

Global United Technology Services Co., Ltd.

Report No.: GTS201906000173F01

FCC REPORT

Applicant: INNOVATIVE CONCEPTS AND DESIGN LLC

Address of Applicant: 107 Trumbull Street, Bldg F8, Elizabeth, New Jersey 07206-

2165, United States

Manufacturer/Factory: Dongguan HC Technology Co., LTD

Address of No. 37, Tiyu Road, Baotun Community, Houjie Town,

Dongguan City, Guangdong Province, China Manufacturer/Factory:

Equipment Under Test (EUT)

BLUETOOTH SPEAKER Product Name:

GSYS-2000 Model No.:

Gemini Trade Mark:

2AE6GGSYS-2000 FCC ID:

FCC CFR Title 47 Part 15 Subpart C Section 15.249 **Applicable standards:**

Date of sample receipt: June 17, 2019

Date of Test: June 17-28, 2019

Date of report issued: June 28, 2019

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	June 28, 2019	Original

Prepared By:	Bill. Yvan	Date:	June 28, 2019
	Project Engineer		
Check By:	Jobinson A	Date:	June 28, 2019
	Reviewer		

3 Contents

		Page
1 COVER PAGE		1
2 VERSION		2
3 CONTENTS		3
4 TEST SUMMARY		4
4.1 M EASUREMENT	UNCERTAINTY	4
5 GENERAL INFORM	IATION	5
5.1 GENERAL DESC	RIPTION OF EUT	5
	F SUPPORT UNITS	
	M STANDARDS	
	FROM STANDARD CONDITIONS	
5.7 TEST LOCATION	l	7
6 TEST INSTRUMENT	TS LIST	8
7 TEST RESULTS AN	ND MEASUREMENT DATA	10
7.1 ANTENNA REQU	IREMENT	10
	MISSIONS	
	SION METHOD	
	th of The Fundamental Signal	
•	nissions	
•	emissions	
	BANDWIDTH	
8 TEST SETUP PHOT	го	25
9 EUT CONSTRUCTION	ONAL DETAILS	25

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.64dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.64dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 3.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

BLUETOOTH SPEAKER			
GSYS-2000			
1939F00040			
V01			
GSYS-2000-V02			
GTS201906000173-1			
Engineered sample			
2402MHz~2480MHz			
79			
1MHz			
GFSK, π/4-DQPSK, 8-DPSK			
PCB Antenna			
0dBi(declare by applicant)			
AC 100-240V, 50/60Hz			

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
						:	i
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The highest channel	2480MHz

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode.

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Pre-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z
Field Strength(dBuV/m)	96.14	97.13	95.21

Final Test Mode:

The EUT was tested in GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation is the worst case.

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Con	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020			
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020			
5	Coaxial Cable	GTS	N/A	GTS227	June. 26 2019	June. 25 2020			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020			
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020			

RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020		

Gene	General used equipment:												
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)							
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020							
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020							

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details

7.2 Conducted Emissions

Test Method: ANSI C63.10:2013 Test Frequency Range: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Average LUSN Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Average LUSN Fellow-rest label/insulation plane Filter Ac power LUSN Line special plane Ac power LUSN Line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.	Test Requirement:	FCC Part15 C Section 15.207	7							
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Feet unit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Filter Ac power E.U.T. Stable/Insulation plane Receiver 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance or the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.	·									
Class / Severity: Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Aux Equipment LISN Aux Equipment Lisn Ac power ENDITY Test table/insulation plane Receiver Test procedure: 1. The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the macing equipment. 2. The peripheral devices are also connected to the main power through a line impedance stabilization network (L.I.S.N.) This provides a 500hm/50uH coupling impedance for the main power through a line impedance for the macing equipment. 2. The peripheral devices are also connected to the main power through a LiSN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.										
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN AUX Equipment E.U.T Test table/Insulation plane Receiver Test procedure: 1. The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the masuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.	· · · · ·									
Limit: Frequency range (MHz)	•		an time a suta							
Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment LISN Filter AC power Receiver Test table Insulation plane Feature Stabilization Network Test stable height-0 Bm 1. The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details	•	RDVV=9NHZ, VDVV=3UNHZ, 3		(ID) ()						
D.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. **Reference Plane* LISN List L	Limit	Frequency range (MHz)		<u>`</u>						
Test setup: Reference Plane			· ·							
Test setup: Reference Plane LISN Ac power Requipment Under Test LISN Line Impedance Stabilization Network Test table Neight-0 Sim bilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a line impedance stabilization network (L.I.S.N.) and power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance of the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Refer to section 6.0 for details										
* Decreases with the logarithm of the frequency. Test setup: **Reference Plane **LISN			56	46						
Test setup: Reference Plane LISN Aux Equipment Lisn Receiver Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height-of-8m Test procedure: 1. The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details		5-30	60	50						
Test procedure: 1. The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details		* Decreases with the logarithr	n of the frequency.							
Test procedure: 1. The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details	Test setup:	Reference Plane								
line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details		AUX Equipment E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network								
	Test procedure:	 line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 								
Test mode: Refer to section 5.2 for details	Test Instruments:	Refer to section 6.0 for details								
	Test mode:	Refer to section 5.2 for details	3							
Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mba	Test environment:	Temp.: 25 °C Hur	mid.: 52%	Press.: 1012mbar						
Test voltage: AC 120V, 60Hz	Test voltage:	· l l l								
Test results: Pass										

