NASA TECHNICAL MEMORANDUM

NASA TM X-3360

NOISE GENERATED BY QUIET ENGINE FANS

III - Fan C

Francis J. Montegani, John W. Schaefer, and Ralph F. Schmiedlin

Lewis Research Center Cleveland, Ohio 44135

1. Report No. TM X-3360	2. Government Access	ion No.	3. Recipient's Catalog	g No.
4. Title and Subtitle NOISE GENERATED BY QUIET	ENGINE FANS		5. Report Date March 1976	
III - FAN C			6. Performing Organi	zation Code
7. Author(s) Francis J. Montegani, John W.	Schaefer, and		8. Performing Organiz E -8530	ration Report No.
Ralph F. Schmiedlin 9. Performing Organization Name and Address			10. Work Unit No. 505-03	
Lewis Research Center National Aeronautics and Space	Administration	<u> </u>	11. Contract or Grant	No.
Cleveland, Ohio 44135	-	<u> </u>	13. Type of Report ar	nd Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space	Administration		Technical Mo	
Washington, D.C. 20546	Administration		14. Sponsoring Agency	/ Code
15. Supplementary Notes			******	
A significant effort within the Nat the Lewis Research Center flow-noise features and built by part series covering the three a 1.6-pressure-ratio, 472-m/s aerodynamic operating data are range of operating conditions for sound-absorbing material in the of the data are presented in tabline perceived noise levels. Reand sample graphs of continuous	tull-scale-fan noi the General Elec- fans tested, docu sec (1550-ft/sec) e given. Far-fie or a variety of co e flow ducts. Co cular form. Inclu- epresentative 1/3	ise test facility of a ctric Company. The ments the noise retip speed fan. The ld noise around the onfigurations having amplete results of 1 aded also are acous 3-octave band data appectra are also pro-	family of fans of is report, the last sults obtained we fan is describe fan was measured different arranged 3-octave band stic power spectrare presented gravided.	designed with ast of a three- ith fan C - ed and some red over a gements of analysis ra and side-
17. Key Words (Suggested by Author(s)) Aircraft noise; Turbofan engine	es: Acoustics:	18. Distribution Statement Unclassified -		
Fan noise; Quiet engine	· · · · · · · · · · · · · · · · · · ·	STAR Category	07 (rev.)	
19. Security Classif. (of this report)	20. Security Classif. (o	f this page)	21. No. of Pages	22. Price*
Unclassified	Unclass	· -	79	\$4.75

NOISE GENERATED BY QUIET ENGINE FANS

III - FAN C

by Francis J. Montegani, John W. Schaefer, and Ralph F. Schmiedlin

Lewis Research Center

SUMMARY

A significant effort within the NASA Quiet Engine Program was devoted to acoustical evaluation at the Lewis Research Center full-scale-fan noise test facility of a family of fans designed with low-noise features and built by the General Electric Company. This report, the last of a three-part series covering the three fans tested, documents the noise results obtained with fan C - a 1.6-pressure-ratio, 472-m/sec (1550-ft/sec) tip speed fan. The fan is described and some aerodynamic operating data are given. Farfield noise around the fan was measured over a range of operating conditions for a variety of configurations having different arrangements of sound-absorbing material in the flow ducts. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are acoustic power spectra and sideline perceived noise levels. Representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.

INTRODUCTION

The NASA Quiet Engine Program was directed toward developing technology having direct application in the alleviation of noise from subsonic commercial aircraft. The most tangible results of the program were demonstrator high-bypass-ratio turbofan engines which, by the incorporation of such technology, were markedly quieter than then-available engines (ref. 1).

A significant effort within the Quiet Engine Program was devoted to acoustical and aerodynamic evaluation of a family of full-scale component fans. The designs of these fans were varied to develop a better understanding of the mechanisms of fan noise generation and to permit the selection ultimately of a minimum-noise design for incorporation in the Quiet Engine. Three such fans were built, each designed to meet propulsion

system requirements but varying significantly in aerodynamic design parameters which were considered to be noise related. In addition, all fans possessed the accepted low-noise features of being single stage, having no inlet guide vanes, having extended rotor-stator spacing, and having an appropriate vane/blade ratio.

The three fans were letter designated as A, B, and C. All were designed and built by the General Electric Company. A comparative summary of their more pertinent design characteristics is given in table I. Of the three fans, fan C was the last to undergo an extensive acoustical test program at the Lewis Research Center. This report documents the more significant noise data obtained in that program. Results obtained with fans A and B are given in references 2 and 3.

Interpretation of the data is subject to the ultimate interests of the user. Further, it is facilitated by a comparison of data from all fans tested, only one of which is being reported herein. For these reasons no attempt is made at interpretation from any point of view. Rather, emphasis is placed on completeness and convenience of format for all potential users.

FAN DESIGN CHARACTERISTICS

A complete discussion of the aerodynamic and mechanical design details of fan C is given in reference 4. Only a brief qualitative description is given here. Fan C, relative to the other fans in the program, was characterized generally as being a high-tip-speed, moderate-aspect-ratio fan with a low number of blades. The fan is illustrated in the cut-away view of the test assembly shown in figure 1. For testing purposes the fan was shaft-driven from the front as illustrated. All the fans were designed with sound-absorbing liners in the fan frame. Further discussion of the fan frame is given in the section TEST HARDWARE.

FAN PERFORMANCE

Extensive aerodynamic testing of the fan was conducted at the General Electric facilities in Lynn, Massachusetts; the detailed results are given in reference 5. A performance map based on fan bypass flow is given in figure 2. The constant-speed lines shown dashed are from the aerodynamic tests described in reference 5. For the tests at the noise facility, a minimal amount of aerodynamic instrumentation was used, from which the fan operating lines, shown in figure 2, were derived for the various nozzle areas employed as reported herein.

TEST HARDWARE

Cross sections of the hardware used for acoustical testing are shown in figure 3. The fan was run in a variety of configurations by using various combinations of the elements shown. Each configuration differed with regard (1) to the amount of acoustical treatment in the inlet, (2) the extent of active fan-frame treatment, (3) the amount of acoustical treatment in the bypass exhaust duct, and (4) the size of the bypass nozzle. The variations employed in each of these areas and the terminology used are explained in the next section.

Hardware Variables

Inlet. - The fan was run with three inlet conditions - ''hard, '' ''suppressed, '' and ''treated wall.'' The hard inlet comprised a bellmouth and a 101.6-centimeter (40-in.) long cylindrical section mated to the fan frame. This is illustrated at the top in figure 3.

The suppressed inlet consisted of an acoustically treated cylindrical outer section and three treated straight cylindrical splitters which collectively constituted a bolt-on inlet suppressor. This is shown as the alternative inlet in figure 3. The details of this suppressor design have been reported in reference 6, which includes also a discussion of its use with another fan. Because of the difference in diameter between the fan C frame and the inlet suppressor, a short converging adapter was used to mate the two as illustrated in figure 3.

The treated-wall inlet consisted of the outer cylindrical portion only of the inlet suppressor, that is, the suppressor without the splitter rings.

Fan frame. - The fan was designed, as were all fans in the Quiet Engine Program, with sound-absorbing liners in the fan frame. The fan frame extended from a plane approximately 41 centimeters (16 in.) upstream of the fan rotor face to a plane approximately 61 centimeters (24 in.) downstream of the stator. The extent of the fan frame is noted in figure 3. Details of the fan-frame treatment, which was a multiple-degree-of-freedom resonator type, are given in reference 4. Fan-frame treatment existed also in the core passage walls near the stator. The fan was run with all fan-frame treatment functional, denoted as "fully treated," and with various sections of it deactivated by the use of adhesive aluminum tape. This was accomplished by first taping over all the fan-frame treatment, a configuration denoted as "fully taped," and by next removing the tape upstream of the rotor, then between the rotor and stator, and lastly, downstream of the stator. This resulted in two partially treated fan-frame configurations. The one with functional treatment upstream of the rotor only is denoted as "fore-rotor treated." The other, which had, in addition, functional treatment between the rotor and stator,

is denoted as "fore-stator treated." For all configurations, the fan-frame treatment in the core duct remained functional.

Bypass exhaust duct. - The fan was run with both 'hard' and 'suppressed' exhaust duct conditions. The 'hard' exhaust condition refers to the bypass duct with no soundabsorbing treatment. Alternately, the suppressed condition employed treatment in the duct walls and a treated splitter. The arrangement and dimensions of the suppressor are given in figure 3.

Nozzles. - Three separate bypass exhaust duct nozzles were used. These are referred to as nominal, large, and small - corresponding to the three operating lines shown in figure 2. The nominal nozzle had an exit area of 0.995 square meter (1543 sq in.). The small and large nozzle areas deviated approximately 7 percent and 11 percent, respectively, from nominal. The core nozzle area was increased during the course of the test program to better simulate operation of the hub of the fan under engine conditions. But the change was insufficient to influence the aerodynamic data presented in figure 2.

The geometric variables of the nozzles which may relate to jet noise generation are given in table II. The bypass nozzle exit plane was upstream from that of the core. The axial distances between the bypass and core nozzle exit planes are also given in table II.

Core Duct

For all tests, the core flow was simply ducted aft through a nozzle of a size to cause the hub portion of the fan to operate as closely to engine conditions as possible. To reduce emission of internal noise from the core duct, a core suppressor was installed as illustrated in figure 3. The suppressor consisted of polyurethane foam held in place in the core duct outer wall by a perforated metal facing sheet and had an active area of 1.626 square meters (17.5 sq ft).

DATA ACQUIRED

The configurations for which acoustical data are being reported herein are described in table III. Each configuration was run at various speeds. For every test, far-field noise was measured and the results of these measurements constitute the substance of this report.

One of the tests involved wrapping the entire fan outer casing with acoustical damping material in order to modify the casing emission characteristics and thus gain some qualitative assessment of noise from that source. This is designated as the muffled casing

(see footnote c, table III). It was made by wrapping the fully suppressed configuration with 15.2 centimeters (6 in.) of open-cell polyurethane ether foam.

In some instances, in order to avoid the risk of incurring program delays because of impending inclement weather, aerodynamic and acoustical data were obtained simultaneously. This meant obtaining acoustical data while instrumentation rakes were protruding into the bypass jet stream at the nozzle exit. Such tests are so denoted by footnote a in table III. Results from previous tests with the other two fans in the program showed that such instrumentation had little or no effect on the data, and the compromise was well worth the potential delays avoided.

DATA ACQUISITION AND ANALYSIS

Test Site

The acoustical tests were conducted at the outdoor full-scale-fan noise test facility at the Lewis Research Center (fig. 4). A plan view of the area is given in figure 5. The facility abuts the 10- by 10-Foot Supersonic Wind Tunnel drive motor building and utilizes the wind tunnel drive motors as the fan prime mover through a speed-increasing gearbox. The fan pedestal was located sufficiently far from the building to permit placement of far-field microphones on a 30.5-meter- (100-ft-) radius arc every 10°, from 10° to 160°, with respect to the fan inlet axis. The 120° and 160° microphone distances were actually greater than 30.5 meters (100 ft) by 0.9 and 1.4 meters (3 and 4.5 ft), respectively, because of the presence of a sidewalk in the microphone field. The fan axis was 5.8 meters (19 ft) from the ground, and the microphones were all in the same horizontal plane. The ground plane was asphalt pavement. The exterior wall of the drive building was treated with sound-absorbing material to minimize reflections to the microphone array. There were no other major reflecting surfaces in the near vicinity of the site.

It should be noted, for the data reported herein, that the center of the microphone arc intersected the fan assembly axis near the nozzle exit plane. The actual distance of the center of the arc from the fan component, which is the more customary arc center, was 3.5 meters (11.7 ft) (fig. 5). This situation resulted from the evolutionary process of developing the test facility and is not significant in itself. Care, however, should be exercised in making detailed comparisons of the data, particularly one-to-one angular comparisons, with data obtained from assemblies whose center of the arc lies elsewhere.

Test Procedure

The instrumentation and data recording system had a flat response over the frequency range of interest (50 to 20 000 Hz). Prior to the set of tests for each configuration, a pistonphone signal was impressed on each far-field microphone for absolute calibration of each channel. Data signals were FM recorded from all channels simultaneously on magnetic tape. Air temperature, pressure, and relative humidity were logged before and after testing; and wind velocity and direction were logged at each data point. To minimize problems with ambient noise and unfavorable wind conditions, tests were usually conducted in the early morning hours prior to sunrise, when weather conditions were calm and stable. No acoustical data were taken under conditions of fog or precipitation or with wind or gusts in excess of 5.1 meters per second (10 knots).

Corrected fan speeds were used which corresponded to 60, 70, 80, and 90 percent of standard-day cruise design speed. For this reason, the fan physical speeds employed varied from day to day with ambient temperature variations. The 60- and 90-percent speed points approximately represent fan operation for a four-engine aircraft at approach and takeoff conditions, respectively. Generally, the fan was run over the speed range three times, and three nonconsecutive 100-second noise samples for each speed were recorded.

One-Third-Octave Band Analysis

<u>Data reduction system.</u> - Each of the three samples for a given speed was reduced separately by using a 1/3-octave band analyzer. The resulting sound pressure levels were arithmetically averaged. The analysis system employed a 4-second averaging time and stepped sequentially through the angles from 10⁰ to 160⁰. The 4-second averaging time was a compromise to accommodate all angles within a 100-second sample while preserving analyzer repeatability. All three-sample averages for each frequency and angle were examined statistically. The standard deviations of the great bulk of the data were less than 1 decibel.

Adjustments to measured data. - Results of 1/3-octave band analysis yielded data taken under ambient conditions of the test day at the microphone locations. The data were rendered lossless (i.e., the effect of atmospheric absorption was removed) by computing atmospheric absorption for the test conditions over the propagation path and adding it to the data.

Atmospheric absorption was computed by using continuous functions of frequency deduced from reference 7. The application procedures set forth in reference 7 were not used, as they presuppose a spectrum typical of engine jet noise. In the present case,

the general shape of the measured spectrum was used to obtain an integrated value of absorption for each 1/3-octave band.

For reference purposes and to permit extrapolation of data provided herein to other distances, standard-day atmospheric absorption values are given in table IV. These values are based on the assumption of a flat 1/3-octave band spectrum and therefore are not precisely those computed for any real spectrum. However, the values are nominally those employed in the data adjustments and are sufficiently accurate for estimating noise projections to other distances.

The lossless data were adjusted to constant radius and acoustic power and directivity index calculations were made. No lossless directivity index data are presented herein, but they may be readily derived from the data (see the section DATA PRESENTATION). For acoustic power calculations, the sound pressure levels were presumed to be axisymmetric and were integrated over an enclosing hemisphere. Implicit in this procedure was that the ground plane was perfectly reflective in the sense that acoustic intensity was doubled in the far field. No account was made of signal interference effects at the microphones due to ground reflections.

Using lossless data, calculations of atmospheric absorption for a standard day of 15°C (59°F) and 70-percent relative humidity were made and the data so adjusted to standard-day conditions. All tabulated sound-pressure-level data reported herein are adjusted to standard-day conditions.

A more thorough discussion of the material presented in this section and the computer programs employed are given in reference 8.

Narrow-Band Analysis

Continuous narrow-band spectral analyses of the noise signals were also performed. The analysis system employed a 20-hertz constant-bandwidth filter over the frequency range 0 to 10 000 hertz. The narrow-band spectra were not adjusted in any way and represent the signals at the microphones under test-day conditions.

Narrow-band spectra constitute a highly detailed examination of the data and may reveal features which are otherwise not evident but which aid in understanding the noise-generating mechanisms. In this sense, they reflect a specialized interest in the data and do not share in the wide practical utility of 1/3-octave band data. For this reason, and considering the simple nature of the source, only a limited number of narrow-band spectra are presented herein as general information.

DATA PRESENTATION

Tabulations

All standard-day 1/3-octave band data on a 30.5-meter (100-ft) arc which were obtained from the acoustical test program are presented in tabular form. Table III lists the fan configurations for which data are presented. The actual noise data appear in tables V to XV inclusive, in increasing order of configuration number. Each table is identified by configuration number and speed and contains descriptive information about the configuration.

The noise data table entries are standard-day sound pressure levels (SPL referred to 0.00002 N/sq m) in each 1/3-octave band for each angle on a 30.5-meter (100-ft) radius. Overall sound pressure levels which were computed from the 1/3-octave band data are also given.

Using lossless data, calculations of acoustic power level (PWL) were made by multiplying the sound intensity at each angle by its respective incremental area on the surface of a hemisphere and summing the increments of power so obtained (ref. 8). Radiation through polar areas for which no data were obtained was neglected. Acoustic power levels are presented in the tables referred to 10^{-13} watts (0.1 pW).

Each acoustic power level has associated with it an average sound pressure level, which is the sound pressure level produced by a source emitting the same acoustic power but radiating uniformly in all directions. For the individual frequency bands, average sound pressure level may be used to quickly compute directivity index. Since average sound pressure level is for lossless data and the table entries include standard-day atmospheric absorption, directivity index can be obtained by subtracting atmospheric absorption for 30.5 meters (100 ft) (table IV) from the average sound pressure level and subtracting the result from the table entries at all angles. Unfortunately, there is no direct way to compute the directivity index for the overall sound pressure levels by using the data provided.

For all cases, projections were made to a sideline 61 meters (200 ft) from and parallel to the fan axis, and perceived noise levels in PNdB were computed in accordance with reference 9. These perceived noise levels are provided in the tables and permit a quick and practical comparison, among all the data, of the relative noise generated. In addition, sideline perceived noise levels are provided at 113 meters (370 ft) for the approach-speed case (60 percent of design speed) and at 305 meters (1000 ft) for the takeoff-speed case (90 percent of design speed). These distances typify aircraft altitudes at FAA-regulated noise certification locations (ref. 9), and the data indicate generally the community noise levels to be expected from the fan compared with FAA regulations. The data provided are for a single fan; the perceived noise levels for n fans may be approximated very closely by adding 10 log n to the single-fan values.

Graphical Data

One-third-octave band data. - For many configurations, the 1/3-octave band data are qualitatively similar. For this reason, data from only selected configurations, unsuppressed and fully suppressed, are presented graphically to illustrate general features. These are configurations 305 and 309, for which data are presented in figures 6 and 7, respectively. Detailed comparisons of different configurations should be made by using the tabulated data. Graphical data presentations consist of standard-day 1/3-octave band sound pressure levels at a 30.5-meter (100-ft) radius for all angles and speeds.

Narrow-band data. - Because of their special nature, only representative samples of narrow-band spectra are presented to illustrate their general character. Spectra at or near the peak noise angles, front and rear, at 60- and 90-percent speeds have been selected. These are presented for configurations 305 and 309 in figures 8 and 9, respectively.

CONCLUDING REMARKS

A program of noise tests with fan C was conducted at the Lewis Research Center. Fan C is characterized generally as having a high tip speed and 26 moderate-aspect-ratio blades. It is one of three full-scale fans built under the NASA Quiet Engine Program, each of which varies significantly in design characteristics which may be noise related.

