Tampines Regional Library
LearnX Community
Pi Python Introductory Course
Course Material

PLEASE DO NOT WRITE ANYTHING ON THE PAGES OF THIS BOOKLET. THANK YOU.

TESTING OUR CIRCUIT USING THONNY SHELL

Ex 1a. Turning our Red LED on

```
>>> from gpiozero import LED
```

>>> red_led.on()

Ex 1b. Turning it off

>>> red_led.off()

Ex 1c. Make it blink (1 sec on 1 sec off)

>>> red_led.blink()

Ex 1d. Make it pulsate a number of times

>>> red_led.blink(on_time=.5, off_time=.8, n=5)

TESTING OUR CIRCUIT USING THE THONNY EDITOR

Ex 1e. Creating our 1st Raspberry Pi Python Program Click on the green + icon to open a new page And type these codes into the Editor

```
#Library # in python means — remarks for humans
from gpiozero import LED
from time import sleep
#Setup
tf_red_led = LED(14)
#Algorithm / Logic / Sequence
tf_red_led.on()
sleep(5) #pause for 5 seconds
tf_red_led.off()
sleep(5) #pause for 5 seconds
tf_red_led.blink(on_time=.5,off_time=.5,n=5)
sleep(5) #allow 5 seconds for the blink to complete
```

Save this program

File -> Save [provide a programme name. E.g. Excercise1.py then click OK Click Run or the play icon to run the program

Ex. 2a – Using the Logic from 1e, implement this. Save program as Exercise2a.py

ALGORITHM FOR A TRAFFIC LIGHT SYSTEM

STARTS WITH GREEN
AFTER 10 SECONDS
GREEN GOES OFF
AMBER COMES ON
AFTER 5 SECONDS
AMBER GOES OFF
RED COMES ON
AFTER 10 SECONDS
GREEN COMES ON


```
Exercise2a.py ×
   #Library
    from gpiozero import LED
    from time import sleep
   #Setup Components / Variables
 6 tf_red_led = LED(13)
    tf amber led=LED(19)
 8 tf_green_led = LED(26)
  9
    #Algorithm
 10
 11
 12 #initialize the LEDs
 13 tf red led.off()
 14 tf_amber_led.off()
 15 tf_green_led.off()
 16
 17
 18 tf green led.on()
 19 sleep(10)
 20 tf green led.off()
 21 tf_amber_led.on()
 22 sleep(5)
 23 tf amber led.off()
 24 tf_red_led.on()
 25 sleep(10)
 26 tf_red_led.off()
 27 tf_green_led.on()
 28
```

Ex. 2b Traffic Light in a Loop (Exercise2b.py)

```
Exercise2b.py
  1 #Library
  2 from gpiozero import LED
    from time import sleep
    #Setup Components / Variables
  6 tf red led = LED(13)
    tf amber led=LED(19)
    tf green led = LED(26)
 10 #Algorithm
 11
 12 #initialize the LEDs
 13 tf red led.off()
 14 tf amber led.off()
 15 tf_green_led.off()
 16
 17
 18
     while True:
         tf green led.on()
 19
         sleep(10)
 20
 21
         tf_green_led.off()
         tf_amber_led.on()
 22
         sleep(5)
 23
         tf amber led.off()
 24
 25
         tf_red_led.on()
         sleep(10)
 26
         tf red led.off()
```

Ex. 2c Traffic Light as a Function (Exercise2c.py)

```
Exercise2c.py
  1 #Library
    from gpiozero import LED
    from time import sleep
    #Setup Components / Variables
  6 tf_red_led = LED(13)
    tf_amber_led=LED(19)
  8 tf_green_led = LED(26)
  9 #Algorithm
 10 #initialize the LEDs
 11 tf_red_led.off()
 12 tf_amber_led.off()
 13 tf_green_led.off()
    def trafficLight():
         tf_green_led.on()
         sleep(10)
         tf_green_led.off()
         tf_amber_led.on()
 20
 21
         sleep(5)
 22
         tf amber led.off()
 23
         tf_red_led.on()
 24
         sleep(10)
 25
         tf_red_led.off()
 26
 27
 28
    while True:
 29
         trafficLight()
```

27

Functionalize

TESTING OUR CIRCUIT USING THONNY SHELL

Ex 3a. Turning our Buzzer on

```
>>> from gpiozero import Buzzer
```

- >>> buzz= Buzzer(25)
- >>> buzz.on()

