Univ.of Toronto Library Digitized by the Internet Archive in 2011 with funding from University of Toronto

147452

UNIVERSITY OF, ILLINOIS

ENGINEERING EXPERIMENT STATION

Bulletin No. 2 3 5 -/5

November 1905

TESTS OF HIGH-SPEED TOOL STEELS ON CAST IRON

By L. P. Breckenridge, Professor of Mechanical Engineering, and Henry B. Dirks, M.E., Assistant in Mechanical Technology.

In most manufacturing processes it becomes necessary to change the form of materials in order to bring them to the desired shape for use. Among the metals used in the construction of engineering structures, including the almost endless variety of steam and gas engines, compressors, pumping machinery, marine and locomotive engines, special machinery and machine tools, it is evident that cast iron and steel represent by far the chief constituents of such machines. For the manufacture of all the various parts of these structures and machines there has been designed a great variety of machine tools. In these machine tools are placed the pieces whose shape it is desired to change, and a properly formed and hardened piece of steel is made to cut away a part of the material. The steel used for making the tool for thus cutting the softer material is called Tool Steel. time required to cut away the necessary amount of metal is an important factor in the cost of the piece under construction. It is evident that the relative hardness of the tool steel and the material it cuts, as well as the speed at which the cutting is attempted, will be important factors in the time required to do the work and of the durability of the tool steel used. have continually exerted a potent influence upon the manufacturers of tool steel and they have constantly improved the qual-

ity of their product. On the other hand, the demand for stronger and lighter materials of construction has increased the density and hardness of many materials already used, and brought into common use new materials, such as cast steel, ferro steel, chilled iron, etc., and these have imposed severer duties on the tool steels designed to cut them. The same rivalry that has existed between armor plate and the projectile intended to pierce it has existed between the tool steels and the materials they are designed to cut. Until quite recently, the rate at which tool steel could cut the various metals was from 10 to 40 feet per minute, varying with the metals cut and with the area of the cross section removed. If a higher rate of cutting was attempted, the point of the tool used became hot, lost its temper and immediately wore away. During the years 1898 to 1900, Messrs. Taylor and White, at the Bethlehem Steel Works, South Bethlehem, Pennsylvania, were seeking to discover what constituents could be combined with tool steel, and what special temperature treatment it should receive that would increase its cutting speed. As the result of their experiments, there was exhibited at the Paris Exposition of 1900 a lathe using a tool steel which removed chips of soft steel at a cutting speed of from 60 to 180 feet per minute. These chips were so hot that they turned blue upon cooling. The point of the tool steel maintained its cutting edge even when running at a dull red glow. It was natural that to such tools should have been given the name of High-Speed Tool Steels.

PROPERTIES OF TOOL STEELS

At the time of Taylor and White's first experiments, Mushet and Jessop tool steels of the self-hardening type were in general use. According to Mr. F. Reiser in an article on high-speed steel in "Stahl and Eisen", January 15, 1903, they had the following chemical composition:

Carbon 2.0% Manganese 2.5% Silicon 1.3% Tungsten 5.0% Chromium 0.5%

The self-hardening property is called into play by the manganese, an element which favors the combining of the carbon with the iron. These steels were tempered simply by heating to a temperature of 1600° F. and then cooling in air. Mushet and Jessop tools, however, did not prove durable at high speeds, although they were far in advance of the ordinary carbon steels,

and chromium was substituted for manganese with good results. The chromium steels required an entirely different treatment, as was found by Messrs. Taylor and White in their experiments at the Bethlehem Steel Works.

The exact chemical compositions of the new tool steels are secrets of the separate makers, and probably vary; however, it is known that the steels contain the following elements in varying quantities: carbon, tungsten, chromium, manganese, molybdenum and titanium. They usually run high in these combining elements, the Taylor-White steel having as high as 12% of tungsten and 4% of chromium, while Böhler Brothers' Styrian steel, according to Mr. Reiser, has a maximum of 28% of other elements. With this increase the carbon element has greatly decreased; most of it combines with tungsten, chromium and the other elements at high temperatures, remains in that state when cooled in an air blast and forms carbides of extreme hardness and durability at high temperatures. For best results of toughness and hardness these high-speed steels require for tempering a temperature of from 2000° to 2250° F., or a white heat bordering on the fusion point, and are then cooled in an air blast, lead bath or oil bath according to the different makers. Mr. Reiser in his discussion has for this reason correctly named them "superheated steels."

ADVANTAGES OF HIGH-SPEED STEELS

High-speed steels, due to their hardness and durability at high temperatures, retain their edge when cutting at extremely high speeds, cases having been noted in which the tool worked at dark-red heat without losing its edge. As can be seen from the tables, the speeds obtained are from three to four times those obtained with ordinary carbon steels. This of course means an increased output for a given shop and a consequent increase in the returns. This is not the only advantage of high-speed steel. It has been proved that such steel is more economical from the power standpoint, a given power removing a greater quantity of metal per unit of time at high speed than at slow speed. Of course the total power required is increased, but the increase is by no means proportional to the increase in the amount of work done.

· There is, however, one condition that must be carefully con-

sidered before the introduction of high-speed steels in a shop. Machine tools constructed to use the old carbon steels are limited in capacity and will not stand the heavy stresses to which they would be subjected if using high-speed steels at maximum speeds and feeds. This condition, however, is being met by the machine-tool builders, who are now designing and building especially heavy tools with powerful feed mechanisms with a view towards obtaining the highest possible efficiency of the steel used.

In the following pages are described the experiments made by Mr. H. B. Dirks, Assistant in Mechanical Technology, Engineering Experiment Station, in the shops of the College of Engineering at the University of Illinois. These experiments have been in progress for nearly a year, and every effort has been made to obtain useful and correct results.

For convenience, the subject has been divided into the following parts: I. The Tool Steels Used. II. The Cast-Iron Test Pieces. III. Details of the Tests. IV. Results of the Experiments. V. Summary of Results. VI. Reference List of Articles on High-Speed Steels. Appendix,—giving instructions furnished by makers for hardening the steels used.

I. THE TOOL STEEL USED

(a) The Brands Used

The following tool steels were used in these trials:

- 1. Styrian marked "Böhler Rapid"
- 2. Jessop's "Ark"
- 3. McInnes's "Extra"
- 4. Mushet's "Special"
- 5. "Air Novo"
- 6. "Rex"
- 7. "Poldi"
- 8. "A and W" (Armstrong and Whitworth)

The first six came from the American market. Poldi and "A and W" were furnished by the American Radiator Company, having been used in its foreign factories. With the exception of the Mushet, the steels used were donated for the proposed tests by the makers or agents. The Mushet was taken from stock purchased in the open market. There are doubtless other kinds of steel which could have been tested, but these eight brands were most familiar and accessible to the writers, and it is believed that

they represent fairly well the brands commonly used at the present time by American manufacturers.

Fig. 4. Shape of Cutting Tools

(b) Size and Shape of Tools

The size of the bars of steel from which the tools were made was $\frac{1}{2}$ in. by 1 in. for the steels from the American market. The Poldi bar was $\frac{3}{4}$ in. by $1\frac{3}{4}$ in., and the "A and W" bar was $\frac{3}{4}$ in. by $1\frac{1}{4}$ in. The shape of the tool used in the tests is shown in Fig. 4. The front clearance was $12\frac{1}{2}$ °, the top rake was 10° and the side rake was also 10° . These angles were carefully maintained throughout the tests, the angles being measured with a bevel protractor after each grinding.

Experiments relating to the proper shape of tools have been made by Professor J. T. Nicolson,* and the writers were guided in selecting proper tool angles by the recommendations of his paper. Professor Nicolson says: "Tools should therefore be ground for maximum endurance in the cutting of cast iron in ordinary shop practice so that their true cutting angles are about 81°, or if they are allowed 6° clearance for working on the level of the lathe centers, they should have an included angle of about 75°.

(c) Tempering and Tempering Apparatus

Directions for forging and hardening the various steels used were furnished by the manufacturers. For convenience, these directions are published in the Appendix. It will be seen that most of the steels were to be hardened in an air blast. The "A

^{*}Experiments with a Lathe Tool Dynamometer. See Trans. A. S. M. E., Vol. 25, 1904, page 658 et seq.

and W'' steel was the only one in which oil was recommended for cooling, and then only after the cutting edge of the tool had been cooled to a cherry-red in the air blast. An air blast apparatus was designed and constructed for carrying out the instructions relating to the proper preparation of the tools. This is shown in Fig. 5.

Fig. 5. Air Blast Apparatus

The apparatus consists of the 4-in. separating pipe, 3 ft. 6 in. long to which is connected the header of 2-in. pipe about 10 in. long. The dimensions and construction are shown in the figure. The tools to be hardened are inserted in the short lengths of $1\frac{1}{2}$ or $2\frac{1}{2}$ -in. pipes which serve to concentrate the air blast on

the tools. A rubber hose with a ‡-in. nozzle in the end is also attached to one opening, so that a strong air blast may be directed on the edge of the tool when first removed from the fire. The tools were heated in an ordinary forge with a clear coke fire. The fire was burned long enough before putting in the tool to drive off any sulphur. Care was also taken to have plenty of coke above and below the tool so that no cold blast should strike the tool while it was being heated.

II. THE CAST-IRON TEST PIECES

In order that the results of the tests might be of general application, it was advisable that the cast-iron test pieces be the product of several commercial foundries. Several manufacturers throughout the State agreed to furnish sample test pieces representing the grade of cast iron used in their respective foundries. A standard size of test piece was therefore decided upon, and blue prints and patterns of it sent to the different manufac-This standard test piece is shown in Fig. 6. The outer diameter is the maximum the lathe will swing over the carriage. This test piece was made hollow for several reasons. A solid test piece becomes soft toward the center and is more likely to contain blow holes. Test pieces of small diameter become springy and consequently produce inaccuracies in the results. The high angular velocity necessary with small diameters is also undesir-The first test piece used in the preliminary trials was 18 in, long. This was found to be too short, the tool having to be reset too often. In Fig. 3 is given a view of all the test pieces used in the trials. These test pieces do not all conform to the standard test piece, the American Radiator Company having sent test pieces with a 6-in, core instead of a 3-in, core, from several of its plants, that being a more representative casting from its foundries. The test pieces received from the various companies, their identification marks and reference numbers are shown in Table 1.

TABLE 1 Results of Hardness Tests and Identification Marks $$\operatorname{\textsc{of}}$$ Cast-Iron Test Pieces Used in the Tests

Name of company	sending test pieces	Identification mark	Test reference No.	Hardness by drill test
	Pierce plant. {	3 " core	3 4 5	$94.2 \\ 109.2 \\ 102.0$
	Michigan Plant.	5-8-05 6 " core	6 7 8 9 10 11	128.8 86.5 94.3 138.6 106.8 109.3
American Radiator Co. { Chicago, Ill.	Detroit plant	D. P. 1 D. P. 2 D. P. 3 D. P. 4 D. P. 5 D. P. 6	12 13 14 15 16 17	100.0 106.6 117.2 132.0 109.8 90.3
	plant. {	5 - 17-05	18 19 20	$107.0 \\ 117.2 \\ 113.9$
	plant. {	B 5-26-05	21 22 23	$124.8 \\ 167.5 \\ 122.2$
	plant. {	B 6-2-05	24 25 26	$111.2 \\ 102.4 \\ 95.9$
Crane Company Chicago, Ill.		F. S.	$\frac{1}{27}$	$342.0 \\ 132.0$
Root & Vandervo East Molin	ort Eng'g Co [2	175.0
	nois	U. I.—1 U. I.—2 U. I.—3 U. I.—4 U. I.—5	28 29 30 31 32	$114.5 \\ 195.0 \\ 124.2 \\ 124.5 \\ 123.2$

A comparative hardness test was made on all samples, comparison being made with a standard piece of soft cast iron of equal density throughout, the chemical analysis of which is as follows:

Combined Carbon = .147% Silicon = 2.35% Sulphur = .07% Graphite = 5.03% Manganese = .33% Phosphorus = 1.06%

Fig. 6. Standard Test Piece

The hardness of cast iron or any other metal as indicated by a drill test is probably as fair an indication of the particular quality of the metal that affects the cutting speed as is obtainable by any process in use at the present time. This hardness test is in itself a cutting-speed test in which the cutting speed is not varied, but is held constant and the rate of feed allowed to vary, the cutting speed and rate of feed in all probability bearing some constant relation to each other. Fig. 7 is a graphical chart giving the results of the hardness tests on the test pieces used in the experiments. The tests were made with a drill press as shown in Fig. 8. A constant load of 312 pounds was applied on the spindle of the drill press by means of the weighted lever. the spindle rotating at a constant speed of 87 r. p. m., the rate of feed of the drill in inches per minute was measured, readings being taken for every in of depth drilled. The drill used in these tests was a Morse standard 1-in. twist drill ground to an angle of 623°. As, however, there was some liability of variation in the sharpness of the drill, thus affecting its rate of feed, a uniform piece of cast iron was first drilled into, readings taken, and then the test made on the test piece. A comparison was thus always made with this same piece of cast iron, eliminating any

Fig. 7. Graphical Chart of Hardness Drill • Tests Made on Cast-Iron Test Pieces

small variation in the sharpness of the drill. In Fig. 7 the curves drawn through the dots represent the standard cast iron, and those drawn through the circles represent the test piece. Thus for test piece No. 1 the rate of feed is about .174 in. per minute, while in drilling the standard cast iron, the rate of feed is about .595 in. per minute. The hardness as used later and as expressed in Table 1 is $\frac{.595}{.174} \times 100 = 342$. Assuming 100 as the hardness of the standard cast iron, Table 1 gives the results obtained from these tests. This method of expressing the hard-

Fig. 8. Drill Press, Showing Method of Making Hardness Tests on Cast-Iron Test Pieces

ness of cast iron was also used by Professor J. T. Nicolson in his experiments with high-speed tool steels made at the Manchester Municipal School of Technology, Manchester, England.* In these experiments the tangent of the angle made by the curve was used as the hardness.

^{*}Report of experiments made at Manchester Municipal School of Technology, London Engineering, October 30 and November 13, 1903.

III. DETAILS OF THE TESTS

(a) Apparatus

The apparatus used in conducting the tests consisted mainly of a high-speed lathe deriving its power from a two-phase induction motor by means of belting and a countershaft, the power required being measured by a polyphase wattmeter. The general arrangement is shown in Fig. 1 and Fig. 9. The lather used (see Fig. 2 and Fig. 10) was a Pratt and Whitney high-speed lather with a gear box head-stock, taking a maximum length of 3 ft. 9

FIG. 9. GENERAL ARRANGEMENT OF APPARATUS USED IN THE TESTS WITH HIGH-SPEED TOOL STEELS

in, between centers and a diameter of 9 in, over the carriage. The power was transmitted from the first motion shaft of the head-stock to the cone gears by means of a long pinion and an intermediate gear, the latter being fastened to the intermediate

gear frame which swivels about the first motion shaft. The intermediate gear frame has a substantial slide with rack, pinion and crank by which the intermediate gear is moved to any one of four positions, in which it is locked by the dropping of a pin into suitable holes in the frame, after which movement the frame is swiveled to drop the gear into mesh with the cone gear. The latch handle at each end of the frame holds the frame and gears in position after the gears are in mesh. From the cone gears the power is transmitted either direct to the spindle or through the usual back gears, thus making 8 changes of speed. The speeds and feeds obtainable are shown in Table 2 and Table 3. The feed mechanism is positive, being driven by two gears from the main spindle through a chain of gears to the feed box change and speed gears, thence through the feed rod to the carriage. There are 8 changes possible both for the cross and longitudinal feed. A reverse feed is obtained by shifting the reverse rod.

TABLE 2
FEEDS AND FEED GEARS FOR
PRATT & WHITNEY HIGH-SPEED LATHE

Feeds	Feed Gears	Change Gears	Feed Box Change Gears	Feed Box SpeedGear	Worm	Apron Feed Gear	Rack Pinion	Cross Feed Screw	Feed per one Rev. of Spin- dle	Rev. of Spindle to 1" Travel
nal Feed	diate	ars	48 to 64 60 to 52 68 to 44 78 to 34	38 to 74		999	8 P.		.0076 .0116 .0156 .0232	131.6 86.2 64.1 43.1
Longitudinal Feed	Forward 28 Intermediate	Outside Change Gears 78 Intermediate	48 to 64 60 to 52 68 to 44 78 to 34	76 to 36		22 to 66	18 t-8 P.		.0312 .0478 .0642 .0952	$32.0 \\ 20.9 \\ 15.6 \\ 10.5$
Feed	44 to 88 Reverse,	778 -2	48 to 64 60 to 52 68 to 44 78 to 34	38 to 74		with 49 ediate		single	.00508 .00782 .01045 .01554	196.8 127.7 95.7 64.3
Cross Feed	42 to 84	39 to	48 to 64 60 to 52 68 to 44 78 to 34	76 to 36		76 to 18 with Intermediate		g lead single	.0209 .0322 .0431 .0640	47.8 31.1 23.2 15.6

TABLE 3

Range of Speed Ratios and Surface Speeds for Apparatus Used in High-Speed Steel Tests

		Revolutic	ns per min	nte -		peed of test
Motor Pulley			Lathe S	Spindle	piece. Fe	et per min.
Diameter (1120 r. p. m.)	Counter- shaft	Lathe Pulley	Direct drive	Drive through back gears	Direct drive	Drive through back gears
6 inches	181.62	90.81	68.10 45.40 34.05 27.24	23.48 15.65 11.74 9.38	160.37 106.92 80.19 64.15	55.30 36.80 27.65 22.09
7 inches	211.89	105.94	79.46 52.97 39.73 31.78	27.40 18.26 13.70 10.95	187.10 124.70 93.56 74.84	64.53 43.00 32.26 25.79
8 inches	242.16	121.08	90.81 60.54 45.41 36.32	$ \begin{array}{r} 31.31 \\ 20.87 \\ 15.65 \\ 12.52 \end{array} $	$213.80 \\ 142.60 \\ 106.90 \\ 85.53$	73.74 49.15 36.86 29.48
9 inches	272.43	136.21	102.16 68.11 51.08 40.86	35.23 23.48 17.61 14.10	$\begin{array}{c} 240.60 \\ 160.40 \\ 120.30 \\ 96.23 \end{array}$	82.97 55.30 41.47 33.21
10 inches	302.70	151.30	113,50 75,65 56,74 45,39	$\begin{bmatrix} 39.13 \\ 26.10 \\ 19.56 \\ 15.65 \end{bmatrix}$	267.30 178.20 133.60 106.90	92.15 61.47 46.06 36.86
11 inches	332.97	166.48	124.90 83.24 62.43 49.94	$\begin{array}{ c c c }\hline 43.07 \\ 28.73 \\ 21.52 \\ 17.12 \\\hline \end{array}$	294.10 196.00 147.00 117.60	101.40 67.66 50.68 40.32
12 inches	363.24	181.62	136.20 90.81 68.11 54.49	46,96 31,31 23,48 18,78	320,80 213,80 160,40 128,30	110.60 73.74 55.30 44.23

Fig. 10. Lathe used in the Tests With High-Speed Tool Steels

The power was transmitted to the lathe by means of a 4-in. double belt from the 12-in, friction clutch pulley of the countershaft. The countershaft in turn was driven through a 37-in. pulley by a 4-in, single belt from the motor. The motor is on an adjustable base, allowing changes of the motor pulley to be made without changing the length of the belt. In the tests, pullevs ranging from 6 to 12 in. in diameter were used, making possible with the 8 changes of speed on the lathe proper, 56 changes for every diameter of work. As the diameter of the test piece decreased, it was thus possible to keep the speed of the cut constant within very small limits. The motor received its current from the 440 volt main of the University power plant. As shown in Fig. 9, the current passed through an auto-starter and wattmeter into the motor, the auto-starter being used to reduce the electromotive force on the motor at starting, thus diminishing the liability of injury to the motor.

The wattmeter used is known as the Westinghouse portable long scale indicating wattmeter for alternating current circuits, and may be used for either two, three or four-phase circuits. principle, the wattmeter consists of a miniature induction motor, having for an armature a metal drum mounted on a shaft, together with a spring and pointer, giving indications on the scale proportional to the power to be measured. There is also a stationary circular core of iron inside the drum to complete the magnetic circuit through the armature As it operates on the induction principle, it has no moving wires and is not affected by external fields." "The polyphase wattmeter used in the tests is a modification of the above, having two drums mounted on the same shaft and revolving in two separate fields. This construction makes a meter which is correct for two or three-phase circuits under all conditions of unbalancing, low power factor, etc., and measures the true energy of the circuit".*

(b) Procedure in Making the Tests

In the preliminary trials the skin was first removed to bring the test piece to a uniform diameter throughout. This was discontinued in the later trials and a separate series of skin out trials was run. The test piece having been made ready for the test, the tool to be used was placed in the tool rest in the position

^{*}Taken from instructions for the use of the W. P. L. S. I. Wattmeters.

Fig. 1 - View in the University of Illinois Machine Shop showing location of Lathe and Motor drive used in Tests with High-Speed Tool Steels

Fig. 2. Lathe used in Tests with High-Speed Tool Steels

Fig. 3.—Cast-Iron Test Pieces used in Tests with High-Speed Tool Steels

decided upon for all tools and trials, viz., at right angles to the work with the bottom edge of the tool horizontal and the cutting edge of the tool from $\frac{1}{5}$ in. to $\frac{1}{4}$ in. above the center of the work, its exact position being recorded in the log. The diameter of the test piece was then accurately measured in several places and the average recorded in the log. The tool was then fed in by hand until the cutting edge just scraped the bottom of the groove left by the last turning. The graduated disc on the cross feed having been set at zero, with the tool in the above position, the cross feed was turned back a little, and the carriage moved to the right sufficiently for the tool to clear the test piece. The cross feed was then advanced until the graduated disc showed the required cut opposite the index mark. The longitudinal feed or traverse was then set in position and recorded in the log. The diameter of the work and the surface speed required during the trial being known, the size of the pulley to be used on the motor and the position of the driving gear necessary to give the required speed were obtained from a set of curves giving the speed for various diameters of work for each of the 56 changes obtainable. having been done, the lathe was started and the surface speed tested with a Warner cutmeter. If found to be too far from the required speed, a different combination of motor pulley and cone gear was tried. A satisfactory speed having been obtained, the feed mechanism was started and the lathe allowed to run until the tool had entered the work and was taking the full cut. lathe was then stopped and the square-case revolution counter, which was actuated by the first motion shaft, set at zero. lathe was then cleared of all chips and the test started, the exact time of starting and the position of the revolution counter being recorded. During the trials, readings of the revolution counter and also of the wattmeter were taken every two minutes in order to obtain any variations in the cutting speed and the power required. After the expiration of the trial, which occurred either at the time of failure of the tool or at a specified time limit, the tool was withdrawn and the lathe run light under the same conditions of speed as in the trials, in order to observe the electrical horse-power exerted by the motor under these conditions. cuttings were then collected, weighed and recorded in the log. To facilitate the collection of chips, sheet iron guards were placed on the bed of the lathe.

(c) Description of Methods Adopted for Measuring the Force Required in Cutting

During the trials readings were taken at regular intervals of the total electrical watts input in the motor, while cutting, and after the tool had been withdrawn, with the lathe running light. The difference between the electrical horse-power with the tool cutting and with the lathe running without the cut should give the net horse-power required for cutting, and if this be multiplied by 33,000 and divided by the cutting speed, we obtain the force required for cutting in pounds. In thus figuring, we assume that the lost horse-power of the drive remains constant from no load to full load. To determine whether or not this was the case, a Prony brake was placed on the cast-iron test piece, as shown in Fig. 11. This could be made to offer the resistance otherwise produced by the cutting tool, and this resistance could be meas-

Fig. 11. Arrangement of Apparatus for Measuring Power Absorbed by Friction in the Lathe, Countershaft and Belting

ured at the end of the brake arm by observing the reading on the scale beam of the platform scales. The brake arm was made 31.52 in. in length to facilitate the work of obtaining the horse-power, which would then be $\frac{PN}{2000}$, inwhich P is the net thrust on the scale in pounds and N the number of revolutions of the brake wheel.

Experiments were made on the lathe for both methods of driving it, either direct or through the back gearing. The results

of these experiments are given in Fig. 12. In the same figure is also shown the calibration curve for the motor alone, giving the horse-power output for a known input. The loss in the transmission for any known input could be immediately found, it

Fig. 12. Curves Giving Results of Experiments to Determine Loss of Power in Lathe and Countershaft for Varying Loads

being the vertical distance between the curves at the required load. From the curves it can be seen that it is not constant, but increases at a constant ratio as the load increases. The equations derived from the curves, giving the relation between the net and gross load for both drives, are as follows:

(1) N=0.886G-0.32 (2) N=0.907G-0.41 Where N= net horse-power required for cutting, at the tool point, represented in Fig. 12 by the ordinates of the curves No. 2 and No. 3 according as the lathe is running with or without the back gears; and

G = total horse-power output of motor, represented in Fig. 12 by the ordinates of curve No. 1.

In these equations, (1) applies to the direct drive, and (2) to the drive through the back gears. The net horse-power recorded in Tables VI to X under column 6 contains the above-found correction. The nature of the results will be discussed in Part IV.

IV. RESULTS OF THE EXPERIMENTS

The results of the tests made with the eight brands of steel are given in full in Tables I to X below. Some of the most important relations are shown graphically on several plates. There were in fact five sets of experiments made which may properly be referred to as:

- (a) The preliminary trials
- (b) The skin cut trials
- (c) The endurance trials
- (d) Trials to obtain the durability of the steels at different cutting speeds for various sizes of cut, but on cast iron of constant hardness
- (e) Trials to obtain the durability of the steels on cast iron of varying hardness.

Tables I to V give for each of the experiments above referred to the observed and calculated data indicated in the 18 columns of results. Some of the most important results given in these tables are:

- (a) The cutting speed in feet per minute
- (b) The area of section cut
- (c) The area machined
- (d) The weight of material removed per minute
- (e) The relative durability of the tool
- (f) The hardness of the test piece

In the same way Tables VI to X give important data for each one of the sets of experiments carried out. The most interesting results which are given by these tables are:

- (a) The cutting force on the point of the tool
- (b) The net horse-power required to remove the metal
- (c) The horse-power required to run the lathe and the countershaft

The headings for the different tables are for the most part clearly indicated. It may be advisable, however, to explain some of them more fully. Referring to Tables I to V, we have in each table the same 18 headings. Columns 4, 5 and 6 give the speeds, cuts and feeds at which the trials were intended to be carried out, as calculated from the size of the pulleys and motor speeds. columns 7, 8 and 9 are given the actual speeds, cuts and feeds. The cutting speed recorded is the speed in feet per minute of the cylindrical surface of maximum diameter at the point of cutting. The depth of cut is one-half the difference of the diameters of the work before and after cutting. The feed is the advance of the tool per revolution of lathe spindle. Column 10 gives as the area of the section cut the product of the depth of cut and the feed. Columns 12 and 13 give the area of the surface machined. This was obtained by multiplying the cutting speed in feet per minute by the feed in feet per revolution of the spindle. Columns 14 and 15 give the total weight of cuttings removed during the trial and also per minute. These results were obtained by collecting and weighing the cuttings. Column 17 gives the comparative durability of the tool. An entirely arbitrary standard of durability was established as follows: A tool whose cutting edge was worn away .002 in. after one hour's use was considered perfect,

its durability being expressed as 100. The ratios of the durability of any other tools to the standard will then be the inverse of the ratios of their rates of wear to the rate of wear of the standard. The wear as assumed for the standard is shown in Figure 13 at x. In the experiments, however, the distance a

was measured and x then calculated.

 ${\bf TABLE\ I}^{\ \bullet}$ Experiments with High-Speed Tool Steel on Cast Iron

PRELIMINARY TRIALS

1	2	3	4	5 & 6	7	8	9	10	11
Name of	Test	Trial	Inten	ded	Actual	Ac	tual	Area	Duration
Brand of	Piece	3.7	G 1	Cut &			1 12 1	Sec.	of
Tool Steel	No.	No.	Speed	Feed	speed	Cut	Feed	of cut	Trial
			Ft. Min.	Ins.	Ft./Min.	Ins.	Ins.	Sq.	Min.
1 Styrian	28	3	55	$\frac{3}{8}X\frac{3}{128}$	54.8	3	.0232	.00870	33
2 "	$\overline{28}$	4.	35	$\frac{8}{2}X\frac{1}{3}\frac{2}{3}$	36.2	0]20 (1/2) - 1/41 (20 (1/2) (1/2) (2/2) (2/2) (2/4) (1/4) (1/2) (1/2)	.0312	.01560	31
3 - "	$\overline{28}$	5	30	$\frac{3}{4} \times \frac{3}{1} \frac{2}{6}$	32.5	į	.0642	.01600	$15\frac{5}{6}$
4 "	$\overline{28}$	6	60	$\frac{1}{8}X\frac{3}{32}$	60.5	1	.0952	.01190	5
5 "	$\tilde{28}$	7	60	1 X J 6	59.6	į	.0642	.00802	$\frac{71}{3}$
6 "	$\overline{28}$	s	60	$\frac{1}{8}$ X $\frac{1}{3}$ 2	58.0	î	.0312	.00390	10°
7 "	$\overline{28}$	9	50	$\frac{8}{8}$ X $\frac{3}{3}$ $\frac{2}{2}$	52.1	3	.0312	.01160	15
8 "	28	10	50	$\frac{3}{8}$ X $\frac{1}{3}$ $\frac{1}{2}$	47.6	ş	.0312	.01160	8
9 "	28	11	40	1 X 1 2	41.2	î	.0312	.00780	8
0 McInnes	1	23	30	1 X 1	28.4	į	.0642	.00802	10
1 "	1	24	30	18 X 1 6	31.8	į	.0642	.00802	10
2 "	1	25	30	"	31.9	į	.0642	.00802	10
3 Novo	1	27	40	$\frac{1}{16} \times \frac{1}{16}$	40.7	1,	.0642	.00401	22
4 "	1	28	40	10 110	43.7	16	.0642	.00401	16
5 "	1	29	40	66	42.5	16 16 16 16 16 16 16	.0642	.0401	19
6 Styrian	1	30	40	6.6	41.3	1 6	.0642	.00401	$13\frac{1}{2}$
7 Novo	1	- 31	40	66	41.7	16	.0642	.00401	13
8 Styrian	27	130	150	18 X 1 2	152.1	8	.0312	.00390	$11\frac{1}{2}$
9 Novo	27	131	150		153.1	181616	.0312	.00390	9
20 McInnes	27	132	150	"	150.0	18	.0312	.00390	1 ½
21 Styrian	16	133	110	$\frac{3}{1.6}$ X $\frac{1}{1.6}$	111.0	1 6	.0642	.01200	7
22 Novo	16	134	105	$\frac{1}{8}X_{16}^{1}$	107.2	1/8	.0642	.00802	$12\frac{1}{2}$
23 Styrian	23	135	130	1 X 3 2	133.8	18	.0312	.00390	$12\frac{1}{4\frac{2}{3}}$
24 "	23	136	130		134.3	18	.0312	.00390	21
25 ''	23	137	100	6.6	102.9	18	.0312-	.00390	17 5
26 Novo	23	138	100	6.6	106.3	18	.0312	.00390	$1\frac{1}{8}$
27 ''	22	139	100	"	101.5	8	.0312	.00390	63
28 Styrian	22	140	80	"	79.5	3,6	.0312	.00390	8
29 Jessop	31	141	50	1 X 1 6	53.3	1/8	.0642	.00802	
30 "	-31	142	75	4.4	75.2	$\frac{1}{8}$.0642	.00802	$14\frac{3}{4}$
31 ''	32	143	85	4.6	85.0	1	.0642	.00802	$22\frac{1}{2}$

TABLE 1—(Continued)

1	12	13	14	15	16	17	18	
Name of	Ar Mack	ea ined		ight oved	Cause of	Comparative		
Brand of Tool Steel	Total	Per Min.	Total	Per Min.	Withdrawal	Durability of Tool	of Test Piece	
	Sq. Ft.	Sq. Ft.	Lbs.	Lbs.				
1 Styrian	3.53	.107	43.60	1.320	Time up	100.00	114.5	
2 ''	2.92	.094	50.50	1.630	"	50.50	114.5	
3 "	2.67	.169		1.530	6.6	12.90	114.5	
4 "	2.36	.472		2.060	4.6	100.00	114.5	
5 "	2.27	.310		1.340	6.6	100.00	114.5	
6 "	1.51	.151	6.81	681	66	100.00	114.5	
7	.20	.135	25.90		"	100.00	114.5	
8 "	. 99	.124	12.20	1.530	"	100.00	114.5	
9 "	.85	.107	6.74	.843	"	100.00	114.5	
0 McInnes	1.51	.151	6,43	643	4+	2.03	342.0	
1 "	1.70	.170	7.00	.700	Tool failed	0.00	342.0	
2 "	1.70	.170	7.37	.787	Time up	4.07	342.0	
3 Novo	[4.77]	.217	11.80	.539	"	6.52	342.0	
4 "	[-3.72]	.233	8.67	542		6.93	342.0	
5 "	4.31	.227	10.30	.541	6.6	4.90	342.0	
6 Styrian	2.98	.221	7.26	538	4.6	5.50	342.0	
7 Novo	2.90	.223	6.99	538	"	5.30	342.0	
8 Styrian	4.54	.395			Tool failed	3.12	132.0	
9 Novo	-3.58	.398			"	0.10	132.0	
0 McInnes	.40	.390			"	0.00	132.0	
1 Styrian	4.16	.594	28.75		4.6	0.00	109.8	
2 Novo	7.16	.573	32.20		Time up	5.09	109.8	
3 Styrian	1.61	.347		1.520	Tool failed	0.00	122.2	
4 ''	.75	.349		1.520	"	0.00	122.2	
5 "	4.67	.267	21.20	1.210	Time up	3.56	122.2	
6 Novo					Tool failed	0.00	122.2	
7	[1.76]	.264		1.370	" "	0.00	167.5	
8 Styrian	1.65	.206		1.090	4.6	0.00	167.5	
9 Jessop	[2.76]	.282	17.20		Time up	100.00	124.5	
0 "	5.92	.402	26.50		6.6	100.00	124.5	
1 "	10.20	.454	45.60	2.030	"	18.30	124.5	

 ${\bf TABLE~II}$ Experiments with High-Speed Tool Steel on Cast Iron

SKIN-CUT TRIALS

. 1	2	3	4	5 & 6	7	8	9	10	11
Name of	Test	Trial	Inter	nded	Actual	Ac	tual	Area	Duration
Brand of Tool Steel	Piece No.	No.	Speed	Cut & Feed	speed	Cut	Feed	Sec. of cut	of Trial
			Ft./ Min.	Ins.	Ft./Min.	Ins.	Ins.	Sq. Ins.	Min.
1 Styrian.	28	1	45	$\frac{7}{32}X_{11}^{-3}8$	45.2	30	.0232	.00507	91
2 Styrian.	28	2	35	32,,120	36.3	3.2	.0232	.00507	39
3 McInnes	-29	12	45	$\frac{1}{4}X\frac{1}{64}$	46.2	$\frac{1}{4}$.0156	.00390	- 30
4 McInnes	29	13	60	$\frac{1}{4} \times \frac{1}{32}$	59.5	2022 1021 14 14 14 14 3 15	.0312	00780	$6\frac{1}{2}$
5 McInnes	29	14	35	1 X 1	36.4	1	.0156		40
6 Styrian	3	97	50	$\frac{3}{16} X \frac{1}{32}$	50.6	3	.0312		40
7 Styrian.	6&7	98	55		55.2		.0312	.00585	$72\frac{1}{2}$
8 Novo	8	99	55	"	55.0		.0312	1.00585	36
9 McInnes	9	100	55		57.4	"	.0312		35
10 Novo	10	101	55	"	55.5		.0312		35
11 McInnes	11	102	55	"	54.4		.0312	.00585	37
12 Poldi	12&13	103	55	"	55.6	"	0312		72
13 A. & W.	14	104	55	"	55.3		.0312		$29\frac{1}{2}$
14 A. & W.	4	105	55		56.0		.0312		37
15 Styrian	5	106	70	"	67.9	"	.0312		30
16 Novo	18	107	70	1 X 1 2	68.8	18	.0312		21
17 McInnes	19	108	70		68.5		.0312		$S_{\frac{1}{2}}$
18 McInnes	19	109	70	"	68.5	4.	.0312		10
19 Poldi	20	110	70	4.6	68.0	"	.0312		19
20 Novo	20	111	70	4.6	68.2		.0312		11
21 Styrian.	17	112	75	"	75.3	"	.0312		27
22 Novo	-26	113	75	"	75.2		.0312		27
23 McInnes	25	114	75	"	75.7	66		.00390	27
24 Poldi	16	115	75	66	74.7	66	.0312		$26\frac{1}{2}$
25 A. & W.	24	116	75	6.6	73.9	6.6	.0312		$27\frac{5}{6}$
26 Styrian.	23	117	75		72.2	"	.0312		28
27 Poldi	21	118	75		75.0	6.6	.0312		27
28 A. & W.	15	119	75	6.6	74.2	66	2180,		27
29 McInnes	22	120	75		73.8		.0312		$19\frac{1}{4}$
30 Styrian.	22	121	75		72.5	"	.0312		$8\frac{1}{2}$
31 Jessop	32	122	45	4 X 3 2	46.1	1	.0312	.00780	28

TABLE II—(Continued)

1	12	$1\dot{3}$	14	15	16	17	18
Name of	Aı Macl		We Rem	ight oved	Cause of	Comparative	
Brand of Tool Steel	Total	Per Min.	Total	Per Min.	Withdrawal	Durability of Tool	of Test Piece
	Sq. Ft.	Sq. Ft.	Lbs.	Lbs.			
1 Styrian		.088	-4.6	.488	Tool failed	0.00	114.5
2 Styrian		.070	14.4	.370	Time up	7.94	114.5
3 McInnes	1.81		14.4	.480		6.12	195.0
4 McInnes	0.99		7.1	1.105	Tool failed	5.23	195.0
5 McInnes		.047	14.7	.367	Time up	8.16	195.0
6 Styrian	5.24		29.8	.746		100.00	94.2
7 Styrian		. 143	$\frac{57.2}{23.3}$.789		14.80	107.6
8 Novo		.143	$\frac{25.5}{24.5}$.648 $.702$		5.85	94.3
9 McInnes		.149	33.5	.702		5.70	138.6
10 Novo	$5.04 \\ 5.22$.144	30.0	.812	"	14.30	106.8
11 McInnes	$\frac{3.22}{10.40}$		67.7	.812		10.00	109.3
12 Poldi					"	17.85	103.3
13 A. & W	4.25		$\frac{29.8}{35.6}$	$\frac{1.012}{.964}$	"	24.00	117.2
14 A. & W	$\frac{5.36}{5.28}$	$145 \\ -176$	$\frac{59.6}{34.2}$	1.140	"	15.00	109.2
15 Styrian						12.20	102.0
16 Novo 17 McInnes		.179	30.8	1,470		4.28	107.0
		$.178 \\ .178$			Tool failed	0.00	117.2
	$\frac{1.78}{3.36}$		21.0	i.iio	Time up	8.13	117.2
19 Poldi	1.95		12.1	1.110 1.110	Tool failed	0.00	113.9
20 Novo 21 Styrian	$\frac{1.95}{5.29}$		$\frac{12.1}{24.4}$.903	Time up	2.28	113.9
	5.29		$\frac{24.4}{19.0}$.704		22.00	90.3
	$\frac{5.20}{5.32}$		[23.0]	.852	4.6	7.33	95.9
23 McInnes	$5.32 \\ 5.14$		$\frac{25.0}{22.5}$.850		11.00	102.4
24 Poldi 25 A. & W	5.34		$\frac{22.0}{24.6}$.887	6.6	10.80	109.8
20 A. & W	5.23		$\frac{24.0}{22.6}$.808	6.6	11.35	$\frac{111.2}{122.2}$
26 Styrian 27 Poldi		$.187 \\ .195$	$\frac{22.0}{19.1}$.708	6.6	$\begin{bmatrix} 7.61 \\ 5.50 \end{bmatrix}$	$\frac{122.2}{124.8}$
27 Póldi 28 A. & W	$\frac{5.20}{5.21}$		$\frac{19.1}{28.4}$	1.050		$\begin{bmatrix} -5.50 \\ 22.00 \end{bmatrix}$	$\frac{124.8}{107.0}$
29 McInnes		$.193 \\ .192$	14.5	$\frac{1.050}{.756}$	Tool failed	00.00	$\frac{107.0}{167.5}$
20 Sturion		.188	17.0			3.46	
30 Styrian		.120	97 5	.982	Time up		167.5
31 Jessop	0.00	+120	27.5	. 902		22,80	123.2

TABLE 111

EXPERIMENTS WITH HIGH-SPEED TOOL STEEL ON CAST IRON

ENDURANCE TRIALS

1	2	3	4	5 & 6	7	8	9	10	11
Name of Brand of	Test Piece	Trial	Inter	ided	Actual	Act	ual	Area of	Duration of
Tool Steel	No.	No.	Speed	Cut & Feed	Speed	Cut	Feed	Sec. of cut	Trial
			Ft. Min.	Ins.	Ft. Min.	Ins.	Ins.	Sq. Ins.	Min.
1 Novo	29	15	50	12X 1	47.6	$\frac{1}{2}$.00780	68
2 Styrian.	30	17	50		48.3	1 2		.00780	161
3 McInnes	30	18	50	4.6	52.4	$\frac{1}{2}$	0156	.00780	120
4 Jessop	31	124	75	$\frac{1}{4}X\frac{1}{3}_{2}$	76.9	다음 마음		.00780	51
5 Novo	29	16	40	$\frac{1}{2}X\frac{1}{3}\frac{1}{2}$	37.6	. 1	.0312	.01560	$107\frac{1}{2}$
6 McInnes	27	19	75	$\frac{1}{8}X\frac{1}{32}$	77.8	$\frac{1}{8}$.00390	181
7 Novo	27	20	75		75.5	$\frac{1}{8}$.00390	8811
8 Styrian.	3	36	65	"	63-6	$\frac{1}{8}$		00390	$195\frac{1}{2}$
9 McInnes		37	ย์อั	66	67.7	$\frac{1}{8}$		1.00390	$181\frac{1}{2}$
0 Novo	3	38	65		67.1	1/8	.0312	.00390	$40\frac{1}{2}$
1 Styrian.	1	21	30	$\frac{1}{8}X_{16}^{1}$	28.0	18		00802	981
2 Novo	1	22	30		27.7	18		.00802	$97\frac{1}{4}$
3 Novo	$\frac{2}{2}$	34	50	6.6	51.1	18		0.00802	$153\frac{1}{2}$
4 Styrian .	2	35	50	"	53.2	18		.00802	127
5 Jessop	31	123	75		74.5	$\frac{1}{8}$.00802	471
6 Rex	32	-126	80	4.6	80.4	18		.00802	55
7 Styrian	12	45	85	$\frac{1}{8}X\frac{3}{32}$	88.7	18		[.01190]	$49\frac{3}{4}$
8 McInnes	14	47	90		92.4	1 8		01190	$15\frac{1}{2}$
9 Novo	13	46	95	"	97.7	1/8		.01190	$\frac{48\frac{1}{6}}{17\frac{1}{3}}$
O Poldi	14	48	105		105.2	8		.01190	$17\frac{1}{3}$
1 A. & W.	14	49	115	4.6	113.6	1/8		[.01190]	$17\frac{1}{2}$
2 Styrian	1	26	35	$^{1}_{16}X^{1}_{16}$	38.7	16		.00401	88
3 McInnes	1	32	35	6.6	36.1	16 16 16		.00401	$64\frac{1}{2}$
4 Styrian	1	33	35	6.6	36.6	16		.00401	58}
5 Rex	32	125	85	6.6	84.5	16	.0642		$62\frac{1}{2}$
26 Styrian	6& 7	39	75	1 X 3 2	76.6	16	.0952		125
7 Novo	7&8	40	75	4.6	74.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0952		$119\frac{1}{2}$
28 McInnes		41	75	6.6	77.5	1 6	.0952		130
29 Poldi	9& 10	42	75	"	77.4	16	.0952		128
30 A. & W.	10& 11	43	75		75.0	1.6	.0952		$122\frac{1}{2}$
31 Mushet.	11	44	75	6.6	74.6	16	1.0952	21.00595	$42\frac{1}{2}$

TABLE III—(Continued)

1	12	13	14	15	16	17	18
Name of		rea nined		ight oved	Cause of	Comparative	
Brand of Tool Steel	Total	Per Min.	Total	Per Min.	Withdrawal	Durability of Tool	of Test Piece
	Sq. Ft.	Sq. Ft.	Lbs.	Lbs.			
1 Novo	. 4.2	.062	171.9	1.058	Time up	27.6	195.0
2 Styrian	10.1	0.062	182.0	1.132.		100.0	124.2
3 Melnnes	8.2	.068	130.0	1.087	6.4	100.0	124.2
4 Jessop		.200	89.6	1.756	٤.	20.7	124.5
5 Novo		.097	182.0	1.695	6.6	29.2	195.0
$6 \text{ McInnes}, \dots$. 36.6	.202	161.0	892	6.	100 0	132.0
7 Novo	. 17.4	.196	77.8	.875	6.6	100.0	132.0
8 Styrian		.165	154.0	.791	6.6	53.1	94.2
9 McInnes		.176	145.0	.798	6.4	36.9	94.2
0 Novo		.174	-30.7	.758		100.0	94.2
1 Styrian	. 14.7	.149	-63.2	642	6.6	40.0	342.0
2 Novo	. 14.4	.148	67.6	. 695	6.6	26.3	342.0
3 Novo		.273	189.0	1.230	. 6	28.6	175.2
4 Styrian		.284	165.0	1.300	4.4	42.8	175.2
5 Jessop		.398	86.2	1.820	4.6	9.6	124.5
6 Rex		.430		1.930		9.6	123.2
7 Styrian		.702	163.0	3.270	Time up	20.3	100.0
8 McInnes	. 11.3	.732			Tool failed	2.5	117.2
9 Novo	.37.3	.774	167.0	3.480	Time up	13.0	106.6
0 Poldi	14.4	.834	61.9	3.570	Tool failed	0.0	117.2
1 A. & W	. 15.8	1.902	64.9	3.710	4.6	3.8	117.2
2 Styrian	.18.2	.207	-42.0	.477	Time up	17.1	342.0
3 McInnes	. 12.4	.193	-38.2	.593		17.5	342.0
4 Styrian	. 11.4	195	26.8	.458		11.9	342.0
5 Rex	28.2	.452	-61.5	.984		17.0	123.1
26 Styrian	. 75.0	1.600	175.0	1.400		50.9	107.6
27 Novo	69.5	.582		1.420		32.4	90.4
28 McInnes	. 79.8	.614		1.470		27.4	116.4
29 Poldi	78.6	.614		1.440		34.7	122.7
30 A. & W	72.9	. 595		[1.380]		23.0	108.0
31 Mushet	. 25.1	.591	60.3	1.420	6.4	100.	109.3

TABLE IV ${\it Experiments with 11 Igh-Speed Tool Steel on Cast Iron}$ ${\it Trials to Determine Variation of Durability with Cutting Speed}$

1	2	3	4	5 & 6	7	8	9	10	11
Name of	Test	Trial	Inten	ded.	Actual	Ac	tual	Area of Sec.	Duration of
Brand of Tool Steel	Piece No.	No.	Speed	Cut & Feed	Speed	Cut	Feed	of cut	Trial
			Ft./ Min.	Ins.	Ft./ Min.	Ins.	Ins.	Sq. Ins.	Min.
1 Styrian	18	59	90	$\frac{1}{16} X_{\frac{3}{44}}^{\frac{3}{2}}$	91.5	16	.0952		44
3 "	18	60	100		102.5	_1 1 6	.0952		$28\frac{1}{2}$
	18	61	110	4.6	110.6	16 16 16 16 16 18 18		00595	$43\frac{1}{2}$
4 "	18	62	120		120.6	1.6	.0952		$41\frac{7}{3}$
5 Mushet	5	58	90	$\frac{1}{8}X_{\frac{1}{3}\frac{1}{2}}$	91.6	8	.0312		$12\frac{1}{4}$
6 McInnes		54	95		95.3	Ŕ		.00390	62
7	5	55	100	44	100.3	8	.0312		$\frac{61\frac{1}{2}}{600}$
8 "	5	56	110		110.9	8		.00390	$62\frac{1}{3}$
9 "	5	57	120	, "	123.4	8		.00390	31
10 Novo	4	50	85	$\frac{1}{8}X_{1.6}^{1}$	86.1	8		1.00800	29
11 "	4	51	95	i "	98.7	8		.00800	$\frac{27\frac{1}{2}}{20}$
12 "	4	52	105		105.2	8		.00800	30
13	4	53	115		114.9	8		.00800	015
l4 Poldi	19	63	105	3 X 1 6	106.8	1 6		.01200	$\begin{array}{r} 31\frac{1}{2} \\ 22\frac{1}{2} \\ 21\frac{5}{6} \end{array}$
15 ''	19	64	115		116.1	1,6		01200	216
16 "	19	65	125	1 1	125.7	3 1 6 3 1 6 3 1 6 4		01200	
17 A. & W.		66	110	$\frac{1}{4}x_{16}^{1}$	109.3	4		01600	161
18	20	67	120		120.0	1		01600	181
19 "	20	68	130	1 "	130.4	1	.0642	[.01600]	194

TABLE IV—(Continued)

1	12	13	14	15	16	17	18
Name of Brand of		ea nined	We Rem	ight oved	Cause of	Comparative	
Tool Steel	Total	Per Min.	Total	Per Min.	Withdrawal	Durability of Tool	of Test Piece
	Sq. Ft.	Sq. Ft.	Lbs.				
1 Styrian	31.9	.726	70.0	1.59	Time up	12.00	107.0
<u> </u>	23.1	.812	48.2		Tool failed	7.76	107.0
	38.1	.877	87.9	$\frac{2.02}{2.02}$	Time up	11.80	107.0
*	$\frac{39.5}{9.0}$.956	96.6	2.34		5.50	107.0
Mushet	2.9	.238	12.1	.99	Tool failed	0.00	102.0
McInnes	15.3	.247	$\frac{65.7}{51.3}$	1.06	Time up	50.57	102.0
8 "	$\frac{16.0}{17.9}$.261	71.3	1.16	"	25.60	102.0
9 "	9.9	$.288 \\ .321$	$\frac{78.5}{43.7}$	$\frac{1.26}{1.41}$		13.00	102.0
Novo	$\frac{9.9}{13.3}$.460	61.8	$\frac{1.41}{2.13}$	Tool failed	6.37	102.0
1 "	14.5	.527	66.0	$\frac{2.15}{2.40}$	Time up	7.53	109.2
2 "	16.9	.562	83.1	$\frac{2.40}{2.77}$	"	5.63	109.2
3 "	19.3	.614	88.8	$\frac{2.77}{2.82}$	"	$\frac{12.20}{3.31}$	109.2
Poldi	12.9	.572	85.7	3.81	44	$\frac{3.31}{13.90}$	$\frac{109.2}{117.2}$
5 "	13.5	.622	92.6	4.25	66	35.50	$\frac{117.2}{117.2}$
š "	14.8	.672	102.0	4.64	4.6	100.00	$\frac{117.2}{117.2}$
7 A. & W	9.6	.584	87.1	5.28	"	13.40	$\frac{117.2}{113.9}$
	11.9 +	.642	106.0	5.72		100.00	$\frac{113.9}{113.9}$
	13.4	.697	118.0	6 16	"	15.70	113.9

TABLE V ${\it Experiments with High-Speed Tool Steel on Cast Iron }$

Trials to Determine Variation of Durability with Hardness

			4	5 & 6	7	8	()	10	11
Name of Brand of	Test Piece	Trial	Inter	Intended		Act	Actual		Duration of
Tool Steel	No.	No.	Speed	Cut & Feed	speed	Cut	Feed	sec. of cut	Trial
			Ft. Min.	Ins.	Ft. Min.	Ins.	Ins.	Sq. Ins.	Min.
1 Novo	22	94	50	$_{18}^{1}\times_{32}^{1}$	50.9	l l	0312	.00390	83
2 Poldi	22	96	75	6.6	75.1	į,	0312	.00390	$88\frac{1}{2}$
3 Styrian.	23	85	75	6.6	75.2	1 5 1 8	0312	0.00390	381
4 Novo	15	91	100	6.6	100.3	18	0312	00000	$37\frac{3}{4}$
5 A. & W.	21	88	100	4.4	101.5	1 8	.0312	00390	38
6 McInnes	17	70	100	6.	101.9	1 5	.0312	.00390	$36\frac{3}{4}$
7 Poldi	26	73	125	1.6	125.8	5 1 5		.00390	$30\frac{1}{2}$
8 A. & W.	16	79	130	6.6	130.0	1 5	0312	. 00390	$29\frac{5}{6}$
9 Styrian.	25	76	130	6.6	-131.2	1	.031:	2.00390	293
10 Novo	24	82	130	6.6	132.0	1	.0312	2.00390	$\frac{29\frac{3}{4}}{33\frac{3}{4}}$
II Poldi	22	95	50	$\frac{1}{8} \times \frac{1}{16}$	50.4	5 1	.0642	2.00802	384
12 A. & W.	23	86	70		70.9	į	.064:	21.00802	$23\frac{5}{6}$
13 A. & W.	15	92	95		95.0	5 1 8		2.00802	28"
14 McInnes	21	89	95		95.2	1	.0642	2,00802	201
15 Styrian	17	71	95	"	95.2	1 8		2.00802	27
16 Póldi	16	80	120	4.6	120.0	į		2.00802	9
17 Novo	25	77	120	6.6	121.2	8 1		2.00802	21
is McInnes	24	83	120	4.6	122.7	1 8		2.00802	213
19 A. & W.	26	74	140	4.4	143.4	1 8		2 .00802	183
20 Novo	23	87	เอื้	$_{1.6}^{3} \times _{1.6}^{1}$		3 1 6		2 .01200	33
21 Styrian	21	90	85	16 16	85.2	3		$2^{\circ}.01200$	321
22 Poldi	15	93	85	44 .	86.2	1.6		2 .01200	
23 Novo	17	72	85	+ 6	88.8	1 6		2.01200	24
24 McInnes		75	100		101.1	1 6		2.01200	
25 Styrian		81	110		109.8	1.6		2 .01200	
26 A. & W.		84	110		110.6	1.6		$\frac{2}{2}$. 01200	
27 Poldi	25	78	110		111.5	1 6		2 .01200	
28 Rex	32	127	70	6.4	72.2	1 6 3 1 6		$\frac{.01200}{2.01200}$	

TABLE V—(Continued)

1	12	13	14	15	16	17	18
Name of Brand of Tool Steel		rea nined	Weight Removed		Cause of	Comparative Durability	Hardness of Test
	Total	Per Min.	Total	Per Min.	Withdrawal	of Tool	Piece
•	Sq. Ft.	Sq. Ft.	Lbs.	Lbs.			
1 Novo	10.9	.132	55.4	.668	Time up	67.6	167.5
2 Poldi	17.2	.195	75.9	858	4.4	68.1	167.5
3 Styrian	7.5	195	35.8	. 929	"	15.7	122.2
4 Novo	9.9	.262		1.200	4.6	100.0	132.0
5 A. & W	10.0	.264		1.210	"	31.0	124.8
6 McInnes	9.6	.264		1.220	"	60.0	90.3
7 Poldi	9.9	.327		1.580	"	24.8	95.9
8 A. & W	10.1	. 338		1.480	"	12.2	109.8
9 Styrian	10.1	. 341		1.540	"	100.0	102.4
Novo	10.2 -	. 343		1.600		12.1	111.2
l Poldi	9.0	. 269		1.220		27.5	167.5
2 A. & W	9.0	.379		1.730		38.8	122.2
	44.2	.508	99.1	2.110	Tool failed	100.0	132.0
	$\frac{10.4}{13.7}$.509	40.7	$\frac{2.130}{2.180}$	Time up	.0	124.8
5 Styrian	$\frac{15.7}{5.7}$.509		$\frac{2.180}{2.680}$	Tool failed	100.0	90.3
Novo	$\frac{9.7}{13.6}$.649		$2.080 \\ 2.940$		0.001	109.8
McInnes	14.1	.657		3.050	Time up	$\frac{100.0}{35.0}$	102.4
A. & W	$14.1 \\ 14.2$.767		3.480		15.1	111.2
Novo	11.5	.350	70 9	2.400		$\frac{15.1}{65.5}$	$95.9 \\ 122.2$
2.0.0.	14.6	.455	98.7	3.070	4.6	13.1	124.8
Poldi	18.5	.461		2.860	"	10.4	132.0
	11.4	.475	77 3	3.220	"	100.4	90.3
	11.9	.541	78.5		"	35.8	95.9
Styrian	7.7	.588	50.8			3.6	109.8
A. & W	9.5	.592	64.3		. (26.0	111.2
	12.5	.597	82.1		"	100.0	102.4
Rex		.386	72.3:		6.6	4.7	123.2

 ${\bf TABLE\ VI}$ Experiments with High-Speed Tool Steel on Cast Iron

PRELIMINARY TRIALS

1	2	3	4	5	- 6	7
				Horse-Power		
Name of Brand of	Test	Trial	Total	Required to	Net	Actual
Tool Steel.	Piece No.	No.		drive lathe and countershaft	required for cutting	cutting speed
					Col. (4) — (5)	Ft. Mir
1 Styrian	28	3	2.52	. 65	1.87	54.8
9 ""		4	2.78	.67	2.11	36.2
2 ""	4.4	5	$\frac{2.30}{2.30}$.63	1.67	32.5
4 "	44	6	3.05	.70	2.35	60.5
5 "	"	7	2.29	.63	1.66	59.6
6 "	. (s i	1.29	.53	.76	58.0
7 "	"	9	3.08	.70	2.38	52.1
8 "	"	10	2.42	.64	1.78	47.6
9 "	"	ii	1.46	.55	.91	41.2
0 McInnes	1	23	1.83	.58	1.25	28.4
1 "	4.4	24	1.90	.59	1.31	31.8
2 "	4.6	25	1.87	.59	1.28	31.9
3 Novo	4.4	27	1.48	.55	.93	40.7
4 "		$\overline{28}$	1.67	.57	1.10	43.7
5 "	4.6	29	1,41	.54	87	42.5
6 Styrian	4.4	30	1.52	.55	.97	41.3
7 Novo		31	1.42	.54	.88	41.7
8 Styrian	27	130	3,06	.67	2.39	152.1
19 Novo	4.6	131	2.83	.55	2.28	153.1
20 McInnes	4.4	132				150.0
21 Styrian	16	183	4.89	.89	4.00	111.0
22 Novo	"	134	3.12	.68	2.44	107.2
23 Styrian	23	135	2.74	.64	2.10	133.8
24 "	4.6	136	2.69	.63	2.06	134.3
25 "	4.4	137	2.45	.60	1.85	102.9
26 Novo	66	138				106.3
27 ''	22	139	2.43	.60	1.83	101.5
28 Styrian	11	140	2.50	. 65	1.85	-79.5
29 Jessop	31	141	2.50	.65	1.85	53.3
30 "	"	142	2.82	.64	2.18	75.2
31 ''	32	143	2.82	.64	2.18	85.0

TABLE VI-(Continued)

1	8	9	10	11	12
Name of	of T	ce on point Tool.	Size	Area	Hardness
Brand of Tool Steel	Total calculated	Per Sq. In. Area of cut	of Cut	Cut (cut × feed)	of Test Piece
	Lbs.	Lbs.	Ins.	Sq. In.	
1 Styrian	1126	129300	$\frac{3}{8} \times \frac{3}{128}$.00870	114.5
2 ""	19 25	123200	$\frac{1}{2} \times \frac{1}{32}$.01560	114.5
2 ""	1696	106000	$\frac{1}{4} \times \frac{1}{16}$.01600	114.5
4	1282	107800	3	.01190	114.5
5 "	920	114800	$\frac{1}{8} \times \frac{1}{16}$.00802	111.5
6 "	432	110800	1 × 11	.00390	114.1
7 "	1508	130000	$\frac{1}{8} \times \frac{1}{3\frac{2}{2}}$ $\frac{3}{8} \times \frac{1}{3\frac{2}{2}}$.01160	114.5
8 "	1235	106500	$\frac{3}{3} \times \frac{3}{32}$.01160	114.5
9 "	728	93400	$\frac{1}{4} \times \frac{3}{32}$.00780	114.5
0 McInnes	1451	181000	$\begin{array}{ccc} \frac{1}{4} & \times & \frac{1}{32} \\ \frac{1}{5} & \times & \frac{1}{16} \end{array}$.00802	342.0
1 "	1360	169800	6.6	.00802	342.0
2 "	1325	165300	٤ ٤	.00802	342.0
3 Novo	754	188000	$\frac{1}{16} \times \frac{1}{16}$.00401	342.0
4 "	832	207000	10 16	.00401	342.0
.5 ''	675	168200	"	.00401	342.0
6 Styrian	773	192500	"	.00401	342.0
7 Novo	697	173500		.00401	342.0
8 Styrian	519	133000	$\frac{1}{5} \times \frac{1}{32}$.00390	132.0
9 Novo	492	126000	" "	.00390	132.0
20 McInnes			"	.00390	132.0
1 Styrian	1189	99100	$\frac{3}{16} \times \frac{1}{16}$.01200	109.8
22 Novo	752	93800	$\frac{\frac{3}{16}}{\frac{1}{8}} \times \frac{1}{16}$.00802	109.8
23 Styrian	518	132800	$\begin{array}{c} \frac{3}{16} \times \frac{1}{16} \\ \frac{1}{8} \times \frac{1}{16} \\ \frac{1}{8} \times \frac{1}{32} \end{array}$.00390	122.2
24 ''	507	130000	16 32	.00390	122.2
25 "	593	152000	44	.00390	122.2
26 Novo			"	.00390	122.2
27 ''	595	152500	" "	.00390	167.5
28 Styrian	768	196800	"	.00390	167.5
29 Jessop	1145	142800	$\frac{1}{8} \times \frac{1}{16}$.00802	124.5
30 ''	958	119300	16	.00802	124.5
31 ''	847	105600	6.6	.00802	124.5

TABLE VII

EXPERIMENTS WITH HIGH-SPEED TOOL STEEL ON CAST FROM

SKIN CUT TRIALS

1	2	3	4	5	6	7
	77	<i>m</i> : 1		Horse-Power		
Name of Brand of	Test Piece	Trial	Total	Required to	Net	Actual Cutting
Tool Steel	No.	No.		drive lathe and		Speed
roorrect	1.0.		Motor	countershaft	Cutting	Бреса
					Col. (4) — (5)	Ft./ Min
1 Styrian	28	1	1.22	.52	0.70	45.2
2 Styrian	28	2	0.82	.49	0.33	36.3
3 McInnes	29	12	1.47	.55	0.92	46.2
4 McInnes	29	13	2.53	.65	1.88	59.5
5 McInnes	29	14	1.14	.52	0.62	36.4
6 Styrian	3	97	1.38	.54	0.84	50.6
7 Styrian	6 & 7	98	1.67	.57	1.10	55.2
8 Novo	8	99	1.48	.55	0.93	55.0
9 McInnes	9	100	1:74	.57	1.17	57.4
0 Novo	10	101	1.96	.60	1.36	55.5
1 McInnes	11	102	1.74	.57	1.17	54.4
2 Poldi	12 & 13	103	1.86	.59	1.27	55.6
$\dots \dots W \gg L \otimes$	14	104	1.38	.54	0.84	55.3
4 A & W	4	105	1.82	.58	1.24	56.0
5 Styrian	5	106	2.00	.60	1.40	67.9
.6 Novo	18	107	2.12	.61	1.51	68.8
17 McInnes	19	108	2.29	.63	1.66	68.5
8 Melnues	19	109	2.29	.63	1.66	68.5
19 Poldi	20	110	2.50	. 65	1.85	68.0
20 Novo	20	111	2.41	. 64	1.77	68.2
21 Styrian	17	112	1.88	.59	1.29	75.3
22 Novo	26	113	1.88	.59	1.29	75.2
23 McInnes	25	114	1.78	.58	1.20	75.7
24 Poldi	16	115	1.83	.58	1.25	74.7
25 A & W	24	116	1.96	.60	1.36	73.9
26 Styrian	23	117	1.84	.58	1.26	72.2
27 Poldi	21	118	1.85	.58	1.27	75.0
28 A & W	15	119	2.19	.62	1.57	74.2
29 McInnes	22	-120	2.02	. 60	1.42	73.8
30 Styrian	20	121	1.76	.58	1.18	72.5
31 Jessop	32	122	2.00	.60	1.40	46.1

TABLE VII—(Continued)

1	8	9	10	11	12
Name of	Cutting For of T		Size	Area of	Hardness o
Brand of Tool Steel	Total Calculated	Per Sq. In. Area of Cut	$\operatorname{Cut}^{\operatorname{of}}$	(cut×feed)	Test Piece
	Lbs.	Lbs.	Ins.	Sq. In.	
1 Styrian	511	101000	$\frac{7}{3}$ $\frac{7}{2}$ $\frac{3}{1}$ $\frac{3}{2}$ $\frac{5}{5}$.00507	114.5
2 Styrian	300	59300	4.4	.00507	114.5
3 McInnes	658	168500	$\frac{1}{4}X_{64}^{-1}$.00390	195.0
4 McInnes	1042	133800	$\frac{1}{4} \times \frac{1}{32}$.00780	195.0
5 McInnes	562	144000	1 X 2 7	.00390	195.0
6 Styrian	548	93800	$\frac{3}{16} \stackrel{4}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$.00585	94.2
7 Styrian	658	112500		.00585	107.6
8 Novo	558	95500	4.4	.00585	94.3
9 McInnes	673	115000	4.4	.00585	138.6
10 Novo	809	138300	+ 6	.00585	106.8
11 McInnes	710	121300	4.4	.00585	109.3
12 Poldi	754	129000	4.4	.00585	103.3
13 A & W	502	85800	6.6	.00585	117.2
W & A 4.	732	125000	4.6	.00585	109.2
5 Styrian	682	116300	6.6	00585	102.0
l6 Novo	725	185800	$\frac{1}{8} X_{\frac{3}{44}2}^{\frac{1}{3}2}$.00390	107.0
7 McInnes	800	205000	""	.00390	117.2
8 McInnes	800	205000	4.6	.00390	117.2
9 Poldi	899	230000	6.6	.00390	113.9
20 Novo	858	219600	6.4	.00390	113.9
21 Styrian	565	145000	6.6	.00390	90.3
22 Novo	567	145200	6.6	.00390	95.9
23 McInnes	524	134300	4.4	.00390	102.4
24 Poldi	553	141800	4.4	.00390	109.8
25 A & W	608	155800	6.6	00390	111.2
26 Styrian	577	147800	4.6	.00390	122.2
27 Poldi	559	143200	4.4	,00390	124.8
28 A & W	699	179000	4.6	.00390	107.0
29 McInnes	636	163000	4.4	.00390	167.5
30 Styrian	538	137800	44	.00390	167.5
BI Jessop	1001	128500	$\frac{1}{4} \times \frac{1}{32}$.00780	123.2

TABLE VIII $\begin{tabular}{l} \textbf{Experiments with High-Speed Tool Steel on Cast Iron} \\ \textbf{Endurance Trials} \end{tabular}$

1	2	3	4	5	6	7
				Horse-Power		
Name of Brand of	Test Piece	Trial	Total	Required to	Net	Actual Cutting
Tool Steel	No.		Output of Motor	drive lathe and countershaft	Required for Cutting	Speed
		-			Col. $(4) - (5)$	Ft./Min
1 Novo	29	15	2.83	.68	2.15	47.6
2 Styrian	30	17	2.52	. 65	1.87	48.3
3 McInnes	30	18	2.31	.63	1.68	52.4
4 Jessop	31	124	3.10	.68	2.42	76.9
5 Novo	29	16	3.58	.75	2.83	37.6
6 McInnes	27	19	1.57	.56	1.01	77.8
7 Novo	27	20	1,49	.49	1.00	75.5
8 Styrian	3	36	1.34	.54	0.80	63.6
9 McInnes	3	37	1.33	.47	0.86	67.7
0 Novo	- 3	38	1.27	.47	0.80	67.1
1 Styrian	1	21	1.56	.56	1.00	28.0
2 Novo	1	20	1.66	.56	1.10	27.7
3 Novo	2	34	2.13	.61	1,52	51.1
4 Styrian	2	35	1.78	.58	1.20	53.2
5 Jessop	- 31	123	2.98	.66	2.32	74.5
6 Rex	32	126	3.05	.67	2.38	80.4
7 Styrian	12	4.5	3.16	.68	2.48	88.7
8 McInnes	14	47	3.53	.73	2.80	92.4
9 Novo	13	46	3.67	.74	2.93	97.7
O Poldi .	14	48	4.49	.83	3,66	105.2
1 A. & W	14	49	4.83	.87	3.96	113.6
2 Styrian	1	26	1.19	.52	0.67	38.7
3 McInnes	1	32	1.24	.53	0.71	36.1
4 Styrian	1	33	1.29	.47	0.82	36.6
5 Rex		125	2.03	.57	1.46	84.5
6 Styrian	6 & 7	39 -	1.89	.57	1.32	76.6
7 Novo	788	40	1.56	.50	1.06	74.3
S McInnes	8 & 9	41	1.92	.59	1.33	77.5
	9 & 10	42	2.04	.60	1.44	77.4
	10 & 11	43	1.96	.54	1.42	75.0
1 Mushet	11	44	1.79	.53	1.26	74.6

TABLE VIII—(Continued)

1	8	9	10	11	12
Name of	Cutting For	rce on Point ool	Size	Area of	Hardness of
Brand of Tool Steel	Total Calculated	Per Sq. In. Area of Cut	of Cut	Cut (cut×feed)	Test Piece
	Lbs.	Lbs.	Ins.	Sq. Ins.	
1 Novo	1492	191500	$\frac{1}{2} \times \frac{1}{64}$.00780	195.0
2 Styrian	1275	163500	* * * * * * * * * * * * * * * * * * * *	.00780	124.2
3 McInnes	1059	135800	44	.00780	124.2
4 Jessop	1040	133300	$\frac{1}{4} \times \frac{1}{32}$.00780	124.5
5 Novo	2482	159100	1 × 1	.01560	195.0
6 McInnes	428	109700	$\frac{1}{3}$ \times $\frac{3}{3}$ $\frac{2}{3}$.00390	132.0
7 Novo	437	112000		.00390	132.0
8 Styrian	415	106400	6.6	.00390	94.2
9 McInnes	419.	107300	4.6	.00390	94.2
10 Novo	394	101000	6.6	.00390	94.2
11 Styrian	1179	147000	$\frac{1}{8} \times \frac{1}{16}$.00802	342.0
12 Novo	1310	163500	1.6	,00802	342.0
13 Novo	982	122500	4.6	.00802	175.2
14 Styrian	745	93000	4.4	.00802	175.2
15 Jessop	1029	128300	6.6	.00802	124.5
16 Rex	978	122000	4.6	.00802	123.2
17 Styrian	924	77900	$\frac{1}{8} \times \frac{3}{3^{\frac{3}{2}}}$.01190	100.0
18 McInnes	1000	84000	4.6	.01190	117.2
19 Novo	1010	84900	4.6	.01190	106.6
20 Poldi	1148	96500	6.4	.01190	117.2
21 A. & W	1151	96800	4.6	.01190	117.2
22 Styrian	571	142300	$\frac{1}{16} \times \frac{1}{16}$.00401	342.0
23 McInnes	649	161600		.00401	342.0
24 Styrian	739	184000		.00401	342.0
25 Rex	570	142000		.00401	123.2
26 Styrian	569	95700	$\frac{1}{16} \times \frac{3}{32}$.00595	107.6
27 Novo	471	79200	4.4	.00595	90.4
28 McInnes	567	95300	" "	.00595	116.4
29 Poldi	615	103200	"	.00595	122.7
30 A. & W	625	105000	4.6	.00595	108.0
31 Mushet	557	93800	* "	.00595	109.3
	i				

TABLE 1X ${\it Experiments with High-Speed Tool Steel on Cast Iron } \\ {\it Trials to Determine Variation of Durability with Cutting Speed}$

1	2	3	4	5	6	7
N .	70	m : 1		1 -41		
Name of Brand of	Test Piece	Trial	Total	Required to	l Net	Actual
Tool Steel	No.	No.		drive lathe and countershaft		Cutting Speed
					Col. (4)—(5)	Ft./ Min
1 Styrian	18	59	2.38	.59	1.79	91.5
2 Styrian	18	60	2.71	.63	2.08	102.5
3 Styrian	18	61	2.84	.65•	2.19	110.6
4 Styrian	18	62	3.08	.67	2.41	-120.6
5 Mushet	อ	58	1.77	.52	1.25	91.6
6 McInnes	5	54	1.58	.50	1.08	95.3
7 McInnes	5	55	1.78	.52	1.26	100.3
8 McInnes	5	56	2.16	.59	1.57	-110.9
9 McInnes	5	57	2.19	.57	1.62	123.4
10 Novo	4	50	2.61	.62	1.99	86.1
11 Novo	4	51	2.92	.66	2.26	98.7
12 Novo	4	52	3.14	.68	2.46	105.2
13 Novo	4	53	3.76	. 75	3.01	114.9
14 Poldi	19	63	4.48	.83	3.65	106.8
15 Poldi	19	64	5.06	.90	4.16	116.1
16 Poldi	19	65	5.20	.92	4.28	125.7
17 A. & W	20	66	6.50	1.07	5.43	109.3
18 A. & W	20	67	5.98	1.01	4.97	120.0
19 A. & W	20	68	6.04	1.01	5.03	130.4

TABLE IX—(Continued)

1	8	9	10	11	12
Name of Brand of Tool Steel	C-	rce on Point Γool Per Sq. In. Area of Cut	Size of Cut	Area of Cut (cut×feed)	Hardness of Test Piece
	Lbs.	Lbs.	Ins.	Sq. Ins.	
1 Styrian 2 Styrian 3 Styrian 4 Styrian	$ \begin{array}{r} 647 \\ 670 \\ 653 \\ 661 \end{array} $	$\begin{array}{c} 108800 \\ 112600 \\ 109800 \\ 111000 \end{array}$	$\begin{array}{ccc} \frac{1}{16} & \times & \frac{3}{32} \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$.00595 .00595 .00595 .00595	107.0 107.0 107.0 107.0
5 Mushet 6 McInnes 7 McInnes	$\frac{450}{374}$ $\frac{414}{414}$	115400 96000 106100	\frac{1}{8} \times \frac{3}{3} \frac{3}{2}	.00390 .00390 .00390	102.0 102.0 102.0
8 McInnes 9 McInnes 10 Novo 11 Novo	468 433 763 757	$\begin{array}{c} 120000 \\ 111100 \\ 95300 \\ 94400 \end{array}$	1 × 1 16	.00390 .00390 .00802 .00802	$ \begin{array}{c} 102.0 \\ 102.0 \\ 109.2 \\ 109.2 \end{array} $
12 Novo	$772 \\ 866 \\ 1128 \\ 1182$	96300 108000 94000 98500	$\frac{3}{16} \times \frac{1}{16}$.00802 .00802 .01200 .01200	$ \begin{array}{r} 109.2 \\ 109.2 \\ 117.2 \\ 117.2 \end{array} $
16 Poldi	$ \begin{array}{r} 1124 \\ 1640 \\ 1366 \\ 1273 \end{array} $	93750 102500 85500 79600	$\frac{1}{4} \times \frac{1}{16}$.01200 .01200 .01600 .01600 .01600	117.2 117.2 113.9 113.9 113.9

TABLE X ${\it Experiments with High-Speed Tool Steel on Cast Iron }$

Trials to Determine Variation of Durability with Hardness

1	2	3	4	5	6	7
				Horse-Power	•	
Name of	Test	Trial	Total	Required to	Net	Actual
Brand of Tool Steel.	Piece No.	No.	output of Motor	drive lathe and countershaft		cutting speed
					Col. (4) — (5)	Ft./ Min.
1 Novo	22	94	1.57	.56	1.01	50.9
2 Poldi	99	96	$\frac{1.01}{2.03}$.55	1.48	75.1
3 Styrian	23	85	$\frac{1}{2.08}$.56	1.52	75.2
4 Novo	15	91	1.88	.54	1.34	100.3
5 A. & W	21	88	2.18	.57	1,61	101.5
6 McInnes	17	70	1.87	.53	1.34	101.9
7 Poldi	26	73	2.51	.61	1.90	125.8
8 A. & W	16	79	2.38	.59	1.79	130.0
9 Styrian	25	76	2.26	.58	1.68	131.2
10 Novo	24	82	2.54	.61	1.93	132.0
11 Poldi	22	95	2.44	.64	1.80	50.4
12 A. & W	23	86	2.73	.63	2.10	70.9
13 A. & W	15	92	2.62	.62	2.00	95.0 95.2
14 McInnes	21	89	$\frac{4.07}{2.02}$.80	$\begin{array}{c} 3.27 \\ 2.03 \end{array}$	95.2
15 Styrian	17	71	2.65	. 62	3.11	$\frac{93.2}{120.0}$
16 Poldi	16	80	3.88	.77	$\frac{5.11}{2.63}$	$\frac{120.0}{121.2}$
17 Novo	25	77 83	$\frac{3.33}{3.27}$.70	$\frac{2.03}{2.57}$	$\frac{121.2}{122.7}$
18 McInnes	$\frac{24}{26}$	85 74	3.83	.76	3.07	143.4
19 A. & W 20 Novo	28	87	3.55	.75	2.80	65.5
	23	90	4.05	179	3.26	85.2
21 Styrian	15	93	3.96	78	3.18	86.2
23 Novo	17	72	3.36	1.70	2.66	88.8
24 McInnes.	26	75	3.68	.74	2.94	101.1
25 Styrian	16	81	4.58	.84	3.74	109.8
26 A. & W	24	84	4.02	.78	3.24	110.6
27 Poldi	25	78	4.22	.80	3.42	111.5
28 Rex	32	127	3.50	.72	2.78	72.2

TABLE X—(Continued)

1	8	9	10	11	12
Name of Brand of Tool Steel		rce on Point Γool Per Sq. In. Area of Cut	Size of Cut	Area of Cut (cut×feed)	Hardness of Test Piece
1 Novo	Lbs. 655 650 668 441 523 434 498 454 422 482 1179 978 695 1134 704 855	Lbs. 168000 166500 171100 113100 134200 111200 127700 116300 108100 123500 147100 122000 86700 141500 87800 106500	Ins.	Sq. Ins00390 .00390 .00390 .00390 .00390 .00390 .00390 .00390 .00390 .00390 .00802 .00802 .00802 .00802 .00802 .00802	167.5 167.5 122.2 132.0 124.8 90.3 95.9 109.8 102.4 111.2 167.5 122.2 132.0 124.8 90.3 109.8
17 Novo. 18 McInnes. 19 A. & W. 20 Novo. 21 Styrian 22 Poldi. 23 Novo. 24 McInnes. 25 Styrian 26 A. & W. 27 Poldi. 28 Rex.	717 692 706 1410 1264 1219 989 958 1123 967 1012 1271	89500 86300 88100 117500 105300 101500 82400 79800 93700 80600 84500 106000	16 × 1/16	.00802 .00802 .00802 .01200 .01200 .01200 .01200 .01200 .01200 .01200 .01200	102.4 111.2 95.9 122.2 124.8 132.0 90.3 95.9 109.8 111.2 102.4 123.2

V. SUMMARY OF RESULTS

(a) Variation of Cutting Force with Area of Cut

The effort exerted by the tool in cutting was determined as explained in Part III (c). The horse-power lost in driving the lathe and countershaft was deducted from the total horse-power used during the trial, the difference being the net horse-power required for cutting. This was reduced to foot-pounds per minute, and divided by the cutting speed, giving the force exerted. The figures so obtained were reduced to pounds per unit area of cut, and plotted as ordinates upon a base of area of cut in Fig. 14. The curves show that the cutting force was not directly proportional to the area of cut, but decreased as the area increased, and that the average cutting force varied from 50 tons per square inch for soft cast iron to 85 tons per square inch for hard cast iron. Each curve shown in the figure represents a different The relative hardness is shown in the hardness of cast iron. table on the figure.

(b) Variation of Durability of Tool with Cutting Speed

In Fig. 15 are shown the curves which represent the relation between the durability of the tool and the cutting speed. These are important curves. Each curve represents a different hardness of cast iron. Referring to the middle curve, which is for cast iron of medium hardness, it will be seen that a cutting speed of 50 feet per minute is satisfactory, the durability being 100. If the speed is increased very materially, the durability decreases quite rapidly. It is evident that for each hardness of cast iron, the cutting speed allowable for a maximum durability exists where the vertical line indicating cutting speed is tangent to curves similar to those drawn.

(c) Variation of Cutting Speed with the Hardness of Cast Iron

The curve shown in Fig. 16 represents the advisable cutting speed on cast iron of varying hardness. This curve represents the result of all the tests of the different steels tested. This curve shows: (a) that any of the steels tested can remove very hard cast iron at a rate of 25 feet per minute; (b) that all of the steels tested begin to wear rapidly at speeds a little above 125 feet per minute. Between these two points the relation between a safe cutting speed and the hardness of the cast iron seems to be defi-

Fig. 14. Curves Showing Relation Between Cutting Force ON POINT OF TOOL AND AREA OF CUT FOR CAST IRON OF VARYING HARDNESS

Fig. 15. Curves Showing Variation of Durability of Tool with Cutting Speed for Cast Iron of Varying Hardness—Average of all Tool Steels

nitely expressed by the curve. It would seem that cast iron of medium hardness, 100 to 120, could be cut at 125 feet per minute just as readily as at 70 feet per minute, as far as any injury to the tool is concerned. It must be remembered that this curve does not take into account the effect, on the cutting speed, of the variation in the area of cut; the experiments from which the

Fig. 16. Curve Showing Cutting Speeds it is Advisable to use with a Variation in the Hardness of Cast Iron

curve was plotted were in all cases those in which the cut was very nearly $\frac{1}{5}$ in. depth of cut by $\frac{1}{16}$ in. feed, so that there is but a slight variation in the area of cut in all of the experiments. From the curve of Fig. 16, we find the cutting speeds given in Table 4 to be applicable to the grades of iron manufactured by the different companies sending test pieces. In order that any company may make use of the curve shown in this figure, it will be necessary simply to determine the average hardness of its cast iron, as explained elsewhere, and where the horizontal line representing this hardness cuts the curve, the possible safe cutting speed may be read on the scale below. This curve should prove useful to various manufacturers.

 ${\bf TABLE-4}$ Allowable Cutting Speeds for Grades of Cast Iron Used in the Tests

Name of Company S	Name of Company Sending Test Pieces				
	Pierce Plant	101.8	132.0		
	Michigan Plant	110.7	118.0		
American Radiator Co Chicago, Ill.	Detroit Plant	109.3	120.0		
·	——————————————————————————————————————	112.7	90.0		
	———— Plant	138.1	60.0		
	Marked B 5-26-05 ————————————————————————————————————	103.1	132.0		
Orane Company	Grey Iron	132.0	63.0		
Chicago, Ill.	{Ferro-Steel	342.0	28.0		
Root, Van Dervoort Eng'g C East Moline, Ill.	'o	175.2	48.0		
University of Illinois	·····	136.3	60.0		

(d) Generally speaking, all the steels tested proved equally effective. It is very evident that there are great possibilities ahead for high-speed steels. Before realizing their full benefit, however, certain advances must be made. Heavier machine tools must be built. The capacity of the motors and power plants

must be increased. Special hardening furnaces with temperature measuring devices must be available. More must be known concerning the chemical and physical properties of the various steels.

(e) Tool steels are now available that will cut east iron from two to three times as fast as was possible a few years ago. When every advantage has been taken of these possibilities, the cost of manufacturing many articles should be materially reduced.

VI. Reference List of Articles on High-Speed Steels

Experiments with a New Tool Steel: by F. Heissig, in Stahl and Eisen, January 1, 1901.

Results of tests made by Böhler Bros. and Co., Vienna and Berlin, on their Styrian Steel marked Böhler Rapid.

Extract of Report of Experiments of Taylor and White, at the Bethlehem Steel Co., S. Bethlehem, Pa.: in Zeitschrift des Vereines Deutscher Ingenieure, March 30, 1901.

The Taylor-White Process of Treating Tool Steel and Its Influence on the Mechanic Arts: by Charles Day, in *Journal of the Franklin Institute*, September, 1901.

High-Speed Steel: in Zeitschrift des Vereines Deutscher Ingenieure, September 28, 1901.

Report of experiments instituted by the Berlin section of the Vereines Deutscher Ingenieure. Test made on forged and cast steel and cast iron.

High-Speed Tool Steel: by F. Reiser, in Stahl and Eisen, January 15, 1903.

A discussion of the chemical properties of high-speed and self-hardening tool steels.

Speeds, Feeds and Angles of Metal-Cutting Tools: by F. Donaldson, in *American Machinist*, March 5, 1903.

Discussion of the relation of cutting angles to angles to which tools are ground.

The Requirements of Machine Tool Operation with Special Reference to the Motor Drive: by Charles Day, in American Machinist, Part 1, March 12, 1903, Part II, March 19, 1903. Discussion of tools driven by electricity.

Metal Cutting with the New Tool Steels: by Oberlin Smith, in Engineering Magazine, April, 1903, Vol. 25.

Discussion of changes in the design and operation of machines to be wrought by the new tool steels.

Notes on High-Speed Tool Steels: by Henry H. Suplee, in *Engineering*, (London), July 31, 1903, Vol. 76.

Results of tests made at the Union Pacific Shops, Omaha, Nebraska.

Rapid Tool Steels: in *Engineering* (London), August 21, 1903, Vol. 76.

Chemical properties of the new steels with attainable speeds. Editorial.

Rapid-Cutting Tool Steels: in *Engineering* (London) October 30, 1903, Vol. 76.

Report on experiments made at the Manchester Municipal School of Technology under the direction of a joint committee from the above school and the Manchester Association of Engineers. A very elaborate and interesting report by Professor J. T. Nicolson, also reported in the American Machinist, November 19 and 26, 1903.

The Analysis of High-Speed Steels: in *Engineering* (London), November 20, 1903, Vol. 76.

Methods of testing for different chemical constituents

Cutting Speeds and Feeds with New Tool Steels: by Oberlin Smith, in *Engineering Magazine*, January, 1904, Vol. 26.

Record of actual results obtained.

Rapid-Cutting Steel: by Professor J. T. Nicolson, in *Technics*, January, 1904.

A very interesting summary of Berlin and Manchester experiments. The following formula is deduced:

$$V = \frac{K}{a + L} + M$$

V = allowable cutting speed in feet per minute

a = area of cut in square inches

K, L, M = constants for different materials

See Table 5. The chemical analyses to which these tables apply are given in Table 6. It is probable that these results were obtained under the most favorable conditions

and therefore represent the maximum results obtainable at the time of these experiments. It is a question whether these results can be attained in the work shop, where the conditions are frequently not so favorable.

Table 5

Constants for Use in the Equation Giving the Relation Between Cutting Speed and Area of Cut

(Experiments by Nicolson)

Constant	Fl	uid Pressed	Šteel —————	Cast-Iron Bars			
Constant	Soft	Medium	Hard	Soft	Medium	Hard	
K	1.950	1.850	1,030	3.100	1.650	1.300	
L	.011	.016	0.160	.025	.030	.035	
M	15.000	6.000	4.000	8.000	7.000	5.500	

	Fluid Pressed Steel			Cast-Iron		
	Soft	Medium	Hard	Soft	Medium	Hard
Carbon	.198	. 275	.514			
Combined Carbon.				.459	.585	1.1500
Graphite				2.603	2.720	1.8750
Silicon	.055	.086	.111	3.010	1.703	1.7890
Manganese	.605	.650	.792	1.180	.588	.3480
Sulphur	.026	.037	.033	.031	.061	.1614
Phosphorus	.035	.043	.037	.773	.526	.7320

The Heat Treatment of Steel: in *Proceedings of the Institute of Mechanical Engineers*, January, 1904, Sixth Report of the Alloys Research Committee.

Discussion of hardening, annealing and chemical properties of steel.

- The Introduction of High-Speed Steels in Engineering Work Shops: in *Engineering* (London), March 4, 1904, Vol. 77.
- High-Speed Tool Steel: Its Manufacture and Use: by J. M. Gledhill, in *Technics*, Part I, June, 1904; Part II, July, 1904. Some constituents and processes used in the manufacture of high-speed steel.
- Experiments with a Lathe-Tool Dynamometer: by Professor J. T. Nicolson, in *Trans. A. S. M. E.*, Vol. 25, 1904.

 Measures all forces acting on a lathe tool while cutting. Valuable for designers of lathes. Discussion of influence of cutting angles on power required to cut.
- A Twist Drill Dynamometer: by Wm. W. Bird and Howard O. Fairfield, in *Trans. A. S. M. E.*, Vol. 26, 1904.

 Measures both the twist and torque of drill while cutting with high-speed drills.
- The Chemical Analysis of High-Speed Steels and Alloys: by Fred Ibbotson, in *Technics*, October, 1904.
- The Development and Use of High-Speed Tool Steel: by J. M. Gledhill, in American Machinist, December 22, 1904.

 Interesting results of experiments made to find the effect of various chemical constituents on the cutting powers of the tool steel.
- Feeds and Speeds for Lathe Work: by T. A. Sperry, in American Machinist, May 25, 1905. Results of observations at the shops of the Cincinnati Milling

Machine Company.

- High-Speed Steel in the Factory: by O. M. Becker and Walter Brown, in *Engineering Magazine*, beginning September, 1905.

 Conclusions of a practical study of the use of high-speed steel and its introduction into the factory.
- Economy of High-Speed Steel Tools: by F. D. Smith and H. S. Greene. Thesis for a degree in Electrical Engineering in the College of Engineering, University of Illinois, June, 1905.

 Tests made at the Chicago and Eastern Illinois Railway

 Shops Danville, Illinois, showing that the cost of remov-

Shops, Danville, Illinois, showing that the cost of removing a pound of metal with low-speed steel is from 2.2 to 4.8 times as great as when using high-speed steel.

APPENDIX

Instructions for Hardening the Steels Used furnished by the makers.

(1) Directions for working Styrian Steel, marked Böhler Rapid

For Forging:

Heat to a bright red. Do not allow the heat to run as low as a cherry-red while forging. After forging allow the tool to cool slowly before hardening.

For Hardening: Lathe, Planer and Boring Tools.

Heat to a white heat but not to a scaling or melting point, just a good white heat. Cool in the air or a cold blast.

HOUGHTON AND RICHARDS, American Agents.

(2) Directions for working Jessop's "Ark" High-Speed Steel

For Forging:

Heat the steel to a canary color, retaining this heat until the tool is forged as nearly as possible to the shape required. The tool may be rough finished by grinding while yet hot on a dry emery wheel. It should then be laid aside in a dry place until black.

For Hardening:

Place the nose of the tool in a clear fire. Slowly heat the steel to a white or welding heat, not over one inch from the end. The nose of the tool should be made fusing hot. Then it should be placed under a strong, cold, dry air blast until cold.

William Jessop and Sons, Limited, New York. (3) Directions for working McInnes's "Extra" High-Speed Air-Hard Steel

For Forging and Hardening:

Forge the steel at the ordinary tool-steel forging heat; after the tool is forged to the desired shape, reheat the cutting end to a light cherry-red, and cool in an air blast. In order to bring out the quality of this steel when the tool is forged to the above instructions, it should be run at high speed in the lathe or planer until the edge is worn off two or three times and reground. After each grinding the tool gets better until it gets to its limit.

McInnes's Steel Company, Limited, Corry, Pennsylvania.

(4) Directions for working Mushet "Special" High-Speed Steel

For Hardening:

When forged, the cutting end of the tool should be reheated to a white heat, and then immediately blown cold. While hot this steel must be kept from water.

(5) Directions for working "Air Novo" High-Speed Tool Steel

For Forging:

The steel must be heated thoroughly, so that it is hot all the way through. The forging color must be a very light yellow. Do not hammer the steel when it gets down to a dark red, but reheat it. After the tools are forged lay them down to cool.

For Hardening:

Heat the cutting edge only of the tool to a white welding heat. Heat it until it begins to flow. Then put the tool into a compressed air blast, or dip immediately into thin lard, linseed or fish oil until thoroughly cold.

Hermann Boker & Co., New York.

(6) Directions for working "Rex" High-Speed Tool Steel

For Forging:

Use a clean fire and forge at a bright red heat, holding the steel at this heat as nearly as possible while the forging is being done. Forging at too low a heat will cause the steel to burst in forging. When tool is forged lay it down in a dry place to cool.

For Hardening:

Use a clean fire or furnace and bring the point or cutting portion of the tool gradually to a sweating white heat. This heat is indicated by a flux, having the appearance of melted borax. forming on the nose of the tool. Confine the high heat as much as possible to the cutting portion of the tool. When the proper heat is reached, take from the fire and carefully remove the oxide scale which instantly forms on the heated portion of the tool. This can be done with a coarse file, and will permit the cutting portion of the tool to cool off much more uniformly and rapidly than if the oxide scale is allowed to remain. When extremely hard and tough metal is to be machined, blow cold in fan or dry compressed air blast.

> CRUCIBLE STEEL COMPANY OF AMERICA, Pittsburg, Pa.

The directions received from the American Radiator Company for hardening the two foreign steels, "A & W" and "Poldi", applied to nipple dies. The same, however, were used in the tests for lathe tools, with the exception of being heated in a forge fire. They are as follows:

(7) For Hardening "A & W" High-Speed Tool Steels, manufactured by Armstrong, Whitworth and Company, Limited, England:

"When tempering the steel for nipple dies, we placed the dies in a retort, and heated them so

that the cutting end reached a white heat; then the dies were placed in a strong air blast and cooled to a cherry-red color, after which they were dropped into a tempering oil. Tempering in this manner gives by far the best wearing point to the steel?'.

(8) Directions for Hardening "Poldi" High-Speed Tool Steel:

"This steel was treated in a slightly different manner from the 'A & W'. The dies were heated to a white heat in a retort, and then cooled in an air blast until they were absolutely cold"

ENGINEERING BUILDING BUILT IN 1894

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

Bulletin No. 3

March 1906

THE ENGINEERING EXPERIMENT STATION

OF THE

UNIVERSITY OF ILLINOIS

By L. P. Breckenridge, Director of the Engineering Experiment Station.

The Engineering Experiment Station of the University of Illinois was established by action of the Board of Trustees, December 8, 1903. It is the purpose of the station to carry on investigations along various lines of engineering, and to make studies of problems of importance to professional engineers, and to the manufacturing, mining, railway, constructional and industrial interests of the state. It is believed that this experimental work will result in contributions of value to engineering science and to the industries of the state, and that the pursuit of such investigations will give inspiration to students and add to the value of the instructional work in the College of Engineering.

The value to the state of the work done by the Agricultural Experiment Station has suggested the possibility of doing work of similar value to the industrial interests of the state. It is believed that Illinois is the first state to establish an engineering experiment station, but there is every reason to believe that many other states will soon move in such a direction. When a number of states have established such stations, it is entirely reasonable to suppose that the federal government may be depended upon to give the same aid to these engineering stations that it now does to the agricultural experiment stations.

II. PLAN OF ORGANIZATION

The organization for directing and guiding the operations of the station consists of a director and a station staff. consists of seven members, representing with the director the heads of the different departments of the College of Engineering. corps of assistants will be appointed whose entire time will be devoted to the prosecution of such experimental investigations as may be approved by the station staff. Several assistants have already been appointed who have been detailed to take up special investigations under the supervision of some member of the staff. Preparations are being made for other experimental work, and as fast as the necessary apparatus and equipment can be arranged, additional assistants will be put in charge of the work. Encouragement and aid will be given to instructors already employed by the University who desire to take up some line of research work. Whenever such men prove to be successful experimenters and clear writers, some arrangement may be made whereby a part of their time may be devoted to the work of the station and a correspondingly proportionate part of their salary paid from the funds of the station.

III. WORK ALREADY ACCOMPLISHED

The first work undertaken by the Engineering Experiment Station was an investigation of reinforced concrete and the properties of concrete affecting reinforced concrete construction. The results of this work are recorded in Bulletin No. 1, Tests of Reinforced Concrete Beams, by Arthur N. Talbot, which was published as University of Illinois Bulletin, Volume II, No. 1. September 1, 1904. This was one of the first extensive and systematic investigations on reinforced concrete made in this country, and the results aided in clearing up a number of controverted points. While the investigation was carried on largely as senior thesis work, the character of the work and the supervision and planning given to it, together with the method of furnishing materials and apparatus, warrant giving more weight to the results than may usually be given to results of student work. The investigation covered a considerable range. The results on bond between concrete and steel (plain and deformed bars) and on the relation between compressive stress and deformation were of interest. The measured deformations obtained in plain concrete beams showed that up to the breaking point in tension the modulus of elasticity for tension is practically equal to that for compression, instead of being one-half as great, as had generally been assumed by writers on this subject. In reinforced concrete beams, the action of the steel and concrete during flexure was studied. It was shown that the concrete failed in tension at its usual breaking limit instead of carrying stress to ten times that limit, as had been claimed by some experimenters, and the added stretch in the steel at this point was clearly shown on the diagrams.

Among the results brought out by this investigation were the following: the stages of action during flexure; the accurate determination of the position of the neutral axis; a basis of calculation of resisting moment of beam based upon tension in the steel; the value of an experimental determination of the position of the neutral axis and of the percentage of steel suitable for a given concrete; the effect of elastic limit of steel and of form of bar upon strength of beam. The tests also opened up the field for further The publication of the results was received experimentation. with much interest by the engineering press and the engineering profession. The comments made gave testimony to the thoroughness of the work and to the great interest and value attached to the investigation, as throwing new light on a subject very much in need of scientific data. Requests for Bulletin No. 1 have come from all parts of the world. The investigation of reinforced concrete beams is being continued and experiments on reinforced concrete columns have been started.

Circular No. 1, High-Speed Tool Steels, by L. P. Breekenridge, was issued April 15, 1905. In this circular is given a brief review of the results of experiments made by different engineers with this new tool steel. Experiments with high-speed tool steels on cast iron have been in progress at the shops of the mechanical engineering department of the University during the last year. These tests have been carried on by H. B. Dirks, M. E., and constituted the basis for his graduate work.

Bulletin No. 2, Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and H. B. Dirks, giving the results of these experiments, was published in January, 1906. These tests were made with eight different brands of tool steel on cast-iron test pieces of varying hardness. The hardness of these test pieces was obtained by the use of a twist drill weighted to a known pres-

sure and run at a constant speed, the degree of hardness being based on the depth to which the drill would enter in a given time.

The work was divided into several sets of tests, viz., preliminary trials; skin-cut trials; endurance trials; trials to obtain the durability of the steel at different cutting speeds on cast iron of constant hardness; and trials to obtain the durability of the steels on cast iron of varying hardness. Tables giving in full the results of these different tests are supplemented by plates showing graphically some of the following relations: cutting force on point of tool and area of cut for east iron of varying hardness; durability of tool and cutting speed for cast iron of varying hardness; cutting speed in feet per minute and hardness of cast iron.

From the last mentioned it was found that all the steels tested can remove very hard cast iron at 25 feet per minute, that all steels begin to wear rapidly at speeds a little above 125 feet per minute, and that between these two points there seems to be a definite relation between the hardness of the iron and the cutting speed. The general results show that there are great possibilities ahead for high-speed steels. Tool steels are now available that will cut cast iron from two to three times as fast as was possible a few years ago.

Circular No. 2, Drainage of Earth Roads, by Ira O. Baker, practically a reprint of Agricultural Experiment Station Bulletin No. 65, was issued in February, 1906, for the use of the Good Road Train of the Chicago and Alton Railway Company, at the expense of the latter.

Experiments are in progress under the direction of the department of Civil Engineering on the holding power of the various forms of plain and screw railroad spikes in treated and untreated timber with the view of determining the most efficient method of fastening the rails to the ties,—an important matter since the hard woods are now almost exhausted, and attention must be given to the softer woods.

Experiments on the collapse of boiler tubes are in progress by the department of Physics. For these tests the Bethlehem Steel Company has furnished a hollow nickel-steel tube, twelve feet long, with an internal diameter of five inches, capable of withstanding an internal pressure of 6000 pounds per square inch. A special pump capable of producing a pressure of 15,000 pounds per square inch has been imported for these experiments. The

department is also investigating the subject of measurement of high temperatures, such as are found in boiler and other furnaces used in industrial works. Both recording and optical pyrometers are being studied.

IV. CHARACTER OF THE WORK TO BE UNDERTAKEN

In determining the character of the work which the station shall undertake, the most careful consideration will be given to the needs and the interests of the state. At the same time we shall not forget the debt which Illinois owes to her older sister states or to foreign nations for furnishing freely the results of scientific investigations or experimental determinations, making it possible for Illinois more cheaply to construct its railroads, mine its coal, generate its power, harvest its crops, communicate with its neighbors, and build its factories, its public buildings and its homes.

The work of the station will also be largely determined by the funds and facilities which are available for its work. It will seek the cooperation of all the industrial enterprises of the state, both great and small, and it will give help along those lines that promise to aid the greatest number of its people.

The work of the station should also extend into some fresh fields, seeking to discover new ways and means for economizing energy and materials, for the prevention of waste, for the perfection of labor-saving machinery, for safer methods of travel, and for surer sanitary methods of water supply and sewage disposal.

As an indication of the character of the work which it is proposed to do, the following short titles are given of some of the most important investigations which have been submitted for the approval of the station staff.

BY THE DEPARTMENT OF ARCHITECTURE

- 1. Insulating walls and materials to prevent transmission of sound, heat, dampness, etc.;
- 2. Resistance of hollow concrete building blocks to transmission of heat, sound, dampness, etc.;
- 3. Transmission of heat, light and sound through several thicknesses of glass in windows;
- 4. Comparative strength of wooden beams in tension, spliced in various ways;

- 5. Strength of compound (flitched) steel and wooden beams;
- 6. Strength of built-up wooden girders;
- 7. Syphonage of traps and its prevention;
- 8. Collection of best plans for small country schools;
- 9. Collection of best plans for farm houses and buildings.

By the Department of Civil Engineering

- 1. Tests of road-building materials;
- 2. Tests of angles riveted by one leg;
- 3. Effects of punching, reaming and boring upon different grades of steel.

BY THE DEPARTMENT OF ELECTRICAL ENGINEERING

- 1. Advantageous rates of acceleration for passenger and freight service;
- 2. Loss from braking, and its partial recovery by raising the level of regular stopping points;
 - 3. Increased tractive effort due to winds in various directions;
- 4. Possible utility of some form of transmission or speed-changing ratio between motor and car for overcoming grades;
 - 5. Economical lighting of large halls;
- 6. Determination of the minimum candle-feet required for comfortable reading with lamps of different color values;
- 7. Methods for increasing the time efficiency of long distance lines.

BY THE DEPARTMENT OF MECHANICAL ENGINEERING

- 1. Experiments with high-speed tool steels (continued);
- 2. Boiler trials with Illinois coals (continued);
- 3. Transfer of heat through scaled boiler tubes;
- 4. Comparative economy of domestic coals for residence heating:
 - 5. The economy of municipal power and pumping plants;
 - 6. Experiments with superheated steam;
 - 7. Experiments with gas producers.

By the Department of Physics

- 1. Resistance of boiler flues to collapse;
- 2. Heat conductivity of walls of buildings;
- 3. Appliances for measuring high temperatures under furnace conditions:

Fig. 1 Mechanical Englieering Laboratory Built in 1905

Fig. 2 View in the University of Illinois Machine Shop showing lo-CATION OF LATHE AND MOTOR DRIVE USED IN TESTS WITH HIGH-SPEED TOOL STEELS

4. Determination of vapor densities at very high temperatures and high pressures.

By the Department of Railway Engineering

1. Locomotive road tests and railway train resistance.

BY THE DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS

- 1. Reinforced concrete beams (continued);
- 2. Reinforced concrete columns;
- 3. Timber stringers;
- 4. Cast-iron columns;
- 5. A series of tests of interest to manufacturers and railroads on such structures as car bolsters, car frames, wheels, etc.;
 - 6. Qualities of commercial mild steels;
 - 7. A series of investigations on various hydraulic problems;
 - 8. Deep well pumping.

From the above list it will be seen that there exists a very large field for fruitful research. In many cases these investigations must extend over a series of years; in others a few months will suffice for the work.

V. FACILITIES FOR INVESTIGATION

The recent rapid growth in attendance in the College of Engineering has made it necessary to extend its equipment considerably, and while the apparatus thus provided is intended primarily for purposes of instruction, much of it is available at certain times of the year for purposes of investigation. Certain appliances have recently been purchased and installed for the especial use of various departments in connection with such investigations as are in progress in these departments.

The Engineering Experiment Station is not quartered in any one building of the College of Engineering, but its work and experiments go on wherever the needed facilities exist in the various departments. Neither is its work confined to the College of Engineering alone. Cooperation with other University departments, such as the College of Science, State Water Survey and with the State Geological Survey enables it to complete many investigations, facilities for which are not available within the College of Engineering. Neither is its work confined within the limits of the University. Cooperation with various departments of the

federal government as well as with many industrial interests of the state is already assured.

On the following pages are mentioned some of the most important appliances which are available for use in various lines of research. Only a few words of description are possible with reference to each. In connection with this article are given several reproductions showing the laboratories in which the investigations are in progress, and also the most important apparatus.

IN THE MECHANICAL LABORATORY

1. A 210 H. P. Heine water-tube boiler especially arranged for testing Illinois coals. This boiler is a duplicate of the boilers being used at St. Louis by the United States government in testing coals from various parts of the country. A Green chain grate stoker is installed under this boiler, and draft is furnished by a Sturtevant induced draft fan, drawing the gases through an economizer. The chain grate under the boiler may easily be removed and a plain furnace for hand-firing substituted. A complete equipment of auxiliary apparatus necessary for boiler tests is available, including recording and optical pyrometers, and standard and recording apparatus for continuous gas analysis. Facilities are now available in the department of Physics for calibrating all thermometers and pyrometers used in work of this character.

2. An independently-fired Foster superheater capable of superheating the steam from a 150 H. P. boiler 300° above its tem-

perature at 120 pounds gauge.

3. Several residence heating boilers, for both steam and hot water. These boilers will serve to compare the values of such various coals as are offered in the Illinois market for domestic purposes.

- 4. A 10-ton York refrigerating plant for the production of cold or for specific tests. With this plant there are 17 cans for ice making, each holding 100 pounds. The possibility of subjecting various building stones or other material to alternate freezing and warming is worthy of consideration. The effect of fifty winters might thus be known in a single month.
- 5. A liquid-air plant with a capacity of about three quarts an hour. It consists of a Norwalk four-stage compressor, compressing up to 3000 pounds, together with a Hampson liquefier with facilities for temperature determinations.

Fig. 3 York Ice Machine of 10-ton Refrigerating Capacity in Mechanical Engineering Laboratory

Fig. 4 Opto Gas Producer and Gas Engine in Mechanical Engineering Laboratory

- 6. An Ingersoll-Sergeant two-stage air compressor driven by compound steam cylinders. The steam cylinders are 12 inches and 22 inches in diameter with a 12-inch stroke, and the air cylinders are 12½ inches and 18½ inches in diameter with a 12-inch stroke. A vertical receiver 42 inches by 8 feet high is provided for use with the compressor.
- 7. A 50 H. P. suction gas producer built by the Otto Gas Engine Works. This producer is adapted to burning anthracite pea coal, coke or charcoal.
- 8. An Otto gas engine of 23 brake H. P. capacity for use in connection with the gas producer. The cylinder is 10 inches in diameter, with a 19-inch stroke. It is provided with a compressed air starting device, sparking generator, speed indicators and all other instruments necessary for testing gas engines.
- 9. A 15 H. P. De Laval steam turbine direct-connected to a compound centrifugal pump. This apparatus will deliver 140 gallons of water per minute when pumping against a head of 500 feet. The turbine wheel and small pump runner make 23,500 revolutions per minute; the large pump runner makes 2350. The turbine is provided with condensing and non-condensing nozzles.
- 10. A hot blast heating system installed to heat the Mechanical Engineering Laboratory. This consists of a series of coils making 2800 feet of 1-inch pipe and a 72-inch fan draw the air through the coils and force it into the galvanized iron pipe, 36 inches in diameter, which distributes it to different parts of the building. The fan is driven by a small vertical steam engine.
- 11. A 100 H. P. Allis-Chalmers Corliss engine, equipped with a suitable brake and other apparatus for making tests.
- 12. Several high-speed steam engines for testing and for driving other apparatus.
- 13 Several types of gasolene engines, ranging from 1 to 10 H. P., for experimental purposes.
 - 14. An automobile testing platform for testing automobiles.
- 15. A 10-ton electric crane, having three alternating current motors, for experimental work.
- 16. A Golden oil testing machine for testing lubricating oils and bearing metals.
- 17. Apparatus for tests relating to the transmission of heat through scale-covered boiler tubes with respect to the loss due to scale. The equipment now in the Mechanical Engineering Lab-

oratory for determining the loss due to the scale when transmitting heat through scale-covered tubes consists of a boiler and furnace giving approximately practical conditions, also auxiliary apparatus for making the required observations. The furnaces employed are constructed of wrought iron suitably covered, or of brick with fire-brick lining, and are equipped with gas burners for the generation of the required heat. From the furnace the hot gases pass through the tube which is being tested. This tube constitutes the single flue of the experimental boiler. The boiler is filled with water continually entering and leaving at temperatures maintained constant. The auxiliary apparatus used consists of constant-pressure tanks for air, gas and water, suitable thermometers, pyrometers, scales, etc., a Le Chatelier pyrometer being used to measure the temperature of the hot gases entering the tube.

Railway Test Car No. 17

18. This railway test car is a special car operated for experimental and instructional purposes. It is owned jointly by the Illinois Central Railroad and the University of Illinois. It was built by the railroad company, equipped by the University and is operated for the advantage and information of both. It is considered by the University as a part of its laboratory equipment, and affords facilities for practical railroad tests which could not otherwise be made.

The car is used principally in connection with dynamometer car work, and on this account was built especially heavy in order to withstand the usage incident to this kind of work. It is $45\frac{1}{8}$ feet in length. A space of about 15 feet in the rear of the car is occupied by berths and lockers, the remaining space being devoted to apparatus and instruments.

The dynamometer is of the hydraulic or oil transmission type. It consists of three cylinders in tandem, and is situated near the forward end of the car just back of the draft rigging. The dynamometer is suitably connected with a recording instrument which gives the draw-bar pull record upon paper traveling at a rate of speed proportional to the speed of the train. Upon the same paper records are made of time, speed, distance and such other data as may seem desirable. In addition to the dynamometer with its attached recording instrument, paper travel mechanism, gauges and similiar apparatus, the car is equipped with a Boyer speed recorder, a Hausshalter speed recorder, rec-

ording gauges for steam pressures, train line pressures and draft, also with air and steam pressure gauges for various purposes.

In its capacity as a dynamometer car. Railway Test Car No. 17 affords facilities for work along the following lines:

Tonnage rating tests;

Engine efficiency tests:

Tests in relation to engine design and tractive force:

Tests to determine resistance of freight, passenger, loaded or empty cars;

Tests to determine resistance of trains as affected by speed, curves, temperatures, condition of track or special equipment.

Aside from its use as a dynamometer car, when no draw-bar pull record is desired, the car is used in connection with locomotive road tests or other road tests, records being made in the car automatically or otherwise that without the car would not be attempted or could be made only with difficulty. Further the car serves a most useful purpose as office, laboratory and computing room when making railroad or other shop tests in connection with railway work.

This car has already been in extensive use on the Illinois Central Railroad for the purpose of making locomotive road tests, and for establishing tonnage ratings on the various divisions. The preliminary experimental work relating to train resistance in connection with the electrification of the New York Central lines out of the Grand Central Depot, New York City, was all done with this car. A series of tests has also been made with this car comparing the relative draw-bar pull and acceleration factor of steam and electric locomotives on the experimental tracks of the General Electric Company at Schenectady, New York. Both of these tests have been reported to the American Society of Electrical Engineers in a paper by B. J. Arnold at the annual meeting 1904.

IN THE ROAD-MATERIALS LABORATORY

The Civil Engineering department in its Road-Materials Laboratory is equipped with apparatus for testing materials for road and pavement construction as follows:

- (a) Two types of rattlers for testing brick: National Brick Manufacturers' Association and Talbot-Jones:
 - (b) A Dorrey, a Deval and a Page machine with the neces-

sary accessories for testing the road-building qualities of gravel and macadam. The laboratory is cooperating with the State Highway Commission and with the State Geological Survey in a systematic study of the road-building materials of Illinois.

IN THE CEMENT LABORATORY

This laboratory is equipped with briquette molds, molding machines, testing machines, etc., necessary in testing hydraulic cement, and in making investigations as to the effect of different materials and methods of manipulation upon the strength of mortars and concrete.

IN THE LABORATORY OF APPLIED MECHANICS

- 1. A Riehle vertical screw power testing machine of 600,000 lb. capacity fitted to take large and bulky test specimens. machine will take compression pieces 25 feet long and tension pieces of the same net length except as allowance must be made for stretch. The clear distance between screws is 36 inches. which gives room for bulky and built-up pieces. The machine is provided with a stiffened vertical frame to allow eccentric and oblique forces to be applied to test pieces, an unusual feature in testing machines. Short beams may be tested on the machine, and provision may easily be made for testing longer beams. Auxiliary appliances are used for holding the various forms of test piece in order to secure an application or distribution of the load in the manner desired. Especial attention was given in the design and construction of the machine to making it applicable to a large range of tests. The calibration of the machine shows that it is very accurate and very sensitive. For the smaller loads a second poise weighing up to 60,000 lb. is used.
- 2. An Olsen four-screw testing machine of 200,000 lb. for tests in tension, compression and flexure. This machine will take beams up to a length of 20 feet.
- 3. Three 100,000-lb. testing machines of different makes, fitted up in the usual way.
 - 4. An Olsen torsion machine of 220,000 inch-pound capacity.
- 5. An Olsen vibratory testing machine for testing stay bolts.
- 6. A variety of smaller machines for testing cast iron, timber, etc. \cdot

Fig. 5 Laroratory of Applied Mechanics Bully in 1901

Fig. 6 Testing 12 x 12 in. Concrete Column in 600,000-lb. Testing Machine

Fig. 7 View Showing 600,000-lb. Testing Machine as Used in Tension Tests

FIG. 8 APPARATUS FOR COLLAPSING BOILER TUBES

CALLENDAR RESISTANCE PYROMETER FIG. 9 ELECTRICAL PYROMETERS THERMO-ELECTRIC PVROMETERS

WANNER

Fig. 10 Optical Pyrometers FERY

CHATELIER

- 7. A large equipment in measuring devices such as extensometers for various uses, autographic recording devices, gauges, etc.
- 8. A commodious hydraulic laboratory, well equipped with steam engine, steam pumps, centrifugal pumps, standpipe and pressure tanks, lines of piping, measuring pits, tanks, weirs, gauges, meters, motors, etc., giving excellent facilities for testing hydraulic apparatus and for making investigations in hydraulics.

IN THE PHYSICS LABORATORY

The Physics department is equipped with apparatus enabling it to do the following work in testing and standardization:

- 1. The testing of boiler tubes for collapse;
- 2. The checking and calibration of instruments for measuring temperatures;
- 3. The checking and calibration of electrical standards and instruments;
 - 4. Miscellaneous physical testing.

The Testing of Boiler Tubes.—The apparatus available for this work consists of a nickel-steel tube, part of a United States naval gun, capable of withstanding about 20,000 pounds per square inch internal pressure. This apparatus permits of the testing of flues and tubes up to $3\frac{1}{2}$ inches diameter and 10 feet in length for resistance to collapse under external pressure. It is in use at the present time for the determination of a formula for predicting the failure of steel tubes under pressure. Pressures up to 14,000 pounds per square inch may be produced by means of a Cailletet pump, made by the Societe Genevoise, Switzerland. Upon the completion of the work now in progress, the apparatus will be maintained intact for testing at any time the constants of flues and tubes.

The Checking and Calibration of Instruments for Measuring Temperatures.—The department has facilities for testing and checking thermometers and pyrometers.* Standard thermometers of the best make, graduated to 0.1° C. and certified by the Reichsanstalt, permit of tests between -25° C. and 250° C. Special con-

^{*}Pyrometers,—Electrical: resistance type, Callendar recorder with Whipple indicator, Cambridge Scientific Co., Ltd., Cambridge, England: thermo-electric type, Siemens & Halske, Berlin, Germany; Hartmann & Braun, Frankfort-on-the-Main, Germany; Bristol, W. H. Bristol, 41 Dey St., New York City. Optical: Wanner, American agents, Eimer & Amend, 205 Third Ave., New York City; Fery and Chatelier, Ph. Pellin, Paris, France.

stant temperature baths are being made for the convenience and rapid comparison of thermometers.

The equipment for pyrometry is the best obtainable. The department owns a Callendar recorder of the laboratory type and a Whipple indicator with a series of platinum resistance thermometers ranging from 0° C. to 1200° C. In addition to these electric resistance pyrometers, a series of thermo-electric pyrometers is available for checking and testing other pyrometers. The thermo-electric couples with Reichsanstalt certificates are calibrated for temperatures from -180° C. to 1600° C.

The laws of the relation of temperature, light and radiation, have within a few years been studied, so that it is now possible to measure temperatures by optical methods. The equipment in optical pyrometry consists of the Le Chaletier, the Wanner and Fery radiation pyrometers.

For the production of extreme temperatures, both low and high, the department is provided with a liquid-air machine, and with electric furnaces of the arc and of the resistance types. A specially protected constant temperature room has been provided for work of all kinds requiring constancy of temperature.

Electrical Standards and Apparatus.—The department owns certified standards of resistance, electromotive force and inductances, and its cabinets contain apparatus of the best make for all electrical and magnetic testing. The Kelvin ampere balances, Weston standard and semi-portable voltmeters and ammeters, and Siemen's electrodynamometers of the department are frequently checked by the potentiometer with standardized resistances and Clark and Weston cells. The laboratory is supplied not only with apparatus but also with piers and conveniences for these tests.

Miscellaneous Testing.—Besides the equipment for the work in the three lines indicated above, the department of Physics is supplied for its instructional and research work with standard apparatus of a variety of kinds, all of which is available for testing purposes. Such facilities are standard barometers, standards of length, photometric standards with photometers, standards of weight with sensitive physical balances, a dividing engine and comparator, vacuum and compression pumps with gauges, and various optical apparatus.

IN THE ELECTRICAL LABORATORY

The Electrical Laboratory occupies a separate building and contains an excellent equipment available for many lines of research. It will not be possible to give any detailed description of this equipment but some of the more prominent facilities are mentioned below.

- 1. In the basement is a storage battery (Gould) of 60 cells each of 240 ampere hours' capacity. This is wired so that all voltages between 2 and 120 can be obtained; also current up to 100 amperes at full voltage, with greatly increased current at lower voltages. This battery is especially adapted to the calibration of electrical measuring instruments, the testing of fuse wire, and to all work where steady current is required.
- 2. The dynamo laboratory contains very complete arrangements for testing any of the usual types of machines. Power is supplied mostly at 220 volts D. C. and at 440 volts, two-phase A. C., but the transformers permit other usual voltages to be supplied. Several types of variable speed motors, having a speed range from 300 to 1200 revolutions and giving 15 H. P. at any speed, are a recent addition to the equipment. Two general electric stationary armature alternators, capable of connection as either two or three-phase generators or motors and at a variety of voltages, are available. Three rotary converters furnish current based on 110 and 500 volts D. C. An inductor alternator, built by students and designed primarily for variable frequency experiments, may be run at various frequencies up to 150.

There are also switchboards for the rapid handling of apparatus; numerous lamp banks for resistance; a small electric welding machine; various types of arc lamps, permitting experiments in lighting; inductances, condensers, and a large range of measuring instruments of all kinds.

3. A laboratory for the study of illumination is equipped in connection with the photometer rooms. Shades like wall maps line the walls, whereby a light or dark effect can be obtained. This room is lighted by both ceiling and bracket fixtures. Two photometers are available for testing globes and shades as well as lamps of various types. The efficiencies of different types of shades have been studied, also the flickering effect of alternating lighting. Some interesting developments have been made in curved coherers for space telegraphy.

- 4. A telephone laboratory of two rooms permits experiments in telegraphy and telephony. Experiments now in progress seem to show the availability of high-tension wires for the transmission of telephone messages, obviating the need for separate telephone wires on power lines. Some improvements in long-distance telephony are being tested.
- 5. An electric test car is also a part of the equipment. This is an interurban type of car, built by the Jewett Car Company, and equipped with the latest type of multiple-unit control 500 volt D. C. motors, by the Westinghouse Electric and Manufacturing Company. One end of the car contains the switch group operated by compressed air, and also the measuring instruments for determining voltage, current speed and acceleration. The car has four 50 H. P. motors, double trolley and controllers at each end of the car, and the usual equipment of head lights, air brakes, heaters, etc.

With this car determinations of the power required for the hauling of coal on electric roads are in progress, and a comparison will be made with the results of dynamometer car tests on steam roads. Traction experiments on a large scale are possible through the courtesy of the Illinois Traction System, whose line passes through the University grounds. The recent equipment of the electric test car of 200 H. P. with recording electric instruments will allow the determining with considerable accuracy of the power required to operate at different speeds and over different grades and curves. A subject of investigation will be the normal highest speed that corresponds to a given radius of curvature, from which it will be possible to determine how much a sharp curve will retard a car.

VI. THE INDUSTRIAL INTERESTS OF ILLINOIS

The state of Illinois is singularly favored in all the conditions requisite for a rapid and permanent industrial development. It has a vast area underlaid with productive coal seams, which afford an abundant supply of bituminous coal of good quality. With the Great Lakes on the northeast, the Mississippi river on the west, and with a network of railroads having an aggregate length of nearly 12,000 miles, facilities for transportation are unexcelled. Illinois is also fortunate in its large area of arable land of extreme fertility. In view of its cheap and abundant fuel and its unex-

Fig. 11 Electric Test Car

Fig. 12 Electrical Engineering Laboratory Built in 1897

celled facilities for the transportation of raw material and finished products, it is not surprising that Illinois has pushed forward rapidly in manufacturing and allied industries. Since 1850 the growth of manufacturing in Illinois, measured by the value of the manufactured product, has been at an average rate of one hundred per cent a decade, and the rank of the state has advanced from fifteenth to third. This rate of advance is typical of the development in other industrial lines.

The industrial interests of Illinois may be grouped in four chief classes:

- 1. Agriculture
- 2. Coal and Mining
- 3. Transportation
- 4. Manufacturing

Of the five million inhabitants of Illinois, more than one-third are engaged in remunerative occupations. A rough idea of the distribution of workers among the industrial pursuits outlined above may be gathered from the following statement. According to the census of 1900, the working population of Illinois may be divided into four nearly equal parts, one of which is engaged in agricultural pursuits; one, in manufacturing; one, in trade and transportation; the last, in domestic and professional service. In the following pages the various industrial interests will be considered somewhat in detail.

Agriculture.—In the value of agricultural products, Illinois ranks second, having been exceeded in 1900 by Iowa. The value of agricultural products for 1900 was \$345,650,000. This is slightly less than 28 per cent of the value of manufactured products for the same year. From the nature of things, the value of agricultural products after reaching a certain stage can increase but little, while there is practically no limit to the value of manufactured products. Hence while Illinois will always hold high rank in agriculture, its preeminence in the future will be due to its manufacturing and transportation industries.

Coal.—The coal deposits of Illinois are included in the eastern interior coal field of the United States, which covers western Indiana, nearly the whole of the state of Illinois, and western Kentucky. Illinois has the largest coal-bearing area of any state in the Union, about two-thirds of the state, or upwards of 37,000

square miles, producing coal. A medium grade of bituminous coal is mined, suitable for the production of power, being used mostly as a steaming fuel by railroads and manufactories.

Outside of Pennsylvania, which is preeminently the first state in coal mining. Illinois leads in the production of coal, yielding about one-eighth of the entire quantity mined in the United States. The following table shows the production of coal in the leading coal states during 1902 and 1903:

PRODUCTION OF BITUMINOUS COAL IN THE UNITED STATES

Rank	State	1902	1903	Increase Per Cent
1 2 3 4	Pennsylvania	98,946,000 30,031,000 26,162,000 23,929,000 258,372,000	103,000,000 34,955,000 26,882,000 24,573,000 277,077,000	$ \begin{array}{c} 4 \\ 15 \\ 2.7 \\ 2.6 \\ 6.7 \end{array} $

The following statistics for the year ending June 30, 1903, will give an idea of the magnitude and importance of the coal industry in Illinois: During that year there were 935 mines in operation, giving employment to 35,000 miners and 15,000 employees other than miners. The total product was 35 millions of tons, valued at more than 36 millions of dollars at the mines.

Railroads.—In the aggregate of its railway mileage, Illinois holds first rank among the states of the Union, although Texas is a close second. The rapid development of railroads in Illinois is doubtless due to some extent to the early establishment of Chicago as a distributing center of eastern products to the west and southwest. Chicago became the outlet of the traffic by way of the Great Lakes, and when the era of railroad building succeeded, naturally became a great gateway between eastern and western trunk lines. As a result, Illinois is traversed by railroads in all directions. The accompanying charts show the growth of mileage in Illinois since 1850 and the mileage in several states.

STEAM RAILROAD MILEAGE IN SEVERAL STATES-1904.

The magnitude of the railroad industry in Illinois is evidenced by the car construction and repair bill. Thus in the statistics for manufactures for 1900, the items for cars and general shop construction, and repairs by steam and street railroad companies aggregate nearly \$18,000,000.

In the mileage of street and electric railroads, Illinois is as yet somewhat behind some of the eastern states. In 1903 the mileage of street and electric railroads in several leading states was as follows:

Massachusetts	.2037
Pennsylvania:	.2001
Ohio	.1858
New York	.1822
Illinois	993

It is significant, however, that the wave of development in electric railroads is sweeping westwards. In the last two or three years, great progress has been made in Ohio, Michigan and Indiana. Illinois has only fairly started in the building of interurban railroads, and the next ten years will doubtless witness a development along this line that will place it well towards the first rank.

Manufacturing.—In the value of manufactured product, Illinois at present ranks third among the states of the nation. The accompanying diagram shows the relative position for several decades of the five foremost states in manufacturing. The rapid rate of increase in the case of Illinois is worthy of attention.

Statistics for 1900 showed a total value of manufactured product of \$1,260,000,000, an increase of nearly 40 per cent over the figures for 1890. The following table gives data selected from these statistics relating to leading industries somewhat allied in character to engineering:

INDUSTRIES	WAGE EARNERS	WAGES IN MILLIONS	VALUE OF PRODUCT IN MILLIONS
Agricultural implements		9,06	42.0
steam railroads	13,803	8.29	16.6
operations of railroad companies	9,314	5.36	24.8
Electrical apparatus and supplies Foundry and machine shop products		$\frac{2.82}{16.88}$	$\frac{12.2}{63.9}$
Iron and steel	16,642		60.3
Vehicles (bicycles, carriages, etc.)	-9,300	4.40	18.0

In 1900 the number of manufacturing establishments in Illinois was 38,360, and the total number of people engaged in manufacturing was nearly 400,000. The wages paid amounted to \$192, 000,000, or nearly \$500 per person employed. The value of the product, as has been stated, was \$1,260,000,000. The total manufactured product for 1905 was probably over \$2,000,000,000, an increase of sixty per cent in five years, which may be compared with the increase of forty per cent in the preceding ten years. In view of the present rate of increase in manufacturing, it seems not unlikely that in another decade, Illinois will be a sharp rival of New York and Pennsylvania for first rank.

VII. WHAT WORK CAN THE ENGINEERING EXPERIMENT STATION DO THAT WILL AID THE INDUSTRIAL INTERESTS OF ILLINOIS?

For a number of years the agricultural industry of the state of Illinois has been greatly benefited by the work of the Agricultural Experiment Station. During the first years of its existence, this experiment station was supported by the United States government in accordance with the provisions of what is commonly known as the Hatch Act, approved by Congress March 2, 1887.

Subsequently, the increasing demands upon the station for investigations of various kinds rendered additional funds necessary, and the state was called upon for assistance. At present, the Agricultural Experiment Station receives regular support from the state at the rate of about \$85,000 per annum. The bennefits to agriculture resulting from the investigations of the station are too well known to need comment. The expenditures of the state in support of the station have been repaid many times. Millions of dollars have been added to the wealth of Illinois through the investigations on corn breeding, the soil surveys and fertility experiments, and the work of eradicating insect pests.

It is the hope of the station staff that the Engineering Experiment Station may stand in the same helpful relation to the great mining, transportation and manufacturing interests of Illinois. What has been done for agriculture may well be done for The state's investments in the Agricultural Exmanufacturing. periment Station have been rewarded with large dividends in the way of increased soil fertility and increased and improved agricultural product. Surely as large dividends await similar investments in the Engineering Experiment Station. Important problems in agriculture have been and are being successfully solved by the Agricultural Experiment Station. Important and difficult problems of engineering confront the manufacturer and power user, and press for solution. It is the aim of the Engineering Experiment Station to assist in the solution of these problems. and thus to aid and uplift the engineering industries of Illinois. It may be well to call attention here to the rapidly increasing popularity and value of the work of the Royal Testing Laboratory, located at Charlottenburg, Germany, which has been doing for the German Empire work similar in some details to that which it is now proposed shall be done by the Engineering Experiment Station.

In the following paragraphs are discussed somewhat in detail the lines of work that may be taken up for the benefit of certain industrial interests.

Fuel.—The fuel supply of Illinois is of prime importance in its industrial development, and no effort should be spared in the introduction and promulgation of improved methods and processes in the production and consumption of coal. From broad economical considerations, wasteful methods of using coal, or the rejection of any combustible part as waste, are to be discountenanced. Exhaustive and careful experiments will be required before the best conditions can be attained. These experiments must include analyses of coals from all parts of the state, a determination of the best kinds of coal for specific purposes, best methods of burning Illinois coals, effects of various methods of preparation, experiments on various kinds of furnace construction, etc.

Generation and Use of Power.—Along the line of power production there is opportunity for much investigation. New problems are confronting both the builders and users of steam and gas motors. There is at present a noteworthy drift from the recip-

rocating engine to the steam turbine. Gas engines of large power have recently been installed, and the development of this type of motor bids fair to be more rapid in the near future. Still newer types of motors are being proposed from time to time, the gas turbine being one that at present occupies much attention as an attractive possibility.

It is evident that the Experiment Station may be of considerable service in this line of work. For the user of power, it can investigate questions relative to the economy of various types of power installations with given conditions of service. For the builder of motors it can investigate the new and perplexing problems that have arisen. The properties of the various fluids used in heat motors need careful study. Superheated steam is essential to the proper working of a steam turbine, yet little is known of its properties. The properties of ammonia and other fluids used in refrigeration are not known accurately, and even the properties of saturated steam are based on Regnault's experiments made nearly seventy years ago. A careful investigation of the properties of heat media of all kinds, extending if necessary over a series of years, would furnish data of the greatest value to engineers, and would in addition be a noteworthy contribution to science.

Railroads.—Considerable work for the railroad interests has already been done by the railway mechanical engineering department of the University. The dynamometer car owned jointly by this department and the Illinois Central Railroad has been used in numerous road tests, and these tests have been used as a basis for the computation of tonnage ratings. This work will be prosecuted vigorously under the direction of the new department of railway engineering and administration recently organized.

Other problems relating to design, maintenance of way, etc., will be attacked as they arise. The question of electric traction is becoming one of great importance in Illinois. The electrical engineering department has recently added to its equipment a new dynamometer car, with which tests may be made on electric lines, and it is expected that these tests will furnish valuable data.

Manufacturing and Building.—It is expected that the Experiment Station will prove helpful to the manufacturing and building interests of Illinois in several ways. In the first place, it will supply accurate data regarding the properties of the materials used in engineering structures and buildings. The new lab-

oratory of applied mechanics with its extensive equipment furnishes ample facilities for this line of work. The new 600,000-pound vertical testing machine permits the testing of full-sized specimens 24 feet in length. The reinforced concrete tests now in progress show the possibilities in this line of work. In the near future, an extensive series of tests on cast-iron columns, and others on steel plates are contemplated. A considerable portion of the available funds of the station will be expended in this work of testing materials. Secondly, the Experiment Station will investigate manufacturing processes. As an example of this line of work, the high-speed steel tests are cited. Thirdly, problems relating to design and construction will be studied, and all useful results will be published for the benefit of those engaged in design or construction.

As a rule the Experiment Station will undertake only such investigations as will lead to results of fundamental importance, results that will be helpful to a large class of engineers or manufacturers. It will not, in general, undertake work of importance to individuals only, e.g., the testing of a device or invention for the sole benefit of the inventor.

Those in charge of the Engineering Experiment Station feel that if the work of the station be carried out along the lines here suggested, and if proper support be afforded by the state in order that the work can be so carried out, the engineering industries of Illinois will receive benefits which will amply repay all expenditures.

VIII. COOPERATION

It is very essential that great care should be exercised in the selection of subjects to be investigated. It is equally important that the results of the investigations should be published in such shape as will best serve the purposes of engineers and manufacturers. In order that these ends may be attained it has been thought desirable that there shall be organized several committees of conference on matters of widespread interest. One such committee has already been appointed, the Conference Committee on Fuel Tests, composed of representatives appointed by the following Illinois organizations: State Geological Survey, Western Society of Engineers, Building Managers' Association of Chicago, Western Railway Club, Illinois Manufacturers' Association, Illinois Coal Operators' Association, State Electric Light Association,

Board of Trustees University of Illinois, and the State Engineering Experiment Station. It is planned to form similar committees relating to other lines of work whenever the importance of the investigations warrants it. It is hoped that suggestions may be proposed to the station from engineers, or from mining, railway, or manufacturing interests, to the end that the work of the station may grow to be of real value to the commercial interests of the state. Engineering societies will find at the University excellent facilities for meeting, and it is suggested that such societies plan to hold their meetings here as often as possible.

The desirability of cooperating with similar state experiment stations or with some of the national departments having charge of tests of fuel, timbers, structural materials, or with water surveys, etc., is also evident, and such cooperation will be sought whenever mutual good is promised. Such a method will often tend to concentrate isolated and scattered efforts, and will also tend to standardize methods of tests and forms of reports and specifications.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by A. N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

Bulletin No. 5

JUNE 1906

RESISTANCE OF TUBES TO COLLAPSE

By Albert P. Carman, Professor of Physics and Maurice L. Carr, Assistant in Physics

This paper describes a series of experiments made on the resistance of metal tubes to collapse when subjected to external hydraulic pressure. The principal use of the results of such experiments is probably their application to the design and inspection of the fire flues of steam boilers, but the results are also of great interest and importance in the theory of elasticity and the strength of materials. Engineers have used various empirical rules and formulæ for the collapse of tubes, but these formulæ have been derived from a few unsatisfactory experiments and have within recent years been generally distrusted. This distrust has not been lessened by the mathematical discussions of the last few years, in which students of elasticity have attempted to derive a rational formula for tube collapses. These proposed rational formulæ differ, as we shall see, from the empirical rules in use by engineers.

The present work was first planned by L. P. Breckenridge and A. P. Carman in the spring of 1904, but University duties prevented its prosecution at that time. In the winter of 1904 to 1905, a series of experiments on the collapse of small seamless brass tubes was carried out by A. P. Carman. These experiments were described and the results discussed in a paper read before the American Physical Society at Chicago, April 23, 1905, and published later in the Physical Review. It was there shown that the form-

A. P. Carman, Collapse of Tubes, Physical Review, Vol. XXI, pp. 381-387.

ulæ in general use, all of which are based on that of Sir William Fairbairn, are inadequate; that there is a certain "critical minimum length" beyond which the resistance to collapse of a tube is independent of the length; and that a formula of the rational type proposed by Professor G. H. Bryan was probably nearly true for these small brass tubes.

The experiments discussed in this bulletin have been made by the department of Physics of the Engineering Experiment Station of the University of Illinois. They were begun in the fall of 1905, but owing to delays in getting apparatus and materials were not completed until May 1, 1906. M. L. Carr, B. S., has been the assistant in carrying on this series of experiments. He has made the observations, and to him are due several of the special devices used as well as much of the completeness and accuracy of the calculations. Before describing our own experiments and discussing the results, we shall give a brief account of previous experiments and of the empirical and theoretical formulæ which have been proposed.

HISTORICAL

The first and until very recently the only systematic experiments on the collapse of tubes were those of Sir William Fairbairn made nearly fifty years ago¹. Fairbairn's work was done at the suggestion and with the aid of the Royal Society and of the British Association for the Advancement of Science. The common steam pressure in that day was 50 pounds per square inch or less, and so the highest pressure thought necessary by Fairbairn was less than 500 pounds. The tubes were "composed of a single thin iron plate bent to the required form upon a mandril and riveted and also brazed to prevent leakage into the interior". The ends were closed by cast-iron disks or plugs, and the tube was placed in a large cast-iron cylinder and there subjected to hydraulic pressure. Fig. 1 is reproduced from Fairbairn's original paper and shows his arrangement. The cast-iron cylinder was 8 feet long, 28 inches in diameter and the walls were 2 inches thick. The cylinder was placed in a vertical position and the tube was

William Pairbairn, On the Resistance of Tubes to Collapse, Philosophical Transactions of the Royal Society of London for 1858, pp. 389-413; also in Fairbairn's Useful Information for Engineers, Second Series, London, 1867.

Fig. 1 Sir Wm. Fairbairn's Apparatus for Testing Tubes, Reproduced from Phil. Trans. for 1858

supported from both ends, as shown in the figure. The interior of the tested tube was connected with the atmosphere at the upper end. The pressure was produced by a hydraulic pump and was read by steam gauges. A safety valve set at 500 pounds limited the pressure. The diameters of the tubes collapsed were 4, 6, 8, 9, 10 and 12 inches with the exception of one which was 18\frac{3}{4} inches in diameter. The length of these tubes ranged from 19 to 60 inches, and nearly all had the same wall thickness of .043 of an inch. In all, about twenty-five satisfactory collapses were made. Fairbairn sums up his results in this well-known formula:

$$P = 9,675,600 \frac{t^{2,19}}{l \cdot d}$$

"Which is", he says, "the general formula for calculating the strength of wrought-iron tubes subjected to the external pressure within the limits indicated by the experiments; i. e., provided their length is not less than 1.5 feet, and not greater than 10 feet". In the above formula, P = pressure in pounds per square inch; t = thickness of wall in inches; t = length of tube in inches; and t = diameter in inches. Fairbairn adds as a foot-note the following: "By taking 2 instead of 2.19 for the index of t, this formula becomes

$$P = 9,675,600 \frac{t^2}{ld}$$

whence the value of P may be calculated by ordinary arithmetic. For thick tubes of considerable diameter and length, this formula may be regarded as sufficiently exact for practical purposes". This last or approximate form is sometimes known as Fairbairn's second form. Fairbairn's formula has been the text for practically all the discussions on the collapse of tubes for the last fifty years. Aside from Fairbairn's experiments, there have been no systematic experiments described until within the last year. It is noteworthy that a problem so widely discussed, the solution of which has not only great scientific interest but also valuable technical applications, should remain for so many years with so little experimental work. The only reasons that can be assigned are the considerable expense involved in the experiments and the fact that the appliances needed are not commonly available in testing laboratories.

TABLE I
FAIRBAIRN'S DATA ON THE RESISTANCE OF TUBES TO COLLAPSE

Diameter, inches	Length, incehs	Thicknes of Wall, inches	Pressure of Collapse, lb. per sq. in.	Remarks
,	10	1 049	100	
4	19	.043	170	Tubes formed of plates of uniform thickness.
4	19	.043	137	Tubes formed of plates of uniform thickness.
4	40	.043	65	Tubes formed of plates of uniform thickness.
4	38	.043	65	Tubes formed of plates of uniform thickness.
4	60	.043	43	Tubes formed of plates of uniform thickness.
4	60	.043	140	Made in 3 sections, 1 ft. 7 in. each.
4	60	.043	47	
4	30	.043	(195)	Ends of tube fractured, allowing water to enter and cause reacting pressure.
4	30	.043	93	
4	15	.043	147	
6	30	.043	48	Cast-iron ends fractured, causing collapse before outer shell attained maximum re- sistance.
6	29	.043	47	sistance.
	59 59	.043	$\frac{47}{32}$	
6				
- 6	30	.043	52	
6	30	.043	65	
6	30	.043	85	Rod placed down axis to prevent end from approaching. Tin ring left in caused increased pressure.
8	30	.043	. 39	or the probability
8 8 8 8	39	.043	32	
8	40	.043	31	
8	60	.043	$\frac{22}{22}$	
8	30	.043	36	
10	50	.043	19	
10	30	.043	33	
12	30	.043	22 22	
12	60	.043	$\overline{12.5}$	
$\frac{12}{12.2}$	58.5		12.0 II	
		.04.		TT11 . 1
9	37	.25 .25	(450)	Uncollapsed.
18.75	61	.20	420	r
9	37	. 14	262	Lap joint.
9	37	.14	378	Butt joint.
$\frac{14 \times 10.25}{2}$	60	.043		Elliptical tubes.
20.75x15.5	61	.25	-127.5	Elliptical tubes.

The most remarkable feature of Fairbairn's formula is the dependence of the collapsing pressure upon the length. This will be discussed later. Immediately after the publication of Fairbairn's paper, one writer after another began to discuss the data for the purpose of deducing a more general and convenient empirical formula. The following is a partial list of the best known of such formulae. The dimensions are given in inches just as in the form of Fairbairn's formula:

(1) By F. Grashof: in Zeitschrift des Vereines deutscher Ingenieure, p. 234, 1859.

(a) For thick tubes:

$$P = 1,033,620 \frac{t^{2.081}}{l^{0.564} d^{0.889}}$$

(b) For thin tubes:

$$P = 24,481,000 \frac{t^{2,315}}{ld^{1,278}}$$

(2) By G. H. Love: in Todhunter and Pearson's History of Elasticity, Vol. 11, p. 667. Appeared in Civilingenieur, 1861.

$$P = 5,358,150 \frac{t^2}{ld} + 41906 \frac{t^2}{d} + 1323 \frac{t}{d}$$

(3) By J. W. Nystrom: Quoted here from Van Nostrand's Engineering Magazine, Vol. XXIV, p. 213. Original reference, Treatise on Steam Engineering, by J. W. Nystrom, p. 106.

$$P = 692,800 \frac{t^2}{l^{0.5}d}$$

(4) By W. C. Unwin: in Minutes of Proceedings of Institution of Civil Engineers, Session 1875–1876, Part IV, p. 225.

$$P = 15,547,000 \ \frac{t^{2,35}}{t^{0.9}d^{1.16}}$$

for flues with longitudinal and circumferential joints.

