Géométrie dans l'espace, produit scalaire.

1 Produit scalaire

1.1 Norme d'un vecteur dans un repère orhtonormé

Théorème : Si dans un repère orthonormé $\left(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k}\right)$, $\overrightarrow{u}(a; b; c)$ alors $\|\overrightarrow{u}\| = \sqrt{a^2 + b^2 + c^2}$.

Preuve: Soit P l'image de O par la translation de vecteur $\overrightarrow{u}: \|\overrightarrow{u}\| = \|\overrightarrow{OP}\| = OP$.

 $\overrightarrow{OP} = \overrightarrow{u}(a; b; c) \text{ donc } P(a; b; c).$

Soient H(a; b; 0) et A(a; 0; 0).

 $\overrightarrow{OA}(a;0;0) \xrightarrow{OA} \overrightarrow{OA} = \overrightarrow{a1}; \overrightarrow{AH}(0;b;0), \text{ donc } \overrightarrow{AH} = \overrightarrow{b1};$

donc \overrightarrow{OA} et \overrightarrow{AH} sont orthogonaux.

Dans le triangle OAH rectangle en A, d'après le théorème de

Pythagore, $OH^2 = OA^2 + AH^2 = a^2 + b^2$.

 $\overrightarrow{HP}(0;0;c)$, donc $\overrightarrow{HP}=c\overrightarrow{k}$ est orthogonal au plan (OIJ) $(HP)\perp (OIJ)$ et $(AH)\subset (OIJ)$ donc $(AH)\perp (HP)$.

Dans le triangle OHP rectangle en H, d'après le théorème de

Pythagore, $OP^2 = OH^2 + HP^2 = a^2 + b^2 + c^2$.

Propriété : Si dans un repère orthonormé, $A(x_A;y_A;z_A)$ et $B(x_B;y_B;z_B)$ alors $AB = \sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}$.

Preuve : $\overrightarrow{AB}(x_B - \overline{x_A}; y_B - y_A; z_B - z_A)$ donc $AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$.

Exemple: L'espace étant rapporté à un repère orthonormé, on considère les points

A(0; -44; -44), B(35; 24; 7), C(-25; -35; 44). Déterminer la nature du triangle ABC. 1

Propriété: *Inégalité triangulaire*. Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} , $\|\overrightarrow{u} + \overrightarrow{v}\| \leq \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$.

Preuve:

Soit A un point, soit B l'image de A par la translation de vecteur \overrightarrow{u} , soit C l'image de B par la translation de vecteur \overrightarrow{v} .

On a
$$\|\overrightarrow{u} + \overrightarrow{v}\| = \left\|\overrightarrow{AB} + \overrightarrow{BC}\right\| = \left\|\overrightarrow{AC}\right\| = AC \leqslant AB + BC = \left\|\overrightarrow{AB}\right\| + \left\|\overrightarrow{BC}\right\| = \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$$

1.2 Norme d'un vecteur et orthogonalité

Propriété : Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls ; alors

 \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2$.

Preuve:

Soit A un point, soit B l'image de A par la translation de vecteur \overrightarrow{u} , soit C l'image de B par la translation de vecteur \overrightarrow{v} , de sorte qu'on a $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{BC} = \overrightarrow{v}$.

D'après la relation de Chasles, $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

On a donc $\|\overrightarrow{u}\|^2 = \left\|\overrightarrow{AB}\right\|^2 = AB^2$, $\|\overrightarrow{v}\|^2 = \left\|\overrightarrow{BC}\right\|^2 = BC^2$ et $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \left\|\overrightarrow{AC}\right\|^2 = AC^2$.

- Si \overrightarrow{u} et \overrightarrow{v} sont orthogonaux alors le triangle ABC est rectangle en B, donc d'après le théorème de Pythagore, $AB^2 + BC^2 = AC^2$, c'est-à-dire $\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 = \|\overrightarrow{u} + \overrightarrow{v}\|^2$.
- Réciproquement, si $\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 = \|\overrightarrow{u} + \overrightarrow{v}\|^2$ alors $AB^2 + BC^2 = AC^2$, donc d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B, autrement dit \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

1.3 Définition

Définition: Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs; alors on appelle *produit scalaire de* \overrightarrow{u} et \overrightarrow{v} le nombre $\overrightarrow{u} \cdot \overrightarrow{v}$ défini par : $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2}{2}$.

