Estimate Partial Linear Model

機械学習の経済学への応用

川田恵介

問題設定

- E[Y|D,X] の特定の特徴 (Estimand) を推定
- 母集団において、以下を仮定

$$E[Y|D,X] = \underbrace{\beta_D}_{Interest} D + \underbrace{f(X)}_{Unkwnon}$$

- Partial Linear Model (Robinson 1988)
- OLS: $f(X) = \beta_0 + \beta_1 X_1 + ... + \beta_L X_L$ の一般化
- 定式化に誤りがあっても解釈可能(後日)

推定アルゴリズム: Partialling-out (Robinson 1988)

- 1. E[Y|X], E[D|X] を推定 $\rightarrow f_Y(X), f_D(X)$
- 機械学習 + 交差推定 (Chernozhukov et al. 2018)
- 2. $Y-f_Y(X)$ を $D-f_D(X)$ で回帰(定数項は含めない)
- 3. $f_Y(X), f_D(X)$ の推定誤差を無視して、信頼区間を RobustStandardError を用いて推定
- 機械学習を Nuisance function を推定するツールとして使用

直感

$$Y = \beta_D D + f(X) + \underbrace{y}_{Y-E[Y|D,X]~(Mean~Zero)}$$

$$E[Y|X] = \beta_D E[D|X] + f(X)$$

• 両辺を引くと

$$Y - E[Y|X] = \beta_D \times (D - E[D|X]) + u$$

OLS との関係性: FWL 定理

- FWL 定理より、OLS 推定は以下のアルゴリズムで書き下せる
- 1. E[Y|X], E[D|X] を推定 $\rightarrow f_Y(X)$, $f_D(X)$
- 同じ OLS + 非交差推定
- 2. $Y f_V(X)$ を $D f_D(X)$ で回帰 (定数項は含めない)
- 3. $f_V(X), f_D(X)$ の推定誤差を無視して、信頼区間を RobustStandardError を用いて推定

論点

- なぜ OLS ではダメなのか?
 - 過剰適合 あるいは 誤定式化が生じるため
- なぜ機械学習を応用した他のアルゴリズムではダメなのか?
 - 収束(漸近)性質が悪い

OLS の問題点

KeyConcept: Misspecificaition

- 推定モデルの定式化 = 推定されうる関数の集合
- Misspecification: $\beta \in R_L$ をどう選んでも、 $f_Y(X) \neq E[Y|X]$
 - β を増やせば、Misspecification は避けられるが、、、、

ざっくり性質

- "正しいモデル": Misspecification がない + β の数 << サンプルサイズ
 - 真のパラメータへの信頼区間を形成可能
- "間違ったモデル": Misspefication
 - 線形近似モデルへの信頼区間形成可能 ≠ 真のパラメータ

- 過剰なパラメータモデル
 - 過剰適合問題
 - 推定不可能、精度の大幅な悪化、信頼区間爆発

信頼区間

- 一般に推定値と真の値は、一致し得ない
 - 無限に大きいサンプルサイズが必要
 - 母集団への含意が不明瞭
- 代替的に信頼区間を用いて議論
 - **高い確率**で真の値を含んだ区間を得られるため

復習: Repeated Sampling Framework

KeyConcepts

• β_0 : 母集団におけるパラメータ (Fix but unknown)

• β_N : サンプルサイズ N のデータから計算された推定値 (Random with unknown distribution)

Key Property

- 大標本
 - Consistency : $\lim_{N\to\infty}(\beta_0-\beta_N)\to 0$
 - * 経済学では主張の根拠にしずらい
 - Asymptotic Normality : $\lim_{N\to\infty}\sqrt{N}\big(\beta_0-\beta_N\big)\to N(0,\sigma^2)$
 - * 信頼区間の近似計算の基盤
- 有限標本
 - Unbiasedness: $E[\beta_N] = \beta$

OLS + 正しいモデル

- ランダムサンプルデータであれば、Asymptotic Normality を満たす
 - Consistency, Unbiasedness ₺
- 独立して研究を行う大量の研究者をイメージ
 - 結論は全員異なる
 - サンプルが大きくなるにつれて、真の値に近い推定値を得る
 - 多くの研究者が真の値を含む信頼区間を得る

