An Introduction to R by Example version 0.1 (공개 준비용)

Seung Yeop Yang e-mail: Seung Yeop. Yang (at) gmail (dot) com August 19, 2011

Contents

1	Introduction and preliminaries				
	1.1	The R environment	1		
	1.2	Related software and documentation	2		
	1.3	R and statistics	2		
	1.4	R and the window system	2		
	1.5	Using R interactively	2		
	1.6	An introductory session	2		
	1.7	Getting help with functions and features	2		
	1.8	R commands, case sensitivity, etc	2		
	1.9	Recall and correction of previous commands	2		
	1.10	Executing commands from or diverting output to a file	2		
	1.11	Data permanency and removing objects	3		
2	Simple manipulations; numbers and vectors				
	2.1	Vectors and assignment	3		
	2.2	Vector arithmetic	3		
	2.3	Generating regular sequences	3		
	2.4	Logical vectors	4		
	2.5	Missing values	4		
	2.6	Character vectors	4		
	2.7	Index vectors; selecting and modifying subsets of a data set	4		
	2.8	Other types of objects	5		
3	Obje	ects, their modes and attributes	5		
	3.1	Intrinsic attributes: mode and length	5		
	3.2	Changing the length of an object	6		
	3.3	Getting and setting attributes	6		
	3.4	The class of an object	7		
4	Orde	ered and unordered factors	7		
	4.1	A specific example	7		
	4.2	The function tapply() and ragged array	8		
	4.3	Ordered factors	8		
5	Arra	ys and matrices	9		
	5.1	Arrays	9		
	5.2	į č	10		
	5.3		10		
	5.4		10		
		5.4.1 Mixed vector and array arithmetic. The recycling rule	11		

	5.5	1	1	
	5.6	Generalized transpose of an array	4	
	5.7		4	
		T T	4	
		5.7.2 Linear equations and inversion	6	
			6	
		5.7.4 Singular value decomposition and determinants	6	
		-	6	
	5.8		19	
	5.9		19	
	5.10	· · · · · · · · · · · · · · · · · · ·	9	
6	Lists	and data frames	20	
	6.1	Lists	20	
	6.2	Constructing and modifying lists	20	
		6.2.1 Concatenating lists	20	
	6.3	Data frames	21	
		6.3.1 Making data frames	21	
		6.3.2 attach() and detach()	21	
		6.3.3 Working with data frames	21	
		6.3.4 Attaching arbitrary lists	21	
			21	
7	Read	ling data from files	22	
	7.1		22	
	7.2	The scan() function	22	
	7.3	Accessing builtin datasets	23	
		7.3.1 Loading data from other R packages	23	
	7.4	Editing data	23	
8	Prob	v	23	
	8.1		23	
	8.2	9	23	
	8.3	One- and two-sample tests	35	
9	Grouping, loops and conditional execution			
	9.1	The state of the s	38	
	9.2		88	
			38	
		9.2.2 Repetitive execution: for loops, repeat and while 3	38	
10	Writ	ing your own functions	38	

	10.1	Simple examples	38
		Defining new binary operator	39
	10.3	Named arguments and defaults	39
		The '' argument	39
	10.5	Assignments within functions	39
	10.6	More advanced examples	39
		10.6.1 Efficiency factors in block designs	39
		10.6.2 Dropping all names in a printed array	39
		10.6.3 Recursive numerical integration	40
	10.7	Scope	40
	10.8	Customizing the environment	40
	10.9	Classes, generic functions and object orientation	40
11		istical models in R	41
	11.1	Defining statistical models; formulae	41
		11.1.1 Contrasts	41
		Linear models	41
		Generic functions for extracting model information	41
	11.4	Analysis of variance and model comparison	41
		11.4.1 ANOVA tables	42
		Updating fitted models	42
	11.6	Generalized linear models	42
		11.6.1 Families	42
		11.6.2 The glm() function	42
	11.7	Nonlinear least squares and maximum likelihood models	42
		11.7.1 Least squares	42
		11.7.2 Maximum likelihood	42
	11.8	Some non-standard models	42
12		phical procedures	42
	12.1	High-level plotting commands	42
		12.1.1 The plot() function	43
		12.1.2 Displaying multivariate data	43
		12.1.3 Display graphics	43
		12.1.4 Arguments to high-level plotting functions	43
	12.2	Low-level plotting commands	43
		12.2.1 Mathematical annotation	43
		12.2.2 Hershey vector fonts	43
		Interacting with graphics	
	12.4	Using graphics parameters	
		12.4.1 Permanent changes: The par() function	43

	12.4.2 Temporary changes: Arguments to graphics functions	43
	12.5 Graphics parameters list	44
	12.5.1 Graphical elements	44
	12.5.2 Axes and tick marks	44
	12.5.3 Figure margins	44
	12.5.4 Multiple figure environment	44
	12.6 Device drivers	44
	12.6.1 PostScript diagrams for typeset documents	44
	12.6.2 Multiple graphics devices	44
	12.7 Dynamic graphics	44
10		
13	3 Packages	44
	13.1 Standard packages	
	13.2 Contributed packages and CRAN	
	13.3 Namespaces	45
Ap	ppendices	46
A	A comple coccion	46
A	A sample session	40
В	Invoking R	60
	B.1 Invoking R from the command line	60
	B.2 Invoking R under Windows	
	B.3 Invoking R under Mac OS X	
	B.4 Scripting with R	
С	The command-line editor	60
	C.1 Preliminaries	
	C.2 Editing actions	60
	C.3 Command-line editor summary	60
Re	eferences	61
Ιn	dex	81
111(WEX	0.1

Revision History

Revision	Date	Author(s)	Description
0.1	November 16, 2024	SeungYeop Yang	Created. I am planning to revise this document a couple of more times and release to the public as GPL/GFDL licensed document

1 Introduction and preliminaries

이 문서는 정식 R 입문서[1,2] 매뉴얼이 아닙니다. 이 문서는 R 입문서에 바탕을 둔 예제 Sweave[3,4] 문서입니다. 이 문서의 목적은 R 입문서를 읽으며 문서에 나와 있는 예제 코드와 그 출력들을 모아 이 문서를 읽는 것으로 실제 R이 어떻게 동작하는 지 (제 스스로 읽고) 이해를 돕는 데 있습니다. 각 단원에 대한 자세한 내용은 해당 R 입문서를 보시고, 이 문서는 보호 이해 수단으로 읽기 바랍니다. Kindle과 같은 작은 디스플레이를 가진 E-book Reader에서 읽기 편하도록 이 문서는 B5 크기로 포맷되었습니다. 이 문서는 소스와 함께 배포될 예정이오니 필요하신 분들은 A4나 letter지 크기로 크기를 조절하셔서 보셔도 좋습니다. 이 문서는 GNU Pulic License (GPL)/ GNU Free Document License (GFDL) 문서입니다.

Copyright © 2011 SeungYeop Yang.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Copyright © 2011 SeungYeop Yang

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

1.1 The R environment

R 입문서 참조.1

 $^{^1}$ 영어 원본은 [1], 한글 번역본은 [2]를 참조하세요. 일부러 참조하기 편하도록 각 장과 절 번호를 R 입문서 장과 절 번호와 일치시켰습니다. 이미 번역판이 있는 데, 굳이 똑 같은 내용을 이 문서에 담아야할 필요성을 느낄 수 없어 원본 내용은 생략합니다. 또 제가 읽을 것만 추려서 조그맣게 만드려는 애초목적이 있었습니다. 11장 이후는 아직 R초보자인 저의 이해가 부족해 많이 생략하였습니다. 이 문서는 GPL/GFDL 문서이니 원하시는 대로 수정/배포 가능하니 마음에 안 드시면 편하게 바꾸시든 지 직접 보충해서 사용하시면 되겠습니다. 또 혹시라도 번역 내용을 이 문서에 넣어달라는 요구가 있을까봐 미리 정중히 사양하고 싶습니다.

1.2 Related software and documentation

R 입문서 참조.

1.3 R and statistics

R 입문서 참조.

1.4 R and the window system

R 입문서 참조.

1.5 Using R interactively

R 실행 화면에서 프로그램을 끝내고 싶을 때에는 다음과 같이 q()를 입력합니다.

> q()

1.6 An introductory session

R 입문서 참조.

1.7 Getting help with functions and features

R에서 도움말을 얻기 위해서는 다음과 같은 명령들을 입력합니다. 무슨 뜻인 지전혀 감이 없으시면 ?help에서 시작하시는 것도 나쁘지 않지요.

- > help(solve)
- > ?solve
- > help("[[")
- > help.start()
- > ??solve
- > example(topic)
- > ?help

1.8 R commands, case sensitivity, etc.

R 입문서 참조.

1.9 Recall and correction of previous commands

R 입문서 참조.

1.10 Executing commands from or diverting output to a file

미리 입력된 명령들을 파일에 담아 통째로 실행시킬 때, source() 명령을, 출력하면을 파일로 리다이렉트할 때에는 sink 명령을 씁니다.²

- > source("commands.R")
- > sink("record.lis")

1.11 Data permanency and removing objects

오브젝트(변수, 어레이, 문자열, 함수, 따위들)는 R 세션 중 "workspace"에 저장되는데, 어떤게 있는 지 보고 싶을 때, 지워버리고 싶을 때 다음 명령들을 참조하세요.

- > rm(list=ls())
- > objects()

character(0)

> x <- 1+1;x

[1] 2

> objects()

[1] "x"

> ls()

[1] "x"

R 세션 중에 만들어진 모든 오브젝트는 나중을 위해서 파일에 저장 가능한데요, 보통 세션 종료시에 저장하지 말지 물어보구요, 'current' 디렉토리 밑에 '.RData'로 저장됩니다. 세션 중에 사용된 명령들은 '.Rhistory'란 파일명으로 저장됩니다.

2 Simple manipulations; numbers and vectors

2.1 Vectors and assignment

벡터는 갯수(length)와 모드로 나타낼 수 있는 오브젝트이다.

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7); x

[1] 10.4 5.6 3.1 6.4 21.7

 $^{^{2}}$ 프로그래밍이 가능해지는 괜찮은 기능이지요.

- > assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7)); x
- [1] 10.4 5.6 3.1 6.4 21.7
- $> c(10.4, 5.6, 3.1, 6.4, 21.7) \rightarrow x; x$
- [1] 10.4 5.6 3.1 6.4 21.7
- > x = c(10.4, 5.6, 3.1, 6.4, 21.7); x
- [1] 10.4 5.6 3.1 6.4 21.7
- > 1/x
- [1] 0.09615385 0.17857143 0.32258065 0.15625000 0.04608295
- > y < -c(x, 0, x); y
 - [1] 10.4 5.6 3.1 6.4 21.7 0.0 10.4 5.6 3.1 6.4 21.7
- 2.2 Vector arithmetic
- > 2 * x; y
- [1] 20.8 11.2 6.2 12.8 43.4
 - [1] 10.4 5.6 3.1 6.4 21.7 0.0 10.4 5.6 3.1 6.4 21.7
- > v < -2 * x + y + 1; v
- [1] 32.2 17.8 10.3 20.2 66.1 21.8 22.6 12.8 16.9 50.8 43.5
- > v (y+1)
 - [1] 20.8 11.2 6.2 12.8 43.4 20.8 11.2 6.2 12.8 43.4 20.8
- > mean(x)
- Γ1 9.44
- > sum(x)/length(x)
- [1] 9.44
- > var(x)

```
[1] 53.853
> sum((x-mean(x))^2)/(length(x)-1)
[1] 53.853
> x; sort(x); order(x); sort.list(x); max(x); min(x);
[1] 10.4   5.6   3.1   6.4  21.7
[1] 3.1   5.6   6.4  10.4  21.7
[1] 3   2   4   1  5
[1] 3   2   4   1  5
[1] 3.1
> pmax(x, 5); pmin(x, 5)
[1] 10.4   5.6   5.0  6.4  21.7
[1] 5.0  5.0  3.1  5.0  5.0
> sqrt(-1+0i)
[1] 0+1i
```

2.3 Generating regular sequences

> options(width=60)

```
> seq(-5, 5, by=.2) -> s3; s3

[1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0
[12] -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8
[23] -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
[34] 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
[45] 3.8 4.0 4.2 4.4 4.6 4.8 5.0

> s4 <- seq(length=51, from=-5, to=5); s4</pre>
```

- [1] -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0
- [23] -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
- [34] 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
- [45] 3.8 4.0 4.2 4.4 4.6 4.8 5.0
- > x < seq(1, 5, 1); x
- [1] 1 2 3 4 5
- > s5 <- rep(x, times=5); s5
- > s6 < rep(x, each=5); s6
 - [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
- 2.4 Logical vectors
- $> x \leftarrow c(10.4, 5.6, 3.1, 6.4, 21.7); x$
- [1] 10.4 5.6 3.1 6.4 21.7
- > temp <- x > 13
- > temp ; !temp
- [1] FALSE FALSE FALSE TRUE
- [1] TRUE TRUE TRUE TRUE FALSE
- > temp | !temp
- [1] TRUE TRUE TRUE TRUE TRUE
- > temp & !temp
- [1] FALSE FALSE FALSE FALSE
- > temp == 1
- [1] FALSE FALSE FALSE TRUE
- > temp != 0

- [1] FALSE FALSE FALSE TRUE
- > temp < 1
- [1] TRUE TRUE TRUE TRUE FALSE
- > temp <= 1
- [1] TRUE TRUE TRUE TRUE TRUE
- > temp > 0
- [1] FALSE FALSE FALSE TRUE
- > temp >= 0
- [1] TRUE TRUE TRUE TRUE TRUE
- 2.5 Missing values
- > z < -c(1:3, NA); z
- [1] 1 2 3 NA
- > ind_na <- is.na(z); ind_na</pre>
- [1] FALSE FALSE FALSE TRUE
- > ind_nan <-is.nan(z); ind_nan</pre>
- [1] FALSE FALSE FALSE
- > z <- c(z, 0/0, Inf-Inf); z
- [1] 1 2 3 NA NaN NaN
- > ind_na <- is.na(z); ind_na</pre>
- [1] FALSE FALSE FALSE TRUE TRUE TRUE
- > ind_nan <-is.nan(z); ind_nan</pre>
- [1] FALSE FALSE FALSE TRUE TRUE

