

Google

Personalized Keyphrase Detection using Speaker and Environment Information

Authors: Rajeev Rikhye, Quan Wang, Qiao Liang, Yanzhang He, Ding Zhao,

Yiteng (Arden) Huang, Arun Narayanan, lan McGraw

Abstract

We introduce a **keyphrase detection** system:

- Customizable: Can detect any phrase composed of words from a large vocabulary
- Streaming inference: Using RNN-T ASR model
- On-device: Pruning the model
- Personalized: Using a text-independent speaker verification model
- Noise-robust:
 - Multi-microphone: Adaptive noise cancellation (ANC) with <u>Speech Cleaner</u>
 - Multi-talker: <u>VoiceFilter-Lite</u> for speaker verification

System diagram

Figure 1: Diagram of the proposed keyphrase detection system. The d-vector is obtained in a separate offline enrollment process.

Key results

Text-independent **speaker verification**:

- Reduces FA/hour by rel. 91%
- But it increases FRR by rel. 20.6% in the multi-talker scenario

Speaker separation (*VoiceFilter-Lite*) in multi-talker scenario:

- Reduces speaker verification EER by rel. 67.4%
- Reduces keyphrase detection FRR by rel. 29.4%

Adaptive noise cancellation (Speech Cleaner):

- Reduces FRR by rel. 68.3% in the non-speech noise
- Reduces FRR by rel. 25.2% in the multi-talker scenario

Before - Slides for 3min video

After - Slides for 15min video

Google

Personalized Keyphrase Detection using Speaker and Environment Information

Authors: Rajeev Rikhye, Quan Wang, Qiao Liang, Yanzhang He, Ding Zhao,

Yiteng (Arden) Huang, Arun Narayanan, lan McGraw

Interactions with smart devices currently require a wake word

Interactions with smart devices currently require a wake word

Comment: OK Google, I'm exhausted saying 'Google'

Stephen Hall - May. 18th 2020 1:21 pm PT 9 @hallstephenj

https://9to5google.com/2020/05/18/comment-ok-google-im-exha usted-saying-google/

People who want to have (more) real conversations with their speaker bot.

Where Google really shows its intelligence is its ability to understand contextual questions.

https://www.buzzfeednews.com/article/nicolenguyen/google-home-review

Avoiding the wake word would make interactions more naturalistic.

Google

Our goal is to allow users to say *specific keyphrases* to smart devices without requiring the wake word

We introduce a keyphrase detection system:

- Customizable: Can detect any phrase composed of words from a large vocabulary
- Streaming inference: Using RNN-T ASR model
- On-device: Pruning the model to meet on-device memory constraints
- Personalized: Using a text-independent speaker verification model
- Noise-robust:
 - Multi-microphone: Adaptive noise cancellation (ANC) with <u>Speech Cleaner</u>
 - Multi-talker: <u>VoiceFilter-Lite</u> for speaker verification

Detecting keyphrases is challenging

Example keyphrases

"Turn on the lights", "Stop the music", "Set an alarm for 5 a.m."

- 1. Must be able to detect a large corpus of keyphrases.
- 2. Keyphrases may have variable length and audio durations
 - A single word: "Stop"
 - Sentences: "Play my workout playlist"
- 3. The set of recognized keyphrases should be customizable without requiring training or new models.

Our system is a generic ASR model that allows user-defined keyphrases, providing Google greater flexibility to the end users

Detecting keyphrases in a *noisy environment* is challenging

Challenge 1: False Triggering by ambient speech

Ambient speech, from a TV or people in the room can false trigger the device.

Proposed Solution: Attending to known / enrolled speakers via Speaker Verification

Google

Challenge 2: False Triggering by ambient noise

General ambient noise (eg. music, barking dog) can also false trigger a query.

Proposed Solution: Suppress background noise via Speech Cleaner

Challenge 3: False Rejection by ambient speech

Overlapping speech can make speaker identification less accurate.

Proposed Solution: Identify and suppress overlapping speech via VoiceFilter-Lite

Proposed Keyphrase detection system

A query is valid if the following two conditions are met:

- The ASR model recognizes the keyphrase.
- 2. The Speaker Verification model recognizes the speaker as an enrolled user

Speaker verification significantly reduces false triggering

False accepts* per hour

	Without TI-SV	With TI-SV. (5 enrolled speakers)	With TI-SV (1 enrolled speaker)
YouTube dataset (with no queries)	0.2746	0.03457 (-91.7%)	0.00985 (-97.5%)

*False accepts = query that is wrongly accepted as a keyphrase

- We used Text-independent Speaker Verification (TI-SV)
- Queries that do not match the enrolled user(s) are rejected.
- Most TV/radio background speech will be rejected by speaker verification alone.

