ID5001W UoP Assignment Course Instructor: Arun Rajkumar

WHAT SHOULD YOU SUBMIT? You should submit a zip file titled 'Solutions rollnumber.zip' where rollnumber is your roll number. Your assignment will NOT be graded if it does not contain all of the following:

- A text file titled 'Participant detail.txt' with your name and roll number.
- A PDF file which includes explanations regarding each of the solution as required in the question. Title this file as 'Report.pdf'
- Source code for all the programs that you write for the assignment clearly named.

GUIDELINES: Keep the below points in mind before submission.

- Plagiarism of any kind is unacceptable. These include copying text or code from any online sources. These will lead to disciplinary actions according to institute guidelines.
- Any graph that you plot is unacceptable for grading unless it labels the x-axis and y-axis clearly.
- Don't be vague in your explanations. The clearer your answer is, the more chance it will be scored higher.
- For programming components, your submission must include:
 - Well-commented Python code.
 - Detailed epoch-wise training results and discussion.
 - A clearly labeled visualization plot.
 - Predictions and interpretation of classifier behavior.

1 Perceptron

Suppose we have a dataset with four points in a 2D feature space:

$$\mathbf{x}_1 = (2, 2), \quad y_1 = +1$$
 $\mathbf{x}_2 = (4, 4), \quad y_2 = +1$
 $\mathbf{x}_3 = (1, -1), \quad y_3 = -1$
 $\mathbf{x}_4 = (-3, -3), \quad y_4 = -1$

Consider the standard perceptron algorithm with initialization as $\mathbf{w}^{(0)} = (0,0)$ and bias $b^{(0)} = 0$. The update rule is given by:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i, \quad b^{(t+1)} = b^{(t)} + y_i$$

where (\mathbf{x}_i, y_i) is a misclassified example at iteration t.

- (a) Perform two full epochs of the perceptron training algorithm (cycling through all points in the listed order). Show the final weight vector \mathbf{w} , bias b, and classification outcomes after each individual update.
- (b) After two epochs, is the data linearly separable? Give mathematical justification by explicitly verifying if your final perceptron hyperplane separates the classes correctly.
- (c) Compute the margins γ for each point with respect to the final perceptron hyperplane (from part b) using:

$$\gamma = \min_{i} \frac{y_i(\mathbf{w} \cdot \mathbf{x}_i + b)}{\|\mathbf{w}\|}$$

Which point has the minimum margin?

Programming Question

Consider the following two-dimensional dataset:

Point	x_1	x_2	y
1	0	0	-1
2	1	1	-1
3	1	0	+1
4	0	1	+1
5	0.5	0.5	-1
6	2	2	-1
7	2	0	+1
8	0	2	+1

(a) Implement the perceptron algorithm from scratch in Python. Use the perceptron update rules as in previous section. Run it for a maximum of 15 epochs or until convergence. Clearly provide epoch-wise training results, for \mathbf{w} and bias b, and number of mistakes per epoch

2

(b) Now transform the original dataset using the following non-linear mapping:

$$\phi(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$$

Train the perceptron again using this transformed dataset. Provide epoch-wise training results clearly, and explicitly state whether the algorithm converges in this new feature space.

(c) Plot the original two-dimensional dataset, clearly differentiating the two classes. Using your learned perceptron (trained on transformed features), plot the corresponding decision boundary in the original two-dimensional space.

2 SVM

1. Consider a hard-margin SVM trained on a dataset in \mathbb{R}^2 for a binary classification task. Red and green points belong to the training dataset. Red points belong to class -1 and green points belong to class +1. The black point is a test data-point. The dotted lines are the supporting hyperplanes for the SVM. Note: We don't have access to the test data-point during training; it is given to us after the model has been learned on the training dataset.

- (a) What is the equation of the decision boundary?
- (b) What is the width of separation between supporting hyperplanes?

3

Programming Question

2. Find the hinge loss for this soft-margin SVM classifier on the dataset that is given in the table. The weight vector and bias are as follows:

$$\mathbf{w} = [1, -1]^T, \quad b = 1$$

The coefficient C can be assumed to be 1.

x_1	x_2	y
1	4	-1
-1	2	-1
0	0	-1
1	2	-1
1	3	1
1	0	1
2	1	1
2	3	1

Note that you just need to report the hinge loss. Do not compute margin loss, which involves only the term \mathbf{w} . Also, note that the hinge loss does **not** have a factor of 0.5 before it. Enter the closest integer as your answer.

