IIC3675: Tarea 2

Bruno Cerda Mardini

a)

P.d.q:
$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot q_{\pi}(s,a)$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbb{E}_{\pi}[\mathbb{E}_{\pi}[G_t|S_t = s, A_t]]$$

$$= \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

$$= \sum_{a \in \mathcal{A}(s)} \pi(a|s) \cdot q_{\pi}(s, a)$$
(I

(Esperanzas iteradas, notar que $S_t=s$ no es una variable aleatoria, ya que tiene asignado un valor.)

(Definición de esperanza)

(Definición de $q_{\pi}(s, a)$)

b)

Parto la demostración desde el otro lado. P.d.q:

$$\sum_{s',r} p(s',r|s,a)(r + \gamma v_{\pi}(s')) = q_{\pi}(s,a)$$

$$\sum_{s',r} p(s',r|s,a)(r+\gamma v_{\pi}(s'))$$

$$= \sum_{s',r} p(s',r|s,a) \cdot r + \sum_{s',r} p(s',r|s,a) \cdot \gamma v_{\pi}(s')$$

$$= \mathbb{E}_{\pi}[R_{t+1}|s,a] + \gamma \sum_{s',r} p(s',r|s,a) \cdot v_{\pi}(s') \qquad \text{(Definición de esperanza)}$$

$$= \mathbb{E}_{\pi}[R_{t+1}|s,a] + \gamma \sum_{s',r} p(s',r|s,a) \cdot \mathbb{E}_{\pi}[G_{t+1}|S_{t+1}=s'] \qquad \text{(Definición de } v_{\pi}(s))$$

$$= \mathbb{E}_{\pi}[R_{t+1}|s,a] + \gamma \mathbb{E}_{\pi}[\mathbb{E}_{\pi}[G_{t+1}|S_{t+1}=s']|s,a] \qquad \text{(Definición de esperanza)}$$

$$= \mathbb{E}_{\pi}[R_{t+1}|s,a] + \gamma \mathbb{E}_{\pi}[G_{t+1}|s,a] \qquad \text{(Esperanzas iteradas)}$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|s,a] \qquad \text{(Definición de } G_{t})$$

$$= \mathbb{E}_{\pi}[G_{t}|s,a] \qquad \text{(Definición de } G_{t})$$

$$= \mathbb{E}_{\pi}[G_{t}|s,a] \qquad \text{(Definición de } G_{t})$$

$$= \mathbb{E}_{\pi}[G_{t}|s,a] \qquad \text{(Definición de } G_{t})$$

c)

Dado que las políticas son deterministas y las probabilidades de moverse son todas igual a 1, la ecuación de Bellman se simplifica. Pasamos de la fórmula general:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

se reduce a una versión sin sumatorias, ya que solo hay una acción posible con probabilidad 1 y solo un resultado posible con probabilidad 1:

$$v_{\pi}(s) = r + \gamma v_{\pi}(s')$$

Para $\pi_l(s_0) = a_l$, tenemos el siguiente sistema de ecuaciones:

$$v_{\pi_l}(s_0) = 1 + \gamma \cdot v_{\pi_l}(s_l)$$

$$v_{\pi_l}(s_l) = 0 + \gamma \cdot v_{\pi_l}(s_0)$$

La segunda ecuación se sustituye en la primera:

$$v_{\pi_l}(s_0) = 1 + \gamma(\gamma \cdot v_{\pi_l}(s_0))$$

$$v_{\pi_l}(s_0) = 1 + \gamma^2 v_{\pi_l}(s_0)$$

$$v_{\pi_l}(s_0) - \gamma^2 v_{\pi_l}(s_0) = 1$$

$$v_{\pi_l}(s_0)(1 - \gamma^2) = 1$$

$$v_{\pi_l}(s_0) = \frac{1}{1 - \gamma^2}$$

Para $\pi_r(s_0) = a_r$, tenemos el siguiente sistema de ecuaciones:

$$v_{\pi_r}(s_0) = 0 + \gamma \cdot v_{\pi_r}(s_r) v_{\pi_r}(s_r) = 2 + \gamma \cdot v_{\pi_r}(s_0)$$

