

Arbeit zur Erlangung des akademischen Grades Bachelor of Science

Semi-klassischer Variationsansatz zur Spindynamik in Quantenpunkten

Salem Rezik geboren in Essen

2022

Lehrstuhl für theoretische Physik Fakultät Physik Technische Universität Dortmund

Erstgutachter: Prof. Dr. Anders Zweitgutachter: Prof. Dr. Ulrich Abgabedatum: 25.10.2022

Kurzfassung

Hier steht eine Kurzfassung der Arbeit in deutscher Sprache inklusive der Zusammenfassung der Ergebnisse. Zusammen mit der englischen Zusammenfassung muss sie auf diese Seite passen.

Abstract

The abstract is a short summary of the thesis in English, together with the German summary it has to fit on this page.

Inhaltsverzeichnis

1	Einleitung	1
2	Quantenpunkte	3
3	Time Dependent Variational Principle 3.1 Wahl der Wellenfunktion	
4	Central Spin Model4.1 klassischer Ansatz4.2 modifizierter Ansatz: Quantenkorrektur4.3 quantenmechanischen Lösung	13
5	Vergleich	17

1 Einleitung

Die Realisierung von Quantencomputer mit genügend hoher Anzahl an Qubits wird oft als das "heilige Gral der Wissenschaft" angesehen, denn es soll nach theoretischen Überlegungen, die über ein halbes Jahrhundert zurückführen, in der Lage sein, die Grenzen moderner Computer zu überschreiten.

Im Gegensatz zum herkömmlichen Computer, der auf Basis von elektrischen Zuständen in Halbleitertransistoren funktioniert und nur die Zustände $|0\rangle$ oder $|1\rangle$ kennt, basiert der Quantencomputer auf quantenmechanische Zustände, wodurch u.a. eine drastisch höhere Anzahl von Zuständen auf gleichem Raum ermöglicht wird, was in bestimmten schnellere Prozesse.

Um sich dieses Problem zu verdeutlichen, wird der Hilbertraum eines N-Teilchen-Systems bestehend aus $\frac{1}{2}$ -Teilchen betrachtet, welches eine Dimension von 2^N besitzt; so dass allein die Speicherung aller Freiheitsgrade eines 100 Teilchen Systems eine unmögliche Herausforderung derzeitig ist. Dieses Problem hat schon damalige Physiker zu der Annahme verleitet, dass wohl ein theoretisch ein Computer basierend auf quantenmechanischen Wirkungsmechanismen die wohl angebrachteste Lösung wäre. Und tatsächlich haben Bernstein and Vazirani den ersten Beweis veröffentlicht, dass ein Quantencomputer in der Lage ist, das exponentielle Wachstum der Rechendauer auf ein polynomiales Wachstum runterzubrechen.

Darüber hinaus können viele Algorithmen implementiert werden, dazu gehört auch der bekannte Shor-Algorithmus; ein Faktorisierungsverfahren, welches unter anderem ein gewaltiges Sicherheitsrisiko für das übliche RSA-Kryptosystem darstellt.

Die zentralen Bausteine eines Quantencomputers sind die Quantencubits, kurz Qubits. Damit werden beliebige quantemechanische zwei-Niveau-Systeme sammelbezeichnet. In der Vergangenheit wurden bereits einige Realisierungsmöglichkeiten des Qubits umgesetzt.

Die Realisierungsvorschlag mit der sich diese Arbeit beschäftigt, ist die des Spins eines in einem Quantenpunkt eingefangenen Elektrons (Loch). Um diesen Spin zu beschreiben wird das Central-Spin-Model zur Beschreibung der Elektronepindynamik verwendet und mit dem semi-klassischen Variationsverfahren "Time-Dependent Variational Principle" (TDVP) behandelt.

Die Hoffnung liegt darin, durch Modifikationen von Parametern μ einer zu variierenden Wellen $|\Psi\rangle=|\Psi(\mu_1,...,\mu_N)\rangle$ das Problem des exponentiell zu N anwachsenden Hilbertraumes zu umgehen und gegenüber herkömmlichen, vollkommen quantenmechanischem Ansätzen mit größeren N möglichst kleine Abweichungen von der exakten Lösung zu erhalten.

2 Quantenpunkte

Diese Arbeit beschäftigt sich mit der mathematischen Modellierungen der Spindynamik eines Quantenpunktes, deshalb ist es sinnvoll vorab zu klären, was ein Quantenpunkt überhaupt ist. Damit einhergehend lassen sich die hier angenommenen Modelle begründen.

Abbildung 2.1: Links:Schematischer Aufbau vom Wachstum eines InAs-Quantenpunkt auf einem GaAs-Substrat. Rechts: Automatisch aufgelöstes Bild eines InAs-Quantenpunktes

Die hier betrachten Quantenpunkte sind nanoskopische Halbleiterstrukturen, die wie ein dreidimensionaler Potentialtopf fungieren und einzelne Ladungsträger wie Elektronen oder Löcher einfangen können.

Die Stranski-Krastnov-Methode ist eine weitverbreitete Methode um Quantenpunkte zu erzeugen, dabei ist die Idee zwei Materialien mit unterschiedlicher Gitterkonstante mittels Molekularstrahlepitaxie aufeinander wachsen zu lassen. Der Kürze halber lässt es sich beispielhaft an den beiden Materialien InAs und GaAs erklären, denn dabei wird InAs-Schicht auf ein GaAs-Substrat wachsen gelassen, wobei die Gitterkonstante des InAs etwa 7% größer ist, wodurch Spannung zwischen beiden Materialien entsteht.

Diese Spannung bewirkt Formationen von InAs-Inseln wie in Abbildung 2.1 links zu sehen, die nur wenige zehn Nanometer groß sind, und verändert selbst die elektronische Eigenschaften, hauptsächlich den elektrische Feldgradienten des Quantenpunktes. Nun wird eine weiter Monoschicht GaAs auf das ganze Substrat gewachsen, so

dass die InAs-Inseln vollständig von dem GaAs umschlossen sind. Diese umschlossenen InAs-Inseln bilden dann explizit den Quantenpunkt.