Propriété : Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

(a)
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

(b)
$$\overrightarrow{u} \cdot \overrightarrow{u} = \|\overrightarrow{u}\|^2$$

(c)
$$\overrightarrow{u} \cdot \overrightarrow{0} = \overrightarrow{0} \cdot \overrightarrow{u} = 0$$

(d) Si
$$\overrightarrow{u} \neq \overrightarrow{0}$$
 et $\overrightarrow{v} \neq \overrightarrow{0}$ alors \overrightarrow{u} et \overrightarrow{v} orthogonaux $\Longleftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0$

Preuve :

(a) Cela découle immédiatement de la définition.

(b)
$$\overrightarrow{u} \cdot \overrightarrow{u} = \frac{\|\overrightarrow{u} + \overrightarrow{u}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{u}\|^2}{2} = \frac{\|2\overrightarrow{u}\|^2 - 2\|\overrightarrow{u}\|^2}{2} = \frac{(2\|\overrightarrow{u}\|)^2 - 2\|\overrightarrow{u}\|^2}{2}$$
$$= \frac{4\|\overrightarrow{u}\|^2 - 2\|\overrightarrow{u}\|^2}{2} = \frac{2\|\overrightarrow{u}\|^2}{2} = \|\overrightarrow{u}\|^2.$$

(c)
$$\overrightarrow{u} \cdot \overrightarrow{0} = \frac{\left\|\overrightarrow{u} + \overrightarrow{0}\right\|^2 - \left\|\overrightarrow{u}\right\|^2 - \left\|\overrightarrow{0}\right\|^2}{2} = \frac{\left\|\overrightarrow{u}\right\|^2 - \left\|\overrightarrow{u}\right\|^2}{2} = 0.$$
 $\overrightarrow{0} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{0} = 0.$

(d) Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls.

Alors : \overrightarrow{u} et \overrightarrow{v} orthogonaux $\Longleftrightarrow \|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2$ d'après la propriété précédente. Donc \overrightarrow{u} et \overrightarrow{v} orthogonaux $\Longleftrightarrow \|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 = 0$

$$\iff \frac{\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2}{2} = 0 \iff \overrightarrow{u} \cdot \overrightarrow{v} = 0.$$

Notation: L'écriture \overrightarrow{u}^2 désigne indifféremment $\overrightarrow{u} \cdot \overrightarrow{u}$ ou $\|\overrightarrow{u}\|^2$.

1.4 Expression analytique

Propriété : Si, dans un repère orthonormé, $\overrightarrow{u}(a;b;c)$ et $\overrightarrow{v}(\alpha;\beta;\gamma)$ alors $\overrightarrow{u}\cdot\overrightarrow{v}=a\alpha+b\beta+c\gamma$.

Preuve : $\|\overrightarrow{u}\|^2 = a^2 + b^2 + c^2$ et $\|\overrightarrow{v}\|^2 = \alpha^2 + \beta^2 + \gamma^2$.

Or le vecteur $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $(a+\alpha;b+\beta,c+\gamma)$, donc $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = (a+\alpha)^2 + (b+\beta)^2 + (c+\gamma)^2$.

Donc
$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2}{2}$$

$$= \frac{(a+\alpha)^2 + (b+\beta)^2 + (c+\gamma)^2 - (a^2+b^2+c^2) - (\alpha^2+\beta^2+\gamma^2)}{2}$$

$$= \frac{a^2 + 2a\alpha + \alpha^2 + b^2 + 2b\beta + \beta^2 + c^2 + 2c\gamma + \gamma^2 - a^2 - b^2 - c^2 - \alpha^2 - \beta^2 - \gamma^2}{2}$$

$$= \frac{2a\alpha + 2b\beta + 2c\gamma}{2} = a\alpha + b\beta + c\gamma.$$

Exemple: L'espace étant rapporté à un repère orthonormé, trouver les vecteurs orthogonaux parmi : $\overrightarrow{u}(1;-2;-2)$, $\overrightarrow{v}(-2;1;-2)$ et $\overrightarrow{w}(1;-3;-2)$

Propriété: L'espace est muni d'un repère $(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k})$ orthonormé.

