Name:

CID:

Tutorial 1

Any marks received for the tutorial are only indicative and may be subject to moderation and scaling.

Exercise 1 (Euler's method for scalar ODEs)

% of CW mark: 0.25

Compute the numerical solution of the initial value problem

$$x' = \frac{x+t}{x-t}$$
, $x(t_0) = 0$, $t_0 = 1$, $t > 1$

with the Euler method at $t = \{2, 3\}$; time step h = 1.

Exercise 2 (Euler's method for scalar ODEs)

% of CW mark: 0.5

Compute the numerical solution of the initial value problem

$$x' = \sin(t) - x$$
, $x(t_0) = 0$, $t_0 = 0$, $t > 0$.

with the Euler method at $t=\pi/4$ (time step $h=\pi/4$) and compare it with the exact solution at $t=\pi/4$.

Exercise 3 (Euler's method for systems of ODEs)

% of CW mark: 0.25

Write down the Euler method for the initial value problems

$$x'' - x' - 2x = 1 + 2t, \quad x(t_0) = 0, \quad x'(t_0) = 1, \quad t_0 = 0, \quad t > 0.$$

$$x''' - 2x'' - x' + 2x = 12, \quad x(t_0) = 0, \quad x'(t_0) = 1, \quad x''(t_0) = 2, \quad t_0 = 0, \quad t > 0.$$

Exercise 4 (Euler's method for systems of ODEs)

% of CW mark: 0.25

Compute the numerical solution of the initial value problem

$$u' = -2u + v, \ u(t_0) = 1, \quad t_0 = 0, \quad t > 0,$$

$$v' = -u - 2v, \ v(t_0) = 0, \quad t_0 = 0, \quad t > 0,$$
(1)

with the Euler method at $t = \{1, 2\}$; time step h = 1.

Exercise 5 (Error analysis)

% of CW mark: 0.25

Prove that $1 + x + \frac{x^2}{2} \le e^x$ for all $x \ge 0$.

Exercise 6 (Error analysis)

% of CW mark: 0.5

Mastery Component

Calculate the local truncation error of the Backward Euler method

$$x_{n+1} = x_n + hx'_{n+1}, \quad x'_{n+1} := f(t_{n+1}, x_{n+1}).$$

1 Oct 12, 2017