HOMEWORK 9 MATH B4900

DUE: 4/30/2021

Let A be a ring with 1.

1. Let M be a completely reducible A-module. Show that for any submodule $N\subseteq M$, we have M/N is completely reducible as well. Moreover, if

$$M \cong \bigoplus_{\lambda \in \Lambda} M_{\lambda}$$
, then $M/N \cong \bigoplus_{\lambda \in \Gamma} M_{\lambda}$,

for some $\Gamma \subseteq \Lambda$.

[Hint: if $M \cong \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ (with M_{λ} simple), then, more simply, $M = \sum_{\lambda \in \Lambda} M_{\lambda}$ (identifying M_{λ} with \hat{M}_{λ}). Show that $M/N = \sum_{\lambda} (M_{\lambda} + N)/N$ (write out the cosets!), and then use the second isomorphism theorem on each piece. Finally, check that, for all $\mu \in \Lambda$, we have

$$(M_{\mu}+N)/N \cap \sum_{\lambda \neq \mu} (M_{\lambda}+N)/N = 0.]$$

- 2. Let $\{z_{\lambda} \mid \lambda \in \Lambda\}$ be the centrally primitive idempotents in a semisimple ring A, and let U_{λ} be the simple A-module corresponding to $\lambda \in \Lambda$. Let M be an A-module (not necessarily the left-regular module. Use Artin-Wedderburn to show that $z_{\lambda}M \cong \bigoplus_{i\in\mathcal{I}} U_{\lambda}$ (i.e. z_{λ} projects onto a (not necessarily finite) direct sum of a bunch of copies of U_{λ} —called the λ -isotypic component of M).
- 3. Let $V = \mathbb{C}^2 = \mathbb{C}\{v_1, v_2\}$. Let $\mathbb{C}D_8$ act on $V^{\otimes 4} = V \otimes V \otimes V \otimes V$ by identifying the copies of V with the vertices of the square, and applying the corresponding factor permutation:

$$r \cdot (v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4}) = v_{i_2} \otimes v_{i_3} \otimes v_{i_4} \otimes v_{i_1}$$

and
$$s \cdot (v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4}) = v_{i_2} \otimes v_{i_1} \otimes v_{i_4} \otimes v_{i_3}$$

$$i_1$$
 i_2 i_3 i_3

(where $i_1, i_2, i_3, i_4 \in \{1, 2\}$). For example, r fixes $v_1 \otimes v_1 \otimes v_1 \otimes v_1$, but $r \cdot v_1 \otimes v_2 \otimes v_1 \otimes v_1 = v_2 \otimes v_1 \otimes v_1 \otimes v_1$.

Use the primitive central idempotents of $\mathbb{C}D_8$ to decompose $V^{\otimes 4}$ into its isotypic components (you computed these idempotents in HW 5; you should also know which corresponds to which simple representations of $\mathbb{C}D_8$). Then make a dimension argument to classify the decomposition of $V^{\otimes 4}$ up to isomorphism—and make a complete decomposition if you can.

[See p. 2 for some help.]

4. Let $S_3 \leq S_4$ in the usual way, and let \mathcal{W} be the reflection representation. Compute the action of $s_1 = (12)$, $s_2 = (23)$, and $s_3 = (34)$ on $\operatorname{Ind}_{\mathbb{C}S_3}^{\mathbb{C}S_4}(\mathcal{W})$. [Hint: Stay organized!]

To receive credit for this assignment, include the following in your solutions [edited appropriately]:

Academic integrity statement: I [violated/did not violate] the CUNY Academic Integrity Policy in completing this assignment. [enter your full name as a digital signature here]

2 HOMEWORK 9

Help with #3: This is a big computational problem. But with a little bit of care, it won't be too bad. One tip is to encode a basis vector like $v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4}$ as $i_1i_2i_3i_4$. For example, $v_1 \otimes v_2 \otimes v_1 \otimes v_1$ becomes 1211, and $r \cdot 1211 = 2111$. Another trick you have up your sleeve is action graphs; namely, the action of $\mathbb{C}D_8$ on $V^{\otimes 4}$ is a linear extension of the action of D_8 on $\{i_1i_2i_3i_4 \mid i_\ell \in \{1,2\}\}$. For example, one part of your action graph will look like

$$\begin{array}{c|c}
1112 & \xrightarrow{r} & 1121 \\
\downarrow r & & \downarrow r \\
\downarrow s & \downarrow r \\
2111 & \xrightarrow{r} & 1211
\end{array}$$

Next, your job is to compute $z_jV^{\otimes 4}$ for each $j=1,\ldots,5$. But since the simple tensors $\{i_1i_2i_3i_4\mid i_\ell\in\{1,2\}\}$ form a spanning set of $V^{\otimes 4}$; the action of z_j on this set, $\{z_j\cdot i_1i_2i_3i_4\mid i_\ell\in\{1,2\}\}$, sill form a spanning set of $z_jV^{\otimes 4}$. To compute $z_jV^{\otimes 4}$, you just need to compute $z_j\cdot i_1i_2i_3i_4$ for each set of $i_\ell\in\{1,2\}$, and taking the span of the result.

Now, recall that the coefficients in z_1 correspond to setting r=1 and s=1; the coefficients in z_2 correspond to setting r=-1 and s=1; and so on...; so the first four of these computations essentially amount to walking around the vertices of this graph, assigning ± 1 coefficients by what edge we walk along, and then summing up the result. So for example, the computation of z_2 acting on 1112 looks like (starting from the upper-left corner, corresponding to the action of 1, and moving out)

Continue computing the actions of the z_j on the basis vectors, organize your computations by orbits. For example, setting

$$b_1 = 1112$$
, $b_2 = 1121$, $b_3 = 1211$, and $b_4 = 2111$,

we have

$$z_1b_i = \frac{1}{4}(b_1 + b_2 + b_3 + b_4)$$
 for $i = 1, 2, 3, 4$;
$$z_2b_i = 0 \quad \text{and} \quad z_4b_i = 0$$
 for $i = 1, 2, 3, 4$;
$$z_3b_1 = z_3b_3 = -z_3b_2 = -z_3b_4 = \frac{1}{4}(b_1 - b_2 + b_3 - b_4);$$

$$z_5b_1 = -z_5b_3 = \frac{1}{2}(b_1 - b_3); \quad \text{and} \quad z_5b_2 = -z_5b_4 = \frac{1}{2}(b_2 - b_4).$$

So

$$z_1 V^{\otimes 4}$$
 contains $b_1 + b_2 + b_3 + b_4$;
 $z_3 V^{\otimes 4}$ contains $b_1 - b_2 + b_3 - b_4$; and $z_5 V^{\otimes 4}$ contains $b_1 - b_3$ and $b_2 - b_4$.

(We have accounted for 4 of 16 dim'ns in $V^{\otimes 4}$, so we're now 1/4 done with this computation!)