<regression a<="" th=""><th>Analysis F</th><th>inal Exam</th><th>2015></th><th>Hakbun:</th><th></th><th></th><th> </th><th></th></regression>	Analysis F	inal Exam	2015>	Hakbun:			 	
(total points :	100)		Name ii	n Korean :			 	
(괄호 안에 답만	적으시오.	과정생략.	괄호 밖의 !	내용은 인정	하지 않	<u> </u>		

[1] The following output is the summary of p-values from the regressions of FuelCon on Pop, Area, or Gastax variables.

	рор	area	gastax
model fuelcon = pop area gastax ;	0.0296	0.0543	0.1353
model fuelcon = pop area;	0.0380	0.8240	
model fuelcon = pop gastax;	0.0986		0.0560
model fuelcon = area gastax ;		0.7478	0.0727
model fuelcon = pop ;	0.0359		
model fuelcon = area ;		0.8087	
model fuelcon = gastax ;			0.0718

```
1-1 Using "forward selection with SLE=0.06", write your selected variables : (5pts)
1-2 Using "backward elimination with SLS= 0.08", write your selected variables: (5pts)
1-3 Using "Stepwise Regression with SLE= 0.06 and SLS = 0.08", write your selected
variables (5pts):
1-4 When you try the following SAS code, write your selected variables (5pts):
  proc reg;
      model fuelcon = gastax pop area / Selection = F sle = 0.10 include =1;
  run;
(
                       )
[2] The statistic, C(p), is called as ____(a)____ 's Cp, and it is recommended that
regressions with __(b)__ Cp values and those with values near __(c)__ where K is the
number of independent variables in the regression. (10pts)
(a) = (
(b) = (large, small)
(c) = (
```

[3] The following results are from "all possible regression" technique. Answer the questions. (20 pts)

	R^2	$Adj. R^2$	Ср	\sqrt{MSE}
Model 1: x1, x2	85.5%	84.2%	1.61	90.75
Model 2: x1, x2, x3	85.7%	83.6%	3.33	92.26
Model 3: x1, x2, x4	85.8%	83.8%	3.11	91.75

- 3-1 Based on \mathbb{R}^2 , we could choose Model 3 as the best model. (True , False)
- 3-2 Based on $Adj. R^2$, Model 1 is the best. (True , False)
- 3-3 The chosen model based on $Adj.\,R^2$ is always same to that of \sqrt{MSE} (True , False)
- 3-4 Considering the given information, the best model is

(Model 1, Model 2, Model 3)

[4] The Furniture monthly sales (Y) are regressed on the time (Jan. 1992 - Dec. 2002: starting 1 through 130). "LagY" is the variable representing the previous month sales amount (Lagged dependent variable). JAN is the indicator variable having 1 for January and 0 for other months. We used 11 indicator variables for 12 months.

$$\hat{y} = 1552 + 8\,Time + 0.5\,LagY - 645\,JAN - 404\,FEB - 80\,MAR - 450\,APL - 180\,MAY \\ -300\,JUN - 280\,JUL - 180\,AUG - 350\,SEP - 240\,OCT + 10\,NOV$$

4-1 To test if there is seasonal variation (seasonal effect), we need to calculate F-ratio which has ___(a)__ and ___(b)__ degrees of freedom. (5pts)

$$(a) = ($$

(b) =
$$($$

4-2 According to the above regression line, the highest season for the furniture sales is November. (5pts) (True , False)

4-3 Suppose the sale amount on Dec. 2002 is 4500. Then, predict the sales amount on Jan. 2003. (5pts)

4-4 The reason to use Lagged dependent variable (LagY) in the regression equation is to eliminate the autocorrelation between dependent variable. (5pts) (True , False)

[5] Consider the regression model : $y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \epsilon_t$

y_t	10	20	25	30
t	1	2	3	4

Construct the matrix and vectors to make

$$y = X\beta + \epsilon$$

5-1 where (5pts)

$$X = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

5-2 With X and y, complete the following least square estimator formula: (5pts)

$$\hat{\boldsymbol{\beta}} = ($$
) \boldsymbol{y}

- [6] Fill the blanks:
- 6-1 One caution should be observed in using high-order polynomial regression models. Correlations between powers of a variable can result in m___(a)_____ problems. To reduce the possibility of computational difficulties, the use of explanatory variables that has been c____(b)____ is recommended. (10 pts)
- (a) m_____
- (b) c_____
- 6-2 Although $\,R^2\,$ has a nice interpretation, there is a drawback to its use in multiple regression. As more explanatory variables are added to the regression model, the value of $\,R^2\,$ will never d___(a)_____, even if the additional variables are explaining ____(b)____ proportion of the variation in y. (10 pts)
- (a) = d_____
- (b) = (an insignificant, a significant)