Abbildung 2.2: Schematische räumliche Bandstruktur eines In(Ga)As/GaAs-Quantenpunktes mit den relevanten Bändern und einem gefangenem Ladungsträger

Das GaAs, welches den In(Ga)As Quantenpunkt umschließt, fungiert als Potentialtopf, denn die Energiebandlücke des InAs ist signifikant kleiner als die des GaAs. Nun kann ein einzelnes Elektron (Loch) räumlich einfangen werden und die Wechselwirkung mit dem Substrat unterdrückt werden, wodurch die Dekohärenzzeit deutlich verlängert werden kann. Eine kurze Dekohärenzzeit ist seit Beginn ein Hauptproblem bei der Realisierung des Quantencomputers. In Abbildung 2.2 ist zu erkennen, dass einzelne Ladungsträger im InAs auf bestimmte Energieniveaus gefangen sind.

Dabei ist die Hyperfeinstruktur die dominante Wechselwirkung. Quantenpunkte werden deshalb auch als "künstliche Atome"bezeichnet, da ganz in Analogie zu Atomen ihre diskreten Enerigieniveaus von den eingefangen Teilchen besetzt werden können.

3 Time Dependent Variational Principle

Das grundlegende Prinzip der Time-Dependent Variatonal Principle, kurz TDVP, ist die Äquivalenz der zeitabhängigen Schrödingergleichung zu einem Extremisierungsprophlem einer Wirkungsfunktion $S = \int_{t_1}^{t_2} L \, dt$ mit der Lagrange-Funktion:

$$L\left(\overline{\varPsi}(t),\varPsi(t),t\right) = \frac{i}{2} \langle \varPsi(t) \mid \dot{\varPsi}(t) \rangle - \frac{i}{2} \langle \dot{\varPsi}(t) \mid \varPsi(t) \rangle - \langle \varPsi(t) | \hat{H}(t) | \varPsi(t) \rangle \tag{3.1}$$

Eine explizite Herleitung der Äquivalenz ist in (...) zu finden.

Für die Verwendung des Variationsverfahren ist es notwendig, dass der zu variierende Ansatz-Wellenfunktion $|\Psi(\mu_1,...,\mu_N\rangle$ analytisch ist. Da die Normierungsfunktion $N=N(\mu,\overline{\mu})$ nicht analytisch ist, wird sie für den modifizierten Ansatz ausgelassen. Da ein normierter Ansatz in diesem semi-klassischen Minimierungsverfahren nicht von Notwendigkeit ist, lassen sich folgende Bewegungsgleichungen hinschreiben:

$$i\dot{\mu}_i = \sum_i \left(G_{ij} \right)^{-1} \, \partial_{\overline{\mu_i}} \mathcal{H} \tag{3.2}$$

mit

$$G_{ij} = \frac{\left\langle \partial_{\overline{\mu_{i}}} \Psi \middle| \partial_{\mu_{j}} \Psi \right\rangle}{\left\langle \Psi \middle| \Psi \right\rangle} - \frac{\left\langle \partial_{\overline{\mu_{i}}} \Psi \middle| \Psi \right\rangle \left\langle \Psi \middle| \partial_{\mu_{j}} \Psi \right\rangle}{\left\langle \Psi \middle| \Psi \right\rangle^{2}} \tag{3.3}$$

$$\mathcal{H} = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{3.4}$$

mit der Konvention: $\left\langle \partial_{\overline{\mu_j}} \Psi \middle| = \left(\left| \partial_{\mu_j} \Psi \right\rangle \right)^{\dagger}$

Mit dieser modifizierten Gram-Matrix G_{ij} und dem modifizierten Hamiltonian \mathcal{H} , ist die Normierung wieder gesichert.

3.1 Wahl der Wellenfunktion

Zur Vereinfachung werden alle Kernspin (wie der Elektronenspin) als 1/2-Spins angenähert. Die Wellenfunktion $|\Psi\rangle=|\Psi(\mu_1(t),...,\mu_N(t))\rangle$ enthält die zeitabhängigen Parameter $\mu_i(t)$ und realisiert einen kohärenten Zustand. Wir nutzen die Geometrie des 1/2-Spins aus und verwenden zur Darstellung die bekannte **Bloch-Sphäre**. Ähnlich wie die komplexe e-Funktion dank trigonemtrische Eigenschaften einen Kreis auf der Zahlenebene abbilden kann, ist es auch möglich, jeden Punkt auf einer Kugel zu beschreiben. Deshalb wählen wir folgenden Ansatz:

Abbildung 3.1: Schematischer Aufbau einer Bloch-Sphere

$$|\Psi(\mu_1(t),...,\mu_N(t))\rangle = \prod_{i=1}^N \frac{1}{\sqrt{1+\mu_i \overline{\mu}_i}} e^{\mu_i S_i^-} |\uparrow,...,\uparrow\rangle$$
 (3.5)

3.2 ein 1/2-Spin im konstanten Magnetfeld

Zum besseren Verständnis des TDVPs ist die beispielhafte Betrachtung des vereinfachten Falles sehr aufschlussreich. Zudem lassen sich Identitäten herleiten, die in die Erweiterung zum **Central Spin Model** Wiederverwendung finden werden. Für den N=1 vereinfacht sich der Ansatz zu:

$$\begin{split} |\varPsi\rangle &= e^{\mu\,S^-} \left|\uparrow\right\rangle \\ &= \left(1 + \frac{\mu\,S^-}{1!} + \frac{\left(\mu\,S^-\right)^2}{2!} + \ldots\right) \left|\uparrow\right\rangle \\ &= \left|\uparrow\right\rangle + \mu \left|\downarrow\right\rangle \end{split}$$

Im folgenden haben wir uns die Eigenschaft des 1/2-Spins $(S^-)^n \mid \uparrow \rangle = 0$ (n = 2,3,...) verwendet.

