

Towards model-based design for ETCS speed and distance monitoring

joint work of Alexander Nitsch, Benjamin Beichler, Frank Golatowski, Christian Haubelt

supported by:

openETCS@ITEA2 Project

Alexander Nitsch

Berlin, 24.09.2014

Design cycle of the classical design flow

Model-based design flow

New Design Cycle

Research field University of Rostock

Research field University of Rostock

Framework for verification of nonfunctional properties:

- Simulative evaluation of abstract architecture models
- Performance estimation of a hardware system running a specific application
- Application model: ETCS Speed and Distance Monitoring

Framework for verification of nonfunctional properties:

- Simulative evaluation of abstract architecture models
- Performance estimation of a hardware system running a specific application
- Application model: ETCS Speed and Distance Monitoring

Framework for verification of nonfunctional properties:

- Simulative evaluation of abstract architecture models
- Performance estimation of a hardware system running a specific application
- Application model: ETCS Speed and Distance Monitoring

Steps

1. Allocation

Framework for verification of nonfunctional properties:

- Simulative evaluation of abstract architecture models
- Performance estimation of a hardware system running a specific application
- Application model: ETCS Speed and Distance Monitoring

Steps

- 1. Allocation
- 2. Binding

12

Framework for verification of nonfunctional properties:

- Simulative evaluation of abstract architecture models
- Performance estimation of a hardware system running a specific application
- Application model: ETCS Speed and Distance Monitoring

Steps

- 1. Allocation
- 2. Binding
- 3. Scheduling

Different architecture models

FCFS = First Come First Serve

First results

Time of braking curve calculation

- FCFS-Scheduler
- SDRAM-Model Latency 20ns+ 2ns/byte
- Scheduling do not consider data dependencies
- → Multi core design (4 CPU's) has highest execution time

Conclusion

- Model-Based Engineering/Design enables fast and effective development of complex systems
- Benefit:
 - parallel development of hardware and software
 - reuse of existing models by easy adaptation to new (sub-)systems
- Formal specification in terms of a formal model allows:
 - Automated consistency checks
 - Automated testing
 - Automated documentation
 - Source code generation
 - Simulation of functional and extra functional aspects/properties
- Performance estimation framework of the University of Rostock eases design decisions for computation resources & communication resources

Thank you

Backup

SystemC Approach

Implementation of the specification with SystemC Why using SystemC?

- SystemC = modelling language initially developed to build hardware
- developed as a language to model the behavior of a system independent of implementation
- at an very early stage of system design: possible by means of this language to evaluate the system
 - Specification / Timing / Scheduling / Performance
 - Estimation of hardware resources (single core, multi core, quad core)
 - Software structure (modules)
 - Type of onboard unit (OBU)

SystemC Approach

Implementation of the specification with SystemC Progress of work:

Implementation of the specification with SystemC Solutions:

- formalized specification and executable model (calculating braking curves with real input data)
- found and reported specification issues
- successful graduation of students
- first submitted publication

Implementation of the specification with SysML What is SysML and why using?

- graphical modeling language suitable to needs of system engineering
- helps modeling system within a broad range of system variety that may include hardware, software, data, personnel and facilities
- supports the specification, analysis design, verification and validation of complex systems
- SysML supports system modeling in a (semi-) formal way:
 - architecture (statics)
 - behavior (dynamics)
 - > requirements
- formal representation allows the automatic transformation into:
 - Code, Test cases

Implementation of the specification with SysML Progress of Work:

