19.11.2004

日本国特許庁 JAPAN PATENT OFFICE

REC'D	13	JAN 2005	
WIPO		PCT	

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年11月10日

出 願 番 号 Application Number:

特願2004-325838

[ST. 10/C]:

[JP2004-325838]

出 願 人 Applicant(s):

キヤノン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月24日

【書類名】 特許願 【整理番号】 0010698-01 平成16年11月10日 【提出日】

【あて先】 特許庁長官殿 【国際特許分類】 H05B 33/00

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

【氏名】 滝口 降雄

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

【氏名】 岡田 伸二郎

【発明者】

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】

【氏名】 坪山 明

【発明者】

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】

【氏名】 井川 悟史

【発明者】

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】

【氏名】 鎌谷 淳

【発明者】

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】

【氏名】 橋本 雅司

【発明者】

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】

【氏名】 黒川 三奈子

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100096828

【弁理士】

【氏名又は名称】 渡辺 敬介 03-3501-2138

【電話番号】

【選任した代理人】

【識別番号】 100110870

【弁理士】

【氏名又は名称】 山口 芳広 03-3501-2138 【電話番号】

担当 【連絡先】 【先の出願に基づく優先権主張】

> 【出願番号】 特願2003-392090 【出願白】 平成15年11月21日

【手数料の表示】

004938 【予納台帳番号】 16,000円 【納付金額】

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 図面 1 【物件名】

ページ: 2/E

【物件名】 要約書 1 【包括委任状番号】 0101029

【請求項1】

複数の層から成る有機化合物層を有する有機発光素子において、該有機化合物層が、77Kにおける燐光寿命が880ms以上である有機化合物を少なくとも一種含む層を有することを特徴とする有機発光素子。

【請求項2】

前記燐光寿命が1100ms以上であることを特徴とする請求項1に記載の有機発光素子。

【請求項3】

前記有機化合物を含む層が発光層であることを特徴とする請求項1または2に記載の有機発光素子。

【請求項4】

前記発光層が少なくとも一種のホスト材料と少なくとも一種の発光材料からなることを 特徴とする請求項3に記載の有機発光素子。

【請求項5】

前記ホスト材料が前記有機化合物であることを特徴とする請求項4に記載の有機発光素子。

【請求項6】

7.7 Kにおける前記ホスト材料の燐光寿命が、7.7 Kにおける前記発光材料の燐光寿命の 5.8×1.0 5 倍以上であることを特徴とする請求項4 または5 に記載の有機発光素子

【請求項7】

前記発光材料が金属配位化合物であることを特徴とする請求項4~6の何れかに記載の 有機発光素子。

【請求項8】

前記金属配位化合物がイリジウム配位化合物であることを特徴とする請求項7に記載の 有機発光素子。

【請求項9】

前記発光材料として複数の燐光発光材料を含有することを特徴とする請求項 4~8の何れかに記載の有機発光素子。

【請求項10】

前記有機化合物層が、対向する2つの電極に狭持され、該電極間に電圧を印加することにより発光することを特徴とする請求項1~9の何れかに記載の有機発光素子。

【請求項11】

前記有機化合物が、分子中に置換基を有していてもよいインドール環を含む部分構造を 少なくとも一つ有し、且つ、置換基を有していてもよいカルバゾール環を含む部分構造を 少なくとも一つ有する有機化合物であることを特徴とする請求項1~10の何れかに記載 の有機発光素子。

【請求項12】

前記インドール環を含む部分構造が下記一般式(1)で示され、前記カルバゾール環を含む部分構造が下記一般式(2)で示されることを特徴とする請求項11に記載の有機発光素子。

【化1】

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{10}
 R_{14}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{12}
 R_{13}

[式中、ここで A_1 および A_2 はそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基を示し、 $R_1 \sim R_{14}$ はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1から20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は-0-、-S-、-CO-、-CO-、-O-CO-、-O-CO-、-CH-CH-、-C-C-で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれる。また、 $R_3 \sim R_{14}$ のうちで隣接するものは結合して環構造を形成してもよい。〕

【請求項13】

前記有機化合物が下記一般式(3)で示されることを特徴とする請求項12に記載の有機発光素子。

【化2】

$$R_{12}$$
 R_{13}
 R_{14}
 R_{11}
 R_{10}
 R_{7}
 R_{10}
 $R_$

[式中、mおよびnはそれぞれ $1\sim5$ の整数であり、mとnの和は $2\sim6$ の整数である。 Xは置換基を有していてもよいm+n価の有機基である。]

【請求項14】

前記有機化合物が下記一般式(4)で示されることを特徴とする請求項13に記載の有機発光素子。

【化3】

[式中、 X_1 は窒素原子または $C-R_{15}$ を示し、 X_2 は窒素原子または $C-R_{16}$ を示し、 X_3 は窒素原子または $C-R_{17}$ を示し、 X_4 は窒素原子または $C-R_{18}$ を示し、 X_5 は窒素原子または $C-R_{20}$ を示し、 $X_1\sim X_6$ における窒素原子数は4以下である。 $R_{15}\sim R_{20}$ はそれぞれ独立して水素原子、ハロゲン原子、炭素原

子数1から20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は-O-、-S-、-CO-、-CO-O-、-O-CO-、-CH=CH-、 $-C\equiv C-$ で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれる。ただし $R_{15}-R_{20}$ の少なくとも一つは前記一般式(1)で示されるインドール環を含む部分構造であり、且つ、少なくとも一つは前記一般式(2)で示されるカルバゾール環を含む部分構造である。〕

【請求項15】

前記有機化合物が下記一般式(5)示されることを特徴とする請求項14に記載の有機 発光素子。

【化4】

$$R_{19}$$
 R_{18}
 R_{16}
 R_{17}
 R_{18}
 R_{17}

【請求項16】

 $R_{15} \sim R_{20}$ のうち少なくとも三つが、前記一般式(1)で示されるインドール環を含む部分構造、または前記一般式(2)で示されるカルバゾール環を含む部分構造であることを特徴とする請求項14または15に記載の有機発光素子。

【請求項17】

分子中に置換基を有していてもよいインドール環を含む部分構造を少なくとも一つ有し、且つ、置換基を有していてもよいカルバゾール環を含む部分構造を少なくとも一つ有することを特徴とする有機化合物。

【請求項18】

前記インドール環を含む部分構造が下記一般式(1)で示され、前記カルバゾール環を含む部分構造が下記一般式(2)で示されることを特徴とする請求項17に記載の有機化合物。

【化5】

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{10}
 R_{14}
 R_{13}
 R_{12}
 R_{12}
 R_{13}
 R_{12}

[式中、 A_1 および A_2 はそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい 2 価の複素環基を示し、 $R_1 \sim R_{14}$ はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数 1 から 2 0 の直鎖状または分岐状のアルキル基(該アルキル基の 1 つもしくは隣接しない 2 つ以上のメチレン基は-O-、-S-、-CO-、-CO-O-、-O-CO-、-CH=CH-、 $-C\equiv C-$ で置き換えられていてもよく、また、 1 つもしくは 2 つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい 2 価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していて

もよいアリール基または置換基を有していてもよい複素環基から選ばれる。また、R₃~R₁₄のうちで隣接するものは結合して環構造を形成してもよい。]

【請求項19】

下記一般式(3)で示されることを特徴とする請求項18に記載の有機化合物。 【化6】

$$R_{12}$$
 R_{13}
 R_{14}
 R_{11}
 R_{10}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{8}
 R_{10}
 R_{10}

[式中、mおよび n はそれぞれ $1\sim 5$ の整数であり、mと n の和は $2\sim 6$ の整数である。 X は置換基を有していてもよいm+n 価の有機基である。]

·【請求項20】

下記一般式(4)で示されることを特徴とする請求項19に記載の有機化合物。 【化7】

[式中、 X_1 は窒素原子または $C-R_{15}$ を示し、 X_2 は窒素原子または $C-R_{16}$ を示し、 X_5 は窒素原子または $C-R_{19}$ を示し、 X_6 は窒素原子または $C-R_{20}$ を示し、 X_6 は窒素原子または $C-R_{20}$ を示し、 X_1 ~ X_6 における窒素原子数は4以下である。 R_{15} ~ R_{20} はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1から20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は-C0-、-C0- -C0-、-C0- -C0-、-C0- -C0- -C

【請求項21】

下記一般式(5)示されることを特徴とする請求項20に記載の有機化合物。 【化8】

$$R_{19}$$
 R_{18}
 R_{16}
 R_{17}
 R_{18}
 R_{17}

【請求項22】

 $R_{15} \sim R_{20}$ のうちの少なくとも三つが、前記一般式(1)で示されるインドール環を含む部分構造、または前記一般式(2)で示されるカルバゾール環を含む部分構造であるこ

とを特徴とする請求項20または21に記載の有機化合物。

【請求項23】

請求項1~16の何れかに記載の有機発光素子と、前記有機発光素子に電気信号を供給 する手段とを具備した画像表示装置。

【書類名】明細書

【発明の名称】有機発光素子、有機化合物及び表示装置

【技術分野】

[0001]

本発明は、平面光源や平面状ディスプレイ等に使用される有機発光素子(有機エレクトロルミネッセンス素子、あるいは有機EL素子とも言う)とそれに用いる新規な有機化合物に関する。

【背景技術】

[0002]

有機発光素子は、古くはアントラセン蒸着膜に電圧を印加して発光させた例(非特許文献1)がある。しかし近年、無機発光素子に比べて大面積化が容易であることや、各種新材料の開発によって所望の発色が得られることや、また低電圧で駆動可能であるなどの利点や、さらには高速応答性や高効率の発光素子として、材料開発を含めて、デバイス化のための応用研究が精力的に行われている。

[0003]

例えば、非特許文献 2 に詳述されているように、一般に有機 E L 素子は透明基板上に形成された、上下 2 層の電極と、この間に発光層を含む有機物層が形成された構成を持つ。

[0004]

また最近では、従来の1重項励起子から基底状態に遷移するときの蛍光を利用した発光だけでなく、次の非特許文献3,4に代表される三重項励起子を経由した燐光発光を利用する素子の検討もなされている。これらの文献では4層構成の有機層が主に用いられている。それは、陽極側からホール輸送層、発光層、励起子拡散防止層、電子輸送層からなる。用いられている材料は、キャリア輸送材料とりん光発光性材料 Ir(ppy)3である

[0005]

また、蛍光性有機化合物の種類を変えることにより、紫外から赤外までの発光が可能であり、最近では様々な化合物の研究が活発に行われている。

[0006]

さらに、上記のような低分子材料を用いた有機発光素子の他にも、共役系高分子を用いた有機発光素子が、ケンブリッジ大学のグループ(非特許文献 5)により報告されている。この報告ではポリフェニレンビニレン(PPV)を塗工系で成膜することにより、単層で発光を確認している。

[0007]

このように有機発光素子における最近の進歩は著しく、その特徴は低印加電圧で高輝度、発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることから、 広汎な用途への可能性を示唆している。

[0008]

しかしながら、現状では更なる高輝度の光出力あるいは高変換効率が必要である。また、長時間の使用による経時変化や酸素を含む雰囲気気体や湿気などによる劣化等の耐久性の面で未だ多くの問題がある。さらにはフルカラーディスプレイ等への応用を考えた場合の色純度の良い青、緑、赤の発光が必要となるが、これらの問題に関してもまだ十分でない。

[0009]

また、電子輸送層や発光層などに用いる蛍光性有機化合物として、芳香族化合物や縮合 多環芳香族化合物が数多く研究されているが、発光輝度や耐久性が十分に満足できるもの は得られているとは言いがたい。

[0010]

また、本発明に関連するインドール化合物の特許文献として特許文献1,2が挙げられるが、分子構造式にインドール環を含む部分構造とカルバゾール環を含む部分構造を同時に有することを特徴とする本発明の有機化合物の開示はない。

[0011]

【特許文献1】特許第3229654号公報

【特許文献2】特開2002-305084号公報

【非特許文献1】Thin Solid Films, 94 (1982) 171

【非特許文献2】Macromol. Symp. 125, 1~48 (1997)

【非特許文献3】Improved energy transfer in electrophosphorescent device (D. F. O'Brien 他, Applied Physics Letters Vol74, No3 p422(1999))

【非特許文献4】 Very high-efficiency green organic light-emitting devices basd on electrophosphorescence (M. A. Baldo他, Applied Physics Letters Vol 75, Nol p4 (1999)) 【非特許文献5】 Nature, 347, 539 (1990)

【発明の開示】

【発明が解決しようとする課題】

[0012]

本発明の目的は、高効率・高輝度な光出力を有し、高耐久性の有機発光素子を提供することにある。また、それらを可能にする新規な有機化合物を提供することにある。さらには製造が容易でかつ比較的安価に作成可能な有機発光素子を提供する事にある。

【課題を解決するための手段】

[0013]

本発明者らは、77Kにおける燐光寿命が長い有機化合物を有機発光素子に用いることにより上記課題が達成されることを見出し、本発明を完成するに至った。

[0014]

即ち、本発明の有機発光素子は、複数の層から成る有機化合物層を有する有機発光素子において、該有機化合物層が、77Kにおける燐光寿命が880ms以上である有機化合物を少なくとも一種含む層を有することを特徴とする。

[0015]

また、本発明の有機化合物は、分子中に置換基を有していてもよいインドール環を含む 部分構造を少なくとも一つ有し、且つ、置換基を有していてもよいカルバゾール環を含む 部分構造を少なくとも一つ有することを特徴とする。

[0016]

また、本発明の表示装置は、上記有機発光素子と、該有機発光素子に電気信号を供給する手段とを具備したことを特徴とする。

【発明の効果】

[0017]

本発明の有機発光素子、特に77Kにおける燐光寿命が880mg以上である有機化合物を発光層のホスト材料として用いた有機発光素子は、高効率で高輝度な光出力を有し、また、高耐久性を有し、さらには製造が容易でかつ比較的安価に作成可能である。

[0018]

本発明の有機化合物は、安定なガラス状態を持ち、蒸着などにより安定なアモルファス 膜を形成することができる。また、有機溶媒に対する溶解度が大きく、再結晶やカラムクロマトによる精製が容易である。

【発明を実施するための最良の形態】

[0019]

本発明の有機発光素子は、77Kにおける燐光寿命が880ms以上、好ましくは1100ms以上である有機化合物を少なくとも一種含む層を有し、該有機化合物を含む層は発光層であることが好ましい。

[0020]

また、発光層は、少なくとも一種のホスト材料と少なくとも一種の発光材料からなることが好ましい。この場合、7.7 Kにおける燐光寿命が8.8.0 m s 以上である有機化合物をホスト材料に用いることが好ましく、7.7 Kにおけるホスト材料の燐光寿命が7.7 Kにおける発光材料の燐光寿命の 5.8×10^5 倍以上である場合がより好ましい。また、発光材料は金属配位化合物である場合が好ましく、イリジウム配位化合物である場合がより好ましく、複数の燐光発光材料を含有してもよい。

[0021]

77 Kにおける燐光寿命が880ms以上である有機化合物としては、例えば、分子中に置換基を有していてもよいインドール環を含む部分構造を少なくとも一つ有し、且つ、置換基を有していてもよいカルバゾール環を含む部分構造を少なくとも一つ有する有機化合物が挙げられる。

[0022]

この様な有機化合物において、置換基を有していてもよいインドール環を含む部分構造 としては、下記一般式(1)で示されるものが挙げられ、置換基を有していてもよいカル バゾール環を含む部分構造としては、下記一般式(2)で示されるものが挙げられる。

[0023]

【化1】

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{10}
 R_{14}
 R_{13}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{12}

[0024]

上記一般式(1)(2)において、 A_1 および A_2 はそれぞれ独立して単結合または置換基を有していてもよいアリーレン基または置換基を有していてもよい 2 価の複素環基を示し、好ましくは単結合、フェニレン、ビフェニレン、ターフェニレン、ナフチレン、フルオレンジイル、アントラセンジイル、チオフェンジイル、ピリジンジイル、キノリンジイル、フェナントロリンジイルを示し、より好ましくはフェニレン、ビフェニレン、ナフチレン、フルオレンジイル、ピリジンジイル、キノリンジイルを示す。

[0025]

また、R₁~R₁₄はそれぞれ独立して水素原子、ハロゲン原子、炭素原子数1から20の直鎖状または分岐状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は-O-、-S-、-CO-、-CO-O-、-O-CO-、-CH=CH-、-C=C-で置き換えられていてもよく、また、1つもしくは2つ以上のメチレン基は置換基を有していてもよいアリーレン基または置換基を有していてもよい2価の複素環基で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基から選ばれる。好ましくは水素原子、ハロゲン原子、炭素原子数1から10の直鎖状のアルキル基(該アルキル基の1つもしくは隣接しない2つ以上のメチレン基は-O-で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいフェニル基、ナフチル基であり、より好ましくは水素原子、フッ素原子、臭素原子、炭素原子数1から5の直鎖状のアルキル基(該アルキル基の1つのメチレン基は-O-で置き換えられていてもよく、該アルキル基中の水素原子はフッ素原子に置換されていてもよい。)、置換基を有していてもよいフェニル基である

[0026]

また、R3~R14のうちで隣接するものは結合して環構造を形成してもよい。

[0027]

