Chapter V Duality.

§ 1.1 Cohomology.

In previous section we have defined chain complexes $\rightarrow C_{n+1} \xrightarrow{\partial} C_n \xrightarrow{\partial} C_{n+1} \rightarrow \cdots$ Where Cn is a vector space over Z2 generated by all n-simplices in a simplicial complex K, now dualize this chain complex, i.e. apply the functor $\mathrm{Hom}_{Z_2}(-,Z_2)$, and let C_n^* denote $Hom_{Z_2}(C_n, Z_2)$, we get another chain complex $\leftarrow C_{n+1}^* \stackrel{\delta}{\leftarrow} C_n^* \stackrel{\delta}{\leftarrow} C_{n-1} \leftarrow \cdots$ where $S=\partial^*$, that is for $f\in C_n^*$, $Sf=f\partial:C_{n+1}\xrightarrow{\partial}C_n\xrightarrow{f}Z_2$, $SSf=S(f\partial)=f\partial\partial=0$ Hence we define the porth cohomology group Holk) = ker Sep/Im Serept. ZP = ker Sp BP= ImSp1, they all contained in CP.

 $C_0 = \mathbb{Z}_2^6$ generates by a^*, b^*, \dots, f^*

$$Z^{\circ}=\ker S^{\circ}$$
, If $c^{*}\in Z^{\circ}$, then $c^{*}\partial:C_{1}\rightarrow \mathbb{Z}_{2}$ is a zero map \Rightarrow For any edge, c^{*} take the same value on its endpoint, thus the only nontrivial \Leftrightarrow 0-coople is $a^{*}+\cdots+f^{*}$. $H^{\circ}(k)=\mathbb{Z}_{2}$, $Z^{\circ}=\mathbb{Z}_{2}$, hence $B^{!}=C^{\circ}/Z^{\circ}=\mathbb{Z}_{2}^{5}$

what about H'(K)?. $Z' = \ker S'$, If $C' \in Z'$, then $C' \ni : G \to Z_2$ is zero, thus o on each 2-simplex, which means C* takes I on exactly two edges of each triangle or 0 on all edges. Hence for Eabol, Eabl*+ Ebol1* and Eabl*+ Eadl* are coopcles send Eabol to zero. Therefore $Z'=Z_{2}^{6}$, $H'=Z'/B'=Z_{2}$. $B^{2}=C'/Z'=Z_{2}^{3}$, $H^{2}=C^{2}/B^{2}$

In this example, we find Hn = H", this is not a windecidences.

§ 1.2 Gboundary merp Morth'x.

Recall the representation of a linear map $A: V \rightarrow W$. vi are basis for V and Wifor W. ØCV1 , Vm) = (\$ W1 ,... , Wn) Anxm

Then we take dual, $A^*: W^* \rightarrow V^*$, and take the dual basis w_i^* and

Vi*, we have \$\(\pi_1 \cdots, \dots \want \n^* \) = (Vi*, \dots \pi_m \cdots) A^T. Hence the coboundary matrix Control is the transpose of [dn+1]: Control Con.

i.e. Let $r_{n+1} = rank \triangleq [\partial_{n+1}] = rank [S_n] = r^n$, $\beta_n = rank H_{n}(k) = Z_n - b_n = C_n - r_n - r_{n+1}$

$\beta^n = rank H^n = Z^n - b^n = C_n - r^{n-1} = C_n - r_{n+1} - r_n = \beta_n$. Therefore $H^n(k; \mathbb{Z}_2) =$

Hn (K; Z/2) § 1.3 Universal Coefficient Theorem.

X is a topological space, Halx) denotes the homology group of X in coefficient

R-Risa PID. Gisa R module. C is a chain complex of free R-modules with boundary maps R-module

homomorphisms, and G is also an R-module. There is a notural split short exact $0 \longrightarrow \operatorname{Ext}_{R}(H_{n-1}(C), G) \longrightarrow H^{n}(C; G) \longrightarrow \operatorname{Hom}_{R}(H_{n}(C), G) \longrightarrow 0.$

where Ext_R(A,B), A,B R-modules. Take free (projective) resolution for A

$$0 \rightarrow A_1 \rightarrow A_0 \rightarrow A \rightarrow 0$$
, apply $Hom_R(-, B)$ get $0 \leftarrow A_1^* \leftarrow A_0^* \leftarrow A^* \leftarrow 0$, $Ext_R(A_1B) = H'(Hom_R(P_A, B))$. When $G = \mathbb{Z}_2$

Hn is a vector space, free, therefore $E_{xt} = 0 \Rightarrow H^n(C; \mathbb{Z}_2) = Hon_{\mathbb{Z}_2}(H_n(C), \mathbb{Z}_2)$.

By the way. Ch' is the G coefficient chain group, Ch'= Ch & G, Ch is ZI coefficient $0 \longrightarrow H_n(C) \otimes G \longrightarrow H_n(C \otimes G) \longrightarrow Tor(H_{n-1}(C), G) \longrightarrow 0$ is a split 855.

where Tor (A,B) = H, (PABB).