Der Hamiltonian lautet:

$$\hat{H} = \gamma \vec{B}\hat{\vec{S}} = \gamma \left(B_x \hat{S}_x + B_y \hat{S}_y + B_z \hat{S}_z \right) \tag{3.6}$$

$$= \gamma \frac{B_x}{2} \left(|\downarrow\rangle\langle\uparrow| + |\uparrow\rangle\langle\downarrow| \right) \tag{3.7}$$

$$+ \gamma \frac{iB_y}{2} \left(|\downarrow\rangle\langle\uparrow| - |\uparrow\rangle\langle\downarrow| \right) \tag{3.8}$$

$$+ \gamma \frac{B_z}{2} \Big(|\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow| \Big) \tag{3.9}$$

mit $\vec{B}=(B_x,B_y,B_z)^T$ und $\gamma=\mu_B\,g_e$, wobei $\mu_B=9.27\cdot 10^{24}\frac{J}{T}$ das Bohrsche Elektronenmagneton und dem g-Faktor des freien Elektrones $g_e\approx 2$. Der Spin-Vektororperator $\hat{\vec{S}}=\frac{1}{2}\left(\hat{\sigma}_x,\hat{\sigma}_y,\hat{\sigma}_z\right)^T$ mit den Pauli-Matrizen $\hat{\sigma}_i$.

und somit folgt für den modifizierten Hamiltonian:

$$\mathcal{H} = \frac{\gamma}{2} \frac{B_x(\mu + \overline{\mu}) + iB_y(\overline{\mu} - \mu) + B_z(1 - \mu\overline{\mu})}{1 + \mu\overline{\mu}}$$
(3.10)

$$\partial_{\overline{\mu}}\mathcal{H} = \frac{\gamma}{2} \frac{B_x (1 - \mu^2) + i B_y (1 + \mu^2) - 2\mu B_z}{(1 + \mu \overline{\mu})^2} \tag{3.11}$$

Im nächsten Schritt wird die von dem Haltionian unabhängigen **modifizierte** Gram-Matrix G_{ii} bestimmt, welche in diesem Fall eindimesnional ist. Damit erhalten wir

$$G_{11} = \frac{1}{(1 + \mu \overline{\mu})^2}$$
 bzw. $G_{11}^{-1} = (1 + \mu \overline{\mu})^2$ (3.12)

Nach einer weiteren Rechnung ergibt sich auch der modifizierte Hamiltonian und dessen Ableitung:

Einsetzen in die DGL liefert:

$$\begin{split} i\dot{\mu_i} &= \sum_j \left(G_{ij}\right)^{-1} \, \eth_{\overline{\mu_j}} \mathcal{H} = \left(G_{ii}\right)^{-1} \eth_{\overline{\mu}} \mathcal{H} \\ &= \frac{\gamma}{2} B_x (1-\mu^2) + \frac{i\gamma}{2} B_y (1+\mu^2) - \mu \gamma B_z \\ \leftrightarrow \dot{\mu} &= \frac{1}{2} (B_y + iB_x) \mu^2 + \frac{1}{2} (B_y - iB_x) + i \mu \gamma B_z \end{split}$$

Die normierten **Spin-Erwartungswerte** $\frac{\langle \Psi | \hat{\vec{S}} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ lauten:

$$\frac{\langle \Psi | \hat{S}_x | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{1}{2} \frac{\overline{\mu} + \mu}{1 + \mu \overline{\mu}} = \frac{Re[\mu]}{1 + \mu \overline{\mu}}$$
(3.13)

$$\frac{\langle \Psi | \, \hat{S}_y \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{i}{2} \frac{\overline{\mu} - \mu}{1 + \mu \overline{\mu}} = \frac{Im[\mu]}{1 + \mu \overline{\mu}} \tag{3.14}$$

$$\frac{\langle \Psi | \hat{S}_z | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{1}{2} \frac{1 - \mu \overline{\mu}}{1 + \mu \overline{\mu}} \tag{3.15}$$

Bei dem Problem handelt es sich um die *Larmor-Präzession*, indes die Lösung bereits bekannt ist. Zur Überprüfung reicht es, zu zeigen:

$$\frac{d}{dt} \left(\frac{\langle \Psi | \, \hat{\vec{S}} \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right) = \gamma \vec{B} \times \left(\frac{\langle \Psi | \, \hat{\vec{S}} \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right) \tag{3.16}$$

$$\partial_{\mu} \left(\frac{\langle \Psi | \hat{S_x} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right) \dot{\mu} = \frac{1}{2} \frac{1 - \overline{\mu}^2}{(1 + \mu \overline{\mu})^2} \cdot \left[\frac{1}{2} (B_y + i B_x) \mu^2 + \frac{1}{2} (B_y - i B_x) + i \mu B_z \right] \tag{3.17}$$

$$\frac{d}{dt} \left(\frac{\langle \Psi | \, \hat{S_x} \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right) = \partial_{\mu} \left[\frac{\langle \Psi | \, \hat{S_x} \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right] \dot{\mu} + \partial_{\overline{\mu}} \left[\frac{\langle \Psi | \, \hat{S_x} \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right] \dot{\overline{\mu}}$$
(3.18)

$$=B_{y}\frac{1}{2}\frac{1-\mu\overline{\mu}}{(1+\mu\overline{\mu})^{2}}-B_{z}\frac{i}{2}\frac{\overline{\mu}-\mu}{(1+\mu\overline{\mu})^{2}}$$
(3.19)

$$=B_{y}\left(\frac{\left\langle \varPsi\right|\hat{S}_{z}\left|\varPsi\right\rangle }{\left\langle \varPsi\right|\varPsi\right\rangle }\right)-B_{z}\left(\frac{\left\langle \varPsi\right|\hat{S}_{z}\left|\varPsi\right\rangle }{\left\langle \varPsi\right|\varPsi\right\rangle }\right) \tag{3.20}$$

analog wird berechnet:

$$\frac{d}{dt}\left(\frac{\left\langle \varPsi\right|\hat{S_{y}}\left|\varPsi\right\rangle}{\left\langle \varPsi\right|\varPsi\right\rangle}\right)=B_{z}\left(\frac{\left\langle \varPsi\right|\hat{S_{x}}\left|\varPsi\right\rangle}{\left\langle \varPsi\right|\varPsi\right\rangle}\right)-B_{x}\left(\frac{\left\langle \varPsi\right|\hat{S_{z}}\left|\varPsi\right\rangle}{\left\langle \varPsi\right|\varPsi\right\rangle}\right) \tag{3.21}$$

$$\frac{d}{dt}\left(\frac{\langle\Psi|\,\hat{S}_z\,|\Psi\rangle}{\langle\Psi|\Psi\rangle}\right) = B_x\left(\frac{\langle\Psi|\,\hat{S}_y\,|\Psi\rangle}{\langle\Psi|\Psi\rangle}\right) - By\left(\frac{\langle\Psi|\,\hat{S}_x\,|\Psi\rangle}{\langle\Psi|\Psi\rangle}\right) \tag{3.22}$$

Die Kreuzproduktstruktur lässt sich somit wiedererkennen.

