Appendice

Trasparenti integrativi utilizzati per il modulo Ricerca Operativa A-L

(La numerazione delle pagine fa riferimento alla loro collocazione nel testo)

Politopi convessi

• Spazio R^d , vettore $h \neq 0$, scalare g:

$$Iperpiano = \{x \in R^d : h'x = g\}$$

• Es: \cdot in R^2 : h' = (1,2), g=2

 \cdot in \mathbb{R}^3 un piano.

• Un iperpiano definisce 2 semispazi:

$$\{x \in R^d : h'x \ge g\} \longrightarrow$$

$$\{x \in R^d : h'x \le g\} \xrightarrow{x_2} x_1$$

- Un semispazio S è un insieme convesso $(\forall \ 2 \ \text{punti} \in S, \ \text{il segmento che li unisce} \in S).$
- L'intersezione di più semispazi è convessa (facilmente dimostrabile).
- Politopo (Politopo convesso) = intersezione di un numero finito di semispazi, quando sia limitata e non vuota.
- L'insieme dei vincoli di un LP (in forma canonica) definisce un politopo.

• Combinazione convessa di 2 punti $x, y \in \mathbb{R}^n$ = punto $z \in \mathbb{R}^n$:

$$z = \lambda x + (1 - \lambda)y \quad (\text{con } 0 \le \lambda \le 1).$$

Al variare di λ , z descrive tutti i punti del segmento [x, y].

• Combinazione convessa di p punti $x^{(1)}, \ldots, x^{(p)} \in \mathbb{R}^n$:

$$z = \sum_{i=1}^{p} \alpha_i x^{(i)}$$
 (con $\sum_{i=1}^{p} \alpha_i = 1, \ \alpha_i \ge 0 \ \forall i$).

$$\alpha = (\frac{1}{2}, 0, \frac{1}{2}) : z = \frac{1}{2}(0, 2) + 0(0, 0) + \frac{1}{2}(4, 0) = (2, 1);$$

$$\cdot \ \alpha = (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}) \ : \ z = \frac{1}{2}(0, 2) + \frac{1}{4}(0, 0) + \frac{1}{4}(4, 0) = (1, 1).$$

- Ogni punto di un politopo è combinazione convessa dei vertici e viceversa. (Dim. omessa (← Geometria)).
- Un vertice non è combinazione convessa stretta (cioè con $0 < \lambda < 1$) di due punti distinti del politopo.

Dim (sufficienza): sia P un politopo, $v \in P$ un vertice e supponiamo che esistano altri due punti $y, w \in P$ tali che

$$v = \lambda y + (1 - \lambda)w;$$

vvertice $\Rightarrow \exists$ semispazio $HS = \{x: h'x \leq g\}: HS \cap P = v$

$$\Rightarrow y, w \notin HS \quad \Rightarrow \quad h'y > g \text{ e } h'w > g$$

$$\Rightarrow h'v = h'(\lambda y + (1 - \lambda)w) > g \Rightarrow v \notin HS$$
, assurdo. \square

Un diverso algoritmo del simplesso

- Simplesso = sequenza di pivoting,
 ossia di legittime operazioni elementari di riga,
 che trasformano un tableau,
 ossia un sistema di equazioni lineari,
 senza alterarlo.
- Struttura: tutti i valori in colonna 0 (righe 1-m) sono ≥ 0 ; in riga 0 (colonne 1-n) \exists valore < 0;
- ossia: si mantiene una soluzione ammissibile (\Leftarrow variabili ≥ 0) ma non ottima (\exists costo relativo < 0) fino ad ottenere una soluzione ammissibile ed ottima.
- Osservazione: un tableau in cui $y_{i0} \ge 0 \ (i = 1, ..., m)$ e $y_{0j} \ge 0 \ (j = 1, ..., n)$ rappresenta sempre una soluzione ottima.

Si supponga di avere uno speciale tableau "speculare", cioè con:

• struttura: tutti i valori in <u>riga 0</u> (colonne 1-n) sono ≥ 0 ; in <u>colonna 0</u> (righe 1-m) \exists valore < 0, ossia

criterio di ottimalità soddisfatto MA soluzione non ammissibile

e si supponga di eseguire dei pivoting (legittime operazioni di riga) per renderlo ammissibile mantenendo tale struttura,

• ossia: si mantiene una soluzione ottima (\Leftarrow costi relativi ≥ 0) ma non ammissibile (\exists variabile < 0) fino ad ottenere una soluzione ammissibile ed ottima.

