BÀI BÁO CÁO THU HOẠCH

BÀI TOÁN LẬP LỊCH CHO MÁY ĐƠN

Nguyễn Chí Bằng

Ngày 13 tháng 6 năm 2024

Mục lục

M	Mục lục										
Danh mục các kí hiệu											
1	1.1	Vấn đ	iệu bài toán lập lịch cho máy đơn n đề								
2	2.1	Bài to 2.1.1 2.1.2 2.1.3	01 1 1	3 4 4							
	2.2	2.2.1	pán có thời điểm sẵn sàng không đồng nhất $(r_j \neq 0)$ Phương pháp không ngắt quãng $(1 r_j \sum C_j)$ Phương pháp ngắt quãng $(1 r_j, prmp \sum C_j)$	4							

Danh mục ký hiệu và ý nghĩa

- $\alpha|\beta|\gamma$ Ký hiệu dùng để nhận dạng loại bài toán. Trong đó α chỉ số lượng máy cần lập lịch, trường hợp cho máy đơn ta ký hiệu $\alpha=1$, tức $1|\beta|\gamma$. Ký hiệu β chỉ đặc tính hay kiểu ràng buộc của bài toán. Ký hiệu γ chỉ hàm mục tiêu cần tối ưu.
 - p_j Khoảng thời gian xử lý (processing time) của công việc thứ j hay quá trình của công việc thứ j, tức từ thời điểm bắt đầu công việc đến thời điểm hoàn thành công việc.
 - d_i Thời điểm đáo hạn (due date) của công việc thứ j.
 - C_i Thời điểm hoàn thành (completion time) của công việc thứ j.
 - S_j Thời điểm bắt đầu (starting time) của công việc thứ j, được định nghĩa bằng công thức $S_j = \max(C_{j-1}, r_j)$.
 - Thời điểm sẵn sàng (release time) của công việc thứ j. Nếu r_j xuất hiện trong trường β của bài toán, đồng nghĩa công việc thứ j sẽ không được phép bắt đầu trước thời điểm sẵn sàng r_j ($S_j \geq r_j$), ngược lại, nếu r_j không xuất hiện trong trường β của bài toán, các công việc sẽ được phép bắt đầu tại bắt kỳ thời điểm nào.
 - W_j Thời gian chờ (waiting time) của công việc thứ j, tức khoảng thời gian kể từ thời điểm công việc đã sẵn sàng cho đến thời điểm bắt đầu công việc, được định nghĩa bằng công thức $W_j = C_j p_j r_j = S_j r_j$.
 - F_j Chu trình (flow time) của công việt thứ j, tức khoảng thời gian kể từ thời điểm công việc đã sẵn sàng cho đến khi hoàn thành, được định nghĩa bằng công thức $F_j = C_j r_j = W_j + p_j$.
 - w_j Trọng số (weight) của công việc thứ j, tức mức độ ưu tiên của công việc thứ j.

