Wydział	Dzień	poniedziałek $17^{15} - 19^{30}$	Nr zespołu
Matematyki i Nauk Informatycznych	Data		18
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1. Jasiński Bartosz			
2. Sadłocha Adrian			
3. Wódkiewicz Andrzej			
Prowadzący		Podpis prowadzącego	
dr inż. Jarosław Judek			

Sprawozdanie nr 2

1. Opis ćwiczenia

Ćwiczenie złożone było z dwóch części:

- 1. Badanie anharmoniczności drgań wahadła matematycznego
- 2. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła różnicowego

1.1. Wstęp teoretyczny

Wahadłem matematycznym płaskim nazywamy punkt materialny, poruszający się po fragmęcie okregu w jednorodnym polu grawitacyjnym. Praktyczną realizacją tego pojęcia jest obciążnik (najczęściej kulka) o małych rozmiarach, zamocowany na nierozciągliwej nici o bardzo małej, pomijalnej masie (Rysunek 1).

Siłę ciężkości $\vec{F}_g = m\vec{g}$ działającą na ciężarek możemy rozłożyć na składową radialną $F_g\cos\theta$ oraz styczną do toru ruchu wahadła $F_g\sin\theta$. Składowa styczna wpływa na zmianę wektora prędkości ciężarka, gdyż działa ona zawsze przeciwnie do jego wychylenia. Z drugiej zasady dynamiki Newtona mamy więc:

$$ma = -mg\sin\theta$$

$$\frac{d^2S}{dt^2} = -g\sin\theta$$

Ponieważ $S = l \cdot \theta$:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta$$

Nie istnieje analityczne rozwiązanie tego równania różniczkowego. Dla małych kątów można uprościć powyższy wzór, zakładając, że $\sin \theta \approx \theta$ – wtedy równanie różniczkowe daje się

Rysunek 1: Wahadło matematyczne

rozwiązać analitycznie. W rezultacie otrzymujemy, że dla wahadła matematycznego poruszającego się w zakresie małych kątów (przy założeniu $\theta(0) = \theta_{max}$):

$$\theta(t) = \theta_{max} \cos\left(\sqrt{\frac{g}{l}} t\right),$$

czyli ruch jest harmoniczny, a okres tego ruchu wynosi

$$T = 2\pi \sqrt{\frac{l}{g}}$$

W ogólności (bez założenia małych wychyleń), korzystając z rozwinięcia funkcji sin w szereg, możemy finalnie otrzymać zależność okresu drgań wahadła T od kąta maksymalnego wychylenia θ_{max} :

$$T = 2\pi \sqrt{\frac{l}{g}} f(\theta_{max}), \tag{1}$$

gdzie
$$f(\theta_{max}) = \sum_{n=0}^{\infty} \left[\frac{(2n)!}{(2^n n!)^2} \right]^2 \sin^{2n} \left(\frac{\theta_{max}}{2} \right)$$
 (2)

Ruch wahadła matematycznego jest więc w ogólności ${\bf anharmoniczny}$ – okres jest zależny od amplitudy.

Wahadło różnicowe to wahadło w którym mamy możliwość zmiany długości nici na której jest zawieszony ciężarek, pozwalające mierzyć w precyzyjny sposób zmianę jej długości, nie znając długości bezwzględnej. Wykonując dwa pomiary T_1, T_2 dla różnych długości wahadła l_1, l_2 otrzymujemy:

$$T_1^2 - T_2^2 = \frac{4\pi^2}{q} (l_1 - l_2) f(\theta_{max})$$

1.2. Układ pomiarowy

Do przeprowadzenia obu części ćwiczenia posłużono się układem pomiarowym, przedstawionym na rysunku 2. Do ruchomego elementu połączonego z nieruchomym statywem przymocowana była długa, nierozciągliwa nitka, o znikomo małej masie, z zamocowanym na jej końcu metalowym obciążnikiem. Statyw pozwalał na modyfikowanie długość wahadła. Do statywu przytwierdzony był również kątomierz oraz linijka, służące do pomiaru kolejno: kąta maksymalnego wychylenia wahadła oraz zmiany długości wahadła różnicowego. Pod statywem znajdował się elektroniczny układ pomiarowy, złożony z fotokomórki oraz modułu sterowania, za pomocą którego mierzony był okres wahadła.

Rysunek 2: Schemat układu pomiarowego

2. Pomiary i obliczenia

2.1. Badanie zależności okresu drgań wahadła od kąta wychylenia

Dokonano po 10 pomiarów dwóch okresów wahadła dla sześciu różnych kątów maksymalnego wychylenia wahadła. Wartości kątów wynosiły kolejno: 5° , 10° , 15° , 20° , 25° i 30° . Wyniki pomiarów znajdują się w tabeli 1. Sporządzono również dwa wykresy: wartości średniej dwóch okresów wahadła względem kąta maksymalnego wychylenia oraz odchylenia standardowego pomiaru dla danego kąta (kolejno rysunki 3, 4).

