What is claimed is:

1. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 1,

$$X_1 - (A_1)_n$$

wherein A_1 represents a group represented by formula 2, provided that plural A_1 may be the same or different, Formula 2

$$-Ar_1-N$$

$$(R_1)_{na}$$

$$(R_2)_{nb}$$

wherein Ar_1 represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R_1 and R_2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted or unsubstituted aryl group, a substituted aryloxy group, a substituted or unsubstituted aryloxy group, a

cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; na and nb independently represent an integer of from 1 to 4; n represents an integer of from 2 to 4; and X_1 represents a group represented by formula (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), or (k),

formula (a)

formula (b)

formula (c)

$$R_{21}$$
 R_{23} R_{24}

formula (d)

formula (e)

formula (f)

formula (g)

formula (h)

formula (i)

--Xa--

formula (j)

formula (k)

wherein R_{11} through R_{14} , R_{21} through R_{24} , and R_{31} through R_{34} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom, provided that R_{11} through R_{14} are not simultaneously hydrogen atoms, R_{21} through R_{24} are not simultaneously hydrogen atoms, R₃₁ through R₃₄ are not simultaneously hydrogen atoms, and R_{11} and R_{12} , and R_{13} and R_{14} may combine with each other, respectively, to form a ring, but does not simultaneously combine with each other; R_{41} and R_{42} independently represent an alkyl group, provided that the total carbon atom number of the alkyl group is from 3 to 9; R_{51} and R_{52} independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen

atom; R₆₁ represents an alkyl group; Xa represents a divalent 6- or 7-membered monocyclic heterocyclic ring which is unsubstituted or alkyl-substituted; R₇₁ through R₇₈ independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R₈₁ through R₈₈ independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R₉₁ through R₉₈ independently represent a hydrogen atom, an alkyl group, or an alkoxy group; and "*" represents a linkage site.

- 2. The organic electroluminescent element of claim 1, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 3. The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 4. The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8,

Formula 5

Formula 6

$$R_{a3} \bigvee_{N-N}^{R_{a1}} R_{a2}$$

Formula 7

Formula 8

$$R_{c1} \bigvee_{N-N} R_{c2}$$

wherein R_{a1} through R_{a3} , R_{b1} through R_{b4} , and R_{c1} and R_{c2} independently represent an alkyl group, an aryl group or a heterocyclic group; and A_{ra} through A_{rc} independently represent an aryl group or a heterocyclic group.

- 5. The organic electroluminescent element of claim 1, wherein the light emission layer contains the compound represented by formula 1 above.
- 6. The organic electroluminescent element of claim 1, wherein the organic electroluminescent element contains a phosphorescent compound.
- 7. The organic electroluminescent element of claim 6, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 8. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light

emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 3,

$$X_2 - (A_2)_m$$

Formula 3

wherein A_2 represents a group represented by formula 4, provided that plural A_2 may be the same or different, Formula 4

$$-Ar_2-N$$

$$(R_3)_{nc}$$

$$(R_4)_{nd}$$

wherein Ar_2 represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R_3 and R_4 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted or unsubstituted or unsubstituted aryl group, a substituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; nc and nd independently represent an integer of from 1 to 4; m represents an integer

of from 2 to 4; and X_2 represents a group represented by formula (1), (m), (n), or (o),

Formula (1)

Formula (m)

Formula (n)

Formula (o)

wherein R_{101} through R_{110} independently represent a hydrogen atom, an alkyl group, or an alkoxy group, provided that R_{101} through R_{110} does not simultaneously hydrogen atoms; and any two of R_{101} through R_{110} do not combine with each other to form a ring; R_{111} through R_{118} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; A_1 , A_2 , A_3 , and A_4

independently represent $-C(R_{k1}) = \text{ or } -N =$, in which R_{k1} represents a hydrogen atom or an alkyl group, provided that at least one of A_1 , A_2 , A_3 , and A_4 is -N =; A_5 , A_6 , A_7 , and A_8 independently represent $-C(R_{k2}) = \text{ or } -N =$; X_b represents $-N(R_{k3}) = \text{ or } -Si(R_{k4})(R_{k5}) -$, which R_{k2} , R_{k3} , R_{k4} , and R_{k5} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted alkoxyl group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and "*" represents a linkage site.

