

Part 15C TEST REPORT

Product Name	Neptune pine	
Model	P312	
FCC ID	2ABWUP312	
Client	NEPTUNE COMPUTER INC.	
Manufacturer	NEPTUNE COMPUTER INC.	
Date	June 6, 2014	

TA Technology (Shanghai) Co., Ltd.

Report No.: RXC1312-0222RF05R2 Page 2of 94

GENERAL SUMMARY

Reference Standard(s)	FCC CFR47 Part 15C (2012) Radio Frequency Devices 15.205 Restricted bands of operation; 15.207 Conducted limits; 15.209 Radiated emission limits; general requirements; 15.247 Operation within the bands 902-928 MHz,2400-2483.5 MHz, and 5725-5850MHz. ANSI C63.4 Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40GHz. (2009) DA00-705 Filing and Frequency Measurement Guidelines For Frequency Hopping Spread Spectrum System.(2000)
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 2 of this test report are below limits specified in the relevant standards. General Judgment: Pass
Comment	The test result only responds to the measured sample.

Approved by_

Weizhong Yang

Director

Revised by_

Lingling Kang

RF Manager

Performed by_

Yu Wang RF Engineer

TABLE OF CONTENT

1.	Gen	neral Information	4
	1.1.	Notes of the test report	. 4
	1.2.	Testing laboratory	. 5
	1.3.	Applicant Information	. 5
	1.4.	Manufacturer Information	. 5
	1.5.	Information of EUT	. 6
	1.6.	Test Date	. 7
2.	Info	rmation about the FHSS characteristics	8
	2.1.	Pseudorandom Frequency Hopping Sequence	. 8
	2.2.	Equal Hopping Frequency Use	. 9
	2.3.	System Receiver Input Bandwidth	. 9
3.	Tes	t Information	10
	3.1.	Test Mode	10
	3.2.	Summary of test results	10
	3.3.	Peak Power Output –Conducted	11
	3.4.	Occupied Bandwidth (20dB)	17
	3.5.	Frequency Separation	24
	3.6.	Time of Occupancy (Dwell Time)	31
	3.7.	Band Edge Compliance	
	3.8.	Spurious Radiated Emissions in the Restricted Band	42
	3.9.	Number of hopping Frequency	48
	3.10.	Spurious RF Conducted Emissions	52
	3.11.	Radiates Emission	60
	3.12.	Conducted Emission	87
4.	Maii	n Test Instruments	92
4	NNEX	A: EUT Appearance and Test Setup	93
	A.1 EU	JT Appearance	93
	A.2 Te	est Setup	94

Report No.: RXC1312-0222RF05R2 Page 4of 94

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 428261.

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 8510A.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample under test was selected by the Client. This report only refers to the item that has undergone the test.

This report alone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

Report No.: RXC1312-0222RF05R2 Page 5of 94

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company: NEPTUNE COMPUTER INC.

666 SHERBROOKE ST. W., SUITE 1000

Address: MONTREAL

H3A 1E7 CANADA

1.4. Manufacturer Information

Company: NEPTUNE COMPUTER INC.

666 SHERBROOKE ST. W., SUITE 1000

Address: MONTREAL

H3A 1E7 CANADA

Report No.: RXC1312-0222RF05R2 Page 6of 94

1.5. Information of EUT

General information

Name of EUT:	Neptune pine				
IMEI:	354727049900673				
Hardware Version:	P1	P1			
Software Version:	JB_V0.29				
Antenna Type:	Internal Antenna				
Device Operating Configurations:					
Test Mode	Basic Rate Enhanced Data Rate(EDR)				
Modulation Type:	Frequency Hopping Spread Spectrum (FHSS)				
Modulation Type:	GFSK	π/4 DQPSK	8DQPSK		
Packet Type:(Maximum Payload)	DH5	2DH5	3DH5		
Max. Conducted Power	7.36 dBm				
Power Supply:	Battery or Charger (AC adaptor)				
Operating Frequency Range(s)	2402 ~ 2480MHz				
Tested Frequency Range(s)	2400 ~ 2483.5 MHz				

Report No.: RXC1312-0222RF05R2 Page 7of 94

Auxiliary equipment details

AE1: Battery

Model: Mini Phone

Manufacturer: Tian Yu Communication Technology (Kun Shan) CO.,Ltd

S/N:

AE2: Adapter

Model: DSA-5PFK-05 FUS 050100a

Manufacturer: DEE VAN ENTERPRISE CO., LTD.

S/N: /

1.6. Test Date

The test is performed from March 11, 2014 to March 19, 2014.

Report No.: RXC1312-0222RF05R2 Page 8of 94

2. Information about the FHSS characteristics

2.1. Pseudorandom Frequency Hopping Sequence

Frequency Hopping Systems. A spread spectrum system in which the carrier is modulated with the coded information in a conventional manner causing a conventional spreading of the RF energy about the frequency carrier. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence. The wide RF bandwidth needed by such a system is not required by spreading of the RF energy about the carrier but rather to accommodate the range of frequencies to which the carrier frequency can hop. The test of a frequency hopping system is that the near term distribution of hops appears random, the long term distribution appears evenly distributed over the hop set, and sequential hops are randomly distributed in both direction and magnitude of change in the hop set.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops. The principle is depicted in the figure below.

