

720W Platinum Rated AC/DC Reference Design

Efficiency Measurement Guidelines

General Guidelines

- Use calibrated, precision test equipment
 - see recommended list of equipment
- Maintain optimum thermal conditions
 - Testing at room temperature (25°C ambient)
 - Disable chassis mounted fans and do not provide external airflow
- Test for efficiency after thermal stabilization
 - Run system for at least 2 hours before taking measurements
- To increase accuracy, record large sample set of measurements and calculate average

Test Equipment

Recommended Test Equipment:

- Programmable AC Source with Vthd < 2%
- Precision Power Meter with analog I/O capability
- Data logger with at least 3 channels (simultaneous sampling preferred)
- Electronic Load (800W or higher)
- Current shunt resistor to measure load current

Equipment Used in Microchip Laboratory:

- Chroma Programmable AC source 61502
- ZES Zimmer LMG95 with L95-O3 signal processing interface
- Agilent 34970A/34972A with multiplexer card 34901A
- Agilent N3300A mainframe with 2x N3304A load modules
- LA-100-100 (100A, 100mV shunt resistor, ±0.25%)

Equipment Connections

July 2012

Input side Connection

- Input current measured using internal shunt of the power meter
- Voltage measurement performed with connections as shown below

Power Meter Settings

- Configure power meter measurement settings as follows:
 - Synchronize to: Input voltage
 - Coupling: AC+DC
 - Input Filter: 350Hz
 - Coupling for input filter: AC
 - Cycle time: 1sec
 - Averages: 10 cycles
- Configure AOut1 on Analog I/O connector to transmit input power measurement data to data logger

Output Connections

- Use one pair of output terminals for loading
- Use the other pair of output terminals for sensing Vout

Data Logger settings

- Use smallest available range for the signal to be measured. For e.g. use ±100mV range for load current, ±100V range for output voltage
- Use highest measurement resolution where possible (6.5 digits)
- Configure DC input resistance of $10M\Omega$
- Use channel delay of 0.2sec

Measurement Errors

- Based on recommended test setup, error for efficiency measurement can be up to ±0.25%
- Refer to 80PLUS power supply test protocol for equipment accuracy requirements (see next slide)

July 2012

References

- 80PLUS power supply test protocol:
 - http://efficientpowersupplies.epri.com/pages/ Latest Protocol/Generalized Internal Power Supply Efficiency Test Protocol R6.5.pdf
- http://www.80plus.org
- http://www.climatesaverscomputing.org
- http://www.microchip.com/smps

July 2012