2005 年错题

设 $y = (1 + \sin x)^x$, 则 $dy|_{x=\pi} =$ _____.

(4) 微分方程
$$xy' + 2y = x \ln x$$
 满足 $y(1) = -\frac{1}{9}$ 的解为______.

(5) 当 $x \to 0$ 时, $\alpha(x) = kx^2$ 与 $\beta(x) = \sqrt{1 + x \arcsin x} - \sqrt{\cos x}$ 是等价无穷小,则 k=

- (8) 设 F(x)是连续函数 f(x)的一个原函数," $M \Leftrightarrow N$ "表示 "M 的充分必要条件是 N",则 必有
 - (A) F(x)是偶函数 ⇔ f(x)是奇函数.
 - (B) F(x)是奇函数 ⇔ f(x)是偶函数.
 - (C) F(x)是周期函数 ⇔ f(x)是周期函数.
 - (D) F(x)是单调函数 ⇔ f(x)是单调函数.
- **(9)** 设函数 y=y(x)由参数方程 $\begin{cases} x = t^2 + 2t, \\ y = \ln(1+t) \end{cases}$ 确定,则曲线 y=y(x)在 x=3 处的法线与 x 轴交

点的横坐标是

(A)
$$\frac{1}{8} \ln 2 + 3$$
.

(A)
$$\frac{1}{8} \ln 2 + 3$$
. (B) $-\frac{1}{8} \ln 2 + 3$.

(C)
$$-8 \ln 2 + 3$$
.

(D)
$$8 \ln 2 + 3$$

(11) 设函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t) dt$, 其中函数 φ 具有二阶导数, ψ 具有一阶导数,则必有

(A)
$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$
. (B) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$.

(C)
$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2}$$
. (D) $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial x^2}$.

(16) (本题满分 11 分)

如图, C_1 和 C_2 分别是 $y=\frac{1}{2}(1+e^x)$ 和 $y=e^x$ 的图象, 过点(0,1)的曲线 C_3 是一单调增 函数的图象. 过 C_2 上任一点 M(x,y)分别作垂直于 x 轴和 y 轴的直线 l_x 和 l_y . 记 C_1 , C_2 与 l_x 所围图形的面积为 $S_1(x)$; C_2 , C_3 与 l_y 所围图形的面积为 $S_2(y)$. 如果总有 $S_1(x) = S_2(y)$, 求曲线 C_3 的方程 $x = \varphi(y)$.

(17) (本题满分 11 分)

如图,曲线 C 的方程为 y=f(x),点(3,2)是它的一个拐点,直线 l_1 与 l_2 分别是曲线 C 在点 (0,0)与(3,2)处的切线, 其交点为(2,4). 设函数 f(x)具有三阶连续导数, 计算定积分

$$\int_0^3 (x^2 + x) f'''(x) dx.$$

(22) (本题满分9分)

确 定 常 数 a, 使 向 量 组 $\alpha_1 = (1,1,a)^T$, $\alpha_2 = (1,a,1)^T$, $\alpha_3 = (a,1,1)^T$ 可 由 向 量 组 $\beta_1 = (1,1,a)^T$, $\beta_2 = (-2,a,4)^T$, $\beta_3 = (-2,a,a)^T$ 线性表示,但向量组 β_1,β_2,β_3 不能由向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示.

2006 年错题

(4) 微分方程
$$y' = \frac{y(1-x)}{x}$$
 的通解是______. (18) .

设数列 $\{x_n\}$ 满足 $0 < x_1 < \pi, x_{n+1} = \sin x_n (n = 0, 1, 2, \cdots)$

证明: (1) $\lim_{\substack{x \to \infty \\ x \to \infty}} x_{n+1}$ 存在, 并求极限

(2) 计算
$$\lim_{x\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}}$$

2007 年错题

(5) 曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
, 渐近线的条数为

- (A) 0.
- (B) 1
- (C) 2
- (D) 3.
- (7) 二元函数 f(x, y)在点(0, 0) 处可微的一个充分条件是

(A)
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0$$
.

(B)
$$\lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$
, $\exists \lim_{y\to 0} \frac{f(0,y) - f(0,0)}{y} = 0$.

(C)
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0.$$

(D)
$$\lim_{x\to 0} [f'_x(x,0) - f'_x(0,0)] = 0$$
, $\mathbb{E}\lim_{y\to 0} [f'_y(0,y) - f'_y(0,0)] = 0$.

(14) 二阶常系数非齐次线性微分方程 $y'' - 4y' + 3y = 2e^{2x}$ 的通解为

(17) (本题满分 10 分)

设 f(x)是区间 $[0,\frac{\pi}{4}]$ 上的单调、可导函数,且满足

$$\int_0^{f(x)} f^{-1}(t)dt = \int_0^x t \frac{\cos t - \sin t}{\sin t + \cos t} dt$$

其中 f^{-1} 是 f 的反函数, 求 f(x).

