Logistic Regression

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

 $y \in \{0,1\}$

- 0: Negative Class (benign tumor)
- 1: Positive Class (malignant tumor)
- → Binary classification

Note: $y \in \{0,1,2,3,...\}$: **Multi-class classification** is an extension of binary classification

Classification Based on Probability

Instead of just predicting the class, give the probability of the instance being that class, i.e., learn p(y|x)

Recall that:

$$0 \le p(\text{event}) \le 1$$

 $p(\text{event}) + p(\neg \text{event}) = 1$

Interpretation of Hypothesis Output

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 = estimated $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(x) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that:
$$p(y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) + p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1$$

Therefore,
$$p(y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1 - p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$$

4

Logistic Regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

 $heta^{\intercal}x$ should be large <u>negative</u> values for negative instances

g(z)

- Assume a threshold and...
 - Predict y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict y = 0 if $h_{\theta}(x) < 0.5$

Classification

Classification: y=0 or y=1, but $h_{\theta}(x)$ can be >1 or <0

Logistic regression: $0 \le h_{\theta}(x) \le 1$

→ use Sigmoid / Logistic Function

Logistic Regression Model

We want our classifier to output values between 0 and 1

- When using linear regression we did $h_{\theta}(x) = \theta^T x$
- For classification hypothesis representation we do $h_{\theta}(x) = g(\theta^T x)$ where $g(z) = \frac{1}{1 + e^{-z}}$ is a Sigmoid (or Logistic) function.

Thus
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{m{ heta}}(m{x})$ should give $p(y=1 \mid m{x}; m{ heta})$ - Want $0 < h_{m{ heta}}(m{x}) < 1$
- Logistic regression model:

$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Logistic Regression

Training
$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\}$$
 set:
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{bmatrix} \quad x_0 = 1, y \in \{0,1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

MSE is a non-convex loss function in Logistic Regression

Recall the MSE loss function of Linear regression:

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

In case of Logistic Regression, $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$, the MSE loss function is **non-convex** \rightarrow Easy to be trapped at a local minimum \rightarrow Need to find a **convex** loss function for Logistic Regression.

A convex loss function for Logistic Regression

Loss function of Logistic Regression:

$$J(\theta) = \begin{cases} -\log((h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - (h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

This is the penalty that the algorithm applies to prediction output during the training process.

11

Intuition of Logistic Regression loss function

Loss function of Logistic Regression:

$$J(\theta) = \begin{cases} -\log((h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - (h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

if y = 1:

- $J(\theta) = 0$ if prediction is correct.
- As $h_{\theta}(x) \to 0$, $J(\theta) \to \infty$.
- This loss function captures intuition that larger mistakes should get larger penalties. Example: predict $h_{\theta}(x) = 0$, but y = 1.

Intuition of Logistic Regression loss function

Loss function of Logistic Regression:

$$J(\theta) = \begin{cases} -\log((h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - (h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

if y = 0:

- $J(\theta) = 0$ if prediction is correct.
- As $h_{\theta}(x) \to 1$, $J(\theta) \to \infty$.
- This loss function captures intuition that larger mistakes should get larger penalties. Example: predict $h_{\theta}(x) = 1$, but y = 0.

Cost Function Simplification

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \cot \left(h_{\theta}(x^{(i)}), y^{(i)} \right)$$
$$\cot \left(h_{\theta}(x), y \right) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or y = 1 always

How to rewrite (simplify) the cost function $J(\theta)$?

Cost Function Simplification

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \cot \left(h_{\theta}(x^{(i)}), y^{(i)} \right)$$
$$\cot \left(h_{\theta}(x), y \right) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or y = 1 always

$$cost (h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

If
$$y = 1 : \cos(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

If $y = 0 : \cos(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$

Logistic Regression Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \cot \left(h_{\theta}(x^{(i)}), y^{(i)} \right)$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

Compute
$$\min_{\theta} J(\theta) \to \text{Get } \theta$$

To make prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} = p(y = 1 | x, \theta)$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 $\}$

where
$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 }

This looks IDENTICAL to linear regression!!!

- Ignoring the 1/m constant
- However, the form of the model is very different:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Gradient Descent with Regularization

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$
$$J_{regularized}(\theta) = J(\theta) + \lambda \sum_{i=1}^{d} \theta_{j}^{2} = J(\theta) + \lambda ||\theta_{[1:d]}||_{2}^{2}$$

Want $\min_{\theta} J(\theta)$: Repeat $\{$ $\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} - \lambda \theta_j$

Multi-class classification

Binary classification:

Multi-class classification:

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

One-vs-all (one-vs rest)

Take the max-probability class among all logistic regression classifiers. Extra reading: **softmax regression**.

Softmax regression

Softmax regression (or multinomial logistic regression) is a generalization of logistic regression to the case where we want to handle multiple classes.

Softmax regression

Softmax regression (or multinomial logistic regression) is a generalization of logistic regression to the case where we want to handle multiple classes.

$$\sigma(1.0) = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = 0.2$$

Softmax regression

Softmax regression (or multinomial logistic regression) is a generalization of logistic regression to the case where we want to handle multiple classes.

$$Loss = -1 \times log_2 0.7 - 0 \times log_2 0.2 - 0 \times log_2 0.1 = 0.51$$

Evaluation metrics

General method: calculate the **difference** between ground-truth labels and model predictions.

Example: testing 165 emails in a spam/non-spam classification problem.

	Prediction YES	Prediction NO
Actual YES	100	5
Actual NO	10	50

Evaluation metrics

Example: testing 165 emails in a spam/non-spam classification problem.

	Prediction YES	Prediction NO
Actual YES	100	5
Actual NO	10	50

- Precision = 100/(100+10) ~
 91%: how many predicted items are relevant.
- Recall = 100/(100+5) ~ 95%: how many relevant items are predicted.

Evaluation metrics

Example: testing 165 emails in a spam/non-spam classification problem.

	Prediction YES	Prediction NO
Actual	True Positive	False Negative
YES	TP	FN
Actual	False Positive	True Negative
NO	FP	TN

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Summary

Binary Classification

Decision Boundary

Logistic Regression

- Sigmoid function
- Cost Function
- Optimization
- Regularization

Multi-class (Multinomial Classification)

- One-vs-all
- Softmax regression

Evaluation metrics

Q&A

Thank you