

CONTENTS

- I. Introduction
- II. P-tuning
- III. Experiments
- IV. Conclusion

── 기본 (굵으면 강조)

엄청 중요

중요한 것, 소제목 등

부가설명 (포스트잇도 활용)

P-tuning이란?

- Fine-tuning 없이 Downstream task의 성능을 높이기 위한 pre-training 기법
- Continuous space 에서 프롬프트를 자동으로 검색하는 방법

NN은 continuous 하므로 continuous 프롬프트를 사용해야 한다!

모델에게 질문이나 지시를 주는 문장

Fine-tuning 이란?

사전학습된 모델에 내가 하고자 하는 task에 맞춰 새로운 데이터로 추가로 학습시키는 방법

ex. BERT에 악성댓글 데이 터 학습 -> 악성댓글 분류

Downstream task 란?

사전학습된 모델로 내가 최 종적으로 하고자 하는 작업

ex. GLUE benchmark 의 task: CoLA, SST-2, MRPC, STS-B 등

NN은 Continuous 하다

NN은 연속함수이다. $L_1(L_2(...L_n(X))))$ 모든 구성요소가 연속적임.

Activation function, layer 등이 연속적임.

1. Introduction

P-tuning이 제안된 배경

- NLP에서 Pre-trained model은 성공적인 접근 방식
- Pre-training 동안 LM(Language Model)은 문법, 구문, 상식 등 학습
- LM 은 크게 3가지로 분류 가능
 - Unidirectional Language Model (ex. GPT)
 - Bidirectional Language Model (ex. BERT)
 - Hybrid Model (ex. XLNet)
 Natural Language Understand
- GPT스타일 모델이 fine-tuning이 있는 NLU작업에 대해 BERT보다 성능이 ↓
 - => 따라서 GPT가 NLU에 적합하지 않다고 가정
- GPT-3를 활용한 few-shot, zero-shot 성능이 매우 좋았다.
 - => 적절한 프롬프트를 사용한다면 GPT의 성능이 BERT보다 높지 않을까?

Figure 1. Average scores on 7 dev datasets of SuperGlue. GPTs can be better than similar-sized BERTs on NLU with P-tuning.

1. Introduction

이전의 prompt 방식

- 이전 연구에서는 discrete prompt(이산 프롬프트) 를 사용하거나 적절한 프롬프트를 수동으로 탐색
- 최근에는 discrete prompt 자동 검색에 초점 맞춰 연구
- BUT! 신경망은 본질적으로 연속적이기 때문에, 적절한 continuous prompts 를 사용해야 함.

Discrete Prompt 와 Continuous Prompts 의 차이

Prompt Encoder 사용

	Discrete Prompt	[†] Continuous Prompt					
Template	The capital of Britain is [MASK]						
예시	{e(The) e(capital) e(of) e(Britain) e(is) e([MASK])}	$\{h_0 \cdots h_1 e(capital) e(Britain) \ h_{i+1} \cdots h_m e([MASK])\}$					

Architecture

Notation

 $\mathcal{M}: model$

e(word): word 의 embedding

 $e \in \mathcal{M} : e 는 \mathcal{M}$ 의 embedding layer

 $x_{1:n} = \{x_0, x_1, ..., x_n\}$: input tokens

p : *function of a prompt*

T: template

 \mathcal{V} : vocabulary of model \mathcal{M}

 $[P_i]$: i번째 prompt token in a template T

Scenario

수도 맞추기 문제

template: "The capital of Britain is [MASK]"

prompt: "The capital of ... is"

