AD-A145 194	ONOT MA N	A LAKE	DAM IM	FOR INS 4 00(V NOV	PECTION U) CORP 78	OF NON S OF EN	GINEERS	L DAMS WALTH	ΔM	1/2		\
UNCLASSIFIE								70 137				
	·											
						브			效			

MICROCOPY RESOLUTION TEST CHART

AD-A145 194

HOUSATONIC RIVER BASIN PITTSFIELD: MASSACHUSETTS

ONOTA/LAKE DAM MA:00016

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
VEVENOLAND DIVISION CORPS OF ENGINEERS
WALTHAM MASS 02154

NOVEMBER 1978

DISTRIBUTION STATEMENT I.

Approved for public release; District upon Unhabled **UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATI	READ INSTRUCTIONS BEFORE COMPLETING FORM	
NA 00016	A145 194	3. RECIPIENT'S CATALOG NUMBER
4 TITLE (and Substite) Onota Lake Dam		5. TYPE OF REPORT & PERIOD COVERED INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION DAMS	OF NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	B. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
DEPT. OF THE ARMY, CORPS OF ENGINEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. O		12. REPORT DATE November 1978 13. NUMBER OF PAGES 65
14. MONITORING AGENCY NAME & ADDRESS(II di		UNCLASSIFIED
		184. DECLASSIFICATION/DOWNGRADING

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

DAMS, INSPECTION, DAM SAFETY,

Housatonic River Basin Pittsfield, Massachusetts

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Onota Lake Dam consists of two adjoining structures: a $160\pm$ feet long stone masonry and concrete Main Dam, which creates Onota Lake, and a 375+ feet long stone masonry, concrete and earthfill dam, which retains a small holding pond commonly referred to as the Canal. The maximum height of both dams is about 17.5 feet. The project appears to be in fair condition. Since the dam is classified as intermediate in size, with a high hazard potential, the test flood is the PMF.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM, MASSACHUSETTS 02154

REPLY TO ATTENTION OF:

NEDED-E

SEP 2 9 1979

Honorable Edward J. King Governor of the Commonwealth of Massachusetts State House Boston, Massachusetts

Dear Governor King:

Inclosed is a copy of the Onota Lake Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the Onota Lake Dam would likely be exceeded by floods greater than 6 percent of the Probable Maximum Flood (PMF), the test flood for spillway adequacy. Our screening criteria specifies that a dam of this class which does not have sufficient spillway capacity to discharge fifty (50) percent of the PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway does not indicate the same degree of emergency as that term would if applied because of structural deficiency. It does indicate, however, that a severe storm may cause overtopping and possible failure of the dam, with significant damage and potential loss of life downstream.

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy precipitation, round-the-clock surveillance should be provided.

NEDED-E Honorable Edward J. King

I have approved the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. This report has also been furnished to the owner of the project, the city of Pittsfield, City Hall, Allen Street, Pittsfield, Massachusetts 01201, ATTN: Mr. Gerald S. Doyle, Commissioner of Public Works.

Copies of this report will be made available to the public, upon request to this office, under the Freedom of Information Act, thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for the cooperation extended in carrying out this program.

Sincerely,

MX B. SCHEIDER

Colonel, Corps of Engineers

Division Engineer

Acces	sion	For		-
NTIS	GRA&	I		_
DTIC	TAB			
Unanr	ounce	đ	'n	
Justi	ficat	ion_		_
r	ibuti labil	ity		_
	Avail		-	_
Dist	Spe	cial	•	
]	1		
INII	1	1,		
	L	1		

ONOTA LAKE DAM MA 00016

HOUSATONIC RIVER BASIN PITTSFIELD, MASSACHUSETTS

PHASE 1 INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

Inventory No.:

MA 00016

Name of Dam:

ONOTA LAKE DAM

Town Located:

PITTSFIELD

County Located:

BERKSHIRE

State Located:

COMMONWEALTH OF MASSACHUSETTS

Stream:

ONOTA BROOK

Date of Inspection:

25 OCTOBER 1978

BRIEF ASSESSMENT

Onota Lake Dam consists of two adjoining structures: a 160± feet long stone masonry and concrete Main Dam, which creates Onota Lake, and a 375± feet long stone masonry, concrete and earthfill dam, which retains a small holding pond commonly referred to as the Canal. The maximum height of both dams is about 17.5 feet. Both dams have drop spillways which are 40 and 30 feet long, respectively, with 2.5 feet of freeboard. The Lake and Canal are interconnected by means of an uncontrolled 42 inch diameter pipe. A concrete intake structure and a 5 foot diameter steel outlet pipe are located at one end of the Canal. Discharges from the spillways and low level outlet flow into Onota Brook, a tributary of the Housatonic River.

Phase I investigation of Onota Lake Dam does not indicate conditions which would constitute an immediate hazard to human life or property. Based on engineering judgment and the performance of the dams and the outlet works, the project appears to be in fair condition. The project, however, does have inadequacies and deficiencies which, if not remedied, have the potential for developing into hazardous conditions.

Since the dam is classified as intermediate in size, with a high hazard potential, the test flood, in accordance with Corps of Engineers guidelines, is the Probable Maximum Flood. A flood hydrograph was developed for the Test Flood and resulted in an inflow peak of 15,500 cfs. The computed discharge capacity of the Main Dam spillway, with the water level at the top of the training walls, is 421 cfs. The Canal Dam spillway was not included in the analysis because the discharge capacity of the interconnecting conduit is considered

negligible in relation to the flood discharges, and was assumed inoperable. It was also assumed that the water surface was at spillway crest (El. 1079.2) at the start of the flood.

The Test Flood was routed through the lake, using a computer routing technique, and resulted in the dam being overtopped by a maximum of 5.4 feet with a peak outflow discharge of 7388 cfs. The spillway capacity is only 6% of the Test Flood outflow and is considered seriously inadequate from a hydrologic and hydraulic viewpoint.

It is recommended that the owner within 12 months after receipt of this Phase I Inspection Report retain a competent consulting engineer who should;

- a) conduct further detailed hydraulic and hydrologic studies to determine what measures are necessary to improve discharge capacities.
- b) conduct detailed studies to determine the causes of the leakage and seepage which were observed and to recommend measures to eliminate these conditions.

In addition, remedial measures are recommended for implementation by the owner within 24 months of receipt of this Phase I Inspection Report to improve overall conditions. These measures, in general, are as follows:

- Programs for observing and monitoring seepage
- Repairs to the dam and appurtenant structures
- Programs for operation, maintenance and inspection.

Eugene O'Brien, P.E. New York No. 29823 This Phase I Inspection Report on Onota Lake Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

OSEPH W. FILNEGAN, JR., MEMBER

Warer Control Branch Engineering Division

CARNEY M. TERZIAN, MEMBER

Design Branch

Engineering Division

JOSEPH A. MCELROY, CHAIRMAN

Chief, NED Materials Testing Lab. Foundations & Materials Branch

Engineering Division

APPROVAL RECOMMENDED:

OE B. FRYAR

Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

HOUSATONIC RIVER BASIN ONOTA LAKE DAM INVENTORY NO. MA 0016 PHASE I INSPECTION REPORT

CONTENTS

			Page No.
		LETTER OF TRANSMITTAL	
		BRIEF ASSESSMENT	
		PREFACE	
		OVERVIEW PHOTOGRAPH	i
		VICINITY MAP	ii
		TOPOGRAPHIC MAP	iii
1		PROJECT INFORMATION	1-1
	1.1	GENERAL	1-1
		a. Authority	1-1
		b. Purpose	1-1
	1.2	DESCRIPTION OF THE PROJECT	1-1
	•	a. Description of Dam and Appurten	ances 1-1
		b. Location	1-3
		c. Ownership	1-3
		d. Purpose of Dam	1-3
		e. Design and Construction History	
		f. Normal Operating Procedures	1-3
		g. Size Classification	1-3
		h. Hazard Classification	1-4
		i. Operator	1-4
	1.3	PERTINENT DATA	1-4
		a. Drainage Area	1-4
		b. Discharge at Damsite	1-4
		c. Elevation	1-5
		d. Reservoir	1-5
		e. Storage	1-5
		f. Reservoir Surface	1-5

			Page No
		 g. Dam h. Diversion and Regulating Tunnel i. Spillway j. Regulating Outlets 	1-6 1-6 1-6 1-6
2		ENGINEERING DATA	2-1
	2.1	DESIGN	2-1
	2.2	CONSTRUCTION RECORDS	2-1
	2.3	OPERATION RECORDS	2-1
	2.4	EVALUATION OF DATA a. Availability b. Adequacy c. Validity	2-1 2-1 2-1 2-2
3		VISUAL INSPECTION	3-1
	3.1	FINDINGS a. General b. Dam and Spillway c. Appurtenant Structure d. Abutments e. Downstream Channel f. Reservoir Area	3-1 3-1 3-1 3-2 3-3 3-3 3-3
	3.2	EVALUATION OF OBSERVATIONS	3-3
4		OPERATION AND MAINTENANCE PROCEDURES	4-1
	4.1	PROCEDURES	4-1
	4.2	MAINTENANCE OF DAM	4-1
	4.3	MAINTENANCE OF OPERATING FACILITIES	4-1
	4.4	WARNING SYSTEMS IN EFFECT	4-1
	4.5	EVALUATION	4-1
5		HYDRAULIC/HYDROLOGIC	5-1
	5.1	EVALUATION OF FEATURES	5-1

				Page No.
		a.	Design Data	5-1
		b.	Experience Data	5-1
		c.	Visual Inspection	5-1
		d.	Overtopping Potential	5-1
	5.2		EVALUATION OF THE ANALYSIS	5-2
6		STRU	JCTURAL STABILITY	6-1
	6.1		EVALUATION OF STRUCTURAL STABILITY	6-1
		a.	Visual Observations	6-1
		b.	Design and Construction Data	6-1
		c.	Operating Records	6-1
		d.	Post-Construction Changes	6-1
		e.	Seismic Stability	6-1
7		ASSE	ESSMENT, RECOMMENDATIONS & REMEDIAL	
			MEASURES	7-1
	7.1		DAM ASSESSMENT	7-1
	· • •	a.	Condition	7-1
		b.		7-1
				7-1
		c. d.	Urgency Need for Additional Investigations	7-1
	7.2		RECOMMENDATIONS	7-2
	7.3		REMEDIAL MEASURES	7-2
	/ . 3	a.	Alternatives	7-2
		b.	Operating and Maintenance Procedures	7-2
			APPENDICES	
		Α.	VISUAL INSPECTION CHECKLIST	
		В.	DRAWINGS AND INSPECTION REPORTS 1. Onota Lake Dam, Plan - 1932 2. Onota Lake Dam, Section - 1932 3. Aerial Photograph, Onota Lake 4. Onota Lake Dam, Plan and Section	
		c.	PHOTOGRAPHS	
		D.	HYDROLOGIC DATA AND COMPUTATIONS	
		Ε.	INFORMATION AS CONTAINED IN THE NATIONAL	

INVENTORY OF DAMS

la. MAIN DAM.

1b. CANAL DAM.

1. GENERAL OVERVIEW.

VICINITY MAP ONOTA LAKE DAM

TOPOGRAPHIC MAP ONOTA LAKE DAM

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM HOUSATONIC RIVER BASIN INVENTORY NO. MA 00016 ONOTA LAKE DAM CITY OF PITTSFIELD BERKSHIRE COUNTY, COMMONWEALTH OF MASSACHUSETTS

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Tippetts-Abbett-McCarthy-Stratton has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued to Tippetts-Abbett-McCarthy-Stratton under a letter of May 3, 1978, from Mr. Ralph T. Garver, Colonel, Corps of Engineers. Contract No. DACW 33-78-C-0298 has been assigned by the Corps of Engineers for this work.

b. Purpose

- Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
- (2) Encourage and prepare the States to initiate quickly effective dam safety programs for non-Federal dams.
- (3) To update, verify and complete the National Inventory of Dams.

1.2 DESCRIPTION OF THE PROJECT

a. Description of Dam and Appurtenances

Onota Lake Dam consists of adjoining structures: a stone masonry and concrete Main Dam which creates Onota Lake and a stone masonry, concrete and earthfill dam, which retains a small holding pond commonly referred to as the Canal (See Photograph No. 1). The Main Dam has a crest length of

160 feet and its maximum height is about 17.5 feet. The center drop spillway is approximately 40 feet long and has about 2.5 feet of freeboard. The spillway has a flat crest about 11 feet wide. The downstream face of the dam is nearly vertical and is covered by a 3 feet thick concrete wall facing in the area of the spillway. A stone masonry buttress, located on the downstream face near the centerline of the spillway is 6 feet wide and 8 feet long. All exposed surfaces are gunited except for a length of the stone masonry wall adjacent to the left abutment. The remnants of a gatehouse are located to the right of the spillway. Reportedly, a 42-inch diameter pipe provides uncontrolled communication between the Lake and the Canal.

