Commutativity of Generic Solutions to Polynomials in Matrices over Finite Fields

Sam Heil

Advisor: Dr. John Shareshian

26 March 2020

This problem was inspired by the following theorem of Agler and McCarthy, proving commutativity of solutions to free polynomials in matrices over $\mathbb C$ satisfying certain genericity conditions.

Theorem (Agler and McCarthy, 2014)

that

Let $d \in \mathbb{N}$, and let \mathbb{P}^d be the set of free polynomials in d non-commuting variables. Let k = d-1, and let p_1, \ldots, p_k be free polynomials in \mathbb{P}^d with the property that, when evaluated on d-tuples of complex numbers, they are not constant in the last k variables. Let $p = (p_1, \ldots, p_k)^T$, and let $V = \{(X, Y^1, \ldots, Y^k) : p(X, Y^1, \ldots, Y^k) = 0\}$. Let B be the finite set $B = \bigcup_{j=1}^k \{x \in \mathbb{C} : \forall y \in \mathbb{C}^k, p_j(x, y^1, \ldots, y^k) \neq 0\}$. If X_0 in \mathbb{M}^n has n linearly independent eigenvectors and $\sigma(X_0) \cap B = \emptyset$ (where $\sigma(X_0)$ is the set of eigenvalues of X_0), there exists Y_0 in \mathbb{M}^k_n satisfying $(X_0, Y_0) \in V$ so that every element Y_0^j commutes with X_0 . If (X_0, Y_0) is in V and X_0 and Y_0 do not commute, then we must have

 $(X_0, Y_0) \in V \cap \{(X, Y) : Dn(X, Y) \text{ is not full rank on } 0 \times \mathbb{M}^k\}$

 $(X_0, Y_0) \in V \cap \{(X, Y) : Dp(X, Y) \text{ is not full rank on } 0 \times \mathbb{M}_n^k\}.$

Theorem (Agler and McCarthy, 2014: two-variable case, paraphrased)

For a free polynomial f(X,Y) in two non-commuting variables, let $X \in \mathbb{C}^{n \times n}$ be any matrix satisfying the following genericity conditions:

- 1 X has n linearly independent eigenvectors.
- **2** No eigenvalue λ of X satisfies $f(\lambda, y) \neq 0$ for all $y \in \mathbb{C}$.
- **3** The derivative map $Y' \mapsto Df(X,Y)[Y'] = \lim_{t\to 0} \frac{1}{t}[f(X,Y+tY')-f(X,Y)]$ is of full rank for each solution Y to f(X,Y)=0.

Then, for each $Y \in \mathbb{C}^{n \times n}$ with f(X, Y) = 0, we have XY = YX.

We will consider an extension of the two-variable version of this problem to a discrete context, for a restricted special case. We make the following modifications and restrictions to the setup:

- **1** X and Y will be matrices over a finite field \mathbb{F}_q , instead of \mathbb{C} .
- ② We add a restriction on the form of the polynomial f: instead of allowing any free polynomial in two non-commuting variable, our result will only consider polynomials of the form $f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$, for $a_i \in \mathbb{F}_q$.
- ① Instead of fully determining the set of matrices for which non-commuting solutions exist, we will only bound its size asymptotically, as $q \to \infty$.

Finite Fields: Basic Terminology and Definitions

Definition

For a prime power $q=p^k$, the **finite field** \mathbb{F}_q is the unique field with q elements. The elements of \mathbb{F}_q can be represented by degree-k polynomials $\sum_{i=0}^{k-1} a_i t^i$, where the coefficients $a_i \in \mathbb{Z}/p\mathbb{Z}$ are residues modulo p. Addition is polynomial addition modulo p, and multiplication is taken modulo an irreducible degree-k polynomial with coefficients modulo p.

Definition

The **algebraic closure** of a field F, written \overline{F} , is the smallest field with $F \subseteq \overline{F}$ for which all polynomials with coefficients in \overline{F} factor completely into linear factors over \overline{F} . For a finite field \mathbb{F}_q , we have

$$\overline{\mathbb{F}_q}\cong \bigcup_{n=1}^\infty \mathbb{F}_{q^n}.$$

Definition

The **ratio set** of a polynomial $f \in \mathbb{F}_q[x]$, denoted R(f), is the set of all ratios of *distinct* roots of f over the algebraic closure $\overline{\mathbb{F}_q}$.

Proposition 2.4

Let q be a prime power and let $n,d\in\mathbb{N}$. Let $X\in\mathbb{F}_q^{d\times d}$ be a regular, semisimple, invertible matrix with characteristic polynomial p_X , and let $f\in\mathbb{F}_q[x,y]$ be of the form $f(x,y)=\sum_{i=0}^n a_i y^i x^{n-i}$. Let g(t)=f(1,t). Then, if $R(g)\cap R(p_X)=\emptyset$, then any solution $Y\in\mathbb{F}_q^{d\times d}$ to f(X,Y)=0 must commute with X.

