StruBERT: Structure-aware BERT for Table Search and Matching

Seminar "Modern Infomation Retrieval", Summer 2023

Nicolas Hellthaler

Heidelberg University Institute of Computer Science nicolas.hellthaler@stud.uni-heidelberg.de

June 27, 2023

Outline

- Motivation
- 2 Introduction
- StruBERT Architecture
- 4 Evaluation
- 6 Reflection

About the Paper

StruBERT: Structure-aware BERT for Table Search and Matching [4]:

- Trabelsi, Chen, Zhang, Davison, Heflin
- presented at the 2022 WWW (now ACM Web Conference)

Contribution: New state-of-the-art model for...

- Table Search
- Table Matching

Outline

- Motivation
- 2 Introduction
- 3 StruBERT Architecture
- 4 Evaluation
- 5 Reflection

Table Search

000

W https://en.wikipedia.org > wiki > Ballon d'Or

Ballon d'Or - Wikipedia

With seven awards each, Dutch, German, Argentine, Portuguese and French players have won the most Ballons d'Or. Players from Germany (1972, 1981) and the Netherlands (1988) occupied the topthree top spots in a single year (a feat achieved only three times in history).

https://www.topendsports.com > sport > soccer > list-player-of-the-year-ballondor.htm

List of the Ballon d'Or Winners - Topend Sports

The Ballon d'Or award is an annual football award for the best player over the previous year. It was first awarded in 1956. The most recent winner was Real Madrid's Karim Benzemais in 2022. Messi has won the men's Ballon d'Or award a record seven times, Cristiano Ronaldo has won the award five times.

June 27, 2023

Table Search

Motivation

000

W https://en.wikipedia.org > wiki > Ballon_d'Or

Ballon d'Or - Wikipedia

With seven awards each, Dutch, German, Argentine, Portuguese and French players have won the most Ballons d'Or. Players from Germany (1972, 1981) and the Netherlands (1988) occupied the top-three top spots in a single year (a feat achieved only three times in history).

Wins by player

Player +	Winner ◆	Second place +	Third place
Lionel Messi ^[note 32]	7 (2009, 2010, 2011, 2012, 2015, 2019, 2021)	5 (2008, 2013, 2014, 2016, 2017)	1 (2007)
Cristiano Ronaldo ^[note 33]	5 (2008, 2013, 2014, 2016, 2017)	6 (2007, 2009, 2011, 2012, 2015, 2018)	1 (2019)
Michel Platini	3 (1983, 1984, 1985)	_	2 (1977,

Figure: Ballon d'Or in Wikipedia, Source: https://en.wikipedia.org/wiki/Ballon_d%27Or

Table Matching

Motivation

000

June 27, 2023

Nicolas Hellthaler

StruBERT: Table Search and Matching

Motivation

000

June 27, 2023

Nicolas Hellthaler

StruBERT: Table Search and Matching

Outline

- Motivation
- 2 Introduction
- 3 StruBERT Architecture
- 4 Evaluation
- 6 Reflection

A simple Table

c ₁	c ₂		Cl
<i>v</i> ₁₁	V ₁₂	• • •	<i>v</i> _{1/}
<i>v</i> ₂₁	<i>V</i> ₂₂	• • •	<i>V</i> 21
:	:		
$V_{(s-1)1}$	$V_{(s-1)2}$		$V_{(s-1)}$

Figure: World Chess Champions on Chess.com, *Source:* https://www.chess.com/article/view/world-chess-champions

June 27, 2023

Figure: World Chess Champions on Chess.com, *Source:* https://www.chess.com/article/view/world-chess-champions

June 27, 2023

Figure: World Chess Champions on Chess.com, *Source:* https://www.chess.com/article/view/world-chess-champions

Figure: World Chess Champions on Chess.com, *Source:* https://www.chess.com/article/view/world-chess-champions

Table Attributes

- I Column headers: c_1, c_2, \ldots, c_l
- I Data types: $t_1, t_2, \ldots, t_l \in [real, text]$
- (s-1) Data values per column: $v_{1i}, v_{2i}, \ldots, v_{(s-1)i}$
- p Related text fields: f_1, f_2, \ldots, f_n

