

TAKING MULTI-OBJECTIVE GAMES TO THE NEXT LEVEL

Willem Röpke

OVERVIEW

- ▶ What are multi-objective games?
- ► The utility-based approach
- ► Existence guarantees
- ► Algorithms
- ► What's next
- ► Q&A

Multi-objective games present a natural framework for studying *strategic* interactions between rational individuals concerned with more than one objective.

Strategic interactions between rational individuals

Game theory

Rational individuals concerned with more than one objective

Multi-objective decision making

MULTI-OBJECTIVE GAME

Multi-Objective Normal-Form Games (MONFGs) [Blackwell, 1954]

	Α	В
A	(10, 2); (10, 2)	(2, 3); (2, 3)
В	(4, 2); (4, 2)	(6, 3); (6, 3)

Multi-Objective Normal-Form Games (MONFGs)

Called **actions** or **pure strategies**A

(10, 2); (10, 2)

B

(4, 2); (4, 2)

(6, 3); (6, 3)

Multi-Objective Normal-Form Games (MONFGs)

BASICS

It's not obvious how to compare these two outcomes

Option A

(1, 2)

Option B

(2, 1)

But we can still pick our preferred option!

Option A

(1, 2)

Option B

(2, 1)

BASICS

Assume that all decision-makers have a utility function [Roijers et al., 2013]

 $u_i \colon \mathbb{R}^d \to \mathbb{R}$

BASICS

$$u_2(p_1, p_2) = p_1 + p_2$$

Α

В

A	(10, 2); (10, 2)	(2, 3); (2, 3)
В	<mark>(4, 2)</mark> ; (4, 2)	(6, 3); (6, 3)

$$u_1(p_1, p_2) = p_1 \cdot p_2$$

[Rădulescu et al., 2020]

BASICS

$$u_2(p_1, p_2) = p_1 + p_2$$

Α

В

$$u_1(p_1, p_2) = p_1 \cdot p_2$$

(10, 2); (10, 2)	(2, 3); (2, 3)
<mark>(4, 2)</mark> ; (4, 2)	(<mark>6, 3)</mark> ; (6, 3)

How and when to apply this utility function?

[Rădulescu et al., 2020]

EXAMPLE

What happens when you take the car 50% of the time and the bike 50% of the time?

EXAMPLE

$$p = (2,4)$$
Bike

$$u(p_1, p_2) = p_1 \cdot p_2$$

Expected Scalarised Returns (ESR)

EXAMPLE

$$u(p_1, p_2) = p_1 \cdot p_2$$

Bike

EXAMPLE

$$u(p_1, p_2) = p_1 \cdot p_2$$

ESR

EXAMPLE

$$u(p_1, p_2) = p_1 \cdot p_2$$

ESR

EXAMPLE

EXAMPLE

$$p = (2,4)$$
Bike

$$u(p_1, p_2) = p_1 \cdot p_2$$

Scalarised Expected Returns (SER)

EXAMPLE

$$u(p_1, p_2) = p_1 \cdot p_2$$

Bike

EXAMPLE

$$\frac{1}{2} \cdot (4,2) = (2,1)$$

$$u(p_1, p_2) = p_1 \cdot p_2$$

SER

EXAMPLE

EXAMPLE

EXAMPLE

$$u(p_1, p_2) = p_1 \cdot p_2$$

What happens when you take the car 50% of the time and the bike 50% of the time?

$$ESR = 8$$

$$SER = 9$$

NASH EQUILIBRIUM BACKGROUND

- ► Nash equilibrium
 - ▶ No agent can improve their utility by unilatteraly deviating from the joint strategy

BACKGROUND

We're looking for a joint strategy where noone has an incentive to change their strategy

BACKGROUND

We're looking for a joint strategy where noone has an incentive to change their strategy

BACKGROUND

Whatever you do in response, you will break even in expectation.

NASH EQUILIBRIUM BACKGROUND

This is also true for your opponent!

