Fundamental Theorem of Algebra

Lemma: If f(x) is a polynomial over $GF(q) \subseteq GF(Q)$, then β is a zero of f(x) if and only if $x - \beta$ is a divisor of f(x).

Proof: By the division algorithm,

$$f(x) = q(x)(x - \beta) + r(x)$$
, where $\deg r(x) < \deg(x - \beta) = 1$.

Thus $\deg r(x) \leq 0$, so r(x) is a constant polynomial, $r(x) = r_0$. Therefore

$$r_0 = r(\beta) = f(\beta) - q(\beta)(\beta - \beta) = f(\beta),$$

hence f(x) is a multiple of $x - \beta$ if and only if $f(\beta) = r_0 = 0$.

Lemma: A polynomial f(x) of degree n over a field has at most n zeroes.

Proof: Each zero of f(x) corresponds to a linear factor of f(x).

Because $\deg f(x) = n$, there are at most n linear factors.

Thus there are at most n distinct zeroes (including multiple zeroes).

Blahut (Theorem 4.3.9) calls this the Fundamental Theorem of Algebra. Gauss's FTA: every polynomial equation with complex coefficients and degree ≥ 1 has at least one complex root.

Examples of factors and zeroes

Example: Polynomials of degree 2 over GF(2):

$$x^{2} = x \cdot x$$
, $x^{2} + 1 = (x+1)(x+1)$, $x^{2} + x = x(x+1)$, $x^{2} + x + 1$

The only prime polynomial over $\mathrm{GF}(2)$ of degree 2 has zeroes in $\mathrm{GF}(4)$:

$$(x + \beta)(x + \delta) = x^2 + (\beta + \delta)x + \beta\delta = x^2 + x + 1.$$

Whether a polynomial is prime depends on what coefficients are allowed.

Example: $GF(2^4)$ can be represented as polynomials in α of degree < 4, where α is a zero of the prime (over GF(2)) polynomial $x^4 + x + 1$.

Therefore $x + \alpha$ is a factor of $x^4 + x + 1$ over $GF(2^4)$.

Another zero is a^2 :

$$x^4 + x + 1|_{\alpha^2} = (\alpha^2)^4 + \alpha^2 + 1 = (\alpha^4 + \alpha + 1)^2 = 0^2 = 0.$$

Similarly, $\alpha^4=(\alpha^2)^2$ and $\alpha^8=(\alpha^4)^2$ are zeroes. Over GF(16)

$$x^4 + x + 1 = (x + \alpha)(x + \alpha^2)(x + \alpha^4)(x + \alpha^8)$$
.

$\mathrm{GF}(Q)$ consists of zeroes of x^Q-x

The order of the multiplicative group of GF(Q) is Q-1.

Let e be the order of β of $\mathrm{GF}(Q).$ By Lagrange's theorem, $e \mid (Q-1)$, so

$$\beta^{Q-1} = \beta^{e \cdot (Q-1)/e} = (\beta^e)^{(Q-1)/e} = 1^{(Q-1)/e} = 1$$
.

This shows that every *nonzero* element of GF(Q) is a zero of $x^{Q-1}-1$.

The special case of 0 requires one more factor, x-0, which yields

$$x(x^{Q-1} - 1) = x^Q - x.$$

This polynomial has at most Q zeroes. Thus $\mathrm{GF}(Q)=$ zeroes of x^Q-x .

Similarly, for any subfield, GF(q) = zeroes of $x^q - x$. Factorizations:

$$x^{Q} - x = \prod_{\beta \in GF(Q)} (x - \beta), \quad x^{q} - x = \prod_{\beta \in GF(q)} (x - \beta)$$

$$x^{Q} - x = x(x^{Q-1} - 1) = x(x^{q-1} - 1)(x^{Q-1-(q-1)} + \dots + x^{q-1} + 1)$$

The last equation holds because $(q-1) \mid (Q-1)$.

Minimal polynomials

Let $\beta \in GF(Q)$ and $GF(q) \subseteq GF(Q)$.

Definition: The minimal polynomial over GF(q) of β is the monic polynomial f(x) over GF(q) of smallest degree such that $f(\beta) = 0$.

