CSCI 305 Assignment 3

(Solo) Isaac Boaz

November 4, 2023

1. Provide a Θ bound for the solution of each of these recurrences.

1.

$$T(n) = 7T(n/7) + n$$

We see each level has $7^i \cdot \frac{n}{7^i} = n$ work done. Since n is being divided by 7 each level, this will be run $\log_7 n$ times.

$$n \cdot \log_7 n \to \Theta(n \log n)$$

2.

$$T(n) = 9T(n/3) + n^{2}$$

$$(\frac{n}{3})^{2} \qquad \frac{n^{2}}{9} \qquad \frac{n^{2}}{9} \qquad \frac{n^{2}}{9} \qquad \frac{n^{2}}{9} \qquad \frac{n^{2}}{9} \qquad \frac{n^{2}}{9} \qquad \frac{n^{2}}{9}$$

$$(\frac{n}{9})^{2} \qquad (\frac{n}{3^{2}})^{2} \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(\frac{n}{3^{3}})^{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

At each level we do n^2 amount of work. Since we're dividing by 3 each time, we will do $\log_3 n$ levels. Thus, our runtime is $n^2 \cdot \log_3 n \to \Theta(n^2 \log n)$

3.

$$T(n) = 49T(n/25) + n^{3/2}\log n$$

2. Draw the recurrence tree for the following recurrence:

$$T(n) = 2T(n/3) + T(3n/4) + c\sqrt{n}$$

1. Give an asymptotic Θ -bound for lines 1-3.

$$\Theta(1)$$

2. Give an asymptotic Θ -bound for lines 6-9.

$$\Theta(n)$$

3. What size array is being input and output?

We see the first array takes the Fourier Transform of the even-indexed elements, and the second array takes the Transform of the odd-indexed elements. Thus, each array is n/2 in size.

4. Recurrence relation for the cost of T(n).

$$T(n) = 2T(\frac{n}{2}) + O(\frac{n}{2})$$
$$= 2T(\frac{n}{2}) + c\frac{n}{2}$$

5. Solve the above recurrence relation.

Going by the tree diagram, we see each level x has $\frac{n}{2}$ work. Since we halve the size of the problem each level, there will be $\log_2 n$ levels, amounting to a runtime of

$$O(n \log n)$$

Additionally, since the subtree is balanced, we can say it is both $O(n \log n)$ and $\Omega(n \log n)$, and thus $T(n) = \Theta(n \log n)$.

6. Find the Θ cost of slowFT. Since the outer for loop is run n times, and the inner loop is consequently run n^2 times, we know that Algorithm 1 is asymptotically faster.

$$\Theta(n^2) > \Theta(n \log n)$$

4. Strass

- 1. The base case for this algorithm is when it encounters matrices that are 16×16 or smaller.
- 2. I have verified this.

	n	s(n)	m(n)
	32	0.0176	0.0112
	64	0.0043	0.0001
	128	0.0035	0.0002
3.	256	0.0234	0.0006
	512	0.1993	0.0100
	1024	1.0313	0.0150
	2048	7.3894	0.1085
	4096	51.6236	0.7990
		ı	ı

- trend lines seems to roughly match, with a constant factor making the Strass algorithm slower.
- 4. The naive algorithm for matrix multiplication does $(n-1)n^2$ additions / subtractions for summing up each row/column product, whereas the Stras algorithm will always do more additions / subtractions. Thus, since the Strass algorithm is likely to do more subtractions, it is less stable.