高等量子力学笔记

陈炎柯*

版本: 1.01

更新时间: October 14, 2020

^{*}chenyanke@stu.pku.edu.cn, 个人主页 http://yankechen.xyz

写在前面

该笔记是在北京大学 2020 年秋季学期上尹澜教授的高等量子力学课程所记录,该课程主要使用的教材是 J. J. Sakurai 以及 Jim Napolitano 所著的《Modern Quantum Mechanics》。课程和教材本身的难度不高,易于理解,对于细节的讲述十分详细,本笔记主要用于快速浏览,追求简短,故省略了大部分如推导一类的过程。主要记录思路和结果。

笔记大部分是随着上课在课堂上写的,目前还没有进行订正,所以可能会有很多 笔误,等后续慢慢再修改吧。

第一章的内容省略了很多,主要原因是我在第一章上课时笔记是手写的,由于内容都是基础,后面也比较懒,就没再整理成LaTeX版的。

笔记模板来自 ElegantIATeX Group,模板下载地址: https://ddswhu.me/resource/ 随课程进行每周更新。

2020.09.30 更新至 2.3 节

2020.10.14 更新至 2.6 节

目录

1	量子	力学的数学基础和基本原理	4
	1.1	量子力学的数学基础	4
	1.2	测量、观测量与不确定原理	4
2	量子	动力学	5
	2.1	时间演化与薛定谔方程	5
	2.2	两种绘景	5
	2.3	谐振子	6
	2.4	薛定谔方程经典极限和 WKB 近似	8
	2.5	路径积分	9
	2.6	A-B 效应	11

1 量子力学的数学基础和基本原理

1.1 量子力学的数学基础

希尔伯特空间、算符、本征态和本征值的基本介绍略。

厄米算符的重要性质(证明略)

- 厄米算符的本征值是实数。
- 厄米算符的属于不同本征值的本征态相互正交

完备性定理:

可以把任意态矢用厄米算符的本征态展开,设 $\hat{A}|\psi_n\rangle = \lambda_n|\psi_n\rangle$ 。

$$|\Psi\rangle = \sum_{n} c_n |\psi_n\rangle, \quad c_n = \langle\psi_n|\Psi\rangle$$
 (1.1)

 $|\psi\rangle_n$ 方向的投影算符为: $|\psi_n\rangle\langle\psi_n|$, 且

$$\sum_{n} |\psi_n\rangle \langle \psi_n| = 1 \tag{1.2}$$

算符的矩阵表示:

设 $\hat{A} |\psi_n\rangle = \lambda_n |\psi_n\rangle$,则

$$\hat{B} = \sum_{m,n} |\psi_m\rangle \langle \psi_m| \,\hat{B} \, |\psi_n\rangle \langle \psi_n| = \sum_{m,n} B_{mn} \, |\psi_m\rangle \langle \psi_n| \tag{1.3}$$

1.2 测量、观测量与不确定原理

观测: 观测前系统处于 $|\Psi\rangle$, 针对可观测量 \hat{A} 进行观测,则观测结果为本征值 λ_n ,观测到个本征值的几率为 $|c_n|^2 = |\langle \psi_n | \Psi \rangle|^2$,且期望为:

$$\langle \hat{A} \rangle = \langle \Psi | \hat{A} | \Psi \rangle = \sum_{n} c_{n}^{*} c_{n} A_{n} = A_{n} P_{n}$$
 (1.4)

不确定原理

$$\langle \Delta \hat{A}^2 \rangle \langle \Delta \hat{B}^2 \rangle \ge \frac{1}{4} |\langle [\hat{A}, \hat{B}] \rangle|^2 \tag{1.5}$$

位置空间、动量空间的展开,波函数等略。

2 量子动力学

2.1 时间演化与薛定谔方程

时间演化算符 $|\psi_t\rangle = \hat{U}(t,t_0) |\psi(t_0)\rangle$

$$\langle \psi(t_0) | \psi(t_0) \rangle = \langle \psi(t) | \psi(t) \rangle \Rightarrow \hat{U}^{\dagger} \hat{U} = 1$$
 (2.1)

$$\hat{U}(t_2, t_1)\hat{U}(t_1, t_0) = \hat{U}(t_2, t_0), \quad \hat{U}(t_1, t_0) = \exp\left[\frac{-i\hat{H}(t_1 - t_0)}{\hbar}\right]$$
(2.2)

$$\hat{U}(t+dt,t_0) - \hat{U}(t,t_0) = \frac{\partial}{\partial t}\hat{U}(t,t_0)dt \Rightarrow i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$
 (2.3)

