$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ψ (3770) MASS (MeV)

OUR FIT includes measurements of $m_{\psi(2S)}$, $m_{\psi(3770)}$, $^{m}\psi(3770) - ^{m}\psi(2S)$

VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT

3773.13±0.35 OUR FIT Error includes scale factor of 1.1.

3778.1 \pm 1.2 OUR AVERAGE

3779.2 +	⊢1.8 -1.7	$^{+0.6}_{-0.8}$	1	ANASHIN	12A	KEDR	$e^+e^- o D\overline{D}$
3775.5 ±	⊵2.4	±0.5	57				$B \rightarrow D\overline{D}K$
3776 \pm	⊦ 5	± 4	68				$B^+ \rightarrow D^0 \overline{D}{}^0 K^+$
3778.8 \pm	⊦1.9	±0.9		AUBERT	07 BE	BABR	$e^+e^- o D\overline{D}\gamma$
• • • We	e do i	not use the	e followin	g data for averag	ges, fi	ts, limits	s, etc. • • •

^{2,3} ABLIKIM 3772.0 ± 1.9 08D BES2 $e^+e^- \rightarrow \text{hadrons}$ $3778.4 \pm 3.0 \pm 1.3$ **CHISTOV** BELL Sup. by BRODZICKA 08 34

$m_{\psi(3770)} - m_{\psi(2S)}$

OUR FIT includes measurements of $m_{\psi(2S)}$, $m_{\psi(3770)}$, $m_{\psi(3770)} - m_{\psi(2S)}$

DOCUMENT ID TECN COMMENT VALUE (MeV)

87.04 \pm 0.35 OUR FIT Error includes scale factor of 1.1.

86.6 ±0.7 OUR AVERAGE Error includes scale factor of 2.0. See the ideogram below. ⁴ ABLIKIM 07E BES2 $e^+e^- \rightarrow \text{hadrons}$ 86.9 ± 0.4 86.7 ± 0.7 **ABLIKIM** 06L BES2 $e^+e^- \rightarrow \text{hadrons}$

MRK2 e^+e^- **SCHINDLER** 80 ± 2 ⁵ BACINO DLCO e^+e^- 86 +2 ± 3 **RAPIDIS** LGW 88

¹ Taking into account interference between the resonant and non-resonant $D\overline{D}$ production.

²Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = 0^{\circ}$.

 $^{{}^3}$ Interference between the resonant and non-resonant $D\overline{D}$ production not taken into account.

⁴BES-II $\psi(2S)$ mass subtracted (see ABLIKIM 06L).

⁵ SPEAR $\psi(2S)$ mass subtracted (see SCHINDLER 80).

ψ (3770) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
27.2± 1.0 OUR FIT					
27.5 ± 0.9 OUR AVER/	AGE				
$24.9 + 4.6 + 0.5 \\ - 4.0 - 1.1$		⁶ ANASHIN	12A	KEDR	$e^+e^- o D\overline{D}$
$30.4\pm$ 8.5		^{7,8} ABLIKIM	08 D	_	$e^+e^- ightarrow $ hadrons
27 ± 10 ± 5	68	BRODZICKA	80	BELL	$B^+ \rightarrow D^0 \overline{D}{}^0 K^+$
$28.5 \pm 1.2 \pm 0.2$		⁸ ABLIKIM	07E	BES2	$e^+e^- o$ hadrons
$23.5 \pm \ 3.7 \pm 0.9$		AUBERT	07 BE	BABR	$e^+e^- o D\overline{D}\gamma$
$26.9 \pm \ 2.4 \pm 0.3$		⁸ ABLIKIM	06L	BES2	$e^+e^- ightarrow hadrons$
24 ± 5		⁸ SCHINDLER	80	MRK2	e^+e^-
24 ± 5		⁸ BACINO	78	DLCO	e^+e^-
28 ± 5		⁸ RAPIDIS	77	LGW	e^+e^-

⁶ Taking into account interference between the resonant and non-resonant $D\overline{D}$ production.

⁷ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=0^{\circ}$.

⁸ Interference between the resonant and non-resonant $D\overline{D}$ production not taken into account.

ψ (3770) DECAY MODES

In addition to the dominant decay mode to $D\overline{D}$, $\psi(3770)$ was found to decay into the final states containing the J/ψ (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to $\phi\eta$ only (ADAMS 06).

	Mode	Fraction (Γ	Fraction (Γ_i/Γ)		
Γ ₁	$D\overline{D}$	(93 +	8)%	S=2.0	
Γ_2	$D^0 \overline{D}{}^0$	(52 +	4 5)%	S=2.0	
Γ ₃	D^+D^-	(41 \pm	4) %	S=2.0	
Γ_4	$J/\psi \pi^+ \pi^-$	(1.93±	0.28) × 10 ⁻	3	
Γ ₅	$J/\psi \pi^0 \pi^0$	(8.0 ±	3.0) × 10 ⁻	4	
Γ_6	$J/\psi\eta$	(9 ±	4) × 10 ⁻	4	
Γ_7	$J/\psi \pi^0$	< 2.8	× 10	4 CL=90%	
Γ ₈	e^+e^-	(9.6 \pm	$0.7) \times 10^{-}$	6 S=1.3	
	D	ecays to light hadrons			
Γ_9	$b_1(1235)\pi$	< 1.4	× 10	5 CL=90%	
Γ ₁₀	$\phi \eta'$	< 7	× 10	4 CL=90%	
Γ_{11}	$\omega \eta'$	< 4	× 10	4 CL=90%	
Γ_{12}	$ ho^{f 0}\eta'$	< 6	× 10	4 CL=90%	
Γ_{13}	$\phi \eta$	($3.1~\pm$	$0.7) \times 10^{-}$		
Γ_{14}	$\omega \eta$	< 1.4	× 10		
Γ_{15}	$\rho^0 \eta$	< 5	× 10		
Γ_{16}	$\phi\pi^0$	< 3	× 10	_	
Γ_{17}	$\omega \pi^0$	< 6	× 10		
Γ ₁₈	$\pi^+\pi^-\pi^0$	< 5	× 10 [—]	_	
Γ ₁₉	$ ho\pi$	< 5	× 10 ⁻	6 CL=90%	
Γ ₂₀	K+ K-			E	
Γ_{21}	$K^*(892)^+K^- + \text{c.c.}$	< 1.4	× 10		
Γ ₂₂	$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	× 10 [—]		
Γ ₂₃	$K_S^0 K_L^0$	< 1.2	× 10		
Γ ₂₄	$2(\pi^{+}\pi^{-})$	< 1.12	× 10 [—]		
Γ_{25}	$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	× 10 [—]		
Γ ₂₆	$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	
Γ ₂₇	$\omega \pi^+ \pi^-$	< 6.0	× 10		
Γ ₂₈	$3(\pi^{+}\pi^{-})$	< 9.1	× 10 ⁻		
l 29	$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%	CL=90%	
	$3(\pi^{+}\pi^{-})2\pi^{0}$	< 11.74	%	CL=90%	
Γ ₃₁	$\eta \pi^{+} \pi^{-}$	< 1.24	× 10 ⁻		
Γ ₃₂	$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9	× 10 ⁻		
Г ₃₃	$ ho^{0}\pi^{+}\pi^{-}$	< 6.9	× 10	3 CL=90%	

