第七爷

常系数齐次线性微分方程

基本思路:

求解常系数齐次线性微分方程

转化

求特征方程(代数方程)之根

在二阶齐次线性微分方程
$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$
 中,

若
$$P(x)$$
、 $Q(x)$ 为常数 p 、 q ,即 $y'' + py' + qy = 0$ (1)

则称(1)为二阶常系数齐次线性微分方程.

若P(x)、Q(x)不为常数,则称为二阶变系数齐次线性微分方程.

不难看出,指数函数 $y = e^{rx} (r$ —待定常数) 最有可能是方程

(1)的一个解,由此 把 $y = e^{rx}$ 代入方程(1),整理得

$$(r^2 + pr + q)e^{rx} = 0$$

所以,有
$$r^2 + pr + q = 0$$
 (2) —— (1)的特征方程.

(2)的两个根 —— (1)的特征根.

讨论 ① 若特征方程有两个不相等的实根: $r_1 \neq r_2$, 那么 $y = e^{r_1 x}$ 、 $y = e^{r_2 x}$ 显然是方程(1)的两个不相关的特解,由此得此时(1)的通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.

②若特征方程有两个相等的实根: $r_1 = r_2 = r = -\frac{p}{2}$,可得方程(1)的一个特解 $y_1 = e^{rx}$.

现求另一解 y_2 ,要求 $\frac{y_2}{}$ 不是常数. 设 $\frac{y_2}{y_2} = u(x)$, 即 $y_2 = e^{rx}u(x)$, 代入微分方程(1), 得 $e^{rx}[(u'' + 2ru' + r^2u) + p(u' + ru) + qu] = 0$ $u'' + (2r + p)u' + (r^2 + pr + q)u = 0$ r是重根 u'' = 0

只要 $u \neq 0$ 即可,不妨选取 u=x,得(1)的另一解为 $y_2 = xe^{rx}$ 从而微分方程(1)通解为 $y = C_1e^{rx} + C_2xe^{rx}$ 即 $y = (C_1 + C_2x)e^{rx}$.

③若 特征方程有一对共轭复根: $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$ ($\beta \neq 0$) 可得方程 (1) 的两个复数形式的解

$$y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} \cdot e^{i\beta x} = e^{\alpha x} \left(\cos \beta x + i \sin \beta x \right) \quad \text{Xiv}$$

$$y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} \cdot e^{-i\beta x} = e^{\alpha x} \left(\cos \beta x - i \sin \beta x \right)$$

$$\tilde{y}_1 = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x; \quad \tilde{y}_2 = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x$$

方程(1)的通解为: $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$.

综之, 微分方程的通解如下表

特征方程 $r^2 + pr + q = 0$ 的两个根	微分方程 $y'' + py' + qy = 0$ 的通解
两个不相等的实根 $r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等的实根 $r_1 = r_2 = r$	$y = (C_1 + C_2 x)e^{rx}$
一对共轭复根 $r_{1,2}=lpha\pm ioldsymbol{eta}$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

例1 求下列微分方程的通解:

$$(1)y'' - 2y' - 3y = 0$$
; $(2)y'' + 2y' + y = 0$; $(3)y'' - 2y' + 5y = 0$.

- 解(1)所给微分方程的特征方程为 $r^2-2r-3=0$ 特征根为 $r_1=-1, r_2=3$ 因此所求通解为 $y=C_1e^{-x}+C_2e^{3x}$.
 - (2) 特征方程为 $r^2 + 2r + 1 = 0$ $\Rightarrow r_1 = r_2 = -1$ 因此所求通解为 $y = (C_1 + C_2 x)e^{-x}$.
 - (3) 特征方程为 $r^2 2r + 5 = 0 \Rightarrow r_{1,2} = 1 \pm 2i$ 因此所求通解为 $y = e^x (C_1 \cos 2x + C_2 \sin 2x)$.

