Self-Assessment Quiz: Implicit Differentiation and Chain Rule

Ungraded Quiz - For Practice and Understanding

Q1. Find $\frac{dy}{dx}$ if $y^2 + x^2 = 25$.

- (a) $\frac{x}{y}$
- (b) $-\frac{x}{y}$
- (c) $\frac{y}{x}$
- (d) $-\frac{y}{x}$

Q2. For the function $x^2 + xy + y^2 = 7$, find $\frac{dy}{dx}$.

- (a) $\frac{-2x-y}{x+2y}$
- (b) $\frac{-2y x}{x + 2y}$
- (c) $\frac{2x+y}{x-2y}$
- (d) $\frac{2y+x}{2x+y}$

Q3. If $\sin(xy) = x$, find $\frac{dy}{dx}$.

- (a) $\frac{1 y\cos(xy)}{x\cos(xy)}$
- (b) $\frac{\cos(xy)}{y-x}$
- (c) $\frac{1 y\cos(xy)}{x\cos(xy)}$
- (d) $\frac{\cos(xy)}{y}$

Q4. Differentiate $y = \sin(3x^2)$ using the chain rule.

1

- (a) $6x\cos(3x^2)$
- (b) $3x^2\cos(3x^2)$
- (c) $6x \sin(3x^2)$
- (d) $\cos(3x^2)$

Q5. If $y = e^{x^3 + 2x}$, find $\frac{dy}{dx}$.

- (a) $(3x^2+2)e^{x^3+2x}$
- (b) $e^{x^3+2x}(x^3+2x)$
- (c) $3x^2e^x$
- (d) e^{x^3+2x}

Q6. Differentiate $y = \ln(\sin x)$ with respect to x.

- (a) $\cot x$
- (b) $\csc x$
- (c) $\tan x$
- (d) $\cot x \csc x$

Q7. If $y = (x^2 + 1)^5$, find $\frac{dy}{dx}$.

- (a) $5(x^2+1)^4$
- (b) $10x(x^2+1)^4$
- (c) $2x(x^2+1)^5$
- (d) $x(x^2+1)^4$

Q8. For $x^3 + y^3 = 6xy$, find $\frac{dy}{dx}$.

- (a) $\frac{2y x^2}{y^2 2x}$
- (b) $\frac{2y x}{y 2x}$
- (c) $\frac{2y x^2}{2x y^2}$
- (d) $\frac{2x y}{2y x}$

Q9. If $y = \tan^{-1}(x^2)$, find $\frac{dy}{dx}$.

- (a) $\frac{1}{1+x^4}$
- (b) $\frac{2x}{1+x^4}$
- (c) $\frac{2x}{1-x^4}$
- (d) $\frac{x^2}{1+x^4}$

Q10. Find $\frac{dy}{dx}$ if $e^y + y = x$.

(a) $\frac{1}{1 + e^y}$

(b)
$$\frac{e^y}{1+e^y}$$

(c)
$$e^y(1+y)$$

(d)
$$\frac{1}{1 - e^y}$$

Q11. The chain rule is used when:

- (a) A function is a product of two variables
- (b) A function is a composition of two or more functions
- (c) Both functions are independent
- (d) Functions are constant

Q12. For $y = \sin^{-1}(3x^2)$, find $\frac{dy}{dx}$.

(a)
$$\frac{6x}{\sqrt{1-9x^4}}$$

(b)
$$\frac{3x}{\sqrt{1-9x^4}}$$

(c)
$$\frac{6x}{\sqrt{1+9x^4}}$$

(d)
$$\frac{6x^2}{\sqrt{1-9x^4}}$$

Answers (for self-check):

$$1(b),\,2(a),\,3(a),\,4(a),\,5(a),\,6(a),\,7(b),\,8(c),\,9(b),\,10(a),\,11(b),\,12(a)$$