设 $\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle$,以 $| \psi_n \rangle$ 为基矢

$$|\Psi(t)\rangle = \sum_{n} c_n(t) |\psi_n\rangle, \quad c_n(t) = \langle \psi_n | \psi(t)\rangle \Rightarrow c_n(t) = c_n(0)e^{\frac{-iE_nt}{\hbar}}$$
 (2.4)

可观测量随时间的变化:

$$\langle \hat{A} \rangle = \langle \psi(t_0) | \hat{U}^{\dagger}(t, t_0) \hat{A} \hat{U}(t, t_0) | \psi(t_0) \rangle \tag{2.5}$$

如果 $[\hat{A}, \hat{H}] = 0$ 则 $\langle \hat{A} \rangle$ 不随时间变化,如果 $[\hat{A}, \hat{H}] \neq 0$,则在 \hat{H} 本征矢做基底的情况下

$$\langle \hat{A} \rangle = \sum_{n,m} A_{mn} c_m^*(t_0) c_n(t_0) \exp\left[\frac{-i(E_n - E_m)(t - t_0)}{\hbar}\right], \quad \omega_{nm} = \frac{E_n - E_m}{\hbar}$$
 (2.6)

时间关联函数:

$$C(t) = \langle \psi(t_0) | \psi(t) \rangle = \sum_{n} |c_n(t_0)|^2 \exp\left[\frac{-iE_n(t - t_0)}{\hbar}\right]$$
 (2.7)

关于时间的测不准原理

$$\Delta t \Delta E > \hbar \tag{2.8}$$

其中 Δt 是系统状态变化的特征时间, ΔE 是系统在能量空间的分布范围。

2.2 两种绘景

薛定谔绘景: 算符不随时间变化,态矢随时间的变化由薛定谔方程描述

$$|\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle, \quad i\hbar \frac{d|\psi(t)\rangle}{dt} = \hat{H}|\psi(t)\rangle \Rightarrow |\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$$
 (2.9)

海森堡绘景: 态矢不随时间变化,算符随时间的变化由海森堡方程描述

$$\hat{A}(t) = \hat{U}^{\dagger}(t)\hat{A}(0)\hat{U}(t), \quad \frac{d\hat{F}(t)}{dt} = \frac{1}{i\hbar} \left(-\hat{U}^{\dagger}\hat{H}\hat{F}\hat{U} + \hat{U}^{\dagger}\hat{F}\hat{H}\hat{U} \right) = \frac{1}{i\hbar} [\hat{F}(t), \hat{H}(t)] \quad (2.10)$$

以上约定两种绘景在 $t_0 = 0$ 时刻是相同的

$$\hat{A}^H(t_0 = 0) = \hat{A}^S, \quad |\psi^H\rangle = |\psi^S(t_0 = 0)\rangle, \quad \hat{U}(t) = \hat{U}(t, t_0 = 0)$$
 (2.11)

埃伦福斯特定理:

$$m\frac{\mathrm{d}^2}{\mathrm{d}t}\langle \hat{x}\rangle = \frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{p}\rangle = -\langle \nabla V(\hat{x})\rangle \tag{2.12}$$

基矢的变化:

在薛定谔绘景下

$$\hat{A}^{S} = |\psi_{n}\rangle = \lambda_{n} |\psi_{n}\rangle, \quad |\psi^{S}(t)\rangle = \sum_{n} c_{n}(t) |\psi_{n}\rangle, \quad c_{n}(t) = \langle \psi_{n} | \psi^{S}(t)\rangle$$
 (2.13)

在海森堡绘景下:

$$\hat{A}^{H}(t) | \psi^{H}(t) \rangle = \lambda_{n} | \psi_{n}^{H}(t) \rangle, \quad | \psi_{n}^{H}(t) \rangle = \hat{U}^{\dagger}(t) | \psi^{H} \rangle$$
 (2.14)

$$|\psi^H\rangle = c_n(t)\psi_n^H(t)\rangle, \quad c_n(t) = \langle \psi_n^H(t)|\psi^H\rangle$$
 (2.15)