Numerical Example

- $Y = D + X^2 + Normal(0, 5)$
- $E[D|X] = 0.5 0.4 \times I(X >= 1|X <= -1)$
- $Data = \{D, X, Z_1, ..., Z_{190}\}$
 - $-X, Z_1, ..., Z_{190} \sim \text{Uniform}(-2,2)$

PointEstimation

• $E[Y|D,X] = \beta_D D + \beta_{X^2} X^2$

${\sf ConfidenceInterval}$

Wrong OLS

$$\bullet \ E[Y|D,X] = \beta_0 + \beta_D D + \beta_1 X$$

Over Parametrization

 $\bullet \ E[Y|D,X,Z_1,..,Z_{190}] = \beta_D D + \beta_X X + \beta_{X^2} X^2 + \beta_{Z1} Z_1 + ... + \beta_{Z_{190}} Z_{190}$

OverParametrization

OLS まとめ

- OLS + 少数のパラメタ without miss-speficaition: 素晴らしいパフォーマンス
 - 非現実的?
- OLS + Miss-speficaition
 - Invalid Confidence Interval, Non-Consistent
- OLS + 大量のパラメータ
 - 過剰適合、標準誤差の爆発、信頼区間が広すぎる|計算できない

付録: RCT

- シンプルな線形モデルを用いた因果推論は、"TopJournal"でも散見される
- 重要な例外: D がランダムに決定
 - X を導入しても漸近性質は悪化しない (Lin 2013)
 - "Top Journal" における因果推論の多くは、RCT | 綺麗な自然実験を用いたものが多い

• 機械学習の応用にも有益

付録: Saturated Model

- f(X) = ありうる全ての X の組み合わせについてのダミー変数を導入し、OLS 推定 (Angrist and Pischke 2009)
 - Saturated Model
- Partial Linear Model の範囲内では誤定式化は起きない
 - より一般的なケースでも、解釈可能(後日)
- 過剰適合は大丈夫???

機械学習の応用

- 基本戦略「過剰に複雑なモデルを適度に単純化する」を踏襲
- Partialling-out を推奨
 - Nuisance 関数の推定に機械学習を使用

非推奨: MachineLearning as Modelling

- E[Y|D,X] を直接推定
- 例: 以下を推定

$$\min \sum_{i} \big[Y - \beta_D \times D - \underbrace{\tilde{f}(X)}_{+ \Im {\it k}} \underbrace{\tilde{f}(X)}_{l} \big]^2 + \lambda \sum_{l} |\beta_l|$$

• LASSO

非推奨: Single MachineLearning

- 1. $D \in \{0,1\}$ を想定
- 2. E[Y|D=0,X] を推定 $\rightarrow f_{Y0}(X)$
- 3. $Y f_{Y0}(X)$ を D で回帰

LASSO

 $\bullet \ \ f(X) = \beta_0 + \beta_X X + \beta_{X^2} X^2 + \beta_{Z_1} Z_1 + .. + \beta_{190} Z_{190}$

Single LASSO

•
$$f_{Y0}(X) = \beta_0 + \beta_X X + \beta_{X^2} X^2 + \beta_{Z_1} Z_1 + ... + \beta_{190} Z_{190}$$

Double LASSO

- $\bullet \ \ f_Y(X) = \beta_0 + \beta_X X + \beta_{X^2} X^2 + \beta_1 I(X \geq -1) + \beta_2 I(X \geq -1) + \beta_{Z_1} Z_1 + \ldots + \beta_{190} Z_{190}$
- $\bullet \ \ f_D(X) = \beta_0 + \beta_X X + \beta_{X^2} X^2 + \beta_1 I(X \geq -1) + \beta_2 I(X \geq -1) + \beta_{Z_1} Z_1 + \ldots + \beta_{190} Z_{190}$

まとめ:機械学習

- Population Risk (MSE) を最小化するように設計
 - パラメータの推論が主目的ではない
- 非常に緩やかな仮定の元で、一致性が成り立つアルゴリズムは複数存在
- 一般に(有限標本)バイアスが発生
- 収束が遅い、漸近正規性が成り立たなず、信頼区間計算が難しい
 - Bootstrap 法でも同じ

