第2章 Sites and Topoi

七条彰紀

2019年6月19日

目次

1	Motivation.	2
2	Sites.	2
2.1	Definitions	2
2.2	Examples	4
3	Sheaves.	7
3.1	Definitions	7
3.2	Examples	8
3.3	Propositions	9
4	Points and Stalks.	13
5	Morphism of Shaves.	14
5.1	Definitions	14
5.2	Examples	14
5.3	Propositions	15
6	Тороі.	16
6.1	Definitions	16
6.2	Propositions.	16

1 Motivation.

scheme, stack 等には以下のような包含関係がある.

最終的にセミナーを通じて我々が定義したいのは algebraic stack であるが、今回はそれよりも定義が簡素な "space"を定義する. 先に space の定義文を示そう.

定義 1.1 (Space, [2] p.26)

S:: scheme とする. Space over S (or S-space) とは,big etale site over S 上にある,集合の sheaf である.

ここに現れる "big etale site"と "big etale site 上の sheaf"を以下で定義する. さらに sheaf の射について 幾つか定義をすれば、algebraic space まで定義できる.

定義だけでは space の local は性質を調べる手段がないため、次回は「高次版の sheaf の貼り合わせ」と呼べる "Descent theory"を学ぶ.

2 Sites.

2.1 Definitions.

以下で導入する Grothendieck topology は、「Sheaf を定義するのに必要な位相空間の定義を抽出し、圏論的に一般化したもの」である。X:: toplological space とし、sheaf on X の定義を見なおしてみよう。すると、sheaf on X は次に挙げるもののみを用いて定義されていると分かる。

- (i) X の開部分集合と包含写像が成す圏.
- (ii) 開部分集合 $U \subseteq X$ の open covering.
- (iii) 同じく U の open covering :: $\{U_i\}_i$ が与えられたときの族 $\{U_i \cap U_j\}_{i,j}$

そこで次のように定義する.

定義 2.1 (Grothendieck Topology)

 ${\bf C}$:: cateogory について、 ${\bf C}$ 上の Grohendieck topology は任意の $X\in {\bf C}$ に ${\bf C}$ の射の集まり $\{X_i\to X\}_{i\in I}$ の集まり (collection of collections) を対応させる Cov で構成される。 さらに、Cov は以下を満たすように要請される。

- (a) $X' \to X$:: iso ならば $\{X' \to X\} \in \text{Cov}(X)$.
- (b) $\{U_i \to U\} \in \text{Cov}(U), V \to U \in \mathbf{C} \text{ kolor, } \{U_i \times_U V \to V\} \in \text{Cov}(V).$
- (c) $\{U_i \to U\}_i \in \operatorname{Cov}(U)$ をとり、さらに各 i について $\{V_{i,j} \to U_i\}_j \in \operatorname{Cov}(U_i)$ をとる。 この時、合成も Cov に入っている: $\{V_{i,j} \to U_i \to U\}_{i,j} \in \operatorname{Cov}(U)$.

注意 2.2

ここで「集合」ではなく「集まり」という言葉を用いたのは、これらが集合ではない可能性があるからである。この問題(圏論でもしばしば現れる)を取り扱うためには、2 つの解決策がある。1 つ目は Grothendieck の宇宙公理 U を ZFC 公理系に加えた ZFCU 公理系で議論を行うことである。もう 1 つは真のクラスを扱える NBG 公理系で議論を行うことである。

後者の方針を採用する場合は、Grothendieck topologyの定義で現れた「集まりの集まり」という言葉に注意が必要である。というのも、たとえ NBG 公理系でも、真のクラスを要素に持つ真のクラスは許されていないからである。この問題を解決するには以下のように Cov を定義すれば良い(以下のように書き換えれば良いという事がわかれば十分なので、実際に以下の定義を採用することはない):

全ての $U \in \mathbf{C}$ について $\mathrm{Cov}(U)$ は codomain が U である射のクラスである.任意の要素 $[V \to U] \in \mathrm{Cov}(U)$ についてこの要素を含む $\mathrm{Cov}(U)$ の部分クラス $\{U_i \to U\}_i \subset \mathrm{Cov}(U)$ が存在し,以下が成立する.(以下略).

Cov の元には大抵,以下の条件が課される.

定義 2.3 ((Jointly) Surjective Family)

ある圏の射の集まり $\{U_i \rightarrow U\}_i$ について,

$$\bigsqcup_{i} U_{i} \to U$$

が surjective である時、(同値な条件として、 $\operatorname{im}(U_i \to U)$ の set-theoritic union が U に等しい時、) この集まり $\{U_i \to U\}$ を (jointly) surjective family という.

定義 2.4 (Site)

圏 \mathbf{C} と \mathbf{C} 上の Grothendieck topology :: Cov の組を site と呼ぶ. site に対し、その部分である圏を the underlying category と呼ぶ. しばしば Cov を略して \mathbf{C} のみで site を表す.

定義 2.5 (Localized Site.)

site :: \mathbf{C} と $X \in \mathbf{C}$ について, localized site :: \mathbf{C}/X を以下のように定義する.

 \mathbf{C}/X の underlying category は slice cageory :: \mathbf{C}/X である. したがって対象は \mathbf{C} 内の X への射である. Grothendieck topology :: Cov は,

$$\{[U_i \to X] \to [U \to X]\}_i \in \text{Cov}([U \to X]) \implies \{U_i \to U\} \in \text{Cov}(U).$$

のように定められる.

定義 2.6 (Diagrams (or Comma Site).)