从海森堡绘景下也可以得到形式上的薛定谔方程(两种绘景相互等价)

2.3 谐振子

一维谐振子

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 \tag{2.16}$$

(后面为了简单不算符不写上标了) 定义:

$$a = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{ip}{m\omega}), \quad a^{\dagger} = a = \sqrt{\frac{m\omega}{2\hbar}}(x - \frac{ip}{m\omega})$$
 (2.17)

可得

$$[a, a] = 0, \quad [a^{\dagger}, a^{\dagger}] = 0, \quad [a, a^{\dagger}] = 1$$
 (2.18)

定义粒子数算符

$$N = a^{\dagger}a, \quad N^{\dagger} = N, \quad [N, a] = -a, \quad [N, a^{\dagger}] = a^{\dagger}$$
 (2.19)

则有

$$H = \hbar\omega(N + \frac{1}{2})\tag{2.20}$$

设 $N|n\rangle = n|n\rangle$,有

$$H|n\rangle = E_n|n\rangle, \quad E_n = \hbar\omega(n + \frac{1}{2}), \quad n = \langle n|a^{\dagger}a|n\rangle \ge 0$$
 (2.21)

此外有

$$Na |n\rangle = (n-1)a |n\rangle \tag{2.22}$$

可设 $a|n\rangle = c_n(n-1)$,可得 $c_n = \sqrt{n}$,即

$$a_n |n\rangle = \sqrt{n} |n-1\rangle, \quad a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$
 (2.23)

由于 $n\geq 0$ 不能无限减小,需设 $a^{n+1}|\alpha\rangle=0$,可得 $\alpha=n$ 。n 必须为非负整数。H 的基态为 $|0\rangle$, $E_0=1/2\hbar\omega$

$$|n\rangle = \frac{(a^{\dagger})^n}{\sqrt{n!}} |0\rangle, \quad E_n = (n + \frac{1}{2})\hbar\omega$$
 (2.24)

易得

$$\langle n|x|n\rangle = \langle n|p|n\rangle = 0, \quad \langle \frac{m\omega^2 x^2}{2}\rangle = \langle \frac{p^2}{2m}\rangle = \frac{\langle H\rangle}{2}$$
 (2.25)

在基态有

$$\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle = \frac{\hbar^2}{4}$$
 (2.26)

本征波函数

$$\psi_0(x) = \langle x | 0 \rangle, \langle x | a | 0 \rangle = 0 \tag{2.27}$$

$$(x + \frac{\hbar}{m\omega} \frac{\mathrm{d}}{\mathrm{d}x})\psi_0(x) = 0, \quad \psi_0(x) = \frac{1}{\pi^4 \sqrt{x_0}} e^{-\frac{1}{2}(\frac{x}{x_0})^2}, \quad x_0 = \frac{\hbar}{\omega}$$
 (2.28)

$$\psi_n(x) = \langle x | \frac{(a^{\dagger})^n}{\sqrt{n!}} | 0 \rangle = \left(\frac{1}{\pi^{1/4} \sqrt{2^n n!}} \right) \left(\frac{1}{x_0^{n+1/2}} \right) \left(x - x_0^2 \frac{d}{dx} \right)^n \exp \left[-\frac{1}{2} \left(\frac{x}{x_0} \right)^2 \right]$$
(2.29)

时间的演化:

由海森堡方程可得:

$$\frac{da}{dt} = -i\omega a, \quad \frac{da^{\dagger}}{dt} = i\omega a^{\dagger} \tag{2.30}$$

定义相干态 $|\alpha\rangle$, 是 a 的本征态, $a|\alpha\rangle = \alpha |\alpha\rangle$, 对 N 的本征态 $|n\rangle$ 展开:

$$|\alpha\rangle = \sum_{n} \alpha_n |n\rangle, \quad \alpha_{n+1}\sqrt{n} = \alpha_n\alpha, \quad \alpha_n = \frac{\alpha^n}{\sqrt{n!}}\alpha_0$$
 (2.31)

$$|\alpha\rangle = \alpha_0 \sum_{n} \frac{\alpha^n}{n!} (a^{\dagger})^n |0\rangle \tag{2.32}$$