Table Attributes

- I Column headers: c_1, c_2, \ldots, c_l
- I Data types: $t_1, t_2, \ldots, t_l \in [real, text]$
- (s-1) Data values per column: $v_{1i}, v_{2i}, \ldots, v_{(s-1)i}$
- p Related text fields: f_1, f_2, \dots, f_p
- ⇒ Column headers + data values form structural information

Table Attributes

- I Column headers: c_1, c_2, \ldots, c_l
- I Data types: $t_1, t_2, \ldots, t_l \in [real, text]$
- (s-1) Data values per column: $v_{1i}, v_{2i}, \ldots, v_{(s-1)i}$
- p Related text fields: f_1, f_2, \dots, f_p
- ⇒ Column headers + data values form structural information
- ⇒ Text fields form textual information

11 / 38

Processing Tables

What to use?

Ad Hoc Table Retrieval [6]:

- One core column
- Textual information

TabSim [3] / TaBERT [5]:

- All data cells
- BERT [1] to process text

Outline

- Motivation
- 2 Introduction
- 3 StruBERT Architecture
- 4 Evaluation
- 6 Reflection

StruBERT

Converting Tables

Motivation

Famous soccer players

Player	Team	Number
Ronaldo	Manchester United	7
Messi	Paris	30
Ramos	Real Madrid	4

StruBFRT

Table: This table shows infomation about soccer players.

- I = 3 Column headers: $c_1 = Player$, $c_2 = Team$, $c_3 = Number$
- l = 3 Data types: $t_1 = text, t_2 = text, t_3 = real$
- (s-1)*I=9 Data values: v_{ii}
- p = 2 Related text fields: f_1 = "Famous soccer players", f_2 = "This Table shows ..."

Column and Row Linearization

Player	Team	Number
Ronaldo	Manchester United	7
Messi	Paris	30
Ramos	Real Madrid	4

$$\tilde{c}_i = c_i t_i v_{1i} [\text{SEP}] c_i t_i v_{2i} [\text{SEP}] \dots [\text{SEP}] c_i t_i v_{(s-1)i} [\text{SEP}]$$

 $\tilde{c}_1 = \text{Player text Ronaldo [SEP] Player text Messi [SEP]} \dots$

Evaluation

Column and Row Linearization

Player	Team	Number
Ronaldo	Manchester United	7
Messi	Paris	30
Ramos	Real Madrid	4

```
\tilde{c}_i = c_i t_i v_{1i} [\text{SEP}] c_i t_i v_{2i} [\text{SEP}] \dots [\text{SEP}] c_i t_i v_{(s-1)i} [\text{SEP}]
\tilde{c}_1 = Player text Ronaldo [SEP] Player text Messi [SEP] ...
\tilde{r}_i = c_1 t_1 v_{i1} [SEP] c_2 t_2 v_{i2} [SEP] \dots [SEP] c_l t_l v_{il} [SEP]
\tilde{r}_2 = Player text Messi [SEP] Team text Paris [SEP] ...
```

Column and Row Linearization

Player	Team	Number
Ronaldo	Manchester United	7
Messi	Paris	30
Ramos	Real Madrid	4

$$\tilde{c}_i = c_i t_i v_{1i} [\text{SEP}] c_i t_i v_{2i} [\text{SEP}] \dots [\text{SEP}] c_i t_i v_{(s-1)i} [\text{SEP}]$$

 $\tilde{c}_1 = \text{Player text Ronaldo [SEP] Player text Messi [SEP]} \dots$
 $\tilde{r}_i = c_1 t_1 v_{i1} [\text{SEP}] c_2 t_2 v_{i2} [\text{SEP}] \dots [\text{SEP}] c_i t_i v_{ii} [\text{SEP}]$
 $\tilde{r}_2 = \text{Player text Messi [SEP] Team text Paris [SEP]} \dots$

Textual information missing!

16 / 38

Adding the Textual Information

How do we integrate f_1 (page title) and f_2 (caption)?

