Math 637: Homework Chapter 3

1. (4.1.1)

Let G act on the set A. Prove that if $a, b \in A$ and $b = g \cdot a$ for some $g \in G$, then $G_b = gG_ag^{-1}$. Deduce that if G acts transitively on A then the kernel of the action is $\bigcap_{a \in G} gG_ag^{-1}$.

Proof. Let $x \in G_b$ so that x fixes b. Then $g^{-1}xg \cdot a = g^{-1}x \cdot b = g^{-1} \cdot b = a$. Hence $g^{-1}xg \in G_a$ which entails $x \in gG_ag^{-1}$.

Now let $y \in G_a$ so that $gyg^{-1} \in gG_ag^{-1}$. Then $gyg^{-1} \cdot b = gy \cdot a = g \cdot a = b$ and so we have $gyg^{-1} \in G_b$. So we have shown that $G_b = gG_ag^{-1}$.

Finally consider if the action is transitive on A and consider some $k \in G$ in the kernel of the action. Let $g \in G$ and let $b = g \cdot a$. Then $gG_ag^{-1} = G_b$ where $b = g \cdot a$. Since $k \in G_b$ for every b then we have

$$k \in \bigcap_{g \in G} gG_a g^{-1}$$

So interestingly, the requirement that the action is transitive is not needed to show that the kernel is contained in $\bigcap_{a \in G} gG_ag^{-1}$. Now for the reverse containment, suppose $k \in \bigcap_{g \in G} gG_ag^{-1}$, and let $b \in A$.

Since the action is transitive we let $g^* \in G$ such that $g^* \cdot a = b$. Then $k \in g^*G_a(g^*)^{-1} = G_b$ and hence k fixes b. So $\bigcap_{a \in G} gG_ag^{-1}$ is contained in the kernel, and hence must be the kernel.

2.(4.1.3)

Assume G is an abelian, transitive subgroup of S_A . Show that $\sigma(a) \neq a$ for all $\sigma \in G - \{1\}$ and $a \in A$. Deduce that |G| = |A|.

Proof. For any $a \in A$ and $\sigma \in G - \{1\}$, we have $\sigma \notin \bigcap_{\sigma \in G} \tau G_a \tau^{-1}$ and hence there must be some particular

 τ such that $\sigma \notin \tau G_a \tau^{-1} = G_a$. This last equation follows from the fact that G is abelian. But since this now tells us that σ does not fix a then we have the desired result.

To see that |G| = |A| we take an arbitrary $a \in A$ and prove that the function $f_a(g) = g \cdot a$ is a bijection. Because the action is transitive we already have that the function is surjective. Now if $f(g_1) = f(g_2) = g_1 \cdot a = g_2 \cdot a$ then we have $a = g_1^{-1}g_2 \cdot a$ which from the above entails $g_1^{-1}g_2 = 1$ and then $g_1 = g_2$.

3. (4.1.10(a))

Let H and K be subgroups of G. For each $x \in G$ define the HK double coset of x in G to be

$$HxK = \{hxk|h \in H, k \in K\}$$

Prove that HxK is the union of the left cosets x_1K, \ldots, x_nK where $\{x_1K, \ldots, x_nK\}$ is the orbit containing xK of H acting by left multiplication on the set of left cosets of K.

Proof. To show that HxK is the union of x_1K, \ldots, x_nK , let $hxk \in HxK$. We need to find some x_iK such that $hxk \in x_iK$. However, the x_1K, \ldots, x_nK is the orbit of H acting on xK by left multiplication, so $h \cdot xK = (hx)K = x_iK$ for some i, and so there are k' and k'' such that $hxk' = x_ik''$. Then

$$hx = x_i k''(k')^{-1} \Longrightarrow$$
$$hxk = x_i k''(k')^{-1} k \in x_i K$$

and we are done. \Box

4. (4.2.2)

List the elements of S_3 as $1, (1\ 2), (2\ 3), (1\ 3), (1\ 2\ 3), (1\ 3\ 2)$ and label these with the integers 1, 2, 3, 4, 5, 6, respectively. Exhibit the image of each element of S_3 under the left regular representation of S_3 into S_6 .

