1. Suppose X follows a Gamma distribution with mean $\mu = 20$ and standard deviation $\sigma = 10$.

Recall:

$$\alpha = 4, \qquad \theta = 5.$$

d) Find a such that P(X > a) = 0.10.

Hint: If T has a Gamma(α , $\theta = 1/\lambda$) distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

e) Find b and c such that P(b < X < c) = 0.95.

Suggestion: Find b and c such that P(X < b) = 0.025 and P(X > c) = 0.025.

TABLE IV
The Chi-Square Distribution

				$P(X \leq x)$				
	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21

- **4.** Cars arrive to CampusTown Urgent Care, a walk-in no-appointment clinic on the corner of Wright Street and Green Street, for COVID-19 testing according to Poisson process with the average rate of 1 car per 15 minutes.
- a) Find the probability that at most 2 cars arrive in 1 hour.
- b) Find the probability that at least 2 cars arrive in 30 minutes.
- c) Find the probability that exactly 7 cars arrive in 2 hours.
- d) Find the probability that the 7th car arrives during the second hour.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_T(t) = P(T \le t) = P(Y \ge \alpha)$ and $P(T > t) = P(Y \le \alpha - 1)$, where Y has a Poisson (λt) distribution.

- e) Find the probability that the 10th car arrives after 3 hours.
- f) Find the probability that the 15th car arrives during the fourth hour.
- g) Find the 95% upper prediction bound for the arrival time of the 7th car. That is, find c such that $P(T_7 < c) = 0.95$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

h) Construct an 80% prediction interval for the time when the 15th car arrives. That is, find a and b such that $P(a < T_{15} < b) = 0.80$.

1. Suppose X follows a Gamma distribution with mean $\mu = 20$ and standard deviation $\sigma = 10$.

Recall:
$$\alpha = 4$$
, $\theta = 5$.

d) Find a such that P(X > a) = 0.10.

Hint: If T has a Gamma(α , $\theta = 1/\lambda$) distribution, where α is an integer, then ${}^2T/_\theta = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$\frac{2 T_4}{\theta} = \frac{2 T_4}{5} \text{ has a } \chi^2(2\alpha = 8) \text{ distribution.}$$

$$\chi^2_{0.10}(8) = 13.36. \qquad P(\chi^2(8) > 13.36) = 0.10.$$

$$0.10 = P(X > a) = P(T_4 > a) = P(\frac{2 T_4}{5} > \frac{2 a}{5}) = P(\chi^2(8) > \frac{2 a}{5}).$$

$$\frac{2 a}{5} = 13.36. \qquad \Rightarrow \qquad a = 33.4.$$

```
> qgamma(0.90,4,1/5)
[1] 33.40392
> qgamma(0.10,4,1/5, lower.tail=FALSE)
[1] 33.40392
> qchisq(0.90,2*4)
[1] 13.36157
> qchisq(0.90,2*4)*(5/2)
[1] 33.40392
```

Find b and c such that P(b < X < c) = 0.95. e)

Find *b* and *c* such that P(X < b) = 0.025 and P(X > c) = 0.025. Suggestion:

$$\chi^{2}_{0.975}(8) = 2.180, \qquad \chi^{2}_{0.025}(8) = 17.54.$$

$$P(2.180 < \chi^2(8) < 17.54) = 0.95.$$

$$\frac{2b}{5} = 2.180, \qquad \frac{2c}{5} = 17.54.$$

$$\Rightarrow$$
 $b = 5.45, c = 43.85.$

OR

We do NOT have to do what Alex suggests! This is America!

$$\chi^2_{0.95}(8) = 2.733.$$

$$P(2.733 < \chi^{2}(8) < \infty) = 0.95.$$

$$\frac{2b}{5} = 2.733. \qquad \frac{2c}{5} = \infty.$$

$$\Rightarrow$$
 $b = 6.8325$, $c = \infty$. \Rightarrow $b = 0$, $c = 38.775$.

$$\chi_{0.05}^{2}(8) = 15.51.$$

$$P(0 < \chi^{2}(8) < 15.51) = 0.95.$$

$$\frac{2b}{5} = 0. \qquad \frac{2c}{5} = 15.51.$$

$$\Rightarrow$$
 $b = \mathbf{0}, \quad c = \mathbf{38.775}.$

$$> qchisq(0.025,2*4)*(5/2)$$

$$> qchisq(0.975,2*4)$$

- **4.** Cars arrive to CampusTown Urgent Care, a walk-in no-appointment clinic on the corner of Wright Street and Green Street, for COVID-19 testing according to Poisson process with the average rate of 1 car per 15 minutes.
- a) Find the probability that at most 2 cars arrive in 1 hour.