Hop selection scheme in CONNECTION state.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45, etc.

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: RXC1312-0222RF05R2 Page 9of 94

2.2. Equal Hopping Frequency Use

All Bluetooth units participating in the Pico net are time and hop-synchronized to the channel. Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

2.3. System Receiver Input Bandwidth

Each channel bandwidth is 1MHz. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: RXC1312-0222RF05R2 Page 10of 94

3. Test Information

3.1. Test Mode

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

EUT is stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded. Then this mode was measured in the following mode: EUT with cradle and EUT without cradle. The worst emission was found in EUT with cradle mode and the worst case was recorded.

Test Modes			
Band	Radiated Test Cases	Conducted Test Cases	
		DH5 GFSK(Channel 0/39/78)	
ВТ	3DH5 8DQPSK(Channel 0/39/78)	2DH5 π/4-DQPSK(Channel 0/39/78)	
		3DH5 8DQPSK(Channel 0/39/78)	

Note: The maximum RF output power levels are 3DH5 for 8DQPSK modulation, For RSE and CSE, only the maximum RF output power is chosen.

3.2. Summary of test results

Number	Summary of measurements of results	Clause in FCC rules	Verdict
1	Peak Power Output -Conducted	15.247(b)(1)	PASS
2	Occupied Bandwidth (20dB)	15.247(a)(1)	PASS
3	Frequency Separation	15.247(a)(1)	PASS
4	Time of Occupancy (Dwell Time)	15.247(a)(1)(iii)	PASS
5	Band Edge Compliance	15.247(d)	PASS
6	Spurious Radiated Emissions in the restricted band	15.247(d),15.205,15.209	PASS
7	Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
8	Spurious RF Conducted Emissions	15.247(d)	PASS
9	Radiates Emission	15.247(d),15.205,15.209	PASS
10	AC Power Line Conducted Emission	15.207	PASS

Report No.: RXC1312-0222RF05R2 Page 11of 94

3.3. Peak Power Output -Conducted

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Methods of Measurement

During the process of the testing, The EUT was connected to the spectrum analyzer and Bluetooth test set \exists via a power splitter with a known loss. The EUT is controlled by the Bluetooth test set to ensure max power transmission with proper modulation. The peak detector is used. RBW is set to 2 MHz; VBW is set to 6 MHz. These measurements have been tested at following channels: 0, 39, and 78.

Test Setup

Limits

Rule Part 15.247 (b) (1)specifies that "For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts."

Peak Output Power	≤ 0.125W (21dBm)
-------------------	------------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Report No.: RXC1312-0222RF05R2 Page 12of 94

Test Results

Ohamaal	Francisco (MIII-)	Peak Output Power (dBm)			Conclusion
Channel	Frequency (MHz)	DH5	2DH5	3DH5	Conclusion
0	2402	5.54	6.00	6.16	PASS
39	2441	6.81	7.25	7.36	PASS
78	2480	6.42	6.79	7.20	PASS

Note: The measured power density (dBm) has the offset with cable loss already.

DH₅

Report No.: RXC1312-0222RF05R2 Page 13of 94

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 14of 94

2DH5

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 15of 94

Carrier frequency (MHz): 2480 Channel No.:78

3DH5

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 17of 94

3.4. Occupied Bandwidth (20dB)

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 20kHz and VBW is set to 62kHz on spectrum analyzer. -20dB occupied bandwidths are recorded.

Test Setup

Limits

No specific occupied bandwidth requirements in part 15.247(a) (1).

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Report No.: RXC1312-0222RF05R2 Page 18of 94

Test Results

DH5

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
0	2402	937.462
39	2441	954.356
78	2480	960.190

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 20of 94

2DH5

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
0	2402	1286
39	2441	1331
78	2480	1307

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 22of 94

3DH5

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
0	2402	1293
39	2441	1290
78	2480	1275

Report No.: RXC1312-0222RF05R2 Page 23of 94

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 24of 94

3.5. Frequency Separation

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 300 kHz and VBW is set to 3MHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits

Rule Part 15.247(a)(1)specifies that "Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW."

Note: The value of two-thirds of 20 dB bandwidth is always greater than 25 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Report No.: RXC1312-0222RF05R2 Page 25of 94

Test Results:

DH₅

Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth (kHz)	Limit(kHz)	Conclusion
2402	1002.00	937.462	624.975	PASS
2441	1002.00	954.356	636.237	PASS
2480	1002.00	960.190	640.127	PASS

Note: The limit is two-thirds of 20 dB bandwidth.

Carrier frequency (MHz): 2402

Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 26of 94

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 27of 94

2DH5

Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth (kHz)	Limit(kHz)	Conclusion
2402	1002.00	1286	857	PASS
2441	1011.00	1331	887	PASS
2480	1008.00	1307	871	PASS

Note: The limit is two-thirds of 20 dB bandwidth.

