p.5

In the Claims

The status of claims in the case is as follows:

1 1. [Previously presented] A method for control and

PATENT ATTORNEY

- 2 management of communication traffic, comprising the steps
- 3 of:
- expressing access rules as filters referencing system
- 5 kernel data;
- for outbound processing, determining source application 6
- 7 indicia;
- 8 for inbound packet processing, executing a look-ahead
- function to determine target application indicia; said 9
- 10 look-ahead function being executed within a protocol
- 11 stack including an IP layer, a transport layer, a
- 12 sockets layer, and an application layer and which, for
- said inbound packet, said IP layer provides to said 13
- 14 transport layer said inbound packet, marked as non-
- 15 deliverable, and receives back from said transport
- 16 layer indicia, provided to said transport layer by said

END920010019US1

2 of 39

17	sockets	laver.	identifying	the	application	laver
		,			apparoutation.	Tay CI

- application to which said packet would have been
- 19 delivered; and
- 20 responsive to said source or target application
- 21 indicia, executing filter processing; said filter
- 22 processing including constructing and evaluating
- logical expressions of arbitrary length, and
- 24 selectively using a set of logical operators,
- 25 alternative filter selector fields, and value set.
- 1 2. [Currently amended] The method of claim 1, wherein
- 2 said protocol stack is a TCP/IP protocol stack, and further
- 3 comprising the steps of executing said determining and
- 4 executing steps within a kernel filtering function upon
- 5 encountering a filter selector field referencing kernel data
- 6 not included in said packet.
- 1 3. [Currently amended] The method of claim 1, wherein
- 2 said protocol stack is a TCP/IP protocol stack, and said
- 3 filter processing including the steps of:
- 4 determining a task or thread identifier;
- based on said task or thread identifier, determining a END920010019US1 3 of 39 . S/N 09/919,185

- 6 process or job identifier; and
- 7 based on said process or job identifier, determining
- 9 job or process attributes for filter processing.
- 4. [Currently amended] The method of claim 1, wherein
- 2 said protocol stack is a TCP/IP protocol stack, and said
- 3 filter processing including the steps of:
- 4 determining a user identifier; and
- 5 based on said user identifier, determining user
- 6 attributes for filter processing.
- 5. [Original] The method of claim 3, further comprising
- 2 the step of determining from said task identifier a work
- 3 control block containing said process or job identifier.
- 1 6. [Canceled]
- 2 7. [Canceled]
- 8. [Currently amended] The method of claim 1, wherein
- 2 said protocol stack is a TCP/IP protocol stack, and further END920010019US1 4 of 39 S/N 09/919,185

3	comprising	the	steps	of:

May 16 2006 6:01

- delivering to said filters infrastructure access rules 4
- 5 for defining security context.
- 1 9. [Original] The method of claim 8, said infrastructure
- 2 including logging, auditing, and filter rule load controls.
- 1 10. [Previously presented] A method for control and
- 2 management of aspects of communication traffic within
- 3 filtering, comprising the steps of:
- 4 receiving IP packet data into a TCP/IP protocol stack
- 5 executing within a system kernel;
- 6 for an inbound IP packet, executing a look-ahead
- 7 function within a protocol stack including an IP layer,
- 8 a transport layer, a sockets layer, and an application
- 9 layer and which, for said IP inbound packet, said IP
- 10 layer provides to said transport layer said inbound IP
- 11 packet, marked as non-deliverable, and receives back
- 12 from said transport layer indicia, provided to said
- 13 transport layer by said sockets layer, identifying the
- 14 application layer application to which said packet
- 15 would have been delivered; and

