

MPU Team
June 2016

Introduction

- Microchip and Atmel were Competitors
 Now We Build a Single Team
- The Atmel MPU32 portfolio has been acquired by Microchip
 - Atmel MPUs have a lot in common with MCUs
 - Similar structure
 - peripherals are compatible
 - Ease of use...

Let's take a look at similarities and differences within the MPU portfolio

If you have questions, don't hesitate to ask in real-time!

Part 1

Part 1	 ARM926 Core SAM9 Products Common Blocks Peripherals External Memories
Part 2	 Cortex-A5 Core SAMA5 Products High-speed Peripheral Features External Memories
Part 3	 Boot Process Performances and Power Consumption Security Features

ARM926 Core

ARM cores

ARM family

ARM926EJ-S

ARM926EJ-S™ ARM® Thumb® Processor

- 16-Kbyte Data Cache
- 16-Kbyte Instruction Cache
- 1.1 MIPS/MHz
- V5TEJ Instruction Set
- Java Enhancement
 - Java byte code acceleration achieved by hardware
- DSP Enhancement
 - Multiply instructions using a single-cycle 32*16 implementation
 - Multiply or Multiply Accumulate (MAC) instructions
 - Pipeline allows one multiply to start each cycle
- Memory Management Unit (MMU)
- TCM Interfaces
 - Separate interface for instruction and data
 - Single access for data and instruction
 - Used to store critical code and data which deterministic access times are required
- 5-stage Pipeline
- 6 Modes: User, Supervisor, IRQ, FIQ, Abort, Undef

- Main Memory is Slower than CPU (ex: SDRAM)
- Cache Memory is the Solution
- Automatically Keeps Copies of Most Frequently Used Memory Locations in Fast Memory (but expensive)

	Instruction Cache	Data Cache
AT91SAM9263	16 Kbytes	16 Kbytes
AT91SAM9261	16 Kbytes	16 Kbytes
AT91SAM9260	8 Kbytes	8 Kbytes
AT91SAM9G20	32 Kbytes	32 Kbytes
AT91SAM9XE	16 Kbytes	8 Kbytes
AT91SAM9RL	4 Kbytes	4 Kbytes
AT91SAM9G45	32 Kbytes	32 Kbytes

Memory Management Unit (MMU)

The ARM9 MMU

- Is a class of hardware components responsible for handling memory accesses requested by the CPU
- Provides virtual memory management and protection features required by OS such as Symbian OS, WindowsCE, VxWorks, and Linux
- At reset the MMU is turned off, no address mapping occurs, and all regions are marked as non-cachable and non-bufferable
- Programming is performed using an ARM coprocessor register (CP15)
- Must be enabled to use Data Cache

SAM9 Products

SAM9 Series

ARM926EJ-S Core

Up to 400 MHz

Memory Type Support

- SDRAM, (LP)DDR/2
- Raw MLC NAND 24-bit ECC
- SDCard / Managed NAND support

Industrial Solution

- Dual CAN
- Dual EMAC (SAM9_5Series)
- x3 USB Ports

User Interface

- 24-bits LCD Interface
- Graphics Acceleration
- Camera Interface

Small Footprint and Die Business

15x15 or 10x10 packages

Common Blocks Block Diagrams

SAM9 Architecture

Peripherals

SAM9 Common Features

Peripherals

SPI

• 4 NPCS, working at up to MCK/2 (66MHz)

USART

Modem, RS485, IrDA, working at up to MCK/2

• TWI

• ATMEL I2C, Master and slave, Fast mode up to 400 kHz

ADC

• 10-bit, up to 16 channels, resistive touchscreen, 380 Ksps

Timer Counter

• 16-bit, Capture or Wavegen Mode

• SSC

Atmel IP, highly-configurable for audio I2S, TDM

High-Speed Peripherals

DMA

• 8 channels, built-in FIFO, supports mem-to-mem, per-to-mem, mem-to-per

• USB

• Device and Host, High-speed 480 Mbit/s, Full-speed, embedded transceiver

MCI

Supports MMC, SDCard up to 52MHz

LCD

• 1280x860 (WXGA) real RGB frame buffer, up to 24 bits per pixel

• EMAC

• 10/100 Mbit/s, MII/RMII, 128-byte FIFO

ISI

Atmel Camera interface, up to 2k x 2k, pixel clock up to 74 MHz, supports YUV
 4:2:2, preview path for LCDs, 3x8-bit in RGB, 12-bit in grayscale

