Spread spectrum

(EP2950)

KTH Technology and Health

Outline

- Introduction
- Frequency hopping spread spectrum
- Direct sequence spread spectrum
- Code division multiple access (CDMA)
- Spreading sequences and orthogonal codes

Spread spectrum

- The signal is modulated using a sequence of digits
 - ✓ Spreading code generated by pseudo-random number generator
- Effect of modulation is to increase bandwidth of the signal
 - ✓ Frequency hopping
 - ✓ Direct sequence
- On the receiving end, the same digit sequence is used to demodulate the spread spectrum (de-spreading)
- Advantages
 - Protection against multipath distortion
 - Hiding and encrypting signals
 - Multiplexing several users with low interference

Model of spread spectrum communication

Frequency hopping spread spectrum

- The signal is broadcasted over seemingly random sequence of subchannels
- Channel sequence determined by the spreading code
- The transmitter and receiver switches from frequency to frequency at fixed intervals

Processing gain for FHSS

$$G_p = 2^k = \frac{W_s}{W_d}$$

k = number of bits in spreading code $2^k =$ number of spreading channels $W_s =$ spread bandwidth $W_d =$ unspread bandwidth

Frequency hopping system

FHSS using multiple FSK

- Multiple frequency shift keying
 - \checkmark New frequency every T_c
- Data rate R
 - ✓ Duration of a bit: T = 1/R seconds
 - ✓ Duration of symbol: $T_s = LT$ seconds
 - \checkmark L = nr of bits per signal element (symbol)
 - \checkmark M = 2^{L} (number of symbols)
- $T_c \ge T_s$ slow-frequency-hop spread spectrum
- $T_c < T_s$ fast-frequency-hop spread spectrum

■ Fast frequency-hopping using MFSK (M=4, k=2)

Direct sequence spread sequence

- Each bit in the original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads the signal across a wider frequency band
 - ✓ The spreading is proportional to the number of bits in the spreading code
- One technique is to XOR (exclusive-OR) the data stream and the spreading code
- Processing gain
 - \checkmark $G_p = \frac{W_s}{W_d}$, where $W_s = \text{spread bandwidth and } W_s = \text{signal bandwidth}$

Code division multiple access

- Basic idea is multiplexing of several users
- Data bit rate D (bps)
- Each bit is divided into k chips
 - ✓ Chip sequence is a fixed user-specific pattern
- Chip rate = $k \times D$

- Example using CDMA
- If k=6 and code is a sequence of 1's and -1's
- User A represents a 1-bit with the chip pattern code
 ✓ <c1, c2, c3, c4, c5, c6>
- User A represents a 0-bit with the complement chip sequence <-c1,-c2, -c3, -c4, -c5, -c6>
- Receiver knows the sender's code and decodes the received chip sequence

$$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$

 \checkmark = received chip pattern
 \checkmark = sender's code

CDMA system

- CDMA example user A sends bits to receiver R
- User A code = <1, -1, -1, 1, -1, 1>
 - \checkmark To send a 1 bit = <1, -1, -1, 1, -1, 1>
 - \checkmark To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- User B code = <1, 1, -1, -1, 1, 1>
 - \checkmark To send a 1 bit = <1, 1, -1, -1, 1, 1>
 - \checkmark To send a 0 bit = <-1, -1, 1, 1, -1, -1>
- The receiver R performs
 - ✓ (A's code) x (received chip pattern)

 User A's 1-bit becomes 6 interpreted as 1

 User A's 0-bit becomes -6 interpreted as 0

 User B's 1-bit becomes 0 which is ignored

 User B's 0-bit becomes 0 which is ignored

CDMA example

Table 7.1 CDMA Example

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

(b) Transmission from A

Transmit (data bit = 1)	1	-1	-1	1	-1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	1	1	1	1	1	= 6

Transmit (data bit = 0)	-1	1	1	-1	1	-1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	-1	-1	-1	-1	-1	-1	= -6

(c) Transmission from B, receiver attempts to recover A's transmission

Transmit (data bit = 1)	1	1	-1	-1	1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	-1	1	-1	-1	1	= 0

(d) Transmission from C, receiver attempts to recover B's transmission

Transmit (data bit = 1)	1	1	-1	1	1	-1	
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	1	1	1	-1	1	-1	= 2

(e) Transmission from B and C, receiver attempts to recover B's transmission

B (data bit = 1)	1	1	-1	-1	1	1	
C (data bit = 1)	1	1	-1	1	1	-1	
Combined signal	2	2	-2	0	2	0	
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	2	2	2	0	2	0	= 8

Rake receiver

- RAKE receiver
 - Multiple versions of a signal arrive more than one chip interval apart
 - RAKE receiver attempts to recover signals from multiple paths and combine them
- This method achieves better performance than simply recovering dominant signal and treating remaining signals as noise