Carrier frequency (MHz): 2402

Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 28of 94

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 29of 94

3DH5

Carrier frequency (MHz)	Carrier frequency separation(kHz)	20dB Bandwidth (kHz)	Limit(kHz)	Conclusion
2402	1002	1293	862	PASS
2441	1008	1290	860	PASS
2480	1005	1275	850	PASS

Note: The limit is two-thirds of 20 dB bandwidth.

Carrier frequency (MHz): 2402

Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 30of 94

Carrier frequency (MHz): 2441 Channel No.:39

Report No.: RXC1312-0222RF05R2 Page 31of 94

3.6. Time of Occupancy (Dwell Time)

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 3MHz and VBW is set to 3MHz on spectrum analyzer .The time slot length is measured of three different packet types, which are available in the Bluetooth technology. Those are DH1, DH3 and DH5 packets. The dwell time is calculated by:

Dwell time = time slot length * hop rate * 0.4s with:

- hop rate=1600 * 1/s for DH1 packet =1600
- hop rate=1600/3 * 1/s for DH3 packet =533.33
- hop rate=1600/5 * 1/s for DH5 packet =320

Test Setup

Limits

Rule Part 22.913(a) specifies that "Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.."

Dwell time	≤ 400ms
2	× 1000

Report No.: RXC1312-0222RF05R2 Page 32of 94

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2.

Requirements	Uncertainty		
Dwell Time	DH1	<i>U</i> = 0.64ms	
	DH3	<i>U</i> = 0.80ms	
	DH5	<i>U</i> = 0.70ms	

Report No.: RXC1312-0222RF05R2 Page 33of 94

Test Results:

CH 39

Packet type	hop rate (1/s)	Time slot length(ms)	Dwell time (ms)	Limit (ms)	Conclusion
DH1	1600	0.38	243.20	400	PASS
DH3	533.33	1.63	347.73	400	PASS
DH5	320	2.88	368.64	400	PASS

Note: Dwell time = time slot length * hop rate * 0.4s

Carrier frequency (MHz): 2441,DH1

Report No.: RXC1312-0222RF05R2 Page 34of 94

Carrier frequency (MHz): 2441,DH3

Carrier frequency (MHz): 2441,DH5

Report No.: RXC1312-0222RF05R2 Page 35of 94

3.7. Band Edge Compliance

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The lowest and highest channels were measured. The peak detector is used. RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. EUT test for Hopping On mode and Hopping Off mode.

Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits."

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
2GHz-3GHz	1.407 dB

Report No.: RXC1312-0222RF05R2 Page 36of 94

Test Results: PASS Hopping On-DH5-

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 37of 94

Hopping On-2DH5

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 38of 94

Hopping On-3DH5

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 39of 94

Hopping Off-DH5

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 40of 94

Hopping Off-2DH5

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 41of 94

Hopping Off-3DH5

Carrier frequency (MHz): 2402 Channel No.:0

Report No.: RXC1312-0222RF05R2 Page 42of 94

3.8. Spurious Radiated Emissions in the Restricted Band

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) The dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak- average correction factor, derived form the appropriate duty cycle calculation.

This setting method can refer to **DA00-705**.

The test is in transmitting mode. The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis) and docking mode. The worst emission was found in stand-up position (Y axis) and the worst case was recorded.

Test setup

Note: Area side: 2.4mX3.6m

Report No.: RXC1312-0222RF05R2 Page 43of 94

LimitsSpurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

Peak Limit=74 dBuV/m

Average Limit=54 dBuV/m

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Report No.: RXC1312-0222RF05R2 Page 44of 94

Test Results: DH5- Channel 0

lower band edge Peak-CH 0

Note: The signal beyond the limit is carrier, a font (Level in db碘m) in the test plot =(level in dBuV/m)

lower band edge average-CH 0

Note: The signal beyond the limit is carrier, a font (Level in dB城/m) in the test plot =(level in dBuV/m)

Report No.: RXC1312-0222RF05R2 Page 45of 94

DH5- Channel 78

Higher band edge Peak-CH 78

Note: The signal beyond the limit is carrier, a font (Level in dBuV/m) in the test plot =(level in dBuV/m)

Higher band edge average-CH 78

Note: The signal beyond the limit is carrier, a font (Level in dBuV/m) in the test plot =(level in dBuV/m)

Report No.: RXC1312-0222RF05R2 Page 46of 94

3DH5- Channel 0

lower band edge Peak-CH 0

Note: The signal beyond the limit is carrier, a font (Level in dB城/m) in the test plot =(level in dBuV/m)

lower band edge average-CH 0

Note: The signal beyond the limit is carrier, a font (Level in dBuV/m) in the test plot =(level in dBuV/m)

Report No.: RXC1312-0222RF05R2 Page 47of 94

3DH5- Channel 78

Higher band edge Peak-CH 78

Note: The signal beyond the limit is carrier, a font (Level in dB城/m) in the test plot =(level in dBuV/m)

Higher band edge average-CH 78

Note: The signal beyond the limit is carrier, a font (Level in dB城/m) in the test plot =(level in dBuV/m)

Report No.: RXC1312-0222RF05R2 Page 48of 94

3.9. Number of hopping Frequency

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 300 kHz and VBW is set to 300 kHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits

Rule Part 15.247(a) (1) (iii) specifies that" Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels..".

