Nem felügyelt tanulás

Pintér Balázs

2019-05-15

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Tartalom

- Bevezetés
- - Hard clustering k-means
 - Soft clustering témamodellek
- - Kovariancia, korreláció
 - Főkomponens analízis

Felügyelt tanulás – osztályozás

Felügyelt tanulás – regresszió

Nem felügyelt tanulás – klaszterezés

Nem felügyelt tanulás

- Felügyelt tanulás: címkézett adatokból tanulunk valamilyen függvényt
- Más megközelítések
 - Nem felügyelt tanulás
 - 2 Semi-supervised learning
 - 3 Megerősítéses tanulás
 - 4 Evolúciós algoritmusok
 - 5 Neuroevolúció
 - http://www.youtube.com/watch?v=qv6UVOQ0F44

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Példa – eloszlás alapú klaszterezés

Példa – eloszlás alapú klaszterezés

Feladat

- Úgy csoportosítunk dolgokat, hogy a hasonlóak egy csoportba kerüljenek
 - Klaszteren belül minél hasonlóbbak
 - Klaszterek között minél kevésbé hasonlóak
- A dolgok általában \mathbb{R}^n -beli (vagy gráfbeli) pontok, pl.:
 - Ügyféladatok piacszegmentáláshoz
 - Dokumentumok szózsákkal modellezve, témák meghatározásához,keresési találatok összegzésére
 - Szavak kontextusai, jelentések indukálásához
 - Szerverek adatai (melyikek aktívak általában együtt)
- Egy csoportot egy klaszternek hívunk

Fajtái

- Lehet hard vagy soft clustering
 - Hard clustering: egy adatpont csak egy klaszterben szerepelhet
 - Soft clustering: minden adatpontra megvan, hogy mennyire tartozik az egyes klaszterekbe
- Átmenetek
 - Átfedő klaszterezés: egy elem több klaszterbe is tartozhat, de vagy beletartozik, vagy nem
 - Hierarchikus klaszterezés: a klasztereket hierarchiába szervezzük, a gyerek klaszterbe tartozó elemek a szülőbe is beletartoznak

Hierarchikus klaszterezés

Példa természetes klasztereződésre – azonos értelmű szavak jelentései (t-SNE)

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Példa

Feladat

- Adott: k, a klaszterek száma
- Minden klasztert a középpontjával reprezentálunk
 - Centroid, a klaszter pontjainak átlaga
- A feladat: keressük meg a k klaszter középpontot és az adatpontokat rendeljük ezekhez hozzá úgy, hogy a klaszteren belüli, középponttól számított távolságnégyzeteket minimalizáljuk
 - Ekvivalens a páronkénti távolságnégyzetek minimalizálásával
 - NP-nehéz, így approximáljuk
 - Csak lokális optimumot találunk
 - Többször futtathatjuk különböző véletlen inicializációkkal

k-means feladat

$$\arg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 = \arg\min_{\mathbf{S}} \sum_{i=1}^k \frac{1}{2|S_i|} \sum_{\mathbf{x}, \mathbf{y} \in S_i} \|\mathbf{x} - \mathbf{y}\|^2$$

- Kezdetben adott k és az adatpontok \mathbb{R}^n -ben
- lacksquare Inicializáljuk az $m_1^{(1)}, m_2^{(1)}, \ldots, m_k^{(1)}$ centroidokat
 - lacktriangle Véletlenszerűen kiválasztunk k adatpontot, vagy
 - Minden adatpontot véletlenszerűen egy klaszterbe sorolunk és kiszámoljuk a centroidokat
- Váltogatjuk a következő két lépést, amíg nem konvergálunk
 - 1 Minden adatpontot a legközelebbi centroidhoz rendelünk:

$$S_i^{(t)} = \left\{ x_p : \left\| x_p - m_i^{(t)} \right\|^2 \le \left\| x_p - m_j^{(t)} \right\|^2 \, \forall j, 1 \le j \le k \right\}$$

