CSC 225

Algorithms and Data Structures I
Rich Little
rlittle@uvic.ca
ECS 516

Big-Omega Notation

```
Let f: \mathbb{N} \to \mathbb{R} and g: \mathbb{N} \to \mathbb{R}. f(n) is \Omega(g(n)) if and only if there exists a real constant c>0 and an integer constant n_0>0 such that f(n) \geq c \cdot g(n) for all n \geq n_0. \mathbb{N}: non-negative integers \mathbb{R}: real numbers
```

f(n) is $\Omega(g(n))$

Big-Omega Notation

Let $f: \mathbb{N} \to \mathbb{R}$ and $g: \mathbb{N} \to \mathbb{R}$. Then, f(n) is $\Omega(g(n))$ if and only if g(n) is O(f(n)).

E Let
$$g(n) \in O(f(n)) + show that $f(n) \in \Omega(g(n))$
There exists $G(n) > 0$, s.t. $g(n) \in Cf(n)$; $\forall n \ge n_0$
want to show $\exists k, n, > 0$ s.t. $f(n) \ge kg(n)$
 $\exists g(n) \in Cf(n) \quad \forall n \ge n_0$
 $\exists g(n) \in Cf(n) \quad \forall n \ge n_0$
 $\exists f(n) \ge kg(n) \quad \forall n \ge n_0$$$

Quiz: What is true, what is false?

1.
$$2^{n}$$
 is $\Omega(n!)$

$$2^{n} \notin \Omega(2^{n})$$

$$2^{n} \notin \Omega(2^{n})$$

$$2^{n} \notin \Omega(2^{n})$$

$$2^{n} \in \Omega(2^{n})$$

Big-Theta Notation

Let
$$f: \mathbb{N} \to \mathbb{R}$$
 and $g: \mathbb{N} \to \mathbb{R}$.

$$f(n)$$
 is $\Theta(g(n))$ if and only if

there exists $c_1, c_2 > 0$ and $n_0 > 0$ such that

N., N. 70

$$c_1 g(n) \le f(n) \le c_2 g(n)$$

$$c_1g(n) \leq f(n) \leq c_2g(n)$$

$$f(n) \in f(n) = f(n) = f(n)$$
for all $n \geq n_0$.

Big-Theta Notation

Let $f: \mathbb{N} \to \mathbb{R}$ and $g: \mathbb{N} \to \mathbb{R}$. Then, f(n) is $\Theta(g(n))$ if and only if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

=) f(n) & E(g(n)), then
$$f(1/270, n_{0})0$$

s.t. (E(g(n)) & F(n)) & C(29(n)) & H n = n_0
w.t.s. $f(n)$ & O(g(n)), $f(2)0, n_{0} > 0$, s.t.
 $f(n)$ & C(29(n)) & H n > n_0
 $f(n)$ & C(29(

Big-Theta: Examples

Big-Theta: Examples

2.
$$\sum_{i=1}^{n} \log_2 i$$
 is $\Theta(n \log n)$, $v.t.s(x)$ $\sum_{i=1}^{n} \log_i i \in O(n \log n)$

$$\sum_{i=1}^{n} \log_i i = \log(n!)$$
(b) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(c) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(d) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(e) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(f) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(g) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(h) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(h) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(h) $\sum_{i=1}^{n} \log_i i \in O(n \log n)$
(n) $\sum_{i=1}$

Big-Theta: Examples

2.
$$\sum_{i=1}^{n} \log_2 i$$
 is $\Theta(n \log n)$ (b) $\sum_{i=1}^{n} \log_2 i$ is $\Omega(n \log n)$
Assume n is even.
So, ω .t.s. $\exists c, n_0 > 0$, such that $\sum_{i=1}^{n} \log_i i \ge cn \log n$
 $\exists n_0 \in \mathbb{Z} \log i \ne \log 1 + \log 2 + \ldots + \log n + \log n + \log n + \log n$

$$\lim_{i=1}^{n} \log_i i \ne \log_i n$$

$$\lim_$$

Stirling's Formula

• Another useful formula for ordering functions by growth rate is Stirling's Formula (1730)

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \qquad \qquad \wedge \mid \notin \bigcirc \left(\bigwedge^{\wedge}\right)$$

• Alternatively,

$$\log \left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}} < n! < \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}} \right)$$