例2 求解初值问题
$$\begin{cases}
\frac{\mathbf{d}^2 s}{\mathbf{d} t^2} + 2 \frac{\mathbf{d} s}{\mathbf{d} t} + s = 0 \\
s|_{t=0} = 4, \quad \frac{\mathbf{d} s}{\mathbf{d} t}|_{t=0} = -2
\end{cases}$$

解 特征方程 $r^2 + 2r + 1 = 0$ 有重根 $r_1 = r_2 = -1$,

因此原方程的通解为 $s = (C_1 + C_2, t_1)e^{-t}$

利用初始条件得 $C_1 = 4$, $C_2 = 2$

于是所求初值问题的解为 $s = (4 + 2t)e^{-t}$

注 上面的方法可推广到求解n阶常系数齐次线性微分方程

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_{n-1} y' + p_n y = 0$$
 (3)

其中 $p_1, p_2, \cdots, p_{n-1}, p_n$ 为常数.

设
$$y = e^{rx}$$
,则 $y' = re^{rx}$, $y'' = r^2 e^{rx}$,…, $y^{(n)} = r^n e^{rx}$.

将 y 及其各阶导数代入方程(3)中得

$$e^{rx}(r^{n} + p_{1}r^{n-1} + \dots + p_{n-1}r + p_{n}) = 0$$

$$r^{n} + p_{1}r^{n-1} + \dots + p_{n-1}r + p_{n} = 0$$
(4)

(4) 称为(3) 的特征方程.

若 r 是 (4) 的根, 函数 $y = e^{rx}$ 就是 (3) 的一个特解.

n 次代数方程有n 个根,特征方程中的每一个根对应着通解中的一项,且每一项中都含有一个任意常数.

特征方程的根	微分方程通解的对应项
单实根r	给出一项: Ce ^{rx}
一对单复根 $r_{1,2} = \alpha \pm i\beta$	给出两项: $e^{ax} (C_1 \cos \beta x + C_2 \sin \beta x)$
k重实根r	给出 k 项: $e^{rx}\left(C_1+C_2x+\cdots+C_kx^{k-1}\right)$
一对 k 重复根 $r_{1,2} = \alpha \pm i\beta$	给出 $2k$ 项: $e^{ax} \left[\left(C_1 + C_2 x + \dots + C_k x^{k-1} \right) \cos \beta x + \left(D_1 + D_2 x + \dots + D_k x^{k-1} \right) \sin \beta x \right]$

n 阶常系数齐次线性微分方程的通解为以上各项对应项的和.

补充

设 z = x + iy (代数形式) 则有:

$$z = r(\cos\theta + i\sin\theta)$$
 (三角形式)

$$\theta$$
 称为z的辐角, $\tan \theta = \frac{y}{x}$

$$z = re^{i\theta}$$
 (指数形式)

 $z = r(\cos\theta + i\sin\theta)$ 的 n 次方根公式:

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$

$$(k = 0, 1, 2, \dots, n - 1)$$

例3 求通解
$$(1) y^{(4)} - 2y''' + 5y'' = 0;$$
 $(2) y^{(4)} + \beta^4 y = 0.$ $(3) y^{(4)} + 2y'' + y = 0.$ $(4) y^{(5)} - y^{(4)} = 0.$

解 (1) 所给微分方程的特征方程为 $r^4 - 2r^3 + 5r^2 = 0$

特征根为 $r_1 = r_2 = 0$; $r_{3,4} = 1 \pm 2i$

原方程通解为 $y = C_1 + C_2 x + e^x (C_3 \cos 2x + C_4 \sin 2x)$.

(2) 特征方程为 $r^4 + \beta^4 = 0$

特征根为
$$r_{1,2} = \frac{\beta}{\sqrt{2}}(1\pm i); r_{3,4} = -\frac{\beta}{\sqrt{2}}(1\pm i)$$

原方程通解为

$$y = e^{\frac{\beta}{\sqrt{2}}x} (C_1 \cos \frac{\beta}{\sqrt{2}}x + C_2 \sin \frac{\beta}{\sqrt{2}}x) + e^{-\frac{\beta}{\sqrt{2}}x} (C_3 \cos \frac{\beta}{\sqrt{2}}x + C_4 \sin \frac{\beta}{\sqrt{2}}x).$$