- L_j Độ đáo hạn (lateness) của công việc thứ j, được định nghĩa là độ dài từ d_j đến C_j , xác định bằng công thức $L_j = C_j d_j$. Từ đây có thể thấy, nếu $L_j < 0$ thì công việc đã hoàn thành sớm hơn thời điểm đáo hạn, nếu $L_j > 0$ thì công việc đã hoàn thành muộn hơn thời điểm đáo hạn.
- T_j Độ trễ (tardiness) của công việc thứ j, là thang đo Độ trễ của công việc thứ j được định nghĩa thông qua L_j . Nếu $L_j \leq 0$ thì $T_j = 0$, ngược lại nếu $L_j > 0$ thì $T_j = L_j$, hay $T_j = \max(L_j, 0)$.
- E_j Độ sớm (earliness) của công việc thứ j, là thang đo Độ sớm của công việc thứ j được định nghĩa thông qua L_j . Nếu $L_j \geq 0$ thì $E_j = 0$, ngược lại nếu $L_j < 0$ thì $E_j = L_j$, hay $E_j = \max(|L_j|, 0)$.
- prec Bài toán tồn tại ràng buộc có thứ tự (precedence constraint). Nếu prec xuất hiện trong trường β của bài toán thì bài toán tồn tại những công việc đòi hỏi phải hoàn thành trước khi công việc khác được bắt đầu, hay còn gọi là công việc tiền nhiệm (predecessor) và công việc kế nhiệm (successor). Nếu trường hợp bài toán có mỗi công việc tồn tại tối đa một tiền nhiệm và một kế nhiệm, bài toán có ràng buộc dạng dây chuyền (chains). Trường hợp có tối đa một kế nhiệm, bài toán có ràng buộc dạng in-tree. Trường hợp có tối đa một tiền nhiệm, bài toán có ràng buộc dạng out-tree. Ngược lại, nếu prec không xuất hiện trong trường β của bài toán, bài toàn được phép có các thứ tự công việc được sắp tự do.
- prmp Bài toán tồn tại tính ưu tiên ngắt (preemption), thường được sử dụng khi có sự xuất hiện của $r_j \neq 0$. Nếu prmp xuất hiện trong trường β của bài toán thì công việc được phép ngắt quãng tại bất kỳ thời điểm nào để ưu tiên cho công việc khác nhằm mục đích tối ưu hàm mục tiêu của bài toán. Ngược lại, nếu prmp không xuất hiện trong trường β của bài toán, công việc sẽ không được phép ngắt quãng.

Chương 1

Giới thiệu bài toán lập lịch cho máy đơn

- 1.1. Vấn đề
- 1.2. Ví dụ minh hoạ

Chương 2

Phương pháp xử lý bài toán lập lịch cho máy đơn

Chương 2 tập trung vào các phương pháp lập lịch cho máy đơn. Ở phần đầu của chương (2.1.) sẽ giới thiệu các phương pháp lập lịch với giả định bài toán ở trạng thái tĩnh, tức tất cả các công việc đều có thể bắt đầu cùng lúc tại thời điểm t=0. Trong đó, phương pháp sắp xếp theo thứ tự công việc là phương pháp cơ bản nhất. Tiếp theo là phương pháp ưu tiên đáo hạn (EDD - Earliest Due Date) và cuối cùng là phương pháp quá trình ngắn nhất tập trung vào việc tối thiểu hóa tổng thời gian hoàn thành (SPT - Shortest Process Time) và tổng thời gian hoàn thành có trọng số (WSPT - Weighted Shortest Process Time).

Phần thứ hai của chương (2.2.) sẽ xem xét các bài toán phức tạp hơn, nơi tồn tại các công việc có thời điểm sẵn sàng không đồng nhất. Điều này làm cho bài toán mang tính thực tế hơn trong các quy trình sản xuất khi các công việc thường không bắt đầu một cách đồng thời. Trong đó ta sẽ tập trung vào hai phương pháp chính, bao gồm: Phương pháp không ngắt quãng (non-preemptive) và phương pháp ngắt quãng (preemptive). Trong đó phương pháp ngắt quãng cho ta sự linh hoạt cao hơn trong quá trình lập lịch.

Những phương pháp này sẽ giúp các nhà quản lý sản xuất hay chuyên gia tối ưu hóa quy trình tìm được những giải pháp hiệu quả giúp cải thiện hiệu suất và giảm thiểu chi phí trong quá trình sản xuất một các tốt nhất.

Phần lớn kiến thức của chương được tham khảo từ tài liêu XXX

2.1. Bài toán trạng thái tĩnh $(r_i \equiv 0)$

Bài toán tĩnh trong lập lịch cho máy đơn là một trong những bài toán cơ bản và quan trọng trong lĩnh vực quản lý thời gian và tối ưu hóa quy trình. Đặc điểm của bài toán tĩnh là thời điểm sẵn sàng r_j của các công việc đều đồng nhất tại t=0, hay $r_j=0, \ \forall j=\overline{1,n}$ và ký hiệu r_j lúc này không tồn tại trong trường β của bài toán.

