Microecononometrics Handbook

J.T. Cho [joncho@seas.upenn.edu]

A lightweight compilation of the important aspects of Petra Todd's advanced microeconometrics course at UPenn. I've taken the liberty to further explicate various derivations and proofs.

The Basics

PDF of Normal Distribution

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
: $f(X) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(X-\mu)^2}{2\sigma^2}\right)$

Variance of a Random Variable

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2}] - E^{2}[X]$$

Independence of R.V.'s

$$f(X,Y) = f(X)f(Y)$$

$$\implies E[X|Y] = E[X]$$

$$\implies Cov(X,Y) = 0$$

Correlated R.V.'s

$$Cov(X,Y) = E[XY] - \mu_X \mu_Y$$

If Cov(X, Y) = 0, X, Y are uncorrelated.

Properties of Estimators

- (i) unbiasedness, $E[\hat{\mu_y}] = \mu_y$
- (ii) consistency, $\forall \epsilon > 0$, $\Pr(||\hat{\mu_y} \mu_y|| > \epsilon) \to 0$ as $n \to \infty$

Ordinary Least Squares (Simple)

Identifying Assumptions

- nonstochastic x_i , s.t. only source of random variation in y_i is ϵ_i
- mean-zero; $E[\epsilon] = \mathbf{0}$

$$-\epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

- homoskedasticity; $E[\epsilon_i^2] = \sigma^2$
- $Cov(\epsilon_i, \epsilon_j) = 0 \ \forall \ i \neq j$

Derivation of Matrix-formulation of OLS (Stochastic Regressors)

$$\hat{\beta} = \operatorname{argmin}_{\beta} \epsilon' \epsilon = \operatorname{argmin}_{\beta} (Y - X\beta)' (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} = 2X' (Y - X\beta) = 0$$

$$X'Y - X'X\beta = 0$$

$$X'Y = X'X\beta$$

$$\beta = (X'X)^{-1}X'Y$$

Since $\epsilon = Y - X\beta$, the F.O.C. implies that $X'\epsilon = 0$. If X has a column of 1's corresponding to a constant term, then X' in the expression implies that

$$\sum_{i=1}^{n} \epsilon_i = 0$$

Then, the mean of the residuals is 0.

Consistency of OLS Estimator

We give the asymptotic distribution of $\hat{\beta} - \beta$.

$$\hat{\beta} - \beta = (X'X)^{-1}X'Y - \beta$$

$$= (X'X)^{-1}X'(X\beta + \epsilon) - \beta$$

$$= \beta + (X'X)^{-1}X'\epsilon - \beta$$

$$= (X'X)^{-1}X'\epsilon$$

Since $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$, observe,

$$\hat{\beta} - \beta \sim \mathcal{N}(0, (X'X)^{-1}X'\sigma^{2}IX(X'X)^{-1})$$

$$\sim \mathcal{N}(0, \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1})$$

$$\sim \mathcal{N}(0, \sigma^{2}(X'X)^{-1})$$

Estimator for σ^2 for the variance-covariance matrix

$$\hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^n \hat{\epsilon}_i^2$$

Heteroskedasticity

Relax assumption that $E[\epsilon_i^2] = \sigma^2$ for all i. Then, let $E[\epsilon \epsilon'] = \Omega$,

$$\Omega = \begin{pmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n^2 \end{pmatrix}$$

The robust var-cov estimator is

$$\hat{\Sigma}_{robust} = (\sum_{i=1}^{n} x_i x_i')^{-1} \sum_{i=1}^{n} x_i x_i' \hat{\epsilon}_i^2 (\sum_{i=1}^{n} x_i X_i')^{-1}$$

Generally Useful Techniques

Convergence

Suppose we have the sequence of random variables $\{X_i\}_{i=1}^n$ with sample mean $\frac{1}{n}\sum_{i=1}^n X_i$.

Convergence in probability

For all $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr(|X_n - X| < \epsilon) = 1$$

Alternatively, is written plim $X_n = X$.

Implies convergence in distribution.

Convergence in mean-square

$$\lim_{n \to \infty} E[(X_n - X)^2] = 0$$

Implies convergence in probability.

Convergence almost surely

For all $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr(|X_m - X| < \epsilon \ \forall \ m \ge n) = 1$$

In other words, X_m converges to X for some n and stays small for all larger n.

Implies convergence in probability.

Convergence in distribution

$$\lim_{n\to\infty} F_n(X_n) = F(X)$$
 for all X such that $F(X)$ is continuous

Let $F_i(x)$ be the CDF of X.