(5) By F. Wehage: in Dingler's Polytechnisches Journal, pp. 236-243, 1881.

$$P = \begin{cases} 368,000 \frac{8t}{d} & \sqrt[3]{\frac{t}{td}} \end{cases}$$

The coefficient 368,000 to be used for flues with lap joints riveted; the 490,000 to be used for flues with flap joints riveted on.

(6) By Theodore Belpaire: Note sur la résistance des tubes pressées de l'extérieur, par Theodore Belpaire in Annales du Génie civil, March, 1879. Quoted from Van Nostrand's Magazine, Vol. XXIV, 1881.

$$P = 3,427,152 \left[\frac{t^2}{ld} \right] - 56,892,400 \left[\frac{t^3}{ld^2} \right]$$

All of the above formulæ have the same fundamental form as Fairbairn's. Indeed, we might expect this, for they are simply

empirical expressions made to fit Fairbairn's observations. Most writers had seen that there must be a limit to the length of tubes for which these formulæ should be applied, but no results of experiments had been published previous to 1905 regarding this.

The previous experiments by the writer were made to test this principal characteristic of the Fairbairn formula, viz., that the collapsing pressure varies inversely as the length. Twentyfive small seamless brass tubes were collapsed by hydraulic pressure. The diameter, thickness of wall, length and collapsing pressure are shown in the following table:

TABLE II

TABLE of Collapsing Pressures of Small Seamless Brass Tubes¹

Mean Diameter, inches	Thickness of Wall, inches	Length, inches	Collapsing Pressure, lb. per sq. m.
.350 .350 .350 .350 .350 .350 .350 .350	.0163 .0163 .0163 .0163 .0163 .0163 .0163 .0315 .0315 .0315 .0315 .0315 .0315 .0315	.315 .472 .709 1.063 1.570 3.150 3.540 1.570 2.280 2.715 3.345 3.820 1.733 2.280 3.030 8.200 3.420	sq. 10. 4125 3415 3200 2248 1778 1850 1850 9525 6975 6690 6690 6690 6620 6260 5120 4980 11940
.701 .701 .701 .701 .701 .701	.0531 .0531 .0531 .0531 .0531 .0531	3.500 5.120 5.120 5.190 5.270 8.270	12200 12090 12020 11940 12090 12090

The curve, Fig. 2, shows the relation between length and collapsing pressure for tubes 0.35 of an inch in diameter. The curves for the other diameters are of the same shape. The following conclusions were drawn. "An inspection of these data and curves shows immediately that there is a minimum length for

¹Data taken by Professor A. P. Carman, from Physical Review, Vol. XXI, No. 6, Dec., 1905.

Fig. 2 Curve Showing Relation of Collapsing Pressure to Length in Small Seamless Brass Tubes

each tube beyond which the collapsing pressure is constant; and further, that this minimum length is quite definite. Again, we see that for lengths less than this critical minimum length, the collapsing pressures rise rapidly. As definitely as can be determined from these small tubes, the collapsing pressure varies inversely as the length, for lengths less than the critical length. In this they follow Fairbairn's formula, and suggest that Fairbairn's tubes were all shorter than their critical lengths. An inspection of the woodcuts which Fairbairn gives for each of his experiments, and a comparison of these with the shapes of the brass tubes which have been collapsed in our experiments confirm this. Figs. 2 and 4 show shapes and sections of the collapsed tubes of the curve, Fig. 2. Fairbairn found exactly these shapes which we have obtained for lengths less than the critical length". 1

These previous experiments had thus shown the inadequacy of Fairbairn's formula, and they had particularly shown the very narrow range of the law of inverse lengths. When the present series of experiments on standard steel boiler flues was begun, little attention was therefore paid to the law of lengths, except to see that the tubes were longer than the critical minimum length.

METHODS AND DATA OF EXPERIMENTS

The method followed in the present tests was similar to that used by Fairbairn. The tube to be tested was closed at both ends. placed inside a stout steel cylinder, and there subjected to increasing external water pressure until the tube collapsed. The pressures were read by hydraulic gauges. The cylinder used in all these experiments was a section of a nickel steel naval gun tube. kindly furnished at a nominal price by the Bethlehem Steel Company, Bethlehem, Pennsylvania. The dimensions of this gun tube were: length, 12 feet; external diameter, 7 inches; internal diameter, 5 inches. For a distance of six inches at one end, the external diameter was left at 9 inches, thus making a shoulder against which the end plug could be clamped. This plug was a steel disk with a projection, and was held in place by heavy castiron rings and eight 1\frac{1}{4}-inch steel bolts. A lead gasket with circular grooves in the end face of the tube prevented leakage even at the highest pressures. The other end of the nickel steel cylinder was closed by a cast-iron plug, six inches long, shrunk into place.

A. P. Carman. Am. Physical Society, April, 1905.

A \(\frac{3}{4}\)-inch hole for stay rods was drilled through the center of each end plug. Leakage about the rods was prevented by packing held in place by bushing nuts. These stay rods were made of \(\frac{3}{4}\)-inch steel shafting, and were screwed, one into each end plug of the tube to be tested. The tube could thus be put under tension so as to take up the end pressures. One of these stay rods had a small hole through it connecting the interior of the tube with the atmosphere. By rubber tubing, the interior could be connected with a U manometer. This manometer was very useful in indicating any leakage.

In the first experiments, the tube to be tested was closed by steel plugs, fitted and soldered in the ends. Experience soon showed that soldering the plugs was both a tedious and an uncertain method of closing the ends. Several other plans were tried before a satisfactory and convenient method was found. The final method is shown in Fig. 5. Tool-steel clamps were made in the shape of split rings, hinged on one side and held together on the other side by bolts. These ring clamps were placed on the tube near the end as a grip, and slipping was prevented by burring the tube with a cold chisel. A steel disk faced with a sheet of lead was then drawn tight against the plane ends of the tube by bolts screwing into the clamps. After the ends were clamped on the tube it could be tested for leakage by placing the whole tube in a trough of water, and pumping air into it with a foot bievele pump through the bored stay rod. It was seldom that a tube tested in this way leaked when subjected even to high external water pressure. The connections with the gauges, the pump and the hydrant were made through small holes bored in the nickel steel cylinder. These holes were made tight by special screw plugs and leather gaskets. The cylinder was mounted on two heavy trestles and inclined so as to allow the easy escape of the air when filling it with water. The pressures were produced by a Cailletet pump made by the Societé Genevoise, of Geneva, Switzerland. The pump was capable of producing pressures of 1000 kilograms per square centimeter, or approximately 14,000 pounds per square inch. Copper pressure tubing was used to connect the pump and the ganges with the cylinder. gauges made by Shæffer and Budenberg were used, viz.:

No. 1, reading to 8000 pounds per square inch.

No. 2, reading to 1000 kilograms per square centimeter.

No. 3, reading to 3000 pounds per square inch.

No. 4, reading to 300 kilograms per square centimeter.

Fig. 3 Appearance of Collapsed Small Seamless Brass Tubes

Referred to in Figs. 2 and 4

Fig. 4 Sections of Collapsed Small Seamless Brass Tubes

Fig. 5 Parts of Clamp for Stopping End of Tube (on the right)

Clamp in Place on Tube (on the left)

FIG. 6 SECTION OF NICKEL STEEL CYLINDER, WITH TUBE TO HE TESTED IN PLACE. SHOWING END PLUGS AND CONNECTION TO PUMP

Fig. 7 Apparatus For Collapsing Tubes

FIG. 8. THBBS WHICH HAVE BEEN COLLAPSED, SHOWING SHAPE OF COLLAPSE

Fig. 9 Tube with End Stopped and with Stay Rods, Ready to be Put into Cylinder for Test

Fig. 10 Collapsed Portions of Some Boiler Tubes

Gauges Nos. 1 and 3 had maximum pointers, and all had check valves to protect the springs from the shock at collapse. The drawing of the cylinder, Fig. 6 and the photograph, Fig. 7, of the assembled apparatus show other features not easily described.

When a test was to be made, the prepared tube was placed in the cylinder, the heavy head bolted on, and the cylinder filled with water from the hydrant. All the openings were then closed, and the pressure pump started. Several minutes of pumping were usually required before the gauges began to record. Except for a few thin tubes of large diameter. failure, which was sudden in all cases, was accompanied by a sound much like that accompanying the failure of a specimen in a testing machine. Failure was also indicated by the dropping of the gauges and the rise of the water in the manometer connected with the inside of the tube. Each specimen was carefully measured after collapse, and in the case of most of the tested tubes, the collapsed portion was sawed across and the actual average thickness of the tube was obtained. Nearly all of the tubes tested were ten feet long at the start. In many cases, three or more collapses were made by cutting off the collapsed portion after each failure, and then testing the remainder of the tube. In the tables of data, these are noted as sections of the flue, e. g., flue No. 1 was divided into three sections, 1, 2 and 3. tested were commercial steel boiler tubes, both lap-welded and cold drawn seamless. We have to thank J. T. Ryerson and Son, Chicago, for the gift of four tubes, and the Scully Steel and Iron Company, Chicago, for the gift of twenty-five tubes for these tests. The other tubes used were bought in the open market. In order to have data on entirely different material, tests were made on a set of brass tubes similar in size to the steel tubes. The advantage of the brass tube tests was that the dimensions and the material were much more uniform.

CHEMICAL TESTS OF SAMPLES OF BOILER FLUES COLLAPSED

Description of	CHEMICAL ANALYSIS								
Sample of Flue Si	s	Р	Mn	С					
Lap-welded steelLap-welded steel	021	.137	.286	.080					
Seamless cold drawn steel Seamless cold drawn steel	001	.018	.462 .525	.170					

TABLE III DATA ON SEAMLESS COLD DRAWN FLUES

FL	UE	rt.	Diameter, inches	Nominal Thickness, inches	Actual Av. Thickness, inches	Collapsing Pressure, lb. per sq. in.	Length of Collapse, inches	Distance of Collapse from Vented End
No.	Sec.	Length	Diamet inches	Nomina Thickr inches	Actual Thickr inches	Collapsi Pressur lb. per sq. in.	Coll	Distance Collapse from Vented End
25		9 ft. 6 in.	1.5	.095	.097	4220	32	5 ft. 2 in. 8 ft. 2 in.
26	1	9 ft. 7 in.	1.5	.095	.098	4260	30	8 ft. 2 in.
26	2	6 ft. 11 in.	1.5	.095		4260	38	5 ft. 6 in.
$\overline{26}$	$\frac{2}{3}$	2 ft. 8 in.	1.5	.095		3930	25	1 ft. 6 in.
$\overline{27}$		9 ft. 7 in.	1.5	.095		5200	3	At extreme
- '								end of flue.
28	1	8 ft. 4 in.	1.5	.095	.100	4330	32	4 ft. 6 in.
$\overline{29}$		8 ft. 4 in.	1.5	.095	.102	4240	29	1 ft. 4 in.
$\overline{45}$		9 ft. 2 in.	1.5	.095	.095	3930	29	6 ft. 4 in.
Mean					.098	4200	30.4	
42		9 ft. 7 in.	2	.095	.102	3050	27	1 ft. 0 in.
43		9 ft. 7 in.	$\frac{2}{2}$.092	2420	20	6 ft. 4 in.
44		9 ft. 7 in.	5		.103	3390	36	6 ft. 4 in.
Mean					.099	2950	28	
36		9 ft. 8 in.	$\frac{2.5}{2.5}$.083	.084	1280	27	5 ft. 0 in.
$\frac{30}{37}$		9 ft. 7 in.	2.5	.083	.084	1100	26	6 ft. 8 in.
Mean					.984	1190	26.5	
39		9 ft. 7 in.	${2.5}$.095	103	1820	35	
40		9 ft. 6 in.	2.5	.095	.098	1730	27	4 ft. 6 in.
41		9 ft. 7 in.	2.5	.095	.098	1890	22	9 ft. 0 in.
Mean		7 10. 1 111.			.099	1810	28	
меан 3	1	10 ft. 0 in.	9.5	.109	.114	1720	$\frac{58}{28}$	1 ft. 2 in.
3	.) T	6 ft. 10 in.	$\frac{2.5}{2.5}$.109		1920	27	2 ft. 2 in.
3	$\frac{2}{3}$	3 ft. 4 in.	$\frac{2.5}{2.5}$.109		2200	$\frac{54}{24}$	1 ft. 10 in.
3 4	1	9 ft. 8 in.	$\frac{1.5}{2.5}$.109	.116	1980	$\frac{25}{25}$	1 10. 10 111.
4			$\frac{2.5}{2.5}$.109		2470	27	2 ft. 3 in.
	2 3		$\frac{2.5}{2.5}$.109		2610		2 10. 3 111.
4		0 % 7 30	$\frac{2.5}{2.5}$.109	.109	1580	25	1 ft. 9 in.
38		9 ft. 7 in.		. 10.7	1113	1980	27	1 10. 0 111.
Mean		9 ft. 0 in.	2.5	.120	.120	1830	27	
1	1		$\frac{2.5}{2.5}$.120	. 120	1850	26	
1	$\frac{2}{3}$	4 ft. 11 in. 1 ft. 9 in.	2.5	.120		2190	21	
1			$\frac{2.5}{2.5}$.120	. 121	2320	$\overline{28}$	5 ft. 6 in.
$\frac{2}{2}$	1	7 ft. 9 in.	$\frac{2.5}{2.5}$.120	1	2650	23	1 ft. 9 in.
2	2	3 ft. 6 in.	2.0		.120	2070	25	1 10. 5 111.
Mean		0 64 7 3-	3	.095	.094	1190	28	4 ft. 0 in.
33		9 ft. 7 in.	3	.095	.102	1160	33	8 ft. 0 in.
34		9 ft. 7 in.	3	.095	.102	1130	32	8 ft. 0 in.
35		9 ft. 7 in.	1 9		.098	1160	31	8 10. 0 111.
Mean	1	0 44 = 2-	3.5	005		990	37	6 ft. 0 in.
30		9 ft. 7 in.		.095	.093	900	55	7 ft. 0 in.
31		9 ft. 7 in.	3.5	.095	.096	970	42	6 ft. 7 in.
	1	9 ft. 7 in.	3.5	+.095	.093	1 2710	't-	1 0 10. / 111.
32 Mean		0 10. 1 111.			.094	950	45	

TABLE IV DATA ON LAP-WELDED STEEL BOILER FLUES

			_					
				Nominal Thickness, inches	Actual Av. Thickness, inches	÷1.	4	Distance of Collapse from Vented End
$_{\mathrm{FL}}$	UE		Diameter, inches	= ĕ	A Se	Collapsing Pressure, lb. per sq. in.	Length of Collapse, inches	e e _
		Length	S &	Nomina Thickn inches	- 1 2 s	ps su su	S 5	bs be
		32	8.3	E 2.2	Actual Thickr inches	E 2 C.I	50 E E	3.5 a t
No.	Sec.	en	13 13	2 5 5	5 F C	문화소속	E 0 5	Sista Polli Pron Ven End
		H	Ŭ :=	ZHE	AT:		70.5	doa>≥
	1			1	1			
5	1	8 ft. 10 in.	9.5	. 109	.114	2850	29	•
5 5	9	5 ft. 10 in.	5.5	.109		3040	31	
5	$\frac{2}{3}$	3 ft. 0 in.	5.5	.109		3400	29	1 ft. 1 in.
6	1	8 ft. 8 in.	9.5	.109	.116	2810	l .	
6	$\frac{1}{2}$	6 ft. 0 in.	9.5	.109		2930		4 ft. II in.
	3	3 ft. 7 in.	21 21 21 21 21 21 21 21	.109		3080	21	4 10. 11 III.
7	1	8 ft. 8 in.	5.5	.109	.120	2700	27 21 37	0 ft. 7 in.
	$\frac{1}{2}$	2 ft. 4 in.	5.5	.109	. 120	$\frac{2700}{2850}$	97	1 66 1 2
6	ī	9 ft. 0 in.	3.5	.109	.112	2900	$\frac{27}{25}$	1 ft. 1 in.
6 7 7 8 8	9	3 ft. 3 in.	12012121		.112		20	4 ft. 6 in.
8	$\frac{2}{3}$	3 ft. 3 in. 2 ft. 6 in.	9 5	.109		2950	25	2 ft. 0 in. 1 ft. 6 in.
9			9.5	.109	.120	3170	$\frac{24}{20}$	1 ft. 6 in.
9	$\frac{1}{2}$		2.5 2.5 2.5 3	.109	.120	3160	20	9 66 1
	1	5 ft. 10 in. 9 ft. 0 in.	2.0	.109	105	3450	$\frac{57}{30}$	3 ft. 1 in.
10	1		3	.109	.105	2080	50	1 ft. 9 in.
10	$\frac{2}{3}$	4 ft. 11 in. 2 ft. 10 in.	9	.109		2150	29 29	3 ft. 5 in.
10	9		3	.109	.111	2350	29	0 ft. 8 in.
11	1	9 ft. 0 in.	3	.109	.111	2190	23	8 ft. 6 in.
11	$\frac{2}{3}$	6 ft. 6 in.	3 3	.109		2430	30	1 ft. 7 in.
11		3 ft. 8 in.	3	.109		2620	26	2 ft. 6 in.
$\begin{array}{c} 11 \\ 12 \end{array}$	1	1 ft. 8 in. 9 ft. 0 in.	3 3	.109	.105	3150	20	0 ft. 10 in.
1.	1	9 10. 0 111.	,,	.109	.100	1910	4	At extreme
19	.,	8 ft. 8 in.	3	.109		2020	27	end of flue.
12 12	2 3	5 ft. 1 in.	3	.109		1960	30	7 ft. 6 in.
$1\overline{2}$	4	2 ft. 6 in.	3	.109		1920		1 ft. 4 in. 1 ft. 9 in.
13	i	9 ft. 0 in.	3	.109	.106	2140	26 32	
13	$\frac{1}{2}$	5 ft. 1 in.	3	.109	.100	2220	33	6 ft. 8 in. 2 ft. 10 in.
14	ī	9 ft. 0 in.	3	.109	.113	2080	32	
14		2 ft. 11 in.	3	.109	. 11.)	2000	27	
14	$\frac{2}{3}$	2 ft. 6 in.	3	.109		2230	- 1	1 ft. 9 in. 1 ft. 2 in.
15	1	9 ft. 5 in.	3.5	.120	.124	1940	$\frac{28}{31}$	1 ft. 2 in. 1 ft. 4 in.
$\vec{15}$		6 ft. 8 in.	3.5	.120	.124	2310	30	1 ft. 2 in.
15	2 3	4 ft. 1 in.	3 5	.120		$\frac{2.710}{2470}$	30	
15	4	1 ft. 4 in.	3.5 3.5 3.5	.120		2800	16	2 ft. 11 in. 0 ft. 8 in.
16	i	9 ft. 6 in.	3.5	120	.129	2180	31	1 ft. 1 in.
16	$\hat{2}$	6 ft. 9 in.	3.5	.120		2500	30	5 ft. 7 in.
16	3	4 ft. 1 in.	3.5	.120		2790	27	2 ft. 11 in.
17	ĭ	9 ft. 8 in.	3.5	.120	.129	2150	41	2 10, 11 111.
17	$\frac{1}{2}$	6 ft. 8 in.	3.5	.120	. 1	2240	36	1 ft. 5 in.
Î7	$\bar{3}$	3 ft. 4 in.	$\frac{3.5}{3.5}$.120		2660	36	2 ft. 0 in.
18	i	9 ft. 4 in.	3.5	.120	128	1890	39	~ 10. U III.
18	2	6 ft. 4 in.	$\frac{3.5}{3.5}$.120	1	1870		
19	1	9 ft. 4 in.	3.5	.120	.127	2200	32	1 ft. 4 in.
19	$\bar{2}$	6 ft. 8 in.	3.5	.120		2290	42	4 ft. 4 in.
19	$\frac{2}{3}$	2 ft. 6 in.	3.5	.120		2440	30	1 ft. 2 in.
20	1	8 ft. 5 in.		.095	.095	3100	33	1 ft. 2 in. 7 ft. 2 in.
20	2	5 ft. 5 in.	2	.095		3410	29	3 ft. 2 in.
20	$\bar{3}$	2 ft. 3 in.	2	.095		3640	27	1 ft. 1 in.
21		8 ft. 4 in.	2	.095	.098	2650	32	6 ft. 7 in.
$\frac{22}{22}$	1	8 ft. 2 in.	2 2 2 2 2 2 2 2	.095	.106	3180	30	6 ft. 6 in.
22	2	5 ft. 8 in.	2	.095	1	3500	32	4 ft. 1 in.
			_			3,300		1 10. 1 111.

TABLE IV-Concluded

FL	UE	æ	ster,	nal mess, s	l Av. mess. s	sing ure, r sq.	h of pse, s	bse of
No.	Sec.	Lengtl	Diame	Nomin Thick inche	Actua Thick inche	Collar Press Ib. pc in.	Lengt Colla inche	Distar Colla from Vente End
22 23 23 23 23 24	3 1 2 3	2 ft. 8 in. 8 ft. 4 in. 6 ft. 0 in. 3 ft. 0 in. 8 ft. 5 in.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.095 .095 .095 .095	.102	3700 3260 3960 4030 3470	26 28 37 27 31	1 ft. 1 in. 1 ft. 8 in. 2 ft. 0 in. 4 ft. 2 in.

TABLE V

Data on Brass Tubes

TUBE		ੱ ਜ਼	eter,	Тик	KNESS	ollapsing Pressure, lb. per sq. in.	ength of 'ollapse, nches	
No. Sec.		Length	Diameter, inches	Gauge Inches		Collapsing Pressure. Ib. per sq. in.	Lengt Colla inche	
1	1	8 ft. 8 in.	3	14	.083	450	34	
1	$\frac{2}{3}$	3 ft. 7 in.	3	14	.083	490	24	
1		1 ft. 9 in.	3	14	.083	555	21 26	
2 2 3	1	3 ft. 11 in.	3	14	.083	465	26	
2	2	0 ft. 8 in.	3	14	.083	725	8	
	1	8 ft. 7 in.	3	19	.042	75	41.5	
4 4 4 5	1	8 ft. 7 in.	2	14	.083	1400	23.5 22 21	
4	$\frac{2}{3}$	5 ft. 11 in.	-2	14	.083	1440	22	
4	3	2 ft. 7 in.	2	14	.083	1440	21	
5	1	2 ft. 3 in.	-2	14	.083	1400	23 24	
6		6 ft. 6.5 in.	2.5	10	. 134	2530	24	
7 8		6 ft. 0.0 in.	• • • • • • • • • • • • • • • • • • • •	12	.109	2440	27.5	
8		6 ft. 6.5 in.	2	10	. 134	3840	31	
9	1	6 ft. 5.5 in.	$\frac{2}{2}$	19	.042	275	24.5	
9	2	3 ft. 4 in.	2	19	.042	325	20	
10		5 ft. 6.5 in.	2.5	14	.083	710	23	
11		4 ft. 7 in.	1.5	14	.083	2600	31	

OTHER TESTS AND DATA

The present paper was practically completed when a paper appeared by Professor R. T. Stewart, entitled, "Collapsing Pressures of Bessemer Steel Lap-welded Tubes, Three to Ten Inches in Diameter". This paper was read by Professor Stewart before the American Society of Mechanical Engineers at the Chattanooga meeting, May 1 to 4, 1906, and at the present writing is available only in the advance papers of the meeting. It describes a very complete and valuable investigation made at the McKeesport

Works of the National Tube Company on the lap-welded steel tubes of that company, "the Tube Company generously providing every needful facility for carrying on the research in a most thorough manner". Tests on over five hundred tubes are recorded, so that every advantage of averages is gained. Professor Stewart's tests are certain to play an important part in future discussions of tube collapse on account of the completeness and carefulness of the work. The great number of different facts noted will be invaluable to students, although possibly at first confusing to some readers. The method of experimenting is substantially the same as described in this paper, and also the same as was used by Fairbairn. The ends of the tested tubes were not stayed, and much

Thickness, inches (t)	Diameter, inches (d)	$\frac{-t}{d}$	$\left[-\frac{t}{d}\right]^2$	$\left[-\frac{t}{d}\right]^3$	Collapsing Pressure, Ib. per sq. in.	Source of Data
.194 .354 .279 .250 .186 .167 .327 .212 .175 .112	10.026 8.673 6.987 6.677 6.024 6.028 4.014 4.026 4.014 2.997 10.041	.0193 .0408 .0400 .0374 .0309 .0277 .0815 .0527 .0436 .0164	.000372 .001670 .001600 .001400 .000950 .000768 .006640 .002780 .001900 .001400	.00000718 .00006800 .00006400 .00005240 .00002940 .000054000 .00014600 .00008300 .00005240	383 2028 2147 1879 1251 928 5560 3170 2280 1860 225	Table No. 37 Table No. 36 Table No. 36 Table No. 36 Table No. 35 Table No. 35 Table No. 34 Table No. 30

longer specimens were used, particularly in the first experiments. Most of the experiments were on tubes of larger diameter than ours, Stewart's smaller tubes being indeed the same as our larger tubes. Stewart's experiments are confined to lap-welded tubes, while the tests described in the present paper include also cold drawn seamless steel and brass tubes. The experiments thus supplement each other. Professor Stewart sums up the results of his work as follows: "The principal conclusions to be drawn from the results of the present research may be stated briefly as follows:

(1) The length of tube, between transverse joints tending to hold it to a circular form, has no practical influence upon the

Data taken from a paper read by Professor R. T. Stewart before the American Society of Mechanical Engineers, at Chattanooga, May, 1906. Paper No. 091.

collapsing pressure of a commercial lap-welded steel tube so long as this length is not less than about six diameters of tube.

(2) The formulæ, as based upon the present research, for the collapsing pressure of modern lap-welded Bessemer steel tubes are as follows:

(a)
$$P = 1,000 \left(1 - \sqrt{1 - 1600 \frac{t^2}{d^2}}\right)^2$$

(b)
$$P = 86,670 \frac{t}{d} - 1386$$

Where P = collapsing pressure, pounds per square inch; d = outside diameter of tube in inches; t = thickness of wall in inches.

Formula (a) is for values of P less than 581 pounds, or for values of $\frac{t}{d}$ less than 0.023, while formula (b) is for values greater than these.

(3) The apparent fiber stress under which the different tubes failed, varied from about 7000 pounds for the relatively thinnest to 35,000 pounds per square inch for the relatively thickest walls. Since the average yield point of the material was 37,000 and the tensile strength 58,000 pounds per square inch, it would appear that the strength of a tube subjected to a fluid collapsing pressure is not dependent alone upon either the elastic limit or ultimate strength of the material constituting it".

It will, of course, be impossible to make even an abstract of Professor Stewart's voluminous data, but the substantial agreement of our curves of results with his will be shown in the discussion. A considerable amount of experimental work was done by Professor Stewart in reaching his first conclusion, viz., that the law of inverse lengths did not hold for long tubes. As mentioned above, we had reached this conclusion in experiments described and published before the present experiments were begun.

RATIONAL FORMULE

We turn now to the theoretical discussion of tube collapses. The problem involved is one of unstable equilibrium, and as A. E. H. Love, the author of one of our best theoretical treatises on elasticity, says, belongs to one of the most difficult chapters in the theory of elasticity. Within the last eighteen years, three mathematicians of the University of Cambridge, England, have

discussed the problem of collapse, basing the discussion on the general equations of mechanics and elasticity.

Professor G. H. Bryan¹ seems to have been the first to deduce a formula. Mr. A. B. Basset² soon after discussed the subject and proved the same formula in a slightly different form and by other methods. Mr. A. E. H. Love,³ in his elaborate treatise on elasticity, gives Bryan's formula with a new discussion and with some additions. As stated above, these discussions are all based on the general mathematical equations of elasticity, and are too long and complicated to be presented here. The results, however, have been summed up in excellent form by Love. He says: "Combining the results of this and the previous article, we conclude:

(1) That no flue, however long, can collapse unless the pressure exceed

$$\left(\frac{2 E}{1 - \sigma^2}\right) \frac{h^3}{u^3}$$

(2) That when the pressure exceeds this limit, any flue will collapse if its length exceed a certain multiple of the mean proportional between the diameter and the thickness".

In the above formula, E is the coefficient of elasticity; h is one-half of the thickness; a is the radius of the mean section; and σ is Poisson's ratio. So far as known, no use of this formula has been made in experiments or in engineering practice. It has been developed wholly from the general theory of elasticity, and is distinctly limited by the assumptions, to thin tubes, i. e., where "the thickness 2 h is small compared with the mean radius a".

Previous to this work of the three Cambridge mathematicians, we know of only two published attempts to deduce a rational formula for tube collapses, one by Professor W. C. Unwin and the other by Dr. F. Grashof. Professor Unwin was an assistant of Fairbairn in the original experiments, and nearly twenty years later, in 1876, gave a new discussion of these experiments. He says that the formulæ which have been based on Fairbairn's experiments have no relation to ordinary formulæ of applied me-

¹G. H. Bryan. Application of the Energy Test to the Collapse of a Long Thin Pipe under External Pressure, Proceedings of the Cambridge Philosophical Society. October 29, 1888. Vol. 6.

²A. B. Basset, On the Difficulties of Constructing a Theory of the Collapse of Boiler Flues, Philosophical Magazine, London, 1892, Vol. 200, pp. 221-233.

³ A. E. H. Love, Mathematical Theory of Elasticity, Cambridge, 1903, Vol. II, pp. 308-316.

chanics, and notes the advantages if "the collapse of tubes could be expressed by the ordinary laws of the resistance of materials". Unwin then discusses tube collapse on the analogy of this to the failure of long thin columns, and deduces from Euler's formula for columns a similar expression for the collapsing pressures of tubes. After making certain assumptions, he concludes, "The lowest collapsing pressure for long tubes is:

$$P_{\text{min.}} = \frac{8}{3} E \frac{t^3}{d^3}$$

If I is less than 28 t, the collapsing pressure at the limit is:

$$P_{\text{max.}} = \left[\frac{\pi^2 E}{4704} \right] \frac{t}{d}$$

If t is greater than $\frac{1}{36}d$, the formulæ cease to be applicable". The above formulæ are thus proposed only for very thin tubes. Unwin then modified his theory to make it agree with Fairbairn's experiments, and reached as an approximation the formula already quoted on page 5. Like other writers, he did not appreciate the very limited range of Fairbairn's experiments as regards length of tubes. Grashof's attempt to deduce a rational expression for tube collapses was made much earlier, but seems generally to have been overlooked. It is added at the end of his paper on Fairbairn's experiments, in which he gives the empirical formula already noted on page 5. Grashof deduces

$$P = \frac{2k\frac{t}{d}}{1 + \frac{3}{2} \cdot \frac{d}{t}}$$

the formula where P = collapsing pressure: t = thickness of wall; d = diameter of tube; k = yielding strength of the material; and $a = \frac{a - b}{a}$, where a is the maximum diameter, and b the minimum diameter of the distorted tube at the instant of failure.

l Unwin, Institution of Civil Engineers, 1876, Part IV, p. 232.

² F. Grashof, Zeitschrift des Vereines deutscher Ingenieure, Vol. III, p. 241.

CURVES AND FORMULÆ

An inspection of the data of our experiments shows that the portion of a long tube affected by the collapse from hydraulic pressure is generally not longer than twelve times the diameter, and that for greater lengths the collapsing pressure is independent of the length. The law according to which the collapsing pressure varies inversely as the length, is true only for very short tubes, i. e., tubes shorter than a certain "critical minimum length", which in most cases is from four to six times the diameter. We can thus omit further consideration of all formulæ of the Fairbairn type in which the length appears in the denominator.

All considerations show that the collapsing pressure of a tube is a function of t, the thickness of the tube wall, and also of d, the diameter, varying directly as some function of t, and inversely as some function of d. Further, all the theoretical discussions indicate that this collapsing pressure varies as a function of the

ratio $\frac{t}{d}$, i. e., that t and d have the same exponents. The simplest method of showing and studying the relation between p, the collapsing pressure, and the ratio, $\frac{t}{d}$, is the graphic one, construct-

ing curves from the experimental data. In Figs. 11, 12 and 13 such curves are drawn. In all these curves, the ordinates represent the values of P, and the abscissas represent the cor-

responding values of $\frac{t}{d}$, $\frac{t^2}{d^2}$ and $\frac{t^3}{d^3}$. Fig. 11 is for drawn brass

tubes, Fig. 12 for cold drawn seamless steel tubes, and Fig. 13 was made by taking the numerical results from Professor Stewart's paper on lap-welded steel tubes and calculating the ratios. While our tables contain results of a large number of tests of lap-welded tubes, these tubes were all thick and also of about the same thickness, so that they gave but few points of a curve. We relied on the cold drawn steel and the brass tubes for the form of the complete curve, as these tubes were more uniform in thickness, diameter, and probably in material also than the lap-welded tubes. The agreement in the general shape of these curves for tubes of different materials and from independent observations is good evidence of the general reliability of the experimental data. An examination of these curves shows the following:

Fig. 11 Curves Showing Relation of Collapsing Pressures of Drawn Brass Tubes to

$$\left[\frac{t}{d}\right], \quad \left[\frac{t}{d}\right]^2 \text{ and } \left[\frac{t}{d}\right]^3$$

Fig. 12 Curves Showing Relation of Collapsing Pressures of Seamless Cold Drawn Steel Tübes to

$$\left[\begin{array}{c} t \\ \overline{d} \end{array}\right], \quad \left[\begin{array}{c} t \\ \overline{d} \end{array}\right]^2 \quad \text{and} \quad \left[\begin{array}{c} t \\ \overline{d} \end{array}\right]^3$$

Fig. 13 Curves Showing Relation of Collapsing

PRESSURES AND
$$\left[\frac{t}{d}\right]$$
, $\left[\frac{t}{d}\right]^2$ and $\left[\frac{t}{d}\right]^3$ in

BESSEMER STEEL TUBES, DATA FROM PROF. R. T. STEWART

- (1) For thin tubes, i. e., for values of $\frac{t}{d}$ below about .025, the formula, $P = k \left(\frac{t}{d}\right)^3$, is very nearly true. This assumes that for this portion of the curve of P and $\left\lfloor \frac{t}{d} \right\rfloor^3$, the curve is practically a straight line. So far, this is in agreement with the theoretical conclusions of Bryan and Unwin. The limit agrees with the value of $t = \frac{d}{36}$, given by Unwin. The values of k are also of the same order as the coefficient of Bryan's formula, although no very close agreement need be expected, as it is difficult to get extremely accurate readings of the small collapsing pressures. The constants have been calculated and the formulæ are as follows:
 - (a) For thin brass tubes:

$$P = 25,150,000 \left\lfloor \frac{t}{d} \right\rfloor^3$$

(b) For thin cold drawn seamless steel tubes:

$$P = 50,200,000 \left(\frac{t}{d}\right)^3$$

All of the lap-welded tubes tested by us were thick tubes. This formula with practically the same numerical coefficient applies to the thin tubes given in Stewart's tables of results.

(2) The curve of P and $\frac{t}{d}$ is nearly straight for the thick tubes, i. e., for tubes having a value of $\frac{t}{d}$ greater than about .03. For thinner tubes, the curve bends rapidly toward the axis. The straight part of the curve can evidently be represented by an equation, $P = k \left[\frac{t}{d} \right] - c$, where k and c are constants. We have calculated these constants from our data, and find the following

(a) For brass:

$$P = 93,365 \frac{t}{d} - 2474;$$

formulæ for tubes having a ratio $\frac{t}{d}$ greater than .03:

is the factor.

(b) For seamless cold drawn steel:

$$P = 95,520 \frac{t}{d} - 2090;$$

(c) For lap-welded steel:

$$P = 83,270 \frac{t}{d} - 1025.$$

Professor Stewart found for his lap-welded tubes the formula

$$P = 86,670 - \frac{t}{d} - 1386.$$

This formula, as thus stated, is purely empirical, and its lower limit is entirely arbitrary. From a suggestion of Professor A. N. Talbot, department of Theoretical and Applied Mechanics, University of Illinois, attention was called to Grashof's rational formula:

$$P = \frac{2k \frac{t}{d}}{1 + \frac{3}{2} a \frac{d}{t}}$$

as a possible solution. When plotted for P and $\frac{t}{d}$, assigning constant values to k and a, this gives a curve suggesting the experimental curves but no possible constant values of k and a satisfy the data. It is probable that a is not a constant, being approximately so for thick tubes, but having quite different values for thin tubes. The formula thus becomes too complicated for use. The above formulæ and their limits are suggestive in showing where the stiffness of the material is the important factor, and where the effect of the strength of the material comes in as the controlling factor. Bryan's formula for thin tubes involves the modulus of elasticity, not the strength of the material. If we suppose that such a formula as Grashof's rational form ex-

(3) An approximate formula of the form $P = k \left(\frac{t}{d}\right)^2$ is suggested by the curves of P and $\left(\frac{t}{d}\right)^2$, particularly for the steel tubes. For cold drawn seamless steel tubes, this approximate formula is

presses the facts for thick tubes, the yield point of the material

$$P = 1,000,000 \quad \left[\frac{t}{d}\right]^2.$$

and this can be used for tubes for which $\frac{t}{d}$ is less than .06. For lap-welded steel tubes, the same formula becomes

$$P = 1,250,000 \left[\frac{t}{d} \right]^2$$

and this can also be used for values of $\frac{t}{d}$ less than .06. This approximate formula has been useful to us in getting probable collapsing pressures, and gives satisfactory rough values for tubes of the most common commercial thickness.

In applying any formula to calculate the collapsing pressure of a particular tube, a considerable factor of safety should be used. The constants in all these formulæ are large, and $\frac{t}{d}$ (or a power of $\frac{t}{d}$) is a comparatively small quantity, so that a small change in the numerical value of $\frac{t}{d}$ greatly affects the result.

Lack of uniformity in the material, and slight deformations are also very important factors. It is to the credit of modern manufacturers of tubes that their product is as uniform as these tests show. With the knowledge which this discussion gives of the law of tube collapse, the user of tubes is in a position to calculate with fair approximation the collapsing pressure, particularly if he can get tests made of one or more sample tubes of the material so as to fix the constants.

While the advance in this field of investigation is thus considerable, yet much work remains to be done especially in connecting the subject more closely with the ordinary equations of elasticity.

BIBLIOGRAPHY ON COLLAPSE OF BOILER TUBES

- Bach, C.—Berechnung der Wandstarke der Flammroehre: in Zeitschrift des Vereines deutscher Ingenieure, October 31, 1891.
- Basset, A. B.—On the Difficulties of Constructing a Theory of the Collapse of Boiler Tubes, in *Philosophical Magazine*, September, 1892.
- Belpaire, Theodore.—Note sur la résistance des tubes pressées de l'extérieur: in *Annales du Genie civil*, March. 1879. Referred to by C. R. Roelker in *Van Nostrand's Magazine*, Vol. 24, p. 215.
- Briggs, Robert.—Editorial comment on article in *Engineering*, Vol. 21, p. 511; also *Journal Franklin Institute*, Vol. LXXII, p. 175.
- Brown and Company, John, Sheffield, England.—Report of Test of Four Cambered Furnaces: *Trade Catalog, Marine Specialties*, Fifth Edition, 1902.
- Bryan, G. H.—Application of the Energy Test to the Collapse of Long Thin Pipe under External Pressure: in *Proceedings* Cambridge Philosophical Society, Vol. VI, 1888.
- Clark, D. K.—Manual of Rules, p. 694, London, 1877. Strength of Furnace Flues; London Engineering, September 21, 1888.
- Clark, S. E.—Vol. I, p. 643. Referred to in Kent's Handbook, Fifth Edition, p. 265.
- Fairbairn, W.—The Resistance of Tubes to Collapse: in *Philosophical Transactions*, Vol. 148, 1858, pp. 389–413.
 - Useful Information for Engineers: Vol. II. p. 175, London, 1867.
 - Report of British Association for Advancement of Science: 1858, p. 174.
 - On the Collapse of Glass Globes and Cylinders: B. A. A. S. Report, 1858, p. 174.
- Fletcher, L. E.—Monthly Reports of the Manchester Steam Users Association. Referred to by D. K. Clark in *Engineering*, September 21, 1888.

- Grashof, F. W.—Fairbairn's Versuche ueber den Widerstand von Roehren gegen Zusammendrueckung: Zeitschrift des Vereines deutscher Ingenieure, Vol. 3, 1859, 234.
 - Theorie der Elasticitat und Festigkeit, p. 328. Referred to by C. R. Roelker in *Van Nostrand's Magazine*, Vol. 24, p. 212.
- Hutton, W. S.—Steam Boiler Construction, p. 179. Fourth Edition, London, 1903.
- Julian and Bataille.—Machines à Vapeur p. 240. Reference by C. R. Roelker, p. 211, Vol. 24, Van Nostrand's Magazine.
- London Engineering.—The Strength of Boiler Flues, Vol. 21, p. 511, June 16, 1876.
- Love, A. E. H.—Mathematical Theory of Elasticity, Vol. 2, p. 315, Cambridge, 1903.
- Love, G. H.—Sur la résistance des conduits intérieurs à funiél dans les chaudières à vapeur: Referred to by Todhunter and Pearson in *History of Theory of Elasticity*, Vol. II, Part I, p. 667, Cambridge, 1893.
- Nystrom, J. W.—A New Treatise on Steam Engineering, p. 106. Referred to in Kent, Fifth Edition, p. 265.
- Roelker, C. R.—Experimental Investigation of the Resistance of Flues to Collapse, Van Nostrand's Magazine, Vol. XXIV, p. 208, March, 1881.
- Seaward, John.—Discussion of Formulæ for the Collapse of Boiler Flues: Journal of Franklin Institute, Vol. XXVI, p. 349.
- Shock, W. H.—Steam Boilers, Their Construction and Management, p. 113, New York, 1880.
- Unwin, W. C.—On the Resistance of Flues to Collapse: Proceedings of the Institute of Civil Engineers, Vol. XLVI, p. 225. The Strength of Boiler Flues: London Engineering, June 9, 1876, Vol. 21, p. 482; also July 7, 1876; also Journal of Franklin Institute, Vol. LXXII, p. 171.
- Wehage, Zur Berechnung der Flammroehre von Dampfkesseln: Dingler's Polytechnisches Journal, pp. 236-243, 1881.
- Wilson, Robert.—The Strength of Boiler Flues: London Engineering, Vol. 21, June 2, 1876.

Publications Of The Engineering Experiment Station

Bulletin No. 1. Tests of Reinforced Concrete Beams, by A. N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by A. N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by A. P. Carman. 1906.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

BULLETIN No. 6

JUNE 1906

HOLDING POWER OF RAILROAD SPIKES

BY ROY I. WEBBER, C. E., INSTRUCTOR IN CIVIL ENGINEERING

The determination of a proper fastening between the rail and the tie has become a matter of considerable importance. During the period when the supply of suitable hard wood timber was sufficient, the ordinary spike satisfactorily fulfilled the requirements of traffic; but with the increase in the amount of traffic handled, and the heavier weights of cars and locomotives, and also with the use of soft deciduous and coniferous woods for ties, the common spike has proved deficient. Variations in the form of the ordinary spike have been developed, and new forms of spikes have been devised in an attempt to overcome the loss of efficiency attendant upon the use of inferior timbers.

In view of these conditions, and the meager supply of published data on the holding power of spikes in ties, the writer has carried out a series of experiments to determine the resistance to withdrawal offered by the same type of spike in different timbers and by different forms of spikes in the same timber, and also to determine whether or not the preservative has any influence upon this resistance.

The writer wishes to express his thanks for the hearty cooperation received from the various persons, firms and corporations mentioned in the text. He wishes also to express his indebtedness for personal aid, to Mr. Robert Trimble, Chief Engineer Maintenance of Way, Pennsylvania Lines; Mr. George E.

ILLINOIS ENGINEERING EXPERIMENT STATION

 $\begin{array}{c} \text{TABLE I} \\ \text{Description of the Ties} \end{array}$

No. of Tie	Kind of Timber	Kind of Treatment	Date Treated	Remarks
1	Blue Ash	Zinc-Creosote	1905	Seasoned: sound
	Blue Ash	Zinc-Creosote	1905	Seasoned; sound
2 3	Sweet Gum	Zinc-Creosote	1904	Seasoned; sound
4	Water Oak	Zine-Tannin	1904	Seasoned; sound
$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$	Water Oak	Zinc-Tannin	1904	Seasoned; sound
6	Red Oak	Zine-Tannin	1904	Seasoned; sound
7	Red Oak	Zinc-Creosote	1905	Seasoned: sound
8	Red Oak	Zinc-Creosote	1905	Seasoned: sound
9	Red Oak	Zinc-Tannin	1904	Seasoned: sound
10	Rock Elm	`Zinc-Creosote	1905	Seasoned; sound
11	Poplar	Zinc-Creosote	1905	Seasoned; sound
12	${f Elm}$			Seasoned; sound
13	${f Elm}$			Seasoned; sound
14	Beech			Seasoned: sound
15	${f Elm}$			Seasoned: sound
16	Black Oak	Zinc-Creosote	1902	Seasoned
17	Red Oak	Zinc-Creosote	1902	Seasoned
18	Black Oak	Zinc-Creosote	1902	Seasoned
19	Poplar	Zinc-Creosote	1902	Seasoned
20	Loblolly Pine	Zinc-Tannin	1905	Treated December, 1905; sound
21	Lob'y Pine	Zinc-Tannin	1905	Treated Dec; '05; sound
$\frac{55}{22}$	Red Oak	Zinc-Tannin	1905	Treated Dec: '05: split
23	Black Oak	Zine-Tannin	1905	Treated Dec; '05'
24	Black Oak	Zine-Tannin	1905	Treated Dec; '05
$\frac{24}{25}$	Water Oak	Zinc-Tannin	1905	Treated Dec; '05
$\frac{26}{27}$	Water Oak	Zinc-Tannin	1905	Treated Dec; '05
27	Black Oak	Zinc-Tannin	1905	Treated Dec; '05
28	Red Oak	Zine-Tannin	1905	Treated Dec; '05
29	Water Oak	Zinc-Tannin	1905	Treated Dec; '05
30	Red Oak	Zinc-Tannin	1905	Treated Dec; '05
31	White Oak			Seasoned; in track
32	White Oak			∏ two years { Indiana Oak: sap
				wood showed slight
33	White Oak			
0.4	W 4 ()-1-	Consents	1001	sound Sound
34	Water Oak	Creosote	1904 1904	Sound
$\frac{35}{36}$	Burr Oak	Creosote	1904	Sound
36	Beech	Creosote	1904	Sound
37	Elm	Creosote		Sound
38	Beech			Seasoned; sound
39	Lob'y Pine Chestnut			Seasoned; sound
40		Crossota	1904	Showed tendency to split
41	Red Oak	Creosote		Sound
42	Beech			Sound
43 44	Beech Beech		• • • • •	Sound
44	Deecu			Dound

PLATE I

TESTING MACHINE WITH TIE IN POSITION FOR TEST

Boyd, Roadmaster of the Illinois Central Railroad; Mr. A. L. Kuehn. Superintendent of Maintenance of Way, of the Cleveland, Cincinnati, Chicago and St. Louis Railway; Dr. Octave Chanute, President of the Chicago Tie Preserving Company, Chicago, Illinois; and to Professor Ira O. Baker and Professor C. H. Hurd of the University of Illinois.

THE TIES

The ties used in these experiments were furnished gratuitously as follows: Nos. 1 to 11, and 16 to 30 by the Chicago Tie Preserving Company, Chicago, Illinois; Nos. 12 to 15 by the Illinois Central Railroad Company; Nos. 31 to 41 by the Cleveland, Cincinnati, Chicago and St. Louis Railroad Company. Table I gives a description of the several ties used. The ties were taken either from the stock pile of the railroad companies or from those of the treating plant. No attempt has been made to trace their history farther back than the place of growth and the date of treatment. Treated ties were used in a majority of the experiments, since in the future, as the inferior grades are pressed into service, the tendency will doubtless be toward the use of preserved timber.

EXPERIMENTS

Two distinct lines of experiments were undertaken: (1) The determination of the resistance to direct pull of several forms of spikes; and (2) An investigation of the resistance to lateral thrust. Therefore the paper naturally divides itself into two parts: Part I, Resistance to Direct Pull; Part II, Resistance to Lateral Displacement.

All of the experiments were made in the Laboratory of Applied Mechanics, University of Illinois.

PART I RESISTANCE TO DIRECT PULL

The experiments were made with a Riehle 100,000-pound testing machine. Plate I shows the machine with a tie in position for a test. The pulling device for ordinary spikes, also shown in Plate I, was a Verona spike-puller threaded into a piece of steel gripped between the lower jaws of the machine; the pulling device for the screw spikes was of the same general pattern and was designed especially for these tests. A scale graduated to 1-16 of an inch was so set that the distance moved through the lower head of the machine could be measured directly. A load of 500

pounds was applied to insure the tie's having a good bearing before any records were taken. The machine was geared to move at the rate of 5-8 of an inch per minute, which allowed time for carefully balancing the machine and for taking the readings of the scales. Five observations were usually taken; viz.. when the lower head of the machine had moved through 1-8, 1-4, 1-2 and 3-4 of an inch, and also at the point at which the maximum fiber resistance was developed. No observations were made after the spike had been pulled 3-4 of an inch, as it would have lost its usefulness long before that point had been reached.

Further consideration of this part of the paper will be continued under the following heads: Art. 1, Holding Power of Ordinary Spikes; Art. 2, Holding Power of Screw Spikes without Linings; and Art. 3, Holding Power of Screw Spikes with Helical Linings.

ART. 1 HOLDING POWER OF ORDINARY SPIKES

The ordinary spikes were received from the following companies, the numbers in this list being the designations in the subsequent tables: Nos. 1 and 2 from the Pennsylvania Railroad Company; Nos. 3 and 4 from the American Iron and Steel Manufacturing Company, Scranton, Pennsylvania; Nos. 5 to 10 from Dillworth, Porter and Company, Pittsburg, Pennsylvania; No. 11 from the W. A. Zelnicker Supply Company, St. Louis, Missouri, and Nos. 12 to 14 from the Illinois Steel Company, Chicago, Illinois.

The nominal dimensions of the four sizes of spikes are shown in Table II. The actual lengths varied considerably from the nominal lengths, usually being less. This was particularly true concerning the 6-inch spike. The actual cross sections were nearly the same as the nominal, the variation in thickness rarely being over 1-64 of an inch. As the range in thickness of the spikes was only 1-16 of an inch, some experiments were made with plain, square and chisel-pointed bars 1-2, 3-4, and 7-8 of an inch thick to determine the relation between the holding power and the cross section. The spikes had differently shaped points, as shown in Table II. Three spikes were used for each experiment, and these three were always of the same size and lot number.

The spikes were driven by Mr. M. Flood, an experienced track foreman detailed for this purpose by the division engineer of the Cleveland, Cincinnati, Chicago and St. Louis Railway.

TABLE II
.
DESCRIPTION OF THE ORDINARY SPIKES

1 6 5-8 0.372 Chisel 2 5 1-2 5-8 0.372 Chisel 3 5 1-2 5-8 0.372 Blunt 4 5 1-2 5-8 0.372 Blunt 5 6 5-8 0.372 Sharp 6 5 1-2 19-32 0.352 Sharp 7 5 1-2 19-32 0.352 Chisel 8 6 5-8 0.372 Blunt 9 5 1-2 9-16 0.316 Blunt 10 5 1-2 9-16 0.316 Sharp 11 5 1-2 9-16 0.316 Sharp	Record	Nominal Length, inches	Section, inches square	Area, square inches	Type of Point	Depth Inserted, inches	Condition of Surface of Spike
12 5 1-2 9-16 0.316 Chisel 12 5 1-2 9-16 0.316 Chisel	2 3 4 5 6 7 8 9 10 11 12	5 1-2 5 1-2 5 1-2 6 1-2 6 1-2 6 1-2 5 1-2 5 1-2 5 1-2	5-8 19-32 19-32 5-8 9-16 9-16 9-16 9-16	0.372 0.372 0.372 0.372 0.352 0.352 0.372 0.316 0.316 0.316	Chisel Blunt Blunt Sharp Sharp Chisel Blunt Blunt Sharp Chisel Sharp	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth

Whole ties were used to insure freedom from splitting in driving the spikes, and care was exercised to avoid driving the spike into knots or cracks. The spikes were driven into the tie to a depth of 5 inches. In some instances, as shown in the record, holes were bored for the ordinary spikes, the hole being 1-16 or 1-8 of an inch less in diameter than the cross sectional dimensions of the spike. The depth of boring was not quite as great as the depth of insertion, so that the pointed end of the spike was forced into the undisturbed wood. Table III gives the detailed numerical results of the tests and Plates II and III show graphically the curves of average resistances of the different ties.

PLATE II

Curves Showing Resistance to Withdrawal of the Spike from the Tie.

PLATE III

Curves Showing Resistance to Withdranal of the Spike from the Tie.

 ${\bf TABLE~III}$ Detailed Record of Tests of Direct Pull of Ordinary Spikes

				$\mathrm{R}\epsilon$	esistance for P	in Poun Pull of	ids		mum stance
Kind of Tie	Tie No.	Spike No.	Test No.	1-8 inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Blue Ash	1	12	1 2 3	1800 4040 4270	4460 5060 4340	5220 4510 3860	4450 3990 3370	6840 7260 6330	3-8 3-16 3-16
			Δv.	4150	4630	4530	3970	6810	3-16
	2	6	$\frac{1}{2}$	2220 3390 2860	4700 6940 5670	5250 4710 4890	5230 4710 4830	8740 8020 8540	3-8 5-16 3-8
			Λv.	3000	5770	4890	4830	8640	3-8
Sweet Gum	3	.5	1 2 3	2630 3940 5180	1930 4010 3920	2010 3000 4620	2220 2550 4560	4300 5640 5180	3-16 3-16 1-8
,			Λv.	3920	3960	2690	2470	5040	3-16
	3	14	$\frac{1}{2}$	2900 3470 3540	4030 4100 3580	3260 2750 3030	2720 2780 2500	5610 5370 4900	3-16 3-16 3-16
			Αv.	3300	3900	3010	2640	5330	3-16
	3	5	$\begin{vmatrix} 1\\ 2\\ 3 \end{vmatrix}$	3030 2690 5030	5100 5570 3400	2930 4040	2930 3100	5100 5570 5700	1-4 1-4 3-16
•			Λv.	3580	4370	3440	3420	5440	1-4
	3	11	$\frac{1}{2}$	2110 2780 1680	4030 3190 4100	2340 2320 3730	1680 3340	4030 4810 4980	1-4 3-16 5-16
			Λv.	2190	3770	2790	2510	4610	1-4
	3	3	$\frac{1}{2}$	2650 3890 2910	6500 4100 6180	4410 3590 4800	- 4030 - 3340 - 4070	6500 5460 6180	1-4 3-16 1-4
			Av.	3150	5590	4190	3810	6050	1-4

TABLE III—Continued

				R	esistance For l	e in Pour Pull of	nds		imum stance
Kind of Tie	Tie No.	Spike No.	Test No.	l-s inch	I-4 inch	1-2 incb	3-4 inch	Pounds	Distance Withdrawn, inches
Water Oak	4	14	$\frac{1}{3}$	2790 3300 2220	6580 7060 5330	4190 2970 3920	3930 2940 3200	7560 7060 7740	5-16 1-4 5-16
			Λv .	2770	6320	3660	3360	7450	5-16
	5	14	$\frac{1}{2}$	2870 1610	(5040 4460	4270 5060	3400 4240	7720 7780	5-16 3-8
			Λv.	2240	5250	4660	3820	7750	3-8
	26	14	$\frac{1}{2}$	2560 3440 3160	5430 3340	3610 3050 3200	3530 2590 3210	6150 4960 5810	1-4 3-16 3-16
			Av.	3050	4380	3290	3110	5640	3-16
	29	14	$\frac{1}{\frac{2}{3}}$	1580 1470 2190	3900 3550 4070	3970 3450 2990	3160 3090	6000 5110 4070	5-16 5-16 1-4
			Av.	1740	3840	3470	3130	5060	5-16
	4	6	$\frac{1}{2}$	1960 2390 3200	6030 5320 6380	5420 4380	4530 4100	8690 8040 7320	5-16 3-8 5-16
			Av.	2520	5920	4900	4320	8020	5-16
	5	б	$\frac{1}{2}$	2750 4330 1610	6070 4890 4360	5260 3430 3190	4560 3040 3020	8580 5270 4760	3-8 3-16 1-4
			Av.	2930	5240	3960	3870	6200	1-4
	25	7	$\frac{1}{2}$	3370 1800 2550	3860 5440 4490	3380 3370 3680	3180 3130 3230	4910 5440 4490	3-16 1-4 1-4
			Αv.	2570	4600	3380	3180	4940	1-4
	26	6	$\frac{1}{2}$	3200 2130 3500	5300 5710 5820	4020 4200 4620	3820 3700 4340	5300 5710 5820	1-1 1-1 1-1
			Av.	2940	5610	4280		5610	1-4

TABLE III—Continued

				Re		in Pour Pull of	nds		imum stance
Kind of Tie	Tie No.	Spike No.	Test No.	1-s inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Water Oak	29	6	1 2 3	2810 4620 3720	4480 3450	3750 4070 2910	3160 3720	4480 4760 3720	1-4 3-16 1-8
			Av.	3720	3970	3240	3440	4320	3-16
	4	13	$\frac{1}{2}$	2820 3130 3430	5920 5600 6330	4360 4170 4440	4360 3460 4060	9000 7450 9000	3-8 5-16 3-8
			Λv.	3160	5980	3320	4260	8380	3-8
	5	11	1 2 3	3000 3200 3230	6020 8010 5800	3340 4720 3900	2750 5300 3890	6240 9180 6490	5-16 5-16 5-16
			Av.	3140	6610	3950	3980	7300	5-16
	26	11	1 2 3	3080 2270 1990	5090 5420	2650 3360 3610	2270 2940 3000	4240 5090 5420	3-16 1-4 1-4
			Av.	2450	5260	5210	2770	4920	1-4
	25	13	$\begin{bmatrix} 1\\ \frac{2}{3} \end{bmatrix}$	2440 3440 1840	5100 6680 3710	4230 4000 2830	3640 3980 2540	6450 6680 4550	5-16 1-4 5-16
			Λv.	3570	5160	3680	3380	5860	5-16
	34	13	$\begin{bmatrix} 1\\ \frac{2}{3} \end{bmatrix}$	2340 1700 3360	5620 3730 6560	5770 2830 3600	5080 2260 3010	9070 4970 6560	3-8 5-16 1-4
			Av.	2470	5300	4070	3950	6870	5-16
	34	14	$\frac{1}{2}$	4090 3090 3180	7000 6780 7280	4070 3550 4660	4020 2900 2870	8430 6780 8040	5-16 1-4 5-16
			Av.	3450	7020	4090	3260	7750	5-16
	34	6	1 2 3	2370 3010 3900	4720 6670 8130	4940 5210 5060	4730 4930 4540	6400 7360 8130	5-16 5-16 1-4
			Av.	3130	6510	5070	4740	7290	5-16

TABLE III—Continued

				TABLE	111-0	ontinued 			
				Re		e in Pour Pull of	nds		imum stance
Kind of Tie	Tie No.	Spike No.	Test No.	I-s inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Black Oak	16	8	$\frac{1}{2}$	3010 3880	6880 7220 8500	5950 4620	4930 4380 3180	9000 9100 8700	3-8 3-8 5-16
			Λv.	3450	7530	5300	4160	8940	3-8
	16	14	1 2 3	3230 2090	6110 6280 4390	3270 4120 3980	$\frac{2890}{3760}$ $\frac{3540}{3540}$	6110 6540 7760	1-4 5-16 3-8
			Λv.	2660	5590	3790	3390	6810	5-16
	23	1	$\frac{1}{2}$	2980 3380 1220	6740 7940 2920	3460 4290	3290 3850 4050	8210 7940 9060	5-16 1-4 1-2
			Av.	2200	5130	3870	3730	8070	3-8
	27	5	$\frac{1}{2}$	$\frac{3430}{2870}$	8070 5910 7570	5300 4500 4200	4740 4170 3850	10000 8970 7070	5-16 5-16 1-4
			Δv.	3150	7020	4670	4250	8680	5-16
	27	8	$\frac{1}{2}$	3510 2750 2940	8470 7130 6690	3370 2900 4480	3370 2930 2940	8470 8780	1-4 5-16 1-4
			Δv.	3070	7430	4600	3080	8620	1-4
	18	11	1	2650	5240	3340	2670	7130	5-16
			$\frac{2}{3}$	2660	6190	5040	1110	8250	9-16
			Δv.	2660	5720	4190	3550	7690	5-16
	18	10	$\frac{1}{2}$	$\begin{array}{c} 1700 \\ 2120 \\ 2250 \end{array}$	3410 3900 4000	3330 3170 2830	2570 2900 3090	5860 5660 4000	3-8 3-8 1-4
			Δv.	2020	3770	3110	2850	4880	3-8
	16	11	$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$	3650 4370 2400	5890 4430 6230	4010 3790 5320	3410 3550 4380	5890 6170 8620	1-4 3-16 5-16
			Av.	3470	5520	4370	3780	6890	1-4

TABLE III--Continued

				Re		in Pour ull of	nds		imum stance											
Kind of Tie	Tie No.	Spike No.	Test No.	l-s inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches											
Black Oak	27	11	$\frac{1}{2}$	4900 3780 2730	7070 5740 6550	3890 3670	3140 3260 3440	7070 5740 6550	1-4 1-4 1-4											
			Av.	3800	6450	3780	3280	6450	1-4											
	24	10	1 2 3	3950 1810 2960	6580 4050 5390	4150 3460 3600	3650 2780 3410	6880 6510 6500	1-4 5-16 5-16											
			Λv.	2910	5340	3740	3280	6530	5-16											
	54	4	$\frac{1}{2}$	2330 1850 3450	5070 5570 6500	5820 4320 4300	5710 3740 3800	7740 7010 7360	3-8 5-16 5-16											
			Av.	2550	5710	4810	4740	7240	5-16											
	23	ī	7	7	7	ī	ī	7	-	7	1 2 3	1820 2250 2960	4690 4110 7120	2800 5520 4590	2880 3880 3620	8790 7120	5-16 7-16 1-4			
														6		Av.	2340	5760	3930	3120
	24	24	24	24	24	24	24	24	24	24	24	24	24		$\frac{1}{2}$	2520 1810 3020	$\begin{array}{c} 6110 \\ 5710 \\ 6480 \end{array}$	4040 4160 3980	3490 3490 3710	7070 7070 7360
			Δv.	2650	6130	4030	3560	7130	5-16											
Red Oak	6	8	8	8	8	8	6 8	$\frac{1}{2}$	1870 2320	4750 6750	4410 4150	4190 3760	7190 8300	3-8 5-16						
			Λv.	2050	5750	4280	3980	77.50	3-8											
	9	8	1 2 3	2210 2940 3170	5460 6840 6570	4310 3730 3410	4100 3370 3360	7300 7200 6570	5-16 5-16 1-4											
			Av.	2640	6290	3820	3610	6790	5-16											

TABLE III—Continued

				Re	esistance for P	e in Pour Pull of	nds		imum stance
Kind of Tie	Tie No.	Spike No.	Test No.	1-s inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Red Oak	7	1	$\frac{1}{2}$	1450 2030	3300 4200	\$700 7780	4920 4220	9210 8800	5-8 7-16
		1	Av.	1740	3750	\$240	4570	9000	1-2
	8	8	$\frac{1}{2}$	1570 1730 1950	3100 3750 4890	2910 3220 4200	2600 2990 3220	7330 7230 8970	7-16 7-16 7-16
			Λv.	1680	3910	3440	2920	7840	7-16
	22	8	$\frac{1}{2}$ $\frac{2}{3}$ $\frac{4}{5}$ $\frac{6}{6}$	2500 2970 3490 2210 3770 2620	3940 2890 3490 4670 3250 5490	2760 2510 2460 2570 2620 3780	2770 2370 2370 2370 2550 2440 3400	5120 4990 5270 4670 5150 5490	3-16 3-16 3-16 1-4 3-16 1-4
			Av.	2930	3950	2800	2650	5120	3-16
	41	1	$\frac{1}{\frac{2}{3}}$	2170 3900 1930	4400 3650 4300	4540 2230 2690	3630 2420 2530	7040 6040 5650	5-16 3-16 5-16
			Av.	2660	4110	$315\overline{0}$	2860	6240	I-4
	17	1	$\frac{1}{2}$	1710 2240 3280	$\begin{array}{c} 5030 \\ 5240 \\ 6400 \end{array}$	5420 9900 7550	6260 6710 7020	9720 11900 10940	3-8 1-2 7-16
			Αv.	2410	55 60	7620	6660	10850	3-8
	6	12	1 2 3 4	3520 3700 3690 3320	4480 4350	3300 3500 3710 3550	2910 3640 3080 2990	5950 6930 4460 6240	3-16 1-4 3-16 3-16
			Av.	3550	4410	3520	3150	5900	3-16
	6	11	1 2 3	2150 2990 3240	5330 7830 7000	4640 4570 4710	3420 3200 3670	7580 7830 8280	5-16 1-4 5-16
			Av.	 2760	6740	4640	3430	7890	5-16

TABLE III—Continued

				Re		e in Pour Pull of	ıds		imum stance	
Kind of Tie	Tie No.	Spike No.	Test No.	l-8 inch	1-4 inch	1 2 inch	3-4 inch	Pounds	Distance Withdrawn, inches	
Red Oak	7	12	- 1 2 3	2430 3430	5010 6110	7120 4930	5630 4300	9080 7020	3-8 5-16	
			Λv.	2930	5560	6030	4960	8030	3-8	
	9	12	$\frac{1}{\frac{2}{3}}$	3530 3000 3720	5410 6280 7140	3790 3950 4350	3680 3510 4300	5410 6280 7140	1-4 1-4 1-4	
			Δv,	3420	6280	4030	3830	6280	1-4	
	9	13	$\frac{1}{2}$	3270 3740 3690	4600 4610	3790 3730 3540	3630 3110 3180	7030 6660 6130	1-4 3-16 3-16	
	}		Δv.	3560	4600	3680	3320	6610	3-16	
	17	12	$\frac{1}{2}$			11620* 11230 10630				
			Λv.			11490				
	28	12	1 2 3	3910 3810	7150 5000	3430 4410 4270	3130 3480 3670	6390 7150 6760	1-4 1-4 3-16	
			Λv.	3860	6080	4040	3530	6770	1-4	
	28	11	$\frac{1}{2}$	6250 2880	4000 6870	5200 3280 3740	3710 2600 3280	8200 6250 6870	5-16 1-8 1-4	
			Av.	4570	5440	4070	3200	7100	1-4	
	8	12	1	3030	6800	6080	4950	9420	5-16	
				2	$\begin{bmatrix} \frac{1}{2} \\ \frac{2}{3} \end{bmatrix}$	2680 3580	6250	6680	4640	9240
			Av.	3060	6530	6380	4790	9330	5-16	

^{*}This was the first tie tested, and gave unusually high results.

TABLE III—Continued

				1300	3 111 - (
				R	esistance for F	e in Pou Pull of	nds		imum tance
Kind of Tie	Tie No.	Spike No.	Test No.	l-s inch	l-4 inch	l-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Red Oak	22	13	$\frac{1}{2}$	2440 2850 1880	5810 5040 4530	3270 2770 3700	3340 2170 3450	5810 5040 6280	1-4 1-4 3-8
			Λv.	2390	5130	3250	2990	5710	1-4
	30	12	1 2	3700 1700	3960 3560	2950 2920	$\frac{2460}{3150}$	5500 4720	3-16 3-8
			Λv.	2700	3760	2940	3010	5110	1-4
	30	10	1 2 3	1680 2020 2540	35 <u>8</u> 0 4070 4590	3070 2490 3070	3030 2480 2890	5570 5220 6080	3-8 5-16 3-8
			Αv.	2040	4070	2870	2760	5620	3-8
	41	12	$\frac{1}{2}$	4500 4750 1930	7690 5840	3530 3200 3370	3340 3300 3750	7690 7210 7430	1-4 3-16 5-16
			Λv.	3730	6760	3360	3460	7440	1-4
	41	9	$\frac{1}{2}$	3670 3760 4620	7950 7110 4500	3100 3450 4450	2420 3300 3960	7950 7110 6230	1-4 1-4 3-16
			Δv.	4010	6520	3660	3220	7090	1-4
	28	3	$\frac{1}{2}$			5290 4940 4190	4000 4420 3510	8290 7840 4940	5-16 5-16 1-8
			Δv.			4810	3970	7020	5-16
Burr Oak	35	1	1 2 3	2960 1410 3090	4960 3570 6850	\$240 9450 5930	5560 6220 5600	8240 9450 9440	1-2 1-2 3-8
			Av.	2490	5130	7540	5780	9040	1-2
	35	11	1 2 3	4020 2200 2230	8640 3390 5020	6210 9240 6290	5770 4500 5250	10560 9240 9000	3-16 1-2 3-8
			Av.	2820	5680	7250	${5170}$	9600	3-8

TABLE III -- Continued

				$\mathrm{R}\epsilon$		in Pour Pull of	nds		mum tance
Kind of Tie	Tie No.	Spike No.	Test No.	1-8 inch	l-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Burr Oak	35	8	1 2	2690 2740	7040 5840	4820 4060	4110 3700	10090 7920	3-8 3-16
			Λv.	2710	6440	4440	3950	9000	1-4
White Oak	31	1	1 2 3	3240 2430 3700	7030 5870 7500	3400 4390 4180	3140 3850 3330	7030 7580 7500	1-4 3-8 1-4
			Λv.	3150	6800	3990	3440	7370	3-16
	31	14	$\frac{1}{2}$	3960 2250	4020 7100 5580	3600 4000 3650	3280 3750 3200	7830 7100 8980	3-16 1-4 3-8
			Λv.	3110	5560	3750	3410	7940	3-16
	33	1	$\frac{1}{2}$	4220 1950 3190	3570 3670 5260	3810 4640 3810	3040 3340 3500	7520 6940 6410	3-16 3-8 5-16
	i		Δv.	3120	4160	4090	3290	6990	5-16
	32	7	$\frac{1}{2}$	$\frac{3860}{3460}$ $\frac{1610}{}$	9440 6400 3740	5930 3710 4670	4650 3680 5570	9440 8650 9360	1-4 5-16 1-2
			Δv.	2980	6530	4770	4300	9150	3-8
	33	7	1 2 3	4790 4150 4630	3910 4930 3840	2860 3510 3070	2530 3270 2450	5750 6500 6030	3-16 3-16 3-16
			Δv.	4520	4230	3150	2750	6090	3-16
	32	10	$\frac{1}{2}$	2400 3100 2570	3490 4840 6410	8280 5410 10670	3820 3880 4400	8280 10190 10670	1-2 3-8 1-2
			Δv.	2690	4910	8120	4030	9710	1-2
	33	10	$\frac{1}{2}$	2930 3080 3890	5490 6360 6810	2390 2860 3540	2330 2460 3360	5490 6360 6810	1-4 1-4 1-4
			Δv.	3300	6220	2930	2720	6220	1-4

TABLE III—Continued

				Re	esistance for P	in Poun ull of	ıds		mum stance																						
Kind of Tie	Tie No.	Spike No.	Test No.	1-s inch	1-4 inch	1-2 inch	3-finch	Pounds	Distance Withdrawn, inches																						
White Oak	32	9	$\frac{1}{2}$	3630 2960 3490	7500 6760 8270	5340 4250 4810	4650 4500 4590	9640 10650 10750	3-8 3-8 5-16																						
			Δv.	3360	7510	4800	4430	10350	3-8																						
	31	3	$\frac{1}{2}$	4000 4100	7490 8450	5200 3980 5010	4330 3770 4240	8380 7490 8450	3-8 1-4 1-4																						
			Δv.	4050	7920	4730	4080	8770	3-16																						
	33	4	$\frac{1}{2}$	4200 4200 5900	7530 3850	4330 4390 3100	3790 3630 2790	7330 7530 6590	3-16 1-4 3-16																						
			Λv.	4830	5690	3940	3410	7150	3-16																						
Rock Elm	10	5	$\frac{1}{2}$	2250 3260 2910	6530 7160 5880	4460 4620 4650	4420 3850 4340	8280 7160 7300	5-16 1-4 3-8																						
																										Av.	2810	6520	4580	3210	7910
	10	2	$\frac{1}{2}$	1920	3770	6060	5310	7410 7730	7-16																						
				1960 1940	4510	4420 5240	4730		3-8																						
	10	11	Av. 1 2 3 4 5	3730 2800 3300 1600	7760 5820 6270 6070 7810	4310 4460 4120 5030 5210	3930 3580 3550 4140 4490	7570 7760 6800 7840 7700 7810	5-16 5-16 5-16 5-16 1-4																						
Red Elm		1	Δv.	2800	6950	4620	3340	7600	5-16																						
teu Eiiii	13	14	1 2 3	1240 3000 1760	6500 5970	6430 5080	4380 4960 4040	9230 10040 8810	7-16 7-16 3-8																						
			Av.	2000	6235	5750	4460	9350	5-16																						

TABLE III—Continued

				Re		in Pour ull of	nds		imum stance
Kind of Tie	Tie No.	Spike No.	Test No.	1-s inch	l-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Red Elm	- 13	2	1 2 3	1930 2240 1960	3990 3860 4200	4540 5250 4540	3760 3970 3850	7730 8100 7120	5-16 7-16 3-8
			Av.	2040	4020	4770	3890	7650	7-16
	13	10	$\frac{1}{2}$	2810 2450 2140	4930 4800 5030	4850 4930 3790	3510 3740 3210	7550 7430 8690	3-8 3-8 7-16
			Λv.	2460	4920	4520	3490	7890	3-8
White Elm	12	14	$\frac{1}{2}$	1750 2810 1890	4500 5500 5610	3270 3530 3620	2720 3010 2770	5330 5590 5610	3-8 5-16 1-4
			Λv.	2150	5200	3470	2830	5510	5-16
	12	5	$\frac{1}{2}$	2460 2140 1770	5790 5410 5270	3590 2830 2520	2980 2770 2430	6280 5410 5270	5-16 1-4 1-4
			Λv.	2120	5490	2980	2720	5650	1-4
	15	õ	$\frac{1}{2}$	2630 3810 2810	6330 7260 6100	5580 4680 4160	4310 3620	9500 9560 8050	3-8 3-8 5-16
			Λv.	3080	6560	4770	4000	9030	3-8
	37	5	$\frac{1}{2}$ 3	2490 2790	8130 5760 6540	3900 4040 3770	3660 3330 3420	8130 6650 7460	1-4 5-16 5-16
			Αv.	2640	6810	3910	3470	7410	5-16
	15	13	$\frac{1}{2}$	1600 2230 1450	4600 5770 4200	5530 9310	5900 4820 6190	9670 8760 9310	7-16 3-8 1-2
			Λv.	1760	4860	7420	5630	9250	7-16
	12	10	$\frac{1}{2}$	1990 1920 1830	3560 4320 3930	3350 3540 2360	2700 2690 1650	5370 5450 4100	3-8 3 8 1-4
			Av.	1910	3970	3080	2010	4970	3-8

TABLE III -Continued

				R	esistance for I	e in Pou Pull of	nds		imum tance
Kind of Tie	Tie No.	Spitke No.	Test No.	Ls inch	1.4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
White Elm	15	12	$\frac{1}{3}$	2430 2600	5590 5630 5550	4670 3870 3140	3810 3350	7860 6140 5550	3-8 5-16 1-4
	37		Av.	2510	5920	3890	3580	6520	5-16
	37	2	$\frac{1}{2}$ 3	2100 2920 3150	4710 5160 5900	3390 4070 4300	3330 3840 3860	7170 6310 7570	3-8 5-16 3-8
			Αv.	2390	5290	3020	3680	7020	3-8
Beech	14	6	$\frac{1}{2}$	2870 2230	5150 5660	5390 4870 5310	4670 4320 4940	7680 7190 7820	1-4 3-8 5-16
			Λv.	2550	5400	5190	4470	7560	5-16
	36	6	1 2 3	4330 3610 2640	4740 8100 8120	4400 6230 5470	4510 5320 4640	7120 8560 9080	3-8 1-4 5-16
			Av.	3530	6990	5030	4820	8250	5-16
	14	2	$\frac{1}{2}$	2550 2200 2120	4740 5570 4910	4570 5690 4800	$\frac{4100}{4190}$ $\frac{3970}{3}$	7670 8170 7860	5-16 3-8 3-8
			Λv.	2290	5070	4700	4090	7900	3-8
	36	2	$\frac{1}{2}$	$\frac{3210}{3110}$ $\frac{2120}{2120}$	5940 6900 5440	4010 4170 5240	3840 3900 4130	8460 10400 8270	3-8 3-8 5-16
			Av.	2850	6090	4470	3960	9040	3-8
	14	9	$\frac{1}{2}$	2660 1500 1490	$\begin{array}{c} 5070 \\ 2820 \\ 3810 \end{array}$	9910 8900	3560 5060 5280	8130 9910 9220	3-8 1-2 7-16
			Λv.	1880	3900	8960	4630	9090	7-16
	36	9	$\frac{1}{2}$	2130 2940 2370	4900 6640 4920	4240 3860 3830	4210 3650 3600	9890 9430 8900	3-8 5-16 3-8
			Αv.	2480	5490	3980	3820	9410	3-8

TABLE III-Continued

				Re	sistance for Pu	in Poun all of	ds	Maxi Resis	mum tance
Kind of Tie	Tie No.	Spike No.	Test No.	l-s inch	l-f inch	I-2 inch	3-4 inch	Pounds	Distance Withdrawn, inches
Poplar	11	2	$\frac{1}{2}$	2700 4690 3000	4690 5100	3980 3240 3240	3520 2800 2900	4690 4980 5100	1-4 3-16 1-4
			Δv_{*}	3460	4890	3490	3100	4920	1-4
19	19	2	$\frac{1}{2}$	2750 2710 3100	4510 5270 6050	4400 2840 4080	$\frac{3980}{2610}$	6990 5270 6050	3-8 1-4 1-4
			$\Delta v.$	2850	5240	3760	3410	5900	1-4
	11	12	1 2	2220 2750	5130 4940	2960 3800	2750 3590	5350 5070	5-16 5-16
			Λv.	2480	5040	3280	3170	5210	5-16
	19	12	1 2	2610 2460	5670 6220	4400	4170	6250 7040	5-16 5-16
			Λv.	2530	5990	4400	4170	6650	5-16
Chestnut	40	14	$\frac{1}{2}$	2300 2330 3730	3100 2600 3370	2410 2860 2370	2260 2460 2100	4300 4060 5050	3-16 3-16 3-16
			Λv .	2490	3060	2540	2270	4470	3-16
	40	5	$\frac{1}{2}$	3010 3300	$\frac{2720}{3570}$	2650 2950	2650 2400	5830 5180 5500	3-16 3-16 3-16
			Av.	3150	3150	2800	2520	5510	3-16
	÷ 40	12	1 2 3	3320 5110 2000	6230 4000	3050 2490	2270 2430	6230 5110 4000	1-4 1-8 1-4
			Av.	3480	5110	2770	2350	5110	1-4
	40	4	1 2 3	1300 2300 2440	3780 5420 5640	3170 3360 3190	2940 2780 2590	5420 5420 6220	3-16 1-4 5-16
			Av.	2850	4950	3240	2770	5690	1-4

TABLE III—Concluded

				Re	sistance for P	in Pour Pull of	nds		imum stance
Kind of Tie	Tie No.	5pike No.	Test No.	. 1-s inch	I-4 inch	1-2 inch	3-4 inch	Pounds	Distance Withdrawn,
Loblolly Pine	39	14	$\frac{1}{2}$	3390 3760 4050	2970 3980 2860	2620 2790 2020	2590 2420 1850	3390 3980 4050	1-8 1-4 1-8
			Av.	3730	3270	2480	2290	3810	1-8
	21	14	$\frac{1}{2}$	2880 1980 4510	$\frac{4550}{2110}$ $\frac{3910}{3}$	2370 1890 3340	1870 1570 2880	4550 3520 5200	1-4 3-16 3-16
			Av.	3120	3520	2560	2110	4420	3-16
	20	č	$\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{4}$	$\frac{2250}{2810}$ $\frac{3610}{1890}$	4550 2670 2690	2930 2720 2290	2540 2640 2030	4550 4570 3610 3710	1-4 3-16 1-8 3-16
			Λv.	2640	3270	2650	2410	4110	3-16
	21	10	$\frac{1}{2}$	3570 2550	4450 4890	2500 3400	2230 3020	4450 4890	1-4 1-4
			Λv.	3060	4670	2950	2630	4670	1-4
	20	3	$\frac{1}{2}$	3090 2610 1870	4800 2330 3810	2730 2300 2510	2320 2030 2280	4800 3440 3810	1-4 3-16 1-4
			Δv.	2860	3650	2510	2210	4020	1-4
	39	6	1 2 3	3110 1560 1630	2120 3880 3330	2170 3060 2640	1710 2380 2650	3110 3880 3330	1-8 1-4 1-4
			Δv.	2100	3110	2960	2250	3440	1-4

A study of the results of Table III has been made to determine: (A) Comparative holding power in untreated ties; (B) Comparative holding power in treated ties; (C) Comparative holding power of the same timber, treated and untreated; (D) Effect of preservative on the holding power; (E) Relation between the cross section of the spike and holding power; (F) Relation between the depth of pene-

tration and the holding power; (G) Effect of the point of the spike on the holding power; (H) Effect of bored holes on the holding power; (I) Effect upon the holding power of re-driving the spike.

A Comparative Hotding Power in Untreated Ties

Table IV is compiled from Table III to show the average holding power for different untreated ties. Each result in Table IV is the average of the corresponding results in Table III.

TABLE IV
AVERAGE HOLDING POWER IN UNTREATED TIES

Kind	Tests	Spikes	Resistance in Pounds for a Pull of			imum stance	per c	istanc ent of Vhite	that
of Tie	No. of T	No. of S	1-8 inch	1-4 inch	Pounds	Distance Pulled, inches	1-s inch	1-4 inch	Maxi- mum
White Oak	10	30	3510	3950	7870	5-16	100	100	100
Elm	11	33	2310	5390	7290	3-8	66	136	93
Beech	3	9	2240	3790	8180	3-8	64	96	104
Chestnut Loblolly	+ 4	12	2990	4070	5190	3-16	86	103	66
Piné .	2	6	2920	3190	3630	3-16	85	81	46

Table IV shows the comparative holding power of five kinds of timber. The last three columns show the holding power in terms of that of white oak. It is thought that a pull of 1-4 of an inch gives results which are of more value in comparing the holding power of the different kinds of ties than the results for either greater or less distances, since the results for the 1-4-inch pull represent the resistances of the various timbers to the withdrawal of the spike for a distance which should not be exceeded in practice. and since the maximum resistance and the results for a pull of 1-8 of an inch represent the resistances for distances which are therefore not of so much consequence as the 1-4-inch pull. Notice that with chestnut and loblolly pine the maximum resistance occurs at 3-16 of an inch, which is a reason for comparing their maximum resistance with that of white oak at 1-4 of an inch instead of with its maximum resistance, as in Table IV. If this is done, the efficiencies of chestnut and loblolly pine for a 1-4-inch pull or less are 131 and 85 per cent respectively.

The fact that the maximum resistance did not occur until the spike had been pulled from 3-16 to 3-8 of an inch is interesting. While the spike is being driven the fibers of the wood are bent downward and are pressed outward, and as the spike is withdrawn the friction between the spike and the wood tends to draw the fibers into their original position, which causes them to crowd laterally against the spike and also toward the surface of the tie, until finally the external pull exceeds the internal resistance and the spike slips. When the fiber structure is open, there is considerable cellular space for the displaced fibers to occupy, and therefore the maximum resistance is low, and is quickly attained; but when the fiber structure is compact, the reverse is true.

As the loblolly pine ties should always be preserved, the results in Table IV for this timber are of doubtful value. For the best results elm ties also should be treated; but as some species of elm do not absolutely require treatment, elm is properly included in Table IV. Arranging these timbers in the descending order of their resistances for a 1-4-inch pull, we have elm, chestnut, white oak, beech and loblolly pine.

The maximum holding power for the first three timbers in Table IV is satisfactory, but that for the last two is quite low. The last fact indicates that when timber of the softer varieties or timber having loose fiber structure is used for ties, some more efficient form of fastening should be devised.

B Comparative Holding Power in Treated Ties

Table V is compiled from Table III to show the average holding power obtained with various treated ties, each result in this table being the mean of the corresponding values in Table III. The average results obtained with untreated white oak are also included so that comparisons can be made.

The average for the resistances for all of the treated timbers is shown at the foot of the table. Excluding the last two timbers, the average resistance for the 1-4-inch pull is 5690 pounds. The maximum resistance of the last two timbers should be averaged with the resistances of the others for the 1-4-inch pull, in which case the average resistance for all of the timbers for a 1-4-inch pull or less is 5400 pounds.

Table V shows that the resistances of the several timbers do not differ widely, and that the soft timbers give results which

 ${\bf TABLE~V}$ Average Holding Power in Treated Ties

	r x	Spikes		ance in ds for		imum stance		istane ent of	
Kind of Tie	No. of Tests	No. of Spi	1-8-inch	ii t	Pounds	Distance Pulled, inches	1-8 inch	I-t inch	Maxi- mum
White Oak									
(Untreated)	10	30	3510	3950	7870	5-16	100	100	100
Water Oak	16	48	2870	5730	6780	5-16	82	145	86
Black Oak	13	39	2910	5890	7230	5-16	83	149	92
Red Oak	20	60	2950	5350	7730	5-16	84	135	98
Burr Oak	3	9	2670	5750	9210	3-8	76	145	117
$\Lambda \mathrm{sh}$	2	6	3570	5200	7730	5-16	101	131	98
Elm		15	2590	5940	7500	5-16	74	150	96
Beech	:3	9	2950	6190	8900	3-8	84	157	113
Poplar	4	12	2830	5290	5670	5-16	81	134	72
Loblolly Pine	+	12	2920	3780	4310	1-4	83	109	55
Sweet Gum	5	15	3230	5320	5300	3-16	92	96	67
Λv.			2950	5320	7040		84	135	89

compare favorably with those obtained for the hard woods. This table also shows that the range for the maximum resistances is much greater than that for either the 1-8-or the 1-4-inch pull. The resistances for the different species of oak are very nearly the same, the mean for a 1-8 inch pull being 2850 pounds, for a 1-4-inch pull 5680 pounds and for the maximum 7740 pounds. Notice that with nearly all of the timbers the maximum resistance was obtained after the spike was pulled more than 1-4 of an inch, but there is no apparent relation between the amount of the holding power and the distance through which the spike has been pulled.

Comparing the resistances of treated timbers with that of untreated white oak, we see that the initial resistance of the white oak is higher than any of the other woods except one; while on the other hand, the resistance at 1-4 of an inch in white oak is less than in any of the other woods save one. The maximum resistances of all but the last three timbers are practically the same.

Considering the uniformity of the results obtained with a pull of 1-4 of an inch in the few timbers which were available, there appears to be no strong reason for much discrimination between the different treated timbers.

C Comparative Holding Power of the Same Timber, Treated and Untreated

Table VI has been compiled from Table III for the purpose of studying the effect of the treatment upon the holding power of a timber.

TABLE VI
RELATIVE HOLDING POWER IN TREATED AND UNTREATED TIES

		Sol	·	Re			l Gain Treatn	in Pour ient	ıds
Kind of Tie	No. of Ties	No. of Spikes	Condition of Tie	I-s in. Pull	Gain	1-4 in. Pull	Gain	Maximum Resistance	Gain
Elm	3 2	27 15	Untreated Treated	2310 2590	280	539) 5940	550	7290 7500	210
Beech	1	9	Untreated Treated	$\frac{2240}{2950}$	710	3790 6190	2400	8180 8900	820
Loblolly Pine	1 2	6 12	Untreated Treated	2920 2920	000	3190 3730	640	3630 4310	680
Red Oak	3 4	15 21	Untreated Treated)				6460 7730	1270

Table VI shows that higher resistances are developed in treated than in untreated ties. The average increase due to treatment for a 1-8 inch pull was 330 pounds; for a 1-4 inch pull, excluding the seemingly unreasonable increase in beech, 685 pounds; and for the maximum resistance 747 pounds.

Considerable reliance is placed upon the conclusions drawn from Table VI, inasmuch as the methods of making the tests were exactly the same for the treated and untreated ties, and since the same number of spikes, fifty-seven, was used in both cases, and also since the preserved ties were treated by different processes and at different plants.

The increased resistance due to treatment has two causes: (1) The presence of the preservative in the cells, thus reducing the space into which the fibers can crowd as the spike is withdrawn; and (2) The hardening of the fibers by the steaming, preparatory to treatment, which renders them less pliable.

The movement which took place among the fibers near the surface of the tie is interesting. In the untreated ties there was a crumpling of the fibers close to the spike, while the fibers in the treated ties were torn out in deep slivers extending from the spike to the blocks which supported the tie.

D Effect of the Preservatives on the Holding Power

Three distinct kinds of preserving solutions were used in the ties tested,—creosote, zinc-creosote and zinc-tannin.

Table VII has been compiled from Table III to study the effect produced by the treating solution upon the holding power of the tie.

Table VII does not show any marked difference between the resistances in ties treated with the different preservative solutions. For example, the maximum resistance of the red oak is lower when treated with zinc-tannin than when treated with zinc-creosote, but the reverse is true of the initial resistance of the red oak and also of the maximum resistance of black oak. With elm the initial resistance is higher in creosoted ties than in those treated with zinc-creosote, but the maximum resistance is lower. If any rating were made in order of efficiency, it would appear about as follows: (1) creosote, (2) zinc-creosote, and (3) zinc-tannin. However, there are too many uncertain quantities involved to make such a rating reliable: and morever, the effect of the treating solution upon the holding power is only one of the many elements which must be considered when choosing between the different treating solutions.

E Relation between the Cross Section of the Spike and the Holding Power

The question to be answered here is, which size of spike will develop the highest holding power. To answer this question, Table VIII showing the relation between the cross section and the holding power has been compiled from Table III.

From a study of the results of Table VIII it will be noticed that no general rating can be made for the various sized spikes in order of the resistances developed, since the spike which develops the lowest holding power for the 1-8-inch or the 1-4-inch pull seldom develops the highest maximum resistance. For example, in white oak, the 19-32-inch spike developed the highest resistance for the

 $\begin{array}{c} {\rm TABLE\ VII} \\ {\rm Effect\ of\ Different\ Preservatives\ on\ the\ Holding\ Power} \end{array}$

Kind of	Tie No.	Preservative	Poun	ance in ds for ill of	Maximum Resistance,
Tie			1-8 inch	I-4 inch	Pounds
	Comparison	of Zinc-Tannin ar	nd Creoso	ote	
Water Oak	4, 5, 25, 26, 29 34	Zinc-Tannin Creosote	$\frac{2380}{3020}$	5010 6270	6260 7310
Red Oak	6, 9, 22, 28, 30 41	Zinc-Tannin Creosote	$\frac{3170}{3120}$	5470 5800	6580 6920
	Comparison	of Zinc-Creosote a	and Creos	sote	
Red Oak	7. 8 41	Zinc-Creosote Creosote	$\frac{2350}{3120}$	4940 5800	8500 6920
Elm	10 37	Zinc-Creosote Creosote	2520 2600	5870 6350	7690 7210
	Comparison	of Zinc-Tannin ar	ıd Zinc-Cı	reosote	
Red Oak	6, 7, 8, 9, 22 28, 30	Zinc-Creosote Zinc-Tannin	$\frac{2350}{3170}$	$\frac{4940}{5470}$	8500 6580
Black Oak	16. 18 23. 24, 27	Zinc-Creosote Zinc-Tannin	$\frac{2850}{2830}$	5620 5620	7040 7550

1-8-inch pull, but the 9-16-inch spike developed the highest resistance for the 1-4-inch pull, and also the highest maximum resistance. In black oak the highest resistance for the 1-8-inch pull was developed by the 9-16 spike, but that for the 1-4-inch pull was developed by the 19-32-inch size and the maximum resistance by the 5-8-inch spike. Averaging all of the resistances for the 1-8-inch pull, the 1-4-inch pull and the maximum resistance collectively, we see that the average holding power of the 9-16-inch spike is 4990 pounds, for the 19-32-inch spike 5420 pounds and for the 5-8-inch spike 5290 pounds. Because of the large number of spikes tested, seventy-two 9-16-inch, thirty-six 19-32-inch, and one hundred and two 5-8-inch, and the irregularity of the results, it was decided that no conclusions could be drawn from Table VIII as to the relative holding power of the different sizes of spikes. However, the thick-

TABLE VIII

RELATION BETWEEN THE CROSS SECTION OF THE SPIKE AND ITS HOLDING POWER

		es		ķe,		ance to wal, Pot	
Kind of Tie	of	No. of Spikes	Condition of Tie	Size of Spike, inches	l-s in. Pull	I.4 in. Pull	Maximum Resistance
White Oak	$\frac{2}{2}$	9 6 15	Seasoned	9-16 19-32 5-8	3110 3750 3650	6280 5380 6030	8760 7620 7620
Black Oak	1 2 1	$\frac{15}{6}$ $\frac{18}{18}$	Treated	9-16 19-32 5-8	2910 2650 2550	5340 6130 5710	6530 7130 7240
Water Oak	5 6 5	15 18 15	Treated	9-16 19-32 5-8	2960 2970 2650	5560 5310 5360	6670 6010 6730
Red Oak	7 9	21 36	Treated	9-16 5 8	2300 3260	4760 5990	7650 6780
Beech	1 1 1	3 3 3	Seasoned	9-16 19-32 5-8	1880 2550 2290	3900 5400 5070	9410 7660 7900
	1 1 1	3 3 3	Treated	9-16 19-32 5-8	$\begin{array}{c} 2480 \\ 3530 \\ 2850 \end{array}$	5490 6990 6090	9410 8250 9040
Sweet Gum	1	6 12	Treated	9-16 5-8	2190 3490	3770 4450	4610 5460

ness of the spikes varied by only 1-16 of an inch or about 10 per cent, and their areas by only 0.075 of a square inch or about 20 per cent.

To test still further the relationship between the size of the spike and the holding power, a series of experiments was made with plain square rods with the results shown in Table IX. Each result is the mean of tifteen tests in a single kind of timber.

TABLE IX

EXPERIMENTS WITH PLAIN SQUARE RODS IN BEECH TIMBER

		E	Increase	e for ea	ch Incren	ent
Size of Rod	Area,	age immu ilts, ids	Area		Resist	ance
Not	sq. m.	Avera Max Rest pour	square inches	per cent	pounds	per .cent
Succes	ssive increi	nents in the	size of the	rod =	1-8 inch	
1-2 inch square	0.250	6280				
1-2 inch square 5-8 inch square	$0.250 \\ 0.391$	6280 6970	0.141	 53	690	ii
1-2 inch square 5-8 inch square 3-4 inch square	$0.250 \\ 0.391 \\ 0.562$	6280 6970 9070	0.141 0.171	53 44	690 2600	37
1-2 inch square 5-8 inch square 3-4 inch square	$0.250 \\ 0.391 \\ 0.562$	6280 6970	0.141	 53	690	11 37 3
1-2 inch square 5-8 inch square 3-4 inch square 7-8 inch square	$\begin{array}{c} 0.250 \\ 0.391 \\ 0.562 \\ 0.765 \end{array}$	6280 6970 9970 9380	0.141 0.171	53 44 35	690 2600 310	37
1-2 inch square 5-8 inch square 3-4 inch square 7-8 inch square Succes 8-16 inch square	0.250 0.391 0.562 0.765 ssive incres	6280 6970 9970 9380	0.141 0.171 0.203	$ \begin{array}{c} \vdots \\ 53 \\ 44 \\ 35 \end{array} $ $ \operatorname{rod} = 1 $	690 2600 310	37
1-2 inch square 5-8 inch square 3-4 inch square 7-8 inch square	0.250 0.391 0.562 0.765 ssive incres	6280 6970 9070 9380 ments in the	0.141 0.171 0.203	53 44 35	690 2600 310	37

It will be seen from the results in Table IX that there is an irregular increase in the holding power as the size of the rod is increased. Notice that with increments of 1-8-inch, the successive increments in the resistance are at first large, but with the last rod this increment suddenly falls to practically nothing. This drop in the increment is principally due to the tendency of the large rod to split the tie. The results with 1-16-inch increments do not differ materially from those in the first part of the table.

The deduction for Table IX is that the holding power will be increased as the size of the rod is increased, but that it is not expedient to use rods (or spikes) larger than 3-4 of an inch unless holes are bored for them.

F Relation between the Depth of Penetration and Holding Power

A series of experiments was made to determine the relation between the depth of penetration and the holding power. The results are given in Table X.

TABLE X $\label{eq:table_eq} \mbox{Holding Power in a White Oak Tie with Varying Depths of Penetration }$

			Resistance	e, Pounds		
Depth of Penetration		- Average				
	1	2	3	4	5	Average
1-2 in.	150	150	140	160	170	150
l in.	480		500	510	490	500
1 1-2 in.	1440	1090	1760	1320	950	1290
2 in.	2250	2250	2050	2900	2760	2450
2 1-2 in.	3430	3840	3050	2940	3570	3360
3 in.	3710	3800	4200	4220	4810	4210
3 1-2 in.	4760	5980	4210	4500	5860	5060
4 in.	5950	7190	6310	5850	6080	6270
4 1-2 in.	7510	7510	7720	7340		7520
5 in,	8380	9070	8540	7790	7900	8340

The spikes had a taper point approximately 1 inch long. Plate IV shows that the holding power varies directly with the penetration, not counting the taper point. It is impracticable to use a spike longer than 5 1-2 inches in a 6-inch tie, since a longer spike would either pass entirely through the tie or sliver it on the under side. In either case the fiber adjacent to the spike would quickly decay owing to the access of water. In a thicker tie, however, a longer spike could be used advantageously. The main precantion is to keep the spike from damaging the under surface of the tie, otherwise the longer the spike the greater the holding power.

PLATE IV

G Effect of the Point of the Spike on the Holding Power

There were three distinct types of points on the spikes,-blunt-point, chisel-point and bevel-point.

Fig. 1 Forms of Points of Spikes

The average results obtained with spikes having these types of points have been compiled from Table III, and are shown in Table XI. The average and relative resistances of each type of spike for all timbers are shown at the foot of the table. These averages show that both the blunt-pointed and the bevel-pointed spike are higher in holding power than the chisel-pointed spike. Since the average resistances of the blunt and the bevel-pointed spikes are practically the same, and since the blunt-pointed spike develops the highest resistance for the I-8-inch and the I-4-inch pull the greatest number of times, the blunt-pointed spike is first in point of efficiency, although the bevel-pointed spike is a close competitor under all conditions. The chisel-pointed spike is last.

The two upper figures of Plate V are the two halves of a redoak tie showing the position of the fibers adjacent to the spike; and the lower figure is a portion of the other end of the same tie split after the spikes had been pulled out. The photograph was taken immediately after the tie had been split. The figures are too small to show details clearly, but an examination of the tie showed that the blunt-pointed spike disturbed more fiber than either the chisel or the bevel-pointed spikes, the last two disturbing about the same amount. The examination also showed that the blunt-pointed spike tore rather than cut the fibers, and deposited them in unequal bundles along its faces, while the chisel-pointed spike cut the fibers and deposited them quite uniformly both across and

PLATE V

EFFECT OF SPIKES IN DISPLACING THE FIBERS OF THE TIE

TABLE X1 $\begin{tabular}{ll} \textbf{Effect of the Form of the Point of the Spike on the llolding} \\ \textbf{Power} \end{tabular}$

	ses		Resist	ance ii	n Pounds	for	Maxim	num
Kind of Tie	of Spikes	Type of Point	1-8 in. 1	Pull	1-4 in.	Pull	Resist	ance
	No. 0		Pounds	Rela- tive	Pounds	Rela- tive	Pounds	Rela- tive
Water Oak	33 15	Chisel Bevel	2780 3050	100 110	5520 5440	100 98	6540 6330	100 97
Black Oak	9 18 12	Blunt Chisel Bevel	3020 2850 2680	106 100 91	6890 5690 5560	121 100 98	8280 6930 6800	119 100 98
Red Oak	18 21 21	Blunt Chisel Bevel	2220 2880 3100	77 100 107	4400 5350 5580	82 100 104	5760 7630 7370	76 100 97
White Oak	10 12 6	Blunt Chisel Bevel	4080 3490 2990	117 100 86	7040 5190 5610	135 100 108	8760 7090 1 8010	123 100 113
Elm	21 21	Chisel Bevel	$\frac{2150}{2500}$	100 116	5240 5740	100	7710 7050	100 92
Beech	6 6	Blunt Chisel Bevel	2180 2570 3040	85 100 118	4670 5580 6190	84 100 111	9250 8470 7900	109 100 93
Chestnut	3 3 6	Blunt Chisel Bevel	2850 2490 3320	114 100 133	4950 3060 4130	162 100 135	5690 4470 5310	127 100 119
Loblolly Pine	3 6 9	Blunt Chisel Bevel	2860 3420 2800	84 100 82	3650 3390 5010	118 100 148	$\begin{array}{c} 4020 \\ 4120 \\ 5520 \end{array}$	97 100 134
Average for all		Blunt Chisel	2870 2840	101	5340 4810	112 100	6960 6610	105 100
Timbers		Bevel	2930	103	5490	114	6800	103

in front of each face. The bevel-pointed spike forced a majority of the fibers to the front face and toward the corners. The relatively high holding power of both the blunt and the bevel-pointed spikes is due to this unequal concentration of the fibers.

H - Effect of Bored Holes on the Holding Power

A series of tests was made to study the effect of boring holes for the spike. The first step was to determine the proper size of the hole. Table XII shows the summary of a series of tests made at the University of Illinois in 1891* to determine the relationship between the holding power and the "drift".

TABLE XII
RESULTS OF EXPERIMENTS WITH SQUARE DRIFT-BOLTS IN PINE TIMBER

	Size of	Drift,	Holding Po	wer, Pounds
Size of Drift-Bolt	Hole. inches	inches	6-inch depth	Per inch depth
1 inch square 1 inch square 1 inch square 1 inch square	16-16 15-16 14-16 13-16	1-16 1-8 3-16	3972 4260 4660 4050	662 710 777 675

This table shows that with 1-inch square drift-bolts a drift of 1-8 of an inch gives a maximum holding power, but that a drift of 1-16 of an inch gives nearly as much resistance. It is not known that this relation holds with bolts less than 1-inch square, but the author assumed that this was sufficient reason for using a drift of 1-16 and 1-8 of an inch in this investigation, which conclusion is in accord with the usual railroad practice.

The second step was to determine the resistance to the different sized spikes in different kinds of ties. The detailed results for these experiments are given in Table XIII. Notice that the results are arranged according to the drift. The average results from Table XIII are shown in Table XIV along with the results from Table III for the same spike driven in the ordinary way.

The average resistances for all timbers, recorded at the foot of Table XIV, show that for a pull of 1-4 of an inch or less the spike driven into a bored hole develops higher holding power than one driven in the ordinary way. For a 1-4-inch pull or less the relative resistances show a marked increase in a majority of cases, but the maximum resistance for spikes driven into bored holes is usually the lowest.

^{*} Technograph No. 5, 1891. University of Illinois

TABLE XIII HOLDING POWER OF ORDINARY SPIKES IN BORED HOLES

		Tole,	Re	sistance for P		nds	Maxi Resis	mum tance
Kind of Tie	Size of Spike, in. sq.	Diameter of Hole, inches	1.8 inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Pull, inches
			Hole 1-1	6 in. Sn	aller th	an Spike		
Water Oak	9-16	1-2	2330 2050 2020 1660 2500 3250 2390	$ \begin{array}{r} 3860 \\ 3860 \\ 6470 \\ 4450 \\ 6400 \\ 3750 \\ 4890 \end{array} $	3660 3970 4740 4090 4120 3440 3930	3180 3320 4010 3890 3600 3120 3080	5740 5730 6750 6460 6400 4940 6740	5-16 3-8 5-16 5-16 1-4 3-16 5-16
		Av.	2310	4810	3990	3410	6110	
Black Oak	9-16	1-2	3460 3000 4590 2670 2910 2260	6770 7120 6810 6350 6710 6720	3570 3810 3550 3850 3390 3810	2850 3360 3350 3560 2970 3270	7190 8190 6810 6350 6710 8630	5-16 5-16 1-4 1-4 1-4 1-2
		Λv .	3150	6750	7310	3660	3230	
Red Oak	9-16	1-2	3970 3920 2180 2830 2660 2870 2900 3950 2700 2680	6550 6930 5920 6900 4310 5710 6100 6680 7430 7410	3500 3250 4590 3770 3440 4090 3380 4690 3410 3950	3140 3720 3900 3320 2720 3410 3100 4040 3420 3420	6830 6930 6990 6990 5320 5710 6100 6680 7480 7410	5-16 1-4 5-16 1-4 5-16 1-4 1-4 1-4 1-4
		Av.	3070	6390	3810	3420	6640	1-4
	5-8	9-16	3000 3300 3130 2710 2600 2850 3130	5380 5010 6240 6530 5460 5810 6800	3610 3360 3540 4070 5160 4860 6980	3510 3600 4170 4400 4950	5380 5010 6240 7040 6990 8800 9420	1-4 1-4 1-4 5-16 5-16
		Av.	2950	5890	4390	4140	6960	

TABLE XIII-Continued

		Hole,	Re	esistance for P	iu Pour ull of	ıds	Maxii Resis	
Kind of Tie	Size of Spike, in. sq.	Diameter of Hole, inches	1-s inch	1-4 inch	l-2 inch	3-4 inch	Pounds	Pull, inches
Ash	9-16	1-2	4080 2510 1980 2850 2530	7210 6540 4850 5840 5760	4720 3360 4380 3220 3510	3300 3180 4050 2290 2730	8180 8380 8830 6180 5760	5-16 5-16 7-16 5-16 1-4
		Δv.	2790	6040	3840	3090	7460	
	5-8	9-16	$3920 \\ 2840 \\ 1660 \\ 2100$	4700 6300 5100 6340	3860 4070 5300 5150	3280 3600 4370 4540	6460 6480 8510 8760	3-16 5-16 5-16 5-16
		Av.	2630	5610	4590	3950	7550	
Beech	9-16	1-2	2960 2910 2890 2830 3360 3770 2870 3540	6820 5710 5610 2900 5450 + 6610 6780 5110	3820 4010 3240 2800 2940 3680 3470 4740 5060	3790 3550 2850 2690 2620 3210 2890 4360 4010	7100 7270 5610 6000 5450 6610 8200 6930 7640	3-16 5-16 1-4 3-16 1-4 1-4 3-8 1-4 3-8
		Δv.	3150	5770	3750	3330	6750	
Sweet Gun	9-16	1-2	2850 2530 2250 2630 2790 2610	5840 5760 6210 3940 5220 6300	3220 3510 4640 3350 4220 3900	2290 2730 3570 2870 3680 3370	6180 5760 7170 4940 6010 6300	5-16 1-4 5-16 3-16 3-16 1-4
		Av.	2610	5550	3810	3080	6060	
	5-8	9-16	3030 2620 2850	$ \begin{array}{r} 3080 \\ 5760 \\ 3840 \end{array} $	2740 3560 3290	2320 2940 2730	4370 5760 5500	3-16 1-4 3-16
		Av.	2830	4230	3200	2660	5210	

TABLE XIII—Concluded

		Hole,	Re		in Poun ull of	ds	Maxi Resis	
Kind of Tie	Size of Spike, in. sq.	Diameter of Hole, inches	1-s inch	1-4 inch	1-2 inch	3-4 inch	Pounds	Pull, inches
		ı	Hole 1-	8 in. Sm	aller tha	n Spike		
Red Oak	5-8	1-2	1800 2340 2630 3170 4070 4720	5710 6860 5850 4410 3000 4220	$\begin{array}{c} 5000 \\ 4490 \\ 4010 \\ 2570 \\ 2600 \\ 2550 \end{array}$	4190 3950 3440 2100 2190 2500	7270 6860 5850 4410 4410 6030	5-16 1-4 1-4 1-4 3-16 3-16
		Av.	3270	5010	3540	3060	5800	
Beech	9-16	7-16	1340 2540 4000 3560 3580 3240 2510 2290 2790 1900	4560 5620 4720 7280 5270 6900 6150 4620 6380 3790	3530 4720 3000 3800 3800 4020 3710 5410 4630 5010	3620 4100 2640 3360 3250 3810 3630 4150 3420 4360	7080 6920 6000 7280 6940 7830 6150 7950 8230 7660	3-8 5-16 3-16 1-4 3-16 5-16 1-4 7-16 7-16
		Av.	2180	5530	4160	3630	7200	
Sweet Gum	5-8	1-2	$\begin{array}{c} 2400 \\ 2850 \\ 2950 \end{array}$	3180 3700	$\begin{array}{ c c c }\hline 2710 \\ 2920 \\ \hline 3300 \\ \hline \end{array}$	2320 2540 2240	$\frac{3980}{4750}$ 5200	3-16 3-16 3-16
		Av.	2730	3430	2980	2370	4640	

TABLE XIV AVERAGE RESISTANCE OF SPIKES WITH AND WITHOUT BORED HOLES

	ii. S.	v.			istance unds f			Relati esista	
Kind of Tie	Size of Spike, in. sq.	No. of Spikes	How Driven	1-s in. Pull	l-t in. Pull	Maximum Resistance	1-s in. Pull	l-4 in. Pull	Maximum Resistance
			Drift	1-16 of	an inc	·h			
Water Oak	9-16	$\frac{7}{15}$	Hole No Hole	$\frac{2310}{2960}$	4810 5660	6110 6670	$\frac{78}{100}$	85 100	92 100
Black Oak	9-16	6 15	Hole No Hole	$\frac{3300}{2970}$	6750 5320	7310 6490	110 100	122 100	113 100
Red Oak	9-16	10 36	Hole No Hole	3070 3260	6390 5450	6640 6820	111 100	112 100	97 100
	5-8	7 21	Hole No Hole	$\frac{2950}{2310}$	5890 4760	6960 7660	127 100	123 100	91 100
Beech	9-16	9 9	Hole No Hole	$\frac{3150}{2180}$	5770 4700	6760 9410	145 100	123 100	72 100
Ash	9-16	5 6	Hole No Hole	$\frac{2790}{4150}$	6040 4630	$\frac{7460}{6810}$	67 100	130 100	110 100
Sweet Gum	9-16	6	Hole No Hole	2610 2190	5550 3730	6060 4610	119 100	149 100	131 100
	5-8	4	Hole No Hole	$\frac{2830}{3460}$	4230 4450	$\frac{5210}{5460}$	82 100	95 100	96 100
Av. for all Timbers			Hole No Hole	2930 2880	5680 4840°	6570 6740	102 100	117 100	98 100
			Drift	1-8 of	an inc	·li			
Red Oak	5-8	6 21	Hole No Hole	$\frac{3270}{2310}$	5010 4760	5800 7660	141 100	105 100	75 100
Beech	9-16	10	Hole No Hole	2780 2180	5530 4700	7200 9410	122 100	118 100	77 100
Sweet Gum	5-8	3	Hole No Hole	2730 3460	34-30 4450	4640 5460	79 100	77 100	85 100
Av. for all Timbers			Hole No Hole	2930 2650	4660 4640	6550 7510	111	100	87 100

As far as conclusions can be drawn from these experiments, the spike driven into a bored hole is superior to one driven in the ordinary way.

1 Effect upon the Holding Power of Re-driving the Spike

In practice, when the spike is pulled out of the tie a moderate distance, it is driven back, provided the hole is not greatly enlarged. If the hole is much enlarged the spike is driven at another point. This constant re-spiking rapidly ruins the tie. A series of tests was made to determine the effect upon the holding power of re-driving the spike. The average maximum holding power of the re-driven spikes is shown in Table XV along with the original maximum holding power of the same spike.

It will be seen that the holding power of the re-driven spike is very much less than that of the newly-driven spike. The resistance is affected so much in some woods as to make the practice of

 ${\bf TABLE\ XV}$ Relative Holding Power of Newly-driven and Re-driven Spikes

Kind of	of		aximum Re- e, Pounds	Per cent of
Tie	No. of Spikes	Original	After Re- driving	Original
Ash	6	8640	6490	75
Water Oak	6	8020	5760	72
Red Oak	6	8030	5230	65
Elm	6	7910	4840	61
Poplar	6	4920	3980	81
Sweet Gum	6	5040	4150	82

re-driving the spike a questionable procedure if the holding power alone is considered; but as the practice of re-driving the spike helps to lengthen the life of the tie, the practice can not be justly condemned so long as the holding power is not excessively reduced.

ART. 2 HOLDING POWER OF SCREW SPIKES WITHOUT LININGS

A series of tests was made to determine the holding power of screw spikes. The tests were conducted in the same manner as those with the ordinary spikes.

The screw spikes were received from the following companies: No. 1 from the Illinois Central Railroad Company; No. 2 from the American Iron and Steel Manufacturing Company, Scranton, Pennsylvania; No. 3 from the South Side Elevated Railroad Company, Chicago. Illinois; No. 4 from the Oliver Steel and Iron Company, Pittsburg, Pennsylvania; and No. 5 from the Pennsylvania Railroad Company.

A description of the different spikes is given in Table XVI.

TABLE XVI
DESCRIPTION OF SCREW SPIKES

Spike No.	Length, inches	Diameter of Core, inches	Projection of Thread, inches	Pitch, inches	Depth of Insertion, inches	Diameter of Bored Hole, inches
1	5 5	21-32 11-16	3-16 1-8	1-2 1-2	4 1-2 4 1-2	11-16 11-16
$\frac{3}{4}$	$\begin{array}{c} 5 & 1-4 \\ 5 & 1-2 \end{array}$	11-16 11-16	1-8 1-8	1-2 1-2	4 3-4 5	11-16 11-16
5	5	21-32	3-16	1-2	4 1-2	11-16

The shank or threaded portion of the spike was usually 7-8 of an inch in diameter, and approximately one inch of the upper portion of the core tapered from the diameter of the core to that of the shank. The hole bored for the spike was not reamed, and the result was a tight fit between the wood and the spike. This tight contact is gained in practice by the head of the spike bearing against the base of the rail. The spike was driven by means of a wrench, the thread cutting its own path. The number of screw spikes obtainable was not sufficient to make as long a series of tests as with the ordinary spikes.

A study of the results with this spike has been made to determine: (A) Relation between the depth of penetration and the holding power; (B) Relation between the holding power of the screw and of the ordinary spikes; and (C) Influence of certain details of the screw spike upon its holding power.

The detailed results of the tests with screw spikes are given in Table XVII, and the average results are shown in Plates II and III.

TABLE XVII DETAILED RECORD OF TESTS WITH SCREW SPIKES

		ike	S.	1	Resistano a	e in Po Pull c		rc		imum stance
Kind of Tie	No. of Tie	No. of Spike	No. of Test	1-s inch	L-4 inch	L2 inch	3-4 inch	1 inch	Pounds	Distance Pulled, inches
Blue Ash	2	2	$\frac{1}{2}$	7350° 5080 7520	10900 9930 11650	11650 13470 12300	6270 6010 6220	3370 3190 3030	13360 13470 12300	7-16 1-2 1-2
			Λv.	6650	10830	12470	6160	3190	13040	1-2
	1	4	$\frac{1}{2}$	3320 3740 4350	7480 7570 9200	$\begin{array}{c} 10840 \\ 9410 \\ 6800 \end{array}$	6520 5940 4870	5000 4560 3260	10840 9410 9700	1-2 1-2 3-8
			Λv.	3800	8080	9010	5780	3940	9980	1-2
Sweet Gum	3	2	$\frac{1}{2}$	3810 5790 4270	4940 7100 6030	4870 4900 4620	2420 3280 2820	1900 3770 3450	5980 7100 6590	7-16 1-4 3-8
			Αv.	4620	6060	4790	2840	3040	6560	3-8
	3	4	1 2 3 Av.,	5920 4550 4780 5080	9000 7400 7120 7840	6000 5600 5090 	$ \begin{array}{r} 4000 \\ 3410 \\ 3290 \\ \hline 3560 \end{array} $	2900 2300 1800 2330	9720 8100 7870 ————	7-16 3-8 3-8
Water Oak	34	3	$\frac{1}{2}$	$\frac{4820}{4670}$ $\frac{4680}{4680}$	10230 9170 7030	14530 12140 14360	9630 10000 9660	4600 6260 4490	14530 12640 14360	1-2 5-8 1-2
			Āv.	4720	8810	13680	9800	5100	13840	7-16
	126	2	$\frac{1}{2}$	4110 3670 5270	8010 - 7420 - 7790	7190 7850 5190	3490 3970 3540	2150 2790 2600	9620 8900 8060	7-16 3-8 7-16
			Āv.	4350	8290	6740	3660	2510	8860	7-16
Black Oak	16	16 3	$\frac{1}{2}$	5520 4860 4260	12370 11410 9870	16930 13100 9760	10720 7390 7690	6200 4050 3970	16930 14350 12160	1-2 7-16 3-8
			Αv.	4880	11220	13260	8600	4740	14480	7-16
	23	2	$\frac{1}{2}$	5850 4910 1090	$10290 \\ 10780 \\ 6370$	9460 8590 10400	6600 6000 7100	4200 2500 6000	$\begin{array}{c} 12500 \\ 12570 \\ 10400 \end{array}$	3-8 5-8 1·2
			Λv.	3950	9150	9380	6560	4230	11820	5-8

TABLE XVII—Continued

		ke	£.	R		e in Pou Pull of	nds for	r	Maxii Resis	mum tance
Kind of Tie	No. of Tie	No. of Spike	No. of Test	I-8 inch	l-4 inch	1-2 inch	3-4 inch	1 inch	Pounds	Distance Pulled, inches
Red Oak	9	4	$\frac{1}{2}$	2720 6390 4240	7810 11440 9770	12720 11590 11130	7970 7050 9160	3710 3600 4970	12720 12770 11790	1-2 3-8 3-8
		ı	Av.	4450	9670	11810	8060	4130	12430	3-8
	7	4	$\frac{1}{2}$	3940 7890 4220	9780 13860 9780	12780 14430 14800	9560 7990 12350	4880 4530 6500	13590 15200 14800	7-16 3-8 1-2
			Λv.	5350	11140	12670	9960	6300	14860	7-16
Beech	36	2	$\frac{1}{\frac{2}{3}}$	2610 8320 5190	8400 12370 11880	8320 10820 11270	4170 6130 6880		14560 13180 14310	5-16 3-8 3-8
			Av.	5040	10850	10140	5730		14020	3-8
	14	3	$\frac{1}{2}$	6330 6130 8240	11980 12980 15620	10240 17360 14700	4480 9930 8900	3230 3900 5890	14550 17360 16450	7-16 1-2 7-16
			Λv.	6900	13530	14000	7770	4340	16120	7-16
White Oak	31	4	$\frac{1}{2}$	3010 7950 8210	9340 12490 12080	8180 9390 7560	6390 5350 4950	4530 2880 3290	11630 13200 12740	7-16 5-16 5-16
			Αv.	6390	11300	8380	5230	3570	12520	5-16
	31	3	$\frac{1}{2}$	5000 4600 5880	8290 8030 9370	5450 6600	2960 3340		8290 8700 10530	1-4 5-16 3-8
			Av.	5160	8560	5530	3150		9150	5-16
	32	3	1 2 3	6420 8590 4420	11300 14190 13000	16450 11370 Broke	9590 5490	4360 3190	16450 15580 13000	1-2 5-16 1-4
			Λv.	6480	12830	13910	7040	3780	15010	3-8
Elm	10	3	$\frac{1}{2}$	4310 5040 4200	8290 10920 9130	14190 13200 13230	6340 7950 7350	2780 3100 3460	14190 14400 13230	1-2 7-16 1-2
			Λv.		9450	13540	7210	3110	13940	1-2

TABLE XVII—Concluded

		Spike	st	I		ce in Pou Pull of	unds fo	or		mum tance
Kind of Tie	No. of Tie	No. of Sp.	No. of Test	1-8 inch	1-4 inch	1-2 inch	3-4 inch	l inch	Pounds	Distance Pulled, inches
	13	1	$\frac{1}{2}$	6090 5220 · 4570	11560 10400 9890	9920 11440 12400	4400 6450 7990	2420 3200 4000	11560 12740 14390	1-4 7-16 7-16
			Λv.	5290	10280	11250	6260	3200	12890	7-16
	12	4	$\frac{1}{2}$	6830 3270 3700	$\begin{array}{c} 11280 \\ 8650 \\ 7840 \end{array}$	10080 9570 12480	5280 6350 7110	2340 3450 3360	$\begin{array}{c} 12840 \\ 11610 \\ 12480 \end{array}$	3-8 7-16 1-2
			Αv.	4570	9260	10680	6250	3050	12310	7-16
Poplar	11	4	$\frac{1}{2}$	4130 2960 4760	7980 6200 7970	8000 8910 10130	4790 4820 7210	3300 2130 4480	10120 9610 10130	7-16 7-16 1-2
			Αv.	3950	7380	9010	5610	3270	9960	7-16
	11	1	$\frac{1}{2}$	3450 3300 2640	6300 6550 5260	9340 8490 8060	5250 3860 2710	2940 1620 1520	9340 8490 8060	1-2 1-2 1-2
			Λv.	3130	6040	8290	3940	2030	8290	1-2
Chestnut	40	4	$\frac{1}{2}$	5200 2750 3240	6950 6210 6260	6400 8250 6160	3340 3800 4580		7610 8250 7290	3-8 1-2 5-16
			Δv.	3730	6480	6940	3910		7720	3-8
	40	1	$\frac{1}{2}$	3070 3960 3940	5460 3270 5630	5680 5310 5580	3570 2820 2510	1930 1140 1400	7010 6470 6300	7-16 7-16 7-16
			Λv.	3660	5450	5520	2960	1490	6590	7-16
Loblolly Pine	20	1	$\frac{1}{2}$	5260 3840 4830	7610 6270 7780	5510 6210 7360	2670 3630 3060	1460 2120 2390	9340 7550 8190	3-8 7-16 3-8
			Αv.	4640	7270	6390	3120	2320	8690	3-8
	39	1	$\frac{1}{2}$	6180 5350	10220 8260	7590 9060 8200	4070 5060 5520	1720 2460 3400	11840 11190 9850	3-8 3-8 7-16
			Αv.	 5820	9240	8280	4880	2530	10630	3-8

A Relation between Depth of Penetration and the Holding Power

A series of tests was made to determine the relation between the depth of penetration and the holding power of the screw spikes. The experiments consisted of pulling spikes driven to depths of 1, 2, 3, 4 and 5 inches into a beech tie, three spikes being used for each depth. The numerical results are shown in Table XVIII, and their averages are shown graphically in Plate VI together with some additional matter which is shown for the sake of comparison.

TABLE XVIII
RESULTS OBTAINED FROM EXPERIMENTS ON DEPTH OF PENETRATION

Test	l	Resistance in	Pounds for a	Penetration	of
Number	1 inch	2 inches	3 inches	4 inches	5 inches
1	-2770	4560	9610	13100	17360
2	2760	6000	10000	14330	17500
3	2790	4940	8490	13330	16840
Av.	2770	5170	9360	13590	17230

The results in Plate VI can be quite closely represented by two intersecting straight lines. The probabilities are that the actual resistances would be more nearly represented if the two straight lines were joined by a short curve near their intersection. Only the upper portion of the diagram is of interest, since penetrations of less than four inches should never be used, at least on heavy traffic railroads, the only roads likely to use screw spikes.

The diagram shows that the resistance varies directly with the depth of penetration.

B Relative Holding Power of Screw Spikes and Ordinary Spikes

Table XIX has been prepared from Table XVII and from Table III, to determine the relation between the holding power of the screw spike and that of the ordinary spike. As previously stated, the ordinary spikes were driven into the tie to a uniform depth of 5 inches, while the screw spikes, being of different lengths, necessarily were inserted to unequal depths. On account of the relation existing between the depth of penetration and the holding power, the resistance for the screw spikes, shown in Table XIX, is based upon a penetration of 5 inches.

PLATE VI

From Table XIX it will be seen that the holding power of the screw spike is always greater than that of the ordinary spike, and that the relation between the two varies in the several timbers. For a pull of 1-4 of an inch in the hard woods the holding power of the screw spike is from 167 to 221 per cent of that of the ordinary spike, and in the soft woods the range is from 117 to 258 per cent; or the average gain in the hard woods is 76 per cent, and in the soft woods 98 per cent. It is interesting to note that the resistances in the several timbers for the 1-8-inch, pull with the screw spike are in eight out of eleven instances nearly the same as, or greater than, the resistances for the 1-4-inch pull with the ordinary This signifies that the screw spike is about twice as efficient as the ordinary spike for a pull of 1-4 of an inch or less. The curve in Plates II and III show graphically the relative efficiency of the two forms of spikes with some information to be referred to later.

C Effect of Certain Details of the Screw Spike upon Its Holding Power

In countries where the screw spike is extensively used it has been perfected in detail until it nearly fulfills the requirements of practice. In North America the screw spike will probably be the successor to the ordinary spike, and it may again be necessary to adjust the details to suit local conditions. Therefore a few observations on the relation of some of the details of this spike to its holding power come within the scope of this paper. The details to be discussed are the diameter of the core, the projection and pitch of the thread and the length of the thread. These details being interdependent will be discussed collectively.

The soft steel from which the screw spike is made has an ultimate strength of about 66,000 pounds per square inch, so that the tensile strength of a spike 11-16 of an inch in diameter is approximately 24,000 pounds. The ultimate compressive resistance across the grain of well-seasoned white oak is about 4,000 pounds per square inch, and experiments demonstrate that the thread of the spike in compacting the wood fibers increases the resistance about 40 per cent.* Therefore, taking 5,600 pounds as the ultimate compressive strength of compacted white oak, and taking 17 3-4 inches and 1-8 of an inch respectively as the length and projection of the

^{*}Bulletin No. 50, U. S. Dept. of Agriculture.

TABLE XIX

Relative	HOLDING POWER OF THE SCREW SPIKE AND OF THE
	ORDINARY SPIKE IN SEVERAL TIMBERS

Kind of Tie	Kind of Spike	Resist	ance in for	Pounds	Relative Resistances		
		I-8-in. Pull	1-4-in. Pull	Max. Resist.	1-8-in. Pull	1-4-in. Pull	Max. Resist
Water Oak	Ordinary	2870	5730	6780	100	100	100
	Screw	4888	9180	12190	170	160	179
Black Oak	Ordinary Screw	$\frac{2910}{4760}$	5890 10420	7230 14110	100 164	100 177	100 203
Red Oak	Ordinary	2950	5350	7730	100	100	100
	Screw	4900	10400	13560	166	194	176
White Oak	Ordinary Screw	3510 6250	5950 11900	$7870 \\ 12630$	100 178	100 200	$\frac{100}{188}$
Ash	Ordinary	3570	5200	7730	100	100	100
	Screw	5700	10470	12760	162	200	165
Beech	Ordinary	2600	5490	8840	100	100	100
	Screw	6450	13140	16230	248	221	238
Elm	Ordinary Screw	$\frac{2380}{5120}$	5580 10090	7500 13690	100 215	100 181	100 183
Poplar	Ordinary	2830	5290	5670	100	100	100
	Screw	3880	6210	7490	137	117	132
Chestnut	Ordinary	2850	4070	5200	100	100	100
	Screw	3690	6340	8700	129	155	167
Sweet Gum	Ordinary	3230	4120	5300	100	100	100
	Screw	5430	7710 -	8280	167	162	156
Loblolly	Ordinary	2920	3500	4300	100	100	100
Pine	Screw	5750	9050	10620	197	258	247

thread on the 5-inch spike, and making no allowance for frictional resistance between the core of the spike and the wood, the theoretical resistance would be

5,600 x 17 3-4 inches x 1-8 inches=12,430 pounds. The average actual resistance obtained in white oak ties as shown in Table XIX is 12,630 pounds which agrees closely with the theoretical resistance. The tensile strength of the screw spike is

about 12,000 pounds greater than the maximum resistance of white oak, which difference is greater than necessary and indicates an uneconomical use of metal in the spike. Since the ties tested are representative of American practice, there is no apparent reason for not having the ultimate strength of the two materials in contact more nearly equal than at present, and by some slight change in the detail of the spike this could readily be accomplished. Three ways in which the ultimate strength of the materials may be made more nearly equal are: (1) increase in length of threaded portion; (2) increase in projection of thread, the length and the diameter of the core remaining the same; (3) increase in projection of thread at the expense of the core, the length remaining the same. The pitch is assumed to be 1-2 inch in all cases, since it has been found in practice that this pitch gives better results than either a greater or smaller pitch.*

- (1) The length of the thread on the 5-inch spike is 17 3-4 inches and the width is 1-8 of an inch; therefore, the bearing area is 2.22 square inches. If the spike is made 6 inches long two convolutions of the thread will be added, the bearing area will become 2.71 square inches, and the holding power will be increased from 12,630 pounds to 15,180 pounds. This leaves a difference of only 8,900 pounds between the ultimate strength of the wood and that of the spike.
- (2) If the length of the spike and the diameter of the core are not changed, and if the projection of the thread is increased 1-32 of an inch, the total resistance would amount to 15,510 pounds, leaving the ultimate strength of the spike only 8,500 pounds greater than that of the wood.
- (3) If the length of the threaded portion of the spike remains unchanged and if the projection of the thread is increased 1-32 of an inch at the expense of the core, the maximum resistance would amount to 15.510 pounds, while the ultimate strength of the spike would be reduced to 20.200 pounds.

The diameter of the shank of the spike would have to be increased with some of the changes in the detail of the lower portion, and when the resistance to lateral displacement is taken into account, we see that this change also would be beneficial.

The conclusion is that the screw spike in its present form is

^{*}Bulletin No. 50, U. S. Dept. of Agriculture.

PLATE VII

SCREW SPIKES AND TOOLS FOR INSERTING THEM

about twice as efficient as the ordinary spike; and that this efficiency could be increased by some slight change in the detail of the screw spike.

ART. 3 HOLDING POWER OF SCREW SPIKES WITH HELICAL LININGS

A few experiments were made with screw spikes having helical linings. On account of the small number of linings obtainable the tests were limited; as this lining, being a foreign invention, is not yet used by the railroads of this country except for experimental purposes. The tests were still further limited since the linings could not be used a second time; and further since all of the linings could not be driven successfully, as the friction between the metal and the wood sometimes caused the driver to loosen its hold, which could not be regained even after carefully following printed instructions. This accounts for the use of only two linings in some of the timber. The linings together with a set of special tools for inserting them in the tie were furnished by Mr. Robert Trimble, Chief Engineer Maintenance of Way, Pennsylvania Lines, (see Plate VII).

The linings were made by Mr. J. Thiollier of Paris, France, and are described by him as being 0.33 inch by 0.17 inch in section, and also as being of the class which he calls P. M. or small sized linings. They were 4 inches long with a 1-2-inch pitch. The total diameter was 1 5-16 inches, the diameter inside of the spiral band slightly over 11-16 of an inch, and the thickness and width of the metal band 1-8 and 1-4 of an inch, respectively. The linings were evidently designed to be used with the screw spike of the French Eastern Railway, No. 1, Table XVI, and hence they were tested with this spike only.

The method of fixing the lining in place was as follows: A hole having the same diameter as the core of the spike was bored in the tie; the hole was tapped, and the lining inserted by means of special tools designed for the purpose; the spike was inserted in the usual manner.

The detailed results of these tests are shown in Table XX, and the average results are shown graphically in Plates II and III. The relative holding power of the several kinds of spikes in different timbers is shown in Table XXI. The results of this table and the diagrams in Plates II and III show that in hard woods

the resistances for a 1-8-inch pull are usually greater for the spike and lining than for the naked screw spike, but for pulls greater than 1-8 of an inch the reverse is true. In soft woods the spike and lining gave greater resistances than the naked screw spike except in sweet gum. The lower resistance in the hard woods is accounted for by the fact that the spike begins to move before the lining, and the fibers, being hard, are bent slightly upward so that the bearing surfaces of the wood and the spike are only partially in contact. Moreover, the fibers probably slip over the rounded edge of the lining, which tends to lower the resistance. In the soft woods more than in the hard woods, the fibers mash together as the spike is pulled out, consequently the bearing surfaces of the wood and the spike have full contact and the resistance is greater than with the naked screw spike.

In justice to Mr. Thiollier it is only right to say that he claims no more for the P. M. lining than is set forth in these experiments. He says that the P. M. lining will offer no more resistance than a naked screw spike. The principal claims for the P. M. lining are that it can be placed on the track without removing either the rail or the tie, and that it forms an advantageous substitute for the square wooden dowel used on some railways.

As a repair measure this lining is of doubtful value, for it extends only about 1-8 of an inch beyond the thread of the spike; and when the spike has been pulled even a small distance the adjacent wood is badly damaged, so that the wood which remains after the hole is tapped for the lining can offer but slight resistance. Moreover, it is not certain that the extreme fibers reached by the lining are not somewhat affected, hence it would be better to ream the hole, cutting out all damaged wood and to introduce a threaded hard wood dowel, or to use a lining of larger size.

The writer claims that the use of the small lining is impracticable for the following reasons: (1) It is designed to be put in place with the tie in the track; (2) The lining cannot always be inserted into the wood to its full length by means of hand tools, even with utmost precaution; (3) At best the holding power is not increased to any marked degree over that of the naked screw spike; and (4) The labor involved is more than double that required to drive the naked screw spike, and the cost is increased.

TABLE XX RESISTANCE OF SCREW SPIKES WITH HELICAL LININGS

Kind of	No.	of Tests		Resistan	ce in Po Pull of	ounds for		Maxin Resist	
Tie	Tie N	No. 0	1-8 in.	1-4 in.	1-2 in.	3-4 in.	1 in.	Pounds	Pull in.
Ash	1	1	8410	11380	10150	7570	6480	12160	1-4
		$\frac{2}{3}$	5830	8670	9410	6590	5630	10500	3-8
		3	5670	8070	7930	4690	4200	8750	3-8
		Āv.	6640	9370	9160	6280	5440	10470	3-8
Sweet Gum	3	1	6010	9100	7750	5380	5150	9510	1-4
		2	4830	6440	7650	6270	4380	7970	3-8
		3	4270	6250	8600	6130	4410	8600	1-2
		$\overline{\Lambda v}$.	5030	7260	8000	5930	4650	8690	3-8
Water Oak	26	1	3420	7100	11080	8290	8740	11080	1-2
		2	2970	6460	12080	9250	9170	12080	1-2
		Av.	3190	6780	11580	8780	8960	11580	1-2
White Oak	32	1	5810	10740	8420	6890	7120	12900	3-8
		2	7070	11020	6650	6170	6340	11020	1-4
		Αv.	6440	10880	7530	6530	6750	11960	3-8
Black Oak	23	1	5960	11130	9810	8560	7520	12550	3-8
		$\frac{2}{2}$	5420	9710	10770	8470	7960	12460	3-8
		Av.	5690	10420	10290	8510	7740	12500	3-8
Beech		$\frac{1}{2}$	10830	10120	8070	7320	5390	10830	1-8
		2	8610	11600	11850	10350	6280	13480	3-8
	-	Αv.	9720	10860	9960	8830	5830	12150	1-4
Poplar	11	1	3970	8860	9900	5880	5300	9920	3-8
		2	4080	9470	10550	5940	5110	11140	3-8
		3	3670	8260	9910	6030	5250	9910	1-2
	ĺ	Av.	3910	8860	10120	5950	3220	10320	3-8
Chestnut		1	7020	9600	8230	6920	6120	9770	3-8
		2	5750	7010	8890	8180	6730	8890	1-2
		3	6300	7240	9280	7660	6860	9280	1-2
		Λv.	6390	7950	8810	7590	6900	9150	1-2

TABLE XXI

RELATIVE HOLDING POWER OF THE ORDINARY SPIKE, THE SCREW SPIKE, AND THE SCREW SPIKE WITH HELICAL LINING IN SEVERAL TIMBERS

	*** > 4	Resistar	nce in Po	unds for	Relat	ive Resi	stance
Kind of	Kind of	1-8-in.	1-4-in.	Max.	1-8-in.	1-4-in.	Max.
Tie	Spike	Pull	Pull	Resist.	Pull	Pull	Resist
White Oak	Ordinary	3510	5950	7870	100	100	100
	Screw*	6250	11900	12630	178	200	188
	Lining	6440	10880	11960	183	183	152
Water Oak	Ordinary Screw* Lining	$ \begin{array}{r} 2870 \\ 4880 \\ 3190 \end{array} $	5730 9180 6780	6780 12190 11580	100 170 111	100 160 118	100 179 171
Black Oak	Ordinary Screw* Lining	$\begin{array}{c} 2910 \\ 4760 \\ 5690 \end{array}$	5890 10420 10420	7230 14110 12500	100 164 195	100 177 177	$\frac{100}{203}$ $\frac{173}{173}$
Ash	Ordinary Screw* Lining	3570 5700 6640	5200 10470 9370	7730 12760 10470	100 162 186	100 200 180	$100 \\ 165 \\ 135$
Beech	Ordinary	2600	5490	8840	100	100	100
	Screw*	6450	13140	16230	248	221	238
	Lining	9720	10860	12150	373	198	138
Poplar	Ordinary Screw* Lining	2830 3850 3910	5290 6210 8860	5670 7490 10320	100 137 138	$100 \\ 117 \\ 162$	100 132 182
Chestnut	Ordinary	2850	4070	5200	100	100	100
	Screw*	3690	6340	8700	129	155	167
	Lining	6390	7950	9150	224	195	176
Sweet Gum	Ordinary	3230	4120	5300	100	100	100
	Screw*	5430	7710	8280	167	162	156
	Lining	5030	7260	8690	136	176	164

^{*} Screw spike with helical lining. | the * Detongs arter "Lining."

PLATE VIII

IMPACT APPARATUS

PART II RESISTANCE TO LATERAL DISPLACEMENT

The railroad spike is subjected not only to a direct pull by the undulation of the rail, but also to a horizontal thrust due to the lateral movement of the rail. On roads having a large amount of curvature the lateral resistance is of more importance than that of direct pull.

To determine the amount of the resistance to lateral displacement which is developed by various forms of spikes the writer made a series of tests in which the lateral thrust was produced by the blows of a heavy hammer. The hammer consisted of a castiron weight suspended by a wooden rod from the joists of the floor above.

The place in which the apparatus was used was such that a good photograph could not be taken. Plate VIII is a view of the apparatus set up in a light suitable for photographing. All essential features are correctly represented. Fastened to the joists were metal strips upon which the knife edges of the rocking arm rested. These strips were 6 feet long, and were notched along the entire upper edge to permit the placing of the rocking arm in different positions. The length of the suspending rod was 9 feet.

The weight of the hammer was 100 lb. and the distance through which it was allowed to fall was 1 1-2 feet, so that the amount of the impact for each blow was 150 ft.-lb. The hammer delivered its blow on the end of a tool-steel bar which projected beyond the end of the tie, the other end of the bar being shaped to fit under the head of the spike.

The spikes used in this series of tests were 9-16 inch and 5-8 inch ordinary spikes and screw spikes. Each spike was subjected to five blows and the displacement produced by each blow was carefully measured. Usually four or five spikes of each kind were tested, but when there was much lack of uniformity in the results a larger number were tested.

All of the spikes were bent to a curve, the central point of which was about 1 1-2 inches below the surface of the tie. The ordinary spikes were pulled from the tie a short distance, but the thread of the screw spikes gripped the wood so as to prevent the spike from being pulled out even a perceptible amount.

ART. 3 LATERAL RESISTANCE OF ORDINARY SPIKES

The detailed results of the experiments with ordinary spikes are given in Table XXII and the average movement of the spike for each of the several blows is shown in Table XXIII. The average total movement of the 5-8 inch spikes in the first seven timbers was 0.65 inch, and that of the 9-16 inch spikes was 0.75 inch. In the last four timbers the average total movement of the 5-8 inch spikes was 0.74 inch, and that of the 9-16 inch spikes was 0.94 inch.

The total deflection of the 9-16 inch spikes was usually sufficient to allow a rail to clear the head of the spike if it were overturned. The corresponding movement of the 5-8 inch spikes was not usually sufficient to allow a like clearance, although it was considerably more than would be allowed in practice.

The first blow is of more importance than the succeeding blows in testing the efficiency of a spike. While the distances through which the different sized spikes were deflected by the first blow differ but a small amount, this difference is sufficient to show that the deflection is less for the 5-8 inch spikes than for the 9-16 inch.

These results, together with the fact that the 5-8 inch spikes were bent less by the impact than the 9-16 inch spikes, indicate that the 5-8 inch spike is more efficient in resisting lateral displacement than the 9-16 inch spike.

