

Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies

'uan ^{1,4,5} Simon S. Du ^{1,3} Robert M. Gower ² Alessandro Lazaric ¹ Lin Xiao ¹

¹FAIR, Meta AI ²CCM, Flatiron Institute

Institute ³University of Washington

⁴LTCI, Télécom Paris

⁵Institut Polytechnique de Paris

Overview

Log-linear policy parametrization:

$$\pi_{s,a}(\theta) = \frac{\exp(\phi_{s,a}^{\top}\theta)}{\sum_{a'\in\mathcal{A}}\exp(\phi_{s,a'}^{\top}\theta)}.$$

Objective:

$$\min_{\theta \in \mathbb{R}^m} V_{\rho}(\theta) = \mathbb{E}_{\substack{s_0 \sim \rho, a_t \sim \pi_{s_t}(\theta) \\ s_{t+1} \sim \mathcal{P}(\cdot | s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) \right].$$

Define the Q-function $Q(\theta)$ and the advantage function $A(\theta)$.

Natural Policy Gradient (NPG) Method:

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k F_{\rho}(\theta^{(k)})^{\dagger} \nabla_{\theta} V_{\rho}(\theta^{(k)}), \tag{1}$$

where $\nabla_{\theta}V_{\rho}(\theta^{(k)})$ is the policy gradient, $F_{\rho}(\theta)$ is the Fisher information matrix and d^{θ} is the state visitation distribution:

$$\nabla_{\theta} V_{\rho}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\theta}, a \sim \pi_{s}(\theta)} \left[A_{s,a}(\theta) \nabla_{\theta} \log \pi_{s,a}(\theta) \right],$$

$$F_{\rho}(\theta) \stackrel{\text{def}}{=} \mathbb{E}_{s \sim d^{\theta}, a \sim \pi_{s}(\theta)} \left[\nabla_{\theta} \log \pi_{s,a}(\theta) \left(\nabla_{\theta} \log \pi_{s,a}(\theta) \right)^{\top} \right],$$

$$d_{s}^{\theta} \stackrel{\text{def}}{=} (1 - \gamma) \mathbb{E}_{s_{0} \sim \rho} \left[\sum_{t=0}^{\infty} \gamma^{t} \operatorname{Pr}^{\pi(\theta)}(s_{t} = s \mid s_{0}) \right].$$

NPG with Compatible Function Approximation

We define the compatible function approximation error as

$$L_A(w, \theta, \zeta) \stackrel{\text{def}}{=} \mathbb{E}_{(s,a) \sim \zeta} \left[\left(w^\top \nabla_\theta \log \pi_{s,a}(\theta) - A_{s,a}(\theta) \right)^2 \right].$$

The NPG update (1) is equivalent to

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k w_{\star}^{(k)}, \qquad w_{\star}^{(k)} \in \arg\min_{w \in \mathbb{R}^m} L_A(w, \theta^{(k)}, \bar{d}^{(k)}),$$

where $\bar{d}^{(k)}$ is the state-action visitation distribution

$$\bar{d}_{s,a}^{(k)} \stackrel{\text{def}}{=} d_s^{\theta} \pi_{s,a}^{(k)} = (1 - \gamma) \mathbb{E}_{s_0 \sim \rho} \left[\sum_{t=0}^{\infty} \gamma^t \Pr^{\pi^{(k)}} (s_t = s, a_t = a \mid s_0) \right].$$

Consider a more general state-action visitation distribution

$$\tilde{d}_{s,a}^{(k)} \stackrel{\text{def}}{=} (1 - \gamma) \mathbb{E}_{(s_0, a_0) \sim \nu} \left[\sum_{t=0}^{\infty} \gamma^t \Pr^{\pi^{(k)}}(s_t = s, a_t = a \mid s_0, a_0) \right],$$

we proceed the following approximate NPG update rule:

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k w^{(k)}, \qquad w^{(k)} \approx \arg\min_{w} L_A(w, \theta^{(k)}, \tilde{d}^{(k)}).$$

We can define the compatible function approximation error as

$$L_Q(w, \theta, \zeta) \stackrel{\text{def}}{=} \mathbb{E}_{(s,a) \sim \zeta} \left[\left(w^{\mathsf{T}} \phi_{s,a} - Q_{s,a}(\theta) \right)^2 \right]$$

and derive a variant of the approximate NPG update called **Q-NPG**:

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k w^{(k)}, \qquad w^{(k)} \approx \arg\min_{w} L_Q(w, \theta^{(k)}, \tilde{d}^{(k)}).$$

NPG as Policy Mirror Descent

Given $w^{(k)}$ an approximate solution for minimizing $L_A(w, \theta^{(k)}, \tilde{d}^{(k)})$, we can write the approximate NPG as a mirror descent update:

$$\pi_s^{(k+1)} = \arg\min_{p \in \Delta(\mathcal{A})} \left\{ \eta_k \left\langle \bar{\Phi}_s^{(k)} w^{(k)}, p \right\rangle + \text{KL}(p, \pi_s^{(k)}) \right\}, \quad \forall s \in \mathcal{S}, \quad (2)$$

where $\bar{\Phi}_s^{(k)} \in \mathbb{R}^{|\mathcal{A}| \times m}$ is a matrix whose rows consist of the centered feature maps $\bar{\phi}_{s,a}(\theta^{(k)})$ defined as

$$\nabla_{\theta} \log \pi_{s,a}(\theta) = \bar{\phi}_{s,a}(\theta) \stackrel{\text{def}}{=} \phi_{s,a} - \mathbb{E}_{a' \sim \pi_s(\theta)} [\phi_{s,a'}].$$