Context: "Britain"

target: "[MASK]"

context와 target은 각 context 와 target 에 따라 변화가능

Architecture Scenario **Notation** 수도 맞추기 문제 Prompt Encoder 구성 \mathcal{M} : mode e(word): \ PromptEncoder($e \in \mathcal{M} : e$ (lstm): LSTM(hidden size, hidden size // 2, num layers=2, bidirectional=True) e([MASK] $x_{1:n} = \{x_0 |$ (mlp): Sequential(uage Model (0): Linear(in features=hidden size, out features=hidden size) p: functi (1): ReLU() (2): Linear(in features=hidden size, out features=hidden size) T: templat), e(y)} V: vocabu e(is) e([MASK]) $[P_i]$: i번째 $., h_m, e(y)$ $\hat{h}_{0:m} = ar_{b_h}$ Bi-directional LSTM + MLP 구조 $h_i = MLP([LSTM(h_{0:i}); LSTM(h_{i:m})])$ → pesudo token을 embed 하는 모델인 prompt encoder bidirection LSTM 에 2-layer MLP 를 얹은 모델 사용 (MLP만 사용해도 됨)

Discrete prompts: $\{e([P_{0:i}]), e(x), e([P_{i+1:m}]), e(y)\}$

P-tuning:
$$\{h_0, ..., h_i, e(capital), e(x), h_{i+1}, ..., h_m, e(y)\}$$
 anchor token
$$h_i = MLP([LSTM(h_{0:i}); LSTM(h_{i:m})])$$

$$\widehat{h}_{0:m} = arg\min_h \mathcal{L}(\mathcal{M}(x,y))$$

Pseudo prompts $[P_i]$ 를 h_i 로 표현함. inference 에서는 $\hat{h}_{0:m}$ 이 학습되어 고정됨.

Anchor Token

■ Anchor Token: 모델에게 task 를 알려주는 token

[Prediction a country's capital]

The capital of Britain is [MASK]

Anchor token: capital, 수도를 답해야 함을 알려줌

[RTE (Recognizing Textual Entailment) task]

[PRE][prompt tokens][HYP]?[prompt tokens][MASK]

Anchor token: ?, [HYP]가 질문으로 작용함을 나타냄

LAMA dataset

Knowledge Probing Task

ex. Dante was born in [MASK]

output: Florence, Italy, korea, seoul, ...

- Dataset
 - LAMA-34k: BERT의 모든 vocab 을 다루고 있음
 - LAMA-29k: GPT와 BERT의 공통 vocab을 다룸
- Template

숫자는 prompt token의 수

- Bidirectional model(BERT): [3, sub, 3, obj, 3]
- Unidirectional model(GPT): [3, sub, 3, obj]

Setting

- Anchor token X
- Learning rate: 1e-5
- Adam optimizer
- Tuning Method
 - Manual Prompt(MP): original handcraft prompts from LAMA
 - Fine-tuning(FT)
 - MP with FT: fine-tuning language model with handcraft prompts
 - P-tuning: continuous prompts

LAMA dataset

GPT Understands, Too

Prompt type	Model	P@1
Original	BERT-base BERT-large	31.1 32.3
(MP)	E-BERT	36.2
DY .	LPAQA (BERT-base)	34.1
Discrete	LPAQA (BERT-large) AutoPrompt (BERT-base)	39.4 43.3
P-tuning	BERT-base	48.3
1 -tulling	BERT-large	50.6

Model	MP	FT	MP+FT	P-tuning
BERT-base (109M)	31.7	51.6	52.1	52.3 (+20.6)
-AutoPrompt (Shin et al., 2020)	_	_	-	45.2
BERT-large (335M)	33.5	54.0	55.0	54.6 (+21.1)
RoBERTa-base (125M)	18.4	49.2	50.0	49.3 (+30.9)
-AutoPrompt (Shin et al., 2020)	_	_	-	40.0
RoBERTa-large (355M)	22.1	52.3	52.4	53.5 (+31.4)
GPT2-medium (345M)	20.3	41.9	38.2	46.5 (+26.2)
GPT2-x1 (1.5B)	22.8	44.9	46.5	54.4 (+31.6)
MegatronLM (11B)	23.1	OOM*	OOM*	64.2 (+41.1)

^{*} MegatronLM (11B) is too large for effective fine-tuning.

Table 2. Knowledge probing Precision@1 on LAMA-34k (left) and LAMA-29k (right). P-tuning outperforms all the discrete prompt searching baselines. And interestingly, despite fixed pre-trained model parameters, P-tuning overwhelms the fine-tuning GPTs in LAMA-29k. (MP: Manual prompt; FT: Fine-tuning; MP+FT: Manual prompt augmented fine-tuning; PT: P-tuning).

