HAHN-BANACH THEOREM

1. Introduction

2. HAHN-BANACH THEOREM

We start by introducing certain notions concerning real maps defined on \mathbb{R} -vector spaces.

Definition 2.1. Let *V* be an \mathbb{R} -vector space. A map $p: V \to \mathbb{R}$ is *subadditive* if

$$p(v_1 + v_2) \le p(v_1) + p(v_2)$$

for any vectors v_1 , v_2 in V.

Definition 2.2. Let *V* be an \mathbb{R} -vector space. A map $p: V \to \mathbb{R}$ is *positive homogeneous* if

$$p(\alpha \cdot v) = \alpha \cdot p(v)$$

for every $\alpha \in \mathbb{R}_+$ and every v in V.

The following is central result of these notes.

Theorem 2.3 (Hahn-Banach). Let V be an \mathbb{R} -vector space and let $p:V\to\mathbb{R}$ be a subadditive and positive homogeneous map. Suppose that W is an \mathbb{R} -subspace of V and $f:W\to\mathbb{R}$ is an \mathbb{R} -linear map such that

$$f(w) \le p(w)$$

for every w in W. Then there exists \mathbb{R} -linear map $\tilde{f}: V \to \mathbb{R}$ such that $\tilde{f}_{|W} = f$ and $\tilde{f}(v) \leq p(v)$ for every v in V

The heart of the proof is the following result.

Lemma 2.3.1. Let V be an \mathbb{R} -vector space and let $p:V\to\mathbb{R}$ be a subadditive and positive homogeneous map. Suppose that W is an \mathbb{R} -subspace of V and $f:W\to\mathbb{R}$ is an \mathbb{R} -linear map such that

$$f(w) \leq p(w)$$

for every w in W. Then for every vector $\tilde{v} \in V \setminus W$ there exists \mathbb{R} -linear map $\tilde{f} : W + \mathbb{R} \cdot \tilde{v} \to \mathbb{R}$ such that $\tilde{f}_{|W} = f$ and $\tilde{f}(v) \leq p(v)$ for every v in $W + \mathbb{R} \cdot \tilde{v}$.

Proof of the lemma. We claim that the set of $\lambda \in \mathbb{R}$ such that for every $\gamma \in \mathbb{R}$ and every $w \in W$ the following condition is satisfied

$$f(w) + \gamma \cdot \lambda \le p(w + \gamma \cdot \tilde{v})$$

is nonempty. In order to prove this we analyze this condition. Note that for γ = 0 the condition holds by assumption of the theorem. Thus we may assume that $\gamma \neq 0$. Let $\alpha = |\gamma|$. Now we consider two cases.

• For $\gamma > 0$ the condition is equivalent to

$$\lambda \le p\left(\frac{w}{\alpha} + \tilde{v}\right) - f\left(\frac{w}{\alpha}\right)$$

Since W is an \mathbb{R} -vector space, it can be equivalently stated as

$$\lambda \leq p(w+\tilde{v}) - f(w)$$

for every $w \in W$.

• For γ < 0 the condition is equivalent to

$$-p\left(\frac{w}{\alpha} - \tilde{v}\right) + f\left(\frac{w}{\alpha}\right) \le \lambda$$

We invoke the fact that W is an R-vector space one again and obtain equivalent condition

$$-p(w-\tilde{v})+f(w)\leq\lambda$$

for every $w \in W$.

Thus in order to prove our claim it suffices to prove that

$$\sup_{w \in W} -p(w-\tilde{v}) + f(w) \le \inf_{w \in W} p(w+\tilde{v}) - f(w)$$

Therefore, it suffices to prove that

$$p\left(w_{1}-\tilde{v}\right)+f\left(w_{1}\right)\leq p\left(w_{2}+\tilde{v}\right)-f\left(w_{2}\right)$$

for any $w_1, w_2 \in W$. Fix arbitrary $w_1, w_2 \in W$. The inequality

$$p(w_1 - \tilde{v}) + f(w_1) \le p(w_2 + \tilde{v}) - f(w_2)$$

is equivalent to

$$f(w_1 + w_2) \le p(w_2 + \tilde{v}) + p(w_1 - \tilde{v})$$

which holds according to

$$f(w_1 + w_2) \le p(w_1 + w_2) = p(w_2 + \tilde{v} + w_1 - \tilde{v}) \le p(w_2 + \tilde{v}) + p(w_1 - \tilde{v})$$

Thus the claim is proved. We infer the statement from the claim as follows. Pick $\lambda \in \mathbb{R}$ such that

$$f(w) + \gamma \cdot \lambda \le p(w + \gamma \cdot \tilde{v})$$

for every $\gamma \in \mathbb{R}$ and every $w \in W$. Then define $\tilde{f}: W + \mathbb{R} \cdot \tilde{v} \to \mathbb{R}$ by $\tilde{f}(w + \gamma \cdot \tilde{v}) = f(w) + \gamma \cdot \lambda$ for every $w \in W$ and $\gamma \in \mathbb{R}$. Then \tilde{f} satisfies the assertion.

Proof of the theorem. Consider the family $\mathcal G$ which consists of $\mathbb R$ -linear maps $g:U\to\mathbb R$ such that U is a $\mathbb R$ -subspace of V containing W, $g_{|W}=f$ and $g(u)\le p(u)$ for every $u\in U$. For $g_1:U_1\to\mathbb R$ and $g_2:U_2\to\mathbb R$ in $\mathcal G$ we define $g_1\le g_2$ if and only if $U_1\subseteq U_2$ and $(g_2)_{|U_1}=g_1$. Clearly ≤ is a partial order on $\mathcal G$. By Zorn's lemma there exists element $\tilde f:\tilde V\to\mathbb R$ in $\mathcal G$ maximal with respect to ≤. If $\tilde V\not\subseteq V$, then by Lemma 2.3.1 there exists element of $\mathcal G$ greater than $\tilde f$ with respect to ≤. This is a contradiction. Hence $\tilde V=V$ and $\tilde f$ satisfies the assertion of the theorem.

3. NORMED VERSION OF HAHN-BANACH THEOREM