Numerical improvements and workarounds

- Only solve timepoints where there is data for speed up
 - Must also solve the "zero" timepoint to correspond to the initial conditions
 - <u>5 year offset</u> to compare simulation "steady state" to data
- Solver errors mitigated by limiting iteration and reducing precision:

```
odeint(hiv, Y0, times, args=*params, mxstep=100, rtol=0.1)
```


lsoda-- warning..internal t (=r1) and h (=r2) are such that in the machine, t + h = t on the next step (h = step size). solver will continue anyway

.../scipy/integrate/_odepack_py.py:248:
ODEintWarning: Excess work done on this call
(perhaps wrong Dfun type). Run with full_output
= 1 to get quantitative information.
 warnings.warn(warning_msg, ODEintWarning)

ABC-SMC fit is off by 10². Parameters are unimodal

Pairs plot shows no strong collinearity or multiplicative (banana-shape) relationships

r-hat is close to 1, but from varying weights rather than initial conditions between chains

	mean	sd	hdi 3%	hdi 97%	mcse mean	mcse sd	ess bulk	ess tail	r-hat
T _{max}	715.477	90.586	568.000	888.000	2.500	1.808	1376.0	886.0	1.01
N	924.761	248.180	487.000	1409.000	6.106	4.328	1665.0	1694.0	1.01
S	0.346	0.280	0.028	0.815	0.006	0.004	1952.0	1472.0	1.00
r	726.696	352.081	203.136	1355.833	9.366	6.624	1304.0	1311.0	1.01
μ_{T}	80.200	48.967	11.847	169.950	1.265	0.895	1362.0	1216.0	1.01
μ_{b}	11.590	10.579	0.835	26.578	0.375	0.350	1603.0	1371.0	1.01
μ_{V}	1.435	1.203	0.054	3.606	0.037	0.026	1006.0	896.0	1.01
k ₁	155846.658	114677.442	15920.121	363677.189	2876.308	2034.230	1498.0	1173.0	1.01
k ₂	1183.134	715.702	218.344	2495.619	18.205	13.694	1551.0	797.0	1.01

Parameter range quantiles [3%, 97%] changes with calibration (rounded to 2 significant digits)

Fixed parameters to non-oscillatory regions: (N=1400, μ_T =0.2, r=0.1, k_1 =1) but Σ CD4 crashes to 0

odeint(hiv,	Υ0,	times,	args=*params,
mxste	ep=10	00, rto	l=0.01)

Stages: 10

	Tmax	S	μ_{b}	μ_{V}	K ₂
Before	312, 880	1.5, 30.3	.03, .72	.35, 7.3	3e-4, 9e-3
After	450, 860	.38, .80	30, 66	.3, 4.8	130, 200

Fixed T_{max} hyperprior to value used in Perelson 1993 paper: (N=1400, T_{max} =1500, μ_T =0.2, r=0.1, k_1 =1) no improvement

mxstep=100, rtol=0.01)

mu_V	Before	1.5, 30.3	.03, .72	.35,
Stages: 11	After	.46, .82	37, 83	.3,

94% HDI

 μ_{b}

k_2

mean=152

3e-4, 9e-3

110, 190

Reduced N below 502 bifurcation: (N=400, T_{max} =1500, μ_{T} =0.2, r=0.1, k_{1} =1) less disjoint

mxstep=100, rtol=0.01)

	S	μ_{b}	μ_{V}	k ₂
Before	1.5, 30.3	.03, .72	.35, 7.3	3e-4, 9e-3
After	.07, .83	54, 88	.13, 2.9	130, 270

Used exact values from the Perelson 1993 paper: (N=774, T_{max} =1500, μ_{T} =0.02, r=0.03, k_{1} =2.4e-5) μ_{b} is better

mxstep=100, rtol=0.01)

Stages: 7

After

k_2

.35, 7.3

.07, .74 .08, 31 .06, 1.0

3e-4, 9e-3

40, 2400

Fixed k_2 to value in Perelson 1993 paper: (N=774, T_{max} =1500, μ_T =0.02, r=0.03, k_1 =2.4e-5, k_2 =3e-3) μ_b is worse

Varied N: $(T_{max}=1500, \mu_T=0.02, r=0.03, k_1=2.4e-5, k_2=3e-3) \Sigma CD4 no longer 0$

Fixed μ_b to the value in the Perelson 1993 paper: $(T_{max}=1500, \mu_T=0.02, \mu_b=0.24, r=0.03, k_1=2.4e-5, k_2=3e-3)$ solver crashes

File ".../scipy/stats/_multivariate.py", line 172, in __init__
raise np.linalg.LinAlgError(msg)
numpy.linalg.LinAlgError: When `allow_singular is False`, the input
matrix must be symmetric positive definite.

But then succeeds after re-running 2x more times

NB: Couldn't fix this with a "try" "except" clause, so I've reported the issue upstream as a possible problem with the sampler kernel:

https://github.com/pymc-devs/pymc/issues/6786

Update: Using a simpler sampling kernel no longer creates the crash!

Stages: 7 (then crashes)

Fixed μ_b to the value in the Perelson 1993 paper:

 $(T_{\text{max}}=1500, \mu_{\text{T}}=0.02, \mu_{\text{b}}=0.24, r=0.03, k_1=2.4e-5, k_2=3e-3)$ about the same

	N	S	μ_{V}
Before	490, 1410	1.5, 30.3	.35, 7.3
After	555, 1074	0.15, 0.50	0.23, 0.71

odeint(hiv, Y0, times, args=*params, mxstep=100, rtol=0.01)

Stages: 8