มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ข้อสอบปลายภาคการศึกษาที่ 2/2550

วันจันทร์ที่ 10 มีนาคม 2551

เวลา 9.00 -12.00 น.

วิชา CPE 100 Computer Programming for Engineers. น.ศ. วศ.เคมี ปีที่ 1 กลุ่มที่ 1, 2

น.ศ. วศ.เคมี 2 ภาษา ปีที่ 1 กลุ่มที่ 21

คำสั่ง

- 1. ข้อสอบมีทั้งสิ้น 5 ข้อ จำนวน 8 แผ่น(รวมแผ่นนี้ และใบแนบ)
- 2. ให้ทำข้อสอบทุกข้อลงในตัวข้อสอบที่เว้นช่องไว้ให้
- 2. ไม่อนุญาตให้นำเครื่องคำนวณใด ๆเข้าห้องสอบ
- 4. เขียนชื่อ และ รหัสประจำตัว ลงในกระดาษคำตอบทุกแผ่น (และแผ่นนี้)

(อ.พิพัฒน์ ศุภศิริสันด์) ผู้ออกข้อสอบ (9082)

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมคอมพิวเตอร์แล้ว

ชื่อภาควิชา/ชั้นปี.....ภาควิชา/ชั้นปี.....

ชื่อร	รหัสประจำตัว	ภาควิชา/ชั้นปี
-------	--------------	----------------

โจทย์ 1 - 2

กำหนดให้ สมมุติให้ มีการเก็บค่าอุณหภูมิที่เวลา 07.00 น. ของแต่ละวันใน 1 ปีไว้ในไฟล์ชื่อ "TEMP.TXT" โดยค่าที่เก็บเป็นตัวเลขจำนวนจริงดังตัวอย่าง

```
32.0
31.8
.....
```

ต้องการเขียนโปรแกรม เพื่อหาค่าต่ำสุด สูงสุด ค่าเฉลี่ย และค่าเบี่ยงเบนมาตรฐานของอุณหภูมิ ในไฟล์ ดังกล่าว โดยเขียนฟังก์ชัน main () ดังนี้

void main(void)

{ double data[1000], min, max, mean, sd; int count;

Read_Temperature_File ("TEMP.TXT", data, &count);

Find_Statistical_Data(data, count, &min, &max, &mean, &sd);

printf("\nMinimum temperature = %6.2lf \nMaximum temperature ", min , max);
printf("\nAverage temperature = %6.2lf \nStandard Deviation ", mean , sd);
}

สูตรในการหาค่าเฉลี่ย

$$mean = \frac{\sum_{i=1}^{n} x_i}{n}$$

สูตรในการหาค่าส่วนเบี่ยงเบนเฉลี่ย

$$sd = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n} - mean^2}$$

ชื่อ	รหัสประจำตัวรหัสประจำตัว	ภาควิชา/ชั้นปี
1. จงสร้างฟังก์ชัน Read_Temperature main() เพื่อให้โปรแกรมนี้ทำงานได้		อดคล้องกับการเรียกใช้ ในฟังก์ชัน
· · · · · · · · · · · · · · · · · · ·		

ชื่อ	รหัสประจำดัวรหัสประจำดัว	ภาควิชา/ชั้นปี
2. จงสร้างฟังก์ชัน Find_Statistical_[main() เพื่อให้โปรแกรมนี้ทำงานได้	Data ()ซึ่งมีพารามิเตอร์ที่สอดร	คล้องกับการเรียกใช้ ในฟังก์ชัน
ווומווו() נאטנאנטזנווזגאוואנאו וא וואנאו		

ชื่อ	รหัสประจำตัว	ภาควิชา/ชั้นปี	
3. จงสร้างฟังก์ชั่น เพื่อหาผลบวกของ MATRIX ซึ่งเป็นอาร์เรย์ 2 มิติ ของตัวเลขจำนวนเต็ม พร้อมขนาด ที่ส่งมาให้ทางพารามิเตอร์ 2 ชุดแรก แต่ละชุดประกอบด้วย ตัวแปรเก็บค่า และขนาดของ row, col ตามลำดับ เมื่อบวกกันแล้วให้ส่งคำตอบกลับคืนโดยใช้พารามิเตอร์ตัวที่ 3 โดยมีตัวอย่าง การเรียกใช้งาน ดังนี้			
Add_Matrix(MA,row_A,	col_A , MB , row_B , col_B,	MC , &row_C, &col_C);	
กำหนดให้ สมาชิกของแต่เมตริกซ์ เป็	นตัวเลขจำนวนเต็ม มีขนาตไม่	เกิน 20 x 20	