Ex 3b. Turning it off

>>> buzz.off()

Ex 3c. Make it blink – 1 sec on 1 sec off

>>> buzz.blink()

Ex 3d. Make it pulsate a number of times

>>> buzz.blink(on_time=.5, off_time=.8, n=5)

TESTING OUR CIRCUIT USING THONNY SHELL

Ex 3e. Button Activating/Deactivating Buzzer

```
Python 3.9.2 (/usr/bin/python3)
>>> from gpiozero import Buzzer, LED, Button
>>> from signal import pause
>>> buzz = Buzzer(25)
>>> button=Button(24)
>>> button.when_pressed = buzz.on
>>> button.when_released = buzz.off
>>> pause()
```

Ex 3f. Button Activating / Deactivating Red LED (Pin 14)

Ex. 3g Pedestrian Crossing Program – Version 1 Save program as Exercise3g.py

ALGORITHM FOR A PEDESTRIAN CROSSING

STARTS WITH RED
AFTER 10 SECONDS
RED GOES OFF
GREEN COMES ON
AFTER 10 SECONDS
GREEN BLINKS FIVE TIMES
AFTER 5 SECONDS
GREEN GOES OFF
RED COMES ON


```
Exercise3g.py ★×
  1 #Library
  2 from gpiozero import LED
  3 from time import sleep
  4 #Component Setup
    green led = LED(18)
  6 red led=LED(14)
 8 #Algorithm
 9 red led.on()
 10 sleep(10)
 11 red led.off()
 12 green led.on()
 13 sleep(10)
 14 green led.blink(on time=.5,off time=.5,n=5)
 15 sleep(5)
 16 green led.off()
 17 red led.on()
```

Ex. 3h Pedestrian Crossing Program – Version 2 – With Buzzer

Save program as Exercise3h.py

ALGORITHM FOR A PEDESTRIAN CROSSING

STARTS WITH RED
AFTER 10 SECONDS
RED GOES OFF
GREEN COMES ON
AFTER 10 SECONDS
GREEN BLINKS FIVE TIMES

AFTER 5 SECONDS GREEN GOES OFF RED COMES ON


```
Exercise3h.py ×
  1 #Library
   from gpiozero import LED, Buzzer
    from time import sleep
    #Component Setup
    green led = LED(18)
    red led=LED(14)
    buzz=Buzzer(25)
 8
 9 #Algorithm
 10 red led.on()
 11 sleep(10)
12 red led.off()
 13
    green led.on()
    sleep(10)
 14
    green led.blink(on time=.5,off time=.5,n=5)
16 buzz.blink(on time=.5, off time=.5, n=5)
    sleep(5)
17
    green led.off()
18
    red led.on()
 19
 20
 21
```

Ex. 3j Pedestrian Crossing Program – Version 3 – Introducing a Function

Save program as Exercise3j.py

ALGORITHM FOR A PEDESTRIAN CROSSING

STARTS WITH RED
AFTER 10 SECONDS
RED GOES OFF
GREEN COMES ON
AFTER 10 SECONDS
GREEN BLINKS FIVE TIMES
BUZZER BLINKS FIVE TIMES

AFTER 5 SECONDS GREEN GOES OFF RED COMES ON

Ex. 3k Pedestrian Crossing Program – Version 4 – Add a Button

Save program as Exercise3k.py

ALGORITHM FOR A PEDESTRIAN CROSSING

STARTS WITH RED ON
WHEN BUTTON IS PRESSED

ACTIVATE Function greenman()

```
Exercise3k.py * ×
 1 #Library
 2 from gpiozero import LED, Buzzer, Button
 3 from time import sleep
 4 from signal import pause
 5 #Component Setup
 6 green led = LED(18)
 7 red led=LED(14)
 8 buzz=Buzzer(25)
 9 button=Button(24)
10
 11 #Function
 12 def greenman():
        print('Button was pressed')
 13
 14
        sleep(10)
 15
        red led.off()
 16
        green led.on()
 17
        sleep(10)
        green led.blink(on time=.5, off time=.5, n=5)
18
        buzz.blink(on time=.5, off time=.5, n=5)
19
 20
        sleep(5)
        green led.off()
21
22
        red led.on()
23
        print('waiting for Next Button Press')
24
25 #Algorithm
26 red led.on()
27 print('Program Started')
28 print('waiting for Button to be Pressed')
29 button.when pressed = greenman
30 pause()
```