上記一般式(1)(2)で示される部分構造を有する有機化合物の具体例としては、下記一般式(3)で示されるものが挙げられる。

[0028]

【化2】

$$R_{12}$$
 R_{13}
 R_{14}
 R_{11}
 R_{10}
 R_{7}
 R_{8}
 R_{8}
 R_{10}
 R_{1

[0029]

上記一般式(3)において、mおよびnはそれぞれ $1\sim5$ の整数、好ましくは $1\sim3$ の整数であり、mとnの和は $2\sim6$ の整数、好ましくは $2\sim4$ の整数である。

[0030]

また、Xは置換基を有していてもよいm+n価の有機基であり、好ましくはm+n価のベンゼン、ピリジン、ピリダジン、ピラジン、トリアジン、またはテトラジン構造を有する基であり、より好ましくはm+n価のベンゼン、ピリジン、ピラジン、またはトリアジン構造を有する基である。

[0031]

上記一般式 (3) で示される有機化合物のうち、下記一般式 (4) で示されるものが好ましく、下記一般式 (5) で示されるものがより好ましい。

[0032]

【化3】

$$\begin{array}{ccc} X_1 & X_2 & X_3 & X_3 & X_4 & X_3 & X_4 & X_4 & X_5 & X_5 & X_6 & X_6$$

【0033】 【化4】

$$R_{19}$$
 R_{18}
 R_{16}
 R_{17}
 R_{18}
 R_{17}

[0034]

上記一般式 (4) において、 X_1 は窒素原子または $C-R_{15}$ を示し、 X_2 は窒素原子または $C-R_{16}$ を示し、 X_3 は窒素原子または $C-R_{17}$ を示し、 X_4 は窒素原子または $C-R_{18}$ を示し、 X_5 は窒素原子または $C-R_{19}$ を示し、 X_6 は窒素原子または $C-R_{20}$ を示し、 $X_{1}\sim X_{10}$ における窒素原子数は4 以下、好ましくは3 以下である。

[0035]

また、上記一般式 (4) (5) において、 $R_{15} \sim R_{20}$ はそれぞれ独立して水素原子、ハ 出証特 2004-3117690

[0036]

ただし、上記一般式(4)(5)において、 $R_{15} \sim R_{20}$ の少なくとも一つは前記一般式(1)で示されるインドール環を含む部分構造であり、且つ、少なくとも一つは前記一般式(2)で示されるカルバゾール環を含む部分構造であり、好ましくは $R_{15} \sim R_{20}$ のうち少なくとも三つが、前記一般式(1)で示されるインドール環を含む部分構造、または前記一般式(2)で示されるカルバゾール環を含む部分構造である。

[0037]

以下、上記一般式(3)で示される有機化合物の具体的な構造式を表1~表20に示す。但し、これらは、代表例を例示しただけで、本発明は、これに限定されるものではない

[0038]

尚、表1~表20のXの欄で使用している略号は以下に示した構造を表している。 【0039】

【化6】

【0041】 また、A₁及びA₂の欄で使用している略号は以下に示した構造を表している。 【0042】 【化7】

[0043]

また、Ra~RaとR1~R15の欄で使用している略号は以下に示した構造を表している

[0044]

No.	V	E	G	Ra	D.	D-	Rd	m	n	A, I	R.	R ₂	R,	R	R₅	Rs	A ₂	R ₇	Re	R ₂	Rto	R11	R ₁₂	R ₁₃	R14	R ₁₅
140.	51.00	-5-	3	H	H	H	H		÷		H	H	H	H	H	H		H	H	H	Н	H	H	Н	Н	Н
<u> </u>	Ph2A	**	**				-	++	÷	Ph	CH3	Phi	H	H	н	11		H	H	H	H	H	H	Н	H	ОСНЗ
2	Ph2A	(1)	(2)	#	H	H	<u> </u>		+	- 120		СНЗ	H	Ph1	ㅠ	H	Ph	H	ᆔ	H	H	H	ᇤ	H	H	CF3
3_	Ph2A	0	(2)	H	Н.	H	H	1	1		H						_	_	뀨	H	-13			-	Н	H
4	Ph2A	(1)	(2)	CH3	Ή	H	H	1	ш	Ph	CH3	CH3	H	H	H	H	Ph	H	_				-	묘	ㅠ	H
5	Ph2A	(1)	(2)	H	\mathbf{H}	Н	H	_	_	Ph	Phi	H	H	H	H	H		н	H	CH3	н	7	<u> </u>			F
6	Ph2A	(1)	(2)	Н	Н	Н	H	1	1	Ph	H	Ph1	H	Н	H	H		н	Н	н	H	1	H	H	H	
7	Ph2A	(1)	(2)	H	н	Br	H	1	1	Ph	Ph1	Phi	Н	H_	H	I	_	Н	н	H	H	Ŧ	H	<u> </u>	H	H
8	Ph2A	(1)	(2)	H	Н	Н	H	П	П	BPh	Н	Phi	H	н	н	н	Ph	н	H	Ι	Τ	H	H	<u> H</u>	LH.	Н
1 9	Ph2A	775	125	H	H	H	H	1	1	Ph	Ph1	Ph1	H	H	Н	H	Ph	Н	H	1	H	Н	H	H	H	Н
10	Ph2A	175	12	H	H	H	H	1	Ť	No14	Phi	H	н	Н	Н	Н	-	H	H	н	H	H	H	H	H	H
	Ph2B	17:5	(2)		H	H	Ħ	11	Ħ	-	Np2	H	H	H	Ħ	н	-	H	H	н	Н	H	H	H	TH.	Н
			125	H	Ħ	Н	H	1 1	H	Ph	СНЗ	H	H	H	H	ਜਿ	-	H	H	C2H5	Н	H	Н	H	Н	Н
	Ph2B		,		급	1 13	1 11	H	H	 '''	H	C3H7	H	H	H	H	Ph	н	H	Н	H	H	н	H	H	H
-	Ph2B		(2)		1	 !:	10	H	H	Ph	СНЗ			H	İΗ	H	Ph	ਸਿੰ	Н	1	H	H	H	H	H	Н
14	Ph2B		(2)		ΙĦ	H	10	+-	Į.				•	H	H		 	H	1	-	1-11	111	1 33	H	H	H
15				H	H	I H	H	H	H	Ph	Ph1	I H	H	+		쁜			뮤	뉴	H	H	H	H	H	H
16	Ph2B	(1)	(2)	H	H	H	<u> </u>	П	Ľ	TPh	H	Ph1	H	1 14	H	Ħ	ᅣᅳ	H	<u> </u>			 !!	1 🚟	+	+#	
17	Ph2B	(1)	(2)	H	LE	H	H	<u> 11</u>	11	Ph	Ph1	Ph1	ᄪ	14	H	H	1=	H	H	H	1 #	1 !!	14	1 H	17	
18	Ph2B	(1)	(2)	H	H	H	Н	11	11	Ph	H	Ph1	<u>l H</u>	<u> </u>	<u> </u>	LH	Ph		H		H	ᄪ	14	H	ļΗ	Н
19	Ph28	(1)	(2)	H	H	H	LH	11	1	Ph	Ph1	Ph1	H	H	H	H	Ph		H	L H	H	H	1 H	1 H	1H	Н
20	_		(2)	H	H	Н	Н	1	1	FL	Ph1	H	Н	H	H	H	-	H	H	H	H	<u> </u>	<u> H</u>	<u>l H</u>	H	H

[0046]

【表2】

No.	Х	Е	G	Ra	RЬ	Rc	Rd	m	n	A	R ₁	R ₂	R,	R₄	R ₅	R,	A,	R,	R,	Rg	Rip	R,,	R ₁₂	R ₁₃	R	R ₁₅
21	Ph2C	(1)	(2)	H	Н	Н	H	1	1	_	Н	Н	H	H	H	H	_	H	H	н	H	H	н	H	H	Н
22	Ph2C	(1)	(2)	H	H	Н	H	1	ı	Ph	н	Н	H	H	Н	H	_	H	H	H	H	Н	H	H	H	H
23	Ph2C	(1)	(2)	Н	H	H	H	1	1	Ph	Н	Н	Н	Н	H	H	Ph	H	H	H	н	Н	H	Н	н	Н
24	Ph2C	(1)	(2)	H	H	H	Н	1	1		CH3	H	H	Н	Н	н	-	Н	Н	Н	н	н	Н	H	H	Н
25	Ph2C	(1)	(2)	H	Ή	H	Ξ	1	1	Ph	СНЗ	Н	H	H	H	Н	-	H	Н	Н	Н	Н	Н	Н	Н	Н
26	Ph2C	(1)	2	Ŧ	Ή	I	Ŧ	1	-	Ph	СНЗ	Н	Н	Ŧ	Н	н	Ph	H	Н	Н	H	н	H	Н	Н	Н
27	Ph2C	(1)	(2)	H	Н	Н	Н	1	1	-	Н	СНЗ	H	Н	Н	Н	-	H	н	Н	Н	H	н	Н	Н	Н
28	Ph2C	(1)	(2)	H	H	I	Н	1	1	Ph	_ H_	CH3	H	Н	H	H	-	Н	H	H	Н	H	H	H	Н	Н
29	Ph2C	3	(2)	Н	H	Ŧ	Н	1	1	Ph	I	СНЗ	Н	Н	H	H	Ph	H	H	Н	Н	H	H	H	H	H
30	Ph2C	(1)	2	H	H	H	H	1	1	-	CH3	CH3	H	H	H	H	=	H	H	Н	Н	Н	Н	н	н	Н
31	Ph2C	(1)	3	H	Н	I	Н	1	1	Ph	CH3	СНЗ	H	H	H	H	=	H	H	Н	Η	H	H	H	Н	Н
32	Ph2C	(1)	(2)	H	H	H	H	1	=	Ph	CH3	CH3	H	Н	H	Н	Ph	Н	H	Н	Н	H	H	H	Н	Н
33	Ph2C	(1)	(2)	H	H	H	H	1	Ξ	-	Ph1	H	H	Н	H	Н	-	H	H	Н	H	Н	H	H	Н	Н
34	Ph2C	(1)	(2)	H	H	Н	H	1	1	Ph	Pt	Ŧ	Н	н	H	Н	-	H	н	Ξ	Ι	Н	H	Н	Н	Н
35	Ph2C	(1)	(2)	H	H	H	H	1	1	_Ph	Ph1	H	H	Н	Н	H	Ph	H	Н	Н	I	H	H	H	Н	Н
36	Ph2C	(1)	(2)	H	H	Н	H	1	1	Ph	Ph1	H	H	H	Н	Н	-	H	н	Н	Ξ	H	Н	Н	Н	СНЗ
37	Ph2C	(1)	(2)	H	Н	H	H	1	1	Ph	Ph1	Н	H	H	H	H	-	H	Н	Н	Ξ	Н	H	H	H	F
38	Ph2C	(1)	(2)	Н	H	H	Н	1	1	Ph	Ph1	Н	H	H	H	H	<u> </u>	H	Н	C2H5	H	H	H	H	H	Н
39	Ph2C	(1)	(2)	H	Н	H	H	1	1	-	Н	Phi	H	H	Н	Н	-	H	Н	н	Н	H	Н	H	H	H
40	Ph2C	(1)	(2)	H	H	H	H	1	1	Ph	H	Ph1	H	Н	Н	H	-	Н	Н	Н	Н	H	Н	H	H	H
41	Ph2C	(1)	(2)	H	H	H	H	1	L	Ph	Н	Ph1	H	H	Н	Н	Ph	H	H	Н	Н	Н	Н	Н	H	Н
42	Ph2C	(1)	(2)	H	H	H	H	11	1	Ph	Н	Phi	H	Н	Н	Н	-	H	H	Н	H	H	Н	Н	Н	OCH3
43	Ph2C		(2)	H		H	H	1	1	Ph	H	Ph1	H	H	Н	H	=	H	Н	H	H	H	Н	H	Н	CF3
44	Ph2C	(1)	(2)	H	<u>l H</u>	H	H	1	1	Ph	H	Phi	H	Н	Н	H	_	Н	Н	Н	H	H	H	Н	Н	CI
45	Ph2C	(1)	(2)	<u> </u>	Н	H	H	1	1	_	Ph1	Ph1	IH	H	Н	H	-	H	Н	Н	H	H	Н	H	Н	H
46	Ph2C	(1)	(2)	H		Н	H	1	1	Ph	Ph1.	Ph1	H	H	Н	H	=	H	H	H	Н	H	H	H	H	H
47	Ph2C	(1)	(2)	H	H	H	H	1	1	Ph	Ph1	Ph1	H	H	H	Н	Ph	H	H	н	H	Н	Н	H	Н	Н
48	Ph2C	(1)	(2)	H	H	H	H	1	1	Ph	Ph1	Ph1	H	H	H	H	<u> </u>	H	H	CH3	H	Н	Н	H	H	H
49	Ph2C		(2)	Ph	H	H	Ph	1	1	Ph	Ph1	Ph1	H	H	Н	Н	_	H	Н	Н	Н	Н	Н	Н	H	H
50	Ph2C	(1)	(2)	H	IH	<u> </u>	H	1	1	Np26	Ph1	Ph1	Н	H	Н	Н	1 -	Н	H	Н	LH	Н	Н	Н	H	Н

【0047】 【表3】

No.	Х	Ε	G	J	Ra	RЬ	Rc	ш	n	A ₁	R,	R ₂	R_3	R,	R ₅	R	A ₂	R,	Ra	R,	Ru	R,,	R ₁₂	R	R	Ris
51	Ph3A	(1)	(1)	(2)	H	Η	H	2	T	-	Н	H	н	Н	H	н	An	H	Ŧ	Н	Н	H	Н	I	Н	Н
52	Ph3A	(1)	(1)	3	H	Н	H	2	1	Ph	CH3	Ph1	H	Н	Н	Н	-	H	H	H	н	Н	Н	Н	H	ОСНЗ
53	Ph3A	Ξ	(1)	3	H	Τ	Ξ	2	1	-	Phi	CH3	Н	Н	H	H	Ph	н	H	н	H	H	H	H	H	CF3
54	Ph3A	(1)	(2)	(1)	Н	Ξ	Ξ	2	1	ΡŹ	CH3	CH3	H	H	Н	H	μ̈́	H	Н	Н	H	H	н	н	н	Н
55	Ph3A	(1)	(2)	(1)	H	Н	I	2	1	Ph	Ph1	H	H	Н	Н	x	1	H	H	CH3	Н	H	Н	Н	н	Н
56	Ph3A	(1)	(2)	\odot	H	H	H	2		Ph	H	Ph1	Ξ	I	Н	Ξ	Th	Ξ	н	H	Ξ	H	Н	H	н	F
57	Ph3A	(2)	(2)	(1)	H	Н	Ξ	1	2	Ph	Phi	Ph1	Ξ	H	H	Ŧ	-	Ŧ	H	H	H	H	Н	Н	н	Н
58	Ph3A	(2)	(2)	(1)	H	Н	H	1	2	Ph	I	Ph1	x	I	H	I	Ph	I	Н	Н	H	н	H	н	H	Н
59	Ph3A	(2)	(1)	(2)	Н	Н	H	1	2	Ph	Phi	Ph1	I	H	Н	H	₽h	I	H	Н	Н	Н	Н	H	Н	Н
60	Ph3A	(2)	(1)	(2)	<u>H</u>	H	H	1	2	Np14	Ph1	Ŧ	I	I	H	Ŧ	H	Ŧ	H	Н	Ξ	H	Н	H	Н	Ξ
61	Ph3B	(1)	(1)	(2)	H	H	H	2	1	-	Ι	Np1	Ŧ	Ξ	H	H	-	Ξ	H	H	H	Н	H	H	H	Н
62	Ph3B	(1)	(0)	(2)	H	LH	H	2	1	Ph	CH3	н	I	Ξ	Н	H	_	H	Н	C2H5	Ŧ	H	H	Н	H	Ή
63	Ph3B	(1)	(1)	(2)	H	H	H	2	1	ı	Н	C3H7	H	Ξ	H	H	Ph	H	H	H	H	H	H	Н	H	H
64	Ph3B	(1)	(2)	(1)	H	H	Н	2	1	Ph	CH3	CH3	H	I	H	H	Ph	H	Н	Н	H	Н	H	Н	H	Н
65	Ph3B	(1)	(2)	(1)	H	H	H	2	1	Ph	Ph1	H	H	H	H	H] -	H	H	H	Н	H	Н	H	H	Н
68	Ph3B		(2)	(1)	H	Н	H	2	1	Np15	H	Phi	H	I	H	H	ΙΞ	H	Н	Н	H	H	H	Н	Н	OCF3
67	Ph3B		(2)	(1)	H	H	LH.	1	2	Ph	Ph1	Ph1	H	Ŧ	H	H	三	H	H	Н	Н	Н	H	H	н	Н
68	Ph3B		(2)	(1)	Н	H	H	1	2	Ph	Н	Phi	Н	H	Н	Н	Ph	H	H	Н	Н	H	H	H	н	H
69	Ph3B		(1)	(2)	H	H	H	1	2	Ph	Ph1	Ph1	H	Н	H	H	Ph	H	H	Н	H	H	Н	H	Н	Н
70	Ph3B	(2)	(1)	(2)	H	H	Н	1	2	FL	Ph1	H	H	Н	Н	H		H	H	H	H	Н	H	H	H	Н

