2019-2 Machine Learning Homework #3

Dae-Ki Kang

December 4, 2019

(Deadline: December 15)

1. Calculate entropy of X:

$$X = \begin{cases} a & \text{with probability } \frac{1}{2} \\ b & \text{with probability } \frac{1}{4} \\ c & \text{with probability } \frac{1}{8} \\ d & \text{with probability } \frac{1}{8} \end{cases}$$

2. Let $X = \{0,1\}$. And, for two distributions P and Q on X, let P(0) = 1 - a, P(1) = a, Q(0) = 1 - b, and Q(1) = b.

Show Kullback-Leibler divergence KLD(P||Q) and KLD(Q||P) in terms of a and b.

What are the values of KLD(P||Q) and KLD(Q||P) when $a = \frac{1}{2}$ and $b = \frac{1}{4}$?

3. Let $X = \{0,1\}$. And, for two distributions P and Q on X, let P(0) = 1 - a, P(1) = a, Q(0) = 1 - b, and Q(1) = b.

Show cross entropy of P and Q in terms of a and b, where P is the distribution from neural network and Q is the distribution from the training data.

What are the value of the cross entropy when $a = \frac{1}{2}$ and $b = \frac{1}{4}$?

4. Let $X = \{0,1\}$. And, for two distributions P and Q on X, let P(0) = 1 - a, P(1) = a, Q(0) = 1 - b, and Q(1) = b.

Show Jensen-Shannon divergence JSD(P,Q) in terms of a and b.

What are the value of JSD(P,Q) when $a=\frac{1}{2}$ and $b=\frac{1}{4}$.

5. Let $X = \{0, 1\}$. And, for three distributions P, Q, R on X, let P(0) = 1 - a, P(1) = a, Q(0) = 1 - b, Q(1) = b, R(0) = 1 - c, and R(1) = c.

Show Jensen-Shannon divergence JSD(P,Q,R) in terms of a,b and c.

What are the value of JSD(P,Q,R) when $a=\frac{1}{2},\,b=\frac{1}{3}$ and $c=\frac{1}{4}$.

6. Let (X, Y) have the following joint distribution:

Y	1	2	3	4
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$
2	$\frac{1}{16}$	$\frac{\overline{16}}{\frac{1}{8}}$	$\frac{1}{32}$	$\frac{1}{32}$
3	$\frac{\frac{1}{16}}{\frac{1}{16}}$	$\frac{1}{16}$	$\frac{1}{16}$	$ \begin{array}{c} \overline{32} \\ \overline{1} \\ \overline{32} \\ \overline{16} \end{array} $
4	$\frac{10}{4}$	0	0	0

Calculate the mutual information I(X;Y).

7. Using R, Train an Auxiliary Classifier Generative Adversarial Network (ACGAN) or DC-GAN on the following datasets.

1

(a) MNIST dataset

http://yann.lecun.com/exdb/mnist/

(b) Fashion MNIST datasets

https://github.com/zalandoresearch/fashion-mnist

For ACGAN or DCGAN in R, you may use the following implementation.

https://tensorflow.rstudio.com/keras/articles/examples/mnist_acgan.html or

https://blogs.rstudio.com/tensorflow/posts/2018-08-26-eager-dcgan/

Write a detailed report (including the summary of analyzed files). One example report is as follows:

https://github.com/mari-linhares/DeepLearning/tree/master/GAN-fashion-MNIST

You have to save the trained model and provide a way to run the model for inference. Github is recommended for project related files, instead of emailing zip files.

- 8. Using Python, Train conditional Generative Adversarial Networks (cGAN) or conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) for the following datasets.
 - (a) MNIST dataset

http://yann.lecun.com/exdb/mnist/

(b) Fashion MNIST datasets

https://github.com/zalandoresearch/fashion-mnist

For cGAN or cDCGAN in Python, you may use the following Tensorflow implementation.

https://github.com/znxlwm/tensorflow-MNIST-cGAN-cDCGAN

Write a detailed report (including the summary of analyzed files). One example report is as follows:

https://github.com/mari-linhares/DeepLearning/tree/master/GAN-fashion-MNIST

You have to save the trained model and provide a way to run the model for inference.

Github is recommended for project related files, instead of emailing zip files.