NMMB430 - DÚ 6 Jan Oupický

1

Twisted Edwards curve in completed coordinates $\mathbb{P}^1 \times \mathbb{P}^1$ is given by the equation $aX_1^2Y_2^2 + Y_1^2X_2^2 = X_2^2Y_2^2 + dX_1^2Y_1^2$ (Xs correspond to the first part of the point and Ys correspond to the second part). Since affine points (α, β) of a Twisted Edwards curve are 1-1 mapped upon points $((\alpha:1), (\beta:1))$ the points at infinity must have $X_2 = 0$ or $Y_2 = 0$.

If $X_2 = 0$ then $X_1 \neq 0$ since $(0:0) \notin \mathbb{P}^1$. Then the equation is $aX_1^2Y_2^2 = dX_1^2Y_1^2$. Since $X_1 \neq 0$ then it can be simplified into $aY_2^2 = dY_1^2$. $a, d \in K^*$ then $\frac{a}{d} = \left(\frac{Y_1}{Y_2}\right)^2 Y_2$ is also not 0 since that would imply $Y_1 = 0$ as well. Let $\frac{a}{d} = t^2$ then we have points $((1:0), (\pm t:1))$. Other case $Y_2 = 0$ implies $Y_1 \neq 0$. The equation is $X_2^2 = dX_1^2$. Again $X_1, X_2 \neq 0$ which implies $d = s^2$ and the points are $((1:\pm s), (1:0))$. We have exhausted all possibilities.

Therefore as said in the lecture. The group has 0.2 or 4 points at infinity depending on ad^{-1} , d being squares in K. If both are squares then we have 4 points. If none are then 0 points. If one of them is a square then we have 2.

2

Consider the curve $E: 2x^2 + y^2 = 1 + 3x^2y^2$ over \mathbb{Z}_5 . The only affine points on the curve are (0,1), (0,4). Since $ad^{-1} = 4 = 2^2$ but d is not a square, we have 2 points at infinity. (0,1) has order 1, $(0,4) \oplus (0,4) = (0,1)$ i.e. (0,4) has order 2. By using the addition formula in complete coordinates we get that the 2 points at infinity are of order 2 as well. Therefore $|E(\mathbb{Z}_5)| = 4$ and has 3 points of order 2 and 1 point of order 1. This is an example of a twisted edwards curve with no point of order 4 over K.

3

We will analyze how many points at infinity our curves have. We have already analyzed one of then in 2). Remaining ones are:

 $E: 2x^2 + y^2 = 1 + 4x^2y^2$: d = 4 is a square. $ad^{-1} = 2 \cdot 4 = 3$ is not a square. We have therefore 2 points at infinity in the group $E(\mathbb{Z}_5)$. In completed coordinates they are ((1:2), (1:0)), ((1:3), (1:0)).

 $E: 2x^2 + y^2 = 1 + 4x^2y^2$: d = 1 is a square. $ad^{-1} = 2 \cdot 1 = 2$ is not a square. We have therefore 2 points at infinity in the group $E(\mathbb{Z}_5)$. In completed coordinates they are ((1:1), (1:0)), ((1:4), (1:0)).

 $E: x^2 + y^2 = 1 + 4x^2y^2$: d = 4 is a square. $ad^{-1} = 1 \cdot 4 = 4$ is a square. We have therefore 4 points at infinity in the group $E(\mathbb{Z}_5)$. In completed coordinates they are ((1:2), (1:0)), ((1:3), (1:0)), ((1:0), (2:1)), ((1:0), (3:1)).