Chapter 2

# Inference in Regression and Correlation Analysis

Instructor: Li, Caixia

## **Outline**

- Inferences Concerning  $\beta_1$ ,  $\beta_0$ , and EY in the Normal Error Regression Model
- Prediction Interval of New Observation
- Confidence Band for Regression Line
- ANVOA (Analysis of Variance) Approach to Regression Analysis
- General linear test approach
- Normal Correlation Models and Inferences

# 2.1 Inferences Concerning $\beta_1$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
,  $i=1,2,...n$   
with  $\varepsilon_i$  are i.i.d and  $\varepsilon_i \sim N(0, \sigma^2)$ .

$$b_{1} = \frac{SS_{XY}}{SS_{XX}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}, \qquad b_{0} = \overline{Y} - b_{1}\overline{X}$$

$$\begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \sim N \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \frac{\sigma^2}{SS_{XX}} \begin{pmatrix} \frac{1}{n} \sum X_i^2 & -\overline{X} \\ -\overline{X} & 1 \end{pmatrix}$$

$$\frac{SSE}{\sigma^2} = \frac{(n-2)MSE}{\sigma^2} \sim \chi^2(n-2), \quad (b_0, b_1) \text{ and } SSE \text{ are independent.}$$

## Recaps

#### Structure of t distribution

 $Z\sim N(0, 1)$ ,  $V\sim \chi^2(r)$ , Z and V are independent, then

$$\frac{Z}{\sqrt{V/r}} \sim t(r).$$

#### Structure of F distribution

 $U \sim \chi^2(\mathbf{r}_1)$ ,  $V \sim \chi^2(\mathbf{r}_2)$ , U and V are independent, then

$$\frac{U/r_1}{V/r_2} \sim F(r_1, r_2).$$

## Sampling distribution of $b_1$ - Normal Error Model

$$b_1 \sim N\left(\beta_1, \frac{\sigma^2}{SS_{XX}}\right) \Rightarrow \frac{b_1 - \beta_1}{\sqrt{\sigma^2/SS_{XX}}} = \frac{b_1 - \beta_1}{\sigma\{b_1\}} \sim N(0,1)$$

$$\frac{(n-2)MSE}{\sigma^2} \sim \chi_{n-2}^2$$
 also:  $b_1$  and  $MSE$  independent

$$\Rightarrow \frac{\left\lfloor \frac{b_1 - \beta_1}{\sqrt{\sigma^2/SS_{XX}}} \right\rfloor}{\sqrt{\frac{(n-2)MSE}{\sigma^2}/(n-2)}} = \frac{b_1 - \beta_1}{\sqrt{MSE/SS_{XX}}} = \frac{b_1 - \beta_1}{s\{b_1\}} \sim t(n-2)$$

where 
$$\sigma\{b_1\} = \sqrt{\sigma^2/SS_{XX}}$$
,  $s\{b_1\} = \sqrt{MSE/SS_{XX}}$ 

$$\Pr\left\{t\left(\alpha/2; n-2\right) < \frac{b_1 - \beta_1}{s\left\{b_1\right\}} < t\left(1 - \left(\alpha/2\right); n-2\right)\right\} = 1 - \alpha$$

$$t\left(\alpha/2; n-2\right) = -t\left(1 - \left(\alpha/2\right); n-2\right)$$

# Confidence interval of $\beta_1$

- $(1-\alpha)*100\%$  Confidence interval of  $\beta_1$  $b_1 \pm t \left(1-(\alpha/2);n-2\right)s\{b_1\}$
- Toluca Company example, we obtain:

$$SSE = 54825, SS_{XX} = 19800, \quad MSE = \frac{54,825}{23} = 2,384$$

$$s^{2}\{b_{1}\} = \frac{MSE}{\sum (X_{i} - \bar{X})^{2}} = \frac{2,384}{19,800} = .12040$$

$$s\{b_{1}\} = .3470$$

- Giving  $\alpha = 0.05$ , t(0.975; 23) = 2.069.
- 95% Confidence interval of  $\beta_1$

$$3.5702 - 2.069(.3470) \le \beta_1 \le 3.5702 + 2.069(.3470)$$
  
 $2.85 \le \beta_1 \le 4.29$ 

# Hypothesis Test for $\beta_1$

ullet Tests concerning  $eta_1$  (the slope) are often of interest, particularly

$$H_0: \beta_1 = 0$$
  $H_A: \beta_1 \neq 0$ 

- The null hypothesis model  $Y_i = \beta_0 + \varepsilon_i$ ,
  - implies that there is no linear relationship between Y and X.
  - Note the means of all the Yi 's are equal at all levels of Xi .
- Test statistic  $t^* = \frac{b_1 0}{1 + \frac{b_2}{2}}$

$$t^* = \frac{b_1 - 0}{s\{b_1\}} \stackrel{H_0}{\sim} t(n-2)$$

Decision rule

if 
$$|t^*| \le t(1 - \alpha/2; n - 2)$$
, accept  $H_0$   
if  $|t^*| > t(1 - \alpha/2; n - 2)$ , reject  $H_0$ 

# Hypothesis Test for $\beta_1$

- For Toluca Company example, we obtain:  $b_1 = 3.5702$ , and  $s\{b1\} = .3470$
- Giving  $\alpha = 0.05$ , t(0.975; 23) = 2.069.  $|t^*| = |3.5702/.3470| = 10.29 > 2.069$ .
- P value  $\Pr\{|t(23)| \ge 10.29\} = 2\Pr\{t(23) \ge 10.29\} = 4.45 \times 10^{-10}$
- Reject  $H_0$ , we conclude that  $\beta_1 \neq 0$  or that there is a linear association between work hours and lot size.

# Hypothesis Test for $\beta_1$

2-sided test: 
$$H_0: \beta_1 = \beta_{10}$$
  $H_A: \beta_1 \neq \beta_{10}$  (Almost always  $\beta_{10} = 0$ )

Test Statistic: 
$$t^* = \frac{b_1 - \beta_{10}}{s\{b_1\}}$$
 Note: if  $\beta_{10} = 0 \Rightarrow t^* = \frac{b_1}{s\{b_1\}}$ 

Decision Rule: 
$$|t^*| \ge t(1-\alpha/2; n-2) \Rightarrow \text{Reject } H_0$$
 otherwise Fail to Reject

P-value: 
$$2\Pr\{t(n-2) \ge |t^*|\}$$

Upper-tail test: 
$$H_0: \beta_1 \le \beta_{10}$$
  $H_A: \beta_1 > \beta_{10}$ 

Decision Rule: 
$$t^* \ge t(1-\alpha; n-2) \Rightarrow \text{Reject } H_0$$
 otherwise Fail to Reject

