Grundbegriffe der Informatik - Tutorium

- Wintersemester 2011/12 -

Christian Jülg

http://gbi-tutor.blogspot.com

30. November 2011

Quellennachweis & Dank an:
Martin Schadow, Susanne Dinkler, Tobias Dencker, Sebastian Heßlinger,
Joachim Wilke

Übersicht

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationen
- Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- Muffman-Codes
- Abschluss

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- **6** Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Sprachdefinition von C

Addition

Mithilfe der BNF bzw. EBNF, einer erweiterten Schreibweise von Kontextfreien Grammatiken lässt sich z.B. die Syntax von Programmiersprachen darstellen.

Sprachdefinition von C

0

Addition Syntax **Syntax Diagrams** additive-expression multiplicative-expression additive-operator **BNF** additive-expression ::= <additive-expression> <additive-operator> <multiplicative-expression> ::= <multiplicative-expression> **FRNF** additive-expression ::= <multiplicative-expression> (<additive-operator> <multiplicative-expression>) * Form additive-operator → addition-operator | subtraction-operator addition-operator subtraction-operator

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Aufgabenblatt 5

Blatt 5

• Abgaben: 23 / 26

Punkte: Durchschnitt 15,7 von 20

häufige Fehler...

5.3: wenn ein Baum gefordert ist, zeichnet auch einen

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Aufgabenblatt 6

Blatt 6

- Abgabe: 02.12.2011 um 12:30 Uhr im Untergeschoss des Infobaus
- Punkte: maximal 19

Themen

- Relationen
 - Konkatenation
 - Identität
- Homomorphismen
- Huffman-Codes

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationen
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Relationen anschaulich

Durch Relationen werden Elemente einer oder mehrerer Mengen in Beziehung zueinander gesetzt:

• praktisch jede alltägliche Aussage enthält Relationen

Relationen anschaulich

Durch Relationen werden Elemente einer oder mehrerer Mengen in Beziehung zueinander gesetzt:

- praktisch jede alltägliche Aussage enthält Relationen
- Beispiel: 'Das Haus hat vier Außenwände'

Relationen anschaulich

Durch Relationen werden Elemente einer oder mehrerer Mengen in Beziehung zueinander gesetzt:

- praktisch jede alltägliche Aussage enthält Relationen
- Beispiel: 'Das Haus hat vier Außenwände'

Wozu brauchen wir das?

In der Informatik werden Relationen zur Modellierung von Systemen benötigt:

Relationen anschaulich

Durch Relationen werden Elemente einer oder mehrerer Mengen in Beziehung zueinander gesetzt:

- praktisch jede alltägliche Aussage enthält Relationen
- Beispiel: 'Das Haus hat vier Außenwände'

Wozu brauchen wir das?

In der Informatik werden Relationen zur Modellierung von Systemen benötigt:

 Relationen sind Grundlage der verschiedenen Diagramme der Unified Modeling Language

Relationen anschaulich

Durch Relationen werden Elemente einer oder mehrerer Mengen in Beziehung zueinander gesetzt:

- praktisch jede alltägliche Aussage enthält Relationen
- Beispiel: 'Das Haus hat vier Außenwände'

Wozu brauchen wir das?

In der Informatik werden Relationen zur Modellierung von Systemen benötigt:

- Relationen sind Grundlage der verschiedenen Diagramme der Unified Modeling Language
- die graphische Darstellung von Relationen ergibt Graphen

Relationen mathematisch

Definitionen - aus dem 1. Tutorium

- Das karthesische Produkt zweier Mengen ist definiert als $A \times B := \{(a, b) | a \in A, b \in B\}$
- $R \subseteq A \times B$ heißt Relation

Relationen mathematisch

Definitionen - aus dem 1. Tutorium

- Das karthesische Produkt zweier Mengen ist definiert als $A \times B := \{(a, b) | a \in A, b \in B\}$
- $R \subseteq A \times B$ heißt Relation

Definition

• Eine Relation R bezieht sich auf zwei Grundmengen M_1, M_2 und es gilt $R \subseteq M_1 \times M_2$.

