# SIN D $B = \binom{p}{r}$ alog (b

# MATEMÁTICA DISCRETA 2

Aula 19 Estruturas Algébricas Grupos

Cristiane Loesch



Fonte: Paiva, C. R. (2010)

# <u>ÁLGEBRA:</u>

• estudo das operações, regras de cálculo e procedimentos para a solução de equações.

# EXPANSÃO DO DOMÍNIO DA ÁLGEBRA:

- é possível estudar propriedades de qualquer operação algébrica sem especificar a natureza dos objetos sobre os quais a operação atua, nem descrever como o resultado da operação deve ser calculado.
- postula-se um determinado conjunto de propriedades algébricas básicas que a operação deve verificar.

**Exemplo:** comutatividade e associatividade

# **ÁLGEBRA AXIOMÁTICA:**

- definição de estruturas algébricas abstratas
  - preocupação em relação a conjuntos nos quais pode-se operar algebricamente seus elementos, combinando dois deles afim de definir um terceiro com características dos dois primeiros
  - regras determinam natureza do conjuntos
  - incluem operações aritméticas não limitadas a si, mas que ditam as propriedades algébricas de cada conjunto

# ESTRUTURA ALGÉBRICA ABSTRATA:

• é formada por um conjunto não vazio X, dito suporte da estrutura, e uma operação binária em X, ou seja, uma função .

$$\mu: X \times X \rightarrow X$$

 diferentes conjuntos de suposições, ou axiomas, exigidos a esta operação, conduzem à definição de diferentes estruturas algébricas abstratas

# **CONVENÇÕES:**

Se  $\mu: X \times X \to X$  for uma operação binária em X, é comum escolher um símbolo:

+ para representar x+y ou

\* para representar x \* y

em vez de  $\mu(x,y)$ .

 $\rightarrow$  escreve-se, frequentemente, xy ao invés de  $\mu(x,y)$ .

# **CONVENÇÕES:**

Se  $\mu: X \times X \rightarrow X$  for uma operação binária em X, é comum escolher um símbolo:

ou

- para representar x+y

\* para representar x\*y

em vez de  $\mu(x,y)$ .

 $\rightarrow$  escreve-se, frequentemente, xy ao invés de  $\mu(x,y)$  .



 $+ \rightarrow$  usado, por convenção, para designar operações comutativas notação aditiva  $\mu(x,y) = \mu(y,x)$ 

\* → usado, por convenção, para designar operações comutativas

$$x*(y*z)=\mu(x\,\mu(y\,z))$$

é diferente de

$$(x*y)*z=\mu(\mu(x,y),z)$$

# ELEMENTOS DE ÁLGEBRA

# **Notações:**

- Z → conjunto dos números inteiros
- Q → conjunto dos números racionais
- IR → conjunto dos números reais
- C → conjunto dos números complexos
- $\mathbb{R} \mathbb{Q} \rightarrow \text{conjunto dos números irracionais}$
- $A \times B \rightarrow$  produto cartesiano do conjunto A pelo conjunto B

$$A \times B = \{(a,b), a \in A, b \in B\}$$

Seja A um conjunto, uma operação (binária) de A é uma função

$$*: A \times A \rightarrow A$$

assim uma operação em A associa a cada par de elementos de A um elemento de A.

Seja A um conjunto, uma operação (binária) de A é uma função

$$*: A \times A \rightarrow A$$

assim uma operação em A associa a cada par de elementos de A um elemento de A.

