

Table des matières

La	base des bascules	1
	1) Bascule RS :	3
	1-1) NON ET :	3
	1-2) NON OU :	4
	1-3) Résultat :	4
	1-4) diagramme de temps :	5
	1-5) Logisim: (RSL)	5
	2) Preset Enable Clear :	6
	2-1) PECM: (Preset Enable Clear Main)	6
	2-2) RSEM: (RS Enable Main)	7
		7
	2-3) Logisim: (PECOUT)	
	2-4) Bascule : (RSE => RS Enable)	7
	3) Bascule RSH :	
	3-1) Bascule: (High Level [Niveau Haut])	8
	3-2) diagramme de temps :	
	3-3) Logisim : (RSHB => RSH Bas, Low Level [Niveau Bas])	9
	4) Bascule D : (D avec RSH)	10
	4-1) Bascule :	10
	4-2) diagramme de temps :	11
	5) Bascule JK : (JKM => JK Montant)	12
	5-1) Bascule :	12
	5-2) RSH1 :	13
	5-3) RSH2 :	
	5-4) diagramme de temps pour RSH1 et RSH2 :	14
	5-5) diagramme de temps pour JK :	14
	6) Bascule JK : (JKD => JK Descendant)	15
	6-1) Bascule :	15
	6-2) RSH1 :	16
	6-3) RSH2 :	16
	6-4) diagramme de temps pour RSH1 et RSH2 :	
	6-5) diagramme de temps pour JK :	17
	7) Bascule D : (DM => D Montant)	
	8) Bascule D : (DD => D Descendant)	18

1) Bascule RS:

1-1) NON ET:

$$\frac{Q = Q_{n-1}}{\overline{Q} = \overline{Q}_{n-1}} \cdot \overline{R} + S$$

S	R	Q	Q	remarque
0	0	$Q_{(n-1)}$	$\overline{Q}_{(n-1)}$	mémoire
0	1	0	1	mise à 0
1	0	1	0	mise à 1
1	1	X	X	état interdit

Algèbre de boole

$$Q = \overline{\overline{Q} \cdot \overline{S}} \over \overline{Q} = \overline{Q} \cdot \overline{R}$$

	
$Q = \overline{(Q \cdot \overline{R})} \cdot \overline{S}$	$\overline{Q} = (\overline{\overline{Q} \cdot \overline{S}}) \cdot \overline{R}$
$Q = \overline{(\overline{Q} + \overline{\overline{R}}) \cdot \overline{S}}$	$\overline{Q} = \overline{(\overline{\overline{Q}} + \overline{\overline{S}}) \cdot \overline{R}}$
$Q = \overline{(\overline{Q} + R) \cdot \overline{S}}$	$\overline{Q} = \overline{(Q+S) \cdot \overline{R}}$
$Q = \overline{\overline{Q} \cdot \overline{S} + R \cdot \overline{S}}$	$\overline{Q} = \overline{Q \cdot \overline{R} + S \cdot \overline{R}}$
$Q = \overline{(\overline{Q} \cdot \overline{S}) + (R \cdot \overline{S})}$	$\overline{Q} = \overline{(Q \cdot \overline{R}) + (S \cdot \overline{R})}$
$Q = \overline{(\overline{Q} \cdot \overline{S})} \cdot \overline{(R \cdot \overline{S})}$	$\overline{Q} = \overline{(Q \cdot \overline{R})} \cdot \overline{(S \cdot \overline{R})}$
$Q = (\overline{\overline{Q}} + \overline{\overline{S}}) \cdot (\overline{R} + \overline{\overline{S}})$	$\overline{Q} = (\overline{Q} + \overline{\overline{R}}) \cdot (\overline{S} + \overline{\overline{R}})$
$Q = (Q + S) \cdot (\overline{R} + S)$	$\overline{Q} = (\overline{Q} + R) \cdot (\overline{S} + R)$
$Q = (Q+S) \cdot (\overline{R}+S)$	$\overline{Q} = (\overline{Q} + R) \cdot (\overline{S} + R)$
$Q = Q \cdot \overline{R} + Q \cdot S + S \cdot \overline{R} + S \cdot S$	$\overline{Q} = \overline{Q} \cdot \overline{S} + \overline{Q} \cdot R + R \cdot \overline{S} + R \cdot R$
$Q = Q \cdot \overline{R} + S \cdot Q + S \cdot \overline{R} + S \cdot 1$	$\overline{Q} = \overline{Q} \cdot \overline{S} + \overline{Q} \cdot R + R \cdot \overline{S} + 1 \cdot R$
$Q = Q \cdot \overline{R} + S \cdot (Q + \overline{R} + 1)$	$\overline{Q} = \overline{Q} \cdot \overline{S} + R \cdot (\overline{Q} + \overline{S} + 1)$
$Q = Q \cdot \overline{R} + S$	$\overline{Q} = \overline{Q} \cdot \overline{S} + R$
$Q = Q_{n-1} \cdot \overline{R} + S$	$\overline{Q} = \overline{Q_{n-1}} \cdot \overline{S} + R$