Limits	≥ 15 channels
--------	---------------

Report No.: RXC1312-0222RF05R2 Page 49of 94

Test Results:

DH₅

Number of hopping channels	conclusion
79	PASS

2400 MHz - 2483.5 MHz

Report No.: RXC1312-0222RF05R2 Page 50of 94

2DH5

Number of hopping channels	conclusion
79	PASS

2400 MHz - 2483.5 MHz

Report No.: RXC1312-0222RF05R2 Page 51of 94

3DH5

Number of hopping channels	conclusion
79	PASS

2400 MHz - 2483.5 MHz

Report No.: RXC1312-0222RF05R2 Page 52of 94

3.10. Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. RBW and VBW are set to 100 kHz, Sweep is set to ATUO. The test is in transmitting mode.

Test setup

Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power."

Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
	2402	5.35	≤-14.65
BT(GFSK)	2440	4.38	≤-15.62
	2480	3.757	≤-16.243
	2402	11.169	≤-8.831
BT (EDR)	2440	0.687	≤-19.313
	2480	1.529	≤-18.471

Report No.: RXC1312-0222RF05R2 Page 53of 94

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

Report No.: RXC1312-0222RF05R2 Page 54of 94

Test Results: Basic Rate-CH0:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2480 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 55of 94

Basic Rate-CH39:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2480 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 56of 94

Basic Rate-CH78:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2480 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 57of 94

EDR-CH0:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2402 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 58of 94

EDR-CH39:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2402 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 59of 94

EDR-CH78:

Note: The signal beyond the limit is carrier. Carrier frequency (MHz): 2402 Spurious RF conducted emissions from 30MHz to 18GHz

Spurious RF conducted emissions from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 60of 94

3.11. Radiates Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, The height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

Below 1GHz (detector: Peak and Quasi-Peak)
RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz(detector: Peak):

(a) PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded. Then this mode was measured in the following mode: EUT with cradle and EUT without cradle. The worst emission was found in EUT with cradle mode and the worst case was recorded.

The test is in transmitting mode.

Report No.: RXC1312-0222RF05R2 Page 61of 94

Test setup

30MHz~~~ 1GHz

Above 1GHz

Report No.: RXC1312-0222RF05R2 Page 62of 94

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009-0.490	2400/F(kHz)	I
0.490–1.705	24000/F(kHz)	I
1.705–30.0	30	I
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.19 dB
200MHz-1GHz	3.63 dB
Above 1GHz	3.68 dB

Report No.: RXC1312-0222RF05R2 Page 63of 94

Test result

Basic Rate-Channel 0

Note: a font (Level in dB碼m)in the test plot =(level in dBuv/m)
Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.260000	28.8	100.0	V	299.0	46.0	-17.2	11.2	40.0
34.506250	26.7	100.0	V	169.0	45.7	-19.0	13.3	40.0
39.596250	20.0	124.0	V	309.0	39.3	-19.3	20.0	40.0
71.158750	11.7	100.0	V	16.0	39.5	-27.8	28.3	40.0
134.332500	13.8	223.0	Н	99.0	42.7	-28.9	29.7	43.5
525.120000	14.1	200.0	V	296.0	31.9	-17.8	31.9	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RXC1312-0222RF05R2 Page 64of 94

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dBuv/m) in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1421.750000	40.4	100.0	Н	93.0	48.5	-8.1	33.6	74
1683.750000	42.3	100.0	V	332.0	47.9	-5.6	31.7	74
2017.250000	45.2	100.0	Н	273.0	48.4	-3.2	28.8	74
2996.000000	49.5	100.0	V	274.0	48.1	1.4	24.5	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1103.250000	27.5	100.0	Н	78.0	37.5	-10.0	26.5	54
1441.000000	28.8	100.0	V	0.0	36.8	-8.0	25.2	54
1730.500000	30.9	100.0	V	339.0	36.5	-5.6	23.1	54
1988.250000	33.2	100.0	Н	4.0	36.4	-3.2	20.8	54
2988.250000	38.0	100.0	V	153.0	36.6	1.4	16.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 65of 94

Radiates Emission from 3GHz to 18GHz Note: a font ($^{\text{Level in dB}}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4314.375000	41.7	100.0	V	267.0	40.2	1.5	32.3	74
12733.125000	46.2	100.0	Н	293.0	33.6	12.6	27.8	74
17998.125000	58.3	100.0	V	224.0	34.8	23.5	15.7	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
3826.875000	28.9	100.0	Н	77.0	29.0	-0.1	25.1	54
4803.750000	33.2	100.0	V	60.0	31.6	1.6	20.8	54
8778.750000	32.6	100.0	Н	156.0	24.5	8.1	21.4	54
12733.125000	35.4	100.0	Н	293.0	22.8	12.6	18.6	54
18000.000000	46.3	100.0	Н	0.0	22.8	23.5	7.7	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 66of 94

