PROBLEM SET TWO SOLUTIONS

Antonio Pacifico Federica Romei

22/03/2012

- 1. Use the dataset birthweight.dta.
 - A. Regress *bwghtlbs* (birth weight in pounds) on *cigs* (cigs smoked per day) and explain the model. Is there correlation between the variables? Is the regression statistically significant? How should you prove it? Comment.
 - B. Make a plot of *bwghtlbs* against *cigs*. Can you prove there is correlation? Comment.
 - C. Construct a statistical procedure to test that birth weight in pounds is equal whether babies are male or not against the alternative hypothesis that male babies weight more. Use a significance level of 5%. Comment.

SOLUTION

A.

→ Open dataset typing

use birthweight.dta, clear

 \rightarrow Now, writing

reg bwghtlbs cigs, r

you should be able to visualize this output on STATA:

reg bwghtlbs cigs, r

Linear regression

Number of obs = 1388 F(1, 1386) = 34.29 Prob > F = 0.0000 R-squared = 0.0227 Root MSE = 1.258

 bwghtlbs	Coef.		P> t	[95% Conf.	Interval]
cigs	0321108 7.485744	.0054833		0428673 7.415301	0213542 7.556186

 \rightarrow The model is:

bwghtlbs =
$$\beta_0 + \beta_1 \text{cigs} + \upsilon$$

where:

- β_0 denotes the intercept of population regression line. It has not a clear meaning because it is equivalent to zero cigarettes smoked and does not help you in explaining model. The coefficient is significant and positive correlated with *bwghtlbs*.
- β_1 denotes the slope of population regression line. It is the coefficient of regressor and is negative correlated with *bwghtlbs*; that is it decreases of -0.03 points for every unitary increase of *cigs*. You can write:

$$\beta_1 = \frac{\Delta_{bwghtlbs}}{\Delta_{cigs|\Delta_{cigs=1}|}}$$

The coefficient is significant since p-value is lower than α and therefore it is significantly different from zero at 5%.

The regression R^2 is closed to zero (0.02), thus the proportion of variance in *bwghtlbs* which can be predicted from *cigs* is low. You can conclude that the model is significant at 5%, but you need to consider other variables in explaining *bwghtlbs*.

B.

 \rightarrow Writing:

twoway (scatter bwghtlbs cigs) (lfit bwghtlbs cigs)

you obtain the following graph:

Observing the graph you can easily prove the negative correlation between *bwghtlbs* and *cigs*.

C.

→ You have to test the following hypothesis:

$$H_0: \Delta(\overline{bwghtlbs}) = \overline{bwghtlbs_M} - \overline{bwghtlbs_F} = 0$$

 $H_1: \Delta(\overline{bwghtlbs}) = \overline{bwghtlbs_M} - \overline{bwghtlbs_F} > 0$

→ To perform this hypothesis test you have to compute the t-statistic. By CLT, when sample size is large, the t-statistic is well approximated by the standard normal distribution.

Writing

mean bwghtlbs if male==1

and

mean bwghtlbs if male==0

you should be able to visualize these two output on STATA:

mean bwghtlbs if male==1

Mean estimation	Nu	ımber of obs	= 723
		[95% Conf.	-
•		7.414239	

mean bwghtlbs if male==0

Mean estimation	on	Nur	mber of obs	= 665
			[95% Conf.	-
•			7.226192	

→ Now, you can compute t-statistic as :

$$t_{value} = \widehat{\Delta_{bwghtlbs}} = \frac{\left(\overline{bwghtlbs_M} - \overline{bwghtlbs_F}\right) - d_0}{\sqrt{SE_M^2 + SE_F^2}} \stackrel{d}{\rightarrow} N(0,1)$$

In STATA:

hence you should obtain that:

$$t_{value} = \widehat{\Delta_{bwghtlbs}} = 2.69$$

→ You are testing the Null hypothesis against the one sided Alternative hypothesis at 5% between two population means. You have that :

$$2.69 > +1.64$$

hence you cannot reject the Alternative hypothesis that male babies weight more.

- 2. Use the dataset birthweight.dta.
 - A. Do the same regression of point <u>1.A</u> adding *male* and explain the new model.

 Does this new variable help you in explaining *bwghtlbs*? Why? Comment.

 {HINT: Try observing significance of model}
 - B. How can you interpret β_2 and β_0 ? Do you note some similarities with the point 1.C? Why? Comment. {HINT : Try testing that $\beta_2 = 0$ against the alternative hypothesis that $\beta_2 > 0$, hence compare the two t-statistics}

SOLUTION

A.