[0048]

【表4】

No.	Х	E	G	J	Ra	Rb	Rc	m	n	A ₁	R,	R ₂	R,	R4	R,	R.	A,	R ₇	Ra	R _o	R_{10}	Ru	R ₁₂	R ₁₃	R	R ₁₅
71	Ph3C	(1)	(1)	(2)	H	H	H	2	1		Н	Н	Н	Н	H	Н	-	Н	H	Н	Н	Н	H	I	H	H
72	Ph3G	(1)	(1)	(2)	Н	H	н	2	1	Ph	Н	н	н	Н	H	Н	-	H	Ξ	Н	Н	H	Н	Н	Н	Н
73	Ph3C	(1)	(1)	(2)	Н	H	Н	2	1	Ph	H	Н	H	H	Н	H	Ph	Н	¥	H	H	H	H	Н	н	Н
74	Ph3C	(1)	(1)	(2)	H	Ξ	Ħ	2	1	_	СНЗ	Н	Н	Н	Н	Н	-	Ŧ	H	Н	H	H	Н	Н	H	Н
75	Ph3C	(1)	(1)	(2)	Н	H	Н	2	1	Pπ	CH3	H	Н	H	H	H	ı	Ξ	Н	H	H	H	H	H	H	Н
76	Ph3C	(1)	(1)	(2)	Ή	H	H	2	-	Ph	CH3	H	Ŧ	Ξ	I	I	Ph	H	H	Ŧ	Ŧ	H	H	Н	Н	Н
77	Ph3C	(1)	(1)	(2)	H	H	Ξ	2	1	-	Н	CH3	H	H	Ŧ	x	1	H	Н	H	Н	H	Н	Н	Н	Н
78	Ph3C	(1)	ŧ	(2)	H	H	H	2	1	Ph	Н	CH3	H	H	I	Τ	-	Ξ	H	H	Н	H	H	Н	H	H
79	Ph3C	(1)	9	(2)	H	Н	Н	2	1	Ph	Н	끙	Ŧ	H	Ξ	Ξ	Ph	H	H	Н	H	Н	Н	H	H	Н
80	Ph3C	(1)	(1)	(2)	H	H	H	2	1	~	CH3	CH3	Ŧ	H	H	Н	=	H	H	Н	H	H	Н	H	H	Н
81	Ph3C	(1)	(1)	(2)	H	H	H	2	1	Ph	CH3	CH3	Ŧ	<u> </u>	H	Н	<u> </u>	H	H	H	H	Н	Н	H	Н	Н
82	Ph3C	(1)	(1)	(2)	H	H	H	2	1	Ph	CH3	CH3	H	H	H	H	Ph	H	H	H	Н	Н	H	H	H	H
83	Ph3C	(1)	(1)	(2)	H	H	H	2	11		Ph1	H	H		H	LH	1-	H	H	H	H	H	H	H	H	H
84	Ph3C		(1)	(2)	H	H	H	12	1	Ph	Ph1	H	H		H	H	1-	H	H	Н	H	<u>H</u>	H	H	H	H
85	Ph3C	(1)	(1)	(2)	H	H	H	2	1	Ph	Phi	H	H	H	H	H	Ph	H	H	H	H	H	H	H	H	H
86	Ph3C	(1)	(1)	(2)	H	1 H	H	12	11	Ph_	Ph1	H	H	H	H	H	ᅳ	TH	H	H	I H	H	<u> H</u>	H	H	CH3
87	Ph3C	(1)	+		H	H	H	2	11	Ph	Ph1	H	H	H	H	H	ᅳ	H	H	H	H	H	H	H	H	F
88	Ph3C	(1)	(1)	<u> </u>	H	1H	H	2	11	Ph	Ph1	Н	H	H	H	H	<u> =</u>	ļΗ	H	C2H	+	H	 H	H	H	Н
89	Ph3C	(1)	(1)	(2)	H	H	H	2	11		H	Ph1	H	H	H	H	1=	H	H	H	H	H	T H	H	H	H
90	Ph3C	(1)	1(1)	(2)	H	H	ᄖ	12	+	Ph	H	Ph1	H	H	버	H	ᆣ	H	H	H	H	H	1 H	H	H	Н
91	Ph3C	(1)	105	1(2)	14	1 11	H	12	11	Ph	H	Ph1	H	<u> H</u>	1H	ĮΗ	Ph	_	1#	H	H	14	14	1 11	H	H
92	Ph3C	193	W	1(2)	1 #	H	1 #	12	11	Ph	H	Ph1	H	1#	1#	1#	ᄪ	1 1		<u>H</u>	1#	1#	H	1 #	1 #	ОСНЗ
93	Ph3C		1(i)	<u> </u>	H		1#	12	11	Ph	H	Ph1	ļΗ	_	ļΗ	1#	ᅳ	H		H	ΙH	H	H	H	H	CF3
94	Ph3C		1(0)	(2)	H	1#	1#	12	_	Ph	<u>H</u>	Phi	ᄖ		ΗH	1#	╁ニ	ᄖ		1 #	1#	H	<u>H</u>	<u>H</u>	H	CI
95	Ph3C		133	(2)	H	1#	1#	13	_	 	Ph1	Ph1	ļΗ	H	ᄖ	1 H	ļ -	1#		 H	H	H	<u>H</u>	H	H	H
98		-	(i)	(2)	H		_	12	_	Ph	Phi	Ph1	H	-	14	1 H	1=	Ή		H	1 #	H		1 #	1#	H
97	Ph3C		1;;;	(2)	H	1 #	1#	12	_	Ph	Phi	Phi	#	1 11	1#	_	P	-	_		1 #	ᅢ	<u>H</u>	 H	1 #	H
1 38		+	1(0)		H	H	1#	12		Ph	Ph1	1 Ph1	1#		井	1#		1#	_	_		H	H	1 #		H
99			10	(2)				2	_	Ph	Ph!	Ph1	↓븭	_	井	_	_	14			<u>H</u>	<u> </u>	변		_	H
101	Ph3C	<u> </u>	1(1)	(2)	H	Н	<u> H</u>	12	11	Np26	Phi	Ph1	H	<u> </u> H	<u>H</u>	Н	<u> </u>	Н	ЦН	I H	<u>l H</u>	<u> </u>	Н	<u> </u>	H	H

【0049】 【表5】

No. X E Q J Ra Rb Rc m n A1 R1 R2 R3 R4 R5 R6 A2 R7 R4 R5 R6 R5 R1 R1 R12 101 Ph3C (1) (2) (2) H H H H I 2 - H H H H H H H H H H H H H H H H H H	H H H H H H H H	R ₁₅ H H H H
102 Ph3C (1) (2) (2) H H H H L L Ph H H H H H H H H H	H H H H H H	H H
103 Ph3C (1) (2) (2) H H H H 1 2 Ph H H H H H H H H H H H H H H H H H H	H H H H H H	H
104 Ph3C (1) (2) (2) H H H H 1 2 - CH3 H H H H - H H H H H H H H H H H H H H	H H H H	Н
105 Ph3C (1) (2) (2) H H H H 1 2 Ph CH3 H H H H - H H H H H H H H H H H H H H	H H	
106 Ph3C (1) (2) (2) H H H H 1 2 Ph CH3 H H H H Ph H H H H H H H H H H H H H H	нн	H
107 Ph3C (1) (2) (2) H H H H 1 2 - H CH3 H H H H - H H H H H H H H H H H H H H		
108 Ph3C (1) (2) (2) H H H H 1 2 Ph H CH3 H H H H - H H H H H H H H H H H H H H		Н
109 Ph3C (1) (2) (2) H H H H 1 2 Ph H CH3 H H H H Ph H H H H H H H H H H H H H H	HH	H
110 Ph3C (1) (2) (2) H H H H 1 2 - CH3 CH3 H H H H - H H H H H H H H H H H H H H	HH	H
111 Ph3C (1) (2) (2) H H H 1 2 Ph CH3 CH3 H H H H H H H H H	HH	H
112 Ph3C (1) (2) (2) H H H H 1 2 Ph CH3 CH3 H H H H Ph H H H H H H H H H H H H H H	HH	H
113 Ph3C (1) (2) (2) H H H H 1 2 - Ph1 H H H H H - H H H H H H H H H H H H H	HH	Н
114 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 H H H H H H H H H H H H H H H H H H H	нн	H
115 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 H H H H H Ph H H H H H H H H H H H H H	нн	Н
116 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 H H H H H - H H H H H H H H H H H H H	НН	Н
117 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 H H H H H H H H H H H H H H H H H H H	HH	Н
118 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 H H H H H H H H C2H5 H H H H H H Ph3C (1) (2) (2) H H H H 1 2 - H Ph1 H H H H H - H H H H H H H H	HH	CH3
119 PhSC (1) (2) (2) H H H I 2 - H PhI H H H H - H H H H H H H	HH	F
	нн	Н
120 Db2C (1) (2) (2) H H H H Db H Db3 H H H H H H H H H	нн	H
	нн	H
121 Ph3C (1) (2) (2) H H H 1 1 2 Ph H Ph1 H H H Ph H H H H H H H	HH	H
122 Ph3C (1) (2) (2) H H H 1 2 Ph H Ph1 H H H H - H H H H H H	нн	ОСН3
123 Ph3C (1) (2) (2) H H H H 1 2 Ph H Ph1 H H H H - H H H H H H H	НН	CF3
124 Ph3C (1) (2) (2) H H H 1 2 Ph H Ph1 H H H - H H H H H H H	нн	
125 Ph3C (1) (2) (2) H H H 1 2 - Ph1 Ph1 H H H - H H H H H H H	НН	H
128 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 Ph1 H H H H - H H H H H H H		
127 Ph3C (1) (2) (2) H H H 1 2 Ph Ph1 Ph1 H H H Ph H H H H H H H		
128 Ph3C (1) (2) (2) H H H H 1 2 Ph Ph1 Ph1 H H H H - H H CH3 H H H		
129 Ph3C (1) (2) (2) Ph H H 1 1 2 Ph Ph1 Ph1 H H H H H H H H H H H		
130 Ph3C (1) (2) (2) H H H H 1 2 Np26 Ph1 Ph1 H H H H - H H H H H H H		H

[0050]

【表6】

No.	Х	Ε	G	J	L	Ra	Rъ	m	n	A ₁	R	R,	R,	R ₄	R ₅	Rø	A2	R,	R,	R _s	R ₁₀	Rit	R12	R_{13}	R ₁₄	R _{t5}
131	Ph4A	(1)	(1)	(1)	(2)	I	I	3	1		Н	Н	H	н	H	н	-	н	Н	н	H	H	H	H	x	н
132	Ph4A	(1)	(1)	(1)	(2)	H	H	3	1]	Ph	CH3	Phi	H	H	Н	H	1	H	Н	H	H	Ŧ	I	Ŧ	Ξ	оснз
133	Ph4A	(1)	(2)	(1)	(1)	Ή	Ξ	3	1	-	H	CH3	H	Ph1	Ŧ	I	Ph	Н	H	Н	H	Ξ	Н	н	Н	CF3
134	Ph4A	(3)	(2)	(1)	(1)	Ξ	Ξ	2	2	Ph	CH3	СНЗ	Η	Ξ	I	I	Ph	H	Ή	H	H	Ŧ	H	H	H	Н
135	Ph4A	(1)	(2)	(1)	(2)	Ŧ	ĭ	2	2	Ph	Ph1	H	Ξ	X	Ŧ	Н	_	Ŧ	Н	СНЗ	Н	H	H	H	Н	_н_
138	Ph4A	(1)	(2)	(1)	(2)	Ξ	ĭ	2	2	Ph	H	Ph1	Ξ	Ŧ	Η	Н	-	H	Н	Н	H	H	H	H	H	F
137	Ph4A	(1)	(2)	(2)	(1)	Н	I	2	2	Ph	Phi	Ph1	Н	Н	Н	H	_	H	H	H	Н	Н	H	H	Н	Н
138	Ph4A	(1)	(2)	(2)	(1)	Н	H	2	2	Ph	H	Phi	Η	Н	н		Ph	H	H	н	H	Н	Н	H	H	н
139	Ph4A	(1)	(2)	(2)	(2)	H	Н	1	3	Ph	Phi	Ph1	Н	H	H	H	Ph	H	H	Н	H	H	H	I H	<u>H</u>	H
140	Ph4A	(2)	(2)	(1)	(2)	H	н	1	3	Np 14		<u>H</u>	Н	H	H	H	<u> </u>	н	H	Н	H	<u> H</u>	H	H	H	H
141	Ph4B		(1)	(1)		H	H	3	1		Н	H	H	H	H	H	ニ	H	H	Н	H	H	<u>H</u>	H	LH.	H
142	Ph4B	(1)	(1)	(1)	(2)	H	Н	3	1	Ph	CH3	H	H	H	I H	H	_	H	H	C2H5	H	H	H	H	H	Н
143	Ph4B	(1)	(2)	(1)	(1)	H	H	3	1		Н	C3H7	H	<u>H</u>	H	H	Ph	Н	ļΗ	L H	LH	H	H	H	TH.	H
144	Ph4B	(1)	;(2)	(1)	(1)	<u> </u>	<u>H</u>	12	2	Ph	CH3	CH3	H	<u>H</u>	н	H	Ph	H	H	H	<u> </u>	<u>H</u>	LH.	I H	H	H
145	Ph4B	(1)	1(2)	(1)	(2)	H	H	2	2	Ph	Phi	H	H	H	H	<u>H</u>	<u> =</u>	H	H	LH_	H	H	H	I H	<u> </u>	H
146	Ph4B	(1)	(2)	(1)	(2)	H	н	2	2	Ph	Н	Ph1	H	H	H	H	<u> </u>	H	H	H	H	H	I H	<u> </u>	H	н
147	Ph48		112/	(2)		<u> </u>	H	2	2	Ph	Ph1	Ph1	H	H	H	H	1-	H	TH	H	<u> </u>	<u> </u>	LH.	ĮΗ	1H	Н
148			, (2)			H	H	2	2	Ph	H	Ph1	<u> </u>	H	H	H	Ph	H	+	H	H	H	H	H	H	H
149	Ph48	(1)	(2)	(2)		H	Н	11	3		Ph1	Ph1	H	H	H	H	Ph	+	+	Н	H	H	H	H	1 #	Н
150	Ph4B	(2)	(2)	(1)	(2)	H	Н	11	3	FL	Ph1	H	H	H	H	H	<u> </u>	H	H	H	IH	I H	H	<u> </u>	<u> 1 H</u>	H_

