Функциональный анализ (6 семестр)

🖹 Открыть на HackMD

Ссылки

Конспект + теормин от Артёма Жолуса:

- Линейные операторы в банаховых пространствах
 - Сопряженный оператор
 - Ортогональное дополнение в банаховых пространствах
- Элементы спектральной теории линейных операторов
 - Определение спектра и резольвенты оператора
 - Альтернатива Фредгольма-Шаудера
- Теорема Гильберта-Шмидта

Конспекты: 💾 Дина, 💾 Аня, 💾 Рома

Гуглодоки: 5 семестр + 6 семестр

Викиконспекты: Функциональный анализ + теормин + ещё конспект

Полезное: лекции МГУ, ВШЭ

Напоминания

Векторное (или линейное) пространство — набор векторов, для которых определены операции сложения и умножения на скаляр + 8 аксиом.

Метрическое пространство — множество с метрикой $(X,\;
ho: X imes X
ightarrow \mathbb{R}).$

Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность ($\{x_n\}:
ho(x_i,x_j) o 0$) сходится к элементу этого же пространства.

Нормированное пространство — векторное пространство с нормой.

Банахово пространство — нормированное векторное пространство $B = (X, \|\cdot\|)$, полное по метрике, порождённой нормой.

Евклидово/Унитарное пространство — векторное пространство над \mathbb{R}/\mathbb{C} с определенным скалярным произведением.

Сепарабельное пространство — пространство (X,T), в котором есть счетное всюду плотное подпространство E:Cl(E)=X.

Гильбертово пространство — унитарное пространство H, полное по метрике, порожденной нормой.

Компактное пространство — топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие.

Множество относительно компактно, если его замыкание компактно.

Пусть X — метрическое пространство, A, B — множества, $\varepsilon>0$. Тогда A называется ε -сетью для B, если $\forall b\in B \ \exists a\in A: \rho(a,b)<\varepsilon$

Метрическое пространство X вполне ограничено, если для каждого $\varepsilon>0$ в X существует конечная ε -сеть.

Пусть X — полное метрическое пространство, $E\subset X$. Тогда E – вполне ограничено $\Leftrightarrow E$ – относительно компактно.

Линейный оператор — отображение A:X o Y, такое что $orall lpha,eta\in\mathbb{R}:A(lpha x_1+eta x_2)=lpha A(x_1)+eta A(x_2)$

Множество значений оператора — $R(A) := \{Ax \mid x \in X\}$

L(X,Y) — нормированное пространство ограниченных линейных операторов из X в Y, где **норма линейного оператора** — это $\|A\| = \sup_{\|x\| \le 1} \|Ax\|$.

Линейный оператор A:X o Y в нормированном пространстве называется **ограниченным**, если существует такое число C>0, что $\|Ax\|\le C\|x\|$

Оператор A^{-1} называется **обратным** к оператору A, если $AA^{-1}=A^{-1}A=I$, где I:Ix=x— единичный оператор. Если выполняется только соотношение $A^{-1}A=I$ или только $AA^{-1}=I$, то оператор A^{-1} называется **левым обратным** или **правым обратным** соответственно. Если оператор A имеет левый обратный и правый обратный и они равны между собой, то оператор A является **обратимым**.

 $X^*:=L(X,\mathbb{R})=\{f:X \xrightarrow{_{\mathrm{пин}}} \mathbb{R}\}$ – сопряженное пространство к X (над \mathbb{R}). Сопряжённое пространство всегда является банаховым пространством.

Равномерная сходимость —
$$\displaystyle \lim_{n o \infty} \sup_{x \in X} |f_n(x) - f(x)| = 0.$$

Пусть L — линейное пространство. **Собственным вектором** линейного преобразования $A:L \to L$ называется такой ненулевой вектор $x \in L$, что для некоторого $\lambda \in K$ выполняется равенство $Ax = \lambda x$.

Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.

Лемма Рисса

Пусть Y — нормированное пространство, X — его собственное подпространство ($X\subsetneq Y$). Тогда для любого $0<\varepsilon<1$ существует точка $z_\varepsilon:\|z_\varepsilon\|=1,\;p(z_\varepsilon,X)\geq 1-\varepsilon$

Теорема Банаха о гомеоморфизме

Пусть A:X o Y — ограниченный линейный оператор, причем осуществляющий биекцию, тогда A^{-1} — ограниченный линейный оператор.

