Chapter 1 – Linear Algebra

Q.1 Consider the matrix:

$$J_6 = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{vmatrix}$$

which is obtained by reversing the order of the columns of the identity matrix I_6 .

Let $P = I_6 + \alpha J_6$, where α is a non-negative real number. The value of α for which det (P) = 0 is

Q.2 Let A be an $m \times n$ matrix and B an $n \times m$ matrix. It is given that determinant $(I_m + AB) = \text{determinant } (I_n + BA)$, where I_k is the $k \times k$ identity matrix. Using the above property, the determinant of the matrix given below is

- (A) 2 (B) 5
- (C) 8 (D) 16
- Q.3 If the vectors $e_1 = (1, 0, 2)$, $e_2 = (0, 1, 0)$ and $e_3 = (-2, 0, 1)$ form an orthogonal basis of the three dimensional real space R^3 , then the vector $u = (4, 3, -3) \in R^3$ can be expressed as

(A)
$$u = -\frac{2}{5}e_1 - 3e_2 + \frac{11}{5}e_3$$

(B)
$$u = -\frac{2}{5}e_1 - 3e_2 - \frac{11}{5}e_3$$

(C)
$$u = -\frac{2}{5}e_1 + 3e_2 + \frac{11}{5}e_3$$

(D)
$$u = -\frac{2}{5}e_1 + 3e_2 - \frac{11}{5}e_3$$

Statement for Linked Answer Ouestions 4 & 5

Given that three vector as

$$P = \begin{bmatrix} -10 \\ 1 \\ 3 \end{bmatrix}^{T}, \ Q = \begin{bmatrix} -2 \\ -5 \\ 9 \end{bmatrix}^{T}, \ R = \begin{bmatrix} 2 \\ -7 \\ 12 \end{bmatrix}^{T}$$

Q.4 An orthogonal set of vectors having a span that contains *P*, *Q*, *R* is

$$(A) \begin{bmatrix} -6 \\ -3 \\ 6 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -4 \\ 2 \\ 4 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \\ -11 \end{bmatrix} \begin{bmatrix} 8 \\ 2 \\ -3 \end{bmatrix}$$

$$(C)\begin{bmatrix} 6 \\ 7 \\ -1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ -2 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \\ -4 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 4 \\ 3 \\ 31 \\ 11 \\ 3 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}$$

Q.5 The following vector is linearly dependent upon the solution to the previous problem

$$(B) \begin{bmatrix} -2 \\ -17 \\ 30 \end{bmatrix}$$

$$(C)\begin{bmatrix} 4\\4\\5 \end{bmatrix}$$

$$(D)\begin{bmatrix} 13\\2\\-3 \end{bmatrix}$$

- **Q.6** Choose the CORRECT set of functions, which are linearly dependent.
 - (A) $\sin x$, $\sin^2 x$ and $\cos^2 x$
 - (B) $\cos x$, $\sin x$ and $\tan x$
 - (C) $\cos 2x$, $\sin^2 x$ and $\cos^2 x$
 - (D) $\cos 2x$, $\sin x$ and $\cos x$
- Q.7 Consider the matrices $X_{(4\times3)}, Y_{(4\times3)}$ and $P_{(2\times3)}$

. The order of $[P(X^TY)^{-1}P^T]^T$ will be

- $(A)(2\times2)$
- (B) (3×3)
- (C) (4×3)
- (D) (3×4)
- Q.8 Given that the determinant of the matrix

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{bmatrix}$$
 is -12, the determinant of the

- (A) 96
- (B) 24
- (C)24
- (D)96
- **Q.9** For the matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ if det

stands for the determinant and A^{T} is the transpose of A then the value of $det(A^{T}A)$ is

Q.10 The figure shows a shape ABC and its mirror image $A_1 B_1 C_1$ across the horizontal axis (*X*-axis). The coordinate transformation matrix that maps ABC to $A_1 B_1 C_1$ is

- $(A)\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- $(B)\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- $(C)\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- $(D)\begin{bmatrix}1&0\\0&-1\end{bmatrix}$
- **Q.11** The rank of matrix $\begin{bmatrix} 6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 14 & -14 & 0 & -10 \end{bmatrix}$

is____

- **Q.12** *A* is a $_{m \times n}$ full rank matrix with $_{m > n}$ and $_{I}$ is an identity matrix. Let matrix $_{A^{+}} = (A^{T}A)^{-1}A^{T}$. Then which one of the following statements is FALSE?
 - $(A) AA^{+}A = A$
- (B) $(AA^+)^2 = AA^+$
- (C) $A^+A = I$
- (D) $AA^{+}A = A^{+}$
- **Q.13** Given a system of equations

$$x + 2y + 2z = b_1$$

$$5x + y + 3z = b,$$

which of the following is true regarding its solutions?

- (A) The system has a unique solution for any given b_1 and b_2 .
- (B) The system will have infinitely many solutions for any given b_i and b_i .
- (C) Whether or not a solution exists depends on the given b_1 and b_2 .
- (D) The system would have no solution for any values of b_1 and b_2 .
- Q.14 The following system of equations

$$x + y + z = 3$$
, $x + 2y + 3z = 4$

$$x+4y+k=6$$

will not have a unique solution for k equal to

- (A)0
- (B)5
- (C)6
- (D)7
- **Q.15** The Eigen values of a (2×2) matrix X are -2and -3. The Eigen values of the matrix $(X + I)^{-1}(X + 5I)$ are

 - (A) -3, -4 (B) -1, -2

 - (C) 1, -3 (D) 2, -4
- **Q.16** Consider the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$

whose Eigen values are 1,-1 and 3. The trace of $(A^3 - 3A^2)$ is _____.

- Q.17 The eigen values of a skew-symmetric matrix are
 - (A) always zero.
 - (B) always pure imaginary.
 - (C) either zero or pure imaginary.
 - (D) always real.
- **Q.18** The value of x for which all the eigen-values of the matrix given below are real is

$$\begin{bmatrix} 10 & 5+j & 4 \\ x & 20 & 2 \\ 4 & 2 & -10 \end{bmatrix}$$

- (A) 5 + j
- (B) 5 j
- (C) 1 j5
- (D) 1 + j5
- **Q.19** Consider the 5×5 matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}$$

It is given that A has only one real eigen value. Then the real eigen value of A is

- (A) 2.5
- (B)0
- (C) 15
- (D)25

Q.20 For a given 2×2 matrix A, it is observed that

$$A\begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $A\begin{bmatrix} 1 \\ -2 \end{bmatrix} = -2\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Then matrix A is

(A)
$$A = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$$

(B)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

(C)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$(D) A = \begin{bmatrix} 0 - 2 \\ 1 - 3 \end{bmatrix}$$

Q.21 If $\{1,0,-1\}^T$ is an Eigen vector of the following matrix,

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

Then the corresponding Eigen value is

- (A)1
- (B)2
- (C)3
- (D)5