Measurement data

Line:

Freq	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.18 0.18 0.36 0.36 0.54 0.91 0.91 1.45 1.45 23.64	51. 21 27. 53 40. 66 21. 89 40. 89 27. 19 35. 31 23. 26 36. 87 23. 74 45. 60 35. 24	0. 40 0. 40 0. 37 0. 37 0. 30 0. 30 0. 22 0. 22 0. 22 0. 20 0. 34 0. 34	0. 10 0. 10 0. 10 0. 10 0. 11 0. 11 0. 14 0. 14 0. 16 0. 16 0. 23 0. 23	51.71 28.03 41.13 22.36 41.30 27.60 35.67 23.62 37.23 24.10 46.17 35.81	64. 46 54. 46 58. 69 48. 69 56. 00 46. 00 56. 00 46. 00 60. 00 50. 00	-12.75 -26.43 -17.56 -26.33 -14.70 -18.40 -20.33 -22.38 -18.77 -21.90 -13.83 -14.19	QP Average QP Average QP Average QP Average QP Average QP Average

Neutral:

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

7.3 Radiated Emission Method										
	Test Requirement:	FCC Part15 C S	Section 15.20	9						
	Test Method:	ANSI C63.10:20	013							
	Test Frequency Range:	9kHz to 25GHz								
	Test site:	Measurement D	Distance: 3m							
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	·	9kHz- 150kHz	Quasi-peak	200Hz	300Hz	Quasi-peak Value				
		150kHz- 30MHz	Quasi-peak	s 9kHz	10kHz	Quasi-peak Value				
		30MHz- 1GHz	Quasi-peal		300KHz	Quasi-peak Value				
		Above 1GHz	Peak	1MHz 1MHz	3MHz	Peak Value				
			Peak	10Hz	Average Value					
	Limit:	Freque	ency	Limit (dBuV 94.0		Remark				
	(Field strength of the fundamental signal)	2400MHz-24	483.5MHz	00	Average Value Peak Value					
	Limit:	Freque	V/m)	Remark						
	(Spurious Emissions)	0.009MHz-0) @300m	Quasi-peak Value						
	(Opanicae Emissiens)	0.490MHz-1	z) @30m	Quasi-peak Value						
		1.705MHz-3		30 @3		Quasi-peak Value				
		30MHz-8		100 @		Quasi-peak Value				
		88MHz-2		150 @		Quasi-peak Value				
		216MHz-9		200 @		Quasi-peak Value				
		960MHz-	-1GHz	500 @		Quasi-peak Value				
		Above 1	IGHz	500 @ 5000 @		Average Value Peak Value				
	Limit: (band edge)	harmonics, sha	II be attenuate to the genera	of the specified and by at least all radiated em	d frequency 50 dB belov	bands, except for w the level of the in Section 15.209,				
	Test setup:	For radiated e	missions fro	m 9kHz to 3	0MHz					
		For radiated emissions from 9kHz to 30MHz Comparison of the content of the con								
		For radiated e	missions fro	m 30MHz to	1GHz					

Report No.: GTS201906000173F01 Test Antenna EUT. Turn Table < 80cm > Receiver₽ Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna+ < 1m ... 4m > EUT Turn Table <150cm > Preamplifier-Receiver-1. The EUT was placed on the top of a rotating table (0.8m for below Test Procedure: 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mbar Test voltage: AC 120V, 60Hz Test results: **Pass**

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	92.87	27.58	5.39	30.18	95.66	114.00	-18.34	Vertical
2402.00	90.14	27.58	5.39	30.18	92.93	114.00	-21.07	Horizontal
2441.00	91.11	27.55	5.43	30.06	94.03	114.00	-19.97	Vertical
2441.00	89.12	27.55	5.43	30.06	92.04	114.00	-21.96	Horizontal
2480.00	94.07	27.52	5.47	29.93	97.13	114.00	-16.87	Vertical
2480.00	90.79	27.52	5.47	29.93	93.85	114.00	-20.15	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	81.52	27.58	5.39	30.18	84.31	94.00	-9.70	Vertical
2402.00	78.93	27.58	5.39	30.18	81.72	94.00	-12.28	Horizontal
2441.00	79.62	27.55	5.43	30.06	82.54	94.00	-11.46	Vertical
2441.00	76.68	27.55	5.43	30.06	79.60	94.00	-14.40	Horizontal
2480.00	82.81	27.52	5.47	29.93	85.87	94.00	-8.13	Vertical
2480.00	79.51	27.52	5.47	29.93	82.57	94.00	-11.43	Horizontal

7.3.2 Spurious emissions

■ Below 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

■ Below 1GHz

Horizontal:

Vertical:

■ Above 1GHz

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.40	31.78	8.60	32.09	44.69	74.00	-29.31	Vertical
7206.00	31.23	36.15	11.65	32.00	47.03	74.00	-26.97	Vertical
9608.00	30.94	37.95	14.14	31.62	51.41	74.00	-22.59	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.50	31.78	8.60	32.09	48.79	74.00	-25.21	Horizontal
7206.00	32.91	36.15	11.65	32.00	48.71	74.00	-25.29	Horizontal
9608.00	30.27	37.95	14.14	31.62	50.74	74.00	-23.26	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.39	31.78	8.60	32.09	33.68	54.00	-20.32	Vertical
7206.00	20.02	36.15	11.65	32.00	35.82	54.00	-18.18	Vertical
9608.00	19.15	37.95	14.14	31.62	39.62	54.00	-14.38	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.52	31.78	8.60	32.09	37.81	54.00	-16.19	Horizontal
7206.00	22.13	36.15	11.65	32.00	37.93	54.00	-16.07	Horizontal
9608.00	18.81	37.95	14.14	31.62	39.28	54.00	-14.72	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	36.32	31.85	8.67	32.12	44.72	74.00	-29.28	Vertical
7323.00	31.18	36.37	11.72	31.89	47.38	74.00	-26.62	Vertical
9764.00	30.89	38.35	14.25	31.62	51.87	74.00	-22.13	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	40.40	31.85	8.67	32.12	48.80	74.00	-25.20	Horizontal
7323.00	32.84	36.37	11.72	31.89	49.04	74.00	-24.96	Horizontal
9764.00	30.22	38.35	14.25	31.62	51.20	74.00	-22.80	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	25.33	31.85	8.67	32.12	33.73	54.00	-20.27	Vertical
7323.00	19.98	36.37	11.72	31.89	36.18	54.00	-17.82	Vertical
9764.00	19.12	38.35	14.25	31.62	40.10	54.00	-13.90	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	29.45	31.85	8.67	32.12	37.85	54.00	-16.15	Horizontal
7323.00	22.09	36.37	11.72	31.89	38.29	54.00	-15.71	Horizontal
9764.00	18.77	38.35	14.25	31.62	39.75	54.00	-14.25	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.22	31.93	8.73	32.16	44.72	74.00	-29.28	Vertical
7440.00	31.11	36.59	11.79	31.78	47.71	74.00	-26.29	Vertical
9920.00	30.83	38.81	14.38	31.88	52.14	74.00	-21.86	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.28	31.93	8.73	32.16	48.78	74.00	-25.22	Horizontal
7440.00	32.77	36.59	11.79	31.78	49.37	74.00	-24.63	Horizontal
9920.00	30.14	38.81	14.38	31.88	51.45	74.00	-22.55	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.29	31.93	8.73	32.16	33.79	54.00	-20.21	Vertical
7440.00	19.95	36.59	11.79	31.78	36.55	54.00	-17.45	Vertical
9920.00	19.09	38.81	14.38	31.88	40.40	54.00	-13.60	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.40	31.93	8.73	32.16	37.90	54.00	-16.10	Horizontal
7440.00	22.06	36.59	11.79	31.78	38.66	54.00	-15.34	Horizontal
9920.00	18.74	38.81	14.38	31.88	40.05	54.00	-13.95	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channel:				l	Lowest channel			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	39.25	27.59	5.38	30.18	42.04	74.00	-31.96	Horizontal
2400.00	55.52	27.58	5.40	30.18	58.32	74.00	-15.68	Horizontal
2310.00	39.46	27.59	5.38	30.18	42.25	74.00	-31.75	Vertical
2400.00	57.17	27.58	5.40	30.18	59.97	74.00	-14.03	Vertical
Average val	Average value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	30.62	27.59	5.38	30.18	33.41	54.00	-20.59	Horizontal
2400.00	41.64	27.58	5.40	30.18	44.44	54.00	-9.56	Horizontal
2310.00	30.31	27.59	5.38	30.18	33.10	54.00	-20.90	Vertical
2400.00	42.95	27.58	5.40	30.18	45.75	54.00	-8.25	Vertical

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	40.92	27.53	5.47	29.93	43.99	74.00	-30.01	Horizontal
2500.00	40.79	27.55	5.49	29.93	43.90	74.00	-30.10	Horizontal
2483.50	41.16	27.53	5.47	29.93	44.23	74.00	-29.77	Vertical
2500.00	41.44	27.55	5.49	29.93	44.55	74.00	-29.45	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.41	27.53	5.47	29.93	36.48	54.00	-17.52	Horizontal
2500.00	31.93	27.55	5.49	29.93	35.04	54.00	-18.96	Horizontal
2483.50	34.32	27.53	5.47	29.93	37.39	54.00	-16.61	Vertical
2500.00	31.55	27.55	5.49	29.93	34.66	54.00	-19.34	Vertical

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215			
Test Method:	ANSI C63.10:2013			
Limit:	Operation Frequency range 2400MHz~2483.5MHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Test channel	20dB bandwidth(MHz)	Result		
Lowest	0.870	Pass		
Middle	0.859	Pass		
Highest	0.873	Pass		

Remark: The test data only show the worst case GFSK mode.

Test plot as follows:

Report No.: GTS201906000173F01

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----