Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа R3142	К работе допущен
Студент Лоскутова И.В.	Работа выполнена
Преподаватель Курашова С. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по наклонной плоскости

- 1. Цель работы.
 - 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости
 - 2. Определение величины ускорения свободного падения д
- 2. Задачи, решаемые при выполнении работы.
 - 1. Проверка равноускоренности движения тележки
 - 2. Определение ускорения свободного падения д при движении по рельсу
- 3. Объект исследования.

Тележка, скользящая по наклонной плоскости с воздушным насосом

4. Метод экспериментального исследования.

Исследование экспериментальной зависимости ускорения тележки от угла наклона рельса к горизонту

5. Рабочие формулы и исходные данные.

$$V_{x}(t) = V_{ox} + a_{x}t \qquad a = gsina - \mu gcosa$$

$$x(t) = x_{0} + V_{ox}t + \frac{a_{x}t^{2}}{2} \qquad a = g(sina - \mu)$$

$$m\vec{a} = m\vec{g} + \vec{N} + \overrightarrow{F_{rp}} \qquad sina = \frac{(h_{0} - h) - (h'_{0} - h')}{x' - x}$$

$$\begin{cases} Oy: O = N - mgcosa \\ Ox: ma = mgsina - \mu mgcosa \end{cases} \qquad \langle a \rangle = \frac{2(x_{2} - x_{1})}{\langle t_{2} \rangle^{2} - \langle t_{1} \rangle^{2}}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	линейка	угольник	[0,0100;0,2500] м	0,0005 м
2	измерительный прибор ПКЦ-3 в режиме секундомера	цифровой	[0,1;100,0] c	0,1 c
3	линейка на рельсе		[0,100;1,300] м	0,005 м

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Nº	Измеренные величины			Рассчитанны	е величины	
	X ₁ , M	X2, M	t ₁ , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2
1	0,15	0,40	2,3	3,6	$0,25 \pm 0,005$	3.8 ± 0.3
2	0,15	0,50	1,4	3,8	0.35 ± 0.005	$6,2 \pm 0,3$
3	0,15	0,70	0,5	4,8	$0,55 \pm 0,005$	$11,3 \pm 0,3$
4	0,15	0,90	1,0	4,6	$0,75 \pm 0,005$	$10,0 \pm 0,3$
5	0,15	1,10	0,8	7,5	$0,95 \pm 0,005$	$27,8 \pm 0,5$

Таблица 1: Результаты прямых измерений (Задание 1)

Х, М	х', м	h ₀ , мм	h ₀ ′, мм
0,22	1,00	205	210

Таблица 2: Результаты прямых измерений

№пл	h, мм	h', мм	Nº	t ₁ , c	t ₂ , c
1	225	210	1	1,4	4,3
			2	1,5	4,4
			3	1,5	4,4
			4	1,6	4,5
			5	1,5	4,4
2	235	210	1	1,4	3,3
			2	1,3	3,1
			3	1,2	3,0

			4	1,3	3,1
			5	1,3	3,1
3	245	210	1	1,0	2,5
			2	1,2	2,4
			3	1,0	2,6
			4	1,0	2,5
			5	0,8	2,5
4	255	210	1	0,9	2,2
			2	0,8	2,2
			3	1,0	2,4
			4	0,9	2,2
			5	0,9	2,0
5	265	210	1	0,7	1,8
			2	0,9	2,0
			3	0,7	1,9
			4	0,8	1,9
			5	0,9	1,9

Nпл - количество пластин

h – высота на координате x = 0,22 м

h' – высота на координате x' = 1,00 м

Таблица 3: Результаты прямых измерений (Задание 2)

Nпл	sina	$\langle t_1 \rangle \pm \Delta t_1, c$	$\langle t_2 \rangle \pm \Delta t_2, c$	$\langle a \rangle \pm \Delta a, {}^{M}/{}_{C^{2}}$
1	0,03	$1,5 \pm 0,1$	$4,4 \pm 0,1$	$0.1 \pm 0.2*10^{-2}$
2	0,04	$1,3 \pm 0,1$	$3,1 \pm 0,2$	$0.2 \pm 0.6*10^{-2}$
3	0,05	$1,0 \pm 0,2$	$2,5 \pm 0,1$	$0.4 \pm 0.5*10^{-2}$
4	0,06	0.9 ± 0.1	$2,2 \pm 0,2$	$0.5 \pm 0.9*10^{-2}$
5	0,08	0.8 ± 0.1	$1,9 \pm 0,1$	$0.6 \pm 0.6*10^{-2}$

