# Distance to the Vertex #2 (BFS)

Time limit: 1 second / Memory Limit: 256 MB

#### **Problem Description**

You are given a graph G=(V,E) with |V|=n vertices and |E|=m edges, where the vertices are numbered using integers from 1 to n.

Your task in this problem is to compute for each vertex of this graph, the shortest distance to the vertex numbered 2. ( Hint: You should use Breadth-first search (BFS) technique to solve this problem. See the in-class document for more detail.)

Consider the following graph with 6 vertices and 7 edges as an example. The shortest distance between vertex No. 5 and vertex No. 2 is 2, while the shortest distance between vertex No. 4 and No.2 is 1.



# **Technical Specification**

- $2 \le n \le 10^5$ ,  $1 \le m \le 2 \cdot 10^5$ .
- The vertices are numbered using integers from 1 to n.

## Input

The first line contains two integers n and m, the number of vertices and the number of edges in the tree G.

Each of the next m lines contains two integers  $u_i$  and  $v_i$ , which means that there is an edge connecting vertex  $u_i$  and vertex  $v_i$  in the tree.

## Output

Output n integers in a line, separated by a space, where the  $i^{th}$  integer denotes the shortest distance between vertex numbered i and the vertex numbered i.

Use "-1" to denote that no valid path exists for a vertex.

| Sample Input | Sample Output       |
|--------------|---------------------|
| 9 8          | 1 0 1 1 2 2 3 -1 -1 |
| 1 2          |                     |
| 1 3          |                     |
| 2 4          |                     |
| 2 3          |                     |
| 3 6          |                     |
| 6 5          |                     |
| 5 4          |                     |
| 7 6          |                     |
|              |                     |