Soit $\overrightarrow{y}(x; y; z)$ un vecteur. Alors $x = \overrightarrow{y} \cdot \overrightarrow{k}$ $y = \overrightarrow{y} \cdot \overrightarrow{k}$ et $z = \overrightarrow{y} \cdot \overrightarrow{k}$

Soit $\overrightarrow{u}(x;y;z)$ un vecteur. Alors $x=\overrightarrow{u}\cdot\overrightarrow{1}$, $y=\overrightarrow{u}\cdot\overrightarrow{j}$ et $z=\overrightarrow{u}\cdot\overrightarrow{k}$. **Preuve**: $\overrightarrow{1}(1;0;0)$ donc $\overrightarrow{u}\cdot\overrightarrow{1}=x\times 1+y\times 0+z\times 0=x$, $\overrightarrow{j}(0;1;0)$ donc $\overrightarrow{u}\cdot\overrightarrow{j}=x\times 0+y\times 1+z\times 0=y$ et $\overrightarrow{k}(0;0;1)$ donc $\overrightarrow{u}\cdot\overrightarrow{k}=x\times 0+y\times 0+z\times 1=z$.

1.5 Règles de calcul

L'expression analytique permet de prouver les formules suivantes.

Propriété: Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} , pour tout réel $k: \bullet \overrightarrow{u} \cdot (k\overrightarrow{v}) = (k\overrightarrow{u}) \cdot \overrightarrow{v} = k(\overrightarrow{u} \cdot \overrightarrow{v})$

 $\bullet \ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$

 $\bullet \ \overrightarrow{u} \cdot (\overrightarrow{v} - \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} - \overrightarrow{u} \cdot \overrightarrow{w}$

Les deux dernières formules expriment la distribitivité du produit scalaire dans la somme et la différence de vecteurs. On peut en déduire la double distributivité : pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{a} et \overrightarrow{b} :

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \left(\overrightarrow{a} + \overrightarrow{b}\right) = \overrightarrow{u} \cdot \overrightarrow{a} + \overrightarrow{u} \cdot \overrightarrow{b} + \overrightarrow{v} \cdot \overrightarrow{a} + \overrightarrow{v} \cdot \overrightarrow{b}.$$

Ce qui permet d'établir les "identités remarquables" qui prennent la forme suivante :

Propriété :

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} :

- $\bullet \|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$
- $\bullet \|\overrightarrow{u} \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2 \quad \bullet (\overrightarrow{u} \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2$

1.6 Lien avec les angles

Propriété: Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls. Alors $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \cos(\overrightarrow{u}; \overrightarrow{v})$.

Preuve: Comme deux vecteurs sont toujours coplanaires, on se place dans un plan F sur lequel on peut représenter les vecteurs \overrightarrow{u} et \overrightarrow{v} .

Comme $\overrightarrow{u} \neq \overrightarrow{0}$, on peut s'intéresser au vecteur $\overrightarrow{u'} = \frac{1}{\|\overrightarrow{u}\|} \overrightarrow{u}$:

 $\operatorname{comme}\ \frac{1}{\|\overrightarrow{u}\|}>0,\ \overrightarrow{u'}\ \text{a le même sens que }\overrightarrow{u}.\ \text{De plus, } \left\|\overrightarrow{u'}\right\|=\left\|\frac{1}{\|\overrightarrow{u}\|}\overrightarrow{u}\right\|=\frac{1}{\|\overrightarrow{u}\|}\|\overrightarrow{u}\|=1.$

De même, le vecteur $\overrightarrow{v'} = \frac{1}{\|\overrightarrow{v}\|} \overrightarrow{v}$ est de norme 1 et a le même sens que \overrightarrow{v} .

Soit \overrightarrow{J} un vecteur de norme 1 orthogonal à $\overrightarrow{u'}$, soit O un point du plan F; alors $O(\overrightarrow{u'},\overrightarrow{J})$ est un repère orthonormé du plan F.

Soit P l'image de O par la translation de vecteur $\overrightarrow{v'}$, de sorte que $\overrightarrow{OP} = \overrightarrow{v'}$.

 $OP = \left\| \overrightarrow{v'} \right\| = 1$, donc P est un point du cercle trigonométrique.

