$c_S(w)$ bound for l = log|S|

Aaryan Gupta 27 May 2022

1 Problem

For a set $S \subseteq \{0,1\}^d$ we define $c_S(w) = |\{(x,y) \mid x \in S, y \in S, d(x,y) = w\}|$, i.e., the number of pairs of vectors in S that are at Hamming distance w from each other. We are asked to provide an upper bound for the sum $\frac{\sum_{w=0}^r c_S(w)}{|S|}$ over all such sets S.

2 Reformulation of Problem to graphs

We consider the set S to be a subset of the boolean hypercube graph of dimension d. In this graph, the set of vertices is $V = \{v : v \in S\}$ and the set of edges is $E = \{(x,y) : d_H(x,y) \le r\}$ where d_H is the Hamming distance function. The problem transforms to finding the maximum value of $e = \frac{|E|}{|V|}$. For sets S, and a maximum Hamming distance r, we denote this as maximising $e \le r(S) = \frac{|E \le r(S)|}{|S|}$.

3 Left-Compressed Down Sets

A set S is said to be a down-set if $x \in S$ implies $y \in S$ whenever $y \subseteq x$. Note that the set definition of the bit string of y is used here. For example 0100010 corresponds to $\{2,6\}$. A set S is said to be a left-compressed set if $x \in S$ implies $y \in S$ whenever y satisfies the two conditions-

- 1. |x| = |y|
- 2. either $x_1=0,y_1=0$ or there exists $i,j\in[d]$ with 1< i< j such that $x_1=y_1,...,x_{i-1}=y_{i-1}$ and $x_i=0,x_j=1,y_i=1,y_j=0$

Theorem 1 A left-compressed down set achieves the maximum value of $e_{\leq r}(S)$.

Proof Outline. We start with a set B which achieves the maximum of $e_{\leq r}(B)$. We define a down-shift operator D_i which replaces every element in B whose i^{th} position is 1 and the replaced element is not already present in B. The set $D(B) = D_1(D_2(...(D_d(B))...)$ is a down set. By case bashing, we show that after

a single operation of D_i to B, $e_{\leq r}(B) \leq e_{\leq r}(D_i(B))$. Hence any set S for which $e_{\leq r}(S)$ is maximum can be transformed into a down-set D(S) which retains the same property.

We shall proceed with a similar proof for left-compression. We define an operator $L_{i,j}$ on set B which for every $z \in B$ swaps z_i and z_j if $z_i = 0$ and $z_j = 1$ if i < j. We argue that the set $L(B) = L_{1,1}(L_{1,2}(...L_{d-1,d}(B)...))$ is a left-compressed set. WLOG we look at i = 1 and j = 2 and analyse the different cases to conclude that set $L_{1,2}(B)$ is a down-set if B is a down set. Then using similar case bashing analysis as above, we conclude that after a single operation of $L_{i,j}$ to B, $e_{\leq r}(B) \leq e_{\leq r}(L_{i,j}(B))$. Hence any set S such that $e_{\leq r}(S)$ is maximum can be transformed to a left-compressed down-set L(D(S)) with the same property.

4 Tighter Bounds for Small Distances

4.1 r = 0

For r=0, the quantity $E_{\leq 0}(S)$ is just the number of vertices in graph of S, that is |S|.

4.2 r = 1

For $x \in S$, where S is a down-set, we have $y \in S$ for all $y \subseteq x$. So we have $2^{|x|} \leq |S|$, or in turn $|x| \leq \lfloor log(S) \rfloor$. Again because S is a down-set, $|E_{\leq 1}(S)| = \sum_{x \in S} |x| \leq |S| \log |S|$. A better optimal bound is $|E_{\leq 1}(S)| \leq \frac{1}{2} |S| \log |S|$, which is obtained in some other papers cited by Rashtchian.

4.3 r = 2

4.3.1 Rewriting expression in terms of rank

Define the rank of a boolean vector x as $||x|| = \sum_{j \in [n]} jx_j = \sum_{j \in x} j$.