ART. 4 LATERAL RESISTANCE OF SCREW SPIKES

The method of determining the lateral resistance of screw spikes was the same as that used for ordinary spikes. The results for this set of tests are given in Table XXIV. The screw spikes used were all practically alike except that they were of various lengths. In making the tests the spikes were used indiscriminately, but since they were not all of the same length some tests were made to determine the effect of impact upon spikes which were driven into the tie to different depths. The spikes used for the latter tests were all of the same make, and were cut to lengths of 3, 3 1-2, 4, 4 1-2 and 5 inches, and were all driven into a single kind of timber. The results of these tests are shown in Table XXV. While the results for the 4- and 4 1-2-inch spikes are the same, the

TABLE XXII

DETAILED RESULTS OF IMPACT TESTS OF ORDINARY SPIKES

		Total	Lateral M	lovement o	of Spikes i	n Inches
Kind of Tie	Size of Spike, in. sq.		Nι	imber of E	Blows	
	m. sq.	1	2	3	4	. 5
White Oak	9-16	0.27	0.35	0.48	0.65	0.81
		:18	.35	.56	.67	. 73
		.10	. 2.2	.33	. 4.5	. 54
		.30	.35	.50	.52	.60
		.21	.35	.60	.74	.93
	Av.	0.21	0.32	0.49	0.61	0.70
	5-8	0.11	0.20	0.26	0.30	0,39
	9.0	.15	.30	.41	.50	.57
		. 19	.36	.50	.60	.68
		.21	.36	.49	.65	.74
		.20	.34	.42	.50	.57
	Av.	0.17	0.31	0.42	0.51	0.59
Water Oak	9-16	0.23	0.34	0.52	0.60	0.75
Water Oak	<i>D</i> -10	.20	.33	.56	.73	.88
		. 14			. 68	
		.20	.42	.48		. 75
		. 19	.39	.63	.54	.65 .78
	Av.	0.19	0.37	0.54	0.65	0.76
	5-8	0.12	0.25	0.36	0.48	0.55
	.,-0	.20	.37	.54	.63	.69
		.15	.25	.31	.39	
		.19	.28			.50
		.20	.37	$\frac{1}{59}$	$\frac{.51}{c^{-1}}$.65
				. 53 	. 65	. 69
	Av.	0.17	.30	0.43	0.53	0.61
Black Oak	9-16	0.25	0.40	0.56	0.70	0.75
		.13	.30	.41	.58	.72
		.16	. 32	. 49	.58	.70
		.24	.41	.62	.71	.80
		.23	.35	.56	.65	.69
		.26	.39	. 59	.67	.78
	Δv.	0.21	0.37	0.54	0.65	0.71
Black Oak	5-8	0.23	$^{+}$ 0.38	0.50	0.58	0.65
		.17	.30	. 42	.53	.64
		.17	.35	.50	.61	.77
		.15	.32	.40	.49	.55
		.11	.26	.37	.41	. 4.5
		. 22	.35	.50	. 59	.65
	Av.	0.17	0.33	0.45	0.53	0.62

TABLE XXII—Continued

	G	Total	Lateral M	ovement o	of Spikes i	n Inches
Kind of Tie	Size of Spike, in. sq.		Nu	mber of B	lows	
	m. sq.	1	• •	3	4	5
Red Oak	9-16	0.21	0.35	0.51	0.61	0.73
		. 19	.30	.46	.57	. 75
		.20	.37		. 64	. 77
			.41	. 49	.61	. 72
	Av.	0.21	0.36	0.50	0.61	0.74
	5-8	0.12	0.21	0.32	0.42	0.49
		.15	.24	.34	.43	.50
		.12	.25	.35	.49	. 53
		.18	.42	.55	. 72	.85
	Av.	0.14	0.28	0.39	0.52	0,60
Ash	9 - 16	0.24	0.45	.057	0.68	0.80
		.24	.43	. 53	. 65	. 74
		.20	. 33	. 52	.65	. 7.5
		.25	.41	.60	. 72	.83
	Av.	0.23	0.41	0.56	0.68	0.78
	5-8	0.19	0.37	0.55	0.73	0.84
		. 19	. 33	.48	.64	. 75
		.18	.31	.44	.60	.69
		.15	.30	.39	.54	.63
	Αv.	0.18	0.33	0.47	0.63	0.73
Elm	9-16	0.22	0.33	0.50	0.67	0.78
		.21	.30	. 39	.56	. 70
		. 25	.37	.49	.58	. 66
		.18	.30	. 43	.54	,67
	Av.	0.22	0.33	0.45	0.59	0.70
	5-8	0.20	0.38	0.50	0.61	0.71
		.21	.35	.48	.60	. 72
		. 20	.35	.49	.61	.70
		.21	.32	. 44	. 55	. 66
	Av.	0.21	0.35	0.48	0.59	0.70
Beech	9-16	0.28	0.30	0.58	0.72 .75	0.87
		.26	.46	.57	. 75	. 86
		.21	.32	.53	.65	.75
		.30	.54	.63	.71	.89
		.19	.37	.55	.70	.80
		.27	.46	.61	1 72	.86
	Λv.	0.25	0.41	0.58	0.71	0.84

TABLE XXII—Continued

		Total	Lateral M	Iovement o	of Spikes in	n Inches
Kind of Tie	Size of Spike,		N	umber of I	Blows	
	in. sq.	1	2	3	4	5
	5-8	0.15	0.23	0.33	0.46	0.53
	9 (.13	.20	.29	.41	.49
		.16	.27	.36	.49	.58
		.12	-26	.43	.50	.57
		.12		.37	.46	.62
		.14	.25	.31	.39	.50
	Av.	0.14	0.25	0.35	0.45	0.55
Poplar	9-16	0.27	0.41	0.59	0.75	0.88
r opiai	*, -1()	. 22	.40	.54	.67	. 74
		.30	.45	.60	. 68	
		.27	.41	.54	.75	.84
		$.\frac{1}{27}$.40	.52	.61	.76
	Λv .	0.27	0.41	0.56	0,69	0.81
	5-8	0.10	0.29	0.11	0.50	0.63
	٥٥	.16	$0.29 \\ .28$	0.41		
		.20	.39	$\frac{.41}{.50}$.51 $.66$. 60 . 75
		.17	.39	.39	.46	. 157
	Av.	0.16	0.34	0.43	0.53	0.64
Chestnut	0.10	0.95		0.00	1 ()()	1 10
Chesunut	9-16	0.35	0.65	0.90	1.06	$\frac{1.40}{1.10}$
		.35	.60	.80	.97	$\frac{1.10}{1.25}$
		.35	.60	.90	1.12	1.35
		.31 .29	.62 .52	.91	1.01	1.19
		.30	.50	. 75	.93 .93	$\frac{1.18}{1.19}$
			, .50	73	. :/-)	
	Av.	0.32	0.58	0.83	1.00	1.23
	5-8	0.17	0.40	0.60	0.78	0.85
	TY .	.10	.30	.67	.88	1.05
	1	.27	.45	. 63	.80	.92
		.25	.48	.70	.91	1.03
	Ĭ.	, 24	.40	.57	.75	.90
		.28	.42	. 53	.65	.84
	Av.	0.22	0.41	0.61	0.79	,93
Sweet Gum	9-16	0.29	0.51	0.60	0.78	0.95
		. 23	.40	. 66	.75	.88
		.30	.51	.67	.75	.92
	4	.31	.54	.72	.97	1.10
	Av.	0.28	0.49	0.66	0.81	0.96

TABLE XXII-Concluded

		Total	Lateral M	ovement o	of Spikes in	n Inches			
Kind of Tie	Size of Spike,	Number of Blows							
	in. sq.	1	2	3	4	5			
Sweet Gum	5-8	0.14	0.28	0.45	0.62	0.78			
onoce oun	, , ,	.18	.35	. 54	.62	. 75			
		.16	.33	.46	.62	.70			
		.14	.38	.42	.50	.61			
	Av.	0.16	0.34	0.47	0.59	0.17			
Loblolly	9-16	0.22	0.33	0.50	0.61	0.70			
Pine		.23	.38	. 65	. 76	.81			
		.12	. 23	.35	.42	. 50			
		. 24	$\frac{.23}{.37}$	_58	.71	.88			
		. 26	.42	. 53	. 70	. 7.5 . 7.7			
		.23	.45	.64	. 72	.77			
	Av.	0.22	0.36	0.54	0.65	0.74			
	5-8	0.16	0.30	0.40	0.50	0.65			
		.17	.42	.63	. 72 . 51	.85			
		.17	.23	.30		. 55			
		.15	.23	.40	.52	.59			
		.23	.38	.46	.61	.71			
		. 12	.19	. 29	.36	.41			
		.23	.39	.53	.68	.78			
	Av.	0.18	0.30	0.43	0.56	0.65			

averages in the last column of the table show that the amount of the lateral movement decreases as the depth of penetration increases. Also, the difference between the deflections of the 4-, 41-2-, and 5-inch spikes is practically negligible, but for shorter lengths the difference in the deflections becomes greater.

Table XXVI gives the lateral movement of the screw spikes for each of the several blows for which the total movements were given in Table XXIV. The number of spikes used in each kind of timber was usually three; but in case there was considerable variation in the results, more spikes were tested. By a study of this table the effect of impact upon screw spikes in different kinds of timber may be determined.

 $\begin{tabular}{ll} TABLE XXIII \\ LATERAL MOVEMENT OF ORDINARY SPIKES FOR EACH BLOW \\ \end{tabular}$

Kind of Tie	of Spike, sq.	Mov		r Each of ows, inche		erał	verage Movement, inches
or the	Size o	1	2	3	4	5	Average Moven inches
White Oak	9-16 5-8	$\begin{array}{c} 0.21 \\ 0.17 \end{array}$	$\begin{array}{c} 0.11 \\ 0.14 \end{array}$	0.17 0.11	$\begin{bmatrix} 0.12 \\ 0.09 \end{bmatrix}$	0.09 0.08	0.136 0.118
Water Oak	9-16 5-8	$\frac{0.19}{0.17}$	$\frac{0.18}{0.13}$	$\begin{array}{c c} 0.17 \\ 0.13 \end{array}$	$\substack{0.11\\0.10}$	$\substack{0.11\\0.08}$	$0.152 \\ 0.122$
Black Oak	9-16 5-8	$\substack{0.21\\0.17}$	$\begin{array}{c} 0.16 \\ 0.16 \end{array}$	$\begin{bmatrix} 0.17 \\ 0.12 \end{bmatrix}$	$\frac{0.11}{0.08}$	$\substack{0.06\\0.09}$	$0.142 \\ 0.124$
Red Oak	9-16 5-8	$\begin{array}{c} 0.21 \\ 0.14 \end{array}$	$\begin{array}{c} 0.15 \\ 0.14 \end{array}$	0.14 0.11	$\begin{smallmatrix}0.11\\0.14\end{smallmatrix}$	$\substack{0.13\\0.08}$	$0.148 \\ 0.122$
Ash	9-16 5-8	$\begin{smallmatrix}0.23\\0.18\end{smallmatrix}$	$\begin{array}{c} 0.18 \\ 0.15 \end{array}$	$\begin{array}{c} 0.15 \\ 0.14 \end{array}$	$\begin{bmatrix} 0.12 \\ 0.16 \end{bmatrix}$	$\begin{array}{c} 0.10 \\ 0.10 \end{array}$	$0.156 \\ 0.146$
Elm	9-16 5-8	$\begin{array}{c} 0.22 \\ 0.21 \end{array}$	$\begin{array}{c} 0.11 \\ 0.14 \end{array}$	$\begin{array}{c} 0.12 \\ 0.13 \end{array}$	$\begin{smallmatrix}0.13\\0.11\end{smallmatrix}$	$\substack{0.11\\0.11}$	$\begin{array}{c} 0.138 \\ 0.140 \end{array}$
Beech	9-16 5-8	$\substack{0.25\\0.14}$	$\begin{bmatrix} 0.16 \\ 0.11 \end{bmatrix}$	$\begin{array}{c} 0.17 \\ 0.10 \end{array}$	$\begin{bmatrix} 0.13 \\ 0.10 \end{bmatrix}$	$\begin{array}{c} 0.13 \\ 0.10 \end{array}$	$0.168 \\ 0.110$
Poplar	9-16 5-8	$\begin{array}{c} 0.27 \\ 0.16 \end{array}$	$0.14 \\ 0.18$	$\begin{smallmatrix}0.15\\0.09\end{smallmatrix}$	$\substack{0.14\\0.10}$	$\substack{0.12\\0.11}$	$rac{0.164}{0.128}$
Chestnut	9-16 5-8	$0.32 \\ 0.22$	$\begin{array}{c} 0.26 \\ 0.19 \end{array}$	$0.25 \\ 0.20$	$\begin{array}{c} 0.17 \\ 0.18 \end{array}$	$\substack{0.23\\0.14}$	$\begin{array}{c} 0.246 \\ 0.186 \end{array}$
Sweet Gum	9-16 5-8	$\begin{smallmatrix}0.28\\0.16\end{smallmatrix}$	$\begin{array}{c} 0.21 \\ 0.18 \end{array}$	$\begin{array}{c} 0.17 \\ 0.13 \end{array}$	$\begin{smallmatrix}0.15\\0.12\end{smallmatrix}$	$\substack{0.15\\0.12}$	$0.192 \\ 0.142$
Loblolly Pine	9-16 5-8	$\frac{0.22}{0.18}$	$\begin{smallmatrix}0.14\\0.12\end{smallmatrix}$	0.18 0.13	$\begin{smallmatrix}0.11\\0.13\end{smallmatrix}$	$\substack{0.04\\0.09}$	$0.148 \\ 0.128$

TABLE XXIV
DETAILED RESULTS OF IMPACT TESTS OF SCREW SPIKES

<i>(7)</i> 1 2	1	Total Lateral Movement of Spike, in Inches							
Kind of Tie			Nu	mber of B	Blows				
		1	2	3	4	5			
White Oak		0.09	0.16	0.23	0.30	0.38			
		.10 .07	.20	.24 .21	.32 .28	.41			
	Av.	0.09	0.17	0.23	0.30	0.40			
Black Oak		0.11	0.21	0.26	0.36	0.40			
		.10 .11	.19 .18	.25 .24	.33 .31	.44			
,	A v .	0.11	0.19	0.25	0.33	0.42			
Watan Oak	11.								
Water Oak		$0.09 \\11$	$0.13 \\ .17$	0.22	0.33 .34	$0.42 \\ 0.45$			
		.08	.18	.26	.35	.41			
	Av.	0.09	0.16	0.24	0.34	0.43			
Red Oak		0.12	0.21	0.35	0.45	0.54			
		.11 .17	.20 .23	.34 .33	. 44 . 46	$\frac{.52}{.52}$			
	Αv	0.13	0.21	0.34	0.45	0.53			
Ash		0.17	0.23	0.34	0.47	0.54			
		.18	.27	.35	.46	.55			
		. 12	.25	.33	. 45	. 53			
	Av.	0.16	0.25	0.34	0.46	0.54			
Elm		0.11	0.30	0.38	0.48	0.56			
		. 12	. 200	.37	.49	.53			
		.21 .25	.40 .40	.58 .52	.85 $.63$. 96 . 75			
1	Av.	0.17	0,33	$\overline{0.46}$	0.61	0.70			
Beech		0.10	0.18	0.23	0.28	0.36			
		.11	.18	.26	.31	.37			
1		.12	. 19	.25	.32	.42			
1		.16	.28	.38	.49	.58			
1	- 1	$.17 \\ .20$.31 .40	.52 .52	$\frac{.58}{.60}$	$\frac{.65}{.68}$			
	Av.	0.14	0.26	0.36	0.43	0.51			

TABLE XXIV—Concluded

		Total Lateral Movement of Spike, in Inches							
Kind of Tie			Nu	ımber of B	lows				
		1	2	3	4	5			
Poplar		0.09	0.16	0.32	0.60	0.78			
		.10	.16	.27	.40	.61			
		.09	.15	.34	.39	.49			
		. 19 . 18	.35	$\frac{.44}{.53}$.61	. 78			
		.18	$.40 \\ .27$.5.5	.62	. 75			
		.16	.30	.39	.63 .51	. 71 . 62			
		.10	/		. +) 1	.62			
	Av.	0.17	0.24	0.38	0.54	0.67			
Chestnut		0.16	0.23	0.38	0.43	0.50			
		.13	. 22	.37	.52	.56			
		. 12	.22 .24 .31	.33	.42	.51			
		.20	.31	.39	.51	. 59			
		. 19	.28	.39	.48	. 65			
	Av.	0.16	0.26	0.37	0.47	0.56			
Sweet Gum		0.20	0.38	0.52	0.68	0.78			
		.26	.46	.60	.71	. 79			
		.30	.48	.51	.74	.8g			
		.18	.32	.40	.49	.61			
		.25	.38	.47	.59	.68			
	Av.	0.24	0.40	0.50	0.64	0.74			
Loblolly Pine		0.20	0.41	0.62	0.72	0.88			
		.21	.39	.58	.69	.78			
		.21 .23	.32	.48	.64	.81			
		. 23	.37	. 56	.66	.80			
	Av.	0.21	0.37	0.56	0.68	0.82			

Table XXVII is given to facilitate the comparison of the relative lateral resistance of ordinary and screw spikes. The data were collected from Tables XXIII and XXVI. The average total deflection of the screw spike in the first seven timbers is 0.50 inch which is 0.15 inch less than that of the 5-8-inch ordinary spike and 0.25 inch less than that of the 9-16-inch ordinary spike. In the

TABLE XXV

RELATION BETWEEN THE DEPTH OF PENETRATION AND THE RESISTANCE
TO LATERAL DISPLACEMENT

		Deflec	tion in In	ches		e.
Depth of		Num	ber of Blo	ows		Average for Five Blows
Insertion	1	2	3	4	5	AV L
3 in.	0.24	0.46	0.64	0.78	0.87	
0 111.		.41	. 55	. 69	.84	
	. <u>22</u> . 24	.43	.67	. 76	.98	
Av.	0.23	0.43	0.62	0.73	0.90	0.582
3 1-2 in.	0.24	0.46	0.62	0.77	0.80	
	.24	.39	. 53	.69	.80	
	.19	.34	.49	.63	. 74	
Av.	0.22	0.40	0.55	0.70	0.78	0.530
4 in.	.20	0.39	0.49	0.60	0.71	
,	.21	.40	.57	.63	.77	
	23	.33	.57	.62	.72	
Av.	0.21	0.37	0.54	0.62	0.73	0.494
4 1-2 in.	0.24	0.30	0.50	0.65	0.74	
1 12 1111	.20	.34	.53	.68	. 73	
	.20 .22	.36	.54	.62	.79	
Av.	0.22	0.33	0.52	0.65	0.75	0.494
5 in.	0.22	0.38	0.49	0.61	0.71	
	.23	.40	. 55	.67	. 75	
	. 15	.34	.48	.57	.69	
Λv.	0,20	0.34	0.51	0.62	0.72	0.478

last four kinds of timber the average total deflection of the screw spike was 0.70 inch, which is practically the same as that of the 5-8-inch ordinary spike, but which is 0.24 inch less than that of 9-16-inch common spike. The results in the last two columns of Table XXVII show that the screw spike is superior to the 9-16-inch ordinary spike in all but two kinds of timber, and that the screw spike has a higher efficiency than the 5-8-inch ordinary spike in all but three kinds of timber.

TABLE XXVI
.
LATERAL MOVEMENT OF THE SCREW SPIKE FOR EACH BLOW

Kind of Tie		rage ve- nt, hes				
	1	2	3	1	5	. Ave Mo mel
White Oak	0.09	0.08	0.05	0.07	0.10	0.078
Black Oak	0.11	0.08	0.06	0.07	0.09	0.082
Water Oak	0.09	0.07	0.08	0.10	0.09	0.086
Red Oak	0.13	0.08	0.13	0.12	0.08	0.108
Ash	0.16	0.09	0.09	0.12	0.08	0.108
Elm	0.17	0.16	0.13	0.15	0.09	0.140
Beech	0.14	$0.1\overline{2}$	0.10	0.07	0.08	0.102
Poplar	0.17	0.07	0.12	0.16	0.13	0.130
Chestnut	$\bar{0}.16$	0.10	0.11	0.10	0.09	0.132
Sweet Gum	0.24	0.16	0.10	0.14	0.10	0.148
Loblolly Pine	0.21	0.13	0.19	0.12	0.14	0.154

The last two columns in Table XXVII show that the ordinary spike was usually displaced more than the screw spike by each blow. This should be expected since the common spike was smaller in cross section than the screw spike, and also since the latter had better bond with the wood. While the use of the screw spike is recommended to the American railroads, it is thought that the practice of Bavarian railroads could be followed to ad-These roads have adopted the use of the screw spike on the gage side of the rail to resist overturning, but use two square spikes on the outside to resist lateral movement. This practice has been found to give very beneficial results. The figures in the last two columns of Table XXVII show that the lateral resistance of two ordinary spikes is considerably more than that of one screw spike, and therefore if two spikes are considered as resisting the impact instead of one, the results will be in favor of the ordinary spikes. Not only is this true, but the first cost for spikes would be reduced, since the screw spike costs about four cents at

TABLE XXVII
RELATIVE LATERAL DISPLACEMENT OF ORDINARY AND SCREW SPIKES

Kind of Tie	Movement of Ordi- nary Spikes		Average Movement of Screw Spike,	Average Movement of Ordinary Spikes in Terms of per cent of Move- ment of Screw Spike		
	9-16 in.	5-8 in.	inches	9-16 in.	5-8 in.	
White Oak	0.136	0.118	0.078	175	152	
Black Oak	0.152	0.122	0.082	186	149	
Water Oak	0.142	0.124	0.086	165	145	
Red Oak	0.148	0.122	0.108	137	115	
Ash	0.156	0.146	0.108	144	135	
Elm	0.138	0.140	0.140	99	100	
Beech	0.168	0.110	0.102	165	108	
Poplar	0.164	0.128	0.130	126	• 99	
Chestnut	0.246	0.186	0.132	186	141	
Sweet Gum	0.192	0.142	0.148	129	96	
Loblolly Pine	0.148	0.128	0.154	96	83	

the present time, whereas the ordinary spike costs much less. The maintenance cost of either form of spike is almost negligible.

An item of interest which is properly beyond the limits of this article is that of the ninety screw spikes used in making these tests only two were broken. One was broken under a tension of 14.000 pounds, the break being caused by an incipient crack just under the head of the spike. The other spike broke under the fourth blow of the hammer, this break being due to uncombined graphite in the metal. As the spikes were obtained from different sources, and were of different manufacture, it is thought that the test was sufficiently severe to show that the screw spike, as manufactured at present, will successfully withstand the shocks of passing trains. As the spikes were used several times during the tests, the percentage of spikes broken is very low.

SUMMARY OF RESULTS

- (1) The maximum resistance to direct pull varies from 6,000 to 14,000 pounds for screw spikes, from 3,000 to 8,000 pounds for ordinary spikes when driven into untreated timbers, and from 4,000 to 9,000 pounds for ordinary spikes when driven into treated timbers.
- (2) The direct pull required to withdraw ordinary spikes 1-8-inch varies from 2,000 to 3,500 pounds for untreated timbers, and from 2,500 to 3,500 pounds for treated timbers.
- (3) The direct pull required to withdraw ordinary spikes 1-4-inch varies from 3,000 to 5,400 pounds for untreated timbers and from 3,800 to 5,900 pounds for treated timbers.
- (4) Timbers having loose fiber structures have lower resistances to direct pull than timbers having compact fiber structures.
- (5) The amount of withdrawal which must occur for ordinary spikes to develop the maximum resistance is less for soft woods than for hard woods.
- (6) Spikes driven into treated timber offer a greater resistance to direct pull than spikes in untreated timbers, and the difference between this resistance for treated and untreated timbers is greater for soft woods than for hard woods.
- (7) The difference in the resistance to direct pull for the different sized spikes in use (9-16 inch, 19-32 inch, and 5-8-inch) is very small.
- (8) The resistance of ordinary spikes to direct pull varies directly as the depth of penetration, neglecting the tapering point.
- (9) Blunt-pointed and bevel-pointed spikes have a slightly greater resistance to direct pull than chisel-pointed spikes.
- (10) For withdrawals less than 1-4 inch, ordinary spikes which are driven into bored holes have a little greater resistance to direct pull than spikes driven in the ordinary way.
- (11) The resistance to direct pull for re-driven spikes is from 60 to 80 per cent of the resistance of newly driven spikes.
- (12) The efficiency of screw spikes to resist withdrawal is nearly twice as great as that of common spikes.
- (13) The resistance of 5-8-inch spikes to lateral displacement is slightly greater than that of 9-16-inch spikes.
 - (14) The resistance to lateral displacement increases with

the depth of penetration, but the increase is negligible for depths of penetration greater than 4 inches.

(15) Screw spikes are more efficient than ordinary spikes in resisting lateral displacement.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by A. N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, series of 1905, by A. N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by A. P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by R. I. Webber. 1906.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

BULLETIN NO. 7

AUGUST 1906

FUEL TESTS WITH ILLINOIS COALS

ВΥ

L. P. Breckenridge, . . . Professor of Mechanical Engineering S. W. Parr, Professor of Applied Chemistry H. B. Dirks, Assistant in Mechanical Technology

During the last ten years a considerable number of boiler trials have been made at the University of Illinois. Many of these have been made under the boilers in the power plant of the University. Still other trials have been made with boilers in use at the plants in neighboring cities. In some instances experts representing several special stoker and furnace companies have been present at these trials and operated the devices in which they were interested. For the most part, however, the tests have been made in order to instruct students in the usual methods of boiler testing, and the boilers themselves have been operated under such usual conditions as happened to obtain. In some of the earlier tests all of the data relating to the heating value of the coals were not obtained, and for such tests several items depending on these values are necessarily omitted. While in most cases these tests have not been made with the object of making a comparison of coals or of appliances, nevertheless, it has seemed wise to publish the results obtained and also to exhibit these results side by side as they apply to various forms of furnaces, types of boilers or kinds of coal. It is entirely probable that the results obtained are equal to those generally obtained under the varying conditions of plants using Illinois coals. Many more boiler trials have been

made than are here reported, but only such are included in this report as appear to be free from any indications of errors in methods or results. For the purpose of this bulletin all of the results of the tests have been carefully rechecked.

The work of the department of Applied Chemistry has not only supplemented the work relating to boiler trials by furnishing the composition and heating value of the coals used in these trials, but it has also examined and tested a large number of Illinois coals not yet tested under boilers. In connection with this subject this department has perfected several new devices very useful to chemists and engineers, designed for making the ordinary determinations of the heating values and composition of coals. The Parr calorimeter, one of these devices, has found ready sale among the operators of many of the power plants of the country as well as among the consulting chemists and fuel experts. expected that a separate bulletin will soon be published setting forth in detail many of the new methods which have been developed by this department, and giving the complete results of its investigations relating to Illinois coals. It is hoped that the tables of the chemical composition and heating values of Illinois coals, which form a part of this bulletin, will furnish engineers and manufacturers with useful information in this important field.

With the above somewhat general statement in explanation of the character of this bulletin, it may now be advisable to refer more in detail to the special features which are intended to be brought out in the following pages.

BOILER TESTING

For many years engineers have been making "boiler tests" with the object of finding out how many pounds of water in the boiler could be evaporated with one pound of coal. In order that the results of the tests might be comparable, it became evident that some common method of making tests should be agreed upon and also that the tests made should be reported in a uniform manner. A committee of the American Society of Mechanical Engineers recommended to that Society in 1899 a method of testing boilers and also a method of reporting such tests. These methods have been largely used since their recommendation at that time. The many expert engineers who are to-day so familiar with these methods will probably not be interested in the pages

immediately following. Having in mind the owners and operators of power plants as well as manufacturers and young technical students, it has seemed worth while to present somewhat in detail the following subjects:

- (1) Observations to be made during a boiler trial.
- (2) Appliances used during a boiler trial.
- (3) Form of report, methods of operation and explanation of computations.

I OBSERVATIONS TO BE MADE DURING A BOILER TRIAL

In the report of the committee of the American Society of Mechanical Engineers, ¹ 1899, on the revision of the standard code for conducting steam boiler trials, two forms of report are submitted, a Complete Form and a Short Form. These are both shown in Section III, page 21. The observations necessary to complete either of these forms are given in Table I. An explanation of some of the methods used in obtaining these observations and the forms used in recording them follow.

COAL, WATER AND ASH

The two fundamental points to be determined in every test of a steam boiler or furnace, regardless of the special or specific purpose of such test, are the pounds of water evaporated by the boiler and the pounds of fuel necessary to produce such evaporation. To determine these two points it is necessary to know the number of pounds of water fed into the boiler and the pounds of fuel fed into the furnace. The possibility of an error in either throws doubt upon all the indications of the test. Each item, therefore, should be ascertained in a manner that proves its own correctness, and the records must be such that if errors are made, they will be clearly exposed.

Coal.—The weight of the coal is best obtained by means of a barrow or car with a capacity of 500 pounds. The car should be loaded uniformly each time and weighed on platform scales in front of the furnace. The total weight and the time of weighing should be recorded in the log. From the car the coal should be fired directly into the furnace and the weight of the separate

¹ See Trans. A. S. M. E, Vol. XXI, p. 34,

TABLE I
OBSERVATIONS TO BE MADE DURING A BOILER TRIAL

Short Trial	Standard Trial	Observations
1	1	Weight of water fed to boiler
2	2	Weight of coal as fired (sample)
3	3	Weight of ash and refuse (sample)
4	4	Moisture in coal
5	5	Steam pressure by gage
6	6	Force of draft: between damper and boiler
7	7	in furnace
•	i s	in ash-pit
8	9	Temperature: of feed water entering boiler
9	10	of escaping gases from boiler
	ii	of external air
	12	of tire-room
	13	of steam
	ii	of feed water entering heater
	15	of feed water entering economizer
	16	of escaping gases from economizer
	17	of gases in furnace
10	18	Moisture in steam by calorimeter
, ,	19	Analysis of flue gases
	20	Smoke observations
	21	Average thickness of fire, intervals of firing

charges and time of firing entered in the log. After the entire car-load of coal has been fired, the weight of the empty car and the time should be recorded. The sum of the separate charges must then be equal to the difference in weight of the car when loaded and empty. A convenient form for recording the coal fired is shown in Form I. From each car-load of coal fired an average sample of coal should be taken for moisture determination and chemical analysis. The sample of course must be taken before the coal is weighed and should be about two per cent of every carload, or about ten pounds. At the end of the test these samples from the different cars are mixed, pounded into small sizes, and then quartered until enough is left to fill a two-quart jar. The jar should then be sealed, to prevent loss of moisture, and sent to the chemist.

Feed Water.—The water fed to the boiler should be both weighed and measured, as dependence upon measuring alone will introduce errors due to uneven filling and variations in temperature; for the latter, however, corrections may be made. The measuring tank or preferably two tanks should be set on scales in such a position that the water can be delivered directly into the suction or settling tank as shown in Fig. 1. The measuring tanks should be filled and emptied alternately, the time of each weighing to be noted when the tank is empty, the tanks being designated as No. 1 and No. 2. In no case should a simple tally be recorded for

Fig. 1 Arrangement of Tanks and Scale for Measuring Feed-water Fed to Boiler

each tankful, as the liability of error is thereby increased. When the boiler tested is of small capacity, one weighing tank will be sufficient. A convenient form for recording the feed water measurements is shown in Form II.

To guard against the loss of all data, due to accidents, it is best to have coincident records of the water and coal fed to boiler. For this reason it is well to have a float in the suction or settling tank, and each time an entire car-load of coal has been fired, the time on the feed water log should be recorded, also the height of water in the boiler and in the settling tank. This will also provide a check on the uniformity of operations.

Ash.—The ashes and refuse should be weighed dry. The time of each raking of the fire and cleaning of the ash-pit and the weight

FORM I

			1 0 1 1 1 1	
	L	OG OF BOILE	ER TRIAL NO) ,,,,,
Made a	ıt			
Date				By
Boiler	No			Fireman
			COAL SHEET	
TIME	COAL DELIVERED TO SCALES POUNDS	COAL ON SCALES AFTER EACH FIRING POUNDS	COAL FIRED EACH TIME POUNDS	FUEL
				Moist coal consumed, pounds
				Moisture in coal, per cent
				Dry coal consumed, pounds
				Wood consumed, pounds
		,		Coal equivalent of wood (=wood x-4) b Total dry coal consumed including wood equivalent, pounds
				Total dry refuse, pounds
				Total dry refuse, per cent
				Total combustible
				DESCRIPTION OF FUEL
				Commercial Name
				Commercialsize
				Lumps, per cent
				Small coal, per cent
				Slack, per cent
				Appearance of coal J. Record the times when fires are cleaned

				FORM II						
	LOG OF BOILER TRIAL NO									
Made	at		· · · · · ·							
Date					Ву					
Boile	r No				Firem	an				
	FEED WATER SHEET									
TIME	WATER DELIVERED TO FEED TANK POUNDS	TEMP. OF WATER IN TANK	TIME	WATER DELIVERED TO FEED TANK POUNDS	TEMP. OF WATER IN TANK	REMAI	RKS			
						Test began a	at			
						o'eloek	М.			
*****						Date				
					******	Test closed a				
•••••						oʻclock	М,			
••••						Date,				
••••										
••••										
••••										
			· · · · · · · · · · · · · · · · · · ·							
•										
• • • • • • • • • • • • • • • • • • • •				:						
	1									

FORM III

		I	OG OF	BOILE	R TRIA	L NO.				
Made	at									
Date.							Ву			
Boile	Boiler No Fireman									
	PR	ESSUR	ES	TEMPERATURES					S.R.	
TIME	STEAM	DRAFT	BAROM- ETER	BOILER	EXTERNAL AIR	FLUE	FEED WATER	STEAM	HEIGHT OF WATER IN GLASS GAGE	REMARKS
										Test began at
										o'clock M.
										Date,
										Test closed at
										o'clock M.
				1						
					i 					

				FOI	RM IV				
		LO	OG OF B	OILER TI	RÍAL N	о			
Made	e at		· · · · · · ·						
Date				· · · · · ·		By	·		
Boile	r No.					Fi	reman		
	CA	LORIME		1	RAFT			¥	
TIME	GAGE	STEAM DISCHARGE OR CALORI- METER TEMP.	WATER SEPARATED OR CALORE- METER PRESSURE	BETWEEN DAMPER AND BOILER	IN FURNACE	IN ANII PIT	HEIGHT OF WATER IN TANK	HEIGHT OF WATER IN GLASS GAGE	REMARKS
••••									
						1			
							·		

FORM V

	LOG OF BOILER TRIAL NO								
Made	at								
Date By									
Boile	r No.			Fireman					
FLUE-GAS SHEET									
TIME	CO ₂	${\rm O}_2$	СО	HYDROGEN AND HYDROCAR- BONS	TOTAL	REMARKS			
		'							
					1				
		1			1	The state of the s			

of ash removed should be recorded in the same log as the weight of coal, Form I. A representative sample of ash should be taken at every cleaning and saved in order to determine the principal characteristics of the ash, a proximate analysis giving the actual amount of incombustible material being made of each sample.

GENERAL OBSERVATIONS

Although the main points to be determined in a boiler trial are the weight of water evaporated and the amount of fuel burned, the general observations of pressures, temperatures, etc., under which this evaporation takes place and which tend to secure the accuracy of these two measurements must not be overlooked. It is necessary that all available data be obtained and recorded in the log for use in making comparisons. The value of the observation will depend primarily upon its correctness and the greatest care should be exercised in obtaining and recording observations. Too often the observer is guided by personal opinion and former readings, and the value of the observation as an indication of some specific occurrence is entirely lost.

All general observations should, as nearly as possible, be taken at the same instant, the exact time in all cases being recorded in the log. As a rule all observations should be recorded in duplicate, this being necessary especially where several persons are concerned with the results. Duplicates are easily obtained by placing carbon copying paper below the original log. The duplicates are then obtained as the results are originally recorded. Forms for recording the general observations are shown in Forms III to V.

For convenience it is best to have the log sheets tacked to a board, which may be suspended on the wall at some convenient point. This avoids the accumulation of dust and dirt when the sheets are lying around unattached in a horizontal position.

Sufficient time should elapse between temperature measurements if only one thermometer serves for taking several observations, in order to allow the thermometer to assume the new temperature. Where the range of temperature is large, however, this should never be practised, and it will be preferable in most cases to take only the most important of the readings, being certain of its correctness.

Determinations of the moisture in the steam are necessary to make corrections in the amount of water evaporated, and should be made at regular intervals and entered in the log.

The analysis of the flue gases is important as it indicates to some extent the progress of combustion in the furnace. Notwithstanding, the general use of this analysis is still very limited, although in some instances a record of the CO₂ in the flue gases is regularly kept. The value of the analysis consists in its being an indication of the amount of excess air being used. The flue gas to be analyzed should be an average sample taken continuously over a considerable period of time. This is necessary as the composition of the gases varies from minute to minute. Under ordinary conditions an analysis every half-hour is sufficient; special readings, however, may be taken more often. The apparatus for sampling will be explained in the following section.

II APPLIANCES USED DURING A BOILER TRIAL

Since the corrections to be applied to the weights of fuel and water fed to the boiler are dependent on the general observations, the appliances necessary for their determination must be considered. The correctness of the observations will depend primarily on the instruments used and their location. In the following paragraphs these are discussed to some extent.

DESCRIPTION OF APPLIANCES

A list of the apparatus necessary to take the observations given in Section I is shown in Table II. The apparatus required

 $\begin{tabular}{ll} TABLE II \\ Appliances for Observations Given in Table I \\ \end{tabular}$

Short Trial	Standard Trial	Appliances
1	1	Measuring and suction tanks for measuring water
2	2	Platform scales for weighing water
3	3	Car or barrow for handling coal
4	4	Platform seales for weighing coal
5	5	Standard calibrated steam gage
6	6	Draft gages, U tubes or otherwise
7	7	Thermometers according to observations made
8	8	Plue gas thermometer
-	9	Pyrometer for furnace temperatures
9	10	Throttling or separating calorimeter
•	11	Orsat apparatus for flue gas analysis
	12	Smoke charts

in the determination of the weights of coal and water was discussed in the previous section and needs no explanation other than that the scales used should be calibrated so that a correction may be applied if necessary. The suction tank should also be calibrated so that the contents of the tank are known for all positions of the float.

For measurement of the steam pressure an ordinary steam gage calibrated by comparison with a standard gage or other means will suffice. A good recording steam gage carefully adjusted and compared at frequent intervals with the steam gage provides a good check. Various forms of draft gages are used to determine the draft pressure. The ordinary U tube is the most common form and gives very satisfactory results. A gage of the type shown in Fig. 2 has been extensively used at the University and gives results which can be read with greater accuracy than the U tube.

Fig. 2 Draft Gage

In the choice of thermometers care should be taken that the range of readings will fall within that of the thermometer. Where thermometers are likely to be handled constantly, a metal casing is desirable. Where temperatures within a pipe are required, as in steam or water pipes, thermometer cups, as shown in Fig. 3 will need to be used.

Either mercury or a heavy cylinder oil may be used in these cups; the former, however, is preferable both for cleanliness and accuracy. For the measurement of flue gas temperatures a special mercury thermometer is used, reading up to 1000° F., with nitrogen compressed above the mercury.

The thermometer should be calibrated from time to time to insure its correctness. The location of the thermometer will be discussed in the following section.

Fig. 3 Thermometer Cup. Used to Obtain Temperatures
Within a Pipe

The measurement of furnace temperatures is very difficult, and no especial form of pyrometer has proved to be entirely satisfactory. The Wanner optical pyrometer is being used at the Government Coal-Testing Plant at St. Louis, and seems to be giving fair results.

FIG. 4 SAMPLING NOZZLE FOR STEAM CALORIMETER

For determining the moisture in the steam, as long as the moisture remains below three per cent, any one of several forms of calorimeters may be used with good results. Above this point, all calorimeters are inaccurate, owing to the inability to obtain an average sample of the steam. The sampling nozzle, Fig. 4, should be made of $\frac{1}{2}$ -in. pipe, and should extend across the diameter of

the steam pipe to within half an inch of the opposite side, being closed at the end, and perforated with not less than twenty $\frac{1}{8}$ -in. holes equally distributed along and around its cylindrical surface, but none of these holes should be nearer than $\frac{1}{2}$ inch to the inner side of the steam pipe. The calorimeter and pipe leading to it should be well covered with felt. When a separating calorimeter with attached gage for determining the amount of steam passing through the calorimeter is used, such gage should be calibrated by taking readings over twenty minutes in length, and condensing the steam passing through the calorimeter during that time, the weight of condensed steam being compared with the indication on the gage. This should be repeated for the entire range of the gage. Superheating should be determined by means of a thermometer placed in a mercury well, inserted in the steam pipe.

Fig. 5 Flue Gas Sampler, Advised in the A. S. M. E. Standard Code for Conducting Steam Boiler Trials

For determining the composition of the flue gases a sampling tube for drawing the sample of gas from the flue is necessary, also apparatus for analyzing the gas. There has been a great diversity of opinion regarding the method to be used in obtaining the

FIG. 6 ORSAT APPARATUS FOR ANALYZING FLUE GAS

sample, due probably to the varying conditions in different boiler settings and at different points in the same flue. In the trials carried on by the United States Geological Survey at St. Louis, both the sampler advised in the A. S. M. E. code, Fig. 5, and an ordinary pipe closed at the end and perforated with holes equally spaced along its entire length have been used. The results indicate the advisability of using the latter, and it has been adopted for use in all future trials. To get a uniform flow through all the perforations, they are made of such size and number that the sum of the areas of the perforations is less than the cross sectional area of the sampling tube. The Orsat apparatus is the one mostly used for analyzing the flue gases, as it is simple in operation, and with a little care gives reliable results. To insure the

Fig. 7 The Ringelman Scale for Grading the Density of Smoke

total absorption of the various gases, care must be taken that the absorbing solutions are in good condition, and they should therefore be renewed from time to time. If the flue gas is to be collected over water, a saturated salt solution should be used, as water has a tendency to retain some of the CO₂ when a considerable quantity is present, and to give it up later when there is a smaller quantity of this gas, thus causing errors in the results. Fig. 6 shows the type of Orsat apparatus generally used.

If determinations of the relative density of the smoke are to be made during the trial, the Ringelman smoke charts shown in Fig. 7 may conveniently be used. These are placed in a horizontal row about fifty feet from the observer, and as nearly as convenient in line with the chimney. At this distance the lines become invisible and the cards appear as different shades of gray. The observer by glancing from the chimney to the cards determines which card most nearly corresponds to the color of the smoke and makes a record accordingly.

LOCATION OF APPLIANCES

Of prime importance in taking observations is the location of the apparatus used. On account of the variation in different types of boiler settings it will always be necessary to describe clearly in the report of the test the location of all apparatus. This is best done by indicating on drawings or diagrams their position on the setting.

Feed Water Temperature.—As the methods used in supplying feed water to a boiler vary, so does also the location of the thermometer for the temperature measurement of such feed water. If an injector be used, it should receive steam directly through a covered pipe from the boiler being tested, and the temperature of the feed water should in this case be taken from the supply tank furnishing the water to the injector. It is here assumed that the heat of the steam operating the injector is returned to the boiler from which it was taken, so that the supply pipe between the boiler and injector, if long, should be covered to prevent radiation. If a pump be used for feeding the boiler, the temperature of the feed water should be taken by a thermometer in the discharge pipe as near the boiler as possible. If this is done, the water may or may not be pumped through a feed water heater after leaving the pump.

It is always essential that the heat carried into the boiler by the feed water should be known, and it is well to record its temperature before and after it passes through any kind of heater or economizer in order that the effect of such device may be given proper credit.

The location of thermometers for the determination of boiler room and external air temperatures should be such that drafts or heat rays will be avoided. The flue gas temperature should be taken at a point where the gases leave the boiler and pass into the breeching on their way to the stack. As the temperature in a transverse section of the flue will vary, several readings should be taken at different points of the same section. Observations of the draft are usually made at several points of the setting. The one between the damper and the boiler is, however, the more important, and should be taken at a point close to the flue gas thermometer or possibly in the same transverse section. of draft in furnace and ash-pit may be taken through the firing and ash-pit doors, but is preferably taken through holes left in the side walls. The calorimeter and the thermometer cup for determining superheat should be attached to the vertical steam pipe as it leaves the boiler. The sampling tube for the flue gas was explained in the last section. It should be inserted in the flue at the point where the flue gas temperature and draft are obtained.

III REPORT OF THE TRIAL

Forms.—The data and results of a boiler trial should be reported in the manner given in Form VI, which is the complete form advised by the Boiler Test Committee of the American Society of Mechanical Engineers, Code of 1899. The items printed in italics correspond to the items in the "Short Form" of report recommended for commercial tests. For more elaborate trials the code recommends that the full log of the trial be shown graphically by means of a chart, Fig. 8.

FORM VI

DATA AND RESULTS OF EVAPORATIVE TESTS

Arranged in accordance with the Complete Form advised by the Boiler Test Committee of the American Society of Mechanical Engineers. Code of 1899.

American Bociety of International Engineers, Code of 1668.	
Made by of boi determine	
Principal conditions governing the trial.	
Kind of fuel* Kind of furnace. State of the weather Method of starting and stopping the test ("standard" or "alt 1. Date of trial 2. Duration of trial	ernate")
Dimensions and Proportions	
(A complete description of the boiler and drawings of the same	e if of unusual type, should be
given on an annexed sheet) 3. Grate surface	in. in. per cent sq. ft. sq. ft. —to 1
Average Pressures	
 Steam pressure by gage. Force of draft between damper and boiler. Force of draft in furnace. Force of draft or blast in ash pit. 	in. of water
Average Temperatures	
15. Of external air. 16. Of fireroom. 17. Of steam. 18. Of feed water entering heater. 19. Of feed water entering economizer. 20. Of feed water entering boiler. 21. Of escaping gases from boiler. 22. Of escaping gases from economizer.	deg. deg. deg. deg. deg. deg.
Fuei	
23. Size and condition 24. Weight of wood used in lighting fire 25. Weight of coal as fired 26. Percentage of moisture in coal 27. Total weight of dry coal consumed 28. Total ash and refuse 29. Quality of ash and refuse 30. Total combustible consumed 31. Percentage of ash and refuse in dry coal	
Proximate Analysis of Coal	
32. Fixed carbon. 33. Volatile matter 34. Moisture. 35. Ash.	Of Coal. Of Combustible, per cent per cent per cent per cent per cent
36. Sulphur, separately determined.	0 per cent 100 per cent per cent per cent

^{*}The items printed in italics correspond to the items in the "Short Form of Code."

		nbustible.
37. 38. 39. 40. 41. 42.	Hydrogen (H) per cent per Oxygen (O) per cent per Nitrogen (N) per cent per	cent cent cent cent
43.	Moisture in sample of coal as received	per cent per cent
	Analysis of Ash and Refuse	
44. 45.	Carbon Earthy matter	per cent per cent
	Fuel per Hour	
46. 47. 48. 49.	Dry coal consumed per hour Combustible consumed per hour Dry coal per square foot of grate surface per hour. Combustible per square foot of water-heating surface per hour.	lbs. lbs. lbs. lbs.
	Calorific Value of $Foldsymbol{u}\epsilon t$	
50. 51. 52. 53.	Calorific ralue by oxygen calorimeter, per lb, of dry coal. Calorific value by oxygen calorimeter, per lb, of combustible. Calorific value by analysis, per lb of dry coal. Calorific value by analysis, per lb of combustible.	B. T. U B. T. U B. T. U B. T. U
	Quality of Steam	
54. 55. 56.	Percentage of moisture in steam	per cent deg.
	Water	
57. 58. 59. 60. 61.	Total weight of water fed to boiler. Equivalent water fed to boiler from and at 212 degrees Water actually evaporated, corrected for quality of steam. Pactor of evaporation. Equivalent water evaporated into dry steam from and at 212 degrees. (Item 59 × Item 60.)	lbs. lbs. lbs. lbs.
	Water per Hour	
62. 63. 64.	Water eraporated per hour, corrected for quality of steam	lbs. lbs.
	Horse-Power	
6 5. 66. 67.	Horse-power developed. (34½ lbs of water eraporated per hour into dry steam from and at 212 degrees, equals one horse-power.). Builders' rated horse-power Percentage of builders' rated horse-power developed	H. P. H. P. per cent
	Economic Results	
68.	Water apparently evaporated under actual conditions per pound of coal as fired. (Rem 57+Rem 25.). Equivalent evaporation from and at 212 degrees per pound of coal as fired.	lbs.
69. 70.	Equivalent evaporation from and at 212 degrees per pound of dry coal.	lbs.
71.	(Hem 61+Hem 27.) Equivalent evaporation from and at 212 degrees per pound of combustible. (Hem 61+Hem 30.) (If the equivalent evaporation, Items 69.70 and 71, is not corrected for the quality of steam, the fact should be stated.)	lbs.
	$E_{\it f}$ fiction cy	
72. 73.	Efficiency of the boiler; heat absorbed by the boiler per pound of combustible divided by the heat value of one pound of combustible	per cent

Cost of Eraporation

	Cocco, Diagramation	
4. 5. 6.	Cost of coal perton—lbs, delivered in boiler room	\$ \$ \$.
	Smoke Observations	
	Percentage of smoke as observed	per cent ounces cu. in.
	Methods of Firing	
). 1. 2.		
	Analyses of the Dry Gases	
5. 3.	Hydrogen and hydrocarbons	per eent
	HEAT BALANCE, OR DISTRIBUTION OF THE HEATING VALUE OF THE COMBITOTAL HEAT VALUE of 1 lb. of Combustible	STIBLE
	HEAT BALANCE, OR DISTRIBUTION OF THE HEATING VALUE OF THE COMBITOTAL HEAT VALUE of 1 lb. of Combustible	STIBLE
	Heat absorbed by the boiler = evaporation from and at 212 degrees per pound of combustible \times 965 7. Loss due to moisture in coal = per cent of moisture referred to combustible \pm 106 408 (\times 107 to the three boiler room, $T=$ that of the flue gases) Loss due to moisture formed by the burning of hydrogen = per cent of hydrogen to combustible \pm 106 \times 9 \times [(212 - t) \pm 966 \pm 0. 48 ($T-$ 212)] Loss due to moisture formed by the burning of hydrogen = per cent of hydrogen to combustible \pm 100 \times 9 \times [(212 - t) \pm 966 \pm 0. 48 ($T-$ 212)] Loss due to heat carried away in dry chimney gases = weight of gas per pound of combustible \times 0.24 \times ($T-$ t).	T. U.
*	Heat absorbed by the boiler = evaporation from and at 212 degrees per pound of combustible \times 955. 7. Loss due to moisture in coal = per cent of moisture referred to combustible \div 106 \times [$(212-t)+966+0$, 48 ($T-212$)] ($t=$ temperature of air in the boiler room, $T=$ that of the flue gases) Loss due to moisture formed by the burning of hydrogen = per cent of hydrogen to combustible \div 100 \times 9 \times [$(212-t)+966+0$, 48 ($T-212$)] Loss due to moisture formed by the burning of hydrogen = per cent of hydrogen to combustible \div 100 \times 9 \times [$(212-t)+966+0$, 48 ($T-212$)] Loss due to heat carried away in dry chimney gases = weight of gas per pound of combustible \times 0.24 \times ($T-t$). Loss due to incomplete combustion of carbon = $\frac{CO}{CO_2 + CO}$	T. U.
3.	HEAT BALANCE, OR DISTRIBUTION OF THE HEATING VALUE OF THE COMBITOTAL HEAT VALUE of 1 lb. of Combustible	T. U.

*The weight of gas per pound of carbon burned may be calculated from the gas analyses as follows:

 $11 \text{ CO}_2 + 80 + 7 \text{ CO} + (N)$ Dry gas per pound carbon = , in which CO2, CO, O, and N are the

percentages by volume of the several gases. As the sampling and analyses of the gases in the present state of the art are liable to considerable errors, the result of this calculation is usually only an approximate one. The heat balance itself is also only approximate for this reason as well as for the fact that it is not possible to determine accurately the percentage of unburned bydrogen or hydrogen for high reason. hydrogen or hydroearbons in the flue gases.

The weight of dry gas per pound of combustible is found by multiplying the dry gas per pound

the weight of dry gas per pound of combattible is folded, and dividing by 100.

*CO₂ and CO are respectively the percentage by volume of carbonic acid and carbonic oxide in the flue gases. The quantity 10.150 — Number of heat units generated by burning to carbonic acid one pound of carbon contained in carbonic oxide.

STARTING AND STOPPING THE TEST

Standard Method.—Steam being raised to the working pressure, remove rapidly all fire from the grate, close the damper, clean the ash-pit, and as quickly as possible start a new fire with weighed wood and coal, noting the time and the water level while the water is in a quiescent state, just before lighting the fire. At the end of the test, remove the whole fire, which has been burned low, clean the grates and ash-pit, and note the water level when the water level is in a quiescent state, and record the time of hauling the fire. The water level should be as nearly as possible the same as at the beginning of the test. If it is not the same a correction should be made by computation, and not by operating the pump after the test is complete.

Alternate Method.—The boiler being thoroughly heated by a preliminary run, the fires are to be burned low and well cleaned. Note the amount of coal left on the grate as nearly as it can be estimated; note the pressure of steam and the water level. Note the time and record it as the starting time. Fresh coal, which has been weighed, should now be fired. The ash-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave a bed of coal on the grates of the same depth and in the same condition as at the start. When this stage is reached, note the time and record it as the stopping time. The water level and steam pressure should previously be brought as nearly as possible to the same point as at the start. If the water level is not the same as at the start, a correction should be made by computation, and not by operating the pump after the test is completed.

The two methods given above for starting and stopping the test are taken from the A. S. M. E. Code for conducting steam boiler trials. When the alternate method is used, several precautions regarding the observations are necessary. The time of starting and stopping should be noted when the smallest amount of fuel is on the grate, and when it is in the most burned-out condition, i. e., just before firing fresh coal after cleaning, and when the water level is in its most quiet condition and the least raised by ebullition. This condition of fire and of water level can be duplicated immediately after cleaning the fire, but there is no certainty of duplication of any condition when there is a bright fire

and consequent rapid steaming. If the water level is noted at the starting of the test when it is raised by a bright fire, and at the end of a test when it is depressed by the stoppage of violent ebullition or of rapid circulation due to the cooling of the fire, the boiler will be credited with more water than was really evaporated. As such a fall in water level is easily produced by opening fire doors and checking draft, it should be guarded against especially when using bituminous or flaming coals. The greatest care should also be taken that the bed of coal at the end does not contain more waste material, which belongs to the ash, than it did at the beginning.

Computation of Results

On account of the variations in the types of boilers and furnaces, no specific directions can be given for the measurement of grate surface, height of furnace and other furnace proportions. The heating surface should be computed from the surface of shells, tubes and fire-boxes in contact with fire or hot gases. The outside diameter of water tubes and the inside diameter of fire tubes should be used in this computation. All surfaces below the mean water level which have water on one side and products of combustion on the other are to be considered as water-heating surface, and all surfaces above the mean water level which have steam on one side and products of combustion on the other are to be considered as superheating surface.

The following directions show how some of the results to be derived from a boiler trial may be obtained. The calculation of other items is self-evident.

Item 26, the moisture in the coal, should be obtained by the chemist by drying the sample collected during the test, for one hour in a sand or air bath at a temperature between 240° and 280° F. Sometimes the moisture is obtained by drying a known quantity of the coal above the boiler; however, if this method is used, it should be so stated in the report. The first method is always to be preferred. (See Section VI, page 48).

Item 27=Item $25 \times (100$ -Item 26)

Item 30=Item $27 \times (100$ -Item 42)-(Item $28 \times$ Item 44)

As this is dependent upon the ultimate analysis of the coal, which is not always available, the following may be used:

Item 30=Item 27-Item 28

The latter, however, is in error, due to the unaccounted-for ash passing over the bridge wall.

in which the former depends again upon the ultimate analysis of the coal.

Items 52 and 53=14,600 C+62,000(H
$$-\frac{O}{8}$$
)+4,000 S,

in which C, H, O and S refer to the proportions of carbon, hydrogen, oxygen and sulphur respectively, as determined by the ultimate analysis.

Item
$$54 = 100 \times \frac{H - 1146.6 - 0.48 (T - 212)}{L}$$

or $= 100 \times \frac{\text{lbs. of moisture separated}}{\text{lbs. of steam+lbs. of moisture separated}}$

in which H=total heat and L=latent heat per pound of steam at the pressure in the steam pipe, and T=temperature of the throttled and superheated steam in the calorimeter. The first formula applies to throttling and the second to separating calorimeters.

Item 55 should be taken as the difference between the reading of the thermometer for superheated steam and the readings of the same thermometer for saturated steam at the same pressure as determined by a special experiment and not by reference to the steam tables.

For the exact determination of the factor of correction for quality of steam we have the following:

For wet steam,
$$F=Q+P(\frac{T_1-J_1}{H-J_1})$$
, and

For superheated steam,
$$F=1+\frac{0.48K}{H-J_1}$$
, in which

F = factor of correction

Q = quality of steam

P = per cent of moisture in steam

K = degrees of superheating in steam

H = total heat of the steam due to the steam pressure

Tr= total heat in the water at the temperature due to the steam pressure

J₁= total heat in the feed water due to the temperature Item 59 = Item 57×Item 56 Item $60 = \frac{H-h}{965.7}$, in which H and h are respectively the total heat in the steam of the average observed pressure and in water of the average observed pressure and in water

of the average observed pressure and in water of the average observed temperature of the feed. This item may usually be obtained directly from steam tables giving the factors for different pressures and feed water temperatures.

Item $61 = \text{Item } 59 \times \text{Item } 60$

Item $62 = \text{Item } 59 \div \text{Item } 2$

Item $63 = \text{Item } 61 \div \text{Item } 2$

Item $64 = \text{Item } 63 \div \text{Item } 7$

Item $65 = \text{Item } 63 \div 34.5$

This is held to be equivalent to 30 pounds of water evaporated from 100° F. into dry steam at 70 pounds gage pressure. The former equals 33,317 B. T. U. per hour and the latter 33,305 B. T. U. per hour.

Item 66.—This item should give besides the rated horsepower the basis (square feet of heating surface) upon which this rating is made.

Item $67 = \text{Item } 65 \div \text{Item } 66$

The necessary computations for economic results and efficiency, items 68 to 73, are indicated in the form of report.

IV REPORT OF BOILER TESTS WITH ILLINOIS COALS

The following tables contain a summary of the results of boiler tests made by the department of Mechanical Engineering at the University of Illinois. For the most part these tests have been made, as stated in the introduction, for purposes of instruction in the method of boiler testing, although a considerable number were made for investigational purposes or as thesis work. As a rule, they have been conducted under the direct supervision of a member of the instructional staff of the department, but at times when experiments were being made with special appliances, the representative of the company interested was present to take charge of the test.

COALS TESTED

The coals used in these tests were mostly those purchased under the yearly contracts of the University. In a few cases, special coals were purchased, while other tests were made on coals sent to the University by various coal companies and manufacturing concerns to determine the evaporative efficiency or their behavior on various kinds of stokers.

35 coals were tested, representing 14 counties of Illinois. These are given in the list below together with the commercial size of the coal.

	County	Town	Commercial Size
1	Christian	.Pana	Lump
2	Christian	.Pana	Slack
3	Christian	.Pana	Sreeenings
4	Coles	.Paradise	Lump
5	Gallatin	.Junction	Pea
6	Macon	. Niantic	Nut
7	Macoupin	.Mt. Olive	l.ump
- 8	Madison	.Glen Carbon	Lump
9	Marion	.Odin	Lump
10 11	Marion	.OdinOdin	Pea
12	Marion	.Bloomington	Slack
13	Muf con	-Colfax	Lump
14	Monard	Athens	i.mp
15	Porry	.Du Quoin	
16	Parry	.Du Quoin	Laump
17	Parry	.Du Quoin	Chal
18	Sangamon	Barelay	Pon
19	Sangamon	. Dawson	Don
20	Sangamon	.Divernon	Luun
21	Sangamon	.Lowder	Slack
22	Sangamon	Ridgely	Poo
23	Sangamon	.Riverton	Pea
21	Sangamon	.Sringfield	Pea
25	Sangamon		Lumn
26	Shelby	.Moweaqua	Lump
27	Vermilion	.Catlin	Screenings
28	Vermilion	.Fairmount	Screenings
29	Vermilion	. Muncie	Slack
30	Vermilion	.Oakwood	Lumn
31	Vermilion	.Oakwood	
32	Vermilion	.Oakwood	Screenings
33	Williamson	.Carterville	Washed Pea
31	Williamson	.Herrin	w Kentucky Pea
35	Williamson	. Herrin New Ken	tucky Screenings

Boilers Tested

The tests were made at the power plants of the University and the neighboring towns, under water-tube and fire-tube boilers of the following types:

Stirling water-tube boiler	. 2	settings
National water-tube boiler	. 2	settings
Heine water-tube boiler	. 1	setting
Babcock & Wilcox water-tube boiler	. 8	settings
Horizontal tubular boiler	.11	settings
The settings of these boilers include the following	owi	ng:

- 1 Murphy smokeless furnace
 - 2 Ronev automatic stokers
 - 2 Green chain grate stokers

- 1 Babcock & Wilcox chain grate
- 1 Brightman stoker

The remainder of the furnaces were hand-fired with plain or rocking grates.

RESULTS OF TESTS

The results of these tests are shown in Tables III and IV, arranged according to the counties in which the coal was mined. Table III gives the conditions of temperature, pressure, heating surface and grate area under which the tests were made, and Table IV gives a few of the most important results. In some cases the heat value of the coals used was not obtained and several of the columns dependent upon it are left vacant. The headings of the tables are self-explanatory. Where a series of tests was made with the same coals under like conditions, the average of the series is reported together with the number of tests in the series. Where the coal and steam have been assumed moisture free and when the moisture in the coal was obtained by drying a known amount above the boiler, indications have been made in the tables.

In the computation of results, the usual correction for quality of steam by proportional weights of steam and water was used. The combustible was computed from the weights of coal and ash and not from the ultimate analysis of the coal, and it is, therefore, in slight error to the extent of the ash which passed over the bridge wall. The basis for the rating of the boilers varied from 10 to 15 square feet of heating surface per horse-power according to the different types of boilers used. The B. T. U. of the coal, given in the table, were obtained from an analysis of the sample taken during the test.

DISCUSSION OF RESULTS

On account of the wide variation of conditions obtaining in the tests reported, an exact comparison was hardly possible. A general comparison of results with different types of boilers and grates has, however, been attempted. Such a comparison is shown in Table V, which contains the general average of the results of all trials made with the same type of boiler and grate, irrespective of all other conditions. It also shows the average of

TABLE III Boiler Tests with Illinois Coals made by the Mechanical Engineering Department, University of Illinois, 1894-1905. General Description and Proportions

səs -8	A 10 ' 26 Gas	Temperature ould aniqes	oFahr.	21	864	484	164	529	519	184	567	571	6×	680	208	484
	jo.	Temperature Peed <i>W</i> ate	oF'ahr.	20	7.9.1	60.9	60.0	60.7	73	1.64	0.17	60.09	56.53	53.7	61.1	59.6
1	t per	std to seroy msd nsewt reliou bus	12	988	9	.300	325	405	550	97.	.600	969	300	.163	902	
	a.e.	Steam Press	Lbs.	Ξ	ê: 06	81.3	95.9	95.0	2	108.1		x (3	28.	70.3 59.0	87.8	0.5
	Яu	Water Heati Surface	Sq. ft.	7	3340	2264	1264	5564	533	9579	•	533	1486	533	533	27
	ə	Grate Surfac	Sq. ft.	က	53.1	51.0	0.16	51.0	18.7	5.00		X	98.0	<u>x</u> <u>x</u>	X	8.00 16.6
Ţ	girT	to noisernd	Nours	82	10.13	10.00	10.00	10.18	8.0	7.35		ž.	0. X	10.10	9.50	œ.
		Date of Trial			June 1891	June 1891	June 1891	June 1891	Feb. 1897	Mar. 1899 Jon., 1895		Feb. 1897	May 1901	Apr. 1891 Apr. 1895	June 1896	Oct. 1896
		Type of Boiler Location of and Grate Boiler	A. S. M. E. Code No.	Urbana & Cham.	plain grate Isiec. Light 11 ht do do do do	d ob		Univ. of Illinois. M. E. Lab.	inois, at. Pl'nt.	Thiv. of Illinois.	M. E. Lab	Cent, Heat, Pl'nt.	M. E. Lab.	ор	Hor. Tub. No. 1, plain grate do	
	als	Commercial	Y.		. Slack	. Pea	. Screenings	Cump and		. Pea	Lumb	Lump	l man]	Lumb	Pea	Pea
	Description of Coals		Town	Pana	do	do	ф	Paradise	Junction	Mr Olive	<u></u>		of of	ор	do	
	2		County		Christian	do	do	ор	Coles	:	Maconnin	Madison	No.	Marron		:
_			rber	unN	-	61	ಣ	77	2		- ox			2 =	27	13

359	560	47.5 8. 3	: 10 : 1	£ 25	163	591	505	578	:	:	523	5538	503	535	519	515	021	403	529	503	512	453	495
0.821	59.9	50.9	- x	55	15,0	128.51	53.0	52.5	53.6	70.5	50.6	63.6	61.6	177.7	χ ,	8.61	69.3	1001	53.4	1.53	9 99	13 13 13 13 13 13 13 13 13 13 13 13 13 1	6.6
39	5 <u>1</u> 6.	330	9 6	018	230	.650	515.	25.5	.300	.500	. 190	536	<u>\$</u>	.350	557	303	.700	.300	909.	.540	99	25	.550
30.0	69.4	87 E	3	2 2	106.4	110.6	<u>x</u>	65.6	9.6	106.3	0.11	63.1	69.0	93.0	65.6	68.8	108.5	X.	8.50	101.3	102.3	0.611	2579 106.5
9560	1010	2150 150	0012	100	1361	55.55 55.55	9579	22	9450	186	533	547	533	870	1010	9150	1965		2150	9579	1186	9 7	2579
45.0	30.0	0.13	2 6	0 12	21.0	50.9	60.7	<u>x</u>	5.	35.0	18.7	16.6	 	5.55	30.0	51.0	0.13	25.0	51.0	60.7	≎ 25	0. X.	60.7
8.00	9.38	77 8 00 0	6 1	- 2	ž.	23.60	8.0 8.0	10.76	9.0		Ž	3. 3.	9.25	2 2 2	9.00	9.50	£	2.50	ž.	ž.	S. S.		8.00 8.00
1897	Mar. 1895	1895	Mar. 1869 Nov. 1808	1881	Dec. 1896	Mar. 1905	Jan. 1899	Feb. 1895	Dec. 1894	1905	1897	1895	1896	Apr. 1898	Peb. 1895	1895	1961	x6x1	1899	1899	1901	1901	1899
Jan. 1897	Mar.	Jan. 1895	Mar.	1891 - Mari	Dec.	Mar.	.lan.	Feb.	Dec.	May 1902	Mar. 1897	Oct. 1895	June 1896	Apr.	Feb.	Feb. 1895	Mar. 1901	Apr. 1898	Mar. 1899	Mar. 1899	May	Apr.	Feb. 1899
 4. :	Hor. Tub. No. 4, 17niv. of Illinois rocking grate Cent. Heat. Pint.		Stirling No. 3.	B. & W. No, 2 Urbana & Cham.	: :	plain grate	fo. 4, rnace	Hor. Tub. No. 2. Tuiv. of Illinois, plain grate Cent. Heat. Plut	B. & W. No. 5, Univ. of Illinois.		n, 2,	-	. 3	Hor. Tub., plain grate do	_ :	B. & W. No. 5, Univ of Illinois, plain grate Cent. Heat Pi'nt	B. & W. No. 2, plain grate do	tet	6.	Nat. W. T. No. 4. Univ. of Illinois. Murphy furnace Cent. Heat. Pl'nt	B, & W. No. 3. chain grate do	do vi m vi	
Pea	Lump	Lump	Lump	Lump	Slack	Duff	Pea	Lump	Lump	Lump	Lump	Lump	Eump	Slack	Cump	Lump	Pea	Pea	Pea	Pea	Lump	: : : : : : : : : : : : : : : : : : : :	1.ca
do	до	do	do	do	ор	do	op	Bloomington	ор	Colfax	Athens	Du Qaoin	do	ор	ф	do	ф	Barclay	Dawson	ф	Divernon	Lowder	Kidgely
14 do	l5 do	do	g do	ор	:	do	do	McLean	ф	фо	Menard	Perry	do	do	до	ор	do	Sangamon	do	ф	ор		до
-	=	Ξ	2-20	19	8	Ç.S	ૄર	35	3	25	$9\tilde{\epsilon}$	Ġ.	30	દુર	30	31	33	33	93	35	36	37	ñ

TABLE III (Concluded)

5	Ç.	301	183		265	33		3	529		657	
	5	0.011	3. 3.	300.0	178.0	63.5	£ :	5	65.0	0.59	5.5	
OF.	-	<u>e</u>	96:	082. [2.01]	.330	012:	986	2	93	9	166	_
98.00		10.00 22 5 1050 71.8 .430 110.0	2587 112.3 .790 182.8	10.3	10.33 61 0 2860 102.0 .330 178.0 565	8 03 72 0 3160 111.9 .710 63.5 599		152 9			12.00 51.0 2353 117.9 166 57.8	
1900		1060	L'SCS	KCS:	5860	3166	2373	999	9.33 28 0 1186	<u> </u>	2353	-
- C	:	55 7:3	6 95	10.80 50.9	0.13	0 8	10.00 51.0	? 5	25 25	0.7	<u>교</u>	
×		9.0	51 00 20 3	10.80	10.33	8 3	16.00	10,00	9.33	30.00	13.00	
5	,	Nov. 1895	1903	1905	Apr. 1905	May 1905	Nov. 1905	5	1961	<u>=</u>	Feb. 1901	1
Dec.		Nov	Mar.	Apr.	Apr.	May			Apr. 1901	Apr. 1901	Peb.	
55 do Fairmount Sereenings B. & W. No. 2, Urbana & Cham. Diec. 1886	56 do Muncie Slack Hor. Tub. No. 2 & 3 Urbana & Cham.	57 do Oakwood Lump Stirling No. 7 & 8, Urbana & Cham.	2. Plain grate Blee, L. & P. Co., Mar. 1905	59 do	60 do do do Screenings Heine	61 do do do Pea B & W. No. 6, Univ. of Illinois.	W. Pen&duffl. do	:	do W Same de de Monte de Company	65 do do do W. Sere'n B. & W. No. 5 & 6,	Roney stokerdodo	
<u>:</u>	<u>:</u>	::	-	::: :::	ن ::	ت ::	Willis	р :::	_			
55	56	57	0	8 8	09	19	3	63	8	8		

TABLE IV Boiler Tests with Illinois Coals made by the Mechanical Engineering Department

University of Illinois 1894-1905 Averaged Results

ìo	B. T. U. per pound Dry Coal		20				:	11430 59		: : :	:	-:	:	:		
ahr.	Per pound of Combustible	lbs.	- E	2 2 2	-		7	00 1-	8	:	 58.		:-	7.73	1-2 II.8	
svaporat at 2120 F	Per pound of Dry	lbs.	29	- 9 9	2 - 10	5.21	6.50	7,05	96 9	- 07.0	6£.	96.9	5.15	6.18	6.19	
Equiv. Evaporation from and at 212º Fahr.	Per sq. ft. of Waterheating Surface per hr.	lbs.	64	- 09 1	60.1	12	3.99	3.37	 57 6	0	1.19	3.38 8.38	3,14	2.37	20.97	
pəd	Percentage to Ratecological Morsepower Develo	-9:	29	£:	- 2	17.	93.5	130.0	45	? ?	61.5	130.2	90.1	91.5	I.	3.10
pag	Horsepower Develop	-	65	90	000	6.6.	196,4	59.0	- 000	\$00°	135.4	53.1	135.1	36.6	6.5	o. +.∼
jo .'n	Dry Coal per sq. ft. Grate Surface per h	lbs.	49		13.10	2 5 5	30.40	13.56		5. 5.	18.72	13.79	32.40	10.38	13.63	7.00
pegare	Number of Tests Avo	Note	No.		- +	<u>+</u>	±	٠	. :	÷	*	31	2.5	13	* **	,
	Type of Boiler and Grate		A. S. M. E. Code	B. & W. No. 1 & 2.	plain grate	do	op	Hor. Tub. No. 2, plain	National W. T. No. 4	Murphy furnace	grate	Hor. Tub. No. 2. plain grate	B. & W. No. 2, chain grate	Hor. Tub. No. 1, plain	Hor. Tub, No. 2. plain grate.	do
	Commercial Size			Slack		Pea	Lump and Slack	Lump	Peu	7"12		Lump	Lump	Lump	Lump	Pea
Description of Couls	Town			Pana ,		op :		Paradise	Junction	Nimptio		Mt. Olive	Glen Carbon	Odin	:	op
Desi	County			Christian		do			Gallatin			Macoupin	Madison	Marion	op .	do

:	:	:	51.5	:	53.	:	:	:	4.06	:	9 ::	:	:	63.1	:	:	:		:	:	1
:	:	:	11633	:	12:52:	:	:	:	19095	:	11250	:	:	11250	:	:	:	:		:	11700
2	. S.	2.00	£ 50 ∞ 1-	6.51	8. % = 23	7.13	s.	6.36	6 61	50.2	6,49	6.85	<u>@</u>	x	<u>60.1</u>	35	57.7	7.61	6.3	5. 28.	7. 6.33
6.39	6.9	5.91	6.93 5.53	5.7.5		92 15	6.61	5.30	5.06	6. 19	15.5	6.15	7.16	×	6.57	5.00	6.74	E 9	<u>\$2</u>	5.12	5 5 8 8
1.29	19 +	$\frac{x}{x}$	8 8 8 8	1.97	2 15. 2 15.	9:30	<u></u>	£	E	3.68	ž.	1.59	86 71	90.4	3.68	<u>~</u>	:	2	80	9.9	= =
47.0	135.0	30.3	26.3 25.3	61.5	98.0	ž.	101.7	3	177	6.501	10.	6.13	133 3	117.0	5.65.5	56.4	:	353 6	5. (35)	 6.	69.0 71.9
84.6	135.0	176.4	555.7	- E	200 386 386 6	9 915	1.01	5. 5.	116.3	0.11	5. 5.	9.15	6.85	0 211	23 23	<u>x</u>	<u>x</u>	513.7	159 %	200	179.7
10.31	65.55	20.30	27.10 19.91	15.30	23.51 20.78	91.0	1.3	34.76	22.70	11.63	19.66	7.37	15.96	<u>8</u>	95.95	16.06	18.13	99.00	15.35	\$8.60 \$8.60	38.00 18.00
~	 **	ıa	- t-	+		÷:	*:01	*	25	G₹	**	25		*_	ž.	:1	ŝ٤	_	12	ಣ	#: D
Hor. Tub. No. 3 &	Hor. Tub. No. 4	B & W No. 5 plain	Stirling No. 3 plain	B & W No. 2 plain	Stirling No. 7 & 8	National W. T. No. 1	Hor. Pub. No. 2 plain	I & W No. 5 plain	B & W No. 1 plain	Hor, Tub, No. 2 plain	Hor. Tub. No. 1 plain	Hor. Tulk. No. 2 plain	Hor. Tub. plain grate	Hor. Tub. No. 4	R & W No. 5 plain	B & W No. 2 plain	Hor. Tub. rocking	Rate. Is & W No. 5 & 6 plain	National W. T. No.4	B & W No. 2 chain	Ao National W. T. No. 1 Murphy furnace
. Pea	. Lump	Iramp	Pea	. Lump	Slack	Pea	. Lump	Lump	Lump	Lump	Lamp	Lump	Slack	Lump	Lump	. Pen	Pea	Pea	Pea	[ram]	Slack
op]	do	do	ob	ор	ob	do	Bloomington Lump	op	Colfax		Du Quoin	ор	ор	do	do	do	Barclay	Dawson	do	Divernon	Lowder
ор	do	do	do do	do	do	do	McLean	op	ф	Menard	Perry	do	ор	до	ф	ф	Sangamon	ор	ф	do	do
*	15	16	178	13	왕학	Ĝŧ	ϵ	₹.	35	35	27	85	$6\tilde{\epsilon}$	8	3	ŝ	33	34	35	98	± 20 20 20 20 20

*Cont assumed dry. *Moisture obtained by drying coal above boiler. *Steam assumed dry.

_	
σ	
2	
`≅	
Concluded)	
~	
Ö	
Μ	
7.7	
7	
\vdash	
ABLE	
Ā	
\vdash	

	Taliciency of Boiler	- 4	73		62.2	25.5	_		_	35.	52.4	51.5	:	:	49.8	39.7	£8.3
to b	B. T. U. per pound		20	:	9975	1158	125	200	221	11980	11930	12162 11537	:	:	18281	13026	12369
ration 9 Fahr.	Per pound of Combustible	lbs.	71	6.76	<u>z</u>	25.3	e x	86. X	0.13	83	7.÷	χ.χ. 10.13	5.18	5.3	7.79	6.37	8.15
Equiv. Evaporation from and at 212º Fahr.	Coal	lbs.	70	6.07	6.43	15 to	6.15	Ξ.	· ·	6.8	6.17	6.13	. 5 . 5	6.16	6.51	5.35	6.19
Equiv	Per sq. ft. of Waterbeating Surface per hr.	lbs.	64	57.5	8s	% ÷) () ()	29.67	2	52	3.66	1.63 1.53	13. 25.	- 03 -	3.41	22	X.
eJobeq eg	Ретсепівде от Вай тэч тэточэгоН	*&	29	88 	105.3	01.8	20.	26.6	6.00	130.7	76.4	131 132 133 133 133 133 133 133 133 133	?? ;;	117.5	101.4	:	99
pədo	Horsepower Devel		65	905 2.2	463.1	165.7	8	6. I		18.3	9.111	335.8	111.3	176.3	23x.	164.4	901
it. of er hr.	Dry Coal per sq. Grate Surface 1	lbs.	48	19.31	24.30	8. 8. 8. 8.	17.90	9.5 9.5 9.5	30.05	13.00	21.8	30.52	25.70	28.20	21.37	20,78	26.
eraged	Vumber of Tests Av	Note		m	-	- ::	-	÷,	o	-	¢5	- 4	ęş	÷1	≎1	*	_
	Type of Boiler and Grate		A. S. M. E. Code No.	National W. T. No. 4 Murphy furnace	Roney Stoker	9	ob	op	Hor. Tub. No. 2 plain	B. & W. No. 2 chain		chain grate	2	Tate	Stoker.	: :	No. 1, 2, 3, rocking grate.
als	Commercial Size			Pea	Pea	Реп	Pea	Pear	Lump	Pea	Pea	Pen Pen	Pea	Pea	Tallin is	Sereenings	
Description of Coals	Town			Riverton	op	do	do	do				Springfield	op .	ор	Moweauna	Catlin	
	County			Sangamon	фор	do	op	:	do	ор	do	ор (op	op	do		:	
	1	u	n _N	8 6 7.	; ;		φ:	:- :-	5	£.	8.	÷ 58	5	<u>:</u>		75	_

	39.5	:	51.0	57.9	7.	8.99		25.7	28.0	10,10	55.0	60.5
_	12413	:	12503	11.27	10-55	11067	15051	10501	10402	12769	13156	12364
_	5.95	7.50	8.07	8.39	6.59	9.61	3	55	60.0	× 5	% %	9.21
_	5.08	6.07	6.63	6.85	5.03	7.66	ī,		0.1	7.34	7.50	7.75
	3.51	1.76	3.33	89 89 89	2.01	20.	330	3	0.0	4.55	88.4	4.55
	100.6	63.5	95.7	97.6	61.3	109.3	8	15.0	2	130.7	140.3	132.1
_	230.1	107.9	497.6	507.4	6.991	382.7	930.9	940.9	2	196.0	210.3	620.7
_	30.67	13.62	35.49	32.63	17.91	£.9	99.40	95 51		39.93	31.60	26.55
	_	<u>+</u> +	_	_	_	21	c)	27		က	-	_
do Fairmount Screenings B. & W. No. 2 plain	Slack Hor. Tub. No. 2 & 3	od LumpStirling No. 7 & 8	plain grate		Sereenings 18. & W. plain grate	do do Sereenings Heme chain grate do do do do Pea	stoker	ille W. Pea & Duff.	do	grate	do do do W. Sereen B. & W No. 5 & 6	Roney stoker
do Fairmou	do Muncie	do Oakwood	(1)	40 40	on	do do		Williamson Cartervil	do Herrin	9	do do do	
55	56	57	N.	8 2	3 6	9 5		3	63	ě	513	

NOTE: Column headed "Number of Tests Averaged" gives the number of boiler tests, the average of whose results is recorded in the Table. †Moisture obtained by drying coal above boiler. *Steam assumed dry. ‡Coal assumed dry.

the results of the ten highest tests together with the single highest result obtained. The basis of comparison is the equivalent pounds of water evaporated from and at 212° F, per pound of dry coal. The same table also contains the average of the results of six tests with Illinois coals made by the Boiler Division of the Fuel Testing Plant of the United States Geological Survey at St. Louis. It is interesting to note that in these latter tests in which hand-firing and plain grates were used, the results obtained are better than any of the others recorded, including the results of tests in which mechanical stokers were used. This fact may be taken to indicate that the maximum efficiency of Illinois coals is rarely obtained under present average conditions. It is probable that with a closer study of furnace conditions, even these results may be improved. The general tests reported in Tables 3 to 5 include a number of trials made with special objects in view. Several of these trials are described as follows:

1. Tests of a small horizontal tubular boiler of 40 horsepower, to determine its performance with varying rates of combustion. The results of these tests are given below.

RESULTS OF A BOILER TRIAL SHOWING EFFECTS OF RATE
OF COMBUSTION ON THE PERFORMANCE OF
HORIZONTAL TUBULAR BOILER

Dry coal per square foot of grate surface per hour	6 80	9,30	11.00	12.00	14.00
Equivalent evaporation from and at 212° F. per	0.00	7,07	11.00	12.00	14.00
pound of dry coal Horse-power in per cent of	6.20	6.55	6.57	6.37	5.75
rated capacity (40) Temperature of escaping	52 50	87.50	107.50	115.00	122.50
gases	432.00	447.00	501.00	516.00	553. 0 0

The same kind of coal was used in all these tests, and conditions remained nearly constant. It is evident that the maximum results were obtained with the boiler running at its rated capacity, with the flue gas temperature about 500° F. With an increase in the rate of combustion, the capacity and flue gas temperature increased and the evaporation dropped off.

2. Tests to determine the effect of soot deposits on the evaporation of a small horizontal tubular boiler. These tests were made on the same boiler as the preceding series and with results as follows:

RESULTS OF BOILER TRIALS MADE TO DETERMINE THE EFFECT OF SOOT DEPOSITS ON THE EVAPORATION OF A HORIZONTAL TUBULAR BOILER

	First Series (5 days) Soot allowed to remain on tubes	Second Series (5 days) Tubes cleaned each morning	Third Series (5 days) Soot allowed to remain on tubes
Equivalent evaporation from and at 212° F. per pound of dry coal	6.20	7.04	6.23
Dry coal per sq. ft. of grate surface per hour	13.40	9.09	13 40
Horse power in per cent of rated capacity	111.60	99.00	115 00
Temperature of escaping gases	627.00	546 00	698.00

It is evident from the results that the effect of the soot deposit on the evaporation is not very marked. It is interesting to note that in the first and last series, in which the soot was allowed to remain on the tubes, the soot burned upon reaching a certain thickness, leaving but a very thin layer. In all three series the conditions were held as nearly constant as possible, although in the second series the load fluctuated somewhat on the different days.

TABLE V COMPARISON OF RESULTS OF BOILER TESTS WITH ILLINOIS COALS ON

						Horse-power	ower	Equiv. E	Equiv. Evap. F. and A. 2120	nd A. 2120		
Type of Boiler and Grate	No. of Tests Aver.	No. of Coals Aver.	Aver. Force of Draft	Aver. Flue Gas Temp.	Dry Coal per sq. ft. of Grate Surface Per hr.	Develop'd Per cent by of rating Boiler Dev'p'd	Per sq. ft. of of rabing Heating Dev'p'd Surface per hr.	Per sq. ft. of Heating Surface per hr.	Per lb. of Dry Coul	Per lb. of Combus- tible	Per lb. Per lb. of Of Combus- Dry Coal	Eff. of Boiler and Grate
V	A. S. M. E. Code No.	de No.	12	21	48	69	29	64	20	11	20	73
Water-Pube Roney stoker	9 9 Highest Single	10 to -	.214 .214 .166	605 605 656	22.7.7.2.2.7.2.2.2.2.2.2.2.2.2.2.2.2.2.	305 305	558	8 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8,8,19	8.88.98 8.88.98	13034 13034 12364	51.2 51.2 60.5
	1 4 4 F	6	.493	521	27.2	180	86	3.43	6.29	5.83	11562	52.5
Water-Tube chain grate	Highest Highest Single	74 —	.571	507 592	26.1 23.9	202	100	3.76 4.18	7.33	9.01	11821 11067	59.9 66.9
Hor. Tubular rocking grate	$\left\{\begin{array}{c} 6\\6\\6\\\text{Highest}\\\text{Single}\end{array}\right.$	-	323	£1.500	20.5 20.5 18.2	191 191 117	1133	3.70 4.00	6.81 7.38	25.95 26.95 36.95	11809 11809 11850	5.55 5.35 4.45
Hor. Tubular	45 Highest	5 to	354	245	11.5 13.4	53	25 24 25	3.45 3.16	6.38	5. 5. 8. 18.	11532 11797	53. 56.6
plain grate	Highest Single	-	.405	549	13.6	:	130	3.37	7.05		11.58	59.6
Water-Tube	39 Highest	61	400 104	552	20.6 21.6	176 220	6.88	61 E	5.75 6.64	6.67 7.85	11608 11728	47.8 51.7
Pictur Kranc	Highest	-	.790	616	25.1	507	86	3.38	6.85	8.39	11427	57.9
Water-Tube Murphy Furnace	Highest	10 →	.530	2 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18.3 19.1	202 205	88	85 65 85 75	5.87	6.64	:::	: :
	Highest Single	-	.580	481	18.4	205	2	2.76	6.36	7.09	:	:
U. S. G. S. Tests Water-Tube plain grate	Highest Single	₩ ==	527	595 637	22.23 2.12 2.12	198 101	28	3.36	7.55 8.01	8.8. 9.53	12293 12857	59.3

3. Tests of a water-tube boiler with chain grate stoker to determine the relative economy of a 6-inch and an 8-inch fuel bed with various rates of combustion.

The results of these tests are best shown by the curves in Fig. 9.

Fig. 9 Curves Showing the Relative Economy of a 6-inch and 8-inch Fuel Bed in a Chain Grate Stoker

They show that under the conditions of the test, the 8-inch fire was the more efficient, giving an equivalent evaporation per pound of dry coal 10 per cent greater than the 6-inch fire, when operating at the rated capacity of the boiler. The same coal was used throughout this series. The averages of the results of these tests are reported in Tables III and IV, viz., Nos. 41, 42, 43 and 44. In Figs. 10, 11 and 12 are shown a few of the characteristic results of boiler trials made on water-tube boilers with chain grate stokers. These diagrams are plotted from the results of 38 trials, and each point on the diagram represents the average of 5 trials. It is safe to assume, therefore, that the results represent average conditions.

Fig. 10 Chart Showing Variation in Boiler Performance with Coals of Different Heat Value

Fig. 10 shows the results of trials, in which coals of highest, lowest and mean heat values were used, plotted on a basis of heat value. The sudden drop in the equivalent evaporation per pound of dry coal, with coals of low and medium heat value is no doubt due to the large increase in the flue gas temperature with constant rate of combustion and capacity. With coals of medium and high heat value the equivalent evaporation increases with increasing rate of combustion and capacity, the flue gas temperature remaining constant. It is evident from the diagram that the effect of the heat value of the coal is not very marked, a large increase, however, other conditions remaining constant, causing an increase in the evaporation per pound of coal, as will be seen in Fig. 12.

Fig. 11 Chart Showing Variation in Boiler Performance with Varying Rates of Combustion

In Fig. 11 the results of a boiler trial are plotted on a basis of rate of combustion. It is evident from the diagram that the equivalent evaporation per pound of dry coal increases with the rate of combustion until the capacity reaches 100 per cent, or the rated capacity, the heat value of the coal remaining approximately constant, the flue gas temperature at this point being 500° F. With a further increase in the rate of combustion the capacity and flue gas temperature still increase but the equivalent evaporation per pound of coal decreases. This curve, if it may be called such, might be named the characteristic curve of the boiler, and is important because it shows the rate of combustion above which the evaporation per pound of coal decreases.

Fig. 12 Chart Showing Variation in the Performance of a Boiler Working at Different Capacities

The effect of capacity on the evaporation is shown by the diagram in Fig. 12. It is seen that here as in the previous figure the evaporation per pound of dry coal again increases with an increase in the capacity due to an increased rate of combustion. However, instead of attaining a maximum at 100 per cent capacity, it increases with a further increase of capacity and rate of combustion. At first sight this seems contradictory to the previous diagram, Fig. 11; however, it is evident that this increase is not due to this further increase in the rate of combustion and capacity, but is due to the sudden increase in the heat value of the coal (about 10 per cent) used.

V ARRANGEMENTS FOR FUTURE FUEL TESTS

In publishing this bulletin it has been the desire to record the results of the most important tests of boilers fired with Illinois

coals, that have been made up to date. During the year 1906 the Engineering Experiment Station at the University purchased and installed a plant designed especially for conducting a series of fuel tests of Illinois coals. The plant consists of a 210 H. P. Heine water-tube boiler together with a Green chain grate stoker and a Sturtevant economizer and induced draft fan and engine. This boiler is a duplicate of the boilers used by the United States government in the fuel tests in progress at St. Louis under the direction of the United States Geological Survey. It was thought that in this way the fuel tests here at the University would be in a measure comparable with the tests made by the government on coals from all parts of the United States.

The rapid growth of the industrial interests of Illinois demands a careful study of the great fuel supply, and no effort should be spared in the introduction and promulgation of improved methods and processes in the production, treatment and consumption of its coal. In the tests of Illinois coals which it is now proposed to make, less attention will be paid to routine boiler tests, familiarly known as such, and more attention will be given to a scientific study of fuel treatment before burning and to a study of those furnace constructions and conditions which give promise of maximum results. In order that future tests may be conducted along lines which will meet with the general approval of the various interests of the state, a Conference Committee on Fuel Tests has been appointed consisting of the members named below and representing the organizations indicated:

H. Foster Bain, Director State Geological Survey, Urbana, Ill., representing the State Geological Survey;

A. Bement, Consulting Engineer, Chicago, the Western Society of Engineers;

Edwin H. Cheney, President Fuel Engineering Co., Chicago, the Building Managers' Association of Chicago;

F. H. Clark, Gen. Supt. Motive Power Burlington Road, C. B. & Q. Ry., Chicago, the Western Railway Club;

Adolph Mueller, President H. Mueller Mfg. Co., Decatur, Ill., the Illinois Manufacturers' Association;

Carl Scholz, President Coal Valley Mining Co., Chicago, the Illinois Coal Operators' Association;

A. V. Schroeder, Decatur Railway and Light Company, Decatur, Ill., the State Electric Light Association;

Wm. L. Abbot, Chief Operating Engineer, Chicago Edison Co., Chicago, the Board of Trustees University of Illinois;

L. P. Breckenridge, Director Engineering Experiment Station, University of Illinois, Urbana, Ill.

Reference has been made to the government fuel tests at St. Louis. It should be stated that the work of the boiler division of these tests has been carried on under the direction of the Director of the Illinois Engineering Experiment Station, who will also have charge of the tests made at the University of Illinois. Copies of Professional Paper No. 48, containing a report on the operations of the government coal testing plant at St. Louis may be obtained upon application to a member of Congress or to the Director of the United States Geological Survey, Washington, D.C.

It is not the intention of this bulletin to discuss the subject of fuel testing. A future bulletin will take up that subject and will also describe in full the plant provided for such tests at this University. Attention is called, however, to the facilities now offered for this important work. It is hoped that mine owners and manufacturers will find it advantageous to cooperate with the Engineering Experiment Station in the proposed tests. The Station Staff will always be glad to receive such suggestions concerning this work as those interested may desire to offer.

VI CHEMICAL ANALYSIS AND HEAT VALUES OF ILLINOIS COALS

By S. W. PARR, Professor of Applied Chemistry

The accompanying results of chemical analyses of Illinois coals may be divided into three classes: first, those which were directly connected with the boiler tests conducted by the department of Mechanical Engineering, and which are listed in a separate table, covering such work from the year 1894 to 1905; second, in connection with thesis work by Mr. F. C. Koch in 1901, there were assembled by him the results of all analyses of Illinois coals which had been made by the department of Chemistry previous to that date. These results were published together with his own work in a bulletin through the courtesy of Secretary Ross of the Bureau of Labor Statistics in the report of that Bureau in 1902. They are designated in the tables by the letters B. L. S. The third series of results comprises the work on one hundred fifty samples of Illinois coal collected in 1904 and published in a separate bulletin in connection with the exhibit of mines and min-

erals at the St. Louis Exposition. These results are designated in the tables by S. W. P. The sum total of data which has thus resulted, while of a somewhat desultory nature, constitutes a very considerable contribution to our knowledge of the constituents of Illinois coals. It is to be noted that the processes employed in connection with this series were confined almost exclusively to the method of proximate analysis. In the future the more exacting demands of modern methods will require extended data such as are furnished by both proximate and ultimate analysis, including of course the determination of calorific units. It may be well therefore, at the present time, to assemble the information obtainable up to the present date, compiling it as in the accompanying tables, and also to discuss briefly some of the terms which are used in connection with the chemical work on coals. The chemist employs terms and processes which are also used by the engineer, but it does not always follow that their use of terms is in accord.

Moisture.—Moisture in coal is constantly undergoing a change as to quantity. The percentage contained at the time of breaking out the coal from the vein is greater than at any subsequent stage of its history, unless possibly it be under the conditions of rain or snow or drenching with the hose. Some of this moisture which is normally contained in the coal is lost when the coal is exposed to the air, being in this respect like water which has been poured upon the coal. But there remains moisture in the coal after air-drying and which is removed only at the temperature of boiling water. This moisture is described as hygroscopic. If now the chemist works upon a sample which is overcharged with moisture, as is the condition when the sample is freshly mined, it will be constantly losing in weight and modifying his results. larly, if he works upon a sample which has been completely dried in the oven, it will have great avidity for moisture and be constantly gaining in weight throughout his work. He, therefore, proceeds in his determinations, as a rule, with the coal in that condition which is least affected by external conditions, viz., in the airdry state with the normal amount of hygroscopic moisture present, but without the excess of water, which might be termed water of saturation.

Therefore, we have three distinctly different conditions: first, the wet coal; second, the air-dry coal; and third, the oven-dry state. The engineer, however, not having to do with the condi-

tions under which the chemist works, recognizes only the two phases, either the wet or dry, and by this latter term he means the oven-dry state. The failure on the part of the engineer and the chemist to recognize these terms often leads to misinterpretation of results. The chemists, therefore, should agree to such use of terms relating to water as have become firmly established in engineering literature: viz., that dry coal refers to moisture free coal or to the oven-dry state, and second, that wet coal refers to the condition as received or previous to any process of air-drying, and that it is one or the other of these conditions that is of interest to the engineer, regardless of how important it may be to the chemist to proceed upon the basis of the air-dry condition.

It may not be out of place further to indicate how results may be transferred from one basis to the other. It is not an uncommon practice for the chemist to report his results on the air-dry basis, in which case he should also report the amount of moisture lost upon air drying, provided his sample comes to him sealed in such a way as to make this factor possible. Suppose, for example, that the loss of moisture upon air-drying is 4 per cent, then all his results reported on the air-dry basis would be changed to the wet coal basis by multiplying each by 96 per cent; not by dividing by 104 per cent as is often erroneously done. This will make small difference in a constituent which has a low percentage factor, but the error is very considerable in a factor like the fixed carbon which is from 40 to 50 per cent. This may seem like a simple arithmetical problem to mention in this connection, but it is one not always correctly interpreted.

Conversely, if it is desired to change factors to the dry coal basis, each factor should be divided by 100 minus the percentage content of water in that condition from which the transfer is being made. For example, if we are calculating this coal from the air-dry state, supposing it to have 6 per cent of moisture present, each factor should be divided by 94 per cent, but it should be noted that if we are calculating from the wet-coal condition our divisor will not be 100 per cent minus the sum of the two factors, 6 and 4, as in the above illustration, but 100 minus 96 per cent of 6 plus 4, or 90.24. Here again is a not uncommon place for stumbling in what might seem to be a simple arithmetical problem.

Volutile Matter.—When coal is subjected to high temperature out of contact with the air, a considerable amount is driven off as

volatile matter. This includes, also, of course, any moisture in the sample, if we start with a portion which has not been dried in the oven. Now an even greater discrepancy in the use of terms has come into use in connection with this constituent than is the case with different forms of water. One of the oldest terms is that of volatile carbon. This is both incorrect and meaningless because carbon is not volatile, and because the constituents of this material are numerous and complex. The term that is perhaps most frequently met designates this material as volatile combustible. This again is incorrect and misleading, as this material in the ordinary bituminous type of coal has from one-third to one-half of its weight made up of non-combustible material. It is evident, therefore, that the only proper term among those commonly in use for this constituent is that of rolatile matter. The only restriction indeed in connection with this term is to understand, as is the uniform custom, that the moisture of the coal is not included. A word may be in place here in connection with a term which is occasionally met, and is likely to be more frequently used than formerly. This term is intended to designate that part of the volatile matter which does not burn. This constituent is sometimes referred to as "water of composition". It is not included in any of the resuits listed in the following tables, and hence its use does not enter into any of the discussions in this bulletin. It is noted in this connection, however, in order that it may not be confused with any of those terms which are intended to designate the water in its ordinary form and which are capable of being driven off at the temperature of boiling water. This property does not belong to the water of composition, as this substance like the other part of the volatile matter, requires a red heat for its dissociation.

Fixed Carbon and Ash.—Concerning these constituents there is no disagreement as to the use of terms unless it be the occasional use of the word coke. Coke in its proper and technical sense should apply to the residue including the ash after subjecting the coal to destructive distillation. It is, therefore, not proper to designate the fixed carbon as coke, though it would be proper, of course, to use the term "coking carbon" in this connection. The preferable term and the one commonly employed, however, for this material is that of fixed carbon.

Methods of Analysis.—The methods of analysis employed are those in common use and their description is so easily accessible

that no repetition is necessary here. Reference may be made to the report of the committee of the American Chemical Society on coal analysis.¹

Caloritic Value.—The determination of heat units in coals is, of course, a necessity in connection with any well conducted boiler test. Two systems of units are employed, viz., the kilo calories and the British Thermal Units, designated as B. T. U. Each unit is the measure of heat imparted to the water by an equal weight of coal. They would, therefore, be identical if it were not for the fact that the one is read on the Centigrade scale and the other on the Fahrenheit scale. The transfer, therefore, of calories per kilo over to B. T. U. per pound is effected by multiplying by the ratio of 9:5 or 1.8.

There are four types of instruments in use for measuring the heat value of coals. The first and most elaborate is the Mahler instrument which has numerous modifications as to detail, but which embodies the use of a steel bomb capable of maintaining oxygen from twenty to twenty-five atmospheres pressure. next in the order of time is the Fisher calorimeter which burns the sample of coal in a small chamber supplied with oxygen at atmospheric pressure. The third type may be designated as the L. Thompson calorimeter, wherein the coal is mixed with a chemical which in itself supplies the oxygen for carrying on the combustion and in which the gaseous products are allowed to bubble up through the water, thus imparting their heat to the liquid. fourth type may be designated as the Parr calorimeter which also employs a chemical having its own supply of oxygen, but which absorbs the gaseous products, thus retaining all the heat of the reaction for more accurate measurements by the thermometer. Of the second and third types, it may be said that owing either to incompleteness of combustion or to loss of heat by transmission of the gases, results are obtained which are not of sufficient accuracy for reliable work. Results from the Thompson calorimeter are reported by certain authorities to admit of variations amounting to 15 per cent. The Mahler type of calorimeter is accurate when operated by one thoroughly familiar with such processes. Parr calorimeter is the one used in connection with the analyses in these tables of all coals made since 1900, and is now the instru-

¹Jour. Am. Chem. Soc. Vol. XXI. p. 1130.

ment most commonly used in technical work. A brief description of this apparatus follows:

Fig. 13 shows the relative position of parts. The can A.A. for the water has a capacity of 2 litres. The insulating vessels B.B. and C.C. are of indurated fiber. The charge of coal and chemical is put in the cartridge D. Upon ignition, the heat generated is imparted to the water and the rise in temperature is indicated on the finely graduated thermometer T. The cartridge or bomb rests on the pivot F and is made to revolve, and by aid of the small turbine wings attached effects a complete circulation of the water and equalization of temperature.

The reaction accompanying the combustion may be represented by the equation:

$$56\text{Na}_2\text{O}_2 + \text{C}_{25}\text{H}_{18}\text{O}_3 = 25 \text{Na}_2\text{CO}_3 + 18 \text{NaOH} + 22 \text{Na}_2\text{O}$$

Sod. perox. Coal Sod. carb. Sod. hydrate Sod. oxide

FIG. 13

With certain substances such as coke, anthracites, petroleums, etc., a more strongly or vigorously oxidizing medium is needed than exists in the peroxide alone. This may be secured by various additions. The most effective are: A mixture of potassium chlorate and nitrate in the proportion of 1 to 4 and this mixture used in the ratio of 1 to 10 of the sodium peroxide; another effective mixture is an addition of potassium persulphate in the ratio of 1 to 10 of the sodium peroxide. Other substances facilitate the oxidation, notably ammonium salts and certain organic substances, as tartaric or oxalic acid, benzoic acid, etc. In the work on Illinois coals, while ordinarily no extra chemical would be necessary, still in certain cases, such as extra slaty coals and coals with excessive volatile matter, and also to guard against variations in the quality of the sodium peroxide, a mixture as first described above, of chlorate and nitrate, has uniformly been used throughout these tests.

Further extension of the use of the instrument to other types of coal and to petroleum has made it necessary to extend still further the oxidizing power of the chemicals employed beyond what is afforded by the chlorate mixture. In addition to this the use of the residue for determining the total carbon and sulphur has made it highly desirable in such additional chemicals to avoid the use of compounds containing carbon or sulphur. To meet these conditions, the so-called "boro-mixture" has been devised. It consists of:

Boric acid11	parts
Potassium chlorate 4	parts
Magnesium powder	part

Its correction factor is found by trial with a pure chemical of known heat value, such as napthalene or by burning with a coal whose heat value is already accurately known. This mixture has the further advantage of carrying on a combination with material so low in carbonaceous matter as to be non burning by ordinary methods, such as ashes and coals of very high ash content.

Still further modifications relate to the bomb as shown in Fig. 14, and have to do mainly with the avoidance of screw threads on the interior of the combustion chamber, especially in the upper part, where particles tend to lodge and thus escape combustion; also in jacketing the lower part of the chamber to avoid direct contact with the water, thereby avoiding rapid

cooling of the parts and extending somewhat the period of high temperature, thus securing a more perfect combustion.

Calorific Values By Calculation.—Numerous methods for calculating the calorific value of coal have been proposed, but no method can be said to have any value which is not based on a knowledge of the percentage constituents of the total carbon, available hydrogen and sulphur. Even under these conditions the results by calculation are not always in agreement with the indicated results by means of the calorimeter, and in any event, of course, results from proximate analysis do not furnish the necessary data for this calculation. When this method is used the Dulong formula is considered the most nearly accurate and is as follows:

Cal. =
$$8080 + 34,500 H + 2250 S$$

In the results here recorded the necessary factors were not always available for applying this formula, but it is the one used wherever calorific values by calculation are included.

TABLE VI CHEMICAL ANALYSIS AND HEATING VALUES OF ILLINOIS COALS USED IN STEAM Boiler Trials at University of Illinois 1894-1905

	Source	Source of Coal				P.	oximate 2	Proximate Analysis-Air-Dry Coal	Air-Dry C	oail	11 11 0
No.	County	Town	Description of Coal	Date of Analysis	Boiler Test No.	Fixed Carbon	Volatile Matter	Moisture	Ash	Sulphur	b. r. c. per lb. of Total bry Coal
-	Christian	Pana	Slack	June 91	-	:	-:	:		:	:
33	Christian	Pana	Pea	June '91	31	:	:	:	:	:	:
**	Christian	Pana	Screenings	:	n	:	:			:	:
÷	Christian	Pana	Lump Slack	:						:	067 11
ıc	Coles	L'aradise	Tramb	Feb. 36 97		48.53 5.53 5.53	90.15	2 2	200	: :	11,400
v		Junction	Pea	Mar. 20, '99	4	23.53	37.0	55.5	10.33	3.53	608 11
1-		Niantic	Nut	:		40.55	34.35	7.7	30.73	:	11,303
x		Mt. Olive		Feb97	x s			·			19 599
5 .	:	Glen Carbon		:	. .	40.00	37.13	2:	12.30	č.	
2		Odin	. ['umb	:						:	
=		Odin.	dom	Apr 35	= :	£ .	34.90	9.7	16.5	:	011.51
21	Marion	Odim				92.30	37.33	F0 6	60.	:	020 11
22	Marion	Odin		Oct. 6, 36	22	Ģ	6 i	25.7	2.5	:	0,0,11
=	Marion	Odin	1 vea		=	50.05	3.	×+ :	33.03	:	:
7.3	Marion	Odin	Lump	:	2	2.43	2	22.53	11.56	:	100
9	Marion	Odin	Lump		2	16.03	£.33	ခိုင် မ		: :	12.005
<u> </u>	Marion	Odin	Pear	Mar. 11, . '93		46.70	:8: :8:	6.70		3.43	910
x	Marion	Odin	Cump	Nov. II. : '96	×,	45.10	37.00	x 30. 21	5. 5.	:	088.H
61	Marion	Odin	Lump	June 391		:	:	:::		: : : :	
000	Marion	Odin	Slack	Dec. 9 36		5.36	ਲ ਲੋ	3 3 3	15.13		02, 120
5	Marion	Odin	Duff	:		45.11	31 79	ē₹-	15.86	61 61	11,185
6	Marion	Odin	1 Pea	Jan. 26, '99		46.70	31.65	6.70	1.95	3 43	:
??	McLean	Illoomington	Lump.	Jan '95	65	:	:	:	:	:::	:
67	McLean	Bloomington	Lump			43.50	13.90	3,80	£ x	:	
.00	McLean	Colfax	Lump	May '02	35	42.58	1.35	£ €	30°0°	æ. -	12,025
56	Menard	Athens	Lump			41.95	35.18	= ::	10.76	:	13,824
0.0	1'erry	Du Quoin	Lump	Oct '95		47.53	35.73	36.15	= .s.	:	12, 24
œ.	Perry	Du Quoin	Lump	:		98°.×	33.15	<u>x</u>	÷.	:	
6	Perry	Du Quoin	Shek	Apr '98		99.	35.95	6.05	16.45	.c.	11.761
30	Perry	Du Quoin	Lump	Feb '95	25	45.10	39.x		3.5	:	12.174
·	Perry	Du Quoin	Lump			45.10	35.8	<u>.</u>	5.66	::::	12,174
27	Perry	Du Quoin	Pea		£;	:	:	:	:	:	
::	Sangamon	Barclay	Pea	٠.	æ	45.19	£	3.76	96. 22		:
3	Sangamon	Dawson.	Pear	Mar 13, '99	*	9 -	33.65	E : 2	= 22	5.63	: : :
32	Sangamon	Dawson	Pea	Mar. 4, '99		41 40	33.65	15.51	= :	5. 6. 6.	
36	Sangamon	Divernon	1,ump	May 6, '01		38.59	34.73	œ.	<u>x</u>	6.03	11,239
3	Sangamon	Lowden	Slack	:		45.03	32.00	6.9	55.55	1.73	11,700
00	Comment of the	Distanto	Don	Top,				92.0	o c	7	

:	9,975	11,153	11.152	11,159	11,153	11.3%7	086.11	086,11	12,162	11,537			19,591	13.096	19, 369	19,413		19, 503	11.427	10.299	11.067	13.251	13, 108	13,769	13,156	13 361
4.33	:	1.01	10.1	10.1	10:1	4.10	:	:8:	3. 15	3.76			6.14		61			3. 20	 	25	3.14	3.63	1.97	- 5	1.43	:
14 10	91.59	16.46	16,16	16,46	16.16	16.46	11.59	10.33	13.68	17.30			15.55	97.7	19.57	50 22		10.67	3.6	21.67	16.91	13.06	8.76	10.61	10.64	10.62
8.83	×.23	 	3.38	3.38	33.33	3.38 3.38	13.45	9.11	. 73 . 73	61.6			1.0 E.	<u>x</u>	7.41	10.67		3.3	7? X	6.03	Q. ().S	5.63	33.33	6.5	2.91	5.00
36.51	36.97	36,96	36.96	36.98	36.96	36.96	35.41	37.01	36.56	33.38	:	:	36.59	39.58	29.62	36, 16		37.10	35.55	33.43	35.35	39.85	33.40	33.10	33, 10	31.13
40.57	33.98	+3.20 +3.20	63.30	13.20	43.30	13.20	10.57	43.53	41.52	41.33	:	:	45.44	43,75	43,40	39.85	:	45.13	43.19	38.88	41.76	41.47	55.52	53.32	53,32	53.36
39	Ç	Ţ	2	÷	Ţ	÷	94	<u>;</u>	×	Ç.	20	2	K	23	ă	:6	98	55	90 10	92	99	19	65	8	J	29
:	:	:	- :	:	:	:	:	Apr '04	:	:	:	:	:		:			:	Apr '05	:	:		Nov '05	Apr 704	Apr 301	чев
Pea	:	:		:															Screenings							
Kiverton	Riverton	Riverton	Riverton	Riverton	Riverton	Riverton					:			:				:	Oakwood				:	:	:	
: : : : : :	:	:	: : :	: : : : : : : : : : : : : : : : : : : :	:	: : : : : : : : : : : : : : : : : : : :	Sangamon	Sangamon	Sangamon	:	Sangamon								Vermilion			:			Williamson	Williamson
င္တ	Ç.	#	۔ چک	ن	*	÷	9	-	T.	6	25	-	65	53	7.	22	99		20.00	69	õ	<u>-</u>	33	:: :::	<u></u>	:3

TABLE VII CHEMICAL ANALYSIS AND HEATING VALUES OF ILLINOIS COALS

	Source of	of Sample	Description	u		Analysis	Pro	ximate A	Proximate Analysis-Air-Dry Coal	ir-Dry C	toal	R TI Tron
No.	County	Town	Size	Geol. Seam	Date of Analysis	Obtained	Fixed	Volatile Matter	Moisture	Ash	Sulphur	Dry Coal
 •	Adams	Elm Grove	Drill Core		Mar. 28 '06		47.00	£6.	4.62	12.55	3.5	12,966
13 613	Adams	Film Grove	Urill Core		χ ₁	Chem. De	50.57	36.39	es €	60.00 0.00	8 S	13,915
7	Bureau	Ladd	W Slack	1 01	Ö	>	46.75	38.61	99	6 ×	9	14.11.
ŭ	Bureau	Lombardville	Vein Sample.		£		51.74	81.38	9.45	7.46	3.46	
9	Bureau	Spring Valley	W. Screen	:	:	r. S	39.01	35.58	12.40	13.01	3.81	: : : : :
r• 0	Champaign.	Ivesdale	Drill Core	:	Jan 02	ų. Sie	49.27	35.89	2.68 8.68	9 16	-	13,638
00	Christian	Assumption	Ploats	:	£8 · · · · · · · ·	no L	50.10	41.30	8 8 8 8	£:	: 0	13,598
0 01	Christian	Assumption	Diock			 	47.80	31.10	2.50	11 93	5.5	:
Ξ	Christian	Assumption	Nut	-	Ö.	і М	85.56	38.30	7 × ×	20.50	, m	13, 739
<u>:</u>	Christian	Assumption	Slack		7 0.		43.28	36.36	7.74	77	3.60	12,621
Ξ;	Christian	Pana		:		ij	46.95	36.37	7.33	9.46	:	12,513
Ξ:	Christian	Pana	Slack	:		i.	39.35	35.45	8.55	16.65	4.77	10.727
<u></u>	Christian	L'ana	Nut	:	:	i Si	16.04 16.04	39.43	8.5	9.33	::	12,522
17	Christian	Pana	Sereen		Apr. 17 Uc	Chem. Dept	39.11	99	9 9 8 0	20.00 20.00 20.00		233
2	Christian	l'ana	Slack	9 9	0,0		37.44	3.5	2.5	9 39	319	10.915
13	Christian	Pana	Lump	9	ē. : : : :		39.74	43.73	7.80	× 5.	96.3	12,902
ನ್ನ :	Clinton	Breese	Slack	9	10.		43.66	34.00	8.10	14.24	3.40	13, 181
27 9	Clinton	Breese	Nut		3	S. W. P. G.	46.96	35.21	×.×3	8.97	3.17	12,631
1 6	Clinton	Buxton	L'umb	9	0.	S. W. P. 04.	46.31	36.69	-3. -3.	9.15	25.5	77
3 6	Chinton	Trenton	Nut	t - t	و و :		43.05	20 20 20 20 20 20 20 20 20 20 20 20 20 2	900	30.19 30.19	£ .	
.63	Coles	Paradise	Lumin		5.3	Chem Dent	200	34.35	∓ {}- n ⊆	98.9	: :	11,571
56	Crawford	Flatrock			10, 01	Chem. Dept	36.14	35.74	63	25.90	90.5	669.01
ci d	Franklin	Benton	Lump	:	7.	Chem. Dept	51 12	86.23	3.05	9.61	2-62	12,983
80 8	Fulton	Astoria	Average	:	Jan		39.40	40.00	13.36	8.3	3.16	12,566
3.5	Fullon	Astoria	Lump	e r	10.		46.67	36.75	5.0	97.50	× S	12,958
e co	Fulton	Canton	Lumb	3 10	3		38.55	35.38	11.10	14.36	25	216.61
35	Fulton	Canton	Nut.	10	Ö		41.40	38.72	10.00	88.0	2.67	12.835
e :	Fulton	Cuba		:	July 98	i Se	40.96	36.93	10.42	11.69	4.60	12,056
÷ :	Fulton	Cuba	Slack	20	10.		43.34	39.19	7.70	9.77	3.10	13,035
6 8	Fulton	Cuba	[,ump	ıcı	To		41.38	38.36	6 6	T. T	1.50	13,632
3 5	Fulton	Cuba	Lump	io i	0	 	43.26	10.1	5.55	10.18	67 i	12,905
ž	Fulton	Dunforming	Stack	c	11120		17.05	30.33	5 5	15.68	9:0	11,388
8	Fulton	Farmington		:	So Multi	0 0 2 2 2 2	20.55	35.00	3 = 1	16 95	9.5	11.847
9	Fulton	Farmington	Vein Sample.			<u>:</u>	50.48	20.38	. 25 . 20	133	300	
= 9	Fulton	Farmington	Lump	13	70.	W.P.	41 79	35.75	10.25	13.31	1.97	12,497
4	Fulton	Farmington	Slack	20	70.	اج	37.16	33.04	6.63	30.18	3.03	11,234
2	Fulton	Fiatt		:	July 98	'n	40.04	35.86	12.54	11.56	4.67	12,451

1,17,17,17,17,17,17,17,17,17,17,17,17,17	8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	13. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	13, 185 11, 253 11, 253 12, 999 13, 999 13, 986 13, 884
	88.53.3.45: : : 8.57.58.88	9. — 9.9.9.9.4.8.9.9. 8.6.5.6.6.6.6.8.7.2.8.6.5.6.6.9.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
4 6 7 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	65588585888888888888888888888888888888	
	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$25525000000000000000000000000000000000	3100 x 20 0 x 1 x 2 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3
38 4 5 8 8 4 8 4 8 4 8 6 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$\frac{1}{2}\frac{1}{2	28 24 28 28 28 24 28 26 26 26 28 27 27 21 27 27 28 28 28 28 24 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28
2		28 28 27 28 27 28 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	
S. W. P. Of S. C.	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	%%%########### \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	Navaranara Basesase
ERECTORNO STATE OF ST	888888 346648	FAKKKE KEKELLI RONN NO DONN NO BER REEEEEEEEEEEEEEEEEEEEEEE	n n n n n n n n n n n n n n n n n n n
Feb. 28. May 12. May 12. Mar 12. Mar 20. Jan. 31. July July	Maay Maay Nov Nov Nov	Nov. Mar. Feb. 31.	
ro ro	မွာမှာ မြောင်း	೦೦ ೯೬೪೫೫	ere
Lamp Slack Nut Oos 2 Drill Core Drill Core Pea Pea Slack Lump Slack Lump Unill Core Lumb Unill Core Unill Core Unill Core Unill Core Unill Core Unill Core	Vein Sample. Nut. Slade Vein Sample. With Sample. No. 1 W. No. 2 W. No. 3 W. No. 3 W. No. 3 W. No. 3 W.	Keinse From Water Vein Sample. Lump Lump Lump Slack	and Vein ard Vein Berg Slack Vein Sample. Slack Lump
Nortis Nortis Nortis St. David St. David St. David Junction Braceville St. Wilmington Mylmington	Kewanee Kewanee Kewanee Carbondalee Carbondalee Carbondalee Carbondalee Carbondalee De Soto De Soto	on	Ogleshy Ogleshy Ogleshy Ogleshy Peru Peru Streator Streator Streator Streator
Fulton Fulton Fulton Fulton Fulton Gallatin Gallatin Grundy Grundy Grundy Hamilton Hamilton Hamilton Hamock		Jackson Jackson Jackson Jackson Jackson Jackson Knox Knox Knox La Salle	Ta Salle Ta Ta Salle Ta Ta Salle Ta Ta Ta Ta Ta Ta Ta T
424444000000000000000000000000000000000	17884885886681	\$	288888888

TABLE VII (Continued)

N						Analysis		Proximate Analysis of Illinois Con-	Hally Str. Of		Coan	B. T. U. pel
	County	Town	Size	Geol.	Date of Analysis	Obtained	Fixed	Volatile Matter	Moisture	Aslı	Sulphur	lb, of Total Dry Coal
	Livingston	Cardiff.	Lumn	G.				39.36	26.28	3.7	. .	13,301
	livingston.	Cardiff	Llack	e s	5. †0.	. W. P. '01	x : : =	36.54	10.26	13.03	3.96	12,053
HERBERT BURNINGS	Livingston	. Pairbury	Slack	13	\$ 10.	ĕ		33.76	5 30	21.50	1.36	10,870
	Livingston.	Pairbury	Lump	ic.	5	W. P. 04.	43.67	20.02	6.57	10.69	5.30	13.989
	ivingston.	Porest	Drill Core	-	86	у. У.		39.37	5.19	12.45	Z.	:
	Livingston	Porest	Drill Core	\$\$	3.	F. X. 03		22.7F	1.36	10.77	3.76	:
THE THE PROPERTY OF THE PROPER	.ogan	Lincoln		: : :		z.	46.88 46.88	31.19	8 .30	10.57	3.59	
	Jogan	Lincoln		:	- 2	e T		31.95	×.	90.5	:	12,319
	ogan	Lincoln		:	9 9	કું જે:		32.36	7.50	97	: 0	12,668
====neneeeeeeee	rozan	Lincoln	Vein Sample	:	78.13			001.00	10.93	Z :	36. i	
HERRARAMAN	Jogan	Lincoln	Lump		7 (S)			x : 000	10.01	5.00	000	15.101
	ogan	-	Nut	o,	, FO			63.93	# 6	6.6	7.0	12,24
	noggrup	- '	Lump	•	7.50		5 5	55.04	1	20 00	27.79	19.508
	ogan	Mr. Pulaski			30,	ė s		50.05		100	1 12	11 650
4717474444444	McDonough.	Colchester	Train Committee	:	July 35 D	á v Š⊨	50.03	0.00	50.	10.50	0.1	12 200
17474747474	Metreau	Discontinued	From Sampie.		200.		13.50	73.00	5 5	3		19 113
374747474747	Mellean	Dloomington	ramb,		9	. 7		3.5	2 7	14.71	:	11.797
4,4,4,4,4,4,4	Melican	Plooming on	Lock.		: :			37.05	6 77	52.55	- 7	10.884
474747474	Meluran	Pleomington	Lumb	, 6	3	. 2		10.06	100	2.5	3	19.6%
4, 4, 4, 4,	Mellean	Rloomington .	Fluck	r 00	5.	10. d M		38.06	20.6	9+ 91	2	13,069
	Me Lean	Bloomington	nmn	00	٠.	0.		14.06	×6.9	5.13	e)	13,751
	Vc Lean	Colfax	l'umb		May	'nt.		11.35	8.03	8.05	. <u>x</u>	12,032
,	Macon	Decatur	Lump	1.3	f 0	S. W. P. '04	76.H	38.56	8.46	≅. ⊛	2.13	12,264
1	Jacon	Niantie	Nut.	٠.	7. To		10.4	36.47	10.38	9.14	3 27	12,056
-	Macon	. Niantie	Slack	1.0	₹.	-	36.5% 56.5%	34.51	E.E	15.16	23.35	11,175
	dacon	Niantic	Nut	:	Jan. 16 '95 F	ž.	10.55	34.35	7	20.73	:	11.303
-	Macon	Niantic		:		<i>j</i> . :		36.25	£:	- C	:	616.51
-	Macon	niantic		:	200	. ·		3 5	25	00.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	00.0	19.078
-	Macoupin	. Brighton	Tunn dunn	:	Dec. 30, 04 CB	EEE. 150		55.45 90.00	20.01	07.7	33-	19,500
-	Macoupin	Green Muse	Cloak	ء د	Ē			86	×	91.14	8	10.930
-	Macoupin	Mr Olive	- Taken	9	. J		25.78	45.39	26.	1	2	13.066
-	Macounin	Mt. Olive	Slack	20	:	10. d M	41.63	34.21	6.5	14.55	2000	11,433
-	Macoupin	Mt Olive	* 7 tat C IV		ž	3	67.17	36 13	7.67	11.11		19, 439
	Macounin	Mt. Olive			ŝ	1	51.50	35.00	5.30	07:8		12,431
	Maconnin	Mr. Olive			FP-1 '97	1	11.51	38.55	7.39	8.91	:	:
	Macoupin	Mt. Olive	Lump				40.33	38.33	9.63	38.1	6 78	12, 252
	Macoupin	Palmyra	Drill Core		6	05.Chem. Dept	51.30	35.28	6.63	6.79	# 6	13.024
	Macoupin	. Palmyra	Drill Core		Feb. 9 '05 C	Chem. Dept	49.41	35.82	6.39	8.35	4.13	13,063
	Macoupin	Palmyra	Drill Core	:	G	65 Chem Dept	42.07	42 36	6.35	و ئ	25.45 SE. 52	15.818 2.818
	Macoupin	. Virden	Nut	9	S 10.	W P '04	43.40	38.25	10.37	8.0x	1.50	12,826
-	Macoupin	. Virden	Slack	9	5.10.	. W. P. '04		37.60	10.21	9.84	2 80	12.184

12, 802 11, 440 13, 059 12, 927 11, 928	12,522	11,690	12.327	12,512 13,613	9	11,569	13,619	11,195	12,537	12,609	13.11	150.00	12,597	13,435	15. 15. 15.		:	962 61	15.51	13,457	:	(£) 01	12,175	11,566	52.	20 50 50 50 50 50 50 50 50 50 50 50 50 50	150	39.1	13.630	12,230	92.21	11.11	13,821	13,443
6.4.6.6.4.4 6.80.6.4.4.6.	£ :	4 4 5 2 8 5 2 8 5	7.50 2.85	: :		: :	:	:	: :	:	:	: :		::	3.61		2. E	Ê +	: :	:	50 E	2 X	3.00	3.80	€ 2	£ 3	30.5	: 5:	67.	2.67	Ŧ.	음 음 음	0 :	3.15
11.08 14.08 14.00 16.00	25 × 5	18.50 18.30 18.30 18.30 18.30	7:	7.15	5.5	14.68	6.3	;; <u>2</u> ;; x	: T	15 43		15.30	1.30	\$ E	88	55.03	: :8:	5.47 5.47 5.47		6.10	33 33 33 33 33 33 33 33 33 33 33 33 33	5 5	£	15.95	2.30	2.67	53	99.9	€€ €	13.14	#5.6 6:	20.00	10.76	8.65
&1-x+1-x	23.	- 61 563	6 6 6 2 72 5	8 8 12 10	23 3 10 1	9 9	7. T	77 E	x =	8 6	3 3 n -	; <u>21</u>	8.55	- 1	6 8 - c	6.48	9 20	2 E	9.10	98.0	<u>د</u> پورون	5 5	X	8: 9	53	 8:		. 6 . 6	10.91	10.31	2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	0 3	= =	10.01
8 8 8 9 8 8 8 9 8 8 8 8 8 8 8 8 8	2 2 3 2 2 3 3 3 3	2 E S	- 183 - 183 - 183	8 8 8 9	£ 5	33.5	등 금	2 X	32.53	31 31	0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	31.07	36.10	33.5		31.95	31.65	% S	36.46	01.14	25 25 25 26 26	3 K 3 K	37.11	36.16	5. 5.	= ; ;;	00.00	20.03	36 59	2 22	33.33	Z 1	32.58	39.30
28.33 26.34 26.53 26.91 39.33	9.55 8.55	8 9 9 8 2 9 8 2 9 8	2 C C C C C C C C C C C C C C C C C C C	우 왕 두 왕	± 2	8 æ 5 21	33 12 1	213	3 7	15.36	12 E	£.	41 15	# ? # ?	# #	39.54	46.70	2 S 8 8	7.7	46.90	76 8 26 3	9 9 7 9	44.55	10.97	±	21	F 7 C 2		50.15	43.06	2 1 1	95.5	2 S	18.11
944979 944222	2 E 3		: X:	3 3 3 3 3	3 7. 7	S. S.	3 3	: ::3	: 3 : 3	î L	i j	3	€ ()	3 7.	3 3 7. 7.		 33	3 3 7. 7	3	: :: ::	3 j		ъ. тот	P., '01	Dept	Dept.	: 3	3	P., '01	P., '@‡		5 5	33	03
	11. 22.	i > :	;∴. ;≃:	2 2 2 2 2 3	25. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6.8	6 13, 17,	2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	6 B.	2. 2. 9. 1.	2 2 1 1	2	7 13. 17.	7. 2. 2. 1.	: : : : :	7 B. L.	3. 7. 2. 7.	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 E	9 B. L.			>	. X X.	c'hem.	Chem.	 : _ : _		1.S. W.	. N.	> :			B. L. ;
099999	May	98		: :	Feb 3		:	:	: :	:	:		:	:	:		:	:	Peb	:	:	Nav.		:	zi.	Oct. 30 70	:	e vial	-	9,	9	о ў ::::::::::::::::::::::::::::::::::::	Mar 9	July 90
6 000000	: :		ء :				:	:		:	:			:	:		:			:	:	:	9	9	:	:	0		C1	? È	io i	ıc		
Nut. Pea. W. Nut. W. Pea. Nut. Slack	Lump	Slack	Nuc.	Lann	Lump	Pear.	Pea	Lump		Slack	Lump	Lump	Lump	1'ea	I.ea	Pea	Pea	Pea	Lump		Pea-	Pen P.	Nut	Slack	Dulf	Vein Sample.	rentally		Lump	Slack	Lump	Slitck		
Collinsville Collinsville Donkville Edwardsville Edwardsville	Glen Carbon Centralia	Centralia	Kinmundy	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Sandoval	Aundorn!	Toluca	Wenona	Wenona	Athens	Athens	Athens	Greenview
Madison Madison Madison Madison Madison	Madison	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Merion	Marshall	Marshall	Marshall	Menard	Menard	Menard	Menard
85 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-	243	95	<u> </u>	55.5	<u> </u>	12	2 12	Z.	621	9 3	162	3	<u>5</u>	<u> </u>	-	-	_			2	15	9.	17.7	Z.	2.9	2	32	8	X	9	2 5	200	189

TABLE VII (Continued)

	Source	Source of Sample .	Description	ou		Apalesis	Prc	ximate A	Proximate Analysis-Air-Dry Coa	ir-Dry C	oal	B. T. U. per
No.	County	Town	Size	Geol. Seam	Date of Analysis	Obtained from	Fixed	Volatile Matter	Moisture	Ash	Sulphur	lb. of Total Dry Coal
3	-	Organican	, in an	ъс	je.	10. A W	2.3	37.62	9.46		23	12,757
3	Menard	(treenview	Slack	: 10	Ē	S. W. P. 01	30.88	36,28	9 58	14.26	3 04	11,863
100		Middletown	Lumb	i ro	ē,	S. W. P., '01	43.17	36.89	10.04	9.90	£ 43	12,550
000	4.	Middletown	J. 131.75		10,	S. W. P. '04	37.31	33.13	10.37	19.30	3.5	10,933
6		Petersburg	Zlack.		Dec. 17., 01	Chem. Dept	39.54	33.33	4.69	22.45	2.68	20.809
6		Petersburg	Lumb		Dec. 17 04		55 55 56	35.04	6.30	7.77	3. 1 0	13,027
6	_	Cable	Lump	_	F9	S. W. P., '04	40.78	39,34	0 00	10.86	86. 86. 88. 88.	12,588
101	-	Cable	Slack	-	3		⊊ ∓	37 73	80.66	2	3	2,508
86	-	Gilchrist		:	July, 98	B. L. S., '02	32.33	36.94	7.48	30.36	2	94. H
199	_	Sherrard	Lump	-	10,	S. W. P.	15.55	39.36	09.60	ž z	× -	13,136
200		Sherrard	Slack	_	5		9.75	200	5.5	20.00		10,00
20]	-	Litchileld	Slack	es :	5		£ 3	200	÷ 8		 	12 290
505	-	Linchlield	Lump	e t	:		46.08	7 17	22.0	5 - 5 4 - 4	- 6	13,606
203	_	Elmwood			× :	i.	0.0	11.40	0 0	£ 5	, e	13.603
201	=	Elmwood	Vein Sample	, כי	:	i.	26.5	00.00	c 5	20.01		628.61
3()2	-	Elmwood	vein Sampie	9 0			200	25.55	8	30	3 16	12.403
208	_,	Elmwood	vein Sampie	0	:	i i	25.55	09 26	9	900	200	
202	-	Elmwood	vein zampie		000		3 5	20 61	£	200	4	19.893
5 6	Peoria	Houses	Nut	3 3	10.		20 27	2 7	. x	£.	3 13	12,056
5	_	D. Ouvin	Lateria	ì	80. 91 duni	Chem De	48.59	33 22	8.13	9 21	:	
21.6		Du Onoin	Tampa		26.	Σ.	49.51	33.15	8.13	9.21	£.	:
910	-	Dir Quoin	Vein Samule		20.		09.09	23.54	8.86	1.00	æ. -	12,355
213	-	Du Quoin				B. L. S. '02	4.1.60	35.03	7.03	13.31	:	088.5
7	-	Du Quoin		:			53.69	32.03	6.81	7.44	:	13,064
215		. Du Quoin		:			20.08	Se 5	79.9 10.0	3 2 2	:	19,213
316	-	Du Quoin	l'ump	:	Feb.		25	20.02	5.5	6-	:	19 174
63	-	Da Quoin	dun7	:	G :	i u	5 12	31.61	2.0	5	:	13, 273
20 0	==	Du Quoin	Lump	:	May 788	: <i>J</i>	3.14	36	6.05	16.40	5.14	11,762
812	Down	Dr Onoin	.31ac h	:	56	7	41.56	35.03	7.03	13.39	:	11,819
991	-	Du Quoin	Ž	· ~	ē	Α.	49.07	35.97	8.41	6.52	1.83	13,055
666	- 1-	On Onoin	Nut.	9		W. P.	41.00	38.73	7.24	10.0₹	3.04	12,710
553	_	DuQuoin	I,ump		Mar. 27, '06	em. De	- 2 2	34.28	7.15	10.12	F.	12,218
6	-	. Muddy Valley	Lump	:	96	х. ::	48.33	40 37	7.11	4 1 82 5	::	12,790
225		. Pinekneyville	Lump	9	10.	<u>~</u>	45.96	30-30	7 54	7.30	æ:	13,007
558	Perry	. Pinckneyville	Slack	စ	0.	S. W. P. '01.	92.08	31.36	2 2 2 3 3 3 3 3	22.23	5. TO	10,104
227	Perry	St. John	1.ump	:	July 96	ў. Э.	01.10	32.75	50.03		:	12.104
228		St. John	[ramb	:	Feb 97	r.	200	34.50	27.7	0 10	6	19, 738
229		Sparta	I vumb	00	3	42	10.20	20.00	1 5	2 × ×	÷ 65	12.744
230	=-	Sparta	Nat	ه و	5.		200	31.70	20.7	5 E	. 62	12.313
201	Kandolph	Tilden	Stack	•			*****	;				

12,620 12,564 11,443	12,670	11,760	12,074	13,431	10,874	3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55	11,379	876.21	12,003	14, 113	13.8%	13,665	10,993	13,503	11,913	13,039	11,603	19, 258	11,831	3,160	:		126.521	19,033	11 319			11,239	11,700	:	:	12,436	13,606	919 13	0.8.01	11.549	10.01	**********	12,571	12,032	12.217	12,591	12,364	11,098	11.808
3.35	: :::	e e	5 F	×	3.00	9.00	3.70	. e	2 00	12	1.6.1	<u>z</u> .	3,40	1.55	9.70	9.60	3.50	: : : : :	3.03	: 6	25.	::	# U	9.00	. or	5.03	33	6.03	1.73	4.09	4,19	:	: 0	7	21:	:=		66.6	06:5	3.90	4.08	6.14	3.55	7.03	- 26.5
8:38	7.31	13.77	8. 19. 10 0. 18. 10	06. 06.	23.58	10.88	88 88	0.3	25.00	35.36	5.50	7.01	15.80	6.76	%: #	7.67	16.37	67.0T	- :	10.70	20.5	3.8		5.5	16.91	7	13.30	18.00	12.55	- CE	£	X 1	6.5	14.10	91.59	16.46	25.	86.1	11.34	26.95	13.16	15.55	11.78	200	19.01
88.88 80.88 80.88	 	2 8	5 LG	5.68	4.36	5.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	9.5	5 H	F 3	651	4.20	3.76	3.70	01-1	£.73	10.46	x :	6.46	29	04.5	S 0 0	0 90	200	10.0	7	19.54	9.38	8.69 8	6.93	9.41	08.6	9.38	5.13	6.6) or	000	10	10.15	1.7.1	11.33	11.56	5.43	8.55	5.5	10.39
37.06 35.30 44.30	40.78	56.53	96.18	33.33	96 61	90 F	20.13	3 5 6 8	31.15	35.75	37.19	36.11	33.14	37.13	32.73	38.36	21.50	20.00	20.00	00.10	20.72	200	10.00	34.10	x 500	33.65	35.25	34.72	35.00	36.94	37.33	200	96.40	38.58	36.9%	36.96	35 44	35.89	36.61	37.08	31.51	36.59	35. 15	60 c	07:10
46.53 49.24 40.33	97.10	7 2	5. 55 5. 55 5. 55	55.10	15.70	19.73	T 10	15. X	26.30	56.29	53.18	53.12	47.36	51.97	200 cm	5.25	39.75	55.65	30.04	15.30	45.00	20.00	10.45	43.41	7.57	41,40	43.17	38.59	45.02	1	E (5)	G 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00.44	200	33.58	13.20	40.57	41.68	47.28	38 64	11.71	45.41	4.53	77 T	#1.1%
	W. P.	۲. غ د خ	ڃٞڐ	. W. P. 04	. W. P. '01		hom Dont	hem. Dept	hem. Dent.	hem. Dept	. W. P. '04	. W. P. '04						to			. L. 7. 02	W D '01		79. d M	10. d M	. L. S. 63	. L. S. '02	. L. S. '02	hem. Dept	. r. s.					hem. Dent.	hem. Dept.	r.s.	97 B. L. S. '02	W. P. '04	W. P. '04	S. W. P. '04	Them. Dept		Chem. Dept	rem. Dept
98.00 98.00 98.00 98.00	Z. To.		3.5	₹. ₹0.	か: で: :::::::::::::::::::::::::::::::::	лэ Э.:	5	0.56	Apr. 26. 705 C	Apr. 1, 705 C	Z. :: ::	J. 3	の で、	<i>y</i> . :	7. : 5. :	<i>y</i> . 2	5 3	<i>f</i> . : : : : : : : : : : : : : : : : : : :	5	G	1 20.)	:	J.	J. S	Mar. 4, 99 B	:	:	:	eb99 B	Tar	•	Mar	:	: :		Peb97 B		£.10.	S 40	0	9	33.		Apt. ≈11 00 C
999	99	0		ıc	ın c	- (•			-	22	ا به ا			۰.		0:	٥٩	•			1	10		70	-	:	-		:	G			10		-		:		10	ı.	-	Z.	<u> </u>	9
LumpSlack	Lump	Nut	Cump	Camp	Slack	Lump			Cump	եսար	Cump	Lump	slack	Lumb	Stack	Litatip	State in	Zhaole Zhaole	31cht B	Toin Countle	veta Sampie Pas	dat.	Alack	Nut	Slack	Pea,	Pea,	Lump	slack				Jp.9	Slack	ea.	Эеа.	mn dunr		dunr	dun	Slack	ea		Jump	
lage lage		:		Eldorado	Eldorado	:		lalatia	farrisburg	farrisburg	farrisburg	:	:	:	Haffisburg	:	:	:	:	Sorolo v	:	:	antrall			:	::	:	:	:	Simulation	Riverton				:	:		:	:	:	:	:	Springheld	TITLE TOTAL
	Clair	Clair	Clair	ine	ine			Saline	:	T		:	SalineH	:	:	Sangamon A	:	Saugamon A	:	:		:	: :	_	:	-	:	- 1	:	:	Cangamon Pi	:	:	: :	:	:	;	:	:	:	:	:	:	Sangamon . Si	:
23.8 33.4 33.4 34.4 35.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36	233	937	888	655	7.6	616				346	247	25.0	6 1 1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	0.50	9,50	953	0 100	6 25	926				098																						

TABLE VII (Concluded)

Š	Source of Sample	Sample	Description	on			Pr	oximate 2	Proximate Analysis—Air-Dry Coal	Air-Dry (Joal	R TT Trees
No. County	ıty	Town	Size	Geol. Seam	Date of Analysis	Obtained	Fixed	Volatile Matter	Moisture	Ash	Sulphur	Dry Coal
284 Sangamon	:	Springfield Jc			Feb	.99 B. L. S02	43.52	37.04	9.11	10.33	3.65	:
	uou		dun7	:	:	97 Chem. Dept	25.53	33.4	13.47	11.53		11,980
	uou			:	:	of Chem. Dept	23.52	#3.CF	9.11	10.33	3.65	11,930
nominant.	: 1101				Jan	Ge Chem. Dept	70.11	36.36	200 200 200 200 200 200 200 200 200 200	13.08	<u>?</u>	12,162
	:	Moweadilla	Lumb		:	02 1 1 V 70 00 00 00 00 00 00 00 00 00 00 00 00	2 (C	30.58	50	1.50	9.10	11.53/
		Moweacha	Lumb	-	:		100	36.53	x 6	6. 6. 6.	:	13,020
		Moweagna	Lump	. 63		95 B. L. S. 02	7	2	100	X 5	:	:
	:	Mowenqua	tump	10	:	95 B. L. S. '92	46.00	39.53	8.00	6,47		
	:	Можеации		:		≃:	43.00	37.00	7.13	13.74	:	11,185
-	:	Moweaqua	Nut	.0		E.S. W. P '01	10.14	37.14	8.07	10.78	3.30	12,157
٠.,	:	Mowendua	Sheck			X.	£ .8	36.83	9.19	10.16	3.27	13,401
	:	athn	Trans	(~ i		O. V. P. 04	45.75	38.18	10.36	5.71	1.47	13, 203
	:	Athn	Zuck	-			41.33	C: :3	9. S	0.03	90.0	11,487
Vermillon Vermillon	:	AUTH	vern sample				X.	83.08	2:	9:39	3.96	
_	:	attim	Toin County	:	MELT		45.40	33.03	T ::	2 :	24 (12.369
Vermillon		Danville	· endruge in a	:	:	: 33 : 3 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4	56.44	31.30	3 7	14.61	27.2	
_	:	Many 110		:		i s	10.07	45.10	e g	0.0	:	13, 134
_	:	Danville					72 - 42 72 - 43	20.00	50.5	6.30	:	12,349
	:)anville	Croca		VI.	7	31.5	08.22	9.0	93	:	10,000
); myille	Lumb		Mar		2.5	10.00 17.07	0 45 5 15	5.4	3 69	10,031
	-	Janville	[,mm		Mar	7	13.7	10 07	3 × 3	7	-	:
307 Vermilion	_)anville	Slack	ţ-			2.5	35.06	2.5	13.36		12.333
	:)anville	Lump	{ -			13.01	45.96	x.3x	5,65	3. X	13,740
	:	Danville	Slack	ţ~	:	e. S. W. P. 64	37.70	34.83	£.6	19.47	3.10	11,525
-	:	inville	Lump	မှ		- -	1.80	<u>z</u>	9.30	7.06	3.40	12,553
	;	Pairmount	Shek	t -		Α, Α,	6. 6.	36.47	5.50	- X.69	3.67	11,134
	:	Fairmount	Sereen	:	Dec	si e	(S. 5)	36.46	16.67	13.08	:	15, 191
	:	Fairmount	Zereon	:		й: Ц	9 (F)	31.80	2 2 3 3	13,05		12,438
	:	Grape Creek	vein Sampie	:	smr		51.32	# S	T :	10.60	3.63	
	:	Grape Creek	Iramb	φ·	:	1	92 91	54.09 20.09 20.09	2:	5.90	÷.	13, 130
Verminon	:	Grape Creek	dun7	9	:		× × ×	Z 1	2.5	. c	<u>G</u>	13.136
-	:	Cakwood		:	:	7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	9:4	2 3	Ĉ:	30.00	: :	13.587
-	:	Oakwood	Coron	:	Ann	05 Chem. Dept	2 2	27.75	č i	3.3	3.40	12,003
	:	Onlewook	Cross		:	05 (Thom Don)	× × ×	22.22		10	3 6	006 01
_	:	Oakwood	Series			05 Chem. Dept.	11.78	: S	3 6	15 E	; c	11.061
_		Oakwood.			Z Z	65 Chem Dept.	-	2	3	13.08	: E	13 951
		Westville	Mine Run		Mar. 12	00 Chem. Dept.	3.13	9	20	đ m	-	14.384
		s. Westville.	Lumb	9		S. W. P. 34	1-	9.	1.30	2	2	13.315

62.	1.95	2 2 2	61	5.0	55	1.97	1.15	1.03	1.00	8.	56	1-	£	1.15	<u>x</u>	1 05	61.5	Ŷ.	1.6.1	21		33	Z	28.	ż	X.	?		:
og e	4.36	16.38	4.45	1.1	£ +	96.6	19.91	7.63	6.10	3.0.X	12.30	7,14	5.56	6.59	6.67	6.11	9.83	± 0.00 €	9, 8	10.64	10.63	10.63	6.36	11.17	5,46	9.63	¥.0.	200	68.9
6 03	11.44	10.53	85.11	10,35	11.53	2.90	1.93	6.04	6.3%	25.58	1.87	99.+	4.31	98. T	5.76	7.35	5.00	33 588	33.	56.5	00.6	5.00	. X. G	5, 16	6.00	\$ T	3.43	6.35	3.97
41.30	36.38	39.57	38.05	36.57	36.36	35.00	35.64	33.72	32.58	33.00	3. 3. 3. 3.	33.99	35.12	33.26	30.35	34.30	35.15	35,00	32.10	33.10	31.13	31.76	53.53	30.96	32.32	34.66	39.30	(x.c)	£.
48.79	48.03	40,53	45.55	45.94	47.91	49.11	47.30	53.16	35:75	56.20	52.17	54 31	55.01	55.39	57.33	52.34	86.64	56.30	55.52	53.32	53.36	53.62	54.34	13. 14.	56.39	51.49	53.30	35.04	55 38
S. '02.	P. '01	F. E.	Dept	Dept	Dept		: ∃ 1.	P. '04	7. 2.	P. (94.:	j.		E.	<u>:</u>	: ::	T.	Dept	Dept	Dept	. Dept	Dept.		14	2.	L	į.	ž.	: 5 1:	
'01 B. L.	'04 S. W. P. '03	S. 5.	05 Chem	(12 Chem	neu co	; ;	<i>i</i> .	<i>J</i> .	, . E		00 B	(S)	00.2	00 15	30 12		.05 Chem	no Chem	. 05 Chem De	Of Chem	Off Chem. I	 	<i>i</i> .	X.	<i>J</i> .	9.00	. E. E.	X: ∃:	D 12
Jan	:		Sept.		Zept		:	:			May.	May.	May	May.	Mar.	Mar.	May. 26.	Dec. 19.	:	:	Feb			:		Cet	Mar		Jan
	G1 :	:	:			:	- {	:- 1	- 1		:	:	:	:	:	:	:		:	:		- 1	- 1	- 1		:	:		:
Hand Sample	Lump	Stack	No. 1	2002	1 11200	Lump	Zidelik	State K	Marini,	Mino Dan	MILE MILL	W. NO.	V. NO. 2		W. No. 2	V. No. 2	W. Nuc No.	W. INUL INO. 2	N. rea Duff.	N. Fea.	N. IN. 15.	W. Stack	W LV LV LL	W. Sinck	Tunib.	vein Sample.	Clash	Mitters of	
	Braidwood	:) 1 1	Toliat	:	:	:	:	:	:		:	Carterrille	:	:	:	Carberville	:	, 111C	Terrin						(man)	outlon	veide	
Wabash	W.111	147411	Will	Will	Williamson	Williamson	Williamson		Williamson				:		-				: -				-	Williamson	Williamson E	-	Williamson	Williamson	
326							334	33.	33.6	33.	338	300	340	371	3.49	2 5	345	372	3.16	347	378	340	320	321	25.0	3000	35.4	355	

TABLE VIII LIST OF ILLINOIS COALS ANALYZED. ARRANGED BY TOWNS

Town	County	Ref. Numbe in Table o Analyses
Assumption	Christian	8-12
Astoria	Fulton	28-30
Athens	Menard.	185-188
Auburn	Sangamon	252-255
Rarelav	Sangamon	256-258
Benton	Franklin	27
Bloomington	McLean	110-116
Braceville	Grundy	50-51
Braidwood	Will	327-328
3reese	Clinton	20-21
Briar Bluff	Henry	57
Brighton	Macoupin	124
Bush,	Williamson	832
Buxton	Clinton	22
'able	Mercer	196-197
anton	Fulton	31-32
antrall	Sanganion	259 260
'arbondale	Jackson	62-65
ardiff	Livingston	95-96
lartarvilla	Williamson	331-315
atlin	Vermilion	296-299
Sentralia.	Marion	145-148
'olchester	McDonough	109
'olfax	McLean	117
'ollinsville	Madison	138-139
Tuba	Fulton	33-36
Danville	Vermilion	300-310
Dawson	Sangamon	261-264
Decatur	Macon	118
Delafield	Hamilton	51
De Soto	Lagizzan	66-71
Divernon	Sanganan	265
New Thoraction	Madison	110-141
Oonkville	Wulton	38
ninterminie	Power	210-223
Du Quoin Edwardsville.	Mudican	112-143
SUWARUSVI IE	Salina	239 213
EldoradoElm Grove	Adams	1-2
Elmwood	Doorin	203 207
Etherly	L'nor	76 77
cairbury	Livingston	97-98
airmount	Vannilian	311 313
armington	Wulton	39-12
carmington	Fulton	43
Platrock	Crawford	26
catrock	Livingston	99-100
°orest ¢rench Village	St Chair	233-231
talatia	Salino	241
falatia	Honry	58
		198
Hen Carbon		141
Frape Creek		314 316
trape Creek		189-191
reenview		125 126
Harrisburg		215-251
Herrin		346 352
Holles	Peoria	205 209
vesdale	Champaign	7
Vestale	Will	329 331
Junction	Callatin	-19
Kangley	La Salle	79-80
Aangiey		59-61
Kewance		149-150
Kinmundy	Duroun	3-1
[41(10]	Bureau	353

TABLE VIII (Concluded)

Town	County	Ref. Number in Table of Analyses
n Salle	La Salle.	· 81-84
	Williamson	354
	Logan.	101-106
	Montgomery	201-202
	Bureau	5
owder	Sangamon	266
CLeansboro	Hamilton	55
arissa	St. Clair.,	2 35-238
	Menard	192 193
	Shelby	259-295
	Jackson	72
t. Olive	Macoupin	127-132
	Logan	107-108
	Perry	224
	Jackson	73-75
	Macon.	119-123
	Fulton	44-45
tKW00d	Vermilion	317-322
	La Salle.	151-178 85-88
	Macoupin.	133-135
	Christian.	13-19
	Coles	25
	La Salle.	89-90
	Menard.	194-195
	Perry.	225-226
	Sangamon	267-268
	Sangamon	269-274
	Fulton	46-48
. John	Perry	227-228
	Marion	179-181
	Mercer	199-200
	Knox	78
	Randolph	229-230
	Sangamon	275
	Sangamon	276-283
	Sangamon	284
	Bureau	6
	La Salle	91-91 326
	Williamson.	355
	Randolph	231-232
duea	Marshall.	182
enton.	Clinton	23-24
irden	Macoupin	136-137
enona	Marshall.	183-184
	Vermilion	323
	Vermilion	324-325
	Grundy	52-53

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by A. N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by A. N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by A. P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by R. I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge. 1906.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

Bulletin No. 8

SEPTEMBER 1906

TESTS OF CONCRETE: I. SHEAR; II. BOND.

