Лабораторная работа № 8

Системы контроля версий

Цель работы

- 1. Изучить на практике понятия и компоненты систем контроля версий (СКВ), приемы работы с ними.
- 2. Освоить специализированное ПО и распространенный сервис для работы с распределенной СКВ Git TortoiseGit и GitHub.com.

Введение

Контроль версий подразумевает под собой комплекс методов, направленных на систематизацию изменений, вносимых разработчиками в программный продукт в процессе его разработки и сопровождения, сохранение целостности системы после изменений, предотвращение нежелательных и непредсказуемых эффектов. Также использование систем контроля версий позволяет сделать процесс внесения изменений более формальным.

Система управления версиями гарантирует, что каждый автор всегда работает с самой последней версией файла, а также исключает возможность случайной перезаписи любым из авторов работы своих коллег.

Общие указания к выполнению лабораторной работы

- 1. Система контроля версий Git представляет собой набор программ командной строки. Доступ к ним можно получить из терминала (в *nix) или из специальной консольной оболочки Git Bash . Однако, лабораторная работа ориентирована на применение графической надстройки TortoiseGit (аналог в Linux RabbitVCS). TortoiseGit работает не как отдельная программа, а встраивается в контекстные меню «Проводника» Windows. Вместе с Git для Windows поставляется также программа gitk (Git GUI) она гораздо менее популярна и пользоваться ей для ЛР не следует.
- 2. С теоретическим материалом можно ознакомиться по следующим ссылкам:

 https://git-scm.com/book/ru/v2/%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BE%D0%B2%D1%8B-Git
- 3. Задания необходимо читать внимательно и полностью. Благодаря тому, что Git является распределенной СКВ, резервную копию локального хранилища можно сделать простым копированием или архивацией.
- 4. В отчет можно включать снимки экрана, сообщения и комментарии по своему усмотрению с тем, чтобы было удобно пояснять сделанное, опираясь на отчет.

Задание на лабораторную работу

- 1. Отработать навыки использования хранилища на локальной машине.
 - 1.1. Настроить Git, указав имя и e-mail разработчика для подписи commit-ов.

Vказание. Диалог настроек вызывается пунктом $TorotiseGit \rightarrow Settings$ контекстного меню любого каталога, нужная вкладка называется «Git». Задавать следует глобальные настройки (для всех хранилищ), установив переключатель «Global».

GIT/S

- 1.2. Создать хранилище для учебного проекта.
- 1.3. Совершить несколько commit-ов.
 - 1.3.1. Скопировать sdt.h в каталог хранилища и создать файл main.cpp со включением sdt.h и пустой функцией main().
 - 1.3.2. Добавить в программу ввод двух целых чисел с приглашением.

Указание № 1. После выполнения каждого подпункта необходимо убеждаться, что программа работает, и совершать commit изменений.

Указание № 2. Следите за тем, какие файлы отмечены в списке для commitа изменений в них, — кроме main.cpp и, иногда, sdt.h, больше никаких других не нужно.

1.4. Предотвратить автоматическое добавление в хранилище файлов, не нуждающихся в контроле версий, — *.o и *.exe.

Правило об игнорировании следует помещать в файл .gitignore в корневом каталоге хранилища («.gitignore in repository root»). Этот файл также попадает под контроль версий, поэтому после создания правил требуется совершить commit изменений в файле .gitignore.

- 1.5. Добавить в программу вывод суммы введенных чисел и совершить commit.
- 1.6. Просмотреть историю (журнал) хранилища.
- 1.7. Просмотреть разность (diff) между пунктами истории 1.3.2 и 1.5.
- 2. Освоить передачу истории хранилища по сети. 👀
 - 2.1.Организовать общее хранилище на удаленном сервере.
 - 2.1.1. Зарегистрироваться на <u>GitHub.</u>
 - 2.1.2. Создать пустое удаленное хранилище с любым наименованием.

