TRAINING DATA

for instance tuples of already labeled data: (genom, protein expression)

parameter tuning:

- optimal error rate
- but also good generalization to unknown data

DATA TO BE CLASSIFIED

in our example of the form:

(genom1)

(genom2)

(genom3)

• • •

•••

MACHINE LEARNING ALGORITHM

allows for certain parameters to be tuned according to training data

DATA CLASSIFICATION

(genom1, expression1)

(genom2, expression2)

(genom3, expression3)

••

••

PREDICTION

prediction of labels of the form

(expression1)

(expression2)

(expression3)

•••

. . .

weighted sum

activation function

$$\mathbb{R}^{n+1} \ni x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma(w \cdot x) \\ \vdots \\ x_n \end{pmatrix} \quad y \in \{-1, +1\}$$

weight vector

$$w \in \mathbb{R}^{n+1}$$

signum function

$$\sigma(z) := \begin{cases} +1 & \text{for } z \ge 0 \\ -1 & \text{for } z < 0 \end{cases}$$

Input signals

weighted sum

activation function

feedback for update rule

weight vector

$$w \in \mathbb{R}^{n+1}$$

signum function

$$\sigma(z) := \begin{cases} +1 & \text{for } z \ge 0 \\ -1 & \text{for } z < 0 \end{cases}$$

Input signals

weighted sum

activation function

 $\alpha: \mathbb{R} \to \mathbb{R}$

weight vector

$$w \in \mathbb{R}^{n+1}$$

signum function

$$\sigma(z) := \begin{cases} +1 & \text{for } z \ge 0 \\ -1 & \text{for } z < 0 \end{cases}$$

