Manifold Learning in Computer Vision Part 2

Hui Wu IBM Research

Review: Manifold Learning for Nonlinear Dimensionality Reduction

PCA can not approximate nonlinear data variation

Manifold is commonly used to model nonlinear structures in data

Review: Manifold Learning for Nonlinear Dimensionality Reduction

 We covered two most well known manifold learning methods in the last lecture

LLE

Isomap

Review: Locally Linear Embedding (LLE)

- LLE utilizes the locally linear property of manifolds, and assumes:
 - A reference point can be represented as the linear combination of its neighbors
 - The weights of the linear combination are preserved in the low-dimensional space

Review: Isomap

- Isomap also utilizes the locally linear property
 - Local geodesic distances are close to Euclidean distances
 - Global geodesic distances are estimated using the shortest chain of local geodesic distances
- MDS is applied to obtain the low-dimensional coordinates given the estimated geodesic distances

Applications of Manifold Learning in Computer Vision

Review: Semi-supervised Regression on Manifolds

- Input: labeled and unlabeled images
- Output: labels on all images

- The objective function minimizes two terms:
 - Manifold regularizer: labels should change smoothly on the manifold
 - Empirical loss: penalizes for changing the values of input labels

Review: Robust Manifold Regression for Image Label Denoising

- Input: images and noisy labels
- Output: cleaned labels

- A regularized empirical risk minimization framework
 - Manifold regularizer: labels should change smoothly on the manifold
 - Empirical loss: L1 norm is robust to high variance in noise

Multiple Shape Matching based on Manifold Learning

Existing Multiple 3D Shape Matching Methods

Pairwise matching is usually the first step

Existing Multiple 3D Shape Matching Methods

- Pairwise matching is usually the first step
 - There are erroneous pairwise correspondences

Existing Multiple 3D Shape Matching Methods

Cycle consistency is used to refine incorrect matches

Manifold Assumption of 3D Shape Feature **Points**

 Assume that the feature points extracted on each shape form a low-dimensional manifold

Manifold Assumption of 3D Shape Feature Points

 Assume that the feature points extracted on each shape form a low-dimensional manifold

Manifold Assumption of 3D Shape Feature Points

 Assume that the feature points extracted on each shape form a low-dimensional manifold

Latent Mean Manifold

Each shape manifold is an instance of an underlying,

Shape Matching using Mean Manifold

- Project each shape manifold to the low-dimensional manifold coordinate system
- Match points based on the distances in the low-D space

Differences from Existing Manifold Learning Methods

- Classic manifold learning techniques (e.g. LLE, Isomap)
 - Input: one set of unorganized high-D points
 - Output: low-D coordinates of the points on the latent manifold
 - Parametric mapping is generally unavailable
- Learning the mean manifold for shape matching
 - Input: multiple sets of high-D points with their pairwise (potentially noisy) correspondences
 - Output: low-D coordinates of the points on the mean manifold
 - Parametric mapping is necessary for mapping new feature points or matching unseen shapes to existing shapes

Learning the Mean Manifold

- The goal is to learn $f_k(\bullet)$, which maps feature points from each shape to a unified manifold representation
- The manifold regularizer
 - The learned mapping should preserve the local relationships on the original manifolds $\{M_k\}$
 - For example, preserving locally linear relationships (LLE), or preserving local proximity (Laplacian Eigenmaps)
- Pairwise correspondence constraint
 - Most input pairwise correspondences are correct
 - Originally matched points should also be close on the mean manifold

Illustration of Learning the Mean Manifold

Summary

- We discussed a preliminary idea of matching multiple shapes by learning a mean manifold
- Deep metric learning can provide parametric mappings from each shape to the mean manifold
 - Encourages matched points to be close in the mapped space
- How to incorporate the manifold regularizer in the cost function?
 - Most manifold regularizers are evaluated locally
 - Forward a set of neighborhood points through the network and evaluate the overall cost term