June 27, 2023 Nicolas Hellthaler StruBERT: Table Search and Matching

Evaluation

Adding the Textual Information

How do we integrate f_1 (page title) and f_2 (caption)? ⇒ Simply use as prefix

```
\bar{c}_i = [\text{CLS}] f_1 [\text{SEP}] f_2 [\text{SEP}] \dots [\text{SEP}] f_p [\text{SEP}] \tilde{c}_i [\text{SEP}]
\bar{c_1} = [CLS]Famous Soccer Players[SEP]This Table shows ... [SEP]\tilde{c_1}[SEP]
```

Adding the Textual Information

How do we integrate f_1 (page title) and f_2 (caption)? \Rightarrow Simply use as prefix

```
\bar{c}_i = [\text{CLS}] f_1 [\text{SEP}] f_2 [\text{SEP}] \dots [\text{SEP}] f_p [\text{SEP}] \tilde{c}_i [\text{SEP}]
\bar{c_1} = [CLS]Famous Soccer Players[SEP]This Table shows ... [SEP]\tilde{c_1}[SEP]
```

```
\bar{r}_i = [CLS] f_1 [SEP] f_2 [SEP] \dots [SEP] f_n [SEP] \tilde{r}_i [SEP]
\bar{r}_2 = [CLS]Famous Soccer Players[SEP]This Table shows ... [SEP]\tilde{r}_2[SEP]
```

Adding the Textual Information

How do we integrate f_1 (page title) and f_2 (caption)? \Rightarrow Simply use as prefix

$$\bar{c_i} = [CLS]f_1[SEP]f_2[SEP] \dots [SEP]f_p[SEP]\tilde{c_i}[SEP]$$

 $\bar{c_1} = [CLS]Famous Soccer Players[SEP]This Table shows \dots [SEP]\tilde{c_1}[SEP]$

$$\bar{r}_i = [CLS]f_1[SEP]f_2[SEP] \dots [SEP]f_p[SEP]\tilde{r}_i[SEP]$$

 $\bar{r}_2 = [CLS]Famous Soccer Players[SEP]This Table shows ... [SEP]\tilde{r}_2[SEP]$

This is new!

$$\bar{\mathcal{C}} = \{\bar{c_1}, \bar{c_2}, \dots, \bar{c_l}\}$$

$$\bar{\mathcal{R}} = \{\bar{r_1}, \bar{r_2}, \dots, \bar{r_{(s-1)}}\}$$

StruBERT

BERT

Motivation

 $[CLS] \tilde{T}_{ej} [SEP] c_i t_i v_{1i} [SEP] c_i t_i v_{2i} [SEP] \dots [SEP] c_i t_i v_{(s-1)i} [SEP]$ $[CLS]\tilde{T}_{ei}[SEP]$ Player text Ronaldo [SEP] Player text Messi [SEP] . . .

BERT

BERT

Motivation

$$\begin{split} &[\text{CLS}] \tilde{\mathcal{T}}_{ej}[\text{SEP}] c_i t_i v_{1i}[\text{SEP}] c_i t_i v_{2i}[\text{SEP}] \dots [\text{SEP}] c_j t_i v_{(s-1)i}[\text{SEP}] \\ &[\text{CLS}] \tilde{\mathcal{T}}_{ej}[\text{SEP}] \text{Player text Ronaldo [SEP] Player text Messi [SEP]} \dots \end{split}$$

BERT

$$\begin{split} &[\text{CLS}]\,\tilde{\mathcal{T}}_{ej}[\text{SEP}]\,c_i\,t_i\,v_{1i}[\text{SEP}]\,c_i\,t_i\,v_{2i}[\text{SEP}]\,\dots[\text{SEP}]\,c_i\,t_i\,v_{(s-1)i}[\text{SEP}] \\ &[\text{CLS}]\,\tilde{\mathcal{T}}_{ej}[\text{SEP}]\text{Player text Ronaldo [SEP] Player text Messi [SEP]}\,\dots \end{split}$$

Transformer Count:

Average pooling

$$[\text{CLS}] \, \tilde{\mathcal{T}}_{ej} [\text{SEP}] \, \underbrace{\text{Player text Ronaldo}}_{c_1 t_1 v_{11}} \, [\text{SEP}] \, \underbrace{\text{Player text Messi}}_{c_1 t_1 v_{21}} [\text{SEP}] \, \dots$$

$$egin{align*} oldsymbol{v_{ki}} &= rac{\sum\limits_{w \in BertTok(c_it_iv_{ki})} BERT(w)}{|BertTok(c_it_iv_{ki})|} \ &= rac{\sum\limits_{w \in BertTok(ext{Player text Ronaldo})} BERT(w)}{|BertTok(ext{Player text Ronaldo})|} \end{aligned}$$

Average pooling

$$[CLS] \tilde{T}_{ej} [SEP] \underbrace{Player \ text \ Ronaldo}_{c_1 t_1 v_{11}} \quad [SEP] \underbrace{Player \ text \ Messi}_{c_1 t_1 v_{21}} [SEP] \dots$$

$$\sum \qquad BERT(w)$$

$$egin{align*} oldsymbol{v_{ki}} &= rac{\sum\limits_{w \in BertTok(c_it_iv_{ki})} BERT(w)}{|BertTok(c_it_iv_{ki})|} \ egin{align*} &\sum\limits_{w \in BertTok(Player\ text\ Ronaldo)} BERT(w) \ |BertTok(Player\ text\ Ronaldo)| \ \hline &BERT(Player) + BERT(text) + BERT(Ronaldo) \ \hline &3 \ \end{bmatrix}$$

June 27, 2023

More

Attention Please!

Vertical Self-Attention + Column-wise Pooling

Τ̈́_{ej} Τ̈́_{ej} [SEP] [SEP] [SEP] $\bar{r_1}$ V₁₁ V₁₂ V₁₃ [SEP] \bar{r}_2 [CLS] [SEP] [SEP] V₂₁ V22 V₂₃ [SEP] [SEP] \bar{r}_3 [SEP] V₃₁ V₃₂ V33

[SEP]

[SEP]

[SEP]

V₁₃

V₂₃

V33

Attention Please!

Vertical Self-Attention + Column-wise Pooling

$$egin{array}{ll} ar{r}_1 & [{
m CLS}] \\ ar{r}_2 & [{
m CLS}] \\ ar{r}_3 & [{
m CLS}] \end{array}$$

$$egin{array}{ll} ar{\mathcal{T}}_{ej} & [ext{SEP}] \\ ar{\mathcal{T}}_{ej} & [ext{SEP}] \\ ar{\mathcal{T}}_{ej} & [ext{SEP}] \end{array}$$

V₁₁

V₂₁

V32

[SEP]

[SEP]

V₁₂

V22

V₃₂

 $\hat{v_{21}}$

*V*31

20 / 38

Attention Please!

Motivation

Vertical Self-Attention + Column-wise Pooling

$$\begin{array}{c|cccc} [C\hat{L}S] & v_{11} & v_{12} & v_{13} \\ [C\hat{L}S] & v_{21} & v_{22} & v_{23} \\ [C\hat{L}S] & v_{31} & v_{32} & v_{33} \\ \end{array}$$

$$\begin{array}{c|ccccc} [CLS]_c & c_1 & c_2 & c_3 \\ \hline \end{array}$$

- 1 Column guided [CLS] embedding
- / Column embeddings

June 27, 2023 Nicolas Hellthaler StruBERT: Table Search and Matching Introduction StruBERT 00000000000000 Evaluation

Attention Please!

Motivation

Vertical Self-Attention + Column-wise Pooling

- 1 Column guided [CLS] embedding
- / Column embeddings

Similar to TaBERT

Attention Please! / 2

Motivation

Horizontal Self-Attention + Row-wise Pooling

```
\bar{c_1}
                                     \bar{c}_3
[CLS]
                 [CLS]
                                  [CLS]
  Τ̈́<sub>ej</sub>
                  \tilde{T}_{ej}
                                    Τ̈́<sub>ej</sub>
[SEP]
                 [SEP]
                                  [SEP]
  V<sub>11</sub>
                   V<sub>12</sub>
                                     V<sub>13</sub>
                 [SEP]
[SEP]
                                  [SEP]
  V<sub>21</sub>
                   V22
                                     V<sub>23</sub>
[SEP]
                 [SEP]
                                  [SEP]
  V31
                    V32
                                     V33
```

