

La Distribución Whishart (W)

Definición

Si $\mathbf{M}_{(pxp)}$ =**X**′**X** donde $\mathbf{X}_{(mxp)}$ ~ $\mathbf{N}_p(0,\Sigma)$, entonces, '**M**' se dice tiene una distribución Wishart con matriz ' Σ ' y 'm' grados de libertad. Escribiremos **M** ~ $\mathbf{W}_p(\Sigma,m)$.

Si $\Sigma=I_p$, entonces, la distribución está en su forma estándar.

Teorema 3.4.1

Si M ~ $W_p(\Sigma,m)$ y B(pxq), entonces, B'MB ~ $W_q(B' \Sigma B, m)$

$$\Rightarrow$$
) Hipótesis $M \sim W_p(\Sigma, m)$

B(pxq) cte.

Tesis B'MB
$$\sim W_q(B' \Sigma B, m)$$

Prueba.-

p.h.
$$M \sim W_p(\Sigma,m)$$
 \Rightarrow $M = X'X$, donde $X_{(nxp)} \sim N_p(0,\Sigma)$

Si
$$\mathbf{X} = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$$
 \Rightarrow $x_i \sim N_p(0,\Sigma) \quad \forall i=1,...,n$

Pero: B'MB=B'X'XB=(XB)'(XB)

Tenemos que verificar la distribución de las filas de XB

$$\mathbf{XB} = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_m \end{bmatrix} \begin{bmatrix} b_1 & b_2 \dots b_q \\ (px1) & (px1) & (px1) \end{bmatrix} = \begin{bmatrix} x'_1B \\ x'_2B \\ \vdots \\ x'_mB \end{bmatrix}$$

$$(mxp)$$

$$(mxq)$$

 $\mathbf{B'x_i}$ tiene distribución normal dado que $\mathbf{x_i}$ se distribuye como normal p.h.

$$\begin{array}{ll} \textbf{B'x}_i \ \sim \text{N}_q(0,\textbf{B'}\Sigma\textbf{B}) & \Rightarrow & \textbf{XB} \sim \text{N}_q(0,\textbf{B'}\Sigma\textbf{B}) \\ & (qx1) & \\ & \Rightarrow & \textbf{B'MB} \sim \text{W}_q(\textbf{B'}\Sigma\textbf{B,m}) \end{array}$$

Ejemplo

Demostrar que si $\mathbf{M} \sim W_p(\Sigma,m)$ y $\mathbf{a}(px1)$ es un vector constante tal que $\mathbf{a'}\Sigma\mathbf{a}$ es diferente de cero, entonces,

$$\frac{a'Ma}{a'\Sigma a} \sim \chi^2_{(m)}$$

$$\Rightarrow$$
) Hipótesis $\mathbf{M} \sim W_p(\Sigma, m)$
$$\mathbf{a}(px1) \text{ cte. y } \mathbf{a}' \Sigma \mathbf{a} \neq 0$$

$$\mathbf{a'Ma} \qquad 2$$

Prueba.-

Tesis

$$\mathbf{a'Ma} = \mathbf{a'} \ \mathbf{X'X} \ \mathbf{a} = (\mathbf{Xa})'(\mathbf{Xa}) \sim W_1(\mathbf{a'}\Sigma\mathbf{a},\mathbf{m}) \qquad \Rightarrow \quad \mathbf{Xa} \sim \mathsf{N}(0, \mathbf{a'}\Sigma\mathbf{a})$$

$$(\mathsf{pxm})(\mathsf{mxp}) \qquad (\mathsf{mx1})$$

$$\Rightarrow \frac{1}{\sqrt{a'\Sigma a}} \frac{\mathbf{Xa}}{(mx1)} \sim N(0,1) \qquad \Rightarrow \frac{1}{\sqrt{a'\Sigma a}} \frac{(\mathbf{Xa})'}{(1xm)} \frac{1}{\sqrt{a'\Sigma a}} \frac{(\mathbf{Xa})}{(mx1)} \sim \chi^2_{(m)}$$

$$\Rightarrow \frac{\mathbf{a'X'Xa}}{\mathbf{a'\Sigma a}} = \frac{\mathbf{a'Ma}}{\mathbf{a'\Sigma a}} \sim \chi_{(m)}^2$$

Ejemplo

Demostrar que las sub-matrices diagonales de 'M' tienen distribución Wishart

⇒) Hipótesis

 $\mathbf{M} \sim W_p(\Sigma, m)$

Tesis

M_{ii} submatrices principales de **M** Se distribuyen como Wishart.

Prueba.-

Sea
$$\mathbf{R} = \begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ rx(p-r) \end{bmatrix}$$
 \mathbf{y}

$$M(pxp) \sim W_p(\Sigma,m)$$
 p.h

La submatriz principal rxr será: $RMR' = M_{rr}$

Por el Teorema 3.4.1 y p.h.: $\mathbf{M}_{rr} \sim W_r(\mathbf{R'}\Sigma\mathbf{R},m)$

$$\Rightarrow$$
 $\mathbf{M}_{rr} \sim W_r(\Sigma_{rr}, m)$

Ejemplo

Demostrar que cualquier elemento de la diagonal principal de $M_{(pxp)}$ se distribuye como $\sigma_i^2 \chi_m^2$

$$M = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1p} \\ m_{21} & m_{22} & \dots & m_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ m_{p1} & m_{p2} & \dots & m_{pp} \end{pmatrix}$$

Hipótesis
$$\mathbf{M} \sim W_p(\Sigma, m)$$

Tesis

m_{ii} elementos de la diagonal principal de **M** $\mathbf{m}_{ii} \sim \sigma_i^2 \chi_m^2$

Prueba.-

Sea
$$\mathbf{a}$$
 = (0, ..., 1, ..., 0) \mathbf{y} $\mathbf{M}(pxp) \sim W_p(\Sigma,m)$ p.h
$$\uparrow$$
 i-ésimo

$$\Rightarrow$$
 $\mathbf{m}_{ii} = \mathbf{a}' \mathbf{M} \mathbf{a} \sim W_1(\mathbf{a}' \Sigma \mathbf{a}, \mathbf{m})$ por el Teorema 3.4.1 y p.h.:

Pero
$$\mathbf{a'}\Sigma\mathbf{a} = \sigma_{ii}$$
 \Rightarrow $\frac{m_{ii}}{\sigma_{ii}} \sim \chi^2_{(m)}$ \Rightarrow $m_{ii} \sim \sigma_{ii} \chi^2_{(m)}$

Teorema 3.4.3

Si $M_1 \sim W_p(\Sigma, m_1)$ y $M_2 \sim W_p(\Sigma, m_2)$, y si M_1 y M_2 son independientes, entonces, $M_1 + M_2 \sim W_p(\Sigma, m_1 + m_2)$

 \Rightarrow) Hipótesis $M_1 \sim W_p(\Sigma, m_1)$ y $M_2 \sim W_p(\Sigma, m_2)$, M_1 y M_2 son independientes

Tesis $M_1+M_2 \sim W_p(\Sigma, m_1+m_2)$

Prueba.-

p.h.
$$\begin{aligned} M_1 &= X_1' X_1 \sim W_p(\Sigma, m_1) \\ M_2 &= X_2' X_2 \sim W_p(\Sigma, m_2) \end{aligned} \end{aligned} \qquad \text{de alli que:} \quad \begin{aligned} X_1 &\sim N_p(0, \Sigma) \\ (m_1 \times p) \\ X_2 &\sim N_p(0, \Sigma) \\ (m_2 \times p) \end{aligned}$$

$$\Rightarrow X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}_{(m_2 \times p)}^{(m_1 \times p)} \sim N_p(0, \Sigma)$$
 $M_1 y M_2 \text{ son independientes } p.h.$

$$\implies$$
 M= X'X ~ W_p(Σ , m₁+m₂)

Pero:
$$M = X'X = X_1'X_1 + X_2'X_2 = M_1 + M_2$$

$$\Rightarrow \mathbf{M}_1 + \mathbf{M}_2 \sim \mathbf{W}_p(\Sigma, \mathbf{m}_1 + \mathbf{m}_2)$$

Teorema 3.4.4 (Cochran)

Si X(nxp) es una matriz de datos con distribución $N_p(0,\Sigma)$ y C es simétrica, entonces:

- (a) X'CX tiene una distribución suma ponderada de matrices $W_p(\Sigma,1)$ independientes, donde los pesos son los valores caracteríssticos de C.
- (b) X'CX tiene una distribución Wishart si y sólo si C es idempotente, en cuyo caso X´CX \sim W_p(Σ ,r) donde r=Tr(C)=rango(C)

a)

⇒) Hipótesis

$$\mathbf{X}_{(nxp)} \sim \mathsf{N}_{\mathsf{p}}(0,\Sigma)$$

C (nxn) es simétrica

Tesis

X'CX tiene una distribución suma ponderada de matrices $W_p(\Sigma,1)$ independientes, donde los pesos son los valores característicos de **C**.

