ESP32-WROOM-32

技术规格书

关于本文档

本文档为用户提供 ESP32-WROOM-32 模组的技术规格。

修订历史

请至文档最后页查看修订历史。

文档变更通知

用户可以通过乐鑫官网订阅页面 www.espressif.com/zh-hans/subscribe 订阅技术文档变更的电子邮件通知。

证书下载

用户可以通过乐鑫官网证书下载页面 www.espressif.com/zh-hans/certificates 下载产品证书。

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。版权归 © 2018 乐鑫所有。保留所有权利。

目录

1	概述	1
2 2.1 2.2 2.3	管脚定义 管脚布局 管脚定义 Strapping 管脚	3 3 3 5
3 3.1 3.2 3.3 3.4	功能描述 CPU 和片上存储 外部 Flash 和 SRAM 晶振 RTC 和低功耗管理	6 6 6 6
4	外设接口和传感器	7
5 5.1 5.2 5.3 5.4 5.5	电气特性 绝对最大额定值 建议工作条件 直流电气特性 (3.3 V, 25 °C) Wi-Fi 射频 低功耗蓝牙射频 5.5.1 接收器 5.5.2 发射器 回流焊温度曲线	8 8 8 9 9 9
6	电路原理图	12
7	外围原理图	13
8	模组尺寸	15
9	PCB 封装图形	16
10.1	学习资源 1 必读资料 2 必备资源	17 17 17
修	订历史	18

表格

1	ESP32-WROOM-32 产品规格	1
2	管脚定义	3
3	Strapping 管脚	5
4	绝对最大额定值	8
5	建议工作条件	8
6	直流电气特性 (3.3 V, 25 °C)	8
7	Wi-Fi 射频特性	9
8	低功耗蓝牙接收器特性	9
9	低功耗蓝牙发射器特性	10

插图

1	ESP32-WROOM-32 管脚布局(顶视图)	3
2	回流焊温度曲线	11
3	ESP32-WROOM-32 电路原理图	12
4	ESP32-WROOM-32 外围原理图	13
5	VDD33 放电电路图	13
6	复位电路	14
7	ESP32-WROOM-32 尺寸	15
8	PCB 封装图形	16

1. 概述

ESP32-WROOM-32 是一款通用型 Wi-Fi+BT+BLE MCU 模组,功能强大,用途广泛,可以用于低功耗传感器网络和要求极高的任务,例如语音编码、音频流和 MP3 解码等。

此款模组的核心是 ESP32-DOWDQ6 芯片*, 具有可扩展、自适应的特点。两个 CPU 核可以被单独控制。时钟 频率的调节范围为 80 MHz 到 240 MHz。用户可以切断 CPU 的电源,利用低功耗协处理器来不断地监测外设的 状态变化或某些模拟量是否超出阈值。ESP32 还集成了丰富的外设,包括电容式触摸传感器、霍尔传感器、低噪声传感放大器,SD 卡接口、以太网接口、高速 SDIO/SPI、UART、I²S 和 I²C 等。

说明:

*关于 ESP32 系列芯片的产品型号说明请参照文档 _《ESP32 技术规格书》。

模组集成了传统蓝牙、低功耗蓝牙和 Wi-Fi,具有广泛的用途: Wi-Fi 支持极大范围的通信连接,也支持通过路由器直接连接互联网; 而蓝牙可以让用户连接手机或者广播 BLE Beacon 以便于信号检测。ESP32 芯片的睡眠电流小于 5 μ A,使其适用于电池供电的可穿戴电子设备。模组支持的数据传输速率高达 150 Mbps,天线输出功率达到 20 dBm,可实现最大范围的无线通信。因此,这款模组具有行业领先的技术规格,在高集成度、无线传输距离、功耗以及网络联通等方面性能极佳。

ESP32 的操作系统是带有 LwIP 的 freeRTOS,还内置了带有硬件加速功能的 TLS 1.2。芯片同时支持 OTA 加密升级,方便开发者在产品发布之后继续升级。