Acoustical tests were conducted over a range of aerodynamic operating conditions and with various arrangements of sound-absorbing material. Complete far-field noise results obtained in the tests are presented without interpretation. The data are presented in tabular form in a format intended to be useful to the majority of interested users. The presentation of these results is part of a continuing program directed toward a better understanding of the mechanisms of fan noise generation and the alleviation of noise from turbofan propulsion systems.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 11, 1975,
505-03.

REFERENCES

- 1. Aircraft Engine Noise Reduction. NASA SP-311, 1972.
- 2. Montegani, Francis J.; Schaefer, John W.; and Stakolich, Edward G.: Noise Generated by Quiet Engine Fans. II Fan A. NASA TM X-3066, 1974.
- 3. Montegani, Francis J.: Noise Generated by Quiet Engine Fans. I Fan B. NASA TM X-2528, 1972.
- 4. Experimental Quiet Engine Program. Volume 1, Phase 1: Engine Design Report. (General Electric Co.; NAS3-12430.) NASA CR-72967, 1970.
- 5. Giffin, R. G.; Parker, D. E.; and Dunbar, L. W.: Experimental Quiet Engine Program Aerodynamic Performance of Fan C. (General Electric Co.; NAS3-12430.) NASA CR-120981, 1972.
- 6. Rice, Edward J.; Feiler, C. E.; and Acker, L. W.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines. III: Performance with Noise Suppressors. NASA TN D-6178, 1971.
- 7. Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise. Aerospace Recommended Practice 866, SAE, Aug. 1964.
- 8. Montegani, Francis J.: Some Propulsion System Noise Data Handling Conventions and Computer Programs Used at the Lewis Research Center. NASA TM X-3013, 1974.
- 9. Noise Standards: Aircraft Type Certification. Federal Aviation Regulations, pt. 36, 1974.

TABLE I. - DESIGN CHARACTERISTICS OF FANS A, B, AND C

Characteristic	Fan A	Fan B	Fan C
Corrected rotor tip speed, m/sec (ft/sec)	354 (1160)	354 (1160)	472 (1550)
Inlet hub/tip radius ratio	0.465	0.465	0. 360
Rotor inlet tip diameter, m (in.)	1.86 (73.354)	1.86 (73.354)	1.73 (68.300)
Corrected airflow, kg/sec (lb/sec)	431 (950)	431 (950)	415 (915)
Inlet corrected specific flow, kg/sec/sq m (lb/sec/sq ft)	202 (41.3)	202 (41.3)	202 (41.3)
Number of rotor chords axially separating rotor and outer outlet guide vanes	2.0	2.0	2.0
Number of rotor chords axially separating rotor and inner outlet guide vanes	1.25	1.25	1.25
Bypass-portion total pressure ratio	1.50	1.50	1.60
Hub-portion total pressure ratio	1.32	1.43	1.49
Bypass ratio	5.6	5.4	5. 0
Rotor aspect ratio	2,32	1.71	2.09
Rotor solidity:	1		
Outside diameter	1,45	1.30	1.40
Inside diameter	2,50	2. 16	2.45
Number of rotor blades	40	26	26
Number of outer outlet guide vanes	90	60	60
Number of inner outlet guide vanes	90	60	60

TABLE II. - NOZZLE GEOMETRY [Stator annulus exit area, 1.274 sq m (1974 sq in.).]

Dimension	•	Bypass nozzle		Core	nozzle
	Nominal	Large	Small	Before area adjustment	After area adjustment
Area, sq m (sq in.)	0.995(1543)	1. 102(1708)	0.923(1430)	0. 225(349)	0.250(387)
Outside diameter, m (in.)	1.594(62.77)	1.629(64.14)	1. 562(61, 51)	0. 766(30. 15)	0. 787(31. 00)
Annulus height, m (in.)	0.235(9.27)	0. 258(10. 15)	0.220(8.68)	0.109(4.30)	0.119(4.68)
Axial distance (bypass exit plane to core exit plane), m (in.):					
0.225-sq m (349-sq in.) core nozzle	0.574(22.6)	0.561(22.1)	0.569(22.4)		
0.250-sq m (387-sq in.) core nozzle	0.493(19.4)	0.480(18.9)	0.488(19.2)		

TABLE III. - ONE-THIRD-OCTAVE BAND FAR-FIELD NOISE DATA PRESENTED

Configuration		Confi	guration desc	cription					Table
	Inlet	Fan frame	Exhaust	Bypass	Bypas	s area	Core	area	
				nozzle	sq m	sq in.	sq m	sq in.	
a ₃₀₂	Hard	Fully taped	Hard	Nominal	0.995	1543	0.225	349	v
303		Fore-rotor treated							VI
304		Fore-stator treated							VП
^b 305		Fully treated						₩	vm
^a 306	\ \						. 250	387	IX
a, c ₃₀₈	Suppressed		Suppressed	į į					x
a,b ₃₀₉	Suppressed								ΧI
310	Treated wall								хп
311	Hard				₩				xm
312				Large	1.102	1708			XIV
313		 	<u> </u>	Small	.923	1430	<u> </u>	\ \	xv

 $[^]a$ Aerodynamic measurement rakes in bypass jet flow. $^b1/3$ -Octave band and narrow-band data presented graphically (figs. 6 to 9).

^cMuffled casing.

TABLE IV. - STANDARD-DAY ATMOSPHERIC ABSORPTION

[Computed for a flat 1/3-octave band spectrum; temperature, 15° C (59° F); relative humidity, 70 percent.

Band center frequency,	Per 100 meters (300 ft)	Per 305 meters (1000 ft)	At 30.5 meters (100 ft)
Hz		Attenuation, dB	
50	0.0	0. 1	0.0
63	1		1
80			
100	ļ .	. ↓	
125	. 1	. 2	
160	1	. 2	
200		. 3	
250		. 4	
3 15	. 2	. 5	
400	. 2	. 6	. 1
500	. 2	. 7	1
630	. 3	. 9	
800	. 4	1. 2	
1 000	. 5	1. 5	↓ ↓
1 250	. 6	1. 9	. 2
1 600	. 8	2.4	. 2
2 000	1.0	3. 1	. 3
2 500	1.4	4.2	. 4
3 150	1.8	5.6	. 6
4 000	2.5	7.7	. 8
5 000	3.6	11.0	1, 1
6 300	5.1	15.6	1.6
8 000	7.4	22. 5	2.2
10 000	10.6	32. 2	3.2
12 500	15. 1	46.0	4.6
16 000	21.4	65.2	6.5
20 000	30.3	92.4	9.2

TABLE V. - NOISE OF FAN C CONFIGURATION 302 (HARD INLET, FULLY TAPED FAN FRAME, HARD EXHAUST, NOMINAL NOZZLE,

RAKES) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3168 rpm; fundamental blade passage frequency, 1372 hertz

	<u>;</u>	3	(a) I of come of design	de 1191c	cea, oo,	Tari	pnysical	speeu,	11 oote	pm; run	nundamental	an plade	e passag	Œ)	irequency,	1372 hertz	tz.	
FRFQUENCY								ANGL	€, 'DEG								AVERAGE	POWER
	01	50	30	Ç.4	50	09	70	83	06	100	110	120	130	140	150	160	346	(PWL)
			1	1/3-3CT	AVE BA	NO.	OUND PRE	SSURE	LEVEL	(SPL) (ON 30.	S-METER	R RADIU	SI				
			-	79.7	2	ċ	3	ŝ		5	ŝ	÷	-	å	ċ	2	•	•
63	74.2	73.7	74.2	72.5	73.7	72.5	73.5	71.5	72.4	73.0	74.7	75.8	77.2	œ	ŏ	82.7		
	•	ä	÷	71.0	2•	÷		:	72.4	4.	76.2	æ	ċ	82.0	83.4	85.4	77.5	124.9
ပ	å	'n	æ	77.2	å	•	•	ŝ	ģ			-	2	•	•	ď	ċ	٠.
125	80.9		80.4	78.9			77.6	7.17	6	80.2	82.1	'n	3	,	, re			28.
9	÷		ô	79.5	ô	19.8	79.0	8 0 • 5	80.5	80.7	81.7	82.4	81.5	82.3	83.3	82.7	81.1	128.5
0	*	ທ	•	80.1		80.6	76.9	77.6	76.6	77.7	•	ċ	_				-	•
250	83.6		83.6	. 2	83.1		6		79.9	81.4	; ;	; ;		, 4	, ,	: :	; ;	
-	3	83.2	÷	82.6	84.6	81.2	80.1	19.2	19.9	80.7	81.1	82.0	82.6	82.7	81.9	79.6	81.8	129.2
0		86.0	÷	84.3	•	-	-	ं		2.	2	9	•	4				č
	87.0	ာ	86.3	ŝ	•	ě	2		٦	6	ě			4	,	: -	, ,	, ,
630	88.2	88.7	87.7	87.4	85.9	83.5	83.2	82.9	83.7	84.5	85.2	85.8	87.4	86.5	83.7	82.1	85.5	132.9
0	_	90.3	89.1	88.4		ġ	85.4	,	85.6		86.8		ď	•	86.6	,	•	•
0	~	91.8	91.6	91.1	Č	8	-	85.8	86.8			6	:		86.1			
1250	ın	101.9	102.7	104.5	105.4	104.5	103.0	97.5	.93.5	94.2	96.4	97.8	98.5	97.4	94.2	92.1	101.0	148.4
1690	97.3	æ	9.3	100.1	•			ě	ံ		ě	•	•	•	91.1	6	6.96	
2330	93.1	m	_	93.9	•	_	6	æ		6		2.	4		. 6	3		
2500	1.96	•	8.7	666	4.66	1.16	95.0	9 I. 4	91.2	91.7	95.4	93.3	95.4	6.46	91.5	6.28	0.96	143.4
3150	0.46	Š	0.96	7.96	•	•	91.5	6	6	90.2	÷	2	Š	m	0.06	•		
4330	94.5	0.96	97.8	98.6	99.5	96.8	93.5	90.6	93.1	91.3	93.1	93.8	9.56	93.6	91.1	87.7	6.56	43
5000	93•3	95.0	94.2	0.96	2.	3	6	۲.	ě	89.3	:	2•	•	5	90.2	•	3	140.8
0069	92•2		93.5		93.5	•	•	•	ŝ	•	å	•	ံ	6		ň	91.7	
8220	6006	95.6	93.7	93.6	93.4	91.1	85.9	82.6	84.6	85.9	88.1	88.0	89.7	87.7	86.2	81.7	41.1	139.1
10000	89.8	_	91.8	•	91.6	•	•	6	<u>.</u>	ċ	Š	Š	7	Š		8	6*06	•
12500	88.6	80.8	•	9 • 68	89.4		2	•	æ	79.8	82.2	2	•	-	80.2	•	ô	
16339	87.4	86.7	88.5	86.7	87.4	•	80.5	72.6	74.7	74.9	77.3	77.5	79.3	77.4	77.0	71.1		•
20000	84.6	82.3		83.9	•	79•2	÷	9.99	69.8	ċ	72.8	e.	ŝ	72.1	72.1	9.99	89.2	136.6
OVERALL	106.3	10701	198.0	109.1	109.4	107.9	195.8	101.7	100.4	101.2	10.2°9	193.8	105.5 1	194.1	191.5	99.1	106.2	153.6
DISTANCE						STD	EL INE	PERCEI	VED NO	ISE LE	VEL S							
61 METERS	92.3	101.2	106.5	110.0	1111.9	11110	109.4	106.7	106.8	107.4	108.6	108.5	109.0 1	0,	100.6	93.5		
i i i i i i i i i i i i i i i i i i i	_		7.40		v	•	÷	13.4	_	(, • 1)	0.0	6.10	•	•	•	٥		

(b) Percent of design speed, 70; fan physical speed, 3696 rpm; fundamental blade passage frequency, 1601 hertz.

MUA 39	SPL LEVEL (PWL)		81.2 128.6 83.2 130.6 83.7 131.1	wων	5•4 156• 4•5 131•	4 134 9 133	87.8 135.2 88.5 135.9 90.2 137.6	91.3 138.7 93.7 141.1 94.7 142.1	107.7 155.1 96.9 144.3 95.7 143.1	•	102.4 149.8 97.2 146.6 99.5 146.9	6 144 5 146 5 146 6 144 2 143	144 144 144 144 144 144 144 144 144 144	144 149 149 149 149 149 149 149 149 149		. 6 144 . 6 144 . 6 144 . 6 141 . 6 141 . 7 139
	160		88.0 89.0 92.2	92.7	: ;	87.9 85.7	87.0 86.0 87.9	87.2 88.4 88.6	98.6 90.6 89.1		93.4 90.1 92.0	968 609	10.8 30.8	••••••	93. 972. 972. 986. 886. 775. 711.	93. 900. 900. 900. 900. 900.
	150		86.7 87.8 90.8	91.9		89.1 87.7	87.6 88.2 89.2	88.8 93.0 90.8	99.9 92.5 92.1		95.6 93.2 94.9	80.4			v 4 4 608 414 6	νω4 το α 4-14 φ
	140	IUS	84.0 85.1 88.1	89.9		• •	88.8 89.3 89.9	91.3 93.7 93.0	101.6 94.7 94.6		98.3 95.2 97.2	9.5	98.3 95.2 97.2 93.4 91.9 89.8 85.7	98.3 95.2 97.2 93.4 91.9 89.8 85.7 82.2 76.5	98. 97. 97. 93. 985. 76.	98. 995. 997. 993. 985. 76.
	130	RRAD	82.2 84.0 86.3	88.4 89.8	: ;	88.9	88.8 90.3 91.0	93.0 96.2 95.8	106.4 99.2 97.7		100.5 98.5 99.5	986 946	086 940 640	086 946 640 0	080 040 040 0	080 040 0 4
	120	5-METE	81.6 82.2 83.4	86.4 88.9	ໍ້ຄ	88•6 86•9	88.2 88.4 90.6	92.1 94.9 94.9	104•3 97•3 96•5		100•1 97•3 97•6	340	250 500	0.5 4m0 5mm 6	977. 977. 977. 993. 887. 788.	977. 977. 977. 997. 990. 14.
	110	OK 30.	80.2 82.1 81.8	85.1 87.0	i n	88.4 85.8	87.5 87.7 89.9	91.5 93.0 93.8	102•4 96•0 95•6		99•0 96•7 97•2	44.1	444 768	441 768 7	999. 97. 94. 94. 91. 91. 91. 91.	6 5 7 4 4 1 7 8 8 7 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	100	(SPL)	79.5	83.1 86.5	, °	87.2 84.8	87.8 86.8 89.7	90.6 91.9 93.0	103.4 94.7 94.2		97.1 94.5 95.4	5.4.	20.4	7 4 6 H 1 2 4 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	97. 94. 91. 91. 88. 80. 75.	97. 94. 95. 91. 91. 88. 84. 80. 75.
E, DEG	66	LEVEL	79.0	81.6	• •	86.1 84.8	86.6 86.2 88.2	89.5 90.9 92.0	104.4 94.2 93.6		97.6 93.2 94.9	40.4	40.4	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	97.6 93.2 94.9 91.4 90.1 87.3 83.7 83.7 75.2	97.6 993.2 94.9 91.4 91.4 87.3 83.7 75.2 07.3 ED NO
ANGL	80	SSURE	77.7 78.6 75.8	79.3	å -	83.6 83.5	84•1 84•8 87•9	88.1 90.2 91.2	102.1 93.2 91.9		97.8 91.9 92.5	218 514	2.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	97.8 91.9 92.5 88.9 88.9 87.6 85.0 81.5 77.6 72.3 05.6	991.9 91.9 92.5 88.9 88.9 88.0 88.0 88.0 88.0 77.6 77.6 72.3 05.6 ERCEI
	7.0	OUND PRE	78.0 78.8 75.3	78.4 84.5	5 6	83.6	86.7 87.3 88.0	89.5 91.2 93.0	104.9 94.2 92.4		100.6 93.5 95.7	404 660	9 4 4 4 W W W	8 989 405 890 8 989	1000.6 93.5 91.2 90.4 87.4 83.7 78.5 108.0	1000.6 93.5 91.2 90.4 87.4 83.7 78.5 73.8 1108.0
	69	AND SOU	77.3 80.8 76.0	77.8	5 6	85.6	85.3 88.0 88.0	91•1 93•9 94•5	110.4 98.0 95.4	ò	97.2 97.2 190.7	95. 95.	97. 97. 96. 96. 94. 91. 87.	900.7 900.7 900.7 96.7 94.3 91.2 87.1 12.7	7.2 0.7 0.7 66.7 55.2 4.3 11.2 7.1 2.7 SID	2.7 2.7 2.7 2.7 2.7 2.7
	53	AVE BAI	80.5 84.1 79.1	80.1 84.6	, ,	85.9	88.0 90.3 91.7	92.5 95.4 96.5	110.9 98.5 96.7	106.1	98.9	0 0 0 0	00 000 444	00 000 444 6	88.9 1.7 2.4 5.5 1.1 3.7	2 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	4.0	1/3-0CT	77.2 87.1 74.5	76.6 82.8	81.7	88.6 85.3	90.7 90.7 91.5	92•6 96•1 97•5	112•1 99•0 97•2	106.6	99.4 132.4	99. 72. 98. 97.	99.4 172.4 98.7 97.4 95.1 92.0 88.8	999.4 72.4 98.7 97.4 95.1 92.0 88.8 85.1	999.4 998.7 97.4 988.8 888.8 1 6.5	999.4 72.4 998.7 997.4 995.1 14.5 14.5
	ΰE	-	79.3 80.3 78.1	79.8	84.2	88.4	89.6 89.8 93.2	92.8 94.4 97.0	110.1 98.2 97.6	104.3						100.4 98.1 97.2 95.5 90.9 89.8 89.8
	2.0		76.0 82.1 76.0	76.8 85.1	84.7	88.7	89.3 89.3 92.7	92.8 95.4 97.5	113.6 99.3 96.9	103.8 98.0						
	10		80.5 86.3 76.8	78.6 85.5	84.0	87•2 86•8	90•1 90•7 93•0	94•1 96•4 97•8	112.4 99.0 97.2		100.1					98.2 95.7 94.3 91.8 89.9 87.2 114.1
FREQUENCY			5 63 8 0 8	100	1 8 0 200	250 315	400 500 630	800 1000 1250	1690 2390 2509	3150	5000	5000 6300 8300 10000	6300 8300 8300 10000 12500 20000	6303 8333 10000 12500 20000 CVEPALL	6300 8300 8300 10000 16000 20000 CVEPALL	5000 6300 8300 10000 16000 20000 CVEPALL DISTANCE

TABLE V. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4212 rpm; fundamental blade passage frequency, 1825 hertz.