External Memories

Memories

All SAM9 have External Bus Interface

- 16-bit DDR2, 16-bit LPDDR, 16-32-bit SDR, 16-32-bit LPSDR (depending on products)
- NAND Flash (SLC and MLC Devices, DMA channel for automatic block transfer) with up to 24-bit ECC computation
- Static Memories (Static RAM, NOR Flash, PSRAM, FPGA)

Some have Additional DDR2 Controller

 DDR CLK and DDR #CLK is up to 133 MHz, Data Rate is up to 266 MHz

EMC Improvement

- Programmable I/O Slew Rate
- Bus impedance adaptation using the IBIS model, 27 Ohms on the EK

SAM9 Family Overview

SAM9	CPU 400 MHz	USB* Device	USB Host	Ethernet	EBI	Camera	LCD	ADC Touch Screen	CAN	AC97
SAM9261(S)	-	FS	X	-	X	-	X	-		-
SAM9263	-	FS	X	X	X (x2)	Х	X	-	X	X
SAM9260	-	FS	X	X	X	Х	-	-	-	-
SAM9G20	Х	FS	X	Х	Х	Х	-	-	-	-
SAM9XE	-	FS	X	X	X	Х	-	-		-
SAM9RL64	-	HS	-	-	X	-	X	Х		X
SAM9R64	-	HS	-	-	X (16-bit)	-	-	-	-	-
SAM9G45	Х	HS	HS	X	X (x2)	Х	X	Х	-	X
SAM9G15	Х	HS	HS	-	X	-	X	Х	-	X
SAM9G25	х	HS	HS	Х	X	Х	-	-	-	X
SAM9G35	X	HS	HS	Х	X	-	-	-	-	X
SAM9X25	X	HS	HS	X (x2)	X	-	X	Х	X (x2)	X
SAM9X35	X	HS	HS	X	X	-	X	Х	X	X

Part 2

Part 1	 ARM926 Core SAM9 Products Common Blocks Peripherals External Memories
Part 2	Cortex-A5 CoreSAMA5 ProductsPeripheralsExternal Memories
Part 3	 Boot Process Performances and Power Consumption Security Features

Cortex-A5 Core

ARM cores

ARM family

Cortex-A5 Core

Area is integer core only, no NEON, no cache

Cortex-A5 Core

- Harvard Level 1 Memory System with a Memory Management Unit (MMU)
 - 32 Kbytes Instruction Cache
 - Two-way set associative
 - Virtual addresses
 - 32 Kbytes Data Cache
 - Four-way set associative
 - Physical addresses
 - Prefetch Unit with Branch Prediction
 - 256-entry pattern history table
- 8-stage Pipeline + Branch Prediction => 1.57 MIPS/MHz
- Level 2 Memory Interface
 - 64-bit AXI Master Interface
 - Instruction /Data share the same master
- V7 Instruction Adds one Mode: Monitor (for TrustZone)

Atmel Cortex-A5 Implementation

Features	SAMA5D3 Implementation	SAMA5D4 Implementation	SAMA5D2 Implementation
Core Implementation	Uniprocessor (UP)	Uniprocessor (UP)	Uniprocessor (UP)
FPU - Floating Point Unit			
MMU - Memory Management Unit			
NEON™ Advanced SIMD	*		
ETM Interface	*	*	
TrustZone [®]	*		
IEM – Intelligent Energy Management	*	*	*
L2-Cache	*	(128 KB)	(128 KB)

ARM TrustZone

• ARM TrustZone® Allows the Processor to Run in Two Different Modes

- One secure environment to execute critical security/safety software
- One normal environment to run a Rich OS application software such as Linux

This System Approach Allows

- Control access of DMA, CPU, peripherals, memories (on chip and off chip) with programmable secured regions
- Secure peripherals to ensure they can be protected from software attack
- Isolate critical software from the application OS

Performance Increase with NEONTM Media Processing Engine

● Up to 75% time reduction Compared to SAMA5D3 on FFT Algorithms

FFT type	C time (us)	NEON time (us)	Saved time
FFT, 256 point, 16 bit, Real-valued	366	92	75%
FFT, 256 point, 16 bit, Complex-valued	550	183	66%

● H264 Encoding Improvement Based on ITTIAM Codec

Atmel

System Architecture – L2 Cache

- Improve Performances when Heavy Memory Traffic is Required
 - Reduces number of external memories accesses
- Controlled by the L2-Cache Controller (L2CC)
 - External to the core
 - Unified, physically addressed and tagged
- 8-way Set Associative Cache Architecture
- Operates at MCK Frequency
 - Slower than L1-Cache (inner cache)
- No Hardware L1/L2-Cache Coherency

