

Quadern de treball: Cerca A* (en graf)¹

Albert Sanchis

Departament de Sistemes Informàtics i Computació

¹Per a una correcta visualització, es requereix l'Acrobat Reader v. 7.0 o superior

Objectius formatius

- Caracteritzar la cerca convencional en un graf d'estats.
- ▶ Descriure cerca A* (en graf).
- ► Construir l'arbre de cerca A* (en graf).
- ► Aplicar cerca A* (en graf) a un problema clàssic.
- ► Analitzar la qualitat de cerca A* (en graf).

Problema: La ruta més curta entre dos punts

Cerca d'una ruta més curta des d'Arad a Bucarest [1]:

Accions(Arad) = {Anar(Sibiu), Anar(Timisoara), Anar(Zerind)}.

Problema: La ruta més curta entre dos punts

Distàncies en línia recta a Bucharest

	Bucharest		Bucharest
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

L'algorisme A* (en graf) [2]

```
A* (G, s', h)
                               // G graf ponderat, s' start, h heurística
O = IniCua(s', f_{s'} \triangleq 0 + h(s'))
                                         // O: cua de prioritat f \triangleq g + h
C = \emptyset
                                              // Closed: nodes explorats
                                         // 1r el millor: s = \arg\min_{n \in O} f_n
 mentre no CuaBuida(O):
                                         // desempats a favor d'objectius
  s = Desencua(O)
                                                         // solució trobada!
  si Objectiu(s) retorna s
  C = C \cup \{s\}
                                                                 //s explorat
                                                     // generació: n fill d's
  per a tota (s,n) \in Adjacents(G,s):
    x = (g_s + w(s, n)) + h(n)
                                                          // possible f_n nou
                    n \notin C \cup O: Encua(O, n, f_n \triangleq x)
    si
    si no si n \in O i x < f_n: Modcua(O, n, f_n \triangleq x)
    si no si n \in C i x < f_n: C = C \setminus \{n\}; Encua(O, n, f_n \triangleq x)
 retorna NULL
                                                     // cap solució trobada
```

▶ Qüestió 1: Fes una traça de l'algorisme A* (en graf) aplicat al problema de cerca d'una ruta més curta des d'Arad a Bucarest.

0	C	s
{Arad (c=0+366=366)}	{}	_
{Sibiu (c=140+253=393), Timisoara	{Arad (c=0+366=366)}	Arad
(c=118+329=447), Zerind (c=75+374=449)}		
{Rimnicu (c=140+80+193=413), Faga-	{Arad (c=0+366=366), Sibiu	Sibiu
ras (c=140+99+176=415), Timisoara	(c=140+253=393)}	
(c=118+329=447), Zerind (c=75+374=449),		
Oradea (c=140+151+380=671)}		
$\{Fagaras (c=140+99+176=415), Pi-$		Rimnicu
testi (c=220+97+100=417), Timisoara	biu (c=140+253=393), Rimnicu	
(c=118+329=447), Zerind (c=75+374=449),	(c=220+193=413)}	
Craiova (c=220+146+160=526), Oradea		
(c=140+151+380=671)}		
{Pitesti (c=220+97+100=417), Timi-	,	Fagaras
soara (c=118+329=447), Bucharest	,	
(c=239+211+0=450), Zerind $(c=75+374=449)$,	cu (c=220+193=413), Fagaras	
Craiova (c=220+146+160=526), Oradea	(c=239+176=415)}	
(c=140+151+380=671)}		
{Bucharest (c=317+101+0=418), Timisoara	, ,	Pitesti
(c=118+329=447), Zerind (c=75+374=449),	,	
Craiova (c=220+146+160=526), Oradea	,	
(c=140+151+380=671)}	ras (c=239+176=415), Pitesti	
	(c=317+100=417)}	
{Timisoara (c=447), Zerind (c=449), Craiova	•	
(c=526), Oradea (c=671)}	(c=413), Fagaras (c=415), Pitesti (c=417)}	(c=418)

Qüestió 2: Construeix l'arbre de cerca resultant d'aplicar l'algorisme A* (en graf) al problema de cerca d'una ruta més curta des d'Arad a Bucarest.

- Qüestió 3: L'algorisme troba solució? Sí
- Qüestió 4: Si la resposta es "Sí":
 - Quina ha sigut la solució trobada? El camí solució trobat ha sigut: Arad, Sibiu, Rimnicu, Pitesti, Bucharest
 - De Quin és el cost d'aquesta solució? 418
 - ▷ Es tracta de la solució óptima? Sí

Referències

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. *IEEE Transacti*ons on Systems Science and Cybernetics, 1968.