 $\it Указание.$ Вопреки инструкции на GitHub, добавлять в хранилище файл README . $\it md$ не нужно, удаленное хранилище должно быть пустым.

2.1.3. Разрешить пользователям-преподавателям совершать commit-ы.

Требуется на странице хранилища выбрать «Settings» (справа), далее «Collaborators», где ввести имена пользователей, которым будет предоставлен полный доступ к хранилищу (эти имена можно узнать у лаборантов).

2.1.4. Настроить локальное хранилище для синхронизации с удаленным.

- 2.2. Передать локальное хранилище на удаленный сервер (push).
 Замечание. Здесь и далее при взаимодействии с удаленным сервером потребуется вводить имя пользователя и пароль, с которыми выполнялась регистрация на GitHub.
- 2.3. Перейти к странице хранилища на GitHub (обновить её) и ознакомиться с возможностями просмотра содержимого через web-интерфейс.
- 2.4. Загрузить копию удаленного хранилища на локальную машину (clone).
 Замечание. Целью является имитация совместной работы с удаленным хранилищем. Для этого на одной машине организуются 2 локальных хранилища: созданное в пункте 1.1 (RepoA) и загруженное с удаленного сервера (RepoB).

Vказание. Диалог «Git clone» следует вызывать из контекстного меню каталога вне локального хранилища. В качестве URL потребуется указать адрес удаленного хранилища, а в качестве Directory — имя каталога для нового локального хранилища.

- 2.5. Сымитировать параллельную работу над проектом.
 - 2.5.1. В локальном хранилище RepoB добавить в программу печать разности введенных чисел, сделать commit и передать изменения на сервер.
 - 2.5.2. В локальном хранилище RepoA добавить над функцией main() комментарий о том, что программа является учебной, сделать commit, но не отправлять изменений на сервер.
- 2.6. На странице хранилища на GitHub перейти в раздел *Commits* и ознакомиться с возможностью просмотра истории изменений через web-интерфейс.
- 2.7. В локальном хранилище RepoA выполнить загрузку с сервера новейших ветвлений и изменений (fetch) и просмотреть журнал хранилища.

 Указание. По умолчанию показывается только текущая активная ветвь (по умолчанию master). Просмотреть все commit-ы во всех ветвях, в том числе в загруженной из удаленного хранилища ветви origin/master, нужно включить флажок «All branches» слева снизу окна журнала.
- 2.8. Совместить изменения в локальном хранилище с загруженными.
 - 2.8.1. Использовать действие pull для загрузки изменений с удаленного сервера и автоматического совмещения их с имеющимися локально. Просмотреть журнал изменений (или обновить кнопкой *Refresh*).

Примечание. Фактически, при обновлении производится слияние ветвей master

и origin/master — то есть, двух версий истории, существовавших удаленно и локально. При этом история стала нелинейной и появился лишний commit слияния. Иногда такое усложнение имеет смысл, но в данном случае было бы желательно сохранить историю линейной и просто перенести локальные наработки вслед за новейшими. Добьемся желаемого.

2.8.2. Отменить неудобный результат действия pull.

Указание. В журнале изменений в контекстном меню commit-a, где был добавлен комментарий (то есть, последнего перед слиянием), выбрать «Reset master to this…» и указать тип отмены «Hard».

Указание. Журнал изменений не всегда обновляется автоматически, используйте кнопку *Refresh*, если изменения не появились сразу.

2.8.3.Выполнить перенос (rebase) локальных изменений на основу новейшего загруженного состояния проекта.

Указание. В журнале изменений в контекстном меню пункта, на котором находится конец ветви origin/master (прямоугольник в TortoiseGit), следует выбрать пункт «Rebase "master" onto this...» и далее нажать кнопку «Start rebase». ❖

- 2.9. Передать итоговое состояние локального хранилища RepoA на удаленный сервер, используя команду push.
- 2.10. Действуя аналогично п. п. 2.7 и 2.8.3, синхронизировать с удаленным локальное хранилище RepoB (в нем не хватает commit-a с комментарием).

