PSYCH 260/BBH 203

Neurochem II

Rick O. Gilmore 2022-02-17 07:43:40

Prelude (01:57)

https://en.wikipedia.org/wiki/Mah_Nà_Mah_Nà

Monoamines, do-do do do-do Monoamines, do do do-do Monoamines, do do do do-do do do-do do do-do do do do-do do

Monoamines, do-pa-mine is one Monoamines, norepi, too Monoamines, sero-tonin e-pinephrine, dop-a-mine, nor-epinephrine, melatonin, whoo!

Monoamines, mod-u-late neurons Monoamines, throughout the brain Monoamines, keep people happy, brains snappy, not sleepy, not sappy, do-do do-do do

Announcements

- · Quiz 2 due Tuesday, Feb 22, after class
- Blog post 1 (of 3) due Tuesday, Feb 22

Today's Topics

- · Warm-up
- Neurotransmitters

Warm-up

The *presynaptic influx* of which ion triggers the release of neurotransmitters from the axon terminal?

- · Na+
- · K+
- Ca++
- · C|-

The *presynaptic influx* of which ion triggers the release of neurotransmitters from the axon terminal?

- · Na+
- · K+
- Ca++
- · C|-

This type of postsynaptic receptor does NOT contain its own ion channel.

- Ionotropic
- Metabotropic
- Ligand-gated

This type of postsynaptic receptor does NOT contain its own ion channel.

- · lonotropic
- Metabotropic
- Ligand-gated

More on neurotransmitters

Glutamate

- Primary excitatory NT in CNS (~ 1/2 all synapses)
- Role in learning (via NMDA receptor)
- Transporters on neurons and glia (astrocytes and oligodendrocytes)
- Linked to umami (savory) taste sensation, think monosodium glutamate (MSG)
- Dysregulation in schizophrenia (McCutcheon, Krystal, & Howes, 2020), mood disorders (Małgorzata, Paweł, Iwona, Brzostek, & Andrzej, 2020)

Glutamate

Туре	Receptor	Esp Permeable to
Ionotropic	AMPA	Na+, K+
	Kainate	
	NMDA	Ca++
Metabotropic	mGlu	

γ -aminobutyric Acid (GABA)

- Primary inhibitory NT in CNS
- Binding sites for benzodiazepines (e.g., Valium), barbiturates, ethanol, etc.
- Synthesized from glutamate
- Inactivated by transporters
- Excitatory in developing CNS, [Cl-] in >> [Cl-] out

GABA

"GABAA-receptor-protein-example" by Chemgirl131 at English Wikipedia - Transferred from en.wikipedia to Commons by Sreejithk2000 using CommonsHelper.. Licensed under Public Domain via Commons.

Туре	Receptor	Esp Permeable to
lonotropic	GABA-A	CI-
Metabotropic	GABA-B	K+

Other amino acid NTs

- Glycine
 - Spinal cord interneurons
 - inhibitory
- Aspartate
 - Like Glu, stimulates NMDA receptor

Acetylcholine (ACh)

- Primary NT of CNS output
- Somatic portion of PNS (neuromuscular junction between motor neurons and skeletal muscles)
- Autonomic nervous system
 - Sympathetic branch: preganglionic neuron
 - Parasympathetic branch: pre/postganglionic
- Inactivation by acetylcholinesterase (AChE)

ACh anatomy

Acetylcholine

Туре	Receptor	Esp Permeable to	Blocked by
Ionotropic	Nicotinic (nAChR)	Na+, K+	e.g., Curare
Metabotropic	Muscarinic (mAChR)	K+	e.g., Atropine

Curare

http://www.general-anaesthesia.com/images/indian-curare.jpg

Atropine

· aka, nightshade or belladonna

https://aapos.org/glossary/dilating-eye-drops

How to stop your prey

Substance	Effect
Japanese pufferfish toxin	Blocks voltage-gated Na+ channels
Black widow spider venom	Accelerates presynaptic ACh release
Botulinum toxin (BoTox)	Prevents ACh vesicles from binding presynaptically
Sarin nerve gas	Impedes ACh breakdown by AChE
Pesticides	Impede AChE
Tetanus toxin	Blocks release of GABA, glycine

Monoamine neurotransmitters

Family	Neurotansmitter
Monoamines	Dopamine (DA)
	Norepinephrine (NE)/Noradrenaline (NAd)
	Epinephrine (Epi)/Adrenaline (Ad)
	Serotonin (5-HT)
	Melatonin
	Histamine

Dopamine (DA)

- Released by two pathways that originate in the midbrain tegmentum
 - Substantia nigra -> striatum, meso-striatal projection
 - Ventral tegmental area (VTA) -> nucleus accumbens, ventral striatum, hippocampus, amygdala, cortex; meso-limbo-cortical projection

DA pathways

DA Disruption linked to

- Parkinson's Disease (mesostriatal)
 - DA agonists treat (agonists facilitate/increase transmission)
- ADHD (mesolimbocortical)
- Schizophrenia (mesolimbocortical)
 - DA antagonists treat
- Addiction (mesolimbocortical)

