Assignment: MATH 3490 Numerical Analysis

Deadline: Dec 5, 2021

Instructor: Dr. Puneet Rana

UNIT 10-11: AS1 Approximating Eigenvalues (30 Points)

Question 1: Which of the following statements are **TRUE**?

- (i) The vectors $\mathbf{v_1} = (2, -1)^t$, $\mathbf{v_2} = (1, 1)^t$ and $\mathbf{v_3} = (1, 3)^t$ are linearly independent.
- (ii) The pairs of matrices $A = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ -2 & 2 \end{bmatrix}$ are not similar.
- (iii) If A is similar to B, then det(A) = det(B).
- (iv) Suppose that A is a symmetric $n \times n$ matrix, then the eigenvalues of A are real numbers.
- (v) If A has the singular value decomposition $A = USV^t$, then Rank (A) \neq Rank (S).

Question 2: Use the Geršgorin Circle Theorem to determine bounds for the eigenvalues, and the spectral radius of the following matrix

$$\begin{bmatrix} 4.75 & 2.25 & -0.25 \\ 2.25 & 4.75 & 1.25 \\ -0.25 & 1.25 & 4.75 \end{bmatrix}$$

Question 3: Consider the follow sets of vectors. (i) Show that the set is linearly independent; (ii) use the Gram-Schmidt process to find a set of orthogonal vectors; (iii) determine a set of orthonormal vectors from the vectors in (ii).

(a)
$$\mathbf{v_1} = (1,1)^t$$
, $\mathbf{v_2} = (-2,1)^t$

(b)
$$v_1 = (1,1,1,1)^t$$
, $v_2 = (0,2,2,2)^t$, $v_3 = (1,0,0,1)^t$

Question 4: (*i*) For the following matrix determine if it diagonalizable and, if so, find *P* and *D* with $A = PDP^{-1}$.

$$\left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right]$$

(ii) Determine if the above matrix is positive definite, and if so, (ii) construct an orthogonal matrix Q for which $Q^tAQ = D$, where D is a diagonal matrix.

Question 5: (a) Find the first three iterations obtained by the Power method applied to the following matrices

$$\begin{bmatrix} 4 & 2 & 1 \\ 0 & 3 & 2 \\ 1 & 1 & 4 \end{bmatrix};$$
Use $\mathbf{x}^{(0)} = (1, 2, 1)^t$.

- (b) Use the Power method to approximate the most dominant eigenvalue of the matrix. Iterate until a tolerance of 10^{-4} is achieved or until the number of iterations exceeds 25.
- (c) Repeat above using Aitken's Δ^2 technique and the Power method for the most dominant eigenvalue.

Question 6: Use Householder's method to place the following matrices in tridiagonal form

$$\left[\begin{array}{cccccc}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{array} \right]$$

Assignment: MATH 3490 Numerical Analysis

Question 7: Apply two iterations of the QR method without shifting to the following matrix.

$$\left[\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right]$$

Question 8: (a) Determine the singular values of the following matrix

$$A = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$$

(b) Determine a singular value decomposition for the above matrix.
