RYL 6

```
In [1]: # dependencies
        import numpy as np
        import pandas as pd
        from matplotlib import pyplot as plt
        \textbf{from} \ \texttt{scipy.optimize} \ \textbf{import} \ \texttt{minimize}
In [2]: # look at our data
        data = pd.read_csv("ryl6-points.txt", delimiter=r'\s+', header=None).values
        u = data[:, 0]
        y = data[:, 1]
        plt.scatter(u, y)
Out[2]: <matplotlib.collections.PathCollection at 0x116e781a0>
         2.0
         1.5
         1.0
         0.5
         0.0
        -0.5
        -1.0
        -1.5
                                                                ż
                               -2
                                       -1
                                                0
               -4
                       -3
                                                         1
In [3]: # define the model
        def f(theta, u):
             th1, th2, th3, th4 = theta
             numer = th1*u+th2
             denom = th3*u*(u+th4)
             return numer/denom
In [4]: # (a) Fit this model to the data provided.
        # cost
        def c(theta, u, y):
             y_hat = f(theta, u)
             diff = y_hat-y
             return 0.5*np.linalg.norm(diff, ord=2)**2
        # fit. NOTE: 5,5,5,5 was the best I found after trial—and—error with a few combinations
        fit = minimize(c, np.array([5, 5, 5, 5]), (u, y))
        print(f'The best-fit parameters based on a starting point of 5, 5, 5, 5 are: {fit.x}')
        # visualize
        plotting_u = np.linspace(min(u), max(u), 30)
        plotting_y = f(fit.x, plotting_u)
        plt.scatter(u, y, marker="x", color="black", s=20)
        plt.plot(plotting_u, plotting_y, color="blue")
       The best-fit parameters based on a starting point of 5, 5, 5, 5 are: [ 3.10967646 10.24952639 1.09197515
       8.44448953]
```

Out[4]: [<matplotlib.lines.Line2D at 0x11701ad50>]

In [5]: # (b) Identify the regimes in parameter space in which one parameter is practically unidentifiable.
For each regime, find the effective model and fit it to the data. Qualitatively describe the
feature in the data that the unidentifiable parameter controlled for.

Let's discuss this by inspection first:
We can see that th1*u+th2 / th3*u*(u+th4) expands to
th1*u + th2 / th3*u**2 + th3*th4*u
because of this, th3 will overwhelm all other parameters as it goes to infinity by
effecting u**2--this makes the rest of the parameters practically unidentifiable.
Oppositely, th2 is only a constant, so it is practically unidentifiable for large u.
Setting these constant, th1*u/(th3*th4*u) evaluates to 1 when th1==th3*th4. th3/th4 is
unidentifiable because in the model th4 is always multiplied by th3.
setting th2 and th3 constant, th1 and th4 have an equal effect on the function.

```
In [7]: # th1 vs. th2
    plt.contour(*my_meshgrid, cost_surface[:, :, 0, 0], cmap="grey")
    p = plt.pcolormesh(*my_meshgrid, cost_surface[:, :, 0, 0])
    plt.colorbar(p)

# Here we see a positive relationship between th1 and th2. For
# constant th3 & th4 the function effectively becomes th1*u + th2 / u**2.
```

Out[7]: <matplotlib.colorbar.Colorbar at 0x116e79be0>


```
In [8]: # th1 vs. th3
plt.contour(*my_meshgrid, cost_surface[:, 0, :, 0], cmap="grey")
p = plt.pcolormesh(*my_meshgrid, cost_surface[:, 0, :, 0])
plt.colorbar(p)

# Here we see th3 overwhelming th1, making th1 practically unidentifiable as
# previously discussed.
```

Out[8]: <matplotlib.colorbar.Colorbar at 0x117383110>


```
In [9]: # th1 vs. th4
plt.contour(*my_meshgrid, cost_surface[:, 0, 0, :], cmap="grey")
p = plt.pcolormesh(*my_meshgrid, cost_surface[:, 0, 0, :])
plt.colorbar(p)

# as th4 goes to infinity, it makes th1 practically unidentifiable.
# this is because th4 is not actually unidentifiable, but is tied to th3,
# which has polynomial effect on the function.
```

Out[9]: <matplotlib.colorbar.Colorbar at 0x1174707d0>


```
In [10]: # th2 vs. th3
# plt.contour(*my_meshgrid, cost_surface[0, :, :, 0], cmap="grey")
p = plt.pcolormesh(*my_meshgrid, cost_surface[0, :, :, 0])
plt.colorbar(p)
# th3 makes th2 practically unidentifiable as discussed above.
```

Out[10]: <matplotlib.colorbar.Colorbar at 0x117529a90>


```
In [11]: # th2 vs. th4
plt.contour(*my_meshgrid, cost_surface[0, :, 0, :], cmap="grey")
p = plt.pcolormesh(*my_meshgrid, cost_surface[0, :, 0, :])
plt.colorbar(p)

# th4 makes th2 practically unidentifiable as discussed with th1 vs. th4:
# this is because th4 is not actually unidentifiable, but is tied to th3,
# which has polynomial effect on the function.
```

Out[11]: <matplotlib.colorbar.Colorbar at 0x1175e9d10>


```
In [12]: # th3 vs. th4
# plt.contour(*my_meshgrid, cost_surface[15, 0, :, :], cmap="grey")
p = plt.pcolormesh(*my_meshgrid, cost_surface[29, 29, :, :])
plt.colorbar(p)
# th3/th4 is unidentifiable, corresponding to this uninteresting,
# virtually constant 0 loss surface
```

Out[12]: <matplotlib.colorbar.Colorbar at 0x1176a9e50>

Note

I did not use the one page of notes allowed for RYL's