Chương 5 Mạch tuần tự

Nội dung chương 5

- Khái niệm chung
- Các loại Flip Flop
- Chuyển đổi giữa các loại FF
- Bộ đếm
- Thanh ghi dịch

Khái niệm chung

- Mạch tuần tự: các ngõ ra ở trạng thái kế tiếp vừa phụ thuộc vào trạng thái hiện tại của ngõ vào, vừa phụ thuộc trạng thái hiện tại của ngõ ra
- Khi các ngõ vào thay đổi trạng thái, các ngõ ra không thay đổi ngay mà chờ đến khi có xung đồng hồ
- Mạch tuần tự có tính đồng bộ và tính nhớ → cơ sở để thiết kế các bộ nhớ
- Cơ sở thiết kế mạch tuần tự là dựa trên Flip Flop

Flip – Flop (FF)

- FF là mạch dao động đa hài hai trạng thái bền, được xây dựng trên cơ sở các cổng logic và hoạt động theo một bảng trạng thái cho trước
- Một FF thường có:
 - Một hoặc hai ngõ vào dữ liệu, một ngõ vào xung đồng hồ
 - Hai ngỗ ra, thường ký hiệu Q (ngỗ ra chính) và \bar{Q} (ngỗ ra phụ)
- Phân loại FF:
 - FF không có tín hiệu điều khiển (không đồng bộ): Chốt (latch)
 - FF có tín hiệu điều khiển (đồng bộ): Chốt (latch) và FF

Flip – Flop không đồng bộ

 Chốt RS dùng cổng NOR: ngõ vào R và S tác động mức cao

S	R	Q
0	0	Q^0
0	1	0
1	0	1
1	1	Cấm

- S = 0, R = 1 => Q = 0 hồi tiếp về cổng NOR 2 nên \overline{Q} = 1
- S = 1, R = 0 => \overline{Q} = 0 hồi tiếp về cổng NOR 1 nên Q = 1
- S = 1, $R = 1 = > Q = \overline{Q} = 0$: Trạng thái cấm
- S = R = 0: giữ nguyên trạng thái trước đó
 - Nếu trạng thái trước đó có $Q=0, \bar{Q}=1$ hồi tiếp về cổng NOR 1=>Q=0, chốt RS giữ nguyên trạng thái cũ
 - Nếu trạng thái trước đó c
ớ $Q=1,\, \overline{Q}=0$ hồi tiếp về cổng NOR 2 => $\overline{Q}=0,\, Q=1$
 chốt RS giữ nguyên trạng thái cũ

Flip – Flop không đồng bộ (tt)

 Chốt RS dùng cổng NAND: ngõ vào R và S tác động mức thấp

S	R	Q
0	0	Cấm
0	1	1
1	0	0
1	1	Q^0

- S = 0, $R = 1 \Longrightarrow Q = 1$ hồi tiếp về cổng NAND 2 nên $\overline{Q} = 0$
- S = 1, $R = 0 \Rightarrow \overline{Q} = 1$ hồi tiếp về cổng NAND 1 nên Q = 0
- $S = R = 0 \Longrightarrow Q = \overline{Q} = 1$: Trạng thái cấm
- S = R = 1: giữ nguyên trạng thái trước đó
 - Nếu trạng thái trước đó có $Q=1, \bar{Q}=0$ hồi tiếp về cổng NAND 1=>Q=1, chốt RS giữ nguyên trạng thái cũ
 - Nếu trạng thái trước đó có $Q=0, \bar{Q}=1$ hồi tiếp về cổng NAND $2=>\bar{Q}=1, Q=0$, chốt RS giữ nguyên trạng thái cũ

Flip – Flop không đồng bộ (tt)

 Chốt RS dùng cổng NAND: ngõ vào R và S tác động mức cao

S	R	Q
0	0	Q^0
0	1	0
1	0	1
1	1	<u>Cấm</u>

(Lưu ý: Sơ đồ này được sử dụng cho các phân tích chốt RS đồng bộ và RSFF về sau)

- Ck tác động mức 1
 Ck tác động mức 0
 Chốt (latch)
- Ck tác động sườn lên
- Ck tác động sườn xuống FF

