

Prediction of Toronto Airbnb Prices Capstone 1- Slide Deck Presentation

Presenter: Puneeth Nagarajaiah

Date: 2020/05/15

Total listings 22,425

Mean Price is \$143.53

Median Price is \$99 (difference indicates presence of outliers)

Maximum price is \$14,008 per night (Penthouse)

Minimum Price is \$0 (indicates property is now unlisted)

Mean > Mode: Indicates distribution of Price data is right skewed

The model can only predict 1% variation in prices

Regression Stat	tistics	
Multiple R	0.111697	
R Square	0.012476	
Adjusted R Square	0.012289	
Standard Error	0.258321	
Observations	21080	

- The Summary Data released for analysis by our source insideairbnb.com has only 14 attributes
- Of this, there are only four numerical variables that we can consider for analysis
- Since this model is very weak, we will try considering the full raw data set from our source

Total listings 23,397

Mean Price is \$148.70

Median Price is \$99 (difference indicates presence of outliers)

Maximum price is **\$13,244** per night (Penthouse)

Minimum Price is \$0 (indicates property is now unlisted)

Mean > Mode: Indicates distribution of Price data is right skewed

Data Cleaning

- Total attributes 72
- We will only consider numerical and categorical data with only t/f options
- sqft, weekly_price and monthly_price is mostly blank; availability, max_nights and other futuristic data will not be considered
- Blank rows will be deleted; imputation through mean/median or constant value could lead to bias
- We are now left with 31 attributes for analysis

'Price' data distribution

- From the chart on the left, we can observe that 'price' data is right skewed
- To Normalise the distribution, we take Log 10 of the values. This is represented in the chart on the right

Identifying 'Price' outliers

- For analysis we will not consider Listings with Price '0' Total 4 listings
- From the Box Plot, it is evident that the Upper Bound is \$319
- All listings beyond this price point will be considered 'Outliers' and will not be included in our analysis – 1500 Listings

Pearson Correlation

- There is weak to no correlation between Price and the attributes
- For analysis we will consider those attributes which show linearity

The model can now predict prices with 42.39% accuracy

Regression Statistics		Regression Stat	tistics
Multiple R	0.111697	Multiple R	0.65159
R Square	0.012476	R Square	0.42457
Adjusted R Square	0.012289	Adjusted R Square	0.42399
Standard Error	0.258321	Standard Error	0.19163
Observations	21080	Observations	13992

- After running Regression Analysis on Excel, we get a model with 42.3921% accuracy
- The model is optimized by excluding statistically insignificant attributes (p>0.05) like extra_people and number_of_reviews
- accommodates, cleaning fee and beds are the top three attributes

The model predicts mostly high values till price point \$33 and range of high to low values thereafter

- The model is only 42.39% accurate
- To increase accuracy, we could do the following:
- 1. Use Python as a tool for Regression Analysis, as we can factor in more categorical data
- 2. Use more sophisticated statistical techniques, like Decision Trees, Random Forest etc.,