsto \int_{x_i}^{y_i} P(t) dt$.
- **9. b.** Poser Q = P(1+X) pour se ramener à une condition sur les coefficients.
- **10.** Pour le sens indirect, montrer que la relation entraı̂ne $p \circ u = u$ et $u \circ p = 0$; cela montre comment choisir p pour le sens direct.
- 11. c. Si $\begin{pmatrix} 0 & B \\ B^{\top} & A \end{pmatrix} \in V$, alors la matrice obtenue en remplaçant le bloc nul par λI_p est aussi dans V, d'où $\lambda A = B^{\top}B$ pour tout λ .
- **12. b.** Ker Φ contient les u^n . **c.** Commencer par déterminer les $v(e_n)$.
- 13. Pour les deux questions, considérer les sous-espaces de \mathbb{C}^n engendrés par les vecteurs de rang pair (respectivement impair) de la base canonique. Pour \mathbf{b} , noter que $\mathrm{Com} M \in \mathcal{D} \Longleftrightarrow M^{-1} \in \mathcal{D}$.
- **14.** Utiliser les E_{ij} .
- 15. Montrer que \overline{AB} et \overline{BA} sont semblables.
- **16. b.** et **c.** Écrire l'équation sous la forme $t = \lambda 1/2\lambda 1/2(\lambda 2)$. Pour b(t), commencer par montrer $b(t) \ge 1$. Pour c(t), montrer $c(t) \ge t$.
- 17. Étudier valeurs et vecteurs propres de $(A^{-1}B)^{\top}$, et se ramener à une équation de la forme $B^{\top}Y = \lambda A^{\top}Y$.
- **20.** Étudier la dimension de l'image de $A_k A_{k-1} \cdots A_1$ par récurrence, en notant que cette image est stable par A_{k+1} .
- **22.** Commencer par montrer que $X^3 X 1$ a une seule racine réelle, et qu'elle n'est pas rationnelle.
- **23.** Avec $v = u \lambda \operatorname{Id}_E$, montrer que $\operatorname{Ker} v \cap \operatorname{Im} v = \{0_E\}$ équivaut à $\operatorname{Ker} v^q = \operatorname{Ker} v$.
- **24.** b. Si $P \in \mathbb{C}[X]$, que vaut P(f)?
- **26.** $\varphi(P)$ est le carré de la distance $||P X^n||$ pour un produit scalaire à préciser.
- 27. c. Commencer par montrer que ces valeurs propres sont strictement positives.
- **29.** Il suffit de trouver une base orthonormée de vecteurs propres pour $f^* \circ f$, qui justement...
- 31. Étudier déterminant et forme réduite des deux matrices.
- **32. a.** Pour le sens indirect, commencer par montrer $Y^{\top}AX = -X^{\top}AY$ pour tout (X,Y), en utilisant X+Y.
- **35. b.** Prendre $x \mapsto 1/x$ prolongée arbitrairement en 0. **c.** Utiliser la caractérisation séquentielle de la limite, et le fait qu'une suite d'un compact qui n'a qu'une seule valeur d'adhérence est forcément convergente.
- **36.** Montrer que $\sum \|u_{n+1} u_n\|$ converge, en majorant son terme général par celui d'un produit de Cauchy.
- **37. a.** Pour le sens direct, factoriser P et minorer chaque $|z a_i|$ par $|\operatorname{Im} z|$. **b.** Montrer que χ_M est une fonction continue de M et utiliser **a**.
- **39.** b. Si x est dans l'intersection, déterminer la limite de $v_n(x)$ de deux manières différentes. d. $\operatorname{Im}(u-\operatorname{Id}_E)$ est le noyau de la projection limite; montrer que cette projection est continue.
- **40. a.** Poser $a = \inf(G \cap \mathbb{R}_+^*)$ sous réserves d'existence, et discuter suivant que a est nul ou non. que $|\cos x \cos y| \leq |x y|$; l'ensemble cherché est [-1, 1]. **d.** La suite contient les $\cos(n\theta)$.
- **42. a.** Écrire $a_n = \ell + o(1)$ et appliquer la sommation des relations de comparaison. **b.** Utiliser **a.** avec une suite (a_n) bien choisie.
- **43.** Utiliser $F_n: x \longmapsto \int_0^x \left[f(t)+1\right]^{1/n} dt$ et sa réciproque.
- **44.** Passer au ln; attention, pour avoir un équivalent en revenant à u_n , il faut un DA de $\ln u_n$ avec un o(1) comme terme d'erreur.
- **48.** Montrer que la série vérifie les hypothèses du théorème des séries alternées, en écrivant en particulier $|u_n| |u_{n+1}|$ comme somme d'une série.