(3) 特征方程为
$$r^4 + 2r^2 + 1 = 0$$

即
$$(r^2+1)^2=0$$

特征根为
$$r_{1,2}=i$$
, $r_{3,4}=-i$

方程通解为
$$y = (C_1 + C_3 x)\cos x + (C_2 + C_4 x)\sin x$$

(4) 特征方程为 $r^5 - r^4 = 0$,

特征根 为
$$r_1 = r_2 = r_3 = r_4 = 0$$
, $r_5 = 1$

原方程通解为
$$y = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + C_5 e^x$$

(不难看出,原方程有特解 $1, x, x^2, x^3, e^x$)

内容小结

$$y'' + p y' + q y = 0$$
 (p, q) 为常数) 特征根: r_1, r_2

(1) 当
$$r_1 \neq r_2$$
 时,通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

(2) 当
$$r_1 = r_2$$
 时,通解为 $y = (C_1 + C_2 x)e^{r_1 x}$

$$(3) 当 r_{1,2} = \alpha \pm \beta i \text{ 时, 通解为}$$
$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

可推广到高阶常系数齐次线性方程求通解.

思考与练习

求方程 y'' + ay = 0 的通解.

答案: a = 0: 通解为 $y = C_1 + C_2 x$

a>0: 通解为 $y=C_1\cos\sqrt{a}x+C_2\sin\sqrt{a}x$

a < 0: 通解为 $y = C_1 e^{\sqrt{-a}x} + C_2 e^{-\sqrt{-a}x}$

备用题 求一个以 $y_1 = e^x$, $y_2 = 2xe^x$, $y_3 = \cos 2x$,

 $y_4 = 3\sin 2x$ 为特解的 4 阶常系数齐次线性微分方程, 并求其通解.

解 根据给定的特解知特征方程有根:

$$r_1 = r_2 = 1, \quad r_{3,4} = \pm 2i$$

因此特征方程为 $(r-1)^2 (r^2+4)=0$

故所求方程为
$$y^{(4)} - 2y''' + 5y'' - 8y' + 4y = 0$$

其通解为
$$y = (C_1 + C_2 x)e^x + C_3 \cos 2x + C_4 \sin 2x$$

(一) 高阶线性微分方程

以二阶线性微分方程为例讨论高阶线性微分方程.

一、二阶线性微分方程

称形如
$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = f(x)$$

的方程为二阶线性微分方程.

在(1)中,若
$$f(x) \equiv 0$$
, 即 $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$ (2)

称(2)为二阶齐次线性微分方程.

若 $f(x) \neq 0$,则称(1)为二阶非齐次线性微分方程.

二、二阶微分方程的解的结构

定理 1 如果函数 $y_1(x)$ 与 $y_2(x)$ 是方程 (2) 的两个解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$
 (3)

也是(2)的解,其中 C_1 、 C_2 是任意常数.

函数的线性相关与线性无关:

所谓 $y_1(x)$ 与 $y_2(x)$ 线性无关是指: $\frac{y_1(x)}{y_2(x)} \neq 常数$.

一般的, 设 $y_1(x), y_2(x), \dots, y_n(x)$ 是定义在区间 I 上的 n 个函数,

如果存在 n 个不全为零的常数 k_1, k_2, \dots, k_n , 使得当 $x \in I$ 时,

有等式 $k_1 y_1(x) + k_2 y_2(x) + \dots + k_n y_n(x) \equiv 0$ 恒成立,

则称这n个函数在区间I上线性相关;否则称线性无关.

定理 2 $\exists y_1(x) = y_2(x)$ 是方程(2)的 两个线性无关的特解,则 (3)就是方程(2)的通解.

定理 3 设 y*(x)是二阶非齐次线性微分方程

$$\frac{d^{2}y}{dx^{2}} + P(x)\frac{dy}{dx} + Q(x)y = f(x)$$
 (1)的一个特解,
$$Y(x) = \frac{d^{2}y}{dx^{2}} + P(x)\frac{dy}{dx} + Q(x)y = 0$$
 的通解,

那么 $y = Y(x) + y^*(x)$ 就是(1)的通解.

