## **Chapter 1: First order Differential Equations**

## 1. General Form

Given a first order  $\mathsf{DE}^{(1)}$  in general form

$$y' + p(x)y = q(x)$$
 (Eq 1.1)

## 2. Solving Steps

1. Calculating outside integrating factor

$$u(x) = e^{\int p(x)dx}$$

Since, we have  $u'(x) = p(x)e^{\int p(x)dx} = p(x)u(x)$ .

2. Multiply both sides of (Eq 1.1) by u(x)

(Eq 1.1) 
$$\leftrightarrow y'u(x) + p(x)u(x)y = q(x)u(x)$$
  
 $\leftrightarrow y'u(x) + u'(x)y = q(x)u(x)$   
 $\leftrightarrow (u(x)y)' = q(x)u(x)$ 

3. Integrating both sides, we obtain

$$u(x)y = \int q(x)u(x)dx + C$$

4. Divide both sides by integrating factor to obtain the final result

$$y = \frac{1}{u(x)} \left( \int q(x)u(x)dx + C \right)$$

<sup>(1)</sup> DE: Differential equation.

## **Chapter 2: Exact Equations**

### 1. General Form

Given a DE in general form

$$M(x,y)dx + N(x,y)dy = 0$$
 (Eq 2.1)

1. The given equation is called exact equation if and only if:

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$
 (Eq 2.2)

2. If the equation is exact, there is exists a function F(x, y), so that:

$$\begin{cases}
F_x(x,y) = M(x,y) & (1) \\
F_y(x,y) = N(x,y) & (2)
\end{cases}$$
(Eq 2.3)

## 2. Solving Steps

Integrating both sides of (1) of (Eq 2.3), with respect to x, we get:

$$F(x,y) = \int M(x,y)dx = f(x,y) + \varphi(y)$$

Differentiating the result above with respect to y

$$\rightarrow F_y(x,y) = f_y(x,y) + \varphi'(y) \ (3)$$

Compare (3) and (2):

$$\varphi'(y) = N(x, y) - f_y(x, y)$$

$$\to \varphi(y) = \int [N(x, y) - f_y(x, y)] dy + C = g(y) + C$$

The solution becomes

$$f(x,y) + g(y) + C = 0$$

## **Chapter 3: Second order Differential Equations**

### 1. General Solution

Given a DE in general form (a, b, c are constant coefficients)

$$ay'' + by' + cy = g(x)$$
 (Eq 3.1)

The *General solution* of the DE is the *sum* of *Complement solution* and *Particular solution* 

$$y_G = y_c + y_p \tag{Eq 3.2}$$

## 2. Complement Solution

Complement solution is the solution of *Homogeneous equation* or g(x) = 0. In fact, complement solution is also a general solution of homogeneous equation.

## 2. 1. Homogeneous with Constant Coefficients

*Characteristic equation* (CE) is given by

$$ar^2 + br + c = 0$$

$$\leftrightarrow (r - r_1)(r - r_2) = 0$$
(Eq 3.3)

Complement solution of second order DE depends on the root of CE as follows:

1. Two distinct real roots  $r_1$ ,  $r_2$ :

$$y_c = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

2. Double root  $r_1 = r_2 = r$ :

$$y_c = C_1 e^{rx} + C_2 x e^{rx}$$

3. Complex root  $r_1 = \alpha + i\beta$ ,  $r_2 = \alpha - i\beta$ :

$$y_c = C_1 e^{\alpha x} \sin \beta x + C_2 e^{\alpha x} \cos \beta x$$

### 2. 2. Homogeneous with Non-constant Coefficients

In the case of constants a, b, c become variable parameters:

$$y'' + p(x)y' + q(x)y = 0$$
 (Eq 3.4)

If  $y_1, y_2$  are solution of the above differential equation and satisfy Wronskian determinant different from zero for interval I, we call that  $y_1, y_2$  belong to **Fundamental solution set** of the equation. It leads to the complement solution is:

$$y_c = C_1 y_1 + C_2 y_2$$
 (Eq 3.5)

Wronskian determinant:

In some cases,  $y_1 = ax + b$ ,  $y_1 = x^{\alpha}$ , or  $y_1 = x^{\alpha} \ln x$  maybe helpful for us to check whether or not it is a solution of the Homogeneous equation.

