Part 0 - Prerequisites

Required software

- Windows
 - Microchip Studio (Optionally: MPLAB X)
- Mac OS/Linux
 - MPLAB X
- All OS
 - TeraTerm (Optionally: PuTTY, other serial COM interface)
 - Only AVR is required, other devices can be ignored (unchecked) during installment
 - SAM
 - PIC
 - UC3
 - dsPIC
 - etc

Basic Electronics

- A refresher for those who have been out of the game for a while
- An introduction to the uninitiated
- Not a comprehensive guide!
 - If nothing makes sense, go online and learn more!
 - Keywords
 - Kirchoff's laws
 - Ohm's law
 - Introduction to electronics
 - Try GPT UiO?
 - GPT is a good tool to be introduced to a topic
 - But some things are still best learnt the "hard way"

Electrical Circuits

- Flow of current and electric potentials can be used to do useful things
 - Analogy: Liquids in pipes and plumbing
 - Electric potential Pressure
 - Current Flow
- Maxwell's laws
 - A time varying magnetic field gives rise to electric fields, and vice versa
 - Electric fields Potential difference
 - Monopoles exist Free charges
 - Magnetic fields Current flow
 - Monopoles do not exist
- Fields beyond scope of introduction
 - Potential is measured in Volts [V] between two points
 - Current is measured in Ampere [A] in cross-section

Passive Components

- Resistor
 - Restricts current flow
 - Real component induces losses
- Capacitor
 - Stores energy in the form of electric fields
 - Lossless (in theory)
- Inductor
 - Stores energy in the form of magnetic fields
 - Lossless (in theory)

Resistor

- Value of a resistor is measured in Ohms $[\Omega]$
- Energy dissipated as heat
 - P = V * I
 - Power = Voltage * Current
- Ohms law
 - V = I * R
 - Voltage = Current * Resistance
- Equivalent series resistance
 - Sum of resistor values
- Equivalent parallel resistance
 - Inverse sum of inverse resistances

$$R_{\rm eq} = R_1 + R_2 + \cdots + R_n.$$

Stolen from Wikipedia

$$rac{1}{R_{
m eq}} = rac{1}{R_1} + rac{1}{R_2} + \cdots + rac{1}{R_n}.$$

Capacitor

- Stores charges
 - Analogy: Miniature battery
- Value of capacitor measured in Farads [F]
- Reactive
 - Acts as a lossless resistor for alternating currents
 - Measured in Ohms
 - $X = 1/(2\pi f C) [\Omega]$
 - Reactance $[\Omega] = 1/(2\pi * frequency * Capacitance)$

Stolen from Wikipedia

$$C_1$$
 C_2 C_n C_n

Inductor

- Stores energy in a magnetic field
 - Inverse of a capacitor
- Value of inductor measured in Henry [H]
- Reactive
 - $X = 2\pi f L [\Omega]$
 - Reactance = 2π * frequency * Inductance

Stolen from Wikipedia

$$L_{ ext{eq}} = L_1 + L_2 + \cdots + L_n$$

Impedance

- Complex number
 - Resistance [real]
 - Reactance [imaginary]
 - Z = R + jX [Polar form]
- Frequency dependent
 - Reactance can become dominant for high frequencies
- Ohms law can still be used

Kirchhoff's laws

- Current law
 - Sum of currents flowing into a node is equal to the sum of currents flowing out
 - Conservation of current Current can't disappear
- Voltage law
 - Sum of voltages for any closed loop is zero
 - Conservation of potential Voltages can't disappear

Using Kirchhoff and Ohm's laws

- Voltage law
 - Voltage over R1 and R2 must be equal to Vin
- Current law
 - Assuming no current flows out of Vout
 - Current through R1 and R2 must be the same
- Ohm's law
 - V = I * R
 - I = Vin (R1 + R2)
 - Vout = V_R2 = I * R2
 Vout = Vin / (R1 + R2) * R2
 Vout = (R2 / (R1 + R2)) * Vin
- This circuit is called a voltage divider

Vout = (R2 / (R1 + R2)) Vin

Sanity Check

- R1 = R2 = 220 Ohm
- R3 = 110 Ohm

- What is the
 - Voltage over R3?
 - Current through R3?
 - Current through R1

Solution on next slide

Solution

- Voltage over R3?
 - We know
 - R1 = R2 = 220 Ohm
 - R3 = 110 Ohm
 - Equivalent parallel resistance of R1 | R2 = 110 Ohm
 - We can now use the voltage divider formula to get 2.5 V over R3
- Current through R3?
 - Equivalent series resistance of (R1 | | R2) + R3 = 220 Ohm
 - Current law: Current into node = current out of node
 - I (R1||R2) = I R3
 - Ohm's law
 - V = I * R => I = V/R = 5 / 220 = 22.7 mA
- Current through R1?
 - Same resistance for R1 and R2 means current is split equally between both resistors
 - Current law: I_(R1||R2) = I_R3
 - I_R1 = I_R3 / 2 = 11.35 mA

Sanity Check

- $R1 = 1k\Omega$
- D1 has a voltage drop of 2 V

• What is the current through the diode D1?

Solution next slide

Sanity Check

- What is the current through the diode D1?
 - Voltage drop over D1 = 2 V
 - Voltage law: 5 V = V_R1 + V_D1
 - Voltage over R1 must be 5 2 = 3 V
 - Current law: Current through R1 and D1 must be equal
 - I_R1 = I_D1
 - Ohm's law: V = I * R
 - V_R1 = I_R1 * R1
 - I_R1 = I_D1 = V_R1 / R1 = 3/1000 = 3 mA