P-value: 
$$\Pr\{t(n-2) \ge t^*\}$$

Lower-tail test: 
$$H_0: \beta_1 \ge \beta_{10}$$
  $H_A: \beta_1 < \beta_{10}$ 

Decision Rule: 
$$t^* \le -t(1-\alpha; n-2) \Rightarrow \text{Reject } H_0$$
 otherwise Fail to Reject

P-value: 
$$\Pr\{t(n-2) \le t^*\}$$

# 2.2 Inferences Concerning $\beta_0$

$$b_0 = \overline{Y} - b_1 \overline{X} \sim N \left( \beta_0, \sigma^2 \frac{\sum X_i^2}{nSS_{XX}} \right) = N \left( \beta_0, \sigma^2 \left( \frac{1}{n} + \frac{\overline{X}^2}{SS_{XX}} \right) \right)$$

$$\frac{(n-2)MSE}{\sigma^2} \sim \chi_{n-2}^2$$
 also:  $b_0$  and  $MSE$  independent

$$\Rightarrow \frac{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{SS_{XX}}\right)}}{\sqrt{\frac{(n-2)MSE}{\sigma^2} / (n-2)}} = \frac{b_0 - \beta_0}{\sqrt{MSE \left(\frac{1}{n} + \frac{\overline{X}^2}{SS_{XX}}\right)}} = \frac{b_0 - \beta_0}{s \left\{b_0\right\}} \sim t(n-2)$$

where estimated standard error:  $s\{b_0\} = \sqrt{MSE\left(\frac{1}{n} + \frac{X^2}{SS_{XX}}\right)}$ 

# Inferences Concerning $\beta_0$

$$\Pr\left\{\left|\frac{b_0 - \beta_0}{s\{b_0\}}\right| < t\left(1 - \alpha/2; n - 2\right)\right\} = 1 - \alpha$$

•  $(1-\alpha)*100\%$  Confidence interval of  $\beta_0$ 

$$b_0 \pm t(1-(\alpha/2);n-2)s\{b_0\}$$

• Hypothesis Test for  $\beta_0$ 

$$H_{0}: \beta_{0} = \beta_{00} \quad H_{A}: \beta_{0} \neq \beta_{00}$$

$$t^{*} = \frac{b_{0} - \beta_{00}}{s\{b_{0}\}} \stackrel{H_{0}}{\sim} t(n-2),$$

Reject 
$$H_0$$
 if  $|t^*| \ge t(1-(\alpha/2);n-2)$ 

# Inferences Concerning $\beta_0$

• For Toluca Company example, we obtain:

$$s^{2}\{b_{0}\} = MSE\left[\frac{1}{n} + \frac{\bar{X}^{2}}{\sum(X_{i} - \bar{X})^{2}}\right] = 2,384\left[\frac{1}{25} + \frac{(70.00)^{2}}{19,800}\right] = 685.34$$
  
$$s\{b_{0}\} = 26.18$$

- Giving  $\alpha = 0.10$ , t(0.95; 23) = 1.714.
- 90% Confidence interval of  $\beta_0$ 62.37 – 1.714(26.18)  $\leq \beta_0 \leq$  62.37 + 1.714(26.18)  $17.5 \leq \beta_0 \leq 107.2$
- Giving  $\alpha = 0.05$ , t(0.975; 23) = 2.069.  $t^* = \frac{b_0}{s\{b_0\}} = \frac{62.37}{26.18} = 2.382 > 2.069 \quad p=Pr(|t(23)|>2.069)=0.0259$ 
  - Reject  $H_0$ :  $\beta_0 = 0$ , we conclude that  $\beta_0 \neq 0$ .

## 2.3 Some Considerations on Making Inferences

- Effects of departures from normality of the  $Y_i$ 
  - The estimators of  $\beta_0$  and  $\beta_1$  have the property of asymptotic normality increases (under general conditions)
- Spacing of the *X* levels
  - The variances of  $b_0$  and  $b_1$  (for a given n and  $\sigma^2$ ) depend on the spacing of X
  - The larger is  $SS_{XX}$  and the smaller is the variance
- Power of Tests
  - Power=P{Reject H0} =  $P\{|t^*| > t(1 \alpha/2; n 2)|\delta\}$
  - Noncentral *t* distribution

# 2.4 Interval Estimation of $E\{Y_n\}$

- Interested in estimating the mean response for particular  $X_h$  $E\{Y_h\} = \beta_0 + \beta_1 X_h$
- The unbiased point estimator of  $E\{Y_h\}$

$$\hat{Y}_h = b_0 + b_1 X_h = \overline{Y} + b_1 \left( X_h - \overline{X} \right)$$

$$E(\hat{Y}_h) = \beta_0 + \beta_1 X_h = E(Y_h),$$

$$\operatorname{var}(\hat{Y}_h) = b_0 + b_1 X_h = \operatorname{var}(\overline{Y}) + \operatorname{var}(b_1) \left( X_h - \overline{X} \right)^2 = \sigma^2 \left( \frac{1}{n} + \frac{(X_h - X)^2}{SS_{XX}} \right)$$

or  $var(\hat{Y}_h) = var(b_0) + X_h^2 var(b_1) + 2X_h cov(b_0, b_1)$ 

$$= \left(\frac{1}{n} + \frac{\overline{X}^2}{SS_{XX}}\right)\sigma^2 + \frac{X_h^2}{SS_{XX}}\sigma^2 - \frac{2X_h\overline{X}}{SS_{XX}}\sigma^2 = \left[\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right]\sigma^2$$

since 
$$\begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \sim N \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \frac{\sigma^2}{SS_{XX}} \begin{pmatrix} \frac{1}{n} \sum X_i^2 & -\overline{X} \\ -\overline{X} & 1 \end{pmatrix}$$

# Interval Estimation of $E\{Y_h\}$

$$\hat{Y}_h = b_0 + b_1 X_h \sim N \left( E(Y_h) = \beta_0 + \beta_1 X_h, \left[ \frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}} \right] \sigma^2 \right).$$

**Remark**: The variance is smaller near the mean of *X*.

$$\frac{(n-2)MSE}{\sigma^2} \sim \chi_{n-2}^2$$
 also:  $(b_0, b_1, \hat{Y}_h)$  and  $MSE$  independent

$$\Rightarrow \frac{\frac{Y_h - E(Y_h)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right)}}{\sqrt{\frac{(n-2)MSE}{\sigma^2} / (n-2)}} = \frac{\hat{Y_h} - E(Y_h)}{\sqrt{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right)}} = \frac{\hat{Y_h} - E(Y_h)}{s\left\{\hat{Y_h}\right\}} \sim t\left(n-2\right)$$

# Interval Estimation of $E\{Y_h\}$

$$\Pr\left\{\left|\frac{\hat{Y}_h - E(Y_h)}{s\{\hat{Y}_h\}}\right| < t\left(1 - (\alpha/2); n - 2\right)\right\} = 1 - \alpha$$