When  $y_1$  already is a solution of homogeneous equation, we have to find another solution  $y_2$ . This solution is given by the formula  $y_1 = y_2 = y_3 = y_4 = y_2 = y_3 = y_4 = y_2 = y_3 = y_4 = y_4 = y_5 =$ 

$$y_2 = y_1 \left[ \int \frac{W[y_1, y_2]}{y_1^2} dx + C_2 \right]$$
 (Eq 3.7)

To simplifier, choosing  $C_2=0$  and  $C_1$  is a particular constant to obtain the simplifies result.

Combine it to get the complement solution due to (Eq 3.5).

## 3. Particular Solution

## 3. 1. Constant Coefficients

Particular solution is a nontrivial solution of the given DE (included RHS<sup>(2)</sup>).

The particular solution depends on the RHS; almost of cases, it copies the form of the RHS

Case 1:

$$g(x) = P_n(x)e^{\alpha x} = (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)e^{\alpha x}$$

(Product of polynomial and exponential)

•  $\alpha \neq r_1, r_2$ :  $\alpha$  is not a root of CE:

$$y_p = Q_n(x)e^{\alpha x}$$

•  $\alpha \equiv r_1$ :  $\alpha$  is one of single roots of CE:

$$y_p = xQ_n(x)e^{\alpha x}$$

•  $\alpha \equiv r_1 \equiv r_2$ :  $\alpha$  is a double root of CE:

$$y_p = x^2 Q_n(x) e^{\alpha x}$$

Case 2:

$$g(x) = P_n(x)e^{\alpha x} \times \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$$

(Product of polynomial, exponential, and trigonometric)

•  $\alpha + i\beta \neq r_1, r_2$ :  $\alpha + i\beta$  is not a root of CE:

$$y_n = [Q_n(x)\cos\beta x + R_n(x)\sin\beta x]e^{\alpha x}$$

•  $\alpha + i\beta \equiv r_1 : \alpha + i\beta$  is a root of CE:

$$y_p = x[Q_n(x)\cos\beta x + R_n(x)\sin\beta x]e^{\alpha x}$$

<sup>(2)</sup> RHS: Right hand side, g(x) of (Eq 3.1).

### 3. 2. Non-constant Coefficients

The particular solution in this case is given by

$$y_p = u_1(x)y_1 + u_2(x)y_2$$
 (Eq 3.8)

Where  $u_1, u_2$  are unknown functions we have to find and  $y_1, y_2$  are fundamental solution set which show at process of finding complement solution.

Cramer's rule immediately gives us:

$$\begin{cases} u_1' y_1 + u_2' y_2 = 0 \\ u_1' y_1' + u_2' y_2' = g(x) \end{cases}$$
 (Eq 3.9)

Or,

$$u'_1 = -\frac{g(x)y_2}{W[y_1, y_2]}, \qquad u'_2 = \frac{g(x)y_1}{W[y_1, y_2]}$$
 (Eq 3.10)

Then find out  $u_1, u_2$  by integrating the above result and completing the particular solution due to (Eq 3.8).

## **Chapter 4: Higher order Differential Equations**

### 1. General Solution

Given a *n*-order DE in general form

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_2y'' + a_1y' + a_0y = g(x)$$
 (Eq 4.1)

**The General solution** of the DE is the **sum** of **Complement solution** and **Particular solution** 

$$y_G = y_c + y_p \tag{Eq 4.2}$$

Complement solution depends on the order of DE, see at section 4.2.

Particular solution depends on the right hand side (RHS) of DE. If g(x) = 0, it leads to  $y_p = 0$ . If the RHS is different from 0, see at **section 4.3**.

## 2. Complement Solution

Complement solution is the solution of *Homogeneous equation* or g(x) = 0. In fact, complement solution is also a general solution of homogeneous equation.

## 2. 1. Homogeneous with Constant Coefficients

In the case of all coefficients of (Eq 4.1),  $a_{n-1}, ..., a_2, a_1, a_0$ , are constant. We obtain the *Characteristic equation (CE)* as follows

$$r^{n} + a_{n-1}r^{n-1} + \dots + a_{2}r^{2} + a_{1}r + a_{0} = 0$$

$$\leftrightarrow (r - r_{1})(r - r_{2}) \dots (r - r_{n-1})(r - r_{n}) = 0$$
(Eq 4.3)

The CE with n-order has n roots, includes its multiplicities and complex roots. The compliment solution is classified as follows:

1. For distinct real roots  $r_1, r_2, ..., r_n$ :

$$y_c = C_1 e^{r_1 x} + C_2 e^{r_2 x} + \dots + C_n e^{r_n x}$$

2. For a pair of complex roots  $r_1 = \alpha + i\beta$ ,  $r_2 = \alpha - i\beta$ :

$$y_c = C_1 e^{\alpha x} \sin \beta x + C_2 e^{\alpha x} \cos \beta x$$

3. For multiplicity real roots  $r_1 = r_2 = \cdots = r_n = r_0$ :

$$y_c = C_1 e^{r_0 x} + C_2 x e^{r_0 x} + \dots + C_n x^n e^{r_0 x}$$

(For each time of the root repeated, the power of x increases by 1)

4. For multiplicity complex roots  $r_1 = r_3 = \alpha + i\beta$ ,  $r_2 = r_4 = \alpha - i\beta$ :

$$y_c = C_1 e^{\alpha x} \sin \beta x + C_2 e^{\alpha x} \cos \beta x + x (C_1 e^{\alpha x} \sin \beta x + C_2 e^{\alpha x} \cos \beta x)$$

(If multiplicity greater than 1, we continue the process same as multiplicity real root)

In practice,  $r_1, r_2, ..., r_n$  are not always all single real roots or complex roots. It may combine some cases from 1 to 4. We just sum up the combination of these cases.

## 2. 2. Homogeneous with Non-constant Coefficients

In the case of some coefficients of (Eq 4.1),  $a_{n-1}, \dots, a_2, a_1, a_0$ , are variable parameters

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$
 (Eq 4.4)

If we have  $y_1, y_2, ..., y_n$  belong to Fundamental solution set of (Eq 4.3), the complement solution of (Eq 4.3) is given by:

$$y_c = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$
 (Eq 4.5)

If  $y_1, y_2, ..., y_n$  are solutions of (Eq 4.3) and satisfy Wronskian determinant different from zero for interval I, we call that  $y_1, y_2, ..., y_n$  belong to Fundamental solution set of (Eq 4.3).

Wronskian determinant:

$$W[y_1, y_2, ..., y_n] = \begin{bmatrix} y_1 & y_2 & ... & y_n \\ y'_1 & y'_2 & ... & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n)} & y_2^{(n)} & ... & y_n^{(n)} \end{bmatrix}$$
 (Eq 4.6)

#### 3. Particular Solution

#### 3. 1. Constant Coefficients

The particular solution depends on the RHS, almost of cases; it copies the form of the RHS

Case 1:

$$g(x) = P_n(x)e^{\alpha x} = (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)e^{\alpha x}$$

(Product of polynomial and exponential)

•  $\alpha \neq r_1, r_2, ..., r_n$ :  $\alpha$  is not a root of CE:

$$y_p = Q_n(x)e^{\alpha x}$$

•  $\alpha \equiv r_1$ :  $\alpha$  is one of all single roots of CE:

$$y_p = xQ_n(x)e^{\alpha x}$$

•  $\alpha \equiv r_1 \equiv r_2$ :  $\alpha$  is a double root of CE:

$$y_p = x^2 Q_n(x) e^{\alpha x}$$

•  $\alpha$  is a root of CE with multiplicity of n:

$$y_p = x^n Q_n(x) e^{\alpha x}$$

Case 2:

$$g(x) = P_n(x)e^{\alpha x} \times \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$$

(Product of polynomial, exponential, and trigonometric)

•  $\alpha + i\beta \neq r_1, r_2, ..., r_n$ :  $\alpha + i\beta$  is not a root of CE.

$$y_n = [Q_n(x)\cos\beta x + R_n(x)\sin\beta x]e^{\alpha x}$$

•  $\alpha + i\beta \equiv r_1$ :  $\alpha + i\beta$  is a root of CE.

$$y_p = x[Q_n(x)\cos\beta x + R_n(x)\sin\beta x]e^{\alpha x}$$

•  $\alpha + i\beta$  is a root of CE with multiplicity of n:

$$y_p = x^n [Q_n(x) \cos \beta x + R_n(x) \sin \beta x] e^{\alpha x}$$

## 3. 2. Non-constant Coefficients

The particular solution in this case is given by

$$y_p = u_1(x)y_1 + u_2(x)y_2 + \dots + u_n(x)y_n$$
 (Eq 4.7)

Where  $u_1, u_2, ..., u_n$  are unknown functions that we have to find and  $y_1, y_2, ..., y_n$  are fundamental solution set which show at process of finding complement solution.