4 Central Spin Model

Im folgenden wir das Central Spin Model zur Beschreibung der Spindynamik des Quantenpunktes verwendet. Dabei werden zu dem vorherigen Hamiltonian, die legiglich die Interaktionen des Elektrones mit mit einem externem Magnetfeld \vec{B} berücksichtigt, fließen die Interaktionen der umliegenden Kernspins \hat{I}_k mit ein, d.h. die Wechselwirkung der Kernspins mit dem externen Magnetfeld und dem Elektronen-Spin über eine Heisenbergkopplung mit der Kopplungskonstante A_k . Die Wechselwirkungen, der einzelnen Kernspins untereinander wird vernachlässigt.

$$\overline{\hat{H}}_{CSM} = \mu_B g_e \vec{B} \hat{\vec{S}} + \sum_{k=1}^{N} \mu_k g_k \vec{B} \hat{\vec{I}}_k + \sum_{k=1}^{N} A_k \hat{\vec{S}} \hat{\vec{I}}_k$$
(4.1)

Abbildung 4.1: Schematischer Aufbau des Central-Spin-Modells mit dem Elektronenspins (Rot) und den in direkter Umgebung liegenden Kernspins (Blau) und einer Kopplungskonstante ${\cal A}_k$

Dabei entspricht anders als beim freien Elektron der g-Faktor eines Elektron im Quantenpunkt nicht mehr 2, sondern ca. 0,555. Das Kernmagneton $\mu_k = 5,05\cdot 10^{27} \frac{J}{T}$ ist etwa 1800 Mal kleiner als das Bohrsche Magneton. Die g-Faktoren g_k können für alle Kernspins der Einfachheit Halber als gleich angenommen werden. Zudem lässt sich eine charakterische Zeit definieren:

$$T^* = \frac{1}{\sqrt{\sum_k A_k^2 \langle \hat{I}_k^2 \rangle}} \tag{4.2}$$

Nun kann der dimensionslose Hamiltonian $\hat{H}_{CSM}=T^*\,\overline{\hat{H}}_{CSM}$ hingeschrieben werden:

$$\hat{H}_{CSM} = \vec{b}\hat{\vec{S}} + \sum_{k=1}^{N} z_k \vec{b}\hat{\vec{I}}_k + \sum_{k=1}^{N} \alpha_k \hat{\vec{S}}\hat{\vec{I}}_k$$
 (4.3)

mit
$$\vec{b}=T^*\mu_B\,g_e\vec{B}$$
 , $z_k=T^*\frac{\mu_Ig_k}{\mu_Bg_e}$ und $\alpha_k=T^*A_k.$

Durch die Hinzunahme nur eines zusätzlich Kernspinors $\hat{\vec{I}}$ erhalten wir den einfachsten Fall des Central Spin Models, der Hamiltonian vereinfacht sich somit zu:

$$\hat{H} = \underbrace{\vec{b}}_{\hat{H}_1} \underbrace{\vec{S}}_{\hat{H}_2} + \underbrace{z\vec{b}}_{\hat{H}_2} \underbrace{\vec{f}}_{\hat{H}_3}$$

$$\tag{4.4}$$

(4.5)

mit der charakteristischen Zeit:

$$T^* = \sqrt{\frac{4}{3}} \frac{1}{A} \tag{4.6}$$

4.1 klassischer Ansatz

Im ersten Schritt wird der klassische nicht-normierte Produktansatz $|\Psi\rangle=|\Psi(\mu_1,\mu_2)\rangle$:

$$|\Psi\rangle = e^{\mu_1 S_1^-} e^{\mu_2 S_2^-} |\uparrow,\uparrow\rangle \tag{4.7}$$

$$= |\uparrow\uparrow\rangle + \mu_1 |\downarrow\uparrow\rangle + \mu_2 |\uparrow\downarrow\rangle + \mu_1\mu_2 |\downarrow\downarrow\rangle \tag{4.8}$$

$$= \underbrace{\left(\left|\uparrow\right\rangle_{1} + \mu_{1}\left|\downarrow\right\rangle_{1}\right)}_{\left|\Psi_{1}\right\rangle} \underbrace{\left(\left|\uparrow\right\rangle_{2} + \mu_{2}\left|\downarrow\right\rangle_{2}\right)}_{\left|\Psi_{2}\right\rangle} \tag{4.9}$$

(4.10)

Mit diesem Produktansatz ergeben sich die Spin-Erwartungswerte:

$$\frac{\left\langle \varPsi \middle| \hat{S_x} \middle| \varPsi \right\rangle}{\left\langle \varPsi \middle| \varPsi \right\rangle} = \frac{1}{2} \frac{\overline{\mu}_1 + \mu_1}{1 + \mu_1 \overline{\mu}_1} = \frac{Re[\mu_1]}{1 + \mu_1 \overline{\mu}_1} \tag{4.11}$$

$$\frac{\left\langle \varPsi \middle| \, \hat{S}_y \middle| \varPsi \right\rangle}{\left\langle \varPsi \middle| \varPsi \right\rangle} = \frac{i}{2} \frac{\overline{\mu}_1 - \mu_1}{1 + \mu_1 \overline{\mu}_1} = \frac{Im[\mu_1]}{1 + \mu_1 \overline{\mu}_1} \tag{4.12}$$

$$\frac{\langle \varPsi | \, \hat{S}_z \, | \varPsi \rangle}{\langle \varPsi | \varPsi \rangle} = \frac{1}{2} \frac{1 - \mu_1 \overline{\mu}_1}{1 + \mu_1 \overline{\mu}_1} \tag{4.13}$$