• Chốt RS: Ck tác động mức 1

S	R	Ck	Q
X	X	0	Q^0
0	0	1	Q^0
0	1	1	0
1	0	1	1
1	1	1	X

• Chốt RS: Ck tác động mức 0

S	R	Ck	Q
X	X	1	Q^0
0	0	0	Q^0
0	1	0	0
1	0	0	1
1	1	0	X

- Ck tác động theo sườn (lên, xuống)
 - RSFF
 - JKFF
 - TFF
 - DFF

RSFF

• Kí hiệu:

• Bảng trạng thái:

Sn	R^n	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	X

S^n	R ⁿ	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

RSFF (tt)

Phương trình logic:

$$Q^{n+1} = S^n + \overline{R^n}Q^n$$
$$(S^n.R^n = 0)$$

 Dạng sóng: (Ck tác động sườn xuống)

JKFF

• Cải tiến từ RSFF

• Bảng trạng thái:

J^n	K ⁿ	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	$\overline{Q^n}$

• Kí hiệu:

J^n	K ⁿ	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

JKFF (tt)

• Phương trình logic:

$$Q^{n+1} = J^n \overline{Q^n} + \overline{K^n} Q^n$$

Dạng sóng: (Ck tác động sườn xuống)

TEE

• Kí hiệu:

Phương trình logic:

$$Q^{n+1} = \overline{T^n}Q^n + T^n\overline{Q^n}$$
$$Q^{n+1} = T^n \oplus Q^n$$

Bảng trạng thái:

T^n	Q^{n+1}
0	Q^n
1	$\overline{Q_n}$

T^n	Q^n	Q^{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

TFF (tt)

Dạng sóng: (Ck tác động sườn xuống)

Khi ngõ vào T luôn bằng 1:

- Vậy khi T = 1, TFF đóng vai trò mạch chia tần số xung đồng hồ
- Nếu ghép n TFF với nhau và các ngõ vào T luôn bằng 1 ta có $f_Q = \frac{f_{Ck}}{2^n}$

DFF

• Kí hiệu:

• Bảng trạng thái:

D^n	Q^{n+1}
0	0
1	1

D^n	Q^n	Q^{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

• Phương trình logic: $Q^{n+1} = D^n$

DFF (tt)

• Dạng sóng:

- Úng dụng:
 - Lưu trữ dự liệu để chế tạo bộ nhớ và thanh ghi
 - Chia tần số nếu mắc hồi tiếp ngõ ra \overline{Q} về ngõ vào D

- Biến đổi trực tiếp: dùng các tiên đề và định lý của đại số Boole
- Dùng bảng đầu vào kích và bảng Karnaugh

- Biến đổi trực tiếp
 - TFF \rightarrow JKFF

TFF có phương trình:
$$Q^{n+1} = T^n \oplus Q^n$$

JKFF có phương trình: $Q^{n+1} = J^n \overline{Q^n} + \overline{K^n} Q^n$
 $\Rightarrow T^n \oplus Q^n = J^n \overline{Q^n} + \overline{K^n} Q^n$
 $T^n = Q^n \oplus (J^n \overline{Q^n} + \overline{K^n} Q^n)$
 $= Q^n (J^n \overline{Q^n} + \overline{K^n} Q^n) + \overline{Q^n} (J^n \overline{Q^n} + \overline{K^n} Q^n)$
 $= Q^n (J^n + Q^n)(K^n + \overline{Q^n}) + \overline{Q^n} J^n$
 $= Q^n J^n K^n + Q^n K^n + \overline{Q^n} J^n$
 $= Q^n K^n + \overline{Q^n} J^n$

ch Ck

 $\overline{\varrho}$

- Biến đổi trực tiếp
 - TFF \rightarrow DFF $T^n = D^n \oplus Q^n$

• TFF \rightarrow RSFF $T^n = Q^n R^n + \overline{Q^n} S^n$

- Biến đổi trực tiếp
 - DFF \rightarrow TFF $D^n = T^n \oplus Q^n$

■ DFF \rightarrow RSFF $D^n = S^n + R^n \overline{Q^n}$

- Biến đổi trực tiếp
 - DFF \rightarrow JKFF $D^n = I^n \overline{Q^n} + \overline{K^n} Q^n$

- Biến đổi trực tiếp
 - RSFF → TFF $S^{n} = T^{n} \overline{Q^{n}}$ $R^{n} = T^{n} Q^{n}$

