

# CAP 6. REQUISITOS E SUPORTES DE REDE PARA MULTIMÍDIA

AULA 1: Introdução e Parâmetros de desempenho

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

# Introdução

# UFSC

#### - Objetivos do Capítulo

- Identificação os principais requisitos de rede de comunicação para transmissão de áudio e vídeo
- Analisar algumas tecnologias de redes locais

#### Conteúdo

- Definição de alguns parâmetros de desempenho de redes de computadores importantes para a comunicação multimídia
  - Taxa de bits, vazão, atraso, variação de atraso, taxa de perdas de pacote
- Caracterização das fontes de áudio e vídeo tempo-real
- Identificação dos principais requisitos de rede para a comunicação de áudio e vídeo
- Análise de algumas tecnologias: Ethernet e ADSL

#### -/Taxa de bits

- Taxa de bits é o número de dígitos binários que a rede é capaz de transportar por unidade de tempo
  - Expresso em bps, Kbps, Mbps, Gbps, etc
- Exemplo taxa nominal de tecnologia de redes (enlace)
  - Ethernet 10Mbps, 100Mpbs, 1Gbps,...
  - Contratada pelo ISP: 10Mbps (download) / 1Mbps (upload)





- Vazão (Throughput)
  - Taxa de bits efetiva vista do ponto de vista do aplicativo
    - A taxa de bits realmente útil para as aplicações
  - Exemplo: tráfego HTTP
    - Pacotes http para ser transmitido
      - Sobrecarga de 20 bytes na camada de transporte (TCP) e mais 20 bytes na camada de rede (IP), ...
  - Vazão da maioria das redes varia com o tempo
    - Alguns fatores que afetam a vazão:
      - congestionamento (devido a sobrecarga ou gargalos)
      - falha de nós e ligações
      - controle de fluxo limita a taxa de transferência



Graph Options Display About

25.5 kbes/s

Vazão (Throughput)







- Atraso Fim-a-Fim (usuário a usuário)
  - Tempo para transmitir pacote de um emissor a um receptor
  - Componentes:
    - Atraso de processamento na fonte
    - Atraso de transmissão: nas interfaces de rede (NIC Network Interface Card) da fonte/dest. e na rede
    - Atraso de processamento no destino



# UFSC

#### - Atraso de transmissão

- Atraso na interface: tempo entre o tempo de o dado estar pronto para ser transmitido e o tempo em que a interface transmite para a rede (pelo enlace de saída)
  - Atraso associado ao controle de acesso ao meio e criação da conexão (se for orientada a conexão)
  - Nas redes Ethernet depende do dispositivo de rede local utilizado (hub ou switch)
    - Hub gera atrasos e variação de atrasos (CSMA-CD)



## Ethernet: usa CSMA/CD



```
Se meio estiver livre então {
        transmite e monitora o canal;
     Se detecta outra transmissão
       então {
         aborta e envia sinal de "jam" (reforço de colisão);
        atualiza número de colisões;
        espera como exigido pelo algorit. "exponential backoff";
        vá para A
      senão {
        quadro transmitido;
        zera contador de colisões
senão {espera até terminar a transmissão em curso vá para A}
```



Cap 6. Requisitos e Suportes de Rede para Multimídia



#### - Atraso de transmissão

- Atraso na rede: tempo entre o tempo de o dado é enviado pelo enlace de saída da fonte e é entregue na interface de rede do receptor.
  - Atraso na rede local até chegar no roteador
  - Atraso em cada hop (salto) da rede: atraso entre a chegada do pacote no roteador e a entrega do pacote no outro roteador





#### - Atraso de transmissão

Atraso na rede: tempo entre o tempo de o dado é enviado pelo enlace de saída da fonte e é entregue na interface de rede do receptor.



