LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57061\pm0.00024$$
 MeV (S = 1.6) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

 $\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.0254 \pm 0.0017$$
 $F_A = 0.0119 \pm 0.0001$ F_V slope parameter $a = 0.10 \pm 0.06$ $R = 0.059^{+0.009}_{-0.008}$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES	ļ	Fraction (Γ	$i_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
${\mu^+ u_{\mu}}$	[b]	(99.9877	0 ± 0.0000	04) %	30
$\mu^{\dot{+}} u_{\mu}\gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[b]	(1.230	± 0.004	$) \times 10^{-4}$	70
$e^+ u_{f e}\gamma$	[c]	(7.39	±0.05	$) \times 10^{-7}$	70
$e^+ u_e \pi^0$		(1.036	± 0.006	$) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$		(3.2	± 0.5	$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70

Lepton Family number (LF) or Lepton number (L) violating modes

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9770\pm0.0005$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.52\pm0.18)\times10^{-17}$ s (S $=1.2$) $c\tau=25.5$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ_i)		ale factor/ lence level	<i>p</i> (MeV/ <i>c</i>)
2γ	(98.823±0.0	034) %	S=1.5	67
$e^+e^-\gamma$	$(1.174\pm0.0$	035) %	S=1.5	67
γ positronium	(1.82 ± 0.3	29) $\times 10^{-9}$		67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.1	16) \times 10 ⁻⁵		67
e^+e^-	(6.46 ± 0.3	$33) \times 10^{-8}$		67
4 γ	< 2	$\times 10^{-8}$	CL=90%	67
$ u \overline{ u}$	[e] < 2.7	$\times 10^{-7}$	CL=90%	67
$ u_{\mathbf{e}}\overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$	CL=90%	67
$ u_{\mu} \overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$	CL=90%	67
$ u_{ au} \overline{\overline{ u}}_{ au}$	< 2.1	$\times 10^{-6}$	CL=90%	67
$\gamma \overline{ u}$	< 6	$\times 10^{-4}$	CL=90%	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times10^{-8}$ CL=90%	67
μ^+e^-	LF	< 3.8	$\times10^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.4	$\times 10^{-9}$ CL=90%	26
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 3.6	\times 10 ^{-10} CL=90%	26

η

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=547.862\pm0.017$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12})\times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11})\times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09\pm0.09)\times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9\pm0.4)\times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02\pm0.07 \; \; (\text{S}=1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

Created: 6/5/2018 18:58

Dalitz plot parameter

$$\pi^0 \pi^0 \pi^0$$
 $\alpha = -0.0318 \pm 0.0015$
Parameter Λ in $\eta \to \ell^+ \ell^- \gamma$ decay $= 0.716 \pm 0.011 \; {\rm GeV}/c^2$

η DECAY MODES Fraction (Γ_i/Γ) Confidence I	evel (MeV/c)
Neutral modes	
	1.2 -
,	1.1 274
- 0	1.1 179
$\pi^{0} 2\gamma$ (2.56 ± 0.22) $\times 10^{-4}$	257
$2\pi^{0}2\gamma$ < 1.2 × 10 ⁻³ CL=9	0% 238
4γ < 2.8 \times 10 ⁻⁴ CL=9	0% 274
invisible $< 1.0 \times 10^{-4} \text{ CL} = 9$	0% –
Charged modes	
	1.2 -
$\pi^{+}\pi^{-}\pi^{0}$ (22.92±0.28) % S=	1.2 174
$\pi^{+}\pi^{-}\gamma$ (4.22±0.08)% S=	1.1 236
$e^{+}e^{-}\gamma$ (6.9 \pm 0.4) \times 10 ⁻³ S=	1.3 274
$\mu^{+} \mu^{-} \gamma$ (3.1 ±0.4)×10 ⁻⁴	253
$e^{+}e^{-}$ < 2.3 × 10 ⁻⁶ CL=9	0% 274
$\mu^{+}\mu^{-}$ (5.8 \pm 0.8) $ imes$ 10 ⁻⁶	253
$2e^{+}2e^{-}$ (2.40 ± 0.22) \times 10^{-5}	274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$ (2.68±0.11) × 10 ⁻⁴	235
$e^{+}e^{-}\mu^{+}\mu^{-}$ < 1.6 × 10 ⁻⁴ CL=9	0% 253
$2\mu^{+}2\mu^{-}$ < 3.6 × 10 ⁻⁴ CL=9	0% 161
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$ < 3.6 × 10 ⁻⁴ CL=9	0% 113
$\pi^{+} e^{-} \overline{\nu}_{e} + \text{c.c.}$ < 1.7 × 10 ⁻⁴ CL=9	0% 256
$\pi^+\pi^-2\gamma \qquad < 2.1 \qquad \times 10^{-3}$	236
$\pi^{+}\pi^{-}\pi^{0}\gamma$ < 5 × 10 ⁻⁴ CL=9	0% 174
$\pi^0 \mu^+ \mu^- \gamma$ < 3 × 10 ⁻⁶ CL=9	0% 210
Charge conjugation (C) , Parity (P) ,	
Charge conjugation \times Parity (CP), or Lepton Family number (LF) violating modes	
$\pi^0 \gamma$ C $<$ 9 \times 10 ⁻⁵ CL=9	0% 257
$\pi^{+}\pi^{-}$	
$2\pi^0$ P,CP < 3.5 \times 10 ⁻⁴ CL=9	
$2\pi^0\gamma$ C < 5 $\times 10^{-4}$ $CL=9$	
$3\pi^0\gamma$ C < 6 $\times 10^{-5}$ $CL=9$	
3γ C < 1.6 $\times 10^{-5}$ $CL=9$	
$4\pi^0$	
$\pi^0 e^+ e^ C [f] < 4 \times 10^{-5} CL = 9$	
$\pi^{0} \mu^{+} \mu^{-}$ $C = [f] < 5$ $\times 10^{-6}$ $CL = 9$	
$\mu^{+}e^{-} + \mu^{-}e^{+}$ LF < 6 $\times 10^{-6}$ CL=9	

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass (T-Matrix Pole \sqrt{s}) = (400–550)-i(200–350) MeV Mass (Breit-Wigner) = (400–550) MeV Full width (Breit-Wigner) = (400–700) MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	dominant	_
$\gamma\gamma$	seen	_

ρ (770) [h]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=775.26\pm0.25$ MeV Full width $\Gamma=149.1\pm0.8$ MeV $\Gamma_{ee}=7.04\pm0.06$ keV

ho(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	~ 100	%		363
	$ ho$ (770) $^{\pm}$ dec	ays		
$\pi^{\pm}\gamma$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$	CL=84%	152
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	254
	$ ho$ (770) 0 deca	ays		
$\pi^+\pi^-\gamma$	(9.9 ± 1.6	$) \times 10^{-3}$		362
$\pi^0\gamma$	(4.7 ± 0.6	,		376
$\eta\gamma$	$(3.00\pm0.21$	$) \times 10^{-4}$		194
$\pi^0\pi^0\gamma$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[i] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	[i] (4.72 ± 0.05)	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}\pm$	$0.34) \times 10^{-4}$		323
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	$) \times 10^{-5}$		257
$\pi^0 e^+ e^-$	< 1.2	$\times 10^{-5}$	CL=90%	376

ω (782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=782.65\pm0.12$ MeV (S = 1.9) Full width $\Gamma=8.49\pm0.08$ MeV $\Gamma_{ee}=0.60\pm0.02$ keV

HTTP://PDG.LBL.GOV

Page 4

ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\frac{\pi^{+}\pi^{-}\pi^{0}}{\pi^{0}}$			
$\frac{\pi}{\pi^0}$ $\frac{\pi}{\gamma}$	(89.2 ± 0.7) %		327
1	(8.40±0.22) %		380
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})$	% S=1.2	366
neutrals (excluding $\pi^0\gamma$)	(7 +7)>	$\times 10^{-3}$ S=1.1	_
$\eta\gamma$	$(4.5 \pm 0.4) >$	$< 10^{-4}$ S=1.1	200
$^{\eta\gamma}_{\pi^0e^+e^-}$	$(7.7 \pm 0.6) >$	< 10 ⁻⁴	380
$\pi^0\mu^+\mu^-$	$(1.34\pm0.18)>$	$< 10^{-4}$ S=1.5	349
e^+e^-	(7.36 ± 0.15)	$< 10^{-5}$ S=1.5	391
$\pi^+\pi^-\pi^0\pi^0$	< 2 >	$< 10^{-4}$ CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6	$< 10^{-3}$ CL=95%	366
$\pi^+\pi^-\pi^+\pi^-$	< 1 >	$< 10^{-3}$ CL=90%	256
$\pi^0\pi^0\gamma$	$(6.7 \pm 1.1) >$	< 10 ⁻⁵	367
$\eta \pi^{0} \gamma$	< 3.3	$< 10^{-5}$ CL=90%	162
$\mu^+\mu^-$	$(7.4 \pm 1.8) >$	< 10 ⁻⁵	377
3γ	< 1.9	$< 10^{-4}$ CL=95%	391
Charge conjugati	ion (C) violating	modes	
$\eta\pi^0$	< 2.2	$< 10^{-4}$ CL=90%	162
. 0	< 2.2	< 10 ⁻⁴ CL=90%	367
$3\pi^0$ C		< 10 ^{−4} CL=90%	330

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.196\pm0.009~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	(42.6 ±0.7)%	1	232
$ ho^{f 0}\gamma$ (including non-resonant	(28.9 \pm 0.5) %		165
$\pi^+ \pi^- \gamma$)			
$\pi^{0}\pi^{0}\eta$	$(22.8 \pm 0.8)\%$	•	239
$\omega\gamma$	$(2.62\pm0.13)\%$		159
$\omega\mathrm{e^+e^-}$	(2.0 \pm 0.4) $ imes$	10^{-4}	159
$\gamma\gamma$	(2.22±0.08) %		479
$3\pi^{0}$	(2.54 ± 0.18) $ imes$	10^{-3}	430
$\mu^+\mu^-\gamma$	(1.09 ± 0.27) $ imes$	10^{-4}	467
$\pi^{+}\pi^{-}\mu_{-}^{+}\mu^{-}$	< 2.9 ×	10^{-5} 90%	401
$\pi^{+}\pi^{-}\pi^{0}$	(3.61 ± 0.17) $ imes$	10^{-3}	428
$(\pi^+\pi^-\pi^0)$ S-wave	(3.8 \pm 0.5) $ imes$	10^{-3}	428
$\pi^{\mp} \rho^{\pm}$	(7.4 ± 2.3) $ imes$	10^{-4}	106

HTTP://PDG.LBL.GOV

Page 5

$\pi^{0} \rho^{0}$	< 4	%	90%	111
$2(\pi^{+}\pi^{-})$	(8.6 ± 0.9	$) \times 10^{-5}$		372
$\pi^{+}\pi^{-}2\pi^{0}$	(1.8 ± 0.4	$) \times 10^{-4}$		376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.8	$\times 10^{-3}$	90%	298
$2(\pi^+\pi^-)2\pi^0$	< 1	%	95%	197
$3(\pi^+\pi^-)$	< 3.1	$\times 10^{-5}$	90%	189
$\mathcal{K}^{\pm}\pi^{\mp}$	< 4	$\times 10^{-5}$	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	$(\begin{array}{cc} 2.4 & +1.3 \\ -1.0 \end{array}$	$) \times 10^{-3}$		458
$\pi^+e^- u_e$ + c.c.	< 2.1	$\times 10^{-4}$	90%	469
$\gamma e^+ e^-$	(4.73 ± 0.30)	$(0) \times 10^{-4}$		479
$\pi^{0}\gamma\gamma$	$(3.20\pm0.24$	$4) \times 10^{-3}$		469
$\pi^{0}\gamma\gamma$ (non resonant)	(6.2 ± 0.9	$) \times 10^{-4}$		_
$4\pi^0$	< 3.2	$\times 10^{-4}$	90%	380
e^+e^-	< 5.6	$\times 10^{-9}$	90%	479
invisible	< 5	$\times 10^{-4}$	90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	< 1.8	$\times10^{-5}$	90%	458
$\pi^{0}\pi^{0}$	P,CP	< 5	\times 10 ⁻⁴	90%	459
$\pi^0 e^+ e^-$	С	[f] < 1.4	\times 10 ⁻³	90%	469
$\eta { m e}^+ { m e}^-$	С	[f] < 2.4	\times 10 ⁻³	90%	322
3γ	С	< 1.1	\times 10 ⁻⁴	90%	479
$\mu^+\mu^-\pi^0$	C	[f] < 6.0	\times 10 ⁻⁵	90%	445
$\mu^+\mu^-\eta$	C	[f] < 1.5	\times 10 ⁻⁵	90%	273
e μ	LF	< 4.7	$\times 10^{-4}$	90%	473

f₀(980) [j]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=990\pm20$ MeV Full width $\Gamma=10$ to 100 MeV

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	dominant	476
$K\overline{K}$	seen	36
$\gamma \gamma$	seen	495

a₀(980) [j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=980\pm20~{\rm MeV}$ Full width $\Gamma=50~{\rm to}~100~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 6

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi_{-}$	dominant	319
$K\overline{K}$	seen	†
$\gamma \gamma$	seen	490

ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1019.461\pm0.016$ MeV Full width $\Gamma=4.249\pm0.013$ MeV (S =1.1)

		Scale factor/	
ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ) C	onfidence level	(MeV/ <i>c</i>)
K^+K^-	(49.2 \pm 0.5) %	S=1.3	127
$K_L^0 K_S^0$	$(34.0 \pm 0.4) \%$	S=1.3	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.24 ± 0.33)%	S=1.2	_
$\eta\gamma$	(1.303 ± 0.025) %	S=1.2	363
$\pi^0_{\cdot}\gamma$	(1.30 ± 0.05) \times 1	0-3	501
$\ell^+\ell^-$	_		510
e^+e^-	$(2.973\pm0.034)\times1$		510
$\mu^+\mu^-$	$(2.86 \pm 0.19) \times 1$	_	499
$\eta e^{+} e^{-}$	$(1.08 \pm 0.04) \times 1$		363
$\pi^+\pi^-$	$(7.3 \pm 1.3) \times 1$		490
$\omega \pi^0$	$(4.7 \pm 0.5) \times 1$		171
$\omega\gamma$	< 5 %	CL=84% 0 ⁻⁵ CL=90%	209
$ ho \gamma \\ \pi^+ \pi^- \gamma$	$<$ 1.2 \times 1 $($ 4.1 \pm 1.3 $) \times$ 1		215 490
$f_0(980)\gamma$	$(3.22 \pm 0.19) \times 1$		29
$\pi^0\pi^0\gamma$	$(3.22 \pm 0.19) \times 1$ $(1.12 \pm 0.06) \times 1$		492
$\pi^+\pi^-\pi^+\pi^-$			
	$(3.9 {}^{+2.8}_{-2.2}) \times 1$		410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 4.6 × 1	0^{-6} CL=90%	342
$\pi^0e^+e^-$	(1.33 $^{+0.07}_{-0.10}$) $ imes$ 1	0-5	501
$\pi^{0} \eta \gamma$	(7.27 ± 0.30) \times 1	0^{-5} S=1.5	346
$a_0(980)\gamma$	(7.6 \pm 0.6) \times 1		39
$K^0\overline{K}^0\gamma$		0^{-8} CL=90%	110
$\eta'(958)\gamma$	(6.22 ± 0.21) \times 1		60
$\eta \pi^0 \pi^0 \gamma$		0^{-5} CL=90%	293
$\mu^+\mu^-\gamma$	(1.4 \pm 0.5) \times 1		499
$ ho\gamma\gamma$		0^{-4} CL=90%	215
$\eta \pi^+ \pi^-$		0^{-5} CL=90%	288
$\eta \mu^+ \mu^-$		0^{-6} CL=90%	321
$\eta U ightarrow \eta e^+ e^-$	< 1 × 1	0^{-6} CL=90%	_

Lepton Family number (LF) violating modes

 $e^{\pm}\mu^{\mp}$

$$\times 10^{-6}$$
 CL=90%

504

 $h_1(1170)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=1170\pm 20~{
m MeV}$ Full width $\Gamma=360\pm 40~{
m MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\rho\pi$

seen

308

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

$b_1(1235)$ DECAY MODES Fraction (Γ_i/Γ) Confidence level (MeV/c)dominant $\omega \pi$ 348 $[D/S \text{ amplitude ratio} = 0.277 \pm 0.027]$ $(1.6\pm0.4)\times10^{-3}$ 607 seen † 84% 535 < 50 $K^*(892)^{\pm} K^{\mp}$ † seen < 8 90% 248 < 6 % 90% 235 < 2 90% 235 < 1.5 84% 147

a₁(1260) [k]

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

Mass $m=1230\pm40$ MeV ^[/] Full width $\Gamma=250$ to 600 MeV

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$(\rho\pi)_{S-wave}$	seen	353
$(ho\pi)_{D-wave}$	seen	353
$(\rho(1450)\pi)_{S-wave}$	seen	†
$(ho(1450)\pi)_{D-wave}$	seen	†
$\sigma\pi$	seen	_

HTTP://PDG.LBL.GOV

Page 8

$f_0(980)\pi$	not seen	179
$f_0(1370)\pi$	seen	†
$f_2(1270)\pi$	seen	†
$K\overline{K}^*(892)+$ c.c.	seen	†
$\pi\gamma$	seen	608

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1275.5\pm0.8~{
m MeV}$ Full width $\Gamma=186.7^{+2.2}_{-2.5}~{
m MeV}~{
m (S}=1.4)$

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$\pi\pi$	$(84.2 \ ^{+2.9}_{-0.9}\)\ \%$	S=1.1	623
$\pi^{+}\pi^{-}2\pi^{0}$	(7.7 $^{+1.1}_{-3.2}$) %	S=1.2	563
$K\overline{K}$	($4.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$) %	S=2.7	404
$2\pi^+2\pi^-$	(2.8 ± 0.4) %	S=1.2	560
$\eta\eta_{_}$	(4.0 \pm 0.8) \times	10^{-3} S=2.1	326
$4\pi^0$	(3.0 ± 1.0) $ imes$	10^{-3}	565
$\gamma\gamma$	(1.42 ± 0.24) $ imes$	10^{-5} S=1.4	638
$\eta\pi\pi$	< 8 ×	10^{-3} CL=95%	478
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4 ×	10^{-3} CL=95%	293
e^+e^-	< 6 ×	10^{-10} CL=90%	638

$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=22.7\pm1.1$ MeV (S =1.5)

f ₁ (1285) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
4π	$(33.5^{+}_{-}\ \overset{2.0}{1.8})\ \%$	S=1.3	568
$\pi^0\pi^0\pi^+\pi^-$	$(22.3^{+}_{-}\ \overset{1.3}{1.2})\ \%$	S=1.3	566
$2\pi^+2\pi^-$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3	563
$ ho^0\pi^+\pi^-$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3	336
$^{ ho^0 ho^0}_{4\pi^0}$	seen		†
	< 7 × 10	⁻⁴ CL=90%	568
$\eta\pi^+\pi^-$	$(35 \pm 15)\%$		479
$\eta\pi\pi$	$(52.0^{+}_{-}\ \overset{1.8}{2.1})\ \%$	S=1.2	482

HTTP://PDG.LBL.GOV

Page 9

$a_0(980)\pi$ [ignoring $a_0(980) ightarrow \mathcal{K}\overline{\mathcal{K}}$]	(38 ± 4)%		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(14 \pm 4)\%$		482
$K\overline{K}\pi$	$(9.1\pm~0.4)~\%$	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^+\pi^-\pi^0$	$(3.0\pm\ 0.9)\times10^{-3}$		603
$ ho^{\pm}\pi^{\mp}$	$< 3.1 \times 10^{-3}$	CL=95%	390
$\gamma ho^{f 0}$	$(5.3\pm~1.2)~\%$	S=2.9	406
$\phi \gamma$	$(7.5\pm\ 2.7)\times10^{-4}$		236

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=1294\pm 4$ MeV (S = 1.6) Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \pi^+ \pi^-$	seen	487
$a_0(980)\pi \\ \eta \pi^0 \pi^0$	seen	248
$\eta \pi^0 \pi^0$	seen	490
$\eta(\pi\pi)_S$ -wave	seen	-

π (1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1300\pm 100$ MeV ^[/] Full width $\Gamma=200$ to 600 MeV

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	404
$\pi(\pi\pi)$ S-wave	seen	_

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1318.3^{+0.5}_{-0.6}$ MeV (S = 1.2) Full width $\Gamma=107\pm5$ MeV ^[/]

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	$(70.1 \pm 2.7)\%$	S=1.2	624
$\eta\pi$	(14.5 ± 1.2) %		535
$\omega\pi\pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437

HTTP://PDG.LBL.GOV

Page 10

$\eta'(958)\pi$	(5.5 ± 0)	$0.9) \times 10^{-3}$		288
$\pi^{\pm}\gamma$	(2.91±0	$(0.27) \times 10^{-3}$		652
$\gamma \gamma$	(9.4 ± 0)	$0.7) \times 10^{-6}$		659
e^+e^-	< 5	$\times 10^{-9}$	CL=90%	659

f₀(1370) [j]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m=1200 to 1500 MeV Full width $\Gamma=200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^{+}2\pi^{-}$	seen	612
$\pi^+\pi^-2\pi^0$	seen	615
ho ho	dominant	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_
$\pi(1300)\pi$	seen	†
$a_1(1260)\pi$	seen	35
$\eta\eta$	seen	411
$K\overline{K}$	seen	475
$K\overline{K}$ n π	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†
$\gamma \gamma$	seen	685
e^+e^-	not seen	685

$\pi_1(1400)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

Mass $m=1354\pm25~{\rm MeV}~{\rm (S}=1.8)$ Full width $\Gamma=330\pm35~{\rm MeV}$

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556

η(1405) ^[o]

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=1408.8\pm1.8$ MeV $^{[I]}$ (S =2.1) Full width $\Gamma=51.0\pm2.9$ MeV $^{[I]}$ (S =1.8)

HTTP://PDG.LBL.GOV

Page 11

η (1405) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)_{S ext{-wave}}$ $f_0(980)\pi^0 o\pi^+\pi^-\pi^0$	seen		_
$f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$	not seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
ho ho	<58 %	99.85%	†
$ ho^{ ho} \gamma^{ ho}$	seen		491
$K^*(892) K$	seen		123

*f*₁(1420) ^[p]

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1426.4\pm0.9~{\rm MeV}~{\rm (S}=1.1)$ Full width $\Gamma=54.9\pm2.6~{\rm MeV}$

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	dominant	438
$K\overline{K}^{*}(892) + \text{c.c.}$	dominant	163
$\eta\pi\pi$	possibly seen	573
$\phi \gamma$	seen	349

ω(1420) ^[q]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass m (1400–1450) MeV Full width Γ (180–250) MeV

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	dominant	486
$\omega\pi\pi$	seen	444
$b_1(1235)\pi$	seen	125
e^+e^-	seen	710

a₀(1450) [/]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Created: 6/5/2018 18:58

Mass $m=1474\pm19~{
m MeV}$ Full width $\Gamma=265\pm13~{
m MeV}$

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	0.093 ± 0.020	627
$\pi \eta'(958)$ $K \overline{K}$	0.033 ± 0.017	410
$K\overline{K}$	0.082 ± 0.028	547
$\omega\pi\pi$	DEFINED AS 1	484
$a_0(980)\pi\pi$	seen	342
$\gamma\gamma$	seen	737

ρ(1450) [r]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=1465\pm25$ MeV ^[/] Full width $\Gamma=400\pm60$ MeV ^[/]

ho(1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
$\pi^+\pi^-$	seen	719
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	54
$K\overline{K}$	seen	541
$\underline{\kappa}^+ \kappa^-$	seen	541
$K\overline{K}^{*}(892)+$ c.c.	possibly seen	229
$\eta\gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

η(1475) ^[o]

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 6/5/2018 18:58

Mass $m=1476\pm4$ MeV (S =1.3) Full width $\Gamma=85\pm9$ MeV (S =1.5)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	dominant	477
$K\overline{K}^{*}(892) + \text{c.c.}$	seen	245

$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738
$^{\gamma\gamma}_{K^0_SK^0_S\eta}$	possibly seen	†

$f_0(1500)^{[n]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1504\pm 6$ MeV (S =1.3) Full width $\Gamma=109\pm 7$ MeV

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	(34.9±2.3) %	1.2	740
$\pi^+\pi^-$	seen		739
$2\pi^0$	seen		740
4 π	$(49.5\pm3.3)~\%$	1.2	691
$4\pi^0$	seen		691
$2\pi^+2\pi^-$	seen		686
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
π (1300) π	seen		143
$a_1(1260)\pi$	seen		217
$\eta \eta$	$(5.1\pm0.9)\%$	1.4	515
$\eta \eta'(958)$	$(1.9\pm0.8)\%$	1.7	†
$K\overline{K}$	$(8.6\pm1.0)\%$	1.1	568
$\gamma\gamma$	not seen		752

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1525\pm 5$ MeV $^{[I]}$ Full width $\Gamma=73^{+6}_{-5}$ MeV $^{[I]}$

f' ₂ (1525) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	(88.7 ±2.2)%	581
$\eta\eta$	(10.4 \pm 2.2) %	530
$\pi\pi$	$(8.2 \pm 1.5) \times 10^{-3}$	750
$\gamma\gamma$	$(1.10\pm0.14)\times10^{-6}$	763

$\pi_1(1600)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

Mass $m=1662^{+8}_{-9}$ MeV Full width $\Gamma=241\pm40$ MeV (S=1.4)

HTTP://PDG.LBL.GOV

Page 14

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	803
$ ho^{0}\pi^{-}$	seen	641
$f_2(1270)\pi^-$	not seen	318
$b_1(1235)\pi$	seen	357
$\eta'(958)\pi^-$	seen	543
$f_1(1285)\pi$	seen	314

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-}+)$$

Mass $m=1617\pm 5~{\rm MeV}$ Full width $\Gamma=181\pm 11~{\rm MeV}$

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω (1650) [s]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=1670\pm30~{\rm MeV}$ Full width $\Gamma=315\pm35~{\rm MeV}$

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	647
$\omega \pi \pi$	seen	617
$\omega\eta$	seen	500
$\begin{array}{c} \omega\eta \\ e^+e^- \end{array}$	seen	835

$$\omega_3$$
(1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4$ MeV Full width $\Gamma=168\pm 10$ MeV ^[/]

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-}+)$$

Mass $m=1672.2\pm3.0$ MeV $^{[I]}$ (S = 1.4) Full width $\Gamma=260\pm9$ MeV $^{[I]}$ (S = 1.2)

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/ c)
3π	(95.8±1.4) %	,	809
$f_2(1270)\pi$	$(56.3\pm3.2)\%$,)	328
$ ho\pi$	$(31 \pm 4)\%$, D	648
$\sigma\pi$	$(10.9\pm3.4)\%$		_
$\pi(\pi\pi)_{S}$ -wave	(8.7±3.4) %	, D	_
$K\overline{K}^*(892)+$ c.c.	(4.2±1.4) %	, D	455
ωho	$(2.7\pm1.1)\%$, D	304
$\pi^{\pm}\gamma$	(7.0 ± 1.1) $ imes$	10^{-4}	830
$\gamma\gamma$	< 2.8 ×	10^{-7} 90%	836
$ ho$ (1450) π	< 3.6 ×	10^{-3} 97.7%	147
$b_1(1235)\pi$	< 1.9 ×	10^{-3} 97.7%	365
$f_1(1285)\pi$	possibly seen	1	323
$a_2(1320)\pi$	not seen		292

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=1680\pm20$ MeV ^[/] Full width $\Gamma=150\pm50$ MeV ^[/]

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}^*(892)$ + c.c.	dominant	462
$K_{\underline{S}}^{0}K\pi$	seen	621
$K\overline{K}$	seen	680
e^+e^-	seen	840

$\omega\pi\pi$	not seen	623
$\mathcal{K}^+ \mathcal{K}^- \pi^+ \pi^-$	seen	544
$\eta \phi$	seen	290
$\eta \gamma$	seen	751

$\rho_3(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1688.8\pm 2.1$ MeV $^{\mbox{[$I$]}}$ Full width $\Gamma=161\pm 10$ MeV $^{\mbox{[$I$]}}$ (S =1.5)

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
4π	$(71.1 \pm 1.9)\%$		790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$		787
$\omega\pi$	$(16 \pm 6)\%$		655
$\pi\pi$	(23.6 \pm 1.3) %		834
$K\overline{K}\pi$	(3.8 ± 1.2) %		629
$K\overline{K}$	($1.58\pm~0.26$) %	1.2	685
$\eta \pi^+ \pi^-$	seen		727
$ ho(770)\eta$	seen		520
$\pi\pi\rho$ Excluding 2ρ and $a_2(1320)\pi$.	seen		633
$a_2(1320)\pi$	seen		307
ho ho	seen		335

ρ (1700) [r]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=1720\pm20$ MeV $^{[I]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV $^{[I]}$ $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes)

ho(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
$ ho\pi\pi$	dominant	653
$ ho^0\pi^+\pi^-\ ho^\pm\pi^\mp\pi^0$	large	651
$ ho^{\pm}\pi^{\mp}\pi^{0}$	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
π (1300) π	seen	349
ho ho	seen	372
$^{ ho}_{\pi^+\pi^-}$	seen	849
$\pi\pi$	seen	849

seen	496
seen	545
not seen	334
seen	704
seen	860
seen	674
	seen not seen seen seen

f₀(1710) [t]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1723^{+6}_{-5}$ MeV (S =1.6) Full width $\Gamma=139\pm8$ MeV (S =1.1)

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	706
$\eta\eta$	seen	665
$\pi\pi$	seen	851
$\omega \omega$	seen	360

$\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1812\pm12$ MeV (S = 2.3) Full width $\Gamma=208\pm12$ MeV

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	879
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	625
$f_0(1370)\pi^-$	seen	368
$f_0(1500)\pi^-$	not seen	250
$ ho\pi^-$	not seen	732
$\eta\eta\pi^-$	seen	661
$a_0(980)\eta$	seen	473
$a_2(1320)\eta$	not seen	†
$f_2(1270)\pi$	not seen	442
$f_0(1370)\pi^-$	not seen	368
$f_0(1500)\pi^-$	seen	250
$\eta \eta'(958) \pi^-$	seen	375
$K_0^*(1430)K^-$	seen	†
$K^*(892)K^-$	not seen	570

$$\phi_3$$
(1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~({
m S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	785
$K\overline{K}^{*}(892) + \text{c.c.}$	seen	602

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass $m=1895\pm16$ MeV Full width $\Gamma=235\pm34$ MeV

f₂(1950)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1944\pm12$ MeV (S = 1.5) Full width $\Gamma=472\pm18$ MeV

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\overline{K}^*(892)$	seen	387
$\pi^+\pi^-$	seen	962
$\pi^0\pi^0$	seen	963
4π	seen	925
$\eta \eta$	seen	803
$K\overline{K}$	seen	837
$\gamma \gamma$	seen	972
$\rho \overline{\rho}$	seen	254

$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}$ MeV Full width $\Gamma=202\pm60$ MeV

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	†
$K\overline{K}$	seen	876

a₄(2040)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

Mass $m=1995^{+10}_{-8}~{
m MeV}~{
m (S}=1.1)$ Full width $\Gamma=257^{+25}_{-23}~{
m MeV}~{
m (S}=1.3)$

HTTP://PDG.LBL.GOV

Page 19

a ₄ (2040) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	867
$\pi^+\pi^-\pi^0$	seen	973
$ ho\pi$	seen	841
$f_2(1270)\pi$	seen	579
$\omega\pi^-\pi^0$	seen	818
ωho	seen	623
$\eta\pi$	seen	917
$\eta'(958)\pi$	seen	760

$f_4(2050)$

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

 $\begin{array}{ll} \mathsf{Mass}\ m = 2018 \pm 11\ \mathsf{MeV}\quad (\mathsf{S} = 2.1) \\ \mathsf{Full}\ \mathsf{width}\ \Gamma = 237 \pm 18\ \mathsf{MeV}\quad (\mathsf{S} = 1.9) \end{array}$

f ₄ (2050) DECAY MODES	ECAY MODES Fraction (Γ_i/Γ)			
$\omega \omega$	seen	637		
$\pi\pi$	$(17.0 \pm 1.5)~\%$	1000		
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880		
$\eta\eta$	$(2.1\pm0.8)\times10^{-3}$	848		
$\eta \eta$ 4 π 0	< 1.2 %	964		
$a_2(1320)\pi$	seen	567		

ϕ (2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=2188\pm 10$ MeV (S =1.8) Full width $\Gamma=83\pm 12$ MeV

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	seen	1094
$\phi f_0(980)$	seen	433
$K^+K^-\mathit{f}_0(980) ightarrow$	seen	_
$K^{+}K^{-}\pi^{+}\pi^{-}$ $K^{+}K^{-}f_{0}(980) \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}$	seen	_
$K^{*0}K^{\pm}\pi^{\mp}$	not seen	779
$K^*(892)^0 \overline{K}^*(892)^0$	not seen	634

 $f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28$ MeV Full width $\Gamma=149\pm40$ MeV

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529
$K\overline{K}$	seen	1037
$\gamma\gamma$	seen	1149

 $f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 2345^{+50}_{-40} \text{ MeV}$ Full width $\Gamma = 322^{+70}_{-60} \text{ MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	580
$\eta\eta$	seen	1037

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+ = u\overline{s}$, $K^0 = d\overline{s}$, $\overline{K}^0 = \overline{d}s$, $K^- = \overline{u}s$, similarly for K^* 's

Κ±

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=493.677\pm0.016$ MeV $^{[u]}$ (S =2.8) Mean life $\tau=(1.2380\pm0.0020)\times10^{-8}$ s (S =1.8) $c\tau=3.711$ m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \rightarrow \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[\nu]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

HTTP://PDG.LBL.GOV

Page 21

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_{\mu}$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$ $K^+ \to \mu^+ \nu_{\mu} \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$ $K^+ \to \pi^0 \mu^+ \nu_{\mu}$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $g^{[x]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} g = -0.21134 \pm 0.00017$$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$
 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} g = 0.626 \pm 0.007$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$

K^{\pm} decay form factors [a,y]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e 3}^{+}) = (2.97 \pm 0.05) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.95 \pm 0.12) \times 10^{-2}$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.98 \pm 0.05) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu 3}^{+}) = (2.96 \pm 0.17) \times 10^{-2}$
 $\lambda_{0}(K_{\mu 3}^{+}) = (1.96 \pm 0.13) \times 10^{-2}$

 K_{e3} form factor quadratic fit

$$\lambda'_{+} (K_{e3}^{\pm}) \text{ linear coeff.} = (2.49 \pm 0.17) \times 10^{-2}$$

$$\lambda''_{+} (K_{e3}^{\pm}) \text{ quadratic coeff.} = (0.19 \pm 0.09) \times 10^{-2}$$

$$K_{e3}^{+} |f_{S}/f_{+}| = (-0.3_{-0.7}^{+0.8}) \times 10^{-2}$$

$$K_{e3}^{+} |f_{T}/f_{+}| = (-1.2 \pm 2.3) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{S}/f_{+}| = (0.2 \pm 0.6) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K_{\mu 3}^{+} |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-$$

Charge radius

$$\langle \mathit{r} \rangle = 0.560 \pm 0.031 \; \mathrm{fm}$$

Forward-backward asymmetry
$$\mathsf{A}_{FB}(\mathsf{K}_{\pi\mu\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{\mathsf{K}\,\mu})>0) - \Gamma(\cos(\theta_{\mathsf{K}\,\mu})<0)}{\Gamma(\cos(\theta_{\mathsf{K}\,\mu})>0) + \Gamma(\cos(\theta_{\mathsf{K}\,\mu})<0)} < 2.3\times10^{-2}, \ \mathsf{CL} = 90\%$$

 K^- modes are charge conjugates of the modes below.

K+ DECAY MODES	Frac	tion (Γ_i/Γ)		Scale factor/ fidence level(-
Leptor	nic and sem	ileptonic m	nodes		
$e^+ \nu_e$	(•	$(07) \times 10^{-5}$		247
$\mu^+ \nu_{\mu}$	(63.56 ±0.1	•	S=1.2	236
$\pi^0 e^+ \nu_e$	(5.07 ± 0.0	4)%	S=2.1	228
Called K_{e3}^+ .					
$\pi^0 \mu^+ u_\mu$	(3.352 ± 0.0	33) %	S=1.9	215
Called $K_{\mu3}^+$.					
$\pi^{0} \pi^{0} e^{+} \nu_{e}$	(4) $\times 10^{-5}$		206
$\pi^+\pi^-e^+\nu_e$	($(24) \times 10^{-5}$		203
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	($) \times 10^{-5}$		151
$\pi^{0} \pi^{0} \pi^{0} e^{+} \nu_{e}$	<	3.5	$\times 10^{-6}$	CL=90%	135
	Hadronic	modes			
$\pi^+\pi^0$	(20.67 ± 0.0	8)%	S=1.2	205
$\pi^{+}\pi^{0}\pi^{0}$	(1.760 ± 0.0	,	S=1.1	133
$\pi^+\pi^+\pi^-$	(5.583 ± 0.0	24) %		125
Leptonic and	semilepton	ic modes v	ith photo	ns	
$\mu^+ \nu_\mu \gamma$	[z,aa] (6.2 \pm 0.8	$) \times 10^{-3}$		236
$\mu^+ \dot{\nu_\mu} \gamma (SD^+)$	[a,bb] (1.33 ± 0.2	$(2) \times 10^{-5}$		_
$\mu^+ \dot{\nu_\mu} \gamma (SD^+ INT)$	[a,bb] <	2.7	$\times 10^{-5}$	CL=90%	_
$\mu^+ \dot{ u_\mu} \gamma (SD^- + SD^- INT)$	[a,bb]<	2.6	$\times 10^{-4}$	CL=90%	_
$e^+ \stackrel{\cdot}{ u_e} \gamma$	(9.4 ±0.4	\times) \times 10 ⁻⁶		247
$\pi^0 e^+ \nu_e \gamma$	[z,aa] (2.56 ± 0.1	6) $\times 10^{-4}$		228
$\pi^0_0 e^+ \nu_e \gamma(SD)$	[a,bb]<		$\times 10^{-5}$		228
$\pi^0 \mu^+ \nu_\mu \gamma$	[z,aa] (1.25 ± 0.2			215
$\pi^0\pi^0\mathrm{e}^+\nu_\mathrm{e}\gamma$	<	5	$\times 10^{-6}$	CL=90%	206
Hadronic r	nodes with	photons o	r $\ell \overline{\ell}$ pairs		
$\pi^+\pi^0\gamma(INT)$	(-	- 4.2 ±0.9	$) \times 10^{-6}$		_
$\pi^+\pi^0\gamma(DE)$	[z,cc] (6.0 ± 0.4	\times) \times 10 ⁻⁶		205
$\pi^+\pi^0\pi^0\gamma$		$7.6 \begin{array}{c} +6.0 \\ -3.0 \end{array}$			133
$\pi^+\pi^+\pi^-\gamma$	[z,aa] (1.04 ± 0.3	1) $\times 10^{-4}$		125
$\pi^+\gamma\gamma$		1.01 ± 0.0			227
$\pi^+3\gamma$	[z] <		$\times 10^{-4}$		227
$\pi^+ e^+ e^- \gamma$	(1.19 ± 0.1	$3) \times 10^{-8}$		227
HTTP://PDG.LBL.GOV	Page	23	Created:	6/5/2018	18:58

Leptonic modes with $\ell \overline{\ell}$ pairs

$e^+ u_e u \overline{ u}$	<	6	$\times 10^{-5}$	CL=90%	247
$\mu^+ u_{\mu} u\overline{ u}$	<	2.4	\times 10 ⁻⁶	CL=90%	236
$e^+ \nu_e e^+ e^-$	(2.48 ± 0.20	$) \times 10^{-8}$		247
$\mu^+ u_\mu\mathrm{e}^+\mathrm{e}^-$	($7.06\ \pm0.31$	$) \times 10^{-8}$		236
$e^{+}\nu_{e}\mu^{+}\mu^{-}$	(1.7 ± 0.5	$) \times 10^{-8}$		223
$\mu^+ u_\mu \mu^+ \mu^-$	<	4.1	$\times 10^{-7}$	CL=90%	185

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+e^+e^-$	<i>S</i> 1	(3.00	$\pm 0.09\) imes 10^{-7}$		227
$\pi^{+}\mu^{+}\mu^{-}$	<i>S</i> 1	(9.4	± 0.6) × 10 ⁻⁸	S=2.6	172
$\pi^+ u \overline{ u}$	S1	(1.7	± 1.1) × 10 ⁻¹⁰		227
$\pi^+\pi^0 u\overline{ u}$	S1	<	4.3	\times 10 ⁻⁵	CL=90%	205
$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	2.1	$\times 10^{-8}$	CL=90%	236
$\mu^+ \nu_{\mathbf{e}}$	LF	[d]	4	$\times 10^{-3}$		236
$\pi^+\mu^+e^-$	LF	<	1.3	\times 10 ⁻¹¹		214
$\pi^+\mu^-e^+$	LF	<	5.2	\times 10 ⁻¹⁰	CL=90%	214
$\pi^-\mu^+e^+$	L	<	5.0	$\times10^{-10}$	CL=90%	214
$\pi^{-} e^{+} e^{+}$	L	<	6.4	$\times10^{-10}$	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	[d]	8.6	imes 10 ⁻¹¹	CL=90%	172
$\mu^+ \overline{\nu}_e$	L	[d]	3.3	$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{ u}_e$	L	<	3	$\times 10^{-3}$	CL=90%	228
$\pi^+\gamma$		[dd] <	2.3	× 10 ⁻⁹	CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

$$50\% \ K_S$$
, $50\% \ K_L$

Mass
$$m=497.611\pm0.013$$
 MeV (S = 1.2) $m_{K^0}-m_{K^\pm}=3.934\pm0.020$ MeV (S = 1.6)

Mean square charge radius

$$\langle \mathit{r}^2 \rangle = -0.077 \pm 0.010 \; \mathrm{fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [y]

Asymmetry A_T in K^0 - \overline{K}^0 mixing $= (6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$${
m Re}(\epsilon) = (1.596 \pm 0.013) imes 10^{-3}$$

CPT-violation parameters [y]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [ee] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

 ${
m Re}({
m x_+}),~{
m \textit{K}}_{e3}~{
m parameter}=(-0.9\pm3.0)\times10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $au=(0.8954\pm0.0004)\times 10^{-10}$ s ~(S=1.1) Assuming CPT

Mean life $au = (0.89564 \pm 0.00033) imes 10^{-10}$ s Not assuming $extit{CPT}$

 $c\tau = 2.6844$ cm Assuming *CPT*

CP-violation parameters [ff]

$$Im(\eta_{+-0}) = -0.002 \pm 0.009$$

$$Im(\eta_{000}) = -0.001 \pm 0.016$$

$$\left|\eta_{000}\right| = \left|A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)\right| < 0.0088, CL = 90\%$$

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

κ_S^0 decay modes

Fraction	(Γ_i/Γ)

Scale factor/
$$p$$

Confidence level (MeV/ c)

	Hadronic modes	
$\pi^0\pi^0$	$(30.69 \pm 0.05)~\%$	209
$\pi^+\pi^-$	(69.20±0.05) %	206
$\pi^{+}\pi^{-}\pi^{0}$	$(3.5 \begin{array}{c} +1.1 \\ -0.9 \end{array}) \times 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [hh] (7.04±0.08) × 10⁻⁴ 229

HTTP://PDG.LBL.GOV

Page 25

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

^			_ '		
$3\pi^0$	CP	< 2.6	\times 10 ⁻⁸	CL=90%	139
$\mu^+\mu^-$	<i>S</i> 1	< 8	$\times 10^{-10}$	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	$\times 10^{-9}$	CL=90%	249
$\pi^0 e^+ e^-$	S1	$[gg]$ (3.0 $^{+1.5}_{-1.2}$	$) \times 10^{-9}$		230
$\pi^{0} \mu^{+} \mu^{-}$	S1	$(2.9 \begin{array}{c} +1.5 \\ -1.2 \end{array}$	$) \times 10^{-9}$		177

K_L⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} m_{\mathcal{K}_L} - m_{\mathcal{K}_S} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad (\text{S} = 1.3) \quad \text{Assuming } \textit{CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; \text{MeV} \quad \text{Assuming } \textit{CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Not assuming } \textit{CPT} \\ \text{Mean life } \tau = (5.116 \pm 0.021) \times 10^{-8} \; \text{s} \quad (\text{S} = 1.1) \\ c\tau = 15.34 \; \text{m} \end{array}$$

Slope parameters [x]

(See Particle Listings for other linear and quadratic coefficients)

$$\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$: $h = 0.076 \pm 0.006$
 $\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$: $k = 0.0099 \pm 0.0015$
 $\mathcal{K}_{L}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [y]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e 3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$

 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming $\mu\text{-}e$ universality

$$\lambda'_{+}(K^{0}_{\mu3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda''_{+}(K^{0}_{\mu3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda_{0}(K^{0}_{\mu3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$$

Created: 6/5/2018 18:58

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$

 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (0.251 \pm 0.006) \times 10^{-1} \quad (S = 1.5)$$

$$\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0)$$

$$K_{e3}^{0} \quad |f_{S}/f_{+}| = (1.5^{+1.4}_{-1.6}) \times 10^{-2}$$

$$K_{e3}^{0} \quad |f_{T}/f_{+}| = (5^{+4}_{-5}) \times 10^{-2}$$

$$K_{\mu 3}^{0} \quad |f_{T}/f_{+}| = (12 \pm 12) \times 10^{-2}$$

$$K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{K^{*}} = -0.205 \pm 0.022 \quad (S = 1.8)$$

$$K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{DIP} = -1.69 \pm 0.08 \quad (S = 1.7)$$

$$K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}: a_{1}/a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2}$$

$$K_{L} \rightarrow \pi^{0}2\gamma: a_{V} = -0.43 \pm 0.06 \quad (S = 1.5)$$

CP-violation parameters [ff]

$$A_L = (0.332 \pm 0.006)\%$$

 $|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3}$ (S = 1.8)
 $|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3}$ (S = 1.8)
 $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3}$ (S = 1.8)
 $|\eta_{00}/\eta_{+-}| = 0.9950 \pm 0.0007$ [ii] (S = 1.6)
 $|Re(\epsilon'/\epsilon)| = (1.66 \pm 0.23) \times 10^{-3}$ [ii] (S = 1.6)

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.3) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} \ - \ \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.5)^{\circ} \quad (S = 1.2)$$
 $\phi_{00} = (43.7 \pm 0.6)^{\circ} \quad (S = 1.2)$
 $\phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (S = 1.3)$

CP asymmetry A in
$$K_L^0 \to \pi^+\pi^-e^+e^- = (13.7 \pm 1.5)\%$$
 β_{CP} from $K_L^0 \to e^+e^-e^+e^- = -0.19 \pm 0.07$ γ_{CP} from $K_L^0 \to e^+e^-e^+e^- = 0.01 \pm 0.11$ (S = 1.6) j for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008$ f for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.004 \pm 0.006$ $|\eta_{+-\gamma}| = (2.35 \pm 0.07) \times 10^{-3}$

$$\begin{split} \phi_{+-\gamma} &= (44 \pm 4)^\circ \\ \left|\epsilon_{+-\gamma}^{'}\right|/\epsilon &< 0.3 \text{, CL} = 90\% \\ \left|\mathbf{g}_{E1}\right| \text{ for } \mathcal{K}_{L}^0 \rightarrow \ \pi^+\pi^-\gamma < \ 0.21 \text{, CL} = 90\% \end{split}$$

T-violation parameters

$${
m Im}(\xi) \ {
m in} \ {
m K}_{\mu 3}^0 = -0.007 \pm 0.026$$

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta S = -\Delta Q$ in $\mathcal{K}^0_{\ell 3}$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

K ⁰ DECAY MODES	I	Fraction (Γ_i/Γ)	Scale factor/ Confidence level(<i>p</i> MeV/ <i>c</i>)
	Semiler	otonic modes		
$\pi^{\pm}e^{\mp} u_{e}$ Called K_{e3}^{0} .	•	(40.55 \pm 0.11)%	S=1.7	229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called $K_{\mu3}^{0}$.	[<i>hh</i>]	(27.04 ± 0.07)%	S=1.1	216
$(\pi\mu { m atom}) u$		$(1.05 \pm 0.11) \times 10$	₎ –7	188
$\pi^0\pi^{\pm}e^{\mp}\nu$	[<i>hh</i>]	(5.20 ± 0.11) \times 10	₎ –5	207
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	[<i>hh</i>]	($1.26~\pm0.04$) \times 10	₎ –5	229
Hadronic modes, includi	ng Charge co	onjugation×Parity \	/iolating (<i>CPV</i>)	modes
$3\pi^0$		$(19.52 \pm 0.12)\%$	S=1.6	139
$\pi^+\pi^-\pi^0$		(12.54 ± 0.05)%		133
$\pi^+\pi^-$		$(1.967\pm0.010)\times10$		206
$\pi^0\pi^0$	CPV	(8.64 ± 0.06) \times 10	S=1.8	209
Se	emileptonic r	nodes with photons		
$\pi^{\pm} e^{\mp} \nu_e \gamma$	[aa,hh,kk]	(3.79 ± 0.06) \times 10	₎ –3	229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$		(5.65 ± 0.23) \times 10)-4	216
Hadro	onic modes v	with photons or $\ell \overline{\ell}$ p	airs	
$\pi^{0}\pi^{0}\gamma$		< 2.43 × 10		209
$\pi^+\pi^-\gamma$	[aa,kk]	(4.15 ± 0.15) \times 10	S=2.8	206
$\pi^+\pi^-\gamma(DE)$		(2.84 ± 0.11) \times 10	S=2.0	206
$\pi^0_2 2\gamma$	[kk]	$(1.273\pm0.033)\times10$	₎ –6	230
$\pi^0 \gamma e^+ e^-$		(1.62 ± 0.17) \times 10)-8	230

Other modes with photons or $\ell \overline{\ell}$ pairs

2γ	((5.47	± 0.04) $\times 10^{-4}$	S=1.1	249
3γ	<	7.4	× 10 ⁻⁸	CL=90%	249
$e^+e^-\gamma$	((9.4	± 0.4) $\times 10^{-6}$	S=2.0	249
$\mu^+\mu^-\gamma$	((3.59	$\pm 0.11) \times 10^{-7}$	S=1.3	225
$e^+e^-\gamma\gamma$	[kk]	(5.95	± 0.33) $\times 10^{-7}$		249
$\mu^+\mu^-\gamma\gamma$	[kk]	(1.0	$^{+0.8}_{-0.6}$) $\times 10^{-8}$		225

Charge conjugation \times Parity (CP) or Lepton Family number (LF) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

•		• •
$\mu^+\mu^-$	S1 (6.84 ± 0.11)	$\times10^{-9}$
e^+e^-	$(9 \begin{array}{cc} +6 \\ -4 \end{array})$	$\times 10^{-12}$ 249
$\pi^{+}\pi^{-}e^{+}e^{-}$	$S1 [kk] (3.11 \pm 0.19)$	\times 10 ⁻⁷ 206
$\pi^0 \pi^0 e^+ e^-$	<i>S1</i> < 6.6	$\times 10^{-9}$ CL=90% 209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S1</i> < 9.2	$\times 10^{-11}$ CL=90% 57
$\mu^+\mu^-e^+e^-$	$S1$ (2.69 ± 0.27)	$\times 10^{-9}$ 225
$e^{+} e^{-} e^{+} e^{-}$	$S1$ (3.56 ± 0.21)	$\times 10^{-8}$ 249
$\pi^0 \mu^+ \mu^-$	$CP,S1 \ [II] < 3.8$	$\times 10^{-10}$ CL=90% 177
$\pi^0e^+e^-$	$CP,S1 \ [II] < 2.8$	$\times 10^{-10}$ CL=90% 230
$\pi^0 u \overline{ u}$	CP,S1[nn] < 2.6	$\times 10^{-8}$ CL=90% 230
$\pi^0\pi^0 u\overline{ u}$	<i>S1</i> < 8.1	$\times 10^{-7}$ CL=90% 209
$e^{\pm}\mu^{\mp}$	LF [hh] < 4.7	$\times 10^{-12}$ CL=90% 238
$e^\pme^\pm\mu^\mp\mu^\mp$	LF [hh] < 4.12	$\times 10^{-11}$ CL=90% 225
$\pi^0 \mu^\pm e^\mp$	LF [hh] < 7.6	$\times 10^{-11}$ CL=90% 217
$\pi^0\pi^0\mu^\pm e^\mp$	LF < 1.7	$\times 10^{-10}$ CL=90% 159

$K_0^*(700)$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass (T-Matrix Pole \sqrt{s}) = (630–730) -i (260–340) MeV Mass (Breit-Wigner) = 824 \pm 30 MeV Full width (Breit-Wigner) = 478 \pm 50 MeV

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

Created: 6/5/2018 18:58

 $K^*(892)^{\pm}$ hadroproduced mass $m=891.76\pm0.25$ MeV $K^*(892)^{\pm}$ in au decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma=50.3\pm0.8$ MeV $K^*(892)^{\pm}$ in au decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.3\pm0.5$ MeV (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100 %	290
$K^0_{\cdot}\gamma$	$(2.46\pm0.21)\times10^{-3}$	307
$\kappa^{\pm}\gamma$	$(1.00\pm0.09)\times10^{-3}$	309
$K\pi\pi$	$< 7 \times 10^{-4} 95\%$	223

K₁(1270)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1272\pm7$ MeV ^[/] Full width $\Gamma=90\pm20$ MeV ^[/]

K₁(1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6)%	46
$K_0^*(1430)\pi$	(28 ±4)%	†
$K^{*}(892)\pi$	(16 ± 5)%	302
$K\omega$	$(11.0\pm2.0)~\%$	†
$K f_0(1370)$ γK^0	(3.0±2.0) %	†
γK^0	seen	539

K₁(1400)

$$I(J^P) = \frac{1}{2}(1^+)$$

$$\label{eq:mass_m} \begin{split} \text{Mass } m = 1403 \pm 7 \text{ MeV} \\ \text{Full width } \Gamma = 174 \pm 13 \text{ MeV} \quad \text{(S} = 1.6) \end{split}$$

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K\rho$	$(3.0\pm3.0)\%$	293
$K f_0(1370)$	(2.0±2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
$K_0^*(1430)\pi \\ \gamma K^0$	not seen	†
γK^0	seen	613

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1421\pm 9~{
m MeV}$ Full width $\Gamma=236\pm 18~{
m MeV}$

K*(1410) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	416
$K\pi$	$(6.6\pm)$	1.3) %		617
$K \rho \gamma K^0$	< 7	%	95%	313
γK^0	< 2.2	× 10 [—]	4 90%	623

K*(1430) [00]

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1425\pm 50~{
m MeV}$ Full width $\Gamma=270\pm 80~{
m MeV}$

K *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93 ±10)%	619
$K\eta$	$(8.6^{+}_{-}\overset{2.7}{3.4})\%$	486
$K\eta'(958)$	seen	†

K₂(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

$$K_2^*(1430)^\pm$$
 mass $m=1425.6\pm1.5$ MeV (S = 1.1) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K *(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(49.9±1.2) %		619
$K^*(892)\pi$	$(24.7 \pm 1.5) \%$		419
$K^*(892)\pi\pi$	$(13.4 \pm 2.2) \%$		372
$K \rho$	(8.7±0.8) %	S=1.2	318
$K\omega$	$(2.9\pm0.8)\%$		311
$K^+\gamma$	$(2.4\pm0.5)\times10^{-3}$	-3 S=1.1	627
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10^{-1}$	-3 S=1.3	486
$K \omega \pi$	< 7.2 × 10	-4 CL=95%	100
$K^0\gamma$	< 9 × 10	-4 CL=90%	626

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18$ MeV Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K* (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K \rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})\%$	618
$K\phi$	seen	387

$K_2(1770)^{[pp]}$

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{\rm MeV}$ Full width $\Gamma=186\pm 14~{\rm MeV}$

K ₂ (1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		794
$K_2^*(1430)\pi$	dominant	288
$K^*(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$K\phi$	seen	441
$K \omega$	seen	607

K₃(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1776\pm7$ MeV (S =1.1) Full width $\Gamma=159\pm21$ MeV (S =1.3)

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		613
$K^*(892)\pi$	$(20 \pm 5)\%$		656
$K\pi$	$(18.8 \pm \ 1.0) \%$		813
$K\eta$	$(30 \pm 13)\%$		719
$K_2^*(1430)\pi$	< 16 %	95%	291

K₂(1820) [qq]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

K ₂ (1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	329
$K^*(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

K₄*(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S = 1.1) Full width $\Gamma=198\pm 30$ MeV

K [*] ₄ (2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$K\pi$	(9.9±1.2) %	958	
$K^*(892)\pi\pi$	$(9 \pm 5)\%$	802	
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	768	
$ ho$ K π	$(5.7 \pm 3.2) \%$	741	
ω K π	(5.0 ± 3.0) %	738	
ϕ K π	(2.8 ± 1.4) %	594	
ϕK^* (892)	$(1.4\pm0.7)~\%$	363	

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.65\pm0.05$ MeV Mean life $\tau=(1040\pm7)\times10^{-15}$ s $c\tau=311.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.096 \pm 0.004 \frac{[rr]}{\Gamma(c \to D^*(2010)^+ \text{ anything})/\Gamma(c \to \text{ anything})} = 0.255 \pm 0.017$

Created: 6/5/2018 18:58

HTTP://PDG.LBL.GOV

Page 33

CP-violation decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$$

$$A_{CP}(K_{0}^{0}e^{\pm}\nu) = (-0.6 \pm 1.6)\%$$

$$A_{CP}(K_{0}^{0}\pi^{\pm}) = (-0.41 \pm 0.09)\%$$

$$A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$$

$$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$$

$$A_{CP}(K_{0}^{0}\pi^{\pm}\pi^{0}) = (-0.1 \pm 0.7)\%$$

$$A_{CP}(K_{0}^{0}\pi^{\pm}\pi^{+}\pi^{-}) = (0.0 \pm 1.2)\%$$

$$A_{CP}(K_{0}^{0}\pi^{\pm}\pi^{+}\pi^{-}) = (0.0 \pm 1.2)\%$$

$$A_{CP}(\pi^{\pm}\pi^{0}) = (2.4 \pm 1.2)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.0 \pm 1.5)\% \quad (S = 1.4)$$

$$A_{CP}(\pi^{0}/K^{0}/K^{0}K^{\pm}) = (-0.11 \pm 0.17)\%$$

$$A_{CP}(K_{0}^{0}K^{\pm}) = (-0.11 \pm 0.25)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (0.37 \pm 0.29)\%$$

$$A_{CP}(K^{+}K^{*0}) = (-0.3 \pm 0.4)\%$$

$$A_{CP}(K^{\pm}K^{*0}) = (0.09 \pm 0.19)\% \quad (S = 1.2)$$

$$A_{CP}(K^{\pm}K^{*0}(1430)^{0}) = (8_{-6}^{+7})\%$$

$$A_{CP}(K^{\pm}K^{*0}(1430)^{0}) = (43_{-26}^{+20})\%$$

$$A_{CP}(K^{\pm}K^{*0}(1430)^{0}) = (-12_{-13}^{+18})\%$$

$$A_{CP}(A_{0}(1450)^{0}\pi^{\pm}) = (-19_{-16}^{+14})\%$$

$$A_{CP}(\phi(1680)\pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(K^{0}K^{\pm}\pi^{+}\pi^{-}) = (-4 \pm 7)\%$$

$$A_{CP}(K^{0}K^{\pm}\pi^{0}) = (-4 \pm 11)\%$$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_s^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} [ss]$$