The Canal Dam is a combination of a stone masonry and concrete dam and an earthfill embankment. The stone masonry and concrete portion of the dam is connected almost at right angles to the Main Dam near the right abutment. Its crest is 60 feet long and its maximum height is 17.5 feet. A drop spillway having a length of 30 feet is located at the left end of the dam. The spillway crest is flat, 8 feet wide and has a freeboard of 2.5 feet. The downstream face is nearly vertical and covered with a concrete wall; all exposed surfaces are gunited.

The earthfill embankment portion of the dam is 315 feet long. In plan it has a broad based "U" - shape. The average crest width is about 7 feet and the slopes average about 1V on 2H. The crest and slope are covered by vegetation (See Photograph No. 2). A low level concrete intake structure, about 15 feet wide and 18.5 feet high, is located at the south end of the embankment. Flanking the intake structure are two stone masonry and concrete training walls. The intake opening is 10 feet wide and 16.5 feet high and is protected by a trash rack of 1/4 inch thick steel plates separated about one inch on center (See Photograph No. 5). Water is controlled by a functioning manually operated, center screw rising type sluice gate and is conducted underground by a 5 feet diameter, 50 feet long riveted steel outlet pipe. The outfall terminus of the pipe is set in an 8 feet wide, 7 feet high reinforced concrete headwall with an attached 6 feet wide, 7 feet high concrete reinforced wing-wall (See Photograph No. 6).

The flows from both spillways and the low level outlet are into Onota Brook which passes under Valentine Road through 30 inch and 60 inch diameter reinforced concrete conduits. At the entrance to the conduits the road embankment is protected by riprap and a concrete headwall. Immediately downstream of the conduits the channel is riprapped for a short distance (See Photograph No. 9). Water discharged from the lake, runs under the old Berkshire Woolen Co. mill in an 84-inch steel pipe, then outfalls into the main channel of Onota Brook.

b. Location

Onota Lake Dam is located in the northwest section of the City of Pittsfield between Valentine Road and Lakeway Drive and west of Peck's Road.

c. Ownership

The dam is owned by the City of Pittsfield. The day-to-day operation and maintenance is provided by the Department of Public Works, City of Pittsfield.

d. Purpose of Dam

The impoundment provided by the dam is for recreational purposes.

e. Design and Construction History

Original design and construction records are not available. It is reported that the dam was built for the Berkshire Woolen Company in about 1864. The City of Pittsfield acquired ownership of the dam in 1965.

According to the available 1932 drawings, a "concrete facing wall" was added to the downstream face of the Main Dam in the vicinity of the spill-way. The drawings also indicate the existence of a spring to the left of and at the base of the concrete wall proposed for construction in 1932.

It is reported that additional repairs were carried out in 1969 by Penetryn Corp. which consisted of guniting the upstream and downstream faces of the dam. The Department of Public Works repaired the upstream face of the Canal Dam in 1976 by constructing a concrete lining at the base of the dam in an area where several leaks had been occurring. In addition, the gatehouse, the two sluiceways and sluice gates, which provided the interconnection between the Canal pond and the Lake, were reportedly removed and replaced with a single uncontrolled 42-inch diameter pipe.

f. Normal Operating Procedures

There are no normal operating procedures for the project. The lake is allowed to establish its own level.

g. Size Classification

The dam is less then 40 feet high but has a maximum storage capacity of more than 1000 acre-feet, but less than 50,000 acre-feet. It is, therefore, classified as an "intermediate" size dam.

h. Hazard Classification

The dam is in a "high" bazard potential category because there are, about 7 houses and one very large industrial complex immediately downstream from the dam. In the event of a dam failure, the resulting flood wave would cause loss of life and substantial property damage.

For details on selection of the hazard potential category see Section 5.1d.

i. Operator

The individual responsible for the day-to-day operation of the dam is:

Mr. Gerald S. Doyle
Commissioner of Public Works
City Hall
Allen Street
Pittsfield, Mass.
Telephone No. (Office) 413-499-1100 Ext. 24
(Home) 413-442-7603

1.3 PERTINENT DATA

a. Drainage Area

The drainage area contributing to Onota Lake is about 10 square miles, rectangular in shape with a length to width ratio of about 1.6. The average basin length is about 3.25 miles with a mean basin slope of 6.5%. The lake is about 2 miles wide and stretche across the base of the basin, its surface area at El 1079.2 (spillway crest) is 700 acres (1.09 square miles) or 10.7% of the total drainage area. The basin is located on the eastern slopes of the Taconic Range in the Housatonic River basin, and is drained by at least seven brooks entering the lake at five different points. Most of the drainage area is covered by forests with about 20% urban development, parks, pastures, etc.

b. Discharge at Damsite

Discharges at the damsite are over two uncontrolled spillways and a low level outlet pipe.

The spillways are 30 and 40 feet long, 17.5 feet high and have

about 2.5 feet of freeboard. The computed maximum discharge capacities, with the lake level at the top of the dam, El 1081.7, are, respectively, 413 and 421 cfs. Flow into the Canal Dam is controlled by the 42-inch diameter connecting conduit - this conduit with a maximum differential head of 2.5 feet would have a discharge of about 90 cfs. The computed maximum spillway discharge of the Canal Dam could only be attained if the Main Dam overtops.

The low level outlet pipe is 5 feet in diameter. The maximum discharge, computed with a head equivalent to the spillway crest, and the top of Canal Dam is 45 cfs + and 200 cfs + respectively.

From data supplied by the City Engineers Office, Pittsfield, the highest recorded lake level since 1927, was on March 19, 1977, which is equivalent to a head of 1.55 feet above the spillway crest. The computed discharge for this peak stage is 205 cfs over the main spillway.

c. Elevation (feet above MSL)

Top of dam	1081.7	
Maximum pool-design surcharge	Unknown	
Maximum pool-test flood surcharge	1087.10	
Full flood control pool	Not Applicable	
Recreation pool	1079.2	
Spillway crest (gated)	Not Applicable	
Streambed at centerline of dam	1066 <u>+</u>	
Maximum Tailwater	Unknown	

d. Reservoir (miles)

Length of maximum pool	0.68
Length of recreation pool	0.66
Length of flood control pool	Not Applicable

e. Storage (acre-feet)

Recreation pool	3296
Flood control pool	Not Applicable
Design surcharge	Unknown
Test flood surcharge (NET)	6229
Top of dam	5130

f. Reservoir Surface (acres)

Top of dam	762
Test flood pool	848
Flood control pool	Not Applicable
Recreation pool	700
Spillway crest	700

g.	Dam

	Main Dam	Canal	<u>Dam</u>
Type		Masonry	Earth
	Stone masonry&	Stone masonry, o	concrete, earthfill
	concrete		
Length (feet)	160 <u>+</u>	375	<u>+</u>
Height (feet)	17.5 <u>+</u>	17. <u>5</u> +	
Top Width (feet)	11 <u>+</u>	8+	7+
Side Slopes - U/S	Unknown	Unknown	1V on 2H
D/S	Nearly vertical	Nearly vertical	1V on 2H
Zoning	None	Unk	nown
Impervious core	Not Applicable	Unknown	
Cutoff	None	Unknown	
Grout curtain	None	Unknown	

h. <u>Diversion and Regulating Tunnel</u>

Type	Not Applicable
Length	Not Applicable
Closure	Not Applicable
Access	Not Applicable
Regulating Facilities	Not Applicable

i. Spillway

Туре	Broadcrested	Broadcrested
Length of weir (feet)	40	30
Crest elevation (feet)	1079.2	1079.2
Gates	None	None
U/S channel	None	None
D/S channel	Natural Brook	Natural Brook

j. Regulating Outlets

The regulating outlets consist of two uncontrolled spillways and a low level outlet.

The uncontrolled spillways are about 30 and 40 feet long, about 17.5 feet high, with about 2.5 feet of freeboard.

The low level outlet consists of a concrete intake structure with a manually operated sluice gate and a 5 feet diameter, about 50 feet long pipe. The sluice gate is reportedly operable.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

There are no design data, drawings or specific memoranda available to evaluate the original dam construction, any subsequent changes or repairs to the dam. Two drawings dated October 1932, which are included in the Appendix, show a plan and elevation of the Main Dam and a portion of the Canal Dam. The purpose of the drawing was to obtain a permit for construction of a concrete wall on the downstream face of the Main Dam. During the Phase I inspection some approximate field measurements were made. On the basis of these measurements a sketch was prepared showing the approximate relationship of the dams (See Appendix).

There is no available information on subsurface conditions except for the reference on the 1932 drawing which indicates that the dam is founded on ledge rock.

2.2 CONSTRUCTION RECORDS

There are no construction records available.

2.3 OPERATION RECORDS

A record of flood reservoir levels is kept at the Office of the Department of Public Works.

2.4 EVALUATION OF DATA

a. Availability

Existing information was made available by City Engineers Office, Department of Public Works, City of Pittsfield, Mass.; County Engineers Office, Berkshire County, Pittsfield, Mass.; Department of Environmental Quality Engineers, Division of Waterways, Boston, Mass.; and Soil Conservation Service, U.S. Department of Interior, Amherst, Mass.

b. Adequacy

The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.

c. Validity

In general, the information obtained from the available drawings, the past inspection reports, and the personal interviews is consistent with observations made during the inspection and therefore considered reliable.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

The visual inspection of Onota Lake Dam was performed on 25 October 1978. The weather was sunny, temperature 60° to 70° F. The last rainfall reportedly occurred two days prior to the inspection. At the time of the inspection the lake level was about 1.5 inches above the spillway crest.

b. Dam and Spillway

1) Main Dam

At the time of the inspection, water was flowing over the spillway, therefore it was impossible to observe any seepage. However, it is reported that there are a few pressure leaks on the dam face below the spillway crest. The condition of the spillway sill is good with no apparent erosion or spalling of the gunite surface and there was no debris. The gunite surfacing of the upstream and downstream faces and the crest of the dam is in fair condition with only a few cracks. The gunite as well as the underlying concrete is heavily spalled at several locations on the crest, especially adjacent to both sides of the spillway. (See Photograph No. 1b). The gunite on the face of the buttress is spalled, and the gunite concrete at the base of the buttress is eroded exposing the underlying stone masonry. (See Photograph Nos. 10 and 11). The upstream face of the north portion of the dam is in good condition with only a few stones and mortar missing. The downstream face, in the area of the gunite, is in generally good condition with only a few minor cracks. Some minor seepage occurs at these locations evidenced by the presence of lime deposits and algal growth. The stone masonry portion of the dam is in fair condition with no mortar present and a few stones missing. Two leaks are evident; about 8 feet and 5 feet below the crest and 12 feet and 37 feet north of the spillway, respectively. The leak closest to the spillway is flowing at an estimated quantity of 10 gpm and the other about 3 gpm. (See Photograph No. 12). The faster flowing leak is in the same general area as the spring noted in the 1932 drawing which is included in the Appendix. A rock outcrop at the base of the dam below the spillway can be seen and appears to be either moderately jointed or separated along bedding planes which strike about 45° relative to the face of the dam.

2) Canal Dam

The stone masonry and concrete portion of the Canal Dam is in fair condition. The gunite surface on the crest is missing in a few areas and the underlying concrete is heavily spalled in places. The spillway crest is in good condition. Some minor debris in the form of collected leaves was observed on the spillway crest. The downstream concrete face and gunited surfaces are in good condition with only minor spalling. (See Photograph No. la.). A leakage area was observed at the end of the downstream concrete facing wall about 13 feet below the crest and 18 feet east of the spillway. It appears that the leakage is coming from three or four locations and the total quantity of flow is estimated at 10 gpm. The water appears to be clean with no fines. (See Photograph No. 13). This area of leakage has been observed by others for several years and has been described in correspondence and previous inspection reports. Repairs as recently as 1976 had been undertaken to alleviate this problem, with little apparent success.

