Q.5 Solve any two:

i. A curve is down to pass through the points given by following table

х	1	1.5	2	2.5	3
у	2	2.4	2.7	2.8	3

Estimate the area bounded by the curve x-axis and the lines x = 1 to x = 3 by using simpson $\frac{1}{3}$ rule.

- ii. Using Taylor's series, find the solution of the differential equation xy' = x y; y(2) = 2 at x = 2.1, correct to five place of decimal.
- iii. Solve $\frac{dy}{dx} = \frac{1}{x+y}$ for x = 0.5 by using Runge-Kutta method with $x_0 = 0, y_0 = 1$ (take h=0.5).

Q.6 Solve any two:

i. Calculate the Karl pearson's coefficient of correlation between X and Y series:

X	17	18	19	19	20	20	21	21	22	23
Y	12	16	14	11	15	19	22	16	15	20

ii. Fit the second degree parabola to the following:

X	1	2	3	4	5
y	25	28	33	39	46

iii. In experiment on pea-breading, mendal obtained the following frequencies of seeds:

Round	Wrinkled	Round	Wrinkled	Total
and	and Yellow	and	and Green	
Yellow		Green		
315	101	108	32	556

Theory predicts that the frequencies should be in proportion 9:3:3:1. Examine the correspondence between theory and experiment. Given that the value of x^2 for 3 dof at 5% level of significance is 7.815.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.	
-----------------------	--

5

5

Faculty of Engineering

End Sem (Even) Examination May-2018 EN3BS03 Engineering Mathematics-III

Programme: B.Tech.

Branch/Specialisation:

AU/CE/FT/ME

1

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. An analytic function with constant modulus is always:
 - (a) Constant (b) Variable (c) Both (a) and (b) (d) None of these.
 - ii. If z = a is a pole of f(z) of order 3 then residue of f(z) at z = a is given by:

(a)
$$\frac{1}{3!} \left[\lim_{z \to a} \frac{d^3}{dz^3} (z - a)^3 f(z) \right]$$

(b)
$$\frac{1}{2!} \left[\lim_{z \to a} \frac{d^3}{dz^3} (z - a)^3 f(z) \right]$$

(c)
$$\frac{1}{2!} \left[\lim_{z \to a} \frac{d^2}{dz^2} (z - a)^3 f(z) \right]$$

- (d) None of these.
- iii. Let x be the exact value and x_a be the approximate value then relative error is:
 - (a) $|x x_a|$ (b) $\left| \frac{x x_a}{x} \right|$ (c) $\left| \frac{x x_a}{x_a} \right|$ (d) None of these.
- iv. Gauss seidel method is known as method of:
 - (a) Simultaneous Displacement
 - (b) Successive Displacement
 - (c) Both (a) and (b)
 - (d) None of these.

P.T.O.

1

- In numerical analysis which of the following relation is correct
 - (a) $\mu^2 = 1 + \frac{\delta^2}{4}$ (b) $\mu^2 = 1 + \frac{\delta}{4}$
 - (c) $\delta^2 = 1 + \frac{\mu^2}{4}$
- (d) None of these.
- The relation between difference operator Δ and differential operator D is
 - (a) $e^{hD} = 1 + \Delta$
- (b) $e^{hD} = 1 \Delta$

- (c) $e^{hD} = \Delta$
- (d) None of these.
- vii. According to Trapezoidal rule $\int_{0}^{x_0+nh} ydx$ is equal to
 - (a) $\frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1}) \right]$
 - (b) $\frac{h}{2} [(y_0 + y_n) + 3(y_1 + y_2 + ... + y_{n-1})]$
 - (c) $\frac{h}{3} [(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})]$
 - (d) None of these.
- viii. According to Picard's method the n^{th} approximation given by
 - (a) $y^{(n)} = y_1 + \int_1^x f(x, y^{(n-1)}) dx$ (b) $y^{(n)} = y_0 + \int_1^{x_0} f(x, y^{(n-1)}) dx$
 - (c) $y^{(n)} = y_0 + \int_0^x f(x, y^{(n-1)}) dx$ (d) None of these.
- The product of regression coefficient is
 - (a) ≤ 1

(a) n = 30

- (b) ≥1
- $(c) \geq 2$

(d) None of these.

