

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level in Statistics S2 (WST02) Paper 01

Question		Scheme	Marks	
Number	V = foulta		11101110	
1 (a)	$X = \text{faults in a week} \implies X \sim \text{Po}(6)$ $[P(X \geqslant x) = 0.1528 \implies P(X \leqslant x - 1)] = 0.8472$			
	_ `	, , , , , , , , , , , , , , , , , , , ,	M1	
		les $P(X \le 8) = 0.8472 \Rightarrow x - 1 = 8$	M1	
	x = 9		A1 (2)	
(b)	Y = faults	in six weeks $\Rightarrow Y \sim N(36,36)$	(3) B1	
		$(2) = P\left(Z < \frac{31.5 - 36}{6}\right) \left[= P\left(Z < -0.75\right)\right]$	M1 M1	
	= 0.2266	awrt 0.227	A1	
			(4)	
(c)	W = Num	ber of <i>poor weeks</i> \Rightarrow <i>W</i> ~ B(50,0.1528)	B1	
	[P(W > 1)]	$1)] = 1 - P(W \leqslant 1)$	M1	
	=1-(0.8)	$3472^{50} + 50 \times 0.1528 \times 0.8472^{49}$	dM1	
	= 0.99748	3 awrt 0.997	A1	
			(4)	
		Notes	Total 11	
1 (a)	M1	Writing or using $1 - P(X \le x - 1)$		
	M1	For 0.8472 May be implied by $x - 1 = 8$		
	A1	x = 9		
(b)	B1	Writing or using N(36,36) (May be implied by a correct standardisation expression		
	M1	Standardising with $30.5/31/31.5/32/32.5/39.5/40/40.5/41/41.5$, their mean and standard deviation (Allow \pm)		
	M1	A fully correct standardisation. May be implied by ± 0.75		
	A 4	awrt 0.227		
	A1			
(c)	B1	Writing or using B(50, 0.1528)		
(c)		Writing or using B(50, 0.1528) Writing or using $1 - P(W \le 1)$ (Allow any letter)		
(c)	B1	Writing or using B(50,0.1528) Writing or using $1 - P(W \le 1)$ (Allow any letter) Dependent on using binomial.		
(c)	B1	Writing or using B(50,0.1528) Writing or using $1 - P(W \le 1)$ (Allow any letter) Dependent on using binomial.	0257)	
(c)	B1	Writing or using B(50, 0.1528) Writing or using $1 - P(W \le 1)$ (Allow any letter)		
(c)	B1 M1	Writing or using B(50,0.1528) Writing or using $1 - P(W \le 1)$ (Allow any letter) Dependent on using binomial. Using $1 - [P(W = 0) + P(W = 1)]$ (implied by awrt 0.997 or 0.9975 or 1 – awrt 0.00)		

Question Number	Scheme Marks					
2 (a)	$f(x) = \begin{cases} $	$f(x) = \begin{cases} \frac{1}{4k} & -k \le x \le 3k \\ 0 & \text{otherwise} \end{cases}$				
			(2)			
(b)	$[\mathrm{E}(X)] =$	k	B1			
			(1)			
(c)	[Var(X)]	$] = \frac{(3k - k)^2}{12} = \frac{16k^2}{12} \text{or} \left[\frac{x^3}{3} \text{ "f}(x) \right]_{-k}^{3k} - (\text{"}k\text{"})^2$	M1			
	$=\frac{4k^2}{3}*$		A1* cso			
			(2)			
(d)	$\mathrm{E}(X^2) =$	$Var(X) + E(X)^2 = \frac{4k^2}{3} + ("k")^2$	M1			
	$=\frac{7k^2}{3}$		A1			
	$E(3X^2) = 3E(X^2) = 3 \times \frac{7k^2}{3} = 7k^2$ A1					
			(3)			
		Notes	Total 8			
2 (a)	M1	For the 1st line of the pdf including the inequality, allow use of < instead of one/both	$h \leq signs$			
	A1	Fully correct, allow use of \leq instead of one/both \leq signs. Allow equivalent for the	otherwise.			
(b)	B1	Cao				
(c)	M1	M1 Use of Var(X) = $\frac{(\beta - \alpha)^2}{12}$ or $\left[\frac{x^3}{3} \text{ "f}(x)\right]_{-k}^{3k} - (\text{"}k\text{"})^2$				
	A1* cso	Answer is given. Correct solution only with no incorrect working.				
(d)	Use of $E(X^2) = Var(X) + E(X)^2$ ft their $E(X)$ or $\left[\frac{x^3}{3} \text{ "f}(x)\text{"}\right]^{3k}$ this integration may be seen in part (c) or part (d)					
	A1	$\frac{7k^2}{3}$ (This must be seen in part (d)) May be implied by $7k^2$)				