Полунорма — норма, которая может быть равна нулю на ненулевых точках.

Теорема Хана-Банаха и следствия

Пусть X,Y - линейные многообразия над полем $\mathbb R$ такие, что $X\subset Y$, p(y) - полунорма на $Y,f:X\to\mathbb R$ - линейный функционал, $|f(x)|\le p(x)$ на X. Тогда существует линейный функционал $g:Y\to\mathbb R$, такой что:

- 1. $\left. g \right|_X = f$ (сужение линейного функционала g на X равно f)
- 2. $|g(y)| \leq p(y)$ на Y

Билеты

- готов
- **х** не готов
- только формулировки
- проходили, но в билеты не включено
- в было у прошлых курсов
- требует обновления/проверки

1. Норма сопряженного оператора

Введём на X^* норму как **норму линейного функционала**: $\|A\| = \sup_{\|x\| < 1} \|Ax\|$.

Пусть X,Y - нормированные пространства, $A\in L(X,Y)$ - линейный ограниченный оператор: $X\to Y$, $\varphi\in Y^*$. Рассмотрим $f(x)=\varphi(Ax)$, $|f(x)|\leq \|\varphi\|\|A\|\|x\|$, $f\in X^*$. Тогда **сопряженный оператор** к A это $A^*(\varphi):=\varphi\circ A$, где $A^*:Y^*\to X^*$.

Утверждение: Если A непрерывный, то A^* тоже непрерывный.

Теорема: $\|A^*\| = \|A\|$

Доказательство:

- Жолус: Теорема 1.2
- Дина: 1 стр.

■ 1.5. Общий вид линейных функционалов в пространстве Гильберта

Теорема (Рисс)

Пусть H – гильбертово пространство. Тогда $\forall f \in H^*$, f можно представить как $f(x) = \langle x, y \rangle$, где $y \in H$ – единственна, $\|f\| = \|y\|$.

Доказательство:

- Жолус: Теорема 1.3
- Дина: 3 стр.
- МГУ: 6 стр.

② 2. Ортогональные дополнения X и X*

Пусть $S\subset X$. Ортогональное дополнение в B-пространстве это $S^\perp:=\{f\mid f\in X^*, \forall x\in S\Rightarrow f(x)=0\}$.

Пусть $S\subset X^*$. Ортогональное дополнение в сопряженном пространстве это $S^\perp:=\{x\mid x\in X, \forall f\in S\Rightarrow f(x)=0\}$

Теорема: $X^\perp = X^{*\perp} = \{0\}$

Доказательство:

- Жолус: Утверждение 1.4
- Дина: 5 стр.

$m{\lozenge}$ 3. Ортогональное дополнение $Ker(A^*)$

Пусть $A\in L(X,Y)$. $Ker\ A=\{x:Ax=0\}$ – ядро оператора A $R(A):=\{Ax\mid x\in X\}$ – множество значений оператора A.

Теорема: $Cl\;R(A)=(Ker\;A^*)^{\perp}$

- **Жолус**: Теорема 1.5
- Дина: 6 стр.

$lacksymbol{arphi}$ 4. Ортогональное дополнение Ker(A)

Теорема: $R(A^*) = (Ker \ A)^\perp$, если R(A) замкнуто.

Доказательство:

• Жолус: Теорема 1.6

• Дина: 7-8 стр.

$m{\oslash}$ 5. Априорная оценка решения y=Axи замкнутость R(A)

Пусть A:X o Y – линейный оператор и $\exists lpha=const:\|x\|\leq lpha*\|y\|$, где y=Ax.

Коэффициент α называется **априорной оценкой** решения операторного уравнения.

Теорема: Если A – линейный оператор, такой что для уравнения y=Ax существует априорная оценка, то R(A) – замкнуто.

Доказательство:

• Жолус: Теорема 1.7

• Дина: 8 стр.

