LESSON 7:

LIKERT'S SCALE

TOPICS

- Likert's Scale
- Terminologies and Formulas to interpret Likert's Scale

- Developed by Rensis Likert (1932)
- It is a psychometric scale that is commonly used in research accompanied by a questionnaire
- Commonly used scale is the Neutral Scale:
 - Five point Scale
 - Seven point Scale

Terminologies

- Weighted Mean (μ) mean per question that can be interpreted
- Weighted Mean 2 $(\mu 2)$ used just to get standard deviation
- Overall Mean $(\Sigma \mu)$ summation mean of the whole study
- Standard Deviation (σ) standard deviation per question
- Overall Standary Deviation ($\sum \sigma$) summation standard deviation of the whole study
- Frequency (f) number of respondents / number of responses
- Questions (n)

Terminologies

- Rating the choices for the respondents to answer each questions.
 - I Strongly Disagree
 - 2 Disagree
 - 3 Either Agree or Disagree
 - 4 Agree
 - 5 Strongly Agree
- Range used to interpret the mean or the whole study as conclusion.
 - 0 to 1.49 Strongly Disagree
 - 1.50 to 2.49 Disagree
 - 2.50 to 3.49 Either Agree or Disagree
 - 3.50 to 4.49 Agree
 - 4.50 to 5 Strongly Agree

Formulas

• Weighted Mean
$$(\mu)$$
 – $\mu = \frac{\sum (f * ratings)}{\sum f}$

• Weighted Mean 2 (
$$\mu$$
2) – μ 2 = $\frac{\sum (f * (ratings^2))}{\sum f}$

Overall Mean
$$(\sum \mu) - \sum \mu = \frac{\sum \mu}{n}$$

Standard Deviation (
$$\sigma$$
) – $\sigma = \mu 2 - \mu$

• Overall Standary Deviation
$$(\Sigma \sigma) - \sum \sigma = \sqrt{\frac{\sum (\mu - \Sigma \mu)^2}{n-1}}$$

Q#	5	4	3	2	I	TOTAL
I	50	25	15	8	2	100
2	45	27	13	15	0	100
3	41	35	12	7	5	100
4	100	0	0	0	0	100
5	97	I	I	0	I	100

μ	μ2	σ	Interpretation

TOTAL RESPONDENTS: 100

Weighted Mean for Q1

$$\mu = \frac{\sum ((50*5) + (25*4) + (15*3) + (8*2) + (2*1))}{100} \quad \mu = \frac{423}{100} \quad \mu = 4.23$$

Weighted Mean for Q2

$$\mu = \frac{\sum_{((45*5)+(27*4)+(13*3)+(15*2)+(0*1))}}{100} \mu = \frac{412}{100} \quad \mu = 4.12$$

Weighted Mean for Q3

$$\mu = \frac{\sum ((41*5) + (35*4) + (12*3) + (7*2) + (5*1))}{100} \quad \mu = \frac{400}{100} \quad \mu = 4.00$$

Weighted Mean for Q5

$$\mu = \frac{\sum ((97*5) + (1*4) + (1*3) + (0*2) + (1*1))}{100}$$

$$\mu = \frac{493}{100} \qquad \mu = 4.93$$

μ	μ2	σ	Interpretation
4.23			
4.12			
4.00			
5.00			
4.93			

Weighted Mean2 for Q1

$$\mu = \frac{\sum ((50*25) + (25*16) + (15*9) + (8*4) + (2*1))}{100} \quad \mu = \frac{1819}{100} \quad \mu = 18.19$$

Weighted Mean2 for Q2

$$\mu = \frac{\sum_{((45*25)+(27*16)+(13*9)+(15*4)+(0*1))}}{100}\mu = \frac{1734}{100} \quad \mu = 17.34$$

Weighted Mean2 for Q3

$$\mu = \frac{\sum ((41*25) + (35*16) + (12*9) + (7*4) + (5*1))}{100} \quad \mu = \frac{1726}{100} \quad \mu = 17.26$$

Weighted Mean2 for Q5

$$\mu = \frac{\sum_{(97*25)+(1*16)+(1*9)+(0*4)+(1*1)}}{100} \quad \mu = \frac{2451}{100} \quad \mu = 24.5$$

μ	μ2	σ	Interpretation
4.23	18.19		
4.12	17.34		
4.00	17.26		
5.00	25.00		
4.93	24.51		

Standard Deviation for Q1

$$\sigma = 18.19 - 4.23$$
 $\sigma = 13.96$

Standard Deviation for Q2

$$\sigma = 17.34 - 4.12$$
 $\sigma = 13.22$

Standard Deviation for Q3

$$\sigma = 17.26 - 4.00$$
 $\sigma = 13.26$

Standard Deviation for Q4

$$\sigma = 25.00 - 5.00$$
 $\sigma = 20.00$

Standard Deviation for Q5

$$\sigma = 24.51 - 4.93$$
 $\sigma = 19.58$

μ	μ2	σ	Interpretation
4.23	18.19	13.96	Agree
4.12	17.34	13.22	Agree
4.00	17.26	13.26	Agree
5.00	25.00	20.00	Strongly Agree
4.93	24.51	19.58	Strongly Agree

0 to 1.49 – Strongly Disagree

1.50 to 2.49 – Disagree

2.50 to 3.49 – Either Agree or Disagree

3.50 to 4.49 – Agree

4.50 to 5 – Strongly Agree

Overall Mean

$$\sum \mu = \frac{\sum (4.23 + 4.12 + 4.00 + 5.00 + 4.93)}{5}$$

$$\sum \mu = 4.46$$

Strongly Agree

μ	μ2	σ	Interpretation
4.23	18.19	13.96	Agree
4.12	17.34	13.22	Agree
4.00	17.26	13.26	Agree
5.00	25.00	20.00	Strongly Agree
4.93	24.51	19.58	Strongly Agree

Overall Standard Deviation

$$\sum \sigma = \sqrt{\frac{\sum ((4.24 - 4.46) + (4.12 - 4.46) + (4.00 - 4.46) + (5.00 - 4.46) + (4.93 - 4.46))^{2}}{5 - 1}}$$

$$\sum \sigma = \sqrt{\frac{\sum (-0.22) + (-0.34) + (-0.46) + (0.54) + (0.47))^{2}}{4}} \sum \sigma = \sqrt{\frac{-0.01^{2}}{4}} \sum \sigma = \sqrt{\frac{0.0001}{4}}$$

$$\sum \sigma = 0.005$$

END

Thank you and God bless!