Ainsi, dans le repère $(O; \overrightarrow{u'}, \overrightarrow{J})$, $P(\cos t; \sin t)$ où t est une mesure $\text{de l'angle } \left(\overrightarrow{u'};\overrightarrow{v'}\right). \text{ Or } \overrightarrow{v'} = \overrightarrow{OP}, \text{ donc } \overrightarrow{v'}(\cos t; \sin t).$

Comme $\overrightarrow{u'}$ et $\overrightarrow{v'}$ ont le même sens que \overrightarrow{u} et \overrightarrow{v} , $(\overrightarrow{u};\overrightarrow{v}) = (\overrightarrow{u'};\overrightarrow{v'}) = t$.

Dans $(O; \overrightarrow{u'}, \overrightarrow{\jmath})$, $\overrightarrow{u'}(1; 0)$, donc $\overrightarrow{u'} \cdot \overrightarrow{v'} = 1 \cos t + 0 \sin t = \cos t$.

Par ailleurs, $\overrightarrow{u} = \|\overrightarrow{u}\| \overrightarrow{u'}$ et $\overrightarrow{v} = \|\overrightarrow{v}\| \overrightarrow{v'}$ donc

 $\overrightarrow{u} \cdot \overrightarrow{v} = \left(\|\overrightarrow{u}\| \overrightarrow{u'} \right) \cdot \left(\|\overrightarrow{v}\| \overrightarrow{v'} \right) = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \overrightarrow{u'} \cdot \overrightarrow{v'}$ $= \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos t = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos (\overrightarrow{u}; \overrightarrow{v}).$

1.7 Projeté orthogonal

Il ne faut pas confondre la notion de projeté orthogonal d'un point avec celle de projeté orthogonal d'un vecteur.

Définition :

On appelle projeté orthogonal d'un point M sur une droite D, le point M' intersection de D avec la perpendiculaire à D passant par M.

On appelle *projeté orthogonal* d'un vecteur \overrightarrow{v} sur un vecteur non nul \overrightarrow{u} , l'unique vecteur $\overrightarrow{v'}$ colinéaire à \overrightarrow{u} tel que $\overrightarrow{v} - \overrightarrow{v'}$ soit orthogonal à \overrightarrow{u} .

 $\overline{\text{On a représenté ci-contre trois vecteurs } \overrightarrow{u}, \overrightarrow{v} \text{ et } \overrightarrow{w}.$ $\overrightarrow{v'}$ est le projeté orthogonal de \overrightarrow{v} sur \overrightarrow{u} . \overrightarrow{w}' est le projeté orthogonal de \overrightarrow{w} sur \overrightarrow{u} .

Propriété : Soit \overrightarrow{u} un vecteur non nul, soit \overrightarrow{v} un vecteur.

Si $\overrightarrow{v'}$ est le projeté orthogonal de \overrightarrow{v} sur \overrightarrow{u} , alors $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{v'}$.

Preuve: $\overrightarrow{u} \cdot \overrightarrow{v} - \overrightarrow{u} \cdot \overrightarrow{v'} = \overrightarrow{u} \cdot \left(\overrightarrow{v} - \overrightarrow{v'}\right) = 0$ car $\overrightarrow{v'}$ est le projeté orthogonal de \overrightarrow{v} sur \overrightarrow{u} . Donc $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{v'}$.

Propriété: Soit \overrightarrow{u} un vecteur non nul, soit \overrightarrow{v} un vecteur. Soit $\overrightarrow{v'}$ le projeté orthogonal de \overrightarrow{v} sur \overrightarrow{u} .

- Si \overrightarrow{u} et $\overrightarrow{v'}$ sont de même sens alors $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v'}\|$
- Si \overrightarrow{u} et $\overrightarrow{v'}$ sont de sens contraires alors $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v'}\|$.

Preuve:

- D'après la propriété précédente, $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{v'}$. Donc $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v'}\| \cos (\overrightarrow{u}; \overrightarrow{v'})$.
- Si \overrightarrow{u} et $\overrightarrow{v'}$ sont de même sens, alors $\left(\overrightarrow{u};\overrightarrow{v'}\right)=0$ $[2\pi].$ Donc $\cos\left(\overrightarrow{u};\overrightarrow{v'}\right) = 1$, donc $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v'}\|$.

