MATHEMATICS-I(MA10001)

October 3, 2016

1. Find the integrating factor and hence solve the following ordinary differential equations:

(i)
$$\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \left(\frac{x}{4}(1+y^2)\right) dy = 0.$$

- (ii) $dx + e^{x-y} dy = 0$.
- (iii) $(x^3 + y^3 + 1) dx + xy^2 dy = 0$.
- (iv) $(2y^3xe^y + y^2 + y) dx + (y^3x^2e^y xy 2x) dy = 0.$
- (v) $y(1+xy^2)dx + 2(x^2y^2 + x + y^4)dy = 0.$
- (vi) $(x^2 + y^2) dx 2xy dy = 0$.
- (vii) $y^2 dx + x(x y) dy = 0$.
- (viii) $\frac{y}{x}dx dy = 0.$
- 2. Show that F(x,y) is integrating factor of M(x,y)dx + N(x,y)dy = 0 if and only if

$$\left(M\frac{\partial F}{\partial y} - N\frac{\partial F}{\partial x}\right) + \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)F = 0.$$

- 3. Verify that $e^{\int p(x)dx} \left[dy + \left(p(x)y q(x) \right) dx \right] = 0$ is exact and hence solve it.
- 4. Solve the following ordinary differential equations:
 - (i) $x^2y' y = 2\sin\frac{1}{x}$.
 - (ii) $y' + 2xy = e^{-x^2}$, y(0) = 1.
 - (iii) $(1+x^2)y' + 2xy = x\sin x$.
 - (iv) $xy' 3y = x^4 (e^x + \cos x) 2x^2$, $y(\pi) = \pi^3 e^{\pi} + 2\pi^2$.
- 5. Solve the following ordinary differential equations:
 - (i) $x\frac{dy}{dx} y + xy^2 = 0.$
 - (ii) $x^3y' x^2y + y^4\cos x = 0$.
- (iii) $y' + y = xy^{5/3}$.