By Arthur N. Talbot, Professor of Municipal and Sanitary Engineering and in Charge of Theoretical and Applied Mechanics.

I. SHEAR.

Reference to current engineering literature and discussions will show that there exists in the minds of engineers quite diverse notions of the shearing resistance of concrete. Values as low as the tensile strength of the concrete are cited; others name a shearing resistance nearly as great as the compressive strength of the concrete. It seems evident that these divergent estimates must be due to inconsistent experimental methods or to improper conceptions of the nature of shearing action.

Shear is defined to be the action of two equal and oppositely directed forces whose lines of action are in planes very close together. Manifestly, in the actual application of forces to structures or even to test pieces, the applied forces are not in adjacent planes, and the shearing forces used in the analysis and calculation are forces which exist by virtue of the mechanics of the problem. The shearing stresses in concrete test pieces are discussed on the basis of some distribution throughout the section, generally a uniform or nearly uniform distribution. The importance of determining this distribution is not usually recognized. Shear should be differentiated from cutting action, in that the latter begins at the surface and involves, in some degree at least, a gradual tearing or detrusive action and a concentration of the

force at a single point. Shear should also be distinguished from the phenomena which may accompany it, as bearing action, diagonal tension, etc. In fact, the difficulties surrounding the determination of the shearing resistance of concrete are due largely to the accompanying cutting action, bearing pressures, and beam stresses involved in the test. In the breaking of reinforced concrete beams, shearing failures have been confused with diagonal tension failures (see Bulletin No. 4, p. 25), and calculations made from the results of such beam tests are evidently a source of low values given in texts and in the building ordinances of many of the cities of the country.

Fig. 1 illustrates a common conception of shear. The shearing force is considered to act along the line AB, and the shearing

FIG. 1. COMMON CONCEPTION OF SHEAR.

resistance is assumed to be uniformly distributed over the section on this line. Evidently these assumptions do not give the real action. Cutting action begins at the surface. The fibers are pushed inward immediately in front of the cutting edge. As this impression is increased, the bearing pressure is extended over a greater surface of the tool, though not uniformly so distributed, and the resultants of the applied forces will be moved away from the line AB. This separation of the applied forces gives a couple, with resulting beam action and horizontal and diagonal tensile and compressive forces. It is evident that the bearing action and resulting imponditions and also that the shearing stresses

pression modify conditions and also that the shearing stresses are not uniformly distributed over the section, and that cutting action may injuriously affect results. A little calculation will show that the bearing pressure for a thin tool would exceed the resistance of the concrete. Besides, a test piece could not be held in the position shown, and a further support will be necessary.

Fig. 2 shows a method which has been proposed and which is open to similar objections. Fig. 3 shows a test piece arranged to get double shear. Evidently the bearing bars, which are only about \(\frac{1}{2}\) in. wide, will produce such high bearing pressures as to cause cutting action or at least cutting stresses. Fig. 4 is a

beam form of test piece. Here the test is complicated by flexural stresses and by deflection or opposition to flexure. The attempts at clamping the ends of the test piece to approximate to a restrained beam, such as are hereinafter described, are also open to objection. Punching tests do not give ideal conditions, as will be seen in the tests of plain plates.

It will be seen that these methods of making tests and of applying the load are open to some objection or other. What is wanted is to get as near ideal conditions as is possible and to approach the conditions which exist in structures under investigation. Take for illustration vertical shear in beams, which forms one of the most common and most important applications for the values to be obtained for shearing resistance. In this case, bearing stresses have little effect. Cutting action does not exist. The vertical shearing stresses are nearly uniformly distributed over the section below the neutral axis and vary only moderately over the compression area. (See Bulletin No. 4, p. 20.) Again attention should be called to the inconsistency of using the terms "shear failure" and "diagonal shear failure" in the case of beams failing by diagonal tension.

This bulletin records the results of shear tests made in the Laboratory of Applied Mechanics of the University of Illinois, together with statements of other available data. It is known that the methods used in the tests and the forms of test pieces used are open to objection, but investigations of this kind are experimental in methods as well as in materials, and the experiments in methods are of themselves of value. It is believed, too, that the results, when compared with those made elsewhere, will go toward establishing the general or comparative value of the shearing strength of concrete, and that no end would be subserved in holding the results for more complete data.

The tests were made principally as thesis work. The tests of 1905 were made by C. S. O'Connell and J. E. Shoemaker of the class of 1905 in civil engineering; those of 1906 by J. E. Schoeller and N. E. Seavert of the class of 1906. These men are entitled to credit not only for the care and industry displayed in their work but for the thought and study given to the problem. Acknowledgment is made to V. R. Fleming, 1905, for aid in the preparation of this bulletin.

DATA FROM VARIOUS SOURCES.

Before taking up the University of Illinois tests, a few pages will be devoted to data taken from various sources and to a brief examination of these data.

It has already been stated that the prevailing notion among engineers is that the shearing strength of concrete is comparatively low. The text-books on concrete and reinforced concrete quote values equal to, or a little more than, the tensile strength of concrete and but a small part of the compressive strength. In the following data, instead of referring to the original publication of the experiments, reference is generally made only to the books which may be available to the general reader.

A set of tests on shearing strength of mortar which have been frequently quoted was made by Bauschinger* in 1878. The test specimens were taken from test pieces 2.4 in. \times 4.8 in. \times 12 in. which had been broken in flexure. The results were interpreted to show that the shearing strength of the mortar was 20% greater than the tensile strength of similar mortars. It seems probable that in the method of testing used tension and not shear was the controlling element. Results of later tests seem to indicate that these values are not representative of the resistance of portland cement mortar in simple shear.

Marsh† quotes Feret as concluding "that the ultimate shearing resistance is proportional to that for compression, and obtains the relation that the shearing resistance is from 0.16 to 0.20 of the compressive strength; this would give us, taking 2175 pounds per square inch, (the mean compressive resistance at from four to six weeks) a shearing strength of from 350 to 435 pounds per square inch, and at a period of three months from 415 to 520 pounds per square inch".

Marsh also makes the following statement: "In a paper presented at the 1901 Budapest Congress, M. Considère gives the value of the resistance of concrete to shearing deduced from M. Mesnager's experiments as from 20% to 30% higher than the tensile resistance; this gives, taking the values from 260 to 285 pounds per square inch, as the mean at a period from four to six weeks, and 310 to 340 pounds per square inch at three months, which are

^{*} Sabin's Cement and Concrete, p. 328. Falk's Cements, Mortars and Concretes, p. 27.

[†] Marsh's Reinforced Concrete, p. 222.

TABLE 1.*

STRENGTH OF PORTLAND CEMENT MORTARS.
BY R. FERET. •

Item	Propor	ximate tion by ight		Ultimate Strength b, per sq. in.		b. per sq. in.		Ratio o Shear
	Cement	Sand	Shear	Tension	Com- pression	to Com- pression		
1	1	18.6	170	69	240	.71		
• • • • • • • • • • • • • • • • • • • •	1	9.9	570	146	870	.66		
$\frac{1}{2}$	1	6.9	1070	212	1540	.70		
4	1	5.2	1440	255	 2350 	.61		
5	1	4.1	2000	314	3320	,60		
6	ī	3.2	2560	367	4170	.61		
6	ĩ	$\frac{2}{5}$	2790	421	5210	.54		
8	î	1.8	3580	480	5970	.60		
9	î	$\frac{1.2}{0.7}$	3930	537	6670	.59		
10	î	0.7	3640	563	6810	.65		
11	î	12.9	256	81	310	.83		
$\hat{1}\hat{2}$	î	7.0	669	182	950	.70		
$\overline{13}$	î	5.0	1040	240	1510	. 69		
14	î	4.1	1350	$\overline{278}$	1990	.68		
$\hat{1}\hat{5}$	î	3.1	1810	$\frac{-40}{320}$	2720	.67		
16	î	$\frac{2.5}{2.5}$	2250	368	3430	.66		
17	i	$\frac{2.0}{2.0}$	2650	415	4380	.61		
18	î	$\tilde{1}.4$	2750	521	5440	.50		
19	i	0.9	3580	541	6100	.59		
$\frac{10}{20}$	î	0.5	3540	602	6720	. 53		
21	î	12.3	156	67	160	.95		
•)•)	i	$\frac{12.3}{5.8}$	370	126	540	.69		
$\frac{22}{23}$	i	$\frac{9.6}{3.5}$	768	214				
24	1	2.4	1410	302	1230 1940	.62 .73		
$\tilde{25}$	1	$\frac{1.4}{1.8}$	2130	364	2840			
26	ĺ	$\frac{1.6}{1.3}$	2150 2570	436	$\frac{2840}{3710}$. 75 . 69		
27	î	1.0	2750	510				
28	i	0.7	3070	574	5000	.55		
$\overline{2}9$	1	$0.5 \\ 0.5$	3570		5760	. 53		
30	Î	$0.3 \\ 0.3$		647	6500	.55		
31	1	0.5 5.0	$\frac{4120}{1720}$	691 328	7110	.58		
32	1	$\frac{3.0}{3.0}$			2350	. 73		
33	i		3100	450	4010	.77		
34	_	2.0	3070	518	4810	.64		
35	1	3.0	2000	456	3640			
.).)	1	0.0	3680	698	8040	.46		

^{*} Taken from Concrete, Plain and Reinforced, by Taylor and Thompson, p. 136.

considerably below those found by M. Feret. Many authors assume that the resistance of concrete to shearing is less than its resistance to tension, and consequently give it a much lower value, but this assumption appears to be erroneous."

Taylor and Thompson* give data from Feret's investigation which indicate a much higher shearing strength for mortar than that given in the preceding paragraph. Table 1 gives the shearing, tensile, and compressive strength of these mortars. It will be seen that the shearing strength ranges from 46% to 97% of the compressive strength and is three to six times the tensile strength.

The method of testing (see Fig. 2) may be open to criticism. The specimen is subjected to single shear, and the small bear-

Fig. 2. Shear Test Used by Feret.

ing area may produce excessive compressive stresses. Tensile stresses may govern the failure.

Considère † states that the experiments made by Mesnager tend to show that the resistance of mortar to shearing exceeds its tensile resistance as it is determined by the usual tests. Tests, which may be too few to allow of general conclusions, have shown a difference of 20% to 30% between these two resistances. Marsh ‡ quotes Considère as applying the same statement to concrete.

Falk \S gives values of the shearing strength of concrete ranging from 65 to 314 pounds per square inch, and amounting to 10% to 18% of the compressive strength of the concrete.

^{*} Taylor and Thompson's Concrete, Plain and Reinforced, p. 136, taken from "Etudes sur la Constitution Intime des Mortiers Hydrauliques", in Bulletin de la Societe D'Encouragement pour L'Industrie Nationale, 1897. Series 5, Vol. 11, p. 1591.

[†] Considere's Reinforced Concrete, translated by Moisseiff, p. 101.

[#] Marsh's Reinforced Concrete, p. 222.

[§] Falk's Cements, Mortars and Concretes, p. 95. Figure showing method of test, p. 87.

TABLE 2.* Shearing and Crushing Strength of 1-3-5 Concrete.

No.	Ultimate Cru Resistano		Ultimate S Resist		Ratio of Shear to
	Of 6-inch cube lb. per sq. in.	Age days	lb. per sq. in.	$rac{ m Age}{ m days}$	Compres- sion
1	1870	177	195	169	.10
5			314	165	
6	1246	164	166	164	.13
8	1196	157	187	157	. 15
10	863	151	158	151	.18
22	922	128	104	128	.11
23	600	128	65	128	.11

BY M. S. FALK.

Table 2 summarizes the data. The method of making the shearing test (Fig. 3) is open to criticism, particularly in that the high

Fig. 3. Shear Test Used by Falk.

bearing stresses cause a cutting action, and the failure of the specimens can hardly be said to be due to shear. The values obtained can not be considered to be representative of the shearing strength of concrete.

Tests made by Zipkes† on prisms $7 \times 7 \times 15.8$ in, gave values of 357 pounds per square inch

for shearing strength of concrete 50 days old. The prisms were supported but not clamped, and the conditions resemble beam failure so much that the results can not be considered to represent ordinary shearing strength. Fig. 4 shows the form of test specimen.

^{*} Taken from Cements, Mortars and Concretes, by Falk, p. 95.

[†] Beton und Eisen, January, 1906, p. 15, et seq. Translation printed in Cement, March, 1906.

Tests on slotted concrete beams reported in the same article

A valuable set of tests on the shearing strength of concrete was made at the Massachusetts Institute of Technology under the direction of Professor Spofford and the auspices of the Joint Committee on Concrete and Reinforced Concrete in 1905. A summary of the data is given in Table 3.

TABLE 3.

SUMMARY OF SHEAR TESTS.

Made at Massachusetts Institute of Technology.

	Method of		ig Stren ber sq. ii		Crushing Strength	Ratio of Shear to
Concrete	Storing	Maximum	Mini- mum	Average	lb. per sq. in.	Compression
1-2-4 1-2-4 1-3-5 1-3-5 1-3-6 1-3-6	Air Water Air Water Air Water	1630 2090 1590 1380 1450 1200	960 1180 890 840 950 1030	1310 1650 1240 1120 1180 1120	2070 2620 1310 1360 950 1270	0.63 0.63 0.94 0.32 1.25 0.88

MATERIALS, TEST PIECES AND TESTS.

The materials, forms of test pieces, method of testing and phenomena of the tests made at the University of Illinois in 1905 and 1906 will now be described.

Materials.—The broken stone used in the 1905 tests was Kankakee limestone screened through a 1-in. and over a \(\frac{1}{4}\)-in. screen. It was taken from the lot described more fully in Bulletin No. 4. The stone for the 1906 tests was similar in character but somewhat harder. The sand was coarse mortar sand, that used in the 1905 tests being the same as that described in Bulletin No. 4 and that used in 1906 being similar in character. The cement used in 1905 was the mixture of American portland cements furnished by the Joint Committee on Concrete and Reinforced Concrete described in Bulletin No. 4. The tensile strength of the neat cement was 723 pounds per square inch at age of 7 days, and 1-3 mortar gave 354 pounds per square inch at 7 days and 533 pounds per square inch at 75 days. The cement used in 1906 was similar in character.

Test Pieces.—As has already been stated, it is extremely difficult to make a test of concrete which will determine the shearing strength. Other stresses, tensile, bearing, and web stresses complicate the problem, and their action may be the controlling element of failure even when shearing action is the apparent cause. The form of test piece to be used was the first point to study, and one purpose of these tests was to find the effect of different forms of test pieces and learn what form is open to the least objection. Two methods of testing were used. In the first, a hole was punched in a concrete plate or block, and this method will be referred to as a punching test. The second method consisted in breaking a short concrete beam which was restrained at the ends. This method will be referred to as the restrained beam test.

Three forms of test pieces were used in the punching tests,—
1. plain concrete plate; 2. recessed concrete block; 3. reinforced recessed concrete block. As was to be expected, the plain concrete plate failure indicated that induced tensile stresses contributed to the failure, and the other test pieces were contrived in an attempt to overcome this defect. A cylindrical die $5\frac{\pi}{4}$ in. in diameter was used in the punching tests. Fig. 5 (a) shows the dimensions of the plain concrete plate. In the recessed block, shown at (b),

Fig. 5. Forms of Shear Test Piece. (a) Plain Concrete Plate. (b) Recessed Block. (c) and (d) Reinforced Recessed Blocks.

the shearing area is the same, and the hollow space at the bottom is given a draft in order to facilitate drawing the form. This test piece is better fitted to withstand the tensile stresses developed during the punching operation. Fig. 5 (c) and (d) show the reinforced recessed blocks. A reinforcement of steel was embedded in the concrete. In two specimens tested in 1905 four bent bars, $\frac{7}{16} \times 1\frac{2}{5}$ -in., were placed as shown in Fig. 5 (c), and in two specimens, eight bent rods, $\frac{1}{4}$ -in. square and twisted, were similarly placed.

In making the tests, the test specimens were placed on a bed plate 1 inch thick, having an opening 6 inches in diameter in the center. The load was applied through a spherical bearing block, and a die $5\frac{\pi}{3}$ inches in diameter placed on the test specimen formed the punching tool. Plaster of paris coatings were used on all bearing surfaces.

The test piece for the restrained beam test (Fig. 6) was 4×4 in. in cross section and 13 inches long. The cast-iron bed plate was faced above and below, as were the two plates at the top.

Fig. 6. RESTRAINED BEAM SHEAR TEST PIECE.

TABLE 4.*

Compressive Strength of 6-inch Cubes.
1905 Tests. 1-3-6 Concrete.

lethod of Storing	Age days	Compression Area sq. in.	Ultimate Load pounds	Compressive Strength lb. per sq. in.
Air	66	36	48000	1330 1330
Air	66	36	57400	$\frac{1530}{1590}$
Air	67	36	38400	1065
Air	67	36	39800	1105
Air	67	36	29400	816
Air	59	36	47200	1310
	59	36	41600	1156
Air	59	36	48850	1355
	Air Air Air Air Air Air	Air 66 Air 66 Air 67 Air 67 Air 67 Air 67 Air 67 Air 59 Air 59	Air 66 36 Air 66 36 Air 67 36	Air 66 36 47980 Air 67 36 38400 Air 67 36 39800 Air 59 36 47200 Air 59 36 47200 Air 59 36 47200

^{*} Taken from Bulletin No. 4, p. 32.

The bolts clamped the beam tightly on the bed plate. Plaster of paris coatings were used on all bearing surfaces. Fig. 10 shows the apparatus in testing machine.

TABLE 5.

Compressive Strength of 6-inch Cubes.

1906 Tests. 1-3-6 Concrete.

Ref.	Method of	$\Lambda { m ge}$	res- Area	Load in	pounds	Compressive Strength b. per sq. in.
No.	Storing	days	Compression Area sq. in.	At First Crack	Ulti- mate	Compressiv Strength lb. per sq. ir
	Damp sand	60	37.9	70000	73200	1930
1	Damp sand	60	37.5	72000	73500	1958
	Damp sand	60	36.4	73500	74500	2045
	Damp sand	60	37.9	58000	86200	2274
. 5	Damp sand	60	37.2	67000	79500	2135
	Damp sand	60	36.4	48000	75600	2072
	•	1				
	Damp sand	61	37.5	92000	100700	2685
3	Damp sand	61	37.1	92000	113600	3060
	Damp sand	61	37.1	78000	109200	2945
	Damp sand	59	37.1	70400	101000	2722 2740
4	Damp sand	59	37.1	84000	101800	2740
	Damp sand	59	37.9	74000	97400	2568
verage						2428
	Damp sand	60	37.1	59600	65800	1773
5	Damp sand	60	37.1	53100	66500	1791
	Damp sand	60	36.8	50100	58900	1600
verage						1721

Compressive Strength of Concrete.—An effort was made to find the compressive strength of concrete in order that comparisons with the shearing strength might be made. The method of making and storing the test pieces was not altogether satisfactory, and for this reason a comparison of strength can not be considered entirely trustworthy. All the cubes tested were 6-in. cubes. In the 1905 tests the concrete cubes were stored in air in a steam heated room where the temperature ranged from 60° to 70° F. Table 4 gives the compressive strength of 1-3-6 cubes of the 1905 tests. In the 1906 tests the concrete cubes were stored in sand

which was kept moist during the period of storage. The results of the test are given in Tables 5 and 6. It will be seen that the values found are very high. In fact, these results are so much higher than other tests of concrete cubes made in this laboratory that the difficulty of comparing the tests with tests made at other times is increased. The cause of these variations is somewhat obscure; the manner of storing is probably only one of the elements

TABLE 6.

Compressive Strength of 6-inch Cubes.

1906 Tests. 1-2-4 Concrete.

Ref. No.	Method of Storing	Age days	Compression Area sq. in.	Load in At First Crack	r pounds	'ompressive Strength b. per sa.in.
					·	
	Damp sand	59	37.1	109500	128500	3463
6	Damp sand	59	37.1	110000	129000	3480
1	Damp sand	59	37.8	73400	121400	3212
	Damp sand	59	35.6	96300	108000	3030
7	Damp sand	59	36.8	104000	117600	319:
	Damp sand	59	37.1	100600	120900	3259
	Damp sand	58	37.5	63400	124700	3321
8	Damp sand	58	37.8	99900	143100	3790
	Damp sand	58	37.8	86800	138000	3650
	Damp sand	59	36.8	79500	91900	2492
9	Damp sand	59	36.4	98000	113700	3120
	Damp sand	. 59	37.1	69300	99300	2675
	Damp sand	57	37.1	64000	111200	2995
10	Damp sand	57	37.5	59100	98600	$\frac{2630}{2630}$
	Damp sand	57	37.5	84300	106500	3840

of difference. Tables 7 and 8 give results of the compression tests made on cylinders 8 inches in diameter and 16 inches long. These specimens were of the same material as the 1906 cubes and were stored in the same manner. It will be seen that the compressive strength determined from the cylinder is materially less than that obtained with the cubes. In all compression tests, a spherical bearing block was used, and a coating of plaster of paris was used on the bearing faces.

Ref. No.	Method of Storing	Age days	Compression Area sq. in.	Ultimate Load pounds	Compressive Strength 1b. per sq. in.
1	Damp sand	60	49.6	60500	1220
2	Damp sand	60	49.6	60000	I210
3	Damp sand	60	49.6	60000	1210
$\frac{4}{5}$	Damp sand	61	49.3	80400	1630
อั	Damp sand	59	49.4	66200	1340
Average					1322
6	Damp sand	60	49.8	57800	1160

TABLE 8.

Compressive Strength of 8 x 16-inch Cylinders.

1906 Tests. 1-2-4 Concrete.

Ref. No.	Method of Storing	Age days	Compression Area sq. in.	Ultimate Load pounds	Compressive Strength Ib. per sq. in.
7	Damp sand	59	49.6	132000	2660
8	Damp sand	58	49.6	126000	2540
9	Damp sand	59	49.6	114000	2300
10	Damp sand	57	49.6	110000	2220
Average .		Ĭ			2430

Discussion.—The behavior of the plain concrete plates and of the unreinforced recessed blocks during the test indicates that tensile stresses were the primary cause of failure with these forms of test specimens. This tension may be likened to the bursting stress developed in a cylinder subjected to internal pressure.

At a load of one-third to one-half of the ultimate load, hair cracks would appear at the bottom and middle of the exterior of the specimen. As the load was increased the crack extended upward and increased in width until at the ultimate load it attained a width of the inch at the bottom and extended to the top of the specimen. The specimen could then be broken apart with the hands, giving four exterior pieces and the punched central core. The appearance of the crack is shown in Fig. 8. The broken specimens are shown in Fig. 7. The core which was punched out always showed cracks on the bottom and these generally extended one-half to two-thirds the distance to the top. In some cases the specimen broke into two parts as a beam fails, and in others the corners rose a small distance much as a metal plate does during a punching operation. In every case tension failure at the lateral faces occurred before shearing took place, and it was evident that the final, or ultimate, failure was much influenced by this condition and that ultimate failure could not be said to be due to simple shear. The recessed specimens were better in this respect than the plain plates, and the shearing stresses were evidently more nearly uniformly distributed throughout the depth with this form

The reinforced recessed blocks failed in a manner quite similar to the unreinforced recessed blocks except that the cracks appeared relatively later and did not open up when the ultimate load was reached. The shearing loads were higher than for the unreinforced specimens and the conditions were more favorable for developing the shearing strength of the material. This is especially true where hoops were used for the reinforcement. An objection which still remains in this form of specimen is that the manner of applying the load at the top of the piece does not give an even distribution of the shear throughout the vertical section.

The manner of failure of the restrained beam form of specimen was as follows: In specimens No. 1 to 5 (1.3.6 concrete) and No.6 (1.2.4 concrete) the first sign of failure was the appearance of cracks at the top as sketched in Fig 11 (a) at a load three-fourths to nine-tenths of the ultimate. These cracks seemed to be caused by a cutting action of the bearing plate or to tension due to beam action. As the load increased these cracks gradually lengthened and widened, as shown in Fig. 11 (b) until they finally reached a

Fig. 11. Manner of Failure in Restrained Beam Shear Test Piece.

TABLE 9.
SHEARING STRENGTH OF PLAIN PLATES.
1905 Tests. 1-3-6 Concrete.

Ref. No. 39 40 41 42	Method of Storing Air Air Air	Age days 60 60	Area sq. in.	At First Crack	Ultimate	Shearing Strength
40 41	Air					_
41		60	55.4	12000	37000	668
	\ ir	()()	56.5	18000	35000	620
4.)	- 1 A S	61	56.5	15000	39000	691
	Air	61	56.5	28000	43500	770
43	Air	61	56.5	16000	36000	638
44	Λir	61	55.4	14000	35000	632
4.5	Λir	61	56.5	17000	42000	744
46	Air.	61	56.5	18000	39500	700
47	Air	61	55.4	19000	36000	650
verage			 			679
31	Water	69	56.5	8000	36000	637
32	Water	69	54.2	15000	41500	765
33	Water	69	54.2	14000	38400	708
34	Water	61	54.2	12000	36200	667
35	Water	61	55.4	20000	47500	857
36	Water	61	56.5	13000	40000	709
37	Water	61	55.4	17000	4:	758

Fig. 7. View Showing Recessed Blocks After Failure.

Fig. 8. View Showing Punching Test.

Fig. 9. View Showing Test Pieces.

Fig. 10. View Showing Restrained Beam Shear Test.

TABLE 10.
SHEARING STRENGTH OF PLAIN PLATES.
1906 TESTS. 1-3-6 CONCRETE.

Ref.	Method of	Λge	ing in.	Load in	pounds	ing gth g. in
No.	Storing	days	Shear Are sq.	At First Crack	Ulti- mate	Shear Stren Ib. per s
1	Damp sand	60	57.8	28000	30800	533
2	Damp sand	60	61.0	18000	64500	1058
3	Damp sand	61	58.9	58000	60500	1028
4	Damp sand	59	60.1	37800	61200	1018
Average .						909
5	Damp sand	60	61.0	39500	59000	968

TABLE 11.

SHEARING STRENGTH OF PLAIN PLATES.
1906 TESTS. 1-2-4 CONCRETE.

Ref.	Method of	Age	ea in.	Load in	pounds	ath Eth
No.	Storing	days	Shea Ar	At First Crack	Ulti- mate	Shear
6	Damp sand	59	61.0	24200	81000	1336
7	Damp sand	59	60.1	22000	86800	1443
8	Damp sand	58	58.9	16600	64500	109.
9	Damp sand	59	60.1	12800	48000	799
10	Damp sand	57	61.0	41800	79400	130

maximum width, of, say, $\frac{1}{3}$ inch at the top. In specimens No. 7 to 10 (1-2-4 concrete) the first sign of failure was a tension crack as shown in Fig. 11 (c), which appeared at a load of one-third to four-fifths of the ultimate and gradually lengthened and widened as the load increased. Later cracks would appear at the top as shown in Fig. 11 (d). After the maximum load was reached, the lower crack gradually closed up and the upper cracks increased in width. The final shearing action occurred at a load less than the maximum and evidently took place over a much smaller shearing

TABLE 12.
SHEARING STRENGTH OF RECESSED BLOCKS.
1905 Tests. 1-3-6 Concrete.

Ref.	Method of	$\Lambda { m ge}$	Shearing A rea	Load in	pounds	ring ngth ser in	
No.	Storing	days	sq. in.	At First Crack	Ultimate	Shearing Strength	
14	Air	60	56.5	23000	51000	903	
15	Air	60	56.5	23000	36700	650	
16	Air	60	55.4	30000	52500	947	
17	Air	60	54.2	21000	34800	64:	
18	Air	61	56.5		39000	691	
19	Air	61	55.4	24000	49500	894	
20	Air	61	54.2	22000	52500	968	
21	Air	61	55.4	26000	49000	894	
22	Air	60	56.5	19000	47000	83:	
21 22 23 24 25 26	Air	60	56.5		37000	655	
24	Air	60	56.5	23000	51500	911	
25	Air	60	56.5	19000	41000	725	
26	Air	60	54.2	14000	32500	600	
27	Air	61	56.5	17500	45500	80	
28	Air	61	56.5	18000	40500	71	
29	Air	61	56.5	24000	50000	883	
30	Air	61	55.4	22000	45500	811	
verage					 	790	
1*	Water	69	55.4	25000	39500	715	
2*	Water	69	54.2	24000	33000	609	
3*	Water	69	54.2 54.2	25000	36000	66-	
4*	Water	69	55.4	19500	43000	778	
6*	Water	63	55.4	25000	37100	670	
8*	Water	61	55.4		40000	722	
verage						69:	
9	Water	61	54.2	20000	52500	968	
10	Water	61	56.5	21000	47200	886	
11	Water	61	56.5	24000	50000	885	
12	Water	61	55.4	24000	53300	961	
13	Water	61	54.2	22000	37700	695	
verage						879	

^{*} These specimens were injured in removing the forms.

area than the full section of the beam. At the final failure of these beam specimens cracks formed as shown in Fig. 11 (e) through a portion of the depth. This portion of the vertical section evidently took the full shear.

TABLE 13.

SHEARING STRENGTH OF RECESSED BLOCKS.

1906 TESTS. 1-3-6 CONCRETE.

Dat	Mathad of	Name .	ing r	Load in	pounds	ing gth q. in.
Ref. No.	Method of Storing	Age days	Sheari Area sq. in	At First Crack	Ult i - mate	Shear Streng 1b. per s
1	Damp sand	60	58.8	54000	66300	1126
2	Damp sand	60	58.8	69400	69800	-1187
3	Damp sand	61	57.8	63300	69300	1198
4	Damp sand	59	60.1	28000	63300	1052
Average .)	1141
5	Damp sand	60	60.1	42000	54700	910

·TABLE 14.
SHEARING STRENGTH OF RECESSED BLOCKS.
1906 Tests. 1-2-4 Concrete.

Ref.	Method of		Age	ring sa n.	Load in	pounds	ring sth
No.	Storing	i	days	Shea Are sq. i	At First Crack	Ulti- mate	Shear Stren
6	Damp sand		59	60.1	39300	66200	1100
7	Damp sand		59	-56.5	45600	82700	1463
8	Damp sand		58	57.8	41100	86500	149
9	Damp sand		59	58.8	26200	74400	126
10	Damp sand		57	57.8	19200	55900	96

TABLE 15.

SHEARING STRENGTH OF REINFORCED RECESSED BLOCKS.

1905 TESTS. 1-3-6 CONCRETE.

Ref.	Method of	Age	ring sa in.	Load in	pounds	ring 1gth
No.	Storing	lays	Shea Are sq.	At First Crack	Ulti- mate	Shea Strei
48	Air	59	56.5	28000	47000	83
49	Air	59	ō6.5	36000	65800	116.
50	Air	59	55.4	50000	59000	106
51	Air	59	56.4	52000	64500	114:

TABLE 16.
SHEARING STRENGTH OF REINFORCED RECESSED BLOCKS.
1906 Tests. 1-3-6 Concrete.

Ref.	Method of	$\Lambda { m ge}$	ring ea in.	Load in	ring ngth	
No.	Storing	days	Sheari Area sq. in	At First Crack	Ulti- mate	Shea Street Ib. ner
1	Damp sand	60	58.5	73000	89500	1529
2	Damp sand	60	57.8	98000	105500	1827
3	Damp sand	61	57.8	10000	108000	1869
4	Damp sand	59	57.8	62300	119100	2060
verage .						1821
5	Damp sand	60	58.8	58200	91500	1555

EXPERIMENTAL DATA AND DISCUSSION.

Data.—Tables 9, 10 and 11 give the results for the form of test piece called plain concrete plates. Tables 12, 13 and 14 give the results for recessed concrete blocks. Tables 15, 16 and 17 give the results for reinforced recessed concrete blocks. Tables 18 and 19 give the results for form of test piece called restrained concrete beam.

TABLE 17. SHEARING STRENGTH OF REINFORCED RECESSED BLOCKS. $1906 \ {\rm Tests.} \quad 1\cdot 2\text{--}4 \ {\rm Concrete}.$

Ref.	Method of	Age	ring ea in.	Load in	pounds	ring reth seth
No.	Storing	days	Shea Ar	At First Crack	Ulti- mate	Shea Strei Ib. per
6	Damp sand	59	60.1	85300	145500	2420
7	Damp sand	59	55.2	37700	115500	209]
8	Damp sand	58	57.8	64300	160000	276
9	Damp sand	59	58.8	56700	118000	2008
10	Damp sand	.) 1	58.8	39300	84600	1440

Discussion.—Table 20 gives a summary of the shear tests, together with a comparison with the results of the compression tests. In considering the resistance of concrete to shearing action, as shown by these results, it will be well to take up the effect of the form of specimen upon the phenomena of failure, to consider the values obtained for ultimate failure and the elements which affect the shearing strength of concrete, and to compare shearing strength with compressive strength.

The tests bring out the difficulties of making shear tests. Even the best forms of test piece used proved not fully satisfactory for determining the strength of concrete in simple shear, and in particular their action does not conform exactly to the phenomenon as it exists in beam action. The tests throw light on the subject, and we may expect to be able to form a judgment on the shearing strength of concrete. In the plain plate test specimen the failure in tension caused by the bursting action evidently

 ${\bf TABLE~18}.$ Shearing Strength of Restrained Beams.

1906 Tests. 1-3-6 Concrete.

Ref.	Method of	Age	ing a n.	Load in	pounds	ing gth sq. in.
No.	Storing	days	Shear Are sq. ii	At First Crack	Ulti- mate	Shean Stren Ib. per s
1	Damp sand .	60	34.0		40500	1190
•)	Damp sand	60	35.0	41200	48000	1371
3	Damp sand	61	34.0	46000	46500	1368
4	Damp sand	59	34.0	33300	45000	1324
verage .						1313
5	Damp sand	60	34.0	34000	34700	1020

TABLE 19.

SHEARING STRENGTH OF RESTRAINED BEAMS.
1906 Tests. 1-2-4 Concrete.

Ref.	Method of	Age	ii e ii E e ii	Load in	pounds	ing gth g. in.
No.	Storing	days	Sheari Area sq. i	At First Crack	Ulti- mate	Shear Stren lb. per s
6	Damp sand	59	35.0		54000	154;
7	Damp sand	59	34.0	31500	44000	1293
8	Damp sand	58	34.0	46400	58400	1718
9	Damp sand	59	34.0	33400	49300	145
10.1	Damp sand	57	34.5	29800	45800	132
10B	Damp sand	57	34.5	27000	40500	117
verage .						1418

weakened the piece to resist shear, and the results are lower than the real shearing strength of the concrete. In the recessed blocks the bursting effect is distributed over a greater area. The reinforced recessed blocks resisted the bursting pressure even better. The 1906 test pieces reinforced with hoops showed the exterior cracks at a load well up to the ultimate load and these cracks did not open up when the ultimate load was reached. This form is the best of those used in the punching tests. Objection may be made to the punching test that the specimen does not have full opportunity to expand laterally, but a greater objection is that the shearing stress is not distributed uniformly over the shearing area. It is possible that in the specimen reinforced with a hoop the restraint interfered with shear action. The phenomena are further complicated by the compression put upon the test piece and its distribution. In the restrained beam form of test specimen, tension and cutting cracks decreased the effective shearing area. Besides, the application of the load at the level of the top of the beam does not permit an even distribution of the shear throughout the given vertical section. It seems evident that the real shearing strength of concrete will be greater than this form of specimen will give.

In discussing the results given in Table 20, the diverse nature of the materials, the methods of storage, and the form of specimen must be borne in mind. The stone used in the 1906 tests was harder than in the 1905 tests, and the concrete was much stronger. The air-stored specimens were weaker than those not exposed to drying out. The richer mixture does not give proportionally higher strengths than the leaner one. This is to be expected, since the strength of the stone must exert a considerable influence upon the shearing strength and may limit the resistance to shear. The higher values found in the tests made at the Massachusetts Institute of Technology in 1905, as compared with the 1904 results referred to in Taylor and Thompson's Concrete, are explained as due to the better quality of stone used. The quality of the cements used may have had something to do with the difference. It must be remembered that these tests are not entirely comparable. However, it would seem that the results of all these tests may be interpreted to mean that the shearing resistance of concrete is as high as, and probably higher than, the

 $\begin{array}{c} \text{TABLE 20.} \\ \text{SUMMARY OF SHEAR TESTS.} \end{array}$

				str		trengt per sq			of Shear apression
Form of Specimen	Year	Kind of oncrete	Method of Storing	Number of Tests	Floor	Comp ic	ress- on		
		자. 오	<u> </u>	Numbe	Shear	Cube Cylin-der		Cube	Cylinder
		1-3-6	Air	9	679	1230	-	.55	
Plain		1-3-6	Water	7	729	1230	1000	.59	
plate	1906	1-3-6 1-3-6	Damp sand Damp sand	1 1	905 968	$\frac{2428}{1721}$	$\frac{1322}{1160}$.37 $.56$	$\frac{.68}{.83}$
•			Damp sand	5	1193	3210	2430	.37	.49
	1905	1-3-6	Air	17	796	1230		.65	
		1-3-6	Water	- 6	692*	1230		.56	
Recessed	1905		Water	5	879	1230		. 71	
block	1906	1-3-6	Damp sand	4	1141	2428	1322	.47	.86
	1906		Damp sand Damp sand	$\frac{1}{5}$	$\frac{910}{1257}$	$\frac{1721}{3210}$	$\frac{1160}{2430}$. 53 . 39	.78 .52
	1905	1-3-6	Air	4	1051	1230		.86	
Reinforced	1906	1-3-6	Damp sand	4	1821	2428	1322	. 75	1.38
recessed block	1906		Damp sand	1	1555	1721	1160	.90	1.39
DIOCK	1906	1-2-4	Damp sand	5	2145	3210	2430	.67	.88
3	1906	1-3-6	Damp sand	4	1313	2428	1322	.54	1.00
Restrained	1906	1 - 3 - 6	Damp sand	1	1020	1721	1160	.59	.88
beam			Damp sand	6	1418	3210	2430	. 44	.58

^{*} Specimens injured in removing the forms.

values found with the recessed blocks in the punching tests and with the restrained beam test. The shearing strength of this limestone concrete at 60 days, as determined by these methods, may then range from 800 to 1100 lb. per sq. in. for the stone used in 1905 and from 1100 to 1300 lb. per sq. in. for the stone used in 1906, both for 1-3-6 mixtures. For the 1-2-4 mixture with the stone used in 1906, the range is from 1250 to 1400 lb. per sq. in. These agree fairly well with the results obtained at the Massachusetts Institute of Technology in 1905. The reinforced recessed blocks of Table 17 give averages of 1768 and 2145 lb., so that the shearing strength may be higher than the results given above.

It seems evident that the shearing strength is far greater than the tensile strength and comparison of these two properties is not advisable. It does not seem profitable to compare shearing strength with compressive strength, since the former is more largely influenced by the strength of the stone and the latter by the strength of the mortar. The tests made with the recessed blocks, the reinforced recessed blocks, and the restrained beam test specimens indicate that the shearing strength is at least 50% as much as the compressive strength, except that the high results of the 1906 concrete cube tests bring some of the figures below this. These cube tests are much higher than any other of the same mixture made in the laboratory. Comparison with other cube tests and with the cylinders indicates that shearing strength may run well up toward compressive strength. A range which is thought to cover much of the concrete used is 50% to 75%. conclusion would not disagree with the Massachusetts Institute tests nor with the conclusions of Feret.

Summary.—The following summary is offered:

- 1. It is difficult to devise a form of test specimen and a method of testing which will satisfactorily determine the resistance of concrete to shear. The difficulties lie in the inability to secure an even distribution of the shear over the shear section, in the high cutting and bearing stresses developed, and in the complications formed by the compressive, tensile, and bulging and bursting stresses developed. The forms of test specimen here used are not fully satisfactory, but information concerning the shearing resistance of concrete may be drawn from the tests as a whole, and tentative values selected. A test specimen in the form of a beam and in which the load is applied evenly over the depth of the beam instead of on the top is suggested.
- 2. The resistance of concrete to shear is dependent upon the strength of the stone as well as upon the strength of the mortar, and for the richer mixtures the strength of the stone probably exercises the greater influence. With hard limestone and 1-3-6 concrete 60 days old the shearing strength may be expected to reach 1100 lb. per sq. in., and with the 1-2-4 mixture 1300 lb. per sq. in. It seems very probable that the resistance to simple shear is considerably higher than this, and that tests made with the load applied evenly over the shearing section will verify this.

3. Since the compressive strength of concrete is influenced largely by the strength of the cement and the shearing strength is much more influenced by the strength of the aggregate, it does not seem proper to express the shearing strength in terms of the compressive strength. However, this is frequently done and is of advantage in gaining a conception of their relative action. It appears that the shearing strength is, in general, at least 50 % of the compressive strength, and that it may exceed 75 %. The apparent exception to this is explained by the high values obtained in the 1906 compression tests. These conclusions agree in a general way with the statement of Feret and others that the shearing strength is as much as two-thirds of the compressive strength. Evidently the shearing strength of concrete is several times its tensile strength.

II. BOND.

The tests of bond between steel and concrete, or tests of the resistance to a pulling force on the bars, were made in the manner usually followed in such tests. The concrete test piece was made small and short. The tests include the bond resistance of rods having smooth surface and uniform section, like cold rolled shafting, the effect of richness of concrete and of the depth the bar is embedded, and the resistance of flat bars. The work was done by Todd Kirk, a civil engineering student. Mr. Kirk had the misfortune to have the test specimens he made in 1905 injured in the accident mentioned in Bulletin No. 4. The experience gained gives greater reliability to the 1906 tests.

Materials.—The broken stone, sand and cement used were the same as hereinbefore described for the 1906 shear tests. Four different kinds of steel were used: $\frac{1}{2}$ -in, and $\frac{2}{3}$ -in, round mild steel rods having an elastic limit of about 38 000 lb. per sq. in.; $\frac{1}{2}$ -in and 1-in, cold rolled shafting having an elastic limit of about 87 000 lb. per sq. in.; $\frac{3}{4}$ -in, round tool steel having an elastic limit of about 53 000 lb. per sq. in.; $\frac{3}{16} \times 1\frac{1}{2}$ in, flat bars with an elastic limit of about 45 000 lb. per sq. in.

TABLE 21.
Bond Between Steel and Concrete.

1904 Tests.

Test No.		Type of Rod		· Maximum Load	Area sq. in.	Lb. per sq. in. of Net Section	Lb. per sq. in. of Net Surface	Elastic Limit of Steel	Remarks	
1	$\frac{1}{2}$ -in.	Johnso	n	14990	.20	74950	625	60000	Concrete	split
2		6.		14210		71050	593	6.4		
3			*	12605	**	63000	525	**	**	6.6
27		6.6	*	15335	64	76650	639		Cylinder	
$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 27 \\ 4 \\ 30 \\ 26 \\ 5 \end{bmatrix}$	<u>∦</u> -in.		n	17175	.365	47050	573	-58300	Concrete	split
30 -		* *		11755	**	32200	392	• •		• •
26		4.4		13975	4.4	38300	466		4.6	6.6
5			*	16360	• •	44800	545	**		6.6
31			*-	9515	**	26050	317	••		
32		4.6	*	8960		24500	298	٠.	4.4	
31 32 29 33 34			*	10435	**	28600	$ \begin{array}{r} 298 \\ 348 \\ 250 \end{array} $	• • •	4.	
33	₹-in.	square		4780	.16	29900	250	45000	Rod slipp	ed.
34				6850		42800	357		16 75	
13 L		4.4		5850	6.6	36550	$\frac{305}{357}$	"		
35			*	6810	* 6	42600	357	4.4		
36		6.4	*	6910	4+	43200	360			
18			*	4100		25600	214	4.6	46 46	
14			*	5560		34700	214 290	4.6		
8	3-in.	square		11600	.56	20620	322	35000		
8 9	4	**		11850		21100	320	**	**	
10	⅓-in.	souare		7910	.27	29320	$\frac{329}{317}$	33300		
15	2 1121	square		6400	-7.	23700	256	**	66 66	
11	§-in	round		3255	.11	28800	228	42500		
$\tilde{1}\tilde{2}$	8 1111	round		3860		34200	270	12000		
16	8-in	square	+	6905	. 16	43150	180	45000	44 44	
17	s	Maure	†	6690	• • • •	41800	174	4.	66 66	
17 21 22 23 28 7 6		44	1	4785	4.4	29930	249			
9.9		4.6		6000	4.4	37500	312			
53		64		4580		28640	239			
58		6.		6540		40800	$\frac{239}{340}$	4.4		
7	&_in	round		7000	.452	15500	245	40500		
	\$-111.	round		11000	.4:)2	27500	245 386	40900	66 66	

^{*} Struck 6 quarter-swing blows with a 10-lb, sledge.

⁺ Embedded for a length of 24 in.

Test Pieces.—Two forms of test piece were used, one a cylinder 6 inches in diameter and 6 inches long, and the other 6 inches in diameter and 12 inches long. In Fig. 9 one of the vertical pieces is a bond test piece. The bars were embedded the full length of the cylinders, one end being left flush with an end of the cylinder and the other end projecting far enough to furnish a grip for the pulling head of the testing machine. The 6-in, length of encasement was used to make sure that the stress in the steel would be far below the elastic limit. It was planned that the stress in the steel in the 12-in, encasement should closely approach the elastic limit. In order to determine the effect of the quality of concrete, two mixtures, 1 cement—3 sand— $5\frac{1}{2}$ stone, and 1 cement—2 sand—4 stone were used, all by loose measure. The 1905 tests were with a 1-3-6 mixture.

TABLE 22.

BOND TESTS.

PLAIN ROUND RODS.
1-3-51 CONCRETE.

	s ter	₹.= x.	et ii.	<u> </u>	ng ng La		ress Develo b. per sq. i	
Ref. No.	Diameter inches	Encased Length inches	Surface i Contact sq. in.	Maximum Load pounds	Running Friction pounds	Bond	Running Friction	In Steel
1	1	6	9.42	3400	1850	360	196	17300
	1 21 121 121 121 120 120	6	9.42	3360	1900	356	201	-17100
$\bar{3}$	į	(3	9.42	3510	1950	372	207	17900
2 3 4 5	į	6	9.42	3355	2000	372 377	212 228 218	18100
.5	1 5	6	9.42	2640	2150	386	228	18500
6	1/2	G	9,42	3530	2050	375	218	18000
7	5.	6	11.77	4300	3000	365	258	14000
7 8	رون ولئ وري ولؤي اردي	6	11.77	4195	2600	358	221	13650
9	<u> </u>	6	11.77	4250	2500	361	212 225	13850
10	ş	6	11.77	4150	2650	352	225	13520
11	5.	6	11.77	4075	2500	346	212	13300
12	- 58	6	11.77	4050	2950	342	251	13200
16	1.2	12	18.84	-7130	5400	378	286	36400
17	j.	12	18.81	7475	5300	397	281	38100
18	1 2	12	18.84	6500	4500	345	239	33100
19	5	12	23.54	10000	5500	425	234	32700
20	Ş.	12	23.54	9500	6000	404	255	30950
21	יטיבי שלבי אבי	12 12	23.54	8875	5000	377	212	-28950

Method of Testing and Age of Test Specimen.—The free end of the bar to be tested was run through the movable head and held in the upper grips of the testing machine. The load was then applied with the movable head. In order that the pressure on the concrete might be uniformly distributed, a bearing plate bedded in plaster of paris was placed between the concrete and the movable head of the machine, the plaster of paris being allowed to set under a small load. The age of test piece when tested was 60 days.

TABLE 23.

Bond Tests.

Plain Round Rods.
1-2-4 Congrete.

	ter	s Eg	et in	m <u>x</u>	gen de se	St	ress Devel- lb. per sq.	
Ref. No.	Diameter inches	Bneased Length inches	Surface in Contact sq. in.	Maximum Load pounds	Running Friction pounds	Bond	Run- ning Frie- tion	Steel Steel
42	1 2	6	9.42	4000	2470	425	263	20400
43 44	12 12 12 12 12 12	6	9.42	4490 4060	2600 2400	$\frac{477}{428}$	276 254	22900 20600
45	2	6 6	$9.42 \\ 9.42$	3840	1900	428	202	19600
46	1	6	9.42	3650	1700	388	181	18600
47	1 2	6	9.42	3340	1740	355	184	17000
34	5	6	11.77	5580	3400	475	289	18200
35	হাল হোল হোল হোল	6	11.77	5510	3390	468	288	18000
36	5. 8	6	11.77	5260	3600	. 448	306	17150
37	5 8	6	11.77	5530	3550	471	302	18000
13	1	12	18.84	8200	5500	436	292	41800
14	12 12 12	12	18.84	6820	5200	362	276 239	34800
38	$\frac{1}{2}$	12	18.84	7500	4500	398	239	24400
39	$\frac{1}{2}$	12	18.84	7900	4730	418	251	25700
15	5 8	12	23.54	11200	7500	476	318	36500
40	oja oja oja	12	23.54	9040	4740	384	202	29450
41	<u>\$</u>	12	23.54	9000	4000	382	170	29350

1904 Tests.—Table 21 is reprinted from Bulletin No. 1 and gives the results of bond tests made by Mr. Davis in 1904. The concrete used was a 1-3-6 mixture. In making comparisons the values with rods embedded more than 12 inches should not be used, since there is evidently an uneven distribution of bond stress over the length of the bar.

1905 and 1906 Tests.—Tables 22, 23 and 24 give the results of Mr. Kirk's tests. In Table 25 the results are summarized.

Results.—The condition of the concrete caused by the method of testing bond resistance here used, may be considered to differ from the condition of the concrete in a beam when bond stress is developed. In these tests the concrete specimen is subjected to compression, and this compression produces lateral expansion; this lateral expansion may increase the pressure on the surface of

TABLE 24.

BOND TESTS.*

VARIOUS TYPES OF BARS.

		S.	of ste	re ct I.	um Is	# E E		ss Develop per sq. in	
Ref. No.	Kind of Steel	Size of Bar inches	Kind of Concrete	Surface in Contact sq. in.	Maximun Load pounds	Running Friction pounds	Bond	Run- ning Fric- tion	In
18 19 20	Tool steel	‡ round ‡ round ‡ round	1-3-6 1-3-6 1-3-6	14.13 14.13 14.13	2060 2180 1993		147 154 141		4650 4940 4510
22 23 24	Cold rolled shafting	1 round	1-3-51	18.84 18.84 18.84	2700 2200 2810	1500 1000 1270	143 117 150	80 53 67	3446 2806 3586
25 26 27	do.	½ round		9.42 9.14 9.42	1425 1610 1395	550 450 400	151 170 147	58 48 43	7250 8220 7130
28 29 30	Mild steel	$\frac{3}{1.6} \times 1^{\frac{1}{2}}$		20.25 20.25 20.25	2260 2550 2800	1440 1700 2000	111 126 138	71 83 98	8050 9070 9960

^{*} In these tests the steel was encased to a length of 6 inches.

the steel and thus increase the resistance. On the other hand the low compressive stress developed, a maximum of 500 lb. per sq. in. at the top and 0 at the bottom, indicates that the effect of this can not be large.

TABLE 25.
SUMMARY OF BOND TESTS.

No. of Tests	Type of Rod	Size inches	Kind of Concrete	Encased Length inches	Surface in Contact sq. in.	Max. Load lb.	Bond lb. per sq. in.	Rum Fric	bersq.	Ratio of Run- ning Friction to Bond
6	Plain round	12	$1-3-5\frac{1}{2}$	6	9.42	3498	372	1983	210	57.0
6	do.	2	1-2-4	6	9.42	3893	412	2135	227	55.2
6	do.	5	$1-3-5\frac{1}{2}$	6	11.77	4170	355	2700	227	64.0
4	do.	Ski	12-4	6	11.77	5376	465	3485	297	64.0
3,	do.	$\frac{1}{2}$	$1 \cdot 3 - 5\frac{1}{2}$	12	18.84	7035	373	5066	268	72.0
4	do.	$\frac{1}{2}$	1-2-4	12	18.84	7605	404	4982	266	65.5
3	do.	충	$1 - 3 - 5\frac{1}{2}$	12	23.54	9458	402	5366	228	56.8
3	do.	5	1-2-4	12	23.54	9736	414	5284	223	54.0
3	Cold rolled shafting	1	$1 \overline{=} 3 \overline{-} 5\tfrac{1}{2}$	6	18.84	2570	136	1256	67	49.2
3	do.	$\frac{1}{2}$	$1 - 3 - 5\frac{1}{2}$	6	9.42	1476	157	466	50	31.8
3	Mild steel	$_{\frac{3}{16}}x1_{\frac{1}{2}}$	$1 - 3 - 5\frac{1}{2}$	6	20.25	2536	125	1713	84	67.1
3	Round tool steel	8.	1-3-6	6	14.13	2077	147	 .		

The following is given as an interpretation of the results of the testson - Steel bar in compression

- 1. Little difference is found in the bond resistance per square inch of surface of bar in contact with the concrete whether the bar is embedded 6 inches or 12 inches. Evidently a length may be found beyond which the stretch of the steel would cause uneven distribution of the bond stress along the length of the bar and cause failure to begin at the point of greatest stress in the steel and thus give results not representative of the real bond resistance. This limitation applies to length for use in experimental tests of bond. In simple beams the bond stresses are applied along the length of the bar, and stretch and bond exist together.
- 2. The richer mixture of concrete gives somewhat higher bond resistance than the leaner—the values for the 1-2-4 concrete averaging, say, 10% to 15% higher than the 1-3- $5\frac{1}{2}$ concrete. For plain round mild steel rods, the average for the bond resistance ranges from 350 to 450 lb. per sq. in. of contact surface.
- 3. The flat bars gave much lower resistance than round bars. Only three tests were made with flat bars, and these may not be representative. It may be noted that the results with flat bars are much lower than tests made elsewhere. It should also be noted that for a bond stress of 125 lb. per sq. in., the tensile stress developed in the bar was only 9000 lb. per sq. in.
- 4. The value of bond resistance will depend upon the smoothness of the surface of the bar, the uniformity of its diameter and section, the adhesive strength of the concrete, and the shrinkage grip developed in setting. The effect of smoothness of surface and uniformity of diameter and section is seen in the tests made with cold rolled shafting and tool steel. The average bond developed with cold rolled shafting and tool steel was 147 lb. per sq. in. of contact surface, as compared with about 400 lb. per sq. in, for ordinary plain, round, mild steel rods. It should be stated that not only was there a very noticeable difference in the smoothness and finish of the surface of the rods, but the section of the cold rolled shafting and tool steel was very uniform, the diameter not varying more than .0001 or .0002 in. at 1-in. intervals throughout the length, while mild steel rods will vary as much as .0015 in. It is to be expected that the smoothness and uniformity of section of drawn steel wire will operate to give low values of bond resistance, though, of course, as the section of wire is small compared

with the circumference, the bond stresses developed when wire is used are relatively small. Attention is called to the fact that in the reinforced concrete beams described in Bulletin No. 4 the bond stresses developed in beams failing by tension of the steel, diagonal tension of the concrete or other similar methods amounted to from 73 to 193 lb. per sq in. Even at the breaking load, then, the bond stress developed in the mild steel rods was far below the bond resistance found in these tests.

5. In these tests the bars began to slip when the maximum load was reached. After slipping began, the resistance to motion was still considerable. This running friction, taken when the bar had moved about \(\frac{1}{4}\) in., amounted to 54% to 72% of the bond developed in the case of mild steel bars and to 32% to 49% in the case of the cold rolled shafting.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906.

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

BULLETIN No. 9

REVISED EDITION

NOVEMBER, 1912

AN EXTENSION OF THE DEWEY DECIMAL SYSTEM OF CLASSIFICATION APPLIED TO THE ENGINEERING INDUSTRIES

L. P. Breckenridge*, Professor of Mechanical Engineering and

G. A. GOODENOUGH[‡], ASSOCIATE PROFESSOR OF MECHANICAL ENGINEERING

INTRODUCTION

			PAGE
	1.	Preliminary	2
	2.	Explanation of the Decimal System	2
	3.	Relative Index	3
	4.	Uses and Advantages of the Classification and Index	4
	5.	Variations and Modification	
	6.	Acknowledgments	7
	7.	Illustrations	8
II	TAB	LE OF CLASS NUMBERS	9
III	REL	ATIVE INDEX	81

2541/12

^{*}University of Illinois, 1894-1909: Yale University, 1909-date. ‡Recently appointed Professor of Thermodynamics.

I. Introduction.

1. Preliminary.—The decimal system of classification was devised and elaborated by Mr. Melvil Dewey, formerly director of the New York State Library. This system was intended primarily for the use of librarians in the classification and arrangement of books and pamphlets, but it was soon found that the system furnished also a simple and effective means of classifying, indexing and filing literary matter of all kinds. Engineers have found it useful for indexing technical data and information, catalogs, reports, card systems, drawings, etc., and it has been found equally useful by manufacturing and business concerns.

Recognizing the value of the decimal system as a means of classifying and indexing technical literature, the department of mechanical engineering of the University of Illinois prepared several years ago an extension of that part of the Dewey classification which relates to mechanical engineering. The first edition was a small pamphlet of six pages. The demand for the extension was so great that within a year a second edition was printed, and this has been followed by the third and fourth editions. In each successive edition the extension has been carried somewhat further, and such slight changes and modifications have been made as would add to the clearness and consistency of the system as a whole. In the third edition was incorporated with slight modifications the extensions for railroads and railroad engineering adopted by the International Railway Congress.

In the fourth edition are included the extensions to mechanical and railway engineering already worked out; an extension for electrical engineering made by Mr. J. M. Bryant of the electrical engineering department; and more or less complete extensions for other branches of engineering. The whole will be, it is hoped, a self-contained classification which will cover with fair com-

pleteness the entire ground of engineering industry.

2. Explanation of the Decimal System.—The essential characteristic of the Dewey system is its method of division and subdivision. The entire field of knowledge is divided into nine chief classes numbered by the digits from 1 to 9. Matter of too general a nature to be included in any of these classes is put into a tenth class and indicated by 0. The following are the primary classes of the Dewey system:

- o General Works
- 1 Philosophy
- 2 Religion

- Sociology
- Philology
- Natural Science
- Useful Arts
- Fine Arts
- Literature
- History

Each of these classes is again divided into nine divisions, with a tenth division for general matter, and each division is separated into nine sections. The sections are again sub-divided and the process may be carried as far as desired.

To show clearly the working of the system the divisions of class 6 (useful arts) and the sections of division 2 of this class

(engineering) are given.

600	Useful Arts		Engineering
	Medicine	621	Mechanical
620	Engineering	622	Mining
630	Agriculture	623	Military
640	Domestic Economy	624	Bridge and Roof
650	Communication and	625	Road and Railroad
_	Commerce	_	·
660	Chemical Technology	626	Canal
	Manufactures	627	River and Harbor
68o	Mechanic Trades	628	Sanitary: Water Works
690	Building	629	Other Branches

It will be seen that the first digit gives the class; the second, the division; and the third, the section. Thus 625 indicates section 5 (railroad engineering) of division 2 (engineering) of class 6 (useful arts). For convenience a decimal point is inserted after the section digit. Further sub-division is indicated by digits following the decimal point. For example 625.2 is the number indicating rolling stock; 625.23 passenger cars: 625.24 freight cars, etc.

3. Relative Index.—Following the classification is the relative index, in which the items of the classification are arranged alphabetically, each with its proper class number. The index is necessarily incomplete, as it is manifestly impossible to include every

subject that might arise in engineering practice.

In a highly specialized industry, as for example, the electrical industry, there are thousands of technical terms indicative of materials and processes and to include these would alone require a volume. It is believed that the index is sufficiently complete that the user may without difficulty assign the proper number

to almost any topic that may arise.

In some cases, the same item has two numbers. For example, "Telephones" has the numbers 537.82 and 654.6. Reference to the classification shows that the former number is used when the telephone is considered as an application of the electric current, while the latter is used when the telephone is looked upon as a means of communication. In any case, reference to the classification will show which number is appropriate to the item under consideration.

4. Uses and Advantages of the Classification and Index.—The decimal classification may be used to advantage in the indexing and filing of notes and memoranda, clippings, general information, articles in technical journals, drawings, catalogs or books. For this purpose, the decimal system possesses certain important advantages over the alphabetical system.

(1) It groups allied subjects. For example, suppose the alphabetical arrangement to be applied to a case of catalogs. The catalogs of the various machine tools, as planers, lathes, drills, hammers, etc., would be scattered throughout the case. With the decimal system, on the other hand all these catalogs would be grouped together under the class number 621.0.

(2) Unless an elaborate system of cross reference is used, the alphabetical scheme is ambiguous; in many cases there is doubt as to what letter should be given a subject. For example, take the item "Automatic pneumatic block signals." This might almost equally well be indexed under A, P, B or S. With the

decimal system this item has its one number 656.256.4.

(3) The decimal system has the advantage of flexibility and an indefinite capacity for extension. For the indexing of books and catalogs only the main division and sections will, in general, be found necessary; but for card indexes of technical literature the most minute subdivisions must ordinarily be used. In individual cases, the user may find that still further division is required. An extension may then be made by adding another decimal place, and if still further subdivision is required still another digit may be used.

The average engineer, for example, can easily index all matter relating to traveling cranes under the single class number 621.872. The designer or builder of cranes may, however, have so much matter relating to this special subject that further subdivision is needed. By the addition of a digit, this matter may

be divided into nine groups designated by 621.872.1, 621.872.2, etc.; and, if necessary, each of these may be divided into nine

new groups.

The effectiveness of the Dewey system has been severely tested in the Engineering College of the University. The mechanical engineering department has a card index of current periodical literature which now contain 20,000 cards. These are indexed by the Dewey system. The classification is first made by students, and is then revised by one competent person. It seldom occurs that there is any doubt as to the proper class number for a given card. For the guidance of those who may wish to use the classification in connection with a card index a sample card is shown on page 8. The class number 621.63 serves to locate the card in the case and the remaining notes in the margin indicate the periodical, volume, page and date. Thus the article in question appeared in the Proceedings of the Institution of Civil Engineers, Vol. 123, page 272, December, 1895; it occupies 55 pages and has 31 illustrations.

Blue prints received from manufacturers; all catalogs, of which there is a large number; clippings, photographs and illustrative class room material; all these are indexed and filed by the decimal system. In every case the system has been found

thoroughly satisfactory.

5. Variations and Modifications.—In the working out of the extension of the various subjects the main divisions and sections as published by Mr. Dewey have been retained unchanged. It cannot be denied that there are many glaring inconsistencies in the arrangement of engineering subjects. For example, no engineer of to-day would put electrical engineering as a division under mechanical engineering (621.3) coordinate with blowing and pumping engines (621.6); nor would he relegate concrete to an unimportant place under building materials. There is no doubt that a committee of competent engineers could vastly improve the logical arrangement of the class numbers for engineering subjects. However, the system as it is, with its faults, has been in use several. vears and has become more or less universal. It is used in libraries and by many business concerns and individuals. It has become a sort of a standard like the Sellers system of screw threads. For this reason alone, radical changes would be inadvisable. The inexperienced user will be likely to see room for improvement and will be tempted to make changes in the system for his individual Such changes can only lead to confusion. It is far better to accept the system merely as an arbitrary set of numbers corresponding to certain topics and resolutely dismiss rigid ideas of

logical sequence and consistency.

There are certain permissible modifications, however, which may be made without violating the integrity of the system. To avoid the writing of long numbers a single letter may be used for the first three or four digits. Thus an electrical engineer would naturally have most of his material under 621.3 (electrical engineering), and for this number he could substitute the single letter E. Likewise, a railroad man might use R for 625 (railroad engineering).

Another modification consists in the use of an alphabetical arrangement for certain sub-sections combined with the decimal arrangement of main sections. This is sometimes useful in minute subdivisions. For example, under 621.728, material and supplies for the foundry, these various materials may be arranged

in alphabetical order.

The use of form divisions is a modification that may often be employed to advantage. There are certain set forms that are used throughout the whole range of the Dewey classification. These are:

or Philosophy or theory

02 Compends, text books, etc.

o3 Cyclopedias, dictionaries

04 Essays, addresses

o₅ Periodicals

o6 Societies

07 Education, teaching schools, colleges, universities

08 Tables, calculations miscellanies

o9 History progress and development

These forms may be further extended; thus:

o64 Exhibits, etc. (under societies)

072 Laboratories (under universities)

Other form divisions which apply particularly to engineering are the following:

ooi Statistics

002 Quantities and costs

003 Contracts and specifications

004 Designs and drawings

005 Executive

oob Working and maintenance

007 Laws

oo8 Patents

009 Reports

These form divisions may be enclosed in parentheses and annexed directly to the usual class number. Thus 62 (07) indicates engineering education; 621.32 (09), progress of electric lighting; 621.57 (008), patents on ice-making machinery, etc. The object of this parenthesis separation of the form divisions is convenience in cross-references. For example if one is interested in patents he may write his class numbers as follow:

(008)62 Patents—Engineering

(008)66 Patents—Chemical technology

(008)69 Patents—Building

In this way all cards on patents are grouped together.

Other modifications will suggest themselves to the user as he becomes more familiar with the system.

6. Acknowledgments.—The authors are much indebted to Mr. J. M. Bryant for his work on the extension of electrical engineering and to Mr A. L. Voge, Washington, D. C., for valuable criticisms and suggestions.

Sample Card from Card Index

621.63 Proc. F. G. E. V. 123 h. 272	The Design and Testing of Various Types of Centrifugal Fans (55 p. 34i) – Il. Heenan and UV. Dilbert
Dec. '95	Sives results of elaborate experiments on the efficiency of fans, and deduces characteristic curves that may be employed in the design of a fan with maximum efficiency for a given duty.
	, ,, ,, ,,

Abbreviations Used on Index Cards

pagesp
diagrams, sketches, etcd
curves, plots, or groups of samec
illustrations, photographs, etci
tables of data, etct
wordsw
volume

TABLE

OF

CLASS NUMBERS

330	Political Economy		
331	Capital Labor and Wages		
.1	Relations of Capital to Labor		
.2	Wages Profit sharing Compulsory insurance		
.3	Labor of children		
.4	Labor of women		
.5	Convict labor Prison contracts		
.6	Pauper labor Cheap foreign labor		
.7	Skilled and unskilled labor		
.8	Laboring classes		
.81	Hours of labor		
.82	Places of labor Dangers		
.83	Food Clothes Shelter		
.84	Morals and habits		
.85	Helps Lectures, libraries, reading rooms, etc.		
.86	Training Apprenticeship		
.87	Organization of labor		
.88	Trades unions		
.89	Strikes		
370	Education		
380	Commerce Communication		
385	Railways from the Economic and Financial Point of View		

385.0	General works (Compends, Essays, Periodicals, Societies, Reports, Statistics, History)
.1	Railways from the financial point of view
.2 Competition of railway and steamship lines	
.3	State control of railways
.4	Administrative organization of railways
•5	Personnel (Relations of railroads to employes, etc.)
.6	International agreements relative to railroads
.7	Interstate commerce commission
386	Canals and Highways from an Economic Aspect
387	River and Ocean Transportation
388	Rapid Transit in Cities
389	Weights and Measures
510	Mathematics 511 Arithmetic 512 Algebra 513 Geometry 514 Trigonometry 515 Descriptive Geometry and Projection 516 Analytical Geometry 517 Calculus 519 Probabilities
520	Astronomy
530	Physics
531	Mechanics
.1	Pure motion Kinematics
.2	Statics Graphic statics
.21	Force and its measure (Traction dynamometers, weighing scales, etc.)
.3	Dynamics Kinetics
.4	Work Friction (Friction brakes Transmission and absorption dynamometers)
.5	Gravity
.6	Conservation of energy
.7	
.8	Machines Transmission of force

531.9	Tables Problems Questions
532	Liquids Hydrostatics Hydraulics
.5	Liquids in motion Flow in pipes, channels. etc.
533	Gases Pneumatics Air
.1	Properties of gases and vapors
.2	Laws of compressibility
.3	Atmosphere
.6	Aeronautics
.7	Kinetic theory of gases
534	Sound Acoustics
535	Light Optics
536	Heat
.1	Theory Nature
.2	Communication
.3	Action of bodies on heat (Reflection, refraction, radiation, absorption)
.4	Effects Action of heat on bodies
.46	Combustion
.5	Temperature Measurement of, etc.
.51	Thermometry
.52	Pyrometry
.53	Electric methods of measuring
.6	Calorimetry
.7	Thermodynamics
.71	The perfect gases
.72	The vapors
.73	Thermodynamics of the steam engine and other
	heat motors
.74	Flow of fluids
.8	Applications
.9	Tables Problems Questions

537	Electricity
.1	Theory Nature
.2	Statical
.3	
.4	Atmospheric Lightning rods
.5	Dynamical
.6	Electrodynamics
.7	Electrical measurements
.8	Applications (See 621.3 etc.)
.81	Telegraph (See 654)
.82	Telephone Microphone (See 631.35)
.83	Dynamos Electric lighting (See 621.31)
.84	Transmission of power Storage (See 621.34)
.85	Electro-metallurgy
.86	Galvanometers
.87	Medicine
.88	Electric signals
538	Magnetism
539	Molecular Physics
.1	Theory Molecular structure
.2	Properties of Solids
.3	Elasticity Torsion
.4	Strength of materials (See also 620.1. General theory should go under 539.4; tests and results of tests, under 620.1)
540	Chemistry
549	Mineralogy
550	Geology
553	Economic Geology
.1	Ore deposits

553.2	Carbon series
.21	Peat .
.22	Lignite and jet
.23	Cannel coal Bituminous shale
.24	Bituminous and semi-bituminous coals
.25	Anthracite and graphitic anthracite coals
.28	Petroleum Natural gas
.3	Ores of iron
.4	Ores of metals other than iron
.5	Building stones
.51	Marbles and limestones
.52	Granites and syenites
.53	Sandstones
.54	Slates
.57	Trap
.6	Earthy economic materials
.61	Fire and brick clays
.62	Sands
.65	Emery
.68	Limes and mineral cement
20	Engineering
62(0	OO1) Statistics
62(0	
62(0	(7) Engineering education
620.1	Applied mechanics Engineering materials
.11	Strength of materials General theory
.112	Tests Factors affecting strength
.1	General: influence of temperature, selection of test pieces, etc.
.2	Corrosion Weathering Protection against deteriorat-
.3	ing influences Elastic limit tests: plasticity, fatigue deformation
.4	
.4	Tensile tests
.4	1
4	3 LORSION TESTS

620.112.44	Flexure (transverse) tests
.45	Shearing tests
.46	Repeated strcss tests
.5	Impact Repeated shock tests
	Crystallization and formation of cleavage planes
.6	Hardness tests
.7	Special tests
.s	Varying for different materials
.s .s2	Tests on special shapes and forms Plates and structural shapes
.0~	Bars, rods, angles, beams: T, bulb, I, and channel
	beams
.83	Columns, built columns tubes, pipes, cylinders
.84	Rollers Spheres, solid or hollow Ball bearings
.85	Springs
.86	Hooks Chains Hoops Rings
.87	Rivets Bolts Screws Nails
	Riveted joints of plates
.88	Wire Wire rope Cables Hawsers
.89 .9	Other forms Other tests
.12	Tests of timber
.13	Tests of Stone Cement Concrete
.132	Stone
.135	Cement
.136 .137	Concrete Reinforced concrete
.139	Other: artificial stone
.14	Brick, tile, etc.
.15	Masonry adhesives
	Cement, mortar, plaster of paris, etc.
.17	Iron and steel Testing machines
.18	Other metals
.19	Other materials
.195	Mineral: asbestos, mineral wool
.196	Asphalt Tar
.197	Vegetable: paper, hemp, etc.
.198	Animal: hair, hide, bone, etc.
.199	
.2	Compends Handbooks
.3	Dictionaries, cyclopedias
4	Feegre

620.5	Periodicals
.6	Societies
.7	Study and teaching Instruments
.8	Tables and calculations
.9	History of engineering
621	Mechanical Engineering (The same form divisions apply to 621 as to 62 above)
.1	Steam engineering
.101	Applied thermodynamics
.11	Mechanism of steam engine Design of engine
.111 .112	parts General Types of engines
.12	Marine engines
.121	General
.122	Types of marine engines
.123	Marine steam turbines
.13	Locomotives
.131	Theory of the locomotive
.1	Adhesion Tractive force Horsepower
.2	Tests
.3 .132	Tests
.133	Types of locomotives Locomotive boilers Production of steam
.133	Combustion Fuels Petroleum Fuel consumption
.2	Grate and ash pit Firebox Stays
.3	Shell and tubes
.4	Smokebox and stack
.5	Exhaust pipe
.6	Dome and throttle
.7	Boiler feeding Pumps, injectors Purification of
	water Scale prevention
.9	Miscellaneous fittings Gage cocks, safety valves, etc.
.134	Engine of the locomotive
.1	Driving mechanism Cylinders, pistons, rods, cranked axles, etc.
.2	Steam distribution Slide valves
.22	Special types of valves and valve gears
.4	The compound principle Distribution in compound

621,134,5	Lubrication of locomotive
.135	Running gear
.1	Frames Frame plates Transverse bracing, attach-
.2	ments to boiler, etc. Wheels, boxes, and axles Disturbances Counter-
	balancing
.3	Suspension Springs, saddles, equalizing levers, etc.
.4	Trucks Bissell trucks, four-wheel trucks, etc. Locomotive brakes
.5 .136	Tenders
.130	Design of, weight of, brakes, etc.
.2	Coupling arrangements
.3	Taking water without stopping; track tanks; water scoops
.137	Management of locomotive Engineer's and fireman's duties Assignment of crews, etc.
.138	Maintenance and repair of locomotives
.1	Round houses
.5	Locomotive repair shops
.139	Supplies Materials
.14	Traction engines (agricultural, road roller, etc.)
.146	Agricultural: tractors, etc.
.15	Portable engines
.156	Agricultural: threshers, etc.
.16	Stationary engines
.164	Types
.2	Throttling engines
.3	Automatic shaft governor engines
.4	Releasing gear engines (Corliss, etc.)
.5	Single acting engines of Westinghouse or Williams
	type
.165	Steam turbines
.1	Theory
.11	Methods of calculation
.12	Vanes and buckets
.13	Guide vanes and nozzles
.14	Stresses in rotor or disc
.15	Windage
.2	Types
.21	Velocity turbines Pressure turbines
.22 .23	Combined velocity and pressure turbines
.23	Construction Details of design
,.)	(.32 Vanes, buckets; .33 guide vanes, nozzles; .34 rotor, discs; .35 valves, governors, safety devices; .36 thrust balancing; .37 mass balancing; .38 casing, etc.; .39 bearings, etc.)
166	Rotary engines

621.167	Hoisting engines, hauling engines, dredge engines, and other special types
.18	Steam generation and transmission
	Fuels, furnaces, boilers, piping, power plants
	For steam heating see 697.5
.181	General Control of the Control of th
.182	Fuels Combustion
.2	Fuels for boiler heating
.22 .23	Solid fuels: coal, lignite, wood, sawdust, peat
	Liquid fuels: tar, petroleum, alcohol
.24	Gaseous fuels: gas from blast furnaces, coke ovens, natural gas
.25	Composite fuels: city refuse, coal dust, trash
.3	Fuel consumption
	Practical experiments with a single fuel
.4	Comparative consumption
	Practical experiments with various fuels
.183	Furnaces Draft
.1	General
	Heating and grate surfaces
.2	Types of furnaces
.3	
.4	
.5	Furnace parts and construction details
.52	Grates
.53	Stationary grates
.54	Shaking, dumping and step grates
.55	Ashpits Furnace doors
.57	Burners for liquid fuel
.6	Mechanical stokers
.62	With traveling grate
.63	With rocking grate
.64	With step grate (Roney grate)
.65	With plunger
.66	With screw
.7	Other appliances
.77 .78	Pulverized fuel appliances
	Fitel and ash conveyors Ash removers
.8	Chimneys Stacks Draft appliances Smoke consumers
.82	Natural draft Dampers Uptakes
.84	Induced draft
.85	Forced draft
.184	Boilers
1	General

621,184.13	Boiler economy Tests Feedwater
.2	Types
.22	Marine
.23	Locomotive, traction, portable
.24	Stationary
.25	Firetube boilers (tubular)
.252	Internally fired
.253	Externally fired
.26	Water-tube boilers (tubulous)
.27	Flash generators Instantaneous vaporizing boilers
,5	Boiler construction Setting Parts
.52	Shell Heads Tubesheets Domes Drums Riveted joints, staying and bracing
.53	Tubes Ferules Rings
.54	Casing
.53	Inspection and cleaning parts: man and hand holes, cleanouts, covers
.56	Setting and hanging
.57	Foundations: masonry, flues, etc.
.7	Boiler accessories
.72	Water gauges, floaters, gauge glasses, warning whis- tles
.73	Pressure gauges, manometers, safety valves
.79	Other: air cocks and blowout valves, zincs, steam collectors
.185	Steam transmission and distribution. Piping
.1	General: laws of flow, condensation, friction
.2	
.3	Connections: mains, auxiliary piping
.4	Valves Stop, safety, reducing Pressure regulators
.5	Drains and traps Reeivers and distributing valves
.6	Covering Insulators Nonconductors for high, low and medium temperatures
.7	Joints and cements Expansion joints
.8	Utilization of exhaust steam
19	Steam boiler and power plants. Central stations
.191	General
.192	Arrangement and housing of apparatus
.5	Provision for enlargement
.193	Care and management of steam apparatus
.194	Boilers

621.194.1	Firing
.2	Feeding .
.3	Treatment of feed water: purification, softening
.4	Scale prevention Incrustation
.7	Inspection Hydraulic tests Rating
.195	Engines: oiling, packing, adjusting
.196	Duration Wear
.5	Corrosion
.197	Steam plant accessories Economic appurtenances
.2	Feedwater appliances
	Tanks, heaters economizers, filters, purifiers, reg-
	ulators
.3	Pumps Injectors Return traps
.4	Separators
.5	Superheaters
.6	Condensers and cooling towers
.62	Surface condensers
.63	Jet condensers
.64 .67	Cooling towers Condenser accessories
.7	Instruments
.,	Indicators, tachometers, gauges, dynamometers,
	thermometers, pyrometers, lubricators, etc.
.2	Hydraulic engines or motors General theory of hydraulics (See 532)
.21	Water wheels
.22	Overshot and breast wheel
.23	Undershot wheel
.24	Turbines
.241	General: parts (buckets, guides, regulators)
.242	Reaction or pressure turbines
.247	Impulse turbines
.25	Water pressure engines Accumulators
	-
.252 .253	Hydraulic pumps * Piping for high pressure
.254	Accumulators
.26	Hydraulic machinery and appliances Hydraulic presses
	For theory see 532.81
.262	Funicular engines Hydraulic tackle
.263	Hoists Elevators Cranes
.264	Special handling and lifting machinery for steel works,

621.266	Presses Forging and stamping machines
.267	Accessories: injection pumps
.269	Mining, tunneling and other hydraulic appliances
	Hydraulic giant, Brandt's hydraulic gun
.27	Hydraulic rams
	For theory see physics 532.83
.272	Lifting rams Montgolfier ram, Bolle ram, etc.
.273	Pumping rams Leblanc ram
.213	See also 621.64 Pumps
.274	Compressing rams Sommelier ram
.29	Flood gates Dams Mill sluices Head and tail
	races
2	Electrical Engineering
.3	Electrical Engineering
.3137	Heavy Current Engineering
.31	Generation of electricity Dynamoelectric ma-
.01	chinery Transformers
	•
.311	General
.312 .	Central stations Generalities, statistics, data, etc.
.312(001)	
(002) (003)	
(003)	·
(004)	
(006)	
(0064	
(0065	
(0069	,
(007)	
(008)	
.1	General
.2	Stations for lighting only
.22	Steam driven
.23	Gas driven
.24	Hydraulic
.25	Composite
.3	Stations for traction only
.32	Steam driven
.33	Gas driven
.35	Composite
.4	Stations for power transmission Steam driven
.42	Gas driven
.43 .44	Hydraulic
.5	Combined stations
.0	Combined Stations

621.312.52	Steam driven
.53	Gas driven
.54	Hydraulic
.6	Substations
.63	Transformer substations
.64	Converter substations
.65	Accumulator substations
.313	Dynamo electric machines
(001)	General, statistics, data
(002)	Costs
(003)	Specifications for D.E.M.
(004)	Designs, drawings, specifications
(005)	Construction, installation
(0051)	General details and parts
(0052)	Electrical details
(00522)	Armature windings
(00523)	Field windings
(0053)	Magnetic details
(00532)	Armature cores
(00533)	Field cores
(00534)	Yokes
(0054)	General details
(00542)	Frame, bed plate, etc.
(00543)	Bearings
(00544)	Shafts, pulleys, etc.
(006)	Working, regulation, operation
(0064)	Operation, running
(0065)	Faults, diseases, etc.
(007)	Tests and testing work
(008)	Accessories
(0082)	Commutators
(0083)	Collector rings
(0084)	Brushes
(0085)	Brush holders
.1	General; construction, installation
.2	Direct or continuous current machinery
.21	Theory
.22	General types
.23	Continuous current generators
.24	Continuous current motors
.245	Constant speed motors
.246	Multispeed motors
.247	Adjustable speed motors
.248	Varying speed motors (railway motors)
.25	Continuous current converters
.26	Dynamotors
.27	Compensators or balancers

621.313.28	Continuous current boosters
.29	Other
.291	Acyclic or homopolar machines
.3	Alternating current machinery
.32	General types
.321	Single phase
.322	Two phase
.323	Three phase
.4	Synchronous machines
.41	Theory
.42	General types
.43	Alternating current generators
.44	Synchronous motors
.5	Alternating current converters
.51	Theory
.52	General types Description
.53	Synchronous converters
.54	Phase converters
.55	Frequency changers
.56	Double current generators
57	Motor converters
.6	Asynchronous machines
.61	Theory
.62	
.63	Induction generators
.64	Induction motors
.65	Series alternating current motors
.66	Repulsion motors
.67	Frequency converters
.68	Phase converters
.7	Rectifying apparatus
.72	Mechanical rectifiers
.73	Arc rectifiers
.74	Electrolytic rectifiers
.314	Stationary induction apparatus
.1	Theory
.9	General types and description
.3	Transformers
.32	Constant current transformers
.33	Constant potential transformers
.34	Phase changing transformers
.38	Meter transformers
.4	Auto transformers
.5	Potential regulators
.51	Compensator potential regulators
.52	Induction potential regulators
.53	Magneto potential regulators

621.314.6	Reactors or choke coils
.7	Induction coils
.315	Electrostatic apparatus
.3	Condensers
.316	Details of electric machinery, parts
.317	Switchboards and control devices, central station wiring
.1	General
.2	Panels
.22	Generator panels .
.23	Motor panels
.24	Feeder panels
.25	Transformer panels
.26	Converter panels
.27	Arc light panels
.28	Accumulator panels
.3	Switches
.31	General
.32	Knife switches
.33	Dial switches
.34	Plug switches
.35	Oil switches
.36	Circuit breakers
.4	Rheostats and control devices
.5	Signal devices
.6	Meters and indicating devices
.7	Barriers and compartments
.8	Protective devices (fuses, etc.)
.318	Manufacturing processes
.319	Transmission of electric energy
.0.10	Limited to transmission of current from central
	to sub-stations (stepdown transformers) and to
	questions common to all lines.
.1	General
.12	Systems
.122	Direct or continuous current systems
.122.1	2-wire systems
.122.2	3-wire (or Edison) and other
.122.9	Other direct current systems
.123	Alternating current systems
.123.1	Single-phase systems
.123.2	2-phase (or quarter phase) systems
.123.23	3-wire system
.123.24	4-wire system
.123.3	3-phase systems
.123.32	Delta or mesh connections
.123.33	Star or Y connections
.123.9	Other polyphase systems
	other polyphase systems

621.319.125	Composite systems
	Direct and alternating current combined
.2	Lines and conductors
.21	General
	Interaction of parallel lines, heat losses.
.22	Overhead or aerial lines
.222	Systems
.223	Poles: foundations, guys, etc.
.224	Cross arms Pins
.225	Towers
.23	Underground lines
.232	Systems
.233	Conduits
.234	Manholes
.3	Cables and conductors Insulating materials
.32	Uninsulated conductors Bare wire
.33	Insulated conductors Wire and cable
.34	Cables
.37	Insulating materials
	Leakage Influence of chemic composition
.4	Insulators
.8	Protective devices
.82	Line, lightning arresters
	For protection of central stations see 621.317.8
.32	Electric lighting
.32 .321	
	Electric lighting
.321	Electric lighting Illumination
.321 .1	Electric lighting Illumination General Interior illumination Domestic
.321 .1 .2	Electric lighting Illumination General Interior illumination
.321 .1 .2 .21	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre
.321 .1 .2 .21	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc.
.321 .1 .2 .21 .22 .23 .24	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre
.321 .1 .2 .21 .22 .23 .24	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets
.321 .1 .2 .21 .22 .23 .24	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places
.321 .1 .2 .21 .22 .23 .24 .3 .32	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General Continuous current open
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325 .1 .2 .3	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General Continuous current open Continuous current enclosed
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325 .1 .2 .3 .4	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General Continuous current open Continuous current open Continuous current open
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325 .1 .2 .3 .4 .5	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General Continuous current open Continuous current enclosed Alternating current open Alternating current enclosed
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325 .1 .2 .3 .4 .5 .6	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General Continuous current open Continuous current open Alternating current open Alternating current enclosed Flaming arc
.321 .1 .2 .21 .22 .23 .24 .3 .32 .33 .4 .44 .325 .1 .2 .3 .4 .5	Electric lighting Illumination General Interior illumination Domestic Large halls Theatre Shops, warehouses, drafting rooms, etc. Exterior illumination Streets Parks and open places Decorative illumination Electric signs Arc lighting General Continuous current open Continuous current enclosed Alternating current open Alternating current enclosed

621.326.1	General: efficiency, cost, etc.
.2	Systems .
.3	Carbon filament lamps
.31	Metalized filament
.32	Other carbon filaments
.4	Metal filament lamps
.41	Platinum filaments
.42	Tantalum filaments
.43	Tungsten filaments
.44	Osmium filaments
.45	Other metal filaments
.5	Glowers of other materials
.53	Nernst lamps
.327	Incandescent vapor lighting and lamps Other elec- tric lighting
.3	Vacuum or incandescent vapor lamps
.4	Mercury vapor lamps
.5	Carbon vapor lamps Moore lamp
.7	Vacuum lamps for special radiations: Crookes tubes,
	etc.
.328	Apparatus at service end of line
.1	Underwriters' requirements
	National electric code
.2	House wiring
.3	Panels
.4	Fuses
.5	Insulators, etc.
.6	Meters
.7	Switches
.8	
.9	Other apparatus
.33	Electric traction
.331	General
.2	Systems
.3	Systems according to service
.32	Trunk lines
.33	Interurban
.34	Local
.342	Surface
.343	Elevated
.344	Subway
.4	Systems according to current
.42	Direct current
.43	Alternating current
.431	Single-phase
.432	2-phase

Aday Others Systems according to delivery of power Trolley systems Overhead trolley Third rail systems Underground trolley Third rail systems Unprotected third rail The line (including track) General Tracks Tracks Track Ceneral Track Ceneral Telectrolysis Leakage Rails A Bonding Accessories and parts Control systems Motor, controller, current collecting devices, etc. Multiple unit control Locomotive and car wiring Running gear and other non-electric details Chemic electricity Voltaic cells and generators Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detriments: jars, troughs, vats, etc. Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and negative plates or elements. Grids, supporting frames,	691 221 422	2 ahasa
5. Systems according to delivery of power 5. Trolley systems 5. Overhead trolley 5. Underground trolley 5. Third rail systems 5. 562 Unprotected third rail 5. Freeders and return systems 5. Sent and return systems 7. Sent and return systems 8. Sent and return systems 9. Sent and return syst	621.331.433	3-phase
.52 Trolley systems .53 Overhead trolley .54 Underground trolley .56 Third rail systems .562 Unprotected third rail .564 Protected third rail .565 General .17 Feeders and return systems .2 Overhead wire Trolley lines .23 Catenary suspension .25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.53 Overhead trolley .54 Underground trolley .56 Third rail systems .562 Unprotected third rail .564 Protected third rail .565 Underground trolley lines .565 Catenary suspension .56 Catenary suspension .56 Trackless trolley .57 Trackless trolley .58 Underground conductor or contact .69 Other types of line .59 Other types of line .50 Underground conductor or contact .60 Protect of line .50 Protect of line .51 General .52 Rails .53 Bonding .534 Rolling stock .54 Locomotives .55 Locomotives .56 Accessories and parts Control systems .57 Motor cars .58 Accessories and parts Control systems .59 Motor cars .50 Locomotive and car wiring .50 Locomotive and car wiring .51 Running gear and other non-electric details .51 Chemic electricity Voltaic cells and generators .59 Primary and secondary .51 General .50 En.f., counter e.m.f., polarization, weight, capacity; .51 efficiency, life, crumbling, deterioration and detrimental influences; residues .52 Parts and accessories of cells and accumulators .530 Containers: jars, troughs, vats, etc531 Electrodes and their accessories: positive and nega-		
.54 Underground trolley .56 Third rail systems .562 Unprotected third rail .564 Protected third rail .332 The line (including track) .1 General .17 Feeders and return systems .2 Overhead wire Trolley lines .23 Catenary suspension .25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.562 Unprotected third rail .564 Protected third rail .564 Protected third rail .332 The line (including track) .1 General .17 Feeders and return systems .2 Overhead wire Trolley lines .23 Catenary suspension .25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.562 Unprotected third rail .564 Protected third rail .332 The line (including track) .1 General .17 Feeders and return systems .2 Overhead wire Trolley lines .23 Catenary suspension .25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.564 Protected third rail .332 The line (including track) .1 General .17 Feeders and return systems .2 Overhead wire Trolley lines .23 Catenary suspension .25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
The line (including track) General Feeders and return systems Coverhead wire Trolley lines Catenary suspension Trackless trolley Third rail Underground conductor or contact Accessories Other types of line Track General Deteriorating influences Electrolysis Leakage Rails Accessories Accessories Rolling stock Locomotives Motor cars Accessories and parts Control systems Motor, controller, current collecting devices, etc. Multiple unit control Locomotive and car wiring Running gear and other non-electric details Chemic electricity Voltaic cells and generators Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-		•
1 General 17 Feeders and return systems 2 Overhead wire Trolley lines 23 Catenary suspension 25 Trackless trolley 3 Third rail 5 Underground conductor or contact 6 7 Accessories 9 Other types of line 333 Track 1 General 16 Deteriorating influences 167 Electrolysis Leakage 2 Rails 4 Bonding 334 Rolling stock 2 Locomotives 3 Motor cars 4 Accessories and parts Control systems 4 Motor, controller, current collecting devices, etc. 5 Multiple unit control 6 Locomotive and car wiring 7 Running gear and other non-electric details 7 Chemic electricity Voltaic cells and generators 8 Primary and secondary 7 General 8 E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues 8 Parts and accessories of cells and accumulators 1 Containers: jars, troughs, vats, etc. 2 Electrodes and their accessories: positive and nega-		
17 Feeders and return systems 2 Overhead wire Trolley lines 23 Catenary suspension 25 Trackless trolley 3 Third rail 5 Underground conductor or contact 6 7 Accessories 9 Other types of line 333 Track 1 General 16 Deteriorating influences 167 Electrolysis Leakage 2 Rails 4 Bonding 334 Rolling stock 2 Locomotives 3 Motor cars 4 Accessories and parts Control systems		
.2 Overhead wire Trolley lines .23 Catenary suspension .25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
Catenary suspension Trackless trolley Third rail Underground conductor or contact Cacessories Other types of line Track Track I General Deteriorating influences Electrolysis Leakage Rails A Bonding Rolling stock Locomotives Motor cars Accessories and parts Control systems Motor, controller, current collecting devices, etc. Multiple unit control Locomotive and car wiring Running gear and other non-electric details Chemic electricity Voltaic cells and generators Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-		•
.25 Trackless trolley .3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems	-	•
.3 Third rail .5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.5 Underground conductor or contact .6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		•
.6 .7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.7 Accessories .9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		Underground conductor or contact
.9 Other types of line .333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		A
.333 Track .1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.1 General .16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.16 Deteriorating influences .167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.167 Electrolysis Leakage .2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.2 Rails .4 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		
.34 Bonding .334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems	• • • • • •	•
.334 Rolling stock .2 Locomotives .3 Motor cars .4 Accessories and parts Control systems	•	
.2 Locomotives .3 Motor cars .4 Accessories and parts Control systems		9
.3 Motor cars .4 Accessories and parts Control systems		-
Accessories and parts Control systems Motor, controller, current collecting devices, etc. Multiple unit control Locomotive and car wiring Running gear and other non-electric details Chemic electricity Voltaic cells and generators Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-		
Motor, controller, current collecting devices, etc. Multiple unit control Locomotive and car wiring Running gear and other non-electric details Chemic electricity Voltaic cells and generators Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-		
Multiple unit control Locomotive and car wiring Running gear and other non-electric details Chemic electricity Voltaic cells and generators Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-	.4	
.5 Locomotive and car wiring .7 Running gear and other non-electric details .35 Chemic electricity Voltaic cells and generators Primary and secondary .351 General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues .352 Parts and accessories of cells and accumulators .1 Containers: jars, troughs, vats, etc2 Electrodes and their accessories: positive and nega-		
.7 Running gear and other non-electric details .35 Chemic electricity Voltaic cells and generators Primary and secondary .351 General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues .352 Parts and accessories of cells and accumulators .1 Containers: jars, troughs, vats, etc2 Electrodes and their accessories: positive and nega-		
.35 Chemic electricity Voltaic cells and generators Primary and secondary .351 General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues .352 Parts and accessories of cells and accumulators .1 Containers: jars, troughs, vats, etc2 Electrodes and their accessories: positive and nega-		
Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-	.7	Running gear and other non-electric details
Primary and secondary General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-	.35	Chemic electricity Voltaic cells and generators
.351 General E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and detrimental influences; residues .352 Parts and accessories of cells and accumulators .1 Containers: jars, troughs, vats, etc2 Electrodes and their accessories: positive and nega-		•
E.m.f., counter e.m.f., polarization, weight, capacity; efficiency, life, crumbling, deterioration and det- rimental influences; residues Parts and accessories of cells and accumulators Containers: jars, troughs, vats, etc. Electrodes and their accessories: positive and nega-	.351	· · · · · · · · · · · · · · · · · · ·
efficiency, life, crumbling, deterioration and detrimental influences; residues 352 Parts and accessories of cells and accumulators 1 Containers: jars, troughs, vats, etc. 2 Electrodes and their accessories: positive and nega-		
rimental influences; residues 352 Parts and accessories of cells and accumulators 1 Containers: jars, troughs, vats, etc. 2 Electrodes and their accessories: positive and nega-		
.352 Parts and accessories of cells and accumulators .1 Containers: jars, troughs, vats, etc2 Electrodes and their accessories: positive and nega-		
.1 Containers: jars, troughs, vats, etc2 Electrodes and their accessories: positive and nega-	.352	
.2 Electrodes and their accessories: positive and nega-		
	•	
insulating rods, etc.		· ·

621.352.3	Diaphragms and partitions
.4	Electrolytes Depolarizers Packing
.5	Circulators · Conduits and piping
.6	Connections Terminals Binding posts
.7	Regulating apparatus
.8	• • •
.9	Other apparatus
.353	Primary cells
	See also 537.5 Voltaic electricity; 541.37 Electro-
	chemistry
.1	General
.3	Single fluid
.4	Double fluid Heavy current cells
.5	Open circuit or non-depolarized
.6	Closed circuit or depolarized
.7	Accessories and parts
.8	Classification according to use or operating methods
.354	Accumulators or storage batteries
	Secondary cells and batteries
.1	General
.18	Care and handling of accumulators
.2	Construction of
.3	Operation of
.4	Application of
.7	Accessories and parts
.355	Lead accumulators
.1	General
.18	Care and handling
.2	Naturally formed: Planté type
.3	Artificially formed: Faure type
.4	Combined Planté-Faure types
.5	Other lead accumulators
.52	Complex oxid types
.55	Lead element accumulators
.56	Copper lead accumulators
.57	Zinc lead accumulators
.58	Cadmium lead accumulators
.356	Alkaline accumulators
.357	Other types of accumulators
	Thalium, gas, etc.
.37	Electric measurements, meters and testing
.371	General
.372	Standards Calibration of instruments
.373	Meters General types
	Recording meters See also special meters, 621.384
	prepayment meters
.374	Special meters and measurements
.2	Resistance meters: inductance, capacity

Wheatstone bridges, ohmmeters, resistance boxes

621.374.3	Potential meters: voltage
	voltmeters, electrometers, standard cells
.4	Intensity meters: current
	Galvanometers, ammeters, coulometers, Ampére-hour meters
.5	Quantity or work meters Watt-hour meters
.6	Power meters Watt meters
.7	Frequency meters Oscillographs
.9	Other meters and measurements
.91	Phase meters Power-factor meters Synchronizers
.379	Other electric measuring instruments
	For other than electric measurements: e. g., elec-
	tric thermometers
	WEAK CURRENT ENGINEERING
.38	Electric communication: telegraphy, telephony,
	wireless For overhead or underground
	lines, see 621.3192
.381	General
.382	Telegraphy Systems
.15	Codes
.152	Morse
.153	Continental
.154	Phillips (press code)
.2	A B C, dial, needle telegraph, etc.
.21	Early experimental forms
.22	A B C
.23	Dia1
.24	Needle
.25	Pointer
.29	Other
.3	Hand operated code telegraphy
.31	Simplex
.311	Open circuit
.312	Closed circuit
.32	Duplex
.321	Differential duplex systems
.322	Stearns duplex
.323	Polar duplex
.325	Bridge duplex systems
.34	Quadruplex
.35	Multiplex
.36	Synchronous multiplex: Delany
.37	Harmonic multiplex: Gray
.4	Automatic code telegraphy High speed systems
.41	Electrochemic automatic: Bain, Morse

Ink recording or embossing

.44

321.382.45	Wheatstone
.46	Pollak-Virag
.47	Telepost (Delany)
.5	Printing telegraphy
.51	Tape printing: stock tickers
.53	Other tape printing: Hughes
.55	Page printing: Buckingham, Murray, Baudot
.57	Multiple page printing: Rowland
.6	Writing telegraphy
	Transmitting and recording characters while being
	written Gray's telautograph
.7	Facsimile telegraphy
.8	Submarine cable telegraphy
.9	Other wire systems
.94	Induction telegraphy: from moving trains, etc.
.95	Combined telegraphy and telephony Phantom cir
	cuits
.383	Telegraph instruments
.1	Transmitting: keys, senders. etc.
.2	Intermediate and accessory: relays, repeaters,
	switches
.21	Relays
.22	Differential relays
.23	Polarized relays
.24	Repeaters, for simplex: Milliken, Ghegan. Toye, etc
.25	Repeaters for duplex or quadruplex
.26	Half repeaters
.27	Switches and distributing apparatus
.28	Protective apparatus
.29	Miscellaneous telegraph accessories
.3	Receiving instruments
	Sounders, recorders, etc. Subdivided, if wished,
	like 621.3824-8
.384	Wireless electric communication: telegraphy telephony
.1	General
.2	Wireless telegraphy Systems
.21	Spark telegraphy; by free oscillations
.25	Continuous-train telegraphy: by forced oscillations
.3	Instruments
.31	Sending apparatus
.35	Antennae, aerials, and their substitutes
.36	Receiving instruments and apparatus
.4	Applications, adaptations, specific installations
,5	Wireless telephony systems
.6 *	Apparatus
.61	Sending apparatus
.65	Aerials, etc.

621.384.66	Receiving apparatus
.7	Applications, adaptations, specific installations
.385	Telephony Systems
.1	
.2	General
,22	Series
.23	Bridging
.24	Selective
.3	Intercommunicating systems
	Without central switchboard
.32	Common return systems; selective at each station
.34	Radial common return systems; selective at one station only
.36	2-wife systems; separate returns
.4	Central switchboard systems
	Manual
.42	Local battery or magneto systems
.46	Common battery or central energy systems
.5	Multiple switchboard systems
.6	Trunking Transfer systems
.61	Trunking
.63	Transfer systems
.7	Semiautomatic and automatic systems
.72	Semiautomatic
.75	Automatic
.76	Strowger system (Automatic Electric Co.)
.8	Private exchanges
.386	Telephone instruments
	Terminal; subscriber's instruments
.2	Transmitters
.3	Receivers
.4	Induction coils
.5	Condensers
.6	Hook or other switches
.7	Call receiving apparatus
.8	Call sending apparatus
.9	Miscellaneous accessories
.92	Coin collecting devices
.94	Protective devices
.96	Current supply (local batteries) Central switchboards and other station equipment
.387	
.1	General
.2	Switchboards, manual
.22 .26	Local battery or magneto Common battery
.26	Multiple switchboards
	Divided multiple
.35	Divided multiple

621.387.4	Trunks Transfer boards
.41	Trunks and trunking
.43	A boards
.45	B boards
.47	Multiple plug transfer
.5	Switchboard parts and accessories
.6	Power plant equipment and accessories
.62	Accumulators
.63	Charging generators
.64	Ringing
.7	Automatic and semiautomatic switchboards Including accessories Subdivided like 621.3857
.8	Telephone transmission
.81	
.82	Long distance
.83	Transposition
.84	Telephone cable construction
.85	Loading
.86	Pupin coils
.9	Other central station accessories
.92	Distributing frames and racks; main
.93	Distributing frames and racks; intermediate or sec- ondary
.94	Protective devices
.96	Meters and counters
	See also 621.3286 Electric light meters
.389	Other electric communication
.39	Other application of electricity
.4	Air and Gas Engines and other motors
.41	Hot air engines
.42	Compressed (or rarefied) air engines
.43	Internal combustion engines
.431	General theory of internal combustion engines
.2	Thermodynamics of internal combustion
.3	Mechanics Balancing, etc.
.432	Cycles and systems of operation
.1	Four-cycle systems
.2	1, explosion motors 2, constant pressure burning Two-cycle systems
	1, explosion type 2, constant pressure type
.3	Modified cycles or systems
.433	Gas turbines
.434	Internal combustion engines (or engine plants) classi-
	fied according to fuels

621,434.1	Engines (or plants) for gaseous fuels
.11	Natural gas
.12	Illuminating gas
.13	Blast furnace gas
.14	Producer gas
	For gas producers see 665.8
.15	Acetylene gas
.2	Engines (or plants) for liquid fuels
.21	Gasoline
.22	Kerosene
.23	Other petroleum oils
.24	Alcohol
.3 .436	Engines for solid fuels Special engines or motors
.437	Parts and accessories of internal combustion engines
164.	
	 Reciprocating parts; Shafts, Journals and Bearings; Fly wheels; Governors; Valves and valve gears; Carburetors and mixing valves; Ignition Systems; Oils and other accessories.
.438	Special applications
.3	Self-propelled machinery Farm machinery, road rollers, etc.
.4	Self-propelled vehicles
.5	Motors for small boats
.6	Internal combustion engines in marine service
.7	Airship motors
	T
.44	Binary vapor engines
.45	Windmills
.46	Animal motors Tread mills
.47	Solar engines
.48	
.49	
.5	Air compression Ice machines Refrigerators
.51	Air compressors
.515	Dry air compressors
.517	Wet air compressors
.53	Compressed air transmission and distribution
.531	General
.532	Details of transmission Piping, mains, gages, etc Designs of transmissions
.533	Records of tests on air compressors and transmissions
.534	Theory of air compression (thermodynamics of) Loss
	of pressure in pipes, etc. Efficiency of compress

621.54	Application of compressed air
.541	Air motors
.542	Pneumatic tools; drills, hammers, etc.
.543	
.544	Special applications in railroad service
.545	Compressed air locomotives
.546	Pumping by compressed air
.549	Miscellaneous applications
.55	Rarefied air and vacuum appliances (Vacuum cleaner, etc.)
.56	Refrigerators
.564	Refrigerating fluids
.565	Refrigerating systems and plants
.1	Brine system
,2	Direct expansion system
.566	Design of refrigerating systems Calculation of piping,
	refrigerating surface, etc.
.57	Refrigerating machines
.572	Ammonia compression machines
.573	Ammonia absorption machines
.574	Carbonic acid machines
.575	Miscellaneous types: Air machines, vacuum machines, etc.
.58	Ice making
.581	Can system
.582	Plate system
.6	Blowing and pumping engines
.61	Piston blowers Blast furnace blowing engines, etc.
.62	Rotary blowers
.63	Centrifugal blowers
.64	Steam pumps and pumping engines
.641	General theory Design and construction
.642	Tests of pumps and pumping engines
.65	Direct-acting pumps
.66	Rotary pumps
.67	Centrifugal pumps
-	9
.68	Fire engines
.69	Other blowing and pumping devices

621.7	Manufactories Engineering works (See also 070)
.701	Location, shipping facilities, etc.
.702	Arrangements of shops Shop buildings
.703	
.704	Organization and administration
.705	Employees Wages and salaries Payment of labor
	(Conveniences for workmen; hours of work; piece work; premium plan; profit-sharing; labor unions; strikes and lockouts)
.706	Accounting Cost-keeping Estimates
.707	
.708	
.709	
.71	Drafting room
.711	
.712	Arrangement
.713	Equipment Desks, drawing boards, etc.
.714	Materials and supplies
.715	Methods and processes employed in making drawings
.716	Blue-printing processes
.717	Classification and storage of drawings
.719	Miscellaneous
.72	Woodworking shop Pattern shop
.721	Arrangement of shop
.722	Equipment
.723	Woodworking methods and processes
.724	Pattern making
.725	
.726	
.727	Preservation and storage of patterns
.728	Materials and supplies
.729	Miscellaneous
.73	Forge shop
.731	Arrangement of forge shop
.732	Equipment Forges, blowers, anvils, etc.
.733	Forging processes
.734	Drop forging
.735	
.736	
.737	
738	Materials Supplies
.739	Miscellaneous
.74	Foundry
.740	Generalities (.740.5 Periodicals .740.6 Societies; .740.9 Historical)

321.741	General arrangement of foundry
.742	Equipment of foundry
.743	Molding processes Green sand, dry sand, loam, etc.
.744	Machine molding
.745	Cupola practice Mixtures of iron Chemistry of foundry irons
.746	
.747	
.748	Materials and supplies
.749	Miscellaneous
.75	Machine shop
.750	Generalities
.751	Arrangement of machine shop Location of shafting and machines
.752	Equipment (752.1 Machine tools; 752.2 Small tools)
.753	Machine work Methods and processes
.754	Bench work
.755	Erecting
.756	Toolmaking Construction of dies, jigs, etc.
.757	
.758	Supplies Materials and stock
.759	Miscellaneous
.76	Blast furnace
.77	Rolling and drawing mills
.78	
.79	Other shops and departments
.792	Boiler and sheet metal shops
.794	Special process shops Galvanizing, plating, etc.
.795	Finishing shop
.796	Storehouses
.8	Millwork and machinery of transmission Design of machine parts
.81	Principles of mechanism
.82	Journals, shafting, etc.
.821	Journals
.822	Bearings Ball and roller bearings Bearing metals
.823	Shop shafting
.824	Engine and propeller shafts
.825	Clutches and couplings Friction clutches
.826	Brakes

621.83	Toothed wheels and cams	
.831	Forms of teeth; tooth curves; general theory	
.832	Efficiency of gears Tests Friction of gears	
.833	Design of gears	
.1	Spur gears	
.2	Bevel and skew bevel gears	
.3	Worm and spiral gears	
.834	Construction: cutting and casting of gears	
.835	Chain gearing	
.837	Ratchet gearing	
.838	Cams	
.84	Valve motions and gears	
.85	Machinery and mill gearing	
.852	Belt gearing	
.853	Hemp rope transmission	
.854	Wire rope transmission	
.858	Friction gearing	
.86	Hoisting and conveying machinery	
.862	Hoists	
.863	Blocks, tackle, etc.	
.864	Winches Capstans Windlasses	
.865	Power shovels	
.866	Dredges	
.867	Conveyors Telferage	
.4	Belt or bucket conveyors	
.868	Telfers	
.87	Cranes and elevators	
.872	Derricks	
.873	Revolving cranes	
.874	Travelling cranes	
.875	Locomotive cranes	
.88	Fastenings	
.882	Serews and bolts Systems of screw threads Screws for transmitting motion	
.883	Keys and cotters	
.884	Rivets Design of riveted joints	
.89	Lubricauts Friction *	
.9	Machine tools	
.90	Generalities	
.901	Design of machine tools	
.902	Power required to drive machine tools	

621.91	Planing and milling machines	
.912	Metal planers, shapers, and slotters	
.913	Wood planing machinery	
.92	Grinding and filing	
.922	Cylinder and surface grinding machines (Lapping machines)	
.923	Emery wheels	
.924	Filing machines	
.93	Cutting and sawing	
.932	Metal sawing and cutting machinery	
.933	Wood sawing machinery	
.94	Turning	
.942	Metal turning lathes	
.943	Wood turning lathes	
.944	Pipe threading machines	
.945	Boring mills	
.95	Perforating machinery Drills	
.952	Drilling machinery	
.953	Wood boring machinery	
.954	Reamers	
,955	Tapping machines	
.96	Punching and shearing machinery	
.97	Hammers Nail and rivet machinery	
.98	Bending, straightening, and shaping	
.982	Bending machinery	
.983	Straightening machinery	
.984	Flanging and die press machinery	
.99	Screw machines Bolt and nut machinery, etc.	
622	Mining Engineering	
.1	Exploration and Prospecting	
.11	Theory, applied geology, etc.	
.12	Prospecting	
.121	Surface indications	
.122	Prospect trenches, shafts and tunnels See 622.2	
.123	Booming and other washing methods	
.124	Boring methods See 622.24	
.129	Unreliable methods, including divining rods, fortune	
	tellers, etc.	

622.13	Surface surveying	
.131	Surveying mineral claims	
.132	Topographical surveying	
.133	Geological surveying	
.14	Mining surveying	
.15	Magnetic surveying	
.16	Faults See 551.87 and 553.19	
.17	Models	
.18	Examination of mineral properties	
.181	Principles	
.182	Sampling	
.183	Estimation of quantity of mineral	
.184	Valuation	
.19	Mining prospectuses See 553	
.2	Practical Mining	
.21	Excavation of loose ground See 622.32	
.211	Pick and shovel	
.212	Plow and scraper	
.213	Cableways and grab buckets	
.214	Mechanical shovels	
.215	Water	
.216	Dredges	
.22	Quarrying dimension stone	
.221	Plug and feathers	
.222	Broaches	
.223	Channelers	
.224	Blasting systems	
.23	Breaking solid ground	
.231	Fire-setting	
.232	Thawing	
.233	Undercutting	
.1	Hand undercutting	
.2	Machine undercutting	
.21	Punchers	
.22	Cutters Chain machines	
.221	Disk machines	
.222	Cutter-bar machines	
.223		
.234	Wedging without drill holes	

622.235.1	Hand drilling
.11	Churn drills
.12	Hammer drills
.13	Auger drills
.2	Machine drilling
.21	Piston drills
.22	Air hammer drills
.23	Auger drills
.236	Breaking from drill holes without explosives
.230	Wedges
.2	Freezing water
.3	Wetting wooden plugs
.s .4	Compressed air cartridges
•	
.5	Hydraulic cartridges and direct hydraulic pressure
.6	Lime cartridges
.237	Explosives
.1	Theory
.2	Low explosives
.3	High explosives
.4	Permissible explosives
.8	Testing
.9	Handling and storage See 622,932
.238	Blasting
.1	Theory
.2	Methods
.3	Loading
.4	Firing
.9	Testing blasting appliances
.24	Boring See 622.124, 622.235 and 622.523
.241	Hand boring
.1	Churn borers Spring poles
.2	Rotary borers
.21	Augers
.22	Diamond drills
.23	Shot drills
.242	Machine boring
.1	Churn borers
.11	Cable drills
.12	Rod drills
.13	Hollow rod drills
.131	Suction
.132	Jettings
.2	Rotary borers
.21	Non-coring drills
.211	Straight bit drills
.212	Auger drills

622.242.22	Core drills		
.221	Serrated ring drills		
.222	Diamond drills		
.223	Shot drills		
.25	Shaft sinking See 622.122 and 622.552		
.251	Plant		
.252	Sinking through firm earth		
.253	Forepoling		
.254	Sinking open caissons		
.255	Shield methods		
.256	Pneumatic methods		
.257	Freezing methods		
.258	Boring methods		
.259	Drilling and blasting methods		
.26	Tunnelling and drifting See 622.122 and 622.524		
.261	Plant		
.262	Preliminary operations		
.263	Forepoling		
.264	Forcing forward metal linings		
.265	Shield methods		
.266	Pneumatic methods		
.267	Boring methods		
.268	Drilling and blasting methods		
.27	Stoping See 622.34		
.28	Supporting ground		
.281	Timber		
.282	Iron and steel		
.283	Masonry		
.284	Concrete		
.29			
•3	Working of mines Exploitation		
.31	Open workings		
.311	Open cut working		
.312	Stripping		
.313	Milling		
.32	Placer workings See 622.21		
.321	Small scale working with pan, cradle and long tom		
.322	Sluicing		
.323	Hydraulicking		
.324	Dredging		
395	Cableway methods		

622.326 .327	Mechanical shovel methods Dry placer methods	
.33 .331 .332	Methods used mainly in coal mining Longwall methods Room and pillar methods, including panel method	
.3 1 .341 .342	Methods used mainly in metal mining Overhand stoping Underhand stoping	
.35 .351 .352 .353 .354	Working thick deposits Caving method Filling method Square set method Square work method	
.36 .361 .362	Working soluble deposits Salt Copper sulphate	
.37 .371	Working fusible deposits Sulphur	
.38 .381 .382 .383 .384	Working liquid and gaseous deposits Water Petroleum Natural gas Volcanic emanations	
.4	Ventilation, lighting and signaling	
.41 .411 .1 .2 .3 .4 .412 .413	Theory of ventilation Mine atmospheres Gases See 022.811 Dust See 022.812 Humidity Temperature Resistance to circulation of air Splitting currents of air	
.42	Natural ventilation	
.43	Mechanical ventilation without fans or blowers	
.431	Cowls	
.432 .433	Furnaces	
.434	Steam jets Waterfalls	

.441 .1 .2 .442 .1 .2	Fans and blowers See 622 95 Fans Disk fans Centrifugal fans See 621.63 Blowers Rotary blowers See 621.62 Piston blowers See 621.61
.45	Airways, stoppings, regulators
.46	Lighting, safety lamps, etc. See 622.975
.48	Signaling
. 5	Drainage
.51	Theory of infiltration of water
.511	Surface water
.512	Ground water
.513	Deep water
.52	Drainage without raising water
.521	Natural drainage
.522	Gutters
.523	Bore holes See 622.24
.524	Tunnels See 622.26
.53	Pumps actuated by surface motors
.531	Rod lift pumps
.1	For mines
.2	For deep wells
.532	Cornish pumps
.533	Bull pumps
54	Pumps actuated by underground motors
.541	Reciprocating pumps
.1	Station pumps
.11	Steam
.12	Air
.13	Electric
.14	Hydraulic
.2	Sinking pumps
.21	Steam
.22	Air
.23	Electric
.542	Centrifugal pumps
.1 .2	Station Sinking
.z .543	Sinking Direct displacement pumps
.010	Direct displacement pumps

622.543.1 .11 .12 .2 .21 .22 .23	Steam Pulsometers Steam jets Air Exhausting air-pressure pumps Return-air pumps Air lifts
.55 $.551$ $.552$	Hoisting of water See 622.65 and 622.67 Water buckets and tanks Water shafts See 622.25
.56 .57 .571 .572	Dams and water tight linings See 622.254 and 622.264 Handling special waters Acid waters Hot waters
.58 .59	Hand pumps Siphons
.6	Extraction, hoisting and transportation
.61 .611 .612	Handling mineral in working place By hand By machine
.62 .63 .64 .641 .642 .643	Underground roads Cars, trams, etc. Transportation by gravity Chutes Batteries Gravity planes Retarding conveyors
.65 .651 .1 .2 .3 .652 .1	Haulage and hoisting by men and beasts Haulage Wheeling in barrows Tramming Animal haulage Hoisting Windlasses Whims
.66 .661	Mechanical haulage Rope haulage See 622.673 and 622.674 Theory
.2	Haulage engines

622.661.3	Engine planes		
.4	Endless-rope haulage		
.5	Tail-rope haulage		
.662	Locomotive haulage		
.1	Theory		
.2	Steam locomotives		
.3	Compressed air locomotives		
.4	Oil locomotives		
.5	Electric locomotives		
.67	Mechanical hoisting		
.671	Theory		
.672	Hoisting engines		
.1	Steam hoists		
.2	Compressed air hoists		
.3	Oil hoists		
.4	Electric hoists		
.673	Drums, reels, clutches and brakes		
.674	Ropes and chains		
.1	Manila ropes		
.2	Wire ropes		
.3	Chains		
.675	Head frames		
.1	Timber Stool		
.676	Steel Hoisting systems		
.070	Hoisting systems Unbalanced hoisting		
.1	Unbalanced hoisting Balanced hoisting		
.3	Koepe system		
.4	Whiting system		
.68	Cages, skips, buckets, slope carriages		
.69	Surface transportation including mineral roads,		
	wire ropeways, transhipment, loading and		
	unloading. (See 622 99)		
.691	Wagon roads		
.692	Railways		
.693	Aerial tramways		
.694	Telphers		
.698	Loaders		
.699	Unloaders, dumps, etc.		
.7	Mechanical preparation Ore dressing		
.71	Theory Preliminary operations		
.72	Hand dressing See 622.781		

622.73	Crushing See 622.782	
.731	Theory .	
.732	Hand breaking	
.733	Mechanical breaking	
.1	Jaw breakers	
.2	Spindle breakers	
.734	Crushing	
.1	Rolls	
.2	Roller mills	
.3	Stamps	
.4	Impact pulverizers	
.5	Ball mills and tube mills	
.6	Arrastras and grinding pans	
.74	Screening See 622.783	
.741	Theory	
.742	Perforated metal and wire cloth	
.743	Grizzlies	
.744	Shaking screens	
.745	Pulsating screens	
.746	Trommels	
.747	Belt screens	
.75	Wet concentrating machines	Ore concentrators
	See 622.77 and 622.784	
.751	Theory	
.752	Disintegrators	
.1	Trough washers	
.2	Log washers	
.3	Wash trommels	
.4	Washing pans	
.753	Hydraulic classifiers	
.1	Free-settling classifiers	
.11	Carrying-current classifiers	
.111	Buddles	
.112	Riffles, canvas tables, etc.	
.113	Box classifiers	
.114	Settling boxes and ponds	
.12	Hydraulic-current classifiers	
.121	Trough	
.122	Pocket	
.123	Tubular	
.2	Hindered-settling classifiers	
.21	Wolf-tongue classifiers	
.22	Pulsator classifiers	
.754	Jigs	
.1	Hand	

622.754.2	Power
.21	Pan
.22	Piston
.23	Pulsator
.755	Tables
.1	Agitation sizing tables
.11	Bumping
.12	Jerking
.2	Film sizing tables
.21	Fixed
.22	Moving
.756	Vanners
.1	Side-shake
ŝ	End-shake
.; ប	Slime treatment See 622.75
.77	Concentration by other means than wet concen-
	tration
.771	Pneumatic concentration See 682.785
.772	Oil concentration
.773	Flotation
.774	Magnetic separation
.775	Electrosctatic separation
.776	Disintegration and screening See 622.78
.78	Preparation of coal See 622.71
.781	Picking See 622.72
.1	Hand
.2	Mechanical
.782	Crushing See 622.73
.1	Jaw breakers
.11	Sauerman
.12	Roll and jaw
.2	Rotary crushers
.3	Rolls
.31	Toothed
.32	Corrugated
.33	Smooth
.4	Impact pulverizers
.41	Hammer
.42	Disintegrator
.783	Screening See 622.74
.1	Trade sizes
.2	Bar screens
.3	Shaking screens
.4	Revolving screens
.784	Washing See 622 75

622.784.1	Hyraulic classifiers
.11	Carrying-current classifiers
.111	Grading boxes
.112	Trough washers
.12	Hydraulic-current classifiers Tub washers
.2	Jigs
.21	Pan
.22	Piston
.23	Compartment
.3	Tables
.32	Bumping
.33	Jerking
.785	Pneumatic concentration See, 622,771
.786	Concentration by crushing and screening Bradford
	pulverizers See 622.776
.787	Coking See 644.22, 622.7 and 669.8
.1	Theory
.2	Open pits
.3	Beehive ovens
.4	Longitudinal ovens
.5	Gas retorts
.6	By-product ovens
.788	Briquetting
.1	Peat
.2	Lignite
.3	Bituminous coal
.4	Anthracite
.5	Coke
.780	Coal preparation plants See 622.79
.1	Tipples
.2	Breakers
.3	Washeries
.4	Coking plants
.5	Briquetting plants
.79	Mineral preparation plants See 622.789
.791	Rock houses, shaft houses
.792	Patios
.793	Concentrating mills
622.8	Dangers and accidents
.81	Explosions, see 622.82
.811	Marsh gas explosions
.1	
.2	Theory Causes
.2 .3	Actual cases
.4	Preventive measures
.812	Coal dust explosions
	Cour dust expressions

622.812.1	Theory
.2	Causes
.3	Actual cases
.4	Preventive measures
.82	Mine fires See 622.81
.821	Timber fires
.1	Theory
.2	Causes
.3	Actual cases
.4	Methods of extinguishment
.5	Preventive measures
.822	Gob fires
.1	Theory
.2	Causes
.3	Actual cases
.4	Methods of extinguishing
.5	Preventive measures
.823	Fires in coal
.1	Theory
.2	Causes
.3	Actual cases
.4	Method of extinguishment
.5	Preventive measures
.824	Fires in sulphide ore
.1	Theory
.2	Causes
.3	Actual cases
.4	Methods of extinguishment
.5	Preventive measures
.83	Crushing and falls of ground
.84	Flooding of mines
.85	Accidents to miners
.851	Accidents due to falls of ground See 622.83
.852	Accidents due to explosives and blasting
.853	Haulage accidents
.854	Hoisting accidents
.855	Accidents due to machinery
.856	Electric shocks
.857	Falling down shafts, chutes, etc.
.858	Accidents due to explosions and fires See 622.81 and 622.82
.859	Miscellaneous accidents
.86	Rescue and relief
.861	Mine rescue
.1	Apparatus
.2	Systems

622.861	
.3	Actual cases
.862	First aid .
.1	Outfits
.2	Methods
.3	First aid teams
.867	Doctors
.868	Hospitals See 622 975
.869	Miners' insurance and compensation
.87	Sicknesses of miners
.9	Surface plants See 622.789 aud 622.79
.91	Offices
.911	General offices
.912	Mine offices
.92	Storehouses and yards
.921	General storehouses
.922	Powder houses
.923	Tool houses
.924	Oil houses
.925	Lamp houses ·
.936	Yards for lumber and other combustibles
.937	Yards for steel and other non-combustibles
.93	Shops
.931	Blacksmith shops
.932	Machine shops and foundries
.933	Carpenter shops and sawmills
.94	Power plants
.941	Steam plants
.942	Compressed air plants
.943	Electric plants
.95	Fan houses
.96	Stables
.97	Buildings for employees
.971	Change houses, wash houses, dry houses, shift houses
.972	Club houses
.973	Dwellings
.974	Stores
.975	Hospitals

ILI	INOIS ENGINEERING EXPERIMENT STATION
622.98	Fire protection
.99	Arrangement of surface plants see 622.69
623	Military and Naval Engineering
.8	Naval architecture
624	Bridge engineering Arches
	Construction in wood, stone, and metal This classification includes whatever concerns the methods and principles of construction, so that the computations and technical conditions may be es- tablished, or the way the movable parts act on each other For architectural features see 720, Architecture
624.0	General
	Subdivisions of 624.0 may be combined with the following subdivisions, 624.1—624.9, for specifying details of construction under consideration
.01	Classification of bridges according to the charac-
	acter of the material used
.011	Wooden bridges
	(1 Wooden pile bridges; 2 bridges on stone piers; 3 bridges covered with iron)
.012	Masonry bridges
	(1 Stone bridges; 2 brick bridges; 3 bridges of concrete, plain and reinforced)
.013	Metal bridges on stone piers
	(1 Cast iron bridges; 2 iron and steel bridges)
.014	Bridges entirely of metal
	(1 Bridges of cast iron; 2 bridges of iron and steel)
.02	Classification of bridges according to purpose
.021	Bridge sidewalks for foot passengers
.022	Road bridges
	(1 Carriage bridges; 2 railway bridges; 3 bridges with more than one track; 4 bridges with more than one story)
.023	Viaducts
.024	Canal and aqueduct bridges
.025	Tunnel bridges

.028 Military and temporary bridges
(1 Wooden emergency bridges; 2 trestle bridges; 3 pontoon bridges; 4 portable metallic bridges)

Shiice and toll bridges

Movable and turning bridges

.026 .027

.03 Classification of bridges according to outline or type

624.031	Right bridges
.032	Skew bridges
.033	Curved bridges
.034	Single span bridges
.035	Bridges of multiple independent spans
.036	Bridges of continuous spans
.04	Determination and computation of component
	parts of bridges
	See also 620.1—Resistance of materials
.041	Establishment of the general outline Working drawing
.042	Coniputation of loads, dead and alive
	Permanent loads, accidental loads, trial loads, wind
	loads, temperature stresses
.043	Computation of the dimensions
.1	Dimensions of arches
	(11 Curve of pressure; 12 diagram of stability)
.2	Dimensions of timber work
.3	(2t Main timters; 22 accessory members; 23 wind bracing) Dimensions of piles and abutments
.044	Computation of deformation Flexure, curve of defor-
.044	ation
.045	Computation of weight and cost
	(1 Weight of Parts; 2 net price)
.05	General conditions of location Methods of
	construction
.051	Determination of site Study of soil
.052	Location of approaches
.053	Choice of type Fixing the principal dimensions Height Width
.054	Determination of the waterway Estimating the flow Computation of eddies
.055	Organization of work yards Excavation and removals
.056	Preparation of component parts Assemblage Stone cutting
.057	Erecting, scaffolds, launching
.05S	Trials, tests
.06	Masonry vaults and arches Various types
.061	Names according to rise or direction Right arches Skew arches Descending arches Full centered
	Skew arches Descending arches Full centered arches Flat arches Ascending arches
.062	Cylindrical arches Vaulted arches Names according
.00%	to profile Circuean arches Basket handled or
	oval arches Elliptical or parabolic arches Pointed
	arches

624.063	Penetrating arches Vaulted arches with lunettes Grom arches cloistered arches Cloistered arches with plastered covering
.064	Ring arches, vaulted or descending
.065	Spherical vaults Simple domes Domes of cupola
.003	lights Partly cylindrical niches Overhanging arches Back-covering
.07	Constituent parts Methods of construction
.071	Intrados, Estrados, Soffit, Spandell
.072	Voussoir, or keystone Height or rise Keys Counter
	keys Bed joints Rising joints Bearings or springers
.073	Supports Upright pillars or props Drums Pen-
	dentives
.074	Construction of arches, centering and scaffolding Ma-
	sonry work Dressing and laying stone Strik-
	ing the centers Complementary work Coping
	Spandrel Filling up
.075	Computation and diagrams of arches
.1	Computation of weight and loads
.2	Diagrams of arches
	(21 Curve of the intrados; 21 depth of the keystone)
.3	Thickness of piers
.4	Equilibrium polygon
.5	Weight diagram
-6	Computation of weights
.08	Trussed girders Component parts and computations
.081	Parts of trusses in ordinary wood Principal rafters,
,001	ties, struts, tie-beams, braces False tie-beams Hammer beams Purlins Brackets Wallplates Ridge-pole Luths
.082	Special parts of trusses of jointed wood, curved, or of great span
.083	Parts of metal trusses
.084	Parts of composite trusses
.085	Computation of loads and reactions
.086	Computation of dimensions of parts
.087	Computation of weight
.1	Piers and abutments Foundation work
.11	Foundations Generalities Nature of the soil
	See also 721.1, Foundations in general
.111	Dry foundations
.112	Foundations by draining

624.113 .114 .1 .2 .3 .115 .1 .2 .3	Sunk concrete Cribs and frame foundations in general Foundations on piling In river beds Platforms and open caissons Foundations in soft earth Metal piers Foundations by compressed air Tubular caisson foundation in river beds Foundations in ground Movable caissons Montaigue system
.12 .121 .122 .1 .2 .3 .4	Abutments Abutments for wooden bridges Abutments for masonry bridges Dressing the abutments Abutments of loose stones Wing walls Curved walls Hollow abutments Abutments of metal bridges
.13 .14 .141 .142 .143 .144	Wooden piles Stakes Masonry piles Piles of uniform strength Cut-waters Preparation of the piles Hollow piles Piles for floors Piles for bridges
.15 .151 .152 .153	Metal piles With four uprights With more than four uprights Piles of uniform strength
.2	Beams Floors of bridges Shapes and arrangement
.21 .211	Wooden bridges Primitive arrangements Simple beams Without beams Spurs
.212 .213	Floors of beams Trussed beams and spliced beams For arch bridges see 624.61
.214 .215	American lattice bridges Towne's system American like St. Andrews cross Howe system
.22	Bridges of metal construction Iron and steel beams American trusses
.221 .1 .2	Simple metal trusses Trusses with rigid joints Trusses with solid core

624.221.3	Lattice trusses
.4	Side pieces and crosses of St. Andrew
.222	Trusses of concrete and reinforced concrete
.223	American trusses with jointed connections
.1	Simple American trusses
	(11 The Warren triangular system; 12 the Howe system; 13 the Pratt and Whipple systems; 14 protected trusses)
.2	Composite American trusses
.3	(21 Warren multiple system; 22 Linville system; 23 Poat system; 24 the Bollman system) Compound American truss
•0	(3) The Warren system; 32 the Pratt or Pettit system; 33 the Howe system; 34 the Funk system)
.3	Metal lattice bridges Different kinds
.31	With trusses of constant height Ordinary lattice
.32	With variable height or bowstring
.33	Cantilevers
.34	With joints or crane bridges
.4	Metal tubular bridges
.5	Suspension bridges Different kinds parts
.51	General arrangement Different types
.511	Bridges with flexible hangers
	(1 With single panel; 2 with several panels; 3 with auxillary trusses; 4 with stays)
.512	Bridges with rigid hangers
.1	With parabolic cable and straight beams
.2	With cable and parabolic beams
.3	With parabolic cable and horizontal stringers
.52	Suspension chains and cables
.521	Main cables
.522	Reserve cables
.523	Anchorage cables
.524	Suspension chains and rods
.53	Floors
.53	Piers Towers
.55	Abutments Anchorages
.6	Arch bridges Different kinds
.61	Wooden bridges of one or more spans
.62	Masonry bridges of one or more spans
.621	Stone bridges
.622	Brick bridges
.623	Plain and reinforced concrete bridges

624.63	Cast iron bridges on masonry piers, with one or more spans
.64	Bridges entirely of cast iron
.65	Steel and iron bridges on masonry piers
.651	Single span bridges
.652	Independent span bridges
.653	Continuous bridges
.66	Steel and iron bridges on metal piers
.661	Single span bridges
.662	Independent span bridges
.663	Continuous bridges
.67	Bridges with elevated arch
.7	Bridges of composite construction
. 71	Bridges of unlike spans in masonry and metal
.72	Bridges and viaducts with superimposed spans
.73	Metal bridges with several types of span
.74	Bridges with floor raised with lifts
.8	Movable and shifting bridges Methods of operation
.81	Draw bridges (pont-levis)
.82	Swing bridges
.83	Bascule bridges
.84	Trunion bridges
.85	Rolling bridges
.86	Bridges shifting in the air
.87	Jack-knife bridges
.88	Agencies for operating movable bridges
.881	Movement by hand
.882	Movement by hydraulic power
.883 .884	Movement by steam Movement by electricity
.9	Roofs and framing Vaults
	Construction adapted to considerable spans See also 605. coverings and 721.5 dwellings
.91	Types of roofs
.911	Roofs of trusses
.912	Mansard roofs
.913	Roofs of curved beams

624.914	Roofs of great span (1 With wooden trusses; 2 with metal trusses; 3 with combined wood and metal trusses)
.92	Vaulted edifices of masonry
.921	Buildings of one nave
.922	Buildings with coupled naves Aisles
.93	Buildings of great width in masonry and in metal Public halls, etc.
.94	Buildings entirely of metal Halls Markets Exposition buildings
.95	Various metal construction Scaffolding Towers
625	Railway and road engineering
.1	Railways Roadbed and work of construction
.11	The survey and location
.111	Preliminary studies Plans Special features of drawings (stations, branches, stonework, crossings
.112	on a level, tunnels) Extent of the road
.112	Longitudinal profile Grades Curves
.113	Cross-sections Computation of earthwork
.12	Sub-grade
.121	9
.121	Acquisition of land Buildings and consolidating the embankments
.123	Drainage of the foundation bed
.13	Stone work, bridges and tunnels Ventilation of tunnels
.14	The track
.141	Ballast
.142	Supports (ties, etc.)
1	General principles Longitudinal and tranverse soli- tary supports Comparison
.2	Supports of wood
.3	Supports of metal
.4	Supports of reinforced concrete
.5	Supports of stone
.143	Rails and rail attachments
.1	Forms of rails Weight of rails
.2	Quality of metal in rails Conditions of manufacture Tests
.3	Wear and breakage of rails
.4	Joints of rails Fish joints
	Attachment of rails to supports Creening

625.144	Laying the track
.1	Width and position of joints Length of rails
	Spacing the cross bars
.2	Excess gauge and superelevation (bending) Laying track on curves
.3	Splices
.4	Operation of track laying
.15	Equipment of the track
.151	Branches (switches, frogs, switch blocks)
.152	Crossings
.153	Junction-crossings
.154	Turntables and swing bridges
.155	Car rollers or shifters
.156	Various accessory appliances (buffers, cyclometers, etc.)
.16	Secondary installations
.161	Sheds and watchman's houses Section houses
.162	Right-of-way fences and bars at grade crossings Set- ting land marks
.163	Cultivation and planting
.164	Snow screens
.165	Approaches
.17	Care of the road Maintenance and renewals
.171	Inspection Control
172.	Current maintenance Condition of the road Dudley dynamometer Maintaining the joints Dyna- mometer cars
.173	Repairs and renewals
.174	Clearing away snow
.175	Velocipedes for track inspection
.176	Changing the alignment
.18	Stores Road materials Accounts
.19	
.2	Rolling stock (For locomotives, see 621.13) .205 Periodicals; .206 Societies; (Am. Assu. of Master Car Builders)
.21	Cars and carriages, principal parts of
.211	Frames
.212	Axles Wheels Tires Balancing of wheels
.213	Suspension
.214	Provisions for lubricating Lubricants
.215	Trucks Radial and convergent axles
.216	Couplers and buffers Draft gears

$625\ 22$	Cross section of cars Clearance of bridges and
	tunnels Influence of length of cars on
	curves
.23	Passenger cars
.23	Types and comparison of types Seating capacity Weight
.231	Compartment cars
.232	Corridor or vestibuled cars Parlor cars Sleeping cars Dining cars, etc.
.233	Lighting of cars
.234	Heating and ventilation of cars Sanitation
.24	Freight cars
.24	Generalities Capacity Weight
.241	Flat cars
.242	Hopper and dumping cars
.243	Closed and covered cars
.244 .245	Refrigerator cars Special cars Dynamometer cars (See 656,221.7)
.246	Special cars Dynamometer cars (See 656.221.7) Details of construction Use of steel in construction
.247	Carunloaders Miscellaneous unloading and dumping
	devices
.25	Brakes Hand, automatic, continuous, etc. Air
	brakes
.26	Car repair shops
	•
.27	Supplies Materials
.3	Inclined and mountain railways
.4	Elevated and underground railways Subways
.5	Cable roads
.6	Tributary railways or feeders Street railways
.61	Tributary railways from a technical standpoint
	.611 Traffic; taxes; .612 administration and operation; .613 sub grade; .614 track and track equipment; .615 stations; .616 motive power; .617 rolling stock
.62	Street railways Tramways
.63	Traction systems
.7	Roads and highways Country roads and city streets
.71	Varieties of ordinary roads, according to the im-
	portance or purpose
.711	Rural roads, wide or narrow
.712	Town roads
	(1 Thoroughfares, avenues, boulevards; 2 narrow streets, alleys; 3 covered ways; 4 squares; ·5 promenades and public gardens)

