Consultas de múltiples tablas y uniones

Primera parte

Trabajar con varias tablas

Generalmente se trabaja con varias tablas.

Se estructura la información de manera que evitemos la repetición de información almacenada y teniendo en cuenta que un campo no puede contener múltiples informaciones para un único registro.

Realmente se trata de definir la estructura de la Base de Datos basada en la Normalización.

Teniendo en cuenta esto, tendremos que aprender a reconstruir la información a partir de ese conjunto de tablas.

Mundo

Videojuegos

Empresas informáticas

Discos

Intentaremos ver las ciudades del país Spain. Probaremos con...

```
use mundo;
select p.Name as País, c.Name as Ciudad
from country as p ,city as c
where p.Name='Spain'
```


No es lo esperado...

Si colocamos los nombres de tablas separados con comas lo que tendremos es un producto cartesiano de las tablas. Es decir, por cada registro de la primera tabla tantos registros como tiene la segunda tabla.

En el caso del ejemplo cada país con todas las ciudades.

La primera solución disponible es filtrar ese producto cartesiano mediante un where a través del campo que identifica el país en la tabla City.

CountryCode es el código del país en la tabla City.

```
use mundo;
select p.Name as País, c.Name as Ciudad
from country as p , city as c
where p.Name='Spain'
and (p.Code=c.CountryCode);
```


Es una solución factible aunque normalmente **POCO eficiente**.

El SQL tiene cláusulas específicas para efectuar el cruce de tablas.

INNER JOIN

combinaciones internas

```
use mundo;
go
select p.Name as País, c.Name as Ciudad
from country as p
inner join city as c
    on p.Code=c.CountryCode
where p.Name='Spain';
go
```


Muestra las ciudades de cada país, filtrados sólo para Spain

Formato de la sentencia INNER JOIN

Especifica que se devuelvan todos los pares de filas coincidentes. Rechaza las filas no coincidentes de las dos tablas. Se puede poner sólo JOIN.

Dentro de la cláusula FROM

Tabla1
INNER JOIN Tabla2
on Campotabla1=Campotabla2

Teniendo en cuenta que los campos de enlace son los que referencian la misma información en ambas tablas.

Algoritmo INNER JOIN

```
Por cada tupla de la relación R :r
Por cada tupla de la relación S :s
Si para la tupla <r,s>
coinciden los campos
r.idc = s.idc
entonces
agregar <r,s> a la salida
```

Tabla1

III Resultados 🛅 N					
	id	valor1			
1	1	Primero			
2	2	Segundo			
3	3	Tercero			
4	4	Cuarto			
5	5	Quinto			

Tabla₂


```
--inner join
select t1.id,t1.valor1,t2.id,t2.valor2
from tabla1 as t1
inner join tabla2 as t2
    on t1.id=t2.id;
go
```


select p.Code,p.Name as País, c.CountryCode,c.Name as Ciudad
from country as p
inner join city as c
 on p.Code=c.CountryCode
go

iii F	Resultados Mensajes				
	Code	País	CountryCode	Ciudad	
199	BOL	Bolivia	BOL	Potosí	
200	BOL	Bolivia	BOL	Tarija	
201	BIH 🕨	Bosnia an	BIH ♥	Sarajevo	
202	BIH	Bosriia an	BIH	Banja Luka	
203	BIH	Bosnia an	BIH	Zenica	
204	BWA	Botswana	BWA ▼	Gaborone	
205	BWA	Botswana	BWA	Francistown	
206	BRA	Brazil	BRA ♥	São Paulo	
207	BRA	Brazil	BRA	Rio de Janeiro	
208	BRA	Brazil	BRA	Salvador	
209	BRA	Brazil	BRA	Belo Horizonte	
210	BRA	Brazil	BRA	Fortaleza	
211	BRA	Brazil	BRA	Brasília	
212	BRA	Brazil	BRA	Curitiba	

Mostrar título de disco y su intérprete

```
use discos;
go
select titulo,interprete
from disco as d
inner join interprete as i
   on d.IdInterprete=i.IdInterprete;
go
```


natural join

Funciona como el INNER JOIN, lo único que no se expresa la relación de campos iguales, ya que supone que son los que se llaman igual en las dos tablas.

