Chapter 5: The Matrix Form

The Standard LP Problem in Matrix Form:

Maximize $c_1 x_1 + c_2 x_2 + ... c_n x_n$ s.t. $a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \le b_1$ $a_{2,1}x_1 + a_{2,2}x_2 + \dots a_{2,n}x_n \le b_2$ $a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n \le b_m$ $x_i \geq 0$

Maximize $\vec{c}^{\top}\vec{x}$ s.t. $A\vec{x} < \vec{b}$ $\vec{x} > \vec{0}$

 $A \in \mathbb{R}^{m \times n}, \vec{x} \in \mathbb{R}^n, \vec{b} \in \mathbb{R}^m$

Adding slack variables gives the format:

Maximize $c_1x_1 + c_2x_2 + ... c_nx_n$ s.t. $a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n + s_1 = b_1$ $a_{2,1}x_1 + a_{2,2}x_2 + \dots a_{2,n}x_n + s_2 = b_2$ $a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n + s_m = b_m$ $x_i \ge 0$

Maximize $\vec{c}^{\top}\vec{x}$

s.t.

 $[A \ I] \begin{bmatrix} \vec{x} \\ \vec{x}_s \end{bmatrix} = \vec{b}$

 $\begin{vmatrix} \vec{x} \\ \vec{x}_s \end{vmatrix} \ge \vec{0}$

 $A \in \mathbb{R}^{m \times n}; \vec{x} \in \mathbb{R}^n; \vec{x}_s, \vec{b} \in \mathbb{R}^m$, and I is the identity matrix of size m.

This means the constraints are a system of m equations in m+n unknowns, so the simplex method essentially does the following:

- 1. Choose m variables in the vector $\begin{vmatrix} \vec{x} \\ \vec{x_s} \end{vmatrix}$ to be non-zero the basic variables, and form the vector \vec{x}_B of the basic variables. We start by selecting the slack variables for the first set of basic variables.
- 2. Pull the coefficients of the basic variables from the objective coefficient vector, to form the vector \vec{c}_B .
- 3. Pull the columns from $[A \ I]$ that correspond to those variables and form a matrix B the invertible "basis" matrix.
- 4. Solve the square invertible system $B\vec{x}_B = \vec{b}$, i.e., $\vec{x}_B = B^{-1}\vec{b}$. This gives values for the basic variables.
- 5. Calculate the objective value using only the basic variables (the other variables are 0!):

$$Z = \vec{c}_B^{\mathsf{T}} \vec{x}_B = \vec{c}_B B^{-1} \vec{b}$$

6. Check for optimality. If not optimal move to an adjacent corner by swapping out one basic variable for a non-basic variable, "moving" to an adjacent corner point through a change of basis.

1

The full tableau process in matrix form:

Initial

$$\begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}.$$

What we know about the value of the right hand side at any intermediate tableau:

$$\begin{bmatrix} Z \\ \mathbf{x}_B \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}.$$

Had to happen to both sides of the initial tableau

$$\begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \mathbf{A} & \mathbf{B}^{-1} \end{bmatrix},$$

Therefore, any subsequent tableau, including the final tableau:

$$\begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \mathbf{A} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}.$$

Example: Ken and Barbie

Maximize
$$Z = 6b + 6.5 k$$
 s.t.

$$\begin{array}{r}
 12 \, b \, + \, 14 \, k \, \leq \, 100000 \\
 5b \, \leq \, 30000 \\
 4b \, + \, 4k \, \leq \, 35000 \\
 b, k, \geq \, 0
 \end{array}$$

Ken and Barbie Tableaus:

	В	К	S1	S2	S3	RHS	
Z	-6	-6.5	0	0	0	0	RATIO
S1	12	14	1	0	0	100000	7142.85714
S2	5	0	0	1	0	30000	#DIV/0!
S3	4	4	0	0	1	35000	8750
	В	К	S1	S2	S3	RHS	
Z	-0.42857143	0	0.46428571	0	0	46428.5714	RATIO
K	0.857142857	1	0.07142857	0	0	7142.85714	8333.33333
S2	5	0	0	1	0	30000	6000
S3	0.571428571	0	-0.2857143	0	1	6428.57143	11250
	В	К	S1	S2	S3	RHS	
Z	0	0	0.46428571	0.08571429	0	49000	
K	0	1	0.07142857	-0.1714286	0	2000	
В	1	0	0	0.2	0	6000	
S3	0	0	-0.2857143	-0.1142857	1	3000	

Knowing the basic set for the first new tableau, find the tableau:

$$x_B =$$

$$B =$$

$$B^{-1} =$$

$$c_B^T B^{-1} =$$

$$c_B^T B^{-1} b =$$

Knowing the basic set for the first new tableau, find the tableau:

$$x_B =$$

$$B^{-1} =$$

$$c_B^T B^{-1} =$$

$$c_B^T B^{-1} b =$$

■ TABLE 5.8 Initial and later simplex tableaux in matrix form

Iteration	Basic			Diaba		
	Variable	Eq.	Z	Original Variables	Slack Variables	Right Side
0	Z x _B	(0) (1, 2, , m)	1 0	-с А	0 I	0 b
		}	* :			
Any	Z x _B	(0) (1, 2, , m)	1 0	$c_B B^{-1} A - c$ $B^{-1} A$	c _B B ⁻¹ B ⁻¹	$c_B B^{-1} b$ $B^{-1} b$

Two important takeaways:

1) Fundamental Insight: Given the original problem (i.e., **A**, **b**, **c**), if we know the following two things at <u>optimum</u>, we can create the entire final tableau

$$\mathbf{y}^* = \mathbf{c}_B \mathbf{B}^{-1} = \text{coefficients of the } slack \text{ variables in row } 0$$

$$S^* = B^{-1}$$
 = coefficients of the *slack* variables in rows 1 to m

For non-standard problems (BigM): The artificial variables are starting basic variables, so they will be included in the list of columns holding the inverse of **B** in the tableau.

