Zadanie úlohy

Zadanie	úlohy	typu	"nájdite	riešenie	nelineárnej	rovnice		na	intervale
, sa skladá z nasledovných čiastkových úloh.									

1. Urobte separáciu koreňov rovnice na intervale, určite ich počet a násobnosť.

Metóda tetív

- 1. S toleranciou (napr. 10^{-10}) nájdite približnú hodnotu najväčšieho (najmenšieho, kladného, záporného...) koreňa metódou lineárnej interpolácie metódou tetív.
- 2. Vypočítajte odhad absolútnej chyby aproximácie.
- 3. Výsledok porovnajte s hodnotou koreňa nájdeného pomocou príkazu FindRoot [] (použite parametre príkazu pre metódu tetív)

NEZABUDNITE overiť splnenie podmienok použiteľnosti danej metódy, uveďte štartovacie body, uveďte iteračnú schému, prípadne iné obmedzujúce podmienky, ktoré boli použité v rámci výpočtu.

Uveďte dvojicu bodov, ktorú nie je vhodné použiť ako štartovacie body pre metódu tetív. Zdôvodnite prečo táto dvojica bodov nie je vhodná.

Newtonova metóda

- 1. S toleranciou (napr. 10^{-10}) nájdite približnú hodnotu najväčšieho (najmenšieho, kladného, záporného...) koreňa Newtonovou metódou.
- 2. Vypočítajte odhad absolútnej chyby aproximácie.
- 3. Výsledok porovnajte s hodnotou koreňa nájdeného pomocou príkazu FindRoot [] (použite parametre príkazu pre Newtonovu metódu)

NEZABUDNITE overiť splnenie podmienok použiteľnosti danej metódy, uveďte štartovacie body, uveďte iteračnú schému, prípadne iné obmedzujúce podmienky, ktoré boli použité v rámci výpočtu.

Uveďte aspoň jeden bod, ktorý nie je vhodné použiť ako štartovací bod pre Newtonovu metódu. Zdôvodnite prečo táto voľba štartovacieho bodu nie je vhodná.

Ručné počítanie

1. Pomocou metódy tetív (Newtonovej metódy) ručne nájdite prvé 4 iterácie.

Na záver riešenia urobte analýzu problému a vysvetlite, ktoré metódy je/nie je vhodné použiť na riešenie tohto problému a prečo. Porovnajte obe metódy. Ktorá z nich rýchlejšie konverguje? Závery urobte na základe konkrétnych výsledkov predchádzajúcich výpočtov (uveďte ktoré výsledky ste použili).

1.
$$e^x + x^2 - 2 = 0$$
, pre $x < 0$,

$$2x^4 - x^3 + 3x^2 + 4x - 5 = 0$$

3.
$$x - \sin x = 1.5$$
, pre $x \in [4, 5]$

4.
$$\tan x + 2x = 3.7$$

5.
$$3x^3 + 2x - 4 = 0$$

6.
$$x^4 - x - 1 = 0$$

7.
$$2. \ln x - \frac{1}{x} = 0$$

8.
$$(x+2)^2 = 2\cos x$$

9.
$$x^2 - 3\sin x = 0$$

10.
$$x^2 - 3^x = 0$$

11.
$$x \cdot \ln x = 14$$

12.
$$x^2 - 9 + \ln(x - 1) = 0$$

13.
$$x.\sqrt{x+3} = 3$$

14.
$$x+3-e^x=0$$

15.
$$3e^{-x}x = 1$$

16.
$$x^2 = e^{x/2} + 1$$

17.
$$(x-1)^2 = \frac{e^x}{2}$$

18.
$$x^3 + 3x^2 + 6x + 5 = 0$$

19.
$$2^x \cdot x = 1$$

$$20. x^3 - 3x^2 = -3$$

21.
$$x^2 - \cos(\pi x) = 0$$

22.
$$x^2 - 4\sin(x) = 1$$

23.
$$x + \sin(x) - 2 = 0$$

24.
$$x^5 - 3x^2 + 1 = 0$$

25.
$$2x - \ln(x) = 7$$

26.
$$-x^2 + 6x + \arctan(x) - 7 = 0$$

$$27. \qquad -x + x \ln(x) = \ln(x)$$

28.
$$x = -\ln(x) + 2$$

29.
$$x^3 - 12x + 1 = 0$$

30.
$$x^2 = -e^x + 3$$

31.
$$4x = 2^x$$

$$32. x\sqrt{x+1} = 1$$

33.
$$x^3 - 7x - 7 = 0$$

34.
$$x^4 - x - 1 = 0$$

35.
$$x^3 - 8x - 8 = 0$$

$$36. x^5 - 2x^3 - 1 = 0$$

37.
$$-2x + \log(x) + 3 = 0$$

$$38. \qquad 2\log(x) = \frac{1}{x}$$

39.
$$\sin \frac{x}{2} + 1 = x^2$$

40.
$$e^x - 3 + x^2 = 0$$