NO está admitido en SQL Server, pero funciona en MySql.

SELECT t1.id, t1.valor, t2.id, t2.valor FROM tabla1 AS t1 NATURAL JOIN tabla2 AS t2 LIMIT 0 , 30

id	valor1	id	valor2
1	Primero	1	Primero
2	Segundo	2	Segundo
3	Tercero	3	Tercero

left outer join

select c.id, Nombre, p.id, p.idcliente, puntuacion
from cliente as c
left join puntuacion as p
 on c.id=p.idcliente

III F	Result	ados 🚹 Mensajes			
	id	Nombre	id	idcliente	puntuacion
1	1	Raymond Velasquez	9	1	7
2	1	Raymond Velasquez	50	1	8
3	2	Merrill Leblanc	6	2	6 _
4	3	Dean Santos	NULL	NULL	NULL
5	4	Ryan Hooper	NULL	NULL	NULL
6	5	John Mcknight	51	5	9 -
7	6	John Watson	53	6	3
8	7	Lucian Pugh	48	7	6
9	7	Lucian Pugh	41	7	10

incluye registros de la primera tabla que no tienen coincidencia en la segunda, poniendo NULL en los campos de la segunda tabla

Formato de la sentencia LEFT OUTER JOIN

Especifica que se devuelvan todos los pares de filas coincidentes. Incluye las filas no coincidentes de la primera tabla, rellenando a null los atributos correspondientes a la otra tabla.

Se puede poner sólo LEFT JOIN.

Dentro de la cláusula FROM

Tabla1
LEFT OUTER JOIN Tabla2
on Campotabla1=Campotabla2

Teniendo en cuenta que los campos de enlace son los que referencian la misma información en ambas tablas.

Algoritmo LEFT OUTER JOIN

```
Por cada tupla de la relación R :r

Por cada tupla de la relación S :s

Si para la tupla <r,s>

coinciden los campos

r.idc = s.idc

entonces

agregar <r,s> a la salida

Si no hay tuplas insertadas para r

entonces

agregar <r, null> a la salida
```

Tabla1

Ⅲ Resultados 🛅 N					
	id	valor1			
1	1	Primero			
2	2	Segundo			
3	3	Tercero			
4	4	Cuarto			
5	5	Quinto			

Tabla₂

Para las no coincidentes con null en los campos de la otra tabla

También vale con **left join**

```
select t1.id, valor1, t2.id, valor2
from tabla1 as t1
left join tabla2 as t2
    on t1.id=t2.id;
go
```

select descripcion,nfactura
from componente as c
left outer join facturacomponente as fc
 on c.clave=fc.CodComponente

iii F	Resultados Mensajes	
	descripcion	nfactura
1	ACER C120 (PROYECTOR) P/N EY.JE001.001	28
2	ACER ASPIRE M1935 INTEL I3 2130 / 4GB DDR3 / DISC	5
3	ACER ASPIRE M1935 INTEL I5 2330S (2.80 GHZ) / 4GB	NULL
4	ACER X111 (PROYECTOR) 2700 ANSI LUMENS P/N M	NULL
5	ACER X1240 (PROYECTOR) 2700 LUMENS / 3D / XGA	2
6	ACER VERITON X2610G INTEL I5 2320 ($3.00\mathrm{GHZ}$) / 4GB \ldots	NULL
7	ACER VERITON X2611G INTEL I3 3220 / 4GB DDR3 / DIS	NULL
8	ACER ASPIRE XC100 AMD E1-1200 (DUAL CORE) (1.40	NULL
9	ACER ASPIRE XC600 INTEL DUAL CORE G645/ 6GB DD	NULL
10	ACER ASPIRE XC600 INTEL DUAL CORE G645 (2.90 GH	34
11	ADAPTADOR DISCO DURO 2.5 A RAHIA 3.5 P/N 10.99 00	32

Ver sólo los artículos sin ventas...

select descripcion,nfactura
from componente as c
left outer join facturacomponente as fc
 on c.clave=fc.CodComponente
where nfactura is null

