Nested Quantifiers

1. $\exists x \ \forall y \ A(x,y) \ Value: True$

Reasoning: when x = 0, x times any y will equal 0.

2. $\exists x \exists y B(x,y) Value: True$

Reasoning: there is multiple values for x and y that

result in x+y=0. For example, x=-1 and y=1.

3. $\forall x \exists y \ A(x,y) \ Value: True$

Reasoning: when y = 0, y times any x will equal 0.

4. $\exists x \ \forall y \ (A(x,y) \land B(x,y)) \ Value: False$

Reasoning: only 1 x value makes $x^*y=0$ always true, x=0.

And if you plug in x = 0 to B(x,y), you can see that there is only 1 y value that will result in x + y = 0,

that is y = 0. But for the rest on the y values,

the result will not be 0. Therefore, there does not exist

a value x for all y that would satisfy both A(x,y) and B(x,y).

5. $\exists x \exists y (A(x,y) \land \neg B(x,y)) Value: True$

Reasoning: For example, take x = 0 and y = 5. If you plug them

in A(x,y), you get 0*5 = 0. However, if you plug them in B(x,y),

you get 0 + 5 = 0, which is not true. So there exists at least one

value for x and for y that results in A(x,y) being true and $\neg B(x,y)$ being false.