Calculation: To find the image of 1 we find the action of 1 on all of the group elements:

$$1 \mapsto \begin{pmatrix} 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \\ 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \end{pmatrix}$$

or written with the given labels,

$$1 \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

which is just the identity permutation. So $1 \mapsto 1$. Continuing likewise,

$$2 = (1\ 2) \mapsto \begin{pmatrix} 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \\ (1\ 2) & 1 & (1\ 2\ 3) & (1\ 3\ 2) & (2\ 3) & (1\ 3) \end{pmatrix} = (1\ 2)(3\ 5)(4\ 6)$$

$$3 = (2\ 3) \mapsto \begin{pmatrix} 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \\ (2\ 3) & (1\ 3\ 2) & 1 & (1\ 2\ 3) & (1\ 3) & (1\ 2) \end{pmatrix} = (1\ 3)(2\ 6)(4\ 5)$$

$$4 = (1\ 3) \mapsto \begin{pmatrix} 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \\ (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) & 1 & (1\ 2) & (2\ 3) \end{pmatrix} = (1\ 4)(2\ 5)(3\ 6)$$

$$5 = (1\ 2\ 3) \mapsto \begin{pmatrix} 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \\ (1\ 2\ 3) & (1\ 3) & (1\ 2) & (2\ 3) & (1\ 3\ 2) & 1 \end{pmatrix} = (1\ 5\ 6)(2\ 4\ 3)$$

$$6 = (1\ 3\ 2) \mapsto \begin{pmatrix} 1 & (1\ 2) & (2\ 3) & (1\ 3) & (1\ 2\ 3) & (1\ 3\ 2) \\ (1\ 3\ 2) & (2\ 3) & (1\ 3) & (1\ 2) & 1 & (1\ 2\ 3) \end{pmatrix} = (1\ 6\ 5)(2\ 3\ 4)$$

5. (4.2.8)

Prove that if H has finite index n then there is a normal subgroup K of G with $K \leq H$ and $|G:K| \leq n!$.

Proof. Let G/H be the set of cosets of H, and define the group action on this G-set of left-multiplication,

$$g \cdot (g'H) = (gg')H$$

If we label the cosets H_1, \ldots, H_n then we define the following homomorphism $\varphi: G \to S_n$. We map $\varphi(g) = \sigma$ where $\sigma(i) = j$ if according to the action, $g \cdot H_i = H_j$. As the kernel of a homomorphism, $\ker \varphi$ is a normal subgroup of G and is contained in H. So we take $K = \ker \varphi$. Moreover by the first isomorphism theorem, G/K is isomorphic to the image of φ which is a subgroup of S_n and therefore has order bounded by n!. Then $|G/K| = |G:K| \le n!$.

6. (4.2.9)

Prove that if p is prime and G is a group of order p^{α} for some $\alpha \in \mathbb{Z}^+$ then every subgroup of index p is normal in G. Deduce that every group of order p^2 has a normal subgroup of order p.

Proof. p is the smallest prime dividing the order of the group, hence by corollary 5 the subgroup is normal.

Now consider any non-identity element in a group of order p^2 . It either generates the whole group or a subgroup of order p. If this element generates all of G then G is cyclic and hence abelian, so every subgroup is normal. And moreover, since G is cyclic, then for any divisor of the order of G there is a subgroup of order that divisor. So there is a normal subgroup of order p.

On the other hand if the chosen element has order p then the subgroup it generates satisfies the conditions of the first claim in this exercise. Hence it is a normal subgroup of order p.

7. (4.2.13)

Prove that if |G| = 2k where k is odd then G has a subgroup of index 2. [Use Cauchy's Theorem to produce an element of order 2 and then use the preceding two exercises.]

Proof. By Cauchy's Theorem, since 2 is prime and divides |G|, then there must be an element of order 2. By the previous exercises, we take this element to be x and since |G|/|x| = k which is odd, then $\pi(x)$ is an odd permutation. Here π is the left regular permutation representation. Now again by the previous exercises since $\pi(G)$ has an odd element then G has a subgroup of index 2.

8. (4.3.2(b))

Find all the conjugacy classes and their sizes in Q_8 .

Proof. $\{1\}, \{-1\}, \{i, -i\}, \{j, -j\}, \{k, -k\}$ with apparent sizes 1, 1, 2, 2, 2 which makes sense since every one of these both divides the order of the group and sums to the order of the group—which is what the class equation requires.

9. (4.3.5)

If the center of G is of index n, prove that every conjugacy class has at most n elements.

