Théorie des nombres

1 Multiples et diviseurs d'un nombre entier.

Définition 1: Multiples d'un nombre entier

Soit n un nombre entier. Alors, on appelle multiple de n tous les nombres de la forme $kn = k \times n$ avec k un nombre entier relatif.

Exemple 1

On peut représenter l'ensemble des multiples d'un nombre à l'aide de la représentation ci-dessous. Ici, vous avez un aperçu des multiples de 4.

Question 1

Peut-on dire que l'ensemble des multiples d'un nombre correspond aux tables de multiplication de ce nombre ?

Question 2

Combien un nombre admet-il de multiples?

Proposition 1

Seul 0 est multiple de tous les nombres entiers.

Démonstration 1

C'est le seul qui est présent dans toute les «bandes» de nombres qui correspond aux multiples.

Définition 2: Diviseurs d'un nombre entier

Soit n un nombre entier. Alors un diviseur de n est un nombre d tel que n est un multiple de d.

Exemple 2

les diviseurs des nombres dans les bandes du multiples sont présent dans la seconde ligne de la bande. regardez les multilpes de 23 par exemple.

Exemple 3

On peut lire par exemple que -115 est un multiple de -5 (mais aussi de 23).

Proposition 2

On voit donc que le terme **multiple** et **diviseur** sont en dualité. L'un est lié à l'autre, et le point de vue est inversé. Il faut prendre le temps d'utiliser ce vocabulaire.

Exemple 4

On représentera l'ensemble des diviseurs positifs d'un nombre à l'aide de la boite ci-dessous dans le cours. Par exemple, voici la liste des diviseurs de 30.

1 2 3 5 6 10 15 30

Question 3

À partir de la situation $23 \times 4 = 92$, faites une pharse qui contient le mot :

- 1. «multilpe»
- 2. «diviseur»

(vous ferez donc deux phrases différentes).

Proposition 3

L'entier 1 est le seul diviseur positif de tous les nombres.

Démonstration 2

Tout nombre n peut s'écrire $n = n \times 1$, donc 1 est un diviseur de n.

Question 4

- 1. Faites la liste des diviseurs de 25 (il faut aussi compter les diviseurs négatifs).
- 2. De même pour 26.
- 3. Que peut-on dire des nombres qui admettent exactement trois diviseurs positifs?

Question 5

Quelle est le nombre minimum de diviseurs que peut admettre un nombre entier?

2 PGCD, PPCM.

2.1 Plus grand diviseur commun

Définition 3: PGCD: plus grand diviseur commun

Soit a et b deux nombres entiers positifs. On considère les listes respectives des diviseurs de a et des diviseurs de b. On définit $\operatorname{pgcd}(a,b)$ par le plus grand diviseurs qui est présent dans la liste des diviseurs de a et dans la liste des diviseurs de b.

Exemple 5

Le plus grand diviseur commun de 42 et 54 est 6, puisque c'est le plus grand nombre commun aux deux listes des diviseurs de 42 et 36.

2.2 Plus petit commun multiple

Définition 4: PPCM: plus petit commun multiple

Soit a et b deux nombres entiers positifs. On considère la bande de multiple (positif), et on définit ppcm(a,b) par le plus petits multiples commun entre les deux.

Question 6

Soit a et b deux nombres entiers positifs. Montrer alors que $a \times b$ est un multiple commun de a et b.

Exemple 6

Prenons 6 et 15, et regardons leur multiple. Peux-tu montrer que ppcm(6, 15) = 30?

	-30	-24	-18	-12	-6	0	6	12	18	24	30	
• • •	$6 \times (-5)$	$6 \times (-4)$	$6 \times (-3)$	$6 \times (-2)$	$6 \times (-1)$	6×0	6×1	6×2	6×3	6×4	6×5	
	-75	-60	-45	-30	-15	0	15	30	45	60	75	
	$15 \times (-5)$	$15 \times (-4)$	$15 \times (-3)$	$15 \times (-2)$	$15 \times (-1)$	15×0	15×1	15×2	15×3	15×4	15×5	• • • •

3 Reste d'une division euclidienne.

Proposition 4

Soit a>b deux nombres entiers naturels positifs.

Alors, il existe un unique couple d'entiers positifs q et r tel que

- 1. a = bq + r
- 2. 0 < r < b

Définition 5: Reste de la division euclidienne

Dans la proposition précédente, on appelle q le quotient et r le reste de la division euclidienne de a par b.

Exemple 7

Regarde l'image suivante, et explique pourquoi si on prend a=34 et b=5 on obtient q=6 et r=4. En effet, $34=5\times 6+4$. On dit donc que le reste de la division euclidienne de 34 par 5 est 4.

Division euclidienne de 34 par 5

Question 7

- 1. Quelle est le reste de la division euclidienne de $340~\mathrm{par}\ 50$?
- 2. Quelle est le reste de la division euclidienne de $134~\mathrm{par}\ 5$?
- 3. Quelle est le reste de la division euclidienne de 35 par 5?

Proposition 5

On suppose que le reste de la division euclidienne de a par b vaut r=0. Alors, b divise a, et réciproquement.

Exemple 8

Voici un exemple avec a=40 et b=5, on voit que le reste est nul, et ainsi on a bien 5 qui divise 40, ou dit autrement, 40 est un multiple de 5.

Division euclidienne de 40 par 5

3.1 Division euclidienne par 2

Regarde attentivement ces exemples :

Division euclidienne de 16 par 2

Division euclidienne de 17 par 2

Division euclidienne de 18 par 2

On peut montrer la proposition suivante :

Proposition 6

Un nombre est pair si et seulement si le reste de sa division euclidienne par 2 vaut 0. Si le reste de la division euclidienne d'un nombre par 2 vaut 1, alors ce nombre est impair, et réciproquement.

4 Nombres premiers.