1-2) NON OU:

$$\frac{Q = Q_{(n-1)} \cdot \overline{R} + S}{\overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{S} + R}$$

S	R	Q	Q	remarque
0	0	$Q_{(n-1)}$	$\overline{Q}_{(n-1)}$	mémoire
0	1	0	1	mise à 0
1	0	1	0	mise à 1
1	1	X	X	état interdit

Algèbre de boole

$$\frac{Q}{\overline{Q}} = \overline{\overline{Q} + R}$$

$\overline{Q} = \overline{\overline{Q} + R} + S$	$Q = \overline{Q + S + R}$
$\overline{Q} = \overline{(Q \cdot \overline{R}) + S}$	$Q = \overline{(\overline{Q} \cdot \overline{S}) + R}$
$\overline{Q} = \overline{(Q+S)\cdot(\overline{R}+S)}$	$Q = \overline{(\overline{Q} + R) \cdot (\overline{S} + R)}$
	$SQ = \overline{Q \cdot \overline{S} + \overline{Q} \cdot R + R \cdot \overline{S} + R \cdot R}$
$\overline{Q} = \overline{Q \cdot \overline{R} + Q \cdot S + S \cdot \overline{R} + S \cdot 1}$	$Q = \overline{\overline{Q} \cdot \overline{S} + \overline{Q} \cdot R + R \cdot \overline{S} + R \cdot 1}$
$\overline{Q} = \overline{S \cdot (Q + \overline{R} + 1) + Q \cdot \overline{R}}$	$Q = \overline{R \cdot (\overline{Q} + \overline{S} + 1) + \overline{Q} \cdot \overline{S}}$
$\overline{Q} = \overline{S + Q \cdot \overline{R}}$	$Q = \overline{R + \overline{Q} \cdot \overline{S}}$
$\overline{Q} = \overline{S} \cdot \overline{Q} + R$	$Q = \overline{R} \cdot Q + S$
$\overline{Q} = \overline{Q} \cdot \overline{S} + R$	$Q = Q \cdot \overline{R} + S$
$\overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{S} + R$	$Q = Q_{(n-1)} \cdot \overline{R} + S$

1-3) Résultat :

$$\frac{Q = Q_{n-1}}{\overline{Q} = \overline{Q}_{n-1}} \cdot \overline{R} + S$$

S	R	Q	Q	remarque
0	0	$Q_{(n-1)}$	$\overline{Q}_{(n-1)}$	mémoire
0	1	0	1	mise à 0
1	0	1	0	mise à 1
1	1	X	X	état interdit

$$\frac{Q = Q_{(n-1)} \cdot \overline{R} + S}{\overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{S} + R}$$

S	R	Q	Q	remarque
0	0	$Q_{(n-1)}$	$\overline{Q}_{(n-1)}$	mémoire
0	1	0	1	mise à 0
1	0	1	0	mise à 1
1	1	X	X	état interdit

R=0 S=0	R=1 S=0	R=0 S=1	R=1 S=1
R0=0 S0=0	R0=1 S0=0	R0=0 S0=1	R0=1 S0=0
$S0=0.\overline{0}$ $S0=0.1$ $S0=0$	$S0 = 0 \cdot \overline{1}$ $S0 = 0 \cdot 0$ $S0 = 0$	$S0=1.\overline{0}$ $S0=1.1$ $S0=1$	$S0=1\cdot\overline{1}$ $S0=1\cdot0$ $S0=0$
Mémoire	Mise à 0	Mise à 1	Mise à 0