Relationen mathematisch

Definitionen - aus dem 1. Tutorium

- Das karthesische Produkt zweier Mengen ist definiert als $A \times B := \{(a, b) | a \in A, b \in B\}$
- $R \subseteq A \times B$ heißt Relation

Definition

- Eine Relation R bezieht sich auf zwei Grundmengen M_1, M_2 und es gilt $R \subseteq M_1 \times M_2$.
- Eine Relation R heißt homogen, wenn $M_1 = M_2$ gilt.

Definition: Produkt

Sind $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen, dann heißt

Definition: Produkt

Sind $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen, dann heißt

• $S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}$ das Produkt der Relationen S und R

Definition: Produkt

Sind $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen, dann heißt

- $S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}$ das Produkt der Relationen S und R
- $Id_M = \{(x,x) \mid x \in M\}$ heißt die identische Abbildung

Definition: Produkt

Sind $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen, dann heißt

- $S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}$ das Produkt der Relationen S und R
- $Id_M = \{(x,x) \mid x \in M\}$ heißt die *identische Abbildung*

Definition: Potenz

Sei $R \subseteq M \times M$ eine *binäre* Relation, dann heißt

• Ri die i-te Potenz von R und ist definiert als:

Definition: Produkt

Sind $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen, dann heißt

- $S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}$ das Produkt der Relationen S und R
- $Id_M = \{(x,x) \mid x \in M\}$ heißt die *identische Abbildung*

Definition: Potenz

Sei $R \subseteq M \times M$ eine *binäre* Relation, dann heißt

- Ri die i-te Potenz von R und ist definiert als:
 - $R^0 = Id_M$

Definition: Produkt

Sind $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen, dann heißt

- $S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}$ das Produkt der Relationen S und R
- $Id_M = \{(x,x) \mid x \in M\}$ heißt die *identische Abbildung*

Definition: Potenz

Sei $R \subseteq M \times M$ eine *binäre* Relation, dann heißt

- Ri die i-te Potenz von R und ist definiert als:
 - $R^0 = Id_M$
 - $\forall i \in \mathbb{N}_0 : R^{i+1} = R \circ R^i$

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 6 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

mögliche Attribute homogener Relationen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzsymmetrisch Aus xRy folgt yRx

mögliche Attribute homogener Relationen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzsymmetrisch Aus xRy folgt yRx

Gelten alle diese Eigenschaften, handelt es sich um eine Äquivalenzrelation.

mögliche Attribute homogener Relationen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRz

symmetrisch Aus xRy folgt yRx

Gelten alle diese Eigenschaften, handelt es sich um eine Äquivalenzrelation.

Definition

Die sogenannte reflexiv-transitive Hülle einer Relation R ist

•
$$R^* = \bigcup_{i=0}^{\infty} R^i$$

mögliche Attribute homogener Relationen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRz

symmetrisch Aus xRy folgt yRx

Gelten alle diese Eigenschaften, handelt es sich um eine Äquivalenzrelation.

Definition

Die sogenannte reflexiv-transitive Hülle einer Relation R ist

•
$$R^* = \bigcup_{i=0}^{\infty} R^i$$

Sie ist die Erweiterung der Relation um die Paare, die notwendig sind um Reflexivität und Transitivität herzustellen.

- $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.
- $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$
- $R = \{(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)\} \cup \{dazu sym. Tupel\}$

- $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.
- $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$
- $R = \{(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)\} \cup \{dazu sym. Tupel\}$
- dann ist $R^0 = \{(Martin, Martin), ..., (Holger, Holger)\}$
- und $R^1 = R$ und

