COURS: ESPACES VECTORIELS

Table des matières

1	Espace vectoriel, application linéaire		
	1.1	Définition, propriétés élémentaires	1
	1.2	Sous-espace vectoriel	2
	1.3	Application linéaire	3
2	Esp	pace vectoriel des applications linéaires	4
	2.1	$\mathcal{L}(E,F)$	4
	2.2	Le groupe linéaire	4
3	Son	Somme, somme directe, projecteur	
	3.1	Somme, somme directe	4
	3.2	Projecteur	5
	3.3	Symétrie	5

1 Espace vectoriel, application linéaire

1.1 Définition, propriétés élémentaires

Définition 1. Soit \mathbb{K} un corps, (E, +) un groupe commutatif d'élément neutre 0_E et \cdot une loi de composition externe :

$$\begin{array}{ccc} \cdot : \mathbb{K} \times E & \longrightarrow & E \\ (\lambda, x) & \longmapsto & \lambda \cdot x \end{array}$$

On dit que $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel lorsque :

$$\begin{split} \forall x,y \in E \quad \forall \lambda \in \mathbb{K} & \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y \\ \forall x \in E \quad \forall \lambda,\mu \in \mathbb{K} & (\lambda+\mu) \cdot x = \lambda \cdot x + \mu \cdot x \\ \forall x \in E \quad \forall \lambda,\mu \in \mathbb{K} & \lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x \\ & \forall x \in E & 1_{\mathbb{K}} \cdot x = x \end{split}$$

Les éléments de $\mathbb K$ sont appelés scalaires, ceux de E, vecteurs.

Proposition 1. On a:

$$\begin{aligned} \forall x \in E & \quad & 0_{\mathbb{K}} \cdot x = 0_E \\ \forall \lambda \in \mathbb{K} & \quad & \lambda \cdot 0_E = 0_E \\ \forall x \in E & \quad & \forall \lambda \in \mathbb{K} & \quad & (-\lambda) \cdot x = \lambda \cdot (-x) = - (\lambda \cdot x) \end{aligned}$$

Remarque:

 \Rightarrow En particulier, si $x \in E$, $(-1) \cdot x = -x$.

Proposition 2. On a:

$$\forall x \in E \quad \forall \lambda \in \mathbb{K} \quad \lambda \cdot x = 0_E \quad \Longrightarrow \quad [\lambda = 0_{\mathbb{K}} \quad ou \quad x = 0_E]$$

Définition 2. Soit \mathbb{K} un corps et $n \in \mathbb{N}^*$. On définit sur $E = \mathbb{K}^n$:

— la loi de composition interne + par :

$$\forall (x_1,\ldots,x_n), (y_1,\ldots,y_n) \in \mathbb{K}^n$$

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

— la loi de composition externe \cdot par :

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n \quad \forall \lambda \in \mathbb{K} \quad \lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

Alors $(\mathbb{K}^n, +, \cdot)$ est un \mathbb{K} -espace vectoriel d'élément neutre $(0, \dots, 0)$.

${\bf Remarques:}$

 \Rightarrow En particulier, \mathbb{K} est un \mathbb{K} -espace vectoriel.

Définition 3. Soit E un \mathbb{K} -espace vectoriel et X un ensemble non vide. On définit sur $\mathcal{F}(X, E)$:

— la loi de composition interne + par :

$$\forall f, g \in \mathcal{F}(X, E) \quad \forall x \in X \quad (f+g)(x) = f(x) + g(x)$$

— la loi de composition externe \cdot par :

$$\forall f \in \mathcal{F}(X, E) \quad \forall \lambda \in \mathbb{K} \quad (\lambda \cdot f)(x) = \lambda f(x)$$

Alors $(\mathcal{F}(X, E), +, \cdot)$ est un \mathbb{K} -espace vectoriel dont l'élément neutre est l'application de X dans E qui à tout $x \in X$ associe 0_E . En particulier, $(\mathcal{F}(X, \mathbb{K}), +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Remarques:

 \Rightarrow Muni des lois usuelles, $\mathcal{F}(\mathbb{R},\mathbb{R})$ et $\mathbb{R}^{\mathbb{N}}$ (l'ensemble des suites réelles) sont des \mathbb{R} -espaces vectoriels dont les « zéros » sont respectivement la fonction nulle de \mathbb{R} dans \mathbb{R} et la suite nulle.

Définition 4. Soit $(E, +, \cdot)$ et $(F, +, \cdot)$ deux \mathbb{K} -espaces vectoriels. On définit sur $E \times F$:

— la loi de composition interne + par :

$$\forall (x_1, y_1), (x_2, y_2) \in E \times F \quad (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

— la loi de composition externe \cdot par :

$$\forall (x,y) \in E \times F \quad \forall \lambda \in \mathbb{K} \quad \lambda \cdot (x,y) = (\lambda \cdot x, \lambda \cdot y)$$

Alors $(E \times F, +, \cdot)$ est un \mathbb{K} -espace vectoriel d'élément neutre $(0_E, 0_F)$.

Proposition 3. Soit $(E, +, \cdot)$ un \mathbb{L} -espace vectoriel et \mathbb{K} un sous-corps de \mathbb{L} . Alors $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel. En particulier \mathbb{L} est un \mathbb{K} -espace vectoriel.

Remarques:

- \Rightarrow Muni des lois usuelles, $\mathcal{F}(\mathbb{R}, \mathbb{C})$ est un \mathbb{C} -espace vectoriel. Comme \mathbb{R} est un sous-corps de \mathbb{C} , $\mathcal{F}(\mathbb{R}, \mathbb{C})$ est aussi un \mathbb{R} -espace vectoriel.
- \Rightarrow $\mathbb C$ est un $\mathbb R\text{-espace}$ vectoriel.

1.2 Sous-espace vectoriel

Proposition 4. On dit qu'une partie F d'un \mathbb{K} -espace vectoriel E est un sous-espace vectoriel de E lorsque :

- $-0 \in F$
- F est stable par combinaisons linéaires :

$$\forall x, y \in F \quad \forall \lambda, \mu \in \mathbb{K} \quad \lambda x + \mu y \in F$$

Si tel est le cas, $(F, +, \cdot)$ est un \mathbb{K} -espace vectoriel.

${\bf Remarques:}$

- $\, \leftrightarrows \,$ Si E est un $\mathbb{K}\text{-espace}$ vectoriel, $\{0\}$ et E en sont des sous-espaces vectoriels.
- \Rightarrow Soit $n \in \mathbb{N}$. Alors $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$.
- \Rightarrow Soit $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$. Alors

$$F = \{(x_1, \dots, x_n) \in \mathbb{K}^n : \lambda_1 x_1 + \dots + \lambda_n x_n = 0\}$$

est un sous-espace vectoriel de \mathbb{K}^n . Par exemple, l'ensemble d'équation x+y+z=0 est un sous-espace vectoriel de \mathbb{R}^3 .

Exercices:

⇒ Montrer que l'ensemble des suites réelles convergentes est un sous-espace vectoriel de l'espace vectoriel des suites réelles.

Proposition 5. Une intersection de sous-espaces vectoriels est un sous-espace vectoriel.

Remarques:

- ⇒ Contrairement à l'intersection, l'union de deux sous-espaces vectoriels n'est en général pas un sous-espace vectoriel.
- \Rightarrow Soit $(\lambda_{i,j})_{1 \le i \le q, 1 \le j \le p}$ une famille de scalaires. Alors

$$F = \{(x_1, \dots, x_p) \in \mathbb{K}^p : \forall i \in [1, q] \quad \lambda_{i,1} x_1 + \dots + \lambda_{i,p} x_p = 0\}$$

est un sous-espace vectoriel de \mathbb{K}^p . Par exemple, l'ensemble d'équation

$$\begin{cases} x+y + z = 0 \\ x-y+2z = 0 \end{cases}$$

est un sous-espace vectoriel de \mathbb{R}^3 .

