

$$I(J^P) = \frac{1}{2}(0^-)$$

D± MASS

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1869.59 \pm 0.09 OUR FIT					
1869.5 \pm 0.4 OUR AVER	RAGE				
$1869.53 \pm 0.49 \pm 0.20$ 110	\pm 15	ANASHIN	10A	KEDR	e^+e^- at ψ (3770)
$1870.0 \pm 0.5 \pm 1.0$	317	BARLAG	90 C	ACCM	$\pi^-\mathrm{Cu}$ 230 GeV
1869.4 ± 0.6		¹ TRILLING	81	RVUE	$e^{+}e^{-}$ 3.77 GeV
• • • We do not use the fo	llowing	data for averages,	fits, li	imits, et	C. ● ● ●
1875 ± 10	9	ADAMOVICH	87	EMUL	Photoproduction
1860 ± 16	6	ADAMOVICH	84	EMUL	Photoproduction
1863 ± 4		DERRICK	84	HRS	e^+e^- 29 GeV
1868.4 ± 0.5		$^{ m 1}$ SCHINDLER	81		$e^{+}e^{-}$ 3.77 GeV
1874 ± 5		GOLDHABER	77	MRK1	D^0 , D^+ recoil spectra
1868.3 ± 0.9		¹ PERUZZI	77	LGW	$e^{+}e^{-}$ 3.77 GeV
1874 ± 11		PICCOLO	77		e^+e^- 4.03, 4.41 GeV
1876 ± 15	50	PERUZZI	76	MRK1	$\kappa^{\mp}\pi^{\pm}\pi^{\pm}$

 $^{^1}$ PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J/\psi(1S)$ and $\psi(2S)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted.

D[±] MEAN LIFE

Measurements with an error $>100\times10^{-15}~\text{s}$ have been omitted from the Listings.

$VALUE (10^{-15} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
1040 ± 7 OUR A	VERAGE				
$1039.4 \pm \ 4.3 \pm \ 7.0$	110k	LINK	02F	FOCS	γ nucleus, $pprox$ 180 GeV
$1033.6 \pm 22.1 ^{+\ 9.9}_{-12.7}$	3777	BONVICINI	99	CLEO	$e^+e^-pprox \ \varUpsilon(4S)$
$1048 \pm 15 \pm 11$	9k	FRABETTI	94 D	E687	$D^+ \rightarrow K^- \pi^+ \pi^+$
● ● ● We do not use	the followi	ng data for avera	iges, f	its, limit	s, etc. • • •
$1075 \pm 40 \pm 18$	2455	FRABETTI			γ Be, $D^+ ightarrow K^- \pi^+ \pi^+$
$1030 \pm 80 \pm 60$	200	ALVAREZ	90	NA14	γ , D ⁺ $\rightarrow K^-\pi^+\pi^+$
1050 $^{+77}_{-72}$	317	¹ BARLAG	90 C	ACCM	$\pi^-\mathrm{Cu}$ 230 GeV
1050 ± 80 ± 70	363	ALBRECHT	881	ARG	e^+e^- 10 GeV
$1090 \pm 30 \pm 25$	2992	RAAB	88	E691	Photoproduction
¹ BARLAG 90C est	imates the	systematic error	to be	negligibl	e.

D⁺ DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level								
	Inclusive modes										
Γ_1	e ⁺ semileptonic	$(16.07\pm0.30)\%$									
Γ_2	μ^+ anything	$(17.6 \pm 3.2)\%$									
_	K^- anything	$(25.7 \pm 1.4)\%$									
Γ_4	\overline{K}^0 anything $+ K^0$ anything	$(61 \pm 5)\%$									
Γ ₅	K^+ anything	$(5.9 \pm 0.8)\%$									
	$K^*(892)^-$ anything	(6 ±5)%									
	$\overline{K}^*(892)^0$ anything	$(23 \pm 5)\%$									
Γ ₈	$K^*(892)^0$ anything	< 6.6 %	CL=90%								
Γ_9	η anything	(6.3 ± 0.7) %									
Γ_{10}	η' anything	$(1.04\pm0.18)\%$									
Γ_{11}	ϕ anything	(1.03 ± 0.12) %									
	Leptonic and semile	eptonic modes									
Γ_{12}	$e^+ u_e$	-	10^{-6} CL=90%								
	$\mu^+ \stackrel{\circ}{\nu_{\mu}}$	$(3.74\pm0.17)\times1$	10^{-4}								
			10^{-3} CL=90%								
Γ ₁₅	$rac{ au^+ u_ au}{ ilde{K}^0}rac{e^+ u_e}$	(8.82±0.13) %									
Γ_{16}^{13}	$\overline{K}^0 \mu^+ \nu_{\mu}$	(8.74±0.19) %									
Γ ₁₇	$K^-\pi^+e^+\nu_e$	(3.89±0.13) %	S=2.1								
Γ ₁₈	$\overline{K}^*(892)^0 e^+ \nu_e$, $\overline{K}^*(892)^0 \to$	(3.66±0.12) %									
	$(K^-\pi^+)_{[0.8-1.0]\text{GeV}}e^+ u_e$,									
Γ ₁₉	$({\it K}^-\pi^+)_{\;[0.8-1.0]{ m GeV}}e^+ u_e$	$(3.39\pm0.09)\%$									
Γ_{20}	$(K^-\pi^+)_{S-wave} e^+ \nu_e$	$(2.28\pm0.11)\times1$									
Γ_{21}	$\overline{K}^*(1410)^0e^+ u_e$,	< 6 × 3	10^{-3} CL=90%								
	$K^*(1410)^0 \to K^-\pi^+$										
Γ_{22}	$\overline{K}_2^*(1430)^0e^+ u_e$,	< 5 × 3	10^{-4} CL=90%								
	$\overline{K}_{2}^{*}(1430)^{0} ightarrow K^{-}\pi^{+}$										
Γ_{23}	${\it K}^-\pi^+e^+ u_{ m e}$ nonresonant	< 7 × 3	10^{-3} CL=90%								
Γ_{24}	$\mathcal{K}^-\pi^+\mu^+ u_\mu$	$(3.65\pm0.34)\%$									
Γ_{25}	$\overline{\mathcal{K}}^*$ (892) 0 μ^+ $ u_\mu$,	$(3.52\pm0.10)\%$									
	$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$										
Γ_{26}	$\mathcal{K}^- \overset{\cdot}{\pi^+} \mu \overset{\prime}{+} u_\mu$ nonresonant	(1.9 ± 0.5) $\times 1$	10-3								
Γ ₂₇	$K^{-}\pi^{+}\pi^{0}\mu^{+}\nu_{\mu}$		10^{-3} CL=90%								

$$\begin{array}{lll} \Gamma_{28} & \pi^0 \, e^+ \, \nu_e & (4.05 \pm 0.18) \times 10^{-3} \\ \Gamma_{29} & \eta \, e^+ \, \nu_e & (1.14 \pm 0.10) \times 10^{-3} \\ \Gamma_{30} & \rho^0 \, e^+ \, \nu_e & (2.18 {}^{+}0.17_{}) \times 10^{-3} \\ \Gamma_{31} & \rho^0 \, \mu^+ \, \nu_\mu & (2.4 \, \pm 0.4 \,) \times 10^{-3} \\ \Gamma_{32} & \omega \, e^+ \, \nu_e & (1.69 \pm 0.11) \times 10^{-3} \\ \Gamma_{33} & \eta'(958) \, e^+ \, \nu_e & (2.2 \, \pm 0.5 \,) \times 10^{-4} \\ \Gamma_{34} & \phi \, e^+ \, \nu_e & <1.3 & \times 10^{-5} & \text{CL} = 90\% \end{array}$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$$\Gamma_{56} \qquad \overline{K}_0^*(1680)^0 \pi^+, \ \overline{K}_0^0 \to \\ K_S^0 \pi^0$$

$$(9 + \frac{+7}{9}) \times 10^{-4}$$

$$K_S^0 \pi^0$$

$$(5.4 + \frac{+5.0}{-3.5}) \times 10^{-3}$$

$$\Gamma_{58} \qquad K_S^0 \pi^+ \pi^0 \text{ nonresonant}$$

$$(3 \pm 4) \times 10^{-3}$$

$$\Gamma_{59} \qquad K_S^0 \pi^+ \pi^0 \text{ nonresonant}$$

$$(1.31 + 0.21) \%$$

$$\overline{K}_0^0 \pi^+$$

$$(1.22 + 0.25) \%$$

$$\overline{K}_0^0 \pi^+ \pi^-$$

$$(1.22 + 0.25) \%$$

$$\overline{K}_0^0 \pi^+ \pi^-$$

$$[c] \qquad (5.98 \pm 0.23) \%$$

$$\overline{K}_0^0 \pi^+ \pi^-$$

$$[c] \qquad (5.98 \pm 0.23) \%$$

$$\overline{K}_0^0 \pi^+ \pi^-$$

$$[c] \qquad (5.95 \pm 0.5) \times 10^{-3}$$

$$\overline{K}_0^0 \times 30^0 \times 4^- \pi^-$$

$$\overline{K}_0^0 \times 30^0 \times 4^- \pi^-$$

$$\overline{K}_0^0 \times 30^0 \times 4^- \pi^-$$

$$\overline{K}_0^0 \times 30^0 \times 4^- \pi^+$$

$$\overline{K}_0^0 \times 30^0 \times 4^- \pi^-$$

$$\overline{K}_0^0 \times 30^0 \times 3$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

Hadronic modes with a $K\overline{K}$ pair

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

		, oop		· (=) · · · · · · · · · · · · · · · · · · ·	
Γ_{121}	$\pi^+e^+e^-$	C1	< 1.1		CL=90%
Γ_{122}	$\pi^+\phi$, ϕo e^+e^-		[e] (1.7	$^{+1.4}_{-0.9}\)\times 10^{-6}$	
Γ_{123}	$\pi^+\mu^+\mu^-$	C1	< 7.3	× 10 ⁻⁸	CL=90%
Γ_{124}	$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		[e] (1.8	$\pm 0.8) \times 10^{-6}$	
Γ_{125}	$\rho^+\mu^+\mu^-$	C1	< 5.6	\times 10 ⁻⁴	CL=90%
Γ_{126}	$K^+e^+e^-$		[f] < 1.0	\times 10 ⁻⁶	CL=90%
	$K^+\mu^+\mu^-$		[f] < 4.3	$\times10^{-6}$	CL=90%
Γ ₁₂₈	$\pi^+e^+\mu^-$	LF	< 2.9	$\times10^{-6}$	CL=90%
Γ_{129}	$\pi^+e^-\mu^+$	LF	< 3.6	\times 10 ⁻⁶	CL=90%
Γ_{130}	$K^+e^+\mu^-$	LF	< 1.2	\times 10 ⁻⁶	CL=90%
Γ_{131}	$K^+e^-\mu^+$	LF	< 2.8	\times 10 ⁻⁶	CL=90%
Γ_{132}	$\pi^{-}2e^{+}$	L	< 1.1	\times 10 ⁻⁶	CL=90%
Γ_{133}	$\pi^{-}2\mu^{+}$	L	< 2.2	$\times 10^{-8}$	CL=90%
Γ_{134}	$\pi^-e^+\mu^+$	L	< 2.0	\times 10 ⁻⁶	CL=90%
Γ_{135}	$ ho^- 2\mu^+$	L	< 5.6	\times 10 ⁻⁴	CL=90%
Γ_{136}	K^-2e^+	L	< 9	\times 10 ⁻⁷	CL=90%
Γ_{137}	$\mathcal{K}^-2\mu^+$	L	< 1.0	$\times10^{-5}$	CL=90%
Γ ₁₃₈	$K^-e^+\mu^+$	L	< 1.9	$\times 10^{-6}$	CL=90%
Γ ₁₃₉	$K^*(892)^- 2\mu^+$	L	< 8.5	$\times10^{-4}$	CL=90%

 Γ_{140} Unaccounted decay modes

 $(63.7 \pm 0.6)\%$

S = 1.6

- [a] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
- [b] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.

- [c] Submodes of the $D^+ \to K^- 2\pi^+ \pi^0$ and $K^0_S 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [d] The unseen decay modes of the resonances are included.
- [e] This is *not* a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [f] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.

CONSTRAINED FIT INFORMATION

An overall fit to 22 branching ratios uses 33 measurements and one constraint to determine 14 parameters. The overall fit has a $\chi^2=45.6$ for 20 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>×</i> 17	0									
<i>x</i> 30	0	0								
<i>X</i> 35	0	0	0							
<i>X</i> 36	8	0	0	0						
<i>x</i> 39	0	42	0	0	0					
<i>x</i> ₄₁	0	72	0	0	0	59				
^x 63	0	25	0	0	0	20	34			
<i>x</i> 88	0	23	0	0	0	19	32	77		
<i>x</i> 89	0	24	0	0	0	19	33	11	10	
<i>x</i> 94	0	40	0	0	0	85	56	19	18	18
<i>×</i> 95	0	63	0	0	0	52	88	30	28	29
<i>x</i> ₁₁₁	0	13	0	0	0	11	19	6	6	6
<i>x</i> ₁₄₀	-34	-72	-3	-18	-28	-61	-85	-39	-35	-31
	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₃₀	×35	<i>x</i> 36	<i>x</i> 39	× ₄₁	^x 63	x ₈₈	x ₈₉
<i>×</i> 95	49									
<i>x</i> ₁₁₁	10	16								
<i>x</i> ₁₄₀	-57	-76	-16							
	×94	<i>x</i> 95	<i>x</i> ₁₁₁							

D⁺ BRANCHING RATIOS

Some now-obsolete measurements have been omitted from these Listings.

----- c-quark decays -----

$\Gamma(c \rightarrow e^+ \text{ anything})/\Gamma(c \rightarrow \text{ anything})$

For the Summary Table, we only use the average of e^+ and μ^+ measurements from $Z^0 \to c \overline{c}$ decays; see the second data block below.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$0.103 \pm 0.009 ^{+0.009}_{-0.008}$	378	¹ ABBIENDI 99	OPAL	$Z^0 \rightarrow c\overline{c}$

¹ ABBIENDI 99K uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays in $Z^0 \rightarrow c \overline{c}$.

$\Gamma(c \rightarrow \mu^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything})$

For the Summary Table, we only use the average of e^+ and μ^+ measurements from $Z^0 \to c \overline{c}$ decays; see the next data block.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.082±0.005 OUR AV	/ERAGE				
$0.073 \pm 0.008 \pm 0.002$	73	KAYIS-TOPAK	.05	CHRS	$ u_{\mu}$ emulsion
$0.095 \pm 0.007 {+0.014\atop -0.013}$	2829	ASTIER	00 D	NOMD	$ u_{\mu}^{-} \operatorname{Fe} \rightarrow \mu^{-} \mu^{+} X$
$0.090 \pm 0.007 {}^{+ 0.007}_{- 0.006}$	476	¹ ABBIENDI	99K	OPAL	$Z^0 ightarrow \ c \overline{c}$
$0.086 \pm 0.017 {}^{+ 0.008}_{- 0.007}$	69	² ALBRECHT	92F	ARG	$e^+e^-pprox~10~{ m GeV}$
$0.078 \pm 0.009 \pm 0.012$		ONG	88	MRK2	e^+e^- 29 GeV
$0.078 \pm 0.015 \pm 0.02$		BARTEL	87	JADE	$e^{+}e^{-}$ 34.6 GeV
$0.082\!\pm\!0.012\!+\!0.02\\-0.01$		ALTHOFF	84G	TASS	$e^{+}e^{-}$ 34.5 GeV

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

$0.093\!\pm\!0.009\!\pm\!0.009$	88	KAYIS-TOPA	K.02	CHRS	See KAYIS-TOPAKSU 05
$0.089\!\pm\!0.018\!\pm\!0.025$		BARTEL	85J	JADE	See BARTEL 87

¹ ABBIENDI 99K uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays in $Z^0 \rightarrow c \overline{c}$.

$\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything})$

This is an average (not a sum) of e^+ and μ^+ measurements.

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.096 ±0.004 OUR AV	ERAGE				
$0.0958\!\pm\!0.0042\!\pm\!0.0028$	1828	¹ ABREU	000	DLPH	$Z^0 \rightarrow c \overline{c}$
$0.095\ \pm0.006\ {+0.007} \ -0.006$	854	² ABBIENDI	99K	OPAL	$Z^0 \rightarrow c \overline{c}$

¹ ABREU 000 uses leptons opposite fully reconstructed $D^*(2010)^+$, D^+ , or D^0 mesons.

² ALBRECHT 92F uses the excess of right-sign over wrong-sign leptons in a sample of events tagged by fully reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays.

²ABBIENDI 99K uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays in $Z^0 \rightarrow c \overline{c}$.

$\Gamma(c \rightarrow D^*(2010)^+ \text{ anything})/\Gamma(c \rightarrow \text{ anything})$

VALUEEVTSDOCUMENT IDTECNCOMMENT0.255 \pm 0.015 \pm 0.00823711 ABREU000 DLPH $Z^0 \rightarrow c\overline{c}$

—— Inclusive modes ———

$\Gamma(e^+ \text{semileptonic})/\Gamma_{\text{total}}$

 Γ_1/I

The sum of our $\overline{K}{}^0$ $e^+\nu_e$, $\overline{K}{}^*(892){}^0$ $e^+\nu_e$, π^0 $e^+\nu_e$, η $e^+\nu_e$, ρ^0 $e^+\nu_e$, and ω $e^+\nu_e$ branching fractions is 15.3 \pm 0.4%.

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
16.07±0.30 OUR AV	ERAGE				
$16.13\!\pm\!0.10\!\pm\!0.29$	$26.2\pm0.2k$	¹ ASNER			e^+e^- at 3774 MeV
$15.2 \pm 0.9 \pm 0.8$	521 ± 32	ABLIKIM	07 G	BES2	$e^+e^-pprox\psi$ (3770)
\bullet \bullet We do not use	the following d	ata for averages,	fits, lir	nits, etc	5. ● ● ●
$16.13\!\pm\!0.20\!\pm\!0.33$	8798 ± 105				See ASNER 10
$17.0 \pm 1.9 \pm 0.7$	158	BALTRUSAI	Г85в	MRK3	$e^{+}e^{-}$ 3.77 GeV

 $^{^1}$ Using the D^+ and D^0 lifetimes, ASNER 10 finds that the ratio of the D^+ and D^0 semileptonic widths is 0.985 \pm 0.015 \pm 0.024.

$\Gamma(\mu^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_2/Γ

VALUE (%)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$17.6 \pm 2.7 \pm 1.8$	100 ± 12	¹ ABLIKIM	08L	BES2	$e^{+}e^{-}\approx \psi(3772)$

¹ ABLIKIM 08L finds the ratio of $D^+ \to \mu^+ X$ and $D^0 \to \mu^+ X$ branching fractions to be 2.59 \pm 0.70 \pm 0.25, in accord with the ratio of D^+ and D^0 lifetimes, 2.54 \pm 0.02.

$\Gamma(K^- \text{ anything})/\Gamma_{\text{total}}$

 Γ_3/Γ

VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
25.7±1.4 OUR AVERA	GE			
$24.7\!\pm\!1.3\!\pm\!1.2$	631 ± 33	ABLIKIM	07G BES2	$e^+e^-pprox\psi$ (3770)
$27.8^{+3.6}_{-3.1}$		BARLAG	92C ACCM	π^- Cu 230 GeV
$27.1 \pm 2.3 \pm 2.4$		COFFMAN	91 MRK3	$e^{+}e^{-}$ 3.77 GeV

$\left[\Gamma(\overline{K}^0 \text{ anything}) + \Gamma(K^0 \text{ anything})\right]/\Gamma_{\text{total}}$

 Γ_4/Γ

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
61 ±5 OUR AVERA	GE				
$60.5\!\pm\!5.5\!\pm\!3.3$	244 ± 22	ABLIKIM	06 U	BES2	e^+e^- at 3773 MeV
$61.2\!\pm\!6.5\!\pm\!4.3$		COFFMAN	91	MRK3	$e^{+}e^{-}$ 3.77 GeV

$\Gamma(K^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_5/Γ

VALUE (%)	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
5.9±0.8 OUR AVERAC	E			
$6.1\!\pm\!0.9\!\pm\!0.4$	189 ± 27	ABLIKIM		$e^+e^-pprox\psi$ (3770)
$5.5\!\pm\!1.3\!\pm\!0.9$		COFFMAN	91 MRK3	$e^{+}e^{-}$ 3.77 GeV

HTTP://PDG.LBL.GOV

Page 9

¹ ABREU 000 uses slow pions opposite fully reconstructed $D^*(2010)^+$, D^+ , or D^0 mesons as a signal of $D^*(2010)^-$ production.

 $^{^2}$ Using the D^+ and D^0 lifetimes, ADAM 06A finds that the ratio of the D^+ and D^0 inclusive e^+ widths is 0.985 \pm 0.028 \pm 0.015, consistent with the isospin-invariance prediction of 1.

