Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2017/2018 12 giugno 2019

Lo studente svolga i seguenti esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Siano A, B e C i tre intervalli della retta reale definiti ponendo A := [-1, 1], B := (-2, 2) e C := [-3, 3], e sia $\mathcal{P}(C)$ l'insieme delle parti di C. Indichiamo con ξ il seguente sottoinsieme di $\mathcal{P}(C)$:

$$\xi := \{ X \in \mathcal{P}(C) \, | \, A \cap X = \emptyset \} \cup \{ X \in \mathcal{P}(C) \, | \, B \subset X \}.$$

- (1a) Si dimostri che ξ è una topologia su C che non soddisfa la condizione di Hausdorff.
- (1b) Si dica se (C, ξ) è uno spazio topologico compatto e/o connesso.
- (1c) Sia \mathcal{R} la relazione di equivalenza su C definita ponendo:

$$x \mathcal{R} y$$
 se e soltanto se $x = y$ oppure $x \neq y$ e $\{x, y\} \subset B$.

Indichiamo con C/\mathfrak{R} lo spazio topologico quoziente di (C,ξ) modulo \mathfrak{R} e con $\pi:C\to C/\mathfrak{R}$ la proiezione naturale al quoziente. Si dimostri che π è una applicazione chiusa.

- (1d) Sia $(C \times C, \eta)$ la topologia prodotto di (C, ξ) con se stesso. Si calcoli la chiusura e la parte interna del sottoinsieme $A \times B$ di $(C \times C, \eta)$.
- (1e) Si dica se esiste una topologia su C avente ξ come famiglia dei suoi chiusi.

SOLUZIONE (1a) e (1e). ξ contiene \emptyset e C in quanto $A \cap \emptyset = \emptyset$ e $B \subset C$. Sia $\{X_i\}_{i \in I}$ una famiglia di elementi di ξ con $I \neq \emptyset$. Esiste allora un sottoinsieme J di I tale che $A \cap X_i = \emptyset$ per ogni $i \in J$ e $B \subset X_i$ per ogni $i \in I \setminus J$. Evidentemente, vale: $\bigcap_{i \in I} X_i = \bigcap_{i \in J} X_i \cap \bigcap_{i \in I \setminus J} X_i$ e $\bigcup_{i \in I} X_i = \bigcup_{i \in J} X_i \cup \bigcup_{i \in I \setminus J} X_i$, dove $\bigcap_{i \in \emptyset} X_i = C$ e $\bigcup_{i \in \emptyset} X_i = \emptyset$. È anche evidente che:

- Se $J = \emptyset$, allora $B \subset X_i$ per ogni $i \in I$; dunque $B \subset \bigcap_{i \in I} X_i$ e $B \subset \bigcup_{i \in I} X_i$, da cui segue che $\bigcap_{i \in I} X_i \in \xi$ e $\bigcup_{i \in I} X_i \in \xi$.
- Se J = I, allora $A \cap X_i = \emptyset$ per ogni $i \in I$; dunque, $A \cap \bigcap_{i \in I} X_i = \bigcap_{i \in I} (A \cap X_i) = \emptyset$ e $A \cap \bigcup_{i \in I} X_i = \bigcup_{i \in I} (A \cap X_i) = \emptyset$, da cui segue che $\bigcap_{i \in I} X_i \in \xi$ e $\bigcup_{i \in I} X_i \in \xi$.
- Se $\emptyset \neq J \neq I$, allora $A \cap \bigcap_{i \in J} X_i = \emptyset$ e $B \subset \bigcup_{i \in I \setminus J} X_i$, da cui $A \cap \bigcap_{i \in I} X_i = \emptyset$ e $B \subset \bigcup_{i \in I} X_i$. Segue che $\bigcap_{i \in I} X_i \in \xi$ e $\bigcup_{i \in I} X_i \in \xi$ anche in questo caso.

Abbiamo così dimostrato che ξ contiene \emptyset e C, ed è stabile per intersezioni ed unione arbitrarie. Dunque ξ è sia una topologia su C che la famiglia dei chiusi della topologia $\overline{\xi}$ su C definita ponendo $\overline{\xi} := \{X \in \mathcal{P}(C) \mid C \setminus X \in \xi\}.$

Per verificare che ξ non è di Hausdorff, è sufficiente osservare che ogni intorno aperto U di -1 in (C, ξ) interseca A ed anche ogni intorno aperto V di 1 in (C, ξ) interseca A; quindi, essendo degli aperti in ξ , U e V devono entrambi contenere B. Segue che $\emptyset \neq B \subset U \cap V$ e quindi ξ non è di Hausdorff.

