Теория вероятностей и математическая статистика Домашнее задание №1

Дмитрий Донецков (ddonetskov@gmail.com)

10 июля 2018 г.

1 Вопросы

1.1 Вопрос 1

Такое событие можно трактовать и следующим образом: события A, B, C не должны происходить одновременно. Тогда, искомое событие: $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$.

1.2 Вопрос 2

Да. Формула условной вероятности даёт вероятность при условии наличия другого события, при этом обладая всеми теми же свойствами, что и простая вероятность. Например, если событие В никогда не случается при наличии события A, то P(B|A)=0, и, наоборот, если событие В всегда случается при наличии события A, то P(B|A)=1. На диаграмме Эйлера первый случай может быть представлен непересекающимися областями, а второй - областью для B, лежащей полностью внутри области для A.

1.3 Вопрос 3

Равно 1. Согласно формуле полной вероятности, события A_i разбивают пространство исходов таким образом, что для всех $i: \bigcap_i A_i = \emptyset$, $\bigcup_i A_i = \Omega$. Соответственно, сумма данных событий (гипотез) равна 1.

1.4 Вопрос 4

$$\begin{split} \mathbb{D}[X+Y]|_{\mathbb{E}[XY]=\mathbb{E}[X]} \mathbb{E}[Y] &= \mathbb{E}[(X+Y)^2] - (\mathbb{E}[X+Y])^2 \\ &= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2 \\ &= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X])^2 - 2 \,\mathbb{E}[X][Y] - (\mathbb{E}[Y])^2 \\ &= \mathbb{E}[X^2] + 2 \,\mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X])^2 - 2 \,\mathbb{E}[X][Y] - (\mathbb{E}[Y])^2 \\ &= \mathbb{E}[X^2] + 2 \,\mathbb{E}[X] \,\mathbb{E}[Y] + \mathbb{E}[Y^2] - (\mathbb{E}[X])^2 - 2 \,\mathbb{E}[X][Y] - (\mathbb{E}[Y])^2 \\ &= \mathbb{E}[X^2] + \mathbb{E}[Y^2] - (\mathbb{E}[X])^2 - (\mathbb{E}[Y])^2 \\ &= (\mathbb{E}[X^2] - (\mathbb{E}[X])^2) + (\mathbb{E}[Y^2] - (\mathbb{E}[Y])^2) \\ &= \mathbb{D}[X] + \mathbb{D}[Y]. \end{split}$$

2 Задачи

2.1 Задача 1

Искомые элементарные исходы пространства Ω при заданном эксперименте - это множество последовательностей вида PP...PPГ, где каждый символ обозначает, что выпало при i-м подбрасывании монеты: P - выпадение решки на i-м шаге, Γ - выпадение герба, $i \in [0,n]$. Символ " Γ " всегда стоит единственным и последним в данной последовательности, т.к. выпадение герба означает завершение эксперимента.

2.2 Задача 2

Обозначим X - сумма значений двух игральных костей.

Х принимает значения от 2 до 12 с вероятностями, соответствующими отношению частоты выпадения суммы (во всех возможных комбинациях) к количеству всех возможных комбинаций, коих 36. Тогда, получается следующее распределение:

X	2	3	4	5	6	7	8	9	10	11	12
Возможные комбинации сумм	1+1	1+2 2+1	1+3 2+2 3+1	1+4 2+3 3+2 4+1	1+5 2+4 3+3 4+2 5+1	1+6 2+5 3+4 4+3 5+2 6+1	2+6 3+5 4+4 5+3 6+2	3+6 4+5 5+4 6+3	4+6 5+5 6+4	5+6 6+5	6+6
Количество комбинаций	1	2	3	4	5	6	5	4	3	2	1
Вероятность	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Математическое ожидание $\mathbb{E}[X]$:

$$\mathbb{E}[X] = \sum_{i:x_i \in [2,12]} P(X = x_i) \times x_i = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36} + 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = \frac{252}{36} = 7.$$

2.3 Задача 3

Необходимо вычислить все значения Y для заданных значений X, вероятности остаются теми же, т.к. зависимость Y и X задана тригонометрической функцией, не вероятностной.

X	-2	-1	0	1	2
p	0	1/4	1/2	1/8	1/8
Y	3	3	3	3	3

Математическое ожидание: $\mathbb{E}[Y] = 3 \times 1 = 3$, дисперсия: $\mathbb{D}[Y] = \mathbb{E}[Y^2] - (E[Y])^2 = 0$.

2.4 Задача 4

В колоде из 52 карт находится 13 бубновых карт. Для того, чтобы посчитать вероятность выбора хотя бы двух бубновых карт при выборе шести случайных карт из колоды, то необходимо посчитать

- n_1 количество всех возможных комбинаций из шести случайно выбранных карт, в которых бубновых карт две и больше,
- n_2 количество всех возможных комбинаций выбора шести произвольных карт из колоды.

Значение n_1 можно также подсчитать как разницу между n_2 и количеством всех возможных комбинаций из шести случайно выбранных карт, в которых бубновых карт меньше двух. Такой подход поможет прийти к тому же результату при меньшем количестве действий.

Отношение n_1 к n_2 и даст искомую вероятность.

Количество всех возможных комбинаций выбора шести произвольных карт из колоды:

$$n_2 = C_{52}^6 = \frac{52!}{46!6!} = 20358520.$$

Количество всех возможных комбинаций из шести случайно выбранных карт, в которых бубновых карт меньше двух - это сумма двух комбинаций: шести карт из всех небубновых или пяти карт из всех небубновых и одной карты их любых бубновых:

$$C_{39}^{6} + C_{39}^{5}C_{13}^{1} = \frac{39!}{33!6!} + \frac{39!}{34!5!} \frac{13!}{12!1!}$$

$$= \frac{39 \times 38 \times 37 \times 36 \times 35 \times 34}{6!} + \frac{39 \times 38 \times 37 \times 36 \times 35}{5!} \times 13$$

$$= 10747464.$$

Тогда

$$p = \frac{n_1}{n_2} = \frac{C_{52}^6 - (C_{39}^6 + C_{39}^5 C_{13}^1)}{C_{52}^6} = 1 - \frac{C_{39}^6 + C_{39}^5 C_{13}^1}{C_{52}^6} = 1 - \frac{10747464}{20358520} \approx 0.47.$$

2.5 Сложная задача

Сложность задачи обусловлена тем, что буквы в последовательности могут появляться с разной вероятностью. Количество возможных комбинаций слова - 4^{15} . Каждая из этих комбинаций будет иметь свою собственную вероятность появления, мы не можем сделать допущение, что они будут равновероятны. (не завершена)