 $(1-\alpha)*100\%$  Confidence interval of  $E\{Y_h\} = \beta_0 + \beta_1 X_h$ 

$$\hat{Y}_h \pm t \left(1 - \alpha / 2; n - 2\right) s \left\{\hat{Y}_h\right\} \qquad s \left\{\hat{Y}_h\right\} = \sqrt{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right)}$$

Suppose the Toluca Company wishes to estimate  $E\{Y_h\}$  at  $X_h = 100$  units with a 90 percent confidence interval, t(.95; 23) = 1.714

$$\hat{Y}_h = 62.37 + 3.5702(100) = 419.4$$

$$s^2 \{\hat{Y}_h\} = 2,384 \left[ \frac{1}{25} + \frac{(100 - 70.00)^2}{19,800} \right] = 203.72 \quad s\{\hat{Y}_h\} = 14.27$$

$$419.4 - 1.714(14.27) \le E\{Y_h\} \le 419.4 + 1.714(14.27)$$

$$394.9 \le E\{Y_h\} \le 443.9$$

## 2.5 Prediction of New Observation

- Interested in predicting new (future) observation when  $X=X_h$ ,  $Y_{h(\text{new})} = \beta_0 + \beta_1 X_h + \varepsilon_{h(\text{new})}$
- $Y_{h(\text{new})}$  is independent  $\{Y_1, Y_2, \dots, Y_n\}$ , and  $Y_{h(\text{new})} \sim N(\beta_0 + \beta_1 X_h, \sigma^2)$
- Prediction of  $Y_{h(\text{new})}$   $\hat{Y}_h = b_0 + b_1 X_h \sim N \left( \beta_0 + \beta_1 X_h, \left[ \frac{1}{n} + \frac{(X_h \overline{X})^2}{SS_{XX}} \right] \sigma^2 \right).$
- Prediction error

$$Y_{h(\text{new})} - \hat{Y_h} \sim N \left( 0, \left[ 1 + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}} \right] \sigma^2 \right).$$

## Prediction interval of New Observation

$$\frac{(n-2)MSE}{\sigma^2} \sim \chi_{n-2}^2$$
 also:  $(Y_{h(\text{new})}, \hat{Y}_h)$  and  $MSE$  independent

$$\Rightarrow \frac{Y_{h(\text{new})} - \hat{Y}_{h}}{\sqrt{MSE\left(1 + \frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{SS_{XX}}\right)}} = \frac{Y_{h(\text{new})} - \hat{Y}_{h}}{s\left\{Y_{h(\text{new})} - \hat{Y}_{h}\right\}} = \frac{Y_{h(\text{new})} - \hat{Y}_{h}}{s\left\{pred\right\}} \sim t\left(n - 2\right)$$

$$\Pr\left\{\left|\frac{Y_{h(\text{new})} - \hat{Y}}{s\{pred\}}\right| < t\left(1 - \alpha/2; n - 2\right)\right\} = 1 - \alpha$$

$$(1-\alpha)*100\%$$
 prediction interval of  $Y_{h(\text{new})} = \beta_0 + \beta_1 X_h + \varepsilon_{h(\text{new})}$ 

$$\hat{Y}_h \pm t(1-\alpha/2;n-2)s\{pred\}$$

### Prediction interval of New Observation

- Suppose the Toluca Company wishes to predict the required work hours when  $X_h = 100$  units
- A 90 percent prediction interval is desired. t(.95; 23) = 1.714

$$\hat{Y}_h = 419.4$$
  $s^2 \{\hat{Y}_h\} = 203.72$   $MSE = 2,384$   $s^2 \{Y_{h(\text{new})} - \hat{Y}_h\} = s^2 \{Y_{h(\text{new})}\} + s^2 \{\hat{Y}_h\} = 2384 + 203.72 = 2587.72$   $s \{Y_{h(\text{new})} - \hat{Y}_h\} = 50.87$   $419.4 - 1.714(50.87) \le Y_{h(\text{new})} \le 419.4 + 1.714(50.87)$   $332.2 \le Y_{h(\text{new})} \le 506.6$ 

#### **Comparison**

$$419.4 - 1.714(14.27) \le E\{Y_h\} \le 419.4 + 1.714(14.27)$$
  
 $394.9 \le E\{Y_h\} \le 443.9$ 

## Comparisons

•  $(1-\alpha)*100\%$  Confidence interval of  $E\{Y_h\} = \beta_0 + \beta_1 X_h$  $\hat{Y}_h \pm t \left(1 - \alpha / 2; n - 2\right) s \left\{\hat{Y}_h\right\}$   $s \left\{\hat{Y}_h\right\} = \sqrt{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{yy}}\right)}$ 

•  $(1-\alpha)*100\%$  prediction interval of  $Y_{h(\text{new})}$ 

$$\hat{Y}_h \pm t(1-\alpha/2;n-2)s\{pred\}$$

$$s\{pred\} = s\left\{Y_{h(\text{new})} - \hat{Y}_{h}\right\} = \sqrt{MSE\left(1 + \frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{SS_{XX}}\right)}$$

