

Subreddit Classification NLP

Auto Chess vs Teamfight Tactics

Table of Contents

01

Objective

Background

Process

EDAText
preprocessing

Modelling
RandomForest
Naive Bayes
Logistic Regression

Conclusion

1. Objectives

Use NLP to train on classifier to identify which post belongs to which subreddit

About Community

Community-managed and Dev-supported Subreddit for Auto Chess games by Drodo Studios and co.: Dota Auto Chess. Auto Chess Mobile, and Auto Chess PC.

40.6k 35

Players Highrolling Waiting for RNJesus

Created Jan 11, 2019

2. Background

Auto Chess & Teamfight Tactics

Auto Chess

Teamfight Tactics

- Both are auto battler online games
- Require players buy units with in-game gold, level up, upgrade

3. Process

General Flow of Notebook

- 1. Obtain data Pushshift's API (49.9% 50.0%)
 - a. 2000 posts from Auto Chess
 - b. 2000 posts from TFT
- 2. Exploratory Data Analysis
 - a. Data Cleaning
 - b. Detailed Text Preprocessing
 - c. Lemmatization
- 3. Modelling
 - a. Random Forest
 - b. Naive Bayes
 - c. Logistic Regression
- 4. Conclusion

4. EDA

Data Cleaning Text Processing

General Steps for text preprocessing

- Convert words to lowercase
- 2. Remove newlines and tabs
- 3. Strip HTML tags
- 4. Remove links
- 5. Dealing with expand contractions (didn't -> did not)
- 6. Remove stopwords
- 7. Remove special Characters (#@)
- 8. Remove whitespace
- 9. Lemmatization

6 warlock/god Argali back on the menu (King-1 Ranked)

6 warlock god argali back menu king 1 ranked

4. EDA

Visualisation

Auto Chess

Teamfight Tactics

There are a few words that occur quite frequently: 'game', 'build',
'unit', 'time', 'item'.

RandomForest

Parameters		Random Forest Models				
		Base	RandomizedSearchedCV	GridSearchCV		
tfidf	ngram_range	(1,2)	(1,1)	(1,1)		
	min_df	2	2	2		
	max_df	0.9	0.9	0.9		
	max_features	10000	6000	6200		
rf	n_estimators	100	1200	1100		
	min_samples_split	2	5	7		
	min_samples_leaf	1	2	2		
	max_features	auto	log2	log2		
	max_depth	None	50	80		
	bootstrap	TRUE	TRUE	TRUE		
Scores						
Train (cv=5)		0.839	0.863	0.864		
Test (cv=5)		0.805	0.834	0.831		
Accuracy		86.9%	88.2% (+1.3%)	89.2% (+1.0%)		

Comparing RF with Naive Bayes and Logistic Regression

Parameters		Random Forest	Naïve Bayes	Logistic Regression		
		GridSearchCV	GridSearchCV	GridSearchCV		
tfidf	ngram_range	(1,1)	(1,1)	(1,2)		
	min_df	2	1	1		
	max_df	0.9	1	1		
	max_features	6200	4000	6000		
rf	n_estimators	1100	(. 	. (
	min_samples_split	7	○ ··	L k		
	min_samples_leaf	2	7 -	-		
	max_features	log2	-	<u>-</u>		
	max_depth	80				
	bootstrap	TRUE		-		
logr	С	·		10		
	penalty	-	-	12		
	solver	<u>-</u>	2	saga		
Scores						
Train (cv=5)		0.864	0.880	0.865		
Test (cv=5)		0.831	0.838	0.837		
Accuracy		89.2%	89.1%	88.5%		

Evaluation of Models

Evaluation of Models

6. Conclusion

Both random forest and Naive Bayes models perform well for this classification problem.

Recommendations

- 1. Text preprocessing misspelled words, non-english languages
- 2. Compare with other models (SVM, Bayesian Network etc.)
- 3. Consider scraping TFT post by date due to frequent patch updates

Thanks

Do you have any questions?