 Δ :: category, ${\bf C}$:: site, $F:\Delta^{op}\to {\bf C}$:: functor とする. この時 site :: ${\bf C}_F$ を以下のように定める. まず undrelying category は $({\rm id}_{\bf C}\downarrow F)$ である. したがって対象は $X\to F(\delta)$ $(\delta\in\Delta)$ である. Cov は以下のように定める.

$$\left\{ \begin{array}{c} X_i' \xrightarrow{f_i^{\flat}} X \\ \downarrow & \downarrow \\ F(\delta_i) \xrightarrow{F(f_i)} F(\delta) \end{array} \right\} \in \operatorname{Cov}([X \to F(\delta)]) \implies f_i \colon \delta \to \delta_i \ :: \ \text{iso. and} \ \{f_i^{\flat} \colon X_i' \to X\} \in \operatorname{Cov}(X).$$

定義 2.7 (Continuous Functor.)

C, C' :: sites とする. $f: C \to C'$:: functor が continuous とは、以下の 2 つが成立すること:

(i) 任意の $X \in \mathbb{C}$ と $\{U_i \to X\}_i \in \text{Cov}_{\mathbb{C}}(X)$ について,

$$\{f(U_i) \to f(X)\}_i \in \operatorname{Cov}_{\mathbf{C}'}(f(X))$$

となる.

(ii) $\mathbf C$ の任意の射 $X_1 \to Y, X_2 \to Y$ について、fiber product :: $X_1 \times_Y X_2$ が $\mathbf C$ に存在するならば、

$$f(X_1 \times_Y X_2) \cong f(X_1) \times_{f(Y)} f(X_2).$$

注意 2.8

後に示すように, continuous functor はよくあるケースで category of sheaves on site の間の関手を誘導する. これは scheme の間の continuous map が category of sheaves on scheme の間の関手 (e.g. inverse image functor, direct image functor) を定めるのと同じである.

2.2 Examples.

2.2.1 Site.

例 2.9 (Classical topology.)

X:: topological space とし、O(X) を以下のような圏とする.

対象 X の開集合.

射 包含射.

この時, $U \in O(X)$ の covering :: Cov(U) を, U への包含射のみから成る jointly surjective family の集合^{†1} とする.

以上で定まる site :: (O(X), Cov) は通常の topology を Grothendieck topology の枠組の中で再現している.

以下で主に用いるのは、 \mathbf{C} が slice category :: \mathbf{Sch}/X ($X \in \mathbf{Sch}$) の部分圏であるような site である. $X \in \mathbf{Sch}$ に対して、このような site は underlying category ($\subset \mathbf{Sch}/X$) と Grothendieck topology (Cov) からなるから、以下の図の (a) $U \to X$, (b) $U_i \to U$ がどのようなものであるか定めれば定義できる.

 $^{^{\}dagger 1}$ 包含射の個数は高々 $2^{\# X}$ 以下の濃度なので、family の集まりは集合.

すなわち,以下の未完成な定義文をテンプレートとする,一連の定義文の群がある.

定義 **2.10** (*** site)

X :: scheme について, 圏 \mathbf{C} を以下で定める.

対象 (a) である射 $U \to X$.

射 二つの対象の間の射 $[U \to X] \to [U' \to X]$ は,X-morphism :: $U \to U'$.

 $[U \to X] \in \mathbf{C}$ に対して、 $\mathrm{Cov}(U)$ を (b) である射の集まり $\{U_i \to U\}_i$ であって jointly surjective family であるものの集まりとする.

以上の ${\bf C}$ と Cov からなる site を *** site of X と呼ぶ.

Grothendieck topology の定義から分かるとおり、性質 (b) が stable under base change & composition

であれば、以上のテンプレートは site の定義文と成る.

定義 2.11

以上の定義文テンプレートを用いて, (a), (b) と各 site の定義を以下のように対応させる. (a) が "-"とある 箇所は「**Sch**/X の任意の射」を意味する. さらに, "open inclusion"は Zariski 開集合の間にある包含射のことである(したがって small Zariski site の underlying category には Zariski 開集合しか無い).

***	small Zariski	big Zariski	small etale	big etale
(a)	open immersion	_	etale	_
(b)	open immersion	open immersion	etale	etale
* * *	lisse-etale	smooth	fppf	fpqc
(a)	smooth	smooth	-	_
(b)	etale	smooth	flat&locally of finite presentation	flat&quasi-compact

図の再掲:

$$(b) extstyle egin{pmatrix} U_i \ U \ \end{bmatrix} \in ext{Cov}(U) \ (a) extstyle egin{pmatrix} \mathbf{C} \ \mathbf{C} \ \end{bmatrix} \in ext{Obj}(\mathbf{C}) \ \end{pmatrix}$$

注意 2.12

"fppf"は "fidèlement plate de présentation finie" (仏語) すなわち "faithfully flat and of finite presentation" の略である. flat& locally of finite presentation ならば実際にこのように成る. 同様に "fpqc"は "fidèlement plat et quasi-compact" (仏語) すなわち "faithfully flat and quasi-compact"の略である.

定義 2.13*** site of X の記号を以下のように定める.

***	small Zariski	big Zariski	small etale	big etale
名前	Zar(X)	ZAR(X)	$\operatorname{Et}(X)$	$\mathrm{ET}(X)$
* * *	lisse-etale	smooth	fppf	fpqc
名前	Lis- $\mathrm{Et}(X)$	Sm(X)	$\operatorname{Fppf}(X)$	$\operatorname{Fpqc}(X)$

[6] では big Zariski site of X を (Sch/X) $_{Zariski}$ などと書く.

2.2.2 Continuous Functor.

例 2.14

X, X':: topological space について,O(X), O(X'):: classical site, $f: X \to X'$::continuous map とする.この時, $f^{-1}: O(X') \to O(X)$:: continuous functor.(f は必ずしも continuous functor でないことに注意.)