NASH EQUILIBRIUM BACKGROUND

You're playing a Nash equilibrium

BACKGROUND

► Nash equilibria

▶ No agent can improve their utility by unilatteraly deviating from the joint strategy

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)

BACKGROUND

► Nash equilibria

▶ No agent can improve their utility by unilatteraly deviating from the joint strategy

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

		Α	В
Nash equilibrium ——	A	(10, 2); (10, 2)	(0, 0); (0, 0)
$u_1(10, 2) = 10 \cdot 2 = 20$ $u_2(10, 2) = 10 \cdot 2 = 20$	В	(0, 0); (0, 0)	(2, 10); (2, 10)

BACKGROUND

- ► Nash equilibria
 - ▶ No agent can improve their utility by unilatteraly deviating from the joint strategy

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

BACKGROUND

► Nash equilibria

▶ No agent can improve their utility by unilatteraly deviating from the joint strategy

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

Nash equilibrium

A

(10, 2); (10, 2) $u_1(10, 2) = 10 \cdot 2 = 20$ $u_2(10, 2) = 10 \cdot 2 = 20$ B

(0, 0); (0, 0)

(2, 10); (2, 10)

Strictly worse to deviate to B

NASH EQUILIBRIUM BACKGROUND

- ► Nash equilibria
 - ▶ No agent can improve their utility by unilatteraly deviating from the joint strategy

Not guaranteed to exist in general!

[Rădulescu et al., 2020]

GOAL

- ► Theoretical
 - ► Relation with other games
 - ► Existence or non-existence guarantees

- ► Algorithms
 - ► Computing equilibria
 - ► (Learning equilibria)

WHAT ARE MULTI-OBJECTIVE GAMES?

A NOVEL INTUITION

	Α	В	С
A	(4, 1); (4, 1)	(1, 2); (4, 2)	(2, 1); (1, 2)
В	(3, 1); (2, 3)	(3, 2); (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	(<mark>2, 1)</mark> ; (1, 2)	(1, 3); (1, 3)

WHAT ARE MULTI-OBJECTIVE GAMES?

A NOVEL INTUITION

	Α	В	С
A	(4, 1); (4, 1)	(1, 2); (4, 2)	(2, 1); (1, 2)
В	(3, 1); (2, 3)	(3, 2); (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	<mark>(2, 1)</mark> ; (1, 2)	(1, 3); (1, 3)

It turns out we can go from this

WHAT ARE MULTI-OBJECTIVE GAMES?

A NOVEL INTUITION

To this

Every MONFG with continuous utility functions can be reduced to a continuous game

Continuous game

- Single objective
- Infinite number of pure strategies
- Reuse utility functions

	Α	В	С
A	(4, 1); (4, 1)	(1, 2); (4, 2)	(2, 1); (1, 2)
В	(3, 1); (2, 3)	(3, 2); (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	<mark>(2, 1)</mark> ; (1, 2)	(1, 3); (1, 3)

	Α	В	С
A	(4, 1); (4, 1)	(1, 2); (4, 2)	(2, 1); (1, 2)
В	(3, 1); (2, 3)	(3, 2); (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	(<mark>2, 1)</mark> ; (1, 2)	(1, 3); (1, 3)

	Α	В	С
A	(4, 1); (4, 1)	(1, 2); (4, 2)	(2, 1); (1, 2)
В	(3, 1); (2, 3)	(3, 2); (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	(<mark>2, 1)</mark> ; (1, 2)	(1, 3); (1, 3)

	Α	В	С
A	(4, 1); (4, 1)	(1, 2); (4, 2)	(2, 1); (1, 2)
В	(3, 1); (2, 3)	(3, 2); (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	<mark>(2, 1)</mark> ; (1, 2)	(1, 3); (1, 3)

WHY ARE NASH EQUILIBRIA NOT GUARANTEED?