⊘ 6. Определение спектра и резольвенты, замкнутость спектра

I:Ix=x — тождественный оператор

Регулярная точка оператора A — это такая $\lambda \in \mathbb{C}$, что оператор $\lambda I - A$ непрерывно обратим (то есть $(\lambda I - A)^{-1}$ непрерывен).

Резольвента — $ho(A) = \{\lambda \in \mathbb{C} \mid \lambda$ – регулярная точка $A\}$

Резольветный оператор — $R_{\lambda}(A) = (\lambda I - A)^{-1}$

Спектр оператора — $\sigma(A) = \mathbb{C} \setminus \rho(A)$

Утверждение: ho(A) является открытым в $\mathbb C$. **Следствие**: $\sigma(A)$ является замкнутым в $\mathbb C$.

Доказательство:

- Жолус: Утверждение 2.1 и Следствие 2.2
- Викиконспекты (скриншот)
- Дина: 10 стр.

7. Спектральный радиус и его вычисление

Спектральный радиус: $r_{\sigma}(A) := \sup_{\lambda \in \sigma(A)} |\lambda|$

Эквивалентное определение: $r_{\sigma}(A):=\inf_{n\in\mathbb{N}}\sqrt[n]{(\|A^n\|)}$

Теорема: $r_{\sigma}(A) = \lim_{n o \infty} \sqrt[n]{(\|A^n\|)}$

- Викиконспекты (скриншот)
- Жолус: Утверждение 2.4
- Дина: 11-12 стр.
- Рома: 5-7 стр.

• Аня: 9-11 стр.

⊗ 8. Оценка протяженности спектра через спектральный радиус

Утверждение: $\sigma(A) \subset \{\lambda : |\lambda| \leq r_{\sigma}(A)\}$

Доказательство:

- **Жолус**: Теорема 2.5
- Викиконспекты (скриншот)

9. Аналитичность резольвенты

Тождество Гильберта (+ доказательство): $R_{\lambda}(A) - R_{\mu}(A) = (\lambda - \mu) * R_{\lambda}(A) * R_{\mu}(A)$

Утверждение: $R_{\lambda}(A)$, как функция из комплексного числа в ограниченный оператор, аналитична в $\rho(A)$ и в бесконечно удаленной точке комплексной плоскости.

Доказательство:

Примечание: в доказательстве рассматривается **аналитичность по Вейерштрассу** (в окрестности точки λ функция раскладывается в степенной ряд).

- Викиконспекты (скриншот)
- Аня: 9-10 стр.

10. Непустота спектра ограниченного линейного оператора

Теорема: Если оператор A ограничен, то $\sigma(A) \neq \varnothing$.

Доказательство:

- Викиконспекты (скриншот)
- Дина: 11 стр. (нет доказательства)

11. Теорема об отображении спектра полиномом

Лемма: P(A) - непрерывно обратим $\Leftrightarrow 0 \notin P(\sigma(A))$

Теорема: $P(\sigma(A)) = \sigma(P(A))$ для произвольного полинома P.

Примечание: под действием полинома на множество понимается поточечное применение:

$$P(S) = \{P(x) \mid x \in S\}$$

Доказательство:

- Додонов: 1-2 стр.
- Жолус: Теорема 2.6
- Дина: 13 стр.

✓ 12. Элементарные свойства линейных компактных операторов (произведение ограниченного и компактного операторов, равномерный предел последовательности компактных операторов)

Оператор $A:X \to Y$ называется **компактным** (или вполне непрерывным), если он каждое ограниченное множество переводит в относительно компактное (т.е. $\forall M$ – ограниченного множества, $Cl\ A(M)$ – компактно).

Утверждение: Пусть A – компактный оператор, B – ограниченный оператор. Тогда AB и BA - компактные операторы.

Доказательство:

• Додонов: 3-4 стр.

• Жолус: Утверждение 2.8

Дина: 16 стр.Рома: 7-8 стр.

• Аня: 16-17 стр.

Утверждение: A_n – компактные, $A_n \stackrel{ ext{\tiny paвн}}{-\!\!\!-\!\!\!\!-} A$ в $L(X,Y) \Rightarrow A$ – компактный.

Доказательство:

• Додонов: 3-4 стр.

