Funciones elementales

Procesado Digital de la Señal en FPGA

2021/2022

Funciones elementales

- 1. Aproximación de funciones elementales
- 2. Métodos basados en tablas
 - 1. Directo
 - 2. Interpolación
- 3. Métodos iterativos
 - 1. Newton-Raphson
 - 2. CORDIC
- 4. Evaluación polinómica
- 5. Reducción-ampliación del rango

Aproximación de funciones

- Muchas aplicaciones requieren el cómputo de funciones elementales: 1/x, sqrt, log, exp, cos, sin, atan ...
- No suele ser eficiente aproximar la función en todo el rango de aplicación (R)
- Algunos métodos solo convergen para entradas en un rango reducido (R*)
- Método general de aproximación de funciones:
 - Preprocesado: reducción del rango
 - Aproximación de la función en el rango reducido
 - Pos-procesado: reconstrucción del resultado, expansión al rango completo

- Memorias → implementación VLSI eficiente
- Método directo: z=f(x)
 - x codificada con Nx bits
 - z codificada con Nz bits

Memorias en FPGAs:

- Basadas en LUT: memorias pequeñas de 16 o 64 bits
- Hard-cores: memoria grandes de 8k a 36kbits BRAMs en Xilinx y Mxk en Altera BRAMs en Xilinx y Mxk en Altera

Configuraciones M9K de Cyclone IV:

- 4Kx2 bits
 2Kx4 bits
 1Kx(8+1) bits
 512x(16+2) bits
- 256x(32+4) bits

• **Método directo**: **Ej.1**: z=sin(2πx) x con 11 bits Tabla de 2¹¹ x 12 bits - z con 12 bits M9K Cyclone: 9kbits \Rightarrow 3 M9K configuración: 3x(2kx4) bits ROM **BRAM Virtex 6: 36kbits** ⇒ 1 BRAM configuración: 2kx16 bits **Ej.2**: z=atan(y/x)- x,y con 11 bits Tabla de 2²² x 12 bits - z con 12 bits ⇒ 6144 M9K Cyclone IV⇒ 1536 BRAMs Virtex 6 ROM ¡La implementación directa no es un método razonable para tamaños de tablas grandes!

Interpolación lineal: y=f(x)

Aproximación en $[x_0,x_1] \Rightarrow y_a=m \cdot \Delta x+c$ $m=(f(x_1)-f(x_0))/(x_1-x_0)$

 $c=f(x_0)$

• Interpolación lineal: $y=e^x con x en [0,1[$ [Aproximación en $[x_0,x_1] \Rightarrow y_a=m \cdot \Delta x+c'$

Exactitud del cálculo: 2 bits

• Interpolación lineal: $y=e^x$ con x en [0,1[[Aproximación en $[x_0,x_1] \Rightarrow y_a=m\cdot\Delta x+c'$ con c'=c+offset offset=-max_error/2

Exactitud del cálculo: 3 bits

Interpolación lineal con división del intervalo: y=f(x)

Aproximación en $[x_0,x_1] \Rightarrow y_a^{(i)}=m^{(i)}\cdot \Delta x+c^{(i)}$, siendo i el índice del intervalo

Interpolación lineal con división del intervalo: y=f(x)

Aproximación en $[x_0,x_1] \Rightarrow y_a^{(i)}=m^{(i)}\cdot\Delta x+c^{(i)}$, siendo i el índice del intervalo

• Interpolación lineal con división del intervalo: $y=e^x$ con x en [0,1[Aproximación en $[x_0,x_1] \Rightarrow y_a^{(i)}=m^{(i)}\cdot \Delta x+c^{(i)}$ División del intervalo en 4 zonas con $(x_{i1}-x_{i0})=2^{-2}$

• Interpolación lineal con división del intervalo: $y=e^x$ con x en [0,1] División del intervalo en 256 zonas con $(x_{i1}-x_{i0}) = 2^{-9}$

Recursos HW: 1 M9K (256x36 bits)

1 mult

1 sumador

Métodos iterativos

Método de Newton-Raphson : x=1/d

$$x_0 = LUT(1/d)$$

 $x_{k+1} = x_k(2-x_kd)$

$$X_{k+1} = X_k \cdot (2 - X_k \cdot d)$$

dependencias en operaciones

Implementación con 1 mult

2 ciclos clk por iteración

С	iclos clk	
	1º	$V_k = (2 - X_k \cdot d)$
	2°	$X_{k+1} = X_k \cdot V_k$

$$Thr = \frac{f_{clk}}{2 \cdot \#it}$$

Métodos iterativos

Algoritmo CORDIC

$$X_{i+1} = X_i - d_i 2^{-i} Y_i$$

 $Y_{i+1} = Y_i + d_i 2^{-i} X_i$
 $Z_{i+1} = Z_i - d_i tan^{-1} (2^{-i})$

Operadores aritméticos:

- Rango de convergencia: $\pm \pi/2$
- P+1 iteraciones para precisión P
- Dimensionado de los operadores:
 2+P+log2(P) bits

