Aula 8

Logaritmo Complexo

<u>Definição</u>: Define-se o **logaritmo complexo com ramo** $[\theta_0, \theta_0 + 2\pi[$ como a função $\log : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ dada por

$$\log_{\mathbb{C}}(z) = \log_{\mathbb{R}}|z| + i \operatorname{Arg} z, \qquad \operatorname{Arg} z \in [\theta_0, \theta_0 + 2\pi[.$$

Chama-se **ramo principal do logaritmo complexo** à escolha do ramo $]-\pi,\pi]$.

Proposição:

- $\bullet \ e^{\log z} = z \text{ para todo o } z \in \mathbb{C} \setminus \{0\}.$
- $\log{(e^z)} = z + 2\pi k\,i$ para todo o $z\in\mathbb{C}$ e $k\in\mathbb{Z}$ dependente de z.

Proposição: Para $z,w\in\mathbb{C}$

 $\log zw = \log z + \log w$ (a menos de soma de $2\pi ki$).

Potências Complexas

<u>Definição</u>: Dados $z \neq 0, w \in \mathbb{C}$ define-se a **potência** complexa z^w como

$$z^w = e^{w \log z}.$$

Esta definição depende do ramo do logaritmo complexo utilizado.

Proposição: Dados $z \neq 0, w \in \mathbb{C}$

- z^w toma um único valor, independentemente do ramo do logaritmo utilizado sse $w \in \mathbb{Z}$.
- Se $w \in \mathbb{Q}$, com w = p/q na forma irredutível, então z^w toma $q \in \mathbb{N}$ valores diferentes consoante o ramo do logaritmo.
- Se $w \in \mathbb{R} \setminus \mathbb{Q}$ ou $\text{Re}(w) \neq 0$ então z^w toma infinitos valores diferentes consoante o ramo do logaritmo.

Função raíz índice-n

Definição: Define-se a função $\sqrt[n]{z}$ para $z \neq 0$ como

$$\sqrt[n]{z} = z^{\frac{1}{n}} = e^{\frac{\log z}{n}},$$

assumindo uma escolha do ramo do logaritmo complexo. Designa-se pelo correspondente ramo da raíz.

Topologia em \mathbb{C}

 $\mathbb C$ é um espaço métrico com a distância dada por

$$d(z, w) = |z - w|$$

 \mathbb{C} é **isométrico** a \mathbb{R}^2

$$B_{\delta}(z) = \{ w \in \mathbb{C} : |w - z| < \delta \}$$