• Si \overrightarrow{u} et $\overrightarrow{v'}$ sont de sens contraires, alors $\left(\overrightarrow{u};\overrightarrow{v'}\right)=\pi$ $[2\pi].$ Donc $\cos\left(\overrightarrow{u};\overrightarrow{v'}\right) = -1$, donc $\overrightarrow{u} \cdot \overrightarrow{v} = -\|\overrightarrow{u}\| \|\overrightarrow{v'}\|$.

 \overrightarrow{u}

Application 1.8

Le produit scalaire et la notion de vecteurs directeurs permettent de démontrer le théorème bien connu :

Théorème : Si une droite D est perpendiculaire à deux droites sécantes D_1 et D_2 d'un plan Palors elle est orthogonale à toute droite Δ de P.

Preuve:

- Soient \overrightarrow{u} , $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ des vecteurs directeurs de D, D_1 et D_2 . Comme $D \perp D_1$ et $D \perp D_2$, $\overrightarrow{v_1} \cdot \overrightarrow{u} = 0$ et $\overrightarrow{v_2} \cdot \overrightarrow{u} = 0$.
- Soit Δ une droite de P, soit \overrightarrow{w} un vecteur directeur de Δ . D_1 , D_2 et Δ sont dans P, donc elles sont coplanaires, donc leurs vecteurs directeurs $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ et \overrightarrow{w} sont coplanaires. Or comme D_1 et D_2 sont sécantes, $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ ne sont pas colinéaires.

• Donc $\overrightarrow{w} \cdot \overrightarrow{u} = (a\overrightarrow{v_1} + b\overrightarrow{v_2}) \cdot \overrightarrow{u} = a\overrightarrow{v_1} \cdot \overrightarrow{u} + b\overrightarrow{v_2} \cdot \overrightarrow{u} = a \times 0 + b \times 0 = 0.$ \overrightarrow{w} et \overrightarrow{u} sont donc orthogonaux, ainsi Δ et D sont orthogonales.

Définition:

Dire qu'une droite D est perpendiculaire à un plan P signifie qu'elle est orthogonale à toute droite de P.

Équations cartésiennes de plans 2

Plan perpendiculaire 2.1

Exemple:

Enoncé : Dans un repère orthonormé, on a A(-1;5;-2) et B(5;1;0). Soit P le plan perpendiculaire à (AB) passant par A.

(b) Les points C(2;2;2) et D(1;7;-4) sont-ils sur P?

Solution:

(b) En remplaçant dans le membre de gauche x, y, z par les coordonnées de C,

on obtient $3 \times 2 - 2 \times 2 + 2 + 15 = 19 \neq 0$ donc $C \notin P$.

 \overrightarrow{AM}

En remplaçant x, y, z par les coordonnées de D, on obtient $3 \times 1 - 2 \times 7 - 4 + 15 = 0$ donc $D \in P$.

Remarques : 3x - 2y + z + 15 = 0 s'appelle une équation cartésienne de P.

Le vecteur \overrightarrow{AB} s'appelle un vecteur normal de P.

Définition: On appelle vecteur normal d'un plan P tout vecteur non nul orthogonal à P.

Remarque : Si \overrightarrow{u} est un vecteur normal d'un plan Palors les vecteurs normaux de P sont les vecteurs non nuls colinéaires à \overrightarrow{u} .

Propriété: L'espace étant rapporté à un repère orthonormé, soient $\overrightarrow{u}(\alpha, \beta, \gamma) \neq \overrightarrow{0}$ et A(a; b; c).

ullet Alors le plan passant par A avec pour vecteur normal \overrightarrow{u} a pour équation cartésienne $\alpha(x-a) + \beta(y-b) + \gamma(z-c) = 0$ ou encore $\alpha x + \beta y + \gamma z = \alpha a + \beta b + \gamma c$.

• Réciproquement, soit $\delta \in \mathbb{R}$. Alors l'ensemble des points M(x;y;z) tels que $\alpha x + \beta y + \gamma z + \delta = 0$ est un plan de vecteur normal $\overrightarrow{u}(\alpha, \beta, \gamma)$.

Propriété: Deux plans sont parallèles si et seulement s'ils possèdent des vecteurs normaux colinéaires.