Attention Please! / 2

Horizontal Self-Attention + Row-wise Pooling

$ar{c_1}$	$ar{c_2}$	$\bar{c_3}$
[CLS]	[CLS]	[CLS]
$ ilde{\mathcal{T}}_{ej}$	$ ilde{\mathcal{T}}_{ei}$	$ ilde{T_{ej}}$
[SEP]	[SEP]	[SEP]
<i>V</i> ₁₁	<i>V</i> ₁₂	<i>V</i> ₁₃
[SEP]	[SEP]	[SEP]
V ₂₁	V ₂₂	V ₂₃
[SEP]	[SEP]	[SEP]
<i>V</i> 31	<i>V</i> ₃₂	<i>V</i> 33

More

Attention Please! / 2

Motivation

Horizontal Self-Attention + Row-wise Pooling

[CLS]	[CLS]	[<i>C</i> LS]
v î11	v î2	v î3
v 21	v ₂₂	v 23
<i>v</i> ŝ ₁	<i>V</i> 32	<i>V</i> 3̂3

*V*31

More

Attention Please! / 2

Horizontal Self-Attention + Row-wise Pooling

r₁
r₂
r₃

[CLS],

• 1 Row guided [CLS] embedding

• s-1 Row embeddings

Transformer Count:

V32

*V*33

StruBERT Output

Player	Team	Number
Ronaldo	Manchester United	7
Messi	Paris	30
Ramos	Real Madrid	4

Table: T_i

$$StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$$

- E_r^i : s-1 Row embeddings
- E: / Column embeddings
- $[CLS]_r^i$: 1 Row guided [CLS] embedding
- [CLS]: 1 Column guided [CLS] embedding

StruBERT

1 Apply StruBERT to both Tables: $StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$ $StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$

- Apply StruBERT to both Tables: $StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$ $StruBERT(T_i) = (E_r^j, E_c^j, [CLS]_r^j, [CLS]_c^j)$
- Input row and column embeddings to miniBERT:

⇒ miniBERT is a new ranking model!

Apply StruBERT to both Tables: $StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$ $StruBERT(T_i) = (E_r^j, E_c^j, [CLS]_r^j, [CLS]_c^j)$

2 Input row and column embeddings to miniBERT:

- ⇒ miniBERT is a new ranking model!
- Build final output:

 $[CLS]_{r}^{j} \odot [CLS]_{r}^{j} \oplus [CLS]_{r}^{j} \odot [CLS]_{r}^{j} \oplus miniBERT([REP]_{r}) \oplus miniBERT([REP]_{r})$

- Apply StruBERT to both Tables: $StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$ $StruBERT(T_i) = (E_r^i, E_c^i, [CLS]_r^i, [CLS]_c^i)$
- 2 Input row and column embeddings to miniBERT:

- ⇒ miniBERT is a new ranking model!
- Build final output:

 $[\mathsf{CLS}]^{i}_{r} \odot [\mathsf{CLS}]^{j}_{r} \oplus [\mathsf{CLS}]^{i}_{c} \odot [\mathsf{CLS}]^{j}_{c} \oplus \mathit{miniBERT}([\mathsf{REP}]_{r}) \oplus \mathit{miniBERT}([\mathsf{REP}]_{c})$

Transformer Count:

- Insert query-keywords q_1, q_2, \ldots, q_m into row and column sequences:
 - $\tilde{c_1} = \text{Player text Ronaldo [SEP] Player text Messi [SEP]} \dots$

- Insert query-keywords q_1, q_2, \ldots, q_m into row and column sequences:
 - $\tilde{c_1} = \text{Player text Ronaldo [SEP] Player text Messi [SEP]} \dots$
 - \bullet $\tilde{c}_1 = Title$ [SEP] Player text Ronaldo [SEP] Player text Messi . . .