D⁺ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K^0} \ell^+ \nu_\ell = 0.719 \pm 0.011 \quad (S=1.6) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -2.13 \pm 0.14 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -3 \pm 12 \quad (S=1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \ell^+ \nu_\ell = 0.1407 \pm 0.0025 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -2.00 \pm 0.13 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \, e^+ \nu_e = 0.086 \pm 0.006 \end{array}$$

$$\begin{array}{l} r_1 \equiv a_1/a_0 \text{ in } D^+ \to \eta \, e^+ \nu_e = -1.8 \pm 2.2 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+ \to \omega \, e^+ \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \to \omega \, e^+ \nu_e = 1.06 \pm 0.16 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+, D^0 \to \rho \, e^+ \nu_e = 1.48 \pm 0.16 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+, D^0 \to \rho \, e^+ \nu_e = 0.83 \pm 0.12 \\ r_v \equiv V(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \nu_\ell = 1.49 \pm 0.05 \quad (S = 2.1) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \nu_\ell = 0.802 \pm 0.021 \\ r_3 \equiv A_3(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \nu_\ell = 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T \text{ in } \overline{K}^*(892)^0 \, \ell^+ \nu_\ell = 1.13 \pm 0.08 \\ \Gamma_+/\Gamma_- \text{ in } \overline{K}^*(892)^0 \, \ell^+ \nu_\ell = 0.22 \pm 0.06 \quad (S = 1.6) \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

		Scale factor/					
D+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)				
Inclusive modes							
e^+ semileptonic	(16.07±0.30) %		_				
μ^+ anything	$(17.6 \pm 3.2)\%$		_				
K^- anything	$(25.7 \pm 1.4)\%$		_				
\overline{K}^0 anything $+ K^0$ anything	$(61 \pm 5)\%$		- - - - - - -				
K^+ anything	(5.9 ± 0.8) %		_				
$K^*(892)^-$ anything	$(6 \pm 5)\%$		_				
$\overline{K}^*(892)^0$ anything	$(23 \pm 5)\%$		_				
$K^*(892)^0$ anything	< 6.6 %	CL=90%	_				
η anything	(6.3 ± 0.7) %		_				
η' anything	$(1.04\pm0.18)\%$		_				
ϕ anything	(1.03±0.12) %		_				
Leptonic and	semileptonic mode	es					
$e^+ \nu_e$	< 8.8 × 1	10^{-6} CL=90%	935				
$\gamma e^+ \nu_e$	< 3.0 × 1	10^{-5} CL=90%	935				
$\mu^+ u_{\mu}$	$(3.74\pm0.17)\times1$	10^{-4}	932				
$\frac{\tau^+}{K^0} \stackrel{\nu_{\tau}}{e^+} \nu_{e}$	< 1.2 × 1	10^{-3} CL=90%	90				
$\overline{K}^0 e^+ \nu_e$	(8.73±0.10) %		869				
$\overline{K}{}^0\mu^+\nu_{\mu}$	$(8.74\pm0.19)\%$		865				
$K^-\pi^+e^+\nu_e$	$(3.89\pm0.13)\%$	S=2.1	864				
$\overline{\it K}^*(892)^0 e^+ u_e$, $ \overline{\it K}^*(892)^0 ightarrow$	(3.66±0.12) %		722				
$(K^-\pi^+)_{[0.8-1.0]\text{GeV}} e^+ \nu_e$	(2 20 ± 0 00) 9/		864				
$(N - N) [0.8-1.0] \text{GeV}^{e}$	(3.39±0.09) %	. 2	004				
$(\mathit{K}^-\pi^+)_{\mathit{S-wave}}\mathit{e}^+ u_{e}$	$(2.28\pm0.11)\times1$	$^{10-2}$	_				

$$\overline{K}^*(1410)^0 e^+ \nu_e, \qquad < 6 \qquad \times 10^{-3} \quad \text{CL} = 90\% \qquad - \\ \overline{K}^*(1410)^0 \to K^- \pi^+ \qquad < 5 \qquad \times 10^{-4} \quad \text{CL} = 90\% \qquad - \\ \overline{K}^*_2(1430)^0 e^+ \nu_e, \qquad < 5 \qquad \times 10^{-4} \quad \text{CL} = 90\% \qquad - \\ \overline{K}^*_2(1430)^0 \to K^- \pi^+ \qquad < 7 \qquad \times 10^{-3} \quad \text{CL} = 90\% \qquad 864 \\ K^- \pi^+ e^+ \nu_e \quad \text{nonresonant} \qquad < 7 \qquad \times 10^{-3} \quad \text{CL} = 90\% \qquad 851 \\ \overline{K}^*(892)^0 \mu^+ \nu_\mu, \qquad \qquad (3.65 \pm 0.34) \% \qquad \qquad 851 \\ \overline{K}^*(892)^0 \to K^- \pi^+ \qquad \qquad (1.9 \pm 0.5) \times 10^{-3} \qquad 851 \\ K^- \pi^+ \mu^+ \nu_\mu \quad \text{nonresonant} \qquad (1.9 \pm 0.5) \times 10^{-3} \qquad 851 \\ K^- \pi^+ \pi^0 \mu^+ \nu_\mu \qquad \qquad < 1.5 \qquad \times 10^{-3} \quad \text{CL} = 90\% \qquad 825 \\ \pi^0 e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \quad \text{S} = 2.0 \qquad 930 \\ \eta e^+ \nu_e \qquad \qquad (1.14 \pm 0.10) \times 10^{-3} \qquad 855 \\ \rho^0 e^+ \nu_e \qquad \qquad (2.18 + \frac{0.17}{0.25}) \times 10^{-3} \qquad 774 \\ \varphi^0 \mu^+ \nu_\mu \qquad \qquad (2.4 \pm 0.4) \times 10^{-3} \qquad 771 \\ \psi (958) e^+ \nu_e \qquad \qquad (1.69 \pm 0.11) \times 10^{-3} \qquad 771 \\ \psi (958) e^+ \nu_e \qquad \qquad (2.2 \pm 0.5) \times 10^{-4} \qquad 690 \\ \phi e^+ \nu_e \qquad \qquad (2.2 \pm 0.5) \times 10^{-4} \quad 690 \\ \phi^0 e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (2.2 \pm 0.5) \times 10^{-4} \qquad 690 \\ \phi^0 e^+ \nu_e \qquad \qquad (2.2 \pm 0.5) \times 10^{-4} \qquad 690 \\ \phi^0 e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (958) e^+ \nu_e \qquad \qquad (3.72 \pm 0.17) \times 10^{-3} \qquad 771 \\ \psi^0 (9$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^*(892)^0 e^+ \nu_e$	(5.40±0.10) %	6	S=1.1	722			
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(5.25±0.15) %	6		717			
$\overline{K}_{0}^{*}(1430)^{0}\mu^{+}\nu_{\mu}$	< 2.3 ×	< 10 ⁻⁴	CL=90%	380			
$\overline{K}^*(1680)^0 \mu^+ \nu_{\mu}$	< 1.5 ×	< 10 ⁻³	CL=90%	105			

Hadronic modes with a K or KKK $(1.47\pm0.08)\%$ S = 3.0863 $(1.46\pm0.05)\%$ 863 [tt] $(8.98\pm0.28)\%$ 846 S = 2.2 $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$ $(7.20\pm0.25)\%$ 846 [uu] (1.19 ± 0.07) % 382 $\overline{K}^*(892)^0 \pi^+,$ $\overline{K}^*(892)^0 \to K^- \pi^+,$ $\overline{K}^*(1410)^0 \pi^+, \overline{K}^{*0} \to$ $(10.0 \pm 1.1) \times 10^{-3}$ 714 not seen 381 $\frac{K^-\pi^+}{K_2^*(1430)^0\pi^+}$, [*uu*] $(2.2 \pm 0.7) \times 10^{-4}$ 371 $\overline{K}_{2}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$ $\overline{K}^*(1680)^0\pi^+, \ \overline{K}^*(1680)^0 \to K^-\pi^+$ [uu] (2.1 ± 1.0) \times 10⁻⁴ 58 $K^{-}(2\pi^{+})_{I=2}^{\prime}$ $K_{S}^{0}\pi^{+}\pi^{0}$ $(1.39\pm0.26)\%$

HTTP://PDG.LBL.GOV

Page 36

[tt] $(7.05\pm0.27)\%$

Created: 6/5/2018 18:58

845

$K_S^0 ho^+$		(5.9	⊢0.6 −0.4)%		677
$K_{S}^{0} \rho(1450)^{+}, \ \rho^{+} \rightarrow \ \pi^{+} \pi^{0}$		(1.5	$+1.1 \\ -1.4$) × 10 ⁻³		_
$\overline{K}^*(892)^0 \pi^+$,			$\pm 0.31) \times 10^{-3}$		714
$\overline{K}^*(892)^0 \rightarrow K_S^0 \pi^0$		(2.32]	20.01) / 10		711
$\overline{K}_{0}^{*}(1430)^{0}\pi^{+}, \ \overline{K}_{0}^{*0} \rightarrow$		(2.6 =	$\pm 0.9 \) \times 10^{-3}$		_
$\kappa^0_S \pi^0$					
$\overline{K}_0^*(1680)^0\pi^+$, $\overline{K}_0^{*0} o$		(9	$^{+7}_{-9}$) × 10 ⁻⁴		_
$K_S^0 \pi^0$			-9		
$\overline{\kappa}^0\pi^+$, $\overline{\kappa}^0 o K_S^0\pi^0$		(5.4	$^{+5.0}_{-3.5}$) × 10 ⁻³		_
$K_S^0\pi^+\pi^0$ nonresonant			±4) × 10 ^{−3}		845
$K_{S}^{0}\pi^{+}\pi^{0}$ nonresonant and		(1.31	-0.21 -0.35) %		_
$\frac{3}{\kappa}$ 0 π +		` -	-0.557		
$(K_S^0\pi^0)_{S-wave}\pi^+$		(1.22	-0.26 -0.32) %		845
$K^-2\pi^+\pi^0$	[vv]	(5.98 ±	±0.23) %		816
$K_S^0 2\pi^+\pi^-$	[vv]	(2.97 =	±0.11) %		814
$K^{-}3\pi^{+}\pi^{-}$	[tt]	•	± 0.5) $\times 10^{-3}$	S=1.1	772
$\overline{K}^*(892)^0 2\pi^+\pi^-$,		(1.2 ±	$\pm 0.4 \) \times 10^{-3}$		645
$\overline{K}^*(892)^0 ightarrow K^- \pi^+ \ \overline{K}^*(892)^0 ho^0 \pi^+$,		(2 2	1041210-3		220
$\frac{(892)^{5} \rho^{5} \pi^{+}}{K^{*} (892)^{0}} \rightarrow K^{-} \pi^{+}$		(2.2 =	$\pm 0.4 \) \times 10^{-3}$		239
$\overline{K}^*(892)^0 a_1(1260)^+$	[xx]	(8.9 =	$\pm 1.8 \) \times 10^{-3}$		†
$\kappa^{-} \rho^{0} 2\pi^{+}$			$\pm 0.27) \times 10^{-3}$		524
$K^-3\pi^+\pi^-$ nonresonant			$\pm 2.8 \) \times 10^{-4}$		772
$K^{+}2K_{5}^{0}$			$\pm 0.13) \times 10^{-3}$		545
$K^+K^-K^0_S\pi^+$		(2.3 ±	$\pm 0.5 \) \times 10^{-4}$		436
	Pionic	modes			
$\pi^+\pi^0$			$\pm 0.06) \times 10^{-3}$		925
$2\pi^{+}\pi^{-}$			$\pm 0.19) \times 10^{-3}$		909
$\rho^0\pi^+$			$\pm 1.4 \) \times 10^{-4}$		767
$\pi^+(\pi^+\pi^-)_{S-wave}$			$\pm 0.16) \times 10^{-3}$		909
$\sigma\pi^+$, $\sigma ightarrow \pi^+\pi^-$			$\pm 0.12) \times 10^{-3}$		_
$f_0(980)\pi^+$,		(1.50 \(\)	$\pm 0.32) \times 10^{-4}$		669
$f_0(980) \rightarrow \pi^+\pi^-$			5		
$f_0(1370)\pi^+$, $f_0(1370) ightarrow~\pi^+\pi^-$		(8 =	± 4) \times 10 ⁻⁵		_
$f_0(1370) \rightarrow \pi + \pi$ $f_2(1270)\pi^+$,		(48 -	$\pm 0.8 \) \times 10^{-4}$		485
$f_2(1270) \rightarrow \pi^+\pi^-$		(1.0]	20.0 / / 10		703
$\rho(1450)^0\pi^+$,		< 8	$\times10^{-5}$	CL=95%	338
$\rho(1450)^0 \to \pi^+\pi^-$			· · ·		

$f_0(1500)\pi^+$,	(1.1 ± 0	$.4) \times 10^{-4}$		_
$f_0(1500) \to \pi^+\pi^-$	_	5	CI 0=0/	
$f_0(1710)\pi^+$, $f_0(1710) ightarrow \pi^+\pi^-$	< 5	$\times 10^{-5}$	CL=95%	_
$f_0(1710) \rightarrow \pi + \pi$ $f_0(1790)\pi^+$	< 6	$\times10^{-5}$	CL=95%	_
$f_0(1790) \rightarrow \pi^+\pi^-$	\ 0	× 10	CL—93/0	
$(\pi^+\pi^+)_{S-\text{wave}}\pi^-$	< 1.2	$\times10^{-4}$	CL=95%	909
$2\pi^+\pi^-$ nonresonant	< 1.1	$\times10^{-4}$	CL=95%	909
$\pi^{+} 2\pi^{0}$	(4.5 ± 0	$.4) \times 10^{-3}$		910
$2\pi^{+}\pi^{-}\pi^{0}$	(1.11±0	.08) %		883
$3\pi^{+}2\pi^{-}$	(1.59±0	$(.16) \times 10^{-3}$	S=1.1	845
$\eta\pi^+$	(3.33±0	$.21) \times 10^{-3}$	S=1.4	848
$\eta \pi^+ \pi^0$	(1.38 ± 0)	$(.35) \times 10^{-3}$		831
$\omega \pi^+$	(2.8 ±0	$.6) \times 10^{-4}$		764
$\eta'(958)\pi^{+}$	(4.60±0	$.31) \times 10^{-3}$		681
$\eta'(958)\pi^{+}\pi^{0}$	•	$.5) \times 10^{-3}$		654
Hadronic m	odes with a K	(\overline{K}) pair		
$\kappa^+ \kappa^0$	(283+0	16.0×10^{-3}	S=2.8	793

		o a pa		
$K^+K^0_S$		$(2.83\pm0.16)\times10^{-3}$	S=2.8	793
$K^+K^-\pi^+$	[tt]	$(9.51\pm0.34)\times10^{-3}$	S=1.6	744
$\phi\pi^+$, ϕo K^+K^-		$(2.64\pm0.11)\times10^{-3}$		647
$K^+\overline{K}^*(892)^0$, $\overline{K}^*(892)^0 ightarrow K^-\pi^+$		$(2.44^{+0.11}_{-0.15}) \times 10^{-3}$		613
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$,		$(1.79\pm0.34)\times10^{-3}$		_
$\overline{K}_0^*(1430)^0 \to K^-\pi^+$				
$K^+\overline{K}_2^*(1430)^0$, $\overline{K}_2^* ightarrow$		($1.6 \ ^{+1.2}_{-0.8}$) $\times 10^{-4}$		_
$\mathcal{K}^-\pi^+$				
$K^+ \overline{K}_0^* (700), \overline{K}_0^* \rightarrow K^- \pi^+$		$(6.7 \begin{array}{c} +3.4 \\ -2.1 \end{array}) \times 10^{-4}$		_
$a_0(1450)^0\pi^+$, $a_0^0 \to$		$(4.4 \begin{array}{c} +7.0 \\ -1.8 \end{array}) \times 10^{-4}$		_
K^+K^-				
ϕ (1680) π^+ , $\phi \rightarrow K^+K^-$		$(4.9 \begin{array}{c} +4.0 \\ -1.9 \end{array}) \times 10^{-5}$		_
$K_S^0 K_S^0 \pi^+$		$(2.70\pm0.13)\times10^{-3}$		741
$K^{+}K_{S}^{0}\pi^{+}\pi^{-}$		$(1.67\pm0.18)\times10^{-3}$		678
$K_S^0 K^{-2}\pi^{+}$		$(2.28\pm0.18)\times10^{-3}$		678
$K^{+}K^{-}2\pi^{+}\pi^{-}$		$(2.2 \pm 1.2) \times 10^{-4}$		601

A few poorly measured branching fractions:

$\phi\pi^+\pi^0$	(2.3 ±1.0	0)%		619
$\phi \rho^+$	< 1.4	%	CL=90%	260
$\mathit{K}^{+}\mathit{K}^{-}\pi^{+}\pi^{0}$ non- ϕ	$(1.5 \begin{array}{c} +0.7 \\ -0.7 \end{array})$	⁷) %		682
$K^*(892)^+ K_S^0$	(1.6 ± 0.7	7)%		611

HTTP://PDG.LBL.GOV Page 38

Doubly Cabibbo-suppressed modes

$K^+\pi^0$	$(1.81\pm0.27)\times10^{-4}$	S=1.4	864
$K^+ \eta$	$(1.02\pm0.16)\times10^{-4}$		776
$K^+ \eta'(958)$	$(1.73\pm0.22)\times10^{-4}$		571
$K^+\pi^+\pi^-$	$(5.19\pm0.26)\times10^{-4}$		846
$K^+ ho^0$	$(2.0 \pm 0.5) \times 10^{-4}$		679
$\mathit{K}^{*}(892)^{0}\pi^{+}$, $\mathit{K}^{*}(892)^{0} ightarrow$	$(2.4 \pm 0.4) \times 10^{-4}$		714
$K^{+}\pi^{-}$ $K^{+}f_{0}(980), f_{0}(980) ightarrow \pi^{+}\pi^{-}$	(4.6 ± 2.8) $\times 10^{-5}$		-
$K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0$ $ ightarrow$	$(4.2 \pm 2.8) \times 10^{-5}$		_
$\overset{K^+\pi^-}{K^+\pi^+\pi^-}$ nonresonant	not seen		846
$2K^+K^-$	$(8.5 \pm 2.0) \times 10^{-5}$		550

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

Ecpton runny numb	· () or Echton		nating moa	
$\pi^+\mathrm{e}^+\mathrm{e}^-$	C1	< 1.1	\times 10 ⁻⁶	CL=90%	930
$\pi^+\phi$, $\phi ightarrow e^+e^-$		[yy] (1.7	$^{+1.4}_{-0.9}$) \times 10 ⁻⁶		_
$\pi^+ \mu^+ \mu^-$	C1	< 7.3	$\times 10^{-8}$	CL=90%	918
$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		[yy] (1.8	$\pm 0.8 \) \times 10^{-6}$		_
$ ho^+\mu^+\mu^-$	C1	< 5.6	\times 10 ⁻⁴	CL=90%	757
$K^+e^+e^-$		[zz] < 1.0	$\times 10^{-6}$	CL=90%	870
$K^+\mu^+\mu^-$		[zz] < 4.3	$\times 10^{-6}$	CL=90%	856
$\pi^+e^+\mu^-$	LF	< 2.9	$\times 10^{-6}$	CL=90%	927
$\pi^+e^-\mu^+$	LF	< 3.6	$\times 10^{-6}$	CL=90%	927
$K^+e^+\mu^-$	LF	< 1.2	$\times 10^{-6}$	CL=90%	866
$K^+e^-\mu^+$	LF	< 2.8	$\times 10^{-6}$	CL=90%	866
π^- 2 e^+	L	< 1.1	$\times 10^{-6}$	CL=90%	930
$\pi^- 2 \mu^+$	L	< 2.2	$\times 10^{-8}$	CL=90%	918
$\pi^-\mathrm{e}^+\mu^+$	L	< 2.0	$\times 10^{-6}$	CL=90%	927
$ ho^- 2 \mu^+$	L	< 5.6	$\times 10^{-4}$	CL=90%	757
K^-2e^+	L	< 9	\times 10 ⁻⁷	CL=90%	870
$\mathcal{K}^-2\mu^+$	L	< 1.0	$\times10^{-5}$	CL=90%	856
$K^-e^+\mu^+$	L	< 1.9	\times 10 ⁻⁶	CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5	× 10 ⁻⁴	CL=90%	703

 D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 6/5/2018 18:58

Mass $m=1864.83\pm0.05~{
m MeV}$ $m_{D^\pm}-m_{D^0}=4.822\pm0.015~{
m MeV}$ Mean life $\tau=(410.1\pm1.5)\times10^{-15}~{
m s}$ $c au=122.9~{
m \mu m}$

Mixing and related parameters

$$\begin{array}{l} \left|m_{D_1^0}-m_{D_2^0}\right| = (0.95^{+0.41}_{-0.44})\times 10^{10}~\hbar~\mathrm{s}^{-1}\\ \left(\Gamma_{D_1^0}-\Gamma_{D_2^0}\right)/\Gamma = 2y = (1.29^{+0.14}_{-0.18})\times 10^{-2}\\ \left|q/\mathrm{p}\right| = 0.92^{+0.12}_{-0.09}\\ A_{\Gamma} = (-0.125\pm0.526)\times 10^{-3}\\ K^+\pi^-~\mathrm{relative~strong~phase:~cos~}\delta = 0.97\pm0.11\\ K^-\pi^+\pi^0~\mathrm{coherence~factor~}R_{K\pi\pi^0} = 0.82\pm0.06\\ K^-\pi^+\pi^0~\mathrm{average~relative~strong~phase~}\delta^{K\pi\pi^0} = (199\pm14)^\circ\\ K^-\pi^-2\pi^+~\mathrm{coherence~factor~}R_{K3\pi} = 0.53^{+0.18}_{-0.21}\\ K^-\pi^-2\pi^+~\mathrm{average~relative~strong~phase~}\delta^{K3\pi} = (125^{+22}_{-14})^\circ\\ D^0\to K^-\pi^-2\pi^+,~R_{K3\pi}~(y~\mathrm{cos}\delta^{K3\pi}-\times\mathrm{sin}\delta^{K3\pi}) = (-3.0\pm0.7)\times 10^{-3}~\mathrm{TeV}^{-1}\\ K^0_SK^+\pi^-~\mathrm{coherence~factor~}R_{K^0_SK\pi}^0 = 0.70\pm0.08\\ K^0_SK^+\pi^-~\mathrm{average~relative~strong~phase~}\delta^{K^0_SK\pi} = (0\pm16)^\circ\\ K^*K~\mathrm{coherence~factor~}R_{K^*K}^0 = 0.94\pm0.12\\ K^*K~\mathrm{average~relative~strong~phase~}\delta^{K^*K} = (-17\pm18)^\circ\\ \end{array}$$

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\%$$

$$A_{CP}(2K_S^0) = (-0.4 \pm 1.5)\%$$

$$A_{CP}(\pi^+\pi^-) = (0.13 \pm 0.14)\%$$

$$A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\%$$

$$A_{CP}(\rho\gamma) = (6 \pm 15) \times 10^{-2}$$

$$A_{CP}(\overline{K}^*(892)^0\gamma) = (-0.3 \pm 2.0) \times 10^{-2}$$

$$A_{CP}(\pi^+\pi^-\pi^0) = (0.3 \pm 0.4)\%$$

$$A_{CP}(\rho(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2 \pm 0.9)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(770)^-\pi^+ \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (0 \pm 70)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(1450)^-\pi^+ \to \pi^+\pi^-\pi^0) = (6 \pm 9)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(\rho(1700)^-\pi^+ \to \pi^+\pi^-\pi^0) = (8 \pm 11)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(f_0(980)\pi^0 \to \pi^+\pi^-\pi^0) = (25 \pm 18)\% \stackrel{[aaa]}{=}$$

$$A_{CP}(f_0(1500)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\% \stackrel{[aaa]}{=}$$

```
A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\% [aaa]
A_{CP}(f_2(1270)\pi^0 \rightarrow \pi^+\pi^-\pi^0) = (-4 \pm 6)\% [aaa]
A_{CP}(\sigma(400)\pi^0 \to \pi^+\pi^-\pi^0) = (6 \pm 8)\%^{[aaa]}
A_{CP}(nonresonant \pi^+\pi^-\pi^0) = (-13 \pm 23)\% [aaa]
A_{CP}(a_1(1260)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (5 \pm 6)\%
A_{CP}(a_1(1260)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (14 \pm 18)\%
A_{CP}(\pi(1300)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (-2 \pm 15)\%
A_{CP}(\pi(1300)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (-6 \pm 30)\%
A_{CP}(a_1(1640)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (9 \pm 26)\%
A_{CP}(\pi_2(1670)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (7 \pm 18)\%
A_{CP}(\sigma f_0(1370) \rightarrow 2\pi^+ 2\pi^-) = (-15 \pm 19)\%
A_{CP}(\sigma \rho(770)^0 \rightarrow 2\pi^+ 2\pi^-) = (3 \pm 27)\%
A_{CP}(2\rho(770)^0 \rightarrow 2\pi^+2\pi^-) = (-6 \pm 6)\%
A_{CP}(2f_2(1270) \rightarrow 2\pi^+ 2\pi^-) = (-28 \pm 24)\%
A_{CP}(K^+K^-\pi^0) = (-1.0 \pm 1.7)\%
A_{CP}(K^*(892)^+K^- \rightarrow K^+K^-\pi^0) = (-0.9 \pm 1.3)\% [aaa]
A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\% [aaa]
A_{CP}((K^{+}\pi^{0})_{S-wave}K^{-} \rightarrow K^{+}K^{-}\pi^{0}) = (7 \pm 15)\% [aaa]
A_{CP}(\phi(1020)\pi^0 \to K^+K^-\pi^0) = (1.1 \pm 2.2)\% [aaa]
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\% [aaa]
A_{CP}(a_0(980)^0\pi^0 \to K^+K^-\pi^0) = (-5 \pm 16)\%^{[aaa]}
A_{CP}(f_2'(1525)\pi^0 \to K^+K^-\pi^0) = (0 \pm 160)\%^{[aaa]}
A_{CP}(\bar{K^*}(892)^- K^+ \rightarrow K^+ K^- \pi^0) = (-5 \pm 4)\%^{[aaa]}
A_{CP}(K^*(1410)^- K^+ \rightarrow K^+ K^- \pi^0) = (-17 \pm 29)\%^{[aaa]}
A_{CP}((K^-\pi^0)_{S-wave}K^+ \rightarrow K^+K^-\pi^0) = (-10 \pm 40)\% [aaa]
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_{S}^{0}\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_S^{0}\eta') = (1.0 \pm 0.7)\%
A_{CP}(K_S^{0}\phi) = (-3 \pm 9)\%
A_{CP}(K^-\pi^+) = (0.3 \pm 0.7)\%
A_{CP}(K^+\pi^-) = (-0.9 \pm 1.4)\%
A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp} \pi^{\pm}) = (12.7 \pm 1.5)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^*(892)^-\pi^+ \to K_S^0\pi^+\pi^-) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
A_{CP}(\overline{K}^{0}\rho^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-0.1 \pm 0.5)\%
A_{CP}(\overline{K}^0\omega \rightarrow K_S^0\pi^+\pi^-) = (-13 \pm 7)\%
A_{CP}(\overline{K}^0 f_0(980) \rightarrow K_S^0 \pi^+ \pi^-) = (-0.4 \pm 2.7)\%

A_{CP}(\overline{K}^0 f_2(1270) \rightarrow K_S^0 \pi^+ \pi^-) = (-4 \pm 5)\%
A_{CP}(\overline{K}^0 f_0(1370) \rightarrow K_5^0 \pi^+ \pi^-) = (-1 \pm 9)\%
```

CP-even fractions (labeled by the D^0 decay)

CP-even fraction in $D^0 \to \pi^+\pi^-\pi^0$ decays = $(97.3 \pm 1.7)\%$ *CP*-even fraction in $D^0 \to K^+K^-\pi^0$ decays = $(73 \pm 6)\%$ *CP*-even fraction in $D^0 \to \pi^+\pi^-\pi^+\pi^-$ decays = $(73.7 \pm 2.8)\%$ *CP*-even fraction in $D^0 \to K^+K^-\pi^+\pi^-$ decays = $(75 \pm 4)\%$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.12 \pm 0.13)\%$$
 (S = 1.8)

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^0$$
, $\overline{D}{}^0 \to \pi^+\pi^-\pi^0 = 4.9\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to \pi^+\pi^-\pi^+\pi^- = (0.6 \pm 0.2)\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K_S^0\pi^+\pi^- = 96\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^0 = 16.6\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (1.7 \pm 2.7) \times 10^{-3} \text{ [ss]}$$

 $A_{\text{Tviol}}(K_S\pi^+\pi^-\pi^0) \text{ in } D^0, \overline{D}^0 \to K_S\pi^+\pi^-\pi^0 = (-0.3^{+1.4}_{-1.6}) \times 10^{-3}$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES	ſ	raction	(Γ_i/Γ)		scale factor/ fidence leve(•
	Topolog	gical m	odes			
0-prongs	[<i>bbb</i>]	(15	± 6) %		_
2-prongs		(70	± 6) %		_
4-prongs	[ccc]	(14.5	\pm 0.5) %		_
6-prongs	[ddd]	(6.4	\pm 1.3	$) \times 10^{-4}$		_

Inclusive modes

e^+ anything	[eee]	(6.49	\pm	0.11) %		_
μ^+ anything		(6.7	\pm	0.6) %		_
K^- anything		(54.7	\pm	2.8) %	S=1.3	_
\overline{K}^0 anything $+ K^0$ anything		(47	\pm	4) %		_
K^+ anything		(3.4	\pm	0.4) %		_
$K^*(892)^-$ anything		(15	\pm	9) %		_
$\overline{K}^*(892)^0$ anything		(9	\pm	4) %		_
$K^*(892)^+$ anything	<	< 3.6			%	CL=90%	_
$K^*(892)^0$ anything		(2.8	\pm	1.3) %		_
η anything		(9.5	\pm	0.9) %		_
η' anything		(2.48	\pm	0.27) %		_
ϕ anything		(1.05	\pm	0.11) %		_
invisibles	<	9.4			$\times 10^{-5}$	CL=90%	_

Semileptonic modes

	•		
$K^-e^+ u_e$	$(3.530\pm\ 0.028)\%$	S=1.1	867
$\mathcal{K}^-\mu^+ u_\mu$	(3.31 ± 0.13) %		864
$K^*(892)^{-}e^+\nu_e$	($2.15~\pm~0.16$) %		719
$K^*(892)^- \mu^+ u_{\mu}$	(1.86 ± 0.24) %		714
$K^-\pi^0e^+\nu_e$	$(\begin{array}{ccc} 1.6 & + & 1.3 \\ - & 0.5 \end{array})\%$		861
$\overline{K}{}^0\pi^-e^+\nu_e$	$\left(\begin{array}{ccc} 2.7 & + & 0.9 \\ - & 0.7 \end{array}\right)\%$		860
$K^-\pi^+\pi^-e^+\nu_e$	$(2.8 + 1.4 \ -1.1) \times 10^{-4}$		843
$K_1(1270)^- e^+ \nu_e$	$(7.6 {}^{+}_{-} {}^{4.0}_{3.1}) \times 10^{-4}$		498
$\mathcal{K}^-\pi^+\pi^-\mu^+ u_\mu$	$< 1.2 \times 10^{-3}$	CL=90%	821
$(\overline{K}^*(892)\pi)^{-}\mu^{+}\nu_{\mu}$	$< 1.4 \times 10^{-3}$	CL=90%	692
$\pi^- e^+ \nu_e$	(2.91 ± 0.04) $\times 10^{-3}$	S=1.1	927
$\pi^-\mu^+ u_\mu$	$(2.37 \pm 0.24) \times 10^{-3}$		924
$ ho^-\mathrm{e}^+\dot{ u_\mathrm{e}}$	$(1.77 \pm 0.16) \times 10^{-3}$		771

Hadronic modes with one \overline{K}

i ladi oli	C	403 1111	、) i C / (
$K^-\pi^+$		(3.89	\pm	0.04) %	S=1.1	861
$K_S^0 \pi^0$		(1.19	\pm	0.04) %		860
$K_S^0 \pi^0$ $K_L^0 \pi^0$		(10.0	\pm	$0.7) \times 10^{-3}$		860
$K_S^{\bar{0}}\pi^+\pi^-$	$[tt]% \begin{center} fig:continuous_continuous$	(2.75	\pm	0.18) %	S=1.1	842
$K_{\mathcal{S}}^{0} ho^{0}$		(6.2	+	$^{0.6}_{0.8} \)\times 10^{-3}$		674
$K^0_S\omega$, $\omega o\pi^+\pi^-$		(2.0	\pm	$0.6) \times 10^{-4}$		670
$K_{S}^{0}(\pi^{+}\pi^{-})_{S-wave}$		(3.3	\pm	$0.7)\times 10^{-3}$		842
$K_S^0 f_0(980), f_0 \to \pi^+ \pi^-$		(1.18	+	$^{0.40}_{0.23}~)\times 10^{-3}$		549
$K_S^0 f_0(1370), f_0 \to \pi^+ \pi^-$		(2.7	+	$^{0.8}_{1.3}$) $\times 10^{-3}$		†

$$\begin{array}{c} \mathcal{K}_{S}^{0}f_{2}(1270), \ \ f_{2} \rightarrow \pi^{+}\pi^{-} \qquad (9 \ \ _{-6}^{+10} \) \times 10^{-5} \qquad 262 \\ \mathcal{K}^{*}(892)^{-}\pi^{+}, \ \ \mathcal{K}^{*-} \rightarrow \qquad (1.62 \ \ _{-0.17}^{+0.14}) \ \% \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{-} \qquad \qquad (2.63 \ \ _{-0.32}^{+0.40}) \times 10^{-3} \qquad 378 \\ \mathcal{K}_{S}^{0}\pi^{-} \qquad \qquad (2.63 \ \ _{-0.32}^{+0.40}) \times 10^{-3} \qquad 378 \\ \mathcal{K}_{S}^{0}\pi^{-} \qquad \qquad (3.3 \ \ _{-1.8}^{+1.8} \) \times 10^{-4} \qquad 367 \\ \mathcal{K}_{S}^{0}\pi^{-} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 46 \\ \mathcal{K}_{S}^{0}\pi^{-} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 46 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 711 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.3 \ \ \pm 3.5 \) \times 10^{-4} \qquad 842 \\ \mathcal{K}_{S}^{0}\pi^{+} \qquad \qquad (4.2 \ \ \pm 2.5 \) \% \qquad \qquad (4.295) \qquad \qquad \qquad (4.295) \qquad \qquad ($$

$K^-2\pi^+\pi^- \ K^-\pi^+ ho^0$ total	[tt]	(8.11 (6.77				S=1.1	813 609
$\frac{K^-\pi^+\rho^0}{K^*(892)^0\rho^0}$, $K^{*0}\to$		(6.0	\pm	1.6	$) \times 10^{-3}$ $) \times 10^{-3}$		609 416
$(\overline{K}^-\pi^+)_{S-wave}, \ \overline{K}^*(892)^0 ho^0)_{S-wave}, \ \overline{K}^*(892)^0 ightarrow K^-\pi^+$		(5.8	±	0.8	$) \times 10^{-3}$		-
$(\overline{K}^*(892)^0 \rho^0)_{P-wave},$ $\overline{K}^*(892)^0 \to K^- \pi^+$		(1.86	±	0.18	$) \times 10^{-3}$		-
$(\overline{K}^*(892)^0 \rho^0)_{D-wave}, \ \overline{K}^*(892)^0 \to K^- \pi^+$		(6.6	±	0.7	$)\times10^{-3}$		-
$\overline{K}^*(892)^0 ho^0$ transverse, $\overline{K}^{*0} ightarrow K^- \pi^+$		(1.2	±	0.4) %		417
$K^- a_1(1260)^+, \;\; a_1^+ ightarrow ho^0 \pi^+$		(4.26	±	0.32) %		327
$\overset{,}{\mathcal{K}}^{-}a_{1}(1260)^{+},\ a_{1}(1260)^{+} ightarrow$		(4.3	±	0.4) %		-
$(ho^0\pi^+)_{S-wave} \ K^- a_1(1260)^+, \ a_1(1260)^+ ightarrow$		(2.4	±	1.1) × 10 ⁻⁴		-
$(\rho^0\pi^+)_{D-wave}$ $K_1(1270)^-\pi^+, K_1^- \rightarrow$		(5.4	±	1.6) × 10 ⁻³		-
$K^-\pi^+\pi^-$ total $K^*(892)^0\pi^+\pi^-$ 3-body, $K^{*0} ightarrow K^-\pi^+$		(5.9	±	0.5	$)\times10^{-3}$		685
$K_1(1270)^-\pi^+$, $K_1^- ightarrow$ $\overline{K}^*(892)^0\pi^-$, $\overline{K}^{*0} ightarrow$		(6.5	±	2.3) × 10 ⁻⁴		484
$K^-\pi^+ \atop K_1(1270)^-\pi^+, \atop K_1(1270)^- \to (K_1^*0, -)$		(8	±:	11	$) \times 10^{-5}$		_
$(\overline{K}^{*0}\pi^{-})_{S-wave},$ $\overline{K}^{*}(892)^{0} \rightarrow K^{-}\pi^{+}$ $K_{1}(1270)^{-}\pi^{+},$ $K_{1}(1270)^{-} \rightarrow (\overline{K}^{*0}\pi^{-})_{D-wave},$		(5.7	±	2.3) × 10 ⁻⁴		-
$\overline{K}^*(892)^0 \to K^-\pi^+ \ K_1(1270)^-\pi^+, \ K_1(1270)^- \to$		(2.8	±	0.5) × 10 ⁻³		_
$(K^-\rho^0)_{S-wave}$ $K^-2\pi^+\pi^-$ nonresonant		(1.78			*		813
	ggg]						813
$K_S^0 \eta, \eta \rightarrow \pi^+ \pi^- \pi^0$		•			$) \times 10^{-3}$		772
$K_S^{\bar{0}}\omega, \ \omega \rightarrow \pi^+\pi^-\pi^0$ $K^-2\pi^+\pi^-\pi^0$					$) \times 10^{-3}$		670
$n \geq \pi + \pi + \pi^{-1}$		(4.2	土	0.4) %		771

$$\overline{K}^*(892)^0\pi^+\pi^-\pi^0, \ \overline{K}^{*0} \to \qquad (1.3 \pm 0.6)\% \qquad 643$$

$$K^-\pi^+$$

$$K^-\pi^+\omega, \ \omega \to \pi^+\pi^-\pi^0 \qquad (2.7 \pm 0.5)\% \qquad 605$$

$$\overline{K}^*(892)^0\omega, \ \overline{K}^{*0} \to \qquad (6.5 \pm 3.0)\times 10^{-3} \qquad 410$$

$$K^-\pi^+, \ \omega \to \pi^+\pi^-\pi^0$$

$$K_S^0\eta\pi^0 \qquad (5.5 \pm 1.1)\times 10^{-3} \qquad 721$$

$$K_S^0a_0(980), \ a_0 \to \eta\pi^0 \qquad (6.5 \pm 2.0)\times 10^{-3} \qquad -$$

$$\overline{K}^*(892)^0\eta, \ \overline{K}^{*0} \to K_S^0\pi^0 \qquad (1.6 \pm 0.5)\times 10^{-3} \qquad -$$

$$K_S^02\pi^+2\pi^- \qquad (2.61 \pm 0.29)\times 10^{-3} \qquad 768$$

$$K_S^0\rho^0\pi^+\pi^-, \ \text{no}\ K^*(892)^- \to K_S^0\pi^-, \qquad (4 \pm 7)\times 10^{-4} \qquad 642$$

$$K^*(892)^-\to K_S^0\pi^-, \qquad (4 \pm 7)\times 10^{-4} \qquad 642$$

$$K^*(892)^-\to K_S^0\pi^-, \qquad (1.6 \pm 0.6)\times 10^{-3} \qquad 230$$

$$K^*(892)^-\to K_S^0\pi^-$$

$$K_S^02\pi^+2\pi^- \ \text{nonresonant} \qquad (1.2 \times 10^{-3} \ \text{CL}=90\% \ 768$$

$$K^-3\pi^+2\pi^- \qquad (2.2 \pm 0.6)\times 10^{-4} \qquad 713$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.

Hadronic modes with three K's

$K^+ 2K^- \pi^+$	(2.22 ± 0.31) $\times 10^{-4}$		434
$K^+K^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \rightarrow$	$(4.4 \pm 1.7) \times 10^{-5}$		†
${\mathsf K}^-\pi^+ {}_{\phi, \ \phi o \ {\mathsf K}^+{\mathsf K}^-}$	$(4.0\pm1.7)\times10^{-5}$		422
$\phi \overline{K}^* (892)^0$. $\phi \rightarrow K^+ K^-$.	$(1.06 \pm 0.20) \times 10^{-4}$		†
$\phi \overline{K}^*(892)^0$, $\phi \to K^+K^-$, $\overline{K}^{*0} \to K^-\pi^+$			'
$K^+2K^-\pi^+$ nonresonant	$(3.3 \pm 1.5) \times 10^{-5}$		434
$2K_S^0K^{\pm}\pi^{\mp}$	$(5.8 \pm 1.2) \times 10^{-4}$		427
Pie	onic modes		
$\pi^+\pi^-$	$(1.407 \pm 0.025) \times 10^{-3}$	S=1.1	922
$2\pi^0$	$(8.22 \pm 0.25) \times 10^{-4}$		923
$\pi^+\pi^-\pi^0$	$(1.47 \pm 0.06)\%$	S=2.1	907
$ ho^+\pi^-$	$(10.0 \pm 0.4) \times 10^{-3}$		764
$\rho^0 \pi^0$	$(3.81 \pm 0.23) \times 10^{-3}$		764
$\rho^-\pi^+$	$(5.08 \pm 0.25) \times 10^{-3}$		764
$ ho$ (1450) $^+\pi^-$, $ ho^+ ightarrow~\pi^+\pi^0$	(1.6 ± 2.0) $ imes 10^{-5}$		_
$ ho$ (1450) 0 π^{0} , $ ho^{0}$ $ ightarrow$ π^{+} π^{-}	(4.4 \pm 1.9) $ imes$ 10 ⁻⁵		_
$ ho$ (1450) $^-\pi^+$, $ ho^- ightarrow~\pi^-\pi^0$	(2.6 \pm 0.4) $ imes$ 10 ⁻⁴		_
$ ho(1700)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	$(6.0 \pm 1.5) \times 10^{-4}$		_
$ ho(1700)^0\pi^0$, $ ho^0 o \pi^+\pi^-$	$(7.3 \pm 1.7) \times 10^{-4}$		_
$ ho(1700)^-\pi^+$, $ ho^- ightarrow~\pi^-\pi^0$	$(4.7 \pm 1.1) \times 10^{-4}$		_
$f_0(980)\pi_0^0$, $f_0 \to \pi^+\pi^-$	$(3.7 \pm 0.8) \times 10^{-5}$		_
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$	$(1.20 \pm 0.21) \times 10^{-4}$		_
$f_0(1370)\pi_0^0, f_0 \to \pi^+\pi^-$	$(5.4 \pm 2.1) \times 10^{-5}$		_
$f_0(1500)\pi^0$, $f_0 \to \pi^+\pi^-$	$(5.7 \pm 1.6) \times 10^{-5}$		_
$f_0(1710)\pi^0, f_0 \to \pi^+\pi^-$	$(4.5 \pm 1.6) \times 10^{-5}$		_
$f_2(1270)\pi^0$, $f_2 \to \pi^+\pi^-$	$(1.94 \pm 0.21) \times 10^{-4}$		_
$\pi^+\pi^-\pi^0$ nonresonant	$(1.2 \pm 0.4) \times 10^{-4}$	G:0/	907
$3\pi^0$	$< 3.5 \times 10^{-4}$	CL=90%	908
$2\pi^{+}2\pi^{-}$	$(7.45 \pm 0.20) \times 10^{-3}$		880
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(4.47 \pm 0.31) \times 10^{-3}$		_
$2\pi^+\pi^-$ total $a_1(1260)^+\pi^-$, $a_1^+ o$	$(3.09 \pm 0.21) \times 10^{-3}$		
	$(3.09 \pm 0.21) \times 10^{-5}$		_
$\rho^0 \pi^+ S$ -wave	(10 + 05) 10-4		
$a_1(1260)^+\pi^-, a_1^+ \rightarrow$	$(1.9 \pm 0.5) \times 10^{-4}$		_
$\rho^0 \pi^+ D$ -wave	(
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(6.3 \pm 0.7) \times 10^{-4}$		_
$a_1(1260)^-\pi^+, \ a_1^- ightarrow$	$(2.3 \pm 0.9) \times 10^{-4}$		
<u> </u>	(2.3 ± 0.9) × 10		_
$\rho^0 \pi^- S$ -wave	(60 22) 10=5		
$a_1(1260)^-\pi^+, a_1^- \to \sigma\pi^-$	$(6.0 \pm 3.3) \times 10^{-5}$		_
$\pi(1300)^{+}\pi^{-}, \ \pi(1300)^{+} \rightarrow \sigma\pi^{+}$	$(5.1 \pm 2.6) \times 10^{-4}$		_
$O\mathcal{H}$.			

```
\pi(1300)^-\pi^+, \pi(1300)^- \rightarrow (2.2 ± 2.1 ) × 10<sup>-4</sup>
    a_1(1640)^+\pi^-, a_1^+ 	o
                                           (3.1 \pm 1.6) \times 10^{-4}
         \rho^0 \pi^+ D-wave

ho^{\circ}\pi^{+}D-wave a_{1}(1640)^{+}\pi^{-}, \ a_{1}^{+} 
ightarrow \sigma\pi^{+} \ \pi_{2}(1670)^{+}\pi^{-}, \ \pi_{2}^{+} 
ightarrow f_{2}(1270)^{0}\pi^{+}, \ f_{2}^{0} 
ightarrow
                                                     ( 1.8 \pm 1.4 ) \times 10<sup>-4</sup>
                                                             (2.0 \pm 0.9) \times 10^{-4}
    \pi^{+}\pi^{-}
\pi_{2}(1670)^{+}\pi^{-}, \pi^{+}_{2} \rightarrow \sigma\pi^{+}
                                                     (2.6 \pm 1.0) \times 10^{-4}
    2\rho^0 total
                                                              (1.83 \pm 0.13) \times 10^{-3}
                                                                                                                         518
                                                      (8.2 \pm 3.2) \times 10^{-5}
(4.8 \pm 0.6) \times 10^{-4}
        2\rho^0, parallel helicities
        2\rho^0, perpendicular helici-
                                                     ( 1.25 \pm 0.10 ) \times\,10^{-3}
        2\rho^0, longitudinal helicities
                                                     (1.8 \pm 1.2) \times 10^{-3}

(1.8 \pm 1.2) \times 10^{-4}

(5.2 \pm 1.3) \times 10^{-4}

(6.1 \pm 3.0) \times 10^{-4}
        2\rho(770)^{0}, S-wave 2\rho(770)^{0}, P-wave 2\rho(770)^{0}, D-wave
    Resonant (\pi^+\pi^-)\pi^+\pi^-
                                                             (1.49 \pm 0.12) \times 10^{-3}
         3-body total
                                             (6.1 \pm 0.9) \times 10^{-4}
(4.9 \pm 2.5) \times 10^{-4}
(1.8 \pm 0.5) \times 10^{-4}
                                                             (6.1 \pm 0.9) \times 10^{-4}
        \sigma \pi^+ \pi^-
            \sigma \rho (770)^{0}
        f_0(980)\pi^+\pi^-, f_0 \rightarrow
        \pi^{+}\pi^{-}
f_2(1270)\pi^{+}\pi^{-}, f_2 \rightarrow
                                                             (3.7 \pm 0.6) \times 10^{-4}
            2f_2(1270), f_2 \rightarrow \pi^+\pi^-
                                                             (1.6 \pm 1.8) \times 10^{-4}
           f_0(1370)\sigma, f_0 \rightarrow
                                                              (1.6 \pm 0.5) \times 10^{-3}
\pi^{+}\pi^{-}2\pi^{0}
                                                              (1.00 \pm 0.09)\%
                                                                                                                         882
   \eta\pi^0
                                                    [hhh] (6.7 \pm 0.6) \times 10^{-4}
                                                                                                                         846
    \omega \pi^0
                                                    [hhh] ( 1.17 \pm 0.35 ) \times 10<sup>-4</sup>
                                                                                                                         761
2\pi^{+}2\pi^{-}\pi^{0}
                                                              (4.2 \pm 0.5) \times 10^{-3}
                                                                                                                         844
    \eta \pi^+ \pi^-
                                                    [hhh] (1.09 \pm 0.16) \times 10^{-3}
                                                                                                                         827
                                                            (1.6 \pm 0.5) \times 10^{-3}
    \omega \pi^+ \pi^-
                                                    [hhh]
                                                                                                                         738
3\pi^{+}3\pi^{-}
                                                              (4.2 \pm 1.2) \times 10^{-4}
                                                                                                                         795
\eta'(958)\pi^0
                                                              (9.0 \pm 1.4) \times 10^{-4}
                                                                                                                         678
\eta'(958)\pi^{+}\pi^{-}
                                                              (4.5 \pm 1.7) \times 10^{-4}
                                                                                                                         650
                                                              (1.68 \pm 0.20) \times 10^{-3}
2\eta
                                                                                                                         754
\eta \eta'(958)
                                                               (1.05 \pm 0.26) \times 10^{-3}
                                                                                                                         537
                                    Hadronic modes with a K\overline{K} pair
K^+K^-
                                                              (3.97 \pm 0.07) \times 10^{-3}
                                                                                                           S = 1.4
                                                                                                                         791
                                                              (1.70 \pm 0.12) \times 10^{-4}
                                                                                                                         789
                                                               (3.3 \pm 0.5) \times 10^{-3}
                                                                                                           S = 1.1
                                                                                                                         739
```

$\overline{K}^*(892)^0 K_S^0, \overline{K}^{*0} \rightarrow$	(8.1	1 ±	1.6	$)\times10^{-5}$		608
$K^-\pi^+ \ K^*(892)^+K^-, \ K^{*+} ightarrow \ K_S^0\pi^+$	(1.8	36 ±	0.30	$) \times 10^{-3}$		-
$\overline{\mathit{K}}^{*}(1410)^{0}\mathit{K}^{0}_{\mathit{S}},\;\;\overline{\mathit{K}}^{*0} \to$	(1.2	2 ±	1.8	$) \times 10^{-4}$		_
$K^-\pi^+ \ K^*(1410)^+K^-, \ K^{*+} ightarrow \ K_5^0\pi^+$	(3.1	L ±	1.9) × 10 ⁻⁴		-
$(K^-\pi^+)_{S-wave}K^0_S$	(5.9	9 ±	2.8	$) \times 10^{-4}$		739
$(K_S^0\pi^+)_{S-wave}K^-$	(3.8	3 ±	1.0	$) \times 10^{-4}$		739
$a_0(980)^-\pi^+$, $a_0^- \to K_S^0K^-$				$) \times 10^{-4}$		_
$a_0(1450)^-\pi^+, a_0^- \to$				$) \times 10^{-5}$		_
$K_S^0K^-$	`			,		
$a_2(1320)^-\pi^+, a_2^- \rightarrow$	(5	\pm	5	$) \times 10^{-6}$		-
$K_0^{S}K^-$						
$\rho(1450)^-\pi^+, \ \rho^- \to K_S^0K^-$				$) \times 10^{-5}$		_
$K_S^0 K^+ \pi^-$				$) \times 10^{-3}$	S=1.1	739
$K^*(892)^0 K^0_{\mathcal{S}}, K^{*0} \rightarrow K^+\pi^-$	(1.1	10 ±	0.21) × 10 ⁻⁴		608
$K^*(892)^- K^+, K^{*-} \rightarrow K_S^0 \pi^-$	(6.1	l ±	1.0	$)\times10^{-4}$		-
$K^*(1410)^0K^0_S,\;\;K^{*0} ightarrow$	(5	\pm	8	$)\times10^{-5}$		_
$K^+\pi^+ \atop K^*(1410)^-K^+, K^{*-} ightarrow K^0_S\pi^-$	(2.5	5 ±	2.0) × 10 ⁻⁴		-
$(K^+\pi^-)_{S-wave}K^0_S$	(3.6	5 ±	1.9	$) \times 10^{-4}$		739
$(K_S^0\pi^-)_{S-wave}K^+$) × 10 ⁻⁴		739
$a_0(980)^+\pi^-, a_0^+ \rightarrow K_S^0K^+$) × 10 ⁻⁴		_
$a_0(1450)^+\pi^-, a_0^+ \rightarrow$) × 10 ⁻⁵		_
$K_S^0K^+$	(3.2		2.0) / 10		
$ ho(1700)^{+}\pi^{-}$, $ ho^{+} ightarrow K_{S}^{0}K^{+}$	(1.1	ı ±	0.6	$) \times 10^{-5}$		_
$K^{+}K^{-}\pi^{0}$				$) \times 10^{-3}$		743
$K^*(892)^+ K^-, K^*(892)^+ ightarrow K^+ \pi^0$) × 10 ⁻³		_
$K^*(892)^-K^+K^*(892)^- \rightarrow$	(5.4	4 ±	0.4	$)\times10^{-4}$		_
$K^{-}\pi^{0}$ $(K^{+}\pi^{0})_{S-wave}K^{-}$	(2.4	40 ±	0.17	$) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}K^+$				$) \times 10^{-4}$		743
$f_0(980)\pi^0$, $f_0 \to K^+K^-$) × 10 ⁻⁴		_
$\phi\pi^0$, $\phi o K^+K^-$				$) \times 10^{-4}$		_
$2K_{S}^{0}\pi^{0}$	< 5.9			$\times 10^{-4}$		740
$K^+K^-\pi^+\pi^-$	(2.4	14 ±		$) \times 10^{-3}$		677

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

Radiative modes

$ ho^{0} \gamma$	(1.76 ± 0.3)	$31) \times 10^{-5}$		771
$\omega \gamma$	< 2.4	\times 10 ⁻⁴	CL=90%	768
$\phi\gamma$	(2.74 ± 0.1	19) \times 10 ⁻⁵		654
$\frac{\phi \gamma}{K}$ *(892) ⁰ γ	(4.1 ± 0.7)	$() \times 10^{-4}$		719

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

$\mathit{K}^{+}\ell^{-}\overline{ u}_{\ell}$ via $\overline{\mathit{D}}{}^{0}$		< 2.2	$\times 10^{-5}$	CL=90%	_
K^{+} or $K^{*}(892)^{+}e^{-}\overline{\nu}_{e}$ via	ì	< 6	$\times10^{-5}$	CL=90%	_
$\overline{D}{}^0$			4		
$K^+\pi^-$	DC	(1.48 ± 0.0)	7) \times 10 ⁻⁴	S=2.8	861
$K^+\pi^-$ via DCS		(1.366 ± 0.02)	$(28) \times 10^{-4}$		_
$K^+\pi^-$ via $\overline{D}{}^0$		< 1.6	\times 10 ⁻⁵	CL=95%	861
$K_S^0 \pi^+ \pi^- \text{in } D^0 \to \overline{D}{}^0$		< 1.7	$\times 10^{-4}$	CL=95%	_
$K^*(892)^+\pi^-, K^{*+} \rightarrow K_0^8\pi^+$	DC	$(1.11 \begin{array}{c} + & 0.60 \\ - & 0.33 \end{array})$	0.03×10^{-4}		711
$K_0^*(1430)^+\pi^-, K_0^{*+} \rightarrow K_0^0\pi^+$	DC	< 1.4	× 10 ⁻⁵		-
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow K_S^0\pi^+$	DC	< 3.3	× 10 ⁻⁵		-
$K^+\pi^-\pi^0$	DC	(3.01 ± 0.19)	$5) \times 10^{-4}$		844
$\mathit{K}^{+}\pi^{-}\pi^{0}$ via $\overline{D}{}^{0}$		(7.5 ± 0.5)	$) \times 10^{-4}$		_
$K^+\pi^+2\pi^-$ via DCS		(2.45 ± 0.0)	7) \times 10 ⁻⁴		_
$K^{+}\pi^{+}2\pi^{-}$	DC	(2.61 ± 0.00)			813
$K^+\pi^+2\pi^-$ via $\overline{D}{}^0$		(7.8 ± 2.9)	$) \times 10^{-6}$		812
μ^- anything via $\overline{D}{}^0$		< 4	$\times 10^{-4}$	CL=90%	_

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

$\gamma \gamma$	C1	< 8.5	$\times 10^{-7}$	CL=90%	932
e^+e^-	C1	< 7.9	$\times 10^{-8}$	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times 10^{-9}$	CL=90%	926
$\pi^{0} e^{+} e^{-}$	C1	< 4.5	$\times 10^{-5}$	CL=90%	928
$\pi^{0} \mu^{+} \mu^{-}$	C1	< 1.8	$\times 10^{-4}$	CL=90%	915
$\eta e^+ e^-$	C1	< 1.1	$\times 10^{-4}$	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	$\times 10^{-4}$	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 3.73	$\times 10^{-4}$	CL=90%	922
$ ho^0e^+e^-$	C1	< 1.0	$\times 10^{-4}$	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	(9.6 ± 1.2	$) \times 10^{-7}$		894
$\pi^+\pi^-\mu^+\mu^-$ (non-res)		< 5.5	$\times 10^{-7}$	CL=90%	_
$ ho^{0} \mu^{+} \mu^{-}$	C1	< 2.2	$\times 10^{-5}$	CL=90%	754
ωe^+e^-	C1	< 1.8	$\times 10^{-4}$	CL=90%	768
$\omega \mu^+ \mu^-$	C1	< 8.3	$\times 10^{-4}$	CL=90%	751
$K^{-}K^{+}e^{+}e^{-}$	C1	< 3.15	$\times 10^{-4}$	CL=90%	791
$\phi e^+ e^-$	C1	< 5.2	$\times10^{-5}$	CL=90%	654
$\mathcal{K}^- \mathcal{K}^+ \mu^+ \mu^-$	C1	(1.54 ± 0.32)	$(2) \times 10^{-7}$		710
$K^-K^+\mu^+\mu^-$ (non-res)		< 3.3	$\times 10^{-5}$	CL=90%	_
$\phi \mu^+ \mu^-$	C1	< 3.1	$\times 10^{-5}$	CL=90%	631

HTTP://PDG.LBL.GOV

Page 52

$\overline{K}{}^0e^+e^-$		[zz] <	1.1	$\times10^{-4}$	CL=90%	866
$\overline{K}{}^0\mu^+\mu^-$		[zz] <		$\times 10^{-4}$	CL=90%	852
$K^{-}\pi^{+}e^{+}e^{-}$	C1	<	3.85	$\times10^{-4}$	CL=90%	861
$\overline{K}^*(892)^0 e^+ e^-$		[zz] <	4.7	$\times10^{-5}$	CL=90%	719
$\kappa^-\pi^+\mu^+\mu^-$	C1		3.59	$\times10^{-4}$	CL=90%	829
$K^-\pi^+\mu^+\mu^-$, 675 $<$		(4.2 ± 0.4	$) \times 10^{-6}$		_
$m_{\mu\mu}^{}<$ 875 MeV		`		,		
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[zz] <	2.4	$\times10^{-5}$	CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	<i>C</i> 1	<	8.1	$\times 10^{-4}$	CL=90%	863
$\mu^{\pm}e^{\mp}$	LF	[hh] <	1.3	$\times10^{-8}$	CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[hh] <	8.6	$\times10^{-5}$	CL=90%	924
$\etae^{\pm}\mu^{\mp}$	LF	[hh] <	1.0	$\times10^{-4}$	CL=90%	848
$\pi^+\pi^-e^\pm\mu^\mp$	LF	[hh] <	1.5	$\times10^{-5}$	CL=90%	911
$ ho^0e^\pm\mu^\mp$	LF	[hh] <	4.9	$\times10^{-5}$	CL=90%	767
$\omega\mathrm{e}^{\pm}\mu^{\mp}$	LF	[hh] <	1.2	$\times 10^{-4}$	CL=90%	764
$K^-K^+e^\pm\mu^\mp$	LF	[hh] <	1.8	$\times 10^{-4}$	CL=90%	754
$\phie^\pm\mu^\mp$	LF	[hh] <	3.4	$\times 10^{-5}$	CL=90%	648
$\overline{\mathcal{K}}^0 e^{\pm} \mu^{\mp}$	LF	[hh] <	1.0	$\times 10^{-4}$	CL=90%	863
$\mathit{K}^-\pi^+e^\pm\mu^\mp$	LF	[hh] <	5.53	$\times 10^{-4}$	CL=90%	848
$\overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$	LF	[hh] <	8.3	$\times 10^{-5}$	CL=90%	714
$2\pi^{-}2e^{+}$ + c.c.	L	<	1.12	$\times 10^{-4}$	CL=90%	922
$2\pi^{-}2\mu^{+}$ + c.c.	L	<	2.9	$\times 10^{-5}$	CL=90%	894
$K^{-}\pi^{-}2e^{+}+$ c.c.	L	<	2.06	$\times 10^{-4}$	CL=90%	861
$K^-\pi^-2\mu^+ + \text{c.c.}$	L	<	3.9	$\times 10^{-4}$	CL=90%	829
$2K^{-}2e^{+}$ + c.c.	L	<	1.52	$\times 10^{-4}$	CL=90%	791
$2K^{-}2\mu^{+}$ + c.c.	L	<	9.4	$\times 10^{-5}$	CL=90%	710
$\pi^-\pi^-e^+\mu^++$ c.c.	L	<	7.9	$\times 10^{-5}$	CL=90%	911
$K^-\pi^-e^+\mu^++$ c.c.	L	<	2.18	$\times 10^{-4}$	CL=90%	848
$2K^{-}e^{+}\mu^{+}$ + c.c.	L	<	5.7	$\times 10^{-5}$	CL=90%	754
pe_	L,B	[iii] <	1.0	\times 10 ⁻⁵	CL=90%	696
$\overline{p}e^+$	L,B	[jjj]	1.1	$\times 10^{-5}$	CL=90%	696

$D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Created: 6/5/2018 18:58

Mass $m=2006.85\pm0.05$ MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.016\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{\it D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7±0.9) %	43
$D^0\gamma$	(35.3±0.9) %	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m = 2010.26 \pm 0.05 \text{ MeV}$

 $m_{D^*(2010)^+} - m_{D^+} = 140.603 \pm 0.015 \; {
m MeV}$

 $m_{D^*(2010)^+} - m_{D^0} = 145.4257 \pm 0.0017 \text{ MeV}$

Full width $\Gamma = 83.4 \pm 1.8 \text{ keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

D*(2010) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	$(30.7 \pm 0.5) \%$	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

$D_0^*(2400)^0$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass
$$m=2318\pm29~{\rm MeV}~{\rm (S}=1.7)$$
 Full width $\Gamma=267\pm40~{\rm MeV}$

$D_0^*(2400)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 6/5/2018 18:58

$$D^+\pi^-$$

seen

385

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$
I needs confirmation.