- Biến đổi trực tiếp
 - RSFF \rightarrow JKFF

$$S^n = J^n \overline{Q^n}$$
$$R^n = K^n Q^n$$

- Biến đổi trực tiếp
 - JKFF \rightarrow TFF $J^n = T^n$ $K^n = T^n$

JKFF → DFF $J^{n} = D^{n}$ $K^{n} = \overline{D^{n}}$

- $\begin{array}{c|c} \mathbf{D} & \mathbf{J} & \mathcal{Q} \\ \mathbf{C}\mathbf{k} & \overline{\mathcal{Q}} \end{array}$
- JKFF → RSFF $J^{n} = S^{n}$ $K^{n} = R^{n}$

- Dùng bảng đầu vào kích và bảng Karnaugh
 - Bảng đầu vào kích: Điều kiện ngõ vào để đạt yêu cầu thay đổi ở ngõ ra

Q^n	Q^{n+1}	S^n	R^n	J^n	K ⁿ	T^n	D^n
0	0	0	X	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	X	1	1	0
1	1	X	0	X	0	0	1

- Dùng bảng đầu vào kích và bảng Karnaugh
 - Ví dụ: JKFF chuyển đổi thành RSFF Ta cần tìm các hàm: $J^n = f(S^n, R^n, Q^n)$, $K^n = f(S^n, R^n, Q^n)$ Dựa vào bảng đầu vào kích, lập bảng Karnaugh:

$$J^n = S^n, K^n = R^n$$

Bộ đếm

- Xây dựng dựa trên cơ sở các Flip Flop ghép với nhau
- Phân loại:
 - Theo hệ đếm: bộ đếm thập phân, bộ đếm nhị phân
 - Theo hướng đếm: mạch đếm lên, mạch đếm xuống, mạch đếm vòng
 - Theo tín hiệu chuyển: bộ đếm nối tiếp, bộ đếm song song, bộ đếm hỗn hợp
 - Chức năng điều khiển: bộ đếm đồng bộ, bộ đếm không đồng bộ

Bộ đếm nối tiếp

- Bộ đếm nối tiếp: bộ đếm trong đó các TFF hoặc JKFF giữ chức năng của TFF được ghép nối tiếp với nhau và hoạt động theo một loại mã duy nhất là BCD 8421
- Phân loại:
 - Đếm lên
 - Đếm xuống
 - Đếm lên/xuống
 - Modulo M
- Ưu điểm: đơn giản, dễ thiết kế
- Nhược điểm: với dung lượng lớn, sử dụng nhiều FF thì thời gian trễ tích lũy lớn → kết quả sai

Bộ đếm nối tiếp - Đếm lên

- Bộ đếm lên có nội dung đếm tăng dần
- T/(J, K) luôn luôn ở mức logic 1 và ngõ ra của TFF/JKFF đứng trước nối với ngõ vào Ck của TFF/JKFF đứng sau
 - Ck tác động sườn xuống: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = Q_i$
 - Ck tác động sườn lên: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = \overline{Q_i}$

Bộ đếm nối tiếp - Đếm lên (tt)

- Xét mạch đếm nối tiếp, đếm 4, đếm lên, dùng TFF:
 - Trường hợp Ck tác động theo sườn xuống:

Clr (Clear) là ngõ vào xóa của TFF; với Clr tác động mức thấp thì khi Clr = 0 thì ngõ ra Q của FF bị xóa về 0

Bộ đếm nối tiếp - Đếm lên (tt)

- Giản đồ thời gian:

– Bảng trạng thái:

Xung vào	Trạng thái hiện tại		n tại Trạng thái kế tiếp	
Ck	Q_2	Q_1	Q_2	Q_1
1	0	0	0	1
2	0	1	1	0
3	1	0	1	1
4	1	1	0	0

Đếm lên (tt)

Trường hợp Ck tác động theo sườn lên:

- Giản đồ thời gian:

Bộ đếm nối tiếp - Đếm lên (tt)

- Bảng trạng thái:

Xung vào	Trạng thái hiện tại		Trạng thái kế tiế	
Ck	Q_2	Q_1	Q_2	Q_1
1	0	1	1	0
2	1	0	1	1
3	1	1	0	0
4	0	0	0	1

Bộ đếm nối tiếp - Đếm xuống

- Bộ đếm xuống có nội dung đếm giảm dần
- T/(J, K) luôn luôn ở mức logic 1 và ngõ ra của TFF/JKFF đứng trước nối với ngõ vào Ck của TFF/JKFF đứng sau
 - Ck tác động sườn xuống: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = \overline{Q_i}$
 - Ck tác động sườn lên: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = Q_i$