und

$$\frac{\left\langle \varPsi \right| \hat{I_x} \left| \varPsi \right\rangle}{\left\langle \varPsi \middle| \varPsi \right\rangle} = \frac{1}{2} \frac{\overline{\mu}_2 + \mu_2}{1 + \mu_2 \overline{\mu}_2} = \frac{Re[\mu_2]}{1 + \mu_2 \overline{\mu}_2} \tag{4.14}$$

$$\frac{\left\langle \varPsi \right| \hat{I_y} \left| \varPsi \right\rangle}{\left\langle \varPsi \right| \varPsi \right\rangle} = \frac{i}{2} \frac{\overline{\mu}_2 - \mu_2}{1 + \mu_2 \overline{\mu}_2} = \frac{Im[\mu_2]}{1 + \mu_2 \overline{\mu}_2} \tag{4.15}$$

$$\frac{\langle \Psi | \hat{I}_z | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{1}{2} \frac{1 - \mu_2 \overline{\mu}_2}{1 + \mu_2 \overline{\mu}_2} \tag{4.16}$$

Damit ergibt sich für den modifizierten Hamiltonian:

$$\mathcal{H} = \frac{\langle \Psi | \, \hat{H}_1 \, | \Psi \rangle + \langle \Psi | \, \hat{H}_2 \, | \Psi \rangle + \langle \Psi | \, \hat{H}_3 \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{4.17}$$

(4.18)

Mit

$$\left\langle \varPsi \right| \hat{H_1} \left| \varPsi \right\rangle = \frac{1}{2} (1 + \mu_2 \overline{\mu}_2) \left(b_x (1 - \mu_1^2) + i b_y (1 + \mu_1^2) - 2 \mu_1 b_z \right) \tag{4.19}$$

$$\left<\Psi\right|\hat{H_2}\left|\Psi\right> = \frac{z}{2}(1+\mu_1\overline{\mu}_1)\left(b_x(1-\mu_2^2) + ib_y(1+\mu_2^2) - 2\mu_2b_z\right) \eqno(4.20)$$

$$\langle \varPsi | \, \hat{H}_3 \, | \varPsi \rangle = \frac{\tilde{\alpha}}{4} \left[(\mu_1 + \overline{\mu}_1)(\mu_2 + \overline{\mu}_2) - (\mu_1 - \overline{\mu}_1)(\mu_2 - \overline{\mu}_2) + (1 - \mu_1 \overline{\mu}_1)(1 - \mu_2 \overline{\mu}_2) \right] \eqno(4.21)$$

Und wir erhalten die partiellen Ableitungen:

$$\partial_{\overline{\mu}_{1}} \mathcal{H} = \underbrace{\frac{1}{2(1 + \mu_{1}\overline{\mu}_{1})^{2}} [b_{x}(1 - \mu_{1}^{2}) + ib_{y}(1 + \mu_{1}^{2}) - b_{z}\mu_{1}]}_{=\partial_{\overline{\mu}_{1}} \frac{\langle \Psi | \hat{H}_{1} + \hat{H}_{2} | \Psi \rangle}{\langle \Psi | \Psi \rangle}}$$

$$+ \frac{\alpha}{2} \frac{(\mu_{2} - \mu_{1})(1 + \mu_{1}\overline{\mu}_{2})}{\langle \Psi | \Psi \rangle}$$

$$(4.22)$$

$$+\underbrace{\frac{\alpha}{2} \frac{(\mu_{2} - \mu_{1})(1 + \mu_{1}\overline{\mu}_{2})}{(1 + \mu_{1}\overline{\mu}_{1})^{2}(1 + \mu_{2}\overline{\mu}_{2})}}_{=\partial_{\overline{\mu}_{1}}, \frac{\langle \Psi | \hat{H}_{3} | \Psi \rangle}{\langle \Psi | \hat{\Psi} \rangle}}$$
(4.23)

$$\partial_{\overline{\mu}_{2}}\mathcal{H} = \underbrace{\frac{z}{2(1+\mu_{2}\overline{\mu}_{2})^{2}}[B_{x}(1-\mu_{2}^{2})+iB_{y}(1+\mu_{2}^{2})-B_{z}\mu_{2}]}_{=\partial_{\overline{\mu}_{2}}\underbrace{\frac{\langle\Psi|\hat{H}_{1}+\hat{H}_{2}|\Psi\rangle}{\langle\Psi|\Psi\rangle}}} (4.24)$$

$$\frac{2(1+\mu_{2}\mu_{2})^{2}}{=\partial_{\overline{\mu}_{2}}\frac{\langle\Psi|\hat{H}_{1}+\hat{H}_{2}|\Psi\rangle}{\langle\Psi|\Psi\rangle}} + \underbrace{\frac{\alpha}{2}\frac{(\mu_{1}-\mu_{2})(1+\mu_{2}\overline{\mu}_{1})}{(1+\mu_{1}\overline{\mu}_{1})(1+\mu_{2}\overline{\mu}_{2})^{2}}_{=\partial_{\overline{\mu}_{2}}\frac{\langle\Psi|\hat{H}_{3}|\Psi\rangle}{\langle\Psi|\Psi\rangle}}} (4.25)$$

Um nun die DGL aufzustellen, fehlt nur noch die Berechnung der modifizierten Gram-Matrix, die diesmal zweidimensional ist. Wir erhalten nach einer längeren Rechnung:

$$G = \begin{pmatrix} (1 + \mu_1 \overline{\mu}_1)^2 & 0\\ 0 & (1 + \mu_2 \overline{\mu}_2)^2 \end{pmatrix}$$
 (4.26)

$$G = \begin{pmatrix} (1 + \mu_1 \overline{\mu}_1)^2 & 0 \\ 0 & (1 + \mu_2 \overline{\mu}_2)^2 \end{pmatrix}$$

$$G^{-1} = \begin{pmatrix} \frac{1}{(1 + \mu_1 \overline{\mu}_1)^2} & 0 \\ 0 & \frac{1}{(1 + \mu_2 \overline{\mu}_2)^2} \end{pmatrix}$$

$$(4.26)$$

Nun können die Bewegungsgleichungen aufgestellt werden:

$$i\dot{\mu_1} = \sum_{i} \left(G_{1j} \right)^{-1} \, \partial_{\overline{\mu_j}} \mathcal{H} \tag{4.28}$$

$$= \underbrace{\frac{1}{2}b_x(1-\mu_1^2) + \frac{i}{2}b_y(1+\mu_1^2) - \mu_1b_z}_{\text{Ein-Spin-Präzession im }\vec{B}} + \underbrace{\frac{\alpha}{2}\frac{(\mu_2-\mu_1)(1+\mu_1\overline{\mu}_2)}{1+\mu_2\overline{\mu}_2}}_{\text{Ein-Spin-Präzession um }\frac{\langle \Psi | \hat{I} | \Psi \rangle}{\langle \Psi | \Psi \rangle}}$$
(4.29)

und analoger Weise

$$i\dot{\mu_{2}} = \underbrace{\frac{z}{2}b_{x}(1-\mu_{2}^{2}) + \frac{iz}{2}b_{y}(1+\mu_{2}^{2}) - \mu_{2}zb_{z}}_{\text{Ein-Spin-Präzession im }\vec{B}} + \underbrace{\frac{\alpha}{2}\frac{(\mu_{1}-\mu_{2})(1+\mu_{2}\overline{\mu}_{1})}{1+\mu_{1}\overline{\mu}_{1}}}_{\text{Ein-Spin-Präzession um }\frac{\langle\Psi|\hat{S}|\Psi\rangle}{\langle\Psi|\Psi\rangle}}$$
(4.30)

Aufgrund der Linearität der DGL ist die Lösung der ersten DGL aus dem Ein-Spin-Fall zu entlesen. Nun fehlt es noch zu beweisen, dass der letztere Summand die Präzession um den Spin-Erwartungswert des jeweilig anderen Spins beschreibt. Wenn dieser Ansatz angenommen wird, kann durch auflösen die Gleichheit gezeigt werden:

$$\frac{\alpha}{2}\left[\underbrace{\frac{1}{2}\frac{\mu_2+\overline{\mu}_2}{1+\mu_2\overline{\mu}_2}}_{\underbrace{\frac{\langle\underline{\Psi}\mid\hat{I}_x|\underline{\Psi}\rangle}{\langle\underline{\Psi}|\underline{\Psi}\rangle}}}(1-\mu_1^2)+i\underbrace{\frac{i}{2}\frac{\overline{\mu}_2-\mu_2}{1+\mu_2\overline{\mu}_2}}_{\underbrace{\frac{\langle\underline{\Psi}\mid\hat{I}_y|\underline{\Psi}\rangle}{\langle\underline{\Psi}|\underline{\Psi}\rangle}}}(1+\mu_1^2)-2\mu_1\underbrace{\frac{1}{2}\frac{1-\mu_2\overline{\mu}_2}{1+\mu_2\overline{\mu}_2}}_{\underbrace{\frac{\langle\underline{\Psi}\mid\hat{I}_z|\underline{\Psi}\rangle}{\langle\underline{\Psi}|\underline{\Psi}\rangle}}}\right] = \frac{\alpha}{2}\frac{(\mu_2-\mu_1)(1+\mu_1\overline{\mu}_2)}{1+\mu_2\overline{\mu}_2}$$

$$(4.31)$$

Hier lässt sich erkennen, dass die $\frac{\langle \Psi | \hat{I}_i | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ die Rolle des Magnetfeldes \vec{B} im Ein-Spin-Lösung übernehmen. Wir erhalten dann aus Symmetriegründen:

$$\frac{d}{dt} \left[\frac{\langle \Psi | \, \hat{\vec{S}} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right] = \left(\vec{b} + \alpha \frac{\langle \Psi | \, \hat{\vec{I}} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right) \times \frac{\langle \Psi | \, \hat{\vec{S}} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$
(4.32)

$$\frac{d}{dt} \left[\frac{\langle \Psi | \hat{\vec{I}} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right] = \left(z\vec{b} + \alpha \frac{\langle \Psi | \hat{\vec{S}} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \right) \times \frac{\langle \Psi | \hat{\vec{I}} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$
(4.33)

dabei ist zu bemerken, dass $z \approx \frac{1}{800}$ groß ist, im Falle des Kernspins die Heisenbergkopplung stark dominiert.

Wir erkennen, dass mit diesem Ansatz wie zu erwarten eine klassische Lösung erhalten, wo zwei Spin um einander präzedieren. Dabei taucht quantenmechanische Verschränkung nicht auf, da beide Spin-Längen konstant bleiben zu jedem beliebigen Startzeitpunkt.

4.2 modifizierter Ansatz: Quantenkorrektur

Wir nehmen ohne Beschränkung der Allgemeinheit an, dass das Magnetfeld $\vec{B}=B\vec{e}_z$ in z-Richtung ausgerichtet ist. Somit vereinfacht sich die der Hamiltonian:

$$\hat{H} = \vec{b}\hat{\vec{S}}_z + z\vec{b}\hat{\vec{I}}_z + \alpha\hat{\vec{S}}\hat{\vec{I}} \tag{4.34}$$

Um eine genauere Lösung zu erhalten, führen wir einen weiteren Korrekurparameter μ_{12} ein, wodurch ein größerer Unterraum des zwei 1/2-Spin-Hilbertraumes aufgespannt wird, mit der Hoffnung im Gegensatz zum klassischen Ansatz die Verschränkung zu berücksichtigen:

$$|\Psi(\mu_1, \mu_2, \mu_{12})\rangle = e^{\mu_1 S_1^-} e^{\mu_2 S_2^-} e^{\mu_{12} S_1^- S_2^-} |\uparrow, \uparrow\rangle \tag{4.35}$$

$$= |\uparrow\uparrow\rangle + \mu_1 |\downarrow\uparrow\rangle + \mu_2 |\uparrow\downarrow\rangle + (\mu_1\mu_2 + \mu_{12}) |\downarrow\downarrow\rangle \tag{4.36}$$

mit den Spinerwartungswerten:

$$\frac{\langle \Psi | \hat{S}_x | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{1}{2} \frac{\overline{\mu}_1 + \mu_1 + \overline{\mu}_2 (\mu_1 \mu_2 + \mu_{12}) + \mu_2 (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}{1 + \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 + (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}$$
(4.37)

$$\frac{\langle \Psi | \, \hat{S}_y \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{i}{2} \frac{\overline{\mu}_1 - \mu_1 + \overline{\mu}_2 (\mu_1 \mu_2 + \mu_{12}) + \mu_2 (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}{1 + \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 + (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}$$
(4.38)

$$\frac{\left\langle \varPsi | \, \hat{S}_z \, | \varPsi \right\rangle}{\left\langle \varPsi | \varPsi \right\rangle} = \frac{1}{2} \frac{1 - \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 - (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}{1 + \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 + (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})} \tag{4.39}$$

und

$$\frac{\langle \Psi | \hat{I}_x | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{1}{2} \frac{\overline{\mu}_2 + \mu_2 + \overline{\mu}_1 (\mu_1 \mu_2 + \mu_{12}) + \mu_1 (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}{1 + \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 + (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}$$
(4.40)

$$\frac{\langle\varPsi|\,\hat{I_y}\,|\varPsi\rangle}{\langle\varPsi|\varPsi\rangle} = \frac{i}{2}\frac{\overline{\mu}_2 - \mu_2 + \overline{\mu}_1(\mu_1\mu_2 + \mu_{12}) + \mu_1(\overline{\mu}_1\overline{\mu}_2 + \overline{\mu}_{12})}{1 + \mu_1\overline{\mu}_1 + \mu_2\overline{\mu}_2 + (\mu_1\mu_2 + \mu_{12})(\overline{\mu}_1\overline{\mu}_2 + \overline{\mu}_{12})} \tag{4.41}$$

$$\frac{\langle \Psi | \hat{I_z} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{1}{2} \frac{1 - \mu_2 \overline{\mu}_2 + \mu_1 \overline{\mu}_1 - (\mu_1 \mu_2 + \mu_{12})(\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}{1 + \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 + (\mu_1 \mu_2 + \mu_{12})(\overline{\mu}_1 \overline{\mu}_2 + \overline{\mu}_{12})}$$
(4.42)

Mit diesem Ansatz erhalten wir nach längerer Rechnung den modifizierten Hamiltonian:

$$\mathcal{H} = \frac{\langle \Psi | \, \hat{H}_1 \, | \Psi \rangle + \langle \Psi | \, \hat{H}_2 \, | \Psi \rangle + \langle \Psi | \, \hat{H}_3 \, | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{4.43}$$

mit

$$\begin{split} \langle \varPsi | \, \hat{H}_1 \, | \varPsi \rangle &= \frac{b}{2} \left[1 - \mu_1 \overline{\mu}_1 + \mu_2 \overline{\mu}_2 - (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu_1 \mu_2} + \overline{\mu}_{12}) \right] \\ \langle \varPsi | \, \hat{H}_2 \, | \varPsi \rangle &= \frac{zb}{2} \left[1 - \mu_2 \overline{\mu}_2 + \mu_1 \overline{\mu}_1 - (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu_1 \mu_2} + \overline{\mu}_{12}) \right] \\ \langle \varPsi | \, \hat{H}_3 \, | \varPsi \rangle &= \frac{\alpha}{4} [2 (\overline{\mu}_1 \mu_2 + \mu_1 \overline{\mu}_2) + 1 - \mu_1 \overline{\mu}_1 - \mu_2 \overline{\mu}_2 + (\mu_1 \mu_2 + \mu_{12}) (\overline{\mu_1 \mu_2} + \overline{\mu}_{12})] \end{split}$$

Damit folgen für die partiellen Ableitungen nach den konjugierten Parameter

$$\begin{split} \partial_{\overline{\mu}_1} \mathcal{H} &= -b \frac{\mu_1 (1 + \mu_2 \overline{\mu}_2)^2 + \overline{\mu}_2 \mu_{12}}{\langle \varPsi | \varPsi \rangle^2} \\ &+ z b \frac{\overline{\mu}_{12} (\mu_1 \mu_2 + \mu_{12})}{\langle \varPsi | \varPsi \rangle^2} \\ &+ \frac{\alpha}{2} \frac{(\mu_2 - \mu_1) (\mu_1 \overline{\mu}_2 + 1) (1 + \mu_2 \overline{\mu}_2) + \overline{\mu}_{12} (\mu_1 \mu_2 + \mu_{12}) + \mu_{12} \overline{\mu}_2}{\langle \varPsi | \varPsi \rangle^2} \\ \partial_{\overline{\mu}_2} \mathcal{H} &= + b \frac{\overline{\mu}_{12} (\mu_1 \mu_2 + \mu_{12})}{\langle \varPsi | \varPsi \rangle^2} \\ &- z b \frac{\mu_2 (1 + \mu_1 \overline{\mu}_1)^2 + \overline{\mu}_1 \mu_{12}}{\langle \varPsi | \varPsi \rangle^2} \\ &+ \frac{\alpha}{2} \frac{(\mu_1 - \mu_2) (\mu_2 \overline{\mu}_1 + 1) (1 + \mu_1 \overline{\mu}_1) + \overline{\mu}_{12} (\mu_1 \mu_2 + \mu_{12}) + \mu_{12} \overline{\mu}_1}{\langle \varPsi | \varPsi \rangle^2} \\ \partial_{\overline{\mu}_{12}} \mathcal{H} &= - b \frac{(\mu_1 \mu_2 + \mu_{12}) (1 + \mu_2 \overline{\mu}_2)}{\langle \varPsi | \varPsi \rangle^2} \\ &- z b \frac{(\mu_1 \mu_2 + \mu_{12}) (1 + \mu_1 \overline{\mu}_1)}{\langle \varPsi | \varPsi \rangle^2} \\ &+ \frac{\alpha}{2} \frac{(\overline{\mu}_1 - \overline{\mu}_2) (\mu_1 - \mu_2) (\mu_1 \mu_2 + \mu_{12})}{\langle \varPsi | \varPsi \rangle^2} \end{split}$$