13. Компактность оператора, сопряженного с компактным оператором

Утверждение: A – компактный, тогда A^* – тоже компактный.

Доказательство:

- Викиконспекты (скриншот)
- Рома: 9 стр.
- Аня: 27 стр.

✓ 14. Базис Шаудера, координатное пространство

X - бесконечномерное B-пространство, $e_1,e_2\dots e_n,\dots$ - линейно-независимые точки, такие, что любой $x\in X$ единственным образом представим в виде $x=\sum_{i=1}^\infty a_ie_i$, тогда $\{e_i\}$ — базис Шаудера.

Следует помнить, что не у любого B-пространства есть базис, но большинство типов пространств, например, C[a,b], его имеет.

Определим F, как $\{lpha=(lpha_1\dotslpha_n\dots)\mid\exists x\in X:\sum_{i=1}^\inftylpha_ie_i o x\}$ — это линейное пространство.

Так как ряд сходится, можно определить **координатное пространство** F, состоящее из числовых последовательностей $\alpha=(\alpha_1\ldots\alpha_n\ldots)$, определив норму как $\|\alpha\|=\sup_i\|\sum_{i=1}^n\alpha_ie_i\|$.

Теорема: Координатное пространство F — банахово.

Доказательство:

- Додонов: 5-6 стр.
- Викиконспекты (не полное)
- Дина: 16-17 стр.
- Аня: 18 стр.

✓ 15. Почти конечномерность компактного оператора в пространстве с базисом Шаудера

Оператор A конечномерный, если R(A) лежит в конечномерном пространстве.

Пусть X банахово и имеет базис Шаудера, A:X o X компактный, тогда в X существует последовательность конечномерных операторов B_n таких, что $\|B_n-A\| o 0$

- Додонов: 7-8 стр.
- Викиконспекты
- Дина: 17 стр.

$lacksymbol{\lozenge}$ 16. Размерность Ker(I-A)де A – компактный оператор

Теорема: A - компактный, T=I-A. Тогда $dim(Ker\ T)<+\infty$

Доказательство:

• Жолус: Утверждение 2.12

Примечание: последний переход в доказательстве осуществляется за счет применения леммы Рисса, что если X - бесконечномерное НП, то любой шар в нем – не компакт.

$m{\lozenge}$ 17. Замкнутость R(I-A)где A – компактный оператор

Теорема: A - компактный, T=I-A, тогда R(T) замкнуто, т.е $Cl\ R(T)=R(T)$

Доказательство:

- Викиконспекты (скриншот)
- Жолус: Теорема 2.13 (не дописанное доказательство)

$m{oldsymbol{\oslash}}$ 18. Существование N, начиная с которого $Ker(I-A)^n=Ker(I-A)^n$ де A – компактный оператор

Утверждение: Пусть $M_n=Ker((I-A)^n)$, $n\in\mathbb{N}$, A – компактный оператор. Тогда $\exists n_0:M_{n_0}=M_{n_0+1}$.

Доказательство:

• Викиконспекты (скриншот)

🗸 19. Критерий равенства R(I-A)=Xде A – компактный оператор

Утверждение: Пусть A – компактный оператор на банаховом X, T=I-A. Тогда $R(T)=X\Leftrightarrow Ker(T)=\{0\}$.

Доказательство:

• Викиконспекты (скриншот)

Примечание: предыдущее утверждение из доказательства – это утверждение из 18 билета.

20. Альтернатива Фредгольма-Шаудера

Теорема: Пусть $A: X \to X$ — компактный оператор и $T = \lambda I - A$. Тогда возможно только две ситуации:

- 1. $Ker\ T=\{0\}$, тогда y=Tx разрешимо для любого y
- 2. $Ker\ T \neq \{0\}$, тогда y = Tx разрешимо только для $y \in (Ker\ T^*)^\perp$

Доказательство:

• Викиконспекты (скриншот)

Примечание: первая теорема из параграфа в доказательстве это теорема из 17 билета. Общие теоремы о сопряженном операторе это 3 и 4 билеты.

21. Теорема о спектре компактного оператора

Теорема: A – компактный, тогда $\sigma(A)$ не более чем счётен и его предельной точкой может быть только 0.