	Resultados Mensajes			
	descripcion nfactura			
1	ACER ASPIRE M1935 INTEL I5 2330S (2.80 GHZ) / 4GB DD	NULL		
2	ACER X111 (PROYECTOR) 2700 ANSI LUMENS P/N MR.J	NULL		
3	ACER VERITON X2610G INTEL I5 2320 (3.00 GHZ) / 4GB D	NULL		
4	ACER VERITON X2611G INTEL I3 3220 / 4GB DDR3 / DISCO	NULL		
5	ACER ASPIRE XC100 AMD E1-1200 (DUAL CORE) (1.40 GH	NULL		
6	ACER ASPIRE XC600 INTEL DUAL CORE G645/ 6GB DDR3	NULL		
7	ADAPTADOR DVI/VGA	NULL		
8	ALTAVOCES LOGITECH LS11 2.0 (980-000046)	NULL		

right outer join

--right outer join
]select nombre, puntuacion
from puntuacion as p
right outer join Cliente as c
on c.id=p.Idcliente

Resultados Mensajes				
	nombre	puntuacion		
31	Raymond Henry	6		
32	Oleg Park	NULL		
33	Tad Fuentes	4		
34	Tad Fuentes	6		
35	Tad Fuentes	2		
36	Tad Fuentes	8		
37	Emmanuel Cox	6		
38	Bruno Baird	6		
39	Bruno Baird	8		
40	Nehru Atkins	NULL		
41	Jordan Tanner	NULL		

incluye registros de la segunda tabla que no tienen coincidencia en la primera, poniendo NULL en los campos de la primera tabla

- - -

Formato de la sentencia RIGHT OUTER JOIN

Especifica que se devuelvan todos los pares de filas coincidentes. Incluye las filas no coincidentes de la segundatabla, rellenando a null los atributos correspondientes a la otra tabla.

Se puede poner sólo RIGHT JOIN.

Dentro de la cláusula FROM

Tabla1
RIGHT OUTER JOIN Tabla2
on Campotabla1=Campotabla2

Teniendo en cuenta que los campos de enlace son los que referencian la misma información en ambas tablas.

Algoritmo RIGHT OUTER JOIN

```
Por cada tupla de la relación R :r
Por cada tupla de la relación S :s
Si para la tupla <r,s>
coinciden los campos
r.idc = s.idc
entonces
agregar <r,s> a la salida
Por cada tupla de la relación S:s
Si no hay tuplas insertadas para s
entonces
agregar <null, s> a la salida
```

Tabla1

Tabla₂

Para las no coincidentes con null en los campos de la otra tabla

También vale con **right join**

```
select t1.id, valor1, t2.id, valor2
from tabla1 as t1
right join tabla2 as t2
   on t1.id=t2.id;
go
```

Equivalencia LEFT JOIN – RIGHT JOIN

Para el caso de dos tablas podremos sustituir fácilmente el right join por el left join con sólo intercambiar el orden de las tablas en la cláusula from.

--right outer join
select descripcion,nfactura
from facturacomponente as fc
right outer join componente as c
 on c.clave=fc.CodComponente

	descripcion	nfactura
1	ACER C120 (PROYECTOR) P/N EY.JE001.001	28
2	ACER ASPIRE M1935 INTEL I3 2130 / 4GB DDR3 / DISC	5
3	ACER ASPIRE M1935 INTEL I5 2330S (2.80 GHZ) / 4GB	NULL
4	ACER X111 (PROYECTOR) 2700 ANSI LUMENS P/N M	NULL
5	ACER X1240 (PROYECTOR) 2700 LUMENS / 3D / XGA	2
6	ACER VERITON X2610G INTEL I5 2320 (3.00 GHZ) / 4GB	NULL
7	ACER VERITON X2611G INTEL I3 3220 / 4GB DDR3 / DIS	NULL
8	ACER ASPIRE XC100 AMD E1-1200 (DUAL CORE) (1.40	NULL
9	ACER ASPIRE XC600 INTEL DUAL CORE G645/ 6GB DD	NULL
10	ACER ASPIRE XC600 INTEL DUAL CORE G645 (2.90 GH	34
11	ADAPTADOR DISCO DURO 2.5 A BAHIA 3.5 P/N 10.99 00	32

Ver sólo los artículos sin ventas...