The earthfill embankment portion of the Canal Dam appears to be in fair condition. The vertical and horizontal alignment appears to be generally good. The crest of the dam exhibits only minimal erosion due to trespassing, however, the grassed surface is uncut and a few saplings were noted. (See Photograph No. 3). The upstream slope appears in generally good condition with no observable erosion, sloughing or trespassing. However, the same condition of vegetal growth exists as noted above for the crest. (See Photograph No. 2). The downstream slope is in poor condition with heavy vegetation including large trees, shrubs, saplings, thick underbrush and fallen trees. In addition, several areas along the top of the slope are steeper than the average and as a result sloughing has taken place. (See Photograph No.4). Trespassing and runoff has caused erosion at the contact between the masonry portion of the damand the earthfill. A damp zone was observed in this same location at the toe of the embankment and a seep within the area was observed to have an estimated flow of 3 gpm. Several other zones of dampness were observed along the toe of the embankment, with no measurable flow.

c. Appurtenant Structure

The concrete intake structure appears to be in generally good condition. The trash rack was clean except for a minor collection of leaves. Many of the steel plates which make up the rack have been bent but do not seem to affect the function. (See Photograph No. 5). The operating stand for the low level gate is in good condition, greased and reported operable. A short steel rod was observed above the top of the structure. It appears to be a valve stem, however, its function could not be ascertained. The approach walls to the intake structure are in generally good condition with only a few stones and some mortar pointing missing. The concrete portions of the walls are in good condition. A leak was observed in the stone masonry of the north approach wall about three feet from the top of the wall. The flow was extremely small.

The low level outlet pipe is rusty, but in good condition. The sluice gate also appears to be in good condition, but there is a slight leakage around the seal. The concrete of the headwall and wingwall is in good condition, but the foundation of the wingwall is completely eroded away leaving the wingwall as a cantilever projecting from the headwall. (See Photograph No. 6). The area around the outfall for a distance of about 20 feet is riprapped with large sound stone.

d. Abutments

There are no signs of seepage or other unusual conditions at the abutments.

e. Downstream Channel

The downstream channel is part of Onota Brook. The channel directly below the spillways is a natural brook with some minor debris consisting of trees, tires, remnants of the old stone and concrete gatehouse and gunited stones. The areas adjacent to both sides of the channel are flat, however, the right bank, after a short distance, intersects the downstream toe of the Canal Dam embankment. The left slope is flat. Some trees are adjacent to the brook, but only a few overhang the channel. (See Photograph Nos. 7 and 8). The channel widens in the vicinity of the low level outfall before passing under Valentine Road. The concrete conduit headwalls, the two conduits and the riprap are in good condition. (See Photograph No. 9a). The channel at the terminus of the conduits is clear and the riprapped slopes are in good condition. (See Photograph No. 9b).

f. Reservoir Area

In the vicinity of the dams, there is no evidence of potentially unstable slopes or other unusual conditions which would adversely affect the dams.

3.2 EVALUATION OF OBSERVATIONS

Visual observations made during the course of the inspection revealed several deficiencies which at present do not adversely affect the adequacy of the dam. However, these deficiencies do require attention and should be corrected before further deterioration leads to a hazardous condition. Recommended measures to improve these conditions are given in Section 7.

SECTION 4 - OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

There are no operating procedures for the project.

4.2 MAINTENANCE OF DAM

There is no formal maintenance manual for the project. The last reported maintenance of the dam were the repairs made in 1976.

There is no scheduled program of inspections of the dam by the City of Pittsfield. There is, however, a statewide program of inspection established several years ago by the Department of Environmental Quality Engineering, Division of Waterways, and prior to this program, the County of Berkshire conducted inspections. Copies of several of the latest inspection reports, dated August 22, 1978, September 20, 1976, December 14, 1972, and October 31, 1968, are included in the Appendix.

4.3 MAINTENANCE OF OPERATING FACILITIES

There is no established maintenance program for the operating facilities. Maintenance is carried out as needed.

4.4 WARNING SYSTEMS IN EFFECT

There is no warning system in effect other than telephone communication between the City Engineers Office and the Office of the Mayor and the City's Civil Defense Organization.

4.5 EVALUATION

The maintenance and operating procedures for the dams and appurtenant structures are considered inadequate. Measures to improve these deficiencies are given in Section 7.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

a. <u>Design Data</u>

Design data for the Onota Lake Dams are not available.

The drainage area contributing to Onota Lake is about 10.23 square miles, rectangular in shape with a length to width ratio of about 1.6. The average basin length is about 3.25 miles with a mean basin slope of 6.5%. The lake is about 2 miles wide and stretches across the base of the basin, its surface area at El 1079.2 (spillway crest) is 700 acres (1.09 square miles) or 10.7% of the total drainage area. The basin is located on the eastern slopes of the Taconic Range in the Housatonic River basin, and is drained by at least seven brooks entering the lake at five different points. The multiple basins and steep slopes are indicative of a type which produce flash floods with very high peak discharges. Most of the drainage area is covered by forests with about 20% urban development, parks, pastures, etc.

b. Experience Data

It is reported by persons interviewed that to their knowledge since 1938 the major floods have caused little to no damage to the dams. However, extensive damage was sustained by property adjacent to the downstream channel.

c. Visual Inspection

At the time of the inspection, the lake level was about 1.5 inches above the spillway crests. The spillways and training walls are in generally good condition. The downstream channel is a natural brook filled with only minor debris. The low level intake structure and outlet pipe appear to be in generally good condition. For further details see Section 3.1c.

d. Overtopping Potential

The potential for overtopping the dam was investigated on the basis of the adequacy of the spillway and the available surcharge storage to meet a potential emergency inflow. The dam, with a maximum storage capacity of 5130 acre-feet *\frac{1}{2}\sigma\text{*is classified as intermediate in size. In order to estimate the down-stream hazard potential in the event of a dam failure, the U.S. Corps of Engineers' "Rule of Thumb" guidance was used. The estimate assumes (a) the reservoir surface is at the top of the dam at the time of the breach, (b) a breach of 40% of

^{*} See References at the end of this Section.

the dam length occurs (64.0 ft.) and (c) the channel has an average roughness coefficient (n) of 0.07. The estimated flood wave heights are as follows:

Distance below dam (feet)	Peak Elevation	Depth	Discharge (cfs)
400	1072.3	13.3	6877
1500	1061.2	7.2	6804
2300	1054.8	2.8	6714
3800	1023.8	4.8	6674

The visual inspection corroborates the information shown on USGS Quadrangle Sheet for Pittsfield West-Mass, which indicates about seven houses and an industrial complex (Old Mill) at or about El. 1070, would be damaged or destroyed by the estimated flood wave. The dam is therefore classified as a high hazard dam.

Based on the size and potential hazard classification the Probable Maximum Flood was selected as the Test Flood². A triangular unit hydrograph³/was developed to represent unit runoff from the land area and subsequently used to compute the Probable Maximum flood. The runoff resulting from the excess rainfall on the water area and the adjacent (unchannelized) land area was added to the computed flood hydrograph to form the Test Flood with an inflow peak of 15,500 cfs.

The computed discharge capacity of the Main Dam spillway, with the water level at the top of the training walls, is 421 cfs. The Canal Dam spillway was not included in this analysis as the discharge capacity of the interconnecting conduit is negligible in relation to the flood discharges, and was assumed inoperable. It was also assumed that the water surface was at the spillway crest (El. 1079.2) at the start of the flood.

5.2 EVALUATION OF THE ANALYSIS

The Test Flood, was routed through the lake, using a computer routing technique, and resulted in the dam being overtopped by a maximum of 5.4 feet. The peak outflow discharge is 7388 cfs. The spillway capacity is only 6% of the Test Flood outflow and is considered seriously inadequate from a hydrologic and hydraulic viewpoint.

References

- National Program of Inspection of Dams, Volume U. S. Corps of Engineers
- $\frac{2}{2}$ Recommend Guidelines for Safety Inspection of Dams, Appendix D, U. S. Corps of Engineers
- 3/ Flood-Hydrograph Analyses and Computation, EM 1110-2-1405, U.S. Corps of Engineers, August 1959

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

Visual Observations

Visual observations did not indicate any serious structural problems with respect to the dam. The observed deficiencies described in Section 3 require attention; measures to correct these deficiencies are given in Section 7.

b. Design and Construction Data

No design computations or other data pertaining to the structural stability of the dam have been located. On the basis of the structures, the visual inspection, as well as engineering judgment, the dam appears to be structurally adequate at the present time.

c. Operating Records

There are no operating records. There are no records or reports of any operational problems which would affect the stability of the dam.

d. Post-Construction Changes

It is reported that the dam was built about 1864. There are no records of any modifications to the dam until 1932. In that year, according to an available drawing, a concrete wall facing was added to the downstream face of the Main Dam. It is reported that in 1969 the surfaces of both dams were gunited to prevent leakage which had been observed through the spillways. In 1976 additional repairs were carried out to alleviate leaks which had been observed at the base of the Canal Dam. A concrete wall was constructed on the upstream face of the dam, keyed into the rock foundation. In addition, impervious material was placed over the concrete.

e. Seismic Stability

The dam is located in Seismic Zone No. 2 and in accordance with recommended Phase I guidelines does not warrant seismic analysis.

SECTION 7 - ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Condition

Phase I investigation of Onota Lake Dam does not indicate conditions which would constitute an immediate hazard to human life or property. Based on engineering judgment and the performance of the dams and the outlet works, the project appears to be in fair condition. The project, however, does have inadequacies and deficiencies which, if not remedied, have the potential for developing into hazardous conditions.

Since the dam is classified as intermediate in size, with a high hazard potential, the test flood, in accordance with Corps of Engineers guidelines, is the Probable Maximum Flood. A triangular unit hydrograph was developed to represent unit runoff from the land area and subsequently used to compute the Probable Maximum flood. The runoff resulting from the excess rainfall on the water area and the adjacent (unchannelized) land area was added to the computed flood hydrograph to form the Test Flood with an inflow peak of 15,500 cfs.

The computed discharge capacity of the Main Dam spillway, with the water level at the top of the training walls, is 421 cfs. The Canal Dam spillway was not included in this analysis as the discharge capacity of the interconnecting conduit is negligible in relation to the flood discharges, and was assumed inoperable. It was also assumed that the water surface was at the spillway crest (El. 1079.2) at the start of the flood.

The Test Flood was routed through the lake, using a computer routing technique and resulted in the dam being overtopped by a maximum of 5.4 feet. The peak outflow discharge is 7388 cfs. The spillway capacity is only 6% of the Test Flood outflow and is considered seriously inadequate from a hydrologic and hydraulic viewpoint.

b. Adequacy of Information

The lack of in-depth engineering data did not allow for a definitive review. Therefore the adequacy of these dams could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.

c. Urgency

The recommendations and remedial measures described in subsequent paragraphs should be undertaken by the owner within 12 and 24 months respectively, after receipt of this Phase I Inspection Report.

d. Need for Additional Investigations

Additional investigations to assess the adequacy of the dam and appurtenant structures do appear necessary and are enumerated in the following paragraph.

7.2 RECOMMENDATIONS

It is recommended that the owner within 12 months after receipt of this Phase I Inspection Report retain a competent consulting engineer who should;

- a) conduct further detailed hydraulic and hydrologic studies to determine what measures are necessary to improve discharge capacities.
- b) conduct detailed studies to determine the causes of the seepage observed along the toe of the embankment and to recommend measures to eliminate these conditions.

7.3 REMEDIAL MEASURES

. .

a. Alternatives

The results of the additional investigations recommended above may indicate alternatives which will be needed to provide discharge adequacy under flood conditions and to eliminate the leakage and seepage conditions. These alternatives can only be determined after completion and evaluation of the additional investigations.

b. Operating and Maintenance Procedures

It is recommended that the following measures be undertaken by the owner within 24 months after receipt of this Phase I Inspection Report.

- 1. Establish a formal program of operation and maintenance to include periodic inspections on a biennial basis.
- 2. Provide round-the-clock surveillance during periods of unusually heavy precipitation.

- 3. Develop a formal warning system with local officials for alerting downstream residents in case of emergency.
- 4. Replace missing stones and repoint all joints in the masonry portion of the dams.
- 5. Repair all gunited and concrete surfaces.
- 6. Keep vegetation in a close cut condition on the crest and slopes of the earthfill portion of the Canal Dam and the area adjacent to the downstream toe.
- 7. Refill and compact with a suitable material and reseed the areas of erosion and sloughing on the earthfill portion of the Canal Dam.
- 8. Remove and haul away debris from the downstream channel.
- 9. Rebuild the foundation of the low level outlet pipe wing wall.
- 10. Determine the function of what seems to be a second valve stem on the low level intake structure.
- 11. All brush, shrubs and young saplings should be removed from all locations on the Canal Dam embankment, and the area adjacent to the downstream toe. Large conifers, but no deciduous hardwoods, should be removed. The remaining trees should be inventoried and their condition monitored. If a tree dies, the area around the tree should be closely monitored for seepage.
- 12. Inspect dams for leakage when the lake level is low.
- 13. Establish a systematic program of observation and monitoring of the leakage and seepage occurring at both masonry dams.