END920010019US1

5 of 39

- 16 executing filtering code within said system kernel with
- 17 respect to non-IP packet data accessed within said
- 18 system kernel outside of said TCP/IP protocol stack;
- 19 said filtering code constructing and evaluating logical
- 20 expressions of arbitrary length, and selectively using
- 21 a set of logical operators, alternative filter selector
- 22 fields, and value set.
 - 1 11. [Original] The method of claim 10, said non-IP packet
 - 2 data including context data regarding said IP packet.
 - 1 12. [Original] The method of claim 10, said non-IP packet
 - 2 data including data specific to a task generating said non-
 - 3 IP packet data.
 - 1 13. [Original] The method of claim 10, said non-IP packet
 - 2 data including data specific to a task that will receive
 - 3 said IP packet.
- 1 14. [Original] The method of claim 11, said context data
- 2 including packet arrival interface indicia.
 - 15. [Canceled]
 - 16. [Canceled]
 - 17. [Canceled]

END920010019US1

6 of 39

1	18. [Previously presented] A method for centralizing
2	system-wide communication management and control within
3	filter rules, comprising the steps of:
4	providing filter statements syntax for accepting
5	parameters in the form of a selector, each selector
6	specifying selector field, operator, and a set of
7	values;
8	for an inbound packet, executing a look-ahead function
9	within a protocol stack including an IP layer, a
10	transport layer, a sockets layer, and an application
11	layer and which, for said inbound packet, said IP layer
12	provides to said transport layer said inbound packet,
13	marked as non-deliverable, and receives back from said
14	transport layer indicia, provided to said transport
15	layer by said sockets layer, identifying the
16	application layer application to which said packet
17	would have been delivered by said sockets layer;
18	said selector referencing data that does not exist in
19	IP packets;
20	processing said filter statements, including
21	constructing and evaluating logical expressions of
	END920010019US1 7 of 39 C/M 00/010 105

22	arbitrary	length,	and	selectively	using a	set of

- logical operators, alternative filter selector fields,
- 24 and value set.
 - 1 19. [Currently amended] The method of claim 18, wherein
 - 2 said protocol stack is a TCP/IP protocol stack, and said
 - 3 parameters selectively including userid, user profile, user
- 4 class, user group, user group authority, user special
- authority, job name, process name, job group, job class, job
- 6 priority, other job or process attributes, and date & time.
- 1 20. [Currently amended] The method of claim 18, wherein
- 2 said protocol stack is a TCP/IP protocol stack, and said
- 3 filters statements being provided within a user interface to
- 4 said system.
- 1 21. [Currently amended] The method of claim 18, wherein
- 2 said protocol stack is a TCP/IP protocol stack, and further
- 3 comprising the steps of:
- 4 establishing a tunnel between two IP address limiting
- 5 traffic to applications bound to ports at each end of
- 6 said tunnel;
- said filtering code accessing filtering attributes
 END920010019US1
 8 of 39
 S/N 09/919,185

8 further limiting traffic selectively to job indicia; 9 and 10 operating said filtering code within a kernel filtering 11 function upon encountering a filter selector field 12 referencing kernel data not included in said traffic. 1 22. [Currently amended] A method for traversing a portion 2 only of a protocol stack to disallow selective IP packet 3 traffic, comprising the steps of: 4 receiving a packet in the kernel of the operating 5 system of a first node from an application, said kernel 6 including a filter processor; said filter processor for 7 constructing and evaluating logical expressions of 8 arbitrary length, said logical expressions selectively including a set of logical operators, alternative 9 10 filter selector fields, and value set; 11 for inbound packet processing to a first node from a 12 second node, executing a look-ahead function in the 13 system kernel of said first node to determine a target 14 application; said system kernel including a TCP/IP 15 protocol stack including an IP layer, a transport 16 layer, a sockets layer, and an application layer and

