## P8160 - Project 3

P8160 Group Project 3 Baysian modeling of hurricane trajectories

Jingchen Chai, Yi Huang, Zining Qi, Ziyi Wang, Ruihan Zhang

Columbia University

2023-05-01

#### **Content**

- Introduction
- 4 Hierarchical Bayesian Model
- EDA
- Results
- Discussion and Conclusion

#### Introduction

- Hurricanes cause fatalities and property damage
- There is a growing need to accurately predict hurricane behavior, including location and speed
- This project aims to forecast wind speeds by modeling hurricane trajectories using a Hierarchical Bayesian Model.

#### **Dataset**

- Hurrican703 dataset: 22038 observations × 8 variables
  - 702 hurricanes in the North Atlantic area since 1950

## **EDA-Count of Hurricanes in each Month**



### **EDA-Count of Hurricanes in each Year**



# Show hurricance tracks by month

Atlantic named Windstorm Trajectories by Month (1950 - 2013)



# **Bayesian Model**

The suggested Bayesian model is  $Y_i(t+6) = \beta_{0,i} + \beta_{1,i} Y_i(t) + \beta_{2,i} \Delta_{i,1}(t) + \beta_{3,i} \Delta_{i,2}(t) + \beta_{4,i} \Delta_{i,3}(t) + X_i \gamma + \epsilon_i(t)$ 

- where  $Y_i(t)$  the wind speed at time t (i.e. 6 hours earlier),  $\Delta_{i,1}(t)$ ,  $\Delta_{i,2}(t)$  and  $\Delta_{i,3}(t)$  are the changes of latitude, longitude and wind speed between t and t-6, and  $\epsilon_{i,t}$  follows a normal distributions with mean zero and variance  $\sigma^2$ , independent across t.
- $\beta_i=(\beta_{0,i},\beta_{1,i},...,\beta_{5,i})$ , we assume that  $\beta_i\sim N(\mu,\Sigma)$ , where d is dimension of  $\beta_i$ .

#### **Priors**

$$P(\mu) = \frac{1}{\sqrt{2\pi}|V|^{\frac{1}{2}}} \exp\{-\frac{1}{2}\mu^\top V^{-1}\mu\} \propto |V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}\mu^\top V^{-1}\mu\}$$

where V is a variance-covariance matrix

$$P(\Sigma) \propto |\Sigma|^{-\frac{(\nu+d+1)}{2}} \exp(-\frac{1}{2} tr(S\Sigma^{-1}))$$

$$P(\gamma) \propto exp(-\frac{\gamma^2}{2*(0.05)^2}) = e^{-200\gamma^2}$$

$$P(\sigma) = \frac{2\alpha}{\pi + \alpha^2} \propto \frac{1}{\sigma^2 + \alpha^2}$$

#### **Posterior**

Let  $\mathbf{B} = (\beta_1^\top, ..., \beta_n^\top)^\top$ , derive the posterior distribution of the parameters  $\Theta = (\mathbf{B}^\top, \mu^\top, \sigma^2, \Sigma, \gamma)$ .

Let

$$\boldsymbol{Z}_{i}(t)\boldsymbol{\beta}_{i}^{\top} = \boldsymbol{\beta}_{0,i} + \boldsymbol{\beta}_{1,i}\boldsymbol{Y}_{i}(t) + \boldsymbol{\beta}_{2,i}\boldsymbol{\Delta}_{i,1}(t) + \boldsymbol{\beta}_{3,i}\boldsymbol{\Delta}_{i,2}(t) + \boldsymbol{\beta}_{4,i}\boldsymbol{\Delta}_{i,3}(t) + \boldsymbol{X}_{i}\boldsymbol{\gamma} + \boldsymbol{\epsilon}_{i}(t)$$

We can find that

$$Y_i{\sim}MVN(\boldsymbol{Z}_i\boldsymbol{\beta}_i,\sigma^2\boldsymbol{I})$$

The likelihood for our data is

$$f(Y\mid B,\mu,\sigma^2,\Sigma,\gamma) =$$

$$\prod_{i=1}^{N} f(Y_i|B,\mu,\Sigma,\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2}(y_i - Z_i\beta_i - X_i\gamma_i)^\top (\sigma^2 I)^{-1}(y_i - Z_i\beta_i - X_i\gamma_i)\}$$

$$\propto (2\pi\sigma^2)^{-\frac{N}{2}} \prod_{i=1}^n \exp\big\{-\frac{1}{2}(\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i)^\top (\sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i)^\top (\sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i)^\top (\sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i)^\top (\sigma^2 \boldsymbol{I})^\top (\sigma^2 \boldsymbol{I})^{-1} (\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i)^\top (\sigma^2 \boldsymbol{I})^\top (\sigma^2 \boldsymbol{$$

where N is the total number of hurricanes.

