Exercice noté 1

1. Conversions de base

• Déterminer la puissance de chaque chiffre pour un nombre de 5 chiffres en base 7.

7^{4}	7^{3}	7^{2}	7^{1}	7^{0}
4	3	2	1	0

• Convertir le nombre 2AA3₁₆ en décimal.

$$2AA3_{16} \Rightarrow base 10$$

 $A_{16} = 10_{10}$
 $2 \times 16^3 + 10 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 10915_{10}$

- Convertir le nombre 4B₁₆
 - o D'hexadécimal à décimal

$$B_{16} = 11_{10}\,$$

$$4 \times 16^{1} + 11 \times 16^{0} = 75_{10}$$

o D'hexadécimal à binaire

$$4_{16} = 100_2$$
 et $B_{16} = 1011_2$

$$4B_{16} = 1001011_2$$

o D'hexadécimal à octal

$$4B_{16} = 1001011_2 = 001001011_2$$

$$001_2 = 1_8 \ 001_2 = 1_8 \ \text{et} \ 011_2 = 3_8$$

Donc,
$$4B_{16} = 113_8$$

• Comment peut-on encoder l'entier 1011₁₀ avec la notation hexadécimale de JavaScript?

$$1011_{10} = 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^1 + 2^0 = 1111110011_2 = 001111110011_2$$

$$0011_2 = 3_{16} \quad 1111_2 = F_{16} \quad 0011_2 = 3_{16}$$

Donc, 1011_{10} en JavaScript = 0x3F3

• Quelle est la valeur de 0xEE?

$$E_{16} = 1110_2 \,$$

Donc,
$$0xEE = 111011110_2$$

$$11101110_2 = 2^7 + 2^6 + 2^5 + 2^3 + 2^2 + 2^1 = 238_{10}$$

2. Représenter un nombre 17₁₀ selon la convention non signée sur 5 bits

$$17_{10} = 2^4 + 2^0 = 1001_2$$

Sur 5 bits \rightarrow 01001₂

- 3. Quelles valeurs sont encodées par la convention complément à 2 sur 5 bits par les chaines binaires suivantes?
- 01101₂
 - 1. Premier chiffre significatif = 0, nombre positif
 - 2. On inverse les 0 et les 1
 - a. $01101 \rightarrow 10010$
 - 3. On ajoute 1 à ce nouveau nombre

a.
$$10010 + 1 = 10011$$

4. On convertit ce nombre en décimal

a.
$$2^4 + 2^1 + 2^0 = 19_{10}$$

- 10011₂
 - 1. Premier chiffre significatif = 1, nombre négatif
 - 2. On inverse les 0 et les 1
 - a. $10011 \rightarrow 01100$
 - 3. On ajoute 1 à ce nouveau nombre

a.
$$01100 + 1 = 01101$$

4. On convertit ce nombre en décimal (sans oublier le signe négatif)

a.
$$-(2^3 + 2^2 + 2^0) = -13_{10}$$

- 4. Rappeler l'anatomie d'un nombre à virgule flottante précision double IEEE 754 (64 bits). Quel est l'encodage en précision double IEEE 754 (64 bits) des nombres points flottants 3,15 et -4? Donnez le contenu des champs s, e et f.
- Format d'encodage à précision double IEEE 754 sur 64 bits

1 bit	11 bits	52 bits
s (signe)	<i>e</i> (exposant de la notation scientifique + 1023 ₁₀)	f (partie fraction)

- Encodage IEEE 754 de 3,15₁₀
 - o Convertir 3 en binaire
 - $\mathbf{3}_{10} = 2^1 + 2^0 = 11$
 - O Convertir les chiffres après la virgule à l'aide de la multiplication successive
 - $0.15 \times 2 = 0.3$
 - $0.3 \times 2 = 0.6$
 - $0.6 \times 2 = 1.2$
 - $0.2 \times 2 = 0.4$
 - o Prendre les chiffres <u>devant</u> la virgule pour former la partie f de l'encodage
 - **1**1, 0010 ...
 - o Normaliser la notation
 - 11, 0010 ... \rightarrow 1,10010 ... e^1
 - O Trouver la partie e de l'encodage
 - $\bullet \quad 1 + 1023 = 1024_{10}$
 - $1024 = 2^{10} = 100000000000_2$
 - o Contenu des champs de l'encodage
 - s:0 (nombre positif)
 - *e*: 10000000000
 - *f*: 10010...
 - o Encodage IEEE 754 complet de 3,15
 - **•** 0100000000010010...
- Encodage IEEE 754 de -4
 - \circ $-4_{10} = 100_2$
 - \circ 100 \rightarrow 1,00e²
 - $\circ \quad e = 2 + 1023_{10} = 1025_{10} = 2^{10} + 2^0 = 10000000001_2$
 - Contenus des champs de l'encodage
 - s:1 (nombre négatif)
 - *e* : 10000000001
 - *f*:00...0
 - o Encodage IEEE 754 complet de -4
 - **1**1000000000100...0

5. Trouvez la plus petite expression JavaScript (ayant le minimum de caractères incluant les parenthèses et symboles, et pas de blancs) contenant les nombres 10, 2, 3, et 4 (exactement une fois chaque), et les opérateurs +, -et * (autant de fois que vous voulez), dont la valeur est 9.

2*(10-4)-3=9