System Architecture – L2 Cache

• SAMA5D4/D2 with L2-cache vs. SAMA5D3 (no L2-cache) Comparison Using Lmbench

	Read Speed	Write Speed
SAMA5D4	x1.5	x2

 L2-cache Improves Latency (Divided by 3) with Block Data up to 750 kB

ETM upgraded

- Real-time <u>Instruction And Data</u> Tracing of the Processor
 - Trace and debug your system execution in real-time
 - Non-intrusive and cycle accurate
- ETM Uses JTAG Pins
- 8 Kbytes of Embedded Trace Buffer (ETB)
- 32-bit Data Width

GPIO I/O Sets

- For SAMA5D2 only
- An I/O Set Defines the Pin Assignment of Communication Peripherals
 - To be defined at startup in the Boot Configuration Word
 - Each peripheral's ports have one or more different I/O sets
 - Outputs and inputs can be duplicated
 - Up to 6 functions can be multiplexed on the same line
 - Different speed depending on the function, up to 133MHz
- HW Schematics Must be Aligned with the Selected I/O Set
 - GPIO assignment for each I/O set given in the datasheet

Peripheral	IO Set	Signal	GPIO			
	4	SPCK	PIOA14			
		MOSI	PIOA15			
	1	MISO	PIOA16			
SDI 0		NPCS0 PIOA17				
SPI_0	2	NPCS0	PIOA30			
		MISO	PIOA31			
	2	MOSI	PIOB0			
		SPCK	PIOB1			

SAMA5 Products

Product Portfolio

Entry Level MPU, Price, SDRAM

Entry Level UI Applications / Basic Linux Machine

SAM9 Series SAMA5D3 SAMA5D4 DDR3 Support, Low Power, Low system cost High Grade Security

Secure Gateway, Payment, Battery Operated Applications

Low Power, Connectivity, Large number of I/Os

Battery Operated Applications, Gateway

HW Video Decoder, Performance, Advanced Security

UI with Video applications, Secure Gateway

SAMA5 Features

SAMA5D3 Derivatives

Features	SAMA5D31	SAMA5D33	SAMA5D34	SAMA5D35	SAMA5D36	
package	BGA324 (15x15,0.8mm pitch or 12x12, 0.5mm pitch)					
I/Os			160			
LCDC		~		=		
GMAC	-	☑	☑	W	☑	
EMAC		_	<u> </u>			
CAN0&1	_	_	V	W	V	
Camera int.	=	lacksquare	<u> </u>	lacksquare	lacksquare	
SD/MMC 2		_		lacksquare	lacksquare	
Cryptography	lacksquare	lacksquare		lacksquare	lacksquare	
Secure boot				☑		

SAMA5D2 Derivatives

	SAMAJUZ DEITVO						
	SAMA5D21	SAMA5D22	SAMA5D23	SAMA5D24	SAMA5D26	SAMA5D27	SAMA5D28
Package	BGA19	96 (11x11, 0.75mn	ı pitch)	BGA256 (8x8, 0.4)	В	GA289 (14x14, 0.	3)
IOs		72		105		128	
DDR bus	16-bit	16-bit	16-bit	16/32-bit	16/32-bit	16/32-bit	16/32-bit
Ext. Temp. option			V	_	lacksquare		
CAN-FD		V	V	-	_		
USB HSIC			_		_	\checkmark	
Secure Boot, Tamper]	~		~		~	
Enc/Dec OTF				lacksquare			
Security monitors, die shield	_	_	✓	_	1	_	

Please refer to datasheet for CPN list

Peripherals

FLEXCOM

• Three Configurable Modes

- TWIHS master/high-speed slave with 16 bytes FIFO, up to 3.4 Mbit/s
- SPI master/slave with 32 bytes FIFO
- USART with 32 bytes FIFO supporting LIN, ISO7816, RS485 and IrDA

Quad SPI (QSPI)

Two Quad SPI Ports

- Operating in Single-bit SPI, Dual SPI and Quad SPI
- 32-bit address mode (default is 24-bit address) to support Serial Flash memories larger than 128 Mbits
- Up to 133MHz

Supports "Execute In Place" (XIP)

- Code execution by the system directly from a Serial Flash Memory
- Supported by the BootROM
- Leads to DDR-less System

