

Georgetown Data Science Cohort 15 - Summer 2019 Capstone Project

Project Team

Team Members:

- ► Charles Ping
- ▶ Joe DeRose
- ► Mohamed Osman
- ► Raymond Stanley
- ► Richard Colvin

Data Science

Overview

Presentation Agenda

- ► Project Background
- ► Data Source Summary
- ▶ Data Wrangling & Storage
- ► Feature Generation
- ► Exploratory Data Analysis
- ► Feature Ranking
- ▶ Data Modeling & Analysis
- ► Conclusion
- ▶ Data Product Demonstration

Project Background

- Utilizing data from a large online grocery delivery service, can we predict when an existing customer is likely to order again?
- Knowing when a customer is likely to order again can help optimize retention strategy
- Retention Statistics:
 - ➤ 2% increase in customer retention can lead to up to a 10% reduction in costs
 - ► Typical American business loses 15% of customers annually (Smallbiztrends.com)

Data Source Summary

- Dataset is sourced from Kaggle competition
- Utilizes Instacart online grocery delivery service
- Original goal of competition was to predict which products a customer will order next
- ► Dataset includes group of relational csv files containing over 3 million orders for 200,000 customers

Data Source Summary

Aisles.csv

aisles._id: integer (1:134)

aisle: string

Departments.csv

department_id: integer (1:21)

department: string

Products.csv

product_id: integer (1: 49688)

product_name: string

aisle_id: integer

department_id: integer

Order_Products_Prior.csv

order_id: integer

product_id: integer

add_to_cart_order: integer

reordered: boolean 0-1

Orders.csv

order_id: integer

user_id: string

order_number: integer

order_dow: integer (1-7)

order_hour_of_day: integer (0-23)

day_since_prior_order: integer (0-30)

Project Pipeline

Data Wrangling & Storage

- Loaded csv files from Kaggle to tables in SQLlite database
- ► Five csv files with varying amounts of information loaded into five separate tables in SQLite
- ► Data verification: 206,209 users (instances) with range of 4 to 100 orders each
- ▶ Days since prior order range from 1-31 days, target group will be combination of this feature once EDA is performed
- Merged required features into one csv file and loaded to table in SQLite

Exploring the orders dataset

```
print('Total unique Count:')
  orders df.nunique()
  Total unique Count:
  order id
                              3421083
  user id
                               206209
   eval set
                                 100
   order number
   order dow
  order hour of day
                                  24
  days since prior order
                                  31
   dtvpe: int64
```

Table above referenced from Jupyter notebook uploaded to Github

- Several questions concerning our merged dataset to answer prior to generating target and feature
- What was the distribution of the days since prior order for a user?
- How many orders did the average user have?
- What days of the week and time of day were most popular for users to order?
- ► What is the most popular department type of products ordered?
- ► How many unique products did a user order during the time frame of our dataset?

Distribution of Days Since Prior Order

Number of Orders per User

Order Count per Day of the Week

Order distribution by Department

Order traffic per hour by Department type

Feature Generation

- Through preliminary EDA three distinct groups of next purchase day became evident
- ► Target defined as next purchase day for users grouped by 0-7 days, 8-29 days, and 30+days
- Multiclass Classification problem
- ► Assigned labels to each group; 0-7 days assigned "0"; 8-29 days assigned "1"; 30+ days assigned "2"
- ► Feature generation based upon intuitive predictive qualities from dataset

Feature Generation

- ▶ 42 total feature included in dataset
- Examples of features created include:
 - ▶ Number of inactive days per user
 - Number of unique products ordered by user
 - Number of reordered products by user
 - Preferred day of week for order by user
 - Preferred hour of day by user
 - ► Encoded (Morning=0; Afternoon=1; Night 2)
 - Number of perishable items by user
 - ▶ Bakery, Produce, Meat, Seafood, Dairy defined as perishable
 - Number of food vs nonfood items purchased by user
 - ▶ Mode of department type of first product added to cart by user

Feature Ranking

Yellowbrick 2D Rank - Feature Ranking

Feature Plot

Plot Top 3 Features Relative to Target

- Model selection process:
 - Used Cross Validation method to evaluate the performance of different models:
 - ► Tried different classification models from sklearn
 - ► Tried different scaler techniques for each model
 - Hyperparameter Tuning using GridSearchCV from sklearn
- Model Evaluation:
 - ► Feature Importance
 - ▶ Confusion Matrix
 - ► Classification Report