--right outer join
select descripcion,nfactura
from facturacomponente as fc
right outer join componente as c
 on c.clave=fc.CodComponente
where nfactura is null

	Resultados Mensajes	
	descripcion	nfactura
1	ACER ASPIRE M1935 INTEL I5 2330S (2.80 GHZ) / 4GB DD	NULL
2	ACER X111 (PROYECTOR) 2700 ANSI LUMENS P/N MR.J	NULL
3	ACER VERITON X2610G INTEL I5 2320 (3.00 GHZ) / 4GB D	NULL
4	ACER VERITON X2611G INTEL I3 3220 / 4GB DDR3 / DISCO	NULL
5	ACER ASPIRE XC100 AMD E1-1200 (DUAL CORE) (1.40 GH	NULL
6	ACER ASPIRE XC600 INTEL DUAL CORE G645/ 6GB DDR3	NULL
7	ADAPTADOR DVI/VGA	NULL
8	ALTAVOCES LOGITECH LS11 2.0 (980-000046)	NULL

full outer join

Tabla1

id valor1		
1	Primero	
2	Segundo	
3	Tercero	
4	Cuarto	
5	Quinto	
	1 2 3 4	

Tabla₂

Para las no coincidentes con null en los campos de la otra tabla

Algoritmo FULL JOIN

```
Por cada tupla de la relación R :r
     Por cada tupla de la relación S:s
          Si para la tupla <r,s>
               coinciden los campos
               r.idc = s.idc
          entonces
               agregar <r,s> a la salida
Por cada tupla de la relación S:s
     Si no hay tuplas insertadas para s
     entonces
          agregar < null, s> a la salida
Por cada tupla de la relación R:r
     Si no hay tuplas insertadas para r
     entonces
          agregar <r,null> a la salida
```

```
--full join
|select interprete, titulo
| from disco as d
| full join interprete as i
| on d.idinterprete=i.IdInterprete;
```

	Resultados Mensajes			
		interprete	titulo	
	1	NULL	Very Best Love Songs	
\lhd	2	NULL	Beautifull Love Songs	
	3	NULL	Special Love Songs	
	4	ABBA	Dancing Queen	
	5	Anita Ward	Ring My Bell	
	6	Baccara	Yes Sir, I Can Boogie	
	7	Barry Manilow	Copacabana	
	Q	Ram/ White	You're The First My I set My Eventhing	

76	Wings	Silly Love Songs
77	Wings	Special Love Songs 2
78	Wings	Special Love Songs 3
79	WXX	NULL
80	Special one	NULL
81	El mejor	NULL

cross join explícito e implícito

--cross join select t1.id,valor1,t2.id,valor2 from tabla1 as t1 cross join tabla2 as t2; go

Resultados Mensajes					
	id	valor1	id	valor2	
1	1	Primero	1	Primero	
2	1	Primero	2	Segundo	
3	1	Primero	3	Tercero	
4	1	Primero	6	Sexto	
5	1	Primero	7	Séptimo	
6	1	Primero	8	Octavo	
7	2	Segundo	1	Primero	
8	2	Segundo	2	Segundo	
9	2	Segundo	3	Tercero	
10	2	Segundo	6	Sexto	
11	2	Segundo	7	Séptimo	
12	2	Segundo	8	Octavo	
13	3	Tercero	1	Primero	
14	3	Tercero	2	Segundo	
15	3	Tercero	3	Tercero	
16	3	Tercero	6	Sexto	
17	3	Tercero	7	Séptimo	
18	3	Tercero	8	Octavo	
19	4	Cuarto	1	Primero	
20	4	Cuarto	2	Segundo	

. . .

Algoritmo CROSS JOIN

Por cada tupla de la relación R :r Por cada tupla de la relación S :s Agregar <r,s> a la salida