Mass
$$m = 2420.8 \pm 0.5 \text{ MeV}$$
 (S = 1.3)

$$m_{D_1^0} - m_{D^{*+}} = 410.6 \pm 0.5 \quad (S = 1.3)$$

Full width
$$\Gamma=31.7\pm2.5~\text{MeV}~(S=3.5)$$

 $\overline{D}_1(2420)^0$ modes are charge conjugates of modes below.

D ₁ (2420) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	353
$D^0\pi^+\pi^-$	seen	425
$D^+\pi^-$	not seen	472
$D^{*0}\pi^{+}\pi^{-}$	not seen	279

$$D_2^*(2460)^0$$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored.

Mass
$$m=2460.7\pm0.4$$
 MeV (S = 3.1) $m_{D_2^{*0}}-m_{D^+}=591.0\pm0.4$ MeV (S = 2.9) $m_{D_2^{*0}}-m_{D^{*+}}=450.4\pm0.4$ MeV (S = 2.9) Full width $\Gamma=47.5\pm1.1$ MeV (S = 1.8)

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

D*(2460) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)		
$D^+\pi^-$	seen	505		
$D^*(2010)^+\pi^-$	seen	389		
$D^0 \pi^+ \pi^-$	not seen	462		
$D^{*0} \pi^+ \pi^-$	not seen	324		

$D_2^*(2460)^{\pm}$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored.

Mass
$$m=2465.4\pm1.3~{
m MeV}~{
m (S}=3.1)$$
 $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{
m MeV}$ Full width $\Gamma=46.7\pm1.2~{
m MeV}$

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

$D_2^*(2460)^{\pm}$ DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$D^0\pi^+$	seen	513
$D^{st 0}\pi^+$	seen	396
$D^{+}\pi^{+}\pi^{-}$	not seen	462
$D^{*+}\pi^+\pi^-$	not seen	326

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_{s}^{\pm}

$$I(J^P) = 0(0^-)$$

Mass $m=1968.34\pm0.07$ MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(504\pm4)\times10^{-15}$ s ~(S=1.2) $c au=151.2~\mu{\rm m}$

CP-violating decay-rate asymmetries

 $A_{CP}(\mu^{\pm}\nu) = (5 \pm 6)\%$ $A_{CP}(K^{\pm}K_S^0) = (0.08 \pm 0.26)\%$ $A_{CP}(K^+K^-\pi^{\pm}) = (-0.5 \pm 0.9)\%$ $A_{CP}(\phi \pi^{\pm}) = (-0.38 \pm 0.27)\%$ $A_{CP}(K^{\pm}K_{5}^{0}\pi^{0}) = (-2 \pm 6)\%$ $A_{CP}(2K_S^0\pi^{\pm}) = (3 \pm 5)\%$ $A_{CP}(K^{+}K^{-}\pi^{\pm}\pi^{0}) = (0.0 \pm 3.0)\%$ $A_{CP}(K^{\pm}K_S^0\pi^+\pi^-) = (-6 \pm 5)\%$ $A_{CP}(K_S^0K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$ $A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) = (-0.7 \pm 3.1)\%$ $A_{CP}(\pi^{\pm}\eta) = (1.1 \pm 3.1)\%$ $A_{CP}(\pi^{\pm}\eta') = (-0.9 \pm 0.5)\%$ $A_{CP}(\eta \pi^{\pm} \pi^{0}) = (-1 \pm 4)\%$ $A_{CP}(\eta' \pi^{\pm} \pi^{0}) = (0 \pm 8)\%$ $A_{CP}(K^{\pm}\pi^{0}) = (-27 \pm 24)\%$ $A_{CP}(\overline{K}^0/K^0\pi^{\pm}) = (0.4 \pm 0.5)\%$ $A_{CP}(K_S^0 \pi^{\pm}) = (3.1 \pm 2.6)\%$ (S = 1.7) $A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (4 \pm 5)\%$ $A_{CP}(K^{\pm}\eta) = (9 \pm 15)\%$ $A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [ss]$$

$D_s^+ \rightarrow \phi \ell^+ \nu_\ell$ form factors

 $r_2 = 0.84 \pm 0.11$ (S = 2.4) $r_v = 1.80 \pm 0.08$ $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

D+ DECAY MODES		Frac	tion (Γ_i/Γ)			ale factor/ dence level	
	Inclusi	ve n	nodes				
e^+ semileptonic			6.5 ± 0.4) %			_
π^+ anything		(1	19.3 ±1.4) %			_
π^- anything		(43.2 ±0.9) %			_
$\pi^{f 0}$ anything		(1	23 ± 7) %			_
K^- anything		(18.7 ± 0.5) %			_
K_{a}^{+} anything		(28.9 ± 0.7) %			_
${\mathcal K}^0_{\mathcal S}$ anything		(19.0 ± 1.1) %			_
η anything	[///]	(29.9 ± 2.8) %			_
$\omega_{_{_{ar{}}}}$ anything		($6.1\ \pm1.4$) %			_
η' anything	[nnn]	(10.3 ± 1.4) %		S=1.1	_
$f_0(980)$ anything, $f_0 ightarrow \ \pi^+ \pi^-$	-	<	1.3	%		CL=90%	_
ϕ anything		`	15.7 ± 1.0	,			_
K^+K^- anything		(15.8 ± 0.7	•			_
$K_{S}^{0}K^{+}$ anything		(5.8 ± 0.5) %			_
$K_{S}^{0}K^{-}$ anything		(1.9 ± 0.4) %			_
$2K_S^0$ anything		(1.70 ± 0.32	() %			_
$2K^+$ anything		<	2.6	X	10^{-3}	CL=90%	_
2K ⁻ anything		<	6	X	10^{-4}	CL=90%	_
Leptonic	and so	emil	eptonic m	odes	5		
$e^+ u_e$		<	8.3	× :	10^{-5}	CL=90%	984
$\mu^+ u_{\mu}$		(5.50 ± 0.23	$(x) \times (x)$	10^{-3}		981
$ au^+ u_ au$		(5.48 ± 0.23	() %			182
$K^+K^-e^+ u_e$			_				851
$\phi \mathrm{e^+} \nu_{\mathrm{e}}$	[000]	(2.39 ± 0.16) %		S=1.3	720
$\phi \mu^+ \nu_{\mu}$		($1.9\ \pm0.5$) %			715
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	[000]	(3.03 ± 0.24) %			_
$\eta\mathrm{e^+} u_\mathrm{e}$	[000]	(2.29 ± 0.19) %			908
$\eta^\prime(958)e^+ u_e$	[000]	($7.4\ \pm1.4$) × :	10^{-3}		751
$\eta \mu^+ u_{\mu}$		($2.4\ \pm0.5$) %			905
$\eta'(958)\mu^+ u_{\mu}$		($1.1\ \pm0.5$) %			747
$\omega e^+ \nu_e$	[ppp]	<	2.0	×	10^{-3}	CL=90%	829
$K^0 e^+ \nu_e$			$3.9\ \pm0.9$				921
$K^*(892)^0 e^+ \nu_e$	[000]	(1.8 ±0.4) × :	10^{-3}		782

Hadronic modes with a $K\overline{K}$ pair

v+ v0		<i>,</i>	1.50 + 0.05) 0/		050
$K^+ K^0_S $ $K^+ \overline{K}^0$		($1.50\pm0.05)$ %		850
		($2.95 \pm 0.14) \%$		850
$K^+K^-\pi^+$	[tt]	($5.45\pm0.17)~\%$	S=1.2	805
$\phi\pi^+$ [oc	00,qqq]	(4.5 \pm 0.4) %		712
$\phi\pi^+$, $\phi \rightarrow K^+K^-$	[qqq]	(2.27±0.08) %		712
$K^+ \overline{K}^* (892)^0$, $\overline{K}^{*0} ightarrow$		(2.61±0.09) %		416
$K^-\pi^+$		`	,		
$f_0(980)\pi^+$, $f_0 \to K^+K^-$		($1.15\pm0.32)~\%$		732
$f_0(1370)\pi^+$, $f_0 \to K^+K^-$		•	7 ± 5) $\times 10^{-4}$		_
$f_0(1710)\pi^+, f_0 \rightarrow K^+K^-$			6.7 ± 2.9) $\times 10^{-4}$		198
$K^+\overline{K}_0^*(1430)^0$, $\overline{K}_0^*\to$		($1.9 \pm 0.4 \times 10^{-3}$		218
		(1.5 ± 0.1) × 10		210
$K^{+}K_{S}^{0}\pi^{0}$		(1.52±0.22) %		805
$2K_S^0\pi^+$		•			
$K^0 \frac{S^{\pi}}{K^0} \pi^+$		($7.7 \pm 0.6) \times 10^{-3}$		802
			_		802
$K^*(892)^+ \overline{K}^0$	[000]	•	5.4 ± 1.2) %		683
$K^+K^-\pi^+\pi^0$		($6.3~\pm0.6$) %		748
ϕho^+	[000]	(8.4 $^{+1.9}_{-2.3}$) %		401
$K_{S}^{0}K^{-}2\pi^{+}$		($1.68 \pm 0.10) \%$		744
$K^*(892)^+\overline{K}^*(892)^0$	[000]	(7.2 \pm 2.6) %		416
$K^{+}K_{5}^{0}\pi^{+}\pi^{-}$		•	1.00±0.08) %		744
$K^{+}K^{-}2\pi^{+}\pi^{-}$		•	8.7 ± 1.5) $\times 10^{-3}$		673
$\phi 2\pi^+\pi^-$	[000]	•	$1.21 \pm 0.16)^{'}\%$		640
$K^+K^- ho^0\pi^+$ non- ϕ		•	2.6×10^{-4}	CL=90%	249
$\phi \rho^0 \pi^+, \ \phi \rightarrow K^+ K^-$			$6.5 \pm 1.3 \times 10^{-3}$	G_	181
ϕ $a_1(1260)^+$, $\phi \rightarrow$		(7.5 ± 1.2) \times 10 ⁻³		†
K^+K^- , $a_1^+ o ho^0\pi^+$		(7.5 ±1.2) × 10		'
$K^+K^-2\pi^+\pi^-$ nonresonant		(9 ± 7) $\times 10^{-4}$		673
$2K_{S}^{0}2\pi^{+}\pi^{-}$		($9 \pm 7 \times 10^{-4}$ $9 \pm 4 \times 10^{-4}$		
$2K_{\tilde{S}}^{2}$ 2 π · π		(9 ±4)×10 ·		669
Hadror	nic mod	les	without K's		
$\pi^+\pi^0$		<	_	CL=90%	975
$2\pi^+\pi^-$		(1.09±0.05) %	S=1.1	959
$\rho^0\pi^+$		`	$2.0 \pm 1.2 \times 10^{-4}$		825
$\pi^+(\pi^+\pi^-)_{S-\text{wave}}$	[<i>rrr</i>]		9.1 ± 0.4) $\times 10^{-3}$		959
$f_2(1270)\pi^+$, $f_2 \rightarrow \pi^+\pi^-$	r.,, 1		$1.10\pm0.20)\times10^{-3}$		559
$\rho(1450)^0\pi^+, \rho^0 \to \pi^+\pi^-$			$3.0 \pm 2.0 \times 10^{-4}$		421
$\pi^+ 2\pi^0$			$6.5 \pm 1.3 \times 10^{-3}$		961
$2\pi^{+}\pi^{-}\pi^{0}$		(0.5 ±1.5) × 10		
Z / / / / / / / / / / / / / / / / / / /			_		935

 $\eta \pi^+$

 $3\pi^{+}2\pi^{-}$

[ooo] (1.70 ± 0.09)% [ooo] (2.4 ± 0.6) × 10^{-3} (8.0 ± 0.8) × 10^{-3}

S=1.1

Created: 6/5/2018 18:58

902 822

899

$2\pi^{+}\pi^{-}2\pi^{0}$		_		902
ηho^+	[000] (8.9 \pm 0.8) %		724
$\eta \pi^+ \pi^0$	(9.2 ± 1.2) %		885
$\omega\pi^+\pi^0$	[000] ($2.8\ \pm0.7$) %		802
$3\pi^{+}2\pi^{-}\pi^{0}$	(4.9 \pm 3.2) %		856
$\omega 2\pi^+\pi^-$	[000] (1.6 \pm 0.5) %		766
	nn,000] ($3.94\pm0.25)~\%$		743
$3\pi^{+}2\pi^{-}2\pi^{0}$		_		803
$\omega\eta\pi^+$	[ooo] <	2.13 %	CL=90%	654
	nn,000] (5.8 ± 1.5)%		465
$\eta'(958)\pi^{+}\pi^{0}$	(5.6 \pm 0.8) %		720
$\eta'(958)\pi^+\pi^0$ nonresonant	<	5.1 %	CL=90%	720
Modes	with one	or three K's		
$\kappa^+\pi^0$		6.3 ± 2.1) \times 10 ⁻⁴		917
, , ,,	(916
$K^0_S\pi^+ \ K^+\eta$	`	$1.77 \pm 0.35) \times 10^{-3}$		835
$K^+ \psi$		2.4×10^{-3}	CL=90%	
$K^+\omega$ $K^+\eta'(958)$			CL=90%	741
$K^{+} \eta^{+} \eta^{-}$		1.8 ± 0.6) $\times 10^{-3}$ 6.6 ± 0.4) $\times 10^{-3}$		646
$K^+\rho^0$		$2.5 \pm 0.4 \times 10^{-3}$		900 745
$K^+ ho (1450)^0$, $ ho^0 ightarrow \pi^+ \pi^-$		$7.0 \pm 2.4 \times 10^{-4}$		743
$K^*(892)^0\pi^+, K^{*0} \rightarrow$	(2		- 775
$\kappa^+ \pi^-$	($1.42\pm0.24) \times 10^{-3}$		113
$K^+\pi^-$ $K^*(1410)^0\pi^+$, $K^{*0} ightarrow$	($1.24\pm0.29)\times10^{-3}$		_
$K^+\pi^-$	(_: ', ', '		
$K^{+}\pi^{-}$ $K^{*}(1430)^{0}\pi^{+}$, $K^{*0}\to$	($5.0 \pm 3.5) \times 10^{-4}$		_
$K^+\pi^-$ $K^+\pi^+\pi^-$ nonresonant		2		
$K^+\pi^+\pi^-$ nonresonant	($1.04\pm0.34)\times10^{-3}$		900
$K^0\pi^+\pi^0$	($1.00\pm0.18)\%$		899
$K_{S}^{0} 2\pi^{+}\pi^{-}$	(· ·		870
$K^+\omega\pi^0$		8.2×10^{-3}		684
$K^+\omega\pi^+\pi^-$	[ooo] <		CL=90%	603
$K^+\omega\eta$			CL=90%	366
$2K^+K^-$		$2.18\pm0.21)\times10^{-4}$		628
ϕ K^+ , $\phi ightarrow K^+$ K^-	($8.9 \pm 2.0 \times 10^{-5}$		_
Doubly C	abibbo-su	ppressed modes		
$2K^{+}\pi^{-}$		$1.27\pm0.13)\times10^{-4}$		805
$K^+K^*(892)^0$, $K^{*0} ightarrow$		$6.0 \pm 3.4 \times 10^{-5}$		_
$K^{+}\pi^{-}$	(,		
Ran	on-antiha	ryon mode		
p n		1.3 ± 0.4) $\times 10^{-3}$		295
۲"	(1.5 ±0.4 / \ 10		293

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

$\pi^+e^+e^-$		[zz] <	1.3	$\times10^{-5}$	CL=90%	979
$\pi^+\phi$, $\phi \rightarrow e^+e^-$		[yy] ($\begin{array}{cc} +8 \\ -4 \end{array}$	$) \times 10^{-6}$		_
$\pi^+\mu^+\mu^-$		[zz] <	4.1	$\times10^{-7}$	CL=90%	968
$K^+e^+e^-$	C1	<	3.7	$\times 10^{-6}$	CL=90%	922
$K^+\mu^+\mu^-$	C1	<	2.1	$\times 10^{-5}$	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times 10^{-3}$	CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.2	$\times 10^{-5}$	CL=90%	976
$\pi^+ e^- \mu^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	976
$K^+e^+\mu^-$	LF	<	1.4	$\times 10^{-5}$	CL=90%	919
$K^+e^-\mu^+$	LF	<	9.7	$\times 10^{-6}$	CL=90%	919
π^-2e^+	L	<	4.1	\times 10 ⁻⁶	CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	1.2	\times 10 ⁻⁷	CL=90%	968
$\pi^-e^+\mu^+$	L	<	8.4	$\times 10^{-6}$	CL=90%	976
K^-2e^+	L	<	5.2	$\times 10^{-6}$	CL=90%	922
$\mathcal{K}^-2\mu^+$	L	<	1.3	$\times 10^{-5}$	CL=90%	909
$\mathit{K}^-e^+\mu^+$	L	<	6.1	\times 10 ⁻⁶	CL=90%	919
$K^*(892)^- 2\mu^+$	L	<	1.4	$\times 10^{-3}$	CL=90%	765

$$D_s^{*\pm}$$

$$I(J^P) = 0(??)$$

 $_{J}^{-}$ is natural, width and decay modes consistent with 1^{-} .

Mass
$$m=2112.2\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 $D_{\it s}^{*-}$ modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{D_s^+\gamma}$	(93.5±0.7) %	139
$D_s^+ \gamma D_s^+ \pi^0$	(5.8 ± 0.7) %	48
$D_s^+ e^+ e^-$	$(6.7\pm1.6)\times10^{-3}$	139

$$D_{s0}^*(2317)^{\pm}$$

$$I(J^P) = 0(0^+)$$

J, P need confirmation.

 J^P is natural, low mass consistent with 0^+ .

Mass
$$m=2317.7\pm0.6$$
 MeV (S $=1.1$) $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.6$ MeV (S $=1.1$) Full width Γ $<$ 3.8 MeV, CL $=$ 95%

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

$D_{s0}^{*}(2317)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ \begin{array}{c} D_s^+ \pi^0 \\ D_s^+ \pi^0 \pi^0 \end{array} $	seen	298
$D_s^+ \pi^0 \pi^0$	not seen	205

$D_{s1}(2460)^{\pm}$

$$I(J^P) = 0(1^+)$$

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_s^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_s^{\pm}}=491.2\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^-$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$D_{-s}^{*+}\pi^{0}$	(48 ±11)%		297
$D_{s}^{+}\gamma$	$(18 \pm 4)\%$		442
$D_s^+ \pi^+ \pi^-$	$(4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-})^{5.0}_{2.4}$		138

$$D_{s1}(2536)^\pm$$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass $m=2535.10\pm0.06$ MeV Full width $\Gamma=0.92\pm0.05$ MeV

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ±0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	$0.028\!\pm\!0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_{s}^{*+}\gamma$	possibly seen		388
$D_s^+\pi^+\pi^-$	seen		437

$D_{s2}^{*}(2573)$

$$I(J^P) = 0(2^+)$$

 $\overline{J^P}$ is natural, width and decay modes consistent with 2^+ .

Mass
$$m=2569.1\pm0.8~{\rm MeV}~{\rm (S}=2.4)$$
 Full width $\Gamma=16.9\pm0.8~{\rm MeV}$

 $D_{\rm 52}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Created: 6/5/2018 18:58

Mass $m=2708.3^{+4.0}_{-3.4}~{\rm MeV}$ Full width $\Gamma=120\pm11~{\rm MeV}$

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}{}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- ullet B^\pm mass, mean life, CP violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions

- B* mass
- $B_1(5721)^+$ mass
- $B_1(5721)^0$

mass

 \bullet $B_2^*(5747)^+$

mass

• $B_2^*(5747)^0$

mass

• $B_J^*(5970)^+$

mass

• $B_J^*(5970)^0$

mass

 $\bullet B_s^0$

mass, mean life, $B_s^0 - \overline{B}_s^0$ mixing, CP violation, branching fractions

 $\bullet B_s^*$

mass

• $B_{s1}(5830)^0$

mass

 \bullet $B_{s2}^*(5840)^0$

mass

 $\bullet B_c^{\pm}$

mass, mean life, branching fractions

At the end of Baryon Listings:

Λ_b

mass, mean life, branching fractions

• $\Lambda_b(5912)^0$

mass, mean life

• $\Lambda_b(5920)^0$

mass, mean life

 $\bullet \Sigma_b$

mass

 $\bullet \Sigma_b^*$

mass

 $\bullet \equiv_b^0, \equiv_b^-$

mass, mean life, branching fractions

• $\Xi_{h}'(5935)^{-}$

mass

- $\Xi_b(5945)^0$ mass
- $\Xi_b^*(5955)^-$ mass
- $\bullet \ \Omega_b^-$

mass, branching fractions

 b-baryon Admixture mean life, branching fractions

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.32\pm0.14$$
 MeV $~({\rm S}=1.1)$ Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3)$$

$$A_{CP}(B^{+} \rightarrow J/\psi\rho^{+}) = -0.11 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \eta_{c}K^{+}) = 0.01 \pm 0.07 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)\pi^{+}) = 0.03 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{+}) = 0.012 \pm 0.020 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}(1P)\pi^{+}) = 0.07 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{+}) = -0.20 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = -0.007 \pm 0.007$$

$$A_{CP}(B^{+} \rightarrow D_{CP(+1)}\pi^{+}) = -0.0080 \pm 0.0026$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}\pi^{+}) = 0.017 \pm 0.026$$

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{+}\pi^{-}]_{D}K^{+}) = 0.10 \pm 0.04$$

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{+}\pi^{-}]_{D}K^{*}(892)^{+}) = 0.02 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow D^{0}K^{+}) = -0.017 \pm 0.005$$

```
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+}) = -0.31 \pm 0.11
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+) = (-4 \pm 8) \times 10^{-3}
A_{CP}(B^+ \to [K^- \pi^+]_D K^+) = -0.58 \pm 0.21
A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+) = 0.07 \pm 0.30 \quad (S = 1.5)
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+) = 0.30 \pm 0.20
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.05 \pm 0.09
A_{CP}(B^+ \to \overline{D}{}^0 K^*(892)^+) = -0.007 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.75 \pm 0.16
A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.45 \pm 0.25
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09
A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+) = 0.35 \pm 0.16
A_{CP}(B^+ \rightarrow [K^+ K^- \pi^0]_D \pi^+) = -0.03 \pm 0.04
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+) = -0.016 \pm 0.020
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+) = -0.09 \pm 0.27
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}\pi^+) = -0.7 \pm 0.6
A_{CP}(B^+ \to [K^- \pi^+]_{(D\pi)} K^+) = 0.8 \pm 0.4
A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}K^+) = 0.4 \pm 1.0
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+) = 0.04 \pm 0.09
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D K^+) = 0.23 \pm 0.13
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D \pi^+) = -0.052 \pm 0.034
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+) = -0.025 \pm 0.026
A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+) = 0.03 \pm 0.11
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+) = 0.34 \pm 0.21
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+) = -0.05 \pm 0.05
A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+) = -0.012 \pm 0.030
A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+) = 0.120 \pm 0.014 \quad (S = 1.4)
A_{ADS}(B^+ \rightarrow DK^+) = -0.40 \pm 0.06
A_{ADS}(B^+ \rightarrow D\pi^+) = 0.100 \pm 0.032
A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+) = -0.33 \pm 0.35
A_{ADS}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+) = -0.01 \pm 0.09
A_{CP}(B^+ \to D_{CP(-1)}K^+) = -0.10 \pm 0.07
A_{CP}(B^+ \rightarrow [K^+ K^-]_D K^+ \pi^- \pi^+) = -0.04 \pm 0.06
A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+) = -0.05 \pm 0.10
A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+) = 0.013 \pm 0.023
A_{CP}(B^+ \to [K^+ K^-]_D \pi^+ \pi^- \pi^+) = -0.019 \pm 0.015
A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+) = -0.002 \pm 0.011
A_{CP}(B^+ \to \overline{D}^{*0}\pi^+) = 0.0010 \pm 0.0028
A_{CP}(B^+ \to (D_{CP(+1)}^*)^0 \pi^+) = 0.016 \pm 0.010 \quad (S = 1.2)
A_{CP}(B^+ \to (D_{CP(-1)}^*)^0 \pi^+) = -0.09 \pm 0.05
```

$$A_{CP}(B^{+} \rightarrow D^{*0}_{CP(+1)}K^{+}) = -0.001 \pm 0.011 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow D^{*0}_{CP(+1)}K^{+}) = -0.11 \pm 0.08 \quad (S = 2.7)$$

$$A_{CP}(B^{+} \rightarrow D^{*0}_{CP(-1)}K^{+}) = 0.07 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{+}) = 0.08 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+}) = -0.23 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = 0.0 \pm 0.4$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = -0.05 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = -0.15 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = -0.06 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = -0.03 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = -0.03 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{S}\phi) = -0.017 \pm 0.016$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{S}\pi^{+}) = -0.017 \pm 0.016$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{S}\pi^{+}) = -0.017 \pm 0.016$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{S}\pi^{+}) = 0.004 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{S}(1430)^{+}) = 0.06 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{S}(1430)^{+}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = -0.45 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.10 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.10 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.10 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.14 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.02 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.04 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.03 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.04 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.08 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}) = 0.061 \pm 0.032$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{S}(1430)^{+}_{T}) =$$

$$A_{CP}(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}) = 0.31 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)) = -0.15 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow a_{1}^{+} K^{0}) = 0.12 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow b_{1}^{+} K^{0}) = -0.03 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow b_{1}^{+} K^{0}) = -0.46 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.46 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.21 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.21 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{0} K^{0}_{S}) = 0.04^{+0.04}_{-0.05}$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} \pi^{+}) = -0.122 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.033 \pm 0.008$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.04 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.04 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.04 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{+} K^{-}) = 0.11 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = -0.01 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = -0.01 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.04 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow K^{*} (430)^{+}) = -0.23 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{+} \phi) = -0.10 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (99)^{-} - 0.11 \pm 0.33$$

$$A_{CP}(B^{+} \rightarrow K^{*} (99)^{-} - 0.11 \pm 0.33$$

$$A_{CP}(B^{+} \rightarrow K^{*} (99)^{-} - 0.01 \pm 0.057 \pm 0.013$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{*} \pi^{-} \pi^{+}) = 0.041 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{$$

$$A_{CP}(B^{+} \rightarrow p\overline{p}K^{+}) = 0.00 \pm 0.04 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow p\overline{p}K^{*}(892)^{+}) = 0.21 \pm 0.16 \quad (S = 1.4)$$

$$A_{CP}(B^{+} \rightarrow p\overline{\Lambda}\gamma) = 0.17 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow p\overline{\Lambda}\pi^{0}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}) = -0.02 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{+}e^{+}e^{-}) = 0.14 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-}) = 0.011 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-}) = -0.11 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow K^{*}\ell^{+}\ell^{-}) = -0.09 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{*}e^{+}e^{-}) = -0.14 \pm 0.23$$

$$A_{CP}(B^{+} \rightarrow K^{*}\mu^{+}\mu^{-}) = -0.12 \pm 0.24$$

$$\gamma = (73.5^{+4.3}_{-5.0})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{+}) = 0.103 \pm 0.005$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (136.9^{+4.6}_{-5.2})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{+}) = 0.075^{+0.017}_{-0.018}$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (106^{+18}_{-26})^{\circ}$$

$$r_{B}^{*}(B^{+} \rightarrow D^{0}K^{+}) = 0.142^{+0.019}_{-0.020}$$

$$\delta_{B}^{*}(B^{+} \rightarrow D^{*0}K^{+}) = 0.142^{+0.019}_{-0.020}$$

$$\delta_{B}^{*}(B^{+} \rightarrow D^{*0}K^{+}) = (321^{+8}_{-9})^{\circ}$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B⁺ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 6/5/2018 18:58

Semileptonic and leptonic modes

$\ell^+ u_\ell$ anything	[sss]	$(10.99 \pm 0.28)\%$	_
$e^+ u_e X_c$		(10.8 ± 0.4) %	_
$D\ell^+ u_\ell$ anything		(8.4 ± 0.5) %	_
$\overline{\mathcal{D}}{}^0\ell^+ u_\ell$	[sss]	(2.20 ± 0.10) %	2310

HTTP://PDG.LBL.GOV

Page 69

$\overline{D}{}^0 au^+ u_ au$	(7.7	\pm	2.5	$) \times 10^{-3}$		1911
$\overline{D}^*(2007)^0 \ell^+ \nu_{\ell}$ [sss]	(4.88	\pm	0.10) %		2258
\overline{D}^* (2007) 0 $ au^+$ $ u_ au$	(1.88	\pm	0.20) %		1839
$D^-\pi^+\ell^+ u_{\ell}$	(4.1	\pm	0.5	$) \times 10^{-3}$		2306
$\overline{D}_0^*(2420)^0 \ell^+ \nu_\ell, \ \overline{D}_0^{*0} \rightarrow$	(2.5	\pm	0.5	$) \times 10^{-3}$		_
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} \rightarrow$	(1.53	±	0.16) × 10 ⁻³		2065
$D^{(*)} {\mathop{\sf n}} {\pi \ell^+ u_\ell} ({\mathop{\sf n}} \ \ge \ 1)$	(1.60	\pm	0.22) %		_
$D^{*-}\pi^+\ell^+ u_\ell$,				$) \times 10^{-3}$		2254
\overline{D}_1 (2420) $^{ m 0}\ell^+ u_\ell$, \overline{D}_1^0 $ ightarrow$					$) \times 10^{-3}$		2084
$\overline{D}_{1}^{*-}\pi^{+}$ $\overline{D}_{1}^{'}(2430)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{1}^{'0} \rightarrow$	(2.7	±	0.6) × 10 ⁻³		_
$\overline{D}_{2}^{*-}\pi^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}$,	(1.01	\pm	0.24) × 10 ⁻³	S=2.0	2065
$rac{\overline{D}^{*0}}{\overline{D}^0} {\pi^+} \pi^- \ell^+ u_\ell$,	1 56		0.24) × 10 ⁻³		2201
$\overline{D}^{*0}\pi^+\pi^-\ell^+ u_\ell$	•				$) \times 10^{-4}$		2301 2248
$D_{s}^{(*)-}K^{+}\ell^{+}\nu_{\ell}$					$) \times 10^{-4}$		2240
$D_s^- K^+ \ell^+ \nu_\ell$					$) \times 10^{-4}$		2242
3					_		
$D_s^{*-}K^+\ell^+ u_\ell \\ \pi^0\ell^+ u_\ell$	($) \times 10^{-4}$ $) \times 10^{-5}$		2185 2638
$\eta \ell^+ u_\ell$					$) \times 10^{-5}$		2611
$\eta'\ell \stackrel{\nu_\ell}{+} \nu_{\ell}$					$) \times 10^{-5}$		2553
					$) \times 10^{-4}$		2582
$\rho^0 \ell^+ \nu_\ell$ [sss]					$) \times 10^{-4}$		2583
$p\overline{p}\ell^+\nu_\ell$) × 10 ⁻⁶		2467
$p\overline{p}\mu^+ u_\mu$	<				× 10 ⁻⁶	CI =90%	2446
$p\overline{p}e^+\nu_e$) × 10 ⁻⁶		2467
$e^+\nu_e$		9.8			_	CL=90%	
$\mu^+ \nu_{\mu}$		9.0 1.0			_	CL=90%	
$ au^+ u_{ au}$						S=1.2	2341
$\ell^+ \nu_\ell \gamma$	•	3.5		0.24		CL=90%	
$e^+ u_e\gamma$		6.1				CL=90%	
$\mu^+ u_\mu\gamma$		3.4				CL=90%	2639
•	sive	mode	25				
0 ⁰ X		8.6		0.7) %		_
⁵⁰ <i>X</i>		79					_
D+ X	(2.5	\pm	0.5) %		_
)- <i>Y</i>	(0.0	_	1 2) 0/		_

$D^0 X$	(8.6	\pm 0.7) %	_
$\overline{D}{}^{0}X$	(79	\pm 4) %	_
D^+X	(2.5	\pm 0.5) %	_
D^-X	(9.9	\pm 1.2) %	_
$D_s^+ X$	(7.9	$^{+}$ 1.4 $^{-}$ 1.3) %	_

HTTP://PDG.LBL.GOV

Page 70

$D_s^- X$		(1.10	+	0.40) %		_
$\Lambda_c^+ X$		(2.1		0.0_			_
$\overline{\Lambda}_{c}^{-}X$		(2.8					_
$\frac{n_c}{\overline{c}X}$							
		(97			•		_
cX		(23.4					_
$c/\overline{c}X$		(120	\pm	6) %		_
	<i>D</i> , <i>D</i> *, or	. <i>D_s</i> mo	de	5			
$\overline{D}{}^0\pi^+$		•			$) \times 10^{-3}$		2308
$D_{CP(+1)}\pi^+$	[ttt]				$) \times 10^{-3}$		-
$D_{CP(-1)}\pi^+$	[ttt]	(2.0	\pm	0.4	$) \times 10^{-3}$		_
$\overline{D}{}^{0}\rho^{+}$		(1.34			•		2237
$\overline{D}^0 K^+$					$) \times 10^{-4}$		2281
$D_{CP(+1)}K^+$) × 10 ⁻⁴		-
$D_{CP(-1)}K^+$	[ttt]	(1.96			$) \times 10^{-4}$		_
$[K^-\pi^+]_D K^+$	[uuu] <				\times 10 ⁻⁷		_
$[K^{+}\pi^{-}]_{D}K^{+}$	[uuu] <	1.5			× 10 ⁻⁵	CL=90%	-
$[K^{-}\pi^{+}\pi^{0}]_{D}K^{+}$ $[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$		seen					_
$[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}K^{+}$		seen					_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$		seen seen					_
$[K^{-}\pi^{+}]_{D}\pi^{+}$	[uuu]		\pm	1.1	$) \times 10^{-7}$		_
$[K^{+}\pi^{-}]_{D}^{D}\pi^{+}$. ,) × 10 ⁻⁴		_
$[K^-\pi^+\pi^0]_D\pi^+$		seen					_
$[K^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}$		seen					_
$[K^-\pi^+\pi^+\pi^-]_D\pi^+$		seen					_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$		seen			\ 10 - 6		_
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$ $[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$			±	0.9	$) \times 10^{-6}$		_
$[K_{S}^{0}K^{-}\pi^{+}]_{D}K^{+}$		seen					
$[K^*(892)^+K^-]_DK^+$		seen seen					_
$[K_{S}^{0}K^{-}\pi^{+}]_{D}\pi^{+}$		seen					_
$[K^*(892)^+K^-]_D\pi^+$		seen					_
$[K_{S}^{0}K^{+}\pi^{-}]_{D}\pi^{+}$		seen					_
- 5		seen					_
$\frac{[K^*(892)^-K^+]_D\pi^+}{\overline{D}^0K^*(892)^+}$		(5.3	\pm	0.4	$) \times 10^{-4}$		2213
$D_{CP(-1)} K^*(892)^+$	[ttt]	(2.7	\pm	8.0	$) \times 10^{-4}$		_
$D_{CP(+1)}K^*(892)^+$	[ttt]	(6.2	\pm	0.6	$) \times 10^{-4}$		_
$\overline{D}^0 K^+ \pi^+ \pi^-$					$) \times 10^{-4}$		2237
$\overline{D}^0 K^+ \overline{K}^0$					$) \times 10^{-4}$		2189
$\overline{D}{}^0K^+\overline{K}^*(892)^0$		(7.5	\pm	1.7	$) \times 10^{-4}$		2071
HTTP://PDG.LBL.GOV	Pag	ge 71		(Created: 6	5/5/2018	18:58

$\overline{D}{}^0\pi^+\pi^+\pi^-$		(5.6	\pm	2.1) × 10 ⁻³	S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant		($) \times 10^{-3}$		2289
$\overline{D}^0 \pi^+ \rho^0$		($) \times 10^{-3}$		2208
$\overline{D}{}^{0} a_{1}(1260)^{+}$		($) \times 10^{-3}$		2123
$\overline{D}{}^0\omega\pi^+$		($) \times 10^{-3}$		2206
$D^*(2010)^-\pi^+\pi^+$		($) \times 10^{-3}$		2247
$D^*(2010)^- K^+ \pi^+ \over \overline{D}_1(2420)^0 \pi^+, \ \overline{D}_1^0 ightarrow$		($) \times 10^{-5}$		2206
		(5.2	土	2.2	$) \times 10^{-4}$		2081
$D^*(2010)^-\pi^+ \ D^-\pi^+\pi^+$		(1 07	上	0.05) × 10 ⁻³		2299
$D^-K^+\pi^+$		($) \times 10^{-5}$		2260
$D_0^*(2400)^0 K^+, D_0^{*0} \rightarrow$		($) \times 10^{-6}$		_
$D^-\pi^+$		`				, , , ,		
$D_2^*(2460)^0 K^+,\;\; D_2^{*0} o$		(2.32	\pm	0.23	$) \times 10^{-5}$		_
$D_1^+(2760)^0 K^+, D_1^{*0} \rightarrow$		(3.6	±	1.2	$)\times10^{-6}$		-
$D^{+} K^{0}$			2.9			× 10 ⁻⁶	CI -00%	2278
$D^+K^+\pi^-$		($) \times 10^{-6}$	CL—9070	2260
$D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow$		<	6.3			× 10 ⁻⁷	CL=90%	
$D^{+}\pi^{-}$ $D^{+}K^{*0}$								
$D^{+} K^{*0}$		<				\times 10 ⁻⁷		2211
$\underline{D}^{+}\overline{K}^{*0}$		<				\times 10 ⁻⁶	CL=90%	2211
$\overline{D}^*(2007)^0\pi^+$						$) \times 10^{-3}$		2256
$\overline{D}_{CP(+1)}^{*0}\pi^+$	[vvv]	(2.7	±	0.6	$) \times 10^{-3}$		_
$D^{*0}_{CP(-1)}\pi^+$	[vvv]	(2.4	\pm	0.9	$) \times 10^{-3}$		_
$\overline{D}^*(2007)^0\omega\pi^+$		(4.5	\pm	1.2	$) \times 10^{-3}$		2149
$\overline{D}^*(2007)^0 \rho^+$		($) \times 10^{-3}$		2181
$\overline{D}^*(2007)^0K^+$		(3.97	+	0.31	$) \times 10^{-4}$		2227
$\overline{\mathcal{D}}^{*0}_{CP(+1)}$ \mathcal{K}^+	[vvv]	($) \times 10^{-4}$		_
$\overline{D}_{CP(-1)}^{*0}K^{+}$) × 10 ⁻⁴		_
$\overline{D}^*(2007)^0 K^*(892)^+$		(8.1	\pm	1.4) × 10 ⁻⁴		2156
$\overline{D}^*(2007)^0 K^+ \overline{K}^0$		<				× 10 ⁻³	CL=90%	2132
$\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0$		($) \times 10^{-3}$		2009
$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$		(0.12			2236
$\overline{D}^*(2007)^0 a_1(1260)^+$		(1.9	\pm	0.5) %		2063
$\overline{D}^*(2007)^0 \pi^- \pi^+ \pi^+ \pi^0$		(0.4	,		2219
$\overline{D}^{*0} 3\pi^{+} 2\pi^{-}$		(1.2	$) \times 10^{-3}$		2196
$D^*(2010)^+\pi^0$		<	3.6			$\times 10^{-6}$	CI 220/	2255
$D^*(2010)^+ K^0$		<	9.0			$\times 10^{-6}$	CL=90%	2225
$D^*(2010)^- \pi^+ \pi^+ \pi^0 D^*(2010)^- \pi^+ \pi^+ \pi^+ \pi^-$		(0.7) %) × 10 ⁻³		2235
D (2010) $M \cdot M \cdot M \cdot M$		(∠.0	工	U. 4) × 10		2217

$\overline{D}^{**0}\pi^+$	[xxx]	(5.7	± :	1.2) × 10 ⁻³		_
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$		($) \times 10^{-3}$	S=1.3	2082
$\overline{D}_1(2420)^0\pi^+ imesB(\overline{D}_1^0 o \overline{D}^0\pi^+\pi^-)$		(2.5	+ :	1.6 1.4	$) \times 10^{-4}$	S=3.9	2082
$\overline{D}_1(2420)^0\pi^+ \times B(\overline{D}_1^0 \to$		(2.2	士 :	1.0	$) \times 10^{-4}$		2082
$\overline{D}^0\pi^+\pi^-$ (nonresonant))		,	2.56	1 4	0.04) 10-4		
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$ $\times B(\overline{D}_{2}^{*}(2462)^{0} \rightarrow D^{-}\pi^{+})$		(3.50	± (0.24) × 10 ⁻⁴		_
$\overline{D}_2^*(2462)^{\overline{0}}\pi^+ \times B(\overline{D}_2^{*0} \to$		(2.2	± :	1.0) × 10 ⁻⁴		_
$\overline{D}{}^0\pi^-\pi^+) \ \overline{D}_2^*(2462)^0\pi^+\! imes\!B(\overline{D}_2^{*0} o$		<	1.7			× 10 ⁻⁴	CL=90%	_
$\overline{D}{}^0\pi^-\pi^+$ (nonresonant)))							
$\overline{D}_2^*(2462)^0 \pi^+ \times B(\overline{D}_2^{*0} \to$		(2.2	± :	1.1	$) \times 10^{-4}$		-
$D^*(2010)^-\pi^+)$,						
$\overline{D}_0^*(2400)^0\pi^+$		(6.4	± :	1.4) × 10 ⁻⁴		2128
$\times \ B(\overline{D}_0^*(2400)^0 \to \ D^-\pi^+) \ \overline{D}_1(2421)^0\pi^+$,	6.0			\ 10-4		
\times B $(\overline{D}_1(2421)^0 \rightarrow D^{*-}\pi^+$.)	(0.8	± .	1.5	$) \times 10^{-4}$		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$		(1.8	± (0.5	$) \times 10^{-4}$		-
$\times B(\overline{D}_2^*(2462)^0 \rightarrow D^{*-}\pi^+$)	,				\1		
$\overline{D}'_1(2427)^0\pi^+$.)	(5.0	± :	1.2	$) \times 10^{-4}$		_
$ imes$ B($\overline{D}_1'(2427)^0 o D^{*-}\pi^+$ $\overline{D}_1(2420)^0\pi^+ imes$ B($\overline{D}_1^0 o$)	<	6			× 10 ⁻⁶	CL=90%	2082
$\overline{D}^{*0} \pi^{+} \pi^{-}$						2		
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$		<	1.4				CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$		<	1.3				CL=90%	2063
$\overline{D}_2^{\overline{*}}(2460)^0\pi^+\! imes\!B(\overline{D}_2^{*0} o \overline{D}^{*0}\pi^+\pi^-)$		<	2.2			× 10 ⁻⁵	CL=90%	2063
$\overline{D}_{1}^{*}(2680)^{0}\pi^{+}, \ \overline{D}_{1}^{*}(2680)^{0} \rightarrow$		(8.4	± 2	2.1	$) \times 10^{-5}$		_
$\frac{D^-\pi^+}{D_3^*(2760)^0\pi^+}$,		(1 00	+ (n 22) × 10 ⁻⁵		_
$\overline{D}_3^*(2760)^0\pi^+ \to D^-\pi^+$		(1.00	Τ,	0.22) ~ 10		
$\overline{D}_{2}^{*}(3000)^{0}\pi^{+},$		(2.0	+ .	1.4) × 10 ⁻⁶		_
$\overline{D}_{2}^{*}(3000)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$		(, // = 0		
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$		<	4.7			$\times 10^{-3}$	CL=90%	1977
$\overline{D}^{0}D_{c}^{+}$		(0.9) × 10 ⁻³		1815
$D_{s0}^{*}(2317)^{+}\overline{D}{}^{0}, D_{s0}^{*+} \rightarrow$		`) × 10 ⁻⁴		1605
$D_{s0}^+(2317)$ D , D_{s0} \rightarrow $D_{s}^+\pi^0$		(1.3	- :	1.3) ^ 10		1003
$D_{s0}(2317)^{+}\overline{D}^{0}\times$		<	7.6			$\times10^{-4}$	CL=90%	1605
$B(D_{s0}(2317)^+ \to D_s^{*+}\gamma)$								

$\overline{D}^*(2007)^0 D^*(2010)^+$	(01 17) × 10-4		1710
$\overline{D}^0 D^* (2010)^+ +$	($) \times 10^{-4}$	CL 000/	1713
$\overline{D}^*(2007)^0 D^+$	<	1.30	%	CL=90%	1792
$\overline{D}^0 D^*(2010)^+$,	20 05) 10-4		1700
$\overline{D}^0 D^+$	(3.9 ± 0.5	$) \times 10^{-4}$		1792
$\overline{D}^0D^+K^0$	(3.8 ± 0.4 1.55 ± 0.21			1866 1571
$D^{+}\overline{D}^{*}(2007)^{0}$	($) \times 10^{-4}$		1791
$\overline{D}^*(2007)^0 D^+ K^0$	($) \times 10^{-3}$		1475
$\overline{D}^0 D^* (2010)^+ K^0$	($) \times 10^{-3}$		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	(9.2 ± 1.2			1362
$\overline{D}{}^{0}D^{0}K^{+}$	(1.45 ± 0.33		S=2.6	1577
$\overline{D}^*(2007)^0 D^0 K^+$	(2.26 ± 0.23		0 2.0	1481
$\overline{D}^0 D^* (2007)^0 K^+$	($) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(1.12 ± 0.13			1368
$D^-D^+K^+$	(2.2 ± 0.7	,		1571
$D^- D^* (2010)^+ K^+$	Ì		$) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	($) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+$	(1.32 ± 0.18			1363
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(4.05 ± 0.30) %		_
$D_{s}^{+}\pi^{0}$	(1.6 ± 0.5	$) \times 10^{-5}$		2270
$D_{s}^{*+}\pi^{0}$	<	2.6	$\times 10^{-4}$	CL=90%	2215
$D_{a}^{+}\eta$	<	4	$\times 10^{-4}$	CL=90%	2235
$D_{c}^{*+}\eta$	<	6	$\times10^{-4}$	CL=90%	2178
$D_{c}^{+}\rho^{0}$	<	3.0	$\times 10^{-4}$	CL=90%	2197
$D_{s}^{s+}\eta$ $D_{s}^{+}\rho^{0}$ $D_{s}^{s+}\rho^{0}$ $D_{s}^{+}\omega$	<	4	$\times 10^{-4}$	CL=90%	2138
$D_{\epsilon}^{+}\omega$	<	4	$\times 10^{-4}$	CL=90%	2195
$D_s^{*+}\omega$	<	6	$\times 10^{-4}$	CL=90%	2136
$D_s^+ a_1 (1260)^0$	<	1.8	$\times10^{-3}$	CL=90%	2079
$D_s^{*+} a_1 (1260)^0$	<	1.3	$\times10^{-3}$	CL=90%	2015
$D^+ K^+ K^-$	(7.1 ± 1.1	$) \times 10^{-6}$		2149
$D_{s}^{+} \phi$ $D_{s}^{++} \phi$ $D_{s}^{++} \overline{K}^{0}$ $D_{s}^{++} \overline{K}^{0}$ $D_{s}^{++} \overline{K}^{*} (892)^{0}$ $D_{s}^{++} \overline{K}^{*} (892)^{0}$ $D_{s}^{++} \overline{K}^{*} (892)^{0}$	<	4.2		CL=90%	2141
$D_s^{*+}\phi$	<	1.2	$\times10^{-5}$	CL=90%	2079
$D_{\varepsilon}^{+}\overline{K}^{0}$	<	8	$\times 10^{-4}$	CL=90%	2242
$D_{c}^{*+}\overline{K}^{0}$	<	9	$\times10^{-4}$	CL=90%	2185
$D_{c}^{+} \overline{K}^{*} (892)^{0}$	<	4.4	\times 10 ⁻⁶	CL=90%	2172
$D_{c}^{+}K^{*0}$	<	3.5	\times 10 ⁻⁶	CL=90%	2172
$D_{s}^{3+}\overline{K}^{*}(892)^{0}$	<	3.5	$\times 10^{-4}$	CL=90%	2112
$D_s^-\pi^+K^+$	(1.80 ± 0.22	$) \times 10^{-4}$		2222
$D_{s}^{-}\pi^{+}K^{+}$ $D_{s}^{*-}\pi^{+}K^{+}$	(1.45 ± 0.24	,		2164
$D_s^s \pi^+ K^*(892)^+$	<		•	CL=90%	2138
5 ' '					_

$D_s^{*-}\pi^+K^*(892)^+$	<	7		\times 10 ⁻³	CL=90%	2076
$D_s^- K^+ K^+$	(9.7	± 2.1	$) \times 10^{-6}$		2149
$D_s^{*-}K^+K^+$	<	1.5		$\times 10^{-5}$	CL=90%	2088
Char	moniur	n mo	des			
$\eta_{c}K^{+}$	($) \times 10^{-3}$	S=1.1	1751
$\eta_c K^+, \ \eta_c \rightarrow K_S^0 K^\mp \pi^\pm$	(2.7	\pm 0.6	$) \times 10^{-5}$		_
$\eta_c K^*(892)^+$	(1.0	$^{+}$ 0.5 $^{-}$ 0.4	$) \times 10^{-3}$		1646
$\eta_c K^+ \pi^+ \pi^-$	<	3.9		$\times 10^{-4}$		1684
$\eta_c K^+ \omega(782)$	<				CL=90%	1475
$\eta_c K^+ \eta_0$	<				CL=90%	1588
$\eta_c K^+ \pi^0$					CL=90%	1723
$\eta_c(2S)K^+$	($) \times 10^{-4}$		1320
$\eta_{c}(2S)K^{+}$, $\eta_{c} ightarrow$ $p\overline{p}$	(3.5		,		_
$\eta_{c}(2S)K^{+},\;\;\eta_{c} ightarrow K_{c}^{0}K^{\mp}\pi^{\pm}$	(3.4	+ 2.3 - 1.6) × 10 ⁻⁶		_
$h_c(1P)K^+$, $h_c \rightarrow J/\psi \pi^+ \pi^-$	<	3.4		$\times10^{-6}$	CL=90%	1401
$X(3730)^0 K^+, X^0 \to \eta_c \eta$	<	4.6		$\times10^{-5}$	CL=90%	_
$X(3730)^0 K^+, X^0 \to \eta_c \pi^0$	<	5.7		$\times 10^{-6}$	CL=90%	_
$\chi_{c1}(3872)K^+$	<	2.6		$\times10^{-4}$	CL=90%	1141
$\chi_{c1}(3872)K^+$, $\chi_{c1} ightarrow p\overline{p}$	<	5		$\times 10^{-9}$	CL=95%	_
$\chi_{c1}(3872)K^+$, $\chi_{c1} ightarrow$	(8.6	\pm 0.8	$) \times 10^{-6}$		1141
$J/\psi \pi^+ \pi^- \chi_{c1}(3872) K^+, \chi_{c1} \rightarrow$	(2.1	± 0.4) × 10 ⁻⁶	S=1.1	1141
$J/\psi\gamma$	•			,		
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow \psi(2S)\gamma$	(4	± 4	$) \times 10^{-6}$	S=2.5	1141
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow J/\psi(1S)\eta$	<	7.7		× 10 ⁻⁶	CL=90%	1141
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow D^0\overline{D}^0$	<	6.0		$\times 10^{-5}$	CL=90%	1141
$\chi_{c1}(3872)K^+, \ \chi_{c1} \rightarrow D^+D^-$	<	4.0		× 10 ⁻⁵	CL=90%	1141
$\chi_{c1}(3872)K^+, \ \chi_{c1} \rightarrow D^0\overline{D^0}\pi^0$	(1.0	± 0.4) × 10 ⁻⁴		1141
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow \overline{D}^{*0}D^0$	(8.5	± 2.6		S=1.4	
$\chi_{c1}(3872)^0 K^+, \ \chi_{c1}^0 \to \eta_c \pi^+ \pi^-$	<	3.0		× 10 ⁻⁵	CL=90%	_
$\chi_{c1}(3872)^0 K^+, \chi_{c1}^0 \to \eta_c \omega(782)$	<	6.9		× 10 ⁻⁵	CL=90%	-
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow \chi_{c1}(1P)\pi^+\pi^-$	<	1.5		× 10 ⁻⁶	CL=90%	-
$X(3915)K^{+}$	<	2.8		× 10 ⁻⁴	CL=90%	1103
HTTP://PDG.LBL.GOV	Page	76	(Created: 6	5/5/2018	18:58

$X(3915)^{0}K^{+}, X^{0} \rightarrow \eta_{c}\eta_{c}$	<	4.7			CL=90%	_
$X(3915)^{0}K^{+}, X^{0} \rightarrow \eta_{c}\pi^{0}$	<	1.7			CL=90%	_
$X(4014)^0 K^+, X^0 \to \eta_c \eta$	<	3.9			CL=90%	_
$X(4014)^0 K^+, \ X^0 o \ \eta_c \pi^0$	<	1.2			CL=90%	_
$Z_c(3900)^0 K^+, Z_c^0 \rightarrow$	<	4.7		× 10 ⁻⁵	CL=90%	_
$\chi^{\eta_c \pi^+ \pi^-} \times (4020)^0 K^+, \ \chi^0 \to \eta_c \pi^+ \pi^-$	<	1.6		× 10 ⁻⁵	CL=90%	_
$\chi_{c1}(3872)K^*(892)^+, \ \chi_{c1} \rightarrow J/\psi \gamma$	<	4.8		× 10 ⁻⁶	CL=90%	939
$\chi_{c1}(3872) K^*(892)^+, \ \chi_{c1} \rightarrow \psi(2S) \gamma$	<	2.8		× 10 ⁻⁵	CL=90%	939
$\chi_{c1}(3872)^+ K^0, \ \chi_{c1}^+ \to [yyy]$	<	6.1		$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)\pi^{+}\pi^{0}$ $\chi_{c1}(3872)K^{0}\pi^{+}, \chi_{c1} \rightarrow$ $J/\psi(1S)\pi^{+}\pi^{-}$	(1.06	± 0.31	$) \times 10^{-5}$		-
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow J/\psi \pi^+$	<	1.5		$\times 10^{-5}$	CL=95%	_
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow$	<				CL=95%	_
$\psi(2S)\pi^+$				× 10	CL-3370	
$\psi(23)^{\pi}$ $\psi(4260)^{0}K^{+}, \ \psi^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$	<	2.9		$\times 10^{-5}$	CL=95%	_
$X(3915)K^+$, $X \rightarrow J/\psi \gamma$	<	1.4		$\times 10^{-5}$	CL=90%	_
$X(3930)^{0} K^{+}, X^{0} \rightarrow J/\psi \gamma$	<			$\times 10^{-6}$		_
$J/\psi(1S)K^+$				$9) \times 10^{-3}$		1684
$J/\psi(1S)K^0\pi^+$				$) \times 10^{-3}$		1651
$J/\psi(1S)K^{+}\pi^{+}\pi^{-}$) × 10 ⁻⁴	S=2.5	1612
$J/\psi(1S)K^{+}K^{-}K^{+}$) × 10 ⁻⁵		1252
$X(3915)K^+, X \rightarrow p\overline{p}$	<			× 10 ⁻⁸	CL=95%	_
$J/\psi(1S)K^*(892)^+$				$) \times 10^{-3}$		1571
$J/\psi(1S)K(1270)^{+}$				$) \times 10^{-3}$		1390
$J/\psi(1S)K(1400)^{+}$	<				CL=90%	1308
$J/\psi(1S)\eta K^+$			± 0.14	$) \times 10^{-4}$		1510
$\chi_{c1-odd}(3872){ m K}^{+}$,	<			× 10 ⁻⁶	CL=90%	_
$\chi_{c1-odd} \rightarrow J/\psi \eta$				6		
$\psi(4160)K^+, \ \psi \rightarrow J/\psi\eta$		7.4		$\times 10^{-6}$		_
$J/\psi(1S)\eta'K^+$		8.8		$\times 10^{-5}$	CL=90%	1273
$J/\psi(1S)\phi K^+$				$) \times 10^{-5}$		1227
$J/\psi(1S)\mathcal{K}_1(1650),\;\;\mathcal{K}_1 ightarrow \phi\mathcal{K}^+$	(6	+10 - 6) × 10 ⁻⁶		-
$J/\psi(1S)K^*(1680)^+$, $K^* ightarrow$	(3.4	+ 1.9 - 2.2	$) \times 10^{-6}$		_
$J/\psi(1S)K_2^*(1980), K_2^* \to \phi K^+$	(1.5	+ 0.9 - 0.5) × 10 ⁻⁶		-

$K(1830)^+ \to \phi K^+ \\ \chi_{c1}(4140)K^+, \ \chi_{c1} \to $ (10)	\pm		_		
$J/\psi(1S)\phi \qquad (10)$		4) × 10 ⁻⁶		-
$\chi_{c1}(4274)K^+, \chi_{c1} \rightarrow \qquad \qquad (3.6)$ $J/\psi(1S)\phi$	6 +	2.2 1.8	$) \times 10^{-6}$		-
$\chi_{c0}(4500)K^{+}, \chi_{c}^{0} \rightarrow \qquad (3.3)$ $J/\psi(1S)\phi$	3 +	2.1 1.7	$) \times 10^{-6}$		-
$\chi_{c0}(4700)K^+, \chi_{c0} \rightarrow \qquad $	+	5 4	$) \times 10^{-6}$		-
$J/\psi(1S)\omega K^{+} \tag{3.2}$	20 +	0.60 0.32	$)\times 10^{-4}$		1388
$\chi_{c1}(3872)K^+, \ \chi_{c1} \rightarrow \qquad \qquad (6.6)$	0 ±	2.2	$)\times10^{-6}$		1141
$X(3915)K^+$, $X o J/\psi \omega$ (3.6)	0 +	0.9 0.7	$)\times 10^{-5}$		1103
$J/\psi(1S)\pi^+ \tag{3.8}$	88 ±	0.12	$) \times 10^{-5}$		1728
	17 ±	0.13	$) \times 10^{-5}$		1635
			$) \times 10^{-5}$		1304
$J/\psi(1S)\rho^+ \tag{5.0}$	0 ±	8.0	$) \times 10^{-5}$		1611
			$\times 10^{-6}$	CL=90%	1717
$J/\psi(1S) a_1(1260)^+$ < 1.2	2		$\times 10^{-3}$	CL=90%	1415
	0		$\times 10^{-7}$	CL=90%	643
, , , , , , <u>, , _ </u>	18 ±	0.31	$) \times 10^{-5}$		567
i , , ; , <u> </u>	1		$\times 10^{-5}$	CL=90%	_
$J/\psi(1S)D^+ < 1.2$	2		$\times 10^{-4}$	CL=90%	871
$J/\psi(1S)\overline{D}^0\pi^+$ < 2.5	5		$\times10^{-5}$	CL=90%	665
			$) \times 10^{-5}$		1347
			$) \times 10^{-4}$		1284
			$) \times 10^{-4}$	S=1.3	1115
			$) \times 10^{-4}$		1179
			$) \times 10^{-6}$		417
) × 10 ⁻⁴		1218
			$) \times 10^{-4}$	S=1.4	1218
· · · · · · · · · · · · · · · · · · ·			$) \times 10^{-5}$		1218
$\psi(3770)K^+, \ \psi \rightarrow p\overline{p}$ < 2			$\times 10^{-7}$	CL=95%	_
$\psi(4040)K^+$ < 1.3	3		$\times 10^{-4}$	CL=90%	1003
$\psi(4160)K^+$ (5.1)	1 ±	2.7	$) \times 10^{-4}$		868
			$) \times 10^{-5}$		_
$\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^- < 1$			$\times 10^{-7}$	CL=90%	1531
	49 +	0.15 0.14	$) \times 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$ < 2.1	1		$\times 10^{-4}$	CL=90%	1341
$\chi_{c1}(1P)\pi^+ \tag{2.2}$			$) \times 10^{-5}$		1468

