Three-Step Transformation of a Traditional University Course into a MOOC: a LouvainX Experience

Sébastien Combéfis ¹ Peter Van Roy ²

¹École Centrale des Arts et Métiers (ECAM)

²Université catholique de Louvain (UCL)

May 19, 2015

Context

Mature traditional course (LFSAB1402 : Informatique 2)
2nd year university programming course for engineering students

■ Taught since 2005

A lot of available material: exercises, textbook in EN and FR...

Transformation into MOOC
Gradually with three steps

(MIT Press)

Motivations

- Transforming the course into a MOOC
 - 1 Reaching two publics with (almost) same effort and resources
 - 2 Opening possibility for interactions between the two publics
 - 3 Offering new means of education to local students
- Migration spread over two years

Cope with limited human resources and MOOC experience

Three-step Transformation

Transformation spread over three academic semesters

First step: local SPOC

- Exclusively dedicated to on-site students
- Part of the traditional course covered by a SPOC 3 ECTS covered by the SPOC
- Two-track structure mixing SPOC and traditional activities
- First jump for the staff in the MOOC world
 Creating videos and exercises, restructuring the course

Second step: worldwide MOOC

- Exclusively dedicated to worldwide students
- Integration of coding exercises
 Automatic correction and intelligent feedbacks
- Experience with MOOC animation for the staff
 Forums animation and distance teaching
- → Session 5 @ Auditorium 3

 Automatic Grading of Programming Exercises in a MOOC

 Using the inGinious Platform

Third step: local+worldwide MOOC

- At the same time for local and worldwide students
- Traditional course split in two MOOC courses Louv1.1x and Louv1.2x
- On-site students still have some on-site activities
 Restructuring lectures and lab sessions

Evolution of the on-site course

	Fall 2012	Fall 2013	Fall 2014
On-site	Lecture: 2h/week Lab session: 2h/week Project Midterm+final exam	Lecture: 2h/week Lab session: 2h/week Project Midterm+final exam	Lecture: 1h/week Lab session: 2h/week Project Midterm+final exam
On-line	None	1 SPOC 13 lessons/10 weeks 8h37 videos Midterm+final exam	2 MOOCs 6 lessons/ 7 weeks + 6 lessons/ 6 weeks 5h20 + 5h01 videos Two final exams
Resources	1 professor 4 teaching assistants 11 student monitors	1 professor 4 teaching assistants 11 student monitors 1 MOOC assistant	1 professor 4 teaching assistants 11 student monitors 1/2 MOOC assistant

Discussion

■ Differences amongst learners

Motivations, available time, education level and requirements

- On-site students: bonus/penalty, university-level MOOC, mandatory for all engineering students (incl. non-CS majors)
- Worldwide students: MOOC during free time, dropout
- On-site students still have some on-site activities
 Restructuring lecture and lab sessions
- Evaluation of on-site students
 Bonus/penalty for the MOOC, proctored exam at the end

Preliminary evaluation

- Survey for on-site students, 78 participants
- Two analyses
 - Perceived workload to solve one exercise
 - Agreement level for a set of statements

Perceived workload

- Classical exercises take less time to solve
- Coding exercises take more time to solve

	Classical exercise		Coding exercise	
Less than 5 minutes	33.64	51.72	9.01	1.15
5 minutes	61.68	39.08	41.44	3.45
10 minutes	3.74	4.60	26.13	5.75
15 minutes	0	3.45	0.9	24.14
More than 15 minutes	0.93	1.15	22.52	65.52

Agreement levels I

Q1) I am globally satisfied with the MOOCs.

Q5) I feel that I spent too much time on the course.

Q2) Thanks to the deadlines, I worked regularly for the programming course.

Q6) I did all the exercises of the MOOCs mainly to get the +2 bonus.

Q3) The requirements of the MOOCs are the same as those of the course.

Q7) I was motivated by the possibility to earn certificates for the MOOCs.

Q4) When reaching the end of the MOOCs, I felt ready for the proctored exam of the course.

Q8) I used the discussion forums on the edX platform for the MOOCs.

Agreement levels II

- Regular work ensured by deadlines
 Students felt ready for the proctored exam after the MOOC
- Difference between course and MOOC requirements not clear
- The main motivation for on-site students is the +2 bonus

 Not interested in earning certificates
- Very few interactions between on-site and worldwide students

Conclusion

- Two distinct groups in the worldwide students
 - Put in the effort to obtain a certificate
 - Stay active until the end but do not target a certificate
- Better feedback needed for coding exercises
 - Coding exercises are too time-consuming
- Very satisfactory experience for the course transformation
 - On-site course will stay a MOOC for the foreseeable future
 - Extra resources necessary are manageable (1/2 TA extra)

Future evolution of MOOCs

"In our view, one possible sustainable evolution of MOOCs is the permanent transformation of selected university courses into two-public courses."

Credits

■ Pictures of books from Amazon.