## **Example: Toluca Company**

|      | Dep Var                                                                                              | Predicted                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| size | hours                                                                                                | Value                                                                                                                                                                                                             | 90% CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80   | 399.0000                                                                                             | 347.9820                                                                                                                                                                                                          | 330.2215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 365.7425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30   | 121.0000                                                                                             | 169.4719                                                                                                                                                                                                          | 140.3880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 198.5559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50   | 221.0000                                                                                             | 240.8760                                                                                                                                                                                                          | 220.3449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 261.4070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 90   | 376.0000                                                                                             | 383.6840                                                                                                                                                                                                          | 363.1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 404.2151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70   | 361.0000                                                                                             | 312.2800                                                                                                                                                                                                          | 295.5446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 329.0154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60   | 224.0000                                                                                             | 276.5780                                                                                                                                                                                                          | 258.8175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 294.3385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 120  | 546.0000                                                                                             | 490.7901                                                                                                                                                                                                          | 456.6706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 524.9096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80   | 352.0000                                                                                             | 347.9820                                                                                                                                                                                                          | 330.2215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 365.7425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100  | 353.0000                                                                                             | 419.3861                                                                                                                                                                                                          | 394.9251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 443.8470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50   | 157.0000                                                                                             | 240.8760                                                                                                                                                                                                          | 220.3449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 261.4070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40   | 160.0000                                                                                             | 205.1739                                                                                                                                                                                                          | 180.7130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 229.6349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70   | 252.0000                                                                                             | 312.2800                                                                                                                                                                                                          | 295.5446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 329.0154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                      |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 90   | 468.0000                                                                                             | 383.6840                                                                                                                                                                                                          | 363.1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 404.2151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40   | 244.0000                                                                                             | 205.1739                                                                                                                                                                                                          | 180.7130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 229.6349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80   | 342.0000                                                                                             | 347.9820                                                                                                                                                                                                          | 330.2215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 365.7425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70   | 323.0000                                                                                             | 312.2800                                                                                                                                                                                                          | 295.5446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 329.0154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 65   |                                                                                                      | 294.4290                                                                                                                                                                                                          | 277.4315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 311.4264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100  |                                                                                                      | 419.3861                                                                                                                                                                                                          | 394.9251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 443.8470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 80<br>30<br>50<br>90<br>70<br>60<br>120<br>80<br>100<br>50<br>40<br>70<br>90<br>40<br>80<br>70<br>65 | size hours 80 399.0000 30 121.0000 50 221.0000 90 376.0000 70 361.0000 60 224.0000 120 546.0000 80 352.0000 100 353.0000 50 157.0000 40 160.0000 70 252.0000 90 468.0000 40 244.0000 80 342.0000 70 323.0000 65 . | 80       399.0000       347.9820         30       121.0000       169.4719         50       221.0000       240.8760         90       376.0000       383.6840         70       361.0000       312.2800         60       224.0000       276.5780         120       546.0000       490.7901         80       352.0000       347.9820         100       353.0000       419.3861         50       157.0000       240.8760         40       160.0000       205.1739         70       252.0000       312.2800         90       468.0000       383.6840         40       244.0000       205.1739         80       342.0000       347.9820         70       323.0000       312.2800         65       . 294.4290 | size         hours         Value         90% CL           80         399.0000         347.9820         330.2215           30         121.0000         169.4719         140.3880           50         221.0000         240.8760         220.3449           90         376.0000         383.6840         363.1530           70         361.0000         312.2800         295.5446           60         224.0000         276.5780         258.8175           120         546.0000         490.7901         456.6706           80         352.0000         347.9820         330.2215           100         353.0000         419.3861         394.9251           50         157.0000         240.8760         220.3449           40         160.0000         205.1739         180.7130           70         252.0000         312.2800         295.5446           90         468.0000         383.6840         363.1530           40         244.0000         205.1739         180.7130           80         342.0000         347.9820         330.2215           70         323.0000         312.2800         295.5446           65         . 294.4290 |

90% CL Predict 262.4411 433.5230 80.8847 258.0591 154.7171 327.0348 297.5252 469.8429 226.9460 397.6140 191.0370 362,1189 400.4244 581.1558 262.4411 433.5230 332.2072 506.5649 154.7171 327.0348 117.9951 292.3528 226.9460 397.6140 297.5252 469.8429 117.9951 292.3528 262.4411 433.5230 226.9460 397.6140 209.0432 379.8148 332.2072 506.5649

# **Example: Toluca Company**



## 2.6 Confidence Band for Regression Line

•  $(1-\alpha)*100\%$  Confidence interval of  $E\{Y_h\} = \beta_0 + \beta_1 X_h$ 

$$\Pr\left\{\left|\frac{\hat{Y}_{h} - E(Y_{h})}{s\left\{\hat{Y}_{h}\right\}}\right| < t\left(1 - \alpha / 2; n - 2\right)\right\} = 1 - \alpha \qquad s\left\{\hat{Y}_{h}\right\} = \sqrt{MSE\left(\frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{SS_{XX}}\right)}$$

- Consider looking at entire regression line, want to define likely region where line lies
- Working-Hotelling Confidence Band
  - Replace  $t(1-\alpha/2, n-2)$  with Working-Hotelling value W in each confidence interval

$$W = \sqrt{2F(1-\alpha; 2, n-2)} \implies \hat{Y}_h \pm W \times s\{\hat{Y}_h\}$$

• The band is the narrowest at the mean of *X* 

#### **Proof**

$$\left\{ \left| \frac{\hat{Y}_h - E(Y_h)}{s \left\{ \hat{Y}_h \right\}} \right| \le W \text{ for all } x_h \right\} = \left\{ \max_{x_h} \left| \frac{\hat{Y}_h - E(Y_h)}{s \left\{ \hat{Y}_h \right\}} \right| \le W \right\}$$

$$\frac{\hat{Y}_h - E(Y_h)}{s\{\hat{Y}_h\}} = \frac{\left(\hat{\beta}_0 + \hat{\beta}_1 X_h\right) - \left(\beta_0 + \beta_1 X_h\right)}{\sqrt{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right)}} \sim t(n-2)$$

$$\left(\frac{\hat{Y}_h - E(Y_h)}{s\{\hat{Y}_h\}}\right)^2 = \frac{\left[\left(\hat{\beta}_0 - \beta_0\right) + (\hat{\beta}_1 - \beta_1)X_h\right]^2}{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right)} = \frac{\left[\left(\overline{Y} - E\overline{Y}\right) + (\hat{\beta}_1 - \beta_1)(X_h - \overline{X})\right]^2}{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{SS_{XX}}\right)}$$

$$\max_{t} \frac{(a+bt)^{2}}{c+dt^{2}} = \frac{a^{2}}{c} + \frac{b^{2}}{d} \implies \max_{x_{h}} \left(\frac{\hat{Y}_{h} - E(Y_{h})}{s\{\hat{Y}_{h}\}}\right)^{2} = \frac{\left(\overline{Y} - E\overline{Y}\right)^{2}}{MSE/n} + \frac{\left(\hat{\beta}_{1} - \beta_{1}\right)^{2}}{MSE/SS_{XX}}$$

It can be shown that (keep as Homework)

$$\frac{1}{2} \max_{x_h} \left( \frac{\hat{Y}_h - E(Y_h)}{s \left\{ \hat{Y}_h \right\}} \right)^2 \sim F(2, n-2)$$

$$1 - \alpha = P \left\{ \frac{1}{2} \max_{x_h} \left( \frac{\hat{Y}_h - E(Y_h)}{s \left\{ \hat{Y}_h \right\}} \right)^2 \le F(1 - \alpha; 2, n - 2) \right\} = P \left\{ \max_{x_h} \left| \frac{\hat{Y}_h - E(Y_h)}{s \left\{ \hat{Y}_h \right\}} \right| \le \sqrt{2F(1 - \alpha; n - 2)} \right\}$$

$$P\left\{\left|\frac{\hat{Y}_h - E(Y_h)}{s\left\{\hat{Y}_h\right\}}\right| \le W \text{ for all } x_h\right\} = P\left\{\max_{x_h} \left|\frac{\hat{Y}_h - E(Y_h)}{s\left\{\hat{Y}_h\right\}}\right| \le W\right\} = 1 - \alpha$$

$$\text{where } W = \sqrt{2F(1-\alpha; n-2)}$$

• Simultaneous Confidence Band at  $(1-\alpha)$  level

$$\left(\hat{Y}_{h}-W\cdot s\left\{\hat{Y}_{h}\right\},\hat{Y}_{h}+W\cdot s\left\{\hat{Y}_{h}\right\}\right)$$