注意 2.15

 $f \colon \mathbf{C} \to \mathbf{C}' ::$ functor between sites が continuous であるための条件を再掲する.

(i) 任意の $X \in \mathbb{C}$ と $\{U_i \to X\}_i \in \text{Cov}_{\mathbb{C}}(X)$ について,

$$\{f(U_i) \to f(X)\}_i \in \operatorname{Cov}_{\mathbf{C}'}(f(X))$$

となる.

(ii) \mathbb{C} の任意の射 $X_1 \to Y, X_2 \to Y$ について、fiber product :: $X_1 \times_Y X_2$ が \mathbb{C} に存在するならば、

$$f(X_1 \times_Y X_2) \cong f(X_1) \times_{f(Y)} f(X_2).$$

例と照らし合わせると、1 つめの条件は f^{-1} が開集合を開集合に写すことに対応し、2 つめの条件は f^{-1} が \cap と交換することと対応する.

例 2.16

従属関係

open immersion
$$\implies$$
 etale \implies fppf

があるから、inclusion map :: $\operatorname{Zar}(X) \hookrightarrow \operatorname{ET}(X) \hookrightarrow \operatorname{Fppf}(X)$ はそれぞれ continuous.

例 2.17

flat morphism :: $f: X \to Y$ をとり、f による pullback functor を P_f とする. (TODO: 要確認.)

3 Sheaves.

3.1 Definitions.

定義 3.1 (Sheaf, Topos, Morphism of Topoi.)

- (i) site :: S 上の presheaf とは、functor :: \mathcal{F} : $S^{op} \to \mathbf{Sets}$ のことである.
- (ii) 射影 $U \times_B V \to U$ を presheaf :: \mathcal{F} で写した射を $\operatorname{res}_U^{U \times_B V}$ と書く.
- (iii) presheaf on S :: \mathcal{F} が sheaf であるとは、以下の図式が equalizer diagram であるということ.

$$\mathcal{F}(U) \longrightarrow \prod_{i \in I} \mathcal{F}(U_i) \Longrightarrow \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \times_U U_j)$$

ここで右の並行射は $\operatorname{res}_{U_i}^{U_i imes U_j}, \operatorname{res}_{U_j}^{U_i imes U_j}$ である.

(iv) Site :: $S \perp \mathcal{O}$, 圏 $\mathbf{C}(=\mathbf{Sets}, \mathrm{Rings}, \mathrm{AbGrp}, \dots)$ への presheaf の圏を $\mathbf{PSh}(S, \mathbf{C})$, sheaf の圏を $\mathbf{Sh}(S, \mathbf{C})$ と書く. $\mathbf{C} = \mathbf{Sets}$ の場合は略して $\mathbf{Sh}(S)$, $\mathbf{PSh}(S)$ と書く.

- (v) morphism of shaeves :: $\mathcal{F} \to \mathcal{F}'$ とは、natural transformation のことである.
- (vi) T :: category が topos であるとは, category of sheaves of sets on a site と圏同値であるということである.
- (vii) T,T' :: topoi とする. morphism of topoi :: $f:T\to T'$ とは、以下の 3 つの射 (2 functor and 1 isomorphism.) からなる.

$$f_*: T \to T', \quad f^*: T' \to T, \quad \phi: \operatorname{Hom}_T(f^*(-), -) \xrightarrow{\cong} \operatorname{Hom}_{T'}(-.f_*(-)).$$

注意 3.2

上で定義した sheaf of sets と同様に、sheaf of abelian groups, sheaf of rings、... が定義できる. これらはそれぞれ sheaf of sets の圏 :: Sh(C, Sets) における abelian group objects, ring objects、... と定義される.

注意 3.3

"Topos"はギリシャ語で「場 (place)」を意味する. ギリシャ語なので複数形は "topoi".

X:: scheme について,X に関する topos を X_{et}, X_{ET}, \ldots などと書く.著者(例えば [6])によってはこれらの記号を \mathbf{Sch}/X を underlying catgory とする site に用いる.しかし "Grothendieck's insight is that the basic object of study is the topos, not the site." (M.Olsson "Stacks") というということから,topos に site より簡単な記号を与えるのは理解できることである.

定義 **3.4** (Direct Image Functor.)

 $f: \mathbf{C} \to \mathbf{C}'$ を functor of sites とする. この時, $F \in \mathbf{PSh}(\mathbf{C})$ について

$$f_*F(-) := F(f(-))$$

とおくと, $f_*F \in \mathbf{PSh}(\mathbf{C}')$ が得られる. f :: continuous functor ならば, $\mathcal{F} \in \mathbf{Sh}(\mathbf{C})$ に対し同様にして $f_*\mathcal{F} \in \mathbf{Sh}(\mathbf{C}')$ が得られる.

定義 3.5 (Ringed Topos.)

- (i) T :: topos と T の ring object :: Λ を合わせて ringed topos と呼ぶ.
- (ii) morphism of ringed topoi :: $(f, f^{\#})$: $(T, \Lambda) \to (T', \Lambda')$ $\mbox{i.}$
 - morphism of topoi :: $f = (f_*, f^*, \phi) : T \to T' \ \xi$,
 - morphism of ring in T' :: $f^{\#}:\Lambda'\to f_*\Lambda$ の組である.

3.2 Examples.

例 3.6

X:: scheme と、 \mathbf{Sch}/X の部分圏を underlying category とする site :: $\mathbf{C}(e.g. \text{ small/big Zariski site})$ について、 $\underline{X}(-) = \mathrm{Hom}_{\mathbf{C}}(-,X)$ で functor :: $\underline{X}: \mathbf{C} \to \mathbf{Sets}$ を定める。この時、 $\underline{X}::$ presheaf on \mathbf{C} . 特に、後に示すとおり、fppf toplogy より荒い位相 (e.g. Zariski, smooth, etale, ...) で sheaf となる。

例 3.7 (Constant (Pre)sheaf.)