定理 4 设非齐次线性微分方程(1)右端是几个函数之和,例如

$$y'' + P(x)y' + Q(x)y = f_1(x) + f_2(x)$$

而
$$y_1^*(x)$$
, $y_2^*(x)$ 分别为 $y'' + P(x)y' + Q(x)y = f_1(x)$

及
$$y'' + P(x)y' + Q(x)y = f_2(x)$$
 的特解,

则 $y_1^*(x) + y_2^*(x)$ 就是原方程的特解.

(二) 二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程:y'' + py' + qy = 0 (1)

$$r^2 + pr + q = 0$$
 (2) — (1)的特征方程.

(2)的两个根 ── (1)的特征根.

微分方程的通解如下表

特征方程 $r^2 + pr + q = 0$ 的两个根	微分方程 $y'' + py' + qy = 0$ 的通解
两个不相等的实根 $r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等的实根 $r_1 = r_2 = r$	$y = (C_1 + C_2 x)e^{rx}$
一对共轭复根 $r_{1,2}=lpha\pm ioldsymbol{eta}$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

n阶常系数齐次线性微分方程

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_{n-1} y' + p_n y = 0$$
其特征方程为: $r^n + p_1 r^{n-1} + \dots + p_{n-1} r + p_n = 0$ (3)

特征方程的根	微分方程通解的对应项
单实根r	给出一项: Ce ^{rx}
一对单复根 $r_{1,2} = \alpha \pm i\beta$	给出两项: $e^{ax}(C_1\cos\beta x + C_2\sin\beta x)$
k重实根r	给出 k 项: $e^{rx}\left(C_1+C_2x+\cdots+C_kx^{k-1}\right)$
一对 k 重复根 $r_{1,2} = \alpha \pm i\beta$	给出 $2k$ 项: $e^{ax} \left[\left(C_1 + C_2 x + \dots + C_k x^{k-1} \right) \cos \beta x + \left(D_1 + D_2 x + \dots + D_k x^{k-1} \right) \sin \beta x \right]$

第八爷

常系数准齐次线性微分方程

$$f(x) = e^{\lambda x} P_m(x)$$
型

二、
$$f(x) = e^{\lambda x} [P_{l}(x)\cos\omega x + P_{n}(x)\sin\omega x]$$
型

二阶常系数非齐次线性微分方程一般式是:

$$y'' + py' + qy = f(x) \qquad (1)$$

其中p、q是常数, $f(x) \neq 0$.

根据解的结构定理, 其通解 为

$$y = Y + y^*$$
.
齐次方程通解 非齐次方程特解

求特解的方法 一 待定系数法

根据 f(x) 的特殊形式 , 给出特解 y^* 的待定形式, 代入原方程比较两端表达式以确定待定系数 .

$$-$$
、 $f(x)=p_m(x)e^{\lambda x}$ 型

其中 λ 为常数, $P_m(x)$ 是x的一个m次多项式:

$$P_m(x) = a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m$$
.

推测:由于f(x)是有多项式和指数函数所构成,而其导数还是有多项式和指数函数,由此,不难推测 $y^* = Q(x)e^{\lambda x}$ 可能是方程(1)的特解(其中Q(x)是某个多项式).

将
$$y^* = Q(x)e^{\lambda x}$$
 $y^{*'} = e^{\lambda x} (\lambda Q(x) + Q'(x))$ $y^{*''} = e^{\lambda x} (\lambda^2 Q(x) + 2\lambda Q'(x) + Q''(x))$ 代入方程(1): $y'' + py' + qy = f(x)$ 并消去 $e^{\lambda x}$,得 $Q''(x) + (2\lambda + p)Q'(x) + (\lambda^2 + p\lambda + q)Q(x) = P_m(x)$ (3)

讨论:
$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^2 + p\lambda + q)Q(x) = P_m(x)$$
 (3)

(i) 如果 $\lambda^2 + p\lambda + q \neq 0$, 即 λ 不是特 征根. 要使(3)成立, Q(x)应是一个m 次多项式,不妨设

$$Q(x) = Q_m(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m$$

代入(3)式,比较两端同次幂的系数即可确定 b_i (i = 1,2...,m),进而得(1)的特解: $y^* = Q(x)e^{\lambda x}$.