- $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.
- $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$
- $R = \{(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)\} \cup \{dazu sym. Tupel\}$
- dann ist $R^0 = \{(Martin, Martin), ..., (Holger, Holger)\}$
- und $R^1 = R$ und
- R² = {(Martin, Nina), (Martin, Gertrud), (Martin, Martin), (Lars, Nina), (Lars, Lars), (Nina, Gertrud), (Nina, Martin), (Nina, Nina), (Nina, Lars), (Katja, Katja), (Katja, Holger), (Gertrud, Gertrud), (Gertrud, Martin), (Gertrud, Nina), (Holger, Holger), (Holger, Katja)}
- $R^* = ?$

- $R \subseteq M \times M$ sei die "ist-befreundet-mit"-Relation.
- $M = \{Gertrud, Holger, Lars, Katja, Martin, Nina\}$
- $R = \{(Martin, Holger), (Lars, Katja), (Nina, Holger), (Gertrud, Holger), (Katja, Nina)\} \cup \{dazu sym. Tupel\}$
- dann ist $R^0 = \{(Martin, Martin), ..., (Holger, Holger)\}$
- und $R^1 = R$ und
- R² = {(Martin, Nina), (Martin, Gertrud), (Martin, Martin), (Lars, Nina), (Lars, Lars), (Nina, Gertrud), (Nina, Martin), (Nina, Nina), (Nina, Lars), (Katja, Katja), (Katja, Holger), (Gertrud, Gertrud), (Gertrud, Martin), (Gertrud, Nina), (Holger, Holger), (Holger, Katja)}
- $R^* = ?$ Ist R^* eine Äquivalenzrelation?

Relationen graphisch

Ihr seid dran...

- Überlegt euch, wie eine Relation graphisch aussehen könnte. Zeigt ein Beispiel mit mindestens 4 verschiedenen Elementen
- Wie sieht nun graphisch die reflexiv-transitive Hülle aus?

Relationen graphisch

Ihr seid dran...

- Überlegt euch, wie eine Relation graphisch aussehen könnte.
 Zeigt ein Beispiel mit mindestens 4 verschiedenen Elementen
- Wie sieht nun graphisch die reflexiv-transitive Hülle aus?

mögliche Darstellung

- Relation als Pfeile von Element zu Element
- Relation als Matrix, d.h. wenn xRy ist Feld [x,y] == 1

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Zahlensysteme umrechnen

Was ist das?

- Wir verwenden normalerweise das Dezimalsystem mit den Ziffern 0 bis 9
- Es gibt aber noch weitere Zahlensysteme, wie das Dualsysteme (mit den Ziffern 0 und 1)
- Hexadezimalsystem (mit den Ziffern von 0-9 und den Buchstaben A-F)

Darstellung

Eine Darstellung einer Zahl im Dualsystem ist wie folgt aufgebaut: $z_m z_{m-1} \dots z_0, z_{-1} \dots z_{-n}$ mit $(m, n \in \mathbb{N}_0 z_i \in \{0, 1\})$

Zahlensysteme umrechnen

0-9											
Dez	0	1	2	3	4	5	6	7	8 1000	9	
Bin	0	1	10	11	100	101	110	111	1000	1001	
Oct	0	1	2	3	4	5	6	7	10 8	11	
Hex	0	1	2	3	4	5	6	7	8	9	

Zahlensysteme

Umrechnung

Wert einer Dualzahl im Dezimalsystem:

$$Z = \sum_{i=-n}^{m} z_i * 2^i$$

Zahlensysteme

Umrechnung

Wert einer Dualzahl im Dezimalsystem:

$$Z = \sum_{i=-n}^{m} z_i * 2^i$$

Wert einer ganzzahligen Dezimalzahl z im Dualsystem:

- **1** Finde das größte n mit $2^n \le z$
- ② Notiere 1, setze $z = z 2^n$ und setze i = n 1.
- **3** Teste, ob $2^i \le z$
 - Wenn ja, dann notiere 1, setze $z = z 2^i$ und setze i = i 1
 - Wenn nein, dann notiere 0 und setze i = i 1
- Wiederhole Schritt 3 solange bis i=0

Zahlensysteme

Umrechnung

Wert einer Dualzahl im Dezimalsystem:

$$Z = \sum_{i=-n}^{m} z_i * 2^i$$

Wert einer ganzzahligen Dezimalzahl z im Dualsystem:

- **1** Finde das größte n mit $2^n \le z$
- 2 Notiere 1, setze $z = z 2^n$ und setze i = n 1.
- **3** Teste, ob $2^i \le z$
 - Wenn ja, dann notiere 1, setze $z = z 2^i$ und setze i = i 1
 - Wenn nein, dann notiere 0 und setze i = i 1
- Wiederhole Schritt 3 solange bis i=0

Ihr seid dran

Wandle 4242_{10} ins Dual-, Oktal- und Hexadezimalsystem um. Ein kleiner Tipp: 4 Stellen im Dualsystem lassen sich zu einer Stelle im Hexadezimalssystem zusammenfassen. $(00010001)_2 = (11)_{16}$

Ihr seid dran...

Was macht der Algorithmus?

$$x \leftarrow 0$$

for $i \leftarrow 0$ to $|w| - 1$ do
 $x \leftarrow 2x + num_2(w(i))$

Analyse

- Was macht diese Algorithmus? Was sind wohl die Ein- und Ausgaben?
- Was ist eine mögliche Schleifeninvariante?
 TIPP: Ihr könnt den Code auch erweitern um eine geeignete Invariante zu finden.

<u>Ihr seid dran...</u>

Was macht der Algorithmus?

```
//Eingabe: w \in \mathbb{Z}_2^*

x \leftarrow 0

for i \leftarrow 0 to |w| - 1 do

x \leftarrow 2x + num_2(w(i))

od //am Ende: x = Num_2(w)
```

Analyse

- Was macht diese Algorithmus? Was sind wohl die Ein- und Ausgaben?
- Was ist eine mögliche Schleifeninvariante?
 TIPP: Ihr könnt den Code auch erweitern um eine geeignete Invariante zu finden.

Ihr seid dran...

Was macht der Algorithmus?

```
//Eingabe: w \in \mathbb{Z}_2^*
x \leftarrow 0
v \leftarrow \epsilon

for i \leftarrow 0 to |w| - 1 do
x \leftarrow 2x + num_2(w(i))
v \leftarrow v \cdot w(i)
od //am Ende: x = Num_2(w) \land v = w
```

Analyse

 Was ist eine mögliche Schleifeninvariante?
 TIPP: Ihr könnt den Code auch erweitern um eine geeignete Invariante zu finden.

Lsg.:
$$x = Num_2(v)$$

- Beispiel: C
- 2 Aufgabenblatt 5
- Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- **6** Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Warum macht man Übersetzungen?

Lesbarkeit:

- Lesbarkeit: Manchmal führen Übersetzungen zu kürzeren und besser lesbaren Texten.
 - A3 ist leichter erfassbar als 10100011
- Kompression:

- Lesbarkeit: Manchmal führen Übersetzungen zu kürzeren und besser lesbaren Texten.
 - A3 ist leichter erfassbar als 10100011
- Kompression: Manchmal führen Übersetzungen zu kürzeren Texten, die weniger Platz benötigen. Und zwar *ohne* zu einem größeren Alphabet überzugehen.
- Verschlüsselung:

- Lesbarkeit: Manchmal führen Übersetzungen zu kürzeren und besser lesbaren Texten.
 - A3 ist leichter erfassbar als 10100011
- Kompression: Manchmal führen Übersetzungen zu kürzeren Texten, die weniger Platz benötigen. Und zwar ohne zu einem größeren Alphabet überzugehen.
- Verschlüsselung: Manchmal will man Texte für andere unleserlich machen
- Fehlererkennung und Fehlerkorrektur:

- Lesbarkeit: Manchmal führen Übersetzungen zu kürzeren und besser lesbaren Texten.
 - A3 ist leichter erfassbar als 10100011
- Kompression: Manchmal führen Übersetzungen zu kürzeren Texten, die weniger Platz benötigen. Und zwar *ohne* zu einem größeren Alphabet überzugehen.
- Verschlüsselung: Manchmal will man Texte für andere unleserlich machen
- Fehlererkennung und Fehlerkorrektur: Man kann Texte durch Übersetzung derart länger machen, dass man Fehler erkennen oder diese sogar beheben kann

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- 9 Huffman-Codes
- 10 Abschluss

Homomorphismen

Definition

Ein *Homomorphismus* $h: A^* \to B^*$ ist eine Abbildung, die durch die Funktionswerte h(x) für alle $x \in A$ eindeutig festgelegt ist.

