Diving Into Deep Learning: Part 2 – Discussions of Opportunities in Deep Learning

Elizabeth Newman

Emory University

North Carolina State University April 21, 2023

Disclaimer

- I chose topics that...
 - are interesting and fun!
 - will (hopefully) generate discussion
 - bring a variety of mathematical and practical perspectives
 - were or are potential game-changers in deep learning
 - have easy-to-use code/tutorials to explore
 - ...
- This is a very small sample of what has been done and is ongoing with deep learning.
- I am not advocating that these techniques are "best"
- I am not an expert, just eager to learn from and brainstorm with you!

E. Newman (Emory) DNN 101 NC State 2 / 25

A Selection of Topics

DL + Dynamics

- Eldad Haber and Lars Ruthotto. "Stable architectures for deep neural networks". In: Inverse Problems 34.1 (Dec. 2017), p. 014004
- Ricky T. Q. Chen et al. "Neural Ordinary Differential Equations". In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS'18.
 Montréal, Canada: Curran Associates Inc., 2018, pp. 6572–6583

DL + Physics

- M. Raissi, P. Perdikaris, and G.E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: *Journal of Computational Physics* 378 (2019), pp. 686–707
- Jiequn Han, Arnulf Jentzen, and Weinan E. "Solving high-dimensional partial differential equations using deep learning". In: Proceedings of the National Academy of Sciences 115.34 (2018), pp. 8505–8510

DL + Generative Modeling

 Lars Ruthotto and Eldad Haber. "An introduction to deep generative modeling". In: GAMM-Mitteilungen 44.2 (2021), e202100008

DL + UQ

 Laurent Jospin et al. "Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users". In: IEEE Computational Intelligence Magazine 17 (May 2022), pp. 29–48

Introductory Repositories

- DL + Dynamics
 - UvA Deep Learning Tutorials
- DL + Physics
 - https://github.com/elizabethnewman/dnn101 [to be added]
- DL + Generative Modeling
 - https://github.com/EmoryMLIP/DeepGenerativeModelingIntro
- DL + UQ
 - Bayesian Neural Networks
 - CUQIpy

Things to Think About

- How can we apply mathematical tools to make deep learning easier/more effective/more understandable?
- How can we bring prior knowledge and models into deep learning?
- How can deep learning create new samples?
- How can uncertainty quantification help deep learning and vice versa?

Residual Neural Networks, Continuously

Discrete: Given \mathbf{u}_0 ,

$$\mathbf{u}_j = \mathbf{u}_{j-1} + \frac{h}{\sigma} (\mathbf{K}_j \mathbf{u}_{j-1} + \mathbf{b}_j)$$

for layers $j = 1, \ldots, d$.

Continuous:

$$\dot{\mathbf{u}}(t) = \sigma(\mathbf{K}(t)\mathbf{u}(t) + \mathbf{b}(t))$$
 with $\mathbf{u}(0) = \mathbf{u}_0$

over time interval [0, T].

E. Newman (Emory) DNN 101 NC State 6/25

Stable Deep Neural Networks

$$\dot{\mathbf{u}}(t) = \sigma(\mathbf{K}(t)\mathbf{u}(t) + \mathbf{b}(t))$$
 with $\mathbf{u}(0) = \mathbf{u}_0$ over time interval $[0, T]$

Stability

Assume weights evolve slowly in time and σ is monotone increasing. Then forward propagation is stable if

$$\min_{i=1,\dots,n} \operatorname{Re}(\lambda_i(\mathbf{J}(t))) \leqslant 0 \quad \text{for all } t \in [0,T]$$

where

$$\mathbf{J}(t) \equiv \nabla_{\mathbf{u}} \left[\sigma(\mathbf{K}(t)\mathbf{u} + \mathbf{b}(t)) \right] = \operatorname{diag}(\sigma'(\mathbf{K}(t)\mathbf{u}(t) + \mathbf{b}(t)))\mathbf{K}(t)$$

7/25

Haber and Ruthotto, "Stable architectures for deep neural networks"