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

• X is regular and semisimple $\implies X = SDS^{-1}$, $S, D \in \overline{\mathbb{F}_q}^{d \times d}$

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

- X is regular and semisimple $\implies X = SDS^{-1}$, $S, D \in \overline{\mathbb{F}_q}^{d \times d}$
- Write $Y = SAS^{-1}$ (A is not necessarily diagonal)
- Since

$$f(X,Y) = \sum_{j=0}^{n} a_j Y^j X^{n-j} = \sum_{j=0}^{n} a_j S A^j D^{n-j} S^{-1} = Sf(D,A) S^{-1},$$

$$f(X,Y)=0 \implies f(D,A)=0.$$

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

- X is regular and semisimple $\implies X = SDS^{-1}$, $S, D \in \overline{\mathbb{F}_q}^{d \times d}$
- Write $Y = SAS^{-1}$ (A is not necessarily diagonal)
- Since

$$f(X,Y) = \sum_{j=0}^{n} a_j Y^j X^{n-j} = \sum_{j=0}^{n} a_j S A^j D^{n-j} S^{-1} = Sf(D,A) S^{-1},$$

$$f(X,Y)=0 \implies f(D,A)=0.$$

ullet $\overline{\mathbb{F}_q}$ is algebraically closed, so $A^{\mathcal{T}}$ has some eigenvector ${f v}$

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

We prove the contrapositive: If there exists a solution Y to f(X,Y)=0 with $XY\neq YX$, then $R(g)\cap R(p_X)\neq\emptyset$.

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

We prove the contrapositive: If there exists a solution Y to f(X,Y)=0 with $XY\neq YX$, then $R(g)\cap R(p_X)\neq\emptyset$. $X=SDS^{-1},Y=SAS^{-1},f(D,A)=0;\mathbf{v}^TA=\lambda A$.

Two cases:

- **1** There is an eigenvector \mathbf{v} of A^T with multiple nonzero components.
- 2 Every eigenvector is of the form $\mathbf{v} = c\mathbf{e}_i$ for some i.

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Suppose that v has multiple nonzero entries.

$$\mathbf{0} = \mathbf{v}^T \cdot 0 = \mathbf{v}^T \cdot f(D, A) = \sum_{j=0}^n a_j \mathbf{v}^T A^j D^{n-j}$$
$$= \mathbf{v}^T \sum_{j=0}^n a_j \lambda^j \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_d \end{bmatrix}^{n-j}$$

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Suppose that \mathbf{v} has multiple nonzero entries.

$$\mathbf{0} = \mathbf{v}^T \cdot 0 = \mathbf{v}^T \cdot f(D, A) = \sum_{j=0}^n a_j \mathbf{v}^T A^j D^{n-j}$$

$$= \mathbf{v}^T \sum_{j=0}^n a_j \lambda^j \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_d \end{bmatrix}^{n-j}$$

$$= \mathbf{v}^T \begin{bmatrix} f(\alpha_1, \lambda) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & f(\alpha_d, \lambda) \end{bmatrix}$$

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Suppose that \mathbf{v} has multiple nonzero entries: $v_i \neq 0$ and $v_j \neq 0$.

$$\mathbf{0} = \mathbf{v}^T \begin{bmatrix} f(\alpha_1, \lambda) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & f(\alpha_d, \lambda) \end{bmatrix} = \begin{bmatrix} v_1 f(\alpha_1, \lambda) & \dots & v_d f(\alpha_d, \lambda) \end{bmatrix}$$

This implies that $f(\alpha_i, \lambda) = f(\alpha_j, \lambda) = 0$.

Proposition 2.4 (condensed)

If $f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$, g(t) = f(1,t), and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Suppose that \mathbf{v} has multiple nonzero entries: $v_i \neq 0$ and $v_j \neq 0$.

$$\mathbf{0} = \mathbf{v}^T \begin{bmatrix} f(\alpha_1, \lambda) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & f(\alpha_d, \lambda) \end{bmatrix} = \begin{bmatrix} v_1 f(\alpha_1, \lambda) & \dots & v_d f(\alpha_d, \lambda) \end{bmatrix}$$

This implies that
$$f(\alpha_i, \lambda) = f(\alpha_j, \lambda) = 0$$
. $f(x, y) = x^n \sum_{i=0}^n a_i (\frac{y}{x})^i \implies f(\alpha, \lambda) = f(1, \alpha^{-1}\lambda) = g(\alpha^{-1}\lambda)$.

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Suppose that ${f v}$ has multiple nonzero entries: $v_i
eq 0$ and $v_j
eq 0$.

$$\mathbf{0} = \mathbf{v}^T \begin{bmatrix} f(\alpha_1, \lambda) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & f(\alpha_d, \lambda) \end{bmatrix} = \begin{bmatrix} v_1 f(\alpha_1, \lambda) & \dots & v_d f(\alpha_d, \lambda) \end{bmatrix}$$

This implies that $f(\alpha_i, \lambda) = f(\alpha_j, \lambda) = 0$. $f(x, y) = x^n \sum_{i=0}^n a_i (\frac{y}{x})^i \implies f(\alpha, \lambda) = f(1, \alpha^{-1}\lambda) = g(\alpha^{-1}\lambda)$. Thus, $\alpha_i^{-1}\lambda = \beta_1$, $\alpha_j^{-1}\lambda = \beta_2$ for roots β_1 , β_2 of g, so $\alpha_j/\alpha_i = \beta_1/\beta_2$ and $R(p_X) \cap R(g) \neq \emptyset$.

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

- Each eigenvector has only one nonzero entry; scale so that
 v = e_i for some i.
- We claim that if $XY \neq YX$, then A is not diagonalizable over $\overline{\mathbb{F}_a}$.

