Introduction
Technique de balayage des points extrêmals
Exercices d'application

Chapitre II : Résolution par la méthode graphique

Introduction

Technique de balayage des points extrêmals Exercices d'application

Introduction

Etant donné un problème linéaire (P), on cherche alors à determiner la solution optimale. La méthode graphique consiste à la determination des points remarquables appelés "Points extrêmals".

Dans ce contexte on peut utiliser la technique de balayage des points extrêmals. Chapitre IV: La méthode simplexe: Phase I et Phase I

Introduction

Technique de balayage des points extrêmals Exercices d'application

Définitions

Définition 5 (Solution admissible) : Une solution admissible (ou réalisable) au problème linéaire (P), est une solution qui vérifie les contraintes de ce problème.

Définition 6 (Région réalisable) : Une région réalisable est l'intersection de tous les demi-plans correspondant aux contraintes. Elle constitue l'ensemble des solutions réalisables.

Introduction

Technique de balayage des points extrêmals Exercices d'application

Définitions

Définition 7 (Point extrêmal) : Un point extrêmal lié au modèle linéaire (P) est une intersection de deux ou plusieurs droites de contraintes apartenant à la région réalisable.

Définition 8 (Solution optimale) : Une solution optimale du modèle linéaire (P) est une solution admissible qui optimise la fonction objectif, si elle existe, c'est un point extrêmal de (P).

Technique de balayage des points extrêmals

Exemple de base :

On considère le problème de programmation linéaire suivant :

$$\begin{cases}
\max z = 300x_1 + 500x_2 \\
x_1 & \leq 4 \\
2x_2 \leq 12 \\
3x_1 + 2x_2 \leq 18
\end{cases} (2)$$

$$x_1 \geqslant 0, \ x_2 \geqslant 0$$
(4)

Déterminant alors la solution optimale associés en utilisant la méthode graphique de balayage des points extrêmals.

1- Etape 1:

Transformons les inéquations des contraintes en équations de droites :

$$x_1 = 4$$
 (D1)
 $2x_2 = 12$ (D2)
 $3x_1 + 2x_2 = 18$ (D3)

2- Etape 2:

Traçons les droites (D_1) , (D_2) et (D_3) .

Pour les deux premiers droites (D_1) et (D_2) , il suffit de tracer les parallèles aux axes passant par les point (4;0) et (0;6) respectivement.

Introduction Technique de balayage des points extrêmals Exercices d'application

Chapitre III : Résolution par la méthode simplexe Chapitre IV : La méthode simplexe : Phase I et Phase I

Traçons la droite oblique, D_3 :

3- Etape 3 : Determiner la région réalisable \mathcal{D} .

Pour chaque contrainte, on détermine de quel côté de la droite associée se trouvent les points pour lesquels la contrainte est satisfaite.

4- Etape 4 : Determiner les points extremals assoicés à \mathcal{D} .

$$A = (0,6)$$
; $B = (2,6)$; $C = (4,3)$; $D = (0,0)$ et $E = (4,0)$.

5- Etape 5: On calcule la valeur de Z pour chaque point extremal.

$$A = (0,6)$$
; $B = (2,6)$; $C = (4,3)$; $D = (0,0)$ et $E = (4,0)$.
Les fonctions objectif pour chaque point extrêmal :

$$Z_A = 3000$$
 $Z_B = 3600$
 $Z_C = 2700$
 $Z_D = 0$
 $Z_E = 1200$

Alors la solution optimale du problème, correspond au point extrêmal B qui maximise la Fonction Objectif. S=(2,6).

Exercice 1 de la série :

$$\begin{cases}
maxZ &= 30x_1 + 40x_2 \\
\text{Sujet à} & & \\
2.5x_1 + x_2 & \leq 10 \\
3x_1 + 3x_2 & \leq 15 \\
x_1 + 2x_2 & \leq 8 \\
x_1 \geq 0 & et x_2 \geq 0
\end{cases}$$

- 1 Tracer les contraintes et déterminer la région réalisable.
- 2 La région réalisable comporte combien de points extrêmes?
- 3 Déterminer la solution optimale avec la méthode graphique.