ANSD, Dakar ISE 1

Optimisation

Séquence 5 : Optimisation sous contraintes

Dr. Oumar Diop oumardiop32@yahoo.fr

16 mai 2025

Généralités

On considère, tout au long de ce séquence, le problème de minimisation suivant :

$$\min_{x \in K} f(x) \tag{1}$$

où K est un sous ensemble non vide de \mathbb{R}^n et $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ une fonction continue

Condition d'existence d'un minimum contraintes

On donne ici les conditions d'existence d'un minimum pour le problème d'optimisation (1). On distingue deux cas.

Premier cas : K fermé. On donne le résultat suivant.

Théorème 1

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction continue et K un sous ensemble non vide de \mathbb{R}^n . Le problème d'optimisation (1) admet une solution si l'une des deux conditions suivantes est satisfaite.

- 1. La contrainte K est un sous ensemble compact de \mathbb{R}^n .
- 2. La fonction f est coercive et la contrainte K est un sous ensemble fermé de \mathbb{R}^n .

Pour le premier cas, la fonction f admet aussi un minimum sur K. Voir le théorème Weirstrass.

Exercice 2

Donner la preuve de ce théorème.

Condition d'existence d'un minimum sous contraintes

ANSD
Aperce Nationale de surriques per de la Démographie

Le second cas concerne un problème d'optimisation avec contrainte (1) ou \mathbb{R}^n . Ce problème est plus compliqué que le cas précédent. On donne la proposition suivante.

Proposition 3

On suppose que

- \square K est un ouvert borné de \mathbb{R}^n
- \Box *f une application continue sur* \bar{K} .
- \square Il existe $x_0 \in K$ tel que : $\forall x \in \partial K, f(x) > f(x_0)$.

Alors le problème (1) admet une solution.

Pour la preuve de cette proposition, on sait que \bar{K} est compact (fermé borné de \mathbb{R}^n) alors la fonction f (continue) admet un minimum sur \bar{K} . C'est à dire il existe un élément $\bar{x} \in \bar{K}$ vérifiant : $\forall x \in \bar{K}, \ f(x) > f(\bar{x})$.

Exercice 4

Montrer par absurde que \bar{x} appartient à K.

Condition nécessaire

Dans cette partie, nous nous intéressons aux conditions nécessaires d'optimalité c'est à dire les conditions portant sur la dérivée de la fonction f satisfaites par le minimum (ou les minima) du problème (1). On les appelle les conditions de KKT (Karush Kuhn et Tucker).

On donne ici les conditions d'Euler lorsque K est un ouvert de \mathbb{R}^n et f une application de classe \mathcal{C}^1 .

Théorème 5

Soit f une application de \mathbb{R}^n dans \mathbb{R} de classe \mathcal{C}^1 et K un ouvert de \mathbb{R}^n . Si \bar{x} est un minimum du problème (1) alors on a :

$$\nabla f(\bar{x}) = 0.$$

Preuve du théorème Soit $v \in \mathbb{R}^n$, puisque $\bar{x} \in K$ (ouvert), il existe alors $h_0 > 0$ tel que

pour tout
$$h \in [0, h_0]$$
, on a $\bar{x} + hv \in K$.

 \bar{x} étant minimum du problème, on a :

$$f(\bar{x} + hv) - f(\bar{x}) \ge 0.$$

Comme

$$f(\bar{x} + hv) - f(\bar{x}) = h\langle \nabla f(\bar{x}), v \rangle + h\epsilon(hv).$$

Condition nécessaire

Suite de la preuve

En divisant l'inégalité ci-dessus par h>0 et en faisant tendre h vers 0, on obtient :

$$\langle \nabla f(\bar{x}), v \rangle \ge 0.$$

Cette inégalité étant vrai pour tout $v \in \mathbb{R}^n$, elle est également vraie pour -v. Donc on a aussi

$$\langle \nabla f(\bar{x}), -v \rangle \ge 0.$$

D'où

$$\langle \nabla f(\bar{x}), -v \rangle = 0.$$

On a alors

$$\forall v \in \mathbb{R}^n, \langle \nabla f(\bar{x}), -v \rangle = 0.$$

C'est à dire

$$\nabla f(\bar{x}) = 0.$$

CQFD.

Le théorème de Kuhn et Tucker

(2)

Dans le cadre général du théorème de Kuhn & Tucker, la contrainte K du problème (\mathbb{T} est de la forme :

$$K = \{x \in \mathbb{R}^n, g_i(x) \le 0, i \in I \text{ et } h_i(x) = 0, j \in J\}.$$

avec

$$I = \{i = 1, 2, ..., l\}$$
: indexe les contraintes d'inégalité;

$$J = \{j = 1, 2, ..., m\}$$
: indexe les contraintes d'égalité;

Les fonctions q_i et h_i sont de classe \mathcal{C}^1 de \mathbb{R}^n dans \mathbb{R} .

Pour tout $x \in K$, on appelle contrainte saturée l'ensemble

$$I(x) = \{i \in I \text{ tel que } g_i(x) = 0\}.$$

Théorème 6 (de Kuhn-Tucker avec lagrangien généralisé)

Si \bar{x} est solution du problème (1), alors il existe $p_0 \in \mathbb{R}_+$, $p \in \mathbb{R}_+^l$ et $q \in \mathbb{R}^m$ avec :

$$\left\{ \begin{array}{ll} \sum_i p_i g_i(x) = 0 & \text{condition d'exclusion} \\ (p_0, p, q) \neq 0 \\ p_0 \nabla f(\bar{x}) + \sum_i p_i \nabla g_i(\bar{x}) + \sum_j q_j \nabla h_j(\bar{x}) = 0 \end{array} \right. \quad \text{condition n\'ecessaire}.$$

Commentaire sur le théorème KKT généralisé

On appelle Lagrangien généralisé la fonction

$$L(x, p_0, p, q) = p_0 f(x) + \sum_i p_i g_i(x) + \sum_j q_j h_j(x).$$

La condition nécessaire d'optimalité s'écrit aussi comme suite

$$\frac{\partial L}{\partial x}(\bar{x}, p_0, p, q) = 0.$$

- Le vecteur (p_0, p, q) est appelé le multiplicateur généralisé associé à la solution \bar{x} .
- La condition d'exclusion signifie que si $i \notin I(\bar{x})$, alors $p_i = 0$.

Contraintes qualifiées

Définition 7

On dit que la contrainte non linéaire K est qualifiée en un point $\bar{x} \in K$ si pour tout $\lambda \in \mathbb{R}^l_+$ et $\mu \in \mathbb{R}^m$ vérifiant

$$\begin{cases} \sum_{i} \lambda_{i} g_{i}(\bar{x}) = 0\\ \sum_{i} \lambda_{i} \nabla g_{i}(\bar{x}) + \sum_{j} \mu_{j} \nabla h_{j}(\bar{x}) = 0 \end{cases}$$
 (3)

on a nécessairement $\lambda = 0$ et $\mu = 0$.

Si la contrainte K est qualifiée, le théorème de Kuhn & Tucker peut se reformuler de la façon suivante :

Théorème 8 (KKT pour les contraintes qualifiées)

Soit K la contrainte fermé donnée par

$$K = \{x \in \mathbb{R}^n, g_i(x) \le 0, i \in I \text{ et } h_i(x) = 0, j \in J\}.$$

Si un point \bar{x} est solution du problème (1) et si K est qualifié en \bar{x} alors il existe $\lambda \in \mathbb{R}^l_{\perp}$ et $\mu \in \mathbb{R}^m$ vérifiant les relations suivantes :

$$\left\{ \begin{array}{ll} \sum_{i} \lambda_{i} g_{i}(\bar{x}) = 0 & \text{condition d'exclusion} \\ \nabla f(\bar{x}) + \sum_{i} \lambda_{i} \nabla g_{i}(\bar{x}) + \sum_{j} \nabla h_{j}(\bar{x}) = 0 & \text{condition nécessaire} \end{array} \right.$$
 (4)

Contraintes qualifiées

La définition de qualification n'a de sens que si l'on peut donner des critères de qualification. C'est l'objet de la proposition suivante.