A NOVEL INTUITION

- ► Nash equilibria are not guaranteed in MONFGs
 - ▶ They are guaranteed in single-objective NFGs, so why not here?
- ► Mixed strategy equilibria in the MONFG are pure strategy equilibria in the continuous game
- Continuous games are not guaranteed to have a pure strategy Nash equilibrium

EXISTENCE GUARANTEE

- Existence is guaranteed with (quasi)concave utility functions
 - ▶ Used in economics as well
 - ► Represents "well-behaved" preferences
- ► Intuition
 - ▶ You can reduce an MONFG to a continuous game
 - ► In this game it is known that a pure strategy Nash equilibrium exists when assuming only quasiconcave utility functions
 - ▶ This equilibrium is also an equilibrium in the original MONFG

NON-EXISTENCE

- ▶ We can show that no Nash equilibrium exists in this game
 - ▶ With **strict convex** utility functions
- Saving grace
 - ► Techniques we developped are generally useful
 - Can use it to prove counterexamples for additional possible properties
 - ► Can use it for an efficient algoritmh (future work)

	Α	В
A	(2, 0); (1, 0)	(1, 0); (0, 2)
В	(<mark>0, 1)</mark> ; (2, 0)	(0, 2); (0, 1)

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1^2 + p_2^2$$

RELATIONS BETWEEN OPTIMISATION CRITERIA

NASH EQUILIBRIA

- ▶ No relation between both optimisation criteria in general
 - ▶ No sharing of number of equilibria or equilibria themselves

	Α	В
A	(1, 0); (1, 0)	(0, 1); (0, 1)
В	(0, 1); (0, 1)	(-10, 0); (-10, 0)

Multi-objective reward vectors

	Α	В
A	0.1; 0.1	<mark>0</mark> ; 0
В	<mark>0</mark> ; 0	-0.1 ; -0.1

Scalarised utility for both agents

- ▶ **Relation** when only considering **pure strategy** equilibria
 - ▶ Pure strategy equilibrium under SER is also one under ESR
 - ▶ Bidirectional when assuming (quasi)convex utility functions

ALGORITHMIC IMPLICATIONS

- ► Algorithm for calculating *all pure strategy equilibria* in a given MONFG *with quasiconvex utility functions*
- ▶ Shown to work because of our theoretical contributions

RECENT WORK

Algorithm 1 Computing all PSNE in an MONFG

```
Input: an MONFG G = (N, \mathcal{A}, \mathbf{p}) and quasiconvex utility functions u = (u_1, \dots, u_n)
 1: function REDUCE_MONFG(monfg, u)
        N, \mathcal{A}, \boldsymbol{p} \leftarrow \text{monfg}
     u_1,\cdots,u_n\leftarrow \mathbf{u}
       f \leftarrow (u_1 \circ \boldsymbol{p}_1, \cdots, u_n \circ \boldsymbol{p}_n)
        G' \leftarrow (N, \mathcal{A}, f)
                                                                        ▶ An induced normal-form game
         return G'
 7: end function
 8: function COMPUTE_ALL_PSNE(nfg)
 9:
         S = \emptyset
         for PS in nfg do
                                                                           if PS is a PSNE then
                                                                       ▶ If it is a PSNE add it to the set
12:
                 S \leftarrow S \cup \{PS\}
13:
             end if
14:
         end for
         return S
16: end function
17: \operatorname{nfg} \leftarrow \operatorname{REDUCE\_MONFG}(G, u)
18: PSNE \leftarrow COMPUTE\_ALL\_PSNE(nfg)
```