HTTP://PDG.LBL.GOV

Page 3

Γ ₃₄	η 3 π	<	1.34	$\times 10^{-3}$	CL=90%
Γ ₃₅	$\eta 2(\pi^+\pi^-)$	<	2.43	%	CL=90%
Γ ₃₆	$\eta \rho^0 \pi^+ \pi^-$	<	1.45	%	CL=90%
Γ ₃₇	η' 3 π	<	2.44	$\times 10^{-3}$	CL=90%
Γ ₃₈	$K^+K^-\pi^+\pi^-$	<	9.0	$\times 10^{-4}$	CL=90%
Γ ₃₉	$\phi \pi^+ \pi^-$	<	4.1	$\times 10^{-4}$	CL=90%
Γ_{40}	$K^{+}K^{-}2\pi^{0}$	<	4.2	$\times 10^{-3}$	CL=90%
Γ_{41}	$4(\pi^+\pi^-)$	<	1.67	%	CL=90%
Γ_{42}	$4(\pi^{+}\pi^{-})\pi^{0}$	<	3.06	%	CL=90%
Γ_{43}	$\phi f_0(980)$	<	4.5	$\times 10^{-4}$	CL=90%
Γ_{44}	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	<	2.36	$\times 10^{-3}$	CL=90%
Γ_{45}	$\mathcal{K}^+\mathcal{K}^- ho^0\pi^0$	<	8	$\times 10^{-4}$	CL=90%
Γ ₄₆	$K^+K^- ho^+\pi^-$	<	1.46	%	CL=90%
Γ_{47}	ω K $^+$ K $^-$	<	3.4	$\times 10^{-4}$	CL=90%
Γ ₄₈	$\phi \pi^+ \pi^- \pi^0$	<	3.8	$\times10^{-3}$	CL=90%
Γ ₄₉	$K^{*0}K^{-}\pi^{+}\pi^{0}$ + c.c.	<	1.62	%	CL=90%
Γ ₅₀	$K^{*+}K^{-}\pi^{+}\pi^{-}$ + c.c.	<	3.23	%	CL=90%
Γ ₅₁	$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%
Γ ₅₂	$K^+K^-2(\pi^+\pi^-)$	<	1.03	%	CL=90%
Γ ₅₃	$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	<	3.60	%	CL=90%
Γ ₅₄	$\eta K^+ K^-$	<	4.1	$\times10^{-4}$	CL=90%
Γ ₅₅	$\eta K^+ K^- \pi^+ \pi^-$	<	1.24	%	CL=90%
Γ ₅₆	$ ho^0 K^+ K^-$	<	5.0	$\times 10^{-3}$	CL=90%
Γ ₅₇	$2(K^{+}K^{-})$	<	6.0	$\times 10^{-4}$	CL=90%
Γ ₅₈	$\phi K^+ K^-$	<	7.5	$\times10^{-4}$	CL=90%
Γ ₅₉	$2(K^{+}K^{-})\pi^{0}$	<	2.9	$\times 10^{-4}$	CL=90%
Γ ₆₀	$2(K^{+}K^{-})\pi^{+}\pi^{-}$	<	3.2	$\times 10^{-3}$	CL=90%
Γ ₆₁	$K_S^0 K^- \pi^+$	<	3.2	$\times10^{-3}$	CL=90%
Γ ₆₂	$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	<	1.33	%	CL=90%
Γ ₆₃	$K_{S}^{0}K^{-}\rho^{+}$	<	6.6	$\times10^{-3}$	CL=90%
Γ ₆₄	$K_{S}^{0}K^{-2}\pi^{+}\pi^{-}$		8.7	\times 10 ⁻³	CL=90%
	$\kappa_0^0 K^- \pi^+ \rho^0$		1.6	%	CL=90%
	$\kappa_{S}^{G}\kappa^{-}\pi^{+}\eta$		1.3	%	CL=90%
' 66 F.	$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$			%	CL=90%
¹ 67 ⊏	$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\eta$		4.18		
	<u> </u>		4.8	%	CL=90%
I 69	$K_0^0 K^- \pi^+ 2(\pi^+ \pi^-)$		1.22	%	CL=90%
	$K_{S}^{0}K^{-}\pi^{+}2\pi^{0}$	<	2.65	%	CL=90%
	$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}$	<	4.9	$\times 10^{-3}$	CL=90%
Γ_{72}	$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$	<	3.0	%	CL=90%
Γ ₇₃	$K_S^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$	<	2.2	%	CL=90%
Γ ₇₄	$K^{*0}K^{-}\pi^{+}$ + c.c.	<	9.7	$\times10^{-3}$	CL=90%
Γ ₇₅					
Γ ₇₆	$p\overline{p}\pi^0$	<	4	$\times10^{-5}$	CL=90%
. •					

Γ ₇₇	$ ho \overline{ ho} \pi^+ \pi^-$	<	5.8	$\times 10^{-4}$	CL=90%
Γ ₇₈	$\Lambda \overline{\Lambda}$	<	1.2	\times 10 ⁻⁴	CL=90%
Γ ₇₉	$ \rho \overline{\rho} \pi^+ \pi^- \pi^0 $	<	1.85	$\times 10^{-3}$	CL=90%
Γ ₈₀	$\omega p \overline{p}$	<	2.9	$\times 10^{-4}$	CL=90%
Γ ₈₁	$\Lambda \overline{\Lambda} \pi^0$	<	7	\times 10 ⁻⁵	CL=90%
Γ ₈₂	$p\overline{p}2(\pi^+\pi^-)$	<	2.6	$\times 10^{-3}$	CL=90%
Γ ₈₃	$\eta \rho \overline{\rho}$	<	5.4	\times 10 ⁻⁴	CL=90%
Γ ₈₄	$\eta \rho \overline{p} \pi^+ \pi^-$	<	3.3	$\times 10^{-3}$	CL=90%
Γ ₈₅	$ ho^0 p \overline{p}$	<	1.7	$\times 10^{-3}$	CL=90%
Γ ₈₆	$p\overline{p}K^+K^-$	<	3.2	\times 10 ⁻⁴	CL=90%
Γ ₈₇	$\eta p \overline{p} K^+ K^-$	<	6.9	$\times 10^{-3}$	CL=90%
Γ ₈₈	$\pi^0 p \overline{p} K^+ K^-$	<	1.2	$\times 10^{-3}$	CL=90%
Γ ₈₉	$\phi p \overline{p}$	<	1.3	\times 10 ⁻⁴	CL=90%
Γ_{90}	$\Lambda \overline{\Lambda} \pi^+ \pi^-$	<	2.5	$\times 10^{-4}$	CL=90%
Γ ₉₁	$\Lambda \overline{p} K^+$	<	2.8	$\times 10^{-4}$	CL=90%
Γ ₉₂	$\Lambda \overline{p} K^+ \pi^+ \pi^-$	<	6.3	$\times 10^{-4}$	CL=90%
Γ_{93}	$\Lambda \overline{\Lambda} \eta$	<	1.9	\times 10 ⁻⁴	CL=90%
Γ_{94}	$\Sigma^{+}\frac{\Sigma}{\Sigma}$	<	1.0	$\times 10^{-4}$	CL=90%
Γ_{95}	$\Sigma^0 \overline{\Sigma}{}^0$	<	4	$\times10^{-5}$	CL=90%
Γ ₉₆	<u>=+=</u> -	<	1.5	$\times 10^{-4}$	CL=90%
Γ ₉₇	<u>=</u> 0 <u>=</u> 0	<	1.4	$\times10^{-4}$	CL=90%
٥.					
	Radiative dec	ays			
Γ ₉₈	$\gamma \chi_{c2}$	<	6.4	\times 10 ⁻⁴	CL=90%
Γ_{99}	$\gamma \chi_{c1}$	•	2.48 ± 0.23	_	
Γ_{100}	$\gamma \chi_{c0}$	(7.0 ± 0.6)	$\times 10^{-3}$	
Γ_{101}	$\gamma \eta_c$	<	7	\times 10 ⁻⁴	CL=90%
Γ_{102}	$\gamma \eta_c(2S)$	<	9	$\times 10^{-4}$	CL=90%
Γ_{103}	$\gamma \eta'$	<	1.8	$\times 10^{-4}$	CL=90%
Γ_{104}	$\gamma\eta$	<	1.5	$\times 10^{-4}$	CL=90%
Γ ₁₀₅	$\gamma \pi^{0}$	<	2	$\times 10^{-4}$	CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 3 branching ratios uses 23 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=20.1$ for 19 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₃	99		
<i>x</i> ₈	0	0	
Γ	0	0	-44
	X ₂	<i>X</i> 3	<i>x</i> ₈

	Mode	Rate (MeV)	Scale factor
$\overline{\Gamma_2}$	$D^0 \overline{D}{}^0$	14.0 ±1.4	1.8
Γ_3	D^+D^-	$11.2 \hspace{0.1cm} \pm 1.1$	1.7
Γ ₈	e^+e^-	$(2.62\pm0.18)\times10^{-4}$	1.4

ψ (3770) PARTIAL WIDTHS

						Γ8
				COMMENT		
RAGE	Error includes scale	facto	r of 1.2.			
			KEDR	$e^{+}e^{-}\rightarrow$	$D\overline{D}$	
	¹² ABLIKIM	07E	BES2	$e^+e^- \rightarrow$	hadrons	
1.4M	^{12,13} BESSON	06	CLEO	e^+e^-	hadrons	
	¹² BACINO	78	DLCO	e^+e^-		
e follov	wing data for averages	, fits,	limits, e	tc. • • •		
	10,14 ANASHIN	12A	KEDR	$e^+e^- \rightarrow$	$D\overline{D}$	
	¹⁵ RAPIDIS	77	LGW	e^+e^-		
	Error RAGE	Error includes scale factor RAGE Error includes scale 9,10 ANASHIN 11,12 ABLIKIM 12 ABLIKIM 1.4M 12,13 BESSON 12 SCHINDLER 12 BACINO e following data for averages	Error includes scale factor of 1.4 RAGE Error includes scale factor of 1.4 9,10 ANASHIN 12A 11,12 ABLIKIM 08D 12 ABLIKIM 07E 1.4M 12,13 BESSON 06 12 SCHINDLER 80 12 BACINO 78 e following data for averages, fits, 10,14 ANASHIN 12A	Error includes scale factor of 1.4. RAGE Error includes scale factor of 1.2. 9,10 ANASHIN 12A KEDR 11,12 ABLIKIM 08D BES2 12 ABLIKIM 07E BES2 1.4M 12,13 BESSON 06 CLEO 12 SCHINDLER 80 MRK2 12 BACINO 78 DLCO e following data for averages, fits, limits, e	RAGEError includes scale factor of 1.2. $9,10$ ANASHIN $12A$ KEDR $e^+e^- \rightarrow$ $11,12$ ABLIKIM $08D$ BES2 $e^+e^- \rightarrow$ 12 ABLIKIM $07E$ BES2 $e^+e^- \rightarrow$ $1.4M$ $12,13$ BESSON 06 CLEO $e^+e^- \rightarrow$ 12 SCHINDLER 80 MRK2 $e^+e^ 12$ BACINO 78 DLCO $e^+e^ e$ following data for averages, fits, limits, etc. • • •	Error includes scale factor of 1.4. RAGE Error includes scale factor of 1.2. $9{,}10$ ANASHIN 12A KEDR $e^+e^- o D\overline{D}$ $11{,}12$ ABLIKIM 08D BES2 $e^+e^- o hadrons$ 12 ABLIKIM 07E BES2 $e^+e^- o hadrons$ 1.4M $12{,}13$ BESSON 06 CLEO $e^+e^- o hadrons$ 12 SCHINDLER 80 MRK2 $e^+e^ 12$ BACINO 78 DLCO e^+e^- e following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •

 $^9_{10}$ Solution I of the two solutions. $^{10}_{10}$ Taking into account interference between the resonant and non-resonant $D\overline{D}$ production. 11 Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy

12 Interference between the resonant and non-resonant $D\overline{D}$ production not taken into ac-

 $\begin{array}{c} 14 \, {\rm Solution} \,\, {\rm II} \,\, {\rm of} \,\, {\rm the} \,\, {\rm two} \,\, {\rm solutions}. \\ 15 \, {\rm See} \,\, {\rm also} \,\, \Gamma \big(e^+ \, e^- \big) / \Gamma_{\rm total} \,\, {\rm below}. \end{array}$

ψ (3770) BRANCHING RATIOS

$\Gamma(D\overline{D})/\Gamma_{total}$					$\Gamma_1/\Gamma = (\Gamma_2 + \Gamma_3)/\Gamma$
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.93 \ ^{+0.08}_{-0.09}$ OUR FIT	Error in	icludes scale factor	of 2.0).	
$0.93 \begin{array}{l} +0.08 \\ -0.09 \end{array}$ OUR AVE	RAGE I	Error includes scale	facto	r of 2.1.	
$0.849 \pm 0.056 \pm 0.018$		¹⁶ ABLIKIM	08 B	BES2	$e^+e^- o ext{non-} D\overline{D}$
$1.033 \!\pm\! 0.014 \!+\! 0.048 \\ -0.066$	1.427M	¹⁷ BESSON	06	CLEO	$e^+e^- ightarrow hadrons$
HTTP://PDG.LBL.0	GOV	Page 6		Creat	red: 5/30/2017 17:21

region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=0^{\circ}$.

¹³ count. BESSON 06 (as corrected in BESSON 10) measure $\sigma(e^+e^- \to \psi(3770) \to \text{hadrons})$ = $6.36 \pm 0.08 ^{+0.41}_{-0.30}$ nb at $\sqrt{s} = 3773 \pm 1$ MeV, and obtain $\Gamma_{e\,e}$ from the Born-level cross section calculated using $\psi(3770)$ mass and width from our 2004 edition, PDG 04.