Proof. We know that in general for any element $g \in G$ that $Z(G) \leq C_G(g) \leq G$ and therefore since the index is finite $|G:Z(G)| = |G:C_G(g)| \cdot |C_G(g):Z(G)|$. Each of these must be positive integers and

$$|G: C_G(g)| = n/|C_G(g): Z(G)| \le n$$

10. (4.3.20)

Let $\sigma \in A_n$. Show that all elements in the conjugacy class of σ in S_n are conjugate in A_n if and only if σ commutes with an odd permutation. [Use the preceding exercise. This says that if H is a normal subgroup of G and K is a conjugacy class of G contained in H and $x \in K$. Then K is a union of K conjugacy classes of equal size in K where K is either a single conjugacy class under the action of K or is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K in K is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K is a union of two classes of the same size in K in K is a union of K in K is a union of K in K in

Proof. Suppose $\sigma \in A_n$. Suppose that every τ in the conjugacy class of σ in S_n is conjugate in A_n . Then in particular $(1\ 2)\sigma(1\ 2) = \tau$ must be conjugate to σ in A_n . Hence $\tau = h\sigma h^{-1}$ with $h \in A_n$ and therefore

$$(1\ 2)\sigma(1\ 2) = h\sigma h^{-1} \quad \Rightarrow$$

$$\sigma(1\ 2)h = (1\ 2)h\sigma$$

where $(1\ 2)h$ is odd.

For the converse suppose that σ commutes with g which is odd. Now let τ be conjugate to σ in S_n so that there exists some $h \in S_n$ such that $h\sigma h^{-1} = \tau$. We would like to find some even h' such that $h'\sigma h'^{-1} = \tau$.

11. (4.3.22)

Show that if n is odd then the set of all n-cycles consists of two conjugacy classes of equal size in A_n .

Proof. We use the previous exercise (21) which establishes that if a conjugacy class's elements have cycle types only of distinct odd integers, then it consists of two conjugacy classes. Since the conjugacy class of an n-cycle only has n-cycles, then the cycle type is just n which is a collection of distinct odd integers. Hence this set consists of two conjugacy classes.

From problem 19, we can infer that the conjugacy classes are of equal size. This is because n is odd and therefore the n-cycles are even permutations.

12. (4.3.34)

Prove that if p is a prime and P is a subgroup of S_p of order p, then $|N_{S_p}(P)| = p(p-1)$. [Argue that every conjugate of P contains exactly p-1 different p-cycles and use the formula for the number of p-cycles to compute the index of $N_{S_p}(P)$ in S_p .]

Proof. Since the order of P is prime then every non-identity element has order a p. But a permutation has order a prime if and only if it is a p-cycle, so P consists of p-1 cycles. Any conjugate of a p-cycle has the same cycle type hence is a p-cycle, so for any $\sigma \in S_p$, the set $\sigma P \sigma^{-1}$ consists of p-1 distinct p-cycles. (Distinctness follows from the fact that cosets partition a group into equal-size partitions.)

Since the number of p-cycles is given by

$$\frac{p \cdot (p-1) \cdots (p-p+1)}{p} = (p-1)!$$

then the number of conjugates of P is $\frac{(p-1)!}{p-1} = (p-2)!$. Then we have $|S_p:N_{S_p}(P)| = (p-2)!$. Hence

$$p!/|N_{S_p}(P)| = (p-2)! \implies$$

$$|N_{S_n}(P)| = p(p-1)$$

13. (4.4.2)

Prove that if G is abelian group of order pq where p and q are distinct primes, then G is cyclic. [Use Cauchy's Theorem to produce elements of order p and q and consider the order of their product.]

Proof. By Cauchy's theorem there is an element of order p, call it x, and an element of order q, call it y. Since G is abelian the order of xy is the least common multiple of p, q which is pq since these are prime. Then |xy| = pq and so G is cyclic.

14. (4.4.7)

If H is the unique subgroup of a given order in a group G prove H is characteristic in G.

Proof. For any automorphism of G, call it φ , the image $\varphi(H)$ is a subgroup of G of order |H| and hence $\varphi(H) = H$. This shows H is characteristic.

15. (4.4.10)

Let G be a group, let A be an abelian normal subgroup of G, and write $\overline{G} = G/A$. Show that \overline{G} acts (on the left) by conjugation on A by $\overline{g} \cdot a = gag^{-1}$, where g is any representative of the coset \overline{g} (in particular, show that this action is well defined). Give an explicit example to show that this action is not well defined if A is non-abelian.