Example: $GF(4) = \{0, 1, \beta, \delta\}$. Minimal polynomials over GF(2):

$$0 \to x$$
, $1 \to x+1$, $\beta, \delta \to x^2 + x + 1$

Theorem: Suppose $GF(q) \subseteq GF(Q)$ where $Q = q^m$.

- 1. Every β in $\mathrm{GF}(Q)$ has minimal polynomial over $\mathrm{GF}(q)$ of degree $\leq m.$
- 2. The minimal polynomial is unique.
- 3. The minimal polynomial is prime over $\mathrm{GF}(q)$.
- 4. If g(x) is a polynomial over $\mathrm{GF}(q)$ such that $g(\beta)=0$ then $f(x)\mid g(x)$.

Every β in $\mathrm{GF}(Q)$ is a zero of x^Q-x , whose coefficients (1,0,-1) belong to $\mathrm{GF}(q)$. So the minimal polynomial exists and has degree $\leq Q$.

Minimal polynomials (cont.)

Proof:

1. GF(Q) is a vector space over GF(q) of dimension m.

Therefore any set of m+1 elements is linearly dependent over $\mathrm{GF}(q)$.

In particular, consider the first m+1 powers of β :

$$\{1, \beta, \beta^2, \ldots, \beta^m\}$$

There exist m+1 scalars f_0, f_1, \ldots, f_m in GF(q), not all 0, such that

$$f_0 \cdot 1 + f_1 \cdot \beta + \dots + f_m \cdot \beta^m = 0 = f(\beta).$$

In other words, β is a zero of

$$f(x) = f_0 + f_1 x + \dots + f_m x^m ,$$

which is a nonzero polynomial over GF(q) of degree $\leq m$.

Therefore the minimal polynomial of β has degree $\leq m$.

Minimal polynomials (cont.)

2. If $f_1(x)$ and $f_2(x)$ are distinct minimal polynomials of the same degree, then

$$f(x) = f_1(x) - f_2(x)$$

is a nonzero polynomial of smaller degree. Since $f(\beta) = 0$, we have a contradiction.

- 3. If $f(x)=f_1(x)f_2(x)$ has proper divisors, then $f(\beta)=f_1(\beta)f_2(\beta)=0 \implies \text{either } f_1(\beta)=0 \text{ or } f_2(\beta)=0\,,$ contradicting the minimality of f(x).
- 4. By the division algorithm,

$$g(x) = q(x)f(x) + r(x)$$
, where $\deg r(x) < \deg f(x)$.

If $g(\beta) = 0$ then

$$r(\beta) = g(\beta) - q(\beta)f(\beta) = 0.$$

If $r(x) \neq 0$ then f(x) is not minimal. Thus $r(x) = 0 \implies f(x) \mid g(x)$.

Conjugates

Definition: The conjugates over $\mathrm{GF}(q)$ of β are the zeroes of the minimal polynomial over $\mathrm{GF}(q)$ of β (including β itself).

Example: GF(4) =
$$\{0, 1, \beta, \delta\}$$
. Then β and $\delta = \beta + 1$ are conjugates since $(x + \beta)(x + \delta) = x^2 + (\beta + \delta)x + \beta\delta = x^2 + x + 1$.

Example:
$$GF(8) = \{0, 1, \alpha, \alpha+1, \alpha^2, \dots, 1+\alpha+\alpha^2\}$$
, where $\alpha^3 = \alpha+1$.

The minimal polynomial of α is $f(x) = x^3 + x + 1$. Another zero is α^2 :

$$f(\alpha^2) = (\alpha^2)^3 + \alpha^2 + 1 = (\alpha^3 + \alpha + 1)^2 = 0$$

So α^2 and $\alpha^4=\alpha+\alpha^2$ are conjugates of α , which gives the factorization:

$$x^{3} + x + 1 = (x + \alpha)(x + \alpha^{2})(x + \alpha^{4}) = (x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix})(x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix})(x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix})$$

(The 3-tuple representations of α^i have lsb in the first row.)

