Introduction

We model communication:

$$\underbrace{\mathrm{SOURCE}}_{\mathrm{message}} \to \underbrace{\mathrm{ENCODER}}_{\mathrm{codewords}} \xrightarrow{\mathrm{CHANNEL}}_{\mathrm{errors, noise}} \xrightarrow{\mathrm{pecoder}}_{\mathrm{recieved}} \underbrace{\mathrm{DECODER}}_{\mathrm{word \; error \; correction}} \to \underbrace{\mathrm{RECIEVER}}_{\mathrm{message}}.$$

Examples: optical signals, electrical telegraph, SMS (compression), postcodes, CDs (error correction), zip/gz files (compression).

Given a source and a channel, modelled probabilistically, the basic problem is to design an encoder and decoder to transmit messages economically (noiseless coding; compression) and reliably (noisy coding).

Examples:

- Noiseless coding: Morse code: common letters are assigned shorter codewords, e.g $A \mapsto \bullet -$, $E \mapsto \bullet$, $Q \mapsto --\bullet -$, $S \mapsto \bullet \bullet \bullet$, $O \mapsto ---$, $Z \mapsto --\bullet \bullet$. Noiseless coding is adapted to source.
- Noisy coding: Every book has an ISBN $a_1, a_2, \ldots, a_9, a_{10}, a_i \in \{0, 1, \ldots, 9\}$ for $1 \le i \le 9$ and $a_{10} \in \{0, 1, \ldots, 9, X\}$ with $\sum_{j=1}^{10} j a_j \equiv 0 \pmod{11}$. This detects common errors e.g one incorrect digit, transposition of two digits. Noisy coding is adapted to the channel.

Plan:

- (I) Noiseless coding entropy
- (II) Error correcting codes noisy channels
- (III) Information theory Shannon's theorems
- (IV) Examples of codes
- (V) Cryptography

Books: [GP], [W], [CT], [TW], Buchmann, Körner. Online notes: Carne, Körner.

Basic Definitions

Definition (Communication channel). A communication channel accepts symbols from a alphabet $\mathcal{A} = \{a_1, \ldots, a_r\}$ and it outputs symbols from alphabet $\mathcal{B} = \{b_1, \ldots, b_s\}$. Channel modelled by the probabilities $\mathbb{P}(y_1 \ldots y_n \text{ recieved}|x_1 \ldots x_n \text{sent})$. A discrete memoryless channel (DMC) is a channel with

$$p_{ij} = \mathbb{P}(b_j \text{ recieved}|a_i \text{ sent})$$

the same for each channel use and independent of all past and future uses. The channel matrix is $P = (b_{ij})$, a $r \times s$ stochastic matrix.

Definition (Binary symmetric channel). The binary symmetric channel (BSC) with error probability $p \in [0, 1)$ from $\mathcal{A} = \mathcal{B} = \{0, 1\}$. The channel matrix is

$$\begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}.$$

A symbol is transmitted correctly with probability 1-p. Usually assume p<1/2.

The binary erasure channel (BEC) has $\mathcal{A} = \{0,1\}$, $\mathcal{B} = \{0,1,*\}$. The channel matrix is

$$\begin{pmatrix} 1-p & 0 & p \\ 0 & 1-p & p \end{pmatrix}.$$

So $p = \mathbb{P}(\text{symbol can't be read}).$

Definition. We model n uses of a channel by the nth extension, with input alphabet \mathcal{A}^n and output alphabet \mathcal{B}^n . A code C of length n is a function $\mathcal{M} \to \mathcal{A}^n$ where \mathcal{M} is the set of possible messages. Implicitly we also have a decoding rule $\mathcal{B}^n \to \mathcal{M}$. The size of C is $m = |\mathcal{M}|$. The information rate is $\rho(C) = \frac{1}{n} \log_2 m$. The error rate is $\hat{e}(C) = \max_{x \in \mathcal{M}} \mathbb{P}(\text{error}|x \text{ sent})$.

Remark. For the remainder of the course we write log instead of \log_2 .

Definition. A channel can transmit reliably at rate R if there exists $(C_n)_{n=1}^{\infty}$ with each C_n a code of length n such that

$$\lim_{n \to \infty} \rho(C_n) = R \& \lim_{n \to \infty} \hat{e}(C_n) = 0.$$

The *capacity* is the supremum of all reliable transmission rates. We'll see in Chapter 9 that a BSC with error probability p < 1/2 has non-zero capacity.

