練習実験報告

肖宇笑 May 16, 2024

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

Fig. 1: Wavelen. correction

Glavano Sepctrum

Fig. 1: Wavelen. correction

Glavano Sepctrum

Correction

Fig. 2: Correction function

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Selected peaks

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Peak assignments

464.484 nm ≈ 43058.49 cm ⁻¹	464.114 nm ≈ 43092.81 cm ⁻¹	460.875 nm $\approx 43395.69 \text{cm}^{-1}$	456.659 nm $\approx 43796.34 \text{cm}^{-1}$
px = 258	px = 258	px = 258	px = 249
$rR2\ 44.5$ $qR12\ 51.5$ $qQ2\ 51.5$	$rR2\ 45.5$ $qR12\ 51.5$ $qQ2\ 51.5$	sR21~48.5	$sR21\ 58.5$ $pQ12\ 76.5$ $pP2\ 76.5$

Notice

Colored assignments are mismatched, and will not be used to calculate.

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Glavano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^1$	$E_{int.}(NO)$
Peak 1 464.484nm	$43058.49\mathrm{cm}^{-1}$		E(v = 1) + E(J = 44)
Peak 2 464.114nm	43 092.81cm ⁻¹		E(v = 1) + E(J = 45)
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	E(v = 1) + E(J = 48)
Peak 4 456.659nm	43796.34cm ⁻¹		E(v = 1) + E(J = 58)

¹Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^2$	$E_{int.}(NO)$
Peak 1 464.484nm	43058.49 cm $^{-1}$		3525.0743625cm ⁻¹ + $E(J = 44)$
Peak 2 464.114nm	43 092.81cm ⁻¹		$3525.0743625 \text{cm}^{-1} + E(J = 45)$
Peak 3 460.875nm	43395.69 cm $^{-1}$	25 128.57cm ⁻¹	$3525.0743625 \text{cm}^{-1} + E(J = 48)$
Peak 4 456.659nm	43796.34 cm $^{-1}$		$3525.0743625 \text{cm}^{-1} + E(J = 58)$

²Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

³J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

	E_{total}	$E_{bond}(\mathrm{O}\mathrm{-NO})^2$	$E_{int.}(NO)$
Peak 1 464.484nm	$43058.49\mathrm{cm}^{-1}$		3525.0743625cm ⁻¹ + $E(J = 44)$
Peak 2 464.114nm	43 092.81cm ⁻¹		$3525.0743625 \text{cm}^{-1} + E(J = 45)$
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	$3525.0743625 \text{cm}^{-1} + E(J = 48)$
Peak 4 456.659nm	43 796.34cm ⁻¹		$3525.0743625 \text{cm}^{-1} + E(J = 58)$

Vib. energy level³

$$E(v) = \omega_e \left(v + \frac{1}{2}\right) - \omega_e x_e \left(v + \frac{1}{2}\right)^2 + \omega_e y_e \left(v + \frac{1}{2}\right)^3.$$

²Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

³J. Danielak et al. Journal of Molecular Spectroscopy 181.2 (1997), pp. 394–402.

	E_{total}	$E_{bond}(O\!-\!NO)^4$	$E_{int.}(NO)$
Peak 1 464.484nm	$43058.49\mathrm{cm}^{-1}$		$6848.563763 \mathrm{cm}^{-1}$
Peak 2 464.114nm	43 092.81cm ⁻¹		6999.631462cm ⁻¹
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	7472.976 923cm ⁻¹
Peak 4 456.659nm	43796.34 cm $^{-1}$		$9269.004023\mathrm{cm}^{-1}$

⁴Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

⁵J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^4$	$E_{int.}(NO)$
Peak 1 464.484nm	$43058.49\mathrm{cm}^{-1}$		$6848.563763 \mathrm{cm}^{-1}$
Peak 2 464.114nm	43092.81 cm $^{-1}$		6999.631 462cm ⁻¹
Peak 3 460.875nm	43395.69 cm $^{-1}$	25 128.57cm ⁻¹	$7472.976923\mathrm{cm}^{-1}$
Peak 4 456.659nm	43796.34 cm $^{-1}$		9269.004023 cm $^{-1}$

Rot. energy level⁵

$$E\left(J\right) = B_v \left(J^2 + J\right)$$

⁴Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

⁵J. Danielak et al. Journal of Molecular Spectroscopy **181**.2 (1997), pp. 394–402.