【0051】 【表7】

																,										
No.	X	E	G	J	L	Ra	RЬ	m	n	A ₁	R	R ₂	R,	R	R ₅	RG	A ₂	R ₇	Re	R _e	R10	Rtt	RIZ	R ₁₃	R ₁₄	R ₁₅
151	Ph4C	(1)	(2)	(1)	(2)	Н	Н	2	2	-	Н	Н	Н	Н	н	I	-	Н	H	H	H	H	Н	Ξ	H	Н
152	Ph4C	(1)	(2)	(1)	(2)	Н	I	2	2	Ph	н	T	H	Н	I	Ŧ	-	H	H	H	Ή	H	H	Ξ	Ŧ	Н
153	Ph4C	(1)	(2)	(1)	(2)	н	H	2	2	Ph	н	н	H	H	H	H	Ph	Ξ	Н	Н	H	H	H	Ξ	H	H
154	Ph4C	(1)	(2)	(1)	(2)	н	Н	2	2	-	CH3	H	Ĥ	H	Ή	Н	1	Н	Н	Н	H	H	I	Ξ	H	H
155	Ph4C	(1)	3	(1)	(2)	н	Н	2	2	Ph	CH3	H	Ξ	H	I	H	-	1	Н	н	Ή	Н	I	r	×	H
156	Ph4C	(1)	(2)	(1)	(2)	Н	Н	2	2	Ph	CH3	Ŧ	H	H	I	H	Ph	H	H	Н	H	Н	Ξ	Ŧ	H	H
157	Ph4C	(1)	3		(2)	Н	Н	2	2	-	Н	CH3	I	Н	I	H	-	Ξ	Н	H	I	H	I	Ŧ	H	н
158	Ph4C	(1)	2	(1)	(2)	Н	Ή	2	2	Ph	Н	CH3	H	H	Н	H	-	H	Н	Н	Н	H	Н	Н	H	H
159	Ph4C	(1)	(2)	(1)	(2)	Н	Ι	2	2	Ph	н	CH3	I	H	Н	н	Ph	Ξ	H	Н	I	7	H	H	H	Н
160	Ph4C	(1)	(2)	(1)	(2)	H	Ξ	2	2	0	CH3	CH3	H	Н	Н	H	-	\pm	H	7	Ξ	Ŧ	Н	Н	Н	Н
161	Ph4C	3	(2)	(1)	(2)	Н	I	2	2	Ph	CH3	C	Н	н	H	Н	_	Н	H	H	Ή	H	Н	Н	н	н
162	Ph4C	Ξ	(2)	(1)	(2)	Н	H	2	2	Ph	CH3	CH3	Н	H	Н	Н	Ph	Н	Н	Н	H	Н	Н	H	Н	H
163	Ph4C	(1)	(2)	(1)	(2)	H	Ŧ	2	2	-	Ph1	I	H	H	Н	H	<u> </u>	H	Ŧ	Ŧ	Н	H	H	H	н	H
164	Ph4C	(1)	(2)	$\mathbf{I}(t)$	(2)	Ŧ	Н	2	2	Ph	Ph1	I	Н	H	Н	Н	_	н	H	Н	Н	H	H	Н	H	Н
165	Ph4C	(1)	(2)	(1)	(2)	±	I	2	2	Ph	Phi	H	H	н	Н	H	Ph	Н	H	H	Н	H	H	H	Н	H
166	Ph4C	(1)	(2)	(1)	(2)	H	H	2	2	Ph	Phi	Н	Н	H	H	H	-	H	Н	H	H	<u> </u>	H	Н	Н	CH3
167	Ph4C	(1)	(2)	(1)	(2)	CH3	CH3	2	2	Ę	Ph1	Н	Н	H	Н	H	-	н	H	H	H	H	Н	H	H	F
168	Ph4C	(1)	(2)	(0)	(2)	H	Н	2	2	É	Ph1	H	H	H	H	H	_	H	Η	O2H5	Н	H	H	TH	H	H
169	Ph4C	(1)	(2)	(1)	(2)	H	Н	2	2	1	Н	Phi	H	H	Н	H	I -	Н	Н	H	н	Н	H	H	H	H
170	Ph4C	(1)	(2)	(1)	(2)	H	H	2		Ph	Н	Ph1	Н	Н	Н	Н	E	H	H	H	H	H	Н	H	H	Н
171	Ph4C	(1)	(2)	0	(2)	H	H	2	2	Ph	Н	Ph1	H	H	Н	H	Ph	H	Н	Н	H	н	H	Н	H	H
172	Ph4C	(1)	(2)	(1)	(2)	Н	Н	2	2	Ph	Н	Phi	H	H	IΗ	H	IΞ	Н	Н	H	H	H	H	Н	H	OCH3
173	Fh4C	(1)	(2)	1(0)	(2)	H	H	2	2	Ph	H	Phi	Н	H	H	Н	<u> </u>	H	Н	Н	H	H	H	H	Н	CF3
174	Ph4C	(1)	(2)	0	(2)	H	H	2	2	Ph	Н	Ph1	H	H	Н	Н	Ξ	H	H	Н	H	H	Н	H	H	CI
175	Ph4C	(1)	(2)	1(1)	(2)	H	H	2	2	_	Phi	Ph1	Н	H	Н	H	١÷	H	H	H	H	Н	H	LH	H	Н
178	Ph4C	(1)	(2)	10	(2)	Н	H	2	2	Ph	Phi	Phi	Н	Н	H	H	-	Н	Н	H	Н	Н	Н	Н	Н	Н
177	Ph4C	(1)	(2)	(1)	(2)	н	H	2	2	Ph	Phi	Ph1	Н	Н	H	H	Ph	Н	Н	H	H	Н	H	H	Ή	H
178	Ph4C	(1)	(2)	(1)	(2)	H	Н	2	2	Ph	Phi	Ph1	H	H	Н	Н	-	Н	Н	CH3	Н	Н	Н	Н	H	H
179	Ph4C	(1)	(2)	र (व	(2)	Ph	Н	2		Ph	Phi	Fh1	H	Н	Н	Н	Ι-	H	Н	H	H	H	Н	Н	H	Н
180	Ph4C	(1)	(2)	(1	(2)	Н	н	2	2	Np26	Ph1	Ph1	Н	Н	Н	Н	I-	H	Н	Н	Н	Н	H	Н	Н	Н

[0052]

【表8】

No.	Х	Е	G	J		Ra	RЬ	m	П	A.	R ₁	R ₂	R,	R,	R ₅	Re	A ₂	R ₇	Rs	R _a	R10	Ru	R ₁₂	R ₁₂	R	R ₁₅
181	Ph4C	(i)	(Ž)	(2)	6	H	H	2	2		H	H	H	H	H	규		H	H	H	H	H	H	Н	H	H
182	Ph4C	(1)	(2)	(2)	(1)	H	Н	2	2	Ph	H	н	Ħ	H	н	H		H	H	FL2	H	н	H	H	H	H
	Ph4C	(1)	(2)	(2)	(1)	H	H	2	2	Ph	H	Н	H	H	H	H	Ph	Ŧ	Η	Н	H	Ĥ	H	H	H	H
184	Ph4C	(1)	(2)	(2)	(1)	Н	Н	2	2	-	CH3	Н	н	H	H	H		H	H	Н	H	H	H	H	H	H
185	Ph4C	(1)	(2)	(2)	(1)	H	X	2	2	Ph	CH3	Н	Η	Н	Ή	Н	_	н	I	Н	H	H	H	H	H	H
186	Ph4C	(1)	(2)	(2)	(1)	Н	H	2	2	Ph	CH3	Н	Н	Н	н	Н	Ph	H	Τ	H	н	H	H	H	H	Н
187	Ph4C	(1)	(2)	(2)	(1)	н	H	2	2	-	Н	CH3	H	н	H	Ή	Qu	н	H	н	H	н	H	Н	H	H
188	Ph4C	(1)	(2)	(2)	(1)	H	I	2	2	Ph	Н	CH3	H	Ŧ	Ξ	H		H	H	Н	Н	Ή	H	H	Н	H
189	Ph4C	(1)	(2)	(2)	(1)	Н	Η	2	2	Pħ	H	CH3	H	Н	H	н	Ph	H	н	Н	Н	Н	н	H	Н	Н
190	Ph4C	(1)	(2)	(2)	(1)	H	H	2	2	_	CH3	CH3	Н	Н	H	H	ı	Н	H	H	H	Н	Н	H	H	H
191	Ph4C	(1)	(2)	(2)	(1)	н	н	2	2	Ph	CH3	CH3	H	H	Н	H	-	H	H	Н	Н	Н	Н	H	H	H
192	Ph4C	(1)	(2)	(2)	(1)	H	Н	2	2	Ph	CH3	CH3	H	H	H	Н	Ph	H	H	Н	Н	H	H	H	H	Н
193			(2)	(2)	(0)	H	H	2	2	-	Ph1	H	H	H	H	H		H	H	An9	H	Н	H	Н	Н	Н
194	Ph4C	(1)	(2)	(5)	1(1)	H	H	_	2	Ph	Ph1	H	H	H	H	H		H	Н	<u> </u>	H	H	H	H	H	Н
195	Ph4C	(1)	(2)	(2)	(1)	H	H	2	2	Ph	Ph1	H	H	H	H	H	Ph	H	H	<u>H</u>	H	н	H	H	H	Н
198	Ph4C	(1)	(2)	(2)	(1)	H	H	2	2	£	Ph1	H	H	H	H	H		H	H	Н	H	Н	H	<u> H</u>	H	CH3
197	Ph4C		(2)	(2)	10)	H	H	2	2	Ph	Ph1	H	I H	H	H	H	·	1 H	H	н	H	H	I H	H	H	F
198	Ph4C		(2)	(2)	10)	H	ᄖ	2	2	Ph	Ph1	Н	14	<u> H</u>	H	I H		ļΗ	H	C2H5	H	H	1H	H	H	H
199	Ph4C		(2)	(2)	100	1 11	I H	2	12		H	Phi	H	H	ᄖ	H	Phen	H	H	H	H	Н	H	H	H	H
200				(3)	100	1 #	H	12	+-	Ph	H	Ph1	H	H	H	H	 	1 H	H	Н	H	H	H	H	H	H
201	Ph4C		(2)		183	H	ᄖ	1 3	12	Ph	<u>H</u>	Ph1	ᄖ	ᄖ	브	H	Ph	H	벁	H	H	H	H	H	H	Н
202	Ph40		(2)	4 7 7 7	18	4 5	+#	+ *	12	Ph	H	Ph1	Ħ	Ħ	ᄖ	ļΗ	-	H	_	H	H	H	H	H	H	
203	Ph4C		(2)	_	18	범	1 14	12	2	Ph	H	Ph1	ᄖ	 H	ᅤ	냂		<u>H</u>	H	H	H	H	1#	ΙĤ	H	CF3
204 205	Ph4C		(2)		123	H	ᅤ	12/2	12/2	Ph	片	Ph1	Η̈́	+#	ļΗ	ļН		1#	ᅤ	H	부	l H	1 #	片	<u>H</u>	CI
206				1 (2)	160		뷰		2	Ph	Phi	Ph1	빞	H	1#	1#	 - -	 !!	1#	井	1#	!!	H	1 !!	1#	H
207	Ph4C		(2			1 5	뮤	15	1 2	Pb	Ph1	Phi	H	井	븭	片		1#	井	H	1#	H	H	井	H	H
207			12	(2)	18	유	냮	1 2	12	Ph	Phi	Ph1	뷰	뷰	ដ	H	Ph	뷰	井	CH3	ᅤ	┞ ┆	 	1#	1#	H
209			+			F		12	_		Phi	Phi	╁		╁╬	_	+	냮	卄유	H	井井	H	丨 뷰	井井	井	H
	Ph4C	4 6 13				유		2			Phi	Phi	끊		17	냄	-	I#					╁	H		H
210	1-1140	ىد	116	114	220	<u> </u>	1 6	16	14	LINDZO	TLUI	1 5 W		<u>, </u>	ᅸ	ᆚᄆ			1.0		<u> </u>	<u> </u>	<u>, </u>	<u>ı n</u>	<u> H</u>	<u>; </u>

【0053】 【表9】

,					····			,,																		
No.	X	Æ	G	J	L	Ra	Rb	m	n	Aı	R ₁	R ₁	Rз	R4	R ₅	Re	A ₂	R ₇	R	R,	R ₁₀	RII	R12	Ria	Ris	R ₁₅
211	Ph4C	(1)	(1)	(2)	(2)	Н	H	2	2	-	Н	н	н	Н	н	Н	-	Н	Η	н	H	H	H	Н	H	Н
212	Ph4C	(1)	(1)	(2)	(2)	H	Ŧ	2	2	Ph	, н	H	н	н	Н	Н	_	Н	Н	Н	н	H	H	Н	н	Н
213	Ph4C	(1)	(1)	(2)	(2)	H	Ξ	2	2	Ph.	H	H	Н	Н	Н	H	Ph	H	H	н	Н	H	H	H	Н	н
214	Ph4C	(1)	(1)	(2)	(2)	I	I	2	2	Í	CH3	Н	Н	H	Н	н	-	Н	Н	Н	H	Н	н	H	H	H
215	Ph4C	(1)	(1)	(2)	(2)	Н	H	2	2	Ph	CH3	Н	Н	H	Н	Ξ	-	Н	Н	н	Н	H	Н	H	H	Н
218	Ph4C	(1)	$\widehat{\boldsymbol{\varepsilon}}$	(2)	(2)	H	Н	2	2	Ph	CH3	Н	Н	H	H	H	Ph	Н	H	Н	H	H	Н	Н	H	Н
217	Ph4C	(1)	€	(2)	(2)	H	Н	2	2		Ŧ	CH3	H	Н	Н	н	Ξ	H	Ι	I	Ŧ	H	H	H	Н	Н
218	Ph4C	(1)	(1)	(2)	(2)	Н	Н	2	2	Ph	H	CH3	H	Н	Н	Н	-	H	Ξ	Н	H	H	H	Н	Н	Н
219	Ph4C	(1)	0	(2)	(2)	Н	H	2	2	Ph	Τ	CH3	H	Н	H	H	Ph	I	I	I	Τ	H	H	Н	H	Н
220	Ph4C	(1)	9	(2)	(2)	H	H	2	2	_	CH3	CH3	H	Н	Н	Н	-	H	I	H	H	Ξ	H	Н	Н	Н
221	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2	Ph	CH3	CH3	Н	H	н	H	_	H	H	Ŧ	Н	H	Н	H	H	Н
222	Ph4C	(1)	(1)	(2)	(2)	Н	H	2	2	Ph	CH3	CH3	Н	H	H	H	Ph	H	Ξ	H	I	H	Н	Η	Н	Н
223	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2		Phi	Н	H	H	H	H	1	н	H	H	H	H	H	Н	Ŧ	Pn5_
224	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2	Ph	Phi	Н	н	Н	Н	H	-	Н	Н	H	I	H	Н	H	Н	Н
225	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2	Ph	Phi	H	H	Ĥ	H	H	Ph	H	Н	Н	H	H	H	Н	H	Н
226	Ph4C	(1)	(1)	(2)	(2)	<u> </u>	H	2	2	Ph	Ph1	н	H	H	H	H	-	H	<u>H</u>	Н	H	H	H	Н	H	CH3
227	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2	Ph	Ph1	H	H	н	Н	Н	_	H	H	H	Н	H	H	<u>H</u>	H	F
228	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2	Ph	Ph1	Н	H	H	H	H	<u> </u>	H	H	C2H5	Н	H	H	Н	H	Н
229	Ph4C	(1)	(1)	(2)	(2)	H	H	12	2		Н	Phi	Н	Н	Н	Н	<u> </u>	H	<u> </u>	H	H	H	H	Н	H	Н
230	Ph4C		(1)	(2)	(2)	H	H	2	2	Ph	H	Ph1	H	Н	H	H	<u> </u>	H	H	H	H	H	H	Н	H	Н
231	Ph4C		(1)	(2)	(2)	H	H	2	2	Ph	H	Ph1	H	Н	Н	H	Ph	H	H	Н	H	H	H	Н	H	Н
232	Ph4C	(1)	(1)	(2)	(2)	H	H	12	12	Ph	H	Ph1	H	Н	H	H	_	Н	Н	Н	H	H	H	Н	Н	OCH3
233	Ph4C		(1)	(2		H	H	12	2	Ph	H	Ph1	H	Н	Н	<u>] H</u>	<u> </u>	H	H	H	H	H	H	H	H	CF3
234	Ph4C	(1)	(1)	(2)	(2)	H	H	2	2	Ph	H	Ph1	Н	Н	H	H	1-	H	H	H	H	<u>l H</u>	<u> </u>	H	н	CI
235	Ph4C	(1)	(1)	(2	(2)	H	<u> H</u>	12	2		Phi	Ph1	H	Н	H	H	Ι-	H	H	Pr1	H	H	Н	H	Н	H
236			(1)	(2		<u> </u>	H	2	2	Ph	Phi	Phi	H	Н	H	Н	Ι-	H	H	H	H	H	Н	<u> </u>	H	Н
237	Ph4C		(1)	(2	(2)	H	1 H	2	2	Ph	Ph1	Ph1	H	H	H	H	Ph	H	lΗ	Н	H	H	H	H	H	H
238			(1)	(2	(2)	H	H	2	2	Ph	Ph1	Ph1	H	H	Н	H	-	H	Н	CH3	Н	H	H	Н	Н	Н
239		_	(1)			Ph	<u> H</u>	2	2	Ph	Phi	Ph1	H	H	Н	Н	Ι-	H	H	Н	H	H	H	Н	H	Н
240	Ph4C	10	(1)	(2	(2	H	H	12	2	Np26	Phi	Ph1	H	Н	Н	H	<u> </u>	H	H	H	H	H	H	H	Н	Н

[0054]