Définition 5. Soit A une partie d'un \mathbb{K} -espace vectoriel E. Alors, il existe un plus petit sous-espace vectoriel de E contenant A; on l'appelle sous-espace vectoriel engendré par A et on le note $\operatorname{Vect} A$.

Proposition 6. Soit E un \mathbb{K} -espace vectoriel et $x_1, \ldots, x_n \in E$. Alors:

$$Vect \{x_1, \dots, x_n\} = \{\lambda_1 x_1 + \dots + \lambda_n x_n : \lambda_1, \dots, \lambda_n \in \mathbb{K}\}\$$

Les éléments de $\text{Vect}\{x_1,\ldots,x_n\}$ sont appelés combinaisons linéaires de la famille x_1,\ldots,x_n .

Remarques:

- \Rightarrow Si E un \mathbb{K} -espace vectoriel et $x \in E$, l'espace vectoriel engendré par x est $\mathbb{K}x = \{\lambda x : \lambda \in \mathbb{K}\}$. Si x = 0, alors $\text{Vect}\{x\} = \{0\}$. Sinon, pour tout vecteur non nul y de $\text{Vect}\{x\}$, $\text{Vect}\{x\} = \text{Vect}\{y\}$.
- \Rightarrow On dit qu'un espace vectoriel E est une droite vectorielle lorsqu'il existe $x \in E$ non nul tel que $E = \text{Vect}\{x\}$.
- \Rightarrow Si A une partie de E, on montre de même que Vect A est l'ensemble des éléments $x \in E$ tels qu'il existe $n \in \mathbb{N}^*$, $x_1, \ldots, x_n \in A$ et $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tel que

$$x = \sum_{k=1}^{n} \lambda_k x_k$$

Ces éléments sont ce qu'on appelle les combinaisons linéaires des éléments de A.

Exercices:

 \Rightarrow Soit E le $\mathbb R\text{-espace}$ vectoriel des fonctions de $\mathbb R$ dans $\mathbb R.$ Déterminer VectA où

$$A = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) : \forall x \in \mathbb{R} \quad f(x) \ge 0 \}$$

1.3 Application linéaire

Définition 6. Soit E et F deux \mathbb{K} -espaces vectoriels. On dit qu'une application f de E dans F est une application linéaire lorsque :

$$\forall x, y \in E \quad \forall \lambda, \mu \in \mathbb{K} \quad f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

Plus précisément, on dit que f est un :

- endomorphisme lorsque E = F
- isomorphisme lorsque f est bijective
- automorphisme lorsque f est un endomorphisme et un isomorphisme.

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F et $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

Remarques:

- \Rightarrow Soit f est une application linéaire de E dans F. Alors, $f(0_E) = 0_F$.
- \Rightarrow Soit $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$. Alors, l'application de \mathbb{K}^n dans \mathbb{K} qui au n-uplet $(x_1, \ldots, x_n) \in \mathbb{K}^n$ associe $\lambda_1 x_1 + \cdots + \lambda_n x_n$ est linéaire. Plus généralement, si $(\lambda_{i,j})_{1 \leq i \leq q, 1 \leq j \leq p}$ est une famille de scalaires, l'application de \mathbb{K}^p dans \mathbb{K}^q qui au p-uplet (x_1, \ldots, x_p) associe le q-uplet $(\lambda_{1,1} x_1 + \cdots + \lambda_{1,p} x_p, \ldots, \lambda_{q,1} x_1 + \cdots + \lambda_{q,p} x_p)$ est linéaire. Par exemple les applications

$$\varphi_1: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 et $\varphi_2: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x, y, z) \longmapsto (x + y + z, x - 2y + 3z)$

sont linéaires.