1 hour $\Rightarrow \lambda = 4$.

P(at most 2 cars) = P(0 cars) + P(1 cars) + P(2 cars)

$$= \frac{4^{0} \cdot e^{-4}}{0!} + \frac{4^{1} \cdot e^{-4}}{1!} + \frac{4^{2} \cdot e^{-4}}{2!}$$

$$\approx 0.018316 + 0.073263 + 0.146525 = 0.238104.$$

Using Cumulative Poisson Probabilities table:

$$P(Poisson(4) \le 2) = 0.238.$$

R:

Excel:

=POISSON.DIST(2,4,1)

0.238103

b) Find the probability that at least 2 cars arrive in 30 minutes.

30 minutes = 0.5 hour
$$\Rightarrow \lambda = 0.5 \times 4 = 2$$
.

P(at least 2 cars) = 1 - P(at most 1 car)

$$= 1 - \frac{2^{0} \cdot e^{-2}}{0!} - \frac{2^{1} \cdot e^{-2}}{1!}$$

$$\approx 1 - 0.135335 - 0.270671 = 0.593994.$$

Using Cumulative Poisson Probabilities table:

$$P(Poisson(2) \ge 2) = 1 - P(Poisson(2) \le 1) = 1 - 0.406 = 0.594.$$

R:

c) Find the probability that exactly 7 cars arrive in 2 hours.

2 hours
$$\Rightarrow$$
 $\lambda = 2 \times 4 = 8$.

P(exactly 7 cars) =
$$\frac{8^7 \cdot e^{-8}}{7!} \approx 0.139587$$
.

Using Cumulative Poisson Probabilities table:

$$P(Poisson(8) = 7) = P(Poisson(8) \le 7) - P(Poisson(8) \le 6)$$

= 0.453 - 0.313 = **0.140**.

R:

```
> dpois(7,8)
[1] 0.1395865
> ppois(7,8)-ppois(6,8)
[1] 0.1395865
```

d) Find the probability that the 7th car arrives during the second hour.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_T(t) = P(T \le t) = P(Y \ge \alpha)$ and $P(T > t) = P(Y \le \alpha - 1)$, where Y has a Poisson (λt) distribution.

$$P(1 < T_7 < 2) = P(T_7 > 1) - P(T_7 > 2) = P(X_1 \le 6) - P(X_2 \le 6)$$

$$= P(Poisson(4) \le 6) - P(Poisson(8) \le 6) = 0.889 - 0.313 = 0.576.$$

OR

$$P(1 < T_7 < 2) = \int_{1}^{2} \frac{4^{7}}{\Gamma(7)} t^{7-1} e^{-4t} dt = \int_{1}^{2} \frac{4^{7}}{6!} t^{6} e^{-4t} dt = \dots$$

OR

$$P(1 < T_7 < 2) = P(2\lambda \cdot 1 < 2\lambda T_7 < 2\lambda \cdot 2) = P(8 < \chi^2(14) < 16) = ...$$

R:

```
> pgamma(2,7,4)-pgamma(1,7,4)
[1] 0.5759517
> ppois(6,4)-ppois(6,8)
[1] 0.5759517
> pchisq(16,14)-pchisq(8,14)
[1] 0.5759517
```

=GAMMA.DIST(2,7,1/4,1)-GAMMA.DIST(1,7,1/4,1)	0.575952
=CHISQ.DIST(16,14,1)-CHISQ.DIST(8,14,1)	0.575952
=CHISQ.DIST.RT(8,14)-CHISQ.DIST.RT(16,14)	0.575952

e) Find the probability that the 10th car arrives after 3 hours.

$$P(T_{10} > 3) = P(X_3 \le 9) = P(Poisson(12) \le 9) = 0.242.$$

OR

$$P(T_{10} > 3) = \int_{3}^{\infty} \frac{4^{10}}{\Gamma(10)} t^{10-1} e^{-4t} dt = \int_{3}^{\infty} \frac{4^{10}}{9!} t^{9} e^{-4t} dt = \dots$$

OR

$$P(T_{10} > 3) = P(2\lambda T_{10} > 2\lambda \cdot 3) = P(\chi^{2}(20) > 24) = ...$$

R:

```
> 1-pgamma(3,10,4)
[1] 0.2423922
> ppois(9,12)
[1] 0.2423922
> 1-pchisq(24,20)
[1] 0.2423922
```

