Taller de procesamiento de Imágenes Médicas Laboratorio 2 – Segmentación GM y WM (23/04/2018)

Profesora: Pamela Guevara
Ayudante: Claudio Román (clauroman@udec.cl)

FreeSurfer¹ es un software de código abierto para el procesamiento y análisis de imágenes cerebrales por MRI (estructural, funcional y de difusión).

- MRI estructural: incluye procesamientos como remoción del cráneo, segmentación de materia gris y materia blanca, reconstrucción de modelos de superficies (límite entre materia gris y materia blanca, y superficie pial), etiquetado de regiones de la corteza y estructuras subcorticales, registro no lineal del mallado de la superficie cortical con atlas, análisis estadísticos grupales de diferencias morfométricas.

1. Análisis anatómico realizado con FreeSurfer

Se utilizan <u>regiones de interés</u> (ROI) para estudiar estructuras específicas y obtener medidas volumétricas para realizar análisis estadísticos.

El archivo "aparc+aseg.nii.gz" contiene una imagen del cerebro segmentado en su parte subcortical (aseg) y en su parte cortical (aparc).

Segmentación subcortical automática (aseg):

Inde	x SegId	NVoxels	Volume_mm	3 StructName	Mean	StdDev	Min	Ma.x	Range
1	4	5855	5855.0	Left-Lateral-Ventricle	37.7920	10.9705	20.0000	88.0000	68.0000
2	5	245	245.0	Left-Inf-Lat-Vent	56.4091	9.5906	26.0000	79.0000	53.0000
3	7	16357	16357.0	Left-Cerebellum-White-Matter	91.2850	4.8989	49.0000	106.0000	57.0000
4	8	60367	60367.0	Left-Cerebellum-Cortex	76.3620	9.5724	26.0000	135.0000	109.0000
5	10	7460	7460.0	Left-Thalamus-Proper	91.3778	7.4668	43.0000	108.0000	65.0000

Parcelación cortical automática (aparc):

StructName	NumVert	SurfArea	GrayVol	ThickAvg	ThickStd	MeanCurv	GausCurv	FoldInd	CurvInd
bankssts	1157	811	1992	2.303	0.567	0.117	0.031	10	1.6
caudalanteriorcingulate	779	543	1908	3.472	0.676	0.185	0.064	26	1.8
caudalmiddlefrontal	3145	2137	5443	2.311	0.593	0.132	0.041	35	5.3
cuneus	1809	1195	2286	1.672	0.411	0.162	0.067	34	4.6
entorhi nal	436	265	1269	2.871	0.881	0.119	0.037	5	0.6
fusiform	3307	2126	5161	2.109	0.689	0.144	0.064	71	8.7

https://surfer.nmr.mgh.harvard.edu/

2. Mini-proyecto N°2

El objetivo de este primer mini-proyecto es obtener una máscara tanto de la materia blanca como de la materia gris del cerebro a partir de una imagen en T1.

Se dispone de una imagen del cerebro en T1 "T1w_acpc_dc_restore_brain.nii.gz" a partir de la cual se debe trabajar.

T1w acpc dc restore brain.nii.gz

Etapa de investigación

El método a utilizar es a elección, por lo cual puede elegir entre dos opciones.

Opción 1: Aplicar un algoritmo que estime conveniente, el cual logre una segmentación automática de calidad. Tanto el algoritmo como sus etapas deben ser explicadas en el informe.

Opción 2: Utilizar algún software existente para segmentación de materia blanca y gris. En este último caso usted debe estudiar el software utilizado, para entender su funcionamiento y así poder explicarlo en el informe, esto ya sea investigando su documentación y/o código fuente.

Una vez generada cada máscara, se debe evaluar su calidad calculando el coeficiente de Sorensen-Dice, el cual corresponde a un estadístico que se utiliza para comparar la similitud entre dos muestras. El coeficiente se calculará entre las máscaras generadas y máscaras referenciales de la materia blanca y gris. Este coeficiente de similitud varía entre 0 y 1, donde valores cercanos a 1 indicaran una alta similitud entre muestras.

Viendo el coeficiente de Sorensen-Dice como medida de similitud sobre conjuntos se puede expresar de la siguiente forma:

$$s = \frac{2|X \cap Y|}{|X| + |Y|}$$

Para generar las máscaras referenciales, usted dispondrá de una imagen previamente segmentada "aparc+aseg.nii.gz" utilizando Freesurfer. Esta imagen contiene etiquetas de las zonas corticales y subcorticales segmentadas. Las etiquetas se pueden ver en el archivo de texto "FreeSurferColorLUT.txt" donde deberá identificar cuales zonas pertenecen a materia blanca y cuales a materia gris, para así aislar estas zonas generando las máscaras correspondientes.

aparc+aseg.nii.gz

Máscara de materia blanca y gris separada por hemisferio

En este laboratorio se utilizarán 5 sujetos sanos, los cuales deberá descargar desde la base de datos disponible en el siguiente enlace:

https://drive.google.com/drive/folders/1udwDhhMp7w-j73two-QFg5TnavJuzl7j?usp=sharing

El método debe ser aplicado a los 5 sujetos y la calidad de las máscaras se debe calcular tanto para el cerebro completo como para cada hemisferio (para separar los dos hemisferios se puede guiar por la misma imagen "aparc+aseg.nii.gz").

Entrega de trabajo

Se debe entregar un <u>informe individual en formato y modalidad paper</u> (máximo 2 páginas), a más tardar el día 11 de Mayo de 2018:

- Entregar copia impresa de informe en secretaría (hasta 18:30 hrs).
- Subir informe y scripts en archivo comprimido con nombre "nombre_apellido.rar" a infoalumno (hasta 18:30 hrs).