(ii) 若 $\lambda^2 + p\lambda + q = 0$, 且 $2\lambda + p \neq 0$, 即 λ 是特征方程的单根,要使(3)成立,Q'(x)应是一个m次多项式,可令 $Q(x) = xQ_m(x)$

同样可以定出 $Q_m(x)$ 的系数 b_i $(i=1,2\cdots,m)$.

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^{2} + p\lambda + q)Q(x) = P_{m}(x)$$
 (3)

(iii) 若 $\lambda^2 + p\lambda + q = 0$ 且 $2\lambda + p = 0$, 即 λ 是特征方程的重根.

要使(3)式成立,Q''(x)应是m次多项式.可令 $Q(x) = x^2Q_m(x)$

综之, 当 $f(x) = p_m(x)e^{\lambda x}$ 时,可设特解为 $y^* = x^k Q_m(x)e^{\lambda x}$

其中: $Q_m(x)$ 是与 $P_m(x)$ 同次(m次)的多项式,

 λ 是特征方程的 k 重根 (k=0,1,2)

k = 0 时, λ 不是特征方程的根;

注: 上述结论可推广到 n 阶常系数非齐次线性微分方程.

例1 求下列方程的通解:

(1)
$$y'' - 2y' - 3y = 3x + 1$$
; (2) $y'' - 5y' + 6y = xe^{2x}$.

解(1) 对应齐次方程的特征方程为 $r^2 - 2r - 3 = 0$ 所以特征根为: $r_1 = -1$, $r_2 = 3$ 于是齐次方程的通解为: $Y = C_1 e^{-x} + C_2 e^{3x}$ 由 $f(x) = 3x + 1 = (3x + 1)e^{0x}$, 且 $\lambda = 0$ 不是特征根, 故设原方程特解为: $y^* = (b_0 x + b_1)e^{0x} = b_0 x + b_1$ 代入原方程,得 $-3b_0x-2b_0-3b_1=3x+1$ 所以 $b_0 = -1$, $b_1 = \frac{1}{3}$ 于是得原方程的一个特解为 $y^* = -x + \frac{1}{3}$ 所求通解为 $y = C_1 e^{-x} + C_2 e^{3x} - x + \frac{1}{3};$

(2)
$$y'' - 5y' + 6y = xe^{2x}$$
.

对应齐次方程的特征方程为: $r^2 - 5r + 6 = 0 \Rightarrow r_1 = 2, r_2 = 3$

于是齐次方程的通解为 $Y = C_1 e^{2x} + C_2 e^{3x}$

由于 $f(x) = xe^{2x}$, 且 $\lambda = 2$ 是特征方程的单根,

故原方程特解设为: $y^* = x(b_0x + b_1)e^{2x}$

代入所给方程, 得 $-2b_0x + 2b_0 - b_1 = x$

所以 $b_0 = -\frac{1}{2}$, $b_1 = -1$

于是得原方程的一个特解为 $y^* = x \left(-\frac{1}{2}x - 1\right)e^{2x}$

所求通解为 $y = C_1 e^{2x} + C_2 e^{3x} - \frac{1}{2} (x^2 + 2x) e^{2x}$.

例2 求解
$$y'' - 3y' + 2y = 5$$
 $y|_{x=0} = 1, y'|_{x=0} = 2$

解 对应齐次方程的特征方程为 $r^2-3r+2=0 \Rightarrow r_1=1, r_2=2$

于是齐次方程的通解为 $Y = C_1 e^x + C_2 e^{2x}$

由于f(x)=5, 且 $\lambda=0$ 不是特征方程的根,

故原方程特解设为: $y^* = A$ 代入方程, 得 2A = 5

所以 $A = \frac{5}{2}$, 于是得原方程的一个特解为 $y^* = \frac{5}{2}$

所求通解为 $y = C_1 e^x + C_2 e^{2x} + \frac{5}{2}$

把 $y|_{x=0} = 1, y'|_{x=0} = 2$ 代入上式,得 $C_1 = -5$ $C_2 = \frac{7}{2}$

所以原方程满足初始条件的特解为 $y = -5e^{2x} + \frac{7}{2}e^{3x} + \frac{5}{2}$

$$= \int \int f(x) dx = e^{\lambda x} \left[p_i(x) \cos \omega x + p_n(x) \sin \omega x \right]$$