## Confidence Band for the Toluca example



- Blue 90% Working-Hotelling confidence band
- Red 90% confidence interval for the mean  $E\{Y_h\}$
- Green 90% prediction interval for the individual observation  $Y_{h(\text{new})}$

## 2.7 ANOVA Approach to Regression

• ANOVA (Analysis of Variance)

$$Y_i - \overline{Y} = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \overline{Y})$$



$$Y_i - \overline{Y} = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \overline{Y})$$

$$\Rightarrow (Y_i - \overline{Y})^2 = (Y_i - \hat{Y}_i)^2 + (\hat{Y}_i - \overline{Y})^2 + 2(Y_i - \hat{Y}_i)(\hat{Y}_i - \overline{Y})$$

$$\Rightarrow \sum_{i=1}^{n} \left( Y_i - \overline{Y} \right)^2 = \sum_{i=1}^{n} \left( \hat{Y}_i - \overline{Y} \right)^2 + \sum_{i=1}^{n} \left( Y_i - \hat{Y}_i \right)^2 + 2 \sum_{i=1}^{n} \left( Y_i - \hat{Y}_i \right) \left( \hat{Y}_i - \overline{Y} \right)$$

Note(from Chapter 1):

$$\sum_{i=1}^{n} \left( Y_{i} - \hat{Y}_{i} \right) \left( \hat{Y}_{i} - \overline{Y} \right) = \sum_{i=1}^{n} e_{i} \left( \hat{Y}_{i} - \overline{Y} \right) = \sum_{i=1}^{n} e_{i} \hat{Y}_{i} - \overline{Y} \sum_{i=1}^{n} e_{i} = 0 - 0 = 0$$

$$\Rightarrow \sum_{i=1}^{n} \left( Y_i - \overline{Y} \right)^2 = \sum_{i=1}^{n} \left( \hat{Y}_i - \overline{Y} \right)^2 + \sum_{i=1}^{n} \left( Y_i - \hat{Y}_i \right)^2$$

$$\Rightarrow$$
 SSTO = SSR + SSE

Partition the total sum of squares SSTO into

- SSR— Model (explained by regression)
- SSE—Error (unexplained / residual)

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2, \quad SSR = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2, \quad SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$SSR = \sum_{i=1}^{n} (b_0 + b_1 X_i - b_0 - b_1 \overline{X})^2 = b_1^2 SS_{XX}$$

• In normal error regression model, we have

$$b_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{SS_{XX}}\right) \Rightarrow \frac{b_{1} - \beta_{1}}{\sqrt{\sigma^{2}/SS_{XX}}} \sim N(0,1)$$

$$\frac{SSE}{\sigma^{2}} = \frac{(n-2)MSE}{\sigma^{2}} \sim \chi^{2}(n-2).$$

$$(b_0, b_1, \overline{Y}) \perp SSE \implies SSR = b_1^2 SS_{XX} \perp SSE$$

$$\frac{SSE}{\sigma^2} \sim \chi^2(n-2) \qquad SSR \perp SSE$$

• Under  $H_0: \beta_1 = 0$ ,

$$b_1 \stackrel{H_0}{\sim} N \left( \beta_1 = 0, \frac{\sigma^2}{SS_{XX}} \right) \implies \frac{SSR}{\sigma^2} = b_1^2 SS_{XX} = \left( \frac{b_1 - 0}{\sqrt{\sigma^2 / SS_{XX}}} \right)^2 \stackrel{H_0}{\sim} \chi^2(1),$$

$$Y_1, Y_2, \dots, Y_n \overset{H_0}{\sim} N(\beta_0, \sigma^2), i.i.d. \Rightarrow \frac{SSTO}{\sigma^2} = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{\sigma^2} \overset{H_0}{\sim} \chi^2(n-1)$$

$$SSTO/\sigma^2 = SSR/\sigma^2 + SSE/\sigma^2$$

$$\chi^2(n-1)$$
  $\chi^2(1)$   $\chi^2(n-2)$  SSR  $\perp$  SSE

• Generally( $H_0$  is not required true),

$$(1) \qquad \frac{SSE}{\sigma^2} \sim \chi^2(n-2,0)$$

(2) 
$$\frac{SSR}{\sigma^2} = \frac{b_1^2}{\sigma^2 / SS_{XX}} \sim \chi^2(1, \delta), \text{ since } b_1 \sim N \left(\beta_1, \frac{\sigma^2}{SS_{XX}}\right)$$

where 
$$\delta = \frac{\beta_1^2}{\sigma^2 / SS_{vv}}$$
.

(3)  $SSR \perp SSE$ 

$$(1),(2),(3) \Rightarrow \frac{SSTO}{\sigma^2} = \frac{SSR}{\sigma^2} + \frac{SSE}{\sigma^2} \sim \chi^2(n-1,\delta)$$

$$SSTO = \sum (Y_i - \overline{Y})^2 = \sum (\hat{Y}_i - \overline{Y})^2 + \sum (Y_i - \hat{Y}_i)^2 = SSR + SSE$$

$$SSTO/\sigma^2 = SSR/\sigma^2 + SSE/\sigma^2$$

$$\chi^2(n-1,\delta) \quad \chi^2(1,\delta) \quad \chi^2(n-2,0)$$

$$SSR \perp SSE \qquad \delta = \beta_1^2 SS_{XX} / \sigma^2$$

- *SSR* the explained variation or the regression sum of squares.
- *SSE* sum of squared error
- Coefficient of determination( $R^2$ )—SSR/SSY



# Mean Squares

- Mean square= sum of square/ degrees of freedom
- The regression mean square is MSR = SSR/1,

$$E(MSR) = E(SSR) = E(b_1^2 SS_{XX}) = SS_{XX} \left( var(b_1) + E^2(b_1) \right)$$
$$= SS_{XX} \left( \frac{\sigma^2}{SS_{XX}} + \beta_1^2 \right) = \sigma^2 + \beta_1^2 SS_{XX}$$

• The mean square error is

$$MSE = \frac{SSE}{n-2}, \qquad E(MSE) = \sigma^2$$

• Then  $F^* = \frac{SSR/1}{SSE/(n-2)} = \frac{MSR}{MSE} \sim F(1, n-2)$ 

$$F^* = \frac{MSR}{MSF} \sim F(1, n-2, \delta = \beta_1^2 SS_{XX} / \sigma^2)$$

## F test

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$

ANOVA test Statistic

$$F^* = \frac{MSR}{MSE} \stackrel{H_0}{\sim} F(1, n-2)$$

- When  $H_0$  is false, MSR > MSE. Reject  $H_0$  when  $F^*$  large.
- Hypothesis test decision rule
  - Reject  $H_0$  when
  - p-value =  $Pr(F(1, n-2) > F^*)$