9 of 39

S/N 09/919,185

END920010019US1

May 16 2006 6:02

17	which, for said	l inbound packet, s	said IP layer provides
18	to said transpo	ort layer said inbo	ound packet, marked as
19	non-deliverable	e, and receives bac	ck from said transport
20	layer indicia i	dentifying the app	olication layer
21	application to	which said packet	would have been
22	delivered;		
23	for both said i	nbound packet prod	cessing, and for
24	outbound packet	processing from s	said first node to said
25	second node, ex	ecuting within sai	d kernel the steps of
26	processing	said packet by de	etermining a task ID;
	Ç		
27	responsive	to said task ID,	determining a
28	correspond	ing work control b	olock;
29	determinin	g a user ID, proce	ess or job identifier
30	from said	work control block	;
31	from the u	ser ID, process or	job identifier
32	selectivel	y determining attr	ibutes for said user
33	process or	job; and	
		•	
34			aid filter processor
35	for managin	ng and controlling	communication
	END920010019US1	10 of 39	S/N 09/919,185

p.14

36	traffic

- [Previously presented] A method for expressing access 1 23.
- 2 rules as filters, comprising the steps of:

PATENT ATTORNEY

- 3 providing a filter statements syntax for accepting
- 4 parameters in the form of a selector, each selector
- 5 specifying selector field, operator, and a set of
- 6 values; and
- 7 said selector referencing data that does not exist in
- 8 IP packets for controlling access to an application;
- 9 for an inbound IP packet, executing a look-ahead
- 10 function within a protocol stack including an IP layer,
- 11 a transport layer, a sockets layer, and an application
- 12 layer and which, for said IP inbound packet, said IP
- 13 layer provides to said transport layer said inbound IP
- 14 packet, marked as non-deliverable, and receives back
- 15 from said transport layer indicia, provided to said
- 16 transport layer by said sockets layer, identifying the
- 17 application layer application to which said packet
- 18 would have been delivered; and
- processing said filter statements by constructing and 19 END920010019US1 11 of 39 S/N 09/919,185

20	evaluating logical expressions of arbitrary length,
21	said logical expressions selectively including a set of
22	logical operators, alternative filter selector fields,
23	and value set referencing said application layer
24	application.
1	24. [Previously presented] A method for managing and
2	controlling communication traffic by centralizing access
3	rules in filters executing within and referencing data
4	available in system kernels, comprising the steps for
5	outbound packet processing from a first node to a second
6	node of:
7	receiving said packet in the kernel of the operating
8	system of said first node from an application or
9	process at said first node;
10	processing said packet by determining a task ID;
11	responsive to said task ID, determining a corresponding
12	work control block;
13	responsive to said work control block, determining a
14	process or job identifier;
	END920010019US1 12 of 39 S/N 09/919,185

15	responsive to said process or job identifier,
16	determining job or process attributes; and
17	executing said filters by constructing and evaluating
18	logical expressions of arbitrary length, said logical
19	expressions selectively including a set of logical
20	operators, alternative filter selector fields, and
21	value set.
1	25. [Previously presented] The method of claim 24, further
2	comprising the steps for inbound packet processing from said
3	second node to said first node of:
4	initially operating said kernel at said first node to
5	determine a target application for said packet at said
6	first node by executing a look-ahead function within a
7	protocol stack including an IP layer, a transport
8	layer, a sockets layer, and an application layer and
9	which, for said inbound packet, said IP layer provides
10	to said transport layer said inbound packet, marked as
11	non-deliverable, and receives back from said transport
12	layer indicia, provided to said transport layer by said
13	sockets layer, identifying the application layer

delivered;.

14

15

application to which said packet would have been

- 26. [Canceled]
- 27. [Canceled]
- 28. [Canceled]
- 1 29. [Currently amended A method for managing and
- 2 controlling communication traffic by centralizing the access
- 3 rules, comprising the steps for outbound packet processing
- 4 from a first node to a second node of:
- 5 receiving said packet in the kernel of the operating
- 6 system of said first node from an application or
- 7 process at said first node, said kernel including a
- 8 filter processor for constructing and evaluating
- 9 logical expressions of arbitrary length, said logical
- 10 expressions selectively including a set of logical
- operators, alternative filter selector fields, and
- value set;
- processing said packet within a TCP/IP stack;
- by determining a task ID;
- responsive to said task ID, determining a
- 16 corresponding work control block;

END920010019US1

14 of 39