## **Exemplo:**

Em Z estão definidas duas operações



particular estas duas operações nos apresentam as seguintes propriedades:

1) 
$$a+b=b+a$$

$$2) (-1 b) 1 - -$$

2) 
$$(a+b)+c=a+(b+c)$$
,  $\forall a,b,c \in Z$ 

3) 
$$\exists 0 \in \mathbb{Z}$$
 tal que  $a+0=a$ 

associativa

4) dada 
$$a \in \mathbb{Z}$$
  $\exists a \in \mathbb{Z}$  tal qu

4) dado 
$$a \in \mathbb{Z}$$
,  $\exists a \in \mathbb{Z}$ , tal que  $a + (-a) = 0$ 

5) 
$$a*(b+c)=a*b+a*c$$

$$6)(a+b)\cdot c = a\cdot c + b\cdot c$$

7) 
$$a \cdot (b \cdot c) = (a \cdot b) \cdot b$$

# **ESTRUTURA ALGÉBRICA**

É todo par composto por um conjunto não vazio e uma operação interna\* em A

$$\langle A, * \rangle$$
 ou  $(A, *)$ 

em que \* é uma operação binária no conjunto A.

# Notações:

- $+ \rightarrow$  notação aditiva => representa x + y
- $* \rightarrow$  notação multiplicativa => representa x\*y

Propriedades:

1) Comutativa

$$x*y=y*x$$
 ,  $\forall x,y \in A$ 

Propriedades:

1) Comutativa

$$x*y=y*x$$
 ,  $\forall x,y \in A$ 

2) Associativa

$$(x*y)*z=x*(y*z)$$
,  $\forall x,y,z\in A$ 

Propriedades:

1) Comutativa

$$x*y=y*x$$
,  $\forall x,y \in A$ 

2) Associativa

$$(x*y)*z=x*(y*z)$$
,  $\forall x,y,z \in A$ 

3) Elemento Neutro

$$x*e=e*x=x$$
 ,  $\forall x \in A$ 

- designa-se, comumente, elemento neutro por:
- "zero","0" em notação aditiva
- "um", "1", "I" (identidade) em notação multiplicativa

# Propriedades:

1) Comutativa

$$x*y=y*x$$
 ,  $\forall x,y \in A$ 

2) Associativa

$$(x*y)*z=x*(y*z)$$
,  $\forall x,y,z \in A$ 

3) Elemento Neutro

$$x*e=e*x=x$$
 ,  $\forall x \in A$ 

4) Elemento invertível ou simetrizável

$$x*y=y*x=e \quad \forall x,y \in A$$

# Propriedades:

4) Elemento invertível ou simetrizável

$$x*y=y*x=e \quad \forall x,y \in A$$

- y é o inverso de x
- na notação aditiva inversos dizem-se simétricos
- se, tem-se apenas

$$x*y=e$$

Proposição:
 Seja \* uma operação associativa em A se xεA tem inverso à direita y, e inverso à esquerda z, logo y = z e x é invertível.

$$x*y=e \longrightarrow z*(x*y)=z \longrightarrow (z*x)*y=z \longrightarrow e*y=z \longrightarrow y=z$$

# Propriedades:

4) Elemento invertível ou simetrizável

$$x*y=y*x=e$$
,  $\forall x,y \in A$ 

- y é o inverso de x
- na notação aditiva inversos dizem-se simétricos
- se, tem-se apenas

$$x*y=e$$

Proposição:

Seja \* uma operação associativa em A se  $x \in A$  tem inverso à direita y, e inverso à esquerda z, logo y = z e x é invertível.

$$x*y=e \longrightarrow z*(x*y)=z \longrightarrow (z*x)*y=z \longrightarrow e*y=z \longrightarrow y=z$$

y é inverso de x, se e somente se for inverso à direita e à esquerda

# **CLASSIFICAÇÃO:**

- Grupóide ou Magma
- Semigrupo
- Monóide
- Grupo
- Anel
- Corpo



Fonte: Paiva, C. R. (2010)

Dado um conjunto não-vazio A dotado de uma operação binária  $A \times A \rightarrow A$  denotada por (A,\*) que satisfaz a(s) propriedade(s):

- do fechamento 
  → Grupóide
- do fechamento e associativa → Semi-grupo
- do fechamento, associativa e elemento neutro ————— Monóide

• do fechamento, associativa, elemento neutro e elemento invertível — Grupo

<u>Obs:</u> estruturas algébricas que satisfazem a propriedade comutativa recebem a característica "extra" de Abeliano.