- **49.** Dans les cas a > 0 et a = 0, étudier la série de terme général $\ln(|u_{n+1}|/|u_n|)$ pour avoir la limite de la suite $(|u_n|)$.

- **50.** Considérer $\int_x^y \frac{-f'(t)}{1+f(t)^2} dt.$
- **51. b.** Introduire $F: x \longmapsto \int_0^x f(t) dt$ et intégrer par parties. **c.** Appliquer Cauchy-Schwarz. **52. a.** Raisonner par l'absurde, et considérer $\int_0^1 f(t)P(t) dt$, où P est un polynôme à définir qui change de signe aux mêmes points que f. b. Déjà vu : Weierstrass.
- **53.** Sur $[1, +\infty[$: intégration par parties.
- **b.** Commencer par encadrer l'intégrale sur $[n\pi, (n+1)\pi]$ en utilisant **a**. **54. a.** Poser $u = \tan t$.
- **55.** Transformer $\int_x^y \left[f(t+b) f(t+a) \right] dt$ en $\int_{y+a}^{y+b} f(t) dt \dots$
- **56.** Intégrer par parties, en primitivant f.
- **57. a.** Une intégration par parties. **b.** Deux intégrations par parties. **58. b.** Dans l'expression $\int_0^A f(t) dt$, réaliser autant d'intégrations par parties que nécessaire pour obtenir la limite quand A tend vers $+\infty$.
- **b.** Approcher $\int_{\varepsilon}^{3\varepsilon} \frac{\sin t}{t^2} dt$ par $\int_{\varepsilon}^{3\varepsilon} \frac{1}{t} dt$. **59. a.** Linéariser.
- **60.** Poser u = nt.
- **61.** Poser $u = t^n$.
- **61.** Poser $u = t^{\alpha}$. **62.** Comparer à $\int_0^1 \frac{dt}{x+t}$ en coupant évidemment l'intégrale en deux. **63.** b. Écrire $\frac{1}{(1+t^{\alpha})^{n+1}} = \frac{1+t^{\alpha}-t^{\alpha}}{(1+t^{\alpha})^{n+1}}$ et effectuer une intégration par parties dans le dernier terme.
- **d.** Poser $J_n = n^{1/\alpha} I_n$ et étudier $\sum (\ln J_{n+1} \ln J_n)$.
- **64. a.** Pour la continuité sur \mathbb{R}_+ , intégrer par parties en choisissant la bonne primitive de $\cos t e^{-t}$, et noter que $(1+xt)e^{-xt}$ est borné indépendamment de x et t. Justifier la dérivabilité uniquement sur \mathbb{R}_+^* .
- **65.** Pour calculer l'intégrale, dériver par rapport à α .
- 66. b. En $+\infty$, grouper les termes par 2 et comparer à une intégrale; le groupement marche aussi pour le sens de variation.
- **67. b.** Pour g, comparer à $\sum 1/(nx)^2$. Pour f, comparaison à une intégrale.
- **71. b.** Multiplier par exp.
- 72. b. Donner un équivalent de $\int_0^x \frac{t^{\lambda}}{1+t}$ en utilisant l'intégration des relations de comparaison; une seule solution convient.
- 73. b. Effectuer une intégration par parties dans l'intégrale qui donne f'.
- 75. a. Commencer par montrer qu'une solution est T-périodique si et seulement si y(T)=y(0). 76. b. Étudier les variations de $x\longmapsto xg(x)^2-\int_0^xg(t)^2\,dt$ et montrer que g^2 vérifie les hypothèses du a pour un bon choix de c.
- **77.** Considérer x + y.
- 78. Multiplier l'équation à gauche par $X(t)^{\top}$, en déduire que $t \mapsto \|X(t)\|^2$ vérifie une relation de la forme $y' \leqslant Ky$ où K < 0.
- 79. Pour $\mathbf{i} \Longrightarrow \mathbf{ii}$, poser A = M'(0) et montrer que, pour tout t, M'(t) = AM(t), puis raisonner sur les colonnes de M(t).
- **80.** Montrer que f tend vers 0 quand ||(x,y)|| tend vers $+\infty$.
- 81. Mettre $\varphi(x)$ sous la forme (a|x), puis travailler dans une base bien choisie.
- **82.** c. Pour $a \in \mathbb{R}^n$, montrer que $x \longmapsto f(x) (a|x)$ admet un minimum.
- 87. Pour majorer, écrire que $(X-a)(X-b) \leq 0$. Pour montrer que le majorant est atteint, noter que la variance est maximale quand les valeurs de X sont concentrées aux bornes de l'intervalle.
- 88. Utiliser les fonctions génératrices.