→ Open dataset typing

use birthweight.dta, clear

→ Now, writing

reg bwghtlbs cigs male, r

you can visualize:

reg bwghtlbs cigs male, r

Linear regression

Number of obs = 1388 F(2, 1385) = 22.51 Prob > F = 0.0000 R-squared = 0.0279 Root MSE = 1.2551

bwght1bs	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cigs	0321032	.0054368	-5.90	0.000	0427685	021438
male	.1837089	.0674546	2.72	0.007	.0513847	.3160331
_cons	7.390035	.0508868	145.23	0.000	7.290212	7.489859

 \rightarrow The model is :

 $bwghtlbs = \beta_0 + \beta_1 cigs + \beta_2 male + \upsilon$

where:

 β_2 denotes the coefficients of added new regressor. This latter is a dummy variable =1 if babies are male and =0 otherwise. It is positive correlated with dependent variable; to be more precise *bwghtlbs* increases of +0.1837 units for every unitary increase of *male*.

The coefficient is significant since p-value is lower than α , hence it is significantly different from zero at 5%.

If you observe the negative correlation between *bwghtlbs* and *cigs* is about unvaried and the regression R^2 is not increased enough [from 0.0227 to 0.0279].

Therefore you can conclude that the new regressor in not a good predictor of *bwghtlbs*.

В.

- \rightarrow Interpreting β_0 and β_2
 - The first coefficient $[\beta_0]$ is the average level of birth weight in pounds when babies are not male, hence :

$$\beta_0 = E(bwghtlbs|male = 0)$$

You can easily compute β_0 by typing :

mean bwghtlbs if male==0

mean bwghtlbs if male==0

Mean estimatio	on	Nu	mber of obs	= 665
•			[95% Conf.	-
•			7.226192	

thus : $\beta_0 = 7.32$

The second coefficient $[\beta_2]$ is the difference between expected value of birth weight in pounds when babies are male and not, hence :

$$\beta_2 = E(bwghtlbs|male = 1) - E(bwghtlbs|male = 0)$$

If you type:

mean bwghtlbs if male==1

mean bwghtlbs if male==1

Mean estimation	า	Nui	mber of obs	= 723
			[95% Conf.	_
•			7.414239	

you can easily compute it by differentiating:

7.506829-7.322932

Writing:

display 7.506829-7.322932

you obtain that:

$$\beta_2 = .183897$$

You can prove it making a simple linear regression, thus:

reg bwghtlbs male, r

Linear regress	sion				Number of obs F(1, 1386) Prob > F R-squared Root MSE	
 bwghtlbs	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
male _cons	.1838969 7.322932	.068202 .0492664	2.70 148.64	0.007 0.000	.0501065 7.226287	.3176872 7.419577

→ By observing point <u>1.C</u>, you can observe that both two statistic-test are equal to 2.7.
 Pay attention to distinguish them, because :

In the regression, lo *Standard Error* is *robust* [that is unbiased estimator of standard deviation] and equal to :

$$SE = \frac{\sigma_y}{\sqrt{n-k}}$$
 where $k = number\ of\ regressors\ [including\ the\ constant]$ $n = number\ of\ observations$

In hypothesis test it is not unbiased and equal to:

$$SE = \frac{\sigma_y}{\sqrt{n}}$$

Therefore they are equal but not the same.

- 3. Use the dataset cigs.dta.
 - A. After you've made a regression (*packs* on *price*) and explained significance of coefficients, suppose that your boss wants the regression expressed in cigarettes smoked and euro. How will β_1 and β_0 change? Comment carefully alighting on every computation. {HINT : Remember that $\epsilon = 1.39$ \$ and each *pack* contains 20 *cigs*}
 - B. You have been moved in the Tax Department and you have a new boss who wants to collect money from the taxation of cigarettes. He knows that you did a regression in a similar topic for the other Department. Assuming that your regression is reliable, do you advice to him to raise the taxation on cigarettes? Comment carefully.

SOLUTION

A.

→ Open dataset typing

use cigs.dta, clear

→ Now, writing

reg packs price, r

you obtain the following output on STATA:

reg packs price, r

Linear regression

Number of obs = 46 F(1, 44) = 15.30 Prob > F = 0.0003 R-squared = 0.3031 Root MSE = 21.563

				[95% Conf.	-
price	-132.8751 293.5823	33.9734	0.000	-201.3439 206.6484	-64.40617 380.5163

 \rightarrow The model is:

packs =
$$\beta_0 + \beta_1$$
 price + υ

The coefficients are both significant since p-value is very low; to be more precise it is lower than α .

