USING OPTIMALLY CONNECTED PAIRS TO APPROXIMATE TSP SOLUTIONS

ALEXANDER J. SCHMIDBAUER

TRAVELLING SALESMAN PROBLEM

"Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?"

- Complete Undirected Weighted Graph
- Brute Force Required To Guarantee Optimal Solution
- (n-1)! Calculations

NON GUARANTEED SOLUTIONS

- Do Not Guarantee Optimal Solution
- May Be More Efficient
- In Most Cases, Good Enough

WEIGHTED COMPLETE UNDIRECTED GRAPHS

- Each edge is assigned a "distance" or "cost" value
- Each node is connected to all other nodes by an edge
- It costs the same to traverse an edge in one direction as the other

SMALLEST EDGE OF A NODE

Consider a Weighted Complete Undirected graph (WCU graph). If node k is in the WCU graph, of all the nodes connected to node k, the node min(k) is the closest to k; that is, the edge(k, min(k)) has the smallest weight of all the edges connected to node k. Every node within a WCU graph has one or more min(node).

Therefore, we define min(k) as the closest node to k.

OPTIMALLY CONNECTED PAIRS

In the case of a WCU graph, if there exists two nodes, a and b, where:

min(a)=b and min(b)=a

Then we define these nodes as an *Optimally Connected Pair* (OCP). An OCP contains two nodes, of which are closer to each other than any other nodes within the graph.

THEOREM

For every WCU graph, there exists at least one OCP comprised of nodes within the WCU graph.

PROOF

Proved using Proof By Contradiction

Consider a WCU graph G such that:

a.
$$|G| = n$$

b.
$$G = \{g_1, g_2, g_3, ..., g_{m_1}, g_{m+1}, ..., g_{n-1}, g_n\}$$

c. G has no OCP's.

If there are no OCP's in WCU graph G, then:

$$min(g_1) = g_2 min(g_2) = g_3 ... min(g_{n-1}) = g_n min(g_n)$$

= g_m

However, if the aforementioned is true, then:

$$|(g_1, g_2)| > |(g_2, g_3)| > \dots > |(g_{n-1}, g_n)| > |(g_n, g_m)| > |(g_m, g_{m+1})|$$

Simplified,

$$|(g_m, g_{m+1})| > |(g_n, g_m)| > |(g_m, g_{m+1})|$$
(Not Possible)

So, a WCU cannot exist without an OCP.

OCP ALGORITHMS

- Take into account OCP's to efficiently find paths in TSP Problems
- Similar to Greedy Algorithms, but much more accurate
- Extremely fast and cost efficient
- Worst Case: n³ calculations
- Best Case: n calculations
- Average: 0.5n³ + 0.5n calculations
- M² memory required

TOUR OF 50 USA LANDMARKS

- Originally covered by Newsweek in 1954
- Challenge by Rand Corporation
- 50 Nodes, 6.08x10 62 calculations to Brute Force
- Believed to be Solved

DATA SET

SOLUTION

OCP SOLUTION

OCP ALGORITHM 50USAL STATS

- ~24500 Calculations Done By OCPA
- OCP Solution Path 23696516 Miles
- Real Solution Path 22015038 Miles
- OCP within 7% of Real Solution!

OTHER DATA SETS

ID N	lodes (Calculations F	Result (How Close (Percent)	
GR17	17	2176	2189	2085	4.751027867	
FRI26	26	9100	960	937	2.395833333	
XQF131	131	136240	664	564	15.06024096	
XQG237	237	783048	1218	1019	16.33825944	
PBM436	436	2655240	1740	1443	17.06896552	
XQL662	662	6126148	2832	2513	11.26412429	
DKG813	813	9242184	3669	3199	12.81002998	
XIT1083	1083	16405284	4174	3558	14.75802587	
DKA1376	1376	26488000	5544	4666	15.83694084	

RESULTS

- OCP Algorithm Produces Very Efficient Solutions
- OCP Algorithm Takes Very Little Calculations
- OCP Algorithm is Competitive Against Other Algorithms

WORKS CITED

http://www.math.uwaterloo.ca/tsp

https://people.sc.fsu.edu/~jburkardt/datasets/tsp/

https://www.iwr.uni-heidelberg.de/groups/comop

t/software/TSPLIB95/