Radiates Emission from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 67of 94

Basic Rate-Channel 39

Note: a font (Level in d日頃)in the test plot =(level in dBuv/m)
Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.260000	28.7	101.0	V	0.0	45.9	-17.2	11.3	40.0
34.223750	27.0	100.0	V	151.0	45.9	-18.9	13.0	40.0
38.836250	16.2	102.0	V	6.0	35.5	-19.3	23.8	40.0
78.315000	11.4	126.0	V	26.0	39.6	-28.2	28.6	40.0
143.675000	12.8	225.0	Н	119.0	42.0	-29.2	30.7	43.5
517.238750	13.1	308.0	V	88.0	31.2	-18.1	32.9	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RXC1312-0222RF05R2 Page 68of 94

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dBuv/m) in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1173.750000	39.5	100.0	V	0.0	49.0	-9.5	34.5	74
1439.500000	39.9	100.0	Н	15.0	47.9	-8.0	34.1	74
1712.750000	42.0	100.0	Н	29.0	47.5	-5.5	32.0	74
1994.750000	45.4	100.0	Н	0.0	48.3	-2.9	28.6	74
2990.500000	49.8	100.0	V	194.0	48.4	1.4	24.2	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1169.250000	27.7	100.0	Н	0.0	37.2	-9.5	26.3	54
1437.750000	29.0	100.0	Н	88.0	37.0	-8.0	25.0	54
1676.250000	30.9	100.0	V	0.0	36.5	-5.6	23.1	54
2032.250000	33.4	100.0	Н	51.0	36.5	-3.1	20.6	54
2505.250000	43.3	100.0	Н	333.0	44.2	-0.9	10.7	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 69of 94

Radiates Emission from 3GHz to 18GHz

Note: a font (Level in dB碼/m)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4882.500000	43.0	100.0	V	0.0	41.2	1.8	31.0	74
12680.625000	46.4	100.0	V	326.0	34.6	11.8	27.6	74
17968.125000	58.4	100.0	Н	71.0	35.0	23.4	15.6	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4880.625000	32.3	100.0	V	0.0	30.4	1.9	21.7	54
6997.500000	31.4	100.0	V	344.0	26.4	5.0	22.6	54
12712.500000	35.2	100.0	V	335.0	22.8	12.4	18.8	54
17998.125000	46.5	100.0	Н	54.0	23.0	23.5	7.5	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 70of 94

Radiates Emission from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 71of 94

Basic Rate-Channel 78

Note: a font (Level in d日頃)in the test plot =(level in dBuv/m)
Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.420000	28.7	126.0	V	45.0	45.9	-17.2	11.3	40.0
34.383750	27.4	101.0	V	235.0	46.3	-18.9	12.6	40.0
39.797500	16.1	101.0	V	16.0	35.4	-19.3	23.9	40.0
77.146250	12.8	126.0	V	6.0	40.9	-28.1	27.2	40.0
134.856250	10.5	207.0	Н	78.0	39.4	-28.9	33.0	43.5
527.106250	14.3	195.0	Н	241.0	32.0	-17.7	31.7	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RXC1312-0222RF05R2 Page 72of 94

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dBuv/m) in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1397.000000	40.0	100.0	Н	0.0	48.4	-8.4	34.0	74
1671.750000	42.7	100.0	Н	117.0	48.3	-5.6	31.3	74
2018.750000	44.3	100.0	Н	123.0	47.6	-3.3	29.7	74
2984.250000	49.3	100.0	Н	0.0	48.0	1.3	24.7	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1118.250000	27.3	100.0	V	334.0	37.0	-9.7	26.7	54
1441.750000	28.7	100.0	Н	57.0	36.6	-7.9	25.3	54
1729.750000	30.9	100.0	V	298.0	36.6	-5.7	23.1	54
1990.250000	33.2	100.0	V	216.0	36.3	-3.1	20.8	54
2518.750000	38.9	100.0	Н	332.0	39.8	-0.9	15.1	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 73of 94

Radiates Emission from 3GHz to 18GHz Note: a font ($^{\text{Level in dB}}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4344.375000	41.3	100.0	Н	0.0	39.8	1.5	32.7	74
8788.125000	43.3	100.0	Н	76.0	35.2	8.1	30.7	74
13123.125000	46.0	100.0	Н	33.0	33.2	12.8	28.0	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4880.625000	32.8	100.0	V	0.0	30.9	1.9	21.2	54
6997.500000	31.8	100.0	V	176.0	26.8	5.0	22.2	54
12718.125000	35.0	100.0	V	248.0	22.5	12.5	19.0	54
17998.125000	46.5	100.0	V	105.0	23.0	23.5	7.5	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 74of 94

Radiates Emission from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 75of 94