其中 λ 为常数, $P_l(x)$ 和 $P_n(x)$ 分别是x的一个l次和n次多项式:

$$P_{l}(x) = a_{0}x^{l} + a_{1}x^{l-1} + \dots + a_{l-1}x + a_{l};$$

$$P_{n}(x) = b_{0}x^{n} + b_{1}x^{n-1} + \dots + b_{n-1}x + b_{n}.$$

分析思路:

第一步 将 f(x) 转化为: $f(x) = P_m(x)e^{(\lambda+i\omega)x} + \overline{P_m(x)e^{(\lambda+i\omega)x}}$

第二步 求出如下两个方程的特解:

$$y'' + py' + qy = P_m(x)e^{(\lambda+i\omega)x}; y'' + py' + qy = \overline{P_m(x)e^{(\lambda+i\omega)x}}$$

第三步 利用叠加原理求出原方程的特解

第一步 由欧拉公式:
$$\begin{cases} \cos x = \frac{e^{ix} + e^{-ix}}{2} \\ \sin x = \frac{e^{ix} - e^{-ix}}{2i} \end{cases}$$
 把 $f(x)$ 变为:

$$f(x) = e^{\lambda x} [p_l(x) \cos \omega x + p_n(x) \sin \omega x]$$

$$=e^{\lambda x}\left(P_{l}\frac{e^{i\omega x}+e^{-i\omega x}}{2}+P_{n}\frac{e^{i\omega x}-e^{-i\omega x}}{2i}\right)$$

$$= \left(\frac{P_l}{2} - \frac{P_n}{2}i\right)e^{(\lambda + i\omega)x} + \left(\frac{P_l}{2} + \frac{P_n}{2}i\right)e^{(\lambda - i\omega)x}$$

$$\Leftrightarrow m = \max\{n, l\}, 则$$

$$f(x) = P_m(x)e^{(\lambda+i\omega)x} + \overline{P_m(x)}e^{(\lambda-i\omega)x}$$
$$= P_m(x)e^{(\lambda+i\omega)x} + \overline{P_m(x)e^{(\lambda+i\omega)x}}$$

第二步 求如下两方程的特解

$$y'' + py' + qy = P_m(x)e^{(\lambda + i\omega)x}$$
 2

$$y'' + py' + qy = \overline{P_m(x)e^{(\lambda + i\omega)x}}$$
 3

设 $\lambda + i\omega$ 是特征方程的 k 重根 (k = 0, 1),则 ② 有

特解:
$$y_1^* = x^k Q_m(x) e^{(\lambda + i \omega) x}$$
 ($Q_m(x)$ 为m次多项式)

故
$$(y_1^*)'' + p(y_1^*)' + qy_1^* \equiv P_m(x)e^{(\lambda+i\omega)x}$$

等式两边取共轭 :
$$\overline{y_1^*}'' + p \overline{y_1^*}' + q \overline{y_1^*} \equiv \overline{P_m(x)} e^{(\lambda + i\omega)x}$$

这说明 y_1^* 为方程 ③ 的特解 .

第三步 求原方程的特解

原方程
$$y'' + py' + qy = e^{\lambda x} \left[P_l(x) \cos \omega x + P_n(x) \sin \omega x \right]$$

= $P_m(x) e^{(\lambda + i\omega)x} + \overline{P_m(x) e^{(\lambda + i\omega)x}}$

利用第二步的结果, 根据叠加原理, 原方程有特解:

$$y^* = y_1^* + \overline{y_1^*} = x^k e^{\lambda x} [Q_m e^{i\omega x} + \overline{Q_m} e^{-i\omega x}]$$

$$= x^k e^{\lambda x} [Q_m (\cos \omega x + i \sin \omega x) + \overline{Q_m} (\cos \omega x - i \sin \omega x)]$$

$$= x^k e^{\lambda x} [R_m \cos \omega x + \widetilde{R}_m \sin \omega x]$$
其中 R_m, \widetilde{R}_m 均为 m 次实多项式 .

