- ", when a poce is added to a system, the polar plot end point will shift by -90°
- ii) When a zero is added to a system, the polar plot end point will shift by 490°

area than a property of

8 rabra, a sypt

Tores and Laruja Interior

00=00

0 > 1 - (2)2

OFS - 5 0 = (2,12)

-180

Typical sketches of polar plot.

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$v=\infty$$

$$79pe \ 0 \ , order \ 2$$

$$79pe \ 0 \ , order \ 2$$

$$(7(s) = \frac{1}{(1 + sT_1)(1 + sT_2)} \ , 180$$

$$690 = \frac{1}{(1 + psT_1)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1 + psT_2)(1 + psT_2)} \ , 180$$

$$-1 = \frac{1}{(1 + psT_1)(1$$

Type 2, bydex 4

$$G(s): \frac{1}{8^2(1+7_1s)(1+7_2s)}$$

As $\omega \to 0$ $\infty < -180^\circ$
 $\omega = 0$
 $\omega = 0$

			~		•	1		
w	0-35	0.4	0.45	0.5	0.6	0.7	1	
rad/s.		1.8	1.5	1.2	0.9	0.7	0.3	
16(jw)	2.2	•	-156°	-162	-141	-149.5	198	7
de Carion	-144	-150		0.5	0.6	0.4	1	
wradls	0.35	-1.56	-1.37		-0.89	-0.4	-0.29	
(eij) gr (eij) tr	-1.78		-0.65	-0.37	-0.14	0	0.09	

GM = 0 PM = -90 (acs) = s2(1+s)(1+25) (20121)/21/13/3 I made a complete of the or of the complete of the contract of (25+1)(2+1)2 and determine the Games and - (-4)---(4)211)(4)11)(4)11) ME nate of the same 8 6 7 co) - 6 7 col - 61 - 7 - 7 - (1) 6. 3.00 1201 2110 3 11.0 37 - 1 - 1 101100