Variables aleatorias

Concepto	Notación/Definición gral.	Caso discreto	caso continuo
FDM y FDM		Función de probabilidad de masa (FPM): $P(X=x)$	Función de densidad de masa (FDM): $f(x)$
Propiedades FDM/FDM		$P(X=x) \ge 0 \qquad \sum_{x_i} P(X=x_i) = 1$	$f(x) \ge 0$ $\int f(x) dx = 1$
Función de distribución o de probabilidad acumulada	$F(x) = P(X \le x)$	$F(x) = \sum_{x_i: x_i \le x} P(X = x_i)$	$F(x) = \int_{-\infty}^{x} f(u) du \iff f(x) = \frac{dF(x)}{dx}$
Probabilidad de intervalos	$P(a < X \le b)$	$\sum_{x:a < x \le b} P(X = x) = F(b) - F(a)$	$\int_{a}^{b} f(x) dx = F(b) - F(a)$
FDM y FDM conjuntas		FPM: $P(X = x, Y = y)$	FDM: $f_{xy}(x,y)$
FDM y FDM marginales		$P(X = x) = \sum_{y_j} P(X = x, Y = y_j)$	$f_x(x) = \int f_{xy}(x,y) dy$
FDM y FDM condicionales		$P(X = x Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$	$f_{x y}(x y) = \frac{f_{xy}(x,y)}{f_y(y)}$
Independencia		P(X = x, Y = y) = P(X = x)P(Y = y)	$f_{xy}(x,y) = f_x(x)f_y(y)$
Esperanza	$\mu=\mathbb{E}[X]$	$\mathbb{E}[X] = \sum_{x_i} x_i P(X = x_i)$	$\mathbb{E}[X] = \int x f(x) dx$
Esperanza generalizada o teorema del estadística inconsciente	$\mathbb{E}[g(X)]$	$\mathbb{E}[g(X)] = \sum_{x_i} g(x_i) P(X = x_i)$	$\mathbb{E}[g(X)] = \int g(x)f(x) dx$
Varianza	$\sigma^2 = \operatorname{Var}[X] = \mathbb{E}\left[(X - \mu)^2\right] = \mathbb{E}\left[X^2\right] - \mu^2$		
Desviación típica o estándar	$\sigma = \sqrt{\operatorname{Var}[X]}$		
Covarianza	$\sigma_{xy}^2 = \operatorname{Cov}[X, Y] = \mathbb{E}\left[(X - \mu_x)(Y - \mu_y) \right] = \mathbb{E}\left[XY \right] - \mu_x \mu_y$		
Correlación	$\rho = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y}$		