# **ANOVA Table**

| Source of<br>Variation | SS                                        | df          | MS                      | F                 | P             |
|------------------------|-------------------------------------------|-------------|-------------------------|-------------------|---------------|
| Regression (Model)     | $SSR = \sum (\hat{Y}_i - \overline{Y})^2$ | 1           | $MSR = \frac{SSR}{1}$   | $\frac{MSR}{MSE}$ | P(F(1,n-2)>F) |
| Error                  | $SSE = \sum (Y_i - \hat{Y}_i)^2$          | n-2         | $MSE = \frac{SSE}{n-2}$ |                   |               |
| Total                  | $SSTO = \sum (Y_i - \overline{Y})^2$      | <i>n</i> –1 |                         |                   |               |

## Toluca example

ANOVA table

```
Sum of
                                Mean
Source
           \mathsf{DF}
                Squares
                              Square
                                      F Value
                                               Pr > F
                 252378
                              252378
                                       105.88
                                               < .0001
Model
           23
                  54825
                         2383.71562
Error
                 307203
Cor Total
           24
Root MSE
                  48.82331
                              R-Square 0.8215
```

• t test results

```
      Parameter Standard

      Variable
      DF
      Estimate
      Error
      t Value
      Pr > |t|

      Intercept
      1
      62.36586
      26.17743
      2.38
      0.0259

      size
      1
      3.57020
      0.34697
      10.29
      <.0001</td>
```

• Note that  $10.29^2 = 105.88$ 

### Equivalence of F test and two-sided t test

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$

• Test statistics

$$F^* = \frac{MSR}{MSE} = \frac{b_1^2 SS_{XX}}{MSE} = \left(\frac{b_1}{\sqrt{MSE / SS_{XX}}}\right)^2 = \left(\frac{b_1}{s(b_1)}\right)^2 = (t^*)^2$$

• In addition:

$$t^{2}(n-2) \sim F(1, n-2) \Rightarrow t^{2}(1-\alpha/2; n-2) = F(1-\alpha; 1, n-2)$$

Equivalence of rejection regions

$$F^* > F(1-\alpha;1,n-2) \iff |t^*| > t(1-\alpha/2;n-2)$$

Equivalence of p values

p-value = Pr(
$$F(1, n-2) > F^*$$
)  
 $\Leftrightarrow$  p-value = Pr( $t(n-2) > |t^*|$ )

# 2.8 General Linear Test Approach

- General Linear Test Very Flexible Method
- Consider **two** models,
  - Full/unrestricted model, e.g.  $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
  - Reduced/restricted model, e.g.  $Y_i = \beta_0 + \varepsilon_i$
- Compare models using SSE's
  - SSE(F): Error sum of squares of the full
  - SSE(R): Error sum of squares of the reduced model
- Can be shown that  $SSE(F) \leq SSE(R)$ 
  - Idea: more parameters provide better fit

## **General Linear Test**

- If SSE(F) not much smaller than SSE(R), full model doesn't better explain *Y*.
- $H_0$ : Reduced model vs  $H_1$ : Full model
- Test Statistic

$$F^* = \frac{\left[ \left( SSE(R) - SSE(F) \right) / \left( df_R - df_F \right) \right]}{\left[ SSE(F) / df_F \right]}$$

- Large  $F^*$  suggests full model, and small  $F^*$  suggests reduced model.
- In normal error models,  $F^* \stackrel{H_0}{\sim} F(df_R df_F, df_F)$
- Decision rule
  - Reject  $H_0$  if  $F^* \ge F(1-\alpha; df_R df_F, df_F)$ .

### **General Linear Test**

• Full/unrestricted model:  $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ ,  $\varepsilon_1, \dots, \varepsilon_n \sim N(0, \sigma^2)$ 

$$\hat{\beta}_{1} = b_{1} = \frac{SS_{XY}}{SS_{XX}}, \qquad \hat{\beta}_{0} = b_{0} = \overline{Y} - b_{1}\overline{X}$$

$$SSE(F) = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i}(F))^{2} = \sum_{i=1}^{n} (Y_{i} - b_{0} - b_{1}X_{i})^{2} = SSE, \quad df_{F} = n - 2$$

- To test  $H_0: \beta_1 = 0$  vs  $H_1: \beta_1 \neq 0$
- The model when  $H_0$  holds is a reduced or restricted model.
  - Reduced/restricted model  $Y_i = \beta_0 + \varepsilon_i$
  - Under  $H_0: \beta_1 = 0, Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\beta_0, \sigma^2), \hat{\beta}_0 = \overline{Y}$

$$SSE(R) = \sum_{i=1}^{n} (Y_i - \hat{Y}_i(R))^2 = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = SSTO, \ df_R = n-1$$

$$F^* = \frac{\left[ \left( SSE(R) - SSE(F) \right) / \left( df_R - df_F \right) \right]}{\left[ SSE(F) / df_F \right]} = \frac{\left( SSTO - SSE \right) / 1}{SSE / (n-2)} = \frac{MSR}{MSE} \stackrel{H_0}{\sim} F\left( 1, n-2 \right)$$

### 2.9 Descriptive Measures of Linear Association

- Linear association measures
  - Coefficient of determination  $R^2$  in linear regression
  - Estimated Pearson's correlation coefficient r
- SSTO measures the variation in the observations  $Y_i$  when X is not considered.
- SSE measures the variation in the  $Y_i$  after a predictor variable X is employed.
- SSR =SSTO-SSE measures the effect of X in reducing variation in Y.

### **Coefficient of Determination**

Coefficient of Determination

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- the proportion of total variation in Y explained by X.
- Note that since  $0 \le SSE \le SSTO$ , then  $0 \le R^2 \le 1$ .
- Limitations of and misunderstandings about  $R^2$  (See page 75)
  - High  $R^2$  does not necessarily mean that
    - useful predictions can be made;
    - regression line is a good fit.
  - Low  $R^2$  does not necessarily mean that X and Y are not related.