$\chi_{c1}(1P)K^+$	(4.84	\pm	0.23	$) \times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	() × 10 ⁻⁴	S=1.1	1265
$\chi_{c1}(1P)K^0\pi^+$	() × 10 ⁻⁴		1370
$\chi_{c1}(1P)K^+\pi^0$	() × 10 ⁻⁴		1373
$\chi_{c1}(1P)K^+\pi^+\pi^-$	($) \times 10^{-4}$		1319
$\chi_{c1}(2P)K^+, \chi_{c1}(2P) \rightarrow$	<	1.1			× 10 ⁻⁵	CI -00%	1515
$\pi^+\pi^-\chi_{c1}(1P)$		1.1			A 10	CL—9070	
	,	1 1		0.4) v 10=5		1270
$\chi_{c2}K^{+}$					$) \times 10^{-5}$	CL 000/	1379
$\chi_{c2} K^*(892)^+$	<				$\times 10^{-4}$	CL=90%	1228
$\chi_{c2}K^0\pi^+$	($) \times 10^{-4}$		1336
$\chi_{c2}K^{+}\pi^{0}$	<				$\times 10^{-5}$	CL=90%	1339
$\chi_{c2}K^+\pi^+\pi^-$	($) \times 10^{-4}$		1284
$\chi_{c2}(3930)\pi^{+}, \ \chi_{c2} \rightarrow \pi^{+}\pi^{-}$	<	1			\times 10 ⁻⁷		1437
$h_c(1P)K^+$	<	3.8				CL=90%	1401
$h_c(1P)K^+$, $h_c o p\overline{p}$	<	6.4			$\times 10^{-8}$	CL=95%	_
		_					
K or	K*	mode			, 5		
$K^0\pi^+$	($) \times 10^{-5}$		2614
$K^+\pi^0$	($) \times 10^{-5}$		2615
$\eta^\prime {\cal K}^+$	(7.06	\pm	0.25	$) \times 10^{-5}$		2528
$\eta' K^*(892)^+$	(4.8	+	1.8 1.6	$) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^+$	(5.2	\pm	2.1	$) \times 10^{-6}$		_
$\eta' K_2^* (1430)^+$	($) \times 10^{-5}$		2346
ηK^{+}	() × 10 ⁻⁶	S=1.7	2588
$\eta K^*(892)^+$	() × 10 ⁻⁵		2534
$\eta K_0^*(1430)^+$	() × 10 ⁻⁵		_
$\eta K_2^*(1430)^+$	($) \times 10^{-6}$		2414
-							
$\eta(1295) K^+ imes B(\eta(1295) ightarrow \eta \pi \pi)$	(2.9	<u> </u>	0.7) × 10 ⁻⁶		2455
		1 2			v 10-6	CL 000/	2425
$\eta(1405)K^+ \times B(\eta(1405) \rightarrow$	<	1.3			× 10 °	CL=90%	2425
$\eta \pi \pi$)		1.0			10-6	CI 000/	0.405
$\eta(1405) K^+ \times B(\eta(1405) \rightarrow$	<	1.2			× 10 °	CL=90%	2425
K* K)							
$\eta(1475) extstyle{K}^+ imes B(\eta(1475) ightarrow$	(1.38	+	0.21	$) \times 10^{-5}$		2406
K^*K	`		_	0.10	,		
$f_1(1285)K^+$	<	2.0			× 10 ⁻⁶	CL=90%	2458
$f_1(1420)K^+ \times B(f_1(1420) \rightarrow$	<					CL=90%	2420
$\eta \pi \pi$)		2.5			× 10	CL-3070	2420
$f_1(1420)K^+ \times B(f_1(1420) \rightarrow$		4.1			v 10-6	CL=90%	2420
(1420) $K \times B(71(1420) \rightarrow K \times K)$	<	4.1			× 10 ,	CL=9070	2420
· .		2.4			10-6	CL 000/	0044
$\phi(1680)K^+ \times B(\phi(1680) \rightarrow K^*K)$	<	3.4			× 10 °	CL=90%	2344
K*K)					6		
$f_0(1500)K^+$	(3.7	\pm	2.2	$) \times 10^{-6}$		2398
		_				- 1 1	

ωK^+	(6.5	\pm	0.4) × 10 ⁻⁶		2558
$\omega K^*(892)^+$	<	7.4			$\times 10^{-6}$	CL=90%	2503
$\omega(K\pi)_0^{*+}$	(2.8	\pm	0.4	$) \times 10^{-5}$		_
$\omega K_0^* (1430)^+$	(2.4	\pm	0.5	$) \times 10^{-5}$		_
$\omega K_2^*(1430)^+$	(2.1	\pm	0.4	$) \times 10^{-5}$		2380
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow \eta \pi^+)$	<	3.9			× 10 ⁻⁶	CL=90%	_
$a_0(980)^0 K^+ \times B(a_0(980)^0 \to \eta \pi^0)$	<	2.5			$\times 10^{-6}$	CL=90%	_
$K^*(892)^0\pi^+$	(1 01	+	0.08) × 10 ⁻⁵		2562
$K^*(892)^+\pi^0$					$) \times 10^{-6}$		2563
$K^+\pi^-\pi^+$	($) \times 10^{-5}$		2609
$K^+\pi^-\pi^+$ nonresonant	() × 10 ⁻⁵		2609
ω (782) K^+	($) \times 10^{-6}$		2558
$K^+ f_0(980) \times B(f_0(980) \to \pi^+ \pi^-)$	() × 10 ⁻⁶		2522
$f_2(1270)^0 K^+$	($) \times 10^{-6}$		_
$f_0(1370)^0 K^+ \times$	<	1.07			\times 10 ⁻⁵	CL=90%	_
$B(f_0(1370)^0 \to \pi^+\pi^-) \ \rho^0(1450)K^+ imes$	<	1.17			$\times10^{-5}$	CL=90%	_
$B(\rho^0(1450) \to \pi^+\pi^-) \ f_2'(1525) K^+ \times$	<	3.4			× 10 ⁻⁶	CL=90%	2392
$B(f_2'(1525) \to \ \pi^+\pi^-)$							
$\mathcal{K}^+ ho^{0}$	(3.7	\pm	0.5	$) \times 10^{-6}$		2559
$K_0^*(1430)^0\pi^+$	(3.9	+	0.6 0.5	$)\times10^{-5}$	S=1.4	2445
$K_0^*(1430)^+\pi^0$	() × 10 ⁻⁵		_
$K_2^*(1430)^0\pi^+$	(5.6	+	2.2 1.5	$) \times 10^{-6}$		2445
$K^*(1410)^0\pi^+$	<	4.5			$\times10^{-5}$	CL=90%	2446
$K^*(1680)^0\pi^+$	<	1.2			$\times 10^{-5}$	CL=90%	2358
$K^+\pi^0\pi^0$	(1.62	\pm	0.19	$) \times 10^{-5}$		2610
$f_0(980) K^+ \times B(f_0 \to \pi^0 \pi^0)$	(2.8	\pm	8.0	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	4.6				CL=90%	2609
$K^-\pi^+\pi^+$ nonresonant	<	5.6				CL=90%	2609
$K_1(1270)^0_0\pi^+$	<	4.0				CL=90%	2484
$K_1(1400)^0 \pi^+$	<	3.9				CL=90%	2451
$\kappa^{0}\pi^{+}\pi^{0}$	<	6.6			× 10 ⁻⁵	CL=90%	2609
$K^0 ho^+$	(7.3	+	1.0 1.2	$) \times 10^{-6}$		2558
$K^*(892)^+\pi^+\pi^-$	(7.5	\pm	1.0	$) \times 10^{-5}$		2557
$\hat{K}^*(892)^+ \rho^0$	() × 10 ⁻⁶		2504
$K^*(892)^+ f_0(980)$	(4.2	\pm	0.7	$) \times 10^{-6}$		2466
, , ,							

$a_1^+ K^0$	(3.5	土	0.7	$) \times 10^{-5}$		_
$b_1^+ K^0 imes B(b_1^+ o \ \omega \pi^+)$	($) \times 10^{-6}$		_
$K^*(892)^0 \rho^+$	() × 10 ⁻⁶		2504
$K_1(1400)^{+}\rho^{0}$	<	7.8			$\times 10^{-4}$	CL=90%	2388
$K_2^*(1430)^+\rho^0$	<	1.5			$\times10^{-3}$	CL=90%	2381
$b_1^0 K^+ imes B(b_1^0 o \omega \pi^0)$	(9.1	\pm	2.0	$) \times 10^{-6}$		_
$b_1^+ K^{*0} \times B(b_1^+ \to \omega \pi^+)$	<	5.9			$\times10^{-6}$	CL=90%	_
$b_1^{\bar{0}} K^{*+} \times B(b_1^{\bar{0}} \rightarrow \omega \pi^0)$	<	6.7			$\times 10^{-6}$	CL=90%	_
$K^{+}\overline{K}^{0}$	(1.31	\pm	0.17	$) \times 10^{-6}$	S=1.2	2593
$\overline{K}{}^0K^+\pi^0$	<	2.4			$\times 10^{-5}$		2578
$K^+K^0_SK^0_S$	(1.08	\pm	0.06	$) \times 10^{-5}$		2521
$f_0(980)K^+$, $f_0 o K_S^0K_S^0$	(1.47	\pm	0.33	$) \times 10^{-5}$		_
$f_0(1710)K^+, f_0 \rightarrow K_S^0K_S^0$	(4.8	+	4.0 2.6	$) \times 10^{-7}$		_
$K^+K^0_SK^0_S$ nonresonant	(2.0	\pm	0.4	$) \times 10^{-5}$		2521
$K_S^0 K_S^0 \pi^+$	<	5.1			$\times 10^{-7}$	CL=90%	2577
$K^+K^-\pi^+$	(5.2	\pm	0.4	$) \times 10^{-6}$		2578
$\mathit{K}^{+}\mathit{K}^{-}\pi^{+}$ nonresonant	<	7.5			_	CL=90%	2578
$K^{+}\overline{K}^{*}(892)^{0}$	<	1.1			\times 10 ⁻⁶	CL=90%	2540
$K^+ \overline{K}_0^* (1430)^0$	<	2.2			$\times 10^{-6}$		2421
$K^+K^+\pi^-$	<	1.1			$\times 10^{-8}$		2578
$K^+K^+\pi^-$ nonresonant	<				$\times 10^{-5}$		2578
$f_2'(1525)K^+$	(1.8	\pm	0.5	$) \times 10^{-6}$		2392
$K^{*+}\pi^{+}K^{-}$	<	1.18				CL=90%	2524
$K^*(892)^+ K^*(892)^0$	($) \times 10^{-7}$		2484
$K^{*+}K^{+}\pi^{-}$	<				$\times 10^{-6}$		2524
$K^+K^-K^+$	($) \times 10^{-5}$		2523
$K^+\phi$	() × 10 ⁻⁶	S=1.1	2516
$f_0(980) K^+ imes B(f_0(980) ightarrow \ K^+ K^-)$	(9.4	土	3.2) × 10 ⁻⁶		2522
$a_2(1320)K^+ \times$	<	1.1			\times 10 ⁻⁶	CL=90%	2449
$B(a_2(1320) o \ K^+ K^-) \ X_0(1550) K^+ imes$	(43	+	0.7) × 10 ⁻⁶		_
$B(X_0(1550) \to K^+K^-)$	(4.5	_	0.1) \ 10		
$\phi(1680)K^+ imesB(\phi(1680) ightarrow K^+K^-)$	<	8			× 10 ⁻⁷	CL=90%	2344
$f_0(1710)K^+ \times B(f_0(1710) ightarrow K^+ K^-)$	(1.1	土	0.6	$) \times 10^{-6}$		2330
$K^+K^-K^+$ nonresonant	(2.38	+	0.28 0.50	$) \times 10^{-5}$		2523
$K^*(892)^+ K^+ K^-$	(0.00	$) \times 10^{-5}$		2466
$K^*(892)^+ \phi$	() × 10 ⁻⁶	S=1.7	2460
$\phi(\kappa\pi)_0^{*+}$	() × 10 ⁻⁶		_
· V	•						

					6		
$\phi K_1(1270)^+$	(±	1.9	$) \times 10^{-6}$		2375
$\phi K_1(1400)^+$	<	3.2				CL=90%	2339
$\phi K^*(1410)^+$	<	4.3		1.6	_	CL=90%	_
$\phi K_0^* (1430)^+$	(7.0			$) \times 10^{-6}$ $) \times 10^{-6}$		7222
$\phi K_2^* (1430)^+ \ \phi K_2^* (1770)^+$	(8.4 1.50	工	2.1	*	CL=90%	2333
$\phi K_2^*(1820)^+$	<	1.63			_	CL=90% CL=90%	_
$a_1^+ K^{*0}$	<	3.6			_	CL=90%	
$K^+\phi\phi$	(5.0	+	1 2) × 10 ⁻⁶	S=2.3	2306
$\eta'\eta'K^+$	<	2.5	_	1.2		3=2.3 CL=90%	2338
$\omega \phi K^+$	<	1.9				CL=90%	2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$	<	3.2			$\times10^{-7}$	CL=90%	_
$K^*(892)^+ \gamma$	(3.92	\pm	0.22	$) \times 10^{-5}$	S=1.7	2564
$K_1(1270)^+ \gamma$	(4.4	+	0.7 0.6	$) \times 10^{-5}$		2486
$\eta K^+ \gamma$	(7.9	\pm	0.9	$) \times 10^{-6}$		2588
$\eta' K^+ \gamma$	(2.9	+	1.0 0.9	$) \times 10^{-6}$		2528
$\phi K^+ \gamma$	(2.7	\pm	0.4	$) \times 10^{-6}$	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.58	\pm	0.15	$) \times 10^{-5}$	S=1.3	2609
$K^*(892)^0 \pi^+ \gamma$	(2.33			$) \times 10^{-5}$		2562
$K^+ ho^0 \gamma$	(8.2	\pm	0.9	$) \times 10^{-6}$		2559
$(K^+\pi^-)_{NR}\pi^+\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6	\pm	0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+\gamma$	(10	+	5 4	$) \times 10^{-6}$		2453
$K^*(1410)^+\gamma$	(2.7	+	0.8 0.6	$) \times 10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26) × 10 ⁻⁶		2445
$K_2^*(1430)^+\gamma$	(1.4) × 10 ⁻⁵		2447
$K^*(1680)^+ \gamma$	(6.7) × 10 ⁻⁵		2360
$K_3^*(1780)^+ \gamma$	<	3.9		1.4		CL=90%	2341
$K_4^*(2045)^+\gamma$	<	9.9				CL=90%	2244
Light unf	lavored	meso	n r	node	S		
$\rho^+\gamma$	() × 10 ⁻⁷		2583
$\pi^+\pi^0$	($) \times 10^{-6}$	S=1.2	2636

$\rho^+\gamma$	(9.8	\pm 2	2.5	$) \times 10^{-7}$		2583
$\pi^+\pi^0$	(5.5	\pm (0.4	$) \times 10^{-6}$	S=1.2	2636
$\pi^+\pi^+\pi^-$	(1.52	\pm (0.14	$) \times 10^{-5}$		2630
$ ho^{0}\pi^{+}$	(8.3	\pm 1	1.2	$) \times 10^{-6}$		2581
$\pi^+ f_0(980)$, $f_0 ightarrow \pi^+ \pi^-$	<	1.5			\times 10 ⁻⁶	CL=90%	2545
$\pi^+ f_2(1270)$	(1.6	+ (0.7 0.4	$)\times 10^{-6}$		2484
$ ho (1450)^0 \pi^+$, $ ho^0 ightarrow \ \pi^+ \pi^-$	(1.4	+ (0.6 0.9	$)\times 10^{-6}$		2434

$f_0(1370)\pi^+, f_0 \to \pi^+\pi^-$	<	4.0			×	10^{-6}	CL=90%	2460
$f_0(500)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.1			×	10^{-6}	CL=90%	_
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	+	1.5) ×	10-6		2630
$\pi^{+}\pi^{0}\pi^{0}$	<	8.9			×	10-4	CL=90%	2631
$ ho^+\pi^0$	(1.09	\pm	0.14) ×	10^{-5}		2581
	<	4.0					CL=90%	2622
$ ho^+ ho^0$	(2.40	\pm	0.19) ×	10^{-5}		2523
7 0(7, 0	<	2.0					CL=90%	2486
$a_1(1260)^+\pi^0$	(2.6	\pm	0.7) ×	10^{-5}		2494
$a_1(1260)^0\pi^+$	(2.0	\pm	0.6) ×	10^{-5}		2494
$\omega \pi^+$	(6.9				10^{-6}		2580
$\omega \rho^+$	(10^{-5}		2522
$\eta \pi^+$	(4.02				10^{-6}		2609
$\eta \rho^+$	(7.0			,	10^{-6}	S=2.8	2553
$\eta'\pi^+$	(2.7				10^{-6}	S=1.9	2551
$\eta' \rho^+$	(9.7	\pm	2.2		10-6		2492
	<	1.5					CL=90%	2539
/ /	<	3.0					CL=90%	2480
	<	5.8					CL=90%	_
$a_0(980)^+\pi^0$, $a_0^+ o \eta \pi^+$	<	1.4			×	10^{-6}	CL=90%	_
	<	8.6			×	10^{-4}	CL=90%	2608
/ 1 ()	<	6.2			×	10^{-4}	CL=90%	2433
1 2\ /	<	7.2					CL=90%	2410
$b_1^0\pi^+$, $b_1^0 o\omega\pi^0$	(6.7	\pm	2.0) ×	10^{-6}		_
$b_1^+ \pi^0$, $b_1^+ \to \omega \pi^+$	<	3.3			×	10^{-6}	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	6.3			×	10^{-3}	CL=90%	2592
$b_1^+ ho^0$, $b_1^+ ightarrow \omega \pi^+$	<	5.2			×	10^{-6}	CL=90%	_
$a_1(1260)^{\frac{1}{+}}a_1(1260)^0$	<	1.3			%	, 0	CL=90%	2336
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	<	3.3			×	10^{-6}	CL=90%	_

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

Baryon modes

$$p\overline{p}\pi^{+}$$
 (1.62 ± 0.20)×10⁻⁶ 2439 $p\overline{p}\pi^{+}$ nonresonant < 5.3 ×10⁻⁵ CL=90% 2439

$p\overline{p}K^+$		(5.9	\pm	0.5) × 10 ⁻⁶	S=1.5	2348
$\Theta(1710)^{++}\overline{p},~\Theta^{++} ightarrow$	[zzz]					× 10 ⁻⁸		_
pK^+						7		
$f_J(2220)K^+, f_J \rightarrow p\overline{p}$	[zzz]						CL=90%	2135
$p\overline{\Lambda}(1520)$		(3.1	\pm		$) \times 10^{-7}$		2322
$p\overline{p}K^+$ nonresonant		<	8.9			× 10 ⁻⁵	CL=90%	2348
p <u>₱</u> K*(892) ⁺		(3.6	+	0.8 0.7	$) \times 10^{-6}$		2215
$f_J(2220)K^{*+}$, $f_J o p\overline{p}$		<	7.7			\times 10 ⁻⁷	CL=90%	2059
$p\overline{\Lambda}$		(2.4	+	1.0 0.9	$) \times 10^{-7}$		2430
$p\overline{\Lambda}\gamma$		(2.4	+	0.5 0.4	$) \times 10^{-6}$		2430
$p\overline{\Lambda}\pi^0$		(3.0	+	0.7 0.6) × 10 ⁻⁶		2402
$p\overline{\Sigma}(1385)^0$		<	4.7			× 10 ⁻⁷	CI =90%	2362
$\Delta^{+}\overline{\Lambda}$		<	8.2				CL=90%	_
$\frac{\overline{\Sigma}}{p}$		<	4.6				CL=90%	2413
$p \overline{\Lambda} \pi^+ \pi^-$		(\pm	1.1	$) \times 10^{-6}$		2367
$\rho \overline{\Lambda} \rho^0$		(4.8			$) \times 10^{-6}$		2214
$p \overline{\Lambda} f_2(1270)$		($) \times 10^{-6}$		2026
$\Lambda \overline{\Lambda} \pi^+$		<	9.4			$\times 10^{-7}$	CL=90%	2358
$\Lambda \overline{\Lambda} K^+$		(3.4	\pm	0.6	$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$		(2.2	+	1.2 0.9	$) \times 10^{-6}$		2098
$\overline{\Delta}{}^0 p$		<	1.38			$\times10^{-6}$	CL=90%	2403
$\Delta^{++}\overline{p}$		<	1.4			$\times 10^{-7}$	CL=90%	2403
$D^+ p \overline{p}$		<	1.5			$\times10^{-5}$	CL=90%	1860
$D^*(2010)^+ p \overline{p}$		<	1.5			$\times10^{-5}$	CL=90%	1786
$\overline{D}{}^0 p \overline{p} \pi^+$		(3.72	\pm	0.27	$) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$		(3.73	\pm	0.32	$) \times 10^{-4}$		1709
$D^- \rho \overline{\rho} \pi^+ \pi^-$		(1.66	\pm	0.30	$) \times 10^{-4}$		1705
$D^{*-} \rho \overline{\rho} \pi^+ \pi^-$		(1.86	\pm	0.25	$) \times 10^{-4}$		1621
$p\overline{\Lambda}{}^{0}\overline{D}{}^{0}$		(1.43	\pm	0.32	$) \times 10^{-5}$		_
$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$		<	5			$\times 10^{-5}$		_
$\overline{\Lambda}_c^- p \pi^+$		(2.3	\pm	0.4	$) \times 10^{-4}$	S=2.2	1980
$\overline{\Lambda}_{c}^{-} \Delta(1232)^{++}$		<	1.9			$\times 10^{-5}$	CL=90%	1928
$\overline{\varLambda}_c^- \Delta_X(1600)^{++}$		(4.7	\pm	1.0	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^c \Delta_X(2420)^{++}$		($) \times 10^{-5}$		_
$(\overline{\Lambda}_{c}^{-}p)_{s}\pi^{+}$	[aaaa]	() × 10 ⁻⁵		_
$\frac{\overline{\Sigma}_c(2520)^0}{p}$						× 10 ⁻⁶	CI =90%	1904
$\sum_{c} (2800)^{0} p$						$) \times 10^{-5}$	3= 30,0	
$\frac{2}{\Lambda} \frac{2}{\rho} \pi^{+} \pi^{0}$		($) \times 10^{-3}$		1935
$\frac{\Lambda_c}{\Lambda_c} p \pi^+ \pi^+ \pi^-$		($) \times 10^{-3}$		1880
$\frac{\Lambda_c}{\Lambda_c} p \pi^+ \pi^+ \pi^- \pi^0$		<	1.34		0.1	%	CL=90%	1823
-								

```
\frac{\Lambda_c^+ \Lambda_c^- K^+}{\overline{\Sigma}_c (2455)^0 p}
                                                                                                                  (7.0 \pm 2.2) \times 10^{-4}
                                                                                                                 (3.0 \pm 0.7) \times 10^{-5}
                                                                                                                                                                                                                         1938

\frac{\sum_{c} (2455)^{0} p}{\sum_{c} (2455)^{0} p \pi^{0}} \\
\underline{\sum_{c} (2455)^{0} p \pi^{-} \pi^{+}} \\
\underline{\sum_{c} (2455)^{--} p \pi^{+} \pi^{+}} \\
\underline{\Lambda_{c} (2593)^{-} / \Lambda_{c} (2625)^{--} p \pi^{+}} \\
\underline{\Xi_{c}^{0} \Lambda_{c}^{+}, \ \underline{\Xi_{c}^{0}} \rightarrow \ \underline{\Xi}^{+} \pi^{-}} \\
\underline{\Xi_{c}^{0} \Lambda_{c}^{+}, \ \underline{\Xi_{c}^{0}} \rightarrow \ \Lambda K^{+} \pi^{-}}

                                                                                                                (3.5 \pm 1.1) \times 10^{-4}
                                                                                                                                                                                                                         1896
                                                                                                                (3.5 \pm 1.1) \times 10^{-4}
                                                                                                                                                                                                                        1845
                                                                                                      (2.39 \pm 0.20) \times 10^{-4}
                                                                                                                                                                                                                         1845
                                                                                                             < 1.9
                                                                                                                                                                  \times 10^{-4} CL=90%
                                                                                                                 ( 2.4 \pm 0.9 ) \times\,10^{-5}
                                                                                                                                                                                                S = 1.4
                                                                                                                                                                                                                         1144
                                                                                                                  (2.1 \pm 0.9) \times 10^{-5}
                                                                                                                                                                                                S=1.5
                                                                                                                                                                                                                         1144
```

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

. ,				•	,	
$\pi^+\ell^+\ell^-$	B1	<	4.9		CL=90%	2638
$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	(1.76 ± 0.23	$3) \times 10^{-8}$		2634
$\pi^+ u \overline{ u}$	B1	<	1.4	$\times 10^{-5}$	CL=90%	2638
$K^+ \ell^+ \ell^-$	B1	[sss] (4.51 ± 0.23	$3) \times 10^{-7}$	S=1.1	2617
$K^+e^+e^-$	B1	(5.5 ± 0.7	$) \times 10^{-7}$		2617
$K^+\mu^+\mu^-$	B1	(4.41 ± 0.23	$3) \times 10^{-7}$	S=1.2	2612
$K^+\mu^+\mu^-$ nonreso-	B1	(4.37 ± 0.27	$(7) \times 10^{-7}$		2612
nant				2		
$K^+\tau^+\tau^-$	B1	<	2.25		CL=90%	1687
$K^+ \overline{\nu} \nu$	B1	<	1.6		CL=90%	2617
$\rho^+ \nu \overline{\nu}$	B1	<	3.0		CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[<i>sss</i>] ($1.01 ~\pm~ 0.11$		S=1.1	2564
$K^*(892)^+ e^+ e^-$	B1	($1.55 \begin{array}{c} + & 0.40 \\ - & 0.31 \end{array}$	$(1.5) \times 10^{-6}$		2564
$K^*(892)^+ \mu^+ \mu^-$	B1	($9.6~\pm~1.0$	$) \times 10^{-7}$		2560
$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	$\times 10^{-5}$	CL=90%	2564
$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(4.3 ± 0.4	$) \times 10^{-7}$		2593
$\phi K^+ \mu^+ \mu^-$	B1	($7.9 \begin{array}{c} + & 2.1 \\ - & 1.7 \end{array}$	$) \times 10^{-8}$		2490
$\pi^+ \mathrm{e}^+ \mu^-$	LF	<	6.4	$\times10^{-3}$	CL=90%	2637
$\pi^+e^-\mu^+$	LF	<	6.4	$\times10^{-3}$	CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7	$\times10^{-7}$	CL=90%	2637
$\pi^{+} e^{+} \tau^{-}$	LF	<	7.4	$\times10^{-5}$	CL=90%	2338
$\pi^+ e^- au^+$	LF	<	2.0	$\times10^{-5}$	CL=90%	2338
$\pi^+e^\pm au^\mp$	LF	<	7.5	$\times10^{-5}$	CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<	6.2	$\times10^{-5}$	CL=90%	2333
$\pi^+\mu^-\tau^+$	LF	<	4.5	$\times10^{-5}$	CL=90%	2333
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2	$\times10^{-5}$	CL=90%	2333
$K^+e^+\mu^-$	LF	<	9.1	$\times10^{-8}$	CL=90%	2615
$K^{+}e^{-}\mu^{+}$	LF	<	1.3	$\times 10^{-7}$	CL=90%	2615
$\mathit{K}^{+}\mathit{e}^{\pm}\mu^{\mp}$	LF	<	9.1	$\times10^{-8}$	CL=90%	2615
$\mathit{K}^{+}e^{+} au^{-}$	LF	<	4.3	$\times10^{-5}$	CL=90%	2312
$K^+e^- au^+$	LF	<	1.5	$\times10^{-5}$	CL=90%	2312

$\mathit{K}^{+}e^{\pm} au^{\mp}$	LF	<	3.0	$\times 10^{-5}$ CL=9	90% 2312
$K^+\mu^+ au^-$	LF	<	4.5	$\times 10^{-5}$ CL=9	90% 2298
$K^+\mu^- au^+$	LF	<	2.8	$\times 10^{-5}$ CL=9	90% 2298
$K^{+}\mu^{\pm} au^{\mp}$	LF	<	4.8	$\times 10^{-5}$ CL=9	90% 2298
$K^*(892)^+ e^+ \mu^-$	LF	<	1.3	$\times 10^{-6}$ CL=9	90% 2563
$K^*(892)^+e^-\mu^+$	LF	<	9.9	$\times 10^{-7}$ CL=9	90% 2563
$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4	$\times 10^{-6}$ CL=9	90% 2563
$\pi^{-}e^{+}e^{+}$	L	<	2.3	$\times 10^{-8}$ CL=9	90% 2638
$\pi^-\mu^+\mu^+$	L	<	4.0	$\times 10^{-9}$ CL=9	95% 2634
π^- e $^+$ μ^+	L	<	1.5	$\times 10^{-7}$ CL=9	90% 2637
$\rho^-e^+e^+$	L	<	1.7	$\times 10^{-7}$ CL=9	90% 2583
$\rho^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-7}$ CL=9	90% 2578
$ ho^-$ e $^+$ μ^+	L	<	4.7	$\times 10^{-7}$ CL=9	90% 2582
$K^- e^+ e^+$	L	<	3.0	$\times 10^{-8}$ CL=9	90% 2617
$K^-\mu^+\mu^+$	L	<	4.1	$\times 10^{-8}$ CL=9	90% 2612
$\mathcal{K}^-e^+\mu^+$	L	<	1.6	$\times 10^{-7}$ CL=9	90% 2615
$K^*(892)^-e^+e^+$	L	<	4.0	$\times 10^{-7}$ CL=9	90% 2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	$\times 10^{-7}$ CL=9	90% 2560
$K^*(892)^- e^+ \mu^+$	L	<	3.0	$\times 10^{-7}$ CL=9	90% 2563
$D^{-}e^{+}e^{+}$	L	<	2.6	$\times 10^{-6}$ CL=9	90% 2309
$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6}$ CL=9	90% 2307
$D^-\mu^+\mu^+$	L	<	6.9	$\times 10^{-7}$ CL=9	95% 2303
$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4	$\times 10^{-6}$ CL=9	95% 2251
$D_{s}^{-}\mu^{+}\mu^{+}$	L	<	5.8	$\times 10^{-7}$ CL=9	95% 2267
$D^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	$\times 10^{-6}$ CL=9	95% 2295
$\Lambda^0 \mu^+$	L,B	<	6	$\times 10^{-8}$ CL=9	90% -
$\Lambda^0 e^+$	L,B	<	3.2	$\times 10^{-8}$ CL=9	
$\overline{\Lambda}{}^0\mu^+$	L,B	<	6	$\times 10^{-8}$ CL=9	
$\sqrt{\Lambda}^{0}e^{+}$	L,B	<	8	$\times 10^{-8}$ CL=9	
	•				

B⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 6/5/2018 18:58

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.63\pm0.15$$
 MeV (S = 1.1) $m_{B^0}-m_{B^\pm}=0.31\pm0.06$ MeV Mean life $\tau_{B^0}=(1.520\pm0.004)\times10^{-12}$ s $c\tau=455.7~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004$ (direct measurements)

$B^0 - \overline{B}{}^0$ mixing parameters

$$\chi_d = 0.1860 \pm 0.0011$$

$$\Delta m_{B^0} = m_{B_H^0} - m_{B_L^0} = (0.5064 \pm 0.0019) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (3.333 \pm 0.013) \times 10^{-10} \ \text{MeV}$$
 $\chi_d = \Delta m_{B^0} / \Gamma_{B^0} = 0.770 \pm 0.004$

$$\text{Re}(\lambda_{CP} / |\lambda_{CP}|) \ \text{Re}(z) = 0.047 \pm 0.022$$

$$\Delta \Gamma \ \text{Re}(z) = -0.007 \pm 0.004$$

$$\text{Re}(z) = (-4 \pm 4) \times 10^{-2} \quad (S = 1.4)$$

$$\text{Im}(z) = (-0.8 \pm 0.4) \times 10^{-2}$$

CP violation parameters

Re(
$$\epsilon_{B^0}$$
)/(1+| ϵ_{B^0} |²) = (-0.5 ± 0.4) × 10⁻³
 $A_{T/CP}(B^0 \leftrightarrow \overline{B}^0)$ = 0.005 ± 0.018

 $A_{CP}(B^0 \to D^*(2010)^+ D^-)$ = 0.037 ± 0.034

 $A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0)$ = -0.03 ± 0.04

 $R_d^+ = \Gamma(B^0 \to [\pi^+K^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+]_D K^{*0})$ = 0.06 ± 0.032

 $R_d^- = \Gamma(\overline{B}^0 \to [\pi^-K^+]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+K^-]_D K^{*0})$ = 0.06 ± 0.032

 $A_{CP}(B^0 \to K^+\pi^-)$ = -0.082 ± 0.006

 $A_{CP}(B^0 \to \eta' K^*(892)^0)$ = -0.07 ± 0.18

 $A_{CP}(B^0 \to \eta' K^*_0(1430)^0)$ = -0.19 ± 0.17

 $A_{CP}(B^0 \to \eta K^*_0(1430)^0)$ = 0.14 ± 0.18

 $A_{CP}(B^0 \to \eta K^*_0(1430)^0)$ = 0.06 ± 0.13

 $A_{CP}(B^0 \to \eta K^*_0(1430)^0)$ = -0.07 ± 0.19

 $A_{CP}(B^0 \to \eta K^*_0(1430)^0)$ = -0.07 ± 0.19

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.07 ± 0.19

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.07 ± 0.19

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.37 ± 0.17

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.30 ± 0.33

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.10 ± 0.33

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.10 ± 0.18

 $A_{CP}(B^0 \to \mu K^*_0(1430)^0)$ = -0.15 ± 0.11

 $A_{CP}(B^0 \to K^*_0(1430)^0)$ = -0.22 ± 0.06

 $A_{CP}(B^0 \to K^*_0(1430)^0)$ = -0.15 ± 0.11

 $A_{CP}(B^0 \to K^*_0(1430)^0)$ = -0.15 ± 0.11

 $A_{CP}(B^0 \to K^*_0(1430)^0)$ = -0.15 ± 0.13

```
A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05
A_{CP}(B^0 \to K^*(892)^0 \rho^0) = -0.06 \pm 0.09
A_{CP}(B^0 \to K^{*0} f_0(980)) = 0.07 \pm 0.10
A_{CP}(B^0 \to K^{*+}\rho^-) = 0.21 \pm 0.15
A_{CP}(B^0 \to K^*(892)^0 K^+ K^-) = 0.01 \pm 0.05
A_{CP}(B^0 \rightarrow a_1^- K^+) = -0.16 \pm 0.12
A_{CP}(B^0 \to K^0 K^0) = -0.6 \pm 0.7
A_{CP}(B^0 \to K^*(892)^0 \phi) = 0.00 \pm 0.04
A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4
A_{CP}(B^0 \to \phi(K\pi)_0^{*0}) = 0.12 \pm 0.08
A_{CP}(B^0 \to \phi K_2^*(1430)^0) = -0.11 \pm 0.10
A_{CP}(B^0 \to K^*(892)^0 \gamma) = -0.006 \pm 0.011
A_{CP}(B^0 \to K_2^*(1430)^0 \gamma) = -0.08 \pm 0.15
A_{CP}(B^0 \to \rho^+ \pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)
A_{CP}(B^0 \rightarrow \rho^- \pi^+) = -0.08 \pm 0.08
A_{CP}(B^0 \rightarrow a_1(1260)^{\pm}\pi^{\mp}) = -0.07 \pm 0.06
A_{CP}(B^0 \rightarrow b_1^- \pi^+) = -0.05 \pm 0.10
A_{CP}(B^0 \to p\overline{p}K^*(892)^0) = 0.05 \pm 0.12
A_{CP}(B^0 \to p \overline{\Lambda} \pi^-) = 0.04 \pm 0.07
A_{CP}(B^0 \to K^{*0}\ell^+\ell^-) = -0.05 \pm 0.10
A_{CP}(B^0 \to K^{*0} e^+ e^-) = -0.21 \pm 0.19
A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.034 \pm 0.024
C_{D^{*-}D^{+}}(B^{0} \rightarrow D^{*}(2010)^{-}D^{+}) = -0.01 \pm 0.11
S_{D^{*-}D^{+}}(B^{0} \rightarrow D^{*}(2010)^{-}D^{+}) = -0.72 \pm 0.15
C_{D^{*+}D^{-}}(B^0 \to D^*(2010)^+D^-) = 0.00 \pm 0.13 \quad (S = 1.3)
S_{D^{*+}D^{-}}(B^0 \rightarrow D^*(2010)^+D^-) = -0.73 \pm 0.14
C_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-}) = 0.01 \pm 0.09 \quad (S = 1.6)
S_{D^{*+}D^{*-}} (B^0 \rightarrow D^{*+}D^{*-}) = -0.59 \pm 0.14 \quad (S = 1.8)
C_{+}^{-} (\bar{B}^{0} \to D^{*+}D^{*-}) = 0.00 \pm 0.10 \quad (S = 1.6)
S_{+} (B^{0} \rightarrow D^{*+}D^{*-}) = -0.73 \pm 0.09
C_{-}(B^{0} \rightarrow D^{*+}D^{*-}) = 0.19 \pm 0.31
S_{-}(B^{0} \rightarrow D^{*+}D^{*-}) = 0.1 \pm 1.6 \quad (S = 3.5)
C(B^0 \rightarrow D^*(2010)^+ D^*(2010)^- K_S^0) = 0.01 \pm 0.29
S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.1 \pm 0.4
C_{D^+D^-}(B^0 \to D^+D^-) = -0.22 \pm 0.24 \quad (S = 2.5)
S_{D^+D^-}(B^0 \rightarrow D^+D^-) = -0.76^{+0.15}_{-0.13} \text{ (S = 1.2)}
C_{J/\psi(1S)\pi^0} (B^0 \to J/\psi(1S)\pi^0) = -0.13 \pm 0.13
S_{J/\psi(1S)\pi^0}(B^0 \rightarrow J/\psi(1S)\pi^0) = -0.94 \pm 0.29 \quad (S = 1.9)
C(B^0 \rightarrow J/\psi(1S)\rho^0) = -0.06 \pm 0.06
S(B^0 \rightarrow J/\psi(1S)\rho^0) = -0.66^{+0.16}_{-0.12}
```

$$\begin{split} &C_{D_{CP}^{(*)}h^0}\left(B^0 \to D_{CP}^{(*)}h^0\right) = -0.02 \pm 0.08 \\ &S_{D_{CP}^{(*)}h^0}\left(B^0 \to D_{CP}^{(*)}h^0\right) = -0.66 \pm 0.12 \\ &C_{K^0\pi^0}\left(B^0 \to K^0\pi^0\right) = 0.00 \pm 0.13 \quad (S = 1.4) \\ &S_{K^0\pi^0}\left(B^0 \to K^0\pi^0\right) = 0.58 \pm 0.17 \\ &C_{\eta'(958)K_S^0}\left(B^0 \to \eta'(958)K_S^0\right) = -0.04 \pm 0.20 \quad (S = 2.5) \\ &S_{\eta'(958)K_S^0}\left(B^0 \to \eta'K^0\right) = -0.66 \pm 0.04 \\ &S_{\eta'K^0}\left(B^0 \to \eta'K^0\right) = -0.63 \pm 0.06 \\ &C_{\eta'K^0}\left(B^0 \to \eta'K^0\right) = 0.63 \pm 0.06 \\ &C_{\omega K_S^0}\left(B^0 \to \omega K_S^0\right) = 0.70 \pm 0.21 \\ &C(B^0 \to K_S^0\pi^0\pi^0) = 0.2 \pm 0.5 \\ &S(B^0 \to K_S^0\pi^0\pi^0) = 0.7 \pm 0.7 \\ &C_{\rho^0K_S^0}\left(B^0 \to \rho^0K_S^0\right) = 0.50 \pm 0.16 \\ &S_{\rho^0K_S^0}\left(B^0 \to f_0(980)K_S^0\right) = -0.5 \pm 0.5 \\ &C_{\rho^0K_S^0}\left(B^0 \to f_0(980)K_S^0\right) = -0.2 \pm 0.5 \\ &C_{\rho^0K_S^0}\left(B^0 \to f_0(980)K_S^0\right) = 0.3 \pm 0.4 \\ &S_{\rho^0K_S^0}\left(B^0 \to f_0(1300)K_S^0\right) = 0.13 \pm 0.35 \\ &S_{\kappa^0\pi^+\pi^-}\left(B^0 \to K_S^0\pi^+\pi^- \text{nonresonant}\right) = -0.01 \pm 0.33 \\ &C_{\kappa^0\pi^+\pi^-}\left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ &S_{\kappa^0S_S^0S_S^0}\left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ &S_{\kappa^0S_S^0S_S^0}\left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 1.4) \\ &S_{\kappa^0S_S^0S_S^0}\left(B^0 \to K_S^0K_S^0\right) = 0.0 \pm 0.4 \quad (S = 0.12) \\ &C_{\kappa^+K^-K_S^0}\left(B^0 \to K_S^0K_S^0\right) = 0.01 \pm 0.14 \\ &C_{\kappa^+K^-K_S^0}\left(B^0 \to K_S^0K_S^0\right) = 0.01 \pm 0.14 \\ &S_{\kappa^0S_S^0S_S^0}\left(B^0 \to K_S^0S_S^0\right) = 0.01 \pm 0.14 \\ &S_{\kappa^0S_$$

$$\begin{split} &C_{K_S^0\pi^0\gamma}(B^0\to K_S^0\pi^0\gamma) = 0.36 \pm 0.33 \\ &S_{K_S^0\pi^0\gamma}(B^0\to K_S^0\pi^0\gamma) = -0.8 \pm 0.6 \\ &C_{K_S^0\pi^+\pi^-\gamma}(B^0\to K_S^0\pi^+\pi^-\gamma) = -0.39 \pm 0.20 \\ &S_{K_S^0\pi^+\pi^-\gamma}(B^0\to K_S^0\pi^+\pi^-\gamma) = 0.14 \pm 0.25 \\ &C_{K_S^0\gamma}(B^0\to K^*(892)^0\gamma) = -0.04 \pm 0.16 \quad (S = 1.2) \\ &S_{K_S^{*0}\gamma}(B^0\to K^*(892)^0\gamma) = -0.15 \pm 0.22 \\ &C_{\eta K^0\gamma}(B^0\to \eta K^0\gamma) = -0.3 \pm 0.4 \\ &S_{\eta K^0\gamma}(B^0\to \eta K^0\gamma) = -0.2 \pm 0.5 \\ &C_{K_S^0\gamma}(B^0\to K^0\phi\gamma) = -0.3 \pm 0.6 \\ &S_{K_S^0\gamma}(B^0\to K^0\phi\gamma) = -0.35 \pm 0.6 \\ &S_{K_S^0\gamma}(B^0\to K^0\phi\gamma) = -0.05 \pm 0.19 \\ &S(B^0\to K_S^0\rho^0\gamma) = -0.04 \pm 0.23 \\ &C(B^0\to \rho^0\gamma) = 0.4 \pm 0.5 \\ &S(B^0\to \rho^0\gamma) = -0.8 \pm 0.7 \\ &C_{\pi\pi}(B^0\to \pi^+\pi^-) = -0.67 \pm 0.06 \\ &C_{\pi\eta}(B^0\to \pi^+\pi^-) = -0.33 \pm 0.22 \\ &C_{\rho\pi}(B^0\to \rho^+\pi^-) = 0.02 \pm 0.07 \\ &\Delta C_{\rho\pi}(B^0\to \rho^+\pi^-) = 0.02 \pm 0.07 \\ &\Delta C_{\rho\pi}(B^0\to \rho^+\pi^-) = 0.01 \pm 0.08 \\ &C_{\rho\pi}(B^0\to \rho^0\pi^0) = -0.23 \pm 0.34 \\ &C_{\alpha_1\pi}(B^0\to \rho^0\pi^0) = -0.23 \pm 0.34 \\ &C_{\alpha_1\pi}(B^0\to \rho^1\pi^-) = -0.22 \pm 0.4 \quad (S = 3.2) \\ &\Delta C_{\alpha_1\pi}(B^0\to a_1(1260)^+\pi^-) = -0.21 \pm 0.12 \\ &S_{\rho_1\pi}(B^0\to a_1(1260)^+\pi^-) = -0.11 \pm 0.12 \\ &C(B^0\to b_1^-K^+) = -0.22 \pm 0.24 \\ &\Delta C(B^0\to b_1^-K^+) = -0.22 \pm 0.24 \\ &\Delta C(B^0\to b_1^-K^+) = -0.00 \pm 0.09 \\ &S_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.2 \pm 0.9 \\ &S_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.2 \pm 0.9 \\ &S_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.00 \pm 0.09 \\ &S_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.00 \pm 0.09 \\ &S_{\rho\rho}(B^0\to \rho^0\rho^0) = 0.00 \pm 0.09$$

$$\begin{array}{lll} (S_{-} - S_{+})/2 & (B^{0} \rightarrow D^{*-}\pi^{+}) = -0.009 \pm 0.015 \\ (S_{+} + S_{-})/2 & (B^{0} \rightarrow D^{-}\pi^{+}) = -0.046 \pm 0.023 \\ (S_{-} - S_{+})/2 & (B^{0} \rightarrow D^{-}\pi^{+}) = -0.022 \pm 0.021 \\ (S_{+} + S_{-})/2 & (B^{0} \rightarrow D^{-}\rho^{+}) = -0.024 \pm 0.032 \\ (S_{-} - S_{+})/2 & (B^{0} \rightarrow D^{-}\rho^{+}) = -0.10 \pm 0.06 \\ C_{\eta_{c}} \kappa_{S}^{0} & (B^{0} \rightarrow \eta_{c} \kappa_{S}^{0}) = 0.08 \pm 0.13 \\ \hline \textbf{S}_{\eta_{c}} \kappa_{S}^{0} & (B^{0} \rightarrow \eta_{c} \kappa_{S}^{0}) = 0.93 \pm 0.17 \\ C_{c \overline{c} K}(*)0 & (B^{0} \rightarrow c \overline{c} K(*)^{0}) = (0.5 \pm 1.7) \times 10^{-2} \\ \textbf{sin}(2\beta) = 0.699 \pm 0.017 \\ C_{J/\psi}(\mathsf{nS}) \kappa^{0} & (B^{0} \rightarrow J/\psi(\mathsf{nS}) \kappa^{0}) = 0.701 \pm 0.017 \\ C_{J/\psi}(\mathsf{nS}) \kappa^{0} & (B^{0} \rightarrow J/\psi(\mathsf{nS}) \kappa^{0}) = 0.701 \pm 0.017 \\ C_{J/\psi} \kappa^{*0} & (B^{0} \rightarrow J/\psi \kappa^{*0}) = 0.60 \pm 0.25 \\ C_{\chi_{c0}} \kappa_{S}^{0} & (B^{0} \rightarrow \chi_{c0} \kappa_{S}^{0}) = -0.3 \pm 0.10 \\ S_{J/\psi} \kappa^{*0} & (B^{0} \rightarrow \chi_{c0} \kappa_{S}^{0}) = -0.3 \pm 0.5 \\ C_{\chi_{c1}} \kappa_{S}^{0} & (B^{0} \rightarrow \chi_{c1} \kappa_{S}^{0}) = 0.06 \pm 0.07 \\ \hline \textbf{S}_{\chi_{c1}} \kappa_{S}^{0} & (B^{0} \rightarrow \chi_{c1} \kappa_{S}^{0}) = 0.63 \pm 0.10 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.13 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow \kappa^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow K^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \sin(2\beta_{eff}) (B^{0} \rightarrow K^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \kappa_{0}(\beta_{eff}) (B^{0} \rightarrow K^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \kappa_{0}(\beta_{eff}) (B^{0} \rightarrow K^{+} \kappa^{-} \kappa_{S}^{0}) = 0.77 \pm 0.12 \\ \kappa_{0}(\beta_{eff}) (B^{0} \rightarrow K^{$$

 $\overline{B}{}^0$ modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

_					Sca	ale factor/	p
B ⁰ DECAY MODES	F	rac	tion (Γ_{i}	/Γ)	Confid	lence level	(MeV/c)
$\ell^+ u_\ell$ anything	[sss]	(10.33±	0.28) %	, o		_
$e^+ \nu_e X_c$	[]	`	10.1 ±	,			_
$D\ell^+\nu_\ell$ anything		(9.1 ±	,			_
$D^-\ell^+ u_\ell$	[sss]	(2.20±	,			2309
$D^- au^+ u_ au$	[]	`	1.03±	,			1909
$D^*(2010)^-\ell^+ u_\ell$	[sss]	`	4.88±	,			2257
$D^*(2010)^- \tau^+ \nu_{\tau}$		•	$1.67\pm$,		S=1.1	1838
$\overline{D}{}^0\pi^-\ell^+\nu_\ell$		(4.3 ±	,	_		2308
$D_0^*(2400)^- \ell^+ \nu_{\ell}, D_0^{*-} \rightarrow$		(1.2) ×	_	S=1.8	_
$\overline{D}{}^{0}\pi^{-}$		`		,			
$D_2^*(2460)^-\ell^+\nu_\ell$, $D_2^{*-}\to$		($1.21\pm$	0.33) ×	10-3	S=1.8	2065
$\overline{D}{}^0\pi^-$		`		,			
$\overline{D}^{(*)}$ n $\pi \ell^{+} \nu_{\ell}$ (n ≥ 1)		($2.3~\pm$	0.4) %	, 0		_
$\overline{D}^{*0}\pi^-\ell^+ u_\ell$		(4.9 ±	0.8) ×	10^{-3}		2256
$D_1(2420)^{-}\ell^+\nu_\ell, \ D_1^- o$		($2.80\pm$	0.28) ×	10-3		_
$\overline{D}^{*0}\pi^{-}$		•		,			
$D_1'(2430)^- \ell^+ \nu_{\ell}, D_1'^- \rightarrow$		($3.1~\pm$	0.9) ×	10-3		_
$\overline{D}^{*0}\pi^{-}$		•		,			
$D_2^*(2460)^-\ell^+\nu_\ell, \ D_2^{*-} \rightarrow$		(6.8 ±	1.2) ×	10^{-4}		2065
$\overline{D}^{*0}\pi^{-}$		•		,			
$D^-\pi^+\pi^-\ell^+ u_\ell$		($1.3~\pm$	0.5) ×	10^{-3}		2299
$D^{*-}\pi^+\pi^-\ell^+ u_\ell$		($1.4~\pm$	0.5) ×	10^{-3}		2247
$ ho^-\ell^+ u_\ell$	[sss]	($2.94\pm$				2583
$\pi^-\ell^+ u_\ell$	[sss]		$1.50\pm$		_		2638
$\pi^- au^+ u_ au$		<	2.5	×	10^{-4}	CL=90%	2338

Inclusive modes

K^\pm anything	(78 ± 8)) %		_
$D^0 X$	(8.1 ± 1.5)) %		_
$\overline{D}{}^0 X$	(47.4 ± 2.8)) %		_
D^+X	< 3.9	%	CL=90%	_
D^-X	(36.9 ± 3.3)) %		_
$D_s^+ X$	$(\begin{array}{ccc}10.3 & + & 2.1\\ - & 1.8\end{array}$) %		_
$D_s^- X$	< 2.6	%	CL=90%	_
$D_s^- X$ $\Lambda_c^+ X$	< 3.1	%	CL=90%	_
$\overline{\Lambda}_c^- X$	$(5.0 + 2.1 \\ -1.5$) %		_
<i>ōX</i>	(95 ± 5)) %		_
cX	(24.6 ± 3.1) %		_
c cX	(119 ± 6)) %		_

D, D^* , or D_s modes

ν , ν	, or D_{i}	s modes	•		
$D^-\pi^+$	($2.52\pm$	$0.13) \times 10^{-3}$	S=1.1	2306
$D^- \rho^+$	($7.9~\pm$	$1.3 \) \times 10^{-3}$		2235
$D^- K^0 \pi^+$	(4.9 ±	$0.9) \times 10^{-4}$		2259
$D^-K^*(892)^+$	(4.5 ±	$0.7) \times 10^{-4}$		2211
$D^-\omega\pi^+$	($2.8~\pm$	$0.6) \times 10^{-3}$		2204
D^-K^+	($1.86\pm$	$0.20) \times 10^{-4}$		2279
$D^{-}K^{+}\pi^{+}\pi^{-}$	($3.5~\pm$	$0.8) \times 10^{-4}$		2236
$D^-K^+\overline{K}^0$	<	3.1	$\times 10^{-4}$	CL=90%	2188
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	(8.8 ±	$1.9) \times 10^{-4}$		2070
$\overline{D}{}^0\pi^+\pi^-$	(8.8 ±	$0.5) \times 10^{-4}$		2301
$D^*(2010)^-\pi^+$	($2.74\pm$	$0.13) \times 10^{-3}$		2255
$\overline{D}{}^0{\mathcal K}^+{\mathcal K}^-$	(4.9 ±	$1.2) \times 10^{-5}$		2191
$D^-\pi^+\pi^+\pi^-$	($6.0~\pm$	$0.7) \times 10^{-3}$	S=1.1	2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	($3.9~\pm$	$1.9) \times 10^{-3}$		2287
$D^-\pi^+ ho^0$	($1.1~\pm$	$1.0) \times 10^{-3}$		2206
$D^- a_1(1260)^+$	($6.0~\pm$	$3.3) \times 10^{-3}$		2121
$D^*(2010)^-\pi^+\pi^0$	($1.5~\pm$	0.5) %		2248
$D^*(2010)^- ho^+$	(2.2 +	$^{1.8}_{2.7}$) × 10 ⁻³	S=5.2	2180
$D^*(2010)^- K^+$	($2.12\pm$	$0.15) \times 10^{-4}$		2226
$D^*(2010)^- K^0 \pi^+$	($3.0~\pm$	$0.8) \times 10^{-4}$		2205
$D^*(2010)^-K^*(892)^+$	($3.3~\pm$	$0.6) \times 10^{-4}$		2155
$D^*(2010)^- K^+ \overline{K}{}^0$	<	4.7	\times 10 ⁻⁴	CL=90%	2131
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	($7.21\pm$	$0.29) \times 10^{-3}$		2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0~\pm$	$2.5) \times 10^{-3}$		2235
resonant			2		
$D^*(2010)^-\pi^+\rho^0$	($3.2) \times 10^{-3}$		2150
$D^*(2010)^- a_1(1260)^+$	($1.30\pm$	0.27) %		2061

HTTP://PDG.LBL.GOV

Page 93

$\overline{D}_1(2420)^0\pi^-\pi^+, \ \overline{D}_1^0 \rightarrow$	(1.47±	$0.35) \times 10^{-4}$		_
$D^{*-}\pi^+ \ D^*(2010)^- K^+\pi^-\pi^+$	(4.7 +	$0.4) \times 10^{-4}$		2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$			0.27) %		2218
$D^{*-}3\pi^{+'}2\pi^{-}$	•		$0.9\) \times 10^{-3}$		2195
$\overline{D}^*(2010)^-\omega\pi^+$			$0.18) \times 10^{-3}$	S=1.2	2148
$D_1(2430)^0\omega,\ D_1^0\to D^{*-}\pi^+$	(2.7 +	$^{0.8}_{0.4}$) \times 10 ⁻⁴		1992
$\overline{D}^{*-}\rho(1450)^{+}$	(1.07 +	$_{0.34}^{0.40}) \times 10^{-3}$		_
$\overline{D}_1(2420)^0 \omega$	(7.0 ±	$2.2\)\times 10^{-5}$		1995
$\overline{D}_{2}^{*}(2460)^{0}\omega$	($1.4) \times 10^{-5}$		1975
$\overline{D}^{*-}b_1(1235)^-$, $b_1^- ightarrow \omega\pi^-$	<	7	$\times 10^{-5}$	CL=90%	_
$\overline{D}^{**-}\pi^+$	[xxx] ($1.9~\pm$	$0.9) \times 10^{-3}$		_
$D_1(2420)^-\pi^+, D_1^- \rightarrow$	(9.9 +	$^{2.0}_{2.5}$) \times 10 ⁻⁵		_
$D^-\pi^+\pi^-$ $D_1(2420)^-\pi^+, D_1^- \to$	<	3.3	\times 10 ⁻⁵	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$ $D^{*}(2460)^{-}\pi^{+}, (D^{*}_{2})^{-} \rightarrow$	(2.38±	$0.16) \times 10^{-4}$		2062
$\overline{D}_0^0 \pi^- \pi^+, (D_0^*)^- \to$	(7.6 ±	$0.8) \times 10^{-5}$		2090
$D^0\pi^- \ D_2^*(2460)^-\pi^+, \ (D_2^*)^- o$	<	2.4	× 10 ⁻⁵	CL=90%	_
$D^{*-}\pi^{+}\pi^{-} \over D_{2}^{*}(2460)^{-}\rho^{+}$		4.0	× 10 ⁻³	CI00%	1974
$D_{2}^{0}(2400)^{-\beta}$			$0.7) \times 10^{-5}$	CL—9070	1868
$D^{*0}\overline{D}{}^{0}$			× 10 ⁻⁴	CL=90%	1794
D^-D^+			$0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}$ (CP -averaged)			$0.6) \times 10^{-4}$		_
$D^-D_s^+$	(7.2 ±	$0.8) \times 10^{-3}$		1812
$D^*(2010)^-D_s^+$	(8.0 ±	$1.1) \times 10^{-3}$		1735
$D^{-}D_{s}^{*+}$	(7.4 ±	$1.6) \times 10^{-3}$		1732
$D^*(2010)^-D_s^{*+}$	($1.77\pm$	0.14) %		1649
$D_{s0}(2317)^- K^+, D_{s0}^- \rightarrow D_{s}^- \pi^0$	(4.2 ±	$1.4) \times 10^{-5}$		2097
$D_s \pi^0$ $D_{s0}(2317)^- \pi^+, D_{s0}^- \to D_s^- \pi^0$	<	2.5	× 10 ⁻⁵	CL=90%	2128
$D_{sJ}(2457)^- K^+, \ D_{sJ}^- o$	<	9.4	× 10 ⁻⁶	CL=90%	-
$D_s^- \pi^0 \ D_{sJ}(2457)^- \pi^+, \ D_{sJ}^- o \ D_{sJ}^- 0$	<	4.0	× 10 ⁻⁶	CL=90%	_
$D_{s}^{-}\pi^{0}$ $D_{s}^{-}D_{s}^{+}$	<	3.6	× 10 ⁻⁵	CL=90%	1759