Długość wahadła nie była znana eksperymentatorom – linijka używana w układzie pomiarowym nie wskazywała bezwzględnej długości nici (służyła do odczytywania zmian długości nici wahadła różnicowego). Dlatego też w tym doświadczeniu nie można było wykorzystać zmierzonej wartości okresu wahadła do wyliczenia przyspieszenia ziemskiego.

Z wykresu na rysunku 3 można wywnioskować, że po pierwsze: **istnieje nie stała** funkcja długości okresu wahadła od kąta maksymalnego wychylenia (wartość średnia nie jest stała dla kolejnych kątów) oraz po drugie: funkcja ta jest **nieliniowa**. Uzyskane wyniki są zgodne z rozważaniami teoretycznymi (patrz wzór (1)).

	$2T(\alpha=5^\circ)$	$2T(10^{\circ})$	$2T(15^{\circ})$	$2T(20^{\circ})$	$2T(25^{\circ})$	$2T(30^{\circ})$
1	2.6285	2.6343	2.6368	2.6454	2.6585	2.6701
2	2.6295	2.6346	2.6359	2.6463	2.6589	2.6711
3	2.6295	2.6344	2.6402	2.6467	2.6582	2.6714
4	2.6307	2.6366	2.6394	2.6470	2.6590	2.6709
5	2.6296	2.6358	2.6408	2.6467	2.6578	2.6701
6	2.6286	2.6350	2.6404	2.6463	2.6593	2.6685
7	2.6285	2.6342	2.6396	2.6463	2.6574	2.6698
8	2.6303	2.6350	2.6401	2.6477	2.6588	2.6696
9	2.6287	2.6352	2.6395	2.6476	2.6583	2.6694
10	2.6298	2.6350	2.6396	2.6485	2.6584	2.6708
$\overline{2\overline{T}}$	2.62937	2.63501	2.63923	2.64685	2.64685	2.67017
s(2T)	0.00078	0.00074	0.00160	0.00089	0.00057	0.00089

Tabela 1: Seria pomiarów czasu trwania 2 okresów wahadła w zależności od kąta wychylenia

Rysunek 3: Wartość średnia 2 okresów wahadła w zależności od maksymalnego kąta wychylenia

Nie zaobserwowano natomiast żadnej zależności między odchyleniem standardowym pomiarów a kątem maksymalnego wychylenia (rysunek 4).

2.2. Badanie zależności okresu drgań od zmian długości wahadła

Przekształcając wzór (1) otrzymujemy zależność:

$$l=g\frac{T^2}{4\pi^2}\frac{1}{f^2(\theta_{max})}$$

Dalej, korzystając z podstawienia

$$g' = \frac{g}{f^2(\theta_{max})}$$

Rysunek 4: Odchylenie standardowe 2 okresów wahadła w zależności od maksymalnego kąta wychylenia

oraz z faktu, że odczytywana z linijki długość wahadła nie jest jego rzeczywistą długością – wartości na linijce zmieniają się **odwrotnie proporcjonalnie** do długości wahadła – otrzymujemy finalnie:

$$l_{odczyt} = -g' \frac{T^2}{4\pi^2} \tag{3}$$

W ten sposób po dokonaniu pomiarów okresu przy zmiennej długości wahadła można skorzystać z regresji liniowej i wyznaczyć nachylenie prostej, a w rezultacie wartość g.

Pomiary okresu dla małego kąta

Po przeprowadzeniu pomiarów dla kąta $\theta_{max}=10^{\circ}$ dokonano wyznaczenia przyspieszenia ziemskiego przy użyciu metody najmniejszych kwadratów. Wyniki pomiarów wraz z obliczeniami cząstkowymi oraz oznaczenia X, Y znajdują się w tabeli 2. W celu wyznaczenia współczynników regresji liniowej, jak i ich niepewności pomiarowych skorzystano ze wzorów:

$$a = \frac{n\Sigma XY - \Sigma X\Sigma Y}{n\Sigma X^2 - (\Sigma X)^2}$$

$$b = \frac{1}{n} (\Sigma Y - a\Sigma X)$$

$$u(a) = \sqrt{\frac{n}{n-2} \frac{\Sigma Y^2 - a\Sigma XY - b\Sigma Y}{n\Sigma X^2 - (\Sigma X)^2}}$$

$$u(b) = u(a) \cdot \sqrt{\frac{\Sigma X^2}{n}}$$

Uzyskane wartości wyniosły: a=-9.789(31) , b=909.4(1.5), zatem przekształcając a zgodnie ze wzorem (3):

$$g' = 9.789(31) \frac{m}{s^2}$$

Ponieważ kąt maksymalnego wychylenia jest dostatecznie mały oraz z powodów dydaktycznych ćwiczenia, w tym kroku doświadczenia celowo pominięto korektę na anharmoniczność.