C:: site とし、以下のように presheaf on C:: \mathcal{F} を定める.

$$\mathcal{F} \colon \emptyset \neq U \mapsto \mathbb{R}, \qquad \emptyset \mapsto \{0\}.$$

constant presheaf on a scheme が sheaf でないのと全く同じ理由で、この $\mathcal F$ は sheaf でない. 具体的には $U \in \mathbf C$ が連結でない scheme ならば、 $U_1 \sqcup U_2 = U$ なる covering を取ると、定義にある diagram が equalizer diagram にならない.

例 3.8

S:: scheme について、Sch/S 上の presheaf を

$$\mathcal{O}_S \colon [X \to S] \mapsto \Gamma(X, \mathcal{O}_X)$$

で定める. この sheaf は "structure sheaf of S" と呼ばれ, \mathbb{A}^1_S と同型.

3.3 Propositions.

定理 3.9

C:: site とする. 忘却関手

$$Fgt \colon \mathbf{Sh}(\mathbf{C}) \to \mathbf{PSh}(\mathbf{C}).$$

は left adjoint functor :: Shff を持つ.

注意 3.10

以下で述べる *Shff* の構成は "plus construction"と呼ばれる. Kay Werndli "Sheaves From Scratch" §3.5 では etale bundle という物を用いた構成をしている.

証明のために幾つか定義しておく.

定義 **3.11** ([6], Tag 00W1)

 $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ と、 $X \in \mathbf{C}$ の cover :: $\mathcal{U} = \{U_i \to X\} \in \mathrm{Cov}(X)$ に対し、

$$H^0(\mathcal{U}, \mathcal{F}) = \text{equalizer of } \left[\prod_{i \in I} \mathcal{F}(U_i) \Longrightarrow \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \times_X U_j) \right]$$

ここで二つの並行射はそれぞれ $\operatorname{res}_{U_i}^{U_i \times U_j}$, $\operatorname{res}_{U_j}^{U_i \times U_j}$ である。すなわち,ここにある並行射は sheaf の定義にあるものである。この diagram は圏 **Sets** の中のものなので,**index ::** I が集合ならばこの equalizer は常に存在する。(H^0 という記号は,これが $\mathcal F$ の 0 次 Čech cohomology であることによる。)

直ちに分かるとおり、Cov(X) は細分を射として圏を成し、 $H^0(-,\mathcal{F})$ は圏 Cov(X) から **Sets** への反変関手である. \mathcal{F}^+ は

$$\mathcal{F}^+(X) = \operatorname{colim}_{\mathcal{U} \in \operatorname{Cov}(X)} H^0(\mathcal{U}, \mathcal{F}) = \operatorname{colim}(\operatorname{Cov}(X) \to^{H^0(-,\mathcal{F})} \mathbf{Sets}).$$

と定義される $^{\dagger 2}$. 任意の $\mathcal{U} \in \text{Cov}(X)$ について、常に標準的全射 $\iota_{\mathcal{U}} \colon H^0(\mathcal{U}, \mathcal{F}) \to \mathcal{F}^+(X)$ が存在する.

$$(\tilde{s}_U|_W)_{W\ni W\subseteq U\in\mathcal{U}}=(\tilde{t}_V|_W)_{W\ni W\subseteq V\in\mathcal{V}}$$

となる.

 $^{^{\}dagger 2}$ 定義から, $s,t\in\mathcal{F}^+(X)$ が等しいとは,以下が成り立つこと: s,tへそれぞれ写る $(\tilde{s}_U)_{U\in\mathcal{U}}\in H^0(\mathcal{U},\mathcal{F}), (\tilde{t}_V)_{V\in\mathcal{V}}\in H^0(\mathcal{V},\mathcal{F})$ が存在し, \mathcal{U},\mathcal{V} の共通のある細分 \mathcal{W} において

 $H^0(\{\mathrm{id}_X\colon X\to X\},\mathcal{F})=\mathcal{F}(X)$ であり、しかも任意の cover of X は id_X の細分であるから、X 毎に標 準的な射 θ : $\mathcal{F}(X) \to \mathcal{F}^+(X)$ が存在する.

$$^{ heta}$$
 $\mathcal{F}(X)$ $\mathcal{F}^+(X)$

$$\mathcal{F}(X) = \Big\{ H^0(\mathcal{U}, \mathcal{F}) \mid H^0(\mathcal{U}', \mathcal{F}) \Big\}_{\mathcal{U}, \mathcal{U}'}$$

 $\mathbf{Sh}(\mathbf{C})$ は以下を満たす時 $\mathrm{separated}$ であるという.

$$orall X\in \mathbf{C}, \quad orall \{U_i o X\}_i\in \mathrm{Cov}(X), \quad \mathcal{P}(X) o \prod_{i\in I}\mathcal{P}(U_i):: inj.$$
 $\mathcal{F}\in\mathbf{PSh}(\mathbf{C})$ まま、

: $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ を考える。任意の $X \in \mathbf{C}, \mathcal{U} \in \mathrm{Cov}(X), U_0 \in \mathcal{U}$ について,以下の図式

$$\mathcal{F}^{+}(X)$$
 $\mathcal{F}^{+}(U_{0})$ $\mathcal{F}^{+}(U_{0})$ $\mathcal{F}(U_{0})$

$$H^0(\mathcal{U},\mathcal{F})$$
 $\mathcal{F}(U_0)$

 $\prod_{U\in\mathcal{U}}\mathcal{F}(U)$

補題 3.15

site :: \mathbf{C} , presheaf :: $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ について以下が成り立つ.