To obtain  $u_1, u_2, ..., u_n$ , we have to solve the following system:

$$\begin{cases} y_{1}u'_{1}(x) + y_{2}u'_{2}(x) + \dots + y_{n}u'_{n}(x) = 0 \\ y'_{1}u'_{1}(x) + y'_{2}u'_{2}(x) + \dots + y'_{n}u'_{n}(x) = 0 \\ y''_{1}u'_{1}(x) + y''_{2}u'_{2}(x) + \dots + y''_{n}u'_{n}(x) = 0 \\ \vdots \\ y_{1}^{(n-1)}u'_{1}(x) + y_{2}^{(n-1)}u'_{2}(x) + \dots + y_{n}^{(n-1)}u'_{n}(x) = g(x) \end{cases}$$
(Eq 4.8)

Then find out  $u_1, u_2, ..., u_n$  by integrating the above result and completing the particular solution due to (Eq 4.5).

# Chapter 5: System of Linear First order Differential Equations

### 1. Solution of SLFDE(3)

Given a SLFDE in matrix form

$$\mathbf{x}'(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)$$
 (Eq 5.1)

The *General solution* of the SLFDE is the *sum* of *Complement solution* and *Particular solution* 

$$x_G = x_c + x_p \tag{Eq 5.2}$$

1. Fundamental matrix:

$$\mathbf{\Phi}(t) = e^{\int A(t)dt}$$
 (Eq 5.3)

2. Complement solution

$$\mathbf{x}_{c} = \mathbf{\Phi}(t)\mathbf{C} \tag{Eq 5.4}$$

is corresponding to the solution of x'(t) = A(t)x(t), where  $C = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$ ;  $C_1, C_2$  are arbitrary constants.

3. Particular solution  $x_p$  corresponding to the solution of  $x_p'(t) = A(t)x_p(t) + B(t)$  can be found as follow

$$x_p = \mathbf{\Phi}(t) \int_{t_0}^t \mathbf{\Phi}^{-1}(\tau) \mathbf{B}(\tau) d\tau$$
 (Eq 5.5)

4. If we have the initial value  $x(t_0) = x_0$ , then the solution becomes

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{x}_0 + \mathbf{\Phi}(t)\int_{t_0}^t \mathbf{\Phi}^{-1}(\tau)\mathbf{B}(\tau)d\tau$$
 (Eq 5.6)

## 2. Homogeneous SLFDE with Constant Coefficients

Given homogeneous SLFDE in the following form

$$\begin{cases} \frac{dx}{dt} = a_{11}x + a_{12}y \\ \frac{dy}{dt} = a_{21}x + a_{22}y \end{cases} \leftrightarrow x'(t) = Ax(t)$$
 (Eq 5.7)

where

$$x(t) = \begin{bmatrix} x \\ y \end{bmatrix}; \quad A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The solution of SLFDE is given by

$$x(t) = \mathbf{\Phi}(t)\mathbf{C}, \qquad \mathbf{C} = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$
 (Eq 5.8)

<sup>(3)</sup> SLFDE: System of linear first order differential equations.

If the given system has initial condition  $x(t_0) = x_0$ , the solution becomes

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{x}_0 \tag{Eq 5.9}$$

## 2. 1. Eigenvalue

The CE of SLFDE is given by

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} = 0$$
 (Eq 5.10)

Then the characteristic polynomial  $p(\lambda)$  of **A** is

$$p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \dots = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21})$$

Solve for  $p(\lambda) = 0$  to obtain the eigenvalue which leads to result of fundamental matrix.

## 2. 2. Fundamental Matrix and Solution

The fundamental matrix and solution are consequence of value of eigenvalues.

1. Two distinct real roots  $\lambda_1$ ,  $\lambda_2$ :

Let  $v_1 = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix}$ , and  $v_2 = \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix}$ , which are associated eigenvectors satisfy the following equation

$$(A - \lambda_1 I)v_1 = 0; (A - \lambda_2 I)v_2 = 0$$

Then the fundamental matrix and the solution is given by

$$\mathbf{\Phi}(t) = \begin{bmatrix} v_{11}e^{\lambda_1 t} & v_{12}e^{\lambda_2 t} \\ v_{21}e^{\lambda_1 t} & v_{22}e^{\lambda_2 t} \end{bmatrix}$$

And

$$\mathbf{x}(t) = C_1 \mathbf{v_1} e^{\lambda_1 t} + C_2 \mathbf{v_2} e^{\lambda_2 t}$$

- 2. Double root  $\lambda_0$ :
  - If  $A \lambda_0 I = \mathbf{0}$  Let  $v_1 = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix}$  and  $v_2 = \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix}$ , which are associated linear independent eigenvectors.