2.6 Character vectors

- > labs <- paste(c("X","Y"), 1:10, sep=""); labs
 [1] "X1" "Y2" "X3" "Y4" "X5" "Y6" "X7" "Y8" "X9"
 [10] "Y10"
 > labs <- paste(c("X","Y"), rep(1:5, times=2), sep=""); labs</pre>
- [1] "X1" "Y2" "X3" "Y4" "X5" "Y1" "X2" "Y3" "X4" "Y5"
- > labs <- paste(c("X","Y"), rep(1:5, each=2), sep=""); labs
 - [1] "X1" "Y1" "X2" "Y2" "X3" "Y3" "X4" "Y4" "X5" "Y5"

2.7 Index vectors; selecting and modifying subsets of a data set

- A logical vector
- A vector of positive integral quantaties
- A vector of negative integral quantities
- A vector of character strings
- > #A logical vector
- > x <- z; x
- [1] 1 2 3 NA NaN NaN
- > y <- x[!is.na(x)]; y
- [1] 1 2 3
- > (x+1)[(!is.na(x)) & x>0] ->z; z
- [1] 2 3 4
- > #A vector of positive integral quantities
 > x <- c(1:20);x</pre>
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [19] 19 20
- > x[1:10]

- [1] 1 2 3 4 5 6 7 8 9 10
- > c("x", "y")[rep(c(1,2,2,1), times=4)]
- > #A vector of negative integral quatities
 > y <- x[-(1:5)]; y</pre>
- [1] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- > #A vector of character strings
- > fruit <- c(5, 10, 1, 20); fruit
- [1] 5 10 1 20
- > names(fruit) <-c("orange", "banana", "apple", "peach"); fruit</pre>
- orange banana apple peach 5 10 1 20
- > lunch <- fruit[c("apple", "orange")]; lunch</pre>

apple orange

1 5

- > x <- c(x, NA, Inf/Inf); x
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [15] 15 16 17 18 19 20 NA NaN
- > x[is.na(x)] <- 0; x
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [19] 19 20 0 0
- > y <- c(x, -1, -2, -3); y
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- [19] 19 20 0 0 -1 -2 -3
- > y[y<0] <- -y[y<0]; y
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [19] 19 20 0 0 1 2 3

> y <- c(x, -1, -2, -3); y
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 0 0 -1 -2 -3
> y <- abs(y); y</pre>

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [19] 19 20 0 0 1 2 3

2.8 Other types of objects

- matrices
- factors
- lists
- data frames
- functions

3 Objects, their modes and attributes

3.1 Intrinsic attributes: mode and length

R 입문서 참조.

함수 mode(object)와 length(object)는 오브젝트의 모드 3 와 길이를 파악하는 데 사용되지요. 예를 들면,

> z <- c(1:100); z

[1] [14] [27] [40] [53] [66] [79] [92] 99 100

> z <- z+1i; z

 $^{^3}$ 모드는 다른 언어의 변수형이나 타입(type)에 해당된다고 이해하면 쉽습니다.

```
[1]
             2+1i
                                5+1i
                                       6+1i
      1+1i
                   3+1i
                          4+1i
                                              7+1i
[8]
      8+1i
             9+1i
                  10+1i
                        11+1i
                               12+1i
                                      13+1i
                                             14+1i
[15]
     15+1i
           16+1i 17+1i
                         18+1i
                               19+1i
                                      20+1i
                                             21+1i
[22]
     22+1i
            23+1i 24+1i
                         25+1i
                               26+1i
                                      27+1i
                                             28+1i
[29]
     29+1i
           30+1i 31+1i
                        32+1i
                               33+1i
                                      34+1i
                                             35+1i
[36]
     36+1i
            37+1i
                  38+1i
                         39+1i
                               40+1i
                                      41+1i
                                             42+1i
[43]
     43+1i
           44+1i 45+1i 46+1i
                               47+1i
                                      48+1i
                                             49+1i
[50]
     50+1i
           51+1i 52+1i 53+1i 54+1i
                                      55+1i
                                             56+1i
[57]
     57+1i 58+1i 59+1i 60+1i 61+1i
                                      62+1i 63+1i
[64]
     64+1i 65+1i 66+1i 67+1i 68+1i
                                      69+1i
                                            70+1i
     71+1i
           72+1i 73+1i 74+1i 75+1i
                                      76+1i 77+1i
[71]
[78]
     78+1i 79+1i 80+1i 81+1i 82+1i 83+1i 84+1i
[85]
     85+1i 86+1i 87+1i 88+1i 89+1i 90+1i 91+1i
[92]
     92+1i 93+1i 94+1i 95+1i 96+1i 97+1i 98+1i
[99]
     99+1i 100+1i
```

> mode(z)

- [1] "complex"
- > length(z)
- [1] 100

다른 언어의 형변환(type casting)에 해당하는 모드 변환을 다음과 같이 할 수 있습니다.

> z <- 0:9; z

[1] 0 1 2 3 4 5 6 7 8 9

> digits <- as.character(z); digits</pre>

[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

> d <- as.integer(digits); d</pre>

[1] 0 1 2 3 4 5 6 7 8 9

보시는 것처럼 모드 변환을 (integer에서 character로, 그리고 그 역변환인 character에서 integer로) 두 번 거쳐서 d와 z는 같아졌습니다.

3.2 Changing the length of an object

빈(空, empty) 오브젝트도 모드를 가질 수 있지요, 예를 들자면

> e <- numeric(); e</pre>

numeric(0)

위의 e는 numeric 모드의 빈 벡터 구조가 되는 거지요. 비슷하게 character()도 빈 character 벡터 구조를 만듭니다.어떤 크기든 지 오브젝트가 하나 생기면, 쉽게 새 컴포넌트를 추가할 수 있습니다.

> e[3] <- 17; e

[1] NA NA 17

위 코드를 실행하면 이제 e는 길이가 3인 벡터가 되는 것이죠. 이런 자동 길이 조정은 아주 자주 쓰입니다. 반대로 벡터를 싹둑 잘라내서 길이를 줄이고 싶을 때는 그렇게 되도록 다시 지정(assignment)해 주면 됩니다.

> alpha <- 1:10; alpha

[1] 1 2 3 4 5 6 7 8 9 10

> alpha <- alpha[2*1:5]; alpha</pre>

[1] 2 4 6 8 10

> length(alpha) <-3; alpha</pre>

[1] 2 4 6

위 코드에서 짝수 컴포넌트만 뽑아내는 것이 보이죠.4

3.3 Getting and setting attributes

함수 attributes(object)는 "non-intrisic" 속성의 전체 리스트를 보여줍니다. 함수 attr(object, name)은 name으로 선택한 원하는 속성만 보고 싶을 때 쓰지요. attr(object, name) 함수가 지정 명령의 왼쪽에 오면 object의 속성을 변경하거나 새로운 속성을 추가하는 데 쓰일 수 있습니다. 밑에 예를 보세요.

> rm(list=ls())
> z <- 1:100;z</pre>

⁴참 간편하네요. 길이를 강제로 줄여서 벡터를 잘라내는 것도 아주 인상적이네요.

```
[1]
            2
                          5
                               6
                                   7
                                            9
                                                     11
                 3
                     4
                                        8
                                                10
                                                          12
                                                              13
[14]
      14
           15
                16
                    17
                         18
                              19
                                  20
                                       21
                                            22
                                                23
                                                     24
                                                          25
                                                              26
[27]
      27
           28
                29
                    30
                         31
                              32
                                  33
                                       34
                                            35
                                                36
                                                     37
                                                          38
                                                              39
[40]
      40
           41
                42
                    43
                         44
                             45
                                  46
                                       47
                                            48
                                                49
                                                     50
                                                         51
                                                              52
[53]
      53
           54
                55
                    56
                         57
                              58
                                  59
                                       60
                                           61
                                                62
                                                     63
                                                         64
                                                              65
                                           74
                                                         77
                                                              78
[66]
      66
           67
                68
                    69
                         70
                             71
                                  72
                                       73
                                                75
                                                     76
[79]
      79
           80
                81
                    82
                         83
                             84
                                  85
                                       86
                                           87
                                                88
                                                     89
                                                         90
                                                              91
[92]
      92
           93
               94
                    95
                         96
                             97
                                  98
                                       99 100
```

> attributes(z)

NULL

> attr(z, "dim")

NULL

> attr(z, "dim") <- c(10,10);z

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]
                     21
                           31
                                             61
                                                   71
          1
               11
                                 41
                                       51
                                                         81
                                                                91
 [2,]
          2
               12
                     22
                           32
                                 42
                                       52
                                             62
                                                   72
                                                         82
                                                                92
 [3,]
          3
               13
                     23
                           33
                                 43
                                       53
                                             63
                                                   73
                                                         83
                                                                93
 [4,]
          4
               14
                     24
                           34
                                 44
                                       54
                                             64
                                                   74
                                                         84
                                                                94
 [5,]
          5
               15
                     25
                           35
                                 45
                                       55
                                             65
                                                   75
                                                         85
                                                                95
 [6,]
          6
               16
                     26
                           36
                                 46
                                       56
                                             66
                                                   76
                                                         86
                                                                96
 [7,]
          7
                                                                97
               17
                     27
                           37
                                 47
                                       57
                                             67
                                                   77
                                                         87
 [8,]
                     28
                           38
                                                   78
                                                                98
          8
               18
                                 48
                                       58
                                             68
                                                         88
 [9,]
                     29
                           39
          9
               19
                                 49
                                       59
                                             69
                                                   79
                                                         89
                                                                99
[10,]
               20
                     30
                           40
                                 50
         10
                                       60
                                             70
                                                   80
                                                         90
                                                               100
```

> attr(z, "dim")

[1] 10 10

3.4 The class of an object

모든 오브젝트는 클래스(class)를 가지고, 함수 class()로 확인할 수 있습니다. 단순 한 (한 모드로 이루어진) 벡터의 클래스는 바로 모드가 되고요, "matrix", "array", "factor", 그리고 "data.frame"도 가능한 클래스 종류가 됩니다.

이 클래스를 통하여 오브젝트 오리엔티드 프로그래밍을 가능하게 하는 데...자세한 내용은 R 입문서 참조.

클래스의 효과를 잠시 동안 없애버리려면 함수 unclass()를 쓰시면 됩니다.

```
> winter <- as.data.frame(1:10)</pre>
> winter
   1:10
1
     1
2
     2
3
     3
4
     4
5
     5
6
     6
7
     7
8
     8
9
     9
    10
> class(winter)
[1] "data.frame"
> attributes(winter)
$names
[1] "1:10"
$row.names
 [1] 1 2 3 4 5 6 7 8 9 10
$class
[1] "data.frame"
> unclass(winter)
$`1:10`
[1] 1 2 3 4 5 6 7 8 9 10
attr(,"row.names")
[1] 1 2 3 4 5 6 7 8 9 10
> class(winter)
[1] "data.frame"
```

4 Ordered and unordered factors

R 입문서 참조.

4.1 A specific example

예를 들어 호주 5 각 주와 경계에 흩어사는 30명 세무사가 있다고 칩시다. 출신 주를 다음과 같이 표시할 수 있습니다.

> sort(state)

- [1] "act" "act" "nsw" "nsw" "nsw" "nsw" "nsw" "nsw" "nt"
- [10] "nt" "qld" "qld" "qld" "qld" "qld" "sa" "sa" "sa"
- [19] "sa" "tas" "tas" "vic" "vic" "vic" "vic" "vic" "wa"
- [28] "wa" "wa" "wa"

[28] "vic" "vic" "act"

factor()함수로 정렬시킬 수 있으며, 정렬됐다는 것은 알파벳 순서대로 줄지었다는 말입니다. factor()함수로 *factor*를 만들 수 있습니다.

> statef <- factor(state); statef

- [1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld
- [15] sa tas sa nt wa vic qld nsw nsw wa sa act nsw vic

[29] vic act

Levels: act nsw nt qld sa tas vic wa

레벨만 따로 보고 싶으면 levels()함수를 써도 됩니다.

> levels(statef)

[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"

⁵호주에는 8개 주와 경계가 있다고 합니다. 이름을 들어보면, the Australian Capital Territory, New South Wales, the Northern Territory, Queensland, South Australia, Tasmania, Victoria, 그리고 Western Australia입니다.

4.2 The function tapply() and ragged array

앞 세무사 예를 이어서, 이제 각 세무사 수입을 다른 벡터로 나타내 봅니다.

- > incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
- + 61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
- + 59, 46, 58, 43); incomes
- [1] 60 49 40 61 64 60 59 54 62 69 70 42 56 61 61 61 58 51
- [19] 48 65 49 49 41 48 52 46 59 46 58 43

각 주별로 수입 표본 평균을 구하기 위해서 tapply()함수를 사용해 봅니다.

> incmeans <- tapply(incomes, statef, mean); incmeans</pre>

act nsw nt qld sa tas 44.50000 57.33333 55.50000 53.60000 55.00000 60.50000 vic wa 56.00000 52.25000

각 레벨로 표시된 평균 벡터들이 생겨나지요. tapply()함수는 다른 함수(여기서는 mean())를 첫째 함수 인자(argument)인 income에 두번째 인자인 statef 레벨에 맞춰 적용하는 것입니다. ⁶

- > incmeans_without_factor <- tapply(incomes, state, mean)</pre>
- > incmeans_without_factor

act nsw nt qld sa tas 44.50000 57.33333 55.50000 53.60000 55.00000 60.50000 vic wa 56.00000 52.25000

이제 주별 수입 평균의 표준 오차(standard error)를 구한다고 칩시다. 표준 오차를 구하는 함수를 우선 만들어 볼까요:

- > stderr <- function(x) sqrt(var(x)/length(x))</pre>
- 자, 이제 tapply()함수를 다시 한 번 새로 정의한 함수로 적용해봅니다.
- > incster <- tapply(incomes, statef, stderr); incster</pre>

act nsw nt qld sa tas 1.500000 4.310195 4.500000 4.106093 2.738613 0.500000 vic wa

5.244044 2.657536

⁶음...참 신기하네요.

> lengths <- tapply(incomes, statef, length); lengths

위 예에서 본 것처럼 (결과) 벡터와 labelling factor를 같이 보여주는 걸 소위 "누더기어레이" (ragged array)라고 하는 데요, 각 subclass의 크기가 제각각이기 (irregular) 때문이지요.

4.3 Ordered factors

R 입문서 참조.

5 Arrays and matrices

5.1 Arrays

어레이는 (하나 이상) 차원(Dimension)을 가지는 벡터이다. 150 개 원소로 구성된 벡터 z가 있습니다.⁷ dimension을 아래처럼 적용해 볼까요?

