Wireless Sensor Networks

Wireless sensor network

- * A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations
- * Wireless sensors are limited in memory, computation power, bandwidth, and energy. Due to their small physical size, they can be embedded in the physical environment
- Low cost & energy implies low power CPU, radio with minimum bandwidth and range
- * Ad-hoc deployment implies no maintenance or battery replacement

Sensor network

* Sensor

- A transducer
- converts physical phenomenon e.g. heat, light, motion, vibration, and sound into electrical signals

Sensor node

- basic unit in sensor network
- contains on-board sensors,
 processor, memory, transceiver,
 and power supply

Sensor network

- consists of a large number of sensor nodes
- nodes deployed either inside or very close to the sensed phenomenon

Hardware Architecture of sensor node

Characteristics of WSN

- Sensing and data processing are essential
- WSNs have many more nodes and are more densely deployed
- Hardware must be cheap; nodes are more prone to failures
- WSNs operate under very strict energy constraints
 - Sleep as much as possible.
 - Acquire data only if indispensable.
 - Use data fusion and compression.
 - Transmit and receive only if necessary. Receiving is just as costly as sending.
- WSN nodes are typically static
- * The communication scheme is many-to-one (data collected at a base station) rather than peer-to-peer

Data Collection

- * Centralized data collection puts extra burden on nodes close to the base station. Clever routing can alleviate that problem
- Clustering: data from groups of nodes are fused before being transmitted, so that fewer transmissions are needed
- Often getting measurements from a particular area is more important than getting data from each node
- * Security and authenticity should be guaranteed. However, the CPUs on the sensing nodes cannot handle fancy encryption schemes.

Infrastructure vs. Ad-Hoc Networks

Infrastructure network consists of wired network or fixed connectivity

Ad-hoc means 'for this purpose'

- No need for infrastructure (like routers, cell towers, etc.)
- It can accommodate new devices at any time.
- MANET: Mobile Ad-Hoc Network
- WSN: Wireless sensor network

MANET

MANET – (Mobile Ad-Hoc NETwork) a system of mobile nodes (laptops, sensors, etc.) interfacing without the assistance of centralized infrastructure (access points, bridges, etc.)

Ad Hoc Wireless Networks

- Large number of <u>self-organizing</u> static or mobile nodes that are possibly randomly deployed
- Near(est)-neighbor communication
- Wireless connections
 - Links are fragile, possibly asymmetric
 - Connectivity depends on power levels and fading
 - Interference is high for omnidirectional antennas
- WSNs are ad hoc networks (wireless nodes that self-organize into an infrastructure-less network).

Environment monitoring

Zebranet: a WSN to study the behavior of zebras

- Special GPS-equipped collars were attached to zebras
- Data exchanged with peer-to-peer info swaps
- Coming across a few zebras gives access to the data

Medical application

- Vital sign monitoring
- Accident recognition
- Monitoring the elderly

- Intel deployed a 130-node network to monitor the activity of residents in an elder care facility.
- Patient data is acquired with wearable sensing nodes (the "watch")

Data-dissemination Schemes

Direct communication with the base station

 Sensor nodes communicate with the base station directly.

Multi-hop Scheme

Transmit through some other intermediate nodes.

WSN network Architecture

Flat Architecture:

Each node plays the same role in performing sensing task and all sensor nodes are peers

Hierarchical Architecture:

Sensor nodes are organized clusters, where the cluster members send their data to the sink

Flat Architecture

Hierarchical Architecture

Hierarchical Architecture

Ad-Hoc Routing Protocol

- An ad-hoc routing protocol is a convention that controls how nodes decide which way to route packets between computing devices in a mobile ad-hoc network
- Foundation in most protocols: neighbor discovery
 - Nodes send periodic announcements as broadcast packets (beacon messages, alive messages, ...)
 - Can embed "neighbor table" into such messages; allows nodes to learn "2-hop neighborhood"
- Popular types of routing protocols:
 - Proactive
 - Reactive
 - Geographic

Proactive: "Link-State"

Algorithms

* Each node shares its link information so that all nodes can build a map of the full network topology

 Assuming the topology is stable for a sufficiently long period, all nodes will have the same topology information

Proactive: "Link-State" Algorithms

- Link information is updated when a link changes state (goes up or down)
 - by sending small "hello" packets to neighbors
- Nodes A and C propagate the existence of link A-C to their neighbors and, eventually, to the entire network

Reactive: DSR

Dynamic Source Routing

- Search for route when needed only
 - Search using Route Request (RREQ) broadcasts
 - Response using Route Reply (RREP) message
- Every message along route contains entire path to help intermediate nodes to decide what to do with message

Route Discovery in DSR

Represents a node that has received RREQ for D from S

·····→ Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

Route Discovery in DSR Node H receives packet RREQ from two neighbors:

Route Discovery in DSR Node C receives RREQ from G and H, but does not forward

Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Route Discovery in DSR Nodes J and K both broadcast RREQ to node D

Nodes J and K both broadcast RREQ to node D Since nodes J and K are hidden from each other, their transmissions may collide