【表10】

No.	X	E	G	1		Ra	Rb	m	n	A,	R,	R ₂	R ₃	R ₄	R _s	R.	A	R ₁	Ra	R,	R ₁₀	R.,	R ₁₂	R ₁₃	R ₁₄	R ₁₅
241	Ph4C	ন	6	ä	(2)	H	H	3	1		СНЗ	CH3	Η	H	H	H	-=	崩	H	- 13	H	H	H	H.	H	H 1
242	Ph4C	775	(1)	(1)	(2)	H	Н	3	Ť	Ph	CH3	CH3	H	H	H	H		H	H	H	H	111	H	H	Ĥ	H
243	Ph4C	7	(1)	(1)	(2)	H	H	3	1	Ph	СНЗ	CH3	Ħ	H	H	H	Ph	H	H	H	н	H	H	Н	H	H
244	Ph4C	(1)	窗	(1)	(2)	H	H	3	1		Ph1	H	Ħ	H	H	Ħ		Ħ	н	H	H	H	Ħ	H	H	H
245	Ph4C	(1)	(1)	(1)	(2)	H	H	3	1	Ph	Ph1	H	H	H	H	н	_	H	H	H	H	H	H	Ħ	H	H
246	Ph4C	(1)	(1)	(1)	(2)	Н	H	3	1	Ph	Ph1	H	H	H	H	H	Ph	H	H	H	Н	H	H	H	H	H
247	Ph4C	(1)	(1)	(1)	(2)	Н	Н	3	1	Ph_	Ph1	H	Н	Н	H	H	-	H	H	Н	H	H	H	н	н	CH3
248	Ph4C	(1)	(1)	(1)	(2)	н	H	3	1	Ph	Ph1	H	H	Н	H	Н	-	H	Н	н	Н	Н	H	H	H	F
249	Ph4C	(1)	(1)	(1)	(2)	H	H	3	1	Ph	Н	Ph1	H	H	H	H	-	H	H	Н	H	Н	H	H	Н	CF3
250	Ph4C	(1)	(1)	(1)	(2)	H	Н	3	1	Ph	н	Ph1	Н	H	H	Н	-	Н	H	H	H	H	Н	Н	H	CI
251	Ph4C	(1)	(1)	(1)	(2)	H	Н	3	1	-	Ph1	Ph1	H	H	Н	Н	1	H	Н	Н	H	H	Н	H	Н	H
252	Ph4C	(1)	(1)	(1)	(2)	Н	Н	3	1	Ph	Ph1	Pht	H	Н	H	H	-	Н	Ŧ	Н	I	Н	Н	Н	H	H
253	Ph4C	(1)	(1)	(1)	(2)	H	H	3	1	Ph	Ph1	Ph1	H	H	Н	H	Ph	Н	Н	Н	I	Н	Н	Н	Н	H
254	Ph4C	(1)	(1)	(1)	(2)	Н	H	3	1	Ph	Phi	Ph1	Н	H	Н	Н	-	H	Ξ	CH3	H	Н	H	H	H	Н
255	Ph4C	(1)	(1)	(1)	(2)	Ph	Н	3	1	Ph	Pht	Ph1	Н	Н	Н	H	_	H	Ξ	H	H	H	Н	Н	Н	Н
256	Ph4C	(1)	(2)	(2)	(2)	Н	H	1	3	-	CH3	CH3	H	H	Н	Н	_	H	H	Н	H	Н	H	H	H	H
257	Ph4C	(1)	(2)	(2)	(2)	H	H	11	3		CH3	CH3	н	H	Н	Н	_	H	н	Н	Н	H	Н	Н	H	H
258	Ph4C	(1)	(2)	(2)	(2)	H	H	1	3	Ph	CH3	CH3	Н	H	H	H	Ph	H	Н	Н	Н	H	H	Н	H	H
259	Ph4C	(1)	(2)	(2)	(2)	H	<u> H</u>	1	13		Phi	<u> </u>	H	Н	Н	H	<u> -</u>	H	H	Phen3	H	H	Н	H	H	Н
	Ph4C		(2)	(2)	(2)	H	H	1	13	Ph	Ph1	H	IH.	H	H	H	1=	H	H	H	H	Н	H	H	H	H
281	Ph4C		(2)	(2)	(2)	H	H	11	13	Ph	Ph1	<u> </u>	H	H	H	H	Ph	H	H		H	<u> </u>	<u> </u>	H	H	H
262	Ph4C	-	(2)	(2)	(2)	1 H	H	11	13		Pht	1 11	1H	TH	LH	H	1-	H	H	Н	H	<u> </u>	<u> </u>	<u>l H</u>	H	CH3
263				(2)	(2)	H	H	11	3		Ph1	H	H	ᄪ	H		1-	1 H	H	Н.	<u>H</u>	H	I H	H	H	F
284	Ph4C	4 * * *	(2)	(2)		H	H	11	13		H	Ph1	H	H	H	H	ᆂ	H	H	Н	H	H	H	H	H	CF3
285			(2)	(2)	(2)	1 H	<u> H</u>	11	3		H	Ph1	H	H	H	H	ᅳ	H	H	Н	H	H	14	H	H	CI
288		_	(2)	(2)	(2)	H	ΤĤ	11	13		Phi	Phi	H	H	H	H	<u> -</u>	H	H	Н	Н	H	H	H	H	H
267			(2)	(2)	1 (2)		1 H	13	3		Ph1	Ph1	1 11	111	1H	H	上	ļΗ	ᄲ	Н	H	H	TH.	H	H	Н
268			1(2)	1(2)	_	<u> H</u>	<u> H</u>	11	13		Phl	Phi	H	H	14	H	Ph	H	H	Н	H	H	H	H	H	н
289			(2)	(2)) [(2	H	1 H	11	13		Phi	Ph1	TH		H		ᆂ	TH	H	CH3	H	H	14	<u> </u>	H	Н
270	Ph4C	(1)	(2)	(2)	(2		H	11	3	Ph	Phi	Ph1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	حــــــــــــــــــــــــــــــــــــــ	TH	H	<u> </u>	I H	H	<u>l H</u>	<u> </u>	\perp μ	H

【0055】

No.	X	Ε	G	J	L	M	Q	Ra	m	n	Aı	R ₁	R ₂	R3	R,	R,	R ₆	Α	R,	Re	R,	R ₁₀	R,,	R ₁₂	Ris	Ris	Ris
271	Ph5	(1)	(1)	(1)	(1)	(2)		H	4	1	-	Н	H	H	H	H	н	1	H	H	Н	Н	Н	н	X	н	H
272	Ph5	(1)	(1)	3	(2)	(1)	ı	H	4		Ph	CHS	Ph1	H	H	Н	Н	1	Н	H	Н	Н	H	H	н	Н	OCH3
273	Ph5	(1)	(1)	(2)	(1)	(1)	ŧ	H	4	-	-	I	CH3	I	Ph1	Ξ	Ŧ	É	H	H	X	H	H	H	H	H	CF3
274	Ph5	(1)	(1)	E	(2)	(2)	ı	Ξ	3	٩	Ph	CH3	CH3	¥	H	H	Ŧ	Pħ	H	Ξ	Ŧ	H	H	H	H	H	H
275	Ph5	(1)	(1)	(2)	\mathbf{R}	(2)	1	Ξ	3	2	Ph	Ph1	I	I	H	Н	Ξ	1	Н	H	CH3	H	Н	H	Н	Ξ	H
276	Ph5	(1)	(2)	(1)	(1)	(2)		Ξ	3	2	Ph	H	Ph1	x	H	H	7	1	H	Ξ	Н	H	H	H	H	H	F
277	Ph5	(2)	(1)	(1)	(1)	(2)	1	I	ß	2	Ph	Ē	Phi	H	Н	Н	Ξ	-	н	Н	Ι	Н	Н	Н	Н	H	H
278	Ph5	(1)	(2)	(2)	(2)	(2)	-	H	2	3	Ph	H	Phi	H	H	H	H	Ph	Н	H	Н	H	Н	H	H	H	Н
279	Ph5	(1)	(2)	(1)	(2)	(2)	_	H	2	3	Ph	Ph1	Ph1	Н	H	H	H	Ph	H	H	x	H	Н	H	H	H	H
280	Ph5	(2)	(2)	(1)	(1)	(2)	-	Н	2	3	Np14	Phi	H	Н	Н	H	H	-	H.	H.	H	H	H	H	Н	Н	Н
281	Ph6	(1)	(1)	(1)	(1)	(1)	(2)	_	5	1		Н	Н	Н	Н	Н	Н	_	H	Н	No2	H	Н	н	н	Н	Н
282	Ph6	(1)	(1)	(1)	(1)	(2)	(1)	-	5	1	Ph	CH3	Н	H	Н	Н	H	[-	Н	Н	C2H5	H	H	H	H	H	H
283	Ph6	(1)	(1)	(1)	(2)		(1)	_	5	1		H	C3H7	H	H	Н	H	Ph	H	H	Н	H	H	H	H	H	Н
284	Ph6	<u>[(1)</u>	(1)	10	(1)	(2)	(2)	_	4	2	Ph	CH3	СНЗ	H	H	H	H	Ph	H	H	H	H	H	H	H	н	н
285	Ph6	(1)	(1)	(1)	(2)	(1)	(2)	ΙΞ	4	2	Ph_	Phi	Н	H	Н	H	H] =	H	Н	H	H	H	H	Н	H	Н
286	Ph6	<u> </u>	(1)	(2)	(1)	(1)	(2)	_	4	2	Ph	H	Phi	н	H	H	Н	-	H	H	H	H	H	H	H	H	Н
287	Ph6	(1)	(2)	(1)	(1)	(1)	(2)	-	4	2	Ph	Ph1	Pht	H	H	Н	H	LΞ	H	H	H	H	H	H	H	Н	Н
288	Ph6	(1)	(1)	(1)	(2)	(2)	(2)	LΞ	3	3	Ph	H	Ph1	Н	Н	Н	Н	Ph	Н	H	H	H	H	H	H	H	Np1
289	Ph6	(1)	(1)	(2	(1)		(2)	Ξ	3	3	Ph	Phi	Ph1	H	Н	Н	H	Ph	H	H	Н	H	H	H	Тн	Н	H
290	Ph6	(1)	(2)	(2)	(1)	(1)	(2)	I –	3	3	FL	Phi	H	H	Н	Н	H	<u> </u>	Н	H	H	H	Н	H	H	H	I

[0056]

【表12】

No.	Х	E	G	Ra	Рb	Rc	m	n	Aı	Ri	R ₂	R ₃	R,	R ₅	R ₆	A2	R,	R ₈	R₀	R ₁₀	Rit	R ₁₂	R ₁₃	R ₁₄	R ₁₅
291	Pi2A	(1)	(2)	Ή	H	Ŧ	1	1		_H_	Н	H	H	Н	H	ı	H	Н	H	Н	H	Ξ	H	H	Н
292	Pi2A	(1)	(2)	Ξ	H	Ξ	1	1	Ph	СНЗ	Ph1	H	Ξ	Ŧ	H	ı	I	H	I	H	H	Ŧ	I	H	OCH3
293	Pi2A	(1)	(2)	H	H	H	1	1	-	Н	CH3	H	Ph1	H	Ŧ	Ρħ	Ŧ	Ή	I	I	X	Ξ	x	Н	CF3
294	Pi2A	(1)	(2)	H	Н	H	1	1	Ph	CH3	CH3	Н	I	Ŧ	Ξ	Ph	Ξ	H	H	Н	Н	Н	Ŧ	Н	H
295	PI2A	(1)	(2)	Н	Н	H	1	1	Ph	Ph1	н	I	Ŧ	Ŧ	Ŧ	1	I	Ŧ	CH3	Н	Ŧ	H	x	Ξ	H
298	Pi2B	(1)	(2)	H	H	H	1	1	Ph	H	Ph1	Ή	Ξ	Ŧ	Ή	ı	Н	Н	H	Ή	Η	H	H	Н	F
297	Pi2B	(1)	(2)	Н	H	H	1	1	Ph	Ph1	Phi	Ŧ	Ŧ	I	7	1	H	H	x	Ŧ	Н	Н	н	H	H
298	Pi2B	(1)	(2)	H	<u>l H</u>	H	1	1	Ph	H	Ph1	Ŧ	H	H	Н	Ph	H	H	x	H	H	Н	Н	H	OCF3
299	P/2B	(1)	(2)	Н	H	Н	1	1	Ph	Ph1	Ph1	H	Н	H	H	Ph	H	H	I	H	H	Н	H	H	H
300	Pi2B	(1)	(2)	H	H	H	11	1	Np 14	Ph1	Н	H	Н	H	H	1	Н	Н	Н	Ŧ	H	H	H	H	H
301	Pi2C	(1)	(2)	H	H	H	1	1		H	Н	H	Н	H	H	_	H	H	H	H	H	H	Н	Н	Н
302	Pi2C	(1)	(2)	H	<u> </u>	H	1	1	Ph	CH3	H	Н	Н	H	Н	-	Н	Н	C2H5	H	Н	H	Н	H	H
303	Pi2C	(1)	(2)	H	H	H	11	1	_	H	C3H7	H	H	H	H	Ph	H	H	H	H	Н	Н	H	Н	Н
304	Pi2C	(1)	(2)	H	H	H	11	1	Ph	CH3	CH3	H	H	H	Н	Ph	Н	H	Н	Н	H	H	H	Н	H
305	Pi2C	(1)	(2)	LH	H	<u>H</u>	11	1	Ph	Ph1	FL2	H	Н	<u> </u>	Н	-	H	Н	H	Н	H	H	Н	H	H
306	Pi2d	(1)	(2)	1H	H	H	11	1	Ph	H	Ph1	H	H	H	H	<u> </u>	H	H	H	H	H	Н	H	Н	H.
307	Pi2d	(1)	(2)	H	H	H	1	1	Ph	Ph1	Ph1	H	H	H	Н	-	H	H	Н	H	H	H	H	H	H
308	Pi2d	(1)	(2)	H	I H	H	11	11	Ph	H	Ph1	H	H	H	I H	Ph	H	H	Н	LH.	H	H	H	H	H
309	Pi2d	(1)	(2)	H	H	H	11	1	Ph	Ph1	Ph1	H	H	H	H	Ph	H	H	H	Н	Н	H	Н	Н	I
310	Pi2d	(1)	(2)	<u>H</u>	H	H	17	1	FL	Ph1	LH	H	H	1 H	H	-	H	H	Н	Н	Н	H	H	H	OG2H5

【0057】 【表13】

No.	X	E	G	Ra	RЬ	3	n	Α _I	Rı	R ₂	R ₃	R4	R_{s}	R_{θ}	A₂	R,	Rs	R,	R ₁₀	R_{ij}	R ₁₂	R ₁₃	RIA	R ₁₅
311	Pd2A	(1)	(2)	H	H	1	1		H	H	I	Н	Н	I	-	H	Н	Н	Ή	H	Н	Н	Н	Н
312	Pd2A	$ \epsilon $	(2)	Ξ	H	1	1	Ph	CH3	Phi	Η	I	Н	Ξ	-	H	Ξ	H	H	Η	I	Ŧ	H	ОСНЗ
313	Pd2A	(1)	(2)	Н	Ξ	1	1	-	Н	CH3	Ξ	Ph1	Н	I	Ph	H	Ξ	H	Ξ	I	I	H	I	CF3
314	Pz2A	(1)	(2)	Н	Н	1	1	Ph	CH3	CH3	Н	H	H	Ξ	Ph	Ξ	Ή	H	Η	Η	Ξ	Η	Ξ	H
315	Pz2A	(1)	(2)	Н	H	1	•	Ph	Phi	H	Ι	Ι	Ξ	Ή	١	Ι	x	CH3	Ι	I	I	Н	Ŧ	Н
316	Pz2A	(1)	(2)	H	Ŧ	7	1	Ph	Н	Ph1	Ξ	Ξ	Ξ	Ξ	ı	Ι	Ξ	H	H	Η	Ή	H	I	F
317	Pz28	(1)	(2)	H	H	7	1	Ph	₽h1	Ph1	Η	H	Ξ	Η	-	Ŧ	Н	Н	H	Н	Η	Н	Η	H
	Pz2B		(2)	H	н	1	1	Ph	Н	Ph1	Н	H	H	H	Ph	Н	Ξ	H	H	Н	H	H	Н	Н
	Pz2B	_	(2)	Н	H	1	1	Ph	Ph1	Ph1	H	H	Н	H	Ph	Ξ	H	H	H	Н	H	Н	Н	H
320	Pz2B		(2)	H	Н	L	1	Np14	Ph1	Н	H	<u>H</u>	H	Н	_	Н	Н	H	Н	H	H	H	L _H	Н
321	Pd2B	(1)	(2)	Н	Н	1	1	-	I	Н	Н	H	Н	Н	-	H	Н	Н	H	Н	Н	Н	H	H
322	Pd2B		(2)	H	Н	1	1	Ph	CH3	Н	Н	Н	H	H	_	H	Н	C2H5	Н	Н	H	Н	Н	Н
323	Pd2B	(1)	(2)	Н	Н	1	1	_	Н	C3H7	H	Н	Н	H	Ph	Н	Н	Н	H	Н	H	Н	Н	Н
324	Pd2B	(1)	(2)	Н	Н	1	1	Ph	CH3	CH3	Н	Н	Н	Н	Th	H	Н	Н	H	Н	Н	Н	Н	H
	Pz2C		(2)	LH.	H	1	1	Ph	Ph1	Н	н	Н	Н	Н	-	H	H	Н	H	H	H	Н	H	Н
326	Pz2C	(1)	(2)	H	Н	1	1	Ph	H	Ph1	H	Н	Н	H		Н	H	Н	H	Н	H	H	H	H
	P22C		(2)	H	H	1	1	Ph	Phl	Ph1	H	Н	H	H	_	Н	Н	Н	H	Н	Н	H	H	H
328	Pm2A	(1)	(2)	H	Н	1	1	Ph	Н	Phi	Н	H	Н	H	Ph	Н	Н	Н	Н	Н	H	Н	H	C(CH3)3
329	Pm2A	(1)	(2)	I H	H	1	1	Ph	Ph1	Ph1	H	H	Н	Н	Ph	Н	Н	H	H	H	H	Н	Н	Н
330	Pm2A	(1)	(2)	H	H	1	1	FL	Ph1	H	Н	Н	H	Н	-	H	H	H	H	Н	Н	H	H	Н