- → If your boss wants the regression expressed in cigarettes smoked and euro, you have to generate two new variables :
 - Euro = 1\$/1.39, which denotes the price in euro for each pack [or for 20 cigarettes smoked]
 - Cigtts = 20*1pack, which denotes the cigarettes smoked contained in a pack

In STATA:

The model becomes:

$$cigtts = \beta_0 + \beta_1 euro + \upsilon$$

thus you have to make a new regression writing:

reg cigtts euro, r

reg cigtts euro, r

Linear regression

cigtts	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
euro		944.4604	-3.91	0.000	-5597.361	-1790.492
_cons		862.7107	6.81	0.000	4132.967	7610.326

You can observe that the model is always significant at 5% since p-value is very low and closed to zero. The negative correlation between dependent variable and the only regressor is increased; *cigtts* decreases of *-3693.927* for every unitary increase of *euro*.

Pay attention to note that regression R^2 is unchanged because the significance of model does not depend on measure of coefficients.

→ You can obtain the new coefficients without making a new regression, hence :

$$\beta_{1,NEW} = \frac{Cov(euro|cigtts)}{Var(euro)} = \frac{Cov\left(\frac{1}{1.39} * price \middle| 20 * packs\right)}{Var\left(\frac{1}{1.39} * price\right)} = \frac{\frac{20}{1.39}Cov(price|packs)}{\frac{1}{1.39^2}Var(price)} = \frac{20}{1.39} * 1.39^2 \frac{Cov(price|packs)}{Var(price)} = 20 * 1.39 * \beta_{1,OLD} = 20 * 1.39 * (-132.8751) = -3693.927$$

This way of reasoning is quite complicated, but you can simplify the thing in this way:

- An increase in 1\$ decreases packs of $\beta_{1,OLD}$ unit
- O An increase in 1\$ decreases *cigtts* of $β_{1,OLD} * 20$
- o An increase in 1.39\$ correspond to an increase in 1€
- O An increase in 1.39\$ decreases *cigtts* of $\beta_{1,OLD} * 20 * 1.39$
- An increase in 1€ decreases *cigtts* of $β_{1.0LD} * 20 * 1.39$

$$\begin{split} \beta_{0,NEW} &= \overline{cigtts} - \beta_{1,NEW} * \overline{euro} = \overline{cigtts} - \overline{euro} * 20 * 1.39 * \beta_{1,OLD} = \\ &= 20 * packs - \frac{1}{1.39} * price * 20 * \frac{1.39}{1.0LD} * \beta_{1,OLD} = 20 \big[packs - \beta_{1,OLD} * price \big] = \end{split}$$

10

$$= 20 * \beta_{0,OLD} = 20 * 293.5823 = 5871.64$$

Notice that the change in β_0 depends on only change in the dependent variable. This is always true if and only if the change in independent variable is of this type:

$$x_{NEW} = b * x_{OLD}$$

When, instead, you have a change of this type:

$$x_{NEW} = a + b * x_{OLD}$$

then also independent variable has an effect on β_0 .

B.

ightarrow The answer is No. Being all economist you should be able to motivate by yourself.

4.

- A. Regress *narr*86 on *black* and explain the model. How can you interpret the coefficients? Have a shot of constructing a statistical procedure. Comment.
- B. Regress *narr86* on *hispan*. Explain the model and interpret the coefficients. Have a shot of constructing a statistical procedure. Comment.
- C. Regress jointly *narr86* on *black* and *hispan* explaining the model. How will model change? Comment. {HINT : you have to comment carefully significance of coefficients}

SOLUTION

A.

→ Open dataset typing

use crime.dta, clear

→ Now, writing

reg narr86 black, r

you can visualize:

reg narr86 black, r

Linear regression Number of obs = 2725F(1, 2723) = 35.37

Prob > F = 0.0000 R-squared = 0.0223 Root MSE = .8496

.....

	•	Std. Err.			[95% Conf.	Interval]
black	.3488323 .3482065	.058657	5.95	0.000	.2338156	.4638489 .3797671

 \rightarrow The model is:

$$narr86 = \beta_0 + \beta_1 black + \upsilon$$

You should be able to prove that model is significant at 5%.