Question Number		Scheme	Marks		
3 (a)	We can a	ssume breakdowns are [rare], independent events occurring at a constant rate.	B1		
3 (u)	We can a	issume oreakdowns are [rare], independent events occurring at a constant rate.	(1)		
(b)	$H_0: \lambda =$	$8 ext{ } H_1: \lambda \neq 8$	B1 (1)		
(c)	$X \sim \text{Po}(8)$				
(-)		$P(X \le 3) = 0.0138$ oe $P(X \le 3) = 0.0424$ oe	M1		
		$A(X) = 0.0342$ oe $P(X \ge 15) = 0.0173$ oe	M1		
		$X \ge 15$ oe	Al		
	$\Lambda \leqslant 2 \bigcirc$	A > 13 0c	$\frac{A1}{(3)}$		
(d)	"0.0138"	+ "0.0173"	M1		
(u)	="0.031		Alft		
			(2)		
(e)		ot in the critical region"	M1		
	So there is insufficient evidence that refurbishment has changed the mean breakdown rate				
			(2)		
		Notes	Total 9		
3 (a)	B1	A correct statement which include the words independent or constant rate or singly. In needed	No context		
(b)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ .			
(c)	M1	Use of Po(8) to find the lower critical value. May be implied by either 0.0138 or 0.0424 or			
(0)	$X \leqslant 2$ if no probabilities shown (Calculator values: 0.01375 and 0.04238)				
		Use of Po(8) to find the upper critical value. May be implied by 0.0342 or 0.0173 or	0.9658 or		
	M1 0.9827 or $X \ge 15$ if no probabilities shown (Calculator values: 0.03418 and 0.01725 and				
		0.96581 and 0.98274)			
	$X \le 2$ oe $[\cup]X \ge 15$ oe Condone the use of and/or Do not allow as probability statements		ements		
		Allow $[0, 2]$ or $[0, 3)$ and $[15, \infty]$ or $[15, \infty)$ or $(14, \infty]$ or $(14, \infty)$			
(d)	M1	Adding the two probabilities for their critical region			
	A1ft	0.0311 Allow 3.11 or awrt 3.1[0] or awrt 0.031[0] ft their critical region			
		NB 3.11 or 0.0311 or awrt 3.1[0] or awrt 0.031[0] will score 2/2			
(e)	M1 A correct statement ft their critical region e.g. Do not reject H ₀ /Accept H ₀ /not significant -				
		context needed but do not allow contradicting non contextual comments Correct conclusion in context. Must include rate/number of breakdown (Allow decrease)	ased for		
	A1	changed)	asca 101		
		NB Award M1 A1 for a correct contextual statement on its own			