DA Inactivated by

Dopamine transporter (DAT)

https://doi.org/10.1016/bs.vh.2014.12.009

Chemical breakdown

Dopamine receptors

Туре	Receptor	Comments
Metabotropic	D1-like (D1 and D5)	more prevalent
	D2-like (D2, D3, D4)	target of many antipsychotics (drugs that treat schizophrenia symptoms)

Norepinephrine (NE)

- · Role in arousal, mood, eating, sexual behavior
- Released by
 - locus coeruleus in pons/caudal tegmentum

Locus coeruleus

https://upload.wikimedia.org/wikipedia/commons/6/6d/Locus-coeruleus.gif

Sympathetic Nervous System

NE and monoamine oxidase

- Monoamine oxidase (MAO) inactivates monoamines in neurons, glial cells
- Monoamine oxidase inhibitors (MAOIs) increase NE,
 DA
 - Inhibiting inactivation $\sim -(-1) = + 1$
- Treatment for depression, but side effects (dry mouth, nausea, headache, dizziness)

NE Anatomy

https://www.nrronline.org/article.asp?issn=1673-5374;year=2020;volume=15;issue=6;spage=1006;epage=1013;aulast=Bari

NE receptors

Туре	Receptor	Comments
Metabotropic	α (1,2)	antagonists treat anxiety, panic
	β (1,2,3)	'beta blockers' in cardiac disease

Serotonin (5-HT)

- Released by raphe nuclei in brainstem
- Role in mood, sleep, eating, pain, nausea, cognition, memory
- Modulates release of other NTs
- Most of body's 5-HT regulates digestion
 - Enteric nervous system

5-HT anatomy

https://en.wikipedia.org/wiki/Serotonin_pathway

(Furness, 2012)

5-HT receptors

- Seven families (5-HT 1-7) with 14 types
- All but one metabotropic

5-HT clinical significance

- Ecstasy (MDMA) disturbs serotonin
- So does LSD
- Fluoxetine (Prozac)
 - Selective Serotonin Reuptake Inhibitor (SSRI)
 - Inhibits reuptake -> increases extracellular concentration
 - Treats depression, panic, eating disorders, others

5-HT clinical significance

 5-HT3 receptor antagonists are anti-mimetics used in treating nausea

Melatonin

- Hormone released by pineal gland into bloodstream
- Concentrations vary over the day, peak near bedtime
- Release regulated by inputs from hypothalamus

http://www.vivo.colostate.edu/hbooks/pathphys/endocrine

Pineal gland

By Images are generated by Life Science Databases(LSDB). - from Anatomography, website maintained by Life Science Databases(LSDB). You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できます URL., CC BY-SA 2.1 jp, https://commons.wikimedia.org/w/index.php? curid=7855244

Histamine

- In brain, released by hypothalamus, projects to whole brain
 - Metabotropic receptors
 - Role in arousal/sleep regulation
- In body, part of immune response

Histamine

Nature Reviews | Neuroscience

https://www.nature.com/articles/nrn1034

Other NTs

- Gases
 - Nitric Oxide (NO), carbon monoxide (CO)
- Neuropeptides
 - *Substance P* and *endorphins* (endogenous morphine-like compounds) have role in pain
 - Orexin/hypocretin, project from lateral hypothalamus across brain, regulate appetite, arousal

Other NTs

- Neuropeptides (continued)
 - Cholecystokinin (CCK) stimulates digestion
 - Oxytocin and vasopressin released by posterior hypothalamus onto posterior pituitary, regulate social behavior

Non-chemical communication between neurons

- Gap junctions
- Electrical coupling
- Connect cytoplasm directly

Gap junctions

Gap junctions

- Fast, but fixed, hard to modulate
- Examples, retina, cardiac muscle

Ways to think about synaptic communication

- Specificity: point-to-point vs. broadcast
- Direct (immediate) action vs. (delayed, prolonged) modulatory
- Agonists vs. antagonists

Agonists vs. Antagonists

- Agonists
 - bind to receptor
 - mimic action of endogenous chemical
- Antagonists
 - bind to receptor
 - block/impede action of endogenous chemical

Valium is a GABA-A receptor agonist. This means:

- It decreases inhibition
- It activates a metabotropic Cl- channel
- It facilitates/increases inhibition
- It blocks an ionotropic channel

Valium is a GABA-A receptor agonist. This means:

- 1. It decreases inhibition
- 2. It activates a metabotropic Cl- channel
- 3. It facilitates/increases inhibition
- 4. It blocks an ionotropic channel

Next time...

Hormones

References

- Furness, J. B. (2012). The enteric nervous system and neurogastroenterology. *Nature Reviews. Gastroenterology & Hepatology*, *9*(5), 286–294. https://doi.org/10.1038/nrgastro.2012.32
- Małgorzata, P., Paweł, K., Iwona, M. L., Brzostek, T., & Andrzej, P. (2020). Glutamatergic dysregulation in mood disorders: Opportunities for the discovery of novel drug targets. *Expert Opinion on Therapeutic Targets*, *24*(12), 1187–1209. https://doi.org/10.1080/14728222.2020.1836160
- McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. *World Psychiatry: Official Journal of the World Psychiatric Association*, 19(1), 15–33. https://doi.org/10.1002/wps.20693