On-The-Fly Scrambling/Unscrambling Capability

- Zero penalty on data rate
- On-the-fly Encryption/Decryption using AESB

QSPI eXecute In Place (XiP)

XIP Support for Low-cost / RTOS-optimized Configuration

Standard MPU Configuration

SAMA5D2 DDR-less Configuration (L2 cache configured as SRAM)

SAMA5D2 Audio Subsystem

Fractional-N Audio PLL with Dedicated Clock Output

- Enables Audio Master clock generation for external devices (DACs, CODECs, etc.)
- Saves one on-board crystal (12.288 MHz or 11.2896 MHz)

Up to 4x I²S Ports

- 2x SSC
 - Feature-rich audio interface (fully programmable)
 - Supports I2S or TDM transmissions
 - Asynchronous RX and TX
- 2x I²S
 - Left or I²S justification, 8 to 32 bits per channel
 - RX and TX share the same bit and frame clock

PDM Interface (PDMIC)

- Supports 16-bit resolution sampling for microphone applications
- Hardware x64/x128 decimation filters

CLASS D Amplifier

- Output power from 500mW to ~5W. Depends on output stage
- Saves 0.5\$ in BOM

High-Speed Peripherals

Have their own DMA

DMA -> XDMA

• Up to 24 channels, built-in FIFO, supports mem-to-mem, per-to-mem, mem-to-per

USBHS

• Full digital High-Speed Inter-Chip (HSIC), no PHY is needed, can replace SPI/I2C

MCI -> SDMMC

• Supports MMC up to 120 MHz, SDIO up to 104 MHz, SDXC, SDHC up to 52 MHz

LCD

• 720p (up to 30fps), video overlays with rotation, composer with alpha blending

EMAC -> GMAC

 Gigabit on D3, 10/100 Mbit/s, MII/RMII, 4 kB FIFO, wake-on-LAN, Precision Time Protocol IEEE1588, AVB

ISI -> Image Sensor Controller

• Camera interface, pixel clock up to 96 MHz, Raw Bayer input format

External Memories

External Memories

SDRAM Type	"old" SAM9	SAM9x5	SAM9G45	SAMA5D3	SAMA5D4	SAMA5D2
Core Freq (MHz)	200	400	400	536	600	500
Bus Freq (MHz)	100	133	133	178	200	166
SDR 3.3V LPSDR 1.8V	32-bit	32-bit	32-bit	-	-	-
DDR21.8V LPDDR11.8V	-	16-bit	16-bit (dual)	32-bit (only)	32-bit	32-bit
LPDDR21.2V	-	-	-	32-bit (only)	32-bit	32-bit
DDR3 1.5V DDR3L 1.35V LPDDR3 1.2V	-	-	-	-	-	32-bit
NAND Flash 1.8V / 3.3V	x	x	x	x	x	x
Static Memory	32-bit	32-bit	32-bit	16-bit	16-bit	16-bit
Data Scrambling	-	-	-	x	x	х
Data Cyphering		-	-	-	x	х
Auto Adaptative Pads		-	-	x	x	х

SAMA5Dx DDR Summary

- 8-bank Support
 - DDR CS has been extended to 512 MB
- 32-bit Width
- Data scrambling
- Data cyphering
- Auto Adaptative Pads
 - No overshoots, EMI is reduced
 - No need for serial resistors, BOM is reduced
 - Lower consumption on I/Os due to edges that are less sharp
 - DDR_CAL pins

Part 3

Part 3	 Boot Process Performance and Power Consumption Security Overview
Part 2	Cortex-A5 CoreSAMA5 ProductsPeripheralsExternal Memories
Part 1	 ARM926 Core SAM9 Products Common Blocks Peripherals External Memories

Boot Process

MPU Boot Memory Selection

• BMS Pin is Sampled when VDDCORE is Powered

NVM Memory Bootloader Support

AT91 / NVM	Data Flash (SPI)	Serial Flash (SPI)	Nand Flash (EBI)	SD Card (MCI)	EEPROM (TWI)	QSPI
SAM9260	Х	-	SLC w/ block 0	-	-	-
SAM9261	Х	Х	SLC w/ block 0	Х	Х	-
SAM9263 rev B	Х	-	SLC w/ block 0	Х	-	-
SAM9G20 rev A/B	Х	X	SLC w/ block 0	Х	Х	-
SAM9G45/SAM9M10/SAM9M11	Х	Х	SLC w/ block 0	X (+ SDHC)	X	-
SAM9G15/G25/G35/X25/X35/N12	Х	Х	SLC / MLC	X (+ SDHC)	Х	-
SAMA5D3 and SAMA5D4	Х	Х	SLC / MLC	eMMC	X	-
SAMA5D2	Х	X	SLC / MLC	eMMC	Х	Х