```
> rm(list=ls())
> z <- 1:150; z
```

```
[1]
            2
                3
                    4
                        5
                            6
                                7
                                    8
                                         9
                                            10
                                                11
                                                    12
                                                        13
 [14]
           15 16
                   17
                       18
                           19
                               20
                                   21
                                        22
                                            23
                                                24
                                                    25
                                                        26
 [27]
       27
           28
               29
                   30
                       31
                           32
                               33
                                    34
                                        35
                                            36
                                                37
                                                    38
                                                        39
 [40]
      40
          41 42
                   43 44
                           45
                               46
                                   47
                                        48
                                            49
                                                50
                                                    51
                                                        52
 [53]
       53
           54
              55
                   56
                       57
                           58
                               59
                                    60
                                        61
                                            62
                                                63
                                                    64
                                                        65
                                   73
                                        74
 [66]
       66
           67
               68
                   69
                      70
                           71
                               72
                                            75
                                                76
                                                    77
                                                        78
 [79]
      79
           80
               81
                   82
                       83
                           84
                               85
                                   86
                                       87
                                            88
 Г92]
      92 93 94
                   95 96
                           97
                               98 99 100 101 102 103 104
[105] 105 106 107 108 109 110 111 112 113 114 115 116 117
[118] 118 119 120 121 122 123 124 125 126 127 128 129 130
[131] 131 132 133 134 135 136 137 138 139 140 141 142 143
[144] 144 145 146 147 148 149 150
```

> dim(z) <- c(3, 5, 10); z

, , 1

 $^{^7}$ 원래는 1500 개였는 데, 프린트하면 쓸 데 없이 페이지 수가 늘어나기 때문에 제 맘대로 150 개로 줄였습니다.

```
[,1] [,2] [,3] [,4] [,5]
[1,] 1
        4
            7
                 10
                     13
      2
          5
[2,]
               8
                  11
                      14
[3,] 3
          6
               9
                  12
                      15
```

, , 2

[,1] [,2] [,3] [,4] [,5] [1,] 16 [2,] [3,]

, , 3

[,1] [,2] [,3] [,4] [,5] [1,] 34 37 [2,] [3,]

, , 4

[,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,]

, , 5

[,1] [,2] [,3] [,4] [,5] [1,] 61 [2,] [3,]

, , 6

[,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] 78

, , 7

```
[,1] [,2] [,3] [,4] [,5]
[1,]
      91
           94
                97
                    100 103
[2,]
           95
      92
                98
                    101
                         104
[3,]
      93
           96
                99
                    102
                        105
, , 8
     [,1] [,2] [,3] [,4] [,5]
[1,] 106 109 112 115 118
[2,] 107
          110 113 116 119
[3,] 108 111
               114 117
                         120
, , 9
     [,1] [,2] [,3] [,4] [,5]
[1,] 121
         124
              127
                   130 133
[2,]
     122
          125
               128
                    131
                         134
[3,] 123
          126
               129
                    132 135
, , 10
     [,1] [,2] [,3] [,4] [,5]
[1,] 136 139
              142
                   145
                        148
[2,]
     137
          140
               143
                    146
                         149
[3,]
     138 141
               144
                   147
                         150
```

matrix()나 array()같은 함수로 간단히 자연스럽게 어레이를 만들 수 있습니다. 일차원 어레이도 있지만, 그런 어레이는 대개 벡터와 마찬가지로 취급받습니다. 벡 터가 있는 데, 일부러 일차원 어레이를 만들 필요는 없겠지요.

5.2 Array indexing. Subsections of an array

R 입문서 참조.

, , 2

```
[,1] [,2] [,3] [,4]
[1,]
        9
            11
                 13
                       15
[2,]
       10
            12
                 14
                       16
> c(a[2,1,1], a[2,2,1], a[2,3,1], a[2,4,1],
     a[2,1,2], a[2,2,2], a[2,3,2], a[2,4,2])
[1] 2 4 6 8 10 12 14 16
> a[2,,]
     [,1] [,2]
[1,]
        2
            10
[2,]
        4
            12
[3,]
        6
            14
[4,]
        8
            16
> dim(a); dim(a[2,,])
[1] 2 4 2
```

5.3 Index matrices

[1] 4 2

예를 먼저 보고, 인덱스 행렬(index matrix)이 뭔 지 감을 잡아볼까요? 예를 들어, 4x5 크기 어레이 X가 있고, 다음을 해보려 합니다.

- X[1,3], X[2,2], 그리고 X[3,1]의 원소를 추출
- 추출된 항목 자리를 0으로 바꾸기

> x <- array(1:20, dim=c(4,5)); x

```
[,1] [,2] [,3] [,4] [,5]
[1,]
         1
               5
                     9
                         13
                                17
[2,]
         2
               6
                    10
                          14
                                18
[3,]
               7
         3
                    11
                          15
                                19
[4,]
         4
               8
                    12
                          16
                               20
```

 $> i \leftarrow array(c(1:3,3:1), dim=c(3,2)); i$

```
[,1] [,2]
[1,]
       1
[2,]
       2
            2
[3,]
       3
> x[i] <-0
> x
     [,1] [,2] [,3] [,4] [,5]
[1,]
       1
            5
                0
                     13
                          17
[2,]
       2
            0
                10
                     14
                          18
[3,]
       0
            7
                11
                     15
                          19
[4,]
       4
            8
                12
                     16
                          20
위 예에서 어레이 i는 인덱스 행렬입니다.
  부정(negative) 인덱스는 인덱스 행렬에 사용할 수 없습니다. NA나 0은 사용 가
능합니다. 예를 더 들어 보겠습니다.
> blocks <- 1:4; blocks
[1] 1 2 3 4
> b <- length(levels(factor(blocks))); b</pre>
[1] 4
> varieties <- 1:4; varieties
[1] 1 2 3 4
> v <- length(levels(factor(varieties))); v
[1] 4
> n <- 4; n
[1] 4
> Xb <- matrix(0, n, b); Xb
     [,1] [,2] [,3] [,4]
[1,]
       0
            0
                 0
[2,]
       0
            0
                 0
                      0
[3,]
       0
            0
                 0
                      0
```

0

0

0

0

[4,]

```
> Xv <- matrix(0, n, v); Xv
     [,1] [,2] [,3] [,4]
[1,]
        0
             0
                   0
[2,]
             0
                   0
                        0
        0
[3,]
        0
              0
                   0
                        0
[4,]
        0
             0
                   0
                        0
> ib <- cbind(1:n, blocks); ib</pre>
       blocks
[1,] 1
            1
[2,] 2
            2
[3,] 3
            3
[4,] 4
            4
> iv <- cbind(1:n, varieties); iv</pre>
       varieties
[1,] 1
[2,] 2
                2
[3,] 3
                3
[4,] 4
                4
> Xb[ib] <- 1; Xb
     [,1] [,2] [,3] [,4]
[1,]
       1
             0
                   0
[2,]
        0
             1
                   0
                        0
[3,]
        0
             0
                   1
                        0
[4,]
        0
             0
                   0
                        1
> Xv[iv] <- 1; Xv
     [,1] [,2] [,3] [,4]
[1,]
        1
             0
                   0
                        0
[2,]
             1
                   0
                        0
        0
[3,]
        0
             0
                   1
                        0
[4,]
      0
             0
                   0
                        1
> X <- cbind(Xb, Xv); X
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]
             0
                   0
                        0
                                   0
                                        0
        1
                              1
[2,]
        0
             1
                   0
                        0
                              0
                                   1
                                        0
                                              0
[3,]
        0
             0
                   1
                        0
                              0
                                   0
                                        1
                                              0
```

[4,]

```
> N <- crossprod(Xb, Xv); N</pre>
     [,1] [,2] [,3] [,4]
[1,]
        1
              0
                    0
[2,]
         0
               1
                    0
                          0
[3,]
         0
              0
                    1
                          0
[4,]
        0
              0
                    0
                          1
```

> N <- table(blocks, varieties); N

varieties
blocks 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

5.4 The array() function

> h <- 1:10; h

, , 1

, , 2

> h <- 1:24; h

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [19] 19 20 21 22 23 24

```
> Z <- array(h, dim=c(3,4,2)); Z
, , 1
     [,1] [,2] [,3] [,4]
[1,]
        1
             4
                   7
[2,]
        2
             5
                   8
                       11
             6
[3,]
        3
                   9
                       12
, , 2
     [,1] [,2] [,3] [,4]
```

[1,]

[2,]

[3,]

5.4.1 Mixed vector and array arithmetic. The recycling rule R 입문서 참조.

5.5 The outer product of two arrays

```
> a <- 1:4; a
[1] 1 2 3 4
> b <- c(1, 0, 2, 3); b
[1] 1 0 2 3
> ab <- a %o% b; ab
     [,1] [,2] [,3] [,4]
[1,]
        1
             0
                   2
[2,]
        2
             0
                   4
                        6
[3,]
        3
                        9
             0
                   6
        4
[4,]
             0
                   8
                       12
> ab <- outer(a, b, "*"); ab
     [,1] [,2] [,3] [,4]
[1,]
        1
             0
                   2
                        3
[2,]
                   4
        2
             0
                        6
[3,]
        3
             0
                   6
                        9
[4,]
                   8
        4
             0
                       12
```

```
> x <- seq(0, 2*pi, by=0.1); x
 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
[15] 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
[29] 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
[43] 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
[57] 5.6 5.7 5.8 5.9 6.0 6.1 6.2
> y <- seq(0, 2*pi, by=0.1); y
 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
[15] 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
[29] 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
[43] 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5
[57] 5.6 5.7 5.8 5.9 6.0 6.1 6.2
> f \leftarrow function(x, y) cos(y)/(1+x^2)
> z \leftarrow outer(x, y, f)
> persp(x, y, z)
> contour(x, y, z)
> d <- outer(0:9, 0:9); d
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]
                                    0
                                          0
                                                     0
               0
                    0
                         0
                               0
                                               0
 [2,]
         0
               1
                    2
                         3
                               4
                                    5
                                          6
                                               7
                                                     8
                                                           9
 [3,]
         0
               2
                    4
                         6
                               8
                                   10
                                         12
                                              14
                                                    16
                                                          18
 [4,]
         0
               3
                    6
                         9
                              12
                                   15
                                         18
                                              21
                                                   24
                                                          27
 [5,]
         0
               4
                    8
                        12
                              16
                                   20
                                         24
                                              28
                                                   32
                                                          36
 [6,]
               5
         0
                   10
                        15
                              20
                                   25
                                        30
                                              35
                                                   40
                                                          45
 [7,]
         0
               6
                   12
                        18
                              24
                                   30
                                         36
                                              42
                                                   48
                                                          54
 [8,]
         0
               7
                   14
                        21
                              28
                                   35
                                         42
                                              49
                                                   56
                                                          63
 [9,]
         0
               8
                   16
                        24
                              32
                                   40
                                         48
                                              56
                                                   64
                                                          72
[10,]
         0
               9
                   18
                              36
                                   45
                                                          81
                        27
                                         54
                                              63
                                                   72
```

-81 -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67 4 41 -66 -65 -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 -54 -53 -52 18 53

> fr <- table(outer(d, d, "-")); fr

Figure 1: persp plot

```
-51 -50 -49 -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37
22
    16
         35
              70
                  22
                       24
                           66
                               28
                                    18
                                        72
                                             22
                                                 75
                                                      37
                                                          34
                                                               26
-36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22
111
     63
         36
              45
                  84
                       34
                           94
                               36
                                    93
                                        97
                                             50
                                                 53 156
                                                          42
                                                               60
-21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10
                                                      -9
                                                          -8
                                                               -7
103 107
                                    59 191
                                             65 126 156 185 115
         50 168
                  51 140 112 116
 -6
    -5
         -4
              -3
                  -2
                            0
                                     2
                                          3
                                              4
                                                   5
                                                       6
                                                           7
                       -1
                                 1
                                                                8
206 117 179 153 156 111 570 111 156 153 179 117 206 115 185
  9
                                                      21
     10
              12
                       14
                                             19
                                                 20
                                                          22
                                                               23
          11
                  13
                           15
                                16
                                    17
                                         18
156 126
         65 191
                  59 116 112 140
                                    51 168
                                             50 107 103
                                                          60
                                                               42
 24
     25
         26
              27
                  28
                       29
                           30
                                31
                                    32
                                         33
                                             34
                                                 35
                                                      36
                                                          37
                                                               38
156
     53
         50
              97
                  93
                       36
                           94
                                34
                                    84
                                         45
                                             36
                                                 63 111
                                                          26
                                                               34
 39
     40
                           45
                                                          52
          41
              42
                  43
                       44
                                46
                                    47
                                         48
                                             49
                                                 50
                                                      51
                                                               53
```


Figure 2: contour plot

```
37
         22
                                  24
    75
              72
                   18
                        28
                             66
                                       22
                                           70
                                                35
                                                     16
                                                          22
                                                               18
                                                                    12
                             60
54
    55
         56
              57
                   58
                        59
                                  61
                                       62
                                           63
                                                64
                                                     65
                                                          66
                                                               67
                                                                    68
60
    13
         53
              18
                   12
                         8
                             17
                                   8
                                        8
                                           49
                                                27
                                                      7
                                                          10
                                                                     6
         71
              72
                             75
69
    70
                   73
                        74
                                  76
                                       77
                                           78
                                                79
                                                     80
                                                          81
              41
                         2
                                   2
                                        3
 8
                              4
                                             2
                                                  2
                                                       1
                                                          19
```

> plot(as.numeric(names(fr)), fr, type="h", xlab="Determinant",
+ ylab="Frequency")

5.6 Generalized transpose of an array

R 입문서 참조.

> A <- rbind(c(11, 12), c(21, 22)); A

Figure 3: Determinant Example plot

```
[,1] [,2]
[1,]
       11
             12
[2,]
       21
             22
> B <- aperm(A, c(2, 1)); B
     [,1] [,2]
[1,]
       11
             21
[2,]
       12
             22
> B < - t(A); B
     [,1] [,2]
[1,]
       11
             21
[2,]
       12
             22
```