Pares tienda/tipocomponente posibles, para componentes que comiencen por brother...

```
--cross join
|select nombretienda,tipo
|from tienda
|cross join TipoComponente
|where tipo like 'brother%';
```

	nombretienda	tipo
1	Tienda PC1	BROTHER - MULTIFUNCION LASER MONOCROMO
2	Tienda PC2	BROTHER - MULTIFUNCION LASER MONOCROMO
3	Tienda PC3	BROTHER - MULTIFUNCION LASER MONOCROMO
4	Tienda PC4	BROTHER - MULTIFUNCION LASER MONOCROMO
5	Tienda PC5	BROTHER - MULTIFUNCION LASER MONOCROMO
6	Tienda PC6	BROTHER - MULTIFUNCION LASER MONOCROMO
7	Tienda PC1	BROTHER (MULTIFUNCIONES CHORRO DE TINTA)
8	Tienda PC2	BROTHER (MULTIFUNCIONES CHORRO DE TINTA)
9	Tienda PC3	BROTHER (MULTIFUNCIONES CHORRO DE TINTA)
10	Tienda PC4	BROTHER (MULTIFUNCIONES CHORRO DE TINTA)
11	Tienda PC5	BROTHER (MULTIFUNCIONES CHORRO DE TINTA)
12	Tienda PC6	BROTHER (MULTIFUNCIONES CHORRO DE TINTA)

Igual funciona con el CROSS JOIN Implícito. Sólo hace falta separar la lista de tablas con comas en la cláusula FROM

```
--cross join implícito
-select nombretienda, tipo
from tienda, TipoComponente
where tipo like 'brother%';
```

Otros JOIN con condiciones diferentes a =

En los JOIN podemos cambiar la condición definida por el ON.

Podemos enlazar con AND varios pares de campos, por ejemplo si las claves son de más de un campo.

Pero también puede ocurrir que coloquemos una condición diferente.

El sistema nos hará caso y evaluará para cada par de tuplas la condición.

Colocará la tupla en el resultado si cumple la condición.

Debe usarse con precaución y sabiendo lo que queremos hacer. La recomendación es ceñirnos al uso visto y para otras condiciones usar el where Cruzar los datos de las tablas disco e intérprete, mostrando los que intérprete sea mayor alfanuméricamente que titulo...

--otro join select interprete, titulo from disco as d inner join interprete as i on Interprete>titulo;

	Resultados 🛅 Mensajes	
	interprete	titulo
1	ABBA	1999
2	Anita Ward	1999
3	Baccara	1999
1	Barry Manilow	1999
5	Barry White	1999
6	Barry White; Love Unlimited Orchestra	1999
7	Bee Gees	1999
3	Bee Gees	Beautifull Love Songs
)	Blondie	1999
10	Blondie	Beautifull Love Songs
11	Boney M.	1999
2	Bonev M	Body Language

La Base de datos, obedientemente nos responde... Aunque la pregunta sea rara.

autocombinación

Es posible combinar una tabla consigo misma.

En el ejemplo del Mundo vamos a obtener pares de países posibles y sin repeticiones.

```
--autocombinación

select pl.Name as Paísl, p2.Name as País2
from country as p1
inner join country as p2
on pl.Code<>p2.Code
where pl.Region='Southern Europe' and
p2.Region='Southern Europe';
go
```

	País1	País2
34	Croatia	Bosnia and Herzegovina
35	Italy	Bosnia and Herzegovina
36	Macedonia	Bosnia and Herzegovina
37	Malta	Bosnia and Herzegovina
38	Portugal	Bosnia and Herzegovina
39	San Marino	Bosnia and Herzegovina
40	Slovenia	Bosnia and Herzegovina
41	Holy See (Vatican City State)	Bosnia and Herzegovina
42	Yugoslavia	Bosnia and Herzegovina
43	Albania	Spain
44	Andorra	Spain
45	Bosnia and Herzegovina	Spain

combinaciones con más de dos tablas

Podemos enlazar con join (en cualquiera de sus tipos) de más de dos tablas, para conseguir llegar a la información que necesitemos presentar o calcular.

El funcionamiento es consecutivo, como con las operaciones matemáticas.

Primero calcula la tabla resultante del primer join.

Después hace el join entre esa tabla resultante y la siguiente.

Y así sucesivamente.

De izquierda a derecha y de arriba a abajo.

Podremos cambiar la secuencia en que se realiza poniendo paréntesis antes de la operación join que corresponda.

Hay que cuidar las condiciones where, que si afectan a campos que pueden ser null harán que desaparezcan esos registros salvo que lo controlemos adecuadamente.

