Índice

1.	Estructura de la materia	2
2.	Nomenclatura	3
3.	Soluciones	5
4.	Gases ideales	8
5.	Hidroestática	8
6.	Balanceo de ecuaciones6.1. Método algebraico6.2. Redox	9 9
7.	Estequiometría	11
8.	Calorimetría	13
9.	Química nuclear	15
10.	Teoría de enlaces	16
11.	Química orgánica	17

Última actualización: 12 de julio de 2024

1. Estructura de la materia

- 1) Tengo 8 moles de FeO (óxido de hierro) ¿cuánto pesan?
- 2) Tengo 40 moles de agua (H₂O), ¿cuánto pesan?
- 3) Tengo medio mol de óxido de azufre (S₂O), ¿cuánto pesa?
- 4) ¿Cuántos moles son 150 gramos de gas oxígeno (O₂)?
- 5) ¿Cuántos moles son 400 gramos de nitrato de potasio (KNO₃)?
- 6) ¿Cuántos moles son 20 gramos de gas nitrógeno (N₂)?

Masa atómica relativa

- 1) Se tiene en la naturaleza ⁶³Cu y ⁶⁵Cu. El más ligero representa el %69,17 de los átomos de cobre encontrados en la naturaleza y el resto pertenece al más pesado. ¿Cuál es la MAR?
- 2) Se tiene en la naturaleza ²³⁵U y ²³⁸U. Se sabe que la concentración del primer isótopo es del 95 % y la del segundo del 5 %. Calcular la masa atómica relativa.
- 3) Calcular la MAR sabiendo que se tienen dos isótopos de cloro en la naturaleza: Cl³⁵ y Cl³⁷. Su porcentaje de aparición es 75,7 % y 24,3 % respectivamente.
- 4) Sabiendo que la MAR del Cobre es 63,54 y que tiene dos isótopos en la naturaleza, Cu⁶³ y Cu⁶⁵, calcular el porcentaje de aparición de cada uno.

Uniones entre átomos

Configuración electrónica

2. Nomenclatura

1) Nombrar los siguientes compuestos:

a.	LiH	k.	FeH_2
b.	NaH	1.	CoH_3
c.	KH	m.	NiH_2
d.	MgH_2	n.	PbH ₄
e.	CaH ₂	ñ.	H_2O
f.	AlH_3	0.	NH_3
g.	TiH_2	p.	CH_4
h.	VH_3	q.	PH_3
i.	CrH ₂	r.	H_2S
i.	MnH	S.	HF

2) Nombrar los siguientes compuestos por todas sus nomenclaturas:

a.	Cl_2O_7	k.	AuOH
b.	HF (aq)	1.	HClO ₃
c.	FeCl ₂	m.	HClO ₄
d.	CO	n.	HClO
e.	КОН	ñ.	HClO ₂
f.	Ca(OH) ₂	0.	H_2SO_4
g.	Fe(OH) ₂	p.	H_2SO_3
h.	Fe(OH) ₃	q.	$Co(ClO_4)_2$
i.	CuOH	r.	$CoSO_4$
j.	$Au(OH)_3$	S.	$Co_2(SO_4)_3$

3) Hacer la fórmula de Lewis y la desarrollada (cuando corresponda) de los siguientes compuestos. Además escribir su fórmula, decir qué tipo de compuesto es, decir cuántos electrones tiene en su capa de valencia cada elemento y el número de oxidación de cada elemento.

a.	Gas cloro	j.	Ácido sulfuroso	q.	Óxido bromoso
b.	Sulfuro de magnesio	k.	Ozono	r.	Monóxido de azufre
c.	Cloruro de calcio	1.	Ácido perclórico	s.	Sulfito cobáltico
d.	Sulfuro férrico	m.	Nitrato de potasio	t.	Selenato aúrico
e.	Heptóxido dibrómico,	n.	Nitrato de magnesio	u.	Hidróxido de plata
f.	Óxido de cloro (VII)	ñ.	Carbonato de calcio	v.	Ácido clórico
g.	Hidróxido cobáltico	ñ.	Sulfato férrico	w.	Ácido brómico
h.	Hidróxido de aluminio	ο.	Gas nitrógeno	х.	Ácido sulfúrico
i.	Ácido sulfúrico	p.	Hidróxido cúprico	y.	hidróxido de plata