(18) (本题满分11分)

设 D是位于曲线 $v = \sqrt{x} a^{-\frac{\lambda}{2a}} (a > 1, 0 \le x < +\infty)$ 下方、x轴上方的无界区域。

- (I) 求区域 D 绕 x 轴旋转一周所成旋转体的体积 V(a);
- (II) 当 a 为何值时, V(a)最小? 并求此最小值.
- (19) (本题满分 10 分)

求微分方程 $v''(x+v'^2) = v'$ 满足初始条件 v(1) = v'(1) = 1的特解。

(24)(本题满分11分)

设 3 阶对称矩阵 A的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2, \ \alpha_1 = (1,-1,1)^T$ 是 A

的属于 λ , 的一个特征向量,记 $B = A^5 - 4A^3 + E$ 其中E 为 3 阶单位矩阵.

- (I) 验证 α , 是矩阵 B的特征向量, 并求 B的全部特征值与特征向量.
- (II) 求矩阵 B.

2008 年错题

- (5)设函数 f(x) 在 $(-\infty, +\infty)$ 内单调有界, $\{x_n\}$ 为数列,下列命题正确的是【

 - (A) 若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛 (B) 若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 收敛

 - (C) 若 $\{f(x_n)\}$ 收敛,则 $\{x_n\}$ 收敛. (D) 若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 收敛.
- (7)设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵 . 若 $A^3 = 0$, 则下列结论正确的是 【
 - (A) E-A 不可逆,则 E+A 不可逆. (B) E-A 不可逆,则 E+A 可逆.
 - (C) E-A 可逆,则E+A 可逆.
- (D) E-A 可逆,则 E+A 不可逆.
- (17) (本题满分 9 分) 计算 $\int_0^1 \frac{x^2 \arcsin x}{\sqrt{1-x^2}} dx$.

(18)(本题满分 11 分)

计算
$$\iint_D \max\{xy,1\} dxdy$$
, 其中 $D = \{(x,y), 0 \le x \le 2, 0 \le y \le 2\}$

(20)(本题满分 11 分)

- (I) 证明积分中值定理 :若函数 f(x) 在闭区间[a,b]上连续,则至少存在一点 $\eta \in [a,b]$,使得 $\int_a^b f(x)dx = f(\eta)(b-a)$;
- (II) 若函数 $\varphi(x)$ 具有二阶导数,且满足 $\varphi(2) > \varphi(1)$, $\varphi(2) > \int_2^3 \varphi(x) dx$,则至少存在 一点 $\xi \in (1,3)$,使得 $\varphi''(\xi) < 0$.

(22) (本题满分 12 分).

设n元线性方程组Ax = b, 其中

$$A = \begin{pmatrix} 2a & 1 & & & & \\ a^{2} & 2a & 1 & & & \\ & a^{2} & 2a & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^{2} & 2a & 1 \\ & & & & a^{2} & 2a \end{pmatrix}, \quad x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, \quad b = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix}.$$

- (I) 证明行列式 $|A| = (n+1)a^n$;
- (II) 当 a 为何值时,该方程组有惟一解,并求 x_{II} .
- (Ⅲ) 当 a 为何值时,该方程组有无穷多解,并求其通解 .

2009 年错题

- (1) 函数 $f(x) = \frac{x x^3}{\sin \pi x}$ 的可去间断点的个数为
- (A) 1 (B) 2 (C) 3 (D) 无穷多个
- (3) 设函数 z = f(x, y) 的全微分为 dz = xdx + ydy, 则点(0,0)
 - (A) 不是 f(x,y) 的连续点 (B) 不是 f(x,y) 的极值点
- (C) 是 f(x,y)的极大值点 (D) 是 f(x,y)的极小值点
- (5) 若 f''(x)不变号,且曲线 y = f(x) 在点(1,1)上的曲率圆为 $x^2 + y^2 = 2$,则函数 f(x) 在区间(1,2)内
 - ig(Aig) 有极值点,无零点 ig(Big) 无极值点,有零点

- (C) 有极值点,有零点 (D) 无极值点,无零点
- (7) 设 A, B 均为 2 阶矩阵, A^* , B^* 分别为 A, B 的伴随矩阵, $\Xi |A| = 2$, |B| = 3, 则分块矩

阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的伴随矩阵为

- $(A)\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix}.$ $(B)\begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}.$
- $(C)\begin{pmatrix} O & 3A^* \\ 2B^* & O \end{pmatrix}.$ $(D)\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}.$
- (9) 曲线 $\begin{cases} x = \int_{0}^{1-t} e^{-u^{2}} du \\ y = t^{2} \ln(2-t^{2}) \end{cases}$ 在(0, 0)处的切线方程为_____
- $(11) \lim_{n\to\infty} \int_{0}^{1} e^{-x} \sin nx dx = \underline{\hspace{1cm}}$
- (12) 设 y = y(x) 是由方程 $xy + e^y = x + 1$ 确定的隐函数,则 $\frac{d^2y}{dx^2}\Big|_{x=0} =$ _____

2010 年错题

- (1) 函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的无穷间断点的个数为()
- (B) 1.
- (C) 2.
- (D) 3.
- (2) 设 y_1, y_2 是一阶线性非齐次微分方程y' + p(x)y = q(x)的两个特解, 若常数 λ , μ 使

 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解, 则()

- (A) $\lambda = \frac{1}{2}, \mu = \frac{1}{2}$.
- (B) $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$.
- (C) $\lambda = \frac{2}{3}, \mu = \frac{1}{3}$. (D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$.
- (4) 设m,n是正整数,则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性 ()
 - (A) 仅与m的取值有关.
- (B) 仅与n的取值有关.
- (C) 与m,n 取值都有关.
- (D) 与m,n 取值都无关.