$\Gamma(K^*(892)^- \text{ anyth}$	$-$ ning $)/\Gamma_{total}$			Γ ₆ /Γ
VALUE (%)	<u>EVTS</u>	DOCUMENT ID) TECN	COMMENT
5.7±5.2±0.7	7.2 ± 6.5	ABLIKIM	06∪ BES2	e^+e^- at 3773 MeV
$\Gamma(\overline{K}^*(892)^0$ anyth	$ing)/\Gamma_{total}$			Γ ₇ /Γ
VALUE (%)	EVTS	<u>DOCUMENT</u>	T ID TECN	COMMENT
23.2±4.5±3.0	189 ± 36	ABLIKIM	05P BES	$e^+e^-pprox~3773~{ m MeV}$
$\Gamma(K^*(892)^0$ anyth	$ing)/\Gamma_{total}$			Γ ₈ /Γ
VALUE (%)	CL%	DOCUMENT ID	TECN	COMMENT
<6.6	90	ABLIKIM	05P BES	$e^+e^- \approx 3773 \text{ MeV}$
$\Gamma(\eta \text{ anything})/\Gamma_{to}$	otal			٦/و٢
This ratio inclu	ides η particles	from η' decays.		
VALUE (%)	<u>EVTS</u>	DOCUMENT II		
$6.3 \pm 0.5 \pm 0.5$	1972 ± 142	HUANG	06B CLEC	e^+e^- at $\psi(3770)$
$\Gamma(\eta' \text{ anything})/\Gamma_t$	otal			Γ ₁₀ /Γ
VALUE (%)	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
$1.04 \pm 0.16 \pm 0.09$	82 ± 13	HUANG	06B CLEO	e^+e^- at $\psi(3770)$
$\Gamma(\phi \text{ anything})/\Gamma_{to}$ VALUE (%)		DOCUMENT ID	TECN	Γ ₁₁ /Γ
				$e^{+}e^{-}$ at $\psi(3770)$
$1.03\pm0.10\pm0.07$	248 ± 21	HUANG	00B CLEO	$e \cdot e$ at $\psi(3770)$
	— Leptonic	and semilepto	nic modes -	
$\Gamma(e^+ u_{m e})/\Gamma_{\sf total}$				Γ ₁₂ /Γ
VALUE		DOCUMENT ID		
<8.8 × 10^{−6} • • • We do not use				$e^{+}e^{-}$ at $\psi(3770)$
$<2.4 \times 10^{-5}$	_	_		
•	90	ARTUSO	USA CLEU	See EISENSTEIN 08
$\Gamma(\mu^+ u_\mu)/\Gamma_{ m total}$				Γ ₁₃ /Γ
See the note of Listings.	on "Decay Cor	nstants of Charge	ed Pseudosca	lar Mesons" in the D_s^+
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
3.74± 0.17 OUR A	_	DOCOMENT ID	1201	COMMENT
$3.71\pm 0.19\pm 0.06$	409 ± 21	¹ ABLIKIM	14F BES3	e^+e^- at ψ (3770)
$3.82 \pm 0.32 \pm 0.09$	150 ± 12	2	08 CLEO	$e^{+}e^{-}$ at $\psi(3770)$
• • • We do not use	the following o	lata for averages,		
$12.2 \ ^{+11.1}_{-5.3} \ \pm 1.0$	3	³ ABLIKIM	05D BES	$e^+e^-pprox~3.773~{\rm GeV}$
$4.40 \pm 0.66 ^{+0.09}_{-0.12}$	47 ± 7	⁴ ARTUSO	05A CLEO	See EISENSTEIN 08
-0.12 3.5 \pm 1.4 \pm 0.6	7	⁵ BONVICINI	04A CLEO	Incl. in ARTUSO 05A
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	1	6 BAI		$e^+e^- \rightarrow D^{*+}D^-$
— o —2				

⁶ BAI 98B obtains $f_{D^+} = (300 + 180 + 80)$ MeV from this measurement.

$\Gamma(au^+ u_ au)/\Gamma_{ m total}$					Γ ₁₄ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.2 \times 10^{-3}$	90	EISENSTEIN	80	CLEO	e^+e^- at $\psi(3770)$
\bullet \bullet We do not use the	e following	data for average	s, fits,	limits,	etc. • • •
$< 2.1 \times 10^{-3}$	90	RUBIN	06A	CLEO	See EISENSTEIN 08
$\Gamma(\overline{K}^0 e^+ \nu_e)/\Gamma_{ m total}$					Γ ₁₅ /Γ

EVTS TECN COMMENT 8.82 \pm 0.13 OUR AVERAGE 16V BES3 Using $\overline{K}^0 \rightarrow 2\pi^0$ **ABLIKIM** $8.59 \pm 0.14 \pm 0.21$ 5013 from $D^+ \rightarrow K_I e^+ \nu_e$ ¹ ABLIKIM 15AF BES3 $8.962 \pm 0.054 \pm 0.206$ 40k ² BESSON CLEO from $D^+ \rightarrow K_S e^+ \nu_e$ 8.5k $8.83 \pm 0.10 \pm 0.20$ ³ ABLIKIM $8.95 \pm 1.59 \pm 0.67$ 34 05A BES from $D^+ \rightarrow K_{\varsigma} e^+ \nu_{\rho}$ • • • We do not use the following data for averages, fits, limits, etc. • • •

8.53
$$\pm 0.13$$
 ± 0.23 4 DOBBS 08 CLEO See BESSON 09 8.71 ± 0.38 ± 0.37 545 HUANG 05B CLEO See DOBBS 08

 $\Gamma(\overline{K}^0\mu^+\nu_\mu)/\Gamma_{ ext{total}}$ Γ_{16}/Γ

VALUE (units 10^{-2})	<i>EVTS</i>	DOCUMENT ID	TECN TECN	COMMENT
8.74±0.19 OUR FIT				
$8.72\pm0.07\pm0.18$	21k	ABLIKIM	16G BES3	e^+e^- at 3773 MeV
• • • We do not use th	e following d	ata for averages	s, fits, limits, et	.c. • • •

• • • We do not use the following data for averages, fits, limits, etc. • • •

10.3 $\pm 2.3 \pm 0.8$ 29 ± 6 ABLIKIM 07 BES2 e^+e^- at 3773 MeV

 $^{^{1}}$ ABLIKIM 14F obtain $|\mathsf{V}_{cd}|\cdot f_{D^{+}}=(45.75\pm1.20\pm0.39)$ MeV, and using $|\mathsf{V}_{cd}|=0.22520\pm0.00065$ gets $f_{D^{+}}=(203.2\pm5.3\pm1.8)$ MeV.

² EISENSTEIN 08, using the D^+ lifetime and assuming $|V_{cd}| = |V_{us}|$, gets $f_{D^+} = (205.8 \pm 8.5 \pm 2.5)$ MeV from this measurement.

 $^{^3}$ ABLIKIM 05D finds a background-subtracted 2.67 \pm 1.74 $D^+\to~\mu^+\nu_{\mu}$ events, and from this obtains $f_{D^+}=371^{+129}_{-119}\pm$ 25 MeV.

 $^{^4}$ ARTUSO 05A obtains $f_{D^+}=222.6\pm16.7^{+2.8}_{-3.4}$ MeV from this measurement.

⁵ BONVICINI 04A finds eight events with an estimated background of one, and from the branching fraction obtains $f_{D^+}=202\pm41\pm17$ MeV.

 $^{^1}$ ABLIKIM 15AF report $\Gamma(D^+\to K_L\,e^+\nu_e)/\Gamma_{\rm total}=$ (4.481 \pm 0.027 \pm 0.103)%. See also the form-factor parameters near the end of this D^+ Listing.

² See the form-factor parameters near the end of this D^+ Listing.

³The ABLIKIM 05A result together with the $D^0 \to K^- e^+ \nu_e$ branching fraction of ABLIKIM 04C and Particle Data Group lifetimes gives $\Gamma(D^0 \to K^- e^+ \nu_e) / \Gamma(D^+ \to \overline{K}^0 e^+ \nu_e) = 1.08 \pm 0.22 \pm 0.07$; isospin invariance predicts the ratio is 1.0.

⁴ DOBBS 08 establishes $|\frac{V_{cd}}{V_{cs}} \cdot \frac{f_+^{\pi}(0)}{f_+^{K}(0)}| = 0.188 \pm 0.008 \pm 0.002$ from the D^+ and D^0 decays to $\overline{K} \, e^+ \nu_e$ and $\pi \, e^+ \nu_e$. It also finds $\Gamma(D^0 \to K^- \, e^+ \nu_e) \, / \, \Gamma(D^+ \to \overline{K}^0 \, e^+ \nu_e) = 1.06 \pm 0.02 \pm 0.03$; isospin invariance predicts the ratio is 1.0.

$\Gamma(\overline{K}^0\mu^+\nu_\mu)/\Gamma(K^-2)$	$2\pi^+)$					Γ_{16}/Γ_{41}		
<u>VALUE</u> 0.97 ±0.04 OUR FIT	EVTS	DOCUMENT ID	<u>TECN</u>	<u>CON</u>	MMENT			
0.97 ± 0.04 OUR FIT	Error inclu	des scale factor	of 1.5.		_			
$1.019\pm0.076\pm0.065$	555 ± 39	LINK 04	E FOC	S γ n	ucleus, $\overline{\it E}_{\gamma}$	\approx 180 GeV		
$\Gamma(K^-\pi^+e^+ u_e)/\Gamma_{ m tot}$						Γ ₁₇ /Γ		
VALUE (units 10^{-2})	EVTS	DOCUMENT IL)	TECN	COMMENT			
3.89±0.13 OUR FIT					1			
		ABLIKIM				$\psi(3770)$		
• • • We do not use the								
$3.50 \pm 0.75 \pm 0.27$	29	ABLIKIM						
$3.5 \begin{array}{c} +1.2 \\ -0.7 \end{array} \pm 0.4$	14	BAI	91	MRK3	$e^+e^-\approx$	3.77 GeV		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$0.4380 \pm 0.0036 \pm 0.0042$	$70k \pm 363$	B DEL-AMO-	SA11	I BAE	3R <i>e</i> ⁺ <i>e</i> ⁻	\approx 10.6 GeV		
$\Gamma(\overline{K}^*(892)^0 e^+ \nu_e)/\Gamma$		>0				Г ₃₅ /Г		
Unseen decay mod	les of $K^*(8)$	92) are include $(22)^{\circ}$	d. See	the en	d of the D^{\neg}	Listings for		
measurements of L	$\mathcal{O}^+ \to \mathcal{K}^*$	$(892)^{\circ}\ell^+ u_\ell^-$ for	n-facto	r ratios	i.			
VALUE (units 10 ⁻²) 5.40±0.10 OUR FIT ■	rror include	s scale factor of	1.1.		COMMENT			
5.40±0.10 OUR AVERA								
$5.31 \pm 0.05 \pm 0.12$	16.2k	ABLIKIN	/I 16F	BES3	e^+e^- at τ	$\psi(3770)$		
		BRIERE				$\psi(3770)$		
• • • We do not use the								
		ABLIKIN						
		. ¹ HUANG						
1 HUANG 05B finds $\Gamma($ isospin invariance pre	$D^0 o K^{*-}$ dicts the ra	$\Gamma_e^+ u_e^-) / \Gamma(D^+)$ tio is 1.0.	\overline{K}	*0 e ⁺ ι	$(e) = 0.98 \pm$	\pm 0.08 \pm 0.04;		
$\Gamma((K^-\pi^+)_{[0.8-1.0]Ge}$	$_{\rm N}e^+ u_{\rm e})/$	T _{total}				Γ ₁₉ /Γ		
VALUE (units 10^{-2})		DOCUMENT ID		TFCN	COMMENT			
	16.2k	ABLIKIM			e^+e^- at y	b(3770)		
$\Gamma(\overline{K}^*(892)^0 e^+ \nu_e)/\Gamma(K^- 2\pi^+)$ Γ_{35}/Γ_{41} Unseen decay modes of the $\overline{K}^*(892)^0$ are included. See the end of the D^+ Listings for measurements of $D^+ \to \overline{K}^*(892)^0 \ell^+ \nu_\ell$ form-factor ratios.								
VALUE	FVTS	DOCUMENT ID		TECN	COMMENT			
$0.74 \pm 0.04 \pm 0.05$	5 -	BRANDENB			$e^+e^-\approx$	$\Upsilon(45)$		
$0.74 \pm 0.04 \pm 0.03$ $0.62 \pm 0.15 \pm 0.09$	35	ADAMOVICH			π^- 340 Ge	` '		
$0.55 \pm 0.08 \pm 0.10$	880	ALBRECHT			$e^+e^-\approx 1$			
$0.49 \pm 0.04 \pm 0.05$		ANJOS			Photoprodu			
					·			

$\Gamma((K^-\pi^+)_{S-wave}e^+\nu_e)/\Gamma_{ ext{total}}$ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT							
						//(2770)	
$2.28\pm0.08\pm0.08$		ABLIKIM	101	BE23	e^+e^- at a	ψ (3770)	
$\Gamma(\overline{K}^*(892)^0 e^+ \nu_e$,	K *(892) ⁰ –	→ K ⁻ π ⁺)/Γ	(K ⁻ 1	$\tau^+ e^+ \nu$	_{'e})	Γ_{18}/Γ_{17}	
VALUE (%)		DOCUMENT ID		TECN	COMMENT	_	
93.94±0.27 OUR AVE	ERAGE	45111/14		5500		((0==0)	
$93.93 \pm 0.22 \pm 0.18$		ABLIKIM DEL-AMO-SA			e^+e^- at e^+e^-		
$94.11 \pm 0.74 \pm 0.75$		DEL-AMO-SA	1 111	BABR	e'e ≈	10.6 GeV	
$\Gamma((K^-\pi^+)_{S-wave}$	$e^+ u_e) / \Gamma (K$	$(-\pi^+e^+\nu_e)$				Γ_{20}/Γ_{17}	
VALUE (%)		DOCUMENT ID		TECN	COMMENT		
5.89±0.17 OUR AVEF	RAGE	A D.I. II. (IA A	1.5-	DECO	+	((0770)	
$6.05 \pm 0.22 \pm 0.18$		ABLIKIM DEL-AMO-SA			e^+e^- at e^+e^-	, ,	
$5.79 \pm 0.16 \pm 0.15$		DEL-AMO-SA	1 111	DADK	e e ≈	10.0 GeV	
$\Gamma(\overline{K}^*(1410)^0 e^+ \nu_e$, $\overline{K}^*(1410)^0$	$\rightarrow K^-\pi^+)$	/Γ _{tota}	ıl		Γ_{21}/Γ	
		DOCUMENT ID					
$<6 \times 10^{-3}$	90	DEL-AMO-SA	111	BABR	$e^+e^-\approx$	10.6 GeV	
$\Gamma(\overline{K}_{2}^{*}(1430)^{0}e^{+}\nu_{e}$, $\overline{K}_{2}^{*}(1430)^{0}$	$\rightarrow K^-\pi^+)$	/Γ _{tota}	nl		Γ_{22}/Γ	
VALUE	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>		
<5 × 10 ⁻⁴	90	DEL-AMO-SA	111	BABR	$e^+e^-\approx$	10.6 GeV	
$\Gamma(K^-\pi^+e^+\nu_e \text{ nor }$	resonant)/I	- total				Γ ₂₃ /Γ	
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
<0.007	90	ANJOS	89 B	E691	Photoprod	uction	
$\Gamma(K^-\pi^+\mu^+ u_\mu)/\Gamma$	$(\overline{K}^0\mu^+\nu_\mu)$					Γ_{24}/Γ_{16}	
VALUE		<u>DOCUMENT</u>					
$0.417 \pm 0.030 \pm 0.023$	555 ± 39	LINK	04E	FOCS	γ nucleus, E	$ ilde{\gamma}$ $pprox$ 180 GeV	
$\Gamma(\overline{K}^*(892)^0 \mu^+ u_\mu)$	$/\Gamma_{\text{total}}$					Γ ₃₆ /Γ	
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT		
5.25±0.15 OUR FIT							
$5.27 \pm 0.07 \pm 0.14$	pprox 5k	BRIERE	10	CLEO	e^+e^- at a	ψ (3770)	
$\Gamma(\overline{K}^*(892)^0 \mu^+ \nu_{\mu})$ Unseen decay m	odes of the \overline{K}	$\frac{7}{8}$ (892) are in				Γ_{36}/Γ_{16} D^+ Listings	
VALUE	<u>EVTS</u>	DOCUMENT	ID	TECN	COMMENT		
0.600±0.021 OUR FIT 0.594±0.043±0.033		LINK				$ ilde{ ilde{ ilde{\gamma}}}pprox$ 180 GeV	

$\Gamma(\overline{K}^*(892)^0\mu^+\nu_\mu)/\Gamma(K^-2\pi^+)$

Unseen decay modes of the $\overline{K}^*(892)^0$ are included. See the end of the D^+ Listings for measurements of $D^+ \to \overline{K}^*(892)^0 \ell^+ \nu_\ell$ form-factor ratios.

DOCUMENT ID 0.584 ± 0.025 OUR FIT Error includes scale factor of 1.4. **0.57** \pm **0.06 OUR AVERAGE** Error includes scale factor of 1.2. $0.72 \pm 0.10 \pm 0.05$ BRANDENB... 02 CLEO $e^+e^- \approx \Upsilon(4S)$ $0.56 \pm 0.04 \pm 0.06$ 93E E687 $\gamma \, \mathrm{Be} \, \overline{E}_{\gamma} \approx \, 200 \, \, \mathrm{GeV}$ **KODAMA** π^- emulsion 600 GeV $0.46 \pm 0.07 \pm 0.08$ 224 92C E653 • • • We do not use the following data for averages, fits, limits, etc. • • • 1 I INK $0.602 \pm 0.010 \pm 0.021$ 12k 02J FOCS γ nucleus, \approx 180 GeV

¹ This LINK 02J result includes the effects of an interference of a small S-wave $K^-\pi^+$ amplitude with the dominant \overline{K}^{*0} amplitude. (The interference effect is reported in LINK 02E.) This result is redundant with results of LINK 04E elsewhere in these Listings.

$\Gamma(K^-\pi^+\mu^+ u_\mu$ nonre	Γ_{26}/Γ_{24}				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.0530 \pm 0.0074 ^{+0.0099}_{-0.0096}$	14k	LINK	05ı	FOCS	γ nucleus, $\overline{\it E}_{\gamma} pprox$ 180

$$\Gamma(K^-\pi^+\pi^0\mu^+\nu_\mu)/\Gamma(K^-\pi^+\mu^+\nu_\mu)$$
 Γ_{27}/Γ_{24} $VALUE$ $CL\%$ $DOCUMENT ID$ $TECN$ $COMMENT$ $COMME$

$$\Gamma(\overline{K}_0^*(1430)^0\mu^+\nu_\mu)/\Gamma(K^-\pi^+\mu^+\nu_\mu)$$
 Γ_{37}/Γ_{24}

Unseen decay modes of the $\overline{K}_0^*(1430)^0$ are included.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<0.0064	90	LINK	051	FOCS	γ A, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$

$$\Gamma(\overline{K}^*(1680)^0 \mu^+ \nu_\mu) / \Gamma(K^- \pi^+ \mu^+ \nu_\mu)$$
 $\Gamma_{38} / \Gamma_{24}$

Unseen decay modes of the $\overline{K}^*(1680)^0$ are included.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.04	90	LINK	05ı	FOCS	γ A, $\overline{E}_{\gamma}~pprox~180~{ m GeV}$

$$\Gamma(\pi^0 e^+ \nu_e)/\Gamma_{\text{total}}$$
 Γ_{28}/Γ

 VALUE (%)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.405 \pm 0.016 \pm 0.009
 838
 1 BESSON 09 CLEO
 e^+e^- at $\psi(3770)$

• • We do not use the following data for averages, fits, limits, etc.

decays to $\overline{K}\,e^+\nu_e$ and $\pi\,e^+\nu_e$. It finds $\Gamma(D^0\to\pi^-\,e^+\nu_e)$ / $\Gamma(D^+\to\pi^0\,e^+\nu_e)=2.03\pm0.14\pm0.08$; isospin invariance predicts the ratio is 2.0.

 $^{0.602 \}pm 0.010 \pm 0.021$ 12k ¹ LINK 02J FOCS γ nucleus, ≈ 180 GeV

¹ See the form-factor parameters near the end of this D^+ Listing.