Exercise 4 – Wiring and Testing Count Down Display

TM1637 7-SEGMENT DISPLAY

23 September 2022

Tampines Regional Library - Learnx Community

TESTING OUR CIRCUIT USING THONNY SHELL

Ex 4a >>> import tm1637 >>> display = tm1637.TM1637(20, 16) >>> #20=CLK 16=DIO >>> display.clear() >>> display.set_values(['','','7']) Ex 4b >>> display.set_values(['','','8','7']) Ex 4c How do you display 1234

```
The 7 Segment Display Accepts Data as a List A List is a collection of Data Like this -> ['Apple','Orange','Raspberry','Banana'] We can assign as variable name to it
```

FruitBasket= ['Apple','Orange','Raspberry','Banana']

>>> FruitBasket= ['Apple','Orange','Raspberry','Banana']

Each it in the List has an index position, starting from 0

```
>>> print(FruitBasket[0])
```

We can change the 'value' of an item in the List e.g. we want to replace 'Orange' with 'Grapes'

```
>>> FruitBasket[1]='Grapes'
```

>>> print(FruitBasket)

Making the 7 Segment Display Library takes the display

Data as a List

```
[ '', '', '', '9']
[ '', '', '', '8']
[ '', '', '', '7']
[ '', '', '', '6']
[ '', '', '', '5']
[ '', '', '', '4']
[ '', '', '', '3']
[ '', '', '', '1']
[ '', '', '', '1']
```

```
counter.py * ×
    import tm1637
    from time import sleep
    display = tm1637.TM1637(20, 16)
  4 display.set values([' ',' ',' ','9'])
    sleep(1)
  6 display.set values(['
    sleep(1)
 8 display.set_values(['
    sleep(1)
   display.set_values([' ',' ',' ','6'])
11 sleep(1)
12 display.set_values([' ',' ',' ','5'])
13 sleep(1)
14 display.set_values([' ',' ',' ','4'])
15 sleep(1)
16 display.set_values([' ',' ',' ','3'])
17 sleep(1)
18 display.set_values([' ',' ',' ','2'])
19 sleep(1)
20 display.set_values([' ',' ',' ','1'])
21 sleep(1)
22 display.set_values([' ',' ',' ','0'])
23 sleep(1)
 24
```

The data to be displayed is sent to the function in the library display.set_values

At 1 seconds intervals in this case

Introduction to the Python For Loop

```
counter.py * ×
  1 import tm1637
                                                                      This value is changing from 9 to 0
  2 from time import sleep
                                                                      Create a variable
  3 display = tm1637.TM1637(20, 16)
                                                                      to represent this value
 4 display.set values([' ',' ',' ',' 9'<del>])</del>
 5 sleep(1)
 6 display.set_values([' ',' ',' ','8'])
                                                                   Give it a name counter and run it in a for loop
 7 	ext{ sleep(1)}
 8 display.set_values([' ',' ',' ','7'])
                                                     counter.py * ×
 9 sleep(1)
10 display.set_values([' ',' ',' ','6'])
                                                       1 #Library
                                                         import tm1637
11 sleep(1)
12 display.set values([' ',' ',' ','5'])
                                                         from time import sleep
13 sleep(1)
                                                         #Setup
14 display.set_values([' ',' ',' ',
                                                          display = tm1637.TM1637(20, 16)
15 sleep(1)
                                                         #Algorithm
16 display.set_values([' ',' ',' ','3'])
                                                         for counter in range(9,-1,-1):
17 sleep(1)
                                                              display.set values([' ',' ',' ',counter])
18 display.set_values([' ',' ',' ','2'])
                                                              sleep(1)
19 sleep(1)
                                                      10
20 display.set_values([' ',' ',' ','1'])
21 sleep(1)
22 display.set_values([' ',' ',' ','0'])
23 sleep(1)
 24
```

TM1637 7 SEGMENT DISPLAY CLK DIO VCC GND **ANTI SPAM LIGHT** GROUND ANTI SPAM PIN 7 PIN 25 PIN 18 PIN 14 DIO PIN 16 **PIN 24 CLK PIN 20**

Exercise 5 – Wiring Pedestrian Crossing with Anti Spam LED and Count Down Display

Putting everything we have learned together into a full fledged pedestrian crossing