【0058】 【表14】

No.	X	E	G	Ra	m	n	Aı	R,	R,	R,	R,	R ₅	R ₆	A2	R,	R ₈	R ₉	R ₁₀	R,,	R ₁₂	R _{J3}	R ₁₄	R ₁₅
331	Tr2A	(1)	(2)	H	1	1	-	H	H	H	H	Н	Ŧ	BPH	H	Н	Н	Н	Н	H	H	Н	Н
332	Tr2A	(1)	(2)	Н	1	-	Ph	CH3	Ph1	H	Н	Н	Н	_	Н	Н	Н	Н	H	Н	Н	H	OCH3
333	Tr2A	(1)	(2)	H	-		_	H	CH3	Ξ	Ph	H	H	Ph	H	Η	H	I	H	H	H	Ŧ	CF3
334	Tr2A	(1)	(2)	Н	1	1	Ph	CH3	CH3	Ξ	Ŧ	H	H	Ph	Н	Н	Н	H	H	Н	H	Ξ	H
335	Tr2B	(1)	(2)	H	1	1	Ph	Phl	Н	I	I	H	H		Н	I	CH3	H	H	H	H	H	H
336	Tr2B	(1)	(2)	H	1	1	Ph	Н	Ph1	I	Н	Н	H	_	Н	Н	Н	Н	Н	Ξ	Н	Н	F
337	Tr2B	0	(2)	Н	1	1	Ph	Ph1	Ph1	H	H	Н	H	_	Н	H	Н	Н	H	H	Н	H	H
338	Tr2B	(1)	(2)	H	1	II.	Ph	Н	Ph1	Н	H	H	H	Ph	H	H	Н	H	H	H	Н	Н	H
339	Te2A	(1)	(2)	<u> </u>	1	1	Ph	Ph1	Ph1	H	H	H	H	Ph	Н	Н	H	H	H	H	Н	H	H
340	To2A	(2)	(2)	_	1	1	Np14	Ph1	Н	H	H	H	H	_	H	Н	H	H	H	H	H	H	H

[0059]

【表15】

No.	Х	E	G	J	Ra	Rb	m	n	Aı	R	R ₂	R ₃	R ₄	R₅	R ₆	A2	R ₇	R_{z}	R ₉	R ₁₀	Rn	R ₁₂	R ₁₃	R ₁₄	R ₁₅
341	Pi3A	(1)	(1)	(2)	H	Н	2	1		Н	Н	H	H	H	H	_	Η	Н	H	H	H	Ξ	H	H	Н
342	Pi3A	(1)	(1)	(2)	I	H	2	1	Ph	CH3	Ph1	H	Ξ	H	Ι	1	Ξ	H	Н	Н	Ŧ	Η	Ξ	Ŧ	OCH3
343	Pi3A	(1)	(1)	(2)	I	Н	2	1	-	Ph1	CH3	H	I	H	Ŧ	Ph	Н	I	Н	Н	Ή	н	Н	Н	CF3
344	Pi3A	(2)	(2)	(1)	Ξ	H	2	•	Ph	CH3	CH3	Ι	Ή	H	Ή	Ph	Ι	Ŧ	Н	Н	Ŧ	Н	H	Н	Н
345	AEbq	(1)	(2)	(1)	Н	-	2	1	Ph	Phi	Н	H	Ξ	н	Ξ	1	Ή	I	CH3	Ξ	I	H	Н	H	Н
346	Pd3A	(1)	(2)	(1)	H	<u> </u>	2	1	Ph	H	Phi	Н	Ŧ	H	I	-	H	H	Н	Н	H	<u> </u>	Н	Н	F
347	Pd3A	(2)	(2)	(1)	H	-	1	2	Ph	Ph1	Ph1	H	H	Н	Ξ	-	Ξ	Н	Н	Ξ	Н	H	H	Н	H
348	Pd3A	(2)	(2)	(1)	Н	<u> </u>	1	2	Ph	н	Phi	H	Н	Н	H	Ph	H	H	н	H	H	H	<u>H</u>	H	Н.
349	Pi3B	(2)	(1)	(2)	H.	H	1	2	Ph	Ph1	Phi	н	H	H	Н	Ph_	H	H	Н	H	H	H	H	H	H
350	Pi3B	(2)	(1)	(2)	H	H	1	2	Np14	Ph1	Н	Н	H	<u> </u>	Н		Н	H	H	H	<u>H</u>	H	H	H	H
351	Pi3B	(1)	(1)	(2)	H	H	2	1		н	Н_	H	H	H	H	Np15	H	<u> H</u>	H	H	H	<u>l H</u>	H	H	
352	Pi3B	(1)	(1)	(2)	H	H	2	1	Ph	CH3	H	H	H	H	H		H	H	C2H5	H	H	H	H	H	H
353	Pz3B	(1)	(1)	(2)	Н	ᅸ	2	11	-	Н	C3H7		Н	H	H	Ph	H	H	<u>H</u>	H	LH.	H	H	I H	H
354	Pz3B	(1)	(2)	(1)	H	1-	12	11	Ph	CH3	CH3	H	H	H	H	Ph	LH	H	H	H	H	H	I H	I H	Н
355	Pz3B	(1)	(2)	(1)	H	1-	2	11	Ph	Ph1	H	H	H	H	LH		ഥ	1H	H	H	H	<u> </u>	H	Н	Н
356	Pz3B	(1)	(2)	(1)	世	ᄂ	2	11	Np15		Pht	H	T H	H	LH		H	H	H	H	H	H	14	LH.	OCF3
357	Pi3C	(2)	(2)	(1)	H	H	11	2	Ph	Ph1	Ph1	H	Н	H	H	Np28	-	H	H	H	1 H	<u> </u>	H	H	Н
358	Pi3C	(2)	(2)	(1)	H	H	11	12	Ph	Н	Pht	H	H	H	H	Ph	H	H	H	H	H	1 4	H	I H	<u> </u>
359	Pi3C	(2)	(1)	(2)	H	I H	11	2	Ph	Ph1	Phi	H	H	H	H	Ph	H	H	H.	<u> H</u>	1 H	I H	TH.	TH	H
380	Pi3C	(2)	(1)	(2)	H	<u> H</u>	1	2	FL	Ph1	H	<u> </u>	H	Н	<u> H</u>		<u>l H</u>	<u> </u>	<u> H</u>	<u> </u>	H	I H	<u>l H</u>	l H	Н

【0060】 【表16】

No.	Х	Ε	G	J	m	n	Aı	R ₁	R ₂	R ₃	R ₄	R,	Re	A ₂	R,	Ra	R _g	R ₁₀	R ₁₁	R ₁₂	R ₁₃	R ₁₄	R _{IS}
361	Tr3A	(1)	(1)	(2)	2	1	Ph	Ph1	H	Н	H	H	Н	Ph	Н	н	Н	Н	н	H	Η	H	Н
362	Tr3A	(1)	(1)	(2)	2	T	Ph	Ph1	Н	H	Н	Н	H	-	Н	Н	Н	Н	Н	H	H	H	CH3
363	Tr3A	(1)	(1)	(2)	2	1	Ph	Ph1	Н	H	H	Н	Н	-	Н	Η	H	Н	H	I	H	Н	F
364	Tr3A	(1)	(1)	(2)	2	1	Ph	Ph1	Н	Н	H	F	Ξ	i	H	I	C2H5	Н	Ξ	I	H	Н	H
365	Tr3A	(1)	(1)	(2)	2	1		Н	Ph1	x	H	Ξ	Ŧ	Ë	Ŧ	Ξ	Н	H	Ξ	H	H	Н	Н
366	Tr3A	(1)	(1)	(2)	2	1	Ph	Н	Ph1	Ξ	H	Н	Η	-	H	H	H	H	H	Н	H	H	Н
387	Tr3A	(1)	(1)	(2)	2	1	Ph	Н	Ph1	Ξ	Ŧ	Ξ	Ξ	Ph	Ŧ	H	Н	Ι	H	H	<u>H</u>	Н	Н
368	Tr3A	(1)	(1)	(2)	2		Ph	Н	Ph1	H	H	H	H	_	Н	Н	Н	H	Н	H	H	H	ОСН3
369	Tr3A	(1)	(1)	(2)	2	1	Ph	H	Ph1	Н	H	H	H	-	H	H	Н	H	Н	H	H	H	CF3
370	Tr3A	(1)	(1)	(2)	2	1		Phi	Pht	Н	H	H	H	<u> </u>	H	H	H	LH	<u>LH</u>	H	H	H	H
371	Tr3A	(1)	(1)	(2)	2	1	Ph	Ph1	Ph1	H	H	LH	H	<u> </u>	H	H	H	H	H	H	H	H	н
372	Tr3A	(1)	(1)	(2)	2	1	Ph	Phi	Phl	<u>H</u>	H	H	H	Ph	<u> H</u>	<u>H</u>	H	<u>H</u>	H	H	H	<u>l H</u>	OCH2C3F7
373	Tr3A	(1)	(1)	(2)	2	1	Ph	Ph1	Phi	H	H	H	H	1 =	H	H	СНЗ	<u>H</u>	<u>H</u>	H	H	H	H
374	Tr3A	(1)	(1)	(2)	2	1	Ph	Ph1	Phi	H	H	H	H	<u> </u>	H	H	H	Н	H	H	Н	H	Н
375	Tr3A	(1)	(1)	(2)	2	1	Np28	Phi	Ph1	H	H	H	<u>H</u>	<u> </u>	Н	H	Н	Н	H	<u> </u>	H	H	Н
376	Tr3A	(1)	(2)	(2)	1	2	Ph	Ph1	H	H	H	H	H	Ph	Н	lΗ	Н	Н	Н	Н	H	H	Н
377	Tr3A	(1)	(2)	(2)	11	2	Ph	Ph1	Н	Н	H	H	H	<u> </u>	H	H	Н	H	H	H	H	LH.	CH3
378	Tr3A	(1)	(2)	(2)	1	2	Ph	Phi	H	H	H	H	H	<u>L-</u>	H	Н	Н	H	H	H	<u> </u>	<u> H</u>	F
378	Tr3A	(1)	(2)	(2)	1	2	Ph	Ph1	Н	H	H	H	<u> H</u>	1-	H	H	C2H5	H	H	H	<u> H</u>	H	Н
380	Tr3A	<u>[(1)</u>	(2)	(2)	1	2	_	H	Phi	<u> </u>	H	H	H	Qu	TH.	H	Н	<u> </u>	H	H	<u> </u>	H	Н
381	Tr3A	(1)	(2)	(2)	1	2	Ph	H	Ph1	H	<u>H</u>	H	<u> H</u>	1-	H	H	<u> </u>	H	<u>H</u>	H	H	H	H
382	Tr3A	(1)	(2)	(2)	1	2	Ph	Н	Phi	H	<u> H</u>	<u> H</u>	<u> </u> H	Ph	H	<u> </u>	H	H	<u> </u>	H	H	<u> H</u>	Н
383	Tr3A	<u> </u>	(2)	(2)	1	2	Ph	<u>H</u>	Phi	H	<u>H</u>	H	-	1=	<u> H</u>	<u> H</u>	Н	H	Н	<u> </u> H	H	<u>H</u>	OCH3
384	Tr3A	(0)	(2)	(2)	1	2	Ph	H	Phi	Н	H	H	H	1 =	H	H	Н	H	Н	Н	Н	H	CF3
385	Tr3A	(1)	(2)	(2)	1	2	Ph	H	Phi	H	H	<u> </u>	H	1=	<u> </u>	Н	Н	Н	Н	Н	Н	1 H	CI
386	Tr3A	(1)	(2)	(2)	1	2	-	Ph1	Ph1	Н	Н	H	H	An	_	Н	Н	Н	H	Н	Н	H	Н
387	Tr3A	(1)	(2)	(2)	1	2	Ph.	Ph1	Phi	Н	Н	H	Н	I -	Н	ŢΗ	Н	Н	Н	H	Н	Н	H
388	Tr3A	(1)	(2)	(2)	1	2	Ph	Phi	Phi	H	Н	H	H	Ph	Н	H	H	H	Н	Н	Н	Тн	H
389	Tr3A	(1)	(2)	(2)	1	2	Ph	Ph1	Ph1	H	Н	H	H	Ι-	H	H	CH3	Н	H	Н	H	Н	Н
390	Tr3A	(1)	(2)	(2)	1	2	Ph	Ph1	Ph1	H	Н	H	H	I-	H	H	Н	Н	Н	Н	H	Н	H

[0061]

【表17】

No.	Х	E	G	J	L	Ra	m	n	Aı	R ₁	R ₂	R,	R ₄	R ₅	Re	A ₂	R ₁	Re	R _o	Rio	R ₁₁	R,,	Ria	R ₁₄	R ₁₅
391	Pd4A	(1)	(1)	(1)	(2)	-	3	1		Н	H	H	H	H	H	TPh	H	H	Н	H	Н	н	Ŧ	Н	Н
392	Pd4A	$\widehat{\mathbf{z}}$	(1)	(1)	છ	-	3	1	Ph	CH3	Phl	Ŧ	H	Н	H	-	H	H	H	Н	Н	H	H	H	OCH3
393	Pd4A	(3)	(2)	(2)	\odot	_	3	1	-	H	CH3	Ŧ	Ph1	I	H	Ph	Н	H	I	H	H	H	Ξ	I	CF3
394	Pd4A	(1)	(2)	(1)	\ni	<u> </u>	2	2	Ph	CH3	CH3	_H]	H	Н	H	Ph	H	Н	Н	H	H	H.	H	Ξ	H
395	Pd4A	(1)	(2)	(1)	(2)	-	2	2	Ph	Ph1	H	Ξ	x	Н	H	-	н	I	СНЗ	H	H	Н	H	Ξ	H
396	Pd4A	(1)	(2)	(1)	(2)	-	2	2	Ph	Ξ	Pht	Ξ	I	Н	H	-	H	H	Н	H	Н	H	Н	Н	F
397	Pd4A	(1)	(2)	(2)	(1)	-	2	2	Ph	Ph1	Ph1	Ξ	H	Н	H	1	H	Н	Н	H	Н	H	Н	н	н
398	Pd4A	(1)	(2)	(2)	(1)	<u> </u>	2	2	Ph	Н	Ph1	Ξ	H	H	Н	Ph	H	H	I	Ξ	H	Н	Н	Ŧ	Ξ
399	Pd4A	(1)	(2)	(2)	(2)	_	1	3	Ph	Ph1	Ph1	H	H	H	Н	Ph	H	H	H	H	Н	Н	Н	X	Ŧ
400	Pd4A	(2)	(2)	(1)	(2)	_	1	3	Np14	Ph1	H	Ή	Ή	H	H		H	Н	H	H	H	H	H	Ή	Н
401	PI4A	(1)	(1)	(1)	(2)	Н	3	1	-	H	Н	Н	Н	H	H	Qu	Н	Н	H	Н	Н	Н	H	Ξ	H
402	Pi4A	(1)	(1)	(1)	(2)	H	3	1	Ph	CH3	H	H	Н	Н	Н	-	Н	H	G2H5	Н	Н	Н	H	H	Ħ
403	Pi4A	(1)	(2)	(1)	(1)	H	3	1	-	<u>H</u>	C3H7	H	Н	H	Н	Ph	H	H	Н	H	H	H	H	H	Н
404		(1)	(2)	(1)	(1)	H	2	2	Ph	CH3	CH3	H	H	H	Н	Ph	H	H	Н	Н	Н	H	H	H	H
405		(1)	(2)	(1)	(2)	<u> H</u>	2	2	Ph	Ph1	H	H	H	<u>l H</u>	H	<u> -</u>	TH	LH	H	H	H	Н	H	H	H
408		(1)	(2)	(1)	(2)	H	2	2	Ph	H	Ph1	H	Н	H	Н	<u> </u>	H	H	H	Н	H	H	H	H	H
407	Pi4A	I(1)	(2)	(2)	I(1)	H	2	2	Ph	Ph1	Ph1	H	LH	Н	H	<u> </u>	TH	H	Н	H	H	Н	H	H	H
408	Pi4A	(1)	(2)	(2)	(1)	H	2	2	Ph	Н	Ph1	Н	Н	H	H	Ph	Ĥ	H	Н	H	H	H	H	H	Н
409	PI4A	(1)	(2)	(2)	(2)	H	1	3	Ph	Phi	Ph1	Н	Н	H	H	Ph	Н	Н	Н	Н	Н	Н	H	Н	Н
410	PI4A	(2)	(2)	(1)	(2)	H	1	3	FL	Ph1	H	H	H	IH	Н	=_	Н	Н	Н	H	Н	Н	H	Н	H