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                     <sup>18,19</sup> ABLIKIM
                                                                07к BES2
                                                                                e^+e^- \rightarrow \text{non-}D\overline{D}
0.866 \pm 0.050 \pm 0.036
                                         <sup>19</sup> ABLIKIM
                                                                06L BES2 e^+e^- \rightarrow D\overline{D}
0.836 \pm 0.073 \pm 0.042
                                     ^{19,20} ABLIKIM
                                                                                e^+e^- \rightarrow D\overline{D}
                                                                06N BES2
0.855 \pm 0.017 \pm 0.058
\Gamma(D^0\overline{D}^0)/\Gamma_{\text{total}}
                                                                                                      \Gamma_2/\Gamma
                                                                      TECN
               OUR FIT Error includes scale factor of 2.0.
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                06L BES2 e^+e^- \rightarrow D^0 \overline{D}^0
                                            ABLIKIM
0.467 \pm 0.047 \pm 0.023
                                         <sup>20</sup> ABLIKIM
                                                                06N BES2 e^+e^- \rightarrow D^0 \overline{D}^0
0.499 \pm 0.013 \pm 0.038
\Gamma(D^+D^-)/\Gamma_{\text{total}}
                                                                                                      \Gamma_3/\Gamma
                                            DOCUMENT ID TECN COMMENT
0.41 \pm0.04 OUR FIT Error includes scale factor of 2.0.
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                               06L BES2 e^+e^- \rightarrow D^+D^-
0.369 \pm 0.037 \pm 0.028
                                            ABLIKIM
                                         <sup>20</sup> ABLIKIM
                                                                06N BES2 e^+e^- \to D^+D^-
0.357 \pm 0.011 \pm 0.034
\Gamma(D^0\overline{D}^0)/\Gamma(D^+D^-)
                                                                                                    \Gamma_2/\Gamma_3
                                             DOCUMENT ID
                                                                      TECN COMMENT
1.253 ± 0.016 OUR FIT
1.253 ± 0.016 OUR AVERAGE
                                                                      CLEO e^+e^- \rightarrow D\overline{D}
1.252 \pm 0.009 \pm 0.013
                              5.3M
                                            BONVICINI
                                                                      BELL 10.6 e^+e^- \rightarrow D\overline{D}\gamma
1.39 \pm 0.31 \pm 0.12
                                            PAKHLOVA
                                                                07BE BABR e^+e^- \rightarrow D\overline{D}\gamma
1.78 \pm 0.33 \pm 0.24
                                            AUBERT
                                                                06L BES2 e^+e^- \rightarrow D\overline{D}
                                            ABLIKIM
1.27 \pm 0.12 \pm 0.08
                                         <sup>21</sup> CHISTOV
                                                                      BELL B^+ \rightarrow \psi(3770) K^+
2.43 \pm 1.50 \pm 0.43
                                 34
                                                                04
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>22</sup> DOBBS
                                                                      CLEO e^+e^- \rightarrow D\overline{D}
1.258 \pm 0.016 \pm 0.014
\Gamma(J/\psi\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                      \Gamma_4/\Gamma
VALUE (units 10^{-3})
                                                                      TECN COMMENT
1.93 \pm 0.28 OUR AVERAGE
                                                                 06 CLEO e^+e^- \to \psi(3770)
1.89 \pm 0.20 \pm 0.20
                              231 \pm 33
                                                ADAM
                             17.8 \pm 4.8
                                                                 05 BES2 e^+e^- \to \psi(3770)
3.4 \pm 1.4 \pm 0.9
                                                BAI
\Gamma(J/\psi\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                                      \Gamma_5/\Gamma
VALUE (units 10^{-2})
                                EVTS
                                                                       TECN COMMENT
                                                                  06 CLEO e^+e^- \to \psi(3770)
0.080 \pm 0.025 \pm 0.016 39 ± 14
\Gamma(J/\psi\eta)/\Gamma_{\text{total}}
                                                                                                      \Gamma_6/\Gamma
VALUE (units 10^{-5})
                                               DOCUMENT ID
                                EVTS
87±33±22
                                                                  06 CLEO e^+e^- \to \psi(3770)
                                               ADAM
```

$VALUE$ (units 10^{-5}) CL %						Γ ₇ /Γ
		DOCUMENT IL			COMMENT	
<28 90	<10	ADAM	06	CLEO	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(e^+e^-)/\Gamma_{ m total}$						Г ₈ /Г
$VALUE$ (units 10^{-5})		DOCUMENT IL		TECN	COMMENT	
0.96±0.07 OUR FIT	Error inc				1	
1.3 ±0.2		RAPIDIS	77	LGW	e^+e^-	
16 Neglecting interfer 17 Obtained by com BESSON 10) with 18 Using $\sigma^{obs}=7.07$ Not independent of 20 From a measurem resonance paramet 21 See ADLER 88C for 22 Superseded by BO	that of D 7 ± 0.58 n of ABLIKIN ent of $\sigma(a)$ derivative measular older measular relations.	\overline{D} reported by CL b and neglecting in 08B. $e^+e^- o D\overline{D}$ red by ABLIKIM (easurements of this	EO in \mathbb{I} interferent \sqrt{s} of \mathbb{I}	DOBBS ence. = 3773	07.	
Superseded by BO		· ··· AYS TO LIGHT	- пур	DONG		
		ATS TO LIGHT	ПАО	KUNS		- 1-
$\Gamma(b_1(1235)\pi)/\Gamma_{\text{tot}}$	al					٦/و٦
VALUE (units 10^{-5})	CL%	DOCUMENT IL				
<1.4	90	²³ ADAMS	06	CLEO	$e^+e^- \rightarrow$	ψ (3770)
$\Gammaig(\phi\eta'ig)/\Gamma_{total}$						Γ ₁₀ /Γ
<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT IL)	TECN	COMMENT	
<7	90	²³ ADAMS	06	CLEO	$e^+e^- \rightarrow$	ψ (3770)
•						
						Γ ₁₁ /Γ
$\Gamma(\omega\eta')/\Gamma_{ ext{total}}$	CL%	DOCUMENT IL)	TECN	COMMENT	Γ ₁₁ /Γ
	<u>CL%</u> 90	DOCUMENT II. 23 ADAMS	06		$\frac{\textit{COMMENT}}{e^+e^- \rightarrow}$,
$\Gamma(\omega \eta')/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) <4						ψ(3770)
$\Gamma(\omega\eta')/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-4})$ <4 $\Gamma(\rho^0\eta')/\Gamma_{ ext{total}}$	90	23 ADAMS	06	CLEO	$e^+e^- ightarrow$	ψ(3770) Γ ₁₂ /Γ
$\Gamma(\omega\eta')/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-4})$ <4 $\Gamma(\rho^0\eta')/\Gamma_{ ext{total}}$	90	23 ADAMS	06	CLEO	$e^+e^- ightarrow$	ψ(3770) Γ ₁₂ /Γ
$\Gamma(\omega \eta')/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) <4 $\Gamma(\rho^0 \eta')/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) <6	90	23 ADAMS	06	CLEO	$e^+e^- ightarrow$	ψ(3770) Γ ₁₂ /Γ ψ(3770)
$\Gamma(\omega \eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <4 $\Gamma(\rho^0 \eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <6 $\Gamma(\phi \eta)/\Gamma_{\text{total}}$	90 <u>CL%</u> 90	23 ADAMS DOCUMENT II 23 ADAMS	06	TECN CLEO	$e^{+}e^{-} \rightarrow$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	ψ(3770) Γ ₁₂ /Γ ψ(3770) Γ ₁₃ /Γ