FREQUENCY								ANGLE,	.E, DEG								AVERAGE	33
	01	20	30	40	50	09	20	80	96	100	110	120	130	140	150	160	376	(PWL)
				1/3-6/1	TAVE BA	AND SOL	OUND PRE	ESSURE	LEVEL	(SPL)	ON 30.	5-METE	RAD	IUS				
20	•	ô	ô.	80.	•	2,	5	-:	ě.	ů.	4	ů,		6		e.	5	33
80	85.5	82.5	86.5	82.5	81. 80.8	82.3	80.0	82.0	84.7	83•2 84•8	84.3	8 9 • 1 8 9 • 1	91.2	90.3	92.8	94.7	86.7 89.3	134.1
	ç	-	ć	Ċ	-	,		ď		a		-	ď	4		۰		
125	88•2	85.2	86.2	85.50	86.0	87.8	87.8	87.8	89.7	90.1	91.8	92.6	93.8	95.7	97.8	6.96	91.7	36
9	8		8	87.	å	9	æ	6		6	_	-	2.		•	ň		138.1
C	88 5	æ	87.	86.	ģ	,	ġ	•	ģ	7	æ	•			9 44 9		•	137.1
250	90.0	89.5		91.9	87.5	89.4	90.9	88.7	89.2	91.7	93.5	Ň	94.0	. R	95.2		92.2	3 6
-	91•1	ċ	90	92•	6	ċ	÷	6	•	;	å	•	ě	•	93.6	•	2°	139.5
0	2	91.1	ol.			•	å	æ	6	·	:	2	ě	6	2	91.2		38
500	œ	95.3	96.0	98.1	91.6	96.8	91.8	90.8	95.3	92.3	92.3	95.9	95.8	94.1	96.0	خي ا	95.3	142.7
3	•	101-1	101		•	:	•	ŝ	8	2.		•	5	ີພໍ	5	2.	•	46
90ن 8		104.1	109	106.	109.3	07.	0.5	. 2	•	÷	00	6.6		8		95.3	104.7	
1000	104.5		104.5	109.9	1111.2	1111.6	107.8	133.9	102.5	102.0	101.4	04.1	101.0	100.5	0.66	9.66	106.6	154.0
25			107	108	110.8	11.	0.0	•	Š	6	6	1.3	_	96		97.9	106.6	54.
1600	•	108.2	108	110	109	ં	•	2	င္ပံ	6	102.1	~	101.6	4.66	98.1	•	105.8	•
2300	109.2	113.5	112.7	114.5	-	m	108.3	106.3	103.3	103.5	197.2	1.7 CI	105.7	103.5	103.0	O	•	157.3
2500	•	104.1	105.	104.	104.	å	ċ		æ	æ	66.5	0	ċ	•	•	3•	•	•
3150	102.6	104.6	104	105	05.	04.	•	æ	8		6.0	101.5		97.9		94.0	102.6	150.0
4000	102.8	105.1	_	_	105.9	104.9	6.66	98.1	98.8	100.3	102.3	102.2	103.8	ŝ	•		103.5	50.
2000	•	102.8	101	103	02•	02•	÷	ŝ	å	8	0.3	100.6	.	98.1	97.1	•	•	148.8
6300	99.T	190.2	666	101.5	100.6	·	ŝ	÷	95.7		•	98.2	•	•	_	91.9	99.8	
8300	7.76		99		1001	6		ċ	94.9	•	•	ŝ	8	ŝ		90.5	6	_
10000	69.6	:	96		98.6	97.5	91.4	89.4	91.9	92.9	0.96	95.0	96.4	92•2	6116	87.5	98•3	145.7
12500	• •	•	3	95.	9.96	•		ģ		•	2	•		•	æ	82.8	96.8	144.2
16333	92.5	•	:	92.	95.3	2.	2	2		Š	2		8	ŝ	ŝ	6	95.9	43.
20000	88.5	86.2	89.5	88.9	1.46	89.7	79.2	76.7	79.9	81.0	83.7	83.5	85.9	79.9	80.5	74.8	96.1	143.5
OVERALL	114.7	117.6	117.7	119.1	119.2	119.2	115.3	112.3	1111.7	1111.1	112.8	113.3	113.0	11110	110.6	109.3	115.9	163.3
DISTANCE						SID	JEL INE	PERCEI	VED NO	NOISE LEV	VELS							
A1 METEDS	102.2	113.2	117.0	121.0	133.3	1 22 . 4	7 011 7	-				7 0 1 1		:	•	,		

61 METERS 102.2 113.2 117.0 121.0 122.2 123.4-119.6 118.1 117.3 117.1 119.1 118.6 117.1 113.1 110.1 103.8

(d) Percent of design speed, 90; fan physical speed, 4738 rpm; fundamental blade passage frequency, 2053 hertz.

POWER	33		136.9 137.3 140.9	142.4 143.4 143.1	141.3 143.6 145.8	149•1 157•6 153•3	157 • 1 153 • 0 154 • 2	151.0 155.1 159.7	150.2 151.8 149.4	148.8 148.9 147.6	146.2 145.1 144.7	165.1	
AVERA GE	L		89.5 89.9 93.5	95.0 96.0 95.7	93.9 96.2 98.4	101.7 110.2 105.9	109.7 135.6 106.8	103.6 107.7 103.3	102.8 104.4 102.0	101.4 101.5 100.2	98.8 97.7 97.3	117.7	
	160		97.6 98.8 102.6	103•3 101•9 99•8	98.7 99.7 100.9	98•3 103•5 100•7	101.9 98.6 99.0	97.3 102.6 97.2	96•2 98•8 96•2	95.6 94.4 91.7	88.0 85.3 81.0	113.7	107.5 86.9
	150		95.0 96.6 100.5	102.1 101.9 99.4	99•3 100•3 100•9	99.6 102.3 101.0	102•2 99•9 100•8	98•6 105•0 99•8	98.6 102.9 99.6	99.8 98.3 96.2	93•8 90•5 85•9	114.4	113•3 93•9
	140	tus	92.7 94.0 97.0	99.6 100.5 99.0	98.0 99.6 100.7	99.3 105.6 101.8	100•3 99•5 100•5	98.9 105.4 99.5	99.1 102.3 98.9	98.8 98.1 95.9	92•8 89•6 85•1	114.2	115.7 97.3
	130	RRAD	90.7 91.5 94.9	97.1 98.4 97.2	96•3 99•1 99•1	99•3 102•1 100•8	101.3 130.4 101.2	100•3 108•4 101•5	101.6 105.4 101.2	101.7 101.3 99.2	96.5 92.3 88.4	115.0	119.2 151.0
	129	5-METE	89.1 88.7 91.8	95.1 96.8 96.1	94•3 97•1 98•2	99.2 107.9 104.2	103•6 100•8 102•3	99•7 137•8 100•9	101.6 134.4 103.5	100.5 100.6 97.5	94•7 90•9 87•4	115.4	120•1 102•4
	110	08 NC	89.4 88.6 91.7	94•3 96•2 96•2	93.0 96.3 96.9	99.4 105.6 102.6	103•5 99•7 101•2	99•3 106•5 100•3	101.0 104.1 100.2	100.2 100.3 97.7	94•5 91•1 86•8	114.4 VELS	120•1 102•5
	100	(SPL)	88.4 86.6 89.2	91.8 94.4 94.7	92•2 93•3 95•6	99.6 107.1 103.8	103.5 100.4 102.5	99.8 105.5 100.0	100.5 102.8 99.9	99.8 99.8 96.4	94•2 89•7 86•1	114.4 IISE LE	119.9 102.5
E, DEG	6	lëvel	86.7 85.5 88.4	90.3 93.5 95.4	91.2 93.3 94.7	199-3 105-0 101-1	108.0 102.0 103.8	100.8 106.0 100.3	100•1 101•9 99•1	97.8 97.3 95.0	91.7 88.8 84.8	114.6 VED NO	120•1 102•9
ANGL	8.3	SSURE	86.9 84.1 87.7	88.6 92.2 94.2	90.8 91.8 94.4	199.4 137.8 102.1	107.5 101.5 103.2	100.9 104.2 99.5	99•1 133•6 97•6	96.2 95.6 93.2	90.8 87.5 84.5	114.4 PERCEI	118.9 101.7
	22	JND PRE	85.5 84.3 88.2	86.8 91.2 94.0	90.8 92.0 94.9	102.8 1111.3 107.0	113•7 107•5 108•8	104•4 107•0 103•5	103.6 103.4 101.1	99°0 98°5 96°9	94•8 92•5 91•4	118.8 EL INE	12 1• 6 10 4• 7
	69	ONDOS ONN	85.2 83.6 87.5	86.8 90.5 93.5	90•7 94•1 96•2	104.1 112.8 108.6	113•7 110•5 111•5	107.8 139.0 106.2	104.3 104.3 102.7	100.8 100.1 98.4	95•8 93•3 90•1	120•3 S I D	122.6 105.1
	50	AVE BA	84.5 84.1 88.5	85•3 89•9 92•5	91.0 94.8 99.4	105.6 115.5 110.0	114.8 110.7 110.5	126•8 139•4 105•5	105.0 105.4 102.9	101. 100.8 98.9	96.1 94.0 91.9	121•3	121.9 104.5
	40	73-0CT	84.0 83.8 88.9	84.8 89.6 93.7	91•3 96•8 100•2	195.3 115.3 110.1	111.7 107.7 109.7	106.8 109.0 106.0	104.8 104.9 103.4	101•1 99•8 97•9	94.9 92.5 88.8	120.3	119•7 102•1
·	30	1	84.9 83.3 90.0	85.5 90.0 92.4	90.5 94.1 103.7	99.8 111.5 108.1	110.2 107.0 108.7	105.1 109.2 106.2	104.8 104.1 102.2	100.5 99.5 97.0	93.7 90.8 87.1	118.7	116.6 97.2
	20		82.4 83.8 86.2	83.8 88.9 90.2	90•3 95•0 96•2	98.9 107.0 106.6	136.0 134.9 106.5	195.4 110.4 105.3	103.9 103.8 102.7	100•1 98•3 96•1	93.6 90.6 85.9	117.0	112•2 90•8
	10		84.9 82.6 88.9	85.3 90.0 91.4	89.0 90.6 97.7	96.3 103.0 194.1	103.3 104.1 107.2	104.8 108.5 104.3	102.9 102.8 101.2	99•8 97•6 95•4	92.4 89.8 85.1	115.6	192•7 76•5
FR EQUENCY			50 63 83	100 125 162	200 . 250 . 315	400 500 630	800 1990 1259	1600 2330 2500	3150 4000 5000	6300 8339 10000	12533 16303 20033	OVERALL Distance	61 METERS 305 METERS

TABLE VI. - NOISE OF FAN C CONFIGURATION 303 (HARD INLET, FORE-ROTOR-TREATED FAN FRAME, HARD EXHAUST, NOMINAL

NOZZLE) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3150 rpm; fundamental blade passage frequency, 1365 hertz.

(i) 38	(PWL)		27	•	•	29.	6		ċ		Ś	ć	; .	132.5		•	1,50.2		٠,	158.4			139.3		37	7.		34.	132.6	151.0		
AVERAGE	SPL		80.1	•	•	2.	Ň	82.4			81.6	,		S		•	96.1		ů.	93.1	•	,	91.9		90.5				85.2	103.6		
	169		83.4	, u	•	86.7	Š	÷	ς.		81.0	200	ċ	82.0			88.1		'n.	85.2			83.6	•	ō	٠,	•	•	9.49	6*26		91.8 84.3
	150		81.2		•	86.3	9	÷	•	6	82.6	•		84.1	4	•	60.06			90.3			89.3	7	84.9	3	_	_	72.1	100.6		99•8 92•8
	140	ns	80.0	, ,	,	84.8	;	ě	6	•	83•3	•	• •	•	ď	5	95.5		٠.	94.1	•		92.7	6	88.2	÷	2	å	72.9	103.6		105.6 98.9
•	130	R RADI	79.2	•	j	84.3	÷	ë.	2	ň	85.8	r,	85.2		ć	; -	6.96		: .	96.0	95.1	9	94.2	÷	93.6	ė	5	ċ	75.5	105.4		109.4 132.6
	129	•5-METE	78.6	78.4	•	82.3	÷	2	•	2	82.4		•	•	ď	000	96.1	r	• ,	94.1		5	92.6	6	89.3	ġ	3.	8	74.3	104.1		109.7 103.0
	110	08 NO	77.3	ėď	•	82.0	ŝ	ç.	79.2	•	81.3		3	•		: 6	94•0	r	•	92.3	92.1		91.0	8	88.1	ŝ	82.3	77.4	72.4	102.6	EVELS	109.0
່ ' ບ	100	(7dS)	78.3	, 4	,	80.3	:	÷	•	o		•	m	•	•	, d	92.9		• 2	92.6		2	89.5		86.4	ů	81.0	•	71.2	101.6	ISE L	108.3 101.8
E, 0E	93	LEVEL	80.2	; ;	;	79.5			8	80.0	ċ	•	81.7	•	ď	, ,	91.4		•	90.1	•	ó	88.7	•	84.7	2.	œ		69.4	6.66	IVED NO	106.6 100.1
ANGL	83	SSURE	76.7	• 4	•	78.0	ċ	÷	å	78.2	è	•	· 🛶	•	,	,	90.4		• ,	87.0			84.2		80.1		7 4 • 7	ŝ	64.2	97.4	PERCEI	103.2 97.0
	70	OUND PRE	82.3	'n	,	79.3	è.	6	ě	79.7	ċ	ě	80.5	÷	,	,	92.7	0.7.0		86.5	4	ŝ	83.2	÷	87.2	æ	75.2	69.4	•	97.9	EL INE	102.6 96.3
	09	AND SOL	81.0	• 4	•	80.0	8	•		80.8	6	79.7	81.2	82.1	4		96.5	-	,	89.6			88•2	•	87.3	•	•	•	74.9	101.2	SID	105.3 98.6
•	20	TAVE BI	78.8	, ,	•	83.0	ô	å	•	82.7	:	6		•			100.5			94.0	90.9	6	90.8	6	ŏ	•	7	å	•	104.6		107.1
	40	1/3-00	83.2	74.		81.2				85.8	82.3		85.5	ŝ			98.2	94. 2	0	95.0	92.6	0.96	93.3		91.6	•	88.6	٠.	•	104.9		106.8 99.6
	30		78. ņ			79.8	79.5	82.5		85.8	•	•	85.7	÷	0.88	90.3	99.5	04.		94.8	93.1	95.3	92.7	92.2	92.3	91.0	88.6	ŝ	81.8	105.3		103.9
	20		81.0	7		77.5	ំ	÷	ŝ	84.3	3,	ູ້	86.3	ထိ	0	6	97.9	7.40	0.00	96.0	•	94.5	94.2	92.4	95.3	91.7	89.9	9	-	105.3		100.1
	10		79.7	, ,)	80° 7	79.7	81.8	•	84.2	ě	75	86.3	8	9.08	91.0	4.66	9.40	01,0	94.5	91.9	93.0	95.5	91.9	90.4	89.8	88.1	ŝ	-	104.9		90.6 82.2
FREQUENCY			0.0	n C	,	100	~	•	0	250	_	\circ	500	3	0	30	1250	0041	מנני	2500	3150	4220	2000	6300	800	10000	12500	16300	20000	OVERALL	DISTANCE	61 METERS 113 METERS

(b) Percent of design speed, 70; fan physical speed, 3675 rpm; fundamental blade passage frequency, 1592 hertz.

FREQUENCY								ANGLE,	E, DEG								AVERAGE SPL	POWER LEVEL
	01	2.0	30	40	50	60	2	80	66	100	110	120	130	140	150	160		(PWL)
			-	1/3-OCT	AVE BA	S	OUND PRE	SSURE	LEVEL	(SPL)	00 NO	5-METE	R RADTUS	ns				
50	78•3	76.3	77.8	77.3	77.2	78.5	78.7	79.0	79•7	80.5	80.3	82.6	83.7	85.2	87.0	89.4	81.9	129•3
63	84•7	84.2	86.3	85.5	81.3	84.0	82.7	84.0	80•8	83.3	86.8	82.4	87.8	86.5	87.7	90.0	85.1	132•5
80	76•3	76.3	74.8	74.8	75.8	75.6	76.5	77.0	78•0	80.0	82.0	84.2	86.6	88.6	90.5	91.8	83.7	131•1
100	78.1	78•3	76.6	76.8	78•1	80.0	79.6	80.1	81.8	83.6	85.3	87.6	88.6	91.0	92.6	93.2	86.1	133.5
125	87.7	86•7	85.7	85.0	87•9	87.9	87.0	85.7	86.5	86.7	87.9	89.3	90.4	91.4	93.4	92.7	88.6	136.0
160	82.0	82•9	83.5	82.5	83•2	83.5	84.0	84.2	85.7	86.2	86.4	88.0	88.0	89.0	89.9	89.3	86.2	133.6
200	83.8	84•8	84.0	82.5	82.5	81.8	82.1	82.3	83.3	84.8	85.3	85.5	87.5	88.5	89.3	88.3	85.1	132.5
250	86.5	86•8	86.0	85.2	85.2	83.5	81.7	82.7	84.2	85.5	86.3	88.8	88.8	89.7	89.5	87.4	86.4	133.8
315	86.9	86•6	85.6	85.4	83.7	83.6	83.9	84.2	85.4	86.1	86.7	87.5	88.6	88.7	88.4	85.8	86.2	133.6
400	88.6	90.6	90•1	92.4	86.4	86.1	85.6	86.6	85.6	88.6	87.4	89.7	91.4	89.4	88.1	87.3	88•7	136 • 1
500	97.4	93.2	89•2	89.2	87.9	84.9	86.1	85.6	85.7	86.7	87.7	88.8	90.6	89.6	87.9	85.3	88•0	135 • 4
630	92.2	92.5	92•9	93.9	91.5	90.2	86.2	86.7	88.5	89.2	90.2	91.4	91.9	91.5	88.5	86.1	90•3	137 • 7
833	92.2	92.3	91.2	90.8	90.2	89.8	87.3	87.5	88•3	89.8	91.5	92.2	94.2	92.0	88.8	86.5	90•7	138•1
1339	93.8	94.5	93.6	95.7	93.4	91.7	90.7	91.8	91•2	92.3	93.8	94.8	96.8	94.3	90.3	86.9	93•5	140•9
1259	94.9	95.7	95.5	96.7	94.9	91.7	91.4	90.5	92•5	92.7	94.2	95.5	96.2	93.4	90.0	87.7	94•0	141•4
1600 2000 2500 3150 4000	105.4 95.2 94.8 100.2		108.7 96.2 95.5 103.0	113.6 97.7 94.8 192.7 96.6	108.6 94.8 93.6 102.0	105.4 92.8 92.0 99.2 93.5	102.9 90.7 89.3 94.5 89.6	100•1 91•8 90•4 93•3	1000-1 93-3 93-6 95-5	94.7 94.8 94.8 97.3	101.9 96.2 95.6 98.5	104.3 97.4 96.5 100.6	101.7 98.2 97.9 102.7	100.9 94.0 94.1 173.3	L - 8 5 5 5	96.8 88.2 86.9 91.8	105.7 95.3 94.7 100.6	153.1 142.7 142.1 148.0
5000 6300 8000 10000	99.4 96.2 93.5 92.5	_	98.4 96.7 96.5 94.1	96.6 95.7 94.4	ຕຸ້ນ ທີ່	96.7 93.9 93.4 92.1	÷ 2,4	6 2.3%	4 468	955 2	8	9.2 5.0 2.6	45.4	ထိ ကို မိတ်	351 7	90.2 85.1 84.5 82.0		4 444
12500	90.4	92.0	91•3	91.5	90.8	89•1	80.4	80.8	84•3	86•6	88.1	89.2	91.4	86.8	84•2	79•3	92.9	140.3
16000	87.7	88.9	87•7	88.5	86.7	84•9	74.6	75.4	80•6	81•9	83.3	84.6	86.3	83.3	81•4	74•9	90.8	138.2
20000	83.2	83.6	83•9	84.2	82.7	78•9	69.6	69.9	74•2	76•8	78.3	80.2	81.5	77.6	76•5	69•0	88.8	136.2
OVERALL DISTANCE	109•4	110.2	1111.5	114.7	1111.0	108•3 S I D	3 105.3 IDEL INE	103.9 PERCEI	105.4 IVED NO	4 106.6 NOISE LEV	6 197.9 LEVELS	109.5	110.3	108.5	105.9	103.5	109•7	157.1

61 METERS

96.6 195.4 110.7 116.1 114.5 113.2 111.2 119.3 111.7 113.1 113.9 114.7 115.0 112.3 106.6 98.1

TABLE VI. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4200 rpm; fundamental blade passage frequency, 1820 hertz.

