

Chapter 2

Solutions of Linear State-space Control System

Outlines

Solution to homogeneous state equation

$$\dot{x}(t) = Ax(t), \quad u = 0$$

Solution to nonhomogeneous state equation

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Homogeneous state equation

$$\dot{x}(t) = ax(t) \qquad \dot{x}(t) = Ax(t)$$

(1) Exponential method

Assume that the solution is in the form of a power series in t,

$$x(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_k t^k + \dots$$

By substituting this assumed solution into the state equation, we could obtain

$$b_1 + 2b_2t + \dots + kb_kt^{k-1} + \dots = a(b_0 + b_1t + b_2t^2 + \dots + b_kt^k + \dots)$$

$$b_1 = ab_0,$$
 $b_2 = \frac{1}{2}ab_1 = \frac{1}{2}a^2b_0,$ \cdots $b_k = \frac{1}{k!}a^kb_0$

The value of b_0 is determined by substituting t=0 into,

$$x(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_k t^k + \dots$$

$$b_0 = x(0)$$

Thus the solution to the scalar homogeneous state equation is

$$x(t) = (1 + at + \frac{1}{2!}a^{2}t^{2} + \dots + \frac{1}{k!}a^{k}t^{k} + \dots)x(0)$$
$$= e^{at} x(0)$$

For vector homogeneous state equation

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t)$$

$$\boldsymbol{x}(t) = \mathrm{e}^{At} \boldsymbol{x}(0)$$

Homogeneous state equation

$$\dot{x} = Ax$$
 $u = 0$

(2) Laplace transform

$$sX(s) - x(0) = AX(s)$$

 $X(s) = (sI - A)^{-1}x(0)$

We could obtain

$$x(t) = L^{-1}[(sI - A)^{-1}]x(0) = e^{At}x(0)$$

$$\Phi(t) = e^{At} = L^{-1}[(sI - A)^{-1}]$$

Example 1
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x$$
 $x(0)$

Please get the solution to the equation

$$\mathbf{x}(t) = \mathbf{e}^{At} \cdot \mathbf{x}(0)$$

$$s\mathbf{I} - \mathbf{A} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} s & -1 \\ 2 & s+3 \end{bmatrix}$$

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{(s+1)(s+2)} \begin{bmatrix} s+3 & 1 \\ -2 & s \end{bmatrix} = \begin{bmatrix} \frac{2}{s+1} - \frac{1}{s+2} & \frac{1}{s+1} - \frac{1}{s+2} \\ \frac{-2}{s+1} + \frac{2}{s+2} & \frac{-1}{s+1} + \frac{2}{s+2} \end{bmatrix}$$

$$\Phi(t) = e^{At} = L^{-1}[(s\mathbf{I} - \mathbf{A})^{-1}] = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$

$$\mathbf{x}(t) = e^{At} \cdot \mathbf{x}(0) = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \mathbf{x}(0)$$

Homogeneous state equation

$$\dot{x} = Ax \qquad u = 0$$

$$x(t) = e^{At}x(0) = \Phi(t)x(0)$$

$$Or \ x(t) = \Phi(t - t_0)x(t_0)$$

 $\Phi(t)$ is the state transition matrix

Solution of free motion can be represented uniform form with state transition matrix

The solution is determined by the state transition matrix

Property of state transition matrix $\Phi(t) = e^{At}$

(1)
$$x(t) = \Phi(t - t_0)x(t_0)$$

if
$$\Phi(t-t_0)$$
 is nonsingular,

if
$$\Phi(t-t_0)$$
 is nonsingular, then $\Phi(t-t_0)^{-1} = \Phi(t_0-t)$

(2)
$$\Phi(0) = e^{A0} = I$$

(3)
$$\dot{\Phi}(t) = A\Phi(t)$$
 $\dot{\Phi}(0) = A$

$$(4) [\Phi(t)]^k = \Phi(kt)$$

Property of state transition matrix $\Phi(t)$

(5)
$$\Phi(t_2 - t_1)\Phi(t_1 - t_0) = \Phi(t_2 - t_0)$$
Proof

$$x(t_2) = \Phi(t_2 - t_0)x(t_0)$$

$$x(t_1) = \Phi(t_1 - t_0)x(t_0)$$

$$x(t_2) = \Phi(t_2 - t_1)x(t_1) = \Phi(t_2 - t_1)\Phi(t_1 - t_0)x(t_0)$$

then
$$\Phi(t_2 - t_0) = \Phi(t_2 - t_1)\Phi(t_1 - t_0)$$

Property of state transition matrix $\Phi(t)$

Nonhomogeneous state equation

$$\dot{x} = Ax + Bu$$

(1) Direct integral method

$$e^{-At}(\dot{x}-Ax)=e^{-At}\cdot Bu$$

for
$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{-At}\cdot x) = \mathrm{e}^{-At}(\dot{x} - Ax)$$

then
$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{-At}\cdot\boldsymbol{x}) = \mathrm{e}^{-At}\cdot\boldsymbol{B}\boldsymbol{u}$$

$$\int_0^t \frac{\mathrm{d}}{\mathrm{d}\tau} (\mathrm{e}^{-A\tau} \boldsymbol{x}(\tau)) \mathrm{d}\tau = \int_0^t \mathrm{e}^{-A\tau} \boldsymbol{B} \boldsymbol{u}(\tau) \mathrm{d}\tau$$

$$\int_0^t \frac{\mathrm{d}}{\mathrm{d}\tau} (e^{-A\tau} x(\tau)) \mathrm{d}\tau = e^{-A\tau} x(\tau) \Big|_0^t = e^{-At} x(t) - x(0)$$

$$e^{-At} \boldsymbol{x}(t) - \boldsymbol{x}(0) = \int_0^t e^{-A\tau} \boldsymbol{B} \boldsymbol{u}(\tau) d\tau$$

$$\boldsymbol{x}(t) = e^{At} \boldsymbol{x}(0) + e^{At} \int_0^t e^{-A\tau} \boldsymbol{B} \boldsymbol{u}(\tau) d\tau$$