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECK LIST PARTY ORGANIZATION

PROJECT ONOTA LAKE DAM	DATE 10-25 78
	TIME 11.00 AM
	WEATHER Sunny, 60°-70°F
	W.S. ELEVU.S.
PARTY:	
1. Harvey S. Feldman 6.	
2. Jyohndra H latel 7.	
38.	
49.	
510.	
PROJECT FEATURE	INSPECTED BY REMARKS
1. All project features inspe	ected by batty members.
2	
3	
4	
5	
6	
7	
8	
9	
0	

PROJECT ONOTA LAKE DAM	DATE 10-13-18
PROJECT FEATURE	NAME
DISCIPLINE	NAME
DAM Crest Elevation	& CONITE.
Current Pool Elevation	
Maximum Impoundment to Date	
Surface Cracks	
Pavement Condition No haveme	
Movement or Settlement of Crest	
Lateral Movement None O	borned
Vertical Alignment	
Horizontal Alignment	-
Condition at Abutment and at Concrete Structure.	ctures At aprevent generally
Indications of Movement of Structural Items	
Trespassing on Slopes Downstram ?	laje almost vertical 40
Sloughing or Erosion of Slepes - Abutments	None at abulments
Rock Slope Protection - Riprap Failures	
Unusual Movement or Cracking at or near T	oes
Unusual Balandar Downstream Seepage	al next commits - quality is
of dam; and two water in the	e atome masoning to lion of

Piping or Boils	None
Foundation Drainage Featur	res None
Toe Drains	None
Instrumentation System	None
Creat and 12 feet of the leak closest to the other about 3gm	
and downstream factorists with the concrete is hearily adjacent	the gunte surfacing of the Upstream as and the creat of the dam is in fair or cracks the gunte and the linderlying spalled at several locations on the creat to both sides of the Spillway. 3) The gunte on the free of the buttons gunte and concrete at the base of the exposing the underlying stone masonry.

PROJECT	ONOTA LAKE DAM DE	ATE 10- 25-78		
PROJECT FE	EATUREN	AME		
DISCIPLINE	E N/	AME		
OUTLET WO	ORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS	H MAIN DAM		
a. Appro	pach Channel IS onota			
	General Condition <u>Gen</u>	nally good		
	Loose Rock Overhanging Channe	1 None		
	Trees Overhanging Channel	Nion a		
	Floor of Approach Channel Un	able to observe because		
b. Weir	and Training Walls			
General Condition of Concrete, Stone Masony and Gunite Rust or Staining				
	Any Visible Reinforcing	More		
	Any Seepage or Efflorescence	Pressure leaks on the sindway		
	Drain Holes Nonc.			
c. Disch	harge Channel is on the	3000 K		
	General Condition _ General			
	Loose Rock Overhanging Channe	1 Nmc		
	Trees Overhanging Channel	ent trees in the same		

Floor of Channel is natural bed.

Other Obstructions <u>Miner debrie consisting of</u>

trees, times, remnants of the old stone and
concrete gatehouse and gunted stones. Chamel
passes under the roadway through 30" and
60' kCC tribes, then in a supraffeed Channel
and then into a 84" & Steel proper which is

PROJECT ONOTA LAKE DAM	DATE 10-25-78
PROJECT FEATURE	NAME
DISCIPLINE	NAME
DAM EMBANKMENT - CANAL DAM Crest Elevation	
Current Pool Elevation	
Maximum Impoundment to Date	
Surface Cracks None sheem	ved
Pavement Condition No pavement; due to trapasang and grass surface Movement or Settlement of Crest N	- uncut and a few sapling are growing
Lateral Movement	<u>d</u>
Vertical Alignment Generally goo	ol
Horizontal Alignment Generally goo	
Condition at Abutment and at Concrete Structure	tures <u>Generally good at</u>
Indications of Movement of Structural Items	on Slopes None
Trespassing on Slopes None at what was all and a contact between the masony and a Sloughing or Erosion of Slopes or Abutments	None at upolican clips; downstram
Rock Slope Protection - Riprap Failures	None at uprinom dope.
Unusual Movement or Cracking at or near To	pes None
Unusual Embankment or Downstream Seepage Massay day, a damp zono was sise: was observed to have an solumated firm dampness were sheered along the too, of	and and a pech with the are

Foundation Drain	age Features
Toe Drains	None
Instrumentation S	ystem None
theany vegeta thinderbrush are steeper has taken for	o: 1. The downstream stope is in poor condition with tion including large trees, should, saplings, thick and fallen trees. 2 leveral areas along the top of the stope than the average and as a result stongling lace 3. Upstream clope graned impact to uncut it sapling are aroung.

.

.

PROJECT	CNOTA LAKE DAM DATE 10-25-78				
PROJECT FE	ATURENAME				
DISCIPLINE	NAME				
OUTLET WO	ORKS - INTAKE CHANNEL AND at south end of the embandment Intake STRUCTURE channel is the canal pond.				
Framing	walls Stope Conditions Generally grad except a few stones and				
	Dome fointing missing. (See Misc, Comments)				
	Bottom Conditions land fond full therefore unable to				
	Rock Slides or Falls None				
	Log Boom None				
Debris Numer debris will miner californ of leave Condition of Concrete Lining No Concrete lining See Mac Comments. Drains or Weep Holes None					
				b. Intake	e Structure
					Condition of Concrete
	Stop Logs and Slots <u>Vr Alop logs and Alets. Hu trailing</u> Yack un fam Condution (See Music community)				
	Miscelleneous: A leak observed to the electronical				
	of the Mortin spinow in wail about where feet since				
	of the mortin approxim wail about the feet from lop of wall. he flow was immediately.				
	Name of the week				
J	have beent.				

PROJECT ONOTA LAKE DAM DATE 11-25-78
PROJECT FEATURE NAME
DISCIPLINE NAME
OUTLET WORKS - CONTROL TOWER a. Concrete and Structural General Condition Sperating Stand is located on the top of Intake atmetine. The stand is not protected and early acceptable
Condition of Joints
Spalling
Visible Reinforcing
Rusting or Staining of Concrete
Any Seepage or Efflorescence
Joint Alignment
Unusual Seepage or Leaks in Gate Chamber
Cracks
Rusting or Corrosion of Steel
Mechanical and Electrical
Air Vents
Float Wells
Crane Hoist
Elevator

Hydraulic System None
Service Gates 15 Much gate which is aproted
Service Gates 15 Muce gate which is afrosted manually and reported in Good condition: Emergency Gates None
Lightning Protection System
Emergency Power System None
Wiring and Lighting SystemNone_
Miscellaneous I. The operating stand for the low level gate is in good condition and retained operable. 2. A short steel had was observed above the top of the chickens It appears to the a value science, however, its function could not be assertained. 3. Here is shall broken arrivaled the seal of the stones gate.

:

•

PROJECT_	UNOTA LAKÉ DAM	DATE 10-25-78		
PROJECT FEATURE		NAME		
DISCIPLIN	NE	NAME		
OUTLET W	VORKS - TRANSITION AND CON	DUIT 5 feet die stiel pipe		
	General Condition of General except it is musty	* Steel pipe is in good condition		
		See comments above		
	Spalling Net	Applicable		
	Erosion or Cavitation	None observed		
	Cracking	Yone		
	Alignment of Monoliths	good		
	Alignment of Joints	agend		
	Numbering of Monoliths	None		
	Miscellancous At the outlet, the	Consiste bradually as t		
	for interest the	front tradition white the		
		bringwall as a cartilener		
	<u> </u>	c around the author is in		
	good condition.			

PROJECT ONOTA	LAKE DAM	DATE 10-2	<u> </u>
PROJECT FEATURE		NAME	
DISCIPLINE		NAME	
OUTLET WORKS - OU	UTLET STRUCTURE AN	D No outle	et Structure; and I is Onota Brook
General	Condition of Concrete	e	
Rust or S	Staining		
Spalling			
Erosion	or Cavitation		
Visible Reinforcing Any Seepage or Efflorescer Condition at Joints			
Channel	Channel 15 Onota Brook		
Lo	oose Rock or Trees Ov	erhanging Channe	1 Nove
	ondition of Discharge	OUTLET WO	DRKS -TRANSMION AND

PRO	ECT _	ONOTA LAKE DAM	DATE_	10-25-78		•
PROJ	ECT F	EATURE	NAME			
DISC	CIPLINI	E	NAME			
OUT	LET WO	ORKS - SPILLWAY WEIR, APPROA AND DISCHARGE CHANNELS	СН	CANAL DAM	STONE MASNOR	۲.
a.	Appro	oach Channel is Canal		·		
		General Condition IS	genir	ally good		
		Loose Rock Overhanging Chan	nel	None		
		Trees Overhanging Channel		None		
		Floor of Approach Channel U		to observe bec	nuse	
b.	Weir	and Training Walls				
		General Condition of Concrete Fair condition		ee misc on		
		Rust or Staining				
		Spalling Gumite surface	or to	he crest 5 /1-	S FEAVU U	
		in a few areas and the shalled in places (see Any Visible Reinforcing	No	re		
		Any Seepage or Efflorescence_			n Hein	
		Drain Holes None	·			
c.	Disci	harge Channel 15 Onota Br	ook			
		General Condition Seminal	اب بدا	grad condition		
		Loose Rock Overhanging Chann	nel	None		
		Trees Overhanging Channel	Fei-	tices overlangu		

Other Obstructions Munes debris consisting of trues,

thus, remnants of the old stane and concerts

gatilionise and gimited others channel

passes under the roadway through

30" and 60" RCC pipes, then in a

reparapped channel and then into 84" of Steel

pipe which is standard ground.

DRAWINGS AND INSPECTION REPORTS

US ARMY ENKE DY HEA EUSLAND SWE DECEMBER OF MORECOMY OF ABN-120 DAMS STONE MASOURY SCALE NTS PLAN AND SECTION OYOTA LAKE DAM WASS ONOTA LAKE TOWNSOITMOL BOSTON A CAVAL CE EMBANKHICUT KANAL PLAN Y STRUCTURE SECTION AA EARTH EMBANKMEUT (CANAL) 60 6 STEL PPE LE **S**Þ. YALENTINE 30.0% ROUGH MEASUREMENTS
MADE DURING VISUAL INSPECTION DEAWING BASED ON 3) NOTE:

The Commonwealth of Massachusetts

Exercisino Office of Transportation and Construction Department of Public Works

DISTRICT & 1 OFFICE

VETERAN'S MEMORIAL HIGHWAY, LENOX S. C. 80K 1151, PITTSFIELD 01201

September 22, 1978

SUBJECT WAT

WATERWAYS - District One Onota Lake Dam 1-2-236-6 Cheshire Reservoir Dam 1-2-58-2

Mr. Harvey Feldman Tibbit, Abbott, McCarthy, Stratton 345 Park Avenue Hew York City 10022

Dear Sir

We have enclosed a copy of the latest District One Inspection Report for the subject dams.

Although the report for Cheshire Reservoir shows the structure to be in satisfactory condition, a problem developed in March 1978 and at the request of the Civil Defense Agency this office conducted a visual inspection on March 27, 1978. Several pressure leaks were noted in the face of the dam and the left abutment. We recommended the immediate lowering of the pond and advised the owners to retain the services of an engineering consultant to conduct an indepth investigation. The firm of Robert G. Brown & Associates was awarded a contract to perform this work.

Mr. Brown has not completed his study, but he has a considerable amount of information relative to the structure.

Mr. Brown can be reached at the following address should you desire to contact him: Robert G. Brown & Associates, Berkshire Common, South Street, Pittsfield, MA 01201, telephone: (413) 499-1560.

If we can be of any further assistance, please contact this office.

