GravNetAdj: A MATALB-based software for gravtiy network ajustment

User Manual

1. Introduction

Gravity measurement is very import for moding the gravity field model and builing a gravity datum for a nation. Even thought there are some software for processing the observations with relative gravity measurement, but a detail error correction are not been given in detail or not a graphical user interface (GUI). Especially, there are no good method to detect multiple outlier in observations or reduce the influence for parameter estimation. Considering the limited number of the alternatives, GravNetAdj was developed to benefit the potential advantages of the robust estimation method. the GravNetAdj is fast, simple, and user-friendly, which makes it easy to carry out the gravity network adjustment when the technicians are not familiar with the gravity data processing Through its user-friendly graphical user interface, GravNetAdj allows users to specify the options, models, and parameters related to gravity data processing and robust estimation for adjustment computation.

2. Installation

GravNetAdj was developed in MATLAB environment since its matrix-based structure and built-in graphics are hight suitable for technical computing, programming, and data visualization. GravNetAdj does not entail any toolbox for function excepte for MATLAB core files and SPOTL for computing ocean tide correction. Two steps should be followed to open the graphical user interface (GUI) of GravNetAdj:

- (1) Add the folder containing the source codes of GravNetAdj into MATLAB search path
- (2) Type GravNetAdj_English in MATLAB command line

The interface of GravNetAdj was developed using the MATLAB App Designer which is special environment to design and develop visual components of a user interface. For this reason, MATLAB version 2018a or newer is required for running GravNetAdj.

3. GravNetAdj

GravNetAdj is able to perform relative gravity observations and gravity network adjustment computation with robust estimation. GravNetAdj allows specifying options, models, and parameters about gravity field processing and adjustment computation through its user-friendly interface. Fundamentally, GravNetAdj consists of four main components which are relative gravity processing, data importing for adjustment computation, observations analysis and adjustment of gravity network.

Fig.1 Main components of GravNetAdj

Figure 1 shows the main window of GravNetAdj. Four fundamental tabs representing the components of the software are locaed on the top of the main window. The explanation of each tab along with its preferences is respectively given below.

3.1 Relative gravity data processing

We can relize the function by using the Relavtive_Gravity tabs. There are four tabs . They are parameter setting (para_set), data importing (Input_Data), relative gravity computation (RelGrav_Comp), and Outlier detection (Outlier_detection). Firstly, we must choose the error correction like Solid Tide (earth tide) and Ocean Tide (Figure 2).

Fig.2 Paramter setting of relative gravity data processing

Fig.3 Data import of relative gravity data processing

GravNetAdj requires foundmental data sources to perform relative gravity data processing; original observations of relative gravity, grid value, high precision coodinates, or gradient data. Then The whole necessary files should be introduced to GravNetAdj by clicking the selection box to the related field. Each observation is stored in one file shown in Fig.4, and their detail explanation is expressed in Tab1. All observation file must be placed into the same folder but without any other contents.