Bộ đếm nối tiếp - Đếm xuống (tt)

- Xét mạch đếm nối tiếp, đếm 4, đếm xuống, dùng TFF:
 - Trường hợp Ck tác động theo sườn xuống:

Bảng trạng thái:

Xung vào	Trạng th	ái hiện tại	Trạng th	ái kế tiếp
Ck	Q_2	Q_1	Q_2	Q_1
1	0	0	1	1
2	1	1	1	0
3	1	0	0	1
4	0	1	0	0

Bộ đếm nối tiếp - Đếm xuống (tt)

Trường hợp Ck tác động theo sườn lên:

Bảng trạng thái:

Xung vào	Trạng th	ái hiện tại	Trạng th	ái kế tiếp	
Ck	Q_2	Q_1	Q_2	Q_1	
1	1	1	1	0	
2	1	0	0	1	
3	0	1	0	0	
4	0	0	1	1	

Bộ đếm nối tiếp - Đếm lên/xuống

- Bộ đếm lên/xuống vừa có thể đếm lên vừa có thể đếm xuống tùy thuộc vào tín hiệu điều khiển
- Gọi X là tín hiệu điều khiến, ta quy ước:
 - Nếu X = 0 thì đếm lên
 - Nếu X = 1 thì đếm xuống
- Trường hợp Ck tác động sườn xuống:

$$Ck_{i+1} = \bar{X}Q_i + X\overline{Q_i} = X \oplus Q_i$$

Trường hợp Ck tác động sườn lên:

$$Ck_{i+1} = \overline{X}\overline{Q_i} + XQ_i = \overline{X \oplus Q_i}$$

Bộ đếm nối tiếp - Đếm modulo M

- Bộ đếm modulo M là bộ đếm nối tiếp, theo mã BCD 8421, có dung lượng đếm khác 2ⁿ
- Xét mạch đếm 5, đếm lên, đếm nối tiếp: cần dùng 3 FF
 - Bảng trạng thái:

Xung vào	Trạng thái hiện tại			Trạng thái kế tiếp			
Ck	Q_3	Q_3 Q_2 Q_1		Q_3	Q_2	Q_1	
1	0	0	0	0	0	1	
2	0	0	1	0	1	0	
3	0	1	0	0	1	1	
4	0	1	1	1	0	0	
5	1	0	0	1/0	0	1/0	

Bộ đếm nối tiếp - Đếm modulo M (tt)

- Vấn đề đặt ra: Sau xung Ck thứ 5, ta tìm cách đưa tổ hợp 101
 về 000 để mạch thực hiện đếm lại từ tổ hợp ban đầu
- Tổ hợp 101 có 2 ngõ ra Q₁ và Q₃ đồng thời bằng 1 (khác với các tổ hợp trước đó) → dấu hiệu nhận biết để xóa bộ đếm về 000
- Để xóa bộ đếm về 000:
 - Đối với FF có ngõ vào Clr tác động mức 0 thì ta dùng cổng NAND 2 ngõ vào
 - Đối với FF có ngõ vào Clr tác động mức 1 thì ta dùng cổng AND 2 ngõ vào

Bộ đếm nối tiếp - Đếm modulo M (tt)

• Sơ đồ mạch:

• Giản đồ thời gian:

Bộ đếm song song

- Bộ đếm trong đó các FF mắc song song với nhau
- Các ngõ ra thay đổi trạng thái đồng thời dưới sự điều khiển của tín hiệu Ck → còn gọi là bộ đếm đồng bộ
- Sử dụng bất kỳ loại FF và theo bất kỳ quy luật đếm
- Không phụ thuộc tín hiệu Ck tác động sườn lên, sườn xuống, mức 0 hay mức 1
- Thiết kế dựa trên bảng đầu vào kích của FF

- Xét mạch đếm đồng bộ, đếm 5, đếm lên theo mã BCD 8421 dùng JKFF: cần dùng 3 JKFF
 - Bảng trạng thái:

Xung vào	Trạng thái hiện tại			Trạng thái kế tiếp			
Ck	Q_3 Q_2 Q_1		Q_3	Q_2	Q_1		
1	0	0	0	0	0	1	
2	0	0	1	0	1	0	
3	0	1	0	0	1	1	
4	0	1	1	1	0	0	
5	1	0	0	0	0	0	