• Exemplo: Monóide Abeliano

# Grupo

Conjunto não-vazio G dotado de uma operação binária  $G \times G \rightarrow G$  denotada por (G, \*) e uma operação unária  $G \rightarrow G$  denotada por  $^{-1}$  (inversa) que satisfaz as propriedades:

- i) <u>fechamento</u>
- ii) associativa  $a,b,c \in G \longrightarrow (a*b)*c = a*(b*c)$
- iii) elemento neutro  $a, e \in G \longrightarrow a * e = e * a = a$
- iv) elemento invertível ou simétrico  $a,b \in G \longrightarrow a*b=b*a=e \longrightarrow b=a^{-1}$

# <u>Grupo abeliano</u>

→ grupo que satisfaz também a propriedade comutativa

 $\rightarrow$  Ou seja, um monóide (G, \*) diz-se um **grupo** se, e somente se,todos seus elementos forem invertíveis.

# **EXERCÍCIO**

Seja  $\langle G, * \rangle$  um grupo com  $x, y \in G$ . Prove que (x\*y)' = x'\*y'

# **CARACTERÍSTICAS DE GRUPOS**

- Grupo Abeliano ou Comutativo
   Quando o Grupo satisfaz a propriedade comutativa da operação binária em questão.
- Grupo Aditivo
   Quando a operação binária considerada sobre ele é a adição. Nesses grupos, denota-se a operação pelo sinal "+" de adição.
- Grupo Multiplicativo Quando a operação binária considerada sobre ele é a multiplicação. Nesses grupos, denota-se a operação pelo sinal "·" de multiplicação ou apenas por justaposição.

#### PROPRIEDADES DE GRUPOS

- 1.  $e \in G$  , e é único ( e = elemento neutro)
- 2.  $\forall a$  ∈ G ,  $\exists$  um único inverso
- 3.  $\forall a,b \in G \Rightarrow (a*b)^{-1} = b^{-1}*a^{-1}$
- 4.  $\forall a \in G \Rightarrow (a^{-1})^{-1} = a$
- 5.  $\forall a,b,c \in G: a*b=a*c \Rightarrow b=c$  (LEI DO CANCELAMENTO)

$$\forall a,b,c \in G$$
, se  $a*b=a*c$  ou  $b*a=c*a \rightarrow b=c$ 

$$\forall a,b,c \in G$$
, se  $a*b=a*c$  ou  $b*a=c*a \rightarrow b=c$ 

**EXEMPLO:** 
$$G = \langle GL_2 \cdot \rangle \longrightarrow A \cdot B = C \cdot B$$
 ?

$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$

$$\forall a,b,c \in G$$
, se  $a*b=a*c$  ou  $b*a=c*a \rightarrow b=c$ 

**EXEMPLO:** 
$$G = \langle GL_2 \cdot \rangle \longrightarrow A \cdot B = C \cdot B$$
 ?

$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$

$$A \cdot B = C \cdot B = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

# Propriedade do Cancelamento

$$\forall a,b,c \in G$$
, se  $a*b=a*c$  ou  $b*a=c*a \rightarrow b=c$ 

**EXEMPLO:** 
$$G = \langle GL_{2}, \cdot \rangle \longrightarrow A \cdot B = C \cdot B$$
 ?

$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$

 $A \cdot B = C \cdot B = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$  Propriedade do Cancelamento

**EXEMPLO**: 
$$\mathbb{Z}$$
, +  $b*a=c*a \rightarrow b=c$ ?

$$a+b=b+c \longrightarrow 3+b=5+3 \longrightarrow b=5$$



Propriedade do Cancelamento

**EXEMPLO**: 
$$\mathbb{Z}$$
, +  $b*a=c*a \rightarrow b=c$ ?

$$a+b=b+c \longrightarrow 3+b=5+3 \longrightarrow b=5$$
Propriedade do

**EXEMPLO**: 
$$\mathbb{Z}$$
,  $b*a=c*a \rightarrow b=c$ ?

$$4 \cdot 0 = 6 \cdot 0 \longrightarrow 4 \neq 6$$

Propriedade do X Cancelamento

Cancelamento

# <u>Grupos Lineares de Grau n</u>

→ grupos de matrizes mxn de entrada A

$$\langle M_{mxn}(A), * \rangle$$

#### **EXEMPLOS:**

```
\langle M_{mxn}(\mathbb{Z}), + \rangle \langle M_{mxn}(\mathbb{Q}), + \rangle Grupos abelianos aditivos das matrizes de ordem mxn \langle M_{mxn}(\mathbb{R}), + \rangle \langle M_{mxn}(\mathbb{C}), + \rangle
```