4) Nombrar los siguientes compuestos:

- a. H₂
- b. NaCl
- c. Na₂O
- d. KNO₂
- e. $Fe_2(SO_2)_3$
- f. MnO

- g. H_2SO_4
- h. $Au(OH)_3$
- i. HNO₃
- j. O_3
- k. Cu₂O
- $l. \quad Br_2O$

- m. NaBrO
- n. Br_2O_7
- ñ. NaBrO₄
- o. Fe_2S_3
- p. $Co_2(SeO_4)_3$

3. Soluciones

Ejercicios básicos de soluciones:

- 1) Se tienen 1000 g de agua salada, se sabe que hay 50 g de sal. Calcular el $\frac{\%m}{m}$ de la solución.
- 2) Se tienen 2 kg de agua, al cual se le agregan 0,5 kg de azúcar.
 - a. Calcular la masa de la solución.
 - b. Calcular el $\frac{\%m}{m}$ de la solución.
- 3) Se tienen 80 g de nitrato de sodio disueltos en 1 kg de agua. Calcular el $\frac{\%m}{v}$ de la solución.
- 4) Se tienen 2 kg de nitrato de potasio disuelto en 10 l de glicerol.
 - a. Nombrar cuál es la solución, cuál el solvente y cuál el soluto.
 - b. Calcular el $\frac{\%m}{v}$ de la solución.
- 5) Se tienen 8 l de agua y 2 l de alcohol etílico.
 - a. Nombrar cuál es la solución, cuál el solvente y cuál el soluto; además decir cuál es el volumen de cada uno.
 - b. Calcular el $\frac{\%v}{v}$ de la solución.
- 6) Se tienen 8 l de agua y 12 l de alcohol metílico.
 - a. Nombrar cuál es la solución, cuál el solvente y cuál el soluto; además decir cuál es el volumen de cada uno.
 - b. Calcular el $\frac{\%v}{v}$ de la solución.
- 7) Se tiene un lingote de bronce de 800 g. De esos 800 g, hay 140 g de estaño. Decir cuál es la solución, cuál el soluto y cuál el solvente. ¿Cuál es el % m/m?
- 8) Se tienen 2 litros de agua. La masa de la solución agua salada es de 2,2 kg. Cuál es el %m/m?
- 9) Se tienen 200 g de azúcar disueltos en 1,5 kg de alcohol etílico. Cuál es el %m/m?
- 10) Un lingote de oro de 12,4kg dice tener 0,2 %m/m de plata. Cuál es la masa de plata que hay en el lingote?
- Tengo una botella de 750 ml de vodka, se sabe que tiene medio litro de agua. Cuál es el % V/V del alcohol etílico?
- 12) Se tiene una botella de vino de 2,25 l. Dice tener un %V/V de 12,5 %. Cuál es el volumen de soluto y cuál el de solvente?
- 13) Se tienen 0,3 kg de azúcar disueltos en 500 ml de agua. Calcular %m/m y %m/V.
- 14) Hay 4.500 cm³ de agua salada. Se sabe que en ese agua salada hay 250 g de NaCl. Calcular la M de la solución.
- 15) Se tiene un lingote de latón, que contiene 5.600 g de cobre y 2.400 g de zinc. Calcular la m de la solución.

5

- Se tiene una solución formada por 8 l de agua con 2 l alcohol ($\delta_{C_2H_6O} = 0.79g/ml$). Calcular %m/m, %V/V, %m/V M y m.
- 17) Se tienen 3 litros de una solución de agua salada ($\delta = 1,05$ g/ml). Sabiendo que hay 200g de sal disueltos, calcular %m/m y %m/v.
- 18) Se tienen 100 ml de una solución 0,2m de NaCl ($\delta = 1,2$ g/ml). Calcular masa de soluto.

pН

1) Se tiene una solución de 3 litros con 5 mg de HNO₃. Calcular el pH de la solución.

