Agenda

- Inicio tema III
- Tarea V

Facultad de Ingeniería

Modelo relacional Tema III

Semestre 2024-2

Objetivo

El alumno explicará y comprenderá las características y elementos que integran al Modelo Relacional aplicados al diseño lógico de bases de datos.

Definición

Modelo basado en lógica de predicados y en teoría de conjuntos, propuesto en los años 70's por Frank Codd

Definición

Propiedades:

- No pueden existir dos relaciones que se llamen igual
- No pueden existir tuplas iguales
- No pueden existir atributos que tengan el mismo nombre
- No hay orden en tuplas ni en atributos
- Los valores de los atributos deben ser atómicos

Atributo: Característica de una entidad

Tupla: Conjunto de atributos que caracterizan a una entidad

(123, Fernando, Arreola, Franco) (234, Luis, Perez)

Relación: Conjunto de tuplas que representa al conjunto de entidades del mundo real.

Cardinalidad: Número de tuplas de una relación

Grado: Número de atributos de una relación

Dominio: Tipo de dato correspondiente a cada atributo

Tarea 6

Explicar las 12 reglas de Codd

Llave primaria: Es un atributo(s) que identifica de forma única una tupla de una relación

- Naturales
- Candidatas
- Compuestas
- Artificiales

Dependencia funcional: Sean X, Y subconjuntos de atributos de una relación. Diremos que Y tiene una dependencia funcional de X, o que X determina a Y, si cada valor de X tiene asociado siempre un único valor de Y.

X -> Y

Dependencias funcionales

$$DF:X \Longrightarrow Y$$

$$t_1 X = t_2 X$$

$$t_1 Y = t_2 Y$$

Reglas de integridad o restricciones

num_Prestamo	nombre_Sucursal	monto
P-11	centro	700
P-14	copilco	1200
P-15	bajío	2000
P-16	coyoacan	21200
P-17	centro	800000
P-23	perisur	500000
P-93	centro	12000

Llave foránea: Es una restricción de referencia, en la cual, un atributo de una relación X, es llave primaria en una relación Y

Restricciones de integridad:

- Unique
- Check
- Null / Not null
- Validaciones a través de triggers

Es una estructura de datos definida sobre un atributo(s) de una relación que permite obtener tuplas de forma rápida.

Podemos dividirlos en:

 Clustered: Altera la forma en que las tuplas se almacenan físicamente, ya que el BDMS ordena las tuplas con base a la columa(s) que se está(n) indexando

Non-Clustered: No altera la forma en que las tuplas se almacenan físicamente. Se crea un objeto donde se almacenan la(s) columna(s) que fueron seleccionadas para indexar y un apuntador a las tuplas que contienen los datos

Tipos:

- Hash Complejidad O(1)
- BitMap Muy buenos en atributos con pocas variantes
- B-Tree Complejidad O(log n)

Ventajas:

Un índice bien aplicado tiene mejoras bastante significativas en rendimiento.

Desventajas:

Los objetos donde se almacena la información de los índices, ocupan espacio

Consumo de recursos a la hora de actualizar, ingresar o borrar información

