Matemática Discreta

Teoria dos Grafos Grafos não orientados

Profa. Helena Caseli helenacaseli@ufscar.br

Objetivos desta aula

- Apresentar conceitos e definições na teoria dos grafos para grafos não orientados
 - Vértices e Arestas
 - Incidência e Adjacência
 - Grau, ordem, tamanho
 - Representação matricial
- Capacitar o aluno a usar os conceitos de grafos não orientados para modelar problemas computacionais

- Demonstre o corolário a seguir usando o Teorema 1
 - Corolário 1. Em todo grafo G = (V, A), o número de vértices de grau ímpar é par.

Grafo

Fonte: https://pixabay.com/

 Modelo matemático para representar uma coleção de <u>objetos</u> (<u>vértices</u>) que são <u>ligados</u> **aos pares** por outra coleção de objetos (<u>arestas</u>)

Grafo

V = {A, B, C, D}

- Conjunto de vértices
- A = { {A, B}, {A, C}, {B, C}, {B, D} } → Conjunto de arestas

Grafo

- A posição dos vértices e a <u>forma das linhas</u> que os conectam são <u>irrelevantes</u>
- O grafo representa apenas a topologia dos vértices e arestas, ou seja, indica quem está ligado a quem

Grafo

- Definição
 - Um par (V, A) onde
 - V é um conjunto de vértices
 - A é um conjunto de subconjuntos de V contendo exatamente dois elementos
- Existem diversas variações dependendo da definição dada para as arestas ...

Grafo orientado X não orientado

- Grafo orientado
 - Quando as arestas especificam claramente quem é o vértice de partida e quem é o vértice de chegada
 - Nesse caso, as arestas são indicadas como <u>setas</u> que vão da **origem** para o **destino**
 - Assunto para a próxima aula
- Grafo não orientado
 - Quando as arestas <u>não tem direção</u> definida

Grafo orientado X Grafo não orientado

Grafo não orientado

Fonte: https://pixabay.com/

 Um grafo é não orientado quando suas arestas não têm direção definida

Grafo não orientado

- Definição
 - Um par (V, A) onde
 - V é um conjunto de vértices
 - A é um conjunto de subconjuntos de V contendo exatamente dois elementos
 - O conjunto A contém elementos da forma {u, v} onde u e v são elementos de V
 - Variações dessa definição permitem considerar {u, v} e {v, u} como arestas distintas, mas é importante dizer que as arestas não têm direção definida
 - Quando não tiver ambiguidade, as arestas podem ser representadas como uma sequência de seus vértices (ex: uv)

- Grafo não orientado
 - Incidência

Fonte: https://pixabay.com/

 Dizemos que uma aresta com extremos v e w (denotada como vw) incide em v e em w

Grafo não orientado

- Incidência
 - Pode ser vista como uma relação entre o conjunto de arestas A e o conjunto de vértices V denominada relação de incidência
 - → É uma relação de aresta para vértice

A aresta AB incide em A e em B

- Grafo não orientado
 - Adjacência

Fonte: https://pixabay.com/

 Dizemos que os vértices v e w são vizinhos (ou adjacentes) em um grafo G sse existe uma aresta em G com <u>extremos v e</u> <u>w</u>

Grafo não orientado

- Adjacência
 - Trata-se de uma <u>relação de adjacência</u> (não orientada) do grafo G que é simétrica entre vértices
 - → A adjacência é uma relação de vértice para vértice

O vértice A é adjacente ao vértice B

- Grafo não orientado
 - Grau do vértice

Fonte: https://pixabay.com/

- O grau de um vértice v de G é o número de arestas de G que incidem em v
 - Denotado como d_G(v) ou apenas d(v)

Grafo não orientado

- Maior e menor grau do grafo G
 - O símbolo Δ_G é frequentemente usado para denotar o maior grau dos vértices de um grafo G
 - ightharpoonup O símbolo $\delta_{\rm G}$ é frequentemente usado para denotar o menor grau dos vértices de um grafo G
- Ordem do grafo G
 - A ordem de G é o número de vértices de G, ou seja,
 |V|
- Tamanho do grafo G
 - O tamanho de G é o número de arestas de G, ou seja, |A|

Dado o grafo

• G

- Dê
 - a) Arestas que incidem no vértice E
 - b) Vértices vizinhos de C
 - c) Grau do vértice A
 - d) Vértice(s) com maior grau
 - e) Ordem e tamanho de G

Dado o grafo

• G

- Dê
 - a) Arestas que incidem no vértice E
 - b) Vértices vizinhos de C
 - c) Grau do vértice A
 - d) Vértice(s) com maior grau
 - e) Ordem e tamanho de G ordem = 5 e tamanho = 6

