Machine Learning for IoT

Part-I: Data Analysis

Objectives

- Review visualization techniques to understand the structure of data
- Learn to identify useful trends to guide the training process
- Understand how to prepare and organize data for training

Contents

- Use Case I: Temperature & Humidity Forecasting
 - Data Visualization
 - Data Imputation
- Use Case II: Predictive Maintenance
 - Data Visualization
 - Data Cleaning
 - Data Preparation

Temperature & Humidity forecasting

Applications

- Precision Agriculture
- Smart Buildings (HVAC)
- Environmental protection

Dataset:

- One day records from DHT-11 sensor [Kaggle]
- Challenge: Missing data due to network/sensors failures

ML4IoT

Part-I: Data Analysis

Temperature & Humidity forecasting

• Notebook: Kaggle DHT-11

Predictive Maintenance

• Design systems able to identify issues before the equipment or the machine fails

Windmill Disaster

Why predictive maintenance?

Reactive maintenance

- Replace the machine after the failure or damage (e.g. battery car)
- × Replacement is more expensive than fixing
- × Failures can be dangerous
- × Maintenance is also costly and dangerous

Scheduled maintenance

- Do maintenance at regular rate (e.g. change car's oil every 5000 miles)
- × Unnecessary maintenance can be wasteful
- × May not eliminate all failures

Predictive maintenance

- Forecast failures before they arise
- Challenge: difficult to make accurate forecasts for complex equipment
- ✓ Pros: Increase reliability, save costs, improve reputation

The cost of a misprediction

Towards predictive maintenance

- How it works:
 - Monitor the system
 - Detect failure indicators
 - Identify components that need to be fixed
- Steps:
 - Data Analysis
 - Model Building
 - Model Validation
 - Model Deployment
 - Real-time Analytics integrated with maintenance

A case study

- Turbofan Engine Degradation Simulation Data Set
 - Sensor measurements collected on a fleet of aircraft engines
- Goal: Estimate the Remaining Useful Lifetime (RUL)
- How: Make predictions from the data collected by multiple sensors that monitor the turbofan engine
- Why we need ML:
 - Number of variables too high
 - System too complex to know the governing equations
 - → We need a black-box model

ML4IoT Part-I: Data Analysis 10

Predictive Maintenance

• Notebook: Turbofan Engine Degradation Simulation