² DOBBS 08 establishes $|\frac{V_{cd}}{V_{cs}}\cdot\frac{f_{+}^{\pi}(0)}{f_{+}^{K}(0)}|=0.188\pm0.008\pm0.002$ from the D^{+} and D^{0}

```
\Gamma(\eta e^+ \nu_e)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{29}/\Gamma
VALUE (units 10^{-4})
11.4 \pm 0.9 \pm 0.4
                                                                              CLEO e^{+}e^{-} at \psi(3770)
                                                  YFI TON
                                                                       11

    • • We do not use the following data for averages, fits, limits, etc.

13.3 \pm 2.0 \pm 0.6
                                46 \pm 8
                                                  MITCHELL
                                                                       09B CLEO See YELTON 11
\Gamma(\rho^0 e^+ \nu_e) / \Gamma_{\text{total}}
                                                                                                            \Gamma_{30}/\Gamma
VALUE (units 10^{-3})
2.18^{+0.17}_{-0.25} OUR FIT
2.17\pm0.12^{+0.12}_{-0.22}
                                 447\pm25
                                                    <sup>1</sup> DOBBS
                                                                           13 CLEO e^+e^- at \psi(3770)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                    27 \pm 6
                                                    <sup>2</sup> HUANG
                                                                           05B CLEO See DOBBS 13
2.1 \pm 0.4 \pm 0.1
   ^{1}\, \text{DOBBS 13 finds} \; \Gamma(D^{0} \rightarrow \; \rho^{-}\, e^{+}\, \nu_{e}) \; / \; 2 \; \Gamma(D^{+} \rightarrow \; \rho^{0}\, e^{+}\, \nu_{e}) = 1.03 \, \pm \, 0.09 \, ^{+0.08}_{-0.02};
     isospin invariance predicts the ratio is 1.0.
   <sup>2</sup> HUANG 05B finds \Gamma(D^0 \to \rho^- e^+ \nu_e) / 2 \Gamma(D^+ \to \rho^0 e^+ \nu_e) = 1.2^{+0.4}_{-0.3} \pm 0.1;
     isospin invariance predicts the ratio is 1.0.
\Gamma(\rho^0 e^+ \nu_e) / \Gamma(\overline{K}^*(892)^0 e^+ \nu_e)
                                                                                                         \Gamma_{30}/\Gamma_{35}
0.0404^{+0.0033}_{-0.0050} OUR FIT
                                             <sup>1</sup> AITALA
0.045 \pm 0.014 \pm 0.009
                                                                    97 E791 \pi^- nucleus, 500 GeV
   <sup>1</sup> AITALA 97 explicitly subtracts D^+ \to \eta' e^+ \nu_e and other backgrounds to get this result.
\Gamma(\rho^0 \mu^+ \nu_\mu)/\Gamma(\overline{K}^*(892)^0 \mu^+ \nu_\mu)
                                                                                                        \Gamma_{31}/\Gamma_{36}
                                                   DOCUMENT ID
                                                                        TECN
0.045 ± 0.007 OUR AVERAGE Error includes scale factor of 1.1.
0.041 \pm 0.006 \pm 0.004
                             320 \pm 44
                                                   LINK
                                                                        06B FOCS \gamma A, \overline{E}_{\gamma} \approx 180 \text{ GeV}
                                                 <sup>1</sup> AITALA
                                                                        97 E791
                                                                                      \pi^- nucleus, 500 GeV
0.051 \pm 0.015 \pm 0.009
                                       54
                                                 <sup>2</sup> FRABETTI
0.079 \pm 0.019 \pm 0.013
                                       39
                                                                        97 E687 \gamma Be, \overline{E}_{\gamma} \approx 220 GeV
   ^1AITALA 97 explicitly subtracts D^+ 	o \eta' \mu^+ 
u_\mu and other backgrounds to get this
   <sup>2</sup>Because the reconstruction efficiency for photons is low, this FRABETTI 97 result also
    includes any D^+ \to \eta' \mu^+ \nu_\mu \to \gamma \rho^0 \mu^+ \nu_\mu events in the numerator.
\Gamma(\omega e^+ \nu_e)/\Gamma_{\rm total}
                                                                                                            \Gamma_{32}/\Gamma
VALUE (units 10^{-3})
                                   EVTS
                                                        DOCUMENT ID TECN COMMENT
1.69\pm0.11 OUR AVERAGE
                                                        ABLIKIM 15W BES3 292 fb^{-1}, 3773 MeV
1.63 \!\pm\! 0.11 \!\pm\! 0.08
                                   491\,\pm\,32
                                                                     13 CLEO e^+e^- at \psi(3770)
1.82\!\pm\!0.18\!\pm\!0.07
                                  129 \pm 13
                                                        DOBBS
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.6 \begin{array}{c} +0.7 \\ -0.6 \end{array} \pm 0.1
                          7.6^{+3.3}_{-2.7}
                                                        HUANG 05B CLEO See DOBBS 13
```

$\Gamma(\eta'(958)e^+\nu_e)/\Gamma_{\text{total}}$

 Γ_{33}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
$2.16 \pm 0.53 \pm 0.07$		YELTON	11	CLEO	e^+e^- at ψ (3770)
\bullet \bullet We do not use t	he followin	g data for average	s, fits,	limits, e	etc. • • •
< 3.5	90	MITCHELL	09 B	CLEO	See YELTON 11

 $\Gamma \big(\phi \, e^+ \, \nu_e \big) / \Gamma_{\rm total}$

 Γ_{34}/Γ

Unseen decay modes of the ϕ are included.

<u>VALUE</u>		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.3	\times 10 ⁻⁵	90	ABLIKIM	15W	BES3	$292~{ m fb}^{-1}$, $3773~{ m MeV}$
• • • \	We do not use	e the following	data for average	es, fits,	limits, e	etc. • • •
	$\times10^{-4}$	90	YELTON	11	CLEO	e^+e^- at $\psi(3770)$
< 1.6	$\times 10^{-4}$	90	MITCHELL	09 B	CLEO	See YELTON 11
< 0.020)1	90	ABLIKIM	06P	BES2	e^+e^- at 3773 MeV
< 0.020)9	90	BAI	91	MRK3	$e^+e^-pprox 3.77 \text{ GeV}$

— Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$ ———

$\Gamma(K_S^0\pi^+)/\Gamma_{ m total}$

 Γ_{39}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT I	D	TECN	COMMENT
• • • We do not use the	ne followin	g data for avera	ges, fits,	limits, e	etc. • • •
$1.526 \pm 0.022 \pm 0.038$		¹ DOBBS	07	CLEO	See MENDEZ 10
$1.55 \pm 0.05 \pm 0.06$	2.2k	$^{ m 1}$ HE	05	CLEO	See DOBBS 07
$1.6 \pm 0.3 \pm 0.1$	161	ADLER	88C	MRK3	$e^{+}e^{-}$ 3.77 GeV

 $^{^{}m 1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.

$\Gamma(K_S^0\pi^+)/\Gamma(K^-2\pi^+)$

 Γ_{39}/Γ_{41}

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.164 ±0.007 OUR FIT	Error	includes scale fa	ctor o	f 3.9.	
0.162 ±0.009 OUR AVERAGE Error includes scale factor of 4.5.					
$0.171\ \pm0.002\ \pm0.002$		BONVICINI	14	CLEO	All CLEO-c runs
$0.1530 \pm 0.0023 \pm 0.0016$	10.6k	LINK	02 B	FOCS	γ nucleus, $\overline{\it E}_{\gamma}{pprox}$ 180 GeV
ullet $ullet$ We do not use the					,

$0.1682\!\pm\!0.0012\!\pm\!0.0037$	30k	MENDEZ	10	CLEO	See BONVICINI 14
$0.174\ \pm0.012\ \pm0.011$	473	$^{ m 1}$ BISHAI	97	CLEO	$e^+e^-pprox ~ \varUpsilon(4S)$
$0.137\ \pm0.015\ \pm0.016$	264	ANJOS	90 C	E691	Photoproduction

 $^{^1 \, {\}sf See}$ BISHAI 97 for an isospin analysis of ${\it D}^+ \to \ \overline{\it K} \, \pi$ amplitudes.

 $\Gamma(K_L^0\pi^+)/\Gamma_{\rm total}$

 Γ_{40}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.460±0.040±0.035	2023 ± 54	¹ HE	80	CLEO	$e^{+}e^{-}$ at $\psi(3770)$

 $^{^1}$ The difference of CLEO $D^+\to K_S^0\pi^+$ and $K_L^0\pi^+$ branching fractions over the sum (DOBBS 07 and HE 08) is $+0.022\pm0.016\pm0.018.$

 $\Gamma(K^-2\pi^+)/\Gamma_{\text{total}}$

 Γ_{41}/Γ

•		,					
VAL	UE (units 1	10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
8.9	8 ±0.28	OUR FIT	Error in	cludes scale factor	of 2.2	2.	
9.2	24±0.05	9 ± 0.157		BONVICINI	14	CLEO	All CLEO-c runs
• •	• We do	o not use t	he following	g data for average	s, fits,	limits, e	etc. • • •
9.5	$\begin{array}{c} 4 & \pm 0.10 \\ & \pm 0.2 \\ & \pm 0.6 \end{array}$	± 0.3	15.1k 1502	¹ DOBBS ¹ HE ² BALEST	07 05 94	CLEO	See BONVICINI 14 See DOBBS 07 $e^+e^-pprox \varUpsilon(4S)$
6.4	$^{+1.5}_{-1.4}$			³ BARLAG			π^- Cu 230 GeV
9.1 9.1	$\begin{array}{l} \pm 1.3 \\ \pm 1.9 \end{array}$	± 0.4	1164 239	ADLER 4 SCHINDLER			$e^{+}e^{-}$ 3.77 GeV $e^{+}e^{-}$ 3.771 GeV

 $^{^{}m 1}$ DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07

A REVIEW GOES HERE - Check our WWW List of Reviews

$\Gamma((\mathit{K}^-\pi^+)_{\mathit{S}-\mathsf{wave}}\pi^+)/\Gamma(\mathit{K}^-2\pi^+)$

 Γ_{42}/Γ_{41}

This is the "fit fraction" from the Dalitz-plot analysis. The $K^-\pi^+$ S-wave includes a broad scalar κ ($\overline{K}_0^*(800)$), the $\overline{K}_0^*(1430)^0$, and non-resonant background.

VALUE	DOCUMENT ID		TECN	COMMENT
0.801 ± 0.012 OUR AVERAGE				
$0.8024 \pm 0.0138 \pm 0.0043$	1 LINK	09	FOCS	MIPWA fit, 53k evts
0.838 ± 0.038	² BONVICINI	A80	CLEO	QMIPWA fit, 141k evts
$0.786 \pm 0.014 \pm 0.018$	AITALA	06	E791	Dalitz fit, 15.1k events
• • • We do not use the following	g data for average	s, fits,	limits,	etc. • • •
$0.8323 \pm 0.0150 \pm 0.0008$	³ LINK	07 B	FOCS	See LINK 09

 $^{^1}$ This LINK 09 model-independent partial-wave analysis of the ${\it K}^-\pi^+\,$ S-wave slices the $K^-\pi^+$ mass range into 39 bins.

$\Gamma(\overline{K}_0^*(800)^0\pi^+, \overline{K}_0^*(800) \to K^-\pi^+)/\Gamma(K^-2\pi^+)$ This is the "fit fraction" from the Dalitz-plot analysis.

 Γ_{43}/Γ_{41}

Created: 5/30/2017 17:22

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.478 \pm 0.121 \pm 0.053$ **AITALA** 02 E791 See AITALA 06

HTTP://PDG.LBL.GOV

Page 17

²BALEST 94 measures the ratio of $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D^0 \rightarrow K^- \pi^+$ branching fractions to be 2.35 \pm 0.16 \pm 0.16 and uses their absolute measurement of the D^0 $K^-\pi^+$ fraction (AKERIB 93).

 $^{^3}$ BARLAG 92C computes the branching fraction by topological normalization.

⁴ SCHINDLER 81 (MARK-2) measures $\sigma(e^+e^- \rightarrow \psi(3770)) \times$ branching fraction to be 0.38 \pm 0.05 nb. We use the MARK-3 (ADLER 88C) value of $\sigma =$ 4.2 \pm 0.6 \pm 0.3 nb.

² The BONVICINI 08A QMIPWA (quasi-model-independent partial-wave analysis) of the $K^-\pi^+$ S-wave amplitude slices the $K^-\pi^+$ mass range into 26 bins but keeps the Breit-Wigner $\overline{K}_0^*(1430)^0$.

 $^{^3}$ This LINK 07B fit uses a K matrix. The $K^-\pi^+$ S-wave fit fraction given above breaks down into (207.3 \pm 25.5 \pm 12.4)% isospin-1/2 and (40.5 \pm 9.6 \pm 3.2)% isospin-3/2 with large interference between the two. The isospin-1/2 component includes the κ (or $\overline{K}_{0}^{*}(800)^{0}$) and $\overline{K}_{0}^{*}(1430)^{0}$.

$\Gamma(\overline{K}^*(892)^0\pi^+,\overline{K}^*(892)^0$ This is the "fit fraction"				Γ ₄₅ /Γ.	41
VALUE TO THE THE TRACTION		-piot		COMMENT	
0.111 ±0.012 OUR AVERAGE	E Error includ	es sca	le facto		
$0.1236 \pm 0.0034 \pm 0.0034$ 0.0988 ± 0.0046 $0.119 \pm 0.002 \pm 0.020$ • • • We do not use the follow	LINK BONVICINI AITALA	08A 06	CLEO E791	MIPWA fit, 53k evts QMIPWA fit, 141k evts Dalitz fit, 15.1k events	
-	UNK	_			
$0.1361\pm0.0041\pm0.0030$ $0.123\pm0.010\pm0.009$ $0.137\pm0.006\pm0.009$ $0.170\pm0.009\pm0.034$ $0.14\pm0.04\pm0.04$ $0.13\pm0.01\pm0.07$	AITALA FRABETTI ANJOS ALVAREZ ADLER	02 94G 93 91B	E791 E687 E691 NA14	See LINK 09 See AITALA 06 Dalitz fit, 8800 evts γ Be 90–260 GeV Photoproduction e^+e^- 3.77 GeV	
¹ The statistical error on this			_		
				III LIMIN 09.	
$\Gamma(\overline{K}^*(1410)^0\pi^+,\overline{K}^{*0}\to$	$\mathit{K}^-\pi^+)$ /Γ(K	$^{-}2\pi$	+)	Γ ₄₆ /Γ.	41
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
not seeno We do not use the follow			CLEO	MIPWA fit, 53k evts QMIPWA fit, 141k evts nits, etc. • • •	
$4.8 \pm 2.1 \pm 1.7$	LINK	07 B	FOCS	See LINK 09	
$\Gamma(\overline{K}_0^*(1430)^0\pi^+, \overline{K}_0^*(1430)^0$ This is the "fit fraction"	from the Dalitz	-plot	analysis.	-	41
VALUE				ECN COMMENT	
0.1330±0.0062	BONVICI			• '	ts
• • We do not use the follow		erages			
$0.125 \pm 0.014 \pm 0.005$	AITALA	T1	-	791 See AITALA 06	
$0.284 \pm 0.022 \pm 0.059$ $0.248 \pm 0.019 \pm 0.017$	FRABET ANJOS	11		687 Dalitz fit, 8800 evts 691 γ Be 90–260 GeV	
				,	
$\Gamma(\overline{K}_2^*(1430)^0\pi^+, \overline{K}_2^*(1430)^0\pi^+)$ This is the "fit fraction"					41
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
0.24 ± 0.08 OUR AVERAGE	Error includes	scale	factor o	f 2.2. See the ideogram belo	w.
$0.58 \pm 0.10 \pm 0.06$ 0.204 ± 0.040 $0.2 \pm 0.1 \pm 0.1$	LINK BONVICINI AITALA	06	CLEO E791	MIPWA fit, 53k evts QMIPWA fit, 141k evts Dalitz fit, 15.1k events	
• • We do not use the follow		_			
$0.39 \pm 0.09 \pm 0.05$ $0.5 \pm 0.1 \pm 0.2$	LINK AITALA	07в 02	FOCS E791	See LINK 09 See AITALA 06	

$$\Gamma\left(\overline{K}_{2}^{*}(1430)^{0}\pi^{+}, \overline{K}_{2}^{*}(1430)^{0} \to K^{-}\pi^{+}\right)/\Gamma\left(K^{-}2\pi^{+}\right)$$
 (units 10^{-2})

 $\Gamma(\overline{K}^*(1680)^0\pi^+,\overline{K}^*(1680)^0\to K^-\pi^+)/\Gamma(K^-2\pi^+)$ This is the "fit fraction" from the Dalitz-plot analysis.

 Γ_{48}/Γ_{41}

This is the int indetion	moin the Duntz	Piot	anany 515.				
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT			
0.23 ± 0.12 OUR AVERAGE							
$1.75 \pm 0.62 \pm 0.54$	LINK	09	FOCS	MIPWA fit, 53k evts			
0.196 ± 0.118	BONVICINI	08A	CLEO	QMIPWA fit, 141k evts			
$1.2 \pm 0.6 \pm 1.2$	AITALA	06	E791	Dalitz fit, 15.1k events			
• • • We do not use the follow	ving data for av	erages	s, fits, lir	nits, etc. • • •			
$1.90 \pm 0.63 \pm 0.43$	LINK	07 B	FOCS	See LINK 09			
$2.5 \pm 0.7 \pm 0.3$	AITALA	02	E791	See AITALA 06			
$4.7 \pm 0.6 \pm 0.7$	FRABETTI	94G	E687	Dalitz fit, 8800 evts			
$3.0 \pm 0.4 \pm 1.3$	ANJOS	93	E691	$\gamma\mathrm{Be}$ 90–260 GeV			
$\Gamma(K^{-}(2\pi^{+})_{I=2})/\Gamma(K^{-}2\pi^{+})$ Γ_{49}/Γ_{41}							

VALUE DOCUMENT ID <u>TECN</u> <u>COMMENT</u> 0.155 ± 0.028 08A CLEO QMIPWA fit, 141k evts BONVICINI

 $\Gamma(K^-2\pi^+ \text{ nonresonant})/\Gamma(K^-2\pi^+)$ This is the "fit fraction" from the Dalitz-plot analysis. Later analyses find little need for this decay mode.

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT
• • • We do not use the follow	ing data for averages	, fits,	limits, e	etc. • • •
$0.130 \pm 0.058 \pm 0.044$	AITALA	02	E791	See AITALA 06
$0.998 \pm 0.037 \pm 0.072$	FRABETTI	94G	E687	Dalitz fit, 8800 evts
$0.838 \!\pm\! 0.088 \!\pm\! 0.275$	ANJOS	93	E691	$\gamma\mathrm{Be}$ 90–260 GeV
$0.79 \pm 0.07 \pm 0.15$	ADLER	87	MRK3	$e^{+}e^{-}$ 3.77 GeV
HTTP://PDG.LBL.GOV	Page 19		Croat	ed: 5/30/2017 17:22
111 11 .//1 DG.LDL.GOV	i age 19		Creat	Eu. J/JU/2011 11.22

$\Gamma(K_S^0\pi^+\pi^0)/\Gamma_{ m total}$					Γ ₅₁ /Γ
$VALUE$ (units 10^{-2}) EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
$6.99 \pm 0.09 \pm 0.25$	¹ DOBBS	07	CLEO	See BONVIO	CINI 14
$7.2 \pm 0.2 \pm 0.4$ 5.1k	¹ HE	05	CLEO	See DOBBS	07
$5.1 \pm 1.3 \pm 0.8$ 159	ADLER	88C	MRK3	$e^{+}e^{-}$ 3.77	GeV
¹ DOBBS 07 and HE 05 use sing supersedes HE 05.	gle- and double-ta	gged e	events in	an overall fit.	DOBBS 07
$\Gamma(K_S^0\pi^+\pi^0)/\Gamma(K^-2\pi^+)$					Γ_{51}/Γ_{41}
<u>VALUE</u>	DOCUMENT ID				
$0.785 \pm 0.007 \pm 0.016$	BONVICINI	14	CLEO	All CLEO-c	runs
$\Gamma(K_S^0 \rho^+)/\Gamma(K_S^0 \pi^+ \pi^0)$ This is the "fit fraction" from	om the Dalitz-plot	analys	sis.		Γ_{52}/Γ_{51}
VALUE (units 10^{-2})	DOCUMENT ID			COMMENT	
$83.4\pm2.2^{+}_{-}$ $\begin{array}{c} 7.1\\ 3.6 \end{array}$	$^{ m 1}$ ABLIKIM	14E	BES3	e^+e^- at ψ ((3770)
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
68 ±8 ±12	ADLER	87	MRK3	$e^{+}e^{-}$ 3.77	GeV
$^{ m 1}$ Fit fraction from Dalitz plot a	nalysis of 142k D^{-}	+ →	$\kappa^0_{\sigma}\pi^+$	π^0 events.	
$\Gamma(K_S^0 \rho(1450)^+, \rho^+ \rightarrow \pi^+ \pi$					Γ_{53}/Γ_{51}
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$2.1\pm0.3^{+1.6}_{-1.9}$	ABLIKIM	14E	BES3	e^+e^- at ψ ((3770)
$\Gamma(\overline{K}^*(892)^0\pi^+, \overline{K}^*(892)^0 - $ This is the "fit fraction" from	om the Dalitz-plot	analy	sis.		Γ_{54}/Γ_{51}
VALUE (units 10 ⁻²)	DOCUMENT ID				· · · · · · · · · · · · · · · · · · ·
3.58±0.17 ^{+0.39} -0.38	¹ ABLIKIM				(3770)
• • • We do not use the following					C 1/
$19 \pm 6 \pm 6$	ADLER			$e^{+}e^{-}$ 3.77	GeV
$^{ m 1}$ Fit fraction from Dalitz plot a	nalysis of 142k D^{-}	$^+$ \rightarrow	$K_S^0 \pi^+$	π^{U} events.	
$\Gamma(\overline{K}_0^*(1430)^0\pi^+, \overline{K}_0^{*0} \to K_0^0\pi^+)$	$(2\pi^{0})/\Gamma(K_{c}^{0}\pi^{+})$	π^0)			Γ_{55}/Γ_{51}
<u>VALUE (%)</u>	DOCUMENT ID	•	TECN	COMMENT	- 55/ - 51
3.7±0.6±1.1	ABLIKIM	14E	BES3	e^+e^- at ψ ((3770)
$\Gamma(\overline{K}_0^*(1680)^0\pi^+, \overline{K}_0^{*0} \to K_0^0)$	$(5\pi^0)/\Gamma(K_5^0\pi^+)$	-	TECN	COMMENT	Γ_{56}/Γ_{51}
					·
$1.3\pm0.2^{+0.9}_{-1.3}$	ABLIKIM	14E	BES3	e^+e^- at ψ ((3770)
$\Gamma(\overline{\kappa}^0\pi^+, \overline{\kappa}^0 \to K_S^0\pi^0)/\Gamma(K_S^{VALUE}(\%))$	$(5\pi^+\pi^0)$ DOCUMENT ID		TFCN	COMMENT	Γ_{57}/Γ_{51}
7.7±1.2 ^{+6.5}	ABLIKIM				(3770)
 = 4. 8				- 2 αι γ((-·· -)
HTTP://PDG.LBL.GOV	Page 20		Creat	ed: 5/30/20	017 17:22

