COMP3721 Homework 1

1. Proof 1: We count all A's such that the largest number in A is 0, then all A's such that the largest number in A is 1, ..., all A's such that the largest number in A is k, For any k, there are finite number of such A's. We will also reach any A such that |A| is finite since the largest number in any such A is finite.

Proof 2 (sketch): We know the Cartesian product of two countable sets A and B is countable. By induction we can easily prove that \mathcal{N}^k is countable for any fixed integer k. The set $\{A|A\subseteq\mathcal{N}, A$ is of size $k\}$ is a subset of \mathcal{N}^k , so it is countable for any integer k. Further by using the fact that the union of countably infinitely many countable sets is countable, we complete the proof.

2. a) $(ab^*a \bigcup b)^*ab^*$. b) $(a \bigcup b)^*ab(a \bigcup b)^*$. c) b^*a^* .

3.

b)

4. a) a b

5. The language of M' is $\{w|w \text{ is a prefix of } w', \text{ where } w' \in L(M)\}.$

States for the first tape

States for the second tape

b) i)
$$M=(K_1,K_2,\Sigma,\delta,S,F), F\subseteq K_1\bigcup K_2,\delta:K_1\bigcup K_2\times\Sigma\to K_1\bigcup K_2.$$

- ii) $(q, w_1, w_2), q \in K_1 \bigcup K_2, w_1, w_2 \in \Sigma^*$.
- iii) $(q, w_1, w_2) \vdash (q', w_1', w_2')$. If $q \in K_1$, $w_1 = aw_1'$ s.t $\delta(q, a) = q'$ and $w_2' = w_2$. If $q \in K_2$, $w_2 = aw_2'$ s.t. $\delta(q, a) = q'$ and $w_1' = w_1$.
- iv) $(s, w_1, w_2) \vdash^* (q, e, e)$, s.t. $q \in F$.
- v) $L(M) = \{(w_1, w_2) \mid (s, w_1, w_2) \vdash^* (q, e, e), \text{ s.t. } q \in F\}.$