- Atraso em cada hop
  - Atraso de processamento: verificação do quadro, identif. do enlace de saída, e encaminhamento para porta de saída
    - na ordem de microssegundos
  - Atraso de enfileiramento: tempo de espera no enlace de saída até a transmissão
    - depende do nível de congestionamento do roteador
    - na ordem de mili ou microseg.
  - Atraso de serialização: tem necessário para serializar o quadro no enlace
    - Depende da taxa de bits do enlace
  - Atraso de propagação: tempo necessário para os bits se propagarem pelo enlace até o destino





- Atraso de serialização:
  - R=largura de banda do enlace (bps)
  - L=compr. do pacote (bits)
  - tempo para enviar os bits no enlace = L/R
  - Atrasos de envio de um pacote de 8000bits
    - 8000/64000 = 125ms em um enlace de 64kbps é de
    - 8000/10M = 0,8ms em um enlace de 10Mbps

#### Atraso de propagação:

- d = compr. do enlace
- s = velocidade de propagação no meio (~2x10<sup>8</sup> m/seg)
- Atraso de propagação = d/s
- Atrasos de envio de um pacote de 8000bits
  - 100m é de 0,5μs
  - 100km é de 0,5ms



### Atraso no nó



$$d_{\text{n\'o}} = d_{\text{proc}} + d_{\text{enfil}} + d_{\text{serial}} + d_{\text{prop}}$$

- $\mathbf{d}_{proc}$  = atraso de processamento
  - tipicamente de poucos microsegs ou menos
- d<sub>enfil</sub> = atraso de enfileiramento
  - depende do congestionamento
- d<sub>serial</sub> = atraso de serialização
  - = L/R, significativo para canais de baixa velocidade
- d<sub>prop</sub> = atraso de propagação
  - poucos microsegs a centenas de msegs

# UFSC

#### - Atraso de transmissão

Atraso na rede: tempo entre o tempo de o dado é enviado pelo enlace de saída da fonte e é entregue na interface de rede do receptor.



- Atraso Fim-a-Fim: Medidas
  - Atraso de ida-e-volta (RTT Round-trip time)
    - Tempo em que o pacote leva para sair da fonte e a volta de uma resposta do destino
    - Mais fácil de medir: usa relógio da fonte para medir tempo entre envio e recepção da resposta
  - Atraso de ida (OWD One way delay)
    - Tempo que o pacote leva para sair da fonte e chegar no destino
    - Mais difícil de medir: requer sincronização na fonte e no destino







• Atraso de ida-e-volta (RTT - Round-trip time)







- Variação de atraso (Jitter)
  - Fluxo de vídeo e de áudio são normalmente enviados separadamente
    - Em redes a pacotes, fluxos são divididos em blocos de dados e cada bloco é transmitido em sequência
  - Se a rede é capaz de enviar todos os blocos com uma latência uniforme, então cada bloco deveria chegar no destino após um atraso uniforme
    - Muitas redes hoje em dia não garantem um atraso uniforme
    - Variações de atrasos são comuns



- Variação de atraso (Jitter)
  - Causas da variação de atraso na transmissão:
    - diferenças de tempo de processamento dos pacotes, diferenças de tempo de acesso à rede e diferenças de tempo de enfileiramento
  - No projeto de uma rede multimídia, é importante colocar um limite superior na variação de atraso





- Jitter







UFSC

- Taxa de Perda de Pacotes
  - Razão entre o número médio de pacotes corrompidos ou errados e o número total de pacotes transmitidos
  - Erros ocorrem quando:
    - pacotes são perdidos ou descartados no trânsito
      - possivelmente devido a espaço de buffer insuficiente no receptor causado pela congestionamento na rede
    - pacotes são atrasados
    - pacotes chegam fora de ordem

### Pontos Importantes

#### Parâmetros de desempenho de redes

• Entender o que é taxa de bits, vazão, atraso, variação de atraso e taxa de perdas de pacotes



# CAP 6. REQUISITOS E SUPORTES DE REDE PARA MULTIMÍDIA

AULA 2: Características do tráfego multimídia

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

## Características do tráfego multimídia

# UFSC

#### Tipos de Transmissão

- Transmissão assíncrona (download)
  - Dado é transferido completamente antes da apresentação
  - gera atraso inicial muito grande
  - exige grande capacidade de armazenamento no receptor
- Transmissão síncrona (streaming)
  - fluxos de áudio e vídeo são transferidos e apresentados em tempo real
  - impõe severos requisitos a nível de comunicação