(5) 设	经函	数 $z=z(x,$, y), 由	方程 $F(\frac{y}{x})$	$(\frac{z}{x}) = 0$ α	定,其	中 F 为 7	可微函数	F_1 ,且 $F_2' \neq 0$),则	
$x\frac{\partial z}{\partial x}$	+ y	$\frac{\partial z}{\partial y} = ()$									
				(B) z .					(D) $-z$.		
(11) 函数 $y = \ln(1-2x)$ 在 $x = 0$ 处的 n 阶导数 $y^{(n)}(0) =$											
(13)	(13) 已知一个长方形的长 l 以 2 cm/s 的速率增加, 宽 w 以 3 cm/s 的速率增加. 则当										
l=12cm , $w=5$ cm 时,它的对角线增加的速率为											
_	- 一个		柱体形贮	〕油罐,底面是							
油罐中油面高度为 $\frac{3}{2}b$ 时(如图),计算油的质量.(长度单位为 m ,质量单位为 kg ,油的密度为											
常数, (19)		g/m³) 题满分 11 g	分)								
ì	没函	数 $u = f(x)$;, y) 具有	「二阶连续偏	异数, 且	.满足等	京式 $4\frac{\partial^2 u}{\partial x^2}$	$+12\frac{\partial^2 u}{\partial x \partial y}$	$+5\frac{\partial^2 u}{\partial y^2} = 0$	0,确	
定 a , b 的值, 使等式在变换 $\xi=x+ay$, $\eta=x+by$ 下化简为 $\dfrac{\partial^2 u}{\partial \xi \partial \eta}=0$.											
201	1 年	E错题									
(3)	(3) 函数 $f(x) = \ln (x-1)(x-2)(x-3) $ 的驻点个数为()										
((A)	0.		(B) 1.		(C) 2		(D)	3.		
(5) ì	没函	数 $f(x),g($	(x)均有	二阶连续导	数,满足,	f(0) > 0	0, g(0) < 0),且 f'(0) =	=g'(0)=0,	则函	
数 $z = f(x)g(y)$ 在点 $(0,0)$ 处取得极小值的一个充分条件是()											
((A)	f''(0) < 0,	g''(0) >	0.	((B) f"	(0) < 0, g (0) > 0, g	''(0) < 0.			
((C)	f''(0) > 0,	g''(0) >	0.	,	(D) f"	(0) > 0, g	''(0) < 0.			
(12) 设函数 $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \\ 0, x \le 0, \end{cases}$ $\lambda > 0$, 则 $\int_{-\infty}^{+\infty} x f(x) dx = $											
(13)	设立	平面区域 <i>D</i>	由直线)	y = x,	$y^2 = 2y \ \mathcal{B}$	y 轴围]成,则二	重积分∬	$xyd\sigma = $		

(18) (本题满分 10 分)

设函数 y(x) 具有二阶导数,且曲线 l: y = y(x) 与直线 y = x 相切于原点,记 α 为曲线 l 在点(x,y) 处切线的倾角,若 $\frac{d\alpha}{dx} = \frac{dy}{dx}$,求y(x) 的表达式.

2012 年错题

(3) 设 $a_n > 0$ $(n = 1, 2, 3 \cdots)$, $S_n = a_1 + a_2 + a_3 + \cdots + a_n$, 则数列 $\{S_n\}$ 有界是数列 $\{a_n\}$ 收敛的

(A) 充分必要条件

(C) 必要非充分条件

(6) 设区域
$$D$$
由曲线 $y = \sin x, x = \pm \frac{\pi}{2}, y = 1$ 图成,则 $\iint_{D} (x^{5}y - 1) dx dy =$ ()

- (A) π

- (B) 2 (C) -2 (D) $-\pi$

(18)(本题满分 10 分)

计算二重积分 $\iint xy d\sigma$, 其中区域 D为曲线 $r=1+\cos\theta \left(0 \le \theta \le \pi\right)$ 与极轴围成.

(21)(本题满分 10 分)

(I)证明方程
$$x^n+x^{n-1}+\cdots+x=1$$
 $(n>1$ 的整数),在区间 $\left(\frac{1}{2},1\right)$ 内有且仅有一个实根:

(II)记(I)中的实根为 x_n ,证明 $\lim x_n$ 存在,并求此极限.

(23)(本题满分 11 分)

己知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
, 二次型 $f(x_1, x_2, x_3) = x^T (A^T A) x$ 的秩为 2,

- (I) 求实数a的值;
- (II) 求利用正交变换x = Qy 化f 为标准形.