

Lab 0

Robot Simulation

Purpose

- Use existing C++ skills to make calls to a rotating "Black-Box" robot. The implementation details are meant to be hidden except for the public interface.
- Use Object Oriented techniques to setup a "Controller" for the robot. The Controller is responsible for sending commands to the robot.

Rotate

Commands

Controller

- The Controller issues commands to the robot.
- The Controller may introduce helper classes to assist with the construction, transmission and cleanup of robot command messages.

Think "Object Oriented Design".

Commands

▶ A command is an 8-bit field layed out as:

```
OffOn = 00000011
LoHi = 00001100
Degree = 11110000
```

Example Command

OpCode	ON	0000010
OpCode	HIGH	00001000
OpCode	180°	00100000
Command		00101010

OP Codes

```
0000000
ZERO
OFF
              0000001
ON
              0000010
LOW
              00000100
HIGH
              00001000
              00010000
90
              00100000
180
270
              01000000
360
              1000000
EXEC
              11111111
```

Public Interface

The Robot has this interface:

Constructor

Default Constructor

Destructor

Default Constructor

Execute(Commands&)

Executes all the commands in the Command Queue.

Object Oriented Design

- ▶ This lab assignment could be easily written using C-style programming (i.e. procedural). The highest grade you can get for turning in a C-style assignment is a C.
- If you want higher than C (i.e. C++), use Object Oriented Design techniques.
- A sign you are using procedural is a lot of 'IF' statements.