Slutsky's Theorem

If $X_n \to_D X$ and $A_n \to_P a$ for constant a, then

- (i) $A_n X_n \to_D aX$
- (ii) $A_n + X_n \to_D a + X$
- (iii) $\frac{X_n}{A_n} \to_D \frac{X}{a}$

Mann-Wald/Continuous-Mapping Theorem

Let g be a continuous function. Then,

- (a) $X_n \to_D X \implies g(X_n) \to_D g(X)$
- (b) $X_n \to_P X \implies g(X_n) \to_P g(X)$
- (c) $X_n \to_{A.S.} X \implies g(X_n) \to_{A.S.} g(X)$

In other words, continuous functions are *limit preserving* even if arguments are sequences of R.V.'s.

Chebyshev's Weak Law of Large Numbers

If $\{Y_i\}_i^n$ are i.i.d. with $E[Y_i] = \mu_Y$, $Var(Y_i) = \sigma_Y^2 < \infty$, then $\bar{Y} \to_P \mu_Y$.

Lindeberg-Levy Central Limit Theorem For i.i.d. R.V.'s $\{X_i\}_i^n$ with mean μ and variance σ^2 , consider the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$E[\bar{X}_n] = \mu$$

$$\operatorname{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$$

Then, defining the Z statistic, Z_n ,

$$Z_n = \frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}}$$

The LLCLT states that the R.V.'s $Z_n \to_D \mathcal{N}(0,1)$

Law of Iterated Expectations

$$E[X'\epsilon] = E[E[X'\epsilon]] = E[X'E[\epsilon \mid X]]$$

OLS with Stochastic Regressors

Identifying Assumptions

Allow X to be random. ϵ_i are i.i.d., with

$$E[\epsilon_i \mid x_i] = 0, E[\epsilon_i^2 \mid x_i] = \sigma^2$$

$$E[x_i x_i'] < \infty, E[x_i x_i']^{-1} \text{ exists}$$

$$E[\epsilon_i \epsilon_i \mid X] = 0 \ \forall \ i \neq j$$

Unbiasedness

Observe that expectations are taken over x_i and ϵ_i .

$$E[\hat{\beta}] = E[(X'X)^{-1}X'Y]$$

$$= E[(X'X)^{-1}X'(X\beta + \epsilon)]$$

$$= E[\beta + (X'X)^{-1}X'\epsilon]$$

$$= \beta + E[(X'X)^{-1}X'\epsilon]$$

$$= \beta + E[(X'X)^{-1}X'E[\epsilon \mid X]]$$

$$= \beta$$

Asymptotic Distribution

Consider the R.V. sequence $\{x_i \epsilon_i\}_{i=1}^n$.

Observe that $E[x_i \epsilon_i] = 0$, applying the L.I.E.

$$Var(x_i \epsilon_i) = E[x_i^2 \epsilon_i^2]$$

$$= E[x_i^2 E[\epsilon_i^2 \mid x_i]]$$

$$= E[x_i x_i' \cdot \sigma^2]$$

$$= E[x_i x_i'] \sigma^2$$

$$\hat{\beta} - \beta = (X'X)^{-1}(X'\epsilon)$$

$$= [\sum_{i=1}^{n} x_i x_i']^{-1} [\sum_{i=1}^{n} x_i \epsilon_i]$$

$$= [\frac{1}{n} \sum_{i=1}^{n} x_i x_i']^{-1} [\frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i]$$

Observe that for any constant c, $(cX)^{-1} = \frac{1}{c}X^{-1}$.

Consider the following expression:

$$\sqrt{n}(\hat{\beta} - \beta) = \left[\frac{1}{n} \sum_{i=1}^{n} x_i x_i'\right]^{-1} \left[\frac{1}{n} \cdot \sqrt{n} \sum_{i=1}^{n} x_i \epsilon_i\right]$$

Applying the LLCLT to the second term gives

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i \epsilon_i \sim \mathcal{N}(0, \sigma^2 E[x_i x_i'])$$

Since x_i' is a $1 \times k$ vector, the quantity $E[x_i x_i']$ is a matrix. Noting that by assumption plim $\frac{1}{n} \sum_{i=1}^n x_i x_i' = E[x_i x_i']$ and applying Slutsky's theorem,

$$\sqrt{n}(\hat{\beta} - \beta) \sim \mathcal{N}(0, \sigma^2 E[x_i x_i']^{-1} E[x_i x_i'] E[x_i x_i']^{-1})$$
$$\sim \mathcal{N}(0, \sigma^2 E[x_i x_i']^{-1})$$

(It is helpful to remember that convergence in probability implies convergence in distribution, which is necessary for the LLCLT).

Consistency

From the above expression for $\hat{\beta} - \beta$, it immediately follows from the WLLN that the second term $\frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i \to_P 0$. Then, applying Slutsky's theorem, the product converges in probability to 0.