Und für die Gram-Matrix erhalten wir:

$$G = \begin{pmatrix} (1+\mu_1\overline{\mu}_1)^2 + \mu_{12}\overline{\mu}_{12} & -\mu_1^2\overline{\mu}_{12} - \overline{\mu}_2^2\mu_{12} & \mu_2(1+\mu_2\overline{\mu}_2) - \overline{\mu}_1\mu_{12} \\ -\mu_2^2\overline{\mu}_{12} - \overline{\mu}_1^2\mu_{12} & (1+\mu_2\overline{\mu}_2)^2 + \mu_{12}\overline{\mu}_{12} & \mu_1(1+\mu_1\overline{\mu}_1) - \overline{\mu}_2\mu_{12} \\ \overline{\mu}_2(1+\mu_2\overline{\mu}_2) - \mu_1\overline{\mu}_{12} & \overline{\mu}_1(1+\mu_1\overline{\mu}_1) - \mu_2\overline{\mu}_{12} & 1+\mu_1\overline{\mu}_1 + \mu_2\overline{\mu}_2 \end{pmatrix} \frac{1}{\langle \varPsi|\varPsi\rangle^2}$$

$$\tag{4.44}$$

Somit lassen sich die Bewegungsgleichungen der Parameter explizit aufschreiben:

$$i\dot{\mu}_1 = G_{1,1}^{-1} \,\partial_{\overline{\mu}_1} \mathcal{H} + G_{1,2}^{-1} \,\partial_{\overline{\mu}_2} \mathcal{H} + G_{1,3}^{-1} \,\partial_{\overline{\mu}_2} \mathcal{H} \tag{4.45}$$

$$i\dot{\mu}_2 = G_{2,1}^{-1} \,\partial_{\overline{\mu}_1} \mathcal{H} + G_{3,2}^{-1} \partial_{\overline{\mu}_2} \mathcal{H} + G_{2,3}^{-1} \,\partial_{\overline{\mu}_2} \mathcal{H}$$
 (4.46)

$$i\dot{\mu}_{12} = G_{3,1}^{-1}\,\partial_{\overline{\mu}_1}\mathcal{H} + G_{3,2}^{-1}\,\partial_{\overline{\mu}_2}\mathcal{H} + G_{3,3}^{-1}\,\partial_{\overline{\mu}_3}\mathcal{H} \tag{4.47}$$

4.3 quantenmechanischen Lösung

Für die exakte quantenmechanische Lösung, wird der Hamiltonian diagonalisiert über die Basis:

$$|1\rangle = |\uparrow\uparrow\rangle \tag{4.48}$$

$$|2\rangle = |\downarrow\downarrow\rangle \tag{4.49}$$

$$|3\rangle = \frac{1}{\sqrt{2}N_1} \left[(\epsilon_1 + 1) |\uparrow\downarrow\rangle + (\epsilon_1 - 1) |\downarrow\uparrow\rangle \right] \tag{4.50}$$

$$|4\rangle = \frac{1}{\sqrt{2}N_2} \left[(\epsilon_2 + 1) \left| \uparrow \downarrow \right\rangle + (\epsilon_2 - 1) \left| \downarrow \uparrow \right\rangle \right] \tag{4.51}$$

mit $\epsilon_{1,2}=\frac{\alpha\pm\sqrt{b^2(1-z)^2+\alpha^2}}{b(1-z)}$ und $N_i=\sqrt{\epsilon_i^2+1}$. Die dazugehörigen Eigenenergien lauten:

$$E_1 = b(1+z) + \frac{\alpha}{4} \tag{4.52}$$

$$E_2 = -b(1+z) + \frac{\alpha}{4} \tag{4.53}$$

$$E_3 = -\frac{\alpha}{4} + \frac{\sqrt{\alpha^2 + b^2(1-z)^2}}{2} \tag{4.54}$$

$$E_4 = -\frac{\alpha}{4} - \frac{\sqrt{\alpha^2 + b^2(1-z)^2}}{2} \tag{4.55}$$

(4.56)

Über den Zeitentwicklungsoperator und einem beliebigen Startzustand $|\Psi_0\rangle$, lässt sich die Spindynamik hinschreiben als:

$$\langle \Psi | \, \hat{S}_i \, | \Psi \rangle = \sum_{i,j} e^{i(E_i - E_j)t} \, \langle i | \, \hat{S}_i \, | j \rangle \, \langle j | \Psi_0 \rangle \, \langle \Psi_0 | i \rangle \tag{4.57}$$

5 Vergleich

Eidesstattliche Versicherung

(Affidavit)

Name, Vorname (surname, first name)	Matrikelnummer (student ID number)
Bachelorarbeit (Bachelor's thesis)	Masterarbeit (Master's thesis)
Titel (Title)	
Ich versichere hiermit an Eides statt, dass ich die vorliegende Abschlussarbeit mit dem oben genannten Titel selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.	I declare in lieu of oath that I have completed the present thesis with the above-mentioned title independently and without any unauthorized assistance. I have not used any other sources or aids than the ones listed and have documented quotations and paraphrases as such. The thesis in its current or similar version has not been submitted to an auditing institution before.
,	rschrift ature)
Belehrung: Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5	Official notification: Any person who intentionally breaches any regulation of university examination regulations relating to deception in examination performance is acting improperly. This offense can be punished with a fine of up to EUR 50,000.00. The competent administrative authority for the pursuit and prosecution of offenses of this type is the Chancellor of TU Dortmund University. In the case of multiple or other serious attempts at deception, the examinee can also be unenrolled, Section 63 (5) North Rhine-Westphalia Higher Education Act (Hochschulgesetz, HG).
Hochschulgesetz - HG -). Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren oder mit Geldstrafe bestraft. Die Technische Universität Dortmund wird ggf. elektronische Vergleichswerkzeuge (wie z.B. die Software "turnitin") zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.	The submission of a false affidavit will be punished with a prison sentence of up to three years or a fine. As may be necessary, TU Dortmund University will
	make use of electronic plagiarism-prevention tools (e.g. the "turnitin" service) in order to monitor violations during the examination procedures. I have taken note of the above official notification:*
Die oben stehende Belehrung habe ich zur Kenntnis genommen:	
,	erschrift ature)