Then the fundamental matrix and the solution is given by

$$\mathbf{\Phi}(t) = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} e^{\lambda_0 t}$$

And

$$\mathbf{x}(t) = (C_1 \mathbf{v_1} + C_2 \mathbf{v_2}) e^{\lambda_0 t}$$

• If  $A - \lambda_0 I \neq 0$  Let  $v_1 = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix}$  is the only associated eigenvector and  $v_2 = \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix}$  are solution of

$$(A - \lambda_1 I)v_1 = 0; (A - \lambda_2 I)v_2 = v_1$$

Then the fundamental matrix and the solution is given by

$$\mathbf{\Phi}(t) = \begin{bmatrix} v_{11} & (v_{11}t + v_{12}) \\ v_{21} & (v_{21}t + v_{22}) \end{bmatrix} e^{\lambda_0 t}$$

And

$$x(t) = (C_1 v_1 + C_2 (v_1 t + v_2)) e^{\lambda_0 t}$$

3. Two complex conjugate roots  $\lambda_1 = \alpha + i\beta$ ,  $\lambda_2 = \alpha - i\beta$ :

Let  $v_{[2 \times 1]}$  is the only associated eigenvector which satisfy the following equation

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{v} = 0$$

From 
$$\mathbf{v} = \begin{bmatrix} v_{11} + iv_{12} \\ v_{21} + iv_{22} \end{bmatrix}$$
, we obtain  $\mathbf{v_1} = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix}$ , and  $\mathbf{v_2} = \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix}$ 

Then the fundamental matrix and the solution is given by

$$\mathbf{\Phi}(t) = \begin{bmatrix} v_{11}\cos(\beta t) - v_{12}\sin(\beta t) & v_{12}\cos(\beta t) + v_{11}\sin(\beta t) \\ v_{21}\cos(\beta t) - v_{22}\sin(\beta t) & v_{22}\cos(\beta t) + v_{21}\sin(\beta t) \end{bmatrix} e^{\alpha t}$$

And

$$x(t) = \left[C_1(v_1\cos(\beta t) - v_2\sin(\beta t)) + C_2(v_2\cos(\beta t) + v_1\sin(\beta t))\right]e^{\alpha t}$$

## 2.3. Particular Solution for Initial Value Problem (IVP)

If the given system has initial condition  $x(t_0) = x_0$ , the solution becomes

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x_0$$
 (Eq 5.11)

Where  $\Phi(t)$  already mentioned in the previous section.

## 3. Substitution Method to Find Solution of SLFDE

Given a linear first order differential equation in the standard form

$$\begin{cases} \frac{dx}{dt} = ax + by \ (1) \\ \frac{dy}{dt} = cx + dy \ (2) \end{cases}$$
 (Eq 5.12)

To solve this system of equation, we follow the below steps:

1. Differentiating both sides with respect to t of equation (1), we get

$$x'' = ax' + by'$$
 (3)

2. Taking  $b \times (2) - d \times (1)$ , we obtain

$$by' - dx' = (bc - ad)x \leftrightarrow by' = dx' + (bc - ad)x$$
 (4)

3. Substituting (4) into (3), it leads to

$$x'' = ax' + dx' + (bc - ad)x$$
  

$$\leftrightarrow x'' - (a+d)x' + (ad - bc)x = 0$$

Characteristic equation

$$r^2 - (a+d)r + (ad - bc) = 0 \rightarrow r_1, r_2$$

Based on **Chapter 3 section 2** to derive the expression of x(t), then differentiate to obtain x'(t)

3. From (1)

$$y(t) = \frac{1}{h} (x'(t) - ax(t))$$

4. Thus, the solution of the given system of differential equations is

$$\begin{cases} x(t) = \cdots \\ y(t) = \cdots \end{cases}$$

If the given system is not in standard form, but it is in the following form

$$\begin{cases} \frac{dx}{dt} = ax + by + g(x) \\ \frac{dy}{dt} = cx + dy + h(x) \end{cases}$$

We also apply the same method as the standard form to solve this system.