E. Newman (Emory) DNN 101 NC State

Stable Deep Neural Networks

$$\dot{\mathbf{u}}(t) = \sigma(\mathbf{K}(t)\mathbf{u}(t) + \mathbf{b}(t))$$
 with $\mathbf{u}(0) = \mathbf{u}_0$ over time interval $[0, T]$

Stability

Assume weights evolve slowly in time and σ is monotone increasing. Then forward propagation is stable if

$$\min_{i=1,\dots,n} \operatorname{Re}(\lambda_i(\mathbf{K}(t))) \leqslant 0 \quad \text{for all } t \in [0,T]$$

where

$$\mathbf{J}(t) \equiv \nabla_{\mathbf{u}} \left[\sigma(\mathbf{K}(t)\mathbf{u} + \mathbf{b}(t)) \right] = \operatorname{diag}(\sigma'(\mathbf{K}(t)\mathbf{u}(t) + \mathbf{b}(t)))\mathbf{K}(t)$$

7/25

Haber and Ruthotto, "Stable architectures for deep neural networks"

E. Newman (Emory) DNN 101 NC State

Neural ODEs

8 / 25

$$\dot{\mathbf{u}}(t) = f(\mathbf{u}(t), t, \boldsymbol{\theta}(t)) \implies \mathbf{u}(t_{j+1}) = \mathbf{u}(t_j) + \int_{t_j}^{t_{j+1}} f(\mathbf{u}(s), s, \boldsymbol{\theta}(s)) ds$$

Chen et al., "Neural Ordinary Differential Equations"

E. Newman (Emory) DNN 101 NC State

DL +

Discussion: Bringing Mathematical Tools to Deep Learning

• Are there any numerical analysis tools that can change our perspective on DNNs?

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. "Deep Equilibrium Models". In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates. Inc., 2019

Samy Wu Fung et al. "JFB: Jacobian-Free Backpropagation for Implicit Models". In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

• Are there symmetries and structures we can exploit?

Michael M. Bronstein et al. "Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges". In: ArXiv abs/2104.13478 (2021)

...

E. Newman (Emory) **DNN 101** NC State 9/25

Further Reading

Some Classical References:

- Kaiming He et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778
- Weinan E. "A Proposal on Machine Learning via Dynamical Systems". In: Communications in Mathematics and Statistics 5.1 (2017), pp. 1–11
- Yiping Lu et al. "Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations". In: Proceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 3276–3285

Some Modern References

- Lars Ruthotto and Eldad Haber. "Deep Neural Networks Motivated by Partial Differential Equations". In: Journal of Mathematical Imaging and Vision 62.3 (2020), pp. 352–364
- Chris Finlay et al. "How to Train Your Neural ODE: The World of Jacobian and Kinetic Regularization". In: Proceedings of the 37th International Conference on Machine Learning. ICML'20. JMLR.org, 2020

E. Newman (Emory) DNN 101 NC State 10 / 25

Physics-Informed Neural Networks

Goal: Learn a network that approximates the **solution** to a PDE

$$\mathcal{A}(u) = q$$
 + boundary/initial conditions

Training Problem: Let \mathcal{B} be a set of points on the boundary and let \mathcal{I} be a set of sample points on the interior.

$$\min_{\pmb{\theta}} \Phi^{\mathrm{pinn}}(\pmb{\theta}) \equiv \underbrace{\frac{1}{|\mathcal{B}|} \sum_{(\mathbf{x}, u) \in \mathcal{B}} L(f(\mathbf{x}, \pmb{\theta}), u)}_{\text{fitting term}} + \underbrace{\frac{1}{|\mathcal{I}|} \sum_{(\mathbf{x}, q) \in \mathcal{I}} L(\mathcal{A}(f(\mathbf{x}, \pmb{\theta})), q)}_{\text{physics-informed regularization}}$$

E. Newman (Emory) **DNN 101** NC State 11 / 25

PINNs Example: Burgers' Equation

Raissi, Perdikaris, and Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations"

E. Newman (Emory) DNN 101 NC State 11/25

Deep Ritz Method

Goal: Solve the variational problem for boundary valued problems

$$\min_{u \in \mathcal{H}} \int_{\Omega} \frac{1}{2} |\nabla u(x)| + f(x)u(x) dx$$

Approximate $u(x) \approx F(x, \theta)$.

