Review of Kinematics and Dynamics

Classical Mechanics (Newtonian)

Kinematics (κίνησης=motion) description of motion

Dynamics (δύναμης=force) cause of motion

Physical quantities

Scalar
 described by a single number

Calculations using ordinary arithmetics

Vector

has both a magnitude and a direction in space

Calculations using linear algebra

Physical quantities

• Scalars:

Distance

Speed

Time

Mass

Energy

Electric potential

Vectors:

Displacement

Velocity

Acceleration

Force

Momentum

Electric field

Vector

A quantity with a size and direction. Arrows are used to represent vectors.

Graphical vector operations

Addition

head to tail:

Subtraction

head to tail:

Parallelogram:

Parallelogram:

Component and unit Vectors

$$\overrightarrow{A} = \overrightarrow{A}_x + \overrightarrow{A}_y + \overrightarrow{A}_z$$

MAGNITUDE OF A VECTOR

$$|\vec{A}| = A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

UNIT VECTOR

$$\vec{u}_{\vec{A}} = \frac{\vec{A}}{|\vec{A}|} = \frac{(A_x, A_y, A_z)}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$$

The 3 independent unit vectors in the system

$$\vec{u}_x = \vec{i} = (1,0,0)$$
 $\vec{u}_y = \vec{j} = (0,1,0)$
 $\vec{u}_z = \vec{k} = (0,0,1)$

Products of Vectors

Scalar(Dot) product → scalar

$$\vec{A} \cdot \vec{B} = AB \cos \alpha$$

$$\overrightarrow{B}$$
 α

$$\vec{A} \cdot \vec{B} = (a_x, a_y, a_z) \cdot (b_x, b_y, b_z) = (a_x b_x + a_y b_y + a_z b_z)$$

Vector(cross) product → a new vector

$$\overrightarrow{C} = \overrightarrow{A} \times \overrightarrow{B}$$

$$\overrightarrow{C}$$

$$\overrightarrow{B}$$

$$\overrightarrow{A}$$

$$|\vec{A} \times \vec{B}| = AB\sin\alpha$$

$$|\vec{A} \times \vec{B}| = AB \sin \alpha$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{u}_x & \vec{u}_y & \vec{u}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = (A_y B_z - A_z B_y) \vec{u}_x + (A_z B_x - A_x B_z) \vec{u}_y + (A_x B_y - A_y B_x) \vec{u}_z$$

Kinematics: study of motion

```
"Τα πάντα ρει, μηδέποτε κατά τ' αυτό μένειν"
```

"Everything changes and nothing remains still"

Heraclitus of Ephesus (c. 535 – c. 475 BC)

Quantities:

- Position x
- Distance d
- Displacement Δx
- Speed
- Velocity u
- Time t
- Acceleration y

Distance vs displacement

 Distance: the complete length of the path travelled by a moving object

scalar

 Displacement: the length of the straight-line path from a moving object's origin to final

position

vector

Average velocity

$$\vec{v}_{av} = \frac{resultant\ displacement}{time\ interval} = \frac{\Delta \vec{r}}{\Delta t}$$

SI units: m/s

- Velocity has direction (vector) and is relative (reference frame).
- Average speed (scalar)

$$s_{av} = \frac{total\ distance}{time\ interval} = \frac{d}{\Delta t}$$

is NOT the magnitude of average velocity!

Average velocity

$$\vec{v}_{av} = \frac{resultant displacement}{time interval} = \frac{\Delta \vec{r}}{\Delta t}$$

SI units: m/s

- Velocity has direction (vector) and is relative (reference frame).
- Average speed (scalar) $s_{av} = \frac{total \, distance}{time \, interval} = \frac{d}{\Delta t}$

$$s_{av} = \frac{total\,distance}{time\,interval} = \frac{d}{\Delta t}$$

is NOT the magnitude of average velocity!

Example: Usain Bolt runs 100 m in 9.58 s. What is his average speed?