まとめ: 理想的な OLS

$$\beta_{interest} - \beta_N = \underbrace{\beta_{interest} - \beta_0}_{Identification}$$

$$+\underbrace{eta_0-eta_{N o\infty}}_{=0}+\underbrace{eta_{N o\infty}-E[eta_N]}_{=0}+\underbrace{E[eta_N]-eta_N}_{\mathrm{正規分布で近似}}$$

• 一般に $\lim_{N\to\infty} \sqrt{N}(\beta_N-\beta_0) \to Normal$

まとめ: 誤定式化

$$\beta_{interest} - \beta_N = \underbrace{\beta_{interest} - \beta_0}_{Identification}$$

$$+\underbrace{eta_0-eta_{N o\infty}}_{
eq 0}+\underbrace{eta_{N o\infty}-E[eta_N]}_{=0}+\underbrace{E[eta_N]-eta_N}_{$$
正規分布で近似

• 一般に $\lim_{N\to\infty} \sqrt{N}(\beta_N-\beta_0)\to\infty$

まとめ:複雑すぎるモデル

$$\beta_{interest} - \beta_N = \underbrace{\beta_{interest} - \beta_0}_{Identification}$$

$$+\underbrace{\beta_0-\beta_{N o\infty}}_{=0}+\underbrace{\beta_{N o\infty}-E[\beta_N]}_{=0}+\underbrace{E[\beta_N]-\beta_N}_{$$
爆発の恐れ

• 一般に $\lim_{N \to \infty} \sqrt{N} (\beta_N - \beta_0) \to Normal$ だが、、、

まとめ: LASSO

$$\beta_{interest} - \beta_N = \underbrace{\beta_{interest} - \beta_0}_{Identification}$$

$$+ \underbrace{\beta_0 - \beta_{N \to \infty}}_{\text{"=0"}} + \underbrace{\beta_{N \to \infty} - E[\beta_N]}_{\neq 0} + \underbrace{E[\beta_N] - \beta_N}_{SamplingUncetainly}$$

• 一般に $\lim_{N\to\infty} \sqrt{N}(\beta_N-\beta_0)\to\infty$

まとめ: Single MachineLearning

$$\beta_{interest} - \beta_N = \underbrace{\beta_{interest} - \beta_0}_{Identification}$$

$$+ \underbrace{\beta_0 - \beta_{N \to \infty}}_{\text{"=0"}} + \underbrace{\beta_{N \to \infty} - E[\beta_N]}_{\neq 0} + \underbrace{E[\beta_N] - \beta_N}_{SamplingUncetainly}$$

• 一般に
$$\lim_{N\to\infty} \sqrt{N}(\beta_N-\beta_0)\to\infty$$

まとめ: PartiallingOut

$$\beta_{interest} - \beta_N = \underbrace{\beta_{interest} - \beta_0}_{Identification}$$

$$+\underbrace{eta_0-eta_{N o\infty}}_{\text{"=0"}}+\underbrace{eta_{N o\infty}-E[eta_N]}_{\text{"} o0"}+\underbrace{E[eta_N]-eta_N}_{\text{正規分布で近似}}$$

• 一般に $\lim_{N\to\infty} \sqrt{N}(\beta_N-\beta_0) \to Normal$

Reference

Angrist, Joshua D, and Jörn-Steffen Pischke. 2009. Mostly Harmless Econometrics: An Empiricist's Companion. Princeton university press.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018. "Double/Debiased Machine Learning for Treatment and Structural Parameters." *The Econometrics Journal* 21 (1): C1C68. https://doi.org/10.1111/ectj.12097.

Lin, Winston. 2013. "Agnostic Notes on Regression Adjustments to Experimental Data: Reexamining Freedman's Critique." *The Annals of Applied Statistics* 7 (1): 295–318.

Robinson, P. M. 1988. "Root-n-Consistent Semiparametric Regression." *Econometrica* 56 (4): 931954. https://doi.org/10.2307/1912705.