【0062】

					_	_	-						-	_							_	_		
No.	Х	E	G	7	L	m	n	A ₁	R	R,	₽₃	R ₄	R ₈	Re	A ₂	R,	R ₈	₽¢	R ₁₀	R11	R ₁₂	R ₁₃	R ₁₄	R ₁₅
411	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	CH3	CH3	Н	Н	Н	н	Ph	H	H	H	Н	H	Н	Н	Н	Н
412	Pz4A	(1)	(2)	(1)	(2)	2	2	_	Ph1	H	H	H	н	H	_	Η	Ŧ	Н	H	7	Н	H	Ξ	Н
413	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	Ph1	Н	Ξ	I	Ξ	Н	•	I	Н	Н	H	Ξ	Н	Ŧ	H	Н
414	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	Ph1	Ή	Σ	Ι	Ŧ	Н	Ph	Ξ	Н	Н	Н	I	H	Н	Ŧ	Н
415	Pz4A	(1)	(2)	(1)	(2)	2	2	-	H	Ph1	H	Н	Ξ	H	Phen	I	Ξ	Н	Η	Н	Н	H	H	_ H
416	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	H	Ph1	Ξ	I	Ŧ	Ŧ	1	I	H	H	Н	Ξ	Н	H	H	CF3
417	Pz4A	(1)	(2)	(1)	(2)	2	2	-	Ph1	Ph1	H	I	Ŧ	I	i	I	H	Н	H	I	H	I	Ξ	H
418	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	Ph1	Ph1	H	H	H	Σ	-	H	Н	H	H	H	H	н	H	H
419	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	Ph1	Ph1	H	H	Н	Н	Ph	H	H	_ H	Н	Н	Н	H	Н	Н
420	Pz4A	(1)	(2)	(1)	(2)	2	2	Ph	Pht	Ph1	H	Ξ	H	I	-	Н	H	Ξ	Н	H	Н	Н	Н	H
421	Pz4A	(1)	(2)	(2)	(1)	2	2	Ph	CH3	СНЗ	H	H	H	Ι	Ph	H	H	Н	Н	Н	Н	Н	Н	H
422	Pz4A	(1)	(2)	(2)	(1)	2	2	1	Ph1	H	Н	Н	H	Ξ	-	H	Н	H	Н	H	Н	H	Н	Н
423	Pz4A	(1)	(2)	(2)	(1)	2	2	Ph	Phi	Н	H	H	H	H	-	Н	Н	Н	H	H	Н	H	H	H
424	Pz4A	(1)	(2)	(2)	(0)	2	2	Ph	Phi	Н	H	Н	H	Ι	Ph	Н	Н	Н	Н	Н	H	H	Н	Н
425	Pz4A	(1)	(2)	(2)	\mathbf{G}	2	2	-	H	Phi	Н	Н	Н	Н	-	Н	Н	Н	Н	Н	Н	H	Н	Н
426	Pz4A	(1)	(2)	(2)	(1)	2	2	Ph	H	Ph1	H	H	Н	H	-	Н	H	H	Н	Н	Н	H	H	CF3
427	Pz4A	(1)	(2)	(2)	(1)	2	2	-	Ph1	Ph1	H	H	H	Н	-	H	H	Н	Н	Н	Н	Н	Н	Н
428	Pz4A	(1)	(2)	(2)	(1)	2	12	Ph	Ph1	Ph1	Н	Н	H	Н	-	H	H	н	H	H	Н	Н	Н	H
429	Pz4A	(1)	(2)	(2)	(1)	1 2	72	Ph	Ph1	Ph1	H	Н	Н	Н	Ph	H	H	Н	Н	H	H	H	Н	Н
430	Pz4A	(1)	(2)	(2)	(1)	2	2	Ph	Ph1	Phi	H	Н	H	Н	-	H	Н	Н	Н	Н	H	H	H	H
431	Pz4A	(1)	(1)	(2)	(2) 2	2	Ph	CH3	CH3	Н	Н	Н	Н	Ph	H	н	H	Н	Н	Н	H	н	H
432	Pz4A	(1)	(2)	(1)	(2	2	2	-	Ph1	Н	H	Н	Н	H	T -	H	H	Н	Н	Н	H	H	Н	Н
433	Pz4A	(1)	(2)	(1)	(2	2	2	Ph	Ph1	H	H	H	Н	H		H	H	H	H	H	H	Ħ	H	Phen3
434	Pz4A	(1)	(2)	(1)	(2) 2	2	Ph	Ph1	H	Н	H	H	Н	Ph	H	H	H	H	H	H	H	H	Н
435	Pz4A	(1)	(2)	(1)	(2) 2	12	-	H	Phi	H	H	H	H		H	H	Н	H	H	H	H	H	H
436	Pz4A	(1)	(2)	(1)	(2) 2	2	Ph	H	Phi	TH	H	H	Н	 -	H	H	Н	H	H	H	H	T H	CF3
437	Pz4A	(1)	(2)	(1)	(2) 2			Phi	Phi	H	H	H	H	Τ-	H	TH	H	ТĦ	ÌН	H	H	H	H
438	Pz4A	(1)	(2)	(1)	(2) 2	12	Ph	Phi	Phi	ÌΉ	н	H	H	-	H	H	H	H	H	H	H	H	H
439	Pz4A	(1)	(2)	(1)	(2) 2	2	Ph	Phi	Phi	Ħ	Н	H	Н	Ph	H	H	H	Н	H	ÌΗ	H	H	H
440	•		(1)	(2)	(2) 2	2		Phi	Phi	ŤΗ	H		ĺΗ̈́	-	H	_	H	H	İΗ̈́	İΗ̈́	ΙĤ	H	H

[0063]

【表19】

No.	X	Ε	G	J	L	М	TI.	n	A ₁	R ₁	R₂	R ₃	R,	R ₅	R_{s}	Α ₂	R,	R,	Rg	R ₁₀	Rii	R ₁₂	R ₁₃	R ₁₄	R ₁₅
441	Pi5A	(1)	(1)	9	(1)	(2)	4	7	_	Н	H	Н	Н	H	Н	_	H	Н	н	Н	Н	Н	I	Н	Н
442	Pi5A	(1)	0	(1)	(2)	(1)	4		Ph	CH3	Ph1	Ξ	I	H	H	-	н	H	Н	Н	Н	Н	Τ	Н	OCH3
443	Pi5A	(1)	Ξ	(2)	(1)	(1)	4	1	-	Ξ	CH3	H	Ph1	H	Ŧ	Ph	H	Н	H	H	H	H	H	Н	CF3
444	Pi5A	(1)	(1)	(1)	(2)	(2)	3	2	£	CH3	CH3	H	H	H	H	Ph	Н	H	H	H	Н	H	Н	Н	H
445	Pi5A	(1)	(1)	(2)	(1)	(2)	3	2	Ph	Phí	Н	Ξ	Н	H	Ξ	_	H	н	CH3	H	Н	H	Ξ	H	Н
446	Pi5A	(1)	(2)	(1)	(1)	(2)	3	2	Ph	H	Ph1	Ξ	H	H	H	_	H	H	H	н	H	H	H	H	F
447	Pi5A	(2)	(1)	(1)	(1)	(2)	3	2	Ph	Phi	Ph1	I	Н	Н	Н	_	Н	H	Н	Н	H	Н	Н	Н	H
448	Pi5A	(1)	(1)	(2)	(2)	(2)	2	3	Ph	Н	Phi	H	H	Н	Ŧ	Ph	Н	H	H	H	Н	Н	Н	H	Н
449	Pi5A	(1)	(2)	(1)	(2)	(2)	2	3	Ē	Ph1	Ph1	Н	Н	H	H	Ph	H	H	H	Н	H	H	H	H	Н
450	Pi5A	(2)	(2)	(1)	(1)	(2)	2	3	Np14	Ph1	н	H	Н	Н	H	-	H	Н	Н	H	Н	Н	H	H	H

【0064】 【表20】

No.	Х	Е	G	J	m	n	Aı	R,	R,	R ₃	R ₄	Rs	Ra	A ₂	R,	Rs	R _e	R ₁₀	R	Ris	R ₁₃	R;4	R ₁₅ _
451	N	(1)	(1)	(2)	2	1	Ph	H	H	Н	Н	Τ	Ξ	Ph	H	Н	Н	Н	x	H	Ι	Н	Н
452	N	(1)	(1)	(2)	2	1	Ph	CH3	H	Ξ	I	Ŧ	Ξ	Ph	Η	I	Н	Н	Ŧ	Н	Ι	Н	H
453	N	(1)	(1)	(2)	2	1	Ph	H	CH3	Н	Н	Ŧ	I	Ph	Ξ	I	Н	Ξ	Ξ	Н	H	Ξ	Н
454	N _	(1)	(1)	(2)	2	1	Ph	СНЗ	CH3	H	H	Ξ	Ξ	Ph	\pm	Н	H	Ŧ	H	H	Н	Η	H
455	N	(1)	(1)	(2)	2	1	Ph	Ph1	Н	H	H	I	H	Ph	H	Н	Н	H	H	H	Н	H	Н
456	N	(1)	(1)	(2)	2	1	Ph	Н	Ph1	Н	Ξ	T	Н	Np26	Н	Н	I	H	H	H	Н	Н	Н
457	N	(3)	(1)	(2)	2	1	Ph	Ph1	Ph1	H	Ξ	Τ	H	Ph	Н	Н	H	Ŧ	H	H	H	H	Н.
458	N	(1)	(1)	(2)	2	1	Ph	Ph1	Ph1	H	Ξ	Ή	Н	Ph	Н	Н	CH3	Ξ	H	H	H	Н	Н
459	N	(1)	(1)	(2)	2	1	Ph	Ph1	Ph1	Н	Ή	H	H	Pi	Н	Н	H	Н	H	H	H	Н	H
460	N	(1)	(1)	(2)	2	1	Np26	Ph1	Ph1	H	Ή	Н	H	Ph	H	Н	I	Н	H	H	H	Н	H
461	N	(1)	(2)	(2)	1	2	Ph	Ŧ	Н	Н	H	Н	H	Ph	Н	Н	Н	H	H	H	<u>H</u>	Н	H
462	N	(1)	(2)	(2)	1	2	Ph	CH3	Н	Н	Н	H	Н	Ph	Н	H	Н	Н	H	H	H	H	H
463	N	(1)	(2)	(2)	1	2	Ph	Ŧ	CH3	H	Н	Н	Н	Ph	Н	Н	H	Н	H	H	H	H	H
464	N	(1)	(2)	(2)	1	2	Ph	CH3	CH3	H	H	H	Н	Ph	H	Н	Н	H	Н	H	H	Н	H
465	N	(1)	(2)	(2)	1	2	Ph	Ph1	Н	H	H	Н	H	Ph	H	H	H	<u> H</u>	H	H	H	H	H
466	N	(1)	(2)	(2)	1	2	Ph	Н	Ph1	Н	н	Н	H	Ph	Н	H	Н	Н	Н	H	<u> H</u>	H	н
467	N	(1)	(2)	(2)	1	2	Ph	Ph1	Ph1	Н	H	H	Н	Ph	Н	Н	Н	Н	Н	H	H	H	H
468	N	(1)	(2)	(2)	1	2	Ph	Ph1	Ph1	Н	H	Н	Н	Ph	Н	Н	CH3	Н	H	H	H	H	н
469	N	[(1)	(2)	(2)	11	2	Ph	Ph1	Ph1	Н	Н	H	TH	Pi	H	Н	H	H	H	H	H	ÍΗ	H
470	N	(1)	(2)	(2)	11	2	Np26	Ph1	Ph1	Н	Н	H	∐н	Ph	H	H	H	<u>H</u>	<u> H</u>	H	l H	<u> </u>	Н

[0065]

本発明の有機発光素子の基本的な素子構成を図1に示した。

[0066]

図1に示したように、一般に有機EL素子は透明基板15上に、50~200nmの膜厚を持つ透明電極14と、複数層の有機膜層と、及びこれを挟持するように金属電極11が形成される。

[0067]

図1 (a) では、有機層が発光層12とホール輸送層13からなる例を示した。透明電極14としては、仕事関数が大きなITOなどが用いられ、透明電極14からホール輸送層13へホール注入しやすくしている。金属電極11には、アルミニウム、マグネシウムあるいはそれらを用いた合金など、仕事関数の小さな金属材料を用い、有機層への電子注入をしやすくしている。

[0068]

発光層 1 2 には、7 7 Kにおける燐光寿命が8 8 0 m s 以上である有機化合物を用いていることが好ましいが、ホール輸送層 1 3 には,例えばトリフェニルジアミン誘導体、代表例としては以下に示すα-NPDなど、電子供与性を有する材料も適宜用いることができる。

[0069]

[0070]

以上の構成した素子は電気的整流性を示し、金属電極11を陰極に透明電極14を陽極になるように電界を印加すると、金属電極11から電子が発光層12に注入され、透明電極15からはホールが注入される。

[0071]

注入されたホールと電子は、発光層12内で再結合して励起子が生じ、発光する。この時ホール輸送層13は電子のブロッキング層の役割を果たし、発光層12とホール輸送層13の間の界面における再結合効率が上がり、発光効率が上がる。

[0072]

さらに図1(b)では、図1(a)の金属電極11と発光層12の間に、電子輸送層16が設けられている。発光機能と電子及びホール輸送機能を分離して、より効果的なキャリアブロッキング構成にすることで、発光効率を上げている。電子輸送層16としては、例えばオキサジアゾール誘導体などを用いることができる。

[0073]

また図1 (c) に示すように、陽極である透明電極14側から、ホール輸送層13、発 光層12、励起子拡散防止層17、電子輸送層16、及び金属電極11からなる4層構成 とすることも望ましい形態である。

[0074]

本発明の有機化合物は導入する置換基によりホール輸送材料、電子輸送材料、発光材料、発光材料を分散させるホスト材料、励起子拡散防止材料、電荷注入材料などに使用できる。これらのうちでも、少なくとも一種の、例えばイリジウム配位化合物等の金属配位化合物等の燐光発光材料を分散させるホスト材料として好適に使用しうる。

[0075]

本発明で示した高効率な発光素子は、省エネルギーや高輝度が必要な製品に応用が可能である。応用例としては表示装置・照明装置やプリンターの光源、液晶表示装置のバックライトなどが考えられる。表示装置としては、省エネルギーや高視認性・軽量なフラットパネルディスプレイが可能となる。また、プリンターの光源としては、現在広く用いられているレーザビームプリンタのレーザー光源部を、本発明の発光素子に置き換えることができる。独立にアドレスできる素子をアレイ上に配置し、感光ドラムに所望の露光を行うことで、画像形成する。本発明の素子を用いることで、装置体積を大幅に減少することができる。照明装置やバックライトに関しては、本発明による省エネルギー効果が期待できる。

[0076]

本発明の素子は、図2に示す単純マトリクス型有機EL素子としても使用できるが、ディスプレイへの応用では、アクティブマトリクス方式であるTFT駆動回路を用いて駆動する方式が考えられる。

[0077]

以下、図4を参照して、本発明の素子において、アクティプマトリクス基板を用いた例 について説明する。

[0078]

図4は、EL素子と駆動手段を備えたパネルの構成の一例を模式的に示したものである。パネルには、走査信号ドライバー、情報信号ドライバー、電流供給源が配置され、それぞれゲート選択線、情報信号線、電流供給線に接続される。ゲート選択線と情報信号線の交点には表示画素電極が配置される。走査信号ドライバーは、ゲート選択線G1、G2、G3...Gnを順次選択し、これに同期して情報信号ドライバーから画像信号が印加され、画像が表示される。図3に駆動信号の一例を示す。

[0079]

TFTのスイッチング素子に特に限定はなく、単結晶シリコン基板やMIM素子、 a - Si型等でも容易に応用することができる。

【実施例】

[0080]

<実施例1 (例示化合物 No. 34の合成) >

[0081]

【化10】

[0082]

4-プロモヨードベンゼン50.0g (177mmole), 2-フェニルインドール28.5g (177mmole), 炭酸カリウム30.5g (221mmole), 銅紛18.7g, オルトジクロロベンゼン150mle 500mlo 3 つロフラスコに入れ、窒素気流下25 時間還流攪拌を行った。60 に加熱攪拌している反応物にトルエンを加えて不溶物を濾過して除き、濾液を減圧乾固し、残渣にヘキサンを加えて析出した結晶を濾過して除いた。濾液を濃縮し、シリカゲルカラムクロマト(溶離液:ヘキサン/酢酸エチル:50/1)で精製し、ヘキサン-酢酸エチル混合溶媒で再結晶して1-(4-プロモフェニル)-2-フェニルインドールの白色結晶25.7g (収率50.1%) を得た

【0083】

[0084]

1-(4-プロモフェニル)-2-フェニルインドール18.6g(53.4mmole),乾燥テトラヒドロフラン<math>140mle100mln3つロフラスコに入れ、窒素気流下ドライアイスーアセトン浴中-63℃から-62℃に保ちながら1.6M-プチルリチウムヘキサン溶液66.7ml(107mmole)をゆっくり滴下した。滴下終了

後1時間同じ温度で攪拌し、ホウ酸トリメチル23.3g(224mmole)を-63 ℃から−60℃に保ちながらゆっくり滴下した。同じ温度で1時間攪拌した後、徐々に昇 温し、−3℃付近で一晩放置した。反応物を氷水浴中12℃から13℃に保ちながら塩酸 (濃塩酸40mlを水20mlで希釈したもの)をゆっくり滴下した。この反応液を氷水 1. 2 Lに注入し、トルエン 2 5 0 m 1 で 2 回抽出した。有機層を水洗し、硫酸マグネシ ウムで乾燥後に減圧乾固し、残渣をヘキサンーテトラヒドロフラン混合溶媒で再結晶して 4- (2-フェニルインドール-1-イル)フェニルボロン酸の白色結晶 10.3g(収 率 6 1. 6%) を得た。

[0085] 【化12】

[0086]

カルバゾール4. 30g(25. 7mmole)、p-ジプロモベンゼン18. 19g (77.1mmole), 酢酸パラジウム 0.14g, 1, 1'-ビスジフェニルホスフ ィノフェロセン0.33g, ナトリウムーtーブトキシド3.46g(36.0mmol e) , オルトキシレン43mlを200mlの3つ口フラスコに入れ、アルゴン気流下1 5時間30分還流攪拌を行った。アルミナを充填した濾過器を用いて反応物を濾過して不 溶物を除き、濾過器をトルエンとテトラヒドロフランで順次洗浄し、濾液と洗液を合わせ て減圧で濃縮した。残渣にヘキサンを加えて加熱攪拌し、濾過で不溶物を除いて濾液を減 圧乾固し、残渣にヘキサンを加えて析出した結晶を濾過して除いた。濾液を濃縮し、シリ カゲルカラムクロマト(溶離液:ヘキサン/トルエン:3/1)で精製し、ヘキサンで再 結晶して9-(4-ブロモフェニル)カルバゾールの白色結晶3.68g(収率44.4 %)を得た。

