Also muß gelten:  $\phi(x) = x$ 

$$A_{\phi} \cdot \hat{x} = \hat{x} \Leftrightarrow (A_{\phi} - E_n)\hat{x} = 0$$

Löse LGS:

$$\begin{pmatrix} -1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 2 \\ -1 & 1 & -1 & 2 \\ -1 & 1 & -2 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

also: 
$$\hat{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, also  $x = U_1$ .

Widerspruch zu  $U \oplus [x] = V$ .

## 0.15.2 Aufgabe 4

- a) Es gilt: Bild $(\psi \circ \phi) \subset$  Bild  $\psi$  $\psi \circ \phi$  surjektiv  $\Leftrightarrow$  Bild  $\psi \circ \phi = W \Rightarrow$  Bild  $(\psi \circ \phi) =$  Bild  $\psi \Rightarrow$  Beh.
- b) Ann.: Bild  $\phi \cap \text{Kern } \psi \neq \{0\}$   $\Rightarrow \exists x \in U, x \neq 0_U : \phi(x) \in \text{Kern } \psi, \phi(x) \neq O_V.$ 
  - $\Rightarrow \exists x \in U, x \neq 0 \colon \psi(\phi(x)) = 0_W$
  - $\Rightarrow \operatorname{Kern}(\psi \circ \phi) \neq \{0_W\}$  $\psi \circ \phi \text{ nicht injektiv.}$

Also gilt: Bild  $\phi \oplus \text{Kern } \psi$  ist direkt.

z.Z.: Bild  $\phi \oplus \text{Kern } \psi = V$ Sei  $v \in V$ . Dann ex.  $u \in U$  mit  $(\psi \circ \phi)(u) = \psi(v)$ .

Sei  $v_1 := v - \phi(u)$  und  $v_2 := \phi(u)$ .

Dann gilt:

(i) 
$$\psi(v_1) = \psi(v - \phi(u)) = \psi(v) - (\psi \circ \phi)(u) = 0 \Rightarrow v_1 \in \text{Kern } \phi$$

- (ii)  $v_2 = \phi(u) \in \text{Bild } \phi$
- (iii)  $v = v_1 + v_2$

 $\Rightarrow v \in \text{Bild } \phi \oplus \text{Kern } \psi.$ 

# 0.16 Übung 16, 18.04.2005

#### 0.16.1 Aufgabe 1

a) 
$$det(A - XE_4) = \begin{vmatrix} 2 - x & 2 & 1 & -1 \\ 3 & 3 - x & 1 & 1 \\ 3 & 4 & -x & 1 \\ -3 & -2 & -1 & -x \end{vmatrix} = \begin{vmatrix} 2 - x & 2 & 1 & -1 \\ 3 & 3 - x & 1 & 1 \\ 3 & 4 & -x & 1 \\ -1 - x & 0 & 0 & -1 - x \end{vmatrix}$$

$$\begin{vmatrix} 3-x & 2 & 1 & -1 \\ 2 & 3-x & 1 & 1 \\ 2 & 4 & -x & 1 \\ 0 & 0 & 0 & -1-x \end{vmatrix} = (-1-x) \cdot \begin{vmatrix} 3-x & 2 & 1 \\ 2 & 3-x & 1 \\ 2 & 4 & -x \end{vmatrix}$$

$$= (-1-x) \cdot \begin{vmatrix} 3-x & 2 & 1 \\ -1+x & 1-x & 0 \\ 2 & 4 & -x \end{vmatrix} = (-1-x) \cdot \begin{vmatrix} 5-x & 2 & 1 \\ 0 & 1-x & 0 \\ 0 & 4 & -x \end{vmatrix}$$

$$= (-1-x)(1-x) \cdot \begin{vmatrix} 5-x & 1 \\ 6 & -x \end{vmatrix} = (-1-x)(1-x) \cdot \begin{vmatrix} 6-x & 1 \\ 6-x & -x \end{vmatrix}$$

$$= (-1-x)(1-x) \cdot \begin{vmatrix} 0-x & 1 \\ 0 & 1-x \end{vmatrix} = (-1-x)^2(1-x)(6-x)$$