- \Rightarrow La conjugaison est un automorphisme de $\mathbb C$ lorsqu'il est considéré comme un $\mathbb R$ -espace vectoriel mais pas lorsqu'il est considéré comme un $\mathbb C$ -espace vectoriel.
- \Rightarrow Soit f est un endomorphisme du \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E. Lorsque F est stable par f, c'est-à-dire lorsque $f(F) \subset F$, la restriction de f à F corestreinte à F est un endomorphisme de F appelé endomorphisme induit à F.

Définition 7. On dit qu'une application f de E dans E est une homothétie lorsqu'il existe $\lambda \in \mathbb{K}$ tel que :

$$\forall x \in E \quad f(x) = \lambda x$$

Les homothéties de E sont des endomorphismes.

Remarques:

 \Rightarrow Si E est une droite vectorielle, les homothéties sont les seuls endomorphismes de E.

Définition 8. On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} . L'ensemble $\mathcal{L}(E,\mathbb{K})$ est noté E^* et appelé dual de E.

Proposition 7. Soit $f \in \mathcal{L}(E, F)$.

- L'image réciproque par f d'un sous-espace vectoriel de F est un sous-espace vectoriel de E.
- L'image directe par f d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.

Définition 9. On appelle noyau de $f \in \mathcal{L}(E, F)$ et on note Ker f l'ensemble :

$$\operatorname{Ker} f = \{ x \in E : f(x) = 0 \}$$

C'est est un sous-espace vectoriel de E.

Proposition 8. Une application linéaire f est injective si et seulement si Ker $f = \{0\}$.

Définition 10. On appelle image de $f \in \mathcal{L}(E,F)$ et on note $\operatorname{Im} f$ l'ensemble :

$$\operatorname{Im} f = \{ f(x) : x \in E \}$$

C'est un sous-espace vectoriel de F.

Remarques:

- \Rightarrow f est surjective si et seulement si Im f = F.
- \Rightarrow Si $f \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{K}^*$, alors Im $(\lambda f) = \text{Im } f$.

Exercices:

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel et $f,g\in\mathcal{L}\left(E\right) .$ Montrer que

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0\}$$

 \Rightarrow Soit f et g deux endomorphismes de E tels que $f \circ g = g \circ f$. Montrer que Ker f et Im f sont stables par g.

Proposition 9. Soit f une application linéaire de E dans F et $y_0 \in F$. On considère l'équation :

$$f(x) = y_0$$

- $Si y_0 \notin Im f$, cette équation n'admet aucune solution.
- Sinon, étant donné une solution particulière x_0 de cette équation, l'ensemble de ses solutions est

$$x_0 + \operatorname{Ker} f = \{x_0 + x : x \in \operatorname{Ker} f\}$$

Remarques:

 \Rightarrow Attention, sauf si $y_0 = 0$, $x_0 + \operatorname{Ker} f$ n'est pas un sous-espace vectoriel de E car $f(0) \neq y_0$, donc $0 \notin x_0 + \operatorname{Ker} f$.

Proposition 10.

- La composée de deux applications linéaires est linéaire.
- La bijection réciproque d'un isomorphisme est un isomorphisme.

2 Espace vectoriel des applications linéaires

2.1 $\mathcal{L}(E,F)$

Définition 11. $(\mathcal{L}(E,F),+,\cdot)$ est un \mathbb{K} -espace vectoriel.

Proposition 11. On dit qu'une partie B de l'algèbre $(A,+,\cdot,\times)$ est une sous-algèbre de A lorsque c'est un sous-espace vectoriel de A et un sous-anneau de A, c'est-à-dire lorsque :

$$\forall x, y \in B \quad \forall \lambda, \mu \in \mathbb{K} \qquad \lambda x + \mu y \in B$$

$$1_A \in B$$

$$\forall x, y \in B \qquad x \times y \in B$$

Si tel est le cas $(B, +, \cdot, \times)$ est une \mathbb{K} -algèbre.

