Tema 1

Alejandro Zubiri

Wed Oct 09 2024

Contents

1	Def	iniciones Básicas	2
2	Tab	ola de distribución	2
3	Cla	ses	2
4		presentación gráfica Función de distribución empírica	3
5	Me	didas de centralización	3
	5.1	Media aritmética	3
	5.2	Media geométrica	3
	5.3	Media armónica	3
	5.4	Mediana	3
	5.5	Moda	3
6	Me	didas de dispersión	4
	6.1	Desviación media	4
	6.2	Varianza	4
	6.3	Cuasivarianza	4
	6.4	Desviación típica	4
	6.5	Cuasidesviación típica	4
	6.6	Coeficiente de variación	4
	6.7	MEDA	4
	6.8	Cuantiles	5
	6.9	Rango Intercuartílico	5
7	Me	didas de forma	5
	7.1	Coeficiente de asimetría Fisher	5

8		didas de concentración
	8.1	Curva de Lorenz
	8.2	Índice de Gini
	8.3	Coeficiente de Asimetría Bowley
	8.4	Curtosis
	8.5	Diagrama de Caja
	8.6	Números Índice
	8.7	Índice de Laspeyres
	8.8	Índice de Paasche

1 Definiciones Básicas

- Muestra: datos recopilados
- **Escalas**: intervalo (existe 0 pero no indica ausencia) y razón (0 es ausencia).

2 Tabla de distribución

Se trabaja con la **frecuencia** con la que aparecen los datos:

- Absoluta (f): cuánto aparece.
- Total (n): número de datos.
- Relativa (f_r) : $\frac{f}{n}$.
- Acumulada: con datos ordenados, sumar todos los anteriores a x_i :
- Absoluta (F)
- Relativa (F_r)

3 Clases

Clase modal: clase que tiene más frecuencia por unidad de amplitud (Densidad de frecuencia).
 se calcula mediante

$$h_j = \frac{f_j}{b_j - b_{j-1}} \tag{1}$$

Es decir, la frecuencia de la clase entre su amplitud.

• Intervalo / Clase mediana: clase donde se encuentra la mediana.

4 Representación gráfica

4.1 Función de distribución empírica

La función de distribución empírica se define por intervalos. En una gráfica, haremos tantos puntos en el eje X como extremos de intervalos haya. Al final del intervalo, su altura será su frecuencia relativa acumulada. Después, uniremos todos los puntos.

5 Medidas de centralización

5.1 Media aritmética

$$\bar{x} = \frac{\sum x_i}{n} \tag{2}$$

Para datos agrupados en clases, siendo m_j el valor central y $f_r(m_j)$ la frecuencia relativa de esta:

$$\bar{x} = \sum m_j f_r(m_j) \tag{3}$$

Para **transformaciones a la media**, esta es linear, puesto que para una suma de k, se le suma k a la media, y una transformación por k multiplica po k la media.

5.2 Media geométrica

$$\bar{x}_G = (\prod x_i)^{\frac{1}{n}} \tag{4}$$

5.3 Media armónica

$$\bar{x}_H = \frac{n}{\sum \frac{1}{x_i}} \tag{5}$$

Es fácilmente demostrable que:

$$\bar{x}_H \le \bar{x}_G \le \bar{x} \tag{6}$$

5.4 Mediana

La mediana es el valor que está "en medio" en un número de datos impar, o la media aritmética de los dos datos del centro. Cumple que el 50% de los valores es menor a la mediana y el otro 50% es mayor.

5.5 Moda

Es el valor más frecuente.

6 Medidas de dispersión

Miden la separación de los datos entre sí

6.1 Desviación media

$$D_{\bar{x}} = \frac{1}{n} \sum |x_i - \bar{x}| \tag{7}$$

6.2 Varianza

$$s_x^2 = \frac{\sum (x_i - \bar{x})^2 f(x_i)}{n} = \frac{1}{n} \sum x_i^2 f(x_i) - \bar{x}^2$$
 (8)

Algunas propiedades de la varianza:

- Es acotado y positivo
- No se ve afectado por cambios de origen
- Se ve afectado por cambios de escala k en un factor k^2 .