FREQUENCY								ANGL E,	E, DEG								AVERAGE	POWER
	61	29	30	40	20	09	02	83	06	109	011	120	130	140	150	160	SPL	(PWL)
			1	./3-0CT	AVE 8	AND SOU	OUND PRE	SSURE	LEVEL	(SPL)	9N 30*	5-METE!	R RADI	ns				
C u	,				•					,		,						
0.5	0 0 0	000	4.10	0.00	\$ T • T	4.78	7 • 7 9	1.70	1 • † ¤	7.40	7 0 0	900		8.0	92.9	•	9 9 9	• •
60			ċ		1.78	•	å	÷	ŝ	•	å	٠	÷	٠	٠	ń	87.6	•
83	85•8	5	ŝ		81.5	ံ	:	ċ	ŝ	ŝ	÷	ô	÷	•	•	98.7	ô	137.2
001	7.78	_	_		0,10	ć	ć	į	4	a			4		c			
104	4 4	• • • • • • • • • • • • • • • • • • •	*****	7 20	70	7.00		•	000	• •	Э,	0 0 0		000	7 * 6 6	7 (- (139.6
671	•	•	•	_	1 • 0 0	•	•	ě.	:	•	٠	7.4	ň	•	•		•	•
٥	•	•	ဆိ		88.4	æ	å	œ.	ċ	÷	:	m	m	•	ທີ	•	i	138.9
_	7.78	0.00	88.2		•	ç	Š	4	7	ά	ó	-	,	,	7.70	4		137.7
) u		, ,	100		•	,	,	,	: ,	٠.	٠,	٠.	١.	•		١,		10101
000	• 60	7.00	0 3 6 3	7 7 6	+ • T 6	99.5	7 00 6	2.96	¥.0.4	7•16	7 30 1	72.0		1201	7006	\$	9.76	140.0
—	89.5	91.2	91.9		•	ထီ	ċ	ô		÷	ň	÷	•	•	94.7	95.8	•	139.7
004	97.3	ď	93.2			ő	6	ď	ć	•	_		0.40					
		٠,		, (,	٠,	٠,	, 5	.	•	• ;		٠.	٠,	•	5,	•	•
000	0.00	7.0°	8 • 1 0 7	103.3	5-101	95.0	0 • • 0	B • G 6	74.0	96.8	93.1	7.63	92.5	95.2	95.1	93.6	•	145.1
9	9006	å	03	96•	03	ċ	æ	ំ	•	•	å			•	•	•	100.2	47.
	;		1															
008	96.8	102.0	107.1	107.	110.6	108.3	104.4	102.9	97.8	98	4 (98.7	œα	99.1	97.4	92.5	104.4	151.8
0001	0.001	•			•		•	ė,		ċ	•	1.0	•	•	•	•	•	2
2	• •	•	104.0		0.	6.60	÷	ċ		œ	8•4	1:1	o.	98.0	•	÷	•	53.
1603	135.6	107	138.3	5	1111.8	8	2	ċ	9.5		103.3	102.1	103.0	99.3	97.1	96.5	•	5.2
2220	113.5	112	113.1	٠	115.5	2.1	5.1	34.8	3.0	1.60	80	1 90	-	103.1				57,
7200	101.0	102.3	103.5	104.5	106.5	103.3	98.8	97.0	98.2	98.7	66	6.66	0	0.96	94.0	91	101.5	148.9
2157	ď	102.4	č	ć	ď	ć		4	4			,		r	,	,		,
0000	٠.	0.701	ם ה ה	ָ הַ הַ	7	•	• ,	: .		•		7 .	- (:	•	•	• •	•
0004	10.00	1010	101.7	103, 2	100.	0.00	700	0,00	96.0	100	2001	0.00	103.6	200	200	2.7	103.2	157.6
			•	,	•	•		•	•	•		•	J	•	•	•	:	•
6300	98.6	98.8	666		ċ	æ	m		Š	•	98.2	8.7	ċ	95.9			99.3	146.7
8330	7.96	98•3	966	66	00	å	2		•			4.6	ċ			6		147.2
10000	95.0	96.5	6 • 96	98.0	98•5	9.96	90.3	88.6	95.6	4.46	6.96	~	98.3	93.3	90.5	85.9	98.6	146.0
00301	, ,		6		и			u	•		•	,	L				,	,
00671	**76		7.00		200		0 .	200	88.	٠,	0.00	n (7.06	O 1	┣,	•	6.96	•
06.691	2.4° 0	•	71.		•	•	•	ံ	'n	•	88.4	•	ċ	٠		•	95.0	142.4
2003	45.0	•	87.5		ċ	•	æ	•	ċ	5	3	ທໍ	÷	:	6	÷	٠	•
OVEPALL	114.4	115.9	117.3	118.3	121.1	117.6	112.5	110.9	110.01	1111.0	113.1	113.0	113.6	110.9	11001	198.8	115.5	162.9
JISTANCE						S 10	EL INE	PERCEIN	VED NOIS	ISE LEVI	VELS							

61 METERS 102.3 111.9 117.1 120.4 123.9 121.9 117.8 116.9 116.6 117.5 119.5 118.3 117.8 113.0 108.9 103.5

20

(d) Percent of design speed, 90; fan physical speed, 4720 rpm; fundamental blade passage frequency, 2045 hertz.

3	(PWL)		139.7 139.5 143.5	145.1 145.6 144.9	143.3 146.2 147.9	148.6 156.1 152.3	153.8 152.3 152.1	150.1 154.7 149.8	149•1 150•7 148•3	147.8 147.9 146.9	145.5 144.0 143.0	164.0		
AVERAGE	SPL		92.3 92.1 96.1	97.7 98.2 97.5	95.9 98.8 100.5	101.2 108.7 104.9	106.4 104.9 104.7	102.7 107.3 102.4	101.7 103.3 100.9	100.4 100.5 99.5	98•1 96•6 95•6	116.6		
	160		102.3 101.5 105.3	105.8 104.3 100.3	99.3 99.6 98.3	96.3 98.8 96.8	101.0 96.1 96.8	94.2 99.1 94.0	93.0 95.1 92.1	90.6 99.7 87.6	85.5 81.7 76.4	113.5		105•1 85•1
	150		98.4 99.1 103.2	195•4 104•9 102•2	101.7 101.7 102.0	99.9 100.6 100.4	101•1 99•5 97•4	97.6 192.2 96.8	95.1 97.0 95.2	94•8 93•7 92•3	89.4 86.8 82.1	114•3		1111.4
	140	108	95.2 96.4 99.9	102.9 103.2 101.2	190•9 102•2 192•5	100.4 100.9 100.6	101.9 100.0 99.9	97.8 131.7 97.6	96.3 98.5 97.2	97.3 95.7 94.0	91•4 88•3 83•2	113.9		114.0 95.8
	130	R P.AD	93.4 93.9 97.9	99.9 100.7 100.0	99.4 100.4 103.0	99.6 132.1 99.9	100.9 100.0 99.9	100•3 136•7 100•6	199.6 134.5 100.9	102.6 130.9 99.8	96.4 92.5 88.4	115.0		118.7 100.5
7	120	.5-METE	92.2 90.9 95.2	98.4 99.7 99.7	96.2 98.5 100.5	98.4 102.9 100.6	99.4 101.5 99.9	100•1 136•5 100•6	191-1 105-2 101-0	100.4 151.1 98.1	95.7 91.6 88.0	114.6		119.9 101.7
	110	ON 30	89.9 89.4 93.4	95.4 97.4 96.5	94•7 96•9 99•7	97.1 105.6 101.6	99.4 99.2 99.1	100•1 108•2 100•3	101•3 104•4 99•9	100.9 100.5 98.5	95.7 91.4 87.1	114.6	VELS	120.7 103.2
ပ	100	(SPL)	88.7 87.4 91.2	93•7 95•9 96•5	92.7 95.4 97.2	98.1 134.6 99.6	101.6 99.0 100.1	99•1 134•7 100•1	99.6 133.2 98.9	98•3 99•0 96•0	93.9 89.9 85.1	113.2	ISE LE	119.5 101.7
E, DE	06	LEVEL	88.7 86.9 87.7	91.9 94.9 96.2	91.7 93.9 98.5	97.9 135.1 100.9	99.99 98.7 99.6	98.3 137.5 99.1	99•1 100•9 98•2	97.3 96.7 94.8	90.9 88.0 82.2	113•3	VED NO	120.0 102.8
ANGL	80	SSURE	86.9 85.9 89.2	89.4 92.9 95.0	91.7 94.7 99.7	99.1 105.1 101.6	99.9 99.2 101.1	99.3 132.5 97.8	97.3 98.9 95.4	94•1 92•9 90•8	88.0 83.4 78.2	112.1	PERCEI	117.2 100.1
	20	UND PRE	86.4 85.6 88.2	87.7 91.4 96.0	92°2 96°9 97°5	95.6 137.4 105.4	108.6 102.5 103.1	100.3 133.2 99.6	97.8 98.2 96.4	94•2 93•4 91•3	87.4 82.4 78.6	114.7	EL INE	118.0 100.8
	9	AND SOL	86.7 85.1 85.2	86.2 91.2 94.0	92.2 97.4 101.2	102.4 139.4 108.6	109.6 106.5 106.6	105.5 109.0 104.1	103•1 102•4 100•9	98•4 97•9 97•3	94.4 91.3 87.6	117.8	S ID	121.5 104.0
	20	TAVE BA	85.7 84.9 87.2	85.4 90.7 94.0	92.9 100.4 99.0	106.9 112.4 109.4	111.9 112.2 119.1	108•3 109•7 106•3	105•1 104•2 102•9	100.8 100.2 98.3	96.1 93.8 91.6	120.3		121•9 104•2
	40	. 1300.	84.9 84.4 92.2	85.9 89.4 92.7	93.7 102.4 103.0	105.4 114.9 107.9	110•1 110•2 110•6	106.0 111.2 106.1	104•3 103•7 102•9	99.9 99.2 97.3	94.9 92.3 89.4	120.3		120.6 102.3
	30	-	84.7 84.9 95.4	85.7 89.9 94.5	91.9 97.4 103.2	100•4 114•9 109•9	109.9 105.5 106.1	104.5 108.5 105.1	103.6 103.2 100.9	98.6 98.5 96.3	93.0 90.1 86.4	119.2		116•2 98•2
	20		83.4 84.9 92.9	84.9 89.4 93.5	92.7 99.9 96.0	100.6 108.9 103.1	125•1 102•7 105•9	103.0 106.5 104.3	192.8 192.2 100.7	97.9 96.9 95.1	92.0 88.4 83.4	115.8		110.1 89.4
	10		86.9 82.9 91.7	86.7 91.2 91.7	90.9 96.9 102.0	96.1 133.1 99.1	105.9 103.2 104.1	102.5 106.5 103.1	101•1 101•2 99•9	98•2 96•2 94•0	90.9 88.1 83.6	114.5		101.4
FREQUENCY			5 63 63	100 125 160	200 250 315	400 530 630	800 1000 1250	1600 2000 2500	3150 4390 ,5000	6300 8000 10000	12500 16309 20309	OVERALL	DISTANCE	61 METERS 305 METERS

22

NOZZLE) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3090 rpm; tundamental blade passage frequency, 1339 hertz.

