Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

Wolfram Web Resources »

13,690 entries Last updated: Mon Aug 12 2019

Created, developed, and nurtured by Eric Weisstein at Wolfram Research Applied Mathematics > Complex Systems > Fractals > Interactive Entries > Interactive Demonstrations >

Sierpiński Curve

There are several fractal curves associated with Sierpiński.

The area for the first Sierpiński curve illustrated above (Sierpiński curve 1912) is

$$A=\frac{1}{3}\left(7-4\sqrt{2}\right).$$

The curve is called the Sierpiński curve by Cundy and Rollett (1989, pp. 67-68), the Sierpiński's square snowflake by Wells (1991, p. 229), and is pictured but not named by Steinhaus (1999, pp. 102-103). The *n*th iteration of the first Sierpiński curve is implemented in the Wolfram Language as SierpińskiCurve[n].

The limit of the second Sierpiński's curve illustrated above has area

sierpińsk

THINGS

= sierpiŕ = {{2,-1,

= find th cosx fro

Interactive Wolfram

The Sierpiński arrowhead curve is another Sierpiński curve.

 $A = \frac{5}{12}$.

SEE ALSO:

Exterior Snowflake, Gosper Island, Hilbert Curve, Koch Antisnowflake, Koch Snowflake, Peano Curve, Peano-Gosper Curve, Sierpiński Arrowhead Curve

REFERENCES:

Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., 1989.

Dickau, R. M. "Two-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys2d.html.

Gardner, M. Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed. New York: W. H. Freeman, p. 34, 1989.

Sierpiński, W. "Sur une nouvelle courbe continue qui remplit toute une aire plane." Bull. l'Acad. des Sciences Cracovie A, 462-478, 1912.

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.

Wagon, S. Mathematica in Action. New York: W. H. Freeman, p. 207, 1991.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 229, 1991.

Referenced on Wolfram|Alpha: Sierpiński Curve

CITE THIS AS:

Weisstein, Eric W. "Sierpiński Curve." From *MathWorld--*A Wolfram Web Resource. http://mathworld.wolfram.com/SierpinskiCurve.html

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Step-by-step Solutions »

Walk through homework problems stepby-step from beginning to end. Hints help you try the next step on your own.

Wolfram Language »

Knowledge-based programming for everyone.

step solutions. Practice online or make a printable study sheet.

plans, widgets, interactive Demonstrations, and more.

Contact the MathWorld Team

© 1999-2019 Wolfram Research, Inc. | Terms of Use