1 mol de HNO₃ -
$$63g$$

 79.3×10^{-6} - $0.005g$

$$[H^+] = \frac{79.3 \times 10^{-6}}{3l} = 26.4 \times 10^{-6}$$

$$pH = -\log([H^+]) = 4.57$$

2) Se tiene una solución de medio litro con 30 mg de HClO₃. Calcular el pH de la solución.

1 mol de
$$HClO_3 - 84,4g$$

 $3,55 \times 10^{-4} - 0,03g$

$$[H^+] = \frac{3,55 \times 10^{-4}}{0,5l} = 7,1 \times 10^{-4}$$

$$pH = -\log([H^+]) = 3.15$$

3) Se tiene una solución de 300 ml con 5 mg de ácido sulfhídrico (H₂S). Calcular su pH y pOH.

1 mol de
$$H_2S - 34g$$

 $1.47 \times 10^{-4} - 0.005g$

$$[H^+] = \frac{2 \cdot 1,47 \times 10^{-4}}{0.3l} = 9,8 \times 10^{-4}$$

$$pH = -\log([H^+]) = 3.01$$

4) Se tiene una solución de 750 ml con 10 mg de Co(OH)₃. Calcular su pH y pOH.

1 mol de
$$Co(OH)_3 - 110g$$

 $9.09 \times 10^{-5} - 0.01g$

$$[(OH)^{-}] = \frac{3 \cdot 9,09 \times 10^{-5}}{0,75l} = 3,63 \times 10^{-4}$$

$$pOH = -\log([(OH)^{-}]) = 3,44 \Rightarrow pH = 10,56$$

5) Se tiene una solución de 100 l con 1 mg de HI. Calcular su pH y pOH.

1 mol de HI -
$$128g$$

7,81 × 10^{-6} mol de HI - 0,001 g

4. Gases ideales

- 1) Se tiene en un contenedor de 5 litros de volumen un gas a 20°C que está a una presión de 14 atm. El contenedor se calienta hasta 25°C y se dilata medio litro. Cuál es la presión final?
- 2) Se tienen 800g de O₂, en un recipiente de 2l, a una presión de 6 atm. Calcular la temperatura del gas.
- 3) La presión final es la mitad de la inicial. Sabiendo que la temperatura inicial es 27 °C y que el volumen se triplica, cuál es la temperatura final?
- 4) Se tienen 5 kg de hidrógeno gaseoso. Cuántos moles son?
- 5) Se tiene dióxido de carbono en condiciones normales de presión y temperatura (CNPT) en un container de 50 l. Cuántos moles se tienen? Y cuánto pesan?
- 6) Se tiene un recipiente con una solución de gases adentro. El recipiente es de 100 litros, la presión es 82 atm y la temperatura es 400 K. Sabiendo que de todos los moles del recipiente, la mitad es de oxígeno gaseoso y la otra mitad de gas nitrógeno, cuánta masa hay de cada gas? Y cuántas moléculas?

Ley de Henry (Gases disueltos en líquido)

5. Hidroestática

Presión

Variación de la presión con la profundidad

Principio de Arquímides

6. Balanceo de ecuaciones

6.1. Método algebraico

Ejemplo:

$$Fe + HCl \longrightarrow FeCl_3 + H_2$$

Fe:
$$A = C$$

H: $B = 2D$

Cl: $B = 3C$
 $A = 2$
 $B = 6$
 $C = 2$
 $D = 3$
 $A = 2$
 $A = 3$
 $A = 2$
 $A = 2$
 $A = 2$
 $A = 2$
 $A = 3$
 $A = 2$
 $A = 2$
 $A = 2$
 $A = 3$
 $A = 3$
 $A = 2$
 $A = 3$
 $A = 3$

6.2. Redox

- 1) $NO_3^- \rightarrow N_2$ (Medio ácido)
- $2) Fe^{2+} \rightarrow Fe^{3+}$
- 3) $SO_2^{2-} \rightarrow SO_3^{2-}$ (medio básico)
- 4) $SO_2^{2-} \rightarrow SO_3^{2-}$ (medio ácido)
- 5) $N_2 \rightarrow NO_2^-$ (medio básico)

Reacción redox

1) Balancear por redox:

$$3As_2O_3 + 4HNO_3 + 7H_2O \rightarrow 6H_3AsO_4 + 4NO$$

Se ve que As se oxida y que N se reduce.