$\Gamma(K_S^0\pi^+\pi^0 \text{ nonresonant})/\Gamma$ This is the "fit fraction" for	$\Gamma(K^0_{oldsymbol{S}}\pi^+\pi^0)$ rom the Dalitz-plot a	nalys	sis.	Γ_{58}/Γ_{51}		
VALUE (units 10^{-2})	DOCUMENT ID			COMMENT		
$4.6\pm0.7^{+5.4}_{-5.1}$				e^+e^- at ψ (3770)		
• • • We do not use the followi	ng data for averages,	fits,	limits, e	etc. • • •		
13 ±7 ±8		87		$e^{+}e^{-}$ 3.77 GeV		
$^{ m 1}$ Fit fraction from Dalitz plot	analysis of 142k D^+	\rightarrow	$\kappa_{S}^{0}\pi^{+}\pi$	π^0 events.		
$\Gamma(K_S^0\pi^+\pi^0$ nonresonant and VALUE (%)	, , ,		•	Γ ₅₉ /Γ ₅₁		
18.6±1.7 ^{+2.3}	DOCUMENT ID ABLIKIM			$e^{+}e^{-}$ at $\psi(3770)$		
$\Gamma((K_S^0\pi^0)_{S-\text{wave}}\pi^+)/\Gamma(K_S^0\pi^+\pi^0)$ $\text{The numerator here is the coherent sum of the } \overline{K}_0^*(1430)^0\pi^+, \overline{\kappa}^0\pi^+, \text{ and nonresonant contributions.}$						
VALUE (%)	DOCUMENT ID					
$17.3 \pm 1.4 ^{+3.4}_{-4.3}$	ABLIKIM	14E	BES3	e^+e^- at $\psi(3770)$		
$\Gamma(K^-2\pi^+\pi^0)/\Gamma_{total}$ Γ_{61}/Γ See our 2008 Review (Physics Letters B667 1 (2008)) for measurements of submodes of this mode. There is nothing new since 1992, and the two papers, ANJOS 92C, with 91 \pm 12 events above background, and COFFMAN 92B, with 142 \pm 20 such events, could not determine submode fractions with much accuracy.						
$VALUE$ (units 10^{-2}) $EVTS$	DOCUMENT ID		TECN	COMMENT		
• • We do not use the followi	1					
$5.98 \pm 0.08 \pm 0.16$	4			See BONVICINI 14		
6.0 \pm 0.2 \pm 0.2 4.8k 5.8 \pm 1.2 \pm 1.2 142				See DOBBS 07 e^+e^- 3.77 GeV		
				See COFFMAN 92B		
-1.5						
¹ DOBBS 07 and HE 05 use si supersedes HE 05.	ngie- and double-tagg	gea e	vents in	an overall fit. DOBBS 07		
$\Gamma\big(K^-2\pi^+\pi^0\big)/\Gamma\big(K^-2\pi^+\big)$				Γ_{61}/Γ_{41}		
VALUE	DOCUMENT ID			COMMENT		
$0.666\pm0.006\pm0.014$	BONVICINI	14	CLEO	All CLEO-c runs		
$\Gamma(K_5^0 2\pi^+\pi^-)/\Gamma_{ ext{total}}$ See our 2008 Review (Phy of this mode. There is not 229 \pm 17 events above baccould not determine subm	hing new since 1992, ckground, and COFF	and MAN	the two I 92B, w	papers, ANJOS 92C, with ith 209 \pm 20 such events,		
$VALUE$ (units 10^{-2}) $EVTS$	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the followi		fits,	limits, e	etc. • • •		
$3.122 \pm 0.046 \pm 0.096$	4	07		See BONVICINI 14		
3.2 ± 0.1 ± 0.2 3.2k 2.1 $+1.0$	0	05		See DOBBS 07		
$2.1 \begin{array}{c} +1.0 \\ -0.9 \end{array}$				π^- Cu 230 GeV		
$3.3 \pm 0.8 \pm 0.2$ 168	ADLER	88C	MRK3	e ⁺ e ⁻ 3.77 GeV		
HTTP://PDG.LBL.GOV	Page 21		Creat	red: 5/30/2017 17:22		

DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05.
 BARLAG 92C computes the branching fraction by topological normalization.

$\Gamma(K^-3\pi^+\pi^- \text{ none})$	resonant)/F	$(K^{-}3\pi^{+}\pi^{-})$		Γ ₆₉ /Γ ₆₃
VALUE	•	•	TECN	·
$0.07 \pm 0.05 \pm 0.01$				γ A, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$
• • • We do not use				•
< 0.026				$\gamma{ m Be},\overline{E}_{\gamma}~pprox~200~{ m GeV}$
$\Gamma(K^+2K_S^0)/\Gamma_{\text{total}}$				Γ ₇₀ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
	3551	•		$e^+e^- \rightarrow \psi(3770)$
$\Gamma(K^+2K_S^0)/\Gamma(K^-$	$(2\pi^{+})$			Γ ₇₀ /Γ ₄₁
VALUE	•	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the following o	data for averages,	fits, limits, e	etc. • • •
$0.035 \pm 0.010 \pm 0.005$	39 + 9	ALBRECHT	94ı ARG	$e^+e^-{pprox}10{ m GeV}$
				$e^+e^-pprox 10.5 \mathrm{GeV}$
$\Gamma(K^+K^-K^0_S\pi^+)$	′Γ(<i>K</i> ° 2π ⁺ π	r)		Γ ₇₁ /Γ ₆₂
VALUE (units 10 ⁻³)	` •	DOCUMENT ID	TECN CO	-
7.7±1.5±0.9				nucleus, $\overline{\it E}_{\gamma} pprox $ 180 GeV
		Pionic modes		, ,
$\Gamma(\pi^+\pi^0)/\Gamma(K^-2\pi^0)$	π+)			Γ ₇₂ /Γ ₄₁
VALUE (units 10^{-2})	•	DOCUMENT ID	TECN	•
1.31±0.06 OUR AVE		DOCOMENT ID	TLCN	COMMENT
$1.29 \pm 0.04 \pm 0.05$		MENDEZ	10 CLEC	e^+e^- at 3774 MeV
$1.33 \pm 0.11 \pm 0.09$				R $e^+e^-pprox \Upsilon(4S)$
	171 ± 22	ARMS		$e^+e^-pprox 10\mathrm{GeV}$
• • • We do not use				
$1.33\!\pm\!0.07\!\pm\!0.06$		RUBIN		See MENDEZ 10
$\Gamma(2\pi^+\pi^-)/\Gamma(K^-$	$2\pi^{+})$			Γ ₇₃ /Γ ₄₁
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT
	RAGE Error			ee the ideogram below.
$3.52 \pm 0.11 \pm 0.12$	3303 ± 95	RUBIN	06 CLEO	$e^{+}e^{-}$ at $\psi(3770)$
$4.1 \pm 1.1 \pm 0.3$	85 ± 22	ABLIKIM	05F BES	$e^+e^- \approx \psi(3770)$
$3.11\pm0.18 {+0.16 \atop -0.26}$	1172	AITALA	01в Е79 1	π^- nucleus, 500 GeV
$4.3 \pm 0.3 \pm 0.3$	236	FRABETTI	97D E687	γ Be $pprox$ 200 GeV
$3.5 \pm 0.7 \pm 0.3$	83	ANJOS	89 E691	Photoproduction

 $\Gamma(\rho^0\pi^+)/\Gamma(2\pi^+\pi^-)$

 Γ_{74}/Γ_{73}

Created: 5/30/2017 17:22

This is the "fit fraction" from the Dalitz-plot analysis.

DOCUMENT ID TECN COMMENT 0.25 **OUR AVERAGE** Error includes scale factor of 2.4. See the ideogram below. $0.200 \pm 0.023 \pm 0.009$ **BONVICINI** CLEO Dalitz fit, \approx 2240 evts 07 $0.3082 \pm 0.0314 \pm 0.0230$ LINK **FOCS** Dalitz fit, 1527 \pm 51 evts $0.336 \pm 0.032 \pm 0.022$ **AITALA 01**B **E791** Dalitz fit, 1172 evts

WEIGHTED AVERAGE 0.25±0.04 (Error scaled by 2.4)

HTTP://PDG.LBL.GOV

Page 24

 $\Gamma(\pi^+(\pi^+\pi^-)_{S-\text{wave}})/\Gamma(2\pi^+\pi^-)$ Γ_{75}/Γ_{73} This is the "fit fraction" from the Dalitz-plot analysis. See also the next three data blocks. VALUE TECN COMMENT ¹ LINK $0.5600 \pm 0.0324 \pm 0.0214$ FOCS Dalitz fit. 1527 \pm 51 evts 1 LINK 04 borrows a K-matrix parametrization from ANISOVICH 03 of the full π - π Swave isoscalar scattering amplitude to describe the $\pi^+\pi^-$ S-wave component of the $\pi^+\pi^+\pi^-$ state. The fit fraction given above is a sum over five f_0 mesons, the f_0 (980), $f_0(1300)$, $f_0(1200-1600)$, $f_0(1500)$, and $f_0(1750)$. See LINK 04 for details and discus- $\Gamma(\sigma\pi^+,\sigma\to\pi^+\pi^-)/\Gamma(2\pi^+\pi^-)$ Γ_{76}/Γ_{73} This is the "fit fraction" from the Dalitz-plot analysis. **DOCUMENT ID** 0.422 ± 0.027 OUR AVERAGE **BONVICINI** $0.418 \pm 0.014 \pm 0.025$ CLEO Dalitz fit, \approx 2240 evts $0.463 \pm 0.090 \pm 0.021$ **AITALA** 01B E791 Dalitz fit, 1172 evts Γ_{77}/Γ_{73} $\Gamma(f_0(980)\pi^+, f_0(980) \rightarrow \pi^+\pi^-)/\Gamma(2\pi^+\pi^-)$ This is the "fit fraction" from the Dalitz-plot analysis. **DOCUMENT ID** TECN **0.048 ± 0.010 OUR AVERAGE** Error includes scale factor of 1.3. **BONVICINI** CLEO $0.041\pm0.009\pm0.003$ Dalitz fit, \approx 2240 evts $0.062 \pm 0.013 \pm 0.004$ **AITALA** 01B E791 Dalitz fit, 1172 evts $\Gamma(f_0(1370)\pi^+, f_0(1370) \rightarrow \pi^+\pi^-)/\Gamma(2\pi^+\pi^-)$ Γ_{78}/Γ_{73} This is the "fit fraction" from the Dalitz-plot analysis. DOCUMENT ID 0.024 ± 0.013 OUR AVERAGE **BONVICINI** $0.026 \pm 0.018 \pm 0.006$ 07 CLEO Dalitz fit, \approx 2240 evts $0.023 \pm 0.015 \pm 0.008$ **AITALA** 01B E791 Dalitz fit, 1172 evts $\Gamma(f_2(1270)\pi^+, f_2(1270) \rightarrow \pi^+\pi^-)/\Gamma(2\pi^+\pi^-)$

 Γ_{79}/Γ_{73}

Created: 5/30/2017 17:22

This is the "fit fraction" from the Dalitz-plot analysis.

DOCUMENT ID TECN COMMENT **0.154** ±0.025 **OUR AVERAGE** Error includes scale factor of 1.9. See the ideogram below. $0.182 \pm 0.026 \pm 0.007$ **BONVICINI** CLEO Dalitz fit, \approx 2240 evts $0.1174 \pm 0.0190 \pm 0.0029$ Dalitz fit, 1527 \pm 51 LINK **FOCS** evts $0.194 \pm 0.025 \pm 0.004$ **AITALA** 01B E791 Dalitz fit, 1172 evts


```
\Gamma(2\pi^+\pi^- \text{ nonresonant})/\Gamma(2\pi^+\pi^-)
                                                                                            \Gamma_{85}/\Gamma_{73}
       This is the "fit fraction" from the Dalitz-plot analysis.
                             CL%
                                          DOCUMENT ID
 < 0.035
                             95
                                          BONVICINI
                                                            07
                                                                  CLEO
                                                                            Dalitz fit, \approx 2240 evts
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
  0.078 \pm 0.060 \pm 0.027
                                          AITALA
                                                            01B E791
                                                                            Dalitz fit, 1172 evts
\Gamma(\pi^{+}2\pi^{0})/\Gamma(K^{-}2\pi^{+})
                                                                                            \Gamma_{86}/\Gamma_{41}
VALUE (units 10^{-2})
                              EVTS
                                               DOCUMENT ID TECN COMMENT
5.0\pm0.3\pm0.3
                           1535 \pm 89
                                               RUBIN
                                                            06 CLEO e^+e^- at \psi(3770)
\Gamma(2\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}2\pi^{+})
                                                                                            \Gamma_{87}/\Gamma_{41}
VALUE (units 10^{-2})
                                                                      TECN
12.4\pm0.5\pm0.6
                                                                06 CLEO e^+e^- at \psi(3770)
                        5701 \pm 205
                                              RUBIN
\Gamma(\eta \pi^+)/\Gamma_{\text{total}}
                                                                                               \Gamma_{89}/\Gamma
       Unseen decay modes of the \eta are included.
VALUE (units 10^{-4})
                                                                    TECN
                                            DOCUMENT ID
                              EVTS
33.3±2.1 OUR FIT Error includes scale factor of 1.4.
                                                                            e^+e^- at 3773 MeV
30.7 \pm 2.2 \pm 1.3
                                258
                                            ABLIKIM
                                                               16D BES3

    • We do not use the following data for averages, fits, limits, etc.

34.3 \pm 1.4 \pm 1.7
                        1033 \pm 42
                                            ARTUSO
                                                                    CLEO See MENDEZ 10
                                                              08
\Gamma(\eta\pi^+)/\Gamma(K^-2\pi^+)
                                                                                            \Gamma_{89}/\Gamma_{41}
       Unseen decay modes of the \eta are included.
VALUE (units 10^{-2})
                        EVTS
                                              DOCUMENT ID
                                                                     TECN COMMENT
3.71\pm0.23 OUR FIT Error includes scale factor of 1.3.
                                                                10 CLEO e^{+}e^{-} at 3774 MeV
3.87\pm0.09\pm0.19
                        2940 \pm 68
                                              MENDEZ

    • • We do not use the following data for averages, fits, limits, etc.

3.81 \pm 0.26 \pm 0.21
                         377 \pm 26
                                              RUBIN
                                                                06 CLEO See ARTUSO 08
\Gamma(\omega\pi^+)/\Gamma_{
m total}
                                                                                               \Gamma_{91}/\Gamma
       Unseen decay modes of the \omega are included.
VALUE (units 10^{-4})
                                             DOCUMENT ID
                                                               16D BES3 e^+e^- at 3773 MeV
  2.79\pm0.57\pm0.16
                                  79
                                             ABLIKIM
• • We do not use the following data for averages, fits, limits, etc.
                                                                      CLEO e^{+}e^{-} at \psi(3770)
< 3.4
                         90
                                             RUBIN
\Gamma(3\pi^{+}2\pi^{-})/\Gamma(K^{-}2\pi^{+})
                                                                                            \Gamma_{88}/\Gamma_{41}
VALUE (units 10^{-2})
                                                                  TECN
                                           DOCUMENT ID
                                                                             COMMENT
1.77±0.17 OUR FIT
1.73\pm0.20\pm0.17
                        732 \pm 77
                                           RUBIN
                                                             06 CLEO
• • We do not use the following data for averages, fits, limits, etc.
                                                                             \gamma Be, \overline{E}_{\gamma}~\approx~200~{
m GeV}
2.3 \pm 0.4 \pm 0.2
                                           FRABETTI
                                                             97C E687
\Gamma(3\pi^{+}2\pi^{-})/\Gamma(K^{-}3\pi^{+}\pi^{-})
                                                                                            \Gamma_{88}/\Gamma_{63}
                                          DOCUMENT ID
                                                                <u>TECN</u> <u>COMMENT</u>
0.289 ± 0.019 OUR FIT
0.290 \pm 0.017 \pm 0.011
                                                            03D FOCS \gamma A, \overline{E}_{\gamma} \approx 180 \text{ GeV}
                              835
                                          LINK
HTTP://PDG.LBL.GOV
                                             Page 27
                                                                    Created: 5/30/2017 17:22
```

$\Gamma(\eta\pi^+\pi^0)/\Gamma_{ m total}$					Γ ₉₀ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
13.8±3.1±1.6					$e^{+}e^{-}$ at $\psi(3770)$
$\Gamma(\eta'(958)\pi^+)/\Gamma_{\rm to}$					Γ ₉₂ /Γ
	nodes of the $\eta'(9)$	•			
VALUE (units 10 ⁻⁴)		DOCUMENT ID			
• • • We do not use	_	_			
44.2±2.5±2.9		ARTUSU	08	CLEO	See MENDEZ 10
$\Gamma(\eta'(958)\pi^+)/\Gamma($	$m{K^-2\pi^+}m)$ modes of the $\eta'(9\pi)$	958) are include	d.		Γ_{92}/Γ_{41}
VALUE (units 10^{-2})		DOCUMENT ID		TECN	COMMENT
5.12±0.17±0.25					$e^{+}e^{-}$ at 3774 MeV
$\Gamma(\eta'(958)\pi^+\pi^0)$					Г ₉₃ /Г
	modes of the η' (9	958) are include	d.		
VALUE (units 10 ⁻⁴)		DOCUMENT ID			
$15.7 \pm 4.3 \pm 2.5$	33 ± 9	ARTUSO	80	CLEO	$e^{+}e^{-}$ at $\psi(3770)$
	— Hadronic	modes with a	ΚK	pair —	
$\Gamma(K^+K_S^0)/\Gamma_{\text{total}}$					Г ₉₄ /Г
<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT
• • • We do not use	the following da	ta for averages,	fits, li	mits, etc	. • • •
$3.14\!\pm\!0.09\!\pm\!0.08$	1971 ± 51	BONVICINI	80	CLEO	See MENDEZ 10
$\Gamma(K^+K_S^0)/\Gamma(K_S^0)$	$\pi^+)$				Γ ₉₄ /Γ ₃₉
VALUE 0.192 ±0.006 OUR		DOCUMENT II	D	TECN	COMMENT
0.192 ± 0.006 OUR 0.1901 ± 0.0024 OUR		udes scale factor	r of 2.6	0.	
$0.1899 \pm 0.0011 \pm 0.00$		WON	09	BELL	e^+e^- at \varUpsilon (4 S)
$0.1892 \pm 0.0155 \pm 0.0$	073 278 \pm 21	ARMS	04	CLEO	$e^+e^-pprox~10~{ m GeV}$
$0.1996 \pm 0.0119 \pm 0.0$		LINK			γ A, $\overline{\it E}_{\gamma} pprox$ 180 GeV
• • • We do not use	_	_			
$0.222 \pm 0.037 \pm 0.0$ $0.222 \pm 0.041 \pm 0.0$		ABLIKIM BISHAI			$e^+e^-pprox \ \psi(3770)$ See ARMS 04
$0.25 \pm 0.041 \pm 0.0$					$\gamma \text{Be} \overline{E}_{\gamma} \approx 200 \text{GeV}$
$0.271 \pm 0.065 \pm 0.0$	39 69	ANJOS			,
$0.317 \pm 0.086 \pm 0.06$	48 31				$e^{+}e^{-}$ 3.77 GeV
0.25 ± 0.15	6	SCHINDLER	81	MRK2	e ⁺ e ⁻ 3.771 GeV
$\Gamma(K^+K_S^0)/\Gamma(K^-$	*				Γ_{94}/Γ_{41}
VALUE (units 10 ⁻²)	<u>EVTS</u> <u>D</u>	OCUMENT ID	TEC	N CON	MENT
3.15 ± 0.15 OUR FIT $3.35 \pm 0.06 \pm 0.07$ 5					e^- at 3774 MeV
• • • We do not use					
$3.02\pm0.18\pm0.15$	949 ¹ L				ucleus, $\overline{\it E}_{\gamma} pprox $ 180 GeV
$^{ m 1}$ This LINK 02B re					•
HTTP://PDG.LB	L.GOV	Page 28		Created	d: 5/30/2017 17:22