MP: 사람이 만든 prompt

Discrete: 이산적으로 생성된 prompt

P-tuning: continuous prompt

SuperGlue dataset

- Tasks (7 dataset for NLU tasks evaluation)
 - BOOIQ, MultiRC: question and answering
 - CB, RTE: textual entailment
 - WiC: co-reference resolution
 - COPA: causal reasoning
 - WSC: word sense disambiguation

Dataset

- Fully-supervised setting
- Few-shot setting: train/dev set 32개

SuperGlue dataset

Fully-supervised learning on SuperGLUE dev with base-scale models

____,

Method	BoolQ CB		WiC	WiC RTE MultiRC			WSC	COPA	Asser	
	(Acc.)	(Acc.)	(F1)	(Acc.)	(Acc.)	(EM)	(Fla)	(Acc.)	(Acc.)	Avg.
BERT-base-cased (109M)										
Fine-tuning	72.9	85.1	73.9	71.1	68.4	16.2	66.3	63.5	67.0	66.2
MP zero-shot	59.1	41.1	19.4	49.8	54.5	0.4	0.9	62.5	65.0	46.0
MP fine-tuning	73.7	87.5	90.8	67.9	70.4	13.7	62.5	60.6	70.0	67.1
P-tuning	73.9	89.2	92.1	68.8	71.1	14.8	63.3	63.5	72.0	68.4
			G	PT2-base (l 17M)					
Fine-tune	71.2	78.6	55.8	65.5	67.8	17.4	65.8	63.0	64.4	63.0
MP zero-shot	61.3	44.6	33.3	54.1	49.5	2.2	23.8	62.5	58.0	48.2
MP fine-tuning	74.8	87.5	88.1	68.0	70.0	23.5	69.7	66.3	78.0	70.2
P-tuning	75.0	91.1	93.2	68.3	70.8	23.5	69.8	63.5	76.0	70.4
	(+1.1)	(+1.9)	(+1.1)	(-2.8)	(-0.3)	(+7.3)	(+3.5)	(+0.0)	(+4.0)	(+2.0)

Table 3. Fully-supervised learning on SuperGLUE dev with base-scale models. MP refers to manual prompt. For a fair comparison, MP zero-shot and MP fine-tuning report results of a single pattern, while anchors for P-tuning are selected from the same prompt. Subscript in red represents advantages of GPT with P-tuning over the best results of BERT.

SuperGlue dataset

Fully-supervised learning on SuperGLUE dev with large-scale models

Method	BoolQ	C	В	WiC	RTE	Mult	tiRC	WSC	COPA	Ano	
Method	(Acc.)	(F1)	(Acc.)	(Acc.)	(Acc.)	(EM)	(Fla)	(Acc.)	(Acc.)	Avg.	
BERT-large-cased (335M)											
Fine-tune*	77.7	94.6	93.7	74.9	75.8	24.7	70.5	68.3	69.0	72.5	
MP zero-shot	49.7	50.0	34.2	50.0	49.9	0.6	6.5	61.5	58.0	45.0	
MP fine-tuning	77.2	91.1	93.5	70.5	73.6	17.7	67.0	80.8	75.0	73.1	
P-tuning	77.8	96.4	97.4	72.7	75.5	17.1	65.6	81.7	76.0	74.6	
	GPT2-medium (345M)										
Fine-tune	71.0	73.2	51.2	65.2	72.2	19.2	65.8	62.5	66.0	63.1	
MP zero-shot	56.3	44.6	26.6	54.1	51.3	2.2	32.5	63.5	53.0	47.3	
MP fine-tuning	78.3	96.4	97.4	70.4	72.6	32.1	74.4	73.0	80.0	74.9	
P-tuning	78.9	98.2	98.7	69.4	75.5	29.3	74.2	74.0	81.0	75.6	
	(+1.1)	(+1.8)	(+1.3)	(-5.5)	(-0.3)	(+4.6)	(+3.7)	(-7.7)	(+5.0)	(+1.0)	

^{*} We report the same results taken from SuperGLUE (Wang et al., 2019b).

