Home Assistant Sonar

Dennis Shim, Seraphine Goh

EE209AS June 14, 2019

Introduction

Problem Statement (1)

- Case 1: Binary
 - o Identify whether or not human is present in room

Problem Statement (2)

- Case 2: Multi-Class
 - Identify human's location in room, with respect to smart speaker
 - o In "front", "behind", to the "right", or to the "left"

Prior Work

- EchoSafe
 - Detect user presence
 - Using 1 kHz sonar
 - Binary Random Forest (RF) classifier
 - Feature selection using Relief-F algorithm
 - Achieved 93.13% accuracy
- Automatic Speaker Verification (ASV)
 - Voice fingerprinting
- Audio beamforming
 - Get angle of incoming sound with multiple microphones

Technical Approach: Data Collection (1)

Matrix Creator

- Open source home assistant
- Eight-microphone array
- 20 Hz to 20 kHz, beamforming
- FPGA

Raspberry Pi 3

- Connects to Matrix Creator via GPIO
- Used for data collection

Technical Approach: Data Collection (2)

- Data was collected from a living room with the Matrix Creator set up in the center
- Data was labelled according to the picture

Technical Approach: Data Collection (3)

Frequency of Tone	Subject Position	# of trials	Label (Binary Label)
1 kHz	No subject	455	0 (0)
	Front (couch-side)	400	1 (1)
	Behind (TV-side)	100	2 (1)
	Right (window-side)	200	3 (1)
	Left (front door-side)	200	4 (1)
20 kHz	No subject	210	0
	Front (couch-side)	200	1
100 Hz	No subject	210	0
	Front (couch-side)	210	1
1 kHz	Moving counterclockwise	100	1
	Moving clockwise	100	2

Technical Approach: Feature Extraction

- Each trial generates nine 4-second .WAV files
 - One for each mic (8) and one beamformed
 - o 65,536 data points per file
- Each file was split into 8 non-overlapping windows
- For each window, features were extracted:
 - Mean, median, standard deviation, max, skewness, kurtosis, 70 MFCCs
 - MFCCs capture features of the frequency spectrum

Analysis and Results: Feature Selection

Setup:

- PCA vs Relief-F
- Binary Random
 Forest (RF) classifier
- Vary N features

Results:

 Relief-F obtained overall higher accuracies than PCA

Conclusion:

 Use Relief-F for feature selection

PCA vs Relief-F for RF Classifier

Analysis and Results: ML Classification (1)

Setup:

- Binary classifiers
- N = 125 features
- Pruned w/ Relief-F

Results:

 Cross-validation accuracies for KNN, RF, KNN, SVM (Gaussian/Linear)

Conclusion:

Top 3: RF, KNN, SVM (Linear)

Analysis and Results: ML Classification (2)

Setup:

- Top 3 binary
- Unpruned (N = 5462 features)
- Pruned (N = 125)

Results:

 Compare unpruned & pruned accuracy

Conclusion:

 Use binary RF for best cross-validation accuracy

Unpruned and Pruned Accuracy for Top 3 Binary Classifiers

Analysis and Results: ML Classification (3)

Pruned Accuracy for Multi-Class Classifiers

Setup:

- N = 125 features
- Pruned w/ Relief-F

Results:

 Cross-validation accuracies

Conclusion:

Top 3: RF, AdaboostM2, SVM (Linear)

Analysis and Results: ML Classification (4)

Setup:

- Top 3 multi-class
- Unpruned (N = 5462 features)
- Pruned (N = 125)

Results:

Compare unpruned& pruned accuracy

Conclusion:

 Use multi-class RF for most robust cross-validation accuracy

Analysis and Results: Frequency

Setup:

- 3 frequencies
- Unpruned
- Pruned (N = 125)

Results:

 Compare unpruned & pruned accuracy

Conclusion:

- Use 1 kHz
- 100 Hz and20 kHz usable

Unpruned and Pruned Accuracy for Varying Frequencies

Analysis and Results: Movement

Setup:

- Multi-class SVM and RF classifiers
- Unpruned
- Pruned (N = 125)

Results:

Compare unpruned & pruned accuracy

Conclusion:

Accuracy doesn't seem bad, but...

