lab2_danhe178_rical803

Daniel Herzegh & Richard Friberg 2017-10-03

Uppgift 1 Likelihoodfunktioner

 $i \leftarrow i + 0.01$

```
set.seed(4711)
x1 <- rgamma(n = 10, shape = 4, scale = 1)

a)

llgamma <- function(x, alpha, beta) {
    return(length(x) * (alpha * log(beta) - lgamma(alpha)) + (alpha -1) * sum(log(x)) - beta * sum(x))
}

b)

tendraws <- c()
hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 3) {
    tendraws <- c(tendraws, llgamma(x1, alpha = 4, beta = i))
    hundreddraws <- c(ctundreddraws, llgamma(x2, alpha = 4, beta = i))
    steps <- c(steps, i)</pre>
```

```
# plot for ten draws
plot(steps, tendraws)
```


plot for hundred draws
plot(steps, hundreddraws)


```
# Undersöker och returnerar vilket betavärde som loglikelyhoodfunktionen får sitt maxvärde på
findMaxIndex <- function(vect) {
   i <- NULL
   currentMax <- -Inf
   x <- 1
   while (x < length(vect)) {
      if (vect[x] > currentMax) {
```

```
currentMax <- vect[x]
    i <- x
}
    x <- x + 1
}
return(i/100)
}
findMaxIndex(tendraws)</pre>
```

[1] 0.77

findMaxIndex(hundreddraws)

```
## [1] 0.96
```

Det varierar vilket av de upprepade värdena för beta som ger maximala värdet på loglikelihoodfunktionen, men ökar man antalet dragningar går denna siffra mot 1.0.

c)

```
tendraws <- c()
hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 10) {
  tendraws <- c(tendraws, llgamma(x1, alpha = i, beta = 1))
  hundreddraws <- c(hundreddraws, llgamma(x2, alpha = i, beta = 1))
  steps <- c(steps, i)
  i <- i + 0.01
}</pre>
```

```
# plot for ten draws
plot(steps, tendraws)
```


plot for hundred draws
plot(steps, hundreddraws)


```
# Undersöker och returnerar vilket alphavärde som loglikelyhoodfunktionen får sitt maxvärde på findMaxIndex <- function(vect) { i <- NULL currentMax <- -Inf x <- 1 while (x < length(vect)) {
```

```
if (vect[x] > currentMax) {
    currentMax <- vect[x]
    i <- x
}
    x <- x + 1
}
return(i/100)
}</pre>
```

[1] 5

findMaxIndex(hundreddraws)

[1] 4.13

Det varierar vilket av de upprepade värdena för alpha som ger maximala värdet på loglikelihoodfunktionen, men ökar man antalet dragningar går denna siffra mot 4.0.

d)

Härledning av log-likelihood för normalfördelning:

$$L(\mu, \sigma^{2}) = \prod_{j=1}^{n} f(x_{j} | \mu, \sigma^{2}) = \prod_{j=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} e\left(-\frac{1}{2}\frac{(x_{j} - \mu)^{2}}{\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-\frac{1}{2}} e\left(-\frac{1}{2\sigma^{2}}\sum_{j=1}^{n} (x_{j} - \mu)^{2}\right)$$
likelihood for normalfordeling

Harledning as log-likelihood for normaldishibation:

likelihood-funktion für normaldishibation

ln $\left[\left(2\pi\sigma^2\right)^{-N/2}\exp\left(-\frac{1}{2\sigma^2}\mathop{\mathcal{E}}_{(X;-\mu)^2}\right)\right] =$ $= \ln\left(\left(2\pi\sigma^2\right)^{-N/2}\right) - \frac{1}{2\sigma^2}\mathop{\mathcal{E}}_{j=1}^{n}(X;-\mu)^2$ $= -\frac{n}{2}\left(n\left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2}\mathop{\mathcal{E}}_{j=1}^{n}(X;-\mu)^2\right)$ $= -\frac{n}{2}\left(n\left(2\pi\sigma^2\right) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\mathop{\mathcal{E}}_{j=1}^{n}(X;-\mu)^2\right)$ $= -\frac{n}{2}\left(n\left(2\pi\tau\right) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\mathop{\mathcal{E}}_{j=1}^{n}(X;-\mu)^2\right)$

```
llnormal <- function(x, mu, sigma2) {
    xsum <- sum((x - mu)**2)
    return(-length(x)/2*log(2*pi) - length(x)/2 * log(sigma2) - 1/(2 * sigma2) * xsum)
}

llnormal(x = x1, mu = 2, sigma2 = 1) #Fråga om okej

## [1] -87.25743

e)</pre>
```

```
tendraws <- c()
hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 10) {
  tendraws <- c(tendraws, llnormal(x1, mu = i, sigma2 = 1))
  hundreddraws <- c(hundreddraws, llnormal(x2, mu = i, sigma2 = 1))
  steps <- c(steps, i)
  i <- i + 0.01
}</pre>
```

```
# plot for ten draws
plot(steps, tendraws)
```


plot for hundred draws
plot(steps, hundreddraws)