 $Han,\ Jentzen,\ and\ E,\ "Solving\ high-dimensional\ partial\ differential\ equations\ using\ deep\ learning"$

E. Newman (Emory) DNN 101 N

12 / 25

Discussion: Combining Models and Deep Learning

- Are there other ways to bring domain knowledge into DNNs?
- With what kinds of models do you work? Can these models be used to regularize DNNs?
- Can we use deep learning for model correction or discovery?

Further Reading

Some Classical References:

- Raissi, Perdikaris, and Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations"
- Han, Jentzen, and E, "Solving high-dimensional partial differential equations using deep learning"
- Jiequn Han, Arnulf Jentzen, and Weinan E. "Solving high-dimensional partial differential equations using deep learning". In: Proceedings of the National Academy of Sciences 115.34 (2018), pp. 8505–8510

Some Modern References:

- Nils Thuerey et al. Physics-based Deep Learning. WWW, 2021
- Pi-Yueh Chuang and Lorena Barba. Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. May 2022
- Lars Ruthotto et al. "A machine learning framework for solving high-dimensional mean field game and mean field control problems". In: Proceedings of the National Academy of Sciences 117.17 (2020), pp. 9183–9193

E. Newman (Emory) DNN 101 NC State 14 / 25

Deep Generative Modeling

Shout Out! An excellent tutorial on generative modeling by Lars Ruthotto

https://www.math.emory.edu/~lruthot/workshops/dgm/

Ruthotto and Haber, "An introduction to deep generative modeling"

E. Newman (Emory) DNN 101 NC State

15/25

Maximum Likelihood Training

Setup:

- ullet simple distribution ${\mathcal Z}$
- ullet complicated, data distribution ${\mathcal X}$
- parameterized map $g_{\theta}(\mathcal{Z}) \approx \mathcal{X}$

Change of Variables: Approximate the likelihood $p_{\mathcal{X}}(\mathbf{x})$ via

$$p_{\mathcal{X}}(\mathbf{x}) \approx p_{\boldsymbol{\theta}}(\mathbf{x}) = p_{\mathcal{Z}}(g_{\boldsymbol{\theta}}^{-1}(\mathbf{x})) \det \nabla g_{\boldsymbol{\theta}}^{-1}(\mathbf{x})$$
$$= (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2\sigma} \|g_{\boldsymbol{\theta}}(\mathbf{z})\|_{2}^{2}\right)$$

Goal: Learn a generator $g_{\theta}^{-1}: \mathcal{Z} \to \mathcal{X}$ using maximum likelihood training by minimizing

$$J_{\mathrm{ML}}(\boldsymbol{\theta}) \equiv \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[-\log p_{\boldsymbol{\theta}}(\mathbf{x}) \right] \approx \frac{1}{s} \sum_{i=1}^{s} \left(\frac{1}{2} \|g_{\boldsymbol{\theta}}^{-1}(\mathbf{x}_i)\|_{2}^{2} - \log \det \nabla g_{\boldsymbol{\theta}}^{-1}(\mathbf{x}_i) \right)$$

Ruthotto and Haber, "An introduction to deep generative modeling"

Variational Autoencoders

Goal: Construct encoder $e_{\psi}: \mathcal{X} \to (\mu, \Sigma)$ where $\mathcal{Z} = \mathcal{N}(\mu, \Sigma)$ and decoder $g_{\theta}: \mathcal{Z} \to \mathcal{X}$ by minimizing

$$J_{\text{.ELBO}}(\boldsymbol{\psi}, \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim e_{\boldsymbol{\psi}}(\mathbf{z}|\mathbf{x})} [-\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) - \log p_{\mathcal{Z}}(\mathbf{z}) + \log e_{\boldsymbol{\psi}}(\mathbf{z}|\mathbf{x})]$$

E. Newman (Emory) DNN 101 NC State 17 / 25

Kingma and Welling, "Auto-Encoding Variational Bayes"; Ruthotto and Haber, "An introduction to deep generative modeling", Image from Wikipedia

Discussion: Learning Maps from Distributions to Distributions

- How should we compare complicated probability distributions?
- How should we choose the latent distribution?
- How can we use generators in other deep learning tasks?