[0087] 【化13】

[0088]

20mlの3つ口フラスコに、4-(2-フェニルインドール-1-イル)フェニルボ ロン酸 0.78g(2.49mmole).9-(4-プロモフェニル)カルバゾール 0 . 80g (2.48mmole) を入れ、トルエン2.5ml, エタノール1.5mlm 1 および 2 M - 炭酸ナトリウム水溶液 2 . 5 m l を入れ、窒素気流下室温で攪拌しながら テトラキスー (トリフェニルホスフィン) パラジウム (0) 0. 09g (0. 08mmo 1 e) を加えた。その後、窒素気流下で5時間還流攪拌した。反応終了後、反応物を室温 まで冷却して析出した結晶を濾取した。この結晶をアセトンで洗浄し、トルエンーエタノ

ール混合溶媒で再結晶した。得られた結晶をアルミナカラムクロマト(溶離液:トルエン)で精製し、メタノールで結晶化させて 4-(2-7) (2 - 7 - 1 -

[0089]

<比較例1(化合物Aの合成)>

[0090]

【化14】

[0091]

4, 4'-ジョードビフェニル20.1g(49.5 mm o l e), 2-フェニルインドール25.0g(128.7 mm o l e), 炭酸カリウム17.8g(128.7 mm o l e), 銅紛9.4g, オルトジクロロベンゼン100 m l を 300 m l の 3 つ口フラスコに入れ、窒素気流下23時間還流攪拌を行った。反応終了後120℃に加熱攪拌している反応物にトルエンを加えて不溶物を濾過して除き、濾液を-15℃に冷却して析出した結晶を濾過した。この結晶をアセトンで分散洗浄して濾取し、活性炭を加えたN, N'-ジメチルホルムアミドで再結晶して4, 4'-ビス(2-フェニルインドールー1-イル)ビフェニル(化合物 A)の白色結晶12.7g(収率47.8%)を得た。

[0092]

<実施例 2 (例示化合物 No. 46の合成)>

[0093]

<比較例2 (化合物Bの合成)>

[0094]

【化15】

[0095]

4, 4'-ジョードビフェニル2.90g(7.14mmole), 2, 3-ジフェニルインドール5.00g(18.56mmole), 炭酸カリウム2.70g(18.56mmole), 銅紛1.4g, オルトジクロロベンゼン100mlを300mlの3つ

ロフラスコに入れ、窒素気流下 2 0 時間 3 0 分還流攪拌を行った。反応終了後室温まで冷却し、反応物にトルエンと水を加えて撹拌して分液し、有機層を水洗後減圧乾固し、残渣を活性炭を加えたテトラヒドロフランで再結晶して 4 , 4'ービス (2 , 3 ージフェニルインドールー1ーイル) ビフェニル (化合物 B) の結晶 3 . 1 0 g (収率 6 3 . 0 %) を得た。

[0096]

<測定>

実施例 1, 2 と比較例 1, 2 で合成した 4 種の化合物、および 4, 4'ービス(カルバゾールー 9 ーイル)ビフェニル(同仁化学製 D C B P)の融点、ガラス転移温度、結晶化温度をパーキンエルマー社製の P y r i s 1 で測定した(測定条件:昇温速度 4 0 \mathbb{C}/m i n. 降温速度 4 0 \mathbb{C}/m i n. 降温速度 5 2 1 に示す。なお、D C B P の構造式を以下に示す。

[0097]

【化16】

【0098】 【表21】

	化合物	融点(℃)	ガラス転移温度(℃)	結晶化温度(℃)
実施例1	例示化合物No.34	238.0	100.8	0℃まで結晶化せず
比較例1	化合物A	282.5	検出できず	202.5
実施例2	例示化合物No.46	255.3	121.5	0℃まで結晶化せず
比較例2	化合物B	354.0	検出できず	280.5
	DCBP	287.8	検出できず	205. 4

[0099]

この結果から、インドール環のみを有する化合物(化合物 A および B) やカルバゾール環のみを有する化合物 (D C B P) に比べて本発明のインドール環とカルバゾール環を同時に有する化合物 (例示化合物 3 4 および 4 6) が安定なガラス状態を持ち、蒸着などにより安定なアモルファス膜を形成することが期待できる。

[0100]

また、本発明化合物(例示化合物34および46)は化合物A、BおよびDCBPに比べて有機溶媒に対する溶解度が大きく、再結晶やカラムクロマトによる精製が容易である

[0101]

<実施例3>

素子構成として、図5に示す有機層が3層の素子を使用した。

[0102]

ガラス基板(透明基板 15)上に厚み 100nmoITO(透明電極 14)を電極面積が $3.14mm^2$ になるようにパターニングした。その ITO 基板上に、以下の有機層と電極層を 10^{-4} Paの真空チャンバー内で抵抗加熱による真空蒸着し、連続製膜した。ホール輸送層 13(40nm):化合物 C

発光層12 (40 nm):ホスト材料+発光材料の所定量

電子輸送層16 (30 nm): Bphen

金属電極層 1 1 - 2 (15 nm): KF

金属電極層 1 1 - 1 (100 nm): A 1

発光層12のホスト材料として例示化合物34を用い、発光材料としてIr錯体(化合物D)を10重量%の濃度でドープして素子を作製した。

[0103]

なお、化合物C、化合物D、Bphenの構造式を以下に示す。

[0104]

化合物 C:

【化17】

[0105]

この素子において輝度が $600cd/m^2$ における電流効率は8.5cd/A、電力効率では5.91m/Wを得ることができた。このときの発光スペクトルのピークは620mmであり、CIE色度座標は(0.68,0.32)であった。

[0106]

この値をホスト材料として化合物A、DCBP、TCTAを用いた場合と比較すると、 次表のようになる。なお、TCTAの構造式を以下に示す。

[0107]

TCTA:

【0108】 【表22】

ホスト材料	電流効率 (cd/A)	電力効率 (lm/W)	8v印加持 電流密度 (mA/cm²)	効率飽和 電流 (mA/cm²)	燐光寿命 (ms)
DCBP	5.9	1.9	2. 0	0.4	532
TCTA	7.1	4.0	94. 0	0.8	600
化合物A	7.6	3.6	21. 7	0.8	825
例示化合物34	8.5	5.9	244. 7	8. 0	1136

[0109]

この表に見るとおり、ホスト材料としてカルバゾール基とインドール基をともに分子構造中に有する本発明の化合物は、(1)素子に同一電圧を印加した場合により多くの電流を流すことができ、したがって低電圧で駆動することができるため電力効率を上げられること、(2)効率飽和電流が大きく高輝度でも高い効率を得ることができることがわかる

[0110]

ここで「効率飽和電流」とは電流密度と電流効率の関係において、電流効率が電流密度の増加に伴い減少し始める点での電流密度値を三重項励起子飽和の指標として表したものである。特に、三重項発光材料を発光中心として用いた場合にはその励起寿命が長いために、素子を流れる電流量が大きくなると三重項励起子が飽和して発光効率が低下するという現象が知られているが、この現象に対して改善が大きい。これは、ホストの種類によっても三重項飽和による効率減少は変化することを示し、ホストの燐光寿命の長いものがより改善が大きいことを示している。

[0111]

[0112]

表22以外の化合物においてもカルバゾール基とインドール基をともに分子構造中に有する本発明の化合物は燐光寿命が長い。例えば化合物Bは580msなのに対して例示化合物46は約880msである。

[0113]

また、燐光材料としてIr錯体(化合物E)とIr錯体(化合物F)をホスト中にダブ 出証特2004-3117690 ルドーピングした場合にも効果が見られる。このような置換基の付いたイリジウム錯体を 燐光材料として用いる場合にはそれ自身は電流を流しにくいために例示化合物34のよう な電流を流すホストを用いることが重要である。なお、化合物E、化合物Fの構造式を以 下に示す。

【0114】 【化19】

化合物E:
$$\left(H_3CO - \left(N - \right) \right)_3$$

[0115]

カルバゾール基とインドール基を分子構造中に有する本発明の化合物の更なる特徴は、カルバゾール基もしくはインドール基だけのものよりHOMOを低くできることで、このことはホールをドーパントに注入しやすくする効果とLUMOを下げることにより電子注入性を上げる効果がある。UPS法で測定したHOMOの値を次表に示すが、カルバゾール基だけのDCBP,TCATは5.65eV~5.9eVであり、インドール基だけの化合物A,Bは5.75eV~5.93eVであるのに対し、カルバゾール基とインドール基を分子構造中に有する例示化合物34は6.05eVと深くなっている。

【0116】 【表23】

材料	DCBP	TCTA	化合物A	化合物B	例示化合物34
HOMO(eV)	5. 9	5.65	5.93	5.75	6.05

[0117]

バンドギャップに関してはDCBPが3.4 e Vなのに比してインドール基の付いた化合物はバンドギャップが狭くなる傾向をもつ。例えば化合物Aは2.87 e Vである。このことが電流増加の要因の一つでもあると考えられる。この点においても前述の特許文献2に記載のものとは異なっている。

[0118]

三重項発光の消光を防ぐために、燐光発光材料の最低三重項励起エネルギーレベルよりホスト材料の最低三重項励起エネルギーレベルが高い必要があるが、次表のように、カルバゾール基のみの化合物(DCBP, TCTA)の最低三重項励起エネルギーレベルはインドール基のみの化合物(化合物A, 化合物B)より高い。カルバゾール基とインドール基を分子構造中に有する化合物(例示化合物34, 例示化合物46)を用いることでインドール基のみの化合物よりも最低三重項励起エネルギーレベルを上げることができる。

[0119]

【表24】

材料	DCBP	TCTA	化合物A	化合物B	例示化合物34	例示化合物46
最低三重項 エネルキ゛- (eV)	2.61	2.84	2.48	2.44	2.49	2.45

[0120]

<実施例4 (例示化合物No. 85の合成)>

[0121]

【化20】

$$Br \longrightarrow N-B(OH)_2$$

[0122]

実施例1で合成した9-(4-ブロモフェニル)カルバゾールを用い、実施例1と同様にして4-(カルバゾール-9-イル)フェニルボロン酸を合成した。

[0123]

【化21】

出証特2004-3117690

[0124]

アルドリッチ社製の1,3,5ートリプロモベンゼンに対して2当量の4ー(2ーフェニルインドールー1ーイル)フェニルボロン酸を反応させて、1-プロモー3,5ービス $\{4-(2-$ フェニルインドールー1-イル) $\}$ ベンゼンを合成し、さらに上記4ー(カルバゾールー9-イル)フェニルボロン酸を反応させて $1-\{4-($ カルバゾールー9-イル)フェニル $\}$ -3,5ービス $\}$ 4- $\{2-$ フェニルインドールー1-イル) $\}$ ベンゼンが得られた。この化合物の融点は347℃で、ガラス転移温度は166℃だった。

[0125]

<実施例5 (例示化合物No. 97の合成) >

実施例4の4-(2-フェニルインドール-1-イル)フェニルボロン酸の代わりに4-(2,3-ジフェニルインドール-1-イル)フェニルボロン酸を用いる以外は実施例4と同様にして1-{4-(カルバゾール-9-イル)フェニルト-3,5-ビス |4-(2,3-ジフェニルインドール-1-イル)トベンゼンが得られる。

[0126]

<実施例6 (例示化合物 No. 115の合成) >

実施例 4 の 4-(2-7) エニルインドールー 1-4 ル) フェニルボロン酸の代わりに 4-() カルバゾールー 9-4 ル) フェニルボロン酸の代わりに 4-() クリンドールー 1-4 ル) フェニルボロン酸の代わりに 4-() クリンドールー 1-4 ル) フェニルインドールー 1-4 ル) フェニル 1-4 と同様にして 1-4 (1-4 (1-4) フェニル 1-4 ル) フェニル 1-4 ル) フェニル 1-4 の 1-4 の 1-4 ル) フェニル 1-4 ペンゼンが得られた。この化合物の融点は 1-4 の 1-4 で、ガラス転移温度は 1-4 でだった。

[0127]

<実施例7 (例示化合物 No. 127の合成) >

実施例 6 の 4-(2-7 エニルインドール-1- イル) フェニルボロン酸の代わりに 4-(2,3- i) フェニルインドール-1- イル) フェニルボロン酸を用いる以外は実施例 6 と同様にして $1-\{4-(2,3- i)$ フェニルインドール-1- イル) フェニル 3- i フェニル 3- i フェニル 3- i フェニル 3- i グンゼンが得られる。

[0128]

<実施例8(例示化合物No. 164の合成)>

[0129]

[0130]

[0131]

<実施例9(例示化合物No. 176の合成)>

実施例 804-(2-7) エニルインドールー1-4ル)フェニルボロン酸の代わりに 4-(2,3-3) フェニルインドールー1-4ル)フェニルボロン酸を用いる以外は実施例 9 と同様にして 1,4-3(カルバゾールー9-4ル)-2,5-4 (2,3-3 ジフェニルインドールー1-4ル)フェニル ベンゼンが得られる。

[0132]

<実施例10>

素子構成として、図1 (c) に示す有機層が4層の素子を作成した。

[0133]

[0134]

なお、化合物G、Ir (ppy)3、Alq3の構造式を以下に示す。

[0135]

【化23】

化合物G

Ir(ppy)3

$$\left(\left\langle \right\rangle \right\rangle _{1r}$$

Alg3

[0136]

ITO電極(透明電極14)を陽極、A1電極(金属電極11)を陰極として12ポルトの直流電圧を印加して通電耐久試験を行ない、発光輝度が半減するまでの時間を計った。結果を表25に示す。また、ホスト材料の燐光寿命・発光材料の燐光寿命の値を併せて表25に示す。

[0137]

尚、化合物 D、化合物 G および $Ir(ppy)_3$ の燐光寿命は次の方法で測定した。各化合物をトルエン/エタノール/メタノール: 5/4/1 の混合溶媒に溶かして 10^{-6} m ole/1の溶液を調製した。この溶液を液体窒素中(77K)で固化させ、窒素レーザー(レーザーホトニクス社製 LN120C)による 5ns のパルス励起光(波長:337.1nm)を照射し、C4334ストリークスコープ(浜松ホトニクス社製)で燐光スペ

クトルのピークの光量が励起後に半減する時間を測定し、燐光寿命とした。7.7~Kでの燐光寿命は化合物 D が $1.~5~\mu~s$ 、化合物 G が $7.~8~\mu~s$ 、 1~r (p~p~y) $_3$ が $4.~6~\mu~s$ であった。

[0138]

【表25】

	 層	おか材料の燐光寿命	輝度半減時間
なり材料	発光材料	÷発光材料の燐光寿命	(hrs)
DCBP	化合物G	6.8×10 ⁴	850
DCBP	Ir(ppy)3	1.2×10 ⁵	350
DCBP	化合物D	3.6×10 ⁵	1550
化合物B	化合物D	3.9×10 ⁵	1450
化合物A	化合物D	5.5×10 ⁵	1600
例示化合物46	化合物D	5.9×10 ⁵	4550
例示化合物34	化合物D	7.6×10 ⁵	4600

[0139]

この結果から、77Kにおけるホスト材料の燐光寿命が発光材料の燐光寿命の5.8×10⁵倍以上である発光層を用いた素子の輝度劣化が著しく改善されることが明らかになり、耐久性の高い素子を得るのに有効な手段であることが判った。

【図面の簡単な説明】

[0140]

- 【図1】本発明の発光素子の一例を示す図である。
- 【図2】単純マトリクス型有機EL素子を示す図である。
- 【図3】 駆動信号を示す図である。
- 【図4】EL素子と駆動手段を備えたパネルの構成の一例を模式的に示した図である

【図5】実施例で製造した発光素子を示す図である。

【符号の説明】

[0141]

- 11 金属電極
- 12 発光層
- 13 ホール輸送層
- 14 透明電極
- 15 透明基板
- 16 電子輸送層
- 17 励起子拡散防止層

【書類名】図面 【図1】

【図2】

【図4】

【図5】

【書類名】要約書

【要約】

【課題】 高効率・高輝度な光出力を有し、高耐久性の有機発光素子を提供する。

【解決手段】 分子中に置換基を有していてもよいインドール環を含む部分構造を少なくとも一つ有し、且つ、置換基を有していてもよいカルバゾール環を含む部分構造を少なくとも一つ有する有機化合物で代表される燐光寿命の長い有機化合物を有機発光素子に用いる。

【選択図】 図1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2004-325838

受付番号 50401914789

書類名特許願

担当官 第四担当上席 0093

作成日 平成16年11月15日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001007

【住所又は居所】 東京都大田区下丸子3丁目30番2号

【氏名又は名称】 キヤノン株式会社

【代理人】 申請人

【識別番号】 100096828

【住所又は居所】 東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】 渡辺 敬介

【選任した代理人】

【識別番号】 100110870

【住所又は居所】 東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】 山口 芳広

特願2004-325838

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住所

東京都大田区下丸子3丁目30番2号

氏 名

キヤノン株式会社