Question Number	Scheme		Marks
4 (a)	$\begin{bmatrix} f(x) \end{bmatrix} \uparrow \\ k \\ \hline 1 3 6 10 [x]$		B1 B1
(b)	$\frac{1}{2}(3+9) \times k = 1 \text{or} \frac{1}{2}(3-1)k + (6-3)k + \frac{1}{2}(10-6)k = 1$ or $\frac{1}{2}k \left[\frac{x^2}{2} - x\right]_1^3 + k\left[x\right]_3^6 + \frac{1}{4}k \left[10x - \frac{x^2}{2}\right]_6^{10} = 1$		(2) M1
	$k = \frac{1}{6} *$		A1* cso (2)
(c)	$\int_{1}^{x} \frac{1}{12} (x-1) dx \text{or} \int \frac{1}{12} (x-1) dx \text{ and using } F(1) = 0$		M1
	$\int_{3}^{x} \frac{1}{6} dx + "F(3)" \qquad \text{or} \qquad \int_{6}^{1} dx \text{ and using "F(3)} = \frac{1}{6}$ "		M1
	$\int_{6}^{x} \left(\frac{5}{12} - \frac{1}{24}x\right) dx + \text{"F(6)" or } \int \left(\frac{5}{12} - \frac{1}{24}x\right) dx \text{ and using either}$	$r \text{ "F}(6) = \frac{2}{3} \text{ " or F}(10) = 1$	M1
	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{24}(x^2 - 2x + 1) & 1 \le x \le 3 \\ \frac{1}{6}(x - 2) & 3 < x \le 6 \\ \frac{1}{48}(20x - x^2 - 52) & \text{or} 1 - \frac{(10 - x)^2}{48} & 6 < x \le 10 \\ 1 & x > 10 \end{cases}$		Aloe Aloe Al oe Bl
(d)	$P(X > E(X)) = 1 - F\left(\frac{61}{12}\right) = 1 - 0.51388 = 0.4861$	awrt 0.486	M1 A1 (2)
(e)	Since (d) < 0.5 [the mean is greater than the median] therefore pos or follow through their sketch in part (a)	sitive (skew)	M1 A1ft
	Notes		(2) Total 15
4(a)	B1 Correct shape. Must start and end on the x axis		
	B1 Fully correct including 1, 3, 6, 10 and k . Allow $1/6$ for extras e.g. $k/2$	-	nd any
(b)	M1 Setting up the area of the trapezium = 1 or 2 triangles or a fully correct integration, including limits =1	+ a rectangle = 1	
	A1* cso Answer is given. Correct solution only with no incorre	ect working.	

(c)	M1	For a correct method to find the 2^{nd} line Allow in terms of k

	M1	For a correct method to find the 3 rd line, ft their F(3). If using + c method then ft their F(3) = $\frac{1}{6}$ Allow in terms of k
	M1	For a correct method to find the 4 th line, ft their F(6). If using + c method then ft their F(6) = $\frac{2}{3}$ Allow in terms of k
	A1	2 nd line correct including inequality. Allow < instead of ≤
	A1	3 rd line correct including inequality. Allow < instead of ≤
	A1	4 th line correct including inequality. Allow < instead of ≤
	B1	1 st and 5 th line correct. Allow "otherwise" for the range on the 1 st or 5 th line but not both. All 5 lines must be in terms of the same letter.
(d)	M1	For use of $1 - F\left(\frac{61}{12}\right)$ using the their line of $F(x)$ for $3 < x \le 6$. May use integration/area methods
	A1	awrt 0.486 Allow ³⁵ / ₇₂
(e)	M1	For correctly comparing part (d) with 0.5 (may be implied by a correct comparison of mean and median (5)) do not allow mean is greater than the median on its own
	A1ft	For positive skew or ft their answer to part (d) Accept "no (or negligible) skew" following a reason that "mean ≈ median" Allow argument based on sketch in part (a)

Question Number		Scheme	Mai	rks
5 (a)	B(n, 0.045	5)	B1	
- ()	(1)111	7		(1)
(b)		s are independent (no identical twins) or the <u>proportion/probability</u> identified as <u>colour</u>	B1	
(0)	blind does	s not change over time	ום	
()	D(120, 0	0.45) , D (5.4)	D.1	(1)
(c)		$.045) \Rightarrow Po(5.4)$	B1	
	P(X=5)	$0 = \frac{e^{-5.4} \times 5.4^5}{5!}$	M1	
	= 0.1728.	awrt 0.173	A1	
				(3)
(d)		with large <i>n</i>	B1	
	and very s	small p	B1	
	**	0.55		(2)
(e)		$0.75 H_1: p \neq 0.75$	B1	
	B(96, 0.7	$75) \Rightarrow N(72,18)$	B1	
	7 - 67.5	$\frac{-72}{18}$ or $\frac{x \pm 0.5 - 72}{\sqrt{18}}$	3.61	
	$\int Z - \frac{1}{\sqrt{1}}$	$\frac{1}{18}$ or $\frac{1}{\sqrt{18}}$	M1	
		x + 0.5 - 72 $x - 0.5 - 72$		
	=-1.0606	6 or $\frac{x+0.5-72}{\sqrt{18}} < -1.96$ or $\frac{x-0.5-72}{\sqrt{18}} > 1.96$	A1	
		$\sqrt{16}$ 16	A1	
		nsufficient evidence to reject H_0	dM1	
	Insufficie	nt evidence against Jaymini's claim	A1	(7)
ALT	Lat n ha tl	ne probability of an applicant fail to become a pilot.		(7)
ALI		0.25 $H_1: p \neq 0.25$	D1	
			B1	
	`	$25) \Rightarrow N(24,18)$	B1	
	$Z = \frac{28.5 - 24}{\sqrt{18}} \text{or} \frac{x \pm 0.5 - 24}{\sqrt{18}}$			
	\int	$\sqrt{18}$ $\sqrt{18}$	M1	
	= 1.06066	or $\frac{x+0.5-24}{\sqrt{18}} < -1.96$ or $\frac{x-0.5-24}{\sqrt{18}} > 1.96$	A1	
	P(z > 1.0)	06) = 0.1444/0.1446 or CR > 32.8 awrt 0.144 or 0.145	A1	
	· '	resufficient evidence to reject H_0	dM1	
		- 0		
	insuificiei	nt evidence against Jaymini's claim	A1	(7)
		Notes	Tota	\ /
5 (a)	B1	For binomial with correct parameters <i>n</i> and 0.045	,	
		For one of the given reasons. Must have context Allow equivalent statements Do not a	llow	
(b)	B1	number for proportion/probability	110 11	
(c)	B1	Using or writing Po(5.4)		
	3.54	$e^{-\lambda}\lambda^5$		
	M1	For $\frac{e^{-\lambda}\lambda^5}{5!}$ with any value for λ		
	A1	awrt 0.173		
		NB A correct answer with no incorrect working scores 3/3		
(d)	B1	n is large (Allow number of trials for n)		