10 20 30 40 50 60 70 80 90 100 1						19 4 L L A	K .
1/3-OCTAVE BAND SOUND PRESSURE LEVEL (S. 174-1) 1/4-1	100 110	120 130	140	150	160	SPL	LEVEL (PWL)
79.7 81.5 80.3 83.3 78.2 84.0 79.8 77.2 74.4 74.4 74.4 74.4 74.4 74.4 74.6 74.8 74.6 74.8 74.6 74.8 74.6 74.8 74.8 74.9 74.8 74.9 74.8 74.8 74.9 74.8 74.8 74.9 74.8 74.8 74.9 80.0 <td< td=""><td>SPL) ON 30.</td><td>5-METER RAD</td><td>SUIC</td><td></td><td></td><td></td><td></td></td<>	SPL) ON 30.	5-METER RAD	SUIC				
74.1 73.0 75.0 74.3 74.6 73.6 74.4 74.3 74.5 74.8 74.3 74.5 74.8 74.9 74.9 74.8 75.3 77.3 81.3 75.5 74.8 74.3 75.3 77.5 81.9 81.0 <td< td=""><td>9.2 76.</td><td>7.4 78.</td><td>79.</td><td>-</td><td>9</td><td>80.5</td><td></td></td<>	9.2 76.	7.4 78.	79.	-	9	80.5	
81.3 81.7 76.3 80.2 79.5 77.8 76.3 75.3 7 81.3 81.7 76.3 80.2 79.5 77.8 78.8 82.0 8 80.4 80.1 79.5 80.0 80.3 81.6 8 80.4 80.2 79.5 77.8 78.8 82.0 8 89.3 82.8 79.2 79.2 77.8 78.7 80.1 8 89.3 82.7 81.4 81.4 80.2 79.8 79.6 80.7 80.7 80.7 80.7 80.7 80.6 <td>4.6 75</td> <td>76.6 79.</td> <td>3 80.6</td> <td>81.5</td> <td>85.5</td> <td>76.7</td> <td>124.1</td>	4.6 75	76.6 79.	3 80.6	81.5	85.5	76.7	124.1
89.5 80.0 80.1 70.3 80.2 79.5 77.8 78.8 82.0 80.0 80.4 80.5 80.4 80.6 80.4 80.5 80.0 80.3 81.6 80.6 80.4 80.5 80.1 80.5 80.0 80.3 81.6 80.6 80.4 80.5 80.2 80.1 80.5 80.1 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5	6.3 77.	8.9 81.	83,	•	5.	78•8	•
89.46 89.51 78.8 89.51 89.5	0.5 81.	2.3 83.	86.		,	٠,	29.
89.4 80.9 83.1 83.3 80.6 82.3 83.1 82.1 88.1 89.3 82.8 179.2 179.2 779.2 77.8 77.8 77.7 78.5 77.8 83.9 82.8 11.4 80.2 78.5 78.5 78.7 80.6 82.6 83.0 81.1 82.0 79.8 79.6 79.8 79.6 79.5 80.6 88.5 85.1 85.1 85.1 85.4 85.6 85.6 85.4 85.7 81.3 81.3 81.3 81.3 85.1 85.4 85.6 85.6 85.4 85.7 81.2 81.3 83.0 81.2 81.8 83.0 81.2 81.8 83.0 81.2 81.8 83.0 81.2 81.8 83.0 81.2 81.2 81.3 81.3 81.3 81.2 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3	1.8 82	83.4 84.3		86.5			129.8
89.3 82.8 79.2 79.2 77.6 77.8 77.7 78.5 78.5 83.9 83.9 82.7 81.4 81.4 80.2 78.5 78.5 78.7 80.7 8 82.6 83.0 81.1 82.0 79.8 79.6 79.6 79.6 80.6 8 86.6 83.0 81.1 82.0 79.8 79.6 79.6 79.6 80.6 8 86.1 81.3 81.3 81.3 81.3 81.4 86.1 86.6 86.4 86.4 86.7 80.7 80.6 81.2 81.8 83.0 8 89.5 81.2 81.8 83.0 8 89.5 81.2 81.8 83.0 8 89.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80	3.3 83.	3.5 83.	85.	10	+	CO.	30.
83.9 82.7 81.4 81.4 80.2 78.5 78.7 80.7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	9.5 79.	•9 82•	83	83.5		-	•
85.6 83.0 81.1 82.0 79.8 79.6 79.5 80.6 8 86.1 8 86.1 8 85.1 85.4 83.8 79.8 79.6 79.6 79.6 81.2 81.3 81.3 8 86.1 86.6 86.4 84.7 80.7 80.6 81.8 83.0 81.3 81.3 81.3 81.3 81.2 87.2 87.7 87.2 87.0 87.2 87.0 84.3 84.1 84.3 83.0 89.6 91.1 89.4 88.6 85.6 85.6 85.4 85.7 87.2 89.0 90.6 91.7 89.4 88.6 85.6 85.4 85.7 87.2 89.0 91.4 91.5 90.5 88.7 86.0 84.7 86.9 87.8 89.6 90.1 91.4 91.5 90.5 88.7 86.0 84.7 86.9 87.8 89.6 90.6 92.6 97.1 96.8 96.1 92.1 87.6 87.8 89.6 90.6 92.6 97.1 96.8 96.1 92.1 87.6 87.8 89.6 90.6 92.6 97.0 95.0 92.0 85.4 85.9 89.2 90.6 92.6 92.0 87.6 87.8 89.6 90.6 92.6 97.0 92.0 92.0 85.4 85.9 89.2 92.4 92.5 91.8 90.5 87.6 79.5 78.8 87.8 89.6 90.6 92.6 97.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92	9.9 87.	3.5 84.	85.	84.5			200
85.1 85.4 83.8 83.8 79.8 79.4 80.5 81.3 81.7 8 86.1 86.6 86.4 84.7 80.7 80.6 81.1 81.1 81.7 8 89.5 87.7 87.0 84.3 84.1 84.3 85.5 8 9 8 99.6 101.8 101.8 101.1 98.5 93.1 93.8 92.7 9 </td <td>0</td> <td>6 83.</td> <td>3 84.1</td> <td>83.0</td> <td>80.7</td> <td>81.7</td> <td>129.1</td>	0	6 83.	3 84.1	83.0	80.7	81.7	129.1
86-1 86-6 86-6 86-7 80-7 80-6 81-8 <td< td=""><td>2.4 83.</td><td>4.0 85.</td><td>84.</td><td>60</td><td>80.6</td><td>83.1</td><td></td></td<>	2.4 83.	4.0 85.	84.	60	80.6	83.1	
87.2 87.2 85.0 82.0 81.2 81.8 83.0 8 89.5 88.8 88.0 87.0 84.3 84.1 84.3 85.5 8 90.6 91.7 89.4 88.6 85.6 85.4 85.7 87.2 8 90.6 101.8 101.1 98.5 93.1 93.8 92.1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	83.6 84.2	85.2 85.	7 85.1	83.2	ċ	•	
99.5 88.8 88.0 87.0 84.3 84.1 84.3 85.5 8 9 9 9 9 9 9 9 9 9 9 1 0 5 0 1 0 7 5 1 0 9 8 9 5 9 9 1 0 5 0 1 0 7 5 1 0 9 9 9 5 9 1 0 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4.8 86.	6.6 88.	86.	8	81.1	85.4	32
90.6 91.7 89.4 88.6 85.6 85.4 85.7 87.2 8 99.6 101.8 101.8 101.1 98.5 93.1 93.8 92.1 9 93.2 94.3 93.8 92.8 90.0 86.5 87.8 88.7 9 91.4 91.5 90.5 88.7 86.0 84.7 86.9 89.0 9 92.5 93.5 92.5 90.9 87.0 83.5 85.0 87.8 89.6 9 92.5 93.5 92.5 90.9 87.0 83.5 85.0 87.9 89.2 9 92.4 93.5 92.7 90.9 88.1 80.8 80.6 84.1 8 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 92.4 92.5 91.8 90.5 87.0 78.1 76.8 79.9 8 89.7 88.5 88.5 87.1 84.3 74.5 74.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.6 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDELINE PERCEIVED NOIS 92.2 98.0 100.5 101.5 108.1 106.2 102.9 103.7 105.8 10	6.3 87.	8.9 90.	80	•		87.3	134.7
99.6 101.8 101.8 101.1 98.5 93.1 93.8 92.1 9 93.2 94.3 93.8 92.8 90.0 86.5 87.8 88.7 9 91.4 91.5 90.5 88.7 86.0 84.7 86.9 89.0 9 95.6 97.1 96.8 98.7 86.0 87.8 89.6 9 95.0 96.5 97.0 95.0 92.0 85.4 85.9 89.2 9 95.0 96.5 97.0 95.0 92.0 85.4 85.9 89.2 9 92.2 92.9 92.7 90.9 88.1 80.8 80.6 84.1 8 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.4 89.5 87.0 78.1 76.8 79.9 8 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.6 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDEL INE PERCEIVED NOIS 99.9 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10	8.4 89.	0.3 91.	90			89.0	3,
93.2 94.3 93.8 92.8 90.0 86.5 87.8 88.7 99.0 91.4 91.5 90.5 88.7 86.0 84.7 86.9 89.0 99.6 95.6 97.1 96.8 96.1 92.1 87.6 87.8 89.6 99.0 95.0 97.1 96.8 96.0 92.0 87.6 87.8 89.6 99.0 95.0 95.0 95.0 95.0 83.5 85.0 87.8 89.2 99.0 97.0 95.0 95.0 83.5 85.0 87.9 99.2 97.0 95.0 95.0 85.4 85.9 89.2 99.2 97.0 95.0 95.4 83.2 83.3 87.2 89.2 97.2 97.0 95.0 96.4 83.2 83.3 87.2 89.2 97.2 97.0 97.8 88.1 80.8 80.6 84.1 89.2 97.2 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	2	94.6 96.	6 95.3	91.6	88.7	97.3	144.7
91.4 91.5 90.5 88.7 86.0 84.7 86.9 89.0 9 92.6 97.1 96.8 96.1 92.1 87.6 87.8 89.6 9 92.5 93.5 92.5 90.9 87.0 83.5 85.0 87.9 9 94.4 93.5 94.7 91.8 89.4 83.2 83.3 87.2 8 92.4 92.5 91.8 90.5 87.6 79.5 79.6 83.2 83.3 87.2 8 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.4 89.5 87.6 79.5 78.8 79.9 8 89.7 88.5 88.5 87.1 84.3 74.5 74.4 77.0 7 84.3 84.2 84.2 84.1 87.1 84.3 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDEL INE PERCEIVED NOIS 92.2 98.0 100.5 101.6 99.6 96.6 97.5 99.5 10	.0 91.	2.1 93.	91.		•	91.4	÷
95.6 97.1 96.8 96.1 92.1 87.6 87.8 89.6 9 92.5 93.5 92.5 90.9 87.0 83.5 85.0 87.9 9 95.0 96.5 97.0 95.0 92.0 85.4 85.9 89.2 9 94.4 93.5 94.7 91.8 89.4 83.2 83.3 87.2 8 92.2 92.9 92.7 90.9 88.1 80.8 80.6 84.1 8 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.4 89.5 87.0 78.1 76.8 79.9 8 89.7 88.5 88.5 87.1 84.3 74.5 74.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.6 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDELINE PERCEIVED NOIS 92.2 98.0 100.5 101.6 99.6 90.6 97.5 99.5 10	.5 92	92.6 94.	2 91.2	87.7	83.8	90.6	38
92.5 93.5 92.5 90.9 87.0 83.5 85.0 87.9 9 95.0 96.5 97.0 95.0 92.0 85.4 85.9 89.2 9 94.4 93.5 94.7 91.8 89.4 83.2 83.3 87.2 8 92.2 92.9 92.7 90.9 88.1 80.8 80.6 84.1 8 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.4 89.5 87.0 78.1 76.8 79.9 8 86.8 86.1 87.1 84.3 74.5 74.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.4 77.0 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDEL INE PERCEIVED NOIS	•1 92•	2.9 94.	94.	ô	•	93•6	4I.
95.0 96.5 97.0 95.0 92.0 85.4 85.9 89.2 9 94.4 93.5 94.7 91.8 89.4 83.2 83.3 87.2 8 92.2 92.9 92.7 90.9 88.1 80.8 80.6 84.1 8 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.4 89.5 87.0 78.1 76.8 79.9 8 89.7 88.5 88.5 87.1 84.3 74.5 74.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.6 77.0 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDEL INE PERCEIVED NOIS 99.9 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10	0.2 91.	2.8 94.	91.	88•2	2.		•
94.4 93.5 94.7 91.8 89.4 83.2 83.3 87.2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.9	ŝ	0 92.5	88.7	84.1	•	41.
92.2 92.9 92.7 90.9 88.1 80.8 80.6 84.1 8 92.4 92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.6 97.4 89.5 87.0 78.1 76.8 779.9 8 86.8 86.1 87.1 84.3 77.0 77.0 67.3 67.1 70.4 77.0 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.4 77.0 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 7 80.4 7 7 80.5 106.5 106.5 105.2 102.3 98.0 98.5 99.5 10 80.5 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10	8.2 89.	0.3 92.	90	87.4	÷	91.3	138.7
92.4 92.5 91.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.5 87.6 79.5 78.8 82.3 8 91.3 90.8 90.4 89.5 87.0 78.1 76.8 79.9 8 8 8 8 90.4 89.5 87.1 84.3 74.5 74.4 77.0 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.1 74.6 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 77.0 7 84.3 84.2 81.7 77.0 67.3 67.1 70.4 7 70.4 7 70.4 7 70.4 7 70.4 7 70.4 7 70.4 7 70.4 7 70.4 7 7 70.4 7 7 70.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5.5 88.	8.1 89.	87.	•		89.9	37.
91.3 90.8 90.4 89.5 87.0 78.1 76.8 79.9 8 89.7 88.5 88.5 87.1 84.3 74.5 74.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.6 77.0 7 84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 SIDEL INE PERCEIVED NOIS 99.9 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10 92.2 98.0 100.5 101.6 99.6 96.6 97.5 99.5 10	4.5 86.	6.3 88.	85	•		6	•
89.7 88.5 88.5 87.1 84.3 74.5 74.4 77.0 7 86.8 86.1 87.1 84.1 81.4 69.7 70.1 74.6 7 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 70.1 70.5 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 8105.0 107.5 108.1 106.2 102.9 103.7 105.8 10 92.2 98.0 100.5 101.6 99.6 96.6 97.5 99.5 10	81.4 84.6	8 86.	3 83.1	80.9	74.2	89.1	136.5
86-8 86-1 87-1 84-1 81-4 69-7 70-1 74-6 7 84-3 84-2 81-7 77-0 67-3 67-1 70-4 7 105-5 106-5 106-3 105-2 102-3 98-0 98-5 99-5 10 5-9 105-0 107-5 108-1 106-2 102-9 103-7 105-8 10 92-2 98-0 100-5 101-6 99-6 96-6 97-5 99-5 10	8.5 81	0.8 83.	79.	-		88.1	•
84.3 84.2 84.2 81.7 77.0 67.3 67.1 70.4 7 105.5 106.5 106.3 105.2 102.3 98.0 98.5 99.5 10 29.9 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10 92.2 98.0 100.5 101.6 99.6 96.6 97.5 99.5 10	5.3 77.	7.4 79.	77.		•	87.5	34.
105-5 106-5 106-3 105-2 102-3 98-0 98-5 99-5 10 SIDELINE PERCEIVED NOIS 99-9 105-0 107-5 108-1 106-2 102-9 103-7 105-8 10 92-2 98-0 100-5 101-6 99-6 96-6 97-5 99-5 10	\sim		5 73.9	72.6	S	87.5	134.9
SIDELINE PERCEIVED NOIS 99.9 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10 92.2 98.0 100.5 101.6 99.6 96.6 97.5 99.5 10	100.8 102.6	102.9 104.	4 102.9	100.1	91.5	103.6	151.0
99.9 105.0 107.5 108.1 106.2 102.9 103.7 105.8 10 92.2 98.0 100.5 101.6 99.6 96.6 97.5 99.5 10	ISE LEVELS						
01 6+66 6+16 9+96 9+66 9-101 6+001 0+96 7+76	07.3 108.8	108-2 108-	3 105.2	4.66	91.1		
	01-1 102-2	6 101.	98	_	83.7		

(b) Percent of design speed, 70; fan physical speed, 3605 rpm; fundamental blade passage frequency, 1562 hertz.

FQUENCY	10	20	ÚĘ	4.3	50	09	70	ANGL F.	F. DEG	100	110	120	130	140	150	160	AVERAGE SPL	POWER LEVEL (PWL)
			1	/3-0CT	AVE BAND	OND SCUND	PRE	SSURE	LEVEL	(SPL)	•08 NO	5-METER	R RADI	ns				
53	79.6	75.3	78•3	78.3	77.8	78.5	79.0	80.0	80.3	81.3	81.8	83.2	84•3	86.0	88.9	89.2	82.5	129.9
80	86.9	79.5	83•7	88.0	81.8	83.3	83.8	84.7	81.2	84.2	85.0	85.1	87•7	87.3	89.2	90.4	85.5	132.9
80	78.1	77.8	76•3	75.3	75.8	77.3	76.5	77.3	79.5	81.3	82.5	85.1	87•1	89.1	91.3	92.4	84.4	131.8
100	79.5	78.7	79.2	77.2	78.0	79.3	79.8	81.7	93.2	84•7	86.3	87.8	90•2	91.8	93.0	93.2	86.8	134•2
125	84.4	84.1	86.1	83.4	83.1	84.6	84.8	85.4	86.1	87•3	87.9	89.4	90•3	91.8	92.8	92.3	86.3	135•4
160	83.1	84.0	84.6	83.0	84.5	84.5	85.0	86.0	86.6	86•5	86.8	88.0	89•9	90.0	89.8	88.5	86.8	134•2
200	85.6	85.1	84.8	82.5	84.5	83.3	82.8	84.3	83.6	83.8	84.8	86.5	88•0	89.5	89.5	87.2	85.6	133.0
250	89.1	88.6	88.3	85.8	86.6	85.1	83.1	83.8	86.8	87.0	87.1	88.7	90•5	91.0	90.1	87.0	87.6	135.0
315	87.1	87.4	86.9	85.3	85.1	84.6	84.6	84.9	86.1	86.8	87.1	88.2	89•4	89.8	88.4	85.5	86.9	134.3
400	89.4	91.2	90.7	90.4	86.9	86.2	86.9	86.9	87.7	89.2	88.5	89.1	91.4	85.9	88.2	87.7	88.9	136•3
533	91.6	91.9	93.1	89.4	88.4	86.6	85.8	87.3	87.9	87.8	88.6	89.8	91.1	90.1	87.8	85.3	89.1	136•5
633	91.4	93.4	93.6	92.9	91.9	88.6	87.3	85.9	88.6	89.3	91.6	91.2	93.3	91.9	88.1	86.3	90.8	138•2
800	92.8	93.3	92.5	92.0	92.3	90•1	88.5	88.3	89.0	90.6	92.0	92•7	94•6	92•1	88.3	86.7	91•4	138 • 8
CCC1	94.6	95.5	95.7	96.7	95.0	92•5	91.6	91.8	91.5	93.1	94.1	95•1	96•8	93•8	90.5	87.9	94•1	141 • 5
1250	95.5	97.1	97.5	97.6	96.8	94•1	92.5	91.6	92.0	93.1	94.1	95•6	96•1	94•0	90.0	88.2	94•8	142 • 2
1600 2000 2500					പ്രത വ	07. 94. 93.	104.9 92.0 90.6	4.00.4		99.9 95.0 94.8	င်္ကေလီ မ	103.1 96.8 96.7	132.2 97.9 97.6 97.6	omm c			106.5 95.5 95.1	153.9 142.9 142.5
4000 5000	96.6	98.4 101.2	98°4 100°5	98.6 101.8	97.6	95.9 98.7	93.8 93.8 92.3	90.3 90.3 90.0	92.9 93.3	94.8 94.8 95.0	96.6 96.6 96.6	97.1 97.1 97.1	986	9.5	90.1 92.2	1 ~ ~	96.6	4 2
6300	96.8	97•3	97.9	98.8	97•1	95.3	88•1	86.8	99.1	90.9	93.4	93.1	95.1	91.2	88.1	83.6	95.5	142.9
8000	94.5	96•8	97.3	96.6	96•3	94.3	87•0	84.8	88.5	90.0	92.3	92.7	93.5	89.2	86.3	82.5	95.0	142.4
0000	92.7	94•8	94.8	94.6	94•3	92.8	85•0	82.5	85.8	87.1	90.0	89.7	91.8	87.3	84.3	79.1	93.9	141.3
12500	90.7	92.7	91.4	91.7	91.6	89.7	80.9	79.6	82.4	84.6	86.9	87.2	88.2	83.4	81•8	76.8	92•3	139 • 7
16300	88.7	89.7	88.7	90.2	88.2	86.0	76.2	75.2	79.7	80.3	82.5	82.9	84.5	81.6	79•7	73.5	91•2	138 • 6
23333	85.2	86.4	86.5	87.3	85.9	81.5	73.6	72.6	75.6	77.6	79.9	81.2	82.2	78.1	76•4	70.7	91•1	138 • 5
OVERALL ISTANCE METERS	110.2	112.5	112•4 114•	114.5	113.2	\$ 110.3 \$ 10! 115.1	106.8 EL INE 112.6	106.0 PEPCET 112.3	105.3 VFD NO 111.9	196•1 ISE LE 112•6	1 107.2 LEVELS 6 113.4	108.6	109.5	110.5	105.2	103.4	119•1	157•5

TABLE VII. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4128 rpm; fundamental blade passage frequency, 1788 hertz.

FREQUENCY								ANGLF,	F, DEG								AV ER A GE	POWER
	10	20	30	40	20	09	70	ŷ	6	100	110	120	130	140	159	160	SPL	(PWL)
			-	1/3-0CT	AVE B	AND SOUND	ND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	P RADI	rus				
დ ბ ფ C <i>ზ</i> ა	83.1 87.1 84.7	87.1 87.6 86.7	81.4 90.4 85.5	81•3 86•6 82•7	82.3 81.9 80.8	82.9 83.3 81.3	82.4 84.3 82.3	83.8 83.8 82.7	84.6 86.1 84.7	85.1 85.6 85.3	85.3 87.3	86.9 88.2 89.9	88•1 89•1 92•3	90.9 91.1 94.3	92.9 94.1 97.3	95.5 95.1 98.5	87.2 88.3 90.0	134.6 135.7 137.4
100 125 160	88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	86•3 89•0 87•9	82.6 88.3 88.9	82.4 87.0 87.6	82.6 87.6 88.6	83.3 87.6 88.3	84.3 89.5 89.4	85.8 89.3	87.8 90.3	89.3 91.5	91.1 92.6 91.9	92.7 94.1 92.7	94.8 95.6 93.8	97.4 97.6 95.4	98.9 99.1 95.9	99.8 98.2 94.5	92.2 93.1 91.7	139.6
200 250 315	89.6 90.1 93.1	89.6 92.3 90.8	84,3 90,8 93,8	87•1 92•8 92•5		9.48	87.6 90.8 90.0	e 60	87.8 92.1 91.0	88.0 92.0 91.1	89.5 94.6 92.6	90.7	W 9 4	94.6	6.0		90°4 93°5 92°5	P ~ 0
400 500 630	92.5 191.6 99.6	91.0 101.2 101.1			93.5 105.7 107.8	2.00	90.0 96.1 100.4	90.4 99.1 98.6	91.9 96.9 98.6	91.9 98.1 97.1	92.4 96.7 99.3	94.0 97.7 98.0	4 6 .	94.7 95.7 97.1		90.6 92.1 94.3	92.7 100.9 102.2	0.484
800 1000 1250	101.5 102.0 102.1	101.5 102.0 104.7	107.0 105.2 104.4	196•3 107•2 109•1	110.0 109.5 138.7	107. C 196. 2 197.1	103.8 103.3 103.7	101.8 99.5 100.7	99.5 98.7 98.2	97.3 98.8 98.2	98.2 99.5 99.1	98.3 99.3 99.8	99.5 101.3 100.4	98.3 98.3 96.7	96•3 96•5 96•7	93.4 95.1 93.3	103.7 103.4 103.8	151•1 150•8 151•2
1600 2000 2500	107.2 139.7 101.9	108•3 110•2 102•9	109.8 111.5 104.4	112•2 113•9 105•1	115.2 116.9 105.7	1111. C 112.9 194.1	106.8 138.5 99.6	102.0 103.4 97.1	102.3 104.0 97.9	100.7 101.9 98.6	103.5 105.0 99.7	102.9 134.6 100.0	104.3 106.0 100.4	100.7 102.2 96.6	98•3 100•0 94•2	97.4 99.3 91.8	108.2 110.0 101.7	155.6 157.4 149.1
3150 4000 5000	132.3 134.1 190.9	122.8 133.6 131.8	104.4 104.9 101.9	105.1 105.9 103.6	105.9 106.7 103.1	103.9 105.2 102.3	98.4 98.9 96.8	96.9 96.9 94.3	98•1 98•1 96•6	99.8 99.6 97.6	101.6 101.6 98.8	102.4 102.0 98.9	102.3 103.1 100.1	97.9 99.1 95.6	94•6 95•2 93•8	92.2 92.3 89.7	102.4 103.2 100.7	149.8 150.6 148.1
6300 8333 1000	99.4 97.2 94.9	98.9 98.4 96.1	100•3 99•9 96•6	101-1 99.0 97-1	100.8 100.5 97.9	99.6 98.7 97.3	93.2 92.5 89.7	91.1 89.7 87.1	93.4 92.3 89.7	94.1 93.9 90.7	96.7 96.4 93.7	96.1 96.2 93.1	97.4 96.9 94.9	93.2 92.0 89.6	91.2 89.8 87.6	87.1 86.4 83.0	98.6 98.5 97.1	146.0 145.9 144.5
12500 16390 20000	92.4 90.4 87.1	93•7 90•4 87•3	93.5 91.1 88.7	94.5 93.1 90.3	96.7 92.7 90.9	94•3 91•0 88•1	85.9 81.4 79.4	84•1 79•6 76•3	85.9 83.2 79.2	88.1 84.0 80.9	93.4 86.4 83.6	90.1 86.4 83.9	91.8 88.0 85.1	86.5 83.7 80.6	85.2 83.1 79.8	80.0 77.0 74.0	95.7 94.6 94.7	143.1 142.0 142.1
CVERALL	15.0	115.6	117.6	119•3	121•4	9 • 711 S 10	113.8 EL INE	110.6 PERCET	113.6 11 VED NOIS	E 0	112.1 EVELS	112.2	113.2	110.7	109.9	108.6	115.7	163.1

61 METERS 102.5 111.2 116.8 121.1 124.8 122.7 119.3 116.4 117.1 116.5 118.1 117.5 117.2 112.4 108.3 102.7

(d) Percent of design speed, 90; fan physical speed, 4639 rpm; fundamental blade passage frequency, 2010 hertz.

