Statistical Mechanics of Lattice Systems: 1

Closed-Form and Exact Solutions

D. A. Lavis and G. M. Bell Department of Mathematics King's College, London

Springer-Verlag Berlin Heidelberg New York

ISBN 3-540-644377-7

Publication date: 8th March 1999

1.	\mathbf{Intr}	oduction to Thermodynamics and Phase Transitions	1									
	1.1	Thermodynamic Variables: Simple Fluids	1									
	1.2	Change of Variable and Thermodynamic Potentials										
	1.3	Response Functions and Thermodynamic Relations										
	1.4	Magnetic Systems										
	1.5	Stationary Properties of Thermodynamic Functions										
	1.6	Phase Equilibrium in the Van der Waals Gas	G									
	1.7	The Field-Extensive Variable Representation										
		of Thermodynamics	12									
	1.8	The Field-Density Representation of Thermodynamics	16									
	1.9	General Theory of Phase Equilibrium	18									
		1.9.1 A One-Component Fluid	19									
		1.9.2 Azeotropy	22									
	1.10	Classical Theory and Metastability	23									
		1.10.1 Metastability in a One-Component Fluid	25									
		1.10.2 The Experimental Situation	27									
	Exai	Examples										
2 .	Statistical Mechanics											
	and	the One-Dimensional Ising Model	31									
	2.1	The Canonical Distribution	31									
		2.1.1 The Thermodynamic Limit	33									
		2.1.2 Kinetic and Configuration Variables	33									
	2.2	Distributions in General	35									
	2.3	Particular Distributions	39									
		2.3.1 The Constant Magnetic Field Distribution	39									
		2.3.2 The Constant-Pressure (Isobaric) Distribution	39									

		2.3.3 The Grand Distribution	40
		2.3.4 Restricted Distributions for Lattice Models	40
	2.4	Magnetism and the Ising Model	42
		2.4.1 The One-Dimensional Ferromagnet in Zero Field	44
		2.4.2 The One-Dimensional Ferromagnet in a Field	47
	2.5	Fluctuations and Entropy	49
	2.6	The Maximum-Term Method	53
		2.6.1 The One-Dimensional Ising Ferromagnet	54
		2.6.2 The General Distribution	56
	2.7	A One-Dimensional Model for DNA Denaturation	57
	Exa	mples	63
3.	$\mathrm{Th}\epsilon$	e Mean-Field Approximation,	
		ling and Critical Exponents	67
	3.1	The Ising Model Ferromagnet	67
		3.1.1 Free Energy and Magnetization	68
		3.1.2 Fluctuations in Zero Field	71
	3.2	Interpretations of the Mean-Field Method	76
		3.2.1 Many-Neighbour Interactions	
		and the Lebowitz-Penrose Theorem	76
		3.2.2 A Distance-Independent Interaction	77
	3.3	The Mean-Field Method for a More General Model	78
	3.4	Critical Points and Critical Exponents	79
	3.5	Scaling and Exponent Relations	84
	3.6	Classical Critical Exponents	86
		3.6.1 The Ising Model Ferromagnet:	
		Mean-Field Approximation	87
		3.6.2 The Van der Waals Gas	88
	Exa	mples	90
4.	Ant	iferromagnets and Other Magnetic Systems	93
	4.1	The One-Dimensional Antiferromagnet	93
	4.2	Antiferromagnetic Ising Models	94
	4.3	Mean-Field Theory	99
		4.3.1 The Paramagnetic State	100
		4.3.2 The Antiferromagnetic State	101
		4.3.3 The Simple Antiferromagnet	103
	4.4	Metamagnetism: Tricritical Points and Critical End-Points	105
	4.5	Ferrimagnetism: Compensation Points	
		4.5.1 Zero Field	113
		4.5.2 Non-Zero Field	114
	Exa	mples	117

5.	Lattice Gases		19
	5.1 Introduction		
	5.2 The One-Dimensional Lattice Gas and		
	5.2.1 The Lattice Gas		
	5.2.2 The Continuum Limit		
	5.3 The Simple Lattice Gas and the Ising		
	5.4 Phase Separation in the Simple Lattic		
	5.5 A One-Dimensional Water-Like Mode		
	Examples		32
6.	Solid Mixtures and the Dilute Ising I	Model	35
	6.1 The Restricted Grand Partition Func	$tion \dots 13$	35
	6.2 Binary Mixtures		36
	6.2.1 The Equivalence to the Ising N	$\operatorname{Model}\ldots$ 13	37
	6.2.2 The Equivalence to a Lattice ($Gas \dots 13$	38
	6.3 Order–Disorder on Loose-Packed Latt	ices 13	38
	6.4 The Order Parameter and Landau Ex		
	6.5 First-Order Sublattice Transitions		
	6.6 The Equilibrium Dilute Ising Model a		
	6.6.1 Model I: The Equilibrium Dilu		
	6.6.2 Model II: The Ising Model Lat		
	6.6.3 Model III: The Symmetrical Te		
	6.6.4 Model IV: The Symmetrical La		
	6.6.5 Other Models		
	6.6.6 Applications		
	6.7 Mean-Field Theory and the Dilute Isi		
	6.8 Multicritical Points in the Dilute Isin	g Model 15	5 4
	6.9 Multicritical Phenomena		
	with Additional Thermodynamic Dim		
	6.10 The Unsymmetrical and Completely S		
	6.11 Alternative Forms for the Dilute Ising		
	6.11.1 Model A: Equilibrium Bond D		
	6.11.2 Model B: Random Site Dilutio		
	6.11.3 Model C: Random Bond Dilut		
	6.11.4 Model D: Equilibrium Site Dil		
	Examples		<u> 5</u> 9
7.	Cluster Variation Methods		73
	7.1 Introduction		
	7.2 A First-Order Method Using a Gener	al Site Group 17	74
	7.2.1 Equivalent Sites		
	7.2.2 Sublattice Ordering		77
	7.3 The Pair Approximation and the Isin		
	7.3.1 Zero Field		
	7.3.2 The Critical Region		30