More

StruBERT in Action: Table Search

- Insert query-keywords q_1, q_2, \ldots, q_m into row and column sequences:
 - \tilde{c}_1 = Player text Ronaldo [SEP] Player text Messi [SEP] ...
 - $\tilde{c}_1 = Title$ [SEP] Player text Ronaldo [SEP] Player text Messi . . .
 - $\tilde{c}_1 = Query$ [SEP] Title [SEP] Player text Ronaldo [SEP] Player ...

- Insert query-keywords q_1, q_2, \ldots, q_m into row and column sequences:
 - \tilde{c}_1 = Player text Ronaldo [SEP] Player text Messi [SEP] ...
 - $\tilde{c}_1 = Title$ [SEP] Player text Ronaldo [SEP] Player text Messi . . .
 - $\tilde{c}_1 = Query$ [SEP] Title [SEP] Player text Ronaldo [SEP] Player ...
- Apply StruBERT: $StruBERT(T_i) = (E_r^i(q), E_c^i(q), [CLS]_r^i, [CLS]_s^i)$

- Insert query-keywords q_1, q_2, \ldots, q_m into row and column sequences:
 - \tilde{c}_1 = Player text Ronaldo [SEP] Player text Messi [SEP] ...
 - $\tilde{c}_1 = Title$ [SEP] Player text Ronaldo [SEP] Player text Messi . . .
 - $\tilde{c}_1 = Query$ [SEP] Title [SEP] Player text Ronaldo [SEP] Player ...
- Apply StruBERT: $StruBERT(T_i) = (E_r^i(q), E_c^i(q), [CLS]_r^i, [CLS]_s^i)$
- Apply miniBERT:

- Insert query-keywords q_1, q_2, \ldots, q_m into row and column sequences:
 - \tilde{c}_1 = Player text Ronaldo [SEP] Player text Messi [SEP] ...
 - $\tilde{c}_1 = Title$ [SEP] Player text Ronaldo [SEP] Player text Messi . . .
 - $\tilde{c}_1 = Query$ [SEP] Title [SEP] Player text Ronaldo [SEP] Player ...
- Apply StruBERT: $StruBERT(T_i) = (E_r^i(q), E_c^i(q), [CLS]_r^i, [CLS]_s^i)$
- Apply miniBERT:

Build final output:

$$[CLS]_r^i \oplus [CLS]_c^i \oplus miniBERT([REP]_r) \oplus miniBERT([REP]_c)$$

Outline

- 4 Evaluation

Table Similarity: Datasets and Metrics

PMC:

Motivation

- From scientific papers
- Tables + captions
- Tables as pairs with binary labels
- 1391 pairs

WikiTables:

- Wikipedia tables
- Tables + captions + page title + section title + column headings
- Tables as pairs with binary labels
- ca. 3000 pairs

Table Similarity: Datasets and Metrics

PMC:

- From scientific papers
- Tables + captions
- Tables as pairs with binary labels
- 1391 pairs

WikiTables:

- Wikipedia tables
- Tables + captions + page title + section title + column headings
- Tables as pairs with binary labels
- ca. 3000 pairs

5 fold cross-validation \Rightarrow macro-averaged metrics

Method Name	Macro-P	Macro-R	Macro-F	Accur.
Tfidf + MLP	0.7834	0.6735	0.6529	0.6951
TaBERT	0.9109	0.9024	0.9055	0.9067
StruBERT (CNN)	0.9293	0.9164	0.9205	0.9224
StruBERT	0.9321	0.9284	0.9300	0.9310

(a) PMC

Evaluation

00000000

More

28 / 38

Table Similarity: Results

Motivation

Method Name	Macro-P	Macro-R	Macro-F	Accur.
Tfidf + MLP	0.7834	0.6735	0.6529	0.6951
TaBERT	0.9109	0.9024	0.9055	0.9067
StruBERT (CNN)	0.9293	0.9164	0.9205	0.9224
StruBERT	0.9321	0.9284	0.9300	0.9310

(a) PMC

Method Name	Macro-P	Macro-R	Macro-F	Accur.
Tfidf + MLP	0.6256	0.5022	0.3559	0.5378
TaBERT	0.9696	0.9626	0.9649	0.9653
StruBERT (CNN)	0.9782	0.9737	0.9753	0.9756
StruBERT	0.9945	0.9938	0.9941	0.9942