Proof. First we show that the action is well-defined, since it is given in terms of representatives of cosets. If $a, b \in G$ such that $\overline{a} = \overline{b}$, and if $x \in A$, then first notice that aA = bA so that there exists some $y \in A$ such that a = by. Next, the penultimate equality below follows because A is assumed to be an abelian subgroup.

$$\overline{a}\cdot x=axa^{-1}=byx(by)^{-1}=bxb^{-1}=\overline{b}\cdot x$$

Since the action is well-defined, showing that it is a group action is straight-forward. Since A is the identity and $A \cdot x = (eA) \cdot x = exe^{-1} = x$ then the identity acts trivially. If $a, b \in G$ then $a \cdot b \cdot x = abxb^{-1}a^{-1} = (ab) \cdot x$.

For an example of a non-abelian subgroup take $G = S_4$ and $A = \langle (1\ 2), (1\ 2\ 3) \rangle$. Then $(1\ 4)A \cdot (1\ 4) = (1\ 4)(1\ 4)(1\ 4) = (1\ 4)$. However, $(1\ 4)(1\ 2) = (1\ 2\ 4) \in (1\ 4)A$ and yet $(1\ 2\ 4)A \cdot (1\ 4) = (1\ 2\ 4)(1\ 4)(4\ 2\ 1) = (2\ 1)$. Hence the action is not well-defined.

16. (4.4.12)

Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 then $H \leq Z(G)$.

Proof. (Skipped)

17	(4	5	1)	١
т.,	(±.	·U	٠т,	,

Let G be a finite group and p a prime.

Prove that if $P \in Syl_p(G)$ and H is a subgroup of G containing P then $P \in Syl_p(H)$. Give an example to show that, in general, a Sylow p-subgroup of G need not be a Sylow p-subgroup of G.

Proof. Since $P \leq H$ then we must have that |P| divides |H|. Since $|P| = p^{\alpha}$ then we must have $|H| = p^{\alpha+k}m$ for some $k \geq 0$ and $p \nmid m$, since it is always possible to group all factors of p into a single factor $p^{\alpha+k}$. This makes P a Sylow p-subgroup of H.

With the group $G = S_4$ and the subgroup $H = \langle (1 \ 2) \rangle$ we have that the subgroup P = H is a Sylow 2-subgroup of H. However, because $|S_4| = 24 = 2^3 \cdot 3$ then a Sylow 2-subgroup of S_4 would have order 8. Hence P cannot be a Sylow 2-subgroup of S_4 .

18. (4.5.5)

Show that a Sylow p-subgroup of D_{2n} is cyclic and normal for every odd prime p.

Proof. Suppose P is a Sylow p-subgroup, so that $|P| = p^{\alpha}$. Then P cannot have any element of even order and cannot have any reflection. Hence P is a subgroup of the group of rotations $R \leq D_{2n}$, hence P is cyclic. Therefore P is the unique subgroup of R of order p^{α} and hence the unique such subgroup of D_{2n} . So P is normal in D_{2n} .

19. (4.5.13)

Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing its order.

Proof. Since $56 = 2^3 \cdot 7$ then

 $n_2|7$

 $n_7|8$

therefore $n_2 \in \{1,7\}$ and $n_7 \in \{1,2,4,8\}$. Moreover $n_7 \equiv 1 \mod 7$ so then we only have $n_7 \in \{1,8\}$. If $n_2 = 1$ then already the Sylow 2-subgroup is normal so suppose $n_2 = 7$. Then there are $7 \cdot 7 = 49$ non-identity elements in these 7 different Sylow 2-subgroup, leaving 56 - 49 = 7 elements remaining. Hence there can only be one Sylow 7-subgroup and therefore this is one is normal.

20. (4.5.23)

Prove that if |G| = 462 then G is not simple.

Proof. (Skipped)

21. (4.5.32)

Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If $P \subseteq H$ and $H \subseteq K$, prove that P is normal in K. Deduce that if $P \in Syl_p(G)$ and $H = N_G(P)$, then $N_G(H) = H$.

Proof. (Skipped)

22.	/ A	\vdash	44	\
77	14	ר	44	1

Let p be the smallest prime dividing the order of the finite group G. If $P \in Syl_p(G)$ and P is cyclic prove that $N_G(P) = C_G(P)$.

Proof. (Skipped) \Box