EDR-Channel 0

Radiates Emission from 30MHz to 1GHz Note: a font ($^{\text{Level in dB}}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.380000	33.0	100.0	V	89.0	50.2	-17.2	7.0	40.0
34.470000	26.7	100.0	V	133.0	45.7	-19.0	13.3	40.0
39.560000	22.2	100.0	V	113.0	41.5	-19.3	17.8	40.0
76.373750	11.2	121.0	V	6.0	39.3	-28.1	28.8	40.0
99.047500	11.9	276.0	Н	340.0	36.4	-24.5	31.6	43.5
400.035000	19.6	100.0	Н	326.0	39.8	-20.2	26.4	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RXC1312-0222RF05R2 Page 76of 94

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dBuv/m) in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1110.000000	39.2	100.0	Н	106.0	49.0	-9.8	34.8	74
1441.500000	40.2	100.0	Н	0.0	48.1	-7.9	33.8	74
1645.000000	42.5	100.0	V	173.0	47.8	-5.3	31.5	74
2038.500000	44.3	100.0	V	220.0	47.3	-3.0	29.7	74
2991.000000	49.3	100.0	Н	40.0	47.9	1.4	24.7	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1109.250000	27.6	100.0	V	0.0	37.4	-9.8	26.4	54
1401.750000	28.7	100.0	V	0.0	37.1	-8.4	25.3	54
1730.250000	30.8	100.0	V	341.0	36.4	-5.6	23.2	54
2057.250000	33.2	100.0	Н	130.0	36.2	-3.0	20.8	54
2985.000000	38.0	100.0	Н	256.0	36.7	1.3	16.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 77of 94

Radiates Emission from 3GHz to 18GHz Note: a font ($^{\text{Level in dB}}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4880.625000	44.0	100.0	V	0.0	42.1	1.9	30.0	74
8784.375000	43.8	100.0	Н	33.0	35.7	8.1	30.2	74
12697.500000	46.0	100.0	Н	193.0	33.9	12.1	28.0	74
17977.500000	57.0	100.0	Н	86.0	33.6	23.4	17.0	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4880.625000	32.6	100.0	V	0.0	30.7	1.9	21.4	54
12733.125000	35.2	100.0	V	324.0	22.6	12.6	18.8	54
17977.500000	46.4	100.0	V	194.0	23.0	23.4	7.6	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 78of 94

Radiates Emission from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 79of 94

EDR-Channel 39

Radiates Emission from 30MHz to 1GHz Note: a font ($^{\text{Level in dB}}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.346250	32.2	101.0	V	19.0	49.4	-17.2	7.8	40.0
34.503750	26.6	126.0	V	0.0	45.6	-19.0	13.4	40.0
39.277500	16.8	101.0	V	58.0	36.1	-19.3	23.2	40.0
76.867500	12.2	121.0	V	78.0	40.3	-28.1	27.8	40.0
135.502500	11.2	201.0	Н	117.0	40.2	-29.0	32.3	43.5
532.525000	14.2	396.0	V	232.0	31.6	-17.4	31.8	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RXC1312-0222RF05R2 Page 80of 94

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dBuv/m) in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1415.500000	41.1	100.0	V	241.0	49.3	-8.2	32.9	74
1697.000000	42.6	100.0	Н	0.0	48.2	-5.6	31.4	74
1970.000000	44.5	100.0	Н	88.0	48.0	-3.5	29.5	74
2898.250000	48.8	100.0	Н	307.0	48.0	0.8	25.2	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1104.250000	27.6	100.0	Н	95.0	37.5	-9.9	26.4	54
1419.750000	28.6	100.0	Н	63.0	36.7	-8.1	25.4	54
1731.750000	30.6	100.0	Н	233.0	36.1	-5.5	23.4	54
1993.750000	33.3	100.0	Н	147.0	36.2	-2.9	20.7	54
2505.500000	41.5	100.0	Н	0.0	42.4	-0.9	12.5	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 81of 94

Radiates Emission from 3GHz to 18GHz Note: a font ($^{\text{Level in dB}}$)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
12693.750000	47.4	100.0	V	350.0	35.4	12.0	26.6	74
17926.875000	57.2	100.0	V	218.0	33.8	23.4	16.8	74
4880.625000	42.6	100.0	V	7.0	40.7	1.9	31.4	74
7591.875000	43.2	100.0	Н	138.0	36.5	6.7	30.8	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4042.500000	28.7	100.0	Н	0.0	29.0	-0.3	25.3	54
4880.625000	32.6	100.0	V	7.0	30.7	1.9	21.4	54
6991.875000	31.5	100.0	V	341.0	26.5	5.0	22.5	54
8780.625000	32.4	100.0	Н	0.0	24.3	8.1	21.6	54
13128.750000	35.3	100.0	Н	129.0	22.5	12.8	18.7	54
17992.500000	46.4	100.0	V	0.0	22.9	23.5	7.6	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 82of 94

Radiates Emission from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 83of 94

EDR-Channel 78

Radiates Emission from 30MHz to 1GHz

Note: a font (Level in dB碼m)in the test plot =(level in dBuv/m)