Recap our Algorithm and Code for earlier version

ALGORITHM FOR A PEDESTRIAN CROSSING

STARTS WITH RED ON WHEN BUTTON IS PRESSED ACTIVATE Function greenman()

```
Exercise3k.py * ×
 1 #Library
 2 from gpiozero import LED, Buzzer, Button
 3 from time import sleep
 4 from signal import pause
  5 #Component Setup
    green led = LED(18)
    red led=LED(14)
                                              Now we want
 8 buzz=Buzzer(25)
    button=Button(24)
                                                to add the
 10
                                               Countdown
11 #Function
 12 def greenman():
                                               here as well
 13
        print('Button was pressed')
14
        sleep(10)
 15
        red led.off()
 16
        green led.on()
        sleep(10)
 17
        green led.blink(on time=.5, off time=.5, n=5)
18
19
        buzz.blink(on time=.5, off time=.5, n=5)
 20
        sleep(5)
21
        green led.off()
        red led.on()
        print('waiting for Next Button Press')
23
24
25 #Algorithm
 26 red led.on()
 27 print('Program Started')
 28 print('waiting for Button to be Pressed')
 29 button.when pressed = greenman
 30 pause()
```

Injecting codes for countdown display

```
Exercise3k.py * ×
 1 #Library
 2 from gpiozero import LED, Buzzer, Button
 3 from time import sleep
 4 from signal import pause
 5 #Component Setup
 6 green led = LED(18)
    red led=LED(14)
 8 buzz=Buzzer(25)
                                              Now we want
    button=Button(24)
                                               to add the
 10
 11 #Function
                                               Countdown
 12 def greenman():
                                               here as well
 13
         print('Button was pressed')
 14
        sleep(10)
 15
         red led.off()
        green led.on()
 16
        sleep(10)
 17
        green led.blink(on time=.5,off time=.5,n=5)
 18
        buzz.blink(on time=.5, off time=.5, n=5)
 19
 20
        sleep(5)
 21
        green led.off()
 22
         red led.on()
        print('waiting for Next Button Press')
 23
 24
 25 #Algorithm
    red led.on()
 27 print('Program Started')
 28 print('waiting for Button to be Pressed')
 29 button.when pressed = greenman
 30 pause()
```

```
Exercise31.py
  1 #Library
  2 from gpiozero import LED, Buzzer, Button
  3 from time import sleep
  4 from signal import pause
  5 import tm1637
  6 #Component Setup
  7 green led = LED(18)
  8 red led=LED(14)
  9 buzz=Buzzer(25)
 10 button=Button(24)
 11 display=tm1637.TM1637(20,16)
 12 #Function
 13 def greenman():
         print('Button was pressed')
 14
 15
         sleep(10)
 16
         red led.off()
 17
         green led.on()
 18
         sleep(10)
 19
        for counter in range(5,-1,-1):
 20
             green_led.blink(on_time=.5,off_time=.5,n=1)
             buzz.blink(on_time=.5, off_time=.5, n=1)
             display.set_values([' ',' ',' ',counter])
 22
 23
             sleep(1)
 24
         green led.off()
 25
         red led.on()
 26
         display.clear()
         print('waiting for Button to be Pressed')
 27
 28 #Algorithm
 29 red led.on()
 30 display.clear()
 31 print('waiting for Button to be Pressed')
 32 button.when_pressed = greenman
 33 pause()
```

23 September 2022

Tampines Regional Library - Learnx Community

TM1637 7 SEGMENT DISPLAY CLK DIO VCC GND **ANTI SPAM LIGHT** GROUND ANTI SPAM PIN 7 PIN 25 PIN 18 PIN 14 DIO PIN 16 **PIN 24 CLK PIN 20**

Exercise 5 – Wiring Pedestrian Crossing with Anti Spam LED and Count Down Display

```
Adding Check for Anti Spamming
Exercise3m.py
#Library
from gpiozero import LED, Buzzer, Button
from time import sleep
from signal import pause
import tm1637
#Component Setup
green led = LED(18)
red led=LED(14)
anti spam led = LED(7)
buzz=Buzzer(25)
button=Button(24)
display=tm1637.TM1637(20,16)
#Function
def activate():
  if anti spam led.is lit==True:
    pass
  else:
    anti spam led.on()
    greenman()
```

```
def greenman():
  print('Button was pressed')
  sleep(10)
  red led.off()
  green led.on()
  sleep(10)
  for counter in range(5,-1,-1):
    green led.blink(on time=.5,off time=.5,n=1)
    buzz.blink(on time=.5, off time=.5, n=1)
    display.set values(['','',',counter])
    sleep(1)
  green_led.off()
  red led.on()
  display.clear()
  print('waiting for Button to be Pressed')
  anti spam led.off()
#Algorithm
red led.on()
anti_spam_led.off()
display.clear()
print('waiting for Button to be Pressed')
button.when pressed=activate
pause()
```


