AD-A070 609

KIMBALL (L ROBERT) AND ASSOCIATES EBENSBURG PA NATIONAL DAM INSPECTION REPORT, LAUREL DAM (NDS I.D.-PA-00586, --ETC(U) DACW31-79-C-0009

UNCLASSIFIED

ABOVE DATE OF THE PARTY OF THE PARTY

SUSQUEHANNA RIVER BASIN
MOUNTAIN CREEK, CUMBERLAND COUNTY

PENNSYLVANIA

LAUREL DAM

NDS ID NO. PA-00586 DER ID NO. 21-25

PENNSYLVANIA DEPT. OF ENVIRONMENTAL RESOURCES

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Distribution Unlimited
Approved for Public Release
Contract No. DACW31-79-C-0009

Prepared by

L. ROBERT KIMBALL and ASSOCIATES
CONSULTING ENGINEERS and ARCHITECTS
EBENSBURG, PENNSYLVANIA
15931

E0

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT CORPS OF ENGINEERS
BALTIMORE, MARYLAND
21203

MARCH 1979

COMPANDUCTIONS WILL BE IN BLOCK INC.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SUSQUEHANNA RIVER BASIN
MOUNTAIN CREEK, CUMBERLAND COUNTY

PENNSYLVANIA

LAUREL DAM

NDS ID NO. PA-00586 DER ID NO. 21-25

PENNSYLVANIA DEPT. OF ENVIRONMENTAL RESOURCES

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Prepared by

L. ROBERT KIMBALL and ASSOCIATES

CONSULTING ENGINEERS and ARCHITECTS EBENSBURG, PENNSYLVANIA

15931

(10) R. Jessney / Kimballs Kuang-hwei / Chuang

12/103

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT CORPS OF ENGINEERS

BALTIMORE, MARYLAND

21203

DACW31-79-C-\$\$\$9

11 MARCH 1979

1

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

WTIS G.M.&I

WTIS G.M.&I

DDC TAB

Unemnounced
Justification

By

Aveilebility C.des

Availand/or

Special

PHASE I REPORT NATIONAL DAM INSPECTION REPORT

NAME OF DAM: Laurel Dam STATE LOCATED: Pennsylvania COUNTY LOCATED: Cumberland STREAM: Mountain Creek

DATE OF INSPECTION: October 31 and November 1, 1978

ASSESSMENT

The assessment of Laurel Dam is based upon visual observations made at the time of inspection, review of available records and data, hydrologic and hydraulic computations, and past operational performance.

The inspection and review of data of Laurel Dam did not reveal any problems which require immediate emergency action. The dam appears to be stable, well maintained, and safely operated.

The existing spillway and reservoir are capable of controlling approximately 84% of the PMF. Based upon criteria established by the Corps of Engineers, the spillway is termed adequate.

A review of the design stability analysis and an analysis performed for this study indicates that the dam is stable under PMF conditions.

A geologic study should be conducted to determine the potential for movement of faults in the area.

The following recommendations should be implemented as part of the regular operating and maintenance routine:

- Continue with a routine inspection and surveillence program.
- Continue with maintenance as needed and routine operation of the sluice gate control valve.
- Develop an emergency warning and evacuation plan for this dam.

SUBMITTED BY: L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS AND ARCHITECTS

7 Apr 79
Date

R. Jeffrey Kimball, P.E.

Kuang-hwei Chuang, P.E.

G. K. WITHERS

Colonel, Corps of Engineers District Engineer

Overview of dam from left abutment.

Overview of dam from right abutment.

TABLE OF CONTENTS

		PAGE
SECT	ION 1 - PROJECT INFORMATION	1
	General Description of Project	1
1.3	Pertinent Data	2
SECT	ION 2 - ENGINEERING DATA	5
2.1	Design Construction	5 5
2.3	Operation	5
2.4	Evaluation	5
SECT	ION 3 - VISUAL INSPECTION	6
3.1	Findings	6
	Evaluation	7
SECT	ION 4 - OPERATIONAL FEATURES	8
4.1	Procedures	8
	Maintenance of the Dam	8
	Maintenance of Operating Facilities	8
4.4	Warning System in Effect	8
	Evaluation	8
SECT	ION 5 - HYDRAULICS AND HYDROLOGY	9
	Evaluation of Features	9
5.2	Evaluation Assumptions	9
5.3	Summary of Overtopping Analysis	9
5.4	Dam Breach Analysis	10
5.5	Summary	10
SECT	ION 6 - STRUCTURAL STABILITY	11
6.1	Evaluation of Structural Stability	11
SECT	ION 7 - ASSESSMENT AND RECOMMENDATIONS/REMEDIAL	
	MEASURES	12
7.1	Dam Assessment	12
	Pagammandations/Pamadial Massures	12

APPENDICES

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I
APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION,
OPERATION, PHASE I

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGY AND HYDRAULICS

APPENDIX E - DRAWINGS

APPENDIX F - GEOLOGY

APPENDIX G - STABILITY CALCULATIONS

PHASE I NATIONAL DAM INSPECTION PROGRAM LAUREL DAM NDI I.D. NO. PA 586 DER I.D. NO. 20-25

SECTION 1 PROJECT INFORMATION

1.1 General.

- a. <u>Authority</u>. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

ADSTRACT

1.2 Description of Project.

- a. Dam and Appurtenances. Laurel Dam is a concrete gravity dam constructed in 1967. The dam is 25 feet high (32 feet above bedrock). The center overflow section consists of an ogee weir and is 200 feet long. The right abutment is a gravity non-overflow section. The left abutment consists of a 151 foot long non overflow concrete wingwall. This wingwall is 12.5 feet higher than the ogee crest. The drawdown conduit is a 3 feet by 5 feet concrete tunnel through the left abutment wingwall. The conduit is 29.5 feet long and is controlled by a sluice gate operated from the top of the wingwall.
- b. <u>Location</u>. The dam is located on Mountain Creek, approximately 6.5 miles southwest of Mount Holly Springs, Pennsylvania. Laurel Dam can be located on the Dickinson, U.S.G.S. 7.5 minute quadrangle in Cooke Township, Cumberland County, Pennsylvania.