Very truly yours

Dean P. Amidon, P. E. District Highway Engineer

RDJdic Enclosures oc Surlen

168 —		PECTION REPORT - DAI	MS AND RESERVOIRS		
1.	Location: City/T	PITTSFIELD	Dam No	1-2-236-6	
	Name of Dam	Onota Lake	Inspected b	y RDJord	cn - Repaniol
			Date of Inspection	n 8-22-7	8
	•	1	Previous Inspection	9-20-76	
2.	Owner/s per: As	seriors			
	Re	g.of Deeds		act	
	i. City of Pitt	sfield	Pittsfield, PA		
		St. & No.	City/Town	i/Stat●	Tel. No.
	Name	St. & No.	City/Town	/State	Tel No.
3.	Caretaker (if any owner, appointed)) e.g. superintende by multi owners.	ent, plant manager,	appointed	l by absentee
	Name	St.& No.	City/Town	/State	Tel.No.
	No. of Pictures to Degree of Hazard:	(If dam should fai	1 completely)*		
		2 Mode			
		4. Disa			
_		change as land use			
6.	Outlet Control: A				· ·
		perative X			
7.	Upstronm Face of D	an:		•	
	Condition: - 1, G	ood X 2.	Minor Repairs		
	3. м	ajor Repairs	4. Urgent Rep	airs	
	Comments:				
	•				
					

،.،

L	1	6	8	_	A

			DAM N	io	1-2-236-6
8.	Downstream Face of Dam:				
	Condition: 1. Good X	2.	Minor Repairs		
	· 3. Major Repairs	4.	Urgent Repair	· 6	
9.	Emergency Spillway				
	Condition: 1. Good	2.	Minor Repairs		
	3. Major Repairs	4.	Urgent Repair	·s	
	Comments:				
10.	Water level at time of inspection	·	0.1' abo	ve _	belowX
	top of dam	ı			
	principal spillway	<u> </u>			
	other				
u.	Summary of Deficiencies Noted:				
	X Growth (Trees & Erush) on Em	pan	kment		······
	Animal Burrows and Washouts				
	Damage to slopes or top of	dan			
	Cracked or damaged masenry			·	
	X Evidence of seepage				
	Evidence of piping				
	Erosion				
	X Leaks				
	Trash and/or debris impedin	g f	low		
	Clogged or blocked spillway	·	• •	~	
	Other		··		

L-168B

DAM	WA.	1-2-236-6
	wo.	

- 3 -

12. Remarks & Recommendations; (Fully Explain).

This is the first regular inspection since the City completed repairs in 1976. Although much work was done on this canal dam, the leaking persists. It is of little concern as the structure is built on ledge and there is no danger of failure.

The top of the canal embankment and upstream face has been cleared of brush and trees, and has been substantially reinforced with earth. There is approximately 3' of free board.

The draw down mechanism is in good shape but the erosion at the wing wall of the drawdown outlet has not been repaired.

Some brush and trees are on the downstream face of the canal dike. The brush should be removed to provide easier access for inspection.

Except for these minor dericiencies noted, the structure appears to be safe.

For location see Topo Sheet 2-B.

13.	Overall	Condition:	
	<u> </u>	1. Safe	
	X	2. Minor repairs needed	-
		3. Conditionally safe - major repairs needed	_
		4. Unsafe	
•		5. Reservoir impoundment no longer esists (explain)	•
		n	

13

DEPARTMENT OF ENVIRONMENTAL QUALITY ENGINFERING DIVISION OF WATERWAYS

RECEIVED APR 25 1977

DEPARTMENT OF PUBLICHWIGHES

CITY OF PITTSFIELD file_

MASSACHUSETTS

GERALD 5. DOYLE

April 20, 1977

John H. Hannon, P.E. Chief Engineer Division of Waterways 100 Nashua Street Boston, Ma.

Dear Mr. Hannon:

This letter is to serve two purposes. One, to inform you that the work requested on the Onota Lake Dam (Inspection #1-2-236-6) in your letter of October 15, 1976, has been completed. You will in the very near future, receive a letter with photos, showing and explaining the work that has been done.

The second reason for this letter is about the serious flooding the City experienced in March, in most cases along the west branch of the Housatonic River, which originates at the Onota and Pontoosuc Lake Dams. The inspection held after the flooding, shows conditions that still exist here and were noted to require immediate repair by your Division.

There is serious eroding of the slope all along the west branch, from Pontoosuc Lake Dam into Wahconah Park. The most serious were at 1347 North Street and 1229 North Street.

At 1347 North Street, a stone retaining wall has been carried down river, and the banks to the rear of the homes, eroded to a point where high water could possibly start to endanger the structures.

The other is at 1229 North Street (A & W Root Beer) where high water caused erosion under the banks, causing a cave-in in the blacktop parking lot, used by A & W, and if this were to happen again, it would not only endanger the structure there, but also the homes just southerly. There is also erosion from the Onota Lake Dam, along the five properties just before where the river crosses under Valentine Road.

We would expect that your division would investigate these conditions, and make whatever repairs you would think necessary. Any loss of property down stream, I would expect would make the Commonwealth liable.

12.76 U-76

DEPARTMENT OF PUBLIC WORKS

CITY OF PITTSFIELD

MASSACHUSEPROTMENT OF ENVIRADI; HIAL QUALITY ENGINEERING DASON OF WATERWAYS

May 12, 1977

GERALD S. DOYLE

Commissioner David Stanley
Department of Environmental Quality Engineering
Division of Waterways
100 Nashua Street
Boston, MA 02114

Attn: John J. Hannon P.E.

Dear Sir:

Work has been completed on the Onota Lake Dam, or we would much prefer to say, the wall of the old holding pond for the former Berkshire Mill which runs parallel to the bank. When inspected by Mr. Jordan, seepage was noticed at the bottom of the concrete wall. The area was cleaned to the ledge on which that wall is set. The enclosed pictures will confirm this.

Another wall was poured and keyed into the ledge at the bottom of the existing wall. This area was then built up approximately five feet and rip-rap was placed along the bank which is now under water, and the earth side was cleared, raised and seeded.

When the gates were closed, and the water was allowed into the holding pond, the same leak occurred in the same place. As was our original contention, this leakage is in the ledge, following a seam. The two wet spots noticed on the bottom of the earth embankment remain wat when the pond is dry. As this is a swampy area, and some years ago, the natural bed of the river, it would be safe to assume that the wet spots appearing there are from ground water some 15 feet away from the present location of the river. Mr. Jordan and Mr. Amidon were made aware of this condition, and both have viewed the same during repair.

INSPECTION REPORT - DAMS AND RESERVOIRS

1.	Location: City	/1240			Dam 1			•	
	Name of Dam	Onota Lake		 •	Inspa	ected by:	RDJord	an	
		•			Date	of Inspec	ction_9-	20-76	•
2.					Prev.	Inspect	ion X		
	Owner/s: per:	Assessors		·		,			
	•	Reg. of Deeds	s	·	Pers.	. Contact_			
		ittsfield - Pitt	sfie	14				499-11	.99
	Name	St. & No.			City/To	n'ነሪ	State	Tel.	tlo.
	2. Name	St. 3 No.			City/To	יאים	State	Tel.	lio.
					-5.				
	Name	- St. & No.			City/To	מאינ	State	Tei.	No.
	Caretaker [if a	ny] c.g. superin	ntund	ent, pla	nt manag	ger, appoi	nted by	absen	ten
	owner, appointe	d by multi owner							
	llame	St. & ilo.			City/To	ח⁄ייו	State	Tei.	Ko.
	******	st. a no.							
•		taken 8							
	No. of Pictures			·	etcly]*				
	No. of Pictures Degree of Hazar	taken <u>8</u>	d fa	il comple	• •	Poderato	<u>x</u>		
	No. of Pictures Degree of Hazar 1. Minor	taken <u>8</u>	d fa	i) comple	2.				
	No. of Pictures Degree of Hazar 1. Minor 3. Severe	taken <u>8</u> d: [if dam shou]	d fa	il comple	2. 4.	Disastro	us		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severo	taken <u>8</u> d: [if dam shou]	d fa	il compl	2. 4. [futurc	Disastro developm	us		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severo	taken <u>8</u> d: [if dam shoul y change as land	d fa	il compl	2. 4. [future	Disastro developm	us		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severe *This rating ma Outlet Control:	taken 8 d: [if dam shoul y change as land Automatic Operative X	d fa	il compli	2. 4. [futurc Manual	Disastro developm X	usno.		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severe *This rating ma Outlet Control:	taken 8 d: [if dam shoul y change as land Automatic	d fa	il compli	2. 4. [futurc Manual	Disastro developm X	usno.		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severe *This rating ma Outlet Centrol: Commen	taken 8 d: [if dam shoul y change as land Automatic Operative X ts:	d fa	il comple changes yes:	2. 4. [futurc Manual	Disastro developm X	usno.		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severe *This rating ma Outlet Control:	taken 8 d: [if dam shoul y change as land Automatic Operative X ts:	d fa	il comple changes yes:	2. 4. [future Manual	Disastro developm X	usno.		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severe *This rating ma Outlet Centrol: Commen	taken 8 d: [if dam shoul y change as land Automatic Operative X ts:	d fa	changes yes:	2. 4. [future Manual	Disastro developm X	no.		
•	No. of Pictures Degree of Hazar 1. Minor 3. Severe *This rating ma Outlet Centrol: Commen	taken 8 d: [if dam shoul y change as land Automatic Operative X ts:	d fa	changes yes:	2. 4. [future Manual	Disastro developm X	no.		

			- 2 -	•		DAM NO. 1-2-	-23
•	Cownstream Face of	f Dam: Condition	: 1. Cood	•	2.		
						Urgent Ropa	
	•						
	Comments:						
•	•					·	
•	Emergency Spillway	y: Condition:	1. Good	2. Ki	nor R	crairs <u>x</u>	
			3. Major Re	pairs	4. U	rgent Repair	·s
	Comments:						_
							——
	······································						
,	Nater level 0 time	c of inspection:	<u>0.3'</u> . f	t. abov∈_	_x	belou	
	Nater level 0 time	c of inspection:		t. above_		below	
	Nater level 0 time	c of inspection:	top of dam		÷		-
,	Nater level 0 time	c of inspection:	top of dam		x		
· ·	Nater level 0 time	c of inspection:	top of dam	spill*ov	x		
	Nater level 0 time		top of dam	spill*ov	x		
	Summary of Deficie		top of dam principal other	spillway	.· x		. =
	Summany of Deficie Growth [Trees	encies Noted: s and Brush] on E	top of dam principal other	spillway	x_		
	Summary of Deficie Growth [Trees Animal Burrow	encies Noted:	top of dam principal other	spillwov	. X		
	Summary of Deficie Growth [Trees Animal Burrow Demage to slo	encies Noted: s and Brush] on E ks and Washouts_	top of dem principal other	x_x_			
	Summary of Deficie Growth [Trees Animal Burrow Demage to slo Cracked or Da	encies Noted: s and Brush] on En es and Washouts opes or top of dai amaged Masonry	top of dam principal other	x x	x		
	Summary of Deficie Growth [Trees Animal Burrow Demage to slo Cracked or De Evidence of S	encies Noted: s and Brush] on En ws and Washouts opes or top of da amaged Masonry Stepage	top of dam principal other	x	x		
· ·	Summary of Daficie Growth [Trees Animal Burrow Damage to slo Cracked or Da Evidence of S Evidence of P	encies Noted: s and Brush] on Envis and Mashouts_ opes or top of data amaged Masonry_ Stepage_ Piping_	top of dam principal other	x x x x x			
· ·	Summary of Deficie Growth [Trees Animal Burrow Damage to slo Cracked or Da Evidence of S Evidence of P Erosion	encies Noted: s and Brush] on Envis and Mashouts_ opes or top of data amaged Masonry_ Scepage_ Piping	top of dam principal other	xxxxx	X _		
· ·	Summany of Deficie Growth [Trees Animal Burrow Demage to slo Cracked or Da Evidence of S Evidence of P Erosion Leaks	encies Noted: s and Brush] on Engrand Washouts_ opes or top of decamaged Masonry_ Stepage_ Piping_	top of dam principal other	x	· X		
· ·	Summary of Deficie Growth [Trees Animal Burrow Demage to slo Cracked or Da Evidence of S Evidence of P Erosion Leaks Trash and/or	encies Noted: s and Brush] on Envis and Mashouts_ opes or top of data amaged Masonry_ Scepage_ Piping	top of dam principal other mbankment	x			

.

•

: .

£

DAH HO. 1-2-236-6

Remarks & Pecommendations: [Fully Explain] PREVIOUS INSPECTION DATE: February 28, 1974

No repairs have been made since 1974. The earth embankment has little freeboard and is eroding in several areas along the upstream face. The top and slopes are covered with many trees and heavy brush. Much seepage is visible along the the toe of the embankment.

The concrete headwall at the outlet end of the drawdown pipe is in danger of failing due to severe erosion at the wing section. Unless repairs are made in the near future, the wing and possibly the headwall will be destroyed.