- Жолус: Теорема 2.14
- Викиконспекты

22. Вещественность спектра самосопряженного оператора

Оператор A в H называется самосопряжённым $(A=A^*)$, если $\forall x,y:\langle Ax,y\rangle=\langle x,Ay\rangle$.

Теорема: Спектр самосопряженного оператора в H – вещественный.

Доказательство:

• Викиконспекты (скриншот)

23. Критерий включения в резольвенту самосопряженного оператора

Теорема: Пусть $A=A^*$ – самосопряжённый оператор. Тогда: $\lambda\in
ho({\mathbf A})\Leftrightarrow \exists m>0: \forall x\in H: \|(\lambda I-{\mathbf A})x\|\geq m\|x\|$

Доказательство:

• Викиконспекты (скриншот)

② 24. Критерий включения в спектр самосопряженного оператора

Теорема: Пусть А — самосопряжённый оператор. Тогда: $\lambda \in \sigma(A) \Leftrightarrow \exists x_n: \|x_n\| = 1, \; \|(\lambda I - A)x_n\| o 0$

Доказательство:

• Викиконспекты (скриншот)

🔮 25. Оценка протяженности спектра самосопряженного оператора через его границы m_- и m^+

$$m^+=\sup\limits_{\|x\|=1}\langle Ax,x
angle$$
 — верхняя граница $m_-=\inf\limits_{\|x\|=1}\langle Ax,x
angle$ — нижняя граница

Теорема: Для самосопряженного оператора A верно, что:

1.
$$\sigma(A) \subset [m_-, m_+]$$

2.
$$m_-, m_+ \in \sigma(A)$$

Доказательство:

• Викиконспекты (скриншот)

Примечание: критерий принадлежности спектру берется из 24 билета.

26. Теорема о спектральном радиусе самосопряженного оператора

Теорема: $r_{\sigma}(A) = \max\{|m_{-}|,|m_{+}|\}$ и $r_{\sigma}(A) = \|A\|$

Доказательство:

• Викиконспекты (скриншот)

Примечание: первое равенство – тривиальное следствие билета 25 и $r_{\sigma}(A) := \sup_{\lambda \in \sigma(A)} |\lambda|$

② 27. Теорема Гильберта-Шмидта о базисе из собственных векторов компактного самосопряженного оператора

Теорема: Пусть H – сепарабельное ГП, A – самосопряженный компактный оператор $H \to H$. Тогда из собственных векторов этого оператора можно построить ортонормированный базис.

- **Жолус**: Теорема 3.10
- Викиконспекты

⊘ 28. Следствие теоремы Гильберта-Шмидта о разложении компактного самосопряженного оператора и его резольвенты

Следствие: Пусть A - самосопряженный компактный оператор, тогда (из теоремы) для любого $x \in H$ можно построить:

$$Ax = \sum_{n=1}^\infty \lambda_n * \langle x, e_n
angle * e_n$$
, а значит

$$R_\lambda(A)(y) = \sum_{n=1}^\infty \langle y, e_n
angle / (\lambda - \lambda_n) * e_n$$
 где e_1, e_2, \ldots — собственные вектора.

Доказательство:

• Викиконспекты

1 29. Теорема о положительности произведения положительных самосопряженных операторов

Пусть A - самосопряжённый оператор.

$$A \ge 0 \Leftrightarrow \forall x \in H : \langle Ax, x \rangle \ge 0$$

$$B \geq A \Leftrightarrow B - A \geq 0$$
 (частичный порядок)

Пример:
$$A^2 \geq 0$$
, т.к. $\langle A^2x,x
angle = \langle Ax,Ax
angle = \|Ax\|^2 \geq 0$

По теореме о спектральном радиусе самосопряжённого оператора получаем $0 \leq A \leq B \Rightarrow \|A\| \leq \|B\|$

Пусть
$$A,B \geq 0$$
 – самосопряженные, $AB = BA$. Тогда $AB \geq 0$.

