Stat 541 Homework #3

Kenny Flagg

February 1, 2016

- 2. (a) H_0 : $\tau_1 = \tau_2 = \tau_3 = \tau_4$; All effects are equal. H_a : $\tau_i \neq \tau_j$ for some $i \neq j$; Some effects differ.
 - (b) SAS produced the following output. (See code in the appendix.)

PORTLAND CEMENT PROBLEM

The GLM Procedure

Dependent Variable: strength

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		3	489740.1875	163246.7292	12.73	0.0005
Error		12	153908.2500	12825.6875		
Corrected 7	Γotal	15	643648.4375			
	R-Square	Coeff V	ar Root M	MSE strength	Mean	
	0.760881	3.8628	113.25	506 2933	1.813	
Source		DF	Type III SS	Mean Square	F Value	Pr > F
technique		3	489740.1875	163246.7292	12.73	0.0005

Since the technique row has p-value = 0.0005, we reject H_0 with $\alpha = 0.05$. There is evidence that the mean tensile strength is not the same for all mixing techniques.

(c) Fisher's LSD output from SAS:

PORTLAND CEMENT PROBLEM

The GLM Procedure

t Tests (LSD) for strength

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	12825.69
Critical Value of t	2.17881
Least Significant Difference	174.48

Means with the same letter are not significantly different.

t Grouping	Mean	N	technique
A	3156.25	4	2
B B	2971.00	4	1
В	2933.75	4	3
С	2666.25	4	4

All pairs of means are significantly different except for the means of techniques 1 and 3.

- (d) Bonferroni's procedure would result in fewer significant differences because the minimum significant difference would be larger than that used by Fisher's procedure. In particular, techniques 1 and 2 may no longer be significantly different because their difference (185.25 lb/in^2) is only slightly higher than Fisher's least significant difference.
- (e) Since the measurements differ in the number of significant digits, I would ask if the measurements were made by the same individual and the same equipment. Different individuals and equipment would be sources of dependency between observations that this analysis does not account for.

- 3. (a) H_0 : $\sigma_{\tau}^2 = 0$; There is no variation in the mean calcuim concentration between batches. H_a : $\sigma_{\tau}^2 > 0$; There is variation in the mean calcuim concentration between batches.
 - (b) ANOVA table from SAS:

BATCH VARIABILITY PROBLEM

The GLM Procedure

Dependent Variable: calcium

Source		DF	Sum Squai		Mean Squar	e F Value	Pr > F
Model		5	0.189322	222	0.0378644	10.38	<.0001
Error 3		30	0.109433	333	0.0036477	' 8	
Corrected Total		35	0.29875	556			
	R-Square	Coeff		Root M		um Mean	
	0.633703	13.38	846 (0.06039	97 ().451111	
Source		DF	Type III	SS	Mean Squar	re F Value	Pr > F
batch		5	0.189322	222	0.0378644	10.38	<.0001

(c) The REML estimates from PROC VARCOMP are $\hat{\sigma}_{\tau}^2=0.0057028$ and $\hat{\sigma}^2=0.0036478$.

BATCH VARIABILITY PROBLEM

Variance Components Estimation Procedure

Class Level Information

Class	Levels	Values
batch	6	1 2 3 4 5 6

Number of Observations Read 36 Number of Observations Used 36

Dependent Variable: calcium

REML Iterations

Iteration	Objective	Var(batch)	Var(Error)
0	-184.7778274868	0.0057027778	0.0036477778
1	-184.7778274868	0.0057027778	0.0036477778

Convergence criteria met.

REML Estimates

Estimate
0.0057028
0.0036478

Asymptotic Covariance Matrix of Estimates

	Var(batch)	Var(Error)
Var(batch)	0.00001595	-1.4785E-7
Var(Error)	-1.4785E-7	8.87086E-7

(d) Boxplot of calcium concentration by batch, produced by SAS:

All of the batches have somewhat similar spreads. Batches 1, 2, and 3 have similar means. These are noticeably higher than the means of batches 4, 5, and 6, which are themselves quite similar.

- (e) We do not have enough information to assess the assumption of independence between batches. The pattern in the boxplot could occur if one person or device measured the first three batches and another person or device measured the second three batches. We need to know what equipment and operator made each measurement.
- 4. Let μ_0 be the mean for the sham treatment, and let μ_i be the mean for the *i* h/day treatment, i = 1, 2, 3.

Ignoring the sham treatement, orthogonal linear and quadratic contrasts for the treatment means are:

$$\Gamma_L = 0\mu_0 - 1\mu_1 + 0\mu_2 + 1\mu_3$$

$$\Gamma_Q = 0\mu_0 + 1\mu_1 - 2\mu_2 + 1\mu_3$$

The estimates of the treatment means are

$$\hat{\mu}_0 = 5.6725$$
 $\hat{\mu}_1 = 6.1655$ $\hat{\mu}_2 = 5.4780$ $\hat{\mu}_3 = 6.3505$

so the estimates of the contrasts are

$$\widehat{\Gamma}_L = 0 \times 5.6725 - 1 \times 6.1655 + 0 \times 5.4780 + 1 \times 6.3505 = 0.185$$

$$\hat{\Gamma}_Q = 0 \times 5.6725 + 1 \times 6.1655 - 2 \times 5.4780 + 1 \times 6.3505 = 1.560$$

Appendix: SAS Code

Problem 2

```
options center nodate nonumber linesize=80 formdlim='*';
ods listing file='hw3p2.lis';
TITLE 'PORTLAND CEMENT PROBLEM';
DATA in;
  DO technique = 1 TO 4;
    D0 rep = 1 \text{ TO } 4;
      INPUT strength @@;
      OUTPUT;
    END;
  END;
DATALINES;
3129 3000 2865 2890 3200 3300 2975 3150
2800 2900 2985 3050 2600 2700 2600 2765
PROC GLM DATA=in;
  CLASS technique;
  MODEL strength = technique / SS3;
  MEANS technique / LSD;
RUN;
QUIT;
Problem 3
options center nodate nonumber linesize=80 formdlim='*';
ods listing file='hw3p3.lis';
TITLE 'BATCH VARIABILITY PROBLEM';
DATA in;
  DO batch = 1 TO 6;
    D0 rep = 1 \text{ TO } 6;
      INPUT calcium @@; OUTPUT;
    END;
  END;
DATALINES;
0.51 0.55 0.62 0.42 0.49 0.57 0.60 0.47 0.42 0.52 0.55 0.48
0.51 0.64 0.45 0.54 0.49 0.58 0.32 0.40 0.37 0.46 0.42 0.38
0.29 0.46 0.37 0.32 0.40 0.36 0.30 0.41 0.36 0.45 0.39 0.37
```

```
PROC GLM DATA=in;
CLASS batch;
MODEL calcium = batch / SS3;
RANDOM batch / TEST;

PROC VARCOMP DATA=in METHOD=REML;
CLASS batch;
MODEL calcium = batch / FIXED=0;

RUN;
QUIT;
```