FREQUENCY	•			ı				ANGL	.E, DEG								AVERAGE	POWER
	10	20	30	40	50	9	70	80	66	100	110	120	130	140	150	160	148	(PWL)
			-	1/3-001	TAVÉ BA	BAND SOU	OUND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	US				
50	86.8	83.1	85.3	85.1	85.9	85.9	86.9	87•3	88.1	89•1	89.9	90.5	92.6	95.6	99.1	100.8	91.9	139.3
63	83.8	86.3	84.9	83.9	85.1	85.9	85.8	86•3	86.9	87•1	88.9	90.8	93.4	96.3	99.6	101.0	92.0	139.4
80	91.6	90.5	89.6	89.0	90.1	88.6	85.6	89•0	88.6	89•5	92.5	93.4	97.0	100.0	102.8	104.7	95.4	142.8
100	88•1	86.1	86.5	85.8	86.5	88.3	85.3	90.5	91.5	93.5	95.8	97.0	99.8	102.6	105.8	106.3	97.8	145.2
125	91•7	89.5	90.5	89.7	91.0	92.7	92.7	94.0	95.3	95.8	97.5	98.6	100.5	103.0	105.3	104.0	98.2	145.6
160	94•4	92.6	93.0	92.0	94.3	93.8	96.1	96.0	96.6	97.5	97.8	98.1	99.5	101.6	102.8	100.9	97.7	145.1
200	93.7	93.5	93.3	95.7	95.5	95.0	94.5	92.5	92.5	93.9	94.2	95.9	98.7	100.8	101.8	99•1	96•3	143.7
259	100.2	98.0	99.3	103.2	103.0	101.3	100.3	95.7	94.3	95.5	97.2	98.4	100.5	102.3	102.3	98•9	99•9	147.3
315	99.4	99.3	104.0	105.0	98.6	95.0	99.0	99.8	101.5	100.1	99.1	100.7	102.3	101.8	101.3	97•2	100•8	148.2
400 500 630	96.6 103.8 98.1	10151 11262 10762	102.4 111.7 197.6	106.1 114.2 108.4	107.4 113.2 108.4	103.2 110.4 106.6	99.7 109.6 104.6	97.6 108.6 102.1	96.6 108.6 101.4	98.6 108.1 100.1	97.7 106.1 99.7	98.8 104.8	99.6 102.7 99.7	100.7 102.6 100.1	99.6 102.4 99.2	96•3 98•8 97•6	101.6 109.4 104.2	149.0 156.8 151.6
800	107.4	106.8	111.3	111.2	112•2	109. C	107.5	103.5	102•3	102.3	98.3	100.6	100.3	102.5	101.7	97.0	106.8	154•2
1333	103.7	134.9	108.4	111.9	112•9	108. 4	104.7	100.4	99•5	100.2	99.5	100.3	99.9	100.2	98.5	95.6	106.1	153•5
1250	104.6	106.3	107.1	109.4	109•6	105. 4	102.9	102.1	99•5	100.0	98.8	100.5	100.0	98.9	98.1	95.0	104.3	151•7
1600	102.7	104.2	105.7	106.4	108.0	103.9	101.0	98.2	98.5	98.7	98.9	100•1	99.2	97.9	97.4	94.4	102.5	149.9
2000	106.7	108.5	108.9	112.7	110.2	108.0	105.7	103.0	106.5	104.7	105.9	106•6	106.9	102.4	101.2	99.6	107.5	154.9
2500	103.7	105.6	105.2	107.7	107.1	104.2	100.2	98.4	99.2	99.4	100.2	100•2	99.9	98.1	96.6	93.6	102.9	150.3
3150	101.8	103.5	104.4	105.0	106.0	102°7	98.7	97.9	99.0	99.9	100.9	101.5	100.0	97.4	95.5	93•1	102•1	149.5
4000	101.4	103.1	134.1	105.3	105.4	192°9	98.6	98.8	135.8	101.9	103.8	104.6	104.0	99.1	97.5	94•7	103•4	150.8
5000	100.4	101.9	101.5	104.2	103.5	101°5	97.0	95.7	98.2	97.7	99.2	99.7	99.5	96.7	96.1	91•3	101•0	148.4
6399	98•2	98.8	99.7	101•.8	101.7	98.9	94.6	93.6	96.5	96.7	99.2	98.9	100.2	95.6	94•6	89.0	99.9	147.3
8000	96•2	98.3	99.0	100•.0	101.7	98.4	93.5	91.9	95.2	96.0	98.4	98.2	98.5	93.4	92•7	88.7	99.6	147.0
10000	93•7	95.5	96.3	98•.2	99.4	97.0	91.3	89.5	92.7	92.8	96.0	95.2	96.3	91.7	90•2	85.1	98.3	145.7
12500	90.7	93.2	93.3	96.0	97°5	95.0	88.1	87.7	89.5	91.0	93.2	92.6	93.6	88.5	87.8	83.2	97•3	144.7
16000	88.3	90.2	90.7	94.8	95°3	92.2	84.0	83.4	87.6	87.4	89.2	89.6	90.1	86.4	86.1	80.3	96•6	144.0
20000	85.5	86.8	88.9	93.1	93°9	89.9	82.6	80.3	83.8	84.8	86.6	87.5	88.1	83.5	83.1	77.4	97•3	144.7
OVERALL	115.0	117.7	118.8	120.9	120.7	117.6	115.5	113.5 PFRCF	114.0 VED NO	113.8	113.8 VFI S	114.3	114.4	113.9	114.5	113.2	116.8	164.2
METER	101.8 77.5	1111.7 91.6	116.6 97.3	121.7 103.4	122.5 104.7		119.	17.8 50.8	119.	119.1	119.6 101.9	119.4 191.6	118•3 100•3	114.2 96.1	1111.1 92.4	104.9 84.9		

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3117 rpm; fundamental blade passage frequency, 1350 hertz.

RAGE POW	SPL LEVEL (PWL)		83.3 130.7 80.9 128.3	1.4 128.	3.1 130.	83.1 130.5	161 001	971 6.	81.6 129.0	2.6 130.	2.6 130. 3.2 130.	2.6 130 3.2 130 3.9 131	2.6 130. 3.2 130. 3.9 131. 5.3 132.	2.6 130. 3.2 130. 3.9 131. 5.3 132. 6.5 133.	2.6 130. 3.2 130. 3.9 131. 5.3 132. 6.5 133.	2.6 130. 3.2 130. 3.9 131. 5.3 132. 6.5 133. 9.2 136.	2.6 130. 3.2 130. 3.9 131. 5.3 132. 6.5 133. 6.5 136.	2.6 130. 3.2 130. 3.9 131. 5.3 132. 6.5 133. 9.2 136. 6.6 136.	2.6 130. 3.2 130. 3.9 131. 5.3 132. 5.3 142. 6.5 136. 6.6 136. 0.9 136.	.2 130 .9 131 .3 132 .5 133 .2 136 .6 136 .7 136	2.6 130. 3.2 130. 3.9 131. 5.3 132. 5.3 142. 9.2 136. 6.6 134. 0.9 138. 1.3 138.	.6 130 .9 131 .5 132 .5 136 .6 136 .7 136 .5 136	.2 130 .3 132 .5 133 .5 135 .6 136 .7 136 .5 135 .5 135	.6 130 .9 131 .5 132 .5 136 .9 136 .9 136 .9 136 .9 135 .9 135	22 130 131 132 131 132 131 132 131 132 132 132	130 130 130 130 130 130 130 130 130 130	.2 130. .3 132. .3 132. .5 134. .9 138. .9 135. .9 135. .9 135.	130 130 130 130 130 130 130 130 130 130	82.6 130 83.2 130 83.2 131 85.3 132 86.5 134 86.5 136 86.5 136 86.5 136 86.4 135 85.0 132 85.0
	160		84.2 83.7	ů	۴,	86.2	•	٠.	80.6	ò	00	000	80.3 80.0 79.9 80.9	80.3 80.0 79.9 80.9	000 010	800.0 70.0 70.0 80.0 80.2 80.2	880.3 79.0 881.5 79.8 79.8	80.3 80.0 79.9 80.0 81.5 81.5 81.8	8888 9999 9999 9999 9999 9999 9999 999	800.3 800.0 79.9 800.0 800.8 81.5 81.5 81.6 81.8	800.3 800.0 79.9 800.0 85.2 85.2 879.5 810.0 79.7	800.3 800.0 800.0 800.0 800.0 790.0 790.0	800.3 800.0 800.0 800.9 800.9 819.5 76.9 76.8	800.3 800.0 800.0 810.9 85.2 85.2 810.8 810.0 740.8 740.8	800.3 800.0 800.0 810.9 85.2 810.6 810.6 776.8 776.8	800.3 800.0 800.0 800.0 800.0 800.0 71.0 71.0 71.0 71.0 71.0 71.0 71.0	800.3 800.0 800.0 810.9 810.9 810.9 810.0	800.3 800.0 800.0 800.0 800.0 800.0 800.0 710.8 710.8 710.8 710.8 710.8 710.8 710.8 710.8 710.8 710.8 710.8 710.8 710.8	800.3 800.0 800.0 800.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0
	150		82.5 81.8	Š.	.	86.2	,	• •	82.7	6	5.3	83.0 82.3 82.6	600 0	600 600	433 553	0 4 m m 6 m	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	800 800 mmt	0 100 dan 000	20 400 400	20 40 400 660	N 202 700 400 1000	00 000 dan dan 000		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			ש אוא מסר מים את את מים ש	
	140	Sn	80.7 81.0	m	ġ,	85.2			83.4	•	÷ ;	84.0 84.5 85.5	440 -	440	448	446 551 5	545 546 56	445 171 746	448 771 746 6	448 771 746 60	440 771 746 608	446 771 746 608 6	448 444 444 844	440 664 664 640	· · · · · · · · · · · · · · · · · · ·		448		000 000 000 000 000 000 000 000 000 00
	130	R RADIU	83.7	•	•	86.0 8.0 8.0	• •	•,	83.4	•	4 4	84.8 84.8 86.1	440 8	440 88	440 887	440 8mg 6	440 800 CO	749 0 BB 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	444 888 684 C	448 888 684 CM	440 8m0 0mm 0n0	*** *** *** *** *** *** *** *** *** **	*** *** *** *** *** ***	444 800 000 000 P04	440 8m0 0md 0md 1md N	448 8m0 0m1 0m0 Mm4 Nm	440 BMO PMO PMO PMO PMO	448 888 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	120	5-METE	87.1	ŝ	91	8	, ,	•,	83.3	•	* ;	84.0 84.4 84.9	444 6	444 66	444 961	444 664 6	444 644 64	444 011 718	444 000 000 0	444 001 000 01	444 000 000	444 004 040 040 0	444 944 448 944 84	444 000 000 000			444 944 448 644 848 948		444 664 668 646 840 668 6
	110	ON 30.	81.7	:	ě,	83.8		•	81.6	ě	m m	83.0 83.2 83.8	m m m		 			40 0 00 0 mm	888 508 556 6	888 808 856 60	204 450 900 900	www www war ros 4	mm 000 000 000 4m		200 200 200 200 200 200 200 200 200 200		MMM 1000 1000 1000 1000	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	100	(7dS)	81.3		:	81.8			80.7	_:	2.5	81.8 82.0 82.6	2.5	43 64	2 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6	3. 8. 3. 8. 3. 8. 4. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 6 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 648 484 W4			100 646 464 NO4 HO	100 m4m 4m4 m44 10m	100 E 48 48 50 100 F				812. 822. 823. 843. 865. 865. 865. 877. 777. 777.
E, DEG	66	LEVEL	83.0	•	ò	80.3	, ,	•	79.9	ċ	ė ċ	80.8 80.3 81.3	% %	96	73.5	80.8 81.3 81.3 82.1 83.4 83.2	80.8 81.3 81.3 82.1 83.4 83.2 83.2	96. 48. 614.	800.8 81.3 81.3 82.1 83.4 87.7 83.2 81.9 84.3	80.8 81.3 81.3 82.1 83.4 87.7 83.2 81.9 84.3	80.8 81.3 81.3 82.1 83.7 81.9 81.9 84.7 85.6 86.7	800.8 81.3 81.3 81.3 81.3 81.2 81.9 81.9 84.7 84.7 84.3 81.9	80.8 81.3 81.3 81.3 82.1 83.2 81.9 84.7 85.6 84.7 81.2	80.8 81.3 81.3 81.3 82.1 83.2 81.9 84.3 84.3 84.3 84.3 84.3 84.3 81.2 81.2	800.8 81.3 81.3 81.3 81.3 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2	80.8 81.3 81.3 81.3 81.3 81.7 81.9 84.7 84.7 84.7 84.7 87.6 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0	80.8 81.3 81.3 81.3 83.2 81.2 81.2 84.3 84.3 84.3 84.3 77.4 83.4 77.5 83.6 83.6 83.6 77.6 83.6 77.6 83.6 77.6 83.6 77.6 83.6 77.6 77.6 83.6 77.6 77.6 77.6 77.6 77.6 83.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 7	80.8 81.3 81.3 81.3 81.3 83.4 81.9 84.7 84.7 84.7 84.7 84.7 84.7 84.7 84.7	80. 81. 81. 83. 83. 81. 84. 84. 84. 77. 77.
ANGLE,	80	SSURE	80.8 78.2	ထိ	78.5	83.0		0 0	80.1	6	60	79.6 80.7 80.8	6 0 ° ×	8 00 N. 6	8 00 0 00 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 00 0 0 m m m	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20 WHW 9WX 009	000 NA MAM 000	4 000 WHW 9WW 000 F	000 NAW 000 PW	000 NM 0MN 000 PW	000 NAM MAM 000 PM M		000 NWO WWW 0NO PW4 WW4	000 Nmm mmm 000 Nmm nmm 000	000.00 0000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 0
	5	PRE	86.8 81.7	:	81.5	80.8	, ,		79.9	6	60	79.3 80.0 79.8	% ° % ~	808 48	30% 40%	90% 40%	908 408 608	\$0\$ 40% R04	908 488 804 0	% % % % % % % % % % % % % % % % % % %	808 484 864 084	\$0\$ 48# BB# 08# 8	\$0\$ 48	\$0\$ 40% 80% 084 856	908 488 854 084 859 W	000 HNW WG4 0MH WK4 WW	908 488 804 084 854 884	908 488 864 084 856 884 F	79.0 80.0 81.0 81.0 93.0 93.0 93.0 93.0 90.0 90.0 90.0 90
	09	AND SOUND	80.5	•	78.3			•	79.7	ě	* 0		3 50 6	80 80	80 m m m	8 6 8 8 8 8	00 mm 4 mm				40% 8w8 40%	400 BWB 400 WO 400 W	002 400 000 FOR	000 400 800 F00 F00			~ · · · · · · · · · · · · · · · · · · ·	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	90	AVE BAI	83.2	ດ້	81.0	84.2		•	90°9 80°9	5	3.6	82•1 83•0 83•8			33.6														883. 83. 83. 885. 887. 990. 990. 788.
	4.0	/3-DCT	82.8		80.8	84.7	70.0		81.4			82.8 85.0 85.8	85.0 85.0 85.0 86.8	885 885 886 886 886 886 886 886 886		8878 8878 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	855.8 855.8 85.0 85.0 85.0 85.0 85.0 85.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 5	8875.08 855.08 855.08 856.09 959.00 959.00 959.00 959.00	82.8 85.0 85.0 86.8 86.8 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99	82.8 85.0 85.0 86.8 86.8 99.5 99.2 99.2 99.2 99.2 99.2 99.2 99.2	88.55.0 885.0 885.0 886.8 896.8 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0 997.0	85.0 85.0 85.0 86.8 86.8 89.5 99.5 99.5 99.5 99.5 99.6 99.6 99.6 9	85.0 85.0 85.0 86.8 86.8 99.5 99.5 99.6 99.6 99.6 99.6 99.6 99.6	85.08 85.09 85.09 86.98 86.99 86.00	85.08 85.09 85.09 86.88 86.99 99.59 99.29 99.39 99.39 99.39 99.39 87.60 88.99	82.8 85.3 85.8 86.8 86.8 89.5 93.0 95.2 95.2 95.2 95.2 91.3 87.6 81.3	888 885 885 885 885 885 995 995 995 995
	30		80.8	73•1	79.0	82.4	82.4	•	82.6	•	5.	84.5 85.5 86.1	84.5 85.5 86.1	84. 85. 86.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	84.5 85.5 86.1 87.6 89.5 100.3	84.5 85.5 86.1 87.6 89.5 100.3 93.9	885. 885. 000. 993.	84.5 85.5 86.1 87.6 89.5 100.3 93.9 90.2	84.5 85.5 86.1 100.3 93.9 92.2 92.4	84.5 85.5 86.1 87.6 100.3 93.9 90.2 96.2 96.2	84.5 85.5 86.1 100.3 100.3 90.2 90.2 95.2 95.2 95.2	84.5 85.5 86.1 87.6 100.3 93.9 93.9 96.0 95.2 95.2 95.2 95.2	84.5 85.5 86.1 100.3 100.3 100.3 90.2 90.2 92.4 92.4 92.4 92.4 92.2 92.4 92.4 92	84.5 85.5 86.1 100.3 100.3 100.3 92.4 92.4 92.2 92.4 92.2 92.2 92.3 92.3 92.3 92.3 92.3 92.3	84.5 85.5 86.1 100.3 100.3 100.3 90.2 90.2 95.2 95.2 91.9 91.9 91.9 91.9	84.5 85.5 86.1 87.6 100.3 100.3 92.2 92.4 92.2 92.2 92.2 92.2 92.2 92.2	885.55 866.1 866.1 993.6 993.6 995.6 995.7 995.8 995.8 995.8 995.8 995.8 995.8 995.8 995.8 995.8 995.8 995.8	884. 865.55 866.1 897.6 997.6 997.9 991.8 895.7 991.8 885.7 991.8 991.8 991.8 991.8 991.8
	5.9		79.2	74.5	79.8	• •	, ,	ס	82.9	5	6.5	85.0 86.3 87.1	46.5	08 46.0 0.8 0.4 0.4	5.0 7.1 7.1 8.6 8.7			5.0 7.1 7.1 8.7 8.7 6.2											885.0 87.1 886.3 87.1 886.5 992.6 992.6 992.7 992.7 992.7 992.7 992.7 992.7 992.7 992.7 992.7
	10		77.7	73.5	80.1	, 2	2 1 2	62.7	83.4	85.0	86.2	85.0 86.2 87.3	85.0 86.2 87.3	85.0 87.3 87.3 90.8	85.0 86.2 87.3 89.3 90.8	85.0 87.3 87.3 89.3 100.0	85.0 86.2 87.3 89.3 90.8 100.0	85.0 87.3 87.3 89.3 100.0 93.7 93.7	85.0 86.2 87.3 89.3 100.0 93.7 93.7 93.7	85.0 86.2 87.3 87.3 89.3 100.0 93.7 93.7 93.7 93.7	85.0 86.2 87.3 87.3 89.3 100.0 93.7 90.4 94.5	85.0 86.2 87.3 87.3 89.3 100.0 93.7 93.7 93.7 94.5	85.0 86.2 87.3 87.3 89.3 100.0 93.7 90.4 94.5 91.1	85.0 86.2 87.3 87.3 89.3 100.0 93.7 93.7 94.5 94.5 92.4 92.4 92.4	85.0 86.2 87.3 87.3 89.3 100.0 93.7 93.7 94.5 94.5 94.5 94.5 94.5 96.1	85.0 86.2 87.3 87.3 89.3 100.0 93.7 93.7 94.5 94.5 92.4 92.4 92.4 92.4 92.4 92.4 92.4 92.4	85.0 86.2 87.3 87.3 89.3 100.0 93.7 93.7 94.5 94.5 94.5 94.5 96.1 96.1 96.1 88.0		
FREQUENCY			50	OB OB	100	vφ	· C) ע	315	0	ဝင	400 500 630	000 0	000 001	00m 00m	400 530 630 1000 1250	400 530 630 1130 1250 2330	00M 00M 000	400 500 630 11000 1250 2000 3150	400 530 830 11000 1250 2000 2000 4000	400 500 630 11000 1250 1600 2500 2500 4000	400 500 1100 1150 1250 1250 2500 2500 4000 6300	400 500 630 11250 1250 1250 2300 4300 6300	400 530 1130 1150 1250 1250 2300 4300 6300	400 530 11000 1250 1250 2500 2500 4000 6300 12500	400 5500 11300 1150 1250 2300 4300 6300 12500 16000	400 630 11250 1250 1250 2500 2500 4000 6300 10000 10000 2000	400 530 1130 11250 1250 2310 2500 4300 6300 10000 10000 10000	400 530 11000 1250 1250 2500 2500 4000 6300 10000 12500 16000 16000 16000 16000 16000