(b) WikiTables

June 27, 2023 Nicolas Hellthaler StruBERT: Table Search and Matching

Content-based Table Retrieval: Datasets and Metrics

Query by Example Data [7]:

- Adaptation of WikiTables
- 50 guery-tables from different domains
- Tables as pairs with label:
 - 2 highly relevant
 - 1 relevant
 - 0 irrelevant
- 2850 pairs

Content-based Table Retrieval: Datasets and Metrics

Query by Example Data [7]:

- Adaptation of WikiTables
- 50 query-tables from different domains
- Tables as pairs with label:
 - 2 highly relevant
 - 1 relevant
 - 0 irrelevant
- 2850 pairs

information retrieval system \Rightarrow NDCG, MRR, MAP

Content-based Table Retrieval: Results

Method Name	NDCG@5	MRR	MAP
BM25	0.5369	0.5832	0.5417
TaBERT	0.5877	0.6120	0.5942
StruBERT (CNN)	0.6177	0.6378	0.6179
StruBERT	0.6345	0.6601	0.6297

Table: Query by Example Dataset

Keyword-based Table Retrieval: Datasets and Metrics

WikiTables:

- Wikipedia tables
- 60 natural language queries
- Table-query pairs with label:
 - 2 highly relevant
 - 1 relevant
 - 0 irrelevant
- 3117 pairs

information retrieval system \Rightarrow NDCG, MRR, MAP

June 27, 2023

Evaluation: Keyword-based Table Retrieval

Method Name	NDCG@5	MRR	MAP
MultiField-BM25	0.4365	0.4882	0.4596
TaBERT	0.6055	0.6436	0.6146
StruBERT	0.6393	0.6688	0.6378

Table: WikiTables

 More

33 / 38

Conclusion

Motivation

Key Takeaways

• Early interactions between text and structure are important

June 27, 2023 Nicolas Hellthaler StruBERT: Table Search and Matching

Key Takeaways

- Early interactions between text and structure are important
- Attention = good

Evaluation

Key Takeaways

- Early interactions between text and structure are important
- Attention = good
- More attention = More good

Outline

- Motivation
- 2 Introduction
- 3 StruBERT Architecture
- 4 Evaluation
- 6 Reflection

My Thoughts on the paper

Lliked:

- Very understandably written
- Easy code access (and execution)

I did not like:

Missing performance information

Sources I

Motivation

J. Devlin, M. Chang, K. Lee, and K. Toutanova.

BERT: pre-training of deep bidirectional transformers for language understanding. CoRR. abs/1810.04805, 2018.

A. Dhinakaran.

Demystifying ndcg.

https://towardsdatascience.com/demystifving-ndcg-bee3be58cfe0, 2023.

M. Habibi, J. Starlinger, and U. Leser.

Tabsim: A siamese neural network for accurate estimation of table similarity. In 2020 IEEE International Conference on Big Data (Big Data), pages 930-937, 2020.

M. Trabelsi, Z. Chen, S. Zhang, B. D. Davison, and J. Heflin.

Strubert: Structure-aware bert for table search and matching.

In Proceedings of the ACM Web Conference 2022, WWW '22, page 442-451, New York, NY, USA, 2022. Association for Computing Machinery.

P. Yin, G. Neubig, W. Yih, and S. Riedel.

Tabert: Pretraining for joint understanding of textual and tabular data. CoRR, abs/2005.08314, 2020.

S. Zhang and K. Balog.

Ad hoc table retrieval using semantic similarity.

In Proceedings of the 2018 World Wide Web Conference, WWW '18, page 1553-1562, Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee.

Sources II

S. Zhang and K. Balog.

Recommending related tables. *CoRR*, abs/1907.03595, 2019.