由于 a 不是厄米算符, 基矢没有正交性, 约定归一化系数

$$|\alpha_0|^2 e^{|\alpha|^2} = 1 (2.33)$$

有完备性

$$\int d\alpha d\alpha^* |\alpha\rangle \langle \alpha| = \pi \tag{2.34}$$

Homework:Sakurai 书(版本不同以教学网为准)

chapter1:1, 4(a)(b), 7(a)(b), 16,30

chapter2:4, 5, 8(a)(b), 11

10月12日(周一)上交

2.4 薛定谔方程经典极限和 WKB 近似

系统的哈密顿量为:

$$H = \frac{\vec{p}^2}{2m} + V, \quad \langle r|V|r'\rangle = V(r)\delta(r - r')$$
 (2.35)

在坐标表象下:

$$i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r)$$
 (2.36)

稳态解:

$$\psi_n(\vec{r},t) = e^{-iE_n t/\hbar} \psi_n(\vec{r})$$
 (2.37)

$$[-\frac{\hbar^2}{2m}\nabla^2 + V(r)]\psi_n = E_n\psi_n$$
 (2.38)

几率密度与几率流: 由薛定谔方程可以推导出几率密度和几率流:

$$\rho = \psi^* \psi, \quad \vec{j} = -\frac{i\hbar}{2m} [\psi^* \nabla \psi - (\nabla \psi^*) \psi], \quad \frac{\partial}{\partial t} \rho + \nabla \cdot \vec{j} = 0$$
 (2.39)

设波函数为:

$$\psi(\vec{r},t) = \sqrt{\rho(\vec{r},t)} \exp\left(\frac{iS(\vec{r},t)}{\hbar}\right), \quad \psi^* \nabla \psi = \sqrt{\rho} \nabla(\sqrt{\rho}) + \left(\frac{i}{\hbar}\right) \rho \nabla S$$
 (2.40)

可以得到:

$$\vec{j} = \frac{\rho \nabla S}{m} \tag{2.41}$$

即相位在坐标空间的变化导致几率流。

经典极限: 将刚刚写出的波函数的形式应用干薛定谔方程:

$$-\left(\frac{\hbar^{2}}{2m}\right)\left[\nabla^{2}\sqrt{\rho} + \left(\frac{2i}{\hbar}\right)(\nabla\sqrt{\rho})\cdot(\nabla S) - \left(\frac{1}{\hbar^{2}}\right)\sqrt{\rho}|\nabla S|^{2} + \left(\frac{i}{\hbar}\right)\sqrt{\rho}\nabla^{2}S\right] + \sqrt{\rho}V$$

$$= i\hbar\left[\frac{\partial\sqrt{\rho}}{\partial t} + \left(\frac{i}{\hbar}\right)\sqrt{\rho}\frac{\partial S}{\partial t}\right]$$
(2.42)

在经典极限下, $\hbar |\nabla^2 S| \ll |\nabla S|^2$,可以得到:

$$\frac{1}{2m}|\nabla S|^2 + V + \frac{\partial S}{\partial t} = 0 \tag{2.43}$$

此即 Hamilton-Jacobi 方程。从经典极限上看,波函数的相位对应经典力学中的作用量。 WKB 近似: 考虑一维问题, 在 E > V 时

$$S(x,t) = W(x) - Et \Rightarrow W(x) = \pm \int_{-\infty}^{x} dx' \sqrt{2m(E-V)}$$
 (2.44)

对于稳态,由连续性方程以及:

$$\vec{j} = \frac{\rho \nabla W}{m} \tag{2.45}$$

即:

$$\rho \propto (\nabla W)^{-1} = \left(\sqrt{2m(E - V)}\right)^{-1} \tag{2.46}$$

波函数即可写为:

$$\psi(x,t) \propto \frac{1}{(E-V)^{(1/4)}} \exp\left[\pm \frac{i}{\hbar} \int^x dx' \sqrt{2m(E-V)}\right] e^{-iEt/\hbar}$$
 (2.47)

