Задание 1

Вывести выражение для энергии гармонического осциллятора. Вывести значение для коэффициента прозрачности для ступенчатого потенциального барьера.

Решение:

Гармоническим осциллятором называется система, способная совершать гармонические колебания. В физике модель гармонического осциллятора играет важную роль особенно при исследовании малых колебаний систем около положения устойчивого равновесия.

Выведем выражение для энергии гармонического осциллятора.

Для решения задачи о гармоническом осцилляторе в квантовой механике надо решить уравнение Шредингера, которое выглядит как:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}kx^2\psi = \mathcal{E}\psi$$
, где $-\infty < x < +\infty$.

Мы введем величины:
$$\lambda = \frac{2\mathcal{E}}{\hbar\omega}$$
, $\mathcal{E} = x\sqrt{\frac{k}{\hbar\omega}}$

Подставив значения в выражение выше, мы получим:

$$-\frac{d^2\psi}{d\mathcal{E}} + \mathcal{E}^2\psi = \lambda\psi$$

Исходя из полученного результата знаем, что при определенном значении λ это уравнение имеет решение $\psi = e^{a \varepsilon^2}$ (а – постоянная; будет определена вместе со значением λ).

$$\frac{d\psi}{d\varepsilon} = 2a\varepsilon e^{a\varepsilon^2} = 2a\varepsilon\psi = \frac{d^2\psi}{d\varepsilon} = 2a\psi + 2a\varepsilon\frac{d\psi}{d\varepsilon} = (4a^2\varepsilon + 2a)\psi.$$

Если мы совместим оба полученных выражения, мы получим:

$$(1 - 4a^2)\mathcal{E}^2 - 2a = \lambda$$

Данное соотношение должно выполняться тождественно по \mathcal{E} . Это возможно только в том случае, если $1-4a^2=0$, $\lambda=-2a$ (a=+-1/2).

Выражение со знаком плюс мы отбрасываем из-за того, что функция $\psi = e^{a \mathcal{E}^2}$ обратиться в бесконечность при $\mathcal{E} = \pm \infty$.

Наше решение:
$$\psi = e^{-\frac{\mathcal{E}^2}{2}}$$
 при $\lambda = 1$.

Такое решение не имеет узлов, соответственно, описывает основное состояние гармонического осциллятора. Его нулевая энергия $\mathcal{E}_0 = \frac{\lambda}{2}\hbar\omega = \frac{\hbar\omega}{2}$.

В стационарном состоянии с энергией \mathcal{E}_n функция ψ должна иметь n узлов. Подобное число узлов имеет функция $\psi = P_n(\mathcal{E})e^{-\frac{\mathcal{E}^2}{2}}$.

В данной функции $P_n(\mathcal{E})$ - полином n-ой степени с некратными вещественными корнями.

При избранных значениях параметра λ функция является решением нашего уравнения и обращается в ноль на бесконечности — соответственно она и будет волновой функцией осциллятора.

Продифференцируем ее дважды и подставим $\frac{d^2\psi}{dx^2}$ в уравнение $(1-4a^2)\mathcal{E}^2-2a=\lambda$:

$$-P_n''(\mathcal{E}) + 2\mathcal{E}P_n'(\mathcal{E}) + P_n(\mathcal{E}) = \lambda P_n(\mathcal{E})$$

Данное соотношение должно выполняться тождественно по \mathcal{E} , а степень $P_n''(\mathcal{E})$ будет равна n-2 при (n>=2).

Теперь, когда нам надо определить λ , нам достаточно сравнить коэффициенты при старших членах подчеркнутых полиномов:

Если коэффициент при \mathcal{E}^n в $P_n(\mathcal{E})$ равен a_n , то тогда в $2\mathcal{E}P_n'(\mathcal{E})$ соответствующий коэффициент равен $2na_n$ (нужно, чтобы соотношение $2n+1=\lambda$ ввыполнялось):

$$-P_n''(\mathcal{E}) + 2\mathcal{E}P_n'(\mathcal{E}) = 2nP_n(\mathcal{E})$$

Полиномы, являющиеся решениями этого уравнения, называют полиномами Чебышева-Эрмита, а корни таких полиномов вещественные и некратные.

Для получения энергетических уровней осциллятора подставляем $\lambda = 2n + 1$:

$$\mathcal{E}_n = \hbar\omega \left(n + \frac{1}{2}\right) \ (n = 0,1,2,...).$$

Выведем значение для коэффициента прозрачности для ступенчатого потенциального барьера.

Рассмотрим движение частицы в силовом поле, в котором ее потенциальная энергия U(x) имеет вид:

$$U(x) = \begin{cases} 0, x < 0 \\ U_0, x > 0 \end{cases}$$

В этом случае говорят, что частица находится в области потенциального барьера. На границе барьера (при ${\bf x}=0$) потенциальная энергия частицы скачком меняется на конечную величину U_0

Вернемся уже к известному нами уравнению Шредингера и запишем его:

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0$$
, $(k^2 = \frac{2m}{\hbar^2}(\mathcal{E} - U))$

U имеет постоянные, но разные U_1 , U_2 по разные стороны границы барьера. Соответствующие значения k обозначаются k_1 , k_2 .

Предположим, что вместо потока частиц в первой области к границе барьера распространяется плоская монохроматическая волна: $\psi_1 = e^{i(k_1 x - \omega t)}$.

Для того, что условия границ удовлетворялись для ψ и $\frac{d\psi}{dx}$ на границе барьера в первой области должна существовать отраженная волна: $\psi_1' = re^{i(k_1x+\omega t)}$ и для второй области $\psi_2' = re^{i(k_2x+\omega t)}$.