2) Shadow prices and changes to b:

$$\mathbf{x}_B = \mathbf{S} * \mathbf{b}$$
$$\mathbf{Z} * = \mathbf{y} * \mathbf{b},$$

Shadow prices for the non-standard problems:

≥: negative of surplus variable coefficient

=: artificial variable coefficient

Shadow prices examples:

 $\mathbf{y}^* = \mathbf{c}_B \mathbf{B}^{-1} = \text{coefficients of the } slack \text{ variables in row } 0$ $\mathbf{S}^* = \mathbf{B}^{-1} = \text{coefficients of the } slack \text{ variables in rows } 1 \text{ to } m$

$$\mathbf{x}_B = \mathbf{S} * \mathbf{b}$$

 $\mathbf{Z} * = \mathbf{y} * \mathbf{b},$

Chapter 6: Duality Theory

Yet Another Way to Find a Solution: the "DUAL" problem...

Example: Barbie and Ken AGAIN

Maximize
$$Z = 6b + 6.5 k$$
 s.t.
$$12 b + 14 k \le 100000$$

$$5b \le 30000$$

$$4b + 4k \le 35000$$

$$b, k, \ge 0$$

PRIMAL	barbie	ken	plastic s1	nylon s2	cardboard s3	right hand side
Z	0	0	0.4642857	0.0857143	0	49000
ken	0	1	0.0714286	-0.171429	0	2000
barbie	1	0	0	0.2	0	6000
C s3	0	0	-0.285714	-0.114286	1	3000

DUAL	plastic	nylon	cardboard	barbie s1	ken s2	barbie a1	ken a2	rhs
negative Z	0	0	3000	6000	2000	994000	998000	-49000
nylon	0	1	0.11429	-0.20000	0.17143	0.20000	-0.17143	0.08571
plastic	1	0	0.28571	0	-0.07143	0	0.07143	0.46429

Standard problem in general:

Primal Problem

Maximize
$$Z = cx$$
,
subject to
 $Ax \le b$
and
 $x \ge 0$.

Dual Problem

Minimize
$$W = yb$$
, subject to $yA \ge c$ and $y \ge 0$.

What about a non-standard problem???

Maximize
$$Z = 2x_1 + x_2$$
 s.t.
$$x_1 + x_2 = 2 \\ 2x_1 - x_2 \ge 3 \\ x_1 - x_2 \le 1 \\ x_1 \ge 0, x_2 \ge 0$$

Make it standard first!!!

■ TABLE 6.14 Corresponding primal-dual forms

Label	Primal Problem (or Dual Problem)	Dual Problem (or Primal Problem)		
	Maximize Z (or W)	Minimize W (or Z)		
Sensible Odd Bizarre	Constraint <i>i</i> : ≤ form ← = form ← ≥ form ←	Variable y_i (or x_i): $y_i \ge 0$ Unconstrained $y_i' \le 0$		
Sensible Odd Bizarre	Variable x_j (or y_j): $x_j \ge 0 \longleftarrow$ Unconstrained \longleftarrow $x_j' \le 0 \longleftarrow$	$\begin{array}{c} \text{Constraint } j: \\ \longrightarrow & \geq \text{form} \\ \longrightarrow & = \text{form} \\ \longrightarrow & \leq \text{form} \end{array}$		

Another Example:

WHY DOES THIS WORK???

Weak duality property: If x is a feasible solution for the primal problem and y is a feasible solution for the dual problem, then

$$cx \leq yb$$
.

Strong duality property: If x^* is an optimal solution for the primal problem and y^* is an optimal solution for the dual problem, then

$$\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$$
.

Duality theorem: The following are the only possible relationships between the primal and dual problems.

- 1. If one problem has *feasible solutions* and a *bounded* objective function (and so has an optimal solution), then so does the other problem, so both the weak and strong duality properties are applicable.
- 2. If one problem has *feasible solutions* and an *unbounded* objective function (and so *no optimal solution*), then the other problem has *no feasible solutions*.
- **3.** If one problem has *no feasible solutions*, then the other problem has either *no feasible solutions* or an *unbounded* objective function.

Several reasons to care:

- 1) Fewer constraints mean fewer row operations.
- 2) <= constraints mean less artificial variables.
- 3) Adding a variable in the primal is adding a constraint in the dual.
- 4) Changing the coefficient of a variable that is =0 at optimum.
- 3) ADD skipper to Barbie and Ken: \$6.25 profit, 9 oz plastic, 4 oz nylon and 4 oz cardboard.

New constraint:

4) change the coefficient of a variable in the constraints for 4.6-3:

Minimize $2x_1 + 3x_2 + x_3$ s.t

$$x_1 + 4x_2 + 2x_3 \ge 8$$

 $3x_1 + 2x_2 >= 6$

Solution: x1 = 0.8, x2 = 1.8, x3 = 0, Z = 7

- (1) Change the x3 constraint coefficients to: 2, -1 (from 2,0)
- (2) Change the x1 constraint coefficients to: 2,5 (from 1,3)

Optimal tableau

	x1	x2	х3	s1	s2	a1	a2	rhs
Z	0	0	0	0.5	0.5	99.5	99.5	-7
x2	0	1	0.6	-0.3	0.1	0.3	-0.1	1.8
x1	1	0	-0.4	0.2	-0.4	-0.2	0.4	0.8