Проект по парковке

Кудрявцев А.А.

Задача 0. На парковке есть по одному месту со стоимостями от 1 до n долларов (т.е. всего n мест). Кроме того, есть n машин, у каждой из которых есть $m_i \leq n$ долларов. Машины приезжают по очереди, и каждая из них встаёт на самое дорогое свободное место, цену которого она может заплатить, а если не может встать, то уезжает. Последовательность m_i называется хорошей, если все машины могут встать на какие-то места. Доказать, что если m_i хорошая, то любая перестановка m_i тоже.

Набросок решения. Пусть n — количество машин, t — максимум из всех стоимостей парковок и всех стоимостей машин. Нам понадобятся диаграмма от множества стоимостей парковок (обозначим её X; определение написано под рисунком) и диаграмма от множества стоимостей машин (обозначим её Y). Например, диаграмма от множества $\{1, 2, 2, 4, 5, 5, 5, 8, 9\}$ будет выглядеть так (она соответствует 9 парковкам с этими стоимостями):

Столбцы каждой из таких диаграмм обозначают машины (или парковочные места), и высота столбца — это t+1-k, где k — стоимость парковки (или количество денег у владельца этой машины). Другое определение: точка (x,y) лежит в диаграмме мультимножества X тогда и только тогда, когда $\#\{q\in X\mid q\geq t+1-y\}\geq x$ (нумерация слева направо, сверху вниз, т.е. верхний левый угол — это (1,1)).

Будем доказывать, что m_i хорошее тогда и только тогда, когда $Y \subset X$ (например, для множества выше это будет выполняться для парковки, данной в условии — её диаграмма «диагональная»).

В сторону «только тогда» это очевидно. Действительно, если $(i,j) \in Y \setminus X$, то есть хотя бы t+1-i машин, у каждой из которых j или меньше долларов, а мест стоимостью j долларов или меньше, не больше, чем t-i.

Докажем в сторону «тогда» по индукции по n. База для n=1 очевидна.

Назовём (i,j) критической точкой, если $(i,j) \in Y, (i+1,j) \notin X, (i,j-1) \notin X$. То есть (i,j) лежит на верхней правой границе как диаграммы парковок, так и диаграммы машин. Пусть существует критическая точка с $j \neq t$ (то есть не лежащая в самой дорогой машине). Пусть это точка (i_0,j_0) . Тогда можно рассмотреть в качестве отдельных парковок « P_1 = все места стоимостью $\geq j_0$ » и « P_2 = все места стоимостью $< j_0$ » (и то же самое деление на M_1, M_2 для множества машин). Тогда M_1 хорошее (для парковки P_1) по предположению индукции, значит, машины из M_1 все поместятся на парковку P_1 (в P_2 они не попадут, потому что там слишком дёшево). M_2 тоже хорошее (для парковки P_2), значит, все машины поместятся на парковку.

Вторая часть: пусть критических точек с $j \neq t$ нет. Тогда сделаем такую операцию: удалим из Y столбец, соответствующий самой последней машине в очереди, а из X удалим самый левый (т.е. самый большой) столбец. Получится, что для новых диаграмм снова выполняется $Y' \subset X'$, потому что после удаления столбца машины всё, что справа от него, сдвинулось влево на 1, значит, соприкосновений с «диагональю» нет, т.е. эту диагональ можно убрать. Для новой пары диаграмм верно предположение индукции, т.е. на этой новой парковке могут разъехаться машины, а последнюю машину можно припарковать на самое левое, т.е. дешёвое место (или на более дорогое, если такое осталось).