Al Model Modalities, API calls and Closed-Source Providers

This presentation explores the fundamentals of AI model modalities, key closed-source large language model (LLM) providers, their core capabilities, and how to access them via APIs. We will also discuss important limitations and ethical considerations surrounding these technologies.

by Pat Pascual

What Are Al Modalities?

Definition

Modalities are the types of inputs and outputs an Al model can handle, such as text, images, audio, and video.

Leading foundation models increasingly support multi-modal interactions, enabling reasoning across diverse data types.

- Text-to-text, text-to-image
- image-to-text, audio-to-text
- text-to-audio, an multi-modal dialogues

Modalities Supported by Leading Models (2025)

Model	Supported Modalities
GPT-4o (OpenAl)	Text, Image, Audio input/output (real-time); Native image generation; Code interpreter
Claude 3.5 (Anthropic)	Text, Image (vision-supported); GUI interaction (Computer Use); Audio planned
Gemini 2.5 (Google)	Text, Image (vision-native), Audio output (emotional & experimental); Multilingual

Overview of Key Closed-Source LLM Providers

Organization	Al Personality	Mission Focus	Distinctive Edge
OpenAl	Helpful, cautious, globally responsible	Safe AGI for all humanity	Real-time multimodal, strong safety protocols
Anthropic	Transparent, ethical, reasoning-driven	Reliable AI via Constitutional AI	Long-context, structured ethical principles
Google DeepMind	Efficient, integrated, utility-focused	Multimodal AI for Google ecosystem	Vision-native, emotional voice, wide deployment

Caablilde

Core Capabilities Across Providers

Capability	GPT-4 (GPT- 40)	Claude (Claude 3)	Gemini (1.5 / 2.5)
Text Generation	√√√ (Highly coherent, creative)	√√√ (Strong context handling)	√√√ (Powerful & detailed)
Multi-modal Reasoning	√√√ (Vision, audio, text)	√√ (Text only, image/audio coming)	√√√ (Text + vision)
Coding & Math	√√√ (GPT-4o / Codex)	√√ (Strong but less deterministic)	√√√ (Robust with long context)
Tool Use & Functions	√√√ (Assistants API, tools)	√ (Planning in Claude 3 roadmap)	√ (Experimental or limited in IDEs)
Context Memory	Up to ~128K tokens	Up to 200K tokens	Up to 1M tokens
Safety & Alignment	Strong (RLHF + moderation)	Very strong (Constitutiona I AI)	Strong (Safety layers + evals)

OnA and Recall

Accessing Closed-Source LLMs via APIs

1

What is an API?

An API acts like a waiter: you place an order (request), the chef (LLM server) prepares it, and the waiter delivers the result.

2

How to Use APIs

- 1. Sign up on OpenAI, Anthropic, or Google AI Studio
- 2. Get your API key (digital ID badge)
- 3. Send requests using code (e.g., Python)
- 4. Monitor usage limits and costs

3

Why Use APIs?

- Simple integration without hosting models
- Scalability handled by providers
- Built-in safety filters and alignment

Limitations of Large Language Models

Hallucinations

Models can generate inaccurate or fabricated information.

Prompt Sensitivity

Output quality varies significantly based on input phrasing.

Cost

Usage is billed per token, which can add up with heavy use.

Cost Comparison

Organization	Model Tier	Approx. Cost (API usage)	Notes
OpenAl	GPT-40	~\$5.00 per 1M input tokens	Includes text, image, and audio processing
	GPT-4	~\$30.00 per 1M input tokens	High accuracy, no audio or real-time multimodality
	GPT-3.5	~\$0.50 per 1M input tokens	Most affordable, widely used in chatbots
Anthropic	Claude 3 Opus	~\$15.00 per 1M input tokens	Premium reasoning, long context (200K+ tokens)
	Claude 3 Sonnet	~\$3.00 per 1M input tokens	Balanced performance and cost
	Claude 3 Haiku	~\$0.25 per 1M input tokens	Optimized for speed, lowest cost
Google DeepMind	Gemini 1.5 Pro	~\$10.00 per 1M input tokens (estimated)	High reasoning and multimodal support
	Gemini Flash	~\$0.35 per 1M input tokens (estimated)	Optimized for speed and cost-efficiency
	Gemini 2.5 (Exp)	Not publicly disclosed	Emotion, audio support, premium experimental tier

Ethical Considerations in Al Deployment

Bias & Fairness

Models may produce prejudiced or harmful outputs if not carefully managed. Data Privacy

Responsible handling of sensitive input data is critical.

Deployment Ethics

Avoid misuse in sensitive domains like law and healthcare.

Regulations to Consider for Al Use

- **GDPR (EU)** Data protection and privacy regulations in Europe.
- **HIPAA (US)** Health data privacy rules in the United States.
- Al Act (EU) Proposed regulations for Al safety and transparency.
- NIST AI RMF (US) Framework for responsible AI risk management.

OnA and Recall

Activity #2

Let's create your very first closed-source chatbot.

1

Identify the top 3 challenges or inefficiencies in your target domain or industry.

Example: "Employees waste time writing repetitive reports" or "Customers drop off due to unclear product descriptions."

2

Define who experiences these problems.

Example: "Sales teams," "College students," or "E-commerce product managers."

3

Clearly state how LLMs (via API) will uniquely solve the problem or create value.

- Simple integration without hosting models
- Scalability handled by providers
- Built-in safety filters and alignment

_

Describe the function or purpose the tool

Example: "A summarizer for call center logs," or "A toneconverter for customer emails."

5

List and define each tasks.

Example: "Auto-generate social media captions," "Extract customer pain points from reviews," or "Rephrase technical content for non-experts."

6

Describe the overall process. Focus on how the data will flow through the API.

Example: "User uploads a file → API extracts key points → Summary is sent back to user."

Activity #3 - Business Use Case

7

Define the limitations of the tool

Example: "It can only respond to love-related questions", "Only works with English input"

8

Define how the solution generates revenue or value

Example: "Internal time saved = operational cost savings"

9

Define how you measure success

Example: "Average time saved per user", "Uptake rate of auto-generated drafts"

Activity #4

Let's build your business usecase! Generate a system_prompt using this:

You are an intelligent assistant designed to help solve real-world problems using a language model via API. Below is the user's specification. Read it carefully and perform only what is defined in the tasks and process.

- Industry Challenges
- Who Experiences the Problems
- LLM Solution Value
- **©** Tool Function or Purpose
- **X** Tasks Performed
- Data Flow / Process Overview
- **N** Tool Limitations
- **Revenue Streams**
- Key Metrics

Activity #5

Deploy you Activity #4 via Streamlit.

OnA and Recall

