Contents

1	Section 7.1		
	1.1	7.1.1	1
	1.2	7.1.2	1
	1.3	7.1.5	1
	1.4	7.1.8	2
	1.5	7.1.9	2
	1.6	7 1 22	3

1 Section 7.1

1.1 7.1.1

Transform the given differential equation into an equivalent system of first-order differential equations.

$$x'' + 4x' - 3x = 6t$$

Let $x_1 = x$ and $x_2 = x'$. Complete the system below.

$$x'_1 = x_2$$

 $x'_2 = -4x' + 3x + 6t = -4x_2 + 3x_1 + 6t$

$1.2 \quad 7.1.2$

Transform the given differential equation into an equivalent system of first-order differential equations.

$$x^{(4)} + 5x'' + 2x = 5t^3\sin(2t)$$

Let $x_1 = x$, $x_2 = x'$, $x_3 = x''$, and $x_4 = x^{(3)}$. Complete the system below.

$$x'_{1} = x_{2}$$

$$x'_{2} = x_{3}$$

$$x'_{3} = x_{4}$$

$$x'_{4} = -5x'' - 2x + 5t^{3}\sin(2t) = -5x_{3} - 2x_{1} + 5t^{3}\sin(2t)$$

$1.3 \quad 7.1.5$

Transform the given differential equation into an equivalent system of first-order differential equations.

$$x^{(3)} = (x'')^2 - 2\cos(x')$$

Let $x_1 = x$, $x_2 = x'$, and $x_3 = x''$. Complete the system below.

$$x'_1 = x_2$$

 $x'_2 = x_3$
 $x'_3 = (x_3)^2 - 2\cos(x_2)$

1.4 7.1.8

Transform the given differential equation into an equivalent system of first-order differential equations.

$$x'' + 6x' - 6x - 5y = 0$$

$$y'' - 4y' + 3x - 5y = \sin(t)$$

Let $x_1 = x$, $x_2 = x'$, $y_1 = y$, and $y_2 = y'$. Complete the system below.

$$x'_1 = x_2$$

$$x'_2 = -6x' + 6x + 5y = -6x_2 + 6x_1 + 5y_1$$

$$y'_1 = y_2$$

$$y'_2 = 4y' - 3x + 5y + \sin(t) = 4y_2 - 3x_1 + 5y_1 + \sin(t)$$

1.5 7.1.9

Transform the given differential equation into an equivalent system of first-order differential equations.

$$\begin{cases} x'' = 9x - y + 3z \\ y'' = x + y - 3z \\ z'' = 6x - y - z \end{cases}$$

$$x'_1 = x_2$$

$$y'_1 = y_2$$

$$z'_1 = z_2$$

$$x'_{2} = 9x_{1} - y_{1} + 3z_{1}$$

$$y'_{2} = x_{1} + y_{1} - 3z_{1}$$

$$z'_{2} = 6x_{1} - y_{1} - z_{1}$$

1.6 7.1.22

- (a) Beginning with the general solution of the system x' = -2y, y' = 2x, calculate $x^2 + y^2$ to show that the trajectories are circles.
- (b) Show similarly that the trajectories of the system $x' = \frac{1}{2}y$, y' = -8x are ellipses with equation of the form $16x^2 + y^2 = C^2$.
- (a) Find the solution of the system x' = -2y, y' = 2x below. Start with x(t).

$$x' = -2y$$

$$x'' = -2y'$$

$$x'' = -2(2x)$$

$$x'' + 4x = 0$$

$$r^2 + 4 = 0$$
$$r = \pm 2i$$

$$x(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

Now find y(t) so that y(t) and the solution for x(t) found in the previous step are a general solution to the system of differential equations.

$$y' = 2x$$

$$y' = 2(C_1 \cos(2t) + C_2 \sin(2t))$$

$$\int y'dt = 2 \int (C_1 \cos(2t) + C_2 \sin(2t)) dt$$

$$y(t) = C_1 \sin(2t) - C_2 \cos(2t)$$

Now calculate and simplify $x^2 + y^2$.

$$x^{2} + y^{2} = (C_{1}\cos(2t) + C_{2}\sin(2t))^{2} + (C_{1}\sin(2t) - C_{2}\cos(2t))^{2}$$
$$x^{2} + y^{2} = C_{1}^{2} + C_{2}^{2}$$