$\Gamma(K^+K^-\pi^+)/\Gamma_{ ext{total}}$					Γ ₉₅ /Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT	ΓID	TECN	COMMENT
• • • We do not use the fol	lowing data	for averages,	fits, limi	ts, etc. •	• •
$0.935 \pm 0.017 \pm 0.024$ $0.97 \pm 0.04 \pm 0.04$	1250 ± 40	¹ DOBBS ¹ HE			See BONVICINI 14 See DOBBS 07
¹ DOBBS 07 and HE 05 us supersedes HE 05.	se single- and	d double-tagg	ed event	s in an o	verall fit. DOBBS 07
$\Gamma(K^+K^-\pi^+)/\Gamma(K^-2\pi^+)$	r ⁺)				Γ_{95}/Γ_{41}
<u>VALUE</u> <u>E\</u> 0.1059±0.0018 OUR FIT	/TS	DOCUMENT II	<u>TE</u>	CN CO	MMENT
0.1059±0.0018 OUR AVERA 0.106 ±0.002 ±0.003	AGE	BONVICINI	14 CL	_	CLEO-c runs
$0.117 \pm 0.013 \pm 0.007$ 18 $0.107 \pm 0.001 \pm 0.002$ 43	31 ± 20 Bk	ABLIKIM AUBERT	05F BE 05S BA		$e^- \approx \psi(3770)$ $e^- \approx \Upsilon(4S)$
$0.093 \pm 0.010 ^{+0.008}_{-0.006}$		JUN	00 SE	LX Σ	nucleus, 600 GeV
$0.0976 \pm 0.0042 \pm 0.0046$		FRABETTI	95B E6	87 γ l	Be, $\overline{E}_{\gamma}~pprox~$ 200 GeV
$\Gamma(\phi\pi^+,\phi\to K^+K^-)/\Gamma$ This is the "fit fractio	$\Gamma(K^+K^-)$	π ⁺) Dalitz-plot ar	nalvsis		Γ_{96}/Γ_{95}
VALUE (%)		ENT ID	-	COMME	NT
$27.8\pm0.4^{+0.2}_{-0.5}$	RUBIN	08	CLEO	Dalitz f	t, $19,458\pm163$ evts
• • • We do not use the fol	lowing data	for averages,	fits, limi	ts, etc. •	• •
$29.2 \pm 3.1 \pm 3.0$	FRABE	TTI 95B	E687	Dalitz f	t, 915 evts
$\Gamma(K^+\overline{K}^*(892)^0, \overline{K}^*(892)^0)$ This is the "fit fraction"	n" from the	Dalitz-plot ar	nalysis.		Γ ₉₇ /Γ ₉₅
<u>VALUE (%)</u>	DOCUMEN			COMMENT	
$25.7 \pm 0.5 ^{+0.4}_{-1.2}$	RUBIN			·	$19,458 \pm 163 \text{ evts}$
• • • We do not use the fol	lowing data	for averages,	fits, limi	ts, etc.	• •
$30.1 \pm 2.0 \pm 2.5$	FRABET	TI 95B E	E687 □	Dalitz fit,	915 evts
$\Gamma(K^+\overline{K}_0^*(1430)^0$, $\overline{K}_0^*(1430)^0$ This is the "fit fraction"				$\pi^+)$	Γ ₉₈ /Γ ₉₅
VALUE (%)	DOCUM		TECN	COMME	NT
$18.8 \pm 1.2 ^{+3.3}_{-3.4}$	RUBIN	08	CLEO	Dalitz fi	t, $19,458\pm163$ evts
• • • We do not use the fol	lowing data	for averages,	fits, limi	ts, etc.	• •
$37.0 \pm 3.5 \pm 1.8$	FRABE	TTI 95B	E687	Dalitz f	t, 915 evts
$\Gamma(K^+\overline{K}_2^*(1430)^0, \overline{K}_2^* -$ This is the "fit fraction"					Γ ₉₉ /Γ ₉₅
VALUE (%)	<u>DOCUM</u>	ENT ID	TECN	COMME	VT
$1.7\pm0.4^{+1.2}_{-0.7}$	RUBIN	08	CLEO	Dalitz f	t, $19,458\pm163$ evts

I

$\Gamma(K^+\overline{K}_0^*(800), \overline{K}_0^*)$ This is the "fit fr	$\rightarrow K^-\pi$	-+)/Γ(<i>K</i> + <i>K</i>	$-\pi^+$	·)			Γ_{100}/Γ_{95}
VALUE (%)			piot ai	•		<i>MMENT</i>	
$7.0\pm0.8^{+3.5}_{-2.0}$		RUBIN	08	CLE	O Da	alitz fit, 19,45	58 ± 163 evts
$\Gamma(a_0(1450)^0\pi^+, a_0^0)$ This is the "fit fr	$\rightarrow K^+ I$ action" from	(-)/Γ(K+ / om the Dalitz- _l	(π - plot ai	+) nalysis	S.		Γ_{101}/Γ_{95}
VALUE (%)						<i>MMENT</i>	
$4.6\pm0.6^{+7.2}_{-1.8}$		RUBIN	80	CLE	O Da	alitz fit, 19,45	$58 \!\pm\! 163$ evts
$\Gamma(\phi(1680)\pi^+, \phi \rightarrow$ This is the "fit fr				nalysis	:		Γ_{102}/Γ_{95}
VALUE (%)		-		-		MMENT	
$0.51 \pm 0.11 ^{+0.37}_{-0.16}$		RUBIN	80	CLE	O Da	alitz fit, 19,45	$58\!\pm\!163$ evts
$\Gamma(K^*(892)^+K_S^0)/\Gamma$							Γ_{110}/Γ_{39}
Unseen decay mo	des of the <u>EVTS</u>	e K*(892) ⁺ ar <u>DOCUMENT</u>			TECN	<u>COMMENT</u>	
1.1±0.3±0.4	67	FRABETT				$\gamma \operatorname{Be} \overline{E}_{\gamma} \approx$	200 GeV
$\Gamma(K_S^0 K_S^0 \pi^+)/\Gamma_{\text{tota}}$	I					, ,	Γ ₁₀₃ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT	- ID		TECN	COMMENT	
$27.0 \pm 0.5 \pm 1.2$	4897	ABLIKIM		17A I	BES3	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(\phi\pi^+\pi^0)/\Gamma_{ ext{total}}$ Unseen decay mo	des of the	$_{e}$ ϕ are included	d.				Γ ₁₀₇ /Γ
VALUE		DOCUMENT			TECN	COMMENT	
0.023±0.010		¹ BARLAG		_		π^- Cu 230	
¹ BARLAG 92C comp	utes the b	ranching fracti	on us	ing to	pologi	cal normaliza	ition.
$\Gamma(\phi \rho^+)/\Gamma(K^-2\pi^+)$ Unseen decay mo		ϕ are included	d.				Γ_{108}/Γ_{41}
VALUE	<u>CL%</u>	<u>DOCUMENT</u>				COMMENT	
<0.16	90	DAOUDI	!	92 (CLEO	$e^+e^-\approx$	10.5 GeV
$\Gamma(K^+K^-\pi^+\pi^0 non$	- ϕ)/Γ $_{tot}$		- ID		TECN	<u>COMMENT</u>	Γ ₁₀₉ /Γ
0.015 ^{+0.007} _{-0.006}						π^- Cu 230) GeV
¹ BARLAG 92C comp	utes the b	oranching fracti	ion us	ing to	pologi	cal normaliza	ition.
$\Gamma(K^+K^-\pi^+\pi^0$ non	$-\phi)/\Gamma(\kappa$	$(-2\pi^+)$					Γ_{109}/Γ_{41}
	<u>CL%</u>					COMMENT	
• • • We do not use th							
<0.25	90	ANJOS	;	89E i	±691	Photoprodu	uction

```
\Gamma(K^+K^0_S\pi^+\pi^-)/\Gamma(K^0_S2\pi^+\pi^-)
                                                                                             \Gamma_{104}/\Gamma_{62}
VALUE (units 10<sup>-2</sup>)
                                         DOCUMENT ID
                                                                TECN COMMENT
                                                           01C FOCS \gamma nucleus, \overline{E}_{\gamma} \approx 180 \text{ GeV}
5.62 \pm 0.39 \pm 0.40 469 \pm 32
                                         LINK
\Gamma(K_{S}^{0}K^{-}2\pi^{+})/\Gamma(K_{S}^{0}2\pi^{+}\pi^{-})
                                                                                             \Gamma_{105}/\Gamma_{62}
VALUE (units 10^{-2}) EVTS
                                         DOCUMENT ID
                                                             TECN COMMENT
7.68 \pm 0.41 \pm 0.32 670 \pm 35
                                                           01C FOCS \ \gamma nucleus, \overline{\it E}_{\gamma} \approx \ 180 \ {
m GeV}
                                         LINK
\Gamma(K^+K^-2\pi^+\pi^-)/\Gamma(K^-3\pi^+\pi^-)
                                                                                             \Gamma_{106}/\Gamma_{63}
0.040\pm0.009\pm0.019
                                                             03D FOCS \gamma A, \overline{E}_{\gamma} \approx 180 \text{ GeV}
                                           LINK

    Doubly Cabibbo-suppressed modes -

\Gamma(K^+\pi^0)/\Gamma_{\text{total}}
                                                                                               \Gamma_{111}/\Gamma
VALUE (units 10^{-4})
                                                                      TECN
1.81±0.27 OUR FIT Error includes scale factor of 1.4.
                          189 \pm 37
                                                                06F BABR e^+e^- \approx \Upsilon(4S)
2.52\pm0.47\pm0.26
                                             AUBERT,B
• • • We do not use the following data for averages, fits, limits, etc. • • •
2.28\!\pm\!0.36\!\pm\!0.17
                          148 \pm 23
                                             DYTMAN
                                                               06
                                                                      CLEO See MENDEZ 10
\Gamma(K^+\pi^0)/\Gamma(K^-2\pi^+)
                                                                                             \Gamma_{111}/\Gamma_{41}
VALUE (units 10^{-3})
                                 EVTS
                                              DOCUMENT ID
                                                                       TECN COMMENT
2.01 ± 0.30 OUR FIT Error includes scale factor of 1.4.
                                                                10 CLEO e^{+}e^{-} at 3774 MeV
1.9 \pm 0.2 \pm 0.1
                            343 \pm 37
                                              MENDEZ
\Gamma(K^+\eta)/\Gamma(\eta\pi^+)
                                                                                             \Gamma_{112}/\Gamma_{89}
VALUE (%)
                                                                       BELL e^+e^- \approx \Upsilon(4S)
3.06 \pm 0.43 \pm 0.14
                           166 + 23
\Gamma(K^+\eta)/\Gamma(K^-2\pi^+)
                                                                                             \Gamma_{112}/\Gamma_{41}
       Unseen decay modes of the \eta are included.
VALUE (units 10^{-2})
                                           DOCUMENT ID
                        CL%
                                                              TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                             10 CLEO e^{+}e^{-} at 3774 MeV
                                           MENDEZ
\Gamma(K^+\eta'(958))/\Gamma(\eta'(958)\pi^+)
                                                                                             \Gamma_{113}/\Gamma_{92}
VALUE (%)
                                                                       TECN COMMENT
3.77 \pm 0.39 \pm 0.10
                           180 \pm 19
                                              WON
                                                                11
                                                                       BELL e^+e^- \approx \Upsilon(4S)
\Gamma(K^+\eta'(958))/\Gamma(K^-2\pi^+)
                                                                                             \Gamma_{113}/\Gamma_{41}
       Unseen decay modes of the \eta'(958) are included.
VALUE (units 10^{-2}) CL\%
                                           DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                             10 CLEO e^{+}e^{-} at 3774 MeV
< 0.20
                                           MENDEZ
```

$\Gamma(K^+\pi^+\pi^-)/\Gamma(K^-2)$	$\pi^+)$					Γ_{114}/Γ_{41}
	EVTS	DOCUME	NT ID	TECN	COMMEN	T
5.77±0.22 OUR AVERAG						
	2638 ± 84	KO		09 BELL		` ,
$6.5 \pm 0.8 \pm 0.4$	189 ± 24	LINK		04F FOCS	,	
	59 ± 13	AITALA		97C E791	π^{-} A, 5	
$7.2 \pm 2.3 \pm 1.7$	21	FRABE	ГТІ	95E E687	γ Be, \overline{E}_{γ}	= 220 GeV
$\Gamma(K^+\rho^0)/\Gamma(K^+\pi^+\pi^-)$ This is the "fit fract	-) ion" from the	e Dalitz-pl	ot analy	/sis.		$\Gamma_{115}/\Gamma_{114}$
VALUE	DOCUMENT					
0.39 ± 0.09 OUR AVE	RAGE					
$0.3943 \pm 0.0787 \pm 0.0815$				Dalitz fit,		
$0.37 \pm 0.14 \pm 0.07$	AITALA	97 C	E791	Dalitz fit,	59 evts	
Γ(K+ f ₀ (980), f ₀ (980) This is the "fit fract	ion" from the	e Dalitz-pl	ot analy	/sis.		$\Gamma_{117}/\Gamma_{114}$
<u>VALUE</u>	<u>DOCUMENT</u>					
$0.0892 \pm 0.0333 \pm 0.0412$	LINK	04F	FUCS	Dalitz fit,	189 evts	
$\Gamma(K^*(892)^0\pi^+, K^*(891)^0\pi^+)$ This is the "fit fract	$(92)^0 \rightarrow K^+$	π ⁻)/ Γ (e Dalitz-pl	$K^+\pi^+$	-π ⁻)		$\Gamma_{116}/\Gamma_{114}$
VALUE				<u>COMMENT</u>		
0.47 ±0.08 OUR AVE				'		
$0.5220 \pm 0.0684 \pm 0.0638$	LINK	04F	FOCS	Dalitz fit,	189 evts	
$0.35 \pm 0.14 \pm 0.01$	AITALA	97 C	E791	Dalitz fit,	59 evts	
$\Gamma(K_2^*(1430)^0\pi^+, K_2^*(1430)^0\pi^+)$ This is the "fit fract VALUE	$(1430)^0 \rightarrow 6$ ion" from the	Dalitz-pl	ot analy	/sis.		Γ ₁₁₈ /Γ ₁₁₄
This is the "fit fract	ion" from the <u>DOCUMENT</u>	e Dalitz-pl ID	ot analy <u>TECN</u>	rsis. <u>COMMENT</u>	189 evts	Γ ₁₁₈ /Γ ₁₁₄
This is the "fit fract <u>VALUE</u>	ion" from the <u>DOCUMENT</u> LINK ant)/Γ(K+ ion" from the	Dalitz-pl $\frac{ID}{ID}$ 04F $\pi^+\pi^-)$ e Dalitz-pl	ot analy <u>TECN</u> FOCS ot analy	vsis. <u>COMMENT</u> Dalitz fit,		Γ ₁₁₈ /Γ ₁₁₄ Γ ₁₁₉ /Γ ₁₁₄
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^{+}\pi^{+}\pi^{-}\text{ nonresons this is the "fit fract VALUE})$	ion" from the <u>DOCUMENT</u> LINK ant)/Γ(K+ ion" from the	Dalitz-pl $\frac{ID}{D}$ 04F $\pi^+\pi^-$) Dalitz-pl DCUMENT I	ot analy TECN FOCS ot analy	vsis. <u>COMMENT</u> Dalitz fit, vsis. <u>TECN</u> <u>C</u>	OMMENT	
This is the "fit fract VALUE 0.0803 \pm 0.0372 \pm 0.0391 $\Gamma(K^{+}\pi^{+}\pi^{-}\text{nonresona})$ This is the "fit fract	ion" from the $DOCUMENT$ LINK ant)/ $\Gamma(K^+)$ ion" from the DOC following data	Dalitz-pl $\frac{ID}{D}$ 04F $\pi^+\pi^-$) Dalitz-pl DCUMENT I	ot analy TECN FOCS ot analy D ges, fits	vsis. <u>COMMENT</u> Dalitz fit, vsis. <u>TECN</u> <u>C</u>	<u>OMMENT</u> . • • •	Γ ₁₁₉ /Γ ₁₁₄
This is the "fit fract VALUE $0.0803 \pm 0.0372 \pm 0.0391$ $\Gamma(K^{+}\pi^{+}\pi^{-} \text{ nonresona})$ This is the "fit fract VALUE \bullet \bullet \bullet We do not use the fit	ion" from the DOCUMENT LINK ant)/Γ(K+ ion" from the DOC following data	Palitz-pl 1D 04F π+π-) POCUMENT I TALA	ot analy TECN FOCS ot analy D ges, fits	vsis. COMMENT Dalitz fit, vsis. TECN G, limits, etc	<i>OMMENT</i> . • • • Palitz fit, 5	Γ₁₁₉/Γ₁₁₄ 9 evts
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^{+}\pi^{+}\pi^{-}\text{ nonresons This is the "fit fract VALUE}$ •• • We do not use the found $0.36\pm0.14\pm0.07$ 1 LINK 04F, with three to $\Gamma(2K^{+}K^{-})/\Gamma(K^{-}2\pi)$	ion" from the DOCUMENT LINK ant)/Γ(K+ ion" from the DOC following data 1 AI times as many	Palitz-pl 1D 04F π+π-) Palitz-pl DCUMENT I of for avera TALA v events, f	ot analy TECN FOCS ot analy D ges, fits 970 inds no	vsis. COMMENT Dalitz fit, vsis. TECN S, limits, etc E791 D need for a r	OMMENT . • • • Palitz fit, 5 nonresonar	Γ₁₁₉/Γ₁₁₄ 9 evts
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^+\pi^+\pi^-\text{nonresons})$ This is the "fit fract VALUE \bullet \bullet \bullet We do not use the fit $0.36\pm0.14\pm0.07$ 1 LINK 04F, with three to $\Gamma(2K^+K^-)/\Gamma(K^-2\pi^-)$ VALUE (units 10^{-4}) EVT	ion" from the DOCUMENT LINK ant)/Γ(K+ ion" from the DOC following data 1 AI times as many +) DOCUMENT DOCUMENT DOCUMENT LINK	Dalitz-pl O4F π+π-) Dalitz-pl OCUMENT I TALA V events, f	ot analy TECN FOCS ot analy D ges, fits 970 inds no	vsis. COMMENT Dalitz fit, vsis. TECN Commits, etc E791 Defineed for a recommend	OMMENT . • • • Palitz fit, 5 nonresonar	$\Gamma_{119}/\Gamma_{114}$ 9 evts that amplitude. Γ_{120}/Γ_{41}
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^{+}\pi^{+}\pi^{-}\text{ nonresons This is the "fit fract VALUE}$ •• • We do not use the found $0.36\pm0.14\pm0.07$ 1 LINK 04F, with three to $\Gamma(2K^{+}K^{-})/\Gamma(K^{-}2\pi)$	ion" from the DOCUMENT LINK ant)/Γ(K+ ion" from the DOC following data 1 AI times as many +) DOCUMENT DOCUMENT DOCUMENT LINK	Dalitz-pl O4F π+π-) Dalitz-pl OCUMENT I TALA V events, f	ot analy TECN FOCS ot analy D ges, fits 970 inds no	vsis. COMMENT Dalitz fit, vsis. TECN S, limits, etc E791 D need for a r	OMMENT . • • • Palitz fit, 5 nonresonar	$\Gamma_{119}/\Gamma_{114}$ 9 evts that amplitude. Γ_{120}/Γ_{41}
This is the "fit fract VALUE 0.0803 \pm 0.0372 \pm 0.0391 $\Gamma(K^{+}\pi^{+}\pi^{-}\text{ nonresons This is the "fit fract VALUE}$ • • • We do not use the fit 0.36 \pm 0.14 \pm 0.07 1 LINK 04F, with three to $\Gamma(2K^{+}K^{-})/\Gamma(K^{-}2\pi^{-})$ VALUE (units 10 ⁻⁴) 9.49 \pm 2.17 \pm 0.22 65	ion" from the DOCUMENT LINK ant)/\(\right(K+\frac{1}{2}\) ion" from the OC following data 1 AI times as many +) \(\frac{5}{2}\) \(\frac{1}{2}\) \(\f	Palitz-pl 1D 04F π+π-) Palitz-pl COUMENT I TALA r events, f	ot analy TECN FOCS ot analy D ges, fits 97C inds no	vsis. $\frac{COMMENT}{Dalitz}$ fit, γ sis. $\frac{TECN}{S}$, limits, etc $\frac{TECN}{S}$ need for a recovery $\frac{COM}{S}$	OMMENT . • • • Palitz fit, 5 nonresonar MENT ucleus, ≈ 1	$\Gamma_{119}/\Gamma_{114}$ 9 evts that amplitude. Γ_{120}/Γ_{41}
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^+\pi^+\pi^-\text{nonresons} \text{This is the "fit fract VALUE}$ •• • We do not use the found $0.36\pm0.14\pm0.07$ LINK 04F, with three to $\Gamma(2K^+K^-)/\Gamma(K^-2\pi^-)$ VALUE (units 10^{-4}) $VALUE$ (units 10^{-4})	ion" from the DOCUMENT LINK ant)/\(\rho(K^+)\) ion" from the DOC following data 1 AI times as many +) S DOCU LINK dence for \(\phi(K^+)\)	e Dalitz-pl $\frac{D}{D}$ 04F $\pi^+\pi^-$) e Dalitz-pl DCUMENT ID TALA V events, f	ot analy $TECN$ FOCS ot analy D ges, fits $97C$ inds no $02I$ F $980)$ K^{+}	ysis. COMMENT Dalitz fit, ysis. TECN Commits, etc Figure 100 FOCS γ nu submodes	OMMENT . • • • Palitz fit, 5 nonresonar MENT ucleus, ≈ 1	$\Gamma_{119}/\Gamma_{114}$ 9 evts that amplitude. Γ_{120}/Γ_{41}
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^+\pi^+\pi^-\text{nonresons} \text{This is the "fit fract VALUE}$ •• • We do not use the found $0.36\pm0.14\pm0.07$ LINK 04F, with three to $\Gamma(2K^+K^-)/\Gamma(K^-2\pi^-)$ VALUE (units 10^{-4}) $VALUE$ (units 10^{-4})	ion" from the DOCUMENT LINK ant)/\(\right(K+\frac{1}{2}\) ion" from the OC following data 1 AI times as many +) \(\frac{5}{2}\) \(\frac{1}{2}\) \(\f	e Dalitz-pl $\frac{D}{D}$ 04F $\pi^+\pi^-$) e Dalitz-pl DCUMENT ID TALA V events, f	ot analy $TECN$ FOCS ot analy D ges, fits $97C$ inds no $02I$ F $980)$ K^{+}	ysis. COMMENT Dalitz fit, ysis. TECN Commits, etc Figure 100 FOCS γ nu submodes	OMMENT . • • • Palitz fit, 5 nonresonar MENT ucleus, ≈ 1	$\Gamma_{119}/\Gamma_{114}$ 9 evts that amplitude. Γ_{120}/Γ_{41}
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^+\pi^+\pi^-\text{ nonresons} \text{ This is the "fit fract VALUE}$ •• • We do not use the found $0.36\pm0.14\pm0.07$ LINK 04F, with three to $\Gamma(2K^+K^-)/\Gamma(K^-2\pi^-V^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-)/\Gamma(K^-2\pi^-V^-$	ion" from the DOCUMENT LINK ant)/\(\rightarrow{K}+\rightarrow{DC}{\text{tollowing data}}\) ion" from the DOCUMENT LINK following data 1 AI times as many +) S DOCUMENT LINK ridence for \(\phi \rightarrow{K}\) Rare or = 1 weak near	e Dalitz-pl D	ot analy TECN FOCS ot analy D ges, fits 97C inds no 021 F 980) K en mode	zsis. COMMENT Dalitz fit, zsis. TECN Comment Sis. TECN Comment Sis. E791 Defect FOCS γ nu submodes Submodes Submodes Submodes	OMMENT . • • • Palitz fit, 5 nonresonar MENT Icleus, ≈ 1 . gher-order	Γ ₁₁₉ /Γ ₁₁₄ 9 evts nt amplitude. Γ ₁₂₀ /Γ ₄₁ 180 GeV Γ ₁₂₁ /Γ r electroweak
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^+\pi^+\pi^-\text{nonresons})$ This is the "fit fract VALUE \bullet • • We do not use the found $0.36\pm0.14\pm0.07$ ${}^1\text{LINK 04F, with three to}$ $\Gamma(2K^+K^-)/\Gamma(K^-2\pi^-)$ $VALUE \text{(units }10^{-4})$	ion" from the DOCUMENT LINK ant)/\(\right(K+\) ion" from the DOCUMENT Collowing data 1 AI cimes as many 1 LINK idence for \(\phi \) Rare or 1 weak near CL% DOCUMENT LINK DOCUMENT AI DOCUMENT AI DOCUMENT DOCU	Dalitz-pl 1D 04F π+π-) Pa Dalitz-pl DCUMENT ID CA (+ or f ₀ (representation of the complete of the c	ot analy TECN FOCS ot analy D ges, fits 970 inds no 021 F 980) K en mod ent. Al	rsis. COMMENT Dalitz fit, rsis. TECN E791 Defect COM FOCS γ nu submodes Les Lowed by hi	OMMENT . • • • Palitz fit, 5 nonresonar MENT Icleus, ≈ 1 . gher-order	Γ ₁₁₉ /Γ ₁₁₄ 9 evts nt amplitude. Γ ₁₂₀ /Γ ₄₁ 180 GeV Γ ₁₂₁ /Γ r electroweak
This is the "fit fract VALUE $0.0803\pm0.0372\pm0.0391$ $\Gamma(K^+\pi^+\pi^-\text{nonresons})$ This is the "fit fract VALUE \bullet • • We do not use the found $0.36\pm0.14\pm0.07$ LINK 04F, with three to $\Gamma(2K^+K^-)/\Gamma(K^-2\pi^-)$ VALUE (units 10^{-4}) EVT $0.49\pm2.17\pm0.22$ 6.1 LINK 02I finds little even $0.49\pm2.17\pm0.22$ 6.1 LINK 02I finds little even $0.49\pm2.17\pm0.22$ 6.1 A test for the $0.49\pm2.17\pm0.22$ 6.1 A test for the $0.49\pm2.17\pm0.22$ 6.1 Interactions. VALUE	ion" from the DOCUMENT LINK ant)/\(\right(K+\) ion" from the DOCUMENT Collowing data 1 AI cimes as many 1 LINK idence for \(\phi \) Rare or 1 weak near CL% DOCUMENT LINK DOCUMENT AI DOCUMENT AI DOCUMENT DOCU	e Dalitz-pl D	ot analy TECN FOCS ot analy D ges, fits 970 inds no 021 F 980) K en mod ent. Al	zsis. COMMENT Dalitz fit, zsis. TECN Comment Sis. TECN Comment Sis. E791 Defect FOCS γ nu submodes Submodes Submodes Submodes	OMMENT . • • • Palitz fit, 5 nonresonar MENT Icleus, ≈ 1 . gher-order	Γ ₁₁₉ /Γ ₁₁₄ 9 evts nt amplitude. Γ ₁₂₀ /Γ ₄₁ 180 GeV Γ ₁₂₁ /Γ r electroweak