Bảng đầu vào kích:

Xung	Trạng thái hiện tại		Trạng thái kế tiếp									
vào	Q_3	Q_2	\mathbf{Q}_{1}	Q_3	Q_2	\mathbf{Q}_1	J_3	K_3	J_2	K_2	J_1	$\mathbf{K_1}$
1	0	0	0	0	0	1	0	X	0	X	1	X
2	0	0	1	0	1	0	0	X	1	X	X	1
3	0	1	0	0	1	1	0	X	X	0	1	X
4	0	1	1	1	0	0	1	X	X	1	X	1
5	1	0	0	0	0	0	X	1	0	X	0	X

Lập bảng Karnaugh để tối thiểu hóa:

$$K_{2}$$
 $Q_{3}Q_{2}$
 Q_{1} 00 01 11 10

 0 x 0 x 0

 1 x 1 x x
 $K_{2} = Q_{1}$

Lập bảng Karnaugh để tối thiểu hóa:

Sơ đồ logic:

Thanh ghi dịch chuyển

- Xây dựng dựa trên cơ sở các DFF hoặc các FF khác thực hiện chức năng của DFF
- Mỗi DFF lưu trữ 1 bit dữ liệu
- Để tạo thanh ghi nhiều bit, ghép các DFF lại với nhau theo quy luật:
 - Ngõ ra của DFF đứng trước được nối với ngõ vào dữ liệu của DFF sau $(D_{i+1} = Q_i)$: thanh ghi có khả năng dịch phải
 - Ngõ ra của DFF đứng sau được nối với ngõ vào dữ liệu của DFF trước ($D_i = Q_{i+1}$): thanh ghi có khả năng dịch trái

- Phân loại:
 - Theo hướng dịch chuyển dữ liệu:
 - Dịch trái
 - Dịch phải
 - Vừa dịch phải vừa dịch trái
 - Theo ngõ vào dữ liệu:
 - Ngõ vào dữ liệu nối tiếp
 - Ngõ vào dữ liệu song song
 - Theo ngô ra:
 - Ngõ ra nối tiếp
 - Ngõ ra song song
 - Ngõ ra vừa nối tiếp vừa song song

- Nhập dữ liệu vào FF:
 - Dữ liệu được nhập vào FF bằng chân Preset (Pr)
 - Khi Load = 0: Pr = Clr = 1 (Chân Clr để trống ứng với mức logic 1)
 - → FF tự do, dữ liệu không được nhập vào FF
 - Khi Load = 1: $Pr = \overline{A}$
 - Giả sử ban đầu: Q = 0
 - Nếu A = $0 \rightarrow Pr = 1$, $Clr = 1 \rightarrow Q = Q^0 = 0$
 - Nếu A = 1 \rightarrow Pr = 0, Clr = 1 \rightarrow Q = 1
 - Vậy Q = A, dữ liệu được nhập vào FF
 - Chú ý: phương pháp này đòi hỏi trước khi nhập phải xóa FF về 0

• Xét thanh ghi 4 bit dịch phải dùng JKFF:

Trong đó:

- -DSR (Data Shift Right): ngõ vào dữ liệu nối tiếp
- $-Q_1$, Q_2 , Q_3 , Q_4 : các ngõ ra song song

- Hoạt động của mạch:
 - Giả sử ban đầu Load = 1 → A, B, C, D được nhập vào thanh ghi dịch $Q_1 = A$, $Q_2 = B$, $Q_3 = C$, $Q_4 = D$
 - Xét FF_1 : $D = DSR_1$, $Q_1 = A$
 - Nếu $DSR_1 = 0 \rightarrow Q = 0$
 - Nếu $DSR_1 = 1 \rightarrow Q = 1$
 - Như vậy sau một xung Ck tác động sườn xuống thì $Q_1 = DSR_1$
 - Lúc đó tại FF_2 , FF_3 , FF_3 : $Q_2 = A$, $Q_3 = B$, $Q_4 = C$
 - Như vậy, sau khi Ck tác động sườn xuống, nội dung trong thanh ghi được dời sang phải 1 bit
 - Sau 4 xung, dữ liệu trong thanh ghi được xuất ra ngoài vá nội dung DFF
 được thay bằng dữ liệu từ ngõ vào DSR₁, DSR₂, DSR₃, DSR₄

