Compito del 21/2/2017

1. Si considerino i metodi di Jacobi e di Gauss-Seidel per la risoluzione del sistema lineare Ax = b con:

$$A = \left(\begin{array}{ccc} 3.0 & -2.0 & 0.0 \\ -2.0 & 4.0 & 2.0 \\ 0.0 & 2.0 & 2.0 \end{array}\right)$$

$$x_0 = (1.0, 0.0, 0.0)^T e b = (1.0, 4.0, 4.0)^T.$$

Per gli studenti fuori corso: Studiare la convergenza dei metodi iterativi.

Per gli studenti in corso: Utilizzando un codice Python, dire se quale metodo é convergente, calcolare x_k per $k = 0, 1, \dots, 10$, e valutare il residuo $||b - Ax_k||_2$ ad ogni iterazione.

[10 punti]

- 2. Determinare il polinomio di interpolazione nella forma di Lagrange che interpola la funzione $f(x) = \sin(2x)$, nei punti di ascissa 0, $\pi/4$, e $\pi/2$, e valutarlo in $x = -\pi/4$. Cosa possiamo dire, in questo ultimo caso, sull'errore di interpolazione? [4 punti]
- 3. Sia data la funzione $f(x) = x + \log(x+1)$. Dopo aver verificato le condizioni di applicabilit del metodo di Newton nell'intervallo [-0.5, 0.5], determinare:

Per gli studenti fuori corso: un'approssimazione dello zero di f, utilizzando come punto iniziale $x_0 = -0.5$, con un'errore minore di 10^{-2} e dire quante iterazioni sono necessarie per calcolare tale approssimazione.

Per gli studenti in corso: utilizzando Python, un'approssimazione dello zero di f, utilizzando come punto iniziale $x_0 = -0.5$, con un'errore minore di 10^{-8} e indicare quante iterazioni sono necessarie per calcolare tale approssimazione.

[6 punti]

4. Sia $f(x) = x \exp(-x)$. Si consideri la formula dei trapezi composita T per l'approssimazione dell'integrale:

$$I(f) = \int_0^1 f(x)dx.$$

Per gli studenti fuori corso: Calcolare T utilizzando due intervalli e confrontare il risultato con quello esatto.

Per gli studenti in corso: Utilizzando Python, stimare quanti intervalli N sono necessari per avere un errore inferiore a 10^{-4} .

[10 punti]