(b) Percent of design speed, 70; fan physical speed, 3630 rpm; fundamental blade passage frequency, 1573 hertz.

FREQUENCY								ANGLE,	E, 956								AVERAGE	4 H C C C
	01	2.3	30	40	20	9	6	80	4)	001	011	120	130	140	150	160	٠ ۲	(184)
				1/3-901	AVE	BAND SOUND	PRE	SSURE	LEVEL	(SPL)	JN 30.5-METE	5-METER	R PAOTU	Sn				
63 63	78.6 83.6 76.6	76.7 79.0 76.6	79.7 85.6 77.5	80.7 87.6 78.3	79.9 81.3 78.5	81.2 86.5 78.8	79.6 85.0 76.8	81.1 86.1 78.6	82.7 84.6 79.8	80.7 86.5 81.0	84.2 88.3 84.8	85.5 86.7 87.1	86.2 90.0 89.0	86.6 88.1 89.0	87.6 89.0 91.3	88.8 90.3 92.3	83.6 86.9 85.1	131.0 134.3 132.5
100	79.3 86.3	78.3 85.5 83.8	79.4 87.2 85.3	80.9 87.2 84.4	80.4 86.3 84.6	80.4 85.0 84.1	80.1 86.7 84.4	81.6 85.7 84.9	83.3 86.2 85.9	84.9 88.7 86.1	86.6 89.0 86.6	88•2 89•8 88•2	89.6 91.0 88.9	91.4 91.5 89.1	93.4 93.5	93.2 92.6 89.6	86.9 88.7 86.6	134•3 136•1 134•0
200 250 315	85.8 89.5 87.1	84.6 87.5	86.3 88.3 86.5		85.1 85.8 84.8	. w. 4 w	- คํ ๙ํ ๓ํ	ທີ່ຄືນ	2 4 4	200	85.9 87.5 87.0	. 6.	88.8 89.3 88.1		89.6 89.5 88.5	88.7 87.9 86.4	9.6	133.5 134.5 133.7
400 500 630	92.4	80°2 99°1 93°4	90°6 89°6 94•1	91.6 99.1 91.2	86.6 87.6 92.1	85.6 84.7 87.9	83.7 85.6 86.7	86.6 85.6 85.4	85.6 85.7 99.1	87.1 86.7 88.4	87.1 87.4 88.9	89.2 89.1 90.0	90.7 89.7 99.1	88.9 89.6 91.1	88.2 87.7 88.2	87.1 85.4 85.9	88.2 87.9 89.9	135.6 135.3 137.3
800 1000 1250	42.1 94.3 94.9	91.9 94.7 95.6	91.4 94.1 96.8	90.8 95.6 95.4	90.9 93.7 95.4	89•1 90•5 92•1	86.3 90.5 90.4	86.1 90.3 88.4	86.8 88.5 88.8	88.4 90.3 88.9	89.3 90.0 90.1	90.2 91.9 92.0	91.8 94.0 92.4	90.3 91.5 90.9	87.6 88.5 87.9	85.6 86.7 85.8	89.5 92.0 92.4	136 • 9 139 • 4 139 • 8
1600 2333 2530				95.	08. 95. 93.	.5.2	6 8 6	o° ~ o .	8 8 6	2000	3	6.4		97.4 89.7 90.0	95.0 87.2 87.3	444	104.3 92.5 91.9	• • •
31 50 4000 5000		-	-	102. 96. 130.		в. 6.	w , 5		- e e	000	* % m	9 4 6		® ~ ~	93.2 98.5 90.1		98.5 94.1 96.2	43.45
6300 8330 13000	95.5 93.6 92.1	95.1 95.3 93.9	97.1 96.4 94.8	97.0 95.4 92.9	95.5 94.4 92.9	93.3 91.9 90.8	86.2 84.8 82.6	83•8 81•8 79•9	86.3 84.9 82.9	87.5 86.4 84.8	90.2 89.1 87.6	90°3 90°0 87°3	92.3 91.3 90.1	88.7 87.3 85.9	86.5 84.4 83.3	81.5 81.1 78.2	93.5 93.1 92.4	140.9 140.5 139.8
12500 16333 29033	99.3 87.8 83.6	91.9 88.3 84.0	91.8 88.5 85.1	90.9 88.5 84.5	39.8 86.1 82.3	87.3 83.5 77.9	79.3 73.9 70.3	78.4 74.3 69.3	87.9 78.5 73.5	82.6 79.3 74.6	85.7 81.4 77.5	85.9 81.7 77.9	88.0 83.4 79.3	83.4 81.5 76.8	81.6 79.7 75.1	76-8 73-4 68-6	91.3 89.8 88.4	138•7 137•2 135•8
OVERALL STANCE	6*6;1	110.5	112.6	112.2	111.1	197.8 1918	104.6 EL INE	102.5 PERCEI	5 102.4 EIVED NO	4 102.9 NOTSE LE	9 104.0 LEVELS	105.8	106.7	135.4	103.7	102.6	108.0	155.4

96.3

97.3 175.7 111.9 114.1 114.7 112.8 110.4 108.8 108.9 109.2 110.2 111.2 111.1 178.6 102.6

61 METERS

TABLE VIII. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4152 rpm; fundamental blade passage frequency, 1799 hertz.

3	(DMC)		133.9 135.0 136.8	138.9 139.9 138.6	137•3 139•5 138•9	139.0 144.0 146.4	151•7 152•1 152•1	153.5 156.2 147.6	148.1 148.8 146.8	144.8 144.6 143.7	142.5 141.1 140.5	162.1	
AVERAGE	۲. ۲.		86.5 87.6 89.4	91.5 92.5 91.2	89.9 92.1 91.5	91.6 96.6 99.0	104.3 104.7 104.7	196•1 108•8 100•2	100•7 101•4 99•4	97.4 97.2 96.3	95•1 93•7 93•1	114.7	
	160		94.9 95.3 97.9	99•3 97•5 94•5	93.2 93.8 91.6	90.9 91.4 91.4	92.7 93.5 92.6	93.7 96.4 89.1	89.5 90.0 87.8	84.7 84.4 81.4	80.0 76.1 71.3	107.5	100.7
	150		92.5 92.6 96.4	98.4 98.4 95.4	95.3 95.8 93.9	93.0 94.0 95.8	95.4 95.1 94.1	95.8 98.8 91.3	91.7 92.6 91.3	88.9 87.3 85.8	83.8 81.8 77.7	108.6	106.8
	140	IUS	89.3 91.1 94.0	96.2 96.6 94.4	94.6 95.6 94.4	93.9 94.4 95.0	96.8 98.4 98.8	95.9 97.8 94.0	95•1 96•1 93•8	91.1 90.0 88.7	85.8 84.0 79.4	109.0	109.8
	130	RRAD	88.3 89.6 91.9	94.0 94.9 93.1	92.3 94.3 93.7	93.5 94.5 97.4	97.9 98.8 97.6	103.1 103.1 96.5	98.6 130.2 98.5	95.4 94.7 93.2	90.7 86.8 82.9	110.7	114.6
	120	S-METS	86.9 87.3 89.5	92.3 93.5 92.1	90.7 94.2 93.2	93.5 99.3 95.4	99.2 99.9 99.4	99•0 101•7 96•1	98.9 98.8 96.1	93.8 93.9 91.4	88.9 85.5 81.9	110.3	115.0
	110	0N 39.	85.3 86.4 87.2	90.4 92.4 91.8	89.6 93.6 91.9	91.4 94.9 97.9	98.4 94.9 95.1	99•6 102•1 95•7	98.1 99.0 95.3	93•7 93•0 91•2	88.7 84.6 81.1	109.4	VELS 115•3
	100	(SPL)	84.5 85.9 85.7	89.0 91.6 90.6	87.8 91.8 90.7	90.4 94.5 96.2	99.1 96.8 95.6	97.6 100.0 94.7	95.9 95.7 93.8	91.3 91.3 88.8	86.4 83.1 78.4	108.1	01SE LE 114•1
E, DEG	65	LEVEL	83.2 84.4 83.5	36.0 89.8 90.3	86.9 89.3 89.4	91.0 93.0 92.9	99.1 97.4 97.3	97.6 99.8 94.3	94•4 94•2 93•5	90.6 89.5 87.3	84.6 82.1 77.0	107.6	VED N
ANGL	8)	SSURE	82.8 83.6 82.0	84.7 88.8 89.4	86.4 87.3 88.9	88.7 94.9 95.7	102•4 100•4 101•3	101•1 103•6 95•5	94.7 94.5 91.6	88.9 86.8 85.)	82.5 78.2 73.7	110.1	PERCEI
	7.0	IND PRE	82.2 81.9 80.9	83.9 87.4 88.4	86.4 89.6 89.9	89.2 93.2 98.9	104.6 101.3 103.4	105•4 108•1 98•3	96•7 97•4 95•1	91.6 90.7 88.5	84.8 80.2 76.6	113.0	EL INE 118•5
	6.0	AND SOUND	82.0 82.9 81.4	82.2 88.3 88.6	86.3 87.8 87.9	88.5 94.2 100.7	108.3 109.1 109.3	109.9 1113.3 102.5	102.2 102.9 101.3	98•7 97•7 96•3	93•7 89•9 85•7	118.1	SID 122.6
	50	AVE B	81.2 81.9 81.2	81•4 88•6 88•9	86.4 89.6 88.9	99.7 99.0 103.2	110.6 112.4 111.9	112•3 114•1 105•7	105.7 105.9 132.6	100.6 100.0 98.2	95.4 92.1 90.1	120.3	123.0
	4.0	1/3-907	80.5 83.9 81.7	81.4 87.8 87.9	86.1 89.9 91.1	91•2 101•5 103•9	107.1 108.3 108.1	109.9 111.6 104.3	103.9 104.4 103.0	100•4 98•8 96•7	94.3 91.8 88.8	117.8	119•3
	3.0	1	80•3 89•4 86•0	81.4 87.3 88.4	87.4 88.8 92.9	93•5 98•4 102•4	106.6 103.4 103.8	119.3 1113.8 103.0	104•1 104•9 101•8	99•7 99•3 96•7	93.8 90.8 87.4	117.7	117.5
	5.3		79.2 83.7 82.4	81.7 87.6 88.6	89.6 92.6 91.6	9.0.5 98.7 98.4	103•3 103•1 103•1	106.0 109.3 102.2	102.6 102.9 101.5	98.6 97.8 96.2	94.5 90.5 86.4	114.7	110.3
	1.0		82.2 84.2 83.2	82.7 67.9 86.9	87.4 89.6 89.6	93.5 97.5 94.7	131.3 199.9 99.9	106.0 108.8 101.3	100.4 102.1 100.0	97.7 96.3 94.7	92.1 89.4 85.1	113.6	101.3
FREQUENCY			50 80 80	100 125 160	200 250 315	400 500 630	800 1000 1250	1600 2000 2500	3150 4000 5000	6300 8333 10000	12500 16000 20000	OVERALL	DISTANCE 61 METERS

28

(d) Percent of design speed, 90; fan physical speed, 4671 rpm; fundamental blade passage frequency, 2024 hertz.

10 20 30 40 50 60	0 30 40 50	49 50) 50	o	9	_	70	ANGLE 80	.E, DEG	100	110	120	130	140	150	160	AVERAGE SPL	POWER LEVEL (PWL)
				DC T	BA	NO S	RE	SSU	LEVEL	Pt.)	30.	METE	RAD					
85.6 8	~ ~ ~	85.6	85.6	84.9	85.3	86.9	87.4	88.1	88•3	88.9	90•4	91•8	92.8	95.9	98.4	100.5	91.9	139.3
82.6 8		86.6	85.1	84.7	84.9	85.2	85.9	86.4	86•9	88.1	89•2	91•0	93.4	96.2	99.1	101.3	92.0	139.4
91.1		87.7	87.9	90.9	90.2	89.7	86.4	91.1	89•1	89.9	92•7	94•8	97.6	130.6	102.9	104.8	95.8	143.2
87.0	ထထာတ	4.9	86.7	86.5	86.4	87.0	88.0	89.9	91.2	93.9	95.4	97.3	100.0	103.0	105. ¢	105.4	97.5	144.9
91.6		9.6	90.2	90.2	90.6	91.2	91.9	92.9	94.6	95.9	97.2	99.0	130.4	192.7	105. ²	103.8	98.0	145.4
94.1		1.9	93.7	93.7	94.2	92.9	94.6	95.9	95.4	96.6	97.6	98.5	98.9	191.1	101. 7	100.9	97.2	144.6
91•1	93	.1	92.1	94.8	93.5	92.8	92.3	92.0	91.6	93.0	94.1	95.9	98.8	101.0	101•3	98.9	95.8	143.2
96•1	99	.8	96.8	102.1	99.9	97.6	95.9	95.1	93.3	95.2	96.6	98.5	99.9	102.2	101•6	99.1	98.5	145.9
.00•1	98	1	04.8	105.3	100.5	99.3	95.3	98.6	98.0	97.3	97.8	199.9	103.8	102.0	100•8	98.2	100.7	148.1
93•1 99•5 94•1	130	99.4 1 10.9 1 34.7 1	01.2 14.9 09.1	105.4 114.5 107.1	106.1 111.9 107.4	102.2 109.4 107.1	98.7 108.7 104.7	98.9 106.4 100.6	96.4 134.2 98.4	98.6 104.9 98.9	96.4	98.0 132.6 100.1	99.1 102.9 99.7	100.6 101.5 100.6	98.7 120.5 99.2	95.8 98.9 97.1	100.8 108.8 103.8	148.2 156.2 151.2
103.6		105.4 1	107.6	110.8	112.8	109.3	197•1	101.8	103.4	102.3	99.3	100.2	100.4	100.1	98.8	98.0	106.4	153.8
101.1		101.8 1	107.3	110.9	110.9	106.4	103•1	98.6	98.3	98.6	97.9	100.0	99.8	98.9	97.6	95.3	104.6	152.0
104.0		104.2 1	106.0	109.4	109.5	105.2	102•5	101.0	98.7	97.5	98.0	98.8	99.5	99.5	96.7	94.6	103.8	151.2
192°2 196°7 193°7		102.8 1 109.0 1 104.7 1	03.5 09.0	105.8 110.9 106.4	108.2 111.4 106.9	105.7 106.9 103.2	95.8 101.7 98.7	96.7 99.7 96.1	96.5 131.4 96.1	96.3 101.2 96.7	97.3 103.5 97.1	97.9 101.8 97.3	98.0 132.9 97.7	96.5 99.0 96.1	95.5 97.7 94.4	92.4 95.4 91.8	102.0 105.9 101.7	149.4 153.3 149.1
100°3		103-1 1	104.0	104.5	105.0	101.6	97.1	95.3	95.1	96.8	98.3	98.4	97.7	95.1	93.1	91.4	100.6	148.0
101°4		102-3 1	103.4	103.9	104.6	101.3	96.8	95.3	96.4	99.1	133.4	101.6	101.3	96.4	93.9	91.5	101.3	148.7
99°6		101-1 1	100.9	103.3	102.8	100.3	94.9	92.8	94.3	95.3	96.4	96.7	97.6	94.4	93.1	89.7	99.4	146.8
97.9		98•1	99.5	179.8	100.5	97.9	92.4	91.1	92.8	94.3	96.5	96.2	98.2	93.0	91.6	87•1	98•2	145.6
96.2		97•4	98.9	99.6	100.4	97.3	91.6	89.1	92.2	93.6	96.1	95.9	96.7	91.6	89.9	86•9	98•1	145.5
93.5		95•3	96.5	97.0	98.5	96.4	89.7	87.5	89.8	91.3	94.0	93.4	94.8	90.0	88.5	84•1	97•1	144.5
93.9	φαω	3.1	93.7	95•1	96•6	94.1	86.7	85.4	87•1	89.3	91.6	91.6	92.6	87.6	86.6	82•1	96.3	143.7
88.1		9.6	93.1	93•1	93•8	90.8	81.8	81.3	85•3	86.6	87.9	88.5	89.1	85.6	84.6	79•0	95.2	142.6
83.8		5.2	86.5	89•9	92•0	87.4	78.9	76.7	80•2	81.8	84.4	85.2	85.5	81.7	80.8	74•6	94.8	142.2
113•6	116	9.	119.11	120.3	120.2	117.0	114.2 EL INE	111.8 PERCEI	111.2 VED NO	111.6 1SF LE	112.7 VELS	112.5	113.4	113,3	113.4	112.8	115.9	163•3
101.0	11	90.4	116.3 98.1	129.6	122.6	m ac	116.9	15.5	6.2	116.7	17.6	117.2 98.9	116•3 98•2	112.4	108.9 90.4	103.0 84.0		

