

Sleep disrupts high-level speech parsing despite significant basic auditory processing

Shiri Makov^{1,2}, Omer Sharon¹, Nai Ding³, Michal Ben-Shachar^{2,4}, Yuval Nir^{1,5,6}*, Elana Zion Golumbic²*

(*=Shared senior authorship)

¹ Sagol School of Neuroscience, Tel Aviv University, Israel; ² Gonda Center for Brain Research, Bar-Ilan University, Israel; ³ College of Biomedical Engineering and Instrument Sciences, Zhejiang University, China; ⁴ Department of English Literature and Linguistics, Bar Ilan University, Israel; ⁵ Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel; ⁶ Functional Neurophysiology and Sleep Research Lab, Tel-Aviv Sourasky Medical Center, Israel.

BACKGROUND

The extent to which speech processing persists during sleep remains unclear.

Does the sleeping brain identify words in a stream of continuous speech? Does it further integrate them into phrases? Sentences?

DESIGN

N=21 (10 females, mean age 28.2±4.0)

Full night sleep studies.

Passive listening, no task.

High-density **EEG** (256 channels, EGI with conductive gel).

DISCUSSION

During both REM and non-REM sleep:

- Basic acoustic traits are processed.
- High order processing is severely degraded.

Future research may use the CHT paradigm to study other unresponsive states, clinical populations, children, etc.