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) + \int_0^t e^{A(t-\tau)} \cdot \mathbf{B}\mathbf{u}(\tau) d\tau$$

$$e^{-At} \boldsymbol{x}(t) - e^{-At_0} \boldsymbol{x}(t_0) = \int_{t_0}^t e^{-A\tau} \cdot \boldsymbol{B} \boldsymbol{u}(\tau) d\tau$$

$$\boldsymbol{x}(t) = e^{A(t-t_0)} \boldsymbol{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)} \cdot \boldsymbol{B} \boldsymbol{u}(\tau) d\tau$$

Nonhomogeneous state equation

$$\dot{x} = Ax + Bu$$

(2) Laplace transform

$$sX(s) - x(0) = AX(s) + BU(s)$$

 $X(s) = (sI - A)^{-1}[x(0) + BU(s)]$

We could obtain

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

free motion caused by initial state

motion controled by input

Nonhomogeneous state equation

$$\dot{x} = Ax + Bu$$

When the input is impulse signal $\delta(t)$

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = e^{At}x(0) + e^{At}B$$

When the input is step signal u(t)

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$
$$= e^{At}x(0) + \int_0^t e^{At}Bu(t-\tau)d\tau$$
$$= e^{At}x(0) + \int_0^t e^{At}Bd\tau$$

Example 3

For state space model
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
, input $u(t) = 1(t)$

Initial state
$$x(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$$
 Please solve this nonhomogeneous equation

$$\mathbf{x}(t) = e^{\mathbf{A}t} \mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)} \cdot \mathbf{B}\mathbf{u}(\tau) d\tau$$

$$e^{At} = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$

$$\int_0^t e^{A(t-\tau)} \cdot \mathbf{B} \mathbf{u}(\tau) d\tau = \int_0^t \begin{bmatrix} 2e^{-(t-\tau)} - e^{-2(t-\tau)} & e^{-(t-\tau)} - e^{-2(t-\tau)} \\ -2e^{-(t-\tau)} + 2e^{-2(t-\tau)} & -e^{-(t-\tau)} + 2e^{-2(t-\tau)} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} d\tau$$

$$\int_{0}^{t} e^{A(t-\tau)} \cdot \mathbf{B} \mathbf{u}(\tau) d\tau = \int_{0}^{t} \begin{bmatrix} 2e^{-(t-\tau)} - e^{-2(t-\tau)} & e^{-(t-\tau)} - e^{-2(t-\tau)} \\ -2e^{-(t-\tau)} + 2e^{-2(t-\tau)} & -e^{-(t-\tau)} + 2e^{-2(t-\tau)} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} d\tau$$

$$= \int_{0}^{t} \begin{bmatrix} e^{-(t-\tau)} - e^{-2(t-\tau)} \\ -e^{-(t-\tau)} + 2e^{-2(t-\tau)} \end{bmatrix} d\tau$$

$$= - \begin{bmatrix} -e^{-(t-\tau)} + \frac{1}{2}e^{-2(t-\tau)} \\ e^{-(t-\tau)} - e^{-2(t-\tau)} \end{bmatrix} \begin{vmatrix} t \\ 0 \end{bmatrix} e^{-t} = \begin{bmatrix} \frac{1}{2} - e^{-t} + \frac{1}{2}e^{-2t} \\ e^{-t} - e^{-2t} \end{bmatrix}$$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} -e^{-t} + \frac{1}{2}e^{-2t} + \frac{1}{2} \\ e^{-t} - e^{-2t} \end{bmatrix}$$

Description of discrete system

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$x(k+1) = G(k)x(k) + H(k)u(k)$$
$$y(k) = C(k)x(k) + D(k)u(k)$$

where *k* is the *k*th sample moment

$$G = e^{AT}$$

$$H = \int_0^T e^{At} B dt$$

C, D remain the same

Description of discrete system

Example 4 LTI continuous system state equation as following

$$\dot{x}(t) = \begin{bmatrix} 0 & -1 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

Write out the discrete state equation

$$G = e^{AT} = L^{-1}[(sI - A)^{-1}] = L^{-1}\begin{bmatrix} \frac{1}{s} & \frac{-1}{s(s+2)} \\ 0 & \frac{1}{s+2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -\frac{1}{2} + \frac{1}{2}e^{-2T} \\ 0 & e^{-2T} \end{bmatrix}$$

$$H = \int_0^T e^{At}Bdt = \int_0^T \begin{bmatrix} 1 & -\frac{1}{2} + \frac{1}{2}e^{-2t} \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}dt$$

$$= \begin{bmatrix} -\frac{T}{2} + \frac{1}{4} - \frac{1}{4}e^{-2T} \\ \frac{1}{2} - \frac{1}{2}e^{-2T} \end{bmatrix}$$