```
> A <- 1:27; dim(A) <- c(3, 3, 3); A
, , 1
    [,1] [,2] [,3]
[1,] 1 4
[2,]
      2
           5
               8
[3,] 3
         6
             9
, , 2
    [,1] [,2] [,3]
[1,]
      10
          13
             16
[2,]
      11
          14
             17
[3,]
      12
          15
             18
, , 3
[,1] [,2] [,3]
[1,]
     19
          22
              25
[2,]
     20
          23
              26
[3,]
     21
          24
             27
> B < -aperm(A, c(2, 1, 3)); B
, , 1
 [,1] [,2] [,3]
[1,]
        2 3
     1
[2,] 4
           5
               6
[3,] 7
           8
, , 2
[,1] [,2] [,3]
[1,] 10
         11
             12
[2,] 13
          14
              15
[3,] 16
          17
             18
, , 3
```

[,1] [,2] [,3]

- [1,] 19 20 21
- [2,] 22 23 24
- [3,] 25 26 27
- > B <- aperm(A, c(3, 2, 1)); B
- , , 1

- [1,] 1 4 7
- [2,] 10 13 16
- [3,] 19 22 25
- , , 2

- [1,] 2 5 8
- [2,] 11 14 17
- [3,] 20 23 26
- , , 3

- [1,] 3 6 9
- [2,] 12 15 18
- [3,] 21 24 27

5.7 Matrix facilities

R 입문서 참조.

5.7.1 Matrix multiplication

R 입문서 참조.

$$> A <- c(1, 1, 1, 1); A$$

[1] 1 1 1 1

> A * B

> C <- A %*% B; C

> D <- C * C; D

> D <- C %*% C; D

> x %*% A %*% x

[,1] [1,] 40

```
> rbind(x) %*% A %*% cbind(x)
x 40
> rbind(x) %*% crossprod(A, cbind(x))
x 40
> crossprod(x, crossprod(A, cbind(x)))
[1,] 40
> crossprod(rbind(x), t(crossprod(A, cbind(x))))
     [,1] [,2] [,3] [,4]
[1,]
        4
              8
                  12
[2,]
        4
              8
                  12
                       16
[3,]
        4
              8
                  12
                       16
[4,]
        4
              8
                  12
                       16
> I <- diag(c(1, 1, 1)); I
     [,1] [,2] [,3]
[1,]
        1
              0
[2,]
        0
              1
                   0
[3,]
        0
> diag(I)
[1] 1 1 1
5.7.2 Linear equations and inversion
R 입문서 참조.
> A \leftarrow diag(c(5, 1, 1, 1)); A
     [,1] [,2] [,3] [,4]
[1,]
        5
              0
                   0
[2,]
        0
              1
                   0
                        0
[3,]
        0
              0
                   1
                        0
```

[4,]

0

0

0

1

- > x <- 1:4; x
- [1] 1 2 3 4
- > b <- A %*% x; b

2

- [,1]
- [1,] 5
- [2,]
- [3,] 3
- [4,]
- > solve(A)
 - [,1] [,2] [,3] [,4]
- [1,] 0.2 0 0 0
- [2,] 0.0 1 0 0
- 0.0 0 1
- [3,] 0 [4,] 0.0 0 1 0
- > solve(A, b)
 - [,1]
- [1,] 1
- [2,] 2
- [3,] 3
- [4,] 4
- > solve(A) %*% b
 - [,1]
- [1,] 1
- [2,] 2
- [3,] 3
- [4,] 4
- 5.7.3 Eigenvalues and eigenvectors
- R 입문서 참조.
- > Sm <- diag(c(1, 2, 3, 4)); Sm

> ev <- eigen(Sm); ev</pre>

eigen() decomposition
\$values

[1] 4 3 2 1

\$vectors

> evals <- eigen(Sm)\$values</pre>

> evals <- eigen(Sm, only.values = TRUE)\$values

5.7.4 Singular value decomposition and determinants

R 입문서 참조.

> svd(M)

\$d

[1] 4 3 2 1

\$u

```
[3,] 0 1 0 0
[4,] 1 0 0 0
```

\$v

- > absdetM <- prod(svd(M)\$d); absdetM</pre>
- [1] 24
- > absdet <- function(M) prod(svd(M)\$d)</pre>
- > adM <- absdet(M); adM</pre>
- [1] 24
- 5.7.5 Least squares fitting and the QR decomposition
- R 입문서 참조.

$$> X < - seq(-10, 10, by=0.5); X$$

- [28] 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
- [37] 8.0 8.5 9.0 9.5 10.0
- > y <- (2*X)+rnorm(length(X)); y
 - [1] -20.3212470 -19.8303232 -18.4417785 -17.0925710
 - [5] -18.0184323 -17.7155804 -14.4528759 -11.1121994
 - [9] -12.7728917 -12.0227519 -10.4218892 -9.4435934
- [13] -7.5344717 -6.7355285 -4.5615872 -5.6699096
- [17] -3.5979502 -4.0253210 -1.5421504 -0.9946404
- [21] 0.6369411 1.6830545 3.3295373 3.9625289
- [25] 4.7553248 5.1510599 7.1870845 6.3331868
- [29] 8.5293552 10.8694476 10.3516383 10.9638246
- [33] 12.6311710 14.0692822 15.4002334 13.5947029
- [37] 16.6361122 17.1692079 15.1857231 17.6416109
- [41] 18.6826206

```
> ans <- lsfit(X, y); ans</pre>
$coefficients
                     X
  Intercept
-0.03765964 2.02503801
$residuals
 [1] -0.033207335 -0.554802508 -0.178776790 0.157911732
 [5] -1.780468576 -2.490135725 -0.239950178 2.088207325
 [9] -0.585003982 -0.847383265 -0.259039560 -0.293262775
[13] 0.603339918 0.389764185 1.551186499 -0.569654927
[17] 0.489785495 -0.950104336 0.520547241 0.055538274
[21]
     0.674600712  0.708195097  1.342158880  0.962631558
[25] 0.742908379 0.126124554 1.149630162 -0.716786629
[29]
     0.466862836 1.794436172 0.264107921 -0.136224781
[33]
     0.518602564 0.944194815 1.262626959 -1.555422464
     0.473467743 -0.005955561 -3.001959291 -1.558590533
[37]
[41] -1.530099804
$intercept
[1] TRUE
$qr
$qt
 [1]
     0.24113933 76.71126227 -0.08284131 0.24786948
 [5] -1.69648855 -2.41213343 -0.16792561 2.15425416
 [9] -0.52493487 -0.79329188 -0.21092590 -0.25112685
    0.63949812  0.41994466  1.57538925  -0.55142991
[13]
[17] 0.50203279 -0.94383477 0.52083908 0.04985238
[21]
     0.66293709  0.69055375  1.31853981  0.93303476
[25]
     [29]
     0.40737740 1.72897301 0.19266703 -0.21364340
[33] 0.43520622 0.85482074 1.16727516 -1.65675200
[37]
     0.36616048 -0.11924055 -3.12122201 -1.68383098
[41] -1.66131797
$qr
                           X
      Intercept
 [1,] -6.4031242 -1.776357e-15
 [2,] 0.1561738 3.788139e+01
 [3.] 0.1561738 2.019255e-01
```

[4,] 0.1561738 1.887264e-01

```
[5,]
      0.1561738 1.755273e-01
 [6,]
       0.1561738 1.623282e-01
 [7,]
       0.1561738 1.491291e-01
 [8,]
       0.1561738 1.359300e-01
 [9,]
       0.1561738 1.227309e-01
[10,]
      0.1561738 1.095318e-01
[11,]
       0.1561738 9.633275e-02
[12,]
       0.1561738 8.313366e-02
[13,]
      0.1561738 6.993457e-02
[14,]
      0.1561738 5.673548e-02
[15,]
       0.1561738 4.353638e-02
[16,]
      0.1561738 3.033729e-02
[17,]
      0.1561738 1.713820e-02
[18,]
      0.1561738 3.939109e-03
[19,]
      0.1561738 -9.259983e-03
      0.1561738 -2.245907e-02
[20,]
[21,]
      0.1561738 -3.565817e-02
[22,]
      0.1561738 -4.885726e-02
[23,]
      0.1561738 -6.205635e-02
[24,]
      0.1561738 -7.525544e-02
[25,]
      0.1561738 -8.845453e-02
[26,]
      0.1561738 -1.016536e-01
      0.1561738 -1.148527e-01
[27,]
[28,]
      0.1561738 -1.280518e-01
[29,]
      0.1561738 -1.412509e-01
[30,]
      0.1561738 -1.544500e-01
       0.1561738 -1.676491e-01
[31,]
[32,]
      0.1561738 -1.808482e-01
[33,]
      0.1561738 -1.940473e-01
       0.1561738 -2.072464e-01
[34,]
      0.1561738 -2.204455e-01
[35,]
[36,]
      0.1561738 -2.336445e-01
      0.1561738 -2.468436e-01
[37,]
[38,]
      0.1561738 -2.600427e-01
[39,]
      0.1561738 -2.732418e-01
[40,] 0.1561738 -2.864409e-01
[41,]
       0.1561738 -2.996400e-01
```

\$qraux

[1] 1.156174 1.215125

```
$rank
[1] 2
$pivot
[1] 1 2
$tol
[1] 1e-07
attr(,"class")
[1] "qr"
> ans <- lm(y \sim X); ans
Call:
lm(formula = y ~ X)
Coefficients:
(Intercept)
                       X
   -0.03766
                 2.02504
> plot(X, y)
> abline(ans$coefficients)
> grid()
> Xplus <- qr(X); Xplus</pre>
$qr
             [,1]
 [1,] 37.88139385
 [2,] 0.25078275
 [3,] 0.23758365
 [4,] 0.22438456
 [5,] 0.21118547
 [6,] 0.19798638
 [7,] 0.18478729
 [8,] 0.17158820
 [9,] 0.15838910
[10,] 0.14519001
[11,] 0.13199092
[12,] 0.11879183
```


Figure 4: Least square fitting using lsfit()

- [13,] 0.10559274
- [14,] 0.09239364
- [15,] 0.07919455
- [16,] 0.06599546
- [17,] 0.05279637
- [18,] 0.03959728
- [19,] 0.02639818
- [20,] 0.01319909
- [21,] 0.0000000
- [22,] -0.01319909
- [23,] -0.02639818
- [24,] -0.03959728
- [25,] -0.05279637

```
[26,] -0.06599546
[27,] -0.07919455
[28,] -0.09239364
[29,] -0.10559274
[30,] -0.11879183
[31,] -0.13199092
[32,] -0.14519001
[33,] -0.15838910
[34,] -0.17158820
[35,] -0.18478729
[36,] -0.19798638
[37,] -0.21118547
[38,] -0.22438456
[39,] -0.23758365
[40,] -0.25078275
[41,] -0.26398184
$rank
[1] 1
$qraux
[1] 1.263982
$pivot
[1] 1
attr(,"class")
[1] "qr"
> b <- qr.coef(Xplus, y); b</pre>
[1] 2.025038
> fit <- qr.fitted(Xplus, y); fit</pre>
 [1] -20.250380 -19.237861 -18.225342 -17.212823 -16.200304
 [6] -15.187785 -14.175266 -13.162747 -12.150228 -11.137709
[11] -10.125190 -9.112671 -8.100152 -7.087633 -6.075114
[16] -5.062595 -4.050076 -3.037557 -2.025038 -1.012519
[21]
      0.000000 1.012519
                           2.025038
                                        3.037557
                                                 4.050076
[26]
       5.062595
                  6.075114
                           7.087633
                                        8.100152
                                                   9.112671
[31] 10.125190 11.137709 12.150228 13.162747 14.175266
```

```
[36] 15.187785 16.200304 17.212823 18.225342 19.237861

[41] 20.250380 > res <- qr.resid(Xplus, y); res

[1] -0.07086697 -0.59246214 -0.21643643 0.12025210

[5] -1.81812821 -2.52779536 -0.27760981 2.05054769

[9] -0.62266362 -0.88504290 -0.29669920 -0.33092241

[13] 0.56568028 0.35210455 1.51352686 -0.60731456

[17] 0.45212586 -0.98776397 0.48288761 0.01787864

[21] 0.63694108 0.67053546 1.30449924 0.92497192

[25] 0.70524874 0.08846492 1.11197053 -0.75444627

[29] 0.42920320 1.75677654 0.22644828 -0.17388442
```

5.8 Formatting partitioned matrices, cbind() and rbind() R 입문서 참조.

[33] 0.48094293 0.90653518 1.22496732 -1.59308210 [37] 0.43580811 -0.04361520 -3.03961893 -1.59625017

- 5.9 The concatenation function, c(), with arrays R 입문서 참조.
- 5.10 Frequency tables from factors

R 입문서 참조.

[41] -1.56775944

> statefr <- table(statef); statefr

${\tt statef}$

```
act nsw \ nt \ qld \ sa tas \ vic \ wa \ 2 6 2 5 4 2 5 4
```

> statefr <- tapply(statef, statef, length); statefr</pre>

```
act nsw \ nt \ qld \ sa tas \ vic \ wa \ 2 6 2 5 4 2 5 4
```

> factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef
> table(incomef, statef)

statef

```
incomef
       act nsw nt qld sa tas vic wa
 (35,45]
            1 0
                  1 0
                  1 2
            1 1
                       0
                           1 3
 (45,55]
         1
            3 1 3 2 2 2 1
 (55,65]
         0
 (65,75]
         0 1 0 0 0 0 1 0
```

6 Lists and data frames

6.1 Lists

R 입문서 참조.

