Sudoku Solver

Rundong Zhao

Sudoku

9 x 9 gird

 Each column, row and 3 x 3 subgrid should contain all numbers from 1 – 9

Only admit exactly 1 solution

							1	
					2			თ
			4					
						5		
4		1	6					
		1 7	1					
	5					2		
				8			4	
	3		9	1				

Algorithms

- Simple search without Heuristics
- Search with Minimum Remaining Value (MRV) Heuristic
- SAT encoding

SAT Encoding

• There is at least one number in each entry:

$$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} s_{xyz}$$

• Each number appears at most once in each row:

$$\wedge_{y=1}^{9} \wedge_{z=1}^{9} \wedge_{x=1}^{8} \wedge_{i=x+1}^{9} \neg s_{xyz} \vee \neg s_{iyz}$$

• Each number appears at most once in each column:

$$\wedge_{x=1}^{9} \wedge_{z=1}^{9} \wedge_{y=1}^{8} \wedge_{i=y+1}^{9} \neg s_{xyz} \vee \neg s_{xiz}$$

• Each number appears at most once in each 3×3 sub-grid:

Inference Techniques

- Resolution: $(x_i \lor \alpha) \land (\neg x_i \lor \beta) \Rightarrow (\alpha \lor \beta)$
- 2 restricted forms of resolution: Unit Propagation and Failed Literal Rule.

Results

An Evil Sudoku

Search based methods cannot return solution within reasonable time.

SAT encoding find solution in 130 milliseconds.

2		1	5	2			8	
	7	3		7	8	6	2	
6	4		2			7		1

Conclusion

- SAT encoding is extremely fast.
- The inference techniques will try to exploit every inference to reduce search space.
- It is always recommend transferring Finite Domain CSPs to SAT problem.