Theorem 2 For a left-compressed down set S, $E_{\leq 2}(S) = \sum_{x \in S} ||x||$.

Proof Outline. The key idea being used here is that $\{x,y\} \in E_{\leq 2}(S)$ implies that $||y|| \neq ||x||$. Note that a rank of the order $O(n^2)$ does not work for r=3 and this distinguishing property of ranks is the only reason the proof works for r=2 and not for higher powers. After noticing this, WLOG we fix $x \in S$ and count y such that ||y|| < ||x||. Now, y can be of three forms:

- 1. $y = x \cup \{i\} \setminus \{j\}$ where $i < j, j \in x$, and $i \notin x$.
- 2. $y = x \setminus \{i\}$ where $i \in x$.
- 3. $y = x \setminus \{i, j\}$ where $i, j \in x$.

Counting the number of possible y's in all three cases and adding them up gives us our required result.

4.3.2 Finding an upper bound for rank

Theorem 3 For a left-compressed down-set S, for any $x \in S$ we have

$$||x|| \leq d.l'$$

where $l' = \lfloor log | S \rfloor \rfloor$.

Proof Outline. From the r=1 case we know that $|x| \leq \lfloor log|A| \rfloor$. Hence, we have $E_{\leq 2}(S) = \sum_{x \in S} |x| \leq \lfloor log|S| \leq l'$. Therefore we have $e_{\leq 2}(S) \leq l'$.

4.3.3 Substituting expression for rank back to get final bound

Substituting the bound for rank obtained in Theorem 3, we substitute it back in the expression in Theorem 2.

$$e_{\leq 2}(S) = \frac{1}{|S|} \sum_{x \in S} ||x|| \leq d.l'$$

where l' = |log|S|.

5 The general case for even r

5.1 Partitioning the edge set into a disjoint union of equal mutual hamming distance pairs $e_{(b,a)}(S)$

For non-negative integral a and b define

$$E_{(b,a)}(S) = \{x, y \in E_{\leq 2t}(S) : |x \setminus y| = b, |y \setminus x| = a\}$$

Now let

$$U = \{(b, a) : b \ge a, b + a \le 2t\}$$

Also let $e_{(b,a)}(S) = |E_{(b,a)}(S)|$. Now we can decompose $E_{\leq 2t}(S)$ as a disjoint union

$$E_{\leq 2t}(S) = \bigcup_{(b,a)\in U} E_{(b,a)}(S)$$

and in turn we have

$$e_{\leq 2t}(S).|S| = \sum_{(b,a)\in U} e_{(b,a)}(S)$$

5.2 $l_x \leq l$

We start off with some definitions. We define $l = \lfloor log|S| \rfloor$ and $\beta = \lfloor (\frac{d}{\log |S|})^{\frac{1}{2}}l \rfloor$. We then define $l_x = |x \cap \{\beta+1,...,d\}|$ for an $x \in S$. This intuitively represents the number of "big" elements in x. Note that the inequality $\beta^2 = dl$ follows from the definition.

Theorem 4 Let $S \subseteq \{0,1\}^d, |S| \ge 2$ be a left-compressed down set. If $x \in S$, then $l_x \le l$.

Proof Outline. We obviously have $l_x \leq |x|$ and from the r = 1 case we know that $|x| \leq |\log S|$. So the result follows for $l = |\log S|$.

5.3 Counting pairs and finding an upper bound on $e_{(b,a)}(S)$ for fixed (b,a)

We now find an upper bound on the number of pairs $\{x,y\} \in E_{(b,a)}(S)$ at a hamming distance of at most 2t. We partition the pairs into two cases: when $l_y \leq l_x$ and when $l_y > l_x$. The proofs for both are very similar so we just look at the case when $l_y \leq l_x$ for brevity.