2 Kiszámítjuk az új centroidokat

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

Problémák – túl kicsi k-t adunk meg

Problémák – túl nagy k-t adunk meg

Problémák – rossz inicializáció

Problémák – sűrűség alapúak a klaszterek

Python példák

- Kép kvantálás: http://scikit-learn.org/stable/auto_ examples/cluster/plot_color_quantization.html
- Dokumentumok klaszterezése: https://scikit-learn.org/0.19/auto_examples/text/ document_clustering.html

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Témamodellek

- Soft clusteringre példa: témamodellek
 - Egy dokumentum mennyire szól az egyes témákról
 - Egy témába milyen szavak tartoznak?
 - Pl. Latent Semantic Analysis (SVD)

Latent Semantic Analysis

Kiterjesztés csoportritka regularizációval

Példa: kakukktojás játék

-				
Egybetartozó szavak				Kakukktojás
cao	wei	liu	emperor	king
superman	clark	luthor	kryptonite	batman
devil	demon	hell	soul	body
egypt	egyptian	alexandria	pharaoh	bishop
singh	guru	sikh	saini	delhi
language	dialect	linguistic	spoken	sound
mass	force	motion	velocity	orbit
voice	speech	hearing	sound	view
athens	athenian	pericles	corinth	ancient
data	file	format	compression	image
function	problems	polynomial	equation	physical

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Miért dimenziócsökkentünk?

- Az adatok valójában alacsonyabb dimenziósak, csak magasabb dimenziós térben vannak
- Láttatjuk az adatokat
- Eltüntetjük a zajt
- Csökkentjük a tanulási feladat bonyolultságát (jobb eredmények, kisebb futási idő, ...)
- A csökkentett dimenziójú adatokon új törvenyszerűségeket, sejtéseket láthatunk meg
- A probléma megoldásához kisebb dimenziós és/vagy sűrű reprezentációra van szükségünk

Példa: Swiss roll

Példa: A betű forgatása

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Kovariancia, korreláció

Kovariancia, korreláció

Kovariancia, (Pearson) korreláció

- Azt mérik, hogy X, Y val. változók mennyire mozognak együtt
- Lineáris kapcsolatot mutatnak
- Cov(X,Y) = E[(X E[X])(Y E[Y])]
- Pl.: Pozitív: Ha X > E(X), akkor Y > E(Y), ha X < E(X), akkor Y < E(Y)
- Cov(X, Y) = E[XY] E[X]E[Y]
- Korreláció: "Normalizált" kovariancia, -1 és 1 között
- $\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$

$$r_{xy} = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2 \sum\limits_{i=1}^{n} (y_i - \bar{y})^2}}$$

Mind a négy adathalmaz korrelációs együtthatója 0.816

Kovariancia mátrix

- X egy vektor, aminek az elemei val. változók
- A kovariancia mátrix elemei X_i, X_j közti kovarianciák

$$\blacksquare \ \mu_i = \mathrm{E}(X_i)$$

$$\begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \end{bmatrix} \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \end{bmatrix} \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}$$

- A főátlóban a szórások vannak.
- Ekvivalens: $\Sigma = \mathrm{E}(\mathbf{X}^{\top}\mathbf{X}) \mu^{\top}\mu$

Tartalom

- 1 Bevezetés
- 2 Klaszterezés
 - Hard clustering k-means
 - Soft clustering témamodellek
- 3 Dimenziócsökkentés
 - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Példa - 2d normáleloszlás

Főkomponens analízis

- Principal component analysis (PCA)
- Demo: http://setosa.io/ev/principal-component-analysis/
- Az adathalmazt egy új koordinátarendszerben ábrázoljuk, a tengelyek merőlegesek
- Az adathalmaz vetítései közül a legnagyobb szórású az első tengelyen (főkomponensen) van
- A második legnagyobb szórású a második főkomponensen, ...
- Új változók/adatok: a főkomponensekre vetítjük le az eredeti változókat. Ezek már korrelálatlanok
- Dimenziócsökkentés: eldobjuk azokat a tengelyeket (és koordinátákat), amiken kicsi a szórás

