Section 4.4 – Optimization, Geometry, and Modeling

1. A farmer wants to fence a rectangular grazing area along a straight river (no fence is needed along the river). There are 1700 total feet of fencing available. What dimensions (length and width) will maximize the grazing area?

Let x and y represent the dimensions of the rectangular pen, in feet, and let A represent its area.

 $\underline{\text{Given}}: \qquad 2x + y = 1700$

 $\underline{\text{Find}}$: x and y that maximize A

Since the pen is rectangular, we know that A=xy, and from our given information, we see that y=1700-2x. Therefore,

$$A = x(1700 - 2x) = 1700x - 2x^2.$$

Next, we find the critical points of A; we have A' = 1700 - 4x, so

$$1700 - 4x = 0$$

$$4x = 1700$$

$$x = 425$$

Therefore, x=425 is the only critical point. Also, since 1700 feet is the maximum amount of fencing available, the largest value that x can have is 1700/2=850. Therefore, the endpoints of our domain are x=0 and x=850. The table to the right confirms that the maximum value of A occurs when x=425. Therefore, our final answer is x=425 feet and y=1700-2(425)=850 feet.

x	A
0	0
425	361,250
850	0

2. A box with an open top of fixed volume V with a square base is to be constructed. Find the dimensions of the box that minimize the amount of material used in its construction.

Let x represent the length and width of the box, let y represent the height of the box, and let V represent the volume of the box (see diagram below).

 $\underline{\mathtt{Given}}: \qquad V = x^2 y$

 $\underline{\text{Find}}$: x and y that minimize S,

the surface area of the box.

We begin by finding a formula for S, the surface area of the box. Since

$$S=$$
 (Sum of the areas of the 4 sides) $\,+\,$ (Area of the bottom)
$$=\,4xy+x^2\\ =\,4x(Vx^{-2})+x^2\\ =\,4Vx^{-1}+x^2,$$

we have $S'=-4Vx^{-2}+2x=(2x^3-4V)/x^2,$ so the critical points of S occur when

$2x^3 - 4V$	=	0
x^3	=	2V
x	=	$\sqrt[3]{2V}$.

Interval	Sign of S^\prime
$0 < x < \sqrt[3]{2V}$	_
$x > \sqrt[3]{2V}$	+

Therefore, since the above sign chart confirms that S is decreasing for all x values to the left of $\sqrt[3]{2V}$ and increasing for all x values to the right of $\sqrt[3]{2V}$, we conclude that S has a global minimum at $x=\sqrt[3]{2V}$. In other words, the dimensions of the box that will minimize the amount of material used in the construction are $x=\sqrt[3]{2V}$ and $y=Vx^{-2}=V(2V)^{-2/3}=\sqrt[3]{V/4}$.

3. A metal can manufacturer needs to build cylindrical cans with volume 300 cubic centimeters. The material for the side of a can costs 0.03 cents per cm², and the material for the bottom and top of the can costs 0.06 cents per cm². What is the cost of the least expensive can that can be built?

Let r represent the radius of the can, let h represent the height of the can, and let C represent the cost of building the can, in cents.

 $\underline{\text{Given}}: \qquad \pi r^2 h = 300$

Find: Minimum Value of C

We begin by finding a formula for the cost of building the can. We have

C = (Cost of the top and bottom) + (Cost of the outside)

= (Area of Top and Bottom)(Cost Per Unit Area) + (Area of Outside)(Cost Per Unit Area)

 $= (2\pi r^2)(0.06) + (2\pi rh)(0.03)$

$$= 0.12\pi r^2 + 0.06\pi r \left(\frac{300}{\pi r^2}\right)$$

$$= 0.12\pi r^2 + 18r^{-1},$$

so $C'=0.24\pi r-18r^{-2}=(0.24\pi r^3-18)/r^2$, which means that C'=0 when $0.24\pi r^3=18$, or when $r=\sqrt[3]{75/\pi}$. Since the sign chart to the right confirms that C has a global minimum at $r=\sqrt[3]{75/\pi}$, we conclude that the cost of the least expensive can is given by

Interval	Sign of C^\prime	
$0 < r < \sqrt[3]{75/\pi}$	_	
$r > \sqrt[3]{75/\pi}$	+	

$$C = 0.12\pi (\sqrt[3]{75/\pi})^2 + 18(\sqrt[3]{75/\pi})^{-1}$$
$$= \left(\frac{75}{\pi}\right)^{-1/3} \left(0.12\pi \cdot \frac{75}{\pi} + 18\right)$$
$$= 27\sqrt[3]{\frac{\pi}{75}},$$

or about 9.38 cents.