M0043M Integralkalkyl och Linjär Algebra, Lekt 3, V16

Staffan Lundberg

Luleå Tekniska Universitet

Lekt 2

Bestäm ekvationen för linjen L genom punkterna (5,3) och (-2,7) på vektor- riktningskoefficient- och normalform.

Projektion, koordinater

Låt ${\bf u}$ vara en godtycklig vektor och L en rät linje med riktningsvektor ${\bf v}$. Den <u>ortogonala (vinkelräta) projektionen</u> ${\bf u}_{\bf v}$ på L är den vektor med egenskapen

- $\mathbf{u}_{\mathbf{v}} \parallel L$,
- $\mathbf{u} \mathbf{u}_{\mathbf{v}} \perp L$.

Komposantuppdelning

Det är ofta praktiskt att uttrycka en vektor som en summa av två andra vektorer, parallella med och ortogonala mot en föreskriven riktning.

Låt L och N vara två vinkelräta linjer i planet med riktningsvektorer \mathbf{v}_L och \mathbf{v}_N . En godtycklig vektor \mathbf{v} kan då uttryckas som summan

$$\mathbf{v} = \mathbf{v}_L + \mathbf{v}_N \tag{1}$$

Vektorerna \mathbf{v}_L och \mathbf{v}_N kallas \mathbf{v} :s komposanter. Uttrycket (1) kallas en komposantuppdelning av \mathbf{v} .

Exempel

Ett föremål dras längs en vågrät väg L med en kraft ${\bf F}$ som bildar en vinkel ϕ med förflyttningen.

Enligt definitionen av arbete utför kraften F arbetet

$$W = |\mathbf{F}| \cos \phi |\mathbf{s}|$$
 (Kraft i förflyttningsriktn. × väg)

Vi komposantuppdelar **F** och finner att $|\mathbf{F}| \cos \phi = |\mathbf{F}_1|$. Definitionen av arbete visar att

$$W = |\mathbf{F}_1| |\mathbf{s}| = |\mathbf{F}| \cos \phi |\mathbf{s}|.$$

Låt oss uttrycka detta med en alternativ formulering.

Skalärprodukt

Föregående exempel kan tjäna som inledning till begreppet skalärprodukt.

 $\frac{\text{Skalärprodukten}}{0, \text{ definieras som}} \ u \bullet v, \ \text{där} \ u, v \neq$

$$\mathbf{u} \bullet \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \varphi \quad ,$$

och φ är vinkeln mellan \mathbf{u} och \mathbf{v} .

Anmärkning Föregående exempel visar att

$$W = \mathbf{F} \bullet \mathbf{s} \quad (= |\mathbf{F}| \, |\mathbf{s}| \, \cos \varphi)$$

Speciella egenskaper

- $u \bullet u = |\mathbf{u}|^2,$
- Om $\mathbf{u} \cdot \mathbf{v} = 0$ så är \mathbf{u} och \mathbf{v} ortogonala (vinkelräta) (eller någon faktor är lika med nollvektorn),

Räkneregler

```
Kommutativ lag \mathbf{u} \bullet \mathbf{v} = \mathbf{v} \bullet \mathbf{u}, Distributiv lag \mathbf{u} \bullet (\mathbf{v} + \mathbf{w}) = \mathbf{u} \bullet \mathbf{v} + \mathbf{u} \bullet \mathbf{w}, För \lambda \in \mathbb{R} \ (\lambda \, \mathbf{u}) \bullet \mathbf{v} = \lambda (\mathbf{u} \bullet \mathbf{v}).
```

Från Lekt 2

Exempel Visa att vektorn
$$\begin{bmatrix} A \\ B \end{bmatrix}$$
 är normalvektor till linjen $Ax + By + C = 0$.

Lösningsförslag

Punkterna $P(x_1, y_1)$ resp. $Q(x_2, y_2)$ antas ligga på linjen. Därför gäller:

$$\begin{cases} Ax_1 + By_1 + C = 0 \\ Ax_2 + By_2 + C = 0 \end{cases}$$

Vi subtraherar och får

$$A(x_2 - x_1) + B(y_2 - y_1) = 0$$
.

Tolkning

Detta kan alternativt uttryckas som skalärprodukten

$$\begin{bmatrix} A \\ B \end{bmatrix} \bullet \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix} = 0 .$$

Detta betyder att vektorerna $\begin{bmatrix} A \\ B \end{bmatrix}$ och $\overline{PQ} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$ är <u>ortogonala</u>, dvs. $\begin{bmatrix} A \\ B \end{bmatrix}$ är en <u>normalvektor</u> till linjen, eftersom $\begin{bmatrix} P \\ Q \end{bmatrix}$ är en riktningsvektor till linjen.

Staffan Lundberg

M0043M V16

13/ 27

Exempel

Bestäm en riktningsvektor till linjen med ekvationen

$$\blacksquare Ax + By + C = 0.$$

Lösningsförslag

Vår räta linje är given på normalform. Då vet vi att vektorn $\begin{bmatrix} A \\ B \end{bmatrix}$ är normalvektor till linjen Ax + By + C = 0. Därför kan vi förslagsvis välja vektorn $\mathbf{u} = \begin{bmatrix} -B \\ A \end{bmatrix}$ till riktningsvektor. (Varför?)