§ 2. Poincaré Duality. Start = { 6 = k | t is a face of 6 }, St t the minimal substimplex contorining Stt. lik, LKT = { ve Stt | VNT = \$ }. - Combinational manifolds. A combinocoprial manifold of dimension d, satisfying there is a tribagulation

s.t. LK6 triangulates the sphere of dimension d-i-1. This implies St6 = EBd (Dd) ae Co, LKa={163,103,160}}

Sta = the union of three standing 2-simplices. = B Lka = { 2 f b3, {c3, {d}, 1 bc}, { bd}, 1 cd} > 5 $\sqrt{S_t \, [ac]} = the union of two 2-simplices intersecting on$

[ac] = B2, LKac]= {161,1d1} = s.º In fact each simplex in the Sto is the join of 6 with a simplex in LK6, St6 =

6 * Lk6. Lk6 = Sd-i-1 = * So, 6 * So = Di * So = Sd-i Di = D*d.

+=0, collapse X $X *S^{\circ} = SX$ $X \times S^{\circ} \times \{t\}$ t=1, collapse S0 = identify two"x" = \(\times \tim X x5° x [0,1]

- Dual Block.

Let IM be a compact, combinatorial d-manifold triangulated by K.

Recall the borycenter subolivision, Solk. If K has the link property, so does Solk. Label each vertex, in Solk, kyrites as follow: u is a borycenter of a simplex 6 in K, label u by the dimension of 6. Note that each simplex in Solk has distinct labels on its vertices. The vertex with smallest labered is therefore unique. Letting u is be the borycenter of 6 in K, the dual block denoted by $\hat{6}$, is the union of the simplices in the barycentric subdivision for which u is the vertex with minimum label. Let B be the set of dual blocks and call it the dual block decomposition of M

If p-simplex 6 is a face of p+1-simplex T, then \hat{T} is a contained in the boundary of \hat{e} . In fact, the boundary \hat{e} is the union of dual blocks \hat{T} over all proper cofaces T of e. We denote this boundary by e bol \hat{e} , and \hat{e} = e bol \hat{e} * e u. e is the borycenter of e. e then \hat{t} * e e . Since Solk is a combinatorial manifold, e bol \hat{e} \times e where e p+q= e.

we now construct a new chain complex. Since 6 a p-simplex. $\hat{6}$ is a q-dimensional \cancel{B} \cancel{B}^2 , let \cancel{D}_q denotes the vector space over \cancel{Z}_2

generated by all 6i, where 6i is a P-simplex. The boundary map 2q: De \rightarrow Dq-1 is defined by $\partial q(\hat{6i}) = \sum \hat{t_i}$, where t_i is a (P+1)-simplex and 6i≤ Ti is a proper face. dq-10dq=0 since there exactly two identitical

elements in $\partial_{q-1}(\hat{\tau}_i)$ and $\partial_{q-1}(\hat{\tau}_j)$ containing them as faces.

The next step is to show Hq(D) = Hq(C), where C is the simplicial chain complex. Mapping each p-simples p-dimensional dual block to the sun of p-simplices it contains, we get a homomorphism bp: $Dp \rightarrow Cp$, bp commutes with the boundary map., thus forms a chain map b: D -> C. (no formula) proof).

? - Block Complex Lemma: The chain map b: D-C induces bx: Hp(D) -> Hp(c) is an isomorphism.

[proof]: Let Xp be the subcomplex of Sdk, consisting of all simplicies that lie in blocks of dimension at most p. Clearly Hp (Xq, Xq-1)=

$$\rightarrow$$
 Hp+1 (Xq, Xq-1) \rightarrow Hp(Xq-1) \rightarrow Hp(Xq) \rightarrow Hp(Xq, Xq-1) \rightarrow ...

(ext q=p+2. Hp(Xq+1) \cong Hp(Xq+2) \cong Hp(Sdk).

If P+1<9 , Hp(Xq-1) >> Hp(Xq)

Dp+1 = Hp+1 (Xp+1, Xp) 0= Hp-1(Xp-2) $H_p(X_p) \xrightarrow{f} D_p = H_p(X_p, X_{p-1}) \xrightarrow{g} H_{p-1}(X_{p-1})$ Hpcxp+1) Dp-1= Hp-1 (Xp-1, Xp-2) 0 = Hp (Xp+1, Xp)

3 The diagramm commutes?

$$Hp(D) = \ker \frac{\partial q * \partial_k / Im \partial q + 1}{f (Im e)} = \frac{f(Hp(Xp))}{Im e} = \frac{Hp(Xp)}{\ker L} \approx Hp(Xp+1).$$

$$= Hp(SdK).$$

$$= Poincaré Duality c First form). Let IM be a compact,$$

combinatorial d-manifold. Then there is an isomorphism between Hp(INI) and.

$$H^q(IM)$$
 for $p+q=al$. (bijective)

— $\forall p-\text{simplex in } K$, let $6^*\in C_p^*$, let $(q:D_q\longrightarrow C^p)$ by $(q(\hat{6})=6^*)$ extending linearly gives a isomorphism between D_q and C^p .