```
> Lst <- list(name="Fred", wife="Mary", no.children=3,
+ child.ages=c(4, 7, 9))
> Lst; length(Lst); Lst[1]; Lst[[1]]; length(Lst[4]); length(Lst[4]])
```

\$name

[1] "Fred"

\$wife

[1] "Mary"

\$no.children

[1] 3

\$child.ages

[1] 4 7 9

[1] 4

\$name

- [1] "Fred"
- [1] "Fred"
- [1] 1
- [1] 3
- > Lst\$name; Lst\$wife; Lst\$no.children; Lst\$child.ages; Lst\$child.ages[1]
- [1] "Fred"

```
[1] "Mary"
[1] 3
[1] 4 7 9
[1] 4
> Lst[[1]]; Lst[[2]]; Lst[[3]]; Lst[[4]][2]; x <- "name"; Lst[[x]]
[1] "Fred"
[1] "Mary"
[1] 3
[1] 7
[1] "Fred"
6.2 Constructing and modifying lists
R 입문서 참조.
> Mat <- rbind(1:4); Mat
     [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
> Lst[5] <- list(matrix=Mat); Lst</pre>
$name
[1] "Fred"
$wife
[1] "Mary"
$no.children
[1] 3
$child.ages
[1] 4 7 9
[[5]]
    [,1] [,2] [,3] [,4]
```

[1,] 1 2 3 4

```
6.2.1 Concatenating lists
R 입문서 참조.
> list.A <- Lst; list.A; list.B <- Lst; list.C <- Lst</pre>
$name
[1] "Fred"
$wife
[1] "Mary"
$no.children
[1] 3
$child.ages
[1] 4 7 9
[[5]]
     [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
> list.ABC <- c(list.A, list.B, list.C); list.ABC</pre>
$name
[1] "Fred"
$wife
[1] "Mary"
$no.children
[1] 3
```

[[5]]

[,1] [,2] [,3] [,4] [1,] 1 2 3 4

\$name

[1] "Fred"

\$child.ages
[1] 4 7 9

```
$wife
[1] "Mary"
$no.children
[1] 3
$child.ages
[1] 4 7 9
[[10]]
    [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
$name
[1] "Fred"
$wife
[1] "Mary"
$no.children
[1] 3
$child.ages
[1] 4 7 9
[[15]]
```

6.3 Data frames

R 입문서 참조.

6.3.1 Making data frames

[1,] [,2] [,3] [,4] [1,] 1 2 3 4

R 입문서 참조.

- > accountants <- data.frame(home=statef, loot=incomes, shot=incomef)
- > accountants

home loot shot 1 tas 60 (55,65]

```
2
          49 (45,55]
     sa
3
    qld
          40 (35,45]
4
          61 (55,65]
    nsw
5
          64 (55,65]
    nsw
6
          60 (55,65]
     nt
7
          59 (55,65]
     wa
8
     wa
          54 (45,55]
9
    qld
          62 (55,65]
10
    {\tt vic}
          69 (65,75]
11
    nsw
          70 (65,75]
12
          42 (35,45]
    vic
13
    qld
          56 (55,65]
14
    qld
          61 (55,65]
15
          61 (55,65]
     sa
16
          61 (55,65]
   tas
17
          58 (55,65]
     sa
18
     nt
          51 (45,55]
19
     wa
          48 (45,55]
20
    vic
          65 (55,65]
21
    qld
          49 (45,55]
22
          49 (45,55]
    \tt nsw
23
   nsw
          41 (35,45]
24
          48 (45,55]
     wa
25
          52 (45,55]
     sa
26
    act
          46 (45,55]
27
          59 (55,65]
    nsw
28
    vic
          46 (45,55]
29
    vic
          58 (55,65]
30
    act
          43 (35,45]
6.3.2 attach() and detach()
R 입문서 참조.
> rm(list=ls())
> lentils <- data.frame(u=1, v=2, w=3); lentils
  u v w
1 1 2 3
> lentils$u
```

```
[1] 1
> lentils$v
[1] 2
> lentils$w
[1] 3
> attach(lentils)
> u; v; w
[1] 1
[1] 2
[1] 3
> u <- v+w; u
[1] 5
> detach(lentils)
> lentils$u; u
[1] 1
[1] 5
> attach(lentils)
> detach(lentils)
> rm(list=ls())
> lentils <- data.frame(u=1, v=2, w=3); lentils
 u v w
1 1 2 3
> attach(lentils); u; v; w
[1] 1
[1] 2
[1] 3
> lentils$u <- v+w
> detach(lentils)
> lentils$u; #u
[1] 5
```

6.3.3 Working with data frames

R 입문서 참조. 꼭 한 번 읽어보시고요.

6.3.4 Attaching arbitrary lists

R 입문서 참조.

6.3.5 Managing the search path

> search()

- [1] ".GlobalEnv" "package:stats"
- [3] "package:graphics" "package:grDevices"
- [5] "package:utils" "package:datasets"
- [7] "package:methods" "Autoloads"
- [9] "package:base"
- > lentils <- data.frame(u=1, v=2, w=3); lentils

u v w

1 1 2 3

- > attach(lentils)
- > search()
 - [1] ".GlobalEnv" "lentils"
 - [3] "package:stats" "package:graphics"
 - [5] "package:grDevices" "package:utils"
 - [7] "package:datasets" "package:methods"
 - [9] "Autoloads" "package:base"
- > 1s(2)
- [1] "u" "v" "w"
- > detach(lentils)
- > search()
- [1] ".GlobalEnv" "package:stats"
- [3] "package:graphics" "package:grDevices"
- [5] "package:utils" "package:datasets"
- [7] "package:methods" "Autoloads"
- [9] "package:base"

7 Reading data from files

R 입문서 참조.

7.1 The read.table() function

R 입문서 참조.

```
> houses.data <- data.frame(Price = c(52.00, 54.75, 57.50, 57.50, 59.75))
```

- > Floor = c(111.0, 128.0, 101.0, 131.0, 93.0)
- > Area = c(830, 710, 1000, 690, 900)
- > Rooms = c(5, 5, 5, 6, 5)
- > Age = c(6.2, 7.5, 4.2, 8.8, 1.9)
- > Cent.heat = c("no", "no", "no", "no", "yes")
- > houses.data\$Floor <- Floor</pre>
- > houses.data\$Area <- Area
- > houses.data\$Rooms <- Rooms
- > houses.data\$Age <- Age
- > houses.data\$Cent.heat <- Cent.heat; houses.data</pre>

Price Floor Area Rooms Age Cent.heat

1	52.00	111	830	5 6.2	no
2	54.75	128	710	5 7.5	no
3	57.50	101	1000	5 4.2	no
4	57.50	131	690	6 8.8	no
5	59.75	93	900	5 1.9	yes

- > write.table(houses.data, "houses.data")
- > HousePrice <- read.table("houses.data")</pre>
- > HousePrice

Price Floor Area Rooms Age Cent.heat

1	52.00	111	830	5 6.2	no
2	54.75	128	710	5 7.5	no
3	57.50	101	1000	5 4.2	no
4	57.50	131	690	6 8.8	no
5	59.75	93	900	5 1.9	ves

7.2 The scan() function

R 입문서 참조.

```
> cat("abc 1 1", "def 2 2", "ghi 3 3", file="input.dat", sep="\n")
> inp <- scan("input.dat", list("", 0, 0)); inp</pre>
[[1]]
[1] "abc" "def" "ghi"
[[2]]
[1] 1 2 3
[[3]]
[1] 1 2 3
> label <- inp[[1]]; label
[1] "abc" "def" "ghi"
> x <- inp[[2]]; x
[1] 1 2 3
> y <- inp[[3]]; y
[1] 1 2 3
> inp <- scan("input.dat", list(id="", x=0, y=0)); inp</pre>
$id
[1] "abc" "def" "ghi"
$x
[1] 1 2 3
$y
[1] 1 2 3
> label <- inp$id; label</pre>
[1] "abc" "def" "ghi"
> x <- inp$x; x
[1] 1 2 3
> y <- inp$y; y
```

[1] 1 2 3

- > cat(1:20, file="light.dat")
- > X <- matrix(scan("light.dat", 0), ncol=5, byrow=TRUE); X</pre>

[,1] [,2] [,3] [,4] [,5]

- [1,] 1 2 3 4 5
- [2,] 6 7 8 9 10
- [3,] 11 12 13 14 15
- [4,] 16 17 18 19 20

7.3 Accessing builtin datasets

R 입문서 참조.

7.3.1 Loading data from other R packages

R 입문서 참조.

- > data(package="rpart")
- > data(Puromycin, package="datasets")

7.4 Editing data

R 입문서 참조.

- > xold <- c(1:10); xold
- > xnew <- edit(xold)</pre>
- > xnew <- edit(data.frame())</pre>

8 Probability distributions

8.1 R as a set of statistical tables

R 입문서 참조.

- > ## 2-tailed p-value for t distribution
- > 2*pt(-2.43, df = 13)

[1] 0.0303309

- > ## upper 1% point for an F(2, 7) distribution
- > qf(0.01, 2, 7, lower.tail = FALSE)
- [1] 9.546578

8.2 Examining the distribution of a set of data R 입문서 참조.

> faithful; summary(faithful)

	eruptions	waiting
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85
9	1.950	51
10	4.350	85
11	1.833	54
12	3.917	84
13	4.200	78
14	1.750	47
15	4.700	83
16	2.167	52
17	1.750	62
18	4.800	84
19	1.600	52
20	4.250	79
21	1.800	51
22	1.750	47
23	3.450	78
24	3.067	69
25	4.533	74
26	3.600	83
27	1.967	55
28	4.083	76
29	3.850	78
30	4.433	79
31	4.300	73
32	4.467	77
33	3.367	66
34	4.033	80
35	3.833	74

36	2.017	52
37	1.867	48
38	4.833	80
39	1.833	59
40	4.783	90
41	4.350	80
42	1.883	58
43	4.567	84
44	1.750	58
45	4.533	73
46	3.317	83
47	3.833	64
48	2.100	53
49	4.633	82
50	2.000	59
51	4.800	75
52	4.716	90
53	1.833	54
54	4.833	80
55	1.733	54
56	4.883	83
57	3.717	71
58	1.667	64
59	4.567	77
60	4.317	81
61	2.233	59
62	4.500	84
63	1.750	48
64	4.800	82
65	1.817	60
66	4.400	92
67	4.167	78
68	4.700	78
69	2.067	65
70	4.700	73
71	4.033	82
72	1.967	56
73	4.500	79
74	4.000	71
75	1.983	62
76	5.067	76

77	2.017	60
78	4.567	78
79	3.883	76
80	3.600	83
81	4.133	75
82	4.333	82
83	4.100	70
84	2.633	65
85	4.067	73
86	4.933	88
87	3.950	76
88	4.517	80
89	2.167	48
90	4.000	86
91	2.200	60
92	4.333	90
93	1.867	50
94	4.817	78
95	1.833	63
96	4.300	72
97	4.667	84
98	3.750	75
99	1.867	51
100	4.900	82
101	2.483	62
102	4.367	88
103	2.100	49
104	4.500	83
105	4.050	81
106	1.867	47
107	4.700	84
108	1.783	52
109	4.850	86
110	3.683	81
111	4.733	75
112	2.300	59
113	4.900	89
114	4.417	79
115	1.700	59
116	4.633	81
117	2.317	50

118	4.600	85
119	1.817	59
120	4.417	87
121	2.617	53
122	4.067	69
123	4.250	77
124	1.967	56
125	4.600	88
126	3.767	81
127	1.917	45
128	4.500	82
129	2.267	55
130	4.650	90
131	1.867	45
132	4.167	83
133	2.800	56
134	4.333	89
135	1.833	46
136	4.383	82
137	1.883	51
138	4.933	86
139	2.033	53
140	3.733	79
141	4.233	81
142	2.233	60
143	4.533	82
144	4.817	77
145	4.333	76
146	1.983	59
147	4.633	80
148	2.017	49
149	5.100	96
150	1.800	53
151	5.033	77
152	4.000	77
153	2.400	65
154	4.600	81
155	3.567	71
156	4.000	70
157	4.500	81
158	4.083	93

159	1.800	53
160	3.967	89
161	2.200	45
162	4.150	86
163	2.000	58
164	3.833	78
165	3.500	66
166	4.583	76
167	2.367	63
168	5.000	88
169	1.933	52
170	4.617	93
171	1.917	49
172	2.083	57
173	4.583	77
174	3.333	68
175	4.167	81
176	4.333	81
177	4.500	73
178	2.417	50
179	4.000	85
180	4.167	74
181	1.883	55
182	4.583	77
183	4.250	83
184	3.767	83
185	2.033	51
186	4.433	78
187	4.083	84
188	1.833	46
189	4.417	83
190	2.183	55
191	4.800	81
192	1.833	57
193	4.800	76
194	4.100	84
195	3.966	77
196	4.233	81
197	3.500	87
198	4.366	77
199	2.250	51

200	4.667	78
201	2.100	60
202	4.350	82
203	4.133	91
204	1.867	53
205	4.600	78
206	1.783	46
207	4.367	77
208	3.850	84
209	1.933	49
210	4.500	83
211	2.383	71
212	4.700	80
213	1.867	49
214	3.833	75
215	3.417	64
216	4.233	76
217	2.400	53
218	4.800	94
219	2.000	55
220	4.150	76
221	1.867	50
222	4.267	82
223	1.750	54
224	4.483	75
225	4.000	78
226	4.117	79
227	4.083	78
228	4.267	78
229	3.917	70
230	4.550	79
231	4.083	70
232	2.417	54
233	4.183	86
234	2.217	50
235	4.450	90
236	1.883	54
237	1.850	54
238	4.283	77
239	3.950	79
240	2.333	64

241	4.150	75
242	2.350	47
243	4.933	86
244	2.900	63
245	4.583	85
246	3.833	82
247	2.083	57
248	4.367	82
249	2.133	67
250	4.350	74
251	2.200	54
252	4.450	83
253	3.567	73
254	4.500	73
255	4.150	88
256	3.817	80
257	3.917	71
258	4.450	83
259	2.000	56
260	4.283	79
261	4.767	78
262	4.533	84
263	1.850	58
264	4.250	83
265	1.983	43
266	2.250	60
267	4.750	75
268	4.117	81
269	2.150	46
270	4.417	90
271	1.817	46
272	4.467	74

eruptions		waiting		
Min.	:1.600	Min.	:43.0	
1st Qu	.:2.163	1st Qu	.:58.0	
Median	:4.000	Median	:76.0	
Mean	:3.488	Mean	:70.9	
3rd Qu	.:4.454	3rd Qu	.:82.0	
Max.	:5.100	Max.	:96.0	

- > attach(faithful)
- > summary(eruptions)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.600 2.163 4.000 3.488 4.454 5.100
```

- > fivenum(eruptions)
- [1] 1.6000 2.1585 4.0000 4.4585 5.1000
- > stem(eruptions)

The decimal point is 1 digit(s) to the left of the |

- 16 | 07035555588
- 18 | 000022233333335577777777888822335777888
- 20 | 00002223378800035778
- 22 | 0002335578023578
- 24 | 00228
- 26 | 23
- 28 | 080
- 30 I 7
- 32 | 2337
- 34 | 250077
- 36 | 0000823577
- 38 | 2333335582225577
- 40 | 0000003357788888002233555577778
- 42 | 03335555778800233333555577778
- 44 | 02222335557780000000023333357778888
- 46 | 0000233357700000023578
- 48 | 00000022335800333
- 50 | 0370

- > hist(eruptions)
- > ## make the bins smaller, make a plot of density
- > hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
- > lines(density(eruptions, bw=0.1))
- > rug(eruptions) # show the actual data points

Histogram of eruptions

Figure 5: The histogram from "hist(eruptions)"

Histogram of eruptions

Figure 6: The histogram from "hist (eruptions, seq(1.6, 5.2, 0.2)"

Figure 7: The plot of plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)"

- > long <- eruptions[eruptions > 3]
- > plot(ecdf(long), do.points=FALSE, verticals=TRUE)

 $\label{eq:figure 8: The plot of plot(ecdf(long), do.points=FALSE, verticals=TRUE)"} \\$

> x < - seq(3, 5.4, 0.01)

> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)

Figure 9: The plot of lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)"

> par(pty="s") # arrange for a square figure region
> qqnorm(long); qqline(long)

Normal Q-Q Plot 8:0. -2 -1 0 1 2 Theoretical Quantiles

Figure 10: The qqnorm and qqline

Normal Q-Q Plot Sequence of the sequence of t

Figure 11: The qqnorm and qqline of t distribution

> qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn") > qqline(x)

Figure 12: The qqplot

> shapiro.test(long)

Shapiro-Wilk normality test

data: long

W = 0.97934, p-value = 0.01052

> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))

Asymptotic one-sample Kolmogorov-Smirnov test

data: long

D = 0.066133, p-value = 0.4284 alternative hypothesis: two-sided

8.3 One- and two-sample tests

R 입문서 참조.