• Bảng trạng thái :

Xung	T	rạng tha	ái hiện t	ại	Trạng thái kế				
vào	\mathbf{Q}_1	Q_2	Q_3	Q_4	\mathbf{Q}_1	Q_2	Q_3	\mathbf{Q}_{4}	
1	Α	В	О	D	DSR_1	Α	В	C	
2	DSR ₁	A	В	С	DSR ₂	DSR ₁	A	В	
3	DSR ₂	DSR_1	A	В	DSR ₃	DSR_2	DSR_1	A	
4	DSR ₃	DSR ₂	DSR ₁	A	DSR ₄	DSR ₃	DSR ₂	DSR ₁	

• Trường hợp ngõ ra $\overline{Q_4}$ bằng ngõ vào dữ liệu nối tiếp DSR: Bảng trạng thái:

Xung	Т	rạng tha	ái hiện t	ại				
vào	Q_1	Q_2	Q_3	Q_4	Q_1	Q_2	thái kế Q ₃	Q_4
1	0	0	0	0	1	0	0	0
2	1	0	0	0	1	1	0	0
3	1	1	0	0	1	1	1	0
4	1	1	1	0	1	1	1	1
5	1	1	1	1	0	1	1	1
6	0	1	1	1	0	0	1	1
7	0	0	1	1	0	0	0	1
8	0	0	0	1	0	0	0	0

Bộ nhớ

- Tế bào nhớ: thiết bị hay mạch điện tử dùng để lưu trữ 1 bit
- Từ nhớ (word): nhóm các bit ở trong một bộ nhớ, kích thước từ 8 – 64 bit
- Dung lượng bộ nhớ: khả năng lưu trữ của bộ nhớ
 (Kilo, Mega, Giga, Tera)
- Địa chỉ: dùng để xác đinh các vùng của các từ trong bộ nhớ, một bộ nhớ gồm 2^n từ thì cần n đường địa chỉ
 - Địa chỉ theo từ (word):

Địa chỉ theo byte:

- Địa chỉ byte kiểu Big endian và Little endian:
 - Big endian: Byte có trọng số lớn nhất (MSB) trong word lưu ở địa chỉ thấp nhất
 - Little endian: Byte có trọng số nhỏ nhất (LSB) trong word lưu ở địa chỉ thấp nhất

- Hoạt động đọc:
 - Đọc là xuất dữ liệu từ bộ nhớ ra ngoài
 - Để đọc nội dung một ô nhớ cần thực hiện:
 - Đưa địa chỉ cần đọc vào các đường địa chỉ
 - Tích cực tín hiệu điều khiển đọc
- Hoạt động ghi:
 - Ghi là lưu dữ liệu từ bên ngoài vào bên trong bộ nhớ
 - Để ghi dữ liệu vào một ô nhớ cần thực hiện:
 - Đưa địa chỉ cần ghi vào các đường địa chỉ
 - Đưa dữ liệu cần ghi vào các đường dữ liệu
 - Tích cực tín hiệu điều khiển ghi

- Phân loại:
 - ROM (Read Only Memory):
 - Bộ nhớ chỉ đọc, không cho phép ghi
 - Dữ liệu không mất khi mất điện áp cung cấp
 - MROM (Mask ROM): được lập trình bởi nhà sản xuất trong quá trình sản xuất, không phục hồi được nếu chương trình bị sai hỏng
 - PROM (Programmable ROM): cho phép lập trình bằng thiết bị đặc biệt và không thể xóa được
 - EPROM (Erasable Programmable ROM): có thể xóa (bằng tia cực tím)
 và lập trình lại
 - EPROM (Electrically Erasable Programmable ROM): có thể xóa bằng điện và lập trình lại

- RAM (Random Access Memory)
 - Bộ nhớ truy xuất ngẫu nhiên, đoc viết tùy ý
 - Dữ liệu khi mất điện áp cung cấp
- SRAM (Static RAM)
 - Lưu trữ dữ liệu cho đến khi mất điện áp cung cấp mà không cần làm tươi dữ liệu
- DRAM (Dynamic RAM)
 - Có thể mất dữ liệu khi điện áp cung cấp chưa bị mất, nên cần có cơ chế làm tươi dữ liệu
 - Tốc độ truy xuất chậm hơn SRAM nhưng giá thành thấp hơn