# 計量経済 II: 宿題 8

#### 村澤 康友

提出期限: 2022年11月22日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例を正確に再現すること(乱数は除く). グループで取り組んでよいが,個別に提出すること. 解答例をコピペしたり,他人の名前で提出した場合は,提出点を0点とし,再提出も認めない. すべての結果をワードに貼り付けて印刷し(A4縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること.

- 1. gretl のサンプル・データ wgmacro は,旧西ドイツのマクロの投資・所得・消費の 1960 年第 1 四半期  $\sim$ 1982 年第 4 四半期の季節調整済みデータである.所得と消費のグレンジャー因果について,以下の分析を行いなさい.
  - (a) 所得・消費(対数階差)の 2 変量 VAR(4) モデルを推定し,2 変数間のグレンジャー因果検定の F 検定統計量の p 値を示しなさい.
  - (b) 所得・消費・投資(対数階差)の3変量 VAR(4) モデルを推定し,所得・消費の2変数間のグレンジャー因果検定のF 検定統計量の p 値を示しなさい.
  - ※ VAR モデルを推定すると、グレンジャー因果検定の F 検定統計量と p 値も出力される.
- 2. 前問と同じデータを使用する. 所得・消費(対数階差)の 2 変量 VAR(4) モデルを推定し、変数の順序を変えてインパルス応答関数を比較しなさい(95 %信頼区間も示すこと).
  - (a) 所得・消費の順
  - (b) 消費・所得の順
  - ※推定した VAR モデルのインパルス応答関数をプロットする手順は以下の通り.
  - (a) 推定結果の画面のメニューから「グラフ」→「インパルス応答」を選択.
  - (b)「予測する期間数」を入力.
  - (c)「ブートストラップ信頼区間を含む」をチェック.
  - (d) 信頼係数  $1-\alpha$  を入力.
  - (e)「コレスキー順序」を設定(先行する変数が上).
  - (f)  $\lceil OK \rfloor$  property propert
- 3. 前問と同じデータとモデルを使用して、各変数の予測誤差分解を図示しなさい.
  - ※推定した VAR モデルの予測誤差分解をプロットする手順は以下の通り.
  - (a) 推定結果の画面のメニューの「グラフ」→「分散分解を予測する」で変数を選択.
  - (b)「予測する期間数」を入力.
  - (c) グラフの種類を選択.
  - (d)「コレスキー順序」を設定(先行する変数が上).
  - (e)  $\lceil OK \rfloor$  をクリック.

## 解答例

## 1. (a) 2 変量 VAR(4) モデルの推定結果

VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1961:2-1982:4 (T=87)

Log-likelihood = 569.727

共分散行列の行列式の値 = 7.03108e-009

AIC = -12.6834

BIC = -12.1732

 $\mathrm{HQC} = -12.4779$ 

かばん検定 (Portmanteau test): LB(21) = 71.631, df = 68 [0.3583]

方程式 1: ld\_income

|                      | 係数          | 標準誤差                        | t-ratio | p 値      |
|----------------------|-------------|-----------------------------|---------|----------|
| const                | 0.00916667  | 0.00423939                  | 2.162   | 0.0337   |
| $ld\_income\_1$      | -0.0475029  | 0.137666                    | -0.345  | 1 0.7310 |
| $ld\_income\_2$      | 0.0203763   | 0.149614                    | 0.136   | 2 0.8920 |
| $ld\_income\_3$      | 0.156903    | 0.154238                    | 1.017   | 0.3122   |
| $ld\_income\_4$      | -0.0653646  | 0.143679                    | -0.454  | 9 0.6504 |
| $ld\_consumption\_1$ | 0.242406    | 0.162255                    | 1.494   | 0.1392   |
| $ld\_consumption\_2$ | 0.102592    | 0.179680                    | 0.571   | 0.5697   |
| $ld\_consumption\_3$ | 0.0743322   | 0.166489                    | 0.446   | 5 0.6565 |
| $ld\_consumption\_4$ | 0.0339139   | 0.147066                    | 0.230   | 6 0.8182 |
| Mean dependent va    | ur 0.018968 | S.D. depende                | ent var | 0.011812 |
| Sum squared resid    | 0.010565    | S.E. of regre               | ssion   | 0.011638 |
| $R^2$                | 0.119542    | Adjusted $\mathbb{R}^2$     |         | 0.029239 |
| F(8,78)              | 1.323784    | $\operatorname{P-value}(F)$ |         | 0.244309 |
| $\hat{ ho}$          | 0.002307    | Durbin-Wat                  | son     | 1.993954 |
|                      | ばっ生19年      | 7. 17. 松宁                   |         |          |

ゼロ制約のF 検定

| All lags of ld_income      | F(4,78) = 0.562628 | [0.6905] |
|----------------------------|--------------------|----------|
| All lags of ld_consumption | F(4,78) = 0.635902 | [0.6384] |
| All vars, lag 4            | F(2,78) = 0.103501 | [0.9018] |