#### Escopo do estudo

Estudo dos requisitos de rede para transmissão síncrona de áudio e vídeo

### Download





### Streaming







Schillerin

Graph Options Dapley About

Sert 30 Vbm

504 bits/s

150 History of Automobile

SEGNATION OF Addression -----

S Current IF Bergrach IF bits per second boxi Reset data



163 Mbestr

-- 8718bb/s

- 320 () kishtu/n

160.0166s/v

OK Carcelle April

- UFSC
- Fluxos de dados multimídia são caracterizados de acordo com:
  - variação de vazão com o tempo
  - simetria bidirecional
  - dependência temporal
  - sincronização multimídia: intramídia e intermídia
  - tolerância a perda de pacotes

- Variação de vazão com o tempo
  - tráfego multimídia pode ser caracterizado como uma taxa de bits constante (CBR) ou taxa de bits variável (VBR)
- Tráfego a taxa de bits constante (CBR)
  - Gerada por alguns codecs
  - É importante que a rede transporte estes fluxos de dado a uma taxa de bits constante
    - senão é necessário realizar uma buferização em cada sistema final
  - Em muitas redes tal como ISDN é natural transportar dados CBR







- Variação de vazão com o tempo
  - tráfego multimídia pode ser caracterizado como uma taxa de bits constante (CBR) ou taxa de bits variável (VBR)
- Tráfego a taxa de bits variável (VBR)
  - Gerada por tecnologias de compressão de dados
  - tráfego com uma taxa de bits que varia com o tempo
    - ocorrem em rajadas, caracterizado por períodos aleatórios de relativa inatividade quebradas com rajadas de dados



- Simetria Bidirecional
  - Existem dois tipos: Simétrica e Assimétricas
  - Tráfego simétrico
    - Taxas aproximadas nas duas direções
    - P.e. tráfego VoIP um-a-um





- Simetria Bidirecional
  - Existem dois tipos: Simétrica e Assimétricas
  - Tráfego assimétrico
    - Tráfego em uma direção pode ser muito maior que o tráfego em outra direção
      - P.e. Streaming de vídeo, Vídeo sob Demanda (VoD), TV sobre IP (IPTV), ...





#### - Dependência temporal

- Para aplicações pessoa-a-pessoa (VoIP, videofonia e videconferência)
  - atraso total de transmissão das imagens e da voz de um interlocutor da fonte para o destino deve ser pequena
    - senão a conversação perde em interatividade
- Nas aplicações pessoa-sistema
  - Atraso pode ser na ordem de segundos

UFSC

- -/Sincronização multimídia
  - Objetivo final das aplicações multimídia
    - Apresentar aos usuário de forma satisfatória as informações expressas em vários tipos de mídia de apresentação
  - Sincronização é a apresentação temporalmente correta dos componentes multimídia que compõem uma aplicação
    - uma das principais problemáticas de sistemas multimídia

- Para mídias contínuas (vídeo e áudio)
  - Sincronização intramídia: apresentação temporalmente correta significa que amostras de áudio e quadros de vídeo devem ser apresentados em intervalos regulares
    - senão a qualidade percebida será baixa
  - Exemplos:
    - $\bullet$  Voz de telefonia digital codificada na forma de amostras de 8-bits a todo 125  $\mu s$
    - Vídeo de 30fps deveria ser apresentado na forma de um quadro a cada 33ms



Sincronização intermídia: Apresentação temporalmente correta significa que os relacionamentos temporais desejados entre os componentes devem ser mantidos







Vídeo 30 fps 1 quadro a cada 33,33 ms

Áudio 8000 a/s 1 amostra a cada 0,125 ms

- Sincronização intermídia: Fontes de perda de sincronismos
  - Diferentes tempos de processamento na fonte (equipamentos com diferentes cargas de processamento com o tempo)
  - Diferentes atrasos na placa de rede
  - Diferentes atrasos de envio do pacote até o destino
  - Diferentes tempos de processamento no destino