RECENT WORK

Algorithm 1 Computing all PSNE in an MONFG

```
Input: an MONFG G = (N, \mathcal{A}, \mathbf{p}) and quasiconvex utility functions u = (u_1, \dots, u_n)
 1: function REDUCE_MONFG(monfg, u)
        N, \mathcal{A}, \boldsymbol{p} \leftarrow \text{monfg}
        u_1, \cdots, u_n \leftarrow \mathbf{u}
        f \leftarrow (u_1 \circ \boldsymbol{p}_1, \cdots, u_n \circ \boldsymbol{p}_n)
        G' \leftarrow (N, \mathcal{A}, f)
                                                                         ▶ An induced normal-form game
        return G'
 7: end function
 8: function COMPUTE_ALL_PSNE(nfg)
 9:
         S = \emptyset
         for PS in nfg do
                                                                           if PS is a PSNE then
                                                                       ▶ If it is a PSNE add it to the set
11:
12:
                 S \leftarrow S \cup \{PS\}
13:
             end if
14:
         end for
         return S
16: end function
17: \operatorname{nfg} \leftarrow \operatorname{REDUCE\_MONFG}(G, u)
18: PSNE \leftarrow COMPUTE\_ALL\_PSNE(nfg)
```

Reduce the MONFG

RECENT WORK

```
Algorithm 1 Computing all PSNE in an MONFG
```

```
Input: an MONFG G = (N, \mathcal{A}, \mathbf{p}) and quasiconvex utility functions u = (u_1, \dots, u_n)
 1: function REDUCE_MONFG(monfg, u)
        N, \mathcal{A}, \boldsymbol{p} \leftarrow \text{monfg}
        u_1, \cdots, u_n \leftarrow \mathbf{u}
        f \leftarrow (u_1 \circ \boldsymbol{p}_1, \cdots, u_n \circ \boldsymbol{p}_n)
        G' \leftarrow (N, \mathcal{A}, f)
                                                                         ▶ An induced normal-form game
        return G'
 7: end function
 8: function COMPUTE_ALL_PSNE(nfg)
         S = \emptyset
 9:
         for PS in nfg do
                                                                            if PS is a PSNE then
                                                                       ▶ If it is a PSNE add it to the set
12:
                  S \leftarrow S \cup \{PS\}
             end if
13:
         end for
14:
15:
         return S
16: end function
17: \operatorname{nfg} \leftarrow \operatorname{REDUCE\_MONFG}(G, u)
18: PSNE \leftarrow COMPUTE\_ALL\_PSNE(nfg)
```

Solve the trade-off game

- ▶ Lots of new theoretical insights
 - ▶ Relation to other games opens up a new perspective
 - ► Equilibrium existence and non-existence
 - ▶ Things are simpler when only considering pure strategies

- ► Lots of new theoretical insights
 - ▶ Relation to other games opens up a new perspective
 - ► Equilibrium existence and non-existence
 - ▶ Things are simpler when only considering pure strategies
- ► Incorporate everything into a novel algorithm

- ► Lots of new theoretical insights
 - ▶ Relation to other games opens up a new perspective
 - ► Equilibrium existence and non-existence
 - ▶ Things are simpler when only considering pure strategies
- Incorporate everything into a novel algorithm
- ► Additional guarantees for MONFGs
 - ▶ Zero-sum games
 - ► Exploit continuous game reduction

- ► Lots of new theoretical insights
 - ▶ Relation to other games opens up a new perspective
 - ► Equilibrium existence and non-existence
 - ▶ Things are simpler when only considering pure strategies
- Incorporate everything into a novel algorithm
- ► Additional guarantees for MONFGs
 - ▶ Zero-sum games
 - ► Exploit continuous game reduction
- ► More algorithmic work
 - ▶ Use theorems to find Nash equilibria efficiently

REFERENCES

- ▶ Blackwell, D. (1954). An analog of the minimax theorem for vector payoffs. *Pacific Journal of Mathematics*, 6(1), 1–8. https://doi.org/10.2140/pjm.1956.6.1
- ▶ Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential decision-making. *Journal of Artificial Intelligence Research*, 48, 67–113. https://doi.org/10.1613/jair.3987
- ▶ Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé, A. (2020). A utility-based analysis of equilibria in multi-objective normal-form games. *The Knowledge Engineering Review*, *35*, e32–e32. https://doi.org/10.1017/S0269888920000351
- ▶ Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2022). On nash equilibria in normal-form games with vectorial payoffs. *Autonomous Agents and Multi-Agent Systems*, *36*(2), 53. https://doi.org/10.1007/s10458-022-09582-6

