CS & IT ENGINEERING

Theory of Computation

Decidability

Lecture No. 1

By- DEVA Sir

TOPICS TO BE COVERED

Undecidable Languages

Decidable

RELs but not

Not RELs

recursive

NRS

WELL

MARKY

M

RELS (SDS)

Ø

IR a Sput

		SDUD	NR Pw
Members	Valid → logic exist Invalid → logic exist	valid → logic exist Invalid → logic not exist	Valid -> logic not exist
Machine	HTM exist	Tm exist but Him not exist	TM not exist
Language	Decidable lang (Recursive lang)	SDUD (REL but not rec)	Not REL (Not SD)
Program (Computer)	Halting program (Algorithm exist)	program exist but no Algeritan	program not exist

What is Language?

Dover I: Set of Strings over I (Subset of E*) meaningful members -> Set of Ly Set of Stoings => {\epsilon, ab, ...} Set of Grammars AfG1, G2, G3, ... Set of Languages fl, 12, 13, ... Set of Automata F) d My M2, M3. -- }

 $L_1 = a^* = \{\varepsilon, \alpha, \alpha\alpha, \cdots\}$ La = Set of C programs = f P1, P2, P3, L3 = Set of Languages over Z = fl, l2, l3, l4, - } = 2 Ls = Sct of all regular languages = QR, R2, R2, R3, ...

Set of Sinite languages Set of infinite " Set of DCFLs Set of (Fls Set of (FGs = dCFG, CFGs, CFGs, ... } Set of Regular Exps Set of Not RELS

Lavyuy 3/c

Language

Decision property)
Decision Problem

Tes
NO

Decidable
No => logic exist } Decidable
problem

Decidable Language
Logic exist for bolk valid
Invalid

CUCZ

YOU A logic crity south

SDUD language Logic exist only for valid

NR

You is logic not exist? Not RE problem

Logic not exist for valid

Decision propostius Table Decision Problems

6	
(W
	V

	Problems	to reste	A A W	क्रिय	XNOU	1200
0	Halting problem		D	\mathfrak{D}	\mathcal{D}	UD
2	Membership problems	\Im	\mathcal{D}	\mathcal{D}	D	UD
3	Emptiness	D	7	D	UD	W
(Finiteness	\mathfrak{D}	D	D	UD	UP
6	Totality	\mathcal{D}	D	UD.	UD	W
0	Eguivalence	\mathcal{D}	D	UD	UD	UD
9	Disjoint ?	D	UD	UD	UD	UD
8	Set containment	2	UD	VD	UD	UD

五 (五)

T) (I) =) (I)

(UD) =

= SDUD ON NR

= NR OX (NR ON SOUD)

コリカ

FOR).	Problems	sion Pr	le Deci	stics tab	Decision proper
KW36	The X Road	क्रिय	A A LYS	EN ENTER CE	Problems
539-	\mathcal{D}	\mathcal{D}	D		Halting problem
9.	D	\mathcal{D}	\mathcal{D}	\odot	Membership problems
9.	٩	\mathcal{D}	7	\mathcal{D}	Emptiness ?
٩	9.	D	D	\mathfrak{D}	Finiteness
٥.	૧	. 9	D	\mathfrak{D}	Totality ?
9	٩	ી	D	\mathcal{D}	Equivalence
9.	9	۹.	9	D	Disjoint ?
9.	9,	9,	J.	2	Set containment
	9	D 9	P D	D D	Emptiness Finiteness Totality Equivalence Disjoint 2

Trobut no thing $\bigcirc \bigcirc$ L7 May be SDUD Lixo ton mTK

FOY FA: IS FA halfs on slring w?

IS FA halfs on E?

IS FA halfs on a?

IS FA halfs on a!?

anather Is M halfs on W?

Do Non Halting problem

IS M doesn't hat on w!

0P

"M doesn't halt on D"

Non membeoship Is M doosn't allept w? IS w not allepted by M? IS WEL(M) 9. M doesn't a clept L

3 Emphiness

(3) b Non-emptiness

IS M not accept of!

IS M accepts Something!

alleast one string

alleast one string

IS M accepts finite language

IS L(M) = finite lang?

(5) Totality

IS M a(Cepls everythin) by

IS L(M) = 5 x ?

(5) b Non totality

IS M not accept everythins?

Is M not accepting atleast one string?

IS L(M) + T*

IS
$$L(M_1) = L(M_2)$$
?

IS L(M)) (M2)= \$? }

7 Non-Disjointneh

IS L(M1) (M2) + 4?

IS
$$L(M_1) \subseteq L(M_2)$$
?

8) Mon Set Containment

IS 4 12

Haltin frether & Halting for FA & Halting for DPPA & Halting for PDA rals was a series of the serie when the state of IS FA halls on E? Is FA hatts on abb) in 15 37th Bydlyfinition: all these machines always halts The land of the la

Halting problem for Im IS TM halfs on E ? They: The halfs on E ? No: The doesn't half Is In doesn't half on w ? I to it logic not exist. Halt Logic exist Doesn't Halt
Never Halt
Infloop
Logic not exist

Summary

-> Decidable & Undecidable problems -> Mext: Membership problem Problems

