Problem 1

Let ϵ_{ijk} , i, j, k = 1, 2, 3 be the antisymmetric (Levi-Civita) tensor with $\epsilon_{123} = 1$, and let

$$\vec{A} = \{A_1, A_2, A_3\}, \quad \vec{B} = \{B_1, B_2, B_3\}, \quad \vec{C} = \{C_1, C_2, C_3\}$$

be three arbitrary vectors.

1. Check that

$$(\vec{A} \times \vec{B})_i = \epsilon_{ijk} A_j B_k, \quad i = 1, 2, 3.$$
 (1)

Here and in what follows the repeated indices are summed over.

2. Check that

$$\epsilon_{ijk}\epsilon_{\ell mn} = \delta_{i\ell}\delta_{jm}\delta_{kn} - \delta_{im}\delta_{j\ell}\delta_{kn} - \delta_{in}\delta_{jm}\delta_{k\ell} + \delta_{im}\delta_{jn}\delta_{k\ell} + \delta_{in}\delta_{j\ell}\delta_{km} - \delta_{i\ell}\delta_{jn}\delta_{km}$$
 (2)

3. Use (2) to show that

$$\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km} \tag{3}$$

4. Use (1) and (3) to show that

$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C} \tag{4}$$

5. Use (1) and (3) to simplify

$$(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) \tag{5}$$

6. Use (3) to show that

$$\epsilon_{ijk}\epsilon_{ijn} = 2\delta_{kn} \tag{6}$$

7. Let \vec{B} and \vec{C} be polar vectors, i.e transforming as

$$\tilde{B}_i = R_{ij}B_i \,, \tag{7}$$

under orthogonal transformations. Prove that the vector $\vec{A} = \vec{B} \times \vec{C}$ transforms as

$$\tilde{A}_i = \det R \, R_{ij} A_j \,, \tag{8}$$

i.e. it is a pseudo or axial vector.

8. Define $J_{ij}=\epsilon_{ijk}M_k$ for some vector $\vec{M}=\{M_1,M_2,M_3\}$. Write down J explicitly as a 3×3 matrix. Compute $\epsilon_{ijk}J_{jk}$.

This question establishs a one-to-one correspondence between vectors \vec{M} and rank-2 antisymmetric tensors J in 3-dimensional space

9. Show that $\epsilon_{ijk}J_{ij}N_k=\Lambda\,\vec{M}\cdot\vec{N}$, find the coefficient of proportionality Λ .

Problem 2

Let M be an $n \times n$ matrix with entries M_{ij} , and v be an n-dimensional column with entries v_i .

1. You have the following combinations

$$M_{jk}M_{ij}$$
, $M_{jk}M_{ji}$, $M_{ij}M_{ij}$, $M_{ij}v_j$, $M_{ij}v_i$ (9)

Identify them as components of the following objects

$$M \cdot v$$
, $v^{\mathrm{T}} \cdot M$, $\operatorname{tr} M^{2}$, $(M^{2})_{ik}$, $(M^{\mathrm{T}}M)_{ki}$, $\operatorname{tr} MM^{\mathrm{T}}$. (10)

2. How would you write

$$(MM^{\mathrm{T}})_{ki}$$
, $(MM^{\mathrm{T}})_{ik}$, $v^{\mathrm{T}} \cdot v$, $v^{\mathrm{T}} \cdot M \cdot v$ (11)

using indices and Einstein's summation convention?

Problem 3

Let q^i , i = 1, ..., s be generalised coordinates. Compute the quantities below

1. $\frac{\partial q^{j}}{\partial q^{i}} = , \quad \frac{\partial q^{i}}{\partial q^{i}} = , \quad \frac{\partial}{\partial q^{i}} (M_{jk} q^{j} q^{k}) = , \quad \frac{\partial}{\partial q^{i}} (M_{jk} q^{i} q^{k}) = , \quad (12)$

Do not assume that M_{ij} is symmetric with respect to index permutations.

2. $\frac{\partial}{\partial q^i} (M_{jkl} q^j q^k q^l) = , \quad \frac{\partial}{\partial q^i} (M_{jkl} q^j q^i q^l) = , \qquad (13)$

Do not assume that M_{ijk} is symmetric with respect to index permutations

3. $\frac{\partial^2}{\partial q^l \partial q^i} (M_{jk} q^j q^k) = , \quad \frac{\partial^2}{\partial q^i \partial q^i} (M_{jk} q^j q^k) = , \quad \frac{\partial^2}{\partial q^i \partial q^l} (M_{jkm} q^j q^k q^l) = , \quad (14)$

Do not assume that M_{ij} is symmetric with respect to index permutations.