Compositional Solution Space Quantification for Probabilistic Software Analysis

Mateus Borges, Marcelo d'Amorim (UFPE) Antonio Filieri (Stuttgart) Corina Pasareanu (CMU SV and NASA Ames) Willem Visser (Stellenbosch)

Uncertain Environments

Uncertain Environments

Quantitative Properties

Not restricted to boolean values

Establish <u>non-functional</u> requirements

→ Reliability, performance...

Probabilistic Model Checking

Probabilistic Model Checking

Problem: can be expensive!

- → You need to learn a new modelling language
- → You need to model the system

We would like to analyze *code*

Probabilistic Software Analysis

Probabilistic Software Analysis

Probabilistic Software Analysis

Collect path conditions leading to target event

Obstacle: Quantification

Integration Methods

Symbolic

→ very expensive, restricted

Numerical

→ expensive with multi-dimensional domains

Statistical

→ approximate results

Challenge

Quantifying the solution space of complex mathematical functions

Example constraint from TSAFE module (Tactical Separation Assisted Flight Environment)

```
sqrt(pow(((x1 + (e1 * (cos(x4) - cos((x4 + (((1.0 * (((c1 * x5) * (e2/c2)) / x6)) * x2) / e1)))))) - (((e2/c2)) * (1.0 - cos((c1 * x5))))), 2.0)) > 999.0 & (c1 * x5) > 0.0 & x3 > 0.0 & x6 > 0.0 & c1 = 0.017... & c2 = 68443.0 & e1 = ((pow(x2,2.0) / tan((c1*x3)))/c2) & e2 = pow(x6,2.0) / tan (c1*x3))
```

Contribution

Supports arbitrarily complex constraints Computes accurate estimates efficiently

High Level View: Divide

High Level View: Divide

High Level View: Divide

High Level View: Conquer

e_pt1

e_pt²

e pt³

e pt⁴

e_pt⁵

e_pt⁶

 $e pt^7$

High Level View: Conquer

High Level View: Conquer

Working With Disjunctions

All elements in PC^T are disjoint Estimates can be computed individually

Partitions can be analyzed faster

Estimates can be efficiently re-used

Quantifying Constraints

c2

Quantifying Constraints

Hit-or-Miss Monte Carlo

E[X] = #hits / #samples

Stratified Sampling

Remove infeasible areas with RealPaver

Stratified Sampling

Remove infeasible areas with RealPaver Increase precision with Stratified Sampling

SPF Toolchain (with qCORAL)


```
// 0 <= x,y,z <= 9
f(x,y,z):
  if x < 5:
    if y < 3:
      abort()
    elif z + y > 10:
      abort()
```

Probability that f(x,y,z) calls abort()?

```
// 0 <= x,y,z <= 9
                                Probability that
f(x,y,z):
                            f(x,y,z) calls abort()?
  if x < 5:
    if y < 3:
                           pc1: x < 5 \&\& y < 3
       abort()
                           pc2: x < 5 \&\& y >= 3
    elif z + y > 10:
                             \&\& z + y > 10
      abort()
```



```
pc1: x < 5 && y < 3
pc2: x < 5 && y >= 3 && z + y > 10
```

```
pc1: x < 5 && y < 3
pc2: x < 5 && y >= 3 && z + y > 10
```


pc1: x < 5 && y < 3 pc2: x < 5 && y >= 3 && z + y > 10

pc2: x < 5 && y >= 3 && z + y > 10

```
pt1:
E = 0.5001
Var = 0.00008
      pt2:
E = 0.3000
Var = 0.00003
      pt3:
E = 0.3806
Var = 0.00009
```

```
pc1: x < 5 \&\& y < 3
pc2: x < 5 \&\& y >= 3 \&\& z + y > 10
```

```
pt1:
E = 0.5001
Var = 0.00008
      pt2:
E = 0.3000
Var = 0.00003
      pt3:
E = 0.3806
Var = 0.00009
```

```
pc1:

E = 0.1501

Var = 0.00013

pc2:

E = 0.1927

Var = 0.00022
```

pc1: x < 5 && y < 3 pc2: x < 5 && y >= 3 && z + y > 10

```
pt1:
E = 0.5001
Var = 0.00008
      pt2:
E = 0.3000
Var = 0.00003
      pt3:
E = 0.3806
:Var = 0.00009
```


pc1: x < 5 && y < 3 pc2: x < 5 && y >= 3 && z + y > 10

Estimate:

Evaluation

RQ1: qCORAL is competitive with other tools?