ชื่อ		รหัลประจำตัว		ภาควิชา/ชั้นปี
โจทย์ 4 - 5 กำหนดให้ ไฟล์ชื่อ "STUDENT.GPA" มีลักษณะเป็น TEXT FILE ใช้สำหรับเก็บเกรดเฉลี่ย ของนักเรียนแต่ละคน เพื่อนำไปใช้คันหา มีลักษณะข้อมูลในแต่ละบรรทัด ดังตัวอย่าง				
50290001	KANOKWAN	SOMCHART	2.93	
 จงออกแบบโครงสร้า ทั้งหมดที่อยู่ในไฟล์นี้ (แปรที่สร้างขึ้น ให้สอดคล์ 	ไม่ทราบจำนวน	แต่ไม่เกิน 1000 (์เชันที่จะใช้อ่านข้อมูล นข้อมูลที่อ่านได้ เก็บไว้ยังตัว
		••••••		
		••••••		
			•••••	
void main (void)				
{ struct student_type	student[1000	1;		
int count ;		-		
Read_Student_GP/	A (student , *c	ount);		
Search_Data(stud	•	·		

}

ชื่อ	รหัสประจำตัว	ภาควิชา/ชั้นปี
 จงสร้างฟังก์ชัน Search_Data () เพื่อคันหา และ แสดงผล นักเรียนคนที่ได้เกรดเฉลี่ยมากกว่าหรือ เท่ากับ ค่าที่กำหนดในพารามิเตอร์ตัวที่ 3 (เช่น ถ้าต้องการให้แสดงผลนักเรียนที่มีเกรดเฉลี่ย มากกว่าหรือเท่ากับ 3.00) 		

ARRAY(Statistics)

- ARRAY 1 มิติใช้เมื่อต้องการเก็บข้อมูลจำนวนมากไว้ในด้วแปร
- การจองด้วแปร ARRAY ให้กำหนดขนาดสูงสุดที่โปรแกรมสามารถทำงานได้ และ จำนวนข้อมูลที่เก็บอยู่จริง

```
double data[200];
int count = 0;
```

 การประมวลผลข้อมูล ใช้การวนรอบเพื่อกระทำกับข้อมูลตั้งแต่ตัวแรกจนถึงตัว สุดท้าย แล้วประมวลผลรอบละด้วจนครบทุกดัว

```
int i:
     for (i=1; i \le count; i++)
        {ให้ประมวลผลด้วแปร data[i] }
```

♣ การสร้างฟังก์ชีนที่ด้องส่งตัวแปรเป็นพารามิเตอร์ ไม่ต้องกำหนดขนาดข้อมูลใน วงเล็บ และใช้เหมือนกันทั้ง input , output

```
void Read_Data (double data[], int *count)
void Process_Data (double data[], int count)
double Find Answer(double data[], int count)
```

ุ่ งการเรียกใช้ฟังก์ชันที่สร้างขึ้นให้ใช้ชื่อด้วแปรอาร์เรย์โดยตรง ไม่ต้องกำหนดขนาด

```
Read_Data (data, &count);
Process_Data (data, count);
ans = Find Answer(data, count);
```

