```
In [3]: |
    import matplotlib.pyplot as plt
    import numpy as np
    import math
    # Radioactive decay of Thorium Isotope-234
    # Here we will solve the differential equation
    # dQ/dt=-rQ, r = 0.02828 days-1, q(0)=100 mg. t is in days
    # Example is taken from the book: Elementary Differential Equations and
    # Boundary Value Problems.By William E. Boyce and Richard D. Prima. page 44.
    # The exact solution can be found to be: Q(t)=100*exp(-rt)
    # The Euler method is implemented to find the numerical solution
    # of the differential equation.
    # The objective is to study the effect of the timestep but also use
    # the simulation to determine the half life
    # of the isotope (halveringstiden)
    dt = 5 \# days
    tstart = 0
    tend = 50 \# days
    r = 0.02828 \# days-1
    T=[]
    Qexact=[]
    Qeuler=[]
    # Save the initial condition y(0)=1 in the arrays
    t = tstart
    qexact = 100 # mg
    qeuler = 100 # mg
    T.append(t)
    Qexact.append(qexact)
    Qeuler.append(qeuler)
    while (t<tend):</pre>
        dt = min(dt,tend-t)
        qeuler =qeuler+dt*(-r*qeuler)
        t = t+dt
        qexact= 100*math.exp(-r*t)
        T.append(t)
        Qexact.append(qexact)
        Qeuler.append(qeuler)
    plt.plot(T,Qexact,T,Qeuler)
    plt.title('Comparing Euler method vs exact solution for radioactive decay')
    plt.grid(True)
    plt.xlabel('Days')
    plt.ylabel('Milligram of isotope Thorium 234')
    plt.legend(['Exact', 'Euler'])
    plt.show()
    print('Start with dt = 5 days (step size) and then reduce the timestep until'
           you think that the numerical solution has converged to the exact solution')
    print('-----')
```

print('From the graphs, try to estimate the half life of the Thorium Isotope.'
'Then try to find the exact '
'half life time using the expression for the exact solution')

Start with dt = 5 days (step size) and then reduce the timestep until you think th at the numerical solution has converged to the exact solution

From the graphs, try to estimate the half life of the Thorium Isotope. Then try to find the exact half life time using the expression for the exact solution

In []:	
In []:	