Раздел 4. Модели и методы теории графов

Построение минимального остовного дерева

Алгоритм построения минимального остовного дерева

Данный алгоритм предполагает соединение всех узлов сети с помощью путей наименьшей длины. Типичной задачей, для решения которой необходим такой алгоритм, является создание (проектирование) сети дорог с твёрдым покрытием, соединяющих населенные пункты в сельской местности, где дороги, соединяющие 2 каких-либо пункта, могут проходить через другие населённые пункты. Наиболее экономичный проект дорожной системы должен минимизировать общую длину дорог с твёрдым покрытием. Желаемый результат можно получить путём применения алгоритма построения минимального остовного дерева:

N-множество узлов сети; C_k - множество узлов, соединённых после выполнения k-итерации; $\overline{C_k}$ -множество узлов, не соединяющих с узлами множеств C_k , после выполнения k-й итерации алгоритма.

<u>Шаг 0:</u> C_0 = пустое множество; $\overline{C_{\kappa}} = N$

<u>Шаг і</u>: выбираем любой узел i из множеств $\overline{C_o}$ и определяем C_I = $\{i\}$, тогда $\overline{C_1}$ =N- $\{i\}$, k=2.

Основной шаг k: В множестве $\overline{C_{\kappa-1}}$ выбираем узел j, который соединяем самой короткой дугой с каким-либо узлом из множеств C_{k-1} . Узел j присоединяется к множеству C_{k-1} и удаляется из $\overline{C_{\kappa-1}}$, таким образом $C_k = C_{k-1} + \{j\}$; $\overline{C_{\kappa}} = \overline{C_{\kappa-1}} - j$.

Если множество $\overline{C_{\kappa}}$ пусто, то выполнение алгоритма заканчивается, в противном случае k = k + 1 и повторяем последний шаг.

Пример. Телевизионная компания планирует подключение к своей кабельной сети 5 новых микрорайонов. На рис. 13 показана структура планируемой сети и расстояние между районами и телецентром. Необходимо спланировать наиболее экономичную кабельную сеть.

Рис. 13

Начнем алгоритм построения минимального остовного дерева с выбора узла 1. C_1 ={1}, $\overline{C_1}$ ={2,3,4,5,6}.

$$C_2=\{1,2\}, \overline{C_2}=\{3,4,5,6\}.$$
 $C_3=\{1,2,5\}, \overline{C_3}=\{3,4,6\}.$
 $C_4=\{1,2,5,4,\}, \overline{C_4}=\{3,6\}.$
 $C_5=\{1,2,5,4,6\}, \overline{C_5}=\{3\}.$
 $C_6=\{1,2,5,4,6,3\}, \overline{C_6}=\{\}.$

Минимальное остовное дерево выделено на рис.13, минимальная длина кабеля для построения такой сети равна 1+3+4+5+3=16.

Пример. Решить эту же задачу, но начать с пункта 5. Убедится, что будет получено то же самое решение.

Нахождение кратчайшего пути по заданной сети

Рассмотрим алгоритм нахождения кратчайшего пути в сетях, как имеющих циклы, так и в сетях, не имеющих циклов.

Алгоритм Дейкстры

При переходе от узла i к следующему узлу j используется специальная процедура пометки рёбер. Обозначим через u_i — кратчайшее расстояние от узла 1 до узла j, d_{ij} — длина ребра (i, j). Тогда для узла j метка определится как $[u_i,i] = [u_i+d_{ij},i]$, $d_{ij} \ge 0$.

Метки могут быть двух типов — временные и постоянные. Временная метка может быть впоследствии заменена на другую временную метку, если будет найден более короткий путь к данному узлу. Когда же станет очевидным, что не существует более короткого пути от исходного узла к данному, статус временной метки изменяется на постоянный. Вычислительная схема алгоритма состоит из следующих шагов:

<u>Шаг 0</u>: исходному узлу (1) присваивается метка [0,-], i = 1. Шаг i:

- а) вычисляются временные метки $[u_i+d_{ij},i]$ для всех узлов j, которые можно достичь непосредственно из узла i и которые не имеют постоянных меток. Если узел j уже имеет метку $[u_i,k]$, полученную от другого узла k, и если $u_i+d_{ij}+u_i$, тогда метка $[u_i,k]$ заменяется на $[u_i+d_{ij},i]$.
- б) если все узлы имеют постоянные метки, процесс вычислений заканчивается. В противном случае выбирается метка $[u_r,s]$ с наименьшим значением расстояния u_r среди всех временных меток. Полагаем i=r и и повторяем шаг i.

Кратчайший маршрут между 1 и любым другим узлом сети определяется с узла назначения путём прохождения в обратном порядке с помощью информации, представленной в постоянных метках.

Пример. Найти кратчайшее расстояние из 1 в 2 на сети, изображенной на рис.14. Применив алгоритм Дейкстры получаем такую обратную последовательность: $2 \rightarrow 4 \rightarrow 3 \rightarrow 1$. Общая длина пути при этом равна 15+10+30=55.

Рис. 14.