青岛大学 2015 年硕士研究生入学考试试题

	科目代码:823 科目名称:传热学 (共 4 页)
	请考生写明题号,将答案全部答在答题纸上,答在试卷上无效
1. 填	[空题 (本大题共 15 小题, 每小题 2 分, 共 30 分)
(1)	强化大容器沸腾换热的基本原则是。
(2)	一般来说,紊流时的对流换热强度要比层流时。
(3)	当考虑入口段对整个管道平均表面传热系数的影响时,其入口效应
	修正系数应1。
(4)	一般来说,顺排管束的平均对流换热系数要比叉排时。
(5)	膜状凝结换热的热阻主要是。
(6)	直角坐标下,常物性无内热源的一维非稳态导热问题的导热微分方
	程是。
(7)	角系数仅与因素有关。
(8)	已知物体表面与周围介质之间的换热情况,这是属于第类
	边界条件。
(9)	已知某流体流过固体壁面时被加热,并且 $\alpha_c = 500W/(m^2 \cdot K)$,
	q = 20kW/m²流体平均温度为 40 ℃ ,则壁面温度为。
(10)	在其他条件相同的情况下,流体横向冲刷管子比纵向冲刷管子换热
	效果。
(11)	空气横掠管束时,沿流动方向管排数越多,平均表面传热系数
	越, 而蒸汽在水平管束外凝结时,沿液膜流动方向管束排
	数越多,平均表面传热系数越。
(12)	对于漫一灰表面来说,其发射率与吸收比之间的关系是 ε α
(13)	换热器的热力计算主要基于的方程式为。
(14)	如果 $\Pr < 1$,则流动边界层厚度 δ δ_t 。
	已知某大平壁的厚度为 15mm ,材料导热系数为 $0.15 (W/m \cdot K)$,
	壁面两侧的温度差为 150 ℃,则通过该平壁导热的热流密度
	为。

2. 选择题(本题共10小题,每小题3分,共30分)

(1) 空气横向掠过等温圆柱,从圆柱前驻点开始向后热边界层厚度在不
断增加,如果 Re 较小,流动保持层流,则()
A.局部表面传热系数逐渐减小 B. 局部表面传热系数保持不变
C. 局部表面传热系数可能减小,也可能增加
(2) 饱和水蒸汽在水平圆管外凝结, $L>>d$,圆管的壁温恒定,以下的
方案()可以增加单位时间内的凝结水量。
A.将圆管垂直放置 B.将圆管倾斜放置 C.在圆管外面加装低肋片
(3) 某热力管道采用两种导热系数不同的保温材料进行保温,为了达到
较好的保温效果,应将()材料放在内层。
A. 导热系数较大的材料 B. 导热系数较小的材料
C. 任选一种均可 D. 不能确定
(4) 通常情况下,下述()情形的表面传热系数最大?
A. 水的自然对流 B. 水的强制对流
C. 水的核态沸腾 D. 水的膜态沸腾
(5) 下列哪个准则数反映了流体流态对对流换热的影响 ?()
A. 雷诺数 B. 瑞利数
C. 普朗特数 D. 努谢尔特数
(6) 流体分别在较长的粗管和细管内作强制紊流对流换热,如果流速等
条件相同,则()
A. 粗管和细管的 h 相同 B. 粗管内的 h 大
C. 细管内的 h 大 D. 无法比较
(7) 准则方程式 Nu=f(Gr, Pr)反映了()的变化规律。
A. 强制对流换热 B. 凝结对流换热
C. 自然对流换热 D. 核态沸腾换热
(8) 下列各式中哪些是正确的? ()
A. $X_{(1+2),3} = X_{1,3} + X_{2,3}$
B. $X_{3,(1+2)} = X_{3,1} + X_{3,2}$
C. $A_{(1+2)}X_{3,(1+2)} = A_1X_{3,1} + A_2X_{3,2}$

- D. $A_3X_{(1+2),3} = A_3X_{1,3} + A_2X_{2,3}$
- (9)()是在相同温度条件下辐射能力最强的物体。

A. 灰体 B. 磨光玻璃 C. 涂料 D. 黑体

- (10) 黑体的有效辐射 其本身辐射, 而灰体的有效辐射() 其本身 辐射。
 - A. 等于 等于 B. 等于 大于 C. 大于 大于 D. 大于 等于

3. 简答题(本大题共6小题,共40分)

- (1) (8分) 现在市场上出售的冰箱有很多是无霜冰箱,请从传热学角度 解释冰箱结霜后, 会导致什么后果, 并解释其原因。
- (8分)什么是当量直径?写出矩形通道(边长为a、b)和环形通道 (大小直径分别为 D、d) 的当量直径的表达式。
- (8分)对管内的湍流强制换热,流速增加一倍时,其他条件不变, (3)则表面传热系数 h 如何变化?管径缩小一半,流速等其他条件不变, h 如何变化?
- (4) (6分) 请简述 Nu 数与 Bi 数的区别。
- (5) (6分) 写出基尔霍夫定律的不同数学表达式,并给出其适用的条件。
- (6) (4分)冬天, 当你将手伸到室温下的水中时会感到很冷, 但手在同一 温度下的空气中时并无这样冷的感觉,为什么?

4. 计算题(本大题共3小题,共50分)

(1) (20 分) 在一逆流式水一水换热器中,管内为热水,进口温度为 100 ℃, 出口温度为 80°C,管外流过冷水,进口温度为 20°C,出口温度为 70°C。 总换热量为 350kW, 共有 53 根内径为 16mm、壁厚为 1mm 的管子。管 壁导热系数为 40 W/(m K), 管外流体的表面传热系数为 1500 $W/(m^2 \cdot K)$,管内流体为一个流程,管壁允许按平壁计算。试确定: (1) 假设管子内、外表面都是洁净的,所需的管子长度为多少?(2)若管 子内外表面有薄层污垢,污垢热阻分别为 0.0001 (m²·K)/W 和

0.0002 (${\rm m}^2$ · K)/W,为达到换热要求管子的长度又需多少?(90℃时水的物性:密度为 965.3 kg/m³,比热容为 4.208 kJ/(kg K),导热系数为 0.68 W/(m K),运动粘度为 0.326×10⁻⁶ m²/s,Pr=1.95,管内表面传热系数计算公式用充分发展湍流公式 $Nu=0.023Re_f^{0.8}Pr_f^{0.3}$ 。

(2) **(15 分)** 初温相同的金属薄板、细圆柱体和小球(材料相同,金属导热系数大),放在同种介质中加热,如薄板厚度、细圆柱体直径、小球直径相等,表面传热系数相同,求把它们加热到同样温度所需时间之比。

(3) (15 分) 有两个面积相等的黑体置于一绝热的包壳中,假定两黑体的温度分别为 T_1 和 T_2 ,且相对位置任意,试画出该辐射换热系统的网络图,并导出绝热包壳表面温度 T_3 的表达式。

