

3D PRINTED HAIR

TANG THEXIAN

NIGEL LEONG

TAN SHUN YU

PROBLEM AND MOTIVATION

 Features such as lion fur or human hair are difficult to model and fabricate with current 3D printing technology

 Difficult and impractical to manually create thousands of small hairs using CAD software

PROBLEM AND MOTIVATION

 Our aim is to quicken the hair generation process for 3D printing by automating processes such as the generation of the hair fibres

BACKGROUND - SLA PRINTER

Cilllia

- SLA 3D Printing
- Voxel-based model generation method to instruct the printer to print various hair geometry and structure

BACKGROUND - FDM PRINTER

A CAD program/plugin that:

- takes in a .stl or .obj file and load the
 3D mesh
- generates new FDM-printable model with add hairy features and relevant supports on areas marked by user
- works for objects of varying surfaces and sizes

ASDEGHUKL DE CONTRACTOR DE CON

PROPOSED TECHNICAL METHOD - PROGRAMMING

Platform:

CAD software plugin

e.g. Blender addon

70

Function 1:

Mark out areas as hairy

e.g. loop inner region selection

Function 2:

Generate hair and support

e.g. cylinder generation; cylinder-free "hairification"

Function 3:

Customize hair thickness

e.g. global variable with validity range

Output:

3D-printable mesh file

e.g. export in .stl or .obj format

PROPOSED TECHNICAL METHOD - FABRICATION

Test hair generation for different geometries & orientations, eg:

Test 3D print & molding:

REFERENCES

- https://www.spyder3dworld.com/fiber-bridging-techniques -mark-leonard/
- https://3dprint.com/32480/3d-print-paintbrush-bridging/
- http://3dwithus.com/hairy-3d-prints
- https://techcrunch.com/2015/11/04/researchers-can-now-cr eated-3d-printed-plastic-hair/
- http://danielnoree.com/?p=786
- https://all3dp.com/hairy-lion-3d-printing/
- http://3dwithus.com/hairy-3d-prints
- https://docs.blender.org/manual/ja/dev/modeling/meshes/selecting/advanced.html#loop-inner-region
- https://docs.blender.org/api/blender_python-api-2-65-5/i nfo tutorial addon.html
- https://blender.stackexchange.com/questions/65129/how-do-i-create-a-script-for-geometry-i-create/65130
- https://competition.adesignaward.com/design.php?ID=5070