	B1	p is small (Allow probability for p)
(e)	B1	Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁
, ,	B1	For writing or using N(72, 18) (May be implied by a correct standardisation expression)
	M1	Standardising using 67.5 or 67 or 66.5 or $x \pm 0.5$ with their mean and standard deviation (Allow \pm)
	A1	awrt -1.06 (may be implied by awrt 0.144 or 0.145) or a correct standardisation with ± 1.96 (ignore incorrect inequality symbol and allow =)
	A1	Using a probability route: awrt 0.144 or 0.145 or critical value of $z = \pm 1.96$ Using a critical region route: CR < 63.2
	dM1	Dependent on M1 A1. A correct statement – no context needed but do not allow contradicting non contextual comments. (Ignore any comparisons)
	A1	Correct conclusion in context. Must include the word claim. If they give an answer that refers to the claim then they must include the words applicants (oe), and pilots. No hypotheses then A0
		NB Award M1 A1 for a correct contextual statement on its own
ALT	B 1	Both hypotheses correct in terms of p or π Must be attached to H_0 and H_1
	B 1	For writing or using N(24, 18) (May be implied by a correct standardisation expression)
	M1	Standardising using 28.5 or 29 or 29.5 or $x \pm 0.5$ with their mean and standard deviation (Allow \pm)
	A1	awrt 1.06 (may be applied by awrt 0.144 or 0.145) or a correct standardisation with ± 1.96 (ignore incorrect inequality symbol and allow =)
	A1	Using a probability route: awrt 0.144 or 0.145 or critical value of $z = \pm 1.96$ Using a critical region route: CR < 32.8
	dM1	Dependent on M1 A1. A correct statement – no context needed but do not allow contradicting non contextual comments. (Ignore any comparisons)
	A1	Correct conclusion in context. Must include the word claim. If they give an answer that refers to the claim then they must include the words applicants (oe), and pilots. No hypotheses then A0
		NB Award M1 A1 for a correct contextual statement on its own

