Optimisation et modèle roofline

Luca Cirrottola (INRIA)

luca.cirrottola@inria.fr

Bordeaux INP ENSEIRB-MATMECA, Université de Bordeaux Automne 2023

Usage

• [Rappel:] Les performances sont beaucoup liées à la localité de la mémoire...

Storage Area	Register	L1 Cache	L2 Cache	RAM	Swap
Cycles to Access	≤ 1	≈ 3	≈ 14	≈ 240	$\approx 10^7$
Town	Talence	Pessac	Cestas	Toulouse	Mars

Usage

Outils

Exemples:

- gprof
- Valgrind
- PAPI
- Intel VTune Amplifier
- Intel Advisor
- Extrae/Paraver [traces]
- NVIDIA Visual Profiler [GPUs]
- Running Average Power Limit (RAPL) [energy]

- ...

Basic hotspots

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect hotspots -no-auto-finalize ./wave1 5 5 5 100 100 100 0.0005 5000

Basic hotspots

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect hotspots -no-auto-finalize ./wave1 5 5 5 100 100 100 0.0005 5000

Basic hotspots

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect hotspots -no-auto-finalize ./wave1 5 5 5 100 100 100 0.0005 5000

Analy	sis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform compute-n	ocuda.c × compute	nocuda.c ×	
So	urce Assembly ■■ = 🎳 🐞 🍁			[.
Soι ▲	Source	გ CPU Time : Total 🕑	CPU Time: Self 😕	_
20	#include <string.n></string.n>			
21 22	int compute_wave(double *unew,double *ucur,double *uold,int nx,int ny,int nz,double dx			
23	inc compute_wave(double dnew, double dcdr, double doid, inc hx, inc hy, inc hz, double dx,			
24	int i, j, k;			
25	110 1/ J/ K/			
26	for(k=1;k <nz-1;k++) td="" {<=""><td></td><td></td><td></td></nz-1;k++)>			
27	for(j=1; j <ny-1; j++)="" td="" {<=""><td>0.0%</td><td>0.010s</td><td>comi</td></ny-1;>	0.0%	0.010s	comi
28	for(i=1;i <nx-1;i++) td="" {<=""><td>2.3%</td><td>2.998s</td><td>1</td></nx-1;i++)>	2.3%	2.998s	1
29	unew[i*ny*nz+j*nz+k] = 2.0*ucur[i*ny*nz+j*nz+k]-uold[i*ny*nz+j*nz+k]	17.5%	23.282s	-
30	+cel*cel*dt*dt*(5.6%	7.486s	
31	(ucur[(i-1)*ny*nz+j*nz+k]	3.4%	4.573s	com
32	-2.0*ucur[i*ny*nz+j*nz+k]	4.5%	5.978s	com
33	+ucur[(i+1)*ny*nz+j*nz+k])/(dx*dx)	5.3%	7.064s	com
34	+(ucur[i*ny*nz+(j-1)*nz+k]	23.3%	31.079s	com
35	-2.0*ucur[i*ny*nz+j*nz+k]	4.5%	6.004s	com
36	+ucur[i*ny*nz+(j+1)*nz+k])/(dy*dy)	5.4%	7.215s	com
37	+(ucur[i*ny*nz+j*nz+(k-1)]	8.3%	11.061s	com
38	-2.0*ucur[i*ny*nz+j*nz+k]	4.3%	5.767s	com
39	+ucur[i*ny*nz+j*nz+(k+1)])/(dz*dz)	5.3%	7.116s	com
40);			
41	}			
42	}			
43	}			

Memory Access - General Exploration

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect general-exploration -no-auto-finalize ./wave1 5 5 5 100 100 100 0.0005 5000

Memory Access - General Exploration

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect general-exploration -no-auto-finalize ./wave1 5 5 5 100 100 100 0.0005 5000

Memory Access - General Exploration

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect general-exploration -no-auto-finalize ./wave1 5 5 5 100 100 100 0.0005 5000

Slower execution
Long latency operation like
divides or memory operations

Memory Access - General Exploration

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune collect general-exploration -no-auto-finalize ./wave1 5

mer/bin64/amplxe-cl - 100 100 100 0.0005 5000

Memory Access

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl -collect memory-access -knob dram-bandwidth-limits=false -knob analyze-memobjects=true -data-limit=0 -- ./wave1 5 5 5 100 100 100 0.0005 5000

Memory Access

>/cm/shared/apps/intel/composer_xe/2019.0-117/vtune_amplifier/bin64/amplxe-cl - collect memory-access -knob dram-bandwidth-limits=false -knob analyze-memobjects=true -data-limit=0 -- ./wave1 5 5 5 100 100 100 0.0005 5000

Roofline Model

Roofline model

- Roofline Model (by Williams et.al. 2009)
 - P: performance (in FLOP/s)
 - F: number of operations performed by kernel or application (in FLOP)
 - B: number of bytes of memory transferred (in bytes)
 - I: Arithmetic Intensity (in FLOP/byte)
 - β: Streaming bandwitdh (in byte/s)

- Maximum processing capability
 - Peak performance P_{peak}
- Peak bandwidth
 - Intensity * bandwidth (stream benchmark)

Roofline model

- Roofline Model (by Williams et.al. 2009)
 - P: performance (in FLOP/s)
 - F: number of operations performed by kernel or application (in FLOP)
 - B: number of bytes of memory transferred (in bytes)
 - I: Arithmetic Intensity (in FLOP/byte)
 - β: Streaming bandwitdh (in byte/s)

" Compute-bound"!

Roofline model

- Roofline Model (by Williams et.al. 2009)
 - P: performance (in FLOP/s)
 - F: number of operations performed by kernel or application (in FLOP)
 - B: number of bytes of memory transferred (in bytes)
 - I: Arithmetic Intensity (in FLOP/byte)
 - β : Streaming bandwitdh (in byte/s)

"Memory-bound"!

Intel Vtune Advisor

Intel Vtune Advisor

roofline

>/cm/shared/apps/intel/composer_xe/2019.0-117/advisor/bin64/advixe-cl -collect roofline --project-dir=wave5-dir ./wave5 5 5 5 100 100 100 0.0005 500

... À nos claviers!