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.300000	28.0	100.0	V	237.0	45.2	-17.2	12.0	40.0
34.347500	27.6	100.0	V	138.0	46.5	-18.9	12.4	40.0
39.518750	16.1	120.0	V	0.0	35.4	-19.3	23.9	40.0
76.258750	11.2	125.0	V	0.0	39.3	-28.1	28.8	40.0
133.652500	12.3	176.0	Н	91.0	41.2	-28.9	31.2	43.5
399.995000	22.2	100.0	Н	349.0	42.4	-20.2	23.8	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RXC1312-0222RF05R2 Page 84of 94

Radiates Emission from 1GHz to 3GHz

Note: The signal beyond the limit is carrier. a font (Level in dBuv/m) in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1389.250000	40.7	100.0	Н	185.0	49.0	-8.3	33.3	74
1668.750000	42.4	100.0	V	335.0	48.1	-5.7	31.6	74
2042.500000	45.0	100.0	Н	89.0	48.0	-3.0	29.0	74
2997.250000	49.2	100.0	Н	0.0	47.8	1.4	24.8	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
1181.750000	27.5	100.0	V	0.0	36.9	-9.4	26.5	54
1416.250000	28.7	100.0	V	343.0	36.9	-8.2	25.3	54
1643.250000	30.9	100.0	V	45.0	36.1	-5.2	23.1	54
1992.250000	33.2	100.0	V	159.0	36.2	-3.0	20.8	54
2544.000000	38.0	100.0	Н	332.0	39.1	-1.1	16.0	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 85of 94

Radiates Emission from 3GHz to 18GHz

Note: a font (Level in dB碼m)in the test plot =(level in dBuv/m)

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
4880.625000	44.4	100.0	V	0.0	42.5	1.9	29.6	74
8778.750000	43.5	100.0	Н	75.0	35.4	8.1	30.5	74
13115.625000	46.1	100.0	Н	84.0	33.2	12.9	27.9	74
17964.375000	58.3	100.0	Н	0.0	34.9	23.4	15.7	74

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/ m)
3819.375000	29.0	100.0	Н	48.0	29.2	-0.2	25.0	54
4880.625000	33.2	100.0	V	0.0	31.3	1.9	20.8	54
12716.250000	35.2	100.0	V	29.0	22.7	12.5	18.8	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No.: RXC1312-0222RF05R2 Page 86of 94

Radiates Emission from 18GHz to 26.5GHz

Report No.: RXC1312-0222RF05R2 Page 87of 94

3.12. Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2009. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

The test is in transmitting mode.

Test Setup

Note: AC Power source is used to change the voltage from 220V/50Hz to 110V/60Hz.

Limits

Frequency	Conducted Limits(dBμV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 [*]	56 to 46*				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

Report No.: RXC1312-0222RF05R2 Page 88of 94

Test Results:

Basic Rate-CH39

Final Measurement Re	esults
----------------------	--------

Frequency MHz	QP Level dBµV	QP Limit dBµV	QP Delta dB	Phase -	PE -
		•			
0.29062	39.21	60.51	21.30	L1	gnd
0.38828	48.47	58.10	9.63	L1	gnd
0.59921	38.59	56.00	17.41	L1	gnd
1.11875	35.98	56.00	20.02	L1	gnd
3.57968	34.13	56.00	21.87	L1	gnd
4.34921	33.82	56.00	22.18	L1	gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
Frequency MHz	AV Level dBμV	AV Limit dBμV	AV Delta dB	Phase -	PE -
MHz	dBμ∨	dBμV	dB	-	-
MHz	dBμ∨	dBμV	dB	-	-
MHz 0.29062	dBμ√ 34.19	dΒμV 50.51	dB 16.32	- L1	- gnd
MHz 0.29062 0.38828	dBμ√ 34.19 43.24	dBμV 50.51 48.10	dB 16.32 4.86	- L1 L1	gnd gnd
MHz 0.29062 0.38828 0.59921	dBμV 34.19 43.24 33.14	dBμV 50.51 48.10 46.00	dB 16.32 4.86 12.86	- L1 L1 L1	gnd gnd gnd
MHz 0.29062 0.38828 0.59921 1.11875	dBμV 34.19 43.24 33.14 30.24	dBμV 50.51 48.10 46.00 46.00	dB 16.32 4.86 12.86 15.76	- L1 L1 L1 L1	gnd gnd gnd gnd