$\Gamma(\omega \eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <4 $\Gamma(\rho^0 \eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <6 $\Gamma(\phi \eta)/\Gamma_{\text{total}}$	90 <u>CL%</u> 90	23 ADAMS DOCUMENT II 23 ADAMS	06	TECN CLEO	$e^{+}e^{-} \rightarrow$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	ψ(3770) Γ ₁₂ /Γ ψ(3770) Γ ₁₃ /Γ
$\Gamma(\omega\eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <4 $\Gamma(\rho^0\eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <6 $\Gamma(\phi\eta)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ $= 3.1\pm0.6\pm0.3$	90 <u>CL%</u> 90 <u>CL%</u>	23 ADAMS DOCUMENT III 23 ADAMS DOCUMENT III 23 ADAMS	06	CLEO TECN CLEO TECN CLEO	$e^{+}e^{-} \rightarrow$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ $\frac{COMMENT}{3.773 e^{+}e^{-}}$	ψ(3770) Γ ₁₂ /Γ ψ(3770) Γ ₁₃ /Γ
$\Gamma(\omega \eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <4 $\Gamma(\rho^0 \eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <6 $\Gamma(\phi \eta)/\Gamma_{\text{total}}$	90 <u>CL%</u> 90 <u>CL%</u>	23 ADAMS DOCUMENT III 23 ADAMS DOCUMENT III 23 ADAMS	06 06 06 ges, fits,	TECN CLEO TECN CLEO CLEO	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ 3.773 \ e^{+}e \\ \text{etc.} \bullet \bullet \bullet \\ \end{array}$	ψ (3770) Γ_{12}/Γ ψ (3770) Γ_{13}/Γ $e^- \rightarrow \phi \eta$
$\Gamma(\omega\eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <4 $\Gamma(\rho^0\eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <6 $\Gamma(\phi\eta)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ $3.1\pm0.6\pm0.3$ • • • We do not use to <19	90 <u>CL%</u> 90 <u>CL%</u> the followi	23 ADAMS DOCUMENT III 23 ADAMS DOCUMENT III 23 ADAMS ADAMS ng data for average	06 06 06 ges, fits,	TECN CLEO TECN CLEO CLEO	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ 3.773 \ e^{+}e \\ \text{etc.} \bullet \bullet \bullet \\ \end{array}$	ψ (3770) Γ_{12}/Γ ψ (3770) Γ_{13}/Γ $e^{-} \rightarrow \phi \eta$ ψ (3770)
$\Gamma(\omega\eta')/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) <4 $\Gamma(\rho^0\eta')/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) <6 $\Gamma(\phi\eta)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 3.1±0.6±0.3 • • • We do not use to <19 $\Gamma(\omega\eta)/\Gamma_{\text{total}}$	90 <u>CL%</u> 90 <u>CL%</u> the followi	23 ADAMS DOCUMENT III 23 ADAMS DOCUMENT III 23 ADAMS and data for average 24 ABLIKIM	06 06 06 ges, fits,	TECN CLEO TECN CLEO limits, 6 BES2	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ 3.773 \ e^{+}e \\ e^{+}e^{-} \rightarrow \\ \\ \end{array}$	$\psi(3770)$ Γ_{12}/Γ $\psi(3770)$ Γ_{13}/Γ $e^- \rightarrow \phi \eta$ $\psi(3770)$ Γ_{14}/Γ
$\Gamma(\omega\eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <4 $\Gamma(\rho^0\eta')/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ <6 $\Gamma(\phi\eta)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-4}\text{)}$ $3.1\pm0.6\pm0.3$ • • • We do not use to <19	90 <u>CL%</u> 90 <u>CL%</u> the followi	23 ADAMS DOCUMENT III 23 ADAMS DOCUMENT III 23 ADAMS and data for average 24 ABLIKIM	06 06 06 ges, fits,	TECN CLEO TECN CLEO limits, 6 BES2	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ 3.773 \ e^{+}e \\ e^{+}e^{-} \rightarrow \\ \\ \end{array}$	$\psi(3770)$ Γ_{12}/Γ $\psi(3770)$ Γ_{13}/Γ $e^- \rightarrow \phi \eta$ $\psi(3770)$ Γ_{14}/Γ

$\Gamma(ho^0\eta)/\Gamma_{ m total}$							Γ ₁₅ /Γ
VALUE (units 10^{-4})	CL%		DOCUMENT ID		TECN	COMMENT	
<5	90	23	ADAMS	06	CLEO	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\phi\pi^0)/\Gamma_{total}$							Γ ₁₆ /Γ
VALUE (units 10^{-5})	CL%		DOCUMENT ID		TECN	COMMENT	
< 3	90		ADAMS			$e^+e^ \rightarrow$	ψ (3770)
• • • We do not use the	followi						
<50	90	24	ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma ig(\omega \pi^0ig)/\Gamma_{total}$							Γ ₁₇ /Γ
VALUE (units 10 ⁻⁴)	CL%	-	DOCUMENT ID			COMMENT	
<6	90	23	ADAMS	06	CLEO	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{ m total}$							Γ_{18}/Γ
<i>VALUE</i> (units 10 ⁻⁶)	<u>CL%</u>		DOCUMENT ID				
<5	90 2	23,25	ADAMS	06	CLEO	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(ho\pi)/\Gamma_{ m total}$							Γ ₁₉ /Γ
$VALUE$ (units 10^{-6})	CL%		DOCUMENT ID		TECN	COMMENT	
<5	90 2	23,25	ADAMS	06	CLEO	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$							Γ_{20}/Γ
• • • We do not use the		na d	DOCUMENT ID	c fitc		<u>COMMENT</u>	
$\sim 10^{-5}$	HOHOWI		DRUZHININ			$e^+e^- \rightarrow$	a/ ₁ (2770)
			DROZIIININ	15	IVUL	e·e →	$\psi(3110)$
$\Gamma(K^*(892)^+K^-+c.6$	c.)/Г _{to}	otal					Γ_{21}/Γ
VALUE (units 10^{-5})			DOCUMENT ID		TECN		
<1.4	90	23	ADAMS	06	CLEO	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(K^*(892)^0\overline{K}^0+\text{c.c.}$)/Γ _{tot}	al					Γ ₂₂ /Γ
$VALUE$ (units 10^{-3})			DOCUMENT ID				
<1.2	90	23	ADAMS	06	CLEO	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(K_S^0 K_L^0)/\Gamma_{ ext{total}}$							Γ ₂₃ /Γ
VALUE (units 10^{-5})	CL%		DOCUMENT ID		TECN	COMMENT	
< 1.2	90	27	CRONIN-HEN	06	CLEO	$e^+e^- \rightarrow$	ψ (3770)
• • • We do not use the	followi						
<21	90	28	ABLIKIM	04F	BES	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(2(\pi^+\pi^-))/\Gamma_{ ext{total}}$							Γ ₂₄ /Γ
<i>VALUE</i> (units 10 ^{−4}) <11.2	CL%	20	DOCUMENT ID		TECN	COMMENT	
							ψ (3770)
• • • We do not use the	90		ata for averages ABLIKIM				al.(2770)
<48	90		ABLININ	0/8	BES2	e ' e →	ψ (3770)
HTTP://PDG.LBL.G	SOV		Page 9		Creat	ced: 5/30/	2017 17:21

$\Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_{\rm to}$	otal					Γ ₂₅ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<10.6	90	²⁹ HUANG	06A	CLEO	$e^{+}e^{-}\rightarrow$	ψ (3770)
• • • We do not use the	ne follow	ing data for averages	s, fits,	limits,	etc. ● ● ●	
<62	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(2(\pi^+\pi^-\pi^0))/\Gamma_{tc}$	otal					Γ ₂₆ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID		TECN	COMMENT	
<58.5 90	305	ABLIKIM	08N	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\omega\pi^+\pi^-)/\Gamma_{ m total}$						Γ ₂₇ /Γ
<i>VALUE</i> (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
< 6.0	90	²⁹ HUANG	06A	CLEO	$e^+e^ \rightarrow$	ψ (3770)
• • • We do not use the	ne follow	ing data for averages	s, fits,	limits,	etc. • • •	
<55	90	²⁴ ABLIKIM	071	BES2	3.77 e ⁺ e	_
$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$						Γ ₂₈ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<91	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(3(\pi^+\pi^-)\pi^0)/\Gamma_{\rm to}$	otal					Γ ₂₉ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<137	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(3(\pi^+\pi^-)2\pi^0)/\Gamma$	total					Γ ₃₀ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID		TECN	COMMENT	
<117.4 90	59	ABLIKIM	08N	BES2	e^+e^-	ψ (3770)
$\Gamma ig(\eta \pi^+ \pi^- ig) / \Gamma_{total}$						Γ ₃₁ /Γ
<i>VALUE</i> (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.24	90	²⁹ HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
• • • We do not use the	ne follow	ing data for averages	s, fits,	limits,	etc. • • •	
<2.3	90	²⁴ ABLIKIM	10 D	BES2	e^+e^-	ψ (3770)
$\Gamma(\pi^+\pi^-2\pi^0)/\Gamma_{ m tota}$	ıl					Γ ₃₂ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID		TECN	COMMENT	
<8.9 90	218	DOCUMENT ID ABLIKIM	08N	BES2	e^+e^-	ψ (3770)
$\Gamma ig(ho^0 \pi^+ \pi^-ig)/\Gamma_{ m total}$						Γ ₃₃ /Γ
<i>VALUE</i> (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
<u>VALUE (units 10^{−3})</u> <6.9	90	²⁴ ABLIKIM	07F	BES2	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(\eta 3\pi)/\Gamma_{total}$						Γ ₃₄ /Γ
VALUE (units 10 ⁻⁴)	CL%					
<13.4	90	²⁹ HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
HTTP://PDG.LBL.	GOV	Page 10		Creat	ted: 5/30/	2017 17:21