表 1 列出了 ESP32-WROOM-32 的产品规格。

表 1: ESP32-WROOM-32 产品规格

类别	项目	产品规格			
	RF 认证	FCC/CE-RED/IC/TELEC/KCC/SRRC/NCC			
 认证	Wi-Fi 认证	Wi-Fi Alliance			
И.	蓝牙认证	BQB			
	环保认证	RoHS/REACH			
测试	可靠性	HTOL/HTSL/uHAST/TCT/ESD			
	协议	802.11 b/g/n(802.11n,速度高达 150 Mbps)			
Wi-Fi		A-MPDU 和 A-MSDU 聚合,支持 0.4 μs 保护间隔			
	频率范围	2.4 GHz ~ 2.5 GHz			
	协议	符合蓝牙 v4.2 BR/EDR 和 BLE 标准			
		具有-97 dBm 灵敏度的 NZIF 接收器			
蓝牙	射频	Class-1, Class-2 和 Class-3 发射器			
		AFH			
	音频	CVSD 和 SBC 音頻			

类别	项目	产品规格
	掛细拉口	SD 卡、UART、SPI、SDIO、I ² C、LED PWM、电机 PWM、I ² S、IR、
	模组接口	脉冲计数器、GPIO、电容式触摸传感器、ADC、DAC
	片上传感器	霍尔传感器
	集成晶振	40 MHz 晶振
硬件	集成 SPI flash	4 MB
	工作电压/供电电压	2.7 V ~ 3.6 V
	工作电流	平均: 80 mA
	供电电流	最小: 500 mA
	建议工作温度范围	-40 °C ~ +85 °C
	封装尺寸	(18.00±0.10) mm x (25.50±0.10) mm x (3.10±0.10) mm

2. 管脚定义

2.1 管脚布局

图 1: ESP32-WROOM-32 管脚布局 (顶视图)

2.2 管脚定义

ESP32-WROOM-32 共有 38 个管脚, 具体描述参见表 2。

表 2: 管脚定义

名称	编号	类型	功能
GND	1	Р	接地
3V3	2	Р	供电
EN	3	1	使能模组,高电平有效。
SENSOR_VP	4	1	GPIO36, ADC1_CH0, RTC_GPIO0
SENSOR_VN	5	1	GPIO39, ADC1_CH3, RTC_GPIO3
IO34	6	1	GPIO34, ADC1_CH6, RTC_GPIO4
IO35	7	1	GPIO35, ADC1_CH7, RTC_GPIO5
IO32	8	I/O	GPIO32, XTAL_32K_P (32.768 kHz 晶振输入), ADC1_CH4, TOUCH9, RTC_GPIO9

名称	编号	类型	功能
IO33	9	I/O	GPIO33, XTAL_32K_N (32.768 kHz 晶振输出), ADC1_CH5, TOUCH8,
1000		1/0	RTC_GPIO8
IO25	10	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0
IO26	11	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
1027	12	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
IO14	13	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2
IO12	14	I/O	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TXD3
GND	15	Р	接地
IO13	16	I/O	GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3, SD_DATA3, EMAC_RX_ER
SHD/SD2*	17	I/O	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD
SWP/SD3*	18	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD
SCS/CMD*	19	I/O	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS
SCK/CLK*	20	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS
SDO/SD0*	21	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS
SDI/SD1*	22	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS
IO15	23	I/O	GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICSO, RTC_GPIO13, HS2_CMD, SD_CMD, EMAC_RXD3
IO2	24	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0, SD_DATA0
100	25	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK
IO4	26	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1, SD_DATA1, EMAC_TX_ER
IO16	27	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT
IO17	28	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180
IO5	29	I/O	GPIO5, VSPICSO, HS1_DATA6, EMAC_RX_CLK
IO18	30	I/O	GPIO18, VSPICLK, HS1_DATA7
IO19	31	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0
NC	32	-	-
IO21	33	I/O	GPIO21, VSPIHD, EMAC_TX_EN
RXD0	34	I/O	GPIO3, U0RXD, CLK_OUT2
TXD0	35	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2
1022	36	I/O	GPIO22, VSPIWP, UORTS, EMAC_TXD1
IO23	37	I/O	GPIO23, VSPID, HS1_STROBE
GND	38	Р	接地

注意:

^{*} 管脚 SCK/CLK,SDO/SD0,SDI/SD1,SHD/SD2,SWP/SD3,和 SCS/CMD,即 GPIO6 至 GPIO11 用于连接模组上 集成的 SPI flash,不建议用于其他功能。

2.3 Strapping 管脚

ESP32 共有 5 个 Strapping 管脚,可参考章节 6 电路原理图:

- MTDI
- GPI00
- GPI02
- MTDO
- GPI05

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个管脚 strapping 的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位)过程中,Strapping 管脚对电平采样并存储到锁存器中,锁存为"0"或"1",并一直保持到芯片掉电或关闭。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有外部连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32 上电复位时的 Strapping 管脚电平。

复位后, Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 3。

表 3: Strapping 管脚

内置 LDO (VDD_SDIO) 电压							
管脚	默认	3.0	3 V	1.8 V			
MTDI	下拉	(0	-	1		
		系统	虎启动模式				
管脚	管脚 默认 SPI 启动模式 下载启动模式						
GPIO0	上拉	-	1	()		
GPIO2 下拉			关项	0			
		系统启动过程中	中,控制 U0TXD 打印	印			
管脚	默认	U0TXD 正常打印		UOTXD 上	.电不打印		
MTDO	上拉	-	1	0			
		SDIO 从机化	言号输入输出时序				
管脚	默认	下降沿输人	下降沿输入	上升沿输入	上升沿输入		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		下降沿输出	上升沿输出	下降沿输出	上升沿输出		
MTDO	上拉	0	0	1	1		
GPIO5	上拉	0	1	0	1		

说明:

- 固件可以通过配置一些寄存器比特位,在启动后改变"内置 LDO (VDD_SDIO) 电压"和 "SDIO 从机信号输入输出时序"的设定。
- 因为模组内置了 3.3 V SPI flash, 所以上电时不能将 MTDI 置 1。

3. 功能描述

本章描述了 ESP32-WROOM-32 的各个模块和功能。

3.1 CPU 和片上存储

ESP32-D0WDQ6 内置两个低功耗 Xtensa® 32-bit LX6 MCU。片上存储包括:

- 448 KB 的 ROM, 用于程序启动和内核功能调用
- 用于数据和指令存储的 520 KB 片上 SRAM
- RTC 快速存储器,为 8 KB 的 SRAM,可以在 Deep-sleep 模式下 RTC 启动时用于数据存储以及被主 CPU 访问
- RTC 慢速存储器,为 8 KB的 SRAM,可以在 Deep-sleep模式下被协处理器访问
- 1 Kbit 的 eFuse, 其中 256 bit 为系统专用 (MAC 地址和芯片设置); 其余 768 bit 保留给用户程序, 这些程序包括 flash 加密和芯片 ID

3.2 外部 Flash 和 SRAM

ESP32 支持多个外部 QSPI flash 和静态随机存储器 (SRAM)。详情可参考<u>《ESP32 技术参考手册》</u>中的 SPI 章节。ESP32 还支持基于 AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。

ESP32 可通过高速缓存访问外部 QSPI flash 和 SRAM:

- 外部 flash 可以同时映射到 CPU 指令和只读数据空间。
 - 当映射到 CPU 指令空间时,一次最多可映射 11 MB + 248 KB。如果一次映射超过 3 MB + 248 KB,则 cache 性能可能由于 CPU 的推测性读取而降低。
 - 当映射到只读数据空间时,一次最多可以映射 4 MB。支持 8-bit、16-bit 和 32-bit 读取。
- 外部 SRAM 可映射到 CPU 数据空间。一次最多可映射 4 MB。支持 8-bit、16-bit 和 32-bit 访问。

ESP32-WROOM-32 集成了 4 MB 的 SPI flash,连接 ESP32 的管脚 GPIO6,GPIO7,GPIO8,GPIO9,GPIO10和 GPIO11。这六个管脚不建议用于其他功能。

3.3 晶振

模组使用 40 MHz 晶振。

3.4 RTC 和低功耗管理

ESP32 采用了先进的电源管理技术,可以在不同的功耗模式之间切换。

关于 ESP32 在不同的功耗模式下的电流消耗,详见《ESP32 技术规格书》中章节 "RTC 和低功耗管理"。

4. 外设接口和传感器

详见_《ESP32 技术规格书》中外设接口和传感器章节。

说明:

GPIO6-11 已用于连接模组上集成的 SPI flash, 其它外设可以使用除 GPIO6-11 以外的任一 GPIO, 详见章节 6 原理图。

5. 电气特性

5.1 绝对最大额定值

超出绝对最大额定值表可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。建议工作条件请参考表 5。

表 4: 绝对最大额定值

符号	参数	最小值	最大值	单位
VDD33	供电电压	-0.3	3.6	V
I_O^1	IO 输出总电流	-	1,100	mA
T_{store}	存储温度	-40	150	°C

- 1. 模组的 IO 输出总电流的测试条件为 25 °C 环境温度, VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO 三个电源域的管脚输出高电平且直接接地。此时模组在保持工作状态 24 小时后, 仍能正常工作。其中 VDD_SDIO 电源域的管脚不包括连接 flash 和/或 PSRAM 的管脚。
- 2. 关于电源域请参考《ESP32 技术规格书》 附录中表 IO_MUX。

5.2 建议工作条件

表 5: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDD33	供电电压	2.7	3.3	3.6	V
I_{VDD}	外部电源的供电电流	0.5	-	-	А
Т	工作温度	-40	-	85	°C

5.3 直流电气特性 (3.3 V, 25 °C)

表 6: 直流电气特性 (3.3 V, 25 °C)

符号	参数	最小值	典型值	最大值	单位	
C_{IN}	管脚电容		-	2	-	рF
V_{IH}	高电平输入电压		0.75×VDD ¹	-	VDD1+0.3	V
V_{IL}	低电平输入电压		-0.3	-	0.25×VDD ¹	V
$ I_{IH} $	高电平输入电流		-	-	50	nA
$ I_{IL} $	低电平输入电流	-	-	50	nA	
V_{OH}	高电平输出电压	0.8×VDD ¹	-	-	V	
V_{OL}	低电平输出电压	-	-	0.1×VDD ¹	V	
	高电平拉电流	VDD3P3_CPU 电源域 1, 2	-	40	-	mA
$ _{OH}$	$(VDD^1 = 3.3 \text{ V}, V_{OH} >= 2.64 \text{ V},$	VDD3P3_RTC 电源域 ^{1, 2}	-	40	-	mA
	管脚输出强度设为最大值)	VDD_SDIO 电源域 ^{1, 3}	-	20	-	mA
	低电平灌电流					
I_{OL}	$(VDD^1 = 3.3 \text{ V}, V_{OL} = 0.495 \text{ V},$		_	28	-	mA
	管脚输出强度设为最大值)					

符号	参数	最小值	典型值	最大值	单位
R_{PU}	上拉电阻	-	45	-	kΩ
R_{PD}	下拉电阻	-	45	-	kΩ
V_{IL_nRST}	CHIP_PU 复位芯片的低电平输入电压	-	-	0.6	V

说明:

- 1. VDD 是 I/O 的供电电源。关于电源域请参考_《ESP32 技术规格书》_ 附录中表 IO_MUX。
- 2. VDD3P3_CPU 和 VDD3P3_RTC 电源域管脚的单个管脚的拉电流随管脚数量增加而减小,从约 40 mA 减小到约 29 mA。
- 3. VDD_SDIO 电源域的管脚不包括连接 flash 和/或 PSRAM 的管脚。

5.4 Wi-Fi 射频

表 7: Wi-Fi 射频特性

参数	条件	最小值	典型值	最大值	单位
输入频率	-	2412	-	2484	MHz
输出阻抗*	-	-	*	-	Ω
输出功率	11n, MCS7	12	13	14	dBm
	11b 模式	17.5	18.5	20	dBm
灵敏度	11b, 1 Mbps	-	-98	-	dBm
	11b, 11 Mbps	-	-89	-	dBm
	11g, 6 Mbps	-	-92	-	dBm
	11g, 54 Mbps	-	-74	-	dBm
	11n, HT20, MCS0	-	- 91	-	dBm
	11n, HT20, MCS7	-	-71	-	dBm
	11n, HT40, MCS0	-	-89	-	dBm
	11n, HT40, MCS7	-	-69	-	dBm
邻道抑制	11g, 6 Mbps	-	31	-	dB
	11g, 54 Mbps	-	14	-	dB
	11n, HT20, MCS0	-	31	-	dB
	11n, HT20, MCS7	-	13	-	dB

