Naive Bayes with Hierarchical MCA

Lakshmi Katrapati, Ipek Sayar

Introduction

- Naive Bayes assumes features are independent of each other
- Want to improve Naive Bayes by making it work for dataset with correlated features
- Goal: Create an algorithm that improves Naive
 Bayes by accounting for feature dependencies ->
 allowing it to perform effectively on datasets with correlated features

Bayes' Theorem

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Related Works

Integrating advanced principal component analysis into naive bayes for enhanced classification performance by Lan Luo, Tianyang Liu

- PCA transforms the data into principal components, reducing the relationship between correlated variables
- This reduction helps meet Naive Bayes' independence assumption, improving classification performance

Dataset

Heart Attack for Individuals in France

- Class Label = Heart Attack
- 26 Features
 - Age
 - Height
 - o BMI
 - Blood Pressure Levels
- 266,785 Instances
- Each Instance is a patient

Preprocessing

'Air_Pollution_Level'		
0-50	'Good'	
51-100	'Moderate'	
101-150	'Unhealthy_Sensitive'	
151-200	'Unhealthy'	

	Systolic = Blood_Pressure_Systolic Diastolic = Blood_Pressure_Diastolic 'B	p'	
	Systolic < 120 & Diastolic < 80	Normal	
	120 =< Systolic =< 129 & Diastolic < 80	Elevated	
	130 =< Systolic =< 139 or 80 =< Diastolic =< 89	High_BP_Stage1	
	Systolic >= 140 or Diastolic >=90	High_BP_Stage2	
	Systolic > 180 or Diastolic > 120	Hypertensive_Crisis	
l '			

'Heart_Rate'		
50-59	Low Heart Rate (Bradycardia)	
60-100	Normal Heart Rate	
101-110	Elevated Heart Rate	
111-119	High High Rate (Tachycardia)	

Preprocessing - Cont.

Patient_ID	Weight_kg
1	118.4
2	50.7
3	118.0
4	96.8
	53.9
6	74.3
7	63.3
8	73.5
9	104.3
	81.9
11	90.4
12	113.8
13	71.6
14	76.1
15	51.6
16	110.9
17	61.7

	'Physical_Activity_Hours'	0 0 0
0	No Activity	
0 - 3.7	Low Activity	
3.7 - 7.5	Moderate Activity	
7.5 - 11.3	Active	
>11.3	Very Active	

0-18.5	Underweight	
18.5-25	Healthy_weight	
25-30	Overweight	
>=30	Obesity	

Algorithm

We will improve the Naive Bayes algorithm by addressing its weakness, the assumption of attribute independence, using Multiple Component Analysis.

What is MCA?

MCA is a dimensionality reduction technique specifically designed for categorical variables, similar to how PCA (Principal Component Analysis) works for continuous data.

- Transforms the data into new variables, or "dimensions," that capture the patterns and relationships between the categories of the attributes.
- The output is completely independent.

Chi-Square Test checks if the variables are related, Cramér's V tells you how strong that relationship is.

Chi-Square Test:

$$\chi^2 = \sum_{i=1}^n rac{(O_i - E_i)^2}{E_i} = N \sum_{i=1}^n rac{(O_i/N - p_i)^2}{p_i}$$

- χ^2 = Pearson's cumulative test statistic, which asymptotically approaches a χ^2 distribution.
- O_i = the number of observations of type i.
- N = total number of observations
- $E_i=Np_i$ = the expected (theoretical) count of type i, asserted by the null hypothesis that the fraction of type i in the population is p_i
- n = the number of cells in the table.

Cramér's V:

$$V = \sqrt{rac{arphi^2}{\min(k-1,r-1)}}$$

- φ is the phi coefficient.
- χ² is derived from Pearson's chi-squared test
- n is the grand total of observations and
- k being the number of columns.
- r being the number of rows.

Complement Naive Bayes

Accuracy: 79.96% Recall: 0.9410

- Designed to do better on imbalance datasets (8-2 split)
 - Focuses on the complement of the minority class
 - focuses on how features <u>contrast</u> with the minority class, rather than just memorizing patterns
 - Strengthens the model's ability to recognize what doesn't belong to the other classes, indirectly improving minority class detection
- Pretty good accuracy on this dataset; attributes are already pretty independent from each other

Sex attribute's correlation with the BMI attribute: 0.003318977429497553 Height_cm attribute's correlation with the BMI attribute: 0.0035726780617884365 BP attribute's correlation with the BMI attribute: 0.003308959532608353 Cholesterol Level attribute's correlation with the BMI attribute: 0.002416541025266376 Smoking Status attribute's correlation with the BMI attribute: 0.003134053154015418 Alcohol Consumption attribute's correlation with the BMI attribute: 0.003925400771452204 Physical Activity Hours attribute's correlation with the BMI attribute: 0.0035002296561463145 Diabetes attribute's correlation with the BMI attribute: 0.0060033493104038925 Family History attribute's correlation with the BMI attribute: 0.0026522116778998103 Diet Type attribute's correlation with the BMI attribute: 0.004685597451709236 Stress Level attribute's correlation with the BMI attribute: 0.002836370011388364 Heart Rate attribute's correlation with the BMI attribute: 0.002215744126059652 Exercise Induced Pain attribute's correlation with the BMI attribute: 0.0009338674596187248 Age Group attribute's correlation with the BMI attribute: 0.0036602443644796626 Region attribute's correlation with the BMI attribute: 0.0039625937256598095 Air_Pollution_Level attribute's correlation with the BMI attribute: 0.00431554152405016 Income Level attribute's correlation with the BMI attribute: 0.0023444983877211785 Education Level attribute's correlation with the BMI attribute: 0.003373379412577893 Health Insurance attribute's correlation with the BMI attribute: 0.004294061533107435 Regular Checkups attribute's correlation with the BMI attribute: 0.0031273382683254347 Medication_Adherence attribute's correlation with the_BMI attribute: 0.006032121814659851