1-4) diagramme de temps :

1-5) Logisim: (RSL)

2) Preset Enable Clear:

2-1) PECM: (Preset Enable Clear Main)

$$SO=0$$
 $RO=0$

$$SO=0+(SI\cdot 0)$$

$$SO=0+0$$

$$SO=0+$$

 $SO=0$

$$RO = 0 + (RI \cdot 0)$$
$$RO = 0 + 0$$

RO=0

Mémoire

E=1 P=0 C=0

$$SO = SI$$

 $RO = RI$

$$SO=0+(SI\cdot 1)$$

$$SO=0+SI$$

 $SO=SI$

$$RO = 0 + (RI \cdot 1)$$

RO=0+RIRO=RI

Bascule RS

E=0 P=1 C=0

 $SO = P + (SI \cdot E)$

 $RO = C + (RI \cdot E)$

$$SO=1$$

 $RO=0$

$$SO=1+(SI\cdot 0)$$

$$SO=1+0$$

 $SO=1$

$$RO = 0 + (RI \cdot 0)$$

$$RO=0+0$$

 $RO=0$

Mise à 1

E=0 P=0 C=1

$$SO=0$$

$$RO=1$$

$$SO=0+(SI\cdot 0)$$

$$SO = 0 + 0$$

$$SO=0$$

$$RO = 1 + (RI \cdot 0)$$

$$RO = 1 + 0$$

$$RO=1$$

Mise à 0

E=0 P=1 C=1

$$SO=1$$

$$RO=1$$

$$SO=1+(SI\cdot 0)$$

$$SO = 1 + 0$$

$$SO=1$$

$$RO = 1 + (RI \cdot 0)$$

$$RO = 1 + 0$$

$$RO=1$$

Interdit

E=1 P=1 C=1

$$RO = 1$$

$$SO=1+(SI\cdot 1)$$

$$SO=1+SI$$

 $SO=1$

$$RO = 1 + (RI \cdot 1)$$

$$RO=1+RI$$

$$RO=1$$

Interdit

E=1 P=0 C=1

$$SO = SI$$

 $RO = 1$

$$SO=0+(SI\cdot 1)$$

$$SO=0+SI$$

$$SO = SI$$

$$RO = 1 + (RI \cdot 1)$$

$$RO=1+RI$$

 $RO=1$

SI=0 : Mise à 0

SI=1 : Interdit

E=1 P=1 C=0

$$SO=1$$

$$RO = RI$$

$$SO=1+(SI\cdot 1)$$

$$SO=1+SI$$

$$SO=1$$

$$RO = 0 + (RI \cdot 1)$$

$$RO = 0 + RI$$

$$RO = RI$$

RI=0 : Mise à 1 RI=1 : Interdit

2-2) RSEM: (RS Enable Main)

2-3) Logisim: (PECOUT)

	Clear	Enable	Preset	ClearOut	EnableOut	PresetOut	
0	0	0	0	0	0	0	
1	0	0	1	0	0	1	PresetOut
2	0	1	0	0	1	0	EnableOut
3	0	1	1	0	0	1	PresetOut
4	1	0	0	1	0	0	ClearOut
5	1	0	1	1	0	0	ClearOut
6	1	1	0	1	0	0	ClearOut
7	1	1	1	1	0	0	ClearOut

2-4) Bascule : (RSE => RS Enable)

3) Bascule RSH:

3-1) Bascule: (High Level [Niveau Haut])

Algèbre de boole

$$S0=S\cdot H$$

 $R0=R\cdot H$

$$\begin{array}{l} Q = Q_{(n-1)} \cdot (\overline{R} + \overline{H}) + S \cdot H \\ \overline{Q} = \overline{Q_{(n-1)}} \cdot (\overline{S} + \overline{H}) + R \cdot H \end{array}$$

$$\begin{array}{ll} Q = Q_{(n-1)} \cdot \overline{R0} + S0 & \overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{S0} + R0 \\ Q = Q_{(n-1)} \cdot \overline{R \cdot H} + S \cdot H & \overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{S \cdot H} + R \cdot H \\ Q = Q_{(n-1)} \cdot (\overline{R} + \overline{H}) + S \cdot H & \overline{Q} = \overline{Q_{(n-1)}} \cdot (\overline{S} + \overline{H}) + R \cdot H \end{array}$$