La segunda ecuación se sustituye en la primera:

$$v_{\pi_r}(s_0) = \gamma(2 + \gamma \cdot v_{\pi_r}(s_0))$$

$$v_{\pi_r}(s_0) = 2\gamma + \gamma^2 v_{\pi_r}(s_0)$$

$$v_{\pi_r}(s_0) - \gamma^2 v_{\pi_r}(s_0) = 2\gamma$$

$$v_{\pi_r}(s_0)(1 - \gamma^2) = 2\gamma$$

$$v_{\pi_r}(s_0) = \frac{2\gamma}{1 - \gamma^2}$$

Ahora considerando la selección de $\gamma=0,0.5$ y 0.9, Remplazamos en las fórmulas: $v_{\pi_l}(s_0)=\frac{1}{1-\gamma^2}$ y $v_{\pi_r}(s_0)=\frac{2\gamma}{1-\gamma^2}$.

•
$$\gamma = 0$$
:

$$- v_{\pi_l}(s_0) = \frac{1}{1-0} = 1$$

$$-v_{\pi_r}(s_0) = \frac{0}{1-0} = 0$$

 $-\pi_l$ es la política óptima.

• $\gamma = 0.5$:

$$-v_{\pi_l}(s_0) = \frac{1}{1-0.25} = \frac{1}{0.75} \approx 1.33$$

$$-v_{\pi_r}(s_0) = \frac{2(0.5)}{1-0.25} = \frac{1}{0.75} \approx 1.33$$

- Ambas son políticas óptimas.

•
$$\gamma = 0.9$$
:

$$-v_{\pi_l}(s_0) = \frac{1}{1-0.81} = \frac{1}{0.19} \approx 5.26$$

$$- v_{\pi_r}(s_0) = \frac{2(0.9)}{1 - 0.81} = \frac{1.8}{0.19} \approx 9.47$$

 $-\pi_r$ es la política óptima.

 \mathbf{d})

Para reportar los valores de los estados iniciales, y el tiempo que el algoritmo tomo para resolver el problema, puse los outputs en las tablas 1, 2 y 3.

Table 1: Resultados para Grid Problem ($\gamma=1.0)$

Tamaño Grilla	Valor Estado Inicial	Tiempo (s)
3	-8.000	0.005
4	-18.000	0.031
5	-37.333	0.175
6	-60.231	0.228
7	-93.496	0.332
8	-131.193	0.617
9	-180.001	1.005
10	-233.879	1.721

Table 2: Resultados para CookieProblem ($\gamma = 0.99$)

Tamaño Grilla	Valor Estado Inicial	Tiempo (s)	
3	0.787	0.101	
4	0.612	0.835	
5	0.452	2.557	
6	0.325	4.825	
7	0.231	9.851	
8	0.164	17.858	
9	0.117	34.129	
10	0.083	49.686	

Table 3: Resultados para GamblerProblem ($\gamma = 1.0$)

Probabilidad Cara	Valor Estado Inicial	Tiempo (s)
0.25	0.067	0.218
0.40	0.284	0.309
0.55	0.612	0.435

e)

Existen problemas que toman más tiempo que otros debido al distinto tamaño del espacio de estados que tiene cada problema. El problema más lento en solucionar es el CookieProblem, en donde un estado determinado es de la forma (posicion-agente, posicion-galleta). Notar que el agente puede estar en (TamañoGrilla * TamañoGrilla) distintas posiciones, y la galleta también, por lo que habrá un total de (TamañoGrilla)⁴ distintos estados, lo cual escala de muy mala manera.

Luego, el GridProblem es similar al CookieProblem, con la diferencia de que el estado solo es la posición del agente, por lo que la cantidad de estados distintos es (TamañoGrilla)², lo cual tampoco escala bien, pero es mejor que lo que ocurre con el CookieProblem.

