1)	E(x) = x exercises regula	arly
	M LX) x has good muscle	e strength
	L(x) = x has low blood	pressure
		I
	$\forall \chi (E(\chi) \rightarrow \mu(\chi))$	
	$\forall X (E(X) \rightarrow L(X))$	
	E (Juanita)	L (Juanita)
	(1) $\exists \chi (M(\chi) \land L(\chi))$	
	$\forall x (E(x) \rightarrow M(x))$	hypothesis
	VX (EM >> L(X))	hypothesis hypothesis
7	Juanita exercises regularly	hypothesis
4	E(C) -> M(C)	universal instantication (1,3)
5	$E(C) \rightarrow L(C)$	universal instantiation (2,3)
6	M(C)	modus Poinens (3,4)
7	L(C)	modus Ponens (3,5)
	$M(C) \wedge L(C)$	conjunction (6,7)
G	$3x \left(M(x) \wedge L(x)\right)$	Existential generalization
		(3,7)
	True	
	If we replace (C) with "Julai pressure"	Arta has low blood
	Pressure"	
	the statement is invalid	belouse we can't
	use modus ponens	

7) The proof used the assumption Yy ((y < x) which assume there is a largest number. However, there is no largest number. Therefore, the proof is invalid.

By the definition of fast squaring trick for 2-digit numbers ends in 5 is its first digit (x+1) and write 25 at the end.

Asume that or is an integer that is between one to nine inclusive.

the two digit number that ends in 5 are 15, 25, 35, ..., 95

we can write it in algebra form as $X \cdot 10 + 5$ then we square it

we got L000 + 5?

By the Square trick definition
the square of the two digit number that
ends in 5 is

(X)(X+1)·100 + 25

then we got 1009(X+1)+25

to find out if they are equal
$(10x+5)^{2}$ $100x(x+1)+25$
$\frac{(10x+5)^2}{=100x^2+100x+25} = \frac{100x(x+1)+25}{=100x^2+100x+25}$
therefore, they are egual and
the fast square trick is true.

4) let
$$x, y, \mp$$
 be real numbers

Then $|x-y| \le |x-7| + |y-2|$

Case $1 = |y| \le x$

$$|x-y| = |x-y|$$

$$|x-z| = |x-z|$$

$$|y-z| = |z-y|$$

$$x-y \le |x-z+z-y|$$

$$x-y \le |x-y|$$

$$x-y \le |x-y|$$

$$x-y \le |x-z+z-y|$$

$$x-y = |y-x|$$

$$|x-y| = |y-x|$$

$$|x-z| = |x-z|$$

$$|y-z| = |y-z|$$

$$y-x \le |x-z+y-z|$$

$$y-x = |y-z|$$

$$y-x = |x-z|$$

$$y-x$$

5)	Song (X) = X 75 a sona
	Remove (x, y) = remove word y from song x
	Song (x) = x is a song Remove (x,y) = remove word y from song x Add (x,y) = add word y to song x
AX (K	emore $(x, u) \rightarrow 7$ Song $(x) \rightarrow 4 \times (Add(x, u) \rightarrow 7)$ Song (x)
	I would say removing a word is modifyling a song
	and if removing a word make it not a song
	and if removing a word make it not a song then adding a word is also modifying a song
	which also makes it not a song.