Preuve: •Soit P_1 un plan de vecteur normal $\overrightarrow{n_1}$, soit P_2 un plan de vecteur normal $\overrightarrow{n_2}$. Soit D une droite ayant $\overrightarrow{n_1}$ pour vecteur directeur; alors $D \perp P_1$.

•Si $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont colinéaires, alors $\overrightarrow{n_2}$ est aussi un vecteur directeur de D, donc $D \perp P_2$. Or deux plans perpendiculaires à une même droite sont parallèles (au sens large), donc $P_1//P_2$.

D

Plan médiateur

Théorème : Soient A et B deux points distincts. Alors

l'ensemble des points équidistants de A et B est le plan orthogonal à (AB) passant par le mileu de [AB].

Preuve: Soient A et B deux points distincts, et I le milieu de [AB]. Soit M un point.

- (a) Démontrer que $AM^2 = AI^2 + 2\overrightarrow{AI} \cdot \overrightarrow{IM} + IM^2$.
- (b) Démontrer que $BM^2 = AI^2 2\overrightarrow{AI} \cdot \overrightarrow{IM} + IM^2$.
- (c) En déduire que $AM = BM \Longleftrightarrow \overrightarrow{AI} \cdot \overrightarrow{IM} = 0$.
- (d) Conclure.

Définition: Si A et B sont deux points distincts alors

on appelle "plan médiateur" du segment [AB] le plan qui coupe perpendiculairement [AB] en son milieu. Le plan médiateur de [AB] est aussi l'ensemble des points équidistants des extrémités A et B.

2.3 Plans définis par trois points

Exemple: Dans un repère orthonormé, soient les points A(3;2,1), B(1;-2;3) et C(-1;0;1).

- (a) Démontrer que les points A, B et C définissent un plan.
- (b) Déterminer un vecteur $\overrightarrow{n} \neq \overrightarrow{0}$ orthogonal à \overrightarrow{CA} et \overrightarrow{CB} .
- (c) En déduire une équation du plan (ABC).

5

3 Positions relatives de droites et de plans

3.1 Rappel Soient D une droite et P un plan.

		·		
_	Nombre de points communs	0	1	plus d'un
•	Position	D strictement parallèle à P	${\cal D}$ coupe ${\cal P}$	${\cal D}$ incluse dans ${\cal P}$

Exemple: Dans un repère orthonormé, on a P: x + 2y + z = 1.

$$D_1 \begin{cases} x = \lambda + 1 \\ y = -\lambda \\ z = \lambda + 3 \end{cases} \quad \text{où } \lambda \in \mathbb{R} \quad D_2 \begin{cases} x = -t + 4 \\ y = t - 4 \\ z = t - 1 \end{cases} \quad \text{où } t \in \mathbb{R} \quad D_3 \begin{cases} x = 2s \\ y = -2s \\ z = 2s + 1 \end{cases} \quad \text{où } s \in \mathbb{R}$$

Déterminer la position de P par rapport à D_1 , D_2 et D_3 . Préciser les points d'intersection. 6

Propriété : Soit D une droite de vecteur directeur \overrightarrow{u} et P un plan de vecteur normal \overrightarrow{n} . Alors D coupe P si et seulement si $\overrightarrow{n} \cdot \overrightarrow{u} \neq 0$.

Preuve : \overrightarrow{n} est orthogonal à tout vecteur de P.

Or D//P ou $D \subset P \Longleftrightarrow \overrightarrow{u}$ est un vecteur de $P \Longleftrightarrow \overrightarrow{u}$ orthogonal à $\overrightarrow{n} \Longleftrightarrow \overrightarrow{u} \cdot \overrightarrow{n} = 0$. Donc D coupe $P \Longleftrightarrow \overrightarrow{u} \cdot \overrightarrow{n} \neq 0$.

3.2 Intersections de plans

La propriété suivante vient compléter celle du paragraphe 2.1.

Propriété: Soient P_1 et P_2 deux plans de vecteurs normaux respectifs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$.

- Si $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont colinéaires et $P_1 \cap P_2 \neq \emptyset$ alors P_1 et P_2 sont confondus.
- Si $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont colinéaires et $P_1 \cap P_2 = \emptyset$ alors P_1 et P_2 sont strictement parallèles.
- Si $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas colinéaires alors P_1 et P_2 se coupent suivant une droite.