• • We do not use the following data for averages, fits, limits, etc.

$< 5.9 \times 10^{-6}$	90	¹ RUBIN	10	CLEO	e^+e^- at $\psi(3770)$
$< 7.4 \times 10^{-6}$	90	HE	05A	CLEO	See RUBIN 10
$< 5.2 \times 10^{-5}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 1.1 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$<6.6 \times 10^{-5}$	90	AITALA			π^- N 500 GeV
$< 2.5 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV
$< 2.6 \times 10^{-3}$	90	HAAS	88	CLEO	e^+e^- 10 GeV

¹ This RUBIN 10 limit is for the e^+e^- mass in the continuum away from the $\phi(1020)$. See the next data block.

$\Gamma(\pi^+\phi,\phi\to e^+e^-)/\Gamma_{\text{total}}$

This is *not* a test for the $\Delta C = 1$ weak neutral current, but leads to the $\pi^+ e^+ e^$ final state.

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
$(1.7^{+1.4}_{-0.9}\pm0.1)\times10^{-6}$	4	¹ RUBIN	10	CLEO	$e^{+}e^{-}$ at $\psi(3770)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$(2.7^{+3.6}_{-1.8}\pm0.2)\times10^{-6}$$

ΗE

05A CLEO See RUBIN 10

 $\Gamma(\pi^+\mu^+\mu^-)/\Gamma_{\rm total}$

A test for the $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 7.3 \times 10^{-8}$	90	AAIJ	13AF	LHCB	pp at 7 TeV
• • • We do not	use the fol	lowing data for a	averag	ges, fits,	limits, etc. • • •
$< 6.5 \times 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox \ \varUpsilon(4S)$
$< 3.9 \times 10^{-6}$	90	ABAZOV	08 D	D0	$p\overline{p}$, $E_{cm} = 1.96 \; TeV$
$< 8.8 \times 10^{-6}$	90	LINK	03F	FOCS	γ A, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$
$< 1.5 \times 10^{-5}$	90	AITALA	99G	E791	π^- N 500 GeV
$< 8.9 \times 10^{-5}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$< 1.8 \times 10^{-5}$	90	AITALA	96	E791	π^- N 500 GeV
$< 2.2 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
$< 5.9 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV
$< 2.9 \times 10^{-3}$	90	HAAS	88	CLEO	e^+e^- 10 GeV

¹ This ABAZOV 08D limit is for the $\mu^+\mu^-$ mass in the continuum away from the $\phi(1020)$. See the next data block.

$\Gamma(\pi^+\phi, \phi \rightarrow \mu^+\mu^-)/\Gamma_{\text{total}}$

Created: 5/30/2017 17:22

This is *not* a test for the $\Delta C = 1$ weak neutral current, but leads to the $\pi^+ \mu^+ \mu^$ final state.

¹This RUBIN 10 result is consistent with the known $D^+ o \phi \pi^+$ and $\phi o e^+ e^$ fractions.

¹ This ABAZOV 08D value is consistent with the known $D^+ o \phi \pi^+$ and $\phi o \mu^+ \mu^$ fractions.

$\Gamma(\rho^+\mu^+\mu^-)/\Gamma_{\text{total}}$					Γ ₁₂₅ /Γ
A test for the $\Delta 0$ interactions.	L = 1 wea	k neutral curre	nt. Allo	owed by	higher-order electroweak
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.6 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
$\Gamma(K^+e^+e^-)/\Gamma_{\text{total}}$ Both quarks would	d have to c	hange flavor for	this de	cay to o	Γ ₁₂₆ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.0 \times 10^{-6}$	90	LEES			$e^+e^-pprox \ \varUpsilon(4S)$
• • • We do not use the	e following	data for averag	es, fits,	limits, e	etc. • • •
$< 3.0 \times 10^{-6}$	90	RUBIN	10	CLEO	e^+e^- at $\psi(3770)$
$<6.2 \times 10^{-6}$	90	HE	05A	CLEO	See RUBIN 10
$< 2.0 \times 10^{-4}$	90	AITALA	99G	E791	π^- N 500 GeV
$< 2.0 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$<4.8 \times 10^{-3}$	90	WEIR			e ⁺ e ⁻ 29 GeV
$\Gamma(K^+\mu^+\mu^-)/\Gamma_{\text{total}}$ Both quarks would	d have to c	hange flavor for	this de	cay to o	Γ ₁₂₇ /Γ
<u>VALUE</u>		DOCUMENT ID			
		LEES			$^+e^-pprox ~ arGamma(4S)$
• • • We do not use the	e following	data for averag	es, fits,	limits, e	etc. • • •
$< 9.2 \times 10^{-6}$	90	LINK	03F F	OCS γ	A, $\overline{E}_{\gamma} pprox$ 180 GeV
	90	AITALA	99G E	791π	− N 500 GeV
$< 9.7 \times 10^{-5}$	90	FRABETTI	97B E	687 γ	Be, $\overline{E}_{\gamma} \approx $ 220 GeV
$< 3.2 \times 10^{-4}$	90	KODAMA	95 E	653π	emulsion 600 GeV
2	90	WEIR	90B N	1RK2 e	+ e− 29 GeV
$\Gamma(\pi^+e^+\mu^-)/\Gamma_{\text{total}}$ A test of lepton-fa	nmily-numb <i>CL%</i>			TECN	Γ ₁₂₈ /Γ
<2.9 × 10 ⁻⁶		<u>DOCUMENT ID</u> LEES			$e^+e^-\approx \Upsilon(4S)$
• • • We do not use the					` '
_					
$<1.1 \times 10^{-4}$	90	FRABETTI			γ Be, $\overline{E}_{\gamma} \approx 220$ GeV
$< 3.3 \times 10^{-3}$	90	WEIR	90 B	MRK2	e ⁺ e ⁻ 29 GeV
$\Gamma(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ A test of lepton-fa	ımily-numb	er conservation			Γ ₁₂₉ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<3.6 × 10 ⁻⁶	90	LEES			$e^+e^- \approx \Upsilon(4S)$

 $< \! 1.3 \times 10^{-4}$

 $< 3.3 \times 10^{-3}$

97B E687 γ Be, $\overline{E}_{\gamma} \approx$ 220 GeV 90B MRK2 ${\rm e^+\,e^-}$ 29 GeV

Created: 5/30/2017 17:22

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

90

FRABETTI

WEIR

$\Gamma(K^+e^+\mu^-)/\Gamma_{\text{total}}$ A test of lepton-fai	mily numbo	r conservation			Γ ₁₃₀ /Γ
VALUE VALUE		DOCUMENT ID		TECN	COMMENT
<1.2 × 10 ⁻⁶					$e^+e^-\approx \Upsilon(4S)$
• • • We do not use the					` ,
$< 1.3 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$< 3.4 \times 10^{-3}$		WEIR			e^+e^- 29 GeV
$\Gamma(K^+e^-\mu^+)/\Gamma_{\text{total}}$					Γ ₁₃₁ /Γ
A test of lepton-fai				TECN	COMMENT
$\frac{VALUE}{<2.8\times10^{-6}}$		DOCUMENT ID			$e^+e^-\approx \Upsilon(4S)$
• • • We do not use the					` '
$< 1.2 \times 10^{-4}$					
$< 3.4 \times 10^{-3}$		FRABETTI			γ Be, $\overline{E}_{\gamma} \approx 220 \text{ GeV}$
< 3.4 × 10	90	WEIR	90B	WKK2	e ⁺ e ⁻ 29 GeV
$\Gamma(\pi^-2e^+)/\Gamma_{\text{total}}$					Γ ₁₃₂ /Γ
A test of lepton-nu				TFCN	COMMENT
<1.1 × 10 ⁻⁶		RUBIN			$e^{+}e^{-}$ at $\psi(3770)$
• • • We do not use the					,
$< 1.9 \times 10^{-6}$	90	LEES			$e^+e^-pprox \ \Upsilon(4S)$
$< 3.6 \times 10^{-6}$	90	HE			See RUBIN 10
$<9.6 \times 10^{-5}$	90	AITALA			π^- N 500 GeV
$<1.1 \times 10^{-4}$	90	FRABETTI			γ Be, $\overline{E}_{\gamma} \approx 220 \text{ GeV}$
$< 4.8 \times 10^{-3}$	90	WEIR			$e^{+}e^{-}$ 29 GeV
$\Gamma(\pi^- 2\mu^+)/\Gamma_{total}$					Γ ₁₃₃ /Γ
A test of lepton-nu	mber conse	rvation.			1337
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.2 \times 10^{-8}$	90	AAIJ	13AF	LHCB	pp at 7 TeV
• • • We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
$< 2.0 \times 10^{-6}$	90	LEES	11 G	BABR	$e^+e^-pprox ~ \varUpsilon(4S)$
$<4.8 \times 10^{-6}$	90	LINK	03F	FOCS	γ A, $\overline{\it E}_{\gamma}{pprox}$ 180 GeV
$< 1.7 \times 10^{-5}$	90	AITALA	99G	E791	π^- N 500 GeV
$< 8.7 \times 10^{-5}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$< 2.2 \times 10^{-4}$	90	KODAMA	95	E653	
$< 6.8 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV
$\Gamma(\pi^-e^+\mu^+)/\Gamma_{\text{total}}$ A test of lepton-nu	mber conse	rvation			Γ ₁₃₄ /Γ
VALUE VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<2.0 × 10 ⁻⁶	90	LEES			$e^+e^-\approx \Upsilon(4S)$
• • • We do not use the	following d				
$< 5.0 \times 10^{-5}$	90	AITALA	99G	E791	π^- N 500 GeV
$< 1.1 \times 10^{-4}$	90	FRABETTI			γ Be, $\overline{E}_{\gamma} \approx$ 220 GeV
$< 3.7 \times 10^{-3}$	90	WEIR			e ⁺ e ⁻ 29 GeV
			•		

$\Gamma(\rho^- 2\mu^+)/\Gamma_{\text{total}}$ A test of lepto	n-number con	servation.			Γ ₁₃₅ /Γ
	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 5.6 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
$\Gamma(K^-2e^+)/\Gamma_{\text{tota}}$ A test of lepto		sonvation			Γ ₁₃₆ /Γ
VALUE	<u>CL%</u>		D	TECN	COMMENT
<0.9 × 10 ⁻⁶	90	LEES			$e^+e^-pprox \ \gamma(4S)$
• • • We do not use	e the following				
$< 3.5 \times 10^{-6}$	90	RUBIN	10	CLEC) $e^{+}e^{-}$ at ψ (3770)
$< 4.5 \times 10^{-6}$	90	HE	05 <i>A</i>	CLEC	See RUBIN 10
$<1.2 \times 10^{-4}$	90	FRABETTI	97E	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$< 9.1 \times 10^{-3}$	90	WEIR	90E	MRK	2 e ⁺ e ⁻ 29 GeV
$\Gamma(K^-2\mu^+)/\Gamma_{tota}$ A test of lepto	ı l on-number con	servation.			Γ ₁₃₇ /Γ
-	CL%	DOCUMENT ID		TECN	COMMENT
$<10 \times 10^{-6}$	90	LEES			$e^+e^-pprox ~ \varUpsilon(4S)$
• • • We do not use	e the following	data for averag	es, fits,	limits,	etc. • • •
$< 1.3 \times 10^{-5}$	90	LINK	03F	FOCS	γ A, $\overline{\it E}_{\gamma}{pprox}$ 180 GeV
$< 1.2 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\overline{E}}_{\gamma} pprox 220$ GeV
$< 3.2 \times 10^{-4}$	90	KODAMA	95	E653	,
$< 4.3 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV
$\Gamma(K^-e^+\mu^+)/\Gamma_{tc}$ A test of lepto		sonvation			Γ ₁₃₈ /Γ
=	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
$<1.9 \times 10^{-6}$	90	LEES			$e^+e^-pprox \ \Upsilon(4S)$
• • • We do not use	e the following				, ,
$< 1.3 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\it E}_{\gamma} pprox $ 220 GeV
$< 4.0 \times 10^{-3}$	90	WEIR			$e^{+}e^{-}$ 29 GeV
Γ(K*(892) ⁻ 2μ ⁺) A test of lepto)/F _{total} on-number con	servation.			Γ ₁₃₉ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 8.5 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
D± (CD VIOLATI	NG DECAY-R	ATE A	A SVMI	METRIES

D[±] CP-VIOLATING DECAY-RATE ASYMMETRIES

This is the difference between D^+ and D^- partial widths for the decay to state f, divided by the sum of the widths: $A_{CP}(f) = [\Gamma(D^+ \to f) - \Gamma(D^- \to \overline{f})]/[\Gamma(D^+ \to f) + \Gamma(D^- \to \overline{f})].$

$$A_{CP}(f) = \left[\Gamma(D^+ \to f) - \Gamma(D^- \to \overline{f}) \right] / \left[\Gamma(D^+ \to f) + \Gamma(D^- \to \overline{f}) \right].$$

$A_{CP}(\mu^{\pm}\nu)$ in $D^+ o \mu^+ u_{\mu}$, $D^- o \mu^-\overline{ u}_{\mu}$							
VALUE (%)	DOCUMENT ID	TECN	COMMENT				
+8±8	EISENSTEIN 08	CLEO	$e^{+}e^{-}$ at $\psi(3770)$				

$A_{CP}(K_I^0 e^{\pm} \nu)$ in $D^+ \rightarrow K_I^0$	$e^+ \nu_e$, $D^- \rightarrow$	$K_I^0 e^- \overline{\nu}_e$	
VALUE (%)	DOCUMENT ID	TECN	COMMENT
$-0.59\pm0.60\pm1.48$	ABLIKIM	15AF BES3	$e^{+}e^{-}$ 3773 MeV
$A_{CP}(K_S^0\pi^{\pm}) \text{ in } D^{\pm} \rightarrow K_S^0\pi^{\pm}$	π^{\pm}		
VALUE (%) EVTS	DOCUMENT ID	TECN	COMMENT
-0.41 ± 0.09 OUR AVERAGE			
$-1.1 \pm 0.6 \pm 0.2$	BONVICINI		All CLEO-c runs
$-0.363 \pm 0.094 \pm 0.067$ 1738k	¹ KO		$e^+e^-\approx \Upsilon(nS)$
$-0.44 \pm 0.13 \pm 0.10$ 807k $-1.6 \pm 1.5 \pm 0.9$ 10.6k	DEL-AMO-SA. ² LINK	02B FOCS	` ,
 ◆ • We do not use the following 			γ nucleus, $\overline{E}_{\gamma} \approx 180 \; {\rm GeV}$
$-0.71 \pm 0.19 \pm 0.20$ $-1.3 \pm 0.7 \pm 0.3$ 30k	KO MENDEZ		See KO 12A See BONVICINI 14
$-0.6 \pm 1.0 \pm 0.3$	DOBBS		See MENDEZ 10
$^{ m 1}$ KO 12A finds that after subtr	acting the contril	bution due to	$K^0 - \overline{K}^0$ mixing, the <i>CP</i>
asymmetry due to the change	of charm is (-0.0)	$024 \pm 0.094 \pm$	± 0.067)%, consistent with
zero. 2 LINK 02B measures $N(D^+ \rightarrow$	$\kappa_c^0 \pi^+)/N(D^+$	$\rightarrow K^-\pi^+$	π^+), the ratio of numbers
of events observed, and simila	J		<i>,</i> ,
$A_{CP}(K^{\mp}2\pi^{\pm}) \text{ in } D^{+} \rightarrow K^{\pm}$	$^-2\pi^+$, $D^- \rightarrow$	$K^+2\pi^-$	
VALUE (%) EVTS	DOCUMENT ID	TECN	COMMENT
-0.18±0.16 OUR AVERAGE	ADA70\/	141 DO	
$-0.16 \pm 0.15 \pm 0.09$ 2.3M $-0.3 \pm 0.2 \pm 0.4$	ABAZOV BONVICINI		$p\overline{p},\sqrt{s}=1.96{ m TeV}$ All CLEO-c runs
• • We do not use the following			
$-0.1 \pm 0.4 \pm 0.9$ 231k	MENDEZ	10 CLEO	
$-0.5 \pm 0.4 \pm 0.9$	DOBBS		See MENDEZ 10
		0 -	
$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0})$ in D^{+} -			
VALUE (%)	DOCUMENT ID	TECN	COMMENT
$-0.3\pm0.6\pm0.4$	BONVICINI		All CLEO-c runs
• • • We do not use the following	g data for average	es, fits, limits,	etc. • • •
$1.0 \pm 0.9 \pm 0.9$	DOBBS	07 CLEO	See BONVICINI 14
$A_{CP}(K_S^0\pi^{\pm}\pi^0)$ in $D^+\to K_S^0\pi^0$	$(0\pi^{+}\pi^{0}D^{-}$	$\rightarrow K_{c}^{0}\pi^{-}\pi$.0
VALUE (%)	DOCUMENT ID	•	
-0.1±0.7±0.2			All CLEO-c runs
• • We do not use the following			
$0.3 \pm 0.9 \pm 0.3$	DOBBS		See BONVICINI 14
$A_{CP}(K_S^0\pi^\pm\pi^+\pi^-)$ in D^+ -	$\rightarrow K_S^0 \pi^+ \pi^+ \pi^-$	$^-$, $D^- \rightarrow$	$K_S^0\pi^-\pi^-\pi^+$
VALUE (%)	DOCUMENT ID		_
$0.0 \pm 1.2 \pm 0.3$	BONVICINI	14 CLEO	All CLEO-c runs
• • • We do not use the following	g data for average	es, fits, limits,	etc. • • •
$0.1 \pm 1.1 \pm 0.6$	DOBBS	07 CLEO	See BONVICINI 14

$A_{CP}(\pi^{\pm}\pi^{0})$ in $D^{\pm} \rightarrow \pi^{\pm}\pi^{0}$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
+2.9±2.9±0.3	2.6k	MENDEZ	10	CLEO	$e^{+}e^{-}$ at 3774 MeV

$A_{CP}(\pi^{\pm}\eta)$ in $D^{\pm} \rightarrow \pi^{\pm}\eta$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
1.0 ±1.5	OUR AVERAGE	Error includes scale	factor	of 1.4.	
$+1.74\pm1.13$	\pm 0.19	WON	11	BELL	$e^+e^-pprox \ \varUpsilon(4S)$
-2.0 ± 2.3	± 0.3 2.9k	MENDEZ	10	CLEO	e^+e^- at 3774 MeV