Nпл - количество пластин

$$\langle t_{1,2} \rangle = \frac{1}{N} \sum_{i=1}^{N} t_{1_i, 2_i}$$

Таблица 4: Результаты расчётов

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*). Проверка равноускоренности движения:

$$x_2-x_1=arac{1}{2}(t_2^2-t_1^2)$$
, то есть $Y=aZ$, где $Y=x_2-x_1$, $Z=rac{t_2^2-t_1^2}{2}$

Коэффициент
$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_2^2} = \frac{0.96 + 2.18 + 6.27 + 7.56 + 26.41}{14.71 + 38.94 + 129.85 + 101.61 + 773.12} \approx 0.04 \, {}^{M}/{}_{C^2}$$

Среднеквадратичное отклонение
$$\sigma_a = \sqrt{\frac{\sum_{i=1}^N (Y_i - aZ_i)^2}{(N-1)*\sum_{i=1}^N Z_i^2}} = 0,006 \ ^M/_{c^2}$$

Коэффициент
$$B\equiv g=rac{\sum_{i=1}^{N}\langle a_{i}\rangle sina_{i}-\frac{1}{N}*\sum_{i=1}^{N}\langle a_{i}\rangle\sum_{i=1}^{N}sina_{i}}{\sum_{i=1}^{N}sin^{2}a_{i}-\frac{1}{N}*\left(\sum_{i=1}^{N}sina_{i}\right)^{2}}=rac{0.11-0.2*1.82*0.256}{0.015-0.2*0.066}=9,3\ ^{M}/_{C^{2}}$$

Коэффициент
$$A \equiv -\mu * g = \frac{1}{N} * (\sum_{i=1}^{N} \langle a_i \rangle - B \sum_{i=1}^{N} \sin a_i) = 0.2 * (1.82 - 9.3 * 0.256) = -0.11 \frac{\text{M}}{\text{c}^2}$$

Коэффициент
$$d_i = \langle a_i \rangle - (A+B*sina)$$
 Расчет d_i при $i=5$: $d_5 = 0.64 - (-0.11+9.3*0.08) = 0.006 M/c^2$

Коэффициент
$$D = \sum_{i=1}^{N} \sin^2 a_i - \frac{1}{N} * \left(\sum_{i=1}^{N} \sin a_i\right)^2 = 0,015 - 0,2 * 0,066 = 0,0018$$

Среднеквадратичное отклонение
$$\sigma_g = \sqrt{\frac{\sum_{i=1}^N d_i^2}{D(N-2)}} = \sqrt{\frac{0.86*10^{-3}}{0.0018*3}} = 0.4 \, {}^{M}/{c^2}$$

Абсолютное отклонение:
$$|g_{_{3KC\Pi}} - g_{_{Ta6\pi}}| = |9,3-9,82| = 0,5 \frac{M}{C^2}$$

Относительное отклонение:
$$\frac{|g_{\text{эксп}}-g_{\text{табл}}|}{g_{\text{табл}}}*100\% = \frac{0.5}{9.82}*100\% = 5\%$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta x_1 = \Delta x_2 = \frac{2}{3} * \Delta_{\text{H}x} = \frac{2}{3} * 0,005 \approx 0,33 * 10^{-2} \text{M}$$

$$\Delta t_1 = \Delta t_2 = \frac{2}{3} * \Delta_{\text{H}t} = \frac{2}{3} * 0,1 \approx 0,07c$$

$$\Delta Y = \sqrt{(\frac{\partial Y}{\partial x_1} * \Delta x_1)^2 + (\frac{\partial Y}{\partial x_2} * \Delta x_2)^2}$$

Расчет
$$\Delta Y$$
 для $i=1$: $\Delta Y=\sqrt{(-1*0,0033)^2+(1*0,0033)^2}=0,005$ м

$$\Delta Z = \sqrt{(\frac{\partial Z}{\partial t_1} * \Delta t_1)^2 + (\frac{\partial Z}{\partial t_2} * \Delta t)^2}$$

Расчет
$$\Delta Y$$
 для $i=1$: $\Delta Z=\sqrt{(-1.5*0.07)^2+(4.4*0.07)^2}=0.3c^2$

Абсолютная погрешность
$$\Delta a = 2\sigma_a = 2*0,006 = 0,12*10^{-1} \,\mathrm{M}/\mathrm{c}^2$$

Относительная погрешность
$$\varepsilon_a = \frac{\Delta a}{a} * 100\% = \frac{0.12*10^{-1}}{0.04} * 100\% = 30\%$$

Абсолютная погрешность
$$\Delta g = 2\sigma_g = 2*0.4 = 0.8 \, \mathrm{M}/\mathrm{c}^2$$