1 Noiseless coding

1.1 Prefix-free codes

For an alphabet \mathcal{A} , $|\mathcal{A}| < \infty$, let $\mathcal{A}^* = \bigcup_{n \geq 0} \mathcal{A}^n$, the set of all finite strings from \mathcal{A} . The *concatenation* of strings $x = x_1 \dots x_r$ and $y = y_1 \dots y_s$ is $xy = x_1 \dots x_r y_1 \dots y_s$.

Definition. Let \mathcal{A}, \mathcal{B} be alphabets. A code is a function $c : \mathcal{A} \to \mathcal{B}^*$. The strings c(a) for $a \in \mathcal{A}$ are called *codewords* or *words* (CWS).

Example 1.1 (Greek fire code). $\mathcal{A} = \{\alpha, \beta, \dots, \omega\}$ (greek alphabet), $\mathcal{B} = \{1, 2, 3, 4, 5\}, c : \alpha \mapsto 11, \beta \mapsto 12, \dots, \psi \mapsto 53, \omega \mapsto 54$. xy means hold up x torches and another y torches nearby.

Example 1.2. $\mathcal{A} = \text{words in a dictionary}, \ \mathcal{B} = \{A, B, \dots, Z, \omega\}. \ c : \mathcal{A} \to \mathcal{B}$ splits the word and follows with a space. Send message $x_1 \dots x_n \in \mathcal{A}^*$ as $c(x_1) \dots c(x_n) \in \mathcal{B}^*$. So c extends to a function $c^* : \mathcal{A}^* \to \mathcal{B}^*$.

Definition. c is said to be *decipherable* if the induced map c^* (as in the previous example) is injective. In other words, each string from \mathcal{B} corresponds to at most one message.

Clearly if c is decipherable, it is necessary for c to be injective. However it is not sufficient:

Example 1.3. $\mathcal{A} = \{1, 2, 3, 4\}, \mathcal{B} = \{0, 1\}.$ Define $c : 1 \mapsto 0, 2 \mapsto 1, 3 \mapsto 00, 4 \mapsto 01.$ Then $c^*(114) = 0001 = c^*(312) = c^*(144)$ yet c is injective.

Notation: $|\mathcal{A}| = m$, $|\mathcal{B}| = a$, call c am a-ary code of size m. For example a 2-ary code is a binary one, and a 3-ary code is a ternary code.

Our aim is to construct decipherable codes with short word lengths. Assuming c is injective, the following codes are always decipherable:

- (i) A block code has all codewords of the same length (e.g Greek fire code);
- (ii) A <u>comma code</u> reserves a letter from \mathcal{B} to signal the end of a word (e.g Example 1.2);
- (iii) A <u>prefix-free code</u> is a code where no codeword is a prefix of any other distinct word (if $x, y \in \mathcal{B}^*$ then x is a prefix of y if y = xz for some string $z \in \mathcal{B}^*$).
- (i) and (ii) are special cases of (iii). As we can decode the message as it is recieved, prefix-free codes are sometimes called *instantaneous*.

Exercise: find a decipherable code which is not prefix-free.

Definition (Kraft's inequality). $|\mathcal{A}| = m$, $|\mathcal{B}| = a$, $c : \mathcal{A} \to \mathcal{B}^*$ has word lengths l_1, \ldots, l_m . Then Kraft's inequality is

$$\sum_{i=1}^{m} a^{-l_i} \le 1. \tag{*}$$

Theorem 1.1. A prefix-free code exists if and only if Kraft's inequality (*) holds.

Proof. Rewrite (*) as

$$\sum_{l=1}^{s} n_l a^{-l} \le 1, \tag{**}$$

where n_l is the number of codewords with length l, and $s = \max_{1 \le i \le m} l_i$.

Now if $c: \mathcal{A} \to \mathcal{B}^*$ is prefix-free,

$$n_1 a^{s-1} + n_2 a^{s-2} + \ldots + n_{s-1} a + n_a \le a^s$$
.

Indeed the LHS is the number of strings of length s in B with some codeword of c as a prefix, and the RHS is the total number of strings of length S. Dividing through by a^s we get (**).

Now given n_1, \ldots, n_s satisfying (**), we try to construct a prefix-free code c with n_l codewords of length l, $\forall l \leq s$. Proceed by induction on s, s = 1 is clear (since (**) gives $n_1 \leq a$ so can construct code).

