Handout 1

1.	Cell type	A	\mathbf{C}	G	Τ	Total
	Nonpermissive cells (n)	17	43	39	1	100
	Permissive cells (p)	24	72	49	5	150
	Difference (n - p)	-7	-29	-10	-4	

(a) Let n_{nN} and n_{pN} be the counts of nucleotide N in nonpermissive and permissive cells, respectively. Assume (incorrectly) that the row totals are equal, and write an algorithm to test

$$H_0^{\text{(vague)}}$$
: C is not mutated

using test statistic $n_{nC} - n_{pC}$.

(b) Let n_n and n_p the total number of nucleotides observed from nonpermissive and permissive cells. To account for a difference in these, note that if $n_p > n_n$, there are $n_p - n_n$ additional chances to observed nucleotide C in the nonpermissive cells. Another way to say this: the ratio of expected number of C in permissive cells over the expected number of C in nonpermissive cells should $\frac{n_p}{n_n}$. Use this fact to propose model of the following form involving a single unknown parameter λ .

$$N_{n\rm C} \sim {\rm Poisson}(?)$$

 $N_{p\rm C} \sim {\rm Poisson}(?)$

(c) Estimate λ from the data (and we'll correct the *p*-value computed in Part (a)).

(d) The data are actually simulated without an actual signal, so the variation we observe is noise. Why might we be getting a fairly significant result (fairly small p-value)?

2. Suppose you observe the following region 50 bp upstream of the transcript start site of a gene.

GCATTGGCCACACATATAAACGGTAGTCAACGTAGGTAACAGAGTCTCGA

--- ------ -- -- -- -- --

Highlighted are the A/T nucleotides. You can observed there is one longer stretch lasting 7 bp. Is this unusual?

- (a) What test statistic is sensitive to the vague null hypothesis that there is nothing unusual about this sequence?
- (b) What specific null hypothesis could you use to simulate values of the test statistic?
- (c) Plan an algorithm:

3. You have been studying a protein that binds DNA, and you know many genomic sites where this protein binds. The binding site is about 7 bp long, with some positions highly predictable. By comparing all known binding sites, you find the following probabilities for each nucleotide at the 7 positions:

	Site									
	1	2	3	4	5	6	7			
A	0	0	1	0.333	0.167 0 0	1	0			
\mathbf{C}	0	0	0	0.333	0	0	1			
G	1	0	0	0	0	0	0			
T	0	1	0	0.333	0.833	0	0			

Your goal: identify additional binding sites in the promoters of other genes using purely computational methods.

(a) If p_{iN} is the probability that base N binds to site i, for example $p_{5A} = 0.167$, argue that if you observe sequence $\mathbf{X} = (X_1, X_2, \dots, X_7)$, where $X_i \in \{A, C, G, T\}$, in a promoter, that

$$T(\boldsymbol{X}) = \prod_{i=1}^{7} p_{iX_i}$$

is a statistic and it is sensitive to the vague null that X is not bound by your protein. What values suggest that X is bound by the protein?

(b) What specific null hypothesis H_0 could you use to simulate data to determine whether an observed test statistic t_0 is unusual?