

به نام خدا

دانشگاه تهران

دانشکده مهندسی برق و کامپیوتر

پردازش سیگنالهای زمان–گسسته

تمرین سری 3

نرجس نورزاد	نام و نام خانوادگی
810196626	شماره دانشجویی
4مرداد 1399	تاریخ ارسال گزارش

فهرست گزارش سوالات

3	سوال 1
6	سوال 2 2
12	سوال 3
13	سوال 44
14	سوال5
17	سوال 6
25	سوال 7 7
26	سوال 8
27	سوال 99
28	10 . IIau

در این قسمت ابتدا 2 فایل صوتی موجود در Intro خوانده شده و یک سیگنال و یک فرکانس نمونه برداری از آن استخراج شده است .

سپس ، با استفاده از تابع spectrogram متلب ، شکل های زیر رسم شده اند.

دو شکل زیر به کمک spectrogram و به کمک پنجره گذاری رسم شده است . اندازه ی پنجره کنترلیست بر روی spectrogram تصویر نیز بالاتر خواهد بود . resolution تصویری که به ما میدهد، هرچه این عدد کوچک تر باشد ، resolution تصویر نیز بالاتر خواهد بود . (البته باید در نظر داشت مینیمم آن مقدار مشخصی دارد چون ممکن است باعث بهم ریختگی شکل شود .)

در این بخش ما به کمک فیلتر Filter design ، فیلترینگ خود را انجام میدهیم .

چون لازم است فیلتر بانک ایده آلی داشته باشیم ، مرتبه ی فیلتر ها بالا خواهند بود چون مد نظر ما است که فیلتر ها sharp باشند .

(تفاوت میان Fpass و Fstop در فیلتر های طراحی شده 100Hz است که در مقایسه با 48000 که فرکانس نمونه برداری است مقدار کوچکی است و همینطور باعث افزایش بی رویه مرتبه ی فیلتر نیز نمیشود ، چون نمیتوان به 100% ایده آل بودن رسید .)

. اندازه ی پاسخ فرکانسی فیلتر های طراحی شده را میتوان در 4 شکل زیر مشاهده کرد

مرتبه ی این 4 فیلتر 868 است .

شکل زیر ، شکل اصلی سیگنال c7 قبل از عبور از فیلتر است .

. شکل های زیر ، شکل های سیگنال c7 بعد از عبور از 4 فیلتر طراحی شده است

. شکل زیر ، شکل اصلی سیگنال c8 قبل از عبور از فیلتر است

. شکل های زیر ، شکل های سیگنال c7 بعد از عبور از 4 فیلتر طراحی شده است

سپس لازم است به کمک decimate، مرحله ی دوم، یعنی down sampling را انجام دهیم، تا سپس، مطابق با شکل زیر ، مرحله ی processing انجام شود .

در این بخش به کمک تابع reshape داده هایی ک داریم را تقسیم بندی میکنیم .

چون عدد 36001 بر 256 بخش پذیر نبود ، تعدادی صفر به اخر آن اضافه میکنیم تا بخش پذیر شود .

ماتریسی ک بدست آمده 256 * 141 * 100 است که همانطور ک در صورت سوال گفته شده ، 141 * 256 داریم که طول هریک 256 است .

.4

در این قسمت به کمک تابع xcorr متلب ، کرولیشن میان هر یک از chunk های گیرنده ی 7 را با گیرنده ی 8 محاسبه میکنیم و 4 ماتریس agindex را بدست می آوریم .

بعد از محاسبه ی xcorr، اندازه ی آن را محاسبه میکنیم ، سپس از آن ماکسیمم میگیریم تا lag index ها محاسبه شوند. در این بخش به کمک تابع Histogram ، هیستوگرام مربوطه به هر زیرکانال را رسم میکنیم.

اگر شکل های زیر را با شکل هایی که از فایل \min بدست اورده ایم مقایسه کنیم میبینیم اطراف 0 ، دو شکل بیسار مشابه هم هستند . پس بادید از سیگماهایی ک در این قسمت بدست میآوریم در پارت 7 استفاده کنیم .

