Multicomponent, multiphase flow in porous media

Chris Green

March 6, 2015

1 Governing equations

1.1 Definitions and nomenclature

Phase

Component

Notation and nomenclature

In all following equations, the subscript α refers to the phase, while the superscript κ refers to the component.

P_{α}	Phase pressure	ϕ	Porosity
T	Temperature	K	Permeability
S_{α}	Phase saturation	$k_{r\alpha}$	Relative permeability
P_c	Capillary pressure	$ ho_{lpha}$	Phase density
μ_{α}	Phase viscosity	\mathbf{g}	Gravity
X_{α}^{κ}	Mass fraction of component κ in phase α		
q_{α}^{κ}	Source/sink term of κ in phase α		

1.2 Mass balance equation

Conservation of mass of of each component κ gives the following balance equation for each component (for an isothermal system)

$$\phi \frac{\partial}{\partial t} \left(\sum_{\alpha} \rho_{\alpha} X_{\alpha}^{\kappa} S_{\alpha} \right) = \sum_{\alpha} \nabla \cdot \left\{ \frac{K k_{r\alpha} \rho_{\alpha} X_{\alpha}^{\kappa}}{\mu_{\alpha}} \left(\nabla P_{\alpha} - \rho_{\alpha} \mathbf{g} \right) \right\} + \sum_{\alpha} q_{\alpha}^{\kappa}. \quad (1)$$

The number of unknown variables can be reduced using fundamental relationships and constitutive models. The phase saturations must sum to unity (assuming that the entire pore space is occupied)

$$\sum_{\alpha} S_{\alpha} = 1, \tag{2}$$

while the sum of mass fraction components in each phase must be unity by definition

$$\sum_{\kappa} X_{\alpha}^{\kappa} = 1. \tag{3}$$

Relative permeability is calculated as a function of saturation (using a prescribed relationship). The pressure of each phase is related by capillary pressure, defined as

$$P_c = P_n - Pw, (4)$$

where the subscripts n and w refer to the non-wetting and wetting phases, respectively. Like relative permeability, capillary pressure can be calculated as a function of saturation using prescribed relationships.