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

- Each eigenvector has only one nonzero entry; scale so that
 v = e_i for some i.
- We claim that if $XY \neq YX$, then A is not diagonalizable over $\overline{\mathbb{F}_a}$.
 - A diagonalizable implies that A^T is diagonalizable, so there is a basis of eigenvectors of A^T .

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

- Each eigenvector has only one nonzero entry; scale so that
 v = e_i for some i.
- We claim that if $XY \neq YX$, then A is not diagonalizable over $\overline{\mathbb{F}_a}$.
 - A diagonalizable implies that A^T is diagonalizable, so there is a basis of eigenvectors of A^T .
 - Since every eigenvector is \mathbf{e}_i for some i, this would imply that **every** \mathbf{e}_i is an eigenvector, so A^T must be diagonal.

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

- Each eigenvector has only one nonzero entry; scale so that
 v = e_i for some i.
- We claim that if $XY \neq YX$, then A is not diagonalizable over $\overline{\mathbb{F}_q}$.
 - A diagonalizable implies that A^T is diagonalizable, so there is a basis of eigenvectors of A^T .
 - Since every eigenvector is \mathbf{e}_i for some i, this would imply that **every** \mathbf{e}_i is an eigenvector, so A^T must be diagonal.
 - A and D both diagonal \implies AD = DA, so $X = SDS^{-1}$ and $Y = SAS^{-1}$ must commute, contradiction.

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

ullet Consider the Jordan decomposition $A^T=TJT^{-1}$ over $\overline{\mathbb{F}_q}$.

Proposition 2.4 (condensed)

- ullet Consider the Jordan decomposition $A^T=TJT^{-1}$ over $\overline{\mathbb{F}_q}$.
- J must have a block of size $k \ge 2$. Apply a change of basis so the new basis vectors $v^{(1)}, \ldots, v^{(k)}$ form the k-dimensional cyclic subspace corresponding to this block.

Proposition 2.4 (condensed)

- ullet Consider the Jordan decomposition $A^T=TJT^{-1}$ over $\overline{\mathbb{F}_q}$.
- J must have a block of size $k \geq 2$. Apply a change of basis so the new basis vectors $v^{(1)}, \ldots, v^{(k)}$ form the k-dimensional cyclic subspace corresponding to this block.
- Then, $A^T \mathbf{v}^{(1)} = \lambda \mathbf{v}^{(1)}$ and $A^T \mathbf{v}^{(j)} = \lambda \mathbf{v}^{(j)} + \mathbf{v}^{(j-1)}$ for $j \geq 2$.

Proposition 2.4 (condensed)

- ullet Consider the Jordan decomposition $A^T=TJT^{-1}$ over $\overline{\mathbb{F}_q}$.
- J must have a block of size $k \geq 2$. Apply a change of basis so the new basis vectors $v^{(1)}, \ldots, v^{(k)}$ form the k-dimensional cyclic subspace corresponding to this block.
- Then, $A^T \mathbf{v}^{(1)} = \lambda \mathbf{v}^{(1)}$ and $A^T \mathbf{v}^{(j)} = \lambda \mathbf{v}^{(j)} + \mathbf{v}^{(j-1)}$ for $j \geq 2$.
- By induction on m, we have $(A^T)^m \mathbf{v}^{(2)} = \lambda^m \mathbf{v}^{(2)} + m\lambda^{m-1} \mathbf{v}^{(1)}$ and $(A^T)^m \mathbf{v}^{(1)} = \lambda^m \mathbf{v}^{(1)}$.

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

• $\mathbf{v}^{(1)}$ is an eigenvector of A^T , so

$$\mathbf{0} = (\mathbf{v}^{(1)})^T \begin{bmatrix} f(\alpha_1, \lambda) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & f(\alpha_d, \lambda) \end{bmatrix}$$

and since $\mathbf{v}^{(1)} = \mathbf{e}_i$, $f(\alpha_i, \lambda) = 0$.

Proposition 2.4 (condensed)

If $f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$, g(t) = f(1,t), and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Choose $j \neq i$ for which $(\mathbf{v}^{(2)})_j \neq 0$. Using f(A, D) = 0, we have

$$0 = (\mathbf{v}^{(2)})^T f(A, D) \mathbf{e}_j = (\mathbf{v}^{(2)})^T f(A, D) \mathbf{e}_j$$

$$= \sum_{\ell=0}^n a_\ell (\mathbf{v}^{(2)})^T A^\ell D^{n-\ell} \mathbf{e}_j$$

$$= \sum_{\ell=0}^n a_\ell \alpha_j^{n-\ell} (\lambda^\ell (\mathbf{v}^{(2)})^T + \ell \lambda^{\ell-1} \mathbf{e}_i^T) \mathbf{e}_j$$

Proposition 2.4 (condensed)

If
$$f(x,y) = \sum_{i=0}^{n} a_i y^i x^{n-i}$$
, $g(t) = f(1,t)$, and $R(g) \cap R(p_X) = \emptyset$, then $f(X,Y) = 0 \implies XY = YX$.

