Cyber Security in AI and ML (5 Days) By Dr. Vishwanath Rao

Introduction to AI and ML Security:

- Overview of Al and ML technologies
- Importance of security in AI and ML systems
- Distinction between traditional software security and AI/ML security

Threat Landscape:

- Common security threats and attacks targeting AI and ML systems
- Adversarial attacks: poisoning, evasion, data integrity attacks
- Privacy risks: data leakage, membership inference attacks
- Model stealing and intellectual property theft

Adversarial Machine Learning:

- Understanding adversarial examples
- Techniques for crafting adversarial attacks
- Defense mechanisms against adversarial attacks

Privacy-Preserving AI and ML:

- Privacy concerns in AI/ML systems
- Differential privacy and its application to ML
- Federated learning and secure multi-party computation for preserving privacy

Model Security and Robustness:

- Model security best practices
- Model explainability and interpretability
- Techniques for improving model robustness and reliability

Secure Model Deployment:

- Secure model deployment architectures
- Containerization and isolation for model serving
- Authentication and access control in AI/ML systems

Data Security and Governance:

- Data privacy and compliance considerations
- Secure data storage and transmission
- Data governance frameworks for AI/ML projects

Ethical Considerations:

- Ethical implications of AI and ML security
- Bias and fairness in AI/ML systems
- Responsible Al principles and guidelines

Introduction to Secure Development:

- Overview of software security and its importance
- Introduction to secure development lifecycle (SDLC)
- Understanding the role of Global Product Security (GPS)

Threat Modeling:

- Introduction to threat modeling
- Identifying assets, threats, and vulnerabilities
- Techniques for conducting threat modeling exercises

Secure Coding Practices:

- Principles of secure coding
- Common vulnerabilities in code (e.g., buffer overflows, injection attacks)
- Secure coding guidelines for different programming languages (e.g., Java, Python, C/C++)

Authentication and Authorization:

- Understanding authentication and authorization mechanisms
- Secure implementation of authentication (e.g., password hashing, multi-factor authentication)
- Role-based access control (RBAC) and least privilege principles

Input Validation and Output Encoding:

- Importance of input validation and output encoding
- Techniques for sanitizing and validating input data
- Preventing common injection attacks (e.g., SQL injection, XSS)

Secure Communication:

- Securing network communication (e.g., HTTPS/TLS)
- Implementing secure APIs and web services
- Transport layer security best practices

Data Protection:

- Encryption fundamentals
- Protecting sensitive data at rest and in transit
- Key management and secure storage practices

Secure Configuration Management:

- Secure configuration of servers, databases, and applications
- Hardening operating systems and network devices
- Configuration management tools and best practices

Secure Development Tools and Techniques:

- Introduction to security testing tools (e.g., static analysis, dynamic analysis)
- Code review best practices
- Automated security testing and continuous integration (CI) pipelines

Secure Deployment and Operations:

- Secure deployment strategies (e.g., container security, serverless security)
- Monitoring and logging for security incidents
- Incident response and handling security breaches

Security Awareness and Training:

- Importance of security awareness for developers
- Techniques for promoting a security culture within development teams
- Continuous learning and staying updated on security trends

• Introduction to Risk Management Framework (RMF):

- Overview of NIST RMF and its importance in cybersecurity
- Evolution of RMF and its relation to NIST Special Publication (SP) 800-3

Key Concepts and Principles:

- Understanding risk management concepts (e.g., risk, threat, vulnerability)
- Principles of risk management according to NIST SP 800-37

RMF Roles and Responsibilities:

- Roles and responsibilities of key stakeholders in the RMF process
- Responsibilities of the Information System Owner (ISO),
 Authorizing Official (AO), Security Control Assessor (SCA), and others

• RMF Process Overview:

- Detailed explanation of the six steps in the RMF process:
 - Prepare
 - Categorize
 - Select
 - Implement
 - Assess
 - Authorize
 - Monitor