 $^{^*}$ 使用 IPEX 天线的模组输出阻抗为 50 Ω ,不使用 IPEX 天线的模组可无需关注输出阻抗。

5.5 低功耗蓝牙射频

5.5.1 接收器

表 8: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	-	-	- 97	-	dBm
最大接收信号 @30.8% PER	-	0	-	-	dBm

参数	条件	最小值	典型值	最大值	单位
共信道抑制比 C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 -1 MHz	-	-5	-	dB
邻道抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB
邻担抑制比 ○//	F = F0 -2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 –3 MHz	-	-45	-	dB
带外阻塞	30 MHz ~ 2000 MHz	-10	-	-	dBm
	2000 MHz ~ 2400 MHz	-27	-	-	dBm
	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
互调	-	- 36	-	-	dBm

5.5.2 发射器

表 9: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率	-	-	0	-	dBm
增益控制步长	-	-	3	-	dBm
射频功率控制范围	-	-12	-	+12	dBm
	$F = F0 \pm 2 MHz$	-	-52	-	dBm
邻道发射功率	$F = F0 \pm 3 \text{ MHz}$	-	-58	-	dBm
	$F = F0 \pm > 3 \text{ MHz}$	-	-60	-	dBm
$\Delta f1_{avg}$	-	-	-	265	kHz
$\Delta f2_{max}$	-	247	-	-	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
漂移速率	-	-	0.7	-	kHz/50 μs
偏移	-	-	2	-	kHz

回流焊温度曲线 5.6

图 2: 回流焊温度曲线

11

6. 电路原理图

图 3: ESP32-WROOM-32 电路原理图

7. 外围原理图

图 4: ESP32-WROOM-32 外围原理图

说明:

- MTDI 应保持低电平。
- ESP32-WROOM-32 管脚 39,可以不焊接到底板。若用户将该管脚焊接到底板,请确保使用适量的焊锡膏。

图 5: VDD33 放电电路图

说明:

放电电路用在需要快速反复开关 VDD33, 且 VDD33 外围电路上有大电容的场景。详情请参考<u>《ESP32 技术规格书》</u>中**电源管理**章节。

图 6: 复位电路

说明:

当使用电池给 ESP32 系列芯片和模组供电时,为避免电池电压过低导致芯片进入异常状态不能正常启动,一般推荐外接 Power Supply Supervisor。建议检测到供给 ESP32 的电压低于 2.3V 时将 ESP32 的 CHIP_PU 脚拉低。

8. 模组尺寸

8. 模组尺寸

图 7: ESP32-WROOM-32 尺寸

9. PCB 封装图形

图 8: PCB 封装图形

10. 学习资源

10.1 必读资料

访问以下链接可下载有关 ESP32 的文档资料。

• 《ESP32 技术规格书》

本文档为用户提供 ESP32 硬件技术规格简介,包括概述、管脚定义、功能描述、外设接口、电气特性等。

《ESP-IDF 编程指南》

ESP32 相关开发文档的汇总平台,包含硬件手册,软件 API 介绍等。

• 《ESP32 技术参考手册》

该手册提供了关于 ESP32 的具体信息,包括各个功能模块的内部架构、功能描述和寄存器配置等。

• ESP32 硬件资源

压缩包提供了 ESP32 模组和开发板的硬件原理图, PCB 布局图, 制造规范和物料清单。

• 《ESP32 硬件设计指南》

该手册提供了 ESP32 系列产品的硬件信息,包括 ESP32 芯片,ESP32 模组以及开发板。

• 《ESP32 AT 指令集与使用示例》

该文档描述 ESP32 AT 指令集功能以及使用方法,并介绍几种常见的 AT 指令使用示例。其中 AT 指令包括基础 AT 指令, Wi-Fi 功能 AT 指令, TCP/IP 相关 AT 指令等;使用示例包括单连接 TCP 客户端,UDP 传输,透传,多连接 TCP 服务器等。