- 9. The organic electroluminescent element of claim 8, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 10. The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 11. The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one

selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.

- 12. The organic electroluminescent element of claim 8, wherein the light emission layer contains the compound represented by formula 3 above.
- 13. The organic electroluminescent element of claim 8, wherein the organic electroluminescent element contains a phosphorescent compound.
- 14. The organic electroluminescent element of claim 13, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 15. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula H1, H2, H3 or H4, Formula H1

$$(R_5)_{ma}$$
 $N-Ar_3-L_1-Ar_4-N$
 $(R_7)_{mc}$
 $(R_8)_{md}$

wherein L₁ represents a straight-chained alkylene group having an aromatic ring; Ar₃ and Ar₄ independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R₅, R₆, R₇, and R₈ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ma, mb, mc, and md independently represent an integer of from 1 to 4,

$$(R_{9})_{me}$$
 $N-Ar_{5}-L_{2}-Ar_{6}-N$
 $(R_{11})_{mg}$
 $(R_{12})_{mh}$

wherein L_2 represents an alkylene group having at least one fluorine atom; Ar_5 and Ar_6 independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_9 , R_{10} , R_{11} , and R_{12} independently represent a hydrogen atom, a substituted or unsubstituted

alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and me, mf, mg, and mh independently represent an integer of from 1 to 4.

Formula H3

$$(R_{13})_{mi}$$
 $N-Ar_7 \xrightarrow{R_{h1}} Ar_8 \xrightarrow{R_{h3}} Ar_9 - N$
 $(R_{15})_{mk}$
 $(R_{15})_{mk}$
 $(R_{14})_{mj}$
 $(R_{16})_{ml}$

wherein Ar_7 , Ar_8 and Ar_9 independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h1} , R_{h2} , R_{h3} , and R_{h4} independently represent an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{13} , R_{14} , R_{15} , and R_{16} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted aryl group, a substituted or unsubstituted or unsub

unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mi, mj, mk, and ml independently represent an integer of from 1 to 4,

Formula H4

$$(R_{17})_{mm}$$
 $(R_{19})_{mo}$
 $N-Ar_{10}$
 R_{h6}
 R_{h6}
 $(R_{20})_{mp}$

wherein Ar_{10} and Ar_{11} independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h5} and R_{h6} independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted aryl group, a substituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, a halogen atom, or $-\{C(R_{01})(R_{02})\}_PCF_3$, in which R_{01} and R_{02} independently represent a hydrogen atom or a fluorine atom, and p represents an integer of not less than 0, provided that at least one of R_{h5} and R_{h6} is $-\{C(R_{01})(R_{02})\}_PCF_3$; R_{17} , R_{18} , R_{19} ,

and R₂₀ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mm, mn, mo, and mp independently represent an integer of from 1 to 4.

- 16. The organic electroluminescent element of claim 15, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 17. The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 18. The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.

- 19. The organic electroluminescent element of claim 15, wherein the light emission layer contains the compound represented by formula H1, H2, H3, or H4 above.
- 20. The organic electroluminescent element of claim 15, wherein the organic electroluminescent element contains a phosphorescent compound.
- 21. The organic electroluminescent element of claim 20, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 22. An organic electroluminescent comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula I1, I2 or I3,

Formula I1

$$(R_{21})_{ia}$$
 R_{i1}
 R_{i2}
 R_{i3}
 R_{i4}
 R_{i6}
 R_{i5}
 R_{i6}
 R_{i5}
 R_{i6}
 R_{i5}

Formula I2

$$(R_{25})_{ie}$$
 $(R_{27})_{ig}$
 $(R_{26})_{if}$
 $(R_{26})_{if}$
 $(R_{28})_{ih}$

Formula I3

$$(R_{29})_{ii}$$
 R_{i13}
 R_{i14}
 R_{i15}
 R_{i16}
 $(R_{30})_{ij}$
 $(R_{32})_{ii}$

wherein R_{i1} , R_{i2} , R_{i3} , R_{i4} , R_{i5} , R_{i6} , R_{i7} , R_{i8} , R_{i9} , R_{i10} , R_{i11} , R_{i12} , R_{i13} , R_{i14} , R_{i15} , and R_{i16} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , R_{29} , R_{30} , R_{31} , and R_{32} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted or

unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ia, ib, ic, id, ie, if, ig, ih, ii, ij, ik, and io independently represent an integer of from 1 to 4.