- (a) \mathcal{F}^+ :: separated.
- (b) \mathcal{F}^+ :: sheaf if \mathcal{F} :: separated.
- (c) $\theta: \mathcal{F} \to \mathcal{F}^+$:: iso if \mathcal{F} :: sheaf.
- (d) $\theta \colon \mathcal{F} \to \mathcal{F}^+ :: universal,$

(証明).

■ \mathcal{F}^+ :: separated. $X \in \mathbf{C}$ をとり、 $s,t \in \mathcal{F}^+(X)$ をとる. ある cover of $X :: \mathcal{U} \in \text{Cov}(X)$ について

$$\forall U \in \mathcal{U}, \ s|_U = t|_U$$

が成り立つと仮定してs=tを示す.

まず、 $\iota_{\mathcal{U}'}\big((\tilde{s}_{\mathcal{U}'})_{\mathcal{U}'\in\mathcal{U}'}\big)=s$ となる様に $\mathcal{U}'\in\mathrm{Cov}(X)$ と $(\tilde{s}_{\mathcal{U}'})\in H^0(\mathcal{U}',\mathcal{F})$ をとる。 \mathcal{U}' を必要に応じて更に細かくとれば、t についても同様の $(\tilde{t}_{\mathcal{U}'})\in H^0(\mathcal{U}',\mathcal{F})$ が存在するように出来る。さらに、 \mathcal{U}' を \mathcal{U} の細分とする。

この時、補題 $A \ge U'$ が U の細分であることと仮定から

$$s|_{U'} = \theta(\tilde{s}_{U'}) = \theta(\tilde{t}_{U'}) = s|_{U'} \ (\in \mathcal{F}^+(U')).$$

したがって $\mathcal{F}^+(U')$ の定義から、各 U' について以下のような条件を満たす $\mathcal{V}_{U'}\in\mathcal{V}(U')$ が存在する: $(\tilde{s}_V')_{V\in\mathcal{V}_{U'}}, (\tilde{s}_V')_{V\in\mathcal{V}_{U'}}\in H^0(\mathcal{V}_{U'}, \mathcal{F})$ であって

$$\iota((\tilde{s}'_V)_{V \in \mathcal{V}_{U'}}) = s|_{U'}, \quad \iota((\tilde{t}'_V)_{V \in \mathcal{V}_{U'}}) = t|_{U'}$$

となるならば $(\tilde{s}_V')_{V\in\mathcal{V}_{U'}}=(\tilde{t}_V')_{V\in\mathcal{V}_{U'}}$ となる.これら $\mathcal{V}_{U'}$ 達を束ねて \mathcal{U}' の細分 $\mathcal{V}=\{V\to U'\to U\to X\}\in\mathrm{Cov}(X)$ を得る. $(\tilde{s}_{U'}),(\tilde{t}_{U'})$ も細分して

$$\tilde{s} = (\tilde{s}_{U'}|_V)_{V \ni V \subset U' \in \mathcal{U}'}, \ \tilde{t} = (\tilde{t}_{U'}|_V)_{V \ni V \subset U' \in \mathcal{U}'} \in H^0(\mathcal{U}^2, \mathcal{F})$$

を得る.

以上の議論から、各U'について

$$\forall U' \in \mathcal{U}', \quad \forall V \in \mathcal{V}, \quad V \subseteq U' \implies \tilde{s}'_V = \tilde{t}'_V \in H^0(\mathcal{V}, \mathcal{F}).$$

 \mathcal{V} は \mathcal{U}' の細分だから,これは結局 $\tilde{s}=\tilde{t}$ ということである.さらに, \tilde{s},\tilde{t} は $(\tilde{s}_{U'})_{U'\in\mathcal{U}'},(\tilde{t}_{U'})_{U'\in\mathcal{U}'}$ の細分^{†3} であり,したがって $\iota_{\mathcal{V}}(\tilde{s})=s,\iota_{\mathcal{V}}(\tilde{t})=t$.以上より,s=t.

■ \mathcal{F}^+ :: sheaf if \mathcal{F} :: separated. \mathcal{F} :: separated 故に $\mathcal{F}(X) \to H^0(\mathcal{U}, \mathcal{F})$:: inj なので θ :: inj. cover of X :: $\mathcal{U} = \{U_i \to X\}_{i \in I} \in \operatorname{Cov}(X)$ と、以下を満たす元 $(s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}^+(U_i)$ をとる:

$$\forall i, i' \in I, \quad s_i|_{U_i \times U_{i,l}} = s_{i'}|_{U_i \times U_{i,l}} \tag{*}$$

すると補題 A より,

$$\theta(\tilde{s}_{i,j}) = s_i|_{U_{i,j}}$$

 $^{^{\}dagger 3}$ 被覆の細分に合わせた呼び方である. 多分, $H^0(-,\mathcal{F})$ の元に用いるのは独自の用法.

となる $\{U_{i,j} \to U_i\} \in \mathrm{Cov}(U_i)$ と $\tilde{s}_{i,j} \in \mathcal{F}(U_{i,j})$ がとれる. 各被覆の包含関係は以下の通り.