• Step 1: Prepare:

Establishing the context for the RMF process

Developing the risk management strategy and policies

• Step 2: Categorize:

- o Identifying information systems and assets
- Assigning impact levels based on FIPS 199

• Step 3: Select:

- Selecting security controls based on NIST SP 800-53
- Tailoring security controls for specific organizational needs

• Step 4: Implement:

- Implementing selected security controls
- Documentation requirements for control implementation

• Step 5: Assess:

- Conducting security control assessments
- Performing security testing and evaluation

• Step 6: Authorize:

- Reviewing security assessment results
- Making authorization decisions
- Preparing the Authorization Package

• Step 7: Monitor:

- Continuous monitoring of security controls and the information system
- Reporting security incidents and changes to the system

• Integration with Other Frameworks and Standards:

- Relationship between RMF and other cybersecurity frameworks (e.g., ISO 27001, COBIT)
- Compliance with regulatory requirements (e.g., FISMA, HIPAA, GDPR)

Introduction to CISA and CSA:

- Overview of CISA and its role in protecting critical infrastructure in the United States
- Introduction to the Cloud Security Alliance (CSA) and its mission to promote best practices for secure cloud computing

• Cloud Computing Fundamentals:

- Overview of cloud computing models (laaS, PaaS, SaaS)
- Key characteristics of cloud computing (on-demand self-service, broad network access, etc.)

• CISA's Role in Cloud Security:

- CISA guidance and resources for securing cloud environments
- CISA's involvement in promoting cloud security standards and best practices

• CSA's Cloud Security Guidance:

Overview of CSA's Cloud Controls Matrix (CCM) and Security, Trust
 & Assurance Registry (STAR)

 CSA's research initiatives and publications on cloud security best practices

• Cloud Security Threats and Risks:

- Common security threats and risks associated with cloud computing
- Understanding shared responsibility model and its implications for security

• Securing Cloud Infrastructure:

- Best practices for securing cloud infrastructure (e.g., virtual networks, compute instances)
- Identity and access management (IAM) in the cloud

• Data Protection in the Cloud:

- Data encryption and key management
- Data privacy and compliance considerations (e.g., GDPR, CCPA)

• Securing Cloud Applications:

- Application security considerations in the cloud
- Secure development practices for cloud-native applications

• Cloud Incident Response and Forensics:

- Incident response planning for cloud environments
- Forensic investigation techniques in the cloud

• Cloud Compliance and Governance:

- Compliance frameworks and regulations relevant to cloud computing (e.g., NIST, PCI DSS)
- Cloud governance best practices

• Introduction to AI Security:

- Overview of artificial intelligence (AI) and its applications
- Understanding the security implications of AI technologies

OWASP Top 10 AI Security Risks:

- Identification of the top security risks specific to AI systems
- Examples of vulnerabilities and threats in AI applications

• Adversarial Machine Learning:

- Understanding adversarial attacks on machine learning models
- Techniques for crafting and defending against adversarial attacks

• Privacy and Ethical Considerations:

- Privacy risks associated with AI systems
- Ethical considerations in AI development and deployment

• Data Security in AI Systems:

- Importance of data security in AI applications
- Techniques for securing training data and model outputs

Model Explainability and Transparency:

- Importance of model explainability in AI systems
- Techniques for improving the interpretability and transparency of Al models

• Secure Development Practices for Al:

- Secure coding practices for AI applications
- Integration of security into the AI development lifecycle

• Secure Deployment and Operations:

- Security considerations for deploying AI models in production
- Monitoring and logging for security incidents in AI systems

Introduction to Threat Detection and Prevention:

- Overview of cybersecurity threats and their impact
- Importance of proactive threat detection and prevention measures

Threat Intelligence:

- Understanding threat intelligence sources and feeds
- Techniques for collecting, analyzing, and applying threat intelligence

Vulnerability Management:

- Identifying and assessing vulnerabilities in systems and applications
- Strategies for prioritizing and remedying vulnerabilities

Intrusion Detection Systems (IDS):

- Introduction to IDS and their role in threat detection
- Types of IDS (e.g., network-based, host-based) and their deployment models

Intrusion Prevention Systems (IPS):

- Overview of IPS and their capabilities
- Techniques for preventing and mitigating intrusions in real-time

Security Information and Event Management (SIEM):

- Understanding SIEM and its role in centralized log management and analysis
- Using SIEM for threat detection, incident response, and compliance reporting

Behavioral Analysis:

 Behavioral analysis techniques for detecting abnormal activities and threats • Machine learning and Al-driven approaches to behavioral analysis

Network Traffic Analysis:

- Analyzing network traffic patterns for anomalies and suspicious activities
- Tools and technologies for network traffic analysis

Endpoint Detection and Response (EDR):

- Overview of EDR solutions and their capabilities
- Detecting and responding to threats at the endpoint level

Web Application Firewall (WAF):

- Introduction to WAF and its role in protecting web applications from attacks
- Configuration and tuning of WAF rules for effective threat prevention

Email Security:

- Common email-based threats (e.g., phishing, spam, malware)
- Techniques for detecting and preventing email-based attacks

Cloud Security Monitoring:

- Monitoring security events and activities in cloud environments
- Best practices for securing cloud workloads and data

Incident Response and Threat Hunting:

- Incident response process and procedures
- Threat hunting techniques for proactively identifying and mitigating threats

Introduction to Data Security in AI and ML:

- Overview of data security challenges in AI and machine learning projects
- Importance of data protection for maintaining confidentiality, integrity, and availability

Data Privacy Regulations and Compliance:

- Understanding data privacy regulations (e.g., GDPR, CCPA) and their impact on AI/ML projects
- Compliance requirements for handling sensitive data in AI/ML systems

Data Classification and Sensitivity:

- Techniques for classifying data based on sensitivity and confidentiality levels
- Data labeling and metadata management for tracking data sensitivity

Data Collection and Acquisition:

- Best practices for securely collecting and acquiring training data
- Data provenance and traceability to ensure data integrity and authenticity

Data Storage and Encryption:

- Secure storage solutions for AI/ML datasets
- Encryption techniques for protecting data at rest (e.g., full disk encryption, database encryption)

Data Transmission and Network Security:

- Secure data transmission protocols for transferring data between systems and environments
- Network security measures to protect data in transit (e.g., VPNs, TLS/ SSL)

Data Masking and Anonymization:

- Techniques for masking and anonymizing sensitive data in AI/ML datasets
- Preserving data utility while protecting individual privacy

Access Control and Authorization:

- Role-based access control (RBAC) for controlling access to AI/ML data
- Authorization mechanisms to enforce data access policies and permissions

Data Governance and Compliance Monitoring:

- Implementing data governance frameworks to ensure compliance with regulations and internal policies
- Continuous monitoring of data security controls and compliance status

Secure Data Sharing and Collaboration:

- Secure mechanisms for sharing and collaborating on AI/ML datasets
- Data sharing agreements and access controls for external collaborators

Secure Model Training and Development:

- Securing data pipelines and environments for model training
- Techniques for protecting data during model development and experimentation

Data Security Testing and Validation:

- Techniques for testing and validating data security controls in AI/ML systems
- Auditing and logging for tracking data access and usage

Incident Response and Data Breach Management:

- Incident response procedures for addressing data breaches and security incidents
- Data breach notification requirements and mitigation strategies

Introduction to Al Infrastructure Security:

- Overview of Al infrastructure components (e.g., servers, storage, networking)
- Importance of securing AI infrastructure for protecting sensitive data and intellectual property

Threat Landscape for AI Infrastructure:

- Common security threats targeting AI infrastructure (e.g., unauthorized access, data breaches, denial-of-service attacks)
- Understanding the unique risks posed by AI-specific attacks (e.g., model poisoning, evasion attacks)