- 23. The organic electroluminescent element of claim 22, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 24. The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 25. The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 26. The organic electroluminescent element of claim 22, wherein the light emission layer contains the compound represented by formula I1, I2 or I3 above.

- 27. The organic electroluminescent element of claim 22, wherein the organic electroluminescent element contains a phosphorescent compound.
- 28. The organic electroluminescent element of claim 27, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 29. An organic electroluminescent comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula J1 or J2,

Formula J1

$$(R_{33})_{ja} \\ R_{j1} \\ R_{j2} \\ R_{j3} \\ R_{j4} \\ (R_{34})_{jb} \\ (R_{36})_{jd} \\ (R_{36})_{jd}$$

Formula J2

$$(R_{37})_{je}$$
 $(R_{39})_{jg}$
 $(R_{38})_{jf}$
 $(R_{40})_{jh}$

wherein R_{j1}, R_{j2}, R_{j3}, R_{j4}, R_{j5}, R_{j6}, R_{j7}, R_{j8}, R_{j9}, R_{j10}, R_{j11}, and R_{j12} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, and R₄₀ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ja, jb, jc, jd, ie, jf, jg, and jh independently represent an integer of from 1 to 4.

- 30. The organic electroluminescent element of claim 29, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 31. The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 32. The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one

selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.

- 33. The organic electroluminescent element of claim 29, wherein the light emission layer contains the compound represented by formula J1 or J2 above.
- 34. The organic electroluminescent element of claim 29, wherein the organic electroluminescent element contains a phosphorescent compound.
- 35. The organic electroluminescent element of claim 34, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 36. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula K,

Formula K

$$(R_{72})_{r1}$$
 $(R_{74})_{r3}$
 $(R_{74})_{r3}$
 $(R_{74})_{r3}$
 $(R_{74})_{r3}$
 $(R_{75})_{r4}$

wherein R_{001} and R_{002} independently represent a substituent, provided that R_{001} and R_{002} do not combine with each other to form a ring, wherein the sum of a van der Waals volume of R_{001} and that of R_{002} is in the range of from 60 to 280 Å³; Ar₃₀ and Ar₃₁ independently represent a divalent aromatic hydrocarbon group or aromatic heterocyclic group; R_{72} , R_{73} , R_{74} , and R_{75} independently represent a hydrogen atom or a substituent; r1, r2, r3, and r4 independently represent an integer of from 1 to 4; and x represents an integer of not less than 1.

- 37. The organic electroluminescent element of claim 36, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 38. The organic electroluminescent element of claim 37, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 39. The organic electroluminescent element of claim 37, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.

- 40. The organic electroluminescent element of claim 36, wherein the light emission layer contains the compound represented by formula K above.
- 41. The organic electroluminescent element of claim 36, wherein the organic electroluminescent element contains a phosphorescent compound.
- 42. The organic electroluminescent element of claim 41, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 43. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains an electron transporting material having a phosphorescence 0-0 band of not more than 450 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A,

Formula A

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

- 44. The organic electroluminescent element of claim 43, wherein the organic electroluminescent element emits a white light.
- 45. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a hole transporting material having a phosphorescence 0-0 band of not more than 480 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A above.
- 46. The organic electroluminescent element of claim 45, wherein the organic electroluminescent element emits a white light.
- 47. An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between

the anode and the cathode, wherein the light emission layer contains a phosphorescent compound having a phosphorescence 0-0 band of not more than 480 nm and a compound represented by formula A above.

- 48. The organic electroluminescent element of claim 47, wherein the organic electroluminescent element emits a white light.
- 49. A display comprising the organic electroluminescent element of any one of claims 1 through 48.
- 50. An illuminator comprising the organic electroluminescent element of any one of claims 1 through 48.
- 51. A display comprising the illuminator of claim 50, and a liquid crystal cell as a displaying element.