=1-GAMMA.DIST(3,10,1/4,1)	0.242392
---------------------------	----------

f) Find the probability that the 15th car arrives during the fourth hour.

$$P(3 < T_{15} < 4) = P(T_{15} > 3) - P(T_{15} > 4) = P(X_3 \le 14) - P(X_4 \le 14)$$
$$= P(Poisson(12) \le 14) - P(Poisson(16) \le 14) = 0.772 - 0.368 = 0.404.$$

OR

$$P(3 < T_{15} < 4) = \int_{3}^{4} \frac{4^{15}}{\Gamma(15)} t^{15-1} e^{-4t} dt = \int_{3}^{4} \frac{4^{15}}{14!} t^{14} e^{-4t} dt = \dots$$

OR

$$P(3 < T_{15} < 4) = P(2\lambda \cdot 3 < 2\lambda T_{15} < 2\lambda \cdot 4) = P(24 < \chi^{2}(30) < 32) = ...$$

R:

```
> pgamma(4,15,4)-pgamma(3,15,4)
[1] 0.4044972
> ppois(14,12)-ppois(14,16)
[1] 0.4044972
> pchisq(32,30)-pchisq(24,30)
[1] 0.4044972
```

Excel:

=GAMMA.DIST(4,15,1/4,1)-GAMMA.DIST(3,15,1/4,1) **0.404497**

=CHISQ.DIST(32,30,1)-CHISQ.DIST(24,30,1) **0.404497**

=CHISQ.DIST.RT(24,30)-CHISQ.DIST.RT(32,30) **0.404497**

g) Find the 95% upper prediction bound for the arrival time of the 7th car. That is, find c such that $P(T_7 < c) = 0.95$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

Using the Chi-Square Distribution table:

$$2\lambda T_7 = 8 T_7$$
 has a $\chi^2(2\alpha = 14)$ distribution.
 $\chi^2_{0.05}(14) = 23.68$.
 $P(\chi^2(14) < 23.68) = 0.95$.
 $c = \frac{23.68}{8} = 2.96$.

R:

```
> qgamma(0.95,7,4)
[1] 2.960599
> 
> qchisq(0.95,14); qchisq(0.95,14)/8
[1] 23.68479
[1] 23.68479
```

=GAMMA.INV(0.95,7,1/4)	2.960599
=CHISQ.INV(0.95,14) =CHISQ.INV(0.95,14)/8	23.68479 2.960599
=CHISQ.INV.RT(0.05,14)	23.68479
=CHISQ.INV.RT(0.05,14)/8	2.960599

h) Construct an 80% prediction interval for the time when the 15th car arrives. That is, find a and b such that $P(a < T_{15} < b) = 0.80$.

Using the Chi-Square Distribution table:

$$2\lambda T_{15} = 8 T_{15}$$
 has a $\chi^2 (2\alpha = 30)$ distribution.
$$\chi^2_{0.90} (30) = 20.60, \qquad \qquad \chi^2_{0.10} (30) = 40.26.$$

$$P(20.60 < \chi^2(30) < 40.26) = 0.80.$$

$$a = \frac{20.60}{8} = 2.575,$$
 $b = \frac{40.26}{8} = 5.0325.$

R:

Excel:

=GAMMA.INV(0.1,15,1/4)	2.574904
=GAMMA.INV(0.9,15,1/4)	5.032003
=CHISQ.INV(0.1,30)	20.59923
=CHISQ.INV(0.1,30)/8	2.574904
=CHISQ.INV.RT(0.1,30)	40.25602

5.03203

=CHISQ.INV.RT(0.1,30)/8

There are infinitely many possible answers:

left	a	b	right
0	0	4.531273	0.20
0.01	1.869182	4.571269	0.19
0.02	2.038272	4.612823	0.18
0.03	2.150953	4.656114	0.17
0.04	2.238535	4.701351	0.16
0.05	2.311583	4.748781	0.15
0.06	2.375048	4.798704	0.14
0.07	2.431679	4.851481	0.13
0.08	2.483171	4.907558	0.12
0.09	2.530650	4.967494	0.11
0.10	2.574904	5.032003	0.10
0.11	2.616509	5.102019	0.09
0.12	2.655897	5.178795	0.08
0.13	2.693405	5.264076	0.07
0.14	2.729299	5.360391	0.06
0.15	2.763793	5.471621	0.05
0.16	2.797063	5.604195	0.04
0.17	2.829256	5.769992	0.03
0.18	2.860495	5.995225	0.02
0.19	2.890884	6.361523	0.01
0.20	2.920514	∞	0