Относительная погрешность
$$\varepsilon_g = \frac{\Delta g}{g} * 100\% = \frac{0.8}{9.3} * 100\% = 8.6\%$$

$$\Delta a = \langle a \rangle * \sqrt{\frac{(\Delta_{\text{H}x_1})^2 + (\Delta_{\text{H}x_2})^2}{(x_2 - x_1)^2} + 4 * \frac{(\langle t_{1_i} \rangle * \Delta t_1)^2 + (\langle t_{2_i} \rangle * \Delta t_2)^2}{(\langle t_{2_i} \rangle^2 - \langle t_{1_i} \rangle^2)^2}}$$

Расчет Δa для i=1:

$$\Delta a = 0.1 * \sqrt{\frac{(0,005)^2 + (0,005)^2}{(1,1-0,15)^2} + 4 * \frac{(1,5*0,1)^2 + (4,4*0,1)^2}{(4,4^2-1,5^2)^2}} = 0.2 * 10^{-2} \text{ M/c}^2$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Коэффициент a = $0.04 \pm 0.12 * 10^{-1} \text{ M}/c^2$

Относительная погрешность $\epsilon_a=30\%$

Коэффициент $g = 9.3 \pm 0.8 \, \text{M}/c^2$

Относительная погрешность $\epsilon_{\rm g}=8.6\%$

Абсолютное отклонение: $|g_{_{9 \text{КСП}}} - g_{_{\text{Табл}}}| = 0$,5 $^{\mathrm{M}}/_{\mathrm{C}^2}$

Относительное отклонение: $\frac{|g_{3 \text{ксп}} - g_{\text{табл}}|}{g_{\text{табл}}} * 100\% = 5\%$

13. Выводы и анализ результатов работы.

В первом задании движение тележки является равноускоренным, так как значения начальных точек совпадают со значениями точек, полученных на основании теоретической зависимости. Однако, из-за довольно большой погрешности, вызванной неисправностью прибора, последующие значения точек довольно сильно расходятся. Во втором задании вычисленное значение ускорения свободного падения является довольно точным и не сильно различается со значением данной величины по Санкт-Петербургу. Значения на графике также подтверждают точность проведенных измерений и расчетов.

14. Дополнительные задания.

Контрольные вопросы

- 1. Дайте определения пути, перемещения, траектории. Каковы принципиальные различия этих понятий?
- 2. Изобразите графики зависимостей координаты x(t) и проекции скорости $V_x(t)$ для случаев равномерного и равнопеременного прямолинейного движения.
- 3. В любой момент времени мгновенное и среднее значение скорости равны друг другу. Что в этом случае можно сказать о величине ускорения?
- 4. В первом случае некоторому телу придали начальную скорость параллельно шероховатой наклонной плоскости в направлении вверх, а во втором случае - вниз. В каком случае модуль ускорения тела будет больше и почему?
- 5. Изобразите качественный рисунок (чертеж) иллюстрирующий получение формулы (11) данных методических указаний.
- 6. Как зависит величина силы трения скольжения, действующая на тело находящееся на наклонной плоскости, от угла ее наклона при прочих равных условиях? Изобразите график соответствующей зависимости.
- 7. Как зависит ускорение свободного падения от географической широты?

15. Выполнение дополнительных заданий.

Траектория – линия, вдоль которой движется материальная точка.
 Перемещение – вектор, проведенный из начальной точки движения в конечную.
 Путь – длина траектории.

Путь в отличие от перемещения не может быть нулевым.

- 3. В случае, когда мгновенное и среднее значения скорости равны ускорение будет равно 0.
- 4. В первом случае ускорение и д будут противоположно направлены, поэтому модуль ускорения будет уменьшаться. Во втором же случае ускорение и д сонаправлены, поэтому модуль ускорения будет увеличиваться. Значит во втором случае модуль ускорения больше.

5.

6.

Fтp=m*g*sin(a) и N=m*g*cos(a)

Из этого следует, что пока тело покоится на наклонной плоскости, сила трения пропорциональна sin(a). При увеличении угла наклона плоскости m*g*sin(a) будет увеличиваться, а максимальная сила трения наоборот будет убывать. Поэтому при определенном угле наклона сдвигающая сила превзойдёт значение максимальной силы трения покоя и тело начнет скользить по плоскости

7. Так как Земля по форме - эллипсоид, полярный радиус несколько меньше, чем экваториальный. Ускорение свободного падения на полюсе будет больше, а на экваторе – меньше. В общем случае ускорение свободного падения зависит от широты местности и высоты поднятого тела над поверхностью. Необходимо также учесть факт вращательного движения Земли, которое тоже будет влиять на ускорение свободного падения.