No change was noted in the leak located 35' north of the pond spillway.

The leak easterly of the canal spillway appears to have increased in volume, water is bubbling out at the base of the wall at an estimated rate of 5 gal. per minute. It was noted that some fines were being displaced by this flow,

This leak was not reported in the counties 1968 report, nor was it mentioned in the repair contract of 1970. The County Engineer cannot recall a leak existing in this location.

Construction plans of the pond dam show it to be built on ledge. No plans were available of the canal spillway and wall, but I assume it is also built on ledge.

Failure of the structure could cause heavy damage to downstream areas, Also, the Berkshires would lose a very popular and beautiful recreational area.

It is the opinion of this office that the owners (City of Pittsfield) should be directed to retain the services of a consultant engineering firm to conduct an in-depth investigation of the structure to determine the extent of repairs.

For location see Topo 2-B.

	 	
13. Overal	l Conditio	n:
•	1.	Safe
:	2.	Minor remains needed
	3.	Conditionally safe ~ major repairs needed X
مين. د پاي	4.	Unsafe
	5.	Reservoir impoundment ne lenger exists [explain]
		Recommend removal from inspection list

12. Remarks & Recommendations: [Fully Explain] SUPPLEMENTARY REPORT Onota Lake Dam

Monday, November 29, 1976. City crews have begun repairs. The channel was completely *drained and the gate from the pond to the channel was temporarily blocked with steel plates. The material adjacent to the channel side of the wall was excavated to bed rock. The wall was found to be constructed of stone blocks with mortared joints. The leak, previously reported, was found to flow between the ledge and stone wall. The City has excavated a section approximately 20' along the wall down to the ledge. A concrete wall will be poured against the wall to seal the leak. In addition, impervious material will be placed over the new concrete and excess material will be utilized to repair eroded areas in the earth dike.

All brush and trees have been removed from the upstream face and top of the dike. The upstream face of the drawdown structure has bee mortared. Some clearing has been done on the downstream slopes.

December 6, 1976: Inspected site with Mr. A. McCallum of DEQE. Repairs, although not complete, have progressed satisfactorily. Inspection of completed job will be conducted at a later date.

3.	Conditio		
•	١.	Safe	
•	2.	Minor repairs needed	
	3.	Conditionally safe - major repairs needed	:
.	4.	Unsafe	
•	5.	Reservoir impoundment ne longer exists [explain]	
		Recommend runoval from inspection list	·

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

October 15, 1976

G. S. Doyle, Commissioner Pittsfield Public Works City Hall Pittsfield, Massachusetts

RE: Inspection Dam #1-2-236-6 Onota Lake Dam Pittsfield

Dear Mr. Doyle:

On September 20, 1976, an engineer from the Massachusetts Department of Public Works inspected the above dam owned by the City of Pittsfield.

The inspection was made in accordance with Chapter 253 of the Massachusetts General Laws as amended by Chapter 706 of the Acts of 1975 (Dams Safety Act).

The results of the inspection indicate that the dam is conditionally safe but that major repairs are needed. There has been no attention to previously noted deficiencies.

During the September inspection, the following conditions were noted and require immediate repair:

- 1. Earth embankment has little freeboard and is ereding in several areas along the upstream face.
- Remove the growth of brush and small trees from the embankment of the dam and establish a good growth of turf.
- Investigate and correct the scepage visible along the toe of the embaniment.
- Repair the concrete headwall at the outlet end of the drawdown pipe. This is in immediate danger of failing due to the severe erosion at the wing section.

Dam #1-2-236-6
Onota Lake Dam, Pittsfield -2-

October 15, 1976

- No change from the last inspection (letter March 14, 1974) was noted in the leak located 35' north of the pond spillway. This should be corrected.
- 6. The large leak in the canal spillway reported to you on March 14, 1974, has increased in volume and is bubbling out at the base of the wall at an estimated rate of 5 gallons per minute. Additionally, some fines were being displaced by the flow. Investigation and corrective action should be taken immediately.

Unless the City takes action to correct the above deficiencies within a reasonable time and with the guidance of a Registered Professional Civil Engineer having experience in dam design and construction, I will have no recourse but to order Lake Cnota drawn down until the necessary repairs are made.

The failure of this dam would cause heavy damage to downstream areas for which the City would be liable and a very popular and beautiful recreational resource would be lost.

Please indicate by November 15, 1976, in a letter to this office, which Consulting Engineering firm has been selected by the City to recommend and oversee the corrective actions needed to make this dam safe.

Additionally, please indicate the above referenced dam number oh all correspondence.

Very truly yours,

John J. Hannon, P.E. Chief Engineer

FHM: hlb
cc:Dean Amidon
Robert Jordan
Hon. Evan S. Dobelle, Mayor

COUNTY OF BERKSHIRE, MASS.

INSPECTION OF DAMS /-Z-236-6

City or Town of Pittefield	Date October 31, 1968
Name of Dam Onota Lake	Inspector William A. Heaphy
Owner Berkehire Woolen	Address 343 Peck's Road Tel. 3-6495
Caretaker William Doyle	Address 53 Brombach Street Tel. 2-8251
Location Onota Lake at Peck'	s Road and Lakeway Drive
Type and Dimensions Stone m	masonry 160' long
•	nry40' long, 15' high, 8' wide- 2'6" freeboard
	to canal Gate to mill closed
Date Built 1864	Condition Fair to Good
When last repaired 1959	By whose orders Owners
•	upstream face - masonry repointed
	mufacturing
Approximate storage of water	bout 1,200,000 cu. ft.
Approximate area of water shed	
	To houses and highway below.
Remarks Water 28" below spi	llway level, Gatehouse removed, Concrete deterioration
er shirtney and sidewalls o	f canal. Leaks observed through spillway
Recommendations Concrete sh	ould be repaired and leaks sealed before they become
	"

₁-169

DESCRIPTION OF DAM

DISTRICT ONE

	Submitted by R D Jordan	Dam No. 1-2-236-6
	Date December 14, 1972	City/Tappx Pittsfield
		Name of Dam Onota Lake
1.	Location: Topo Sheet No. 2-B	•
	Provide 8-1/2" x 11" in clear copy of a clearly indicated.	
2.	Year built: 1864 Year/s of subse	quant repairs 1970
3.	Purpose of Dam: Water Supply	Recreational X
	Irrigation	Other
4.	Drainage Area:sq.	miacrcs.
5.	Normal Ponding Area: 650 Acres	: Avc. Depth .
		;acre ft.
6.	No. and type of dwellings located adjacent	to pend or reservoir
	i.e. summer homes etc	
7.	Dimensions of Dam: Longth 1251 .	!tax. Height 15.51
	Slopes: Upstream Face	stone musonry .
	Downstream Face	conc. masonry .
	Width across top	61
8.	Classification of Dam by Material:	
	Earth X . Conc. !	lasenry X . Stone Hasenry X
	Timber Rockfil	. Other
9.	A. Description of present land usage dou	nstream of dam:
	B. Is there a student arra on flood plain accommodate the impoundment in the events.	Shumal; 100 Sumbon. The complete demodrate of a complete demodration

L-169 A		DAM NO	. <u>1-2-23</u>
IO. Risk t	to life and property in event	of complete failure. Damage could occur to mil	ls and b
	No. of people		ah Stree
	tio. of homes	•	
	No. of Businesses	يياران سندووا	
	No. of Industries	. Type	 •
	No. of Utilities	. Tyne	 ·
	Railmads	·	
	Other dams	·•	
	Other		

Copy should be available in Pitts field.

completed in 1977

FLOOD INSURANCE STUDY (TYPE 15)

PITTST-77-ZB TEMOSKONOSELLY

FREQUENCY - DISCHARGE - ELEVATION SUMMARY

·	. FLOODING SOURCE:				DNOTA BROOK			
FILE	10	YEAR	50	YEAR	100	YEAR	500	YEAR
ft.	Q cfs	EL msl	Q cfs	EL msl	Q c1s	EL msl	Q cfs	EL msl
-50	420	9745	740	7763	940	7.73 24	/330	12223
. 20		7955		776.7		779.30		10000
<u>-o</u>		9757		22.7		795.6		100 1.7
•70		9272		923.2		2027		1001.1
.75		1002 1		1002.7		1225.7		1000 =
25	<u> </u>	100%	†	10025	T	100:1	Ţ	133
3140	380	1233 3	665	10070	840	2214	1200	(0)73
<u>ده.</u>		10.09.7		1010		1013.2		0/5.0
1+50	•	10//3	+	1012.7	+	10157	1	10152
1+75	340	1021.5	590	102: 7	750	10217	1055	151.5.2
<u>550د</u>	295	10220	570	10226	660	102: 9	930	10234
•50		1020		10235		10245		10.01
,+,R_=	+	10231	1	1024.1	•	10247	1	آ. جاءُ ت
35	400	~ ~ .	520	102-6	655	22:2	930	227.2
<u> 135</u>	320	1000	405	10456	5/5	/	730	, ,-:: =
1135	295	1.346 3	375	10473	480		630	1541:
4160		10.77.0		2586	 	10000		15-2-
2.10	 	1057.3		10534		10510		3000
7+75		ļ		ļ. <u>.</u>		ļ	 	ļj
<u>7+75</u>	 	10:41		0547		10553		1367.1
2+00		1054.1		10647	ll	02/19	!	-0-7
2+50		1063,3	<u> </u>	12074	<u> </u>	037.3		122
.+75	· · · · · · · · · · · · · · · · · · ·	10-13	1	13574	, T	70.73	V	<u> </u>
\$50	280_	3.73	370	12514	475	1037	645	=
12+50	280	10 13	370	11114	475	172.7	645	1 1
-CV	ITA_L	AKE I	2411	(IR'FIN	CE 41	<u> </u>	11.3 5	14.17.17.4
	ļ			\ <u> </u>		 		
		 	ļ			 		
	 	ļ	ļ			 		
		 		 	 	 		ļ
	L	<u> </u>	L	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>

HARRY W. HEAPHY

CIVIL AND CONSTRUCTION ENGINEER

LEE. MASSACHUSETTS

October 10. 1932

Berkshire Woolen Co. Fittefield, Lass.

Gentlemen: -

I am enclosing herewith plan showing changes and repairs made to the dam owned by your company at unota take in rittsfield.

Mass.

rou will note by the plan that some alterations were made differing from the recommendations made in the letter to you of Aug. 25

the concrete facing wall on the dam was mide 3 feet in thickness at the bottom and 2 feet in thickness at the top, and also was reinforced with 2" bars placed 12" on centers both ways.

of the buttress at the dam was none too good. This poor concrete was removed and replaced with a new concrete wall on three sides of the buttress, this wall being 3 feet thick at the bottom and about 16". thick at the top, being reinforced with \frac{1}{2}" and 5/8" rods placed approximately 24" on one ters both ways.

at the end of each days pouring of concrete on the facing wall of the dam, steel plates 12" wide were imbedded 6" in the wall the remaining 6" above the wall to bond into the next pouring and sporternt leakage through a horisontal joint at the end of a day's run.

the bleeder or drainage pipe to take sare of seepage worked quite well and the completed wall shows only one damp spot where water apparently seeped tire, which I consider very good when we take into

HARRY W. HEAPHY

CIVIL AND CONSTRUCTION ENGINEER
LEE MASSACHUSETTS

account the amount of seepage and the very poor condition of the old concrete which we had to contend with.

There is a spring or a leak thru the seamy ledge on the right hand side of the new facing wall. This is very small and should never give any trouble.

and requires repairing and attention. The only way this can be stopped is to drain the canal and dig down on the inner face of the headwall and make repairs either by pointing up the masonry or by a facing wall of concrete.

I wish to express my appreciation of the cooperation given me by Mr. Harry Hill in carrying out my suggestions and in endeavoring to obtain a good job.

1 shall be pleased to be of service to you at any time.

very truly yours,

I wight Breefing

Copy to County Commissioners

PHOTOGRAPHS

PHOTOGRAPH LOCATION PLAN
FOR STOWE 2 WER EASIN

2. VIEW OF UPSTREAM SLOPE - CANAL EARTHFILL EMBANKMENT.

3. VIEW OF CREST-CANAL EARTHFILL EMBANKMENT. NOTE HEAVY VEGETATION.

4. VIEW OF DOWNSTREAM SLOPE - CANAL EARTHFILL EMBANKMENT. NOTE HEAVY VEGETATION AND TREES.

5. VIEW OF LOW LEVEL INTAKE STRUCTURE WITH OPERATING STAND AND TRASH RACK.

6. VIEW OF LOW LEVEL OUTLET PIPE. NOTE UNDERCUTTING OF CONCRETE WINGWALL.

7. VIEW OF DOWNSTREAM CHANNEL LOOKING UPSTREAM. NOTE BOULDERS AND DEBRIS IN CHANNEL.

9. VIEW OF DOWNSTREAM CHANNEL LOOSING DOWNLITERAM. NOTE PROXIMITY OF HOUSES TO CHANNEL.

9a. AT INLET. NOTE RIPRAP SLOPE.