Trong bối cảnh bài toán ở trạng thái tĩnh, phương pháp sắp xếp theo thứ tự công việc sẽ được trình bày như một cách cơ bản cho bước đầu tiếp cận các phương

pháp lập lịch tối ưu hơn. Ở các phương pháp lập lịch tối ưu hơn, các công việc sẽ được sắp xếp sao cho tối thiểu hoá một hàm mục tiêu nhất định, trong đó bao gồm các dạng bài toán: Tối thiểu độ đáo hạn cực đại $(1||L_{\text{max}})$ hay độ trễ cực đại $(1||T_{\text{max}})$, tối thiểu tổng thời gian hoàn thành $(1||\sum C_j)$ và tối thiểu tổng thời gian hoàn thành có trọng số $(1||\sum w_j C_j)$.

Bài toán tĩnh cung cấp một nền tảng lý thuyết vững chắc giúp phát triển các phương pháp xử lý những dạng bài toán lập lịch phức tạp hơn, đồng thời là bước đầu tiên và quan trọng trong việc nghiên cứu và ứng dụng các thuật toán tối ưu trong lĩnh vực quản lý thời gian và tối ưu hoá quy trình.

2.1.1 Phương pháp sắp xếp theo thứ tự công việc

Phương pháp sắp xếp theo thứ tự công việc trong lập lịch cho máy đơn là một phương pháp cơ bản và dễ hiểu. Bằng cách dựa trên số thứ tự công việc được định sẵn, nguyên lý của phương pháp là sắp xếp các công việc sao cho thứ tự của công việc được sắp theo hướng tăng dần hoặc giảm dần.

Ví dụ 1. Minh hoạ trường hợp bài toán với n = 4 được sắp xếp theo thứ tự giảm dần:

Công việc (j)	4	3	2	1
p_j	2	5	1	3
d_j	6	9	8	3

Ví dụ 2. Minh hoạ trường hợp bài toán với n=4 được sắp xếp theo thứ tự tăng dần:

Công việc (j)	1	2	3	4
p_j	3	1	5	2
d_j	3	8	9	6

Từ p_j cho sẵn, ta có thể dễ dàng xác định được các phần tử $C_j, S_j, W_j, F_j, L_j, T_j, E_j$ và thu được bảng sau

Công việc (j)	r_j	p_j	d_j	C_j	S_j	W_j	F_j	L_j	T_j	E_j
1	0	3	3	3	0	0	3	0	0	0
2	0	1	8	4	3	3	4	-4	0	4
3	0	5	9	9	4	4	9	0	0	0
4	0	2	6	11	9	9	11	5	5	0

Vì bài toán ở trạng thái tĩnh nên hiển nhiên $r_j = 0$, $\forall j = \overline{1,4}$. Từ đây ta có thể xác định được

$$C_{\text{max}} = \sum_{j=1}^{4} p_j = 11,$$

$$L_{\max} = \max_{1 \le j \le 4} \{L_j, 0\} = 5.$$

Ta tính được trung bình thời gian chờ là

$$\overline{W} = \frac{\sum_{j=1}^{4} W_j}{4} = 4,$$

trung bình chu trình là

$$\overline{F} = \frac{\sum_{j=1}^{4} F_j}{4} = 6.75,$$

trung bình độ đáo hạn là

$$\overline{L} = \frac{\sum_{j=1}^{4} L_j}{4} = 0.25,$$

trung bình độ trễ là

$$\overline{T} = \frac{\sum_{j=1}^{4} T_j}{4} = 1.25,$$

và trung bình độ sớm là

$$\overline{E} = \frac{\sum_{j=1}^{4} E_j}{4} = 1.$$

2.1.2 Phương pháp ưu tiên đáo hạn

Tối thiểu độ đáo hạn cực đại $(1||L_{\max})$

Tối thiểu độ trễ cực đại $(1\|T_{
m max})$

2.1.3 Phương pháp quá trình ngắn nhất

Tối thiểu tổng thời gian hoàn thành $(1||\sum C_j)$

Tối thiểu tổng thời gian hoàn thành có trọng số $(1 \| \sum w_j C_j)$

- 2.2. Bài toán có thời điểm sẵn sàng không đồng nhất $(r_j \neq 0)$
- 2.2.1 Phương pháp không ngắt quãng $(1|r_j|\sum C_j)$
- **2.2.2** Phương pháp ngắt quãng $(1|r_j, prmp|\sum C_j)$