$$\begin{array}{ccc} D_{Q} & \xrightarrow{\delta_{Q}} & D_{Q-1} \\ & & & \downarrow & \psi_{Q-1} \\ & & & \downarrow & \psi_{Q-1} \\ & & & \downarrow & \psi_{Q-1} \end{array}$$

If this diagrams commutes, then we have HeCIM) & HP(IM)

 $P_{q-1} \circ \partial_q(\hat{6}) = (q_{-1}(\Sigma \hat{7}) = \bar{Z} T^*, \text{ where } T \text{ is a p+1 Ge simplex with } 6$ being its face. $S^p(q_2(\hat{6}) = S^p(6^*) = 6^* \partial$; Since they explore on each take 1 p+1 simplex T > 6 and 0 otherwise, therefore they are equal, \Rightarrow the diagram commutes.

Hp (IM) = Hq(IM) = Hq(IM) for ptq=d

In general, If M is R-orientable, then there is an isomorphism $H^k(M;R) = H_{n-k}(M;R)$. Every manifold is \mathbb{Z}_2 -orientable.

§ 3. Intersection Theory

Let M be a combinatorial of-manifold. Ptq=d. If 6 is a p-simplex, then $\hat{6}$ is a q-dimensional. $6 \cap \hat{6} = u$ the barycenter of 6. [This is because u has the minimal label in all simplices in $8600 \times \hat{6}$]. If $6 \neq T$, then $6 \cap \hat{T} = \phi$, T is anthor p-simplex. (How to prove?). Define $6 \cdot \hat{T} = \begin{cases} 1 & \text{if } 6 = T \\ 0 & \text{if } 6 \neq T \end{cases}$

Suppose $C = \sum_{i} a_i \delta_i$ is a p-cycle in K and $d = \sum_{i} b_j \delta_i$ is a q-cycle in D_q . then $c \cdot d = \sum_{i \neq j} a_i b_j (\delta_i \cdot \delta_j)$ is the intersection number of two cycles in modulo 2. $c \cdot d = 0$ if they are disjoint or meet in an even number, $c \cdot d = 1$ if they meet in an odd number.

In fact, if $c \sim c_0$, then $c \cdot d = c_0 \cdot d$, so does $d \sim d_0$. If let γ be a ptl simplex we want to show $\partial \gamma \cdot d = 0$. For \hat{e} is a summand of d, $\partial \gamma \cdot \hat{e} \neq 0$ iff e is a face of $\gamma \cdot \gamma \cap \hat{e} =$ the line segment connecting the barycenters of γ and e.

- ? Completing the intersection between γ and of, the edge extends to either a closed curve or a path with two endpoints. Thus $\partial \gamma \cdot d = 0$.
- Parings. #: $H_p(M) \times H_q(M) \rightarrow G$ defined by $\#(\gamma, \delta) = c \cdot d$, where c and d are representatives. Call this map the intersection paring of the homology groups, p+q=d. Bilinear. U,V be vector spaces, $\#:U\times V \rightarrow G$ gives a natural homomorphism $\phi_\#:V \rightarrow Hom(U,G)$, $f_V(U) = \#(U,V)$. A paring is perfect if for every nonzero $U \in U$, $\exists \ V \in V$, st. #(U,V) = I. and $\forall \ V \neq O$, $\exists \ U \in V$, $\exists \$
- Perfect Paring Lemma. The pairing $\#: U \times V \rightarrow G$ is perfect iff $\#: V \rightarrow Hom \ U \cup G$) is an isomorphism. If $\#: V \Rightarrow G$ is perfect iff $\#: V \rightarrow Hom \ U \cup G$) is an isomorphism. If $\#: V \Rightarrow G$ is an iso, then $\forall V \neq 0$, $\#: V \Rightarrow Hom \ U \cup G$. $\#: U \Rightarrow G$ is an iso, then $\forall V \neq 0$, $\#: V \Rightarrow Hom \ U \cup G$. If $\#: V \Rightarrow Hom \ U \cup G$ is perfect iff $\#: V \Rightarrow Hom \ U \cup G$ is perfect iff $\#: V \Rightarrow Hom \ U \cup G$. In $\#: V \Rightarrow Hom \ U \cup G$ is perfect iff $\#: V \Rightarrow Hom \ U \cup G$. If $\#: V \Rightarrow Hom \ U \cup G$ is perfect iff $\#: V \Rightarrow Hom \ U \cup G$ if $\#: V \Rightarrow Hom \ U \cup G$ is perfect iff $\#: V \Rightarrow Hom \ U \cup G$ if $\#: V \Rightarrow Hom \$
- [— 6 a p-simplex of k, $\hat{6}$ its q-dimensional dual block, let $\psi_{Q}(\hat{6}) = 6^*$. and $\mathcal{E}C_p^*$ $<6^*$, $\forall 7 = <\hat{6}$, $\forall 7 = <\hat{6}$.
- Poincaré Duality (Second Version).

Let IM be a compact, combinatorial manifold. Then the points $\# H_{PLM}$ \times $H_{QLM}) \rightarrow G$ defined by $\# (Y,S) = Y \cdot S$ is perfect for all p+q=d.