Multiclass Classification - Model Selection

Cross Validation Scores:

model	Bagging	CART	ExtraTrees	KNN	LDA	LR	LinearSVC	NB	RF	SVM	XGB
scaler											
	0.476	0.432	0.504	0.442	0.532	0.525	0.531	0.481	0.522	0.375	0.518
MaxAbsScaler	0.483	0.432	0.514	0.445	0.532	0.531	0.532	0.481	0.522	0.53	0.518
MinMaxScaler	0.48	0.431	0.507	0.445	0.532	0.53	0.532	0.481	0.522	0.527	0.518
Normalizer	0.462	0.41	0.505	0.448	0.522	0.494	0.511	0.484	0.504	0.469	0.498
PowerTransformer-Yeo-Johnson	0.484	0.431	0.511	0.442	0.522	0.528	0.522	0.495	0.522	0.514	0.522
Quantile Transformer-Normal	0.466	0.439	0.503	0.432	0.512	0.51	0.511	0.478	0.523	0.485	0.519
QuantileTransformer-Uniform	0.49	0.438	0.511	0.441	0.52	0.522	0.512	0.49	0.523	0.525	0.519
RobustScaler	0.472	0.432	0.51	0.455	0.532	0.529	0.533	0.481	0.522	0.521	0.516
StandardScaler	0.482	0.432	0.512	0.44	0.532	0.527	0.532	0.481	0.522	0.523	0.517

Multiclass Classification - Model Selection

GridSearchCV scores:

model CV_Score_with_hyperparamter_tuning

Random Forest	0.533
Logistic Regression	0.532
SVM	0.531

Multiclass Classification - Model Evaluation

► Feature Importance using yellowbrick FeatureImportances visualizer:

Multiclass Classification - Model Evaluation

► Feature Importance after dropping features with low importance and adding new features:

Multiclass Classification - Model Evaluation

Confusion Matrix using yellowbrick ConfusionMatrix visualizer:

Multiclass Classification - Model Evaluation

Classification Report using yellowbrick ClassificationReport visualizer:

Another Approach

- Redefined the target (next purchase day) for users and regrouped them by <=14 days as 0 and >14 days as 1
- More balanced data set
- Binary Classification Problem
- Applied the same steps of model selection and evaluation as in the multiclass problem
 next_purchase_day distribution Percentage of Users

Data Modeling and Analysis Binary Classification - Model Selection

Cross Validation Scores:

model	Bagging	CART	ExtraTrees	KNN	LDA	LR	LinearSVC	NB	RF	SVM	XGB
scaler											
	0.636	0.592	0.656	0.613	0.671	0.669	0.671	0.648	0.676	0.499	0.647
MaxAbsScaler	0.624	0.591	0.659	0.596	0.671	0.678	0.676	0.648	0.676	0.679	0.647
MinMaxScaler	0.632	0.592	0.658	0.612	0.671	0.677	0.676	0.648	0.676	0.676	0.645
Normalizer	0.632	0.586	0.663	0.619	0.674	0.651	0.673	0.628	0.673	0.641	0.664
PowerTransformer-Yeo-Johnson	0.626	0.592	0.666	0.62	0.678	0.676	0.675	0.657	0.676	0.67	0.638
Quantile Transformer-Normal	0.636	0.594	0.664	0.628	0.674	0.668	0.674	0.651	0.676	0.667	0.649
Quantile Transformer-Uniform	0.627	0.594	0.666	0.634	0.671	0.682	0.672	0.646	0.676	0.675	0.649
RobustScaler	0.637	0.592	0.667	0.632	0.671	0.68	0.674	0.648	0.676	0.673	0.646
StandardScaler	0.637	0.595	0.652	0.616	0.671	0.681	0.674	0.648	0.676	0.664	0.646

Selected Logistic Regression model since it scored higher

Binary Classification - Model Evaluation

► Feature Importance using yellowbrick FeatureImportances visualizer:

Binary Classification - Model Evaluation

Confusion Matrix using yellowbrick ConfusionMatrix visualizer:

Binary Classification - Model Evaluation

Classification Report using yellowbrick ClassificationReport visualizer:

Resources

Conclusion

- Multiclass RF model with hypertuned score of 0.53 may not be high enough to deploy in real world setting; however grouping users into three groups is more useful for a business case
- ► If we had more time, finding ways to increase the Multiclass RF model score would be priority
- ► Ways to improve score:
 - Biggest flaw was most likely lack of strong features
 - ▶ Brining in data from other sources outside of the Instacart csv set could enhance outcome
 - ► Features such as user demographics, spending habits, and grocery store ordered from

Data Product

► Model demonstration - Flask App