S	R	Н	Q	Q	remarque
X	X	0	$Q_{(n-1)}$	$Q_{(n-1)}$	mémoire
0	0	1	$Q_{(n-1)}$	$\overline{Q}_{(n-1)}$	mémoire
0	1	1	0	1	mise à 0
1	0	1	1	0	mise à 1
1	1	1	0	0	état interdit

$$\begin{array}{c} \textbf{H=0} \\ Q = Q_{(n-1)} \cdot (\overline{R} + \overline{0}) + S \cdot 0 \ \overline{Q} = \overline{Q_{(n-1)}} \cdot (\overline{S} + \overline{0}) + R \cdot 0 \\ Q = Q_{(n-1)} \cdot (\overline{R} + 1) + S \cdot 0 \ \overline{Q} = \overline{Q_{(n-1)}} \cdot (\overline{S} + 1) + R \cdot 0 \\ Q = Q_{(n-1)} \cdot 1 \qquad \overline{Q} = \overline{Q_{(n-1)}} \cdot 1 \\ Q = Q_{(n-1)} \qquad \overline{Q} = \overline{Q_{(n-1)}} \\ Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

$$\begin{array}{c} Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \end{array}$$

3-2) diagramme de temps :

3-3) Logisim: (RSHB => RSH Bas, Low Level [Niveau Bas])

S	R	Н	Q	Q	remarque
X	X	1	$Q_{(n-1)}$	$\overline{Q_{(n-1)}}$	mémoire
0	0	0	$Q_{(n-1)}$	$\overline{Q}_{(n-1)}$	mémoire
0	1	0	0	1	mise à 0
1	0	0	1	0	mise à 1
1	1	0	0	0	état interdit

4) Bascule D: (D avec RSH)

4-1) Bascule:

$$\begin{array}{l} Q \! = \! Q_{(n-1)} \! \cdot \! \overline{H} \! + \! D \! \cdot \! \left(Q_{(n-1)} \! + \! H \right) \\ \overline{Q} \! = \! \overline{Q_{(n-1)}} \! \cdot \! \overline{H} \! + \! \overline{D} \! \cdot \! \left(\overline{Q_{(n-1)}} \! + \! H \right) \end{array}$$

D	Н	Q	Q	remarque
X	0	$Q_{(n-1)}$	$\overline{Q_{(n-1)}}$	mémoire
0	1	0	1	mise à 0
1	1	1	0	mise à 1

Algèbre de boole

$$S0 = D$$

$$R0 = \overline{D}$$

$$\begin{split} Q &= Q_{(n-1)} \cdot (\overline{R} \, \overline{0} + \overline{H}) + S \, 0 \cdot H \\ Q &= Q_{(n-1)} \cdot (\overline{D} + \overline{H}) + D \cdot H \\ Q &= Q_{(n-1)} \cdot (D + \overline{H}) + D \cdot H \\ Q &= Q_{(n-1)} \cdot \overline{H} + Q_{(n-1)} \cdot D + D \cdot H \\ Q &= Q_{(n-1)} \cdot \overline{H} + D \cdot (Q_{(n-1)} + H) \\ \overline{Q} &= \overline{Q_{(n-1)}} \cdot (\overline{S} \, \overline{0} + \overline{H}) + R \, 0 \cdot H \\ \overline{Q} &= \overline{Q_{(n-1)}} \cdot (\overline{D} + \overline{H}) + \overline{D} \cdot H \\ \overline{Q} &= \overline{Q_{(n-1)}} \cdot \overline{D} + \overline{Q_{(n-1)}} \cdot \overline{H} + \overline{D} \cdot H \\ \overline{Q} &= \overline{Q_{(n-1)}} \cdot \overline{H} + \overline{D} \cdot (\overline{Q_{(n-1)}} + H) \end{split}$$