ABSTRACI

- c. <u>Size Classification</u>. Laurel Dam is a small size structure (25 feet high, 160 acre-feet).
- d. <u>Hazard Classification</u>. Laurel Dam is a high hazard dam. Downstream conditions indicate that loss of life is probable should the structure fail. Details on downstream exposure are included in Section 3.1e.
- e. Ownership. Laurel Dam is owned by the Commonwealth of Pennsylvania, Department of Environmental Resources. Correspondence should be addressed to:

Bureau of Operation Resources Management Department of Environmental Resources P.O.Box 1467 Harrisburg, Pennsylvania 17120

f. Purpose of Dam. Recreation

- g. Design and Construction History. Laurel Dam was designed by the Department of Forests and Waters, now incorporated into the Department of Environmental Resources, Commonwealth of Pennsylvania. The dam was constructed in 1967-68 by the H.J. Williams Co. Laurel Dam replaces an old (prior to 1915) rockfilled timber crib dam which had failed several times and which was constantly in need of repair. The old dam is partially implace immediately upstream of the concrete dam.
- h. Normal Operating Procedures. The reservoir is maintained at the spillway crest with the excess inflow discharging over the spillway. The reservoir is kept at this elevation to maintain a constant level for recreational use. The drawdown conduit is only operated periodically during inspections or when a drawdown of the reservoir is necessary for work on the dam or in the reservoir area.

1.3 Pertinent Data.

a. Drainage Area.

23.8 square miles

b. Discharge at Dam Site (cfs).

Estimated 6,080
elevation 778.5 (June, 1972)
N/A
pool
N/A
280
pool
Unknown
ım
32,720
pool
33,000

c. Elevation (U.S.G.S. Datum) (Feet).

Top of dam	786.0	left	wingwall
Maximum pool - Design surcharge			785.0
Full flood control pool			N/A
Recreational pool			774.5
Spillway crest			774.5
Upstream portal invert drawdown	condui	it	761.0
Downstream portal invert drawdow	m cond	iuit	760.5
Streambed at centerline of dam			754.0
Maximum tailwater			None

d.	Reservoir	(feet)	

Length of	maximum pool	5300
Length of	normal (recreational) pool	2000
Length of	flood control pool	N/A

e. Storage (acre-feet).

Normal (recreational pool)	160
Flood control pool	N/A
Design surcharge	820
Top of dam	896

f. Reservoir Surface (acres).

Top of dam	59
Maximum pool	24
Flood control pool	N/A
Normal pool (recreational)	24
Spillway crest	24

g. Dam.

Type	Concrete gravity
Length Height	250 feet (not including wingwall) 25 feet
Top width	Overflow - N/A Right abutment - 6 feet
Side slopes	Left abutment wingwall - 4 feet Variable

Cida	slopes	
STUE	STORES	

	Downstream	Upstream
Overflow	Variable	1H:3V
Right abutment	1H:1V	Vertical
Wingwall	1H:2V	Vertical
Zoning		None
Impervious core		N/A
Cutoff		None
Grout curtain		None

h. Drawdown Conduit.

Туре	3' x 5' concrete tunnel
Length	29.5 feet
Closure	Sluice gate
Access	Downstream invert
Regulating facilities	Sluice gate, operated on top of wingwall

i. Spillway.

Type
Length
Crest elevation
Gates
Upstream channel
Downstream channel

Ogee weir - overflow dam section
200 feet
774.5
None
Lake
Natural streambed

SECTION 2 ENGINEERING DATA

- 2.1 <u>Design</u>. Review of information on the files of the Commonwealth of Pennsylvania, Department of Environmental Resources showed that a considerable amount of engineering data is available for review of this structure. The information available includes the following:
 - 1. 7 construction drawings.
 - 2. Report on Laurel Lake Dam Repairs and Subsurface Investigation.
 - Report of Subsurface Exploration by Borings, Soils and Testing Co.
 - 4. Laurel Lake Dam Preliminary Design Report.
 - 5. Laurel Lake Dam Preliminary Design Computations.
 - 6. Laurel Lake Dam Final Design Report.
 - 7. Correspondence and Annual Inspection Reports.
- 2.2 <u>Construction</u>. Information on construction of the dam is contained in the files of the General State Authority, who was in charge of construction of the dam. The files contain inspection reports and photographs.
- 2.3 Operation. No formal operating records are kept since no operations are normally performed on the dam. A permit is required for major drawdowns. Records of these drawdowns are in Penn DER files.