Analysis and Results: Movement Confusion Matrix

		Pre	dicted clas	SS
		Stationary (Label 0)	CCW (label 1)	CW (label 2)
True	Stationary (label 0)	200	0	0
class	CCW (label 1)	0	78	22
	CW (label 2)	0	30	70

- Confusion matrix shows that only moving data was misclassified
- Classification accuracy of just moving data is 74%, not as good
- Need more data!

Analysis and Results: Cost Matrix (1)

- Worst case scenario
 - Predict human present (predicted label = 1)
 - Room actually empty (true label = 0)
- Cost matrix
 - Row → True class
 - Column → Predicted class
 - Default: a = 1, b = 1
- Weighted misclassification, given worst case
 - \circ Keep b = 1
 - \circ Increase $a = \{1, 2, 3, 4, 5\}$

Cost		0	a
Cost	=	b	0

		Predicted class		
	a = 1	Label 0	Label 1	
True class	Label 0	348	103	
	Label 1	69	831	

Confusion matrix for a = 1, b = 1 (default)

Analysis and Results: Cost Matrix (2)

Conclusion

 Use a = 3 to minimize both worst-case misclassification and accuracy loss

		Predicted class		
	a = 1	Label 0	Label 1	
True	Label 0	348	103	
class	Label 1	69	831	

	0.88		A	ccurac	y wit	n increa	asınç	j a-vaiu	е		
	0.00	0.878									
				0.875							
	0.87										
						0.000					
	0.86					0.863					
Š											
Accuracy	0.85							0.85			
Acc								0.65			
	0.84										
	0.0									0.839	
	0.83										
	0.82	 1		2		3		4		5	
						a-value					

Accuracy with Increasing a-value

		Predicted class			
	a = 2	Label 0	Label 1		
True	Label 0	382	69		
class	Label 1	106	794		

		Predicted class		
	a = 4	Label 0	Label 1	
True class	Label 0	403	43	
	Label 1	154	746	

		Predicted Class		
	a = 3	a = 3 Label 0 Label		
True Class	Label 0	392	59	
	Label 1	138	762	

		Predicted Class		
	a = 5	Label 0	Label 1	
True	Label 0	407	44	
Class	Label 1	187	713	

Future Directions

- Improvements to multi-class classifier
 - More data
 - More effective classifier (e.g. neural network)
 - More features
 - Better hardware
 - Different frequencies (e.g. ultrasonic)
- Extension of multi-class classifier
 - More classes, currently detects quadrants (i.e. 90 degree slices)
 - Extend to octets (i.e. 45 degree slices)
 - Exact angle via regression problem
- Protect against attacks using angle

References

Image References

- Amazon Echo: https://www.bhphotovideo.com/images/images2500x2500/amazon_echo_2nd_generation_charcoal_1365629.jpg
- Google Home: https://pisces.bbystatic.com/image2/BestBuy US/images/products/5578/5578849cv1d.jpg
- Living Room: https://www.marniegoodfriend.com/wp-content/uploads/2018/08/Simple-Living-Room-Ideas-Awesome.jpg
- Stick Figure: https://www.sccpre.cat/mypng/full/67-675869 stick-figure-red-man-isolated-png-image-stick.png
- Audio fingerprint: <a href="https://images.theconversation.com/files/133561/original/image-20160809-18037-130av7l.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=496&fit=clip=rb-1.0&q=45&auto=format&w=496&fit=clip=rb-1.0&q=45&auto=format&w=496&
- Speakers: https://www.accessories4less.com/mas_assets/cache/image/3/4/3/c/13372.Jpg
- Neural network: https://cdn-images-1.medium.com/max/1600/1*Gh5PS4R A5drl5ebd gNrg@2x.png
- Angle: https://www.analyzemath.com/Geometry/angle-1.gif

Other References

- [1] Amr Alanwar, Bharathan Balaji, Yuan Tian, Shuo Yang, and Mani Srivastava. 2017.
 EchoSafe: Sonar-based Verifiable Interaction with Intelligent Digital Agents. In Proceedings of SafeThings'17, Delft, Netherlands, November 5, 2017, 6 pages.
- [2] Arnab Poddar, Md Sahidullah, and Goutam Saha. 2018. Speaker verification with short utterances: a review of challenges, trends and opportunities. IET Biometrics 7, 2 (2018), 91–101. DOI:http://dx.doi.org/10.1049/iet-bmt.2017.0065

Thank you!