Recurrent Neural Network Grammers

知能数理研究室 外山洋太,三輪誠,佐々木裕

導入

Recurrent Neural Network Grammers (RNNGs)

- ▶ 文の確率的生成モデル
 - ▶ 単語や句の入れ子的・階層的構造を陽に表現
- ▶ 問題:構文解析,文生成
- ▶ 動機: Sequential な Recurrent Neural Networks (RNNs) は 自然言語の潜在的な入れ子構造を考慮できていない
- ▶ 構文解析(文→構文木)と文生成のアルゴリズム

RNNGの定義

$$RNNG := (N, \Sigma, \Theta)$$
$$N \cup \Sigma = \emptyset$$

 $\left\{egin{aligned} N: 非終端記号の有限集合\ \Sigma: 終端記号の有限集合\ \Theta: NN のパラメータ \end{aligned}
ight.$

構文解析のアルゴリズム

$$f:X\to Y$$

x:単語列(入力) v:構文木(出力)

S: スタック

B:入力バッファ

- ▶ 入力バッファの要素:まだ使われていない終端記号
- ► スタックの要素:終端記号,未完成の非終端記号,完成した非終端 記号

構文解析のアルゴリズム

- ▶ 遷移の制約
 - ▶ n: スタック内の未完成の非終端記号の数

遷移	制約
NT(X)	$B \neq \emptyset \land n < 100$
SHIFT	$B \neq \emptyset \land n \geq 1$
	スタック内の一番上の要素が
REDUCE	未完成の非終端記号でない
	$\land (n \ge 2 \lor B = \emptyset)$

生成のアルゴリズム

- ▶ 遷移の制約
 - ► n: スタック内の未完成の非終端記号の数

遷移	制約
GEN(X)	$n \ge 1$
REDUCE	スタック内の一番上の要素が 未完成の非終端記号でない $\wedge n \geq 1$