Test for the probability of a binomial distribution

Chao Cheng

August 28, 2022

For an i.i.d sample from a bernoulli distribution

$$x_1, \cdots, x_n \overset{\text{i.i.d.}}{\sim} Bernoulli(p),$$

The likelihood of the data is

$$f(x_1, \dots, x_n) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}.$$

MLE for p is $\bar{x} = \frac{1}{n} \sum x_i$ and

$$\sum_{i=1}^{n} x_i \sim Binom(n, p).$$

So here are mainly two situations: One is to test the probability p against some given value p_0 . The other is to compare the probability between two independent random samples x_1, \dots, x_n and y_1, \dots, y_m .

Case1: One sample x_1, \dots, x_n from Bernoulli(p), and test p against a given p_0 .

Case 2: Two samples: x_1, \dots, x_2 from $Bernoulli(p_1)$ and y_1, \dots, y_m from $Bernoulli(p_2)$. And test whether $p_1 = p_2$.

1 Normal approximation

1.1 Case 1

Note that

$$EX = p$$
, $VarX = p(1-p)$.

Then by CLT we have

$$\bar{x} \stackrel{\text{asymp}}{\sim} N\left(p, \frac{p\left(1-p\right)}{n}\right).$$

For H_0 : $p = p_0$, we propose a test statistic

$$Z = \frac{\bar{x} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}.$$

Then Z is asymptotically standard normal under H_0 .

Also we know that under H_1 :

$$Z = \frac{\bar{x} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

$$= \frac{\bar{x} - p}{\sqrt{\frac{p(1 - p)}{n}}} \cdot \sqrt{\frac{p(1 - p)}{p_0(1 - p_0)}} + \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

$$\sim N \left(\frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \quad \frac{p(1 - p)}{p_0(1 - p_0)}\right).$$

So the power of the test can be easily computed.

1.2 Case 2

So we have

$$\bar{x} \stackrel{\text{asymp}}{\sim} N\left(p_1, \frac{p_1(1-p_1)}{n}\right), \text{ and } \bar{y} \stackrel{\text{asymp}}{\sim} N\left(p_2, \frac{p_2(1-p_2)}{m}\right).$$

A test statistic can be

$$Z = \frac{\bar{x} - \bar{y}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}},$$

where $\hat{p} = \frac{n\bar{x} + m\bar{y}}{n+m}$. This test statistic can be found at

https://stats.stackexchange.com/questions/361015/

proof-of-the-standard-error-of-the-distribution-between-two-normal-distributions/ 361048#361048

https://stats.stackexchange.com/questions/113602/

test-if-two-binomial-distributions-are-statistically-different-from-each-other

Here this $\hat{p}(1-\hat{p})$ can be seen as an estimate for the variance p(1-p) when H_0 is true by directly plugging in \hat{p} . This is **NOT** a pooled variance for these two samples, which should always be no greater than $\hat{p}(1-\hat{p})$.

The power of this test statistic is hard to compute under H_1 .

Note: One can also use the same idea in the "t-test.pdf" notes and propose the test statistic

$$T = \frac{\bar{x} - p_0}{\sqrt{S_x/n}},$$

where $S_x = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})$ for Case 1.

And for Case 2

$$T = \frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right)S_p}},$$

where $S_p^2 = \frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}$ and $\Delta = p_1 - p_2$. But again it is hard to evaluate the testing power of these statistics.

2 Chi-square approximation

See the notes of "chisq_test.pdf" for details.

3 Exact test

3.1 Case 1: Clopper-Pearson test

The Clopper-Pearson method is an early method. It's called exact method because it's directly based on p.m.f of binomial distribution. Let $X = \sum_{i=1}^{n} x_i$. Then $X \sim Binom(n, p)$ and the p.m.f is

$$P(X = x|p) = C_n^x p^x (1-p)^{n-x}$$

for $x = 0, 1, \dots, n$. So let's recall that p-value is the probability under H_0 that something as or more extreme than what we have observed happens. Then after observing $X = x_0$, for one-sided test:

• $H_0: p \leq p_0$ against $H_1: p > p_0$ for some given p_0 . The p-value is

$$p_{val} = \sum_{x=x_0}^{n} P(X = x | p_0).$$

• $H_0: p \ge p_0$ against $H_1: p < p_0$ for some given p_0 . The p-value is

$$p_{val} = \sum_{x=0}^{x_0} P(X = x | p_0).$$

For the two-sided test. This is a little complicated. Let index set

$$\mathcal{I} = \{x | P(X = x | p_0) \le P(X = x_0 | p_0), \quad 0 \le x \le n\}.$$

Then \mathcal{I} contains all possible realizations of X with its probability no greater than the probability of our observation. Then the p-value of $H_0: p = p_0$ is given by

$$p_{val} = \sum_{x \in \mathcal{I}} P\left(X = x | p_0\right).$$

3.2 Case 2: Fisher's exact test