

INTEL UNNATI INDUSTRIAL TRAINING

On

The Design and Implementation of Automated Teller Machine(FSM)Controller

By

MULAM AKSHAYA PRIYA(20JN1A05A5)

&

MADIRI NIRVIGHNA(20JN1A0591)

Under the guidance of

Mr.PRAPULLA KUMAR, M.Tech(Ph.D)

Assistant Professor

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

SREE VENKATESWARA COLLEGE OF ENGINEERING

(Approved by AICTE, New Delhi and Affiliated to Jawaharlal Nehru Technological University – Anantapur)

GOLDEN NAGAR, NH5 BYPASS ROAD, NORTH RAJUPALEM, KODAVALURU (V&M), SPSR NELLORE

An ISO 9000:2015 Certified Institution

BLOCK DIAGRAM

aqi	Copy code
+	
User Interface	
+	
1 1	
(Keypad) (Display Screen)	
1 1	
+	+
Card Reader	1
+	+
(Magnetic Stripe)	
+	+
Authentication	
& Security	- A
+	+
1	
(Communication Network)	
1	
+	
Transaction Processor	
+	+
(Bank Server)	
(bunk berver)	
+	-+
Cash Dispenser	1
+	+

FSM STATE DIAGRAM

```
Constant
         (Enter PIN) ( (Select Option)
         (Card Inserted)
          Authoritication
(Fransaction Complete) | (Transaction Failed)
       Transaction Receipt
```

FSM (mealy/moore) of the Design and Implementation of Automated Teller Machine(FSM)

Verolig Code:

module ATM_Withdrawal(

input wire clk,

input wire reset,

```
input wire enable,
 input wire keypad,
 input wire card_detected,
 input wire pin_entered,
 input wire withdrawal_button,
 output reg dispense_cash,
 output reg transaction_complete
);
 // Internal state definition
 typedef enum logic [2:0] {
  IDLE,
  CARD_INSERTED,
  PIN_ENTERED,
  TRANSACTION,
  CASH_DISPENSED
 } state_t;
 // Registers
```

```
reg [2:0] state_reg;
reg [3:0] incorrect_attempts_reg;
reg [3:0] cash_count_reg;
reg [7:0] pin_reg;
// Constants
parameter MAX_INCORRECT_ATTEMPTS = 3;
parameter WITHDRAWAL_AMOUNT = 100;
// State register and next state logic
always @(posedge clk, posedge reset) begin
 if (reset) begin
  state_reg <= IDLE;
  incorrect_attempts_reg <= 0;
  cash_count_reg <= 0;
  pin_reg <= 0;
 end else begin
  case (state_reg)
   IDLE:
```

```
if (enable && card_detected)
  state_reg <= CARD_INSERTED;
CARD INSERTED:
 if (enable && pin_entered)
  state_reg <= PIN_ENTERED;
 else if (!card_detected)
  state_reg <= IDLE;
PIN ENTERED:
 if (enable && keypad)
  state_reg <= TRANSACTION;
 else if (!pin_entered)
  state_reg <= CARD_INSERTED;
TRANSACTION:
 if (cash_count_reg >= WITHDRAWAL_AMOUNT)
  state_reg <= CASH_DISPENSED;
 else if (!withdrawal_button)
  state reg <= PIN ENTERED;
CASH_DISPENSED:
 if (enable)
```

```
state_reg <= IDLE;
  endcase
 end
end
// State actions and outputs
always @(state_reg or withdrawal_button) begin
 case (state_reg)
  IDLE:
   dispense_cash <= 0;
   transaction_complete <= 0;
  CARD_INSERTED:
   dispense_cash <= 0;
   transaction_complete <= 0;
  PIN_ENTERED:
   dispense_cash <= 0;
   transaction_complete <= 0;
  TRANSACTION:
```

```
if (withdrawal_button && cash_count_reg <
WITHDRAWAL_AMOUNT) begin
     cash_count_reg <= cash_count_reg + 10;
     dispense_cash <= 1;
    end else begin
     dispense_cash <= 0;
    end
    transaction_complete <= 0;
   CASH_DISPENSED:
    cash_count_reg <= cash_count_reg -
WITHDRAWAL_AMOUNT;
    dispense_cash <= 0;
    transaction complete <= 1;
  endcase
 end
```

endmodule The designed ATM controller FSM should perform the following checks

• Invalid PIN entry (3 times allowed and later it should lock theaccount for next 24 hours)

- Withdraw
- Deposit
- · Old balance and new balance display
- · Mini statement for the

recent transactions

Software Installation:

https://www.intel.com/content/www/us/en/software-kit/665990/intel-quartus-prime-lite-edition-design-software-version-18-1-for-windows.html

1.INVALID PIN ENTRY:

Verilog Code of Invalid Pin entry:

