Tutorial 3

- 1. Find the Fourier Transforms of the following signals:
- (i) x(t) = 1 (use duality property) (ii) $x(t) = e^{j\omega_0 t}$ (use frequency shift property)
- (iii) $x(t) = \delta(t-t_0)$ (use time shift property)
- 2. Verify that the Fourier Transform of a train of impulse $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_s)$, is given by $P(\omega) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(\omega n\omega_s)$, where T_s is the sampling time and $\omega_s = 2\pi T_s$.
- 3. Prove the convolution property of Fourier Transform, $\mathcal{F}[x(t)*h(t)] = X(\omega).H(\omega)$.
- 4. Show that $\mathcal{F}[x(t).h(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega') H(\omega \omega') d\omega'$.
- 5. The Fourier Transform of a signal $x(t) = \begin{cases} 1, & |t| < \tau \\ 0, & |t| > \tau \end{cases}$, is $X(\omega) = \frac{2\sin \omega \tau}{\omega}$. Use this Fourier Transform pair and the duality property to find the Fourier Transform of a signal described by $y(t) = \frac{\sin t}{\sqrt{\pi t}}$. Calculate the total energy contained in y(t) using Parseval's theorem.
- 6. Using the integration property and the Fourier Transform of the rectangular pulse, derive the Fourier Transform of the triangular signal shown below.

- 7. The carrier frequency used in an AM wave is typically in the range of 0.535-1.605 MHz. A superheterodyne receiver, consisting of a product modulator and a local oscillator followed by a bandpass filter, is usually used as the receiver. Obtain the tuning frequency range of the oscillator that is required to translate an input AM wave, with a bandwidth of 8 kHz, to a frequency band with an intermediate frequency of 0.455 MHz.
- 8. In a pulse amplitude modulation system, an analogue signal x(t) is multiplied by a periodic train of rectangular pulses, p(t). The Complex Fourier Series representation

of p(t) is given by $p(t) = \sum_{n=-\infty}^{\infty} \left(\frac{\tau \sin(n\omega_s \tau/2)}{T(n\omega_s \tau/2)} \right) e^{jn\omega_s t}$, where τ is the pulse width and $\omega_s = \frac{2\pi}{T}$ is the repetition frequency of p(t). Find the spectrum of the modulated signal, m(t).

- 9. Consider a continuous time signal, x(t), that lies in the frequency band $|\omega| < 10\pi$ rad/s. Due to inadequate shielding the signal is contaminated by a large sinusoid with a frequency of 38π rad/s. This contaminated signal is now sampled at a frequency of 5π rad/s.
- i) At what frequencies does the interfering sinusoid appear after sampling?
- ii) A low pass filter is used to reduce aliasing. A sufficient condition is to attenuate the interfering sinusoid by a factor of 100. Work out the RC time constant required to achieve this.
- 10. Consider a continuous time signal x(t) with a magnitude spectrum shown below.

- i) Based on the Nyquist Theorem, state the sampling interval, T_s , required to avoid aliasing.
- ii) Assuming that $\omega_1 > \omega_2 \omega_1$. Work out the maximum sampling interval such that it is still possible to reconstruct x(t) perfectly. (Note that in this case T_s can be smaller than in part (i)).