Proposition 12. On dit qu'une application φ d'une algèbre $(A, +, \cdot, \times)$ dans une algèbre $(B, +, \cdot, \times)$ est un morphisme d'algèbre lorsque φ est une application linéaire et un morphisme d'anneau, c'est-à-dire lorsque :

$$\forall x, y \in A \quad \forall \lambda, \mu \in \mathbb{K} \qquad \varphi \left(\lambda x + \mu y \right) = \lambda \varphi \left(x \right) + \mu \varphi \left(y \right)$$
$$\varphi \left(1_A \right) = 1_B$$
$$\forall x, y \in A \qquad \varphi \left(x \times y \right) = \varphi \left(x \right) \times \varphi \left(y \right)$$

Proposition 13. $(\mathcal{L}(E), +, \cdot, \circ)$ est une \mathbb{K} -algèbre.

Remarques:

- \Rightarrow Dans la K-algèbre $(\mathcal{L}(E), +, \cdot, \circ)$, l'élément neutre pour l'addition est l'application nulle et l'élément neutre pour la composition est l'identité.
- \Rightarrow Si $f \in \mathcal{L}(E)$, on définit f^n pour tout $n \in \mathbb{N}$, comme dans tout anneau, par $f^0 = \text{Id}$ et $\forall n \in \mathbb{N}$ $f^{n+1} = f \circ f^n$. Autrement dit, si $n \in \mathbb{N}^*$

$$f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ fois } f}$$

Attention, si $x \in E$, $f^2(x) = f(f(x))$ et non $f(x)^2$, expression qui n'a d'ailleurs aucun sens.

 \Rightarrow En général, l'algèbre $\mathcal{L}(E)$ n'est pas commutative. Par exemple, si $E=\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$, les endomorphismes

$$\varphi_1: E \longrightarrow E \qquad \text{et} \qquad \varphi_2: E \longrightarrow E
f \longmapsto f' \qquad f \longmapsto \varphi_2(f): \mathbb{R} \longrightarrow \mathbb{R}
x \longmapsto xf(x)$$

ne commutent pas. Plus généralement, on peut démontrer que si E n'est pas une droite vectorielle, $\mathcal{L}(E)$ n'est pas commutatif.

 \Rightarrow En général, l'algèbre $\mathcal{L}(E)$ n'est pas intègre. Par exemple, si E est le \mathbb{R} -espace vectoriel des fonctions affines de \mathbb{R} dans \mathbb{R} , l'endomorphisme

$$\varphi: E \longrightarrow E$$

$$f \longmapsto f'$$

n'est pas nul, alors que $\varphi^2 = 0$. Plus généralement, on peut démontrer que si E n'est pas une droite vectorielle, $\mathcal{L}(E)$ n'est pas intègre.

 \Rightarrow $\mathcal{L}(E)$ étant une algèbre et donc un anneau, si f et g sont deux endomorphismes de E tels que $f \circ g = g \circ f$ et $n \in \mathbb{N}$, alors

$$(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^{n-k} \circ g^k$$

Enfin, si $n \in \mathbb{N}^*$

$$f^{n} - g^{n} = (f - g) \circ \left[\sum_{k=0}^{n-1} f^{n-1-k} \circ g^{k} \right] = \left[\sum_{k=0}^{n-1} f^{n-1-k} \circ g^{k} \right] \circ (f - g)$$

Exercices:

- \Rightarrow Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. Pour tout $n \in \mathbb{N}$, on définit $K_n = \operatorname{Ker} f^n$ et $I_n = \operatorname{Im} f^n$. Montrer que les suites (K_n) et (I_n) sont respectivement croissantes et décroissantes au sens de l'inclusion.
- \Rightarrow Soit E le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On définit $\Delta, T \in \mathcal{L}(E)$ par

$$\forall f \in E \quad \forall x \in \mathbb{R} \quad T(f)(x) = f(x+1) \quad \text{et} \quad \Delta(f)(x) = f(x+1) - f(x)$$

Calculer T^k et Δ^k pour tout $k \in \mathbb{N}$.