# <u>Grupos Lineares de Grau n</u>

→ grupos lineares de matrizes <u>quadradas</u> de ordem n×n de entrada A

$$\langle GL_n(A), * \rangle$$

#### **EXEMPLOS:**

$$GL_n(\mathbb{Q})$$

$$GL_n(\mathbb{R})$$

$$GL_n(\mathbb{C})$$

# Grupos Lineares de Grau n

**EXEMPLO:** Verifique se  $M_n(\mathbb{Q})$  é grupo para operação de multiplicação

- 1) fechamento:  $A_n \cdot B_n = C_n \in M_n(\mathbb{Q})$
- 2) Associativa:  $A_n \cdot (B_n \cdot C_n) = (A_n \cdot B_n) \cdot C_n$
- 3) Elemento Neutro:  $\exists I_n \in M_n(\mathbb{Q})/A_i I_n = I_n \cdot A_n = A$
- 4) Elemento Inverso: \_

como  $M_n(\mathbb{Q})$  é subconjunto de  $GL_n(\mathbb{Q})$ : então:

$$GL_n(\mathbb{Q}) = \{ A \in M_n(\mathbb{Q}) / \det A \neq 0 \}$$

este conjunto é o grupo chamado grupo linear de grau n

Condição necessária:

Determinante de cada
elemento seja diferente de
zero.

Restrição para multiplicação de matrizes serem grupos:
Matrizes quadradas com elementos que possuem

determinante não nulo

# **Grupos Finitos e Infinitos**

Um grupo finito é um grupo (G, \*) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

#### **EXEMPLO:**

$$G = \{-i, -1, i, 1\}$$

$$G = \{1,2,3\}$$

$$H = \{1,2,3,...\}$$

# **Grupos Finitos e Infinitos**

Um grupo finito é um grupo (G, \*) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

#### **EXEMPLO:**

$$G = \{-i, -1, i, 1\} \longrightarrow o(G) = 4$$

$$G = \{1, 2, 3\} \longrightarrow o(G) = 3$$

$$H = \{1, 2, 3, ...\} \longrightarrow o(G) = grupo infinito$$

**EXEMPLO**: Tabela de Cayley

Considere o conjunto  $G = \{-1,1\}$  e a operação binária usual. Será que  $(G, \cdot)$  é um grupo finito?

**EXEMPLO**: Tabela de Cayley

Considere o conjunto  $G = \{-1,1\}$  e a operação binária usual. Será que  $(G, \cdot)$  é um grupo finito?

1º) construir a tabela operatória



**EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades

a) Fechamento



Todos os elementos resultantes da operação multiplicação pertencem a G => G é fechado

# **EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades



b) Associativa



| $-1\cdot(-1\cdot(-1))=(-1\cdot(-1))\cdot(-1)$         |
|-------------------------------------------------------|
| $-1 \cdot (-1 \cdot 1) = (-1 \cdot (-1)) \cdot 1$     |
| $-1 \cdot (1 \cdot (-1)) = (-1 \cdot 1) \cdot (-1)$   |
| $-1 \cdot (1 \cdot 1) = (-1 \cdot 1) \cdot 1$         |
| $1 \cdot (-1 \cdot (-1)) = (1 \cdot (-1)) \cdot (-1)$ |
| $1 \cdot (-1 \cdot 1) = (1 \cdot (-1)) \cdot 1$       |
| $1 \cdot (1 \cdot (-1)) = (1 \cdot 1) \cdot (-1)$     |
| $1 \cdot (1 \cdot 1) = (1 \cdot 1) \cdot 1$           |

Além disso, o conjunto *G* é formado por números inteiros e a associatividade é válida para o produto de números inteiros, por restrição, é válida, também, para *G*.

**EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades



b) Associativa 🗸



c) Elemento Neutro



O elemento neutro na multiplicação é o 1

# **EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades



b) Associativa



c) Elemento Neutro



d) Elemento Invertível 🗸



$$-1 \cdot (-1) = 1$$

1 é o elemento neutro da multiplicação. O inverso de 1 é 1.

# **EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades







c) Elemento Neutro



Logo,

G é grupo em relação à multiplicação.

# **EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades



c) Elemento Neutro 🗸

d) Elemento Invertível 🗸

Observe, também, que existe simetria dos elementos da tabela em relação à diagonal principal.

# **EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades



c) Elemento Neutro 🗸

d) Elemento Invertível 🗸

Observe, também, que existe simetria dos elementos da tabela em relação à diagonal principal. Logo, existe comutatividade da operação sobre G.

# **EXEMPLO**: Tabela de Cayley

2°) Verificar as propriedades



b) Associativa 🗸



c) Elemento Neutro

d) Elemento Invertível 🗸

e) Comutativa



 $(G, \cdot)$  é um Grupo Abeliano Finito de ordem 2

• Possíveis maneiras de se ordenar os elementos do conjunto sem repetir nenhum e usando todos

# <u>Definição:</u>

Seja A um conjunto. Uma permutação sobre A é uma bijeção de A em si mesmo.

$$A = \{1,2,3,4,5\} \qquad f: A \to A$$
$$f = \{(1,2),(2,4),(3,1),(4,3),(5,5)\}$$

# Representação:

- $\rightarrow$  Por letras minúsculas gregas  $(\pi, \sigma, \tau)$
- → Número de permutações: n!
- $\rightarrow$  Conjunto de todas as permutações:  $|S_n| = n!$

# <u>Propriedades</u>

$$\forall \pi, \sigma, \tau \in S_n, \pi \circ \sigma \in S_n$$

$$\forall \pi, \sigma, \tau \in S_n, \pi \circ (\sigma \circ \tau) = (\pi \circ \sigma) \circ \tau$$

$$\forall \pi \in S_n, \pi \circ \iota = \iota \circ \pi = \pi$$

$$\forall \pi \in S_n, \pi^{-1} \in S_n e \pi \circ \pi^{-1} = \pi^{-1} \circ \pi = \iota$$

# FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

**EXEMPLO:** Seja a permutação S<sub>5</sub> a seguir:

$$\pi = \{(1,2),(2,4),(3,1),(4,3),(5,5)\}$$

- a) expresse-a na forma de tabela:
- b) expresse-a na forma de quadro:
- c) expresse-a na forma de ciclos:

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO: 
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

| X | $\pi(x)$ |
|---|----------|
| 1 | 2        |
| 2 | 4        |
| 3 | 1        |
| 4 | 3        |
| 5 | 5        |
|   |          |

c) Ciclos

b) Quadro

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO: 
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

| 10 |          |
|----|----------|
| X  | $\pi(x)$ |
| 1  | 2        |
| 2  | 4        |
| 3  | 1        |
| 4  | 3        |
| 5  | 5        |
|    |          |

c) Ciclos

b) Quadro

$$\pi = \{ 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \}$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO: 
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

| 22 |          |
|----|----------|
| X  | $\pi(x)$ |
| 1  | 2        |
| 2  | 4        |
| 3  | 1        |
| 4  | 3        |
| 5  | 5        |
|    |          |

c) Ciclos  $\pi = (1,2,3,4)(5)$ 

b) Quadro

$$\pi = \{ \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{matrix} \}$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO: 
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

| 2 |          |
|---|----------|
| Х | $\pi(x)$ |
| 1 | 2        |
| 2 | 4        |
| 3 | 1        |
| 4 | 3        |
| 5 | 5        |
|   | ·        |

b) Quadro

$$\pi = \{ \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{matrix} \}$$

c) Ciclos  $\pi = (1,2,3,4)(5)$ 

$$\pi(1)=2$$

$$\pi(2)=4$$
  $\pi(5)=5$ 

$$\pi(4) = 3$$

$$\pi(3) = 1$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

**EXEMPLO:** 

$$\pi = \begin{cases} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 7 & 5 & 6 & 3 & 8 & 1 & 4 & 9 \end{cases} \in S_9$$