Semirreacción de oxidación:

Semirreacción de reducción:

$$As_2O_3 + 5H_2O \longrightarrow 2(AsO_4)^{3-} + 10H^+ + 4e^-$$

$$(NO_3)^- + 4H^+ \longrightarrow NO + 2H_2O - 3e^-$$

Ahora multiplico la semirreacción de oxidación por 3 y la de reducción por 4, de manera que al sumarlas se cancelen los e^- :

Semirreacción de oxidación:

Semirreacción de reducción:

$$(As_2O_3 + 5H_2O \longrightarrow 2(AsO_4)^{3-} + 10H^+ + 4e^-) \cdot 3$$
 $((NO_3)^- + 4H^+ \longrightarrow NO + 2H_2O - 3e^-) \cdot 4H^+ \longrightarrow NO + 2H_2O - 3e^-) \cdot 4H^+ \longrightarrow NO + 2H_2O - 3e^- \cdot 4H^- \longrightarrow NO + 2H_2O - 3e^- \cdot 4H^-$

2) Balancear por Redox:

$$K_2Cr_2O_7 + KI + H_2SO_4 \longrightarrow K_2SO_4 + I_2 + Cr_2(SO_4)_3 + H_2O_4$$

3) Balancear la ecuación que tiene los siguientes reactivos y productos:

Reactivos:

permanganato de potasio (KMnO₄), hidróxido de potasio (KOH), yoduro de potasio (KI).

Productos:

Yodato de potasio (KIO₃), manganato (VI) de potasio (I) (K₂MnO₄)

$$K^{+1}Mn^{+7}O_4^{-2} \quad + \quad K^{+1}O^{-2}H^{+1} \quad + \quad K^{+1}I^{-1} \quad \longrightarrow \quad K^{+1}I^{+5}O_3^{-2} \quad + \quad K_2^{+1}Mn^{+6}O_4^{-2}$$

Ejemplo simple:

$$Fe + Cl_2 \longrightarrow FeCl_2$$

Semirreacción de oxidación:

Semirreacción de reducción:

$$Fe - 2e^- \longrightarrow Fe^{2+}$$
 $Cl_2 + 2e^- \longrightarrow 2Cl^-$

Las reacciones Redox pueden ser en medios ácidos o básicos. En caso de ser medio ácido, hay que compensar la falta de hidrógenos con cationes H⁺. En caso de ser medio básico esta falta se compensa con grupos hidroxilos (OH)⁻.

Ejemplo medio ácido:

$$KI + KIO_3 + HCl \longrightarrow KCl + I_2 + H_2O$$

Ioduro de potasio + iodato de potasio + ácido clorhídrico → cloruro de potasio + iodo molecular + agua

Semirreacción de oxidación:

Semirreacción de reducción:

$$2I^{-} \longrightarrow I_2 + 2e^{-}$$
 $2(IO_3)^{-} + 12H^{+} \longrightarrow I_2 + 6H_2O - 10e^{-}$

Multiplico para que la cantidad de electrones sean iguales (multiplicar por cinco la de oxidación) y las sumo:

$$10I^{-} + 2(IO_{3})^{-} + 12H^{+} \longrightarrow 5I_{2} + 10e^{-} + I_{2} + 6H_{2}O - 10e^{-}$$

Cancelo los electrones, y si puedo simplifico, quedando:

$$5I^{-} + (IO_3)^{-} + 6H^{+} \longrightarrow 3I_2 + 3H_2O$$

Finalmente pongo los coeficientes en la fórmula original y agrego lo que haga falta:

$$5KI + KIO_3 + 6HC1 \longrightarrow 6KC1 + 3I_2 + 3H_2O$$

7. Estequiometría

 La siguiente reacción representa la oxidación del hierro. Sabiendo que el hierro viene del mineral limonita, el cual tiene una pureza de %75. Calcular cuánto óxido férrico se produjo si en origen se tenían 100 kg de limonita.

