MA327 Homework 5

April 20, 2022

- 1. Determine the asymptotic curves and the lines of curvature of the helicoid $x = v \cos u$, $y = v \sin u$, z = cu, and show that its mean curvature is zero.
- 2. Determine the asymptotic curves of the catenoid

$$\mathbf{x}(u, v) = (\cosh v \cos u, \cosh v \sin u, v).$$

3. Consider the parametrized surface (Enneper's surface)

$$\mathbf{x}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right)$$

and show that (a) The coefficients of the first fundamental form are $E=G=(1+u^2+v^2)^2$ and F=0. (b) The coefficients of the second fundamental form are e=2, g=-2 and f=0. (c) The principal curvatures are $k_1=\frac{2}{(1+u^2+v^2)^2}$ and $k_2=-\frac{2}{(1+u^2+v^2)^2}$. (d) The lines of curvatures are the coordinate curves. (e) The asymptotic curves are u+v=Const. and u-v=Const.

- 4. (a) Determine an equation for the plane curve C, which is such that the segment of the tangent line between the point of tangency and some line r in the plane, which does not meet the curve, is constantly equal to 1 (see Q6 in Homework 1). (b) Rotate C about the line r; determine if the "surface" of revolution thus obtained is regular and find out a parametrization in a neighborhood of a regular point. (c) Show that the Gaussian curvature of any regular point of this surface is -1. (We call this surface **pseudo-sphere**.)
- 5. Consider the surface obtained by rotating the curve $y = x^3, -1 < x < 1$ about the line x = 1. Show that the points obtained by rotation of the origin (0,0) of the curve are planar points of the surface.
- **6.** Show that a surface which is compact (i.e. it is bounded and closed in \mathbb{R}^3) has an elliptic point.
- 7. Prove that there are no compact minimal surfaces in \mathbb{R}^3 .
- 8. When two differentiable functions $f,g:U\subset\mathbb{R}^2\to\mathbb{R}$ satisfy the Cauchy-Riemann equations

$$\frac{\partial f}{\partial u} = \frac{\partial g}{\partial v}, \quad \frac{\partial f}{\partial v} = -\frac{\partial g}{\partial u},$$

they are easily seen to be harmonic; in this situation, f and g are said to be harmonic conjugate. Let \mathbf{x} and \mathbf{y} be isothermal parametrizations of minimal surfaces such that their component functions are pairwise harmonic conjugate; then \mathbf{x} and \mathbf{y} are called conjugate minimal surfaces. Prove that

1

(a) The helicoid and the catenoid are conjugate minimal surfaces.

(b) Given two conjugate minimal surfaces, \mathbf{x} and \mathbf{y} , the surface

$$\mathbf{z} = (\cos t)\mathbf{x} + (\sin t)\mathbf{y}$$

is again minimal for all $t \in \mathbb{R}$.

(c) All surfaces of the one-parameter family in (b) have the same first fundamental form: $E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = \langle \mathbf{y}_v, \mathbf{y}_v \rangle, F = 0, G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = \langle \mathbf{y}_u, \mathbf{y}_u \rangle.$

Thus, any two conjugate minimal surfaces can be joined through a one-parameter family of minimal surfaces, and the first fundamental form of this family is independent of t.