Схема доказательства: Додонов

1 30. Существование сильного предела у монотонной, ограниченной последовательности самосопряженных операторов

Пусть $\exists M=const: A_n \leq A_{n+1} \leq M$. Тогда существует самосопряжённый A такой, что:

1.
$$\forall x \in H \Rightarrow Ax = \lim_{n \to \infty} A_n x$$

2.
$$A_nB = BA_n \Rightarrow AB = BA$$

Схема доказательства: Додонов

31. Проекторы в гильбертовом пространстве – критерий

По основной теореме гильбертовых пространств, если H_1 – подпространство H, то $H=H_1\oplus H_1^\perp$. Значит любой $x\in H$ представим в виде $x=x_1+x_1^\perp$, где $x_1\in H_1$ – единственный. Тогда $P_{H_1}(x)=P(x)=x_1$ — проектор H на H_1 .

Теорема: Пусть $P: H \to H$ – ограниченный линейный оператор. P – проектор на $H \Leftrightarrow P$ – самосопряженный и $P^2 = P$.

Схема доказательства: Додонов

1 32. Критерий разложения проектора в сумму проекторов

Проекторы P_1 и P_2 **ортогональны** ($P_1 \perp P_2$), если $P_1 \circ P_2 = 0$.

Утверждение: Пусть P_1 , P_2 - проекторы. Тогда P_1+P_2 - тоже проектор, если $P_1\perp P_2$.

33. Критерий положительности разности двух проекторов

$$P_2 > P_1 \Leftrightarrow P_2 - P_1 > 0$$

Утверждение: Пусть P_1 , P_2 - проекторы на H_1, H_2 . Тогда $P_1 \leq P_2 \Leftrightarrow P_2 \circ P_1 = P_1 \Leftrightarrow H_1 \subset H_2$

$oldsymbol{0}$ 34. Положительность p(L) где ${\mathfrak p}$ – положительный полином на $[m_-,m^+]$

Лемма: Пусть L – ограниченный самосопряженный оператор, $p(t)=a_0+a_1t+a_2t^2+\ldots$ – полином с вещественными коэффициентами. Если $p(t)\geq 0$ при $t\in [m_-,m^+]$, то $p(L)\geq 0$.

$oldsymbol{0}$ 35. Определение и существование f(L)для непрерывной на $[m_{\!-},m^{\!+}]$ функции f

Пусть A – самосопряжённый ограниченный оператор, m_-, m^+ – его границы, $f: \mathbb{R} \to \mathbb{R}$ – непрерывна на $[m_-, m+]$. По теореме Вейерштрасса существует последовательность полиномов $p_n: p_n \xrightarrow{\text{равн}} f$, которые аппроксимируют f.

Определим f(L) как предел последовательности операторов: $f(L) = \lim_{n o \infty} p_n(L)$.

Теорема: $\lim_{n \to \infty} p_n(L)$ всегда существует.

lacktriangle 36. Свойства f o f(L)сохранение знака, нормы и арифметика)

- 1. $\forall x \in [m_-, m_+] \; f(x) \geq 0 \Rightarrow f(L) \geq 0$ (сохранение знака)
- 2. (f+g)(L) = f(L) + g(L)
- 3. $(f \cdot g)(L) = f(L)g(L)$
- 4. $\|f(A)\| \leq \sup_{\lambda \in [m_-,m_+]} |f(\lambda)|$ (сохранение нормы)

lacktriangledown 37. Определение и существование f(L)для полунепрерывной сверху функции

Пусть L - самосопряжённый ограниченный оператор. f называется **полунепрерывной сверху** в точке x_0 , если $\forall \varepsilon>0\ \exists \delta\ \forall x: |x-x_0|<\delta\Rightarrow f(x)< f(x_0)+\varepsilon$

Из матана известно, что любая полунепрерывная сверху функция f является поточечным пределом убывающей последовательности непрерывных функций f_n .

Определим f(L) как поточечный предел: $f(L)x = \lim_{n o +\infty} f_n(L)x$

Теорема: $\lim_{n\to +\infty} f_n(L)x$ всегда существует.

38. Определение спектральной функции самосопряженного оператора и ее основные свойства (сильная непрерывность справа, коммутируемость, монотонность)

Пусть A – самосопряжённый ограниченный оператор. Введём функции $P_{\lambda}(t)$:

$$P_{\lambda}(t) = \begin{cases} 1, & t \leq \lambda \\ 0, & t > \lambda \end{cases}$$

Они являются полунепрерывными, поэтому их можно применить к оператору A. Можно показать, что получившиеся операторы будут проекторами.

