Real Analysis: Homework 1

1. (a) \mathbb{R} is second-countable by considering the countable basis

$$\mathcal{B} := \{ (r - \epsilon, r + \epsilon) | r \in \mathbb{Q}, \text{ for any arbitrary } \epsilon > 0 \}$$

We now claim that $\mathcal{B}^n = \{U_1 \times \ldots \times U_n | \text{ each } U_i \in \mathcal{B} \text{ for } i = 1, \ldots, n\}$ is a countable basis for \mathbb{R}^n . It is clear that \mathcal{B}^n is countable as the Cartesian product of countable sets is still countable. To show \mathcal{B}^n is a basis for \mathbb{R}^n :

- (1) Pick $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and consider the projection map $\pi_i : \mathbb{R}^n \to \mathbb{R}$, $(x_1, \dots, x_n) \mapsto x_i$. Thus for each $\pi_i(x) = x_i$ we can find $B_i \in \mathcal{B}$ such that $x_i \in B_i$. Thus $B_1 \times \dots \times B_n$ is the basis element in \mathcal{B}^n containing x.
- (2) Let x belong to the intersection of two basis elements $U = B_1 \times \ldots \times B_n$, $U' = B'_1 \times \ldots \times B'_n$. Using the projection map, $\pi_i(U) = B_i$, $\pi_i(U') = B'_i$ and thus there is a basis element $A_i \subseteq B_i \cap B'_i$ for some $A_i \in \mathcal{B}$. Thus $A = A_i \times \ldots \times A_n$ is the basis element in \mathcal{B}^n such that $A \subseteq U \cap U'$.

Thus we have shown that \mathcal{B}^n is a countable basis for \mathbb{R}^n .

- (b) Let U be an open set of \mathbb{R} . If U is a union of countably many open sets we can simply pick the disjoint open intervals from that union and we are done. Suppose U is an uncountable union of open sets, and without loss of generality assume that they are disjoint, $U = \sqcup_{\alpha \in A} V_{\alpha}$ for uncountable A, then since \mathbb{R} is second-countable, there exists a countable basis \mathcal{B} for \mathbb{R} . For each $x \in V_{\alpha}$, there exists $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq V_{\alpha}$. Taking the $\bigcup_{x \in V_{\alpha}} B_x$ for all $\alpha \in A$, we claim that this set is at most countable and is a disjoint set of open intervals. It is open since it is a union of $B \in \mathcal{B}$. For $\alpha_1, \alpha_2 \in A$ with $\alpha_1 \neq \alpha_2, \bigcup_{x \in V_{\alpha_i}} B_x \subseteq V_{\alpha_i}$, thus $(\bigcup_{x \in V_{\alpha_1}} B_x) \cap (\bigcup_{x \in V_{\alpha_2}} B_x)$ are disjoint since $V_{\alpha} \cap V_{\alpha'} = \emptyset$.
- 2. Let $f:(X,\tau_X)\to (Y,\tau_Y)$ be a continuous function. Let (X,τ_X') be a finer topology than (X,τ_X) then $\tau_X'\supseteq \tau_X$. Thus for any $U\in \tau_Y$, $f^{-1}(U)\in \tau_X\subseteq \tau_X'$. Thus $f^{-1}(U)\in \tau_X'$ and $f:(X,\tau_X')\to (Y,\tau_Y)$ remains continuous. Let (Y,τ_Y') is a topology coarser than (Y,τ_Y) and so $\tau_Y\supseteq \tau_Y'$. Hence for $U\in \tau_Y'\subseteq \tau_Y$, we have $f^{-1}(U)\in \tau_X$. Thus $f:(X,\tau_X)\to (Y,\tau_Y')$ remains continuous.
- 3. We shall show that $\int_{\mathbb{R}} e^{-x^2/2} dx = \sqrt{2\pi}$. Start by considering its square,

$$\left(\int_{\mathbb{R}} e^{-x^2/2} dx\right)^2 = \left(\int_{\mathbb{R}} e^{-x^2/2} dx\right) \left(\int_{\mathbb{R}} e^{-y^2/2} dy\right)$$

$$= \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2}} dy dx$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-r^2/2} r dr d\theta \quad \text{by polar change of coordinates.}$$

$$= 2\pi \int_0^{\infty} e^{-r^2/2} r dr$$

$$= 2\pi \int_0^{\infty} \frac{1}{2} e^{-s/2} ds \quad \text{change of coordinates, } s = r^2$$

$$= \pi \left[-2e^{-s/2} \right]_0^{\infty} = 2\pi$$

which shows what is required and hence $\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-x^2/2} dx = 1$.

4. Let $x_n > 0$ for all n and $x_n \to a$ with a > 0. Then

$$\log\left((x_1 x_2^2 \dots x_n^n)^{\frac{1}{n^2}}\right) = \sum_{i=1}^n \frac{i}{n^2} \log x_i$$

5. By Mean Value Theorem, there is some $c \in (0,1)$ such that

$$\int_0^1 f(x) \, dx = f'(c)$$