Főkomponens analízis

- **X** $\in \mathbb{R}^{n \times p}$: adathalmaz, egy sor egy adatpont
- $\mathbf{t}_{(i)} = (t_1, \dots, t_l)_{(i)}$: az adatpontok az új koordinátarendszerbe transzformálva $\mathbf{w}_{(k)} = (w_1, \dots, w_p)_{(k)}$ -val

$$t_{k(i)} = \mathbf{x}_{(i)} \cdot \mathbf{w}_{(k)}$$
 for $i = 1, \dots, n$ $k = 1, \dots, l$

Szórás maximalizálása

$$\mathbf{w}_{(1)} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \sum_{i} \left(t_{1} \right)_{(i)}^{2} \right\} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \sum_{i} \left(\mathbf{x}_{(i)} \cdot \mathbf{w} \right)^{2} \right\}$$

Főkomponens analízis

Ugyanez mátrixosan:

$$\mathbf{w}_{(1)} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \|\mathbf{X}\mathbf{w}\|^2 \right\} = \operatorname*{arg\ max}_{\|\mathbf{w}\|=1} \left\{ \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right\}$$

■ Mivel **w** egységvektor:

$$\mathbf{w}_{(1)} = \operatorname{arg\ max} \left\{ rac{\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\mathbf{w}^T \mathbf{w}}
ight\}$$

- Ez a Rayleigh-hányados, a legnagyobb lehetséges érték az X^TX legnagyobb sajátértéke lesz, ahol w a hozzá tartozó sajátvektor
- lacksquare A többi komponensre is így van ightarrow a főkomponensek az lacksquare X sajátvektorai

Főkomponens analízis – algoritmus

- Az X mátrixban vannak az adataink
- Nulla átlagúra hozzuk az adatokat (kivonjuk az átlagot)
- lacktriangle Kiszámoljuk a lacktriangle lacktriangle X kovariancia mátrixot
- Meghatározzuk ennek a mátrixnak a sajátértékeit, és a sajátvektorait
- A sajátvektorok a főkomponensek, a belőlük álló bázis az új koordinátarendszer
- A legnagyobb sajátértékhez tartozó főkomponens a legnagyobb szórású, és így tovább
- Dimenziócsökkentés: csak a k legnagyobb sajátértékű főkomponenst tartjuk meg

PCA és SVD

SVD

$$X = U\Sigma W^T$$

PCA SVD-vel

$$\mathbf{X}^{T}\mathbf{X} = \mathbf{W}\mathbf{\Sigma}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{W}^{T}$$
$$= \mathbf{W}\mathbf{\Sigma}^{T}\mathbf{\Sigma}\mathbf{W}^{T}$$
$$= \mathbf{W}\mathbf{\hat{\Sigma}}^{2}\mathbf{W}^{T}$$

■ **W**-ben már **X**^T**X** sajátvektorai vannak. A szinguláris értékek a sajátértékek négyzetgyökei.

A PCA is lineáris

Python példák

A feature scaling fontossága: http://scikit-learn.org/stable/auto_examples/ preprocessing/plot_scaling_importance.html

Tartalom

- - Hard clustering k-means
 - Soft clustering témamodellek
- - Kovariancia, korreláció
 - Főkomponens analízis
- 4 Autoenkóderek

Autoenkóderek

Autóenkóderek

Egyszerű autóenkóder

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2 = \|\mathbf{x} - \sigma'(\mathbf{W}'(\sigma(\mathbf{W}\mathbf{x} + \mathbf{b})) + \mathbf{b}')\|^2$$

- Ez az egyszerű autoenkóder a PCA alterébe projektál
- Flexibilis, sokféle variáció létezik
 - Denoising autoencoder: zajos inputból kell zajtalan outputot előállítani
 - Sparse autoencoder: csak néhány egység lehet aktív a rejtett reprezentációban
 - VAE: Egy valószínűségi modellt feltételez, a poszterior eloszlást approximálja
- Sokszor fontosak egy felügyelt mély háló előtanításában
- https://transcranial.github.io/keras-js/#/mnist-vae

Köszönöm a figyelmet!

Köszönöm a figyelmet!