L Line

Report No.: RXC1312-0222RF05R2 Page 89of 94

N Line

18.42

25.95

Ν

Ν

gnd

gnd

46.00

50.00

4.26718

8.29453

27.58

24.05

Conducted Emission from 150 KHz to 30 MHz

Report No.: RXC1312-0222RF05R2 Page 90of 94

EDR-CH39

Final Measurement Results

Hz	QP Level	QP Limit	QP Delta	Phase	PE
	dBµV	dBµ∨	dB	-	-
39218 5914	45.73 47.60 38.47 37.48	58.89 58.02 56.00 56.00	13.16 10.42 17.53 18.52	L1 L1 L1 L1	gnd gnd gnd gnd
	35.40	56.00	20.60	L1	gnd
	35.79	56.00	20.21	L1	gnd
	AV Level	AV Limit	AV Delta	Phase	PE
	dBμV	dBμV	dB	-	-
39218 5914 78281 86484	42.08 43.16 32.59 32.50 28.73 28.72	48.89 48.02 46.00 46.00 46.00	6.81 4.86 13.41 13.50 17.27	L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd
	Hz 35312 39218 5914 78281 86484 85703 equency Hz 35312 39218 5914 78281 86484 85703	35312 45.73 39218 47.60 5914 38.47 78281 37.48 86484 35.40 85703 35.79 requency AV Level Hz dBµV 35312 42.08 39218 43.16 5914 32.59 78281 32.50 86484 28.73	35312 45.73 58.89 39218 47.60 58.02 5914 38.47 56.00 78281 37.48 56.00 86484 35.40 56.00 85703 35.79 56.00 requency AV Level AV Limit Hz dBμV dBμV 35312 42.08 48.89 39218 43.16 48.02 5914 32.59 46.00 78281 32.50 46.00 86484 28.73 46.00	35312 45.73 58.89 13.16 39218 47.60 58.02 10.42 5914 38.47 56.00 17.53 78281 37.48 56.00 20.60 86484 35.40 56.00 20.60 85703 35.79 56.00 20.21 requency AV Level AV Limit AV Delta Hz dBμV dBμV dB 35312 42.08 48.89 6.81 39218 43.16 48.02 4.86 5914 32.59 46.00 13.41 78281 32.50 46.00 17.27	35312 45.73 58.89 13.16 L1 39218 47.60 58.02 10.42 L1 5914 38.47 56.00 17.53 L1 78281 37.48 56.00 18.52 L1 86484 35.40 56.00 20.60 L1 85703 35.79 56.00 20.21 L1 requency AV Level AV Limit AV Delta Phase Hz dBμV dBμV dB - 35312 42.08 48.89 6.81 L1 39218 43.16 48.02 4.86 L1 5914 32.59 46.00 13.41 L1 78281 32.50 46.00 13.50 L1 86484 28.73 46.00 17.27 L1

L Line

Report No.: RXC1312-0222RF05R2 Page 91of 94

Final	Measurement	Doculte
	IVICASUI CITICITI	rvesulis

Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.29062 0.39218 0.61484 1.43906 3.50937 4.11875	33.95 48.18 36.75 32.96 35.30 34.90	60.51 58.02 56.00 56.00 56.00 56.00	26.56 9.84 19.25 23.04 20.70 21.10	N N N N N	gnd gnd gnd gnd gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.29062 0.39218 0.61484 1.43906 3.50937 4.11875	26.94 43.08 28.52 26.10 27.46 27.00	50.51 48.02 46.00 46.00 46.00 46.00	23.57 4.94 17.48 19.90 18.54 19.00	N N N N N	gnd gnd gnd gnd gnd gnd

N Line

Conducted Emission from 150 KHz to 30 MHz

Report No.: RXC1312-0222RF05R2 Page 92of 94

4. Main Test Instruments

No.	Name	Туре	Manufacturer	Serial Number	Calibration Date	Valid Period
01	BT Base Station Simulator	CBT	R&S	100271	2013-06-29	One year
02	Loop Antenna	FMZB1516	SCHWARZBE CK	237	2013-06-29	Two years
03	EMI Test Receiver	ESCS30	R&S	100138	2014-01-14	One year
04	LISN	ENV216	R&S	101171	2014-04-11	One year
05	EMI Test Receiver	ESCI	R&S	100948	2013-06-29	One year
06	TRILOG Broadband Antenna	VULB 9163	Schwarzbeck	9163-201	2013-06-19	Three years
07	Signal Analyzer	FSV30	R&S	100815	2013-06-29	One year
08	Double Ridged Waveguide Horn Antenna	HF907	R&S	100126	2012-07-02	Three years
09	Standard Gain Horn	3160-09	ETS-Lindgren	00102644	2012-05-20	Three years
10	PSG Analog Signal Generator	E8257D	Agilent	MY49281101	2013-06-29	One year
11	ESG Vector Signal Generator	E4438C	Agilent	MY49070900	2013-06-29	One year
12	Spectrum Analyzer	E4445A	Agilent	MY46181146	2013-06-29	One year
13	Power Splitter	SHX-GF2-2-13	Hua Xiang	10120101	NA	NA
14	MOB COMMS DC SUPPLY	66319D	Agilent	MY43004105	2013-06-29	One year
15	Power Sensor	E9304A	Agilent	MY50220022	2013-06-29	One year
16	Power Meter	E4418B	Agilent	MY50000623	2013-06-29	One year
17	Vibration table	ESS-050-120	dongling	D1007126	2013-08-22	Three years

*****END OF REPORT *****

Report No.: RXC1312-0222RF05R2 Page 93of 94

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

a: EUT

b: Adapter
Picture 1 EUT

Report No.: RXC1312-0222RF05R2 Page 94of 94

A.2 Test Setup

Picture 2 Radiated Emission Test Setup