1

1

1

1

- Fisher's Z-test is applied when number of data is (b) n > 30
 - (c) n < 30
- (d) None of these.

- Q.2 Solve any two:
 - Find imaginary part and construct the analytic function whose real part is $u = e^{2x} (x \cos 2y - y \sin 2y)$.

Evaluate $\int_{C} \frac{e^{z}}{(z^{2} + \pi^{2})^{2}} dz$ where C is |z| = 4 using cauchy's integral

formula.

- iii. Apply calculus of residues, to prove that $\int_{0}^{\pi} \frac{d\theta}{17 8\cos\theta} = \frac{\pi}{15}.$
- Q.3 Solve any two:
 - By using Newton-Raphson's method find the root of $x^4 x 10 = 0$ 5 correct to three places of decimal
 - Solve the equations by Gauss-Jordan method 2x-3y+z=-1; x+4y+5z=25; 3x-4y+z=2
 - iii. Apply Crout's triangularization method to solve the equations: 5 $x_1 + 2x_2 + 3x_3 = 14$; $2x_1 + 5x_2 + 2x_3 = 18$; $3x_1 + x_2 + 5x_3 = 20$
- Q.4 Solve any two:
 - The population of a country in the decennial censuses were as under. Estimate the population for the year 1925 by Newton backward interpolation formula.

Year x	1891	1901	1911	1921	1931
Population y	46	66	81	93	101

- Find a polynomial satisfied by (-4,1245), (-1,33), (0,5), (2,9) and (5,1335) 5 by the use of Newton's interpolation formula with divided difference.
- iii. Given: 5

x	0.1	0.2	0.3	0.4
y = f(x)	1.10517	1.22140	1.34986	1.49182

Find
$$\frac{dy}{dx}$$
 at $x = 0.4$

P.T.O.

5

5

5

Solution Set

Mc0's

Q. I. (i) a) Constant

(ii) c)
$$\frac{1}{2i}$$
 [$\lim_{z \to 0} \frac{d^2}{dz^2} (z-a)^3 + (z)$]

(iii) b)
$$\left| \frac{\chi - \chi_0}{\chi} \right|$$

civ) b) successive Displacement-

$$(V)$$
 'a) $U^2 = 1 + \frac{S^2}{4}$

(Vii) a)
$$\frac{h}{2} \left[(y_0 + y_n) + 2 (y_1 + y_2 + - + y_{n-1}) \right]$$

(viii) c)
$$y^{(n)} = y_0 + \int_{x_0}^{x} f(x, y^{(n-1)}) dx$$

(). 2 (i) Criven u = e2 x (x cos 2 y - y sin 2 y) V= ? utiv =? By C-Req? we have Un = Vy and Uy = -Vn from (1) ux=2e2x (xcos2y-ysin2y)+e2x(cos2y:)=/y+1 integrating @ w.r. to y $V = \frac{2 \times e^{2 \times \sin 2y}}{2} - \frac{2 e^{2 \times \left[-y \cos 2y + \sin 2y\right]}}{2}$ $+e^{2x}\frac{\sin^2y}{2}+g(x)-3$ Now. diff' 3 w.s. to n $V_{x} = 2x e^{2x} \sin 2y + e^{2x} \sin 2y + y \cos^{2} y 2e^{2x}$ $- \int_{a}^{b} 2e^{2x} \sin 2y + e^{2x} \sin 2y + f(x)$ \$(x) =0 e2x sin2y - e2x V = 2 e²² sin2y+ ye²ⁿ cos 2y - beet sinzy +1