By the induction hypothesis, there exists a prefix-code \hat{c} with n_l codewords of length l for all $l \leq s - 1$. Then (**) implies

$$n_1 a^{s-1} + n_2 a^{s-2} + \dots + n_{s-1} a + n_s < a^s$$
.

The first s-1 terms on the LHS sum to the number of strings of length s with a codeword of \hat{c} as a prefix and the RHS is the number of strings of length s. Hence we can add at least n_s new codewords of length s to \hat{c} and maintain the prefix-free property.

Remark. This proof is constructive: just choose codewords in order of increasing length, ensuring that no previous codeword is a prefix.

Theorem 1.2 (McMillan). Any decipherable code satisfies Kraft's inequality.

Proof (Karush, 1961). Let $c: A \to B^*$ be a decipherable code with word lengths l_1, \ldots, l_m . Set $s = \max_{1 \le i \le m} l_i$. For $R \in \mathbb{N}$

$$\left(\sum_{i=1}^{m} a^{-l_i}\right)^R = \sum_{l=1}^{Rs} b_l a^{-l},\tag{\dagger}$$

where b_l is the number of ways of choosing R codewords of total length l. Since c is decipherable, any string of length l formed from codewords must correspond to at most one sequence of codewords, i.e $b_l \leq |\mathcal{B}^l| = a^l$. Subbing this into (\dagger)

$$\left(\sum_{i=1}^{m} a^{-l_i}\right)^R \le \sum_{i=1}^{Rs} a^l a^{-l} = Rs,$$

so

$$\sum_{i=1}^{m} a^{-l_i} \le (Rs)^{1/R} \to 1 \text{ as } R \to \infty.$$

Hence $\sum_{i=1}^{m} a^{-l_i} \leq 1$.

Corollary 1.3. A	decipherable of	$code \ with \ j$	prescribed	word	lengths	exists	if	and
only if a prefix-free	$code\ with\ the$	same wor	d lengths	exists.				

Proof. Combine previous two theorems.

Therefore we can restrict our attention to prefix-free codes.

Page 5

2 Shannon's Noiseless Coding Theorem

Entropy is a measure of 'randomness' or 'uncertainty'. Suppose we have a random variable X taking a finite set of values x_1, \ldots, x_n with probabilities p_1, \ldots, p_n respectively. The entropy H(X) of X is the expected number of fair coin tosses needed to simulate X (roughly speaking).

Example 2.1. Suppose $p_1 = p_2 = p_3 = p_4 = 1/4$. Identify (x_1, x_2, x_3, x_4) with (HH, HT, TH, TT). Then the entropy is 2.

Example 2.2. Suppose $(p_1, p_2, p_3, p_4) = (1/2, 1/4, 1/8, 1/8)$. Identify (x_1, x_2, x_3, x_4) with (H, TH, TTH, TTT). Then the entropy is

$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = \frac{7}{4}.$$

In a sense, the previous example (2.1) was 'more random' than this.

Definition (Entropy). The *entropy* of X is

$$H(X) = -\sum_{i=1}^{b} p_i \log p_i.$$

(Recall that $\log =: \log_2 \text{ here.}$) Note $H(X) \ge 0$. It is measured in *bits* (binary digits). Conventionally, we take $0 \log 0 = 0$.

Example 2.3. Take a biased coin $\mathbb{P}(H)=p$, $\mathbb{P}(T)=1-p$. Write H(p,1-p):=H(p). Then

$$H(p) = -p \log p - (1-p) \log(1-p).$$

Note that $H'(p) = \log \frac{1-p}{p}$. Hence the entropy is maximised for p = 1/2 (giving entropy 1).

Proposition 2.1 (Gibbs' inequality). Let $(p_1, \ldots, p_n), (q_1, \ldots, q_n)$ be probability distributions. Then

$$-\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} p_i \log q_i.$$

(The RHS is sometimes called the cross entropy or mixed entropy) Furthermore we have equality iff $p_i = q_i$ for all i.