Simplifying and canceling, we have

$$0 = \sum_{\ell=0}^{n} a_{\ell} \alpha_{j}^{n-\ell} (\lambda^{\ell} (\mathbf{v}^{(2)})^{T} + \ell \lambda^{\ell-1} \mathbf{e}_{i}^{T}) \mathbf{e}_{j} = \sum_{\ell=0}^{n} a_{\ell} \alpha_{j}^{n-\ell} \lambda^{\ell} (\mathbf{v}^{(2)})^{T} \mathbf{e}_{j}$$
$$= (\mathbf{v}^{(2)})_{j} f(\alpha_{j}, \lambda),$$

so
$$f(\alpha_i, \lambda) = 0$$
.

Proposition 2.4 (condensed)

- Now $f(\alpha_i, \lambda) = f(\alpha_i, \lambda) = 0$ for distinct i, j.
- As before, this implies that $g(\alpha_i^{-1}\lambda) = g(\alpha_j^{-1}\lambda) = 0$, so $\alpha_j/\alpha_i = \beta_1/\beta_2$ for distinct roots β_1, β_2 of g.
- Thus, $R(p_X) \cap R(g) \neq \emptyset$, proving the claim.

Applying the Commuting Criterion

Using Proposition 2.4, we prove our asymptotic commutativity result via the following argument:

- Show that all but O(1/q) pairs of polynomials (f,g) satisfy $R(f) \cap R(g) = \emptyset$ as $q \to \infty$.
- ② Show that asymptotically equivalent numbers of matrices produce each characteristic polynomial for large q.

We will focus on (1) in this talk, since (2) is fairly well-known.

• Consider pairs (f,g) in $\mathbb{F}_q[x]$ with deg $f = \deg g = 2$.

- Consider pairs (f,g) in $\mathbb{F}_q[x]$ with deg $f = \deg g = 2$.
- If $f(x) = x^2 ax + b$ has roots $r, s \in \mathbb{F}_{q^2}^*$ $(b \neq 0)$, then by Vieta r + s = a and rs = b, so $r/s + s/r = \frac{a^2 2b}{b} \in \mathbb{F}_q$.

- Consider pairs (f,g) in $\mathbb{F}_q[x]$ with deg $f = \deg g = 2$.
- If $f(x) = x^2 ax + b$ has roots $r, s \in \mathbb{F}_{q^2}^*$ $(b \neq 0)$, then by Vieta r + s = a and rs = b, so $r/s + s/r = \frac{a^2 2b}{b} \in \mathbb{F}_q$.
- Since r/s and s/r are the roots of the quadratic x^2-cx+1 for $c=\frac{a^2-2b}{b}$, they are uniquely determined by $\frac{a^2-2b}{b}$.

- Consider pairs (f,g) in $\mathbb{F}_q[x]$ with deg $f = \deg g = 2$.
- If $f(x)=x^2-ax+b$ has roots $r,s\in\mathbb{F}_{q^2}^*$ $(b\neq 0)$, then by Vieta r+s=a and rs=b, so $r/s+s/r=\frac{a^2-2b}{b}\in\mathbb{F}_q$.
- Since r/s and s/r are the roots of the quadratic $x^2 cx + 1$ for $c = \frac{a^2 2b}{b}$, they are uniquely determined by $\frac{a^2 2b}{b}$.
- Thus, for any $t \in \mathbb{F}_q^*$, $x^2 ax + b$ and $x^2 atx + bt^2$ have the same root ratios, so each ratio is produced by at least q-1 of the q(q-1) quadratics with nonzero constant term.

- Consider pairs (f,g) in $\mathbb{F}_q[x]$ with deg $f = \deg g = 2$.
- If $f(x)=x^2-ax+b$ has roots $r,s\in\mathbb{F}_{q^2}^*$ $(b\neq 0)$, then by Vieta r+s=a and rs=b, so $r/s+s/r=\frac{a^2-2b}{b}\in\mathbb{F}_q$.
- Since r/s and s/r are the roots of the quadratic $x^2 cx + 1$ for $c = \frac{a^2 2b}{b}$, they are uniquely determined by $\frac{a^2 2b}{b}$.
- Thus, for any $t \in \mathbb{F}_q^*$, $x^2 ax + b$ and $x^2 atx + bt^2$ have the same root ratios, so each ratio is produced by at least q-1 of the q(q-1) quadratics with nonzero constant term.
- There are at least q/2 distinct values for $\frac{a^2-2b}{b}$, so the probability that $R(f)\cap R(g)\neq\emptyset$ for randomly chosen f,g is at least

$$\frac{q}{2} \cdot \left(\frac{q-1}{q(q-1)}\right)^2 = \frac{1}{2q}.$$

Counting Polynomial Pairs: Motivation and Example

• For polynomials of arbitrary degree, consider the set of pairs of the form $(f,g)=(f_1f_2,g_1g_2)$, with f_1 and g_1 quadratics. $R(f_1)\cap R(g_1)\neq\emptyset \implies R(f)\cap R(g)\neq\emptyset$ for any f_2,g_2 , and this occurs with probability over $\frac{1}{2q}$ for randomly chosen f_1,g_1 .

Counting Polynomial Pairs: Motivation and Example

- For polynomials of arbitrary degree, consider the set of pairs of the form $(f,g)=(f_1f_2,g_1g_2)$, with f_1 and g_1 quadratics. $R(f_1)\cap R(g_1)\neq\emptyset \implies R(f)\cap R(g)\neq\emptyset$ for any f_2,g_2 , and this occurs with probability over $\frac{1}{2q}$ for randomly chosen f_1,g_1 .
- However, there is also an *upper* bound of O(1/q) on the proportion of pairs violating the criterion!