2.2 Le groupe linéaire

Proposition 14. Un endomorphisme $u \in \mathcal{L}(E)$ est un automorphisme si et seulement si c'est un élément inversible de l'algèbre $\mathcal{L}(E)$.

Définition 12. On note GL(E) l'ensemble des automorphismes de E. Muni de la loi de composition, c'est un groupe appelé groupe linéaire de E.

3 Somme, somme directe, projecteur

3.1 Somme, somme directe

Définition 13. On appelle somme de deux sous-espaces vectoriels A et B de E, et on note A+B, le plus petit sous-espace vectoriel contenant A et B. On a:

$$A + B = \{a + b : a \in A \mid b \in B\}$$

Remarques:

 \Rightarrow Si f et g sont deux applications linéaires de E dans F qui coïncident sur deux sous-espaces vectoriels A et B tels que A+B=E, alors f=g.

Exercices:

- \Rightarrow Si $f, g \in \mathcal{L}(E, F)$, alors Im $(f + g) \subset$ Im f + Im g. L'inclusion peut être stricte.
- \Rightarrow Soit A, B, C et D des sous-espaces vectoriels de E tels que $A \subset C, B \subset D$ et A+B=C+B. Montrer que A+D=C+D.

Définition 14. On dit que deux sous-espaces vectoriels A et B de E sont en somme directe lorsque l'écriture x=a+b (avec $a\in A$ et $b\in B$) de tout élément $x\in A+B$ est unique. Si tel est le cas, la somme A+B est notée $A\oplus B$.

Proposition 15. Deux sous-espaces vectoriels A et B de E sont en somme directe si et seulement si:

$$A \cap B = \{0\}$$

Définition 15. On dit que deux sous-espaces vectoriels A et B de E sont supplémentaires lorsque :

$$A \oplus B = E$$

Exercices:

 \Rightarrow Soit $f \in \mathcal{L}(E)$ tel que $f^3 = f^2 + f$. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Définition 16. On appelle somme des sous-espaces vectoriels A_1, A_2, \ldots, A_n de E, et on note $A_1 + A_2 + \cdots + A_n$, le plus petit sous-espace vectoriel contenant tous les A_k pour $k \in [\![1,n]\!]$. On a:

$$A_1 + A_2 + \dots + A_n = \{a_1 + a_2 + \dots + a_n : (a_1, a_2, \dots, a_n) \in A_1 \times A_2 \times \dots \times A_n\}$$

Définition 17. On dit que n sous-espaces vectoriels A_1, A_2, \ldots, A_n de E sont en somme directe lorsque l'écriture $x = a_1 + a_2 + \cdots + a_n$ (avec $a_k \in A_k$ pour tout $k \in [\![1,n]\!]$) de tout élément $x \in A_1 + A_2 + \cdots + A_n$ est unique. Si tel est le cas la somme $A_1 + A_2 + \cdots + A_n$ est notée $A_1 \oplus A_2 \oplus \cdots \oplus A_n$.

Remarque:

⇒ Si la somme $A_1 \oplus A_2 \oplus \cdots \oplus A_n$ est directe, alors pour tout $i, j \in [1, n]$ tel que $i \neq j$, on a $A_i \cap A_j = \{0\}$. Cependant, la réciproque est fausse. De manière générale, pour montrer que la somme $A_1 \oplus A_2 \oplus \cdots \oplus A_n$ est directe, on se donne $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \cdots \times A_n$ tels que $a_1 + a_2 + \cdots + a_n = 0$ et on montre que $a_1 = 0, a_2 = 0, \ldots, a_n = 0$.