 θ . At cutlet. Note intake steel pipe coutly called the while iam channel.

A. TING TO THE WARRANT OF THE BOARD DATE OF THE

10. THEW OF SPALLED GUINTH ON MAIN DAM BUTTHEFF.

11. VIEW OF ERODED GUNITE AT BASE OF MAIN DAM BUTTREDD.

The simple of practical terms of the same of the same

18. TEM OF LEAKAGE ALLA TO TO CATE TO MINITED TO MANAGE MANAGE TO MANAGE TO

HYDROLOGIC DATA AND COMPUTATIONS

Job No297-1	a	3. 1 3. 1 V	1		
Job No. Project)ec. 20 93
	ata ceserve				سري سراح
Subject					
Sub-casin	Area	4	LCa	LXA	Lea × A
	m: 2	mi	m.	-	
	3309	2.4	1. 5	11.251	2934
:					C
\mathcal{I} .	.5 - 4	3 ?	1. €	4.84 5	まてなり
	3.226	33	. 6	2.636	5. 02
ž	8.049			26.742	. 2. 7 2 =
			were, weed	3 3 2 2	1.345
•			;		
zp = Cr (1	3322 × 134	15) 23			
- 320		•			
		2			
Z,: 1/3	13 ° 0 24	nct = 2	D m 19° 19€.	use 30 mir	· s .
ter 05					
ځ د درځ	p + c 25 (te	rte)			
•	26+ 025 (+0				
÷ 3.	24 nis	15e 32	Salar		
Time to	poak = 3	. 25 + 5. 25	= 3 35 hr	2	
•					
9 Fe = 6	10 CD /	= 123,08	3		
0	123.08 × 8 0	19 - 99	lefs.		
7 72			/		
			-1		
		U	- 1		

	263 40	TES		
Time	<i>Q</i>	Tune	\mathcal{Q}	
C	o	75	3 🕽 🤉	
25	3 5	80	2 " 5	
	75	£5	235	
	9 5	30	6 9	
10	350	નું ક	کو نہ	
75	7.5 5	10.0	,	
35	950	10 5	¥ 5	
2.5	2 19 1	٠.٥	ي ج	
۔ ن د	983	1/5	30	
45	0 - 0	. 6 0	2.2	
5.0	925	125	3	
55	2 S E	13.0	' 2	
60	7 3 0	13 5	5	
<i>i</i> 5	5 70	14.0	0	
7.5	455			

b No. 14:7-	12	,			1 of
nect INSIE	CTION ENOT	* LAKE		Date	Nov 2 147
ubject				Ву _	260
				Ch'k	by <u>(+ + </u>
 			(-		
LAKE HAGA	(Aroin)			· ·	JSGS. Tops ma
Contour	1080	1113	mi / 172	2 aires	
· Coptur	1090	1.41	ni / 40	e ains	
e 7	4	£ x:000 A		٤	1 -
1620		X TOOL 72	<u> </u>		
					/
1286	. ,			,	<i>!</i>
	BLACHARGE STORAGE				
1	•			1 100	EA
اعتدا	•			· /	
			,		
,554		٠.	<i>'</i>		
		•,			
.:e⊒			franc		
		. /	•		
1	• •				
(000)					
					_
	· · · · · · · · · · · · · · · · · · ·				•
11.78	en e				·
300	700		220	•	see Ac
		HREA	•		
				•	
		•	•		
	•	:			
			•		
		• • • •			

				 	
EI [MEAN	1 Vol	Surcharge	
		AREA (Ac)		STORAGE (AL FI)	
1078	634	667	800.4		
1079.2	700	714	714	800	
1080.2	728	140.5	740.5	1514	•
1081-2	753	7575	375·8	2255	• • • •
10.81.7	762	767.5	383.8	2634	. •
1082.2	7.73	791.5	/583.	3018	
1084.2	810	827	1654.	4600	• •
1086.2	844	860	1720.	6254	• •
1088-2	876			7974	
					··· ·
			4.1	i de la composition della comp	. •
		<u> </u>			• • •
				eger∳ enem og nyer og de ekonomisko komisk	
	<u> </u>				
	<u>. </u>	<u> </u>			
		<u> </u>		. 	
					···· •···· • • · · · · · · · · · · · ·
					,
			D-A		

Job No.	497	- 13.	_				Sheet of	
Project	IN2	PECTION	<u>ა</u>	ONOTA.	LAKE		Date Oct 30 (978
Subject							Ву	=
							Ch'k, by	
1		O		40. valla			micnet 120 feet	
		width			8.0		odini adali di salah sa	
a	deu m	સું •	<u>مساانم</u>	g, acts	as	brood cu	_	
	Elev	Head,	<i>C</i>	Q-CLH 34	San	Quam	Q TOTAL .	
	79.2	. 0	. 0.	0	: = .			
lo8	0.2	<u>I</u>	2 68	107.			. 107	
108	2 ا	2	2.64	.299	· • • • • •		. 299	
108	1:7	2.5	266	421		6	421	
108	2.05	2 · 85	265	510		7.7.	587	
108	2:2:	3.0.	2 65	551		131	682	
108	4.2	5.0	2.69	1203	·	1464	1 2 3 6 7	
108	6.2	7.0	2.88	2134		3536	5670	
108	8.2	90	3 09	3337	3 = 7	6139.	9476	
		• • • • • • • • • • • • • • • • • • •	' · · · · ·	····		· · · · · · · · · · · ·	en e	
							······································	
	 		-	- - -	. j		• • • • • • • • • • •	
						,		
								•

Job N		13	•	à					Sheet	6	of	
Projec		ECTION	Ono	OTA LI	KG				Date _	Oct		1978
Subjec	alMin S	PILLWAY	KA.	TING C	LURV	<u>e</u>			Ву		DL	. <u>c</u>
									Ch'k, I	by		
										:	•	
			~··+··;	.			444		.		•	
			i	<u>}</u>						• ••	- 0	
•							1 4					
			:		: :							
,	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· ; 						90	
		•				• • •	•					
				. ; 	\						10/	
		•									1	
		•	,		1	1 .						્યું .
	• •	, . , , , , , , , , , , , , , , , , , ,				•					3	ย์
	!		· · · · ·					·				0/
	080		•		/							INSTITUTE X 100 CFS
	<i>B</i>				κ	· · ·					13	× 6:
	WYC		,		x 100 cFS		• • • •					g Si
_	1	· · · · · · · · · · · · · · · · · · ·		· •	×	. \					40	γi Vi
	90		. :	.; .							4	′ (
.\	407		:	· · · · · · · · · · · · · · · · · · ·	9			•	•			
					·	\ .					5	
.		: : : · • • • ·			4		· · · · ·					
	•	. ;	; 1	. :		:) :					
		· · · · ·			M)		. \	,			20	
			· · · · · · · · · · · · · · · · · · ·		0		; / .					
					4		1 11 N	\		•	-0	
:	;					(' '	: :					
1081			689/		THOIL .		· · · · ·			:		
_		OILY NATA				98	<u> </u>	- 2 -	-	8 9	; !	
	; · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u>; </u>	1086	75W)	NOITA		7801	<u>6</u>	950		
						7001297	3 13			; ;	:	
	e dee e de e	d., d		D-	6	,	J J ₋			,	** · - ** * ·	

Joh No.	149	<u> 7 - 13</u>	<u>. </u>		_	,	•					Sh	eet .	7	
Project	Q	NOTA	LAKE	ε3	SAF	ETY	Ī	NS	PEC	Tion		_ D	nte .	Nov G	7.8
Subject .					hec	<u> /</u>	disc	ha.	-ne	ra.1	1116	B ₁	,	D.L	
-		or d	llwa.	<u> </u>	Spi	المن	24		Ú		7	CH	'k. by		
										: : :					
		L =	30.	OL	ee+		ىم	su:	٠. د ا	spill	سمىر	انه	2	مه داس.)	
							13 (broc	der	edted	()	we	u		
· · · · · · · · · · · · · · · · · · ·			· • •									رب	n-a	ر . ۱۱۰۰۰	
	H	(ft).	C	\$ [*] :	: ;	B	کر - ر	L'H'	· ({s)					
					÷ .			. ,		•	:				
														-	
			2	68		 • •	8	0							
·		<u></u>	2			ì	22								
							:								
ļ <u>i</u> .	3	}	2	65	[· • • • • • • • • • • • • • • • • • • •	4	1.3		. •	Top	of i	- ۲α ۱	ning w	. 1
· i				, . ,			- :		: :	:	: .			G	
						1				:					
<u> </u>		••	· ••••	•	• • • • • • • • • • • • • • • • • • •	: :			;	: 					
	•	• •	. :	:											
i ,												•			
ļ i.	÷														
					•	•									
		. ;				ļ. : .									
							ļ			k		•			
			****	1 1 2	}			· · · · · · · · · · · · · · · · · · ·			:				
		. i.,				• •			•						
	•	·•·•	···•					• • • • •			•				
ļ						· · · · · · · · · · · · · · · · · · ·	į				*				
								,							
			:		·····	· · · · · · · · · · · · · · · · · · ·							•		
ļ <u>i</u> .		: ••		· ·	• • • • • • • • • • • • • • • • • • • •		<u>.</u>	: : : :	: .	•					
	: :			-	•) :			:						
		1 (([• • •				
				ļ	<u></u>				• ••		i				• • • • •
							••••								• •
		,				:	•		,			: :			
للنلبا	ن	سنندنذ	i	<i></i>		<u> </u>	i. -7 '''		ال						

											ĺ		
		BREAK 11PE	0.000										
		TIPE COEF.	1.000								<u></u>		
		INFLOW	1.000										
		OUTFLOW	1.000										
		STORAGE	1.000										
-	R 31 1978	PLOT	YES	PESERVOIR OUTFLOW (CFS)	00.0	25.00	2667.00 5676.00 9476.00	:					
SPECTIC	OCTORER	CATE OPTICA	0,0	1		!							
SAFETY IN	1427-13	TWULL PAPARETEPS G PPINT S) INTERVAL 0	-	0 V 6	800.0001	2634.1635	6254.0009 6254.0009 7974.1	:	 				:
OVOTA LAKE	JOB 40, 1497-13 OCTOBER	FNDING TIME CLOURS)	12.09	110 A 8 3 5 1 A	79.26		02.99						:
		2 T T T T T T T T T T T T T T T T T T T	<u> </u>	35:4	4								
	TOOM KAANATET TE	1	-1.										
		1	1.										
	1					[-B						

	(887)	INFLOW (CES)	CUTFLOW	STORAGE	ELEVATION (FT.)	
•	1 6 9 9	0.00	52.0	800,0001		
	200 200 200 200 200 200 200 200 200 200	1269,33	7.30	808.7318 810.6372	79.21	
		1757.63	7.63	854-8554	79.24	
		9	23.51	- Kond"164	79.22	
	1,5 M	1053.41	16.45	974. 27.0	79.35	
	- (-	26.64	2 × C	955.7227	79.41	
		25.4.75	27.64	983.1229	79.45	
	in the	7111.67	1.99	1013,4053	67.62	
		25.3.2.7	05.57	1000 6000	70.60	
		35.34.4	500	1127,000	79.97	
	.1.3	65	07.93	1253,3008	73.63	
	50.2	2112,00	79.04	1227,4733	26.67	
			16.6.47	1510 5219	PC 19	
	(4) (4)	55.	112.03	1614, [215	* * * * * * * * * * * * * * * * * * *	
	7	26.75	160.01	1715.5400	10.47	
	() ()	のすったいと	214.00	1020 6418	* Z * J a	
		- 17, 97	- 56.53	2127 2125	20.73	
	` . !	71. 1971	#5. KJ!	2251, 1.664	81.19	
		1 75. [7]	21.23.2	2357, 6146	21.13	
	2.75	1,001,55	401.19	2572,1316	10.10	
		71.3.6.47	07.524	2679, 7548	51,75	
	7 . 7) (A 7 605	2002,7375	C 4 C C C C C C C C C C C C C C C C C C	
	57.7	111777.50	(72.02	3003 3305	55.13	
		11.78.50	71.5.77	\$111,8608	22.31	
	2 · 2	11475.53	62.55.74	3220.2705	27.45	
	7. 7	02.4.2.1	1219,04	1445.2147	25.74	
	3. 7	02.571	47.64.54	3563,8081	63.54	
		10,11,00	- 12 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2	- 3686.4126	20.28	
	5.25	\$7.20276	1:35.45	3070,0505	91.23	
	::	44.44.02	41.16	4040, 2715	07.52	
	3 t v	1000 4 60	2156.30	420 c619	63.50	
) f. ,	000000000000000000000000000000000000000	2456.05	4463,7627	CU 73	
		1.147.65	70.1.07	4503.3672	67.10	
	6. 6.	15175.23	75 : 7 : 51	4721,4540	45.18	
		: 				
		1		!		
	****	: :				

