## Network Layer:

#### <u>Distance Vector Protocols Variations</u> Link-State Protocol

Qiao Xiang

https://qiaoxiang.me/courses/cnnsxmuf22/index.shtml

11/22/2022

## Outline

- Admin and recap
- Network overview
- Network control plane
  - Routing
    - Link weights assignment
    - Routing computation
      - Distance vector protocols (distributed computing)
      - Link state protocols (distributed state synchronization)

## Admin

- □ Guest lectures are important ©
- Upcoming guest lectures
  - December 1, Dr. Linghe Kong@SJTU,
     Internet of Things
  - December 8, Dr. Zaoxing (Alan) Liu@Boston Univ.,
     Programmable Networks
  - December 15, Dr. Zhenhua Li@THU,
     5G Network
- Schedule is tentative

## Recap: Routing Context

#### Routing

Goal: determine "good" paths (sequences of routers) thru networks from source to dest.

- Often depends on a graph abstraction:
- graph nodes are routers
- graph edges are physical links
  - links have properties: delay, capacity, \$ cost, policy





## Recap: Routing Design Space

- Routing has a large design space
  - who decides routing?
    - · source routing: end hosts make decision
    - · network routing: networks make decision
  - how many paths from source s to destination d?
    - multi-path routing
    - single path routing
  - what does routing compute?
    - · network cost minimization (shortest path routing)
    - · QoS aware
  - will routing adapt to network traffic demand?
    - adaptive routing
    - static routing



# Recap: Distance Vector Routing: Basic Idea (Bellman-Ford Alg)

☐ At node i, the basic update rule

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where

- d<sub>i</sub> denotes the distance estimation from i to the destination,
- N(i) is set of neighbors of node i, and
- d<sub>ij</sub> is the distance of the direct link from i to j





#### Recap: Synchronous Bellman-Ford (SBF)

#### ■ Nodes update in rounds:

- there is a global clock;
- at the beginning of each round, each node sends its estimate to all of its neighbors;
- o at the end of the round, updates its estimation

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$



## Recap: SBF/∞



□ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & i = \text{dest} \\ \infty & \text{otherwise} \end{cases}$$

## Example

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$



Consider D as destination; d(t) is a vector consisting of estimation of each node at round t

|      | Α        | В        | С        | Е        | D |
|------|----------|----------|----------|----------|---|
| d(0) | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 0 |
| d(1) | $\infty$ | $\infty$ | 2        | 2        | 0 |
| d(2) | 12       | 3        | 2        | 2        | 0 |
| d(3) | 10       | 3        | 2        | 2        | 0 |
| d(4) | 10       | 3        | 2        | 2        | 0 |

Observation:  $d(0) \ge d(1) \ge d(2) \ge d(3) \ge d(4) = d^*$ 

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

#### A Nice Property of SBF: Monotonicity

Consider two configurations d(t) and d'(t)

- $\Box$  If  $d(t) \ge d'(t)$ 
  - i.e., each node has a higher estimate in one scenario (d) than in another scenario (d'),
- $\Box$  then  $d(t+1) \ge d'(t+1)$ 
  - i.e., each node has a higher estimate in d than in d' after one round of synchronous update.

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

#### Correctness of SBF/∞

- □ Claim:  $d_i$  (h) is the length  $L_i$  (h) of a shortest path from i to the destination using  $\leq$  h hops
  - base case: h = 0 is trivially true
  - o assume true for  $\leq$  h, i.e.,  $L_i$  (h) =  $d_i$  (h),  $L_i$  (h-1) =  $d_i$  (h-1), ...

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

#### Correctness of SBF/∞

 $\square$  consider  $\leq$  h+1 hops:

$$L_i(h+1) = \min(L_i(h), \min_{j \in N(i)} (d_{ij} + L_j(h)))$$

= 
$$\min(d_i(h), \min_{j \in N(i)}(d_{ij} + d_j(h)))$$

$$= \min(d_i(h), d_i(h+1))$$

since  $d_i$  (h)  $\leq d_i$  (h-1)

$$\left| d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h)) \le \min_{j \in N(i)} (d_{ij} + d_j(h-1)) = d_i(h) \right|$$

$$L_i(h+1) = d_i(h+1)$$

## Outline

- Admin and recap
- Network overview
- Network control plane
  - Routing
    - Link weights assignment
    - Routing computation
      - > Distributed distance vector protocols
        - synchronous Bellman-Ford (SBF)
          - SBF/∞
          - SBF/-1 SBF/ $\infty$

## SBF at another Initial Configuration: SBF/-1



□ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & i = \text{dest} \\ -1 & \text{otherwise} \end{cases}$$

### $d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$

## Example

A 8 2 1 0 E 2 D

#### Consider D as destination

|      | Α  | В  | С  | Е  | D |
|------|----|----|----|----|---|
| d(0) | -1 | -1 | -1 | -1 | 0 |
| d(1) | 6  | 0  | 0  | 2  | 0 |
| d(2) | 7  | 1  | 1  | 2  | 0 |
| d(3) | 8  | 2  | 2  | 2  | 0 |
| d(4) | 9  | 3  | 3  | 2  | 0 |
| d(5) | 10 | 3  | 3  | 2  | 0 |
| d(6) | 10 | 3  | 3  | 2  | 0 |

Observation:  $d(0) \le d(1) \le d(2) \le d(3) \le d(4) \le d(5) = d(6) = d^*$ 

### Correctness of SBF/-1

□SBF/-1 converges due to monotonicity

- Remaining question:
  - Can we guarantee that SBF/-1 converges to shortest path?

## Correctness of SBF/-1

 $\square$  Common between SBF/ $\infty$  and SBF/-1: they solve the Bellman equation

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where  $d_D = 0$ .

- $lue{}$  We have proven SBF/ $\infty$  is the shortest path solution.
- □ SBF/-1 computes shortest path if Bellman equation has a unique solution.

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

#### Uniqueness of Solution to BE

Assume another solution d, we will show that d = d\*

case 1: we show  $d \ge d^*$ 

Since d is a solution to BE, we can construct paths as follows: for each i, pick a j which satisfies the equation; since  $d^*$  is shortest,  $d \ge d^*$ 



$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

#### Uniqueness of Solution to BE

Case 2: we show d ≤ d\*

assume we run SBF with two initial configurations:

- o one is d
- $\circ$  another is SBF/∞ (d $^{\infty}$ ),
- -> monotonicity and convergence of SBF/∞ imply that d ≤ d\*

#### Discussion

■ Will SBF converge under other non-negative initial conditions?

□ Problems of running synchronous BF?

## Outline

- Admin and recap
- Network overview
- □ Network control plane
  - Routing
    - Link weights assignment
    - Routing computation
      - > Distributed distance vector protocols
        - synchronous Bellman-Ford (SBF)
        - asynchronous Bellman-Ford (ABF)

## Asynchronous Bellman-Ford (ABF)

- No notion of global iterations
  - o each node updates at its own pace
- Asynchronously each node i computes

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j^i)$$

using last received value dij from neighbor j.

- Asynchronously node j sends its estimate to its neighbor i:
  - We assume that there is an upper bound on the delay of estimate packet

## ABF: Example

Below is just one step! The protocol repeats forever!



distance table E sends to its neighbors

2

A-

A: 10

B: 8

C: 4

D: 2

E: 0

## Asynchronous Bellman-Ford (ABF)

- □ ABF will eventually converge to the shortest path
  - links can go down and come up but if topology is stabilized after some time t and connected, ABF will eventually converge to the shortest path!

## ABF Convergence Proof Complexity: Complex System State



## System State



three types of distance state from node j:

- d<sub>j</sub>: current distance estimate state at node j

- d<sup>i</sup><sub>j</sub>: last d<sub>j</sub> that neighbor i received

- d<sup>i</sup><sub>j</sub>: those d<sub>j</sub> that are still in transit to neighbor i

## ABF Convergence Proof: The Sandwich Technique

#### □ Basic idea:

 bound system state using extreme states

#### □Extreme states:

- $\circ$  SBF/∞; call the sequence U()
- SBF/-1; call the sequence L()

## ABF Convergence

Consider the time when the topology is stabilized as time 0

- □ U(0) and L(0) provide upper and lower bounds at time 0 on all corresponding elements of states
  - ∘  $L_j$  (0) ≤  $d_j$  ≤  $U_j$  (0) for all  $d_j$  state at node j
  - o  $L_{j}(0) \le d^{i}_{j} \le U_{j}(0)$
  - $\circ$   $L_{j}\left(0\right) \leq$  update messages  $d_{j}^{i} \leq U_{j}\left(0\right)$

## ABF Convergence

## □ d<sub>j</sub>

after at least one update at node j:
 d<sub>j</sub> falls between
 L<sub>j</sub> (1) ≤ d<sub>j</sub> ≤ U<sub>j</sub> (1)

## $\Box d^{i}_{j}$ :

• eventually all  $d_j^i$  that are only bounded by  $L_j$  (0) and  $U_j$  (0) are replaced with in  $L_j$ (1) and  $U_j$ (1)



#### Asynchronous Bellman-Ford: Summary

#### Distributed

 each node communicates its routing table to its directly-attached neighbors

#### □ Iterative

 continues periodically or when link changes, e.g. detects a link failure

### Asynchronous

 nodes need not exchange info/iterate in lock step!

#### Convergence

 in finite steps, independent of initial condition if network is connected

#### Summary: Distributed Distance-Vector

- □ Tool box: a key technique for proving convergence (liveness) of distributed protocols: monotonicity and bounding-box (sandwich) design
  - Consider two configurations d(t) and d'(t):
    - if d(t) <= d'(t), then d(t+1) <= d'(t+1)</li>
  - Identify two extreme configurations to sandwich any real configurations

## Outline

- Admin and recap
- Network control plane
  - Routing
    - Link weights assignment
    - Routing computation
      - Distance vector protocols (distributed computing)
        - synchronous Bellman-Ford (SBF)
        - asynchronous Bellman-Ford (ABF)
        - properties of DV

### Properties of Distance-Vector Algorithms

□ Good news propagate fast



#### Properties of Distance-Vector Algorithms

□ Bad news propagate slowly

| A             | В        | С | D        | Ē        |                   |
|---------------|----------|---|----------|----------|-------------------|
| •             | 1        | 2 | 3        | 4        | Initially         |
| A-B link down | 3        | 2 | 3        | 4        | After 1 exchange  |
|               | 3        | 4 | 3        | 4        | After 2 exchanges |
|               | 5        | 4 | 5        | 4        | After 3 exchanges |
|               | 5        | 6 | 5        | 6        | After 4 exchanges |
|               | 7        | 6 | 7        | 6        | After 5 exchanges |
|               | 7        | 8 | 7        | 8        | After 6 exchanges |
|               |          | : |          |          |                   |
|               | $\infty$ | ∞ | $\infty$ | $\infty$ |                   |

- □ This is called the *counting-to-infinity* problem
- Q: what causes counting-to-infinity?

#### Counting-To-Infinity is Because of Routing Loop

Counting-to-infinity is caused by a routing loop, which is a global state (consisting of the nodes' local states) at a global moment (observed by an oracle) such that there exist nodes A, B, C, ... E such that A (locally) thinks B as next hop, B thinks C as next hop, ... E thinks A as next hop



## Discussion

- Why avoid routing loops is hard?
- Any proposals to avoid routing loops?

### Outline

- Admin and recap
- □ Network control plane
  - Routing
    - Link weights assignment
    - Routing computation
      - Distance vector protocols (distributed computing)
        - synchronous Bellman-Ford (SBF)
        - asynchronous Bellman-Ford (ABF)
        - properties of DV
          - DV w/ loop prevention
            - > reverse poison

# The Reverse-Poison (Split-horizon) Hack

If the path to dest is through neighbor h, report  $\infty$  to neighbor h for dest.



distance table E sends to its neighbors

2

EA

neighbor



### DV+RP => RIP (Routing Information Protocol)

- ☐ Included in BSD-UNIX Distribution in 1982
- ☐ Link cost: 1
- Distance metric: # of hops
- Distance vectors



each advertisement: route to up to 25 destination nets



#### RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly propagates to entire net
- reverse-poison used to prevent ping-pong loops
- set infinite distance = 16 hops (why?)

#### General Routing Loops and Reverse-poison

Exercise: Can Reverse-poison guarantee no loop for this network?



#### General Routing Loops and Reverse-poison

Reverse-poison removes two-node loops but may not remove more-node loops



- Unfortunate timing can lead to a loop
  - When the link between C and D fails, C will set its distance to D as  $\infty$
  - A receives the bad news  $(\infty)$  from C, A will use B to go to D
  - A sends the news to C
  - C sends the news to B

### Outline

- Admin and recap
- Network control plane
  - Routing
    - Link weights assignment
    - Routing computation
      - Distance vector protocols (distributed computing)
        - synchronous Bellman-Ford (SBF)
        - o asynchronous Bellman-Ford (ABF)
        - o properties of DV
          - DV w/ loop prevention
            - reverse poison
            - destination-sequenced DV (DSDV)

### <u>Destination-Sequenced</u> <u>Distance Vector protocol (DSDV)</u>

- Basic idea: use sequence numbers to partition computation
  - tags each route with a sequence number
  - each destination node D periodically advertises
     monotonically increasing even-numbered sequence numbers
  - when a node realizes that the link it uses to reach destination D is broken, it advertises an infinite metric and a sequence number which is one greater than the previous route (i.e., an odd seq. number)
    - the route is repaired by a later even-number advertisement from the destination

### DSDV: More Detail



- Let's assume the destination node is D
- □ There are optimizations but we present a simple version:
  - each node B maintains ( $S^B$ ,  $d^B$ ), where  $S^B$  is the sequence number at B for destination D and  $d^B$  is the best distance using a neighbor from B to D
- Both periodical and triggered updates
  - o periodically: D increases its seq. by 2 and broadcasts with  $(5^D,0)$
  - if B is using C as next hop to D and B discovers that C is no longer reachable
    - B increases its sequence number  $S^B$  by 1, sets  $d^B$  to  $\infty$ , and sends  $(S^B, d^B)$  to all neighbors

# Example



Will this trigger an update?

# Example



Will this trigger an update?

### DSDV: Update Alg.



- Consider simple version, no optimization
- Update after receiving a message
  - $\circ$  assume B sends to A its current state (S<sup>B</sup>, d<sup>B</sup>)
  - when A receives (S<sup>B</sup>, d<sup>B</sup>)
    - $-if S^B > S^A$ , then
      - // always update if a higher seq#

$$\gg S^A = S^B$$

$$\Rightarrow$$
 if  $(d^B == \infty) d^A = \infty$ ; else  $d^A = d^B + d(A,B)$ 

- else if  $S^A == S^B$ , then

$$\Rightarrow$$
 if  $d^{A} > d^{B} + d(A,B)$ 

// update for the same seq# only if better route  $d^{A}=d^{B}+d(A,B)$  and uses B as next hop