$A_{CP}(\pi^{\pm}\eta'(958)) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta'(958)$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
-0.5 ±1.2 OUR AV	ERAGE	Error includes scale	factor	of 1.1.	
$-0.12\!\pm\!1.12\!\pm\!0.17$		WON	11	BELL	$e^+e^-pprox ~ \varUpsilon(4S)$
$-4.0 \pm 3.4 \pm 0.3$	1.0k	MENDEZ	10	CLEO	e^+e^- at 3774 MeV

$A_{CP}(\overline{K}^0/K^0K^{\pm})$ in $D^+ \rightarrow \overline{K}^0K^+$, $D^- \rightarrow K^0K^-$

VALUE (%)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.11±0.17 OUR AVER	AGE				
$0.03\!\pm\!0.17\!\pm\!0.14$	1.0M	¹ AAIJ	14 BD	LHCB	<i>pp</i> at 7, 8 TeV
$0.08\!\pm\!0.28\!\pm\!0.14$	277k	KO	13	BELL	e^+e^- at $\varUpsilon(4S)$
$0.46\!\pm\!0.36\!\pm\!0.25$	159k	LEES	13E	BABR	e^+e^- at $\varUpsilon(4S)$

 $^{^1}$ AAIJ 1 4BD reports its result as 4 CP $(D^\pm o extit{ } K_S^0 \pi^\pm)$ with 4 CP-violation effects in the $K^0-\overline{K}^0$ system subtracted. It also measures $A_{CP}(D^\pm\to\overline{K}^0/K^0K^\pm)+A_{CP}(D_s^\pm\to\overline{K}^0/K^0\pi^\pm)=(0.41\pm0.49\pm0.26)\%.$

$A_{CP}(K_S^0K^{\pm})$ in $D^{\pm} \rightarrow K_S^0K^{\pm}$

VALUE (%)	EVTS	DOCUMENT I	'D	TECN	COMMENT			
-0.11±0.25 OUR AVERAGE								
$-0.25\!\pm\!0.28\!\pm\!0.14$	277k	KO	13	BELL	e^+e^- at $\varUpsilon({\sf nS})$			
$0.13\!\pm\!0.36\!\pm\!0.25$	159k	LEES	13E	BABR	e^+e^- at $\varUpsilon(4S)$			
$-0.2\ \pm 1.5\ \pm 0.9$	5.2k	MENDEZ	10	CLEO	e^+e^- at 3774 MeV			
$7.1 \pm 6.1 \pm 1.2$	949	1 LINK	02 B	FOCS	γ nucleus, $\overline{\it E}_{\gamma} pprox$ 180 GeV			

• • • We do not use the following data for averages, fits, limits, etc. • • •

$-0.16\pm0.58\pm0.25$		KO	10	BELL	$e^+e^-pprox~\Upsilon(4S)$
$6.9 \pm 6.0 \pm 1.5$	949	² LINK	02 B	FOCS	γ nucleus, $\overline{\it E}_{\gamma} pprox$ 180 GeV

 $^{^1}$ LINK 02B measures $\it N(D^+
ightarrow ~\it K^0_S \, K^+)/\it N(D^+
ightarrow ~\it K^0_S \, \pi^+)$, the ratio of numbers of

events observed, and similarly for the D^- . 2 LINK 02B measures $N(D^+ \to K_S^0 K^+)/N(D^+ \to K^- \pi^+ \pi^+)$, the ratio of numbers of events observed, and similarly for the D^- .

$A_{CP}(K^+K^-\pi^\pm)$ in $D^\pm \to K^+K^-\pi^\pm$

See also AAIJ 11G for a search for CP asymmetry in the $D^\pm \to K^+ K^- \pi^\pm$ Dalitz plots using 370k decays and four different binning schemes. No evidence for CP asymmetry was found.

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
0.37 ± 0.29 OUR AV	ERAGE				
$0.37\!\pm\!0.30\!\pm\!0.15$	224k	¹ LEES	13F		e^+e^- at $\varUpsilon(4S)$
$-0.03\!\pm\!0.84\!\pm\!0.29$		RUBIN	80	CLEO	e^+e^- at 3774 MeV
$1.4 \pm 1.0 \pm 0.8$	43k	² AUBERT	05 S	BABR	e^+e^- at $\varUpsilon(4S)$
$0.6\ \pm 1.1\ \pm 0.5$	14k	³ LINK	00 B	FOCS	
-1.4 ± 2.9		³ AITALA	97 B	E791	$-0.062 < A_{CP} <$
		2			+0.034 (90% CL)
-3.1 ± 6.8		³ FRABETTI	941	E687	$-0.14 < A_{CP} <$
					+0.081 (90% CL)

• • • We do not use the following data for averages, fits, limits, etc. • •

$-0.1\ \pm0.9\ \pm0.4$	⁴ BONVICINI	14	CLEO	See RUBIN 08
$-0.1 \pm 1.5 \pm 0.8$	DOBBS	07	CLEO	See BONVICINI 14 and
				RUBIN 08

¹ This is the integrated CP asymmetry. LEES 13F also searches for CP asymmetries in four regions of the Dalitz plots (two of which are listed below); in comparisons of binned D^+ and D^- Dalitz plots; in parametrized fits to those plots, including 2-body submodes; and in comparisons of Legendre-polynomial distributions for the K^+K^- and $K^-\pi^+$ systems.

$A_{CP}(K^{\pm}K^{*0})$ in $D^+ \rightarrow K^+\overline{K}^{*0}$, $D^- \rightarrow K^-K^{*0}$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
- 0.3± 0.4 OUR AVE	RAGE				
$-\ 0.3\pm\ 0.4\pm0.2$	73k	¹ LEES	13F	BABR	e^+e^- at $\varUpsilon(4S)$
$-\ 0.4\pm\ 2.0\pm0.6$		RUBIN	80	CLEO	Fit-fraction asymmetry
$+$ 0.9 \pm 1.7 \pm 0.7	11k	² AUBERT	05 S	BABR	e^+e^- at $\varUpsilon(4S)$
$-$ 1.0 \pm 5.0		³ AITALA	97 B	E791	$-0.092 < A_{CP} <$
					+0.072 (90% CL)
-12 ± 13		³ FRABETTI	941	E687	$-0.33 < A_{CP} <$
					+0.094 (90% CL)

 $^{^1}$ This LEES 13F result is for the $K^\mp\pi^\pm$ mass-squared between 0.4 and 1.0 GeV², and does not actually separate out the K^* .

² AUBERT 05S measures $N(D^+ \rightarrow K^+ K^- \pi^+)/N(D_s^+ \rightarrow K^+ K^- \pi^+)$, the ratio of the numbers of events observed, and similarly for the D^- .

³ FRABETTI 94I, AITALA 98C, and LINK 00B measure $N(D^+ \to K^- K^+ \pi^+)/N(D^+ \to K^- \pi^+ \pi^+)$, the ratio of numbers of events observed, and similarly for the D^- .

 $^{^4}$ RUBIN 08 performs a dedicated analysis of this decay mode on the same dataset, with slightly better precision. We therefore take it that BONVICINI 14 does not supersede RUBIN 08's A_{CP} result.

² AUBERT 05S measures $N(D^+ \to K^+ \overline{K}^{*0})/N(D_s^+ \to K^+ K^- \pi^+)$, the ratio of the numbers of events observed, and similarly for the D^- .

³FRABETTI 94I and AITALA 97B measure $N(D^+ \to K^+ \overline{K}^* (892)^0)/N(D^+ \to K^- \pi^+ \pi^+)$, the ratio of numbers of events observed, and similarly for the D^- .

 $A_{CP}(\phi\pi^{\pm}) \text{ in } D^{\pm} \rightarrow \phi\pi^{\pm}$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
0.09±0.19 OUR AVE	RAGE	Error includes scale	factor	of 1.2.	
$-0.04\pm0.14\pm0.14$	1.58M	AAIJ	13W	LHCB	pp at 7 TeV
$-0.3 \pm 0.3 \pm 0.5$	97k	¹ LEES	13F	BABR	e^+e^- at $\varUpsilon(4S)$
$+0.51\pm0.28\pm0.05$	237k	STARIC	12	BELL	Mainly at $\Upsilon(4S)$
$-1.8 \pm 1.6 \ ^{+0.2}_{-0.4}$		RUBIN	80	CLEO	Fit-fraction asymmetry
$+0.2 \pm 1.5 \pm 0.6$	10k	² AUBERT	05 S	BABR	e^+e^- at $\varUpsilon(4S)$
-2.8 ± 3.6		³ AITALA	97 B	E791	$-0.087 < A_{CP} <$
+6.6 ±8.6		³ FRABETTI	941	E687	+0.031 (90% CL) $-0.075 < A_{CP} <$ +0.21 (90% CL)

¹ This LEES 13F result is for the K^+K^- mass-squared less than 1.3 GeV² and the $K^\mp\pi^\pm$ mass-squared above 1.0 GeV², and does not actually separate out the ϕ .

$$A_{CP}(K^{\pm}K_0^*(1430)^0)$$
 in $D^+ \to K^+\overline{K_0^*}(1430)^0$, $D^- \to K^-K_0^*(1430)^0$

VALUE (%)DOCUMENT IDTECNCOMMENT $+8\pm6^{+4}_{-2}$ RUBIN08CLEOFit-fraction asymmetry

$$A_{CP}(K^{\pm}K_2^*(1430)^0)$$
 in $D^+ \to K^+\overline{K}_2^*(1430)^0$, $D^- \to K^-K_2^*(1430)^0$

VALUE (%)	DOCUMENT ID		TECN	COMMENT
+43±19 ⁺ ₋₁₈ 5	RUBIN	08	CLEO	Fit-fraction asymmetry

$$A_{CP}(K^{\pm}K_0^*(800)) \text{ in } D^+ \to K^+\overline{K}_0^*(800), D^- \to K^-K_0^*(800)$$

 VALUE (%)
 DOCUMENT ID
 TECN
 COMMENT

 −12±11⁺¹⁴₋₆
 RUBIN
 08
 CLEO
 Fit-fraction asymmetry

$A_{CP}(a_0(1450)^0\pi^{\pm}) \text{ in } D^{\pm} \rightarrow a_0(1450)^0\pi^{\pm}$

$A_{CP}(\phi(1680)\pi^{\pm}) \text{ in } D^{\pm} \rightarrow \phi(1680)\pi^{\pm}$

VALUE (%)DOCUMENT IDTECNCOMMENT−9±22±14RUBIN08CLEOFit-fraction asymmetry

$A_{CP}(\pi^+\pi^-\pi^\pm)$ in $D^\pm \to \pi^+\pi^-\pi^\pm$

See also AAIJ 14C for a search for *CP* violation in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ Dalitz plots using model-independent binned and unbinned methods. No evidence was found.

VALUE (%)
 DOCUMENT ID
 TECN
 COMMENT

 -1.7±4.2
 1 AITALA
 97B
 E791

$$-0.086 < A_{CP} < +0.052$$
 (90% CL)

² AUBERT 05S measures $N(D^+ \to \phi \pi^+)/N(D_s^+ \to K^+ K^- \pi^+)$, the ratio of the numbers of events observed, and similarly for the D^- .

³ FRABETTI 94I and AITALA 97B measure $N(D^+ \rightarrow \phi \pi^+)/N(D^+ \rightarrow \kappa^- \pi^+ \pi^+)$, the ratio of numbers of events observed, and similarly for the D^- .

¹ AITALA 97B measure $N(D^+ \to \pi^+\pi^-\pi^+)/N(D^+ \to K^-\pi^+\pi^+)$, the ratio of numbers of events observed, and similarly for the D^- .

$A_{CP}(K_S^0K^\pm\pi^+\pi^-) \text{ in } D^\pm o K_S^0K^\pm\pi^+\pi^-$									
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT				
$-4.2\pm6.4\pm2.2$	523 ± 32	LINK	05E	FOCS	γ A, $\overline{\it E}_{\gamma}{pprox}$ 180 GeV				
$A_{CP}(K^{\pm}\pi^{0}) \text{ in } D^{\pm} ightarrow K^{\pm}\pi^{0}$									
VALUE (%)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
$-3.5\pm10.7\pm0.9$	343 ± 37	MENDEZ	10	CLEO	e^+e^- at 3774 MeV				

$D^{\pm} \chi^2$ TESTS OF *CP*-VIOLATION (*CPV*)

We list model-independent searches for local *CP* violation in phase-space distributions of multi-body decays.

Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^2 test comparing normalised yields $N_i,\,\overline{N}_i$ in CP-conjugate bin pairs $i\colon\,\chi^2=\Sigma_i(N_i-\alpha\,\overline{N}_i)/\sigma(N_i-\alpha\,\overline{N}_i)$. The factor $\alpha=(\Sigma_iN_i)/(\Sigma_i\overline{N}_i)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p-value) to obtain the measured χ^2 or larger under the assumption of CP conservation [AUBERT 08AO, BEDIAGA 09]. Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAIJ 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

Local <i>CPV</i> in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$										
p-value (%)	EVTS	DOCUMENT ID		TECN	COMMENT					
78.1	3.1M	¹ AAIJ	14 C	LHCB	χ^2					

¹AAIJ 14C uses binned and unbinned methods, and finds slightly better sensitivity with the former. We took the first value in the table of results for the binned method.

COMMENT

Created: 5/30/2017 17:22

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ *p-value* (%) DOCUMENT ID

31	OUR EVALUATION				
72	224k	LEES	13F	BABR	χ^2
12.7	370k	1 AAIJ	11 G	LHCB	χ^2

¹ AAIJ 11G publishes results for several binning schemes. We picked the first value in their table of results.

CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTS

$A_{Tviol}(K_S^0 K^{\pm} \pi^+ \pi^-)$ in $D^{\pm} \rightarrow K_S^0 K^{\pm} \pi^+ \pi^-$

 $\mathsf{C}_T \equiv \vec{p}_{\mathcal{K}^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$ is a parity-odd correlation of the \mathcal{K}^+ , π^+ , and π^- momenta for the D^+ . $\overline{C}_T \equiv \vec{p}_{\mathcal{K}^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+})$ is the corresponding quantity for the D^- . Then

$$\overline{\mathbf{A}}_T \equiv \left[\Gamma(\mathbf{C}_T>0) - \Gamma(\mathbf{C}_T<0)\right] / \left[\Gamma(\mathbf{C}_T>0) + \Gamma(\mathbf{C}_T<0)\right],$$
 and $\overline{\mathbf{A}}_T \equiv \left[\Gamma(-\overline{\mathbf{C}}_T>0) - \Gamma(-\overline{\mathbf{C}}_T<0)\right] / \left[\Gamma(-\overline{\mathbf{C}}_T>0) + \Gamma(-\overline{\mathbf{C}}_T<0)\right],$ and

 ${\sf A}_{Tviol} \equiv \frac{1}{2}({\sf A}_T - \overline{{\sf A}}_T)$. ${\sf C}_T$ and $\overline{{\sf C}}_T$ are commonly referred to as T-odd moments, because they are odd under T reversal. However, the T-conjugate process ${\sf K}_{\cal S}^0 \, {\sf K}^\pm \, \pi^+ \, \pi^- \to D^\pm$ is not accessible, while the P-conjugate process is.

VALUE (units 10^{-3}) TECN COMMENT DOCUMENT ID 11E BABR $e^+e^- \approx \Upsilon(4S)$ $-12.0\pm10.0\pm$ 4.6 $21.2 \pm 0.4 k$ **LEES** • • We do not use the following data for averages, fits, limits, etc.

05E FOCS $~\gamma$ A, $\overline{\it E}_{\gamma}{pprox}~180~{
m GeV}$ $523\,\pm\,32$ LINK $23 \pm 62 \pm 22$

$D^+ ightarrow \, (\overline{K}{}^0/\pi^0/\eta/\omega/ ho^0/\overline{K}{}^{*0})\ell^+ u_\ell$ FORM FACTORS

$f_+(0)|V_{cs}|$ in $D^+ \rightarrow \overline{K}^0 \ell^+ \nu_{\ell}$

TECN COMMENT DOCUMENT ID 0.725 ± 0.015 OUR AVERAGE Error includes scale factor of 1.7.

¹ ABLIKIM 15AF BES3 $K_I e^+ \nu_e$ 3-parameter fit $0.737 \pm 0.006 \pm 0.009$ 40k 09 CLEO $K_S e^+ \nu_{\rho}$ 3-parameter fit $0.707 \pm 0.010 \pm 0.009$

$r_1 \equiv a_1/a_0$ in $D^+ \rightarrow \overline{K}^0 \ell^+ \nu_{\ell}$

<u>VALUE</u>	EVTS	DOCUMENT ID	TECN	COMMENT
-1.8 ± 0.4 OUR A	VERAGE			
$-2.23\!\pm\!0.42\!\pm\!0.53$	40k	¹ ABLIKIM		$\textit{K}_{\textit{L}} e^+ \nu_e$ 3-parameter fit
$-1.66\pm0.44\pm0.10$		² BESSON	09 CLEO	$K_S e^+ u_e$ 3-parameter fit

 $^{^1}$ ABLIKIM 15AF finds $r_1=-1.91\pm0.33\pm0.28$ for a 2-parameter fit.

$r_2 \equiv a_2/a_0$ in $D^+ \rightarrow \overline{K}^0 \ell^+ \nu_\ell$

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
- 3±12 OUR AVERA	AGE Error	includes scale f	actor of	1.5.	
$+11\pm~9\pm9$	40k	ABLIKIM	15 AF	BES3	$K_L e^+ \nu_e$ 3-parameter fit
$-14 \pm 11 \pm 1$		BESSON	09	CLEO	$K_S e^+ \nu_e$ 3-parameter fit

$f_{+}(0)|V_{cd}| \text{ in } D^{+} \rightarrow \pi^{0}\ell^{+}\nu_{\ell}$

VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>
$0.146 \pm 0.007 \pm 0.002$	BESSON	09	CLEO	$\pi^0 e^+ \nu_a$ 3-parameter fit

$r_1 \equiv a_1/a_0$ in $D^+ \rightarrow \pi^0 \ell^+ \nu_\ell$

VALUEDOCUMENT IDTECNCOMMENT
$$-1.37\pm0.88\pm0.24$$
BESSON09CLEO $\pi^0\,e^+\nu_e$ 3-parameter fit

$r_2 \equiv a_2/a_0$ in $D^+ \rightarrow \pi^0 \ell^+ \nu_\ell$

VALUEDOCUMENT IDTECNCOMMENT
$$-4\pm5\pm1$$
BESSON09CLEO $\pi^0e^+\nu_e$ 3-parameter fit

$f_+(0)|V_{cd}|$ in $D^+ \rightarrow \eta e^+ \nu_e$

VALUE	DOCUMENT ID)	TECN	COMMENT
0.086+0.006+0.001	YFLTON	11	CLFO	z expansion

 $^{^1}$ ABLIKIM 15AF finds 0.728 \pm 0.006 \pm 0.011 for a 2-parameter fit.

 $^{^2}$ BESSON 09 finds 0.716 \pm 0.007 \pm 0.009 for a 2-parameter fit.

 $^{^2}$ BESSON 09 finds $r_1=-2.10\pm0.25\pm0.08$ for 2-parameter fit.

$r_1 \equiv a_1/a_0 \text{ in } D^+ ightarrow \eta \, e^+ \, u_e$ $-1.83\pm2.23\pm0.28$

YELTON CLEO z expansion

 $r_{
m v} \equiv V(0)/A_1(0) \ {
m in} \ D^+
ightarrow \ \omega \, e^+ \,
u_{
m e}$

DOCUMENT ID 15W BES3 292 fb⁻¹, 3773 MeV $1.24\pm0.09\pm0.06$ **ABLIKIM**

 $r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \to \omega e^+ \nu_e$

15W BES3 292 fb⁻¹, 3773 MeV $1.06 \pm 0.15 \pm 0.05$

 $r_{\mathbf{v}} \equiv V(0)/A_{1}(0) \text{ in } D^{+}, D^{0} \rightarrow \rho e^{+} \nu_{\mathbf{e}}$

DOCUMENT ID TECN COMMENT

1 DOBBS 13 CLEO e^+e^- at $\psi(3770)$ $1.48 \pm 0.15 \pm 0.05$

 $r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho e^+ \nu_e$ VALUE

0.83±0.11±0.04 $r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho e^+ \nu_e$ DOCUMENT ID

1 DOBBS

13 CLEO $e^+ e^-$ at $\psi(3770)$

$r_{\nu} \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_{\ell}$

See also BRIERE 10 for $\overline{K}^*\ell^+\nu_\ell$ helicity-basis form-factor measurements.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.49 \pm 0.05 OUR AV	ERAGE	Error includes scale	facto	r of 2.1.	See the ideogram below.
$1.411 \pm 0.058 \pm 0.007$	16.2k			BES3	\overline{K}^* (892) 0 e^+ ν_e
$1.463 \pm 0.017 \pm 0.031$		¹ DEL-AMO-SA.	.111	BABR	
$1.504 \pm 0.057 \pm 0.039$	15k	² LINK	02L	FOCS	\overline{K}^* (892) 0 μ^+ ν_{μ}
$1.45\ \pm0.23\ \pm0.07$	763	ADAMOVICH	99	BEAT	\overline{K}^* (892) $^0\mu^+\nu_{\mu}$
$1.90 \pm 0.11 \pm 0.09$	3000	³ AITALA			$\overline{K}^*(892)^0 e^+ \nu_e$
$1.84 \pm 0.11 \pm 0.09$	3034	AITALA	98F	E791	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$
$1.74 \ \pm 0.27 \ \pm 0.28$	874	FRABETTI	93E	E687	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$
$2.00 \ ^{+ 0.34}_{- 0.32} \ \pm 0.16$	305	KODAMA	92	E653	\overline{K}^* (892) $^0\mu^+\nu_{\mu}$

^{• • •} We do not use the following data for averages, fits, limits, etc. • •

90E E691 $\overline{K}^*(892)^0 e^+ \nu_e$ **ANJOS** $2.0 \pm 0.6 \pm 0.3$ 183

 $^{^{1}}$ Uses both D^{+} and D^{0} events. Using PDG 10 values of V_{cd} and lifetimes, DOBBS 13 gets $A_1(0)=0.56\pm0.01^{+0.02}_{-0.03},~A_2(0)=0.47\pm0.06\pm0.04,~{\rm and}~V(0)=0.84\pm0.04$ $0.09 ^{\,+\, 0.05}_{\,-\, 0.06}$

 $^{^{1}}$ Uses both D^{+} and D^{0} events. Using PDG 10 values of V_{cd} and lifetimes, DOBBS 13 gets $A_1(0) = 0.56 \pm 0.01^{+0.02}_{-0.03}$, $A_2(0) = 0.47 \pm 0.06 \pm 0.04$, and $V(0) = 0.84 \pm 0.04$ $0.09^{+0.05}_{-0.06}$

 $^{^{1}}$ DEL-AMO-SANCHEZ 111 finds the pole mass $m_{\Delta}=(2.63\pm0.10\pm0.13)$ GeV (m_{V}) is fixed at 2 GeV).

