TD 2 - Autour de la loi normale

Exercice 1. On considère une variable aléatoire X de densité donnée par

$$f(x) = \sqrt{\frac{2}{\pi}} e^{-x^2/2} \mathbb{1}_{]0,\infty[}(x), \quad x \in \mathbb{R}.$$

On dit alors que X suit une loi normale tronquée ou loi demi-normale.

- 1. Proposer une méthode de simulation de X à l'aide de la méthode de rejet avec $Y \sim \mathcal{E}(1)$.
- 2. En déduire une méthode de simulation d'une loi normale.

Exercice 2. Une variable aléatoire suit une loi de Laplace de paramètre $\lambda > 0$ si sa densité est donnée par

$$g(x) = \frac{\lambda}{2} e^{-\lambda |x|}, \quad x \in \mathbb{R}.$$

- 1. Vérifier que cela définit bien une loi de probabilité.
- 2. À l'aide de la méthode de rejet, proposer une méthode pour simuler une loi normale centrée réduite à partir de g. Pour quelle valeur de λ la probabilité de rejet est-elle minimale ?

Exercice 3. On considère deux variables aléatoires U et V indépendantes de loi uniforme sur [0,1].

- 1. Rappeler le principe de la méthode de Box-Müller.
- 2. Rappeler comment simuler un couple (X,Y) de loi uniforme sur le disque unité.
- 3. On pose $T=X^2+Y^2$. Montrer que le couple $\left(X\sqrt{-2\ln(T)/T},Y\sqrt{-2\ln(T)/T}\right)$ est formée de deux variables aléatoires indépendantes de loi normales centrées réduites. On pourra étudier la loi des composantes radiale et angulaire de (X,Y).

Remarque : cette méthode de simulation est due à Marsaglia.

4. Comparer cette approche avec la méthode de Box-Müller.

Exercice 4. Soit X_1, \ldots, X_n des variables aléatoires iid de loi $\mathcal{N}(\mu, \sigma^2)$. Un estimateur de μ (resp. σ^2) est une quantité aléatoire basée sur l'échantillon X_1, \ldots, X_n qui permet d'approcher μ (resp. σ^2). Le but de l'exercice est de proposer des estimateurs naturels de μ et σ^2 et d'étudier leurs propriétés.

1. Cas 1 : μ inconnue et σ connu

On suppose que la valeur de μ est inconnue mais que celle de σ est connue.

- (a) Proposer un estimateur X_n , basé sur l'échantillon X_1, \ldots, X_n , permettant d'approcher μ . Calculer l'espérance de cet estimateur et donner sa limite (en un sens à préciser) quand $n \to \infty$.
- (b) Donner la loi de \bar{X}_n .
- (c) Déterminer un intervalle $I_1(X_1, \ldots, X_n)$ qui contient μ avec probabilité 1α , pour $\alpha > 0$.

2. Cas 2 : σ inconnu et μ connu

On suppose que la valeur de σ est inconnue mais que celle de μ est connue. On rappelle que pour une variable aléatoire de loi normale centrée réduite X, les moments sont donnés par

$$E[X^{2p+1}] = 0$$
 et $E[X^{2p}] = \frac{(2p)!}{2^p n!}, p \in \mathbb{N}.$

- (a) Proposer un estimateur $\hat{\sigma}_n^2$, basé sur l'échantillon X_1, \ldots, X_n , permettant d'approcher σ^2 . Calculer l'espérance et la variance de cet estimateur.
- (b) Quelle est la loi de $\frac{n\hat{\sigma}_n^2}{\sigma^2}$? En déduire un intervalle $I_2(X_1,\ldots,X_n)$ qui contient σ avec probabilité $1-\alpha$, pour $\alpha>0$.

3. Cas 3 : μ et σ inconnus

On suppose que l'espérance μ et l'écart-type σ sont tous les deux inconnus.

- (a) Peut-on toujours utiliser \bar{X}_n comme estimateur de μ ? Et $\hat{\sigma}_n^2$ comme estimateur de σ^2 ?
- (b) On choisit comme estimateur de σ^2 la quantité

$$S_n^2 = \frac{1}{n} \sum_{k=1}^n (X_k - \bar{X}_n)^2$$
.

On peut montrer que la variable aléatoire $\frac{nS_n^2}{\sigma^2}$ suit une loi du chi-deux à n-1 degrés de liberté (on notera le perte d'un degré de liberté par rapport au cas précédent) et que cette variable aléatoire est indépendante de \bar{X}_n (cela semble étonnant mais ce résultat peut se montrer grâce au théorème de Cochran vu en M1).

Donner la loi de

$$\sqrt{n-1}\frac{\bar{X}_n-\mu}{S_n}$$
.

En déduire un intervalle $I_3(X_1,\ldots,X_n)$ qui contient μ avec probabilité $1-\alpha$, pour $\alpha>0$.