

Let P = I go to work, q = I brush my teeth r = I drive my car. S = I tie my shoes. t = I wear sucks. So the question can be written as: Suppose all the premises are true, but conclusion is false. p -> (qur) -0 sant -0 Pis true. t-, ng -0 (qur) is true (from 0& 19) - 6 P (1) (-) (D) YURS = ~ SUY (using commutative law) : runs -6 ~SUY = S-> Y (using implication is disjunction) is false S-> r is false so S r can be known are true & false. - 0 9 must be True (from 680) nt must be True (from 020) Thus, it is possible that all the premises are true but the conclusion is take. Therefore the following arguements are "invalid." 4. (a) 3 X ER such that X EQ but X EQ. VXER, XEQ -> XEQ. Ans: (b) is true. For (a) no number X could be found that it square is rational but X is integer. For (b), yes, for every X is a real number, if X' is a rational number, then X is also a rational number. (a) ty EQ, I r EQ such that F EZ its negation = 39EQ, such that UrEQ, FEZ And " y q & Q, Ir & Q such that \ F & Z" is true. Because every rational number 9 has their own reciprocal r to make is a integer. (b) BZEZ such that Ux, yEZ, x-yzZ its negation = tz EZ, Jx, y E Zu, such that X-Y ZZ " BZEZ 3 x, y & Zs, such that x-y = 2" is true because x, y could be easily found for us that their difference is bigger then whatever & it is because x & y can be any two numbers on the number line.