$$\begin{aligned} & \text{ll} + \text{iv} = e^{2\pi \left(\frac{\pi (\cos^2 y - y \sin^2 y)}{(\pi \sin^2 y + y \cos^2 y)} \right)} + \text{i} e^{2\pi i} \\ & \left(\frac{\pi \sin^2 y + y \cos^2 y}{(\pi e^2 + \pi^2)^2} \right) + \text{i} e^{2\pi i} \\ & \left(\frac{\pi \cos^2 y + y \cos^2 y}{(\pi e^2 + \pi^2)^2} \right) + \text{i} e^{2\pi i} \\ & \text{By Cauchy's integral formula we have} \\ & \int_{C}^{\pi} (a) = \frac{n!}{2\pi^2} \int_{C} \frac{f(z)}{(z-q)^{n+1}} dz \\ & \frac{e^{2\pi i}}{(z^2 + \pi^2)^2} = \frac{e^2}{(z+\pi i)^2 (z-\pi i)^2} \\ & \text{both } z = \pm \pi i \text{ lie within the circle } |z| = 4 \\ & \text{How} \\ & \frac{1}{(z+\pi i)^2 (z-\pi i)^2} \int_{C} \frac{e^{2\pi i}}{(z+\pi i)^2 (z-\pi i)^2} \int_{C} \frac{e^{2\pi i}}{(z+\pi i)^2 (z-\pi i)^2} dz - \int_{C} \frac{e^{2\pi i}}{(z-\pi i)^2 (z-\pi i)^2} dz \\ & = \frac{1}{4\pi^2} \left\{ \int_{C} \frac{e^{2\pi i}}{(z+\pi i)^2 (z-\pi i)^2} dz + \int_{C} \frac{e^{2\pi i}}{(z-\pi i)^2 (z-\pi i)^2} dz \right\} \\ & = \frac{7}{2\pi^3 i} \left[2\pi i \int_{C} (-\pi i) - 2\pi i \int_{C} (\pi i) \right] - \frac{1}{4\pi^2} dz + 2 \\ & \left[2\pi i \int_{C} (-\pi i) + 2\pi i \int_{C} (\pi i) \right] \\ & = \frac{-144^\circ}{\pi^2} \sin \pi - \frac{1}{\pi} \left(\cos \pi - \frac{1}{\pi} \right) \end{aligned}$$

$$|z| = \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{17 - 8(080)} = \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{17 - 8(080)}$$

-11

+1

7.3 (i) Let
$$f(x) = x^4 - x - 10$$
 i. $f'(x) = 4x^3 - 1$

By Newton Raphson formula,

we have

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
 $= x_n - \frac{x_n' - x_n - 10}{4x_n^3 - 1}$
 $= \frac{3x_n' + 10}{4x_n^3 - 1}$

Faking
$$N_0 = 1.5$$
. $X_1 = 2$

$$+(x_0) = -6.4375$$

$$\chi_1 = 0$$

$$\chi_1 = \chi_0 - \frac{f(x_0)}{f'(x_0)} = \frac{3\chi_0^4 + 10}{4\chi_0^3 - 1} = \frac{3(1.5)^4 + 10}{4(1.5)^3 - 1}$$

$$= 2.615$$

f(xx)= 4.4704270506

$$\chi_{2} = \sqrt[9]{\frac{3\chi_{1}^{4} + 10}{4\chi_{1}^{3} - 1}} = \frac{3(2.015)^{4} + 10}{4(2.015)^{3} - 1} = \frac{59.4562811519}{31.7254135}$$

$$\chi_{2} = 1.8740900304$$

$$\chi_{3} = \frac{3(\chi_{2})^{4} + 10}{4(\chi_{2})^{3} - 1} = \frac{22.3356432635}{5.5822041969} = \frac{3}{25.3288167855} + 1$$

$$= 1.8558675751$$

$$\pi_{4} = \frac{3(\chi_{3})^{4} + 10}{4(\chi_{3})^{3} - 1} = \frac{45.5884596244}{24.5682464287}$$
$$= 1.855584596$$

3.3 (ii)
$$2\chi - 3y + \chi = -1, \chi + 4y + 5\chi = 25$$

 $3\chi - 4y + \chi = 2$
By Chauss Jordan Method
$$3\chi - 4y + \chi = 2$$

$$2\chi - 3y + \chi = -1$$

$$\chi + 4y + 5\chi = 25$$

$$\begin{bmatrix} 3 & -4 & 1 & 2 \\ 2 & -3 & 1 & -1 \\ 1 & 4 & 5 & 25 \end{bmatrix}$$

$$R_1 \rightarrow \frac{1}{3}R_1$$

$$\begin{bmatrix} 1 & -4/3 & 1/3 & 2/3 \\ 2k_3 & -3 & 1 & -1 \\ 1 & 4 & 5 & 25 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1$$

