Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

* 9 8 0 9 7 6 1 1 9 3

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

This document has 20 pages. Any blank pages are indicated.

Purpose

1 (a) Draw one line from each utility software to its most appropriate purpose.

Utility software

			to reorganise files so they are contiguous
	virus checker		
	disk formatter		to scan for malicious program code
	disk formatter		to decrease the file size
			to decrease the file size
	backup		
			to initialise a disk
	disk repair		to create copies of files
		-]	in case the original is lost
	defragmentation		
L		_	to check for and fix inconsistencies on a disk
			[5]
(b)		s translate programs written in a high-leve	el language into a low-level
	language.	a of union a committee commerced to an i	
	(i) State two drawback development.	s of using a compiler compared to an i	nterpreter during program
	1		
	2		
	(ii) Explain why high-level	language programs might be partially comp	[2] iled and partially interpreted.
	(ii) Explain why high-level	language programs might be partially comp	
	(ii) Explain why high-level	language programs might be partially comp	
	(ii) Explain why high-level	language programs might be partially comp	

2	(a)	(i)	Convert the two's complement bina	rv integer into denarv
_	\ ~/	\·/	Convert the two complement binds	i y ii itogoi ii ito aoila

		Answer												[1]
	(ii)	Convert t	he uns	igne	d bin	ary i	ntege	er int	o hex	kade	cima	l.		
							100	010	110					
		Answer												[1]
	(iii)	Convert working.	the un	signe	ed b	inary	inte	ger	into	Bina	ry C	odeo	d Decimal (BCD). Show	your
							100	010°	101					
		Working												
		Answer												
	_													[2]
(b)	Per	form the fo	ollowing	j bina	ary a	dditi	on.							
					1	0	0	0	1	1	0	0		
				+	0	1	0	0	0	1	1	0	-	
														[1]

3 (a) A greenhouse has an automatic window.

The window (X) operates according to the following criteria:

Parameter	Description of parameter	Binary value	Condition
т	Tomporatura	1	Too high
1	Temperature	0	Acceptable
\A /	Wind anod	1	Too high
W	Wind speed	0	Acceptable
R	Dain	1	Detected
K	Rain	0	Not detected
NA	Manual override	1	On
M	ivianuai overnide	0	Off

The window opens (X = 1) if:

- the temperature is too high **and** the wind speed is acceptable
- and
- rain is not detected, **or** the manual override is off.

Draw a logic circuit to represent the operation of the window.

[3]

(b) Complete the truth table for the logic expression:

X = NOT (A OR B OR C) AND (B NOR C)

A	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

(c)	Embedded systems contain Read Only Memory (ROM) and Random Access Memory (RAM)
	Explain the reasons why ROM is used in an embedded system.
	[2

4	(a)	State the difference between data verification and data validation.
		[1]
	(b)	A checksum can be used to detect errors during data transmission.
		Describe how a checksum is used.
		[3]
	(c)	One validation method is a presence check.
		Describe two other validation methods that can be used to validate non-numeric data.
		1
		2
		[2]

Explain hov	v the database can be normalise	ed to 3NF.	
	tructured Query Language (SQ llowing data:		
	tructured Query Language (SQ		
	tructured Query Language (SQ llowing data:	L) script to add a new reco	
	tructured Query Language (SQ llowing data:	L) script to add a new reco Value	
-	tructured Query Language (SQ llowing data: Attribute TreeID	L) script to add a new reco Value LOW_1276	
	tructured Query Language (SQ llowing data: Attribute TreeID ScientificName	Value LOW_1276 Salix_Alba	
	tructured Query Language (SQ llowing data: Attribute TreeID ScientificName MaxHeight FastGrowing	Value LOW_1276 Salix_Alba 30.00	rd in the table TR
store the fo	tructured Query Language (SQ llowing data: Attribute TreeID ScientificName MaxHeight FastGrowing	Value LOW_1276 Salix_Alba 30.00 TRUE	rd in the table TR

(d)	(i)	Describe, using an example, what is meant by a data dictionary .
	<i>(</i> ***)	
	(ii)	Describe what is meant by a logical schema .

(a)	A st	udent uses a networked laptop computer to send an email to a colleague.
	(i)	Explain how a digital signature ensures the email is authentic.
		[2]
	(ii)	Describe how a firewall protects the data on the computer.
		[3]
(b)	The	student records a sound file.
	(i)	Explain the effect of increasing the sampling rate on the accuracy of the sound recording.
		[2]
	(ii)	Explain the effect of decreasing the sampling resolution on the file size of the sound recording.
		[2]

7 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Ins	struction	Explanation			
Opcode Operand		Explanation			
LDM	#n	Immediate addressing. Load the number n to ACC			
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC			
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address>			
LDR	#n	Immediate addressing. Load the number n to IX			
STO	<address></address>	Store the contents of ACC at the given address			
ADD	<address></address>	Add the contents of the given address to the ACC			
ADD	#n	Add the denary number n to the ACC			
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)			
JMP	<address></address>	Jump to the given address			
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>			
CMI	<address></address>	Indirect addressing. The address to be used is at the given address. Compare the contents of ACC with the contents of this second address			
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>			
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>			
END		Return control to the operating system			

<address> can be an absolute or symbolic address

[#] denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

(a) Trace the program currently in memory using the trace table, stopping when line 90 is executed for a second time.