Cramer's V values Normally 0.005 independence threshold

Naive Bayes with Full MCA

Accuracy: 85.61% Recall: 0.9597

- Full MCA is applied to the dataset, which produces a set of components that combine related attributes while maintaining their meaning.
- Ensures the data better aligns with Naive Bayes' assumptions of feature independence.
- Combining all attributes at once may dilute meaningful patterns, making classification less effective

Naive Bayes with Hierarchical MCA

Assume dependencies exist between attributes.

Normalize Cramér's V values between 0 and 1. –

Threshold of 0.5:

- Values above 0.5 = moderate dependence
- Values below 0.5 = considered independent

Apply MCA (Local Level)

- Generate combinations of dependent attributes

[[0, 1], [2, 0, 1, 3, 5, 6, 7, 8, 10, 14, 15, 16, 18, 19, 20, 21], [3, 0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 21], [4, 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20, 21], [5, 1, 2, 4, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20], [6, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20], [7, 0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20], [8, 0, 1, 2, 5, 6, 7, 11, 15, 16, 18], [9, 6, 7, 11, 15, 20, 21], [10, 0, 1, 2, 3, 4, 6, 7, 9, 11, 12, 15, 17, 19, 21], [11, 0, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 21], [12, 0, 1, 3, 4, 5, 6, 7, 10, 11, 3, 14, 15, 17, 19], [13, 15, 6, 11, 12, 15, 21], [14, 2, 3, 4, 6, 7, 12, 15, 17, 18], [15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19], [16, 2, 3, 5, 6, 7, 8, 11, 15, 17, 18], [17, 0, 1, 3, 5, 6, 7, 10, 11, 12, 14, 15, 16, 18, 19, 21], [18, 1, 2, 6, 7, 8, 11, 14, 15, 16, 17], [19, 0, 1, 2, 4, 5, 7, 10, 11, 12, 15], [20, 0, 2, 4, 6, 7, 9, 15, 21], [21, 0, 1, 2, 4, 9, 10, 11, 13]]

BP attribute's correlation with the BMI attribute: 0.458554838174515
Cholesterol_Level attribute's correlation with the BMI attribute: 0.40061210623987437
Smoking_Status attribute's correlation with the BMI attribute: 0.5195606538314157
Alcohol_Consumption attribute's correlation with the BMI attribute: 0.6507495856453548
Physical_Activity_Hours attribute's correlation with the BMI attribute: 0.5987495836453548
Physical_Activity_Hours attribute's correlation with the BMI attribute: 0.9952301188304865
Biet_Type attribute's correlation with the BMI attribute: 0.479671341712039
Stress_Level_attribute's correlation with the BMI attribute: 0.705774341712039
Stress_Level_attribute's correlation with the BMI attribute: 0.4796120996816268
Heart_Rate attribute's correlation with the BMI attribute: 0.47961996816268
Exercise_Induced_Pain attribute's correlation with the BMI attribute: 0.15481574946798138
Age_Group attribute's correlation with the BMI attribute: 0.5609721830729999
Region attribute's correlation with the BMI attribute: 0.7154267862366621
Income_Level_attribute's correlation with the BMI attribute: 0.71846581662166621
Income_Level_attribute's correlation with the BMI attribute: 0.580539594792667
Education_Level_attribute's correlation with the BMI attribute: 0.71846581662166621
Health_Insurance attribute's correlation with the BMI attribute: 0.718465816636621
Regular_Checkups attribute's correlation with the BMI attribute: 0.7184658195847
Medication_Adherence attribute's correlation with the BMI attribute: 0.7184658195847
Medication_Adherence attribute's correlation with the BMI attribute: 0.7184658195847

Apply MCA Again (Global Level)

- Ensures that overlapping attributes don't reintroduce dependencies
- Create a global combination of the dataset.

```
[*MCA-output*, *MCA-output*, *
```

Breaks down complex dependencies in stages

Ensures complete independence in the final dataset

Naive Bayes with Hierarchical MCA

Accuracy: 88.73% Recall: 0.9692

Concerns

- Second round of MCA might introduce noise.
- Subtle relationships between attributes could be lost during the process.
- Potential for missed patterns leading to reduced performance

Future Improvements

Performance improvements were observed, but they may be limited to the current dataset.

- The dataset used already had many independent attributes.

Should test on datasets with more dependent attributes

- Hierarchical MCA may offer greater improvements in handling complex, dependent relationships

References

https://www.ewadirect.com/journal/aorpm/article/view/18055

Thank You