方程式 2: ld\_consumption

|                      | 係数          | 標準誤差          | t-ratio  | o p値      |
|----------------------|-------------|---------------|----------|-----------|
| const                | 0.00703256  | 6 0.00358462  | 1.962    | 2 0.0533  |
| ld_income_1          | 0.336748    | 0.116404      | 2.893    | 3 0.0049  |
| $ld\_income\_2$      | 0.360800    | 0.126506      | 2.852    | 2 0.0056  |
| $ld\_income\_3$      | 0.203602    | 0.130416      | 1.561    | 0.1225    |
| $ld\_income\_4$      | 0.0865131   | 0.121488      | 0.712    | 21 0.4785 |
| $ld_consumption_1$   | -0.442682   | 0.137195      | -3.227   | 7 0.0018  |
| $ld\_consumption\_2$ | -0.138131   | 0.151929      | -0.909   | 92 0.3661 |
| ld_consumption_3     | 0.126397    | 0.140775      | 0.897    | 79 0.3720 |
| ld_consumption_4     | 0.0235226   | 0.124352      | 0.189    | 92 0.8505 |
| Mean dependent v     | ar 0.018378 | S.D. depend   | lent var | 0.011021  |
| Sum squared resid    | 0.007554    | S.E. of regre | ession   | 0.009841  |
| $R^2$                | 0.276862    | Adjusted $R$  | 2        | 0.202694  |
| F(8,78)              | 3.732901    | P-value $(F)$ |          | 0.000963  |
| $\hat{ ho}$          | 0.001900    | Durbin-Wa     | tson     | 1.904516  |
|                      | ゼロ制約        | りの F 検定       |          |           |
| All lags of ld_in    | come        | F(4,78) = 3.2 | 9681 [   | [0.0150]  |
| All lags of ld_co    | nsumption   | F(4,78) = 3.2 | 0279     | [0.0173]  |
| All vars, lag $4$    |             | F(2,78) = 0.4 | 48052 [  | [0.6405]  |

## (b) 3 変量 VAR(4) モデルの推定結果

VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1961:2-1982:4 (T=87)

Log-likelihood = 738.353

共分散行列の行列式の値 = 8.53139e-012

AIC = -16.0771

 $\mathrm{BIC} = -14.9717$ 

 $\mathrm{HQC} = -15.6320$ 

かばん検定 (Portmanteau test): LB(21) = 152.402, df = 153 [0.4985]

方程式 1: ld\_investment

|                      | 係数             | 標準誤差                        | t-ratio  | p 値      |
|----------------------|----------------|-----------------------------|----------|----------|
| const                | 0.00714076     | 0.0171878                   | 0.4155   | 0.6790   |
| $ld\_investment\_1$  | -0.267888      | 0.114955                    | -2.330   | 0.0225   |
| $ld\_investment\_2$  | -0.0702268     | 0.120929                    | -0.5807  | 0.5632   |
| $ld\_investment\_3$  | 0.162136       | 0.123848                    | 1.309    | 0.1945   |
| $ld\_investment\_4$  | 0.318690       | 0.118062                    | 2.699    | 0.0086   |
| $ld\_income\_1$      | 0.409866       | 0.529704                    | 0.7738   | 0.4415   |
| $ld\_income\_2$      | -0.164909      | 0.567110                    | -0.2908  | 0.7720   |
| $ld\_income\_3$      | 0.0542716      | 0.579176                    | 0.0937   | 0 0.9256 |
| $ld\_income\_4$      | -0.258145      | 0.539730                    | -0.4783  | 0.6339   |
| $ld\_consumption\_1$ | 0.421302       | 0.643686                    | 0.6545   | 0.5148   |
| $ld\_consumption\_2$ | 0.441097       | 0.705106                    | 0.6256   | 0.5335   |
| $ld\_consumption\_3$ | -0.00886575    | 0.652669                    | -0.0135  | 8 0.9892 |
| $ld\_consumption\_4$ | -0.548284      | 0.579633                    | -0.9459  | 0.3473   |
| Mean dependent v     | var = 0.015742 | S.D. depend                 | dent var | 0.044885 |
| Sum squared resid    | 0.139474       | S.E. of regr                | ession   | 0.043414 |
| $R^2$                | 0.195009       | Adjusted R                  | 2        | 0.064470 |
| F(12, 74)            | 1.493879       | $\operatorname{P-value}(F)$ |          | 0.145822 |
| $\hat{ ho}$          | 0.029353       | Durbin-Wa                   | tson     | 1.922754 |
|                      | ゼロ制約の          | DF 検定                       |          |          |

| All lags of ld_investment  | F(4,74) = 3.54535  | [0.0106] |
|----------------------------|--------------------|----------|
| All lags of ld_income      | F(4,74) = 0.255617 | [0.9054] |
| All lags of ld_consumption | F(4,74) = 0.360071 | [0.8362] |
| All vars, lag 4            | F(3,74) = 2.73269  | [0.0497] |