对于 E < V 类似地可以得到:

$$\psi(x,t) \propto \frac{1}{(V-E)^{(1/4)}} \exp\left[\pm \frac{1}{\hbar} \int^x dx' \sqrt{2m(V-E)}\right] e^{-iEt/\hbar}$$
 (2.48)

WKB 近似条件 $\hbar |\nabla^2 S| \ll |\nabla S|^2$, 对应:

$$\lambda = \frac{\hbar}{\sqrt{2m(E-V)}} \ll \frac{2(E-V)}{\left|\frac{dV}{dx}\right|} \tag{2.49}$$

即德布罗意波长远小于势井的特征长度。

在 E = V(x) 附近, WKB 近似不成立, 在 $E = V(x_0)$ 附近做线性展开:

$$V(x) \simeq V(x_0) + V'(x - x_0) \tag{2.50}$$

然后严格求解薛定谔方程,本征波函数为 1/3 阶贝塞尔函数。

2.5 路径积分

$$\psi\left(\mathbf{x}'',t\right) = \int d^3x' K\left(\mathbf{x}'',t;\mathbf{x}',t_0\right) \psi\left(\mathbf{x}',t_0\right)$$
(2.51)

其中传播子为:

$$K(\mathbf{x}'', t; \mathbf{x}', t_0) = \sum_{a'} \langle \mathbf{x}'' \mid a' \rangle \langle a' \mid \mathbf{x}' \rangle \exp \left[\frac{-iE_{a'}(t - t_0)}{\hbar} \right]$$
(2.52)

有两点值得注意:

- (1). $K(\mathbf{x}'', t; \mathbf{x}', t_0)$ 在 \mathbf{x}', t_0 给定的情况下,作为 \mathbf{x}'', t 的函数,满足 Schrödinger 方程。
- (2). $\lim_{t\to t_0} K(\mathbf{x}'', t; \mathbf{x}', t_0) = \delta^3(\mathbf{x}'' \mathbf{x}')$

(3).
$$K(\mathbf{x}'', t; \mathbf{x}', t_0) = 0$$
, for $t < t_0$

传播子是含时 Schrödinger 方程的格林函数,即:

$$\left[-\left(\frac{\hbar^2}{2m}\right) \nabla''^2 + V\left(\mathbf{x}''\right) - i\hbar \frac{\partial}{\partial t} \right] K\left(\mathbf{x}'', t; \mathbf{x}', t_0\right) = -i\hbar \delta^3 \left(\mathbf{x}'' - \mathbf{x}'\right) \delta \left(t - t_0\right)$$
 (2.53)

于是只需要得到 K 就可解出 Schrödinger 方程。

例 2.1 自由粒子: 选取动量本征态 $p|p'\rangle=p'|p'\rangle$ $H|p'\rangle=\left(\frac{p'^2}{2m}\right)|p'\rangle$

$$K(x'', t; x', t_0) = \left(\frac{1}{2\pi\hbar}\right) \int_{-\infty}^{\infty} dp' \exp\left[\frac{ip(x'' - x')}{\hbar} - \frac{ip'^2(t - t_0)}{2m\hbar}\right]$$
(2.54)

积分后可以得到

$$K(x'', t; x', t_0) = \sqrt{\frac{m}{2\pi i\hbar (t - t_0)}} \exp\left[\frac{im (x'' - x')^2}{2\hbar (t - t_0)}\right]$$
(2.55)

可以将传播子写为另一种形式:

$$K(\mathbf{x}'', t; \mathbf{x}', t_0) = \sum_{a'} \langle \mathbf{x}'' \mid a' \rangle \langle a' \mid \mathbf{x}' \rangle \exp\left[\frac{-iE_{a'}(t - t_0)}{\hbar}\right]$$

$$= \sum_{a'} \left\langle \mathbf{x}'' \left| \exp\left(\frac{-iHt}{\hbar}\right) \right| a' \right\rangle \left\langle a' \left| \exp\left(\frac{iHt_0}{\hbar}\right) \right| \mathbf{x}' \right\rangle$$

$$= \left\langle \mathbf{x}'', t \mid \mathbf{x}', t_0 \right\rangle$$
(2.56)