(1b) Osserviamo che $B \in \xi$ in quanto $B \subset B$, e $\{p\} \in \xi$ per ogni $p \in C \setminus B$ in quanto $A \cap \{p\} = \emptyset$. Segue che la partizione di C costituita da B e dai singoletti $\{p\}$ con $p \in C \setminus B$ è un ricoprimento aperto (infinito) di C dal quale non si può estrarre alcun sottoricoprimento proprio (e quindi finito). Ciò dimostra che (C, ξ) non è compatto.

Poiché $B \in \xi$ ed anche $C \setminus B \in \xi$ (in quanto $A \cap (C \setminus B) = A \setminus B = \emptyset$), abbiamo che B è un sottoinsieme nonvuoto proprio aperto e chiuso di (C, ξ) . Dunque (C, ξ) non è connesso.

- (1c) Osserviamo che $[p]_{\mathcal{R}} = B$ se $p \in B$, e $[p]_{\mathcal{R}} = \{p\}$ se $p \in C \setminus B$. Segue che $\pi(B)$ e $\{\pi(p)\}$ con $p \in C \setminus B$ sono tutti e soli i singoletti di C/\mathcal{R} . Ricordiamo anche che $B \in \xi$ (in quanto $B \subset B$) e $\{p\} \in \xi$ se $p \in C \setminus B$ (in quanto $A \cap \{p\} = \emptyset$). Poiché $\pi^{-1}(\pi(B)) = B \in \xi$ e $\pi^{-1}(\pi(p)) = \{p\} \in \xi$ per ogni $p \in C \setminus B$, segue che tutti i singoletti di C/\mathcal{R} sono aperti. Dunque C/\mathcal{R} è uno spazio topologico discreto e quindi π è chiusa (infatti ogni applicazione a valori in uno spazio topologico discreto è chiusa).
- (1d) Sia $p \in A$ e sia U un suo intorno aperto in (C, ξ) . Poiché $p \in A \cap U \neq \emptyset$ e $U \in \xi$, si ha che $B \subset U$ e quindi $U \not\subset A$. Segue che $\operatorname{int}_{\xi}(A) = \emptyset$. Osserviamo ora che $A \cap (C \setminus A) = \emptyset$, dunque $C \setminus A \in \xi$ e quindi A è un chiuso di ξ . Abbiamo già verificato che B è sia aperto che chiuso in ξ . Segue che $A \times B$ è chiuso in η in quanto prodotto cartesiano di chiusi in ξ , dunque $A \times B$ coincide con la sua chiusura in $(C \times C, \eta)$. Infine si ha: $\operatorname{int}_{\eta}(A \times B) = \operatorname{int}_{\xi}(A) \times \operatorname{int}_{\xi}(B) = \emptyset \times B = \emptyset$.

Esercizio 2. Si risponda ai seguenti quesiti.

- (2a) Sia \mathbb{S}^2 la sfera standard di \mathbb{R}^3 dotata della topologia euclidea, e sia Y una superficie topologica, ovvero uno spazio topologico connesso, di Hausdorff, localmente euclideo, a base numerabile e di dimensione 2. Sia ancora $f: \mathbb{S}^2 \to Y$ una applicazione continua che abbia almeno due fibre vuote, ovvero $f^{-1}(p) = f^{-1}(q) = \emptyset$ per qualche $p, q \in Y$ con $p \neq q$. Si dimostri che f non è una applicazione aperta.
- (2b) Sia X uno spazio topologico, siano $A \in B$ due sottoinsiemi connessi di X e sia \overline{A} la chiusura di A in X. Si dimostri che, se $\overline{A} \cap B \neq \emptyset$, allora anche $A \cup B$ è un sottoinsieme connesso di X.