$\Gamma(\eta 2(\pi^+\pi^-))/\Gamma_{\text{tota}}$	nl					Γ ₃₅ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<243	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\eta \rho^0 \pi^+ \pi^-)/\Gamma_{\text{tota}}$	ı					Γ ₃₆ /Γ
VALUE (units 10^{-2})		DOCUMENT ID		TECN	COMMENT	
<1.45	90	²⁴ ABLIKIM				ψ (3770)
$\Gamma(\eta'3\pi)/\Gamma_{total}$						Γ ₃₇ /Γ
<i>VALUE</i> (units 10^{-4})	CL%	29 HUANG		TECN	COMMENT	
<24.4	90	²⁹ HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K^+K^-\pi^+\pi^-)/\Gamma$						Γ ₃₈ /Γ
<u>VALUE (units 10^{−4})</u> < 9.0	CL%	DOCUMENT ID		TECN	COMMENT	
						ψ (3770)
• • • We do not use th		-				(07-0)
<48	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma ig(\phi \pi^+ \pi^-ig)/\Gamma_{ m total}$						Γ ₃₉ /Γ
VALUE (units 10^{-4})	CL%	29 HUANG		TECN	COMMENT	
< 4.1	90					ψ (3770)
• • • We do not use th						
<16	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K^+K^-2\pi^0)/\Gamma_{\text{tot}}$	al					Γ_{40}/Γ
\underline{VALUE} (units 10^{-3}) $\underline{CL\%}$	EVTS	DOCUMENT ID			COMMENT	
<4.2 90	14	ABLIKIM	08N	BES2	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(4(\pi^+\pi^-))/\Gamma_{\text{total}}$						Γ_{41}/Γ
VALUE (units 10^{-3})	CL%	DOCUMENT ID				
<16.7	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(4(\pi^+\pi^-)\pi^0)/\Gamma_{\rm to}$	tal					Γ_{42}/Γ
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻³) <30.6	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\phi f_0(980))/\Gamma_{\text{total}}$						Γ ₄₃ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT	,
<4.5	90	DOCUMENT ID 29 HUANG	06A	CLEO	$e^+e^- ightarrow$	$\psi(3770)$
$\Gamma(K^+K^-\pi^+\pi^-\pi^0)$						
•		DOCUMENT ID		TECN	COMMENT	Γ ₄₄ /Γ
<i>VALUE</i> (units 10 ^{−4}) < 23.6	90	29 HUANG	064	CLEO	e+e	η/(3770)
• • • We do not use th						$\varphi(3110)$
<111	90	²⁴ ABLIKIM				ψ (3770)
HTTP://PDG.LBL.	GOV	Page 11		Creat	ted: 5/30/	2017 17:21
- ·		-			. ,	

$\Gamma(K^+K^-\rho^0\pi^0)/\Gamma_{\text{tot}}$						Γ ₄₅ /Γ
VALUE (units 10^{-4})		DOCUMENT ID				
<8	90	²⁴ ABLIKIM	071	BES2	3.77 e ⁺ e ⁻	_
$\Gamma(K^+K^-\rho^+\pi^-)/\Gamma_{tc}$						Γ ₄₆ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID				
<146	90	²⁴ ABLIKIM	071	BES2	$3.77 e^{+}e^{-}$	_
$\Gamma(\omega K^+ K^-)/\Gamma_{ m total}$						Γ ₄₇ /Γ
VALUE (units 10^{-4})	CL%					
< 3.4	90	²⁹ HUANG				ψ (3770)
• • • We do not use the	followin					
<66	90	²⁴ ABLIKIM	07I	BES2	$3.77 e^{+}e^{-}$	_
$\Gamma \left(\phi \pi^+ \pi^- \pi^0\right) / \Gamma_{ m total}$						Γ ₄₈ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
<38	90	²⁴ ABLIKIM	07I	BES2	$3.77 e^{+}e^{-}$	_
$\Gamma(K^{*0}K^{-}\pi^{+}\pi^{0}+c.c)$						Γ ₄₉ /Γ
VALUE (units 10 ⁻⁴) <162	CL%	DOCUMENT ID		TECN	COMMENT	
<162	90	²⁴ ABLIKIM	071	BES2	$3.77 e^{+}e^{-}$	_
$\Gamma(K^{*+}K^-\pi^+\pi^-+c)$						Γ ₅₀ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<323	90	²⁴ ABLIKIM	071	BES2	$3.77 e^{+}e^{-}$	_
$\Gamma(K^+K^-\pi^+\pi^-2\pi^0)$						Γ ₅₁ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID			COMMENT	
<26.7 90	24	ABLIKIM	N80	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K^+K^-2(\pi^+\pi^-))$						Γ ₅₂ /Γ
VALUE (units 10^{-3})	CL%	24 ABLIKIM		TECN	COMMENT	
<10.3	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K^+K^-2(\pi^+\pi^-)\pi$						Γ ₅₃ /Γ
VALUE (units 10 ⁻³) <36.0	CL%	DOCUMENT ID		TECN	COMMENT	
<36.0	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow$	$\psi(3770)$
$\Gamma(\eta K^+ K^-)/\Gamma_{\text{total}}$						Γ ₅₄ /Γ
<u>VALUE (units 10^{−4})</u> < 4.1	CL%	DOCUMENT ID		TECN	COMMENT	
						ψ (3770)
• • • We do not use the						
<31	followin 90	g data for averages 24 ABLIKIM				

$\Gamma(\eta K^+ K^- \pi^+ \pi^-)/\Gamma$	「 _{total}					Γ ₅₅ /Γ
$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.24	90	²⁴ ABLIKIM	10 D	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(ho^0 K^+ K^-)/\Gamma_{\text{total}}$						Γ ₅₆ /Γ
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
<5.0	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(2(K^+K^-))/\Gamma_{\text{total}}$						Γ ₅₇ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
< 6.0		²⁹ HUANG				ψ (3770)
• • • We do not use the	e followi					
<17	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(\phi K^+ K^-)/\Gamma_{total}$						Γ ₅₈ /Γ
VALUE (units 10 ⁻⁴) < 7.5	CL%	DOCUMENT ID		TECN	COMMENT	
< 7.5	90	²⁹ HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
• • • We do not use the						
<24	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma ig(2 (K^+ K^-) \pi^0 ig) / \Gamma_{ m to}$						Γ ₅₉ /Γ
<u>VALUE</u> (units 10 ^{−4}) < 2.9	CL%	DOCUMENT ID		TECN	COMMENT	
						ψ (3770)
• • • We do not use the	e followii					
<46	90	²⁴ ABLIKIM	07 B	BES2	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(2(K^+K^-)\pi^+\pi^-)$						Γ_{60}/Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
<3.2	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K_S^0K^-\pi^+)/\Gamma_{\text{total}}$						Γ ₆₁ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID		TECN	COMMENT	
<3.2 90	18	ABLIKIM	M80	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K_S^0K^-\pi^+\pi^0)/\Gamma_{to}$	otal					Γ ₆₂ /Γ
$VALUE$ (units 10^{-3}) $CL\%$		DOCUMENT ID		TECN	COMMENT	
<13.3 90	40	ABLIKIM				
$\Gamma(K_S^0K^- ho^+)/\Gamma_{ ext{total}}$						Γ ₆₃ /Γ
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
<6.6	90	ABLIKIM				
$\Gamma(K_S^0K^-2\pi^+\pi^-)/\Gamma$	total					Γ ₆₄ /Γ
<u>VALUE (units 10⁻³) CL%</u>		DOCUMENT ID		TECN	COMMENT	•
<8.7 90	39	ABLIKIM				
			20		· - ·	, ()
HTTP://PDG.LBL.C	SOV	Page 13		Creat	ced: 5/30/	2017 17:21

$\Gamma(K_S^0K^-\pi^+ ho^0)/\Gamma_{ m t}$	otal				Γ ₆₅ /Γ
$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT
<1.6	90	ABLIKIM	09 C	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-\pi^+\eta)/\Gamma_{to}$	tal				Γ ₆₆ /Γ
$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT
<1.3	90	ABLIKIM	09 C	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-2\pi^+\pi^-\pi^0)$	⁰)/Γ _{tota}	I			Γ ₆₇ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID		TECN	COMMENT
<41.8 90	23	ABLIKIM	M80	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-2\pi^+\pi^-\eta)$	$/\Gamma_{total}$				Γ ₆₈ /Γ
$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT
<4.8	90	ABLIKIM	09 C	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-\pi^+2(\pi^+\pi^-))$	r ⁻))/Γ _{to}	otal			Γ ₆₉ /Γ
VALUE (units 10^{-3}) CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<12.2 90	4	ABLIKIM	M80	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-\pi^+2\pi^0)/\Gamma$	total				Γ ₇₀ /Γ
$VALUE$ (units 10^{-3}) $CL\%$	EVTS	DOCUMENT ID		TECN	COMMENT
<26.5 90	17	ABLIKIM	08M	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-K^+K^-\pi^-)$	[⊢])/Γ _{tota}	ıl			Γ ₇₁ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<4.9	90	ABLIKIM	09 C	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-K^+K^-\pi^-)$	⁺ π ⁰)/Γ ₁	total			Γ ₇₂ /Γ
$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT
<3.0	90	ABLIKIM	09 C	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K_S^0K^-K^+K^-\pi^-)$	$^{daggeraph}\etaig)/\Gamma_{to}$	tal			Γ ₇₃ /Γ
$VALUE$ (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT
<2.2	90	ABLIKIM	09 C	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K^{*0}K^-\pi^++\text{c.c.}$	$)/\Gamma_{total}$				Γ ₇₄ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow \ \psi(3770)}$
<9.7	90	²⁴ ABLIKIM	07F	BES2	$e^+e^- \rightarrow \psi(3770)$
$\Gamma(p\overline{p})/\Gamma_{ ext{total}}$					Γ ₇₅ /Γ
<i>VALUE</i> (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	ne followi	ng data for average	s, fits,	limits,	etc. • • •
7.1^{+}_{-} 8.6	684				$e^+e^- ightarrow \psi$ (3770)
310 ±30	684	³¹ ABLIKIM	14L	BES3	$e^+e^- \rightarrow \psi(3770)$
HTTP://PDG.LBL.	GOV	Page 14		Creat	ted: 5/30/2017 17:21