Security Architecture for AI Infrastructure:

- Design principles for building secure AI infrastructure
- Segmentation and isolation of AI workloads to minimize attack surface

Identity and Access Management (IAM):

- Role-based access control (RBAC) for controlling access to Al resources
- Multi-factor authentication (MFA) and strong authentication mechanisms

Network Security for AI Infrastructure:

- Network segmentation and micro-segmentation to isolate Al workloads
- Firewall and intrusion detection/prevention systems (IDS/IPS) for monitoring and controlling network traffic

Data Security in AI Infrastructure:

- Secure data storage solutions for AI datasets and models
- Encryption techniques for protecting data at rest and in transit

Secure AI Development Environments:

- Securing development environments and tools used for AI model training and testing
- Best practices for securing AI development pipelines

Container Security for AI Workloads:

- Securing containers and container orchestration platforms (e.g., Kubernetes)
- Container image security and vulnerability scanning

Cloud Security for AI Infrastructure:

- Securing AI workloads deployed in cloud environments
- Best practices for cloud security posture management (CSPM)

Secure Model Deployment and Serving:

- Security considerations for deploying AI models into production environments
- Techniques for securing AI model serving endpoints

Continuous Security Monitoring and Incident Response:

Implementing security monitoring and logging for AI infrastructure

Incident response procedures for addressing security incidents in Al systems

Compliance and Governance:

- Compliance requirements for AI infrastructure (e.g., GDPR, HIPAA)
- Implementing governance frameworks to ensure compliance and risk management

Security Testing and Validation:

- Techniques for testing and validating the security of AI infrastructure
- Penetration testing and vulnerability assessment for identifying weaknesses

Emerging Technologies and Future Trends:

- Emerging technologies for enhancing Al infrastructure security (e.g., homomorphic encryption, secure enclaves)
- Future trends and challenges in securing AI infrastructure

Introduction to GDPR:

Overview of the GDPR and its objectives Scope of the regulation and its applicability to organizations handling personal data of EU residents

Key Principles of GDPR:

Data protection principles, including lawfulness, fairness, and transparency Purpose limitation, data minimization, and storage limitation principles

Individual Rights under GDPR:

Rights of data subjects, including the right to access, rectification, erasure, and data portability

Understanding the right to be forgotten and its implications

Data Processing Requirements:

Requirements for lawful processing of personal data Conditions for obtaining valid consent

Data Protection Impact Assessments (DPIA):

Understanding DPIA requirements and when they are necessary Conducting DPIAs and documenting the process

Data Breach Notification:

Requirements for data breach notification under GDPR
Timelines and procedures for reporting data breaches to supervisory
authorities and affected individuals

Data Protection Officer (DPO) Role:

Responsibilities and qualifications of the DPO under GDPR Role of the DPO in ensuring compliance with GDPR requirements

Cross-Border Data Transfers:

Legal mechanisms for transferring personal data outside the EU Understanding the requirements for adequacy decisions, standard contractual clauses, and binding corporate rules

GDPR Enforcement and Penalties:

Powers and responsibilities of supervisory authorities (e.g., the European Data Protection Board)

Administrative fines and penalties for non-compliance with GDPR

Practical Compliance Strategies:

Developing GDPR compliance programs and policies Implementing technical and organizational measures to ensure data protection

Case Studies and Practical Examples:

Real-world examples of GDPR compliance challenges and solutions Analysis of GDPR enforcement actions and fines

Emerging Trends and Future Developments:

Emerging trends in data protection and privacy regulation Future developments in EU data protection law post-GDPR

Introduction to LLMs and Security:

Overview of Large Language Models (LLMs) and their applications Introduction to security risks associated with LLMs

Injection Attacks:

Potential risks of injecting biased or malicious input data into LLMs Examples of injection attacks on LLMs and their impact on model behavior

Broken Authentication:

Risks related to unauthorized access to LLM training data or models Best practices for securing authentication mechanisms in LLM environments

Sensitive Data Exposure:

Risks of exposing sensitive information through LLM outputs Techniques for protecting sensitive data during LLM training and inference

XML External Entities (XXE):

Risks of XXE attacks in LLM environments processing XML or structured data

Mitigation strategies for preventing XXE vulnerabilities in LLM systems

Broken Access Control:

Risks associated with inadequate access controls on LLM training data or model parameters

Implementing robust access control mechanisms for LLM environments

Security Misconfiguration:

Risks stemming from misconfigurations in LLM deployment environments Best practices for securing LLM configurations and settings

Cross-Site Scripting (XSS):

Risks of XSS attacks in LLM-based web applications or interfaces Techniques for preventing XSS vulnerabilities in LLM systems

Insecure Deserialization:

Risks associated with insecure deserialization of data in LLM environments Implementing secure deserialization practices for LLM systems

Using Components with Known Vulnerabilities:

Risks of using vulnerable components or libraries in LLM frameworks or

dependencies

Strategies for identifying and mitigating vulnerabilities in LLM environments

Insufficient Logging and Monitoring:

Risks related to insufficient logging and monitoring of LLM activities Implementing robust logging and monitoring solutions for detecting and responding to security incidents

Case Studies and Practical Examples:

Real-world examples of security risks and incidents involving LLMs Hands-on exercises and simulations to reinforce security concepts and practices

Future Trends and Emerging Technologies:

Emerging trends in LLM security research and development Implications of new technologies (e.g., federated learning, differential privacy) on LLM security

Introduction to RAG Applications and AI Agents:

Overview of RAG applications and AI agents and their role in risk management and assurance processes.

Introduction to the security challenges associated with these systems.

Data Privacy and Confidentiality Risks:

Risks related to the handling of sensitive data by RAG applications and Al agents.

Techniques for protecting data privacy and ensuring confidentiality in these systems.

Data Integrity Risks:

Risks of data manipulation or tampering within RAG applications or by Al agents.

Methods for ensuring data integrity and preventing unauthorized modifications.

Authentication and Authorization Risks:

Risks associated with inadequate authentication and authorization mechanisms in RAG applications.

Best practices for implementing strong authentication and access control

measures.

Third-Party and Supply Chain Risks:

Risks arising from the integration of third-party components or dependencies in RAG applications and AI agents.

Strategies for managing third-party risks and ensuring the security of the supply chain.

Model Security Risks:

Risks associated with vulnerabilities in AI models used by RAG applications and agents.

Techniques for securing AI models and mitigating risks such as adversarial attacks and model poisoning.

Compliance and Regulatory Risks:

Risks related to non-compliance with regulatory requirements and industry standards.

Strategies for ensuring compliance with relevant regulations and standards (e.g., GDPR, financial regulations).

Insider Threats:

Risks posed by malicious insiders or negligent employees within organizations using RAG applications and AI agents.

Methods for detecting and mitigating insider threats.

Social Engineering Attacks:

Risks of social engineering attacks targeting users or administrators of RAG applications and AI agents.

Techniques for raising awareness and preventing social engineering attacks.

Incident Response and Crisis Management:

Strategies and procedures for responding to security incidents and crises involving RAG applications and AI agents.

Developing incident response plans and conducting tabletop exercises.

Security Testing and Assurance:

Techniques for assessing the security of RAG applications and AI agents through penetration testing, vulnerability assessments, and security audits. Ensuring ongoing security assurance through regular testing and

monitoring.

Case Studies and Practical Examples:

Real-world examples of security incidents and breaches involving RAG applications and AI agents.

Hands-on exercises and simulations to reinforce security concepts and practices.

Future Trends and Emerging Technologies:

Emerging trends in RAG applications and AI security.

Implications of new technologies (e.g., blockchain, federated learning) on security risks and mitigation strategies.