625.72 .721 .722 .723 .724 .725 .726	Surveys and maps of routes Drafting Staking out the line Longitudinal profile Curve notes Leveling Computation of excavation and embankment
.73	Various features of the route Roadbed Cross- sections
	(1 Cross-sections; 2 carriage ruts, crowning, inclines; 3 equipment; 4 sidewalks; 5 drains; 6 slopes; 7 retaining walls; 8 parapets)
.74	Method of road construction Construction equipment
.741	General questions Flag stones Stone pavements Wooden pavements Macadam roads Monolithic roads Cement, as-
	phalt, gavel and earth roads
.742	Equipment earth roads, macadam roads, paved roads
.743	Sidewalks, macadam, paved, flagging, brick, tiling, sand-
*	stone, asphalt, wood
.744	Curbing
.745	Accessory construction (1 Bridges and culverts: 2 aqueducts: 3 manholes: 4 drains; 5 protection stones; 6 mile stones, sign posts; 7 cultivation: 8 lighting, lamp posts; 9 other features)
.75	Construction work
.751	
.431	Substructure Embankment Haul Shaping the cross-section
.752	Roadway Work of cosolidation
.753	Accessory work
,,,,,,	recessory work
.76	Maintenance of way
.761	Maintenance of paved streets Replacing worn stones
.762	Maintenance of macadam roads
.1	The continuous repair method Closing to travel Ex-
	cessive sweeping Method of making repairs
	Use of material, of concrete
.2	Periodical ballasting Various methods
.3	Rolling
.4	Tarring or oiling the road
.763 .764	Maintenance of wooden roads
.764	Maintenance of monolithic or concrete roads
.766	Maintenance of asphalt roads
.767	Maintenance of foot paths Maintenance of cycle tracks

625.768	Current minor details of maintenance
.1	Sweeping Use of brooms Wheel sweepers
.2	Scraping and removing wash water
.3	Removal of filth
.4 .5	Removal of dead leaves and other debris
.5 .6	Removal of snow Cleaning by salt Sanding and ice removal
.7	Sprinkling Use of sprinklers, hose, water columns,
••	sprinkling costs
.s	Lighting
.9	Other maintenance work
.77	Planting trees and shrubs along the roads
.771	Conditions to be observed Ways of planting Single, double or multiple rows Spacing the trees
.772	Choice of species Species used
.773	Operation of planting Trenches Transplanting Nur- series
.774	Maintenance and protection of vegetation
.78	Sanitation applied to streets and roads
.79	Other work connected with roads
.8	Paving stone, paving Macadamizing and other methods of consolidating roads
.81	Paving stone
.811	Stones used Different kinds Granite, limestone, mar- ble, etc.
.812	Splitting and dressing paving stone
.813	Putting and dressing paying stone Putting in place
	•
.82	Stone pavements
.821	Stone used Granite Sandstone Porphyry Other hard stone
.822	Preparing the stone
.823	Making the stone pavement
.1	The sand foundation
.2	Layers of stones Curbs Old pavements
.3 .4	Setting the stone
	Crossings
.83	Wooden pavements
.831	Wood used Pine Hardwood
.832	Preparation of the pavement
.833	Making the pavement
	Staking out Fixing the profile of the concrete
	foundations Concrete foundations Laying the pavement
	pavement

625.84	Concrete roads
.85	Asphalt roads
.86	Stone covered roads
.861	Materials used Crushed stone Limestone Flint
	Quartz Sandstone, granite Hornblend Por-
	phyry Trap, basalt and lava Waste from pot- teries
.862	Preparation of materials Crushing the stone Crush-
	ing by hammers Crushers Storing
.863	Applying the metal covering
.1 .2	Method of Tressaquet Macadamizing
.s .3	Method of Poloncease
.4	Metal on foundations
.5	Metal without foundation
.6	Diagonal waterways Catchbasins
.7	Rolling Rollers, hand, horse, steam
.87	Metallic roads Roads of vitreous stone Roads
	of reinforced stone
.88	Establishment of side walks, curbing, flagging
.89	Other work connected with paving
.9	Other means of transportation on land
.91	Ship railways
.92	Transportation by aerial cables
626	Canal engineering
627	River, harbor and general hydraulic engineering
.1	Rivers Force of water Discharge Bars
.2	Harbors Breakwaters
.3	Docks, piers and quays Shipping facilities
.4	Dikes and levies Embankments
.5	Other protection and reclamation of land from tides and waves Drainage
.6	Jetties
.7	Dredging Dredging machinery
.8	Dams
.9	Light-houses Buoys

628	Sanitary engineering Waterworks Use same form divisions as under 020
.1	Water supply of towns (For isolated water supply see 6287)
.11	Sources of water supply: lakes, rivers, springs, wells and pumping
.12	Pumping vs. gravitation systems: pump-well, stand-pipe high service Holly system
.13	Storage and service reservoirs
.14	Conduits Aqueducts Tunnels
.15	Mains and service pipes Freezing Iron Lead
.16	Impurities and their removal Filter-basins, etc.
.17	Public (sprinkling, fire, flushing), manufacturing, and domestic use and waste Meters
.2	Sewerage works
.21	Sewerage systems
.211	Combined system
.212	Separate system
.213	Liernur system
.214	Shone systems
.215	Berlier system
.216 .217	Other systems The outfall
.218	Depth and alignment
.219	Grade and velocity
.22	Shape and size of sewers
	(1 storm water flow; 2 ordinary flow; 3 circular section; 4 ordinary; egg-shape; 5 other egg-shapes; 6 other forms; 8 formulas for size)
.23	Ventilation of sewers
	(1 openings in streets; 2 lamp posts; 3 flues in houses; 4 pipes on houses; 5 house drains; 6 chimneys and furnaces; 7 charcoal and chemicals to deodorize sewerage gas; 8 special mechanism; 9 special construction)
.24	Design and construction of sewers
.25	Sewer appurtenances
	(1 junctions; 2 house connections; 3 manholes, and lampholes; 4 flushing shafts and fixtures; 5 catch basins and inlets; 6 traps and ventilator; 7 valves and penstocks; 8 overflows and regulators; 9 miscellaneous)
.26	River crossings
.27	Intercepting and outfall sewers
.28	Reservoirs and tank sewers
2.9	Pumping stations

628.3	Disposal of Sewage
.31	Physical properties of sewage
.32	Deodorization and disinfection of solids and
	liquids (See 628.237)
.33	Subsidence
.34	Precipitation
	(1 precipitation tanks; 2 mixing machinery; 3 filter presses; 4 precipitation by salts of alumina; 5 by lime; 6 by salts of iron; 7 by other methods; 8 disposal of sludge; 9 miscellaneous)
.35	Filtration
.36	Irrigation
	(1 broad irrigation; 2 ridge and furrow irrigation; 3 fiat bed irrigation; 4 sub-suface irrigation; 5 intermittent downward filtration; 6 carriers and appurtenances; 7 drains and drainage on sewage farms; 8 filtration areas; 9 miscellaneous)
.37	Sewage farming Required modifications of or
	dinary methods
.38	Sewage manures
.39	Discharge into sea, etc.
.4	Sanitation of towns
.41	Middens and privies
.42	Pail system
.43	Earth closet systems
.44	Domestic ashes and garbage
.45	Public urinals and latrines
.46	Street cleaning and sprinkling
.47	Pavements and subways
.48	Trees in streets and squares
.49	Manufacture of fertilizers from town waste
628.5	Industrial sanitation
.51	Factories and trades
	(1 prevention of dust and fumes; 2 protection of throat and eyes; 3 protection against infection; 9 special trades)
.52	Effluvium nuisances
	(1 situation of works; 2 use of high chimneys; 3 condensation in water; 4 combustion in furnaces; 9 special trades)
.53	Smoke nuisance
	(8 From steam generators; 9 From special industries)
.54	Disposal of solid and liquid wastes
	(1 discharge into streams; 2 absorbing wells and burial; 3 clarification by subsidence; 4 chemical treatment; 5 filtration; 6 purification by the soil; 9 special methods and special trades)

628.6	House drainage
.7	Rural water supply Villages and country houses
.8	Ventilation and heating (See 697, 628.23) This head is chiefly for ventilation. Most matter on heating goes in 697
.9	Lighting (See 621.32, 537.83)
650	Communication Commerce
651	Office equipment and methods
652	Writing Materials Typewriters
653	Stenography
654	Telegraphy (Fortelegraph and telephone engineering see 621.38)
.6	Telephones
655	Printing and publishing
656	Transportation Operation of railways
.1	Transportation on roads and highways
.2	Transportation by railways
.21	Railway terminals and stations
.211	Arangement of passenger stations
.212	Arrangement of freight and terminal stations
.213	Stations for special purposes (coal, live stock, etc.) .
.214	Union stations Division of expenses
.215	Heating and lighting of stations
.22	Trains
.221	Train resistance
.1	Resistance of freight trains
.2	Resistance of passenger trains
.3	Resistance o fengines Resistance on electric roads
.5	Resistance of foreign rolling stock
.6	Air resistance
.7	Dynamometer cars (See 625.245)
.222	Running of trains Schedules
.223	Use of and distribution of rolling stock
	(1 Passenger cars; 2 Freight cars; Return of empty cars; Inter- change of cars)
.224	Passenger train service Postal service
.225	Freight service Making up trains Tonnage rating
226	Baggage service

556,227 .228	Transportation of dangerous and perishable freight
.229	Military transportation
.23	Traffic and rates
.231	Transportation tolls and rates in general
	(Revision of rates Basing rates Differential rates Zone tariffs, etc;)
.232	Cost of transportation
.233	Competition of railways Division of traffic Pools, agreements, etc.
.234	Passenger rates Rates for baggage, dogs, etc. Passes and reduced fares
.235	Freight rates Classification of freight
.236	Rates for transportation other than by railway
	Rates of porterage and drayage Steamer rates Street railway rates
.237	Accounting and auditing Supervision of receipts and expenses
.24	Damage Delays Claims Responsibility
.25	Safety appliances
.25	General rules
.251	Signals in general Forms Colors Sounds Daltonism
.252	Hand signals Train signals
.253	Fixed track and station signals
.254	Apparatus for long distance communication Bells and special warning signals Telegraph Telephone
	Communication between stations and running
	trains Various operating systems Train dis-
	patching Protection of trains in distress
.255	Staff and ticket system of controlling trains
.256	Block systems
.1	Simple manual block signals
.2	Electrically controlled manual block signals
.3	Automatic electric block signals
.4	Automatic pneumatic block signals
.257	Centralization of operation of switch and signal systems
	Interlocking switch and signal apparatus Electro-pneumatic interlocking devices
.258	Indirect blocking systems Electric slot Ring and
.200	key Locking of draw-bridges
.259	Other safety devices
	(Apparatus placed in trains Communication between cars and with locomotive Speed indicators on trains or along the track)
.26	Accessories to railway service Dray and cab
	service Buffets, restaurants and hotels

656, 27	Operation of line with light traffic and of local and tributary railways
.28	Accidents
.280	Statistics General questions
.281	Derailments
.282	Broken couplings Runaway cars
.283	Collisions
.284	Other accidents
.285 .296	Accidents to railway employees
.290	Accidents to the public upon railway property
.29	Miscellaneous questions relative to railway transportation
.3	Transportation by horseless vehicles
.30	
.31	
.32	Automobiles
.321	Types
.1	Pleasure vehicles
.2	Commercial vehicles
.3	Agricultural vehicles
.322	Motive powers
.1	Internal combustion motors
.2 .3	Steam motors Electric motors
.323	Principal parts (excluding motors)
	(1 frames, springs, etc.; 2 clutches, brakes; 3 gear; 4 axles, differentials; 6 wheels, rims, tires; 7 steering gear; 8 journals)
.324	Design and construction
.325	Testing
.329	Maintenance, operation, laws, etc.
657	Book-keeping Accounting
660	Chemical technology
661	Chemicals (1 chemical elements: 2 acids: 3 alkalies: 4 salts)
662	Pyrotechnics Explosives
445	Oils Gasas

665.2	Animal oils and fats
.3	Vegetable oils and fats
.4	Mineral oils Paraffin Asphaltum
.7	Illuminating gases
.8	Other gases
666	Ceramics Glass, etc. (1 Glass; 2 Enamel: 3 Ceramics; 4 Clay; 5 Porcelain; 6 Stonewar and earthenware)
666.7	Bricks Tiles
.8	Artificial stone
.9	Cements Limes Mortars
067	Bleaching, dyeing, etc.
668	Other organic chemical industries
069	Metallurgy and assaying
669.1	Iron and steel
.11	Economic factors
.111	Sources
.112	Production
.113	Costs
.114	Prices
.115	Uses
.12	Nature and properties
.121	Composition Analyses
.122	Constitution
.1	Thermal examinations Diagrams
.2	Metallography
.123	Physical properties Tests
.124	Chemical properties Corrosion
.13	Alloys
.131	Nickel
.132	Manganese
133	Chrome
.134	Tungsten
.135	Molybdenum
.136	Vanadium

669.137	Silicon
	Titanium
.138	
.139	Other alloys
.14	Extraction
.141	Direct processes
.142	Blast furnace process
.143	Electric furnace process
.15	Purification
.151	Puddling processes
	Open hearth processes
.152	
.1	Acid
.2	Basic
.153	Bessemer processes
.1	Acid
.2	Basic
.154	Electric furnace processes
.134	
.16	Carburization
.161	Cementation process
.162	Crucible process
.17	Founding
.171	Melting
.172	Molding
.18	Treatment
.181	Heat treatment
.1	Hardening
.2	Tempering
.3	Annealing
	Case hardening
.182	Malleable cast iron process
.183	
.184	Mechanical treatment
.1	Forging
.2	Rolling
.3	Wire drawing
.4	Pressing
.5	Machining
.185	Finishing
.103	Sand blasting
-	Pickling
.2	
.3	Painting
.4	Galvanizing
.5	Plating
.6	Oxidized coating
.7	Enameling
••	-

6 69.19	Plants
669.2	Gold and silver
.21	Gold alone
.211	Economic factors
.1	Sources
.2	Production
.3	Costs
.4	Purchasing power
.5	Uses
.212	Properties
.213	Alloys
.218	Chlorination
.1	Theory
.2	Vat chlorination process
.3	Barrel chlorination process
.219	Plants
.22	Silver alone
.221	Economic factors
.1	Sources
.2	Production
.3	Costs
.4	Prices
.5	Uses
.222	Properties
.223	Alloys
.228	Leaching
.1 .2	Hot water leaching Ziervogel process
.2 ,3	Brine leaching Augustin process Hyposerlphite leaching
.31	Theory
.32	Patera process
.33	Russell process
.229	Plants
.23	Gold and silver
.231	Amalgamation
.1	Theory
.2	Plate amalgamation process
.3	Pan amalgamation process
.235	Smelting
.237	Refining and parting See 669.373, 669.473 and 669.573
.238	Cyanidation
.239	Plants
669.3	Copper
.31	Economic factors

669,311	Sources
.312	Production
.313	Costs
.314	Prices
.315	Uses
.32	Properties
.33	Alloys
.34	Roasting
.35	Matte smelting
.351	Reverberatory furnace process
.352	Blast furnace processes
.1	Smelting roasted ore
.2	Pyritic smelting
.36	Copper smelting
.361	Reverberatory furnace process for blister copper
.362	Blast furnace process for black copper
.363	Converting
.37	Refining
.371	Reverberatory furnace process
.372	
.373	Electrolytic process
.38	Leaching
.381	Rio Jinto process
.382	Hunt and Douglas processes
.383	Neill process
.384	Henderson process
.39	Plants
669.4	Lead
.41	Economic factors
.411	Sources
.412	Production
.413	Costs
.414	Prices
.415	Uses
.42	Properties
.43	Alloys
.44	Roasting
.45	Smelting
.451	Ore hearth process
.452	Reverberatory furnace process
.453	Blast furnace process

669.46	
.47	Refining .
.471	Pattinson process
.472	Parkes process
.473	Electrolytic process
.48	Leaching
.49	Plants
669.5	Zinc
.51	Economic factors
.511	Sources
.512	Production
.513	Costs
.514	Prices
.515	Uses
.52	Properties
.53	Alloys
.54	Roasting
.55	Smelting
.56	
.57	Refining
.571	Reverberating furnaces process
.572	
.573	Electrolytic process
.58	Leaching
.59	Plants
.6	Tin
.7	Mercury and other metals
.8	General factors of roasting, smelting, refining
.81	Fuels
.811	Theory of combustion
.812	Solid fuels
.1	Wood
.2	Charcoal
.3	Peat
.4	Lignite
.5	Bituminous coal
.6	Coke
.7	Anthracite
.813 .814	Liquid fuels
·0 (3	Gaseous fuels

440 014 1	Notural cos
669.814.1	Natural gas
.2	Producer gas
.3	Water gas
.4	Coal gas
.5	Blast furnace gas
.82	Refractories
.821	Theory
.822	Siliceous refractories
.1	Sand
.2	Gannister
.3	Silica brick
.4	Carborundum and siloxicon
.823	Argillaceous refractories
.1	Fire clay
.2	Common clay
.S24	Aluminaceous refractories
.1	Bauxite
.2	Fused alumina
.825	Carbonaceous refractories
.023	Graphite
.2	Carbon brick
.826	Chromitic refractories
.827	Alkaline earth refractories
.0.21	Magnesia
.2	Dolomite
.2 .3	Lime
.828	Rare earth refractories
.828 .7	Zirconia
.2	Tungsten
.829	Application and maintenance
*****	Cements
.1 .2	
	Tamping implements
.9	Repair materials and methods
.83	Furnaces
.831	Roasting and calcining furnaces
.1	Theory of roasting and calcining
.2	Heaps
.3	Stalls
.4	Kilns
.5	Reverberatory furnaces
.51	Hand
.52	Mechanical
.521	With plane hearths
.522	With conical hearths
.523	With cylindrical hearths
.6	Muffles

CC0 C01 P	
669.831.7	Blast roasting furnaces
.71	With intermittent discharge Pots
.72	With continuous discharge
.832	Smelting furnaces
.1	Theory of smelting
.2	Hearths
.3	Reverberatory furnaces
.31	Direct fired
.32	Regenerative
.4 .5	Blast furnaces Converters
.5 .6	Electric furnaces
.833	Liquation furnaces
.834	Distillation furnaces Retorts
.835	Sublimation furnaces Sublimation furnaces
.836	Refining furnaces
.837	Melting furnaces
.84	Pyrometry
.85	Flue gases and dusts
.86	Slags
.87	Mattes and speisses
	-
.88	Metals and alloys
.89	Metallography
669.9	Sampling, assaying, preliminary operations
.91	Sampling
.911	Sampling ores and fluxes
.1	Theory
_	
.2	Taking samples
.2 .3	Preparing samples
.3 .9	
.3	Preparing samples Sampling works Sampling metals
.3 .9 .912 .1	Preparing samples Sampling works Sampling metals Theory
.3 .9 .912 .1 .2	Preparing samples Sampling works Sampling metals Theory Methods
.3 .9 .912 .1 .2	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases
.3 .9 .912 .1 .2 .913	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory
.3 .9 .912 .1 .2 .913 .1	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases
.3 .9 .912 .1 .2 .913 .1 .2	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory Methods Assaying
.3 .9 .912 .1 .2 .913 .1 .2	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory Methods Assaying Fire assaying
.3 .9 .912 .1 .2 .913 .1 .2 .92 .921	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory Methods Assaying Fire assaying Wet assaying
.3 .9 .912 .1 .2 .913 .1 .2 .92 .921 .922 .923	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory Methods Assaying Fire assaying Wet assaying Electrolytic assaying
.3 .9 .912 .1 .2 .913 .1 .2 .92 .921 .922 .923 .924	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory Methods Assaying Fire assaying Wet assaying Electrolytic assaying Coal analysis
.3 .9 .912 .1 .2 .913 .1 .2 .92 .921 .922 .923	Preparing samples Sampling works Sampling metals Theory Methods Sampling gases Theory Methods Assaying Fire assaying Wet assaying Electrolytic assaying

669-93	Drying					
.94	Crushing					
.95	Briquetting See 622.783 and 622.789.5					
670	Manufactures (In this division may be placed items that do not properly belong under 621; such as items relating to textile mills or machinery, the manufacture of shoes, etc.)					
680	Mechanic Trades					
690	Building					
69 (001)	Statistics					
(002)	Quantities and costs Prices, etc.					
(003)	Contracts and specifications					
(01)	Theories of construction					
(02) (07)	Compends, treatises, text books, etc. Education, teaching, etc.					
(01)	(See form divisions pp. 7 and 8)					
691	Materials Processes Preservatives For Strength of materials, see 620.1 For Uses of prepared materials, see 693 to 699					
.1	Woods					
.18	Preservation of woods					
691.2	Natural stone Protection					
.211	Limestone					
.221	Granite					
.231	Sandstone, ordinary Slate					
.24 .29	Preservation					

.3	Artificial stone Concrete					
.31	Beton coigniet					
.32	Ransome					
.33	Hollow block					
.34	Selenitic					
.35	Lime concrete					
.36	Cement concrete					
.37						
.39	Aggregate					
.4	Bricks Tiles Ceramic products					
.46	Tiles					
.47	Tiles, hollow structural					

691.471 ,472	Floor Roof and ceiling.					
.48	Terra cotta					
.49	Sewer tiles					
.5	Lime Cement Plaster					
.51	Lime, ordinary					
.52	Lime, hydraulic					
.53	Lime, selenitic					
.54	Cement, natural					
.55	Cement, portland or artificial					
.56	Plaster of paris					
.57	Keene's cement					
.6	Glass					
•7	Iron Steel Anti-rust processes					
.71	Cast iron					
.72	Malleable cast iron					
.73	Wrought iron					
.74	Steel, blister or tool					
.75	Steel, crucible					
.76	Bessemer steel					
.77	Open hearth steel					
.78						
.79	Protection of iron and steel					
.791	Painting					
.792 .793	Tinning					
.794	Galvanizing (Zincking) Electroplating					
.8	Other metals					
.9	Other materials					
.91	Mineral wool					
.92	Hair					
.93	Paper					
.95	Asbestos					
.96	Asphalt Tar					
692	Plans Specifications, etc.					
.1	General drawings					

692.2	Detail drawings		
.3	Specifications		
.4	Contracts Agreements Bids Advertisements		
.5	Estimates Quantities Cost		
.6	Superintendence		
.7	Supervision of Accounts		
.8	Professional services Fees Commissions		
.9	Building laws Liabilities of architects, owners and contractors		
.91	State or general laws		
.92	City ordinances		
.93	Town or village ordinances		
.94	Trade rules		
.95	Liabilities of architects		
.96	Liabilities of owners		
.97	Liabilities of contractors		
.98	Lien laws		
693	Masonry Plastering Fire-proofing		
,1	Stone construction		
.2	Brick construction		
.3	Terra cotta construction		
.4	Hollow tiles and porous terra cotta		
.5	Concrete and beton construction		
.51	Massive		
.52	Layers		
.53	Hollow block		
.54	Sidewalks		
.55	Ornamental		
.6	Plastering		
	1 lastering		
.7	Reinforced concrete		
.7 .71	S		
	Reinforced concrete		

693.713	Unit			
.714	Hennebique			
.715 .72	Roebling Forms and centers			
.≀≈ .73	Testing and inspection			
.74	Data from experiments			
.75	Formulas			
.76	Special applications			
.8	Fire-proofing			
.81	Systems			
.82	Walls and partitions			
.83	Flors			
.84	Roofs			
.85	Columns			
.86	Girders			
.87	Trusses			
.88	Vaults			
694	Carpentry Joinery Stairbuilding			
695	Roofing			
695.1	Shingle			
.2	Slate			
.3	Tile			
.4	Metal			
. 5	Iron and steel			
.6	Asphalt, tar, etc.			
.7	Felt and gravel			
.8	Cloth			
.9	Thatch, etc.			
696	Plumbing Gas and steam fitting			
.1	Plumbing			
.2	Gas-fitting			
.3	Steam-fitting			
.4	Rivets and riveted joints			

696.5	Screws and screw joints
.6	Rust and caulked joints
.7	Anchors Bond irons
.8	Other branches
.9	Plumbing laws
697	Heating and ventilating
.1	Fireplaces
.2	Stoves
.3	Furnaces, hot air
.4	Hot water
.41	High pressure
.42	Low pressure
.43	Low pressure with steam mains
.5	Steam
.51	High pressure
.52	Low pressure
.53	Exhaust steam
.54	Vacuum
.6	Gas
.61	Illuminating
.62	Fuel
.63	Natural
.64	Acetylene
.7	Electric and other methods
.8	Smoke flues and chimneys
.9	Ventilation Ducts Fans
.91	Natural system
.92	Plenum
.93	Exhaust
.94	Fresh air ducts
.95	Foul air ducts
.96	Treatment of air
.97	Regulation of air supply
	Regulation of all supply

698	Painting Glazing Paperhanging				
699	Car and shipbuilding				
720	Architecture				
721	Architectural construction				
.1	Foundations				
.2	Walls				
.3	Piers Columns				
.4	Arched constructions				
.5	Roofs				
.6	Floors and flooring				
.7	Ceilings				
.8	Doors Gates Grilles Windows				
.9	Iron and composite structures				
722	Ancient and oriental architecture				
723	Mediaeval architecture				
724	Modern architecture				
725	Public buildings				
.1	Administrative Governmental				
.2	Business and commercial				
.3	Transportation and storage				
.31	Railway passenger stations				
.32	Railway freight stations				
.33	Railway shops, roundhouses, car houses				
.34	Dock buildings				
.35	Ware houses Cold storage				
.36	Grain elevators				
.38	Garages				
.4	Manufactories				
.41	Textile factories or mills				
42	Breweries Distillaries				

725.43	Foundries Machine shops Iron and stee					
.44	Wood-working mills					
.45	Carriage and car factories					
.5	Hospitals and asylums					
.6	Prisons and reformatories					
.7	Refreshment Baths Parks					
.8	Recreation					
.9	Other public buildings					
726	Ecclesiastical and religious					
727	Educational and scientific					
.3	Colleges and universities					
.4	Professional and technical schools					
. 5	Laboratories					
728	Residences					
729	Architectural design and decoration					
740	Drawing Decorations Design					
741	Freehand					
742	Perspective					
744	Mathematical and scientific					
760	Engraving					
770	Photography					

Α		Tests of Wet	621.533 621.517
Absorption dynamometers	531,4	Air engines	621.4
Absorption of heat	536.3	motors	621.541
	624.55	pressure gages	621,532
Accidents, in mines	622.8	refrigerating machines	621.565
Railway	656.28	resistance (railway trains)	656.221.6
Statistics of railway	656.28	supply, Regulation of (vent	
	556.285	lation)	697.97
to public upon railway prop-		Alcohol engines	621.434.24
	556,296	Algebra	512
Accounting	657	Alkalies (chemistry)	661.3
	556.237	Alkaline accumulators	621.356
Shops, manufactories and en-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Alloys of iron and steel (So	
	521.706	Steel)	669.13
Accounts, Supervision of	J. 1. 1. 0. 0	Alternating current, convert-	003.13
(Building)	692.7	ors	621.313.5
Accumulators, Electric (See	00.000	generators	621.313.43
	521.354	machinery	621,313.3
	321.356		621.319.123
Lead (See Lead accumula-		Aluminaceous refractories	669.824
tors)	521.355	Amalgamation of gold and si	
Other types of	521.357	ver	669.231
Accumulators, Water	321.254	Ammeters	621.374.4
Acids (chemistry)	661.2	Ammonia, absorption machine	
Acoustics	534	compression machines	621.572
Acyclic machines 621.3	313,291	Analyses, of iron and steel	669.121
Adhesion of locomotives 62	1.131.1	of coal	669.924
Administration of manufactories 6	21.704	of gas	669.926
Administrative buildings	725.1	of oil	669.925
Aeronautics	533.6	Analytical geometry	516
Agillaceous refractories 6	69.823	Anchorage (suspension bridge	
Air	533	Anchors (plumbing)	696.7
Flow of, in pipes 6	21.534	Arcient architecture	722
	625.25	Animal haulage (mines)	622.651.3
Air compression	621.5	Animal materials, Tests of	620.198
	21.534	Animal motors	621.46
	21.534	Animal oils	665.2
Air compressors, Dry 6		Annealing (steel)	669.181.3
Ecc ·		Anthracite coal	553.25

Aqueducts	628.14	Braking devices for	656.323
Arch bridges	624.6	Clutches for	656.323.2
Arched constructions (archi		Design and construction of	
tecture)	721.4	Frames for	656.323.1
Arches	624	Gears for	656,323,3
Architects, Liabilities of	692.9	Journals for	656.323.8
Architectural construction	721	Laws for	656.329
Architectural design and de	co-	Motive power of	656.322
ration	729	Motors for	656.322
Architecture	720	Principal parts of	656.323
Ancient and oriental	722	Operation of	656.329
Mediaeval	723	Stearing gears for	656.323.7
Modern	724	Tires for	656.323.6
Naval	623.8	Types of	656,321
Are lamps	621.325	Wheels for	656.323.6
Alternating current enclos-	ed 621.325.5	Auto-transformers	621.314.4
Alternating current open	621.325.4	Axles, Car	625,212
Continuous current enclose	ed 621,325.3	Locomotive	621.134.1
Continuous current open	621.325.2	Radial and convergent	625.215
Arc lighting	621.325		
Arc rectifiers	621.313.73	В	
Arithmetic	511	Baggage rates	656.234
Artificial cement	691.55	service	656.226
Artificial stone (see Stone,	Ar-	Balancers (electric)	621,313,27
tificial) 69	1.3 620.139	Balancing of car wheels	625.212
Asbestos for building	691.95	Ball bearings	621.822
Ash conveyors	621.183.78	Ballast (railways)	625.141
Ash pits (locomotives)	621.133.2	Bascule bridges	624.83
(stationary boilers)	621.183.55	Basins, Filter	628.16
Asphalt (building material)	691.96	Baths, Public	725.7
roads	625.85	Batteries, Primary	621.353
roofing	695.6	Storage (See Storage ba	t-
Asphaltum 62	0.196 - 665.4	teries)	621.354
Assaying	669 - 669.92	Beams (bridges)	624.2
Astronomy	520	Bearings	621.822
Asylums (architecture)	725.5	Ball and roller	621.822
Asynchronous machines	621.313.6	Metals for	621.82 2
Atmosphere	533.3	Bell signals	656.254
Atmospheric electricity	537.4	Belt gearing	621.852
Auditing, Railway	656,237	Bending machinery	621.982
Automatic, electric block sig	-	Berlier system of sewerage	628.215
nals	656,256,3	Besemer process for steel	669.153
shaft governor engines	621.164.3	Acid	669.153.1
telephone systems	621.385.75	Basic	669.153.2
Automobiles	656.32	Beton coigniet (artificial stone	
Axles for	656,323,4	construction (building)	693.5

Bevel gears	621.833.2	manometers	621.184.73
Bids (building construction)	692.4	masonry	621.184.57
Binary vapor engines	621,44	plants	621.19
Bissell trucks	621.135.4	pressure gages	621.184.73
Bituminous coal	553.24	rating	621.194.7
shale	553.23	rings	621,184,53
Blast furnaces	621.76	riveted joints	621.184.52
Blowing engines for	621.61	safety valves	621.184.73
Blasting	622.238	shell setting	621.184.56
Bleaching (chemical technology		shops	621.792
Blocking systems, Indirect	656.258	steam collectors	621.184.79
Block systems	. 656,256	tests	621,184.13
Automatic electric	656.256.3	hydraulic	621.194.7
Automatic pneumatic	656,256.4	tubes	621,184.53
Electrically controlled man		tubesheets	621,184,52
nal	656,256.2	types	621.184.2
Simple manual	656,256,1	water gages	621.184.72
Blocks and tackles	621.863	whistles, warning	621.184.72
Blowers (forge shop)	621.732	zincs	621.184.79
Centrifugal	621.63		184 621.194
Piston	621.61	Bracing of	
Rotary	621.62	Corrosion of	621,184,52 621,196,5
Blowing engines	621.6	Firetube (tubular)	
			621.184.25
Blue printing processes Boiler, accessories	$621.716 \\ 621.184.7$	Flash generators	621.184.27
casing		Instantaneous vaporizing Locomotive 621.133	621.184.27
construction	621.184.54		
domes	621.184.5	Management of	621.193
drums	621.184.52	Marine	621.184.22
	621,184.52	Portable	621.184.23
economy	621.184.13	Scale prevention in	621.194.4
feeding (locomotive)	621,133.7	Setting and hanging of	621.184.56
(stationary)	621.194.2	Stationary	621.184.24
feedwater	621.184.13	Staying of	621.184.52
Treatment of	621.194.3	Traction	621,184.23
ferules	621.184.53	Water tube	621.184.26
firing	621.194.1	Wear and duration of	621.194.196
floaters flues	621.184.72	Bolt and nut machinery	621.99
	621.184.57	Bolts	621.882
foundations	621.184.57	Borers, Churn (hand)	622,241.1
furnaces	621.183	(machine)	622.242.1
gage glasses hand holes	621,184.72	Rotary (hand)	622.241.2
	621.184.55	(machine)	622.242.2
heads	621.184.52	Bonding of rails	621.333.4
incrustation	621.194.4	Bond irons (plumbing)	696.7
inspection	621,194,7	Book-keeping	657
manholes	621.184.55	Boosters, Continuous curren	t 621.313.28

Boring, mills	621.945	Ordinary lattice	624.31
Mine	622.24	Bow string	624.32
Hand	622.241	Cantilever	624.33
Machine	622.242	Crane	624.34
Bowstring bridges	624.32	Methods of construction	
Brakes (in mills)	621.826	624.07	624.05
Brakes, Air	625.25	Movable and shifting	624.8
Friction	531.4	Bascule	624.83
Hand, automatic, continuous	625.25	Draw	624.81
Locomotive	321.135.5	Jack knife	624.87
on tenders	521.136.1	Operating mechanism for	624.88
Braking devices for automobiles	656.323	Rolling	624.85
Breakers, Circuit 62	21.317.36	Swing	624.82
Breakwaters	627.2	Shifting in the air	624.86
Breast water-wheels	621.22	Trunion	624.84
Breweries, Architecture of	725.42	Railway	625.13
Brick (building material)	691.4	Suspension	624.5
(chem. tech.)	666.7	Abutments for	624.55
clays	553.61	Anchorages for	624.55
construction	693.2	Floors for	624.53
Tests of	620.14	Piers for	624.54
Bridge beams	624.2	Suspension chains and ca-	
floors	624.2	bles for	624.52
engineering	624	Towers for	624.54
shapes	624.2	Types of	624.51
Bridges	624	Tubular	624.4
Arch	624.6	Vaults and arches for	624.06
Cast iron, masonry piers	624.63	wooden, Beams and floors for	624.21
Cast iron complete	624.64	Briquetting of coal	622,788
Elevated (arch)	624.67	Brine system of refrigeration 6	21.565.1
Masonry	624.62	Broaches (for quarrying)	622,222
Steel and iron, masonry pier	s 624.65	Buckets for mine hoisting	622.68
Steel and iron, metal piers	624.66	_	21.165.12
Wooden	624.61	Buffers (railway cars)	625.216
Cantilever	624.33		656.26
Classification of, according to		Buffets (railway service)	
materials	624.01	Building	690
according to purpose	624.02	Building construction, Cost of	692.5
according to type	624.03	Superintendence of	692.6
Clearance of	625,22	Building laws	692.9
Computation of parts of	624.04	Building material	691
Composite construction of	624.7	Artificial stone	691.3
Conditions of location	624.05	Asbestos	691.95
Foundations for	624.11	Asphalt	691.96
metal, Beams and floors for	624.22	Brick, tiles	691.4
Metal lattice	624.3	Cement	691.5

Building Material.—Continued.		Cables, aerial, Transportation	on
Concrete	691.3	. by	625.92
Glass	691.6	Cables (elec. trans.)	621.319.34
Granite	691.221	Telephone and telegraph	621.319.34
Hair	691.92	Cages (mining)	622.68
Iron and steel	691.7	Calcining furnaces	669,831
Lime	691.5	Calculus	517
Limestone	691.211	Calorimetry	536.6
Mineral wool	691.91	Cams .	621.83
Paper	691.93	Design of	621.838
Plaster of Paris	691.56	Canal engineering	626
Preservatives for	691	Canals from economic aspect	386
Sandstone	691.231	Cannel coal	553.23
Slate	691.24	Can system of ice making	621.581
Stone (natural)	691.2	Cantilever bridges (see Bridg	ges,
Tar	691.96	Cantilever)	624.33
Terra cotta	691.48	Trusses	624.22
Woods	691.1	Capital	331
Building plans (specifications,		Relation of, to labor	331. 1
etc.)	692	Capstans	621.864
Building processes	691	Car axles	625.212
Building stones	553.5	Carbonic acid refrigerating ma	a-
for building	691.2	chines	621.574
Buildings, Administrative	725.1	Carbon filament incandescent	
Business and commercial	725.2	1amps	621.326.3
Cast iron in	691.71	Carbon series (econ. geology)	553.2
Dock	725.34	Carbon vapor lamps	621.327.5
Ecclesiastical	726	Car, building	699
Educational	727	factories	725.45
Exposition	624.94	frames	625.211
Governmental	725.1	houses	725.33
Masonry	624.93	repair shops	625.26
Metal	624.94	unloaders	625.247
Public	725	wheels	625.212
Recreation	725.8	Carburization of steel	669.16
Religious	726	Cementation process	669.161
Scientific	727	Crucible process	669.162
Shop	621.702	Carpentry	694
Storage	725.3	Carriage factories	725.45
Transportation	725.3	Carriages (mine hoisting)	622.68
Buoys	627.9	Carriages, railway, Principal	
		parts of	625.21
C		Cars, Closed and covered	625.243
Cob comittee (1		Compartment	625.231
Cab service (transportation)	656.26	Corridor or Vestibule, Parlo	
Cable roads	625.5	Sleeping	$625\ 232$

Cars.—Continued.		Ceramic products (building m	a-
Cross section of	625.22	terials)	691.4
Dining	625.232	Ceramics (chem. tech.)	666
Dynamometer	656.221.7	Chain gearing	621.835
Dynamometer and special	625.245	Channelers (for quarrying)	622,223
Electric	621.334.3	Chains, Hoisting	622.674
Flat	625.241	Chemical elements	661.1
Freight	625.24	technology	660
Heating of	625.234	Chemical deodorization of sev	wer
Hooper and dumping	625,242	gas	628,237
Interchange of	656,223.2	Chemistry	540
Lighting of	625.233	of foundry irons	621.745
Mine	622.63	Children, Labor of	331,3
Passenger	625.23	Chimneys (boiler plants)	621.183.8
Principal parts of	625.21	(heating and ventilation)	697.S
Refrigerator	625.244	(sanitation)	628.236
Sanitation of	625.234	Choke coils	621.314.6
Suspension of	625,213	Chrome steel	669.133
Ventilation of	625.234	Circuit breakers	621.317.36
Cast iron (in buildings)	691.71	Circulating pumps	621.197.3
Case hardening of	669.182	Claims (transportation)	656.24
Manufacture of	669.17	Classification of freight	656.235
Catch basins for sewers	628.255	drawings	621.717
Cattle-guards	625.162	Clay	666.4
Caulked joints (plumbing)	696.6	Fire and brick	553.61
Ceilings (architecture)	721.7	Clearance of bridges and tuni	nels 625.22
Ceiling tile	691.472	Cloth roofing	695.8
Cells, Primary	621.353	Clutches	621.825
Secondary	621.354	Friction	621.825
Cement, Building	691.5	Coal and ash conveyors	621.183.78
concrete	691.36	Coal, Anthracite and graphic	2
' Keene's	691.57	anthracite	553.25
Natural	691.54	Bituminous and semi-bitum	in-
Portland or artificial	691.55	ous	553.24
Tests of 62	0.13 620.15	Briquetting of	622.788
Cements (chem. tech.)	666.9	Cannel	553.23
Cements, Mineral	553.68	Coking of	622.787
Central power stations (stea		Concentration of, by crushin	ıg
end of)	621.19	and screening	622.786
Central stations	621,312	Crushing of	622.782
Combined	621,312,5	Mining of (methods)	622.33
for lighting only	621.312.2	Picking of	622.781
for power transmission	621.312.4	Plants for preparation of	622.789
for traction only	621.312.3	Pneumatic concentration of	622.785
Centrifugal blowers	621.63	Preparation of	622.78
pumps	621.67	Screening of	622.783

	Compositions Cont. 400 Mar. 400 Mar.
Coal.—Continued.	Concentrators, Coal 622.785 622.786 Ore 622.75
Washing of 622.784	
Cocks, Air 621.184.79	Concrete (building construction) 693.5
Coking of coal 622.787	(building material) 691.3
Cold storage 621.565	Cement 691.36
Cold storage warehouses 725.35	construction, Hollow block 693.53
Colleges (buildings) 727.3	Lime 691.35
Collisions (railway) 656.283	Reinforced (See Reinforced
Columns, Architecture of 720.3	concrete) 693.7
Fireproofing of 693.85	Tests of 620.13
Combustion 621.182 536.46	Condensation in steam pipes 621.185.1
in locomotive boilers 621,133.1	of effluvia in water 628.523
of effluvia in furnaces 628.524	Condensers (electric) 621.315.3
of fuel 621.182	Jet 621.197,63
Commerce 380, 650	Steam 621.197.6
commission, Interstate 385.7	Surface 621,197.62
Commercial buildings 725.2	Telephone 621.386.5
Communication 380 650	Conductors (electric) 621.319.2 621.319.3
Communication between stations	Insulated 621.319.33
and running trains 656.254	Uninsulated 621,319.32
Communication, Long-distance	
(transportation) 656.254	conduits, compressed an
Communication of heat 536.2	101 114101
Compartment cars 625.231	Underground transmission 621.319.23
Compends, Engineering 620.2	Conservation of energy 531.6
Compensators 621.313.27	Continuous current
Competition of railways 656.233	boosters 621,313.28
of railways and steamship lines 385.2	compensators or balancers 621.313.27
Compound locomotives 621.134.4	convertors 621.313.25
Distribution in 621.134.4	dynamotors 621.313.26
Compressed air, Applications of 621.54	generators 621.313.23
Applications of, in railway ser-	machinery 621.313.2
vice 621.544	motors 621.313.24
conduits 621.532	transmission systems 621.319.122
drills 621.542	Contractors, Liabilities of 692.9
engines 621.42	Contracts (building) 692.4
locomotives 621.545	Engineering 62(003)
mains 621.532	Prison 331.5
piping 621.532	Control devices (electric) 621.317.4
Pumping by 621.546	Convergent axles (cars) 625.215
Reheating of 621.534	Convertor substations 621,312.64
transmission and distribution of 621.53	Convertors, Continuous cur-
Compressibility of gases 633.2	rent 621.313.25
Compression, Air 621.5	Alternating current 621,313.5
Theory of 621,534	Frequency 621.313.67
Compressors, Air 621.51	Motor 621.313.57
621.51	521.313.57

Convertors.—Continued.	Cutting of gears 621.834
Phase 621.313.68 621.313.54	Cutting machinery (metal) 621.932
Synchronous 621.313.53	Cylinders, Locomotive 621.134.1
Conveying machinery 621.86	
Conveyors, Ash 621.183.78	ъ
Fuel 621.183.78	D
Cooling towers 621.197.64	Daltonism 656,251
Copper, Alloys of 669.33	Damage in transportation 656.24
Smelting of 669.36	Dams 621.29 627.8
Economic factors concerning 669.31	Dangerous freight, Transporta-
Leaching of 669.38	tion of 656,227
Matte smelting of 669.35	Dangers (mining) 622.81
Metallurgy of 669.3	Decoration 740
Plants for the production of 669.39	Architectural 729
Properties of 669.32	Decorative illumination by elec-
Refining of 669.37	tricity 621.321.4
Roasting of 669.34	Delays in transportation 656.24
Corridor cars 625.232	Deodorization of solids and
Corrosion of boilers 621.196.5	liquids 628.32
Cost-keeping in manufacturing 621.706	Derailments 656.281
Cost of building construction 692.5	Derricks 621.872
of transportation 656.232 Costs in engineering 62 (002)	Descriptive geometry 515
Costs in engineering 62 (602) Cotters 621.883	Design 740
Country roads 625.7	Architectural 729
Country roads Counter balancing of locomo-	of automobiles 656.324
tives 621.135.2	of cams 621.838
Couplers and buffers 625.216	of engine parts 621.11
Coupling arrangements for ten-	of gears 621.833
ders 621.136.2	of machine parts 621.8
Couplings (mech. tech.) 621.825	of refrigerating systems 621.566
Covering for steam piping 621.185.6	of riveted joints 621.884
Crane bridges 624.34	of sewers 628.24
Cranes 621.87	of steam turbines 621.165.3
Hydraulic 621.263	of tenders 621,136.1
Locomotive 621.875	Designs, Engineering 62 (004)
Revolving 621.873	Detail drawings 692.2
Traveling 621.874	Dial switches (electric) 621.317.33
Cranked axles (locomotives) 621.134.1	Dictionaries, Engineering 620.3
Crookes tubes 621.327.7	Die press machinery 621.984
Crossarms for overhead lines 621.319.224	Dies, jigs, etc. 621.756
Crossings (railway) 625.152	Differential rates 656.231
Cross-ties for track 625.142	Dikes 627.4
Crushing (mining) 622.73	Dining cars 625.232
Coal 622.782	Direct current machinery 621.313.2
Cupola practice 621.745	Direct current trans. sys. 621.319.122
Curves (railway) 625.113	Direct expansion refrigeration 621.565.2

Disinfection of solids and lie Disposal of sewage	quids 628.32 628.3	Drifting, Tunnelling (min Drill holes, Breaking fro	ing) 622.26 m,
Disposal of solids and liquid	1	without explosives	622.236
wastes	628.54	Drilling (mining)	622.235
Distilleries, Architecture of	725.42	Drilling machinery	621,952
Distribution of compressed	air	Drills	621.95
(See Compressed air)	621.53	Pneumatic	621.542
Distribution and use of freig		Driving mechanism of loc	
. cars	656,223,2	tives	621,134.1
Dock buildings	725,34	Drop forging	621,734
Docks	627.3	Drop forging processes	621.733
Domes, Locomotive	621.133.6	Drums, Boiler	621.184.52
Boiler	621.184.52	Hoisting	622,673
Doors (architecture)	721.8	Dry sand molding	621.743
Double current generators	621,313,56	Ducts, Foul air	697.95
Draft appliances (boiler fur		Fresh air	697.94
naces)	621.183.8	Dumping cars	625.242
Draft gears (rolling stock)	625.216	Dust, Prevention of	628,511
Drafting rooms	621.71	Dyeing (chemical technol	
Arrangement of	621.712	Dynamical electricity	537.5
Equipment of	621.712	Dynamics Electricity	
Materials and supplies fo			531.3
Drainage, House		Dynamoelectric machinery	
of land	628.6 627.5	Manufacturing processes Tests of	
of mines (see Mines, Dra			621.313(007)
of)	0	•	.245 656.221.7
of railway road bed	622.5		331.4 621.197.7
of sewage farms	625.123		37.38 621.313
<u> </u>	628.367		621.313(0051)
Drains for steam piping		O	22121212
Deau baidasa	621.185.5		621.313 (0064)
Draw-bridges	624.81	Tests of	621.313(007)
Locking of	$624.81 \\ 656.258$		
Locking of Drawing	624.81 656.258 740	Tests of	621.313(007)
Locking of Drawing Freehand	$624.81 \\ 656.258 \\ 740 \\ 741$	Tests of Dynamotors	621.313(007)
Locking of Drawing Freehand Mathematical	624.81 656.258 740 741 744	Tests of Dynamotors	621.313(007)
Locking of Drawing Freehand Mathematical Methods and processes of	624.81 656.258 740 741 744 621.753	Tests of Dynamotors E Earth closet systems	621.313(007) 621.313.26
Locking of Drawing Freehand Mathematical Methods and processes of Perspective	624.81 656.258 740 741 744 621.753	Tests of Dynamotors E Earth closet systems Earthwork, Computation of	621.313(007) 621.313.26 628.43 of 625.114
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building)	624.81 656.258 740 741 744 621.753 742 692.1	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials	621.313(007) 621.313.26 628.43 of 625.114 553.6
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings	621.313(007) 621.313.26 625.43 of 625.114 553.6 726
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004)	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canal	621.313(007) 621.313.26 628.43 of 625.114 553.6 726 s and
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering Dray and cab service	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004) 656.26	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canals highways	621.313(007) 621.313.26 628.43 of 625.114 553.6 726 s and
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering Dray and cab service Dredge engines	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004) 656.26 621.167	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canal- highways Economic geology	621.313(007) 621.313.26 628.43 of 625.114 553.6 726 s and
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering Dray and cab service Dredge engines Dredges	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004) 656.26 621.167 621.866	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canals highways Economic geology Economizers, Fuel	621.313(007) 621.313.26 628.43 of 625.114 553.6 726 s and
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering Dray and cab service Dredge engines Dredges Mining	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004) 656.26 621.167 621.866 622.216	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canals highways Economic geology Economizers, Fuel Economy, of boilers	621.313(007) 621.313.26 628.43 of 625.114 553.6 726 s and
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering Dray and cab service Dredge engines Dredges Mining Dredging	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004) 656.26 621.167 621.866 622.216 627.7	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canals highways Economic geology Economizers, Fuel Economy, of boilers Political	621.313(007) 621.313.26 625.43 of 625.114 553.6 726 s and 386 553 621.197.2 621.184.13
Locking of Drawing Freehand Mathematical Methods and processes of Perspective Drawings (building) Classification and storage Engineering Dray and cab service Dredge engines Dredges Mining	624.81 656.258 740 741 744 621.753 742 692.1 of 621.717 62 (004) 656.26 621.167 621.866 622.216	Tests of Dynamotors E Earth closet systems Earthwork, Computation of Earthy economic materials Ecclesiastical buildings Economic aspects of canals highways Economic geology Economizers, Fuel Economy, of boilers	621.313(007) 621.313.26 625.43 of 625.114 553.6 726 s and 386 553 621.197.2 621.184.13

Education	370	systems according to de	livery
Engineering	620.7	of power	621.331.5
Educational and scientific by	uild-	overhead trolley	621.331.53
ings	727	third rail	621.331.56
Effluvia, Combustion of, in f	ur-	underground trolley	621.331.54
naces	628.524	systems according to se	rvice 621.331.3
Condensation of, in water	628,523	interurban *	621.331.33
Effluvium nuisances	628.52	trunk	621,331.32
Egg-shaped sewers	628,224	Third rail for	621.332.3
Elastic limit	620.112.3	Track for	621.333
Elasticity ,	539.3	Trackless	621.332.25
Electric		Trolley lines for	621.332.2
block signals	656,256.3	Underground conductor	for 621.332.5
cars	621.334.3	Wiring for	621.334.5
energy, Transmission of	621.319	Electrical engineering	621.3
lighting	337.83, 621.3	Heavy current	621,3137
locomotives	621.334.2	Weak current	621.38
methods of measuring to	em-	Electrical instruments &	meters 621.37
peratures	536,53	measurements	621.37, 537.7
railways (interurban)	621,331,33	Electrically controlled n	nanual
power plants	621.312	block signals	656.256.2
Combined	621,312.5	Electricity (physics)	537
for lighting	621.312.2	Application of	621.39, 537.8
for power transmission	621.312.4	applied to medicine	537.87
for railways	621.312.3	Atmospheric	537.4
roads, Resistance on	656.221.4	Dynamical	537.5
signs	621.321.44	Generation of	621.31
slot	656.258	Heating by	697.7
testing	621.37	Miscellaneous application	ons of 621.39
Electric traction	621.33	Nature of	537.1
Accessories for	621.332.7	Statical	537.2
Bonding for	621.333.4	Theory of	537.1
· Catenary suspension for	621.332.23	Transmission of	621.319
Control system for	621.334.4	Electrodes for voltaic ce	ells 621.352.2
Feeders for	621.332.17	Electrodynamics	537.6
Leakage & electrolysis in	621.333.167	Electrolysis	621.352.4
Locomotives for	621.334.2	by stray currents	621.333.167
Motor cars for	621.334.3	Electrolytic rectifiers	621.313.74
Rails for	621.333.2	Electrolytes for voltaic of	ells 621.35 2.4
Rolling stock for	621.334	Electro-metallurgy	537.85
Running gear for	621.334.7	Electrometers	621.374.3
Street railways	621.331.342	Electroplating for protect	ion 691.794
systems	621.331.2	Electro-pneumatic interloc	king
systems according to curre	nt 621,331.4	devices	656.257
alternating	621.331.43	Electrostatic apparatus	621.315
direct	621,331,42	Electro-therapeutics	537.87

Elements, Chemical	661.1	Statistics of	62(001)
Elevated railways	625.4	. Steam	621.1
Electric	621.331.343	Steam marine	621.12
Elevators	621.87	societies	620.6
Grain	725.36	Study and teaching of	620.7
Hydraulic	621.263	tables and calculations	620.8
Embankments (levees, etc.)	627.4	Telegraph and telephone	621.38
Emery	553.65	works	621.7
Emery wheels	621.923	Engines, Automatic shaft go	*-
Employees (shops and manu	t-	ernor	621.164.3
factories)	621.705	Alcohol	621.434.24
Accidents to railway	656.285	Binary vapor	621,44
Enamel .	666.2	Blast furnace blowing	621.61
Enameling iron and steel	669.185.7	Blowing	621.6
Energy, Conservation of	531.6	Compressed air	621.42
Engine, of locomotives	621.134	Dredge	621.167
parts, Design of	621.11	Fire	621,68
shafts	621.824	Funicular	621.262
Engineering	620	Gas (see Gas engines)	621.43
Bridge	624	Gasoline	621.434.21
Canal	626	Hauling	621.167
compends	620.2	Heat	621.4
contracts and specifications	62(003)	Hoisting	621,167
costs	62(002)	Hoisting (mining)	622.672
dictionaries, etc.	620.3	Hot air	621.41
drawings and designs	62 (004)	Hydraulic	621.2
education	620.7	Kerosene	621.434.22
Electrical	621.3	Locomotive	621.134
Heavy current	621.3137	Marine	621.12
Weak current	621.38	Portable	621.15
essays	620.4	Pumping	621.64
handbooks	620,2	Releasing gear (Corliss, etc.) 621.164.4
History of	620.9	Resistance of (locomotive)	
Hydraulic	621.2	Rotary	621.166
instruments	620.7	Single acting	621.164.5
materials	620.1	Solar	621.47
Mechanical	621	Special types of	621.167
Military	623	Stationary	621.16
Mining	622	Throttling	621.164.2
Naval	623	Traction	621.14
periodicals	620.5	Types of engines	621.112
quantities and costs	62(002)	vapor, Binary	621.44
Railroad and road	625	Water pressure	621.25
reports	62(009)	Wind	621.45
River, harbor, hydraulic	627	Engraving	760
Sanitary	628	Equalizing levers, Locomotive	621.135.3

Paulament of Anatilian account	001 710	D'4 D - 1	201 108 0
Equipment of drafting rooms of forge shop	621.712 621.732	Filters, Feed water	621.197.2
of foundry	621.732	Filtration of sewage	628.35
of machine shop	621.742	Fire box of locomotives	621.133.2
Erecting (machinery)	621.755	Fire clays	553.61
Essays, Engineering	620.4	Fire engines	621.68
Estimates (building construct		Fireplaces, Heating by	697.1
Estimates (shops and manufa	,	Fire-proofing (building con-	struc-
tories)	621.706	tion)	693.8
Excavation (mining)	622,21	of columns	693.85
Exhaust pipe, Locomotive	621.133.5	of floors	693.83
Exhaust steam, Heating by	697.53	of girders	693.86
Exhausters	621.62	of partitions	693.82
Exploitation of mines	622.3	of roofs	693.84
Exploration (mining)	622.1	of trusses	693.87
Explosions in mines (see Mir		of vaults	693.88
Explosives (chemical tech.)	662	of walls	693.82
for mining	622.237	Systems of	693.81
Exposition buildings	624.94	Fire tube boilers	621.184.25
Exterior illumination by elec		Flaming are lighting	621.325.6
tricity	621.321.3	Flanging machinery	621.984
Extraction (mining)	622.6	Flash generators	621.184.27
(0.0.0	Flat cars	625,241
-		Floaters (boiler)	621.184.72
F		Flood gates	621.29
Factories, Sanitation of	628.51		
-		Flood gates	621,29 691,471
Factories, Sanitation of		Flood gates Floor tiles	621,29 691,471
Factories, Sanitation of Carriage and car (architectu	ıre) 725.45	Floor tiles Floors and flooring (archite	621.29 691.471 cture) 721.6
Factories, Sanitation of Carriage and car (architecture)	re) 725.45 725.41	Floor tiles Floors and flooring (architector of bridges	621,29 691,471 cture) 721.6 624.2
Factories, Sanitation of Carriage and car (architectu Textile (architecture) Fan blowers and exhausters	725.45 725.41 621.62	Flood gates Floor tiles Floors and flooring (architector of bridges Floors, Fireproofing of	621.29 691.471 cture) 721.6 624.2 693.83
Factories, Sanitation of Carriage and car (architecture) Textile (architecture) Fan blowers and exhausters Fans (ventilation)	725.45 725.41 621.62 697.98	Flood gates Floor tiles Floors and flooring (archite of bridges Floors, Fireproofing of Flow of air in pipes	621.29 691.471 cture) 721.6 624.2 693.83 621.534
Factories, Sanitation of Carriage and car (architecture) Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design)	725.45 725.41 621.62 697.98 621.88	Flood gates Floor tiles Floors and flooring (architector of bridges Floors, Fireproofing of Flow of air in pipes of fluids	621,29 691,471 cture) 721.6 624,2 693,83 621,534 536,74
Factories, Sanitation of Carriage and car (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals	725.45 725.41 621.62 697.98 621.88 620.112.3	Flood gates Floor tiles Floors and flooring (architector of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids	621,29 691,471 cture) 721.6 624.2 693,83 621,534 536,74 532,5
Factories, Sanitation of Carriage and car (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining)	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16	Flood gates Floor tiles Floors and flooring (architector of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers	621,29 691,471 cture) 721.6 624.2 693,83 621,534 536,74 532.5 532.5
Factories, Sanitation of Carriage and car (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2	Flood gates Floor tiles Floors and flooring (architector of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam	621,29 691,471 cture) 721.6 624.2 693,83 621,534 536,74 532.5 532.5 621,185.1
Factories, Sanitation of Carriage and car (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.184.13	Flood gates Floor tiles Floors and flooring (architector of bridges) Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes	621,29 691,471 cture) 721.6 624.2 693,83 621,534 536,74 532.5 532.5 621,185.1 532.5
Factories, Sanitation of Carriage and car (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc.	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.184.13 621.197.2	Flood gates Floor tiles Floors and flooring (architecof bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts	621,29 691,471 cture) 721,6 624,2 693,83 621,534 536,74 532,5 532,5 621,185,1 532,5 669,85
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.184.13 621.197.2 621.197.2	Flood gates Floor tiles Floors and flooring (architecof bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.184.13 621.197.2 621.197.2 621.197.2	Flood gates Floor tiles Floors and flooring (architectof bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of	725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.194.13 621.197.2 621.197.2 621.197.2 621.194.3	Flood gates Floor tiles Floors and flooring (architecof bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of Feeders (electric traction) Felt roofing Fences (railway or road)	621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.194.3	Flood gates Floor tiles Floors and flooring (architer of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of Flushing shafts and fixtures (sewers) Force and its measure	621,29 691,471 cture) 721,6 624,2 693,83 621,534 536,74 532,5 532,5 621,185,1 532,5 669,85 628,233 621,184,57 536,74
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of Feeders (electric traction) Felt roofing Fences (railway or road) Fertilizers made from town wa	621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.194.3	Flood gates Floor tiles Floors and flooring (architer of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of Flushing shafts and fixtures (sewers)	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of Feeders (electric traction) Felt roofing Fences (railway or road) Fertilizers made from town wa Filing machines	621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.197.2 621.194.3	Flood gates Floor tiles Floors and flooring (architer of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of Flushing shafts and fixtures (sewers) Force and its measure	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74 531.21 628.254 531.21 621.183.85
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of Feeders (electric traction) Felt roofing Fences (railway or road) Fertilizers made from town wa Filing machines Filter basins	10 725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.197.2 621.197.2 621.194.3 621.332.17 695.7 625.162 stes 628.49	Flood gates Floor tiles Floors and flooring (architer of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of Flushing shafts and fixtures (sewers) Force and its measure Forced draught Force, Tractive, of locomotives	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74 531.21 628.254 531.21 621.183.85
Factories, Sanitation of Carriage and car (architectur Textile (architecture) Fan blowers and exhausters Fans (ventilation) Fastenings (machine design) Fatigue of metals Faults (mining) Feed water, appliances Boiler filters, etc. heaters purifiers Treatment of Feeders (electric traction) Felt roofing Fences (railway or road) Fertilizers made from town wa Filing machines	10 725.45 725.41 621.62 697.98 621.88 620.112.3 622.16 621.197.2 621.197.2 621.197.2 621.194.3 621.332.17 695.7 625.162 stes 628.49 621.92	Flood gates Floor tiles Floors and flooring (architer of bridges Floors, Fireproofing of Flow of air in pipes of fluids of liquids of rivers of steam of water in pipes Flue gases and dusts Flues (sewer ventilation) Boiler Fluids, Flow of Flushing shafts and fixtures (sewers) Force and its measure Forced draught Force, Tractive, of locomo-	621.29 691.471 cture) 721.6 624.2 693.83 621.534 536.74 532.5 621.185.1 532.5 669.85 628.233 621.184.57 536.74 531.21 628.254 531.21 621.183.85

Forge shop	621.73	clutches	621.825
Arrangement of	621.731	of gears	621.832
Equipment of	621.732	of steam in pipes	621.185.1
Materials, and supplies for	621.738	Theory of	531.4
Forging, Drop	621.734	Fuel, consumption	621.182.3
Iron and steel	669.184.1	of locomotives	621.133.1
machines, Hydraulic	621.266	conveyors	621.183.78
processes	621,733	economizers	621.197.2
Forms and centers for reinfor	rced	for locomotives	621.133.1
concrete	693.72	gas, Heating by	697.62
Foul air ducts (ventilation)	697.95	Fuels, Comparative consump-	-
Foundations (architecture)	721.1	tion of	621.182.4
Boiler	621.184.57	for boiler heating	621.182.2
Founding of iron and steel	669.17	Fumes, Prevention of	628.511
Foundries (architecture)	725.43	Funicular engines	621.262
Foundry	621.74	Furnace appliances (boiler)	621.183.7
Arrangement of	621.741	fittings	621.183.5
Cupola practice	621.745	grates	621.183.52
Equipment of	621.742	Furnaces (boiler)	621.183
irons, Chemistry of	621.745	Blast roasting	669.831.7
Materials and supplies for	621.748	Distillation	669.834
Four-cycle gas engines	621.432.1	Hot air	697.3
Frame plates, Locomotive	621.135.1	Liquation	669,833
Frames, Car	625.211	Melting	669.837
Hoisting	622,675	Metallurgical	669.83
Locomotive	621.135.1	parts, Construction and de	etails
Freehand drawing	741	$\circ \mathbf{f}$	621.183.5
Freezing of mains	628.15	Smelting	669.832
Freight-and terminal stations	656.212	Sublimation	669.835
Freight cars	625.24	Types of	621.183.2
Details of construction of	625.246		
Use and distribution of	656.223.2	G	
Weight and capacity of	625.24	J	
Freight, Classification of	656,235	Gage cocks (locomotive)	621.133.9
dangerous and perishable,		glasses (boiler)	621.184.72
Transportation of	656.227	Gages, Compressed air	621.532
rates	656.235	Boiler water	621.184.72
service	656.225	Steam	621.197.7
stations (railway)	725.32	Steam pressure	621.184.73
trains, Resistance of	656.221.1	Galvanizing (protection of	
Frequency changers	621.313.55	iron) 691.79	3, 669.185.4
convertors	621.313.67	Galvanometers 537.86	6, 621.374.4
indicators or meters	621.374.7	Garages	725.38
Fresh air ducts (ventilation	697.94	Garbage	628.44
	1.4, 621.89	Gas and steam fitting	696
brakes	531.4	Gas engine power plants	621.434.1

Gas engines	621.43	Design of	621.833
Applications of	621,438	Draft	625.216
to air ships	621.438.7	Efficiency of	621.832
to automobiles	621.438.4	Friction of	621.832
to farm machinery	621.438.3	Spur	621.833.1
to marine service	621.438.6	Tests of	621.832
to motor boats	621.438.5	Valve	621.84
Four-cycle	621.432.1	Worm and spiral	621.833.3
Parts and accessories of	621,437	Generation of electricity	621.31
Theory of	621.431	of steam	621.18
Two-cycle	621.432.2	Generators, Alternating cur-	-
using blast furnace gas	621.434.13	rent	621.313.43
using acetylene	621.434.15	Continuous current	621.313.23
using alcohol	621.434.24	Double current	621.313.56
using gasoline	621.434.21	Flash	621.184.27
using illuminating gas	621.434.12	Induction	621.313.63
using kerosene	621,434.22	Geology	550
using natural gas	621.434.11	Applied (mining)	622.11
using producer gas	621.434.14	Economic	553
using solid fuels	621.434.3	Geometry	513
Gas, Heating by	697.6	Analytical	516
illuminating	665.7	Descriptive	515
Natural	553.28	Girders, Fireproofing of	693.86
producers	621.434.14	for bridges, Trussed	624.08
turbines	621.433	Lattice (metal)	624.3
Gases	533	Glass	666.1
(chem. tech.)	665	Glass (building material)	691.6
Flue	669.85	Glazing	698
Kinetic theory of	533.7	Gold, Metallurgy of	669.2
Laws of compressibility of	533,2	Alloys of	669.213
Physical theory of	533	Chlorination of	669.218
Properties of	533.1	Economic factors concerni	ing 669.211
Sampling of	669.913	Properties of	669.212
Thermodynamics of	536.71	Plants for the prod. of	669.219
Gasoline engines	621.434.21	Governmental buildings	725.1
Gates, Architecture of	720.8	Grades and curves (railways	s) 625.113
Flood	621.29	Grain elevators	725.36
Gearing, Belt	621.852	Granite (building material)	691.221
Chain	621.835	Granites (geology)	553.52
Friction	621.858	Graphic statics	531.2
Machinery and mill	621.85	Graphitic anthracite coals	553.25
Ratchet	621.837	Grates, Furnace	621.183.52
Gears	621.83	Locomotive	621.133.2
Bevel and skew bevel	621.833.2	Gravel roofing	695.7
Construction of	621.834	Gravity	531.5
Cutting and casting of	621.834	Green sand molding	621.743

	20.8	Hennebique system (reinforce	
	21.92	concrete)	$693.714 \\ 625.7$
Grinding machines (cylinder and	.922	Highways from economic aspect	625.7 386
/		History of engineering	620,9
Guide vanes (steam turbines) 621.16 Guys for overhead lines 621.319		Hoisting engines	621.167
Guys for overhead lines 621.319	1.223	in mines (see Mines)	622.6
		machinery	621.86
Н		Hoists	621.862
п		Hydraulic .	621.263
Hair for building 69	1.92	Hollow concrete blocks	693.53
9	1.97	Hollow tile for building con	
,	.542	struction	693.4
	20,2		21.313.291
_	.252	Hopper cars	625,242
Hanging of boilers 621.18		Horseless vehicles, Transporta	
Harbor engineering	627	tion by	- 656.3
0 0	27.2	Horsepower of locomotives	621.131.1
	27.3	Hospitals	725.5
Hardness of materials 620.1		Hot air engines	621.41
	22.6	Furnaces	697.3
	.167	Hotels (railway service)	656.26
	1.29	Hot water heating	697.4
Heat	536	High pressure	697.41
	36.8	Low pressure	697.42
	6.46	Low pressure with steam	
Communication of 5	36.2	mains	697.43
Effects of 5	36.4	House drainage	628.6
engines 62	1.41	House drains (ventilation)	628,235
motors, Thermodynamics of 53	6.73	House wiring	621.328.2
Reflection, refraction, radiation,		Hydraulic cranes	621.263
	36.3	devices used in steel works	621,264
tables, problems, and questions 5	36.9	elevators	621.263
Theory and nature of 55	36.1	engineering	627
Heaters, Feed water 621.19	97.2	engines and motors	621.2
Heating and ventilation 628.8,	697	forging	621,733
by fireplaces 69	97.1	machines	621.266
by gas (acetylene, fuel, natural,		hoists	621.263
illuminating) 69	7.6	lime	691.52
	97.3	machinery and appliances	621.26
by hot water 69	7.4	for steel works	621.264
	97.5	mining appliances	621.269
	97.2	presses	621.266
of cars 625.	234	pumps	621.252
of railway stations 656.	215	injection	621.267
Hemp rope transmission 621.	853	rams	621,27

Hydraulic, rams.—Continued.		Inlets for sewers 628.255
compressing	621.274	Inspection of boilers 621.184.55
lifting	621,272	of reinforced concrete 693.73
pumping	621,273	Instruments, Engineering 620.7
stamping machines	621,266	for boiler tests 621,197.7
tackle	621,262	for engine tests 621.197.7
tunneling devices	621.269	Insulating materials 621.319.37
Hydraulics (general theory)	532	Insulators 621.328.5, 621.319.4
Hydrostatics	532	Pins for 621.319.224
		Insurance, Compulsory 331.2
I		Intercepting sewers 628.27
Ice machines	621.5	Interior illumination by elec-
making	621.58	tricity 621.321.2
Can system of	621.581	Interior wiring 621.328.2
Plate system of	621.582	Interlocking devices,
Illuminating gas	665.7	Electro-pneumatic 656.257
Illumination by electricity	621.321	Interlocking switch and signal
Decorative	621.321.4	apparatus 656.257
Exterior	621.321.3	International agreements relative
Interior	621.321.2	to railways 385.6
Impact tests	620.112.5	Interstate commerce commission 385.7
Impurities in water	628.16	Interurban electric railways 621.331.33
Incandescent lamps	621.326	Iron, Alloys of 669.13
Carbon filament	621.326.3	Analyses and tests of 669.121
Metal filament	621.326.4	Bessemer process for refining
Metallized filament	621.326.31	of 669.153
Osmium filament	621.326.44	Acid 669.153.1
Platinum filament	621.326.41	Basic 669,153.2
Tantalum filament	621.326.42	Chemical properties of 669.124
Tungsten filament	621.326.43	Economic factors concerning 669.11
Vapor lighting	621.327	Electric furnaces for refining
Incandescent lighting	621.326	of 669.154
Inclined railways	625.3	Extraction of 669.14
Incrustation of boilers	621.194.4	Blast furnace process for 669.142
Indicators, Frequency	621.374.7	Direct process for 669.141
Steam engine	621.197. 7	Electric furnace process for 669.143
Indirect blocking systems	656.258	Forging, etc. of 669.184.1
Induction, apparatus, Station-	-	Founding of 669.17
ary	621.314	Galvanizing of 669.185.4
coils	621.314.7	in building construction 691.7
generators	621.313.63	mains and service pipes 628.15
motors	621.313.64	Manufacture of 669.14
Industrial sanitation	628.5	Melting of 669.171
Injection pumps, Hydraulic	621.267	Metallurgy of 669.1
Injectors (boiler plants)	621.197.3	Mixtures of (foundry) 621.745
Injectors (locomotive)	621.133.7	Moulding of 669.172

Iron.—Continued.		L	
Nature and properties of	669.12	· Laboratories (architecture)	727.5
Open hearth process for ref			
ing of	669.152	Labor and wages Labor, Cheap foreign	331 331.6
Acid	669.152.1	Child	
Basic	669.152.2	Convict	331.3
ore	553 . 3	Hours of	331.5 331.81
Painting of (protection)	691.791	Organization of	
Physical properties of	669.123	_	331.87
Protection of	691.79	Payment of Pauper	621,705
Puddling process for refini		•	331.6
of	. 669,151	Places of danger for	331.82
Purification of	669.15	Premium system of paying	
roofing	695.5	Relation of, to capital	331.1
Structure and composition	of 669.12	Skilled	331.7
structures (architecture)	721.9	strikes	331.89
Tests of	620.17	trade unions	331.88
Working, manipulation and		unions	621.705
treatment of 669	9.17, 669.18	Unskilled	331.7
Irons, founding, Chemistry of	of 621.745	Women	331.4
Irrigation by sewage	628.36	Laboring classes	331.8
		Food, clothes, shelter for	331.83
т		Helps, lectures, libraries an	
)		reading rooms for	331.85
Jack knife bridges	624.87	Morals and habits of	331.84
Jet	553.22	Training and apprenticeship	for 331.86
Jet condensers	621.197.63	Lamp posts as ventilators	628,232
Jetties (river engineering)	627.6	Lamps, Arc (See Arc light-	
Jigs, Construction of	621.756	ing)	621.325
Joinery	694	Incandescent (See Incandes	; -
Joints, Screw	696.5	cent lighting)	621.326
Riveted	696.4	Nernst	621.326.53
Rust and caulked	696,6	Land, Drainage of	627.5
Journals	621.821	Land, Reclamation of, from the	ides
Junctions (railway)	625,153	and waves	627.5
•		Lapping machines	621.922
		Lathes, Metal turning	621.942
K		Wood turning	621.943
TZ 1		Latrines	628.45
Keene's cement	691.57	Lattice bridges, Metal	624.3
Keys	621.883	Laws, Building	692.9
Kerosene engines	621.434.22	Engineering	62(007)
Kinematics, General theory of		of compressibility	533.2
Kinetic theory of gases	533.7	Plumbing	696.9
Kinetics	531.3	Lead accumulators	621.355
Knife switches (electric)	621.317.32	Cadmium lead types	621.355.58

Lead accumulators.—Continue	d.	Limestone (building material)	691.211
Care and handling of	621.355,18	Limestone (geology)	553.51
Combined Planté Faure		Lines, Electric	621.319.2
types	621.355.4		532
Complex Oxid types	621.355.52	Liquids, Flow of	532.5
Copper lead types	621,355,56	Loam molding	621,743
Faure types	621.355.3	Location and survey (railway	
Lead element of	621.355.55	of manufactories	621.701
Planté types	621.355.2	of shafting and machines	621.751
Zinc lead types	621.355.57	Locking of draw-bridges	656.258
Lead, Alloys of	669.43	Locomotive	621.13
Economic factors conc.	669.41	ash pit	621.133.2
Leaching of	669,47	ash ph axles	621.135.2
Metallurgy of	669.4	boiler, Attachments to	621.135.2
Plants for prod. of	669.49	boilers	621.133.1
Properties of	669.42	bracing, transverse	
Refining of	669.47	brakes	621.135.1
Roasting of	669.44		621.135.5
Smelting of	669.45	boxes	621.135.2
Lead mains and service pipe	s 628.15	cranes	621.875
Levees (river engineering)	627.4	cylinders	621.134.1
Liabilities of architects	692.9	dome	621.133.6
of contractors	692.9	Engine of the	621.134
of owners	692.9	exhaust pipe	621.133.5
Lien laws (building construc-	-	firebox	621.133.2
tion)	692.98	frame plates	621.135.1
Liernur system of sewerage	628.213	frames	621.135.1
Light	535	fuel consumption	621.133.1
Lights, Search	621.325.7	fuels	621,133.1
Lighthouses	627.9	gage cocks	621.133.9
Lighting	628.9	grates	621.133.2
Arc	621.325	injectors	621.133.7
Electric	621.32	pistons and rods	621.134.1
Incandescent	621.326	pumps	621.133.7
of cars	625.233	repair shops	621.138.5
of mines	622.46	running gear	621.135
of railway stations	656.215	safety valves	621.133.9
Lightning arrestors	621.319.82	shell	621.133.3
rods	537.4	slide valves	621.134.2
Lignite	553.22	smokebox and stack	621.133.4
Lime concrete	691.35	springs, saddles, equalizing le	
Lime for building	691.5	ers	621.135.3
Hydraulic	691.52	stays	621.133.2
Ordinary	691.51	tenders (Sec Tenders)	621.136
Selenitic	691.53	Theory of the	621.131
Limes and mineral cements	553.68	throttle	621.133.6
Limes (chemical technology)	666.9	trucks	621.135.4

I		Desdeine	40m m
Locomotive.—Continued.	404 400 0	Dredging	627.7
tubes	621.133.3	Drilling	621.952
valves	621.134.2	Flanging and die press	621.984
wheels, boxes, and axles	621.135.2	Hoisting and conveying	621.86
Locomotives, Adhesion of	621.131.1	Metal sawing	621.932
Combustion of fuel in	621.133.1	Nail and rivet	621.97
Compound	621.134.4	of transmission	621.8
Counterbalancing of	621.135.2	Perforating	621.95
Driving mechanism of	621.134.1	Punching and shearing	621.96
Electric	621.334.2	Wood boring	621.953
Horsepower of	621.131.1	Wood planing	621.913
Lubrication of	621.134.5	Wood sawing	621.933
Maintenance and repair of	621.138	Machines, Grinding and filing	621.92
Management of	621.137	Pipe threading	621.944
Mine	622.662	Planing	621.91
Production of steam in	621.133	Refrigerating	621.57
Scale prevention in	621.133.7	Screw	621.99
Steam distribution in	621.134.2	Tapping	621.955
Supplies and materials for	621.139	Theory of	531.8
Suspension of	621.135.3	Machining iron and steel	669.184.5
Tests of	621,131.3	Magnetic surveys	622,15
Tractive force of	621.131. 1	Magnetism	538
Types of	621,132	Mains, Compressed air	621,532
Longwall methods (mining)	622,331	Freezing of	628.15
Long distance communication	656,254	Water	628.15
Lubricants	621.89	Maintenance of locomotives	621,138
Lubricants (railway cars)	625.214	Maintenance of way	625.17
Lubrication of locomotives	621.134.5	Malleable cast iron (in build	
		ings)	691.72
M		Malleable cast iron. Manufac-	00000
Macadamizing of roads	625.8	ture of	669,183
Machine molding	621.744	Management of locomotives	621.137
parts, Designs of	621.8	Manganese steel	669.132
shops	621.75		621.184.55
Architecture of	725.43	for sewers	628.253
Arrangement of	621.751	for underground transmis-	0.00.000
Equipment of	621.752		21.319.234
Supplies and materials fo		2.5	621.184.73
Tool making for	621.756	Manual block signals, Electric	
tools	621.9	ally controlled	656.256.2
Design of	621.901	Manufactories	621.7
Power required for	621.902	Architecture of	
(shop equipment)	621.752.1	Location of	725.4
Machinery and mill gearing	621.85		621.701
Bending		Organization and administra	
Bolt and nut	621.982	tion of	621.704
Doit and mit	621.99	Shipping facilities of	621.701

Manufactures (miscellaneous) 670	Metal filament incandescent
Manures, Sewage 628.38	lamps 621,326,4
Matbles (geology) 553.51	Metalized filament incandes-
Marine boilers 621.184.22	cent lamps 621.326.31
engines 621.12	Metallography 669.89
Markets (buildings) 624.94	Metal mining, Methods of 622.34
Masonry (building construction) 693	planers, shapers, slotters 621 912
Adhesive tests of 620.15	roofing 695.4
Boiler 621.184.57	sawing and cutting machinery 621.932
Materials, Strength of 539.4 620.1	turning lathes 621.942
Building 691	Metals, and alloys of 669.88
Mathematics 510	Fatigue of 620.112.3
Mathematical drawing 744	Sampling of 669.912
Measurements, Electric 621.37 537.7	Meter transformers 621.314.38
Measures, Weights and 389	Meters, Electric 621.373, 621.328.6
Mechanical concentration (misc.) 622.77	Ampere hour 621.374.4
concentration (wet) 622.75	Calibration of 621.372
crushing 622.73	Current 621.374.4
engineering 621	Electromotive force 621.374.3
haulage (mining) 622.66	Frequency 621.374.7
preparation of coal (See Coal) 622.78	General types of 621.371
preparation of mine products 622.7	Phase and power factor 621.374.91
screening 622.74	Potential 621.374.3
slime treatment 622.76	Power 621.374.6
stokers 621.183.6	Recording 621.373
Mechanic trades 680	Resistance, inductance, capac-
Mechanics 531	ity 621.374.2
Applied 620.1	Special 621.374
Tables, problems, questions re-	Standards for 621.372
lating to 531.9	Switchboard 621.317.6
Mechanism of steam engine 621.11	Water 628.17
Mechanism, Principles of 621.81	Watt hour 621.374.5
Mediaeval architecture 723	Watt meters 621.374.6
Medicine, Application of elec-	Middens 628.41
tricity to 537.87	Military engineering 623
Mercury, Metallurgy of 669.7	transportation 656.229
Mercury vapor lamps 621.327.4	Mill dams 621.29
Metallurgical furnaces 669.83	gearing 621.85
Metallurgy 669	sluices 621.29
of copper 669 ₋₃	Milling machines 621.91
of gold and silver 669.2	Mills, Architecture of 725.41
of iron 669.1	Rolling and drawing 621.77
of lead 669.4	Wind 621.45
of mercury 669.7	Millwork 621.8
of tin 669.6	Mine, accidents 622.8
of zinc 669.5	First aid in 622.862

Mine.—Continued.		Mines.—Continued.	
cars, trams, etc.	622.63	· Hoisting engines in	622.672
doctors	622.867	Hoisting in	622.6
employees, Buildings for	622.97	by men and beasts	622.65
excavation	622.21	Mechanical	622.67
Water for	622.215	Hoisting of water in	622,55
hospitals	622.868	Lighting of	622.46
prospectuses	622.19	Liquid and gaseous deposits i	
rescue and relief	622.86	Locomotives for	622.662
surveying	622.14	Models of	622.17
Mineral, cements	553.65	Offices for	622.91
material, Tests of	620.195	Open working of	622.31
oils	665.4	Placer working of	622.32
preparation plants	622.79	Power plants for	622.94
properties, Examination of	622.18	Shops for	622.93
surveys	622.131	Signaling in	622.48
wool (building material)	691.91	Siphon for drainage of	622.59
Mineralogy	549	Soluble deposits	622,36
Miners, Accidents to	622.85	Special waters in, Handling of	of 622.57
Insurance and compensation of	622.869	Stables for	622.96
Sickness of	622.87	Store houses and yards for	622.92
Mines, Boring in	622.24	Surface plants of	622.9
Breaking solid ground for	622.23	Arrangement of	622,99
Cable ways and grab buckets		Fire protection for	622.98
for	622.213	Surface pumps for drainage	
Dams and water tight linings		Theory of drainage of	622.51
for	622.56	Thick deposits in	622.35
Dangers and accidents in	622.8	Transportation in	622.6
Drainage of	622.5	by gravity	622,64
Without raising water	622.52	Railway	622.692
Drilling in	622.235	Surface	622.69
Explosions in	622.81	Tramway (aerial)	622.693
Coal dust	622.812	Underground pumps in	622.54
Marsh gas	622.811	Underground roads in	622.62
Extraction of minerals from	622.6	Ventilation of	622.4
Fan houses for	622.95	Air-ways, etc., for	622.45
Fires in	622.82	Fans and blowers for	622.44
Coal	622.823	Natural	622.42
Gob fires	622.822	Mechanical, without machin	
Sulphide ore	622.824	ery	622.43
Flooding of	622.84	Theory of	622.41
Fusible deposits in	622.37	Working of	622.3
Handling of minerals in	622.61	2	
Hand pumps for drainage of	622.58	Mining, Appliances, Hydraulic	621,269 622,33
Haulage in	622.6	Coal (methods of)	
by men and beasts	622.65	engineering	622
Mechanical	622.66	faults Metal	622.16 622.34
Citatical	0.000	MEIGI	0.22,34

Mining.—Continued. Placer	492.50	Ο	
Practical	622,32 622,2	Ocean transportation	387
		Office equipment	651
Mixing machinery (sewerag		methods	651
Mixtures of iron (foundry)		Olm meters	621.374.2
Modern architecture	724	Oils (chemical technology)	665
Molding machines	621.744	Animal	665.2
processes	621.743	Mineral	665.4
Molecular physics	539	Vegetable	665.3
structure	53 9. 1	Oil switches, Electric	621.317.35
Molybdenum steel	669.135	Open hearth processes	669.152
Moore lamp	621.327.5	Acid	669,152,1
Mortars (chemical technolo	ogy) 666,9	Basic	669.152.2
Motor cars (for electric tra	c-'	Operating systems (transport	
tion)	621,334.3	tion)	656,254
Motor-convertors	621.313.57	Operation of tributary railwa	ays 656.27
Motors, Air	621.541	of railway lines with light	•
Animal	621.46	traffic	656.27
Automobile	656.322	of railways	656
Constant speed	621.313.245	of signal systems	656.257
Continuous current	621,313.24	of street railways	625,612
Hydraulic	621.2	of switch signals	656.257
Induction	621.313.64	Optics	535
Repulsion	621,313,66	Ore concentrators	622.75
Series A. C.	621.313.65	deposits	553.1
Synchronous	621,313,44	dressing	622.7
Mountain railways	625.3	Ores of iron	553.3
Movable bridges (see Brid		of metals other than iron	553.4
Movable)	624.8	Sampling of	669.911
Muffles	669.831.6	Organization of manufactorie	es
Multiplex telegraphy	621.382.35	and shops	621.704
multiplex telegraphy	0.21,5055	Oriental architecture	722
KT		Oseillographs	621.374.7
N		Osmium filament incandescen	t
Nail and rivet machinery	621,97	lamps	621.326.44
Natural, cement	691.54	Outfall (sewerage)	628.217
gas	553,28	Outfall sewers	628.27
Heating by		Overshot water wheels	621.22
Naval architecture	697.63	Owners, Liabilities of	692.9
engineering	623.8		
Nernst lamps	623	P	
Nickel steel	621.326.53 669.131	De de Comme	004.407
Nozzles (steam turbine)	621.165.13	Packings, Steam	621.185
Nut machinery		Painting	698
Not machinery	621.99	Painting iron and steel	691.791

Panels for interior wiring	621,328.3	Physical properties of iron	669,123
Panels, Switchboard	621.317.2	Physical properties of sewage	628.31
Paper for building	691.93	Physical theory of gases	533
Paperhanging	698	Physics	530
Paraffin	665.4	Physics, Molecular	539
Parks, Public	725.7	Pickling (iron and steel)	669.185.2
Parlor cars	625.232	Piece work	621.705
Partitions, Fireproofing of	693.82	Piers (architecture)	721.3
Passenger cars	625.23	(harbor engineering)	627.3
Types of	625.23	for bridges	624.1
Use and distribution of	656,223.1	for suspension bridges	624.54
Weight of	625.23	Pig iron, Manufacture of	669.14
rates	656.234	Piles, Masonry	624.14
stations. Arrangement of	656.211	Metal	624.15
Lighting of	656.215	Wooden, for bridge foundat	ion 624.13
Railway	725.31		321.319.224
train service	656.224	Pipe coverings	621.185.6
trains, Resistance of	656.221.2	fittings, Compressed air	621.532
Passes and reduced fares	656.234	threading machines	621.944
Patents (engineering)	62(008)	Piping, Compressed air	621,532
Pattern making	621.724	connections for steam piping	621.185.3
Pattern shops	621.72	Joints in	621.185.7
Arrangement of	621,721	of refrigerating systems	621,566
Equipment of	621.722	Steam	621.185
Materials and supplies for	621.728	water, High pressure	621.253
Patterns, Preservation and stor	r-	Piston blowers	621,61
age of	621.727	Pistons, Locomotive	621.134.1
Pavements, Sanitation of	628.47	Placer workings	622.32
Stone	625.82	Planers (for metals)	621.912
Wooden	625.83	Planing machines	621.91
Paving of roads and streets	625.8	for wood	621.913
stone	625.81	Plans for buildings	692
Peat	553.21	Plastering (building construct	ion) 693
Penstocks	621.29	Plaster of Paris (building ma	
for sewers	628.257	terial)	691.56
Perforating machinery	621.95	Tests of	620.15
Periodicals, Engineering	620.5	Plate system for ice making	
Perishable freight, Transporta	1-	plants	621.582
tion of	656.227	Platinum filament incandescen	t
Perspective drawing	742	lamps	621.326.41
Petroleum	553.28	Plenum system of ventilation	697.92
for locomotives	621.133.1	Plug & feathers (for quarryin	
Phase convertors		3	622,221
621.313.68	621.313.54	Plug switches, Electric	621,317,34
indicators	621.374.91	Plumbing	696
Photography	770	Plumbing laws	696,9
			7-

Pneumatic block signals	656.256.4	Single liquids	621.353.3
Drills	621.542	Principles of mechanism	621.81
Hammers	621.542	Printing	655
Tools	621.542	Prison contracts	331.5
Pneumatics	533	Prisons (architecture)	725.6
Poles for overhead lines	621.319.223	Privies -	628.41
Foundations for	621.319.223	Probabilities, Theory of	519
Political economy	330	Processes, Building	691
Pools, agreements (transp	orta-	Professional and technical	
tion)	656.233	schools	727.4
Porcelain	666.5	Profiles of railways	625,113
Portable boilers	621.184.23	Profit-sharing	331.2
engines	621.15	Projection	515
Portland cement	691.55	Propeller shafts	621.824
Postal service	656,224	Properties of gases and vapors	533.1
Potential regulators (see I	Regu-	of iron and steel	669.12
lators)	621.314.5	of metals (magnetic, electric	Ξ,
Power factor indicators	621.374.91	etc.)	669
Power hammers	621.97	of refrigerating fluids	621.564
Power plants	621.312	of stone, concrete, cement,	
Mining	622.94	etc.	620.13
Steam end of	621.19	of solids	539.2
Testing of	621.312(007)	Prospecting	622.12
Power transmission, Comp	ressed	Protection against infection fro	nı
air	621.53	dust	628,513
Precipitation of sewage	628.34	of iron and steel	691.79
by lime	628.345	of stone	691.2
by salts of alumina	628.344	of throat and eyes from dus	
by salts of iron	628.346	and fumes	628.512
Precipitation tanks (sewe		of trains in distress	656.254
Premium system of paying		Protective devices, Switchboar	
Preparation of coal	622.78		621.317.8
.Preservation of patterns	621.727	Transmission lines	621.319.8
of stone	691.29	Public buildings (architecture)	
Preservatives (building m		Public halls (masonry construc	
als)	691	tion)	624.93
Presses, Hydraulic	621.266	(metal)	624.94
Pressure gages, Air	621.532	Public parks	725.7
Steam	621.184.73	Publishing	655
Pressure regulators (steam	•	Puddling processes (see Iron)	669.151
Pressure steam turbines	621.165.22	Pumping, by compressed air	621.546
Prevention of dust and fu		engines	621.64
Primary cells	621.353	Tests of	621.642
Closed circuit	621.353.6	stations (sewerage)	628.29
Double fluid	621,353.4	vs. gravitation systems (wa	
Open circuit	621.353.5	ter supply)	628 . 1 2

Pumps, Centrifugal Circulating, for steam plan	621.67 ts	Road bed (see Road bed) rolling stock (see Rolling	625.1
· ·	621.197.3	stock)	625.2
Direct acting	621.65	service, Accessories to	656.26
Design and construction of	621.64	shops, roundhouses, car house	
General theory of	621.641	terminals and stations	656.21
Hydraulic	621,252	track (see Roadbed)	625.14
Locomotive	621.133.7	tunnels	625.13
	622.53—.54	Railways, Administrative	0.00,10
Piston	621.65	organization of	385.4
Rotary	621.66	Competition of	656.233
•		•	
Steam	621.64	with steampship lines	385.2
Tests of	621,642	Economic and financial aspects	
Punching and shearing machin		of	385.1
Purification of iron	669.15	Elevated and underground	625.4
of water for locomotives	621.133.7	Essays on, history of	385.0
Purifiers, Feed water	621.197.2	Inclined	625.3
Pyrometers, (steam plant)	621.197.7	International agreements rela-	-
5	.52 - 669.84	tive to	385.6
Phyrotechnics (chemical tech	mol-	Interstate commerce commission	on 385.7
ogy)	662	Mountain	625.3
0		Operation of	656
Q		Personnel of	385.5
Quantities and costs, Enginee	r-	Report of, statistics of, etc.	385,0
ing	62(002)	Safety appliances of	656.25
Quarrying dimension stone	622,22	Ship	625.91
Blasting systems for	622.224	State control of	385.3
Quays	627.3	Street	625.6
R		Survey and location of	625.11
K		Transportation by	656.2
Ratchet gearing	621.837	Tributary	625.6
Radial axles	625.215	Rams, Hydraulic	621.27
Radiation of heat	536.3	Compressing	621.274
Rail bonding	621.333.4	Lifting	621.272
Rails (electric railways)	621.333.2	Pumping	621.273
and attachments	625.143	Ransome's artificial stone	691.32
Railway, bridges	625.13	system of reinforced concrete	
cars (see Rolling stock)	625.2	*	
cross ties	625.142	Rapid transit in cities	388
crossings		Rates, Basing and differential	656,231
engineering	625.152	for baggage, dogs, etc.	656.234
fences	625	for transportation	656.231
	625.162	Freight	656.235
freight stations	725.32	of porterage and drayage	656.236
junctions	625.153	Passenger	656.234
passenger stations	725.31	Revision of	656.231
Lighting of	656.215	Steamer	656.236

Rates.—Continued,		Potential	621.314.5
Street railway	656.236	Pressure (compr. air)	621.532
Reactors	621,314,6	Steam pressure	621,185.4
Reamers	621.954	Reheating of compressed air	621.534
Receivers, Telephone	621.386.3	Reinforced concrete 693.	7 620.137
Reclamation from tides and v	vaves 627.5	Experimental data for	693.74
Recording pressure gages, (a	ir) 621.532	Forms and centers for	693.72
Steam	621.184.73	Formulas for	693.75
Recreation buildings	725.8	Hennebique system of	693.714
Rectifiers, Arc	621.313.73	Ordinary system of	693.711
Electrolytic	621,313.74	Ransome's system of	693.712
Mechanical	621.313.72	Roebling system of	693.715
Rectifying apparatus (elect.)	, 621.313.7	Special applications of	693.76
Refining of iron and steel	669.15	systems	693.71
Refining of ore	669.8	testing and inspection	693.73
Reflection of heat	536.3	Unit system of	693.713
Reformatories	725.6	Relations of Capital to Labor	331.1
Refraction of heat	536.3	Releasing gear engines (Corlis	s,
Refractories	669.82	etc.)	621.164.4
Alkaline earth	669.827	Religious buildings	726
Aluminaceous	669.824	Removal of impurities from wa	ter 628.16
Application and maintenance	e of 669.8 2 9	Repair of locomotives	621,138
Argillaceous	669.823	Repair shops, Car	625.26
Carbonaceous	669.825	Locomotive	621.138.5
Chromitic	669.826	Repairs and renewals of railw	ay
Rare earth	669.828	track	625.173
Siliceous	669.822	Repulsion motors	621.313.66
Refreshment buildings	725.7	Reservoirs and tank sewers	628.28
Refrigerating fluids	621.564	Reservoirs (water supply)	628.13
Refrigerating machines	621.57	Residences	728
Ammonia	621.572	Resistance of air to trains	656.221.6
Carbonic acid	621.574	of engines	656.221.3
Miscellaneous types	621.575	of foreign rolling stock	656.221.5
Refrigerating plants	621.565	of freight trains	656.221.1
Refrigerating systems	621.565	of passenger trains	656.221.2
Brine	621.565.1	on electric roads	656.221.4
Design of	621.566	Resistance boxes	621.374.2
Direct expansion	621.565.2	meters	621.374.2
Piping for	621.566	Restaurants (railway service)	656.26
Refrigerator cars	625.244	Reverberatory furnaces	669.831.5
Refrigerators	621.56	Rheostats	621.317.4
Regulators, Air pressure	621.532	Ring and key (railway blocking	g
Compensator	621.314.51	systems)	656.258
for sewers	628.258	River and ocean transportation	
Induction	621.314.52	crossings (sewers)	628.26
Magneto	621.314.53	engineering	627

Rivers, Discharge of, etc.	627.1	Sanitation of	625.78
Flow of	532.5	· Stone covered	625.86
Rivet machinery	621.97	Surveys and maps of routes f	or 625.72
Riveted joints	696.4	Trees and shrubs along	625.77
Design of	621.884	Vitreous stone for	625.87
Rivets	621.884	Roasting of ore	669.8
Roadbed and track (railway)	625.1	Roasting furnaces	669.831
approaches	625,165	Fuels for	669.81
Ballast for	625.141	Rock drills (compressed air)	621.542
bridges	625.13	Rods, Lightning	537.4
crossings	625,152	Locomotive	621,134.1
Drainage of	625,123	Roebling system (reinforced cor	1-
Fences, etc., for	626.162	crete)	693.715
Maintenance of	625.17	Roller bearings	621.822
Materials for	625.18	Rolling bridges	624.85
Rails and rail attachments for	625.143	Rolling, Iron & steel	669.184.2
Section houses for	625.161	mills	621.77
Snow screens for	625,164	Rolling stock, Electric traction	621.334
Stone work for	625.13	Railway	625.2
Subgrade of	625.12	Axles	625,212
Switches, etc., for	625.151	Brakes	625,25
Ties for	625.142	Clearance of bridges and	
Track	625.14	tunnels	625.22
Equipment of	625.15	Couplers and buffers	625,216
Laying of	625.144	Draft gears	625.216
Tunnels	625,13	Frames	625.211
Ventilation of	625.13	Freight cars	625.24
Turntables	625,154	Capacity of	625.24
Road engineering	625	Closed and covered	625.243
Road machines, Steam	621.14	Dynamometer	625.245
Roads	625.7	Flat cars	625.241
Cable	625.5	Hopper and dumping	625.242
Country	625.7	Refrigerator	625.244
Underground (mines)	622,62	Unloaders for	625.247
Roads and highways	625.7	Weight of	625.24
Asphalt	625.85	Lubricants for	625.214
Concrete	625.84	Passenger cars	625.23
Construction of	625.74	Compartment cars	625.231
Construction work of	625.75	Dining cars	625.232
Cross section of	625.73	Heating and ventilation of	of 625.234
Equipment for construction of	625.74	Lighting of	625,233
Maintenance of way of	625.76	Parlor cars	625.232
Metallic	625.87	Sleeping cars	625.232
Paving of	625.8	Types of	625.23
Roadbed of	625.73	Weight of	625.23
Reinforced stone for	625.87	Repair shops for	625.26

Rolling stock.—Continued.		of cars	625,234
Supplies and materials for	$625,\!27$	of factories	628.51
Suspension of	625.213	of streets and roads	625.78
Tires for	625.212	of towns	628.4
Trucks for	$625,\!215$	Sawing machinery	621.93
Wheels for	625.213	Metal	621.932
Street railway	625.617	Wood	621.933
Use of, and distribution of	656.223	Scaffolding	624.95
Roof and ceiling tile	691.472	Scale prevention in locomotive	es 621.133.7
Roofs, Fireproofing of	693.84	in stationary boilers	621.194.4
Roofing	695	Scales, Weighing	531.21
Asphalt	695.6	Schedules of trains	656.222
Cloth	695.8	Scientific buildings	727
Felt	695.7	Screening (mines)	622.74
Gravel	695.7	Coal	622.783
Metal	695.4	Screw machines	621.99
Iron and steel	695.5	threads, Systems of	621.882
Shingle	695.1	Screws 696	6.5 - 621.882
Slate	695.2	for transmitting motion	621.882
Thatch	695.9	Searchlights	621.325.7
Tile	695.3	Secondary cells	621.354
Roofs (architectural)	721.5	Section-houses (railway)	625.161
Rope transmission	621.853	Selenitic artificial stone	691.34
Ropes, Hoisting	622.674	Selenitic lime	691.53
Rotary blowers	621.62	Semi-bituminous coal	553.24
pumps	621.66	Separators, Steam	621.197.4
steam engines	621.166	Series, A. C. motors	621.313.65
Round houses 725,33	621.138.1	Service pipes, Water supply	628,15
Running gear, Locomotive	621.135	Service reservoirs	628.13
Rural water supply	628.7	Sewerage, Discharge of, into	
		Deodorization and disinfec	
S		of	628.32
		Disposal of	628.3
Saddles, Locomotive	621.135.3	farming	628.37
Safety appliances (railways)	656.25	Filtration of	628.35
Safety devices (railways)	656,259	irrigation	628.36
Safety valves	621,133.9	manures	628.38
Locomotive	621.133.9	Physical properties of	628.31
Sampling (metallurgy)	669.91	Precipitation of	628.34
Sandblasting	669.185.1	Subsidence of	628.33
Sands (econ. geology)	553,62	Sewer appurtenances	628.25
Sandstone (building material)	691,231	inlets	628.255
Sandstone (geol.)	553.53	tiles (building)	691.49
Sanitary engineering	628	Sewerage systems	628.21
Sanitation, Industrial	628.5	works	628.2
in trades	628.51	pumping stations for	628.29

Sewers, Design and construct	ion	Signal apparatus, Interlockin	ng 656,257
of	628.24	Signal devices (electric trans	smis-
Intercepting and outfall	628.27	sion)	621.317.5
Reservoirs for	628.28	systems, Centralization of	656.257
River crossings for	628.26	Signaling in mines	622.48
Shape and size of	628.22	Signals, Bell (railways)	656.254
Tank	628.28	Block	656.256
Ventilation of	628,23	block, Automatic electric	656,256,3
Shaft governor engines, Auto	0-	Electric	537.88
matic	621.164.3	Electrically controlled many	nal
Shaft sinking (mines)	622,25	block	656.256.2
Shafting, Shop	621.823	Forms, colors, sounds of	656.251
Location of	621.751	Hand and train	656,252
Shafts, Engine and propeller	621.824	in train operation	656.251
Shale, Bituminous	553.23	Station	656.253
Shapers	621.912	Pneumatic block	656, 256, 4
Shearing machinery	621.96	Simple manual block	656,256,1
Shell, Boiler	621.184.52	Signs, Electric	621.321.44
Locomotive	621,133.3	Siliceous refractories	669.822
Shifting bridges	624.8	Silicon steel	669.137
Ship building	699	Silver, Metallurgy of	669.2
railways	625.91	alloys	669,223
Shipping facilities (manufac	-	amalgamation with gold	669.231
tories)	621.701	Economic factors conc.	669.221
Shone system of sewerage	628.214	Leaching of	669,228
Shop buildings	621.702	Plants for the prod. of	669.229
shafting	621.823	Properties of	669.222
Shops, Arrangement of	621.702	Simplex telegraphy	621,382,31
Boiler and sheet metal	621.792	Single acting engines	621.164.5
Car repair	625.26	Skew bevel gears	621.833.2
Finishing	621.795	Skips (mine hoisting)	622.68
Forge	621.73	Slags from metals	669.86
for special processes	621.794	Slate (building material)	691.24
Machine	621.75	roofing	695.2
Mining	622.93	Slates (geol.)	553.54
Organization and administr	a-	Sleeping cars	625.232
tion of	621.704	Slide valves, Locomotive	621.134.2
Pattern	621.72	Slot, Electric	656,258
Railway	725.33	Slotters	621,912
Shovels, Mechanical (mining)	622.214	Sludge, Disposal of	628.348
Power	621.865	Sluices	621,29
Steam	621.167	Smelting of ore	669.8
Sidewalks, Concrete	693.54	Fuels for	669.81
Curbing for	625.88	Smoke box, Locomotive	621.133.4
Establishment of	625.88	Smoke, consumers	621.183.8
Flagging of	625.88	flues and chimneys	697.8

		_	
Smoke.—Continued.		Steam, collectors	621.184.79
from special industries	628.539	condensation in pipes	621.185 .1
from steam generators	628,538	distribution in locomotives	621.134.2
nuisance	628.53	dredges	621.167
Snow screens (railway)	625.164	engine, dynamometers	621.197.7
Societies, Engineering	620.6	indicators	621.197.7
Solar engines	621.47	lubricators	621.197.7
Solids, Properties of	539.2	mechanism	621.11
Sound	534	tachometers	621.197.7
Specifications, Building	692.3	engineering	621.1
Engineering	62(003)	engines, Care and manage-	
Speisses (metallurgy)	669.87	ment of	621.195
Spiral gears	621.833.3	Rotary	621.166
Springs, Locomotive	621.135.3	Stationary	621.16
Springs, Strength of	620.112.85	Thermodynamics of	536.73
Sprinkling of streets	628.46	Traction	621.14
Spur gears	621.833.1	fitting	696
Stacks (boiler plants)	621.183.8	Flow of, in pipes	621.185.1
Locomotive	621.133.4	furnaces	621.183
Stamping machines, Hydraulic	621.266	gages 621.184.73	621,197,7
Standard cells	621.374.3	generation	621.18
Stairbuilding	694	heating	697.5
Stand-pipes (water supply)	628.12	Exhaust	697.53
State control of railways	385.3	High pressure	697.51
Static electricity	537.2	Low pressure	
Statics	531.2	Vacuum	697.52
Graphic	531.2		697.54
Station signals	656.253	piping	621.185
Stationary boilers	621.184.24	plant	621.19
Stationary steam engines	621.16	accessories	621.197
Stations, Central	621.312	instruments	621.197.7
for lighting	621.312.2	pressure gages	621.184.73
for power	621,312.4	pressure regulators	621.185.4
for railways	621.312.3	Production of, in locomotiv	
Stations, Railway	656.21	pumps and pumping engines	
for special purposes (coal,		(see Pumps)	621.64
live stock, etc.)	656.213	road machines	621.14
freight, Arrangement of	656,212	separators	621.197.4
Heating and lighting of	656.215	shovels	621.167
passenger, Arrangement of	656.211	superheaters	621.197.5
Union	656.214	Transmission and distributio	11
Statistics, Engineering	62(001)	of	621.185
of railways	385.0	traps	621.185.5
	621.184.52	Steamship lines, Competition of	f
Stays (locomotive boilers)	621.133.2	with railways	385.2
	621.184	Steam turbine	621.165
Steam boilers and power plan			621.165.12

Steam turbine.—Continued.		Pressing of	669.184.4
calculations	621.165.11	Properties and constants o	
discs, Stresses in	621,165,14	Protection of	691.79
guide vanes and nozzles	621.165.13 .		669,15
theory	621.165.1	Rolling of	669.184.2
vanes and buckets	621.165.12	roofing	695.5
Steam turbines	621,165	Sand blasting of	669.185.1
Combined velocity and press		Structure and composition	
Participant Participant	621.165.23	Tempering of	669,181.2
Construction of	621,165,3	Tests of 669.	
Design of	621,165.3	Treatment of .	669.18
Pressure type	621,165,22	Uses of	669.115
Stresses in	621.165.14	Steel works (architecture)	725.43
Types of	621.165.2	Steels, Special	669,139
Velocity type	621.165.21	Stenography	653
Windage in	621,165,15	Stokers, Mechanical	621.183.6
Steam valves	621.185.4	Stone, Artificial	891.3 666.S
Steel Steel	669.1	Beton coigniet	691.31
Alloys of	669.13	Ransome	691.32
Chrome	669.133	Selenitic	691.34
Manganese	669.132	Tests of	620.139
Molybdenum	669.135	as building material	691.2
Nickel	669.131	construction	693.1
Silicon	669.137	Preservation of	691.29
Titanium	669.138	Protection of	691.2
Vanadium	669.136	Tests of (appl. mech.)	620.13
Annealing of	669,181,3	Stones, Building	553.5
Carburization of	669.16	Stoneware	666.6
Cementation process for	669.161	Stoping (mining)	622.27
Crucible process for	669.162	Overhand	622.341
Case hardening of	669.182	Underhand	622.342
Chemical properties of	669.124	Storage and service reservoir	s 628.13
Economic factors conc.	669.11	Storage batteries	621.354
Finishing of	669.185	Application of	621.354.4
forging	669.184.1	Care and handling of	621.354.18
founding	669.17	Construction of	621.354.2
Hardening of	669.181.1	Operation of	621.354.3
in buildings	691.7	Storage buildings	725.3
Machining of	669,184,5	Storage of electricity	537.84
Metallurgy of	669.1	Storage of drawings	621.717
Melting of	669.171	Storage of patterns	621.727
Moulding of	669.172	Storage reservoirs	628.13
Nature and properties of	669.12	Store houses, (manufactories)	
Painting of	669.185.3	Storm-water flow	628,221
(for protection)	691.791	Stoves, Heating by	697.2
Physical properties of	669.123		
pickling	669.185.2	Straightening machinery	621.983

Street cleaning and sprinkling 628.46	panels 621.317.2
Street railways 625.6	protective devices 621.317.8
Electric (see Electric trac-	Switchboards 621.317
tion) 621.331.34	Telephone (see Telephone) 621.387
Elevated 621.331.343	Automatic 621.387.7
Subways 621,331.344	Switches, Electric 621,317.3 621,328.7
Surface 621.331.342	Dial 621.317.33
Streets, City 625.7	Knife 621.317.32
Sanitation of 625.78	Oil 621.317.35
Sprinkling and cleaning of 628.46	Plug 621.317.34
Strength of materials 620.11 539.4	Switches, Railway 625.151
Tests of 620.112	Syenites (geol.) 553.52
Strength of springs 620.112.85	Synchronizers 621.374.91
Strikes and lockouts 621,705	Synchronous commutating ma-
Study and teaching of engineer-	chines 621.313.4
ing 620.7	convertors 621.313.53
Subgrade (railways) 625.12	machines 621.313.4
(street railways) 625.613	motors 621.313.44
Submarine cable telegraphy 621.382.8	telegraphy 621.382.36
Subsidence (sewerage) 628.33	telegraphy 0.51.502.50
Substations, Electric 621.312.6	77
Subways 621.331.344 625.4	T
Superheaters, Steam 621,197.5	Tachometers 621.197.7
•	
Superintendence of building con	Tackle 621 863
Superintendence of building con-	Tackle 621.863
struction 692.6	Hydraulic 621.262
struction 692.6 Supporting ground (mining) 622.28	Hydraulic 621.262 Tables and calculations, Engi-
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62	Hydraulic 621.262 Tables and calculations, Engineering 620.8
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes Preliminary 625.111	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes Preliminary 625.111 Surveying, Mine 622.14	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes Preliminary 625.11 Surveying, Mine 622.14 • Surface (mining) 622.13	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes Preliminary 625.11 Surveying, Mine 622.14 • Surface (mining) 622.13 Surveys, Magnetic 622.15	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 Surface (mining) 622.13 Surveys, Magnetic 622.13 Mineral 622.131	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.331.342 transportation (mines) 622.69 Survey of railway routes Preliminary 625.111 Surveying, Mine 622.14 • Surface (mining) 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.5	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 • Surface (mining) 622.13 Surveys, Magnetic 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.52 chains and cables 624.52	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.38
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 • Surface (mining) 622.13 Surveys, Magnetic 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.52 chains and cables 624.52 of locomotives 621.135.3	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.38 instruments 621.383
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 Surveys, Magnetic 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.5 chains and cables 624.52 of locomotives 621.135.3 of railway cars 625.213	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.38 instruments 621.383 Intermediate 621.383.2
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 Surface (mining) 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.5 chains and cables 624.52 of locomotives 621.135.3 of railway cars 625.213 Swing bridges 624.82	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.38 instruments 621.383 Intermediate 621.383.2 Receiving 621.383.3
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 • Surface (mining) 622.13 Surveys, Magnetic 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.52 chains and cables 624.52 of locomotives 625.213 Swing bridges 624.82 Switch and signal apparatus, In-	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.383 instruments 621.383 Intermediate 621.383.2 Receiving 621.383.3 Transmitting 621.383.1
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.922 lines (street railways) 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 Surface (mining) 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.5 chains and cables 624.52 of locomotives 621.135.3 of railway cars 625.213 Swing bridges 624.82 Switch and signal apparatus, Interlocking 656.257	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.383 instruments 621.383 Intermediate 621.383.2 Receiving 621.383.3 Transmitting 621.383.1 systems 621.383.1
struction 692.6 Supporting ground (mining) 622.28 Surface, condensers 621.197.62 grinding machines 621.331.342 transportation (mines) 622.69 Survey of railway routes 625.11 Preliminary 625.111 Surveying, Mine 622.14 • Surface (mining) 622.13 Surveys, Magnetic 622.13 Surveys, Magnetic 622.13 Suspension, bridges (see Bridges) 624.52 chains and cables 624.52 of locomotives 625.213 Swing bridges 624.82 Switch and signal apparatus, In-	Hydraulic 621.262 Tables and calculations, Engineering 620.8 Tail races 621.29 Tank sewers 628.28 Tanks, Precipitation (sewerage) 628.341 Track 621.136.3 Tapping machinery 621.955 Tar (building material) 691.96 Taxes (street railway) 625.611 Technology, Chemical 660 Telegraph 654 537.81 codes 621.382.15 engineering 621.383 instruments 621.383 Intermediate 621.383.2 Receiving 621.383.3 Transmitting 621.383.1

Telegraph, systemsContinu	ed.	Semi-Automatic	621.385.72
Fac-simile telegraphy	621.382.7	Uses of, in transportation	on 656.254
Multiplex	621.382.35	transmission	621.387.8
Multiplex harmonic	621.382.37	. Cable construction for	621.387.84
Multiplex synchronous	621.382.36	Long distance	621.387.82
Printing telegraphy	621.382.5	Pupin coils	621.387.86
Quadruplex	621.382.34	transposition	621.387.83
Simplex	621.382.31	Telephony (communication)	654.6
Writing telegraphy	621.382.6	(engineering)	621.385
Uses of, in transportation	656.254	Combined telegraphy and	621.382.95
Telegraphy (communication)	654	Wireless .	621.384.5
(engineering)	621.382	Telfers	621.868
Combined telephony and	621.382.95	Temperature, Influence of	
,Induction	621.382.94	on metals	620.112.1
Submarine cable	621.382.8	Measurement of	536.5
Wireless	621.384	by electric methods	536.53
	4.6 537.82	regulators, Electric	621.39
(engineering)	621.38	Tempering steel	669.181.2
instruments	621.386	Tender brakes	621.136.1
Batteries	621.386.96	Tenders	621.136
Call receiving apparatus	621.386.7	Couplings for	621.136.2
Call sending apparatus	621.386.8	Design of	621.136.1
Coin collecting devices	621.386.92	Weight of	621.136.1
Condensers	621.386.5	Terminals and stations, Raily	vay 656.21
Distributing frames and		Terra cotta (building)	691.48
racks	621.387.92	construction	693,3
Induction coils	621.386.4	Textile factories (architectur	re) 725.41
Meters and counters	621.387.96	Thatch roofing	695.9
Protective devices	621.386.94	Thermodynamics	536.7
Receivers	621.386.3	Applied	621.101
Transmitters	621.386.2	of air compression	621.534
power plant	621.387.6	of perfect gases	536.71
Accumulators for	621.387.62	of steam engine and heat m	10-
Generators for	621.387.63	tors	536.73
switchboards, Central	621.387	of vapors	536,72
Automatic	621.387.7	Thermometers (steam plant)	621,197.7
Manual	621.387.2	Thermometry	536,51
Multiple	621.387.3	Third-rail for elect, traction	621.332.3
Transfer	621.387.4	Threads, screw, Systems of	621.882
switching devices	621.386.6	Throttle, Locomotive	621,133,6
systems	621.385	Throttling engines	621,164.42
Automatic	621.385.75	Tile (chem. tech.)	666.7
Central switchboard	621.385.4	floors	
Intercommunicating	621.385.3		691.471
Multiple switchboard	621.385.5	roofing and ceiling	691.472
Private exchange	621.385.8	roofing	695.3
211vate exchange	0.000.0	sewers	691.49

Tile.—Continued.		Trains	656.22
Tests of	620.14	Making up of	656.225
Tiles (building materials)	691.46	Protection of, in distress	656.254
Hollow structural	691.47	Running of	656.222
Timbering of mines	622.281	Tramming (mines)	622.651.2
Timber, Tests of (appl. mech.)	620.12	Trams (mines)	622.63
Tin, Metallurgy of	669.6	Tramways	625.62
Tinning of iron and steel	691.792	Transfer boards (telephone)	
Tires, Car	625.212	Transformers	621.314.3
Titanium steel	669.138	Auto.	621,314,4
Tonnage rating	656,225	Constant current	621,314.32
Tool making	621.756	Constant potential	621.314.33
Tools, Machine (see Macline		Meter	621.314.38
tools)	621.9	Phase changing	621.314.34
(shop equipment)	621.752.1	substations	621,312,63
Tools, Pneumatic	621.542	Transmission, Air	621.532
Tooth curves	621.831	dynamometers	531.4
Torsion	539.3	Hemp rope	621.853
Towers	624.95	machinery	621.8
for suspension bridges	624.54		
for transmission lines 62	1.319.225	of compressed air (see Co	
Towns, Sanitation of	628.4	pressed air)	621.53
Water supply for	628.1	of electrical energy Lines for	621.319
Track (electric traction)	621.333	Overhead	621,319,2
Track (railway) (see Road			621.319.22
bed)	625.14	Underground	621.319.23
tanks	621,136.3	Poles and towers for	621,319,225
Traction, boilers 6	21.184.23	Protective devices for	621.319.8
dynamometers	531.21	Retaining and supporting	
engines	621.14	devices for	621.319.4
Electric (see Electric traction	621.33	Systems of	621.319.12
systems	625.63	Alternating current	621.319.123
Tractive force of locomotives	621.131.1	Composite	621.319.125
Trade rules (building construc-	-	Continuous current	621.319.122
tion)	692.94	of force	531.8
Trades, Mechanic	680	of power	537.84
Traffic (transportation)	656.23	of steam	621.185
Traffic, Division of	656,233	Wire rope	621.854
Traffic (street railway)	625.611	Transmitters, Telephone	621.386.2
Train crews, Assignment of	621.137	Transportation	656
Train, dispatching	656.254	buildings	725.3
resistance	656.221	by horseless vehicles	656.3
schedules	656,222	by railways	656.2
service, Passenger	656.224	claims, Damage in, Delays	in 656.24
Freight	656,225	Cost of	656.232
Baggage	656,226	in mines	622.6
signals	656.252	Military	656.229

Transportation.—Continued.		Turntables	625.154
of dangerous freight	656.227	Two-cycle engines	621.432.2
of perishable freight	656.227	Typewriters	652
on roads and highways	656.1	Typewriters	0.7.0
Pools and agreements rela		. U	
ing to	656,233	U	
River and ocean	387	Underground railways	625.4
tolls and rates	656,231	roads (mines)	622.62
	553.57	transmission lines	621.319.23
Trap (geol.)	628.256	Undershot water wheels	621.23
Traps for sewers		Underwriters requirements f	or
1 /	3 621.185.5	electric lighting	-621.328.1
Traveling cranes	621.874	Union stations	656.214
Tread mills	621.46	Unions, Labor	621.705
Tributary railways	625.6	Unit system (reinforced co	011-
Operation of	656.27	crete)	693.713
Trigonometry .	514	Universities	727.3
Trolley lines	621.331.2	Urinals (sanitation)	628.45
Trucks, Bissell	621,135.4		
Four-wheel	621,135.4	V	
Locomotive	621,135.4	•	
of railway cars	625.215	Vacuum appliances	621.55
Trunk lines, Electric	621.331.32	lamps for special radiation	621.327.7
Trunnion bridges	624.84	Valve gears	621.84
Truss, Bowstring	624.32	for locomotives	621,134,22
Cantilever	624.33	Valves, for locomotives	621.134.22
Trussed girders for bridges	624.08	Blowout	621.184.79
Trusses, Fireproofing of	693.87	Safety	621.185.4
Tubes, Locomotive	621.133.3	(boiler)	621.184.73
Tubular bridges	624.4	Steam	621.185.4
Tungsten filament incandescen	nt	for sewers	628,257
lamps	621.326.43	Vanadium Steel	669.136
Tunneling and drifting	622.26	Vanes (steam turbines)	621.165.12
Tunneling devices, Hydraulic	621.269	Vapor engines, Binary	621.44
Tunnels (railway)	625.13	lamps for incandescent light	it-
Clearance of	625.22	ing	621.327.3
for telephone cables	621.319.23	Vapors, Properties of	533.1
for water supply	628.14	Thermodynamics of	536.72
Ventilation of	625,13	Vaulted edifices of masoury	624.92
Turbines, Gas	621,433	Vaults	624.9
Steam	621,165	and arches (bridges)	624,06
Buckets for	621.165.12	Fireproofing of	693.88
Vanes for	621,165.12	Vegetable materials, Tests of	620,197
Water	621.24	oils	665.3
Impulse	621.247	Velocity turbines	621,165,21
Reaction or pressure	621,242	•	28.8 697.9
Turning machinery	621.94	by fans	697.98
		y	

Ventilation.—Continued.		pressure engines	621.25
Exhaust system of	697.93	Purification of, for locor	no-
Foul air ducts for	697.95	tives	621.133.7
Fresh air ducts for	697.94	scoops for tenders	621.136.3
Natural system of	697.91	Sources of	628.11
of cars	625.234	storage reservoirs	628.13
of mines (see Mines, Ventila		supply for villages and co	ın-
tion of)	622.4	try houses	628.7
of sewers	628.23	tunnels	628.14
of tunnels	625.13	turbines	621.24
Plenum system of	697.92	Impulse	621.247
Regulation of air supply for		Reaction or pressure	621.242
Treatment of air for	697.96	Use and waste of	628.17
Vestibule cars	625.232	wheels	621.21
Villages, Water supply for	628.7	Breast	621.22
Voltaic cells and generators	621.35	Overshot	621.22
	621.352.1	Undershot	621.23
	621.352.2	Water-tube boilers	621.184.26
2	621.352.4	Water-works	628
Voltmeters	621.374.3	Watt-hour meters	621.374.5
		Wattmeters	621.374.6
${f W}$		Wear and duration of boiler	s 621.196
117	0010	Weathering of materials	620.112.2
Wages	331.2	Weighing scales	531.21
Labor and	331 721.2	Weight and capacity of freig	ght
Walls (architecture)	693.82	cars	625.24
Fireproofing of	725.35	of passenger cars	625.23
Warehouses, Cold storage Washing of coal	622.784	of tenders	621.136.1
Washing of coal Wastes, Disposal of	628.54	Weights and measures	389
Discharge of, in streams	628,541	Wells for water supply	628.11
Filtration of	628.545	Wheatstone bridges	621.374.2
Purification of by the soil	628.546	Wheels, Car	625.212
Water	532	Balancing of	625.212
accumulators	621.254	Breast	621.22
acqueducts	628.14	Locomotive	621.135.2
conduits	628.14	Overshot	621.22
engines	621.2	Toothed	621.83
Filterbasins for	628.16	Undershot	621.23
Flow of, in pipes	532.5	Water	621.21
for towns	628.1	Whistles, Boiler warning	621.184.72
	21.184.72	Winches	621.864
Impurities in, and their re-		Windage in steam turbines	621.165.15
moval	628.16	Wind engines	621.45
		-	
Mains and service pipes for	628.15	Windows, Architecture of	721.8
Mains and service pipes for meters	628.15 628.17	Windows, Architecture of Windlasses	721.8 621.864
		•	

Wire drawing	669.184.3	Working of mines	622.3
Wireless telegraphy	621.384.2	Works, Engineering	621.7
Wiring, Central station	621.317	Worm gears	621.833.3
Interior	621.328.2 .	Writing, Methods of	652
Wire rope transmission	621.854	Wrought iron (in buildings)	691.73
Women, Labor of	331.4	Puddling process for the	
Wood boring machinery	621.953	nifg. of	669.151
planing machinery	621.913	7.	
sawing machinery	621.933	_	
turning lathes	621.943	Zinc, Metallurgy of	669.5
Woods, Preservation of	691.18	alloys	669.53
used in building	691.1	Economic factors conc.	669.51
Woodworking methods and pro-		Leaching of	669.58
cesses	621,723	Plants for the prod. of	669.59
Woodworking mills (architec-	0.0111100	Properties of	669.52
ture)	POF 44	Refining of	669.57
•	725.44	Roasting of	669.54
Woodworking shop	621.72	Smelting of	669.55
Wool, Mineral (for building)	691.91	Zincs (boiler)	621.184.79
Work, Theory of	531.4	Zone tariffs	656.231

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

*Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. None available.

*Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge, 1905. None available.

*Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905. None available.

*Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906. None available.

*Circulor No. 3. Fuel Tests with Illinois Coal. (Compiled from tests made by the Technologic Branch of the U. S. G. S., at the St. Louis, Mo., Fuel Testing Plant, 1904-1907, by L. P. Breckenridge and Paul Diserens. 1909. Thirty cents.

*Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by I. P. Breckenridge. 1906. None available.

*Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906. Forty-five cents.

*Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906. Fifteen Cents.
*Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906. Thirty-five cents.

*Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906. Thirty-five cents.

*Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906. None available.

*Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906. Revised edition, 1912. Fifty cents.

*Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907. None available.

*Bulletin No. 11. The Effect of Scale on the Transmission of Ileat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. None available.

*Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907. None available.

*Bulletin No. 13. An Extension of the Dewcy Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907. Fifty cents.

*Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Tal-

bot. 1907. None available.

**Bulletin No. 15. How to Burn Illinois Coal without Smoke, by L. P. Breckenridge. 1908.
Twenty-five cents.

*Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908. Fifteen cents.

*Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton, and W. F. Wheeler. 1908. Twenty cents.

Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough and L. E. Moore. 1908. Forty cents.

*Bulletin No. 19. Comparative Tests of Carbon. Metallized Carbon and Tantalum Filament Lamps, by T. H. Amrine. 1908. Twenty-five cents.

*Bulletin No. 20. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, by Arthur N. Talbot. 1908. Nonc available.

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. 1908. Fifteen cents.

*Bulletin No. 22. Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N. Talbot. 1908. Thirty-five cents.

Bulletin No. 23. Voids, Settlement and Weight of Crushed Stone, by Ira O. Baker. 1908. Fifteen cents.

Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation, by S. W. Parr and C. K. Francis. 1908. Thirty cents.

Bulletin No. 25. Lighting Country Homes by Private Electric Plants, by T. H. Amrine. 1908. Twenty cents.

Bulletin No. 26. High Steam-Pressures in Locomotive Service. A Review of a Report to the Carnegie Institution of Washington, by W. F. M. Goss. 1908. Twenty-five cents.

Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1999. Thirty cents.

Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N. Talbot. 1909. Fifteen cents.

^{*}Out of print; price attached.

N. B.—A limited supply of hulletins, the titles of which are not starred, is available for gratuitous distribution.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses. Series of 1907 and 1908, by Arthur N. Talbot. 1909. Forty-five cents.

Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams, and C. N. Haskins. 1909. Twenty-five cents.

Bulletin No. 31. Fuel Tests with House-heating Boilers, by J. M. Snodgrass. 1909. Fifty-five cents.

Bulletin No. 32. The Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909. Fifteen cents.

Bulletin No. 33. Tests of Tungsten Lamps, by T. H. Amrine and A. Guell. 1909. Twenty cents.

Bulletin No. 34. Tests of Two Types of Tile Roof Furnaces under a Water-tube Boiler, by J. M. Snodgrass. 1909. Fifteen cents.

*Bulletin No. 35. A Study of Base and Bearing Plates for Columns and Beams, by N. Clifford Ricker. 1909. Twenty cents.

Bulletin No. 36. The Thermal Conductivity of Fire-Clay at High Temperatures, by J. K. Clement and W. L. Egy. 1909. Twenty cents.

*Bulletin No. 37. Unit Coal and the Composition of Coal Ash, by S. W. Parr and W. F. Wheeler. 1909. Thirty-five cents.

Bulletin No. 38. The Weathering of Coal, by S. W. Parr and W. E. Wheeler. 1909. Twenty-five cents.

Bulletin No. 39. Tests of Washed Grades of Illinois Coal, by C. S. McGovney. 1909.

Bulletin No. 39. Tests of Washed Grades of Illinois Coal, by C. S. McGovney. 1909. Seventy-five cents.

Bulletin No. 40. A Study in Heat Transmission, by J. K. Clement and C. M. Garland. 1910. Ten Cents.

Bulletin No. 41. Tests of Timber Beams, by Arthur N. Talbot. 1910. Twenty cents.

Bulletin No. 42. The Effect of Keyways on the Strength of Shafts, by Herbert F. Moore. 1910. Ten cents.

*Bulletin No. 43. Freight Train Resistance, by Edward C. Schmidt. 1910. Seventy-five cents.

Bulletin No. 44. An Investigation of Built-up Columns under Load, by Arthur N. Talbot and Herbert F. Moore. 1911. Thirty-five cents.

Bulletin No. 45. The Strength of Oxyacetylene Welds in Steel, by Herbert L. Whittemore. 1911. Thirty-five cents.

Bulletin No. 46. The Spontaneous Combustion of Coal, by S. W. Parr and F. W. Kressmann. 1911. Forty-five cents.

Bulletin No. 47. Magnetic Properties of Heusler Alloys, by Edward B. Stephenson. 1911. Twenty-five cents.

Bulletin No. 48. Resistance to Flow through Locomotive Water Columns, by Arthur N. Talbot and Melvin L. Enger. 1911. Forty cents.

Bulletin No. 40. Tests of Nickel-Steel Riveted Joints, by Arthur N. Talbot and Herbert F. Moore. 1911. Thirty cents.

Bulletin No. 50. Tests of a Suction Gas Producer, by C. M. Garland and A. P. Kratz. 1912. Fifty cents.

Bulletin No. 51. Street Lighting, by J. M. Bryant and H. G. Hake. 1912. Thirty-five cents.

Bulletin No. 52. An investigation of the Strength of Rolled Zinc, by Herbert F. Moore.
1912. Fifteen cents.

' Bulletin No. 53. Inductance of Coils, by Morgan Brooks and H. M. Turner. 1912. Forty cents.

Bulletin No. 54. Mechanical Stresses in Transmission Lines, by A. Guell. 1912. Twenty cents,

Bulletin No. 55. Starting Currents of Transformers, with Special Reference to Transformers with Silicon Steel Cores, by Trygve D. Yensen. 1912. Twenty cents.

Bulletin No. 56. Tests of Columns: An Investigation of the Value of Concrete as Reinforcment for Structural Steel Columns, by Arthur N. Talbot and Arthur R. Lord. 1912. Twenty-five cents.

Bulletin No. 57. Superheated Steam in Locomotive Service. A Review of Publication No. 127 of the Carnegie Institution of Washington, by W. F. M. Goss. 1912. Forty cents.

Bulletin No. 58. A New Analysis of the Cylinder Performance of Reciprocating Engines, by J. Paul Clayton. 1912. Sixty cents.

Bulletin No. 59. The Effects of Cold Weather upon Train Resistance and Tonnage Rating, by Edward C. Schmidt and F. W. Marquis. 1912. Twenty cents.

Bulletin No. 60. The Coking of Coal at Low Temperatures, with a Preliminary Study of the By-Products, by S. W. Parr and H. L. Olin. 1912. Twenty-five cents.

Bulletin No. 61. Characteristics and Limitations of the Series Transformer, by A. R. Anderson and H. R. Woodrow. 1912. Twenty-five cents. (Ready for distribution about Dec. 15.)

600,000 LB. TESTING MACHINE WITH COLUMN IN PLACE.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

BULLETIN No. 10

FEBRUARY 1907

TESTS OF CONCRETE AND REINFORCED CONCRETE COLUMNS; SERIES OF 1906

By Arthur N. Talbot, Professor of Municipal and Sanitary Engineering and in Charge of Theoretical and Applied Mechanics

CONTENTS

I. INTRODUCTION

		\mathbf{Page}
1.	Preliminary	3
2.	Scope of Bulletin	3
3.	Acknowledgment	4
	II. MATERIALS, TEST PIECES AND METHOD OF TESTING	G
4.	Materials	4
5.	Test Specimens	7
6.	Forms for Columns	9
7.	Making of Columns	10
8.	Storage of Columns	10
9.	Summary of Test Pieces	11
10.	Testing Machines Used	11
11.	Method of Setting Specimens in Machine	11
12.	Measuring Devices	12
13.	Application of the Load	15

	III. EXPERIMENTAL DATA AND DISCUSSION	
14.	Column Test Data	15
15.	Phenomena of the Column Tests	15
16.	Cube and Cylinder Test Data	19
17.	Stress-deformation Diagrams	21
18.	The Parabolic Stress-deformation Relation	25
19.	The Stress-deformation Relation Developed in	
	the Columns	28
20.	Strength of the Plain Concrete Columns	31
21.	Strength of the Reinforced Concrete Columns	33
22.	Watertown Arsenal Column Tests	35
23.	Modulus of Elasticity	38
24.	Discussion of Basis for Working Stresses and	
	Working Factor in Structures	42
25.	Formulas for Plain and Reinforced Concrete	
	Columns	45
26.	Discussion of Columns in Building Construction.	5 0
27.	Summary	51
	Stress-deformation Diagrams for University of	
	Illinois Column Tests	55
	Stress-deformation Diagrams for Watertown Ar-	•
	senal Tests	59

I. Introduction

- Preliminary.—Columns form an important element in reinforced concrete building construction. Many tests have been made on cubes and short prisms to determine the compressive strength of concrete. The method of making the test pieces and the conditions entering into the tests, as compared with the fabrication and testing of columns, do not permit the results of such tests to be taken as representative of the strength of concrete columns, the cubes generally having a stronger and more uniform concrete and the restraint of the bearing plates giving a higher Comparatively few tests have been made on colrelative load. umns, either plain or reinforced, and many of these, because of variation in material or age at test or other elements of strength, do not furnish data for comparison or conclusion. The tests herein recorded were made as a preliminary series, to open up the field for further experimentation here, and hence were not considered to be complete or to give full data or to follow in all respects the most approved methods of design, construction and testing. It is hoped, however, that the data and discussion will contribute somewhat to the knowledge of the strength and behavior of plain and reinforced concrete columns and perhaps serve to warn constructors against the use of high working stresses for columns constructed under ordinary working conditions and with concrete of moderate quality.
- Scope of Bulletin.—Both plain and reinforced columns were 2. The reinforcement consisted of longitudinal rods. part of the columns ties were carried around the reinforcing rods to hold them in place. Not only was the strength of the columns obtained, but the proportion taken by the concrete and by the steel has been estimated by means of the observed relation between the applied load and the resulting shortening of the column and through the use of the analysis herein given. This stressdeformation relation has also been utilized to determine other properties of the columns. Formulas for reinforced columns are given, and the constants to be used are discussed. As bearing on this, a discussion is made of the basis for factor of safety and working stress for plastic materials such as concrete under the conditions of the distribution and application of load to be found in columns. To permit a comparison to be made with the results

of other tests, a summary of the results of a series of column tests at Watertown Arsenal is included. It is felt that this comparison is a valuable addition.

3. Acknowledgment.—The investigation was made in the Laboratory of Applied Mechanics of the University of Illinois as a part of the work of the University of Illinois Engineering Experiment Station. The work of making the tests on the columns, cubes, and cylinders was done principally as thesis work by Ralph Corson Llewellyn, a senior student in architectural engineering, class of Mr. Llewellyn is entitled to much credit for the intelligent thought and diligent care which he gave to the work, and much of the trustworthiness of the results is due to him. The review of the tests which he gave in the thesis was also quite creditable. Immediate supervision of the work of making the columns and of conducting the tests was given by D. A. Abrams, Assistant in the Engineering Experiment Station, whose aid in this and in interpreting the results has added much to the value of the work. Acknowledgment is also made to W. R. Robinson, Assistant in the Engineering Experiment Station, for valuable aid in the preparation of this bulletin.

The following division of the subject matter of the bulletin has been made: I. Introduction; II. Materials, Test Pieces and Method of Testing; III. Experimental Data and Discussion.

II. MATERIALS, TEST PIECES AND METHOD OF TESTING

4. Materials.—The materials used in making the columns were similar to the building materials ordinarily used in concrete construction in the middle west. The sand, stone and cement were obtained in the open market.

Stone.—The stone was crushed limestone from Kankakee, Illinois. It was ordered to pass over a \frac{1}{4}-in. screen and through a 1-in. screen. Tests showed 54% voids, as found by pouring the stone slowly into water. The stone was nearly pure limestone, somewhat soft in quality.

Sand.—The sand was of good quality, well graded, sharp and fairly clean. It came from deposits near the Wabash river at Attica, Indiana. An average of five determinations showed it to contain 28% voids. The result of the mechanical analysis is given in Table 1.

TABLE 1.

MECHANICAL ANALYSIS OF SAND.

Sieve No.	Diameter of Mesh inches	Per cent Passing
4		100.0
10	.096	73.0
20	.040	36.0
50	.019	16.0
74	.011	5.0
100		2.0

Cement.—Chicago AA portland cement was used for all the tests. It was bought from a local dealer. Table 2 gives the

TABLE 2.

TENSILE STRENGTH OF CEMENT.

Ref.	Ag	e 7 Days	Age	e 60 Days	
10.	Neat	1-3 Mortar	Neat	1-3 Mortai	
1	634	283	890	443	
2	717	281	916	440	
3	732	275	840	442	
4	687	217	942	365	
5	580	206	872	352	
6	731	189	885		
Av.	680	242	892	404	

strength of standard briquettes of neat cement and of 1-3 mortar for age of 7 and 60 days.

Concrete.—Men skilled in mixing concrete were employed, and an effort was made to have the different batches of a uniform quality. All of the concrete was made of the proportions 1 of cement, 2 of sand, $3\frac{3}{4}$ of stone, measured by loose volume. It was intended to use a 1-2-4 mixture, but the large percentage of voids made it seem desirable to increase the amount of mortar. The concrete will, however, generally be referred to as a 1-2-4 mixture.

The mixing was done with shovels by hand. The sand and cement were first mixed together dry. The stone was then added and the mass turned several times with the shovels. When thoroughly mixed, water was added and the whole mass turned until uniform in appearance. A fairly wet mixture, as indicated further in the description of the making of the columns, was used, as this could be tamped into the forms to better advantage. The average weight of the concrete at the time of testing, figured from the weight of the cubes, was about 147 lb. per cu. ft.

Steel.—The reinforcement used in the columns consisted of plain round mild steel bars. It was furnished by the Illinois Steel Company and was an even grade of open hearth steel. Vertical rods, \(\frac{3}{4}\)-in. in diameter were used in the 12-in. columns and rods \(\frac{3}{4}\)-in. in diameter in the 9-in. columns. All ties were made of \(\frac{1}{4}\)-in. round rods. The yield point of the steel averaged 39,800 lb. per sq. in., the ultimate strength averaged 59,200 lb. per

TABLE 3.

Tension Tests of Steel Used in Columns.

Average Values.

Col. No.	Diam. inches	Per cent Elongation in 8 in.	Yield Point pounds	Maxi- mum Load pounds	Yield Point lb. per sq. in.	Ultimate Strength lb. per sq. in.
1	.752	31.2	17600	26230	39750	59200
$\frac{2}{3}$.618	32.4	11850	17850	39500	59500
	. 751	30.9	18100	27280	40870	62000
6	.622	30.1	11770	17710	38650	58300
	. 749	32.2	17640	25530	40030	58000
10	,623	31.8	12070	17920	39280	58820
11	. 751	30.6	18480	26780	41820	60520
12	.623	31.8	12050	17800	37070	58470
14	.619	29.1	11900	18350	39450	60820
16	.623	30.6	11030	17460	39470	58100
17	, 625	31.5	12130	17900	39500	58350
Av.		30.9			39800	59200

sq. in., and the elongation in eight inches averaged 30.9 %. Table 3 shows the results of the tests of steel used in the columns.

- 5. Test Specimens.—In making the test specimens, the effort was made to have the conditions of fabrication as nearly as possible the same in every case. In general two specimens of each kind were made, so that one would act as a check upon the other. Three types of specimens were made,—(a) cubes, (b) cylinders and (c) columns, the concrete for all being of the 1-2-3\frac{3}{4} mixture described above. Data for the test specimens are given in Table 4.
- (a) Cubes.—17 cubes were tested, all of 12-in. edge. They were generally made in pairs, the concrete being taken from the mix used in the columns of corresponding number. The concrete for the cubes was taken from the middle of the batch, and is thought to be representative. In the case of columns mixed in two batches one cube was made from each batch. The concrete

Fig. 1. Forms for Columns and Cylinders.

was well tamped into the forms, and was troweled around the sides with a bricklayer's trowel to insure a good surface on the cubes. The conditions of storage were the same for the cubes as for the columns, the forms being taken off of correspondingly numbered specimens at the same time.

TABLE 4.
LIST OF TEST SPECIMENS.

Columns							Minor Specimens		
			Reinford	ement		Cylinders			
Col. No.	Size Cros	Area of Cross-		Area			Cubes		
		section sq. in.		Kind	sq. in.	per cent			
1	12x12x12	147.4	4—3-in. rods	1.77	1.20				
2	9x 9x12	80.6	$4-\frac{5}{8}$ -in. rods	1.23	1.52	Cube 2 ₁ Cube 2 ₂			
3	12x12x12	146.2	$4 - \frac{8}{4}$ -in. rods $12 - \frac{1}{4}$ -in. ties	1.77	1.21				
4*	9x 9x12	182.0	Plain	0.	0.	Cube 4			
5	12x12x12	146.4	Plain	0.	0.	Cube 5_1 Cube 5_2	Cylinder 5		
6	9x 9x12	80.9	4—§-in. rods	1.23	1.52				
7	12x12x12	145.5	$4-\frac{3}{4}$ -in. rods	1.77	1.21	Cube 7 ₁ Cube 7 ₂	I		
8	9x 9x12	80.8	Plain	Ō.	0.				
0	12x12x12	146.6	Plain	0.	0.		Cylinder 9		
10	9x 9x12	82.0	$\frac{4-\frac{5}{8}-in.}{12-\frac{1}{4}-in.}$ rods	1.23	1.50	Cube 10_1 Cube 10_2			
11	12x12x12	145.2	$4 - \frac{8}{4}$ -in. rods $12 - \frac{1}{4}$ -in. ties	1.77	1.21	Cube 11_1 Cube 11_2			
12	9x 9x 9	82.7	$4-\frac{5}{9}$ -in. rods $9-\frac{1}{4}$ -in. ties	1.23	1.48		Cylinder 12, Cylinder 12,		
13	12x12x12	148.8	Plain	θ.	0.		Cylinder 13		
14	9x 9x12	82.0	$4-\frac{5}{8}$ -in. rods $12-\frac{1}{4}$ -in. ties	1.23	1.50				
15	12x12x 6	148.0	Plain	0.	0.	Cube 15_1 Cube 15_2			
16	9x 9x 9	82.5	4—§-in. rods 9—‡-in. ties	1.23	1.49		Cylinder 16 ₁ Cylinder 16 ₂		
17	9x 9x 6	83.6	4−§-in. rods	1.23	1.47				
18	9x 9x 6	83.6	Plain	0.	0.				

^{*}No. \oplus was accidentally shattered in placing in machine and is not further considered.

- (b) Cylinders.—Only 9 cylinders were tested. They were 8 in. in diameter and 16 in. long, and were made in the wrought iron forms shown in Fig. 1. They were made from the same concrete as the columns of corresponding numbers, and were treated in the same manner as the columns and cubes.
- (c) Columns.—Three series of columns were made, one of plain concrete with no reinforcement, one reinforced with vertical rods in the corners only, and one reinforced with vertical rods in the corners tied together by ties of ‡-in. rods every 12 in. in height. All columns were made square in cross-section, two sizes being used, 9 in. and 12 in. Three lengths of columns were used,—6, 9 and 12 ft. The sizes and arrangement of the steel are shown in Fig. 2.

Fig. 2. Arrangement of Reinforcement.