- \rightarrow Interpreting β_0 and β_1 :
 - The first coefficient $[\beta_0]$ is the average level of number of arrests in 1986 when people are not black, hence :

$$\beta_0 = E(narr86|black = 0)$$

You can easily compute β_0 by typing :

mean narr86 if black==0

mean narr86 if black==0

Mean estimation	on	Nu	umber of obs	= 2286
			[95% Conf.	-
•			.3166478	

thus : $\beta_0 = .3482$

• The second coefficient $[\beta_1]$ is the difference between expected value of number of arrests when people are black and not, hence :

$$\beta_1 = E(narr86|black = 1) - E(narr86|black = 0)$$

If you type:

mean narr86 if black==1

mean narr86 if black==1

Mean estimation	on	Nu	mber of obs	= 439
			[95% Conf.	-
	.6970387			.8079834

you can easily compute it by differentiating:

.6970387-.3482065

Writing:

display .6970387-.3482065

you obtain that:

$$\beta_1 = .3488$$

→ You can test the following hypothesis:

$$\beta_1 = 0 \xrightarrow{implies\ that} H_0: \ \Delta\left(\overline{narr86}\right) = \overline{narr86_B} - \overline{narr86_{NB}} = 0$$
$$\beta_1 \neq 0 \xrightarrow{implies\ that} H_1: \ \Delta\left(\overline{narr86}\right) = \overline{narr86_B} - \overline{narr86_{NB}} \neq 0$$

The t-statistic is equal to 5.95. In absolute value:

therefore you would not reject the Alternative hypothesis.

В.

→ Writing

reg narr86 hispan, r

you can visualize:

reg narr86 hispan, r

Linear regression

Number of obs = 2725 F(1, 2723) = 6.92 Prob > F = 0.0086 R-squared = 0.0028 Root MSE = .85803

 narr86				[95% Conf.	Interval]
hispan	.1103311	.041952	0.009	.0280702 .3447308	.1925921 .4160572

 \rightarrow The model is:

$$narr86 = \beta_0 + \beta_1 hispan + \upsilon$$

You should be able to prove that model is significant at 5%.

- \rightarrow Interpreting β_0 and β_1 :
 - The first coefficient $[\beta_0]$ is the average level of number of arrests in 1986 when people are not hispanic, hence :

$$\beta_0 = E(narr86|hispan = 0)$$

You can easily compute β_0 by typing :

mean narr86 if hispan==0

mean narr86 if hispan==0

Mean estimation	on	Nu	umber of obs	= 2132
			[95% Conf.	-
			.3447311	

thus : $\beta_0 = .380394$

• The second coefficient $[\beta_1]$ is the difference between expected value of number of arrests when people are hispanic and not, hence :

$$\beta_1 = E(narr86|hispan = 1) - E(narr86|hispan = 0)$$

If you type:

mean narr86 if hispan==1

mean r	narr86	if	his	pan==1
--------	--------	----	-----	--------

Mean estimation	on	Num	= 593	
	Mean	Std. Err.	[95% Conf.	Interval]
	•		.4164426	

you can easily compute it by differentiating:

.4907251-.380394

Writing:

display .4907251-.380394

you obtain that:

$$\beta_1 = .11033$$

 \rightarrow You can test the following hypothesis:

$$\beta_1 = 0 \xrightarrow{implies\ that} H_0: \ \Delta\left(\overline{narr86}\right) = \overline{narr86_H} - \overline{narr86_{NH}} = 0$$
$$\beta_1 \neq 0 \xrightarrow{implies\ that} H_1: \ \Delta\left(\overline{narr86}\right) = \overline{narr86_H} - \overline{narr86_{NH}} \neq 0$$

The t-statistic is equal to 2.63. In absolute value:

therefore you cannot reject the Alternative hypothesis.

C.

 \rightarrow Writing:

reg narr86 black hispan, r

you can visualize:

reg narr86 black hispan, r

Linear regression

Number of obs = 2725 F(2, 2722) = 30.33 Prob > F = 0.0000 R-squared = 0.0304 Root MSE = .84624

 narr86	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
black	.3987517	.058942	6.77	0.000	.283176	.5143273
hispan	.1924381	.0414864	4.64	0.000	.1110901	.2737861
_cons	.2982871	.0170711	17.47	0.000	.2648135	.3317606

\rightarrow The model is:

$$narr86 = \beta_0 + \beta_1 black + \beta_2 hispan + \upsilon$$

You should be able to prove that model is significant at 5%. In this case the significance of model improves, but the regression R^2 is still very closed to zero.

You can conclude that variables are good predictors of *narr86*, nevertheless you need to consider other regressors in explaining the dependent variable. Have you an idea?