2.4 Evaluation.

- a. Availability. Engineering data was provided by the Division of Dams and Encroachments and Division of Completed Projects, Department of Environmental Resources, Commonwealth of Pennsylvania. The owner made available an engineer and the operator of the dam to accompany the inspection team.
- b. Adequacy. The amount of design and construction data available is considerable. The assessment of the structure must be based upon a review of this data, visual inspection, past performances, and hydrologic analysis.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

- a. <u>General</u>. The onsite inspection of Laurel Dam was conducted by personnel of L. Robert Kimball and Associates accompanied by the operating staff and an engineer on October 31, 1978 and November 1, 1978. The inspection consisted of:
 - Visual inspection of the retaining structure, abutments and toe.
 - Examination of the spillway facilities, exposed portions of any outlet works, and other appurtenant works.
 - 3. Observations affecting the runoff potential of the drainage basin.
 - 4. Evaluation of the downstream area hazard potential.
- b. <u>Dam</u>. Water was flowing evenly over the entire overflow section. No settlement of any of the monoliths was noted. The water flowing over the spillway did not permit close examination of the ogee weir and did not allow a detailed survey to be conducted. Several key features were measured at accessible locations. These features conformed closely to the construction drawings. (See Appendix E).

The concrete appeared to be in very good condition. The right abutment gravity section is four feet above the ogee weir. Adjacent to the concrete abutment is a roadway cut in rock at the same elevation as the abutment. Some water can flow over this roadway during flooding without serious erosion. The right abutment and the left abutment wingwall both have fencing for protection.

The side channel banks downstream of the dam have grouted riprap for erosion protection. This riprap is in excellent condition.

Immediately upstream of the dam is the old dam still intact except for a portion removed to create a channel to allow water to flow to the inlet of the drawdown conduit.

c. Appurtenant Structures. The sluice gate on the draw-down conduit was operated by the operating personnel during the inspection. The sluice gate appears to be in good condition. The gate has to be operated manually. The controls are kept chained and locked.

- d. Reservoir Area. The watershed is almost totally covered with woodland. The reservoir slopes are not considered to be susceptible to massive landslides which would affect storage volume of the reservoir or overtopping of the dam by displacing water.
- e. <u>Downstream Channel</u>. Mountain Creek downstream of the dam has a moderately wide channel for the first 6.5 miles. Downstream of the dam are numerous (estimated 50) cottages in the flood plain. These cottages are mostly occupied only several weeks of the year. Approximately 2.5 miles downstream is a newly developed camper park. This park is immediately adjacent to the stream.
- About 6.4 miles downstream is the Upper Mount Holly Dam. This dam is an earth embankment with a concrete gravity overflow section. Gates are present to feed a mill. The dam is approximately five feet high and the reservoir is nearly silted up. Just below the dam the valley becomes very narrow and confined for a distance of .75 miles before widening at the town of Mount Holly Springs.
- 3.2 Evaluation. Visual inspection did not reveal any signs of instability. The dam and appurtenant works appear in very good condition and well maintained.

SECTION 4 OPERATIONAL PROCEDURES

- 4.1 <u>Procedures</u>. The reservoir is maintained at the spillway crest (elevation 774.5). The drawdown conduit is only operated during inspections or to draw the lake level down to perform maintenance of the dam or facilities in the reservoir. All operations are performed by the park staff.
- 4.2 Maintenance of the Dam. A maintenance inspection is conducted once a year. All maintenance is performed on an as-needed basis. Minor repair work is performed by the park staff. Major work is contracted. Maintenance of the dam is considered good.
- 4.3 Maintenance of Operating Facilities. The drawdown conduit sluice gate is operated at least twice a year by the park staff.
- 4.4 <u>Warning System in Effect</u>. There is no formal warning system in effect. The dam is maintained by park staff stationed at the park (several minutes from the dam).
- 4.5 Evaluation. The operational procedures of the dam and appurtenant structures are considered to be good. The dam is accessible to the park staff under all weather conditions from their residences. No warning system is in effect to warn downstream residents of failure of the dam.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

- a. <u>Design Data</u>. Considerable information on the design of the spillway was available from PennDER. The calculations are contained in the design reports.
- b. Experience Data. No records were available of discharges over the spillway or through the drawdown conduit. The depth of water over the spillway during June, 1972 was estimated by the park superintendent to be four feet.
- c. <u>Visual Observations</u>. Both the spillway and drawdown conduit appeared to be in good condition and functional.
- d. Overtopping Potential. Overtopping potential was investigated through the development of the probable maximum flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway. The PMF is that hypothetical flow induced by the most critical combination of precipitation, infiltration losses, and concentration of runoff at a specific location that is considered reasonably possible for a particular drainage area.

To assist the engineer, and provide a standard for hydrologic analyses, the Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version systemized computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, California, July, 1978. The major methodologies or key input data for this program are discussed briefly in Appendix D. A copy of the Users Manual should be obtained by engineers who need more precise definitions of the computer program requirements and methodology.

- 5.2 <u>Evaluation Assumptions</u>. To enable us to complete the hydraulic and hydrologic analysis for this structure, it was necessary to make the following assumptions.
- 1. Water level in the reservoir prior to the flood was the spillway crest (Elevation 774.5).
- 2. Top of dam assumed to be top of left abutment wingwall (Elevation 786.0).
- 5.3 <u>Summary of Overtopping Analysis</u>. Complete summary sheets from the computer output are presented in the hydrologic appendix. To facilitate review the major results of the overtopping analysis are presented below.

a. <u>Spillway Adequacy Rating</u>. The spillway design flood (SDF) for Laurel Dam is 80% PMF. The SDF is based on the size and hazard classification of the dam. Based on the following definition provided by the Corps of Engineers the spillway for this dam is rated as adequate as a result of our hydrologic analysis. The spillway and reservoir are capable of controlling approximately 84% of the PMF.