10.44 m/s

Instantaneous velocity

reduce the size of the time interval $\Delta t \rightarrow 0$

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d \vec{r}}{dt} = |\vec{v}| \vec{u}_v$$

Instantaneous velocity

reduce the size of the time interval $\Delta t \rightarrow 0$

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d \vec{r}}{dt} = |\vec{v}| \vec{u}_v$$

Example: Usain Bolt's world record race

Acceleration

average

$$\vec{\gamma}_{av} = \frac{\Delta \vec{v}}{\Delta t}$$

instantaneous

$$\vec{\gamma} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{dt}$$

(vector) SI units: m/s²

Acceleration

average

$$\vec{\gamma}_{av} = \frac{\Delta \vec{v}}{\Delta t}$$

instantaneous

$$\vec{y} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{dt}$$

(vector) SI units: m/s²

Example: A supercar accelerates from rest to

27.77 m/s in 2.1 s. What is the average acceleration magnitude?

Answer: 13.22 m/s²

Uniform motion

An object at rest

Uniform circular motion and centripetal acceleration

velocity is constant (magnitude and direction)

Speed is constant, but velocity is NOT! Velocity direction changes → acceleration (perpendicular to υ)

$$|\vec{\gamma}| = \frac{|\vec{v}|^2}{R} = \frac{\left(\frac{2\pi R}{T}\right)^2}{R} = \frac{4\pi^2 R}{T^2}$$

Motion with Constant Acceleration

Constant acceleration → constant total force
 Example: Free falling object

All bodies in free fall near the earth's surface have the same downward acceleration of

$$g = 9.8 \text{ m/s}^2$$

$$\Delta \vec{r} = \frac{1}{2} \vec{g} t^2$$

$$\vec{v} = \vec{g} t$$

Feather and hammer experiment

Astronaut David Scott (1971)

https://www.youtube.com/watch?v=KDp1tiUsZw8

Motion with Constant Acceleration

Kinematic equations:

$$\Delta \vec{r} = \vec{v}_o t + \frac{1}{2} \vec{\gamma} t^2$$

$$\vec{v} = \vec{v}_o + \vec{\gamma} t$$

$$\vec{v}^2 = \vec{v}_o^2 + 2 \vec{\gamma} \Delta \vec{r}$$

DERIVE from velocity and acceleration formulas

Dynamics: study of the cause of motion

"Άνευ αιτίου ουδέν εστιν"

"Nothing happens without a cause"

Aristotle (384 – 322 BC)

Quantities:

- Force F: any influence that can change the velocity of a body
- Mass m
- Acceleration y
- Time t

Examples of forces

Contact Forces
 arise from physical
 contact

Action-at-a-distance forces

do not require contact (gravity, electromagnetic)

Examples of contact forces

 Frictional forces act to oppose relative motion between surfaces that are in contact.

Such forces act parallel to the surfaces.

static friction Kinetic friction

Examples of contact forces

 The normal force is one component of the force that a surface exerts on an object with which it is in contact → perpendicular to the surface

Examples of contact forces

 Cables and ropes transmit forces through tension. The tension T in a cable is the magnitude of the force that any part of the cable exerts on the adjoining part

Newton's First Law of Motion "law of inertia"

inertia=resistance to change "A body at rest will remain at rest unless acted upon by a net force.

A body in motion will continue moving at constant velocity unless acted upon by a net force"

NET FORCE

$$|\vec{F}_{net}| = \sum_{i} \vec{F}_{i}$$

Newton's Second Law of Motion

"The acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to the mass of the object"

$$\vec{F}_{net} = \sum \vec{F}_i = \sum m \vec{\gamma}_i$$

SI units: N=Kg*m/s²

Mass is an intrinsic property of an object! It measures its resistance to acceleration ie inertia.

Mass is not weight!

Newton's Third Law of Motion

"For every action, there is an equal and opposite reaction"

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

SI units: N=Kg*m/s²

EXAMPLE:

Action and reaction forces can NEVER balance each other, as they act on different objects!

From Newton's 2nd law to kinematics

FREE BODY DIAGRAM

A vector diagram that shows all of the forces that act on the body

Calculate net Force → obtain acceleration →

$$\vec{\gamma} = \frac{d\vec{v}}{dt} \implies \vec{v}(t) = \vec{v}_0 + \int_0^t \vec{\gamma}(t) dt$$

$$\vec{v} = \frac{d\vec{r}}{dt} \implies \vec{r}(t) = \vec{r}_0 + \int_0^t \vec{v}(t) dt$$