

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ БИОМЕДИЦИНСКАЯ ТЕХНИКА

КАФЕДРА БИОМЕДИЦИНСКИЕ ТЕХНИЧЕСКИЕ СИСТЕМЫ (БМТ-1)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.03** Прикладная информатика (Цифровые биомедицинские системы)

ОТЧЕТ

по лабораторной работе № _3__

название:	Функциональная и модульная декомпозиция			
	•			

Дисциплина: Алгоритмизация и программирование

Студент	БМТ1-13Б	Н.А.Сухов	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Т.А.Ким
		(Подпись, дата)	(И.О. Фамилия)

Задание. Функции и модули

Дана целочисленная матрица размера B(n,m), $(n,m \le 10)$. Преобразовать ее, заменив в каждой строке диагональный элемент на максимальный элемент этой строки.

Исходный код

• MainModule.jl

```
module Main
include("FunctionsModule.jl")
using .MatrixFunctions
using Test
print("Enter n and m: \n")
n,m = parse(Int64, readline()), parse(Int64, readline())
before_cng = create_matrix(n, m)
mat_out(before_cng)
before_cng = d_element_to_max(before_cng)
mat_out(before_cng)
@testset "FunctionsTest" begin
  @testset "FindMaxTest" begin
    @test max_in_row([[1, 2], [3, 4], [5, 6]], 1) == 5
    @test max_in_row([[11, 21, 31, 41], [12, 22, 32, 42], [13, 23, 33,
43]], 4) == 43
  end
  @testset "FinalMatrix" begin
   \emptysettest d_element_to_max([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) == [[7, 2,
9], [4, 8, 6], [7, 8, 9]]
    @test d element to max([[11, 21, 31, 41, 51], [12, 22, 32, 42, 52],
[13, 23, 33, 43, 53], [14, 24, 34, 44, 54]]) == [[14, 21, 31, 44, 51], [12,
24, 34, 42, 52], [13, 24, 34, 43, 53], [14, 24, 34, 44, 54]]
  end
end
end
```

FunctionsModule.jl

```
module MatrixFunctions
export create matrix, d element to max, max in row, mat out
function create_matrix(row::Int, column::Int)
   arr = [rand(1:9, row) for i in 1:column]
   return arr
end
function d_element_to_max(arr::Array)
   for i in eachindex(arr[1])
     max = max_in_row(arr, i)
     for j in eachindex(arr)
       if i == j \mid \mid ((i + j - 1) == size(arr)[1])
         arr[j][i] = max
       end
     end
   end
   return arr
 end
 function max_in_row(arr::Array, row::Int)
   max = arr[1][row]
   for i in eachindex(arr)
     if arr[i][row] > max
      max = arr[i][row]
     end
   end
   return max
function mat_out(arr::Array)
   for i in eachindex(arr[1])
     for j in eachindex(arr)
       print(arr[j][i], " ")
     end
     print("\n")
   end
   print("\n")
end
 end
```


Тестирование алгоритма

Наименование проверки	Данные на вход	Ожидаемый результат	Полученный результат	Вывод
Проверка внутренней функции нахождения	Массив: [[1, 2], [3, 4], [5, 6]]	5	5	Подфункция отработала в соответствии с ожиданиями.
максимального элемента в строке	Строка: 1 Массив: [[11, 21, 31, 41], [12, 22, 32, 42], [13, 23, 33, 43]] Строка: 4	43	43	
Проверка основной функции, изменяющей				Основная функция отработала в соответствии с

массив, используя подфункцию:				ожиданиями: диагонали
(квадратная	Массив:	[[7, 2, 9],	[[7, 2, 9],	заменялись как
матрица)	[[1, 2, 3],	[4, 8, 6],	[4, 8, 6],	в квадратных
	[4, 5, 6],	[7, 8, 9]]	[7, 8, 9]]	матрицах, так и
	[7, 8, 9]]			прямоугольных
2)Прямоугольная	Массив:	[[14, 21, 31, 44, 51],	[[14, 21, 31, 44, 51],	матрицах.
матрица	[[11, 21, 31, 41,	[12, 24, 34, 42, 52],	[12, 24, 34, 42, 52],	
	51], [12, 22, 32,	[13, 24, 34, 43, 53],	[13, 24, 34, 43, 53],	
	42, 52], [13, 23,	[14, 24, 34, 44, 54]]	[14, 24, 34, 44, 54]]	
	33, 43, 53], [14,			
	24, 34, 44, 54]]			

Выводы

В ходе выполнения лабораторной работы я познакомился с пакетами, модулями и научился применять их для структурирования кода и разбиения его на блоки и подблоки, что позволяет использовать его рациональнее, а также внедрил в свой проект систему автоматизированного тестирования для облегчения процесса проверки.