Question Number		Scheme	Ma	arks		
rumber	Δ samplin	ng distribution is all the values of a statistic (obtained from a random sample) and				
6 (a)		ated probabilities	B1			
0 (a)		bability distribution of the statistic (under random sampling).		(1)		
(b)	$P(6) = \frac{6}{100}$	$\frac{1}{1}$ $P(7) = \frac{3}{11}$ $P(8) = \frac{2}{11}$	B1			
, ,	11 11					
	Totals (T) 12, 13, 14, 15, 16					
	(6, 6) (6, 7) (6, 8)					
	(7,6)(7,7)		B1			
	(8,6)(8,7)					
	$\int P(T=1)^{r}$	$(2) = \int_{0}^{\infty} \left(\frac{6}{11}\right)^{2} = \left[\frac{36}{121}\right]$				
		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$				
		"(6)" "(3)" [36]				
	[P(T=1)]	$(3) =]2 \times \left(\frac{6}{11}\right) \times \left(\frac{3}{11}\right) = \left[\frac{36}{121}\right]$	3.61			
			M1			
	$\int \mathbf{D}(T-1)$	$(4) =]2 \times (\frac{6}{11}) \times (\frac{2}{11}) + (\frac{3}{11})^{2} = [\frac{33}{121}]$	M1			
		$(\frac{1}{11}) \wedge (\frac{1}{11}) + (\frac{1}{11}) - \frac{1}{121} $	IVII			
		"(2)" "(2)" [12]	M1			
	P(T=1:	$[5) =]2 \times \left(\frac{3}{11}\right) \times \left(\frac{2}{11}\right) = \left[\frac{12}{121}\right]$				
	[D/T 1	$(2)^{"}$ $[4]$				
	P(I = 1)	$(6) = \int_{0}^{1} \left(\frac{2}{11}\right)^{2} = \left[\frac{4}{121}\right]$				
	T	12 13 14 15 16				
	P(T=t)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(7)		
(c)	E(T) = "	12"×" 36	M1			
	$=\frac{1000}{}$	$= \frac{146}{11} = 13.272$ awrt 13.3	A1			
	121	11 awit 15.5		(2)		
		Notes	Tot	al 10		
6 (a)	B1	A correct explanation with the words in bold	100	110		
		^	C T	1.4		
(b)	B1	Correct probabilities – may be seen in an equation or implied by a correct probability	Ior I	= 14		
	B1	All 5 totals correct with no extras	:15:	. \		
	B1	All 6 basic combinations correct, either seen or used (may be implied by correct probable vs. for 6. M for 7 and 1. for 8.	oailities	S)		
		Allow S for 6, M for 7 and L for 8 Correct method for one probability ft their P(6), P(7) and P(8) If these are not stated	then th	ev		
	M1	must be correct	uicii ui	Су		
		Correct method for three of the five probabilities ft their P(6), P(7) and P(8) If these	are not			
	M1	stated then they must be correct				
	N/1	Correct method for all five probabilities ft their P(6), P(7) and P(8) If these are not st	ated th	en		
	M1	they must be correct or 5 probabilities that add up to 1				
	A1	cao Need not be in a table but probabilities must be attached to the correct total				
(c)	M1	Use of $\sum t P(T = t)$ two or more products ft their table				
		_				
	A1	awrt 13.3 (Allow $\frac{146}{11}$ oe)				
]	11				

Question Number		Scheme			
7 (a)	$P(L \geqslant 4.5) \Rightarrow P(A \geqslant 20.25)$				
	$P(A \geqslant 2$	$(0.25) = (30 - 20.25) \times \frac{1}{20}$		M1	
	= 0.4875	-		A1	
				(2)	
(b)	Var(L) =	$= \mathrm{E}(L^2) - \mathrm{E}(L)^2$			
	$[E(L^2) =$	E(A)] = 20		B1	
		g(L) =	$= \begin{cases} \frac{L}{10} & \sqrt{10} \leqslant L \leqslant \sqrt{30} \\ 0 & \text{otherwise} \end{cases}$		
			(0 otherwise		
	E(L) = I	$E(\sqrt{A}) = \frac{1}{20} \int_{10}^{30} \sqrt{a} dA$ $E(L) =$	$= \frac{1}{10} \int_{\sqrt{10}}^{\sqrt{30}} L^2 dL$	M1	
	$=\frac{1}{20}\left[\frac{2}{3}\right]$		¬√30 -	A1	
	= 4.4231	¬10	7410	A1	
		= "20"-("4.4231") ²		M1	
	= 0.4358	/	awrt 0.436	A1	
	0.1320			(6)	
		Notes		Total 8	
7 (a)	M1	$(30-20.25) \times \frac{1}{20}$			
	A1	cao (Allow 0.488 or $\frac{39}{80}$)			
(b)	B1	For 20			
	M1 Attempt to integrate $\frac{1}{20} \int_{10}^{30} \sqrt{a} dA$ or $\frac{1}{10} \int_{\sqrt{10}}^{\sqrt{30}} L^2 dL$ Ignore limits and accept any letter				
	A1	Fully correct integration. Accept any letter.	Must have limits		
	A1	4.42 or better			
	M1	Use of $Var(L) = E(L^2) - E(L)^2$ ft their E(L^2) and E(L) provided Var (L) > 0		
	A1	awrt 0.436			