Video Streaming and Tracking

Homework 2 - Object Detection

Deadline: 2022/10/26 23:55

Outline

- Introduction
- Dataset
- Evaluation Metrics
- Grading Policy
- Hand in Rules

Introduction

- Train a neural network to do detection on our own dataset
- Model : object detection algorithms
 - YOLOX (we use the <u>official code</u> to set the baseline)
- Add SE module to your network
- Framework : PyTorch
- Limit: Do NOT use data augmentation

Squeeze-and-Excitation Networks

Ftr(): convolution operation

F_{sq}(): avg_pool2d

 $F_{ex}()$: Linear \rightarrow ReLU \rightarrow Linear \rightarrow Sigmoid

Sample code

Conv2d → SELayer → Conv2d

```
from torch import nn
class SELayer(nn.Module):
   def init (self, channel, reduction=16):
        super(SELayer, self). init ()
        self.avg pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
           nn.Linear(channel, channel // reduction),
           nn.ReLU(inplace=True),
           nn.Linear(channel // reduction, channel),
           nn.Sigmoid()
   def forward(self, x):
       b, c, = x.size()
       y = self.avg pool(x).view(b, c)
       y = self.fc(y).view(b, c, 1, 1)
       return x * y
```

Dataset

- GTA video dataset
- You only need to detect car (Only one class)
- 1596 training images, labels
- 227 validation images, labels
- 456 testing images

Dataset link

Labels

- ./HW2_ObjectDetection_2022/{train, val}_labels/
- Each row is [class x_center y_center width height] (0~1 range) format (use 0 to represent car)

Evaluation Metrics: mAP (mean Average Precision)

- Most common metric for object detection
- In this HW, mAP defined in the PASCAL VOC 2012 competition is used
- We will use the following github repo to calculate your score

https://github.com/rafaelpadilla/Object-Detection-Metrics

- It also contains some explanations about how to calculate it
- We will use the predictions with confidence greater than 0.85 to calculate the testing score E.g. python pascalvoc.py -t 0.85 -gtformat xyrb -detformat xyrb -np

Grading Policy (1/2)

- Model implementation 65 points
 - Implement on your own or clone from Github then run on our dataset and pass the baseline (mAP = 0.8) by using the code we provide (set conf. to 0.85) to evaluate on the validation set 50/65 points
 - Add the **SE** module to your model 15/65 points
- Model performance 15 points
 - The points will determined by the rank with your classmates
 - Ranking the averange mAP (with/without SE module) on testing set you will get 15 / 10 /
 5 / 0 points base on your rank in the class
 - You can use SE module + other module to improve your performance

Grading Policy (2/2)

- Report 20 points (15 basic + 5 bouns points)
 - Experiment Setup
 - Data pre-process, Model architecture, Hyperparameters,...
 - Brief explain your code (include SE module or other modules and training commend line)
 - If you used code from GitHub, provide reference
 - Screenshot your validation results on your two models (with / without SE module)
 - Discussion
 - Problems you encountered
 - Which layer you add SE modules to and compare the corresponding results
 - (Optional) Analysis 5 bouns points
 - The difference between adding to shallow and deep layers
 - The different amount of the SE modules in one layer
 - Loss training curve, etc.

Hand in Rules (1/3)

- You should hand in your result by detecting the testing data through your model
- Format [class confidence left top right bottom] in pixel wise (1920x1080)

Hand in Rules (2/3)

- Store each detection result in [image_name].txt
- Right now, you should have two models: with and without the SE module
- Use these two models to detect on the testing set
- Submit two results in different folders
- You should hand in
 - Two result folder contain testing 456 results
 - Two folder should be named: Original and SE

Hand in Rules (3/3)

- Your submission should contain
 - Two result folder contain testing 456 results (with / without SE module)
 - Report (in pdf)
 - Code (include your environment and checkpoint). Do not contain dataset.
 - Please submit the code that can generate the prediction results in the SE folder.
- Compress them into one zip file name HW2_[studentID].zip

Penalty

- Format penalty 10 points
 - Submit the result in the wrong name, format, etc.
 - Submit the report not in pdf format
- No validation results are shown in the report 10 points
- Late penalty 20% per day
 - o 1 day => 80%, 2 day => 60%...
- You can use any code from Github, but don't copy from your classmate!

References

- https://arxiv.org/pdf/1709.01507.pdf
- https://github.com/Megvii-BaseDetection/YOLOX
- https://github.com/rafaelpadilla/Object-Detection-Metrics