$$\begin{array}{c} \textbf{H=0} \\ Q = Q_{(n-1)} \cdot \overline{0} + D \cdot (Q_{(n-1)} + 0) \\ Q = Q_{(n-1)} \cdot 1 + D \cdot (Q_{(n-1)} + 0) \\ Q = Q_{(n-1)} + D \cdot Q_{(n-1)} \\ Q = Q_{(n-1)} \cdot (1 + D) \\ Q = Q_{(n-1)} \cdot 1 \\ Q = Q_{(n-1)} \\ \overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{0} + \overline{D} \cdot (\overline{Q_{(n-1)}} + 0) \\ \overline{Q} = \overline{Q_{(n-1)}} \cdot 1 + \overline{D} \cdot (\overline{Q_{(n-1)}} + 0) \\ \overline{Q} = \overline{Q_{(n-1)}} + \overline{D} \cdot \overline{Q_{(n-1)}} \\ \overline{Q} = \overline{Q_{(n-1)}} \cdot (\overline{D} + 1) \\ \overline{Q} = \overline{Q_{(n-1)}} \cdot 1 \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \overline{Q} = \overline{Q_{(n-1)}} \\ \overline{Q} = \overline{Q_{(n-1)}} \end{array}$$

$$\begin{aligned} \textbf{H=1} \\ Q &= Q_{(n-1)} \cdot \overline{1} + D \cdot \left(Q_{(n-1)} + 1\right) \\ Q &= Q_{(n-1)} \cdot 0 + D \cdot \left(Q_{(n-1)} + 1\right) \\ Q &= 0 + D \cdot 1 \\ Q &= D \end{aligned}$$

$$\overline{Q} = \overline{Q_{(n-1)}} \cdot \overline{1} + \overline{D} \cdot \left(\overline{Q_{(n-1)}} + 1\right) \\ \overline{Q} &= \overline{Q_{(n-1)}} \cdot 0 + \overline{D} \cdot \left(\overline{Q_{(n-1)}} + 1\right) \\ \overline{Q} &= 0 + \overline{D} \cdot 1 \\ \overline{Q} &= \overline{D}$$

$$\overline{Q} = D \\ \overline{Q} &= \overline{D}$$

4-2) diagramme de temps :

5) Bascule JK : (JKM => JK Montant)

5-1) Bascule :

Rising Edge [Front montant]

S	R	CLK	Q	Q	remarque
X	X	X	$Q_{(n-1)}$	$Q_{(n-1)}$	mémoire
0	0	1	$Q_{(n-1)}$	$Q_{(n-1)}$	mémoire
0	1	1	0	1	mise à 0
1	0	1	1	0	mise à 1
1	1	1	0	0	état interdit

5-2) RSH1:

Algèbre de boole

 $H1 = \overline{CLK}$

$$Q1 = Q1_{(n-1)} \cdot (\overline{R1} + \overline{H1}) + S1 \cdot H1$$

$$\overline{Q1} = \overline{Q1}_{(n-1)} \cdot (\overline{S1} + \overline{H1}) + R1 \cdot H1$$

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + \overline{CLK}) + J \cdot \overline{CLK}$$

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + CLK) + J \cdot \overline{CLK}$$

$$\overline{Q1} = \overline{Q1}_{(n-1)} \cdot (\overline{J} + \overline{\overline{CLK}}) + K \cdot \overline{CLK}$$

$$\overline{Q1} = \overline{Q1}_{(n-1)} \cdot (\overline{J} + CLK) + K \cdot \overline{CLK}$$

$$\frac{Q1 = Q1_{(n-1)} \cdot (\overline{K} + CLK) + J \cdot \overline{CLK}}{Q1 = \overline{Q1_{(n-1)}} \cdot (\overline{J} + CLK) + K \cdot \overline{CLK}}$$

CLK=0

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + 0) + J \cdot \overline{0}$$

$$Q 1 = Q 1_{(n-1)} \cdot \overline{K} + J \cdot 1$$

$$Q 1 = Q 1_{(n-1)} \cdot \overline{K} + J$$

$$\overline{Q1} = \overline{Q1_{(n-1)}} \cdot (\overline{J} + 0) + K \cdot \overline{0}$$

$$\overline{Q1} = \overline{Q1_{(n-1)}} \cdot \overline{J} + K \cdot 1$$

$$\overline{Q1} = \overline{Q1_{(n-1)}} \cdot \overline{J} + K$$

$$\frac{Q1=Q1_{(n-1)}}{Q1} \cdot \overline{K} + J$$

$$\overline{Q1} = \overline{Q1_{(n-1)}} \cdot \overline{J} + K$$

Bascule RS (S=J et R=K)

