Theories ammlung Analysis $2\,$

Danilo Bargen

 $March\ 15,\ 2011$

Contents

1	Integralrechnung		
	1.1	Definition des Integrals	
	1.2	Summenformeln	
	1.3	Graphische Interpretation von Integralen	
	1.4	Vorzeichenregeln und Additivität	
	1.5	Linearitätsregeln für Integrale	
	1.6	Simpson-Regel	
	1.7	Integralfunktion	
	1.8	Zusammenhang verschiedener Integralfunktionen	
2	Fouriertransformation		
3	Differenzialgleichungen		

1 Integralrechnung

1.1 Definition des Integrals

Die Definition des Integrals lautet

$$\int_{a}^{b} f = \lim_{n \to \infty} \left(\sum_{i=1}^{n} f(x_i) \cdot \Delta x \right)$$

mit

$$\Delta x = \frac{b-a}{n}$$

und

$$x_i = a + i \cdot \Delta x$$

1.2 Summenformeln

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

1.3 Graphische Interpretation von Integralen

Wir betrachten das Integral

$$\int_{a}^{b} f$$

Wir nennen die Fläche, welche horizontal durch zwei Abszissen und vertikal durch die Abszissenachse und den Funktionsgraphen begrenzt sind als *Fläche unter dem Funktionsgraphen*. Es sind nun zwei Fälle zu unterscheiden:

- Wenn a < b ist:
 Dann sind Flächen unter Funktionsgraphen mit positiver Ordinate positiv und solche mit negativen Ordinaten negativ zu zählen.
- \bullet Wenn a > b ist: Dann sind Flächen unter Funktionsgraphen mit positiver Ordinate negativ und solche mit negativen Ordinaten positiv zu zählen.

1.4 Vorzeichenregeln und Additivität

Falls die beteiligten Integrale existieren, gilt

• Vertauschen der Integralgrenzen ändert das Vorzeichen des Integrals

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

• Aneinanderstossende Integrale können zusammengefasst werden.

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f$$

1.5 Linearitätsregeln für Integrale

Seien f und g auf dem intervall [a;b] integrierbare Funktionen und c eine Konstante. Dann gelten die beiden Linearitätsgesetze:

$$\int_{a}^{b} (f+g) = \left(\int_{a}^{b} f\right) + \left(\int_{a}^{b} g\right)$$
$$\int_{a}^{b} (c \cdot f) = c \int_{a}^{b} f$$

1.6 Simpson-Regel

Sei f eine auf [a;b] viermal differenzierbare Funktion und n eine gerade Zahl. Ferner sei

$$x_i = a + i \cdot \Delta x$$
 mit $\Delta x = \frac{b - a}{n}$ und $y_i = f(x_i)$

Dann ist

$$S_n = \frac{\Delta x}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 4y_{n-1} + y_n)$$
$$= \frac{\Delta x}{3} \left(y_0 + y_n + 4 \sum_{k=1}^{n/2} y_{2k-1} + 2 \sum_{k=1}^{n/2-1} y_{2k} \right)$$

eine Schätzung für das Integral $\int_a^b f$, wobei der Fehler

$$E_n = \left(\int_a^b f\right) - S_n = \frac{b-a}{180} \Delta x^4 f^{(4)}(\xi) = \frac{(b-a)^5}{180n^4} f^{(4)}(\xi)$$

für ein
$$\xi \in [a; b]$$

beträgt.

1.7 Integralfunktion

Gegeben sei eine auf dem Intervall [a;b] integrierbare Funktion f. Dann heisst jede Funktion der Form

$$x\mapsto \int\limits_{}^{x}f$$

für eine Konstante $c \in [a; b]$ eine Integralfunktion von f.

1.8 Zusammenhang verschiedener Integralfunktionen

Verschiedene Integralfunktionen derselben Funktion unterscheiden sich nur durch eine Konstante. Wenn also

$$\Phi_c := x \mapsto \int_c^x f \text{ und } \Phi_d := x \mapsto \int_d^x f$$

dann gilt

$$\Phi_d = \Phi_c + k$$
 wobei k konstant

2 Fouriertransformation

...

3 Differenzialgleichungen

...