(*) から,

$$\theta(\tilde{s}_{i,j}|_{U_{i,j}\times U_{i',j'}}) = s_i|_{U_{i,j}\times U_{i',j'}} = s_{i'}|_{U_{i,j}\times U_{i',j'}} = \theta(\tilde{s}_{i',j'}|_{U_{i,j}\times U_{i',j'}}).$$

 θ :: inj より, $\tilde{s}_{i,j}|_{U_{i,j}\times U_{i',j'}}=\tilde{s}_{i',j'}|_{U_{i,j}\times U_{i',j'}}$. したがって $(\tilde{s}_{i,j})\in H^0(\{U_{i,j}\to U\},\mathcal{F})$ であり,ここから $s\in\mathcal{F}^+(X)$ が得られる.最後に,各i について

$$\forall j, \ \theta(s_{i,j}) = s|_{U_{i,j}} = (s|_{U_i})|_{U_{i,j}} = s_i|_{U_{i,j}}$$

なので、 \mathcal{F} :: separated より、 $s|_{U_i} = s_i$.

■ θ : $\mathcal{F} \to \mathcal{F}^+$:: **iso if** \mathcal{F} :: **sheaf.** \mathcal{F} :: sheaf であるとき,定義から任意の $\mathcal{U} \in \text{Cov}(X)$ について $H^0(\mathcal{U},\mathcal{F}) \cong \mathcal{F}(X)$. なので θ :: iso.

■ θ : $\mathcal{F} \to \mathcal{F}^+$:: universal. $Shff(-) = ((-)^+)^+$ とすると、これが sheafification functor となる. その UMP を見よう. $\mathcal{F} \in \mathbf{PSh}(\mathbf{C}), \mathcal{G} \in \mathbf{Sh}(\mathbf{C})$ とする. θ : $\mathrm{id}_{\mathbf{Sh}(X)} \to Shff$ の naturality から、次の可換図式が 得られる.

$$\begin{array}{ccc}
\mathcal{F} & \longrightarrow Shff \mathcal{F} \\
\downarrow & & \downarrow \\
\mathcal{G} & \stackrel{\sim}{\longrightarrow} Shff \mathcal{G}
\end{array}$$

 $\theta_{\mathcal{G}}\colon \mathcal{G} \to \mathit{Shff}\mathcal{G}$:: iso だから, $\mathcal{F} \to \mathcal{G}$ から $\mathit{Shff}\mathcal{F} \to \mathcal{G}$ が得られた.次に,以下で示す可換図式 (1) が与えられたとしよう.全体を Shff で写し, $\mathit{Shff}|_{\mathbf{Sh}(X)} \cong \mathrm{id}_{\mathbf{Sh}(X)}$ を用いて可換図式 (2) が得られる.

したがって f = g. 以上で existence & uniqueness が示せた.

 $proof\ of\ Thm(3.9)$. 私のノート $^{\dagger 4}$ の Ex1.12 で θ の UMP(universal map property, [1]) から left adjointness を証明している.

命題 3.16

topos has small limits and small cocomplete.

(証明). 前半は small product と equalizer を構成すればよい. 後半は $Shff: \mathbf{PSh}(\mathbf{C}) \to \mathbf{Sh}(\mathbf{Cat}C)$ が left adjoint functor 故に colimit と交換することを用いれば良い.

^{†4 [3]} ch.I sec.1 の演習問題への解答: https://github.com/ShitijyouA/MathNotes/blob/master/Hartshorne_AG_Ch2/se ction1 ex.pdf

以下の2つはセミナー内で将来証明を扱う.

定理 3.17 ([5] 4.1.2)

 $X \to Y$:: morphism of schemes とする. representable sheaf:: \underline{X} は $\operatorname{Fppf}(Y)$ 上の sheaf である. したがって fppf topology より荒い位相を持つ site, 特に big et ale site:: $\operatorname{ET}(Y)$ でも sheaf である.

命題 3.18

任意の presheaf は colimit of representable sheaves として表現できる

(証明). 証明は(各点) 左 Kan 拡張を用いて,

$$\mathcal{P} = (\operatorname{Lan}_{y} y)(\mathcal{P}) = \operatorname{colim}(y \downarrow \mathcal{P} \to^{\pi_{1}} \mathbf{C} \to^{y} \mathbf{PSh}(\mathbf{C})).$$

ここで $y: \mathbf{C} \to \mathbf{PSh}(\mathbf{C})$ は米田埋め込みである. ([1] Prop8.10 でも同じ命題が証明されている.)

注意 3.19

Kan 拡張についての資料をメモしておく. alg-d 氏の公開しているノートが日本語で読める上丁寧で、おすすめ. 英語で書かれた Web にある資料では、Jan Pavlík "Kan Extensions in Context of Concreteness" ^{†5}もある.

以下はセミナー内でこれ以上現れないが、Topos theory の重要な定理である.

定理 3.20 (Giraud's theorem)

category :: T について, T が topos であることと T が以下のような圏であることは同値.

- (G1) a locally small category with a small generating set,
- (G2) with all finite limits,
- (G3) with all small coproducts, which are disjoint, and pullback-stable,
- (G4) where all congruences have effective quotient objects, which are also pullback-stable.

参考: https://ncatlab.org/nlab/show/Grothendieck+topos#Giraud.

4 Points and Stalks.

以下は small/big etale site のみで使われるものである.

定義 4.1 (Geometric Point, Etale Neighborhood, [5] 1.3.15.)

- (i) X :: scheme に対し、k :: separabely closed field を用いて \bar{x} : Spec $k \to X$ と表される射を geometric point と呼ぶ.
- (ii) geometric point :: \bar{x} : Spec $k \to X$ について, \bar{x} の etale neighborhood とは $U \to X$ が etale である

^{†5} http://arxiv.org/abs/1104.3542v1

ような以下の可換図式のことである.

(iii) geometric point :: \bar{x} : Spec $k \to X$ について, \bar{x} の 2 つの etale neighborhood :: U_1, U_2 を考える. この時, U_1 と U_2 の間の射とは, 以下の図式を可換にする morphism of schemes :: η : $U_1 \to U_2$ のことである.