> A <- scan()

> B <- scan()

Figure 13: The boxplot

> t.test(A, B)

Welch Two Sample t-test

```
data: A and B t = 3.2499, df = 12.027, p-value = 0.006939 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.01385526\ 0.07018320 sample estimates: mean of x mean of y 80.02077\ 79.97875
```

> var.test(A, B)

F test to compare two variances

data: A and B

F = 0.58374, num df = 12, denom df = 7, p-value =

0.3938

alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval:

0.1251097 2.1052687

sample estimates:

ratio of variances

0.5837405

> t.test(A, B, var.equal=TRUE)

Two Sample t-test

data: A and B

t = 3.4722, df = 19, p-value = 0.002551

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

0.01669058 0.06734788

sample estimates:

mean of x mean of y

80.02077 79.97875

> wilcox.test(A, B)

Wilcoxon rank sum test with continuity correction

data: A and B

W = 89, p-value = 0.007497

alternative hypothesis: true location shift is not equal to ${\tt 0}$

> plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B))
> plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE)

Figure 14: The plot ecdf(A) and ecdf(B)

```
> ks.test(A, B)
```

Exact two-sample Kolmogorov-Smirnov test

```
data: A and B
D = 0.59615, p-value = 0.03199
alternative hypothesis: two-sided
```

- 9 Grouping, loops and conditional execution
- 9.1 Grouped expression

R 입문서 참조.

- 9.2 Control statements
- 9.2.1 Conditional execution: if statements

R 입문서 참조.

9.2.2 Repetitive execution: for loops, repeat and while

R 입문서 참조.

```
> n <- 10; nn <- 10
> ind <- factor(round(n * runif(n * nn)))
> x <- seq(-10, 10, length.out=(n * nn)) + runif(n * nn)
> y <- seq(-10, 10, length.out=(n * nn)) + runif(n * nn)
> xc <- split(x, ind)
> yc <- split(y, ind)
> for (i in 1:length(yc)) {
        plot(xc[[i]], yc[[i]])
        + abline(lsfit(xc[[i]], yc[[i]]))
+ }
```

10 Writing your own functions

Figure 15: The plot of one of for() loop plots

10.1 Simple examples

```
> twosam <- function(y1, y2) {
+    n1 <- length(y1); n2 <- length(y2)
+    yb1 <- mean(y1); yb2 <- mean(y2)
+    s1 <- var(y1); s2 <- var(y2)
+    s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)
+    tst <- (yb1 - yb2)/sqrt(s*(1/n1 + 1/n2))
+    tst
+ }
> data <- data.frame(male=c(runif(50)), female=c(runif(50)))
> tstat <- twosam(data$male, data$female); tstat</pre>
```

```
[1] 0.718135
```

```
> bslash <- function(X, y) {</pre>
+ X \leftarrow qr(X)
+ qr.coef(X, y)
+ }
> yvar <- 1:4; yvar
[1] 1 2 3 4
> Xmat <- diag(1:4); Xmat
     [,1] [,2] [,3] [,4]
[1,]
        1
             0
                   0
[2,]
             2
        0
                   0
                        0
[3,]
        0
             0
                   3
                        0
[4,]
      0
             0
                   0
                        4
> regcoeff <- bslash(Xmat, yvar); regcoeff</pre>
[1] 1 1 1 1
10.2 Defining new binary operator
R 입문서 참조.
> "%!%" <- function(X, y) {
+ X \leftarrow qr(X)
+ qr.coef(X, y)
+ }
> Xmat %!% yvar
[1] 1 1 1 1
```

10.3 Named arguments and defaults

```
> fun1 <- function(data, data.frame, graph, limit) {
+   data
+   data.frame</pre>
```

```
graph
    limit
    return <- 0; return
+ }
> d <- 1:10
> df <- data.frame(c(1:5), c(1:5))
> ans <- fun1(d, df, TRUE, 20)
> ans <- fun1(d, df, graph=TRUE, limit=20)</pre>
> ans <- fun1(data=d, limit=20, graph=TRUE, data.frame=df)</pre>
> fun1 <- function(data, data.frame, graph=TRUE, limit=20) {</pre>
    data
    data.frame
    graph
   limit
    return <- 0; return
+ }
> ans <- fun1(d, df)
> ans <- fun1(d, df, limit=10)</pre>
10.4 The '...' argument
R 입문서 참조.
> fun1 <- function(data, data.frame, graph=TRUE, limit=20, ...) {</pre>
    data
    data.frame
    graph
    limit
   if(graph)
      par(pch="*", ...)
    return <- 0; return
10.5 Assignments within functions
R 입문서 참조.
     More advanced examples
10.6.1 Efficiency factors in block designs
R 입문서 참조.
```

```
> bdeff <- function(blocks, varieties) {</pre>
    blocks <- as.factor(blocks) # minor safety move
    b <- length(levels(blocks))</pre>
    varieties <- as.factor(varieties) # minor safety move</pre>
   v <- length(levels(varieties))</pre>
   K <- as.vector(table(blocks)) # remove dim attr</pre>
+ R <- as.vector(table(varieties)) # remove dim attr
   N <- table(blocks, varieties)</pre>
   A \leftarrow 1/sqrt(K) * N * rep(1/sqrt(R), rep(b, v))
   sv \leftarrow svd(A)
    list(eff=1 - sv$d^2, blockcv=sv$u, varietycv=sv$v)
+ }
10.6.2 Dropping all names in a printed array
> temp <- X
> dimnames(temp) <- list(rep("", nrow(X)), rep("", ncol(X)))</pre>
> temp; rm(temp)
  1 2 3 4 5
  6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
> no.dimnames <- function(a) {</pre>
    ## Remove all dimension names from an array for compact printing.
    d <- list()</pre>
   1 <- 0
    for(i in dim(a)) {
     d[[1 <- 1 + 1]] <- rep("", i)
    dimnames(a) <- d
+ }
> no.dimnames(X)
  1 2 3 4 5
  6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
```

10.6.3 Recursive numerical integration

```
> area <- function(f, a, b, eps = 1.0e-06, lim = 10) {
    fun1 <- function(f, a, b, fa, fb, a0, eps, lim, fun) {</pre>
      ## function `fun1' is only visible inside `area'
      d < -(a + b)/2
      h < - (b - a)/4
      fd \leftarrow f(d)
+
      a1 <- h * (fa + fd)
      a2 < -h * (fd + fb)
      if(abs(a0 - a1 - a2) < eps || lim == 0)
+
        return(a1 + a2)
+
      else {
        return(fun(f, a, d, fa, fd, a1, eps, lim - 1, fun) +
                fun(f, d, b, fd, fb, a2, eps, lim - 1, fun))
+
      }
    7
    fa \leftarrow f(a)
    fb \leftarrow f(b)
    a0 < -((fa + fb) * (b - a))/2
    fun1(f, a, b, fa, fb, a0, eps, lim, fun1)
+ }
10.7 Scope
R 입문서 참조.
> f <- function(x) {</pre>
    y < -2*x
    print(x)
    print(y)
    print(z)
+ }
> x <- 1:10
> z <- 3*x
> f(x)
 [1]
      1 2 3 4 5 6 7 8 9 10
 [1]
      2 4 6 8 10 12 14 16 18 20
 [1]
     3 6 9 12 15 18 21 24 27 30
```

```
> cube <- function(n) {</pre>
+ sq <- function() n*n
    n * sq()
+ }
> cube(2)
Γ1 | 8
> open.account <- function(total) {</pre>
    list(
      deposit = function(amount) {
        if(amount <= 0)</pre>
          stop("Deposits must be positive!\n")
        total <<- total + amount
        cat(amount, "deposited. Your balance is", total, "\n'")
      },
+
      withdraw = function(amount) {
+
        if(amount > total)
          stop("You don't hae that much money!\n")
        total <<- total - amount
+
        cat(amount, "withdrawn. Your balance is", total, "\n\")
+
      },
      balance = function() {
        cat("Your balance is", total, "\n\n")
+
    )
+ }
> ross <- open.account(100)</pre>
> robert <- open.account(200)</pre>
> ross$withdraw(30)
30 withdrawn. Your balance is 70
> ross$balance()
Your balance is 70
> robert$balance()
Your balance is 200
> ross$deposit(50)
50 deposited. Your balance is 120
```

```
> ross$balance()
Your balance is 120
> ross$withdraw(500)
```

10.8 Customizing the environment

R 입문서 참조.

```
> .First <- function() {
+    options(prompt="$ ", continue="+\t")
+    options(digits=5, length=999)
+    x11()
+    par(pch = "+")
+    source(file.path(Sys.getenv("HOME"), "R", "mystuff.R"))
+    library(MASS)
+ }
> .Last <- function() {
+    graphics.off()
+    cat(paste(date(), "\nAdios\n"))
+ }</pre>
```

10.9 Classes, generic functions and object orientation

R 입문서 참조.

> methods(class="data.frame")

[1]	[[[[[<-	[<-
[5]	\$<-	aggregate	${\tt anyDuplicated}$	\mathtt{anyNA}
[9]	${\tt as.data.frame}$	as.list	as.matrix	as.vector
[13]	by	cbind	coerce	dim
[17]	dimnames	dimnames<-	droplevels	duplicated
[21]	edit	format	formula	head
[25]	initialize	is.na	Math	merge
[29]	na.exclude	na.omit	0ps	plot
[33]	print	prompt	rbind	row.names
[37]	row.names<-	rowsum	show	slotsFromS3
[41]	sort_by	split	split<-	stack
[45]	str	subset	summary	Summary
[49]	t	tail	transform	<pre>type.convert</pre>
[53]	unique	unstack	within	xtfrm
see	'?methods' for	accessing help	o and source co	ode

```
> methods(plot)
 [1] plot.acf*
                         plot.data.frame*
 [3] plot.decomposed.ts* plot.default
 [5] plot.dendrogram*
                         plot.density*
 [7] plot.ecdf
                         plot.factor*
 [9] plot.formula*
                         plot.function
[11] plot.hclust*
                         plot.histogram*
[13] plot.HoltWinters* plot.isoreg*
[15] plot.lm*
                         plot.medpolish*
[17] plot.mlm*
                         plot.ppr*
[19] plot.prcomp*
                         plot.princomp*
[21] plot.profile*
                        plot.profile.nls*
[23] plot.raster*
                         plot.spec*
[25] plot.stepfun
                         plot.stl*
[27] plot.table*
                         plot.ts
[29] plot.tskernel*
                         plot.TukeyHSD*
see '?methods' for accessing help and source code
> coef
function (object, ...)
UseMethod("coef")
<bytecode: 0x6533484f4da0>
<environment: namespace:stats>
> methods(coef)
[1] coef.aov*
                  coef.Arima* coef.default* coef.listof*
[5] coef.maov*
                  coef.nls*
see '?methods' for accessing help and source code
> getAnywhere("coef.aov")
A single object matching 'coef.aov' was found
It was found in the following places
  registered S3 method for coef from namespace stats
 namespace:stats
with value
function (object, complete = FALSE, ...)
{
    cf <- object$coefficients</pre>
```

```
if (complete)
      cf
    else cf[!is.na(cf)]
}
<bytecode: 0x65334a9347e8>
<environment: namespace:stats>
```

11 Statistical models in R

R 입문서 참조.

11.1 Defining statistical models; formulae

R 입문서 참조.

11.1.1 Contrasts

R 입문서 참조.

11.2 Linear models

R 입문서 참조.

- 11.3 Generic functions for extracting model information R 입문서 참조.
- 11.4 Analysis of variance and model comparison

R 입문서 참조.

11.4.1 ANOVA tables

R 입문서 참조.

11.5 Updating fitted models

R 입문서 참조.

11.6 Generalized linear models

11.6.1 Families

R 입문서 참조.

11.6.2 The glm() function

R 입문서 참조.

11.7 Nonlinear least squares and maximum likelihood models

R 입문서 참조.

11.7.1 Least squares

R 입문서 참조.

11.7.2 Maximum likelihood

R 입문서 참조.

11.8 Some non-standard models

R 입문서 참조.

12 Graphical procedures

R 입문서 참조.

12.1 High-level plotting commands

R 입문서 참조.

12.1.1 The plot() function

R 입문서 참조.

12.1.2 Displaying multivariate data

R 입문서 참조.

12.1.3 Display graphics

12.1.4 Arguments to high-level plotting functions

R 입문서 참조.

12.2 Low-level plotting commands

R 입문서 참조.

12.2.1 Mathematical annotation

R 입문서 참조.

12.2.2 Hershey vector fonts

R 입문서 참조.

12.3 Interacting with graphics

R 입문서 참조.

12.4 Using graphics parameters

R 입문서 참조.

12.4.1 Permanent changes: The par() function

R 입문서 참조.

12.4.2 Temporary changes: Arguments to graphics functions

R 입문서 참조.

12.5 Graphics parameters list

R 입문서 참조.

12.5.1 Graphical elements

R 입문서 참조.

12.5.2 Axes and tick marks

12.5.3 Figure margins

R 입문서 참조.

12.5.4 Multiple figure environment

R 입문서 참조.

12.6 Device drivers

R 입문서 참조.

12.6.1 PostScript diagrams for typeset documents

R 입문서 참조.

12.6.2 Multiple graphics devices

R 입문서 참조.

12.7 Dynamic graphics

R 입문서 참조.

13 Packages

R 입문서 참조.

- > library()
- > library(boot)
- > search()
 - [1] ".GlobalEnv" "package:boot"
 - [3] "package:stats" "package:graphics"
 - [5] "package:grDevices" "package:utils"
 - [7] "package:datasets" "package:methods"
 - [9] "Autoloads" "package:base"

> loadedNamespaces()

- [1] "compiler" "graphics" "tools" "utils"
- [5] "grDevices" "stats" "datasets" "methods"
- [9] "boot" "base"
- > help.start()

13.1 Standard packages

R 입문서 참조.

13.2 Contributed packages and CRAN

R 입문서 참조.