Questions

June 27, 2023

Nicolas Hellthaler

Example of PMC data

Gene	Forward	Reverse
Gapdh	ACCAAATCCGTTGACTCCGAC	TTCGACAGTCAGCCGCATCT
Gpr40	AGTGTGGTGCTTAATCCGCT	AGTGGCGTTACTTCTGGGAC
E-cadherin	CTTGGAGCCGCAGCCTCT	ACACCATCTGTGCCCACTTT
Beta-catenin	ACGGAGGAAGGTCTGAGGAG	GCCGCTTTTCTGTCTGGTTC

Table: Primer sequences for in vitro experiments. [3]

Mentioned Metrics I

Normalized Discounted Cumulative Gain [2]

$$NDCG@K = \frac{DCG@K}{IDCG@K} = \frac{\sum\limits_{i=1}^{k \; (actual \; order)} \frac{Gains}{log_2(i+1)}}{\sum\limits_{i=1}^{k \; (ideal \; order)} \frac{Gains}{log_2(i+1)}}$$

Mean Average Precison

$$mAP = \frac{1}{|Q|} \sum_{q=1}^{|Q|} AveP(q)$$

Mentioned Metrics II

Mean reciprocal rank

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

Table Similarity Evaluation

Method Name	Macro-P	Macro-R	Macro-F	Accur.	Method Name	Macro-P	Macro-R	Macro-F	Accur.
Tfidf+MLP	0.7834	0.6735	0.6529	0.6951	Tfidf+MLP	0.6256	0.5022	0.3559	0.5378
Embedding+MLP	0.8496	0.7710	0.7736	0.7931	Embedding+MLP	0.8429	0.8419	0.8423	0.8433
Tfidf+Embedding+MLP	0.8736	0.8381	0.8447	0.8506	Tfidf+Embedding+MLP	0.8632	0.8554	0.8574	0.8594
TabSim [19]	0.8865	0.8545	0.8613	0.8705	TabSim [19]	0.8480	0.8458	0.8466	0.8478
TaBERT [51]	0.9109	0.9024	0.9055	0.9067	TaBERT [51]	0.9696	0.9626	0.9649	0.9653
StruBERT (fine)	0.9208	0.9058	0.9104	0.9124	StruBERT (fine)	0.9850	0.9852	0.9851	0.9852
StruBERT (coarse)	0.9276	0.9154	0.9194	0.9210	StruBERT (coarse)	0.9838	0.9816	0.9825	0.9826
StruBERT (KP)	0.9148	0.9060	0.9091	0.9109	StruBERT (KP)	0.9733	0.9713	0.9722	0.9724
StruBERT (CNN)	0.9293	0.9164	0.9205	0.9224	StruBERT (CNN)	0.9782	0.9737	0.9753	0.9756
StruBERT	0.9321^{\dagger}	0.9284^{\dagger}	0.9300 [†]	0.9310^{\dagger}	StruBERT	0.9945 [†]	0.9938 [†]	0.9941^{\dagger}	0.9942^{\dagger}
	(a) PMO	С				(b) WikiTa	bles		

Content-based Table Retrieval Evaluation

Model	NDCG@5	MRR	MAP
BM25	0.5369	0.5832	0.5417
DSRMM [40]	0.5768	0.6193	0.5914
TabSim [19]	0.5739	0.6056	0.5932
TaBERT [51]	0.5877	0.6120	0.5942
StruBERT (fine)	0.6015	0.6419	0.6091
StruBERT (coarse)	0.6140	0.6478	0.6142
StruBERT (KP)	0.5990	0.6200	0.5959
StruBERT (CNN)	0.6177	0.6378	0.6179
StruBERT	0.6345^{\dagger}	0.6601^{\dagger}	0.6297

Keyword-based Table Retrieval Evaluation

Model	NDCG@5	MRR	MAP
MultiField-BM25	0.4365	0.4882	0.4596
MCON [43]	0.5152	0.5321	0.5193
STR [55]	0.5762	0.6062	0.5711
DSRMM [40]	0.5978	0.6390	0.5992
TaBERT [51]	0.6055	0.6462	0.6123
BERT-Row-Max [8]	0.6167	0.6436	0.6146
StruBERT (fine)	0.6000	0.6406	0.6020
StruBERT (coarse)	0.6217	0.6562	0.6225
StruBERT	0.6393^{\dagger}	0.6688^{\dagger}	0.6378