RQ2: qCORAL features help with complex constraints?

VolComp Benchmark (PLDI'13)

Techniques/Tools:

- → Mathematica (*NIntegrate*)
- → VolComp
- → qCORAL

VolComp Benchmark (PLDI'13)

Techniques/Tools:

- → Mathematica (*NIntegrate*) →
- → VolComp
- → qCORAL

Baseline

	NIntegrate	VolComp	qCORAL	
	solution	bounds	avg. est.	avg. o
ARTRIAL	0.9350	[0.9340, 0.9364]	0.9352	1.63e-04
CART	0.9826	[0.9470, 1.0000]	0.9818	1.11e-02
CORONARY	0.0001	[0.0001, 0.0001]	0.0001	4.29e-07
EGFR-EPI	0.1264	[0.1264, 0.1264]	0.1262	3.29e-04
PACK	0.2462	[0.2522, 0.2800]	0.2663	2.72e-05
VOL	1.0005	[0.0000, 1.0000]	1.0001	5.18e-03

	NIntegrate	VolComp	qCORAL	
	solution	bounds	avg. est.	avg. o
ARTRIAL	0.9350	[0.9340, 0.9364]	0.9352	1.63e-04
CART	0.9826	[0.9470, 1.0000]	0.9818	1.11e-02
CORONARY	0.0001	[0.0001, 0.0001]	0.0001	4.29e-07
EGFR-EPI	0.1264	[0.1264, 0.1264]	0.1262	3.29e-04
PACK	0.2462	[0.2522, 0.2800]	0.2663	2.72e-05
VOL	1.0005	[0.0000, 1.0000]	1.0001	5.18e-03

	NIntegrate	VolComp	qCORAL	
	solution	bounds	avg. est.	avg. o
ARTRIAL	0.9350	[0.9340, 0.9364]	0.9352	1.63e-04
CART	0.9826	[0.9470, 1.0000]	0.9818	1.11e-02
CORONARY	0.0001	[0.0001, 0.0001]	0.0001	4.29e-07
EGFR-EPI	0.1264	[0.1264, 0.1264]	0.1262	3.29e-04
PACK	0.2462	[0.2522, 0.2800]	0.2663	2.72e-05
VOL	1.0005	[0.0000, 1.0000]	1.0001	5.18e-03

	NIntegrate	VolComp	qCORAL
	time	time	avg. time
ARTRIAL	4,179.36	771.10	4.14
CART	7.66	33.74	4.39
CORONARY	0.86	1.99	0.57
EGFR EPI	1.98	0.60	1.61
PACK	5,066.20	104.80	68.79
VOL	1,245.30	3.76	821.11

RQ1: Observations

qCORAL estimates:

→ are very close to the results reported by NIntegrate

→ almost always fall within the VolComp interval

RQ2: Evaluation

→ Subjects from the aerospace domain

→ Picked 70% of the paths to avoid bias

→ Reported results for 30 executions (avg. estimate and standard error)

RQ2: Evaluated configurations

RQ2: Subjects Considered

Subject	LOC	#pcs analyzed (70%)	complex functions
Apollo	~2,600	5,779	sqrt
TSAFE - Conflict	~50	23	cos,pow, sin, sqrt,tan
TSAFE - Turnlogic	~50	225	atan2

RQ2: Conclusions

Impact of features depends on the subject

{STRAT} can reduce variance (*x50* in Conflict)

→ There is a time overhead, however

{PCACHE} can reduce time (*x2* in Apollo)

→ Savings increase with number of samples

(Most Recent) Related Work

Sankaranarayanan *et al.* (PLDI'13)

→ Supports only linear constraints

Adje et al. (VSTTE'13)

→ Supports only the four basic arithmetic operations

Conclusions

New approach to solution space quantification

Acceleration procedure improves accuracy

More details at pan.cin.ufpe.br/qcoral

Extra Slides

Probability of a Target Event

P(ever

And if the number of paths is infinite?

ies of the e event

P(path

Bound the symbolic execution and measure the confidence!

olution domain

(see Filieri et al, ICSE 2013)

And the Variance?

Use Chebyshev's inequality:

"...at least $1 - 1/k^2$ of the distribution's values are within k standard deviations of the mean"

Target application

Sometimes knowing only if an event happens is not very useful!

- → randomized behavior
- → probabilistic profile of the environment