Adequate - For large and intermediate size dams the spillway and reservoir can safely pass the PMF. For small dams the spillway can pass 50% of the PMF.

5.4 <u>Dam Breach Analysis</u>. Since Laurel Dam is a small size structure and can satisfactorily pass 50% of the PMF (based on our analysis) is was not necessary to perform a breach analysis and downstream routing of the flood wave.

Note: Future development within the watershed, at the dam, or downstream may change the characteristics and assumptions made for this study and different results are likely. Future development downstream may also greatly increase the potential for loss of life due to failure of the structure.

5.5 <u>Summary</u>. Laurel Dam can satisfactorily pass greater than 50% of the PMF and therefore the spillway is termed adequate based on the Corps of Engineers criteria.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

- a. <u>Visual Observations</u>. Visual inspection did not reveal any signs of immediate instability. The dam appears to be well constructed and conform to the construction drawings.
- b. Design and Construction Data. Penn DER design calculations indicate that both the overflow and non-overflow sections are stable with a water surface of 785.0 and 786.0, respectively. The resultants fall in the middle third. In addition, the overflow section was checked for sliding and found to be stable. The as-built foundation configuration is not known. No as-built stability analysis has been performed.
- c. Operating Records. There are no operating records. Laurel Dam controlled the June, 1972 flood with no serious affects.
- d. <u>Post-Construction Changes</u>. There have been no post-construction changes.
- e. <u>Seismic Stability</u>. The dam is located in seismic zone 1. No seismic stability analysis has been performed. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected earthquake loading. However, Laurel Dam is reportedly situated over a fault and little is known of its extent or movement. A more detailed geologic reconnaissance study should be conducted to determine location, extent and past movement with recommendations for future potential movement.
- f. Check of Stability Analysis. An approximate check of the stability of the overflow gravity section was performed for this study. The assumptions for this study were as follows:
 - 1. PMF (elevation 787.0) water surface used.
- 2. Shape of typical section and depth of foundation assumed to be that which is shown on the construction drawings.
- 3. Uplift pressure equal to two-thirds the area applied to the base.
- 4. The conventional analysis for a vertical section having a width of 1 foot is considered. The arch action is neglected.

The analysis indicates that the overflow section of the dam is stable during the PMF.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

- a. <u>Safety</u>. The visual observations, review of available information, hydrologic calculations, and past operational performance indicates that Laurel Dam does not appear to present an immediate danger to life or property. Laurel Dam is capable of controlling approximately 84% of the PMF without overtopping. The spillway is termed adequate.
- c. Adequacy of Information. The information available appears to be adequate to complete a Phase I Report.
- c. <u>Urgency</u>. The recommendations suggested below should be implemented on a continuing basis as part of the regular operating and maintenance routine for this dam.
- d. <u>Necessity for Further Investigations</u>. A field reconnaissance study should be conducted to investigate the potential for movement of faults in the area of the dam.

7.2 Recommendations.

- l. Continue with a routine inspection and surveillence program.
- 2. Continue with maintenance as needed and routine operation of the sluice gate control valve.
- 3. Develop an emergency warning and evacuation plan for this dam.
- 4. Conduct a geologic study to investigate the potential for movement of the faults in the area.

APPENDIX A

CHECKLIST, VISUAL INSPECTION, PHASE I

CHECK LIST VISUAL INSPECTION PHASE I

NAME	OF	NAME OF DAM Laurel Dam	COUNT	COUNTY Cumberland	STATE Pennsylvania ID# PA 586
TYPE	OF	TYPE OF DAM Concrete gravity	ity 31 1078		HAZARD CATEGORY High
DATE	(8)	DATE(s) INSPECTION November 1	1, 1978 WEAT	1978 WEATHER Sunny, cool	TEMPERATURE 50's
POOL	ELF	POOL ELEVATION AT TIME OF INSPECTION 774.6	SPECTION 77	4.6 M.S.L.	TAILWATER AT TIME OF INSPECTION None M.S.L.

INSPECTION PERSONNEL:

R. Jeffrey Kimball - L. Robert Kimball and Associates	James T. Hockensmith - L. Robert Kimball and Associates	Kuang Hwei Chuang - L. Robert Kimball and Associates	Jack Hugendubler - Engineer, PennDER	loyd - Park Superintendent
R. Jeffrey K.	James T. Hoc	Kuang Hwei Cl	Jack Hugendul	Bob Lloyd - P

James T. Hockensmith RECORDER

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	N/A	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	N/A	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	N/A	
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	N/A	
RIPRAP FAILURES	N/A	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VEGETATION	N/A	
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM		
ANY NOTICEABLE SEEPAGE	N/A	
STAFF GAUGE AND RECORDER	N/A	
DRAINS	N/A	

CONCRETE/MASONRY DAMS

0

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	None noted, flow over spillway did not permit examination.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Both abutments appeared good.	
DRAINS	None.	
WATER PASSAGES	None.	
FOUNDATION	Unobserved - metarhyolite.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	None noted, surface of concrete appeared good.	
STRUCTURAL CRACKING	None noted.	
VERTICAL AND HORIZONTAL ALIGNMENT	Both appeared good.	
MONOLITH JOINTS	Good.	
CONSTRUCTION JOINTS	. Good	
STAFF GAUGE OR RECORDER	None.	

