Homework Assignment 9

Matthew Tiger

May 6, 2017

Problem 8.1. Find the Mellin transform of each of the following functions:

a.
$$f(x) = H(a - x), a > 0$$
,

b.
$$f(x) = x^m e^{-nx}, m, n > 0,$$

c.
$$f(x) = \frac{1}{x^2 + 1}$$
.

Solution. The Mellin transform of the function f(x) is defined to be

$$\mathscr{M}\left\{f(x)\right\} = \tilde{f}(p) = \int_0^\infty x^{p-1} f(x) dx.$$

a. Recall that the Heaviside function H is defined as

$$H(a-x) = \begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}.$$

Therefore, from the definition of the Mellin transform, we have that for f(x) = H(a-x) with a > 0,

$$\tilde{f}(p) = \mathcal{M} \{f(x)\} = \int_0^\infty x^{p-1} H(a-x) dx$$
$$= \int_0^a x^{p-1} dx$$
$$= \frac{a^p}{p}.$$

b. Let $f(x) = x^m g(x)$ where $g(x) = e^{-nx}$ with m, n > 0 and let $\tilde{g}(p) = \mathcal{M}\{g(x)\}$.

By the shifting property of the Mellin transform, we have that

$$\tilde{f}(p) = \mathcal{M}\left\{f(x)\right\} = \mathcal{M}\left\{x^m g(x)\right\} = \tilde{g}(p+m).$$

From our table of Mellin transforms, we know that

$$\tilde{g}(p) = \mathcal{M}\left\{g(x)\right\} = \frac{\Gamma(p)}{n^p}$$

1

where $\Re\{p\} > 0$.

Therefore,

$$\tilde{f}(p) = \mathcal{M}\left\{f(x)\right\} = \tilde{g}(p+m) = \frac{\Gamma(p+m)}{n^{p+m}}$$

where $\Re\{p+m\} > 0$.

c. From our table of Mellin transforms, we see that

$$\mathscr{M}\left\{\frac{1}{(x^a+1)^s}\right\} = \frac{\Gamma(p/a)\Gamma(s-p/a)}{a\Gamma(s)}.$$

Therefore, for $f(x) = \frac{1}{x^2+1}$, identifying a=2 and s=1, we have that

$$\begin{split} \tilde{f}(p) &= \mathscr{M}\left\{f(x)\right\} = \mathscr{M}\left\{\frac{1}{x^2+1}\right\} = \frac{\Gamma(p/2)\Gamma(1-p/2)}{2\Gamma(1)} \\ &= \frac{\Gamma(p/2)\Gamma(1-p/2)}{2}. \end{split}$$

Problem 8.4.

Problem 8.10.

Problem 8.12.

Problem 8.14.

Problem 8.21.