Binomial coefficients and prime numbers

Lemma: If p is prime and 0 < k < p then p is a divisor of $\binom{p}{k}$.

$$Proof: \binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{k!} = p \cdot \frac{(p-1)\cdots(p-k+1)}{k!}$$

Denominator k! divides $p \cdot (p-1) \cdots (p-k+1)$ and is relatively prime to p.

Therefore k! divides $(p-1)\cdots(p-k+1)$, so $\binom{p}{k}$ is a multiple of p.

Lemma: In $GF(p^m)$, $(a+b)^p = a^p + b^p$.

Proof: By the binomial theorem,

$$(a+b)^p = a^p + \sum_{k=1}^{p-1} {p \choose k} a^{p-k} b^k + b^p = a^p + b^p,$$

since $\binom{p}{k}$ is multiple of p (0 < k < p) and in $GF(p^m)$ multiples of p are 0.

Corollary: In GF(2^m), $(a+b)^2 = a^2 + b^2$. In other words, squaring is linear.

Corollary: In GF(q) $(q = p^m)$, $(a+b)^q = (a+b)^{p^m} = a^{p^m} + b^{p^m} = a^q + b^q$.

Conjugates of β

Theorem: The conjugates of β over $\mathrm{GF}(q)$ are

$$\beta$$
, β^q , β^{q^2} , ..., $\beta^{q^{r-1}}$

where r is the least positive integer such that $\beta^{q^r} = \beta$.

Note: $\beta^{q^m} = \beta^Q = \beta$, so $r \leq m$. In fact, we will see that $r \mid m$.

Proof: First we show that β^{q^i} are conjugates. For any f(x) over $\mathrm{GF}(q)$

$$f(\beta)^{q} = (f_{0} + f_{1}\beta + f_{2}\beta^{2} + \cdots)^{q}$$

$$= f_{0}^{q} + f_{1}^{q}\beta^{q} + f_{2}^{q}\beta^{2q} + \cdots$$

$$= f_{0} + f_{1}\beta^{q} + f_{2}\beta^{2q} + \cdots = f(\beta^{q}),$$

since $f_i^q = f_i$ for coefficients in GF(q).

If f(x) is the minimal polynomial of β , then

$$f(\beta^q) = f(\beta)^q = 0^q = 0.$$

Therefore β^q is a zero of the minimal polynomial and so is a conjugate of β .

Conjugates of β (cont.)

Next we show that all conjugates of β are in $\{\beta^{q^i}\}$. Consider the product

$$f(x) = (x - \beta)(x - \beta^q)(x - \beta^{q^2}) \cdots (x - \beta^{q^{r-1}})$$

of linear factors for all the distinct conjugates of β of the form β^{q^i} :

$$f(x)^{q} = (x^{q} - \beta^{q})(x^{q} - \beta^{q^{2}}) \cdots (x^{q} - \beta^{q^{r}})$$
$$= (x^{q} - \beta^{q})(x^{q} - \beta^{q^{2}}) \cdots (x^{q} - \beta) = f(x^{q})$$

since $\beta^{q^r} = \beta$. Therefore

$$f_0^q + f_1^q x^q + \dots + f_r^q x^{q^r} = f_0 + f_1 x^q + \dots + f_r x^{q^r}$$

Since $f_i^q = f_i$, all the coefficients of f(x) are in GF(q).

Obviously, β is a zero of f(x). Any polynomial over $\mathrm{GF}(q)$ that has β as zero must have the same r linear factors.

Therefore f(x) is a divisor of every such polynomial, hence f(x) is minimal.

Conjugates: summary

The conjugates of β are the zeroes of the minimal polynomial of β .

The conjugates of β over GF(q) are β , β^q , β^{q^2} , ..., $\beta^{q^{r-1}}$.

The minimal polynomial of β is prime over $\mathrm{GF}(q)$ but factors over any field $\mathrm{GF}(Q)$ that contains β (and hence its conjugates):

$$f(x) = (x - \beta)(x - \beta^q)(x - \beta^{q^2}) \cdots (x - \beta^{q^{r-1}})$$

If $\beta \in GF(q^m)$ then β has at most m conjugates (including itself).

