It is often possible to choose a basis for a particular application which has ricer properties than other bases.

[Forestadowing: eigenvectors!]

In these situations, we want to be able to change coordinates so we can do linear algebra with respect to this new basis.

Example Suppose V is a vector space with bases $B = \{\vec{x}_1, \vec{c}_2\}$ and $G = \{\vec{c}_1, \vec{c}_2\}$. If $\vec{b}_1 = 4\vec{c}_1 + \vec{c}_2$, $\vec{b}_2 = -6\vec{c}_1 + \vec{c}_2$, and $\vec{x} = 3\vec{b}_1 + \vec{b}_2$, write \vec{x} as a linear comb. of \vec{c}_1 and \vec{c}_2 .

Solution: Substitute! $\vec{X} = 3(4\vec{c}_1 + \vec{c}_2) + (-6\vec{c}_1 + \vec{c}_2)$

So, $[X]_c = [4]$. In mothing terms, what we did here is: $[X]_c = [[4]_c [4]_c [X]_p$, and

this represents the general idea: find the coordinates of the old basis vectors w.r.t. the new ones, put the resulting coordinate vectors (which are now in Rⁿ) as column vectors.

""He say to forget with way around old frew ages here. I like to reward mirell by

"** it's easy to forget which way around old/new goes here. I like to reward mugely by heaping a small example handy, like $\mathcal{B} = \frac{1}{2} \frac{1}{10} \frac{2}{10} \frac{1}{10}$, with $\left[\overrightarrow{X} \right]_{\pm} = \left(\frac{2}{3}, \frac{3}{2} \right)$, with $\left[\overrightarrow{X} \right]_{\pm} = \left(\frac{2}{3}, \frac{3}{2} \right)$, so the change of basis matrix is $\left[\frac{1}{2}, \frac{3}{2} \right]$

The following diagram might help you visualize what's going on:

Now, Pr maps B to & (their is: to to c1, etc.) which means & Pro (since it is surjective and square) is invertible. So clearly, (cess) maps [x] to [x]B, for each xeV. Example let $\vec{b}_1 = \begin{bmatrix} i \\ -3 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\vec{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\vec{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$. Find per and rest. Solution We want to represent $\tilde{C}_1 & \tilde{C}_2$ in terms of \$1, To to get your ("old in terms of new") So the columns of of B+& solve G = [to, toz][?] and = [to, to,][?]. So P = [to, to] [c, c]. We could invert [-3 4] by heard on you reduce [6, 6, 6]. When way, p= [5 3]. For P we muest P 40 get [2 -3/2].