Eigenraum zum EW  $-1: 0 \neq x \in \mathbb{R}^4$  ist EV zum EW  $-1 \Leftrightarrow$ 

$$Ax = -x$$

$$\Leftrightarrow Ax + x = 0$$

$$\Leftrightarrow (A + E_4)x = 0$$

$$\Leftrightarrow 0 \neq x \in \text{Kern}(A) + E_4$$

$$\begin{pmatrix} 3 & 2 & 1 & -1 \\ 3 & 4 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ -3 & -2 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{3} & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ d.h. } E_{-1} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix}$$

ebenso: 
$$E_1 = \begin{bmatrix} -3 \\ 2 \\ 2 \\ -3 \end{bmatrix}$$
],  $E_6 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ ].

b) Offensichtlich 
$$B = \begin{bmatrix} 1 \\ 0 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 2 \\ -3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 ist Basis von  $\mathbb{R}^4$ .

Definieren wir eine lineare Abbildung  $\Phi: \mathbb{R}^4 \to \mathbb{R}^4$  durch  $\Phi: \mathbb{R}^4 \to \mathbb{R}^4, x \mapsto Ax$  so ist die Abbildung von  $\Phi$  bzgl. der Std.-Basis.

Bzgl. B hat 
$$\Phi$$
 die Abb.  $A_{\Phi} = \begin{pmatrix} 1 & 1 & -3 & -1 \\ 0 & -1 & 2 & 1 \\ -3 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \end{pmatrix}$  dann gilt:  $A_{\Phi} = S^{-1}AS$ 

Nebenrechnung:

$$\Phi \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix}, \Phi \widehat{\begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix}} = A_{\Phi} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 & \frac{1}{3} & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ dann gilt: } A_{\Phi} = S^{-1}AS$$

c) c ist EW von A mit EV  $x \neq 0 \Leftrightarrow Ax = cx \Leftrightarrow (A - cE)x = 0$ 

### 0.16.2 Aufgabe 2

Seien  $A, B \in \mathbb{K}^{n \times n}$  mit  $AB - E_n$  regulär.

Ann.:  $BA - E_n$  nicht regulär.

$$\Rightarrow \exists x \in \mathbb{K}^n, x \neq 0 : (BA - E_n)x = 0$$
  
 
$$\Leftrightarrow \exists 0 \neq x \in \mathbb{K}^n : BAx = x$$
  
 
$$\Leftrightarrow \exists 0 \neq x \in \mathbb{K}^n : (AB)Ax = Ax$$

 $Ax \neq 0$ , sonst:  $x = B(AX) = B \times 0 = 0$ 

Damit gilt  $(AB - E_n)(Ax) = 0$ . Also ist  $AB - E_n$  nicht regulär. Insgesamt  $BA - E_n$  ist regulär.

## 0.16.3 Übungsaufgabe 2

Es sei  $(G, \circ)$  eine Gruppe mit neutralem Element e. Weiter sei  $M = x \in G | x \circ x = e$ .

a) Zeigen Sie: ist G kommutativ so ist M eine Untergruppe von G.

G: Gruppe: G Menge und  $\circ: G \times G \to G$  mit folgendenen Eigeschaften:

(i) 
$$a \circ (b \circ c) = (a \circ b) \circ c, a, b \in G$$

(ii) 
$$\exists e \in G : \forall a \in G : a \circ e = a = e \circ a$$

(iii) 
$$\forall a \in G \exists a^{-1} \in G : a \circ a^{-1} = e = a^{-1} \circ a$$

G heisst abelsch falls zusätzlich gilt:

(i) (iv) 
$$\forall a, b \in Ga \circ b = b \circ a$$

Sei  $M \subset G$ : M heisst Untergruppe von G, falls:

 $(M, \circ)$ eine Gruppe ist

Untergruppenkriterium:

$$\begin{array}{ll} M\subset G \text{ ist Untergruppe} &\Leftrightarrow & \text{(i)} & M\neq\emptyset\\ & & \text{(ii)} & x,y\in M:x^{-1}\circ y\in M\\ &\Leftrightarrow & \text{(i)} & M\neq\emptyset\\ & & \text{(ii)} & x,y\in M:x\circ y\in M\\ & & \text{(iii)} & x\in M:x^{-1}\in M \end{array}$$

Beweis: Zu zeigen: