PCT/KR 0 3 / 0 1 2 4 4 PCT/KR 15. 07. 2003

REC'D 2 9 JUL 2003

WIPO PCT

대한민국특허 KOREAN INTELLECTUAL

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

PROPERTY OFFICE

출 원 번 호 :

10-2002-0036051

PRIORITY

DOC

Application Number

년

원

2002년 06월 26일

Dication JUN 26, 2002

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Date of Application

출 원 인

한국화학연구원

KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY

Applicant (s)

2003

년 07

ei 03

일

특

허

청

COMMISSIONER

Best Available Copy

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】특허청장【제출일자】2002.06.26

【발명의 명칭】 광학활성 (R)-페녹사프롭 에스터의 제조방법

【발명의 영문명칭】 A process for (R)-Fenoxaprop ester

【출원인】

【명칭】한국화학연구원[출원인코드]3-1998-007765-1

【대리인】

【성명】 허상훈

【대리인코드】 9-1998-000602-6 【포괄위임등록번호】 1999-004160-2

【발명자】

【성명의 국문표기】 김대황

【성명의 영문표기】KIM,Dae Whang【주민등록번호】451222-1025020

【우편번호】 305-330

【주소】 대전광역시 유성구 지족동 877번지 열매마을아파트 510동

301호

【국적】 KR

[발명자]

【성명의 국문표기】 정근회

【성명의 영문표기】CHUNG, Kun Hoe【주민등록번호】480210-1655125

【우편번호】 305-340

【주소】 대전광역시 유성구 도룡동 타운하우스 9동 102호

【국적】 KR

【발명자】

【성명의 '국문표기】 장해성

【성명의 영문표기】CHANG, Hae Sung【주민등록번호】591229-1024618

【우편번호】 305-333

【주소】 대전광역시 유성구 어은동 99 한빛아파트 105동 201호

【국적】 KR

【발명자】

【성명의 국문표기】 고영관

【성명의 영문표기】 KO, Young Kwan

【주민등록번호】 610125-1068912 【우편번호】

【주소】 대전광역시 유성구 어은동 99 한빛아파트 102동 1702호

305-333

【국적】 KR

【발명자】

.【성명의 국문표기】 류재욱

【성명의 영문표기】 RYU. Jae Wook 【주민등록번호】 590422-1797827

【우편번호】 305-333

【주소】 대전광역시 유성구 어은동 99 한빛아파트 120동 305호

【국적】 KR

【발명자】

【성명의 국문표기】 우재춘

【성명의 영문표기】 W00. Jae Chun 【주민등록번호】 580325-1380124

【우편번호】 302-162

【주소】 대전광역시 서구 도마2동 205 경남아파트 111동 603호

[국적] KR

【발명자】

【성명의 국문표기】 구동완

【성명의 영문표기】 KOO, Dong Wan

【주민등록번호】 601215-1406435

【우편번호】 305-333

【주소】 대전광역시 유성구 어은동 99 한빛아파트 128동 604호

【국적】 KR

【심사청구】 청구

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사 를 청구합니다. 대리인 허상훈 (인)

【수수료】·

【기본출원료】 12 면 29,000 원 【가산출원료】 0 면 0 원 【우선권주장료】 0 건 0 원 【심시청구료】 3 항 205,000 원

[합계] 234,000 원

【감면사유】 정부출연연구기관

【감면후 수수료】 117,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

[요약서]

[요약]

본 발명은 광학활성 (R)-페녹사프롭 에스터의 제조방법에 관한 것으로서, 보다 상세하게는 (6-클로로-2-벤족사졸릴옥시)페놀과 (S)-알킬 O-아릴설포닐 락테<u>이트</u>를 반응물질로 사용하여 특정의 용매와 염기 및 온도조건에서 치환반응시켜 우수한 광학순도 및 생성수율로 다음 화학식 1로 표시되는 (R)-페녹사프롭 에스터를 경제적으로 제조하는 방법에 관한 것이다.

[화학식 1]

상기 화학식 1에서, R^1 은 $C_1 \sim C_6$ 의 알킬기 또는 벤질기를 나타낸다.

【색인어】

(S)-알킬 O-아릴설포닐 락테이트, (S)-에틸 O-p-톨루엔설포닐 락테이트, (6-클로로-2-벤족 사졸릴옥시)페놀, 비극성 용매, 자일렌, 사이클로헥산, (R)-페녹사프롭 에틸, 광학 활성

【명세서】

【발명의 명칭】

광학활성 (R)-폐녹사프롭 에스터의 제조방법{A process for (R)-Fenoxaprop ester} 【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

신 본 발명은 다음 화학식 1로 표시되는 광학활성 (R)-페녹사프롭 에스터의 제조방법에 관한 것으로서, 보다 상세하게는 다음 화학식 2로 표시되는 (6-클로로-2-벤족사졸릴옥시)페놀과 다음 화학식 3으로 표시되는 (S)-알킬 ○아릴설포닐 락테이트를 반응물질로사용하여 특정의 용매와 염기 및 온도조건에서 반응시켜 우수한 광학순도 및 생성수율로 (R)-페녹사프롭 에스터를 경제적으로 제조하는 방법에 관한 것이다.

<> 【화학식 1】

<3>【화학식 2】

<⇒ 【화학식 3】

$$R^2 = 0 \\ O \\ O \\ O \\ O$$

$$CH_3 \\ O \\ O \\ O$$

 $^{5>}$ 상기 화학식 1, 2 및 3에서, R^1 은 $C_1 \sim C_6$ 의 알킬기 또는 벤질기를 나타내고, R^2 는 할로겐 또는 $C_1 \sim C_4$ 의 알킬기가 치환된 페닐기를 나타낸다.

◇ 상기 화학식 1로 표시되는 화합물은 관용적으로 (R)-페녹사프롭 에스터로 호칭되고 , 화학명칭으로는 (R)-알킬 2-[4-(6-클로로-2-벤족사졸릴옥시)펜옥시]프로피오네이트로 불리어지고 있다. 또한, 상기 화학식 1로 표시되는 (R)-페녹사프롭 에스터는 화본과 식물의 생리작용을 저해하는 제초활성 물질로 잘 알려져 있다. 특히 (R)-페녹사프롭 에틸(R¹=에틸)은 현재 농약으로 사용되고 있다.

생기 화학식 1로 표시되는 페녹사프롭 에스터는 화학구조상 부제탄소(chiral carbon)가 한 개 존재하므로 광학활성을 갖으며, (R)-이성체가 제초활성을 갖는 주체이며 (S)-이성체는 제초활성이 거의 없는 것으로 알려져 있다.

종래의 제조방법에 관하여 2-페녹시 프로피온익 엑시드 유도체들의 합성 및 제초활성에 대해서는 이미 여러 문헌에 공지되어 있다[유럽특허 제157,225호, 제62,905호 및 제44,497호, 그리고 독일특허 제3,409,201호, 제3,236,730호 및 제2,640,730호 등].

또한, (R)-페녹사프롭 에스터의 제조방법으로서는 미국특허 제4,531,969호, 제 5,254,527호 및 영국특허 제2,042,503호에는 다음 반응식 1 및 반응식 2와 같은 합성방 법이 공지되어 있다.

<10>【반응식 1】

$$CI \xrightarrow{N} O \xrightarrow{O} OH + R^2 \xrightarrow{O} OR^1 \xrightarrow{CH_3} OR^1 \xrightarrow{CI} O$$

$$(3)$$

$$(1)$$

<11> 【반응식 2】

위의 공지 방법에 의하면, 상기 화학식 2로 표시되는 2,6-디클로로벤족사졸릴옥시 페놀과 상기 화학식 3로 표시되는 (R)-알킬 0-R²-설포닐락테이트(R²=메틸 및 p-톨루엔)의 반응이나 화학식 4로 표시되는 2,6-디클로로벤족사졸과 상기 화학식 5로 표시되는 (R)-에틸 2-(4-하이드록시페녹시)프로피오네이트의 반응을 아세토니트릴을 포함하는 극성 용매에서 반응시켜서 (R)-페녹사프롭 에틸을 70-80% 수율(광학이성체 순도: 80~95%)로 제조하는 것으로 기술되어 있다.

기러나, 상기 반응식 1 및 2에 따른 제조방법을 수행하게 되면 부반응물로서 (S)— 폐녹사프롭 에틸이 5 ~ 20% 생성되는 단점이 있고, 상기한 부반응물의 제거가 용이하지 않아 순수한 (R)—폐녹사프롭 에틸을 얻기 위하여 재결정 과정을 거처야 한다. 그러나 이 를 적용하는 데에는 경제적으로 비용이 커지는 단점이 있다. 또한, 상기 화학식 5로 표시되는 반응물도 광학활성이 높은 수준으로 별도로 제조해야 하는 단점이 있다.

【발명이 이루고자 하는 기술적 과제】

- 이에, 본 발명자들은 상기 화학식 1로 표시되는 생리활성이 우수한 (R)-페녹사프롭에스터를 높은 광학활성순도와 수율로 제조하는 경제적인 새로운 방법을 개발하고자 노력하였다. 그 결과, 본 발명자들은 (R)-페녹사프롭 에스터 제조과정에서 라세미화를 방지하는 반응 조건을 설계하는 것이 중요하다는 것을 알게되었다.
- <15>따라서, 본 발명은 합성과정에서 라세미화를 방지하여 고 순도의 광학활성 (R)-페 녹사프롭 에스터를 경제적으로 제조하는 새로운 방법을 제공하는 데 그 목적이 있다.

【발명의 구성 및 작용】

- 본 발명은 상기 화학식 2로 표시되는 (6-클로로-2-벤족사졸릴옥시)페놀과 상기 화학식 3으로 표시되는 (S)-알킬 0-아릴설포닐 락테이트를 반응시킴에 있어 알카리금속 탄산염의 염기 존재하에, 그리고 지방족 또는 방향족 탄화수소 용매를 사용하여 60 ~ 100 ℃ 온도로 가열하는 조건으로 반응시켜서 화학식 1로 표시되는 고 순도의 광학활성 (R)-페녹사프롭 에스터의 제조방법을 제공하는 것을 그 특징으로 한다.
- <17> 이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.
- 본 발명은 (6-클로로-2-벤족사졸릴옥시)페놀과 (S)-알킬 0-아릴설포닐 락테이트를 반응물질로 치환반응을 수행하는 데 있어 반응용매와 반응온도를 특정화하여 광학활성 (R)-페녹사프롭 에스터를 고 수율 및 고 순도로 제조하는 방법에 관한 것이다.
- 본 발명이 반응물질로 사용하는 상기 화학식 2로 표시되는 (6-클로로-2-벤족사졸릴옥시)폐놀과 상기 화학식 3으로 표시되는 (S)-알킬 0-아릴설포널 락테이트는 공지 화합물로서 이미 알려진 방법으로 합성하여 사용한다. 예컨대, (6-클로로-2-벤족사졸릴옥시)폐놀은 값싸게 구입할 수 있는 아미노폐놀, 우레아, 설퍼릴글로라이드, 포스포러스펜타클로라이드, 트리에틸아민 등의 기초원료와 자일렌, 아세틱엑시드, 클로로벤젠, 디클로로에탄 등의 용매를 사용하여 4 단계의 반응을 거쳐 50%의 수율로 제조하여 사용하였다. 또한, (S)-알킬 0-아릴설포널 락테이트는 (S)-알킬 락테이트와 아릴설포널클로라이드 화합물을 트리에칠아민 존재하에서 디클로로에탄 용매에서 반응시켜 (S)-화합물을 제조하여 사용하였다.

- 본 발명에 따른 치환 반응에서 사용되는 반응용매의 선택이 매우 중요한 바, 본 발명 용매의 선택 사용으로 생성물의 라세미화를 방지하는 효과를 얻는다. 반응 용매로는 자일렌, 톨루엔, 벤젠, 사이클로헥산, 노말헥산, 노말헵탄 등이 포함되는 지방족 또는 방향족 탄화수소 용매를 사용할 수 있으며, 특히 바람직하기로는 사이클로헥산을 반응용매로 사용하는 것이다.
- 산용온도도 라세미화와 밀접한 관계가 있어 매우 중요한 요소이며, 60 ~ 100 ℃가 적당하지만 반응시간과 편리성을 고려할 때 사이클로헥산 가열 환류온도(~80 ℃)가 특히 바람직하다.
- 본 발명에서는 염기로서 알칼리금속 탄산염, 예를 들면 탄산나트륨, 탄산칼륨 등을 사용하는 바, 이로써페놀-금속 염 중간체를 생성할 수 있도록 하면 여타 부반응을 최소 화하는 효과를 얻는다. 상기한 염기는 펠렛형을 사용하기 보다는 분말형(400~700 메쉬)을 사용하는 것이 반응시간을 단축하는 효과가 있어 보다 바람직하다.
- <23> 즉, 본 발명에 따른 제조방법을 수행하게 되면 주요 반응 중간체로서 페놀-금속 염이 생성되는 바, 이때 중간체 생성반응에서의 금속화합물 크기와 용매의 선택 사용으로 생성물의 라세미화 및 에스터의 가수분해를 방지하는 효과를 얻고 있다.
- 상기한 치환반응이 완결되면 뜨거운 상태에서 생성된 설포닉엑시드 염을 여과하고 여액을 농축하면 본 발명이 목적하는 상기 화학식 1로 표시되는 (R)-페녹사프롭 에스터 를 고 수율 및 고 순도 쉽게 회수할 수 있다.
- 이와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.

<26> 실시예 1

- <27> (D+)-에틸-2-[4-(6-클로로-2-벤족사졸릴옥시)-폔옥시]-프로피오네이 트의합성 (일반명: (R)-폐녹사프롭 에틸)
- ** 1 L 플라스크에 사이클로헥산 50 mL와 (6-클로로-2-벤족사졸릴옥시)페놀 2.61 g(10 mmol), (S)-에틸 0-p-톨루엔설포닐 락테이트 2.86 g(10.5 mmol) 및 분말형 K₂CO₃ 2.76 g(20 mmol)을 넣고 12 시간 동안 가열환류하였다. 반응 혼합물을 뜨거운 상태에서 여과하고 따뜻한 사이클로헥산 20 mL로 고체를 씻어 주었다. 여액인 사이클로헥산 층을 농축하여 목적화합물 3.20 g(89% 수득율, 순도 98%, 광학활성순도 99.9%)을 얻었다
- mp 82~84 ℃(observed); R_f=0.52(핵산/에틸아세테이트=3/1); ¹H-NMR(CDCl₃, 200MHz) δ
 1.13(t, J=7.1Hz, 3H), 1.81(d, J=6.9Hz, 3H), 4.22(q, J=7.1Hz, 2H), 4.72(q, J=6.9Hz,
 1H), 6.99~7.42(m, 7H); MS(70 eV) m/z 363(M+), 361(M+), 291, 288, 263, 261, 182,
 144, 119, 91.
- <30> 상기 실시예 1에 따른 치환 반응을 수행함에 있어 반응조건에 따른 수율 및 광학이 성체 생성비율을 다음 표 1에 요약하여 나타내었다.

<31>

【丑 1】

Q OH + R ² OBt OBt						
반응용매	\mathbb{R}^2	반응온도	반응시간	수득량(g, %)	R/S이성체 비(%)*	
사이클로헥산	p-톨루일기	환류	12시간	3.20g, 89%	99.9/0.1	
노말헥산	p-톨루일기	환류	24시간	2.80g, 77.5%	99.9/0.1	
자일렌	p-톨루일기	100℃	12시간	3.10g, 85.5%	99.9/0.1	
사이클로헥산	페닐기	환류	12시간	3.20g, 89%	99.9/0.1	
사이클로헥산	메틸기	환류	12시간	3.20g, 89%	95.0/5.0	
*R/S 이성체 비율 : LC로 확인						

<32> 실시예 2

<33> (D+)-메틸-2-[4-(6-클로로-2-벤족사졸릴옥시)-펜옥시]-프로피오네이트의 합성

1 L 플라스크에 사이클로헥산 50 mL와 (6-클로로-2-벤족사졸릴옥시)페놀 2.61 g(10 mmol), (S)-메틸 0-(p-메톡시벤젠)설포닐 락테이트 2.88 g(10.5 mmol) 및 분말형 Na₂CO₃ 2.12 g(20 mmol)를 넣고 12 시간 동안 환류하였다. 반응 혼합물을 뜨거운 상태에서 여과하고 따뜻한 사이클로헥산 20 mL로 고체를 씻어 주었다. 여액인 사이클로헥산 층을 농축하여 목적화합물 3.10 g(89% 수득율, 순도 98%, 광학활성순도 99.9%)을 얻었다

<35> mp 97 ℃(observed); R_f=0.50(핵산/에틸아세테이트=3/1); ¹H-NMR(CDCl₃, 200MHz) δ
1.51(d, J=6.4Hz, 3H), 3.70(s,3H), 4.55(q, J=6.4Hz, 1H), 6.84~7.40(m, 7H); MS(70 eV) m/z 349(M+), 347(M+), 291, 288, 263, 261, 182, 144, 119, 91.

성기 실시예 2에 따른 치환 반응을 수행함에 있어 반응조건에 따른 수율 및 광학이성체 생성비율을 다음 표 2에 요약하여 나타내었다.

<37> 【班 2】

OH + R ² OMe OMe						
반 응용 매	R ²	반응온도	반응시간	수득량(g, %)	R/S이성체 비(%)*	
사이클로헥산	p-메톡시페닐기	환류	12시간	3.10g, 89%	99.9/0.1	
노말혝산	p-메톡시페닐기	환류	20시간	2.70g, 77.7%	99.9/0.1	
자일렌	p-메톡시페닐기	100℃	10시간	3.10g, 89%	99.9/0.1	
사이클로헥산	메틸기	환류	12시간	3.05g, 87.7%	95.0/5.0	
사이클로헥산	페닐기	환류	12시간	3.05g, 87.7%	99.9/0.1	
*R/S 이성체 비	율 : LC로 확인					

<38> 실시예 3

<39> (D+)-n-부틸-2-[4-(6-클로로-2-벤족사졸릴옥시)-폔옥시]-프로피오네이트의 합성

40> 1 L 플라스크에 사이클로헥산 50 mL와 (6-클로로-2-벤족사졸릴옥시)페놀 2.61 g(10mmol), (S)-n-부틸 0-p-톨루엔설포닐 락테이트 3.15 g(10.5mmol) 및 분말형 K₂CO₃ 2.76 g(20mmol)을 가열환류되도록 하면서 12 시간 동안 반응시켰다. 반응 혼합물을 뜨거운 상태에서 여과하고 따뜻한 사이클로핵산 20 mL로 고체를 씻어 주었다. 여액인 사이클로핵산 층을 감압 농축하여 목적화합물 3.60 g(92.3% 수득율, 순도 98%, 광학활성순도 99.9%)을 얻었다.

<41> mp 48~50 ℃(observed); R_f=0.59(헥산/에틸아세테이트=3/1); ¹H-NMR(CDCl₃, 200MHz)
8 0.91(t, J=7.1Hz, 3H), 1.48~1.58(m, 4H), 1.51(d, J=6.9Hz, 3H), 4.26(q, J=7.1Hz,

2H), 4.45(q, *J*=6.9Hz, 1H), 6.84~7.40(m, 7H); MS(70 eV) m/z 391(M+), 389(M+), 291, 288, 263, 261, 182, 144, 119, 91.

42> 상기 실시예 3에 따른 치환 반응을 수행함에 있어 반응조건에 따른 수율 및 광학이 성체 생성비율을 다음 표 3에 요약하여 나타내었다.

<43> 【班 3】

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
반응용매	R ²	반응온도	반응시간	수득량(g, %)	R/S이성체 비(%)*
사이클로헥산	p-톨루일기	환류	12시간	3.60g, 92.3%	99.9/0.1
노말헵탄	p-톨루일기	환류	10시간	3.30g, 84.7%	99.9/0.1
자일렌	p-톨루일기	100℃	10시간	3.50g, 89.8%	99.9/0.1
사이클로헥산	메틸기	환류	12시간	3.50g, 89.8%	95.0/5.0
사이클로헥산	페닐기	환류	12시간	3.50g, 89.8%	99.9/0.1
*R/S 이성체 비	율 : LC로 확인]			

<44> 비교예

상기 반응식에 따른 공지방법을 수행함에 있어 반응조건에 따른 수율 및 광학이성
체 생성비를 다음 표 4 및 5에 요약하여 나타내었다.

<46>

【丑 4】

Q N Q +	но—(R)-fc	8		-O-CH ₃ OEt
반응용매	반응온도	반응시간	수율	R/S이성체 비(%)*
아세토니트릴	환류	5시간	80%	85/15
메틸에틸케톤	환류	5시간	75%	80/20
아세톤	환류	15시간	79%	80/20
디메틸포름아마이드	환류	4시간	84%	75/25
디클로로메탄	환류	15시간	64%	90/10

<47> 【표 5】

【발명의 효과】

여상에서 설명한 바와 같은 본 발명에 따른 제조방법에 의하면 순수한 광학활성 제초제 (R)-페녹사프롭 에틸을 고 수율로 생산이 가능하므로 고 부가가치 창출로 인한 경제적인 효과가 지대하다.

【특허청구범위】

【청구항 1】

다음 화학식 2로 표시되는 (6-클로로-2-벤족사졸릴옥시)페놀, 다음 화학식 3으로 표시되는 (S)-알킬 0-아릴설포닐 락테이트 및 알카리금속 탄산염을 탄화수소 용매에서 60 ~ 100 ℃로 가열하는 조건에서 반응시켜 제조하는 것을 특징으로 하는 다음 화학식 1로 표시되는 고광학활성 (R)-페녹사프롭 에스터의 제조방법.

$$CI \longrightarrow OH + R^{2} \longrightarrow OR^{1} \longrightarrow CI \longrightarrow OR^{1} \longrightarrow OR^{1}$$

$$(2) \qquad (3) \qquad (1)$$

상기에서, R^1 은 $C_1 \sim C_6$ 의 알킬기 또는 벤질기를 나타내고, R^2 는 $C_1 \sim C_6$ 의 알킬기, 아릴기, 또는 할로겐 또는 $C_1 \sim C_4$ 의 알킬기로 치환된 페닐기를 나타낸다.

【청구항 2】

제 1 항에 있어서, 상기 탄화수소 용매로는 벤젠, 클로로벤젠, 톨루엔, 자일렌, 사이클로헥산, 노말헥산 및 노말헵탄 중에서 선택하여 사용하는 것을 특징으로 하는 제조방법.

【청구항 3】

제 2 항에 있어서, 상기 용매로는 사이클로헥산을 사용하는 것을 특징으로 하는 제조방법.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS _	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
. REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.