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 94

$D_{s}^{*+}\pi^{-}$	($2.1~\pm~0.4~)\times10^{-5}$	S=1.4	2215
$D_s^+ \rho^-$	<	2.4×10^{-5}	CL=90%	2197
$D_s^{*+}\rho^-$	($4.1 \pm 1.3 \times 10^{-5}$		2138
$D_{s}^{s} \wedge P_{c}^{+} - P_{c}^{-}$ $D_{s}^{s+} - P_{c}^{-}$ $D_{s}^{+} - P_{c}^{-}$ $D_{s}^{s+} - P_{c}^{-}$ $D_{s}^{s+} - P_{c}^{-}$	<		CL=90%	_
$D_{c}^{*+}a_{0}^{-}$	<	3.6×10^{-5}	CL=90%	_
$D_s^+ a_1(1260)^-$	<	2.1×10^{-3}	CL=90%	2080
$D_s^{3+} a_1(1260)^-$	<	1.7×10^{-3}	CL=90%	2015
$D_{5}^{+}a_{2}^{-}$	<	1.9 $\times 10^{-4}$	CL=90%	_
$D_{s}^{*+} \stackrel{2}{a_{2}}$	<	2.0×10^{-4}	CL=90%	_
$D_{-}^{s}K_{+}^{2}$	($2.7~\pm~0.5~)\times10^{-5}$	S=2.7	2242
$D_{s}^{-}K^{+}$ $D_{s}^{*-}K^{+}$		$2.19\pm\ 0.30)\times10^{-5}$		2185
$D_s^s K^*(892)^+$	(ŕ		2172
$D_s^{*-}K^*(892)^+$	`	$3.2 + 1.5 \times 10^{-5}$		2112
5				
$D_s^- \pi^+ K^0$,	$9.7 \pm 1.4 \times 10^{-5}$		2222
$D_{s}^{*-}\pi^{+}K^{0}$	<		CL=90%	2164
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	($1.7 \pm 0.5) \times 10^{-4}$		2198
$D_s^- \pi^+ K^*(892)^0$	<			2138
$D_{5}^{*-}\pi^{+}K^{*}(892)^{0}$	<		CL=90%	2076
$\overline{D}^0 K^0$		$5.2 \pm 0.7) \times 10^{-5}$		2280
$\overline{D}^0 K^+ \pi^-$		$8.8 \pm 1.7) \times 10^{-5}$		2261
$\overline{D}{}^{0}K^{*}(892)^{0}$		$4.5 \pm 0.6 \times 10^{-5}$		2213
$\overline{D}{}^{0}K^{*}(1410)^{0}$		6.7 $\times 10^{-5}$	CL=90%	2059
$\overline{D}{}^{0} K_{0}^{*}(1430)^{0}$		$7 \pm 7) \times 10^{-6}$		2057
$\overline{D}{}^{0}K_{2}^{*}(1430)^{0}$		$2.1 \pm 0.9 \times 10^{-5}$		2057
$D_0^*(2400)^-$, $D_0^{*-} ightarrow \overline{D}{}^0 \pi^-$	($1.9 \pm 0.9 \times 10^{-5}$		_
$D_2^*(2460)^- K^+, D_2^{*-} \rightarrow$	($2.03\pm 0.35) \times 10^{-5}$		2029
$\overline{D}^0\pi^-$		1.0×10^{-6}	CI00%	_
$D_3^*(2760)^- K^+, \ D_3^{*-} ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		1.0 × 10	CL—90/0	
$\overline{D}{}^0 \overset{D}{K}^+ \overset{\pi}{\pi}^-$ non-resonant	<	3.7×10^{-5}	CL=90%	_
$\overline{D}{}^0\pi^0$	($2.63\pm\ 0.14)\times 10^{-4}$		2308
$\overline{D}{}^{0} \rho^{0}$		$3.21\pm 0.21) \times 10^{-4}$		2237
\overline{D}^{0} f_{2}	•	$1.56 \pm 0.21) \times 10^{-4}$		_
$\overline{D}{}^0\eta$		$2.36\pm\ 0.32)\times10^{-4}$	S=2.5	2274
$\overline{D}^0 \eta'$		$1.38\pm\ 0.16)\times10^{-4}$	S=1.3	2198
$\overline{D}{}^{0}\overset{'}{\omega}$	($2.54\pm 0.16) \times 10^{-4}$		2235
$D^0 \phi$	<		CL=90%	2183
$D^0 K^+ \pi^-$	($5.3 \pm 3.2 \times 10^{-6}$		2261
$D^0 K^*(892)^0$	<	1.1×10^{-5}	CL=90%	2213
$\overline{D}^{*0}\gamma$	<	2.5×10^{-5}	CL=90%	2258
$\overline{D}^*(2007)^0\pi^0$		$2.2 \pm 0.6) \times 10^{-4}$		2256

- **/			4		
$\overline{D}^*(2007)^0 \rho^0$	<		$\times 10^{-4}$	CL=90%	2182
$\overline{\underline{D}}^*(2007)^0_{0}\eta$	($0.6) \times 10^{-4}$	S=2.8	2220
$\overline{D}^*(2007)^0_0 \eta'$	($1.40\pm$	$0.22) \times 10^{-4}$		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($6.2~\pm$	$2.2) \times 10^{-4}$		2249
$\overline{D}^*(2007)^0 K^0$	($3.6~\pm$	1.2) \times 10 ⁻⁵		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<	6.9	$\times10^{-5}$	CL=90%	2157
$D^*(2007)^0 K^*(892)^0$	<	4.0	$\times10^{-5}$	CL=90%	2157
$D^*(2007)^0\pi^+\pi^+\pi^-\pi^-$	($0.5) \times 10^{-3}$		2219
$D^*(2010)^+ D^*(2010)^-$	($0.6) \times 10^{-4}$		1711
$\overline{D}^*(2007)^0 \omega$	($3.6 \pm$	$1.1) \times 10^{-4}$	S=3.1	2180
$D^*(2010)^+D^-$	(1.5) \times 10 ⁻⁴	S=1.6	1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	<		$\times 10^{-5}$		1715
$D^{-}D^{0}K^{+}$	($0.11)\times10^{-3}$		1574
$D^- D^* (2007)^0 K^+$			$0.4) \times 10^{-3}$		1478
$D^*(2010)^- D^0 K^+$	•		$0.21) \times 10^{-3}$		1479
$D^*(2010)^- D^*(2007)^0 K^+$	(0.09) %		1366
$D^{-}D^{+}K^{0}$	($1.7) \times 10^{-4}$		1568
$D^*(2010)^- D^+ K^0 +$	($0.5) \times 10^{-3}$		1473
$D^-D^*(2010)^+K^0$	(-	, , , , , ,		
$D^*(2010)^- D^*(2010)^+ K^0$	(8 1 +	$0.7) \times 10^{-3}$		1360
$D^{*-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	($2.4) \times 10^{-4}$		1336
$D^{*+}K^0$	(0.0 ±	2.4) × 10		1330
$\overline{D}^0 D^0 K^0$	(27 +	1.1) \times 10 ⁻⁴		1574
$\overline{D}{}^{0}D^{*}(2007)^{0}K^{0}$ +	($0.5) \times 10^{-3}$		1478
$\overline{D}^*(2007)^0 D^0 K^0$	(1.1 _	0.5 / × 10		1110
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	(24 +	$0.9) \times 10^{-3}$		1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(0.26) %		-
(D+D)(D+D)K	(3.00 ±	0.20) 70		
Charmo	onium				
$\eta_c K^0$	($1.2) \times 10^{-4}$		1751
$\eta_c K^*(892)^0$	($6.9 \pm$	$0.9) \times 10^{-4}$		1646
$\eta_c(2S) K^{*0}$	<	3.9		CL=90%	1159
$h_c(1P)K^{*0}$	<	4		CL=90%	1253
$J/\psi(1S)K^0$	($8.73\pm$	$0.32) \times 10^{-4}$		1683
$J/\psi(1S)K^+\pi^-$	($1.15\pm$	$0.05) \times 10^{-3}$		1652
$J/\psi(1S) K^*(892)^0$	($1.27\pm$	$0.05) \times 10^{-3}$		1571
$J/\psi(1S)\etaK_S^0$	(5.4 \pm	$0.9) \times 10^{-5}$		1508
$J/\psi(1S)\eta'K_S^0$	<	2.5	$\times10^{-5}$	CL=90%	1271
$J/\psi(1S)\phi K^0$	(4.9 ±	$1.0\)\times 10^{-5}$	S=1.3	1224
$J/\psi(1S)\omega K^0$			$0.4) \times 10^{-4}$		1386
$\chi_{c1}(3872)K^0, \chi_{c1} \rightarrow$			3.2) $\times 10^{-6}$		1140
$J/\psi\omega$	`		,		
$X(3915), \;\; X ightarrow \;\; J/\psi \omega$	(2.1 ±	$0.9\)\times 10^{-5}$		1102
$J/\psi(1S)K(1270)^0$	Ì	1.3 ±	$0.5) \times 10^{-3}$		1391
	`	_ -	, -		-

$J/\psi(1S)\pi^0$	($1.76\pm$	$0.16) \times 10^{-5}$	S=1.1	1728
$J/\psi(1S)\eta$	($1.08\pm$	$0.23) \times 10^{-5}$	S=1.5	1673
$J/\psi(1S)\pi^+\pi^-$	($3.96\pm$	$0.17) \times 10^{-5}$		1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant			$\times 10^{-5}$	CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \to \pi \pi$	(8.0 +	$^{1.1}_{0.9}$) $ imes$ 10 ⁻⁶		_
$J/\psi(1S) f_2$	($0.5\)\times 10^{-6}$	S=1.5	_
$J/\psi(1S) ho^0$	(2.55 +	$_{0.16}^{0.18}) \times 10^{-5}$		1612
$J/\psi(1S)f_0(980)$, $f_0 ightarrow$	<		× 10 ⁻⁶	CL=90%	_
$\pi^+\pi^-$					
$J/\psi(1S)\rho(1450)^0,\ \rho^0 \to$	(2.9 +	$^{1.6}_{0.7}$) × 10 ⁻⁶		_
$J/\psi ho(1700)^0$, $ ho^0 ightarrow \pi^+ \pi^-$	(2.0 ±	1.3) \times 10 ⁻⁶		_
$J/\psi(1S)\omega$	(1.8 +	$\begin{array}{c} 0.7 \\ 0.5 \end{array}) \times 10^{-5}$		1609
$J/\psi(1S)K^+K^-$			0.35 × 10^{-6}		1533
	•		$3.4) \times 10^{-7}$		1333
$J/\psi(1S) a_0(980), \;\; a_0 ightarrow K^+ K^-$	(4.7 ±	3.4) × 10 ·		_
$J/\psi(1S)\phi$	<	1.9	$\times10^{-7}$	CL=90%	1520
$J/\psi(1S)\eta'(958)$			$2.4) \times 10^{-6}$		1546
$J/\psi(1S)K^0\pi^+\pi^-$			$0.4) \times 10^{-4}$		1611
$J/\psi(1S) K^0 K^- \pi^+ + \text{c.c.}$	•		× 10 ⁻⁵	CL=90%	1467
$J/\psi(1S)K^0K^+K^-$			$0.7) \times 10^{-5}$	S=1.8	1249
$J/\psi(1S)K^0\rho^0$			3.0) \times 10 ⁻⁴	0 2.0	1390
$J/\psi(1S) K^*(892)^+ \pi^-$			4) × 10 ⁻⁴		1514
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$			$0.12) \times 10^{-5}$		1670
$J/\psi(1S)f_1(1285)$			$2.1) \times 10^{-6}$		1385
$J/\psi(1S) K^*(892)^0 \pi^+ \pi^-$			$2.2) \times 10^{-4}$		1447
$\chi_{c1}(3872)^{-}K^{+}$			× 10 ⁻⁴	CI90%	
$\chi_{c1}(3872)^{-}K^{+},$			× 10 ⁻⁶		_
$\chi_{c1}(3872)^- \rightarrow$	[ууу] <	7.2	× 10	CL—9070	
$J/\psi(1S)\pi^{-}\pi^{0}$					
$\chi_{c1}(3872)K^0, \ \chi_{c1} \rightarrow$	(43 +	1.3) \times 10 ⁻⁶		1140
$J/\psi \pi^+ \pi^-$	(1.5 ±	1.5 / × 10		1110
$\chi_{c1}(3872)K^0$, $\chi_{c1} \rightarrow J/\psi \gamma$	<	2.4			1140
$\chi_{c1}(3872)K^*(892)^0,\;\;\chi_{c1} o$	<	2.8	$\times 10^{-6}$	CL=90%	940
$J/\psi\gamma$					
$\chi_{c1}(3872) K^0$, $\chi_{c1} ightarrow \psi(2S) \gamma$	<	6.62	$\times 10^{-6}$	CL=90%	1140
$\chi_{c1}(3872)K^*(892)^0$, $\chi_{c1} o$	<	4.4	$\times 10^{-6}$	CL=90%	940
$\psi(2S)\gamma$					
$\chi_{c1}(3872)K^0, \chi_{c1} \to D^0\overline{D}^0\pi^0$	(1.7 ±	$0.8) \times 10^{-4}$		1140
			_		
$\chi_{c1}(3872)K^{0}, \ \chi_{c1} \rightarrow \ \overline{D}^{*0}D^{0}$	•		$0.4) \times 10^{-4}$		1140
$\chi_{c1}(3872)K^+\pi^-, \chi_{c1} \rightarrow$	(7.9 ±	$1.4) \times 10^{-6}$		_
$J/\psi\pi^+\pi^-$					

$$\begin{array}{c} \chi_{c1}(3872)\,K^*(892)^0, \ \chi_{c1} \rightarrow \\ J/\psi\pi^+\pi^- \end{array} \\ Z_c(4430)^\pm\,K^\mp, \ Z_c^\pm \rightarrow \\ \psi(2S)\,\pi^\pm \\ Z_c(4300)^\pm\,K^\mp, \ Z_c^\pm \rightarrow \\ J/\psi\pi^\pm \\ Z_c(3300)^\pm\,K^\mp, \ Z_c^\pm \rightarrow \\ J/\psi\pi^\pm \\ Z_c(3300)^\pm\,K^\mp, \ Z_c^\pm \rightarrow \\ J/\psi\pi^\pm \\ Z_c(4200)^\pm\,K^\mp, \ Z_c^\pm \rightarrow \\ J/\psi(15)\,p^- \\ J/\psi(15)\,p^-$$

HTTP://PDG.LBL.GOV

Page 99

$\eta' K_0^* (1430)^0$	($6.3~\pm~1.6~)\times10^{-6}$		2346
$\eta' K_2^* (1430)^0$	($1.37 \pm 0.32) \times 10^{-5}$		2346
ηK^0	(1.23^{+}_{-} $\stackrel{0.27}{0.24}) \times 10^{-6}$		2587
$\eta K^*(892)^0$	($1.59\pm 0.10) \times 10^{-5}$		2534
$\eta K_0^*(1430)^0$		$1.10\pm 0.22) \times 10^{-5}$		2415
$\eta K_2^*(1430)^0$	($9.6 \pm 2.1) \times 10^{-6}$		2414
ωK^0	($4.8 \pm 0.4) \times 10^{-6}$		2557
$a_0(980)^0K^0$, $a_0^0 o \eta\pi^0$	<	7.8 $\times 10^{-6}$		_
$b_1^0 {\mathcal K}^0$, $b_1^0 ightarrow \omega \pi^0$	<	7.8 $\times 10^{-6}$	CL=90%	_
$a_0(980)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	1.9×10^{-6}	CL=90%	_
$b_1^- K^+$, $b_1^- ightarrow \omega \pi^-$	($7.4 \pm 1.4) \times 10^{-6}$		_
$b_1^{ar{0}} K^{st 0}$, $b_1^{ar{0}} ightarrow \omega \pi^0$	<	8.0×10^{-6}	CL=90%	_
$b_1^- K^{*+}$, $b_1^- ightarrow \omega \pi^-$	<	5.0×10^{-6}	CL=90%	_
$a_0(1450)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	3.1×10^{-6}	CL=90%	_
$K_S^0 X^0$ (Familon)	<	5.3×10^{-5}	CL=90%	_
$\omega K^*(892)^0$	($2.0 \pm 0.5) \times 10^{-6}$		2503
$\omega(K\pi)_0^{*0}$	($1.84 \pm 0.25) \times 10^{-5}$		_
$\omega K_0^* (1430)^0$	($1.60 \pm 0.34) \times 10^{-5}$		2380
$\omega K_2^* (1430)^0$	($1.01\pm~0.23)\times10^{-5}$		2380
$\omega K^+\pi^-$ nonresonant	($5.1 \pm 1.0) \times 10^{-6}$		2542
$K^+\pi^-\pi^0$		$3.78 \pm 0.32) \times 10^{-5}$		2609
$K^+\rho^-$		$7.0 \pm 0.9 \times 10^{-6}$		2559
$K^{+} \rho(1450)^{-}$	($2.4 \pm 1.2 \times 10^{-6}$		_
$K^{+} \rho(1700)^{-}$	($6 \pm 7) \times 10^{-7}$		_
$(K^+\pi^-\pi^0)$ non-resonant		2.8 ± 0.6) $\times 10^{-6}$		_
$(K\pi)_0^{*+}\pi^-, \ (K\pi)_0^{*+} \to K^+\pi^0$	($3.4 \pm 0.5 \times 10^{-5}$		_
$(K\pi)_{0}^{K^{+}}\pi^{0}$ $(K\pi)_{0}^{*0}\pi^{0}$, $(K\pi)_{0}^{*0} \to$	($8.6 \pm 1.7) \times 10^{-6}$		_
$K^{+}\pi^{-}$		10-6	CI 000/	0445
$K_2^*(1430)^0\pi^0$		4.0×10^{-6}		2445
$K^*(1680)^0 \pi^0$ $K^{*0}_*\pi^0$		7.5 $\times 10^{-6}$		2358
$\kappa^0 \pi^+ \pi^-$		6.1 ± 1.6) × 10^{-6} 4.94 ± 0.18) × 10^{-5}		2600
	`	,		2609
$K^0\pi^+\pi^-$ non-resonant		$1.47^{+}_{-} \begin{array}{l} 0.40 \\ 0.26 \end{array}) \times 10^{-5}$	S=2.1	_
$K^0 \rho^0$,	$4.7 \pm 0.6 \times 10^{-6}$		2558
$K^*(892)^+\pi^-$		$8.4 \pm 0.8 \times 10^{-6}$		2563
$K_0^*(1430)^+\pi^-$		$3.3 \pm 0.7) \times 10^{-5}$	S=2.0	_
$K_{x}^{*+}\pi^{-}$		$5.1 \pm 1.6 \times 10^{-6}$		_
$K^*(1410)^+\pi^-$, $K^{*+} ightarrow$	<	3.8×10^{-6}	CL=90%	_
$f_0(980)K^0$, $f_0 \to \pi^+\pi^-$	(7.0 \pm 0.9) $\times10^{-6}$		2522

$f_2(1270) K^0$		(2.7 +	1.3 1.2)	\times 10 ⁻⁶		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$		(\times 10 ⁻⁶		_
$K^*(892)^0 \pi^0$		($\times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$		<	6			CL=90%	2445
$K^*(1680)^+\pi^-$		<	1.0			CL=90%	2358
$K^{+}\pi^{-}\pi^{+}\pi^{-}$	[ccaa]					CL=90%	2600
$\rho^0 K^+ \pi^-$		(\times 10 ⁻⁶		2543
$f_0(980) K^+ \pi^-, f_0 \to \pi \pi$		(1.4 +	0.5)	\times 10 ⁻⁶		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant		<				CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$		(\times 10 ⁻⁵		2557
$K^*(892)^0 ho^0$		(3.9 ±	1.3)	× 10 ⁻⁶	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \rightarrow \pi \pi$	-	(3.9 +	2.1 1.8)	\times 10 ⁻⁶	S=3.9	2466
$K_1(1270)^+\pi^-$		<				CL=90%	2484
$K_1(1400)^+\pi^-$		<			_	CL=90%	2451
$a_1(1260)^- K^+$	[ccaa]		$1.6~\pm$		_		2471
$K^*(892)^+ \rho^-$		($\times 10^{-5}$		2504
$K_0^*(1430)^+ \rho^-$		($\times 10^{-5}$		_
$K_1(1400)^0 \rho^0$		<				CL=90%	2388
$K_0^*(1430)^0 \rho^0$		($\times 10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi \pi$		(\times 10 ⁻⁶		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi \pi$		($\times 10^{-6}$		_
K^+K^-		(\times 10 ⁻⁸		2593
$K^0\overline{K}^0$		(\times 10 ⁻⁶		2592
$K^0K^-\pi^+$		($\times 10^{-6}$		2578
$\frac{K^*(892)^{\pm} K^{\mp}}{\overline{K}^{*0} K^0 + K^{*0} \overline{K}^0}$		<				CL=90%	2540
						CL=90%	_
$K^{+}K^{-}\pi^{0}$					$\times 10^{-6}$		2579
$K_{S}^{\circ}K_{S}^{\circ}\pi^{\circ}$		<				CL=90%	2578
$K_{S}^{0} K_{S}^{0} \pi^{0}$ $K_{S}^{0} K_{S}^{0} \eta$ $K_{S}^{0} K_{S}^{0} \eta'$		<				CL=90%	2515
$K_{\mathcal{S}}^{\circ}K_{\mathcal{S}}^{\circ}\eta'$		<				CL=90%	2453
$K^{\bar{0}}K^{\bar{+}}K^{-}$					$\times 10^{-5}$		2522
$K^0\phi$					\times 10 ⁻⁶		2516
$f_0(980) K^0$, $f_0 \to K^+ K^-$		(7.0 +	3.5)	× 10 ⁻⁶		_
$f_0(1500) K^0$		(1.3 +	0.7)	$\times 10^{-5}$		2398
$f_2'(1525)^0 K^0$		(3 +	⁵ ₄)	\times 10 ⁻⁷		_
$f_0(1710)K^0$, $f_0 \to K^+K^-$					$\times 10^{-6}$		_
$K^0K^+K^-$ nonresonant					$\times 10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$		($6.0 \pm$	0.5)	$\times 10^{-6}$	S=1.1	2521
$f_0(980)K^0$, $f_0 \to K_S^0K_S^0$		($2.7~\pm$	1.8)	$\times 10^{-6}$		_

$f_0(1710) K^0$, $f_0 ightarrow $	($5.0 + 5.0 \\ - 2.6$	$(5) \times 10^{-7}$		_
$f_0(2010)K^0$, $f_0 \rightarrow K_S^0K_S^0$	(5 ± 6	$) \times 10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	(1.33± 0.3	$(81) \times 10^{-5}$		2521
$K_S^0 K_S^0 K_I^0$	<	1.6	$\times10^{-5}$	CL=90%	2521
$K^*(892)^0K^+K^-$	(2.75± 0.2	$(26) \times 10^{-5}$		2467
$\hat{K}^*(892)^0 \phi$	($(5) \times 10^{-5}$		2460
$K^+K^-\pi^+\pi^-$ nonresonant	<	7.17	$\times 10^{-5}$	CL=90%	2559
$K^*(892)^0 K^- \pi^+$	(4.5 ± 1.3	$3) \times 10^{-6}$		2524
$K^*(892)^0\overline{K}^*(892)^0$	(8 ± 5	$) \times 10^{-7}$		2485
$K^+K^+\pi^-\pi^-$ nonresonant	<	6.0		CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<	2.2		CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<	2		CL=90%	2485
$K^*(892)^+K^*(892)^-$	<	2.0		CL=90%	2485
$K_1(1400)^0 \phi$	<	5.0		CL=90%	2339
$\phi(K\pi)_0^{*0}$	(4.3 ± 0.4	1) × 10 ⁻⁶		_
$\phi(K\pi)^{*0}_{0}$ (1.60< $m_{K\pi}$ <2.15)(ddaa)	<	1.7		CL=90%	_
$K_0^*(1430)^0 K^- \pi^+$	<	3.18	$\times 10^{-5}$	CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3	$\times 10^{-6}$	CL=90%	2360
$K_0^*(1430)^0 \overline{K}_0^*(1430)^0$	<	8.4	$\times 10^{-6}$	CL=90%	2222
$K_0^*(1430)^0 \phi$	(3.9 ± 0.8	$3) \times 10^{-6}$		2333
$K_0^*(1430)^0 K^*(892)^0$	<	1.7	$\times 10^{-6}$	CL=90%	2360
$K_0^*(1430)^0 K_0^*(1430)^0$	<	4.7	$\times 10^{-6}$	CL=90%	2222
$K^*(1680)^0 \phi$	<	3.5	$\times 10^{-6}$	CL=90%	2238
$K^*(1780)^0 \phi$	<	2.7	$\times 10^{-6}$	CL=90%	_
$K^*(2045)^0 \phi$	<	1.53	$\times10^{-5}$	CL=90%	_
$K_2^*(1430)^0 \rho^0$	<	1.1	$\times 10^{-3}$	CL=90%	2381
$K_2^{-}(1430)^0 \phi$	(6.8 ± 0.9	$9) \times 10^{-6}$	S=1.2	2333
$\kappa^{ar{0}}\phi\phi$	($9) \times 10^{-6}$		2305
$\eta' \eta' K^0$	<	3.1	$\times 10^{-5}$	CL=90%	2337
$\eta K^0 \gamma$	(7.6 ± 1.8	$3) \times 10^{-6}$		2587
$\eta' K^0 \gamma$	<	6.4	$\times 10^{-6}$	CL=90%	2528
$K^0\phi\gamma$	($2.7 ~\pm~ 0.7$	$7) \times 10^{-6}$		2516
$K^+\pi^-\gamma$	(4.6 ± 1.4			2615
$K^*(892)^0 \gamma$	(4.18± 0.2	$(25) \times 10^{-5}$		2565
$\mathcal{K}^*(1410)\gamma$	<	1.3		CL=90%	2449
$K^+\pi^-\gamma$ nonresonant	<	2.6		CL=90%	2615
	<	2.26	× 10 ⁻⁸	CL=90%	_
$\kappa^0 \frac{\mu^+ \mu^-}{\pi^+ \pi^- \gamma}$			F		
	(1.99± 0.1	,		2609
$K^{+}\pi^{-}\pi^{0}\gamma$	(4.1 ± 0.4	,	CI coo'	2609
$K_1(1270)^0 \gamma$	<	5.8		CL=90%	2486
$K_1(1400)^0 \gamma$	<	1.2	$\times 10^{-3}$	CL=90%	2454

$K_2^*(1430)^0 \gamma$	(1.24± 0.24)	$) \times 10^{-5}$	2447
$K^{\bar{*}}(1680)^{0}\gamma$	<	2.0	$\times 10^{-3}$ CL=90%	2360
$K_3^*(1780)^0\gamma$	<	8.3	$\times 10^{-5}$ CL=90%	2341
$K_4^*(2045)^0 \gamma$	<	4.3	$\times 10^{-3} \text{ CL} = 90\%$	2244

	ıflavored ı	meson	modes		
$ ho^{0}\gamma$	(8.6 ±	1.5) $\times 10^{-7}$		2583
$\rho^{0}X(214), X \to \mu^{+}\mu^{-}$	[eeaa]<	1.73	$\times 10^{-8}$	CL=90%	_
$\omega\gamma$	(4.4 +	$^{1.8}_{1.6}$) $ imes$ 10 ⁻⁷		2582
$\phi\gamma$	<	1.0	$\times10^{-7}$	CL=90%	2541
$\pi^+\pi^-$	($5.12\pm$	$0.19) \times 10^{-6}$		2636
$\pi^{0}\pi^{0}$	($1.59\pm$	$0.26) \times 10^{-6}$	S=1.4	2636
$\eta \pi^0$	(4.1 ±	$1.7) \times 10^{-7}$		2610
$\eta\eta$	<	1.0	$\times 10^{-6}$	CL=90%	2582
$\eta' \pi^0$	($1.2~\pm$	$0.6) \times 10^{-6}$	S=1.7	2551
$\eta'\eta'$	<	1.7		CL=90%	2460
$\eta'\eta$	<	1.2	$\times 10^{-6}$	CL=90%	2523
$\eta' ho^0$	<	1.3	$\times 10^{-6}$	CL=90%	2492
$\eta' f_0(980), f_0 \to \pi^+ \pi^-$	<	9	\times 10 ⁻⁷	CL=90%	2454
$\eta ho^{f 0}$	<	1.5		CL=90%	2553
$\eta f_0(980), f_0 \to \pi^+ \pi^-$	<	4	$\times 10^{-7}$	CL=90%	2516
$\omega\eta$	(9.4 +	$\frac{4.0}{3.1}$) × 10 ⁻⁷		2552
$\omega\eta'$	(1.0 +	$^{0.5}_{0.4}$) $\times10^{-6}$		2491
ωho^0	<	1.6	$\times 10^{-6}$	CL=90%	2522
$\omega f_0(980), f_0 \to \pi^+ \pi^-$	<	1.5	\times 10 ⁻⁶	CL=90%	2485
$\omega\omega$	($1.2~\pm$	$0.4) \times 10^{-6}$		2521
$\phi\pi^{0}$	<	1.5	$\times 10^{-7}$	CL=90%	2540
$\phi\eta$	<	5	$\times 10^{-7}$	CL=90%	2511
$\phi \eta'$	<	5	\times 10 ⁻⁷	CL=90%	2448
$\phi \pi^+ \pi^-$	($1.8~\pm$	$0.5) \times 10^{-7}$		2533
ϕho^{0}	<	3.3	\times 10 ⁻⁷	CL=90%	2480
$\phi \mathit{f}_{0}(980)$, $\mathit{f}_{0} ightarrow \pi^{+} \pi^{-}$	<	3.8	\times 10 ⁻⁷	CL=90%	2441
$\phi \omega$	<	7	\times 10 ⁻⁷	CL=90%	2479
$\phi\phi$	<	2.8	$\times 10^{-8}$	CL=90%	2435
$a_0(980)^\pm\pi^\mp$, $a_0^\pm o \eta\pi^\pm$	<	3.1	$\times 10^{-6}$	CL=90%	_
$a_0(1450)^{\pm}\pi^{\mp}, \ \ a_0^{\pm} \to \ \eta \pi^{\pm}$	<	2.3	$\times10^{-6}$	CL=90%	_
$\pi^{+}\pi^{-}\pi^{0}$	<	7.2	$\times 10^{-4}$	CL=90%	2631
$ ho^{0}\pi^{0}$	($2.0 \pm$	$0.5) \times 10^{-6}$		2581
$ ho^{\mp}\pi^{\pm}$	[hh] ($2.30\pm$	$0.23) \times 10^{-5}$		2581
$\pi^+\pi^-\pi^+\pi^-$				CL=90%	2621
$ ho^{0}\pi^{+}\pi^{-}$		8.8	$\times 10^{-6}$	CL=90%	2575
$\rho^0 \rho^0$	(9.6 ±	$1.5) \times 10^{-7}$		2523

 $\Delta^0 \overline{\Lambda}$

 $p\overline{\Lambda}K^{-}$

 $p\Lambda D^{-}$

 $p\overline{\Lambda}D^{*-}$

 $p \overline{\Sigma}^0 \pi^-$

9.3

 $(2.5 \pm 0.4) \times 10^{-5}$

 $3.4 \pm 0.8 \times 10^{-5}$

 $\times 10^{-7}$ CL=90%

 $\times 10^{-7}$ CL=90%

 $\times 10^{-6}$ CL=90%

2364

2308

1765

1685

2383

$\overline{\Lambda}\Lambda$	<	3.2	$\times10^{-7}$	CL=90%	2392
$\overline{\Lambda}\Lambda K^0$	(4.8 +	$^{1.0}_{0.9}$) × 10 ⁻⁶		2250
$\overline{\Lambda}\Lambda K^{*0}$	(2.5 +	$^{0.9}_{0.8}$) × 10 ⁻⁶		2098
$\overline{\Lambda}\Lambda D^0$	(1.00+	$_{0.26}^{0.30}) \times 10^{-5}$		1661
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<		$\times 10^{-5}$	CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$	<	1.5		CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1		CL=90%	2335
$\overline{D}^0 p \overline{p}$	($1.04\pm$	$0.07) \times 10^{-4}$		1863
$D_s^{-} \overrightarrow{\Lambda} p$			$0.9\) \times 10^{-5}$		1710
\overline{D}^* (2007) ⁰ $p\overline{p}$	($1.1) \times 10^{-5}$		1788
$D^*(2010)^{-} \rho \overline{n}$	($0.4) \times 10^{-3}$		1785
$D^{-}p\overline{p}\pi^{+}$	•		$0.31) \times 10^{-4}$		1786
$D^*(2010)^- \rho \overline{\rho} \pi^+$			$0.5) \times 10^{-4}$	S=1.2	1708
$\overline{D}^{0}p\overline{p}\pi^{+}\pi^{-}$	($0.5) \times 10^{-4}$		1708
$\overline{D}^{*0} p \overline{p} \pi^+ \pi^-$	($0.5) \times 10^{-4}$		1623
$\Theta_{c} \overline{p} \pi^{+}$, $\Theta_{c} \rightarrow D^{-} p$	<		$\times 10^{-6}$	CL=90%	_
$\Theta_c \overline{p} \pi^+, \;\; \Theta_c o D^{*-} p$	<		$\times 10^{-5}$		_
$\overline{\Sigma}^{}\Delta^{++}$	<		$\times 10^{-4}$		1839
$\frac{\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{-}}{\overline{\Lambda}_{c}^{-} p \pi^{0}}$	(1.03±	$0.14) \times 10^{-3}$	S=1.3	1934
$\overline{\Lambda}_{-p}^{c}$	($0.18) \times 10^{-5}$		2021
$\sqrt{\Lambda}^{-} p \pi^{0}$	($0.19) \times 10^{-4}$		1982
$\Sigma_c(2455)^- p$	<	2.4	_		_
$\frac{1}{\sqrt{C}} p \pi^{+} \pi^{-} \pi^{0}$	<		× 10 ⁻³	CI =90%	1882
$\frac{\Lambda_c}{\Lambda_c} p \pi^+ \pi^- \pi^+ \pi^-$	<		× 10 ⁻³		1821
$\frac{N_c}{\Lambda_c} p \pi^+ \pi^- \text{(nonresonant)}$	($1.0) \times 10^{-4}$		1934
	•		_	3=1.3	
$\frac{\overline{\Sigma}_c(2520)^{} \rho \pi^+}{\overline{\Sigma}_c(2520)^0 \rho \pi^-}$	($0.18) \times 10^{-4}$	CL 000/	1860
	<			CL=90%	1860
$\overline{\Sigma}_c(2455)^0 p\pi^- \ \overline{\Sigma}_c(2455)^0 N^0, N^0 \rightarrow$	($0.16) \times 10^{-4}$		1895
	(0.4 ±	$1.7) \times 10^{-5}$		_
$\frac{ ho\pi^-}{\overline{\Sigma}_c}$ (2455) $^{}$ $ ho\pi^+$	(1 25 🛨	$0.24) \times 10^{-4}$		1895
$\Lambda_{c}^{-} p K^{+} \pi^{-}$			$0.24) \times 10^{-5}$ $0.7) \times 10^{-5}$		1095
$\frac{N_c}{\overline{\Sigma}_c}$ (2455) pK^+ , $\overline{\Sigma}_c^{} \rightarrow$			$2.6) \times 10^{-6}$		1754
$Z_c(2433) \rho K^+, Z_c \rightarrow \overline{\Lambda}_c^- \pi^-$	(0.9 ±	2.6) × 10 °		1754
$\Lambda_{c}^{-} p K^{*}(892)^{0}$	<	2.42	$\times 10^{-5}$	CL=90%	_
$\Lambda_c^- p K^+ K^-$	(2.0 ±	$0.4\)\times 10^{-5}$		_
$\Lambda_c^{\frac{1}{c}} p \phi$	<	1.0	$\times 10^{-5}$	CL=90%	_
$\Lambda_c^{C} p \overline{p} p$	<	2.8	$\times10^{-6}$		_
$\overline{\Lambda}_{c}^{c}\Lambda K^{+}$			$1.1) \times 10^{-5}$		1767
$\overline{\Lambda}_{C}^{c}\Lambda_{C}^{+}$	<		× 10 ⁻⁵	CL=95%	1319

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

110.120.116 1110.1200, 01/0		()	
$\gamma \gamma$	B1 <		2640
e^+e^-	B1 <	8.3 $\times 10^{-8} \text{ CL}=90\%$	2640
$e^+e^-\gamma$	B1 <	1.2 $\times 10^{-7}$ CL=90%	2640
$\mu^+\mu^-$	B1 ($1.6 \ ^{+}_{-} \ ^{1.6}_{1.4} \) \times 10^{-10} \ \ S=1.9$	2638
$\mu^+\mu^-\gamma$	B1 <	1.6 $\times 10^{-7} \text{ CL}=90\%$	2638
$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	B1 <	6.9 $\times 10^{-10}$ CL=95%	2629
SP , $S \rightarrow \mu^+\mu^-$,	B1 [ggaa] <	6.0 $\times 10^{-10}$ CL=95%	_
$P ightarrow~\mu^+\mu^-$			
$\tau^+\tau^-$	B1 <	$2.1 \times 10^{-3} \text{ CL}=95\%$	1952
$\pi^0 \ell^+ \ell^-$	B1 <	$5.3 \times 10^{-8} \text{ CL}=90\%$	2638
$\pi^0 e^+ e^-$	B1 <	8.4 $\times 10^{-8}$ CL=90%	2638
$\pi^0\mu^+\mu^-$	B1 <	6.9 $\times 10^{-8} \text{ CL}=90\%$	2634
$\eta\ell^+\ell^-$	B1 <	6.4 $\times 10^{-8}$ CL=90%	2611
$\eta\mathrm{e^+e^-}$	B1 <	1.08 $\times 10^{-7}$ CL=90%	2611
$\eta \mu^+ \mu^-$	B1 <	1.12 $\times 10^{-7}$ CL=90%	2607
$\pi^0 \overline{\nu} \overline{\nu}$	B1 <	9 $\times 10^{-6} \text{ CL}=90\%$	2638
$K^0\ell^+\ell^-$	B1 [sss] ($3.1 \ ^{+}_{-} \ ^{0.8}_{0.7} \) imes 10^{-7}$	2616
$K^0e^+e^-$	B1 ($1.6 \ ^{+}_{-} \ ^{1.0}_{0.8} \) imes 10^{-7}$	2616
$\mathcal{K}^0 \mu^+ \mu^-$	B1 ($3.39 \pm 0.34) \times 10^{-7}$	2612
$K^0 \nu^{\frac{\cdot}{\overline{\nu}}}$		$\times 10^{-5} \text{ CL} = 90\%$	2616
$ ho^0 u \overline{ u}$	B1 <	4.0 $\times 10^{-5}$ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	B1 [sss] ($9.9 \ ^{+}_{-} \ ^{1.2}_{1.1} \) imes 10^{-7}$	2565
$K^*(892)^0 e^+ e^-$	B1 (1.03^{+}_{-} $\stackrel{0.19}{_{0.17}}) \times 10^{-6}$	2565
$K^*(892)^0 \mu^+ \mu^-$	B1 ($9.4 \pm 0.5) \times 10^{-7}$	2560
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1 (•	2626
$K^*(892)^0 \nu \overline{\nu}$	B1 <	1.8 $\times 10^{-5}$ CL=90%	2565
invisible	B1 <	$2.4 \times 10^{-5} \text{ CL}=90\%$	_
$ u \overline{ u} \gamma$	B1 <	1.7 $\times 10^{-5} \text{ CL}=90\%$	2640
$\phi u \overline{ u}$	B1 <	1.27 $\times 10^{-4}$ CL=90%	2541
$e^{\pm}\mu^{\mp}$	LF [hh] <	$2.8 \times 10^{-9} \text{ CL}=90\%$	2639
$\pi^0 e^{\pm} \mu^{\mp}$	LF <	1.4 $\times 10^{-7}$ CL=90%	2637
$\mathcal{K}^0\mathrm{e}^{\pm'}\mu^{\mp}$	LF <	$2.7 \times 10^{-7} \text{ CL}=90\%$	2615
$K^*(892)^0e^+\mu^-$	LF <	$5.3 \times 10^{-7} \text{ CL}=90\%$	2563
$K^*(892)^0 e^{-\mu^+}$	LF <	3.4 $\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$	LF <	$5.8 \times 10^{-7} \text{ CL}=90\%$	2563
` '			

$e^{\pm} au^{\mp}$	LF	[hh] <	2.8	$\times10^{-5}$ CL=90%	2341
$\mu^{\pm} au^{\mp}$	LF	[hh] <	2.2	$\times10^{-5}$ CL=90%	2339
$\Lambda_c^+ \mu^ \Lambda_c^+ e^-$	L,B	<	1.4	$\times 10^{-6}$ CL=90%	2143
$\Lambda_c^+ e^-$	L,B	<	4	\times 10 ⁻⁶ CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.011$$

$$A_{CP}(b \to s\gamma) = 0.015 \pm 0.020$$

$$A_{CP}(b \to (s+d)\gamma) = 0.010 \pm 0.031$$

$$A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11$$

$$A_{CP}(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4) = -0.06 \pm 0.22$$

$$A_{CP}(B \to X_s \ell^+ \ell^-) (10.1 < q^2 < 12.9 \text{ or } q^2 > 14.2 \text{ GeV}^2/c^4)$$

$$= 0.19 \pm 0.18$$

$$A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15$$

$$A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13$$

$$A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^+ \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^- \ell^- \ell^-) = -0.04 \pm 0.07$$

$$A_{CP}(B \to \pi_s \ell^- \ell^-) = -0.04 \pm 0.07$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 $\overline{\mathcal{B}}$ modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

D	DE	CAY		\sim	EC
\mathbf{n}	115	LAI	w		

Fraction (Γ_i/Γ)

Scale factor/ Confidence level (MeV/c)

B DECAT MODES		racti	on (1 i	/I)		Confid	ience ievei (viev/c)
Semilepto	nic	and	leptor	nic	mod	es		
$\ell^+ \nu_\ell$ anything [sss, hh.			10.86					_
$D^-\ell^+ u_\ell$ anything [s	sss]	(2.8	\pm	0.9) %		_
=0	sss]	(7.3	\pm	1.5) %		_
$\overline{\mathcal{D}}\ell^+ u_\ell$		(2.42	\pm	0.12) %		2310
	aa]	(6.7	\pm	1.3	$) \times 10^{-3}$		_
$D^*\ell^+ u_\ell$ [jj	aa]	(4.95	\pm	0.11) %		2257
$\overline{D}^{**}\ell^+ u_\ell$ [sss,kk	aa]	(2.7	\pm	0.7) %		_
$\overline{D}_1($ 2420 $)\ell^+ u_\ell$ anything		(3.8	\pm	1.3	$) \times 10^{-3}$	S=2.4	_
$D\pi\ell^+ u_\ell$ anything $+$		(2.6	\pm	0.5) %	S=1.5	_
$D^*\pi\ell^+ u_\ell$ anything								
$D\pi\ell^+ u_\ell$ anything		(1.5	\pm	0.6) %		_
$D^*\pi\ell^+ u_\ell$ anything		(1.9	\pm	0.4) %		_
$\overline{D}_2^*(2460)\ell^+ u_\ell$ anything		(4.4	\pm	1.6	$) \times 10^{-3}$		_
$D^{\overline{*}-}\pi^+\ell^+ u_\ell$ anything		(1.00	\pm	0.34) %		_
$\overline{\it D}\pi^+\pi^-\ell^+ u_\ell$		(1.62	\pm	0.32	$) \times 10^{-3}$		2301
$\overline{D}^*\pi^+\pi^-\ell^+ u_\ell$		(9.4	\pm	3.2	$) \times 10^{-4}$		2247
$D_s^-\ell^+ u_\ell$ anything [s	sss]	<	7			$\times 10^{-3}$	CL=90%	_
		<	5			\times 10 ⁻³	CL=90%	_
$D_s^-\ell^+ u_\ell K^0$ anything [s	sss]	<	7			$\times10^{-3}$	CL=90%	_
$X_c \ell^{+} \nu_{\ell}$		(10.65	\pm	0.16) %		_
$X_{\mu}\ell^{+}\nu_{\ell}$		(2.13	\pm	0.31	$) \times 10^{-3}$		_
$K^+\ell^+ u_\ell$ anything [s	sss]	(6.3	\pm	0.6) %		_
	sss]	(10	\pm	4	$) \times 10^{-3}$		_
$K^0/\overline{K}{}^0\ell^+ u_\ell$ anything [s	sss]	(4.6		0.5			_
$\overline{D}\tau^+\nu_{\tau}$		(9.9	\pm	1.2	$) \times 10^{-3}$		1911
$D^* au^+ u_ au$		(1.50	\pm	0.08) %		1838
D.	D *.	or l	D_s mo	des	5			
D^\pm anything	_ '		24.1) %		_
D^0/\overline{D}^0 anything		(62.4			,	S=1.3	_
$D^*(2010)^{\pm}$ anything		(1.5) %	0 1.0	_
$D^*(2007)^0$ anything		(26.0		2.7) %		_
_ +` .'.	hh]	(8.3		0.8) %		_
$D_s^{*\pm}$ anything]	(6.3		1.0) %		_
$D_s^{*\pm} \overline{D}^{(*)}$		(,		
<u></u> s		(3.4	I	0.6) %		1605
$\frac{DD_{s0}(2317)}{DD_{s0}(2457)}$			seen					1605
$\overline{D}D_{sJ}(2457)$:	seen					_

```
D^{(*)} \overline{D}^{(*)} K^0 +
                                                           7.1 + 2.7 ) \%
                                       [hh,llaa] (
     D^{(*)}\overline{D}^{(*)}\kappa^{\pm}
b \rightarrow c \overline{c} s
                                                          22
                                                                  ± 4
                                                                             ) %
D_s^{(*)} \overline{D}^{(*)}
                                                                  \pm 0.4 ) %
                                        [hh,llaa]
                                                           3.9
D^*D^*(2010)^{\pm}
                                                                              \times 10^{-3} CL=90%
                                            [hh] <
                                                           5.9
                                                                                                         1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                              \times 10^{-3} CL=90%
                                                           5.5
                                            [hh] <
                                                                              \times 10^{-3} CL=90%
                                            [hh] <
                                                                                                         1866
D_{s}^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                       [hh,llaa]
D^*(2010)\gamma
                                                                              \times 10^{-3} CL=90%
                                                                                                         2257
D_s^+ \pi^-, D_s^{*+} \pi^-, D_s^+ \rho^-,
                                                                              \times 10^{-4} CL=90%
                                            [hh] <
                                                           4
     D_s^{*+} \rho^-, D_s^+ \pi^0, D_s^{*+} \pi^0,
     D_{s}^{+}\eta, D_{s}^{++}\eta, D_{s}^{+}\rho^{0}, D_{s}^{++}\rho^{0}, D_{s}^{++}\omega, D_{s}^{++}\omega
D_{s1}(2536)^{+} anything
                                                                               \times 10^{-3} CL=90%
                                                           9.5
                                                  <
                                         Charmonium modes
J/\psi(1S) anything
                                                           1.094 \pm 0.032) \%
                                                                                             S = 1.1
   J/\psi(1S) (direct) anything
                                                           7.8 \pm 0.4 \times 10^{-3}
                                                                                             S=1.1
                                                           3.07 \pm 0.21 \times 10^{-3}
\psi(2S) anything
                                                           3.55 \pm 0.27 \times 10^{-3}
\chi_{c1}(1P) anything
                                                                                             S=1.3
   \chi_{c1}(1P) (direct) anything
                                                           3.08 \pm 0.19 \times 10^{-3}
\chi_{c2}(1P) anything
                                                          10.0 \pm 1.7 \times 10^{-4}
                                                                                             S=1.6
   \chi_{c2}(1P) (direct) anything
                                                                \pm 1.1 ) \times 10^{-4}
                                                                               \times 10^{-3} CL=90%
\eta_c(1S) anything
                                                           9
K \chi_{c1}(3872), \chi_{c1} \to
                                                                  \pm 0.4 ) \times 10^{-4}
                                                                                                         1141
     D^0 \overline{D}{}^0 \pi^0
   K \chi_{c1}(3872), \quad \chi_{c1} \to D^{*0} D^0
                                                                 \pm 2.2 ) \times 10^{-5}
                                                           8.0
                                                                                                         1141
KX(3940), X \rightarrow D^{*0}D^{0}
                                                                              \times 10^{-5} CL=90%
                                                           6.7
                                                  <
                                                                                                         1084
KX(3915), X \rightarrow \omega J/\psi
                                                           7.1 \pm 3.4 \times 10^{-5}
                                         [nnaa] (
                                                                                                         1103
                                            K or K* modes
K^{\pm} anything
                                                          78.9
                                                                  \pm 2.5
                                                                            ) %
   K^+ anything
                                                                  \pm 5
                                                                             ) %
   K^- anything
                                                          13
                                                                             ) %
K^0/\overline{K}^0 anything
                                            [hh]
                                                          64
                                                                             ) %
K^*(892)^{\pm} anything
                                                                  \pm 6
                                                          18
                                                                             ) %
K^*(892)^0 / \overline{K}^*(892)^0 anything [hh]
                                                          14.6
                                                                  \pm 2.6 ) %
K^*(892)\gamma
                                                                            ) \times 10^{-5}
                                                                  \pm 0.6
                                                                                                         2565
                                                                  + 1.8 \\ - 1.6
\eta K \gamma
                                                                             ) \times 10^{-6}
                                                                                                         2588
                                                                              \times 10^{-4} CL=90%
K_1(1400)\gamma
                                                  <
                                                           1.27
                                                                                                         2454
                                                                  + 0.6
                                                                            ) \times 10^{-5}
K_2^*(1430)\gamma
                                                    (
                                                           1.7
                                                                                                         2447
K_2(1770)\gamma
                                                                              \times 10^{-3} CL=90%
                                                                                                         2342
                                                           1.2
                                                  <
HTTP://PDG.LBL.GOV
                                                Page 109
                                                                          Created: 6/5/2018 18:58
```

<	3.7		$\times 10^{-5}$	CL=90%	2341
<	1.0		$\times 10^{-3}$	CL=90%	2244
(8.3 ±	1.1	$) \times 10^{-5}$		2528
(,		2472
<	5.2		$\times 10^{-6}$	CL=90%	2588
(1.8 \pm	0.5	$) \times 10^{-5}$		2534
(2.3 \pm	0.9	$) \times 10^{-6}$		2306
($3.49~\pm$	0.19	$) \times 10^{-4}$		_
(9.2 \pm	3.0	$) \times 10^{-6}$		_
<	6.8		%	CL=90%	_
(2.6 +	0.5 0.8	$) \times 10^{-4}$		_
(4.2 ±	0.9	$) \times 10^{-4}$		_
<	1.87		$\times 10^{-4}$	CL=90%	_
(1.9 ±	0.7	$) \times 10^{-4}$		_
	<pre></pre>	<pre></pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Light unflavored meson modes

$ ho\gamma$		(1.39	\pm	0.25	$) \times 10^{-6}$	S=1.2	2583
$ ho/\omega\gamma$		(1.30	\pm	0.23	$) \times 10^{-6}$	S=1.2	_
π^\pm anything	[hh,ooaa]	(358	\pm	7) %		_
$\pi^{f 0}$ anything		(235	± 1	1) %		_
η anything		(17.6	\pm	1.6) %		_
$ ho^0$ anything		(21	\pm	5) %		_
ω anything		<	81			%	CL=90%	_
ϕ anything		(3.43	\pm	0.12) %		_
ϕ K*(892)		<	2.2			$\times 10^{-5}$	CL=90%	2460
π^+ gluon (charmless)		(3.7	\pm	8.0	$) \times 10^{-4}$		_

Baryon modes

20	,	1000			
$\Lambda_c^+ / \overline{\Lambda}_c^-$ anything	(3.6 ± 0.4) %		_
Λ_c^+ anything	<	1.3	%	CL=90%	_
$\overline{\Lambda}_c^-$ anything	<	7	%	CL=90%	_
$\overline{\Lambda}_c^-\ell^+$ anything	<	9	$\times 10^{-4}$	CL=90%	_
$\overline{\Lambda}_c^- e^+$ anything	<	1.8	$\times 10^{-3}$	CL=90%	_
$\overline{\Lambda}_c^-\mu^+$ anything	< -	1.4	\times 10 ⁻³	³ CL=90%	_
$\overline{\Lambda}_c^- p$ anything	($2.06 ~\pm~ 0.33$) %		_
$\overline{\Lambda}_c^- p e^+ \nu_e$	<	8	$\times 10^{-4}$	CL=90%	2021
$\overline{\Sigma}_c^{}$ anything	(3.4 ± 1.7	$) \times 10^{-3}$		_
$\overline{\Sigma}_c^-$ anything $\overline{\Sigma}_c^0$ anything	<	8	$\times 10^{-3}$	CL=90%	_
$\overline{\Sigma}_c^0$ anything	(3.7 ± 1.7	$) \times 10^{-3}$		_
$\overline{\Sigma}_c^0 N(N = p \text{ or } n)$	<	1.2	$\times 10^{-3}$	CL=90%	1938
$\overline{\Sigma}_c^{reve{0}} N(N=p ext{ or } n)$ Ξ_c^0 anything, $\Xi_c^0 ightarrow \Xi^- \pi^+$	($1.93~\pm~0.30$	$) \times 10^{-4}$	S=1.1	_
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($\begin{array}{cccc} 4.5 & + & 1.3 \\ - & 1.2 \end{array}$) × 10 ⁻⁴		_

p/\overline{p} anything	[hh] ($8.0~\pm~0.4~$) %	_
p/\overline{p} (direct) anything	[hh] (5.5 ± 0.5) %	_
$\overline{p}e^+\nu_e$ anything	<	$5.9 \times 10^{-4} \text{ CL} = 90\%$	_
$\Lambda/\overline{\Lambda}$ anything	[hh] ($4.0~\pm~0.5~$) %	_
Λ anything		seen	_
$\overline{\Lambda}$ anything		seen	_
$\overline{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[hh] ($2.7 \pm 0.6) \times 10^{-3}$	_
baryons anything	($6.8~\pm~0.6$) %	_
$p\overline{p}$ anything	($2.47~\pm~0.23$) %	_
$\Lambda \overline{p}/\overline{\Lambda} p$ anything	[hh] ($2.5~\pm~0.4~$) %	_
$\Lambda \overline{\Lambda}$ anything	<	5 $\times 10^{-3} \text{ CL}=90\%$	_

Lepton Family number (LF) violating modes or $\Delta B=1$ weak neutral current (B1) modes

se^+e^-	B1	(6.7 ±	1.7	$) \times 10^{-6}$	S=2.0	_
$s\mu^+\mu^-$	B1	(4.3 ±	1.0	$) \times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[sss] (5.8 ±	1.3	$) \times 10^{-6}$	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9		$\times 10^{-8}$	CL=90%	2638
$\pi e^+ e^-$	B1	<	1.10		$\times 10^{-7}$	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0		$\times 10^{-8}$	CL=90%	2634
$K e^+ e^-$	B1	(4.4 ±	0.6	$) \times 10^{-7}$		2617
$K^*(892)e^+e^-$	B1	($1.19~\pm$	0.20	$) \times 10^{-6}$	S=1.2	2565
$K\mu^+\mu^-$	B1	(4.4 ±	0.4	$) \times 10^{-7}$		2612
$K^*(892)\mu^+\mu^-$	B1	($1.06 \pm$	0.09	$) \times 10^{-6}$		2560
$K\ell^+\ell^-$	B1	(4.8 ±	0.4	$) \times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	($1.05 \pm$	0.10	$) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.6		$\times 10^{-5}$	CL=90%	2617
$K^* \nu \overline{\nu}$	B1	<	2.7		$\times 10^{-5}$	CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8		$\times 10^{-6}$	CL=90%	2638
$\rho \nu \overline{\nu}$	B1	<	2.8		$\times 10^{-5}$	CL=90%	2583
$se^{\pm}\mu^{\mp}$	LF	[hh] <	2.2			CL=90%	_
$\pi e^{\pm} \mu^{\mp}$	LF	<	9.2		$\times 10^{-8}$	CL=90%	2637
$ ho\mathrm{e}^\pm\mu^\mp$	LF	<	3.2		$\times 10^{-6}$	CL=90%	2582
K $e^{\pm}\mu^{\mp}$	LF	<	3.8		$\times 10^{-8}$	CL=90%	2616
$K^*(892) e^{\pm} \mu^{\mp}$	LF	<	5.1		× 10 ⁻⁷	CL=90%	2563

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life $au = (1.566 \pm 0.003) \times 10^{-12}$ s

Mean life $au = (1.72 \pm 0.10) imes 10^{-12}$ s Charged *b*-hadron admixture

Mean life $au = (1.58 \pm 0.14) imes 10^{-12}$ s Neutral b-hadron admixture

 $\tau_{\rm charged}\,_{b-{\rm hadron}}/\tau_{\rm neutral}\,_{b-{\rm hadron}}=1.09\pm0.13$ $\left|\Delta\tau_{\,b}\right|/\tau_{\,b.\overline{b}}=-0.001\pm0.014$

$$Re(\epsilon_h) / (1 + |\epsilon_h|^2) = (-1.3 \pm 0.4) \times 10^{-3}$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

b DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Created: 6/5/2018 18:58

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. The production fractions in b-hadronic Z decay or $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to B^+) = \mathsf{B}(\overline{b}\to B^0) \\ \mathsf{B}(\overline{b}\to B^+) + \mathsf{B}(\overline{b}\to B^0) + \mathsf{B}(\overline{b}\to B^0_s) + \mathsf{B}(b\to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b\text{-baryon}) = -0.259$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.133$
 $cor(b\text{-baryon}, B^{\pm} = B^0) = -0.923$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), Br(b \to \overline{B}^0))$. We use our own branching fraction notation here, $B(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	(40.5 ± 0.6) % -
B^0	(40.5 ± 0.6) % -
B_s^0	(10.1 ± 0.4) %
<i>b</i> -baryon	$(8.9 \pm 1.2)\%$