Counting Polynomial Pairs: Statement and Argument

Lemma 5.3

Let m and n be positive integers, and let q be a power of a prime p with p>m. Then, for any degree-n polynomial f over \mathbb{F}_q with $f(0)\neq 0$, the number of monic, separable, degree-n polynomials $g\in \mathbb{F}_q[x]$ with nonzero constant term and $R(g)\cap R(f)\neq \emptyset$ is at most $\left(1+\frac{C(m+1)}{3}\right)n(n-1)m(m-1)q^{m-1}$ for a constant C.

• Strategy: show that for any $\alpha \in \overline{\mathbb{F}_q}^*$, at most O(1/q) polynomials g (of any degree m) have $\alpha \in R(g)$.

Counting Polynomial Pairs: Statement and Argument

Lemma 5.3

Let m and n be positive integers, and let q be a power of a prime p with p>m. Then, for any degree-n polynomial f over \mathbb{F}_q with $f(0)\neq 0$, the number of monic, separable, degree-n polynomials $g\in \mathbb{F}_q[x]$ with nonzero constant term and $R(g)\cap R(f)\neq \emptyset$ is at most $\left(1+\frac{C(m+1)}{3}\right)n(n-1)m(m-1)q^{m-1}$ for a constant C.

- Strategy: show that for any $\alpha \in \overline{\mathbb{F}_q}^*$, at most O(1/q) polynomials g (of any degree m) have $\alpha \in R(g)$.
- ② Factor g as a product of irreducibles: $g = g_1g_2 \dots g_k$.

Counting Polynomial Pairs: Statement and Argument

Lemma 5.3

Let m and n be positive integers, and let q be a power of a prime p with p>m. Then, for any degree-n polynomial f over \mathbb{F}_q with $f(0)\neq 0$, the number of monic, separable, degree-n polynomials $g\in \mathbb{F}_q[x]$ with nonzero constant term and $R(g)\cap R(f)\neq \emptyset$ is at most $\left(1+\frac{C(m+1)}{3}\right)n(n-1)m(m-1)q^{m-1}$ for a constant C.

- Strategy: show that for any $\alpha \in \overline{\mathbb{F}_q}^*$, at most O(1/q) polynomials g (of any degree m) have $\alpha \in R(g)$.
- **2** Factor g as a product of irreducibles: $g = g_1 g_2 \dots g_k$.
- **3** Bound the number of polynomials with α as a ratio of roots of *distinct* irreducible factors g_i, g_j .
- **4** Bound the number of polynomials with α as a ratio of roots of the *same* irreducible factor g_i .

• We count triples (f, α_1, α_2) , where f is a valid degree-n polynomial with α_1, α_2 as roots of distinct irreducible factors.

- We count triples (f, α_1, α_2) , where f is a valid degree-n polynomial with α_1, α_2 as roots of distinct irreducible factors.
- To do this, we will partition $\overline{\mathbb{F}_q}^*$ into q-1 classes, and show that the number of triples (f,α_1,α_2) with the ratio $\alpha=\alpha_1\alpha_2^{-1}$ in class c is the same for all c.

- We count triples (f, α_1, α_2) , where f is a valid degree-n polynomial with α_1, α_2 as roots of distinct irreducible factors.
- To do this, we will partition $\overline{\mathbb{F}_q}^*$ into q-1 classes, and show that the number of triples (f,α_1,α_2) with the ratio $\alpha=\alpha_1\alpha_2^{-1}$ in class c is the same for all c.
- Then $|\{f: \alpha \in R(f)\}| \leq \frac{q^n \cdot n(n-1)}{q-1} = O(q^{n-1})$ since $n \ll q$.

We construct the q-1 classes so that given $\alpha \in \overline{\mathbb{F}_q}^*$, $r\alpha$ is in a different class for each $r \in \mathbb{F}_q^*$.

(Each class contains one element from each coset of \mathbb{F}_q^* in $\overline{\mathbb{F}_q}^*$.)

We construct the q-1 classes so that given $\alpha\in\overline{\mathbb{F}_q}^*$, $r\alpha$ is in a different class for each $r\in\mathbb{F}_q^*$.

(Each class contains one element from each coset of \mathbb{F}_q^* in $\overline{\mathbb{F}_q}^*$.)

- Given a polynomial f with α_1, α_2 as roots of different irreducible factors and $\alpha_1\alpha_2^{-1}=\alpha$, we have $f=f_{\alpha_1}f_{\alpha_2}g$ for some polynomial g, where f_{α_1} and f_{α_2} are the minimal polynomials with α_1, α_2 as roots.
- For $r \in \mathbb{F}_q^*$, the minimal polynomial $f_{r\alpha_1}$ satisfies $\deg f_{r\alpha_1} = \deg f_{\alpha_1}$, so map f to $f_{r\alpha_1}f_{\alpha_2}g$.

We construct the q-1 classes so that given $\alpha\in\overline{\mathbb{F}_q}^*$, $r\alpha$ is in a different class for each $r\in\mathbb{F}_q^*$.

(Each class contains one element from each coset of \mathbb{F}_q^* in $\overline{\mathbb{F}_q}^*$.)