- If no valid boot found, ROM code embeds SAM-BA Boot
 - Monitor that provides In-System Programming solutions through different communication channels
 - DBGU Serial port interface
 - USB Device port

Atmel SAM-BA 2.X GUI

Customizing SAM-BA 2.X is Possible by Adding or Modifying TCL
 Scripts Files

- Command Line Mode Allows Memory Programming without any GUI Interaction
- New version is SAM-BA v3.1 in command line only

Secure Boot

ROM Boot Secure

- Similar Process to Standard Boot (except for BMS)
- ROM Code Searches for a Valid Boot Code in NVM
- Authenticates, Decrypts and Copies the Valid Boot Code into Internal SRAM and Runs Code
- If No Valid Code is Detected, Secure SAM-BA Monitor is Executed

SAMA5D2 Secure Boot Features

SAMA5D2 Features

- Array of 544 OTP bits (512 for SAMA5D4)
- Bits in special register to forbid ROM and OTP read accesses

Secure Bootloader is Used to

- Store the customer key and hash in OTP area
- Store an encrypted bootstrap in a Non-Volatile Memory (NVM)
- Checks the customer bootstrap's signature
- Decrypt the customer bootstrap prior to launching it
- Atmel Provides Tools to Cypher and Sign Bootstrap and Application

Performance and Power Consumption

Typical Power Management

Power Rail	Voltage	Associated Ground
VDDCORE	1.10V – 1.32V, 1.20V	GNDCORE
VDDPLLA	1.10V – 1.32V, 1.20V	GNDPLLA
VDDUTMIC	1.10V – 1.32V, 1.20V	GNDUTMII-> USB
VDDUTMII	3.00V - 3.60V, 3.30V	GNDUTMII
VDDOSC	1.65V - 3.60V	GNDOSC
VDDIODDR	1.70V – 1.90V, 1.80V	GNDIODDR
	1.14V – 1.30V, 1.20V	
	1.29V - 1.45V, 1.35V	For DDR3(L), SAMA5D2 only
	1.43V – 1.57V, 1.50V	
VDDIOPx	1.65V - 3.60V	GNDIOPx
VDDANA	1.65V - 3.60V, 3.30V	GNDANA
VDDFUSE	2.25V - 2.75V, 2.50V	GNDFUSE
VDDBU	1.65V - 3.60V	GNDBU
VDDHSIC	1.10V - 1.30V, 1.20V	GNDUTMII
VDDISC	1.65V - 3.60V	GNDISC
VDDSDMMC	1.65V - 3.60V	GNDSDMMC
VDDAUDIOPLL	3.00V - 3.60V, 3.30V	GNDAUDIOPLL/GNDDPLL

Power Management Solutions

Reference Design with PMIC for SAMA5

- Schematics available in the SAMA5D2-XULT User Guide
- Cost: ~1\$ for 10Ku

Solution with Discrete Components also Available

- Schematics available in a dedicated application note: SAMA5D2 Discrete Power Supply Solution available on atmel.com
- Cost: ~1,2\$ for 10ku

PMIC Typical Connection

Discrete Typical Connection

- Based on 3 Different Voltage Regulators and a Startup Network
- Dedicated Application Note on atmel.com
 - http://www.atmel.com/Images/Atmel-44022-32-bit-ARM-Embedded-Microprocessor-Discrete-Power-Supply-Solution-for-Atmel-eMPUs_Application-note.pdf

• Cost is < 1\$ for 100Ku

Low Power Modes Definition

Mode	What is active?	Core/ Bus Frequency	Entry Mode	Wake-up Source	Wake-up Time	
ldle	RC Oscillators SECURAM Secure Box Module System Bus DDR	OFF /166 MHz	WFI	Any interrupt	880ns @ 500 MHz	
Ultra Low Power 0	RC Oscillators SECURAM Secure Box Module System Bus	OFF / 512 Hz	DDR self refresh + WFI	Any interrupt	300ms	
Ultra Low Power 1 (SAMA5D2 only)	Same as ULP0	OFF /OFF	DDR self refresh + LPM + WFE	Wake up pins and events	15µs	
Backup	RC Oscillators	OFF	SHDN pin	WKUP0 pin, PIOBU, RTC wake-up event,		
Backup with DDR Self Refresh	SECURAM Secure Box Module	/OFF	DDR self refresh + SHDN pin	Analog comparison, Character Received on RXLP	Startup time	