######################################
888955885794575757575757575757575757575757575757

(i 79.20 STORAGE (ACFT) 12.5.42 1.2.5.43 1.2. 15583.40 eg tegonászagmenyeszak gont oppretyéntelet i teletetet elektrológia. VALUES D

i

ł.,

5-12

- KARE 1	
a03 //	,
•1157 ALL	
ONE WORD INTEGERS SUBROUTINE AREAD(QP1,ELEV,AMIN,VOL,X,Y,SLOPE,AN,OFLTE)	
DIMENSION X(1), Y(1) C SET STAFT ELEV TO MINIMUM ELEV=AMIN	
FO 500 JTRY=1,200	
NP=0.	
ICODE=1 DO 200 I=2.NP IF((ELEV-Y(1))*(ELEV-Y(1-1)).GI.D.) GA IA (200.700.8	
1 7	
JOLD=x(1-1)+D1ST YOLD=ELEV	
50 AREA=AREA.56(X(1)-XOLD)*(ELEV-Y(1)+ELEV-YOLD) WP=WP+5GRT((X(1)-XOLD)**2+(Y(1)-YOLD)**2)	
100 AFFA=AREA+.5+(XOLD-X(I-1))+(ELEV-Y(I-1)+ELEV-YOLD) AP = AFFA=AREA+.5+(XOLD-X(I-1))++2+(YOLD-Y(I-1))++2)	
150 x010=x(1) Y010=Y(1)	
ł	
GOLD=G AREAD=AREA ELSV=ELEV+DELTE	
50 T0 500 300 FAC=(ELEV-ELEVO)*(GP1-QQLD)/(Q-QQLD) FITUE: FUN-FIFU-FIFU-FIFU-FIFU-FIFU-FIFU-FIFU-F	
ARFA=AREAO+(AREA-AREAO)*FAC VOL=AREA/43560.*AL	
SOO CONTANIE WATTE(5,25) PERMITTY TO MAIL CONVENCE	
٥	
11 DUP *DELETE AREAD 0107 *STOPE MS UM AREAD 0107	
0107	
*LIST ALL *ONE WARDENS	
DIMENSION X(SD), Y(SD)	***************************************

PASE

.

1

!

•

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANLARD (1990)

2 105	
OIMENSICE TITLE (40)	
COWON NP.AL	
INSE	
10.5 2000 Rear (18.1) Occasion to a section of the	
FEAD(IN.2) TITLE	
1 FORMAT(6F10.0)	
C PRUID=BREACH WIDTH	
C YOSTOT HEIGHT FROM RIVER BED TO POOL LEVEL	
C DETERMINE PEAK FAILURE DUTELOU	
126x10a4/10x,************************************	
* BREACH TOTAL HEIGHT	
IVER BED I	
\$114. AI FAILURE ". 5X." (FT) ". 5X., TO POOL (FT) ". 5X." (FT) "/10X.	
WRITE(10,24)RESTO, PRUID, YO, DELTE, QP1	
26 FORMAT(12x, FB. 1, 6x, F6. 2, 6x, F8. 2, 7x, F6. 2///26x,	
E10.0//12x	
3 DEPTH 12x REACH 16x (FT) 17x ELEV. 12x 16c CFC 17	
\$52.'(AC-FI)'.5%.'(FI)'.13%.7(''.	
C READ IN REACH DATA	
1000 ** CAUCINATION NPARNALA SLOPE. (X(I), Y(I), I=1, RP) 18=19+1	• • • • • • • • • • • • • • • • • • • •
10 FORMAT(15,5x,3F10.G/(8F10.0))	
IT (NP. EM.U.) GO TO 2000 C. M.(1) = CHOSS SECT DISTANCE STARTING AT 2500 ON	
700	
C CREATE A 1000 FT WALL AT THE LEFT AND RIGHT	
NP = NP + 1	
00 40 1=2,NP	
x(1S)=x(1S-1)	
Y(IS)=Y(IS-1) IF(IS.E0.2)Y(IS-1)=Y(IS) +1000	•
L+dN=4;	
x(xp)=x(np-1)	
C FIND THE MIN ELEV	
00 00 1=1.NP	
60 CONTINUE	
CALL AREAD(APT.ELEV.AMIN.VOL.X.Y.SLOPE.AN.DELTE) AP2=ap1+(1,-vol/resid)	
CALL AREAD(OP2, ELEV, AMIN, YOLZ, X, Y, SLOPE, AN, DELTE)	

!

-

KRITE(10,5D) IR,AL,AN,QP1,ELEV,VOL,DEPTH

IE(VOL,GI.RESIO/2,) GO IO 500

FORMAT(3x,13,5x,F3,G,2x,F8,3,2x,F8,U,2x,3(F8,1,2x))
GO TO 1(00

PPITE(10,600) VOL/IR
FORMAT(2x,'VOLUME = ",F10,2," FOR REACH ",12)

CALL EXIT GP1=aP1+(1,-(VOL+VOL2)/2,/RESTO)
CALL APEAD(GP1,ELEV.AMIN.VOL.X.Y.S.LOPE.AN.DELTE)
DE PTH=ELE V-AMIN 2010 0107 · DAMFA 5 // OUP -SIORE 0007 126 380

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

APPENDIX E

15JAN79 VER/DATE 3C3 A z PRV/FED z 57000 FEO R 00NOV 78 POPULATION z • MAINTENANCE 7 3 0 z 4228.6 7316.0 P PON DAN AUTHORITY FOR INSPECTION CONSTRUCTION BY 1010 3296 NED **AUVE** NAME OF IMPOUNDMENT STAY HYDEAU MPOUNDING CAPACITIES INVENTORY OF DAMS IN THE UNITED STATES NEAREST DOWNSTREAM CITY-TOWN-VILLAGE PL-92-367 5130 OPERATION ⊚ UNOTA LAKE PITTSFIFLD INSPECTION DATE NONE REGULATORY AGENCY 2240678. 18 ENGINEERING BY NAME 0 REMARKS REMARKS **(1)** 9 • ONDIA LAKE DAM CONSTRUCTION TIPPETTS-ABGETT-HCCAPTHY-STRATTON (V) • PURPOSES RIVER OR STREAM LUNE SPILLWAY WATH OISCHARGE 774 POPULAR NAME TO DNOTA PROOK INSPECTION BY SALE RENTITY LIVENING STATE COUNTY BASE STATE COUNTY BASE VEAR COMPLETED 1800 CITY OF PITTSFIELD 10 • CWNER DESIGN = €, TYPE OF DAM 14 SED -4 003 01 Salaria 5 \$ 5 (e) S/O THE PERSON NAMED IN **ECONBASIN** 61 n **(** 3.0.

15JAN79 OWN FED R PRV/FED SCS A VER/DATE Z LATITUDE LONGITUDE REPORT DATE NORTH MEST! DAY MO YR 4228.6 7316.0 00NOV78 57000 POPULATION z MAINTENANCE PRODIST (MI.) AUTHORITY FOR INSPECTION ூ CONSTRUCTION BY 1810 3296 NED NOVE NAME OF IMPOUNDMENT WPOUNDING CAPACITIES
MACHURY, (ACREMAN) INVENTORY OF DAMS IN THE UNITED STATES NEAREST DOWNSTREAM CITY - TOWN - VILLAGE PL-92-367 5130 OPERATION ⊚ UNOTA LAKE PITTSFIFLD INSPECTION DATE ピンロス REGULATORY AGENCY 224UG7A-ENGINEERING BY 9 NAME 0 REMARKS REMARKS 18 ONDIA LAKE DAM 1 TPPETT9+ABGETT+MCCAPTHY+STAATTON CONSTRUCTION WOLUME OF DAM ◉ PURPOSES RIVER OR STREAM 出れでく SPILLWAY WAXIMUM
CAREST TYPE WEST (FT.) 17 ¥ W POPULAR NAME ⊜ TO DUDTA PROOK INSPECTION BY CONTRACTOR OF COURT COUNTY DEST FRATE COUNTY | DOGS VEAR COMPLETED 225 CITY OF PITISFIELD 7.0 OWNER • DESIGN • TYPE OF DAM PA 003 01 50136316 5 \$ 5 H.S.H. 70 10 ECON BASIN € (€) 3:0: 14 350

15JAN79 VER/OATE 3C3 A z FED R PRV/FED POWER CAPACITY

MSTALED PAGGETO WIPPITHERS W z DAY | NO | YA LATITUDE LONGITUDE | REPORT DATE | WORTH) | WEST) | DAY | MO | YM 57000 00NOV78 POPULATION z ◉ MAINTENANCE Z Z O 4228.6 7316.0 z P ROUST (MI.) AUTHORITY FOR INSPECTION **9** CONSTRUCTION BY € MPOUNDING CAPACITIES
MACAELUS Y, ACAPACITIES
MACAELUS Y, ACAPACITIES
MACAELUS Y, ACAPACITIES
MACAELUS Y, ACAPACITIES 3296 NED HONE NAME OF IMPOUNDMENT 斯克斯 INVENTORY OF DAMS IN THE UNITED STATES NEAREST DOWNSTREAM CITY - TOWN - VILLAGE PL-92-367 5130 OPERATION 3 CHOTA LAKE PITTSFIELD INSPECTION DATE REGULATORY AGENCY NOVE 2240678-ENGINEERING BY 0 NAME Θ REMARKS REMARKS ◉ 18 ONOTA LAKE DAM CONSTRUCTION TIPPETTS-ABSETT-HCCAPTHY-STRATION VOLUME OF DAM PURPOSES RIVER OR STREAM PACA 10.5 SPILIMAY WAXIMUM HAS LEASTH TYPE WESTH OFFILE 7 POPULAR NAME (3) TO ONOTA PROOK INSPECTION BY O YEAR COMPLETED 1804 CITY OF PITISFIELD 7.0 CWNER DESIGN = ◉ 14 SED #4 003 01 TYPE OF DAM Dalle Factog 515 10 ECICON BASIN **(E)** 20 0 3.0.

-

15JAN79 VER/DATE SC3 A PRVIFED POWER CAPACITY

MSWIGATION LOCKS

MSWIGATION LOCKS

MSWIGATION LOCKS

MSWIGATION LOCKS Z DAY | MO | YR 00NOV78 REPORT DATE 57000 FED R **POPULATION** z ◉ MAINTENANCE Z 3 0 (a) (b) P DIST 4228,6 7316.0 AUTHORITY FOR INSPECTION 1 CONSTRUCTION BY 1018T 3296 NED 340V NAME OF MIPOUNDMENT MPOUNDING CAPACITIES
WAR MAY WAR WAR MEAREST DOWNSTREAM CITY - TOWN - VILLAGE PL-92-367 OPERATION 5130 • CHOTA LAKE PITTSFIELD INSPECTION DATE REGULATORY AGENCY シアロア 224UG18-ENGINEERING BY 2 RAME **©** (5) REMARKS REMARKS 8 40 CONSTRUCTION TIPPETTS-ABSETT-MCCAPTMY-STRATTON VOLUME OF DAN ONDIA LAKE **(** PURPOSES RIVER OR STREAM 40.0 DIS SPILIMAY WAYNOW HAS ENGTH TYPE WIOTH OSCHARGE 7 POPULAR NAME TO ONOTA PROOK INSPECTION BY Concar County Conc YEAR CITY OF PITISFIELD 4.83.2 40 CWNER DESIGN 5 85 .. 10 200 T. TYPE OF DAM 5012-316 SAIL BENTTY LINE SIATE COUNTY 1 ECONBASIN 101 چا u O 1 Œ 1. FO

INVENTORY OF DAMS IN THE UNITED STATES