Teaching Computers to Validate Themselves

Andrew DeOrio

<u>awdeorio@umich.edu</u> andrewdeorio.com

Five worst times for computers to fail

5. Using your credit card

Microsoft Windows

available.

- 4. Submitting a paper
- 3. Automat
- 2. Missile d
- 1. Giving a

Trends in today's processors

45nm

32nm

22nm

14nm

Shrinking transistor size

Increasing cores and complexity

waning reliability

verification challenges

Tilera TILE-Gx72

Intel Pentium4

AMD Opteron

Intel Core i7

1 core, 2000 2 cores, 2005

6 cores, 2010

72 cores, 2013

Today's multi-core / SoC

- Many IPs communicate through interconnect
- Recent system → new verification challenges

Tomorrow's multi-core / SoC

Escaped errors in final products

^{*}Data compiled from Intel product errata documents

A problem has been detected and Windows has been shut down to prevent damage to your computer.

The problem seems to be caused by the following file: SPCMDCON.SYS

PAGE_FAULT_IN_NONPAGED_AREA

If this is the first time you've seen this Stop error screen, restart your computer. If this screen appears again, follow these steps:

check to make sure any new hardware or software is properly installed.

If this is a 1ew install 90, ask your hardware or software manufacturer for any windows in 190 windows crashes

or software. Disable of remove any newly installed hardware or software. Disable residuentos HWV errors dowing. If you need to us a rest of select Advanced Startup Options, and then select Safe Mode.

[Nightingale, et al. 2011]

Technical information

*** STOP: 0x00000050 (0xFD3094C2,0x00000001,0xFBFE7617,0x00000000)

""" SPCMDCON.SYS - Address FBFE7617 base at FBFE5000, DateStamp 3d6dd67c

Impact of errors

Functional bugs

Electrical failures

Reviews News Download CNETTY How To Another day, another microprocessor delay

Transistor faults

LAPTOPS | DESKTOPS | TABLETS | PHONES | SOFTWARE | CAMERAS | HDTVS | PRINTERS

Intel's Sandy Bridge Glitch: 7 Things You Need to Know

2011

2007

2014

Future impact of errors

 The impact of errors will get worse as we rely more on computers

- Wearables
- Self-driving cars
- Internet of things

Security depends on hardware correctness!

Verification today

Verification today

How errors are addressed

My research

Ensure correct operation
of digital designs
throughout the lifetime of the chip

My research

 Breadth of work across the verification spectrum

 Depth of work in several areas, such as post-si validation

Post-silicon validation

Pre-silicon Post-silicon Runtime

- Goal: locate bug
- + Fast prototypes
- + High coverage
- + Test full system
- + Find deep bugs

- Poor observability
- Slow off-chip transfer
- Noisy
- Intermittent bugs

The most challenging post-silicon bugs

- A same test does not expose the bug in every run
- Each run exhibits different behaviors

Debugging intermittent failures

- Localize failures
 - Time (cycle) and space (signals)
- Tolerate non-repeatable executions
 - Statistical machine learning approach
- Scalable, adaptable to many HW subsystems

Post-silicon and credit cards

Post-silicon and credit cards

card

transaction

- Goal: build a statistical model from examples
- Use model to make predictions for new examples

- Each example described by features
 - Merchant, \$ amount, location, etc.

- Learn correct behavior using training data
 - Positive labeled examples in this application

 Clustering: a machine learning algorithm that groups examples with similar characteristics

One-class learning requires only a single label

Good for anomaly detection

- Overfitting: model is too specific
 - Everything looks like an anomaly
- Underfitting: model is too general
 - Nothing looks like an anomaly

Features for post-silicon tests

 What are some possible features that could be used to describe a post-silicon test execution?

Features

- Goal: summarize signal value
- Encodings (hamming, CRC, etc.)
 - Large hardware
 - Small change in input -> large change in output
- Counting schemes (time@1, toggle count)

Features

Learning clusters

Searching for anomalies

Searching for anomalies

Outside clusters: bug found

signal A signal B

Clustering in X,000 dimensions

Each signal is a dimension

- Circular clusters become hyper-spheres
- High dimensionality is a challenge

In practice:

- Cap #signals in one clustering set (500)
- Group signals by module(s) (100-500 signals)
- Apply clustering to each group

Experimental setup

Bug injection

Bug	Description
PCX_gnt SA	Stuck-at in PCX grant
Xbar elect	Electrical error in crossbar
BR fxn	Functional bug in branch logic
MMU fxn	Functional bug in memory controller
PCX_atm SA	Stuck-at in PCX atomic grant
PCX fxn	Functional bug in PCX
XBar combo	Combined electrical errors in Xbar/PCX
MCU combo	Combined electrical errors in mem/PCX
MMU combo	Combined functional bugs in MMU/PCX
EXU elect	Electrical error in execute unit

Bug detection on OpenSPARC T2

Bug

Number of clusters

Exercise: where does overfitting occur? Underfitting?

Bug signal vs. noise

Impact

- Improved diagnosis of difficult bugs
- Improved verification efficiency

Future trends in verification

- Increasing highspeed verification
- Increasing data generated during verification

functional bugs electrical

SW Simulation 1-10 cycles/s

Acceleration 10-100k cycles/s

Emulation 10-100M cycles/s

Silicon 1G cycles/s

Future trends in verification

- Increasing highspeed verification
- Increasing data generated during verification

SW Simulation 1-10 cycles/s

Acceleration 10-100k cycles/s

Research vision

Data science for digital design

Research vision

Correctness is the driving force behind my research

 My research brings a data science approach to electronic design automation

 Use machine learning techniques to enable verification to keep up with growing design complexity

Selected publications

Conclusion

 With a data science approach to electronic design automation, we can teach computers to verify themselves