### **Joint Posterior**

$$\begin{split} \pi(\Theta|Y) = & P(B,\mu,\sigma^2,\Sigma,\gamma|Y) \\ & \propto L(Y|B,\sigma^2)L(B|\mu,\Sigma)p(\mu)p(\sigma)p(\Sigma)p(\gamma) \\ & \propto \frac{1}{\sigma^N(\sigma^2+10^2)} \prod_{i=1}^n \exp\big\{-\frac{1}{2}(Y_i-Z_i\beta_i-X_i\gamma_i)^\top(\sigma^2I)^{-1}(Y_i-Z_i\beta_i-X_i\gamma_i)\big\} \\ & \times \exp\{-\frac{1}{2}\sum_i^n(\beta_i-\mu)^\top\Sigma^{-1}(\beta_i-\mu)\}|\Sigma^{-1}|^{\frac{N+d+v+1}{2}} \exp\{-\frac{1}{2}tr(S\Sigma^{-1})\}|V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}tr(S\Sigma^{-1})|V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}tr(S\Sigma^{-1})|V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}tr(S\Sigma^{-1})|V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}tr(S\Sigma^{-1})|V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}tr(S\Sigma^{-1})|V|^{-\frac{1}$$

where V is a variance-covariance matrix, N is the total number of hurricanes and d is the dimension of  $\beta$ , and v is the degree of freedom.

### **Conditional Distributions**

Generate  $B_t$  from  $f(B_t, \sigma_{t-1}, \mu_{t-1}, \Sigma_{t-1}^{-1})$ 

$$\begin{split} \pi(\sigma|Y,\mathbf{B}^\top,\mu^\top,\Sigma,\gamma) &\propto \frac{1}{\sigma^N(\sigma^2+10^2)} \\ &\times \prod_{i=1}^n \exp\big\{-\frac{1}{2(\sigma^2I)}(\boldsymbol{Y}_i-\boldsymbol{Z}_i\boldsymbol{\beta}_i-\boldsymbol{X}_i\boldsymbol{\gamma}_i)^\top(\boldsymbol{Y}_i-\boldsymbol{Z}_i\boldsymbol{\beta}_i-\boldsymbol{X}_i\boldsymbol{\gamma}_i)\big\} \end{split}$$

$$MVN_d((\tfrac{Z_j^\top Z_j}{\sigma^2} + \Sigma^{-1})^{-1}(\tfrac{Y_j^\top Z_j^\top - X_j^\top Z_j\gamma}{\sigma^2} + \mu^\top \Sigma^{-1})^\top, \tfrac{Z_j^\top Z_j}{\sigma^2} + \Sigma^{-1})^{-1})$$

## **MCMC Algorithm**

$$\boldsymbol{\beta}_i \sim MVN_d(N^{-1}M^\top, N^{-1})$$

 $\mu_t \sim MVN_d(N^{-1}M^{\top}, N^{-1})$ 

where 
$$N=rac{Z_i^{ op}Z_i}{\sigma^2}+\Sigma^{-1}$$
 and  $M=rac{Y_i^{ op}Z_i^{ op}-X_i^{ op}Z_i\gamma}{\sigma^2}+\mu^{ op}\Sigma^{-1}$ 

where  $N = NA + \frac{1}{n}$  and  $M = \sum_{i}^{n} \beta_{i} A$ , and v is the degree of freedom.

$$\Sigma \sim w^{-1}(S + \sum_i^n (\beta_i - \mu)(\beta_i - \mu)^\top, n + v)$$

$$\gamma \sim MVN(M^{-1}N,M^{-1})$$

where  $N=\sum_i^n X_i^{\intercal}\sigma^{-1}IX_i+400I$  and  $M=\frac{\sum_i^n X_i^{\intercal}Y_i-X_i^{\intercal}Z_i\beta_i}{\sigma^2}$ 

## MCMC Algorithm - Metropolis-Hastings

#### \*Target distribution is

$$\begin{split} \pi(\sigma|Y,\mathbf{B}^\top,\mu^\top,\Sigma,\gamma) &\propto \frac{1}{\sigma^N(\sigma^2+10^2)} \\ &\times \prod_{i=1}^n \exp\big\{-\frac{1}{2(\sigma^2I)}(\boldsymbol{Y}_i-\boldsymbol{Z}_i\boldsymbol{\beta}_i-\boldsymbol{X}_i\boldsymbol{\gamma}_i)^\top(\boldsymbol{Y}_i-\boldsymbol{Z}_i\boldsymbol{\beta}_i-\boldsymbol{X}_i\boldsymbol{\gamma}_i)\big\} \end{split}$$