Mostrar el título, intérprete y tipos de todos los discos...

```
| select d.Titulo,i.interprete,t.Tipo
from Disco as d
inner join DiscoTipo as dt
on d.iddisco=dt.iddisco
inner join Tipo as t
on t.idtipo=dt.idtipo
inner join Interprete as i
on d.idinterprete=i.IdInterprete;
go
```

	Resultados 🛅 Mensajes		
	Titulo	interprete	Tipo
1	Yes Sir, I Can Boogie	Baccara	Euro disco
2	Copacabana	Barry Manilow	Disco
3	If I Can't Have You	Bee Gees	Disco
4	Jive Talkin'	Bee Gees	Disco
5	Saturday Night Fever	Bee Gees	Disco
6	You Should Be Dancing	Bee Gees	Disco
7	Daddy Cool	Boney M.	Euro disco
8	We Kill The World (Don't Kill The World)	Boney M.	Pop
9	Can't Take My Eyes off You	Boy Town Gang	Disco
10	I'm Every Woman	Chaka Khan	Disco
11	Love To Love You Baby	Donna Summer	Disco
12	No More Tears (Enough Is Enough)	Donna Summer; Barbra Streisand	Disco

Partimos de los tipos, de los que sacaremos todos, aunque no tengan discos asignados.

```
| select d.Titulo,i.interprete,t.Tipo | from tipo as t | left join DiscoTipo as dt | on t.idtipo=dt.idtipo | left join Disco as d | on d.iddisco=dt.iddisco | left join Interprete as i | on d.idinterprete=i.IdInterprete;
```

Si pusiéramos inner join en alguno veríamos que ese enlace se hace obligatorio, por lo que se perderían es este caso los valores null.

	Titulo	interprete	Tipo
109	Rock the Boat	Hues Corporation	Oldies
110	Only The Strong Survive	Jerry Butler	Oldies
111	Soul Makossa	Manu Dibango	Oldies
112	We Kill The World (Don't Kill The World)	Boney M.	Pop
113	Meu Amigo Charlie Brown	Two Man Sound	Pop
114	Thriller	Michael Jackson	Pop
115	You're The First, My Last, My Everything	Barry White	R&B
116	Miss You	The Rolling Stones	Rock
117	Rivers of Babylon	Boney M.	Rocksteady
118	I'm So Excited	The Pointer Sisters	Soul
119	NULL	NULL	Rock espa
120	NULL	NULL	Soul different

Mostrar todas las ciudades y los Idiomas del país al que pertenece una ciudad.

```
| select c.Name as ciudad, l.Language as Idioma from City as c inner join Country as p on p.Code=c.CountryCode inner join CountryLanguage as l on l.CountryCode=p.Code; go
```

ciudad

20

21

22

23

24 25

26

27

28 29

30

Mazar-e-Sharif

Mazar-e-Sharif

Amsterdam

Amsterdam

Amsterdam

Amsterdam

Rotterdam

Rotterdam

Rotterdam

Rotterdam

Haag

Haag

Idioma

Uzbek

Arabic

Dutch

Fries

Turkish

Arabic

Dutch

Fries

Turkish

Arabic

Dutch

Turkmenian

Sacamos todos los tipos e intérpretes aunque no tengan datos.

116	Miss You	The Rolling Stones	Rock
117	Rivers of Babylon	Boney M.	Rocksteady
118	I'm So Excited	The Pointer Sisters	Soul
119	NULL	NULL	Rock espa
120	NULL	NULL	Soul different
121	NULL	El mejor	NULL
122	NULL	WXX	NULL
123	NULL	Special one	NULL
124	NULL	Umberto Tozzi	NULL

El paréntesis contiene una cláusula from válida. El SQL la calcula y después la enlaza como corresponda.

combinaciones, group by y funciones agrupadoras

El uso de múltiples tablas no interfiere con lo ya visto. Podremos filtrar datos mediante where. Teniendo cuidado de referenciar el campo o campos con el prefijo que indica la tabla a la que pertenece en el caso de que existan varios campos con el mismo nombre.

También podremos agrupar y filtrar la tabla resultante del select mediante el group by y el having.

Ordenar los datos obtenidos será tan inmediato como antes, mediante el order by.