传播子除了理解为跃迁振幅外,也可以理解为在海森堡绘景下对两组位置基矢的变换,海森堡绘景中也有完备性条件:

$$\int d^3x'' |\mathbf{x}'', t''\rangle \langle \mathbf{x}'', t''| = 1$$
(2.57)

我们可以在传播子中插入完备集将时间间隔分成多个部分:

$$\langle \mathbf{x}''', t''' \mid \mathbf{x}', t' \rangle = \int d^3 x'' \langle \mathbf{x}''', t''' \mid \mathbf{x}'', t'' \rangle \langle \mathbf{x}'', t'' \mid \mathbf{x}', t' \rangle$$

$$(t''' > t'' > t')$$
(2.58)

这成为跃迁振幅的结合性。我们可以任意的将时间间隔分为无穷多份:

$$\langle x_{N}, t_{N} \mid x_{1}, t_{1} \rangle = \int dx_{N-1} \int dx_{N-2} \cdots \int dx_{2} \langle x_{N}, t_{N} \mid x_{N-1}, t_{N-1} \rangle \times \langle x_{N-1}, t_{N-1} \mid x_{N-2}, t_{N-2} \rangle \cdots \langle x_{2}, t_{2} \mid x_{1}, t_{1} \rangle$$
(2.59)

由于 $\lim_{\Delta t \to 0} \langle \mathbf{x} + \Delta \mathbf{x}, t + \Delta t | \mathbf{x}, t \rangle \to \delta(\Delta \mathbf{x})$,可以只考虑 $\Delta \mathbf{x}$ 很小的情况。

$$\langle \mathbf{x} + \Delta \mathbf{x}, t + \Delta t | \mathbf{x}, t \rangle = \langle \mathbf{x} + \Delta \mathbf{x} | e^{-iH\Delta t/\hbar} | \mathbf{x} \rangle$$

$$= \langle \mathbf{x} + \Delta \mathbf{x} | e^{-i(p^2/2m)\Delta t/\hbar} | \mathbf{x} \rangle \exp\left(-iV(x)\Delta t/\hbar\right)$$

$$= \left(\frac{m}{2\pi m \Delta t}\right)^{3/2} \exp\left[\frac{-i\Delta}{\hbar} \left(-\left(\frac{\Delta \mathbf{x}}{\Delta t}\right)^2 + V(\mathbf{x})\right)\right]$$

$$= \left(\frac{m}{2\pi m \Delta t}\right)^{3/2} \exp\left[\frac{i}{\hbar} \int_{t}^{t+\Delta t} dt L(\mathbf{x}, \dot{\mathbf{x}})\right]$$

$$\Rightarrow \langle \mathbf{x}'', t \mid \mathbf{x}', t_0 \rangle = \int_{\mathbf{x}'}^{\mathbf{x}''} D[\mathbf{x}] \times \exp\left[\frac{i}{\hbar} \int_{t}^{t+\Delta t} dt L(\mathbf{x}, \dot{\mathbf{x}})\right]$$

2.6 A-B 效应

在电磁场中运动的电子:

$$H = \frac{1}{2m} \left(\mathbf{p} - \frac{e\mathbf{A}}{c} \right)^2 + e\phi \tag{2.61}$$

连续性方程为:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0 \tag{2.62}$$

其中:

$$\mathbf{j} = \left(\frac{\hbar}{m}\right) \operatorname{Im} \left(\psi^* \nabla \psi\right) - \left(\frac{e}{mc}\right) \mathbf{A} |\psi|^2 = \left(\frac{\rho}{m}\right) \left(\nabla S - \frac{e\mathbf{A}}{c}\right)$$
(2.63)

规范变换: 矢势和标势的选取不唯一

$$\phi \to \phi - \frac{1}{c} \frac{\partial \Lambda}{\partial t}, \quad \mathbf{A} \to \mathbf{A} + \nabla \Lambda$$
 (2.64)

此式电场和磁场不发生变化:

$$\mathbf{E} = -\nabla \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$
 (2.65)

但是哈密顿量和薛定谔方程会发生变化:

$$i\hbar \frac{\partial}{\partial t} \psi' = H'\psi', \quad H' = \frac{1}{2m} \left(\mathbf{p} - \frac{e\mathbf{A}'}{c} \right)^2 + e\phi'$$
 (2.66)