- Sincronização Intermídia: Distorção intermídia
  - Parâmetro que mede a diferença entre: tempo efetivo da apresentação de um componente, e o tempo ideal definido na relação temporal especificada
  - Valor aceitável para a distorção intermídia é dependente dos tipos de mídia relacionadas

| Mídias envolvida | Modo ou Aplicação                       | Distorção intermídia<br>permitida |
|------------------|-----------------------------------------|-----------------------------------|
| Vídeo e animação | correlacionados                         | +/- 120ms                         |
| Vídeo e áudio    | sincronização labial                    | +/- 80ms                          |
| Vídeo e imagem   | superposição                            | +/- 240ms                         |
| Vídeo e imagem   | sem superposição                        | +/- 500ms                         |
| Vídeo e texto    | superposição                            | +/- 240ms                         |
| Vídeo e texto    | sem superposição                        | +/- 500ms                         |
| Áudio e animação | correlacionados                         | +/- 80ms                          |
| Áudio e áudio    | relacionamento estrito (estéreo)        | +/- 11μs                          |
| Áudio e áudio    | relacionamento fraco                    | +/- 120ms                         |
| Áudio e áudio    | relacionamento fraco (música de fundo)  | +/- 500ms                         |
| Áudio e imagem   | relacionamento forte (música com notas) | +/- 5ms                           |
| Áudio e imagem   | relacionamento fraco (apres. de slides) | +/- 500ms                         |
| Áudio e texto    | anotação de texto                       | +/- 240ms                         |
| Áudio e ponteiro | áudio relaciona para mostrar item       | - 500ms a + 750ms                 |

#### Características das fontes multimídia

- Tolerância a Perda de Pacotes
  - Transferência livre de erro não é essencial para obter uma qualidade de comunicação aceitável
    - informações multimídia toleram certa quantidade de erros
  - Taxa de erro tolerável é dependente do método de compressão





#### Características das fontes de tráfego multimídia

- Entender diferenças entre download e streaming
- Entender formas de caracterizar um tráfego multimídia



# CAP 6. REQUISITOS E SUPORTES DE REDE PARA MULTIMÍDIA

AULA 3: Requisitos de rede para a comunicação multimídia

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

## Requisitos de rede para áudio e vídeo

- UFSC
- Identificação dos principais requisitos de rede para áudio e vídeo
  - Verificar níveis de desempenho que a rede deve oferecer para ter boa qualidade Requisitos avaliados:
    - Eficiência de uso de recursos da rede
      - A tecnologia usa de maneira eficiente seus recursos para transportar dados multimídia?
    - Requisitos de vazão
      - A rede oferece banda suficiente para transportar meus dados de áudio/vídeo?
    - Requisitos de atraso e variação de atraso
      - A rede oferece um atraso pequeno e constante para meu tráfego de mídia?
    - Requisitos de confiabilidade
      - A rede produz muita perda de pacotes que afeta a qualidade de apresentação das mídias?

## Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito



- Comutação
  - Processo de alocação de recursos para a transmissão.
- Existem dois tipos básicos de comutação
  - Comutação de pacotes: não são reservados recursos
    - Pacotes usam os recursos sob demanda e, como consequência, poderão ter de aguardar (entrar na fila) para conseguir acesso ao enlace de rede.
  - Comutação de circuito: reserva de recursos
    - Recursos necessários ao longo de um caminho (bufers, taxa de transmissão de enlaces)
      para prover a comunicação entre os sistemas finais são reservados pelo período da sessão
      de comunicação
    - Circuito é implementando em um enlace por Multiplexação por Divisão de Frequência (FDM) ou Multiplexação por Divisão de Tempo (TDM)

# Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito



- Comutação de circuito não usa recursos de maneira eficiente quando dados multimídia são transmitidos em rajadas
  - Se usuário reserva uma largura de banda igual a seu pico de taxa de transmissão:
    - parte da largura de banda é desperdiçada em redes de comutação de circuitos
      - É baseada em reserva de recursos



# Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito

- UFSC
- Comutação de pacotes utiliza recursos sob demanda e o tráfego é agregado no enlace (multiplexação estatística)
  - Melhor técnica para uso eficiente da rede
    - aplicação pode usar tanta largura de banda quanto necessário sujeito a um valor máximo
    - quando uma aplicação não usa toda a sua largura de banda outra aplicação pode usar



# UFSC

#### - Requisito de vazão de transmissão

- Requisito dependentes da qualidade/codec escolhida para áudios e vídeos transmitidos e da técnica de compressão utilizada
- MP3 (compressão com perda com diferentes qualidades)
  - 32 kbps qualidade aceitável para voz
  - 96 kbps geralmente usada para voz ou streaming de baixa qualidade
  - 128 ou 160 kbps qualidade intermediária
  - 192 kbps qualidade média
  - 256 kbps taxa comumente usada para alta qualidaide
  - 320 kbps Qualidade mais alta suportada pelo MP3

# UFSC

#### - Requisito de vazão de transmissão

- Requisito dependentes da qualidade/codec escolhida para áudios e vídeos transmitidos e da técnica de compressão utilizada
- VoIP (codecs ITU-T)
  - 5.3 a 64 kbps de vazão gerados por fluxo de áudio (depende do codec)
  - 20 a 80 kbps ao nível de rede (depende do tamanho do pacote de voz)
- VoIP outros codecs
  - 700 bps usando codec Codec2 na mais baixa taxa, som melhor com 1,2 kbps
  - 800 bps taxa minima necessária para entender as palavras, usando codec de voz FS-1015
  - 2.15 kbps taxa minima do codec Speex
  - 6 kbps taxa minima do codec Opus

# UFSC

#### Requisito de vazão de transmissão

- Outros áudios
  - 32–500 kbps áudio com perda usando o Ogg Vorbis
  - 256 kbps MP2 Digital Audio Broadcasting (DAB) necessário para alta qualidade
  - 400 kbps-1.411 kbps áudio sem perda usado nos formatos como Free Lossless Audio Codec, WavPack
  - 1.411,2 kbps format de som PCM linear CD-DA
  - 5.644,8 kbps DSD, usado no Super Audio CD
  - 6.144 Mbps- E-AC-3 (Dolby Digital Plus), um Sistema de codificação baseado no codec AC-3
  - 9.6 Mbps DVD-Audio

#### Requisito de vazão de transmissão

#### Vídeos

- 16 kbps qualidade mínima para videofonia
- 128–384 kbps videoconferência orientada negócios
- 400 kbps YouTube 240p videos (usando H.264)
- 750 kbps YouTube 360p videos (usando H.264)
- 1 mbps YouTube 480p videos (usando H.264)
- 1.15 mbps max qualidade VCD (usando MPEG1)
- 2.5 mbps YouTube 720p videos (usando H.264)
- 3.5 mbps typ SDTV (usando MPEG-2)
- 3.8 mbps YouTube 720p (no modo 60fps) videos (usando H.264)
- 4.5 mbps YouTube 1080p videos (usando H.264)
- 8 to 15 mbps typ HDTV quality (usando MPEG-4 AVC)
- 19 mbps aprox. HDV 720p (usando MPEG2)
- 24 mbps max AVCHD (usando MPEG4 AVC)
- 25 mbps aprox. HDV 1080i (usando MPEG2)
- 29.4 mbps max HD DVD
- 1.4 gbps- 10-bit 4:4:4 não compactado 1080p com 24fps



# UFSC

#### - Requisito de vazão de transmissão

- Transmissão de vídeo de qualidade. Recomendações da Netflix
  - 0,5 Mbps: Velocidade de conexão de banda larga necessária
  - 1,5 Mbps: Velocidade de conexão de banda larga recomendada
  - 3,0 Mbps: Recomendada para qualidade SD
  - 5,0 Mbps: Recomendada para qualidade HD
  - 25 Mbps: Recomendada para qualidade Ultra HD