Множество операторов $\{P_{\lambda}(A) \mid \lambda \in \mathbb{R}\}$ назовём **спектральным семейством** оператора A. Функцию, сопоставляющую λ оператор $P_{\lambda}(A)$, назовём **спектральной функцией** оператора A.

Эта функция обладает следующими свойствами:

1.
$$\lambda_1 \leq \lambda_2 \Rightarrow P_{\lambda_1} \leq P_{\lambda_2}$$
 (монотонность)

2. $\forall x \; P_{\lambda}x \xrightarrow[\lambda \to \lambda_0 + 0]{} P_{\lambda_0}x$ (непрерывна справа)

3.
$$\lambda < m_- \Rightarrow P_\lambda = 0$$

 $\lambda > m^+ \Rightarrow P_\lambda = I$

4. Проекторы $P_{\lambda}(A)$ коммутируют друг с другом и с любым B, который коммутирует с A.

⊙ 39. Разложение самосопряженного оператора посредством спектральной функции

Пусть A – ограниченный самосопряжённый оператор и f:R o R непрерывна на $[m_-,m^+]$. Тогда $f(A,?)=\int_{-\infty}^\infty f(\lambda)dP_\lambda$ (???), интеграл в смысле Римана-Стильтьеса, f(A,?):H o H

90 40. Теорема о спектральном исчислении

Используя определение f(L) для непрерывных функций f и тот простой факт, что при $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4$ будет $P_{\lambda_2} - P_{\lambda_1} \perp P_{\lambda_4} - P_{\lambda_3}$, легко получаем следующую теорему.

Теорема: Пусть L – самосопряжённый оператор, P_{λ} – его спектральная функция, f – (???). Тогда:

1.
$$f(A)=\int\limits_{\mathbb{R}}f(\lambda)dP_{\lambda}$$

2.
$$f(A)x=\int\limits_{\mathbb{R}}f(\lambda)dP_{\lambda}(x)$$

3.
$$\langle f(L)x,y
angle = \int\limits_{\mathbb{R}} f(\lambda)d\langle P_{\lambda}x,y
angle$$

Билеты ниже - то, что было у предыдущих курсов

©Такальная сходимость метода последовательных приближений

Пусть V – замкнутый шар в B-пространстве, x^* из V, $x^*=T(x^*)$, $T'(x^*)=0$, где T' – производная Фрише, тогда метод простых итераций, $x_{-}(n+1) = T(x_{-}n)$ сходится к x^* .

В ХХ. Локальная сходимость метода Ньютона

Пусть X^* : $F(X^*)$ = 0, и в некотором шаре с центром в X^* это отоб. непрер. дифф-тся. Тогда в $x0 ≈ x^*$: $x_n+1 = x_n - F(x_n)/F'(x_n)$ - метод Ньютона будет сх. к x^* . x_n 0 должна быть в окресности.

❷■ XX. Равномерный предел последовательности непрерывных,компактных операторов

T_n -> (равномерно) Т на G, T_n(G) - относит. компакт. => T(G) - относит. компакт.

🕲 🖹 XX. Проекторы Шаудера

Пусть дано некоторое множество М из В-пространства. М – замкнуто, выпукло и ограничено.

Пусть Т: M->M – компактный оператор(вполне непрерывный), Convex(T(M)) тоже относительный компакт. Возьмём eps-конечную сеть для Convex(T(M)), состояющую из у_j, где j = 1...p.

ерs-проектор Шаудера: $P_{eps}(y) = sum_{j=1}^p (ramma_j)(y) y_j$, где

 $(alpha)_j (y) = eps - ||y - y_j||, if ||y - y_j|| < eps, 0 otherwise$

gamma_j = alpha_j / (sum alpha_k)

© XX. Теорема Шаудера о неподвижной точке

Пусть D - огр. замк., выпуклое множество, T - непр. комп. оператор заданный на D и непереводящий его в себя. Тогда у T на D сущ. хотя бы одна неподвижная точка.