Speaker Verification *increases false rejections* in the presence of overlapping speech

- A major source of error is enrolled speaker mis-identification
- Overlapping speech masks features making it harder to recognize the speaker
- This is a common problem for speaker verification

VoiceFilter-Lite enhances enrolled speaker features from overlapping speech

- In overlapping speech:
 - Enrolled user features are enhanced.
 - Non-enrolled features are suppressed.
- Non-overlapping speech:
 - Filterbank is not modified
- VoiceFilter-Lite was applied to the ASR frontend.

VoiceFilter-Lite can improve speaker recognition in multi-talker scenarios

Improvements

- VF-Lite can suppress frames with overlapping speech before SV
 - This will improve the speaker verification accuracy
 - VF-Lite now supports multiple users.

Hypothesis:

Adding VoiceFilter-Lite to the SV frontend (instead of ASR) will help to suppress overlapping speech and improve speaker verification accuracy

VF-Lite → SV increase speaker identification accuracy and reduces False Rejects during overlapping speech

Noise source	Room	SNR (dB)	EER (%)	
			No VFL	With VFL
Speech	Additive	-5	12.83	4.24
		0	8.34	2.35
		5	4.99	1.47
	Reverb	-5	17.76	7.03
		0	11.04	3.63
		5	6.41	2.09

- VF-Lite → TI-SV results in a ~67% improvement in speaker identification EER.
- This mitigates speaker identification errors during overlapping speech.

With VF-Lite, we prevent the increase in FR with ambient speech!

VF-Lite \rightarrow SV does not have an effect when there is no overlapping speech.

Noise source	Room	SNR (dB)	EER (%)	
			No VFL	With VFL
Clean			0.65	0.64
Non-speech	Additive	-5	5.30	5.23
		0	2.04	2.01
		5	1.22	1.22
	Reverb	-5	6.51	6.53
		0	2.90	2.91
		5	1.60	1.59

- VF-Lite passes the filterbank through unmodified in non-overlapping speech
- No change in EER or FR when background noise does not contain speech

We require another solution to make the system robust to non-speech background noise

Hotword Cleaner was developed to enhance wake word detection in noisy environments

- Most smart devices have 2 or more microphones
- Filter coeffs are computed from the noise preamble and applied to the hotword

Speech Cleaner learns and suppresses background noise during the query

We add Speech Cleaner to the frontend of both Speaker Verification and ASR

Speech Cleaner helps to further reduce False Rejection Rate

 Speech Cleaner reduces ASR errors, allowing the system to detect keyphrases in the presence of either speech or non-speech noise

- We introduce a personalized keyphrase detection system that is highly customizable and robust to different types of background noise
- This keyphrase detection system allows users to interact with their smart devices without having to say a wake word
- We leveraged speaker and environment information to reduce both false triggering and false rejections to improve user experience

Challenge 1: False Triggering by ambient speech

 Speaker Verification (*TI-SV*) helps to reduce false accepts by ~91% (relative to model with no SV) by rejecting queries that are not from the enrolled user(s))

Challenge 1: False Triggering by ambient speech

 Speaker Verification (*TI-SV*) helps to reduce false accepts by ~91% (relative to model with no SV) by rejecting queries that are not from the enrolled user(s)

Challenge 2: False Triggering by background noise

 Adaptive noise cancellation (Speech Cleaner) helps to suppress both speech and non-speech background noise, improving keyphrase detection by ~68%

Challenge 1: False Triggering by ambient speech

 Speaker Verification (*TI-SV*) helps to reduce false accepts by ~91% (relative to model with no SV) by rejecting queries that are not from the enrolled user(s)

Challenge 2: False Triggering by background noise

 Adaptive noise cancellation (Speech Cleaner) helps to suppress both speech and non-speech background noise, improving keyphrase detection by ~68%

Challenge 3: False rejection by ambient speech

 Speaker separation (VoiceFilter-Lite) in the TI-SV feature frontend suppresses overlapping speech and improves FRR by ~29% (relative to model with TI-SV)

Supplementary Slides

VF-Lite → TI-SID reduces False Rejects during overlapping speech

Vendor (Webhound) data Speech Background Noise

Multi-speaker TTS dataset

With VF-Lite we can reduce FA without an increase in FR with ambient speech!

Google