Homework Answer

Chapter 6

6.7 Consider the following grammar for simple Pascalstyle declarations:

 $decl \rightarrow var-list: type$

vsr-list $\rightarrow var$ -list, id

type \rightarrow integer

type \rightarrow real

Write the attribute grammar for this grammar.

Solution:

decl → var-list: type var-list.dtype = type.dtype

 $vsr-list_1 \rightarrow var-list_2$, id $var-list_2$.dtype = $var-list_1$.dtype

id.dtype = var-list₁.dtype

type \rightarrow integer type.dtype = int

type \rightarrow real type.dtype = float

6.8 Consider the grammar of 6.7. Rewrite the grammar so that the type of a variable can be purely synthesized attribute, and give a new attribute grammar for the type has this property.

Solution:

 $decl \rightarrow id \ var-list \ id.dtype = var-list.dtype$

 $var-list_1 \rightarrow$, id $var-list_2$ $var-list_1.dtype = var-list_2.dtype$

id.dtype = var-list₂.dtype

 $var-list \rightarrow : type$ var-list.dtype = type.dtype

type \rightarrow integer type.dtype = int

type \rightarrow real type.dtype = float

6.13 Consider the following attribute grammar:

Grammar Rule	Semantic Rule
$S \rightarrow A B C$	B.u = S.u C.u = A.v A.u = B.v + c.v S.v = A.v
$A \rightarrow a$	A.v = 2 * A.u
$B \rightarrow b$	B.v = B.u
$C \rightarrow c$	C.v = 1

- (a) Draw the parse tree for string abc, and draw the dependency graph for the associated attributes. Describe a correct order for the evaluation of the attributes.
- (b) Suppose that S.u is assigned the value of 3 before attribute evaluation begins. What is the value of S.v when the evaluation has finished?

(c) Suppose the attribute equations are modified as follows:

Grammar Rule	Semantic Rule
$S \rightarrow A B C$	B.u = S.u A.u = B.v + c.v S.v = A.v
$A \rightarrow a$	A.v = 2 * A.u
$B \rightarrow b$	B.v = B.u
$C \rightarrow c$	C.v = C.u - 2

What value does S.v have after attribute evaluation, if S.u=3 before evaluation begins?

Solution:

(a) The parse tree for the string abc is:

The dependency graph is:

(b) S.v = A.v = 2*A.u = 2*(B.v+C.v) = 2*(B.u+C.v) = 2*(S.u+C.v) = 8

(c) The dependency graph becomes as follows:

C.v=C.u-2=A.v-2=2*A.u-2=2(B.v+C.v)-2=2(B.u+C.v)-2=2(S.u+C.v)-2

C.v=2-2*S.u=-4

S.v=2(S.u+C.v)=-2

The dependency of C.v, A.u, A.v, C.u form a cycle, so the value S.v cannot be evaluated generally.