SOLUZIONE (2a) Osserviamo che \mathbb{S}^2 è compatta e quindi anche $f(\mathbb{S}^2)$ lo è in Y. Essendo Y di Hausdorff, segue che $f(\mathbb{S}^2)$ è anche chiuso in Y. Ora se f fosse aperta allora $f(\mathbb{S}^2)$ sarebbe un sottoinsieme nonvuoto aperto e chiuso dello spazio topologico connesso Y. Seguirebbe che $f(\mathbb{S}^2) = Y$. Il che è impossibile in quanto per ipotesi $f(\mathbb{S}^2) \subset Y \setminus \{p,q\}$. Abbiamo così provato che f non è aperta.

(2b) Poniamo $Y := A \cup B$ e dotiamo Y della topologia relativa indotta da X. Sia p un punto di A e sia C la componente connessa di p in Y. Poiché A è un sottoinsieme connesso di Y contenente p, si ha che $A \subset C$. Essendo C un chiuso di Y, anche la chiusura \overline{A}^Y di A in Y è contenuta in C. Poiché $\overline{A}^Y = Y \cap \overline{A}$, si ha che

$$B \cap C \supset B \cap \overline{A}^Y = B \cap (Y \cap \overline{A}) = (B \cap Y) \cap \overline{A} = B \cap \overline{A} \neq \emptyset.$$

Segue che $B \cap C \neq \emptyset$. Grazie a quest'ultima proprietà ed al fatto che C e B sono connessi in Y, segue che anche $C \cup B$ è connesso in Y. Poiché $p \in C \cup B$ e C è la componente connessa

di p in Y, segue che $C \cup B \subset C$, ovvero $B \subset C$. In conclusione C contiene sia A che B, e quindi coincide con tutto Y. Ciò prova che Y ha una sola componente connessa C, ovvero Y è connesso. \blacksquare

Esercizio 3. Si consideri lo spazio topologico X ottenuto da un sottospazio di \mathbb{R}^2 mediante le identificazioni descritte in figura.

- (3a) Si calcoli il gruppo fondamentale di X e il suo abelianizzato.
- (3b) Siano $Q \in R$ punti di X, e sia Y lo spazio topologico ottenuto identificando i punti $Q \in R$ di X. Si calcoli il gruppo fondamentale di Y.

SOLUZIONE (3a) Il primo metodo usa il Teorema di Seifert-Van Kampen, scegliendo, ad esempio, $U_1 = X \setminus \{a, b\}$ e U_2 un aperto di \mathbb{R}^2 omeomeorfo a un disco contenuto nel quadrato aperto e contenente i due "buchi" di X. Sia $x_0 \in U_1 \cap U_2$. L'aperto U_1 si retrae con deformazione su un bouquet di due circonferenze, mentre U_2 si retrae con deformazione sul bordo del quadrato, che fatte le identificazioni dei lati a, b è omeomorfo ancora a $S^1 \vee S^1$. Si ha dunque

$$\pi(U_1, x_0) = \langle \gamma, \delta \mid \emptyset \rangle, \quad \pi(U_2, x_0) = \langle \alpha, \beta \mid \emptyset \rangle$$

con α e β corrispondenti ad a e b (usando la retrazione e il cammino da x_0 a P), mentre γ e δ corrispondono, tramite la retrazione, alle due circonferenze bordo (orientato) dei due "buchi". L'intersezione $U_1 \cap U_2$ è omotopicamente equivalente a una circonferenza, con $\pi(U_1 \cap U_2, x_0) = \langle \epsilon \mid \emptyset \rangle$. Dunque $\pi(X, x_0)$ ha quattro generatori e una relazione, della forma $i_{1*}(\epsilon) = \gamma \delta = i_{2*}(\epsilon) = \alpha^3 \beta$ (tutti i generatori sono orientati in senso orario):

$$\pi(X, x_0) = \langle \alpha, \beta, \gamma, \delta \mid \gamma \delta = \alpha^3 \beta \rangle \simeq \langle \alpha, \beta, \gamma, \delta \mid \gamma = \alpha^3 \beta \delta^{-1} \rangle \simeq \langle \alpha, \beta, \delta \mid \emptyset \rangle \simeq \mathbb{Z} * \mathbb{Z} * \mathbb{Z}.$$

Il secondo metodo, più veloce, usa una retrazione con deformazione, a partire da un nuovo cammino c che congiunge due vertici opposti del quadrato separando i due "buchi". Lo spazio X si retrae sui lati di due "triangoli" con i lati da identificare come in X. Dunque $X \sim S^1 \vee S^1 \vee S^1$ e si conclude come prima.