Ciclos:

Grafos:



# **INVERSA**:

$$\pi(k)=j$$
  $\rightarrow$  se  $j$  segue  $k$  em um ciclo  $\pi$  ,  $\pi^{-1}(j)=k$   $\rightarrow$   $k$  segue  $j$  em um ciclo  $\pi^{-1}$ 

# **EXEMPLO:**

$$\pi = (1,2,7,9,8)(5,6,3)(4) \in S_9$$

$$\pi^{-1}$$
=(8,9,7,2,1)(3,6,5)(4)

# **GRUPOS DE PERMUTAÇÃO**

Seja A um conjunto não vazio. Denotaremos por  $P(A) = \{f : A \rightarrow A, f \text{ \'e bijetora}\}$  Então, $(P(A), \circ, i_A)$  é um grupo em que a operação  $\circ$  é a composição de funções e o elemento neutro é a função identidade de A, denotado  $i_A$ .

O grupo  $(P(A), \circ, i_A)$  é chamado grupo das permutação de A.

# **GRUPOS DE PERMUTAÇÃO**

**EXEMPLO:**  $S_3(P)$ ,  $P=\{1,2,3\}$ , operação composição de funções

 $S_3 = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6\}$ 

$$f_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

# GRUPOS DE PERMUTAÇÃO

**EXEMPLO:**  $S_3(P)$ ,  $P=\{1,2,3\}$ 

| 0     | $f_0$ | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ |
|-------|-------|-------|-------|-------|-------|-------|
| $f_0$ | $f_0$ | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ |
| $f_1$ | $f_1$ | $f_2$ | $f_0$ | $f_4$ | $f_5$ | $f_3$ |
| $f_2$ | $f_2$ | $f_0$ | $f_1$ | $f_5$ | $f_3$ | $f_4$ |
| $f_3$ | $f_3$ | $f_5$ | $f_4$ | $f_0$ | $f_2$ | $f_1$ |
| $f_4$ | $f_4$ | $f_3$ | $f_5$ | $f_1$ | $f_0$ | $f_2$ |
| $f_5$ | $f_5$ | $f_4$ | $f_3$ | $f_2$ | $f_1$ | $f_0$ |

## **GRUPOS DE PERMUTAÇÃO**

**EXEMPLO:**  $S = \{1,2,3\}$ , f,  $g \in S_3$ , calcule  $(f \circ g)$  e  $(g \circ f)$ , dados:

$$f: \begin{cases} f(1)=2 \\ f(2)=1 \\ f(3)=3 \end{cases} \qquad g: \begin{cases} g(1)=2 \\ g(2)=3 \\ g(3)=1 \end{cases}$$

Verifique se é comutativa.

## **GRUPOS DE PERMUTAÇÃO**

**EXEMPLO:**  $S = \{1,2,3\}$ , f,  $g \in S_3$ , calcule  $(f \circ g)$  e  $(g \circ f)$ , dados:

$$f: \begin{cases} f(1)=2 \\ f(2)=1 \\ f(3)=3 \end{cases} \qquad g: \begin{cases} g(1)=2 \\ g(2)=3 \\ g(3)=1 \end{cases}$$

$$f \circ g(1) = f(g(1)) = f(2) = 1$$

# GRUPOS DE PERMUTAÇÃO

**EXEMPLO:** 
$$S = \{1,2,3\}$$
,  $f$ ,  $g \in S_3$ , calcule  $(f \circ g)$  e  $(g \circ f)$ , dados:

$$f: \begin{cases} f(1)=2 \\ f(2)=1 \\ f(3)=3 \end{cases} \qquad g: \begin{cases} g(1)=2 \\ g(2)=3 \\ g(3)=1 \end{cases}$$