Exercise 5 – Wiring Pedestrian Crossing with Anti Spam LED and Count Down Display

Pedestrian Crossing and Traffic Light System

Co-ordinating the two systems is important

Algorithm for NEW greenman()			
/ ingolitation in the	P Crossing		Traffic Light
Start Point	Red On		Green On
	Wait for Button	Wait for Button to be pressed	
	When Button	n Button is pressed	
	Anti Spam I	.igh	t On
Give a 5 seconds delay before things start moving			
			Green Off
			Amber Blink - 5x (5 seconds)
	Red Off		Red On
	Green On		
	10 Seconds for Pedestrian to Cross		
	Green Blinks		
Buzzer Be		eep	s
	Count dow	n 9	to 0
	Count Down (om	pleted
	Green Off		Red Off
	Red On		Green On
Anti Spam Light Off			
Display Clear			

Suggestion for how this can be done

We take the code from Exercise3l.py

Ex 4a. Motion Sensor – LED Test

Save this as Exercise4a.py

#Libraries

from gpiozero import MotionSensor, LED, Buzzer from signal import pause from time import sleep

#Setup Variables for Components
motion_detector = MotionSensor(4)
red_led = LED(12)
buzz = Buzzer(16)
buzz.off()

#Algorithm
motion_detector.when_motion= red_led.on
motion_detector.when_no_motion = red_led.off
pause()

Ex 4b. Motion Sensor – Buzzer Test

Save this as Exercise4b.py

#Libraries

from gpiozero import MotionSensor, LED, Buzzer from signal import pause from time import sleep

#Setup Variables for Componenst motion_detector = MotionSensor(4) red_led = LED(12) buzz = Buzzer(16)

#Algorithm
buzz.off()
motion_detector.when_motion= buzz.on
motion detector.when no motion = buzz.off

pause()

<u>Ex4c Motion Sensor – FLASHING LED AND BUZZER</u>

```
Save program as Exercise4c.py
#Libraries
from gpiozero import MotionSensor, LED, Buzzer
from signal import pause
from time import sleep
#Setup Components / Variables
motion_detector = MotionSensor(4)
red_led = LED(12)
buzz = Buzzer(16)
buzz.off()
#Functions
def alarm():
 buzz.blink(on_time=.5,off_time=.5,n=5)
 red_led.blink(on_time=.5,off_time=.5,n=5)
 sleep(5)
def alarmOff():
 buzz.off()
 red_led.off()
#Algorithm
motion_detector.when_motion= alarm
motion_detector.when_no_motion = alarmOff
pause()
```


Ex 5. BURGLAR ALARM WITH ARM AND RESET BUTTONS

```
#save this program as Exercise5.py
                                                             #Functions
                                                             def alarm():
#Library
                                                               red_led.blink(on_time=.5,off_time=.5,n=20)
from gpiozero import MotionSensor, LED, Buzzer, Button
                                                               buzz.blink(on_time=.5,off_time=.5,n=20)
from signal import pause
                                                               sleep(20)
from time import sleep
                                                             def armAlarm():
                                                               armed_led.on()
#Variables for Components
                                                               motion_detector.when_motion = alarm
password='12345'
motion_detector = MotionSensor(4)
                                                             def disarmAlarm():
red led = LED(12)
                                                               pwd=input('Enter Password')
armed led=LED(20)
                                                               if pwd != password:
armed_led.off()
arm button=Button(2)
                                                                  pass
reset_button=Button(21)
                                                               else:
                                                                                                               DO Nothing
buzz = Buzzer(16)
                                                                 armed led.off()
buzz.off()
                                                                buzz.off()
                                                                red led.off()
                                                                motion_detector.when_motion = None
                                                            #Algorithm
                                                            arm button.when pressed = armAlarm
                                                             reset_button.when_pressed = disarmAlarm
                                                             while True:
```

pause()