Active and Low Power Modes

SAM 9261	SAM9G20	SAM9-5	SAM9G45	SAM A5D3	SAM A5D4	SAM A5D2	TI AM 3352	Freescale iMX7 Solo	Renesas RZ/A1 Lx
188	400	400	400	536	600	500	1000	800	400
94	133	133	133	178	200	166			
1.2	1.0	1.0	1.0	1.2	1.8 (embedded regulator)	1.2	1.1	1.1	1.18
70	50	110	130	150	328	150	1000 (600MHz)	500	450
SAM9261	SAM9G20	SAM9-5	SAM9G45	SAM A5D3	SAM A5D4	SAM A5D2			
13	20	38	55	29	58	34	-	29	65
0.3	8.0	8.0	35	0.5	8.5	0.7	16.5 (stdby)	2.5 (stdby)	15
-	-	-	-	-	-	0.3	-	1.8 (dsm)	-
3	9	8	8	4	14	14	40 (RTC-Only)	15 (snvs)	-
	-	-	-	-	-	14 (VDDBU) + 120 (VDDIODDR)	40 + ?	210	-
	188 94 1.2 70 SAM 9261 13 0.3	188 400 94 133 1.2 1.0 70 50 SAM9261 SAM9G20 13 20 0.3 8.0 - -	188 400 400 94 133 133 1.2 1.0 1.0 70 50 110 SAM9261 SAM9G20 SAM9-5 13 20 38 0.3 8.0 8.0 - - -	188 400 400 400 94 133 133 133 1.2 1.0 1.0 1.0 70 50 110 130 SAM9261 SAM9G20 SAM9-5 SAM9G45 13 20 38 55 0.3 8.0 8.0 35 - - - -	188 400 400 400 536 94 133 133 133 178 1.2 1.0 1.0 1.0 1.2 70 50 110 130 150 SAM9261 SAM9G20 SAM9-5 SAM9G45 SAMA5D3 13 20 38 55 29 0.3 8.0 8.0 35 0.5 - - - - -	188 400 400 400 536 600 94 133 133 133 178 200 1.2 1.0 1.0 1.0 1.2 (embedded regulator) 70 50 110 130 150 328 SAM9261 SAM9G20 SAM9-5 SAM9G45 SAM A5D3 SAM A5D4 13 20 38 55 29 58 0.3 8.0 8.0 35 0.5 8.5 - - - - - - -	188 400 400 400 536 600 500 94 133 133 133 178 200 166 1.2 1.0 1.0 1.0 1.2 (embedded regulator) 1.2 70 50 110 130 150 328 150 SAM9261 SAM9G20 SAM9-5 SAM9G45 SAMA5D3 SAMA5D4 SAMA5D2 13 20 38 55 29 58 34 0.3 8.0 8.0 35 0.5 8.5 0.7 - - - - - 0.3 3 9 8 8 4 14 14 (VDDBU) + - - - - - - +	SAM9261 SAM9G20 SAM9-5 SAM9G45 SAMASD3 SAMASD4 SAMASD2 AM3352 188 400 400 400 536 600 500 1000 94 133 133 133 178 200 166 1.2 1.0 1.0 1.0 1.2 (embedded regulator) 1.2 1.1 70 50 110 130 150 328 150 1000 (600MHz) SAM9261 SAM9G20 SAM9-5 SAM9G45 SAMA5D3 SAMA5D4 SAMA5D2 13 20 38 55 29 58 34 - 0.3 8.0 8.0 35 0.5 8.5 0.7 16.5 (stdby) - - - - - - 0.3 - 3 9 8 8 4 14 14 (vDDBU) 40 (RTC-Only) - - - - - - -	SAM9261 SAM9G20 SAM9-5 SAM9G45 SAM A5D3 SAM A5D4 SAM A5D2 AM3352 iMX7 Solo 188 400 400 400 536 600 500 1000 800 94 133 133 133 178 200 166 1.8 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Security Overview

Atmel

Secure Box Module

Provides Permanent Monitoring to Avoid Attacks on the Device

Automatic erase and core wake-up upon intrusion detection

Thank you for your attention!

© 2016 Atmel Corporation.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be the trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel PRODUCTS. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life