Возьмем амплитуду за единицу. Нам нужно определить r,d. Для этого функция ψ и ее производная по x на границе барьера должны быть непрерывны.

Следовательно, для этого нам надо выполнения данного отношения при x = 0:

$$(\psi + \psi_1') = \psi_2$$
, $\frac{d}{dx}(\psi_1 + \psi_1') = \frac{d\psi_2}{dx} = 1 + r = d$, $k_1 - k_1 r = k_2 d$.

Найдем r и d:

$$r = \frac{\mathbf{k}_1 - \mathbf{k}_2}{\mathbf{k}_1 + \mathbf{k}_2}, \quad \mathbf{d} = \frac{2\mathbf{k}_1}{\mathbf{k}_1 + \mathbf{k}_2}$$

При $\mathcal{E} > U_2$ – все три волны будут падающая, отраженная, прошедшая – однородные.

Чтобы лучше понять значение слова однородность в данном контексте введем понятие плотности вероятности потока вещества: можно сказать, что скорость распространения вероятности при таких характеристиках: $v = \frac{p}{m} = \frac{\hbar k}{m}$.

Плотность вероятности потока массы вещества:

$$mv\psi * \psi = \hbar k\psi * \psi$$
.

Для падающей волны эта величина будет равна: $\hbar k_1 \psi_1 * \psi_1 = \hbar k_1$.

Тогда плотность вероятности потока вещества отраженной равно $|d|^2\hbar k_2$.

В таком случае коэффициент прозрачности ступенчатого барьера будет равен:

$$D = \frac{k_2}{k_1} |d|^2 = \frac{4k_1 k_2}{(k_1 + k_2)^2}$$

Если $\mathcal{E} < U_2$, то формула будет правильно и работающей, но k_2 — мнимоя, поэтому во второй области станет неоднородной.

<u>(Источник</u> 1)

(Источник 2)

(Источник 3)

(Источник 4)

Задание 2

Приведите примеры использования туннельного эффекта.

Решение:

Туннельный эффект или туннелирование — преодоление микрочастицей потенциального барьера в случае, когда ее полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера.

Явление Туннельного эффекта лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твердого тела и т.д.

Ниже приведены некоторые из примеров использования туннельного эффекта:

- 1. В атомной физике проявления Туннельного эффекта могут служить процессы автоионизации атома в сильном электрическом поле. В последнее время особенно большое внимание привлекает процесс ионизации атома в поле сильной электромагнитной волны.
- 2. В ядерной физике Туннельный эффект лежит в основе понимания закономерностей альфа-распада радиоактивных ядер. В результате совместного действия короткодействующих ядерных сил притяжения и электростатических сил отталкивания, а-частице при ее выходе из ядра приходится преодолевать трехмерный потенциальный барьер описанного выше типа.
- 3. Автоэлектронная эмиссия электронов из метталов и полупроводников. **Туннельная эмиссия** (автоэлектронная, холодная, электростатическая, полевая), испускание электронов твёрдыми и жидкими проводниками под действием внешнего электрического поля E высокой напряжённости ($E \sim 10^7 \ \text{в/см}$).
- 4. **Туннельный диод** двухэлектродный электронный прибор на основе полупроводникового кристалла, в котором имеется очень узкий потенциальный барьер. Вид вольтамперной характеристики туннельного диода определяется главным образом квантово-механическим процессом туннелирования, благодаря которому электроны проникают сквозь барьер из одной разрешенной области энергии в другую.
- 5. Джозефсона эффект протекание сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника (так называемый контакт Джозефсона); предсказан на основе теории сверхпроводимости английским физиком Б. Джозефсоном в 1962, обнаружен американскими физиками П. Андерсоном и Дж. Роуэллом в 1963. Электроны проводимости проходят через диэлектрик (обычно плёнку окиси металла толщиной ~ 10 А) благодаря туннельному эффекту.

(Источник)

Задание 3

By how much does the tunneling current through the tip of an STM change if the tip rises 0.020 nm from some initial height above a sodium surface with a work function $W_0 = 2.28 \text{ eV}$?

Решение:

Пусть ширина вакуумного зазора будет d. Тогда изменение ширины данного вакуумного зазора равна: $\Delta d = 0.02 * 10^{-9}$ м.

Так как мы знаем, что $W_0 = 2.28.\,eV$, тогда зависимость туннельного тока через вакуумный зазор d будет равна:

$$I\approx e^{-A}\sqrt{W_0d}$$

В данной зависимости $A=\sqrt{\frac{8M}{h^2}=1.025}$ э $B^{1/2}*A^{-1}$, где M – масса данной частицы.

Рассмотрим случаи, когда:

- 1. При начальной ширине зазора d_0 : $I_0 \approx e^{-A\sqrt{W_0} \; d_0}$
- 2. При измененной ширине зазора: $I \approx e^{-A} \sqrt{W_0} (d_0 + \Delta d) = e^{-A \sqrt{W_0} d_0} * e^{-A \sqrt{W_0} \Delta d}$

Тогда, если мы рассмотрим изменение туннельного тока, то получим:

$$\frac{I}{I_0} = e^{-A\sqrt{W_0}\Delta d} = e^{(-1.025*\sqrt{2.28}*0.02*10^{-9})} = e^{\frac{1}{\frac{41\sqrt{57}}{10^{13}}}} \approx 1$$

Ответ: ≈ 1

(<u>Источник</u>) стр. 171-172