Exercice:

Enoncé:

Dans un repère orthonormé, on a $P_1: x-y+2z=3$ et $P_2: x-2z=4$.

- (a) Prouver que P_1 et P_2 sont sécants.
- (b) Déterminer une représentation paramétrique de la droite $D=P_1\cap P_2$.
- (c) Etudier la position de P_1 et P_2 par rapport à $P_3:-2x+2y-4z=3$.

Solution:

- (a) P_1 a pour vecteur normal $\overrightarrow{n_1}(1;-1;2)$, P_2 a pour vecteur normal $\overrightarrow{n_2}(1;0;-2)$. $1\times 0\neq 1\times (-1)$ donc $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas colinéaires donc P_1 et P_2 sont sécants.
- (b) Première méthode : on se ramène à ce qu'on sait faire. Trouvons deux points A et B communs à P_1 et P_2 . Choisissons une cote nulle pour A alors dans l'équation de P_2 : $x-2\times 0=4$ donc x=4. Remplaçons dans l'équation de P_1 : $4-y+2\times 0=3$ donc y=1. A(4;1;0). Choisissons une abscisse nulle pour B alors dans P_2 : $0-2\times z=4$ donc z=-2. Remplaçons dans P_1 : $0-y+2\times (-2)=3$ donc y=-7. B(0;-7;-2).

$$D=(AB)$$
, donc un vecteur directeur est $\overrightarrow{AB}(0-4;-7-1;-2-0)$, $\overrightarrow{AB}(-4;-8;-2)$.

$$D=(AB), \text{ donc un vecteur directeur est } AB(0-4;-7-1;-2-0)$$
 De plus D passe par $A(4;1;0), \text{ donc } D \begin{cases} x=-4t+4\\ y=-8t+1 \end{cases}$ où $t \in \mathbb{R}$. $z=-2t$

• Seconde méthode : plus directe.

L'équation de P_2 permet d'exprimer facilement x en fonction de z, on choisit donc z=t, on obtient x - 2t = 4 d'où x = 2t + 4.

Puis en remplaçant dans l'équation de $P_1: 2t+4-y+2t=3$, d'où y=4t+1.

Ainsi,
$$D$$

$$\begin{cases} x = 2t + 4 \\ y = 4t + 1 \\ z = t \end{cases}$$
 où $t \in \mathbb{R}$.

Remarques : - il n'est pas surprenant d'obtenir une autre représentation paramétrique,

> - la relation entre les paramètres des deux représentations est un facteur -2.

(c) Plans orthogonaux 3.3

Propriété : Soient P_1 et P_2 deux plans.

- S'il existe une droite $d_1\subset P_1$ telle que $d_1\perp P_2$ alors il existe une droite $d_2\subset P_2$ telle que $d_2\perp P_1$. **Preuve**: Soient P_1 et P_2 deux plans. Supposons qu'il existe une droite $d_1\subset P_1$ telle que $d_1\perp P_2$.

 P_1 et P_2 ne sont pas confondus car sinon toute droite d_1 de P_1 serait incluse dans P_2 . P_1 et P_2 ne sont pas strictement parallèles car ils ont en commun le point H intersection de d_1 avec P_2 . Donc P_1 et P_2 se coupent suivant une droite δ , qui passe par H.
- $d_1 \perp P_2$ et $\delta \subset P_2$ donc d_1 est orthogonale à δ . Or δ et d_1 sont coplanaires puisqu'elles sont incluses dans P_1 , donc d_1 et δ sont deux droites sécantes de P_1 .
- Dans le plan P_2 , soit d_2 la perpendiculaire à δ en H. $d_1 \perp P_2$ et $d_2 \subset P_2$ donc d_1 et d_2 sont orthogonales. Or d_1 et d_2 ont en commun le point H, donc $d_1 \perp d_2$.

Or $\delta \perp d_2$, donc d_2 est perpendiculaire à deux droites sécantes de P_1 , donc $d_2 \perp P_1$.

Définition:

Dire que deux plans sont perpendiculaires signifie que l'un contient une droite perpendiculaire à l'autre.

Théorème: Deux plans sont perpendiculaires si et seulement si leurs vecteurs normaux sont orthogonaux.

