Explanation to Hexapod Project

- 1. COXA Angle: $\alpha = \tan^{-1}(y/x)$
- 2. Horizontal distance from femur Joint $X'=\sqrt{x^2+y^2}$ -L₁

Vertical distance

$$Z'=z$$

3. Distance from femur base to End Effector D

$$D=\sqrt{x'^2+z'^2}$$

- 4. Tibia angle :Cos(Y)= $\frac{D^2-L_2^2+L_3^2}{2L_2L_3}$, Y=Cos⁻¹ ($\frac{D^2-L_2^2+L_3^2}{2L_2L_3}$)
- femur Angle(β): θ-φ $\theta \text{ (angle between the line connecting femur to foot and the horizontal)} = tan^{-1}(Z^2/X^2)$ $\varphi \text{(angle between femur and that line)} = cos^{-1}\{(L_2^2 D^2 L_3^2)/2DL_2\}$

Testing and Validation

Test 1: Enter end-effector's X position: 10

Enter end-effector's Y position: 15

Enter end-effector's Z position: 18

Calculated Joint Angles (in degrees):

Coxa (
$$\alpha$$
) = 56.31°

Femur (
$$\beta$$
) = 20.17°

Tibia
$$(\Upsilon) = 55.78^{\circ}$$

Test 2. Enter end-effector's X position: 1

Enter end-effector's Y position: 0.5

Enter end-effector's Z position: 0.3

ERROR!

Traceback (most recent call last):

File "<main.py>", line 49, in <module>

File "<main.py>", line 36, in end_effector_pos_user_input

File "<main.py>", line 19, in test_inverse_kinematics

ValueError: math domain error

Test 3. Enter end-effector's X position: 5

Enter end-effector's Y position: 10

Enter end-effector's Z position: 14.5

Calculated Joint Angles (in degrees):

Coxa (
$$\alpha$$
) = 63.43 $^{\circ}$

Femur $(\beta) = -0.03^{\circ}$

Tibia $(\Upsilon) = 104.78^{\circ}$

Test 4. Enter end-effector's X position: 10

Enter end-effector's Y position: 20

Enter end-effector's Z position: 30

Unreachable position

Test 5. Enter end-effector's X position: 10

Enter end-effector's Y position: 5

Enter end-effector's Z position: -35

Unreachable position