注意 4.2

geometric point の定義に separabely closed field でなく algebraically closed field を用いることもある.

注意 4.3

より一般的な point of site の定義が存在する([6] Tag 04JU). これは etale か否かに依らず採用できる.しかしこの一般的な定義は複雑であるし,我々は small/big etale site しか扱わないので,我々は以上の定義のみ用いる.

定義 **4.4** (Stalk, [5] 1.3.15.)

X :: scheme, $\mathcal{F} \in \operatorname{Et}(X)$ あるいは $\mathcal{F} \in \operatorname{ET}(X)$ とする. さらに \bar{x} : Spec $k \to X$:: geometric point とする. \bar{x} に対して \bar{x} の etale neighborhood が成す圏を $I_{\bar{x}}$ とする,

(i) $I_{\bar{x}}$ を用いて stalk of \mathcal{F} at \bar{x} を

$$\mathcal{F}_{\bar{x}} := \varinjlim_{U \in I_{\bar{x}}} \mathcal{F}(U)$$

と定義する.

(ii) $U \in I_{\bar{x}}$ について, $\mathcal{F}(U)$ から $\mathcal{F}_{\bar{x}}$ への標準的射がある.この射による $s \in \mathcal{F}(U)$ の像を $s_{\bar{x}}$ と表し,germ of s at \bar{x} と呼ぶ.

5 Morphism of Shaves.

5.1 Definitions.

定義 5.1 (Injective, Surjective)

(同値な条件を列挙したいので、命題 (5.3, 5.4) を参照せよ.)

5.2 Examples.

(良い例を見つけていない.)

5.3 Propositions.

定義 5.2 (Kernel, Image.)

(im ϕ の categorical な定義は https://www.wikiwand.com/en/Image_(category_theory) 等にもある.)

命題 5.3

site :: \mathbf{C} 上の sheaf of sets :: \mathcal{F} , \mathcal{G} の間の morphism ϕ : $\mathcal{F} \to \mathcal{G}$ をとる. ϕ について以下の 3 つは同値.

- (i) $\forall U \in \mathbf{C}, \quad \phi_U \colon \mathcal{F}(U) \to \mathcal{G}(U) :: \text{inj},$
- (ii) $\forall x :: \text{ geometric point}, \quad \phi_x \colon \mathcal{F}_x \to \mathcal{G}_x :: \text{ inj},$
- (iii) ϕ :: mono.

この同値な条件を満たす射 ϕ は injective であるという.

(証明). morphism between sheaves on a scheme の場合と全く同じである.

命題 5.4

 $\mathbf{C}, \mathcal{F}, \mathcal{G}, \phi \colon \mathcal{F} \to \mathcal{G}$ を前の命題と同様にとる. ϕ について以下の 4 つは同値.

- (i) $\forall U \in \mathbf{C}, \forall s \in \mathcal{G}(U), \exists \{U_i \to U\} \in \text{Cov}(U), \exists t_i \in \mathcal{F}(U_i), \phi_{U_i}(t_i) = s|_{U_i}.$
- (ii) $\forall x :: \text{ geometric point}, \quad \phi_x \colon \mathcal{F}_x \to \mathcal{G}_x :: \text{ surj},$
- (iii) ϕ :: epi.

この同値な条件を満たす射 ϕ は surjective であるという.

(証明). こちらも, morphism between sheaves on a scheme の場合と全く同じである. 一つだけ証明しよう.

 $\blacksquare \phi :: surj \implies \phi :: epi.$ 以下の図式を考える.

$$\mathcal{F} \xrightarrow{\phi} \mathcal{G} \xrightarrow{\alpha \atop \beta} \mathcal{H}$$

さらに、 $\alpha\circ\phi=\beta\circ\phi$ であると仮定する.示したいのは $\alpha=\beta$ である.したがって任意の $U\in\mathbf{C}$ 上の section :: $t\in\mathcal{G}(U)$ について $\alpha_U(t)=\beta_U(t)$ を示せば良い.仮定 ϕ :: surj より,t に対し,以下を満たす $\{U_i\to U\}\in\mathrm{Cov}(U)$ と $s_i\in\mathcal{F}(U_i)$ がとれる.

$$\phi_{U_i}(s_i) = t|_{U_i} \in \mathcal{G}(U_i).$$

ここで $t|_{U_i}$ は射 $\mathcal{G}(U_i \to U)$: $\mathcal{G}(U) \to \mathcal{G}(U_i)$ による t の像である. 仮定より,

$$\alpha_{U_i} \circ \phi_{U_i}(s_i) = \alpha_{U_i}(t|_{U_i}) = \beta_{U_i}(t|_{U_i}) = \beta_{U_i} \circ \phi_{U_i}(s_i).$$

したがって $(\alpha_U(t))|_{U_i}=(\beta_U(t))|_{U_i}$ を得る. \mathcal{H} :: sheaf, 特に \mathcal{H} :: separated presheaf なので $\alpha_U(t)=\beta_U(t)$.

命題 5.5

 $\mathbf{C}, \mathcal{F}, \mathcal{G}, \phi \colon \mathcal{F} \to \mathcal{G}$ を前の命題と同様にとる. $\phi :: \mathrm{iso}(=\mathrm{inj}+\mathrm{surj})$ と $\phi :: \mathrm{epi}+\mathrm{mono}$ は同値.

(証明). inj \iff mono, surj \iff epi は上のとおりなので、これらを単に合わせただけである.

6 Topoi.

6.1 Definitions.

定義を4つ再掲する.

定義 6.1 (Topos, Morphism of Topoi.)

