Dinh Hai Nam

<CURRICULUM VITAE>

Automation and Control

Sep.8th 2000

Hanoi

Motivated engineer with a Master's degree in Automation and Control, specializing in Power Electronics, and 2+ years of experience across design, development, and project management. Proficient in both hardware and software integration, with experience spanning from circuit design to system implementation, along with additional experience as a quoting engineer and inspection engineer. Recognized for adaptability, collaborative mindset, and a commitment to finding effective solutions in automation and power electronics

Competences & Languages

Hardware Design

Altium Designer, Orcad

Programming

C, C++

Simulation Tools

PSIM, LTspice, MATLAB/Simulink, Plecs, Ansys, etc..

Soft Skills

Capable of instructing and transferring knowledge in an engaging

June 2025 | Master in Automation and Control

manner(especially in Power Electronics), Event Management.

A Z Languages

Vietnamese(native), English(fluent), Chinese(fluent),

Education

September 2018	School of Electrical and Electronic Engineering, Hanoi University of Science and
	Technology
September 2022	Bachelor in Automation and Control
June 2023	School of Electrical and Electronic Engineering, Hanoi University of Science and
	Technology

🗫 Hardware Skills

- > Power Electronics Expertise: Strong foundation in electronics with a focus on power electronics, including the design and application of advanced components such as MOSFETs, IGBTs, diodes, and associated semiconductor circuits.
- > Circuit Design: Skilled in designing driver circuits, snubber circuits, desaturation protection circuits, and auxiliary circuits for semiconductor devices.
- > Passive Components: Strong understanding of passive component design, including resistors, capacitors, inductors, and transformers.
- > Analog Components: Proficient in designing and working with operational amplifiers, comparators, and transistors.
- > Measurement & Testing: Experience in designing and implementing measurement circuits for power electronic converters, with a strong focus on ensuring accuracy and reliability.
- > Cross-referencing & Commercialization: Adept at cross-referencing designs for commercial power electronic products, ensuring manufacturability and adherence to industry standards.

</> Firmware Skills

- > Confident in applying C++ programming of object-oriented programming.
- > Experienced in programming STM32 and C2000 microcontrollers using C

🖶 Work

➤ Institute for Control Engineering and Automation(ICEA) — Researcher

November 2022 — August 2024

➤ ATC — Researcher

August 2024 - Present

Projects

February 2022 August 2022

Design a statistic wireless charger for Automated Guided Vehicle

- > Conducted extensive research on Wireless Power Transfer (WPT) technology to enhance power transfer efficiency and system performance.
- > Used a phase shift full bridge combined with a two-sided LCC compensation circuit to improve transmission efficiency.
- > Successfully created a 1.5 kW prototype for a wireless power transfer (WPT) charger.

June 2023 June 2025

Design isolated resonant DC/DC converter for DC charger station

- > Learned about the structure of DC fast charging stations to understand their design and functionality.
- ➤ Designed a high-performance DC/DC isolated converter featuring a constant input voltage of 700VDC, an adjustable output voltage range from 150VDC to 1000VDC, and a power rating of 30kW.
- > Proposed a resonant DC/DC converter structure using an LLC resonant circuit. The design features a series connection to split the DC-link voltage, and an output configuration that can be adjusted between parallel or series states by switching relays, allowing for an adjustable voltage range from 150VDC to 1000VDC.
- ➤ Successfully operated the converter in (Constant Current)-(Constant Voltage) CC-CV mode, achieving an efficiency of up to 97.6%.

October 2023 Present

Design 7,2 kW Two-State V2L converter

- ➤ Researched various structures of V2L (Vehicle-to-Load) converters and examined their applications.
- ➤ The V2L converter, designed for vehicles with a 400V battery system, operates with an input voltage range of 280V to 470V DC, provides output voltages of 120V and 240V AC at 56/60Hz, and delivers 7.2kW of power with an estimated efficiency of 98%.
- > Proposed a two-stage structure: a full bridge LLC resonant DC/DC converter isolates the battery system, followed by two half bridge DC/AC converters, each generating 120VAC for a combined output of 240VAC.
- > Remained under testing.

\$ Experiments

November 2022

Research and design of a 15kW charging station for electric vehicles

June 2025

- ➤ We conducted extensive research on Wireless Power Transfer (WPT) technology to enhance power transfer efficiency and system performance.
- > Used a phase shift full bridge combined with a two-sided LCC compensation

November 2022 June 2025

Research and design of non-thermal plasma devices power

Design ground power unit for Vietnam People's Army

- ➤ We conducted extensive research on Wireless Power Transfer (WPT) technology to enhance power transfer efficiency and system performance.
- ➤ Used a phase shift full bridge combined with a two-sided LCC compensation

November 2024 June 2025

> Classified

G Certifications

References

> Assoc. Prof. Dr. Nguyen Kien Trung School of Electrical and Electronic Engineering Hanoi University of Science and Technologies, Hanoi, Vietnam