CLK=1

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + 1) + J \cdot \overline{1}$$

$$Q 1 = Q 1_{(n-1)} \cdot 1 + J \cdot 0$$

$$Q 1 = Q 1_{(n-1)}$$

$$\begin{split} & \overline{Q1} = \overline{Q1_{(n-1)}} \cdot (\overline{J} + 1) + K \cdot \overline{1} \\ & \overline{Q1} = \overline{Q1_{(n-1)}} \cdot 1 + K \cdot 0 \\ & \overline{Q1} = \overline{Q1_{(n-1)}} \end{split}$$

$$\frac{Q1 = Q1_{(n-1)}}{Q1 = Q1_{(n-1)}}$$

Mémoire

5-3) RSH2:

Algèbre de boole

H1 = CLK

$$Q2 = Q2_{(n-1)} \cdot (\overline{R2} + \overline{H2}) + S2 \cdot H2$$

$$\overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{S2} + \overline{H2}) + R2 \cdot H2$$

$$Q2 = Q2_{(n-1)} \cdot (\overline{Q1} + \overline{CLK}) + Q1 \cdot CLK$$

$$Q2 = Q2_{(n-1)} \cdot (Q1 + \overline{CLK}) + Q1 \cdot CLK$$

$$\overline{Q2} \!=\! \overline{Q2_{(n-1)}} \!\cdot\! (\overline{Q1} \!+\! \overline{CLK}) \!+\! \overline{Q1} \!\cdot\! CLK$$

$$Q = Q \cdot 2_{(n-1)} \cdot (Q \cdot 1 + \overline{CLK}) + Q \cdot 1 \cdot CLK$$

$$\overline{Q} = \overline{Q} \cdot 2_{(n-1)} \cdot (\overline{Q} \cdot 1 + \overline{CLK}) + \overline{Q} \cdot 1 \cdot CLK$$

CLK=0

$$Q2=Q2_{(n-1)}\cdot (Q1+\overline{0})+Q1\cdot 0$$

$$Q2=Q2_{(n-1)}\cdot (Q1+1)$$

$$Q2=Q2_{(n-1)}\cdot 1$$

$$Q2=Q2_{(n-1)}$$

$$\overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + \overline{0}) + \overline{Q1} \cdot 0$$

$$\overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + 1)$$

$$\overline{Q2} = \overline{Q2_{(n-1)}} \cdot 1$$

$$\overline{Q2} = \overline{Q2_{(n-1)}}$$

$$\frac{Q2=Q2_{(n-1)}}{Q2}=\frac{Q2_{(n-1)}}{Q2_{(n-1)}}$$

Mémoire

CLK=1

$$Q 2 = Q 2_{(n-1)} \cdot (Q 1 + \overline{1}) + Q 1 \cdot 1$$

$$Q 2 = Q 2_{(n-1)} \cdot (Q 1 + 0) + Q 1$$

$$Q 2 = Q 2_{(n-1)} \cdot Q 1 + Q 1$$

$$Q 2 = (Q 2_{(n-1)} + 1) \cdot Q 1$$

$$Q 2 = Q 1$$

$$\overline{Q2} = \overline{Q2}_{(n-1)} \cdot (\overline{Q1} + \overline{1}) + \overline{Q1} \cdot 1$$

$$\overline{Q2} = \overline{Q2}_{(n-1)} \cdot (\overline{Q1} + 0) + \overline{Q1}$$

$$\overline{Q2} = \overline{Q2}_{(n-1)} \cdot \overline{Q1} + \overline{Q1}$$

$$\overline{Q2} = (\overline{Q2}_{(n-1)} + 1) \cdot \overline{Q1}$$

$$\overline{Q2} = \overline{Q1}$$

$$\frac{Q2}{Q2} = \frac{Q1}{Q1}$$

Bascule D (D=Q1)

