Operating System Project 2

1. Part One: Invoke FIFO Scheduler

1.1. sched_test.c outline

```
thread function () {
    // block 0.5 seconds
    . . .
}

main () {
    // set CPU affinity
    . . .
    // set scheduling policy
    . . .
    // create two threads
    . . .
    // delete two threads
    . . .
}
```

1.2. Functions implemented

- a. CPU_ZERO(), CPU_SET(), sched_setaffinity():Set the affinity of the CPU, implemented with only one CPU.
- b. sched_setscheduler():

Set the scheduling policy if "SCHED_FIFO" is activated.

- c. pthread_create(), pthread_join(), pthread_exit():Threads implementations.
- d. clock():

Blocking methods in the thread function.

1.3. Result

```
[qhan@ubuntu: /usr/src/linux-2.6.32.60/test_weighted_rr] 274
thread 1 running 1
thread 2 running 1
thread 2 running 2
thread 2 running 3
thread 1 running 2
thread 1 running 3
thread 1 exit
 thread 2 exit
sudo ./sched_test SCHED_FIF0
set affinity success
set seheduling policy success
create thread 1 success
create thread 2 success
thread 1 running 1
thread 1 running
thread 1 running
thread 2 running
thread 2 running
thread 2 running
thread 1 exit
 thread 2 exit
```

2. Part Two: Weighted Round-Robin Scheduler

2.1. sched_weighted_rr.c outline

```
34
      enqueue_task_weighted_rr () {
            // add task to the tail, count++
42
      dequeue_task_weighted_rr () {
            // detele task, count--
      }
      yield_task_weighted_rr () {
66
            // move task to the tail
      }
84
      pick_next_task_weighted_rr () {
            // if count is zero, return null
            // else, pick out the first task in queue
      }
186
      task_tick_weighted_rr () {
            // time slice--
            // if time slice is zero
      }
```

2.2. Data structures

- a. rq (in kernel/sched.c):
 - weighted_rr (type: struct weighted_rr_rq) to specify the run queue for weighted RR.
- b. weighted_rr_rq (in kernel/sched.c):
 - queue (type: struct list_head) for queuing tasks.
 - nr_running (type : unsigned long) for counting the number of currently running tasks.
- c. task_struct (in include/linux/sched.h):
 - task_time_slice (type: unsigned int) for recording current available time slices for using CPU resources.
 - weighted_time_slice (type: unsigned int) for relocating the time slices of the tasks which have no more time slices to use.
 - weighted_rr_list_item (type: struct list_head) for reprensenting the task queuing unit.
- d. sched_class (in kernel_weight_rr.c):

Accomplish the implementaion of weighted RR scheduler by assigning custom functions.

2.3. Functions implemented

- a. list_add_tail(), list_del(), list_move_tail():Managing the task queue.
- b. list_first_entry():Read the first task from the task queue.

2.4. Result