DECAY MODES

Semileptonic and leptonic modes

```
\nu anything
                                                              ( 23.1 \pm 1.5 ) %
    \ell^+ \nu_\ell anything
                                                     [sss] (10.69 \pm 0.22)\%
    e^+ \nu_e anything
                                                              (10.86 \pm 0.35)\%
                                                              (10.95^{+}_{-}0.29_{-})\%
   \mu^+ \nu_\mu anything
D^-\ell^+\nu_\ell anything
                                                     [sss] ( 2.30\pm~0.34) %
                                                                                                     S = 1.6
    D^-\pi^+\ell^+\nu_\ell anything
                                                              (4.9 \pm 1.9) \times 10^{-3}
    D^-\pi^-\ell^+\nu_\ell anything
                                                              (2.6 \pm 1.6) \times 10^{-3}
\overline{D}^0 \ell^+ \nu_\ell anything
                                                     [sss] (6.83 \pm 0.35)\%
    \overline{D}{}^0\pi^-\ell^+\nu_\ell anything
                                                              (1.07 \pm 0.27)\%
    \overline{D}{}^0\pi^+\ell^+\nu_\ell anything
                                                              (2.3 \pm 1.6) \times 10^{-3}
D^{*-}\ell^+\nu_\ell anything
                                                    [sss] (2.75\pm0.19)\%
    D^{*-}\pi^{-}\ell^{+}\nu_{\ell} anything
                                                              (6 \pm 7) \times 10^{-4}
    D^{*-}\pi^+\ell^+\nu_\ell anything
                                                              (4.8 \pm 1.0) \times 10^{-3}
                                             [sss,ppaa] ( 2.6 \pm 0.9 ) \times 10^{-3}
       \overline{D}_{i}^{0}\ell^{+}\nu_{\ell} anything \times
             B(\overline{D}_i^0 \rightarrow D^{*+}\pi^-)
       D_i^- \ell^+ \nu_\ell anything \times [sss,ppaa] ( 7.0 \pm 2.3 ) \times 10<sup>-3</sup>
             \mathsf{B}(D_i^- \to D^0\pi^-)
       \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell anything
                                                                        \times 10^{-3} CL=90%
             \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow
             D^{*-}\pi^{+}
                                                       (4.2 \ \frac{+}{-} \ \frac{1.5}{1.8}) \times 10^{-3}
       D_2^*(2460)^- \ell^+ \nu_{\ell} anything
             \times B(D_2^*(2460)^- \rightarrow
             D^{0}\pi^{-}
                                                     (1.6 \pm 0.8) \times 10^{-3}
       \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell anything
             \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow
             D^{-}\pi^{+})
```

charmless $\ell \overline{ u}_\ell$	[sss]	$(1.7 \pm 0.5) \times 10^{-3}$
$ au^+ u_ au$ anything		(2.41 ± 0.23) %
$D^{*-} \tau \nu_{\tau}$ anything		$(9 \pm 4) \times 10^{-3}$
$\overline{c} \rightarrow \ell^- \overline{\nu}_\ell$ anything	[sss]	(8.02± 0.19) %
$c ightarrow \ell^+ u$ anything		(1.6 + 0.4 - 0.5) %
	eson	and baryon modes
$\overline{D}{}^0$ anything		$(59.5 \pm 2.9)\%$
$D^0D_s^{\pm}$ anything	[<i>hh</i>]	(9.1 + 4.0) %
$D^{\mp}D_s^{\pm}$ anything	[<i>hh</i>]	(4.0 + 2.3 - 1.8) %
$\overline{D}{}^0 D^0$ anything	[<i>hh</i>]	(5.1 + 2.0)%
D^0D^\pm anything	[<i>hh</i>]	(2.7 + 1.8)%
D^\pmD^\mp anything	[<i>hh</i>]	$<$ 9 \times 10 ⁻³ CL=90%
D ⁻ anything		$(23.7 \pm 1.8)\%$
$D^*(2010)^+$ anything		(17.3 ± 2.0) %
$D_1(2420)^0$ anything		$(5.0 \pm 1.5)\%$
$D^*(2010)^{\mp}D_s^{\pm}$ anything	[<i>hh</i>]	$(3.3 + 1.6 \atop -1.3)\%$
$D^0 D^*(2010)^{\pm}$ anything	[<i>hh</i>]	$(3.0 + 1.1 \atop -0.9)\%$
		$(2.5 + 1.2 \atop -1.0)\%$
$D^*(2010)^{\pm} D^*(2010)^{\mp}$ anything	[<i>hh</i>]	(1.2 ± 0.4) %
$\overline{D}D$ anything		$(10 \begin{array}{cc} +11 \\ -10 \end{array})\%$
$D_2^*(2460)^0$ anything		$(4.7 \pm 2.7)\%$
D_s^- anything		$(14.7 \pm 2.1)\%$
D_s^+ anything		$(10.1 \pm 3.1)\%$
Λ_{c}^{+} anything		$(7.8 \pm 1.2)\%$
C	ooaa]	(116.2 ± 3.2) %
	rmon	ium modes
$J/\psi(1S)$ anything		(1.16± 0.10) %
$\psi(2S)$ anything		$(2.86\pm 0.28) \times 10^{-3}$
$\chi_{c0}(1P)$ anything		$(1.5 \pm 0.6)\%$
$\chi_{c1}(1P)$ anything		$(1.4 \pm 0.4)\%$
$\chi_{c2}(1P)$ anything		$(6.2 \pm 2.9) \times 10^{-3}$
$\chi_c(2P)$ anything, $\chi_c \to \phi \phi$		$< 2.8 \times 10^{-7} \text{ CL}=95\%$
$\eta_c(1S)$ anything $\eta_c(2S)$ anything, $\eta_c o \phi \phi$		$(4.5 \pm 1.9)\%$ $(3.2 \pm 1.7) \times 10^{-6}$
$\chi_{c1}(3872)$ anything, $\chi_{c1} \rightarrow \psi \psi$		$< 4.5 \times 10^{-7} \text{ CL}=95\%$
$\phi \phi$		A 10 CL 35/0
$X(3915)$ anything, $X o \phi \phi$		$<$ 3.1 $\times 10^{-7}$ CL=95%

K or K^* modes

$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{s}\overline{ u}\nu$	B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^\pm anything		$(74 \pm 6)\%$	_
K_S^0 anything		(29.0 ± 2.9) %	_

Pion modes

π^\pm anything		$(397 \pm 21)\%$	_
$\pi^{f 0}$ anything	[ooaa]	$(278 \pm 60)\%$	_
ϕ anything		(2.82 ± 0.23) %	_

Baryon modes

$$p/\overline{p}$$
 anything $(13.1 \pm 1.1)\%$ — $\Lambda/\overline{\Lambda}$ anything $(5.9 \pm 0.6)\%$ — b -baryon anything $(10.2 \pm 2.8)\%$

Other modes

charged anything [ooaa] (497
$$\pm$$
 7)% - hadron⁺ hadron⁻ ($1.7 + 1.0 \\ -0.7$) \times 10⁻⁵ - charmless (7 ± 21) \times 10⁻³ -

$\Delta B = 1$ weak neutral current (B1) modes

$$\mu^+\mu^-$$
 anything B1 < 3.2 \times 10⁻⁴ CL=90%

$$I(J^P) = \frac{1}{2}(1^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*}=5324.65\pm0.25~{
m MeV}$$
 $m_{B^*}-m_B=45.18\pm0.23~{
m MeV}$ $m_{B^{*+}}-m_{B^+}=45.34\pm0.23~{
m MeV}$

B* DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

o (MeV/*c*)

$$B\gamma$$
 dominant 45

$$B_1(5721)^+$$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Mass
$$m=5725.9^{+2.5}_{-2.7}~{\rm MeV}$$
 $m_{B_1^+}-m_{B^{*0}}=401.2^{+2.4}_{-2.7}~{\rm MeV}$ Full width $\Gamma=31\pm6~{\rm MeV}~({\rm S}=1.1)$

B ₁ (5721) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^{*0}\pi^{+}$	seen	363

$B_1(5721)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^0$$
 MASS $= 5726.0 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV (S $= 1.2$) Full width $\Gamma = 27.5 \pm 3.4$ MeV (S $= 1.1$)

$B_1(5721)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$B^{*+}\pi^{-}$$

dominant

363

$B_2^*(5747)^+$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

Mass
$$m=5737.2\pm0.7~{\rm MeV}$$
 $m_{B_2^{*+}}-m_{B^0}=457.5\pm0.7~{\rm MeV}$ Full width $\Gamma=20\pm5~{\rm MeV}~({\rm S}=2.2)$

B *(5747) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	seen	418
$B^{st 0} \pi^+$	seen	374

$B_2^*(5747)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^0$$
 MASS $= 5739.5 \pm 0.7$ MeV (S $= 1.4$) $m_{B_2^{*0}} - m_{B_1^0} = 13.5 \pm 1.4$ MeV (S $= 1.3$) $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV (S $= 1.4$) Full width $\Gamma = 24.2 \pm 1.7$ MeV

B [*] ₂ (5747) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	dominant	421
$B^{*+}\pi^-$	dominant	377

$$B_J(5970)^+$$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass $m = 5964 \pm 5 \text{ MeV}$ $m_{B_J(5970)^+} - m_{B^0} = 685 \pm 5 \text{ MeV}$ Full width $\Gamma = 62 \pm 20 \text{ MeV}$

B _J (5970) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	possibly seen	632
$B^{*0}\pi^+$	seen	591

$B_{J}(5970)^{0}$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5971\pm5$$
 MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm5$ MeV Full width $\Gamma=81\pm12$ MeV

B_J (5970) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	possibly seen	638
$B^{*+}\pi^-$	seen	597

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

$$I(J^P) = 0(0^-)$$

Created: 6/5/2018 18:58

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.89\pm0.19~{
m MeV}$$
 $m_{B_s^0}-m_B=87.42\pm0.19~{
m MeV}$ Mean life $\tau=(1.509\pm0.004)\times10^{-12}~{
m s}$ $c au=452.4~{
m \mu m}$ $\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.088\pm0.006)\times10^{12}~{
m s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.757 \pm 0.021) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (1.1688 \pm 0.0014) \times 10^{-8} \ \text{MeV}$$
 $x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.72 \pm 0.09$
 $\chi_s = 0.499304 \pm 0.000005$

CP violation parameters in B_s^0

Re(
$$\epsilon_{B_s^0}$$
) / (1 + | $\epsilon_{B_s^0}$ |²) = (-0.15 ± 0.70) × 10⁻³
 $C_{KK}(B_s^0 \to K^+K^-)$ = 0.14 ± 0.11

 $S_{KK}(B_s^0 \to K^+K^-)$ = 0.30 ± 0.13

 $r_B(B_s^0 \to D_s^\mp K^\pm)$ = 0.53 ± 0.17

 $\delta_B(B_s^0 \to D_s^\pm K^\mp)$ = (3 ± 20)°

 CP Violation phase β_s = (1.1 ± 1.6) × 10⁻² rad

| λ | ($B_s^0 \to J/\psi(1S)\phi$) = 0.964 ± 0.020

| λ | = 1.001 ± 0.017

A, CP violation parameter = 0.5 $_{-0.7}^{+0.8}$
C, CP violation parameter = -0.1 ± 0.4

 $A_{CP}(B_s \to J/\psi \overline{K}^*(892)^0)$ = -0.05 ± 0.06

 $A_{CP}^{\parallel}(B_s \to J/\psi \overline{K}^*(892)^0)$ = 0.17 ± 0.15

 $A_{CP}^{\perp}(B_s \to J/\psi \overline{K}^*(892)^0)$ = -0.05 ± 0.10

 $A_{CP}(B_s^0 \to \pi^+K^-)$ = 0.26 ± 0.04

 $A_{CP}(B_s^0 \to \pi^+K^-)_D K^*(892)^0$ = -0.04 ± 0.07

 $A_{CP}(B_s^0 \to [\pi^+K^-]_D K^*(892)^0)$ = -0.01 ± 0.04

 $A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0)$ = 0.06 ± 0.13

 $A^{\Delta}(B_s \to \phi\gamma)$ = -1.0 ± 0.5

 $\Delta_{a_{\perp}}$ < 1.2 × 10⁻¹² GeV, CL = 95%

 $\Delta_{a_{\parallel}}$ = (-0.9 ± 1.5) × 10⁻¹⁴ GeV

 $\Delta_{a_{Y}}$ = (-3.8 ± 2.2) × 10⁻¹⁴ GeV

 $Re(\xi)$ = -0.022 ± 0.033

 $Im(\xi)$ = 0.004 ± 0.011

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell)$ anything) is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell)$ anything) was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on " $B^0-\overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Fraction (Γ_i/Γ)	·	
	(93 ±25) %		
	(9.6 \pm 0.8) %		_
	(9.1 \pm 0.8) %		_
	,		_
[qqaa]			_
	,	_	_
	(2.6 ± 0.7)×	10 ⁻³	_
	(4.4 \pm 1.3) \times	10 ⁻³	_
			_
	` ,	_	2320
	,		2249
			2301
	(2.5 \pm 0.8) \times	10 ⁻⁵	_
	($2.27\pm~0.19$) $ imes$	10^{-4}	2293
	(3.2 \pm 0.6) \times	10^{-4}	2249
	(4.4 \pm 0.5) \times	10^{-3}	1824
	(2.8 \pm 0.5) \times	10^{-4}	1875
			1925
			1930
			2265
			_
			2191
			1742
	$(1.44\pm\ 0.20)\ \%$	S=1.1	1655
	` ,		_
			2278
			2330
			2312
		_	2264 2114
	` ,		2114
			2113
		$(93 \pm 25)\%$ $(96 \pm 0.8)\%$ $(9.1 \pm 0.8)\%$ $(10.2 \pm 1.0)\%$ $(10.2 \pm 1.1)\%$ $(5.4 \pm 1.1)\%$ $(2.6 \pm 0.7) \times$ $(4.4 \pm 1.3) \times$ $(2.7 \pm 1.0) \times$ $(6.9 \pm 1.4) \times$ $(6.1 \pm 1.0) \times$ $(2.5 \pm 0.8) \times$ $(2.27 \pm 0.19) \times$ $(3.2 \pm 0.6) \times$ $(4.4 \pm 0.5) \times$ $(2.2 \pm 0.6) \times$ $(2.2 \pm 0.6) \times$ $(2.2 \pm 0.6) \times$ $(2.2 \pm 0.6) \times$ $(1.9 \pm 0.5) \times$ $(2.0 \pm 0.5) \times$ $(2.0 \pm 0.5) \times$ $(1.33 \pm 0.35) \times$ $(9.6 \pm 2.1) \times$ $(1.38 \pm 0.16)\%$ $(1.44 \pm 0.20)\%$ $(4.5 \pm 1.4)\%$ $(2.8 \pm 1.1) \times$ $(4.3 \pm 0.9) \times$ $(1.04 \pm 0.13) \times$ $(4.4 \pm 0.6) \times$ $(3.9 \pm 3.5) \times$ $(3.9 \pm 3.5) \times$	Fraction (Γ_i/Γ) (93 ±25)% (9.6 ± 0.8)% (9.1 ± 0.8)% (10.2 ± 1.0)% [qqaa] (8.1 ± 1.3)% (5.4 ± 1.1)% (2.6 ± 0.7) × 10 ⁻³ (4.4 ± 1.3) × 10 ⁻³ (3.00± 0.23) × 10 ⁻³ (6.9 ± 1.4) × 10 ⁻³ (6.1 ± 1.0) × 10 ⁻³ (6.1 ± 1.0) × 10 ⁻³ (2.5 ± 0.8) × 10 ⁻⁵ (2.27± 0.19) × 10 ⁻⁴ (3.2 ± 0.6) × 10 ⁻⁴ (4.4 ± 0.5) × 10 ⁻³ (2.8 ± 0.5) × 10 ⁻⁴ (1.9 ± 0.5) × 10 ⁻³ (1.33± 0.35) × 10 ⁻⁴ (9.6 ± 2.1) × 10 ⁻³ (1.38± 0.16)% (1.44± 0.20)% S=1.1 (4.5 ± 1.4)% (2.8 ± 1.1) × 10 ⁻⁴ (4.3 ± 0.9) × 10 ⁻⁴ (1.04± 0.13) × 10 ⁻³ (4.4 ± 0.6) × 10 ⁻⁴ (3.9 ± 3.5) × 10 ⁻⁴ (3.9 ± 3.5) × 10 ⁻⁴ (3.0 ± 0.7) × 10 ⁻⁴ (1.1 ± 0.4) × 10 ⁻⁴

Page 119

Created: 6/5/2018 18:58

HTTP://PDG.LBL.GOV

$\overline{D}{}^{0}\overline{K}^{*}(1680)$	< 7.8	$\times10^{-5}$	CL=90%	1997
$\overline{D}^0 \overline{K}_0^* (1950)$	< 1.1	$\times10^{-4}$	CL=90%	1890
$\overline{D}{}^{0}\overline{K}_{3}^{*}(1780)$	< 2.6	$\times10^{-5}$	CL=90%	1971
$\overline{D}^0 \overline{K}_4^{\circ}(2045)$	< 3.1	$\times10^{-5}$	CL=90%	1837
$\overline{D}{}^0$ $\overset{\cdot}{K^-}$ π^+ (non-resonant)	(2.1 ± 0.8			2312
$D_{s2}^*(2573)^-\pi^+, D_{s2}^* \to \overline{D}^0K^-$	(2.6 ± 0.4			_
$D_{s1}^*(2700)^-\pi^+, \ D_{s1}^* \to \overline{D}{}^0K^-$	(1.6 ± 0.8	$)\times10^{-5}$		_
$D_{s1}^*(2860)^-\pi^+, \ D_{s1}^* \to \overline{D}^0K^-$	(5 \pm 4	$) \times 10^{-5}$		_
$D_{s3}^*(2860)^-\pi^+, \ D_{s3}^* \to \overline{D}{}^0 K^-$	(2.2 ± 0.6	$)\times10^{-5}$		_
$\overline{D}^0 K^+ K^-$	(4.4 ± 2.0	$) \times 10^{-5}$		2243
$\overline{D}^0 f_0(980)$	< 3.1		CL=90%	2242
$\overline{D}{}^0 \phi$	(3.0 ± 0.8			2235
$D^{*\mp}\pi^{\pm}$	< 6.1		CL=90%	_
$\eta_c \phi$	(5.0 ± 0.9	$) \times 10^{-4}$		1663
$\eta_c \pi^+ \pi^-$	(1.8 ± 0.7	· _		1840
$J/\psi(1S)\phi$	(1.08 ± 0.0)	8) \times 10 ⁻³		1588
$J/\psi(1S)\phi\phi$	$(1.24 + 0.1 \\ - 0.1$	$\binom{7}{9}$) × 10 ⁻⁵		764
$J/\psi(1S)\pi^0$	< 1.2	$\times 10^{-3}$	CL=90%	1787
$J/\psi(1S)\eta$	(4.0 ± 0.7	$) \times 10^{-4}$	S=1.4	1733
$J/\psi(1S)K_S^0$	($1.88\pm~0.1$	$5) \times 10^{-5}$		1743
$J/\psi(1S)\overline{K}^*(892)^0$	(4.1 ± 0.4	$) \times 10^{-5}$		1637
$J/\psi(1S)\eta'$	(3.3 ± 0.4	•		1612
$J/\psi(1S)\pi^+\pi^-$	($2.09\pm~0.2$		S=1.3	1775
$J/\psi(1S) f_0(500), f_0 \rightarrow \pi^+\pi^-$	< 4	× 10 ⁻⁶	CL=90%	_
$J/\psi(1S)\rho$, $\rho \to \pi^+\pi^-$	< 4	$\times10^{-6}$	CL=90%	_
$J/\psi(1S)f_0(980),~f_0 ightarrow$	(1.28± 0.1	8) \times 10 ⁻⁴	S=1.7	_
$J/\psi(1S)f_2(1270), \ \ f_2 ightarrow$	(1.1 ± 0.4	$) \times 10^{-6}$		_
$J/\psi(1S)f_2(1270)_0, \ f_2 ightarrow \pi^+\pi^-$	(7.5 ± 1.8	$) \times 10^{-7}$		_
$J/\psi(1S) f_2(1270)_{\parallel}$, $f_2 ightarrow$	(1.09± 0.3	4) \times 10 ⁻⁶		_
$J/\psi(1S)f_2(1270)_{\perp},\;\;f_2 ightarrow \pi^+\pi^-$	(1.3 ± 0.8	$) \times 10^{-6}$		-
$J/\psi(1S) f_0(1370), f_0 \rightarrow \pi^+\pi^-$	$(4.5 \begin{array}{c} + 0.7 \\ - 4.0 \end{array})$) × 10 ⁻⁵		_
$J/\psi(1S) f_0(1500), f_0 \rightarrow \pi^+\pi^-$	$(2.11^{+}_{-}0.4_{-}$	$\binom{0}{9}$) × 10 ⁻⁵		_

$J/\psi(1S)f_2'(1525)_0, f_2' \to$	$(1.07\pm~0.24)\times10^{-6}$		_
$\pi^+\pi^ J/\psi(1S)f_2'(1525)_{\parallel},\;\;f_2' ightarrow$	$(1.3 + 2.7 \atop -0.9) \times 10^{-7}$		_
$\pi^+\pi^-$	0.0		
$J/\psi(1S)f_2'(1525)_{\perp}, \ f_2' \to \pi^+\pi^-$	$(5 \pm 4) \times 10^{-7}$		_
$J/\psi(1S) f_0(1790), f_0 \to$	$(5.0 \begin{array}{c} +11.0 \\ -1.1 \end{array}) \times 10^{-6}$		_
$\pi^{+}\pi^{-}$	- 1.1 / 12		
$J/\psi(1S)\pi^+\pi^-$ (nonresonant)	(1.8 $^+$ $^-$ 1.1) $ imes$ 10 $^-$ 5		1775
$J/\psi(1S)\overline{K}{}^0\pi^+\pi^-$	$< 4.4 \times 10^{-5}$	CL=90%	1675
$J/\psi(1S)K^+K^-$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$J/\psi(1S)K^{0}K^{-}\pi^{+}+\text{c.c.}$	$(9.3 \pm 1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}^0K^+K^-$	$< 1.2 \times 10^{-5}$	CL=90%	1333
$J/\psi(1S) f_2'(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1304
$J/\psi(1S) p\overline{p}$	$< 4.8 \times 10^{-6}$	CL=90%	982
$J/\psi(1S)\gamma$	$< 7.3 \times 10^{-6}$	CL=90%	1790
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(7.8 \pm 1.0) \times 10^{-5}$		1731
$J/\psi(1S) f_1(1285)$	$(7.0 \pm 1.4) \times 10^{-5}$		1460
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\eta'$	$(1.29\pm 0.35) \times 10^{-4}$		1158
$\psi(2S)\pi^+\pi^-$	$(7.1 \pm 1.3) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.4 \pm 0.6) \times 10^{-4}$		1120
$\psi(2S)K^{-}\pi^{+}$	$(3.12\pm 0.30) \times 10^{-5}$		1310
$\psi(2S)\overline{K}^{*}(892)^{0}$	$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\chi_{c1}\phi$	$(2.04 \pm 0.30) \times 10^{-4}$		1274
$\pi^{+}\pi^{-}$ $\pi^{0}\pi^{0}$	$(7.0 \pm 0.8) \times 10^{-7}$ $< 2.1 \times 10^{-4}$	CI 000/	2680
$\eta \pi^0$	< 2.1		2680
	< 1.0		2654 2627
$\eta \eta_{ ho^0 ho^0}$	$< 3.20 \times 10^{-4}$		2569
$\eta' \eta'$	$(3.3 \pm 0.7) \times 10^{-5}$	CL-3070	2507
$\eta' \phi$	$< 8.2 \times 10^{-7}$	CL=90%	2495
$\phi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$	$(1.12\pm\ 0.21)\times10^{-6}$		_
$\phi f_2(1270), \ f_2(1270) \rightarrow$	$(6.1 + 1.8 \times 10^{-7}) \times 10^{-7}$		_
ϕho^0 $\pi^+ \pi^-$	(0.7 + 0.0) 10-7		0506
$\phi ho^{\circ} \ \phi \pi^{+} \pi^{-}$	$(2.7 \pm 0.8) \times 10^{-7}$		2526
$\phi \phi$	$(3.5 \pm 0.5) \times 10^{-6}$ $(1.87 \pm 0.15) \times 10^{-5}$		2579 2482
$\phi \phi \phi$	$(2.2 \pm 0.7) \times 10^{-6}$		2165
$\pi^+ K^-$	$(5.7 \pm 0.6) \times 10^{-6}$		2659
K ⁺ K ⁻	$(2.59\pm 0.17) \times 10^{-5}$		2638
$K^0 \overline{K}^0$	$(2.0 \pm 0.6) \times 10^{-5}$		2637
$K^0\pi^+\pi^-$	$(9.4 \pm 2.1) \times 10^{-6}$		2653
	` '		

$K^0K^\pm\pi^\mp$	(8.4 ±	$0.9) \times 10^{-5}$		2622
$K^*(892)^-\pi^+$	(3.3 ±	$1.2) \times 10^{-6}$		2607
$K^*(892)^{\pm} K^{\mp}$	($1.25\pm$	$0.26) \times 10^{-5}$		2585
$K_S^0 \overline{K}^* (892)^0 + \text{c.c.}$	(1.6 \pm	$0.4) \times 10^{-5}$		2585
$K^{\bar{0}}K^+K^-$	(1.3 \pm	$0.6) \times 10^{-6}$		2568
$\overline{K}^*(892)^0 \rho^0$	< 7.67	$\times10^{-4}$	CL=90%	2550
$\overline{K}^*(892)^0 K^*(892)^0$	($1.11\pm$	$0.27) \times 10^{-5}$		2531
$\phi K^* (892)^0$	($1.14\pm$	$0.30) \times 10^{-6}$		2507
$p\overline{p}$	< 1.5	$\times 10^{-8}$	CL=90%	2514
$p\overline{p}K^+K^-$	(4.5 \pm	$0.5) \times 10^{-6}$		2231
$p\overline{p}K^{+}\pi^{-}$	($1.39\pm$	$0.26) \times 10^{-6}$		2355
$ ho \overline{ ho} \pi^+ \pi^-$	`	$2.0) \times 10^{-7}$		2454
$p\overline{\Lambda}K^-$ + c.c.	(5.5 \pm	$1.0) \times 10^{-6}$		2358
$\Lambda_c^- \Lambda \pi^+$	(3.6 \pm	$1.6) \times 10^{-4}$		_
$\Lambda_c^- \Lambda_c^+$	< 8.0	$\times 10^{-5}$	CL=95%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

$$I(J^P) = 0(1^-)$$

Created: 6/5/2018 18:58

 $I,\ J,\ P$ need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m = 5415.4^{+1.8}_{-1.5} \text{ MeV} \quad (S = 2.9)$$
 $m_{B_s^*} - m_{B_s} = 48.5^{+1.8}_{-1.5} \text{ MeV} \quad (S = 2.8)$

B* DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B_s \gamma$	dominant	48

$$B_{s1}(5830)^0$$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.63\pm0.27~{
m MeV}$$
 $m_{B_{s1}^0}-m_{B^{*+}}=503.98\pm0.18~{
m MeV}$ Full width $\Gamma=0.5\pm0.4~{
m MeV}$

B_{s1}(5830)⁰ DECAY MODES

Fraction (Γ_i/Γ)

$$B^{*+} K^{-}$$

dominant

 $B_{s2}^*(5840)^0$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.85\pm0.17$$
 MeV (S = 1.1) $m_{B_{s2}^{*0}}-m_{B^{+}}=560.53\pm0.17$ MeV (S = 1.1) Full width $\Gamma=1.47\pm0.33$ MeV

 $B_{s2}^{*}(5840)^{0}$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 B^+K^-

dominant

252

BOTTOM, CHARMED MESONS $(B=C=\pm 1)$

$$B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$$
 similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

 \vec{J} , \vec{P} need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass
$$m = 6274.9 \pm 0.8 \; \text{MeV}$$

Mean life $\tau = (0.507 \pm 0.009) \times 10^{-12} \; \text{s}$

 B_c^- modes are charge conjugates of the modes below.

 B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$) Fraction (Γ_i/Γ)

Confidence level (MeV/c)

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \to B_c)$.

 $J/\psi(1S)\ell^+\nu_\ell$ anything

$$(5.2 \begin{array}{c} +2.4 \\ -2.1 \end{array}) \times 10^{-5}$$

HTTP://PDG.LBL.GOV

Page 123

1//(16) +				
$J/\psi(1S)\pi^+$	seen			2371
$J/\psi(1S)K^+$	seen			2341
$J/\psi(1S)\pi^+\pi^+\pi^-$	seen			2350
$J/\psi(1S)$ $a_1(1260)$	< 1.2	\times 10 ⁻³	90%	2169
$J/\psi(1S)K^+K^-\pi^+$	seen			2203
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen			2309
$\psi(2S)\pi^+$	seen			2052
$J/\psi(1S)D^0K^+$	seen			1539
$J/\psi(1S)D^*(2007)^0K^+$	seen			1412
$J/\psi(1S) D^*(2010)^+ K^{*0}$	seen			920
$J/\psi(1S)D^{+}K^{*0}$	seen			1122
$J/\psi(1S)D_S^+$	seen			1822
$J/\psi(1S)D_{S}^{*+}$	seen			1728
$J/\psi(1S) p \overline{\overline{p}} \pi^+$	seen			1792
$\chi_c^0\pi^+$	$(2.4 \begin{array}{c} +0.5 \\ -0.5 \end{array})$	$^{9}_{8}) \times 10^{-5}$		2205
$ ho \overline{ ho} \pi^+$	not seen			2970
$D^*(2010)^+ \overline{D}{}^0$	< 6.2	$\times 10^{-3}$	90%	2467
$D^{+} K^{*0}$	< 0.20	\times 10 ⁻⁶	90%	2783
$D^+\overline{K}^{*0}$	< 0.16	\times 10 ⁻⁶	90%	2783
$D_{s}^{+}K^{*0}$	< 0.28	\times 10 ⁻⁶	90%	2751
$D_s^+ \overline{K}^{*0}$	< 0.4	\times 10 ⁻⁶	90%	2751
$D_{s}^{+} K^{*0}$ $D_{s}^{+} \overline{K}^{*0}$ $D_{s}^{+} \phi$	< 0.32	\times 10 ⁻⁶	90%	2727
K^+K^0	< 4.6	$\times 10^{-7}$	90%	3098
$B_s^0\pi^+/\ B(\overline{b} o \ B_s)$	$(2.37^{+0.}_{-0.})$	$^{37}_{35}) \times 10^{-3}$		_

cc MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_c(15)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 2983.9 \pm 0.5 \text{ MeV}$ (S = 1.3) Full width $\Gamma=32.0\pm0.8~\text{MeV}$

 $\eta_{\it c}(1{\it S})$ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Decays involving hadronic resonances

2002,0		
$\eta'(958)\pi\pi$	(4.1 ± 1.7) %	1323
ho ho	($1.8~\pm0.5$) %	1275
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(2.0 \pm 0.7)\%$	1278

HTTP://PDG.LBL.GOV

Page 124

$K^*(892)\overline{K}^*(892)$	(71 + 1	$3) \times 10^{-3}$		1196
$K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^-$	(1.1 ± 0.1)	*		1073
$\phi K^+ K^-$	•	4)×10 ⁻³		1104
$\phi \phi$	`	$(20) \times 10^{-3}$		1089
$\phi^{2}(\pi^{+}\pi^{-})$	< 4	× 10 ⁻³	90%	1251
$a_0(980)\pi$	< 2	%	90%	1327
$a_2(1320)\pi$	< 2	%	90%	1196
$K^*(892) \overline{K} + \text{c.c.}$	< 1.28	%	90%	1310
$f_2(1270)\eta$	< 1.1	%	90%	1145
$\omega\omega$	< 3.1	$\times 10^{-3}$	90%	1270
$\omega \phi$	< 2.5	$\times 10^{-4}$	90%	1185
$f_2(1270) f_2(1270)$	$(9.8 \pm 2.$	$5) \times 10^{-3}$		774
$f_2(1270) f_2'(1525)$	(9.8 \pm 3.	$2) \times 10^{-3}$		513
$f_0(980)\eta$	seen			1264
$f_0(1500)\eta$	seen			1026
$f_0(2200)\eta$	seen			497
$a_0(980)\pi$	seen			1327
$a_0(1320)\pi$	seen			_
$a_0(1450)\pi$	seen			1123
$a_0(1950)\pi$	seen			860
$a_2(1950)\pi_{_}$	not seen			_
$K_0^*(1430)\overline{K}$	seen			_
$K_2^*(1430)\overline{K}$	seen			_
$K_0^*(1950)\overline{K}$	seen			-

Decays into stable hadrons

Decays into stable liadions		
(7.3 ± 0.5) %		1381
(1.36 ± 0.16) %		1265
($1.7~\pm0.5$) %		1428
(4.4 ± 1.3) %		1386
$(6.9 \pm 1.1) \times 10^{-3}$		1345
($3.5~\pm0.6$) %		1304
(5.6 ± 1.5) %		_
$(7.5 \pm 2.4) \times 10^{-3}$		1254
$(1.47\pm0.31)\times10^{-3}$		1055
$< 5 \times 10^{-4}$	90%	1476
(4.7 ± 1.0) %		1460
$(9.7 \pm 1.2) \times 10^{-3}$		1459
(17.4 ± 3.3) %		1409
(1.8 ± 0.4) %		1407
$(1.52\pm0.16)\times10^{-3}$		1160
$(3.6 \pm 1.3) \times 10^{-3}$		1101
$(1.09\pm0.24)\times10^{-3}$		991
	$(7.3 \pm 0.5)\%$ $(1.36\pm 0.16)\%$ $(1.7 \pm 0.5)\%$ $(4.4 \pm 1.3)\%$ $(6.9 \pm 1.1) \times 10^{-3}$ $(3.5 \pm 0.6)\%$ $(5.6 \pm 1.5)\%$ $(7.5 \pm 2.4) \times 10^{-3}$ $(1.47\pm 0.31) \times 10^{-3}$ $(4.7 \pm 1.0)\%$ $(9.7 \pm 1.2) \times 10^{-3}$ $(17.4 \pm 3.3)\%$ $(1.8 \pm 0.4)\%$ $(1.52\pm 0.16) \times 10^{-3}$ $(3.6 \pm 1.3) \times 10^{-3}$	$(7.3 \pm 0.5)\%$ $(1.36\pm 0.16)\%$ $(1.7 \pm 0.5)\%$ $(4.4 \pm 1.3)\%$ $(6.9 \pm 1.1) \times 10^{-3}$ $(3.5 \pm 0.6)\%$ $(5.6 \pm 1.5)\%$ $(7.5 \pm 2.4) \times 10^{-3}$ $(1.47\pm 0.31) \times 10^{-3}$ $<5 \times 10^{-4}$ 90% $(4.7 \pm 1.0)\%$ $(9.7 \pm 1.2) \times 10^{-3}$ $(17.4 \pm 3.3)\%$ $(1.8 \pm 0.4)\%$ $(1.52\pm 0.16) \times 10^{-3}$ $(3.6 \pm 1.3) \times 10^{-3}$

$\Sigma + \overline{\Sigma} -$	$(2.1 \pm 0.6) \times 10^{-3}$	901
<u>=-</u> =+	$(9.0 \pm 2.6) \times 10^{-4}$	692
$\pi^+\pi^-\rho\overline{\rho}$	$(5.3 \pm 1.8) \times 10^{-3}$	1027
	5	

Radiative decays

 $\gamma \gamma$ (1.57±0.12) × 10⁻⁴ 1492

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP < 1.1	\times 10 ⁻⁴	90%	1485
$\pi^0\pi^0$	P,CP < 4	\times 10 ⁻⁵	90%	1486
K^+K^-	P,CP < 6	\times 10 ⁻⁴	90%	1408
$K_S^0 K_S^0$	P,CP < 3.1	$\times 10^{-4}$	90%	1406

J/ψ (15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.9\pm2.8$ keV (S = 1.1) $\Gamma_{e\,e}=5.55\pm0.14\pm0.02$ keV

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level(MeV/ c)
hadrons	(87.7 ± 0.5)	% –
$virtual \gamma \to \ hadrons$	(13.50 ± 0.30)	%
ggg	(64.1 ± 1.0)	% –
$\gamma g g$	(8.8 ± 1.1)	% –
e^+e^-	$(5.971\pm\ 0.032)$	% 1548
$e^+e^-\gamma$	[$rraa$] ($8.8~\pm~1.4~$)	$\times 10^{-3}$ 1548
$\mu^+\mu^-$	$(5.961\pm\ 0.033)$	% 1545

Decays involving hadronic resonances

$ ho\pi$	(1.69	\pm 0.15) %	S=2.4	1448
$ ho^{0}\pi^{0}$	(5.6	± 0.7	$) \times 10^{-3}$		1448
$ ho(770)^{\mp} K^{\pm} K_S^0$	(1.9	\pm 0.4	$) \times 10^{-3}$		_
$\rho(1450)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(2.3	± 0.7	$) \times 10^{-3}$		_
$ ho$ (1450) $^{\pm}\pi^{\mp} ightarrow ext{ } extit{K}_{S}^{0} ext{ } extit{K}^{\pm}\pi^{\mp}$	(3.5	\pm 0.6	$) \times 10^{-4}$		_
$ ho(1450)^0 \pi^0 \to K^+ K^- \pi^0$	(2.0	\pm 0.5	$) \times 10^{-4}$		_
$ ho$ (1450) η' (958) $ ightarrow$	(3.3	\pm 0.7	$) \times 10^{-6}$		_
$\pi^{+}\pi^{-}\eta'(958)$					
$\rho(1700)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(1.7	\pm 1.1	$) \times 10^{-4}$		_
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$	(8	± 40	$) \times 10^{-6}$		_
$a_2(1320) \rho$	(1.09	\pm 0.22) %		1123
$\omega \pi^+ \pi^+ \pi^- \pi^-$	(8.5	\pm 3.4	$) \times 10^{-3}$		1392
$\omega \pi^+ \pi^- \pi^0$	(4.0	\pm 0.7	$) \times 10^{-3}$		1418
$\omega \pi^+ \pi^-$	(8.6	\pm 0.7	$) \times 10^{-3}$	S=1.1	1435

HTTP://PDG.LBL.GOV

Page 126

$\omega f_2(1270) \ K^*(892)^0 \overline{K}^*(892)^0$		•			$) \times 10^{-3}$	1142
$K^*(892)^{\pm}K^*(892)^{\mp}$					$) \times 10^{-4}$ $) \times 10^{-3}$	1266 1266
						1200
$K^*(892)^{\pm} K^*(700)^{\mp}$					$) \times 10^{-3}$	_
$K_S^0 \pi^- K^*(892)^+ + \text{c.c.}$					$) \times 10^{-3}$	1342
$K_{S}^{0}\pi^{-}K^{*}(892)^{+}+ ext{c.c.} ightarrow K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$		(6.7	土	2.2) × 10 ⁻⁴	_
$\eta K^*(892)^0 \overline{K}^*(892)^0$		(1.15	+	0.26	$) \times 10^{-3}$	1003
$K^*(1410)\overline{K} + c.c \rightarrow$					$) \times 10^{-5}$	_
$\kappa^{\pm}\kappa^{\mp}\pi^{0}$						
$K^*(1410)\overline{K}+ ext{c.c.} ightarrow \ K^0_SK^\pm\pi^\mp$		8)	±	6) × 10 ⁻⁵	_
$K_2^*(1430)\overline{K} + \text{c.c.} \rightarrow$		(7.5	\pm	3.5	$) \times 10^{-5}$	_
$^{-}$ \mathcal{K}^{\pm} \mathcal{K}^{\mp} π^{0}						
$K_2^*(1430)\overline{K} + \text{c.c.} \rightarrow$		(4.0	\pm	1.0	$) \times 10^{-4}$	_
$K^0_{S_c}K^{\pm}\pi^{\mp}$						
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$		(4.66	±	0.31	$) \times 10^{-3}$	1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.}$		(3.4	\pm	2.9	$) \times 10^{-3}$	1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.} \rightarrow$		(4	\pm	4	$) \times 10^{-4}$	_
$K^*(892)^{ar{+}}K^0_S\pi^- + { m c.c.}$						
$K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow$		(6.9	\pm	0.9	$) \times 10^{-4}$	_
$K^*(892)^0K^-\pi^++$ c.c.						
$\omega \underline{K}^*(892)\overline{K} + \text{c.c.}$					$) \times 10^{-3}$	1097
$\overline{K}K^*(892) + c.c. \rightarrow$		(5.1	\pm	0.5	$) \times 10^{-3}$	_
$\mathcal{K}^0_\mathcal{S}\mathcal{K}^\pm\pi^\mp$						
$K^+K^*(892)^- + \text{c.c.}$		•			$) \times 10^{-3}$	1373
$K^+K^*(892)^- + \text{c.c.} \rightarrow$		(1.97	±	0.20	$) \times 10^{-3}$	_
${\displaystyle \mathop{ K^{+}}_{\displaystyle K^{-}}}^{K^{+}} {\displaystyle \mathop{ K^{-}}_{\displaystyle M^{0}}}^{0} + c.c. ightarrow$		(3.0	+	0.4) × 10 ⁻³	_
$K^0K^\pm\pi^\mp\!+c.c.$		`			,	
$K^0 \overline{K}^* (892)^0 + \text{c.c.}$		(4.39	\pm	0.31	$) \times 10^{-3}$	1373
$K^0\overline{K}^*$ (892) $^0+$ c.c. $ ightarrow$		(3.2	\pm	0.4	$) \times 10^{-3}$	_
$K^{0}K^{\pm}\pi^{\mp} + \text{c.c.}$. 2	
$K_1(1400)^{\pm}K^{\mp}$			±	1.4	$) \times 10^{-3}$	1170
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$		seen			\ 10-3	1343
$K^*(892)^{\pm} K^{\mp} \pi^0$ $K^*(892)^0 K_5^0 \pi^0$					$) \times 10^{-3}$	1344
$\omega \pi^0 \pi^0$					$) \times 10^{-4}$	1343
b_1 (1235) $^\pm\pi^\mp$	[<i>hh</i>]	(3.4	土	0.8 0 E	$) \times 10^{-3}$ $) \times 10^{-3}$	1436 1300
$\omega K^{\pm} K_S^0 \pi^{\mp}$	[////] [<i>hh</i>]	(3.0	±	0.5 0.5	$) \times 10^{-3}$	1210
$b_1(1235)^0\pi^0$	[1111]				$) \times 10^{-3}$	1300
$\eta K^{\pm} K_{S}^{0} \pi^{\mp}$	[<i>hh</i>]	(2.3	+	0.0	$) \times 10^{-3}$	1278
7.5	[,,,,]	(2.2	_	0.7	, ^ 10	1210

<u></u>							
$\phi K^*(892)\overline{K} + \text{c.c.}$		(2.18	\pm	0.23	$) \times 10^{-3}$		969
$\omega K \overline{K}$		(1.70	\pm	0.32	$) \times 10^{-3}$		1268
$\omega f_0(1710) \rightarrow \omega K \overline{K}$		(4.8	\pm	1.1	$) \times 10^{-4}$		878
$\phi 2(\pi^{+}\pi^{-})$					$) \times 10^{-3}$		1318
$\Delta(1232)^{++}\overline{p}\pi^{-}$					$) \times 10^{-3}$		1030
$\omega\eta$) × 10 ⁻³	S=1.6	1394
$\phi K \overline{K}$					$) \times 10^{-3}$	S=1.3	1179
$\phi K_S^0 K_S^0$		(5.9			$) \times 10^{-4}$	0 1.0	1176
$\phi f_0(1710) \rightarrow \phi K \overline{K}$		•			$) \times 10^{-4}$		875
$\phi K^{+}K^{-}$					$) \times 10$ $) \times 10^{-4}$		1179
$\phi f_2(1270)$							
					$) \times 10^{-4}$		1036
$\Delta(1232)^{++} \overline{\Delta}(1232)^{}$	F 1				$) \times 10^{-3}$		938
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+} \text{ (or c.c.)}$	[<i>hh</i>]				$) \times 10^{-3}$		697
$\Sigma(1385)^0 \overline{\Sigma}(1385)^0$					$) \times 10^{-3}$		697
$K^+K^-f_2'(1525)$					$) \times 10^{-3}$		892
$\phi f_2'(1525)$		8)			$) \times 10^{-4}$	S=2.7	871
$\phi \pi^+ \pi^-$					$) \times 10^{-4}$	S=1.4	1365
$\phi \pi^0 \pi^0$		(5.0	\pm	1.0	$) \times 10^{-4}$		1366
$\phi K^{\pm} K^0_S \pi^{\mp}$	[hh]	(7.2	\pm	8.0	$) \times 10^{-4}$		1114
$\omega f_1(1420)$		(6.8	\pm	2.4	$) \times 10^{-4}$		1062
$\phi\eta$		(7.5	\pm	8.0	$) \times 10^{-4}$	S=1.5	1320
<u>=0</u> <u>=0</u>		(1.17	\pm		$) \times 10^{-3}$		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$					$) \times 10^{-4}$		600
$p \dot{K}^{-} \overline{\Sigma} (1385)^{0}$					$) \times 10^{-4}$		646
$\omega \pi^0$					$) \times 10^{-4}$	S=1.4	1446
$\omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0$		(1.7) × 10 ⁻⁵		_
$\phi \eta'(958)$		`			$) \times 10^{-4}$	S=2.2	1192
$\phi f_0(980)$) × 10 ⁻⁴	S=1.9	1178
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$) × 10 ⁻⁴		_
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$		(1.8			$) \times 10^{-4}$		_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^-$		•			$) \times 10^{-6}$		_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 p^0 \pi^0$					$) \times 10^{-6}$		1045
$\eta \phi f_0(980) \rightarrow \eta \phi \pi^+ \pi^-$					$) \times 10^{-4}$		1045
$\phi a_0(980)^0 \rightarrow \phi \eta \pi^0$							
$\Xi(1530)^0 \overline{\Xi}^0$					$) \times 10^{-6}$		-
	F 1				$) \times 10^{-4}$		608
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	[<i>hh</i>]				$) \times 10^{-4}$		855
$\phi f_1(1285)$					$) \times 10^{-4}$		1032
$\phi f_1(1285) \rightarrow$		(9.4	土	2.8	$) \times 10^{-7}$		952
$\phi\pi^0$ $f_0(980) \rightarrow$							
$\phi \pi^0 \pi^+ \pi^-$					7		
$\phi f_1(1285) \rightarrow 0.6 (000)$		(2.1	±	2.2	$) \times 10^{-7}$		955
$\phi \pi^0 f_0(980) \to 0$							
$\phi_{\pi}^{0} \sigma_{\pi}^{0} \pi^{0}$		(\ 40-1		4 - 0 =
$\eta \pi^+ \pi^-$		(4.0	\pm	1.7	$) \times 10^{-4}$		1487

	4	
$\eta \rho$	$(1.93 \pm 0.23) \times 10^{-4}$	1396
$\omega \eta'(958)$	$(1.89 \pm 0.18) \times 10^{-4}$	1279
$\omega f_0(980)$	$(1.4 \pm 0.5) \times 10^{-4}$	1267
$ ho\eta'(958)$	$(8.1 \pm 0.8) \times 10^{-5}$	S=1.6 1281
$a_2(1320)^{\pm}\pi^{\mp}$	$[hh] < 4.3 \times 10^{-3}$	CL=90% 1263
$K\overline{K}_{2}^{*}(1430)+ \text{ c.c.}$	$< 4.0 \times 10^{-3}$	CL=90% 1159
$K_1(\bar{1}270)^{\pm}K^{\mp}$	$< 3.0 \times 10^{-3}$	CL=90% 1231
$K_5^{0}\pi^-K_2^*(1430)^+$ + c.c.	$(3.6 \pm 1.8) \times 10^{-3}$	1117
$K_5^{0}\pi^{-}K_2^{2}(1430)^{+}+\text{c.c.} \rightarrow$	$(4.5 \pm 2.2) \times 10^{-4}$	_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$, , , , ,	
	$< 2.9 \times 10^{-3}$	CL 000/ C04
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$		CL=90% 604
$\phi \pi^0$	3×10^{-6} or 1×10^{-7}	1377
$\phi \eta (1405) \rightarrow \phi \eta \pi^+ \pi^-$	$(2.0 \pm 1.0) \times 10^{-5}$	946
$\omega f_2'(1525)$	$< 2.2 \times 10^{-4}$	CL=90% 1003
$\omega X(1835) \rightarrow \omega p \overline{p}$	$< 3.9 \times 10^{-6}$	CL=95% -
$\phi X(1835) \rightarrow \phi p \overline{p}$	$< 2.1 \times 10^{-7}$	CL=90% -
$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$	$< 2.8 \times 10^{-4}$	CL=90% 578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$	$< 6.13 \times 10^{-5}$	CL=90% -
$\eta \phi$ (2170) $ ightarrow \eta \phi \mathit{f}_{0}$ (980) $ ightarrow$	$(1.2 \pm 0.4) \times 10^{-4}$	628
$\eta\phi\pi^+\pi^-$		
$\eta\phi(2170) ightarrow$	$< 2.52 \times 10^{-4}$	CL=90% -
$\eta K^*(892)^0 \overline{K}^*(892)^0$		
$\Sigma(1385)^0\overline{\varLambda}+ ext{c.c.}$	$< 8.2 \times 10^{-6}$	CL=90% 912
$\Delta(1232)^+\overline{p}$	$< 1 \times 10^{-4}$	CL=90% 1100
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$	$< 4.1 \times 10^{-6}$	CL=90% -
$\Theta(1540)\overline{\Theta}(1540) ightarrow$	$< 1.1 \times 10^{-5}$	CL=90% -
$K_S^0 p K^{-} \overline{n} + \text{c.c.}$		
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	$< 2.1 \times 10^{-5}$	CL=90% -
$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^0 \overline{p} K^+ n$	$< 1.6 \times 10^{-5}$	CL=90% -
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	$< 5.6 \times 10^{-5}$	CL=90% -
$\overline{\Theta}(1540)K_{S}^{0}p \rightarrow K_{S}^{0}pK^{-}\overline{n}$	-	CL=90% -
3		
$\Sigma^0 \overline{\Lambda}$	$< 9 \times 10^{-5}$	CL=90% 1032
Decay	ys into stable hadrons	
$2(\pi^{+}\pi^{-})\pi^{0}$	(4.1 ± 0.5) %	S=2.4 1496
$3(\pi^{+}\pi^{-})\pi^{0}$	$(2.9 \pm 0.6)\%$	1433
$3(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$	(2.11 ± 0.07) %	S=1.5 1533
$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$	$(1.79 \pm 0.29)\%$	S=2.2 1368
$4(\pi^{+}\pi^{-})\pi^{0}$	$(9.0 \pm 3.0) \times 10^{-3}$	1345
$\pi^+\pi^-K^+K^-$	$(6.84 \pm 0.32) \times 10^{-3}$	1407
	$(3.8 \pm 0.6) \times 10^{-3}$	1406
$\pi^{+}\pi^{-}K^{0}_{S}K^{0}_{L}$ $\pi^{+}\pi^{-}K^{0}_{S}K^{0}_{S}$		
$+ 0 \kappa \mp \kappa 0$	$(1.68 \pm 0.19) \times 10^{-3}$	1406
$\pi^{\pm}\pi^{0}K^{\mp}K^{0}_{S}$	$(5.7 \pm 0.5) \times 10^{-3}$	1408

$K^{+}K^{-}K^{0}_{S}K^{0}_{S}$		(4.1 ± 0.8) × 10-4		1127
$\pi^+\pi^-K^+K^-\eta$					
$\pi^{0}\pi^{0}K^{+}K^{-}$		(1.84 ± 0.28)			1221
		(2.12 ± 0.23)			1410
$\pi^0\pi^0K_S^0K_L^0$		(1.9 ± 0.4)			1408
$K\overline{K}\pi$		(6.1 ± 1.0			1442
$K^{+}K^{-}\pi^{0}$		(2.14 ± 0.24)			1442
$K_S^0 K^{\pm} \pi^{\mp}$		(5.6 ± 0.5			1440
$K_S^0 K_L^0 \pi^0$		(2.06 ± 0.2)	7) $\times 10^{-3}$		1440
$K^*(892)^0\overline{K}^0+ ext{c.c.} ightarrow$		(1.21 ± 0.13	$3) \times 10^{-3}$		_
$K_{S}^{0}K_{I}^{0}\pi^{0}$					
$K_2^*(1430)^{0}\overline{K}{}^0+{ m c.c.} ightarrow$		(4.3 ± 1.3	$) \times 10^{-4}$		_
$K_{c}^{0}K_{c}^{0}\pi^{0}$		`	,		
$K_S^0 K_L^0 \pi^0$ $K_S^0 K_L^0 \eta$		(1.44 ± 0.34)	4) \times 10 ⁻³		1328
$2(\pi^{+}\pi^{-})$		(3.57 ± 0.30)			1517
$3(\pi^{+}\pi^{-})$		(3.37 ± 0.36)			1466
$2(\pi^{+}\pi^{-}\pi^{0})$		(1.62 ± 0.2)			1468
$2(\pi^{+}\pi^{-})\eta$		(2.29 ± 0.24)	,		
, ,					1446
$3(\pi^+\pi^-)\eta$		(7.2 ± 1.5)			1379
$p\overline{p}$		(2.121± 0.00		C 11	1232
$p\overline{p}\pi^0$		(1.19 ± 0.08)		S=1.1	1176
$p\overline{p}\pi^+\pi^-$		(6.0 ± 0.5)		S=1.3	1107
$\rho \overline{\underline{p}} \pi^+ \pi^- \pi^0$	[ssaa]	(2.3 ± 0.9)		S=1.9	1033
$ p \overline{p} \eta $		(2.00 ± 0.13)		GL 000/	948
p <u>P</u> ρ	•	< 3.1	$\times 10^{-4}$	CL=90%	774
$p\overline{p}\omega$		(9.8 ± 1.0		S=1.3	768
$p\overline{p}\eta'(958)$		(2.1 ± 0.4			596
$p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta$		(6.8 ± 1.8			_
$ ho \overline{ ho} \phi$		(5.19 ± 0.3)			527
n n		(2.09 ± 0.10)			1231
$n\overline{n}\pi^{+}\pi^{-}$		(4 ± 4)			1106
$\Sigma + \overline{\Sigma} -$		(1.50 ± 0.24)			992
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}} 0$		(1.172 ± 0.03)		S=1.4	988
$2(\pi^{+}\pi^{-})K^{+}K^{-}$		(4.7 ± 0.7		S=1.3	1320
$p\overline{n}\pi^-$		(2.12 ± 0.09)	$9) \times 10^{-3}$		1174
n N(1440)		seen			978
n N(1520)		seen			928
n N(1535)		seen			917
<u>=</u> _ = +		(9.7 ± 0.8	$) \times 10^{-4}$	S=1.4	807
$\Lambda \overline{\Lambda}$		(1.89 ± 0.08)		S=2.5	1074
$\Lambda \overline{\Sigma}^- \underline{\pi}^+$ (or c.c.)	[<i>hh</i>]	(8.3 ± 0.7		S=1.2	950
pK [−] Л		(8.9 ± 1.6			876
$2(K^+K^-)$		(7.4 ± 0.7			1131
$pK^{-}\overline{\Sigma}^{0}$		(2.9 ± 0.8			819

K ⁺ K ⁻					$) \times 10^{-4}$		1468		
$K_S^0 K_L^0$	(1.95	\pm	0.11	$) \times 10^{-4}$	S=2.4	1466		
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(4.3	\pm	1.0	$) \times 10^{-3}$		903		
$A\overline{A}\eta$	(1.62	\pm	0.17	$) \times 10^{-4}$		672		
$\Lambda \overline{\Lambda} \pi^0$	(3.8	\pm	0.4	$) \times 10^{-5}$		998		
$\overline{\Lambda}nK_{S}^{0}+$ c.c.	(6.5	\pm	1.1	$) \times 10^{-4}$		872		
$\pi^+\pi^-$	(1.47	\pm	0.14	$) \times 10^{-4}$		1542		
$\Lambda \overline{\Sigma} + \text{c.c.}$					$) \times 10^{-5}$		1034		
$K_S^0 K_S^0$					$\times 10^{-8}$	CL=95%	1466		
	liativ	e dec	• • • • • • • • • • • • • • • • • • •	e					
Radiative decays $3\gamma \hspace{1.5cm} (\hspace{.1cm} 1.16 \hspace{.1cm} \pm \hspace{.1cm} 0.22 \hspace{.1cm}) \times 10^{-5} \hspace{1.5cm} 1548$									
3γ			±	0.22	$\times 10^{-6}$	CL 000/	1548		
4γ	<				\times 10 $^{\circ}$ \times 10 $^{-5}$	CL=90%	1548		
$\frac{5\gamma}{\gamma\pi^0\pi^0}$						CL=90%	1548		
$\gamma \pi^{-} \pi^{0}$					$) \times 10^{-3}$		1543		
$\gamma \eta \pi^0$ $\gamma a_0 (980)^0 \rightarrow \gamma \eta \pi^0$	•		±	0.31	$) \times 10^{-5} \times 10^{-6}$	CL 0E0/	1497		
$\gamma a_0(900)^0 \rightarrow \gamma \eta \pi^0$ $\gamma a_2(1320)^0 \rightarrow \gamma \eta \pi^0$	<					CL=95%	_		
	< ,				$\times 10^{-6}$	CL=95%	-		
$\gamma \eta_c(1S)$,	1.7			•	S=1.5	111		
$\gamma \eta_c(1S) \rightarrow 3\gamma$	(3.8	+	1.3	$) \times 10^{-6}$	S=1.1	_		
$\gamma \pi^+ \pi^- 2\pi^0$	(8.3	\pm	3.1	$) \times 10^{-3}$		1518		
$\gamma \eta \pi \pi$	(6.1	\pm	1.0	$) \times 10^{-3}$		1487		
$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$	($) \times 10^{-4}$		_		
$\gamma \eta (1405/1475) \rightarrow \gamma K \overline{K} \pi$ [6]	p] (2.8	\pm	0.6	$) \times 10^{-3}$	S=1.6	1223		
$\gamma \eta (1405/1475) ightarrow \gamma \gamma ho^0$	(7.8	\pm	2.0	$) \times 10^{-5}$	S=1.8	1223		
$\gamma\eta$ (1405/1475) $ ightarrow \gamma\eta\pi^{+}\pi^{-}$	(3.0		0.5	$) \times 10^{-4}$		_		
$\gamma \eta (1405/1475) ightarrow \gamma \gamma \phi$	<	8.2			$\times10^{-5}$	CL=95%	_		
$\gamma ho ho$	(4.5	\pm	8.0	$) \times 10^{-3}$		1340		
$\gamma ho \omega$	<	5.4			$\times 10^{-4}$	CL=90%	1338		
$\gamma ho\phi$	<	8.8			$\times 10^{-5}$	CL=90%	1258		
$\gamma \eta'(958)$	(5.13	\pm	0.17	$) \times 10^{-3}$	S=1.3	1400		
$\gamma 2\pi^+ 2\pi^-$					$) \times 10^{-3}$	S=1.9	1517		
$\gamma f_2(1270) f_2(1270)$					$) \times 10^{-4}$		878		
$\gamma f_2(1270) f_2(1270)$ (non resonant)		8.2					-		
$\gamma K^+ K^- \pi^+ \pi^-$	(2 1	+	0.6) × 10 ⁻³		1407		
$\gamma f_4(2050)$					$) \times 10^{-3}$		891		
$\gamma \omega \omega$					$) \times 10^{-3}$		1336		
$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$					$) \times 10^{-3}$	S=1.3	1223		
$\gamma f_2(1270)$					$) \times 10^{-3}$	S=1.3	1286		
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$					$) \times 10^{-4}$	5—1.5	-		
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$						C 1 F	1075		
) × 10 ⁻³	S=1.5	1075		
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(3.8	\pm	0.5	$) \times 10^{-4}$		_		

$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	$(3.1 \pm 1.0) \times 10^{-4}$	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	$(2.4 \ \ \stackrel{+}{-} \ \stackrel{1.2}{0.7} \ \) imes 10^{-4}$	_
$\gamma\eta$	$(1.104\pm\ 0.034)\times 10^{-3}$	1500
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$	$(7.9 \pm 1.3) \times 10^{-4}$	1220
$\gamma f_1(1285)$	$(6.1 \pm 0.8) \times 10^{-4}$	1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	(4.5 \pm 1.2) \times 10 ⁻⁴	_
$\gamma f_2'(1525)$	$(5.7 \begin{array}{cc} + & 0.8 \\ - & 0.5 \end{array}) \times 10^{-4} \qquad S=1$	5 1173
$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$	$(3.4 \pm 1.4) \times 10^{-5}$	_
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	$(2.8 \pm 1.8) \times 10^{-4}$	_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	$(2.0 \pm 1.4) \times 10^{-4}$	_
$\gamma f_0(1800) \rightarrow \gamma \omega \phi$	$(2.5 \pm 0.6) \times 10^{-4}$	_
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	$(5.4 + 3.5 \atop -2.4) \times 10^{-5}$	_
$\gamma \mathit{f}_{2}(1950) ightarrow$	$(7.0 \pm 2.2) \times 10^{-4}$	_
$\gamma K^*(892) \overline{K}^*(892)$		
$\gamma K^*(892) \overline{K}^*(892)$	$(4.0 \pm 1.3) \times 10^{-3}$	1266
$\gamma\phi\phi$	$(4.0 \pm 1.2) \times 10^{-4}$ S=2	2.1 1166
$\gamma p \overline{p}$	$(3.8 \pm 1.0) \times 10^{-4}$	1232
$\gamma\eta$ (2225)	$(\ 3.14 \ ^{+}_{-} \ 0.50 \) imes 10^{-4}$	752
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$	$(1.3 \pm 0.9) \times 10^{-4}$	1048
$\gamma \eta (1760) \rightarrow \gamma \omega \omega$	$(1.98 \pm 0.33) \times 10^{-3}$	_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	$(2.77 \ ^{+} \ 0.34 \) \times 10^{-4}$ S=1	1 1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	$(7.7 \begin{array}{cc} + 1.5 \\ - 0.9 \end{array}) \times 10^{-5}$	_
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	$(3.3 + 2.0 \times 10^{-5})$	_
$\gamma X(1840) \rightarrow \gamma 3(\pi^+\pi^-)$	$(2.4 \begin{array}{c} + 0.7 \\ - 0.8 \end{array}) \times 10^{-5}$	_
$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	$(7 \pm 4) \times 10^{-4}$ S=2	2.1 1442
$\gamma \pi^0$	$(3.49 \ ^{+} \ 0.33 \) \times 10^{-5}$	1546
$\gamma \rho \overline{\rho} \pi^+ \pi^-$	$< 7.9 \times 10^{-4} \text{ CL} = 90$	
$\gamma \rho \rho \pi $ π $\gamma \Lambda \Lambda$	4	
,		1074
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	$(1.13 \ ^{+}_{-} \ 0.60 \) \times 10^{-4}$	_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	$(6.2 \pm 1.0) \times 10^{-4}$	_
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	$(5.9 \pm 1.3) \times 10^{-4}$	_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	$< 3.9 \times 10^{-5} CL=90$	·% –
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	$< 4.1 \times 10^{-5} \text{ CL}=90$	- %
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	$(1.5 \pm 0.8) \times 10^{-5}$	_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	$(5.6 + 2.4 \times 10^{-5})$	_
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	$(1.09 \pm 0.24) \times 10^{-4}$	1183
, 0()	, == == , ==	