### Pearson's Correlation Coefficient

• Pearson's product-moment correlation coefficient measures the strength of the **linear** relationship between two variables.

$$\rho = corr(X, Y) = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X) \text{var}(Y)}}$$

•  $\rho$  can be estimated by

$$r = \frac{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}}} = \frac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}, \quad -1 \le r \le 1$$

For simple linear regression

$$b_{1} = \frac{SS_{XY}}{SS_{XX}}, \qquad R^{2} = \frac{SSR}{SSTO} = \frac{b_{1}^{2}SS_{XX}}{SS_{YY}} = \frac{SS_{XY}^{2}}{SS_{XX}SS_{YY}}$$

$$\text{since } SSR = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2} = \sum_{i=1}^{n} (b_{0} + b_{1}X_{i} - b_{0} - b_{1}\overline{X})^{2} = b_{1}^{2}SS_{XX}$$

## correlation coefficient

Relationship

$$r = \frac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}} = \frac{\sqrt{SS_{XX}}}{\sqrt{SS_{YY}}}b_1 = \frac{S_X}{S_Y}b_1, \qquad r = \pm \sqrt{R^2}$$

• sign of r is the sign of the regression slope.

$$r = \sqrt{R^2}$$
, if  $b_1 \ge 0$ ;  $r = -\sqrt{R^2}$ , if  $b_1 < 0$ 

- Relationship not true in multiple regression
- r (but not  $b_1$ ) is not changed by linear transformations of Y and/or X.
- Toluca example,  $R^2 = 0.822$ ,  $b_1 > 0$ ,  $r = \sqrt{0.822} = 0.907$

### 2.11 Normal Correlation Model

- In regression models, we have assumed  $X_i$ 's are known constants
- Statistical inferences consider repeated sampling with fixed *X* values
- What if  $X_i$ 's are random samples from distribution  $g(\cdot)$ ?
- Previous regression results on estimation, testing and prediction still hold if:
  - $Y_i | X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$ , and  $Y_i$ 's are conditional independent.
  - The  $X_i$  are independent and  $g(\cdot)$  does not involve the parameters  $\beta_0, \beta_1$ , and  $\sigma^2$

### Normal correlation model

- If interest in relation between two variables can use correlation model.
  - Both *X* and *Y* are random.
- Normal correlation model uses bivariate normal distribution
- Bivariate normal distribution  $N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$

$$f(y_1, y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho_{12}^2}} \exp\left\{-\frac{1}{2(1-\rho_{12}^2)} \left[ \left(\frac{y_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho_{12} \left(\frac{y_1 - \mu_1}{\sigma_1}\right) \left(\frac{y_2 - \mu_2}{\sigma_2}\right) + \left(\frac{y_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$





# Bivariate normal distribution

• k-dimensional normal distribution

$$f(y_1, \dots, y_k) = \frac{1}{(2\pi)^{k/2} \sqrt{\det \Sigma}} \exp \left\{ -\frac{1}{2} (\mathbf{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu}) \right\}$$

 $f(Y_1, Y_2)$ 

if 
$$k=2$$
,  $\mathbf{y} = (y_1, y_2)'$ ,  $\mathbf{\mu} = (\mu_1, \mu_2)'$ ,  $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$ 

Marginal distributions are normal

$$Y_1 \sim N(\mu_1, \sigma_1^2), \qquad Y_2 \sim N(\mu_2, \sigma_2^2)$$

• Conditional distributions are normal

$$(Y_{1} | Y_{2} = y_{2}) \sim N \left( \mu_{1} + \rho_{12} \frac{\sigma_{1}}{\sigma_{2}} (y_{2} - \mu_{2}), \sigma_{1}^{2} (1 - \rho_{12}^{2}) \right) \equiv N \left( \alpha_{1|2} + \beta_{12} y_{2}, \sigma_{1|2}^{2} \right)^{\gamma_{2}}$$
where:  $\alpha_{1|2} = \mu_{1} - \mu_{2} \rho_{12} \frac{\sigma_{1}}{\sigma_{2}}, \quad \beta_{12} = \rho_{12} \frac{\sigma_{1}}{\sigma_{2}}, \quad \sigma_{1|2}^{2} = \sigma_{1}^{2} (1 - \rho_{12}^{2})$ 

$$(Y_{2} | Y_{1} = y_{1}) \sim N \left( \mu_{2} + \rho_{12} \frac{\sigma_{2}}{\sigma_{1}} (y_{1} - \mu_{1}), \sigma_{2}^{2} (1 - \rho_{12}^{2}) \right) \equiv N \left( \alpha_{2|1} + \beta_{21} y_{2}, \sigma_{2|1}^{2} \right)$$

# Inference on $\rho_{12}$

ullet Under bivariate normal assumption, the MLE of  $ho_{12}$ 

$$\hat{\rho}_{12} = r_{12} = \frac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}$$
, just Pearson's correlation coefficient.

- Interest in testing  $H_0: \rho_{12} = 0$ 
  - $\rho_{12} = 0 \Leftrightarrow \beta_{12} = \beta_{21} = 0$

$$\frac{r_{12}}{\sqrt{(1-r_{12}^2)/(n-2)}} = \frac{b_1}{\sqrt{MSE/SS_{XX}}} = \frac{b_1}{s(b_1)} = t^* \stackrel{H_0}{\sim} t(n-2)$$

- Test Statistic  $t^* = \frac{r_{12}\sqrt{n-2}}{\sqrt{1-r_{12}^2}}$  Decision rule:
- - For 2-sided test  $H_1$ :  $\rho_{12} \neq 0$ , reject  $H_0$  if  $|t^*| \geq t(1-(\alpha/2);n-2)$
  - For 1-sided tests:  $H_1: \rho_{12} > 0$ : Reject  $H_0$  if  $t^* \ge t(1-\alpha; n-2)$

$$H_1: \rho_{12} < 0: \text{ Reject } H_0 \text{ if } t^* \le -t(1-\alpha; n-2)$$

# Inference on $\rho_{12}$

### Interval Estimation of $\rho_{12}$

- When  $\rho_{12} \neq 0$ , the distribution of  $r_{12}$  is messy.
- Make the Fisher z transformation:

$$z' = \frac{1}{2} \ln \left( \frac{1 + r_{12}}{1 - r_{12}} \right)$$

• When n is large (n > 25), approximately,

$$z' \sim N\left(\zeta, \frac{1}{n-3}\right) \qquad \zeta = \frac{1}{2} \ln\left(\frac{1+\rho_{12}}{1-\rho_{12}}\right) \quad \Rightarrow \rho_{12} = \frac{e^{2\zeta}-1}{e^{2\zeta}+1} \uparrow in \zeta$$

• 100  $(1-\alpha)$ % confidence limits for  $\zeta$ 

$$z' \pm z \left(1 - \left(\alpha/2\right)\right) \sqrt{\frac{1}{n-3}} \Rightarrow \text{CI: } (c_1, c_2)$$

• Then 100  $(1-\alpha)$ % confidence interval of  $\rho_{12}$ :  $\left(\frac{e^{2c_1}-1}{e^{2c_1}+1}, \frac{e^{2c_2}-1}{e^{2c_2}+1}\right)$ 

