INGENIERÍA DE SOFTWARE I

Unidad III

Tema: Modelado del Sistema

UNTDF - 2020

Modelado: Qué son modelos?

El modelado

 Un modelo es una simplificación del objeto del mundo real, pero que es suficientemente realista como para representarlo

Modelo >>>> "Abstracción del mundo real"

Oculta los detalles, resalta lo importante

Modelado. Abstracción

- La abstracción es una de las formas mas comunes con la cual los seres humanos manejan la complejidad
- Una buena abstracción es aquella que permite que el usuario se centre en los detalles más significativos de un objeto y omita detalles que causan distracción
- La abstracción se centra en la visión externa de un objeto, y sirve para separar el comportamiento esencial de un objeto de su implementación.

Modelado. Abstracción s/ Booch

Ingeniería de Software I , 2020 Fuente: Booch

Modelado y su importancia

Modelado y su importancia

Construcción de una casa

Modelado y su importancia

Construcción de un rascacielos

Ingeniería de Software I, 2020

Modelado de Software

- Un modelo de SW es una simplificación del mundo real, pero que es suficientemente realista como para usarse como base del desarrollo
- Es un esquema simplificado que describe un sistema o realidad desde un determinado punto de vista que facilita su estudio y compresión

Modelado del Sistema

- El modelado de sistemas es el proceso de desarrollo modelos abstractos de un sistema, donde cada modelo presenta una visión o perspectiva diferente de dicho sistema.
- El modelado de sistemas se ha convertido en un medio para representar el sistema usando algún tipo de notación gráfica, facilitando la interacción con el usuario
- Esta etapa del PDS incluye actividades de refinamiento, modelado y especificación, cuyo principal objetivo es obtener modelos lógicos que definan el software que se desea construir.

Notación de modelado

- En la actualidad, la notación utilizada para modelar un sistema se basa en el Lenguaje de Modelado Unificado (UML).
- Existen otras notaciones, per UML es estándar
- Es posible desarrollar modelos formales (matemáticos) de un sistema generalmente como una especificación detallada del sistema

Modelado del Sistema SW

- El aspecto más importante de un modelo del sistema es que deja fuera los detalles.
- Una abstracción simplifica y recoge deliberadamente las características más destacadas.
- Un modelo es una abstracción del mundo real, en este caso, del sistema a estudiar, y no una representación alternativa de dicho sistema.
- De manera ideal, una representación de un sistema debe mantener toda la información sobre la entidad a representar.

Utilidad de los modelos

- Comprender la realidad
- Comprender el sistema: sus elementos y sus relaciones
- Reducir la complejidad de entender sistemas complejos en su totalidad
- Permite la comunicación entre los desarrolladores y los clientes.

Ventajas de los modelos en el desarrollo de SW

- Ayudan a entender el ambiente del sistema.
- El modelo se convierte en el punto de mira para la revisión.
- Son la clave para determinar la integridad (completitud), consistencia (coherencia) y eficacia de la especificación.
- Constituyen la base del diseño, al proporcionar una representación esencial del software que se puede relacionar con un contexto de implementación.

Perspectivas para el desarrollo de SW

Perspectiva externa

Perspectiva de interacción

Perspectiva estructural

Perspectiva de comporta-miento

S/ Sommerville

Perspectivas para el desarrollo de SW

- Se pueden desarrollar diferentes modelos desde diferentes perspectivas para representar el sistema.
 - 1. Perspectiva externa, donde se modelen el contexto o entorno del sistema.
 - Perspectiva de interacción, donde se modele la interacción entre un sistema y su entorno, o entre los componentes de un sistema.
 - Perspectiva estructural, donde se modelen la organización de un sistema o la estructura de datos que procese el sistema.
 - 4. Perspectiva de comportamiento, donde se modele el comportamiento dinámico del sistema y cómo responde ante ciertos eventos.
 - Existen distintas metodologías para analizar el sistema, especificándolo mediante modelos

Metodologías para la Especificación del Sistema

- Metodologías estructuradas
- Metodologías OO
- DBC
- MDD
- Modelos formales

Metodologías para la Especificación del Sistema. Análisis Estructurado

Metodologías estructuradas Orientadas a procesos

- Fundadas sobre el modelo básico entrada/proceso/salida.
- Se enfocan en la parte del proceso
- Autores: DEMARCO, GANE&SARSON, YOURDON
- Especificación estructurada basada en:
 - ✓ Diagramas de flujo de datos (DFD)
 - ✓ Diagramas de esquema de datos (DER)
 - ✓ Diccionario de Datos (DD)
 - ✓ Especificaciones de Procesos (EP)

