Ghost Hunter Design Report

Team wyy: 武益阳 王宇逸

2019年6月8日

Contents

- Idea
- 2 Find Single PE Waveform
- Process
- 4 Reference

Idea

 Threshold method can precisely and easily find at least the first PE.

Idea

- Threshold method can precisely and easily find at least the first PE.
- A waveform of several PEs is the supersposition of single-PE waveforms.

Idea

- Threshold method can precisely and easily find at least the first PE.
- A waveform of several PEs is the supersposition of single-PE waveforms.

So, use threshold method to find the first PE and substract single-PE waveform from original waveform, in order to search for the next PE.

• Select waveform whose PE numbers = 1.

- Select waveform whose PE numbers = 1.
- Use cuts to ensure that signal is within the range and not to weak.

- Select waveform whose PE numbers = 1.
- Use cuts to ensure that signal is within the range and not to weak.
- According to [1], the standard waveform for a single PE is:

$$0 \le t < T: \quad i_{in}(t) = I_s \left(1 - e^{-t/RC} \right)$$
$$T \le t \le \infty \quad i_{in}(t) = I_s \left(e^{T/RC} - 1 \right) \cdot e^{-t/RC}$$

Fit single PE waveform with function

$$T_1 \leqslant t < T_2: \quad U = A \left(1 - e^{-t/RC} \right)$$

 $t \geqslant T_2: \quad U = A \left[e^{(T_2 - T_1)/RC} - 1 \right] e^{-t/RC}$

Fit single PE waveform with function

$$T_1 \leqslant t < T_2: \quad U = A \left(1 - e^{-t/RC} \right)$$

 $t \geqslant T_2: \quad U = A \left[e^{(T_2 - T_1)/RC} - 1 \right] e^{-t/RC}$

Fit single PE waveform with function

$$T_1 \leqslant t < T_2: \quad U = A \left(1 - e^{-t/RC} \right)$$

 $t \geqslant T_2: \quad U = A \left[e^{(T_2 - T_1)/RC} - 1 \right] e^{-t/RC}$

answer: 288,291,309,324,326,331,342

truth: 288,291,309,324,325,329,342

 $wasserstein_distance = 0.4286$

• Tiny signals.

- Tiny signals.
- Sigals in the beginging or the end.

- Tiny signals.
- Sigals in the beginging or the end.
- Some single-PE waves does not fit well (especially the descending part) \Rightarrow tail after substracting \Rightarrow fake PE found.

- Tiny signals.
- Sigals in the beginging or the end.
- Some single-PE waves does not fit well (especially the descending part) \Rightarrow tail after substracting \Rightarrow fake PE found.

Solution: process exceptional signals separatedly; cut fake PEs.

Results

Results

Results

▼ Show filters							
ID	Participant	Status	Wasserstein Distance	Poisson Distance	Message	Submission (UTC) ▼	
946	wyy	Graded	2.034	0.087	Successfully graded your submission in 433.737 seconds.	08 Jun 2019 03:53:52	×
944	xswl	Graded	1.08	0.069	Successfully graded your submission in 440.114 seconds.	07 Jun 2019 12:50:29	×
943	xswl	Failed	-	-	Weight array-like sum must be positive and finite. Set as None for an equal distribution of weight.	07 Jun 2019 11:40:19	50
942	wyy	Graded	2.461	0.105	Successfully graded your submission in 440.575 seconds.	06 Jun 2019 14:52:22	50
940	wyy	Graded	2.461	0.105	Successfully graded your submission in 424.113 seconds.	04 Jun 2019 15:19:57	×
939	Tracer	Failed	-	-	Weight array-like sum must be positive and finite. Set as None for an equal distribution of weight.	03 Jun 2019 15:43:29	×

Code: https://github.com/littlewu2508/Ghost-Hunter-wyy

Thanks for listening!

Reference

Helmuth Spieler.

Pulse processing and analysis.

In IEEE NPSS Short Course, 1993 Nuclear Science Symposium, San Francisco, California, 2002.