小结:

对非齐次方程
$$f(x) = e^{\lambda x} [p_l(x) \cos \omega x + p_n(x) \sin \omega x]$$
 (p, q) 为常数)

λ+iω为特征方程的 k 重根 (k=0, 1),则可设特解:

$$y^* = x^k e^{\lambda x} [R_m \cos \omega x + \tilde{R}_m \sin \omega x]$$

其中
$$m = \max\{n, l\}$$

上述结论也可推广到高阶方程的情形.

例3 求方程 $y'' + y = x \cos 2x$ 的通解.

解 对应齐次方程的特征方程为 $r^2+1=0 \Rightarrow r_{1,2}=\pm i$ 于是齐次方程的通解为 $Y=C_1\cos x+C_2\sin x$ 由于 $f(x)=x\cos 2x$, $(\lambda=0,\omega=2,P_l(x)=x,P_n(x)=0)$ 且 $\lambda+i\omega=2i$ 不是特征方程的根,取 k=0,故原方程特解设为: $y^*=(ax+b)\cos 2x+(cx+d)\sin 2x$ 代入所给方程,得

$$(-3ax - 3b + 4c)\cos 2x - (3cx + 3d + 4a)\sin 2x = x\cos 2x$$
所以 $a = -\frac{1}{3}, b = 0, c = 0, d = \frac{4}{9}$
于是得原方程的一个特解为 $y^* = -\frac{1}{3}x\cos 2x + \frac{4}{9}\sin 2x$
所求通解为 $y = C_1\cos x + C_2\sin x - \frac{1}{3}x\cos 2x + \frac{4}{9}\sin 2x$.

例 4 求方程 $y'' - 2y' + 5y = e^x \sin 2x$ 的通解.

解 齐次方程的特征方程为 $r^2-2r+5=0 \Rightarrow r_{1,2}=1\pm 2i$

于是齐次方程的通解为 $Y = e^x (C_1 \cos 2x + C_2 \sin 2x)$

由于 $f(x) = e^x \sin 2x, (\lambda = 1, \omega = 2, P_l(x) = 0, P_n(x) = 1)$

 $\lambda + i\omega = 1 + 2i$ 是特征方程的根,取 k = 1,

故原方程特解设为: $y^* = xe^x (A\cos 2x + B\sin 2x)$

代入所给方程,得 $A=-\frac{1}{4}$, B=0

于是得原方程的一个特解为 $y^* = -\frac{1}{4}xe^x \cos 2x$

所求通解为 $y = e^x (C_1 \cos 2x + C_2 \sin 2x) - \frac{1}{4} x e^x \cos 2x$

例5 求方程 $y'' + 9y = 18\cos 3x - 30\sin 3x$ 的通解.

解 特征方程为 $r^2 + 9 = 0$, 其根为 $r_{1,2} = \pm 3i$

对应齐次方程的通解为 $Y = C_1 \cos 3x + C_2 \sin 3x$

±3i为特征方程的单根,因此设非齐次方程特解为

$$y^* = x(a\cos 3x + b\sin 3x)$$

代入方程: $\underline{6b}\cos 3x - \underline{6a}\sin 3x = \underline{18}\cos 3x - \underline{30}\sin 3x$

比较系数,得 a=5, b=3,

因此特解为 $y^* = x(5\cos 3x + 3\sin 3x)$

所求通解为 $y = C_1 \cos 3x + C_2 \sin 3x + x (5 \cos 3x + 3 \sin 3x)$

例 6 求方程 $y'' + y = e^x + \cos x$ 的通解.

解 对应齐次方程的特征方程为 $r^2+1=0 \Rightarrow r_{1,2}=\pm i$

齐次方程的通解为 $Y = C_1 \cos x + C_2 \sin x$

因为 $y'' + y = e^x$ 应有 Ae^x 形式的特解;

 $y'' + y = \cos x$ 应有 $x(B\cos x + C\sin x)$ 形式的特解,

故特解应设为 $y^* = Ae^x + x(B\cos x + C\sin x)$

代入所给方程,得 $2Ae^x + 2C\cos x - 2B\sin x = e^x + \cos x$

由此求得 $A = \frac{1}{2}, C = \frac{1}{2}, B = 0$

于是求得一个特解为 $y^* = \frac{1}{2}e^x + \frac{x}{2}\sin x$

所求通解为 $y = (C_1 \cos x + C_2 \sin x) + \frac{1}{2}e^x + \frac{x}{2}\sin x$.