NPG Algorithm

Algorithm 1 NPG: Natural Policy Gradient

Input: initial state-action distribution ν , policy $\pi^{(0)}$, step size $\eta_0 > 0$, NPG-SGD for minimizing $L_A(w, \theta, \tilde{d}^{\theta})$

- 1: For k = 0, ..., K 1 do:
- Call NPG-SGD to obtain $w^{(k)}$
- Update $heta^{(k+1)} = heta^{(k)} \eta_k w^{(k)}$ and η_k

Output: last iterate $\pi^{(K)}$

Convergence analysis (1/2)

Two key ingredients:

▶ Performance difference lemma [2]: For any policy $\pi(\theta)$, $\pi(\theta')$,

$$V_{\rho}(\theta) - V_{\rho}(\theta') = \frac{1}{1 - \gamma} \mathbb{E}_{(s,a) \sim \bar{d}^{\theta}} \left[A_{s,a}(\theta') \right].$$

▶ Three-point descent lemma [1, 3] : Suppose that $\mathcal{C} \subset \mathbb{R}^m$ is a closed convex set, $f: \mathcal{C} \to \mathbb{R}$ is a proper, closed convex function, $D_h(\cdot, \cdot)$ is the Bregman divergence generated by a function h of Lengendre type and rint dom $h \cap \mathcal{C} \neq \emptyset$. For any $x \in \text{rint dom } h$, let

$$x^+ \in \arg\min_{u \in \operatorname{dom} h \cap \mathcal{C}} \{ f(u) + D_h(u, x) \}.$$

Then $x^+ \in \operatorname{rint} \operatorname{dom} h \cap \mathcal{C}$ and for any $u \in \operatorname{dom} h \cap \mathcal{C}$,

$$f(x^{+}) + D_h(x^{+}, x) \le f(u) + D_h(u, x) - D_h(u, x^{+}).$$

Decompose the compatible function approximation error as

$$L_{A}\big(w^{(k)},\theta^{(k)},\tilde{d}^{(k)}\big) \ = \ \underbrace{L_{A}\big(w^{(k)},\theta^{(k)},\tilde{d}^{(k)}\big) - L_{A}\big(w^{(k)}_{\star},\theta^{(k)},\tilde{d}^{(k)}\big)}_{\text{Statistical error (excess risk)}} \\ + \underbrace{L_{A}\big(w^{(k)}_{\star},\theta^{(k)},\tilde{d}^{(k)}\big).}_{\text{Approximation error}}$$

Convergence analysis (2/2)

Define the distribution mismatch coefficient of p relative to q as

$$\left\| \frac{p}{q} \right\|_{\infty} \stackrel{\text{def}}{=} \max_{s \in \mathcal{S}} \frac{p_s}{q_s}.$$

Let π^* be an arbitrary comparator policy. We define

$$\vartheta_{\rho} \stackrel{\text{def}}{=} \frac{1}{1-\gamma} \left\| \frac{d^{\pi^*}}{\rho} \right\|_{\infty} \geq \frac{1}{1-\gamma}.$$

Assumption 1: There exists ϵ_{stat} , $\epsilon_{\text{approx}} > 0$ such that for all iterations $k \geq 0$ of the NPG method (2), we have

$$\mathbb{E}\left[L_A(w^{(k)}, \theta^{(k)}, \tilde{d}^{(k)}) - L_A(w_{\star}^{(k)}, \theta^{(k)}, \tilde{d}^{(k)})\right] \leq \epsilon_{\text{stat}},$$

$$\mathbb{E}\left[L_A(w_{\star}^{(k)}, \theta^{(k)}, \tilde{d}^{(k)})\right] \leq \epsilon_{\text{approx}}.$$

Assumption 2: There exists $C_{\nu} < \infty$ such that for all iterations $k \geq 0$ of the NPG method (2), we have

$$\mathbb{E}_{(s,a)\sim \tilde{d}^{(k)}}\left[\left(\frac{\bar{d}_{s,a}^{(k+1)}}{\tilde{d}_{s,a}^{(k)}}\right)^2\right] \leq C_{\nu} \quad \text{and} \quad \mathbb{E}_{(s,a)\sim \tilde{d}^{(k)}}\left[\left(\frac{\bar{d}_{s,a}^{\pi^*}}{\tilde{d}_{s,a}^{(k)}}\right)^2\right] \leq C_{\nu}.$$

Theorem: Fix a state distribution ρ , a state-action distribution ν , and a comparator policy π^* . We consider the NPG method (2) with the step sizes satisfying $\eta_{k+1} \geq \frac{1}{\gamma} \eta_k$. Then for all $k \geq 0$,

$$\mathbb{E}\left[V_{\rho}(\pi^{(k)})\right] - V_{\rho}(\pi^{*}) \leq \left(1 - \frac{1}{\vartheta_{\rho}}\right)^{k} \frac{2}{1 - \gamma} + \frac{\sqrt{C_{\nu}}\left(\vartheta_{\rho} + 1\right)}{1 - \gamma}\left(\sqrt{\epsilon_{\text{stat}}} + \sqrt{\epsilon_{\text{approx}}}\right).$$

Corollary: By further assuming that the feature maps are bounded and the Fisher information matrix is non-degenerate, we obtain an $\tilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity for NPG.

Remark: Similar linear convergence and $\tilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity results can be established for Q-NPG.

Take-away

We show that both NPG and Q-NPG with log-linear policies enjoy linear convergence rates and $\mathcal{O}(1/\epsilon^2)$ sample complexities using a simple, non-adaptive geometrically increasing step size.

References

^[1] Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

^[2] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *Proceedings of 19th International Conference on Machine Learning*, pages 267–274, 2002.

^[3] Lin Xiao. On the convergence rates of policy gradient methods, 2022.