Homomorphismen

Definition

Ein Homomorphismus $h: A^* \to B^*$ ist eine Abbildung, die durch die Funktionswerte h(x) für alle $x \in A$ eindeutig festgelegt ist. Insbesondere bleibt das neutrale Element das neutrale Element:

$$h(\epsilon) = \epsilon$$

 $h(wx) = h(w)h(x)$

weiterhin wird die zugrundeliegende Struktur erhalten

- ullet auf \mathbb{N}_0 ist Verdoppelung Homomorphismus, Struktur der Addition bleibt erhalten
- auf Strings ist *upper()* ein Homomorphismus

Graphen

Bäume - Binärbäume

In der Regel...

- hat jeder Baum eine Wurzel und jeder Knoten maximal zwei Kinder/Nachfolger
- wird die Wurzel oben dargestellt

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- Muffman-Codes
- 10 Abschluss

Aus der Vorlesung:

Wozu Huffman Codes?

• Huffman-Codes komprimieren ein Wort $w \in A^*$ indem

Aus der Vorlesung:

Wozu Huffman Codes?

- Huffman-Codes komprimieren ein Wort $w \in A^*$ indem
- häufigere Symbole durch kürzere
- und seltener vorkommende Symbole durch längere Wörter kodiert werden

Aus der Vorlesung:

Wozu Huffman Codes?

- Huffman-Codes komprimieren ein Wort $w \in A^*$ indem
- häufigere Symbole durch kürzere
- und seltener vorkommende Symbole durch längere Wörter kodiert werden
- statt einzelnen Symbolen können auch längere Blöcke als kleinste Einheit gewählt werden

Vorgehensweise

zwei Schritte:

Monstruktion eines Baumes:

2 Beschriftung der Kanten: links mit 0, rechts mit 1

Vorgehensweise

zwei Schritte:

- Monstruktion eines Baumes:
 - Blätter entsprechen $x \in A$

2 Beschriftung der Kanten: links mit 0, rechts mit 1

Vorgehensweise

zwei Schritte:

- Monstruktion eines Baumes:
 - Blätter entsprechen $x \in A$
 - Innere Knoten entsprechen Mengen von Symbolen

Beschriftung der Kanten: links mit 0, rechts mit 1
Nor kürzeste Weg von der Wurzel zum Blatt gibt die Kodi

Vorgehensweise

zwei Schritte:

- Monstruktion eines Baumes:
 - Blätter entsprechen $x \in A$
 - Innere Knoten entsprechen Mengen von Symbolen
 - An jedem Blatt wird das Symbol x und dessen Häufigkeit notiert

2 Beschriftung der Kanten: links mit 0, rechts mit 1

Vorgehensweise

zwei Schritte:

- Monstruktion eines Baumes:
 - Blätter entsprechen $x \in A$
 - Innere Knoten entsprechen Mengen von Symbolen
 - An jedem Blatt wird das Symbol x und dessen Häufigkeit notiert
 - die zwei Elemente mit der geringsten Häufigkeit werden zu einem Elternknoten zusammengefasst
- Beschriftung der Kanten: links mit 0, rechts mit 1

Aufgabe 1

Gegeben sei das Alphabet $X = \{a, b, c, d, e, f, g, h\}$.

1. Fall: Jedes Zeichen kommt genau einmal vor Erstelle den Huffman-Code-Baum.

Aufgabe 1

Gegeben sei das Alphabet $X = \{a, b, c, d, e, f, g, h\}$.