EXAMPLE

- ► Appartment building gym
 - ▶ Treadmills
 - ► Weightlifting equipment
- ► Shared between residents
 - ▶ One athlete
 - ▶ Others are amateurs

Small appartment building gym

Amateur

EXAMPLE

- Objectives
 - ► Improve cardiovascular health
 - ► Improve strength
- Athlete plays a game against another resident
 - ▶ Select equipment
 - Selecting the same reduces effectivity

EXAMPLE

Player 1: Amateur

Maximise utility of each (occasional) workout

$$u_1(p_1, p_2) = p_1^2 + p_2$$

Player 2: Athlete

Sustain a training schedule

$$u_2(p_1, p_2) = p_1 \cdot p_2$$

SER

EXAMPLE

Cardio

Lifting

Carulo	Lifting
(4, 1); (4, 1)	(5, 1); (1, 4)
(1, 4); (5, 1)	(1, 3); (1, 3)

Lifting

The multi-objective reward vectors.

		_
Cardio	17; 4	<mark>26</mark> ; 4
ifting.	5 ; 5	4 ; 3

Cardio

The ESR utilities.

Lifting

► The ESR player will always go running

Cardia

- Dominates weightlifting
- ▶ What is the best-response for the SER player?

EXAMPLE

Cardio

Lifting

Caraio	Litting
(4, 1); (4, 1)	(5, 1); (1, 4)
(1, 4); (5, 1)	(1, 3); (1, 3)

Lifting

Cardio

Lifting

The multi-objective reward vectors.

Cardio	Lifting
17; 4	<mark>26</mark> ; 4
5 ; 5	4; 3

The ESR utilities.

- ► SER player wants to mix over cardio and lifting
 - ▶ Optimal balance
 - ► Sustainable training program

Cardio

EXAMPLE

Cardio

Lifting

	28
(4, 1); (4, 1)	(5, 1); (1, 4)
(1, 4); (5, 1)	(1, 3); (1, 3)

The multi-objective reward vectors.

Cardio	Lifting
17; 4	<mark>26</mark> ; 4
5 ; 5	4; 3

Cardio

Lifting

The ESR utilities.

 \blacktriangleright {(1 Cardio, 0 Lifting), ($\frac{1}{2}$ Cardio, $\frac{1}{2}$ Lifting)} is a Nash equilibrium!

Lifting

► ESR player plays a best response

Cardio

► SER player plays a best response

EXAMPLE

Cardio

Lifting

Carulo	Liitiig
(4, 1); (4, 1)	(5, 1); (1, 4)
(1, 4); (5, 1)	(1, 3); (1, 3)

The multi-objective reward vectors.

Cardio	Lifting
17; 4	<mark>26</mark> ; 4
5 ; 5	4; 3

The ESR utilities.

▶ What happens when we dismiss SER?

Cardio

► Athlete has a Nash equilibrium at (Cardio, Cardio) or (Cardio, Lifting)

Lifting

Cardio

Lifting

► Clearly suboptimal

EXAMPLE

Cardio

Lifting

	28
(4, 1); (4, 1)	(5, 1); (1, 4)
(1, 4); (5, 1)	(1, 3); (1, 3)

Lifting

Cardio

Lifting

The multi-objective reward vectors.

Cardio	Litting
17; 4	<mark>26</mark> ; 4
5; 5	4 ; 3

1:ft:---

The ESR utilities.

Even stronger

- ▶ The best *overall* utility that the athlete can aspire to under ESR
 - (Lifting, Cardio) = 5

Cardio

- ► Simply playing the Nash equilibrium under SER
 - {(1 Cardio, 0 Lifting), $(\frac{1}{2}$ Cardio, $\frac{1}{2}$ Lifting)} = 6.25

