Задача 1. а) (*Решето Эратосфена*) Выпишем в ряд целые числа от 2 до n. Подчеркнём число 2 и сотрём числа, делящиеся на 2. Первое неподчёркнутое число подчеркнём и сотрём числа, делящиеся на него, и т. д. Будем действовать так, пока каждое число от 2 до n не будет либо подчёркнуто, либо стёрто. Докажите, что мы подчеркнём в точности простые числа от 1 до n. **б)** Пусть очередное число, которое мы хотим подчеркнуть, больше \sqrt{n} . Докажите, что нестёртые к этому моменту числа от 2 до n простые. **в)** Какие числа, меньшие 100, простые?

Задача 2. Назовём чётное число n чётнопростым, если n не раскладывается в произведение двух чётных чисел. (Например, 6 — чётнопростое, а 12 — нет.) Какие пункты задачи 2 будут верны, если заменить в условии целые числа на чётные, а простые — на чётнопростые?

Задача 3. а) При каких натуральных k число (k-1)! не делится на k? б) При каких нечетных n=2k+1 число $k!+(k+1)\cdot\ldots\cdot(2k)$ не делится на n?

Задача 4. Целые числа a, b, c, d таковы, что ab = cd. Может ли число a + b + c + d быть простым?

Задача 5. а) ($Teopema\ Лeжандра$) Докажите, что простое число p входит в каноническое разложение числа n! в степени $[n/p] + [n/p^2] + [n/p^3] + \dots$ (где [x] — это $yenas\ vacmb\ va$

С какого момента слагаемые в этой сумме станут равными нулю?

б) Сколько у 2000! нулей в конце его десятичной записи? **в)** Может ли n! делиться на 2^n $(n \ge 1)$?

Задача 6. Число p простое. Докажите, что C_n^k делится на p, если 0 < k < p.

Задача 7. (*Малая теорема Ферма*) Пусть p — простое число, n — целое число. Докажите индукцией по n, что **a**) $n^p - n$ делится на p; **б**) если (n,p) = 1, то $n^{p-1} - 1$ делится на p.

Задача 8*. а) Числа p и q простые, $2^p - 1 \\\vdots \\q$. Докажите, что $q - 1 \\\vdots \\p$. б) Простое ли $2^{13} - 1$?

Задача 9*. Может ли быть целым число **a)** $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$; **б)** $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \ldots + \frac{1}{2n+1}$?

Задача 10. Найдите все натуральные числа с нечётным числом натуральных делителей.

Задача 11. Число n натуральное. Докажите, что натуральных делителей у n меньше, чем $2\sqrt{n}$.

Задача 12. Пусть $p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ — каноническое разложение числа n. Обозначим через $\tau(n)$ и S(n) соответственно количество и сумму натуральных делителей n, а через $\varphi(n)$ — количество чисел от 1 до n, взаимно простых с n.

- а) Найдите $\tau(p_1^{\alpha_1})$. б) Верно ли, что $\tau(ab) = \tau(a)\tau(b)$, если (a,b) = 1? в) Найдите $\tau(n)$.
- г) Найдите $S(p_1^{\alpha_1})$. д) Верно ли, что S(ab) = S(a)S(b), если (a,b) = 1? е) Найдите S(n).
- ж) Найдите $\varphi(p_1^{\alpha_1})$. 3) Верно ли, что $\varphi(ab) = \varphi(a)\varphi(b)$, если (a,b) = 1? и) Найдите $\varphi(n)$.

Задача 13. Какие натуральные числа делятся на 30 и имеют ровно 20 натуральных делителей?

Задача 14*. Число n натуральное. Докажите, что количество упорядоченных пар натуральных чисел (u;v), где [u,v]=n, равно количеству натуральных делителей у числа n^2 .

Задача 15*. Натуральное число называется *совершенным*, если оно равно сумме всех своих натуральных делителей, меньших его самого. Докажите, что чётное число n совершенно тогда и только тогда, когда найдется такое простое p, что $2^p - 1$ также простое, и $n = 2^{p-1}(2^p - 1)$.

1 1 1 a б в	2 3 a	$\begin{bmatrix} 3 & 4 \\ 6 & 4 \end{bmatrix}$	5 a	5 б в	6	7 a	7 б	8 a	8 6	9 a	9 6	10	11	12 a	12 б	12 B	12 Г	12 д	12 ж	12 3	12 и	13	14	15