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Interior unobserved. 3' x 5' tunnel.	
INTAKE STRUCTURE	Sluice gate - unobserved.	
OUTLET STRUCTURE	Tunnel outlet in wingwall good.	
OUTLET CHANNEL	Natural stream.	
EMERGENCY CATE	None other than outlet works.	

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	200' long ogee - good condition.	
APPROACH CHANNEL	None.	
DISCHARGE CHANNEL	Natural stream.	
BRIDGE AND PIERS	None.	

GATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	N/A	
APPROACH CHANNEL		
DISCHARGE CHANNEL	N/A	
BRIDGE AND PIERS	N/A	
GATES AND OPERATION EQUIPMENT	N/A	

DOWNSTREAM CHANNEL

CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	OBSERVATIONS Generally wide and flat beyond bridge located 500' downstream.	REMARKS OR RECOMMENDATIONS
SLOPES	Gentle.	
APPROXIMATE NO. OF HOMES AND POPULATION	50 cottages, trailor/camper park (capacity for about 100 trailors). Population variable with season. Several of the cottages are permanent residences.	

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Moderately steep.	
SEDIMENTATION	Unknown.	

INSTRUMENTATION

.0

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None.	•
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	
отнея		

APPENDIX B

CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I

ITEM	REMARKS
DESIGN REPORTS	PennDER files.
GEOLOGY REPORTS	Unknown.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	PennDER files.
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	PennDER files.
POST-CONSTRUCTION SURVEYS OF DAM	Unknown.
BORROW SOURCES	N/A

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	None.
HIGH POOL RECORDS	None.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None.
MAINTENANCE OPERATION RECORDS	Unknown.

ITEM	REMARKS
SPILLMAY PLAN SECTIONS DETAILS	Construction drawings.
OPERATING EQUIPMENT PLANS & DETAILS	Construction drawings.

APPENDIX C

PHOTOGRAPHS

Photograph No. 1

Looking at left abutment, downstream riprap and reservoir drawdown outlet.

Photograph No. 2

Reservoir drawdown outlet discharging.

Photograph No. 3

Immediate downstream channel.

Photograph No. 4

First dwelling (Cottage) downstream.

Photograph No. 5

Camper/trailer park downstream.

Photograph No. 6

Upper Mount Holly reservoir.

APPENDIX D
HYDROLOGY AND HYDRAULICS

APPENDIX D HYDROLOGY AND HYDRAULICS

Methodology. The dam overtopping and breach analyses were accomplished using the systemized computer program HEC-1 (Dam Safety Investigation), September 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analyses is presented below.

1. Precipitation. The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Reports No. 33 prepared by the National Weather Service.

The index rainfall is reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. <u>Inflow Hydrograph</u>. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters their definition and how they were obtained for these analysis.

Parameter	Definition	Where Obtained
c _t	Coefficient representing variations of watershed slope and storage	From Corps of Engineers*
L	Length of main stream channel miles	From U.S.G.S. 7.5 minute topographic
L _{ca}	Length on main stream to centroid of watershed	From U.S.G.S. 7.5 minute topographic
c _p	Peaking coefficient	From Corps of Engineers*
Ä	Watershed size	From U.S.G.S. 7.5 minute topographic

*Developed by the Corps of Engineers on a regional basis for Pennsylvania.

3. Routing. Reservoir routing is accomplished by using Modified Plus routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input and the program will calculate an elevation discharge relationship.

Storage in the pool area is defined by an area - elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

4. <u>Dam Overtopping</u>. Using given percentages of the PMF the computer program will calculate the percentage of the PMF which can be controlled by the reservoir and spillway without the dam overtopping.

M

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG PENNSYLVANIA

I.D. NUMBER PA. 21-25

SHEET NO. 1 OF 3

LAUREL LAKE DAM

DRAINAGE AREA

AREL = 23.8 Sq. Mi. (From U.S.G.S. QUAD.)

UNIT HYDROGRAPH PARAMETERS

DAMSITE LOCATED IN ZONE 15-A, SUSQUEHANNA RIVER BASIN. FROM CORPS. OF ENGINEERS, BALTIMORE DISTRICT REGIONAL STUDY.

CP = 0.54 , Ct = 1.15 { FROM C.O.E. BALTIMORE DIST.}

L = 9.0 MILES , Lca = 5.0 MILES { FROM U.S.G.S. QUAD.}

tp = Ct (Lx Lca)^{0.3} = 1.15 (9.0 x 5.0)^{0.3}

tp = 1.15 (3.13) = 3.60 HRS. (SNYDERS LAG (tp) IN HRS.)

LOSS RATE AND BASE FLOW PARAMETERS:

AS RECOMMENDED BY CORPS. OF ENGINEERS, BALTIMORE DISTRICT.

STRTL = 1 INCH

CNSTL = 0.05 1./ HR.

STRTQ = 1.50 C\$5/SQ. MI.

QRCSN = 0.05 (5% OF PENK FLOW)

RT10R = 2.00

PROBABLE MAXIMUM STORM:

FROM H.R. NO. 40

PMP. INDEX RLINFALL - 22.2 INCHES

R6 = 108% , R12 = 1/8% , R24 = 127% , R48 = 134%, R72 = 137%

M

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS = EBENSBURG PENNSYLVANIA

DAM NAME LAUREL LAKE DAM I.D. NUMBER PA. 21-25

> SHEET NO. 2 OF_ BY OTM DATE 2-1-79

ELEVATION - AREA - CAPACITY RELATIONSHIPS:

AT SPILLWAY CREST ELEV. 774.5' AREA = 25 ACRES A) INITIAL STORAGE = 160 ACRE . FT

FROM U.S.G.S. QUAD.