Algoritmo del simplesso duale:

1) Si inizia con una base "ottima" $(y_{0j} \ge 0 \ j = 1, ..., n)$ ma non ammissibile $(\exists y_{i0} < 0, i \ge 1)$:

	x_1	x_2	x_3	x_4				x_1	x_2	x_3	x_4
0	1	0	$-\frac{1}{2}$	0		-z	2	0	0	$\frac{1}{2}$	1
2	2	1	-2	0	7	x_1	-2	1	0	\bigcirc 1)	-1
4	1	1	-1	1		x_2	6	0	1	0	2

- 2) Si sceglie una riga i corrispondente ad un $y_{i0} < 0$.
- 3) Si sceglie la colonna s del pivot y_{is} tra gli $y_{ij} < 0$ (\Leftarrow il pivoting deve rendere positiva y_{i0}):
 - il pivoting deve portare 0 in y_{0s} , \Rightarrow

$$\tilde{y}_{0j} := \underline{y_{0j}} - \underbrace{\left(\frac{y_{0s}}{y_{is}}\right)}_{\leq 0} y_{ij} \\
\geq 0 \quad \leq 0 \Leftarrow (y_{0s} \geq 0, \ y_{is} < 0)$$

e \tilde{y}_{0j} deve restare $\geq 0 \ (j=1,\ldots,n) \Rightarrow$

$$\frac{y_{0j}}{y_{ij}} \leq \frac{y_{0s}}{y_{is}} \ \forall \ j \ : \ y_{ij} < 0 \Rightarrow \text{scelta del pivot: } \max_{j: y_{ij} < 0} \left\{ \frac{y_{0j}}{y_{ij}} \right\}$$

 \bullet Cosa avviene del valore della soluzione (z)?

$$-z = \tilde{y}_{00} = y_{00} - \underbrace{\left(\frac{y_{0s}}{y_{is}}\right)}_{\leq 0} \underbrace{y_{i0}}_{\leq 0}$$

ossia z aumenta (peggiora), come era da aspettarsi perchè stiamo spostando verso l'ammissibilità una soluzione inammissibile e "più che" ottima.

ullet La scelta del pivot garantisce il minimo aumento di z. Infatti:

$$-z = \tilde{y}_{00} = y_{00} - \underbrace{\left(\frac{y_{0s}}{y_{is}}\right)}_{\uparrow} \underbrace{y_{i0}}_{\downarrow}$$

$$\max \leq 0 \Leftrightarrow \text{minimo valore assoluto}$$

• Cosa succede se al passo 3), dove scelta del pivot:

$$\max_{j:y_{ij}<0} \left\{ \frac{y_{0j}}{y_{ij}} \right\},\,$$

non esistono $y_{ij} < 0$?

Significa sostanzialmente che non è possibile rendere positiva y_{i0} \Rightarrow il problema rappresentato dal tableau è impossibile

⇒ il problema originale è impossibile.

procedure DUAL_SIMPLEX:

comment: sia dato un tableau con base che soddisfa il criterio di ottimalità ($\Leftrightarrow y_{0j} \ge 0, \ j = 1, \dots, n$) ma non è ammissibile ($\Leftrightarrow \exists \ i > 0 : y_{i0} < 0$);

begin

optimal := false;infeasible := false;

while optimal = false and infeasible = false do

if $y_{i0} \ge 0$ for i = 1, ..., m then optimal = trueelse

begin

scegli un $i > 0 : y_{i0} < 0$; **if** $y_{ij} \ge 0$ for j = 1, ..., n **then** infeasible := true

else

begin

$$\vartheta := \max_{j>0: y_{ij}<0} \left\{ \frac{y_{0j}}{y_{ij}} \right\} = \frac{y_{0s}}{y_{is}};$$

esegui un pivoting su y_{is}

end

end

end.

simplesso ottimo simplesso duale:

Il simplesso duale ha importanza pratica quando

- \cdot è dato il tableau ottimo di un LP;
- · si aggiunge un vincolo che rende la soluzione attuale non più ammissibile (ma "più che ottima");

- · si vuole la nuova soluzione ottima, senza ripartire da capo.
- $(\Rightarrow$ Non serve metodo delle 2 fasi per avere il tableau iniziale.)

SIMPLESSO	PRIMALE	DUALE	
ci si sposta	da SBA a SBA	da SB inammissibile	
		a SB inammissibile	
z parte da un valore	superiore all'ottimo	inferiore all'ottimo	
z	decresce	cresce	
si sceglie prima	la colonna	la riga	
cioè la variabile che	entra in base	lascia la base	
poi si sceglie	la riga	la colonna	
cioè la variabile che	lascia la base	entra in base	
pivot dato da un	min tra valori > 0	max tra valori < 0	

Algoritmi approssimati

- Un algoritmo branch-and-bound può richiedere un tempo di calcolo inaccettabile, se il bound non elimina molti nodi.
- Ad esempio, l'algoritmo branch-and-bound per KP01 può generare, nel caso peggiore, 2^n nodi, e quindi il tempo di calcolo può crescere, con n, proporzionalmente a 2^n . Si dice che l'algoritmo ha $complessità O(2^n)$ ($di \ ordine \ 2^n$).
- Supponiamo ad esempio che un algoritmo richieda tempo 2^n e risolva un problema con n = 10 in 0.001 secondi: per n = 20 richiederà 1 secondo $(2^{10} \approx 1000, 2^{20} \approx 1000000)$;

```
per n = 20 richiederà 1 secondo (2^{10} \approx 1000, 2^{20} \approx 1000000);
per n = 30 richiederà 17.9 minuti;
per n = 40 richiederà 12.7 giorni;
per n = 50 richiederà 35.7 anni;
```

per n = 60 richiederà 366 secoli.