$$f \circ g(1) = f(g(1)) = f(2) = 1$$
  $\neq g \circ f(1) = g(f(1)) = g(2) = 3$   
 $f \circ g(2) = f(g(2)) = f(3) = 3$   $\neq g \circ f(2) = g(f(2)) = g(1) = 2$   
 $f \circ g(3) = f(g(3)) = f(1) = 2$   $\neq g \circ f(3) = g(f(3)) = g(3) = 1$   
 $f \circ g \neq g \circ f$  page 6 grupo comutative

não é grupo comutativo

## **GRUPOS DE PERMUTAÇÃO**

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

**EXEMPLO**: Em  $S_4$  calcule  $(f \circ g)$  e  $(g \circ f)$ , dados:

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \quad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

Verifique se é comutativa.

## **GRUPOS DE PERMUTAÇÃO**

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f(g(1))=$$

## **GRUPOS DE PERMUTAÇÃO**

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f(g(1))=f(1)=3$$
  $f(g(3))=f(4)=4$ 

$$f(g(2))=f(3)=2$$
  $f(g(4))=f(2)=1$ 

## **GRUPOS DE PERMUTAÇÃO**

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \quad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$

## **GRUPOS DE PERMUTAÇÃO**

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} \qquad g(f(1)) = g(3) = 4 \qquad g(f(3)) = g(2) = 3$$
$$g(f(2)) = g(1) = 1 \qquad g(f(4)) = g(4) = 2$$

# **GRUPOS DE PERMUTAÇÃO**

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} \qquad g \circ f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$

# GRUPOS DE PERMUTAÇÃO

Outra notação: 
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} \qquad g \circ f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$
 
$$f \circ g \neq g \circ f \qquad \text{não \'e grupo comutativo}$$

# **GRUPOS CÍCLICOS**

Sejam  $(G, \cdot, e)$  um grupo,  $a \in G$  e  $n \in \mathbb{N}$ , definimos a potência do elemento a recursivamente por:

$$a^0 = e$$
 e  $a^{n+1} = a^n \cdot a$ 

sendo seu inverso denotado por  $a^{-1}$ .

Ou seja, um grupo cíclico é um conjunto formado por um gerador a, contanto que cada elemento de G seja uma potência de a

Obs:se o grupo for aditivo (G, +, 0) entenda  $a^n$  como  $n \cdot a$  e  $a^{-1}$  como -a .

## **GRUPOS CÍCLICOS**

# **Propriedades:**

- $a^{n+m} = a^n \cdot a^m$
- $(a^n)^m = a^{n \cdot m}$
- $(a^n)^{-1} = a^{-n}$
- $(a^{-n})^{-1} = a^n$

## **GRUPOS CÍCLICOS**

# **Propriedades:**

• 
$$a^{n+m} = a^n \cdot a^m$$

• 
$$(a^n)^m = a^{n \cdot m}$$

• 
$$(a^n)^{-1} = a^{-n}$$

• 
$$(a^{-n})^{-1} = a^n$$

Notação: 
$$(G, \cdot, e)$$
,  $a \in G \longrightarrow \langle a \rangle = \{a^n, n \in \mathbb{Z}\}$   
 $(G, +, e)$ ,  $a \in G \longrightarrow \langle a \rangle = \{n \cdot a, n \in \mathbb{Z}\}$  (Notação aditiva)

**GRUPOS CÍCLICOS** 

## **EXEMPLO:**

a) 
$$G = \{a^0, a^1, a^2, a^3, a^4\}$$

#### **GRUPOS CÍCLICOS**

## **EXEMPLO:**

a) 
$$G = \{a^0, a^1, a^2, a^3, a^4\}$$

b) 
$$a = \{3,2,1\}$$

$$G = \{\{1,2,3\},\{3,2,1\},\{1,2,3\},\{3,2,1\},\{1,2,3\}\}\}$$