- A) ELEV. 780.0' SURFACE AREA = 40 ACRES
- B) ELEV. 790.0' SURFACE AREAT 73 ACRES

FROM CONIC METHOD FOR RESERVOIR YOLUME. FLOOD HYDROGRAPH PACKAGE (HEC-1). DAM SHFETY VERSION (USERS MANUAL).

H = 3 V/A = 3 (160)/25 = 19.2(FT.)

ELEV. AT CAPACITY EQUALS ZERO; 774.5-19.2 = 755.3 (FT.)

ELEV.	755.3	774.5	776.5	778.5	780.0	782.0	786.0	790
AREA (AC)	0	25	30	35.5	40	45.5	59	73

SPILLWAY DISCHARGE

M

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG PENNSYLVANIA

DAM NAME LAUREL LAKE DAM

I.D. NUMBER FA. 21-25

SHEET NO. 3 OF 3

ELEVATION	Η, (Fτ)	Q1 (c45)	H2 (FT.)	Qz (cfs)	Q TOTAL (Cfs)
774.5	0	0	0	0	Ö
775.5	/	760	0	0	760
776.5	2	2/50	0	0	2,150
777.5	3	3,950	0	. 0	3,950
778.5	4	6,080	0	0	6,080
780.0	5.5	2803	1.5	275	10,078
782.0	7.5	15,610	3.5	980	16,590
784.0	9.5	22,254	5.5	1935	24,/89
786.0	11.5	29,640	7.5	3080	32,720
788.0	13.5	37,700	9.5	4390	42,090

TABULATED FROM Q = CLH 3/2 WHERE C, = 3.8 (OGEE)
Cz = 3.0 (BROAD CRESTED WEIR).

DAM BREACH

NOT REQUIRED SINCE SPILLWAY PASSED 0.50 P.M.F.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 23.8 sq. miles-Moderately steep to steep
woodland.
ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 774.5 (160 Ac-ft)
ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N/A
ELEVATION MAXIMUM DESIGN POOL: 785.0
ELEVATION TOP DAM:786.0
SPILLWAY CREST:
a. Elevation 774.5
h Type Ogee
a. ElevationOgee b. TypeOgee c. Width
d. Length 200 ft. e. Location Spillover Center of dam.
e Location Spillower Center of dam.
f. Number and Type of Gates None
1. Number and Type of Gates
OUTLET WORKS:
COLDEL HORD.
a. Type 3 'x 5' concrete tunnel b. Location Left abutment wingwall c. Entrance inverts 761.0
h. Location Left abutment wingwall
c. Entrance inverts
d. Exit inverts 760.5
e. Emergency draindown facilities Outlets work to elevation 761.
HYDROMETEOROLOGICAL GAUGES:
None
a. Type None
b. Location
c. Records
MAXIMUM NON-DAMAGING DISCHARGE:June, 1972 - est. 6,080 cfs
MAXIMUM NUN-DAMAGING DISCHARGE: CSC. 0,000 CIS

	FLOOD HYDROGRAPH PACKAGE THECTA DAM SAFETY VERSION JULY 1978 LAST MODIFICATION 25 SEP 28 ************************************	ALKAGE THE JULY JULY AL 25 SEP	1978 78 888 ANALYSIS	1978 18 **** ANALYSIS OF DAM OVERTOPPING USING RATIOS OF	ERTOPPIN	G USING	RATIOS	PMF						1
	764	300	RATIOS OF	PMF	ED THROU	GH THE R	RAULIC ANALYSIS UP SAFELL UN ROUTED THROUGH THE RESERVOIR 15 0 0 0	PA. 1	PA. 10. 21-25	1	0			
	50-	1.2		1 60 1	:			-						1
	10		INFL	RESE 23.		23.8	1 2	197		1				1
	222	1 3.6	0					1.0	\$0.0				-	1
	15	X X X	ROUTE THRU	N RESERVOIR) IR			-			4.	ore f		i
D-	19	-	1	776.5	2011	778.5	780.	160.	784.	786.	788.			1
7	22 22	\$A 0 \$E 75543	25	776.5	35.5	4 6	45.5	25	59 786	788	73.4			1
	24 25	\$0 786.	3.05	1.5	150.					•				-
														i
			PREVI	PREVIEW OF SEC	JENCE OF	STREAM	SEQUENCE OF STREAM NETWORK CALCULATIONS	CALCULAI	LONS					
				RUNOFF	RUNOFF HYDROGRAPH AT	APH AT								1
				END OF	END OF NETWORK									
			,							-				
														100

