Calculus

Hertzberg, Joakim D. May 8, 2024

MAT03c: Mathematics 3c

This document uses LaTeX in combination with TikZ for type setting.

Contents

1	Th€	Infinituple & Infinitesimal
2	The	Derivative
	2.1	Definition of the derivative
	2.2	Derivation Rules
		2.2.1 The Power Rule
		2.2.2 The Exponential Derivative
		2.2.3 The logarithmic derivative
3	The	e Integral
	3.1	Primitive Functions
		3.1.1 The Constant of Integration
	3.2	Definite Integrals

1 The Infinituple & Infinitesimal

An *infinituple* (∞) is a number which is so great in size that it can not be defined numerically.

An *infinitesimal* is a number which is *almost* 0, but not equal to 0. It can be represented in 2 ways:

$$\frac{\frac{1}{\infty}}{0.000\cdots 1}$$

2 The Derivative

2.1 Definition of the derivative

Derivatives may be denoted as such for a function y = f(x):

$$\dot{y} = f'(x)$$

$$\dot{y} = \frac{dy}{dx}f(x)$$

A derivative is the instantaneous rate of change defined by the function's values at two points separated by some infinitesimal h:

$$\frac{d}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

Alternatively, using two points approaching eachother:

$$\frac{d}{dx} = \lim_{a \to x} \frac{f(x) - f(a)}{x - a} \tag{2}$$

Note that both these equations are constructed such that the numerator is Δy , and the denominator Δx .

However, when written in infinitesimal sizes, we replace the Δ with a d, hence why we may express derivatives as $\frac{dy}{dx}$.

2.2 Derivation Rules

It is *possible* to use the *definition of the derivative* (2.1) to calculate derivatives of functions. It is however cumbersome.

Instead of using that, we may utilise derivation rules, the derivation rules are different for each type of polynomial.

2.2.1 The Power Rule

The power rule is applicable for power polynomials $(f(x) = kx^n)$. The power rule is as follows:

$$\frac{dy}{dx}kx^n = knx^{(n-1)} \tag{3}$$

The Power Rule

Example:

Q: Provided $f(x) = x^2$, find f'(x).

$$\therefore \frac{dy}{dx}kx^n = knx^{(n-1)}$$

$$\frac{dy}{dx}x^2 = 2x^{(2-1)} = 2x$$

2.2.2 The Exponential Derivative

The rule for the *exponential derivative* (it has no good name) is as follows:

$$ka^{nx} = nka^{nx} \ln a \tag{4}$$

NOTE:

In polynomials containing e^x there is no $\ln e$ needed as $\ln e = 1$.

Example:

Q: Find $\frac{dy}{dx}3 \times 2^x$

$$\therefore \frac{dy}{dx}ka^{nx} = nka^{nx}\ln a$$

$$\frac{dy}{dx}3 \times 2^x = 3 \times 2^x \ln 2$$

LOOK OUT!

If the power x is negative, there is a -1 in the place of n, meaning that the polynomial switches sign as you derivate it.

2.2.3 The logarithmic derivative

The logarithmic derivative is related to the exponential derivative (2.2.2).

$$\frac{dy}{dx}\log_a x = \frac{1}{x\ln a}$$

Example:

Q: Find $\frac{dy}{dx} \log_2 x$.

$$\therefore \frac{dy}{dx} \log_a x = \frac{1}{x \ln a}$$

$$\frac{dy}{dx}\log_2 x = \frac{1}{x\ln 2}$$

3 The Integral

The integal is less well defined intuitively, but it may be defined as the area under a graph.

3.1 Primitive Functions

A primitive function or indefinite integral is the antiderivative of a function, i.e. the function is the derivative of the primitive functions. The are denoted as such for the primitive function of f(x):

A primitive function is then defined such that:

$$\frac{dy}{dx}F(x) = f(x)$$

3.1.1 The Constant of Integration

All primitive functions contain some constant that is "lost in derivation", represented by C, as such:

$$f(x) = x^{n}$$
$$F(x) = \frac{x^{n} + 1}{n+1} + C$$

3.2 Definite Integrals

A definite integral is the area between two bounds of a function, $a\ \&\ b$.

$$A = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$\tag{5}$$