# UFSC

- Requisito de continuidade temporal
  - Rede deve ser capaz de suportar a taxa gerada pela aplicação multimídia durante toda a sessão
    - Exemplo: VoIP com codec G.711 deve suportar uma taxa
      - CBR a 80 kbps no caso de não haver supressão de silêncio
      - VBR com taxa de pico de 80 kbps caso haja supressão de silêncio
  - Se existem vários fluxos na rede ao mesmo tempo
    - Rede deve ter uma capacidade de vazão igual ou maior que a taxa de bits agregada dos fluxos

# Requisitos de atraso e variação de atraso



#### - Atraso fim-a-fim

- Sempre existe um atraso entre a captura/leitura de uma informação em uma fonte e sua apresentação em um destino
  - gerado pelo processamento da informação na fonte, sistema de transmissão e processamento no destino
- Para videoconferência e VoIP: entre 150 e 400ms
- Para aplicações baseadas em servidor: na ordem de segundos

## Requisitos de atraso e variação de atraso

UFSC

- Variação de atrasos
  - Em redes a comutação de pacotes, os pacotes de dados não chegam ao destino em intervalos fixos
    - necessário para transmissão de mídias contínuas
  - Para videoconferência e VoIP: deve ser limitada a um pequeno valor (inferior a 30 a 60ms)
  - Para aplicações baseadas em servidor: pode ser mais alta



# Requisitos de atraso e variação de atraso

- Variação de Atraso é removida com buffer FIFO no destino FS
  - Técnica de bufferização:
    - pacotes que chegam são colocados no buffer em taxas variadas
    - dispositivo de apresentação retira amostragens em uma taxa fixa
    - **princípio**: adicionar um valor de atraso variável a cada pacote de tal forma que o atraso total de cada pacote seja o mesmo



10

- Supondo:
  - dmin: tempo mínimo de atraso do pacote
  - dmax: tempo máximo de atraso
- Se um pacote com atraso de d é bufferizado durante (dmax-d)
  - todos os pacotes terão um atraso fixo de dmax
    - destino partirá a apresentação *dmax*
    - cada pacote será apresentado em tempo
- Tempo máximo de bufferização é dmax-dmin
  - maior este valor, maior é o tamanho do buffer necessário
  - buffer não deve sofrer sobrecarga ou subtilização
  - tamanho do buffer não dever ser muito grande
    - significa que o sistema é caro e o atraso fim-a-fim é grande



UFSC

- Buffer de Apresentação
  - Existem duas classes de operação para os buffers de apresentação:
    - Tempo de bufferização fixo
    - Tempo de bufferização adaptável

- Tempo de Bufferização fixo
  - Primeiro pacote do fluxo é bufferizado por um período de tempo de B segundos antes de ser apresentado
  - Pacote seguinte é apresentado numa taxa fixa se ele é disponível
  - Quando a variação de atraso não é muito grande e B é apropriadamente selecionado
    - variação de atraso da rede pode ser removida eficientemente.







UFSC

- Tempo de Bufferização fixo
  - Mas este esquema n\(\tilde{a}\)o considera o atraso real do pacote
    - Mesmo se o primeiro pacote sofrer o atraso máximo da rede, ele é atrasado de B segundos
      - Causando atraso extra desnecessário
  - Em VoIP em geral o tempo de bufferização é de duas vezes o tamanho de um pacote de voz
    - Exemplo: se o pacote de voz for de 20ms, o tempo de bufferização é de 40ms



UFSC

- Tempo de Bufferização fixo
  - Embora esta técnica seja fácil de implementar
    - Pode resultar em qualidade não satisfatória de áudio
      - Atrasos podem variar, e se aumentar aumenta o descarte de pacotes