The ties were made by bending $\frac{1}{4}$ -in. steel rods while cold about a suitable form. The vertical rods were in all cases cut 1 in. shorter than the finished length of the column, it being intended to have $\frac{1}{2}$ in. of concrete over the rods at each end. In some cases, however, the rods settled before the concrete set until the end was found flush with the bottom of the column.

6. Forms for Columns.—The forms for the columns were made of 2-in. pine plank, planed on both sides. Drawings of the forms

for the 12-in. columns are shown in Fig. 1, which are also typical of the forms for the 9-in. columns. Three sides of the forms were made of continuous pieces for the full height of the column, while the fourth side was made up of 2-ft. lengths. The forms were held together with braces of 2-in. x 4-in. pieces and $\frac{1}{2}$ -in. bolts. Wedges were used to adjust the form to the correct width and to hold it while the concrete was put in. It will be noticed that all parts of the forms are reversible, so that the sides can be turned over if they become warped through use. Three forms each were made for the 9-in. and the 12-in. columns, this number being sufficient to allow the forms to remain on the columns about two weeks before being needed for other specimens.

- 7. Making of Columns.—The forms were soaked in water for a few days before being set up. This kept the wood from drawing very much water out of the concrete and also decreased the tendency of the forms to warp. For the reinforced columns. the rods were put in place and fastened by temporary wooden blocks before any concrete was put in, the blocks being removed as the concrete was put into the forms. The concrete for the 12-in. x 12-in. x 12-ft. columns was mixed in two batches, care being taken to have both as nearly alike as possible. For all other columns, the concrete was mixed in one batch. The concrete was put in in 6-in. layers, each layer being thoroughly tamped or churned, troweled around the sides to improve the surface, and then tamped again. The consistency of the mixture was such that with a 4-in., 10-lb. tamper, efforts at tamping generally resulted in churning the mass, and water was constantly present on the top. When the column had been built up to the top of the first 2-ft. section of the open face of the form, another 2-ft. section was added, and the process carried on without intermission until the column was complete. In the columns with ties, the ties were placed 12-in. apart, as the concrete was filled in, the first tie being always 6-in. from the bottom of the column.
- 8. Storage of Columns—The forms were allowed in most cases to remain on the columns for a period of 14 days after making. Nothing other than this was done to protect the surface of the columns from drying out too rapidly in the air. The temperature of the laboratory in which the columns were made ranged from 60° F. to 70° F. The forms protected the columns enough to prevent the warmer air at the top of the room from affecting the re-

sults of the tests to any great extent. The columns were not moved from the vertical position in which they were made until they were tested. It was intended to test each specimen at the age of 60 days but owing to a delay in receiving some of the instruments, the general age of the specimens was somewhat greater than this.

- 9. Summary of Test Pieces.—Table 4 gives a list of all the test specimens made, together with the size, and amount and kind of reinforcement. Specimens having corresponding numbers were made from the same batches of concrete. Columns 17 and 18 were not made with the same care as the other test specimens, being intended for 30-day preliminary tests, but finally were used at about the same age as the other columns.
- 10. Testing Machines Used.—The machine used in testing the columns and cubes was a Riehlé vertical screw machine with a capacity of 600,000 pounds. Because of its design, it was admirably adapted to carrying on the tests described here. The vertical screws are 36 inches apart, and a guide frame prevents any lateral movement of the head. The machine has six speeds, of which only the slowest, .05 inches per minute, was used in these tests. The frontispiece shows the machine, the scale case and controlling levers, and also a column in position for testing. The cylinders were tested on a 100,000-lb. Riehlé testing machine. The slowest speed of the machine, 0.1 inches per minute, was used for the tests.
- 11. Method of Setting Specimens in Machine.—Cubes.—The cubes were set in the machine in plaster of paris in a manner similar to that which will be described for the columns. Pieces of building paper were placed between the plaster and the bearing blocks of the machine to protect the latter.

Cylinders.—The cylinders were set in plaster and in addition a bearing block having two spherical surfaces of contact was placed above the specimen.

Columns.—The columns, when ready to be tested, were moved from the place where they were made to the machine by means of a four-legged crane, built especially for moving beams in the laboratory. This crane was high enough so that the columns could be raised vertically off of the floor by a block and tackle at one end of the crane. The tackle was fastened to a rope looped around the column slightly above its center of gravity, the top of the column being steadied by ropes tied to the top of the crane. After

being wheeled to the machine in this almost vertical position, two tackles on the machine were attached to opposite faces of the column near the top. The column could then be swung directly over the bearing block on the weighing table of the machine. A thin layer of rather slow-setting plaster of paris was then spread upon the bearing plate and the column lowered to a bearing in the plaster. Care was taken that the column was directly in the center of the machine and that it was plumb. The column was held in the proper position until the plaster bearing had set, after which the tackles were removed and a layer of plaster applied to the top of the column. The head of the machine was run down on this

FIG. 3. EXTENSOMETER DEVICE.

plaster which was allowed to set under a load of several thousand pounds. A piece of galvanized sheet iron was used between the column and the pulling head of the machine to protect the latter from the plaster. This method of setting the columns in plaster assists in giving a uniform bearing over the entire area of the specimen.

12. Measuring Devices.—The shortenings or longitudinal deformations of the columns were read by means of an extensometer especially devised for these tests. (See Fig. 3). The extensometers were so arranged as to indicate the deformation in the center of each face of the column. The dials were arranged in pairs, those on opposite faces of the column being on the same yoke. The yokes were fastened to the column by means of four contact points, two on each opposite face. These contact points were 9 inches apart for the 12-in. and 6 inches apart for the 9-in. columns and were placed symmetrically with regard to the center line of the column. The two yokes carrying the dials were

FIG. 4. ARRANGEMENT OF APPARATUS.

placed 3 inches apart at the bottom of the column, while the yokes carrying the corresponding extensometer bars were placed in a similar position at the top of the column. The gauged length was usually about 12 inches less than the length of the column. The extensometer bars were made of seasoned maple with steel blades at the ends to make contact with the rollers of the dials, which were so arranged that the blades of the extensometer bars could be held against the rollers by means of rubber bands. The dials, which were $4\frac{1}{2}$ inches in diameter, read to ten-thousandths

TABLE 5. SUMMARY OF COLUMN TESTS.

	Reinforcement		Maxi	mum Load			
Col. No.	Kind	per cent	Total pounds	lb. per sq. in. of Gross Section	Age days		
1	4—4-in. rods	1,20	234000	1587	71	Crushed on one side, 4 ft, from bottom	
2	4—5-in. rods	1.52	127000	1577	69	Crushed out near top	
3	$4-\frac{3}{4}$ -in. rods $12-\frac{1}{4}$ -in. ties	1.21	272000	1862	71	Crushed out 1 ft. from bottom. Rods finally buckled	
õ	Plain	0.	250200	1710	69	Crushed and sheared diagonally, 1½ ft. below top	
6	4—§-in. rods	1.52	129400	1600	70	Crushed out 1 ft. from bottom. Rods finally buckled	
7	$4-\frac{8}{4}$ -in. rods	1.21	269000	1850	65	Crushed and sheared 5 ft. from bottom	
8	Plain	θ.	162000	2004	64	Top sheared off	
9	Plain	0.	236000	1610	65	Crushed and sheared off at top	
10	$4-\frac{5}{8}$ -in. rods $12-\frac{1}{4}$ -in. ties	1.50	105000	1280	65	Crushed out 1 ft. from bottom. Rods finally buckled	
11	$4-\frac{3}{4}$ -in, rods $12-\frac{1}{4}$ -in, ties	1.21	281200	1936	65	Crushed $1\frac{1}{2}$ ft. from top	
12	$4-\frac{5}{8}$ -in. rods $9-\frac{1}{4}$ -in. ties	1.48	193100	2335	66	Crushed 1 ft. below top	
13	Plain	0.	254000	1709	61	Crushed in middle of length	
14	$4-\frac{5}{8}$ -in. rods $12-\frac{1}{4}$ -in. ties	1.50	112000	1367	63	Crushed 1½ ft. below top	
15	Plain	0.	176000	1189	63	Crushed 1 ft. from top	
16	$4-\frac{5}{8}$ -in. rods $9-\frac{1}{4}$ -in. ties	1.49	132500	1607	59	Crushed at center Rods finally buckled	
17	4-§-in. rods	1.47	184400	2206	67	Crushed 1 ft. from top. Rods finally buckled	
18	Plain	. O.	90300	1079	65	Crushed 1 ft. below top	

of an inch. A clearer idea of the extensometers and method of using them may be obtained from Fig. 4 and also from the various photographs of the tests. Usually two men were engaged in taking the readings.

The lateral deflections of some of the columns were measured roughly by means of a thread and scale, fastened on the column as shown in Fig. 4. These readings were used only as a check on the way the column was deflecting.

13. Application of the Load.—In testing the columns, the load was applied in increments of about 10,000 pounds, the operator holding the load and the observers taking the readings about 30 seconds after the load was attained. The machine speed was .05 inches per minute. In six columns the load was increased progressively until failure occurred. In ten the load was released at one-third to two-thirds of the ultimate, and then reapplied. In one the load was released twice.

III. EXPERIMENTAL DATA AND DISCUSSION

- 14. Column Test Data.—Table 5 gives data of the age of test, maximum load on column, and manner of failure. The proportion of the load taken by the concrete and by the steel is considered in a succeeding paragraph.
- 15. Phenomena of the Column Tests.—Most of the columns failed in either the top or bottom third of the length, only three failing at or near the center. Ten failed in the top third and four in the bottom third. The numerous failures near the top may possibly be due to drying out of the top of the columns, or more probably to the naturally greater porosity of the concrete there.

In most cases, little warning in the way of cracks or sounds was given before the maximum load was reached. Five of the columns, all reinforced ones, gave warning by noises or vertical cracks slightly before the concrete sustained the maximum stress. Eight columns, including all the plain ones, showed no sign of failure until the maximum load on the concrete was reached. The remaining four showed first sign of failure after reaching the maximum stress in the concrete but before the maximum load taken by the column as a whole was attained.

The plain columns failed suddenly, an explosive noise sometimes accompanying the crushing. The failure of the reinforced columns was usually first indicated by vertical hair cracks after which the column commenced to bulge at the point of failure. Since in practically every failure the reinforcing rods buckled, it would seem at first thought that the failure was caused by a lateral deflection of the rods, resulting in splitting of the concrete outside the reinforcement, but in the discussion of the observations it will be shown that this buckling occurred after the failure of the concrete.

The following notes show the principal features of the tests of individual columns:

Column No. 1. At about the maximum load fine cracks appeared on one face 4 ft. above the bottom and soon spread to the adjoining face, but no crack appeared on the opposite face. Failure occurred at this point. Fig. 5 shows the appearance of the cracks on the face first showing sign of failure. At the maximum load the column deflected laterally at the middle of its length 0.22 in. in a direction away from the face on which failure first showed. This column gave the greatest lateral deflection measured, the next highest being only one-third as much. At a load of 167,000 lb. (1132 lb. per sq. in.) hair cracks appeared at the top of the column but these did not develop further. With the continued application of the load after the maximum had been reached, the concrete broke out, accompanied finally by buckling of the reinforcing rods.

Fig. 5. Typical Failures.

Column No. 2. Failed by crushing at top, the first crack appearing near one corner at the maximum load. Failure occurred immediately. A few cracks had appeared at the bottom of the column but these did not develop further. It would appear that the top end was weaker than the remainder of the column.

Column No. 3. Failed by crushing at a point 12 inches above the bottom at the maximum load. With continued application, all vertical rods buckled between the two ties. Fig. 5 shows the final condition at the point of failure.

Fig. 6. Views Showing Column No. 7 and 16 after Failure.

Column No. 4. This column was accidentally broken in setting it in the machine. It is not considered in this report.

Column No. 5. Failed at maximum load by crushing and shearing off completely on a diagonal line. No warning cracks appeared before maximum load was reached. The shearing plane extended from a point 9 in, below the top on one face to 2 ft. 5 in. on the opposite face.

Column No. 6. In this column the reinforcing rods extended through to the bottom of the concrete and thus had a direct bearing on the bed of the machine. The first crack appeared just before the maximum load taken by the concrete was reached. Failure occurred by compression of the concrete 12 in. above the base, and with continued application of the load the rods buckled at this point.

Column No. 7. Failed by compression of the concrete at a point about 5 ft. above the base, followed a little later by buckling of the rods. With continued application of a load nearly as great, the column finally sheared off diagonally with a loud explosive noise to a point 2 ft. 6 in. above the base. Fig. 6 shows the manner of failure. The greatest lateral deflection was 0.05 in.

Column No. 8. Failed without warning cracks by crushing at the top and shearing diagonally to a point 2 ft. 4 in. below.

Column No. 9. Failed without warning cracks and without noise by crushing diagonally about 18 inches below the top. Fig. 5 shows two faces.

Column No. 10. Failed by crushing out between the bottom two ties, 12 in. from the base. The concrete broke out near the vertical rod on one corner. This rod was found to rest directly upon the bed of the machine at the completion of the test. The lateral deflection was .02 in. Fig. 5 shows one face after failure.

Column No. 11. A corner was knocked off of the top of the column for a distance of $2\frac{1}{2}$ in. each way while setting it in the machine. Failure occurred by crushing between upper two ties 16 in. below the top after the maximum stress on the concrete had been passed. The lateral deflection was .07 in.

Column No. 12. Failed by crushing between upper two ties 13 in. below the top. First crack appeared at maximum load on the column, after the maximum stress on the concrete had been passed. Crackling sounds were heard at 2,275 lb. per sq. in.

Column No. 13. Failed by crushing nearly squarely across at the center of the height of the column. Vertical cracks extended half the length of the column. No cracks appeared before maximum load was reached.

Column No. 14. Failed by crushing at from 12 to 22 in. below the top. With continued application of the load the rods buckled between the top two ties. Maximum lateral deflection of column was .02 in.

TABLE 6.
Tests of Cubes and Cylinders.

Cubes					Cylinders				
	Age		mum Load		Age	Maximum Load			
No.	at Test days	Total pounds	lb. per sq. in.	No.	No.	No.	at Test days	Total pounds	lb. per sq. n
$\begin{array}{c} 2_{1} \\ 2_{2} \\ 5_{1} \\ 5_{2} \\ 7_{1} \\ 7_{2} \\ 10_{1} \\ 10_{2} \\ 11_{1} \\ 15_{1} \\ 15_{2} \\ 16_{1} \\ 16_{2} \\ 18_{2} \\ \end{array}$	67 67 61 61 69 70 64 75 75 67 66 66 66 39 39	282400 280000 333100 368700 256500 383000 273100 332500 337000 282400 280000 305100 348000 213000 223400	1970 1954 2314 2572 1790 2672 1897 2308 2453 2340 1970 1954 2090 2417 1472 1550	$\begin{array}{c} 5 \\ 9 \\ 10_{4} \\ 10_{2} \\ 12_{1} \\ 12_{2} \\ 16_{1} \\ 16_{2} \end{array}$	68 59 80 80 78 80 69 69	\$5600 55000 52000 61000 100320 95000 75500 59100	1758 1112 1068 1233 2088 1920 1525 1212		
A v.			2100				1490		

Column No. 15. Failed by crushing at about 12 in. from the top, vertical cracks appearing on all sides when maximum load was reached. No cracks appeared previously.

Column No. 16. Failed by crushing near the center of the length of the column, the first crack appearing just before the maximum load on the column, and some time after the max-

imum stress in the concrete had been reached. With further application of the load vertical rods buckled between three successive ties.

Column No. 17. Failed by crushing at maximum load 12 in. below the top. Rods finally buckled between top two ties.

Column No. 18. Failed by crushing at maximum load 12 in. below top. This column showed poor concrete.

Fig. 7. Stress-deformation Diagram for Column No. 5.

16. Cube and Cylinder Test Data.—Table 6 gives data of the age at test and of the compressive strength of the cubes and cyl-

inders which were made from the same batches of concrete as the corresponding columns. Reference to the strength of the con-

Fig. 8. Stress-deformation Diagram for Column No. 12. - crete in the columns given in Tables 7 and 8 shows that the cubes

and cylinders correspond to the weaker rather than to the stronger columns.

Stress-deformation Diagrams.—In Fig. 13 to 29, following 17. the text, and in the sample figures (Fig. 7 and Fig. 8) given in the text, the stress-deformation diagrams represent the observed loads and the corresponding deformations or shortenings for the columns tested. The ordinates (vertical distances on the diagram) represent the loads or pressure per square inch on the columns. For the reinforced concrete columns, for convenience of calculation, the unit-loads given on the diagram are based upon the gross area of the column. The bearing of this assumption upon the stresses in the concrete is discussed elsewhere. The abscissas (horizontal distances on the diagram) represent the unit-deformations, or shortenings per unit of length, determined from the observed extensometer readings for the gauged length used. These values are the averages for the readings on the four faces of the In general, the readings on the four faces varied but little from each other, as would be the case if the head of the machine moved parallel with itself and the column deflected laterally but slightly.

In these diagrams the amount of deformation is calculated by using as the zero reading the extensometer reading at the original zero of load or load at which the first reading was taken. In other words, the deformation shown is independent of any set which the load may have produced in the concrete. Whether gross or net (elastic) deformations are to be considered in discussing the results of tests depends, of course, on the use which is to be made of the results. In a discussion of the action and effect of longitudinal reinforcing bars, it would seem that gross or total deformations should be used rather than net or elastic deformations, and this is one reason for choosing to use gross deformations here. Since nothing is known of the shrinkage stresses in the concrete and steel, no consideration of their effect will be made.

The "Line for initial modulus of elasticity" given on the diagrams is the tangent at zero load for a parabola which has been found to fit the stress-deformation curve closely. The analysis and formula for the parabola and the initial tangent are given in a succeeding paragraph. In the choice of parabola for a given stress-deformation curve, the effort has been made to fit the curve fairly closely, but a fair correspondence between the ordinate for

the vertex of the parabola and the ultimate strength of the concrete has been looked for and also an agreement of the vertex with the deformation of the concrete at the maximum load. While some variation may be found in the exercise of the judgment in determining this parabola, yet the range of choice is less than is found when attempting to select a straight-line modulus through the early part of the curve.

Fig. 9. Stress-deformation Diagram for a Reinforced Concrete Column.

The line marked "Line for steel" represents for any given deformation the load per square inch considered distributed over the area of the column which is equivalent to that taken by the steel alone, considering the modulus of elasticity of the steel to be 30,000,000 lb. per sq. in. Thus, for a deformation in the column of .001, the corresponding stress in the steel is 30,000 lb. per sq. in. For a column having steel reinforcement equal to $1\frac{1}{2}\%$ of its cross section, the load thus taken by the steel is equivalent to 450 lb. per sq. in. distributed over the whole cross section, and the "Line for steel" is drawn through 450 lb. per sq. in. and a unit deformation of .001. For any given deformation, then, the amount of load below this line represents, on this basis, the part taken by

the steel reinforcement, and the amount above this line represents the part taken by the concrete. To illustrate, in Column No. 12 (Fig. 8) for a deformation of .0005 the steel will, by this analysis, be taking the equivalent of 220 lb. per sq. in. distributed over the cross section of the column (15,000 lb. per sq. in. on the steel alone), and the concrete will be taking 1,020 lb. per sq. in.; for a deformation of .001, the steel will be taking the equivalent of 440 lb. per sq. in. (30,000 lb. per sq. in. on the steel alone), and the concrete 1,560 lb. per sq. in. Strictly speaking, the amount so found should be increased by a percentage equal to that occupied by the steel area, since the former calculation assumes that this area is occupied by concrete, but as the effect of this correction is small it has been neglected.

In the case of the plain concrete columns, the maximum load may be expected to occur at or before the vertex of the parabola. Evidently, even if such a curve as the parabola fits the stress-deformation curve fairly well for low and medium loads, it may not be expected to agree so closely near the maximum, and beyond the maximum load such a law of course is not applicable. Fig. 7 shows the stress-deformation curve and points on its parabola for Column No. 5. In this and in Fig. 13 to 18 at the end of the text, several points of the parabola which is taken to express the stress-deformation relation have been calculated for the columns and are shown on the diagrams by points marked by crosses. These are given at deformations equal, respectively, to one-sixth, one-quarter, one-half, and full abscissa of the vertex of the parabola. The last one given is for the vertex of the parabola.

In the case of the columns reinforced with longitudinal rods, (1) a new diagram may be made to express the load taken by the concrete alone, or (2) the stress-deformation line may be considered to be drawn according to a modified system of oblique co-ordinates. In Fig. 9 the line OE represents the stress-deformation relation for the combination of steel and concrete and OC that for the steel. For (1), if the point E be set down to D a distance ED equal to CG, the ordinate GD will represent the stress taken by the concrete alone at this point. If, now, the amounts taken by the concrete alone, found on the above basis, be replatted, using the line OX as an axis, the new line OD marked "Line for concrete alone" will be the stress-deformation diagram for the concrete itself, and will be found to approximate to a parabola as in the

plain concrete columns. The resemblance of this curve and tangent to those for the plain concrete columns is at once apparent. (In Fig. 8, a diagram for the concrete alone is shown for Column No. 12.) The line OB is the tangent for this curve, or line for initial modulus of elasticity. By (2), the representation by a modified system of oblique co-ordinates, the ordinates or loads taken by the concrete are measured from the oblique line marked "Line for steel", and the shortenings of the column are measured horizontally as before. In Fig. 9, CE will represent the stress in the concrete at its maximum load, and the stresses in the concrete for other deformations will be found by measuring upward from the line OC. The separate diagram gives a good expression of the stress in the concrete itself. However, the line OE (Fig. 9) represents this stress-deformation relation as well, if we keep in mind that ordinates are to be measured from OC, and that diagonal distance or spaces are misleading. OA, which will represent the line for the initial modulus of elasticity in this combination or oblique diagram, will be above OB, and any point of it will be as much higher as the vertical distance of the corresponding point on OC is above OX. This line OA, from its distorted position, may not seem to be tangent to the curve OE. The point E on the oblique or combination parabola, directly above the vertex D of the ordinary parabola, must be considered to be the vertex of the oblique parabola, and is the point where the maximum load is taken by the concrete according to this stress-deformation relation, as is shown by the tangent line EF being parallel to OC. Beyond this point, while the column as a whole may sustain a larger load, a greater proportion of the load is taken by the steel, and the concrete has passed its maximum carrying capacity. In general, then, the point at which the concrete carries a maximum amount may be obtained by finding the point (as E) where a line parallel to the line for steel (OC) is tangent to the stress-deformation curve and then determining the load above the line for steel. represented by CE, may then be considered the maximum load taken by the concrete. The values given in the discussion which follows were calculated on this basis. This analysis, as is shown later, is borne out by the results of the columns tested. Although the oblique or combination diagram may strike the reader strangely, it was not thought necessary to reduce the readings to ordinary rectangular co-ordinates and make a second set of diagrams.

The diagrams given in Fig. 19 to 29, while at first perhaps appearing distorted, will, it is believed, give a comprehensive view of the relation between the loads taken by the concrete and steel for any given deformation or shortening of the column.

The Parabolic Stress-deformation Relation.—To begin with, it may be premised that a study and analysis of the relation between the stress or load in pounds per square inch and the unit deformation or shortening of the concrete will be of considerable value in the discussion and interpretation of the phenomena of compression of concrete in plain and reinforced columns. stress-deformation relation has an important bearing upon the strength of columns and on the proportion of load taken by the concrete and by the steel reinforcement in reinforced concrete columns. An analysis based on a curved stress-deformation relation, although not difficult, requires some little explanation. is hoped, therefore, that the reader will go over the discussion fully with the applicability of such an analysis in mind and not hastily conclude that undue weight has been attached to the curved form of the stress-deformation relation. Nor should the reader consider that the use of the parabolic relation in this discussion commits the writer to the position of excluding the straight-line stress-deformation relation (constant modulus of elasticity) from use in any formulas or applications whatever.

In a general way it may be said that concrete does not possess the property of proportionality of stress and deformation for wide ranges of stress as does steel; in other words, the deformation or shortening produced by a load is not proportional to the compres-The relation between stress and deformation is not sive stress. entirely uniform; there are even considerable differences in deformations for the same mixture, but generally the variation from direct proportionality is less for the richer mixtures. curves have been proposed to represent the stress-deformation relation, but the parabola is the most satisfactory general representation Frequently the parabola expresses the relation almost exactly, especially for mixtures of medium richness, and in nearly every case the parabolic relation will fit the stress-deformation diagram very closely throughout the part which is ordinarily developed in columns, the lack of agreement near the crushing point not being so important. Fig. 7 and Fig. 8 show the close agreement of the observed stress-deformation curve and the parabolic relation for Columns No. 5 and 12.

Modulus of elasticity is a term which has been used very loosely in connection with reinforced concrete. As a general property of materials, it is defined to be the ratio of the unit stress to the unit deformation within the elastic limit of the material. As applied in this way to materials having the property of proportionality of stress and deformation, the modulus of elasticity is a constant. For materials with a variable stress-deformation relation like concrete it may not be considered proper to call the variable ratio the modulus of elasticity, and such a use may lead to misunderstanding. However, it is important that a definite expression for this ratio be found.

Fig. 10. Stress-deformation Diagram for a Plain Concrete Column.

The writer obtains this relation from the initial modulus of elasticity and uses the term "Initial Modulus of Elasticity" to express the relation which would exist between stress and deformation if the concrete compressed uniformly at the rate it compresses when the load is first applied. For the parabolic stress-deformation relation, the line which represents this uniform or constant stress-deformation relation will be tangent to the parabola at the zero point. In Fig. 10 the ordinates represent unit stresses (pounds per square inch) and the abscissas unit deformations (shortenings in inches per inch). The relation between the stresses and the corresponding deformations may be represented by the part of a parabola, OA, which has its vertex at A, AC being its axis. The oblique line is tangent to the parabola at O, and

the tangent of the angle which it makes with the vertical is E_c , where E_c is the value of the initial modulus of elasticity. The equation of this line is $x = E_c y$, and this equation would give the relation between the compressive stress and the deformation if the stress-deformation relation were constant; or in other words if the modulus of elasticity were a constant.

The equation of the parabola may best be expressed by its relation to this line for initial modulus of elasticity. Let c represent compressive unit-stress for any point, (for the point P the ordinate DP represents c) and c' the maximum compressive stress (ordinate of vertex of parabola, CA). Let ϵ_c represent the unit-deformation for the point P (abscissa OD) and ϵ'_c the unit-deformation corresponding to the maximum compressive stress (abscissa of the vertex of the parabola, OC). It can be shown that $c = E_c \epsilon_c$

 $\frac{1}{2}\frac{1}{\epsilon_c'}E_c\epsilon_c^2$ may be taken as the equation of the parabola. On this

basis, this equation expresses the relation between the compressive stress and its corresponding deformation. It may be noted that the first term of the second member gives the stress corresponding to a given deformation by the straight-line relation, while the remaining term expresses a correction or reduction which changes the results materially for the higher deformations.

The value of the deformation at the maximum compressive strength of concrete, ϵ'_c , (abscissa of the vertex of the parabola), enters into equation (1). For many applications, it is convenient to express the deformation as a part of or in terms of this vertex deformation. Call the ratio of the deformation developed at a

given load to the deformation at the maximum load q (i. e., $q=\frac{\epsilon_{\rm c}}{\epsilon_{\rm c}'}$

and the foregoing equation becomes

The following relation may also be derived

$$\frac{c}{c'} = (1 - \frac{1}{2} q) 2 q. \dots (2)$$

When this parabolic relation is used the value c' will refer to the stress for the vertex of the parabola and ϵ'_c as its correspond-

ing deformation or abscissa. These may vary somewhat from the maximum compressive strength of the concrete and its corresponding deformation, but not greatly. The two sets of values should not be confused.

In Fig. 10 it may be seen that for the lower ranges of stress the parabola does not vary greatly from the straight line. At the

TABLE 7.
PLAIN CONCRETE COLUMNS.

Col.	Gauged	Initial Modulus of	Abscissa of Vertex of	Maximu: _lb. per	
No.	Length inches	Elasticity lb. per sq. in.	Parabola Parabola	Parabola	Observed
5	114	3 150 000	.0011	1730	1722
8	114	2530000	.0016	2000	2004
9	114	2500000	.0013	1620	1615
13	60	$2\ 370\ 000$.0014	1660	1709
15	60	$2\ 000\ 000$,0012	1200	1189
18	60	1 490 000	.00145	1080	1079
Αv.		2 340 000	.00134	1550	1553

vertex, however, the compressive stress (representing the maximum compressive strength) is one-half of that given by the straight-line relation. At one-half of ultimate deformation $(q = \frac{1}{2})$ it is three-quarters of that given by the straight-line relation.

The modification of the stress-deformation relation when longitudinal reinforcement is introduced has already been described.

19. The Stress-deformation Relations Developed in the Columns.—
It will be well to discuss the stress-deformation relations found in the columns tested, not so much because of the importance of the relations themselves, but for the reason that the results throw light upon the strength, stiffness, uniformity, and reliability of the columns. The diagrams (Fig. 13 to 18, following the text) contain the stress-deformation curves for the plain concrete columns. As has already been stated, these diagrams are based upon gross or total shortenings and not on net or elastic defor-

mations, since one use of the data will be to permit comparison, in the case of columns having longitudinal reinforcement, of the amount of load taken by the concrete with that taken by the steel, and the use of elastic deformation would involve consideration of stresses left in the steel upon release of load.

An examination of these diagrams shows that the maximum loads on the columns are in agreement with the stress-deformation diagrams, no column failing at a lower load than would be expected from a study of its diagram. The porous nature of Column No. 18 (a column made with less care than was given to the others) is shown by its diagram, (Fig. 15), which early gives indication of the low ultimate strength. The points given on these figures (denoted by crosses) for the parabolic stress-deformation relation agree, in general, fairly closely with the diagrams.

Table 7 gives for the plain concrete columns values for the initial modulus of elasticity, the deformation at the point of maximum strength used (abscissa of vertex of parabola), the maximum stress shown by the parabolic relation and the observed maximum compressive strength of the parabolic relation and the observed maximum compressive strength of the column. Except for Columns No. 5 and 18, both the modulus of elasticity and the abscissas of the vertex of the parabolas have a small range, and even including these the results show as small variation as may be expected in concrete made in this way. The average value for the initial modulus of elasticity, 2,340,000 lb. per sq. in., not only is of interest in its application to columns but it may have a bearing upon the value to be used in beam formulas. It should be noted that these values are for the first application of a load. For a repetition of a load the modulus of elasticity would be somewhat lower than this, the amount of this decrease depending upon the concrete and the number of repetitions. The average value for the abscissa of the vertex of parabola is .00134.

Table 8 gives similar values for the reinforced concrete columns. The amount of load taken by the concrete was found by the method described under Stress-deformation Diagrams, and the initial modulus of elasticity was taken from the derived stress-deformation curve for concrete alone. The abscissa of the vertex was found in a similar way. The maximum stress taken by the concrete was determined from the point on the stress-deformation curve at which a tangent is parallel to the line for the steel.

It will be seen by inspection of the diagrams that the column as a whole takes a load somewhat greater than that which gives the maximum stress on the concrete, the increase coming from the increased stress in the steel, though the amount of this increase

TABLE 8.

REINFORCED CONCRETE COLUMNS.

Col.	Length hes	cent	Initial Modulus of	Abscissa of Vertex of	Maximum Stress in Concrete lb. per sq. in.		Maximum Stress on
No.	Gauged Ler inches	per cent Reinforcement	Elasticity lb.per sq.in.	Parabola	Parabola	Ob- served	Gross Area lb. per sq. in
1	132	1.20	2 570 000	.00095	1220	1220	1587
2	108	1.52	2330000	.0010	1165	1160	1577
3	132	1.21	2 340 000	.0012	1400	1380	1862
$\frac{6}{7}$	132	1.52	2 090 000	.00105	1095	1090	1600
	132	1.21	2 570 000	.0011	1410	1400	1850
10	132	1.50	1 800 000	.0009	810	775	1280
11	132	1.21	2 430 000	.0012	1460	1460	1936
$\frac{12}{11}$	95	1.48	2 500 000	.00135	1687	1685	2335
$\begin{array}{c c} 14 \\ 16 \end{array}$	$\frac{132}{95}$	$\frac{1.50}{1.49}$	$2000000 \\ 1900000$	00095 00105	950 1000	955 990	$\frac{1367}{1607}$
17	60	1.47	1 900 000	.0016	1520	1560	2206
Av.			2 220 000	.00112	1247	1243	1746

averages only 2.2% and the largest increase is only 6.6%. The range of values for the initial modulus of elasticity is not greater than for the plain concrete columns, nor is that for deformation at vertex of parabola.

The last column of Table 8 gives the maximum load taken by the column in lb. per sq. in. of gross area, and hence includes the load taken by the steel.

The average value of the initial modulus of elasticity for the reinforced concrete columns is 2,220,000 lb. per sq. in. The average value of the final unit-deformation is .00112. The average variation from the average modulus of elasticity is 11%. The average variation from the average final deformation is 14%. The average value of the initial modulus of elasticity, 2,220,000 lb.

per sq. in., is very close to that for the plain concrete column, 2,340,000 lb. per sq. in. The final deformation is lower than that for the plain concrete columns. The range of results is smaller than that for the plain concrete columns.

The average modulus of elasticity for both plain and reinforced columns is 2,250,000 lb. per sq in. The average variation from this is 14%. The range covered is 40% above the average and 34% below, the extreme cases both being plain concrete columns.

Table 9 gives the observed and calculated loads for both plain and reinforced columns at four points of the tests. The loads include both the part taken by the concrete and that taken by the steel. The calculated loads are determined from the initial modulus of elasticity and parabola given in Tables 7 and 8. In the table, ϵ'_c represents the deformation at the point of maximum stress in the concrete, which agrees with the abscissa of the vertex of the parabola used. The values given in the last column therefore may not be expected to agree with the values given in Table 8 for maximum stress on gross area.

The three other points selected are at deformations of one-sixth $(q=\frac{1}{6})$, one-quarter $(q=\frac{1}{4})$ and one-half $(q=\frac{1}{2})$ of this deformation. It will be seen that the observed and calculated loads compare very favorably. The calculated loads are also shown in Fig. 13 to 29 (following the text) by points marked by crosses. Values for the Watertown Arsenal column tests, described elsewhere, are included in Table 9.

20. Strength of the Plain Concrete Columns.—Naturally, with the variation in materials and in the conditions attending fabrication and setting, concrete columns may not be expected to have uniform strength and stiffness. The conditions attending the fabrication of test specimens, however, are more nearly constant than those to be found in ordinary building operations and a greater allowance for variation should be made in building design than the variation found in these test columns. No. 18, which was made hastily and somewhat carelessly, with the expectation that it would be used at an early age merely for practice in the use of the instruments and machine, gives not only less stiffness but a very low compressive strength.

TABLE 9.

CALCULATED AND OBSERVED LOADS.

Loads are given in pounds per square inch of the gross section of the column and hence include the load taken by the steel.

Col.	At	ι ε΄ _c	At	1 ϵ ' _e	At	½ ϵ ' _e	At	€′.
No.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.
	9	Ì	University	v of Illino	ois Column	ns.		
$\begin{bmatrix} 1 & 2 & 3 & 6 & 7 & 7 \end{bmatrix}$	440 430 505 400 500	435 430 545 415 515	$\begin{array}{c} 610 \\ 625 \\ 725 \\ 600 \\ 720 \end{array}$	600 620 745 600 705	$ \begin{array}{ c c c } \hline 1085 \\ 1105 \\ 1270 \\ 1065 \\ 1260 \\ \end{array} $	1055 1080 1265 1045 1300	1560 1620 1840 1575 1815	1560 1570 1815 1570 1810
10 11 12 14 16	315 520 605 365 380	315 540 630 385 415	440 750 895 525 550	435 750 910 535 555	805 1320 1575 915 980	785 1310 1575 910 960	1210 1900 2290 1370 1450	1205 1895 2290 1375 1450
17 5 8 9 13	595 520 610 495 505	540 520 630 490 505	845 770 875 710 725	820 745 880 690 710	1490 1300 1500 1220 1240	1535 1275 1435 1150 1170	2230 1730 2000 1620 1660	2200 1720 2005 1620 1710
15 18	370 330	385 345	525 475	525 475	900 805	860 765	1200 1080	1190 1080
Av.	463	473	662	664	1167	1146	1656	1651
			Waterto	wn Arsen	ıl Column	s		
1579 1580 1581 1582 1584 1585 1583	805 557 640 650 820 675 645	830 555 610 620 820 630 650	1130 755 885 905 1170 930 890	1130 750 880 860 1110 870 890	1920 1260 1480 1500 1980 1600 1450	1920 1280 1475 1450 1930 1550 1420	2800 1820 2080 2110 2870 2460 1800	2800 1830 2060 2110 2870 2460 1800
Λv.	685	673	952	927	1598	1575	2277	2275

The average maximum load for the plain concrete columns tested, as shown in Table 7, was 1553 lb. per sq. in. The lowest load, 1079 lb. per sq. in. for Column No. 18, is 30% less than this

average, and the highest load, 2004 lb. per sq. in., is 29% more than this average. The average variation from the average strength is 18%. This range is not large, considering the nature of the material. As has been stated, the stress-deformation diagrams indicate that the maximum loads found correspond with the general behavior of the columns and that the test loads were generally concentrically applied and uniformly distributed. They also show the variation in quality and action. The diagram of No. 18 shows its porous nature and foretells failure at a low load. No general difference in results between 9 x 9-in. and 12 x 12-in. columns is noticeable.

A comparison of the ultimate strength of the cubes tested with the loads carried by the columns made with the same mix shows that the strength of the columns is materially less than the strength of the cubes. As shown in Table 6 the average for the 12-in. cubes is 2205 lb. per sq. in. and that for the columns is 1553 lb. per sq. in., 30% less. It seems probable that the restraining influence of the friction against the bearing plates is a cause for the additional strength in the cubes, as has been shown by some experimenters to be the case, while in the columns this influence does not extend far from the ends. The results with the 8 x 16-in. cylinders given in the same table (average of 1490 lb. per sq. in.) agree very closely with the column tests and corroborate this view.

21. Strength of the Reinforced Concrete Columns.—Two things are noticeable in the results given in Table 8 for the loads taken by the concrete in the columns reinforced with longitudinal rods,—that the maximum stresses taken by the concrete are less than for the plain concrete columns, and that the range of results is greater. Before discussing these apparent characteristics of the tests, it will be well to consider some of the conditions attending the tests and the possible effect of such conditions upon the results.

No effort was made to bring the ends of the reinforcing rods to have a bearing upon the compression or bearing plates of the testing machine. Generally, the rods ended within $\frac{1}{2}$ in. of the end of the column. In No. 6, the rods rested on the bearing plate; in No. 10, one rod rested on the plate; and in No. 14, the rods extended to the face of the plaster in which the ends of the columns were bedded. Evidently it would be difficult to get an exact and even bearing for all the rods directly against the plates. The

concrete or plaster under the ends of the rods would not be capable of transmitting as great a stress per square inch as is taken by the steel, and part of the load taken by the steel must be carried through the surrounding concrete and be transmitted to the steel by means of the bond between concrete and steel. Fortunately this extra stress on the concrete exists at the ends of the columns where the concrete has the aid of the lateral restraining influence of the bearing plates. The bond developed would cause the stress to be transmitted to the rods within a short distance of the end of the column. Whether this is done before the concrete is beyond the influence of the bearing plates and, whether the bond developed is beyond the bond strength may, perhaps, be determined by a study of the stress-deformation diagrams and the method and point of failure of the individual columps. The vokes of the extensometers were in general within the portion of the length where the rods may be considered to be taking their full stress, and the deformations are the average deformations for the gauged length.

In all of the columns the point of maximum stress on the concrete is well within the point of ultimate failure, the deformation of the columns going on for some time beyond this maximum The form of the stress-deformation curve is similar for all the columns, and no difference can be detected for those with different positions of the ends of the reinforcing rods. method of failure and the position of the failure are not noticeably connected with any end condition, and the distribution of the failures does not differ in any marked degree from that for the plain concrete columns. It would seem, then, that in general the position of the ends of the reinforcing rods has not affected the results in any marked manner, and there is no apparent reason for giving greater or less weight to the strength of any column. An exception to this may possibly be made in the case of No. 10, in which one bar rested on the plate and the failure was due to the breaking of the concrete around this rod at the end of the column. The condition is a severe one, and it is quite possible that the results in this case should be thrown out.

The average stress taken by the concrete, based on the analysis heretofore given, is, as shown in Table 8, for all the reinforced concrete columns 1243 lb. per sq. in. and with No. 10 omit-

ted, 1290 lb. per sq. in. Omitting Column No. 10, the lowest value is 26% below the average, the highest value is 30% above the average, and the average variation is 16%. The average strength of the plain concrete columns is 1553 lb. per sq. in. average strength of the reinforced concrete columns, based on gross area and without allowance for the steel, is 1746 lb. per sq. It will be seen that the stress taken by the concrete is, in the case of the reinforced columns, about 15% less than the strength of the plain columns, and that the total strength of the reinforced columns is considerably more than that of the plain columns. These results may not be representative, but at least they indicate that care should be taken not to use too high working stresses in columns reinforced in this way. The fact that the values of the initial modulus of elasticity average for the reinforced columns so closely to the average for the plain columns, is confirmatory of the correctness of the results. It may also be noted that the abscissa of the vertex of the parabola fitted to the reinforced columns is less than that for the plain columns. This fact is possibly connected with the explanation of the lower concrete stresses in the reinforced columns.

The columns having ties around the longitudinal rods show no greater strength than those without ties, and there is no difference apparent in the manner of failure. It is true that buckling of the rods occurred between the ties, but this buckling must have taken place after the concrete reached its maximum stress, judging from the stress-deformation diagrams. In fact, it may not be expected, from ordinary analysis, that ties placed at so great a distance apart will have a beneficial effect upon the strength of the columns.

22. Watertown Arsenal Column Tests.— Not many tests have been made on plain and reinforced concrete columns in a systematic way with a view of determining the relative amount of stress in the steel and concrete while under load. Many occasional or desultory tests have been made, but usually these furnish no basis for comparison. The only series made in the United States, known to the writer, which gives an opportunity for making a comparison with the tests here recorded, is the series made by the United States government at Watertown Arsenal and reported in Tests of Metals for 1904. The well known care and trustworthiness of the Watertown tests make it seem profitable to in-

clude here a summary of such of these tests as may be compared with the University of Illinois columns. The columns selected include all of those made with one grade of 1–2–4 concrete and tested at about the same age and include the numbers from 1579 to 1585. As only one column of plain concrete was tested and a single test may not be at all representative of the characteristics of a concrete, but little comparison between plain and reinforced columns may be made. The number of reinforced columns and the range of the reinforcement are such that the tests give a good opportunity to study the relative stresses taken by steel and concrete.

The concrete was made of one part Vulcanite cement, two parts sand ($\frac{1}{8}$ -in. sieve), and four parts pebbles ($\frac{1}{2}$ to $1\frac{1}{2}$ in. in diameter) by volume. The concrete averaged about 145 lb. per cu. ft. in weight. The reinforcing rods at the corners were placed $1\frac{7}{8}$ in. from the faces of the column, and where more than four rods were used the remaining rods were placed symmetrically in the interior. A variety of forms of reinforcement was used. The rods were cut to exact length and always had a direct bearing upon the bearing plates of the testing machine. In the test, the load was released several times, generally ten or more, but at progressively increasing amounts, and never more than once from any given load. The age of the columns averaged about $3\frac{1}{2}$ months at time of test.

TABLE 10.

Data on Watertown Arsenal Columns.

Average length of columns, 94 inches.

Col.	Dimensions	Gross	Reinforcement				
No.	in. x in.	Area sq. in.	Amount and Kind	per cent	at Test days		
1579	12.58x12.60	158.5	8-3-in. Thacher bars	2.09	102		
1580	$12.60 \mathrm{x} 12.51$	157.6	4— ⁸ / ₄ -in. Twisted bars	1.43	103		
1581	$12.60 \mathrm{x} 12.67$	159.6	$4-\frac{3}{4}$ -in. Thacher bars	1.03	104		
1582	12.68 x 12.60	159.8	4—§-in. Corrugated bars	0.97	106		
1584	12.63x12.60	159.5	8—§-in. Corrugated bars	1.94	104		
1585	12.60 x 12.50	157.5	8—\delta-in. Twisted bars	2.86	105		
1583	12.66x12.59	159.4	None	0.00	107		

Stress-deformation diagrams are given in Fig. 30 to 36 at the end of the text. As before, the deformations given are gross and not net or elastic deformations. The line for steel, line for initial modulus of elasticity, and point of maximum stress in concrete are used in the way already given for the University of Illinois tests. Points for the parabolic stress-deformation relation for one-sixth, one-fourth, one-half, and full abscissa are marked by crosses. It will be seen that these diagrams have the same general characteristics as the University of Illinois tests, and that the parabolic curve fits them very closely.

Table 10 gives general information on the amount and nature of the reinforcement and the age of test. Table 11 gives the initial modulus of elasticity, the abscissa of vertex of the stress-deformation parabola, and the maximum stress taken by the concrete alone, the last being based upon the method already used, wherein the steel is considered to take a stress corresponding to

TABLE 11.
WATERTOWN ARSENAL COLUMN TESTS.

Col.	Length hes	ent cement	Initial Modulus of	Abscissa of Vertex of	Maximum Stress in Concrete lb. per sq. in.		Maximum Stress on
No.	Gauged Length inches	per cent Reinforcement	Elasticity lb.per sq.in.	Parabola	Calcu- lated	Ob- served	Gross Area lb. per sq. in.
1579	50	2.09	3 200 000	.0012	1950	1950	2760
1580	50	1.43	2000000	.0012	1200	1200	1990
1581	50	1.03	2200000	.0014	1540	1460	1990
1582	50	0,97	2300000	.0014	1600	1540	1250
1584	50	1.94	2800000	.0014	1960	1920	2830
1585	50	2.86	2200000	.0012	1330	1330	3160
1583	50	0.00	2 770 000	.0013	1800	1710	1710
Av.			2 500 000	.0013	1620	1590	2240

its deformation and the concrete the remainder of the load. In Table 9 are given observed stresses at four deformations and also stresses calculated for the same points from the parabolic stress-deformation relation.

The one plain concrete column has a higher modulus of elasticity than the average value found for the reinforced columns,

and its stress-deformation curve does not reach the vertex of the containing parabola. These differences and the variability of stiffness and strength found in the reinforced columns, as well as the well established variability of concrete, go to show that the result of this one test may not be taken as representative of the strength and stiffness of plain concrete columns in comparison with the reinforced columns, and general conclusions may not be drawn. The ultimate strength of this column is, however, somewhat higher than the average maximum stress in the concrete for the reinforced columns as determined from the line for steel.

The average maximum stress in the concrete, for the reinforced columns, determined from the line for steel is fairly uniform, the range being 23% below the average and 24% above. The strength and stiffness of these columns are somewhat higher than given by the University of Illinois tests, as might be expected from the greater age at test and the use of pebbles instead of limestone. The columns are evidently somewhat more uniform in their make-up. The agreement of the observed values with those calculated by the parabolic stress-deformation relation is close. The average maximum compressive stress taken by the concrete, including the result for the one plain column, is 1590 lb. per sq. in. In general, the results of the two series of column tests are quite similar.

A study of the results shows that there is no marked characteristic difference in either stiffness or strength for columns made with any special form of reinforcing bar or with any given amount of reinforcement. For leaner concrete, and hence greater porosity, the difference in the elastic limits of the bars may be expected to have an effect upon the results.

23. Modulus of Elasticity.—As has already been stated, there is a great diversity of usage in reference to modulus of elasticity. Some writers have fallen into the error of using a constant ratio between stress and deformation, and yet of considering the stress-deformation diagram a parabola. Whether the stress-deformation relation should be considered variable, or whether a straight-line relation may be held to serve well enough for the range used, depends upon the particular use or application to which the relation is to be put. In fact, generally the test of the method to be employed lies in the purpose and end to be served in the application. In beams having a small amount of reinforcement the use of a

constant modulus may be permissible. In beams having a large amount of reinforcement and in which the compressive strength of the concrete is the controlling element, a variable modulus may be preferable. In reinforced columns, it would seem that a variable modulus (curved stress-deformation diagram) should be used in discussing the relative loads finally taken by the concrete and by the steel. The same test applies to the use of gross or net (elastic) deformations. If one purpose in the use of the deformation is to determine (a), in the case of a reinforced column, the amount of the deformation in the longitudinal steel reinforcement and from this to calculate the stress in the steel, or (b), in a reinforced beam, the amount of change in a section and from this the position of the neutral axis and the resulting stress in the steel. it seems clear that gross (total) deformation should be used and not net (elastic) deformation, if we consider that a plane section before bending remains a plane section after bending. of elastic deformations must be misleading in these cases.

Again. the method to be used in determining the stress-deformation relation for repetitive loading should be judged in the same way. For example, when a compression test piece (a beam gives a similar phenomenon) has had loads applied in continuously increasing amounts, the stress-deformation line will be a curve. as is shown for example in the diagrams for Columns No. 5 and 12 given in Fig. 7 and 8. If now the load be gradually released, the points found during release will approximate to a straight line running to the set point. If the load is reapplied, the points found on the return line are not far from the straight line, and the second application of the given load shows a deformation somewhat larger than the first. To say, because at the partial loads the values approximate to a straight-line relation, that therefore the corresponding constant modulus of elasticity should be used in calculations on beams and columns, is evidently erroneous reasoning, as will be shown in the succeeding paragraph.

The set indicated in this line of released and reapplied loading does not exist throughout the cross-section of a beam under repeated loadings, as might at first thought seem to be the case. A method of more general applicability is to determine the final deformation after repetition for each loading seriatum. Thus, if the loads are to be applied one hundred times, apply, say, 100 lb. per sq. in. one hundred times and note the final deformation; apply

500 lb. per sq. in. one hundred times and note the final deformation; apply 1,000 lb. per sq. in., etc. Fig. 11 gives some idea how these deformations will change under repetitions, the points obtained for the same number of repetitions being connected together. The final diagram (represented by the lower curve) will resemble the one for the initial application, especially in portions of the curve other than near the ultimate, though the exact position of this will depend upon the number of repetitions, the elas-

Fig. 11. Diagram Illustrating Effect of Repetitive Loading.

ticity of the concrete, etc. Now, the same condition may be expected to exist in a beam that has been loaded one hundred times: at the remotest fiber the deformation is that due to repetition at the unit stress it has been subjected to, say 500 lb. per sq. in.; at a point half way to the neutral axis it is that due to repetition at one-half as great a unit stress, say 250 lb. per sq. in., and not (as would be the case if the results by the first mentioned method of loading were taken) the deformation under the condition that this fiber has been stressed to 500 lb. per sq. in. and then had had its stress reduced to 250 lb. per sq. in. This statement, of course, is approximate, since under the conditions described the position of the neutral axis would change, the stresses themselves would change, and the section itself would distort from a plane section, but nevertheless the illustration holds. The stress-deformation curve for repetitive loading should, then, be made by connecting points obtained under repetition of first one load, then a higher one, then still a higher one, etc. For a column, the deformations at intermediate loads are not so important, but the general character of the stress-deformation diagram is essential.

The use of both gross and elastic deformations contributes to the diversity of values for the modulus of elasticity of concrete given in engineering literature. Elastic deformations naturally give higher values. Caution should be used in accepting high values because they may have been obtained from elastic deformations or because they may have been taken from short specimens affected by the restraint of the bearing plates or because they may represent concrete of a much denser quality than is to be found under the conditions of practical construction. It is also to be seen, as shown in the preceding paragraph, (see also Fig. 11), that with repeated applications of a load the deformations will increase and the abscissa of the vertex of the assumed parabola will be larger. At the same time the maximum load which the concrete will take must be considered to be smaller. Under these two changes, it is evident that the resulting initial modulus of elasticity will be smaller than that for a single application of the load. What the amount of this decrease is will depend upon the nature of the concrete, its age and plasticity, and the number of repetitions of the load. The more plastic and porous the concrete, the greater the effect. The richer the mixture and the older the test piece, the less it will be. same time, it must be borne in mind that the concrete grows stiffer with age, and that most tests have been made at an early age, 30 Whether this increase in stiffness with time will counteract the decrease in value just noted, will depend upon the nature of the concrete and the number of applications. A similar effect may be expected in concrete by reason of its plastic nature when a load is applied for a considerable length of time (time effect), but little is known of this phenomenon.

It is noticeable that the values of the initial modulus of elasticity for the two series herein given agree fairly closely, an average of 2,250,000 lb. per sq. in. for 1–2–4 limestone concrete 60 days old tested at the University of Illinois, and an average of 2,500,000 lb. per sq. in. for 1–2–4 pebble concrete 105 days old tested at Watertown Arsenal. These values are based upon gross deformations and, in the main, first loading of the specimen. The combined effect of age and even moderate repetition, if the discussion in the previous paragraph holds, may be a modulus somewhat smaller than that given by these tests. What this modulus will become cannot be told without adequate tests. However, for

1–2–4 concrete of the quality used in the University of Illinois and the Watertown Arsenal columns (limestone in one, pebbles in the other), the initial modulus of elasticity at the age of a year and after a moderate number of applications of the load seems more likely to be below 2,500,000 lb. per sq. in. than above it. Further data on the effect of age of concrete and repetition of load upon modulus of elasticity are necessary before definite conclusions may be reached.

It should be noted that if a straight-line stress-deformation relation is to be used, particularly in the case of columns, the value chosen should be considerably less than that of the initial modulus of elasticity.

Discussion of Basis for Working Stresses and Working Factor in Structures.—The real basis for a working stress or a factor of safety to be used in designing seems not to be generally understood, or at least it is not often properly explained, and expressions sometimes heard indicate that the purpose and use of factor of safety and working stress are misinterpreted. Of course, no engineer will say that for a factor of safety of, say, four (using the term factor of safety as based upon the ultimate strength of the material) the structure will take four times the assumed load without injury. It is understood by engineers that the actual ratio of the load which the structure may properly take under the ordinary conditions of construction to the assumed load used in the calculations made in the design is not large and may, under some circumstances, not be very much above one. Yet the statement is sometimes made, or the inference may be drawn, that because a given working stress is to be used in the calculations there is no advantage in looking into the behavior of the material or the action of the structure at a stress higher than the assumed working Before discussing further the meaning of the tests here recorded, it may be well to consider some of the aspects of working stresses and factors of safety.

Mild steel has a rather definite elastic limit and yield point beyond which the character of its action changes in a marked way. Beyond the yield point the rate of stretch in tension becomes almost at once one hundred or more times as much as it was within the elastic limit. In compression, the ultimate strength of mild steel is not far beyond its elastic limit. It is evident that a structure made up of this material will distort and fail when a load producing stresses not much greater than the elastic limit is placed upon it. The elastic limit of mild steel has a small range, its value running from 50% to 65% of the ultimate strength, depending upon the size of the piece, method of rolling, etc., and the steel is made under such conditions that little risk is taken in choosing a value for a particular size and shape of piece. The modulus of elasticity of steel is also quite uniform. It may be said then, that the properties of this material, with proper inspection, are fairly definitely known. When we base the factor of safety of a structure upon ultimate strength of mild steel, whether we do it consciously or unconsciously we have tacitly assumed that the factor of safety named in the calculations is nearly double the factor which will bring actual failure under the conditions assumed to exist in the structure.

For a plastic material, or a material not having a definite elastic limit, or at any rate one for which the stress varies directly as the deformation for at best only a small part of the ultimate strength of the material, a different consideration must be given. For such materials, the effect of lack of uniformity of the material, the effect of increased deformation, of repetitive loading, of time, and of other factors must be considered.

But there are other considerations which go to confine the working stress, particularly in concrete, to the low value usually assumed. Sometimes the stress is made low to allow for a possibly greater load than that assumed, or for a load applied other than statically. Even if the assumed load has the correct total amount, the following items may be said to influence the choice of a lower working stress: (1) Uneven distribution of load among members; (2) Unconsidered stresses due to settling, variability of the material, etc.; and (3) Variation in the material and in its fabrication.

(1) Even with a load of the amount assumed, the division of this load among the members of the structure may be uneven. Variations in stiffness, differences in quality of adjacent members due to inherent variations or to the variations which arise in such a material as concrete during fabrication and setting, differences due to restraint or lack of restraint at connections,—all go to make the actual distribution of the load different from its assumed division among the members. In a timber trestle bridge, the weaker stringer is generally less stiff than its stronger

neighbor, and hence the poor stringer takes a smaller share of the load and the good one a greater. Even in steel building construction, differences in rigidity of connections, modifications made to overcome lack of exact fit, and variations caused by field riveting act to modify the division of the load. In concrete construction the variations in fabrication and conditions of setting (e. g., in the beams and girders) and the consequent variable effect on stiffness and restraint may have a considerable effect upon the division of the load. This is especially true in the floor, beams, and girders, so that the load transmitted to a particular column may be quite different from that assumed.

- (2) Settling of the foundation of one column more than of another is possible. A variation in the shrinkage of adjacent columns through variation in conditions attending fabrication or to a less extent in porosity or stiffness of column will modify the distribution of the load. Variations in size also affect this distribution. The more nearly uniform the dimensions and physical properties, the more nearly regular the division of load will be and the higher the allowable comparative working stress. In this respect, steel is an advantageous building material.
- (3) The values of physical properties usually quoted are average values. The data were obtained from test pieces, sometimes large, frequently small, and these may be said to have been made and tested under favorable conditions. Since the members of a structure which have the poorest quality may have a controlling influence upon the amount of load to be carried, if average values are used the factor must be greater to allow for this. In other words, in poorly made beams or columns the load or stress which comes on the piece is relatively nearer the point of failure than is indicated by the use of the assumed working stress and an average ultimate value.

Enough has been said to show that the assumed stresses are not the actual stresses coming upon the members of a structure and that the relation between the assumed working stress and the average ultimate strength of the material is a matter which should involve thought and study. It may then be stated that (a) the stress actually brought upon a member of a structure by an assumed loading may be materially higher than the assumed working stress, and (b) the stress actually developed in a member may be much higher comparatively (i. e., with respect to its own ulti-

mate strength) than even this increased amount would indicate. This goes to show that the nature of the action of the material, including its stress-deformation relation, should be studied at points well above the assumed working stress. What point should be fixed upon as a basic point, upon which a working factor covering uneven distribution of load, uncertainty of quality, effect of repetitive loading, etc., may be based, will depend upon the nature of the material and the conditions of the structure. Some discussion of this subject will be given under Formulas for Plain and Reinforced Concrete Columns. No attempt will be made here to discuss what the working factor should be. Its value will depend upon many conditions which it will be impossible to discuss here.

25. Formulas for Plain and Reinforced Concrete Columns.—It seems hardly necessary to advance the idea here that for concrete columns used in ordinary building construction little attention need be given to the relation between length and lateral dimensions after a length of a few diameters has been reached. books on reinforced concrete contain long and complicated treatments involving Euler's relation and Rankine's formula. However, columns in buildings do not ordinarily go beyond, say, 12 or 15 diameters, and the ratio is usually much less, especially for the lower stories. Even for 15 diameters we may readily conclude from the calculated results of long column formulas and also from the small lateral deformation found in the columns tested that the difference in strength between a column 15 diameters long and one 5 diameters long is less than the variation among several columns of the same length. The same conclusion may be drawn from the set of tests of columns of varying length made at the Massachusetts Institute of Technology and quoted in Buel and Hill's Reinforced Concrete, page 76. For columns eccentrically loaded, the effect of any eccentricity is generally large in comparison with the lateral deflection used in the Euler analysis, and it may be said to be generally independent of the length of the column. Clearly, for conditions of ordinary design a formula for plain columns or for columns reinforced with longitudinal rods need not include the ratio of length to lateral dimension. In this discussion only concentric loading of columns is considered.

Obviously then, the formula for plain concrete columns is P = 4c (3)

where P is the load assumed to be carried, A is the area of the column considered (in practice, part of the area at the outside, sometimes being excluded as a precaution in case of fire) and c is the working stress assumed or determined by other considerations.

In columns with longitudinal reinforcement, if we use P, A, and c as before, and denote by p the ratio which the area of the column bears to the area of the steel reinforcement, and by n the ratio between the stress existing in the steel and that in the concrete, the area of the steel will be pA, the unit-stress in the steel will be nc, and the area of the concrete will be A(1-p). The total compressive stress in the steel will then be pAnc and that in the concrete Ac(1-p). The formula for the strength of the column may then be written

$$P = Ac(1-(n-1)p)\dots(4)$$

This ratio is used rather than the ratio of the moduli of elasticity, since the latter may be misleading. If we call the area of the steel A, this formula may be put in the form,

It will be necessary to select the value to be used for n in these formulas, and this will involve a discussion of the part of the stress-deformation field from which the basic value of the compressive strength used in the determination of the working strength is to be taken.

Granting that the actual stress in the member of a structure will probably be considerably greater than the stress calculated from the assumed distribution of the load, by reason of such agencies as have been discussed, and also that for members which are weaker than their neighbors the stress deformation point developed will be relatively nearer the point of failure and hence farther up the diagram than the same stress will be in the diagram for an average test piece, and considering further that an additional allowance must be made for contingencies or emergencies, it is apparent that the field for this basic value of the compressive strength will be well along on the stress-deformation diagram. Obviously the extreme variability of concrete near the point of failure rules out values near the ultimate strength, even if other considerations do not. In all the field near the point of failure, too, the deformations are large, and repetition of loading increases them rapidly. The time effect of a permanent load is also large. It would seem that a stress greater than that which

gives a deformation equal to one-half of the ultimate deformation of the concrete, $(q=\frac{1}{2})$, is as large as may properly be taken as a basic value, even if the contingency of ever having such a stress in the member is very remote and then only temporary and not to be repeated. The stress corresponding to this deformation point is by the parabolic relation three-fourths of the ultimate strength of the concrete. This is not far from the basis adopted by Captain Sewell, eight-tenths of the ultimate strength, in his admirable paper on Reinforced Concrete Floor Systems in the Transactions of the American Society of Civil Engineers, Vol. 56. For many conditions of fabrication or of application of the load, a lower point in the diagram should be chosen, or the factor of safety increased. If we select the half-way point in the stress-deformation diagram $(q=\frac{1}{2} \text{ and } c=\frac{3}{4}c')$, for the basic value, the next step will be to choose the working factor, to cover the effect of repetition of stress, uncertainty of distribution of assumed load, variation in quality of material and construction, and other uncertainties and contingencies. It should be noted that this discussion is more particularly applicable to columns, since in beams with the amount of reinforcement ordinarily used the beam will fail through tension in the steel or by web stresses and not by compression of the concrete.

In the formula for reinforced concrete columns an important factor is the ratio of the stress in the steel to the stress in the concrete, called n in this discussion. This ratio is a variable one, depending upon the amount of deformation developed. To call it the ratio of the moduli of elasticity is indefinite and undesirable. If we assume the parabolic stress-deformation relation, it may be shown that this ratio is

$$n = \frac{1}{1 - \frac{1}{2}q} \quad \frac{E_s}{E_c} \cdot \dots (6)$$

where E_s is the modulus of elasticity of the steel, E_c is the initial modulus of elasticity of the concrete, and q is the ratio of the deformation at the load under consideration to the ultimate deformation (vertex of the parabola). For low loads, n will not differ far from the ratio of the two moduli used above. At the four points noted on the stress-deformation diagrams it will be as follows: for $q = \frac{1}{6}, \frac{12}{11}$ times the initial ratio given above; for $q = \frac{4}{4}$, $\frac{8}{7}$ times the initial ratio; and for

q=1, 2 times the initial ratio. For $E_c=2.500,000$, the initial value of n is 12, and it becomes 16 and 24 for the half-way deformation and the ultimate strength, respectively. For $E_c=2,000,000$, the values of n for the same points are 15, 20, and 30. It is seen that n rapidly increases at the higher deformations.

Values of n have been determined from the observed deformations, counting the division of stress between the concrete and the steel to be according to the analysis heretofore given, and results for both the University of Illinois tests and the Watertown Arsenal data are given in Table 12. ϵ'_{c} represents the unit deform-

TABLE 12. $\label{eq:table 12}$ Ratio of Stress in Steel to Stress in Concrete. $\mbox{Values of n.}$

 $\epsilon_{c}^{'}$ — unit deformation at the maximum compressive stress in the concrete.

Remarks	At ϵ _e	At $\frac{1}{2} \epsilon_{c}^{'}$	At 1 cc	At 1 6'	Ato	Col. No.
U. of I. tests.	24.8	16.0	13.7	12.2	11.7	1
	25.7	17.8	14.9	13.9	12.9	$\frac{1}{2}$
	26.4	17.4	14.2	13.2	12.8	3
	29.0	19.6	16.4	15.5	14.3	6
	23.8	15.5	13.7	13.1	11.7	7
One rod on bearing plate	33.9	23.0	18.6	17.3	16.7	10
	24.7	$16.2 \pm$	13.4	12.3	12.3	11
	24.2	16.0	13.3	12.7	12.0	12
Rods on plaster.	29.4	20.0 - 1	16.5	14.8	15.0 +	14
	32.2	21.2	17.3	16.0	15.8	16
	27.2	20.1	20.0	20.4	15.8	• 17
	27.3	18.4	15.6	14.7	13.7	Av.
Watertown tests.	18.5	12,6	10.8	9.4	9.4	1579
	29.2	19.6	17.5	17.5	15.0	1580
	28.1	18.4	15.9	15.4	13.6	1581
	25.6	17.9^{-1}	15.9	16.0	13.1	1582
	21.4	14.9	12.7	11.4	10.7	1584
	27.1	19.0	16.8	16.5	13.6	1585
	25.0	17.1	14.9	14.4	12.6	Av.

ation at the point of maximum stress in the concrete (corresponding to abscissa of vertex of parabola). The same values are given in Fig. 12, the dots representing University of Illinois results and the crosses Watertown Arsenal values. The lines de-

note average values. In both Table 12 and Fig. 12, the value at the initial loading (q = 0) is taken from the ratio for the initial modulus of elasticity for the column under consideration. It will be seen that the values range from 11.7 in one case for initial load to 34 in another at ultimate load.

If we assume that a concrete stronger than the average has a modulus of elasticity higher than the average, and that a weaker concrete has a smaller modulus, then the selection of a value of n higher than the average for use in design may be defended, for if a given column is made of concrete poorer than the average the steel by virtue of the low modulus of elasticity of the concrete in which it is embedded will have a greater stress thrown upon it than is indicated by an average value of n, and a column made better than the average will be capable of taking a greater load than that calculated with an average value of n. At least, it would seem logical to choose a value higher than the average

Fig. 12. Values of n.

value rather than a lower value.

If we take the half-way deformation $(q = \frac{1}{2})$ as the point for determining our basic value for working factor and working stress, the average values of n in Table 12, 18.4 and 17.1, respectively, may serve as a guide for the value to be chosen for equation (4). For concrete of the character used in the tests, it would seem then, that 17 and 18 may be considered average values for n, and that values even higher than these, say, 18 to 21, may properly be selected.

It may be added that the value of n to be used for a given concrete will depend upon its density and stiffness. For a very rich concrete, not only will the initial modulus of elasticity be higher, but the deformation at maximum strength (abscissa of vertex of parabola) will be less. As a consequence of both of these changes the ratio n will be less for very rich concrete than for the test columns here considered. On the contrary, for lean concrete, the initial modulus of elasticity will be lower and the deformation at maximum stress higher, and therefore the ratio n will be higher than the values here given.

26. Discussion of Columns in Building Construction—It may be well to call attention to some of the reasons why columns may be a weak point in reinforced concrete construction and to offer a word of caution concerning their construction. The conditions of column construction as ordinarily carried on in building operations give little chance for efficient inspection, and there is abundant opportunity for great variation in the concrete, since the work is out of sight and the mixture of the material and the tamping or stirring will be far from uniform, much less uniform than in the test columns herein described. Even in test columns the poorer columns carried low ultimate loads. If, in addition to these considerations, the possible uneven distribution of the assumed load due to settlement, shrinkage, and uneven stiffness of the floor system be also taken into account, the need for using low working stresses and careful construction ought to be apparent. Evidently a fairly rich concrete made of a high grade of cement should be used. It is not improbable that in many buildings the working stresses used are too high for the concrete actually put into the columns. Besides, it must always be borne in mind that the strength obtained from test cubes may not be taken as representing the strength of a column. It is probable that many engineers have been misled by high values obtained on test cubes. Again, great caution should be used in the time allowance for removing the forms, particularly in cool weather, for the concrete in the olumns should be fairly well set before much of a load is allowed on it. A method of construction should be selected which will not bring weight upon the columns until the forms are removed, and the concrete is thoroughly set. It is fortunate that the concrete continues to gain in strength for a considerable time, although this advantage is counteracted in a structure to some extent by the injury to the concrete caused by early application of the load.

Both plain and reinforced concrete columns take up considerable room, particularly on the lower floors of a building. A richer concrete will permit a reduction in the area occupied. The large size of the columns makes the effect of eccentricity of loading smaller than it would be otherwise. Columns of hooped concrete have been used as a means of reducing the cross section. It is hoped that the investigation of hooped columns now in progress at the University of Illinois will throw some light on this allied subject.

- 27. Summary.—Parts of this discussion may be summarized as follows:
- 1. In discussions involving the strength and stiffness of concrete, the variability of the concrete must be taken into consideration. Test columns made with care to secure uniformity of conditions show considerable diversity in quality. An even greater variation in character must be expected under the conditions of ordinary building construction.
- 2. Cubes and other small test specimens are made under conditions which give a stronger and denser concrete than is generally found in full-sized pieces in building work. The restraining effect of the bearing plates of the testing machine also influences the results of cube tests. It is evident that the test pieces used in many tests recorded in engineering publications were made with a quality of materials, methods of fabrication, and conditions of setting which are far more favorable to high results than will be found under average conditions of construction. Caution should therefore be used in accepting as a basis for design values obtained from tests without knowing fully all the conditions accompanying the investigation.
- 3. The relative amount of load taken by the concrete and by the steel, in columns with longitudinal reinforcement, may be determined by means of the observed relation between loads and deformations under the assumption that the stress in the steel reinforcement is proportional to the deformation in the column. It is assumed that the bond between the steel and the concrete is adequate. This method forms an efficient means for discussing the relative stresses in steel and concrete.
- 4. By the method of analysis used, the average maximum stress in the concrete for the reinforced columns tested is found to be 15% less than the average for the plain concrete columns.

While this may not be taken as a final or representative conclusion, since it may be merely incidental to the columns used or the method of testing, it is at least an added reason for caution in choosing working stresses for this form of construction. The average total load taken by the reinforced columns, it should be understood, was considerably higher than the average for the unreinforced columns.

- 5. The plotted diagrams representing the loads or stresses in the columns and the corresponding deformations or shortenings, (stress deformation diagrams), show a variable relation which is well expressed by the parabola. The tangent to the parabola at the point of zero load represents by its slope the initial modulus of elasticity of the concrete, and forms a convenient basis for an expression for the variable relation between stress and deformation. It should not be inferred that this relation is generally applicable to very rich or very lean concrete. The "Line for steel" in the diagrams for reinforced columns is helpful in determining the stress taken by the concrete and by the steel.
- 6. Gross (total) deformations and not net (elastic) deformations are used, since in the application of the stress-deformation relation to columns and beams gross deformations will, under the hypotheses ordinarily accepted, enable the stress in the steel to be determined, and net values will not.
- 7. The fact that during the operation of releasing a load the stress-deformation diagram does not follow the parabola but takes a course which approximates a straight line, is not a valid reason for not accepting the parabolic relation in the analysis of beam and column action. When a beam has been loaded up to a given load, the area of the part of a section above the neutral axis is in compression, and no point of this section has been strained beyond the amount then developed at that point, each point having the highest stress which has come upon it. The effect of repeating a load on a beam in progressively increasing amounts is to increase all the deformations in the section, but the resulting curve will still resemble the parabola, and the resulting initial modulus of elasticity will have a smaller value than that found for the first application of loads.
- 8. The Watertown Arsenal tests of columns of composition similar to the University of Illinois columns are comparable in strength and stiffness and in the form of stress-deformation

diagram and tend to confirm the results and conclusions of the University of Illinois tests. The average maximum compressive stress taken by the concrete in the Watertown Arsenal columns was 1590 lb. per sq. in. In the University of Illinois columns it was 1550 lb. per sq. in. for the plain columns and 1290 lb. per sq. in. for the reinforced columns.

- 9. The average value of the initial modulus of elasticity given for the University of Illinois columns, 2,250,000 lb. per sq. in.. and that for the Watertown Arsenal columns, 2,500,000 lb, per sq. in., may be considered tentative values for 1-2-4 concrete of the kind described for use at an age of 60 to 105 days and first application of load. Age will increase the modulus and repetition decrease it. What the combined effect of these two agencies will be is not known, but it will vary with the conditions of materials and number of repetitions and also with the age at which loads are first applied. When a constant modulus of elasticity (straightline relation) is used, the value chosen should be less than that for the initial modulus here given. The high values of modulus of elasticity frequently quoted are doubtless due to shortness of length of test piece, high quality in the test pieces used, use of elastic deformation, etc. The quality of the aggregate, as well as of the cement used in making test pieces, may not always be representative of that used in building operations.
- The proper basis for working factor and working stress for use in designing with any given material and form of construction is of much more importance than is usually given to it. The conditions of loading, of transmission and distribution of load. of variation in fabrication and construction, all act to make the stress actually developed in a member of a structure greater than the assumed working stress. For steel the real basic point is the elastic limit or yield point. For concrete this basic point may well be considerably below its ultimate strength. The choice of a value corresponding to a deformation equal to one-half of the deformation at point of failure is suggested. This, by the parabolic relation, is equal to three-fourths of the ultimate strength. Having selected a basic point, a working factor to obtain the working stress will then be chosen to cover contingencies and emergencies and the variations in distribution of load, quality of materials, method of fabrication, nature of load and its manner of application, etc. The range in the values for the working fac-

tor which may be used under the various conditions of repetition of load, workmanship and material, is of course much greater with concrete than will be necessary with such a material as mild steel.

- 11. The ratio between the amount of stress taken by the steel and that taken by the concrete in columns reinforced with longitudinal rods varies as the load is increased, as may be expected from the variable stress-deformation relation of the concrete. In these tests this ratio varied from 12 at the initial application of the load in one column to 34 at the maximum strength of the concrete in another. For the average initial modulus of elasticity of the concrete, the range is from $13\frac{1}{3}$ at the zero load to $26\frac{2}{3}$ at the ultimate. For very rich concrete the effect of the additional stiffness and the lower final deformation is to decrease the ratio n, and for lean concrete the smaller modulus and greater final deformation will make it larger.
- 12. If we choose the half-way deformation for our basic point, the value for the ratio of stress in steel to stress in concrete may, from the two sets of experiments, be taken as 17 to 18 for 1-2-4 concrete of the quality used in the tests. However, this ratio may properly be taken to be even higher than an average value, since for columns weaker than the average column the ratio may be expected to be higher than the average value and hence to fit the conditions of such columns better, while for columns stronger than the average the added strength of the concrete will go to make up for the overestimated stress in the steel. For this assumption, 18 to 21 may be used.
- 13. Under the conditions of building construction, columns may form a weak element in the structure. To overcome this, the working stresses should be kept low and every precaution taken to secure proper materials, workmanlike fabrication, and efficient inspection.

DEFORMATION PER UNIT OF LENGTH

DEFORMATION PER UNIT OF LENGTH

DEFORMATION PER UNIT OF LENGTH

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904.

Circular No. 1. High Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

 $\it Circular$ No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906.

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. (In press).

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

Bulletin No. 11

APRIL 1907

EFFECT OF SCALE ON THE TRANSMISSION OF HEAT THROUGH LOCOMOTIVE BOILER TUBES

By Edward C. Schmidt, M. E., Associate Professor of Railway Engineering, and John M. Snodgrass, B. S., Instructor in Railway Engineering

During the past twenty or thirty years there has been considerable discussion in railroad circles as to the effect of scale upon the heat-transmitting properties of tube surfaces, and the consequent effect upon the consumption of fuel. Statements as to the extent to which deposits of scale affect the conductivity of a tube or sheet have been made from time to time and have differed widely.

The report continues as follows: "On most western roads incrustations will form to a thickness of from $\frac{1}{5}$ in. to $\frac{3}{16}$ in. in the course of one year, and will increase at a still greater ratio as long as the engine is kept in service. Thus after four months' time, there will have accumulated in our engines nearly $\frac{1}{16}$ in. of scale. If Dr. Rodgers' theory be correct, after one month's service our engines will consume $3\frac{1}{4}\%$ more fuel than at first; after two months' service $7\frac{1}{2}\%$ and so on, making an average for the year of over 20% more fuel than they would have consumed if using pure water."

In a report before the same Society in the year 1877 upon "Feed Water" a committee under the sub-heading, "The Effect of Incrustations on the Consumption of Fuel," reports in part as follows: "The increase in the consumption of fuel, on account of incrustations on the heating surfaces of boilers, varies with the thickness and density of the deposit. When porous the water will penetrate it, but when hard and compact it presents a complete barrier to the contact of the water with the heating surfaces. As incrustations are poor conductors of heat, an increased consumption of fuel is inevitable where they exist." The committee then cites a number of cases for which sufficient data were collected to estimate the per cent loss that was occasioned due to scale deposits. A table showing the average miles run to one ton of coal by engines upon the Illinois Central Railroad for three months prior to and for three months after the removal of incrustations, including 120 such cases and extending over a period of three years, showed as a general average an increase of 11% in the consumption of coal for three months prior to the cleaning of the boilers, as compared with the three months immediately succeeding. The result of 11% loss due to scale is, of course, entirely a general result, as individual cases often showed less miles run per ton of coal after cleaning than before. This difference from the general result could in most cases be accounted for by weather differences. A second case is cited for two passenger engines, which were of the same size and pattern, and which were run with the same trains on alternate days. Records were kept for the six months preceding and six months following the cleaning of the boilers. Both engines had previously been cleaned at the same time and had made an average of 34,047 miles before the test be-The tests as run showed a difference in favor of clean heating surfaces of 17.5%. Mr. Wells, the master mechanic making this test, however, concludes, on account of the scaled tubes being run more often during the winter months than the cleaned tubes, that of the 17.5% difference in consumption of fuel between clean and incrusted heating surfaces about 2% was due to temperature and $15\frac{1}{2}\%$ to the effects of incrustation. Similar tests with two freight engines gave a difference of 26% in favor of clean heating surfaces. A correction of 4% was applied to this on account of different atmospheric temperatures under which the tests were made, "thus giving a net saving of 22% in favor of clean boilers on two freight engines."

Other cases might be mentioned giving results more or less similar, also cases in which little or no loss was found to be occasioned by the presence of scale. Likewise, the opinion has been not uncommonly expressed that there is either no fuel loss due to the presence of scale in the usual amounts or that loss is so small as to be of little practical importance.

During the last few years there have been made by the Railway Engineering department of the University of Illinois four series of experiments to determine the relative conductivities for heat of clean and scale-covered locomotive boiler heating surfaces. A fifth series of tests is now being carried on along the same general lines as the others. It is the purpose of this bulletin to report upon the results of the first four series of these tests.

The tests were planned with the purpose of determining, not only the actual transmission loss due to scale in individual cases, but also the relation of this loss to the scale thickness. The last three series were arranged especially to try to determine whether there is any regularity of variation of heat transmission loss with scale thickness and to study at the same time the effects of chemical composition on this loss.

· It was recognized from the outset that in any series of comparative tests for the purpose of determining the loss in heat transmission due to the presence of scale, practically exact similarity of conditions was essential for trustworthy results. A study of previous work done along this line, such as the cases and results already referred to, also served to emphasize the necessity of such care. In all of the work hereinafter reported the greatest stress has been laid upon this point, i. e. the elimination of variations in conditions except the scale itself. The difficulties

which have been encountered while prosecuting this work have still further emphasized this necessity. The difficulties attending road-testing are well understood both as to exact measurements and similarity of conditions. These considerations were of weight in determining that the tests herein reported should be largely of laboratory character rather than road tests.

The first series* of tests was made during May and June 1898. The method employed in making the tests was as follows:—

A Mogul freight locomotive, which had been in service 21 months and which was about to be sent to the shops for repairs and new tubes, was set in the roundhouse and the boiler tested by the standard method. The locomotive was then sent to the shops and the boiler carefully cleaned and retubed. All the scale was removed and samples analyzed from nine different parts of the boiler. It was then sent back and again tested for evaporation under the same conditions as before cleaning. Before making the trials with the clean tubes the locomotive was allowed to make one or two trips on the road so as to insure its being thoroughly clean. The tests were made in the round-house at Champaign, Illinois.

The locomotive was set in the roundhouse over a pit and the tender removed. A car of coal was then run in back of the engine and on this were arranged the scales for weighing the coal. All of the feed water was weighed and then delivered into a tank placed on a platform by the side of the car, and connected with the suction pipe of the injector.

The slide valve on one side of the locomotive was moved back far enough, by disconnecting the valve rod, so that the steam generated could pass directly into the exhaust, and thus out through the nozzle and produce the necessary draft as usual. A 2-in. pipe was also run from the dome to the atmosphere, a valve in the pipe furnishing additional means of disposing of the steam generated. The tests were started by the standard method, i. e., raising steam to the running pressure, drawing the fire and starting with weighed wood.

At the end of the tests the ashes were all weighed. One of the regular road firemen fired for all the tests and the boiler and furnace were operated under the usual road conditions. A series of observations was made during these tests, to determine the re-

^{*}This test constituted the thesis for graduation of Messrs. F. H. Armstrong and J. N. Herwig.

Fig. No. 1 Locomotive No. 420

lation between the blast-pipe pressures and vacuum in smoke box and furnace, as well as the velocity of the gases in the stack at various points along two diameters at right angles to each other. The locomotive upon which the tests were made was a Mogul freight engine made by the Rogers Locomotive Works, and was one of nineteen in use at that time on the Chicago division of the Illinois Central Railroad between Champaign and Centralia, Illinois. Fig. 1 shows the arrangements just described and gives a general view of the locomotive.

Leading dimensions:	•
No. of Locomotive	420
Diameter of cylinder	19 in.
Stroke	26 in.
Diameter of drivers	$56\frac{1}{2}$ in.
Weight on drivers	106.400 lbs.
Weight on trucks	19,600 lbs.
Total weight of engine	126,000 lbs.
Diameter of boiler	62 in.
Number of tubes	236
Diameter of tubes	2 in.
Length of tubes	11 ft. 1 in. over
	tube sheets
Length of firebox	1145 in.
Width of firebox	33§ in.
Depth of firebox, front end	67‡ in.
Depth of firebox, back end	$59\frac{7}{8}$ in.
Length of grate	114½ in.
Width of grate	33§ in.
Diameter of dry pipe	8 in. outside
Diameter of steam dome	$29\frac{1}{8}$ in, inside
Height of steam dome	28 in.
Kind of lagging	Magnesia sec-
Governing proportions:	tional
Grate area	26.45 sq. ft.
Total heating surface	1531.6 sq. ft.
Area of draft through tubes	573.5 sq. in.
Ratio of grate to heating surface	57.9
Fuel used:	0.14
Commercial name	Odin
Commercial size	Mine run
Lumps per cent	75
Small coal per cent	20
Slack per cent	5
Heat units per lb. of dry coal (by calorimeter)	12,240

The results of these tests are exhibited in the accompanying tables.

TABLE 1

Log of Observations Giving Average Values

Locomotive No. 420 Illinois Central Railroad

		Series le in iler	Second Series Cleaned Boiler		
Date of Trial (1898). Duration of trial, hours. Steam pressure by gage. Vacuum in smoke box (in. of water). Temperature of roundhouse (degrees F.). Temperature of feed water in tank (degrees F.). Temperature of escaping gases (degrees F.). Temperature of steam (degrees F.). Moisture in coal, per cent Percentage of ask (from ash pan).	May 2 8.33 143 2 72 57 623 362 4.0 15.6	May 3 8.17 140 2 62 54 670 360 4.0 15 6	May 31 8.03 116.40 2.9 79 58.5 621 348 4.0 16.6	June 1 8.16 114 2.8 89 59.4 687 346 4.0 18.7 2.85	

TABLE 2

RESULTS OF EVAPORATION TEST OF LOCOMOTIVE BOILER ENGINE NO. 420, ILLINOIS CENTRAL RAILROAD

First Series: After running 21 months and accumulating a scale deposit $\frac{3}{3}$ to $\frac{3}{64}$ inch thick.

Second Series: After cleaning and putting in new tubes.

			irst Seri Scale in Boiler	es	Second Series Clean Boiler			
	Date of Trial (1898)	May 2	May 3	Mean	May 31		Mean	
5. 9.5 9.5	Water actually evaporated per lb.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	
nati.	of dry coal	5.21	5.27	5.24	5.81	5.85	5.83	
Evaporative Performance	Equivalent water from and at 212° F. per lb. of dry coal Water actually evaporated per lb.	6.29	6.39	6.34	6.99	7.04	7.01	
고	of combustible	6.17	6.25	6.21	6.95	7.16	7.05	
	Equivalent water from and at 212° F. per lb. of combustible	7.46	7.59	7.53	8.36	8.61	8.48	
Rate of Combus- tion	Dry coal burned per hour per sq. ft. of grate surface	57.45 394.80 .93	58.51 402.10 .95	57.95 398.40 .94	59.80 411.00 .97	60.00 412.80 .98	59.90 411.90	
Rate of Evaporation	Water evaporated per hour from and at 312" F. per sq. ft. of grate surface		374.40	368.10	418.00	416.00	417.0	
Rad Evape	Per sq. ft. of tube opening Per sq. ft. of water heating surface			25 2 9.00 5.99	2871.00 6.81	2857.00 6.76	2865.0 6.7	

The loss due to scale in this boiler was (7.01 minus 6.34) divided by 7.01 or $9.55\,\%$.

The water used in the locomotive tested was taken from tanks at Centralia, Kinmundy, Little Effingham. Neoga, Dorans. Galton and Champaign. From the thickness of scale deposited during the 21 months it is evident that these waters are comparatively good for this section of the country.

The average thickness of the scale on the principal heating surfaces was $\frac{3}{64}$ in. The total weight of scale removed on cleaning was 485 lbs. The boiler had been in regular service during the 21 months.

The locomotive was cleaned and retubed at the Burnside shops of the Illinois Central Railroad. When the boiler was opened all the scale removed was carefully weighed, the scale on the tubes being determined by weighing the tubes before and after cleaning them. The scale from the shell and tirebox sheets that could be removed was carefully collected. The total weight of scale was as follows:—

Weight of scale from flues	360 lbs.
Weight of scale from shell	125 lbs.
Total weight of scale	485 lbs.

At nine different points in the boiler the thickness of the scale was determined by the average of many measurements, and samples were secured for analysis as follows:—

- Point 1. Near injector discharge, hard and soft scale ½ in, thick.
 - 2. On upper tubes, hard smooth scale uniform thickness $\frac{1}{3}$ in.
 - 3. On lower tubes, hard scale near middle, $\frac{1}{16}$ in. thick.
 - 4. Mud covering hard scale at No. 3, $\frac{3}{32}$ in. thick.
 - 5. Scale from side sheet, flue sheet, and tubes rough and scaly.
 - 6. From bottom of barrel, 4 ft. from flue sheet.
 - 7. On crown stays, 3 in. to 6 in. from crown sheet.
 - 8. On crown sheet, rivet heads and base of stays.
 - 9. From stay bolts at water line. '

The results of the analyses of these scales calculated to compounds are shown in Table 3.

TABLE 3

RESULTS OF THE ANALYSES OF BOILER SCALE FROM ENGINE No. 420
SCALE CONSTITUENTS CALCULATED TO COMPOUNDS AND EXPRESSED
IN PER CENT

Point No.	Silica SiO2	Iron and Aluminum Oxides Fe ₂ O ₃ and Al ₂ O ₃	calcium Sulphate	Calcium Carbonate CaCO ₃	Calcium Oxide CaO	Magesium Carbonate MgCO ₃	Magnesium Oxide MgO	Organic Matter and Undetermined
1 2 3 4 5 6 7 8 9	7.70 25.20 8.00 7.84 15.89 11.25 18.25 13.05 22.70	3,20 7,10 4,99 3,27 4,30 7,70 6,90 7,85 12,75	10.86 16.45 21.22 4.38 21.38 1.97 1.95 40.03 11.73	65.81 20.92 48.90 61.17 30.36 67.08 45.51 24.33 28.32	1.90 5.69 1.14	3.05 8.14 8.71 5.86	9.55 19.52 4.48 5.47 7.66 9.29 16.77 9.12 18.45	2.78 7.67 10.51 9.73 11.70 2.71 4.93 4.48 0.11

The loss, as found by these trials, due to the presence of scale, was 9.55 % of the fuel.

EXPERIMENTS WITH SINGLE TUBES

The last three series of experiments to determine the loss due to scale have been laboratory experiments entirely. They were made during the years 1901, 1904 and 1905, and are referred to as the series of 1901, 1904 and 1905 respectively.*

The locomotive boiler tubes upon which the experiments were made in 1901 were furnished by the Peoria and Eastern division of the Cleveland, Cincinnati, Chicago and St. Louis, the Illinois Central, the Chicago, Burlington and Quincy, and the Chicago, Milwaukee and St. Paul Railways. The tubes used in 1904 and 1905 were furnished by the first two railroad companies mentioned above. Table No. 4 gives information concerning these tubes. Fig. 2 shows some of the tubes tested.

^{*}These experiments were conducted by the following men as theses for graduation: Series of 1901, by F. L. McCune; Series of 1904, by W. A. Miskimen and C. N. Stone; Series of 1905, by H. F. Godeke and A. A. Hale.

Fig. No. 2 Scaled Boiler Tubes

TABLE 4:
The Transmission of Heat through Scale-Covered Boiler Tubes Railway Engineering Department—University of Illinois

Tube Number	Purnished by	Furnished by No. of Engine from which Tube was taken Length of time in service			Average Thickness of Scale Inches	REMARKS * General Character of Scale, Etc.
1	2	3	4	5	6	7
					SERI	ES OF 1901
1 2 3 4 5 6	I. C. R. R. P. & E. RY. P. & E. RY. C. M. & ST. P. C. M. & ST. P. I. C. R. R. P. & E. RY.	311 526 536 126 1337 820 513	10.5 13.5 5.5 5.5 37.5	21 21 22 21 22 22 22	0 06 0.04 0.02 0.03 0.13 0.07 0.04	Even, hard, dense Soft, porous. Removed in places Hard, dense, white Hard, dense, white Hard, dense Mileage during service, 19690 Hard, dense, rough, one end. Soft, porous at the other
9	C. B. & Q.	1179		5	0.11	Hard. porous, gray. Mileage, 50889
11	I. C. R. R.	1107	21.	2	0.09	Soft, porous
14	P. & E. RY.			2		New and clean tube
					SERI	ES OF 1904
7b 8a	I. C. R. R. C. C. & ST. L. C.C. & ST. L. C.C. C. & ST. L. C.C. R. R. I. C. R. R.	41 41 41 141 141 141 540 540 540 540 540 440 440 440	16 16 16 15 15 15 	ତୀ ବ୍ୟ	0.04 0.07 0.08 0.05 0.08 0.06 0.06 0.06 0.05 0.04 0.06 0.03	Hard, gray. In bad condition Loose, gray Loose, gray White, porous. Removed in places White, porous. Removed in places White, porous White, soft, irregular White, soft, irregular Hard, white, irregular Hard, white Hard Gray, porous Gray, porous Clean tube
					Seri	ES OF 1905
3 4 8 9 10 11 12 13 14 15 7	I. C. R. R. I. C. R. R. C.C.C. & ST. L. C.C.C. & ST. L. I. C. R. R. C.C.C. & ST. L. I. C. R. R. I. C. R. R. I. C. R. R. I. C. R. R.	136 802 533 233 1424 233 140 303 1004 1012	18 8 10 14 10 14 21 18 21 12	22 21 21 21 21 21 21 21 21 21 21 21 21	0.07 0.05 0.03 0.09 0.07 0.04 0.07 0.02 0.01 0.03	Medium Hard Soft Very soft Soft Very soft Hard Hard Hedium Very hard Clean tube

These tests were made as laboratory tests on account of the desire to make comparative tests under entirely similar conditions except in regard to the scale itself and in order that more exact measurements might be made than were found possible with road or roundhouse tests. The apparatus used in all of these tests has been practically the same from year to year. It is shown in Fig. 3, 4, and 5 and consists of a long water chamber through which the tube to be tested was passed, and in which water was circulated. On one end of this water chamber was fastened a combustion chamber, at the forward end of which was placed a burner. This burner was supplied with gas and air. Combustion took place in the chamber, which served the purpose of the firebox. The hot gases passed through the boiler tube to the air. The water entered the water chamber at the right, leaving it at the left as indicated in Fig. 3, at both of which points its temperature was read upon the thermometers there shown. water tank received the water from the city mains. It was provided with an overflow, as shown, and the water was led directly down from the bottom of this tank to the water chamber. was used in order to give a constant pressure at the inlet and thus to avoid variations in the rate of flow of the water. The gas and air tanks were arranged to give constant pressures of gas and air. The inner vessels, open at the bottom, float in water contained in the outer tank and confine the air or gas in the space above the water level. These inner tanks can be weighted at will to give any desired pressure to the air or gas contained within them.

During the tests of 1901 a copper ball pyrometer was employed to obtain the temperatures of the gases entering the tube being tested. For the series of 1904 and 1905 a Le Chatelier pyrometer was employed for this purpose. The location of the pyrometer is shown in Fig. 3. The temperature of the gases as they left the flue was read on the thermometer shown at the end of the tube.

The purpose of the tests was to measure the number of heat units transmitted per hour through the different tubes. This was accomplished by weighing the water which circulated around the tube in the water chamber and measuring its rise in temperature. The attempt was made to maintain a constant furnace temperature at the entrance to the tubes throughout all experiments of each

series and thereby have available for transmission the same amount of heat, since the amounts of gas and air supplied to the burner were continually the same.

TABLE 5

THE TRANSMISSION OF HEAT THROUGH SCALE COVERED BOILER TUBES
RAILWAY ENGINEERING DEPARTMENT - UNIVERSITY OF ILLINOIS

					Temp Deg Gases	rees	Fahr.	ring T	During	re of Water Range of S Column 9	th Tube	Have Been Trans- Of Temperature or Clean Tubes	to Scale	
Tube Number	Test Number	Duration of Test-Hours	In Combustion Chamber	Of Escaping Gases	Average Temperature of Gases	At The Inlet	At The Outlet	Average Temperature of Water	Rise in Temperature of Water	Weight of Water Used Du Test-In Pounds	Difference Between Temperature of and Temperature of Gases—"Ran Temperature"—Column 6 Minus Col	B. T. U. Transmitted Through Tube During Test	B. T. U. Which Would Have Bee mitted Had The Range Of Tem Heen The Same As For Clean	Decrease in Conductivity Due Per Cent Loss
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

SERIES	OF	1901

ve	rage		1659	267	961	66.8	112.5	89.7	15 8	652.7	874.0	29874		
1	11	1	1693	268	981	68.5	114.2	91.4	45.7	661 0	889.6	30315)*Increase	
4	13	i	1690	267	979	67.8	111.0	90.9	46.2	650.2	888,1	30039	Tubes	
4	5	1	1595	266	931	61.0	109.1	86.7	45.4	611.0	814.3	29238) Clean	
ŀ	24		1083	<i>ن</i> ، ۱	911	04,1	100.0	00.5	133.1	0.0.0	000.2	20000	w00w1	Ι''
1	24	1	1659 1683	262 271	961 977	64.1	110.0 109.5	87.0	46.1	590.5	874 0 890.2	26809	26321	1
•	15	1	1597	252	925	65.8	110.9	88.4	45.1	505.0 589.3	836.6	22776 27167	23794 27167	2
•	4	1	1535	249	892	65.3	109.9	87.6	11.6		801.4	24351	26459	1
•	9	1	1693	256	975	66.9	112.0	89.5	45.1	669.5	885.5	30194	29802	١.
ĭ	8	1	1695	252	974	67.1	113.3	90.2	16.2	612.0	883.8	28274	27961	
5	23	1	1718	281	1001	63.6	110.7	87.2	47.1	616.0	913.8	30427	29101	
	3	1	1682	265	974	65.3	110.4	87.9	45 1	685.5	886.1	30916	30494	*
5	22	- 1	1702	265	981	63.9	109-3	87.1	15.1	621.0	896.9	28330	27606	
i i	6	1	1559	248	904	65.9	110.6	88.3	14.7	583.0	815.7	26060	27923	
1	21	1	1622	252	937	66.8	109.7	88.3	42.9	713.5	848.7	30609	31522	*
į	20	1	1639	259	949	67.1	111.2	89.2	44.1	676.0	859.8	29812	30301	*
3	2	1	1690	238	964	65.7	.111.0	88.4	45.3	600.7	875.6	27212	27162	1
ì	1	1	1693	239	966	61.7	110.4	87.6	45.7	593.5	878 4	27123	26987	1.5
3 3 3 3	18	i	1631	269	950	64.1	110.3	87.2	16.2	581.0	862.8	26981	27331	1
2	16	i	1650	260	955	65.0	113.9	89.5	48.9	526.5	865.5	25746	25999	13
i	12	i	1702	252	977	66.8	112.6	89.7	45.8		887.3	29463	29021	1
1	11	- 1	1657	256	957	1.66.9	112.7	89.8	1 45.8	651.3	867.2	29830	30063	*(

Apparatus for the Determination of the Effect of Scale on Heat TRANSMISSION THROUGH TUBES FIG. No. 4

Fig. No. 5. Apparatus for the Determination of the Effect of Scale on Heat Transmission Through Tubes

SERIES OF 1904

1 2 3 4 5 6 7a 7b 8a 8b 10 11 12	15 16 17 18 19 20 13 14 12 11 10 7 8 9	1 1 1 1 1 1 1 1 1 1 1	1432 1439 1436 1418 1438 1439 1437 1443 1414 1423 1431 1415	648 659 667 515 523 511 647 523 623 593 547 517 536	1040 1049 1052 967 981 975 1043 980 1033 1004 985 974 976 989	56.8 57.9 58.0 57.1 58.3 57.0 56.5 57.0 58.9 57.6 59.0	84.7 84.0 83.2 80.4 83.4 82.7 81.5 89.4 91.3 83.8 84.8 85.1 82.9	70,8 71.0 70.6 69.1 70.5 69.5 69.0 73.2 75.1 70.7 72.0 71.0	27.9 26.1 25.2 22.3 24.4 24.9 25.0 32.4 32.4 26.3 25.3 26.3 25.3 26.3	829 850 895 975 814 865 875 803 662 654 767 808 735 896	969 2 978.0 981 4 897.9 910 7 904.5 973.5 911.0 959.8 928.9 914.3 902.0 904.0	23129 22185 22554 22133 21408 21106 21788 20075 21449 21190 20095 20766 19331 21414	22227 21128 21405 22958 21895 21734 20845 20845 20812 21247 20471 21442 19916 21727	5. 9.8 8.6 2.0 6.3 7.3 11.0 12.5 11.0 9.3 12.6 8.3 15.0 7.3
13a 13b 13c	6 5 4	! 1 1	1441 1439 1440	554 563 569	998 1001 1005	56.5 56.7 56.3	82.5 85.1 82.6	69.5 70.9 69.5	26.0 28.4 26.3	891. 825. 900.	928.5 930.1 935.5	23166 23430 23670	Clean Tubes	
Ave	rage		1440	563	1001	56.5	83+4	70.0	26.9	872.	931 4	23422		
							SER	IES C	F 190)5		,		
3 3 3 4 4 4 8 8 8 8 9 9 9 10 10 10 11 11 12 13 13 13 14 14 15 15 15	48 49 50 45 46 47 24 25 26 27 28 30 31 33 43 43 44 44 51 52		1783 1781 1798 1816 1809 1806 1788 1790 1805 1752 1753 1763 1772 1782 1778 1776 1785 1776 1785 1776 1785 1776 1785 1797 1805 1797 1804 1804 1808	873 879 867 733 715 705 740 743 743 791 803 804 792 805 804 740 748 808 808 803 736	132× 1330 1333 12752 1256 1256 1267 1277 1277 1277 1278 1285 1291 1290 1288 1251 1242 1277 1288 1291 1290 1288 1251 1242 1272 1273 1273 1274 1275 1275 1275 1275 1275 1275 1275 1275	62.4 62.0 62.2 63.3 59.7 60.1 59.9 66.1 59.9 66.1 67.0 64.5 66.2 66.2 66.2 66.2 66.2 66.2 66.2 66	103.6 102.1 99.2 102.6 102.0 102.4 102.7 101.7 101.1 100.6 101.8 101.4 103.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1 102.1	83.0 82.3 80.6 82.4 82.9 81.7 81.3 80.5 80.3 80.2 80.1 80.3 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1	41.2 39.7 37.2 40.4 38.8 39.1 43.0 42.3 41.2 40.6 41.2 42.2 43.0 35.4 37.6 38.1 41.2 42.2 40.3 41.2 40.3 41.2 40.3 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41	717 753 800 699 641 660 653 683 682 695 674 663 747 721 668 695 645 657 645 701	1245.0 1247.7 1252.4 1179.4 1173.1 1182.6 1182.3 1185.7 1191.5 1198.9 1198.7 1204.7 1204.9 1172.2 1160.6 1224.9 1169.7 1204.9 1172.2 1160.6 1226.7 1217.1 1200.4 1191.1	29540 29894 29760 27432 27057 27563 27918 27290 28140 28140 28443 28509 28383 27612 26656 28087 27470 28190 2809 28383 28443 28443 28509 28445 28110	28722 29002 28764 28663 28155 27920 28502 28502 28508 28708 28718 28718 28616 28149 27717 26674 28176 27588 28889 2913 2913 2913 28588 2913 28588	2.5.1 3.0 4.8.3 3.6.3 3.6.3 3.8.3 3.8.3 6.8.4 4.7.4 4.7.3 3.8.4 4.7.3 3.8.4 4.7.3 3.8.4 4.7.3 4.7.3 3.8.4 4.7.3 4.
7 7 7	21 22 23	1 1 1	1792 1796 1808	794 787 784	1293 1292 1296	64.5 64.2 63.3	102.1 103.6 101.4	83.3 83.9 82.4	37.6 39.4 38.1	782 754 776	1209.7 1208.1 1213.6	29403 29708 29566	Clean Tubes	
Ave	rage		1799	788	1294	64.0	102.4	83.2	38.4	770.7	1210.5	29559		

The method of conducting a test was as follows:

The burner was first lighted and the gas and air pressures adjusted, then the flow of water through the water chamber was regulated and the apparatus allowed to run until all conditions had become uniform. This usually occupied about one hour, at the end of which time the test was started.

At the beginning of a test for the series of 1901 a determination of temperature was made by the copper ball pyrometer and readings were taken on all three thermometers, which readings were also taken at intervals of five minutes throughout the test. At the end another determination was made of the furnace temperature, and the water which had flowed through the chamber was weighed.

Observations for the tests of 1904 and 1905 were taken in a similar manner except that all temperature readings including that of the furnace were taken at regular intervals of 10 minutes.

Table No. 5 gives a summary of the data of the various tests and also the calculated results. The furnace temperature was not maintained quite the same throughout the tests, as an inspection of Table No. 5 will show. It was likewise impossible to maintain the average temperature of the circulating water the same during all the tests. Consequently the range of temperature between the gases in the tube and the water varied some-Since the rate of transmission of heat through the tube varies directly with this range in temperature it is necessary, in order to compare the conductivity of the different tubes, to reduce the actual amounts of heat transmitted to what they would have been for one standard range of temperature. This standard range was assumed the same as the range existing during the test of a new clean tube, such a tube being tested with each series of tests.

These derived figures are given in column 14, Table No. 5, and they show the amounts of heat which would have been transmitted in each case had the difference between the temperature of the gases and the temperature of the water been the same in all tests of that particular series, i. e., the same as during the tests of the clean tube then tested. It is from the figures in this column that the losses due to scale are computed. This loss expressed as a per cent is exhibited in column 15 of Table No. 5.

Table No. 6 gives the chemical analyses of the scale found upon the tubes tested in the series of 1901, 1904 and 1905. The constituents of the scale are calculated to compounds and expressed as per cent. These analyses were made by the Chemical department of the University of Illinois.

TABLE 6 THE TRANSMISSION OF HEAT THROUGH SCALE-COVERED BOILER TUBES RAILWAY ENGINEERING DEPARTMENT—UNIVERSITY OF ILLINOIS

			CHEMI	CAL AN	ALYSES	OF SCAL	LE		
		Constitue	ents of Sca	ile			Amount	in per ce	ent
	SiO ₂	${\rm Fe}_{\scriptscriptstyle 2}{\rm O}_{\scriptscriptstyle 3}$ ${\rm Al}_{\scriptscriptstyle 2}{\rm O}_{\scriptscriptstyle 3}$	${ m CaSO_4}$	CaCO3	CaO	MgCO3	MgO		
Tube Number	Silica	Oxides of Iron and Aluminum	Calcium Sulphate	Calcium Carbonate	Calcium Oxide	Magnesium Carbonate	Magnesium Oxide	Moisture	Organic Matter and Alkali
1	2	3	4	5	6	7	8	9	10
				SERIE	s of 19	01	<u> </u>		
1 2 3 4 5 6	7.00 5.68 9.24 9.80 10.00 7.42 12.22	8.32 8.98 10.98 15.92 7.00 4.26 5.38	16.78 27.30 2.04 25.86 14.35 16.08 17.70	47.16 22.27 59.75 23.20 50.30 51.44 37.02	10.45 0 62 3.02	1.30 8.40 1.53 0.79	11.20 15.82 10.18 13.16 7.30 11.25 16.76	1.18 1.14 0.64 1.42 0.84 1.19 1.63	7.06 8.34 6.55 7.62 1.81 6.83 8.50
9	12.46 17.82	11.24 10.32	36.85 5.06	21.37 37.50	6.70	3.13	0.72 13.92	1.02	13.21
			3.00				10.02	2.25	6.43
1				SERIE	s of 19	04			
1 3 4 5 6 7a 7b 8a 8b 9 10	26.04 17.21 15.10 8.99 9.11 12.93 12.93 12.70 12.70 23.52 10.05 9.75 7.98	10 . 80 8 . 02 3 . 95 1 . 90 2 . 20 2 . 60 1 . 35 2 . 33 2 . 33 7 . 20 6 . 47 2 . 08 4 . 68	1.36 18.50 21.93 22.81 47.96 54.99 21.83 21.83 35.05 6.56 11.71 6.05 8.89	27.50 11 52 10.48 49.11 16.85 10.78 31.14 31.14 17.03 37.56 50.98 54.71 55.61	3.84	15.61 11.06 14.11 2.46 4.63 5.14 5.14 3.99 3.99 3.99 11.36	23,07 21,74 25,28 0,50 11,76 9,57 15,94 17,85 17,85 5,59 4,94 6,43 3,75	1 1 1 1	7.39 7.40 12.20 2.58 9.66 5.33 11.67 11.67 11.05 16.09 8.52 5.26 7.73
				SERIE	s of 19	05			
3 4 8 9 10 11 12 13 14	7.09 6.92 6.61 8.44 3 33 7.09 27.72 9,54 16.87 24.03	5.05 3.57 1.34 2.52 1.43 2.30 9.53 10.38 4.73 12.69	17.16 21.57 0.62 12.59 5.82 14.87 12.11 8.41 2.22 1.46	19.45 3.61 74.26 56.80 67.99 58.18 10.05 9.67 40.30 31.37	25.61 1.64 0.24 3.87 6.06 0.35	0.77 0.15 0.33 2.22	34.10 1.85 10.87 11.43 11.11 8.26 29.90 39.09 19.25 20.91	0.58 0.56 0.68 0.87 0.48 0.75 1.07 0.71 0.83 1.45	15.80 36.31 5.47 7.02 8.20 6.33 9.38 18.33 9.74 7.74

Table No. 7 gives a summary of the data and results. In it are given for each tube the corresponding average loss as determined by the several experiments, as well as the thickness and some of the results of analyses. From this table there have been plotted five diagrams—Fig. 6, 7, 8, 9 and 10, which exhibit the loss due to the scale with reference to thickness, hardness and chemical composition. Fig. 6 shows the loss due to scale plotted with reference to its thickness. Fig. 7 is identical with Fig. 6, except that the letters H, S or M have been added at the various points to indicate the scale as being either hard, soft, or medium. In Fig. 8, 9 and 10 the loss due to the scale is plotted with reference to the amount of its chemical constituents; in Fig. 8 with reference to the sum of the percentages of calcium carbonate and magnesium carbonate; in Fig. 9 with reference to the percentage of calcium sulphate; and in Fig. 10 with reference to the percentage of silica.

In the series of 1901 there are a few tests which indicate an increase of conductivity of the scaled tube as compared with the clean tube. These are perhaps to be accounted for by errors in conducting the experiments, although they could not be detected at the time the experiments were made. The apparatus used in 1904 and 1905 was improved in some particulars, the most important change being in the means for the measurement of furnace temperatures. Such discrepancies disappear in the latter series.

When the experiments were planned it was considered probable that the transmission of heat through the scale was principally dependent upon two of its characteristics, namely, its thickness and its mechanical structure and that probably, for such thicknesses as are usually met with, thickness had greater influence than structure. Thickness was therefore carefully determined and structure approximately designated as in Table 4, as hard, soft or medium, no more exact characterization of structure being possible with tubes collected from different sources as these were.

It was hoped that the experiments might develop, if perhaps only approximately, some law of variation of conductivity with thickness. After making allowance for probable errors due to the method of conducting the tests, consideration of Fig. 6 shows perhaps a decrease of conductivity with thickness; but certainly no regularity of variation. In Fig. 7 the loss in heat transmission is again plotted with reference to thickness; and the structure of the scale, in so far as it was determined, is indicated as previously explained. No regularity of variation is observable with respect to hardness or softness.

TABLE 7 SUMMARY

THE TRANSMISSION OF HEAT THROUGH SCALE-COVERED BOILER TUBES
RAILWAY ENGINEERING DEPARTMENT—UNIVERSITY OF ILLINOIS

Tube No.	Test No.	Loss per cent	Ave. Loss per cent	Character of Scale	Thickness of Scale	CaCO ₃ +MgCO ₃ in Scale	Ca SO ₄ in Scale	Si O ₂ in Scale	Tube No.	Test No.	Loss per cent	Ave. Loss per cent	Character of Scale	Thickness of Seale	CaCO ₃ +MgCO ₃ in Scale	Ca SO, in Scale	Si O ₂ in Scale
		S	ERI	ES (of 19	01						SER	HES	OF	1905	-	
1 1 2	11 12 16	*0.6 2.9 13.0	1.2	н s	0.06	48.46 22.27	16.78 27.30	7.00 5,68	3 3	48 49 50	2.8 1.9 2.7	2.5	М	0.07	20.22	17.16	7.09
3	18 1 2	8.5	9.4	Н	0.00	59.75	2.04	9.24	4 4	45 46 47	$\frac{3.0}{4.8}$ $\frac{5.6}{5.6}$	4.5	Н	0.05	3.61	21.57	6.95
4 5	20 21 6	9.1 *1.4 *5.5 6.5	*3.5	H H	0.03	23.20 58.70	25.86 14.35	9.80	8 8 8	24 25 26	$\frac{4.5}{3.6}$ 6.3	4.8	s	0.03	74.41	0.62	6.61
1 2 2 3 3 4 4 5 5 6 6 7 7 9 9	22 3 23	7.6 *2.1 2.6	0.3	\/	0.07	52.97	16.08	7.42	9 9 9	26 27 28 29	3.3 5.2 2.8 2.9 3.1	3.8	S	0.09	57.13	12.59	8.44
7 9	8 9 4	6.4 0.2 11.4	3.3 15.9	M H	0.04	37.81 24.50	17.70 36.85	12.22 12.46	10 10 10	30 31 32	3.8	3.3	s	0.07	67.99	5.82	3.33
9 11 11	15 7 24	20.4 9.1 11.9	10.5	s	0.09	37.50	5.06	17.82	11 11 12	34 35 37	$\frac{6.2}{9.8}$ $\frac{4.7}{1}$	8.0 5.7	S	0.04	60 40	14.87	7.09
			*I1	ncre	ase				12 13	38 39	$\frac{6.6}{2.3}$			0.07	10.05	12.11	27.75
			Ser	IES	of 1	904			13 13	40 41	1.3 1.2	1.6	Η	0.02	9.67	8,41	9.54
1	15	5.1		Н	0.04	27.50	1.36	26.04	14 14 15	43 44 51	$\frac{4.4}{4.3}$ $\frac{3.8}{3.8}$	3.6	M H	0.04	40.30	2.22 1.46	16,87 24 30
2 3 4 5 6	16 17	9.8 8.6		SSSSSSSH	$0.07 \\ 0.08$	27.13 21.54	$18.50 \\ 21.93$	17.21 15.10	15	52	3.4	0.6	п	0.05	31.37	1.40	#4 O(
4 5	18 19	$\frac{2.0}{6.5}$		S	$0.05 \\ 0.04$	21.54 63.22 19.31	$\frac{22.81}{47.96}$	$\frac{8.99}{9.11}$									
6	20	7.2		ŝ	0.04	15.41	54.99	12,10									
7a	13	11.0		S	0.06	36.28	21.83	12 93									
7b 8a	14 12	$\frac{12.4}{11.1}$		S	0.06	$\frac{36.28}{21.02}$	$\frac{21.83}{35.05}$	12.93 12.70									
Sb	11	9.3		H	0.03	21.02	35.05	12.70									
9	10	12.6		Н	0.06	37.56	6 56	23.52									
10 11	7	8.5		H	0.03	58.31	11.71	10.05									
12	8	$\frac{15.0}{7.2}$		s	0 09 0 03	66.97	6.05 8.89	9.75									

In considering Fig. 6 and 7 it must be borne in mind that the tubes tested were taken from locomotives which had been in service in different parts of the country and that the scale on each tube was made up of the mineral constituents of many different water supplies. What is designated as hard scale in one case may be very different in structure—in porosity, for example—from what is designated as hard scale on another tube. Fig. 7 cannot therefore be considered as providing conclusive evidence concerning variation of conductivity with structure. The results may properly be interpreted as indicating that mechanical structure is at least as important a factor in the change in heat transmission due to scale as is the mere thickness. Such a conclusion is, of course, in accord with the facts concerning other heat insulators.

Fig. 8, 9 and 10, in which the loss in heat transmission is plotted with reference to the principal chemical constituents of the scale, do not warrant the conclusion that its chemical composition has any direct influence on its conductivity.

From the point of view of the physicist the experiments are open to objection as to method. From the engineer's viewpoint it is believed that the possible errors of the experiments do not, by any means, account for all the irregularity in the plotted results, and considering the controversy upon this subject and the comparatively meager information available, it is deemed proper to publish at this time the results as they stand in the hope that they contribute additional information which may be of interest in some quarters.

Conclusions:

In so far as generalization is warranted we may sum up the results of the tests in the following conclusions:

- 1. Considering scale of ordinary thickness, say of thicknesses varying up to $\frac{1}{5}$ inch, the loss in heat transmission due to scale may vary in individual cases from insignificant amounts to as much as 10 or 12 per cent.
 - 2. The loss increases somewhat with the thickness of the scale.
- 3. The mechanical structure of the scale is of as much or more importance than the thickness in producing this loss.
- 4. Chemical composition, except in so far as it affects the structure of the scale, has no direct influence on its heat transmitting qualities.

Publications of The Engineering Experiment Station

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904.

 $\it Circular$ No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

 $Bulletin\ No.\ 6.$ Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906.

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Plain and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907.

Bulletin No. 12. Tests of Reinforced Concrete T-Beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

UNIVERSITY OF ILLINOIS

ENGINEERING EXPERIMENT STATION

BULLETIN No. 12.

14.

15.

February 1907

17

18

TESTS OF REINFORCED CONCRETE T-BEAMS SERIES OF 1906.

By Arthur N. Talbot, Professor of Municipal and Sanitary Engineering and in Charge of Theoretical and Applied Mechanics.

CONTENTS.

I. INTRODUCTION.

Page. Preliminary..... 1. 3 Scope of Tests.... 2. 3 3 Acknowledgment 4 II. RESISTANCE OF T-BEAMS TO FLEXURE. General.... 4. 4 5. Notation..... 5 Longitudinal, Tensile and Compressive Stresses, and 6. Location of Neutral Axis. - Approximate Solution 6 7.Web Stresses 9 8. Integrity of Flanges 11 Method of Treatment..... 9. 12 Other Formulas for T-beams..... 10. 12 III. MATERIALS, TEST PIECES, AND METHODS OF TESTING. 11. Materials 13 Test Specimens..... 12. 14 13 Forms 17

Fabrication and Storage

Method of Testing

IV. EXPERIMENTAL DATA AND DISCUSSION.

		rage
16.	Cube and Cylinder Test Data	19
	Deflection Diagrams	
18.	Phenomena of Tests	20
19.	Tension in Steel	24
20.	Compression in Concrete	25
	Web Stresses	26
22.	Beam Deflection	28
23.	Position of Neutral Axis	28
24.	Applicability of Results	29
	Summary	30
	Deflection Diagrams	32

I. Introduction.

1. Preliminary.—The series of tests on T-beams herein described was undertaken with two objects in view,—to determine whether the width of slab within the limit used in the experiments is a controlling element in the strength of the beam, and to test the efficacy of vertical reinforcing stirrups in resisting web stresses.

When a reinforced concrete floor and its supporting beams are built as one piece, the resulting composite structure forms a system of T-shaped beams. There are differences of opinion on the action of the T-beams so formed, and also differences as to the width of flange or floor which may be considered to contribute to the strength and stiffness of the beam. T-shapes may also be used in the design of bridge girders and other structures for The large amount of reinforcement which special conditions. may be put into a T-beam without encroaching on the compressive strength of the concrete too far and the resulting high web stresses developed in the stem of the T-beam, make the T-beam an advantageous form of test piece for determining the efficacy of various forms and amounts of web reinforcement. It is felt that this feature of T-beam testing is, in itself, sufficient reason for the conduct of tests on T-beams.

2. Scope of Tests.—Three top widths of beam were used, equal, respectively, to two, three, and four times the width of the stem of the beam. The beams were reinforced vertically with U-shaped stirrups. One size and spacing of stirrups To insure that failure would not occur by slipping of the vertical reinforcement in the concrete, the stirrups were made of deformed bars. The amount of longitudinal reinforcement was made proportional to the width of flange of Both mild steel plain round rods and high-carbon Johnson corrugated bars were used for the longitudinal reinforcement, as it was not known whether the point of elastic limit of the metal would control the amount of load or method of failure. As no data on the amount of the web stresses which may be resisted by vertical stirrups were available and as little seemed to be known on the effect of the width of flange or slab, the beams were designed to give considerable latitude in the results The series was considered as preliminary and leading to a set of

tests which should include various forms and amounts of web reinforcement.

3. Acknowledgment.—The investigation was made in the Laboratory of Applied Mechanics of the University of Illinois as a part of the work of the University of Illinois Engineering Experiment Station. Assistance in the tests and in the calculations was given by F. S. Hewes and C. A. Hewes, senior students in civil engineering, class of 1906, who used the results in their thesis. Immediate supervision of the work of making the beams and conducting the tests was given by D. A. Abrams, Assistant in the Engineering Experiment Station. Acknowledgment is also made to W. R. Robinson, Assistant in the Engineering Experiment Station, for aid in the preparation of this bulletin. The stone, sand and cement used in making the beams were furnished by the Joint Committee on Concrete and Reinforced Concrete.

An analysis of some of the elements of flexure of T-beams will be given. This will be followed with a description of the test pieces and method of testing, the experimental data, and a discussion of the results.

II. RESISTANCE OF T-BEAMS TO FLEXURE

General.—The analysis of the resistance of T-beams to flexure may be made to follow the general lines of analysis for rectangular beams. If the tensile strength of the concrete be not considered at sections having a maximum bending moment and if the flange or slab extends down to the neutral axis of the beam, the resisting moment may be expected to be the same as that for a rectangular beam of width equal to the width of the flange, provided, of course, that the integrity of the plane section is conserved. If the flange does not extend down to the neutral axis, an examination of the effect of the omission of a part of the compression area must be made to find whether the formula for rectangular beams is still applicable. With relatively shallow flanges some modification of the formulas used in rectangular beams for determining neutral axis, tensile and compressive stresses, and resisting moment may be required. determination of web stresses, a slightly different treatment will be needed on account of the narrowed width of beam through The stiffness and integrity of the flange next to its junction with the stem will require investigation.

In the treatment here given, the usual assumptions of beam action noted in Bulletin No. 4 will be made. These include the assumptions that a plane section before bending will remain a plane section after bending and that tensile stresses in the concrete at the section of greatest bending moment may be neglected. The stresses developed in the flange to conserve the plane section will be considered separately. The general treatment will follow that given in Bulletin No. 4 of the University of Illinois Engineering Experiment Station, under I. Resistance of Beams to Flexure, and equations from this source will be quoted without demonstration. The term "inclosing rectangle" will be used to denote the rectangle inclosing the flange of the T-beam and the stem down to the centroid of the reinforcing bars.

5. Notation.—The following notation will be used, Fig. 1:

h = thickness of flange or slab of T-beam.

b =breadth of flange or slab of T-beam.

b' =breadth of stem of T-beam.

d =distance from the compressive face to the centroid of the longitudinal reinforcement.

d' = distance from the center of the longitudinal reinforcement to center of gravity of compressive stresses.

A =area of cross section of longitudinal reinforcement.

bd = area of inclosing rectangle (rectangle inclosing flange and stem of T-beam down to center of the longitudinal reinforcement).

 $p = \frac{A}{bd} = \text{ratio of area of longitudinal reinforcement to area of inclosing rectangle.}$

o = circumference or periphery of one reinforcing bar.

m = number of reinforcing bars.

 $E_{\rm s} = {\rm modulus}$ of elasticity of steel.

 $E_{\rm c}$ = initial modulus of elasticity of concrete in compression, a term defined in Bulletin No. 4.

 $n = \frac{E_{\rm s}}{E_{\rm c}} = {
m ratio~of~two~moduli.}$

t =tensile stress per unit of area in longitudinal reinforcement.

c =compressive stress per unit of area in most remote fiber of concrete.

c' = compressive stress per unit of area which causes failure by crushing.

- $\varepsilon_s = {
 m deformation} \ {
 m per} \ {
 m unit} \ {
 m of} \ {
 m length} \ {
 m in} \ {
 m the} \ {
 m longitudinal} \ {
 m reinforcement}.$
- ε_c = deformation per unit of length in most remote fiber of the concrete.
- $\varepsilon'_c = \text{deformation per unit of length when crushing failure occurs};$ i. e., ultimate or crushing deformation.
- $q=rac{arepsilon_{\mathrm{c}}}{arepsilon_{\mathrm{c}}'}=\mathrm{ratio}$ of deformation existing in most remote fiber to ultimate or crushing deformation.
- k = ratio of distance between compression face and neutral axis to distance d.
- z =distance from compression face to center of gravity of compressive stresses.
- M = resisting moment at the given section.
- s = horizontal tensile stress per unit of area in the concrete.
- t = diagonal tensile stress per unit of area in the concrete.
- u = bond stress per unit of area on the surface of the reinforcing bar.
- v = vertical shearing stress and horizontal shearing stress per unit of area in the concrete.

Fig. 1. T-BEAM AND INCLOSING RECTANGLE.

6. Longitudinal, Tensile and Compressive Stresses, and Location of Neutral Axis.—Approximate Solution.—Under the assumption that horizontal tensile stresses in the concrete are not to be considered and that a plane section before bending remains a plane section after bending, the formulas for rectangular beams may be made applicable to T-beams with a close degree of approximation by the substitution of the rectangle inclosing the flange and stem down to the centroid of the reinforcing bars (called here the inclosing rectangle) shown in Fig. 1. If the flange of the T-beam were thick enough to extend down to or below the neutral axis, the part of the concrete not included in the inclosing rectangle would, by the assumptions quoted above, not affect the resistance of the beam

to flexure. If the flange does not extend to the neutral axis, a part of the compression area assumed to exist for the inclosing rectangle is not available in the T-beam, but the portion so cut off has, by reason of its proximity to the neutral axis, a comparatively small influence upon the flexural action of the beam. The effect is so little that we may, within certain limits of proportions, substitute the inclosing rectangle for the T-section in determining the position of the neutral axis, the tensile stress in the reinforcement, the compressive stress in the most remote fiber of the concrete, and the resisting moment of the section.

For this approximation, the formulas given in Bulletin No. 4 for the proportional depth of the neutral axis may be repeated:

For a constant modulus of elasticity in the concrete (straightline stress-deformation relation),

$$k = \sqrt{2 pn + p^2 n^2} - pn \dots (10)$$

When the deformation in the most remote fiber is equal to one fourth of the ultimate or crushing deformation $(q=\frac{1}{4})$, a condition approaching that found in beams of the usual percentage of reinforcement, the general equation for neutral axis reduces to,

Equation (8) of Bulletin No. 4 may be used for the general case and (9) when the concrete is at the limit of the compressive strength.

The diagram given on page 16 of Bulletin No. 4 will be useful in determining the position of the neutral axis if equation (11) is to be used. With 1% reinforcement, for a ratio n equal to 12, k will be .40; for a ratio n equal to 15, k will be .43.

For a beam in which the compressive stress developed is less than the ultimate strength of the concrete (and this condition covers all the usual cases of T-beams), the formula for the resisting moment of the beam may best be expressed in terms of the tensile stress in the reinforcing bars, as given in the two equations:

$$M = Af(d-z)...$$

$$M = Afd'...$$
(12)

If k=.40, or .43, the latter equation may be written M=.86 A f d, and this equation for the resisting moment of the T-beam may be used with sufficient accuracy for many purposes, even for quite a range of reinforcement. If the bending moment is known, the stress in the steel may be calculated by substituting the value of the bending moment for M in equation (13) or in the reduced form M=.86 A f d. The effect of substituting the inclosing rectangle for the exact T-shape in determining the position of the neutral axis and the center of the compressive stresses is so slight that the error may be neglected and the above formulas used when the flange extends at least two thirds of the distance to the neutral axis or, say, when the thickness of the flange is at least one fourth of the depth of the beam. Even for thinner flanges the error in the use of these formulas will not be large.

Values for compressive stresses in T-beams are not of very general usefulness since the percentage of reinforcement (based on the inclosing rectangle) will generally not be large and the compressive stresses have therefore not need to be considered and may be sufficiently guarded by limiting the percentage of re-To illustrate, if in a T-beam made up of a beam inforcement. and its connecting portion of the floor a width equal to four times the width of the beam itself be considered to be tributary to the T-beam and if the area of the reinforcing bars is 4% of the area inclosing the stem of the T-beam (b'd, of Fig. 1), this reinforcement will be only 1% of the inclosing rectangle of the Under conditions of good construction, the assumed T-beam. compressive stress developed in the concrete, would, as has been shown for rectangular beams, be well below any danger of a compression failure. This amount of steel is larger than would ordinarily be used in such construction.

If, however, it is desired to compute the compressive stress, an approximate solution may be made by equation (15) of Bulletin No 4,

$$c = \frac{2At'}{kbd'} \cdot \frac{1 - \frac{1}{2}q}{1 - \frac{1}{3}q} \cdot = \frac{2pt'}{k} \cdot \frac{1 - \frac{1}{2}q}{1 - \frac{1}{3}q} \dots (15)$$

where b and p refer to the inclosing rectangle. For the conditions of T-beams the fraction $\frac{1-\frac{1}{2}q}{1-\frac{1}{3}q}$ will likely range between

.92 and .97, so that its use or non-use does not affect the results materially.

There is a greater proportional error in the use of equation (15) for beams in which the flange does not extend down to the neutral axis than there is in the use of equation (13), but as the purpose is only to find whether a limiting value is exceeded, the limits for depth of flange used with equation (13) may be considered allowable. This is further borne out by the fact that in floor systems a width of floor even greater than here used will generally be tributary to the T-beam, and hence the compressive stress will be lower than for an assumed ratio of 4.

7. Web Stresses.—Bond, Shear, and Diagonal Tension.—In T-beams the bond stresses developed are practically the same as would be found with the same steel in a rectangular beam. The shearing stresses developed and the corresponding diagonal tensile stresses are higher, since the width of stem is relatively small; and even with a moderate amount of reinforcement the resistance to web stresses may constitute the weakest element of the beam.

The bond stress developed in a T-beam when the longitudinal reinforcing rods are laid horizontally throughout the length of the beam may be determined by equation (17) of Bulletin No. 4, (p. 19),

$$u = \frac{V}{mod'}....(17)$$

where u is the bond unit-stress developed, V is the total external vertical shear, m is the number of reinforcing bars, o is the effective circumference or periphery of one bar, and d' is the distance from the center of the longitudinal reinforcement to the center of gravity of the compressive stresses. The only approximation to be made is in getting the value of d'. As in the preceding article, d' may be taken to be d (1-.34 k), and k may be obtained as before suggested by the use of the method of rectangular beams with the width of the beam taken as that of the inclosing rectangle. For most conditions d' may be called .86d.

The reasoning for the determination of vertical and horizontal shearing stresses given on page 20 of Bulletin No. 4 is directly applicable to T-beams, and formula (18) will give the horizontal shearing unit-stress (and therefore its equal, the vertical shear-

ing unit-stress), if we use in it the width b', the width of the stem of the T-beam.

$$v = \frac{1'}{b'd'}.$$
 (18)

In equation (18) v is either the horizontal or the vertical shearing unit-stress, the two shearing unit-stresses being always equal. For most conditions d' may be taken as .86d, as in the last paragraph. The amount of the vertical shearing unit-stress developed in T-beams may be much higher than in ordinary rectangular beams, but it will be well below the ultimate shearing strength of the concrete.

The diagonal tensile stress in the stem of the T-beam is a function of the shearing stress and the horizontal tensile stress in the concrete. As the horizontal tensile stresses may not be well determined, it seems best for our purpose to use the horizontal and vertical shearing stresses as a means of comparison of the diagonal tensile stress developed. If part or all of the reinforcing bars are bent up at the ends, the problem is further complicated. The beams described in this bulletin were reinforced with vertical stirrups, and as the concrete itself failed to resist the diagonal tension at points well below the maximum load put on the beam, the resistance of the concrete to diagonal tension will be disregarded for these tests and the effect of the vertical stirrups studied.

Two forms of metallic web reinforcement are used to counteract the diagonal tension: (1) bending the reinforcing bars or strips sheared from them into a diagonal position, and (2) vertical stirrups carried under and around the longitudinal reinforcement and extended upward to the top of the beam or to some anchorage. The T-beams tested were reinforced with vertical stirrups, and hence this form of web reinforcement will be considered further.

The diagonal tension existing in the web may be resolved into horizontal and vertical components. Considering the longitudinal bars to be all horizontal, we may expect, when the bond resistance is sufficient, that the horizontal component will be taken by the longitudinal reinforcement. Considering that the test has passed the point where the concrete of the web resists the diagonal tension, we may count that the whole vertical component of the

web stresses is taken by the stirrups. The amount of this vertical component per unit of length of beam is for the T-beams equal to the horizontal shear for the width of the stem as given by

equation (18), and $vb' = \frac{V}{d'}$ will give the rate of vertical stress

per unit of length of beam which will go to the stirrups. If the stirrups are 6 inches apart, the stress to be taken by the two prongs of the stirrup will be $6 \, vb'$. This calculation is on the basis of a test loading which gives a constant shear from support to load point, as, for example, a loading at the one-third points. For a uniformly distributed load, the value vb' will be the rate of stress at a given section. To illustrate further, for a T-beam having a width of stem of 8 in., and d' = 8.6 in., and a load of 60 000 lb., $V = 30\,000$ lb., and v = 437 lb. per sq. in. With stirrups 6 inches apart the total stress on one prong of the stirrup will be 10 500 lb. These calculations do not take into account the resistance to bending of the reinforcing bars themselves. In the T-beams having also a part of the bars bent up, in order to avoid complicated calculations and to give a general comparison, the same formulas will be used herein, although the results are not an accurate measure of the stresses produced.

8. Integrity of Flanges.—In discussions on T-beams it is frequently stated that the thickness of the flange must be at least one half as great as the width of the stem or rib, in order that the shearing stresses at the junction of the flange and stem may not exceed those in the lower part of the stem. As the actual shearing stresses in both sections are well within the shearing strength of the concrete, there is no danger of failure by shear in either section, using the term shear in its strict sense. In the stem we have used the shearing unit-stress as a measure or method of comparison for the diagonal tensile stresses. In the flange these stresses do not need consideration. Longitudinal shearing stresses in the flange, then, will not require consideration, and the limit of depth given above is unnecessary.

Another statement sometimes made is that the compressive stress in the flange varies across the width of the flange from a maximum amount next to the stem to zero at the edge of the flange. A little consideration will show that this cannot be true. The flange must transmit stress laterally to its edges, acting in a

way as a beam with a load applied longitudinally and horizontally. The width of the overhang of the flange may be considered to be the span of this cantilever beam, and the distance from the load to the support (one-third the span length in the beams tested) may be thought of as the depth. Evidently this will be a very stiff beam, and the result will be a close approach to uniformity of compressive stress at points across the width of the flange. Little variation from a plane section may therefore be expected, the change that may exist being produced more largely by other causes. Of course, there must be a limit to this assumed integrity of the cross section, but for T-beams with the ordinary amount of reinforcement the compressive stress developed is small and the variation may generally be neglected.

As usually constructed, the floor, and hence the flange of the T-beam, will have reinforcement at right angles to the stem. This will resist a breaking of the flange next to the stem and assist in giving the whole flange the curved shape which the beam takes when the load is applied.

- 9. Method of Treatment.—For the investigation herein recorded, the preceding method of analysis will be used. The T-beam will be treated as a rectangular beam of the dimensions given by the inclosing rectangle, when tensile, compressive, and bond stresses are under consideration. The width of the stem will be considered to enter into calculations for shear and for diagonal tension. The integrity of the cross section will be investigated somewhat, and the bearing of the approximation involved in the above assumptions will be looked into.
- 10. Other Formulas for T-beams.—If it is desired to take into account the exact section above the neutral axis the following formula for the proportionate depth of the neutral axis may be used, if we consider q=0, or if we use a straight-line modulus of elasticity. Other values of q may be used.

$$k = \sqrt{2 pn \begin{pmatrix} b \\ b \end{pmatrix} - \frac{h^2}{d^2} \left(1 - \frac{b}{b'} \right) + \left[pn \begin{pmatrix} b \\ b' \end{pmatrix} + \frac{h}{d} \begin{pmatrix} b \\ b' \end{pmatrix} - 1 \right]^2} - pn \begin{pmatrix} b \\ b' \end{pmatrix} - \frac{h}{d} \begin{pmatrix} b \\ b' \end{pmatrix} - 1 \right] \dots (10')$$

For a beam with 1% reinforcement and having a ratio of depth of flange to effective depth of steel $\left(\frac{h}{d}\right)$ of $\frac{1}{4}$, using for

comparison n=15, this formula gives k=.44, and the approximate method previously described gives k=.42. For $\frac{h}{d}=\frac{1}{5}$, k=.46. It is easily seen that the effect of this difference upon the calculated resisting moment of the beam (when based on tension in the steel) is small.

III. MATERIALS, TEST PIECES, AND METHOD OF TESTING.

11. Materials.—The stone was a good quality of rather hard limestone from Kankakee, Illinois, ordered screened through a 1-in. screen and over a \(\frac{1}{4}\)-in. screen. It contained 45% to 50% voids and weighed 85 pounds per cubic foot. In the determination of the voids of both stone and sand, the material was poured slowly into water so that the voids became filled with water and no air was caught.

The sand was of good quality from near the Wabash river at Attica, Indiana. It was fairly clean, sharp and well graded, contained 28% voids, and weighed 115 lb. per cu. ft. Table 1 gives the results of a mechanical analysis of this sand.

TABLE 1.

MECHANICAL ANALYSIS OF SAND.

Sieve No.	Per cent Passing
4	100
10	73
20	36
30	12
74	5
100	2

The cement used was furnished by the Joint Committee on Concrete and Reinforced Concrete. It was made up of a mixture of five standard American portland cements, selected and mixed by the manufacturers and was of excellent quality.

The concrete was made of the proportions of 1 of cement, 2 of sand, and 4 of stone, measured by loose volume. The mixing was done and the beams made by men skilled in concrete work. Care was taken in measuring, mixing, and tamping, to secure as uniform a concrete as possible. The mixing was done with

shovels by hand; the stone having been wetted a day or so before being used. The sand and cement were first mixed dry, the stone being then added and the mass mixed until uniform in appearance. Water was added in such proportion that the tamping of the central portion of the beam really amounted to a churning action.

The steel used for the horizontal reinforcement in some of the beams was $\frac{3}{4}$ -in. mild steel plain round rods, and in the rest was $\frac{3}{4}$ -in. high steel Johnson corrugated bars. The stirrups were in all cases $\frac{1}{2}$ -in: high steel Johnson corrugated bars. Table 2 gives physical tests of these rods, the samples tested being from

TABLE 2.

Tension Tests of Steel Used in T-beams.

Average Values.

T-beam	Size of Bar	Per cent		Maximum		Maximum
No.	inches	Elongation in 8 in.	Point pounds	Load pounds	Point lb. persq. in.	Load lb. per sq. in
1	3-in. Johnson	13.5	30 700	51 300	54 900	91 600
2	bar (new section)	15.0	30250	48 000	53 750	86 200
3	Area=.56 sq. in.	14.5	29 700	50 000	52700	89 000
5	•	15.0	30 100	48 900	53 380	86 980
Av.		14.5	30 200	49 500	53 800	88 400
4	.750 plain round	34.5	16 600	24 600	35 100	55 500
8	.752 plain round	30.8	18 100	26 600	40 700	59 900
9	.750 plain round	32.0	17 300	26100	39 100	59 100
Av.		32.4	17 300	$\frac{1}{25800}$	38 300	58 200

the ends left after the bars were cut for the beam. The average ultimate strength of the plain round rods was 58 200 lb. per sq. in. and the yield point 38 300 lb. per sq. in. The \(\frac{3}{4}\)-in. Johnson bars developed an average ultimate strength of 88 400 lb. per sq. in., and a yield point of 53 800 lb. per sq. in.

12. Test Specimens.—Table 3 shows the specimens which were made and tested. The nine T-beams were 11 ft. long and the span used was 10 ft. The following dimensions were constant for all the beams: thickness of flange, 3½ in.; width of web, 8 in.; depth over all, 12 in. and depth from top fiber to center of steel, 10 in. The width of flange varied, three speci-

mens being made of each of the widths; 16 in., 24 in., and 32 in.

The proportion of reinforcement was from .92% to 1.10%, based on the area of the inclosing rectangle, as shown in Fig. 2; that is, it was obtained by dividing the area of the steel by the product of the breadth of the flange and the effective depth of the beam. This percentage was made as near 1.00 as the size of the reinforcing bars would permit. It will be noted that if the percentage were based on the area of the rectangle inclosing the stem, it would be very high, the amount for the beams 32 in. wide amounting to about 4%. The reinforcing rods were symmetri-

TABLE 3.
LIST OF TEST SPECIMENS.

All Beams Have Stirrups of ½ in. Johnson Bars Placed as Shown in Fig. 2.

cally arranged with respect to the axis of the beam. In some, a part

		Minor	Specimens			
		Reinforcen				
T-beam			Ar	ea	Cubes	0-1:1
No.	Flange inches	Kind	sq. in. per cent		Cubes	Cylinders
1	16	3 ¾-in. Johnson bars	1.68	1.05	$\begin{cases} 1_1 \\ 1_2 \\ 1_3 \end{cases}$	1
2	32	6 3-in. Johnson bars	3.36	1.05		2
3	24	4 ¾-in. Johnson bars	2.24	0.93	$\left\{\begin{array}{c} 3_1 \\ 3_2 \\ 3_3 \end{array}\right.$	3
4	16	$4^{\frac{3}{4}}$ in. plain round	1.76	1.10		4
5	32	$\int 6^{\frac{1}{2}}$ -in. Johnson bars $\int 2^{\frac{1}{2}}$ bars bent up	3.36	1.05	$\begin{array}{c} (5_1 \\)5_2 \end{array}$	5
6	24	(5 \(\frac{3}{4}\)-in. plain round (2 bars bent up	2.20	0.92	, -	
7	16	4 $\frac{3}{4}$ -in. plain round	1.76	1.10	$\left\{\begin{matrix} 7_1\\ 7_2\\ 7_3\end{matrix}\right.$	7
8	24	$\begin{cases} 5 & \frac{3}{4}$ -in. plain round $\\ 2 & \text{bars bent up} \end{cases}$	2.20	0.92	$\begin{cases} 8_1 \\ 8_2 \\ 8_3 \end{cases}$	8
9	32	{ 7 ¾-in. plain round 3 bars bent up	3.08	0.97		

of the rods was turned up beyond the one third points to within 4 in. of the top of the beam. Ten U-shaped stirrups of ½-in. high steel Johnson corrugated bars were used in each beam. These stirrups were spaced 6 in. apart on the portions of the beam between the load points and supports. They passed under the corrugated

Fig. 2. Arrangement of Reinforcement.

reinforcing bars, alternate ones inclosing only the middle bars. In two of the 32-in, beams three $\frac{1}{2}$ -in. Johnson corrugated bars were placed transversely in the upper side of the flange at and near the load points. Fig. 2 shows the arrangement of the reinforcement in all of the beams. In some of the beams in which the reinforcing bars were placed in two layers, the upper bars sank down in the mortar until they were in contact with the lower layer of bars.

Fourteen 6 in. cubes were tested. The numbering is the same as that for the beams for which the batch was made. Seven 8-in. cylinders were made in a similar manner.

13. Forms.—Fig. 3 shows the plan of the forms used in making the T-beams. 2-in. planks were used for the sides and ends. Clamps and struts were of 2-in. x 4-in. pieces. The planks

Fig. 3. Plan of Forms.

were soaked in water for some time before using, in order to prevent the absorption of water from the beams.

14. Fabrication and Storage.—The beams were made on the concrete floor of the laboratory, strips of building paper being laid on the floor to prevent the concrete from adhering to it. As already stated, the concrete was proportioned by loose volume and mixed by hand. Generally, two batches were mixed in making a beam.

After the form was set up, a layer of concrete 1-in, to $1\frac{1}{2}$ in. thick was put in, the reinforcement placed, and the rest of the concrete filled in in layers about 3 in thick. The sides and ends were spaded, the concrete tamped, then spaded again and tamped. This gave a very good surface to the test pieces.

The forms were kept on until a day or so before testing the beams, the beams being sprinkled twice daily in the meantime. The temperature of the room ranged from 60° to 70° F. during the period of storage.