...

Further Reading

Some References:

- Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components Estimation. 2015
- Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. 2017
- Diederik P. Kingma and Max Welling. "Auto-Encoding Variational Bayes". In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014
- Chin-Wei Huang et al. "Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization". In: International Conference on Learning Representations. 2021

..

E. Newman (Emory) DNN 101 NC State 19 / 25

Bayesian Neural Networks

E. Newman (Emory) DNN 101 NC State 20 / 25

Bayesian Neural Networks

Setup: prior distribution over weights $p(\theta)$ (e.g., $\mathcal{N}(\mu, \Sigma)$ per layer)

Forward Propagate: For i = 1, ..., N,

$$\theta_i \sim p(\theta)$$

 $\mathbf{c}_i = F(\mathbf{y}, \theta_i)$

Evaluate: Ensemble!

$$\hat{\mathbf{c}} = \frac{1}{N} \sum_{i=1}^{N} F(\mathbf{y}, \boldsymbol{\theta}_i)$$

Backward Propagate: AD using $\hat{\mathbf{c}}$

Update: SG variant on learnable weights (μ_i, Σ_j)

E. Newman (Emory) DNN 101 NC State 21 / 25

Active Learning

Goal: Query next, best training sample to reduce uncertainty **Given:**

- a trained model $F(\cdot, \boldsymbol{\theta})$ trained on \mathcal{T}
- a set of potential next queries $\mathcal{U} = \{\mathbf{y}_1, \dots, \mathbf{y}_k\}$
- covariance matrix of uncertainty

$$\Sigma_{\mathbf{c}|\mathbf{y}} = \frac{1}{N-1} \sum_{i=1}^{N} (F(\mathbf{y}, \boldsymbol{\theta}_i) - \hat{\mathbf{c}}) (F(\mathbf{y}, \boldsymbol{\theta}_i) - \hat{\mathbf{c}})^{\top}$$

Uncertainty Score: $s(\mathbf{y}_i, \boldsymbol{\theta})$ for i = 1, ..., k; e.g.,

$$s(\mathbf{y}_i, \boldsymbol{\theta}) = \max_{i=1,...,k} g(\boldsymbol{\Sigma}_{\mathbf{c}_i|\mathbf{y}_i})$$

where

$$i^* \in \underset{i=1,\ldots,k}{\operatorname{arg\ max}} s(\mathbf{y}_i, \boldsymbol{\theta})$$

Choose input y_{i*} that yields highest uncertainty score and update

$$\begin{split} \mathcal{T} \leftarrow \mathcal{T} \cup \{ (\mathbf{y}_{i*}, \mathtt{oracle}(\mathbf{y}_{i*})) \} \\ \mathcal{U} \leftarrow \mathcal{U} \backslash \{ \mathbf{y}_{i*} \} \end{split}$$

Retrain!

NC State

Discussion: UQ for DL and DL for UQ

- Why UQ for DL?
- What are the major challenges using UQ for DL?
- Can DL make UQ easier?

Further Reading

Some References

- Hao Wang and Dit-Yan Yeung. "A Survey on Bayesian Deep Learning". In: ACM Comput. Surv. 53.5 (Sept. 2020)
- Charles Blundell et al. Weight Uncertainty in Neural Networks. 2015
- Rohit K. Tripathy and Ilias Bilionis. "Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification". In: Journal of Computational Physics 375 (2018), pp. 565–588
- Moloud Abdar et al. "A review of uncertainty quantification in deep learning: Techniques, applications and challenges". In: Information Fusion 76 (2021), pp. 243–297
- Vu-Linh Nguyen, Sébastien Destercke, and Eyke Hüllermeier. "Epistemic Uncertainty Sampling". In: Discovery Science. Ed. by Petra Kralj Novak, Tomislav Šmuc, and Sašo Džeroski. Cham: Springer International Publishing, 2019, pp. 72–86
- https://www.cs.toronto.edu/~duvenaud/distill_bayes_net/public/
- ...