Замечание. На данном этапе во всех трех хранилищах (локальных RepoA и RepoB и удаленном на GitHub) должна быть одинаковая линейная история из пяти — шести commit-ов.

3. Изучить действия, связанные с ветвлениями и разрешением конфликтов. *Замечание*. Все действия выполняются в одном локальном хранилище, например, в RepoA.

3.1. Добавить в программу печать произведения чисел и совершите commit.

На данном этапе программа может быть такой:

```
#include "sdt.h"

// This program is just an example one under VCS.

int main()

f

int a, b;

cout << "Enter A and B: ";

cin >> a >> b;

cout << "A + B = " << a + b << '\n'

<< "A - B = " << a * b << '\n';

"A * B = " << a * b << '\n';

"A * B = " << a * b << '\n';

"A * B = " << a * b << '\n';
</pre>
```

- 3.2. Создать новую ветвь (branch) под названием division. из пункта истории, в котором был добавлен комментарий над main ().
- 3.3. В новой ветви повторить пункт 3.1, заменив умножение делением.

2

Указание. Переключиться на ветвь можно, выбрав в контекстном меню commit-a, которым эта ветвь оканчивается, пункт «Switch/checkout to this». При создании ветви можно сразу установить флажок «Switch to new branch». Переключаться можно только при чистом (clean) хранилище, то есть, без изменений в рабочей копии.

- 3.4. Переключиться обратно на ветвы master.
- 3.5. Выполнить слияние ветви division в ветвь master так, чтобы в последней оказался код для печати и произведения, и частного.
 - 3.5.1. В журнале изменений в контекстном меню пункта-окончания ветви division выбрать пункт «Merge into "master"...» и начать слияние, не меняя настроек.

Действие завершится ошибкой из-за конфликта (conflict): в файле main.cpp строка 10 изменена в обоих commit-ах одинаково, а строка 11 — по-разному, и СКВ не может автоматически выбрать «правильный» вариант. Требуется вручную указать, какие строки должны войти в итоговую версию файла.

3.5.2. Приступить к разрешению конфликта.

 $\mathit{Указаниe}$. Следует нажать кнопку $\mathit{Resolve}$ (снизу), а затем выбрав пункт Edit $\mathit{conflicts}$ из контекстного меню main.cpp.

Примечание. Редактор конфликтов похож на программу для просмотра разностей между файлами: слева показывается файл в ветви, откуда делается слияние (division), справа — ветви, куда делается слияние (master), снизу — результат слияния. Знаками равенства в соседних верхних полях отмечаются не только строки, оставшиеся неизменными, но и строки с одинаковыми изменениями: здесь, в строке 10 убрана точка с запятой в конце в обеих ветвях. В нижнем поле каждый восклицательный знак обозначает отдельный конфликт. Примерный вид окна редактирования конфликтов представлен на рисунке ниже.

```
Theirs - REMOTE
                                                                                        Mine - LOCAL
                                                                   1 #include ."sdt.h"←
   1 #include . "sdt.h" <
   3 // This program is just an example one under VCS.
                                                                   3 // This program is just an example one under VCS.
                                                                   5 14
                                                                   6 ····int·a, ·b; ←
     ····int·a.·b:
    ....cout << . "Enter A and B: ";
                                                                     ····cout·<<·"Enter·A·and·B:·";
    ----cin-->>-a->>-b;
                                                                   8 ····cin··>>·a·>>·b; ←
     ****cout << -"A++B==""<< -a++b-<< -'\n'
                                                                   9 ....cout -<< -"A-+-B-=-" -<< -a -+ -b -<< -'\n'
=10
                                                                 =10
411
                                                                            ---<<-"A-*-B-=-"-<<-a-*-b-<<-'\n';
 12 }←
                                                                  12 }←
                                                     Merged - main.cpp
   1 #include . "sdt.h"
   3 // •This •program •is •just •an •example •one •under •VCS. ↓
   4 int -main() <
   6 ....int.a, b;
     ....cout << - "Enter - A - and - B: - ";
    ۰۰۰-cin۰->>-a->>-b;
     ****cout << ."A ++ B = . " . << .a ++ .b . << . '\n' <
```