13.3 Namespaces

Appendices

A A sample session

```
R 입문서 참조.
> help.start()
> x <- rnorm(50); x
    0.58692965 1.40268599 0.16162075 -0.59413887
 [5] -0.84032409 -1.63427485 0.08051908 -0.11150665
 [9] -1.67057950 0.16731568 1.44455785 2.80298066
[13] -1.05937246 1.92739850 0.86783097 0.12602822
[17] 0.01227484 -1.26619783 -1.83955350 -0.47357009
[21] -1.04215057 2.23590170 0.04508519 1.86138080
[25] -0.94529354 1.58504172 1.55834102 -0.97221594
[33] -0.37972219  0.11703197 -0.75330706 -0.64956337
[37] 0.71521741 0.77595085 -0.25821460 -0.17962880
[41] 0.59292814 -0.02470400 -0.99485571 -0.12855874
[45] -0.57099542 -0.08270344 0.87939044 1.92285070
[49] 1.16588090 0.15741744
> y <- rnorm(x); y
 [1] -0.55415524 -2.61437428 -0.78154863 0.97280780
 [5] -0.17504593 -0.89647672 -0.07104133 1.42324774
 [9] -0.73021529 -1.53062367 -0.09314896 0.74286152
[13] -1.36250373 0.52872621 -0.82725055 0.85140872
[17] -0.28049307 -1.45135625 0.04269168 0.06598120
[21] 2.08954188 0.75168645 0.72644763 -0.83211988
[25] -0.52733603 1.43289193 -1.90608076 -0.25728277
[29] 0.70724346 -0.78242672 1.58281152 -0.51296694
[33] -2.49796146 -0.73285482 -1.04025666 0.54993774
[37] -0.12849352 -1.17972295 0.05196422 -0.20629928
[41] 1.52624352 0.38292584 1.51910898 -0.36508816
[45] 1.08060795 -0.27744419 -0.29367952 -1.42852840
[49] 0.55463991 0.32168265
> plot(x, y)
```


Figure 16: plot(x, y)

> ls()

[1]	"%!%"	"A"	"Age"
[4]	"ans"	"area"	"Area"
[7]	"B"	"bdeff"	"bslash"
[10]	"Cent.heat"	"cube"	"d"
[13]	"data"	"df"	"f"
[16]	"Floor"	"fun1"	"HousePrice"
[19]	"houses.data"	"ind"	"inp"
[22]	"label"	"lentils"	"long"
[25]	"n"	"nn"	"no.dimnames"
[28]	"open.account"	"Puromycin"	"regcoeff"
[31]	"robert"	"Rooms"	"ross"
[34]	"tstat"	"twosam"	"x"

```
[37] "X"
                   "xc"
                                  "Xmat"
[40] "y"
                   "ус"
                                  "yvar"
[43] "z"
> rm(x, y)
> x <- 1:20; x
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20
> w < -1 + sqrt(x)/2
> dummy <- data.frame(x=x, y=x + rnorm(x)*w); dummy</pre>
   Х
1
   1 -0.2561826
2
   2 4.5799427
   3 2.6751609
3
4
   4 3.1464321
5 5 4.5039938
6
   6 8.0634544
7
   7 5.2865509
8 8 6.1657503
   9 6.6200708
9
10 10 13.5834187
11 11 9.0420370
12 12 12.1468240
13 13 8.0744422
14 14 18.1484116
15 15 18.4353468
16 16 8.1631840
17 17 14.0977025
18 18 15.7180471
19 19 15.9477705
20 20 20.5156234
> fm <- lm(y ~x, data=dummy)
> summary(fm)
Call:
lm(formula = y ~ x, data = dummy)
Residuals:
           1Q Median
   Min
                            3Q
                                   Max
```

```
-6.4128 -1.3647 -0.7409 2.3027 5.3336
```

```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4871 1.3801 0.353 0.728
             0.8806
                      0.1152 7.643 4.66e-07 ***
х
---
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 2.971 on 18 degrees of freedom
Multiple R-squared: 0.7645,
                             Adjusted R-squared: 0.7514
F-statistic: 58.42 on 1 and 18 DF, p-value: 4.664e-07
> fm1 <- lm(y^x, data=dummy, weight=1/w^2)
> summary(fm1)
Call:
lm(formula = y ~ x, data = dummy, weights = 1/w^2)
Weighted Residuals:
   Min
           1Q Median
                           3Q
                                  Max
-2.1578 -0.5531 -0.3061 0.7996 1.8455
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3470 1.0030 0.346
                                         0.733
             0.8931
                      0.1023 8.732 6.89e-08 ***
Signif. codes:
0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Residual standard error: 1.108 on 18 degrees of freedom
Multiple R-squared: 0.809,
                                Adjusted R-squared: 0.7984
F-statistic: 76.25 on 1 and 18 DF, p-value: 6.889e-08
> rm(x, y)
> attach(dummy)
```

> lrf <-lowess(x, y)</pre>

```
> plot(x, y)
> lines(x, lrf$y)
> abline(0, 1, lty=3)
> abline(coef(fm))
> abline(coef(fm1), col = "red")
```


Figure 17: plot(x, y) to abline(coef(fm))

> detach(dummy)

> plot(fitted(fm), resid(fm), xlab="Fitted values", ylab="Residuals",
+ main="Residual vs Fitted")

Residual vs Fitted

Figure 18: plot(fitted, ...)

Residuals Rankit Plot

Figure 19: qqnorm

```
> rm(fm, fm1, lrf, x, dummy)
> rm(list=ls())
> ls()

character(0)

> filepath <- system.file("data", "morley.tab", package="datasets")
> filepath

[1] "/usr/lib/R/library/datasets/data/morley.tab"

> file.show(filepath)
> mm <- read.table(filepath); mm</pre>
```

	Expt	Run	Speed
001	1 1	1	850
002	1	2	740
003	1	3	900
003	1	4	1070
005	1	5	930
005	1	6	850
007	1	7	950
007	1	8	980
009	1	9	980
010	1	10	880
011	1	11	1000
012	1	12	980
013	1	13	930
013	1	14	650
015	1	15	760
016	1	16	810
017	1	17	1000
018	1	18	1000
019	1	19	960
020	1	20	960
020	2	1	960
021	2	2	940
023	2	3	960
023	2	4	940
025	2	5	880
026	2	6	800
027	2	7	850
028	2	8	880
029	2	9	900
030	2	10	840
031	2	11	830
032	2	12	790
033	2	13	810
034	2	14	880
035	2	15	880
036	2	16	830
037	2	17	800
038	2	18	790
039	2	19	760
040	2	20	800

041	3	1	880
042	3	2	880
043		3	880
044	3 3	4	860
045	3	5	720
046	3 3 3	6	720
047	3	7	620
048	3	8	860
049	3	9	970
050	3	10	950
051		11	880
052	3 3	12	910
053	3	13	850
054	3	14	870
055	3 3	15	840
056	3	16	840
057	3	17	850
058	3	18	840
059	3	19	840
060	3	20	840
061	4	1	890
062	4	2 3	810
063	4	3	810
064	4	4 5	820
065	4	5	800
066	4	6	770
067	4	7	760
068	4	8	740
069	4	9	750
070	4	10	760
071	4	11	910
072	4	12	920
073	4	13	890
074	4	14	860
075	4	15	880
076	4	16	720
077	4 4	17	840
078	4	18	850
079	4 4	19	850
080		20	780
081	5	1	890

```
082
           2
               840
       5
083
       5
               780
           3
084
       5
           4
               810
085
       5
           5
               760
086
       5
           6
               810
087
       5
           7
               790
880
       5
           8
               810
089
       5
          9
               820
090
       5
         10
               850
091
       5
         11
               870
092
       5
         12
               870
093
       5
         13
               810
094
       5
         14
               740
095
       5
         15
               810
096
       5
         16
               940
097
       5
         17
               950
098
       5
               800
         18
099
       5
         19
               810
100
          20
               870
```

> mm\$Expt <- factor(mm\$Expt)</pre>

> mm\$Run <- factor(mm\$Run)</pre>

> attach(mm)

Speed of Light Data

Figure 20: Speed of Light Data

```
> fm <- aov(Speed ~ Run + Expt, data=mm)</pre>
> summary(fm)
            Df Sum Sq Mean Sq F value Pr(>F)
Run
            19 113344
                          5965
                                 1.105 0.36321
Expt
               94514
                         23629
                                 4.378 0.00307 **
Residuals
            76 410166
                          5397
Signif. codes:
0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
> fm0 <- update(fm, . ~ . - Run); fm0</pre>
```

```
Call:
   aov(formula = Speed ~ Expt, data = mm)
Terms:
                  Expt Residuals
Sum of Squares
                 94514
                          523510
Deg. of Freedom
                               95
                     4
Residual standard error: 74.23363
Estimated effects may be unbalanced
> anova(fm0, fm)
Analysis of Variance Table
Model 1: Speed ~ Expt
Model 2: Speed ~ Run + Expt
  Res.Df
            RSS Df Sum of Sq F Pr(>F)
1
      95 523510
      76 410166 19 113344 1.1053 0.3632
2
> detach(mm)
> rm(fm, fm0)
> x <- seq(-pi, pi, len=50)
> y <- x
> f \leftarrow outer(x, y, function(x, y) cos(y)/(1 + x^2))
> oldpar <- par(no.readonly = TRUE); oldpar</pre>
$xlog
[1] FALSE
$ylog
[1] FALSE
$adj
[1] 0.5
$ann
[1] TRUE
$ask
```

[1] FALSE

```
$bg
[1] "transparent"
$bty
[1] "o"
$cex
[1] 1
$cex.axis
[1] 1
$cex.lab
[1] 1
$cex.main
[1] 1.2
$cex.sub
[1] 1
$col
[1] "black"
$col.axis
[1] "black"
$col.lab
[1] "black"
$col.main
[1] "black"
$col.sub
[1] "black"
```

\$crt [1] 0

\$err

[1] 0

\$family

[1] ""

\$fg

[1] "black"

\$fig

[1] 0 1 0 1

\$fin

[1] 7 7

\$font

[1] 1

\$font.axis

[1] 1

\$font.lab

[1] 1

\$font.main

[1] 2

\$font.sub

[1] 1

\$lab

[1] 5 5 7

\$las

[1] 0

\$lend

[1] "round"

\$lheight

[1] 1

\$ljoin

[1] "round"

\$lmitre

[1] 10

\$1ty

[1] "solid"

\$lwd

[1] 1

\$mai

[1] 1.02 0.82 0.82 0.42

\$mar

[1] 5.1 4.1 4.1 2.1

\$mex

[1] 1

\$mfcol

[1] 1 1

\$mfg

[1] 1 1 1 1

\$mfrow

[1] 1 1

\$mgp

[1] 3 1 0

\$mkh

[1] 0.001

\$new

[1] FALSE

\$oma

[1] 0 0 0 0

```
$omd
[1] 0 1 0 1
$omi
[1] 0 0 0 0
$pch
[1] 1
$pin
[1] 5.76 5.16
$plt
[1] 0.1171429 0.9400000 0.1457143 0.8828571
$ps
[1] 12
$pty
[1] "m"
$smo
[1] 1
$srt
[1] 0
$tck
[1] NA
$tcl
[1] -0.5
$usr
[1] 0 1 0 1
$xaxp
[1] 0 1 5
```

\$xaxs

```
[1] "r"
```

\$xaxt

[1] "s"

\$xpd
[1] FALSE

\$yaxp
[1] 0 1 5

\$yaxs

[1] "r"

\$yaxt
[1] "s"

\$ylbias
[1] 0.2

> par(pty="s")

Figure 21: contour(x, y, f)

> contour(x, y, f, nlevels=15, add=TRUE)

 $Figure~22:~contour(x,~y,~f,~nlevels{=}15,~add{=}TRUE)$

> fa <- (f-t(f))/2

> par(oldpar)

Figure 23: image(x, y, f)

Figure 24: image(x, y, fa)

Figure 25: plot(z, type="l")

```
> par(oldpar)
> w <- rnorm(100) + rnorm(100)*1i; w

[1] -0.07696442-0.93319269i -1.28178349+1.64426198i
[3] 0.61172171-1.22727656i 0.66833074-1.40948622i
[5] 0.67021485-2.73086544i 0.29040241-0.82176707i
[7] -0.02602492+1.82047392i -0.11843785+0.78711266i
[9] 0.95789705+1.29065562i -0.53638269-0.24711762i
[11] 0.23073886+0.45409041i -1.24273066-0.28204187i
[13] -0.29510066-1.02923021i -0.58890891+0.11758710i
[15] -0.10064191-0.93306055i -0.94486567-0.73640996i</pre>
```

```
[17]
     0.90012142-0.04707889i -0.95326824-0.10420279i
[19] -0.45348766-2.03383763i -1.10634811-0.74528797i
[21] -1.22938519-1.02894146i 0.56229393-0.05066243i
[23]
     1.18104990+1.14925714i 0.39526506+2.03066323i
[25]
     0.21399376-0.28126833i 1.45826678+0.56121045i
[27] -0.20374071+0.43071502i 0.32899959-0.30207526i
[29] -1.82546062+0.77020453i -0.13669628-1.04746392i
[31] -0.39033833-0.24192533i -1.16045363+0.39813729i
[33] -0.84030192+1.44014981i -1.75663471-1.38245146i
[35] -0.78308754+1.62594987i 0.02617706-0.56004685i
[37]
     0.60315004+0.30361085i 0.04681627+2.31927465i
[39] -1.59156578+0.33578118i 2.29460890-1.74158536i
[41] -0.57480832-1.56544841i 0.22082672+1.26810156i
[43]
     0.80453616-0.17403371i -1.23186554-0.49031462i
[45] -1.79335481+0.97117295i -0.14741709-1.36356748i
[47]
     0.05436994+1.28535577i -0.52805835-2.85581592i
[49]
     0.19122622+0.31058178i -0.18289866-2.01590022i
[51]
     0.25367601+0.71395179i 1.13316032+1.19143876i
[53]
     0.98271074-0.47862491i 0.23488483+1.32314003i
[55]
    0.53702698+0.61831564i 1.59944642+1.27208500i
[57] -1.58884655-0.66056787i 0.41267572+0.38716803i
[59] 0.85461151+0.94108609i -2.11749968-1.46106782i
[61] -1.24964439-0.25758341i -0.17564170-2.00805276i
[63] -0.04226710-2.12453548i 1.08677885-0.71689026i
[65]
     0.14015127-0.11278131i -0.61464764-1.38151651i
     0.16743055-0.89221767i -0.77479206+0.23683724i
[67]
     0.21482970+1.55467978i -1.50128036-0.62251255i
[69]
[71]
     0.23276924+2.43696497i -0.69566586-0.11594064i
[73] -1.69169294-0.69595151i -0.39832798-0.21083162i
[75] -1.16517924-1.73163783i -0.51056329+1.51906837i
[77]
     1.13712220+0.21260247i 2.15839991+1.42254367i
[79] -0.15058827-0.15693290i 1.30393462+0.05993798i
[81] -0.47151097+0.79040393i -2.12849513-0.08188007i
[83] -0.64194127+0.90749865i -1.13655905+1.38353308i
[85] -0.63149725-0.81877963i -0.11965895+0.18009516i
[87] -1.20666663-0.17772673i 0.98989275-0.19274560i
[89]
     1.06478983-0.77560416i -0.45173256-1.10179766i
[91]
     0.24015460+1.69260418i -1.27070397+0.37991307i
[93]
    0.43842831-0.40769767i 0.04565774+2.28436927i
[95]
     0.41796490-0.59161788i -1.78743493-1.47897762i
     1.32766307+0.82262396i 0.12234215+0.05275013i
[97]
```