例7 设下列高阶常系数线性非齐次方程的特解形式:

(1)
$$y^{(4)} + 2y'' + y = \sin x$$

(2)
$$y^{(4)} + y'' = x + e^x + 3\sin x$$

解 (1) 特征方程 $r^4 + 2r^2 + 1 = 0$, 即 $(r^2 + 1)^2 = 0$,

有二重根 $r = \pm i$, 所以设非齐次方程特解为

$$y^* = x^2(a\cos x + b\sin x)$$

(2) 特征方程
$$r^4 + r^2 = 0$$
, 即 $r^2(r^2 + 1) = 0$ 有根 $r_{1,2} = 0$, $r_{3,4} = \pm i$

利用叠加原理, 可设非齐次方程特解为

$$y^* = x^2(ax + b) + ce^x + x(d\cos x + k\sin x)$$

内容小结

1.
$$y'' + p y' + q y = P_m(x) e^{\lambda x}$$

 λ 为特征方程的 k (=0,1,2) 重根,则设特解为

$$y^* = x^k Q_m(x) e^{\lambda x}$$

2.
$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos \omega x + P_n(x) \sin \omega x]$$

 $\lambda + i\omega$ 为特征方程的 k (= 0, 1) 重根,则设特解为

$$y^* = x^k e^{\lambda x} [R_m(x) \cos \omega x + \tilde{R}_m(x) \sin \omega x]$$

$$m = \max\{l, n\}$$

3. 上述结论也可推广到高阶方程的情形.

思考与练习

- 1.(填空) 设 y'' + y = f(x)
 - 1) 当 $f(x) = x \cos x$ 时可设特解为

$$y^* = x [(ax+b)\cos x + (cx+d)\sin x]$$

2) 当 $f(x) = x \cos 2x + e^{2x}$ 时可设特解为 $y^* = (ax + b)\cos 2x + (cx + d)\sin 2x + k e^{2x}$

提示:
$$f(x) = e^{\lambda x} \left[P_l(x) \cos \omega x + P_n(x) \sin \omega x \right]$$
$$y^* = x^k e^{\lambda x} \left[R_m(x) \cos \omega x + \tilde{R}_m(x) \sin \omega x \right]$$
$$m = \max\{n, l\}$$

2. 求微分方程 $y'' + 4y' + 4y = e^{\alpha x}$ 的通解 (其中 α 为实数).

解: 特征方程 $r^2 + 4r + 4 = 0$, 特征根: $r_1 = r_2 = -2$

对应齐次方程通解: $Y = (C_1 + C_2 x)e^{-2x}$

 $\alpha \neq -2$ 时,令 $y^* = Ae^{\alpha x}$,代入原方程得 $A = \frac{1}{(\alpha+2)^2}$,

故原方程通解为 $y = (C_1 + C_2 x)e^{-2x} + \frac{1}{(\alpha + 2)^2}e^{\alpha x}$

 $\alpha = -2$ 时, \diamondsuit $y^* = B x^2 e^{\alpha x}$,代入原方程得 $B = \frac{1}{2}$,

故原方程通解为 $y = (C_1 + C_2 x)e^{-2x} + \frac{1}{2}x^2 e^{\alpha x}$

3. 已知二阶常微分方程 $y'' + ay' + by = ce^x$ 有特解

$$y = e^{-x}(1 + xe^{2x})$$
 求微分方程的通解.

解: 将特解代入方程得恒等式

$$(1-a+b)e^{-x}+(2+a)e^{x}+(1+a+b)xe^{x}=ce^{x}$$

比较系数得
$$\begin{cases} 1-a+b=0 \\ 2+a=c \\ 1+a+b=0 \end{cases} \longrightarrow \begin{cases} a=0 \\ b=-1 \\ c=2 \end{cases}$$

故原方程为 $y''-y=2e^x$

$$y'' - y = 2e^x$$

对应齐次方程通解: $Y = C_1 e^x + C_2 e^{-x}$

原方程通解为
$$y = C_1 e^x + C_2 e^{-x} + x e^x$$