CLK=1

5-4) diagramme de temps pour RSH1 et RSH2 :

5-5) diagramme de temps pour JK:

6) Bascule JK: (JKD => JK Descendant)

6-1) Bascule:

Rising Edge [Front montant]

S	R	CLK	Q	Q	remarque
X	X	X	$Q_{(n-1)}$	$Q_{(n-1)}$	mémoire
0	0	1	$Q_{(n-1)}$	$Q_{(n-1)}$	mémoire
0	1	1	0	1	mise à 0
1	0	1	1	0	mise à 1
1	1	1	0	0	état interdit

6-2) RSH1:

Algèbre de boole

$$H1 = CLK$$

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{R1} + \overline{H1}) + S 1 \cdot H 1$$

$$\overline{Q1} = \overline{Q1}_{(n-1)} \cdot (\overline{S1} + \overline{H1}) + R 1 \cdot H 1$$

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + \overline{CLK}) + J \cdot CLK$$

$$\overline{Q1} \!=\! \overline{Q1_{(n-1)}} \!\cdot\! (\overline{J} \!+\! \overline{CLK}) \!+\! K \!\cdot\! CLK$$

$$\begin{array}{l} Q \, 1 \! = \! Q \, 1_{(n-1)} \! \cdot \! \left(\overline{K} \! + \! \overline{CLK} \right) \! + \! J \! \cdot \! CLK \\ \overline{Q \, 1} \! = \! \overline{Q \, 1}_{(n-1)} \! \cdot \! \left(\overline{J} \! + \! \overline{CLK} \right) \! + \! K \! \cdot \! CLK \end{array}$$

CLK=0

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + \overline{0}) + J \cdot 0$$

$$Q 1 = Q 1_{(n-1)} \cdot (\overline{K} + 1)$$

$$Q 1 = Q 1_{(n-1)} \cdot 1$$

$$Q 1 = Q 1_{(n-1)}$$

$$\begin{split} & \overline{Q1} = \overline{Q1_{(n-1)}} \cdot (\overline{J} + \overline{0}) + K \cdot 0 \\ & \overline{Q1} = \overline{Q1_{(n-1)}} \cdot (\overline{J} + 1) \\ & \overline{Q1} = \overline{Q1_{(n-1)}} \cdot 1 \\ & \overline{Q1} = \overline{Q1_{(n-1)}} \end{split}$$

$$\frac{Q1 = Q1_{(n-1)}}{Q1 = Q1_{(n-1)}}$$

Mémoire

CLK=1

$$\begin{split} Q & 1 \! = \! Q \, \mathbf{1}_{(n-1)} \! \cdot \! \left(\overline{K} \! + \! \overline{1} \right) \! + \! J \cdot \! \mathbf{1} \\ Q & 1 \! = \! Q \, \mathbf{1}_{(n-1)} \! \cdot \! \left(\overline{K} \! + \! \mathbf{0} \right) \! + \! J \\ Q & 1 \! = \! Q \, \mathbf{1}_{(n-1)} \! \cdot \! \overline{K} \! + \! J \end{split}$$

$$\begin{aligned} & \overline{Q} \, \overline{1} \! = \! \overline{Q} \, \underline{1}_{(n-1)} \! \cdot \! (\overline{J} + \overline{1}) \! + \! K \cdot \! 1 \\ & \overline{Q} \, \overline{1} \! = \! \overline{Q} \, \underline{1}_{(n-1)} \! \cdot \! (\overline{J} + \! 0) \! + \! K \\ & \overline{Q} \, \overline{1} \! = \! \overline{Q} \, \underline{1}_{(n-1)} \! \cdot \! \overline{J} \! + \! K \end{aligned}$$

$$\frac{Q1=Q1_{(n-1)}}{Q1} \cdot \overline{K} + J$$

$$\overline{Q1} = \overline{Q1_{(n-1)}} \cdot \overline{J} + K$$

Bascule RS (S=J et R=K)

6-3) RSH2:

$H1 = \overline{CLK}$

$$Q2 = Q2_{(n-1)} \cdot (\overline{R2} + \overline{H2}) + S2 \cdot H2$$

$$\overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{S2} + \overline{H2}) + R2 \cdot H2$$

$$Q2 = Q2_{(n-1)} \cdot (\overline{Q1} + \overline{CLK}) + Q1 \cdot \overline{CLK}$$

$$Q2 = Q2_{(n-1)} \cdot (Q1 + CLK) + Q1 \cdot \overline{CLK}$$

$$\begin{array}{l} \overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + \overline{\overline{CLK}}) + \overline{Q1} \cdot \overline{CLK} \\ \overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + CLK) + \overline{Q1} \cdot \overline{CLK} \end{array}$$

$$Q = Q 2_{(n-1)} \cdot (Q 1 + CLK) + Q 1 \cdot \overline{CLK}$$

$$\overline{Q} = \overline{Q} 2_{(n-1)} \cdot (\overline{Q} 1 + CLK) + \overline{Q} 1 \cdot \overline{CLK}$$

CLK=0

$$Q2=Q2_{(n-1)}\cdot (Q1+0)+Q1\cdot \overline{0}$$

$$Q2=Q2_{(n-1)}\cdot Q1+Q1\cdot 1$$

$$Q2=Q2_{(n-1)}\cdot Q1+Q1$$

$$Q2=(Q2_{(n-1)}+1)\cdot Q1$$

$$Q2=1\cdot Q1$$

$$Q2=Q1$$

$$\begin{split} & \overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + 0) + \overline{Q1} \cdot \overline{0} \\ & \overline{Q2} = \overline{Q2_{(n-1)}} \cdot \overline{Q1} + \overline{Q1} \cdot 1 \\ & \overline{Q2} = \overline{Q2_{(n-1)}} \cdot \overline{Q1} + \overline{Q1} \\ & \overline{Q2} = (\overline{Q2_{(n-1)}} + 1) \cdot \overline{Q1} \\ & \overline{Q2} = 1 \cdot \overline{Q1} \\ & \overline{Q2} = \overline{Q1} \end{split}$$

$$\frac{Q2=Q1}{Q2=Q1}$$

Bascule D (D=Q1)

CLK=1

$$Q2 = Q2_{(n-1)} \cdot (Q1+1) + Q1 \cdot \overline{1}$$

$$Q2 = Q2_{(n-1)} \cdot (Q1+1) + Q1 \cdot 0$$

$$Q2 = Q2_{(n-1)} \cdot 1 + 0$$

$$Q2 = Q2_{(n-1)}$$

$$\begin{split} & \overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + 1) + \overline{Q1} \cdot \overline{1} \\ & \overline{Q2} = \overline{Q2_{(n-1)}} \cdot (\overline{Q1} + 1) + \overline{Q1} \cdot 0 \\ & \overline{Q2} = \overline{Q2_{(n-1)}} \cdot 1 + 0 \\ & \overline{Q2} = \overline{Q2_{(n-1)}} \end{split}$$

$$\frac{Q2=Q2_{(n-1)}}{Q2}=\frac{Q2_{(n-1)}}{Q2_{(n-1)}}$$

Mémoire

6-4) diagramme de temps pour RSH1 et RSH2 :

CLK=0

$$\frac{Q2=Q1}{Q2=\overline{Q1}}$$

$$\frac{Q1}{Q1} = \frac{Q1_{(n-1)}}{Q1_{(n-1)}}$$

CLK=1:

$$\frac{Q}{Q} \frac{1}{1} = \frac{Q}{Q} \frac{1}{1_{(n-1)}} \cdot \frac{\overline{K}}{\overline{J}} + \overline{J}$$

$$\frac{Q2=Q2_{(n-1)}}{Q2=Q2_{(n-1)}}$$

6-5) diagramme de temps pour JK :

7) Bascule D : (DM => D Montant)

Rising Edge [Front montant]

D	CLK	Q	Q	remarque
X	X	$Q_{(n-1)}$	$\overline{Q_{(n-1)}}$	mémoire
0	1	0	1	mise à 0
1	1	1	0	mise à 1

8) Bascule D : (DD => D Descendant)

Falling Edge [Front descendant]

D	CLK	Q	Q	remarque
X	X	$Q_{(n-1)}$	$\overline{Q_{(n-1)}}$	mémoire
0	1	0	1	mise à 0
1	1	1	0	mise à 1