15. Method of Testing.—Fig. 4 shows the method of loading used. The beams were tested in the 600 000-lb. Riehle' testing machine, the load being applied at the one-third points through turned steel rollers, which were 2 in. or $4\frac{1}{2}$ in. in diameter, according to the size of the beam. Each of these rested on a cast iron plate, 2 in. x 3 in. x 2 ft. 8 in., faced on both sides, which distributed the load laterally over the beam. The supports had curved bottoms to permit rocking, and plates 8 in. x $1\frac{1}{8}$ in. x 8 in. were used as bearing plates. These plates, together with the bearing plates on the top of the beam, were bedded in

Fig. 4. Method of Testing.

plaster of paris which was allowed to harden under the weight of the beam and the aparatus used in loading, before the load was applied. The movement of the head, in testing, was \mathfrak{z}_0 inch per minute. Center deflections were read on all T-beams and deformations were observed on a few. The deflections were obtained by means of a thread stretched between two points over the supports and about seven inches from the top of the beam. The frame used for holding the extensometer dials was improvised and its lack of rigidity seriously impaired its usefulness, the readings being sometimes inconsistent and therefore untrustworthy. Since at the present time tests are being made here in which reliable deformation readings are expected, diagrams from the readings taken in this series will not be reproduced.

The cubes, cylinders, and steel were tested on the 100 000-lb.

Riehle' machine, the speed of the head being .1 inch per minute. The cubes and cylinders were bedded in plaster of paris before testing.

IV. EXPERIMENTAL DATA AND DISCUSSION.

- 16. Cube and Cylinder Test Data.—Table 4 gives the results of the tests of the cubes and cylinders. The breaking strength of the cylinders is somewhat below that of the cubes. The concrete showed very good quality.
- 17. Deflection Diagrams.—Fig. 7 to 15 at the end of the text give the load-deflection diagrams for the T-beams. The ordinates (vertical distances) represent the applied loads, and the abscissas

TABLE 4.
RESULTS OF CUBE AND CYLINDER TESTS.

	~	Cubes		Cylinders					
No.	Age at Test Days	Maxi Total Pounds	lb. per sq. in.	No.	Age at Test Days	Maxii Total pounds	hum Load lb. per sq. in		
$\begin{array}{c} 1_1 \\ 1_2 \\ 1_3 \\ \hline Av. \\ \hline \hline 3_1 \\ 3_2 \\ 3_3 \\ \hline Av. \\ \hline 5_1 \\ 5_2 \\ \hline Av. \\ \hline \hline 7_1 \\ 7_2 \\ 7_3 \\ \hline Av. \\ \hline 8_1 \\ 8_2 \\ 8_3 \\ \hline Av. \\ \hline \end{array}$	59 59 59 57 57 57 57 58 58 56 56 56 56 54 54	62 120 84 690 66 390 42 120 49 620 46 200 69 800 81 500 57 600 71 100 68 300 55 600 94 500	1720 2350 1840 1970 1170 1380 1280 1280 1940 2260 2100 1600 1980 1990 1830 1840 2620 2020	1 2 3 4 5 7 8 Av.	63 63 61 59 58 56 54	95 000 94 200 88 200 67 000 60 000 73 000 88 000	1890 1870 1760 1330 1190 1450 1750		

(horizontal distances) the corresponding deflection at the center of the beam. It will be seen that at or near the maximum load the curve changes direction abruptly, and that for nearly all the beams the load does not fall off materially until a considerable deflection has been obtained. The stress-deformation curves found (not reproduced) show an abrupt change on the tension side of the beam.

18. Phenomena of Tests.—In Table 5 (p. 25) are given the maximum loads which the beams sustained. Fig. 5 and 6 give sketches showing position of cracks as they appeared after the maximum load and also the shape of the flange in Beam No. 2 after it broke off. The general phenomena of the tests of the T-beams were quite similar to those attending the tests of rectangular beams

Fig. 5. Sketch of Beams after Failure.

having a similar percentage of reinforcement. When the tension in the steel reached 13 000 to 20 000 lb. per sq. in., minute vertical cracks became visible in the concrete on the lower part of the faces of the stem of the T-beam at points in the middle third of the span length. These grew more distinct as the load was increased. When the load became sufficient to strain the steel to its yield point, these cracks opened up and finally became quite large and extended up into and along the flange of the

Fig. 6. Sketch of Beams after Failure.

beam. The evidences of failure by tension in the steel were apparent in every beam, as much so in those reinforced with corrugated bars as in those having plain rods.

At loads somewhat above the amounts at which it would be expected that failures by diagonal tension in the concrete would occur in beams not having metallic web reinforcement, minute diagonal cracks appeared on the face of the stem in the outer thirds of the span length. These cracks had the direction and appearance of cracks attending failure by diagonal tension. Their consideration will be taken up under "21. Web Stresses," (p. 26).

In general, the flanges gave no sign of failure. In one (Beam No. 2) the flange split off after the maximum load was reached, as shown in Fig. 6. In this beam there was no lateral reinforcement in the flange. It seems evident that the tearing off occurred by reason of the warping of the flange as bending took place, and as this effect was not found in the other two beams of 32-in. width, the presence of the lateral rods in the beams was probably advantageous. Such rods would, of course, be present in ordinary floor construction, and uneven bending would be resisted by this lateral reinforcement.

In the representation of diagonal and vertical cracks after the maximum load had been reached, shown in Fig. 5 and 6, the tension crack which caused failure is indicated by a heavy line. The diagonal crack first to appear is numbered 1. These diagonal cracks generally intersected the plane of the reinforcing bars at their intersection with the stirrups. The description of the action of the beams which follows is given only in sufficient detail to indicate their general behavior, though individual peculiarities of beams are also noted.

Beam No. 1.—Two tension cracks at points at the level of the reinforcing bars between the load points appeared at an applied load of 16 000 lb. Before 20 000 lb. was reached eight more tension cracks appeared in the middle third of the span length. At 20 000 lb. the first diagonal crack appeared. At 26 000 lb. it had extended to within 2 inches of the flange. With further loading a large number of diagonal cracks developed. After reaching a load of 42 000 lb., (deflection 0.5 in.), the load fell off to 41 000 lb., as the machine speed did not keep up with the deflection of the beam under the given load. The load

then slowly rose to 44500 lb., the deflection increasing to 1.34 in. During this period the tension cracks opened up quite rapidly, while the diagonal cracks remained about the same, one diagonal crack becoming $\frac{1}{32}$ in. wide. Finally, at a deflection of 1.6 in., and an applied load of 43800 lb., the concrete crushed at one of the load points.

Beam No. 2.—The failure of this beam was peculiar in that after it had passed the maximum load and had shown all the evidences of failure by tension of the steel, instead of holding about the same load and deflecting considerably more as the machine was run down, the final breaking was by the flanges splitting off as shown in Fig. 6. This was the only one of the three beams with 32-in. flanges which did not have lateral reinforcing rods in the flange at and near the load points. The first tension crack appeared at a point 10 in. west of the center at a load of 26 000 lb. and others appeared at 28 000 lb.

The first diagonal crack was observed 19 in. west of the west load point at 36 000 lb., and reached half-way to the flange. A number of other diagonal cracks appeared as the load was increased. At 56 000 lb. one diagonal crack had reached the flange and small horizontal cracks formed at the junction of the flange and stem. The beam carried the load well and reached a maximum of 78 300 lb. applied load. The load gradually fell off as the deflection was increased, and finally the flange on both sides from the east end to the west load point broke off suddenly, as shown in Fig. 6.

Beam No. 3.—In beam No. 3 it was noticed that each diagonal crack passed through the intersection of the stirrups and the longitudinal reinforcement. At the maximum load one of the tension cracks extended well into the flange.

Beam No. 4.—In Beam No. 4, some time after the maximum load of 29 900 lb. had been reached, the principal tension crack extended to the flange and then extended along the junction of the stem and flange, but no consequences were traceable to this. As in the other cases, the failure was by tension in the steel, followed finally by compression in the concrete.

Beam No. 5.—At an applied load of 25 000 lb., two tension cracks and one diagonal crack appeared, others following later. At 74 000 lb. the deflection curve makes an abrupt change of direction, the deflection at this load being .54 in. The tension

cracks increased in size and failure by tension in steel was evident. With increased deflection the load ran up slowly, reaching a maximum of 80 000 lb. at a deflection of 1.4 in., when one roller rolled off its bearing and one pedestal fell forward, allowing the beam to drop and break. At the maximum load there were evidences of crushing in the concrete.

Beam No. 6.—In Beam No. 6, after the maximum load of 37 000 lb. was reached the principal tension crack extended into the flange and finally extended horizontally along the junction of flange and stem. The test was then discontinued.

Beam No. 7.—In Beam No. 7, the maximum load was maintained from a deflection of .3 in. to one of 1.9 in. before final failure.

Beam No. 8.—In Beam No. 8, the maximum load was maintained from a deflection of .3 in. to one of 2.6 in. before final failure. The stress-deformation diagram gave a compressive unit deformation of .0005 at the point where the steel yielded.

Beam No. 9.—The stress-deformation curve and the deflection curve show failure by tension in the steel. The position of cracks is shown in Fig. 5.

Tension in Steel.—As already noted, the abrupt turn in the deflection diagrams (Fig. 7 to 15, following the text), taken in connection with the action of the concrete on the compressive side, indicates that the beams failed in every case through the steel becoming stressed beyond the yield point. deformation diagrams of the four beams on which observations of longitudinal deformations were made, also give marked evidence of failure by tension in the steel. In Table 5 are given the calculated stresses in the reinforcement at the maximum load, based on the formula M = .86 A f d. The weight of the beam and of the loading apparatus was included in the calculations. average stress in the reinforcement in the beams reinforced with plain mild steel rods at the maximum load is 39 800 lb. per sq. in. The average stress in the corrugated bars at the maximum load is 58700 lb, per sq. in. It will be recalled that the average yield point for the coupons taken from the ends of the reinforcing bars was 38 300 lb. per sq. in. for the mild steel plain rods and 53800 lb. per sq. in. for the corrugated bars. The calculated stresses at the maximum load are therefore somewhat above the average yield point of the metal. It may also be noted that there is no marked difference in the results obtained for beams of different width of flange. The tests and calculations go to show that equation (13) may be used for calculating the resisting moment, and it is believed that this formula may properly be used at least up to a reinforcement equal to 1% of the inclosing rectangle.

TABLE 5.

RESULTS OF TESTS OF T-BEAMS. M = .86 A f d.

All failed by tension in steel.

	ridth	Longitudinal Reinforcement		М	aximum I pounds	Bending	Stress	
Beam No.	Flange W	Flange Width mehres had been cent cent cent cent cent cent cent c	Kind	Ap- plied	With Beam and Ap- paratus	Per 8 inches of Width	Moment M lbin.	Steel f lb. per sq. in.
1	16	1.05	$3\frac{3}{4}$ -in. Johnson bars	44 500	46 700	23 350	923 000	64 300
4	16	1.10	$4^{-\frac{3}{4}}$ -in. plain round	29 900	32 410	16 200	631 000	41 500
7	16	1.10	$4\frac{3}{4}$ -in. plain round	27 300	30 100	15 050	579 000	38 100
3	24	0.93	4^{-3}_{4} -in. Johnson bars	53 500	55 700	18 570	1 107 500	57 500
6	24	0.92	$\begin{cases} 5 & \frac{3}{4}$ -in. plain round $2 \text{ bars bent up} \end{cases}$	36 800	39 300	13 100	773 500	40 700
8	24	0.92	$(5^{\frac{3}{4}}$ -in. plain round $(2 \text{ bars bent up.})$	37 300	40 100	13 370	783 500	41 200
2	32	1.05	$6\frac{3}{4}$ -in. Johnson bars	78 300	80 500	20 120	1 608 000	55 700
5	32	1.05	$\begin{cases} 6 \ \frac{3}{4}\text{-in. Johnson bars 2} \\ \text{bars bent up. (6 trans-verse bars in flange} \end{cases}$	80 800	83 300	20 820	1 658 000	57 400
9	32	0.97	$\begin{cases} 7^{-\frac{3}{4}}\text{-in. plain round } 3\\ \text{bars bent up. } (6 \text{ transverse bars in flange}) \end{cases}$	48 100	50 900	12 720	1 004 000	37 600

20. Compression in Concrete.—The stress-deformation diagrams obtained in four beams show clearly that the full compressive strength of the concrete was not developed when the yield point of the beam was reached, the amount of shortening being about .0005. The fact that the final deflection of the beam generally was several times as much as that at the yield point of

the beam shows that with the stretch of the steel beyond the yield point the neutral axis must have risen very much before final or ultimate failure by crushing of the concrete occurred, and this corroborates the preceding statement. The results bear out the assertion that beams with 1% reinforcement will have only a part of the compressive strength of the concrete developed, even when steel of 54 000 lb. per sq. in. yield point is used. As in T-beams having a width of flange equal to four times the thickness of the stem a 1% reinforcement (4% of the stem area) is very large, it does not seem that the compressive strength of the concrete in the upper fiber may be expected to be a controlling element in floor construction of this kind.

Web Stresses.—Rectangular beams which do not have metallic web reinforcement and in which the longitudinal bars are laid horizontally may be expected (for concrete of this quality) to fail by diagonal tension when the calculated vertical shearing unit stresses reach, say, 120 lb. per sq. in., provided, of course, the amount of reinforcement and relation of depth to length of span are not such that failure by tension or compression will occur before this amount of stress is developed. the assumption that the method of calculation given on page 10 is applicable to T-beams so reinforced. For the T-beams tested. no matter what the width of flange, the load which would produce failure by diagonal tension in the concrete calculated in this way would be 17 000 lb. As all beams failed by tension in the steel and as the loads ran as high as 80 000 lb. it is apparent that the metallic web reinforcement was efficient and adequate.

The conditions of testing were not favorable for determining the time of appearance of the first diagonal cracks (the minute cracks which appear in the outer third of the span length and which in beams without metallic web reinforcement presage early and sudden failure), and in some cases these may have appeared before their presence was noted. However, the load at which their existence was observed is given in Table 6. In Beam No. 7 the load for the first visible crack, $18\,000$ lb., gives by equation (18) a value of the vertical shearing unit stress of 147 lb. per sq. in., not much above that at which a beam without metallic web reinforcement would fail. The general average time of observation of the first visible diagonal crack corresponded to a value of about 180 lb. per sq. in. This higher value of v may

be an indication that the stiffness of the stirrups holds back the growth of cracks of the size at which they become visible or even that the stirrups act with the concrete in taking these secondary stresses up to the load where the cracks become visible, or else that the method of calculation gives too high results.

After the diagonal cracks have appeared, it must be considered that the secondary tensile stresses are taken mainly or wholly by the metallic reinforcement. In Table 6 are given the values of the vertical shearing unit-stresses for the maximum loads, calculated by equation (18). As in no case was there a

TABLE 6.
Web Stresses.

		At First Diagonal Crack			At Maximum Load		
No.	Flange Width inches	Load in	Pounds Including Beam and Apparatus	lb. per	Bond, u lb. per sq. in.	Shear, v lb. per sq. in	
1 4 7	16 16 16	20 000 29 900 18 000	22 200 32 100 20 200	161 234 147	302 200 186	$340 \\ 236 \\ 219$	
3 6 8	24 24 24	28 000 20 000 27 000	30 500 22 500 29 500	$\frac{222}{164}$ $\frac{214}{214}$	270 194 198	$405 \\ 286 \\ 292$	
2 5 9	32 32 32	36 000 35 000 32 000	38 800 37 800 34 800	$282 \\ 275 \\ 253$	260 269 180	585 605 370	

failure by diagonal tension, we are most interested in the beams which carried the highest loads and hence developed the greatest shearing unit-stresses. Beam No. 2 developed 585 lb. per sq. in. and beam No. 5, 605 lb. per sq. in. These results are several times as great as the values obtained with rectangular beams without metallic reinforcement which failed by diagonal tension of the concrete.

The stresses in the stirrups may be calculated tentatively by the method given under "7. Web Stresses", (p.9). For a load of 80 000 lb., $V = 40\,000$ lb.; v = 580. For the width of stem of 8 in. and stirrups 6 in. apart the tension in each prong of the stirrups,

calculated in this way, will be 13 900 lb., equivalent to 55 500 lb. per sq. in. The bond developed is also very high.

In the foregoing discussion the horizontal and vertical shearing stresses have been used as a means of comparing resistances to diagonal stresses. Viewed by themselves, they are also interesting. 600 lb. per sq. in. is evidently well below the actual shearing resistance of concrete, but it is considerably above the values given as the ultimate shearing strength of concrete by those who hold that shearing strength is but little more than the tensile strength of concrete.

- Beam Deflection.—Considering the beams all as rectangular beams having the full section of the inclosing rectangle and as having reinforcement equal to 1% of this rectangle, the deflection in beams of different width of flange should be the same at loads proportional to the flange width. That is, a load of 10 000 lb. on a rectangular beam 8 in. wide, one of 20 000 lb. on a T-beam with flange 16 in. wide, one of 30 000 lb. on a T-beam with 24-in. flange, and one of 40 000 lb. on a T-beam with 32-in. flange, all having 1% reinforcement, should, on this assumption, give the same deflection. However, the T-beams do not have the full compressive area just above the neutral axis. As the concrete on the tension side of the neutral axis also adds to the stiffness of the beam, especially in the part in the outer thirds of the span length, the narrow width of the stem will detract from the stiffness of the beam. It may be expected, then, that the deflection of the T-beams will increase somewhat as the width of flange increases, when compared on the basis of loads proportional to the width of flange or on the basis of a load which gives the same stress in the steel. In Table 7 are given the deflections of the beams for loads which give a stress of 35000 lb. per sq. in. in the steel, as calculated by the formula, M = .86 A f d. results average .27 in. for the 16-in. flange, .27 in. for the .24-in. flange, and .32 in. for the 32-in. flange. The decrease in stiffness for the wide flange, while apparent, is not very great.
- 23. Position of Neutral Axis.—Little can be said here concerning the position of the neutral axis except that the data and analysis go to confirm the statement that for ratios of width of flange to width of stem not exceeding those used in the experiments, the position given by considering the T-beam as a rectangular beam of the full section of the inclosing rectangle is

sufficiently close for purposes of ordinary calculation. The stress-deformation diagrams for the beams on which observations were made, so far as these results may be used, also corroborate this view. As the compressive stresses in T-beams will generally be low, the error in any use of the assumed inclosing rectangle likely to be made will be small enough to be neglected, especially if we

TABLE 7. $\label{eq:TABLE 7.}$ Deflections for a Stress of 35 000 lb. per sq. in. in the Steel. $M = .86 \ A \ f \ d.$

Beam No.	Flange Width inches	Per cent Reinforce- ment	Applied Load pounds	Deflection inches
1 4 7	16 16 16	1.05 1.10 1.10	25 200 26 500 26 500	0.24 0.25 0.31
Av.			20 900	0.27
3 6 8	24 24 24	0.93 0.92 0.92	33 600 33 200 33 200	$\begin{array}{c} 0.25 \\ 0.27 \\ 0.28 \end{array}$
Av.				0.27
2 5 9	32 32 32	1.05 1.05 0.97	50 500 50 500 46 700	0.31 0.31 0.34
Av.				0.32

limit the use to the condition that the flange shall extend twothirds of the distance to the neutral axis.

24. Applicability of Results.—The tests are not numerous enough or sufficiently diversified to show that the results are generally applicable to beam construction. It seems clear, however, from the general behavior of these beams that for calculations on strength the T-section may be considered to be the equivalent of rectangular beams of the size of the inclosing rectangle for widths of flange equal at least to four times the width of stem. It seems probable that this relation may be applicable to even greater widths of flange. However, the actual value of this limit cannot be of great practical importance, since a greater width would not materially change the value of the calculated resisting moment (considering it based upon tensile strength of steel and moment arm measured to center of compressive stress), and since the amount of steel will at any rate

be limited by the space in the stem and by practical considerations in placing and bedding it to an amount which will keep the maximum compressive stress within a reasonable limit.

The method of calculating the tension in the stirrups is used tentatively and is not regarded as a final method for use. It is probable that experiments will show that a different method of calculation should be adopted. The efficacy of stirrups of this kind is well brought out, but at the same time, it should be noted that the size, spacing, and bonding of the web reinforcement are of larger capacity than is usually given. The fact that all the beams, and especially the wide beams, escaped failure by diagonal tension is of especial importance.

Nothing in the observed phenomena of the tests indicates that there was an appreciable distortion from a plane cross section even in the flanges of the beam. The tearing of the flange in one beam was evidently due to unequal bending and seems not to be traceable to shear or to variations from a plane cross section.

- 25. Summary.—The following summary of the discussion is given:
- 1. Beams of flange width of two, three, and four times the width of stem or web and reinforced in each case with steel equal to 1% of the inclosing rectangle exhibited in a common way the characteristics of rectangular beams, and the critical failure in every case came through the longitudinal reinforcement becoming stressed beyond its yield point.
- 2. The full compressive strength of the concrete at the most remote fiber was not developed at the yield point of the beam, even in the beams which were reinforced with steel of 54000 lb. per sq. in. yield point.
- 3. The beams with the wide flanges were deflected somewhat more than the narrower beams, as may be expected from the lack of full width of concrete on both the compression and the tension sides of the neutral axis, the deficiency affecting the stiffness of the beam but having little effect upon its strength at points of maximum bending moment.
- 4. The vertical stirrups used proved to be very effective web reinforcement. The diagonal tension cracks appeared at or above the loads at which failure by diagonal tension may be expected in beams without web reinforcement. A high resistance

to diagonal tensile stresses was developed, as measured by the calculated maximum vertical shearing unit-stress, which in one beam was 605 lb. per sq. in. Since no beam failed by diagonal tension, the limit of strength of the web reinforcement was not determined.

- 5. The observed phenomena of the tests give no indication of distortion from a plane cross section and there was no indication that the thin flange was an element of weakness. The tearing of the flange of one beam after the maximum load was reached was due to causes which would not exist in a floor system as usually constructed. It seems clear that the limit of useful width of flange was not reached in the beams tested.
- The maximum strength of T-beams to resist horizontal tension and compression (flange stresses) may well be calculated by using the ordinary methods and formulas in use for rectangular beams and considering the inclosing rectangle of the T-beam to be the equivalent rectangular beam. This approximation is at least applicable for reinforcement not exceeding 1% of the inclosing rectangle. It gives little error when the thickness of flange is at least one quarter of the depth of beam and the width of flange not more than four times the width of stem, and may be used for an even greater range without great error. clusion of a greater width of flange than four times the width of stem would not materially change the calculated strength of the beam, since the amount of steel which may be put into the stem is usually limited by considerations which of themselves will hold the compressive stresses within proper limits, and since the moment arm of the horizontal couple will not change much with an increase in width of flange. The web stresses, which here are very important, will differ from those found for rectangular beams, and for T-beams the actual width of stem must be used in the calculations for vertical shear and diagonal tension.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906.

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Plain and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907.

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907.

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

Bulletin No. 13

November, 1906

AN EXTENSION OF THE DEWEY DECIMAL SYSTEM OF CLASSIFICATION APPLIED TO ARCHITECTURE AND BUILDING

by

N. CLIFFORD RICKER, D. ARCH., PROFESSOR OF ARCHITECTURE

Introduction

The Dewey Decimal Classification was invented and introduced by Dr. Melvil Dewey, also the originator of the schools for the training of librarians and their assistants. Several successive and much extended editions of his book have appeared, and the system has been found so convenient for practical uses that it is now more commonly employed in America and Europe than are any competing systems of arrangement.

All science, arts, literature, and tangible objects to be classified are distributed into ten classes or centuries:

0 to 100 General Works 100 to 200 Philosophy Religion 200 to 300 300 to 400 Sociology 400 to 500 Philology Natural Science 500 to 600 600 to 700 Useful Arts 700 to 800 Fine Arts 800 to 900 Literature

900 to 1000 History

Each one of these primary classes or centuries is next divided into ten secondary divisions or decades, like that for the Fine Arts:

700 Fine Arts

710 Landscape Architecture

720 Architecture

730 Sculpture

740 Drawing

750 Painting

760 Engraving

770 Photography

780 Music

790 Amusements

Each secondary class or decade is further divided into ten subdivisions or units, for example, like Architecture:

720 Architecture

721 Construction

722 Ancient

723 Mediæval

724 Modern

725 Public

726 Religious

727 Educational

728 Residence

729 Design

In this manner are obtained 1000 unit divisions, which form a system usually found sufficient for a small library, a collection of general memoranda, or a series of notes and clippings of moderate extent. But a specialist requires a much more extended subdivision of perhaps only a few of these units comprising the topics in which he is chiefly interested. This introduces a very useful property of the decimal system, namely, that it may be almost infinitely extended in any part by the subdivision of certain units without affecting others or requiring any rearrangement of the general system.

First subdivide into tenths of the unit, like Modern Architecture, for example:

724. Modern Architecture

.1 Renaissance

- .2 Grecian revival
- .3 Gothic revival
- .4 Tudor revival
- .5 Queen Anne ·
- .6 Neo Grec
- .7 Swiss revival
- .8 Romanesque revival
- 9 Other modern styles

If one is particularly interested in the comparative study of the various types of the Renaissance style found in different countries, it will be convenient to subdivide 724.1 into hundredths, for example:

- 724.1 Renaissance
 - .11 Scotland
 - .12 England
 - .13 Germany
 - .14 France
 - .15 Italy
 - .16 Spain
 - .17 Russia
 - .18 Scandinavia
 - .19 Minor countries

A collection of notes and memoranda or photographs of Italian Renaissance buildings may then be so large, that it may profitably be subdivided into thousandths of the unit, as follows:

- 724.15 Renaissance in Italy
 - .151 Cinquecento
 - .152 High Renaissance
 - .153 Decadence
 - .154 Barocco
 - .155 Rococo

This would evidently arrange the materials most conveniently for a thorough study of the Italian Renaissance style in the order of its historical development. Therefore it is sufficiently evident that the decimal system of classification is capable of unlimited extension in any of its parts.

To apply the system to a collection of books, memoranda, or other materials, each particular item is simply numbered as indicated by the decimal classification. The collection is then arranged in numerical sequence, which places the objects classified in the same order. Persons not accustomed to the use of the decimal system of classification may at first find some difficulty in finding the proper number for a particular object or article. Therefore an alphabetically arranged index of the more important topics and their numbers has been added for their convenience.

It is believed that this extension of the Dewey Decimal Classification will be found useful and convenient by architects, builders, engineers and all other persons practically or theoretically concerned with Architecture and Building. Most of it has been in use for many years in the department of Architecture of this University for classifying extensive collections of lantern slides, photographs, a card index to architectural periodicals, and other materials for instruction. As meriting careful attention, the following points are suggested:

- 1. The suggested classification of all materials relating to each one of the architectural styles together, in order to bring them into the most compact and convenient arrangement for the student of the History of Architecture.
- 2. The careful separation of 690, Building Materials and Trades; 721, Architectural Construction; and 729, Architectural Forms and Design, making it now easy to assign any topic to its proper place.

TABLE OF

CLASS NUMBERS

690		IVIaterials itectural Construction. itectural Forms or Design.	1 rades
.1	Theories of cons	struction	
.11	Systems of co	onstruction	
.2	Compends		
.21	Manuals		
.22	Handbooks		
.23	Recipes, collec	ctions of	
·.3	Dictionaries		
.31	Cyclopedias		
.4	Essays		
.41	Lectures		
.42	Discussions		
.5	Periodicals		
.51	Daily		
.52	Weekly		
.58	Monthly		
.54	Quarterly		
.55	Annual		
.6	Societies; Procee	dings	
.61	Trade unions	_	
.62	Exhibitions	•	
.621	Materials		
.622	Methods		

5

690.7	Education and study
.71	Training of workmen
.72	Apprenticeship
.73	Tools and their uses (See special trade for special tools.)
.74	Shop practice
.75	Trade schools
.76	Manual training
.8	Museums
.51	Collections
.82	Patents
.53	Inventions
.54	Machines for manufacturing
.841	Wood
.842	Stone
.843	Steel and iron
.544	Bricks
.845	Tiles
.546	Cement and lime
.547	Concrete
.545	Asphalt
.549	
.9	History of Building Materials
.91	Ancient
.92	Mediæval
.93	Renaissance
.94	Modern
.95	History of building construction
.96	Ancient
.97	Mediæval
.98	Renaissance
.99	Modern
691	Materials Processes Preservatives
	See 620.1 for Strength of Materials. See 693 to 699 for Uses of Prepared Materials.
.1	Woods
.11	Hard conifers
.111	Pine, longleaf
119	Pine hard

691.113	Pine, yellow
.114	Pine, Norway
.115	Pine, pitch
.116	Tamarack; hackmatack
.117	•
.118	Yew
.119	
.12	Soft conifers
.121	Pine, white
.122	Pine, shortleaf
.123	Cedar, white
.124	Cedar, red
.125	Hemlock
.126	Spruce '
.127	Fir
.128	Cypress
.129	
.13	Hard leaf woods
.131	Oak
.132	Beech
.133	Sycamore
.134	Maple, sugar
.135	Ash
.136	Hickory
.137	Walnut, black
.138	Locust
.139	
.14	Soft leaf woods
.141	Poplar
.142	Gum
.143	Birch
.144	Maple, white, red
.145	Basswood; linden
.146	Elm .
.147	Catalpa
.148	Butternut
.149	·
.15	Defects of woods
.151	Sapwood
.152	Shakes; cracks
.153	Spots; streaks
.154	Knots
.155	Decay
.156	Stains
.157	Pitch
.158	Shrinkage-
.159	

691.16	Injuries to woods			
.161	Wet rot			
.162	Dry rot			
.163	Ants			
.164	Borers			
.165	Fungus			
.169				
.17	Preservation of woods			
.171	Painting			
.172	Oiling			
.173	Creosoting			
.174	Zincking			
.175	By corrosive sublimate			
.176	By crude kerosene			
.177	By fireproof paint			
.178	By sulphate copper			
.179	_			
.2	Stone Material Protection			
.211	Limestone			
.212	Marble			
.213	Gypsum			
.214	Bedford; Oolite			
.221	Granite			
500	Syenite			
.223	Porphyry			
.231	Sandstone, ordinary Sandstone, brown			
.232	Sandstone, portage			
.233	•			
.24	Slate			
.251	Serpentine			
.252	Soapstone			
.253	Tale Trap			
.261	Basalt			
.262	Tufa			
,271 ,272	Travertine			
.273	Peperino Peperino			
.28	Other building stones			
.29	Preservation			
.291	By painting			
.292	By oiling			
.293	By paraffine			
.294	By silicate of soda			
.295	By glue and tannin			
.296	By cement wash			
.299				

691.3	Stone, artificial Concrete
.31	Beton coignet
.32	Ransome
.33	Hollow block
.34	Selenitic
.:).	Lime concrete
.36	Cement concrete
.39 1	Aggregate
.4	Bricks Tiles Ceramic products
.41	Bricks, ordinary
.42	Bricks, pressed
.43	Bricks, moulded
.44	Bricks, glazed or enameled
.45	Bricks, self-colored
.46	Tiles
.461	Roofing
. 1	Spanish
.2	Ludovici
.3	Celadon
.4	Ornamented
.462	Flooring
. 1	Self-colored
	Inlaid
4.3	Embossed
.4	Glazed
.9 .463	Wall tiles
.405	Self-colored
.2	Inlaid
.3	Embossed
.4	Glazed
.5	Picture
.6	Paience panels
.7	Mouldings Painted
.8	Fainted
.47	Hollow structural tiles
.471	Floor
. 1	Side arch
.2	End arch
.3	Mixed arch
.9	

691,472	Roof and ceiling tiles	
.1	Book tiles	
	Ceiling plates	
.9		
.473	Wall tiles	
.1	Wall linings	
.2	Bond courses Partition	
.48	Terra cotta	
.481	Manufacture	
.482	Face blocks	
.483	Bands and mouldings	
.484	Columns and pilasters	
.455	Cornices	
.486	Ornamental	
49	Sewer tiles	
.491	Salt-glazed	
.492	Drain tiles	
.493	Fittings	
.499		
.5	Lime Cement Plaster	
.51	Lime, ordinary	
.52	Lime, hydraulic	
	Lime, hydraulic	
.53	Lime, selenitic	
.53 .54	Lime, selenitic Cement, natural	
.53 .54 .55	Lime, selenitic Cement, natural Cement, portland	
.53 .54 .55 .56	Lime, selenitic Cement, natural Cement, portland Plaster of paris	
.53 .54 .55 .56 .57	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement	
.53 .54 .55 .56	Lime, selenitic Cement, natural Cement, portland Plaster of paris	
.53 .54 .55 .56 .57	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement	
.53 .54 .55 .56 .57 .58	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster	
.53 .54 .55 .56 .57 .58 .59	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster	
.53 .54 .55 .56 .57 .58 .59 .6	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window	
.53 .54 .55 .56 .57 .58 .59 .6	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled	
.53 .54 .55 .56 .57 .58 .59 .6 .61 .62	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled Plate, polished	
.53 .54 .55 .56 .57 .58 .59 .6	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled Plate, polished Luxfer prism, etc.	
.53 .54 .55 .56 .57 .58 .59 .6 .61 .62	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled Plate, polished	
.53 .54 .55 .56 .57 .58 .59 .6 .61 .62 .63	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled Plate, polished Luxfer prism, etc.	
.53 .54 .55 .56 .57 .58 .59 .6 .61 .62 .63 .64	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled Plate, polished Luxfer prism, etc. Sidewalk lights	
.53 .54 .55 .56 .57 .58 .59 .6 .61 .62 .63 .64 65	Lime, selenitic Cement, natural Cement, portland Plaster of paris Keene's cement Hard plaster Glass Window Plate, rough Rolled Plate, polished Luxfer prism, etc. Sidewalk lights Moulded	

691.7	Iron Steel Anti-rust processe	S
.71	Cast iron	
.72	Malleable cast iron	
.73	Wrought iron	
.74	Steel, blister or tool	
.75	Steel, crucible	
.76	Steel, bessemer	
.77	Steel, open hearth	
79	Protection of iron and steel	
.791	Painting	
.792	Tinning,	
.793	Zincking (galvanizing)	
.794	Electroplating	
.795	Bower-Barff process	
.796	Cement coating	
.797		
.798 .799		
.8	Other metals	
.81	Copper	
.82	Brass	
.83	Zinc	
.84	Lead	
.85	Aluminum	
:86	Bronze	
.87	Tin	
.88		
.89		
.9	Other metaricle	
.91	Other materials Mineral wool	
.921	Fiair	
.922	Jute fiber	
.923	Hemp fiber	
.93	Paper	
.931	Sheathing	
.932	Cabot's quilt	
.933	Slating	
.934	Roofing	
.94	Fabrics woven	
941	Duck	

691,942	Burlap	
.943	Carpets	
.944	Rugs	
.945	Linings	
.95	Asbestos	
.951	Pipe coverings	
.952	Hot air insulation	
.953	Fire protection	
.961 .962	Asphalt, Trinidad	
.963	Asphalt, rock Pitch	
.964	Resin	
.965	Coal tar	
.966	Tar	
.967	Damp-proof felt	
.969		
.97	Felt, roofing	
.98	Linoleum .	
.99		
692	Plans Specifications	Estimates
.1	General drawings	
.11	Plan, location	
.12	Plan, foundation	
.13	Plans, floor	
.14	Plan, roof	
.15	Elevations	
.151	Front	
.152	Side	
.153	Rear	
.154	Court	
.159		
.16	Sections	
.161	Longitudinal	
.162	Cross	
.169		
.19	Other general drawings	
.2	Detail drawings	
1.21	Masonry	
.:211	Stone-cutting	
.212	Stone-setting	
.213		

692.214	Tiles
.215	Slate
.216	Brickwork
.217	Bricks, ornamental
.218	Terra cotta
.219	
.22	Woodwork
.221	Carpentry
.222	Joinery
.223	Cabinet work
.224	Furniture, special
.229	
.23	Metal work
.231	Cast iron, structural
.232	Cast iron, ornamental
.233	Steel, structural
.234	Steel, ornamental
.235	Copper
.236	Tin
.237	Zinc
.238	Brass
.239	Diass
.24	Plumbing
.241	Water supply
.242	Sanitary fixtures
.243	Drainage
.249	
.25	Heating and ventilating
.251	Furnaces
.252	Steam
.253	Hot water
.254	Gas
$.25\overset{\bullet}{5}$	Electric
.256	Combination systems
.257	•
.258	Ventilation, natural
.259	Ventilation, forced
.26	Plastering
.261	Plain
.262	Ornamental
.263	Stucco work
.269	
.27	Roofing
.271	Gutters
.272	Leaders
.010	Leauers

		9	
592.28	Glass work	Ť	
.281	Stained		
.282	Beveled		
.289			
.29	Other drawings		
.3	Specifications		
.31	General conditions		
.32	Excavation and grad	ing	
.33	Masonry		
.331	Stonework		
.332	Brickwork		
.333	Terra cotta		
.334	Concrete, plain		
.335	Concrete, reinforced		
.34	Carpentry		
.341	Carpentry proper		
.342	Joinery		
,343	Cabinet work		
.35	Metal work		
.351	Cast iron		
.352	Wrought iron		
.353	Steel		
.354	Copper		
.335	Tin		
.356	Ornamental		
.357	Bronze		
.359	71		
.36	Plastering	.0*	
.37	Painting and glazir	ig	
.371	Painting		
.372	Glazing		
.373	Finishing		
.38	Plumbing		
.39	Other specifications		
.391	Lighting		
.392	Heating		
.393	Ventilation		
.399			
.4	Contracts Bids	Advertisements	
.41	Advertisements		
.42	Bids		
.43	Agreements, infor	mal	

692.44 .441 .442 .443 .444 .45	Contracts, signed Sealed Guaranteed Variations Arbitration Bonds, security
.5	Estimates Quantities Cost
.51 $.52$	Methods of estimate Volume
.52 .53	Area
.53 .54	Units
.5± .55	Quantities, priced
.56	Comparison
.57	Classification of data
.58	Chacametron of data
.59	
.6	Superintendence
.61	Occasional
.62	Architect's stated
.631	Constant
.64	Clerk of works
.65	Special
.69	
.7	Supervision of accounts
.71	Bookkeeping, system of
.72	Approval of bills
.73	Oversight of payments
.74	Statements to owner
.75	Reserved payments
.76	Extras and omissions
.77	Settlement, final
.79	
.8	Professional services Fees Commissions
.81	Services, ordinary
.82	Services, extra
83	Services special

692.	84	Rates of com	nission		
	85	Account of payments			
	86	Expenses, extra			
	87	Bve commissions			
	89	•			
•	9	Building laws		architects, owners	
	91	General or sta	ate laws		
	92	City ordinand	ces		
	93	Town or villa	ige ordinances		
	94	Other laws			
	95	Liabilities of	architects		
	96	Liabilities of	owners		
	97	Liabilities of	contractors		
	98	Lien laws			
	99				
693		Masonry	Plastering	Fire-proofing	
•	1	Stone construction See 515.8 for St See 736 for St			
	11	Bonds	ent one		
	12	Stonecutting			
	13	Stonesetting			
	14	Stone tools			
	19				
	2	Brick construction	on		
	.21	Bonds			
	22	Adobes			
	.23	Cut or rubbe	d		
	24	Ornamental			
	.25	Polychrome			
	26	Tools			
	29				
	.3	Terra cotta cons	struction		
	.31	Setting			
	32	Anchoring .			
	33	Backing			

693.4	Hollow tile and porous terra cotta		
.41	Walls		
.42	Floors		
.43	Roofs		
.44	Partitions		
.45	Linings		
.49	g		
	_		
.5	Concrete and beton construction See 693.3 for Reinforced Concrete		
.51	Massive		
.52	Layers		
.53	Hollow block		
.54	Sidewalks		
.5 1	Ornamental		
.56	Surface finish		
.56	Surface limsii		
.59			
.6	Plastering		
.61	External		
.62	Internal		
.63	Ornamental		
.64	Scagliola		
.69			
.7	Defetered accepte		
.71	Reinforced concrete Systems of construction		
.711	Ordinary round rods		
.712	Ransome		
.713	Unit		
.714	Hennebique		
.715	Roebling		
.716	Thacher		
.719			
.72	Forms and centers		
.73	Testing and inspection		
.74	Data from experiments		
.75	Formulas		
.76	Applications, special		
.79	· •		

693.8	Fire-proofing		
.81	Systems		
.811	Hollow tiles		
.813	Porous terra cotta		
.813 .814	Brickwork Concrete		
.815	Wood and sheet metal		
.816	Mortar		
.819			
.82	Walls and partitions		
.83	Floors .		
.84	Roofs		
.85	Columns		
.86	Girders		
.87	Trusses		
.88	Vaults		
.89			
.9			
•/			
694	Carpentry Joinery Cabinet-Work		
	Stairbuilding		
.1	Wood construction in general		
.2	Framing and joints		
.3	Strengthened beams		
.4	Posts and columns		
.5	Paneled and lattice construction		
.6	Joinery in general		
.7	Cabinet work		
.8	Stairbuilding		
.9			
695	Roofing		
.1	Shingle		
.2	Slate		
.3	Tile		

.41 .42 .43 .44	Metal Tin Copper Lead Zinc
.5 .6 .7 .71 .72	Iron or steel Asphalt Felt and gravel Asbestos Paper
.81 .82	Fabrics Duck Canvas
.9 696	Plumbing Gas and Steam Fitting
.1 .11 .12 .13 .19	Plumbing Piping Fixtures Tools
.2 .21 .22 .23 .29	Gas Fitting Piping Fixtures Tools
.31 .32 .33	Steam Fitting Piping Fittings Tools
.4 .41	Rivets and riveted joints Tools .
.5 51	Screws and screw joints

696.6	Rust or calked joints		
.61	Rust joints		
.62	Calked joints		
7.	Anchors Bond irons		
.71	Bond irons		
.72	Anchors, wall		
.73	Anchors, angle		
.74	Anchors, through		
.75	Anchors for gutters and leaders		
.76	Anchors for masonry		
.79			
.8	Other branches		
.9	Plumbing laws and ordinances		
.91	General or state		
.92	City ordinances		
.93	Town or village ordinances		
697	Heating and Ventilation		
.1	Fireplaces		
.11	Ordinary		
.12	Ventilating		
.2	Stoves		
.3	Furnaces, hot air		
.31	Furnaces		
.32	Pipes, cold air		
.33	Pipes, hot air		
.34	Registers		
.35	Regulators		
.4	Hot water		
.41	High pressure		
.42	Low pressure		
.43	Conservatory		
.44	Heaters with steam supply		
.45	Boilers		
.46	Pipes		
.47	Regulators		

697.5	Steam		
.51	High pressure		
.52	Low pressure		
.53	Exhaust		
.54	Vacuun		
	Boilers		
.56	Pipes		
.57	Regulators		
.58	Air valves		
.59	Till Till Ves		
.6	Gas		
.61	Illuminating		
.62	Fuel		
.63	Natural		
.64	Acetylene		
.0+	Acetylene		
.7	Electric and other		
.8	Smoke flues and chimneys		
.81	Built in walls		
.82	Isolated		
Ģ	Ventilation Ducts Fans		
.91	Natural		
.92	Plenum		
.93	Exhaust		
.94	Fresh air ducts		
$\alpha_{\bf 5}$	Foul air ducts		
.96	Treatment of air		
.961	Filtration		
.962	Dampening		
.963	Ceoling		
.964 .97	Testing Pagulation of air comple		
.98	Regulation of air supply Fans		
.85 129.	Side fans		
.982	Central fans		
.99	,		

698	Painting Paperha		Finishing
.1	Painting	Oil	
.11	Lead		
.12	Zinc		
.13	Iron		
.14	Mixed pa	aints	
.15	Oil		
.16	Turpenti	ne	
.17	Dryers		
.18	Tools		
.19			
.2	Distemper a	and Fresco	
.21	Distempe		
.22	Milk was	sh	
.23	Cement	wash	
.24	Other w	rashes	
.25	Fresco, r	real	
.26	Fresco, c	other methods	
.27	Stencils		
.28	Tools		
.29			
.3	Varnishing	Polishing	
.31	Varnish		
.311	Oil		
.312	Spirit		
.319	Shellac		
.33	French	nolish	
.34	Wax	Penen	
.35	Oiling		
.36	Other fi	inishes	
.37	Polishin		
.38	Tools	·8	
90	1 (11717)		

698.4	Other modes of protection		
.41	Asphalt		
.42	Tar		
.43	Graphite .		
.49			
.5	Glazing		
.51	Puttying, ordinary		
.52	Puttying, hard		
.58	Cutting		
.54	Setting		
.55	Leading		
.56	Tools		
.59			
.6	Paperhanging		
.61	Paper		
.62	Paste		
.63	Hanging		
.64	Tools		
.69			
.7	Textile Hangings Tapestry		
.71	Burlap		
.72	Chintz		
.73			
11.9	Tapestry, real		
.74	Tapestry, real Tapestry, painted		
.74	Tapestry, painted		
.74 .75	Tapestry, painted		
.74 .75 .79	Tapestry, painted Tools		
.74 .75 .79	Tapestry, painted Tools Relief work		
.74 .75 .79 .8	Tapestry, painted Tools Relief work Embossed paper		
.74 .75 .79 .8 .81 .82	Tapestry, painted Tools Relief work Embossed paper Lincrusta		
.74 .75 .79 .8 .81 .82 .83	Tapestry, painted Tools Relief work Embossed paper Lincrusta Stamped leather		
.74 .75 .79 .8 .81 .82 .83	Tapestry, painted Tools Relief work Embossed paper Lincrusta Stamped leather		

700	Fine Arts
701	Theories Esthetics
702	Compends Manuals Outlines
703	Dictionaries Cyclopedias
704	Essays Lectures Discussions
705	Periodicals
.1	Daily
.2	Weekly
.3	Monthly
.4	Quarterly
.5	Annual
.6	Occasional
.9	
706.1	Societies
.11	Painters
.12	Sculptors
.13	Illustrators
.14	Transactions
.15	Proceedings
.16	Reports
.19	
707.1	Education
.11	Study
.12	Instruction
.13	Practice
708	Art Galleries and Museums
.11	Scotland
.15	Ireland
.2	England
.31	Germany
.36	Austria

708.4	France		
.5	Italy		
.61	Spain		
.69	Portugal		
.7	N. America		
.71	Canada		
.72	Mexico		
.73	United States		
.8	S. America		
.9	Australia		
.992	Holland		
.993	Belgium		
.994	Switzerland		
709	History of Art in General		
.3	Ancient		
.311	China		
.312	Japan		
.313	Korea		
.32	Egypt		
.331	Plicenicia		
,332	Philistine		
,333 ,334	Judea Carthage		
.335	Cyprus		
.336.1	Pelasgian		
.9	Etruria		
.::4	India		
.351	Chaldea		
.352	Assyria		
.335	Persia		
.357	Sassania		
.36	° Celtic		
.37	Roman		
.38	Greece		
.39	Minor countries		
.4	Modern Europe		
.411	Scotland		
.415	Ireland		
.42	England		

09.43	Germany
.431	Northern
.434	Southern
.436	Austria
.44	France
.442	Normandy
.445	Auvergne
.446	Poitou
.449	Provence
.45	Italy
.452	Lombardy
.453	Venice
.455	Tuscany
.457	Naples
.458	Sicily
.461	Spain
.469	Portugal
.47	Russia
.48	Scandinavia
.481	Norway
.485	Sweden
.489	Denmark
.49	Minor countries
.492	Holland
.493	Belgium
.494	Switzerland
.495	Modern Greece
.496	Turkey in Europe
.499	
.5	Asia
.51	China
.52	Japan
.54	India
.55	Persia
.59	Farther India
.6	Africa
.61	Northern
.62	Egypt
.63	Abyssinia
.64	Morocco
.65	Algeria
. 1141	. 1150.100

.69

709.7 .71 .72 .728 .729	North America Canada Mexico Central America West Indies
.73 .8 .81	United States South America Brazil
.82 .83	Argentina Chili
.84 .85 .87	Bolivia Peru Venezuela
.89 . 9	Oceanica
10	Landscape Architecture
711	Parks
712	Private Grounds
713.1	Walks
.2	Roads
.3	Drives
714.1	Lakes
.2	Streams
•3	Fountains
715.1	Trees
.2	Shrubs
.3	Hedges
.4	Vines
716.1	Plants
.2	Flowers

.3

Conservatories

716.4	Window gard	dens
.5	Ferneries	
717.1	Arbors	
.2	Summer Hou	ises
.3	Seats	
.4	Outlooks	
.5	Pergolas	
.6	Garden walls	
.7	Niches	
.8	Statues V.	ases
.9		
718.1	Monuments	5
.2	Tombs	
.3	Mausoleums	
719.	Cemeteries	
.1	Gates	
.2	Walls	
.3	Walks	
4	Drives	

720 Architecture

Vaults

.5

.11		Theories, general
.12		Esthetics
.13		Architectonics
.21	b.	Compends
.2.2		Manuals
.23		Handbooks
.31		Dictionaries
0.3		15 15 15

.32 Encyclopedias

(31
Glossaries
Dictionaries of foreign terms
Essays, general
Lectures
Articles
Discussions
Periodicals
Daily
Weekly
Monthly
Quarterly
Annual
Occasional
Societies
School
Architects' local
Draftsmen's
National
State
Education
Study
Training, professional
Schools, architectural
Scotland
England
Germany Austria
France
Italy
Spain Portugal
Russia
Canada Mexico
United States
South America
Norway
Sweden
Denmark

720.8	Collections
.81	Materials
.82	Fixtures
.83	Fittings
.84	Drawings
.85	Models
.86	Photographs
• • • •	Thotograpus
.89	
.9	History of architecture, general Classify under 722, 723 or 724, if possible
.94	Europe
.941	Scotland
.5	Ireland
.942	England
.943	Germany Prussia
.1	Central Germany
.3	Bayaria
.4	South Germany
,.,	Northwest Germany
.6	Austria
.7	Bohemia
.8	Poland
.9	Hungary
.944	France
.1	Brittany, etc. Normandy
.3	Isle de France
	Burgundy
.5	Auvergne
.6.	Poitou
.7	Gascony
۶.	Languedoc
9.	Provence Italy
,945 .1	Piedmont
.2	Lombardy
.3	Venice
.5	Tuscany
.7	Naples
.8	Sicily
.9	Sardinia Sarin
.946	Spain Portugal
9.	1 Offugat

720.947	Russia
.1	Norway
,5	Sweden
.9	Denmark .
.949	Minor countries
.2	Holland
.3	Belgium
.4	Switzerland
.5	Modern Greece
.7	Servia
.×	Roumania
.9	
.95	Asia
.96	Africa
.962	Egypt
.97	North America
.971	Canada
.972	Mexico
.973	United States
.98	South America
.981	Brazil
.982	Argentina
.983	Chili
.984	Bolivia
.985	Peru
.986	Equador .
.987	Venezuela
.989	Paraguay
.99	Oceanica
.993	New Zealand
.994	Australia
.999	
'21	Architectural Construction See 729 for Forms and Design. See 640, etc., for Materials, Trades, etc.
.1	Foundations
.11	Dimension stone
.12	Rubble
.13	Concrete
.131	Plain
.132	Reinforced by bars
	2

Reinforced by rails

Sand or gravel

Reinforced by beams

.133 .134

721.15	Gratings, wooden
.16	Piles
.161	Wood
.162	Sand
.163	Steel
.164	Concrete, plain
.165	Concrete, reinforced
.17.	Wells, sunken
.18	Tubes, sunken
.151	Caissons, wood
.182	Caissons, steel
.19	
.191	Piers, stone
.192	Piers, brick
.193	Piers, concrete
.194	Piers, concrete-steel
.195	Piers, steel-framed
.2	Walls
.:211	Wood
.212	Half-timber
.22	Stone
.231	Concrete
232	Hollow block
.233	Concrete-steel
.234	Pise (Tamped earth)
.241	Brick, solid
.242	Brick, hollow
.25	Bases, belts, etc.
.251	Base Plinths
.252	Water tables
.253	Belt courses
.254	String courses
.261	Colonnades
.1	Stone Brick
.:2	Terra cotta
.3	Steel
.5	Iron
.6	Concrete
.7	Concrete-steel
	Wood
,262	Arcades
.1	Stone
.2	Brick

721.262.3	Terra cotta
.4	Steel
,5	Iron
.6	Concrete
. 7	Concrete-stee!
۶.	Wood
.9	
.263.1	Arcade, blind
.2	Arcade band
.3	Arched frieze
.27	Cornices
.271	Stone
.272	Brick
.273	Terra cotta
.274	Steel
.275	Iron
.276	Concrete
.277	Concrete-steel
.278	Wood
.279	
.28	Pediments
.281	Stone
.282	Brick
.283	Terra cotta
.284	Stee1
.285	Iron
.286	Concrete
.287	Concrete-steel
.288	Wood
.289	
.29	Gables
.291	Stone
.292	Brick
.293	Terra Cotta
.294	Steel
.295	Iron
.296	Concrete
.297	Concrete-steel
.298	Wood
.299	
.3	Piers Columns
.31	Wood
.311	Exposed
.312	Protected
.32	Stone

721.33 .331 .332	Concrete Solid Block
.333	Concrete-steel Brick
.341	Brick, cut
.342	Brick, moulded
.343	Terra cotta
.35	Metal
.351	Cast iron
.352	Wrought iron
.353	Steel
.1	Rolled Solid
.2	Riveted
.3	Latticed
.36	Fireproof Protected
.361	By mortar
.362	By hollow tiles
.363	By porous terra cotta
.364	By brickwork
.365	By concrete
110	
.39	
.39 .4	Arched construction.
	Arched construction. See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials.
	See 624.5 for Bridges. See 729.3 for the different forms.
.4	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials.
.4	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone
. 4 1	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed
.41 .411 .412	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed Rubble
.41 .411 .412 .42	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed Rubble Brick
.41 .411 .412 .42 .43	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed Rubble Brick Terra cotta
.41 .411 .412 .42 .43 .44	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed Rubble Brick Terra cotta Steel
.41 .411 .412 .42 .43 .44 .45	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed Rubble Brick Terra cotta Steel Cast iron
.41 .411 .412 .42 .43 .44 .45	See 624.5 for Bridges. See 729.3 for the different forms. See 690 for Materials. Stone Dressed Rubble Brick Terra cotta Steel Cast iron Concrete
.41 .411 .412 .42 .43 .44 .45 .46	See 624.5 for Bridges. See 729.3 for the different forms. See 600 for Materials. Stone Dressed Rubble Brick Terra cotta Steel Cast iron Concrete Massive Hollow block Solid block
.41 .411 .412 .42 .43 .44 .45 .46 .461	See 624.5 for Bridges. See 729.3 for the different forms. See 600 for Materials. Stone Dressed Rubble Brick Terra cotta Steel Cast iron Concrete Massive Hollow block Solid block Concrete-steef
.41 .411 .412 .42 .43 .44 .45 .46 .461 .462	See 624.5 for Bridges. See 729.3 for the different forms. See 600 for Materials. Stone Dressed Rubble Brick Terra cotta Steel Cast iron Concrete Massive Hollow block Solid block

721.5 Roofs

See 695 for Roof Coverings. See 729.35 for Forms of Roofs

	See 729.35 for Forms of Roofs.
.51	Wood ·
.511	Sheathing
.512	Rafters
.513	Purlins
.514	Ceiling
.515	Truss Wood
.1	Types
	Loads
.:3	Stress diagrams
.4	Dimensioning
5	Connections
.6	Weight
.7	Cost
S	Economy
.9	
.52	Masonry
.53	Glass
.531	Glass
.532	Rafters
.533	Purlins
.534	Ceiling
	See 721.515 or 721 545 for Truss.
.54	Metal
.541	Sheathing
.1	Wood
. • •	Corrugated steel
.3	Lining for drip
.542	Rafters
.543	Purlins
.544	Ceiling
.545	Truss, steel or iron
. 1	Types
.:2	Loads
.3	Stress diagrams
.4	Dimensioning
	Connections
.6	Weight
.7	Cost
.8	Economy
.9	W. 1 O : : :
.55	Windows Openings in roofs
.551	Luthern

-	
721.552 Dormer	
.553 Skylights	
.554 Scuttles	
.555 Gables	
.56 Roof crestings.	etc.
.561 Crestings	
.562 Balustrades	
.563 Reliefs	
.564 Statuary	
.565 Cornice	
,566 Bands	
.57 Spires	
.571 Stone	
.572 Brick	
.573 Terra cotta	
.574 Steel	
.575 Iron	
.576 Concrete	
.577 Concrete-steel	
.578 Wood	
.579	
.58 Gablets	
.59	
.6 Floors	
.6 Floors .61 Wood	
.6 Floors .61 Wood .611 Flooring	
.6 Floors .61 Wood .611 Flooring	
.6 Floors .61 Wood .611 Flooring .612 Deafening	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone	ms
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone	ms
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone .621 Slabs .622 Slabs and bea	ms
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered .625 Marble	1115
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered	ms
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered .625 Marble	ms
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .621 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered .625 Marble .63 Brick Tiles	
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .619 .62 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered .625 Marble .63 Brick Tiles .631 Brick arched	refred
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .621 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered .625 Marble .631 Brick Tiles .631 Brick arched .632 Hollow tile, ar	rehed at
.6 Floors .61 Wood .611 Flooring .612 Deafening .613 Sheathing .614 Joists .615 Beams .616 Girders .621 Stone .621 Slabs .622 Slabs and bea .623 Paneled .624 Coffered .625 Marble .631 Brick Tiles .631 Brick arched .632 Hollow tile, ar .633 Hollow tile, ar	rehed at

721.642	Steel
.649	Meet
.65	Composite
.651	Stone and cast-iron beams
.652	Stone and steel beams
.653	Hollow tile and steel beams
.654	Porous tile and steel beams
	Concrete and steel beams
.655	Concrete and steel beams Concrete-steel
.656	
.657	Concrete and Roebling wire Arches
.658	Concrete and expanded metal
.659	D
.66	Parquetry floors
.67	Mosaic
.671	Marble, plain
.672	Marble, patterns
.673	Marble, geometrical
.674	Marble, ornamental
.675	Marble and cement
.676	Inlaid concrete
.679	
.68	Tiles
.681	Inlaid
.682	Self-colored
.683	Glazed
.684	Embossed
.685	Tesserae
.69	
.691	Cement
.692	Artificial stone
.693	Xylolith
.694	Linoleum
.699	
.7	Ceilings
••	See 721.4 for Construction of Vaulted Ceiling
	See 729.6 for Forms of Ceilings.
.71	Wood
.711	Matched and beaded
.712	Panels planted on
.713	Beam
.714	Mill-floor system
.715	Paneled
.716	Coffered
.719	Control

721.72	Stone
.721	Flac .
.722	Beam
.723	Paneled
.724	Coffered
.73	Brick or tile and steel
.731	Flat. plain
.732	Flat, €nameled
.133	Flat, ornamented
.734	Paneled
.735	Coffered
.74	Metal
.741	Cast iron with steel beams
.742	Steel trough plates and beams
.743	Steel buckled plates and beams
.744	Steel panels and beams
.745	Steel sheets on wood sheathing
.746	Steel stamped on wood ceiling
.75	Concrete Plaster
.751	Concrete, plain
.752	Concrete-steel
.753	Concrete-steel beams
.754	Concrete-steel paneled
.755	Plaster, plain
.756	Plaster, ornamental
.757	Plaster, paneled Plaster, painted
.759	r iaster, panned
.79	Other ceilings
.,,	
.8	Doors Enclosures Windows
.51	Doors, wood
.511	Single
.812	Double
.513	Slicing
.514	Folding
.515	Concealed or secret
.516	Glazed
.82	Doors, metal
.821	Single
.822	Double
.523	Sliding
.524	Concealed
.825	Fire-proof
.826	Sheet metal on wood

21.827	Wire-glazed
.828	Vault
.829	
.84	Windows, external
.841	Sliding
.542	Casement
.843	Fixed
.>44	Wire-glazed
.845	Fireproof
.846	Leaded
.847	Transoms
.85	Windows, internal
.851	Sliding .
.852	Hinged
.853	Fixed
.854	Wire-glazed
.Ś55	Fireproof
.856	Leaded
.857	Transoms
.86	Enclosures of doors and windows
.861	Architrave
.862	Cap, horizontal
.863	Pediment on consoles
.864	Pediment on pilasters
.865	Pediment on engaged columns
.866	Pediment on free columns
.867	Lintel only
.868	Sill and stool
.869	
.87	Shutters Blinds Screens Grilles
.871	Shutters, wood
.872	Shutters, steel
.873	Blinds, ordinary
.874	Blinds, Venetian
.873	Screens, fly
.876	Grilles, plain
.877	Grilles, ornamental
.88	Fastenings Locks
.881	Shutter fastenings
.882	Blind fastenings
.883	Door locks
.1	Rebated
.2	Mortise
.3	Rim
.4	Dead
.5	Latch

```
Sliding door
721.883.6
                  Bolts
      .7
                  Espagnolette bolts
      .8
      .9
  .89
             Other fixtures
  891
                 Hinges, blind
                 Hinges, door
  .892
                  East
      .1
                  Loose joint
      .2
      .3
                  Pin
                  Spring
      .4
                  Self-closing
      .5
  .893
                 Door closers
                 Sash fasts
  .894
                 Blind fasts
  .895
  .599
  .9
           Iron and composite structures
                 See 620.1 for Strength of Materials.
                 Classify here only that which cannot be placed elsewhere, under 721
  .91
             Cast-iron structures
  .92
             Wrought-iron structures
             Steel structures
  .93
  94
             Composite structures
             Steel and wood
  .95
             Steel and stone
  96
  9.7
             Steel and ceramic
  .971
                Steel and brick
  .972
                 Steel and tile
                Steel and terra cotta
  .973
  .98
             Steel and glass
  .99
             Wood and glass
```

722, 723, 724 History of Architecture

Classify modern American buildings of importance in the History of Architecture under 724; generally all other American buildings under 725 to 728 inclusive.

Modern foreign buildings are usually placed under 724, unless of special importance as examples of the class or purpose, when they are to be treated like American buildings.

CLASSIFICATION OF HISTORICAL DATA

The following subdivision is recommended for the convenient arrangement of all data particularly referring to the History of Architecture. It is readily applicable to each subordinate or general division under 722, 723 and 724, being simply annexed to the style numbers.

.001	General
1100.	Country
.0012	Climate
.0013	History
.0014	Religion
.0015	Government
.0016	Social conditions
.0017	Character of style
.0018	Derivation of style
.0019	Influence of style
.002	Materials
.0021	Wood
.0022	Stone
.0023	Concrete
.0024	Bricks Tiles
.0025	Mortar Cement
.0026	Glass
.0027	Iron Steel
.0028	
.0029	
.003	Construction
.0031	System employed
.0032	Arch Vault Dome
.0033	Foundations
.0034	Floors
.0035	Walls Supports
.0036	Ceilings
.0037	Roofs Spires
.0038	Doors Windows
.0039	
.004	Design
,0041	Facades
.0042	Sections
.0043	Ceilings, treatment of
.0044	Roofs, forms of
.0045	Bases of buildings
.0046	Colonnades

.0047	Arcades
.0048	Cornices Belts Entablatures
.0049	Proportions, system of
.005	Decoration
.0051	Mouldings
.0052	Statues
.0053	Sculptures
.0054	Painting
.0055	Mosaics .
.0056	Gilding
.0057	Furniture
.0058	Fabrics
.0059	Pottery
.006	Sanitation
.0061	Water supply
.0062	Drainage
.0063	Sewage disposal
,0064	Plumbing
.0065	Lighting
.0066	Heating
.0067	Ventilation
.0068	Burial
.0069	
.007	Buildings, kinds of
.0071	Religious
.0072	Mortuary
.0073	Memorial
.0074	Military
.0075	Residence
.0076	Public
.0077	Amusement
.0078	Engineering
.0079	** 1 1 1
.008	Examples described
.0081	Religious
.0082	Mortuary
.0083	Memorial
.0084	Military
.0085	Residence
.0086	Public
.0087	Amusement
.0088	Engineering
.0089	D' 1-'
.009	Biographies
1000.	Architects

Sculptors

.0093	Painters
.0094	Art-workers
.0095	Connoisseurs
.0096	Builders
.0097	Engineers
.0098	Rulers
.0099	

722. Ancient or primitive architecture

.0 Prehistoric

```
Scotland
0.1.1
015
              Ireland
              Wales
.019
.02
           England
.031
              Germany
.036
              Austria
           France
.04
              Italy
.051
.052
              Sardinia
              Sicily
.053
.061
              Spain
              Portugal
.069
.07
           Russia
              Canada
.071
.072
              Mexico
              United States
073
   . 1
                Indian
                Mound-builders
                Pueblo
                Cave-dwellers
              S. American
.074
              Peru
.075
           Scandinavia
.08
.081
              Norway
.085
              Sweden
.089
              Denmark
.09
              Egypt
.091
              Holland
.092
.093
              Belgium
              Switzerland
.094
              Greece
.095
              Turkey
.096
```

Russia N. Africa

.097

.098 .099

722.11	China
.12	Japan
.13	Korea
.14	Philippine
.2	Egypt
.21	Nubia
.).)	Abyssinia
.3	Phoenician, Jewish, etc.
.31	Phoenicia
.32	Philistia
.;;;;	Judea
.34	Carthage
.35	Cyprus
.4	India, East
. 41	Buddhist
.42	Jaina
.43	Himalayan
.44	Dravidian
.45	Chalukyan
.46	Indo-Aryan
.47	Burmalı
.48	Siam
.49	
.5	Western Asia
.51	Babylonia
.52	Assyria
.53	Persia, ancient
.54	Sassania
.61	Pelasgian
.611	Greece
.612 .62	Asia Minor Etruria
.7	Roman
.71	Rome
.72	England
.73	Germany Austria

72	22.74	France	
	.75	Italy, except Rome	
	.76	Spain Portugal	
	.77	Asia	
	.78	Africa	
	.79		
	.8	Grecian	
	.81	Athens	
	.82	Peninsula	
	.83	Mainland, except Athe	ens
	.84	Archipelago	
	.85	Asia Minor	
	.86	Italy	
	.87	Sicily	
	.88	Africa	
	.89		
	.9	Other ancient styles	
72	3.	Mediaeval Christia	an Mohammedan
	.1	Early Christian	
	.11	Syria	
	.12	England Saxon	
	.13	Germany Austria	
	.14	France	
	.15	Italy	
	.151	Rome	
	.152	Ravenna	
	.16	Coptic in Egypt	
	.17	N. Africa	
	.18	Scandinavia	
	.19		
	.2	Byzantine	
	.21	Byzantine proper	•
	.22	Armenia	
	.23	Russia	
	.24	Bulgaria	
	.25	Greece	·
	.29		

723.3 .311 .312 .332 .333 .344 .355 .366	Mohammedan Arabia Syria Egypt Persia Turkey India Spain Moorish
.37 .38 .39	North Africa
.4	Romanesque
.411	Scotland
.415	Ireland
.4:2	England
.431	Germany
.436	Austria
.44	France
.441	Anjou
.442	Normandy
.445	Auvergne
.446	Poitou
.449	Provence
.4.5	Italy
.451	Piedmont
.452	Lombardy
.453	Venice
.455 .457	Tuscany Naples
.458	Sicily
.459	Sieny
.461	Spain
.469	Portugal
.48	Scandinavia
.481	Norway
.485	Sweden
.489	, Denmark
.49	
.492	Holland
.493	Belgium
.494	Switzerland

723.5	Gothic
.511	Scotland
.515	Ireland
.52	England
	-
.521	Early English
.522	Decorated
.523	Perpendicular
.531	Germany
.536	Austria
.537	France
.55	Italy
.552	Lombardy
.553	Venice
.555	Tuscany
.555	Sicily
.561	Spain
.569	Portugal
.58	Scandinavia
.581	Norway
.585	Sweden
.589	Denmark
.59	Minor countries
.592	Holland
.593	Belgium
.594	Switzerland
.599	
724.	Modern
.1	Renaissance
.111	Scotland
.115	Ireland
.12	England
.121	Elizabethan
.122	Jacobean
.123	•
	17th Century 18th Century
.124	ram century

Germany

Francis I

Henry IV

Louis XIV

Louis XVI

Empire

Austria

France

.131

.136

.14

.141

.142

.143

.144

724.15	Italy	
.151	Cinquecento	
.152	High Renaissance	
.153	Decadence	
.154	Barocco	
.161	Spain	
.169	Portugal	
.17	Russia	
.171	Canada	
.172	Mexico	
.173	United States	
.1	Old colonial	
.2	Spanish colonia	ł
.178	South Americ	
.1	Brazil	
.2	Argentina	
.3	Chili	
.4	Bolivia	
.5	Peru	
.6	Ecuador	
.7	Venezuela	
.9	Paraguay	
.18	Scandinavia	
.181	Norway	
.185	Sweden	
.189	Denmark	
.19	Minor countries	
.192	Holland	
.193	Belgium	
.194	Switzerland	
.199		
.2	Classical revival	Grecian
.211	Scotland	
.212	Ireland	
.22	England	
.231	Germany	
.236	Austria	
.24	France	
.25	Italy	
.261	Spain	
.269	Portuga!	
.27	Russia	
.271	Canada	
.272	Mexico	

24.273	United States	
.278	South America	
.281	Norway	
.285	Sweden .	
.289	Denmark	
.292	Holland	
.293	Belgium	
.294	Switzerland	
.299		
.3	Gothic revival	
.311	Scotland	
.315	Ireland	
.32	England	,
.331	Germany	
.336	Austria	
.34	France	
.35	Italy	
.361	Spain	
.369	Portugal	
.37	Russia	
.371	Canada	
.373	United States	
.381	Norway	
.385	Sweden	
.389	Denmark	
.392	Holland	
.393	Belgium	
.394	Switzerland	
.4	Tudor Gothic revival	
.411	Scotland	
.412	Freland	
.42	England	
.471	Canada	
.473	United States	
.49		
.5	Ougan A	
.5 .511	Queen Anne revival Scotland	
.512	Ireland	
.52	England	
.571	England Canada	
.573	United States	
50	Chied States	

724.6	Neo Grec	
.62	England	
.631	Germany	
.636	Austria	
.64	France	
.65	Italy	
.661	Spain	
.669	Portugal	
.671	Canada	
.673	United Sta	ntes
.68	Scandinavia	l
.69		
.7	Half-timber	Swiss
.711	Scotland	
.712	Treland	
.72	England	
.731	Germany	
.736	Austria	
.74	France	
.75	Italy	
.761	Spain	
.769	Portugal	
.77	Russia	
.771	Canada	
.772	Mexico	
.773	United St	ates
.781	Norway	
.785	Sweden	
.789	Denmark Holland	
.792 .793	Belgium	
.794	Switzerlar	nd
.799		
.8	Romanesque	revival
.811	Scotland	
.812	Ireland	
.82	England	
.831	Germany	
.836	Austria	
.84	France	
.85	Italy	
.861	Spain	
.869	Portugal	

724.871	Canada
.873	United States
.881	' Norway
.885	Sweden ·
.889	Denmark
.892	Holland
.893	Belgium
.594	Switzerland
.599	
9	Other recent styles
.911	Scotland
.915	Ireland
.92	England ·
.931	Germany
.936	Austria
.94	France
.95	Italy
.961	Spain
.969	Portugal
.97	Russia
.971	Canada
.972	Mexico
.973	United States
.974	South America
.1	Brazil
.9	Argentina
3	Chili
.4	Bolivia
.5	Peru
.6	Ecuador
.7	Venezuela
.8	Paraguay
.9	
.981	Norway
.985	Sweden
.989	Denmark
.992	Holland
.993	Belgium
.994	Switzerland
.999	
725	Public Buildings
.1	Administration Government
.111	National capitols

State capitols.

Provincial capitols

.112

	725.111	Houses of parliament
	.115	Provincial buildings
	.12	Ministries .
	.121	State
	.122	Finance
	.123	War
	.124	Navy
	.125	Foreign affairs
	.126	Interior
	.127	Education
	.128	Commerce
	.129	
	.13	City buildings
	.131	City halls
	.132	Town halls
	.133	Guild halls (public)
	.134	Office buildings
	.14	Custom houses, etc.
	.141	Custom houses
	.142	Customs warehouses
	.143	Bonded storehouses
	.144	Excise offices
	.15	Court houses Record offices
	.151	Supreme court houses
	.152	Appeal court houses
	.153	Court houses
	.154	Justice courts .
	.155	Record office buildings
	,156	Archive buildings
	.159	
	.16	Postal buildings
	.161	National buildings
	.162	City post offices
	.163	Village post offices
	.164	Railway postal cars
	.165	City postal cars
	.17	Official residences Palaces of rulers
	.171	National
	.172	State
	.173	City
	.18	Barracks Police buildings
	.181	National barracks
	.182	State barracks
	.183	Armories
,	.15-1	National police buildings

725.185	State police buildings
.186	City police buildings
.19	Fire buildings
.191	Fire administration
.192	Engine houses
.193	Fire patrol
.194	Fire alarm stations
.2	Business and commercial buildings
.21	Stores
.211	Wholesale
.212	Department
.213	Retail city
.214	Retail village
.215	Warehouses, wholesale
.216	Warehouses, retail
.22	Mixed store, office and apartment buildings
.221	Stores and offices
.222	Stores and flats
.223	Offices and flats
.224	
.23	Office buildings
.231	Office only
.232	Telegraph and office
.233	Insurance and office
.234	Hall and office
.24	Bank buildings
.241	Banks only
.242	Bank and office
.243	Savings banks
.244	Savings bank and office
.245	Safe deposit
.25	Exchanges Boards of trade
.251	Stock exchanges
.252	Provision exchanges
.253	Cotton exchanges
.254	Lumber exchanges
.255	Oil exchanges
.259	
.26	Markets
.261	City
.262	Provisions
.263	Commission
.264	Retail

725.27	Cattle markets
.271	Stock yards
.272	Cattle
.273	Horses Mules
.274	Sheep Goats .
.275	Hogs
.276	Fowls
.279	
.28	Abattoirs
.281	Public
.282	Private
.283	Packing houses
.284	Storehouses
.29	Other commercial buildings
.3	Transportation and storage
.31	Railway passenger stations
.311	Country
.312	City through
.313	City terminal
.314	Union
.315	
.316	Electric passenger
.317	Street-car
.318	Elevated
.319	Underground
.32	Railway freight houses
.321	Terminal
.322	Local
.323	Express
.33	Railway shops
.331	Metal
.332	Wood
.333	Painting
.334	Round houses
.335	Car barns
.336	Water tanks
.337	Storehouses
.338	Tool houses
.339	D 11 '11'
.34	Dock buildings
.341	Passenger
.342	Freight
.343	Wharf boats
.344	Wharf storehouses

725.35	Warehouses
.351	Merchandise
.352	Cold storage
.353	Ice plants
.354	Storage of furniture, etc.
.36	Grain elevators
.361	Brick
.362	Tiles
.363	Wood
.364	Concrete-steel
.365	Steel
.37	
.371	Coals
.372	Ores
.373	Cement Lime Plaster
.374	Malt
.375	Sand
.39	
.4	Manufactories
.41	Textile
.411	Wool
.412	Cotton
.413	. Silk
.414	Linen
.415	Hemp
.416	Jute
.419	
.42	Beer Alcohol, etc.
.421	Breweries
.422	Distilleries
.423 .	Wood alcohol
.424	Spirits turpentine
.425	Malteries
.43	Iron and steel
.431	Smelters
.432	Foundries
.433	Rolling mills
.434	Machine shops
.435	Pattern shops
.436	Nail and screw works
.437	Wire and fence works
.435	Ornamental
.439	•

725.14	Wood
.441	Saw mills
.442	Planing mills
.443	Cabinet mills
.444	Furniture works
.445	Agricultural works
.416	Specialty works
.449	Apecially works
.45	Carriage and car shops
.451	Carriages
.452	Wagons
.453	Automobiles
.454	Bicycles
.455	Car shops (contract)
.456	Locomotives (contract)
.46	Paper mills
.461	Paper
.462	Wall paper
.463	Straw board
.469	
.47	Milling
.471	Flour
.472	Meal
.473	Feed
.48	Ceramic Glass Works
.481	Bricks, ordinary
.482	Bricks, pressed and moulded
.483	Terra cotta
.484	Tiles, roofing
.485	Tiles, tloor
.486	Potteries
.487	Glass, window Bottles
.488	Plate
.489	Stained
.49	
.5	Hospitals Asylums
.51	General
.511	Sick
.512	Surgical
.513	Eye
.514	Ear
.515	Lying-in
.516	Incurables
.517	Consumption
.518	Contagious
* 10	~

25.52	Insane
.521	National
.522	State
.523	City ·
.524	Incurables
.525	Private
;	Feeble-minded
.531	Idiots
.532	Defectives
.533	Defective diseased
.54	Blind Deaf
.541	Blind
.542	Deaf·
.543	Schools
.544	Shops
.545	Colleges
	Almshouses
.551	National
.552	State
.553	County
.554	City
	Town
.556	Endowed
.557	Subscription
.35°	Society
.559	
.56	Homes for aged
.561	Public
.562	' Society
.563	Endowed
.564	Subscription
.565	Private
.57	Homes for children, orphans
.571	National
.572	State
.573	City
.574	Church
.575	Society
.576	Endowed
.58	Foundlings
.581	City
.582	Church
.583	Society -
.584	Private
.59	Homes for soldiers and seamen
.591	National

725.592	State
.593	Society
.594	Private
.595	Widows
.596	Orphans
.6	Prisons Reformatories
.61	Penitentiaries
.611	National
.612	State
.613	City
.62	Jails
.621	County ·
,622	. City
.623	Village
.624	Police cells
.63	Reformatories for adults
.631	Houses of correction
.632	Houses of detention
.633	Work houses
.634	Houses for women
.64	Reformatories for young
.641	Boys
.642	Girls
.643	Parental schools
.644	Truant school
.65	Asylums for inebriates
.651	Washingtonian
.652	Hospitals
.653	Drug victims
.654	Incurables
.7	Refreshments Baths Parks
.71	Cafes Restaurants
.711	Buffets
.712	, Dairies
.713	Cafes
.714	Restaurants
.715	Restaurant gardens
.72	Saloons Sample rooms
.73	Baths
.731	Ordinary
.732	Medicated
.733	Turkish
.734	Russian
.735	Shower

725,736	Rain
.737	Vapor
.739	•
.74	Swimming baths
.741	Public
.742	Society
.743	Private
.75	Buildings for watering places
.751	Spring houses
.752	Casinos
.753	Bowling alleys
.754	Tennis courts
.755	Porticos
.76	Buildings for parks
.761	Shelters
.762	Music pavilions
.763	Kiosks
.764	Animals
.765	Plants
.766	Conservatories
.767	Refreshments
.765	Toilet
.769	Tonet
.100	
.8	Recreation
.511	Music halls
.812	Concert halls
.813	Orchestra halls
.821	Theatres
.822	Marionette theatres
.523	Opera houses
.824	Vaudevilles
.831	Lecture halls
.532	Recital halls
.841	Bowling alleys
.842	Billiard halls
.543	Card halls
.851	Gymnasiums
.852	Turn halls
.853	Drill halls for boys
.86	Rinks
.561	Skating
.862	Roller skating
.863	Bicycle
.864	Running
2	

725.87	Boat houses
.871	Club
.872	Private
.873	Public
.881	Riding halls
.352	Riding schools
.883	Bicycle halls
.89	Shooting galleries
.891	Public
.892	Military
.893	Club
.594	Society
.895	Private
.9	Other public buildings
.94	Exhibition buildings
.911	International
.912	National
.913	State
.914	County
.915	City
.916	Memorial
.917	Art
.918	Antiquities
.919	
.92	Halls for temporary purposes
.921	Shooting contests
.922	Musical contests
.923	Religious meetings
.924	Chautauqua assemblies
.925	Political meetings
.926	Convention halls
.93	Workingmen's clubs, etc.
.931	Clubs
.932	Institutes
.933	Unions
726	Ecclesiastical and religious buildings
.1	Temples
.11	Egyptian
.13	Assyrian
.13	Jewish
.1-1	Etruscan
1 ~	Crain

726.16	Roman
.17	Chinese
.18	Japanese
.19	
.2	Mosques
.21	Courtyard
.22	Byzantine
.23	Indian
.3	Synagogues
.4	Chapels S. S. buildings
.41	University
.42	College
.43	Asylum
.44	Memorial
.45	Cemetery
.46	Private
.47	Sunday school buildings
.49	
.5	Churches
.51	Roman Catholic ,
.52	Protestant Episcopal
.53	Greek
.54	Methodist Episcopal
.55	Presbyterian Congregational
.56	Baptist Christian
.57	Friends
.58	Christian Science
.59	
.6	Cathedrals
.61	Roman Catholic
.62	Protestant Episcopal
.63	Greek
.7	Monasteries
.71	Abbeys
3.)	Monnetorine

726.7	;)	Priories
.7	4	Convents
.7	ō	Houses for clergy
. 7	б	Paulist fathers
.8	M	ortuary buildings
.8	1	Chapels, cemetery
.8	.2	Chapels, memorial
.8	:}	Vaults, public
.8	+	Vaults, family
.8	õ	Tombs, memorial
.8	G	Tombs, family
.8	7	Tombs, society
.8	.5	Tombs, private
.5	.9	
.9	Y	. M. C. A. buildings
.9		Y.M.C.A. houses
.\$)	12	Y.M.C\. hotels
.\$3)	Y.W.C.A. houses
. • •	1.)	1. W.C.A. Houses
		Y.W.C.A. hotels
	14	
.!!)	Y.W.C.A. hotels
.sı 727	Ed So	Y.W.C.A. hotels ducational and scientific
.9 727 .1	Ed So	Y.W.C.A. hotels ducational and scientific shools
.1 727 .1 .1	E o Sco	Y.W.C.A. hotels ducational and scientific shools Public
.1 727 .1 .1	E So	Y.W.C.A. hotels ducational and scientific shools Public Private
.9727 .1 .1 .1	E6 Sc	Y.W.C.A. hotels ducational and scientific chools Public Private Defectives
.90 727 .1 .1 .1 .1	E6 Sc 1 2 2 3 4 4 5 5	Y.W.C.A. hotels ducational and scientific chools Public Private Defectives Preparatory
.90 727 .1 .1 .1 .1 .1	E6 Sc 1 2 2 3 4 4 5 5	Y.W.C.A. hotels ducational and scientific chools Public Private Defectives Preparatory Military for boys
.90 727 .1 .1 .1 .1 .1 .1	E6 Sc 1 2 3 14 15	Y.W.C.A. hotels ducational and scientific shools Public Private Defectives Preparatory Military for boys Orphans
.90 727 .1 .1 .1 .1 .1 .1	E6 Sc 1 2 3 14 15 16	Y.W.C.A. hotels ducational and scientific shools Public Private Defectives Preparatory Military for boys Orphans Manual training
.90 727 .1 .1 .1 .1 .1 .1	E6 Sc 1 2 3 14 15 16 17 18	Y.W.C.A. hotels ducational and scientific shools Public Private Defectives Preparatory Military for boys Orphans Manual training
.90 727 .1 .1 .1 .1 .1 .1 .1 .1	E6 Sc 1 2 3 14 15 16 17 18	Y.W.C.A. hotels ducational and scientific chools Public Private Defectives Preparatory Military for boys Orphans Manual training Trades
.90 727 .1 .1 .1 .1 .1 .1 .1 .1 .1	E6 Sc 1 22 23 14 15 16 17 18	Y.W.C.A. hotels ducational and scientific chools Public Private Defectives Preparatory Military for boys Orphans Manual training Trades cademies Seminaries
.90 727 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	E6 Sc 1 2 3 14 15 16 17 18 19 2 A	ducational and scientific chools Public Private Defectives Preparatory Military for boys Orphans Manual training Trades cademies Seminaries Academies

727.3	Colleges	Universities
.31	National	
.32	State	
.33	City	
.34	Graduate	
.3.5	Sectarian	
.36	Scientific	
.4	Professional	schools
.41	Theology	
.42	Medicine	
.43	Law	
.44	Normal	
.441	National	
.442	State	
.443	City	
.444	Private	
.449		
.45	Engineerin	g
.451	Architecti	
.452	Architecti	iral engineering
.453	Civil	
.454 .455	Electrical	
.456	Mechanica Railway	11
.457	Sanitary	
.458	Gas	
.459	Oit.	
.46	Music	
.461	Voice	
.462	Piano	
.463	Organ	
.464	Violin	
.465	Minor ins	truments
.+7	.\rt	
.471	Elementar	y.
.472 .473	Painting	
.474	Sculpture	
.475	Illustratior Institutes	l
.476	Academies	
.481	Chemistry	
.482	Agricultura	11
.49		
.491	Dairy	

727.5	Laboratories
.51	Agriculture
.52	Horticulture
.53	Chemistry
.54	Physics
.55	Engineering
,551	Materials
.552	Hydraulic
.553	Steam
.554	Gas
.555	Fuel
.556	Electricity
.557	Mechanics
.555	Machines
.559	
.56	
.57	Zoölogical gardens
.58	Botanic gardens
.59	Aquariums
.6	Museums
.61	Ethnology
.62	Zoölogy
.63	Botany
.64	Industry
.65	History
.66	War
.67	Art
.68	Private
.69	Tirate
.7	A . 11 .
	Art galleries
.71	Painting
.72	Sculpture
.73	Engravings
.74	Art industries
.751	Medals
.752	Coins
.753	Postal
.76	
.771	Studios, painters'

727.772	Studios, sculptors'
.773 .78	Private
	Frivate
.79	•
.8	Libraries
.81	National
.52	State
.83	City
.54	Town
.851	College
.552	University
.553	Society
.86	Professional
.561	Theology
.562	Medicine
.863 .864	Law Normal
.565	Engineering
.866	Music
.569	
.57	Art
.88	History
.59	•
.9	Learned societies' buildings
.91	Art
.911	Painting
.911	Sculpture
.913	Art industries
.914	Engraving
.915	Medals and coins
.92	Science
.921	Physics
.922	Chemistry
.923	Natural science
.1	Biology
	7.51.50
,2 3	Zoölogy Botany
.3	Botany
.3 .4	Botany Entomology
.3 .4 .5	Botany Entomology Geology

727.93	Engineering
.931	Architecture
.932	Architectural
.933	Civil
.934	Electrical
.935	Mechanical
.936	Railway
.937	Sanitary
.939	T 1
.94	Education
.941 .942	National State
.943	County
.944	City
.945	Local
.95	Religion
.951	Ministerial
.952	Missionary
.953	Benevolent
.96	Medicine
.961	National
.962	State
.963	County
.964	City
.965	Local
.969	
.99	
728	Residences
.1	Tenements
.11	City, for poor
.12	City, for poor City, for workers
.13	City, for clerks, etc
.14	Country
.15	Factory
.17	Society
.19	•
.2	Apartment buildings
.21	Flats, small
.22	Flats, medium
.23	Flats, large
.24	Bachelor's

728.25	Women's
.26	Family
.27	Double houses
.28	Rooming houses
.29	
.3	City houses ·
.31	Small, wood
.32	Small, brick
.33	Small, stone
.34	Medium, brick
.35	Medium, stone
.36	Mañsions, inside
.37	Mansions, corner
.38	Mansions, detached
.39	
.4	Buildings for clubs and societies
.41	Clubs, dining
.42	Clubs, meeting
.43	Masonic
.44	Odd Fellows
.45	Knights of Pythias
.46	Elks
.47	G.A.R.
.48	Insurance, fraternal
.49	
.5	Hotels
.51	Country inns
.52	Village inns
.53	City, rooming
.54	City, European
.55	City, American
.56	City, largest
.57	Suburban
.58	Summer

.59

728.6	Village and country homes
.61	Small ·
.62	Brick
.63	Stone
.64	Concrete
.65	Plastered
.66	Masonry and wood
.67	Farm houses
.68	Cottages for laborers
.69	
.7	Summer homes
.71	Tents
.72	Portable
.73	Wood
.74	Brick
.75	Stone
.76	Mixed
.77	Concrete
.78	Metal
.79	Metal
.8	Country saats
.81	Country seats Castles
.82	Chateaux
.83	Manor houses
.54	Villas
.89	
.9	Out buildings
.91	Gate lodges
.92	Cottages for helpers
.921	Servants
.922	Laborers
.923 .924	Gardeners Grooms
.925	Coachmen
.926	Keepers
.927	Foresters
090	

728.93	Kitchens, laundries, etc.
.931	Kitchens
.932	Laundries
.933	Dairies, house
.934	Smoke houses
.935	Store houses
.936	Granaries
.937	Commissaries
.935	
.94	Stables, carriage houses, etc.
.941	Stables, village
.942	Stables, city
.943	Stables, largest
.944	Kennels
.945	Carriage houses
.949	
.95	Barns, granaries, etc.
.951	Barns, small
.952	Barns, village
.953	Barns, farm
.954	Barns, store
.955	Granaries, small
.956	Granaries, large
.957	Corn cribs
.959	
.96	Dairies
.961	Dairies, large
.962	Dairy stables
.963	Dairy stores
.97	Refrigeration accommodations
.971	Ice houses
.972	Ice plants
.973	Cold storage houses
.974	Fruit houses
.975	Cellars, store
.98	Conservatories, greenhouses, etc
.951	Window gardens
.952	Greenhouses
.953	Conservatories
.984	Cold houses
.985	Grape houses
.9×6,	Palm houses
.987	Foreing houses
.9~8	Store houses
.989	

728.99	Miscellaneous outbuildings
.991	Sheep houses
.992	Pig houses .
.993	Fowl houses
.994	Pigeon houses
.995 .996	Rabbit houses
	Aughtentumal design and description
729	Architectural design and decoration See 600 for Materials.
	See 721 for Construction.
	Classify Forms and Design here.
.1	The elevation
.11	Composition
.12	Subdivision
.13	Proportions
.14	Light and shade .
.15	Perspective effect
.16	Balance
.17	Axial lines
.18	Accenting
.19	The section
.191	Longitudinal
.192	Transverse
.193 .194	Diagonal Broken
.195	Oblique
.2	The plan
.21	Composition
.22	Distribution
.23	Proportions
.24	Sequence of rooms
.25	Communications, horizontal
.26	Communications, vertical
.27	Axial lines
.28	Balance
.29	
.3	Elementary forms
	See 721 for Construction of Forms.
.31	Walls
.311	Plinth Water table
.312	Basement

729.313	Wall proper
.314	Belts String courses
.315	Bands, ornamental
.316	Polychrome .
.317	
.1	Entablatures
.2	Architrave
.3	Frieze
	Cornice
.4	Balustrade
.318	Mansard cornices
.319	
.32	Supports
.321	Piers, simple
.322	Piers, compound
.323	Orders, architectural
.1	Tuscan
.2	Doric
.3	Ionic
.4	Corinthian
.5	Composite
.324	Columns, other forms
.325	Pilasters, other forms
.326	Colonnades
.33	
	Arches and arcades
.331	Semicircular
.332	Segmental
.333	Pointed
.334	Horizontal
.335	Elliptical
.336	Oval
.33%	Tudor
.338	Arched frieze
.339	Arcades
.34	Vaults and domes
.341	Tunnel
.342	Annular
.343	Cross
.344	Cloister
.345	Gothic, ribbed
.1	Tunnel
.2	Cross
.3	
.4	Cloister
.5	Polygonal
.5 .6	Star Net
.7	
. (:8	Fan, square
.5	Fan, rectangular

729.346	Helicoidal
.347	Domes, circular
.345	Domes, pendentive
.349	Pendentite
.35	Roofs Spires
.351	Gable, roofs
.352	Hip
.353	Valley
.354	Flat
.355	Cylindrical
.356	Conical
.357	Spires
.1	Square
.2	Octagonal
.3	Round
.4	Open Tracery
.358	Gablets
.359	
.36	Towers
.361	Square
.362	Rectangular
.363	Polygonal
.364	Round
.365	Lanterns
.366	Turrets
.369	
.37	Gables Pediments
.371	Gables
.372	Gables, stepped
.373	Pediments, triangular
.374	Segmental
.375	Semicircular
.376	Polygonal
.377	Broken
.378 .379	Mixed
	F
.38	Doors Windows
.381	Doors
.1	External single
.:2	External double
.3	External transom
.4 .5	Internal single
.6	Internal double
.0	Internal transom
8	Glazed
.9	Secret
* * *	

	7 2 2 2 2
729.382	Windows
.1	
.0	External casement
.3	External stained
.4	Staircase
.5	
.6	Internal
.7	Grille
.8	Lattice
.9	
.383	Bay windows
.1	Rectangular
.2	Polygonal
.3	Circular
.4	Diagonal
.354	Oriel windows
.1	Square
.2	Rectangular
.3	Polygonal
.4	Circular
.5	* Diagonal
.355	Luthern windows
.386	Dormer windows
.1	Rectangular
.2	Triangular
.3	Circular
.4	Eye-brow
.5	Tracery
.6	. Lattice
.7	Blind
.9	
.39	Stairs Balustrades
.391	External steps
.392	External ramps
.393	External staircases
.394	External balustrades
.395	Staircase towers
.396	Internal stairways
.397	Elevators
.398	Lifts
.399	
.4	Painted decorations
.41	
	Plant forms
.421 .422	Animal forms
.423	Human forms
.4.50	Mythological forms

29.43	Grotesques
.441	Conventional forms
.442	Geometrical forms
.443	Fanciful forms
.45	Mouldings
.461	Architraves
.462	Friezes
.463	Cornices
.464	Bands
.465	Panels
.466	Cartouches
.467	Centers
.468	Borders
.469	
.47	Painted orders
.471	Simple
.472	With pedestals
.473	Pilasters
.474	Arcades
.475	Mixed
.48	Painted ceilings and vaults
.481	Centers
.482	Panels
.483	Borders
.484	Compartments
.485	Historical
.456	Biblical
.487	Mythological
.488	Decorative
.459	
.49.	Painted walls
.491	Centers
.492	Panels
.493	Borders
.494	Dados
.495	. Historical
.496	Biblical
.497	Mythological
.498	Decorative
.499	
.5	Relief decoration
.51	Plant forms
.521	Animal forms
.522	Human forms

Mythological forms

.523

729.53	Grotesques
.541	Conventional forms
.542	Geometrical forms
.543	Fanciful forms
.55	Mouldings, sculptured
.561	Architraves
.562	Friezes
.563	Cornices
.564	Bands
.565	Panels
.566	Cartouches
.567	Borders
.568	Centers
.569	
.57	Orders in relief
.571	Simple
.572	With pedestals
.573	Pilasters
.574	Arcades
.575	Mixed
.58	Sculptured ceilings and vaults
.581	Centers
.582	Panels
.583.1	Borders
.2	Ribs
.584	Compartments
.585	Historical reliefs
.586	Biblical reliefs
.587	Mythological reliefs Decorative reliefs
.588	Decorative reners
.589 $.59$	Reliefs on walls
.591	Centers
.592	Panels
.593	Borders
.594	Dados
.595	Historical
:596	Biblical
.597	Mythological
.598	Decorative
.599	
.6	Incrustation
.61	Walls, external
.611	Stone
1110.	STORE

.612 Marble

```
Brick
729.613
   .614
                 Terra cotta
                 Tiles
   .615
   .616
                 Metal
   .617
                 Polychromatic
                 Plastering
                               Stucco
   .618
   .619
              Walls and ceilings, internal
   .62
   .621
                 Stone
   .622
                 Marble
   .623
                 Brick
   .624
                 Terra cotta
   .625
                 Tiles
   .626
                 Metal
   .627
                 Polychromatic
   .628
                 Plastering
                               Stucco
   .629
   .63
             Inlays
   .631
                 Stone
   .632
                 Marble
   .633
                 Tiles
   .624
                 Faience
   .625
                 Metal
   .626
                 Ivorv
   .627
                 Shell
  .625
                 Polychromatic
  .629
              Niello work
   .64
  .641
                 Engraved
  .642
                 Etched
                 Electroplated
  .643
              Enamel decoration
   .65
  .651
                 Metal
                  Champleve
      .1
                  Cloisonnee
                  Glaze
  .652
                 Tiles
      .1
                  Glazed
      ..)
                  Painted
      .3
                  Printed
  .66
             Plaster
  .661
                 Inlaid
  .662
                 Sgraffito
  .663
                 Polychromatic
```

729.67	Veneering
.671	Wood on wood
.672	Metal on wood
.673	Burl work .
.674	Inlaid work
.675	Polychromatic
.68	Lacquer
.681	Plain
.682	Relief
.683	Sprinkled
.654	Inlaid
.69	
.7	Mosaic
.71	Ceilings
.711	Centers
,712	Panels
.713	Borders
.714	Ornaments
.715	Figures
.716	Pictures
.717	Inscriptions
.719	
.72	Walls
.721	Centers
.722	Panels
.723	Borders
.724	Ornaments
.725	Figures
.726	Pictures
.727	Inscriptions
.729	
.73	Floors
.731	Panels
.732	Geometrical
.733	Tesserae
.734	Borders .
.735	Ornaments
.736	Figures
.737	Inscriptions
.738	Mixed
.739	
.74	
.741	Fireplaces
.742	Furniture
.743	Jewelry
.744	Pictures

729.8	Stained glass designs See 691.6 for Materials. See 692.37 for Construction.
.81	Geometrical
.82	Medallions
.83	Canopy
.84	Figures
.85	
	Mosaic
.86	Polychromatic
.87	Historical
.88	Biblical
.89	•
.9	Accessories and Equipment
.91	Altars
.911	Free
.912	Wall
.913	Canopy
.914	Reredos
.915	Railing
.916	Steps
.917	Screen
.918 .919	Tabernacle
.92	Rostra
.921 $.922$	Ambos Pulpits •
.923	Tribunes
.924	Desks
.93	Thrones
.94	Buffets
.941	Sideboards
.942	Built-in
.943	Restaurant
.944	Railway
.945	Saloon
.95	Fireplaces
.951	Mantles, marble
.952	Mantels, brick
.953 .954	Mantels, terra cotta
.955	Mantels, wood Mantels, metal
.956	Overmantels

EXTENSION DECIMAL SYSTEM OF CLASSIFICATION

Ornaments
Mirrors
Screens, fixed
Stone
Metal
Wood
Confessionals
Organs, pipe
House
Church
Yacht
Hall
Theater

A	Steel 721.262.4
	Stone 721.262.1
Abattoirs Arrangement 725.281	Terra cotta 721.262.3
Abbeys Buildings 726.71	Wood 721.262.8
Academies Buildings 727.21	Arched construction Brick 721.42
Account of payments, Architect's 692.85	Cast-iron 721.45
Acetylene gas heating 697.64	Concrete 721.46
Administration buildings Gov-	concrete, Hollow 721.462
ernment 725.1 Adobes Building 693,22	Concrete-steel 721.464
	Plaster Staff 721.48
Advertisements Contracts 692.41	Steel 721,44
Africa History of architecture 720.96	Stone 721.41
Africa, North Mohammedan	Terra cotta 721.43
architecture 723.37	Wood 721.47
Agreements Contracts 692.43	Arched frieze Architectural
Agricultural schools Buildings 727.48	design 729.338
works 725.445 Air valves Steam heating 697.58	Construction 721,263.3
	Arches and vaults Construction 721.4
	Architectonics 720.13
County 725.553 General 725.55	Architect's extra expenses 692.86
Society 725.558	extra services 692.82
State 725.552	liabilities 692.95
Altars Design 729.91	services Building 692.81
Aluminum Materials 691.85	special services 692.83
Anchors Building 696.7	Architectural construction Gen-
for gutters 696.75	eral 721
for leaders 696.75	decoration 729
for masonry 696.76	design 729
Through 696.74	engineering Schools 727.452
Wall 696.72	forms 729
Ancient architecture History 722	Architecture, Ancient or primitive 722
Animal houses Parks 725.764	Fine arts 720
Ants Woods 691.163	General 720
Apartment buildings General 728.2	General history 720.9
Approval of bills Building 692.72	Modern styles 724
Aquariums Buildings 727.59	Prehistorie 722
Arabia Architecture 723.311	Schools 727.451
Arbitration Contracts 692.444	Archive buildings Arrange-
Arcade band Construction 721.263.2	ment 725.156
Arcades, blind Construction 721,263.1	Argentina Recent architec-
Brick 721.262.2	ture 724.978.2
Concrete 721.262.6	Renaissance architecture 724.178.2
Concrete-steel 721.262.7	Armenian architecture 723.22
Iron 721.262.5	Armories Military 725.183

	W-2W-1W-2		*******
Art academies Buildings	727.476	Asylums Deaf and dumb for inebriates	725.542 725.65
galleries See Art museums	727.7	for idiots	725.531
buildings		Insane	725.52
Fine arts	.708	Austria Architectural school	
Art history See name of	709		s 720.743.5
country Art institutes Buildings		Architecture	12 1.145.5
Art institutes Buildings libraries	727.475 727.37	Classical revival	~ 0 (00 c
	708	Gothic	724.236
Art museums Fine arts Australia	708.9	revival	723.536 724.336
Austria	708.33	Half-timber, Modern	724.736
Belgium	708.993		720.943.6
Canada	708.71	History of art	709,436
Denmark	705.71	Neo-Gree	724.636
England	705.33	Prehistoric	722.036
France	703.3	Recent	724.936
Germany	708.31	Renaissance	724.136
Holland	708.992	Romanesque	723,436
Ireland	708.15	revival	724.836
Italy	708.5	Automobile shops Building	725,453
Mexico	705.72	Automorae snops Dinamig	1 10 (1, 11 (1))
Norway	708.91	В	
Portugal	708.69	Dubulania Anabit cotuna	~00 *1
Russia	708.7	Babylonia Architecture	722.51 709.351
Scotland	708.11	Art history -Balustrades Roofs	721.562
South America	708.8	Bank and office buildings	725,242
Spain	708.61	Bank buildings Arrangement	
Sweden	708 95	exclusively	725.241
Switzerland	708.994	Barns for dwellings	728.95
United States	708.73	for farms	728.953
Art schools Buildings	727.47	Barracks, Soldiers' Arrange	
Articles Architecture	720.43	ment Triange	725.18
Artificial stone Materials	691.3	National	725,181
Arts, Fine General	700	State	725.182
Asbestos Materials	691.95	Basalt Materials	691.262
fire protection	691,953	Basswood Woods	691.145
heat insulation	691,952	Baths Buildings	725.73
pipe covering	691.951	Swimming	725.74
roofs Roofing	695.71	Bay windows Architectural	
Ash Woods	691.135	design	729,383
Asphalt Painting	698.41	Beams, Strengthened Carpen	
heaters Materials	690,848	Wood Wood floors	721.615
Rock Materials	691.962	Bedford stone Materials	691.214
roofs Roofing	695,6	Beech Woods	691.132
Trinidad Materials	691.961	Belgium Classical revival	
Assyria Architecture	722.52	Architecture	724.293
Art history	709,352	Gothic	723.593

revival	724,393	Cut Building	693.23
History of	720.949.3	drawings	692,216
History of art	709,493	Ornamental Buildings	693,24
Recent	724.993	Ornamental Drawings	692.217
Renaissance	724.193	Polychrome Building	693.25
Romanesque	723,493	Pressed	725.482
Belt courses Construction	721.253	Rubbed Building	693,23
Beton construction Building	g 693.5	Bronze Materials	691.86
Beveled glass Drawings	692,282	Specifications	692.357
Bicycle rinks Buildings	725,863	Buffets Design	729.94
shops	725.454	Building Exhibitions	690.62
Bids Contracts	692.42	Handbooks	690.2
Billiard halls Buildings	725.842	History of construction	690.95
Birch Woods	691.143	laws · City	692.92
Blinds Windows	721.87	State	692.91
Blower ventilation Drawing		Machinery	690.84
Board of trade buildings	725.25	materials General	691
Boat houses Buildings	725.87	ordinances Miscellaneous	692.94
Boilers Hot water heating	697.45	Town	692.93
Steam heating	697.55	Village	692.93
Bolivia Recent architecture	724.978.4	periodicals	699.5
Bolts, Door	721.883.7	preservatives	691
Bond irons Building	695.71	processes	691
Bonded warehouses Arrange	G-	socicties	690,6
ment	725.143	system	699.11
Bonds of brick masonry	693.21	Trade schools	699.75
Bonds of stone work	693.11	Trade unions	699,61
Bonds, Surety Contracts	692.45	Training and study	690.7
Bookkeeping, System Buildi		Woods	690.1
Borers Woods	691,164	Burlap Decoration	698.71
Botanic gardens Buildings	727.58	Materials	691.942
Bowling alleys Buildings	725.841	Burmah Architecture	722,47
Brass Materials	691.82	Butternut Woods	691,148
Brass work detail drawings	692.238	Byzantine architecture	723.21
Brazil Recent architecture	721.978.1		
Renaissance architecture	724.178.1	${f C}$	
Breweries Beer	725.421	_	
Brick yards Manufactories	725.481	Cabinet shops Buildings	725,443
Bricks, Common Materials	691.41	work	694.7
Enameled	694.44	drawings Details	692,223
Glazed	691.44	specifications	692,343
Moulded	691.43	Cabot's quilt paper Materials	
Pressed	691.42	Cafes Buildings	725.713
Self-colored	691.45	Calked joints Building	696,62
Brickwork Bonds	693.21	Canada Gothic revival	
building	693.2	Architecture	724.371
specifications	692,332	Half-timber, Modern	721.771

Recent	724.971	Cemeteries Landscape archi	_
Renaissance	724.171	tecture	719
Capitols, National Arrange-		Tombs, Family	726.80
ment	725.111	Memorial	726.83
Provincial	725.113	Society	726.87
State	725.112	Vaults, Family	726.84
Car barns Railway	725.335	Public	726.83
building General	699	Cemetery chapels Buildings	726.81
shops Contract	725,455	Chaldea Art history	709.351
Carpenter's drawings Details	692.221	Chapels, Cemetery Buildings	726.81
Carpentry Building	694.1	Chateaux Modern residences	728.83
Specifications	692.34	Chili Recent architecture	724.978.3
Carpets Materials	691.943	Renaissance architecture	724.178.3
Carriage shops Buildings	725.451	Chimneys Building	697.8
Carthage Architecture	722.34	China Architecture	722.11
Art history	709.334	Art history, Ancient	709.311
Casinos Buildings	725,752	Chintz Decoration	698.75
Cast-iron construction draw-		Churches	726.5
ings	692.231	Baptist	726.56
ornamental drawings	692.232	Christian	726.56
Castles Modern residences	728.81	Christian Science	726.58
Catalpa Woods	691.147	Congregational	726.55
Cathedrals Greek	726.63	Friends	726.57
Protestant Episcopal	726.62	Greek or Russian	726.53
Roman Catholic	726.61	Methodist Episcopal	726.54
Cattle markets	725.272	Presbyterian	726,53
Cedar, Red Woods	691.124	Protestant Episcopal	726.53
White	691.123	Roman Catholic	726,51
Ceilings, Brick or tiles and steel	1 721.73	City buildings Municipal	725.13
Concrete	721.75	halls Arrangement	725.131
Concrete-steel	721.752	Civil engineering schools	727.453
Construction	721.7	Classical revival Modern	724.1
Metal	721.74	Classification of cost data	692.57
Mill system	721.714	Clergy houses Buildings	726.75
Plaster	721.755	Clerk of works Building	692.64
Sculptured Design	729.58	Club houses General	728.4
Stone Construction	721.72	Coal tar Materials	691.963
Wood Beam	721.713	Cold storage plants	725,352
Coffered Construction	721.716	Collections Architecture	720.8
Construction	721.71	Drawings	720.84
Painted Design	729.48	Models	720.87
Wood Paneled	721.715	Photographs	720.80
Celtic art history	709.36	Colleges Buildings	727.8
Cement, Keene's Materials	691.57	Engineering	727.45
Natural	691.54	Law	727.43
Portland	691.55	Medical	727.43
wash Painting	698,23	Normal	727.4

Scientific	727.36	Materials	691.33
Sectarian	727.35	Cement Materials	691.36
State	727.32	Construction Building	693.5
Colonnades, Brick	Construc-	Data for Reinforced	693.74
tion	721.261.2		ling 693.72
Concrete	721,261.6	Formulas for Reinforced	
Concrete-steel	721.261.7	inspection Reinforced	693.73
Construction of	721.261	Lime Materials	691.35
Iron	721.261.5	Mixers Materials	690.847
Steel	721.261.4	Ornamental Building	693.55
Stone	721.261.1	Ransome Materials	691.32
Terra cotta	721.261.3	Reinforced Hennebique	693.714
Wood	721.261.5	Ransome rods	693.712
Columns and posts	Carpentry 694.4	Roebling	693,715
Columns, Block con	crete Con-	Round rods .	693.711
struction	721.332	Special applications	693,76
Cast-iron	721.351	Systems	693.71
Concrete	721.33	Thacher rods	693.716
Concrete-steel	Construction 721.333	Unit system	693.713
Construction of	721.3	sidewalks Building	693.54
Fireproofed	721.36	Solid Building	693.51
by brickwork	721.364	steel Building	693.7
by concrete	721.365	steel floors	721.656
by hollow tiles	721.362	testing Reinforced	693.73
by mortar	721.361	Confessionals Design	729.97
by porous terra	721.363	Conditions, General Specif	ica-
Steel lattice	721.353.3	tions	692.31
Steel riveted	721,353.2	Conifers, Hard Woods	690.11
Steel solid	721.353.1	Soft Woods	690.12
Stone	721.32	Conservatories, Music Bui	
Terra cotta	721.343	ings ings	727.46
Wood	721.31		
Exposed	721.311	Conservatory Heating	697.43
Protected	721.311	Construction, Arched	721.4
Wrought iron	721.352	Architecture	721
Commerce, Ministr		Handbooks	690.2
ings	725.128	Periodicals	690.5
Commercial building	igs General 725.2	Roofs	721.5
Commission, Archi		Systems	690,11
	et Building 692.87	Walls	721.2
Compends Arch		Contracts Building	692.44
Fine arts	702	Convents Buildings	726.74
Concert halls A		Cooling air Ventilation	697.963
Concrete Aggre		Copper Materials	691.81
Beton coignet	691.31	Specifications	692,354
Materials	691.3	Detail drawings	692.235
	Construction 693.53	Roofs Roofing	695.42
DIOCK, LIGHOW	Constituction Commo	O	

Cornices, Brick Construction	721.272	Design, Architectural General	720
Concrete	721.276	Dictionaries Architecture	720,31
Concrete-steel	721.277	Fine arts	703
Construction	721.27	of foreign terms	720.34
Iron	721.275	Discussions	720.44
Steel	721.274	Fine arts	704.3
Stone	721.271	Distemper painting Building	698.21
Terra cotta	721.273	Distilleries Alcohol	725,422
Wood	721.278	Turpentine	725.424
Cost data, Classification	692.57	Dock buildings General	725.3
Cost, Estimates of Building	692.5	Door closers Doors	721.897
Cottages for gardeners	728.92	Doors Architectural design	729,381
for laborers	728.68	Enclosures of Construction	721.80
Cotton factories	725.412	Metal	721.85
Court Houses, Appeal	725.152	Wood	721.81
Arrangement	725.153	Dormer windows Construc-	
Supreme	725.151	tion	721.552
Courts, Justices'	725.154	Design	729.356
Cracks Woods	691.152	Down-spouts Roofing	692.273
Crestings Roofs	621.561	Drainage Drawings	692.243
Custom houses Arrangement		Drawings Elevations	692.13
Customs warehouses Arrang		General	692.1
ment	725.142	Masonry details	692.21
Cyclopedias Fine arts	703	Miscellaneous	692.29
Cypress Woods	691.128	Plan, Floor	692.13
Cyprus Art history, Aucient		Foundation •	692.13
architecture	727.35	Location	692.11
		Roof	692.1-
${f D}$		Sections	692.16
Dairy farm buildings	728.961	Drill halls for boys	725,853
schools Buildings	727,491	Drives Cemeteries	719.4
Deafening Wood floors	721.612	Landscape architecture	713.3
Decay Woods	691.155	Dryers Painting	698.17
Decoration, Painted Design	729.4	Duck Materials	691.941
Relief	729.5	Ducts, Foul air Ventilation	697.95
Defects in woods Materials		Fresh air	697.94
Denmark Classical revival			
Architecture	724.289	${f E}$	
Gothic	723,589	Early Christian architecture	723,1
revival	724,389	Italy	723.15
Half-timber, Modern	724.789	Education Architecture	720.71
History of art	709.489	Fine arts	707.1
Prehistoric	722.089	Ministry of	725.127
Recent	724,989	Educational buildings General	727
Renaissance	724.189	Egypt Architecture	722.2
Romanesque	723,489	Art history, Ancient	709.32
Schools of	720.748.9	Mohammedan architecture	723.32

Electric heating Building	697.7	Estimates of Cost Building
Drawings	692,255	of buildings 692.5
Electrical engineering schools	727.454	Estimating by area 692.53
Elevation, Court Drawings	692.154	by comparison 692.56
Front	692,151	by priced quantities 692.55
Rear	692.153	by units 692.54
Side	692.152	by volume 692.52
Elevations Architectural desi	gn 729.1	Etruria Architecture 722.62
Drawings	692.15	Art history 709.336.2
Ecuador Recent architecture	724.978.6	Europe Art history, Modern 709.4
Elevators Cement Lime	725,373	History of architecture 720.94
Coal General	725.371	Excavation Specifications 692.32
Design	729.397	Exchange buildings General 725.25
Grain	725.36	Exchanges, Cotton 725.253
Malt	725.374	Lumber 725.254
Ore	725.372	Oil 725.255
Sand	725.375	Provision 725.252
Elks' buildings Arrangement	728.46	Stock 725,251
Elm Woods	691.146	Excise offices Arrangement 725.144
Enamel decoration Design	729.65	Exhaust ventilation Building 697.93
Encyclopedias Architecture	720,32	Exhibition buildings Antiqui-
Fine arts	703	ties 725.918
Engine houses Fire	725.192	Exhibitions Building 690.62
England Classical revival		Art 725.917
Architecture	724.22	City 725.915
Gothic •	723.52	County 725.914
revival	724.32	International 725.911
Half-timber, Modern	724,72	Memorial 725.916
History of	720.942	National 725.912
History of art	709.42	State 725.913
Neo-Grec	724.62	Express houses Railway 725.323
Prehistorie	722.02	-
Queen Anne revival	724.52	F
Recent	724.92	Fabrics, Woven Materials 691.94
Renaissance	724.12	Faience panels for walls 691.463.6
Romanesque	723.42	Fair buildings General 725.91
revival	724.82	Fans, Central Ventilation 697.982
schools of	720.742	Side 697.981
Tudor Gothic revival	724.42	Farm barns Buildings 728.953
Entablatures Architectural de	-	houses 728.67
sign	729.317	Fastenings Doors and windows 721,88
Construction	721.27	Feed mills Buildings 725.473
Espagnolette bolts Doors	721,883.8	Felt and gravel roofs Roofing 695.7
Essays Architecture	720.41	Felt, Damp proof Materials 691.967
Fine arts	704.1	Roofing 691.97
Esthetics Architecture	720.12	Ferneries Landscape architec-
Fine arts	701	ture 716.4

Filtration of air Ventilation	697.961	Floors, Brick arched Constru	c-
Finance, Ministry Arrange-		tion	721.631
ment	725.122	Cement	721.691
Fine arts Architecture	720	Concrete and expanded metal	721.658
Art galleries See Art Mu-		Concrete and steel beams	721.655
seums	708	Concrete and wire netting	721.657
Art museums	708	Concrete-steel	721.656
Esthetics	701	Guastavino arched	721.634
General	700	Hollow tile Arched Con	1-
History	709	struction	721.632
Finishing woods Specifica-		Hollow tile Building	693.42
tions	692.373	flat	721.633
Fir Woods	691.127	Mosaic	721.67
Fire administration buildings	725.191	Design	729.73
alarm stations	725.194	Stone	721.62
engine houses	725.192	Stone and cast-iron beams	721.651
patrol buildings	725.193	Stone and steel beams	721.652
Fireplaces, Ventilating Heating	g 697.12	Tile	721.68
Design	729.95	Tile and steel beams	721.653
Heating	697.11	Wood	721.61
Fireproof linings Building	693.45	Flour mills Buildings	725.471
Fireproofing by brickwork	693.813	Flowers Landscape architec-	
by concrete	693.814	ture	716.2
by hollow tiles	693.811	Flues, Chimney Building	697.82
by mortar	693.816	in walls	697.81
by porous terra cotta	693.812	Isolated	697.82
by wood and sheet metal	693.815	Smoke	697.8
columns	693.85	Forced ventilation Building	697.92
floors	S93.42	Foreign affairs, Ministry of	725.125
floors	693.83	Foundations Caissons, Steel	721.152
girders	693,86	Wood	721.181
partitions	693.44	Concrete-steel	721.132
roofs	693.43	Construction	721.1
roofs	693.84	Concrete	721.13
systems	$693.\overline{8}1$	Piers, Brick	721.192
tiles	693.4	Concrete	721.193
trusses	693.87	Concrete-steel	721.194
vaults	693,88	Steel-framed	721.195
walls	693,41	Stone	721.191
walls and partitions	693.82	Piles	721.16
	F 725.19	Plan of Drawings	692.12
Fittings Steam fitting	696.32	Rubble	721.12
Fixtures Gas fittings	696.22	Sand or gravel	721.14
Plumbing	696.12	Stone	721.11
Flat and office buildings	725.223	Tubes, Sunken	721.18
Flat buildings General	728.2	Wells, Sunken	
Flooring Wood	721.611	wens, Sunken	721.17

117			
Wooden gratings	721.15	Drawings 5 1	692.254
Foundling asylums General	725.58	Fuel gas	697.62
Foundries Iron	725.432	Illuminating gas	697.61
Fountains Landscape archi-	****	Natural gas	697.63
tecture	714.3	Gate lodges Buildings	728.91
Framing Carpentry	694.2	Gates Cemeteries	719.1
France Classical revival		Germany Classical revival	
Architecture	724.24	Architecture	724.231
Gothic	723.54	Gothie	723.531
revival	724.34	revival	724.331
Half-timber, Modern	724.74	Half-timber, Modern	724.731
History of	720.944	History of	720.943
History of art	709.44	History of art	709.43
Neo-Gree	724.64	North	709.431
Prehistoric	722.04	South	709.434
Recent	724.94	Neo-Grec	724.631
Renaissance	724.14	Prehistorie	722.031
Romanesque	723.44	Recent	724.931
revival	724.84	Renaissance	724.131
Schools of '	720.744	revival	724,831
Freight houses Railway	725.32	Romanesque	7:3 431
French polishing	698.33	Schools of	720,743.1
Fresco painting	698.25	Girders, Wood Wood floors	
Fuel gas heating	697.62	Glass Materials	691.6
Fungus Woods	691.165	Beveled Drawings	692.282
Furnaces, Hot air Drawings	692.251	Cathedral Materials	691.67
Heating	697.31	cutting Glazing	695.53
Furniture, Special Details	692.224	Luxfer prism Materials	691,64
works Buildings	725.444	Moulded	691.66
•		Polished plate	691.63
G		Rolled plate	691.62
Gables Architectural design	729,37	Rough plate	691.62
Brick Construction	721,292	setting Glazing	698.54
Construction	721.29	Sidewalk lights Materials	691.65
Concrete	721.296	Stained Drawings	692.281
Concrete-steel	721.297	Window Materials	691.61
Iron	721.295	work Drawings	692.28
on roofs	721.555	Glass works Plate	725.488
Roof	721.55	Stained	725.489
Steel	721.294	Window	725.487
Stone	721.291	Glazing Building	698.5
Terra cotta	721.293	Cutting	698.53
Wood	721.295	Specifications	692.37
Gas engineering schools	727.458	Glossaries Architecture	720.33
fitting Building	696.2	Gothic architecture Austria	723,536
heating Acetylene	697.64	Belgium	723.593
Building	697.6	Denmark	723.589

England	723.52	Russia	724.77
France	723.54	United States	724.773
General	723.5	Halls for lectures	725.831
Germany	723.531	Temporary General	725.92
Holland	723,592	Handbooks Architecture	720.23
1 reland	723.515	Construction	690.2
Italy	723.55	Fine arts	702
Norway	723.681	Heating Building	697
Portugal	723.569	Specifications	692.392
Scotland	723.511	systems Drawings	692.25
Spain	723.561	Heating apparatus Drawings	692.25
Sweden	723.585	Hedges Landscape architectu	re 715.3
Switzerland	723.594	Hemlock Woods	691.125
Gothic revival General	724.3	Hemp fiber Materials	691,923
Grading Specifications	692.32	Hennebique concrete Building	693.714
Grain elevators Brick	725.361	Hickory Woods	691.136
Grain elevators Concrete		Hinges Doors	721.892
Concrete-steel	725,364	History of ancient arts	709.3
Steel	725.365	of architecture General	720.9
Tile	725,362	of art See name of country	709
Wood	725,363	of building construction	690.95
G. A. R. buildings	7:25.47	of fine arts. General	709
Granite Materials	691.221	Hog markets	725.275
Graphite Painting	698.43	Holland Classical revival	
Grates, Ventilating Heating	697.12	Architecture	724.292
Grecian art history	709.38	Gothic	723,592
revival Modern architectur	e 724.2	revival	724.392
Greece Architecture	722.8	History of	720.949.2
Greenhouse Heating	697.43	History of art	709.492
Greenhouses, for dwellings	728,982	Recent	724.992
Landscape architecture	716.3	Renaissance	724.192
Grilles Windows	721.87	Romanesque	723.492
Grounds Landscape architect	ure 712	Homes for aged General	725.56
Guild halls Arrangement	725.133	for children Church	725.574
Gum Woods	691.142	General	725.57
Gutters Drawings	692.271	Society	725.575
Gymnasiums Buildings	725.851	for seamen	725.59
Gypsum Materials	691.213	for soldiers	725,59
		Horse markets	725.273
\mathbf{H}		Hospitals Consumption	725.517
Hackmatack Woods	690.116	Contagious	725.518
Hair Materials	691.921	General	725.51
Half-timber, Modern		Insane	725.52
Architecture	724.7	Lving-in	725.515
Austria	724.736	Surgical	725.512
England	724.72	Hot water heating Building	697.4
Germany	724.731	Drawings	692,253
•			

C			
Greenhouse	697.43	Recent	724.915
High pressure	697.41	Renaissance	724.115
Low pressure	697.42	Romanesque	723.415
Steam supply mains	697.44	Iron Painting	698.13
Hotels, City American Build	1-	Cast	691.71
ings	728.55	Malleable cast	691.72
City rooming	728.53	Specifications	692,351
Country	728.51	structures	721.91
European	728,54	roofs Roofing	695.5
Suburban	728.57	Wrought	721.92
Summer	728.58	Wrought Materials	691.73
Village	728.52	Specifications	692.352
Houses, City General	728.3	Italy Classical revival	
Country seats	728.8	Architecture	724.5
Farm Buildings	728.67	Gothic	723.55
for animals Residences	728.99	revival	724.35
General	728	Half-timber, Modern	724.75
Outbuildings	728.93	History of	720.945
of parliament Arrangemen		History of art	709.45
Summer	728.7	Neo-Gree	724.65
Village Buildings	728.6	Prehistoric	722.05
v mage Buildings	1.511.0	Recent	724.95
T		Renaissance	724.15
Ice houses for dwellings	728.97	Romanesque	723.45
plants	725,353	revival	724.85
Illustrators' societies Fine ar		16/1/41	(21.00
indistrators societies Time at		J	
Intrustation Design	706.13	•	795 699
Intrustation Design	729.6	Jails City	725.622
India Architecture	729.6 722.4	Jails City County	725.621
India Architecture Art history, Ancient	729.6 722.4 709.34	Jails City County Police cells	725.621 725.624
India Architecture Art history, Ancient Mohammedan architecture	729.6 722.4 709.34 723.35	Jails City County Police cells Village	725.621 725.624 725.623
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials	729.6 722.4 709.34 723.35 691.16	Jails City County Police cells Village Japan Architecture	725.621 725.624 725.623 722.12
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design	729.6 722.4 709.34 723.35 691.16 729.63	Jails City County Police cells Village Japan Architecture Art history	725.621 725.624 725.623 722.12 709.312
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General	729.6 722.4 709.34 723.35 691.16 729.63 728.5	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details	725.621 725.624 725.623 722.12 709.312 692.222
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building	725.621 725.624 725.623 722.12 709.312 692.222 694.6
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications	725.621 725.624 725.623 722.12 709.312 692.222 694.6
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.525	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.525 725.522	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings	729.6 722.4 709.34 723.35 691.16 729.63 725.523 725.521 725.525 725.522 727.475	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts	729.6 722.4 709.34 723.35 691.16 729.63 725.523 725.521 725.525 725.522 727.475 707.3	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings	729.6 722.4 709.34 723.35 691.16 729.63 725.523 725.521 725.525 725.522 727.475 707.3 728.48	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings Interior, Ministry of	729.6 722.4 709.34 723.35 691.16 729.63 725.523 725.521 725.525 725.522 727.475 707.3	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history Jute fiber Materials	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings Interior, Ministry of Ireland Architecture	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.522 727.475 707.3 728.48 725.126	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history Jute fiber Materials	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333 691.922
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings Interior, Ministry of Ireland Architecture Gothic	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.522 727.475 707.3 728.48 725.126	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history Jute fiber Materials K Kilns for cement Materials	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333 691.922
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings Interior, Ministry of Ireland Architecture Gothic revival	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.522 727.475 707.3 728.48 725.126 723.515 724.315	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history Jute fiber Materials K Kilns for cement Materials for lime	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333 691.922
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings Interior, Ministry of Ireland Architecture Gothic revival History of art	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.522 727.475 707.3 728.48 725.126 723.515 724.315 709.415	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history Jute fiber Materials K Kilns for cement Materials for lime Kiosks Parks	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333 691.922 690.846 690.846 725.763
India Architecture Art history, Ancient Mohammedan architecture Injuries to woods Materials Inlays Design Inns General Insane asylums City National Private State Institutes, Art Buildings Instruction Fine arts Insurance orders Buildings Interior, Ministry of Ireland Architecture Gothic revival	729.6 722.4 709.34 723.35 691.16 729.63 728.5 725.523 725.521 725.522 727.475 707.3 728.48 725.126 723.515 724.315	Jails City County Police cells Village Japan Architecture Art history Joinery drawings Details General Building Specifications Joints Carpentry Joists, Wood Wood floors Judea Architecture Art history Jute fiber Materials K Kilns for cement Materials for lime	725.621 725.624 725.623 722.12 709.312 692.222 694.6 692.342 694.2 721.614 722.33 709.333 691.922

Knots Woods	691.154	Selenitic	691.53
Korea Architecture	722.13	Limestone Materials	691.211
Art history	709.313	Lincrusta Decoration	695:52
Mit Mistory	103.515	Linden Woods	
${f L}$		Linen factories	691.145
Laboratories, Agricultural B	1.4		725.414
	suild-	Lining fabrics Materials	691.945
ings	727.51	Linoleum Floors	721.694
Chemical	727.53	Materials	691.98
Electricity	727.555	Locks, Door	721.553
Engineering	727.55	Doors and windows	721.58
Fuel testing	727.554	Locomotive works Buildings	725.456
Horticultural	727.52	Locust Woods	691.135
Hydraulic	727.552	Luthern windows Architectus	ral
Physics -	727.54	design	729.355
Steam engineering	727.553	Construction	721.551
Testing materials	727.551		
Lacquer work Design	729.65	3.5	
Lakes Landscape architectur	e 714.1	M	
Landscape architecture Gene		Machine shops	725,434
Latticed construction Carper	ntry 694.5	Machinery for working material	
Lead Materials	691.54	Machines for dressing stone	690.842
Painting	698.11	for making bricks	690.544
roofs Roofing	695.43	for making cement	690.546
Leaders Drawings	692.272	for making tiles	690.545
Leading Glazing	698.55	for working steel and iron	690.543
Leather, Stamped Decoratio		for working woods	
Lectures Architecture	720.42	Malteries Buildings	690.841 725.425
Fine arts	704.2		120.425
Liabilities of architects	692.95	dences	728.83
of contractors Building	692.97	Mansions, City General	725.3
of owners	692.96	Manual training Building	690.76
Libraries Buildings	727.3	Manuals Architecture	720.22
Art	727.87	Fine arts	702
City		- Manufactories Cotton	725.412
College	727.551	General	725.4
Historical	727.88	Silk	725.413
National	727.81	Wool	725.411
Professional	727.56	Maple, Red Woods	691.144
Societies	727.853	Sugar	691,134
State	727.82	White	691.144
Town	727.84	Marble Materials	691.212
University	727.852	Marble work drawings	692.213
Lien laws Building	692.98	Markets Buildings	725.26
Lifts Design	729.398	Cattle	725.272
Lighting Specifications	692.391	City.	725,261
Lime Materials	691.51	Commission	725,263
Hydraulic	691.52	Fowls	725.276
a a grant contract.	I	101113	1.00.010

Hogs	725.275	Botany	727.63
Horses Mules	725.273	Ethnology	727.61
Provisions	725,262	General	727.6
Sheep	725.274	Historical	727.65
Masonic buildings	728.43	Industrial	727.64
Masonry Anchors	696.76	Private	727.68
Building	693	War	727.66
Detail drawings	692.21	Zoology	727.62
Specifications	692,33	Music halts Arrangement	725.811
Materials Building	691	pavilions Buildings	725.762
Mausoleums Landscape archi		[Accordance Dannings	1107.1010
tecture Early Earl	718.3	N	
Mechanical engineering schools	727.455		
Metal floors Construction	721.64	Nail and screw factories	725.436
Ornamental Specifications	692,356	Natural gas heating	697.63
Work Drawings	692.23	Navy, Ministry of Arrange-	
Specifications	692.35	ment	725.124
Methods of estimating Cost		Neo-Grec architecture	724.6
Mexico History of architec-		Austria	724.636
ture	720.972	England	724,62
Prehistoric architecture	722.072	France	724.64
Recent	724.972	Germany	724,631
Renaissance	724.172	United States	724.673
Milk wash Painting	698.22	Niches Landscape architecti	
Allik // dell 1 dillting	00000		1 220
Will floor cailings Construc-		Norman architecture Englai	
Mill floor ceilings Construc-	791 714	France	10 723.42 723.44
tion	721.714	France Norway Architecture	
tion Mineral wool — Materials	721.714 691.91	France Norway Architecture Gothic	723.44 723.581
tion Mineral wool Materials Ministry buildings Arrange-	691.91	France Norw ay Architecture Gothic revival	723,44 723,581 724,381
tion Mineral wool Materials Ministry buildings Arrange- ment	691.91 725.12	France Norway Architecture Gothic revival Half-timber, Modern	723.44 723.581 724.381 724.781
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting	691.91 725.12 698.14	France Norway Architecture Gothic revival Half-timber, Modern History of art	723.44 723.581 724.381 724.781 709.481
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General	691.91 725.12 698.14 724	France Norway Architecture Gothic revival Half-timber, Modern	723.44 723.581 724.381 724.781
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture Ge	691,91 725,12 698,14 724	France Norway Architecture Gothic revival Half-timber, Modern History of art	723.44 723.581 724.381 724.781 709.481
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture Ge	691,91 725,12 698,14 724 en- 723,3	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric	723,44 723,581 724,381 724,781 709,481 722,081
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture Geral Moistening air Ventilation	691.91 725.12 698.14 724 20- 723.3 697.962	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent	723,44 723,581 724,381 724,781 709,481 722,081 724,981
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture Geral Moistening air Ventilation Monasteries Buildings	691.91 725.12 698.14 724 en- 723.3 697.962 726.72	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance	723,44 723,581 724,381 724,781 709,481 722,081 724,981 724,181
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture Geral Moistening air Ventilation Monasteries Buildings Monuments Landscape archi-	691,91 725,12 698,14 724 2n- 723,3 697,962 726,72	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque	723.44 723.581 724.381 724.781 709.481 722.081 724.981 724.181 723.481
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture Geral Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture	725.12 698.14 724 201- 723.3 697.962 726.72	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque	723.44 723.581 724.381 724.781 709.481 722.081 724.981 724.181 723.481
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture	691.91 725.12 698.14 724 201 723.3 697.962 726.72 718.1 723.36	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools	723.44 723.581 724.381 724.781 709.481 722.081 724.981 724.181 723.481 720.748.1
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings	691.91 725.12 698.14 724 201 723.3 697.962 726.72 718.1 723.36 726.8	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods	723.44 723.581 724.381 724.781 709.481 722.081 724.981 724.181 723.481 720.748.1
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design	691.91 725.12 698.14 724 201 723.3 697.962 726.72 718.1 723.36 726.8 729.71	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings	723.44 723.581 724.381 724.781 709.481 722.081 724.981 723.481 720.748.1
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design floors Construction	691.91 725.12 698.14 724 727 723.3 697.962 726.72 718.1 723.36 726.8 729.71 721.67	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings Office and flat buildings	723.44 723.581 724.781 709.481 722.081 724.981 724.181 723.481 720.748.1
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design floors Construction Design	691.91 725.12 698.14 724 201 723.3 697.962 726.72 718.1 723.36 726.8 729.71 721.67 729.73	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings Office and flat buildings Office and hall buildings	723.44 723.581 724.381 724.781 709.481 722.081 724.981 723.481 720.748.1 691.131 728.44 725.223 725.234
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design floors Construction Design walls	691.91 725.12 698.14 724 20- 723.3 697.962 726.72 718.1 723.36 726.8 729.71 721.67 729.73 729.72	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings Office and flat buildings Office and hall buildings Office buildings General	723.44 723.581 724.781 729.481 722.081 724.981 724.181 723.481 720.748.1 691.131 728.44 725.223 725.234 725.234
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design floors Construction Design walls Mosaics	691,91 725,12 698,14 724 201 723,3 697,962 726,72 718,1 723,36 726,8 729,71 721,67 729,73 729,72 729,7	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings Office and flat buildings Office buildings Office buildings General Municipal	723.44 723.581 724.781 709.481 722.081 724.981 724.181 723.481 720.748.1 691.131 728.44 725.223 725.234 725.234
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design floors Construction Design walls Mosaics Mosques Buildings	691.91 725.12 698.14 724 201 723.3 697.962 726.72 718.1 723.36 726.8 729.71 721.67 729.73 729.72 729.7	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings Office and flat buildings Office and hall buildings Office buildings General Municipal Official residences City	723,44 723,581 724,381 724,781 709,481 722,081 724,981 724,181 723,481 729,748,1 691,131 728,44 725,223 725,234 725,234 725,134 725,173
tion Mineral wool Materials Ministry buildings Arrangement Mixed paints Painting Modern architecture General Mohammedan architecture General Moistening air Ventilation Monasteries Buildings Monuments Landscape architecture Moorish architecture Mortuary buildings Mosaic ceilings Design floors Construction Design walls Mosaics	691,91 725,12 698,14 724 201 723,3 697,962 726,72 718,1 723,36 726,8 729,71 721,67 729,73 729,72 729,7	France Norway Architecture Gothic revival Half-timber, Modern History of art Prehistoric Recent Renaissance Romanesque Schools O Oak Woods Odd Fellows' buildings Office and flat buildings Office buildings Office buildings General Municipal	723.44 723.581 724.781 709.481 722.081 724.981 724.181 723.481 720.748.1 691.131 728.44 725.223 725.234 725.234

Oil Painting	698.15	Brick - 721.252
Oil polishing	698.35	Concrete 721.286
Old colonial United States 7	24.173	Concrete-steel 721.287
Oolite Materials 6	591.214	Construction 721.28
Opera houses Buildings 7	25.823	Iron 721,285
Orchestra halls Arrangement 7	25.813	Steel 721.284
Orders Architectural design 7	29.323	Stone 721,281
in relief	729.57	Terra cotta 721.253
Painted	729.47	Wood 721.288
Organs, Pipe Design	729.98	Pelasgian architecture 722.61
Oriel windows Architectural		. Art history 709.336.1
	29.354	Penitentiaries City 725.613
Crnamental iron works Build-		General 725.61
ings	25.438	National 725.611
Outbuildings Dwellings	728.93	State 725.612
Oversight of payments Build-		Peperino Materials 691.273
	692.73	Pergolas Landscape architec-
		ture 717.5
${f P}$		Periodicals, Annual Architec-
Packing houses Arrangement 7	25,283	ture 720.55
Packing storehouses Buildings 7	25.284	Building 690.55
Painted ornamentation Design	729.4	Fine arts 705.5
Painters' societies Fine arts	706.11	Periodicals 720.5
Painting Specifications	692.37	Building 690.5
Oil Building	698.1	Daily 720.51
Paneled construction Carpentry	694.5	Building 690.51
	691.93	Fine arts 705.1
Paperhanging Decorating	695,63	Fine arts 705.1
Embossed	698,S1	Monthly 720.53
Mills Buildings 7	25.461	Building 690.53
Roofing Materials 6	91,934	Fine arts 705.3
Sheathing 6	91.931	Occasional Fine arts 705.6
Slating 6	91,933	Quarterly 720.54
Wall	698,61	Building 690.54
Park shelters Buildings 7	25.761	Fine arts 705.4
Parks Landscape architec-		Weekly 720.52
ture	711	Building 690.52
Parliament houses Arrange-		T3*
6	25.114	11777.12
Parquetry floors Construction		Persia, Ancient Architecture 722.53
	09.355	Art history, Ancient 709.355
Partitions, Hollow tile Building	693.44	Mohammedan architecture 723.33
	698.62	Peru Prehistoric architecture 722.075
. 00	25.435	Recent architecture 724.978.5
Payments, Reserved Building		Renaissance architecture 724.178.5
Pediments Architectural de-		Philippine Islands Architecture 722.14
_	29.371	Philistia Art history 709.332
		*

Phoenicia Architecture	722.31	Plain	692.261
Art history	709.331	Scagliola Building	
•		9	693.64
Piers Construction	721.3	Specifications	692.36
Brick	721.34	Stucco Drawings	692.263
Concrete .	721.33	Plate glass works Buildings	725.488
Stone	721.32	Plinth, Wall Construction	721.251
Terra cotta	721.343	Plumber's drawings	692.24
Pile foundations Concrete	721.164	Plumbing Building	696.1
Concrete-steel	721.165	Specification	692.38
Steel	721.163	Plumbing laws State	696.91
Wood	721.161	Plumbing ordinances City	696.92
Pine, Hard Woods	690.112	Town	696.93
Longleaf	690.111	Police buildings City	725.186
Norway	690.114	National	725.184
Pitch	690.115	State	725.185
Shortleaf	691.122	Polishing Varnishing	698.37
White	691.121	Poplar Woods	691.141
Yellow	690.113	Porphyry Materials	691.223
Pipes, Cold air Heating	697.32	Portland cement concrete	691.36
Hot air	697.33	Portugal Architecture	723,569
Hot water	697.46	Gothic	723.569
Steam	697.56	History of art	709.469
Piping Gas fitting	696.21	Recent	724.969
Plumbing	696.11	Renaissance	724.169
Steam fitting	696.31		
Pitch Materials		Romanesque Post offices City	723,469
	691.963	•	725.162
Woods	691.157	National	725.161
Plan of floor Drawings	692.13	Railway cars	725.164
of foundations	692.12	Village	725.163
of location	692.11	Postal buildings General	725.16
of roof	692.14	cars, City railway	725.165
Planing mills Buildings	725.442	Railway	725.164
Plans Architectural design	729.2	Posts and columns Carpentr	y 694.4
of buildings Drawings	692.1	Potteries Factories	725.486
Plant houses Parks	725.765	Practice Fine arts	707.4
Plants Landscape architectur	re 716.1	Preservation of stone Materi	als 691.2
Plaster ceilings Construction	721.75	of woods Building	691.17
Hard Materials	691.58	Prisons General arrangement	725.6
of Paris	691.56	Proceedings of societies Fine	2
ornament Design	729.66	arts	706.15
Plastering Building	693.6	Protection of iron and steel	691.79
External	693.61	Steel Bower-Barff	691.795
Internal	693.62	Cement coating	691.796
Ornamental Building	693.63	Electroplating	691,794
Drawings	692,262	Painting ·	691.791
~ 1411.18.	O D IN THE ONE		0021101

Tinning	691,792	Registers Furnaces	697.34
Zincking	691.793	Regulation of air supply	697.97
Stone Cement wash	691.296	Regulators Furnaces	697.35
Glue and tannin	691.295	Hot water heating	697.47
Materials	691.2	Steam heating	697.57
Oiling	691.292	Reinforced concrete Building	
Painting	691.291	Relief decoration Design	729.5
Paraffine	691.293	Not sculpture	698.S
Silicate so Ja	691.294	Reliefs on walls Design	729.59
Wood Corrosive sublimate	691.175	Religious buildings General	726
Creosoting	691.173	Residences General	728
Crude kerosene	691.176	Official	725.17
Fireproof paint	691.177	Resin Materials	691.964
Oiling .	691.172	Restaurant gardens	725.715
Painting	691.171	Restaurants Buildings	725.714
Sulphate of copper	691.178	Riding halls Buildings	725.881
Zincking	691.174	Rivets Building	696.4
Woods General	691.17	Roads Landscape architecture	
Provincial buildings Arrange	;-	and the second s	693.715
ment	725.115	Roller skating rinks Buildings	
Public buildings General	725	Rolling mills Steel	725.433
Purlins, Metal Roofs	721.543	Roman architecture General	
Wood	721.513	Roman art history	709.37
Puttying Glazing	698.51	Romanesque architecture	723.4
Hard Building	698.52	revival General	724.8
		Roof trusses Metal	721.545
Q		Wood	721.515
Quantities Building	692.5	Wood Ceiling	721.514
zamang	00.0.0	Construction	721.5
${f R}$		Purlins	721.513
		Rafters	721.512
Rafters, Metal Roofs	721.542	Sheathing	721.511
Roofs, Wood	721.512	Trusses Wood	721.515
Railway engineering schools	727.456	Roofing Asbestos	695.71
shops General	725.33	Asphalt	695.6
stations City terminal	725.313	Canvas	695.82
City through	725.312	Copper	695.42
Country	725.311	Drawings	692.27
Electrical	725.316	Duck	695.81
Elevated	725.318	Felt and gravel	695.7
Underground	725.319	General Building	695
Union	725.314	Iron	695.5
Ransome concrete Building	693.712	Lead	
Recent architecture General	724.9		695.43
Record offices Arrangement	725.155	Paper	695.72
Reformatories for adults	725.63	Shingle	695.1
for young	725.64	Slate	695.2

Steel	695.5	Saxen architecture England	723.12
Tile	695.3	Scagliola work Building	693.64
Tin	695.41	Scandinavia History of archi-	
Zine	695.44	tecture	720.948
Roofs Architectural design	729.35	History of art	709.48
Glass Construction	721.53	Schools Architectural engineer	r-
Hollow tile Building	693,43	ing	727.452
Masonry Construction	721.52	Training	720.74
Metal Ceiling .	721.544	Architecture Buildings	727.451
Construction	721.54	Art	727.47
Purlins	721.543	Boys' boarding	727.23
Rafters	721.542	Buildings	727.1
Sheathing	721.541	Chemistry	727.47
Trusses	721.545	Civil engineering	727.453
Rooming houses Buildings	725.28	Electrical engineering	-
Rostrums Design	729.92		727.454
Rot, Dry Woods	691.162	Engineering	727.45
Wet	691.161	Gas engineering	727.458
Round houses Railway	725.334	Girls' boarding	727.24
Rubbing Varnishing	698.37	Law	727.43
Rugs Materials	691.944	Manual training _	727.17
Russia Classical revival		Mechanical engineering	
Architecture	724,27	•	727.455
General	723,23	Medical	727.42
Half-timber, Modern	724.77	Military	727.15
History of	720.947	Music	727.46
History of art	709.47	Normal	727.44
Recent	724.97	Preparatory	727.14
Renaissance	724.17	Private	727.12
Schools of	720.747	Professional	727.4
Rust joints Building	696.61	Public	727.11
8		Railway engineering	
\mathbf{S}			727.456
Safe deposit buildings	725,245	Sanitary engineering	
Saloons Buildings	725.72		727.457
	691.232	Theological	727.41
Materials	691.231	Trade .	727.18
Portage	691.233	Scientific buildings General	727
Sanitary engineering schools	727 457	Scotland Architecture	
fixtures Drawings	692.242	Gothic	723.511
Sapwood Woods	691.151	revival	724.311
Sassania Architecture	722.54	Half-timber, Modern	724.711
Art history	709,355	History of art	709.411
Savings bank and office build-		Prehistoric	722.011
ings	725,244	Recent	724.911
Savings bank buildings	725.243	Renaissance	724.111
Saw mills Buildings	725.441	Romanesque	723.411

Schools	720.741	Learned *	727.9
Screens, Fixed Design	729.96	Medical	727.96
Windows	721.57	National Architecture	720.64
Screws Building	696.5	Religious	727.95
· Sculptors societies Fine arts	5 706.12	School Architecture	720.61
Scuttles in roofs Construction		Scientific	727.92
Section, Cross Drawings	692.162	State Architecture	720.65
Architectural design	729.19	South America Renaissance	
Longitudinal	692.161	architecture	724.178
Seminaries Buildings	727.22	Spain Classical revival	
Theological	727.41	Architecture	724.6
Serpentine Materials	691.251		723,561
Settlement, Final Building Shakes Woods	692.76 691.152	History of	720.946 709.461
	721.613	History of art Moorish	723.36
Sheathing Wood floors Shellac Varnishing	698.32	Prehistoric	722.06
Shingle roofs Roofing	695.1	Recent	724.961
Shipbuilding Roomig	699	Renaissance	724.161
Shooting galleries General	725,59	Romanesque	723.461
Shop practice Building	690.74	Spanish colonial architecture	724.172
Shops, Machine Buildings	725,434	United States	
Railway General	725.33	Specifications of buildings	692.3
Shrinkage Woods		Spires Architectural design	729.357
Shrubs Landscape architec-		Brick	721.572
ture	715.2	Concrete-steel	721.577
Shutters Windows 5	721.57	Construction	721.57
Siam Architecture	722.48	Iron	721.575
Sicily History of art	709.458	Steel	721.574
Sideboards Design	729.941	Stone	721.574
Silk factories	725.413		721.571
Skating rinks Buildings	725.861	Terra cotta	
Skylights in roofs Construc-		Wood	721.578
tion	721.553	Spots Woods	691.153
Slag wool Materials	691.91	Spring houses Buildings	725.751
Slate Materials	691.24	Spruce Woods	691,126
Slate roofs Roofing	695.2	Stables for dwellings	728.94
Slate work drawings	692.215	Stained glass design	729.8
Smelters Iron ore	725.431	work Drawings	692,251
Soapstone Materials	691.252	Buildings	725.489
Societies, Architects' local	720.62	Stains Woods	691.156
Art Buildings	727.91	Stairbuilding	694.8
Building	690.6	Stairs Design	729.39
Draftsmen's Architecture	720.63	State, Ministry of Arrange-	
Educational	727.94	ment	725.121
Engineering	727.93	Statements to owner Buildin	g 692.74
Fine arts	706.1	Stations, Railway General	725.31

Statutes Landscape architec-		Railway	725.337
ture	717.8	Stores Arrangement	725.21
Steam fitting Building	696.3	Department	725.212
Steam heating Building	697.5	Retail city	725.213
Drawings	692.252	Retail village	725.214
Exhaust steam	697.53	Wholesale	725.211
Exhaust system	697.53 697.51	Stoves Heating Streaks Woods	697.2
High pressure Low pressure	697.52		691,153
Vacuum system	697.54	Streams Landscape architect	714.2
Steel and brick structures	721.971	String courses Construction	721.254
and glass	721.98	String courses Construction Stucco plastering Building	693.61
0	721.96		692.263
and stone			00.000
and terra cotta	721.973	Study Fine arts	707.2
and tile	721.972	Summer houses Landscape	
and wood	721.95	chitecture	717.2
Bessemer Materials	691.76	Sunday schools Buildings	726.4
Blister	691.74	Superintendence, Architect's	692.62
construction drawings	692.233	Building	692.6
Crucible	691.75	Constant	692.63
Open hearth	691.77	Occasional	692.61
ornamental drawings	692.234	Special .	692.65
roofs Roofing	695.5	Supervision of accounts Bui	
Specifications	692,353	ing	692.7
structures	721.93	Sweden Architecture	
Tool Materials	691.74	Gothic	723.585
Stencils Painting	698.27	revival	724.385
Stock yards Buildings Stone, Artificial Materials	725.271 691.3	Half-timber, Modern History of art	724.785 709.485
floors Construction	721.63	Prehistoric	722.085
Materials	691.2	Recent	724.985
tools Building	693.14	Renaissance	724.185
work	693.1	Romanesque	723.485
Specifications	692.331	Schools	720.748.5
Tools	693.14	Swiss, Modern General	724.7
Stonecutting Building	693.12	Switzerland Architecture	* 10 2 * 1
Drawings	692.211	Gothic	723.594
Stonesetting Building	693.13	Half-timber	724.794
diagrams	692,212	History of	720.949.4
Storage buildings	725.354	History of art	709.494
Store and flat buildings	725.222	Prehistoric	722.094
and office buildings	725.221	Recent	724,994
buildings Arrangement	725.21	Renaissance	724.194
Store, office and apartment bui	ld-	Romanesque	723,494
ings	725.22	Sycamore Woods	691.133
Storehouses Doeks	725,344	Syenite Materials	691.222

Synagogues Religious buildings 726.	3 Tile floors Construction 721.68
Syria Mohammedan architec-	Hollow Building 693.42
ture 723.31	
ttire	partitions, Hollow 693,44
	roofs Roofing 695.3
${f T}$	Hollow Building 693,43
Tale Materials 691.25	3 walls, Hollow Building 693.41
Tamarack Woods 690,11	6 work drawings Building 692.214
Tapestry Decoration 698.7	works Floor and wall 725.485
Painted 698.7	
Tar Materials 691.96	6 Tiles, Bond course Hollow 691.473.2
Painting 695.4	2 Book Materials · 691.472.1
Taverns General 728.	5 Ceiling plates 691.472.2
Temples Religious Buildings 726.	
Tenements, City clerks Build-	Embossed floor Materials 691.462.3
ings 728.1	
City poor 728.1	1
City workers 728.1	•
Country 728.1	4
Factory 728.1	
Society 728.1	
Tennis courts Buildings 725.76	
Terra cotta Anchoring 693.3	
backing 693.3	
bands 691.48 columns 691.48	
	1
Drawings Building 692.21 face blocks 691.48	
manufacture 691.48	
Materials 691.4	
mouldings 691.48	
Ornamental 691.48	
pilasters 691,48	
Setting 693.3	
Specifications .692.33	
Work Building 693.	
works Buildings 725.48	·
Tesserae Floors 721.68	
Testing purity of air Ventila-	Wall mouldings Materials 691,463.7
tion 697.96	4 painted 691.463.8
Thacher concrete Building 693.71	-
Theaters Buildings 725.82	1 roofs Roofing 695.41
Theories Architecture 720.1	1 Work Specifications 692.355
Theories Fine arts 70	1 Tinners' work Detail draw-
Thrones Design 729.9	3 ings 692.236
Tile and steel beam floors 721.65	3 Tool houses Railway 725.338

Textile decoration	695.75	Turn halls Buildings	725,852
Tools Textile decoration	698,75	Turpentine Painting	695.16
for brickwork Building	693,26	Tuscany History of art	709.455
for relief decoration	695.84		
for stamped leather	695.54		
for working stone	693.14	${f u}$	
Gas fitting	696,23	Unit concrete Building	693.713
Glazing	695,56	United States Architectural	
Painting	695.25	schools	720.747.3
Oil	695.15	United States Classical reviv	:a1
Paperhanging	698,64	Architecture	724.173
Plumbing	696.13	Gothic revival	724.373
Riveting	696.41	Half-timber, Modern	724.773
Screw joints	696.51	History of	720.973
Steam fitting	696,33	Neo-Grec	724.673
Varnishing	695.35	Prehistoric	722.073
Towers Architectural desig	n 729.36	Queen Anne revival	724.573
Spires Construction	721.57	Recent	724.973
Staircase Design	729,395	Renaissance	724.173
Town halls Arrangement	725.132	Romanesque revival	724.873
Trade schools Building	690.75	Tudor Gothic revival	724.473
unions Building	690.61	Universities Buildings	727.3
Training Architecture	720.73	City	727.33
Transportation buildings	725.3	Engineering	727.45
Tran Materials	691.261	Graduate	727.34
Travertine Materials	691.272	National National	727.31
Trees Landscape architectu		National	727,44
Trasses, Metal Roofs	721.545	Scientific	727.36
Roof Metal Connection		Sectarian	727.35
Root Metal Connectio	721.545.5	State State	727.32
Dimensioning	721.545.4	State	4 10 4 11 100
Cost	721.545.7		
	721.545.8	${f v}$	
Economy Loads	721.545.2	Vacuum steam heating	697.54
	721.545.3	Variations Contracts	692,443
Stress diagrams	721.545.1	Variations Contracts Varnish, Oil	695.311
Types	721.545.6	Spirit	698.312
Weight Wood Connections	721.515.5	•	695.3
	721.515.7	Varnishing Building Vases Landscape architectu	
Cost	721.515.4		gs 725.524
Dimensioning	721.515.8	Vaults Cemeteries Building	gs 15. 54 719.5
Economy	• · · · · ·		729,45
Loads	721.515.2		
Stress diagrams	721.515.3	Public Cemeteries	726.83 729.58
Types	721.515.1	Sculptured Design	729.67
Weight	721.515.6	Vencering Design	
Tufa Materials	691.271	Venezuela Recent architect	ure 724.978.7
Turkey Mohammedan arel		D 11.	
ture	723,34	Renaissance architecture	724.178.7

Venice History of art Ventilation Building	709,453 697	Water table Construction 721.2. Water tanks Railway 725.3:	36
Drawings	692.25	Wax polishing 698.	
Forced Drawings	692.259	Wharfboats Steamer 725.3	43
Natural Building	697.91	Window gardens Landscape ar-	
Drawings	692.258	chitecture 716	
Plenum Building	697.92	Windows Architectural design 729.3	52
Specifications	692.393	Bay Design 729,3	83
Villas Residences	728.54	Dormer Construction 721.5	52
Vines Landscape architecture	715.4	Design 729.3	56
		Enclosures of Construction 721.	56
\mathbf{w}		External 721.	54
		in roofs 721.	5.5
Wagon shops Buildings		Internal 721.	5.5
Walks Cemeteries	719.3	Luthern 721,5	51
Landscape architecture	713.1	Design 729.3	5.5
Wall paper mills Buildings	725.462	Oriel Design 729.3	
Wall reliefs Design	729.59	Wire and fence works 725.4	
Walls Architectural design	729.3	Wood and glass structures 721.	
Brick Construction	721.24	Woods Building 690	
Concrete	721.231	Defects 691.	
Concrete-steel	721.233	Hard leaf Materials 691.	
Construction	721.2	Preservation 691.	
Half-timber	721.212	Soft leaf Materials 691.	
Hollow block	721.232	Woolen factories 725.4	
Hollow tile Building	693.41	Work houses 725.6	
Painted Design	729.49	Work nodses	.,,
Stone Construction	721 22		
Wood	721.211	${f Y}$	
Walnut, Black Woods	691.137	Yew Woods 690.1	18
War, Ministry of Arrange-		Y. M. C. A. buildings 726.	
ment	725.123	Y. W. C. A. buildings 726.	
Warehouses, Bonded Arrange	·-	Ti vii ci III idining.	
ment	725.143	_	
Cold storage	725,352	${f Z}$	
Merchandise	725.351	Zinc Materials 691.	83
Retail Arrangement	125,216	Painting 698.	12
Wholesale	725.215	roofs Roofing 695.	44
Water supply drawings Plum	b-	work drawings 692.2	
ing	692.241	Zoological gardens Buildings 727.	.57

Publications of The Engineering Experiment Station.