 Não há um atraso ótimo quando as condições de rede variam com o tempo



UFSC

- Técnicas de bufferização adaptativas
  - Realizam uma estimação contínua dos atrasos de rede
    - Via os parâmetros dos pacotes RTP e RTCP
  - Permite acompanhar a situação da rede
  - Várias operações devem ser realizadas para o cálculo do tempo de apresentação dos dados
    - Compensação do desvios de relógio
    - Compensação do Comportamento do Emissor quando do uso de técnicas para aumentar a confiabilidade
    - Compensação do Jitter
    - Compensação da trocas de rota
    - Compensação da reordenação de pacotes
    - Definição do momento de adaptar



#### - Análise baseada no modelo cliente/servidor

- Supondo:
  - destino consome dados a uma taxa constante
  - A(t) a função dos dados que chegam e C(t) a função de consumo
    - C(t) aumenta com o tempo em uma taxa constante
    - A(t) não aumenta a taxa fixa devido a variação de atrasos
- Assumindo:
  - o: tempo de envio do primeiro pacote
  - t1: tempo de chegada do primeiro pacote
  - t2: tempo de apresentação do primeiro pacote
- Para satisfazer os requisitos de continuidade
  - A(t-t1) dever ser igual ou maior que C(t-t2)
    - a diferença é bufferizada



## Técnica de Bufferização

#### - Requisitos de largura de banda

- Inclinação de A(t-t1) representa a taxa de chegada de dados
- Valor médio da taxa de chegada deve ser igual a taxa de consumo
- Se a taxa de consumo é menor
  - diferença A(t-t1) e C(t-t2) (ocupação do buffer) aumenta com o tempo
  - para o sucesso da apresentação
    - tamanho do buffer é infinito ou
    - apresentação do fluxo pode apenas se mantida durante um tempo limitado
  - senão correrá sobrecarga do buffer





## Técnica de Bufferização

# UFSC

#### - Requisitos de largura de banda

 Conclusão: controle da taxa de transmissão deve ser usado para que a taxa de transmissão seja próxima a taxa de consumo



## Técnica de Bufferização

- Requisitos de largura de banda
  - Se a taxa de consumo é maior que a taxa de chegada
    - para satisfazer o requisito que A(t-t1)-C(t-t2) n\u00e3o seja menor que o
      - t2 deve ser maior (atraso inicial maior)
        - tempo de resposta mais longo
        - requer tamanho de buffer maior
    - maior o fluxo a ser apresentado, maior é o atraso inicial e maior os requisitos do buffer
      - não são desejáveis nem praticáveis
  - Conclusão: transmissor deveria enviar na taxa de consumo, e a largura de banda de transmissão fim-a-fim deve ser ao menos igual a taxa de consumo







## Requisitos de confiabilidade

#### - Requisito de difícil quantificação

- As aplicações multimídia são tolerantes a erros de transmissão
  - Devido aos limites da percepção sensorial humana
  - Consequência: perdas geram redução da qualidade de apresentação
- Requisitos de controle de erro e de atraso fim-a-fim são contraditórios
  - pois muitos esquemas de controle de erro envolvem a detecção e retransmissão do pacote com erros ou perda
    - implica no aumento no atraso
  - para transmissão tempo-real de áudio e vídeo, o atraso é mais importante que a taxa de erros
    - é preferível ignorar o erro e trabalhar simplesmente com o fluxo de dado recebido

#### Para VoIP:

• ideal é inferior a 1%, acima de 25% não é tolerável



#### Pontos Importantes

Requisitos de rede para a comunicação multimídia

- Entender os requisitos de rede para áudio e vídeo
- Conhecer as técnicas de buferização apresentadas



# CAP 6. REQUISITOS E SUPORTES DE REDE PARA MULTIMÍDIA

AULA 4: Análise de algumas tecnologias de redes

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

## Ethernet e a Comunicação Multimídia

# UFSC

#### Ethernet

- Protocolo Camada 2 (Enlace) de interconexão para redes locais baseada no envio de quadros.
- Define cabeamento e sinais elétricos para a camada física, e formato de quadros e protocolos para a camada de controle de acesso ao meio (Media Access Control -MAC)
- Bandas: 10, 100, 1000, 10000 Mbps