Metodologías estructuradas Visión esencial y visión de implementación

- Una visión esencial de los requerimientos del software presenta las funciones y la información sin tener en cuenta los detalles de implementación.
 - ✓ La visión esencial se obtiene en las primeras fases del análisis de requerimientos.
- Una visión de implementación de los requerimientos del software introduce la manifestación en el mundo real de las funciones de procesamiento y las estructuras de la información.
 - ✓ La visión de implementación se obtiene durante las fases posteriores de la especificación de requerimientos o en la primera fase del diseño de software.

Metodología estructuradas Yourdon, ASML, ...

- Modelo esencial (o lógico) del sistema: representa lo que el sistema debe hacer con objeto de satisfacer los requisitos del usuario. Tiene que estar (al menos idealmente) completamente libre de detalles de implementación.
- Modelo de implementación: versión revisada y anotada del modelo esencial, donde se especifican detalles físicos del sistema.

Análisis estructurado. Fases y Modelos

Creación del modelo del ambiente

DC y LE

Creación del modelo de procesos.

DFDs y EPs

Creación del modelo de control.

DFCs ECs y DTEs

Creación del modelo de datos.

DERS DDs.

Análisis estructurado. Diagramas

Punto de vista de los datos:

Diagramas de Entidad/Relación.

Punto de vista del comportamiento:

Diagramas de Flujo de Control.

Especificaciones de Control.

Diagramas de Estados.

Punto de vista del proceso:

Especificaciones de Proceso.

Estructura del Modelo de Análisis

Ingeniería de Software I , 2020

Elementos del Modelo de Análisis

- Modelo de Datos: El Diagrama de Entidad-Relación se utiliza para la actividad de modelado de datos (DER).
 - ✓ Descripción de objetos de datos (DD): se describen los atributos de cada objeto señalado en el DER.
- Modelo funcional: El Diagrama de Flujo de Datos modela las funciones que transforman el flujo de datos (DFD).
 - ✓ En la Especificación de Proceso (EP), se encuentra una descripción de cada función representada en un DFD.
- Modelo de comportamiento: El Diagrama de transición de Estados indica cómo se comporta el sistema como consecuencia de sucesos externos (DTE).
 - ✓ Dentro de la Especificación de control (EC), se encuentra más información sobre los aspectos de control del software.

Deficiencias del Análisis estructurado

Descomposición funcional.

- Requiere traducir el dominio del problema en una serie de funciones y subfunciones.
- El analista debe comprender primero el dominio del problema y a continuación documentar las funciones y subfunciones.
- No existe un mecanismo para comprobar si la especificación del sistema expresa con exactitud los requisitos del sistema.

Flujo de datos.

 Este enfoque se adapta bien al uso de sistemas informáticos para implementar el sistema, pero no es nuestra forma habitual de pensar.

Modelo de datos.

- La relación entre los modelos es muy débil, y hay muy poca influencia de un modelo en otro.
- En la práctica, los modelos de procesos y de datos de un mismo sistema se parecen muy poco.

Metodologías para la Especificación del Sistema. Análisis Orientado a Objetos

Metodología de Análisis 00

- En O.O. se examina el dominio del problema como un conjunto de objetos que interactúan entre sí
- En las metodologías estructuradas: dicotomía entre funciones que llevan a cabo los programas y datos que se almacenan en bases de datos
- La O.O. propugna un enfoque unificador

Metodologías OO. Cómo surgen

- El concepto surge en los lenguajes de programación
 - Se organiza el software como una colección de objetos discretos que encapsulan
 - » Estructuras de Datos y
 - » Comportamiento.
 - Un sistema OO funciona mediante la colaboración entre los objetos que se comunican entre sí.
- El concepto se extiende a los métodos de análisis y diseño
 - Se utilizan los objetos del mundo real como base para construir modelos
 - Los elementos que forman los sistemas del mundo real se corresponden con objetos software

Modelos del mundo real en 00

 Este enfoque pretende conseguir modelos que se ajusten mejor al problema del mundo real, a partir del conocimiento del llamado dominio del problema, evitando que influyan en el análisis consideraciones de implementación.

Modelando el mundo real en 00