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot, 1904.

Circular No. 1. High Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906.

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Plain and Reinforced Concrete Columns, Series of 1906, by Arthur X. Talbot. 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907.

Bulletin No. 12. Tests of Reinforced Concrete T-Beams, Series of 1906, by A. N. Talbot. 1907.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

BULLETIN No. 14

August 1907

TESTS OF REINFORCED CONCRETE BEAMS SERIES OF 1906.

By Arthur N. Talbot, Professor of Municipal and Sanitary Engineering and in Charge of Theoretical and Applied Mechanics.

CONTENTS.

I. INTRODUCTION.

1	Duelimineur	Page
1.	Preliminary	2
$\frac{2}{2}$.	Scope of Tests	2
3.	Acknowledgment	•)
11	I. MATERIALS, TEST PIECES, AND METHOD OF TESTI	NG.
4.	Materials	3
5.	Test Beams	6
6.	Making of the Beams	9
7.	Minor Test Pieces	10
8.	Storage	10
9.	Method of Testing	10
	III. EXPERIMENTAL DATA AND DISCUSSION.	
10.	Explanation of Tables 6 to 12	12
11.	Effect of Quality of Concrete	12
12.	Effect of Method of Loading	14
13.	Effect of Repetitive Loading	16
14.	Diagonal Tension Failures	21
15.	Summary	31

I. Introduction.

- 1. Preliminary.—The tests on reinforced concrete in the Laboratory of Applied Mechanics of the University of Illinois were continued during the college year of 1905-6. The results on shear and bond were reported in Bulletin No. 8 of the University of Illinois Engineering Experiment Station; those on columns, in Bulletin No. 10; those on T-beams, in Bulletin No. 12. The tests on rectangular beams will be described in this bulletin. The analytical theory of reinforced concrete beams was quite fully treated in Bulletin No. 4, and the methods and nomenclature used in this bulletin will follow those there given.
- Scope of Tests.—The discussion given in Bulletin No. 4 suggested many topics for investigation. Several of these were taken up and considerable information obtained, though it was not feasible to make the investigations complete enough to be fully conclusive. Effect of quality of concrete, effect of method of loading, effect of repetitive loading, and diagonal tension failures were among the topics considered. The beams were of the standard width and depth adopted by the Joint Committee on Concrete and Reinforced Concrete, but in the investigation of resistance to diagonal tension failure the length was varied and shortened to ensure this form of failure. Plain round rods of mild steel were generally used for reinforcement, but a deformed bar was used in some of the beams. The concrete was varied in quality both in the richness of the mixture and in the conditions of fabrication. These tests have since been followed with others bearing on some of the same topics.
- 3. Acknowledgment.—These tests were part of the work of the University of Illinois Engineering Experiment Station. The tests on effect of quality of concrete and effect of method of loading were made in co-operation with the Joint Committee on Concrete and Reinforced Concrete through the sub-committee on tests, of which Mr. Richard L. Humphrey is chairman. The work of testing the beams was done principally as thesis work. The students conducted the tests in a careful and skillful manner, and showed considerable discrimination in making observations and in drawing conclusions. The following members of the class of 1906 in Civil Engineering were connected with the work:
 - E. W. Sanford, Effect of Quality of Concrete.

- H. R. Armeling, Comparison of Methods of Loading. *
- C. E. Andrew and J. L. Bannon, Effect of Repetition of Load.
- T. E. Phipps and R. H. Whipple, A Study of Diagonal Tension Failures.

The work was under the direct supervision of D. A. Abrams, Assistant in the Engineering Experiment Station, and to him and to W. R. Robinson, Assistant in the Engineering Experiment Station, acknowledgment is made for aid in the interpretation of results and in the preparation of this bulletin.

- II. MATERIALS, TEST PIECES, AND METHOD OF TESTING.
- 4. 'Materials.—Materials for the tests on "Effect of Method of Loading" and "Effect of Quality of Concrete" were furnished by the Joint Committee on Concrete and Reinforced Concrete through Mr. Richard L. Humphrey, chairman of the Committee on Tests. Materials for the tests on "Effect of Repetition of Load" and "Diagonal Tension Failure" were furnished by the Engineering Experiment Station. The terms "Joint Committee tests" and "Experiment Station tests" will be used to designate this difference of work and materials.

Stone.— The stone for the Joint Committee tests was a good quality of limestone from Kankakee, Illinois, ordered screened through a 1-in. screen and over a ½-in. screen. It contained from 45% to 50% voids and weighed 85 lb. per cu. ft. loose. The stone for the Experiment Station tests was also a Kankakee limestone somewhat softer than the other, screened as above, and contained 50% to 54% voids. It was somewhat finer than the Joint Committee stone. In the determination of the voids in both stone and sand, the material was poured slowly into the water so that the voids became filled with water and no air was caught.

Sand.—The sand used was the same for all tests. It came from near the Wabash river at Attica, Indiana. It was of good quality, well graded, and fairly clean. It weighed 115 lb. per cu. ft. loose, and contained 28% voids. Table 1 gives the result of a mechanical analysis of this sand.

Cement.—The cement furnished by the Joint Committee was made up of a mixture of five standard American portland cements, selected and mixed by the manufacturers, and was of excellent quality. The cement furnished by the Experiment Station was Chicago AA portland, purchased in the open market of a local

TABLE 1.

MECHANICAL ANALYSIS OF SAND.

Sieve No.	Size of Mesh inches	Per cent passing
4	.208	100
10	.073	73
20	.034	36
50	.011	12
74	.0078	5
100	.0045	2

TABLE 2.

Tensile Strength of Chicago AA

Portland Cement.

	Ultimate Strength, lb. per sq. in								
Ref. No.	Age 7	days	Age 60 day						
	Neat	1-3	Neat	1–3					
1	634	283	890	443					
$\frac{2}{3}$	717	281	916	440					
3	732	275	840	422					
$\frac{4}{5}$	687	217	942	365					
	580	206	872	3.52					
6	731	189	885						
Αv.	680	242	891	404					

dealer. The tensile strength of this last cement, as determined from briquettes made by standard methods, is given in Table 2.

Concrete.—Men accustomed to making concrete mixed the materials and made the test beams. Care was taken in measuring, mixing, and tamping, to secure as uniform a concrete as possible. All materials were measured by loose volume. The mixing was done with shovels by hand. The sand and cement were first mixed dry. The stone was then added and the mass mixed until uniform in appearance. Water was added in such proportion as to give a slightly wet concrete.

Steel.—The longitudinal reinforcement consisted generally of $\frac{1}{2}$ -in. or $\frac{3}{4}$ -in. mild-steel plain round rods. In a few beams $\frac{1}{2}$ -in. high-steel Johnson corrugated bars were used. The results of tensile tests of the steel used are given in Table 3. The plain round bars had an average yield point of 40 500 lb. per sq. in. and an ultimate strength of 60 000 lb. per sq. in. The corrugated bars developed an average yield point of 57 300 lb. per sq. in. with an ultimate strength of 87 400 lb. per sq. in. In general, the yield points of the various bars in one beam varied less than 3% from one another.

TABLE 3.

Tension Tests of Steel Used in Beams.

Values given are in general the average of results of tests of specimens cut from four different rods.

Specimens Taken from Beams No.	Nominal Size inches	Diameter inches	Per cent Elongation in 8 inches	Yield Point lb. per sq. in.	Ultimate Strength lb. per sq. in.
2 13 14 15 16 17 18 20 21 23 26 27 28 30 31 34 35 36 38 39	요한 요한 시간 나는 그런 그는	.750 .747 .750 .501 .500 .500 .497 .502 .750 .503 .503 .503 .504 .749 .502 .500 .749 .502 .500 .749 .502 .501 .503	31.0 33.0 29.7 29.3 28.5 28.0 29.0 28.0 31.2 31.5 29.0 31.2 29.1 29.1 29.1 29.5 32.5 29.0 32.5 28.0 29.0 28.5	34000 38800 38700 41400 37700 36700 40300 44400 41800 35000 37200 39400 42700 41000 41800 38800	56300 56900 58000 61700 58100 57900 60200 62500 58000 58000 57100 60800 61100 60900 56000
35 36 38 39 40 42 43 44 45 50	12 12 24 34 12 12 12 12 12 12 12 12 12 12 12 12 12	.502 .500 .750 .749 .502 .502 .501 .503	29.5 28.0 29.0 32.5 28.1 29.9 28.4 28.7 29.6	40800 36300 35800 38800 42800 42500 42400 42100 42000 42800	58400 58100 54700 56200 62200 61800 62100 61800 61900 61700

TABLE 3—Concluded.

Specimens Taken from Beams No.	Nominal Size inches	Diameter inches	Per cent Elongation in 8 inches	Yield Point lb. per sq. in.	Ultimate Strength Ib. per sq. in.
51 52 53 54 55 56 58 59 60 61 62 63 64 65 68 69 70 71 72 73 74 66* 67*	121 121 121 121 121 121 121 121 121 121	.502 .501 .504 .505 .503 .622 .753 .753 .750 .752 .748 .747 .748 .747 .754 .747 .752 .749 .748	28.5 27.9 29.2 28.0 27.8 30.7 29.5 26.0 28.5 30.3 30.3 33.5 29.5 29.5 29.5 29.5 32.2 31.5 31.2 27.6 16.1 17.4	41800 44200 42500 42100 42100 42000 37800 40300 41000 39200 39000 40600 42350 37800 41700 44200 42200 44500 40100 39900 40700 43900 58800 57300	60900 63100 62800 61200 62300 60600 62900 65300 63000 59100 54400 61600 61900 62700 60700 59200 58900 56900 60100 91100 87300

^{*} Corrugated bars.

5. Test Beams.—In all of the tests herein discussed the cross-section of the beams was 8 in. x 11 in., the center of the steel being placed 10 in. below the top surface except in some cases where the ends of the bars were bent up. In the tests on "Diagonal Tension Failure" the test span varied from 6 ft. to 12 ft. In all the other series of tests a 12-ft. span was used. Unless otherwise specified the reinforcing bars were straight and were placed horizontally throughout the beam. In the beams marked "Bars bent up" the bars were bent up at a point about 3 in. outside the load points and passed diagonally either in a straight line or in a slightly curved line to a point within 2 in. or 3 in. of the top of the beam near its ends. In several beams stirrups of ½-in. plain

round bars were used. These stirrups were placed 12 in. apart longitudinally throughout the outer thirds of the span length, beginning at the load points. They were U-shaped and passed under all the reinforcing bars and extended nearly to the top of the beam. The stirrups were left very close to the sides of the beam. For general data on all beams see Table 5.

 $\label{table 4.}$ Compression Tests of Cubes and Cylinders.

Concrete as in	Kind of		ve Strength r sq. in.
Beam No.	Concrete	Cubes	Cylinders
59 61 69	1-2-4 $1-2-4$ $1-2-4$	$2030 \\ 3500 \\ 1510$	1700
Av.		2350	1700
51 58 60 65 68 70* 72 73* Av.	$\begin{array}{c} 1-3-5\frac{1}{2} \\ \end{array}$	1580 1690 2360 1850 2250 1770	1470 1060 1060 885 1100 540 770
5† 6† 7† 12† 14 18 19	1-3-6 1-3-6 1-3-6 1-3-6 1-3-6 1-3-6 1-3-6	1390 1420 1050 1080 1600 1380 1170	
Av.		1300	, }
71	1-5-10	1230	

^{*} Poorly mixed.

[†] Poorly made.

TABLE 5. GENERAL DATA ON BEAMS.

Beam	Kind	Reinforcement	Span, ft.	Test	Clas ficat	
No.	of Con- crete	Per cent - Amount and Disposition		Age at	Clasticat Table No.	Kine
3	1-3-6	0.98 4 ½-in. round.	12	72	10	E. S
4	1-3-6	$0.98 \mid 4 \mid \frac{1}{2}$ -in. round.	12	74	12	E. S
5	1-3-6	$0.98 \mid 4 \frac{1}{2}$ -in. round.	12	71	10	E. S
6	1-3-6	$0.98 \mid 4 \frac{1}{2}$ -in. round.	10	71	10	E. S
7	1-3-6	0.98 4 ½-in. round. Bars bent up.	10	71	11	E. S
8	1-3-6	2.21 4 \(\frac{3}{4}\)-in. round.	10	76	10	E. S
9	1-3-6	2.21 4 \(\frac{1}{4}\)-in. round.	10	76	10	E. S
10	1-3-6	0.98 4 ½-in. round.	12 12	73 73	12	E. S
$\frac{11}{12}$	$1-3-5\frac{1}{2}$ $1-3-6$	$ \begin{vmatrix} 0.98 & 4 & \frac{1}{2} - in. \text{ round.} \\ 2.21 & 4 & \frac{3}{2} - in. \text{ round.} \end{vmatrix} $	10	70	$\frac{10}{12}$	E. S
13	1-3-6	2.21 4 \(\frac{3}{4}\)-in. round. Bars curved up.	10	69	11	E. S
14	1-3-6	2.21 4 \(\frac{2}{3}\)-in. round. Bars curved up.	10	$-\frac{68}{68}$	11	E. S
15	1-3-6	0.98 4 ½-in. round.	8	69	10	E. S
16	1-3-6	0.98 4 $\frac{1}{3}$ -in. round.	8	69	10	E. S
17	1-3-6	0.98 4 $\frac{1}{2}$ -in. round. Bars bent up.	8	70	11	E. S
18	1-3-6	0.98 4 \frac{1}{2} -in. round.	6	71	10	E. S
19	1-3-6	0.98 4 ½-in. round.	6	67	10	E. S
20	1-3-6	0.98 4 ½-in, round. Bars bent up.	6	67	11	E. S
$\overline{21}$	1-3-6	0.98 4 4-in. round. Bars bent up.	6	68	11	E. 8
22	1-3-6	0.98 4 ½-in. round. 2 bars bent up.	- 6	7.0	11	E. S
22 23 25 26	$1-3-5\frac{1}{2}$	2.21 4 $\frac{3}{4}$ -in, round.	10	67	10	E. S
25	$1-3-5\frac{1}{2}$	$0.98 \mid 4^{-\frac{1}{2}}$ -in. round.	- 6	70	10	E. 8
26	$1-3-5\frac{1}{2}$	$0.98 \mid 4^{\frac{1}{2}}$ -in. round. Bars curved up.	8	68	12	E. 8
27 28	$1-3-5\frac{1}{2}$	2.21 4 \ \frac{4}{4}-in. round.	8	68	10	E. S
28	1-2-4	$0.98 \mid 4^{-\frac{1}{2}}$ -in. round.	12	70	8, 9, 12	E. 8
29	$1-3-5\frac{1}{2}$	$0.98 \mid 4^{-\frac{1}{2}}$ -in. round.	12 12	70	8, 9, 10	E. S
30	$1 - 4 - 7\frac{1}{2}$	$0.98 \mid 4 \frac{1}{2}$ -in. round.	12	71	8, 9, 10	E. S
31	1-2-4	$0.98 \mid 4 \mid \frac{1}{2}$ -in. round.	12	78	8, 9, 12	E. S
32	$1-3-5\frac{1}{2}$	$0.98 \mid 4 \mid \frac{1}{2}$ -in. round.	12	79	8, 9, 12	E. S
33	$1-3-5\frac{1}{2}$	$0.98 \mid \frac{4}{2}$ -in. round.	8	73	10	E. S
$\frac{34}{35}$	$1-3-5\frac{1}{2}$	2.21 4 \(\frac{3}{4}\)-in. round.	12	67 75	$\frac{10}{8, 9, 12}$	E. 8
36	$1-4-7\frac{1}{2}$ $1-3-5\frac{1}{2}$	$\begin{bmatrix} 0.98 & 4 & \frac{1}{2} \end{bmatrix}$ -in. round. Bars bent up.	10	61	11	E. S
37	$1-3-5\frac{1}{2}$ $1-3-5\frac{1}{2}$	2.21 4 \(\frac{2}{2}\)-in. round.	8	70	10	E. S
38	$1-3-5\frac{1}{3}$	2.21 4 $\frac{4}{3}$ -in. round. Bars bent up.	8	64	11	Ē. S
39	$1-3-5\frac{1}{3}$	2.21 4 \(\frac{1}{4}\)-in. round. Bars bent up.	8	64	ii	E. S
40	$1-3-5\frac{1}{2}$	0.98 4 ½-in. round.	12	62	7	J. C
42	$1-3-5\frac{1}{3}$	0.98 4 ½-in, round.	12	60	7	J. C
43	$1-3-5\frac{1}{2}$	0.98 4 4-in, round.	12 12	60	7	J. C
44	$1-3-5\frac{1}{2}$	$0.98 \mid 4 = 10$ in. round.	12	60	7	J. C
45	$1-3-5\frac{1}{2}$	$0.98 \mid 4 = \frac{1}{2}$ -in. round.	12	60	7	J. C
46	$1-3-5\frac{1}{2}$	$0.98 \mid 4^{\frac{1}{2}}$ -in. round.	6	85	10	E. S
47	1-2-4	$0.98 \mid 4^{-\frac{1}{2}}$ -in. round.	6	88	10	E. S
48	1-2-4	$0.98 \mid 4^{-\frac{1}{2}}$ -in. round.	6	84	10	E. S
49	$1 - 3 - 5\frac{1}{2}$	0.98 4 ½-in. round.	6	82	10	E. S
50	$1-3-5\frac{1}{2}$	0.98 4 ½-in. round.	12	60	7	J. C
51	$1-3-5\frac{1}{2}$	$0.98 + 4 - \frac{1}{2}$ -in. round.	12	60	7	J. C

TABLE 5.—Concluded
General Data on Beams.

Beam	Kind			ı, ft.	L Test ys	Cla fica	issi- tion
No.	of Con- crete	Per cent	Amount and Disposition	Span,	Age at Test days	Table No.	Kind
52	$1-3-5\frac{1}{2}$	0.98	$4^{-\frac{1}{2}}$ -in. round.	12	60	7	J. C.
53	$1-3-5\frac{1}{2}$	0.98	4 ½-in. round.	12	60	7	J. C.
54	$1-3-5\frac{1}{2}$	0.98	$\frac{1}{2}$ -in. round.	. 12	60	7	J. C.
55	$1-3-5\frac{1}{2}$	0.98	$\frac{1}{2}$ -in. round.	12	60	7	J. C.
56	$1-3-5\frac{1}{2}$	0.98	4 ½-in. round.	12	60	7	J. C.
57	1-2-4	1.15	3 §-in. round.	12	76	6	J. C.
58	$1-3-5\frac{1}{2}$	1.10	$\frac{2}{4}$ -in. round.	12	61	6	J. C.
59	1-2-4	1.10	$2^{\frac{3}{4}}$ -in. round.	12	62	6	J. C.
60	$1-3-5\frac{1}{2}$	1.10	2 \frac{8}{4}-in. round.	12	61	6	J. C.
61	1-2-4	1.10	$\frac{2}{4}$ -in. round.	12	61	6	J. C.
62	1-5-10	1.10	$\frac{2}{4}$ -in. round.	12	62	6, 10	J. C.
63	1-5-10	1.10	$\frac{2}{2}$ $\frac{2}{4}$ -in. round.	12	61	6, 10	J. C.
64	$1-3-5\frac{1}{2}$	1.10	$2^{\frac{3}{4}}$ -in. round.	12	61	6	J. C.
65	$1-3-5\frac{1}{2}$	1.10	$2\frac{3}{4}$ -in. round.	12	60	6	J. C.
66	1-5-10	1.25	4 ½-in. corrugated bars.	12	59	6, 10	J. C.
67	1-5-10	1.25	4 ½-in. corrugated bars.	12	60	6, 10	J. C.
68	$1-3-5\frac{1}{2}$	1.65	$\frac{3}{4}$ -in. round. $\frac{10}{4}$ -in. stirrups.	12	60	6, 10	J. C.
69	1-2-4	1.65	$\frac{3}{4}$ -in. round. $\frac{10}{2}$ -in. stirrups.	12	61	6	J. C.
70	$1-3-5\frac{1}{2}$	1.65	3 \frac{3}{2}-in. round. 10 \frac{1}{2}-in. stirrups.	12	60	6	J. C.
71	1-5-10	1.65	3 \(\frac{3}{2}\)-in. round. 10 \(\frac{1}{2}\)-in. stirrups.	12	60	6, 10	J. C.
72 73	$1-3-5\frac{1}{2}$	1.10	2 \(\frac{3}{2}\)-in. round. 10 \(\frac{1}{2}\)-in. stirrups.	12	60	6	J. C.
13	$1-3-5\frac{1}{2}$	1.10	$2^{\frac{3}{4}}$ -in. round. $10^{\frac{1}{2}}$ -in. stirrups.	12	60	6	J. C.
74	$1-3-5\frac{1}{2}$	0.98	$4\frac{1}{2}$ -in. round.	10	-62	12	E. S

NOTE:—E. S. and J. C. refer to Engineering Experiment Station and Joint Committee respectively. For explanation of terms, see "4. Materials," p. 3.

6. Making of the Beams.—The beams were made directly on the concrete floor of the laboratory, a strip of building paper being laid beneath the forms. Several proportions of concrete were used, varying from 1-2-4 to 1-5-10 by loose volume. A number of the first beams were made of 1-3-6 mixture, and the later ones of $1-3-5\frac{1}{2}$, as it was thought that the voids in the stone were not properly filled in the 1-3-6 mixture. The forms, which were of the ordinary wooden knock-down type, were removed four days after making the beams and the beams were not moved in any way for 14 days. Generally the stone for the concrete was dampened and the concrete well mixed and wet enough to secure proper hardening. The making of the beams

was skillfully done. In Beams No. 3 to 13 inclusive, however, through some oversight the stone (a porous material), was not dampened, insufficient water was used in mixing, the making and

Fig. 1. 8-point Loading.

tamping were not properly done, and the concrete was allowed to become too dry. The beams so made proved to be of inferior concrete and are referred to as poorly made concrete. The low results obtained are of interest in showing the effect of improper methods even if enough cement is used.

- 7. Minor Test Pieces.—Tests were made on 6-in. cubes and on 8-in. cylinders 16 in. high taken from concrete used in some of the beams. The results of these tests are given in Table 4. The values given for the cubes are the averages of three test specimens. For the cylinders, a single test specimen was used.
- 8. Storage.—The beams were stored in a room the temperature of which was from 60° F. to 70° F. They were tested at the age of about 60 days.
- 9. Method of Testing.—The usual method of testing was by loads applied at the one-third points as described in Bulletin No. 4, page 34. The beams were all tested in the 200 000-lb. Olsen testing machine, and in all cases except the tests on "Effect of Method of Loading," were loaded at the one-third points. The method used for loading at eight points is shown in Fig. 1. The supports of the beam allowed longitudinal movement, the bottom of the rocker being an arc of 12-in. radius, and the top, on which cast-iron blocks rested, having a radius of $1\frac{1}{2}$ in. Turned steel rollers, 2 in. in diameter, were used for applying the load at the third points. The blocks at the supports and load points were bedded in plaster of paris which was allowed to harden under the weight of the beam and the apparatus used in loading before the

load was applied. The cubes, cylinders, and steel were tested in the 100 000-lb. Riehlé and 200 000-lb. Olsen testing machines.

Center deflections were read on all the beams. Deformations of the upper fiber and steel were measured by means of four extensometers. The methods of measuring deflections and deformations were fully described in Bulletin No. 4.

TABLE 6. EFFECT OF QUALITY OF CONCRETE. Loaded at one-third points.

Span 12 ft.

Beam No.	Maximum Load, 1b.	k:	Per cent Rein- forcement	Stress in Steel lb. per sq. in.	Vertical Shearing Stress $v = \frac{V}{bd'}$ lb. per sq. in.	Manner of Failure
			1	1-2-4 Co	ncrete.	
57 59 61 69*	11730 12000 10960 16000	.43 .53 .47 .57	1.15 1.10 1.10 1.65	39800 44000 39700 39000	96 97 90 129	Tension. Tension. Tension. Tension.
	- '		1	-3-5½ Co	oncrete.	
58 60 64 65 68* 70* 72* 73*	9860 10360 9850 10000 14220 13710 10270 9900	.52 .57 .55 .54 .57 .69 .47 .52	1.10 1.10	36900 39400 37300 37600 35000 35800 37400 37000	85 82 83 115 112 85 82	Tension. Tension. Tension. Tension. Diagonal Tension. [crete Compression (Poor con- Tension. Tension.
62 63 66† 67† 71*	8850 7360 8000 7850 7600	.60 .48 .63 .57 .59	1.10 1.10 1.25 1.25 1.65	34600 28100 29400 27100 20200	74 63 69 68 67	Diagonal Tension. Diagonal Tension. Diagonal Tension. Diagonal Tension. Diagonal Tension.

^{*} Stirrups.

[†] Reinforced with corrugated bars.

III. EXPERIMENTAL DATA AND DISCUSSION.

- 10. Explanation of Tables 6 to 12.—In Tables 6 to 12, the position of the neutral axis was obtained by the method used in Bulletin No. 4. In calculating the per cent of reinforcement the area of the beam above the center of the reinforcing bars is used. The columns headed "Maximum Applied Load" do not include the weight of the beam loading apparatus, but these weights were considered in calculating the stress in the steel. In determining the amount of the vertical shear, the weight of the beam and loading apparatus was considered, 6 lb. per sq. in. being added to the unitstress for a 6-ft. beam, 7 for an 8-ft. beam, 8 for a 10-ft. beam, and 10 for a 12-ft. beam. In obtaining the vertical shear, the formula $r = \frac{V}{.86bd}$ or .0145 V was used for 1% beams and $v = \frac{V}{.81bd}$ or .0154 V for 2.2% beams.
- 11. Effect of Quality of Concrete.—In this series, tests were made on beams made of three kinds or grades of concrete,—1.2.4, $1-3-5\frac{1}{2}$, and 1-5-10 mixtures. The purpose of this series was to determine the effect of quality of concrete upon the strength of the beam and upon the manner of failure. The beams were planned to give a variety of manners of failure,—tension in the steel, compression in the concrete, and diagonal tension in the concrete. Table 6 gives the results of this series. The calculations were made as described under "10. Explanation of Tables". No attempt is made to calculate the diagonal tensile stresses developed, but the ability to resist diagonal tension will be compared by means of the vertical shearing stresses developed. The load was applied at the one-third points of the beams. From the tables it will be noted that the manner of failure for beams of these proportions depends upon the richness of the concrete. Counting the effect of the weight of the beam and loading apparatus, it is seen that all the beams made with 1-2-4 concrete failed by tension in the steel at calculated stresses somewhat above the elastic limit of the steel. Beam No. 57, (Fig. 4), is typical of the appearance of the beams after failure. Beam No. 69, having 1.65% reinforcement, has a load-compression diagram (Fig.12) which indicates that the stress in the concrete at the maximum load was well within the limits of its ultimate compressive strength. The vertical shearing stress developed in this

beam was 124 lb. per sq. in. and there was no indication of approaching failure by diagonal tension.

Of the test beams of 1-3-5½ concrete all but two failed by tension in the steel. The calculated stresses in the steel, when allowance is made for the weight of the beam, are slightly above the elastic limit of the steel. The two not failing by tension in the steel, when compared by the stresses computed either from the bending moment or the observed deformations, gave stresses in the steel not much lower than the average of the remainder of the series. Both of these beams, therefore, had hardly reached the load which would have been followed by failure by tension in the steel. Beam No. 68 failed by diagonal tension at a calculated vertical shearing stress of 115 lb. per sq. in. No. 70 failed by compression of the concrete. The compression diagram (Fig. 13) shows that the concrete in this beam lacked stiffness, the amount of deformation being more than for the average beam but not much more than that of No. 68, its companion beam, as is seen from the load-deformation diagrams. And yet this beam of $1-3-5\frac{1}{2}$ concrete and 1.65% reinforcement carried a load nearly to the elastic limit of the steel reinforcement.

All the beams made with 1-5-10 concrete failed by diagonal tension at loads which show a rather narrow range regardless of the amount or method of reinforcement. The vertical shearing unit-stress developed averaged 68 lb. per sq. in. As the beams failed by diagonal tension at loads much smaller than those at which failure by compression in the concrete may be expected, there is nothing in these tests upon which to base the limit of the concrete or the amount of reinforcement at which the compressive strength of the concrete and the tensile strength of the steel may be considered to be balanced.

A comparison of beams having 1.1% reinforcement which failed by tension in the steel shows that the 1-2-4 beams carried greater loads than the 1-3-5½ beams, the additional load amounting to 10% or 15%. This increase of load probably is due to the fact that the greater strength of the richer concrete allows the steel to be stretched a greater distance beyond the elastic limit before developing the full compressive strength of the concrete and also that the moment arm of the couple formed by the compressive stresses is somewhat greater with the richer concrete. The added strength of the richer concrete in preventing failure by

diagonal tension is apparent. This feature of the series will be further discussed under "14. Diagonal Tension Failures". As will be shown afterward, the arrangement of stirrups used was not well planned and their presence seemed not to add to the strength of the beams, although in Beams No. 68 and 71 it might have been expected that well designed stirrups would prevent failure by diagonal tension.

Effect of Method of Loading.—It was the purpose of this series to determine the effect of the method of loading upon the resisting moment developed in the beam. With this in view, the beams were so proportioned that failure by tension in the steel was expected in all cases. In Bulletin No. 4, page 54, a discussion of this topic is given. It was there stated that beams loaded at the middle have been found to develop a higher moment of resistance than is to be expected if the distribution of stresses is as assumed in the ordinary theory of flexure. Six methods of loading were used in the tests of this series: (1) load applied at center of the span only; (2) load applied at two points $1\frac{1}{2}$ feet apart; (3) load applied at two points 3 feet apart; (4) load applied at the one-third points; (5) load applied at two points 7½ feet apart; (6) load applied at eight points (to approximate a uniform load). The appliances used for the loading at eight points have been described under "9. Method of Testing".

Table 7 gives the results of these tests, together with the calculated stresses in the steel. All beams failed by tension in the steel, as was clearly shown by the load-deformation diagrams. If the effect of the weight of the beam and loading apparatus is included, it will be seen that the calculated stresses in the steel all lie above the elastic limit. A comparison of the resisting moments of the beams may be made by comparing the calculated stresses in the steel, given in Table 7, since the tests of the steel used in these beams show that there was little variation in the yield point of the test pieces. It will be noted that the highest stress developed was in beams having the loading at the middle, and that when the two loads were close to the middle the results were not much lower. For the other methods of loading the variation in stress developed was not large, no greater than may be expected with the difference in the materials and fabrication in such beams, though the method in which the load was applied at eight points gave a somewhat higher resisting moment. These

TABLE 7. ·

EFFECT OF METHOD OF LOADING

Reinforcement .98%. Concrete 1-3-5½. Span 12 ft. All failed by tension in the steel.

Beam No.	Method of Loading	Maximum Applied Load lb.	k *	Stress in Steel lb. per sq. in.
50	Center.	7400	. 45	45200
52	Center.	7650	.38	45400
53	2 points 13 ft. apart.	7900	.45	42500
54	2 points 1½ ft. apart.	8250	.42	43500
55	2 points 3 ft. apart.	8900	.44	40700
56	2 points 3 ft. apart.	9610	.51	45000
40	One-third points.	10000	.46	41000
42	One-third points.	9420	.47	39000
45	2 points 7½ ft. apart.	17300	.50	40100
51	2 points 7½ ft. apart.	18000	.45	40700
43	8 points 18 in. apart.	14000	.44	42100
44	8 points 18 in. apart.	15000	.41	44300

tests go to show the general applicability of the ordinary beam theory to simple beams without end restraint or horizontal restraint for any of the usual methods of loading, with the exception of center loading, provided, of course, that the proportions of the beam are such that the method of failure is by tension in the steel. It will be seen that the beams loaded at the middle give about 10% greater resistance than the more usual methods of loading. This excess is not so great as has been found in beams having a high percentage of reinforcement. With high reinforcement the resulting moment developed is considerably greater than for loading at the one-third points. Evidently under such conditions loading at the middle gives a distribution of stresses at sections near the center of the beam which is different from that assumed in the ordinary theory of flexure.

The load-deformation curves have the same general characteristics in all of the beams. The position of the neutral axis, as determined by the method used, is nearly the same for the several methods of loading, the variation being as little as may be ex-

pected in tests of this character and no characteristic difference being noticeable in any method of loading. Of course, with the load applied in the middle the deformations were taken over so great a gauged length that a discrepancy in the distribution of stress at a section at the middle had little effect on the values found.

13. Effect of Repetitive Loading.—Tests were made on six beams to determine the effect of repeatedly applying and releasing the load on the beam, from 24 to 30 applications of a single load being made. Three mixtures of concrete were used, thus permitting a study of the effect of quality of concrete. All beams were reinforced with 1% of steel. The load applied was 5000 lb.

TABLE 8.

Effect of Repetitive Loading.

Span 12 ft. Loaded at one-third points.

Beam No.	Mixture	Age days	Per cent Rein- forcement	Repeated Load lb.	No. of Applica- tions	Failed at lb.	Manner of Failure
28	1-2-4	70	0.98	6000	26	9900	Tension.
31	1-2-4	78	0.98	6000	25	9400	Tension.
29	1-3-5}	71	0.98	5000	30	10000	Diagonal tension.
32	1-3-5	79	0.98	6000	24	9800	Tension.
30	1-4-7 1	71	0.98	5000	30	5900	Diagonal tension.
35	$1 - 4 - 7\frac{7}{2}$	75	0.98	5000	30	7500	Compression.

TABLE 9.
DEFLECTIONS UNDER REPETITIVE LOADING.

Beam	Mixture	C'e	nter Def		in inches for 5000-lb. Load.			
No.	Marketin	lst	5th	10th	15th	20th	25th	30th
28 31 29 32 30 35	$\begin{array}{c} 1 \cdot 2 - 4 \\ 1 \cdot 2 - 4 \\ 1 \cdot 3 \cdot 5 \cdot \frac{1}{2} \\ 1 \cdot 3 \cdot 5 \cdot \frac{1}{2} \\ 1 \cdot 4 \cdot 7 \cdot \frac{1}{2} \\ 1 \cdot 4 \cdot 7 \cdot \frac{1}{2} \end{array}$	0.25 0.25 0.15 0.24 0.40 0.31	0 33 0.33 0.25 0.31 0.49 0.38	0.34 0.35 0.25 0.33 0.54 0.40	$ \begin{vmatrix} 0.36 \\ 0.35 \\ 0.25 \\ 0.34 \\ 0.57 \\ 0.41 \end{vmatrix} $	0.37 0.36 0.25 0.34 0.60 0.41	0.38 0.37 0.26 0.62 0.41	0.25 0.65 0.42

in three beams, and 6000 lb. in the other three. These loads were from 50% to 85% of the maximum load carried by the beam when the load was finally increased to the point of failure. The deflection at the midpoint of the span was measured, as were the deformations at the top and bottom for a gauged length along the middle of the beam, though the latter measurements were not entirely satisfactory. Table 8 and Table 9 give results of these tests.

The following notes show the principal features of the tests of the several beams.

Beam No. 28. The beam was made of 1-2-4 concrete. The general behavior of this beam during the repetition of the 6000-lb. load is representative of the action of the other beams. cracks appeared on the tension side of the beam in the middle third of the length, one or more of them usually on the first application of the load and others at subsequent applications, as shown in Fig. 2. In this beam hair cracks appeared at the third. eighth, thirteenth, and twenty-sixth applications. In each case the cracks closed upon the removal of the load. Upon increasing the load after the twenty-sixth application of 6000 lb., the cracks opened still further. Finally the crack marked 8 opened much more rapidly, the beam failed by tension in the steel, and this was followed by the load dropping off and the concrete finally crushing at the top at a load much less than the maximum. It may be noted that the deflection of the beam increased with the repetition of the 6000-lb. load, the amount at the twenty-fifth application being 50% more than at the first. The position of the cracks is shown in Fig. 2, the numbers indicating the applications at which the cracks were noted.

Beam No. 31. The beam was of 1-2-4 concrete. Hair cracks appeared at the second, fifth, seventh, tenth, and twenty-fifth applications of the load of 6000 lb. On increasing the load after the twenty-fifth application, the cracks opened, and at 8000 lb. crack No. 2 (Fig. 2) rapidly widened. At a load of 9400 lb., the steel passed its yield point and as usual this was finally followed with the crushing of concrete at the top of the beam. The increase in the deflection of the beam at the twenty-fifth application over that at the initial application of the load was 50%. It should be noted that the diagonal crack marked 10 formed at the 10th application of the load, but, although it widened when the load was increased beyond 6000 lb., it did not cause failure. The vertical shearing

unit-stress, as calculated by equation 18 (See page 20, Bulletin No. 4), was 53 lb. per sq. in. for a load of 6000 lb., and 78 lb. per sq. in. at failure.

Fig. 2. Sketches Showing Beams after Failure Under Repetitive Loading.

Beam No. 29. The beam was made of $1-3-5\frac{1}{2}$ concrete. A load of 5000 lb. was applied 30 times. Hair cracks appeared as shown in the sketch in Fig. 2. The deflection for the load of 5000 lb. increased 67% during the repetitions. At a load of 9000 lb. a diagonal crack appeared one foot outside the load point, and the beam finally failed by diagonal tension along this crack. The vertical shearing unit-stress at this load was 76 lb. per sq. in., and at the maximum load 83 lb. per sq. in.

Beam No. 32. The beam was made of 1-3-5½ concrete. A load of 6000 lb. was applied 24 times. Two hair cracks appeared at the first application, and several more at later applications of the load, but no additional effect was observed. As the load was finally increased to an amount near 9400 lb., a crack near the load point appeared, and failure by tension in the steel at this point followed at a maximum load of 9800 lb. The repetition of the load gave a greatly increased deformation in the upper fiber (See Fig. 14) but when the load was increased beyond 6000 lb., the upward direction of the deformation curve for the upper fiber indicates that the concrete had not lost its strength or elasticity. The changes in the deflection are shown in Fig. 10.

Beam No. 30. The beam was made of $1-4\cdot7\frac{1}{2}$ concrete. A load of 5000 lb. was applied 30 times. Hair cracks appeared on the third and fourth applications. On increasing the load a diagonal crack appeared outside the load point, and the beam failed by diagonal tension at a maximum load of 5900 lb., followed by a stripping of the bars for some distance beyond. The vertical shearing unit-stress for this load was 53 lb. per sq. in. The exposed ends of the bars showed a slip in the concrete after the maximum load was reached. Fig. 8 gives the changes in deflection.

Beam No. 35. The beam was made of $1-4\cdot 7\frac{1}{2}$ concrete. Thirty applications of the load of 5000 lb. were made. Fine hair cracks appeared at the bottom over the the middle third during the repetition, and a few outside of the load points. The beam finally failed by compression in the upper face of the beam at a load of 7500 lb. It seems possible that the strength of the concrete may have been affected by the repetition of stress, although it is more likely that the test is an example of the effect of poor concrete.

These tests throw light upon the phenomena of repetitive loading and show the need of further investigation in this direction, but they are not at all conclusive. The manner of failure in general is the same as may be expected with beams of the same reinforcement and same quality of concrete loaded progressively to final failure. Whether the maximum load carried in the case of the repetitive loading is less than would have been the case with progressive loading is not known. There are some indications that the maximum load was less than it would have been without repetition.

The increase in the deflection of the beams with repetition of the load is quite apparent. Much of this increase is due to the increased amount of shortening of the concrete in the compression side of the beam with repetition. A part is due to the breaking of the concrete in tension and the transferring of the tensile stress once taken by the concrete to the steel itself. This accounts for part of the set in the deflection curve upon the release of the load. Part of the set must be due to the concrete in the lower fiber not meshing, so to speak, when the load is released after numerous fine cracks have appeared. For this reason some tension remains in the steel reinforcement after the load is taken It seems evident that upon the removal of the load the beam does not regain its original shape and a section which was plane before bending will not be plane upon release of the load. The plastic nature of the concrete on the compression side gives a set, and the concrete on the tension side is unable to return to its original position; the two act together to cause the fibers not to return to the original plane section. These several causes operate together to produce the permanent deflection or set.

The load applied in the cases of the leaner concretes was 67% to 85% of the maximum load which the beam finally held. In the case of the better concrete, the repeated load was 50% to 60% of the maximum load. The effect of the quality of the concrete is seen in the manner of failure.

This topic is one of such importance that it merits fuller investigation. The few tests which have been made indicate that the deflection and the deformations increase with repetition. It seems quite probable that the breaking load under a number of repetitions will be smaller than under a single load. It seems to be true also that the amount of reinforcement for which the elas-

tic tensile strength of the steel used for reinforcement may be considered to balance the compressive strength in the concrete of the beam (which the writer calls "the balanced reinforcement") should be taken at a lower percentage in beams subjected to a repetition of load than is found necessary in the case of beams tested by means of a gradually applied load.

The term "balanced reinforcement" referred to above is a convenient term for general use. It should be taken to mean that amount of reinforcement for which the allowable stress in the steel and the allowable stress in the concrete both exist at the same time. The factors of safety for the two materials will not be the same. The determination of the balanced reinforcement for given conditions of materials, fabrication, and use is a matter involving calculation and experimentation, but in any event the judgment of the designer must enter into the choice of the amount.

14. Diagonal Tension Failures.—As shown in Bulletin No. 4 (pages 20, 21, and 26), certain secondary stresses or web stresses exist in the concrete of a reinforced concrete beam in addition to the horizontal or longitudinal tensile and compressive stresses which are always considered in the analysis. Strictly speaking, the shearing stresses developed under ordinary conditions are relatively light, and the actual shearing strength of concrete is considerably greater than the shearing stress which exists in ordinary beams at the time of failure. It is quite common, however, to use the term "shearing failure" as a name for a class of failures in the web of a beam, but it must not be understood from this use of terms that the failure necessarily involves actual failure by shear. Generally speaking, such failures are due to the inability of the concrete to resist the tensile stresses developed in the web in a diagonal direction, and the term "diagonal tension failure" is a much more appropriate name for this form of failure. It is a principle of mechanics that where shearing stresses exist tensile and compressive stresses are set up at an angle with the direction of the shearing stresses. If longitudinal tensile stress also exists in the concrete, the diagonal tensile stress induced by the combination of these with the shear is even higher than that due to shear alone. If v represents the horizontal and vertical unit-stress at any point in the web of a beam and s the horizontal tensile unit-stress existing in the concrete at the same

point, then, as shown in Bulletin No. 4, the formula for the maximum diagonal tensile unit-stress is

$$t = \frac{1}{2} s + \sqrt{\frac{1}{4} s^2 + v^2} \dots$$
 (19)

If there is no longitudinal tension in the concrete, this formula reduces to

and maximum diagonal tension makes an angle of 45° with the horizontal and is equal in intensity to the vertical shearing stress.

It is evident then that the amount of this diagonal tension is dependent upon both the shearing stress and the longitudinal tensile stress in the concrete at the point considered. The amount of longitudinal tension is not easy to determine and hence the actual amount of the diagonal tensile stress is uncertain. The best method for ordinary computation seems to be to compute the vertical shearing unit-stress and make all calculations upon the basis of this value. The value of the vertical shearing unit-stress, where the longitudinal reinforcement is straight (not bent up or inclined), may be computed from the formula given in Bulletin No. 4,

$$v = \frac{V}{bd'}.....(18)$$

where V is the total external vertical shear at the section considered, b is the breadth of the beam, d' is the distance from the center of the steel to the center of the compressive stresses. For beams with 1% reinforcement d' is about 0.86~d, d being the distance from the center of the steel to the upper face of the beam.

The value of v thus calculated for beams which fail by diagonal tension ranges from one-half to one-third of the tensile strength of the concrete. Diagonal tension failures are frequently characterized by sudden failures without much warning, as is the case in the failure of plain concrete beams. A variation from this gives a slower failure, part of the shear being carried through the reinforcing bars, and the ultimate failure involving the splitting and stripping of the bars from the beam above. When the reinforcing bars are bent up or inclined toward the ends of the beams the distribution of the vertical shear is different from that just outlined and the analysis is more complex. However, for purposes of comparison, the use of equation (18) is advantageous, and the values of v given in the tables for beams

with bars inclined are calculated by this formula, using d as 10 in., though the amounts as calculated do not represent the actual vertical shear.

Forty test beams were made with a view of studying diagonal tension failure. To make a sufficient variety of conditions the concrete was varied from a fairly rich mixture to a very lean concrete. The first of the 1-3-6 concrete beams numbered up to 13 yere very poorly made, as described under "6. Making of the Beams", and the general appearance of the concrete and its action during the tests go to show that the concrete was of a very inferior quality. The beams were made with the same depth, and their length was varied to give a variable relation between depth and span.

Table 10 gives the results of beams having the reinforcing bars horizontal and in which failure occurred by diagonal tension. The beams are grouped according to the quality of the concrete.

TABLE 10.

DIAGONAL TENSION FAILURES.

BARS HORIZONTAL.

All beams loaded at one-third points.

Beam No.	Span ft.	Per cent Rein- force- ment	k.	Maxi- mum Applied Load lb.	Vertical Shearing Stress lb. per sq. in. $r = \frac{V}{bd'}$	
			1-	-5-10 Con	crete.	
62 63 66 67 71	12 12 12 12 12 12	1.10 1.10 1.25 1.25 1.65	.60 .48 .71 .57	8850 7360 8000 7850 7600	74 63 69 68 67	Diagonal tension. Diagonal tension. Diagonal tension. Diagonal tension. Diagonal tension.
Av.		• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	68	-
			1-	4-7½ Conc	rete.	
30	12	0.98	.71	5900	53	Diagonal tension.

TABLE 10-Concluded

Beam No.	Span ft.	Per cent Rein- force- ment	k	Maxi- mum Applied Load lb.	Vertical Shearing Stress lb. per sq. in. $r = \frac{\Gamma}{bd'}$	Manner of Failure
	1 ,		1	-3 -6 Conc	rete.	
3	12	0.98	.48	7380	64	Diagonal tension.
5	12	0.98	. 44	6200	55	Diagonal tension.
6	10	0.98	.47	7050	59	Diagonal tension.
8	10	2.21	.56	8470	73	Diagonal tension.
9	10	2.21	.64	9150	79	Diagonal tension.
15	8	0.98	. 52	13000	107	Diagonal tension.
16	8	0.98	. 41	12420	97	Diagonal tension.
18	6	0.98	. 40	13000	101	Diagonal tension.
19	6	0.98	. 54	12760	99	Diagonal tension.
						8
Av.					. 81	
			1-	$-3-5\frac{1}{2}$ Con	crete.	
						D
11	12	0.98	. 52	10000	83	Diagonal tension.
29	12	0.98	. 55	10000	83	Diagonal tension.
68	12	1.65	.57	14220	115	Diagonal tension.
23	10	2.21	.61	13830	115	Diagonal tension.
27	8	2.21	.67	11000	92	Diagonal tension.
34	8	$\frac{2.21}{2.21}$. 76	11230	94	Diagonal tension.
37	8	2.21	. 70	15140	114	Diagonal tension.
$\frac{25}{33}$	6	0.98	. 56	15430	118	Diagonal tension.
	6	0.98	.57	15670	120	Diagonal tension.
46	6	0.98	. 34	13700	106	Diagonal tension.
49	6	0.98	.49	19000	144	Diagonal tension.
Av.					108	
			1	-2-4 Conc	erete.	
17		0.00	10	10000	149	Diagonal taugior
47 48	6 6	$\frac{0.98}{0.98}$	$\begin{bmatrix} .46 \\ .38 \end{bmatrix}$	$\frac{18800}{17940}$	$\frac{142}{136}$	Diagonal tension. Diagonal tension.
		• •		2		
Av.		••••		• • • • • • • • • •	139	
	1 (

The value of v, calculated by equation (18), offers a means of comparison of the resistance of the concrete to failure by diagonal tension. The effect of lean concrete and of poorly made concrete is quite evident. The results are instructive. The low values

for the poor concrete may be helpful as a warning against assuming high web stresses for beams in which the concrete may not be well made.

The range of the values of the vertical shearing unit-stress v found in these tests with beams having the reinforcing rods in a horizontal position may be summarized as follows, the results being obtained with a single application of the load on beams about 60 days old:

FIG. 3. SKETCHES SHOWING BEAMS AFTER FAILURE.

The one beam of $1-4\cdot7\frac{1}{2}$ concrete which failed in this way gave 43 lb. per sq. in. This beam was subjected to repetitive loading. These results show the importance of using a rich concrete in the web of reinforced concrete beams which are subjected to any considerable amount of diagonal tension when there is no metallic web reinforcement or when the web reinforcement is not effective. It is probable that not enough attention has been given to this element in the design of short and deep beams.

Fig. 3 gives sketches showing the cracks which were observed The sketches represent the position of the in these beams. cracks after the failure of the beam, or after the load had reached a maximum, and do not indicate the position or extent of the cracks within the maximum load. Fig. 4 and 5 are reproduced from photographs and give the appearance of beams after failure. Generally speaking, the crack when first observed, extended from the bottom of the beam to the steel reinforcement and from the steel reinforcement diagonally a short distance toward a load point, although in some cases the diagonal crack was observed before the vertical crack was visible. Sometimes this diagonal crack was observed before the maximum load was reached and sometimes not until the maximum load had been passed, or even until after the beam had failed quite suddenly. In some of the beams the diagonal crack was seen to extend forward slowly toward the load point before or just after the maximum load was reached and then a horizontal crack grew along the level of the top of the reinforcing bars toward the support. phenomena of final failure were frequently connected with the slipping of the reinforcing bars or with the stripping of these bars from the concrete above as was described in Bulletin No. 4 for a former series of tests. The slipping of the bars which occurred was not observed until the maximum load had been passed, and generally in these cases the crack also extended along the bars. It seemed evident to the observers that this slip did not occur before the maximum load was applied and before the existence of the diagonal crack had materially modified the conditions in the beam. Beams No. 66 and 67 (See Fig. 3 and 5) throw some light upon this matter. They were made for this purpose with very lean concrete and reinforced with corrugated The condition of the beam at failure showed that the horizontal crack was due to vertical tension and that horizontal

FIG. 4. VIEWS SHOWING BEAMS AFTER FAILURE.

Fig. 5. Views Showing Beams after Failure.

Fig. 7. VIEWS SHOWING BEAMS AFTER FAILURE.

shear or slip did not take place until after this crack had been formed. The indentations in the concrete formed by the corrugations of the bars were left in perfect condition and there was no crushing or tearing at the edges of these indentations. The bar had simply been pulled down and out of the place in which it had rested. Comparisons with the results of beams made with the same concrete and with smooth steel (Beams No. 62, 63, and 71) show values almost identical and go to indicate that slipping had no part in the critical failure of the beams made up with smooth bars. In all the cases where slipping of the bar took place the action extended progressively from the diagonal

TABLE 11.

DIAGONAL TENSION FAILURES.

BARS BENT UP.

All beams loaded at one-third points.

Beam No.	Span ft.	Per cent Rein- force- ment	k·	Maxi- mum Applied Load lb.	Vertical Shearing Stress lb. per sq. in. $v = \frac{V}{bd'}$	Manner of Failure
	·			1-3-6 Concr	ete.	
7 13 14 17 20 21 22 Av.	10 10 10 8 6 6 6	0.98 2.21 2.21 0.98 0.98 0.98 0.98	.44 .75 .66 .46 .48 .48	8370 9320 10560 9150 11620 16500 16760	69 80 89 74 90 126 128	Diagonal tension.
		·'		1-3-5½ Conci	rete.	
36 38 39 Av.	10 8 8	0.98 2.21 2.21	.58 .70 .73	7910 11920 14000	64 99 115 93	Diagonal tension Diagonal tension Diagonal tension

crack toward the load point, though in some cases this action was quite sudden. From all the information available it seems to be evident that, whatever slip of the bars may have taken place, the slipping did not exist before the time of the maximum load and resulted from the changed conditions incident to the formation of the diagonal crack. It therefore seems evident that the failure of these beams should be credited to diagonal tension.

Table 11 gives results of beams with reinforcing bars bent up, or inclined in the outer thirds of the length of the beam. The values of v are calculated by equation (18) and with d as 10 in., and hence do not give the actual amount of the shear. The amount and position of this bending have been described under "5. Test Beams". Fig. 6 gives the sketches of the appearance of

Fig. 6. Sketches Showing Beams after Failure.

the crack after final failure or after the maximum load had been passed. The view of Beam No. 39, shown in Fig. 7, is from a photograph of the beam after failure. Generally speaking, the vertical portion of the crack from the bottom of the beam to the reinforcement formed first, and was due to the failure of the concrete in tension. The diagonal crack then grew toward the load point, generally forming before the maximum load was reached, and the growth of the crack along the reinforcing bar generally

followed. It was expected that this method of bending up bars would give a higher value for the vertical shear as calculated by equation (18) in beams failing by diagonal tension than that found in beams with the bars horizontal, but in this the results were disappointing. In a few beams the values ran higher. paring Beam No. 21 with Beam No. 22 it will be seen that no difference was observed whether part of the bars were bent up and part left horizontal, or all were bent up. The values of v for these beams were among the highest found with this quality of concrete. In the phenomena of failure it appeared that the element of slip was present, though it is not known that this slip occurred before failure. Calculations indicate that the bond stress developed at the end of the bars must have been considerable. It should be noted that none of the bars were anchored at the ends.

Table 12 gives the beams in which failure occurred by tension in the steel or compression of the concrete. It will be seen that the dimensions of these beams were such that the diagonal tension developed (as measured by the vertical shear) at the time of failure was less than was found with beams which failed in diagonal tension and hence that the strength of the concrete in diagonal tension had not been reached. Beam No. 35 which failed in compression, was of 1-4- $7\frac{1}{2}$ concrete, a very lean mixture. Beam No. 10 was one of the beams with poorly made concrete and in this case the inferior quality of the concrete was especially noticeable.

In Beams No. 68, 69, 70, 71, 72, and 73, U-shaped stirrups of $\frac{1}{2}$ -in. mild-steel round rods were placed in a vertical position and enveloped the horizontal reinforcing bars. The longitudinal spacing was inadvertently made 12 in. Beam No. 69 failed by tension in the steel at a value of v of 129 lb. per sq. in., which is below the resistances developed in the beams of 1-2-4 concrete which failed in diagonal tension, and the efficiency of the stirrups was not determined. Beams No. 72 and 73 also failed by tension in the steel at values of v below what was found in beams of 1-3-5 $\frac{1}{2}$ concrete of the same quality which failed in diagonal tension. Beam No. 70 failed by compression of the concrete, but a diagonal crack had formed, before the maximum load was applied, at a value of v which is high for 1-3-5 $\frac{1}{2}$ concrete, and the stirrups seemed to be effective in preventing sudden failure after the

TABLE 12.

MISCELLANEOUS FAILURES.

All beams loaded at one-third points.

Beam No.	Span ft.	Per cent Rein- force- ment	k	Maxi- mum Applied Load lb.	Vertical Shearing Stress lb. per sq. in. $v = \frac{V}{bd'}$	Manner of Failure
			. 1-	4-7½ Conc	rete.	
35	12	0.98	. 68	7500	64	Compression.
			1	-3-6 Cone	rete.	
4 10 12 Av.	12 12 10	$0.98 \\ 0.98 \\ 2.21$.48 .64 .79	9360 9430 10200	78 77 89 81	Tension Compression. Compression
			1-	-3-5½ Con		
32 74 26 Av.	12 10 8	0.98 0.98 0.98	.57 .52 .51	9800 11950 14030	81 95 109 95	Tension. Tension. Tension.
	1 1		1	-2-4 Conc	rete.	
28 31 Av.	12 12	0.98 0.98	.36 .48	9900 9400	82 79 80	Tension. Tension.

maximum load was passed. Beam No. 68 (Fig. 7) failed in diagonal tension at a value of v of 115 lb. per sq. in. At a load of 13 000 lb. the diagonal crack extended 7 in., and at the maximum load, 14 220 lb., it extended to a point under the load point and

was $\frac{1}{32}$ in. wide. The load fell off very slowly, and the stirrups prevented sudden failure. Beam No. 71 (Fig. 7) failed by diagonal tension at a value of v nearly the same as the companion beams of 1-5-10 concrete which did not have stirrups. The load dropped off rapidly after the maximum load was reached and the stirrups seemed to have little effect. It is clear that the spacing of the stirrups in these beams caused them to be inefficient, the distance apart being too great, and besides, the stirrups were not properly placed in the beam. Further tests are now in progress, in which the dimensions of the beam and the size and spacing of the stirrups are expected to bring out the effectiveness of this method of metallic web reinforcement.

- 15. Summary.—The following summary of parts of the foregoing discussion is given:
- 1. For beams proportioned to give failure by tension in the steel reinforcement (i. e., when neither compression of concrete nor diagonal tension causes failure), those made with the richer concrete carried higher loads. The beams with 1-2-4 concrete carried loads greater by, say, 10%, than those with $1-3-5\frac{1}{2}$ concrete.
- 2. In beams which failed by tension in the steel, the resisting moment developed was found to be about the same for loads applied at two points more or less far apart and at eight points (approaching a uniform load), thus confirming the general applicability of the ordinary beam theory to simple beams without end restraint or horizontal restraint for any of the ordinary methods of loading. For center loading the resisting moment developed ran 10% higher and in former tests even greater. This excess indicates a different distribution of stresses for center loading from that assumed in the ordinary beam theory.
- 3. The tests with repetitive loading are not conclusive and show the need of further investigation in this direction. The manner of failure in general was the same as may be expected with beams of the same reinforcement and same quality of concrete loaded progressively to final failure. Whether the maximum load carried in the case of this repetitive loading is less than would have been the case with progressive loading is not known, but there are some indications that the maximum load was less than it would have been without repetition. The in-

crease in the deflections of the beam with repetition of the load was marked, and the set in the beam was considerable. It should be remembered that the repetitive load was a considerable proportion of the maximum load finally applied and much higher than ordinary working loads. It seems evident that the amount of reinforcement for which the elastic tensile strength of the steel may be considered to balance the compressive strength of the concrete, (conveniently called the "balanced reinforcement"), should be taken at a lower percentage in beams subjected to a repetition of load than is found necessary in the case of beams tested by means of a gradually applied load, and that for the ordinary conditions of fabrication and use the "balanced reinforcement" selected should be much less than that determined by test beams.

- 4. The manner of failure depends not only upon the relative dimensions of depth and length of beam and the amount of reinforcement, but also upon the richness and strength of the concrete.
- 5. The loads carried by beams failing by diagonal tension depended both upon the richness of the concrete and upon its quality as influenced by the methods of mixing and storing. Poorly made concrete gave a vertical shearing stress averaging 71 lb. per sq. in. as compared with 99 lb. per sq. in. for well made concrete of the same mixture. The value, 138 lb. per sq. in., for the 1-2-4 concrete shows the advantage of the richer mixture.
- 6. Failure by diagonal tension generally occurs without warning, resembling somewhat in this respect the failure of unreinforced concrete beams. On account of the variability of concrete and its unreliability in resisting tensile stresses, relatively low diagonal tensile stresses (high factor of safety), as measured by the vertical shearing stresses, should be specified, unless there is effective metallic web reinforcement. The values allowed by many building ordinances seem too high to secure safety under the condition of ordinary building operations. Short, deep beams and beams restrained at the ends require that special attention be given to web stresses.
- 7. Slipping of bars and stripping of bars may accompany final failure of beams which fail by diagonal tension. It appears that slipping or stripping did not take place in the beams having the reinforcing bars horizontal until after the maximum load was

reached and the presence of diagonal cracks had modified the distribution of stresses. At these maximum loads the calculated bond resistance developed was low as compared with the bond strength of the steel and concrete. The beams reinforced with deformed bars carried no higher loads than those with plain bars. The beams with bars bent up or inclined toward the ends gave quite variable results, but in general the values were even lower than those with the bars in a horizontal position. There is some probability that slipping occurred in these tests at or before the maximum load and that anchoring the ends of the bars would have been beneficial. The results for the beams having vertical stirrups showed that the stirrups as used were not efficient in taking web stresses.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. (Out of print).

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. (Out of print).

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

 $Bulletin\ No.\ 6.$ Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906. (Out of print).

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Plain and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907.

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907.

VIEW IN CENTRAL HEATING STATION UNIVERSITY OF LILINOIS

UNIVERSITY OF ILLINOIS

Engineering Experiment Station

Bulletin No. 15

August 1907

HOW TO BURN ILLINOIS COAL WITHOUT SMOKE

BY L. P. BRECKENRIDGE, DIRECTOR OF THE ENGINEERING EXPERIMENT STATION

It is the intention to discuss in this paper the fundamental principles that apply to smokeless furnace construction and operation and to illustrate by means of units in actual operation several ways in which these principles have been satisfactorily applied. With a clear idea of the principles involved, with a knowledge of the character of the coal to be used and the capacity at which it is desired to drive the furnace, there should be little difficulty in designing, constructing and operating stationary boiler furnaces which under ordinary conditions of service will operate with high economy and which will burn Illinois coal without smoke.

The writer does not profess to be acquainted with all the methods that have been found satisfactory for the purpose of smoke prevention, neither does he consider it advisable to describe in detail all the furnaces that are claimed to be capable of burning coal without smoke. All that can be attempted here will be a description of those furnaces with which the writer is personally familiar or which have been examined while in operation and have been found to give satisfactory results.

Perhaps the one thing that has most delayed progress toward success in the smokeless operation of furnaces is the fact that in the past so much in their operation has depended upon the human element. It will doubtless be found that those plants smoke less that are mechanically operated. Such operation is by no means a sure preventive of smoke, as certain constructive features are now well recog-

nized as necessary even with good mechanical stokers if smokeless combustion is to be obtained.

This discussion will be confined to those settings and furnaces that have been found to be most satisfactory in burning Illinois coals without smoke. From a study of the tests of the various coals of the United States, as presented in the reports of the United States Geological Survey fuel testing plant, it seems safe to say that engineers now have sufficient information available to enable them to design boiler furnaces that will burn any coal without smoke. The progress made in this direction during the last five years is surely encouraging and it is confidently believed that the time will soon come when no power plant can offer as an excuse for a smoky chimney the plea that no appliances are available which can be depended upon for smoke prevention. The problem of smoke prevention is the problem of perfect combustion. There is no such thing as smoke consumption and this term should never be used. There is such a thing as perfect combustion and this means smokeless combustion.

THE PRINCIPLES OF SMOKELESS COMBUSTION

The subject of combustion should be familiar to all mechanical engineers. However, as a basis for a thorough understanding of the problems of smoke prevention, a brief review of the principles of combustion may prove acceptable in connection with this subject. In fact, the complete solution of the smoke problem consists in providing furnaces, so constructed and so capable of operation as to make combustion nearly perfect.

Combustion may be defined as a rapid chemical combination, resulting in heat and light. The combining elements are: (a) Oxygen, which is usually derived from atmospheric air; (b) Either carbon or

This bulletin was prepared at the suggestion of the Conference Committee on Fuel Tests, the members of which are given below. It should be stated, however, that the Committee is in no way responsible for the opinions expressed by the writer

H. Foster Bain, Director State Geological Survey, Urbana, representing the State Geological Survey; A. Bement, Consulting Engineer, Chicago, the Western Society of Engineers; Edwin H. Cheney, President Fuel Engineering Co., Chicago, the Building Managers' Association of Chicago; F. H. Clark, Supt. Motive Power Burlington Road, C. B. & Q. Ry., Chicago, the Western Railway Club; Adolph Mueller, President H. Mueller Mfg. Co., Decatur, Ill., the Illinois Manufacturers' Association; Carl Scholz, President Coal Valley Mining Co., Chicago, the Illinois Coal Operators' Association; Wm. L. Abbott, Chief Operating Engineer Chicago Edison Co., Chicago, the Board of Trustees, University of Illinois; L. P. Breckenridge, Director Engineering Experiment Station, University of Illinois, Urbana, Ill.

hydrogen, or a compound of the two. Sulphur sometimes appears with carbon and hydrogen, and also combines with oxygen. The substance that is formed by the chemical union is called the product of combustion; and the heat that is produced by the combustion of a unit weight (one pound) of the fuel is called the heat of combustion. This is usually measured in British thermal units (B. t. u.). One B. t. u. is the amount of heat required to raise the temperature of one pound of water one degree Fahrenheit. The following table relates to the complete combustion of hydrogen, carbon and sulphur:

COMPLETE COMBUSTION OF THREE ELEMENTS

PRODUCT OF COMBUSTION						
Element	Chemical Symbol	Name	Chemical Symbol	Heat of Comb'st'i B. t. u. per lb.		
Hydrogen	Н	Water	H ₂ O	62000		
Carbon	C	Carbon Dioxide	CO_2	14500		
Carbon	C	Carbon Monoxide	CO	4400		
Sulphur	S	Sulphur Dioxide	SO_{\circ}	4000		

In the complete combustion of carbon, the product of combustion, it will be observed, is carbon dioxide (CO₂). Each atom of carbon combines with two atoms of oxygen. If sufficient oxygen is not provided, it may happen that each carbon atom will combine with but one oxygen atom, thus forming carbon monoxide (CO). As a result of this incomplete combustion, the heat developed is only 4400 B. t. u. The carbon monoxide may itself combine with oxygen, according to the formula

$$CO + O = CO_2$$

and the heat developed will be the difference, 14500 - 4400 = 10100B. t. u. per pound of carbon in the carbon monoxide.

A knowledge of the relative weights of these elementary atoms gives a direct means of computing the amount of oxygen required for - combustion. The weights are as follows:

In the burning of hydrogen to H₀O, two atoms of hydrogen, each of weight I combine with one atom of oxygen, weight 16; hence the ratio of oxygen to hydrogen is 16:2=8:1, i.e., 8 lb. of oxygen are required for the combustion of 1 lb. of hydrogen, and

there results $8 + \tau = 9$ lb. of water. This combination with others may conveniently be presented in a tabular form as follows:

THE COMBUSTION OF IMPORTANT ELEMENTS WITH OXYGEN

Elements	Chemical Equation	Relative Weights	Weights pounds
Hydrogen to H₂O	$2H + \Theta = H_2G$	$(2 \times 1) \dashv -16 = 18$	1 + 8 = 9
Carbon to CO ₂	$C+2O=CO_2$	$12 + (2 \times 16) = 44$	1+223=323
Carbon to CO	C + 0 = CO	12 + 16 = 28	1 + 113 = 213
Sulphur to SO_2	S +20=SO	$32 + (2 \times 16) = 64$	1+1=2
Methane or	$(CH_4)+4O=$	$(12+4)+(4\times16=$	
Marsh Gas	$-\text{CO}_2 + 2\text{H}_2\text{O}$	$ 12 + (2 \times 16) + 2(2 + 16) $	1 + 4 = 2.75
			+2.25

When the oxygen needed for combustion is taken from the atmosphere, the nitrogen always present must be taken into consideration. Nitrogen takes no part in the combustion but mingles with the products of combustion, absorbs heat from them and passes away with them. Approximately, it takes 4.25 lb. of air to furnish 1 lb. of oxygen; the remaining 3.25 lb. are nitrogen. When the combustion of the different elements takes place in air the resulting relative weights are modified on account of the presence of the nitrogen. This is exhibited below.

THE COMBUSTION OF IMPORTANT ELEMENTS IN AIR

Elements	Chemica!	Relative	Weights
	Equation	Weights	pounds
Marsh Gas	C+Air= CO ₂ +7.43N* CH ₄ +Air= CO ₂ +2H ₂ O+14.86N	$12+(2\times4.25\times16) = 44+104$ $(12+4)+(4\times4.25\times16) = 44+(2\times18)+208$	3.67 + 8.66

^{*} The atomic weight of nitrogen is 14.

It will be seen from the above table that to burn 1 lb. of carbon 11.33 lb. of air must be supplied. The 8.66 lb. of nitrogen contained in the weight of air pass away with the 3.67 lb. of carbon dioxide (CO₂) formed by the combustion. For the complete combustion of 1 lb. of marsh gas, 17 lb. of air are required. Chemical combinations of carbon and hydrogen, the so-called hydrocarbons, play an important part in the burning of coal, particularly in those coals of large volatile content. The most important of these are the following:

Hvdrocarbon Element	Chemical Symbol	Heat of Combustion
Methane or Marsh Gas	CH ₄	24020 B. t. u.
Ethylene or Olefiant Gas	C ₂ H ₄	21930 B. t. u.
Acetylene	C ₂ H ₂	21850 B. t. n.

At the ordinary temperature and atmospheric pressure, a pound of air has a volume of about 13.1 cm. ft. Using this value, the following (round numbers) are obtained for the theoretical amount—of air required for the complete combustion of various fuels:

Amount of Air Required to Burn One Pound of Various Fuels

Kind of Fuel	_Carbon	Hydrogen	Sulphur	Methane
Weight of Air (lb.)	11.33	34	4.25	17
Volume of Air (cu. ft.)	150	445	55	220

The heat developed by the combustion is absorbed by the products of combustion, and as a result, the temperature of these gases rises in a marked degree. Thus when carbon is burned in air, the 14 500 B. t. u. developed should heat the 3% lb. of CO_2 and 8% lb. of nitrogen from an initial temperature of perhaps 60° to a calculated final temperature of about 4500° . The actual final temperature, for reasons to be explained presently, is considerably lower. The products of combustion act as a vehicle, carrying the heat developed by combustion to its final destination.

It may perhaps be profitable to picture an ideal perfect combustion, and then inquire in what ways actual combustion falls short of the ideal. The given fuel, composed of carbon, various volatile hydrocarbon gases, and perhaps sulphur, is to be burned in air. Theoretically, each atom of the fuel finds and seizes upon the number of oxygen atoms with which it will combine. Each atom will meet with two oxygen atoms at a temperature sufficiently high for ignition. They will combine, and the resulting CO_2 will pass out of the furnace, carrying with it the heat arising from the combustion; likewise with the hydrogen and sulphur atoms. No more air will be delivered than is just sufficient to furnish the exact number of oxygen atoms, and no carbon or hydrogen atoms will pass out of the furnace without finding oxygen atoms with which they can combine.

Actual combustion deviates from ideal conditions in many respects. If only the theoretical amount of air is supplied, on account of the difficulty of properly mingling the fuel and air, some of the fuel atoms will not find oxygen atoms, and will escape uncombined. Or some of the carbon may burn to carbon monoxide instead of to carbon dioxide, and the CO will escape without further combustion. It is found in practice that to insure complete combustion, an excess of air must be furnished. This excess is usually 50 per cent, and may reach 100 per cent; i.e., while only 11.3 lb. of air are required for the com-

plete combustion of 1 lb. of carbon, it is usually necessary to furnish 18 to 24 lb. Since the heat of combustion is distributed throughout the excess of air introduced into the furnace as well as the products of combustion, the furnace temperature is lowered by the presence of the extra air.

In another important particular, the actual state of affairs is likely to be quite different from the ideal combustion outlined above. Carbon and oxygen atoms will not unite unless a certain temperature, the ignition temperature, is reached. In parts of the furnace, the temperature may fall below the ignition point because of the inrush of an excess of air, or because of cold bounding surfaces. As a result, carbon particles, even in the presence of plenty of oxygen, will refuse to burn. Let us further illustrate these principles by the use of some familiar examples.

If the reader understands why a torch smokes, why a flat wick is used in a lamp, why a circular burner is provided for the Argand or student lamp, why a chimney is provided for oil lamps, why a fish tail flame was used in early gas lighting, or why a vacuum bulb is provided for the incandescent lamp; if he understands these things, and most of us do, he will, it is believed, be able easily to see what conditions are necessary for perfect combustion in boiler furnaces.

If any fuel is to be burned without smoke it must be supplied with the correct amount of air. The torch smokes because the large round wick brings up oil, especially in the center, to which air cannot be sup-If the air supply through the center student lamp is shut off a smoking flame results. candle with the small wick is an advance over the candle supplied with the large wick. The flame from the flat wick has an extended surface for air supply, while the circular burner not only has maximum surface for air supply, but the air coming up through the center of the tube is heated, making it still better suited to aid combustion and burn a large amount of oil. Thus it is that we have successfully solved the problem of burning a large oil supply without smoke. If we try to increase the oil consumption and turn up our lamps too high, they smoke, and because they are in the room with us we immediately turn them down. Furnaces burning coal sometimes smoke just because they are forced too hard, and because the top of the chimnev is not in our room, but in the public's pure air we do not turn them down, but let them smoke.

Air correct in amount is a necessity for complete combustion and the simple experiments which we have all been making with our oil and gas flames should be sufficient evidence to us that only when we are able to supply our furnaces with the correct amount of air shall we be able to control the smoke which it is so easy to make. How much easier our problem would be if, as in the lamp, we could see all that was taking place and could regulate all by a simple knurled brass handle.

SMOKE PRODUCTION

Having briefly outlined the essential features of perfect combustion let us turn our attention to the conditions present when the combustion is imperfect, usually resulting in smoke. ducts of combustion. carbon dioxide, steam and dioxide are colorless gases. If nothing except these gases escaped from a chimney, there would be no smoke problem. Visible smoke is due to the volatile hydrocarbons which all bituminous coal contains to a greater or less extent, and which are driven off when the coal is heated. The percentage of volatile matter in coal varies widely; thus in the eastern anthracites, it may be as low as 3 per cent, while in the western lignites, it may rise as high as 50 per cent. The larger the percentage of volatile matter, the more liable is the coal to produce smoke, and the more difficult is smoke prevention.

When coal is heated in the furnace, the volatile content, consisting largely of methane and ethylene, is driven off. If the volatile gases should not enter any region of high temperature, they would simply pass out of the chimney with the products of combustion. But, as a rule, the gases are ignited, and burn, much as ordinary illuminating gas burns. The phenomena connected with the combustion of volatile gases are, however, not simple. There are grounds for supposing that a hydrocarbon, at a sufficiently high temperature, is decomposed into its elements. If oxygen is present, the hydrogen at once combines with it. The carbon particles will not combine with oxygen except under favorable conditions; if there is not a sufficient supply of air, or if it is not at a sufficiently high temperature, the carbon particles refuse to combine and are carried along with the products of combustion to be afterwards deposited as soot, or appear at the top of the chimney as smoke. This may be shown by an equation as follows:

$$C_2H_4 + 2O = 2H_2O + 2C$$

Ethylene and oxygen form water vapor and soot.

The mere explanation of the formation of black smoke suggests immediately the means that should be employed to prevent such formation. Evidently sufficient air must be furnished to burn the carbon particles liberated from the hydrocarbon gases; this air must be at a high temperature. If too great a volume of cold air is admitted to the furnace, and if at the same time the bounding surfaces of the combustion space are boiler plates or tubes of relatively low temperature, the result will be a low temperature in the space above the fuel, and it will be impossible to burn the carbon content of the volatile matter. To insure proper combustion, after the gases are driven from the coal, they should intimately mingle with sufficient air in a chamber, in which high temperature can be maintained. The heating surface of the boiler should not be permitted to come in contact with these gases until combustion has been completed.

Losses Due to Smoking Chimneys

The destruction of property or the effect upon the health of the community due to the smoke nuisance are matters upon which there is not an opportunity to dwell in this article. Both of these subjects are now matters of common every-day knowledge to the residents of our American cities. Something should be said, however, about the fuel losses due to smoking chimneys. The absence of smoke by no means indicates perfect combustion. It may simply mean excessive air dilution and this means uneconomical operation. Statements are frequently seen in the daily press to the effect that one-quarter or onethird of the fuel burned goes off in the black smoke issuing from the chimney. Such statements are very far from the truth. It is doubtful if the black carbon particles which issue from chimneys and which we call soot ever amount to one per cent of the fuel burned in any furnace. It takes but a small amount of soot to give a dense black color to smoke. If it were to save only these soot particles we could not afford expensive stoker and furnace settings. The appearance of black smoke is fortunately the signal of incomplete combustion and the losses due to this cause are many times the losses due to the carrying away of the small soot particles. This matter is well stated by that practical and clear writer, Wm. H. Booth, as follows:

"It is customary to speak of smoke and the smoke nuisance as though black smoke were the only feature of imperfect combustion

that demanded a remedy. But it cannot be too strongly emphasized that the visible impurities of the waste gases from factory chimneys are the least harmful part of their constituents; and that the invisible gases, which too often escape as the result of imperfect combustion, are far more detrimental in their effects upon vegetation and upon the health of the community. These invisible gases consist of unaltered hydrocarbons and of carbon monoxide; their presence is due either to deficiency of air, or to the lack of the requisite temperature in the combustion area. Smoke is the visible sign of the presence of these deleterious gases. It is, therefore, a useful signal of something wrong in the combustion process. Smoke ought to be attacked, not only because it brings dirt and depression in its train, but because its emission is accompanied by that of gases which are directly detrimental to the health of all living things, and at the same time carry away much heat from the plant of the fuel user. Both on humanitarian and economic grounds its suppression is called for*."

If there is a deficient air supply part of the carbon atoms will not find enough oxygen atoms with which to combine and there will be a considerable part of the escaping gases leaving the chimney as carbon monoxide (CO) instead of being burned to carbon dioxide (CO₂). For each pound of carbon burned only to carbon monoxide (CO) there will be a loss of approximately 10 000 heat units and this constitutes the great source of loss so frequently referred to as the loss due to incomplete combustion. This loss may readily amount to 5 per cent of the total heat in the coal. The density of the accompanying smoke may or may not be an indication of the proportion, though the loss due to carbon monoxide in perfectly smokeless chimney gases in practice will usually not exceed 0.05 of one per cent. Smokelessness is a relatively safe indication that the total heat has been liberated. Unfortunately it gives no indication of the degree of efficiency with which the heat is being utilized. The problem from the standpoint of the operator demands smokelessness with a minimum air supply. Losses due to sensible heat in the stack gases while seldom rising higher than 32 per cent of the total heat may be as low as 10 to 12 per cent without smoke or incomplete combustion. These figures are found in the fuel test reports of the United States Geological Survey under Illinois coals. The following tabulation will serve to indicate

Smoke Prevention and Fuel Economy, Booth and Kershaw—Archibald, Constable & Co., London, 1904.

how the heat generated in a boiler furnace may be distributed when operating under poor, average and best conditions.

AN APPROXIMATE HEAT DISTRIBUTION FROM ILLINOIS COAL

	Percentage of Heat			
	Poor Condition	2 Average Condition	3 Best Condition	
1. Absorbed by the boiler 2. Carried away in dry chimney gases	50.0 24.0	65.0 16.0	75.0 10.0	
3. Radiation and unaccounted for osses 4. Moisture formed by burning of	15.0	12.0	10.0	
hydrogen	4.0	3.5	3.0	
5. Evaporating moisture in coal	2.0	2.0	1.5	
3. Incomplete combustion of carbon	5.0	1.5	0.5	
Total heat	100.0	100.0	100.0	

The per cents given in the last column of this tabulation are seldom attained in present practice, but they are by no means impossible. They represent conditions for which we should continually strive. Losses of 20 to 25 per cent are not unusual, both with and without smoke. Too little air is wrong. Too much air is wrong. Absolutely complete combustion can be obtained using Illinois coal burned on an automatic stoker with as low as 30 per cent excess of air. The question is one of proper furnace construction to meet the requirements of the fuel coupled with a good fireman and an intelligent use of instruments which will tell him at all times the conditions of the combustion and draft.

It has been stated elsewhere, what relation should exist between the weight of coal burned and the weight and volume of air required for perfect combustion. It is sometimes more striking, however, to bring out this point, by using a larger unit than the single pound. Take for instance, a 1000 horse-power boiler plant. Many such plants would burn 5000 lb. of coal an hour; the air supplied would weigh 100 000 lb. and the volume of this air at a chinney temperature of 500 degrees Fahr, would be about 2 400 000 cu. feet. The chinney for this plant must therefore discharge nearly 105 000 lb. (52.2 tons) of gases into the atmosphere each hour; that is, for each ton of coal burned the chinney will discharge from 18 to 22 tons of gases. To keep these gases of the right color and composition for 90 per cent of the time is the problem to be solved. Chinneys will still be needed when the so-called smoke problem is solved. The popular solution consists

in changing the color of the gases flowing from the chimney from black to a light gray, that is from No. 5 to No. 1 on the Ringelmann At least this is all that the public and the smoke inspector will demand. But even when this problem is well solved our chimneys must continue to discharge immense volumes of heated gases, and these gases will often carry with them fine particles of ash which cannot be burned; all of which may produce something of that disagreeable haze which floats over manufacturing cities. The dense black smoke from chimneys is certainly a nuisance. It can be stopped for about 90 per cent of the time, and if this is accomplished a most wonderful improvement will be observed in the atmosphere of our cities. If smoke is not largely prevented in large cities it will be because of laxity in carrying out the provisions of the law, combined with the indifference of power plant owners, rather than because of a lack of furnaces and boiler settings which are available for successfully burning bituminous coal without smoke.

THE OBSERVATION OF SMOKE

From the point of view of the general public there are but two kinds of chimneys, those that smoke and those that do not smoke. The emission of black smoke for a short period say of three minutes of an hour is sometimes enough to leave the impression on the casual observer that the chimney smokes all the time. It is therefore important that there should be some way devised for estimating the relative blackness of smoke and some plan adopted for recording the length of time during which smoke of varying degrees of blackness is emitted from chimneys. Numerous schemes have been proposed to accomplish this purpose. One of the most scientific of these plans is that invented by Professor Ringelmann of Paris.*

"In making observations of the smoke proceeding from a chimney, four cards ruled like those in the cut, (See Fig. 1), together with a card printed in solid black and another left entirely white, are placed in a horizontal row and hung at a point about 50 feet from the observer and as nearly as convenient in line with the chimney. At this distance the lines become invisible, and the cards appear to be of different shades of gray, ranging from very light gray to almost black. The observer glances from the smoke coming from the chimney to the cards, which are numbered from 0 to 5, determines which card most nearly

^{*} Trans. A. S. M. E., Vol. XXI, Dec., 1899.

corresponds with the color of the smoke, and makes a record accordingly, noting the time. Observations should be made continuously during say one minute, and the estimated average density during that minute recorded, and so on, records being made once every minute. The average of all the records made during a boiler test is taken as the average figure for the smoke density during the test, and the whole of the record is plotted on cross section paper, (See Fig. 2), in order to show how the smoke varied in density from time to time. A rule by which the cards may be reproduced is given by Professor Ringelmann as follows:

Card o. All white.

Card 1. Black lines 1 mm. thick, 10 mm. apart, leaving spaces 9 mm. square.

Card 2. Lines 2.3 mm. thick, spaces 7.7 mm. square.

Card 3. Lines 3.7 mm. thick, spaces 6.3 mm. square.

Card 4. Lines 5.5 mm. thick, spaces 4.5 mm. square.

Card 5. All black.

The cards as printed on page 13 are much smaller than those used by Professor Ringlemann. The thickness and spacing of the lines are in the same proportion, but reduced to one-half size."

The smoke observations reported in the government fuel tests made by the Technologic Branch of the U. S. G. S. are all based on the Ringelmann chart. This chart has, therefore, been adopted in the reports of fuel tests made by the Engineering Experiment Station and the numbers used in its bulletins refer to this scale.

An observer soon becomes skilled in taking smoke records and when several observers have been trained to the system their records are very nearly alike. In fact one soon becomes so familiar with the scale of densities that he no longer needs the actual charts for comparison, but may be trusted to take the record without the aid of the chart. An attempt has been made to illustrate smoke densities in the plate shown in Fig. 2. Many difficulties surrounded the preparation and printing of such a plate and it is inserted with some misgivings. It is believed, however, that if it should prove successful it will give some reader a better idea of the value of the scale numbers 1 to 5, used to denote smoke densities than will the pictures of the Ringelmann charts.

When a record of a smoking chimney is desired numerous ways are adopted for showing its behavior. For many records a column of the scale density numbers is sufficient, set of course opposite the inter-

FIG. 1 THE RINGELMANN SCALE FOR GRADING THE DENSITY OF SMOKE

vals of time which are deemed short enough for the purpose for which the observations are taken. Where many records must be taken the work may be facilitated by using some of the simple mechanical devices which have been perfected for this purpose. These usually consist of a drum rotated by clockwork, and a marking pen movable by hand leaving a record on suitable paper that has been wrapped on the drum. The form of smoke chart record adopted in the work of the Engineering Experiment Station is shown in Fig. 3. This form needs little explanation. The scale density numbers are those at the left of the sectioned plates and these densities are approximately shown at the top under their respective numbers. It is intended that the time scale shall be chosen and placed along the zero horizontal lines. This time scale will vary according to the character of the tests being made. Graphic charts are for many purposes much preferable to any other schemefor exhibiting the continuous operation of chimneys supposed or claimed to be smokeless, and they are particularly useful when comparing several stacks for the same interval of time, or when changes made in a setting are being studied.

FURNACES AND BOILER SETTINGS SUITABLE FOR BURNING ILLINOIS COAL WITHOUT SMOKE

General Principles of Construction.—Various writers on boilers and furnaces have enunciated the principles of smoke prevention in different ways. In "Steam Boiler Economy," Wm. Kent says:

"Coal can be burned without smoke provided:

- (a) The gases are distilled from the coal slowly.
- (b) That the gases when distilled are brought into intimate contact with very hot air.
 - (c) That they are burned in a hot fire-brick chamber.
- (d) That while burning they are not allowed to come in contact with comparatively cool surfaces, such as the shell or tubes of a steam boiler; this means that the gases shall have sufficient space and time in which to burn before they are allowed to come in contact with the boiler surfaces."

Mr. A. Bemeut, who has made a careful study of the smoke problem, suggests* some slight modifications of the Kent form of statement. He says: "Professor Kent's requirements may be modified as to two features as follows:

^{*}The Suppression of Industrial Smoke with Particular Reference to Steam Boilers.—Journal Western Society of Engineers. Dec., 1906.

- (a) That the evolution of gas from the coal shall proceed uniformly.
- (b) That the gases which are distilled uniformly from the coal shall enter a fire-brick chamber of either sufficient length to allow the flames to become entirely consumed naturally or that the chamber be provided with such auxiliary mixing and baffling devices as will cause the gases to be artificially mixed together before the exit of the chamber is reached."

Further discussing the subject, Mr. Bement presents clearly the importance of uniformity of the evolution of the volatile gases and points out that the lack of uniformity of the evolution of the gases when coal is hand-fired must be supplemented by efficient mixing devices such as fire brick piers or special baffling. The matter presented in this bulletin only corroborates the testimony presented in Mr. Bement's article, and except for the fact that possibly this publication may reach a larger number of manufacturers throughout the state than will Mr. Bement's paper, it need hardly have been presented.

Any fuel may be burned economically and without smoke if it is mixed with the proper amount of air at a proper temperature.

This is the statement of the smoke problem that the writer has sometimes presented. We have then three forms of presentation of the problem. To the fuel expert any one of these forms is sufficiently clear. It does, however, require some familiarity with the problem to understand just what these statements mean. To the owner who is trying to make his plant stop smoking or who must decide between several types of furnaces or boilers that he wishes to install, all these carefully stated formulas are often meaningless and provoking. What the owner wishes to know is what furnaces and boilers are in the market that are really suitable for burning Illinois coals without smoke. It is in many ways unfortunate that there are so many independent manufacturers of furnaces and boilers. Both furnace and boiler should preferably be sold and installed by the same company. It may not be long before this will be so. At least, the boiler companies should furnish complete plans with their boilers including the furnace. Possibly

The Peabody Atlas—Shipping Mines and Coal Railroads in the Central Commercial District of the United States, with Chemical, Geological and Engineering Data. A. Bement, 1906. 16\(^3_4\times18\) in. 149 pp. An extensive and valuable work relating to the central coal fields of the United States, published by the Peabody Coal Co., Chicago. The section devoted to smokeless furnaces and smoke suppression contains many excellent illustrations which should be of great help to engineers who wish to be fully informed on this subject.

this matter might be left to the consulting engineers, but many firms buy their boilers directly from the boiler companies and follow the same setting plans that have been developed and found efficient with anthracite or other eastern coals, and often these are entirely unsuited for Illinois coals having such a high volatile content.

Much confusion has doubtless arisen and many disappointments have followed because of the fact that furnaces found entirely suitable for eastern coals have been tried further west without modification and have proved themselves failures. Some of the furnaces described in this paper would not be suitable for use with eastern coals. The use of the Dutch oven furnace, which was common before the chain grate stoker, doubtless paved the way for the various forms of automatic stokers which made use of the good points recognized in the old forms of the Dutch oven furnaces.

The history of the growth and development of the smokeless furnace could well form the subject for an engineering article. It is hoped that some one may soon make the steps in such a development a matter of record. The writer certainly makes no claims for discovery of invention in this connection. He has, however, experimented with many methods of firing, many devices for smoke prevention and many variations in furnace construction, not only in Illinois, but also in Pennsylvania and in New England.

The boiler plant at the University of Illinois at Urbana, Illinois, consists of 2000 horse-power in nine units. During the last two years this plant has been operated practically without objectionable smoke fully 90 per cent of the time. Over 200 separate boiler tests have been made in this plant to determine the economy of operation and for a study of furnace conditions. Many changes have been made in the constructive features of the furnaces and boiler baffling with the view of studying the smoke problem. Many varieties of coals have been tested for smokelessness. The character of the installation is indicated below.

- Boiler No. 1. Babcock & Wilcox (Special high-pressure boiler 275 lb.), equipped with B. & W. chain grate stoker, usual vertical baffling, capacity 150 H. P. This unit can be run without smoke at capacities from 50 to 120 per cent.
- Boiler No. 2. Babcock & Wilcox standard boiler (150 lb.) equipped with B. & W. chain grate stoker, usual vertical baffling, capacity 150 H. P. This unit can be run without smoke at capacities from 50 to 120 per cent.

Fig. 2 Chimneys Illustrating Smoke Densities Approximating the Ringelmann Smoke Charts

Fig. 3. Section of Smoke Chart Record

- Boiler No. 3. Stirling standard boiler (150 lb.) equipped with Green chain grate stoker, usual baffling and combustion arches. capacity 260 H. P. Setting shown in Fig. 4. This unit can be run without smoke at capacities from 50 to 140 per cent.
- Boiler No. 4. National water tube boiler (150 lb.), formerly equipped with Murphy furnace but now equipped with Green chain grate stoker: usual vertical baffling, capacity 250 H. P. This unit can be run without smoke at capacities from 50 to 120 per cent. When equipped with Murphy furnace, this unit was smokeless except when cleaning fires.
- Boiler No. 5. Babcock & Wilcox standard boiler (150 lb.), equipped with Roney stokers, usual vertical baffling, capacity 220 H. P. Setting shown in Fig. 5. This unit when handled carefully can be run up to capacity without smoke above No. 2 on the smoke chart. It requires careful attention and at capacities above 100 per cent cannot be run without objectionable smoke. This boiler is an exact duplicate of unit No. 6.
- Boiler No. 6. Babcock & Wilcox standard boiler (150 lb.), equipped with Roney stokers, special baffling making tile roof furnace. Boiler and stoker duplicate of unit No. 5. Capacity 220 H. P. Setting shown in Fig. 6. This unit can be run without smoke at capacities from 50 to 100 per cent.
- Boiler No. 7. Stirling standard boiler (150 lb.) equipped with Stirling bar grate stoker, usual baffling and combustion arches, same as Boiler No. 3, capacity 260 H. P. This unit can be run without smoke at capacities from 50 to 140 per cent.
- Boiler No. 8. Stirling standard boiler (150 lb.). Exact duplicate of boiler No. 7, capacity 260 H. P.
- Boiler No. 9. (Engineering Experiment Station special test boiler), Heine standard boiler (150 lb.) equipped with Green chain grate, usual combustion arch, tile roof furnace, adjustable water back at bridge wall, capacity 210 H. P. shown in Fig 7. This unit can be run without smoke at capacities from 50 to 140 per cent.

A study of the various units mentioned above reveals the fact that any one of the four well known types of boilers may be set over at least three well known types of automatic stokers and be operated without objectionable smoke. The opinion of the writer, doubtless held by most engineers, is that the boiler has very little to do with the smoke problem, except perhaps that some types of boilers lend themselves more easily to the necessary furnace construction, which is of the utmost importance when perfect combustion is desired.

Fig. 4 Stirling Standard 260 H. P. Boiler Equipped with Chain Grates

(Operates easily without smoke at capacities from 50 to 140 per cent).

DESCRIPTION OF THE SETTINGS SHOWN BY THE FIGURES

In the figures which accompany this article there are shown several types of boilers and furnaces that have been found suitable for burning Illinois coals without smoke. These settings have been operated under the immediate observation of the writer. Each figure is supplied with a title which is at the same time a description of the setting and an indication of the possibility of its smokeless operation under varying conditions of service. The drawings themselves are sufficient to illustrate the conditions that must be fulfilled to secure smokelessness when using boilers of these types under usual service capacities. The stack draft available for boilers No. 1 to 8 is 0.75 in. to 1.0 in. supplied by a brick chimney 150 feet high with an inside diameter of 6 feet. Boiler No. 9 is supplied with an economizer and

Fig. 5 Babcock & Wilcox 220 H. P. Boiler Equipped with Roney Stokers, Usual Vertical Baffling

(With careful handling may be run up to capacity without smoke above No. 2 on Smoke Chart; above 110 per cent capacity can not be run without objectionable smoke except by expert firemen.)

an induced draft fan permitting higher rates of combustion than are possible in the other settings.

In all of these settings it has been found necessary to pay particular attention to the coking arch under which the fresh charge of coal is being delivered. It seems to be true that over chain grates this arch should be inclined upwards more for a light than for a heavy draft. It is also believed that the arch of the Roney stoker should be kept well down toward the grates. The dimensions given in Fig 5 have given good results in these settings.

When Illinois coal is being burned in any furnace it is essential that the volatile products of combustion should be uniformly distilled from the coal and mixed with sufficient air at a high temperature. To accomplish this, particularly to maintain a high temperature, the mingling air and products of combustion must be kept away from the tubes or plates of the boiler which are comparatively cool, and which would therefore cool the gases before complete combustion had taken

Fig. 6 Babcock & Wilcox 220 H. P. Boiler Equipped with Roney Stoker

(Setting as in Fig. 2, but arranged with different baffling, forming a tile roof furnace. This unit can be run at capacities from 50 to 100 per cent without smoke.)

FIG. 7 HEINE STANDARD 210 H. P. BOILER EQUIPPED WITH GREEN CHAIN GRATE, COMBUSTION ARCH, TILE ROOF FURNACE, ADJUST-ABLE WATER-BACK AT BRIDGE WALL

(This is the Engineering Experiment Station Boiler furnished with induced draft. It can be run easily without smoke at capacities from 50 to 140 per cent; almost impossible to make smoke with this setting under any condition of operation.)

place. It is for the reason just mentioned that such forms of furnaces as shown in Fig. 6, 7, and 8 are planned. Special forms of fire clay tile are designed to be hung on the water tubes of boilers that are directly over the fire. The tiles form the roof of the furnace and prevent the hot gases, which are still not properly mixed, from coming in contact with the cooler tubes which are surrounded by the tiles. These tiles are made in various forms, three types being shown in Fig. 9. The kind shown at C makes a smooth flat roof for the furnace and has been found very satisfactory.

The length of a tile roof furnace or the distance of flame traveled before reaching the cool tube surface must evidently depend upon the total volume of volatile products distilled from the coal on the grate in a given time, which must be mixed with the air supply before the cooling tubes are reached. The higher the coal is in volatile content or the higher the rate of combustion per square foot of grate area, the

longer will be this flame length. The coals that have been burned without smoke in the furnaces shown have had a combustile volatile content of from 30 to 40 per cent and they have been burned at a rate of from 16 to 40 lb. of coal per square foot of grate per hour. It will now be understood why such settings as shown in Fig. 5 cannot be depended upon for smokelessness. The cold tubes of the boiler are too near the flame, the temperature of the flame is reduced before combustion is complete and smoke results. There are coals low in combustible volatile matter that may easily be burned in such furnaces without smoke. In fact, when not forced, this furnace will burn many kinds of Illinois coals, but only with the greatest care have we been able to burn the usual grades of Illinois coals at desirable rates of combus-

Fig. 8 Smoke-proof Steam Generator described by A.Bement, W.S. E. Paper, October, 1906.

(A satisfactory plan when proper attention is given to the draft available and to the areas of the gas passages.)

tion (24 to 30 lb.) without objectionable smoke, (No. 2 to $3\frac{1}{2}$ on the smoke chart).

When the baffling shown in Fig. 6 was installed a series of smoke trials was arranged with this setting and the setting shown in Fig. 5. The results shown by these trials were disappointing and unsatisfactory. Lack of sufficient draft made it impossible to run setting Fig. 6 above its rated capacity. Under this condition there was little difference in the smoke from the two furnaces. This result suggests that changes in baffling of existing plants must be made with careful consideration of draft areas available or capacities may be cut down to an undesirable extent. The capacity possible with the setting shown in Fig. 6 proved to be about 90 per cent to 98 per cent while the capacity of the settings shown in Fig. 5 with the same coal was from 100per cent to 120 per cent. The setting of Fig. 6 should prove satisfactory with higher draft pressures or by increased areas possible with a larger number of tubes in the vertical rows. From what has already been said about cool tubes, an inspection of the settings in Fig. 4, of a Stirling boiler over a chain grate stoker, might convey the impression that such a setting would produce smoke because of the absence of tile on the tubes below the path of the flame A B C. This setting has, however, proved to be a satisfactory and smokeless one. Looking the progress of combustion through the side openings provided in the three settings of this character in the University plant, it is seen that the flame rolls along over the edges of the two arches shown and is by these arches completely mixed. No part of the tubes below the flame path A B C is enveloped by the flames; therefore the tubes have little cooling effect. It is also very evident that the lower ends of the tubes next the furnace fulfill their duty as heat transmitters by taking care of a very considerable part of the radiant heat which is available in large quantities at that point. Boilers of this type are now being manufactured at almost any desired height, the necessary capacity being furnished by increased width. They have proved very smokeless furnaces being easily arranged under them.

The Heine boiler set over a Green chain grate shown in Fig. 7 is the boiler installed by the Engineering Experiment Station for fuel tests with Illinois coals. This boiler is exactly like the Heine boiler used in the government fuel tests at St. Louis.* In this setting, how-

^{*}The characteristic feature of these two settings is a tile roof furnace, originating in 1901 with W. L. Abbott, at the Harrison St. station of the Commonwealth Edison Co., Chicago.

Fig. 9 Three Types of Tile Roofs for Boiler Furnaces

ever, we have a stoker furnace while the government boilers were set with hand-fired furnaces, evidently necessary where coals from many sections of the country were to be tested. The setting shown in Fig. 7 is provided with an economizer and a large induced draft fan making high rates of combustion possible. This setting is smokeless under the many and varied conditions of operation which have thus far been applied to it. Over 100 trials of about 10 hours' duration of various kinds of Illinois coal have been made in this setting. In all of these trials the smoke record has been "No smoke all day." This is the setting to which the writer has referred in several recent talks by saying that in this setting it has been impossible to make smoke. In order to justify any such statement, attention is called to the results of a series of tests made with this setting for the express purpose of smoke production if such was possible under apparently adverse conditions.

Fig. 10 General View of Engineering Experiment Station Fuel Testing Plant 210 H. P. Heine Boller, Weighing Tanks, Asil Car and Hoist, Induced Draft

Those who desire to grasp the simple yet fundamental principles of smokeless combustion for Illinois coals should thoughtfully consider just how this furnace fulfills the conditions of perfect combustion, as stated on page 15 in the words of Kent, Bement and the writer. A detailed account of the process in this furnace may well bear repetition here.

The fresh coal, fairly uniform in size, advances slowly from the hopper along on the grate toward the furnace where the temperature is very high. The combustible volatile matter is continually being distilled from the coal, more and more rapidly, but with much uniformity, while it is passing under the combustion arch. Some of the necessary air flows in through the coal in the hopper, more through the grate under the arch, but by far the most flows through the redhot coals on that part of the grate beyond the arch. This air is thus heated and made ready for combining with the volatile products flowing from beneath the arch, and all together mix and roll along on the bottom of the tiles forming the roof of the furnace.

The bottom row of boiler tubes is covered with suitably formed tiles, which prevent the still actively mingling gases from being cooled by coming in contact with the tubes, and so the combustion processes go on until completed before reaching C, a point before the gases pass in among the cooling tubes. The tiles in the adjoining rows touch each other so that no gases pass between them. In such a furnace as this the smoke problem is settled somewhere between B and C. When the total volume of combustible material distilled from the coal is quite large in a given interval of time, the flame length may reach to C, while for smaller volumes the flame may end at B. Thus it is that the flame length indicates the end of the combustion processes and gives us valuable information concerning the proportions of smokeless furnaces.

It is important in the operation of this or any form of mechanical stoker that abundant opportunity be afforded for inspecting the condition of the fires and the progress of combustion. Appliances for continually indicating the composition of the escaping gases should be considered a necessity in all large and well managed plants.

The character of the draft apparatus available with this setting made it possible to make sudden changes in the rate of combustion. The rate of travel of the chain grate was easily adjusted by a throttle governor on the independent steam engine in driving the grate. The rate of combustion could be calculated very closely from the thickness

of the fuel bed and the rate of grate feed, by reference to the large number of tests already made with this unit. These special smoke tests were run on four different days, and on each day eight changes in condition of operation were made. The thicknesses of fire used were four, five, six and seven inches. The capacities varied from 60 to 150 per cent of the rated capacity (210 H. P.) of the boiler. The character and the size of the coal used are indicated in the tables. The results of these tests amply justify the conclusion that this type of furnace may be depended upon to operate even under adverse conditions without objectionable smoke, for out of a total of 32 tests in only six cases could any smoke be seen coming from the stack, and in three of these six smoke did not exceed No. 1 on the smoke chart. Where the most smoke was made, it was only No. 1½ and 2½, and here it will be observed that the draft had been suddenly reduced in the breeching, amounting to the condition of closing the damper with a brisk fire.

TABLE 1

Special Smoke Tests of Illinois Coal with a Chain Grate Stoker, Tile Roof Furnace and Heine Water Tube Boiler, with Varying Rates of Combustion. February 5, 1907. Coal--Washed, Size No. 4a.

Tem ts N	1	2	3	4	5	6	7	8
Time, Start	8:10	9:00	9:30	9:56	1:00	1:30	2:00	2:35
Time, Stop	9:00	9:30	9:56	1:00	1:30	2:00	2:35	2:47
Thickness of Fuel Bed	4	4	4	4	1.00	4	1 4	4
Draft Pressure in	1	-	1	1 1	T .	*	7	*
Furnace	.092	.110	.180	.095	.098	.057	.050	.080
Draft Pressure in	.002		.100	.000	.000	.001	.000	.000
Breeching	.430	.600	1.260	.580	.500	.250	.090	.240
Lbs. Coal Burned	. 100		1.200		.000	1.200	.000	10
per sq.ft.of								
Grate Surface								
as Fired	31.4	39.3	45.5		35.8	28.3	23.4	
Do. Dry Coal	27.8	34.8	40.4		31.7	25.5	20.7	
Mean per cent of Rated					0 - 11			
Capacity Devel-			ł					
oped	112	126	155		135	109	91	
Flue Gas Temper-								
ature, °F	629	671	762	661	659	600	521	560
Temperature over grate	2500	2550	2620		2530	2390	2310	
Temperature back of						1		
Bridge Wall	2470	2550	2710		2490	2390	2310	
Per cent CO ₂	12.0	12.8	12.2		12.8	12.8	14.4	
Smoke	0	2	1	0р	0	$1\frac{1}{2}$	$2\frac{1}{2}$	0
	1	I	L	1	l	1 -		

⁽a) Moisture in coal as fired, 11.3 per cent; ash, 7.5 per cent.

(b) Grate stopped for repairs.

TABLE 2

SPECIAL SMOKE TESTS OF ILLINOIS COAL WITH A CHAIN GRATE STOKER, TILE ROOF FURNACE AND HEINE WATER TUBE BOILER, WITH VARYING RATES OF COMBUS-TION. February 9, 1907.—Washed, Size No. 2a.

Test No.	1	2	3	4	5	6	7	8
Time, Start	8:03 9:00 6		10:00 11:00 6	11:00 12:00 6	12:00 1:00 6	1:00 2:00 6	2:00 3:00 6	3:00 4:00 6
Furnace Draft Pressure in	.126	.154	.178	.122	.12	.088	.060	.120
Breeching Lbs. Coal Burned per sq. ft. of	.56	.73	,96	.56	.50	.23	.11	.35
Grate Surface as Fired Do. Dry Coal Mean per cent of Rated	27.5 24.5	$28.2 \\ 25.5$	34.9 31.3	$28.5 \\ 25.4$	$23.7 \\ 21.5$	$\frac{21.5}{19.3}$	21.0 18.7	31.3 27.7
Capacity Developed	92 671	109 679	119 707	112 663	111 642	89 574	67 516	99 5 62
ature, °F Temperature over Grate Temperature back of	2375	2485	2420	2340	044	2280	2235	2465
Bridge Wall Per cent CO_2	$ \begin{array}{c c} 2305 \\ 10.1 \\ 0 \end{array} $	$ \begin{array}{c c} 2385 \\ 10.1 \\ 0 \end{array} $	$\begin{bmatrix} 2340 \\ 9.1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 2360 \\ 10.0 \\ 0 \end{bmatrix}$	9.8	$ \begin{array}{c c} 2210 \\ 11.6 \\ \frac{1}{8} \end{array} $	2090 11.4 0	2475 11.8 15b
		<u> </u>				L		

(a) Moisture in coal as fired, 11 per cent; ash, 7.97 per cent.
(b) Much unconsumed coke forced over back end, thus increasing the ratio of volatile carbon in the fuel actually consumed.

The results of these experiments are given in Tables 1, 2, 3 and 4, and they certainly demonstrate the possibilities of smokeless combustion of some typical Illinois coals.

It is not within the scope of this bulletin to enter into any lengthy discussion of the results as shown by these tables. It should, however, be stated that this setting has been operated not only without smoke, but also with economy, as may be seen by inspection of Table 5. The complete record of the results of the economy tests made under this boiler will form the subject of a separate bulletin soon to be published.

RELATION BETWEEN CAPACITY AT WHICH BOILERS ARE DRIVEN AND THE TENDENCY OF THEIR FURNACES TO SMOKE

There is a rate of driving a boiler furnace which, if exceeded, will result in producing smoke. This rate varies for different types of

furnaces and for the various methods of baffling or kinds of mixing piers used. It also varies for different kinds of coals. A strong draft will make a large air supply possible, and allow thicker fires or finer coal to be used. The possibility of sufficient air makes a furnace smokeless when an insufficient supply caused by a weak draft might cause the production of smoke. There is an always increasing tendency to drive boilers and furnaces a little harder. Boilers that were purchased for 1000 H. P. a few years ago are now being forced to 1400 and 1600 H. P. This means of course larger grate areas and a much higher rate of combustion per unit of grate area. As far as the boilers are concerned, they seem to be ready and willing to transmit about the same proportion of the heat available to the boiler as ever. It is doubtful if constructive furnace details have kept pace with the demands for the higher rates of combustion and at the same time have

TABLE 3

Special Smoke Tests of Illinois Coal with a Chain Grate Stoker, Tile Roof Furnace and Heine Water Tube Boiler, with Varying Rates of Combustion. February 11, 1907. Coal— $1\frac{1}{2}$ -inch Screenings. Ordinary Grade for Tests, 1, 2, 3, 4, 5^{a} . Poor Grade for Tests, 6, 7, 8.

ITEM 5		2	3	4	5	6	7	8
Time, Start	8:05 9:00 5	9:00 10:00 5	10:00 11:00 5	11:00 12:00 5	12:00 1:00 5	1:00 2:00 7	2:0 0 3:00 7	3:00 4:00 7
Draft Pressure in Furnace Draft Pressure in Breeching	. 202 1.21	1.30	.40	.23	.108	.302	.355 1.21	.58
Lbs. Coal Burned per sq. ft. of Grate Surface as Fired. Do. Dry Coal	32.7 27.4	35.4 30.0	39.3 33.2	$30.2 \\ 25.5$	$12.4 \\ 10.5$	46.5	26.8	26.2
Capacity Developed	87 674 2360	103 704 2400	106 718 2615	84 650 2489	56 542 2180	106 674 2530	75 646 2425	68 625 2485
Temperature Back of Bridge Wall Per cent CO ₂ Smoke	6.8	$\frac{7.6}{0}$	6.6	7.2	$\frac{6.2}{0}$	7.0	4.7	4.3

⁽a) Moisture in coal as fired, 14.23 per cent; ash, 15.4 per cent.

TABLE 4

Special Smoke Tests of Illinois Coal with a Chain Grate Stoker, Tile Roof Furnace and Heine Water Tube Boiler, with Varying Rates of Combustion. February 12, 1907. Coal— $1\frac{1}{2}$ -inch Screenings, selected ^a.

Test No.	1	2	3	4	5	6	7	8
Time, Start	8:00	9:00	10:00	11:00	12:00	1:00	2:00	3:00
Time, Stop	9:00	10:00	11:00	12:00	1:00	2:00	3:00	4:00
Thickness of Fuel Bed.	6	6	6	6	6	5	5	5
Draft Pressure in								
Furnace	.18	.25	.20	.10	.06	.195	.10	.05
Draft Pressure in								
Breeching	1.00+	1.5+	.93	.36	.21	1.20	.57	.15
Lbs. Coal Burned per		·						
sq. ft. of Grate								
Surface as Fired.	28.3		28.3	23.9	16.8	31.0	26.5	22.6
Do. Dry Coal	24.2	27.3	24.2	20.4	14.3	26.5	-22.6	19.3
Mean per cent of Rated								
Capacity Devel-								
oped	89.8	85	91	85	74	100	92	80
Flue Gas Tempera-								
ture F	649	662	639	588	544	676	624	540
Temperature over Grate	2450	2525	2450	2435	2525	2305	2470	2490
Temperature Back of								
Bridge Wall	-							
Per cent CO_2	7	5.9		9.9				
Smoke	0	0	0	0	0	0	0	0

(a) Moisture in coal as fired, 14.6 per cent; ash, 9.48 per cent.

provided efficient smoke preventing plans. In other words when boilers are forced much over 30 per cent of their rated capacity the probability of smoke from their furnaces rapidly increases. Nothing inherent in the boiler itself is at all responsible for smoking furnaces, for as elsewhere pointed out it is the total amount of volatile combustible evolved in the furnace per unit of time that imposes duties upon those constructive features of the furnace and combustion chamber which are designed to furnish the proper amount of suitably warmed air to the furnace and to provide for its effective mingling before the products of combustion reach the cooling surfaces of the boiler. It would seem necessary, therefore, that until further advances are made in furnace design and methods of operation, when a plant has reached the point of perhaps 140 per cent of its rated capacity, additional boilers ought to be added if only in the interest of a less amount of smoke. In

RESULTS OF EVAPORATIVE TESTS WITH ILLINOIS COALS ON A CHAIN GRATE STOKER

27.62	20.49		22.10	26. 41	22.35	22.48	Grate Surface, per hour	+
624.0	599.0	55	606.0	613.4	612.0	599.0	caping Flue Gases, °F	: :
143.8	56.4	CH	83.4	150.1	47.16	43.54	per cent	i .
	10.99		9.52	7.00	12.28	12.60	Per cent CO_2 in Flue Gases (β)	ē
Ö	0.120		0.112	0.258	0.085	0.127	Furnace, in. of water	
	6		οτ	G.	4	σ.	Bed at Grate, inches.	1 9.
t S	11922		12305	10036	11740	11898	B. t. u. per Found Coal as Fired Thickness of Fuel	= .x
~i	37.57		39.59	46.05	39.59	39.59	Matter in Ash Free, Dry Coal	· ;
13 55.94	62.43		60.41	53.95	60.41	60.41	Per cent Carbon in Ash Free, Dry Coal. Per cent Volatile	-1 p.
0 21.25 1 12.58	$\frac{9.40}{8.21}$		7.14 8.42	11.88 16.89	11.23 7.64	10.72 7.31	in Coal Per cent Ash in Coal	,D1
$(w) = \frac{3}{8} - O(w)$	$1 - \frac{3}{4}(\mathbf{w})$		$(1\frac{3}{4}-1)$	$\frac{3}{4} - \frac{1}{4} (w) \left 1\frac{1}{2} - 0 \left(2 \right) \right (1\frac{3}{4} - 1)$	$\frac{3}{4} - \frac{1}{4}(w)$	$\frac{3}{4} - \frac{1}{4}(\mathbf{w})$	of Coal(1)Per cent Moisture	
<u> </u>	8.10		8.25	8.30	8.32	8.32	Duration of Trial	ns is
127	107		96	91	50	4.7	Number	

TABLE 5.—(Continued)

	70.39 69.16	56.26	67.82	63.60	62.75	67.70	66.89	including Grate	
	71.76	60.18	69.00	65.32	64.60	70.75	69.93	Efficiency of Boiler Efficiency of Boiler	20. 21.
	10.53	8.70	10.34	9.86	9.42	10.60	10.51	Free, Dry Coal	
	7.49	5.38 	8.37	8.12	6.52	8.23	8 .5 4	as Fired	19.
133.8	101.4	99.5	99.9	101.8	103.1	109.3	109.4	_ ': '	1s.
1.8	1.75 149.4	5.46 149.5	1.56 147.5	2.23 150.4	2.23 146.9	3.95 150.0	4.00 150.0	Per cent of Builders' Part of Builders'	16. 17.
- ; -	131	127	107	96	91	50	17	1. Trial Number	15 1

Item 3—Size is given in inches. (w) refers to washed coal. Sixty per cent of this coal was below \(\frac{1}{2} \) inch. The flue gases were free from carbon monoxide and smoke.

 $\overline{\mathcal{C}}(\widehat{\mathcal{C}})$

confirmation of this particular point the following discussion* is worth presenting. "The work at the government coal testing plant has been somewhat in the direction of smoke abatement, although the principal object of the work has been the determination of the value of different fuels for steaming purposes. Whenever we tested a soft coal we tried to eliminate the smoke. We have reduced the smoke 50 per cent or more, and often we burn soft coal without smoke. We have a good fireman, and he is watched all the time. Our furnace has a fire clay tile roof with a smooth lower surface, and a large combustion chamber; it is equipped with a plain grate of 40 sq. ft. We fire about fifty pounds of coal at a time on one-half of the grate area, and every two or three minutes. The furnace has three fire doors and we fire alternately in the front of the first and the third doors and in the rear of the middle door at one time, and then the rear of the first and third doors, and the front of the middle door at the next time. In this manner the distilled volatile matter is divided into three streams and this division facilitates its mixing with the hot air coming from the uncovered portions of the fuel bed.

"Another point in connection with the hand-fired furnace is that it is usually forced to burn more volatile matter than it was built for. We have often found that coal burned slowly, say at the rate of 20 pounds per square foot of grate area per hour, made no smoke at all. However, when the rate of combustion was increased to 26 pounds or more, smoke was produced, even though as great care was used in firing, and the firing was as frequent. This fact is in accordance with Mr. Bement's paper, where he states that the combustion space of a furnace is of a certain capacity, and that one should not try to burn more coal in it than the furnace was built for. The fact is that whenever a furnace is run above its capacity, it is bound to make smoke.

"I have recently noticed an interesting fact, that with a chain grate stoker in a Heine boiler furnace, no smoke was made when the rate of combustion was 42 pounds. If the same coal were burned in a hand fired Heine boiler furnace, smoke would probably be produced at the rate of combustion of 26 pounds. This seems to indicate that with the chain grate stoker more of the coal burns on the grate as fixed carbon and less of the combustible is driven off and burned as volatile matter, than is the case with a hand-fired furnace. This is probably due to the fact that with the chain grate stoker the coal is fed in grad-

^{*}Jour. W. S. E., Dec. 1906. "Suppression of Industrial Smoke." A. Bement. Discussion by H. Kreisinger, U. S. G. S.

ually and is, therefore, heated gradually, while with the hand-firing, the coal is thrown on the top of the white-hot fire and is heated rapidly; this rapid heating is the cause of more combustible being distilled off as volatile matter and more smoke being produced.

"In conclusion I will say that the hand-fired furnace should be the last one to be considered for preventing smoke. In the first place it is rather expensive to operate, and the results are doubtful because too much dependence has to be placed on the fireman."

This discussion has been quoted because it definitely states rate of combustion (20-26 lb.) as being about the limit for smokeless hand-firing in a certain type of furnace. It also gives good reasons why this rate may be nearly doubled on a chain grate stoker and not produce smoke. It might be well to point out, however, that while the average rate of combustion in the hand-fired furnace appears to be 20-26 lbs. for a short interval just after firing fresh coal, the rate is much higher, equal perhaps to the rate of 42 lb. of the chain grate stoker. It is entirely reasonable to suppose that furnaces will planned that will provide for smokeless consumption of coal at much higher rates of combustion, but until they are available power plant owners should not be allowed to force boilers to such a point above capacity as will cause the furnaces to become troublesome smoke producers.

SPECIAL MIXING DEVICES, PIERS, WING WALLS AND JETS

The method of introducing the coal into the furnace will in all cases have much to do with the type of furnace which must be used to stop smoke. When the coal is fed into the furnace mechanically, as it is when stokers are used, one of the most essential elements of successful smoke prevention has been met, namely, slow and uniform gas evolution. When coal is fed by hand into a hot furnace, six shovelfuls more or less at one time, this same element has been ruthlessly neglected. The gas evolution can neither be slow nor uniform. It is also very doubtful if the proper amount of air at the right temperature will be supplied. It is to assist in correcting such known violations of correct methods of coal supply to furnaces that certain devices have been introduced which are intended to correct these initial mistakes. A steam jet is such a mixing device. When properly applied it does not let the volatile gases and air supply escape from the furnace until very intimately mixed. It has, however, two very serious objections, noise and

large steam consumption. From 5 per cent to 8 per cent of the steam made is often used in these jets. The success of the steam jet in preventing smoke, due almost entirely to its ability to properly intermingle the fuel gases and the air supply, immediately suggests the accomplishment of the same intermingling in other ways. Such ways have been devised. One of the early plans was proposed by Professor Kent in his wing wall furnace. Other plans have followed as typified by the Wooley furnace, and the Kuss mixing piers. These methods of mixing are efficient and economical and are especially to be considered in connection with hand-fired furnaces. The particular arrangement to be adopted will be determined by several factors, viz.; (a) The composition of the coal to be used. (b) Size of coal. (c) Method of Siring. (d) The rate of gas evolution.

Smoke Prevention with the Horizontal Fire Tube Boiler

The horizontal fire tube boiler is still much in use in the smaller units of from 50 to 150 horse-power. It was brought into prominence in the early days of American steam boiler practice as the natural successor of the plain cylinder and flue boilers, all of which were externally fired. It soon became the standard type of boiler throughout manufacturing New England where in many places it still retains its position on account of its cheapness and its economical operation with all grades of anthracite and many grades of bituminous coals, especially those containing a high fixed carbon content.

With the coals just mentioned the combustion takes place mostly on the grate or at a short distance above it. Many plants have been installed with this type of boiler, in which the grate has been placed not more than 14 to 16 inches beneath the boiler. These plants have burned anthracite coal successfully. With the introduction of the West Virginia bituminous coals containing small amounts of volatile combustible matter the grates were lowered under this type of boiler to 24 and 30 inches with good effect. Still, with either coal, much the greater part of the heat was generated on or near the grate and the heat made available for transmission was largely radiant heat. The plates directly over the fire itself transmitted a correspondingly large part of the heat of the coal to the water in the boiler. The satisfactory performance of the fire tube boiler with eastern coals together with its availability made it naturally the boiler to be adopted by manufactur-

ers moving westward with the center of population. It is easily seen, however, that with Illinois coals carrying 30 to 40 per cent of volatile combustible matter and burned at rates which produce flame lengths of from 5 to 20 feet, this type of boiler as usually set is by no means adapted for the smokeless consumption of this kind of fuel. There is, in fact, no better method of producing dense black smoke with Illinois coal than to install a horizontal fire tube boiler with the usual furnace, and hand fire such a plant with run-of-mine coal. In such an outfit all the fundamental principles laid down elsewhere in this paper are disregarded. The method of introducing the coal directly into the hot furnace, in fine dust and large lumps, prevents slow or uniform distillation of the gases; the air supply through open doors, through holes in the fire, or through a fuel bed of varying thicknesses is neither correct in quantity nor is much of it properly heated; the mingling products of combustion come in contact with the cool surface of the plates of the boiler, reducing the temperature of the gases below the ignition temperature before combustion is completed.

Having in view these defects of the usual plan of operating the fire-tube boiler with Illinois coal, many ways suggest themselves by which these faults may be corrected. It is possible to burn Illinois coal without smoke with fire tube boilers, but the furnace requires special treatment and such settings are not common. The plans usually proposed are either low-set stokers or extended Dutch oven furnaces. When hand-firing is adopted the wing wall furnace or other form of mixing baffles or piers is of great assistance. With any of these devices careful firing is very necessary for satisfactory results. The twin brick arch furnace which keeps the gases away from the boiler plates altogether is an effective smoke preventive. Careful firing with low rates of combustion (12 to 16 lb.) per square foot of grate, assisted by automatically controlled air supply, will often enable these settings to be run so as to escape the fines of city smoke inspectors, but they can hardly be compared as to smokelessness with such settings as are illustrated in this paper. Horizontal tubular boilers are often adopted on account of their cheapness, and when such is the case the addition of any special furnace constructions or any special devices to aid in smoke prevention, is seldom given any consideration. From what has been said it is doubtless evident why this type of boiler is so frequently found to be one of our worst smoke offenders.

BURNING ILLINOIS COAL IN LOCOMOTIVE BOILERS

The writer is compelled to admit that he does not know how to burn Illinois coal in a locomotive boiler under the usual operating conditions without making smoke. Careful firing is the most effective way of reducing the amount of smoke made, but no fireman can be found skillful enough to meet the exigencies which are always arising and to operate a locomotive boiler in service without smoke even 75 per cent of the time when using Illinois coal. It is not possible here even to enumerate the many devices which have been tried to prevent smoke production on locomotive boilers. The high rates of combustion on the grate of this boiler, often reaching 150 lb. and sometimes 200 lb. per square foot of area, produce temperatures which soon destroy all forms of fire resisting material or other constructions not backed up by water-jacketed metals. Were it not, however, for the many and sudden changes in the conditions of operation imposed by the very duties for which the locomotive is designed, all other obstacles might possibly be overcome and the locomotive become smokeless. Fortunately we can clearly see how to eliminate the smoking locomotive from the thickly populated districts by the use of the electric locomotive which now is able to meet the demands placed uponitforspeed. acceleration, and tractive effort. It is also pointed out that the large power plant will now produce the electricity needed for this service with greater economy and at the same time burn Illinois coal without smoke.

How to Hand Fire Illinois Coals so as to Reduce the Production of Smoke

There are many small power plant units that are hand-fired which smoke badly. The construction of many of these furnaces is such that it is almost impossible to operate the plant without smoke. Still something might be done to reduce smoke if the fireman exercised more care in firing. Whatever can be done by the fireman in the way of properly introducing the fuel into the furnace is just so much gained and it relieves the auxiliary mixing devices or baffles if such exist from just so much work later on. The best method of hand-firing for smokelessness is also the best method for attaining economy. There are three generally recognized methods of hand-firing: (a) The Spreading, (b) The Coking and (c) The Alternate. The first is satisfactory and generally used for anthracite; the second for coking coals and the last

for non-coking coals. It is the alternate method that is best suited to Illinois coals. This method is described as follows. The fuel bed area is divided into equal parts two, four, or six depending on the size of the entire surface. The fresh coal is fired alternately on one-half of these areas at a time at such intervals as may be necessary to hold the steam pressure. Depending on the rate of driving, these intervals will vary from one to five minutes. For small areas first one-half the surface of the fuel bed is covered and then perhaps three minutes later the other half. This method allows much of the air supply to come through the bright fuel bed and thus become heated and suitable for mixing with the highly volatile content which is being rapidly driven from the freshly fired coal on the other side. Tust because fresh fuel has been spread over one part of the fuel bed, the air most needed at that moment cannot as easily flow through it, and another part of the fuel bed should be left free for its passage at that time. When the fuel bed area is very large, some checker board system of firing may be adopted which, when alternately fired and left free for air passage, will result in a large reduction in the amount of smoke produced by the too common method of spreading the coal over the entire surface at each firing. It must not be forgotten that a large supply of warm air is needed immediately after fresh fuel is spread over a part or all of the fuel bed; this is best supplied as just explained, but it may be advantageous to provide for still more air by leaving the fire doors open slightly just after each firing. There are several devices on the market which provide for an air supply over the fire, which are turned on with the opening or closing of the fire door and which can be arranged to close at the end of any desired time depending upon the rate of driving and frequency of firing found desirable. The firing of small amounts coal at frequent intervals produces less smoke than firing large amounts at longer intervals. The latter method, however, usually proves less tiresome to the fireman and is for that reason more frequently adopted.

THE DISTANCE BETWEEN THE BOILER AND THE GRATES

Having in mind the horizontal fire tube boiler, the distance from the bottom of the boiler to the grates should be from 30 to 34 inches. At this distance the flame from Illinois coals will sweep along the bottom of the boiler and much smoke will result. Still it must be borne in mind that a large part of the heat to be obtained from the burning of the fixed carbon part of these coals is transferred to the shell in the form of radiant heat and for this purpose the grate should be near the boiler. While it is necessary in preventing smoke, that the flames be kept from the cooling surfaces of boilers, this cannot be accomplished by simply lowering the grates under a horizontal fire tube boiler, as the writer has unfortunately been incorrectly quoted as having stated. For boilers of this type some form of furnace extending partly or entirely in front of the boilers and either hand fired or fed by stokers of the Murphy type would undoubtedly furnish a satisfactory solution to the smoke problem. As elsewhere pointed out the smoke problem is not usually satisfactorily solved with Illinois coals and the horizontal fire tube boiler. The small unit hardly warrants an automatic stoker. Desire for a cheap plant prevents any special form of furnace and so it is that this kind of a setting frequently proves to be a troublesome smoker.

THE PREPARATION OF COAL FOR SMOKELESS BURNING

When the coal fed into a furnace is fairly uniform in size it. is much easier to burn it without smoke than when it is of different sizes. In all the settings described in this article as smokeless, the coalburned has been of such uniformity as to meet this requirement. The standard commercial sizes are all that are required, such as No. 1, 2, 3, 4, or 5. Take, for instance, the chain grate stoker; the very principle of its operation, complete consumption of the coal while it travels the length of the furnace, makes it very evident that if small pieces of coal are just consumed, the very large pieces will not be consumed. Just to what extent it will pay to size coal for use is not yet very clear, but experiments reported by Mr. W. L. Abbott in a paper before the Western Society of Engineers (Sept. 1906), makes it evident that the influence of variation in size of the fuel used is of much more importance than has heretofore been generally believed. In these tests the capacity as well as the efficiency of the plant tested increased rapidly with the size of the coal used between the average sizes of 0.12 inches and 0.30 inches, after which both these factors dropped again. The following table indicates the general results obtained.

Size in inches	Horse-Power	Efficiency
.15	350	53
.20	525	60 .
.25	650	65
.30	725	65
·35	625	63
.40	55°	60
.45	500	58
.50	525	58

Whether these results are generally applicable or whether they apply only to the conditions existing in the operation of a single plant, it is difficult to say. The plant in which these tests were made corresponds so closely to the plants described in the paper that it would seem very desirable that those operating such plants should take advantage of the results obtained and be sure that the mere matter of inattention to size should not be responsible for a capacity or efficiency loss of from five to ten per cent.

The washing of coal, which removes a considerable part of the ash and sulphur, has proved very advantageous to many plants, especially where capacity has been an important consideration. The washing itself, however, does not make coal burn without smoke. As explained elsewhere the total volume of volatile combustible distilled per hour from each square foot of grate area must determine those furnace proportions necessary, with the various methods of coal supply to the furnace, which will with any kind of coal prevent smoke. The writer desires to mention in this connection that since he began to use washed nut coal in his hot water residence heater and in his kitchen range black smoke is seldom seen coming from his chimneys. Previous to the use of this coal the kitchen range pipe required cleaning at least once, sometimes twice each year. It is now three years since this pipe was cleaned. No soot now gathers on the underside of the stove lids as was formerly the case. A fire is easily maintained eight to twelve hours in the residence heater. Experiments with two types of residence heaters, which are now available for test purposes, are in progress by the Experiment Station, and it is hoped that more exact information concerning the relative value of various coals used in this kind of furnace will soon be available. The writer confidently believes that we shall soon know how to burn Illinois coals

without smoke in residence heating boilers as readily and surely as we now know how to burn it under power plant boilers.

Briquetted coal offers some opportunity for smoke reduction in certain kinds of furnaces, and certain railroads have reported favorably on its use inside city limits. It does not appear that it can compete with raw coal, certainly not in Illinois, if any consideration is to be given to the cost. There are conditions arising where the question of cost need not be considered,—such for instance as on naval vessels in time of war. For this reason a series of tests is now being arranged between the steam engineering department of the U. S. Navy and the technologic branch of the United States Geological Survey to determine the comparative value of raw and briquetted coal on board several types of naval vessels. In these tests the question of smokeless operation will be a question of careful consideration.

Powdered fuel has been used with much success in places where the coal has not been too high in volatile combustible content, and where the cost of the coal ordinarily used exceeded five or six dollars a ton. Powdered fuel can be burned without smoke and it can be burned with excellent economy. It cannot, however, be cheaply reduced to a powder.

The writer will welcome suggestions relating to the smoke problem from engineers throughout the country, also drawings, blueprints, etc., and complete and reliable data pertaining to smokeless furnace construction. Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. (Out of print.)

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. (Out of print.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906. (Out of print).

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Plain and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907.

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 15. How to Burn Illinois Coal Without Smoke, by L. P. Breckenridge. 1907.