- Given a polynomial f with α_1, α_2 as roots of different irreducible factors and $\alpha_1\alpha_2^{-1}=\alpha$, we have $f=f_{\alpha_1}f_{\alpha_2}g$ for some polynomial g, where f_{α_1} and f_{α_2} are the minimal polynomials with α_1, α_2 as roots.
- For $r \in \mathbb{F}_q^*$, the minimal polynomial $f_{r\alpha_1}$ satisfies $\deg f_{r\alpha_1} = \deg f_{\alpha_1}$, so map f to $f_{r\alpha_1}f_{\alpha_2}g$.
- More technical counting/PIE argument needed to handle special cases like $r\alpha_1=\alpha_2$ while preserving separability; see Lemma 3.5

This reduces to the case where f is itself irreducible (reduction adds an extra factor of m from summing over individual factors). Let $n = \deg f$.

This reduces to the case where f is itself irreducible (reduction adds an extra factor of m from summing over individual factors). Let $n = \deg f$.

Let $\operatorname{ord}(\alpha)$ denote the multiplicative order of the ratio α in $\mathbb{F}_{q^n}^*$ (minimal d with $\alpha^d=1$).

Two subcases:

- **1** Large order elements: $\operatorname{ord}(\alpha) \geq q^{1+\epsilon}$
- **2** Small order elements: $\operatorname{ord}(\alpha) < q^{1+\epsilon}$

Lemma 4.1

Let $n \in \mathbb{N}$, let p > n be prime, and let $q = p^r$ for some $r \ge 1$. Then, if $\alpha, \beta \in \mathbb{F}_{q^n}^*$ and $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta)$, then the number of irreducible degree-n polynomials $f \in \mathbb{F}_q[x]$ with $\alpha \in R(f)$ is equal to the number of such polynomials with $\beta \in R(f)$.

Lemma 4.1

Let $n \in \mathbb{N}$, let p > n be prime, and let $q = p^r$ for some $r \geq 1$. Then, if $\alpha, \beta \in \mathbb{F}_{q^n}^*$ and $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta)$, then the number of irreducible degree-n polynomials $f \in \mathbb{F}_q[x]$ with $\alpha \in R(f)$ is equal to the number of such polynomials with $\beta \in R(f)$.

ullet Let g be a generator of $\mathbb{F}_{q^n}^*$. Then, f splits over $\mathbb{F}_{q^n}^*$ as

$$f(x) = \prod_{j=1}^{n} (x - g^{r_j})$$

for
$$0 \le r_1 < r_2 < \cdots < r_n < q^n - 1$$
.

• α is a ratio of roots, so $\alpha = g^{r_i}/g^{r_j} = g^{r_i-r_j}$. Let $\beta = g^b$.

Lemma 4.1

Let $n \in \mathbb{N}$, let p > n be prime, and let $q = p^r$ for some $r \ge 1$. Then, if $\alpha, \beta \in \mathbb{F}_{q^n}^*$ and $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta)$, then the number of irreducible degree-n polynomials $f \in \mathbb{F}_q[x]$ with $\alpha \in R(f)$ is equal to the number of such polynomials with $\beta \in R(f)$.

ullet Let g be a generator of $\mathbb{F}_{q^n}^*$. Then, f splits over $\mathbb{F}_{q^n}^*$ as

$$f(x) = \prod_{j=1}^{n} (x - g^{r_j})$$

for
$$0 \le r_1 < r_2 < \cdots < r_n < q^n - 1$$
.

- α is a ratio of roots, so $\alpha = g^{r_i}/g^{r_j} = g^{r_i-r_j}$. Let $\beta = g^b$.
- Then, $\gcd(r_i r_j, q^n 1) = \frac{q^n 1}{\operatorname{ord}(\alpha)} = \frac{q^n 1}{\operatorname{ord}(\beta)} = \gcd(b, q^n 1)$, so $\exists t \in (\mathbb{Z}/(q^n 1)\mathbb{Z})^*$ with $t(r_i r_i) \equiv b \pmod{q^n 1}$.

Lemma 4.1

Let $n \in \mathbb{N}$, let p > n be prime, and let $q = p^r$ for some $r \ge 1$. Then, if $\alpha, \beta \in \mathbb{F}_{q^n}^*$ and $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta)$, then the number of irreducible degree-n polynomials $f \in \mathbb{F}_q[x]$ with $\alpha \in R(f)$ is equal to the number of such polynomials with $\beta \in R(f)$.

Now, apply the map

$$f(x) = \prod_{j=1}^{n} (x - g^{r_j}) \mapsto \tilde{f}(x) = \prod_{j=1}^{n} (x - g^{tr_j}).$$

Lemma 4.1

Let $n \in \mathbb{N}$, let p > n be prime, and let $q = p^r$ for some $r \geq 1$. Then, if $\alpha, \beta \in \mathbb{F}_{q^n}^*$ and $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta)$, then the number of irreducible degree-n polynomials $f \in \mathbb{F}_q[x]$ with $\alpha \in R(f)$ is equal to the number of such polynomials with $\beta \in R(f)$.

