PES University,

Department of Computer Science and Engineering UE19CS201: Digital Design and Computer Organization Boolean Fucntions

- 1. What is the largest unsigned 32-bit binary number?
- 2. What is the largest 16-bit binary number that can be represented With,
 - a) unsigned numbers?
- b) two's complement numbers? c)

sign/magnitude numbers?

- 3. What is the smallest (most negative) 16-bit binary number that can be represented with.
 - a) unsigned numbers?
- b) two's complement numbers? c)

sign/magnitude numbers?

4. A majority gate produces a TRUE output if and only if more than half of its inputs are TRUE. Complete a truth table for the three-input majority gate shown in figure

5. A three-input AND-OR (AO) gate shown in Figure below produces a TRUE output if both A and B are TRUE, or if C is TRUE. Complete a truth table for the gate.

- 6. There are 16 different truth tables for Boolean functions of two variables. List each truth table. Give each one a short descriptive name (such as OR, NAND, and so on).
- 7. How many different truth tables exist for Boolean functions of N variables?
- 8. Sketch a schematic for the two-input XOR function using only NAND gates. How few can you use?
- 9. A gate or set of gates is universal if it can be used to construct any Boolean function. For example, the set {AND, OR, NOT} is universal.
 - (a) Is an AND gate by itself universal? Why or why not? (b) Is the set {OR, NOT} universal? Why or why not?
 - (c) Is a NAND gate by itself universal? Why or why not?
- 10. Write a Boolean equation in sum-of-products canonical form for each of the truth tables

(a)			(b)				(c)				(d)				ı	(e)				ı
Α	В	Y	A	В	C	Y	A	В	\boldsymbol{C}	Y	A	В	C	D	Y	Α	В	C	D	Y
0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1
0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0
1	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0
1	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1
			1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0
			1	0	1	0	1	0	1	1	0	1	0	1	0	0	1	0	1	1
			1	1	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	1
			1	1	1	1	1	1	1	1	0	1	1	1	0	0	1	1	1	0
						•				•	1	0	0	0	1	1	0	0	0	0
											1	0	0	1	0	1	0	0	1	1
											1	0	1	0	1	1	0	1	0	1
											1	0	1	1	0	1	0	1	1	0
											1	1	0	0	0	1	1	0	0	1
											1	1	0	1	0	1	1	0	1	0
											1	1	1	0	1	1	1	1	0	0
											1	1	1	1	0	1	1	1	1	1

11. Write a Boolean equation in sum-of-products canonical form for each of the truth tables.

(a)			(b)				(c)				(d)					(e)				
Α	В	Υ	Α	В	С	Y	Α	В	С	Y	Α	В	С	D	Y	Α	В	С	D	Υ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	1	1	0	0	1	1	0	0	0	1	0	0	0	0	1	0
1	0	1	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	0
1	1	1	0	1	1	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1
			1	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0
			1	0	1	0	1	0	1	0	0	1	0	1	0	0	1	0	1	0
			1	1	0	1	1	1	0	1	0	1	1	0	1	0	1	1	0	1
			1	1	1	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1
											1	0	0	0	1	1	0	0	0	1
											1	0	0	1	0	1	0	0	1	1
											1	0	1	0	1	1	0	1	0	1
											1	0	1	1	0	1	0	1	1	1
											1	1	0	0	0	1	1	0	0	0
											1	1	0	1	0	1	1	0	1	0
											1	1	1	0	0	1	1	1	0	0
											1	1	1	1	0	1	1	1	1	0

- 12. Write a Boolean equation in product-of-sums canonical form for the truth tables in question 10.
- 13. Ben Bitdiddle will enjoy his picnic on sunny days that have no ants. He will also enjoy his picnic any day he sees a hummingbird, as well as on days where there are ants and ladybugs. Write a Boolean equation for his enjoyment (E) in terms of sun (S), ants (A), hummingbirds (H), and ladybugs (L).

Note: The problems are taken from the text Book: Digital Design and Computer Architecture, David Money Harris, Sarah L. Harris Second Edition, © 2013 Elsevier, Inc. All rights reserved