$E_{int.}(O)$	$\begin{split} E_{\text{trans}}(total) &\approx 2.88 E_{\text{trans}}(\text{NO}) \\ &= E_{\text{total}} - E_{\text{bond}}(\text{O-NO}) - E_{\text{int.}}(\text{O}) - E_{\text{int.}}(\text{O}) \end{split}$	$E_{trans}(NO) \\ = \frac{1}{2} m(NO) v^2(NO)$
$^{3}P_{2}$ $^{(0 \text{cm}^{-1})}$	$11081.356237 \mathrm{cm}^{-1}$ $10964.608538 \mathrm{cm}^{-1}$ $10794.143077 \mathrm{cm}^{-1}$ $9398.765977 \mathrm{cm}^{-1}$	1923.84656892361cm ⁻¹ 1903.57787118055cm ⁻¹ 1873.98317309028cm ⁻¹ 1631.73020434028cm ⁻¹
$^{3}P_{1}$ (158.625cm ⁻¹)	10922.731237cm ⁻¹ 10805.983538cm ⁻¹ 10635.518077cm ⁻¹ 9240.140977cm ⁻¹	1896.30750642361cm ⁻¹ 1876.03880868055cm ⁻¹ 1846.44411059028cm ⁻¹ 1604.19114184028cm ⁻¹
$^{3}P_{0}$ (226.977cm ⁻¹)	10854.379237cm ⁻¹ 10737.631538cm ⁻¹ 10567.166077cm ⁻¹ 9171.788977cm ⁻¹	1884.44083975695cm ⁻¹ 1864.17214201389cm ⁻¹ 1834.57744392361cm ⁻¹ 1592.32447517361cm ⁻¹

y Trans. energy of NO

$E_{int.}(O)$	$v(\text{NO}) = \sqrt{\frac{2E_{\text{trans}}(\text{NO})}{m(\text{NO})}}$	Δy
$^{3}P_{2}$ $_{(0cm^{-1})}$	$\begin{array}{c} 1486.240384 \mathrm{m s}^{-1} \\ 1478.3905065 \mathrm{m s}^{-1} \\ 1466.8533085 \mathrm{m s}^{-1} \\ 1368.7622455 \mathrm{m s}^{-1} \end{array}$	258 px 258 px 258 px 249 px
$^{3}P_{1}$ (158.625cm ⁻¹)	$\begin{array}{c} 1475.5645855\mathrm{ms^{-1}} \\ 1467.6576085\mathrm{ms^{-1}} \\ 1456.0353685\mathrm{ms^{-1}} \\ 1357.162647\mathrm{ms^{-1}} \end{array}$	258 px 258 px 258 px 249 px
$^{3}P_{0}$ (226.977cm ⁻¹)	$\begin{array}{c} 1470.940464\mathrm{ms^{-1}} \\ 1463.0084955\mathrm{ms^{-1}} \\ 1451.3490265\mathrm{ms^{-1}} \\ 1352.133667\mathrm{ms^{-1}} \end{array}$	258 px 258 px 258 px 259 px

y Trans. energy of NO

$$\tfrac{dv}{d\,{\rm px}} = 12.04{\rm m\,s^{-1}/px\,@}\,^3P_2 \quad \tfrac{dv}{d\,{\rm px}} = 12.14{\rm m\,s^{-1}/px\,@}\,^3P_1 \quad \tfrac{dv}{d\,{\rm px}} = 12.18{\rm m\,s^{-1}/px\,@}\,^3P_0$$

y Trans. energy of NO

$$rac{dv}{d\,\mathrm{px}} = 12.12\mathrm{m\,s^{-1}/px}$$
 @ Average

Reference

- [1] J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.
- [2] Rémy Jost et al. The Journal of Chemical Physics 105.3 (July 1996).