WHAT IS CLAIMED IS:

1	1. A method for remodeling luminal tissue, said method comprising:		
2	positioning a vibrational transducer at a target site in a body lumen of a		
3	patient; and		
4	energizing the vibrational transducer to produce acoustic energy under		
5	conditions selected to induce tissue remodeling in at least a portion of the tissue		
6	circumferentially surrounding the body lumen.		
1	2. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least shrink the tissue.		
1	3. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which reduces the compliance of the tissue in either or both the radial and		
3	longitudinal directions.		
1	4. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least induce collagen formation in the tissue.		
1	5. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least cause cavitation in the tissue.		
1	6. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least interrupt nerve pathways in the tissue.		
1	7. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least interrupt the reception and/or production of biochemicals in the		
3	tissue.		
1	8. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least interrupt the ability of the tissue to absorb food.		
1	9. A method as in claim 1, wherein the acoustic energy is produced under		
2	conditions which at least selectively destroy intestinal metaplasia in the esophagus.		
1	10. A method as in claim 1, wherein the transducer is energized to produce		
2	acoustic energy in the range from 10 W/cm ² to 100 W/cm ² .		

- A method as in claim 1, wherein the transducer is energized at a duty 11. 1 2 cycle from 10 % to 100 %. 1 12. A method as in claim 1, wherein the transducer is energized under conditions which heat the tissue to a temperature in the range from 55°C to 95°C. 2 13. A method as in claim 1, further comprising cooling the luminal surface 1 tissue while tissue beneath the surface is heated. 2 14. A method as in claim 1, wherein positioning the vibrational transducer 1 comprises introducing a catheter which carries the transducer into the body lumen. 2 15. A method as in claim 14, wherein positioning further comprises 1 2 inflating a balloon in the catheter to at least partly engage the luminal wall and locate the 3 transducer at a pre-determined position relative to the target site. 1 16. A method as in claim 15, wherein the transducer is inside the balloon 2 and inflating the balloon with an acoustically transmissive material which centers the transducer within the lumen and enhances transmission of the acoustic energy to the tissue. 3 A method as in claim 15, wherein the transducer is located between a 1 17. 2 pair of axially spaced-apart balloons and inflating the balloon centers the transducer within 3 the lumen, further comprising introducing an acoustically transmissive medium between the 4 balloons to enhance transmission of the acoustic energy to the tissue. 18. 1 A method as in claim 15, further comprising moving the transducer 2 relative to the balloon(s) in order to focus or scan the acoustic energy axially on the luminal tissue surface. 3 1 19. A method as in claim 16, wherein the acoustically transmissive medium is cooled to cool the luminal tissue surface. 2 20. A method as in claim 1, further comprising monitoring temperature at 1
- 1 21. A method as in claim 1, further comprising monitoring temperature 2 below the luminal tissue surface.

2

the luminal tissue surface.

1		22.	A method as in claim 1, wherein energizing comprises focusing the
2	acoustic energy beneath the luminal tissue surface.		
1		23.	A method as in claim 1, wherein energizing comprises focusing the
2	acoustic energ		just before the luminal tissue surface.
2	acoustic energ	y at or j	ust before the fulfillar tissue surface.
3		24.	A method as in claim 27, wherein the vibrational transducer comprised
4	a phased array	<i>.</i>	
1		25	A weather the in claim 24 and arrive the wholes demonstrate calculations.
1	. 1. 6	25.	A method as in claim 24, wherein the phased array is selectively
2	_		e acoustic energy at one or more desired locations in the tissue
3	surrounding th	ie body	lumen.
1		26.	A method as in claim 1, wherein positioning the vibrational transducer
2	comprises:		
3		introdu	ucing a cannula to the target site;
4		expand	ling a balloon on the cannula at the target site with an acoustically
5	transmissive n	•	· ·
6			vely directing the vibrational transducer within the balloon to remodel
7	targeted tissue	•	
1		27.	A method as in claim 26, further comprising viewing the target tissue
2	through a scor	e in or	on the cannula while directing the vibrational transducer.
1 -		28.	A method as in claim 26, wherein selectively directing comprises
2	deflecting and	or rota	ting a beam transducer.
	J	•	- - .
1	e.	29.	A method as in claim 26, wherein selectively directing comprises
2	axially transla	ting a c	ircumferential array transducer.
1		30.	A method as in claim 26, wherein selectively directing comprises
2	everting the tr	ansduce	er to direct energy against tissue surrounding an opening to the body
3	lumen.		
1		31.	A method as in claim 30, wherein the balloon is expanded over the
2	entire opening	, .	