Modo Rotación

$$d_i = sign(Z_i)$$

Modo Vectorización

$$d_i = -sign(Y_i)$$

Evaluación de polinomios

Func	Polynomial approximation	Conditions				
1/ <i>x</i>	$1+y+y^2+y^3+\cdots+y^i+\cdots$	0 < x < 2, y = 1 -	x			
e ^x	$1 + x/1! + x^2/2! + x^3/3! + \cdots + x^i/i! + \cdots$					
ln x	$-y-y^2/2-y^3/3-y^4/4-\cdots-y^i$	/i − · · · 0 <x< td=""><td>2, $y=1-x$</td></x<>	2, $y=1-x$			
ln x	$2[z + z^3/3 + z^5/5 + \cdots + z^{2i+1}/(2i)]$	+1)+···]	x > 0, $z = x - 1$			
sin x	$x-x^3/3!+x^5/5!-x^7/7!+\cdots+(-1)^{j/2}$	$x^{2i+1}/(2i+1)!+\cdots$				
cos x	$1-x^2/2!+x^4/4!-x^6/6!+\cdots+(-1)$	$)^{i}x^{2i}/(2i)!+\cdots$				
tan⁻¹ <i>x</i>	$x-x^3/3+x^5/5-x^7/7+\cdots+(-1)^{i}x^{2i}$	+1/(2 <i>i</i> + 1) + · · ·	_1 < <i>x</i> < 1			
sinh x	$x + x^3/3! + x^5/5! + x^7/7! + \cdots + x^{2i+1}$	¹ /(2 <i>i</i> + 1)! + · · ·				
cosh x	$1 + x^2/2! + x^4/4! + x^6/6! + \cdots + x^{2i}/6$	(2 <i>i</i>)!+ · · ·				
tanh-1x	$x + x^3/3 + x^5/5 + x^7/7 + \cdots + x^{2i+1}/($	2 <i>i</i> +1)+ · · ·	_1 < <i>x</i> < 1			

Evaluación de polinomios

Método de Horner:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1} + a_n x^n =$$

$$= a_0 + x(a_1 + a_2 x^1 + a_3 x^2 + \dots + a_{n-1} x^{n-2} + a_n x^{n-1}) =$$

$$= a_0 + x(a_1 + x(a_2 + a_3 x^1 + \dots + a_{n-1} x^{n-3} + a_n x^{n-2})) =$$

$$= \dots =$$

$$= a_0 + x(a_1 + x(a_2 + x(a_3 + x(\dots + x(a_{n-1} + a_n x) \dots))))$$

Se necesitan **n** operaciones $x \cdot v_{i-1} + a_i$ para evaluar un polinomio de orden **n**

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 = a_0 + x(a_1 + x(a_2 + xa_3))$$

Operaciones en cada ciclo de reloj:

$$v_1 = a_3$$

$$V_2 = a_2 + X \cdot V_1$$

$$V_3 = a_1 + X \cdot V_2$$

$$V_4 = a_0 + X \cdot V_3$$

Reducción-ampliación del rango

- No suele ser eficiente aproximar la función en todo el rango de aplicación
- Algunos métodos solo convergen para entradas en un rango reducido
- Método general de aproximación de funciones:
 - Preprocesado: reducción del rango
 - Aproximación de la función en el rango reducido
 - Pos-procesado: reconstrucción del resultado, expansión al rango completo

Simetría de cuarto de onda

Se almacena sólo un cuarto de onda, el resto se obtiene por simetría vertical (SV) u horizontal (SH)

_	fase	d_3	d_2	d_1	d_0	$s(d_1,d_0)$
	0	0	0	0	0	s(0)
I	$\pi/8$	0	0	0	1	s(1)
_	$\pi/4$	0	0	1	0	s(2)
<u>-</u>	$3\pi/8$	0	0	1	1	s(3)
	$\pi/2$	0	1	0	0	s(3)
	$5\pi/8$	0	1	0	1	s(2)
	$3\pi/4$	0	1	1	0	s(1)
	$7\pi/8$	0	1	1	1	s(0)
	π	1	0	0	0	-s(0)
Ш	$9\pi/8$	1	0	0	1	-s(1)
	$5\pi/4$	1	0	1	0	-s(2)
_	$11\pi/8$	1	0	1	1	-s(3)
IV	$3\pi/2$	1	1	0	0	-s(3)
	$13\pi/8$	1	1	0	1	-s(2)
	$7\pi/4$	1	1	1	0	-s(1)
	$15\pi/8$	1	1	1	1	-s(0)

La memoria se direcciona con L-2 bits

Los dos bits más significativos se utilizan para controlar la simetría:

SV: $d_3 \Rightarrow$ complementa a dos la salida de la tabla

SH: $d_2 \Rightarrow$ complementa a uno las líneas de direcciones

Hay que muestrear en medio del intervalo de muestreo para mantener la simetría

Reducción-ampliación del rango

Reducción de rango aditiva:

x: variable con rango completo

x*: variable con rango reducido

 $x^* = x-k\cdot C$, con C=cte y k entero

Ejemplo: $y=e^x con x \in [0,16[$

 $x^*=x-k\cdot C=x-k$ con C=1 para que $x^*\in [0,1[$ $\Leftarrow x^*$ es la parte fraccional de x k es la parte entera

$$y= e^{x}= e^{x^*+k} = e^{x^*} \cdot e^k = y^* \cdot e^k$$

Procedimiento:

- Tabular e^k en una pequeña tabla
- Calcular y*
- Multiplicar resultados de ambos

Reducción-ampliación del rango

Reducción de rango multiplicativa:

x: variable con rango completo

x*: variable con rango reducido

 $x^*=x/C^k$, con C=cte y k entero

Ejemplo: y=1/x con x∈]0,16[

 $x^* = x/C^k = x/2^k$ con C=2 para que $x^* \in [0,1[$ \Leftarrow la entrada x se desplaza k veces a la derecha

$$y= 1/x = 1/(x^*2^k) = (1/x^*) \cdot 2^{-k} = y^* \cdot 2^{-k}$$

Procedimiento:

- Obtener x* (k desplazamientos)
- Calcular y*=1/x*
- Desplazar el resultado k bits

Bibliografía

• Elementary functions: Algoritms ans Implementation, Jean-Michel Muller, Ed. Birhauser

 Computer Arithmetic: Algorithms ans Hardware Design, Behrooz Parhami,
 Ed. Oxford University Press