Intuition of Asymptotic Terminology

- Big-Oh: O(g(n)) upper bound; functions that grow no faster than g(n)
- Big-Omega: $\Omega(g(n))$ lower bound; functions that grow at least as fast as g(n)
- Big-Theta: $\Theta(g(n))$ asymptotic equivalence; functions that grow at the same rate as g(n)

Little-Oh Notation

Let
$$f: \mathbb{N} \to \mathbb{R}$$
 and $g: \mathbb{N} \to \mathbb{R}$.

$$f(n)$$
 is $o(g(n))$

if and only if

for any constant c>0 there is a constant $n_0>0$ such that $f(n)\leq cg(n)$ for $n\geq n_0$

Recall: Analogous to "f(n) < g(n)".

Examples: Little-Oh

1. $2n \text{ is } o(n^2)$ w.t.s. $\forall c>0, \exists n_0>0, s.t.$ $2n \leq cn^c$ $4n2n_6$. $2n4cn^2$? $4c_1 + n_0 = 2c$ $2^{\frac{2}{2}} \leq Cn$ $(nz)^{\frac{2}{2}}$ $2n^{2} \text{ is } not \text{ } o(n^{2})! \text{ [but } 2n^{2} \text{ is } O(n^{2})]}$ $2n^{2} \text{ is } not \text{ } o(n^{2})! \text{ [but } 2n^{2} \text{ is } O(n^{2})]}$ If 2n2 to(nt), +c>0, Ino >0, s.t. 2n2 < ch 222 \$ for any

3c>0, where $2n^2 \neq cn^2$, $4n\geq 1$

Little-Omega Notation

Let
$$f: \mathbb{N} \to \mathbb{R}$$
 and $g: \mathbb{N} \to \mathbb{R}$.

$$f(n)$$
 is $\omega(g(n))$

if and only if

for any constant c>0 there is a constant $n_0>0$ such that $f(n)\geq cg(n)$ for $n\geq n_0$

Recall: Analogous to "f(n) > g(n)".

Little-Omega Notation

Let $f: \mathbb{N} \to \mathbb{R}$ and $g: \mathbb{N} \to \mathbb{R}$. Then, f(n) is $\omega(g(n))$ if and only if g(n) is o(f(n)).

Det
$$f(n) \in w(g(n))$$
, for all $c>0$, $f_{n>0}$ s.t. $f(n) \ge cg(n)$, $f(n) \ge n_0$.

Whise $g(n) \in cf(n)$, that is, $f(n) \ge n_0$, $f(n) \ge n_0$, $f(n) \le n_0$, $f(n) \le n_0$, $f(n) \le n_0$, $f(n) \le n_0$, $f(n) \ge n_0$,

Alternate Limit Definitions

• The limit as can reveal the asymptotic relationship provided it exists.

$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$	\Rightarrow	$f(n) \in O(g(n))$
$ \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 $	\Rightarrow	$f(n) \in \mathcal{G}(g(n))$
$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	\Rightarrow	$f(n) \in (g(n))$
$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 $	\Rightarrow	$f(n) \in o(g(n))$
$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty $	\Rightarrow	$f(n) \in \omega(g(n))$

17

Examples using Limits

1.
$$2n^2$$
 is $\omega(n)$

$$\lim_{n\to\infty} \frac{2n^2}{n} = \lim_{n\to\infty} 2n = \infty$$

$$\lim_{n\to\infty} 2n = \infty$$

$$\lim_{n\to\infty} 2n = \infty$$

2. $n \log n \text{ is } o(n^2)$

$$\frac{\text{lim } A \log n}{n^2} = \frac{\text{lim } \log n}{n + \log n} = \frac{\text{lim } \sqrt{n + \log n}}{n + \log n} = \frac{1}{\log n}$$

$$= \frac{1}{n + \log n} = \frac{1}{\log n} + \frac{1}{\log n} + \frac{1}{\log n} = \frac{1}{\log n}$$

Examples using Limits

Show that $\log^x n \in O(n^y)$ for any fixed constants x, y > 0.

$$\lim_{n\to\infty} \frac{(\log n)^{\frac{1}{2}}}{n^{\frac{1}{2}}} = \lim_{n\to\infty} \frac{\log n}{n^{\frac{1}{2}}}$$

$$= \lim_{n\to\infty} \frac{\log n}{n^{\frac{1}{2}}} = \lim_{n\to\infty} \frac{\log n}$$

19