3.2 Projecteur

Définition 18. Soit A et B deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E. Alors, il existe une unique endomorphisme $p \in \mathcal{L}(E)$ tel que :

$$\forall a \in A \quad \forall b \in B \quad p(a+b) = a$$

On l'appelle projecteur sur A parallèlement à B

Définition 19. Si p est le projecteur sur A parallèlement à B, le projecteur q sur B parallèlement à A est appelé projecteur associé à p. On a :

$$p + q = \text{Id}$$
 et $p \circ q = q \circ p = 0$

De plus, pour tout $x \in E$

$$x = \underbrace{p(x)}_{\in A} + \underbrace{q(x)}_{\in B}$$

est la décomposition de x dans $E = A \oplus B$.

Proposition 16. Soit p le projecteur sur A parallèlement à B. Alors :

$$\operatorname{Ker} p = B$$
 $\operatorname{Ker} (p - \operatorname{Id}) = A$ $\operatorname{Im} p = A$

De plus $p \circ p = p$.

Remarques:

 \Rightarrow En particulier, si $p \in \mathcal{L}(E)$ est un projecteur

$$E = \operatorname{Ker} p \oplus \operatorname{Ker} (p - \operatorname{Id})$$
 et $E = \operatorname{Ker} p \oplus \operatorname{Im} p$

Proposition 17. $p \in \mathcal{L}(E)$ est un projecteur si et seulement si $p \circ p = p$.

Exercices:

- \Rightarrow Soit Re l'application de $\mathbb C$ dans $\mathbb C$ qui à z associe Re(z). Montrer que Re est un projecteur de $\mathbb C$ lorsqu'il est considéré comme un $\mathbb R$ -espace vectoriel.
- \Rightarrow Soit E le \mathbb{R} -espace vectoriel des fonctions de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} . On définit l'application φ de E dans E par :

$$\forall f \in E \quad \forall x \in \mathbb{R} \quad [\varphi(f)](x) = f(0) + f'(0)x$$

Montrer que φ est un projecteur. En déduire un supplémentaire du sous-espace vectoriel de E des fonctions affines.

Proposition 18. Soit E et F deux \mathbb{K} -espaces vectoriels et A, B deux sous-espaces supplémentaires de E. Étant donnés $f_A \in \mathcal{L}(A, F)$ et $f_B \in \mathcal{L}(B, F)$, il existe une unique application linéaire f de E dans F telle que :

$$\forall a \in A \quad f(a) = f_A(a) \quad et \quad \forall b \in B \quad f(b) = f_B(b)$$

3.3 Symétrie

Définition 20. Soit A et B deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E. Alors, il existe un unique endomorphisme $s \in \mathcal{L}(E)$ tel que :

$$\forall a \in A \quad \forall b \in B \quad s(a+b) = a-b$$

On l'appelle symétrie par rapport à A parallèlement à B.

Proposition 19. Soit s la symétrie par rapport à A parallèlement à B. Alors :

$$Ker(s - Id) = A$$
 $Ker(s + Id) = B$

De plus $s \circ s = \text{Id}$. En particulier s est un isomorphisme et $s^{-1} = s$.

Remarques:

 \Rightarrow En particulier, si $s \in \mathcal{L}(E)$ est une symétrie

$$E = \operatorname{Ker}(s - \operatorname{Id}) \oplus \operatorname{Ker}(s + \operatorname{Id})$$

Proposition 20. $s \in \mathcal{L}(E)$ est une symétrie si et seulement si $s \circ s = \mathrm{Id}$.

Exercices:

- \Rightarrow Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et φ l'application de E dans E qui à f associe le fonction $\varphi(f)$ définie par $\forall x \in \mathbb{R}$ $[\varphi(f)](x) = f(-x)$. Montrer que φ est une symétrie et en déduire que $E = \mathcal{I} \oplus \mathcal{P}$ où \mathcal{I} désigne l'espace vectoriel des fonctions impaires et \mathcal{P} l'espace vectoriel des fonctions paires.
- \Rightarrow Donner une formule de trigonométrie hyperbolique donnant $\cosh(2x)$ en fonction de $\cosh x$.