1	32. A method as in claim 31, wherein the balloon is expanded over a			
2	location adjacent to the opening.			
1	33. A method as in claim 26, wherein selectively directing comprises			
2	pivoting at least one transducer from a fixed location within the balloon.			
1	34. A method as in claim 33, further comprising deflecting at least one			
2	additional transducer from a fixed location within the balloon.			
1	35. A method as in claim 26, wherein selectively directing comprises			
2	expanding a second balloon disposed over the vibrational transducer, wherein the second			
3	balloon may be axially translated within the first balloon.			
1	36. A method as in claim 1, wherein positioning the vibrational transducer			
2	comprises: expanding a balloon over an opening at one end of the body lumen;			
3	filling the end of the lumen over the balloon with an acoustically transmissive			
4	medium; and			
5	positioning the vibrational transducer within the medium to direct acoustic			
6	energy at the luminal tissue.			
1	37. A method as in claim 1, wherein positioning the transducer comprises			
2	capturing luminal tissue between opposed elements, wherein the transducer is			
3	disposed on one of the elements; and			
4	directing energy from the transducer into the captured tissue.			
1	38. A method as in claim 37, wherein capturing comprises clamping with			
2	movable elements.			
1	39. A method as in claim 37, wherein capturing comprises applying a			
2	vacuum to the tissue to draw said tissue between the opposed elements.			
1	40. A method as in claim 1, wherein the body lumen is the esophagus and			
2	the patient suffers from gastroesophageal reflux disease (GERD).			
1	41. A method as in claim 40, wherein the acoustic energy remodels the			
2	tissue surrounding a lower esonhageal sphincter			

1	42. A method as in claim 1, wherein the body lumen is the stomach and				
2	the patient suffers from a hiatal hernia.				
ļ	43. A method as in claim 42, wherein the acoustic energy remodels the				
2	tissue surrounding a diaphragmatic sphincter.				
l	44. Apparatus for remodeling the lower esophageal sphincter, said				
2	apparatus comprising:				
3	a catheter adapted to be esophageally introduced to the lower esophageal				
4	sphincter (LES); and				
5	a vibrational transducer on the catheter adapted to deliver acoustic energy to				
6	the tissue of the LES in order to lessen gastroesophageal reflux.				
1	45. Apparatus as in claim 44, further comprising an inflatable balloon on				
2	the catheter, wherein said balloon is adapted when inflated to position the catheter within the				
3	LES so that the transducer can deliver energy to the LES.				
1	46. Apparatus as in claim 45 wherein the transducer is positioned coaxially				
2	with the balloon.				
1	47. Apparatus as in claim 45, further comprising means for inflating the				
2	balloon with an acoustically transmissive medium.				
1	48. Apparatus as in claim 45 wherein the transducer is positioned between				
2	a pair of spaced-apart balloons.				
1	49. Apparatus as in claim 44, further comprising means for delivering an				
2	acoustically transmissive medium between the balloons.				
1	50. Apparatus as in claim 44, further comprising means for cooling the				
2	acoustically transmissive medium.				
1	51. Apparatus as in claim 44, further comprising means for measuring				
2	temperature at or beneath the luminal wall.				
1	52. Apparatus as in claim 44, further comprising means to axially translate				

the transducer relative to the catheter.

1	54.	A system comprising:		
2	appar	atus as in claim 44; and		
3	a can	nula having a channel for receiving and deploying the catheter.		
1	55.	A system as in claim 54, further comprising a viewing scope which is		
2	part of or introducab	le through the cannula.		
1	56.	A system as in claim 54, wherein the cannula further comprises an		
2	inflatable balloon ov	er a distal end, wherein the catheter is extendible from the cannula into		
3	the balloon when the	balloon is inflated.		
1	57.	A system as in claim 56, wherein the vibrational transducer on the		
2	catheter is deflectable and/or rotatable and/or evertable within the balloon when inflated.			
1	58.	A system as in claim 56, wherein the vibrational transducer on the		
2	catheter comprises a circumferential array and is axially translatable within the balloon whe			
3	inflated.			
1	59.	A system as in claim 56, wherein the transducer is pivotally mounted		
2	on the catheter.			
1	60.	A system as in claim 56, wherein the transducer is mounted on at least		
2	one of a pair of space	ed-apart elements on the catheter configured to receive target tissue		
3	therebetween.			
1	61.	A system as in claim 60, wherein the spaced-apart elements are		
2	movable to clamp tis	ssue therebetween.		
1	62.	A system as in claim 60, wherein a vacuum source is disposed on the		
2	catheter to selectivel	y draw tissue into the space between the spaced-apart elements.		
		$oldsymbol{\cdot}$		

Apparatus as in claim 44, wherein the transducer comprises a phased

1

2

array.

53.