Proposition 9

- 1. La famille $\{\nabla h_1(x), \nabla h_2(x), \dots, h_m(x)\}$ est libre
- 2. Il existe un vecteur $v \in \mathbb{R}^n$ vérifiant

$$\forall j \in \{1, 2, \dots, m\}, \langle \nabla h_j(x), v \rangle = 0,$$

et

$$\forall i \in I(x) \ \langle \nabla q_i(x), v \rangle < 0.$$

Alors la contrainte K est qualifiée en x

- Le vecteur (p, q) est appelé multiplicateur de Lagrange du problème associé à la solution \bar{x} :
- Le lagrangien du problème est donné par

$$L(x,\lambda,\mu) = f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{j} \mu_{j} h_{j}(x);$$

La condition nécessaire d'optimalité s'écrit aussi comme suite

$$\frac{\partial L}{\partial x}(\bar{x}, \lambda, \mu) = 0.$$

Oumar Diop ISE1/ANSD | EDOs Optimisation

Exemple 1 : Contrainte d'égalité

Exemple 10 (A traiter en séance synchrone)

Considérons le problème d'optimisation suivant

$$\min_{x^2 + y^2 = 1} 2x + y.$$

- 1. La fonction f(x,y) = 2x + y est-elle continue?
- 2. Déterminer la contrainte K.
- 3. Montrer que la contrainte est qualifiée.
- 4. Montrer que le théorème de KKT est donné par

$$\nabla f(\bar{x}, \bar{y}) + \mu \nabla h(\bar{x}, \bar{y}) = 0.$$

C'est à dire

$$\begin{cases}
2 + 2\mu \bar{x} &= 0 \\
1 + 2\mu \bar{y} &= 0 \\
\bar{x}^2 + \bar{y}^2 &= 1.
\end{cases}$$
(5)

- 5. Montrer que le système (5) admet deux solutions à déterminer.
- 6. Montrer que le minimum est donné par le point $(\bar{x},\bar{y})=(\frac{-2\sqrt{5}}{5},\frac{-\sqrt{5}}{5})$.

Exemple 2 : Contrainte d'inégalité

Exemple 11 (A traiter en séance synchrone)

Considérons cette fois-ci le problème d'optimisation suivant

$$\min_{x^2 + y^2 \le 1} xy \tag{6}$$

- 1. Quelle est la fonction à optimiser?
- 2. Déterminer l'ensemble K des contraintes.
- 3. Le problème (6) admet-elle une solution ?.
- 4. La contrainte est-elle qualifiée en tout point ? On pourra considérer deux cas :
 - \Box 1er cas : g(x,y) < 0
 - □ 2nd cas : $g(x,y) \ge 0$. Pour ce cas on peut choisir un vecteur $v \in \mathbb{R}^2$ vérifiant $\langle \nabla g(x,y), v \rangle < 0$. Prendre par exemple $v = -\nabla g(x,y)$.
- Montrer que l'application du théorème de KKT aboutit à la résolution du système suivant.

$$\begin{cases} y + \lambda x &= 0 \\ x + \lambda y &= 0 \\ \lambda (x^2 + y^2 - 1) &= 0 \end{cases}$$
 (7)

6. Conclure.

Exemple 3 : Un petit mélange

Exemple 12 (A traiter en séance synchrone)

Considérons le problème d'optimisation suivant

min
$$x + 2y + 3z$$
 s.c $\begin{vmatrix} x^2 + y^2 + z^2 = 1 \\ x + y + z \le 0 \end{vmatrix}$ (8)

- 1. Quelle est la fonction à optimiser?
- 2. Quelle est la contrainte K?
- 3. Vérifier que la contrainte est qualifiée.
- 4. Montrer que le théorème de KKT est équivalent à la résolution du système.

$$\begin{cases}
1 + \lambda + 2\mu x &= 0 \\
2 + \lambda + 2\mu y &= 0 \\
3 + \lambda + 2\mu z &= 0 \\
x^2 + y^2 + z^2 &= 1 \\
\lambda(x + y + z) &= 0
\end{cases} \tag{9}$$

5. Vérifier que la solution du problème (8) est donnée par $(\frac{-\sqrt{14}}{14},\frac{\sqrt{14}}{7},\frac{3\sqrt{14}}{14})$

Exercices

Exercice 13

Résoudre le problème d'optimisation suivant

min
$$x + z$$
 s.c $\begin{vmatrix} x^2 + y^2 = 1 \\ y^2 + z^2 = 4 \\ x \ge 0 \end{vmatrix}$ (10)

Exercice 14

Résoudre le problème d'optimisation suivant

$$\min x + y + z \quad s.c \begin{vmatrix} x^2 + y^2 + z^2 \le 1 \\ x \ge 0 \end{vmatrix}$$
 (11)