Address	Instruction	Instruction	ACC	IX	Memory address						
75	LDR #0	address	ACC	17	100	101	102	103	110	111	112
76	LDX 110				0	0	112	4	1	4	0
77	CMI 102										
78	JPE 91										
79	CMP 103										
80	JPN 84										
81	ADD 101										
82	STO 101										
83	JMP 86										
84	INC ACC										
85	STO 101										
86	LDD 100										
87	INC ACC										
88	STO 100										
89	INC IX										
90	JMP 76										
91	END										
	٨										
100	0										
101	0										
102	112										
103	4										
	ر										
110	1										
111	4										
112	0										

(b) The following table shows another part of the instruction set for the processor.

Instruction		Evalenation					
Opcode	Operand	Explanation					
AND	#n	Bitwise AND operation of the contents of ACC with the operand					
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>					
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand					
XOR	Bn	Bitwise XOR operation of the contents of ACC with the binary number n					
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>					
OR	#n	Bitwise OR operation of the contents of ACC with the operand					
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>					
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right-hand end					
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left-hand end					

<address> can be an absolute or symbolic address

denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

The contents of memory addresses 50 and 51 are shown:

Memory address	Data value
50	01001101
51	10001111

(i) The current contents of the ACC are:

0	1	0	1	0	0	1	1
				1	1		

Show the contents of the ACC after the execution of the following instruction.

	XOF	R B0(00111	L11			

© UCLES 2022 9618/12/O/N/22

[1]

(ii) The current contents of the ACC are
--

0	1	0	1	0	0	1	1

Show the contents of the ACC after the execution of the following instruction.

AND 50

[1]

(iii) The current contents of the ACC are:

0	1	0	1	0	0	1	1
---	---	---	---	---	---	---	---

Show the contents of the ACC after the execution of the following instruction.

LSL #3

[1]

(iv) The current contents of the ACC are:

|--|

Show the contents of the ACC after the execution of the following instruction.

OR 51

[1]

(c) Write the register transfer notation for each of the stages in the fetch-execute cycle described in the table.

Description Register transfer notation Copy the address of the next instruction into the Memory Address Register. Increment the Program Counter.

[3]

© UCLES 2022 9618/12/O/N/22

Copy the contents of the Memory Data

Register into the Current Instruction Register.

8 The following bitmap image has a resolution of 4096×4096 pixels and a colour depth of 24 bits per pixel.

The image is displayed on a monitor that has a screen resolution of 1920 \times 1080 pixels.

(a) Tick (\checkmark) one box in each row to identify the effect of each action on the image file size.

Action	Increases the file size	Decreases the file size	No change to the file size
Change the colour depth of the image file to 16 bits per pixel.			
Change the screen resolution to 1366 x 768 pixels.			
Change the colour of the rectangle from black to red.			

		1		[2	2]
b)	State two benefits of creating a	a vector graphic ins	stead of a bitmap im	nage.	
	1				
	2				
				[2	21

(c)	A second bitmap	o image is stored	using a colour	depth of 8 bits	s per pixel
(< /	7 t occorra bitiria	o illiago io otoroa	ading a doloar	acpui oi o bitt	o poi pinoi

The file is compressed using run-length encoding (RLE).

Uncompressed image

EA F1 F1 F2 F2 F2 EA

The table shows the compressed and uncompressed values for parts of the image file. (i)

RLE compressed image

1EA 2F1 3F2 1EA

Each colour of the pixel in the image is represented by a hexadecimal value.

Complete the table. The first row has been completed for you.

		2AB 2FF 11D 167								
	32 32 80 81 81									
			[2]							
(ii) RLE is an example of lossless compression.										
Explain why lossless compression is more appropriate than lossy compression for a text file.										
			[2]							
One use of Artificial Intelligence (AI) is for facial recognition software.										
Describe the social impact of using facial recognition software to identify individuals in an airport.										

© UCLES 2022 9618/12/O/N/22

9

10	A Local Area	Network (LAN	l) consists of four	computers	one server	and a	switch
10	A LUCAI AI Ca	INCIMOLY (FVI)	1) 601131313 01 1001	compaters,	OHE SELVE	anu a	SWILCII.

The LAN uses a star topology.

Computer

Computer

(a) Complete the following diagram to show how the hardware is connected.

Switch

Computer

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.