```
\Gamma(p\overline{p}\pi^0)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{76}/\Gamma
VALUE (units 10^{-4})
                                                                   TECN
                                 32,33 ABLIKIM
                                                            140 BES3
                          90
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                 32,34 ABLIKIM
                                                            140 BES3 e^+e^- \to \psi(3770)
                                     <sup>24</sup> ABLIKIM
                                                            07B BES2 e^+e^- \to \psi(3770)
<12
\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{77}/\Gamma
VALUE (units 10^{-4})
                                             DOCUMENT ID
                                                                     TECN__COMMENT
                                          <sup>29</sup> HUANG
                                90
                                                                 06A CLEO e^{+}e^{-} \rightarrow \psi(3770)
 < 5.8
• • • We do not use the following data for averages, fits, limits, etc. •
                                          <sup>24</sup> ABLIKIM
                                                                 07B BES2 e^+e^- \to \psi(3770)
                               90
\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}
                                                                                                       \Gamma_{78}/\Gamma
VALUE (units 10^{-4})
                                                                     TECN COMMENT
                                          <sup>29</sup> HUANG
                                                                 06A CLEO e^+e^- \to \psi(3770)
                                90
<1.2
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>24</sup> ABLIKIM
                                                                 07F BES2 e^+e^- \to \psi(3770)
\Gamma(\rho \overline{\rho} \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}}
                                                                                                       \Gamma_{79}/\Gamma
VALUE (units 10^{-4})
                                CL%
                                                                      TECN COMMENT
                                          <sup>29</sup> HUANG
                                                                 06A CLEO e^+e^- \to \psi(3770)
                                90
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>24</sup> ABLIKIM
                                                                 07B BES2 e^+e^- \to \psi(3770)
<73
                                90
\Gamma(\omega p \overline{p})/\Gamma_{\text{total}}
                                                                                                       \Gamma_{80}/\Gamma
VALUE (units 10^{-4})
                                CL%
                                                                        TECN COMMENT
                                          <sup>29</sup> HUANG
                                                                 06A CLEO e^+e^- \to \psi(3770)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>35</sup> ABLIKIM
                                                                 071 BES2 3.77 e^+e^-
<30
                                90
\Gamma(\Lambda \overline{\Lambda} \pi^0)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{81}/\Gamma
VALUE (units 10^{-4})
                                              DOCUMENT ID
                                CL%
                                                                        TECN COMMENT
                                          <sup>36</sup> ABLIKIM
                                                                 13Q BES3 e^+e^- \to \psi(3770)
                                90
• • We do not use the following data for averages, fits, limits, etc.
                                          <sup>24</sup> ABLIKIM
                                                                 071 BES2 3.77 e^+e^-
<12
                                90
\Gamma(p\overline{p}2(\pi^+\pi^-))/\Gamma_{\text{total}}
                                                                                                       \Gamma_{82}/\Gamma
VALUE (units 10^{-3})
                                                                        TECN COMMENT
                                          <sup>24</sup> ABLIKIM
<2.6
                                90
                                                                 07F BES2 e^+e^- \to \psi(3770)
\Gamma(\eta p \overline{p})/\Gamma_{\text{total}}
                                                                                                       \Gamma_{83}/\Gamma
VALUE (units 10^{-4})
                                CL%
                                             DOCUMENT ID
                                                                        TECN COMMENT
                                          <sup>29</sup> HUANG
                                90
                                                                 06A CLEO e^+e^- \to \psi(3770)
 < 5.4
• • We do not use the following data for averages, fits, limits, etc.
                                          <sup>24</sup> ABLIKIM
                                                                 10D BES2 e^+e^- \to \psi(3770)
                                90
< 11
                                                                         Created: 5/30/2017 17:21
HTTP://PDG.LBL.GOV
                                                 Page 15
```

$\Gamma(\eta \rho \overline{\rho} \pi^+ \pi^-)/\Gamma_{\text{total}}$							Γ ₈₄ /Γ
VALUE (units 10^{-3})	CL%		DOCUMENT ID		TECN	COMMENT	
<3.3	90	24	ABLIKIM			$e^+e^- \rightarrow$	
$\Gamma(ho^0 p \overline{p}) / \Gamma_{total}$							Γ ₈₅ /Γ
$VALUE$ (units 10^{-3})	CL%		DOCUMENT ID		TECN	COMMENT	
<1.7	90	24	ABLIKIM	07F	BES2		
$\Gamma(p\overline{p}K^+K^-)/\Gamma_{\text{total}}$							Γ ₈₆ /Γ
VALUE (units 10^{-4})	CL%		DOCUMENT ID		TECN	COMMENT	
< 3.2	90		HUANG				ψ (3770)
• • • We do not use the	following						
<11	90	24	ABLIKIM	07 B	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\eta p \overline{p} K^+ K^-)/\Gamma_{\text{total}}$	al						Γ ₈₇ /Γ
VALUE (units 10^{-3})	CL%		DOCUMENT ID		TECN	COMMENT	
<6.9	90	24	ABLIKIM	10 D	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\pi^0 p \overline{p} K^+ K^-)/\Gamma_{ m to}$	tal						Γ ₈₈ /Γ
VALUE (units 10^{-3})	CL%		DOCUMENT ID		TECN	COMMENT	
<1.2	90	24	ABLIKIM	10 D	BES2	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\phi p \overline{p})/\Gamma_{ m total}$							Γ ₈₉ /Γ
VALUE (units 10^{-4})	CL%		DOCUMENT ID		TECN	COMMENT	
<1.3	90	29	HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
• • • We do not use the	following						
<9	90	24	ABLIKIM	07 B	BES2	$e^+e^ \rightarrow$	ψ (3770)
$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{total}$							Γ_{90}/Γ
VALUE (units 10^{-4})	CL%		DOCUMENT ID		TECN	COMMENT	
< 2.5	90		HUANG				
• • • We do not use the		0	O		,		
< 4.7	90		ABLIKIM			$e^+e^- ightarrow $	
<39	90		ABLIKIM	071	BES2	e ' e →	$\psi(3770)$
$\Gamma(\Lambda \overline{p} K^+)/\Gamma_{total}$							Γ_{91}/Γ
VALUE (units 10 ⁻⁴)	CL%		DOCUMENT ID		TECN	COMMENT	
<2.8	90	29	HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\Lambda \overline{\rho} K^+ \pi^+ \pi^-)/\Gamma_{tc}$	otal						Γ_{92}/Γ
VALUE (units 10 ⁻⁴)			DOCUMENT ID		TECN	COMMENT	
<6.3	90	29	HUANG	06A	CLEO	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\Lambda\overline{\Lambda}\eta)/\Gamma_{ m total}$							Γ ₉₃ /Γ
VALUE (units 10^{-4})	CL%		DOCUMENT ID ABLIKIM		TECN	COMMENT	
<1.9	90	36	ABLIKIM	13Q	BES3	$e^+e^ \rightarrow$	ψ (3770)
HTTP://PDG.LBL.G	SOV		Page 16		Creat	ed: 5/30	/2017 17:21

_ .						
$\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}$						Г ₉₄ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.0	90	³⁶ ABLIKIM	13Q	BES3	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma ig(\Sigma^0 \overline{\Sigma}{}^0 ig) / \Gamma_{total}$						Γ ₉₅ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.4	90	³⁶ ABLIKIM	13Q	BES3	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\Xi^{+}\overline{\Xi}^{-})/\Gamma_{total}$						Γ ₉₆ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.5	90	³⁶ ABLIKIM	13Q	BES3	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\Xi^0\overline{\Xi}^0)/\Gamma_{\text{total}}$						Γ ₉₇ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.4	90	³⁶ ABLIKIM	13Q	BES3	$e^{+}e^{-}\rightarrow$	ψ (3770)
²³ Comparing cross sect	tions at 4	$\sqrt{s}=$ 3.773 GeV an	d \sqrt{s}	= 3.671	GeV, negle	cting interfer-

²³ Comparing cross sections at $\sqrt{s}=3.773$ GeV and $\sqrt{s}=3.671$ GeV, neglecting interference, and using $\sigma(\psi(3770)\to D\overline{D})=6.39\pm0.20$ nb.

- RADIATIVE DECAYS -

$\Gamma(\gamma \chi_{c2})/\Gamma_{\text{total}}$ Γ_{98}/Γ VALUE (units 10^{-3}) 37 ABLIKIM < 0.64 90 • • • We do not use the following data for averages, fits, limits, etc. • • • $e^+e^- \rightarrow \psi(3770) \rightarrow \gamma + \text{hadrons}$ $e^+e^- \rightarrow \psi(3770) \rightarrow \psi(3770) \rightarrow \psi(3770) \rightarrow \psi(3770)$ 38 BRIERE 90 CLEO < 2.0 ³⁹ COAN 06A CLEO < 0.9 90

Assuming that interference effects between resonance and continuum can be neglected and using $\sigma^{obs}(e^+e^- \to \psi(3770)) = 7.15 \pm 0.38$ nb.