$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	(1.7	$^{+~0.6}_{-~1.4}~)\times 10^{-5}$		_			
$\gamma A \rightarrow \gamma$ invisible	[ttaa] < 6.3	$\times 10^{-6}$	CL=90%	_			
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[uuaa] < 5	× 10 ⁻⁶	CL=90%	_			
/ F. F.	[aaaa] (o	/\ 	0_ 00/0				
	Dalitz dec	ays					
$\pi^{0} e^{+} e^{-}$	(7.6	\pm 1.4) \times 10 ⁻⁷		1546			
$\eta\mathrm{e^+e^-}$	(1.10	$6 \pm 0.09) \times 10^{-5}$		1500			
$\eta'(958) e^+ e^-$	(5.83	$1 \pm 0.35) \times 10^{-5}$		1400			
	Weak deca	ave					
$D^{-}e^{+}\nu_{e}+{ m c.c.}$	< 1.2	_	CL=90%	984			
$\frac{D}{D^0}e^+e^-+\text{c.c.}$	< 8.5	0	CL=90%	987			
$D_s^- e^+ \nu_e + \text{c.c.}$	< 1.3	_	CL=90%	923			
$D_s^{*-}e^+\nu_e^- + \text{c.c.}$	< 1.8		CL=90%	828			
3							
$\frac{D^-\pi^+}{\overline{D}^0}$ + c.c.	< 7.5		CL=90%	977			
	< 1.7		CL=90%	898			
$\overline{D}^0 \overline{K}^{*0} + \text{c.c.}$	< 2.5		CL=90%	670			
$D_s^- \pi^+ + \text{c.c.}$	< 1.3		CL=90%	915			
$D_s^- \rho^+ + \text{c.c.}$	< 1.3	$\times 10^{-5}$	CL=90%	663			
Cha	arge conjugation (C). Parity (P).					
Lepton Family number (LF) violating modes							
$\gamma\gamma$	C < 2.7	× 10 ⁻⁷	CL=90%	1548			
$\stackrel{7}{\gamma} \phi$	C < 1.4	6	CL=90%	1381			
$\stackrel{r}{e^{\pm}}\mu^{\mp}$	LF < 1.6	7	CL=90%	1547			
$e^{\pm} au^{\mp}$	LF < 8.3	c	CL=90%				
$\mu^{\pm}\tau^{\mp}$	LF < 2.0	_	CL=90%	1039			
μ , μ	Li \ 2.0	× 10	CL—90/0	1033			

$\chi_{c0}(1P)$

invisible

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

CL=90%

Created: 6/5/2018 18:58

Mass $m=3414.71\pm0.30~{\rm MeV}$ Full width $\Gamma=10.8\pm0.6~{\rm MeV}$

$x_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	$(2.34\pm0.18)\%$		1679
$ ho^{0}\pi^+\pi^-$	$(9.1 \pm 2.9) \times 10^{-2}$	₀ –3	1607
$f_0(980) f_0(980)$	$(6.6 \pm 2.1) \times 10^{-1}$	0^{-4}	1391
$\pi^+\pi^-\pi^0\pi^0$	$(3.3 \pm 0.4)\%$		1680
$ ho^+\pi^-\pi^0+$ c.c.	(2.9 \pm 0.4) %		1607

Other decays

< 7

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 133

$4\pi^{0}$ $\pi^{+}\pi^{-}K^{+}K^{-}$	(3.3 ± 0) (1.81 ± 0)	0.4) × 10 ⁻³ 0.14) %		1681 1580
$egin{align*} \mathcal{K}_0^* (1430)^0 \overline{\mathcal{K}}_0^* (1430)^0 & ightarrow \ \pi^+ \pi^- \mathcal{K}^+ \mathcal{K}^- \ \end{split}$	$(9.8 \begin{array}{c} +4 \\ -2 \end{array})$	$\frac{1.0}{1.8}$) × 10 ⁻⁴		-
$K_0^*(1430)^0\overline{K}_2^*(1430)^0 + \text{c.c.} ightarrow \pi^+\pi^-K^+K^-$	$(8.0 \begin{array}{c} +2 \\ -2 \end{array})$	$\frac{1.0}{1.4}$) × 10 ⁻⁴		-
$K_1(1270)^+K^-+\text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	(6.3 ± 1)	$9) \times 10^{-3}$		-
$K_1(1400)^+K^- + \text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	< 2.7	$\times 10^{-3}$	CL=90%	-
$f_0(980) f_0(980)$	$(1.6 \begin{array}{c} +1 \\ -0 \end{array}$	$\frac{100}{1.9}$) × 10 ⁻⁴		1391
$f_0(980) f_0(2200)$	$(7.9 \begin{array}{c} +2 \\ -2 \end{array})$	$\frac{1.0}{1.5}$) × 10 ⁻⁴		584
$f_0(1370) f_0(1370)$	< 2.7		CL=90%	1019
$f_0(1370) f_0(1500)$		× 10 ⁻⁴	CL=90%	921
$f_0(1370) f_0(1710)$	_	$(0.5) \times 10^{-4}$		720
$f_0(1500) f_0(1370)$		× 10 ⁻⁴	CL=90%	921
$f_0(1500) f_0(1500)$	< 5		CL=90%	807
$f_0(1500) f_0(1710)$ $K^+ K^- \pi^+ \pi^- \pi^0$		$\times 10^{-5}$ 0.9) $\times 10^{-3}$	CL=90%	557 1545
$K_{S}^{N} K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	•	0.9×10^{-3} 0.4×10^{-3}		1545 1543
$K^+ K^- \pi^0 \pi^0$		0.9×10^{-3}		1582
$K^+\pi^-\overline{K^0}\pi^0$ + c.c.	(3.0 ± 0) (2.49 ± 0)			1582
$\rho^{+}K^{-}K^{0} + \text{c.c.}$	(2.43 ± 0) (1.21 ± 0)	•		1458
$K^*(892)^- K^+ \pi^0 \rightarrow$	•	1.21) $\times 10^{-3}$		-
$K^+\pi^-\overline{K}^0\pi^0+\text{c.c.}$	`	,		
$K_S^0 K_S^0 \pi^+ \pi^-$		$1.1) \times 10^{-3}$		1579
$K^+K^-\eta\pi^0$	(3.0 ± 0)	$0.7) \times 10^{-3}$		1468
$3(\pi^{+}\pi^{-})$	$(1.20 \pm 0$			1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$		$.6) \times 10^{-3}$		1523
$K^*(892)^0 \overline{K}^*(892)^0$		$0.6) \times 10^{-3}$		1456
$\pi\pi$		$(0.33) \times 10^{-3}$		1702
$\pi^0_0 \eta$	< 1.8	$\times 10^{-4}$		1661
$\pi_0^0 \eta'$	< 1.1	$\times 10^{-3}$	CI 000/	1570
$\pi^0 \eta_c$	< 1.6	× 10 ⁻³	CL=90%	383
$\eta \eta$		$0.19) \times 10^{-3}$ $0.1) \times 10^{-5}$		1617
$\eta \eta' \\ \eta' \eta'$	•	$(.1) \times 10^{-3}$ $(.12) \times 10^{-3}$		1521 1413
$\omega \omega$		$1.12) \times 10^{-4}$		1517
$\omega \phi$		$(0.22) \times 10^{-4}$		1447
$\omega K^+ K^-$		$(0.21) \times 10^{-3}$		1457
K ⁺ K ⁻	•	$(0.31) \times 10^{-3}$		1634
$K_S^0 K_S^0$	`	$(0.17) \times 10^{-3}$		1633

$\gamma J/\psi(1S)$	$(1.40\pm0.05)~\%$		303
· -	Radiative decays		
$\eta_c \pi^+ \pi^-$	< 7 × 10 ⁻		307
<u>=-</u> <u>=</u> +	$(4.8 \pm 0.7) \times 10^{-}$		1081
=0=0	$(3.1 \pm 0.8) \times 10^{-1}$		1089
$K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.94\pm0.35)\times10^{-1}$		873
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$	$(2.3 \pm 0.7) \times 10^{-1}$		1001
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$(1.6 \pm 0.6) \times 10^{-}$		1001
$\sum_{\Gamma} + \sum_{\Gamma} -$	$(4.0 \pm 0.7) \times 10^{-1}$		1225
$\sum_{i=0}^{\infty} \frac{\sum_{i=0}^{\infty} 0}{\sum_{i=0}^{\infty} 0}$	$(3.1 \pm 1.2) \times 10$ $(4.5 \pm 0.4) \times 10^{-}$		1222
$\Lambda + \rho \Lambda (1520) + c.c.$ $\Lambda (1520) \overline{\Lambda} (1520)$	$(2.9 \pm 0.7) \times 10^{-}$ $(3.1 \pm 1.2) \times 10^{-}$	_	858 779
$K^+ \overline{p} \Lambda + \text{c.c.}$ $K^+ \overline{p} \Lambda (1520) + \text{c.c.}$	$(1.25\pm0.12)\times10^{-}$		1132
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}$ + c.c.			1083
	< 5	_	1083
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant) $\Sigma (1385)^+ \overline{\Lambda} \pi^- + \text{c.c.}$	< 5 × 10 ⁻		1153
	$(1.18\pm0.13)\times10^{-1}$		1153
$\Lambda \overline{\Lambda} \ \Lambda \overline{\Lambda} \pi^+ \pi^-$	$(3.27\pm0.24)\times10^{-1}$		1292
$\frac{1}{p}n\pi^{+}\pi^{0}$	$(2.21\pm0.18)\times10^{-1}$		1321
$\frac{p\overline{n}\pi^-\pi^0}{\pi^+\pi^0}$	$(2.34\pm0.21)\times10^{-1}$		1321
$\overline{p}n\pi^+$	$(1.37\pm0.12)\times10^{-}$		1376
$\underline{p}\overline{n}\pi^{-}$	$(1.27\pm0.11)\times10^{-}$		1376
$p\overline{p}K_S^0K_S^0$	< 8.8 × 10 ⁻		884
$p\overline{p}K^+K^-$ (non-resonant)	$(1.22\pm0.26)\times10^{-1}$		890
$p\overline{p}\pi^0\pi^0$	$(1.04\pm0.28)\times10^{-1}$		1324
$p\overline{p}\pi^+\pi^-$	$(2.1 \pm 0.7) \times 10^{-}$		1320
$p\overline{p}\phi$	$(6.0 \pm 1.4) \times 10^{-}$		876
$p\overline{p}\omega$	$(5.2 \pm 0.6) \times 10^{-}$		1043
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-}$		1187
$\rho \overline{\rho} \pi^0$	$(7.0 \pm 0.7) \times 10^{-}$		1379
$p\overline{p}$	$(2.21\pm0.08)\times10^{-1}$		1426
$\phi \phi$	(8.0 ± 0.7) $ imes 10^-$	4	1370
$\phi \pi^+ \pi^- \pi^0$	$(1.18\pm0.15)\times10^{-}$		1525
$\mathit{K^{+}K^{-}\pi^{0}\phi}$	$(1.90\pm0.35)\times10^{-}$		1329
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-}$	3	1326
$K^+K^-\phi$	$(9.7 \pm 2.5) \times 10^{-}$		1381
$K^+K^-K^+K^-$	$(2.82\pm0.29)\times10^{-}$		1333
$K^{+}K^{-}\eta$ $K^{+}K^{-}K^{0}_{S}K^{0}_{S}$	(1.4 ± 0.5) $ imes 10^-$	3	1331
	$< 2.3 \times 10^{-}$	_	1512
$K^+K^-\pi^0$	< 6 × 10 ⁻		1611
$\frac{K}{K^0}K^+\pi^- + \text{c.c.}$	< 9 × 10 ⁻		1610
$\pi + \pi - \eta'$	< 4 × 10 ⁻		1560
$\pi^+\pi^-\eta$	< 2.0 × 10 ⁻	4 CL=90%	1651

$\gamma J/\psi(1S)$	$(1.40\pm 0$	0.05) %		303
γho^{0}	< 9	\times 10 ⁻⁶	CL=90%	1619

HTTP://PDG.LBL.GOV

Page 135

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m = 3510.67 \pm 0.05 \text{ MeV}$ (S = 1.2) Full width $\Gamma=0.84\pm0.04~\text{MeV}$

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence leve	(MeV/ <i>c</i>)
Hadro	nic decays		
$3(\pi^{+}\pi^{-})$	(5.8 ±1.4)×	10^{-3} S=1.2	1683
$2(\pi^{+}\pi^{-})$	$(7.6 \pm 2.6) \times$	10^{-3}	1728
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.19 ± 0.15) %	6	1729
$ ho^+\pi^-\pi^0+$ c.c.	(1.45 ± 0.24) %	6	1658
$ ho^0 \pi^+ \pi^-$	($3.9~\pm 3.5$) $ imes$	c 10 ⁻³	1657
$4\pi^0$	(5.4 \pm 0.8) \times	$< 10^{-4}$	1729
$\pi^+\pi^-K^+K^-$	(4.5 ± 1.0) $ imes$	$< 10^{-3}$	1632
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(1.12\pm0.27) \times$	$< 10^{-3}$	1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.15 ± 0.13) %		1598
$K^0_{\mathcal{S}} K^\pm \pi^\mp \pi^+ \pi^-$	(7.5 \pm 0.8) \times	10^{-3}	1596
$K^+\pi^-\overline{K}^0\pi^0+$ c.c.	(8.6 ± 1.4) $ imes$	< 10 ^{−3}	1632
$\rho^- K^+ \overline{K}{}^0 + \text{c.c.}$	(5.0 ± 1.2) $ imes$	< 10 ^{−3}	1514
$K^*(892)^0\overline{K}{}^0\pi^0 o$	(2.3 \pm 0.6) \times	< 10 ^{−3}	_
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}+ { m c.c.}$ $K^{+}K^{-}\eta\pi^{0}$		2	
$K^+K^-\eta\pi^0$	$(1.12\pm0.34) \times$		1523
$\pi^+\pi^-K^0_SK^0_S$	(6.9 ± 2.9) \times		1630
$K^+K^-\eta$	(3.2 ± 1.0) \times		1566
$\overline{K}^{0}K^{+}\pi^{-} + \text{c.c.}$	(7.0 \pm 0.6) \times		1661
$K^*(892)^0 \overline{K}{}^0 + \text{c.c.}$	$(10 \pm 4) \times$		1602
$K^*(892)^+K^- + \text{c.c.}$	(1.4 ± 0.6) $ imes$	4	1602
$K_J^*(1430)^0\overline{K}^0+ ext{c.c.} ightarrow$	< 8 ×	$< 10^{-4}$ CL=90%	, –
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K_{I}^{*}(1430)^{+}K^{-}+{ m c.c.} ightarrow$	< 2.1 ×	$< 10^{-3}$ CL=90%	, –
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K^+K^-\pi^0$	(1.81±0.24) ×	c 10 ⁻³	1662
$\eta \pi^+ \pi^-$	(4.62±0.23) ×		1701
$a_0(980)^+\pi^- + \text{c.c.} \rightarrow \eta \pi^+\pi^-$	$(3.2 \pm 0.4) \times$		<u> </u>
$a_2(1320)^+\pi^- + \text{c.c.} \rightarrow \eta \pi^+\pi^-$	(1.76±0.24) ×		_
$a_2(1700)^+\pi^- + \text{c.c.} \rightarrow \eta \pi^+\pi^-$	(4.6 ±0.7)×		_
$f_2(1270)\eta \to \eta \pi^+ \pi^-$	$(3.5 \pm 0.6) \times$		_

$f_4(2050)\eta \rightarrow \eta \pi^+ \pi^-$	($2.5~\pm0$	$.9) \times 10^{-5}$		_
$\pi_1(1400)^+\pi^- + \text{c.c.} \rightarrow$	< 5	$\times 10^{-5}$	CL=90%	_
$\eta \pi^+ \pi^-$		E		
$\pi_1(1600)^+\pi^- + \text{c.c.} \rightarrow$	< 1.5	$\times 10^{-5}$	CL=90%	_
$\eta \pi^+ \pi^- \ \pi_1 (2015)^+ \pi^- + { m c.c.} ightarrow$	< 8	$\times10^{-6}$	CL=90%	_
$\eta \pi^+ \pi^-$	< 0	× 10	CL—9070	
$f_2(1270)\eta$	($6.7~\pm1$	$.1) \times 10^{-4}$		1467
$\pi^+\pi^-\eta'$	*	$(4) \times 10^{-3}$		1612
$K^+ K^- \eta'(958)$	(8.8 ±0	$.9) \times 10^{-4}$		1461
$K_0^*(1430)^+ K^- + { m c.c.}$	$(6.4 \begin{array}{c} +2 \\ -2 \end{array})$	$^{2}_{.8}$) × 10 ⁻⁴		_
$f_0(980)\eta'(958)$	(1.6 $^{+1}_{-0}$	$^{.4}_{.7}$) × 10 ⁻⁴		1460
$f_0(1710)\eta'(958)$	(7 + 7 -5	$) \times 10^{-5}$		1106
$f_2'(1525)\eta'(958)$	(9 ±6	$) \times 10^{-5}$		1225
$\pi^0 f_0^-(980) \rightarrow \pi^0 \pi^+ \pi^-$		\times 10 ⁻⁶	CL=90%	_
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$		$.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$,	$.4) \times 10^{-3}$		1512
$K^+K^-K^0_SK^0_S$		× 10 ⁻⁴	CL=90%	1390
K+K-K+K-	,	$.1) \times 10^{-4}$		1393
$K^+K^-\phi$	•	$.5) \times 10^{-4}$		1440
$\overline{K}^{0}K^{+}\pi^{-}\phi + \text{c.c.}$		$.5) \times 10^{-3}$		1387
$K^{+}K^{-}\pi^{0}\phi \\ \phi\pi^{+}\pi^{-}\pi^{0}$,	$(.30) \times 10^{-3}$		1390
$\omega \omega$	•	0.0×10^{-4} 0.7×10^{-4}		1578 1571
$\omega \omega$ $\omega K^+ K^-$		$.7 \times 10^{-4}$ $.9 \times 10^{-4}$		1513
$\omega \phi$		$(.6) \times 10^{-5}$		1503
$\phi \phi$		$.5) \times 10^{-4}$		1429
$p\overline{p}$	•	$.34) \times 10^{-5}$		1484
$p\overline{p}\pi^0$		$.18) \times 10^{-4}$		1438
$p\overline{p}\eta$		$.25) \times 10^{-4}$		1254
$p\overline{p}\omega$	(2.12 ± 0	$.31) \times 10^{-4}$		1117
$p\overline{p}\phi$	< 1.7	\times 10 ⁻⁵	CL=90%	962
$p\overline{p}\pi^+\pi^-$		$.9) \times 10^{-4}$		1381
$p\overline{p}K^+K^-$ (non-resonant)		$.22) \times 10^{-4}$	GL 000/	974
$p\overline{p}K_S^0K_S^0$	< 4.5	× 10 ⁻⁴	CL=90%	968
$p\overline{n}\pi^-$		$.5) \times 10^{-4}$		1435
$\overline{p} n \pi^+ p \overline{n} \pi^- \pi^0$		$(.5) \times 10^{-4}$		1435
$\frac{pn\pi}{p}n\pi^+\pi^0$		$.12) \times 10^{-3}$ $.12) \times 10^{-3}$		1383 1383
$\Lambda \overline{\Lambda}$		$.12) \times 10$ $.11) \times 10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$		$.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)		$.6) \times 10^{-4}$		1223
,	`	,		

. —				
$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c.	< 1.3	$\times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	< 1.3	$\times 10^{-4}$	CL=90%	1157
$K^{+}\overline{p}\Lambda$	($4.1 \pm 0.$	4) \times 10 ⁻⁴	S=1.2	1203
$K^+\overline{p}\Lambda(1520)+$ c.c.	($1.7 \pm 0.$	4) \times 10 ⁻⁴		950
$\Lambda(1520)\overline{\Lambda}(1520)$	< 9	\times 10 ⁻⁵	CL=90%	879
$\Sigma^0 \overline{\Sigma}{}^0$	< 4	$\times 10^{-5}$	CL=90%	1288
$\Sigma + \overline{\Sigma} -$	< 6	$\times10^{-5}$	CL=90%	1291
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 9	$\times10^{-5}$	CL=90%	1081
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	< 5	$\times10^{-5}$	CL=90%	1081
$K^-\Lambda \overline{\Xi}{}^+ + \text{c.c.}$	$(1.35\pm0.$	$24) \times 10^{-4}$		963
<u>=</u> 0 <u>=</u> 0	< 6	$\times10^{-5}$	CL=90%	1163
<i>Ξ-Ξ</i> +	($8.0 \pm 2.$	$1) \times 10^{-5}$		1155
$\pi^{+}\pi^{-} + K^{+}K^{-}$	< 2.1	$\times 10^{-3}$		_
$K_S^0 K_S^0$	< 6	$\times10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	< 3.2	$\times 10^{-3}$	CL=90%	413
_				

Radiative decays

$\gamma J/\psi(1S)$	(34.3 ± 1.0) %		389
$\gamma \rho^{0}$	$(2.16\pm0.17)\times10^{-4}$		1670
$\gamma \omega$	$(6.8 \pm 0.8) \times 10^{-5}$		1668
$\gamma \phi$	$(2.4 \pm 0.5) \times 10^{-5}$		1607
$\gamma \gamma$	$< 6.3 \times 10^{-6}$	CL=90%	1755
$e^+e^-J/\psi(1S)$	$(3.65\pm0.25)\times10^{-3}$		389

$h_c(1P)$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Created: 6/5/2018 18:58

Mass $m=3525.38\pm0.11~{\rm MeV}$ Full width $\Gamma=0.7\pm0.4~{\rm MeV}$

h _c (1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi\pi$	not seen		312
$p\overline{p}$	$< 1.5 \times 10^{-1}$	-4 90%	1492
$\pi^+\pi^-\pi^0$	< 2.2 × 10	-3	1749
$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})\%$		1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9 %		1661
	Radiative decays		
$\gamma\eta$	$(4.7\pm2.1)\times10^{-1}$	-4	1720
$\gamma \eta'$ (958)	$(1.5\pm0.4)\times10^{-1}$	-3	1633
$\gamma \eta_c(1S)$	(51 ± 6)%		500

$\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3556.17\pm0.07~\mathrm{MeV}$ Full width $\Gamma=1.97\pm0.09~\text{MeV}$

X_2	(1P)	DECAY	MODES
$\sim cz$	\ ,		

Fraction (Γ_i/Γ) Confidence level (MeV/c)

$\chi_{c2}(1P)$ DECAY MODES	Fraction (I ;/I)	Confidence level	(IVIeV/c)
	Hadronic decays		_
$2(\pi^{+}\pi^{-})$	(1.02±0.09) %		1751
$2(\pi^+\pi^-) \atop \pi^+\pi^-\pi^0\pi^0$	(1.83±0.23) %		1752
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	(2.19±0.34) %		1682
$4\pi^0$	$(1.11\pm0.15)\times1$	_{L0} -3	1752
$\mathcal{K}^+\mathcal{K}^-\pi^0\pi^0$	$(2.1 \pm 0.4) \times 1$	_	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.	(1.38±0.20) %		1657
$ ho^ K^+$ $\overline{K}{}^0$ $+$ c.c.	$(4.1 \pm 1.2) \times 1$	₁₀ -3	1540
$K^*(892)^0 K^- \pi^+ \to$	(2.9 ± 0.8) \times 1	₁₀ -3	_
$K^{-}\pi^{+}K^{0}\pi^{0}$ + c.c. $K^{*}(892)^{0}\overline{K}^{0}\pi^{0} \rightarrow$			
	(3.8 ± 0.9) \times 1	₁₀ -3	_
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0} + \text{c.c.}$		2	
$K^*(892)^- K^+ \pi^0 \rightarrow$	$(3.7 \pm 0.8) \times 1$	10-3	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{+}\overline{K}^{0}\pi^{-} \rightarrow$	(20 00) v 1	io-3	
$K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.}$	(2.9 ± 0.8) $\times 1$	10 9	_
$K^+K^-\eta\pi^0$	(1.3 ± 0.4) \times 1	₁₀ -3	1549
$K^{+}K^{-}\pi^{+}\pi^{-}$	$(8.4 \pm 0.9) \times 1$		1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.17±0.13) %	-	1623
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(7.3 \pm 0.8) \times 1$	_{L0} -3	1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(2.1 \pm 1.1) \times 1$		1602
$K^*(892)^0 \overline{K}^*(892)^0$	$(2.3 \pm 0.4) \times 1$		1538
$3(\pi^{+}\pi^{-})$	$(8.6 \pm 1.8) \times 1$		1707
$\phi \phi$	$(1.06\pm0.09)\times1$		1457
$\omega\omega$	$(8.4 \pm 1.0) \times 1$		1597
ω K $^+$ K $^-$	$(7.3 \pm 0.9) \times 1$		1540
$\pi\pi$	$(2.23\pm0.09)\times1$	_{L0} -3	1773
$\rho^0 \pi^+ \pi^-$	(3.7 ± 1.6) \times 1		1682
$\pi^+\pi^-\pi^0$ (non-resonant)	($2.0~\pm0.4$) \times 1		1765
$ ho$ (770) $^{\pm}\pi^{\mp}$	$(6 \pm 4) \times 1$		_
$\pi^+\pi^-\eta$	(4.8 ± 1.3) $ imes 1$		1724
$\pi^+\pi^-\eta'$	(5.0 ± 1.8) $ imes$ 1		1636
$\eta \eta$	$(5.4 \pm 0.4) \times 1$		1692
K^+K^-	$(1.01\pm0.06)\times1$		1708
$K_S^0 K_S^0$	$(5.2 \pm 0.4) \times 1$		1707
$K^*(892)^{\pm}K^{\mp}$	$(1.44\pm0.21)\times1$		1627
$K^*(892)^0 \overline{K}{}^0 + { m c.c.}$	$(1.24\pm0.27)\times1$	10-4	1627

$K_2^*(1430)^{\pm}K^{\mp}$	(1.48±0.12) × 10 ⁻³		_
$K_2^*(1430)^0 \overline{K}^0 + \text{c.c.}$	(1.24 ± 0.17)			1444
$K_3^*(1780)^{\pm}K^{\mp}$	(5.2 ± 0.8)			_
$K_3^*(1780)^0 \overline{K}^0 + \text{c.c.}$	(5.6 ± 2.1)			1276
$a_2(1320)^0 \pi^0$	$(3.0^{\circ}\pm2.1^{\circ})$			1270
$a_2(1320)^{\pm}\pi^{\mp}$	(1.8 ± 0.6)			1530
$\frac{12}{K^0}K^+\pi^- + \text{c.c.}$	(1.28 ± 0.18)			1685
$K^+K^-\pi^0$	(3.0 ± 0.8)			1686
$K^+K^-\eta$	< 3.2	$\times 10^{-4}$	90%	1592
$K^+ K^- \eta'(958)$	$(1.94\pm0.34$	$) \times 10^{-4}$		1488
$\eta\eta'$	(2.2 ± 0.5			1600
$\eta'\eta'$	(4.6 ± 0.6			1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	(2.2 ± 0.5			1655
$K^+K^-K^0_SK^0_S$	< 4	× 10 ⁻⁴	90%	1418
K+ K- K+ K-	$(1.65\pm0.20$			1421
$K^+K^-\phi$	(1.42±0.29			1468
$\overline{K}^{0}K^{+}\pi^{-}\phi + \text{c.c.}$	(4.8 ± 0.7)			1416
$K^+K^-\pi^0\phi \ \phi\pi^+\pi^-\pi^0$	(2.7 ± 0.5)			1419
$p\overline{p}$	$(9.3 \pm 1.2 \ (7.33 \pm 0.33)$			1603
$p \overline{p} \pi^0$	(4.7 ±0.4			1510 1465
$p \overline{p} \eta$	(1.74 ± 0.25)	•		1285
$p\overline{p}\omega$	(3.6 ± 0.4)			1152
$p\overline{p}\phi$	(2.8 ±0.9			1002
$p\overline{p}\pi^+\pi^-$	(1.32±0.34			1410
$ \rho \overline{\rho} \pi^0 \pi^0 $	(7.8 ± 2.3	$) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(1.91\pm0.32$			1013
$p\overline{p}K_S^0K_S^0$	< 7.9	× 10 ⁻⁴	90%	1007
$p\overline{n}\pi^-$	(8.5 ± 0.9			1463
$\overline{p}n\pi^+$	(8.9 ±0.8	$) \times 10^{-4}$		1463
$p \overline{n} \pi^- \pi^0$	(2.17±0.18	$) \times 10^{-3}$		1411
$\frac{\overline{p}}{\Lambda} \frac{n\pi^+ \pi^0}{\Lambda}$	(2.11 ± 0.18)			1411
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(1.84 ± 0.15 (1.25 ± 0.15			1384 1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	(6.6 ± 1.5)			1255
$\Sigma(1385)^+ \overline{\Lambda} \pi^- + \text{c.c.}$	< 4	$\times 10^{-4}$	90%	1192
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}$ + c.c.	< 6	\times 10 ⁻⁴	90%	1192
$K^+ \stackrel{\frown}{\overline{p}} \Lambda + c.c.$	(7.8 ± 0.5			1236
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	(2.8 ± 0.7)			992
$\Lambda(1520)\overline{\Lambda}(1520)$	(4.6 ± 1.5	$) \times 10^{-4}$		923
$\sum_{i=0}^{n} \overline{\sum_{i=0}^{n}}$	< 6	\times 10 ⁻⁵	90%	1319
$\Sigma^{+}\overline{\Sigma}^{-}$	< 7		90%	1322
$\Sigma(1385)^{+} \overline{\Sigma}(1385)^{-}$	< 1.6	$\times 10^{-4}$	90%	1118
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	< 8	$\times 10^{-5}$	90%	1118
HTTP://PDG.LBL.GOV	Page 140	Created:	6/5/2018	18:58

$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	(1.76±0.	$(32) \times 10^{-4}$		1004
<u>=</u> 0 <u>=</u> 0	< 1.0	\times 10 ⁻⁴	90%	1197
<i>=</i> − <i>=</i> +	$(1.42\pm0.$	$(32) \times 10^{-4}$		1189
$J/\psi(1S)\pi^+\pi^-\pi^0$	< 1.5	%	90%	185
$\pi^{0}\eta_{c}$	< 3.2	\times 10 ⁻³	90%	511
$\eta_c(1S)\pi^+\pi^-$	< 5.4	$\times 10^{-3}$	90%	459
Do dio				
Kadia	tive decays			
$\gamma J/\psi(1S)$	(19.0 \pm 0.	.5) %		430
	(19.0 ± 0.0)	5)% ×10 ⁻⁵	90%	430 1694
$\gamma J/\psi(1S)$	(19.0 ± 0.0)	, _	90% 90%	
$\gamma J/\psi(1S) \ \gamma \rho^0$	(19.0 ± 0.00)	$\times 10^{-5}$		1694
$\gamma J/\psi(1S) \ \gamma \rho^0 \ \gamma \omega$	(19.0 ±0. < 1.9 < 6 < 7	$\times 10^{-5} \times 10^{-6}$	90%	1694 1692

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Quantum numbers are quark model predictions.

Mass
$$m=3637.6\pm1.2$$
 MeV (S = 1.2) Full width $\Gamma=11.3^{+3.2}_{-2.9}$ MeV

$\eta_{c}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	not seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1729
$K\overline{K}\eta$	$(5 \pm 4) \times$	10^{-3}	1637
$2\pi^{+}2\pi^{-}$	not seen		1792
$ ho^0 ho^0$	not seen		1645
$3\pi^{+}3\pi^{-}$	not seen		1749
$K^+K^-\pi^+\pi^-$	not seen		1700
$K^{*0}\overline{K}^{*0}$	not seen		1585
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	$(1.4\pm1.0)\%$		1667
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen		1627
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	seen		1666
$2K^{+}2K^{-}$	not seen		1470
$\phi \phi$	not seen		1506
$p\overline{p}$	seen		1558
$\gamma\gamma$	$(1.9\pm1.3) imes$	10^{-4}	1819
$\gamma J/\psi(1S)$	< 1.4 %	90%	500
$\pi^+\pi^-\eta$	not seen		1766
$\pi^+\pi^-\eta'$	not seen		1680
$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%	538

 ψ (2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.097\pm0.025$ MeV (S = 2.6) Full width $\Gamma=294\pm8$ keV $\Gamma_{e\,e}=2.33\pm0.04$ keV

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level			
hadrons	(97.85 ± 0.13)) %	_		
virtual $\gamma ightarrow $ hadrons	(1.73 ± 0.14) % S=1.5	_		
ggg	$(10.6 \pm 1.6$) %	_		
γ g g	(1.03 ± 0.29) %	_		
light hadrons	(15.4 ± 1.5)	, <u> </u>	_		
e^+e^-	(7.93 ± 0.17)	,	1843		
$\mu^+\mu^-$	(8.0 ± 0.6	,	1840		
$\tau^+\tau^-$	(3.1 ± 0.4	$) \times 10^{-3}$	489		
Decays into $J/\psi(1S)$ and anything					
$J/\psi(1S)$ anything	(61.4 ± 0.6)) %	_		
$J/\psi(1S)$ neutrals	(25.37 ± 0.32)) %	_		
$J/\psi(1S)\pi^{+}\pi^{-}$	(34.67 ± 0.30)) %	477		
$J/\psi(1S)\pi^0\pi^0$	(18.23 ± 0.31)) %	481		
$J/\psi(1S)\eta$	(3.37 ± 0.05)	' -	199		
$J/\psi(1S)\pi^0$	(1.268 ± 0.032)	$(2) \times 10^{-3}$	528		
Hadronic decays					
$\pi^0 h_c(1P)$	(8.6 ± 1.3		85		
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5 ± 1.6		1746		
$2(\pi^{+}\pi^{-})\pi^{0}$	(2.9 ± 1.0	$) \times 10^{-3}$ S=4.7	1799		
$\rho a_2(1320)$	(2.6 ± 0.9		1500		
$p\overline{p}$	(2.88 ± 0.10		1586		
$\Delta^{++}\overline{\Delta}^{}$	(1.28 ± 0.35		1371		
$\Lambda \overline{\Lambda} \pi^0$	< 2.9	$\times 10^{-6}$ CL=90%	1412		
$\Lambda \overline{\Lambda} \eta$	(2.5 ± 0.4		1197		
$\Lambda \overline{p} K^+$	(1.00 ± 0.14)		1327		
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	(1.8 ±0.4	,	1167		
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(2.8 ±0.6		1346		
$\Lambda \overline{\Lambda}$	(3.81 ±0.13		1467		
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$ $\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$	(1.40 ± 0.13)		1376		
$\Lambda \Sigma = \pi^+ + \text{c.c.}$ $\Lambda \overline{\Sigma}^0$	(1.54 ± 0.14)		1379		
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$	(1.23 ± 0.24)		1437		
$\Sigma^+ \overline{\Sigma}^-$	(1.67 ± 0.18)		1291		
$\sum_{i=1}^{n} 0$	(2.32 ± 0.12 (2.35 ± 0.09		1408		
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(2.35 ± 0.09) (8.5 ± 0.7)		1405		
Z(1303) Z(1303)	(o.5 ±0.7) × 10 -	1218		

HTTP://PDG.LBL.GOV

Page 142

$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	$(8.5 \pm 0.8) \times 10^{-5}$	1218
$\Sigma(1385)^{0}\overline{\Sigma}(1385)^{0}$	$(6.9 \pm 0.7) \times 10^{-5}$	1218
<u>=-=</u> +	$(2.87 \pm 0.11) \times 10^{-4}$ S=1.1	1284
$\equiv 0 \overline{\equiv} 0$	$(2.3 \pm 0.4) \times 10^{-4}$ S=4.2	1291
$\Xi(1530)^0 \overline{\Xi}(1530)^0$	$(5.2 \begin{array}{c} +3.2 \\ -1.2 \end{array}) \times 10^{-5}$	1025
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(3.9 \pm 0.4) \times 10^{-5}$	1114
$\Xi(1690)^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$	$(5.2 \pm 1.6) \times 10^{-6}$	_
Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$	(1.20 ± 0.32) $\times 10^{-5}$	_
$K^{-}\Sigma^{0}\frac{\overline{\underline{c}}.c.}{\overline{\underline{c}}}+$ c.c.	$(3.7 \pm 0.4) \times 10^{-5}$	1060
$\Omega^{-} \overline{\Omega}^{+}$	$(5.2 \pm 0.4) \times 10^{-5}$	774
$\pi^0 p \overline{p}$	$(1.53 \pm 0.07) \times 10^{-4}$	1543
$N(940)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	$(6.4 \begin{array}{c} +1.8 \\ -1.3 \end{array}) \times 10^{-5}$	_
$N(1440)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	$(7.3 \begin{array}{cc} +1.7 \\ -1.5 \end{array}) \times 10^{-5} S=2.5$	_
$N(1520)\overline{p}+ ext{c.c.} ightarrow \ \pi^0p\overline{p}$	$(6.4 \begin{array}{cc} +2.3 \\ -1.8 \end{array}) \times 10^{-6}$	_
$N(1535)\overline{p}+ ext{c.c.} ightarrow \pi^0p\overline{p}$	$(2.5 \pm 1.0) \times 10^{-5}$	_
$N(1650)\overline{p}+ \text{c.c.} \rightarrow \pi^0 p \overline{p}$	$(3.8 \begin{array}{c} +1.4 \\ -1.7 \end{array}) \times 10^{-5}$	_
$N(1720)\overline{p}+ \text{c.c.} \rightarrow \pi^0 p \overline{p}$	$(1.79 \begin{array}{c} +0.26 \\ -0.70 \end{array}) \times 10^{-5}$	_
$N(2300)\overline{p}+ \text{c.c.} \rightarrow \pi^0 p \overline{p}$	$(2.6 \begin{array}{c} +1.2 \\ -0.7 \end{array}) \times 10^{-5}$	_
$N(2570)\overline{p}$ + c.c. $\rightarrow \pi^0 p\overline{p}$	$(2.13 \begin{array}{c} +0.40 \\ -0.31 \end{array}) \times 10^{-5}$	_
$\pi^0 f_0(2100) \rightarrow \pi^0 p \overline{p}$	(1.1 ± 0.4) $ imes 10^{-5}$	_
$\eta p \overline{p}$	$(6.0 \pm 0.4) \times 10^{-5}$	1373
$\eta f_0(2100) \rightarrow \eta p \overline{p}$	(1.2 \pm 0.4) $ imes$ 10 ⁻⁵	_
$N(1535)\overline{p} ightarrow \eta p \overline{p}$	$(4.4 \pm 0.7) \times 10^{-5}$	_
$\omega p \overline{p}$	$(6.9 \pm 2.1) \times 10^{-5}$	1247
$\phi \rho \overline{ ho}$	$< 2.4 \times 10^{-5} \text{ CL}=90\%$	1109
$\pi^+\pi^-p\overline{p}$	$(6.0 \pm 0.4) \times 10^{-4}$	1491
$p\overline{n}\pi^-$ or c.c.	$(2.48 \pm 0.17) \times 10^{-4}$	_
$p\overline{n}\pi^-\pi^0$	$(3.2 \pm 0.7) \times 10^{-4}$	1492
$2(\pi^+\pi^-\pi^0)$	$(4.8 \pm 1.5) \times 10^{-3}$	1776
$\eta \pi^+ \pi^-$	$< 1.6 \times 10^{-4} \text{ CL}=90\%$	1791
$\eta \pi^+ \pi^- \pi^0$	$(9.5 \pm 1.7) \times 10^{-4}$	1778
$2(\pi^{+}\pi^{-})\eta$	$(1.2 \pm 0.6) \times 10^{-3}$	1758
$\eta'\pi^+\pi^-\pi^0$	$(4.5 \pm 2.1) \times 10^{-4}$	1692
$\omega \pi^+ \pi^-$	$(7.3 \pm 1.2) \times 10^{-4} $ S=2.1	1748
$b_1^\pm\pi^\mp$	$(4.0 \pm 0.6) \times 10^{-4} $ S=1.1	1635
$b_1^{ar{0}} \pi^0$	(2.4 ± 0.6) \times 10 ⁻⁴	_
$\omega f_2(1270)$	$(2.2 \pm 0.4) \times 10^{-4}$	1515
$\pi^{0}\pi^{0}K^{+}K^{-}$	$(2.6 \pm 1.3) \times 10^{-4}$	1728
	•	

Page 143

$\pi^{+}\pi^{-}K^{+}K^{-}$	$(7.3 \pm 0.5) \times 10^{-4}$	1726
$\pi^0 \pi^0_{S} K^0_{S} K^0_{L}$	$(1.3 \pm 0.5) \times 10^{-3}$	1726
$\rho^0 K^+ K^-$	$(2.2 \pm 0.4) \times 10^{-4}$	1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$	$(1.9 \pm 0.5) \times 10^{-4}$	1418
$K^+K^-\pi^+\pi^-\eta$	$(1.3 \pm 0.7) \times 10^{-3}$	1574
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	$(1.00 \pm 0.31) \times 10^{-3}$	1611
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(1.9 \pm 0.9) \times 10^{-3}$	1654
$K_{1}(1270)^{\pm} K^{\mp}$	$(1.00 \pm 0.28) \times 10^{-3}$	1581
$K_S^0 K_S^0 \pi^+ \pi^-$	$(2.2 \pm 0.4) \times 10^{-4}$	1724
$ ho^0 p \overline{p}$	$(5.0 \pm 2.2) \times 10^{-5}$	1252
$K^{+}\overline{K^{*}}(892)^{0}\pi^{-}+\text{c.c.}$	$(6.7 \pm 2.5) \times 10^{-4}$	1674
$2(\pi^{+}\pi^{-})$	$(2.4 \pm 0.6) \times 10^{-4} $ S=2.2	1817
$ ho^0 \pi^+ \pi^-$	$(2.2 \pm 0.6) \times 10^{-4} $ S=1.4	1750
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.26 \pm 0.09) \times 10^{-3}$	1694
$\omega f_0(1710) \rightarrow \omega K^+ K^-$	$(5.9 \pm 2.2) \times 10^{-5}$	_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{ c.c.}$	$(8.6 \pm 2.2) \times 10^{-4}$	_
$K^*(892)^+ K^- \pi^+ \pi^- + \text{ c.c.}$	$(9.6 \pm 2.8) \times 10^{-4}$	_
$K^*(892)^+ K^- ho^0 + \text{ c.c.}$	$(7.3 \pm 2.6) \times 10^{-4}$	_
$K^*(892)^0K^- ho^++$ c.c.	$(6.1 \pm 1.8) \times 10^{-4}$	_
ηK^+K^- , no $\eta\phi$	$(3.1 \pm 0.4) \times 10^{-5}$	1664
$\omega K^+ K^-$	$(1.62 \pm 0.11) \times 10^{-4}$ S=1.1	1614
$\omega K^*(892)^+ K^- + \text{c.c.}$	$(2.07 \pm 0.26) \times 10^{-4}$	1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	$(6.1 \pm 1.2) \times 10^{-5}$	1253
$\omega \overline{K}^{\overline{*}}(892)^0 K^0$	$(1.68 \pm 0.30) \times 10^{-4}$	1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	$(5.8 \pm 2.2) \times 10^{-5}$	1251
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	(1.6 ± 0.4) $ imes 10^{-5}$	_
$\omega X(1440) ightarrow \ \omega K^+ K^- \pi^0$	(100 0.26) × 10=5	
$\omega f_1(1285) \rightarrow \omega K^0 K^- \pi^+ +$	$(1.09 \pm 0.26) \times 10^{-5}$	_
$\omega \eta(1203) \rightarrow \omega \eta_S \eta \eta \eta + $ c.c.	$(3.0 \pm 1.0) \times 10^{-6}$	_
$\omega f_1(1285) \rightarrow \omega K^+ K^- \pi^0$	$(1.2 \pm 0.7) \times 10^{-6}$	_
$3(\pi^+\pi^-)$	$(3.5 \pm 2.0) \times 10^{-4}$ S=2.8	1774
$\rho \overline{\rho} \pi^+ \pi^- \pi^0$	$(7.3 \pm 0.7) \times 10^{-4}$	1435
K^+K^-	$(7.5 \pm 0.5) \times 10^{-5}$	1776
$K_S^0 K_I^0$	(5.34 ± 0.33) $\times 10^{-5}$	1775
$\pi + \pi^- \pi^0$	$(2.01 \pm 0.17) \times 10^{-4}$ S=1.7	1830
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$	$(1.9 \begin{array}{c} +1.2 \\ -0.4 \end{array}) \times 10^{-4}$	_
$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	$(3.2 \pm 1.2) \times 10^{-5}$ S=1.8	_
$\pi^+\pi^-$	$(7.8 \pm 2.6) \times 10^{-6}$	1838
κ_1 $(1400)^\pm \kappa^\mp$	$< 3.1 \times 10^{-4} \text{ CL} = 90\%$	1532
$K_2^*(1430)^{\pm} K^{\mp}$	$(7.1 \begin{array}{c} +1.3 \\ -0.9 \end{array}) \times 10^{-5}$	_
$K_2^{(1430)}$ K^+	$(7.1 -0.9) \times 10$ $(4.07 \pm 0.31) \times 10^{-5}$	1754
$K_S^0 K_L^0 \pi^0$,	1754
$NSNL^{TI}$	$< 3.0 \times 10^{-4} \text{ CL} = 90\%$	1753

HTTP://PDG.LBL.GOV

Page 144

0.00				2		
$K_S^0 K_L^0 \eta$				$) \times 10^{-3}$		1661
$K^+K^*(892)^- + \text{c.c.}$	•			$) \times 10^{-5}$	S=1.2	1698
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$				$) \times 10^{-4}$		1697
$\phi \pi^{+} \pi^{-}$	•			$) \times 10^{-4}$	S=1.5	1690
$\phi f_0(980) \to \pi^+ \pi^-$	•			$) \times 10^{-5}$	S=1.6	1400
$2(K^+K^-) \ \phi K^+K^-$				$) \times 10^{-5}$ $) \times 10^{-5}$		1499
$2(K^{+}K^{-})\pi^{0}$	•			$) \times 10^{-4}$		1546 1440
$\phi \eta$				$) \times 10$ $) \times 10^{-5}$		1654
$\phi \eta' \phi \eta'$				$) \times 10^{-5}$		1555
$\omega \eta'$) × 10 ⁻⁵		1623
•						
$\omega \pi^0$				$) \times 10^{-5}$		1757
$ ho \eta'$	(1	9	+1.7 - 1.2	$)\times 10^{-5}$		1625
$ ho\eta$	•			$) \times 10^{-5}$		1717
$\omega \eta$				\times 10 ⁻⁵		1715
$\phi\pi^0$	< 4				CL=90%	1699
$\eta_c \pi^+ \pi^- \pi^0$					CL=90%	512
$p\overline{p}K^+K^-$				$) \times 10^{-5}$		1118
$\overline{\Lambda} n K_0^0 + \text{c.c.}$				$) \times 10^{-5}$		1324
$\phi f_2'(1525)$,		± 1.6	$) \times 10^{-5}$		1321
$\Theta(1540)\overline{\Theta}(1540) \rightarrow$	< 8	3.8		× 10 ⁻⁰	CL=90%	_
$K_0^0 p K^- \overline{n} + \text{c.c.}$		•		40-5	CI 000/	
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	< 1				CL=90%	_
$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^0 \overline{p} K^+ n$	< 7				CL=90%	_
$\overline{\Theta}(1540)K^+ n \rightarrow K_S^0 \overline{p}K^+ n$	< 2				CL=90%	_
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^{0} p K^{-} \overline{n}$	< 6				CL=90%	
$K_S^0 K_S^0$	< 4	1.6		\times 10 ⁻⁶		1775
Radiat	tive d	ecay	/S			
$\gamma \chi_{c0}(1P)$		_	±0.20) %		261
$\gamma \chi_{c1}(1P)$	(9	.75	± 0.24) %		171
$\gamma \chi_{c2}(1P)$	(9	9.52	± 0.20) %		128
$\gamma \eta_c(1S)$	(3	3.4	± 0.5	$) \times 10^{-3}$	S=1.3	635
$\gamma \eta_{c}(2S)$	•			$) \times 10^{-4}$		48
$\gamma \pi^0$	•			$) \times 10^{-6}$	S=1.4	1841
$\gamma \eta'(958)$	`			$) \times 10^{-4}$		1719
$\gamma f_2(1270)$	(2	2.73	+0.29 -0.25	$) \times 10^{-4}$	S=1.8	1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$				$) \times 10^{-5}$		1588
$\gamma f_0(1500)$				$) \times 10^{-5}$		1536
$\gamma f_2'(1525)$	(3	3.3	± 0.8	$) \times 10^{-5}$		1528
$\gamma f_0(1710) \rightarrow \gamma \pi \underline{\pi}$			± 0.6	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(6	5.6	± 0.7	$) \times 10^{-5}$		_

$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(4.8 ∃	± 1.0) $\times 10^{-6}$	1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(3.2 ∃	± 1.0) $\times 10^{-6}$	1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	< 5.8		CL=90% 1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	< 9.5		CL=90% 1168
$\gamma \gamma$	< 1.5		CL=90% 1843
$\gamma\eta$		$\pm 1.8) \times 10^{-7}$	1802
$\gamma \eta \pi^+ \pi^-$	•	$\pm 2.1) \times 10^{-4}$	1791
$\gamma \eta (1405) \rightarrow \gamma K \overline{K} \pi$	< 9		CL=90% 1569
$\gamma \eta (1405) \rightarrow \eta \pi^+ \pi^-$	(3.6 ∃	± 2.5) $\times 10^{-5}$	_
$\gamma \eta(1405) \rightarrow \gamma f_0(980) \pi^0 \rightarrow \gamma \pi^+ \pi^- \pi^0$	→ < 5.0	× 10 ⁻⁷	CL=90% -
$\gamma \eta (1475) \rightarrow K \overline{K} \pi$	< 1.4	$\times10^{-4}$	CL=90% -
$\gamma \eta (1475) \rightarrow \eta \pi^+ \pi^-$	< 8.8	$\times10^{-5}$	CL=90% -
$\gamma 2(\pi^+\pi^-)$	(4.0 ±	± 0.6) $\times 10^{-4}$	1817
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$		± 0.9) $\times 10^{-4}$	1674
$\gamma K^{*0} \overline{K}^{*0}$	(2.4 \pm	± 0.7) $\times 10^{-4}$	1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$	(2.6 ∃	± 0.5) $\times 10^{-4}$	1753
γ K ⁺ K ⁻ π ⁺ π ⁻	(1.9 ±	± 0.5) $\times 10^{-4}$	1726
$\gamma p \overline{p}$,	± 0.5) $\times 10^{-5}$	S=2.0 1586
$\gamma f_2(1950) \rightarrow \gamma p \overline{p}$		$\pm 0.22) \times 10^{-5}$	_
$\gamma f_2(2150) \rightarrow \gamma p \overline{p}$	(7.2 ∃	$\pm 1.8 \) \times 10^{-6}$	_
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(4.6	$^{+1.8}_{-4.0}$) × 10 ⁻⁶	-
$\gamma X \rightarrow \gamma \rho \overline{\rho}$	[<i>vvaa</i>] < 2		CL=90% -
$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(2.8 \pm	$\pm 1.4) \times 10^{-5}$	1491
$\gamma 2(\pi^+\pi^-)K^+K^-$	< 2.2		CL=90% 1654
$\gamma 3(\pi^+\pi^-)$	< 1.7		CL=90% 1774
$\gamma K^+ K^- K^+ K^-$	< 4	× 10 ⁻⁵	CL=90% 1499
$\gamma \gamma J/\psi$	(3.1 -	$^{+1.0}_{-1.2}$) \times 10 ⁻⁴	542
$e^{+}e^{-}\chi_{c0}(1P)$		$\pm 0.24) \times 10^{-3}$	261
$e^{+}e^{-}\chi_{c1}(1P)$		± 0.6) $\times 10^{-4}$	171
$e^+e^-\chi_{c2}(1P)$	(7.0 ±	$\pm 0.8 \) \times 10^{-4}$	128
-0.	Weak decays	7	
$D^0 e^+ e^- + \text{c.c.}$	< 1.4	× 10 ⁻⁷	CL=90% 1371
	Other decays		
invisible	< 1.6	%	CL=90% -

ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

 $\begin{aligned} \text{Mass } m &= 3773.13 \pm 0.35 \text{ MeV} \quad (\text{S} = 1.1) \\ \text{Full width } \Gamma &= 27.2 \pm 1.0 \text{ MeV} \\ \Gamma_{ee} &= 0.262 \pm 0.018 \text{ keV} \quad (\text{S} = 1.4) \end{aligned}$

In addition to the dominant decay mode to $D\overline{D}$, $\psi(3770)$ was found to decay into the final states containing the J/ψ (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to $\phi\eta$ only (ADAMS 06).

$D^{0}\overline{D^{0}}$ $D^{+}D^{-}$ $J/\psi \pi^{+}\pi^{-}$ $J/\psi \pi^{0}\pi^{0}$ $(52 \frac{+4}{-5})\%$ $(41 \pm 4)\%$ $S=2.0$ $(41 \pm 4)\%$ $S=2.0$ $(1.93\pm0.28)\times10^{-3}$ $(8.0 \pm 3.0)\times10^{-4}$ $(9 \pm 4)\times10^{-4}$ $(9 \pm 4)\times10^{-4}$ $(9.6 \pm 0.7)\times10^{-6}$ $S=1.3$ $E^{+}e^{-}$ $Decays to light hadrons$ $(1.93\pm0.28)\times10^{-3}$ $(9 \pm 4)\times10^{-4}$ $(9 \pm 4)\times10^{-4}$ $(9.6 \pm 0.7)\times10^{-6}$ $S=1.3$	Scale factor (Γ_i/Γ) Confidence let	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(93 +8) % S=	2.0 286
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(52 {}^{+4}_{-5}) \%$ S=	2.0 286
$J/\psi \pi^0 \pi^0$ (8.0 ±3.0) × 10 ⁻⁴ 89 1 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁴ 10	$(41 \pm 4)\%$ S=	2.0 252
$J/\psi \eta$ (9 ±4)×10 ⁻⁴ 33 $J/\psi \pi^0$ < 2.8 ×10 ⁻⁴ CL=90% 6 e^+e^- (9.6 ±0.7)×10 ⁻⁶ S=1.3 18 Decays to light hadrons $b_1(1235)\pi$ < 1.4 ×10 ⁻⁵ CL=90% 16 $\phi \eta'$ < 7 ×10 ⁻⁴ CL=90% 16	$(1.93\pm0.28)\times10^{-3}$	560
$J/\psi \pi^0$ < 2.8 $\times 10^{-4}$ CL=90% 6 $e^+ e^-$ (9.6 ± 0.7) $\times 10^{-6}$ S=1.3 18 Decays to light hadrons $b_1(1235)\pi$ < 1.4 $\times 10^{-5}$ CL=90% 16 $\phi \eta'$ < 7 $\times 10^{-4}$ CL=90% 16	$(8.0 \pm 3.0) \times 10^{-4}$	564
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		360
Decays to light hadrons $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$< 2.8 \times 10^{-4} \text{ CL}=9$	0% 603
$b_1(1235)\pi$ < 1.4 $\times 10^{-5}$ CL=90% 16 $\phi \eta'$ < 7 $\times 10^{-4}$ CL=90% 16	$(9.6 \pm 0.7) \times 10^{-6}$ S=	1.3 1887
$\phi\eta'$ < 7 × 10 ⁻⁴ CL=90% 16	s to light hadrons	
$\phi \eta'$ < 7 × 10 ⁻⁴ CL=90% 16		1683
/	$<$ 7 \times 10 ⁻⁴ CL=9	1607
	$<$ 4 $\times 10^{-4}$ CL=9	0% 1672
')% 1674
		1703
. •)% 1762
	$< 3 \times 10^{-5} \text{ CL}=90$	
,		
3 L		
'		
·	•	
·'		
$ \eta 2(\pi^+ \pi^-) $ < 2.43 % CL=90% 18	< 2.43 % CL=9	1804

$\eta \rho^0 \pi^+ \pi^-$		1.45	%	CL=90%	1708
η' 3 π	<	2.44	\times 10 ⁻³	CL=90%	1740
$K^+K^-\pi^+\pi^-$	<	9.0	$\times 10^{-4}$	CL=90%	1772
$\phi \pi^+ \pi^-$	<		\times 10 ⁻⁴	CL=90%	1737
$K^+K^-2\pi^0$		4.2	$\times 10^{-3}$	CL=90%	1774
$4(\pi^{+}\pi^{-})$	<	1.67	%	CL=90%	1757
$4(\pi^{+}\pi^{-})\pi^{0}$	<	3.06	%	CL=90%	1720
$\phi f_0(980)$		4.5	\times 10 ⁻⁴	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$		2.36	\times 10 ⁻³	CL=90%	1741
$K^+K^- ho^0\pi^0$		8	\times 10 ⁻⁴	CL=90%	1624
$K^+K^-\rho^+\pi^-$		1.46	%	CL=90%	1622
$\omega K^+ K^-$		3.4	$\times 10^{-4}$	CL=90%	1664
$\phi \pi^{+} \pi^{-} \pi^{0}$	<	3.8	\times 10 ⁻³	CL=90%	1722
$K^{*0}K^-\pi^+\pi^0$ + c.c.	<	1.62	%	CL=90%	1693
$K^{*+}K^{-}\pi^{+}\pi^{-}+ c.c.$		3.23	%	CL=90%	1692
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%	1705
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	<		%	CL=90%	1702
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	<	3.60	%	CL=90%	1660
$\eta K^+ K^-$	<		\times 10 ⁻⁴	CL=90%	1712
$\eta K^+K^-\pi^+\pi^-$		1.24	%	CL=90%	1624
$\rho^0 K^+ K^-$		5.0	\times 10 ⁻³	CL=90%	1665
$2(K^{+}K^{-})$	<		× 10 ⁻⁴	CL=90%	1552
$\phi K^+ K^-$		7.5	× 10 ⁻⁴	CL=90%	1598
$2(K^{+}K^{-})\pi^{0}$		2.9	$\times 10^{-4}$	CL=90%	1493
$2(K^{+}K^{-})\pi^{+}\pi^{-}$		3.2	\times 10 ⁻³	CL=90%	1425
$K_S^0 K^- \pi^+$	<	3.2	$\times 10^{-3}$	CL=90%	1799
$K^{\bar{0}}_{S}K^{-}\pi^{+}\pi^{0}$	<	1.33	%	CL=90%	1773
$K_S^0 K^- \rho^+$	<	6.6	$\times 10^{-3}$	CL=90%	1664
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$	<	8.7	$\times 10^{-3}$	CL=90%	1739
$K_{S}^{0}K^{-}\pi^{+}\rho^{0}$	<	1.6	%	CL=90%	1621
$K_{S}^{0}K^{-}\pi^{+}\eta$	<	1.3	%	CL=90%	1669
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$	<	4.18	%	CL=90%	1703
$\kappa_{5}^{0} \kappa^{-} 2\pi^{+} \pi^{-} \eta$		4.8	%	CL=90%	1570
$\kappa_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$		1.22	%	CL=90%	1658
$K_{5}^{0}K^{-}\pi^{+}2\pi^{0}$		2.65	%	CL=90%	1742
$K_{5}^{0}K^{-}K^{+}K^{-}\pi^{+}$		4.9	× 10 ⁻³		
$K_0^0 K^- K^+ K^- \pi^+ \pi^0$					1490
.3		3.0	%	CL=90%	1427
$K_S^{0}K^-K^+K^-\pi^+\eta$		2.2	%	CL=90%	1214
$K^{*0}K^{-}\pi^{+}$ + c.c.		9.7	\times 10 ⁻³		1722
$p\overline{p}\pi^0$		4	\times 10 ⁻⁵		1595
$p\overline{p}\pi^+\pi^-$		5.8	$\times 10^{-4}$		1544
$\Lambda \overline{\Lambda}$ $\rho \overline{\rho} \pi^+ \pi^- \pi^0$		1.2	$\times 10^{-4}$		1521
$pp\pi \mid \pi \mid \pi^{\circ}$	<	1.85	\times 10 ⁻³	CL=90%	1490

$\omega \underline{p} \overline{p}$	< 2.9	$\times 10^{-4}$	CL=90%	1309
$\Lambda \overline{\Lambda} \pi^0$	< 7	$\times 10^{-5}$	CL=90%	1468
$p\overline{p}2(\pi^+\pi^-)$	< 2.6	$\times 10^{-3}$	CL=90%	1425
ηρ <u></u>	< 5.4	$\times 10^{-4}$	CL=90%	1430
$\eta p \overline{p} \pi^+ \pi^-$	< 3.3	$\times 10^{-3}$	CL=90%	1284
$ ho^{0}\mathbf{p}\overline{\mathbf{p}}$	< 1.7	$\times 10^{-3}$	CL=90%	1313
$p\overline{p}K^+K^-$	< 3.2	$\times 10^{-4}$	CL=90%	1185
$\eta p \overline{p} K^+ K^-$	< 6.9	$\times 10^{-3}$	CL=90%	736
$\pi^0 p \overline{p} K^+ K^-$	< 1.2	$\times 10^{-3}$	CL=90%	1093
$\phi p \overline{p}$	< 1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	1404
$\Lambda \overline{p} K^+$	< 2.8	$\times 10^{-4}$	CL=90%	1387
$\Lambda \overline{ ho} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda \overline{\Lambda} \eta$	< 1.9	$\times 10^{-4}$	CL=90%	1262
$\Sigma^+ \overline{\Sigma}^-$	< 1.0	$\times 10^{-4}$	CL=90%	1464
$\Sigma^0 \overline{\Sigma}{}^0$	< 4	$\times 10^{-5}$	CL=90%	1462
<u>=</u> + <u>=</u> − =0 <u>=</u> 0	< 1.5	$\times 10^{-4}$	CL=90%	1346
<u>=0 =0</u>	< 1.4	$\times 10^{-4}$	CL=90%	1353
	Radiative decays			
$\gamma \chi_{c2}$	< 6.4	$\times 10^{-4}$	CL=90%	211
$\gamma \chi_{c1}$	(2.49±0.23			253
$\gamma \chi_{c0}$	(6.9 ± 0.6)			341
$\gamma \eta_c$	< 7	$^{'}$ $ imes$ 10 ⁻⁴	CL=90%	707
$\gamma \eta_c(2S)$	< 9	$\times 10^{-4}$	CL=90%	133
$\gamma \eta'$	< 1.8	$\times 10^{-4}$	CL=90%	1765
$\gamma\eta$	< 1.5	$\times10^{-4}$	CL=90%	1847
$\gamma \pi^0$	< 2	$\times 10^{-4}$	CL=90%	1884
•				

$\psi_2(3823)$

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

Mass $m=3822.2\pm1.2~{\rm MeV}$ Full width $\Gamma~<~16~{\rm MeV},~{\rm CL}=90\%$

ψ_2 (3823) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\chi_{c1}\gamma$	seen	299
$\chi_{c2}\gamma$	not seen	257

$\chi_{c1}(3872)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3871.69\pm0.17$ MeV $m_{\chi_{c1}(3872)}-m_{J/\psi}=775\pm4$ MeV Full width $\Gamma<1.2$ MeV, CL =90%

HTTP://PDG.LBL.GOV

Page 149

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-J/\psi(1S)$	> 3.2 %	650
$\omega J/\psi(1S)$	> 2.3 %	†
$D^0 \overline{D}{}^0 \pi^0$	>40 %	117
$\overline{D}^{*0} D^0$	>30 %	3
$\gamma J/\psi$	$> 7 \times 10^{-3}$	697
$\gamma \psi$ (2S)	> 4 %	181
$\pi^+\pi^-\eta_c(1S)$	not seen	746
$\pi^+\pi^-\chi_{c1}$	not seen	218
$p\overline{p}$	not seen	1693

$Z_c(3900)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

Mass $m=3886.6\pm2.4$ MeV (S = 1.6) Full width $\Gamma=28.2\pm2.6$ MeV

Z_c (3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi$	seen	699
$J/\psi\pi \ h_c\pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^- \ (D \overline{D}^*)^\pm$	not seen	758
	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	150
$D^{-}D^{*0}$ + c.c.	seen	140
$\omega \pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	509
$D^{+}D^{*-}$ + c.c	seen	_
$D^0\overline{D}^{*0}$ + c.c	seen	-

X(3915)

$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{+})$$

Created: 6/5/2018 18:58

Mass $m=3918.4\pm1.9~{
m MeV}$ Full width $\Gamma=20\pm5~{
m MeV}~({
m S}=1.1)$

X(3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ω J/ψ	seen	222
$\omega J/\psi \ \pi^+\pi^-\eta_c(1S)$	not seen	785
$\eta_c \eta_c$	not seen	665
η _c η η _c π ⁰ Κ Κ	not seen	814
$K\overline{K}$	not seen	1896
$\gamma\gamma$	seen	1959

$$\chi_{c2}(3930)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3927.2\pm2.6$ MeV Full width $\Gamma=24\pm6$ MeV

χ_{c2} (3930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma$	seen	1964
$D\overline{D}$	seen	615
D^+D^-	seen	600
$D^0 \overline{D}{}^0$	seen	615
$\pi^+\pi^-\eta_c(1S)$	not seen	792
KK	not seen	1901

X(4020)

$$I^{G}(J^{PC}) = 1^{+}(?^{?-})$$

$$\label{eq:mass_m} \begin{split} \text{Mass } m = 4024.1 \pm 1.9 \text{ MeV} \\ \text{Full width } \Gamma = 13 \pm 5 \text{ MeV} \quad \text{(S} = 1.7) \end{split}$$

X(4020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$	seen	450
$D^*\overline{D}^*$	seen	85
$D\overline{D}^*+$ c.c.	not seen	542
$\eta_c \pi^+ \pi^-$	not seen	872
$J/\psi(1S)\pi^{\pm}$	not seen	811

ψ (4040) [xxaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=4039\pm1$$
 MeV Full width $\Gamma=80\pm10$ MeV $\Gamma_{ee}=0.86\pm0.07$ keV Γ_{ee} < 2.9 eV, CL = 90% Γ_{ee} < 4.6 eV, CL = 90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
e^+e^-	(1.07±0.16) ×	10 ⁻⁵	2019
$D\overline{D}$	seen		775
HTTP://PDG.LBL.GOV	Page 151	Created: 6/5/201	8 18:58

$D^0 \overline{D}{}^0$				
	seen			775
D+ D-	seen			763
$D^*\overline{D}$ + c.c.	seen			569
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	seen			575
$D^*(2010)^+ D^- + \text{c.c.}$	seen			561
$D^*\overline{D}^*$	seen			193
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen			226
$D_{2}^{*}(2010)^{+}D^{*}(2010)^{-}$	seen			193
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seer	n		_
$D^*(2007)^0 \overline{D}^{0'} + \text{c.c.},$				
$D^*(2010)^+D^- + c.c.$				
$D\overline{D}^*\pi(\text{excl. }D^*\overline{D}^*)$	not seer	n		_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+ D_s^-$	seen			452
$J/\psi \pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	794
$J/\psi \pi^0 \pi^0$	< 2	$\times 10^{-3}$	90%	797
$J/\psi\eta$	(5.2 ± 0)	$0.7) \times 10^{-3}$		675
$J/\psi \pi^0$	< 2.8	× 10 ⁻⁴	90%	823
$J/\psi \pi^{+} \pi^{-} \pi^{0}$	< 2	$\times 10^{-3}$	90%	746
$\chi_{c1}\gamma$	< 3.4	$\times 10^{-3}$	90%	494
$\chi_{c2}\gamma$	< 5	$\times 10^{-3}$	90%	454
$\chi_{c1}\pi^+\pi^-\pi^0$	< 1.1	%	90%	306
$\chi_{c2}\pi^+\pi^-\pi^0$	< 3.2	%	90%	233
$h_c(1P)\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	403
$\phi \pi^+ \pi^-$	< 3	\times 10 ⁻³	90%	1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	$\times 10^{-4}$	90%	1578
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$	90%	1636
$\Lambda \overline{\Lambda} \eta$	< 3.0	$\times 10^{-4}$	90%	1452
$\Sigma + \frac{1}{\Sigma}$	< 1.3	$\times 10^{-4}$	90%	1632
$\Sigma^0 \overline{\Sigma}{}^0$	< 7	$\times 10^{-5}$	90%	1630
<u>=+=</u> -	< 1.6	$\times 10^{-4}$	90%	1527
<u>=</u> 0 <u>=</u> 0	< 1.8	$\times 10^{-4}$	90%	1533

$\chi_{c1}(4140)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass
$$m=4146.8\pm2.4$$
 MeV (S $=1.1$) Full width $\Gamma=22^{+8}_{-7}$ MeV (S $=1.3$)

χ_{c1} (4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	217
$\gamma\gamma$	not seen	2073

$$\psi$$
(4160) [xxaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4191\pm 5$ MeV Full width $\Gamma=70\pm 10$ MeV $\Gamma_{ee}=0.48\pm 0.22$ keV $\Gamma_{ee}<2.2$ eV, CL =90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i /	Έ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	(6.9 ±3.3) × 10	6	2096
$\mu^+\mu^-$	seen			2093
$D\overline{D}$	seen			956
$D^0 \overline{D}{}^0$	seen			956
D^+D^-	seen			947
$D^*\overline{D}$ + c.c.	seen			798
$D^*(2007)^0\overline{D}{}^0+$ c.c.	seen			802
$D^*(2010)^+ D^- + \text{c.c.}$	seen			792
$D^*\overline{D}^*$	seen			592
$D^*(2007)^0 \overline{D}{}^*(2007)^0$	seen			604
$D^*(2010)^+ D^*(2010)^-$	seen			592
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2007)^0\overline{D}{}^0+{ m c.c.},$				
$D^*(2010)^+D^- + c.c.)$				
$D\overline{D}^*\pi+$ c.c. (excl. $D^*\overline{D}^*$)	seen			_
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+ D_s^-$	not seen			719
$D_{s}^{*+}D_{s}^{-}+c.c.$	seen			385
$J/\psi \pi^+\pi^-$	< 3	× 10	3 90%	919
$J/\psi \pi^0 \pi^0$	< 3	× 10	3 90%	922
$J/\psi K^+ K^-$	< 2	× 10	3 90%	407
$J/\psi \eta$	< 8	× 10	3 90%	822
$J/\psi \pi^0$	< 1	× 10		944
$J/\psi \eta'$	< 5	× 10		457
$J/\psi \pi^{+} \pi^{-} \pi^{0}$	< 1	× 10	3 90%	879
$\psi(2S)\pi^+\pi^-$	< 4	× 10	3 90%	396
$\chi_{c1}\gamma$	< 5	× 10	3 90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587

$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 2	$\times 10^{-3}$	90%	496
$\chi_{c2}\pi^{+}\pi^{-}\pi^{0}$	< 8	$\times10^{-3}$	90%	445
$h_c(1P)\pi^+\pi^-$	< 5	$\times 10^{-3}$	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	$\times 10^{-3}$	90%	560
$h_c(1P)\eta$	< 2	$\times 10^{-3}$	90%	348
$h_c(1P)\pi^0$	< 4	$\times 10^{-4}$	90%	600
$\phi \pi^+ \pi^-$	< 2	$\times 10^{-3}$	90%	1961
$\gamma \chi_{c1}(3872) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 6.8	$\times 10^{-5}$	90%	_
$\gamma X(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	$\times 10^{-4}$	90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	$\times 10^{-4}$	90%	_
$\gamma X(3940) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	$\times 10^{-4}$	90%	_
$\gamma \chi_{c1}(3872) \rightarrow \gamma \gamma J/\psi$	< 1.05	$\times 10^{-4}$	90%	_
$\gamma X(3915) \rightarrow \gamma \gamma J/\psi$	< 1.26	$\times 10^{-4}$	90%	_
$\gamma X(3930) \rightarrow \gamma \gamma J/\psi$	< 8.8	\times 10 ⁻⁵	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	\times 10 ⁻⁴	90%	_

ψ (4260)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4230\pm 8$ MeV (S=2.9) Full width $\Gamma=55\pm 19$ MeV (S=4.4)

ψ (4260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi^+ \pi^-$	seen	950
$J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$		_
$Z_c(3900)^{\pm}\pi^{\mp}$, $Z_c^{\pm} ightarrow J/\psi\pi^{\pm}$	e seen	_
$J/\psi \pi^0 \pi^0$	seen	952
$J/\psi K^+ K^-$	seen	477
$J/\psi K_S^0 K_S^0$	not seen	465
$J/\psi \eta$	not seen	857
$J/\psi \pi^0$	not seen	974
$J/\psi \eta'$	not seen	520
$J/\psi \pi^{+}\pi^{-}\pi^{0}$	not seen	912
$J/\psi \eta \pi^0$	not seen	780
$J/\psi \eta \eta$	not seen	247
$\psi(2S)\pi^{+}\pi^{-}$	not seen	437
$\psi(2S)\eta$	not seen	†
$\chi_{c0}\omega$	not seen	205
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	not seen	537
$\chi_{c2}\pi^{+}\pi^{-}\pi^{0}$	not seen	489
$h_c(1P)\pi^+\pi^-$	not seen	593
$\phi \pi^{+} \pi^{-}$	not seen	1982
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$	not seen	_

$D\overline{D}$	not seen	998	
$D^0 \overline{D}{}^0$	not seen	998	
D^+D^-	not seen	989	
$D^* \overline{D} + \text{c.c.}$	not seen	887	
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_	
$D^*(2010)^+D^-+c.c.$	not seen	_	
$D^*\overline{D}^*$	not seen	657	
$D^*(2007)^0 \overline{D}{}^*(2007)^0$	not seen	668	
$D_{2}^{*}(2010)^{+}D^{*}(2010)^{-}$	not seen	657	
$D^{0}D^{-}\pi^{+}$ +c.c. (excl.	not seen	_	
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$			
$D^*(2010)^+D^- + c.c.$			
$D\overline{D}^*\pi + \text{c.c.} \text{ (excl. } D^*\overline{D}^*\text{)}$	not seen	723	
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_	
$D^*(2010)^+D^*(2010)^-)$			
$D^0D^*(2010)^-\pi^++c.c.$	not seen	716	
$D^*\overline{D}^*\pi$	not seen	395	
$D_s^+D_s^-$	not seen	774	
$D_s^{*+}D_s^-$ +c.c.	not seen	615	
$D_{s}^{*+}D_{s}^{*-}$	not seen	109	
$p \overline{\overline{p}}$ $p \overline{p} \pi^0$	not seen	1896	
$p\overline{p}\pi^0$	not seen	1860	
$K_S^0 K^{\pm} \pi^{\mp}$	not seen	2037	
$K^+K^-\pi^0$	not seen	2038	
Radiative decays			
$\eta_c(1S)\gamma$	•	1063	
	possibly seen	658	
$\chi_{c1}\gamma$	not seen	620	
$\chi_{c2}\gamma$	not seen		
$\chi_{c1}(3872)\gamma$	seen	343	

$\chi_{c1}(4274)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 6/5/2018 18:58

Mass $m=4274^{+8}_{-6}~{
m MeV}$ Full width $\Gamma=49\pm12~{
m MeV}$

χ_{c1} (4274) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	503

$$\psi$$
(4360)

$$I^G(J^{PC}) = 0^-(1^{--})$$

I needs confirmation.

$$\begin{array}{ll} \psi(\textrm{4360) MASS} = \textrm{4368} \pm \textrm{13 MeV} & (\textrm{S} = \textrm{3.7}) \\ \psi(\textrm{4360) WIDTH} = \textrm{96} \pm \textrm{7 MeV} \\ \Gamma_{ee} \ < \ \textrm{0.57 eV, CL} = \textrm{90\%} \\ \Gamma_{ee} \ < \ \textrm{1.9 eV, CL} = \textrm{90\%} \end{array}$$

ψ (4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	573
$\psi_2(3823)\pi^+\pi^-$	possibly seen	440

ψ (4415) $^{[xxaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=4421\pm4$$
 MeV
Full width $\Gamma=62\pm20$ MeV $\Gamma_{ee}=0.58\pm0.07$ keV $\Gamma_{ee}<3.6$ eV, CL $=90\%$ $\Gamma_{ee}<0.47$ eV, CL $=90\%$ $\Gamma_{ee}<2.3$ eV, CL $=90\%$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0\overline{D}{}^0+$ c.c.	seen		1067
$D^*(2010)^+ D^- + \text{c.c.}$	seen		1059
$D^*\overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}{}^*(2007)^0 + { m c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		919
$D^0 D^- \pi^+ (\text{excl. } D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
$+ c.c., D^*(2010)^+ D^- + c.c.$			
$D\overline{D}_{2}^{*}(2460) \rightarrow D^{0}D^{-}\pi^{+}+c.c.$	(10 ± 4)%		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$	< 11 %	90%	926

$D_s^+ D_s^-$	not see	en		1006
$\omega \chi_{c2}$	possibl	y seen		330
$D_{s}^{*+}D_{s}^{-}+\text{c.c.}$	seen			_
$D_s^{*+}D_s^{*-}$	not see	en		652
$\psi_2(3823)\pi^+\pi^-$	possibl	y seen		494
$J/\psi\eta$	< 6	\times 10 ⁻³	90%	1022
$\chi_{c1}\gamma$	< 8	\times 10 ⁻⁴	90%	817
$\chi_{c2}\gamma$	< 4	\times 10 ⁻³	90%	780
e^+e^-	(9.4±3	$3.2) \times 10^{-6}$		2210

$Z_c(4430)$

$$I^G(J^{PC}) = 1^+(1^+)$$

I, G, C need confirmation.

Quantum numbers not established.

Mass
$$m=4478^{+15}_{-18}~{\rm MeV}$$
 Full width $\Gamma=181\pm31~{\rm MeV}$

Z_c (4430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+ \psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

ψ (4660)

$$I^G(J^{PC}) = 0^-(1^{--})$$
I needs confirmation.

$$\begin{array}{ll} \psi(\text{4660})\;\text{MASS}=4643\pm9\;\text{MeV} & (\text{S}=1.2)\\ \psi(\text{4660})\;\text{WIDTH}=72\pm11\;\text{MeV}\\ \Gamma_{ee}\;<\;0.45\;\text{eV},\;\text{CL}=90\%\\ \Gamma_{ee}\;<\;2.1\;\text{eV},\;\text{CL}=90\% \end{array}$$

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$\psi(2S)\pi^{+}\pi^{-}$$

820

$b\overline{b}$ MESONS (including possibly non- $q\overline{q}$ states)

$$\eta_b(1S)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass
$$m=9399.0\pm2.3~{\rm MeV}~{\rm (S=1.6)}$$
 Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 157

η_b (15) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4673
$2h^{+}2h^{-}$	not seen		4689
$\gamma \gamma$	not seen		4700
$ \begin{array}{c} \gamma \gamma \\ \mu^+ \mu^- \\ \tau^+ \tau^- \end{array} $	$< 9 \times 10^{-3}$	90%	4698
$\tau^+\tau^-$	<8 %	90%	4351

T(1*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Scale factor/

Created: 6/5/2018 18:58

Mass $m=9460.30\pm0.26$ MeV (S = 3.3) Full width $\Gamma=54.02\pm1.25$ keV $\Gamma_{ee}=1.340\pm0.018$ keV

T(1S) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
$\tau^+\tau^-$	(2.60 ±0.10) %))	4384
e^+e^-	(2.38 ± 0.11) %	,)	4730
$\mu^+\mu^-$	(2.48 ± 0.05) %	,)	4729
Hadr	onic decays		
ggg	(81.7 ± 0.7) %	,)	_
γ gg	$(2.2 \pm 0.6)\%$)	_
$\eta'(958)$ anything	$(2.94 \pm 0.24)\%$,)	_
$J/\psi(1S)$ anything	(5.4 \pm 0.4) $ imes$	10^{-4} S=1.4	4223
$J/\psi(1S)\eta_{m c}$	< 2.2 ×	10^{-6} CL=90%	3623
$J/\psi(1S)\chi_{c0}$	< 3.4 ×	10^{-6} CL=90%	3429
$J/\psi(1S)\chi_{c1}$	$(3.9 \pm 1.2) \times$	10^{-6}	3382
$J/\psi(1S)\chi_{c2}$	< 1.4 ×	10^{-6} CL=90%	3359
$J/\psi(1S)\eta_c(2S)$	< 2.2 ×	10^{-6} CL=90%	3317
$J/\psi(1S)X(3940)$	< 5.4 ×	10^{-6} CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4 ×	10^{-6} CL=90%	3018
$X(4350)$ anything, $X \rightarrow$	< 8.1 ×	10 ⁻⁶ CL=90%	_
$J/\psi(1S)\phi \ Z_c(3900)^\pm$ anything, $Z_c o J/\psi(1S)\pi^\pm$	< 1.3 ×	10 ⁻⁵ CL=90%	_
$Z_c(4200)^\pm$ anything, $Z_c ightarrow J/\psi(1S)\pi^\pm$	< 6.0 ×	10 ⁻⁵ CL=90%	_
$Z_c(4430)^\pm$ anything, $Z_c ightarrow J/\psi(1S)\pi^\pm$	< 4.9 ×	10 ⁻⁵ CL=90%	_
X_{cs}^{\pm} anything, $X ightarrow J/\psi K^{\pm}$	< 5.7 ×	10 ⁻⁶ CL=90%	_

$\chi_{c1}(3872)$ anything, $\chi_{c1} \rightarrow$	< 9.5	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\pi^+\pi^- \ \psi($ 4260 $)$ anything, $\psi ightarrow$	< 3.8	$\times 10^{-5} \text{ CL} = 90\%$	_
$J/\psi(1S)\pi^+\pi^-$	\ 3.0	× 10 CL=90/0	
ψ (4260) anything, $\psi \rightarrow$	< 7.5	$\times10^{-6}$ CL=90%	_
$J/\psi(1S)K^+K^-$			
$\chi_{c1}(4140)$ anything, $\chi_{c1} ightarrow$	< 5.2	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\phi$		3	
χ_{c0} anything	< 4		_
χ_{c1} anything		± 0.35) $\times 10^{-4}$	_
$\chi_{c1}(1P)X_{tetra}$	< 3.78		_
χ_{c2} anything		± 0.8) $\times 10^{-4}$	_
$\psi(2S)$ anything	•	± 0.20) $\times 10^{-4}$	_
$\psi(2S)\eta_c$	< 3.6	$\times 10^{-6}$ CL=90%	
$\psi(2S)\chi_{c0}$	< 6.5	$\times 10^{-6}$ CL=90%	
$\psi(2S)\chi_{c1}$	< 4.5	$\times 10^{-6}$ CL=90%	
$\psi(2S)\chi_{c2}$	< 2.1	$\times 10^{-6} \text{ CL} = 90\%$	
$\psi(2S)\eta_c(2S)$	< 3.2	$\times 10^{-6}$ CL=90%	2994
$\psi(2S)X(3940)$	< 2.9	$\times 10^{-6}$ CL=90%	2797
$\psi(2S)X(4160)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	2642
ψ (4260) anything, $\psi ightarrow$	< 7.9	$\times 10^{-5}$ CL=90%	_
$\psi(2S)\pi^{+}\pi^{-}$			
ψ (4360) anything, $\psi ightarrow$	< 5.2	$\times 10^{-5}$ CL=90%	_
$\psi(2S)\pi^+\pi^-$	` •		
ψ (4660) anything, $\psi \rightarrow$	< 2.2	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^+\pi^-$	\	7. 20	
$X(4050)^{\pm}$ anything, $X \rightarrow$	< 8.8	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^{\pm}$	\ 0.0	/\ 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$Z_c(4430)^{\pm}$ anything, $Z_c \rightarrow$	< 6.7	$\times 10^{-5}$ CL=90%	_
$\psi(2S)\pi^{\pm}$,		
$ ho\pi$	< 3.68	$\times 10^{-6} \text{ CL} = 90\%$	4697
$\omega \pi^0$	< 3.90	$\times 10^{-6} \text{ CL} = 90\%$	4697
$\pi^+\pi^-$	< 5	$\times 10^{-4} \text{ CL} = 90\%$	4728
K^+K^-	< 5	$\times 10^{-4} \text{ CL} = 90\%$	4704
$p\overline{p}$	< 5	$\times 10^{-4} \text{ CL} = 90\%$	4636
$\pi^{+}\pi^{-}\pi^{0}$	(2.1	± 0.8) $\times 10^{-6}$	4725
$\phi K^+ K^-$		± 0.5) $\times 10^{-6}$	4622
$\omega \pi^+ \pi^-$		± 1.0) $\times 10^{-6}$	4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$		± 0.8) × 10 ⁻⁶	4667
$\phi f'_{2}(1525)$	< 1.63		
$\omega f_2(1270)$	< 1.79		
$\rho(770) a_2(1320)$		$\times 10^{-6} \text{ CL}=90\%$	
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$		± 0.8) $\times 10^{-6}$	4579
$K_1(1270)^{\pm} K^{\mp}$	< 2.41	$\times 10^{-6}$ CL=90%	4631

$(1.0 \pm 0.4) \times 10^{-6}$	4613
$< 1.25 \times 10^{-6} \text{ CL}=90\%$	4649
(1.28 ± 0.30) $\times 10^{-5}$	4720
$(1.6 \pm 0.4) \times 10^{-6}$	4696
(2.9 ± 0.9) $ imes 10^{-6}$	4675
$< 1.11 \times 10^{-6} \text{ CL}=90\%$	4675
$(4.6 \pm 3.1) \times 10^{-3}$	_
(2.52 ± 0.20) %	_
$< 6.24 \times 10^{-5} \text{ CL}=90\%$	_
$(2.85 \pm 0.25) \times 10^{-5}$	_
$(1.200\pm0.017)\%$	-
	$<$ 1.25 \times 10 ⁻⁶ CL=90% (1.28 ±0.30) \times 10 ⁻⁵ (1.6 ±0.4) \times 10 ⁻⁶ (2.9 ±0.9) \times 10 ⁻⁶ $<$ 1.11 \times 10 ⁻⁶ CL=90% (4.6 ±3.1) \times 10 ⁻³ (2.52 ±0.20) % $<$ 6.24 \times 10 ⁻⁵ CL=90% (2.85 ±0.25) \times 10 ⁻⁵

Radiative decays					
$\gamma \pi^+ \pi^-$	(6.3	$\pm 1.8~)\times 10^{-5}$	4728		
$\gamma \pi^0 \pi^0$	(1.7	$\pm 0.7) \times 10^{-5}$	4728		
$\gamma\pi^{0}\eta$	< 2.4	$\times 10^{-6}$	CL=90% 4713		
γ K $^+$ K $^-$	[<i>yyaa</i>] (1.14	± 0.13 $)\times 10^{-5}$	4704		
$\gamma p \overline{p}$	[<i>zzaa</i>] < 6	$\times 10^{-6}$	CL=90% 4636		
$\gamma 2h^+2h^-$	(7.0	± 1.5) $\times10^{-4}$	4720		
γ 3 h ⁺ 3 h ⁻	(5.4	± 2.0) $\times10^{-4}$	4703		
γ 4 h^+ 4 h^-	(7.4	± 3.5) $\times 10^{-4}$	4679		
$\gamma\pi^+\pi^-$ K $^+$ K $^-$	(2.9	± 0.9) $\times10^{-4}$	4686		
γ 2 π^+ 2 π^-	(2.5	± 0.9) $\times 10^{-4}$	4720		
γ 3 π^+ 3 π^-	(2.5	± 1.2) $\times10^{-4}$	4703		
γ 2 π^+ 2 π^- K $^+$ K $^-$	(2.4	± 1.2) × 10 ⁻⁴	4658		
$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(1.5	± 0.6) $\times10^{-4}$	4604		
$\gamma 2\pi^+ 2\pi^- \rho \overline{ ho}$	(4	± 6) × 10 ⁻⁵	4563		
γ 2 K^+ 2 K^-	(2.0	± 2.0) $\times10^{-5}$	4601		
$\gamma \eta'$ (958)	< 1.9		CL=90% 4682		
$\gamma\eta$	< 1.0	$\times 10^{-6}$	CL=90% 4714		
$\gamma f_0(980)$	< 3	$\times 10^{-5}$	CL=90% 4678		
$\gamma f_2'(1525)$	(3.8	± 0.9) $\times10^{-5}$	4607		
$\gamma f_2(1270)$	(1.01	± 0.09) $\times10^{-4}$	4644		
$\gamma \eta (1405)$	< 8.2	$\times 10^{-5}$	CL=90% 4625		
$\gamma f_0(1500)$	< 1.5	$\times10^{-5}$	CL=90% 4611		
$\gamma f_0(1710)$	< 2.6	$\times 10^{-4}$	CL=90% 4573		
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	< 7	$\times 10^{-6}$	CL=90% -		
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	< 1.4	$\times 10^{-6}$	CL=90% -		
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	< 1.8	$\times 10^{-6}$	CL=90% -		
$\gamma f_4(2050)$	< 5.3	$\times10^{-5}$	CL=90% 4515		
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	< 2	$\times10^{-4}$	CL=90% 4475		
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	< 8	$\times 10^{-7}$	CL=90% 4469		
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	< 6	$\times 10^{-7}$	CL=90% -		
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	< 1.1		CL=90% -		

<	3	\times 10 ⁻³	CL=90%	4469
<	5.7	$\times 10^{-5}$	CL=90%	4260
<	6.5	$\times 10^{-4}$	CL=90%	4114
<	2.3			4079
<	7.6			4062
<	1.6			_
<	2.8			_
<	3.0	\times 10 ⁻⁶	CL=90%	_
<	2.2	\times 10 ⁻⁶	CL=90%	_
[aabb]<	4.5	$\times 10^{-6}$	CL=90%	_
[bbbb] <	1	$\times 10^{-3}$	CL=90%	_
[ccbb] <	2.4	$\times 10^{-4}$	CL=90%	_
[ddbb]<	1.78	$\times 10^{-4}$	CL=95%	_
[eebb] <	9	\times 10 ⁻⁶	CL=90%	_
[yyaa] <	1.30	$\times 10^{-4}$	CL=90%	_
$[\mathit{ffbb}] <$	1	%	CL=90%	_
[ffbb] <	1	\times 10 ⁻³	CL=90%	-
	<pre></pre>	<pre> < 3 < 5.7 < 6.5 < 2.3 < 7.6 < 1.6 < 2.8 < 3.0 < 2.2 [aabb] < 4.5 [bbbb] < 1 [ccbb] < 2.4 [ddbb] < 1.78 [eebb] < 9 [yyaa] < 1.30 [ffbb] < 1 [ffbb] < 1 [ffbb] < 1</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 5.7

Lepton Family number (LF) violating modes

$$\mu^{\pm}\, au^{\mp}$$
 LF < 6.0 $imes$ 10⁻⁶ CL=95% 4563

Other decays

invisible $< 3.0 \times 10^{-4} \text{ CL} = 90\%$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Created: 6/5/2018 18:58

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \text{ MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ	i/Γ) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	(1.94±)	0.27) %		391
$D^0 X$	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.6	× 10	4 90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	× 10	5 90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 5	× 10	4 90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	× 10	4 90%	4905
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(1.1 ± 0)	0.6) × 10	4	4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	× 10	4 90%	4846
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	× 10	4 90%	4828
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	× 10	4 90%	4827
$3\pi^{+}3\pi^{-}$	< 8	× 10	5 90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	× 10	4 90%	4881

$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.4	± 1.2) $\times10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%	4808
$4\pi^{+}4\pi^{-}$	< 8	$\times10^{-5}$	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-3}$	90%	4850
$J/\psiJ/\psi$	< 7	$\times10^{-5}$	90%	3836
$J/\psi \psi(2S)$	< 1.2	$\times 10^{-4}$	90%	3571
$\psi(2S)\psi(2S)$	< 3.1	$\times10^{-5}$	90%	3273
$J/\psi(1S)$ anything	< 2.3	$\times 10^{-3}$	90%	_

 $\chi_{b1}(1P)^{[ggbb]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \; \text{MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction	(Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	(35.0	±2.1) %		423
$D^0 X$	(12.6	±2.2) %		_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	(2.0 :	\pm 0.6) $ imes$ 10	₀ -4	4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	(1.3 :	$\pm 0.5) \times 10$	₀ -4	4892
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 6	× 10	90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	(8.0	$\pm 2.5) \times 10$	₀ -4	4921
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(1.5 :	$\pm 0.5) \times 10$	₀ —4	4878
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	(3.5 :	$\pm 1.2) \times 10$	₀ -4	4863
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	(8.6	$\pm 3.2) \times 10$	₀ -4	4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	(9.3 :	\pm 3.3) \times 10	₎ —4	4844
$3\pi^{+}3\pi^{-}$	(1.9 :	\pm 0.6) \times 10	₁ -4	4921
$3\pi^{+}3\pi^{-}2\pi^{0}$		$\pm 0.5) \times 10$		4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.6 :	$\pm 0.8) \times 10$	₀ -4	4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(7.5	$\pm 2.6) \times 10$	₀ -4	4825
$4\pi^+4\pi^-$	(2.6 :	$\pm 0.9) imes 10$	₀ -4	4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.4 :	\pm 0.6) $ imes$ 10	₁ –3	4867
ω anything	(4.9 :	$\pm 1.4)~\%$		_
ωX_{tetra}	< 4.44	\times 10	90%	_
$J/\psiJ/\psi$	< 2.7	\times 10	₀ -5 90%	3857
$J/\psi \psi(2S)$	< 1.7	\times 10	₀ -5 90%	3594
$\psi(2S)\psi(2S)$	< 6	× 10	₀ -5 90%	3298
$J/\psi(1S)$ anything	< 1.1	× 10	90%	_
$J/\psi(1S)X_{tetra}$	< 2.27	× 10	90%	_

$$h_b(1P)$$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Mass $m=9899.3\pm0.8~\mathrm{MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta_b(1S)\gamma$	(52^{+6}_{-5}) %	488

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \; \text{MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	$(18.8\pm1.1)~\%$		442
$D^0 X$	< 7.9 %	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	$(8 \pm 5) \times 10$	₎ –5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10	90%	4901
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10$	0^{-4}	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10$	$^{-4}$	4931
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.1\pm0.4)\times10$	$^{-4}$	4888
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(2.1\pm0.9)\times10$	$^{-4}$	4872
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(3.9\pm1.8)\times10$	$^{-4}$	4855
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 5 × 10	90%	4854
$3\pi^+3\pi^-$	$(7.0\pm3.1)\times10$	₎ –5	4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10$	₎ –3	4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8 × 10	90%	4854
$3\pi^{+}3\pi^{-}$ K^{+} K^{-} π^{0}	$(3.6\pm1.5)\times10$	$^{-4}$	4835
$4\pi^+4\pi^-$	$(8 \pm 4) \times 10$	₎ –5	4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10$	₎ –3	4877
$J/\psiJ/\psi$	< 4 × 10	90%	3869
$J/\psi\psi(2S)$	< 5 × 10	90%	3608
$\psi(2S)\psi(2S)$	< 1.6 × 10	90%	3313
$J/\psi(1S)$ anything	$(1.5\pm0.4)\times10$)-3	_

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=10023.26\pm0.31~{\rm MeV}$ $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13~{\rm MeV}$ Full width $\Gamma=31.98\pm2.63~{\rm keV}$ $\Gamma_{ee}=0.612\pm0.011~{\rm keV}$

r(2S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\gamma(1S)\pi^+\pi^-$	(17.85± 0.26) %	, 0	475
$\Upsilon(1S)\pi^0\pi^0$	$(8.6 \pm 0.4)\%$		480
$\tau^+\tau^-$	$(2.00\pm~0.21)\%$, D	4686
$\mu^+\mu^-$	$(1.93\pm\ 0.17)\%$	S=2.2	5011
$e^{+}e^{-}$	$(1.91\pm\ 0.16)\%$, O	5012
$\Upsilon(1S)\pi^0$	< 4 ×	10^{-5} CL=90%	531
$\Upsilon(1S)\eta$	(2.9 \pm 0.4) \times		126
$J/\psi(1S)$ anything		10^{-3} CL=90%	4533
$J/\psi(1S)\eta_{m c}$	< 5.4 ×	10^{-6} CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4 ×	10^{-6} CL=90%	3808
$J/\psi(1S)\chi_{c1}$		10^{-6} CL=90%	3765
$J/\psi(1S)\chi_{c2}$		10^{-6} CL=90%	3744
$J/\psi(1S)\eta_c(2S)$		10^{-6} CL=90%	3706
$J/\psi(1S)X(3940)$		10^{-6} CL=90%	3555
$J/\psi(1S)X(4160)$		10^{-6} CL=90%	3440
χ_{c1} anything	(2.2 ± 0.5) $ imes$	_	_
$\chi_{c1}(1P)^0 X_{tetra}$		10^{-5} CL=90%	_
χ_{c2} anything	(2.3 \pm 0.8) \times		_
$\psi(2S)\eta_c$		10^{-6} CL=90%	3732
$\psi(2S)\chi_{c0}$		10^{-6} CL=90%	3536
$\psi(2S)\chi_{c1}$		10^{-6} CL=90%	
$\psi(2S)\chi_{c2}$		10^{-6} CL=90%	3464
$\psi(2S)\eta_c(2S)$		10^{-6} CL=90%	3422
$\psi(2S)X(3940)$		10^{-6} CL=90%	3250
$\psi(2S)X(4160)$	< 3.9 ×	10^{-6} CL=90%	3118
$\overline{^2H}$ anything	$(2.78^{+}_{-}0.30_{-}) \times$	10^{-5} S=1.2	_
hadrons	(94 ± 11) %		_
ggg	$(58.8 \pm 1.2)\%$		_
γgg	$(1.87\pm\ 0.28)\%$	_	_
$\phi K^+ K^-$	(1.6 \pm 0.4) \times	_	4910
$\omega \pi^+ \pi^-$		10^{-6} CL=90%	
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.3 \pm 0.7) \times	_	4952
$\phi f_2'(1525)$		10 ⁻⁶ CL=90%	
ω f ₂ (1270)		10^{-7} CL=90%	4899
$\rho(770) a_2(1320)$		10^{-7} CL=90%	4894
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	(1.5 \pm 0.6) $ imes$		4869
$K_1(1270)^{\pm} \bar{K}^{\mp}$		10^{-6} CL=90%	4918
$K_1(1400)^{\pm}K^{\mp}$		10^{-7} CL=90%	
$b_1(1235)^{\pm}\pi^{\mp}$		10^{-7} CL=90%	
$ ho\pi$	< 1.16 ×	10^{-6} CL=90%	4981
$\pi^+\pi^-\pi^0$	< 8.0 ×	10^{-7} CL=90%	5007

HTTP://PDG.LBL.GOV

Page 164

$\omega \pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$ $K^{*}(892)^{0}\overline{K}^{0}+\text{c.c.}$ $K^{*}(892)^{-}K^{+}+\text{c.c.}$ $f_{1}(1285)$ anything $f_{1}(1285)X_{tetra}$ Sum of 100 exclusive modes	< 1.63 (1.30 ± 0.28) (1.14 ± 0.33) < 4.22 < 1.45 (2.2 ± 1.6) < 6.47 (2.90 ± 0.30)	$ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $ $ \times 10^{-6} $ $ \times 10^{-3} $ $ \times 10^{-5} $	CL=90% CL=90%	4980 5002 4979 4959 4960 —
	Radiative decays			
$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4)	%		130
$\gamma \chi_{b2}(1P)$	(7.15± 0.35)			110
$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4)	%		162
$\gamma f_0(1710)$	< 5.9	$\times 10^{-4}$	CL=90%	4864

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

Created: 6/5/2018 18:58

 $\times 10^{-5}$

4896

4930

4567

4430

4397

4381

$\begin{array}{llll} \gamma \chi_{b0}(1P) & (3.8 \pm 0.4) \% \\ \gamma f_0(1710) & < 5.9 & \times 10^{-4} \\ \gamma f_2'(1525) & < 5.3 & \times 10^{-4} \\ \gamma f_2(1270) & < 2.41 & \times 10^{-4} \\ \gamma \eta_c(1S) & < 2.7 & \times 10^{-5} \\ \gamma \chi_{c0} & < 1.0 & \times 10^{-4} \\ \gamma \chi_{c1} & < 3.6 & \times 10^{-6} \end{array}$

$$\gamma \chi_{c1}(3872) \rightarrow \pi^{+} \pi^{-} J/\psi$$
 < 8 $\times 10^{-7}$ CL=90% $\gamma \chi_{c1}(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0} J/\psi$ < 2.4 $\times 10^{-6}$ CL=90% $\gamma X(3915) \rightarrow \omega J/\psi$ < 2.8 $\times 10^{-6}$ CL=90%

< 1.5

$$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$$
 < 1.2 × 10⁻⁶ CL=90% – $\gamma X(4350) \rightarrow \phi J/\psi$ < 1.3 × 10⁻⁶ CL=90% – $\gamma \eta_b(1S)$ (3.9 ± 1.5)×10⁻⁴ 605

$$\gamma\eta_b(1S)
ightarrow \gamma$$
 Sum of 26 exclu- < 3.7 $imes 10^{-6}$ CL=90% sive modes $\gamma X_{b\overline{b}}
ightarrow \gamma$ Sum of 26 exclusive < 4.9 $imes 10^{-6}$ CL=90% modes

Lepton Family number (LF) violating modes

$e^{\pm} au^{\mp}$	LF	< 3.2	$\times 10^{-6}$	CL=90%	4854
$\mu^{\pm} \tau^{\mp}$	LF	< 3.3	\times 10 ⁻⁶	CL=90%	4854

 $\gamma \chi_{c2}$

$$T_2(1D)$$

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

Mass $m = 10163.7 \pm 1.4 \text{ MeV}$ (S = 1.7)

$ au_2$ (1 <i>D</i>) DECAY MODES	Fraction (Γ_j/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\gamma\gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \Upsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$\chi_{b0}(2P)^{[ggbb]}$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 10232.5 \pm 0.4 \pm 0.5 \; \text{MeV}$

$\chi_{b0}(2P)$ DECAY MODES	Fraction ($\Gamma_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (2S)$	(1.38±	0.30) %		207
$\gamma \ \varUpsilon(1S)$	$(3.8 \pm$	$1.7) \times 10^{-1}$	-3	743
$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 3.4	\times 10	-5 90%	5064
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10	-5 90%	5063
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}$ $2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 2.2	× 10	-4 90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10	-4 90%	5092
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	< 1.5	\times 10	-4 90%	5050
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.2	\times 10	-4 90%	5035
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	\times 10	-3 90%	5019
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 7	\times 10	-4 90%	5018
$3\pi^{+}3\pi^{-}$	< 7	\times 10	-5 90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	\times 10	-3 90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10	-4 90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10	-4 90%	4999
$4\pi^{+}4\pi^{-}$	< 1.7	\times 10	-4 90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	× 10	-4 90%	5039

$$\chi_{b1}(2P)^{[ggbb]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m=10255.46\pm0.22\pm0.50$$
 MeV $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0$ MeV

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \ \varUpsilon(1S)$	(1.63 ^{+0.40} _{-0.34}) %	135
$\gamma \Upsilon(2S)$	(18.1 \pm 1.9) %	230
$\gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$	238
$D^0 X$	(8.8 ± 1.7) %	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$	5104
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(10 \pm 4) \times 10^{-5}$	5062
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$	5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$	5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$	5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$	5011
$4\pi^+4\pi^-$	$(1.7 \pm 0.6) \times 10^{-4}$	5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$	5051

$\chi_{b2}(2P)^{[ggbb]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Created: 6/5/2018 18:58

Mass $m=10268.65\pm0.22\pm0.50$ MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

$\chi_{b2}(2P)$ DECAY MODES	Fraction (I	$\Gamma_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \Upsilon(1S)$	(1.10^{+0}_{-0})).34).30) %		194
$\gamma \ \varUpsilon(2S)$	(8.9 ± 1)	1.2) %		242
$\gamma \Upsilon(1S)$	(6.6 ±0.8)%			
$\pi\pi\chi_{b2}(1P)$	(5.1 ± 0)	$0.9 \) \times 10^{-3}$	-3	229
$D^0 X$	< 2.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.1	\times 10	-4 90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	\times 10	-5 90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	\times 10	-4 90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1)	1.6) × 10	-4	5110
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(9 ±4) × 10	-5	5068
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$		$1.1) \times 10^{-1}$		5054

$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(4.7 \pm 2.3) \times 10^{-4}$		5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$< 4 \times 10^{-4}$	90%	5036
$3\pi^{+}3\pi^{-}$	$(9 \pm 4) \times 10^{-5}$		5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$		5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(1.4 \pm 0.7) \times 10^{-4}$		5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(4.2 \pm 1.7) \times 10^{-4}$		5017
$4\pi^+4\pi^-$	$(9 \pm 5) \times 10^{-5}$		5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.3 \pm 0.5) \times 10^{-3}$		5058

T(3*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.2\pm0.5~{\rm MeV}$ $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13~{\rm MeV}$ Full width $\Gamma=20.32\pm1.85~{\rm keV}$ $\Gamma_{ee}=0.443\pm0.008~{\rm keV}$

T(3S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\varUpsilon(2S)$ anything	$(10.6 \pm 0.8)\%$		296
$\Upsilon(2S)\pi^+\pi^-$	(2.82± 0.18) %	S=1.6	177
$\Upsilon(2S)\pi^0\pi^0$	$(1.85\pm~0.14)~\%$		190
$\Upsilon(2S)\gamma\gamma$	(5.0 ± 0.7) %		327
$\Upsilon(2S)\pi^0$	< 5.1 ×	10^{-4} CL=90%	298
$\Upsilon(1S)\pi^+\pi^-$	(4.37 ± 0.08) %		813
$\Upsilon(1S)\pi^0\pi^0$	($2.20\pm~0.13)$ %		816
$\Upsilon(1S)\eta$	< 1 ×		677
$\Upsilon(1S)\pi^0$	< 7 ×		846
$h_b(1P)\pi^0$	< 1.2 ×	10^{-3} CL=90%	426
$h_b(1P)\pi^0 \rightarrow \gamma \eta_b(1S)\pi^0$	(4.3 \pm 1.4) \times		_
$h_b(1P)\pi^+\pi^-$	< 1.2 ×	10 ⁻⁴ CL=90%	353
$\tau^+\tau^-$	$(2.29\pm~0.30)\%$		4863
$\mu_{\perp}^{+}\mu^{-}$	$(2.18\pm~0.21)~\%$	S=2.1	5177
e^+e^-	$(2.18\pm~0.20)\%$		5178
hadrons	$(93 \pm 12)\%$		_
ggg	$(35.7 \pm 2.6)\%$	2	_
$\gamma g g$	(9.7 \pm 1.8) \times	10-3	_
2H anything	($2.33\pm~0.33)$ $ imes$	10^{-5}	_
	Radiative decays		
$\gamma \chi_{b2}(2P)$	(13.1 \pm 1.6) %	S=3.4	86
$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) %	S=2.4	99
$\gamma \chi_{b0}(2P)$	(5.9 ± 0.6) %	S=1.4	122
$\gamma \chi_{b2}(1P)$	(9.9 \pm 1.2) $ imes$	10^{-3} S=1.9	434
$\gamma \chi_{b1}(1P)$	(9 \pm 5) \times	10 ⁻⁴ S=1.8	452

HTTP://PDG.LBL.GOV

Page 168

$\gamma \chi_{b0}(1P)$	(2.7 ± 0.4)	$\times 10^{-3}$		484
$\gamma \eta_b(2S)$	<	6.2	$\times 10^{-4}$	CL=90%	350
$\gamma \eta_b(1S)$	($5.1 ~\pm~ 0.7~)$	\times 10 ⁻⁴		912
$\gamma A^0 ightarrow \gamma$ hadrons	<			CL=90%	_
$\gamma X \rightarrow \gamma + \geq$ 4 prongs	[iibb] <	2.2	\times 10 ⁻⁴	CL=95%	_
$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	<	5.5	\times 10 ⁻⁶	CL=90%	_
$\gamma a_1^{ar{0}} ightarrow \gamma au^+ au^-$	[jjbb]<	1.6	$\times 10^{-4}$	CL=90%	_

Lepton Family number (LF) violating modes

$e^{\pm} au^{\mp}$	LF	< 4.2	$\times 10^{-6}$	CL=90%	5025
$\mu^{\pm} au^{\mp}$	LF	< 3.1	\times 10 ⁻⁶	CL=90%	5025

$\chi_{b1}(3P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=10512.1\pm2.3~\mathrm{MeV}$

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
γ (1S) γ	seen	999
$\Upsilon(2S)\gamma$	seen	477
Υ (3S) γ	seen	156

T(4S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=10579.4\pm1.2$ MeV Full width $\Gamma=20.5\pm2.5$ MeV $\Gamma_{ee}=0.272\pm0.029$ keV (S = 1.5)

T(4S) DECAY MODES	Fraction (Γ_j)	_i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	(51.4 \pm 0	0.6)%		331
D_s^+ anything $+$ c.c.	(17.8 ± 2)	2.6) %		_
$B^0 \overline{B}{}^0$	(48.6 ± 0)	0.6)%		326
$J/\psiK_S^0 + (J/\psi, \eta_c)K_S^0$	< 4	× 10	-7 90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	(1.57 ± 0	$0.08) \times 10$	-5	5290
$\rho^+\rho^-$	< 5.7	× 10	−6 90%	5233
$K^*(892)^0\overline{K}^0$	< 2.0	× 10	−6 90%	5240
$J/\psi(1S)$ anything	< 1.9	× 10	−4 95%	_
D^{st+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0)	0.6)%		5240

$\phi \eta$	< 1.8	$\times 10^{-6}$	90%	5226
$\phi\eta'$	< 4.3	\times 10 ⁻⁶	90%	5196
$ ho\eta$	< 1.3	\times 10 ⁻⁶	90%	5247
$ ho\eta'$	< 2.5	\times 10 ⁻⁶	90%	5217
$\varUpsilon(1S)$ anything	< 4	$\times 10^{-3}$	90%	1053
\varUpsilon (1S) $\pi^+\pi^-$	(8.2 ± 0.4)	4) \times 10 ⁻⁵		1026
\varUpsilon (1S) η	(1.81 ± 0.1)	$18) \times 10^{-4}$		924
$\varUpsilon(2S)\pi^+\pi^-$	(8.2 ± 0.8	8 $) \times 10^{-5}$		468
$h_b(1P)\pi^+\pi^-$	not seen			600
$h_b(1P)\eta$	(2.18±0.5	$(21) \times 10^{-3}$		390
$\overline{^2H}$ anything	< 1.3	\times 10 ⁻⁵	90%	_

Double Radiative Decays

 $\gamma \gamma \Upsilon(D) \rightarrow \gamma \gamma \eta \Upsilon(1S)$ < 2.3 × 10⁻⁵ 90%

$Z_b(10610)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=10607.2\pm 2.0$ MeV Full width $\Gamma=18.4\pm 2.4$ MeV

<i>Z_b</i> (10610) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\varUpsilon(1S)\pi^+$	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
$\Upsilon(1S)\pi^0$	not seen	1077
\varUpsilon (2 S) π^+	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(2S)\pi^0$	seen	552
Υ (3 S) π^+	$(2.1^{+0.8}_{-0.6})\%$	207
$\Upsilon(3S)\pi^0$	seen	210
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^+ \overline{B}{}^0$	not seen	505
$B^+ \overline{B}^{*0} + B^{*+} \overline{B}^0$	$(85.6^{+2.1}_{-2.9})\%$	_
$B^{*+}\overline{B}^{*0}$	not seen	†

γ(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 6/5/2018 18:58

Mass $m=10889.9^{+3.2}_{-2.6}~{\rm MeV}$ Full width $\Gamma=51^{+6}_{-7}~{\rm MeV}$ $\Gamma_{\rm ee}=0.31\pm0.07~{\rm keV}~({\rm S}=1.3)$

7(10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})$ %	6	_
В В	(5.5 ±1.0) %	/o	1332
$B\overline{B}^* + \text{c.c.}$	(13.7 ± 1.6) %		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %		1138
$B\overline{B}^{(*)}\pi$	< 19.7 %	6 90%	1027
$B\overline{B}\pi$	(0.0 ± 1.2) $\%$	6	1027
$B^* \overline{B} \pi + B \overline{B}^* \pi$	(7.3 \pm 2.3) %	o	_
$B^*\overline{B}^*\pi$	(1.0 ± 1.4) %	6	756
$B\overline{B}\pi\pi$	< 8.9 %	6 90%	574
$B_s^{(*)} \overline{B_s^{(*)}}$	(20.1 \pm 3.1) %	o o	919
$B_s B_s$	$(5 \pm 5) \times$	10^{-3}	919
$B_s \overline{B}_s^* + \text{c.c.}$	(1.35 ± 0.32) %	6	_
$B_s^* \overline{B}_s^*$	(17.6 ± 2.7) %	o o	566
no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array})$ %	6	_
e^+e^-	(6.1 ± 1.6) $ imes$	10^{-6}	5445
$K^*(892)^0 \overline{K}{}^0$	< 1.0 ×	10^{-5} 90%	5397
$\varUpsilon(1S)\pi^+\pi^-$	(5.3 \pm 0.6) \times	10^{-3}	1310
$\Upsilon(2S)\pi^+\pi^-$	(7.8 ± 1.3) \times	10^{-3}	788
\varUpsilon (3 S) $\pi^+\pi^-$	$(4.8 \begin{array}{c} +1.9 \\ -1.7 \end{array}) >$	< 10 ⁻³	445
$\Upsilon(1S) K^+ K^-$	(6.1 \pm 1.8) $ imes$	10^{-4}	965
$h_b(1P)\pi^+\pi^-$	$(3.5 \begin{array}{c} +1.0 \\ -1.3 \end{array}) >$	< 10 ⁻³	907
$h_b(2P)\pi^+\pi^-$	$(5.7 \begin{array}{c} +1.7 \\ -2.1 \end{array}) >$	$< 10^{-3}$	548
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	< 6.3 ×	10^{-3} 90%	899
$\chi_{b0}(1P)\omega$	< 3.9 ×		638
$\chi_{b0}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	< 4.8 ×	10^{-3} 90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	$(1.85\pm0.33) \times$	10^{-3}	865
$\chi_{b1}(1P)\omega$	$(1.57\pm0.30) \times$		589
$\chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	(5.2 ± 1.9) $ imes$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.17 ± 0.30) ×		846
$\chi_{b2}(1P)\omega$	(6.0 ±2.7)×		559
$\chi_{b2}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	(6 ±4)×		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	< 3.8 ×	10^{-5} 90%	_

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

HTTP://PDG.LBL.GOV

Page 171

D_s anything $+$ c.c.	$(46 \pm 6)\%$	_
J/ψ anything	$(2.06\pm0.21)\%$	_
B^0 anything $+$ c.c.	$(77 \pm 8)\%$	_
B^+ anything $+$ c.c.	$(72 \pm 6)\%$	_

T(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10992.9^{+10.0}_{-3.1}~{\rm MeV}$ Full width $\Gamma=49^{+9}_{-15}~{\rm MeV}$ $\Gamma_{ee}=0.130\pm0.030~{\rm keV}$

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
e^+e^-	$(2.7^{+1.0}_{-0.8}) \times 10^{-6}$	5496	

NOTES

- [a] See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include lowenergy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^\pm Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] C parity forbids this to occur as a single-photon process.
- [g] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [h] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [i] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [j] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings .
- [k] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).

- [/] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [o] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
- [p] See the "Note on the $f_1(1420)$ " in the $\eta(1405)$ Particle Listings.
- [q] See also the $\omega(1650)$ Particle Listings.
- [r] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings in 2004 edition of *Review of Particle Physics*.
- [u] See the note in the K^{\pm} Particle Listings.
- [v] Neglecting photon channels. See, *e.g.*, A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [x] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [y] For more details and definitions of parameters see the Particle Listings.
- [z] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [aa] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [bb] Structure-dependent part.
- [cc] Direct-emission branching fraction.
- [dd] Violates angular-momentum conservation.
- [ee] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [ff] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon'$$

$$\eta_{00} = \left| \eta_{00}
ight| \mathrm{e}^{i\phi_{00}} = rac{A(\mathcal{K}_L^0
ightarrow \pi^0 \pi^0)}{A(\mathcal{K}_S^0
ightarrow \pi^0 \pi^0)} = \epsilon - 2\epsilon'$$

$$\delta = \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} ,$$

$$Im(\eta_{+-0})^2 = \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \text{ viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} ,$$

$$Im(\eta_{000})^2 = \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} .$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [gg] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [hh] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [ii] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [jj] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [kk] See the K_L^0 Particle Listings for the energy limits used in this measurement.
 - [//] Allowed by higher-order electroweak interactions.
- [nn] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [oo] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [pp] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** S1 (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [qq] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [rr] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [ss] See the Particle Listings for the (complicated) definition of this quantity.
- [tt] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [uu] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.

- [vv] Submodes of the $D^+ \to K^- 2\pi^+ \pi^0$ and $K^0_S 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [xx] The unseen decay modes of the resonances are included.
- [yy] This is *not* a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [zz] This mode is not a useful test for a ΔC =1 weak neutral current because both quarks must change flavor in this decay.
- [aaa] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [bbb] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [ccc] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-$, and $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [ddd] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [eee] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.19 \pm 0.17 %.
- [fff] This is a doubly Cabibbo-suppressed mode.
- [ggg] Submodes of the $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [hhh] This branching fraction includes all the decay modes of the resonance in the final state.
 - [iii] This limit is for either D^0 or \overline{D}^0 to pe^- .
 - [jjj] This limit is for either D^0 or \overline{D}^0 to $\overline{p}e^+$.
- [kkk] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an $\eta,~\eta',~\phi,~K^0$, or K^{*0} is 5.99 \pm 0.31 %.
 - [///] This fraction includes η from η' decays.
- [nnn] The sum of our exclusive η' fractions $\eta' e^+ \nu_e$, $\eta' \mu^+ \nu_\mu$, $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ is $11.8 \pm 1.6\%$.
- [000] This branching fraction includes all the decay modes of the final-state resonance.

- [ppp] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [qqq] We decouple the $D_s^+ \to \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ \to \phi \pi^+$, $\phi \to K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ \to K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi \to K^+ K^-$ branching fraction 0.491.
- [rrr] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [sss] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [ttt] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the D^0 $\overline{D}{}^0$ system.
- [uuu] D denotes D^0 or \overline{D}^0 .
- [vvv] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [xxx] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [yyy] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- [zzz] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [aaaa] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [bbaa] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [ccaa] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [ddaa] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [eeaa] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- [ffaa] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [ggaa] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [hhaa] These values are model dependent.
 - [iiaa] Here "anything" means at least one particle observed.
- [jjaa] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [kkaa] D^{**} stands for the sum of the $D(1\,{}^1\!P_1)$, $D(1\,{}^3\!P_0)$, $D(1\,{}^3\!P_1)$, $D(1\,{}^3\!P_2)$, $D(2\,{}^1\!S_0)$, and $D(2\,{}^1\!S_1)$ resonances.

- [IIaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [nnaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [ooaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [ppaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [qqaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [rraa] For $E_{\gamma} > 100$ MeV.
- [ssaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [ttaa] For a narrow state A with mass less than 960 MeV.
- [uuaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [vvaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [xxaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
- [yyaa] $2m_{\tau} < M(\tau^{+}\tau^{-}) < 9.2 \text{ GeV}$
- [zzaa] 2 GeV $< m_{K^+K^-} < 3$ GeV
- [aabb] X = scalar with m < 8.0 GeV
- [bbbb] $X\overline{X} = \text{vectors with } m < 3.1 \text{ GeV}$
- [ccbb] X and \overline{X} = zero spin with m < 4.5 GeV
- [ddbb] 1.5 GeV $< m_X <$ 5.0 GeV
- [eebb] 201 MeV < M($\mu^+\mu^-$) < 3565 MeV
- [ffbb] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.
- [ggbb] Spectroscopic labeling for these states is theoretical, pending experimental information.
- [hhbb] 1.5 GeV $< m_X < 5.0$ GeV
 - [iibb] 1.5 GeV $< m_X <$ 5.0 GeV
- [jjbb] For $m_{\tau^+\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.