PRACTICAL 6

AIM: Apply Logistic Regression, K-nearest- neighbors, Naive Bayes and Support Vector Machine (SVM) on given Social_Network_Ads.csv dataset for classification.

Read Dataset

```
import pandas as pd import seaborn as sns
import matplotlib.pyplot as plt import numpy as
np
```

```
data = pd.read_csv("/content/drive/MyDrive/ML_Collage/Social_Ne twork Ads.csv")
```

Data analysis

data.head()

	Gender	Age	EstimatedSalary	Purchased
0	1	19	19000	0
1	1	35	20000	0
2	0	26	43000	0
3	0	27	57000	0
4	1	19	76000	0

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 400 entries, 0 to 399 Data columns (total 5 columns):

Column Non-Null Count Dtype

0 User ID 400 non-null int64

1 Gender 400 non-null object

2 Age 400 non-null int64

3 Estimated Salary 400 non-null int64 4 P

3 EstimatedSalary 400 non-null int64 4 Purchased 400 nonnull int64 dtypes: int64(4), object(1) memory usage: 15.8+ KB

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2

2CEIT506- MACHINE LEARNING PRACTICAL-6

data.nunique()

	9
User ID	400
Gender	2
Age	43
EstimatedSalary	117
Purchased	2

dtype: int64

data.isnull().anv(axis=1).sum()

Pre-processing

data.drop(columns="User ID", inplace=True)

from sklearn.preprocessing import LabelEncoder label = LabelEncoder() data["Gender"] = label.fit_transform(data["Gender"]) data.head()

	Gender	Age	EstimatedSalary	Purchased
0	1	19	19000	0
1	1	35	20000	0
2	0	26	43000	0
3	0	27	57000	0
4	1	19	76000	0

Data visualization

fig, ax = plt.subplots(1, 2, figsize=(10,5)) sns.countplot(data=data, x="Gender", ax=ax[0]) sns.countplot(data=data, x="Purchased", ax=ax[1])

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2 Page | 2

2CEIT506- MACHINE LEARNING PRACTICAL-6

fig, ax = plt.subplots(1, 2, figsize=(10,5)) sns.boxplot(data=data, x="Age", ax=ax[0]) sns.boxplot(data=data, x="EstimatedSalary", ax=ax[1])

sns.heatmap(data.corr(), annot=True)

Data Splitting

from sklearn.model_selection import train_test_split x = data.drop(columns="Purchased") y = data["Purchased"] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)

Feature Scaling

from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test)

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2 Page | 3

Different Models

from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier

```
dict = {
    "LogisticRegression": LogisticRegression(),
    "KNeighborsClassifier":
KNeighborsClassifier(n_neighbors=5),
    "GaussianNB": GaussianNB(),
    "SVM": SVC(),
    "DecisionTreeClassifier": DecisionTreeClassifier(),
    "RandomForestClassifier": RandomForestClassifier()
}
model_list = [] score_list = []
```

```
from sklearn.metrics import accuracy_score,
confusion_matrix, classification_report for i, j in dict.items():
model = j
model.fit(x_train, y_train) pred =
model.predict(x_test)

model_list.append(i)
score_list.append(accuracy_score(y_test, pred))
```

result = pd.DataFrame({"Model": model_list,"Score": score_list}) result

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2