1. Fall: Jedes Zeichen kommt genau einmal vor Erstelle den Huffman-Code-Baum.
Wie lange wird die Kodierung von w = badcfehg?

Aufgabe 1

Gegeben sei das Alphabet $X = \{a, b, c, d, e, f, g, h\}$.

- 1. Fall: Jedes Zeichen kommt genau einmal vor Erstelle den Huffman-Code-Baum. Wie lange wird die Kodierung von w = badcfehg?
- 2. Fall: Zeichen a und b kommen zweimal, c viermal, d 8-mal, e 16-mal, f 32-mal, g 64-mal und h 128-mal vor. Erstelle den Huffman-Code-Baum. Wie lange wird die Kodierung von w = badcafehg?

Aufgabe 1

Gegeben sei das Alphabet $X = \{a, b, c, d, e, f, g, h\}$.

- 1. Fall: Jedes Zeichen kommt genau einmal vor Erstelle den Huffman-Code-Baum. Wie lange wird die Kodierung von w = badcfehg?
- 2. Fall: Zeichen a und b kommen zweimal, c viermal, d 8-mal, e 16-mal, f 32-mal, g 64-mal und h 128-mal vor. Erstelle den Huffman-Code-Baum. Wie lange wird die Kodierung von w = badcafehg?
- Wie lange wird ein Wort mit zweiter Zeichenverteilung, wenn man es mit dem ersten Code codiert?
- Wie lange wird ein Wort mit erster Zeichenverteilung, wenn man es mit dem zweiten Code codiert?

Aufgabe 2

Gegeben sei das Alphabet $X=\{a,b,c,d,e,f,g\}$ und die Auftrittswahrscheinlichkeiten $p(a)=\frac{3}{10}$, $p(b)=\frac{1}{10}$, $p(c)=\frac{1}{10}$, $p(d)=\frac{1}{7}$, $p(e)=\frac{1}{7}$, $p(f)=\frac{1}{7}$ und $p(g)=\frac{1}{14}$.

• Erzeuge einen Huffman-Code C.

Aufgabe 2

Gegeben sei das Alphabet $X=\{a,b,c,d,e,f,g\}$ und die Auftrittswahrscheinlichkeiten $p(a)=\frac{3}{10}$, $p(b)=\frac{1}{10}$, $p(c)=\frac{1}{10}$, $p(d)=\frac{1}{7}$, $p(e)=\frac{1}{7}$, $p(f)=\frac{1}{7}$ und $p(g)=\frac{1}{14}$.

• Erzeuge einen Huffman-Code C.

Lösung 2

Zeichen: a b c d e f g Wahrscheinlichkeit: $\frac{3}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{14}$ Code: 00 101 110 010 011 100 11:

viele Codes

mehrdeutig?

- im Allgemeinen sind Huffman-Codes nicht indeutig:
- es können mehrere Zeichen gleichhäufig vorkommen
- Außerdem ist nicht festgelegt, welcher Knoten linker Nachfolger und welcher rechter Nachfolger eines inneren Knotens wird
- ⇒ Huffman-Codes sind nicht eindeutig
 - Das macht aber nichts: alle, die sich für ein Wort w ergeben können, sind "gleich gut"

- Beispiel: C
- 2 Aufgabenblatt 5
- 3 Aufgabenblatt 6
- 4 Relationer
- 5 Reflexiv-transitive Hülle
- 6 Zahlensysteme
- Alphabete
- 8 Einschub
 - Homomorphismen
 - Graphen
- Muffman-Codes
- Abschluss

Was ihr nun wissen solltet!

Was ihr nun wissen solltet!

• Was bedeutet Konkatenation von Relationen?

Was ihr nun wissen solltet!

- Was bedeutet Konkatenation von Relationen?
- Was tut ein Homomorphismus?

Was ihr nun wissen solltet!

- Was bedeutet Konkatenation von Relationen?
- Was tut ein Homomorphismus?

Ihr wisst was nicht?

Stellt **jetzt** Fragen!