FLOOD HYDROGRAPH PACKAGE (HEC-1) DAM SAFITY VERSION LAST MODIFICATION 2.5 SP 78 ***********************************
--

	,					•				COMP O	69-1(38869-71)
							1034	103.	32.	LUSS	2072
100			RT 1MP 0.00	1		VOL. 1.00	1096.	194.	34.	EXCS	22.48 571.11
1	R96		ALSMX 0.00	1 (a) 1 (a) 1 (a)			161.	205.	36.		25.20
0			CNSTL .05	The state of	000	1427.	1161	366 205 115	6.2		SUM
	8 R72		STRTL 1.00		RT 10R- 2.00	3.63 HOURS.	1230.	122.	38.	HR.MN P	
0.000	R48		RT10K 1.00	DATA NTA-	50	:	303.	230.	41.	4	
00.0	PRECIP DATA			UNIT HYDROGRAPH DATA	V DV	ES. L		244.	43.	END-OF-PERIOD FLOW	
23.80	PREC R12	30	ERAIN S	3.60		D ORDINAT	1380-	2440	30	COMP Q	
0.00	R6 108-00		110L ER	1P. 3	-1.50	499.	1462.	259.	46.	7000	
23.80	PMS	.628	æ	4	STRT0.	100 END-0	1549.	274.	48.	EXCS	
-	SPFE		R DLTKR			DGRAPHIC				RAIN	
-		PROGRA	STRKR 0.00			11 HYDRO 151.	1641	290	29	PERIOD	
		BY THE	LROPT			NO *0*	1739.	307.	31.	HR. HN	
		TRSPC COMPUTED BY THE PROGRAM IS								MO.DA	
		TRSPC				, -					
							D-9				

				* * * * * * * * * * * * * * * * * * * *		*****		:	******	
			HYDROGE	HYDROGRAPH ROUTING	9					
ROUT	ROUTE THRU RESERVOIR	ERVOIR								
	1STAQ 2	I COMP	1ECON 0 ROUT	ON ITAPE O 0 ROUTING DATA	JPLT	JPRT 1	INAME I	ISTAGE	IAUTO	
000	35 CL055	AVG 00.00	IRES 1	I SAME 1	1001	1PMP 0		LSTR		
	NSTPS	NSTDL	LAG	AMSKK 0.000 0	o 00000	15K S	STORA 1	ISPRAT -1		
174.50 77	775.50	776.50	05.777	178.50	90	780.00	782	782.00	784.00	786.00
00.00	760.00 2	2150.00	3950.00	00.0809		10078.00	16590.00		24189.00	32720.00
SURFACE AREA = 0.	25.	30.	36.	*0*	**		52.	59.	67.	13.
CAPACITY= 0.	160•	215.	280.	337.	422.		520.	631.	156.	896.
ELEVATION- 755.	175.	·m.	179.	780.	182.		784.	786.	788.	190.
	CREL S	SPWID O	0.0 0.0	EXPW ELEVL	0.0	CAREA 0.0	EXPL	د د		
				DAM DATA	TA					

TUPEL COQD EXPD DAMWID 786.0 3.1 1.5 150.	TIME 43.25 HOURS	TIME 43.25 HOURS	TIME 43.25 HOURS	TIME 43.25 HOURS		PEAK ELOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)	AREA PLAN RATIO 1 RATIO 2 RATIO 3 RATIO 4 .50 .80 .90 1.00	3.80 1 19212. 30740. 34582. 38424. .64) (544.03)(870.45)(979.25)(1088.06)(23.80 1 19149., 30623. 34470. 38306. 1.64) (542.24)(867.14)(976.09)(1084.69)(
	19149. AT TIME	30623. AT TIME	34470. AT TIME	38306. AT TIME		FLOW AND ST		1 23.80	2 23.80	2	-
	LOW 1S	LOW 15	LOW 15	LOW 15		PEAK	STATION	H AT			
	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS			OPERATION	HYDROGRAPH AT	ROUTED TO		

				-					
		TIME OF FAILURE HOURS	00000						
	10P OF DAM 786.00 631.	TIME OF MAX OUTFLOW HOURS	43.25 43.25 43.25 43.25						
		DURATION OVER TOP HOURS	0.00					•	
**************************************	SPILLWAY CRESI 774.50 160.	MAX IMUM OUTFLOW CFS	19149. 30623. 34470. 38306.						
-		MAXIMUM STURAGE AC-FT	454. 602. 648. 694.						
	1NITIAL VALUE 774.50 160.	MAXIMUM DEPTH OVER DAM	0.00 0.00 1.05					•	
	ELEVATION STORAGE	MAXIMUM RESERVOIR W.S.ELEV	782.67 785.51 786.28						
		RATIO OF PMF	.50 .80 .90 1.00						
	PLAN 1							•	
				D-1:					

APPENDIX E

DRAWINGS

12+0 13+0 13+0 13+0 13+0 13+0 23+0 27+5 14+8

TRAVERSE DATA

Traverse	Coordinates				
Station	North	East			
2+0320A	5135.70	4141.32			
3.00 A -	5157.21	4235.74			
18+2456A	5273.73	4747 24			
19.8720A	5128.45	4674 36			
23+0675A	4854.74	4509.65			
27+5182A	4511.56	4226 40			
0-00C0	5157.21	4235.74			
1-93 470	498343	4321.15			
4+8586C	482322	4076.29			

LOCATION MAP

21-	25-A=1_
FLE	WANTED.
RECEIVED IN THE UP	THE WATER & PORCETS A
-Chu	tu the and
	tue H. Comp
BISCO	ron_

GENERAL NOTES:

- NOTES:

 All elevations shown are based on U.S.G.S. datum.

 P. Number shown in circle as (6) indicates number of pay item.

 S. All concrete is Class B. (4)

 A.D.I reinforcement 2 clear/edge of steel to surface of concrete) unless otherwise noted.