3 K-Means

Use the K-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters:

$$A1 = (2, 10), \quad A2 = (2, 5), \quad A3 = (8, 4), \quad A4 = (5, 8), \quad A5 = (7, 5),$$

 $A6 = (6, 4), \quad A7 = (1, 2), \quad A8 = (4, 9).$

The distance matrix based on the Euclidean distance is given below:

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Suppose that the initial seeds (centers of each cluster) are A1, A4, and A7. Run the K-means algorithm for one epoch only. At the end of this epoch, answer the following:

(a) Determine the new clusters (i.e., which examples belong to each cluster).

- (b) Compute the centers of the new clusters.
- (c) Draw a 10×10 space with all the 8 points and show the clusters after the first epoch along with their new centroids.
- (d) Estimate how many more iterations are needed for convergence. Draw the result for each epoch.
- (e) Consider the points z_1, z_2, \ldots, z_m , where $m \geq 1$, and for $i \in \{1, 2, \ldots, m\}$, $z_i \in \mathbb{R}^d$. Let $\overline{z} = \frac{1}{m} \sum_{i=1}^m z_i$ be the mean of these points, and let $z \in \mathbb{R}^d$ be an arbitrary point in the same (d-dimensional) space. Then show that

$$\sum_{i=1}^{m} \|z_i - z\|^2 \ge \sum_{i=1}^{m} \|z_i - \overline{z}\|^2.$$

- (f) Consider the K-means algorithm with the following *Greedy initialization* method for selecting k initial centroids from a dataset $X = \{x_1, x_2, \ldots, x_n\}$ in \mathbb{R}^d :
 - (i) Choose the first center c_1 uniformly at random from X.
 - (ii) For i = 2, 3, ..., k, choose the next center $c_i = \arg\max_{x \in X} D(x)$, where $D(x) = \min_{c \in C} ||x c||$ and $C = \{c_1, c_2, ..., c_{i-1}\}$ is the current set of centers.

After initialization, the algorithm proceeds as standard K-means:

$$C_t = \{C_{t,1}, C_{t,2}, \dots, C_{t,k}\} \text{ is the clustering at iteration } t,$$

$$\mu_t = \{\mu_{t,1}, \mu_{t,2}, \dots, \mu_{t,k}\} \text{ are the centroids, where } \mu_{t,j} = \frac{1}{|C_{t,j}|} \sum_{x \in C_{t,j}} x,$$

$$SSE(C_t, \mu_t) = \sum_{j=1}^k \sum_{x \in C_{t,j}} ||x - \mu_{t,j}||^2.$$

Using results from (a), show that the algorithm still converges (i.e.,

$$SSE(C_{t+1}, \mu_{t+1}) \leq SSE(C_t, \mu_t)$$

with strict inequality when $C_{t+1} \neq C_t$). Then, argue how the Greedy initialization affects convergence compared to random initialization, and discuss if k^n possible clusterings guarantee termination.

4 **GMM**

1. We wish to fit a GMM with K=2 for a dataset having 4 points. At the beginning of the tth time step of the EM algorithm, we have $\theta^{(t)}$ as follows: $\pi_1 = 0.3$, $\pi_2 = 0.7$ $\mu_1 = 2$, $\sigma_1^2 = 1$ $\mu_2 = 3$, $\sigma_2^2 = 1$

The density of the points given a particular mixture is given to you for all four points. f is the density of a Gaussian.

Figure 1: Example visualization

x_i	$f(x_i z_i=1)$	$f(x_i z_i=2)$
1	0.242	0.054
2	0.399	0.242
3	0.242	0.399
4	0.054	0.242

- (a) What is the value of λ_k^i for i=1 and k=2 after the E-step?
- (b) If we pause the algorithm at this stage (after the E-step) and use the λ_k^i values to do a hard-clustering, what would be the cluster assignment? We use the following rule to come up with cluster assignments. $z_i = argmax_k \lambda_k^i$. Give the answer as a vector Z

Programming Question

Lets code the GMM model from scratch. Use only numpy library, make_blobs from sklearn.datasets and multivariate_normal from scipy.stats and implement the GMM algorithm.

- 1. Create a 2D dataset with the following parameters (n_samples=2000, centers=3, cluster_std=1.0)
- 2. Split the dataset randomly into train (80%) and test set (20%)
- 3. Fit the GMM model with 3 cluster centers on the training dataset
- 4. Predict the test dataset class label using the fitted model
- 5. Visualize the test dataset with color coding using predicted label