Uppgift 2 Punktskattning med MLE i en gammafördelning

```
gamma_beta_mle <- function(x, alpha) {
  return(length(x)*alpha*1/sum(x))
}</pre>
```

```
x1 <- rgamma(n = 10, shape = 4, scale = 1)
x2 <- rgamma(n = 100, shape = 4, scale = 1)
gamma_beta_mle(x1, 2)
## [1] 0.6308772</pre>
```

[1] 0.4792967

gamma_beta_mle(x2, 2)

Vi testade att öka antalet dragningar och drar slutsatsen att estimatet går mot 0.5

Uppgift 3 Punktskattning med MLE i en normalfördelning

a)

```
norm_mu_mle <- function(x) {
   return(1/length(x)*sum(x))
}

norm_sigma2_mle <- function(x) {
   sumhelp <- 0
   j <- 1
   while(j <= length(x)) {
      sumhelp <- sumhelp + (x[j] - norm_mu_mle(x))**2
      j <- j + 1 #använd funktion sum
   }
   return(1/length(x)*sumhelp)
}</pre>
```

```
test_x <- 1:10
norm_mu_mle(x = test_x)</pre>
```

[1] 5.5

```
norm_sigma2_mle(x = test_x)
```

[1] 8.25

b)

```
set.seed(42)
# Skattning med n = 10
y1 <- rnorm(n = 10, mean = 10, sd = 2)
norm_mu_mle(x = y1)</pre>
```

```
## [1] 11.09459
```

[1] 4.048198

```
norm_sigma2_mle(x = y1)

## [1] 2.512709

# Skattning med n = 10000
y2 <- rnorm(n = 10000, mean = 10, sd = 2)

norm_mu_mle(x = y2)

## [1] 9.9762

norm_sigma2_mle(x = y2)</pre>
```

Desto större antal dragningar som görs, desto närmare kommer vi mu och sigma2, med respektive norm_mu_mle och norm_sigma2_mle. Detta följer av centralagärnsvärdessatsen som ger oss ett y som går mot normalfördelning och därmed tydligare väntevärde samt varians.

Uppgift 4 Samplingfördelningen för Bmle, MUmle och sigma2mle

a)

```
beta1_mle <- c(1:2000)
beta2_mle <- c(1:2000)
mu1 <- c(1:2000)
mu2 <- c(1:2000)
sigma1 <- c(1:2000)
sigma2 <- c(1:2000)
i <- 1
while (i \leq 2000) {
        x1 \leftarrow rgamma(n = 10, shape = 4, rate = 1)
        x2 \leftarrow rgamma(n = 10000, shape = 4, rate = 1)
        beta1_mle[i] <- gamma_beta_mle(x = x1, alpha = 4)</pre>
        beta2_mle[i] <- gamma_beta_mle(x = x2, alpha = 4)
        y1 \leftarrow rnorm(n = 10, mean = 10, sd = 2)
        y2 \leftarrow rnorm(n = 10000, mean = 10, sd = 2)
         mu1[i] \leftarrow norm_mu_mle(x = y1)
        mu2[i] \leftarrow norm_mu_mle(x = y2)
         sigma1[i] <- norm_sigma2_mle(x = y1)
         \#sigma2[i] \leftarrow norm\_sigma2\_mle(x = y2) \#FRÅGA: GÅR LÅNGSAMT. HOW TO MAKE IT GO FASTER??? CAN WE DO THIS AND THE SIGMA STATES AND THE SI
         i <- i + 1
}
hist(beta1_mle)
```

Histogram of beta1_mle

hist(beta1_mle)

Histogram of beta1_mle

hist(beta2_mle)

Histogram of beta2_mle

hist(mu1)

Histogram of mu1

hist(mu2)

Histogram of mu2

hist(sigma1)

Histogram of sigma1

hist(sigma2)

Histogram of sigma2

Precis som tidigare ser vi att ju fler dragningar så närmar sig histogrammen en normalfördelning vilket följer av den centrala gränsvärdessatsen.

Uppgift 5 Log-likelihoodfunktionen för betafördelning

a) #FRÅGA: Vadå gamma?

```
llbeta <- function(par, x){
  helpsum <- 0
  i <- 1
  while(i <= length(x)) {
    helpsum <- helpsum + logb(par[1] + 1, x[i] + par[2])
    i <- i + 1
  }
  return (helpsum + length(x)*logb(par[1], par[2])) #logb är fel. ANvänd formeln som är på betadistribu
}
llbeta(par = c(2, 2), x = c(0.01, 0.5, 0.99))</pre>
```

[1] 6.775666

FRÅGA: OPTIM()?, MULTIPLICERAD MED -1???

relevant länk (med vår formel): https://stats.stackexchange.com/questions/137989/how-do-you-work-out-the-likelihood-function-for-the-beta-