Arbres CART

UE IME204, M2 SITIS, ISPED UE STA307, M2 EPI, ISPED

Justine Remiat, support de cours Robin Genuer

26/01/2024

Arbres CART

Introduction

- Les arbres CART (Classification And Regression Trees) ont été introduits par Breiman, Friedman, Olshen & Stone (1984)
- Ils font partie de la famille des méthodes d'arbres de décision, introduite depuis les années 70
- Le gros avantage des arbres CART est qu'ils proposent un moyen de régler "automatiquement" la taille de l'arbre (voir la partie Élagage plus loin)
- De plus, c'est un algorithme qui est la base de méthodes très performantes (Boosting, Bagging, RF, . . .)

Leo Breiman

- De CART aux Forêts Aléatoires (RF) : 20 ans d'une trajectoire scientifique
- Travaux initialement en probabilités, il a ensuite marqué de son empreinte la statistique appliquée et l'apprentissage statistique
- Série de papiers fondamentaux dans Annals of Statistics et Machine Learning

Cadre

$$\mathcal{L}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$$
 v.a. i.i.d. de même loi que (X, Y) .

 $X \in \mathbb{R}^p$ (p variables d'entrée quantitatives, mais la méthode gère facilement des variables qualitatives)

 $Y \in \mathcal{Y}$ (variable de sortie ou réponse) :

- $\mathcal{Y} = \mathbb{R}$: régression
- $\mathcal{Y} = \{1, \dots, L\}$: classification

 $\overline{\mathsf{But}}$: construire un prédicteur $\widehat{h}:\mathbb{R}^p o\mathcal{Y}$

Le jeu de données spam

- But : Construire un détecteur automatique de spams et déterminer les variables importantes
- n = 4601 emails (1813 spams, $\approx 40\%$)
- *p* = 57 prédicteurs:
 - 54 sont des proportions de mots ou de caractères comme charDollar (\$), charExclamation (!), remove, free
 - 2 liées aux longueurs de suites de majuscules (moyenne, maximum) et enfin le nombre de majuscules

Un arbre CART pour les données spam

Structure de l'arbre : 7 noeuds internes et 8 feuilles; splits basés sur charDollar, remove, hp, charExclamation, george, edu et capitalLong

Prédiction par l'arbre : les feuilles donnent les prédictions de *Y* (*spam* ou *ok*) et sa distribution

Interprétation : de la racine à la feuille la plus à droite : si "beaucoup" de charDollar, "peu" de hp et "peu" de edu, alors "presque toujours" spam

Principe

Arbre : prédicteur constant par morceaux, obtenu par partitionnement récursif binaire de \mathbb{R}^p

Restriction : coupures parallèles aux axes

Classiquement, à chaque étape du partitionnement, on vise à séparer "au mieux" les données du noeud courant, en deux noeuds fils

Figure 1: Arbre de classification

Arbre CART et fonction constante par morceaux

Figure 2: Arbre de classification et partition associée

Arbre de classification v.s arbre de régression

Figure 3: Arbre de classification

Figure 4: Arbre de régression

Construction

- Découpe (ou coupure ou split) :
 - X^j quanti : $\{X^j \leq d\} \cup \{X^j > d\}$ avec d entre le min et le max de X^j
 - X^j quali : $\{X^j \in A\} \cup \{X^j \in \overline{A}\}$ avec A un sous-ensemble des modalités de X^j
- Hétérogénéité :
 - Régression : $\Phi(t) = \frac{1}{\#t} \sum_{i \cdot x_i \in t} (y_i \overline{y}_t)^2$ variance d'un nœud t
 - Classification : $\Phi(t) = \sum_{c=1}^L \hat{p}_t^c (1 \hat{p}_t^c)$, indice de Gini d'un nœud t, où \hat{p}_t^c est la proportion d'observations de classe c dans le nœud t.
- Optimisation : on maximise :

$$\Phi(t) - \left(rac{\#t_L}{\#t}\Phi(t_L) + rac{\#t_R}{\#t}\Phi(t_R)
ight)$$

Arbre maximal et élagage

Arbre maximal, règle d'arrêt:

- Partitionnement récursif par maximisation locale de la décroissance de l'hétérogénéité
- Ne pas découper un noeud pur ou à trop faible effectif

Elagage:

- Arbre maximal T_{max} sur-ajusté aux données : sur-apprentissage
- On cherche un arbre optimal qui est un sous-arbre élagué de T_{max} minimisant le critère pénalisé :

$$crit_{\alpha}(T) = R_{emp}(\hat{h}_{T}) + \alpha \frac{|T|}{n}$$

avec $R_{
m emp}(\hat{h}_T)$ l'erreur empirique du prédicteur associé à T et |T| le nombre de feuilles de T

Algorithme d'élagage

Entrée	Arbre maximal T_{max}
Initialisation	$lpha_1=$ 0, $T_1=T_{lpha_1}=rgmin_{ au}$ $\overline{\it err}(T)$ $ au$ élagué de $ au_{\it max}$ $\overline{\it initialiser}\ T=T_1$ et $k=1$
Iteration	Tant que $ \mathcal{T} >1$,
	$lpha_{k+1} = \min_{\substack{t \text{ noeud interne de } T_t}} rac{\overline{\textit{err}}(t) - \overline{\textit{err}}(T_t)}{ T_t - 1}$
	Elaguer toutes les branches T_t de T telles que
	$\overline{\operatorname{err}}(T_t) + \alpha_{k+1} T_t = \overline{\operatorname{err}}(t) + \alpha_{k+1}$
	Prendre T_{k+1} le sous-arbre élagué ainsi obtenu.
	Boucler sur $T = T_{k+1}$ et $k = k+1$
Sortie	Arbres $T_1 \succ \ldots \succ T_K = \{t_1\}$ Paramètres $(\alpha_1, \ldots, \alpha_K)$

Références

- CART Classification And Regression Trees, Breiman et al. (1984)
- Présentation en français de CART en régression dans le chapitre 2 de la thèse S. Gey (2002)
- Voir aussi Zhang, Singer (2010) et Hastie, Tibshirani, Friedman (2009)

Extensions ou variantes

Variantes

- En régression, prédicteurs plus réguliers, comme MARS Friedman (1991)
- Ortho-CART Donoho et al. (1997) : en traitement d'images, splits dyadiques + élagage
- Dyadic-CART: généralisation dans Blanchard et al. (2007)

Extensions

- Données de survie LeBlanc & Crowley (1993), Molinaro et al. (2004), Bou-Hamad et al. (2011)
- Données spatiales Bel et al. (2009)
- Données longitudinales ou fonctionnelles Zhang, Singer (2010), Captaine et al. (2020)

Discussion

Avantages

- Le principal : interprétabilité
- Méthode non-paramétrique, pas d'hypothèse sur les données
- Cadre unique pour régression et classification (binaire ou multi-classes) + entrées quantitatives et/ou qualitatives
- Découpes compétitives : développement manuel de l'arbre et importance des variables
- Traitement élégant des valeurs manquantes en prédiction : découpes de substitution

Inconvénient

- Le principal : instabilité
- Non-paramétrique ⇒ pas d'estimation, pas d'IC, pas de test