Matemática Discreta y Lógica Matemática

Doble Grado Ingeniería Informática - Ciencias Matemáticas

Hoja 2.2. - Ejercicios sobre definiciones recursivas

Curso 2018/2019

1. Considera la definición recursiva de la sucesión de números de Fibonacci:

$$f_1 = 1, f_2 = 1, f_n = f_{n-2} + f_{n-1} \ (n \ge 3)$$

Demuestra que $f_n \leq n!$ para todo $n \geq 1$.

2. Para las siguientes pretendidas definiciones recursivas calcula, cuando sea posible, los correspondientes valores de s_0 , s_1 , s_2 , s_3 , s_4 , y cuando ello no sea posible, explica por qué es incorrecta la definición recursiva de la correspondiente sucesión s_n :

$$egin{array}{lll} i) & s_0=1 & s_1=1 & s_n=s_{n-1}+2s_{n-2} & (n\geq 2) \\ ii) & s_0=1 & s_n=s_{n-1}+2s_{n-2} & (n\geq 1) \\ iii) & s_0=0 & s_n=ns_{n-1} & (n\geq 1) \\ \end{array}$$

3. Considera las funciones $f: \mathbb{N} \to \mathbb{N}$ y $g: \mathbb{N}_1 \to \mathbb{N}$ definidas por:

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(n-1) + f(n-2) & \text{si } n > 1 \end{cases} \qquad g(n) = \begin{cases} 1 & \text{si } n = 1 \\ 3 & \text{si } n = 2 \\ g(n-1) + g(n-2) & \text{si } n > 2 \end{cases}$$

Usando inducción completa, demuestra que g(n) = f(n) + f(n-2), para todo $n \ge 2$.

4. Considera la función $f: \mathbb{N}_1 \to \mathbb{N}_1$ definida recursivamente como sigue:

$$f(1) = 3, f(2) = 5, f(n) = 3 * f(n-1) - 2 * f(n-2) (n \ge 3)$$

Razonando por inducción, demuestra que $f(n) = 2^n + 1$, para todo $n \ge 1$.

5. En los casos que siguen, encuentra una definición explícita de s_n , alternativa a su definición recursiva, y demuestra por inducción que es correcta.

i)
$$s_1 = 1$$
, $s_n = s_{n-1} + 3$ $(n \ge 2)$ ii) $s_1 = 1$, $s_n = n^2 * s_{n-1}$ $(n \ge 2)$

6. Considera la función $f: \mathbb{N} \longrightarrow \mathbb{N}$ definida recursivamente como sigue:

$$f(0) = 0$$

 $f(2n) = 4f(n)$, para todo $n \ge 1$
 $f(2n+1) = 4f(n) + 4n + 1$, para todo $n \ge 0$

Construye una tabla de valores de f(n) para $n=0,\ldots,5$, y demuestra por inducción completa que $f(n)=n^2$, para todo n natural.

7. Considera la función $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ definida recursivamente por medio de:

$$f(0,m) = m, \ f(n,m) = f(n-1, n*m) \ (n \ge 1)$$

- Para m arbitrario, calcula razonadamente los valores de f(0,m), f(1,m), f(2,m) y f(3,m).
- Conjetura una expresión de f(n,m) y demuéstrala por inducción sobre n. Observa, en particular, la expresión obtenida para f(n,1). Corresponde a alguna función conocida?