Aufgaben zum freien Fall und senkrechtem Wurf

Aufgabe 1:

Standardaufgaben zum freien Fall

Ein Körper wird aus einer Höhe von $y_0=20\,\mathrm{m}$ losgelassen und fällt dann frei, d.h. allein unter dem Einfluss der Erdanziehungskraft und ohne Berücksichtigung von Reibungskräften zum Boden. Rechne die folgenden Aufgaben mit $g=10\,\frac{\mathrm{m}}{\mathrm{s}^2}$

- (a) Berechne die Höhe y_1 des Körpers zum Zeitpunkt $t_1 = 1$ s.
- (b) Berechne den Zeitpunkt t_2 , zu dem sich der Körper in der Höhe $y_2 = 10 \,\mathrm{m}$ befindet. Leite hierzu zuerst einen allgemeinen Term her.
- (c) Berechne die Fallzeit t_F des Körpers, d.h. die Zeitspanne vom Loslassen des Körpers bis zu seinem Auftreffen auf dem Boden. Leite hierzu zuerst einen allgemeinen Term her.
- (d) Berechne die Geschwindigkeit v_{y_1} des Körpers zum Zeitpunkt $t_1 = 1$ s.
- (e) Berechnen den Zeitpunkt t_3 , zu dem der Körper eine Geschwindigkeit von $v_{y3} = -15 \frac{\text{m}}{\text{s}^2}$ besitzt. Leite hierzu zuerst einen allgemeinen Term her.
- (f) Berechne die Geschwindigkeit v_{y_F} des Körpers beim Aufprall auf den Boden.

Aufgabe 2: Wie tief ist der Brunnen?

Zur Bestimmung der Tiefe eines Brunnens lässt jemand eine Münze in den Brunnen fallen.

- (a) Er sieht das Auftreffen auf den Boden 1,5s nach dem Loslassen der Münze. Berechnen Sie die Tiefe des Brunnens.
- (b) Er hört das Auftreffen auf den Boden 1,5s nach dem Loslassen der Münze. Berechnen Sie die Tiefe des Brunnens. Hinweis: Schallgeschwindigkeit in Luft: $v_S = 340 \, \frac{\text{m}}{\text{s}}$.

Aufgabe 3:

Ein Gangster rennt mit $v_x=8\,\frac{\rm m}{\rm s}$ aus der Haustür. Tante Emma möchte einen Blumentopf lotrecht nach unten werfen, um den Bösewicht auszuschalten. Die horizontale Entfernung Haustüre-Fenster ist $x=6\,\mathrm{m}$, die Abwurfhöhe $h=12\,\mathrm{m}$ und die Größe des Gangsters $1,80\,\mathrm{m}$.

- (a) Berechne, wie lang der Ganove von der Tür bis unter die Fensterbank benötigt.
- (b) Berechne, wie groß die Fallzeit t_F des Blumentopfs ist. Beachte dabei die Größe des Ganoven.
- (c) Berechne die Länge der Strecke x, damit Tante Emma den Ganoven trifft.
- (d) Berechne die Geschwindigkeit des Ganoven, damit Tante Emma ihn trifft.

(e) Berechne die Geschwindigkeit, mit der Tante Emma den Blumentopf werfen muss, damit sie den Ganoven trifft.

Wurf nach unten

© T. Lieber