$$4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s)$$

2) Se tiene la oxidación del hierro. Sabiendo que cumple la siguiente ecuación, balancearla. Además, se sabe que se tienen 1.500 g de Fe y la misma masa de O₂. Cuál es el reactivo limitante? Cuánta masa de óxido ferroso se forma? Cuánta masa queda sin reaccionar?

$$Fe + O_2 \rightarrow FeO$$

3) Teniendo la siguiente fórmula química:

$$Fe + O_2 \rightarrow FeO$$

Sabiendo que la reacción tiene un rendimiento del 70 %, cuántos gramos de óxido ferroso se formaron si inicialmente se tenían 700g de hierro?

4) Se tienen 720 gramos de O₂, calcular la masa del hidrógeno necesaria para que reaccione todo el oxígeno y la masa de agua formada.

$$O_2 + 2H_2 \longrightarrow 2H_2O$$

Anoto las masas moleculares de cada compuesto:

 O_2 : 32g/mol

 H_2 : 2g/mol

 H_2O : 18g/mol

Sabiendo que tengo 720g de O_2 , me fijo cuántos moles son:

32g — 1mol

720g — 22,5 mol

Sabiendo que se tienen 22,5 mol de O_2 , ahora quiero averiguar cuántos moles de H_2 necesito, para lo cual hago regla de 3 simples utilizando los coeficientes estequiométricos de la ecuación:

1 mol O_2 — 2 mol de H_2

22,5 mol de O_2 — 45 mol de H_2

Hago lo mismo para averiguar la cantidad de H_2O formada:

1 mol de O_2 — 2 mol de H_2O

22,5 mol de O_2 — 45 mol de H_2O

Finalmente, averiguo cuánta masa de H_2 tengo, utilizando sus moles y su masa molecular:

 $45 \text{mol} \cdot 2g/\text{mol} = 90g$

Para el agua:

 $45 \text{mol} \cdot 18 \text{g/mol} = 810 \text{g}$

5) Se tienen 200 g de H_2 y 200 g de O_2 . Definir cuál es el reactivo limitante y cuál está en exceso. Cuánta masa no reacciona del limitante? Calcular cuánta agua se forma.

$$O_2 + 2H_2 \longrightarrow 2H_2O$$

Anoto las masas moleculares de cada compuesto:

 O_2 : 32g/mol

 H_2 : 2g/mol

 H_2O : 18g/mol

Ahora averiguo cuántos moles tengo de cada compuesto:

$$O_2$$
: 200/32 = 6,25 mol

 H_2 : 200/2 = 100 mol

Supongo que el oxígeno es el reactivo limitante:

1 mol de O_2 — 2 mol de H_2

6,25 mol de O_2 — 12,5 mol de H_2

Es posible. Ahora analizo el caso en que el hidrógeno es el reactivo limitante:

2 mol de H_2 — 1 mol de O_2

100 mol de H_2 — 50 mol de O_2

No se puede porque tengo menos de 50 moles de O_2 , por lo tanto habrá 100 - 12,5 mol = 87,5 mol de H_2 que no reaccionen.