Table 4. Fully-supervised learning on SuperGLUE dev with large-scale models. MP refers to manual prompt. For fair comparison, MP zero-shot and MP fine-tuning report results of a single pattern, while anchors for P-tuning are selected from the same prompt. Subscripts in red represents improvements of GPT with P-tuning over the best results of BERT.

SuperGlue dataset

Few-shot learning (32 train samples) on SuperGLUE dev

Dev size	Method	BoolQ	CB		WiC RTE	MultiRC		WSC	COPA	
		(Acc.)	(Acc.)	(F1)	(Acc.)	(Acc.)	(EM)	(Fla)	(Acc.)	(Acc.)
	PET*	73.2±3.1	82.9±4.3	74.8±9.2	51.8±27	62.1±5.3	33.6±3.2	74.5±1.2	79.8±3.5	85.3±5.1
32	PET best [†]	75.1	86.9	83.5	52.6	65.7	35.2	75.0	80.4	83.3
	P-tuning	77.8	92.9	92.3	56.3	76.5	36.1	75.0	84.6	87.0
		(+4.6)	(+10.0)	(+17.5)	(+4.5)	(+14.4)	(+2.5)	(+0.5)	(+4.8)	(+1.7)
	GPT-3	77.5	82.1	57.2	55.3	72.9	32.5	74.8	75.0	92.0
Full	PET [‡]	79.4	85.1	59.4	52.4	69.8	37.9	77.3	80.1	95.0
	iPET§	80.6	92.9	92.4	52.2	74.0	33.0	74.0	_	-

^{*} We report the average and standard deviation of each candidate prompt's average performance.

Table 5. Few-shot learning (32 train samples) on SuperGLUE dev. Previous few-shot learning approaches use the original full dev set (\mathcal{D}_{dev}) for validation, which does not make sense. We construct a new dev set (\mathcal{D}_{dev32}) with 32 unused samples from original training set. Under fair comparison, P-tuning significantly outperforms PET (\mathcal{D}_{dev32}) and PET best (\mathcal{D}_{dev32}) on all tasks. More interestingly, P-tuning even outperforms GPT-3, PET (\mathcal{D}_{dev}) and iPET (\mathcal{D}_{dev}) on 4 out of 7 tasks. Subscripts in red represents the improvements of P-tuning over PET (\mathcal{D}_{dev32}) .

We report the best performed prompt selected on full dev dataset among all candidate prompts.

With additional ensemble and distillation.

With additional data augmentation, ensemble, distillation and self-training.

4. Conclusion

- P-tuning 을 통해 GPT 가 NLU task 에서 BERT 만큼 경쟁력이 있음을 보임
- P-tuning 을 사용했을 때, few-shot 및 fully-supervised setting 모든 설정에서 GPT가 BERT 의 성능 능가
- LAMA 및 SuperGlue dataset 에서 SOTA 달성
 - => P-tuning 을 사용했을 때 언어모델이 사전훈련동안 더 많은 지식을 학습
- P-tuning 을 사용했을 때 BERT 성능도 향상됨

참고 자료

- DSBA 세미나 prompt-based learning http://dsba.korea.ac.kr/seminar/?mod=document&uid=1829
- seopbo.log, GPT Understands, Too https://velog.io/@seopbo/GPT-Understands-Too
- 열쩡강쥐 블로그, GPT Understands, Too 리뷰 https://hye-z.tistory.com/18?category=501949
- SOOFTWARE 블로그, Sooftware NLP P-tuning Paper Review https://sooftware.io/p_tuning/
- 끄적끄적 블로그, [2021] GPT Understands, Too (P-tuning) https://soundprovider.tistory.com/entry/2021-GPT-Understands-Too-P-tuning
- P-tuning code [github]
- hryang 블로그, NLP 이해하기 https://hryang06.github.io/nlp/NLP/
- Quora, "Are neural networks continuous?" https://www.quora.com/Are-neural-networks-continuous