# Spearman's correlation method

If X and Y non-normal, can use Spearman's correlation coefficient

- 1) Rank  $(Y_{11},...,Y_{n1})$  from 1 to n (smallest to largest) and label:  $(R_{11},...,R_{n1})$
- 2) Rank  $(Y_{12},...,Y_{n2})$  from 1 to n (smallest to largest) and label:  $(R_{12},...,R_{n2})$
- 3) Compute Spearman's rank correlation coefficient:

$$r_{S} = \frac{\sum_{i=1}^{n} \left(R_{i1} - \overline{R}_{1}\right) \left(R_{i2} - \overline{R}_{2}\right)}{\sqrt{\sum_{i=1}^{n} \left(R_{i1} - \overline{R}_{1}\right)^{2} \sum_{i=1}^{n} \left(R_{i2} - \overline{R}_{2}\right)^{2}}}$$

To Test:  $H_0$ : No Association Between  $Y_1, Y_2$  vs  $H_A$ : Association Exists

Test Statistic: 
$$t^* = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}}$$
 Reject  $H_0$  if  $|t^*| \ge t(1-(\alpha/2); n-2)$ 

### Spearman's rank correlation coefficient

Example: examine whether an association exists between population size  $(Y_1)$  and per capita expenditures for a new food product  $(Y_2)$ .

| Test<br>Market<br><i>i</i> | (1)  Population (in thousands) $Y_{i1}$ | (2)<br>Per Capita<br>Expenditure<br>(dollars)<br>Y <sub>i2</sub> | (3)<br>R <sub>i1</sub> | (4)<br>R <sub>i2</sub> |
|----------------------------|-----------------------------------------|------------------------------------------------------------------|------------------------|------------------------|
| 1                          | 29                                      | 127                                                              | 1                      | 2                      |
| 2                          | 435                                     | 214                                                              | 8                      | 11                     |
| 3                          | 86                                      | 133                                                              | 3                      | 4                      |
| 4                          | 1,090                                   | 208                                                              | 11                     | 10                     |
| 5                          | 219                                     | 153                                                              | 7                      | 6                      |
| 6                          | 503                                     | 184                                                              | 9                      | 8                      |
| 7                          | 47                                      | 130                                                              | 2                      | 3                      |
| 8                          | 3,524                                   | 217                                                              | 12                     | 12                     |
| 9                          | 185                                     | 141                                                              | 6                      | 5                      |
| 10                         | 98                                      | 154                                                              | 5                      | 7                      |
| 11                         | 952                                     | 194                                                              | 10                     | 9                      |
| 12                         | 89                                      | 103                                                              | 4                      | 1                      |

$$r_{s} = 0.895$$

### R code

```
toluca = read.table('D:\Reg_licx\Data_4e\CH01TA01.txt',header=F)
names(toluca)<-c("Size", "Hours")
fit = lm(Hours \sim Size, data = toluca)
summary(fit) ##Model results
coef(fit) ##regression coefficients b0 and b1
vcov(fit) ##Covarince matrix of b0 and b1
confint(fit) \#\#95\% confidence interval of b0 and b1
confint(fit,level=0.99) ##99% CI of b0 and b1
####Inference for E{Y_h}
# 90% confidence interval of E\{Y_h\} when X_h=100
predict(fit, newdata=data.frame(Size=100), interval="confidence", level=.9)
# 90% CI of E{Y_h} at all Xi's in original trained data
predict(fit, interval="confidence", level=.9)
```

### R code

```
####Prediction for a new observation
predict(fit, newdata=data.frame(Size=100), interval="prediction", level=.9)
predict(fit, interval="prediction ",level=.9)
####ANOVA F test
aov(fit)
####General linear test
fit0 = lm(Hours \sim 1, data = toluca)
anova(fit0, fit, test = "F")
#####Correlation analysis
cor(toluca$Hours,toluca$Size) #Pearson's product-moment correlation
cor.test(toluca$Hours,toluca$Size) #test for Pearson's correlation
cor(toluca$Hours,toluca$Size,method="spearman") #Spearman's rank correlation
```

### Homework

#### P89~98:

- 2.6; 2.15; 2.25; 2.42; 2.46
- 2.53; 2.57; 2.59; 2.60
- Under the normal error model (2.1), MSE is an unbiased estimator of  $\sigma^2$ . Please calculate  $E(\sqrt{MSE})$  and show that it is a biased estimator of  $\sigma$ .
- For obtaining W-H confidence band for the regression line (at any level  $X_h$ ) under the normal error model (2.1), prove that

$$\frac{1}{2} \max_{x_h} \left( \frac{\hat{Y}_h - E(Y_h)}{s \left\{ \hat{Y}_h \right\}} \right)^2 \sim F(2, n-2)$$

# Appendix: Noncentral distributions

(Noncentral  $\chi^2$  distribution) Let  $X_1, X_2, ..., X_n$  be independent with  $X_i \sim N(\mu_i, \sigma^2)$ , i=1,2,...,n.

$$Y = \sum_{i=1}^{n} X_i^2 / \sigma^2 \sim \chi^2(n, \delta), \text{ with } \delta = \sum_{i=1}^{n} \mu_i^2 / \sigma^2$$

**Property:** If  $U_1 \sim \chi^2(r_1, \delta_1)$  and  $U_2 \sim \chi^2(r_2, \delta_2)$  are independent, then  $U_1 + U_2 \sim \chi^2(r_1 + r_2, \delta_1 + \delta_2)$ 

(Noncentral t distribution) If  $Z \sim N(0,1)$ ,  $V \sim \chi^2(r)$  are independent, then  $\frac{Z+\delta}{\sqrt{V/r}} \sim t(r,\delta)$ 

(Noncentral F distribution) If  $U \sim \chi^2(r_1, \delta)$ ,  $V \sim \chi^2(r_2)$  are independent, then  $\frac{U/r_1}{V/r_2} \sim F(r_1, r_2, \delta)$ 

## Fisher's Theorem

(Fisher's Theorem) Let  $X_1, X_2, ..., X_n$  be independent  $N(\mu_i, \sigma^2)$  distributed random variables, and  $Q = Q_1 + Q_2 + ... + Q_k$ , where  $Q, Q_1, Q_2, ..., Q_k$  are quadratic forms in  $X_1, X_2, ..., X_n$ , i.e.,  $Q = \mathbf{X'AX}$ , and  $Q_i = \mathbf{X'A}$ , i = 1, 2, ..., k. If

$$Q/\sigma^2 \sim \chi^2(r,\delta), \ Q_1/\sigma^2 \sim \chi^2(r_1,\delta_1), \cdots, Q_{k-1}/\sigma^2 \sim \chi^2(r_{k-1},\delta_{k-1}),$$

Then  $Q_1, Q_2, ..., Q_k$  are independent, and

$$Q_k / \sigma^2 \sim \chi^2(r_k, \delta_k),$$

where  $r_k = r - (r_1 + \dots + r_{k-1}), \delta_k = \delta - (\delta_1 + \dots + \delta_{k-1}).$