	l (mm) = Y	2T (s)	$1000T^2/4\pi^2 = X(s^2)$	X^2	Y^2	XY
1	480	2.6325	43.885094	1925.9015	230400	21064.845
2	460	2.6918	45.884484	2105.3859	211600	21106.863
3	440	2.7515	47.942349	2298.4688	193600	21094.634
4	420	2.8101	50.006196	2500.6196	176400	21002.602
5	400	2.8676	52.073578	2711.6575	160000	20829.431
6	380	2.9218	54.060647	2922.5536	144400	20543.046
Σ	2580	16.6753	293.852348	14464.5869	1116400	125641.421

Tabela 2: Pomiary 2 okresów wahadła dla maksymalnego kąta wychylenia $\theta_{max}=10^\circ$ w zależności od l wraz z obliczeniami do wyznaczenia regresji liniowej

Rysunek 5: Regresja liniowa metodą najmniejszych kwadratów dla $\theta_{max}=10^{\circ}$

Pomiary okresu dla dużego kata

Następnie dokonano pomiarów dla kąta $\theta_{max}=25^{\circ}$. Dokonano analogicznych obliczeń (patrz Tabela 3). Uzyskane wartości parametrów prostej to: $a=-9.658(23),\,b=911.6(1.1),\,$ zatem

$$g' = 9.658(23)\frac{m}{s^2}$$

Korzystając z korekty na anharmoniczność drgań dla pierwszych 3 wyrazów szeregu ze wzoru (2)

$$K(\theta_{max}) = \left(1 + \frac{1}{16}\theta_{max}^2 + \frac{11}{3072}\theta_{max}^4 + \dots\right)$$

uzyskujemy:

$$g = g' \cdot 1.0120289 \approx 9.773(23) \frac{m}{s^2}$$

2.3. Wnioski

Po wykonaniu obu ćwiczeń potwierdzono anharmoniczność ruchu wahadła matematycznego oraz uzyskano 2 wartości przyspieszenia ziemskiego: $9.789(31)\frac{m}{s^2}$ oraz $9.773(23)\frac{m}{s^2}$.

	l (mm) = Y	2T (s)	$1000T^2/4\pi^2 = X(s^2)$	X^2	Y^2	XY
1	480	2.6582	44.74614	2002.2170	230400	21478.147
2	460	2.7160	46.71322	2182.1249	211600	21488.081
3	440	2.7764	48.81399	2382.8056	193600	21478.136
4	420	2.8339	50.85683	2586.4132	176400	21359.869
5	400	2.8918	52.95620	2804.3591	160000	21182.480
6	380	2.9494	55.08681	3034.5566	144400	20932.988
Σ	2580	16.8257	299.17319	14992.4764	1116400	127919.701

Tabela 3: Pomiary 2 okresów wahadła dla maksymalnego kąta wychylenia $\theta_{max}=25^{\circ}$ w zależności od l wraz z obliczeniami do wyznaczenia regresji liniowej

Rysunek 6: Regresja liniowa metodą najmniejszych kwadratów dla $\theta_{max}=25^{\circ}$

Znając wartość przyspieszenia ziemskiego w Warszawie ($g \approx 9,8123\frac{m}{s^2}$) można zauważyć, że w drugim ćwiczeniu pomimo zastosowania korekty na anharmoniczność drgań przy serii pomiarów dla dużego kąta ($\theta_{max}=25^{\circ}$), uzyskana wartość przyspieszenia ziemskiego była mniej dokładna niż wartość uzyskana bez zastosowania korekty przy serii pomiarów dla kąta mniejszego ($\theta_{max}=10^{\circ}$). Oznacza to, że niedoskonałości sprzętu pomiarowego i błędy eksperymentatorów znacznie wpłynęły na wyniki pomiarów. To przypuszczenie dodatkowo potwierdza kształt wykresu odchylenia standardowego z pierwszego ćwiczenia (rysunek 4).

Aby zmniejszyć niedoskonałości pomiarów należałoby zadbać o dokładniejszy sposób odczytu kąta maksymalnego wychylenia wahadła (wyeliminować zjawisko paralaksy) oraz dodać do układu pomiarowego możliwość mechanicznego zwalniania obciążnika wahadła, eliminując tym samym przypadki zarówno wprawienia wahadła w ruch w 2 płaszczyznach jak i nadawania mu prędkości początkowej.