 $^{^2}$ LINK 02L includes the effects of interference with an S-wave background. This much improves the goodness of fit, but does not much shift the values of the form factors.

 $^{^3}$ This is slightly different from the AITALA 98B value: see ref. [5] in AITALA 98F.

$r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \to \overline{K}^*(892)^0 \ell^+ \nu_\ell$

See also BRIERE 10 for $\overline{K}^*\ell^+\nu_\ell$ helicity-basis form-factor measurements.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	_
0.802±0.021 OUR AV	/ERAGE					
$0.788 \pm 0.042 \pm 0.008$	16.2k			BES3	\overline{K}^* (892) 0 $e^+ \nu_e$	
$0.801 \pm 0.020 \pm 0.020$		¹ DEL-AMO-SA.	.111	BABR	_	
$0.875 \pm 0.049 \pm 0.064$	15k	² LINK	02L	FOCS	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	
$1.00 \ \pm 0.15 \ \pm 0.03$	763	ADAMOVICH	99	BEAT	$\overline{K}^*(892)^0 \mu^+ \nu'_{\mu}$	
$0.71 \pm 0.08 \pm 0.09$	3000	AITALA	98 B	E791	\overline{K}^* (892) 0 $e^+ \nu_e$	
$0.75\ \pm0.08\ \pm0.09$	3034	AITALA	98F	E791	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	
$0.78 \ \pm 0.18 \ \pm 0.10$	874	FRABETTI	93E	E687	\overline{K}^* (892) $^0 \mu^+ \nu_{\mu}$	
$0.82 \ ^{+0.22}_{-0.23} \ \pm 0.11$	305	KODAMA	92	E653	\overline{K}^* (892) $^0\mu^+\nu_{\mu}$	
147 1						

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

0.0
$$\pm 0.5$$
 ± 0.2 183 ANJOS 90E E691 $\overline{K}^*(892)^0 e^+ \nu_e$

$r_3 \equiv A_3(0)/A_1(0) \text{ in } D^+ ightarrow \overline{K}^* (892)^0 \ell^+ \nu_\ell$ See also BRIERE 10 for $\overline{K}^* \ell^+ \nu_\ell$ helicity-basis form-factor measurements.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.04 \pm 0.33 \pm 0.29$	3034	AITALA	98F	E791	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$

 $^{^{1}}$ DEL-AMO-SANCHEZ 111 finds the pole mass $m_{A}=(2.63\pm0.10\pm0.13)$ GeV (m_{V} is fixed at 2 GeV).

 $^{^2\,\}mathrm{LINK}$ 02L includes the effects of interference with an S-wave background. This much improves the goodness of fit, but does not much shift the values of the form factors.

Γ_L/Γ_T in $D^+ \to \overline{K}^*(892)^0 \ell^+ \nu_\ell$

See also BRIERE 10 for $\overline{K}^*\ell^+\nu_\ell$ helicity-basis form-factor measurements.

	VALUE	EVTS	DOCUMENT ID		TECN	COMMENT				
1.13±0.08 OUR AVERAGE										
	$1.09\!\pm\!0.10\!\pm\!0.02$	763	ADAMOVICH	99	BEAT	\overline{K}^* (892) $^0 \mu^+ \nu_{\mu}$				
	$1.20\!\pm\!0.13\!\pm\!0.13$	874	FRABETTI	93E	E687	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$ $\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$				
	$1.18\!\pm\!0.18\!\pm\!0.08$	305	KODAMA	92	E653	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$				
• • • We do not use the following data for averages, fits, limits, etc. • •										
	$1.8 \ ^{+0.6}_{-0.4} \ \pm 0.3$	183	ANJOS	90E	E691	\overline{K}^* (892) $^0 e^+ \nu_e$				

Γ_+/Γ_- in $D^+ ightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$

See also BRIERE 10 for $\overline{K}^*\ell^+\nu_\ell$ helicity-basis form-factor measurements.

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT				
0.22±0.06 OUR AVERAGE Error includes scale factor of 1.6.									
$0.28\!\pm\!0.05\!\pm\!0.02$	763	ADAMOVICH	99	BEAT	\overline{K}^* (892) $^0 \mu^+ \nu_{\mu}$				
$0.16\!\pm\!0.05\!\pm\!0.02$	305	KODAMA	92	E653	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$				
• • • We do not use the following data for averages, fits, limits, etc. • • •									
$0.15 {+ 0.07 \atop - 0.05} \pm 0.03$	183	ANJOS	90E	E691	\overline{K}^* (892) $^0 e^+ \nu_e$				

D[±] REFERENCES

DEDIACA	00	DD D00 000000		1 D II	(CDDE NDAM)
BEDIAGA	09	PR D80 096006		I. Bediaga <i>et al.</i>	(CBPF, NDAM)
BESSON	09	PR D80 032005		D. Besson et al.	(CLEO Collab.)
Also	00	PR D79 052010		J.Y. Ge <i>et al.</i>	(CLEO Collab.)
KO	09	PRL 102 221802		B.R. Ko et al.	(BELLE Collab.)
LINK	09	PL B681 14		J.M. Link et al.	(FNAL FOCUS Collab.)
MITCHELL	09B	PRL 102 081801		R.E. Mitchell <i>et al.</i>	(CLEO Collab.)
WON	09	PR D80 111101		E. Won et al.	(BELLE Collab.)
ABAZOV	08D	PRL 100 101801		V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABLIKIM	08L	PL B665 16		M. Ablikim <i>et al.</i>	(BES Collab.)
ARTUSO	08	PR D77 092003		M. Artuso <i>et al.</i>	(CLEO Collab.)
AUBERT		PR D78 051102		B. Aubert <i>et al.</i>	(BABAR Collab.)
BONVICINI	08	PR D77 091106		G. Bonvicini et al.	(CLEO Collab.)
BONVICINI	08A	PR D78 052001		G. Bonvicini <i>et al.</i>	(CLEO Collab.)
DOBBS	80	PR D77 112005 PRL 100 251802		S. Dobbs <i>et al.</i> D. Cronin-Hennessy <i>et al.</i>	(CLEO Collab.)
Also EISENSTEIN	08	PR D78 052003		B.I. Eisenstein <i>et al.</i>	(CLEO Collab.)
HE	08	PRL 100 091801		Q. He et al.	(CLEO Collab.) (CLEO Collab.)
PDG	08	PL B667 1		C. Amsler et al.	(PDG Collab.)
RUBIN	08	PR D78 072003		P. Rubin <i>et al.</i>	(CLEO Collab.)
ABLIKIM	07	PL B644 20		M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	07G	PL B658 1		M. Ablikim <i>et al.</i>	(BES Collab.)
BONVICINI	07	PR D76 012001		G. Bonvicini <i>et al.</i>	(CLEO Collab.)
DOBBS	07	PR D76 112001		S. Dobbs <i>et al.</i>	(CLEO Collab.)
LINK	07B	PL B653 1		J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
ABLIKIM	060	EPJ C47 31		M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06P	EPJ C47 39		M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06U	PL B643 246		M. Ablikim <i>et al.</i>	(BES Collab.)
ADAM	06A	PRL 97 251801		N.E. Adam <i>et al.</i>	(CLEO Collab.)
AITALA	06	PR D73 032004		E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
Also		PR D74 059901 (err	rat.)		(FNAL E791 Collab.)
AUBERT,B	06F	PR D74 011107	,	B. Aubert <i>et al.</i>	(BABAR Colla.b)
DYTMAN	06	PR D74 071102		S.A. Dytman et al.	(CLEO Collab.)
HUANG	06B	PR D74 112005		G.S. Huang et al.	(CLEO Collab.)
LINK	06B	PL B637 32		J.M. Link et al.	(FNAL FOCUS Collab.)
RUBIN	06	PRL 96 081802		P. Rubin et al.	` (CLEO Collab.)
RUBIN	06A	PR D73 112005		P. Rubin et al.	(CLEO Collab.)
ABLIKIM	05A	PL B608 24		M. Ablikim et al.	(BES Collab.)
ABLIKIM	05D	PL B610 183		M. Ablikim et al.	(BES Collab.)
ABLIKIM	05F	PL B622 6		M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05P	PL B625 196		M. Ablikim <i>et al.</i>	(BES Collab.)
ARTUSO	05A	PRL 95 251801		M. Artuso <i>et al.</i>	(CLEO Collab.)
AUBERT	05S	PR D71 091101		B. Aubert <i>et al.</i>	(BABAR Collab.)
HE	05	PRL 95 121801	,	Q. He et al.	(CLEO Collab.)
Also		PRL 96 199903 (err	at.)		(CLEO Collab.)
HE	05A	PRL 95 221802		Q. He <i>et al.</i>	(CLEO Collab.)
HUANG	05B	PRL 95 181801		G.S. Huang et al.	(CLEO Collab.)
KAYIS-TOPAK.		PL B626 24		A. Kayis-Topaksu <i>et al.</i>	(CERN CHORUS Collab.)
LINK	05E	PL B622 239		J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	05I	PL B621 72		J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
ABLIKIM	04C	PL B597 39		M. Ablikim <i>et al.</i>	(BEPC BES Collab.)
ARMS BONVICINI	04	PR D69 071102		K. Arms <i>et al.</i> G. Bonvicini <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
LINK	04A 04	PR D70 112004 PL B585 200		J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
LINK	04E	PL B598 33		J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	04E	PL B601 10		J.M. Link et al.	(FNAL FOCUS Collab.)
ANISOVICH	03	EPJ A16 229		V.V. Anisovich <i>et al.</i>	(TIVAL TOCOS CONAD.)
LINK	03D	PL B561 225		J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	03F	PL B572 21		J.M. Link et al.	(FNAL FOCUS Collab.)
AITALA	02	PRL 89 121801		E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
BRANDENB	02	PRL 89 222001		G. Brandenburg <i>et al.</i>	(CLEO Collab.)
KAYIS-TOPAK.		PL B549 48		A. Kayis-Topaksu et al.	(CERN CHORUS Collab.)
LINK	02B	PRL 88 041602		J.M. Link et al.	(FNAL FOCUS Collab.)
Also		PRL 88 159903 (err.	at.)	J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	02E	PL B535 43	,	J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	02F	PL B537 192		J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	02I	PL B541 227		J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	02J	PL B541 243		J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	02L	PL B544 89		J.M. Link et al.	(FNAL FOCUS Collab.)
AITALA	01B	PRL 86 770		E.M. Aitala et al.	(FNAL E791 Collab.)
LINK	01C	PRL 87 162001		J.M. Link et al.	(FNAL FOCUS Collab.)
ABREU	000	EPJ C12 209		P. Abreu <i>et al.</i>	(DELPHI Collab.)

ACTIED	000	DI D406 25	D A .: , ,	(CEDNI NOMAD	C
ASTIER	00D	PL B486 35	P. Astier <i>et al.</i>	(CERN NOMAD	
JUN	00	PRL 84 1857	S.Y. Jun <i>et al.</i>	(FNAL SELEX	
LINK	00B	PL B491 232	J.M. Link <i>et al.</i>	(FNAL FOCUS	Collab.)
Also		PL B495 443 (errat.)	J.M. Link et al.	(FNAL FOCUS	Collab.)
ABBIENDI	99K	EPJ C8 573 ` ´	G. Abbiendi et al.	` (OPAL	Collab.)
ADAMOVICH	99	EPJ C6 35	M. Adamovich et al.	(CERN BEATRICE	
AITALA	99G	PL B462 401	E.M. Aitala <i>et al.</i>	(FNAL E791	
BONVICINI		PRL 82 4586	G. Bonvicini <i>et al.</i>	`	
	99				Collab.)
AITALA	98B	PRL 80 1393	E.M. Aitala et al.	(FNAL E791	
AITALA	98C	PL B421 405	E.M. Aitala <i>et al.</i>	(FNAL E791	
AITALA	98F	PL B440 435	E.M. Aitala <i>et al.</i>	(FNAL E791	Collab.)
BAI	98B	PL B429 188	J.Z. Bai <i>et al.</i>	(BEPC BES	Collab.)
AITALA	97	PL B397 325	E.M. Aitala et al.	(FNAL E791	Collab.)
AITALA	97B	PL B403 377	E.M. Aitala et al.	(FNAL E791	- :
AITALA	97C	PL B404 187	E.M. Aitala <i>et al.</i>	(FNAL E791	
BISHAI	97	PRL 78 3261	M. Bishai <i>et al.</i>		Collab.)
-			P.L. Frabetti <i>et al.</i>	(FNAL E687	Collab.)
FRABETTI	97 07D	PL B391 235			
FRABETTI	97B	PL B398 239	P.L. Frabetti <i>et al.</i>	(FNAL E687	- :
FRABETTI	97C	PL B401 131	P.L. Frabetti <i>et al.</i>	(FNAL E687	
FRABETTI	97D	PL B407 79	P.L. Frabetti <i>et al.</i>	(FNAL E687	Collab.)
AITALA	96	PRL 76 364	E.M. Aitala <i>et al.</i>	(FNAL E791	Collab.)
FRABETTI	95	PL B346 199	P.L. Frabetti et al.	FNAL E687	Collab.)
FRABETTI	95B	PL B351 591	P.L. Frabetti <i>et al.</i>	(FNAL E687	Collab.)
FRABETTI	95E	PL B359 403	P.L. Frabetti <i>et al.</i>	(FNAL E687	,
KODAMA	95	PL B345 85	K. Kodama <i>et al.</i>	(FNAL E653	,
ALBRECHT	941	ZPHY C64 375	H. Albrecht <i>et al.</i>	(ARGUS	Collab.)
BALEST	94_	PRL 72 2328	R. Balest <i>et al.</i>		Collab.)
FRABETTI	94D	PL B323 459	P.L. Frabetti <i>et al.</i>	(FNAL E687	
FRABETTI	94G	PL B331 217	P.L. Frabetti <i>et al.</i>	(FNAL E687	Collab.)
FRABETTI	94I	PR D50 R2953	P.L. Frabetti <i>et al.</i>	(FNAL E687	Collab.)
AKERIB	93	PRL 71 3070	D.S. Akerib et al.	(CLEO	Collab.)
ANJOS	93	PR D48 56	J.C. Anjos et al.	(FNAL E691	
FRABETTI	93E	PL B307 262	P.L. Frabetti <i>et al.</i>	(FNAL E687	,
ALBRECHT	92F	PL B278 202	H. Albrecht <i>et al.</i>	(ARGUS	
ANJOS	92C	PR D46 1941	J.C. Anjos et al.	(FNAL E691	
BARLAG	92C	ZPHY C55 383	S. Barlag et al.	(ACCMOR	
Also		ZPHY C48 29	S. Barlag <i>et al.</i>	(ACCMOR	
COFFMAN	92B	PR D45 2196	D.M. Coffman et al.	(Mark III	Collab.)
DAOUDI	92	PR D45 3965	M. Daoudi <i>et al.</i>	(CLEO	Collab.)
KODAMA	92	PL B274 246	K. Kodama <i>et al.</i>	(FNAL E653	Collab.)
KODAMA	92C	PL B286 187	K. Kodama <i>et al.</i>	(FNAL E653	Collab.)
ADAMOVICH	91	PL B268 142	M.I. Adamovich et al.		Collab.)
ALBRECHT	91	PL B255 634	H. Albrecht <i>et al.</i>	(ARGUS	
ALVAREZ	91B	ZPHY C50 11	M.P. Alvarez <i>et al.</i>		
				(CERN NA14/2	
AMMAR	91	PR D44 3383	R. Ammar et al.	. `	Collab.)
BAI	91	PRL 66 1011	Z. Bai <i>et al.</i>	(Mark III	
COFFMAN	91	PL B263 135	D.M. Coffman <i>et al.</i>	(Mark III	
FRABETTI	91	PL B263 584	P.L. Frabetti <i>et al.</i>	(FNAL E687	Collab.)
ALVAREZ	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2	Collab.)
ANJOS	90C	PR D41 2705	J.C. Anjos et al.	` (FNAL E691	Collab.)
ANJOS	90D	PR D42 2414	J.C. Anjos et al.	FNAL E691	,
ANJOS	90E	PRL 65 2630	J.C. Anjos <i>et al.</i>	(FNAL E691	
BARLAG	90C	ZPHY C46 563	S. Barlag <i>et al.</i>	(ACCMOR	
				١.	
WEIR	90B	PR D41 1384	A.J. Weir <i>et al.</i>	(Mark II	
ANJOS	89	PRL 62 125	J.C. Anjos et al.	(FNAL E691	
ANJOS	89B	PRL 62 722	J.C. Anjos <i>et al.</i>	(FNAL E691	
ANJOS	89E	PL B223 267	J.C. Anjos <i>et al.</i>	(FNAL E691	Collab.)
ADLER	88C	PRL 60 89	J. Adler <i>et al.</i>	(Mark III	Collab.)
ALBRECHT	88I	PL B210 267	H. Albrecht <i>et al.</i>	(ARGUS	Collab.)
HAAS	88	PRL 60 1614	P. Haas <i>et al.</i>	(CLEO	Collab.)
ONG	88	PRL 60 2587	R.A. Ong et al.	(Mark II	
RAAB	88	PR D37 2391	J.R. Raab et al.	(FNAL E691	- :
ADAMOVICH	87	EPL 4 887	M.I. Adamovich <i>et al.</i>	(Photon Emulsion	
ADLER	87		J. Adler <i>et al.</i>	(Mark III	
		PL B196 107			
BARTEL	87 00F	ZPHY C33 339	W. Bartel <i>et al.</i>		Collab.)
BALTRUSAIT		PRL 56 2140	R.M. Baltrusaitis et al.	(Mark III	
BALTRUSAIT		PRL 54 1976	R.M. Baltrusaitis et al.	(Mark III	
BALTRUSAIT		PRL 55 150	R.M. Baltrusaitis et al.	(Mark III	Collab.)
BARTEL	85J	PL 163B 277	W. Bartel <i>et al.</i>	(JADE	Collab.)
ADAMOVICH	84	PL 140B 119	M.I. Adamovich et al.	(CERN WA58	Collab.)
ALTHOFF	84G	ZPHY C22 219	M. Althoff et al.	` (TASSO	Collab.)
				`	,

84	PRL 53 1971	M. Derrick et al.	(HRS Collab.)					
81	PR D24 78	R.H. Schindler et al.	(Mark II Collab.)					
81	PRPL 75 57	G.H. Trilling	` (LBL, UCB) J					
80	PL 96B 214	A.A. Zholents et al.	` (NOVO)					
	SJNP 34 814	A.A. Zholents et al.	(NOVO)					
Translated from YAF 34 1471.								
77	PL 69B 503	G. Goldhaber <i>et al.</i>	(Mark I Collab.)					
77	PRL 39 1301	I. Peruzzi <i>et al.</i>	(LGW Collab.)					
77	PL 70B 260	M. Piccolo <i>et al.</i>	(Mark I Collab.)					
76	PRL 37 569	I. Peruzzi <i>et al.</i>	(Mark I Collab.)					
48	Am.Stat. 3 No.5 30	R.A. Fisher, F. Mosteller						
OTHER RELATED PAPERS								
5 · · · · · · · · · · · · · · · · · · ·								
95	RMP 67 893	J.D. Richman, P.R. Burchat	(UCSB, STAN)					
95	CNPP 21 369	J. Rosner	(CHIC)					
	81 81 80 77 77 77 76 48	81 PR D24 78 81 PRPL 75 57 80 PL 96B 214 SJNP 34 814 Translated from YAF 34 77 PL 69B 503 77 PRL 39 1301 77 PL 70B 260 76 PRL 37 569 48 Am.Stat. 3 No.5 30 OTHER 95 RMP 67 893	81 PR D24 78 R.H. Schindler et al. 81 PRPL 75 57 G.H. Trilling 80 PL 96B 214 A.A. Zholents et al. SJNP 34 814 A.A. Zholents et al. Translated from YAF 34 1471. 77 PL 69B 503 G. Goldhaber et al. 77 PRL 39 1301 I. Peruzzi et al. 77 PL 70B 260 M. Piccolo et al. 76 PRL 37 569 I. Peruzzi et al. 48 Am.Stat. 3 No.5 30 R.A. Fisher, F. Mosteller OTHER RELATED PAPERS 95 RMP 67 893 J.D. Richman, P.R. Burchat					