Número de idiomas por cada país especificado en la BD mundo.

```
--group by
= select P.Name as Pais, count(*) as NIdiomas
  from Country as p
  inner join Countrylanguage as 1
              on p.code=1.CountryCode
 group by p.Name
                                            Resultados Amensajes
 -order by NIdiomas desc;
                                               Pais
                                                          NIdiomas
                                               Canada
                                                           12
                                               China
                                                           12
                                               India
                                                           12
                                               Russian Federation
                                                          12
                                               United States
                                                           12
                                               South Africa
                                                          11
                                            7 Tanzania
                                                           11
                                               Uganda
                                                           10
                                               Sudan
                                                           10
                                               Nigeria
                                                           10
                                               Philippines
                                                           10
                                            12
                                                           10
                                               Iran
```

Sumar las puntuaciones de los juegos

```
select j.Juego, sum(p.puntuacion) as Spunt
from Juego as j
inner join JuegoPlataforma as jp
   on j.IdJuego=jp.Idjuego
inner join puntuacion as p
   on p.idjuegoplataforma=jp.id
```

group by j.Juego order by Spunt desc:

III F	Resultados 🛅 Mensajes	
Juego		Spunt
1	BioShock Infinite	18
2	Call of Duty: Black Ops	17
3	007 Legends	12
4	Angry Birds	10
5	BioShock	10
6	Halo 4	10
7	Star Wars Battlefront 2	10
8	World of Warcraft	10
9	Zelda II: The Adventure of Link	9
10	The Legend of Zelda	9
11	Profesor Layton y la Caja de Pandora	9

Total de ventas en cada tienda informática

```
| select t.NombreTienda, sum (fc.cantidad*fc.precioaplicado)
| from Tienda as t
| inner join Factura as f
| on f.idtienda=t.idtienda
| inner join FacturaComponente as fc
| on fc.NFactura=f.NFactura
| -group by t.NombreTienda;
```

Resultados Mensajes			
	Nombre Tienda	(Sin nombre de columna)	
1	Tienda PC1	2779	
2	Tienda PC2	3931	
3	Tienda PC3	887,9	
4	Tienda PC4	577	
5	Tienda PC5	3539,65	
6	Tienda PC6	2450,5	

combinaciones con update y delete

Formato del update:

```
UPDATE Tabla
set campo=valor,...
FROM
...
```

WHERE

. . .

Pudiendo contener la cláusula from elementos join de las tablas.

Así podremos colocar en el where las descripciones y no sólo las claves.

Podemos emplear "update" o "delete" con "join" para actualizar o eliminar registros de una tabla consultando otras tablas.

Miramos los discos de un intérprete por su nombre...

```
select puntuacion, interprete, tipo
from tipo as t
inner join DiscoTipo as dt
    on t.idtipo=dt.idtipo
inner join Disco as d
    on d.iddisco=dt.iddisco
inner join Interprete as i
    on d.idinterprete=i.IdInterprete
inner join puntuacion as p
    on p.iddisco=d.iddisco
                                      Resultados
                                               Mensajes
where Interprete='Boney M.';
                                         puntuacion
                                                interprete
                                                      tipo
                                                Boney M. Euro disco
                                                 Boney M. Pop
```

Ahora vamos a modificar la puntuación del registro de tipo Pop...

```
Jupdate puntuacion
- set puntuacion=5

from tipo as t
  inner join DiscoTipo as dt
    on t.idtipo=dt.idtipo
inner join Disco as d
    on d.iddisco=dt.iddisco
inner join Interprete as i
    on d.idinterprete=i.IdInterprete
inner join puntuacion as p
    on p.iddisco=d.iddisco
-where Interprete='Boney M.' and tipo='Pop';
```

Al hacer de nuevo el select veremos que se actualizó el valor.

Igualmente sería con el delete.

DELETE Tabla

FROM

WHERE

Vamos a borrar el elemento al que le cambiamos la puntuación y después veremos el resultado.

```
delete puntuacion
from tipo as t
inner join DiscoTipo as dt
    on t.idtipo=dt.idtipo
inner join Disco as d
    on d.iddisco=dt.iddisco
inner join Interprete as i
    on d.idinterprete=i.IdInterprete
inner join puntuacion as p
    on p.iddisco=d.iddisco
where Interprete='Boney M.' and tipo='Pop';
go
```

El otro registro se eliminó.