- 6) La ecuación de formación de agua es O₂ + H₂ → H₂O. Si se tienen 640 gramos de oxígeno gaseoso (O₂), decir cuántos gramos de hidrógeno gaseoso (H₂) se necesitarán y cuántos de agua se formarán. Recordar balancear la ecuación.
- 7) La ecuación de la formación de óxido de hierro (II) es O_2 + Fe \longrightarrow FeO. Si se formaron 900 gramos de óxido, ¿cuántos gramos de hierro y de oxígeno se necesitaron?
- 8) La ecuación de formación del sulfuro de carbono es $C + S_8 \longrightarrow CS_2$. se tienen 1,5 kg de un mineral de carbono de pureza 80 %. ¿Cuánto se formará de sulfuro de carbono?
- 9) La combustión del butano es CH₄ + O₂ → H₂O + CO₂. Si se tiene 1kg de butano diluido con otros gases, teniendo una concentración del 40 %, ¿cuántos gramos de agua y de dióxido de carbono se formarán?
- 10) La combustión del amoníaco es NH₃ + O₂ → N₂ + H₂O. Si se tiene un tanque con 5kg de amoníaco con pureza 70 %, decir cuántos moles y cuánta masa de nitrógeno y agua se forman.
- 11) Teniendo la combustión del hidrógeno O₂ + H₂ → H₂O, se está en un entorno en que dicha reacción tiene un rendimiento del 90 %, decir cuánto se formará de agua y cuánto de oxígeno gaseoso e hidrógeno gaseoso queda sin reaccionar si se tienen 75 kg de O₂.
- 12) Se tiene la descomposición del ozono $O_3 \longrightarrow O_2$. Esta reacción tiene un rendimiento del 75 %. Si se tenían 100 g de ozono originalmente, ¿cuántos de oxígeno se formaron y cuánto ozono quedó sin reaccionar?

8. Calorimetría

- 1) Cuánto calor es necesario para aumentar en 15°C la temperatura de 700g de agua?
- 2) Un vaso de agua que contiene 200g pasó de estar a 20°C a 5°C. Cuánto calor ganó/perdió?
- 3) Una lamina de hierro que está a 20°C se calienta hasta estar a 200°C. Tiene una masa de 60kg. Cuánto calor se necesitó? $C_{\rm Fe}=0.107\frac{\rm cal}{\rm g\cdot ^{\circ}C}$
- 4) Se mezclan 100 g de agua a 20°C con 50 g de agua a 90°C. Cuál es la temperatura final de la mezcla?
- 5) Calcular la energía necesaria para fundir 700 g de hielo que están a 0° C.
- 6) Calcular el calor necesario para evaporar 4 kg de agua líquida que está a 100°C.
- 7) Calcular el calor necesario para calentar 2 toneladas de hielo desde 100 K hasta -10 °C.
- 8) Calcular el calor necesario para calentar 1500 g toneladas de vapor desde 110 °C hasta 115 °C.
- 9) Calcular el calor necesario para a partir de 150 g de agua líquida a 70°C obtener vapor de agua a 200°C.
- 10) Calcular el calor necesario para obtener agua a 30 °C a partir de 200 g de hielo a 250 K.
- 11) Calcular el calor necesario para calentar 200 g de hielo a -15°C hasta 250 °C de vapor de agua.
- 12) Calcular la energía necesaria para elevar 38,6 kg de agua desde 67,5 °C hasta 97°C.
- 13) Se tiene un balde con 500g de agua. Se sabe que inicialmente estaba a 20°C y al final del día a 25°C. Calcular su variación de energía.
- 14) Se tienen 200 g de hielo a -9°C. Calcular cuánto calor se necesita para elevar la temperatura de ese agua a 130°C.

Pasaje de unidades en temperaturas

- 1) Pasar las siguientes temperaturas de °C a °F : -50, -10, -42, 0, 50, 100, 500, -40.
- 2) Pasar las siguientes temperaturas de °F a °C: -50, -10, -42, 0, 50, 100, 500, -40.
- 3) Pasar las siguientes de K a °C: 0, 50, 100, 273, 1000, -50.
- 4) Pasar las siguientes de °C a K: -100, 0, 50, 100, 273, 1000, -50.
- 5) ¿A qué temperatura °C es igual a K?

$$^{\circ}F = ^{\circ}C \cdot 1,8 + 32$$
 $T = T \cdot 1,8 + 32$
 $-32 = 0,8T$
 $\frac{-32}{0,8} = T$
 $T = -40$

6) ¿A qué temperatura °F es igual a K?

$$^{\circ}F = ^{\circ}C \cdot 1,8 + 32$$
 $^{\circ}F = (K - 273) \cdot 1,8 + 32$
 $T = (T - 273) \cdot 1,8 + 32$
 $T = 574,59$

Dilatación térmica

9. Química nuclear

Fusión

Fisión

Radiación

Radiación alfa (α)

Radiación beta (β)

Radiación gamma (γ)

Vida media

10. Teoría de enlaces

11. Química orgánica