Finalmente, el GamblerProblem es el más rápido de todos, principalmente debido a que solo puede tener un número de 101 estados distintos. También vale la pena mencionar que en GridProblem y CookieProblem, mientras más grande es el tamaño de la grilla, más lento es el cálculo de valores, lo cual es esperable, ya que existirán más estados y, por lo tanto, demorará más en converger. Esto se puede visualizar en los gráficos de convergencia (Figuras 1, 2 y 3).

En el GamblerProblem, mientras más uniforme sea la probabilidad (cercana a 0.5), más se demorará. Esto se debe a que el agente se quedará apostando por más tiempo, ya que perderá y ganará de manera más balanceada. Pero si la probabilidad está más cargada para cualquiera de los dos lados, entonces el tiempo es menor, ya que perderá o ganará de manera más determinista.

Figure 1: Convergencia para GridProblem.

Figure 2: Convergencia para CookieProblem.

Figure 3: Convergencia para GamblerProblem.

f)

Si bajamos el valor del factor de descuento, deberíamos esperar que el tiempo de cómputo sea menor, ya que los valores deberían converger de manera más rápida. Probé todos los problemas con un $\gamma=0.5$ y las soluciones se encuentran mucho más rápido.

Esto ocurre ya que con un gamma pequeño, las recompensas serán más relevantes en la fórmula de Bellman, por lo que los valores de los estados estarán más ligados a las recompensas inmediatas que a las recompensas futuras. De esta manera, el vinculo entre los valores de los estados se reduce, por lo que la convergencia ocurre más rápido.

$\mathbf{g})$

Los resultados obtenidos luego de evaluar la política greedy que resulta de los valores calculados en la parte (d) se encuentran en las tablas de abajo (Tablas 4, 5 y 6). La columna "Valor Greedy" contiene los resultados luego de evaluar la política greedy a partir de los valores de la parte (d). La columna "Valor Óptimo" contiene los valores resultantes al ejecutar el algoritmo "Policy Iteration" del capítulo 4.3 del libro de Sutton y Barto (notar que estos valores están redondeados al tercer decimal). La columna "¿Greedy Óptima?" simplemente establece si la política greedy es la óptima o no. Finalmente, la columna "Tiempo (s)" contiene el tiempo que se demoró cada ejecución.

En todos los casos, la política greedy es la óptima, ya que se retorna el mismo valor que el que se obtiene con la política óptima, la cual fue encontrada con el algoritmo dicho anteriormente.

Solamente en el Gambler Problem con p=0.55 la política greedy no es la óptima, esto debido a que con la política óptima el valor converge a 1.

Table 4: Resultados para GridProblem con Política Greedy

Tamaño	Valor Greedy	Valor Óptimo	¿Greedy Óptima?	Tiempo (s)
3	-2.000	-2.000	Sí	0.006
4	-2.000	-2.000	Sí	0.023
5	-4.000	-4.000	Sí	0.068
6	-4.000	-4.000	Sí	0.177
7	-6.000	-6.000	Sí	0.307
8	-6.000	-6.000	Sí	0.588
9	-8.000	-8.000	Sí	1.072
10	-8.000	-8.000	Sí	1.638

Table 5: Resultados para CookieProblem con Política Greedy

Tamaño	Valor Greedy	Valor Óptimo	¿Greedy Óptima?	Tiempo (s)
3	0.970	0.970	Sí	0.103
4	0.951	0.951	Sí	0.565
5	0.932	0.932	Sí	1.881
6	0.914	0.914	Sí	4.648
7	0.895	0.895	Sí	9.658
8	0.878	0.878	Sí	17.348
9	0.860	0.860	Sí	31.722
10	0.843	0.843	Sí	48.779

Table 6: Resultados para GamblerProblem con Política Greedy

p	Valor Greedy	Valor Óptimo	¿Greedy Óptima?	Tiempo (s)
0.25	0.250	0.250	Sí	0.199
0.40	0.400	0.400	Sí	0.285
0.55	0.730	0.999	No	0.456

- h)
- i)
- j)
- k)
- 1)
- m)
- n)