Day 5 (28.03.2024)

- 1. You work as a data scientist for a retail company that operates multiple stores. The company is interested in segmenting its customers based on their purchasing behavior to better understand their preferences and tailor marketing strategies accordingly. To achieve this, your team has collected transaction data from different stores, which includes customer IDs, the total amount spent in each transaction, and the frequency of visits. Your task is to build a clustering model using the K-Means algorithm to group customers into distinct segments based on their spending patterns.
- 2. Suppose you are working as a data scientist for a medical research organization. Your team has collected data on patients with a certain medical condition and their treatment outcomes. The dataset includes various features such as age, gender, blood pressure, cholesterol levels, and whether the patient responded positively ("Good") or negatively ("Bad") to the treatment. The organization wants to use this model to identify potential candidates who are likely to respond positively to the treatment and improve their medical approach. Your task is to build a classification model using the KNN algorithm to predict the treatment outcome ("Good" or "Bad") for new patients based on their features. Evaluate the model's performance using accuracy, precision, recall, and F1-score.Make predictions on the test set and display the results.
- 3. You work as a data scientist for a real estate company. The company has collected data on various houses, including features such as the size of the house, number of bedrooms, location, and other relevant attributes. The marketing team wants to build a predictive model to estimate the price of houses based on their features. They believe that linear regression modeling can be an effective approach for this task. Your task is write a Python program to perform bivariate analysis and build a linear regression model to predict house prices based on a selected feature (e.g., house size) from the dataset. Additionally, you need to evaluate the model's performance to ensure its accuracy and reliability.
- 4. You are working for a car dealership, and you want to predict the price of used cars based on various features such as the car's mileage, age, brand, and engine type. You have collected a dataset of used cars with their respective prices. Write a Python program that loads the car dataset and allows the user to input the features of a new car they want to sell. The program should use the Classification and Regression Trees (CART) algorithm from scikit-learn to predict the price of the new car based on the input features
- 5. You are working for a telecommunications company, and you want to predict whether a customer will churn (leave the company) based on their usage patterns and demographic data. You have collected a dataset of past customers with their churn status (0 for not churned, 1 for churned) and various features. Write a Python program that allows the user to input the features (e.g., usage minutes, contract duration) of a new customer. The program should use logistic regression from scikit-learn to predict whether the new customer will churn or not based on the input features.
- 6. You work for a real estate agency and have been given a dataset containing information about properties for sale. The dataset is stored in a Pandas DataFrame named property_data. The DataFrame has columns for property ID, location, number of bedrooms, area in square feet, and listing price. Your task is to analyze the data and answer specific questions about the properties. Using Pandas DataFrame operations, how would you find the following information from the property data DataFrame:
- i. The average listing price of properties in each location.
- ii. The number of properties with more than four bedrooms.

iii. The property with the largest area.