# Revision on Loops, Functions

Minor in AI, IIT Ropar 10th June, 2025



# 1 AI Image Generation and Prompt Engineering

#### • Scenario:

- Instructor asks students to guess the prompt used to generate an AI image.
- Actual prompt: "show me how human life repeats in a loop."
- AI generated image: IT professionals working in a loop, not general human routines.

#### • Key Observations:

- **Prompt Bias:** The AI associated "loop" and "work" with IT/tech environments.
- Limitation Highlight: AI models default to tech-related outputs due to their training data.
- Lesson: AI needs better, more diverse training to represent broader human experiences.

#### • Student Activity:

- Reverse-engineer the prompt from the AI-generated image.
- Discuss why the image did not match the intended prompt.
- Experiment with different prompts and observe the AI's output.

# 2 Loops and Repetition

### 2.1 Real-World Analogy

- Human routines (commute, work, sleep) are repetitive and can be modeled as loops.
- Example: Finding the optimal path to work becomes a subconscious routine over time.

#### • Why use loops in programming?

- To automate repetitive tasks.
- To process data efficiently (e.g., lists, arrays).
- To implement algorithms that require iteration (e.g., searching, sorting).

### 2.2 Programming Loops Explained with Code

• For Loop: Used when the number of iterations is known.

```
# Print numbers from 1 to 5
for i in range(1, 6):
    print(i)
```

- range(start, stop, step) generates a sequence of numbers.
- The loop body executes once for each value in the sequence.
- While Loop: Used when the number of iterations is unknown, and you want to repeat as long as a condition is true.

```
# Simulate a user input loop until "exit" is entered
user_input = ""
while user_input.lower() != "exit":
    user_input = input("Type 'exit' to stop: ")
    print("You typed:", user_input)
```

- The loop continues until the condition becomes false.
- Be cautious to avoid infinite loops by ensuring the condition changes.

#### • Key Differences:

- for loops are ideal for iterating over a known sequence.
- while loops are best when the stopping condition is dynamic or unknown in advance.
- while loops require careful management to prevent infinite execution.

#### • Counter Concept:

- Use a counter variable to track the number of iterations.
- Example:

```
count = 0
while count < 5:
    print("Count:", count)
    count += 1</pre>
```

# 2.3 Hands-On Exercise: Printing Pairs of Input and Output

- Task: Given two lists, print each pair of input (features) and output (targets).
- Solution:

```
features = [1, 2, 3, 4, 5]
targets = [10, 20, 30, 40, 50]

for i in range(len(features)):
    print("Feature:", features[i], "Target:", targets[i])
```

#### • Key Points:

- Only one counter is needed if both lists have the same length.
- Print statements inside the loop display results for each iteration.
- This approach is common in data preprocessing and model training.

### 3 Gradient Descent and Loss Minimization

#### • Scenario:

- Simulate gradient descent by iteratively minimizing a loss value.
- Start with a high loss (e.g., 10) and reduce it by multiplying with a factor (e.g., 0.8) each iteration.

#### • Implementation with While Loop:

```
loss = 10.0
threshold = 0.1
iteration = 0
while loss > threshold:
    loss = loss * 0.8
    iteration += 1
    print("Iteration:", iteration, "Loss:", loss)
```

#### • Key Insights:

- while loops are suitable for optimization tasks where the stopping condition is based on a threshold.
- The loop continues until the loss is sufficiently small.
- This pattern is widely used in machine learning for model training.

# 4 Functions: Modularizing Code for Reusability

### 4.1 Why Use Functions?

- Reusability: Write code once and use it multiple times.
- Modularity: Break down complex problems into manageable parts.
- Maintainability: Easier to debug and update code.

### 4.2 Function Example: Mean Squared Error (MSE)

- Scenario: Calculate the mean squared error between true and predicted values.
- Function Definition:

```
def mean_squared_error(y_true, y_pred):
    error = 0
    for i in range(len(y_true)):
        error += (y_true[i] - y_pred[i]) ** 2
    return error / len(y_true)
```

• How to Use:

```
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
print("MSE:", mean_squared_error(y_true, y_pred))
```

#### • Explanation:

- The function iterates over each pair of true and predicted values.
- It accumulates the squared differences.
- Finally, it returns the average squared error.

### 4.3 Function Example: Prompt Analysis

- Scenario: Analyze an AI prompt and classify its content.
- Function Definition:

```
def analyze_prompt(prompt):
    if "loop" in prompt and "work" in prompt:
        return "Tech-related prompt"
    elif "routine" in prompt:
        return "General human routine prompt"
    else:
        return "Generic prompt"
```

#### • How to Use:

```
prompt = "show me how human life repeats in a loop"
print("Prompt analysis:", analyze_prompt(prompt))
```

# 5 Key Takeaways

#### • AI and Programming:

- AI models can reflect biases from their training data.
- Understanding these limitations is crucial for building better systems.

#### • Programming Fundamentals:

- Loops and functions are essential for modeling repetitive tasks and modularizing code.
- Choose the right loop based on whether the number of iterations is known.
- Functions help break down complex problems and promote code reuse.

#### • Real-World Application:

- Human routines and optimization problems can be modeled using loops and functions.
- Always test and debug code to ensure it matches the intended logic.

#### • Exam Questions:

- May ask to explain the difference between for and while loops.
- Could involve writing a function to calculate a metric (e.g., MSE).
- May require understanding how AI models can be biased based on training data.

# 6 Summary Table

| Concept             | Description                                                      |
|---------------------|------------------------------------------------------------------|
| For Loop            | Iterates a set number of times, ideal for known sequences        |
| While Loop          | Repeats while a condition is true, suitable for dynamic stopping |
| Function            | Modularizes code for reusability and maintainability             |
| AI Image Generation | Can reflect biases from training data                            |
| Prompt Engineering  | Crafting prompts to guide AI output                              |
| Gradient Descent    | Iterative optimization algorithm                                 |
| Mean Squared Error  | Metric for regression model evaluation                           |