Text File

- ภาษาขี ถ้าต้องการใช้ TEXT File ต้องทำตามขั้นตอบดังปี้
 - จองตัวแปรสำหรับใช้เป็นไฟล์
 - /* fp คือชื่อตัวแปรไฟล์ที่ต้องการนำไปใช้ */ • FILE *fp:
 - ี คำสั่งกำหนดชื่อไฟล์ในดิสก์ แล้วเปิดไฟล์
 - fp = fopen("filename.ext", "r"); /* เปิดไฟล์ fp เพื่ออ่าน */
 - fp = fopen("filename.ext", "w"); /* เปิดไฟล์ fp เพื่อเขียน */
 - ใช้วนรอบ while ในการอ่านข้อมูลจากไฟล์ ที่ไม่ทราบจำนวนเก็บไว้ในอาร์เรย์ while (fscanf(fp, "%d", &a) == 1) /*วนรอบขณะที่อ่านข้อมูลได้ 1 ตัว*/ data[*count] = a; } /* นำค่าที่อ่านได้ไปเก็บ*/
 - ถ้ารู้จำนวนข้อมลที่ต้องอ่าน อาจใช้วนรอบ for ในการอ่านได้ fscanf(fp,"%d%d", &row, &col); /*อ่านจำนวน row ,col จากไฟล์*/ for (i=1; i<=row; i++) /*กำหนดจำนวน row ที่จะอ่าน*/ for (j=1; j<=col; j++) /*กำหนดจำนวน col ที่จะอ่าน*/ { fscanf(fp,"%d", &M[i][j]); }
 - ี่ ถ้าต้องการเขียนข้อมูลลงไฟล์ให้ใช้คำสั่ง fprintf(fp,"....",....) ;
 - ใช้คำสั่งปิดไฟล์เมื่อเลิกใช้งาน fciose(fp);

MATRIX

การจองด้วแปร ARRAY 2 มิติ เช่น matrix ให้จองเป็นอาร์เรย์ 2 มิติชองด้วเฉข สงสุดที่ทำงานได้ และข้อมูลที่เก็บอยู่จริงในแต่ละมิติ

```
int M[10][10];
int row, col;
```

การประมวลผลใช้การวนรอบซ้อน 2 ชื้น เพื่อกระทำกับข้อมูลทีละด้วจนครบ

```
int i,j;
  for (i=1; i <= row; i++)
     { รอบการประมวลผลของ i ทีละแถว(มิติแรก)
        for (j = 1; j < = col; j++)
           {รอบของการประมวลผล j ที่ละหลัก (มิติหลัง)
             ประมวลผลข้อมูล M[i][j] }
```

🚸 การสร้างฟังก์ชีนที่ต้องส่งตัวแปรเป็นพารามิเดอร์ ไม่ด้องกำหนดขนาดเฉพาะ ข้อมูลในวงเล็บแรกเท่านั้น และใช้เหมือนกับทั้ง input , output void Process_Matrix (int M[][10], int row, int col)

♣ การเรียกใช้ฟังก์ชีนที่ต้องส่งค่าอาร์เรย์ ให้ใช้ชื่อตัวแปรอาร์เรย์ โดยไม่ด้อง กำหนดขนาด

Process Matrix (M, rowa, cola);

2

1

STRUCTURE

- ชบิดข้อมูลโครงสร้าง ใช้เมื่อด้วแปร แต่ละด้วประกอบด้วยคุณสมบัติ(ด้วแปร) ย่อยๆ หลายๆตัวมารวมกัน มักใช้ร่วมกับอาร์เรย์ 1 มิติ เช่น
 - โครงสร้างข้อมูลสมุดโทรศัพท์ ประกอบด้วย ชื่อ(ด้วอักษร) เบอร์โทร (ด้วเลข)
- สร้างโครงสร้างข้อมูลใหม่ ไว้ในส่วนที่ถัดจาก #include
- ♣ ใช้คำสั่ง struct ชื่อโครงสร้าง {ชื่อตัวแปร(ฟิลด์)ที่นำมารวมกัน..... } struct phonebook { char name[20]; long int tel; };
- จองตัวแปรอาร์เรย์ของโครงสร้างสำหรับเก็บข้อมูล และจำนวนข้อมูลที่เก็บจริงใน ฟังก์ชีน main

```
struct phonebook phone[100];
```

int count:

- ♣ การส่งค่าด้วแปรแบบโครงสร้างเป็นพารามิเดอร์ ใช้เช่นเดียวกับอาร์เรย์ void Process_Data(struct phonebook phone[], int count) เมื่อต้องการเรียกใช้ Process_Data(phone, count) ;
- 🚣 การใช้งานตัวแปรย่อยในโครงสร้าง ให้ใช้ ชื่อตัวแปร.ชื่อฟิลด์
 - ตัวแปร x จะใช้ได้เป็น x.name, x.tel
 - for (i=1; i<=count; i++) { ตัวแปร phone[i] จะใช้ได้เป็น phone[i].name และ phone[i].tel}