方程式 2: ld\_income

|                      | 係数          | 標準誤差           | t-ratio     | p 値    |
|----------------------|-------------|----------------|-------------|--------|
| const                | 0.0114330   | 0.00458519     | 2.493       | 0.0149 |
| $ld\_investment\_1$  | 0.0480725   | 0.0306666      | 1.568       | 0.1212 |
| $ld\_investment\_2$  | 0.0582115   | 0.0322603      | 1.804       | 0.0752 |
| $ld\_investment\_3$  | 0.0160952   | 0.0330388      | 0.4872      | 0.6276 |
| $ld\_investment\_4$  | -0.0028719  | 9 0.0314953    | -0.09119    | 0.9276 |
| $ld\_income\_1$      | -0.0722543  | 0.141309       | -0.5113     | 0.6106 |
| $ld\_income\_2$      | 0.0380503   | 0.151288       | 0.2515      | 0.8021 |
| $ld\_income\_3$      | 0.173421    | 0.154507       | 1.122       | 0.2653 |
| $ld\_income\_4$      | -0.0531766  | 0.143984       | -0.3693     | 0.7129 |
| $ld\_consumption\_1$ | 0.191309    | 0.171716       | 1.114       | 0.2688 |
| $ld\_consumption\_2$ | -0.0049833  | 8 0.188101     | -0.02649    | 0.9789 |
| $ld\_consumption\_3$ | -0.0085643  | 5  0.174112    | -0.04919    | 0.9609 |
| $ld\_consumption\_4$ | 0.0246668   | 0.154629       | 0.1595      | 0.8737 |
| Mean dependent v     | var 0.01896 | 8 S.D. depen   | dent var 0. | 011812 |
| Sum squared resid    | 0.00992     | 6 S.E. of regr | ression 0.  | 011582 |
| $R^2$                | 0.17281     | 8 Adjusted F   | $R^2 = 0.$  | 038680 |
| F(12, 74)            | 1.28836     | 0  P-value(F)  | 0.          | 243650 |
| $\hat{ ho}$          | 0.00460     | 1 Durbin–Wa    | atson 1.    | 984346 |
|                      | ゼロ制         | 約のF検定          |             |        |
| All lags of ld_in    | vestment    | F(4,74) = 1.1  | 9151 [0.3   | 3217]  |
| All lags of ld_in    | come        | F(4,74) = 0.6  | 56848 [0.6  | 5239]  |
| All lags of ld_co    | onsumption  | F(4,74) = 0.4  | 55569 [0.7  | 7680]  |
| All vars, lag $4$    |             | F(3,74) = 0.0  | 475061 [0.9 | 9862]  |

方程式 3: ld\_consumption

|                      | 係数         | 標準誤差                        | t-ratio | p 値      |
|----------------------|------------|-----------------------------|---------|----------|
| const                | 0.00769718 | 0.00390494                  | 1.971   | 0.0524   |
| $ld\_investment\_1$  | 0.00436965 | 0.0261169                   | 0.1673  | 0.8676   |
| $ld\_investment\_2$  | 0.0395282  | 0.0274742                   | 1.439   | 0.1544   |
| $ld\_investment\_3$  | 0.00872797 | 0.0281372                   | 0.3102  | 0.7573   |
| ld_investment_4      | -0.0250735 | 0.0268227                   | -0.9348 | 0.3529   |
| $ld\_income\_1$      | 0.297120   | 0.120344                    | 2.469   | 0.0159   |
| $ld\_income\_2$      | 0.376714   | 0.128843                    | 2.924   | 0.0046   |
| $ld\_income\_3$      | 0.218133   | 0.131584                    | 1.658   | 0.1016   |
| $ld\_income\_4$      | 0.0939959  | 0.122622                    | 0.7665  | 0.4458   |
| ld_consumption_1 -   | -0.418620  | 0.146240                    | -2.863  | 0.0055   |
| ld_consumption_2 -   | -0.165454  | 0.160194                    | -1.033  | 0.3050   |
| $ld\_consumption\_3$ | 0.0699289  | 0.148281                    | 0.4716  | 0.6386   |
| $ld\_consumption\_4$ | 0.0254889  | 0.131688                    | 0.1936  | 0.8471   |
| Mean dependent var   | 0.018378   | S.D. depend                 | ent var | 0.011021 |
| Sum squared resid    | 0.007199   | S.E. of regre               | ession  | 0.009863 |
| $R^2$                | 0.310795   | Adjusted $R^2$              | 2       | 0.199032 |
| F(12,74)             | 2.780845   | $\operatorname{P-value}(F)$ |         | 0.003531 |
| $\hat{ ho}$          | -0.003267  | Durbin-Wat                  | son     | 1.905366 |
|                      | ゼロ制約の      | F 検定                        |         |          |
|                      |            |                             |         |          |

| All lags of ld_investment  | F(4,74) = 0.910861 | [0.4622] |
|----------------------------|--------------------|----------|
| All lags of ld_income      | F(4,74) = 2.96728  | [0.0249] |
| All lags of ld_consumption | F(4,74) = 2.33572  | [0.0632] |
| All vars, lag 4            | F(3,74) = 0.583211 | [0.6279] |

#### 2. (a) 所得・消費の順



## 3. 所得(対数階差)の予測誤差分解



消費(対数階差)の予測誤差分解