Now fix an $x \in S$, for each $p \in 0, 1, ..., a$ we bound the number of $y \in \{0, 1\}^d = |Y|$ such that $\{x, y\} \in E_{(b,a)}(S)$ and $l_y \leq l_x$ and $|(y \setminus x) \cap \{\beta + 1, ..., d\}| = p$. By some combinatorial arguments we show that

$$|Y| \le {n-\beta-l_x \choose p} {l_x \choose p} {\beta-|x|+l_x \choose a-p} {|x| \choose b-p}$$

Now we use the inequality $l_x \leq l$ we proved earlier to say that

$$|Y| \le \binom{n}{p} \binom{l}{p} \binom{\beta}{a-p} \binom{|x|}{b-p} \le \frac{(nl)^p \cdot \beta^{a-p} \cdot |x|^{b-p}}{(p!)^2 \cdot (a-p)! \cdot (b-p)!}$$

Using Stirling's approximation and Jensen's inequality we lower bound the denominator as $(p!)^2 \cdot (a-p)! \cdot (b-p)! \ge (\frac{b+a}{4e})^{b+a}$.

Now we upper-bound the numerator using the inequalities $\beta |x| \leq nl$, $\beta^2 \leq nl$, and $|x|^2 \leq nl$. We just look at the case when b+a is even for brevity and this leads us to

$$(nl)^p.\beta^{a-p}.|x|^{b-p} \leq (nl)^p.(nl)^{\frac{a-p}{2}}.(nl)^{\frac{b-p}{2}} = (nl)^{\frac{b+a}{2}}$$

This lets us bound $e_{(b,a)}(S)$ for $l_y \leq l_x$. We get similar results when b+a is odd and when $l_y > l_x$.

For this particular case we get the following result:

Theorem 5 Let b, a be non-negative integers with $b \ge a$, $b + a \le 2log|S|$, and when b and a are both even we have

$$|x, y \in E_{(b,a)}(S) : l_y \le l_x| \le (\frac{4\sqrt{2}e}{b+a})^{b+a} \cdot (d.l)^{\frac{b+a}{2}} \cdot |S|$$

5.4 Bounding $e_{(b,a)}(S)$ for any (b,a)

Theorem 6 $\frac{e_{(b,a)}(S)}{|S|} \leq (\frac{4e}{t})^{2t} (dl)^t$ for all (b,a) in U.

 $Proof\ Outline.$ Here is the snippet from Rashtchian's original paper on how he eliminates beta.

$$e_{(b,a)}(\mathcal{A}) \leqslant \left(\frac{4\sqrt{2}e}{b+a}\right)^{(b+a)} \cdot (n\ell)^{(b+a)/2} \cdot |\mathcal{A}| + \left(\frac{4\sqrt{2}e}{b+a}\right)^{(b+a)} \cdot (n\ell)^{(b+a-2)/2} \cdot \ell\beta \cdot |\mathcal{A}|$$

$$= \left(\frac{4\sqrt{2}e}{b+a}\right)^{(b+a)} \cdot |\mathcal{A}| \cdot (n\ell)^{(b+a-2)/2} \cdot (n\ell + \ell\beta)$$

$$\leqslant 2 \cdot \left(\frac{4\sqrt{2}e}{b+a}\right)^{(b+a)} \cdot |\mathcal{A}| \cdot (n\ell)^{(b+a)/2} \quad (\text{as } \ell\beta \leqslant n\ell)$$

$$\leqslant \left(\frac{8e}{b+a}\right)^{(b+a)} \cdot |\mathcal{A}| \cdot (n\ell)^{(b+a)/2} \quad (\text{as } 2 \leqslant \sqrt{2}^{(b+a)}).$$

After this, he maximises this function over a new variable k=b+a and uses inequalities unrelated to beta to get the result.

5.5 Putting it all together

$$e_{\leq 2t}(S) \leq_{(b,a)\in U} \frac{e_{(b,a)}(S)}{|S|} \leq |U| \cdot (\frac{4e}{t})^{2t} (dl)^t \leq (\frac{8e}{t})^{2t} (dl)^t$$
 as $|U| \leq 2^{2t}$