» More On Approximate Derivatives

* Recall our general iterative minimisation algorithm:

```
x=x0
for k in range(num_iters):
    step = calcStep(fn,x)
    x = x - step
```

- e.g. with $step = \alpha[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)]$
- * In SGD:
 - * We use approximate derivatives $DJ_{x_1}(\theta)$ etc instead of exact derivatives $\frac{\partial f}{\partial x_1}(x)$ etc
 - * Need cost function of form

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} loss(\theta, x^{(i)}, y^{(i)})$$

and use approx of form

$$DJ_{\theta_1}(\theta) = \frac{1}{|N|} \sum_{i \in N} \frac{\partial loss}{\partial \theta_1}(\theta, \mathbf{x}^{(i)}, \mathbf{y}^{(i)})$$

with
$$N \subseteq \{1, 2, \dots, m\}$$

* Recall

$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')(x_1 - x_1') + \frac{\partial f}{\partial x_2}(x')(x_2 - x_2') + \dots + \frac{\partial f}{\partial x_n}(x')(x_n - x_n')$$

* Select x = x' and then add a small amount δ to element 1 of x i.e.

$$\mathbf{x} = [\mathbf{x}_1' + \delta, \mathbf{x}_n', \dots, \mathbf{x}_n']$$

Then

$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')\delta$$

i.e.

$$\frac{\partial f}{\partial x_1}(x') \approx \frac{f(x) - f(x')}{\delta} = \frac{f(x' + \delta) - f(x')}{\delta}$$

 \rightarrow finite difference approximation to derivative

st Perturbation δ needs to be small e.g. 0.01 or less.

Example:

- * $f(x) = x^2$, $\frac{df}{dx}(x) = 2x$
- * At point x' = 1 then $\frac{df}{dx}(1) = 2.0$
- * Finite difference:

$$\frac{f(\mathbf{x}'+\delta)-f(\mathbf{x}')}{\delta} = \frac{f(1+\delta)-f(1)}{\delta} = \frac{(1+\delta)^2-1}{\delta}$$

For
$$\delta=0.1 \rightarrow$$
 2.1
For $\delta=0.01 \rightarrow$ 2.01
For $\delta=0.001 \rightarrow$ 2.0010

- We can use finite difference approx in any of our gradient descent algorithms and in SGD
- * An example of a *gradient-free* optimisation method
- * To calc approx derivative requires two evaluations of function f(x) for every element of x, so 2n function evaluations at each step \rightarrow may be more expensive then exact derivative calc, but handy when exact derivatives are not available or not easy to calculate
- * Aside from computation cost, main issue is accuracy of the approximation \rightarrow depends on δ , how to choose that?

- st Main issue is accuracy of the approximation ightarrow depends on δ , how to choose that?
- * As the curvature of f(x) increases, the error in the finite difference approximation increases.

* Example: $f(x) = x^2$, $\frac{df}{dx}(x) = 2x$ and $f(x) = 10x^2$, $\frac{df}{dx}(x) = 20x$. $\delta = 0.2$

Need to adjust δ to be small in regions where curvature is large, otherwise will finite diff approx to derivative might have large errors.

* Example: f(x) = |x|, $\frac{df}{dx}(x) = sign(x)$. $\delta = 0.01$

- * Curvature is effectively infinite at $x=0 \to \text{need to make } \delta \text{ v small}$ (close to zero).
- * Another way to think about it: finite different approx is the exact derivative of a different function $\hat{f}(x)$...

Another way to think about it: finite different approx is the exact derivative of a different function $\hat{f}(x)$...

- * Exact derivative of $\hat{f}(x)$ = finite difference approx derivative of |x|
- * See that f(x) rounds off the kink in |x|, the amount of rounding depending on $\delta \to as \ \delta$ is made smaller $\hat{f}(x)$ more closely approximates |x|
- * So when using finite difference approx in optimisation, we'll find the min of $\hat{f}(x)$ rather than f(x). So long as $\hat{f}(x)$ is close to f(x) that's fine.