Exempel

Vektorerna ${\bf u}$ och ${\bf v}$ har längderna 1 resp. 2 längdenheter. Vinkeln mellan ${\bf u}$ och ${\bf v}$ är $\pi/3$.

■ Bestäm a så att vektorerna $3 \mathbf{u} + 2 \mathbf{v}$ och $2 \mathbf{u} + a \mathbf{v}$ blir ortogonala.

ON-baser och skalärprodukt

Om

$$\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix},$$

i ON-basen $\{\mathbf{e}_x, \mathbf{e}_y\}$, så är

$$\mathbf{u} \bullet \mathbf{v} = x_1 x_2 + y_1 y_2.$$

Anm: Motsvarande gäller för vektorer i rummet.

Vinkelrät projektion

I början av lektionen introducerade vi begreppet vinkelrät projektion.

Vektorn \mathbf{u} är godtycklig. Linjen L har riktningsvektor \mathbf{v} . Komposanten \mathbf{u}_L kallas \mathbf{u} :s (vinkelräta) projektion på L.

Anm Vi antar inledningsvis att \mathbf{u}_L och \mathbf{v} är parallella och riktade åt samma håll, dvs

$$\mathbf{u}_L = t \cdot \mathbf{v}, \quad t \in \mathbb{R}_+$$

Anta att $0 < \theta < \pi/2$. Det gäller att

$$|\mathbf{u}_L| = |\mathbf{u}| \cos \theta =$$

$$= \frac{|\mathbf{u}| |\mathbf{v}| \cos \theta}{|\mathbf{v}|} =$$

$$= \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}.$$

Vi dividerar med |v| och får

$$\frac{|\mathbf{u}_L|}{|\mathbf{v}|} = \frac{\mathbf{u} \bullet \mathbf{v}}{|\mathbf{v}|^2} = \frac{\mathbf{u} \bullet \mathbf{v}}{\mathbf{v} \bullet \mathbf{v}} (=t). \quad \text{(Minns att } |\mathbf{u}_L| = t \cdot |\mathbf{v}|.)$$

Projektionsformeln

Vi får som resultat av kalkylerna den s.k. projektionsformeln:

$$\mathbf{u}_L = t \cdot \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}. \tag{2}$$

Anmärkning

I (2) kan vi sätta enhetsvektorn ${f e}={{f v}\over |{f v}|}$ och får alternativt ${f u}_L=({f u}\bullet{f e})\,{f e}. \eqno(3)$

Mer generellt: Om \mathbf{u}_L och \mathbf{v} är parallella, dvs

$$\mathbf{u}_L = t \cdot \mathbf{v}, \quad t \in \mathbb{R},$$

innebär detta att komposanten \mathbf{u}_L har längden

$$|\mathbf{u}_L| = \frac{|\mathbf{u} \bullet \mathbf{v}|}{\mathbf{v} \bullet \mathbf{v}} |\mathbf{v}| \quad \text{eller} \quad |\mathbf{u}_L| = |\mathbf{u} \bullet \mathbf{e}|.$$

Exempel

Bestäm vinkeln $0 \leqslant \alpha \leqslant \pi/2$ mellan linjerna

$$y = k_1 x + m_1$$

och

$$y = k_2 x + m_2$$

Lösningsförslag

Genom att parameterframställa linjerna, erhålls riktningsvektorerna $\mathbf{v}_1 = \begin{bmatrix} 1 \\ k_1 \end{bmatrix}$ respektive $\mathbf{v}_2 = \begin{bmatrix} 1 \\ k_2 \end{bmatrix}$

Med definitionen på skalärprodukt får vi att

$$\cos \alpha = \frac{|1 + k_1 k_2|}{\sqrt{1 + k_1^2} \sqrt{1 + k_2^2}} \quad .$$

Anmärkning

 $\overline{\text{Om } k_1 k_2 = -1}$ så är linjerna ortogonala. Nu förstår vi formeln vi använde i M0038M!

Avslutande exempel

Vektorn
$$\mathbf{v} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 är given och skall komposantuppdelas. Bestäm alltså vektorer \mathbf{c} och \mathbf{d} så att \mathbf{c} är parallell med vektorn $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ och \mathbf{d} är vinkelrät mot \mathbf{u} samt $\mathbf{v} = \mathbf{c} + \mathbf{d}$.

Staffan Lundberg

M0043M V16

25/

Att räkna på egen hand

Vektorerna
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 och $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ är givna i en ON-bas. Visa att vektorerna $t \cdot \mathbf{u} + \mathbf{v}$ och $t \cdot \mathbf{v} - \mathbf{u}$ är ortogonala, oberoende av värdet på den reella konstanten t .

Staffan Lundberg

26/27

Räkna på egen hand

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ och } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \text{ (ON-bas). Bestäm vinkeln mellan vektorerna.}$$

Svai:
$$\alpha = \arccos\left(\frac{260}{\sqrt{660}}\right)$$