RESPOSTAS

DE e CE

B, E e D

d(A) = 2

C e D (Δ_{G} = 3)

Teorema 1

 Em qualquer grafo G = (V, A), a soma dos graus de todos os vértices de G é igual ao dobro do número de arestas.

$$\sum_{v \in V} d_G(v) = 2|A|$$

- Isso porque cada aresta conta duas vezes
- Exemplo

$$d(A) = 2$$
, $d(B) = 2$, $d(C) = 3$,
 $d(D) = 3$, $d(E) = 2$
Soma = 12 = 2*|A| = 2*6

Representação matricial de grafos não orientados

- Matriz de adjacência
 - A matriz de adjacência de um grafo G com n vértices (|V| = n) é a dada por uma matriz booleana M de n linhas e n colunas (n x n)
 - M_{ii} célula (i,j) é
 - 1 sse A contém uma aresta com extremos v_i e v_j ou v_j e v_i
 - 0 caso contrário
 - → M será simétrica, ou seja, M_{ij} = M_{ji}

- Representação matricial de grafos não orientados
 - Matriz de adjacência
 - Exemplo

Pode ser usada para demonstrar o Teorema1

	Α	В	С	D	E	
Α	0	1	0	1	0	
В	1	0	1	0	0	
С	0	1	0	1	1	
D	1	0	1	0	1	
Е	0	0	1	1	0	
		▼				

Quantidade de 1s na coluna ou na linha indica o grau

Teorema 1

 Em qualquer grafo G = (V, A), a soma dos graus de todos os vértices de G é igual ao dobro do número de arestas.

$$\sum_{v \in V} d_G(v) = 2|A|$$

- Quantos 1s há na matriz de adjacência de G?
 - Para cada aresta de G, há exatamente dois 1s na matriz.
 Assim, o número de 1s nessa matriz é exatamente 2|A|
 - Para cada vértice v_i de G, seu grau d(v_i) é dado pela quantidade de 1s na linha que o representa. Assim, o número de 1s nessa matriz é a soma dos 1s nas linhas
 - Como essas duas respostas são corretas, concluímos que o resultado de uma deve ser igual à outra

Representação matricial de grafos não orientados

- Matriz de incidência
 - A matriz de incidência de um grafo G com n vértices (|V| = n) e m arestas (|A| = m) é a dada por uma matriz booleana M de n linhas e m colunas (n x m)
 - M_{ik} célula (i, k) é
 - 1 sse o vértice v_i é um extremo da aresta e_k
 - 0 caso contrário

- Representação matricial de grafos
 - Matriz de incidência
 - Exemplo

	AB	AD	BC	CD	CE	DE
Α	1	1	0	0	0	0
В	1	0	1	0	0	0
С	0	0	1	1	1	0
D	0	1	0	1	0	1
E	0	0	0	0	1	1

- Representação matricial de grafos
 - Dados os grafos a seguir:

Fonte: (SCHEINERMAN, p. 453, ex. 46.1)

- Represente cada um deles usando
 - a) Matriz de adjacência
 - b) Matriz de incidência

- Demonstre o corolário a seguir usando o Teorema 1
 - Corolário 1. Em todo grafo G = (V, A), o número de vértices de grau ímpar é par.

- Demonstre o corolário a seguir usando o Teorema 1
 - Corolário 1. Em todo grafo G = (V, A), o número de vértices de grau ímpar é par.
 - O Teorema 1 nos diz que $\sum_{v \in V} d_G(v) = 2|A|$
 - Da nossa aula de somatórios sabemos que podemos manipular esse somatório original pra quebrá-lo em dois: um para os vértices de grau par (conjunto P) e outro para os vértices de grau ímpar (conjunto I).
 Então:

$$\sum_{v \in V} d_G(v) = \sum_{v \in P} d_G(v) + \sum_{v \in I} d_G(v) = 2|A|$$

- Demonstre o corolário a seguir usando o Teorema 1
 - Corolário 1. Em todo grafo G = (V, A), o número de vértices de grau ímpar é par.

• Logo,
$$\sum_{v \in I} d_G(v) = 2|A| - \sum_{v \in P} d_G(v)$$

- Como o lado direito dessa equação é par (é um número par menos a soma de números pares), o lado esquerdo também é par
- Como o lado esquerdo é uma soma de números ímpares, essa soma só vai dar par se a quantidade de parcelas for par, ou seja, se || for par
- Portanto, o número de vértices de grau ímpar é par