Thanks for a great week!

References I

Abdar, Moloud et al. "A review of uncertainty quantification in deep learning: Techniques, applications and challenges". In: *Information Fusion* 76 (2021), pp. 243–297.

Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "Deep Equilibrium Models". In: *Advances in Neural Information Processing Systems*. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

Blundell, Charles et al. Weight Uncertainty in Neural Networks. 2015.

Bronstein, Michael M. et al. "Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges". In: *ArXiv* abs/2104.13478 (2021).

Chen, Ricky T. Q. et al. "Neural Ordinary Differential Equations". In: *Proceedings of the 32nd International Conference on Neural Information Processing Systems.* NIPS'18. Montréal, Canada: Curran Associates Inc., 2018, pp. 6572–6583.

Chuang, Pi-Yueh and Lorena Barba. Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. May 2022.

Dinh, Laurent, David Krueger, and Yoshua Bengio. *NICE: Non-linear Independent Components Estimation*. 2015.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. *Density estimation using Real NVP* 2017

References II

E, Weinan. "A Proposal on Machine Learning via Dynamical Systems". In: Communications in Mathematics and Statistics 5.1 (2017), pp. 1–11.

Finlay, Chris et al. "How to Train Your Neural ODE: The World of Jacobian and Kinetic Regularization". In: *Proceedings of the 37th International Conference on Machine Learning*. ICML'20. JMLR.org, 2020.

Fung, Samy Wu et al. "JFB: Jacobian-Free Backpropagation for Implicit Models". In: Proceedings of the AAAI Conference on Artificial Intelligence (2022).

Haber, Eldad and Lars Ruthotto. "Stable architectures for deep neural networks". In: *Inverse Problems* 34.1 (Dec. 2017), p. 014004.

Han, Jiequn, Arnulf Jentzen, and Weinan E. "Solving high-dimensional partial differential equations using deep learning". In: *Proceedings of the National Academy of Sciences* 115.34 (2018), pp. 8505–8510.

— ."Solving high-dimensional partial differential equations using deep learning". In: *Proceedings of the National Academy of Sciences* 115.34 (2018), pp. 8505–8510.

He, Kaiming et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

References III

Huang, Chin-Wei et al. "Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization". In: *International Conference on Learning Representations*. 2021.

Jospin, Laurent et al. "Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users". In: *IEEE Computational Intelligence Magazine* 17 (May 2022), pp. 29–48.

Kingma, Diederik P. and Max Welling. "Auto-Encoding Variational Bayes". In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16. 2014. Conference Track Proceedings. 2014.

Lu, Yiping et al. "Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations". In: *Proceedings of the 35th International Conference on Machine Learning.* Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 3276–3285.

Nguyen, Vu-Linh, Sébastien Destercke, and Eyke Hüllermeier. "Epistemic Uncertainty Sampling". In: *Discovery Science*. Ed. by Petra Kralj Novak, Tomislav Šmuc, and Sašo Džeroski. Cham: Springer International Publishing, 2019, pp. 72–86.

Raissi, M., P. Perdikaris, and G.E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: *Journal of Computational Physics* 378 (2019), pp. 686–707.

References IV

Ruthotto, Lars and Eldad Haber. "An introduction to deep generative modeling". In: *GAMM-Mitteilungen* 44.2 (2021), e202100008.

— ."Deep Neural Networks Motivated by Partial Differential Equations". In: *Journal of Mathematical Imaging and Vision* 62.3 (2020), pp. 352–364.

Ruthotto, Lars et al. "A machine learning framework for solving high-dimensional mean field game and mean field control problems". In: *Proceedings of the National Academy of Sciences* 117.17 (2020), pp. 9183–9193.

Thuerey, Nils et al. Physics-based Deep Learning. WWW, 2021.

Tripathy, Rohit K. and Ilias Bilionis. "Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification". In: *Journal of Computational Physics* 375 (2018), pp. 565–588.

Wang, Hao and Dit-Yan Yeung. "A Survey on Bayesian Deep Learning". In: *ACM Comput. Surv.* 53.5 (Sept. 2020).