Proof. Since $\log x = \frac{\ln x}{\ln 2}$, we may replace \log with \ln . Put $I = \{1 \le i \le n : p_i \ne 0\}$. Now $\ln x = x - 1$ for all x > 0 with equality iff x = 1. Hence $\ln \frac{q_i}{p_i} \le \frac{q_i}{p_i} - 1$ for all $i \in I$. So

$$\sum_{i \in I} p_i \ln \frac{q_i}{p_i} \le \underbrace{\sum_{i \in I} q_i}_{\le 1} - \underbrace{\sum_{i \in I} p_i}_{=1} \le 0$$

$$\implies -\sum_{i \in I} p_i \ln p_i \le -\sum_{i \in I} p_i \ln q_i$$

$$\implies -\sum_{i=1}^{n} p_i \ln p_i \le -\sum_{i=1}^{n} p_i \ln q_i.$$

If equality holds, then $\sum_{i \in I} q_i = 1$ and $\frac{p_i}{q_i} = 1$ for all $i \in I$. So $q_i = p_i$ for all $1 \le i \le n$.

Corollary 2.2. $H(p_1, p_2, ..., p_n) \leq \log n$ with equality iff $p_1 = p_2 = ... = p_n = 1/n$.

Proof. Take $q_1 = q_2 = \ldots = q_n = 1/n$ in Gibbs' inequality.

Let $\mathcal{A} = \{\mu_1, \dots, \mu_m\}$, $|\mathcal{B}| = a \ (m, n \ge 2)$. The random variable X takes values μ_1, \dots, μ_m with probabilities p_1, \dots, p_m .

Definition. If $c: A \to \mathcal{B}^*$ is a code, we say it is *optimal* if has the smallest possible expected word length. i.e $\mathbb{E}S := \sum_{i=1}^n p_i l_i$ is minimal amongst all decipherable codes.

Theorem 2.3 (Shannon's Noiseless Coding Theorem). The expected word length $\mathbb{E}S$ of an optimal code satisfies

$$\frac{H(X)}{\log a} \le \mathbb{E}S < \frac{H(X)}{\log a} + 1.$$

Remark. The lower bound is actually true for any decipherable code.

Proof. We first get the lower bound. Let $c: \mathcal{A} \to \mathcal{B}^*$ be decipherable with word lengths l_1, \ldots, l_m . Let $q_i = \frac{a^{-l_i}}{D}$ where $D = \sum_{i=1}^m a^{-l_i}$. Note $\sum_{i=1}^m q_i = 1$. By Gibbs' inequality

$$H(X) \le -\sum_{i=1}^{m} p_i \log q_i$$

$$= -\sum_{i=1}^{m} p_i (-l_i \log a - \log D)$$

$$= \left(\sum_{i=1}^{m} p_i l_i\right) \log a + \log D.$$

By McMillan, $D \leq 1$ so $\log D \leq 0$. Hence

$$H(X) \le \left(\sum_{i=1}^{m} p_i l_i\right) \log a \implies \frac{H(X)}{\log a} \le \mathbb{E}S.$$

And we have equality iff $p_i = a^{-l_i}$ for some integers l_1, \ldots, l_m . Note we have only used decipherability so far.

Now we get the upper bound. Take $l_i = [-\log_a p_i]$. Then

$$-\log_a p_i \le l_i < -\log_a p_i + 1.$$

Hence $\log_a p_i \geq -l_i$, so $p_i \geq a^{-l_i}$. Therefore $\sum_{i=1}^m a^{-l_i} \leq \sum_{i=1}^m p_i = 1$. By Kraft's inequality, there exists a prefix-free code c with word lengths l_1, \ldots, l_m . c has expected word length

$$\mathbb{E}S = \sum_{i=1}^{m} p_i l_i < \sum_{i=1}^{m} p_i (-\log_a p_i + 1) = \frac{H(X)}{\log a} + 1.$$

Example 2.4 (Shannon-Fano Coding). We mimic the above proof: given p_1, \ldots, p_m , set $l_i = \lceil -\log_a p_i \rceil$. Construct a prefix-free code with word lengths l_i by choosing codewords in order of increasing length, ensuring any new codeword has no previous codeword as a prefix (Kraft's inequality ensures we can do this).

Example 2.5. Take a = 2, m = 5.

i	p_i	$\lceil -\log_2 p_i \rceil$	
1	0.4	2	00
2	0.2	3	010
3	0.2	3	011
4	0.1	4	1000
5	0.1	4	1001

Then $\mathbb{E}S = \sum_{i=1}^{m} p_i l_i = 2.8$, $H = H/\log a = 2.12$. [See also Carne p13.]