Rake receiver

Pseudo-noise (PN) sequences

- A PN generator produces a periodic sequence that appears to be random
- PN sequences
 - ✓ Generated by an algorithm using initial seed
 - ✓ Seemingly random
 - ✓ Referred to as pseudorandom numbers or pseudo-noise sequences
- PN properties
 - ✓ Uniform distribution (balance and run property)
 - ✓ Independence
 - Correlation property

- Linear feedback shift register implementation
 - ✓ Maximum-length sequence (m-sequence)

Properties of m-sequences

- Property 1
 - \checkmark Has 2^{n-1} ones and 2^{n-1} minus ones (zeros)
- Property 2
 - ✓ For a window of length n that slides along output for N (=2 $^{n-1}$) shifts, each n-tuple appears once, except for the all zeros sequence
- Property 3
 - \checkmark Sequence contains one run of ones, length n
 - \checkmark One run of zeros, length n-1
 - \checkmark One run of ones and one run of zeros, length n-2
 - ✓ Two runs of ones and two runs of zeros, length n-3
 - \checkmark 2^{*n*-3} runs of ones and 2^{*n*-3} runs of zeros, length 1

- Property 4
 - ✓ The periodic autocorrelation of a ± 1 m-sequence is

$$R(\tau) = \begin{cases} 1 & \tau = 0, N, 2N, \dots \\ -\frac{1}{N} & \text{otherwise} \end{cases}$$

- Correlation
 - ✓ The level of similarity a set of data has with another or itself (autocorrelation)
 - ✓ Range between –1 and 1
 - 1 The second sequence matches the first sequence
 - 0 There is no relation at all between the two sequences
 - -1 The two sequences are mirror images
 - ✓ Cross-correlation
 - The comparison between two sequences from different sources rather than a shifted copy of a sequence with itself

Autocorrelation

✓ Example with sequence length 15

$$R(\tau) = \frac{1}{N} \sum_{k=1}^{N} B_k B_{k-\tau}$$

- Advantages of cross-correlation
 - ✓ Low cross-correlation between an m-sequence and noise Noise can be filtered out
 - ✓ Low cross-correlation between two different m-sequences
 - Useful for CDMA applications
 - Enables a receiver to discriminate among spread spectrum signals generated by different m-sequences
 - ✓ Gold and Kasami codes improve cross-correlation property of m-sequences
 - ✓ Cross-correlation between A and B

$$R_{A,B}(\tau) = \frac{1}{N} \sum_{k=1}^{N} A_k B_{k-\tau}$$

Orthogonal codes

- All pairwise cross correlations are zero
- Fixed- and variable-length codes used in CDMA systems
- For CDMA application
 - ✓ Differentiate one mobile user from the others
 - ✓ Provides zero cross correlation among all users
- Types
 - ✓ Walsh-Hadamard codes
 - ✓ Variable-length orthogonal codes

Walsh codes

- A set of Walsh codes of length n consists of the n rows of an $n \times n$ Walsh-Hadamard matrix
 - $\checkmark W_1 = (0)$
 - \checkmark N codes of length n (dimension)

- $\mathbf{W}_{2n} = \begin{pmatrix} \mathbf{W}_n & \mathbf{W}_n \\ \mathbf{W}_n & \overline{\mathbf{W}}_n \end{pmatrix}$
- ✓ Overscore denotes complement (logical NOT)
- Every row is orthogonal to every other row and to the complement of every other
- Requires tight synchronization
 - Cross correlation between different shifts of Walsh sequences is not zero

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	1	0	1	1	0	1	0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
0	1	1	0	1	0	0	1	0	1	1	0	1	0	0	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0
0	0	1	1	0	0	1	1	1	1	0	0	1	1	0	0
0	1	1	0	0	1	1	0	1	0	0	1	1	0	0	1
0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
0	1	0	1	1	0	1	0	1	0	1	0	0	1	0	1
0	0	1	1	1	1	0	0	1	1	0	0	0	0	1	1
0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0

Complement of W₈

Orthogonal codes

- \checkmark τ is bit duration
- \checkmark M is length of the sequences φ_i and φ_j

$$\sum_{k=0}^{M-1} \varphi_i(k\tau) \, \varphi_j(k\tau) = 0$$

Example

$$\checkmark$$
 (0 1 0 1)×(0 0 1 1) \rightarrow (-1 1 -1 1)×(-1 -1 1 1) = 0

- Variable-length orthogonal codes
 - ✓ Can be used to vary the data rates for the users
 - ✓ Orthogonal variable spreading factor (OVSF)
- Multiple spreading
 - ✓ Channelization codes, e.g. Walsh codes
 - ✓ Provides mutual orthogonality among all users in the same cell
 - Scrambling codes
 - ✓ PN sequences, e.g. Gold codes
 - ✓ Provides mutual randomness (low cross correlation) between users in different cells