- Choose a random walk with step size distributed as a uniform random variable
- The conditional density is  $q(x|y) = \frac{1}{2a} 1_{[y-a,y+a]}(x)$
- Proposed q is symmetric, thus the acceptance rate is only depend on  $P(\sigma|B,\mu,A,\gamma,Y)$

## MCMC Algorithm - Metropolis-Hastings

- The acceptance rate  $\alpha_{XY} = \min(1, \frac{P(X|B,\mu,A,\gamma,Y)}{P(Y|B,\mu,A,\gamma,Y)})$
- Accept X if  $U < \alpha_{XY}$
- Iterate over 1000 times
- New  $\sigma$  is the mean of last 200 values in the chain

## MCMC Algorithm - Gibbs Sampling

We apply a MCMC algorithm consisting of Gibb Samping and Metropolis-Hastings steps.

Parameters are updated component-wise for each k=1,...,N,N=5000:

- Generate  $\beta_{ij}, j=0,1,2,3,4$  for  $i^{th}$  hurricane from  $\pi(\mathbf{B}|Y,\mu_{k-1}^{\intercal},\sigma_{k-1},\Sigma_{k-1},\gamma_{k-1})$
- Generate  $\mu_j, j=0,1,2,3,4$  from  $\pi(\mu|Y,\mathbf{B}_k,\sigma_{k-1},\Sigma_{k-1},\gamma_{k-1})$
- ullet Generate  $\sigma_k$  from the Metropolis-Hastings steps
- $\bullet$  Generate  $\Sigma_k$  from  $\pi(\Sigma|Y,\mathbf{B}_k,\boldsymbol{\mu}_k,\boldsymbol{\sigma}_k,\boldsymbol{\gamma}_{k-1})$
- $\bullet$  Generate  $\gamma_k$  from  $\pi(\gamma|Y,\mathbf{B}_k,\mu_k,\sigma_k,\Sigma_k)$

### MCMC Algorithm - Initial Values

We first fit a Generalize Linear Mixed Models(GLMM)

- ullet  $eta_i^{(0)}$ : The random effect for  $i^{th}$  hurricane from GLMM as start values
- ullet  $\mu^{(0)}$ : Average over  $eta_i^{(0)}$
- $\bullet$   $\sigma^{(0)}$ : Residuals from the GLMM
- $\bullet$   $\Sigma^{(0)} :$  Variance-Covariance matrix of  $\beta_i^{(0)}$
- ullet  $\gamma^{(0)}$ : Fixed effects from the GLMM

### **MCMC** Results - Beta Plots



-Trace plots of variance parameters, based on 5000 MCMC sample.

## MCMC Results - sigma<sup>2</sup> Plots



### **MCMC** Results - Gamma Plots



## MCMC Results - Sigma Plots



## **Bayesian Model Performance**

-The overall mean RMSE is 6.467.

|    | ID                   | r_square | rmse   |
|----|----------------------|----------|--------|
| 1  | SUBTROP:UNNAMED.1974 | 0.655    | 4.867  |
| 2  | JEANNE.1980          | 0.921    | 5.437  |
| 3  | FRANCES.2004         | 0.978    | 5.628  |
| 4  | CHANTAL.1995         | 0.947    | 2.388  |
| 5  | ETHEL.1960           | 0.473    | 27.218 |
| 6  | PHILIPPE.2011        | 0.843    | 5.598  |
| 7  | JOSEPHINE.1984       | 0.956    | 4.095  |
| 8  | FRANCES.1976         | 0.895    | 6.114  |
| 9  | BEULAH.1963          | 0.930    | 3.873  |
| 10 | HOLLY.1969           | 0.873    | 5.670  |
| 11 | ISAAC.2000           | 0.957    | 5.631  |
| 12 | DAVID.1979           | 0.949    | 7.899  |
| 13 | ALMA.1966            | 0.913    | 6.557  |
| 14 | ERIN.1995            | 0.883    | 8.036  |
| 15 | ANA.1997             | 0.880    | 2.156  |
| 16 | DEBBIE.1969          | 0.851    | 8.869  |
| 17 | HARVEY.2005          | 0.941    | 2.836  |
| 18 | ALLISON.1995         | 0.768    | 4.339  |
| 19 | LAURA.1971           | 0.967    | 2.112  |
| 20 | EDNA.1968            | 0.957    | 2.006  |
|    |                      |          |        |

# **Bayesian Model Performance**



Estimated Wind Speed vs. Predicted Wind Speed

### **Limitations**

-Different initial values -Low performance on hurricanes without enough observations

### **Conclusion**