#### Dois Tipos

- Ethernet com meio compartilhado CSMA/CD
  - CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
  - Uso de Hubs Ethernet: repassa quadro entrante em uma porta nas outras portas
  - Banda é compartilhada pelos computadores ligados ao hub
- Ethernet Comutada (Switches Ethernet)
  - Uso de Switches Ethernet: repassa quadro entrante em uma porta em uma porta destinatária
  - Cada computador recebe a banda nominal

### Ethernet CSMA/CD e a Multimídia

UFSC

Hub

- -/Largura de Banda
  - Bandas: 10, 100 Mbps
  - Ethernet CSMA/CD não poderiam ser mais carregadas que 70% a 80% para manter as colisões a um nível aceitável
- Método de acesso CSMA/CD
  - Tem comportamento n\(\tilde{a}\) determinista
    - não permite o controle de tempo de acesso e da largura de banda
  - Em redes carregadas gera atrasos e variação de atrasos consideráveis

### Ethernet Comutada e a Comunicação Multimídia



#### -/Banda

Bandas: 10, 100, 1000, 10000 Mbps

#### - Switch

- Não retransmite quadro que recebe nas outras portas
- Possui uma tabela de encaminhamento e retransmite o quadro apenas para a porta adequada (se conhecida)
- Equipamento que aumenta a eficiência da rede
  - Melhora a vazão total
  - Reduz o atraso e variação de atraso na rede local



## Ethernet e a Comunicação Multimídia

- Gerenciamento de tráfego
  - Switches convencionais não oferecem mecanismo para assegurar uma distribuição igualitária da largura de banda nem mecanismos de prioridade





- não se pode dar um tratamento diferenciado para tráfego tempo-real sobre dados convencionais
- Utiliza fila FIFO agregando todo o tráfego na porta de saída (sem priorização)

### Priorização de Tráfego com 802.1Q e 802.1p



#### - Padrão IEEE 802.1p

- Define uma metodologia para a introdução de classes de prioridade para o tráfego
  - Mecanismo de indicação da prioridade do quadro baseado no campo Priority do padrão 802.1Q.
- São suportadas 8 classes de tráfego (prioridades), com múltiplas filas de prioridade estabelecidas por porta
  - especifique um mecanismo de reordenar os pacotes nas filas
- Não gerencia a latência
  - requerida para redes de tempo real com suporte à áudio e vídeo

### ADSL e VDSL









#### Tecnologia de Acesso que usa a linha telefônica

- Utiliza os pares de cobre das linhas telefônicas para transportar informações digitais
- Tecnologia baseada em modems que convertem linhas de telefones de par-trançado comuns existentes em caminhos de acesso para multimídia e comunicações de dados de alta velocidade.

#### É uma tecnologia assimétrica

- Fornece maior largura de banda para downstream e outra para upstream
- Torna esta tecnologia ideal para navegar na Web e vídeo sob-demanda
  - Usuários destas aplicações tipicamente baixam mais dados que enviam



#### ADSL e VDSL



#### Vazão

- Taxa depende de vários fatores
  - comprimento da linha, categoria do cabo, presença de derivações, e interferências
- Provedor não precisa garantir 100% do upload e download contratado (meio compartilhado). Prestadora deve garantir ao usuário (Res. Anatel 574/2011):
  - Uma velocidade instantânea de no mínimo 40% da velocidade contratada, e;
  - Em média mensal, a velocidade nesse horário não pode ser inferior a 80% da velocidade contratada



## ADSL/VDSL e a Multimídia

# UFSC

#### - Velocidades não é uma ciência exata

- Provedores de serviço fornecem um serviço "melhor esforço" cujo resultado depende muito da distância até a central
- altamente sensível a interferências, a qualidade da sua conexão pode ficar instável em diversas ocasiões principalmente em dias de chuva

#### - Para aplicações com tráfego simétrico

Deve-se considerar a vazão oferecida pelo upload

#### - DSL

- Susceptíveis a interferências
- Provocam perdas em rajadas
  - Ruim para multimídia

### Pontos Importantes

#### Ethernet e xDSL e a multimídia

• Entender limitações das tecnologias