$> w \leftarrow ifelse(Mod(w) > 1, 1/w, w); w$

[1] -0.076964419-0.93319269i -0.294895645-0.37828986i [3] 0.325312736+0.65266392i 0.274658271+0.57924471i [5] 0.084764211+0.34538127i 0.290402408-0.82176707i [7] -0.007851121-0.54919528i -0.118437855+0.78711266i [9] 0.370795217-0.49960372i -0.536382692-0.24711762i [11] 0.230738860+0.45409041i -0.765262589+0.17367890i [13] -0.257415261+0.89779388i -0.588908905+0.11758710i [15] -0.100641908-0.93306055i -0.658410506+0.51315237i [17] 0.900121417-0.04707889i -0.953268244-0.10420279i [19] -0.104438589+0.46839451i -0.621732393+0.41882810i [21] -0.478339807+0.40034943i 0.562293928-0.05066243i [23] 0.434901713-0.42319456i 0.092355370-0.47447313i [25] 0.213993764-0.28126833i 0.597283339-0.22986305i [27] -0.203740712+0.43071502i 0.328999585-0.30207526i [29] -0.465023723-0.19620438i -0.122502360+0.93870000i [31] -0.390338334-0.24192533i -0.770980532-0.26451389i [33] -0.302251790-0.51801364i -0.351542258+0.27665974i [35] -0.240436657-0.49922637i 0.026177060-0.56004685i [37] 0.603150040+0.30361085i 0.008699926-0.43099367i [39] -0.601537287-0.12690955i 0.276513888+0.20987129i [41] -0.206688756+0.56290171i 0.133281377-0.76537080i Γ43] 0.804536156-0.17403371i -0.700759281+0.27892048i [45] -0.431167628-0.23349442i -0.078369657+0.72489773i [47] 0.032850030-0.77660518i -0.062606730+0.33858625i [49] 0.191226219+0.31058178i -0.044638765+0.49200631i [51] 0.253676010+0.71395179i 0.419133481-0.44068952i [53] 0.822488227+0.40058924i 0.130067376-0.73268824i 0.537026982+0.61831564i 0.382969849-0.30458676i [55] [57] -0.536630482+0.22310578i 0.412675720+0.38716803i [59] 0.528842495-0.58235386i -0.319935329+0.22075433i [61] -0.767613549+0.15822462i -0.043228220+0.49421377i [63] -0.009360578+0.47050490i 0.641159932+0.42293913i [65] 0.140151271-0.11278131i -0.268830093+0.60423760i [67] 0.167430548-0.89221767i -0.774792057+0.23683724i [69] 0.087216367-0.63116749i -0.568373016+0.23567839i [71] 0.038840318-0.40663661i -0.695665857-0.11594064i [73] -0.505560439+0.20798429i -0.398327976-0.21083162i [75] -0.267475315+0.39750998i -0.198798623-0.59148142i

```
[77] 0.849710437-0.15886642i 0.323001546-0.21288168i
[79] -0.150588274-0.15693290i 0.765292580-0.03517821i
```

[81] -0.471510968+0.79040393i -0.469121279+0.01804641i

[83] -0.519520270-0.73443470i -0.354517708-0.43155433i

[85] -0.590632086+0.76579513i -0.119658946+0.18009516i

[87] -0.811132944+0.11946962i 0.973308997+0.18951652i

[89] 0.613591757+0.44694672i -0.318565629+0.77699705i

[91] 0.082172034-0.57914663i -0.722392097-0.21597965i

[93] 0.438428312-0.40769767i 0.008745977-0.43758279i

[95] 0.417964898-0.59161788i -0.332095100+0.27478551i

[97] 0.544258176-0.33722397i 0.122342146+0.05275013i

[99] -0.143667347+0.64524235i -0.305396474+0.70921959i

```
> plot(w, xlim=c(-1, 1), ylim=c(-1, 1), pch="+", xlab="x", ylab="y") > lines(z)
```


Figure 26: plot and lines

```
[1] 0.254010742-0.965297396i -0.284549574+0.091522235i

[3] 0.482420194-0.083454041i 0.148858843+0.616612335i

[5] 0.158909483+0.475314311i -0.881649848-0.067193749i

[7] -0.537855763-0.715652680i 0.953244796-0.141780145i

[9] 0.442903252+0.321952490i -0.908838698-0.415853770i

[11] 0.173263647-0.719253334i -0.038925020+0.960761837i
```

> w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i); w</pre>

[13] 0.631129364-0.758723787i 0.300877599-0.931149623i

[15] 0.152910491+0.070331842i 0.137477332-0.019150451i

```
[17] -0.444621726+0.194394776i -0.517955380-0.516287416i
[19] -0.027166156+0.893011664i -0.606586276+0.411706447i
[21] -0.592743798+0.677161946i 0.082600641-0.230757291i
    0.412841052-0.759659956i 0.016863945+0.394894036i
[23]
[25] 0.279321010+0.929485050i 0.967129850+0.133272464i
[27] -0.434272562-0.474184116i 0.803208642-0.356165381i
[29] 0.736742929+0.333152674i 0.238269222+0.354158430i
[31] -0.301628087+0.464336651i -0.754481604+0.201697308i
[33] -0.060253315-0.250590159i 0.109893303-0.515561863i
[35] 0.753993748-0.314179389i 0.320324307+0.700422446i
[37] -0.013652710+0.678581105i -0.828094572-0.528023281i
[39] -0.309278089+0.576833712i 0.227609611-0.037505511i
[41] -0.688536267-0.140160826i -0.002790910+0.845167300i
[43] -0.300427691+0.447351530i -0.206150530-0.822651665i
[45] -0.325985415+0.312883483i 0.600704650-0.438649724i
[47] 0.714949377-0.140112848i 0.311031762+0.002651317i
[49] -0.981492367+0.038885585i 0.224228620-0.168534410i
[51] -0.161644268+0.725081074i 0.617242645-0.407678156i
[53] -0.107697977-0.106562296i 0.935334861-0.072096097i
[55] 0.173471495+0.406542317i -0.181166330-0.586103971i
[57]
    0.473899223-0.258226674i 0.168905048+0.905188419i
[59] 0.013205563+0.804856349i -0.274732595-0.421802657i
[61]
    0.349850012+0.287847113i -0.036991272-0.068921745i
[63] -0.540942829+0.647637072i -0.123588944+0.760836446i
[65]
    0.116121946+0.905844826i -0.184918952-0.577230250i
    0.632677667+0.547583316i 0.770118732-0.124250599i
[67]
     0.368360426+0.528546339i -0.441952224-0.789945284i
[69]
[71]
     0.745564727+0.557496934i -0.638373660-0.697067954i
[73]
     0.106874248-0.016005750i -0.200399430+0.589031299i
[75] -0.681269891+0.150563806i -0.401000816-0.891504452i
[77]
     0.004611937-0.658435662i 0.102794111-0.917288283i
[79] -0.644607878-0.211962328i 0.147135218-0.166116842i
[81] 0.453414018-0.770996309i 0.257723182+0.676804558i
[83]
     0.038134939+0.985238907i 0.078150728-0.390296791i
[85] -0.745439587-0.223446965i -0.086252370-0.934338005i
[87] -0.314679077-0.777945658i 0.908608162-0.046366997i
[89] 0.097653133+0.829203311i -0.117275975+0.412881300i
[91] 0.353286807-0.706945442i 0.714081944+0.689968759i
[93] 0.717564990+0.096902146i -0.577305399-0.035809025i
[95] -0.324371963+0.785278417i 0.028324458+0.418571519i
[97] -0.020111879-0.613250537i -0.127893356-0.618516468i
```

[99] -0.049325744+0.425521181i -0.743243327+0.272801389i

> plot(w, xlim=c(-1, 1), ylim=c(-1, 1), pch="+", xlab="x", ylab="y") > lines(z)

Figure 27: plot and lines with runif()

> rm(th, w, z)

> q()

B Invoking R

B.1 Invoking R from the command line R 입문서 참조.

B.2 Invoking R under Windows

R 입문서 참조.

B.3 Invoking R under Mac OS X

R 입문서 참조.

B.4 Scripting with R

R 입문서 참조.

C The command-line editor

C.1 Preliminaries

R 입문서 참조.

C.2 Editing actions

R 입문서 참조.

C.3 Command-line editor summary

R 입문서 참조.

References

- [1] W. N. Venables, D. M. Smith and the R Development Core Team, An Introduction to R Version 2.11.1, 2010-05-31.
- [2] Chel Hee Lee, An Introduction to R-Korean, 2011
- [3] F. Leisch, Sweave: Dynamic generation of statistical reports using literate data analysis., 2002
- [4] F. Leisch and the R Development Core Team, Sweave User Manual, 2011
- [5] R Development Core Team, R Data Import/Export, 2011

Index

->, 4 .RData, 3 .Rhistory, 3 <, <=, >, >=, 7	cos(), 25 cossprod(), 23 crossprod(), 33 cut(), 42
<-, 4 ==, 7 ?, 2 ??, 2 [[]], 43, 51 [], 43 \$, 43, 48 %o%, 25 &, 7	data frame, 46 data frame creation, 47 data(), 52 data.frame, 46 data.frame(), 47–50, 75 desity(), 61 detach(), 48, 49 diag(), 33–35
	dim(), 19, 31, 78
abline(), 39, 73 abs(), 10	dimension, 19
aperm(), 31	ecdf(), 63, 72
array, 19	edit(), 52
array(), 19, 21, 24	edit(data.frame()), 52
as.character(), 12	example(), 2
as.data.frame(), 15, 47 as.factor(), 77 as.integer(), 12 as.numeric(), 28 as.vector(), 42, 77 assign, 4	f(), qf(), 52 factor(), 16, 23, 73 fivenum(), 60 fr.resid(), 41 function(), 35, 75
assign(), 76 attach(), 48, 49, 60 attr(), 13	getAnywhere(), 82 grid(), 39
attributes(), 13	help(), 2
binary operator, 75 boxplot(), 70	help.start(), 2 hist(), 61
bslash, bslash(), 75	index matrix, 21
c(), 4, 42 cat(), 51 cbind(), 23, 33, 41	Inf, 8 is.na(), 8 is.nan(), 8
changing the length of an object, $12 \text{ class}(), 15$	ks.test(), 69, 73

length(), 5, 11, 17, 23, 77	prod(), 35
levels(), 16, 23, 77	() 2
library(), 80	q(), 2
lines(), 61	qqline(), 66, 68
list, 42	qqnorm(), 66
list concatenation, 46	qqplot(), 68
list creation, 43	qr(), 41, 75
list extension, 44	qr.coef(), 41, 75
list(), 43, 51, 77	qr.fitted(), 41
lm(), 38, 82	R Data Import/Export [5], 49
ls(), 3, 19, 49	ragged array, 17
lsfit(), 38	range(), 72
. () 10 99 71	rbind(), 31, 33, 41
matrix(), 19, 23, 51	read.table(), 47, 49, 50
$\max(), 5$	recursive, 78
mean(), 5, 17, 65	rep(), 6, 8, 77
methods(), 82	rm(), 3, 19, 48
min(), 5	round(), 73
mode change, 12	rug(), 61
mode(), 11	rug(), 01
NIA O	sample mean, 17
NA. 8	sample mean, 17
NA, 8 names(), 10	scan(), 49, 51, 69
names(), 10	
names(), 10 NaN, 8	scan(), 49, 51, 69
names(), 10 NaN, 8 ncol(), 78	scan(), 49, 51, 69 search path, 48, 49
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65	scan(), 49, 51, 69 search path, 48, 49 search(), 49
names(), 10 NaN, 8 ncol(), 78	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80 paste(), 8	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17 stem(), 60
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80 paste(), 8 persp(), 25	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17 stem(), 60 sum(), 5
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80 paste(), 8 persp(), 25 plot(), 28, 39, 63, 73	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17 stem(), 60 sum(), 5 summary(), 60
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80 paste(), 8 persp(), 25 plot(), 28, 39, 63, 73 plot(, add=TRUE), 72	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17 stem(), 60 sum(), 5 summary(), 60 superassignment, 76
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80 paste(), 8 persp(), 25 plot(), 28, 39, 63, 73 plot(, add=TRUE), 72 pmax(), 5	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17 stem(), 60 sum(), 5 summary(), 60 superassignment, 76 svd, 77
names(), 10 NaN, 8 ncol(), 78 norm(), pnorm(), 65 nrow(), 78 object, 11 objects(), 3 options(), 6, 80 order(), 5 outer, 25 par(), 66, 80 paste(), 8 persp(), 25 plot(), 28, 39, 63, 73 plot(, add=TRUE), 72	scan(), 49, 51, 69 search path, 48, 49 search(), 49 seq(), 6, 25, 61, 73 shapiro.test(), 69 sink(), 3 solve(), 34 sort(), 5, 16 sort.list(), 5 source(), 3, 80 split(), 73 sqrt(), 5, 17, 65, 77 standard error, 17 stem(), 60 sum(), 5 summary(), 60 superassignment, 76

t(), 31, 33 t(), pt(), 52 t(), qt(), 68 t.test(), 71 table, 23 table(), 28, 42, 77 tapply(), 16, 17, 42 type casting, 12

unclass(), 15 unif(), runif(), 73

var(), 5, 65 var.test(), 71 vector, 19

width, 6 wilcox.test(), 71 write.table(), 50

누더기 어레이, 17 벡터, 19

어레이, 19 인덱스 행렬, 21 일차원 어레이, 19

표본 평균, 17 표준 오차, 17