If β has r conjugates, then the linear subspace of $\mathrm{GF}(q^m)$ spanned by

$$\{1,\beta,\beta^2,\ldots,\beta^{r-1}\}$$

is a field with q^r elements. Reciprocals exist because f(x) is prime.

If r < m then β belongs to $\mathrm{GF}(q^r)$, a proper subfield of $\mathrm{GF}(q^m)$.

Since $\mathrm{GF}(q^m)$ is a vector space over $\mathrm{GF}(q^r)$, we conclude that $r\mid m$.

Euler phi function

The Euler phi function $\phi(n)$ is the number of integers between 0 and n that are relatively prime to n.

We can express $\phi(n)$ in terms of the factorization $n=p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}$:

- ▶ if p is prime then $\phi(p) = p 1$ (1, 2, ..., p 1 are coprime to p)
- if p is prime then $\phi(p^e)=p^e-p^{e-1}$ (multiples of p are not coprime).
- $\phi(n)$ is multiplicative; i.e., if $\gcd(r,s)=1$ then $\phi(rs)=\phi(r)\phi(s)$.

Combining these facts, we obtain the final formula:

$$\phi(n) = \begin{cases} p-1 & \text{if } n=p \text{ is a prime} \\ (p-1)p^{e-1} = \left(1-\frac{1}{p}\right)p^e & \text{if } n=p^e \text{ is power of prime} \\ \phi(p_1^{e_1}p_2^{e_2}\dots p_t^{e_t}) = \prod_{i=1}^t (p_i-1)p_i^{e_i-1} & \text{in general} \end{cases}$$

EE 387, October 21, 2015

Primitive elements

Fact: Multiplicative group of the finite field GF(q) is cyclic of order q-1.

A primitive element of $\mathrm{GF}(q)$ is a generator of the multiplicative group

- Let α be a primitive element of $\mathrm{GF}(q)$. All primitive elements of $\mathrm{GF}(Q)$ are powers α^i where $\gcd(i,q-1)=1$.
 - $\qquad \mathbf{1} = ai + b(q-1) \implies \alpha = \alpha^{ai + b(q-1)} = \alpha^{ai} = (\alpha^i)^a.$
 - ▶ Conversely, if $\gcd(i, q 1) = d > 1$ then the order of α^i is $\frac{q 1}{d} < q 1$.
- ▶ In general, GF(q) has $\phi(q-1)$ primitive elements.
- ▶ If q-1 is prime then there are q-2 primitive elements. (This is possible only for q=3 and for $q=2^m$ with m odd.)
- ► GF(4), GF(8), GF(16), GF(32) have respectively 2, 6, 8, 30 primitive elements.

The proof that every finite field has a primitive element uses a lemma about groups: if for every divisor d of the order of a group there are at most d elements of order dividing d, then the group is cyclic.

EE 387. October 21, 2015

Primitive elements and polynomials

Let α be a primitive element of $\mathrm{GF}(Q)$ and $\mathrm{GF}(q)$ be a subfield of $\mathrm{GF}(Q)$. Let f(x) be the minimal polynomial over $\mathrm{GF}(q)$ of α and $m=\deg f(x)$.

▶ Every nonzero element of GF(Q) is a power of α :

$$GF(Q) = \{1, \alpha, \alpha^2, \dots, \alpha^{Q-2}\}\$$

▶ Every element of GF(Q) is a polynomial in α of degree $\leq m-1$:

$$\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_{m-1} \alpha^{m-1}$$

where b_0, b_1, \dots, b_{m-1} are coefficients from $\mathrm{GF}(q)$.

▶ Multiplication by α of a polynomial in α uses the equation $f(\alpha) = 0$:

$$\alpha(b_0 + b_1\alpha + \dots + b_{m-1}\alpha^{m-1}) = b_0\alpha + b_1\alpha^2 + \dots + b_{m-2}\alpha^{m-1} - b_{m-1}(f_0 + \dots + f_{m-1}\alpha^{m-1})$$

A primitive polynomial is the minimal polynomial of a primitive element. Equivalently: monic f(x) of degree m is primitive if the order of f(x) is q^m-1 ; i.e., the smallest n such that $x^n=1 \bmod f(x)$ is $n=q^m-1$.