 D. Steel reinforcement will be paid for under item (§).

 S. (5) indicates concrete finish.

 T. Chamfer 3/4 all exposed edges and all exposed joints in walls.

 B. All secawation shall be used to augment the parking area on the left bank.

PRE FINAL

PROJECT No. — G. S. A.—193-17

REPLACEMENT OF DAM

PINE GROVE FURNACE STATE PARK

CUMBERLAND COUNTY PENNA. REVISED Value & Butter and Doing wood Charle Comment of Burnet & Water GENERAL PLAN ASSISTANT DIRECTOR OF ENGINEERING G.S.A.
CHECKED BY THE GENERAL STATE AUTHORITY

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS FIGURE 2

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS FIGURE 3

MESOURCES BLAZE - STYPER OF FORESTS & MATTERS ON THE PLAY OF 1802 ACC AD 1804 CONTRACT OF THE PROPERTY OF THE
secoFOR
BEE REPORT NO.
Cv. Dame

SECTION (E)

LEFT ABUTMENT

REFERENCES

General Plan			Sheet	No.	1.1	
Plan and Profile _			 Sneet	No.	1.3	ś
Control Structure	Details		Sheet	No	1.5	ś
Cross Sections		*****	Sheet	No	1.7	ľ

NOTES:

1. For General Notes, see Sheet No.11.
2. Jonts in Ogoe Section not shown.

PRE FINAL

REVISED	OSSIGNED SUBLETTED
	RECONNENDED
	Chief Division of Rand Control
	Charles Countille
	APPROVED

PROJECT No. - G. S. A - 193-17

REPLACEMENT OF DAM

PINE GROVE FURNACE STATE PARK

CUMBERLAND COUNTY - PENNA.

DRAWDOWN CONDUIT

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS FIGURE 6

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS FIGURE

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS & ARCHITECTS
FIGURE 8

APPENDIX F

GEOLOGY

Laurel Lake Dam - Cumberland County

General Geology:

Laurel Lake (Laurel Forge Pond) lies within the South Mountain Section of the Blue Ridge Physiographic Province. This area is characterized by very complex structural features including major folds and low angle faults.

The lake and dam lie astride a fault separating a Pre Cambrian aged metarhyolite (mr) from the Cambrian aged Tomstown Formation (Ct). No specific information is available on the metarhyolite, but they are usually fine-grained, red, gray and blue, and have phenocrysts of both quartz and feldspar. There is no bedding, but there may be joints. These may be abundant and closely spaced, but are usually only moderately developed with an irregular pattern. It is highly resistant to weathering, but a thin weathered rind may sometimes have to be removed before it can be utilized as a foundation material for heavy structures. It has good surface drainage and a low magnitude secondary porosity.

The Tomstown Formation is a moderately well bedded and massive gray dolomite. It is finely crystalline and weathers to a buff and olive gray color. Any joints present have a blocky pattern and are moderately to well developed. They are usually widely spaced and have an irregular pattern. The dolomite is moderately resistant to weathering and may form a good foundation for heavy structures if excavated to sound material. Any sinkholes or bedrock pinnacles should be thoroughly investigated however. It has good surface drainage and the joints and solution channels provide only a low magnitude source of secondary porosity.

Little is known of the fault separating the dolomite from the metarhyolite. There is also a second fault parallelling the first at a distance of about one mile to the south.

Geologic Map of Laurel Dam Area

Ledger Formation

Kinzers Formation
Dark brown shale at the base; above this is
gray and white spotted limestone and
marks with irregular partings grading to
mady limestone which weathers to fine
porous suidstone.

Vintage Formation

Dark gray, knotty argillaceous dolomite with impure light gray marble at the base.

Tomstown Formation (Ct) or Leithsville Formation (Clv) Mussive dolomite with thin shaly inter-beds. Scale: 1:250,000

APPENDIX G
STABILITY CALCULATIONS

DAM NAME Lauel Lake Dam M I.D. NUMBER ___ 2/- 25 L. ROBERT KIMBALL & ASSOCIATES SHEET NO. ____OF __ CONSULTING ENGINEERS & BY KHC DATE 2-1-79 PENNSYLVANIA Stability Analysis Overflow section Max. Pool El. 787.0' Wt. of concrete , 150 /ti Nt. of water , 62.4 /413 silt pressure = 62.4 /tis neglect silt effect Max. Tailwater El. 766' A= 58.6K W=124.7 * -Pz = 4.6 k LI=55.4" from design data (DER) W, = 150(831.) = 124.7 K Moment arm 1 = 21.8' Wz= 12.4 , Moment arm, l=38.5-3.3 = 35.2 P= 58.6", Moment arm, (=13.2', Pz=4.7', 1=4' Uplift force, use 66% U= 3 (.0624)(38.5) (45.1+24.1) = 55.4 K

I.D. NUMBER 11 2/- 25 SHEET NO. 2 OF 2 BY KHC DATE EV = W, + W2 - U = 124.7 + 12.4 - 55.4 = 81.7 K IH = P.-P2 = 58.6-4.6 = 54.6 Slide factor, f = 54.0 = .66 Point of application of resultant, distance from toz. $d = \frac{(124.7)(21.8) + 12.4(35.2) + 4.6(4) - 58.6(13.2) - 55.4(21.2)}{81.7}$ d = 1225 = 15.0 > 38.5 = 12.83 within middle third $e = \frac{38.5}{2} - 15.0 = 4.25'$ $\sqrt{max} = \frac{81.7 \times 10^3}{1111(385)} \left(1 + \frac{6 \times 4.25}{38.5}\right) = 14.74 \left(1.66\right) = 24.5 (psi)$ Juin = 14.74 (.34) = 5.0 psi use \$ = .65, C = 50 psi Shear friction factor of safety $Q = \frac{81.7(.65) + 38.5(144)(.05)}{54.0} = 6.1 > 3$

M

DAM NAME Lavel Lake Dam