RS 02 (HA) zum 02.11.2012

Paul Bienkowski, Vincent Immer

1. November 2012

1. a) Das Register kann 2⁶⁴ Zustände annehmen, also gilt:

$$\frac{2^{64}}{3.2 \cdot 10^9} s \approx 5.7 \cdot 10^9 s \approx 182.67a$$

Folglich läuft das Register nach etwa 182.67 Jahren zum ersten Mal über.

b) Moderne PCs haben meist mehrere CPU-Kerne, die asynchron laufen. Daher müsste es für 2 Kerne auch 2 verschiedene Register geben, die dann verschiedene Werte enthalten würden.

Außerdem können moderne CPUs dynamisch nach Bedarf (ondemand) ihren Takt ändern (over-/underclocking), sodass die Anzahl der vergangenen Takte nicht als Zeitmaß ausreichen.

- **2.** a) $53_{10} = 110101_2 = 65_8 = 35_{16}$
 - b) $2012_{10} = 11111011100_2 = 3734_8 = 7DC_{16}$
 - c) $5.5625_{10} = 101.1001_2 = 5.44_8 = 5.9_{16}$
 - d) $375, 375_{10} = 101110111.011_2 = 567.3_8 = 177.6_{16}$
- **3.** a) $1110,1001_2 = 14.5625_{10}$
 - b) $10101.10011_2 = 21.59375_{10}$
- **4.** $25487_{10} = 110001110001111_2 = 61617_8 = 638F_{16}$ $15190_{10} = 11101101010110_2 = 35526_8 = 3B56_{16}$

1001 1110 1110 0101

 $1001111011100101_2 = 117345_8 = 9EE5_{16} = 40677_{10}$

Zur Überprüfung wird im Dezimalsystem gezeigt: 25487 + 15190 = 40677.

5. 10010011 * 1110001

==========

Zur Überprüfung:

$$10010011_2 = 147_{10}$$

 $\begin{array}{rcl} 111001_2 & = & 57_{10} \\ 10000010111011_2 & = & 8376_{10} \end{array}$

 $147_{10} \cdot 57_{10} = 8376_{10}$

6. a)
$$K_{10}(4.582)_{10} = 10^2 - 4.582 = 95.4180$$

b)
$$K_9(0.1274)_{10} = 10^2 - 10^{-4} - 0.1274 = 99.8725$$

c)
$$K_2(1.011)_2 = 2_{10}^2 - 1.375_{10} = 2.625_{10} = 10.101_2$$

d)
$$K_1(100.01)_2 = 2_{10}^4 - 2_{10}^{-3} - 4.25_{10} = 11.625_{10}$$

= $10000.000_2 - 0.001_2 - 100.01_2 = 1011.101_2$

7.

	a) 0000 1001 ₂	b) 0110 0101 ₂	c) 1000 0001 ₂	d) 1111 1011 ₂
1.	9	101	129	251
2.	9	101	-1	-123
3.	-119	-27	1	123
4.	9	101	-126	-4
5.	9	101	-127	-5