$$R_3 \rightarrow R_3 - R_1$$

$$\begin{bmatrix} 1 & -4/3 & 1/3 & 2/3 \\ 2k_3 - R_1 & -1 \\ 1 & 4 & 5 & 25 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -4/_3 & 1/_3 & 2/_3 \\
0 & 16/_3 & 14/_3 & 73/_3 \\
0 & -1/_3 & 1/_3 & -7/_3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -4/3 & 1/3 & \frac{2}{13} \\
0 & 1 & \frac{7}{8} & \frac{73}{16} \\
0 & 0 & \frac{5}{24} & \frac{-39}{48}
\end{bmatrix}$$

$$R_{3} + \frac{24}{15} R_{3}$$

$$R_2 + R_2 - \frac{7}{8}R_3$$

$$\chi = 8.7$$
, $f = 5.7$, $\chi = -1.3$

(iii)
$$x_1 + 2x_2 + 3x_3 = 14$$
, $2x_1 + 5x_2 + 2x_3 = 18$
 $3x_1 + x_2 + 5x_3 = 20$

By (routh triangularization

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 3 & 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 14 \\ 18 \\ 20 \end{bmatrix}$$

If $A = LU$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 3 \\ 2 & 5 & 2 \\ 3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 2 & 2 & 3 \\ 0 & 0 & 0 & 33 \end{bmatrix}$$

Solve it

We get

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -24 \end{bmatrix}$$

Now the given system of eq? in matrix form

$$A \times B$$

$$A \times B$$

$$LU \times B$$

Put $U \times B = 1$

$$Y = \begin{bmatrix} 14 \\ -10 \\ -10 \end{bmatrix}$$

again in $U \times B = 1$

$$X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

178.	Population		Differences 79n 729n 7139n 749n				
		749	V29n	7139n	74yn		
1891	46						
1901	66	20	-5				
1911	81	15	-3	2	-3		
1921	93	12	-4	-1			
1937	101	8		*0			

$$\chi_{n} = a + nh = 1931, h = 10, \chi = 1925$$

$$f(a + nh) = 9n = 101$$

$$u = \frac{\chi - (a + nh)}{10} = -0.6$$

$$Applying Newton beackward dinterpolation fer.$$

$$f(\chi) = 9 = 9n + u = 9n + u = 4n + u$$

$$f(1925) = 101 - 0.48 + 0.056 + 0.1008$$

= 96.8368 - the Aus.

Q.4 (ii) Wiven $\chi_0 = -4$, $\chi_1 = -1$, $\chi_2 = 0$, $\chi_3 = 2$, $\chi_4 = 5$ $f(x_0) = 1245$, $f(x_1) = 33$, $f(x_2) = 5$, $f(x_3) = 9$, $f(x_4) = 1335$ B Newton's divided diff" formula. $f(x) = f(-4) + (x+4) \underset{-1}{\triangle} f(-4) + (x+4)(x+1) \underset{-1,0}{\triangle}^2 f(-4)$ $+ (x+4) (x+1) (x-0) \underset{-1,0,2}{\triangle}^3 f(-4) + (x+4)(x+1)$ $(x-0)(x-2) \Delta^{4} + (-4)$

γ(1 +(x)	$ \Delta f(x) $	$\Lambda^2 + (\kappa)$	$\Delta^3 + (x)$	1 14(x)	
-4	1245	33-1245= -1+4 -404	THE RESIDENCE OF THE PROPERTY	1 4 CK)	A 7(4)	r.
-1	3 3	-28	94			
0	5	2	10	-14	£	+2
2	9	442	88	13	3	
5	13 35		and a second			
f(x)	= 324	-5x3+6x	$^{2}- 4x+6$		-	-2

4 (iii) Diff +able [By Newton backward formula

X.	1 4	174n	$\nabla^2_{y_n}$	73 yr
0.1	1.10517			
0	1,22140	0.11623		
0,2		0.12846	0.01273	0.00127
0.3	1,34986		0.01350	
0,4	1,49182 =40	0,14196		

$$f'(0.4) = \left(\frac{dy}{dn}\right)_{x=0.4} = \frac{1}{0.1} \left[0.14196 + \frac{1}{2}(0.01350) + \frac{1}{3}(0.00127)\right]$$