- (i) T:: category が topos であるとは、category of sheaves of sets on a site と圏同値であるということ である. なお、topos の複数形は topoi である. これは topos がギリシャ語由来だからである. 意味は 「場所」である.
- (ii) T,T' :: topoi とする. morphism of topoi :: $f:T\to T'$ とは、以下の 3 つの射 (2 functor and 1 isomorphism.) からなる.

$$f_*: T \to T', \quad f^*: T' \to T, \quad \phi: \operatorname{Hom}_T(f^*(-), -) \xrightarrow{\cong} \operatorname{Hom}_{T'}(-.f_*(-)).$$

定義 6.2

 $f: \mathbf{C} \to \mathbf{C}'$ を functor of sites とする. この時, $F \in \mathbf{PSh}(\mathbf{C})$ について

$$f_*F(-) := F(f(-))$$

とおくと, $f_*F \in \mathbf{PSh}(\mathbf{C}')$ が得られる. f :: continuous functor ならば, $\mathcal{F} \in \mathbf{Sh}(\mathbf{C})$ に対し同様にして $f_*\mathcal{F} \in \mathbf{Sh}(\mathbf{C}')$ が得られる.

これを用いた別の stalk の定義の仕方がある.

定義 6.3 (Stalk, another definition)

- 1点からなる空間には一意に位相が入る。そこで一点空間上の sheaf が成す圏を pt と書く.
 - (i) point of topos T とは、morphism of topoi $x: pt \to T$ のことである.
 - (ii) $\mathcal{F} \in \mathbf{T}$ と point :: $x: pt \to \mathbf{T}$ について、 $\mathcal{F}_x := x^* \mathcal{F}$ を stalk of \mathcal{F} at x と呼ぶ.
 - (iii) morphism of sheaves :: $f: \mathcal{F} \to \mathcal{G}$ が isomorphism であることと $x^*f: x^*\mathcal{F} \to x^*\mathcal{G}$ が isomorphism であることが同値 (特に $x^*f:$ iso ならば f: iso) であるとき、T: having enough points という.

6.2 Propositions.

命題 6.4

C, C :: site とする. C, C' は small category であると仮定する.

- (i) $f: \mathbf{C} \to \mathbf{C}'$ を functor of sites とする. この時, functor :: $f_*: \mathbf{PSh}(\mathbf{C}) \to \mathbf{PSh}(\mathbf{C}')$ は left adjoint functor を持つ.
- (ii) $f: \mathbf{C} \to \mathbf{C}'$ を continuous functor とする. この時, functor :: $f_*: \mathbf{Sh}(\mathbf{C}) \to \mathbf{Sh}(\mathbf{C}')$ は left adjoint functor を持つ.
- (証明). (ii) は (i) から従う. 実際, f_* : $\mathbf{PSh}(\mathbf{C}) \to \mathbf{PSh}(\mathbf{C}')$ の left adjoint functor を f^p とすると,

 $f^* = Shff f^p$ と置けばこれが f_* : $\mathbf{Sh}(\mathbf{C}) \to \mathbf{Sh}(\mathbf{C}')$ の left adjoint functor となる. 証明は Shff :: left adjoint を用いて直接行えば良い. なので (i) のみ示す.

 $f: \mathbf{C} \to \mathbf{C}'$ と $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ について、 $f_*\mathcal{F}$ は Kan 拡張の言葉(記号は [4] のもの)を用いて $(f^{op})^{-1}\mathcal{F}$ と書ける.ここで $f^{op}: \mathbf{C}^{op} \to (\mathbf{C}')^{op}$ は射の反転で得られる関手である.したがって、 f_* の左随伴は左 Kan 拡張 Lan $_{f^{op}}$ である.各点左 Kan 拡張を計算すると、

$$(\operatorname{Lan}_{f^{op}}\mathcal{F})(U) = \operatorname{colim} \left((U \downarrow f)^{op} = f^{op} \downarrow U \xrightarrow{\pi_1} \mathbf{C}^{op} \xrightarrow{\mathcal{F}} \mathbf{Sets} \right).$$

ここで $U \downarrow f^{op}$ は Comma 圏で、 π_1 は射影 $[f(V) \to U] \mapsto V$ である。 $f^{op} \downarrow U$ は \mathbf{C}^{op} の部分圏だから、特にこれは small colimit. **Sets** :: cocomplete なのでこの colimit は存在する.

系 6.5

 f_* は limit と交換し、 f^* は colimit と交換する.

注意 6.6

実際に small となる有用な site となると、おそらく殆ど無い。実際、 $\mathrm{ET}(X),\mathrm{Et}(X)$ は large である。しかし $\mathrm{Et}(X)$:: essentially small (i.e. equivalent to small category) なので、適当に $\mathrm{Et}(X)$ の部分圏を取って、その上の category of presheaves が一致するように出来るかも知れない。なお、 Sch/X は essentially small で さえ無い。

しかし、small でないと我々の議論は立ち行かなくなる. なので technical ではあるが、Grothendieck 宇宙の存在を仮定する(宇宙公理を仮定することと同値)などして任意の圏を small とする.

参考文献

- [1] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, U.S.A., 2 edition, 8 2010.
- [2] Toms L.Gmez. Algebraic stacks. https://arxiv.org/abs/math/9911199v1, 1999.
- [3] Robin Hartshorne. Algebraic Geometry (Graduate Texts in Mathematics. 52). Springer, 1st ed. 1977. corr. 8th printing 1997 edition, 4 1997.
- [4] Saunders Mac Lane. Categories for the Working Mathematician (Graduate Texts in Mathematics). Springer, 2nd ed. 1978. softcover reprint of the original 2nd ed. 1978 edition, 2010.
- [5] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [6] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.