18 C 063	3 11								
B090	Hengshan	2019 9 28	5. 433333	2526.545	645.0				C063 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
C076	Hengshan	2019 9 28	6. 200000	2528.655	642.0	345.0	-5.0		C063 Liuxing Likai 56.0 0 0 77 6 19 36 27 39 3 0
B090 C 534	Hengshan	2019 9 28	6.500000	2567.67	640.0	345.0	-5.0	3814.0	C063 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
	Hengshan	2019 9 28	5. 483333	6363.972	643.0	476.0	-5.0	3814.0	C534 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
C076	Hengshan	2019 9 28	6.033333	6367.376	639.0	476.0			C534 Liuxing Likai 56.0 0 0 77 6 19 36 27 39 3 0
B090	Hengshan	2019 9 28	6.533333	6363.039	640.0	476.0	-5.0	3814.0	C534 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
C 056 B090	3 11 Hengshan	2019 9 28	5. 533333	2510.021	643 N	314 0	-5 O	3814 0	C056 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
	Hengshan	2019 9 28	6.100000	6367.376	639.0	314.0			C056 Liuxing Likai 56.0 0 0 77 6 19 36 27 39 3 0
	Hengshan	2019 9 28	6.516667	6363.039	640.0	314.0	-5.0	3814.0	C056 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
	6 3 11								
	Hengshan	2019 9 28	5.166667	4774. 981					C1066 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 (
	Hengshan	2019 9 28	6.066666	6367.419	639.0	472.0			C1066 Liuxing Likai 56.0 0 0 77 6 19 36 27 39 3 (
	Hengshan	2019 9 28	6.483333	6363.104	640.0	472.0	-5.0	3814.0	C1066 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 (
	4 3 11								
	Hengshan	2019 9 28	5.500000	4649.614					C1064 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 (
		2019 9 28	6.050000	4654.057	639.0	474.0			C1064 Liuxing Likai 56.0 0 0 77 6 19 36 27 39 3 (
	Hengshan	2019 9 28	6.450000	4649.714	640.0	474.0	-5.0	3814.0	C1064 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 (
C 052	3 11								
	Hengshan	2019 9 28	5.516667	2669.625					C052 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0
C076	Hengshan	2019 9 28	6.516667	2674.045	639.0	314.0	-5.0	3828.0	
B090	Hengshan	2019 9 28	6.450000	2669.662	640.0	314.0	-5.0	3814.0	C052 Liuxing Likai 56.0 0 0 77 3 12 36 26 52 3 0

Fig.4 The data format of relative gravity observations

Tab.1 The explaination of relative gravity observastions

First line	18	Total number of observations		
Second line	С	Initial character of the used instrument		
	063	Series number of instrument		
	3	Number of stations		
	11	Measurement type		
Third line	B090	Point number		
	Hengshan	Name of point		
	2019	Years		
	9	Month		

	29	Day			
	5.433333	Mean time			
2526.545		Mean of reading number			
645.0		Atmospheric pressure			
345.0		Instrument height			
	-5.0	Overflow			
3814.0		Height			
C063		Name of instrument			
Liuxing		Observer			
	Likai	Recorder			
	56.0	Inward overflow			
	0	Amplitude			
	0	Weather			
77		Lontitude(degree)			
3		Lontitude(minute)			
12		Lontitude(second)			
36		latitude (degree)			
26		latitude (minute)			
52		latitude (second)			
3		grade			
	0	Vehicle			

3.2 The detail step for gravity network adjument

It should be declared that the data and results shown below are not real data. The main function is to perforem the processing of computing.

step 1: Click on the menu bar 【 Relative_Gravity- Para_Set 】 to select the corresponding error correction and data selection

Step 2: Click on the menu bar 【Relative_Gravity-Input_Data】 to import the required data for data processing. Including the observation data of relative gravity

measurement, grid value data and coordinate data.

The gradient data is not necessary if there is not the gradient data. Therefore, we can

using the empiric value. The ending result is stored in file by chooseing click the button in

Step 3: Click on the menu bar 【Relative_Gravity- RelGrav_Comp】 to start the preprocessing of relative gravity data.

Step 4: Click on the menu bar 【Relative_Gravity- Outlier_detection】 to start gross error detection for the relative gravity data.

Step 5: Click on the menu bar 【 Adjustmentdata_load - Obsdata 】 to start importing absolute gravity adjustment data dand Click on the menu bar 【 Adjustmentdata_load - Reldata 】 to start importing relative gravity adjustment data.

Step 6: Click on the menu bar 【 GravityNetwork_Adjustment - Parameter Settings 】 to import data, set adjustment parameters, and select adjustment methods. For example, we must give the parameter k1, k2 and e1 for conducting the robust estimation.

Step 7: Click on the menu bar 【GravityNetwork_Adjustment - Parameter Settings】, select the adjustment parameter results statistics, and click on the menu 【adjustment computation