Q5 (i) ^ let
$$y = f(x)$$
 be the eq? of the given curve then required area $= \int_{1}^{3} f(x) dx$ $= \int_{1}^{3} f(x) dx$ $= \int_{1}^{3} f(x) dx$ $= \int_{1}^{3} f(x) dx$ there the range of integration $= \int_{1}^{3} f(x) dx$ $= \int_$

By taylor's expansion about
$$x=2$$
 $y(x) = y\{2+(x-2)\} = y(2)+(x-2)y'(2)+$
 $\frac{(x-2)^2}{2!}y''(2)+\frac{(x-2)^3}{3!}y''(2)+\frac{(x-2)^4}{4!}y''(2)+ = 2+(2.1-2)\cdot 0+\frac{1}{4!}(2.1-2)^2-\frac{1}{8}(2.1-2)^3+\frac{1}{16}(2.1-2)^4+- = 2\cdot 00238$

Q. 5 (iii) Here $x_0=0$, $y_0=1$

$$M_{\chi} = \frac{\xi_{\chi}}{n} = 20$$
, $M_{y} = \frac{\xi_{y}}{n} = 16$

they the table

X	Y	x =)	X-Mx	1 y=Y	-My	122	1 42	1 ng	
17.	12	-3	and an extension of the same and the part of the same of the same and the same of the same	<u>- 4</u>	CE YOU'L PRINCESON PROBLEMS PROCESS	9	16	12	
18	16	-2		0		4	0	6	
19	14	-1		-2			14	2	Charles Co.
19	1)	-1		-5			25	5	
20	15	0		-1	•	6		0	
20	19	0		3		0	9	0	+2
21	22			6		11 0	36	6	
24	16			O			0	0	
22	15	2		-1		4	1	-2	
23	20	3		4		9	16	12	
En -200	£y=160	0		0		30	108	35	

$$\gamma = \frac{\leq \pi y}{\sqrt{(\leq \pi^2 \leq y^2)}} = \frac{35}{\sqrt{108 \times 30}} = 0.616$$

+2

Q6.(ii) Whether eqn of second degree parabola to fitted to the given data be

Then Pts normal egs are

 $\xi y = ma + b \in x + c \in x^{2}$ $\xi xy = a \in x + b \in x^{2} + c \in x^{3}$ $\xi x^{2}y = a \in x^{2} + b \in x^{3} + c \in x^{4}$

r	1 9	1 x 2	x 3	24	xy	n²y.		
1	25	1	1	1	25	25		
2	28	4	8	16	56	1/2	40	
3	33	9	27	81	9 9	297	E 4	
4	3.9	16	34	256	336	624		
5	46	25	125	625	230	1150		
Ex=15	Ey=171	$\leq \chi^2 = 55$			Exy=566	Ex24 = 2208		
$\xi x = 15 \ \xi y = 171 \ \xi x^2 = 55 \ \xi x^3 = 225 \ \xi x^4 = 974 \ \xi xy = 566 \ \xi x^2y = 2208$ Substituting in normal eq?, $m = 5$								

171 = 5 a + 15b + 55c 566 = 15a + 55b + 225c 2208 = 55a + 225b + 979con Solving a -

+1

+1

```
Q.6 (iii)
 Step 1: Null Hypothesis Ho: there is a correspondence between theory and
          experiment-
 step 2; Calculation of expected frequencies
   biven frequencies in proportion 913:3:1
   total sum of proposition = 9 + 3 + 3 + 1 = 16,
  i' (i) Expected frequency of Round and Yellow
                              seed is z 9 x 556
                 of wrinkled and = = 3 x 556
                 Round and green seed is = 3 x556
ci'li')
(iv)
                wrinkled and green - = 1-x556
          Calculation of 72 - statistic:
          \chi^2 = \mathcal{E}\left(\frac{(f_0 - f_e)^2}{f_e}\right)
```

Also the dof V=N-1=3Step 4: The tabulated value of χ^2 at 5%. Level of significance and for dof V=3is $7.815ie.\chi^2_{0.05,3}=7.815$

Step 5: Calculated value of $\chi^2 = 0.5 \times 1$ tabulated value of $\chi^2 = 0.5 \times 1$ value of $\chi^2 = 0.05$, $\chi^2 = 0.05$

=) Null hypothesis is accepted

=) there is very high degree of correspondence b/w theory and experiment.