L'abelianizzato di $\pi(X, x_0)$ è

$$Ab(\pi(X, x_0)) = Ab(\langle \alpha, \beta, \delta \mid \emptyset \rangle) \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^3.$$

SOLUZIONE (3b) Basta osservare che identificare Q e R in X equivale, omotopicamente, a considerare lo spazio X unito a un punto a una copia di S^1 . Ne segue facilmente, cambiando opportunamente punto base, che

$$\pi(Y, x_0) = \langle \alpha, \beta, \delta, \mu \mid \emptyset \rangle \simeq \mathbb{Z} * \mathbb{Z} * \mathbb{Z} * \mathbb{Z}.$$

Esercizio 4. Si consideri la funzione f definita come somma della serie di potenze

$$f(z) = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \cdots$$

- (4a) Si determini il raggio di convergenza della serie di potenze e si calcoli f'(z).
- (4b) Si calcoli, mediante il Teorema dei residui, l'integrale improprio

$$\int_{-\infty}^{\infty} \frac{x+1}{x^4+4} dx$$

SOLUZIONE (4a) Per il Teorema di Hadamard, il raggio di convergenza è R=1/l, con

$$l = \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \sqrt[n]{\frac{1}{2n+1}} = \limsup_{n \to \infty} \frac{1}{\sqrt[n]{2n+1}} = 1.$$

Dunque la serie, e anche la serie derivata, ha raggio di convergenza R=1. Si può dunque derivare termine a termine (Abel) e ottenere

$$f'(z) = 1 - z^2 + z^4 - z^6 + \dots = \sum_{n=0}^{\infty} (-z^2)^n = \frac{1}{1 - (-z^2)} = \frac{1}{1 + z^2}.$$

SOLUZIONE (4b) Si consideri la funzione $f(z)=(z+1)/(z^4+4)$, olomorfa su $\mathbb{C}\setminus\{z_1,z_2,z_3,z_4\}$, dove i poli z_1,z_2,z_3,z_4 di f sono le radici complesse di $z^4+4=0$, cioè $\pm 1\pm i$. I poli (semplici) $z_1=1+i$ e $z_2=-1+i$ stanno nel semipiano superiore. Inoltre vale la maggiorazione

$$|f(z)| = \frac{|z^{-4}||z+1|}{|z^{-4}||z^4+4|} \le \frac{1}{|z|^4} \frac{|z+1|}{|1+4z^{-4}|} \le \frac{1}{|z|^4} \frac{2|z|}{1-4R^{-4}} = \frac{1}{|z|^3} \frac{2}{1-4R^{-4}}$$

per $|z| \ge R > 2$ (si è usata a denominatore la stima $|1 + 4z^{-4}| \ge 1 - 4|z|^{-4} \ge 1 - 4R^{-4}$, che vale se $|z| \ge R > 2$). Si può dunque applicare il Teorema dei residui e ottenere

$$\int_{-\infty}^{\infty} \frac{x+1}{x^4+4} dx = 2\pi i (\operatorname{Res}_{1+i}(f) + \operatorname{Res}_{-1+i}(f)).$$

Si ha

$$\operatorname{Res}_{1+i}(f) = \lim_{z \to z_1} f(z)(z - z_1) = \frac{z_1 + 1}{(z_1 - z_2)(z_1 - z_3)(z_1 - z_4)} = \frac{2+i}{2 \cdot 2i \cdot (2+2i)} = \frac{2+i}{8(-1+i)}$$

$$\operatorname{Res}_{-1+i}(f) = \lim_{z \to z_2} f(z)(z - z_2) = \frac{z_2 + 1}{(z_2 - z_1)(z_2 - z_3)(z_1 - z_4)} = \frac{i}{(-2) \cdot (-2 + 2i) \cdot (2i)} = \frac{i}{8(1+i)}$$

Dunque

$$\int_{-\infty}^{\infty} \frac{x+1}{x^4+4} dx = 2\pi i (\operatorname{Res}_{1+i}(f) + \operatorname{Res}_{-1+i}(f)) = 2\pi i \left(\frac{2+i}{8(-1+i)} + \frac{i}{8(1+i)} \right) = 2\pi i \left(-\frac{i}{8} \right) = \frac{\pi}{4}.$$