Termination in Convex Sets of Distributions

Ana Sokolova and Harald Woracek

Termination in Convex Sets of Distributions

Ana Sokolova and Harald Woracek

Convex Algebras

infinitely many finitary operations

convex combinations

binary ones "suffice"

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

convex (affine) maps

$$h\left(\sum_{i=1}^{n} p_i a_i\right) = \sum_{i=1}^{n} p_i h(a_i)$$

satisfying

$$\sum_{i=1}^{n} p_i a_i = a_k, \quad p_k = 1$$

$$\sum_{i=1}^{n} p_i \left(\sum_{j=1}^{m} p_{i,j} a_j \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} p_i p_{i,j} \right) a_j$$

Eilenberg-Moore Algebras

convex algebras abstractly

 $\mathcal{EM}(\mathcal{D})$

objects

satisfying

$$A \xrightarrow{\eta} \mathcal{D}A$$

$$\downarrow a$$

$$A$$

$$\mathcal{D}DA \xrightarrow{\mu} \mathcal{D}A$$

$$\mathcal{D}a \downarrow \qquad \qquad \downarrow a$$

$$\mathcal{D}A \xrightarrow{a} A$$

morphisms

$$\mathcal{D}A \xrightarrow{\mathcal{D}h} \mathcal{D}B \\
\downarrow a \downarrow \qquad \downarrow b \\
A \xrightarrow{h} B$$

Probabilistic Automata

without termination

belief-state transformers

coalgebras on $\mathcal{EM}(\mathfrak{D})$

possible behaviour

$$\frac{\frac{1}{3}x_1 + \frac{2}{3}x_2}{\sqrt[4]{a}}$$

$$\frac{2}{3}x_2 + \frac{1}{6}x_3 + \frac{1}{6}x_4$$

$$\frac{1}{3}x_1 + \frac{2}{3}x_2 \\
 & \qquad \downarrow a \\
\frac{8}{9}x_2 + \frac{1}{9}x_3$$

termination?

$$\begin{array}{c} \frac{1}{3}x_1 + \frac{2}{3}x_3 \\ & \downarrow^a \\ ? \end{array}$$

Probabilistic Automata

without termination

belief-state transformers

coalgebras on $\mathcal{EM}(\mathfrak{D})$ with carriers free algebras

constant exponent

free algebra nonempty convex powerset

[Bonchi Silva S. '17]

Probabilistic Automata

termination?

Markov Chains

no termination

belief-state transformers

coalgebras on $\mathcal{EM}(\mathcal{D})$

possible behaviour

$$\frac{\frac{1}{2}x_1 + \frac{1}{2}x_2}{\downarrow}$$

$$\frac{2}{3}x_2 + \frac{1}{12}x_3 + \frac{1}{4}x_4$$

Markov Chains

no termination

belief-state transformers

coalgebras on $\mathcal{EM}(\mathfrak{D})$ with carriers free algebras

Markov Chains

termination?

The Problem

 Given a convex algebra, is it possible to extend it by a single element?

YES!

If yes, what are all the possible ways?

there are many possible ways

we can give full description for...

single naturally functorial way

The Cases of Interest*

we can give full description for:

Free convex algebras

$$\mathbb{D}_S = \begin{bmatrix} \mathfrak{D} \mathfrak{D} S \\ \downarrow \mu \\ \mathfrak{D} S \end{bmatrix}$$

Convex subsets of convex subsets* of a vector space

nonempty

convex subset of a vector space

in particular

$$\mathcal{P}_c \mathbb{D}_S = \mathcal{P}_c$$

Free convex algebras

carrier
$$X_* = X + 1 = X \cup \{*\}$$

Possible extensions X_* are:

- the black-hole extension
- * imitates a point $w \in X$

- px + (1-p)* = *
- px + (1-p)* = px + (1-p)w
- * imitates one of the extremal points $s \in S$ on all other points, and adheres this point

these are all extensions!

$$px + (1-p)* = px + (1-p)s, x \neq s$$

$$ps + (1-p)* = *$$

Functoriality

Given a functor $F \colon \mathcal{EM}(\mathcal{D}) \to \mathcal{EM}(\mathcal{D})$ with

- $\mathbb{X} \leqslant F\mathbb{X}$
- $F\mathbb{X}$ has carrier $X+1=X\cup\{*\}$
- $FX \xrightarrow{Ff} FY$ $\iota_X \uparrow \qquad \qquad \uparrow \iota_Y$ $X \xrightarrow{f} Y$

unique / single functorial extension

Then $F\mathbb{X}$ must be the black-hole extension!

$$\mathbb{X} = \mathcal{P}_c \mathbb{D}$$

Convex subsets of...

Possible extensions X_* are:

the black-hole extension

- visibility hull
- * imitates a "point" $C \in \mathcal{P}_c(Vis(D))$
- * imitates one of the extremal "points" of $\mathbb D$ on all other points, and adheres this point

these are all extensions if D - D is linearly bounded!

• * imitates $C \in \mathcal{P}_c(Vis(D))$ on P and adheres $X \setminus P$

 $|C| \geqslant 2$

 $\operatorname{conv}\{A \in X \mid A \leadsto C\} \subseteq P \neq X$

prime ideal

$\mathbb{X} = \mathcal{P}_c \mathbb{D}$

Visibility hull

(0,0)

 $D \subseteq V$

 $Vis(D) = \{ v \in V \mid \forall d \in D. \ \forall p \in (0, 1). \ pv + (1 - p)d \in D \}$

vector space

(1,0)

(−1,0)

Ana Sokolova Nuniversity
of SALZBURG

CALCO 14-6-17

$$\mathbb{X} = \mathcal{P}_c \mathbb{D}$$

Convex subsets of...

Possible extensions X_* are:

the black-hole extension

visibility hull

- * imitates a "point" $C \in \mathcal{P}_c(Vis(D))$
- * imitates one of the extremal "points" of \mathbb{D} on all other points, and adheres this point

these are all extensions if D - D is linearly bounded!

• * imitates $C \in \mathcal{P}_c(Vis(D))$ on P and adheres $X \setminus P$

 $|C| \geqslant 2$

 $\operatorname{conv}\{A \in X \mid A \sim C\} \subseteq P \neq X$

prime ideal

Summing-up

Thank You!

- Convex algebras are important for the semantics of probabilistic systems
- We looked at one-point extensions, for termination.

Every convex algebra can be extended by a single point

What are all the possible ways?

there are many possible ways

we can give full description for...

single naturally functorial way