3.5.3. Разрешить конфликты:

- в качестве строки 10 предпочесть строку 10 любой ветви;
- на место строки 11 вставить 2 строки: строку с печатью произведения и строку с печатью частного;
- лишнюю точку с запятой на строке 11 поля-результата удалить.

Указание. Переносить строки из той или иной версии в итоговую можно, выбирая конфликтные блоки в левом или правом верхнем поле (простым щелчком левой кнопкой мыши) и пользуясь контекстным меню. Например, «Use this text block» переносит выбранный блок в поле-результат; пункт «Use text block from 'mine' before 'theirs'» переносит в результат 2 строки: сначала из правого блока, потом из левого (одну под другой). На рисунке ниже показан возможный верный результат.

3.5.4. Завершить процедуру разрешения конфликтов.

Указание. Следует нажать на кнопку «Mark as resolved», чтобы отметить файл как избавленный от конфликтов, и закрыть программу для их разрешения.

- 3.5.5. Завершить слияние ветви division в ветвь master, написав осмысленный комментарий к слиянию и совершив commit.
- 3.5.6. Убедиться, что программа компилируется и верно работает. Если это не так, исправить все ошибки и добиться правильной работы. Совершить commit.

Замечание-указание. Ситуация, когда после слияния программа все-таки оказывается не вполне корректной, случается на практике довольно часто. В этом случае commit, созданный при слиянии, оказывается логически неправильным, он не имеет ценности без последующего исправления. В Git имеется возможность

изменить (amend) уже совершенный commit, пока он не передан на сервер. Это делается при следующем commit-исправлении: следует установить флажок «Amend Last Commit» в диалоге commit — нового commit не появится, а вместо этого изменения будут приписаны предыдущему пункту истории. Можно воспользоваться данной возможностью при выполнении пункта.

3.5.7. Передать все изменения всех ветвей в удаленное хранилище.

 $\it V$ казание. По умолчанию передаются только изменения текущей ветви, для передачи изменений всех ветвей следует отметить флажок «Push all branches» диалога push.

Замечание. В данном задании отрабатывается навык слияния ветвей, существующих только в локальном хранилище и вступивших в конфликт с ведома единственного автора. Постоянно возникают и ситуации, когда одну и ту же ветвь, но в локальном и удаленном хранилище независимо изменяют разные авторы. В этом случае действия push и rebase приведут к конфликтам. Их разрешение выполняется совершенно аналогично.

Контрольные вопросы и задания

- 1. Что такое системы контроля версий (СКВ) и для решения каких задач они предназначаются?
- 2. Объясните следующие понятия СКВ и их отношения: хранилище, commit, история, рабочая копия.
- 3. Что представляют собой и чем отличаются централизованные и децентрализованные СКВ? Приведите примеры СКВ каждого вида.
- 4. Опишите действия с СКВ при единоличной работе с хранилищем.
- 5. Опишите порядок работы с общим хранилищем в централизованной СКВ.
- 6. Что такое и зачем может быть нужна разность (diff)?
- 7. Что такое и зачем может быть нужно слияние (merge)?
- 8. Что такое конфликты (conflict) и каков процесс их разрешения (resolve)?
- 9. Поясните процесс синхронизации с общим хранилищем («обновления») в децентрализованной СКВ.
- 10. Что такое и зачем могут быть нужны ветви (branches)?
- 11. Объясните смысл действия rebase в СКВ Git.
- 12. Как и зачем можно игнорировать некоторые файлы при commit?