Einführung in die Informatik, Übung 10

HENRY HAUSTEIN

Aufwärmübung

- (a) $L(G_1) \cup L(G_2)$: $(N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}, S)$ $L(G_3)^*$: $(N_3 \cup \{T\}, \Sigma, P_3 \cup \{T \to \varepsilon, T \to TS_3\}, T)$ $(L(G_1) \cup L(G_2)) \cdot L(G_3)^*$: $(N_1 \cup N_2 \cup \{S\} \cup N_3 \cup \{T\} \cup \{A\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\} \cup P_3 \cup \{T \to \varepsilon, T \to TS_3\} \cup \{A \to ST\}, A)$
- (b) $L(G_1) \cup L(G_2)$: $(N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}, S)$ $(L(G_1) \cup L(G_2)) \cup L(G_3)$: $(N_1 \cup N_2 \cup \{S\} \cup N_3 \cup \{T\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\} \cup P_3 \cup \{T \to S_3, T \to S\}, T)$

Aufgabe 10.1

(a) Turingmaschine hält an $\Rightarrow ababa \in L(A)$

Zustand verändert sich nicht, keine Ersetzungen finden statt, Lese-Schreibkopf bewegt sich nur nach rechts

Zustand verändert sich nicht, keine Ersetzungen finden statt, Lese-Schreibkopf bewegt sich nur nach links

(b) Turingmaschine hält nicht an $\Rightarrow abaa \not\in L(\mathcal{A})$

Zustand verändert sich nicht, keine Ersetzungen finden statt, Lese-Schreibkopf bewegt sich nur nach rechts

Zustand verändert sich nicht, keine Ersetzungen finden statt, Lese-Schreibkopf bewegt sich nur nach links

(c) q_0 : Löschen des ersten Buchstabens und entscheiden $q_1 - q_3$ -Zweig oder $q_4 - q_6$ -Zweig $q_1 + q_2$: zum Ende des Wortes gehen (q_1 sorgt dafür, dass eine Möglichkeit für die Turingmaschine gibt anzuhalten, weil \rlap/b in q_1 nicht behandelt wird)

 q_3 : letzten Buchstaben des Wortes lesen: $a \Rightarrow q_z,\, b \Rightarrow q_{loop}$

 $q_4\hbox{-} q_6\hbox{:}\,$ machen das selbe wie $q_1\hbox{-} q_3$ nur für b

 q_z : zum Anfang des (verkürzten) Wortes gehen

 q_{loop} : Endlosschleife, um Turingmaschine am laufen zu halten

(d) Palindrome über $\{a, b\}$

Aufgabe 10.2

$$\mathcal{A} = (\{q_0\}, \{a, b\}, \{a, b, b\}, q_0, \delta) \text{ mit } \delta$$

$$q_0 \quad a \quad \rightarrow \quad a \quad n \quad q_0$$

$$q_0 \quad b \quad o \quad b \quad n \quad q_0$$

Aufgabe 10.3

 ${\rm Idee} \colon$

$$\mathcal{A} = (\{q_0,q_1,q_2,q_{fertig}\},\{a\},\{a,\not b\},q_0,\delta)$$
mit δ