Matlab code for previouus example:

```
\label{eq:dd=0.0001} \begin{split} &dd=0.0001;\\ &x=[-0.1:dd:0.1];\\ &d=0.1;\\ &df=(abs(x+d)-abs(x))/d;\\ &plot(x,sign(x),x,df,`.',`LineWidth',3) \end{split} % function corresponding to finite diff approx ff=abs(x(1))+dd*cumsum(df)-d/2;\\ &plot(x,abs(x),'--',x+d/2,ff,`LineWidth',3) \end{split}
```

» Example

- st Toy neural net, starting point $\emph{x}=[1,1]$, constant $lpha_0=0.75$
- * Gradient descent:

finite difference approx $\delta=0.1$

Performance is pretty similar!

» Example

- * Toy neural net, starting point x = [1, 1], constant $\alpha_0 = 0.75$
- * Gradient descent:

finite difference approx $\delta = 0.1$

finite difference approx $\delta=1$

* $\delta=1$ is too big and leads to a poorer solution

A small side note:

* Recall
$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')(x - x')$$

* Selecting
$$x = x' + \delta$$
: $f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')\delta$ so $\frac{\partial f}{\partial x_1}(x') \approx \frac{f(x' + \delta) - f(x')}{\delta}$

* Selecting
$$x=x'-\delta$$
: $f(x)pprox f(x')-rac{\partial f}{\partial x_1}(x')\delta$ so $rac{\partial f}{\partial x_1}(x')pprox rac{f(x')-f(x'-\delta)}{\delta}$

* Add these together:

$$2\frac{\partial f}{\partial x_1}(x') \approx \frac{f(x'+\delta) - f(x')}{\delta} + \frac{f(x') - f(x'-\delta)}{\delta} = \frac{f(x'+\delta) - f(x'-\delta))}{\delta}$$

i.e.

$$\frac{\partial f}{\partial x_1}(x') pprox \frac{f(x'+\delta) - f(x'-\delta))}{2\delta}$$

 \rightarrow an alternative finite difference approximation to the derivative (the *central difference approximation*). Behaves much the same as the $\frac{f(x'+\delta)-f(x')}{\delta}$ forward difference approximation, which to use is largely a matter of taste

» Nesterov Random Search¹

* Finite difference approach requires 2*n* function evaluations at each iteration. Can we just make *two* function evaluations?

$$x=x0$$
 for k in range(num_iters): select a random vector u
$$step = \alpha \frac{f(x+\delta u) - f(x)}{\delta} u$$
 $x=x-step$

- * *u* is the direction to search in
- * $\frac{f(x+\delta u)-f(x)}{\delta}$ is the finite difference approx to the derivative in direction u, use small δ
- $* \alpha$ is the step size

¹Random Gradient-Free Minimization of Convex Functions, 2017. https://link.springer.com/article/10.1007/s10208-015-9296-2

» Nesterov Random Search

- * How to select *u*?
- * Select u uniformly at random from the surface of the unit sphere²
- * Generate a vector z with each element Gaussian distributed. Set new point $u=z/\sum_{i=1}^n z_i^2$. In python:

$$z = np.random.randn(ndim)$$

 $u/ = np.sqrt(np.sum(z*z, axis = 0))$

²See https://en.wikipedia.org/wiki/N-sphere#Generating_random_points

» Examples

* $f = x^2$, starting point x = 1, grad descent with constant stepsize $\alpha = 0.1$, random search $\alpha = 0.1/\delta = 0.001$

- Nesterov convergence rate is v similar to gradient descent
- st Nesterov convergence stops around iteration 40 ightarrow need to reduce δ

» Examples

* Rosenbrock function: grad descent with constant stepsize $\alpha=0.002$, random search $\alpha=0.002/\delta=0.001$

* Toy neural net loss: grad descent with constant stepsize $\alpha=0.75$, random search $\alpha=0.75/\delta=0.001$

rnd search data is mean and std dev over 25 runs

- * No free lunch principle: we can expect that generally convergence of Nesterov random search will be around n times slower than grad descent $\rightarrow 2n$ function evals per iteration for finite diff but only 2 function evals for Nesterov
- * We roughly see that in above plots (remember $\log 2x = \log 2 + \log x$ so scaling by 2 corresponds to a vertical shift in these plots)