Preuve:

ullet Soient P_1 et P_2 deux plans orthogonaux. D'après la définition et la propriété précédentes, il existe une droite $d_1 \subset P_1$ telle que $d_1 \perp P_2$, et il existe une droite $d_2 \subset P_2$ telle que $d_2 \perp P_1$. Soit $\overrightarrow{n_2}$ un vecteur normal de P_2 , $\overrightarrow{n_2}$ est un vecteur directeur de d_1 . Soit $\overrightarrow{n_1}$ un vecteur normal de P_1 , $\overrightarrow{n_1}$ est un vecteur directeur de d_2 .

 $d_{2}\perp P_{1}$ et $d_{1}\subset P_{1}$, donc d_{2} et d_{1} sont orthogonales donc $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont orthogonaux.

• Réciproquement, soient P_1 et P_2 deux plans dont des vecteurs normaux $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont orthogonaux.

Alors P_1 et P_2 ne sont ni parallèles ni confondus puisque leurs vecteurs normaux ne sont pas colinéaires. Donc P_1 et P_2 se coupent suivant une droite δ .

Soit $H \in \delta$. Soit d_1 la droite passant par H avec pour vecteur directeur $\overrightarrow{n_2}$.

 $\overrightarrow{n_1}\cdot\overrightarrow{n_2}=0$ donc d_1 ne coupe pas P_1 , or d_1 et P_1 ont Hpour point commun donc $d_1 \subset P_1$.

Comme d_1 a pour vecteur directeur $\overrightarrow{n_2}$ qui est un vecteur normal de P_2 , $d_1 \perp P_2$.

Or $d_1 \subset P_1$, donc $P_1 \perp P_2$.

$$P: 2x + y - z - 5 = 0$$
; $Q: -x + 2y - z = 0$; $R: 2x - y + 3z - 7 = 0$.

Déterminer ceux qui sont orthogonaux.

3.4 Intersection de trois plans

Propriété : L'intersection de trois plans est :

soit l'ensemble vide,

soit un point, soit une droite,

Les cas où, parmi les trois plans, deux sont confondus, se ramènent à l'intersection de deux plans. Les figures ci-dessous présentent les autres cas.

Trois plans strictement parallèles. Deux plans strictement parallèles. Les plans se coupent deux à deux

coupés par le troisième.

suivant des droites strictement parallèles.

Deux plans se coupent suivant une droite incluse dans le troisième : les trois plans se coupent suivant une même droite.

> Deux plans se coupent suivant une droite qui coupe le troisième : les trois plans se coupent en un point.

Propriété : Les solutions d'un système de trois équations linéaires à trois inconnues sont les coordonnées des points communs aux trois plans définis par les équations du système.

Exemple:

emple :
$$\begin{cases} x+y+z=2\\ x-y-2z=1\\ 2x+4y+5z=5 \end{cases}$$
 , ainsi qu'aux

plans définis par ces équations : P_1 : x + y + z = 2, P_2 : x - y - 2z = 1 et P_3 : 2x + 4y + 5z = 5.

- (a) Démontrer que P_1 et P_2 se coupent suivant une droite Δ dont on donnera une représentation paramétrique.
- (b) Etudier la position de Δ par rapport à P_3 .
- (c) En déduire $P_1 \cap P_2 \cap P_3$ ainsi que le nombre de solutions de S.

9

Appendice

Lorsque deux vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires, le programme ci-contre calcule les coordonnées d'un vecteur orthogonal à \overrightarrow{u} et \overrightarrow{v} . Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, alors le résultat sera nul.

Ce programme peut s'avérer utile par exemple pour trouver un vecteur normal à un plan défini par trois points.

Il est toutefois préférable dans la mesure du possible de trouver "à la main" un tel vecteur.

Le programme ci-contre s'appuie sur la notion hors-programme de produit vectoriel.

TI	Casio	
''	Casio	
Input "X U",A	"X U"?→A	
Input "Y U",B	"Y U"?→B	
Input "Z U",C	"Z U"?→C	
Input "X V",D	"X V"?→D	
Input "Y V",E	"Y V"?→E	
Input "Z V",F	"Z V"?→F	
Disp $B \times F - C \times E$	B×F−C×E ⊿	
Disp $C \times D - A \times F$	C×D-A×F₄	
Disp $A \times E - B \times D$	$A \times E - B \times D I$	