میتوان یک تابع نرمال به هریک از 4 سپکتوگر ام بالا فیت کرد که در مشاهده میکنیم :

به کمک histfit میانگین و سیگما های هریک از lag index ها بدست آمده اند .

First sub channel

```
Normal distribution mu = -3.78014 \qquad [-8.54854, 0.988261] sigma = 28.6394 [25.6417, 32.4371]
```

Second sub channel

```
Normal distribution

mu = 0.680851 [-3.82508, 5.18678]

sigma = 27.063 [24.2303, 30.6516]
```

Third sub channel

```
Normal distribution  \begin{aligned} &\text{mu} = 1.22695 & [-4.95956, \ 7.41346] \\ &\text{sigma} = 37.1567 & [33.2674, \ 42.0838] \end{aligned}
```

Fourth sub channel

```
Normal distribution mu = -1.9078 \qquad [-8.49754, 4.68193] sigma = 39.5785 [35.4357, 44.8268]
```

همانطور ک از شکل های قسمت5 پیداست ، یک نرمال وجود دارد که هدف استخراج ان است که کمترین lag را دارد .

برای محاسبه ی واریانس ، برای بالا بردن دقت ، محدوده ی 20 تا 20 انتخاب شد و مساحت آن محاسبه شد ، همچنین میدانیم اگر به اندازه ی 99.7 وا محاسبه کنیم .

برای محاسبه ی واریانس ، باید از میانگین به دو طرف نمودار حرکت کرد تا به 99.7% مساحت رسید .

برای میانگین میتوان از داده های بالا بهره برد چون داده های پرت بر روی میانگین تاثیر انچنانی ندارد .

سیگما های بدست آمده از تابع calculate_sigma در زیر آورده شده :

sigma1	0.6667
sigma2	3.3333
sigma3	5.6667
sigma4	0.3333

. تمام مراحل 1 تا 4 را برای فایل main نیز انجام میدهیم

دو شکل اول فقط با دادن سیگنال و فرکانس نمونه برداری به spectrogram کشیده شده است .

شکل دوم و سوم ورودی های تابع کامل تر شده اند و مقدار overlap نیز داده شده است .

شکل چهارم و پنجم با دادن پنجره ی Hann رسم شده است .

تمام فیلتر ها را به کانال 8 نیز اعمال میکنیم :

همانطور که مشخص است شکل های فایل main به نرمال شبیه تر اند .

7.

با استفاده از سیگما هایی که از بخش intro بدست آمده و میانگین ها، ضرایب را ، به کمک فرمول زیر،بدست میاوریم و در هر chunk ضرب میکنیم تا chunk های جدید بدست بیایند.

$$w_{ch}[n] = \exp^{\frac{-(lag - \mu_{ch})^{\dagger}}{{}^{\dagger}\sigma_{ch}^{\dagger}}}$$

پس از اعمال ضرایب به هریک از سلول ها، چانک های ایجاد شده ی جدید ابتدا reshape شده تا به تک چنل تبدیل شوند ، سپس باهم جمع میشوند تا سیگنال اصلی بازیابی شود .

پس از جمع شدن ، باید عمل up sampling اجرا شود

دو سیگنال با نام های righthand_Signal و lefthand_sigmal در فایل پروژه ذخیره شده اند .

چون صوت های استخراج شده دارای نویز بسیار زیادی است به کمک تابع smooth در متلب که یک تابع با فیلتر پایین گذر است ، اندکی از نویز سیگنال رفع میشود . چون غیرپیوستگی بین ضرایب اندکی از بین میرود و ضرایب نرم تر میشوند .

پس از اعمال ضرایب به هریک از سلول ها، چانک های ایجاد شده ی جدید ابتدا reshape شده تا به تک چنل تبدیل شوند ، سپس باهم جمع میشوند تا سیگنال اصلی بازیابی شود .

دو سیگنال با نام های smoothed_righthand_Signal و smoothed_lefthand_sigmal در فایل پروژه ذخیره شده اند .