Now, apply the map

$$f(x) = \prod_{j=1}^{n} (x - g^{r_j}) \mapsto \tilde{f}(x) = \prod_{j=1}^{n} (x - g^{tr_j}).$$

• We then have $\beta = g^b = g^{t(r_i - r_j)} = g^{tr_i}/g^{tr_j} \in R(\tilde{f})!$

Lemma 4.1

Let $n \in \mathbb{N}$, let p > n be prime, and let $q = p^r$ for some $r \ge 1$. Then, if $\alpha, \beta \in \mathbb{F}_{q^n}^*$ and $\operatorname{ord}(\alpha) = \operatorname{ord}(\beta)$, then the number of irreducible degree-n polynomials $f \in \mathbb{F}_q[x]$ with $\alpha \in R(f)$ is equal to the number of such polynomials with $\beta \in R(f)$.

Now, apply the map

$$f(x) = \prod_{j=1}^{n} (x - g^{r_j}) \mapsto \tilde{f}(x) = \prod_{j=1}^{n} (x - g^{tr_j}).$$

- We then have $\beta = g^b = g^{t(r_i r_j)} = g^{tr_i}/g^{tr_j} \in R(\tilde{f})!$
- Since t is an *invertible* residue, this is a bijection, and using Newton sum formulas we can show that $\tilde{f} \in \mathbb{F}_q[x]$.

Lemma 4.3

Let $f \in \mathbb{F}_q[x]$ be irreducible of degree n with $\alpha \in R(f)$. Then, all roots of f have the same multiplicative order in $\mathbb{F}_{q^n}^*$, and for any root r of f, $\operatorname{ord}(r) \leq q^{n/2} \cdot \operatorname{ord}(\alpha)$.

Lemma 4.3

Let $f \in \mathbb{F}_q[x]$ be irreducible of degree n with $\alpha \in R(f)$. Then, all roots of f have the same multiplicative order in $\mathbb{F}_{q^n}^*$, and for any root r of f, $\operatorname{ord}(r) \leq q^{n/2} \cdot \operatorname{ord}(\alpha)$.

(Thanks to Nathan Smith for helping me prove this!)

• Galois theory implies that for any roots r_1 , r_2 of f, there is an automorphism of \mathbb{F}_{q^n} fixing \mathbb{F}_q and mapping r_1 to r_2 .

Lemma 4.3

Let $f \in \mathbb{F}_q[x]$ be irreducible of degree n with $\alpha \in R(f)$. Then, all roots of f have the same multiplicative order in $\mathbb{F}_{q^n}^*$, and for any root r of f, $\operatorname{ord}(r) \leq q^{n/2} \cdot \operatorname{ord}(\alpha)$.

- Galois theory implies that for any roots r_1 , r_2 of f, there is an automorphism of \mathbb{F}_{q^n} fixing \mathbb{F}_q and mapping r_1 to r_2 .
- The only automorphisms of \mathbb{F}_{q^n} fixing \mathbb{F}_q are of the form $g\mapsto g^{q^j}$, for some $0\le j< n$.

Lemma 4.3

Let $f \in \mathbb{F}_q[x]$ be irreducible of degree n with $\alpha \in R(f)$. Then, all roots of f have the same multiplicative order in $\mathbb{F}_{q^n}^*$, and for any root r of f, $\operatorname{ord}(r) \leq q^{n/2} \cdot \operatorname{ord}(\alpha)$.

- Galois theory implies that for any roots r_1 , r_2 of f, there is an automorphism of \mathbb{F}_{q^n} fixing \mathbb{F}_q and mapping r_1 to r_2 .
- The only automorphisms of \mathbb{F}_{q^n} fixing \mathbb{F}_q are of the form $g \mapsto g^{q^j}$, for some $0 \le j < n$.
- Thus, $r_2=r_1^{q^j}$. For $\alpha=\frac{r_2}{r_1}$ and $r_1=g^a$, $\alpha=g^{a(q^j-1)}$.

Lemma 4.3

Let $f \in \mathbb{F}_q[x]$ be irreducible of degree n with $\alpha \in R(f)$. Then, all roots of f have the same multiplicative order in $\mathbb{F}_{q^n}^*$, and for any root r of f, $\operatorname{ord}(r) \leq q^{n/2} \cdot \operatorname{ord}(\alpha)$.

- Galois theory implies that for any roots r_1, r_2 of f, there is an automorphism of \mathbb{F}_{q^n} fixing \mathbb{F}_q and mapping r_1 to r_2 .
- The only automorphisms of \mathbb{F}_{q^n} fixing \mathbb{F}_q are of the form $g \mapsto g^{q^j}$, for some $0 \le j < n$.
- Thus, $r_2=r_1^{q^j}$. For $\alpha=\frac{r_2}{r_1}$ and $r_1=g^a$, $\alpha=g^{a(q^j-1)}$.

$$\begin{split} \frac{q^n-1}{\operatorname{ord}(\alpha)} &= \gcd(q^n-1, \mathsf{a}(q^j-1)) \leq \gcd(q^n-1, \mathsf{a}) \cdot \gcd(q^n-1, q^j-1) \\ &\leq \frac{q^n-1}{\operatorname{ord}(r_1)} \cdot (q^{n/2}-1). \end{split}$$

1 Large order elements: $\operatorname{ord}(\alpha) \geq q^{1+\epsilon}$

• Large order elements: $\operatorname{ord}(\alpha) \geq q^{1+\epsilon}$ Apply Lemma 4.1 directly: There are $\varphi(\operatorname{ord}(\alpha)) > q$ elements β with order $\operatorname{ord}(\alpha)$ and $q \gg n^2$, so only O(1/q) of the polynomials f have $\alpha \in R(f)$.