6.3 Cuasivarianza

$$\hat{s}_x^2 = \frac{\sum (x_i - \bar{x})^2 f(x_i)}{n - 1} \tag{9}$$

6.4 Desviación típica

$$\bar{s}_x = \frac{\sqrt{\sum (x_i - \bar{x})^2 f(x_i)}}{n} \tag{10}$$

6.5 Cuasidesviación típica

$$\hat{s}_x = \frac{\sqrt{\sum (x_i - \bar{x})^2 f(x_i)}}{n - 1} \tag{11}$$

6.6 Coeficiente de variación

Mide la dispersión relativamente a los datos.

$$CV = \frac{s_x}{|\bar{x}|}/\bar{x} \neq 0 \tag{12}$$

6.7 MEDA

"Mediana de las desviaciones absolutas respecto a la media"

$$MEDA = median(|x_i - Med_x)$$
(13)

6.8 Cuantiles

Dividen la distribución en c partes. Los más comunes son:

- Cuartiles (Q): cuatro partes
- Quintiles (K): cinco partes
- Percentiles (p): cien partes

La posición de un cuantil viene dada por:

$$C_i = \frac{i \cdot n}{c} \tag{14}$$

El cuantil i, con n datos y c divisiones.

Para encontrar el valor del cuantil, que definiremos como C_i^v , tenemos que encontrar el valor cuya frecuencia absoluta acumulada sea mayor o igual al valor de la posición cuantil:

$$C_i^v \to F_i \ge C_i \tag{15}$$

6.9 Rango Intercuartílico

$$RI = Q_3 - Q_1 \tag{16}$$

7 Medidas de forma

7.1 Coeficiente de asimetría Fisher

Caracteriza la deformación en el eje X:

$$CA_f = \gamma_1 = \frac{\sum (x_i - \bar{x})^3 f(x_i)}{ns^3}$$
 (17)

- Si $\gamma_1=0 \Rightarrow$ distribución simétrica. La media es igual a la mediana.
- Si $\gamma_1 > 0 \Rightarrow$ distribución asimétrica a derechas. La media es mayor a la mediana
- Si $\gamma_1 < 0 \Rightarrow$ distribución asimétrica a izquierdas. La media es menor a la mediana.

8 Medidas de concentración

8.1 Curva de Lorenz

Definimos los montos acumulados S_i como

$$S_i = x_i f_i \tag{18}$$

 $Y S_n$ como

$$S_n = \sum x_i f_i \tag{19}$$

Definimos q_i

$$q_i = \frac{S_i}{S_n} \cdot 100 \tag{20}$$

 $Y p_i$

$$p_i = \frac{F_i}{n} \cdot 100 \tag{21}$$

Ahora, las coordenadas de la curva serán

$$\frac{p_i}{q_i} \tag{22}$$

8.2 Índice de Gini

Oscila entre 0 y 1, el 0 indicando uniformidad, y el 1 máxima desigualdad. Es la medida más apropiada para la concentración.

$$I_G = \frac{\sum_{i=1}^{n-1} (p_i - q_i)}{\sum_{i=1}^{n-1} p_i} = 1 - \frac{\sum_{i=1}^{n-1} q_i}{\sum_{i=1}^{n-1} p_i}$$
 (23)

8.3 Coeficiente de Asimetría Bowley

$$CA_B = \frac{Q_1 + Q_3 - 2Q_2}{RI} \tag{24}$$

8.4 Curtosis

Agrupamiento respecto a la media

$$CA_P = \frac{\sum (x_i - \bar{x})^4}{ns^4} - 3 \tag{25}$$

8.5 Diagrama de Caja

Necesitamos los mínimos, máximos y cuartiles.

Definimos el límite inferior como

$$L_I = Q_1^v - 1.5RI (26)$$

Y el límite superior como

$$L_S = Q_3^v + 1.5RI (27)$$

Todos los datos por debajo del inferior o por encima del superior son atípicos.

8.6 Números Índice

Cambio relativo de una variable o variables respecto al tiempo. Se relaciona el valor actual con el valor en un período base.

$$I = \frac{x_t}{x_0} \tag{28}$$

Donde x_t es el valor ahora y x_0 el valor en el período base.

8.7 Índice de Laspeyres

Sea

- $\bullet \ q_{i0}$ la cantidad comprada en el período origen.
- p_{i0} el precio de producto i en tiempo origen.
- $\bullet \ q_{it}$ la cantidad de i comprada ahora.
- p_{it} el precio de i ahora.

$$IPL_t = \frac{\sum p_{it}q_{i0}}{\sum p_{i0}q_{i0}} \tag{29}$$

8.8 Índice de Paasche

Con la mismas variables

$$IPP_t = \frac{\sum p_{it}q_{it}}{\sum p_{i0}q_{it}} \tag{30}$$