即:

$$H' = gHg^{\dagger}, \quad g = \exp\left[\frac{ie\Lambda(\mathbf{x})}{\hbar c}\right]$$
 (2.67)

有性质:

$$g^{\dagger}g = 1, \quad g^{\dagger}\mathbf{x}g = \mathbf{x}, \quad g^{\dagger}\mathbf{p}g = \mathbf{p} + \frac{e + \nabla\Lambda}{e}$$
 (2.68)

$$\psi' = g\psi, \quad S' = S + \frac{e\Lambda}{c} \tag{2.69}$$

考虑在图 2.1中 $\rho_a < \rho < \rho_b$ 部分运动的电子,均匀磁场为: $\mathbf{B} = B\hat{\mathbf{z}}$,产生的磁矢势为:

图 2.1: Hollow cylindrical shell (a) without a magnetic field, (b) with a uniform magnetic field.

$$\mathbf{A} = \left(\frac{B\rho_a^2}{2\rho}\right)\hat{\mathbf{e}}_{\phi}, \quad \nabla \cdot \mathbf{A} = 0 \tag{2.70}$$

其中 ê, 为沿幅角变化的单位矢量, 在柱坐标系下:

$$H = \frac{1}{2m} \left(\mathbf{p} - \frac{e\mathbf{A}}{c} \right)^2, \quad \nabla = \hat{\mathbf{e}}_{\rho} \frac{\partial}{\partial \rho} + \hat{\mathbf{z}} \frac{\partial}{\partial z} + \hat{\mathbf{e}}_{\rho} \frac{1}{\phi} \frac{\partial}{\partial \phi}$$
(2.71)

考虑边界条件:

$$\psi(\mathbf{x})|_{\rho=\rho_a,\rho_b} = 0 \tag{2.72}$$

考虑 $\rho_a \to \rho_b$ 的情况,可以分离变量,只考虑沿幅角变化的方向,将问题简化为沿圆周运动的一维问题:

$$H = -\frac{\hbar^2}{2m} \frac{1}{\rho_a^2} \left[\frac{\partial}{\partial \rho} - \left(\frac{ie}{\hbar c} \frac{B\rho_a^2}{2} \right) \right]^2$$
 (2.73)

本征函数和本征值为:

$$\psi_n = e^{in\phi}, \quad E_n = \frac{\hbar^2}{2m\rho_a^2} \left(n - \frac{eB\rho_a^2}{2\hbar c} \right)^2 \tag{2.74}$$

当 $\frac{eB\rho_a^2}{2\hbar c}$ 为整数 n_0 时,有基态 $\psi_{n_0}, E_{n_0} = 0$,对于磁通:

$$\frac{\phi}{\phi_0} = n_0, \quad \phi = \pi \rho_a^2 B, \quad \phi_0 = \frac{\hbar c}{e}$$
 (2.75)

虽然电子不会感受到磁场,但是会感受其他区域的磁场。下面从路径积分角度分析这个问题,对于图 2.2所示的两条积分路径

上下路径的相位差为:

$$\Delta S = \int_{t}^{t'} dt (L_{\text{above}} - L_{\text{down}}), \quad L_{\text{classical}}^{(0)} = \frac{m}{2} \left(\frac{d\mathbf{x}}{dt}\right)^{2} \to L_{\text{classical}}^{(0)} + \frac{e}{c} \frac{d\mathbf{x}}{dt} \cdot \mathbf{A}$$
 (2.76)

只考虑磁场引起的相位差:

$$\Delta S_B = \left[\left(\frac{e}{\hbar c} \right) \int_{\mathbf{x}_1}^{\mathbf{x}_N} \mathbf{A} \cdot d\mathbf{s} \right]_{\text{above}} - \left[\left(\frac{e}{\hbar c} \right) \int_{\mathbf{x}_1}^{\mathbf{x}_N} \mathbf{A} \cdot d\mathbf{s} \right]_{\text{below}} = \left(\frac{e}{\hbar c} \right) \oint \mathbf{A} \cdot d\mathbf{s}$$

$$= \left(\frac{e}{\hbar c} \right) \Phi_B$$
(2.77)

两条路径相同相位,传播几率大,有利于电子运动。

图 2.2: The Aharonov-Bohm effect.