Route Discovery in DSR

 Node D does not forward RREQ, because node D is the intended target of the route discovery E [S,E,F,J,M]F B G H K

Route Reply in DSR

Represents RREP control message

Route Reply in DSR

- * Route Reply can be sent by reversing the route in Route Request (RREQ) only if links are guaranteed to be bidirectional
- * One way to ensure this is to check, if the received RREQ was on a link that is known to be bi-directional, e.g.
 - If IEEE 802.11 MAC is used to send data, then links have to be bi-directional (since Ack is used)
- * If unidirectional (asymmetric) links are allowed, then RREP may need a route discovery for S from node D
 - Route discovery not needed -> If node D already knows a route to node S
 - If a route discovery is initiated by D for a route to S, then the Route Reply is piggybacked on the Route Request from D.

Route Reply in DSR

- Node S on receiving RREP, caches the route included in the RREP
- * When node S sends a data packet to D, the entire route is included in the packet header
 - hence the name source routing
- Intermediate nodes use the source route included in a packet to determine to whom a packet should be forwarded

Data Delivery in DSR

Packet header size grows with route length

DSR Optimization: Route Caching

- Each node caches a new route it learns by any means
- ❖ When node S finds route [S,E,F,J,D] to node D, node S also learns route [S,E,F] to node F
- * When node K receives Route Request [S,C,G] destined for node D, node K learns route [K,G,C,S] to node S
- ❖ When node F forwards Route Reply RREP [D,J,F, E,S], node F learns route [F, J, D] to node D
- When node E forwards Data [S,E,F,J,D] it learns route [E,F,J,D] to node D
- A node may also learn a route when it overhears Data packets

DSR Optimization: Route Caching

- When node S learns that a route to node D is broken,
 - Can use another route from its local cache, if such a route to D exists in its cache.
 - Otherwise, node S initiates route discovery by sending a route request
- Node X on receiving a Route Request for some node D can send a Route Reply if node X knows a route to node D
- Use of route cache
 - can speed up route discovery
 - can reduce propagation of route requests

Use of Route Caching: Example

[P,Q,R] Represents cached route at a node (DSR maintains the cached routes in a tree format)

Route Caching benefits: speed up of Route Discovery

When node Z sends a route request for node C, node K sends back a route reply [Z,K,G,C] to node Z using a locally cached route

Route Caching benefits: Reduction in propagation of RREQs

□ Route Reply (RREP) from node K limits flooding of RREQ.

DSR: Explore the following

- Duplication of Route hops
- Route Maintenance
 - Preventing Route Reply Storms
 - Route Request hop limits
 - Packet Salvaging
 - Automatic Route Shortening
 - Increased spreading of Route Error messages

DSR: Advantages

- Routes maintained only between nodes who need to communicate
- reduces overhead of route maintenance
- Route caching can further reduce route discovery overhead
- A single route discovery may yield many routes to the destination, due to intermediate nodes replying from local caches

DSR: Disadvantages

- Packet header size grows with route length due to source routing
- Flood of route requests may potentially reach all nodes in the network
- Care must be taken to avoid collisions between route requests propagated by neighboring nodes
 - insertion of random delays before forwarding RREQ
- Increased contention if too many route replies come back due to nodes replying using their local cache
 - Route Reply Storm problem

Proactive vs Reactive

Reactive:

- Only establish/maintain routes between nodes needed them (in contrast: tables store ALL routes)
- Store entire route in each message; message size grows with route length
- Route requests cause "flooding"

Proactive:

- Route information always available; no need to search for route (but route information can be outdated)
- Continuous exchange of route change updates

Geographic Routing

- Nodes use location information to make routing decisions
 - sender must know the locations of itself, the destination, and its neighbors
 - location information can be queried or obtained from a location broker
 - location information can come from GPS (Global Positioning System) or some other form of positioning technology

Unicast Location-Based Routing

- One single destination
- * Each forwarding node makes localized decision based on the location of the destination and the node's neighbors (greedy forwarding)
- * Challenge: packet may arrive at a node without neighbors that could bring packet closer to the destination (voids or holes)

Geocasting

- Packet is sent to all or some nodes within specific geographic region
- * Example: query sent to all sensors within geographic area of interest

Routing challenge:

- propagate a packet near the target region (similar to unicast routing)
- distribute packet within the target region (similar to flooding)

Design Challenges

Heterogeneity

 The devices deployed may be of various types and need to collaborate with each other.

Distributed Processing

 The algorithms need to be centralized as the processing is carried out on different nodes.

Low Bandwidth Communication

The data should be transferred efficiently between sensors

Design Challenges

Large Scale Coordination

The sensors need to coordinate with each other to produce required results.

Utilization of Sensors

 The sensors should be utilized in a ways that produce the maximum performance and use less energy.

Real Time Computation

 The computation should be done quickly as new data is always being generated.

Applications of WSN

- Military and national security application
- Environment monitoring
- Medical application
- Home and Office Applications
- Automotive Applications