Quasicoherent sheaves on alg stacks (15) Stack is a fibered category in groupoids where descent Works. A Stack is algebraic if the diagonal map 1: * > X x x representable × sm x At the beginning we were dealing with functors Example M: sch/s - sets X > Stamilies ? replaced with groupoids Mor (-, M): sch/s -> sets & X - mor(x,m) We encled up with fibered categories: f = 3 au families over } { = } selfs Sen/m = } x m/ Remark The kind of information in & and in M is swightly different. Selis

1

Haly stack.	
We want should an X	
Idea To define sheeves on X, we construct sheeves on all X-	
f Chenfon Z)	
2 (scheme)	
Schemes: We can pull back I to all of these	2
andso 5 is equivalent to understanding	all
of these compatibility anditions.	
Del AS(X) Category of any spaces over X	
Objects (T,t) where $T \xrightarrow{\text{aly spea}} X$ morphism morphisms $(T',t') \xrightarrow{(T,t')} (T,t)$	
$(\tau, t) \longrightarrow (\tau, t)$	
f to a natural transf	formerhion
Lis-Etcx) C Sch/x e As(X)	
Def Lis-F't(x) is a category whose	
morphisms (T, t) (f, fb) (T', t'), f étale.	i fi
Def A covering of (T,t) is {(Ti,til, fig that is a covering.	ti It

Def X_{Lis-ti} is the category of sheaves over Lis-Ét(X) with this topology.

RMK This is a topos.

Def & cetegory is a topos if it is equivalent to the category of Sheries over a certain category.

Remark (T, t) & ob (20 - Et(X))

Example Of a the sheaf sending (T, t) -> T(T, OT)

Remark We can define sheaves of groups, rings, 1-modules (1 a steary). So we know how to construct Ox modules and we want to pass to quasi-whereast sheaves.

Def θ_{\pm} module δ is called <u>Cautesian</u> if $(f, f^b): (7, t') \rightarrow (7, t)$ $f^{\pm} \delta_{(7,t)} = f^{-1} F_{(7,t)} \otimes O_{(7,t')} \xrightarrow{F_{(7,t')}} F_{(7,t')}$

Def A good sheaf on X is a cartesian sheaf F for which F(T,t) is Qual/T for every (T,t) & Lis-Et(X).

Remarks A cartesian Ox-nigodule & is qual (=)
$F_{(X,x)}$ is gooh for a single $X \to X$ smooth, single thre
Remark if X is Delighe-mumford (Dus) we ca
define Ét(X), X ét
Fact 7 of wis -ét
2 whit * Et) > qual (* two Et)
Example. U,, ~> A;
Man, of SCh/Aly What is the difference?
Pucun = 2/122 + 373 = PiccH'7)
Idea M1, 1 Mumford proves:
1/2 a 1728 113 a Etale maps to Mr, 1 ave those
Subtructing gives Subtructing gives Order 3 over 1724 21/62
But every ell. come is, the a marked pt has an aut of only 2.
N) 21/1221.