• 《乐鑫产品订购信息》

10.2 必备资源

以下为有关 ESP32 的必备资源。

• ESP32 在线社区

工程师对工程师 (E2E) 的社区,用户可以在这里提出问题,分享知识,探索观点,并与其他工程师一起解决问题。

• ESP32 GitHub

乐鑫在 GitHub 上有众多开源的开发项目。

• ESP32 工具

ESP32 flash 下载工具以及《ESP32 认证测试指南》。

• ESP-IDF

ESP32 所有版本 IDF。

• ESP32 资源合集

ESP32 相关的所有文档和工具资源。

修订历史

日期	版本	发布说明
2018.10	V2.7	在表 4 "绝对最大额定值"中增加 "IO 输出总电流";
2010.10	V Z. I	在表 6 "DC 直流电气特性"中增加各个电源域的拉电流平均值。
2018.08	V2.6	 表 1 "ESP32-WROOM-32 产品规格"中增加可靠性测试项目,删除软件相关内容; 更新章节 3.4 RTC 和低功耗管理; 将模组尺寸由 (18±0.2) mm x (25.5 ±0.2) mm x (3.1±0.15) mm 改为
		(18.00±0.10) mm x (25.50±0.10) mm x (3.10±0.10) mm; ● 更新模组尺寸图; ● 更新表 7: Wi-Fi 射频特性。
2018.06	V2.5	 将模组名称改为 ESP32-WROOM-32; 删除表 1 ESP32-WROOM-32 产品规格中温度传感器; 更新章节 3 功能描述; 增加章节 8 PCB 封装图形; 电气特性相关的更新: 更新表 4 绝对最大额定值; 增加表 5 建议工作条件; 增加表 6 DC 直流电气特性; 更新表 9 低功耗蓝牙发射器特性中"增益控制步长","邻道发射功率"参数。
2018.03	V2.4	更新章节 1 中的表 1。
2018.01	V2.3	删除超低噪声前置模拟放大器相关的内容; 更新章节 3.4 RTC 和低功耗管理; 在章节 7 中增加复位电路图。
2017.10	V2.2	更新章节 2.3 Strapping 管脚中关于芯片系统复位的描述; 删除表"不同功耗模式下的功耗"中"关联睡眠方式";增加关于 Active sleep 和 Modem-sleep 的说明; 在章节 7 中修改外围设计原理图的说明;增加 VDD33 放电电路图。
2017.09	V2.1	更新工作电压/供电电压范围为 2.7 ~ 3.6V; 更新章节 7。
2017.08	V2.0	将表 1 中 NZIF 接收器的 BLE 接收灵敏度改为 -97 dBm; 更新模组尺寸; 更新表 "不同功耗模式下的功耗",并增加两条说明; 更新表 4,7,8,9; 增加章节 8 模组尺寸; 增加产品证书下载 <u>链接</u> 。
2017.06	V1.9	在章节 2.1 管脚布局中增加一条说明; 更新章节 3.3 晶振; 更新图 3 电路原理图; 增加文档变更通知。
2017.05	V1.8	更新图 1 ESP-WROOM-32 俯视图和侧视图。
2017.04	V1.7	增加模组尺寸误差值; 将表 7 Wi-Fi 射频 输入阻抗值 50 Ω 改为输出阻抗值 30+j10 Ω 。

日期	版本	发布说明
2017.04	V1.6	增加图 2 回流焊温度曲线。
		更新章节 2.2 管脚描述;
2017.03	V1.5	更新章节 3.2 外部 Flash 和 SRAM;
		更新章节 4 外设接口和传感器描述。
		更新章节 1 前言;
		更新章节2管脚定义;
		更新章节3功能描述;
2017.03	V1.4	更新表建议工作条件;
		更新表 7 Wi-Fi 射频;
		更新章节 5.6 回流焊温度曲线;
		增加章节 10 学习资源。
2016.12	V1.3	更新章节 2.1 管脚布局。
2016.11	V1.2	增加图7外设原理图。
2016.11	V1.1	更新图 6 电路原理图。
2016.08	V1.0	首次发布。