Stream Cipher Design

An evaluation of the eSTREAM candidate Polar Bear

Additive Stream Cipher

Properties

- □ Given a truly random secret-key k, output a sting of length l >> k that appears to be random.
- No attack should be faster than exhaustive search $O(2^{128})$

Polar Bear Key and IV Schedule

Initial Internal State

Dynamic permutation
$$D8 = T8 = \begin{bmatrix} 99 & 17 & 253 & \dots \end{bmatrix}$$

16 bit quantity
$$S = \boxed{0}$$

LFSR	R0
LFSR	R1

6	5	4	3	2	1	0		
8	7	6	5	4	3	2	1	0

Next State Function

- □ Step *R0* and *R1* two or three steps according to 14th and 15th bits in S
- Feedback Polynomials $Ax^7 + Bx^6 + 1$ and $Cx^9 + Dx^4 + 1$ over $F_{2^{16}}$

Next State Function

 \square For i = 0,1 do

$\square \alpha_0^0$	α_1^0	$\square \alpha^{0}_{2}$	$\square \alpha_0^3$
$\square \alpha_0^1$	α_1	$\square \alpha^{1}_{2}$	$\square \alpha^{1}_{3}$

- 1. Let $\beta_j^i = D_8(\alpha_j^i), j = 0, 1, 2, 3$
- 2. Swap elements in D_8 by $D_8(\alpha_0^i) \leftarrow \beta_2^i$, $D_8(\alpha_1^i) \leftarrow \beta_0^i$ $D_8(\alpha_2^i) \leftarrow \beta_3^i$, $D_8(\alpha_3^i) \leftarrow \beta_1^i$

Next State Function

 \square Update S and R0[5] according to

$$S = S +_{16} \beta_0^1 || \beta_1^1$$

$$R0[5] = R0[5] +_{16} \beta_2^1 || \beta_3^1$$

Output Generation

Output

$$|b_0||b_1||b_2||b_3|$$

where

$$b_j = \beta_j^0 \oplus \beta_j^1 \quad j = 0, 1, 2, 3$$

$$j = 0, 1, 2, 3$$

Weakness 1 - Permutation

1. Let
$$\beta_j^i = D_8(\alpha_j^i), j = 0, 1, 2, 3$$

2. Swap elements in D_8 by

$$D_8(\alpha_0^i) \leftarrow \beta_2^i,$$

$$D_8(\alpha_1^i) \leftarrow \beta_0^i,$$

$$D_8(\alpha_2^i) \leftarrow \beta_3^i,$$

$$D_8(\alpha_3^i) \leftarrow \beta_1^i$$

Weakness 1 - Permutation

All α different

Weakness 1 - Permutation

All α different

■ But if for example $\alpha_1 = \alpha_2$

- Let the first six stepping of R0 and R1 be 2-steppings. Probability 2^{-10}
- □ Let no pair of the 48 first α be equal. The probability for this is $> 2^{-7}$

$$\frac{256!}{(256-48)! \cdot 256^{48}} > 2^{-7}$$

- \square D8 can now be treated as constant.
- □ Let the first 24 bytes of plaintext be known

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

18	17	16	15	14	13	12	11	10	9	8	7	6
20	19	18	17	16	15	14	13	12	11	10	9	8

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

18	17	16	15	14	13	12	11	10	9	8	7	6
20	19	18	17	16	15	14	13	12	11	10	9	8

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

18	17	16	15	14	13	12	11	10	9	8	7	6
20	19	18	17	16	15	14	13	12	11	10	9	8

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

18	17	16	15	14	13	12	11	10	0	8	7	6
20	19	18	17	16	15	14	13	12	11	10	9	8

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

18	17	16	15	14	13	12	11	10	9	8	7	6
20	19	18	17	16	15	14	13	12	11	10	9	8

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR R0 LFSR R1

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR RO LFSR R1

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR R0 LFSR R1

□ Then it suffices to guess the 64 bits R1[9]-R1[11] and R1[13]

LFSR *R0* LFSR *R1*

Known keystream

□ Time complexity $O(2^{81}) < O(2^{128})$

Why was this attack possible

- \square Known array D8.
- □ Short LFSRs. It is even possible to guess whole the small LFSR and still be under $O(2^{128})$.
- □ Trinom as feedback polynomials.
- □ The LFSR stages are too related by stepping, output, and update.

Polar Bear 2.0

■ Permute T8 as a function of the expanded key k'. Initiate D8 to this permuted T8*.

For
$$i = 0 ... 511/767$$

SWAP($T8[i], T8[k'_i]$)

Polar Bear 2.0

■ Permute T8 as a function of the expanded key k'. Initiate D8 to this permuted T8*.

For
$$i = 0 ... 511/767$$

SWAP($T8[i], T8[k'_i]$)

■ Use another KeyExpansion than AES, as AES KeyExpansion is weak and have bad statistical properties.

Polar Bear 2.0

□ Different very small changes that would have made the above attack much harder. Mainly changes of index.

New security issues

- □ Can the permutated array give information about the key?
- Many different IV under one key. Can an attacker use this to determine the permutated array?
- □ Related keys.