 $^{^{\}rm 25}\,{\rm Data}$ suggest possible destructive interference with continuum.

²⁶ DRUZHININ 15 uses BABAR and CLEO data takitaking into account interference of the processes $e^+e^- \rightarrow K^+K^-$ and $e^+e^- \rightarrow K^0_5 K^0_I$.

²⁷ Using $\sigma(e^+e^- \to \psi(3770) \to \text{ hadrons}) = (6.38 \pm 0.08 ^{+0.41}_{-0.30})$ nb from BESSON 06 and B($\mathcal{K}^0_S \to \pi^+\pi^-$) = 0.6895 \pm 0.0014.

²⁸ Using B($K_S^0 \to \pi^+\pi^-$) = 0.6860 \pm 0.0027.

²⁹ Using $\sigma_{tot}(e^+e^- \rightarrow \psi(3770)) = 7.9 \pm 0.6$ nb at the resonance.

 $^{^{30}}$ Solution I of two equivalent solutions in a fit with a resonance interfering with continuum.

³¹ Solution II of two equivalent solutions in a fit with a resonance interfering with continuum.

³² Calculated by the authors using $\sigma(e^+e^- \to \psi(3770) \to \text{hadrons}) = 6.36 \pm 0.08 ^{+0.41}_{-0.30}$ nb from BESSON 10.

³³ Solution I of two equivalent solutions in a fit with a resonance interfering with continuum.

 $^{^{34}}$ Solution II of two equivalent solutions in a fit with a resonance interfering with continuum.

 $^{^{35}}$ Using $\sigma^{\rm obs} = 7.15 \pm 0.27 \pm 0.27$ nb and neglecting interference.

 $^{^{36}}$ Assuming that interference effects between resonance and continuum can be neglected.

$\Gamma(\gamma \chi_{c1})/\Gamma_{total}$					Г ₉₉ /Г
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
2.48±0.23 OUR AV	ERAGE	40			1
$1.9 \pm 0.4 \pm 0.6$	202	⁴⁰ ABLIKIM	16 B	BES3	$e^+e^- ightarrow \psi(3770) ightarrow \gamma + ext{ hadrons}$
$2.48 \pm 0.15 \pm 0.23$	0.6k	ABLIKIM	15 J	BES3	$e^+e^- ightarrow \psi(3770) ightarrow \gamma J/\psi$
$2.4 \pm 0.8 \pm 0.2$		⁴¹ ABLIKIM	14H	BES3	$e^{+}e^{-} \rightarrow \psi(3770) \rightarrow \mathcal{K}_{S}^{0} \mathcal{K}^{\pm} \pi^{\mp}$
$2.9 \pm 0.5 \pm 0.4$		⁴² BRIERE	06	CLEO	$e^+e^- ightarrow \psi(3770) ightarrow \gamma + ext{ hadrons,}$
• • • We do not us	e the followi	ng data for average	s. fits.	limits.	$\gamma \gamma J/\psi$ etc. $ullet$ $ullet$
$3.9 \pm 1.4 \pm 0.6$	54	43 BRIERE	06		$e^+e^- ightarrow \psi$ (3770) $ ightarrow$
$2.8 \pm 0.5 \pm 0.4$	53	³⁹ COAN	06Δ		γ + hadrons $e^+e^- o \psi(3770) o$
2.0 ± 0.3 ± 0.4	33	COATT	OOA	CLLO	$\gamma \gamma J/\psi$
$\Gamma(\gamma\chi_{c1})/\Gamma(J/\psi\gamma_{c1})$	$\pi^+\pi^-)$				Γ ₉₉ /Γ ₄
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT
$1.49 \pm 0.31 \pm 0.26$	53 ± 10	⁴⁴ COAN	06A	CLEO	$e^+e^- \rightarrow \psi(3770) \rightarrow \gamma \gamma J/\psi$
$\Gamma(\gamma\chi_{c0})/\Gamma_{ m total}$					Γ ₁₀₀ /Γ
VALUE (units 10 ⁻³)	CL% EVTS	DOCUMENT ID		TECN	COMMENT
7.0±0.6 OUR AVEF		45		5566	<u> </u>
$6.9 \pm 0.3 \pm 0.7$	2.2K	⁴⁵ ABLIKIM	16 B		$e^+e^- ightarrow~\psi(3770) ightarrow \gamma+{ m hadrons}$
$7.3 \pm 0.7 \pm 0.6$	274	BRIERE	06	CLEO	$e^+e^- ightarrow \psi(3770) ightarrow \gamma + ext{ hadrons}$
\bullet \bullet We do not us	e the followi	ng data for average	s, fits,	limits,	
< 44 9	0	³⁹ COAN	06A	CLEO	$e^+e^- ightarrow \ \psi(3770) ightarrow \ \gamma\gamma J/\psi$
$\Gamma(\gamma \chi_{c0})/\Gamma(\gamma \chi_{c2})$	2)				Γ_{100}/Γ_{98}
VALUE		DOCUMENT ID		TECN	COMMENT
\bullet \bullet We do not us	e the followi	ng data for average	s, fits,	limits,	etc. • • •
>8	90	⁴⁶ BRIERE	06	CLEO	$e^+e^- ightarrow \psi$ (3770)
$\Gamma(\gamma\chi_{c0})/\Gamma(\gamma\chi_{c1})$	ı)				Γ_{100}/Γ_{99}
VALUE		DOCUMENT ID			
• • • We do not us	e the followi				
2.5 ± 0.6		⁴⁶ BRIERE	06	CLEO	$e^+e^- ightarrow \psi$ (3770)
$\Gamma(\gamma\eta_c)/\Gamma_{total}$					Γ ₁₀₁ /Γ
<i>VALUE</i> <7 × 10 ^{−4}	<u>CL%</u>	DOCUMENT ID 47 ABLIKIM		TECN	
<7 × 10 ⁻⁴	90	⁴⁷ ABLIKIM	14H	BES3	
$\Gamma(\gamma\eta_c(2S))/\Gamma_{\rm tot}$	al				Γ_{102}/Γ
<u>VALUE</u> <9 × 10 ^{−4}	<u>CL%</u>	DOCUMENT ID			
$<9 \times 10^{-4}$	90	⁴⁸ ABLIKIM	14H	BES3	
HTTP://PDG.LE	BL.GOV	Page 18		Crea	ted: 5/30/2017 17:21

$\Gamma(\gamma\eta')/\Gamma_{ ext{total}}$						Γ ₁₀₃ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.8	90	⁴⁹ PEDLAR	09	CLE3	$\overline{\psi(2S)} \rightarrow \gamma X$	
$\Gamma(\gamma\eta)/\Gamma_{total}$						Γ ₁₀₄ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.5	90	⁴⁹ PEDLAR	09	CLE3	$\overline{\psi(2S)} \rightarrow \gamma X$	
$\Gamma(\gamma\pi^0)/\Gamma_{ m total}$						Γ ₁₀₅ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<2	90	PEDLAR	09	CLE3	$\psi(2S) \rightarrow \gamma X$	
37 This limit is aguin	alont to (C) 2E ± 0 21 ± 0 10)	v 10	-3 hran	ahina fraation va	luo

 $^{^{37}}$ This limit is equivalent to (0.25 \pm 0.21 \pm 0.18) imes 10^{-3} branching fraction value.

- ⁴⁰ ABLIKIM 16B reports (1.94 \pm 0.42 \pm 0.64) \times 10 $^{-3}$ from a measurement of [$\Gamma(\psi(3770) \rightarrow$ $\gamma\chi_{c1})/\Gamma_{\text{total}}] \ / \ [\mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P))] \ \text{assuming} \ \mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P)) = (9.55 \pm 1.0)$
- ⁴¹ ABLIKIM 14H reports $[\Gamma(\psi(3770) \rightarrow \gamma \chi_{c1})/\Gamma_{total}] \times [B(\chi_{c1}(1P) \rightarrow \kappa_{S}^{0} \kappa^{\pm} \pi^{\mp})]$ = (8.51 \pm 2.39 \pm 1.42) imes 10 $^{-6}$ which we divide by our best value B($\chi_{c1}(1P)$ ightarrow $K_{S}^{0}K^{\pm}\pi^{\mp})=0.00356\pm0.00030$. Our first error is their experiment's error and our second error is the systematic error from using our best value. We have calculated the best value of B($\chi_{c1}(1P) \to K_S^0 K^{\pm} \pi^{\mp}$) as 1/2 of B($\chi_{c1}(1P) \to \overline{K}^0 K^{+} \pi^{-} + \text{c.c.}$) $= (7.1 \pm 0.6) \times 10^{-3}$.
- 42 Averages the two measurements from COAN 06A and BRIERE 06.
- 43 Uses B($\psi(2S) \to \gamma \chi_{c1}$) = 9.07 \pm 0.11 \pm 0.54 % from ATHAR 04, $\psi(2S)$ mass and width from PDG 04, and $\Gamma_{ee}(\psi(2S))$ = 2.54 \pm 0.03 \pm 0.11 keV from ADAM 06.
- ⁴⁴ Using B($\psi(3770) \rightarrow J/\psi \pi^+ \pi^-$) = $(1.89 \pm 0.20 \pm 0.20) \times 10^{-3}$ from ADAM 06.
- ⁴⁵ ABLIKIM 16B reports $(6.88\pm0.28\pm0.67)\times10^{-3}$ from a measurement of $[\Gamma(\psi(3770)\rightarrow$ $\gamma \chi_{c0})/\Gamma_{\text{total}}]$ / [B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$)] assuming B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) = (9.99 \pm
- $^{
 m 46}\,{
 m Not}$ independent of other results in BRIERE 06.
- ⁴⁷ ABLIKIM 14H reports $[\Gamma(\psi(3770) \rightarrow \gamma \eta_c)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\eta_c(1S) \rightarrow \kappa_{\mathsf{S}}^0 \kappa^{\pm} \pi^{\mp})]$ $<16 imes10^{-6}$ which we divide by our best value B $(\eta_c(1S)
 ightarrow K_S^0 \, K^\pm \, \pi^\mp) = 2.43 imes10^{-2}$. We have calculated the best value of B($\eta_c(1S) \to K_S^0 K^{\pm} \pi^{\mp}$) as 1/3 of B($\eta_c(1S) \to K_S^0 K^{\pm} \pi^{\mp}$) $K\overline{K}\pi$) = 7.3 × 10⁻².
- ⁴⁸ ABLIKIM 14H reports $[\Gamma(\psi(3770) \rightarrow \gamma \eta_c(2S))/\Gamma_{\text{total}}] \times [B(\eta_c(2S) \rightarrow \kappa_S^0 \kappa^{\pm} \pi^{\mp})]$ $<5.6\times10^{-6}$ which we divide by our best value B($\eta_c(2S)\to K_S^0K^\pm\pi^\mp$) = 6×10^{-3} . We have calculated the best value of B($\eta_c(2S) \to K_S^0 K^{\pm} \pi^{\mp}$) as 1/3 of B($\eta_c(2S) \to$ $K\overline{K}\pi$) = 1.9 × 10⁻².
- 49 Assuming maximal destructive interference between $\psi(3770)$ and continuum sources.

³⁸ Uses B($\psi(2S) \to \gamma \chi_{c2}$) = 9.22 \pm 0.11 \pm 0.46 % from ATHAR 04, $\psi(2S)$ mass and width from PDG 04, and $\Gamma_{ee}(\psi(2S))$ = 2.54 \pm 0.03 \pm 0.11 keV from ADAM 06.

 $^{^{39}}$ Using $\Gamma_{ee}(\psi(2S))=(2.54\pm0.03\pm0.11)$ keV from ADAM 06 and taking $\sigma(e^+e^ightarrow$ $D\overline{D}$) from HE 05 for $\sigma(e^+e^- \rightarrow \psi(3770))$.

ψ (3770) REFERENCES

ABLIKIM ABLIKIM DRUZHININ ABLIKIM ABLIKIM ABLIKIM BONVICINI ABLIKIM ANASHIN ANASHIN ABLIKIM BESSON ABLIKIM PEDLAR ABLIKIM ADAM ADAMS BESSON AISO BRIERE COAN CRONIN-HEN HUANG BAI HE AISO ABLIKIM ATHAR CHISTOV	07 06L 06N 06 06 06 06 06A 06A 05 05 05	PL B753 103 PR D91 092009 PR D92 054024 PR D89 112005 PL B735 101 PR D90 032007 PR D89 072002 PR D87 112011 PL B711 292 EPJ C66 11 PRL 104 159901 (6 EPJ C64 243 PR D79 111101 PL B650 74 PL B660 315 PL B670 179 PL B670 184 PR D77 011102 PRL 100 092001 PR D77 011103 PL B656 30 EPJ C52 805 PR D76 122002 PR D76 112001 PR D77 011105 PR D76 112001 PR D77 011105 PR D76 112001 PR D77 011105 PR D76 112001 PRL 97 121801 PL B641 145 PRL 96 082004 PR D78 012002 PRL 96 092002 PRL 104 159901 (6 PR D74 0131106 PRL 96 182002 PR D74 012005 PRL 96 032003 PL B605 63 PRL 96 199903 (er PR D70 077101 PR D70 1712002 PRD 070 077101 PR D70 1712002 PRD 070 077101 PR D70 077101 PR D70 077101 PR D70 1712002	errat.)	M. Ablikim et al. T.K. Pedlar et al. M. Ablikim et al. B. Aubert et al. J. Brodzicka et al. G. Pakhlova et al. M. Ablikim et al. B. Aubert et al. S. Dobbs et al. M. Ablikim et al. D. Besson et al. D. Besson et al. D. Besson et al. T.E. Coan et al. T.E. Coan et al. J.Z. Bai et al. Q. He et al. M. Ablikim et al. M. Ablikim et al.	(BES III Collab.) (BES III Collab.) (NOVO) (BES III Collab.) (BES III Collab.) (BES III Collab.) (CLEO Collab.) (EES III Collab.) (KEDR Collab.) (KEDR Collab.) (BES II Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.)
	-				,
PDG	04	PL B592 1		S. Eidelman et al.	(PDG Collab.)
BAI	02C	PRL 88 101802		J.Z. Bai et al.	(BES Collab.)
ADLER	88C	PRL 60 89		J. Adler <i>et al.</i>	(Mark III Collab.)
SCHINDLER	80	PR D21 2716		R.H. Schindler et al.	(Mark II Collab.)
BACINO	78	PRL 40 671		W.J. Bacino et al.	(SLAC, UCLA, UCI)
RAPIDIS	77	PRL 39 526		P.A. Rapidis et al.	(LGW Collab.)