

So far: we've seen for certain problems:

Examples

So far: we've seen for certain problems:

Examples

So far: we've seen for certain problems:

Examples

Natural Question: Is this true for all problems?

So far: we've seen for certain problems:

Quantum Computation

Classical Computation

Examples

Natural Question: Is this true for all problems?

In other words:

Are all Turing computable problems also solvable by a quantum computer?

So far: we've seen for certain problems:

Classical Computation

Examples

Natural Question: Is this true for all problems?

In other words:

Are all Turing computable problems also solvable by a quantum computer?

Can all poly-time solvable problems also be solved on a QC in poly-time?

So far: we've seen for certain problems:

Quantum Computation

Classical Computation

Examples

Natural Question: Is this true for all problems?

In other words:

Are all Turing computable problems also solvable by a quantum computer?

Can all poly-time solvable problems also be solved on a QC in poly-time?

Answer: Yes! (goal of today's lecture is to see how)

(Pictures and Diagrams Courtesy of Wikipedia)

Shannon (1936)

Step 2: Quantum Gate Implementing NAND

Inputs			Outputs		
a	b	c	a'	b'	c'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

Toffoli Gate

Step 2: Quantum Gate Implementing NAND

Toffoli Gate

Unitary Matrix

Step 2: Quantum Gate Implementing NAND

Toffoli Gate

Unitary Matrix

Step 2: Quantum Gate Implementing NAND

Toffoli Gate

Unitary Matrix

Quantum Half Adder

Circuit for Adding Two Bits Together

Inp	out	Output		
A	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Practice Exercise

Implement a half adder circuit in Qiskit using Toffoli Gates.

circ.ccx(control1, control2, target)

Starter code in 3-24_quantum_half_adder.ipynb

Solutions in 3-24_quantum_half_adder_solutions.ipynb

Fanout using Toffoli?

Don't really need to use NAND conversion for NOT and XOR gates...

Fanout using Toffoli?

Don't really need to use NAND conversion for NOT and XOR gates...

Fanout can be implemented as...

NOT can be implemented as...

XOR can be implemented as...

Fanout using Toffoli?

Don't really need to use NAND conversion for NOT and XOR gates...

Fanout can be implemented as...

NOT can be implemented as...

XOR can be implemented as...

Fanout using Toffoli?

Don't really need to use NAND conversion for NOT and XOR gates...

Fanout can be implemented as...

NOT can be implemented as...

X gate

XOR can be implemented as...

Fanout using Toffoli?

Don't really need to use NAND conversion for NOT and XOR gates...

Fanout can be implemented as...

NOT can be implemented as...

XOR can be implemented as...

X gate

CX gate