Prueba.-

$$C = \sum_{i=1}^{n} \lambda_{i} e_{i} e'_{i}$$
 (descomposición espectral)

$$\Rightarrow X'CX = \sum_{1}^{n} \lambda_{i} x' e_{i} e'_{i} x$$

Haciendo
$$\mathbf{y}_i = \mathbf{x}' \mathbf{e}_i \Rightarrow \mathbf{X}' \mathbf{C} \mathbf{X} = \sum_{i=1}^{n} \lambda_i \mathbf{y}_i \mathbf{y}'_i$$

$$Y = \begin{bmatrix} y'_1 \\ y'_2 \\ \vdots \\ y'_n \end{bmatrix} = \begin{bmatrix} e'_1 X \\ e'_2 X \\ \vdots \\ e'_n X \end{bmatrix} = \begin{bmatrix} e'_1 \\ e'_2 \\ \vdots \\ e'_n \end{bmatrix} X = \begin{bmatrix} E' \\ X \\ (pxn)(nxp) \end{bmatrix}$$

Se puede expresar $Y = E X I y dado que por hipótesis <math>X_{(nxp)} \sim N_p(0,\Sigma)$

$$\Rightarrow I' \mu = I(0) = 0$$

$$\Rightarrow E'E = I = \beta I \Rightarrow \beta = 1$$

$$\Rightarrow Y \sim N_p(0, \Sigma)$$

En consecuencia,
$$\mathbf{X}'\mathbf{C}\mathbf{X} = \sum_{1}^{n} \lambda_{i} y_{i} y'_{i} = \sum_{1}^{n} \lambda_{i} W_{p}(\Sigma, 1)$$

b)

 \Rightarrow) Hipótesis $\mathbf{X}_{(nxp)} \sim N_p(0,\Sigma)$

 \mathbf{C} (nxn) es simétrica e idempotente, $\mathbf{r}(\mathbf{C}) = \mathbf{r}$

Tesis $X'CX \sim W_p(\Sigma,r)$

Prueba.- Si C es simétrica e idempotente $\lambda=0$ ó $\lambda=1$ (multiplicidad r)

$$\Rightarrow \operatorname{Tr}(\mathbf{C}) = \operatorname{Tr}(\mathbf{PCP'}) = \operatorname{Tr}\left(\begin{bmatrix} \mathbf{I_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}\right) = \mathbf{r}$$

Del teorema 3.4.4 $X'CX = \sum_{1}^{n} \lambda_{j} W_{p}(\Sigma, 1) = \sum_{1}^{r} \lambda_{j} W_{p}(\Sigma, 1) + \sum_{r+1}^{n} \lambda_{j} W_{p}(\Sigma, 1)$

$$\Rightarrow$$
 X'CX = $\sum_{1}^{1} W_{p}(\Sigma,1) = W_{p}(\Sigma,r)$

La forma cuadrática X'CX se distribuye como una Wishart, donde C es una matriz simétrica y, en especial, si C=(1/n)H.

$$H = I - \frac{11'}{n}$$

Teorema 3.4.5 (Craig)

Si las filas de X están iid $N_p(\mu, \Sigma)$ y si C_1 , C_2 , ..., C_k son matrices simétricas, entonces, $X'C_1X$, $X'C_2X$, ..., $X'C_kX$ son mutuamente independientes si $C_i'C_j=0$ para todo $i\neq j$

Teorema 3.4.7

Dado M ~ $W_p(\Sigma, m)$, m>p. Entonces,

- (a) El ratio a' Σ^{-1} a / a' M^{-1} a se distribuye como una $\chi^2_{(m-p+1)}$ para cualquier vector fijo " $a_{(px1)}$ " y en particular $\sigma^{ii}/m^{ii} \sim \chi^2_{(m-p+1)}$ para $i=1,2,\ldots,p$
- (b) mⁱⁱ es independiente de todos los elementos de M excepto m_{ii}

a) Hipótesis
$$M \sim W_p(\Sigma.m)$$
, $m>p$

Tesis
$$\frac{a'\Sigma^{-1}a}{a'\mathbf{M}^{-1}a} \sim \chi^{2}_{(m-p+1)}$$

Prueba.-

Sea
$$\mathbf{a} = (0,..., 0, 1, 0, ..., 0)$$
 con $\mathbf{a} = \mathbf{p} - 1$, $\mathbf{b} = 1 \implies \mathbf{a'M}^{-1} \mathbf{a} = \mathbf{m}^{ii}$

i-ésimo

Pero:
$$\frac{1}{a' \mathbf{M}^{-1} a} = (a' \mathbf{M}^{-1} a)^{-1} = (m^{ii})^{-1}$$

Del corolario 3.4.6.1:

$$(m^{ii})^{-1} \sim W_1((\sigma^{ii})^{-1}, m-p+1) \implies (m^{ii})^{-1} \sim (\sigma^{ii})^{-1} \chi^2_{(m-p+1)}$$

$$\Rightarrow \sigma^{ii} / m^{ii} \sim \chi^2_{(m-p+1)}$$

Gracias!!!