		7.3.3 The Linear Lattice	181
	7.4	Phase Transitions in Amphipathic Monolayers	181
	7.5	A Lattice Gas Model for Fluid Water	187
	7.6	1:1 Ordering on the Face-Centred Cubic Lattice	193
	7.7	Homogeneous Cacti	197
	Exa	mples	200
8.	Exa	ct Results for Two-Dimensional Ising Models	205
	8.1	Introduction	
	8.2	The Low-Temperature Form and the Dual Lattice	206
	8.3	The High-Temperature Form and the Dual Transformation	208
	8.4	The Star-Triangle Transformation	211
	8.5	The Star-Triangle Transformation with Unequal Interactions .	214
	8.6	A Linear Relation for Correlations	216
	8.7	Baxter and Enting's Transformation	
		and the Functional Equation	
	8.8	The Solution of the Functional Equation	
		8.8.1 A Preliminary Result for $f(K k)$	
		8.8.2 Expressions for $A(\infty k)$ and $B(\infty k)$	
		8.8.3 An Expression for $b(k)$	
	8.9	Critical Behaviour	
		Thermodynamic Functions for the Square Lattice	229
	8.11	Thermodynamic Functions	202
	0.10	for the Triangular and Honeycomb Lattices	
		The Antiferromagnet	
	Exa	mples	230
9.		olications of Transform Methods	
	9.1	The Decoration Transformation	
	9.2	Dilute Decorated Models	
		9.2.1 A Superexchange Model	
	0.0	9.2.2 The Equilibrium Bond Dilute Ising Model	
	9.3	Heat Capacity and Exponent Renormalization	
		9.3.1 Three-Dimensional Lattices	
	0.4	9.3.2 Two-Dimensional Lattices	
	9.4	Fisher's Decorated Antiferromagnetic Model	
	9.5	The Decorated Lattice Ferrimagnet	
	9.6	The Kagomé Lattice Ising Model	202
	9.7	A Modified Star-Triangle Transformation	264
	9.8	and Three-Spin Correlations	
	9.8	The Unsymmetrical Ising Model	
		A Competing Interaction Magnetic Model	
		Decorated Lattice Mixtures of Orientable Molecules	
		The Decorated Lattice Gas	
	\mathcal{I} . I Δ	The Decorated Datities das	410

	9.12.1 General Properties	
	9.12.2 A Water-Like Model	
	9.12.3 Maxithermal, Critical Double and Cuspoidal Points	
	9.13 Decorated Lattice Gas Mixtures	
	Examples	<i>∠9</i> ∪
10.	The Six-Vertex Model	
	10.1 Two-Dimensional Ice-Rule Models	
	10.2 Parameter Space	
	10.4 Free Energy and Transfer Matrices	
	10.5 Transfer Matrix Eigenvalues	
	10.5.1 The Case $n = 0$	
	10.5.2 The Case $n = 1$	
	10.5.3 The General n Case	
	10.6 The Low-Temperature Frozen Ferroelectric State	
	10.7 Wave-Number Density	307
	10.8 The Solution of the Integral Equation for $-1 < \Delta < 1 \dots$	
	10.9 The Free Energy of the Disordered State	
	10.9.1 The KDP Model	
	10.9.2 Square Ice	
	10.9.3 Non-Zero Polarization	
	10.10 The Ferroelectric Transition in Zero Field	
	10.11 The Antiferroelectric State	310
	to the Completely Polarized State	210
	10.13 An Antiferroelectric in an Electric Field	
	10.14 The Potts Model	
	10.14.1 The Staggered Six-Vertex Model	
	10.14.2 The Solvable Case $\xi_h \xi_v = 1 \dots \dots \dots$	
	10.14.3 The Solvable Case $\xi_h \xi_v = -1$	
	10.14.4 The Polarization and Internal Energy	
	10.14.5 Critical Exponents	331
	Examples	332
Α.	Appendices	335
	A.1 Regular Lattices	
	A.2 Elliptic Integrals and Functions	
	A.2.1 Elliptic Integrals	338
	A.2.2 Elliptic Functions	
	A.2.3 Results Required for Chapter 8	
	A.3 The Water Molecule and Hydrogen Bonding	
	A.4 Results for the Six-Vertex Model	
	A.4.1 The Proof of I	
	A.4.2 The Proof of II	345

	A.4.3	The Pro	oof of II	[[345
	A.4.4	The Pro	of of I	V		 	 		 	 	 		348
A.5	Fourie	er Transf	orms ar	$\operatorname{id} \operatorname{Se}$	eries	 	 		 	 	 		349
	A.5.1	Fourier	Transfe	orms		 	 		 	 	 		349
	A.5.2	Fourier	Series .			 	 	٠.	 	 	 		349
References and Author Index				351									
Subject	Index					 	 		 	 	 		365