- Large order elements: $\operatorname{ord}(\alpha) \geq q^{1+\epsilon}$ Apply Lemma 4.1 directly: There are $\varphi(\operatorname{ord}(\alpha)) > q$ elements β with order $\operatorname{ord}(\alpha)$ and $q \gg n^2$, so only O(1/q) of the polynomials f have $\alpha \in R(f)$.
- ② Small order elements: $\operatorname{ord}(\alpha) < q^{1+\epsilon}$

- **1** Large order elements: $\operatorname{ord}(\alpha) \geq q^{1+\epsilon}$ Apply Lemma 4.1 directly: There are $\varphi(\operatorname{ord}(\alpha)) > q$ elements β with order $\operatorname{ord}(\alpha)$ and $q \gg n^2$, so only O(1/q) of the polynomials f have $\alpha \in R(f)$.
- ② Small order elements: $\operatorname{ord}(\alpha) < q^{1+\epsilon}$ Combine Lemmas 4.1 and 4.3: The number of polynomials is at most $n\tau(q^n-1)\frac{q^{n/2}\operatorname{ord}(\alpha)}{\varphi(\operatorname{ord}(\alpha))}$, where $\tau(n)$ denotes the number of divisors of n. Using asymptotic bounds on τ and φ , we have that this is at most $O(q^{n-1})$ for all $n \geq 3$, corresponding to O(1/q) of the degree-n polynomials over \mathbb{F}_q .

Counting Matrices by Characteristic Polynomial: Sketch

- Split $\mathbb{F}_q^{d \times d}$ into rational canonical form classes: each class corresponds to one characteristic polynomial.
- Regular, semisimple, invertible matrices produce characteristic polynomials that are separable without zero as a root.
- Under these conditions, show that all matrices commuting with an RCF matrix R can be written as polynomials in R.
- **4** Consider the action of $GL_d(\mathbb{F}_q)$ on $\mathbb{F}_q^{d\times d}$ by conjugation, and use the Orbit-Stabilizer Theorem. Bound the size of the stabilizer of each RCF class R by counting the number of degree-d polynomials in R that produce invertible matrices.

Final Results

Notation in statements of results:

- $SP_n(q)$: the set of separable monic degree-n polynomials over \mathbb{F}_q without zero as a root
- $IRSS_d(q)$: the set of invertible, regular, semisimple $d \times d$ matrices over \mathbb{F}_q .

Final Results: Fixed Polynomial f

Proposition 7.1

Let p be prime, let $q=p^r$ be a prime power, and let d be a positive integer with d< p. Let $n\in \mathbb{N}$, and let $f\in \mathbb{F}_q[x]$ be a polynomial in two non-commuting variables of the form $f(X,Y)=\sum_{k=0}^n a_k Y^k X^{n-k}$ with $a_0\neq 0$, $a_n\neq 0$. Let $N_{mat}(q)$ be the number of invertible, regular, semisimple matrices $X\in IRSS_d(q)$ for which there exists a solution $Y\in \mathbb{F}_q^{d\times d}$ to f(X,Y)=0 with $XY\neq YX$. Then, for an absolute constant C,

$$N_{mat}(q) \leq rac{q^d}{|SP_d(q)|} \cdot C(d+1) n(n-1) d(d-1) \cdot rac{|IRSS_d(q)|}{q-d}.$$

In particular, in the asymptotic case as $q \to \infty$,

$$\frac{N_{mat}(q)}{|\mathit{IRSS}_d(q)|} \lesssim \frac{C(d+1)\mathit{n}(\mathit{n}-1)\mathit{d}(d-1)}{q} = O\left(\frac{\mathit{n}^2\mathit{d}^3}{\mathit{q}}\right).$$

Final Results: Fixed Matrix X

Proposition 7.2

Let p be prime, let $q=p^r$ be a prime power, and let n be a positive integer with n < p. Let d be a positive integer, and let $X \in IRSS_d(q)$ be an invertible, regular, semisimple matrix over \mathbb{F}_q . Let $N_{poly}(q)$ be the number of polynomials $f \in SP_n(q)$ of the form $f(X,Y) = \sum_{k=0}^n a_k Y^k X^{n-k}$ for which there exists a solution $Y \in \mathbb{F}_q^{d \times d}$ to f(X,Y) = 0 with $XY \neq YX$. Then, for an absolute constant C we have that

$$N_{poly}(q) \leq C(n+1)n(n-1)d(d-1)q^{n-1},$$

and so the asymptotic upper bound $\frac{N_{poly}(q)}{|SP_n(q)|} = O\left(\frac{n^3d^2}{q}\right)$ holds.

References

- J. Agler and J.E. McCarthy. *The Implicit Function Theorem and Free Algebraic Sets*. Trans. Amer. Math. Soc, 368 (5), 3157-3175 (2016).
- G.H. Hardy and E.M. Wright. *An Introduction to the Theory of Numbers*, 6th ed. Oxford UP, 2008.
- J.M. Howie. Fields and Galois Theory. Springer, 2006.
- D.S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Foundations of Noncommutative Function Theory. arXiv:1212.6345
- S. Lang. *Undergraduate Algebra*, 3rd ed. Springer, 2005.