- In molti casi occorrono anche algoritmi approssimati in grado di fornire, in tempi di calcolo accettabili, una soluzione ammissibile (che rispetti i vincoli) e sufficientemente buona (anche se non ottima).
- Un algoritmo branch-and-bound può essere usato anche come algoritmo approssimato:
 - · si arresta l'esecuzione dopo un numero prefissato di iterazioni (es: di nodi esplorati, di bound calcolati);
 - · si prende la miglior soluzione trovata fino a quel momento.
- Se però si è interessati solo ad una soluzione approssimata, è generalmente preferibile progettare ed implementare algoritmi specifici, normalmente più semplici.

- Algoritmo approssimato per KP01:
- procedure GREEDY

begin

```
ordina gli elementi per p_j/w_j decrescenti; \overline{c} = c; z^g = 0; for j := 1 to n do

if w_j \leq \overline{c} then x_j := 1, \overline{c} := \overline{c} - w_j, z^g := z^g + p_j else x_j := 0
```

end.

Tempo: $O(n \log n)$ per l'ordinamento (+ O(n) per il ciclo).

• Es:
$$p' = (12, 12, 7, 6, 2)$$

 $w' = (4, 5, 3, 3, 2)$
 $c = 10$

Soluzione ottima: x' = (1, 0, 1, 1, 0), z = 25.

Soluzione greedy: x' = (1, 1, 0, 0, 0), z = 24.

- Gli algoritmi con complessità esponenziale (es: $O(2^n)$) possono essere estremamente lenti; gli algoritmi con complessità $polinomiale(O(n \log n), O(n^2)...)$ sono in generale molto più veloci.
- Supponiamo ad esempio che un algoritmo richieda tempo n^3 e risolva un problema con n=10 in 0.001 secondi:

```
per n = 20 richiederà 0.008 secondi;
per n = 30 richiederà 0.027 secondi;
per n = 40 richiederà 0.064 secondi;
per n = 50 richiederà 0.125 secondi;
per n = 60 richiederà 0.216 secondi.
```

Generazione di valori pseudo-casuali

- I linguaggi di simulazione possono generare valori pseudo-casuali secondo qualunque distribuzione di probabilità.
- Principali distribuzioni di probabilità usate in simulazione:

Distribuzione uniforme tra $a \in b$:

· Funzione densità di probabilità:

$$f(x) = \frac{1}{b-a} \ (a \le x \le b);$$

$$\cdot E = \frac{a+b}{2} \ (valore \ medio).$$

Distribuzione esponenziale:

$$\cdot f(x) = \alpha e^{-\alpha x} \ (\alpha > 0, \ x \ge 0);$$

$$\cdot E = \frac{1}{\alpha}$$
.

- In un processo di Poisson di valor medio α :
 - · l'intervallo di tempo tra due eventi consecutivi ha distribuzione esponenziale di valor medio $\frac{1}{\alpha}$.
 - · I processi di Poisson vengono spesso utilizzati per simulare eventi "rari" ed indipendenti (es: arrivi casuali:

 α = numero medio di arrivi nell'unità di tempo).

Descrizione statica del sistema

Configurazioni di dati \leftrightarrow **stato** del sistema.

I processi dinamici alterano i valori dei dati \Rightarrow alterano lo stato.

Oggetti:

Terminologia	Esempi	SIMSCRIPT		
Entità	auto	AUTO		
Attributi	istante di ingresso in coda TIC(AUTO)	TIC(AUTO)		
Insiemi	Coda	CODA		
	inserisci l'auto in coda	FILE AUTO IN CODA		
	estrai la prima auto dalla coda	REMOVE FIRST AUTO FROM CODA		

Generazione e distruzione di oggetti:

Terminologia	Esempi	SIMSCRIPT
Generazione (ingresso nel sistema): riserva un'area di memoria	genera l'auto	CREATE AUTO
Distruzione (uscita dal sistema): rilascia l'area di memoria	distruggi l'auto	DESTROY AUTO

• Attributi del sistema:

 λ = numero medio di arrivi nell'unità di tempo;

NLG = numero letti nel reparto malati gravi;

NLN = numero letti nel reparto malati normali;

PG = probabilità che un malato sia grave;

PS = probabilità che un malato grave guarisca;

DMIG = durata minima di una degenza grave;

DMAG = durata massima di una degenza grave;

DMIN = durata minima di una degenza normale;

DMAN = durata massima di una degenza normale;

NT = numero di malati da simulare;

NLOG = numero letti occupati nel reparto malati gravi;

NLON = numero letti occupati nel reparto malati normali;

NMR = numero di malati gravi rifiutati;

NMD = numero di malati gravi deceduti;

NMG = numero di malati gravi guariti;

NMN = numero di malati normali guariti;

NMA = numero di malati che hanno atteso in coda;

NTOT = numero totale di malati simulati;

TTG = tempo totale trascorso dai malati gravi nel sistema;

TTN = tempo totale trascorso dai malati normali nel sistema;

TTA = tempo totale trascorso dai malati in coda.