TABLE IX. - NOISE OF FAN C CONFIGURATION 306 (HARD INLET, FULLY TREATED FAN FRAME, HARD EXHAUST, NOMINAL NOZZLE,

RAKES) TEST PURPOSE - FAR-FIELD NOISF

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

								ANGL	E, ,0EG								AVERA GE	POWER
	10	20	30	4:0	20	69	70	80	66	100	110	120	130	140	150	160	SPL	ے ت
			-	1/3-0CT	AVE BA	BAND SOUND	ND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADIL	ns				
20	78.4	80.9	78.0	83.4	80.0		5		ċ	6		•		6	81.7	ě	•	12
9 0	71.3	74.6	73.4	74.6	74.3	4.	76.3	73.4	74.8	74.1	75.4	77.7	78.6	79.8	81.3	2	76.8	124
0	(3.5	\$	(3.0	13.4	8.7	5.	•	•	•	ů	•	•		'n	94.4	•	78.6	12
0	81.6	77.2	76.9	19.9	1:		76.7	77.6	•	8	-	2.	4	•	•			12
125	82.2	81.2	79.0	78.9	85.2	84.2	78.7	79.0	80.7	80.0	82.0	83.5	84.0	84.4	86.9	85.8	81.9	129
	1					:	•	•	,	,	;	:	,	,		,	,	
0	ė,	0	81.2	81.7	•	•	å,	ė.		•	6.	6	÷	2	•	:	-	129
315	82.1	81.9	81.6	80.6 80.6	80.4	79.4	80°4 80°4	79.6	4.08	80.4	81•8 81•1	82.5	83.4 82.6	83.6 82.4	83.6 82.4	81.5 80.5	81•3 81•0	128
_	• 7	84.3	4	1221	,	ć	ć	6	8,00		,	,	ď			ć	,	-
500	85.2	8 4.8	84.5	84.0		, 2		81.9	81.7		, ,	, ,		,		36	, ,	, ה ה
. ~	Ś	86.3	5	85.8	83.8	81.8	81.4	81.8	82.4	83.4	84.4	84.5	85.3	84.4	82.4	80.5	83.9	131
0	88.7	87.9	87.1	86.9		4		,	,	4	Š	ď	,	ď	,	ď	ď	- 6
1000	89.9	89.1	89.1	88.1	87.1	84.7	83.9	83.1	84.4	84.8	85.6	86.4	87.6	87.1	84.1	81.3	86.9	3
S.	89.5	4.16	6.66	1.66	•	•	ċ	æ			6	6		6	•	\$	•	
1600	93.7	92.1	94.2	93.7		ċ	ŝ	ě	3	•	Š	•	8	•		•	÷	13/
2000	89.8	91.0	0.06	88.8	86.6	84.0	81.5	81.3	5	ě	3	86.2		ŝ	82.8			133
2500	93.7	95.2	95•1	7 • 4 6	92.9	œ.	3	m	84.2	85.2	87.2	87.9	0	88.2		_	90.3	י נט
3150	•	92.1	2.	91.1	•	Š	-	-	÷	•	7	æ	ċ	8	ŝ	ċ	•	13
400 000 000 000	91.6	94.0	95.5	95.3	92.5	89.3	83.6	82.3	84.8	86.0	89.1	90.1	91.5	89.3	86.8	82.2	91.0	E.
2			•	0.76	•	•	•	•	•	•	ň	•	•	Ď	•	•	•	
6300	90.1	91.5	92.3	91.3	æ	•	6	æ		÷	\$	Š	•	Š	82.9	17.8		13
10000	90•3 89•8	92.0	92.2	90.4 89.0	88.0	86.4 86.3	78.9	76.6	79.6	79.4	83.9 82.1	84.4 82.0	86.3 84.5	83•8 82•3	81.4 80.3	77.8	88•3 88•1	135,
12500	87.6	•	88.3	86.8	•	84.3	76.4	•	•		ċ	ċ		•	78.7	76.3	87.6	-
16300	83.9	TC.	84.8	84.6	_	Ó	6 % 5	•	3	•	•) <u>(n</u>
20000	19.4	•	81.0	19.9	•	3	ŝ	ė	~	7	_	_	· (*)	72.0	71.0	64.1	· (m)	131
OVERALL	104.1	104.5	105.1	104.7	103.3	101.0	96.4	95.1	96•1	9.96	98.5	99.2	100.9	4.66	98.0	96.1	101.3	148
DISTANCE						018	EL INE	PERCEI	VED NOT	ISE LEV	VELS							
61 METERS	89.7	99.2	103.6	106.0	105.9	104.6	101.2	100.3	102.1	102.8	104.7	104.7	105.0	101.5	96.7	88.9		

(b) Percent of design speed, 70; fan physical speed, 3658 rpm; fundamental blade passage frequency, 1585 hertz.

FREQUENCY	•				•			ANGLE	E. DEG								AVERAGE	POWER
	10	20	30	40	50	9	70	89	93	100	110	120	130	140	150	160	SPL	LEVEL (PWL)
			~	/3-0C	TAVE BA	S QN	OUND PRE	SSURE	LEVEL	(Tas)	08 NO	5-METER	R PADIU	NS				
S	7.17	17.9	78.	•		œ	6	9	ċ	ô	2	2	6	5			2•	•
63	79.5	84.3	87.	85.0		87.5	87.2	86.5	•	9	89.5	ě	6	8	.6	6	-	34
80	6•92	78.0	~	76.2	77.0	78.0	8	77.5	79.2	80.7		84.1	87.2	89.0	91.2	92•2	84•3	131.7
C	6	81.2	ď	78.8		•	•	•	ς.	4	ġ	7.	·	_	,		ģ	•
· ~	. 8	88.9	. 6		6			,	9			6				, ,	6	
160	82.0	84.4	84.7	83.4	83.7	84.7	84.7	84.4	85.7	86.2	87.5	88.0	88.5	89.0	0	89.8	86.6	34
_	83.9	84.0	•	,	•	6	Š	•		60			6	ď	·	•		,
	86.2	85.7	2	,	3	. 4	,			9				0		8		
315	87.1	85.4	85.6	87.2	88.6	84.7	85.9	85.9	86.6	86.4	86.9	87.3	89.1	89.1	88.9	86.3	87.1	34
400	87.6	C	91.3		ć	,	ď	ģ		ď	,	ď	,	ď	ď		ď	ž
500	89.7	œ		ć		ي .	3	,		,	, ,		; ;			,	;	35
630	90.7	95.8	92.7	89.8	92.3	91.3	87.7	86.5	89.7	88.2	88.7	89.9	91.3	90.8	88•0	86.0	90.1	137.5
•	;	;						1					,					
008	91.6	91.3	606	89.4	89.6	90.3	88.	87.8	88•1	88.8	89.9	40.6	91.8	90.3	88°	82°0	å,	37
1000	44.0	\$ C	0.00		.	•	.		•	•	•	: ,	•	٠.	5 (٠.	Ň	5,0
n	45.4	0.00	6.0		•		•	Ď	•	O	•	•	•	•	•	ř	•	•
1600	102.7	106.2	_	113.2	•	•	2	æ		Š	e B			5		•		•
2000	94.2	95.2	6.9	97.5	95.5	95.8	89.3	87.7	87.8	88.3	90.2	606	95.8	89.5	87.7	84.7	92.5	139.9
2500	94•3	6.46		96•3		;	2	9	7.	8	ċ	-	ě	6		•	•	•
3150	131.4		103.2	101.7	ċ	•	2.	ံ	•	91.6	6.46	•	æ	9.66	•	89.5		•
6004	95.2	91.6	6.96	97.1	.1.96	93.9	87.9	86.4	88.4	89.4	91.9	92.7		91.6	89.4	86.0	93.9	4
2000	97.3		66*3	100.5	å	•	ċ		90.3	90•1	2.	2.	S	95.8	ċ	86.9	96•2	•
6300	64.3	0.96				•	•	ň		•	ં	ં		6		2.	9	40
8330	93.4	95.8			_	~	ŝ	82.4	85.4	ŝ	6	.6	91.3	7.	Š		93.2	
10000	95.6	94.1	93•5	93.2	92.9	91.7	83.6	÷	83.4	84.1	•	87.2	ě.	86.2	84• 6	ď.	95.4	39
12500	0.06	92.1	90.9	90.4	89.7	88.7	80.5	78.9	81.1	÷	4	84.7	87.2	83.6	2.	8	:	
609	86.3	87.7	87.2	87.6		-	ŝ	74.5	78.8	78.3	81.4	5	5	81•3		74.7	89.3	136.7
20000	81.1	83•3	83.0	82.8	ó	•	ô	69.1	2•	2•	•	ġ	8	Ġ	2.	8	•	•
OVERALL	108.2	110.3	112.2	114.4	110.9	108.1	104.7	102.4	101.9	102.3	104.5	104.8	106.5	105.5	104.4	102.9	108.3	155.7
DISTANCE						STD	EL INE	PERCEI	VED NOTS	ISE LEV	/ELS							

6.96

95.1 195.4 111.5 115.9 114.6 113.1 110.6 108.7 108.3 108.4 110.6 110.7 111.2 109.1 103.6

61 METERS

TABLE IX. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4180 rpm; fundamental blade passage frequency, 1811 hertz.

	•)	•				•				•	')	•			
FREQUENCY								ANGL	.E, DEG								AVERAGE	8
	10	5.3	30	40	20	69	20	80	06	100	110	120	130	140	150	160	SPL	(PWL)
			-	1/3-001	AVE BA	S	OUND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	RRADI	105		•		
C	8.78	6	60.	0	_	,	,		r	,		,	,		,	,	,	
2 4	87.	ο α ο κ	· u	000	• •	• •	, ה	• 4		•		ė r	ė c	•	n .	•	ė.	
80	85.9	82.9	83.7	79.5	81.2	81.4	82.4	83.5	84.7	87.2	87.4	89.6	91.9	94.4	6 • 96	98.8	89.9	137.3
100	83.5	82.2	81.0	80.8	81.3	83.2	83.8	85.0	88•0	89.0	90.5	92.1	95.0	•	6	6	2	ė.
125	87.2	૭	ů	85.4	•	å	•	å	ċ	:	÷	ě	ŝ	1.96	98.1	6.16	92.1	140.1
169	67.4	_		87.5	6	6	5	6	ċ	ė	-	5	å	•	•	2	1:	6
200	88.3	88.8	87.1	86.3	86.4	86.8	٠				ď	91.0	,	94.8	95.8	•	40.4	137.7
250	89.9	89.2	88.9	91.3	•	,	ċ	6	ô			Š	2		,	, ,	92.6	
315	89.7	1.06	95.4	91.7	90.2	88.0	91.0	90.2	90.4	6.06	92.7	94.3	94.2	6.46	95.4	95.6	92.2	139.6
400	90.0	90.3	92.8	94.	•		ċ		\$		91.5			7.46	•	92•2	95.6	140.0
500		102.0	105.8	106.	•	÷	4	6	•		7.46	٠	•	•	ŝ	9	100.7	•
630		133.3	107.5	199.8	104+3	192.2	102•1	101.6	96•5	0.96	100.3	6.56	97.8	0.96	98.0	93.2	102.5	40
800	6.66	103.7	109.0	108.2	1111.7	109.4	106.0	104.4	101.5	6	102.0	97.8	98.0	7.76	7.16	92.4	195.6	
6661	102.9	134.4	104.7	197	1111.9	æ	å	•	•	•	ŝ		å	•	•		104.4	S
1253	101.9	132.4	105.0	108.	113.0	:	ŝ	ô	Ġ	٠	5	ċ	٠,	÷		E.		53•
1620	176.4	106.2	107.1		08.2	1.7	132.6	986	96	96.2	96.2	9 • 9 6	6	95.4	94.4	93.6	03.	20
0002	1111.		1111.7	112.	0		å	:	.	ô	40.66	ė.	å	æ	97.1	98.1		54.
350 <u>0</u>	101.9		104.4	106.	6 • 90	. 5	ô	5	•	3	•	ŝ	•	ë	49.6	ံ	191•3	æ
3150	101.2	102.1	103.4	194.2		02.		•	ě	•		æ	8	•	•	ં	ં	•
4200	193.2	103.9	104.9	105	135.4	173.5	98.4	5.56	9.4.6	95.1	98.4	98.0	100.4	96.2	95.7	91.6	5	
0006	4466	1000	1000	103	•	000	ň	•	m	ě	•	;	ģ	m	•	å	å	146.3
6300	97.1	98.2	99.3	100.5	99.5	98.5	92.9	89.2	90.5	1.06	93.8	93.8	94.3	91.2	90.5	86.1	•	•
8000	96.9	97.1	99.1	98.2	•	•		٠	ô	ô	-	93.7	‡	•		ŝ	6.96	144.3
10000	64.1	95.7	96.5	96.4		ŝ	ê.	ŝ		æ	:	ċ	\$	œ.	•	3	•	•
12509	92.3	93.6	93.9	93.7	•	92.8	86.1	ů	5	5	æ		ċ	ģ	5	•	94.5	
16000	87.7	å	90.1	91.2	90.1	÷	81.2		85•3		84.9		85.9	83.8	83.2	77.4	95.8	140.2
CC0CZ	93.1	84.3	85.4	86.9	•	•	.	ë	ŝ	ŝ	ė.	ċ	-	æ	•	-	6.06	38•
OVERALL	115.0	115.6	117.5	118.5	119.7	117.8	113.6	110.3	108.5	108.3	199.4	109.8	110.5	109.0	109.5	198.3	114.6	162.0
DISTANCE						S 1D	EL INE	PERCEI	VED NOI	SELE	VELS							

61 METERS 102.9 111.3 116.6 119.9 121.8 121.7 118.5 115.0 114.4 113.9 114.7 114.3 114.3 109.9 107.1 102.0

(d) Percent of design speed, 90; fan physical speed, 4700 rpm; fundamental blade passage frequency, 2036 hertz.

FREQUENCY								ANGL	.E, DEG								AVERAGE	POWER.
	01	2.0	30	40	50	6.0	70	80	90	109	110	120	139	140	150	160	۲ ۲	(144)
			-	1/3-001	TAVE BAI	S ON	OUND PRE	SSUPE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	\$O1				
50	85.9	83.9	85.6	85.4	85.3	87•1	86.8	87.3	88.4	88.1	89.9	91•3	93.1	95.8	99.4	100.5	92.0	139.4
63	83.0	85.5	85.5	84.3	85.3	85•8	86.0	86.0	87.0	87.5	89.6	91•4	94.3	96.5	99.6	191.3	92.3	139.7
83	87.8	91.8	94.1	93.3	88.9	86•9	88.4	90.8	88.3	91.6	94.8	95•8	98.8	100.8	103.4	195.3	96.5	143.9
100	87.0	85.7	86•7	86•3	86.0	88.0	88•2	90•3	92.8	95.9	96.3	97.7	100.7	103.7	105.3	105.7	98.0	145.4
125	92.3	89.8	90•4	89•9	91.4	92.1	92•3	92•9	94.9	96.1	97.3	98.9	101.3	102.8	105.3	104.0	98.2	145.6
160	94.3	91.9	93•8	92•8	95.6	94.8	96•3	96•8	97.8	97.1	96.8	97.9	99.4	100.6	101.6	100.3	97.5	144.9
200	91•3	92.3	92.8	95.3	94.6	93.8	93.6	92.4	91.9	93.1	93.9	96.2	99.3	100.9	102.6	99.5	96.3	143.7
250	97•0	99.3	100.5	105.0	103.5	101.8	100.2	96.7	94.2	96.0	97.2	98.4	101.3	102.7	102.7	99.4	100.5	147.9
315	121•2	97.8	104.5	195.0	100.3	100.0	97.5	98.3	98.8	98.0	98.5	100.4	103.0	101.7	101.5	98.7	100.7	148.1
400	95.4	100.5	100.9	106.2	107.5	102.7	101.9	99.7	98.9	98.2	97.4	97.8	99.9	100.4	100.0	96•1	101.8	149.2
533	122.6	139.6	115.1	115.9	113.9	119.6	197.2	106.6	105.1	104.9	106.1	103.8	102.1	101.7	101.4	98•8	109.5	156.9
630	97.6	106.4	109.1	109.6	107.4	107.8	105.1	102.3	100.8	99.3	102.1	101.2	99.8	100.6	99.3	96•5	104.7	152.1
800	107.5	106.1	109.0	112.0	112•6	110.6	108.8	102.6	104•0	102.3	98.0	99.9	101.6	101.0	101.3	98•2	107.2	154.6
1000	102.5	104.3	104.5	110.3	112•2	106.8	101.7	99.0	98•8	99.0	98.7	100.3	99.2	99.0	98.2	95•9	104.8	152.2
1250	104.6	103.4	105.4	110.2	110•2	105.4	103.2	101.4	100•9	98.9	98.2	99.0	99.4	98.4	97.9	95•9	104.3	151.7
1600	101.8	102.5	104.3	105.1	108.0	104.5	99•6	97.0	96.5	97.1	96.8	97.4	98.1	97.3	96.5	92.7	101.7	149•1
2000	195.0	107.0	128.1	109.5	108.8	107.3	132•3	99.3	99.5	101.5	103.1	101.4	132.5	99.0	98.3	95.9	104.8	152•2
2500	192.5	104.6	106.1	105.8	106.6	102.5	98•5	95.6	96.3	96.1	96.8	96.7	97.8	95.8	95.1	92.7	101.5	148•9
3159	100.6	132.6	103.1	103.6	194•6	102•1	97.4	94.4	94.9	95.4	97.1	97.5	97.1	94.7	94.2	91.3	100•1	147.5
4000	100.3	192.0	103.0	103.8	104•1	102•1	97.1	94.8	95.8	97.1	100.0	130.2	130.0	97.0	96.5	93.2	100•9	148.3
5000	98.5	100.1	100.6	103.0	192•6	100•0	95.5	92.5	94.3	94.1	95.1	95.3	96.8	94.5	94.0	89.9	99•9	146.4
6300	96•3	97.7	98.8	100•1	100•0	98•3	92.9	90.4	93•3	93.5	96.7	96.3	96.9	93.0	93.2	88.5	97.9	145.3
8300	94•8	97.5	98.1	98•3	99•8	96•8	92.0	89.5	92•3	92.3	96.0	95.6	96.1	92.1	91.3	88.1	97.6	145.0
10000	93•3	95.0	96.0	96•4	98•2	96•4	90.7	88.0	90•5	91.0	93.8	92.9	94.2	90.4	89.9	85.5	96.9	144.3
12500	90.5	92•7	93.0	94.6	95.9	94•1	87.5	86.3	88.3	88.2	90.9	99.8	92.8	88.1	87.4	83.7	96.0	143.4
16300	86.1	87•8	89.5	92.1	92.6	90•9	82.3	81.8	85.5	85.4	88.2	88.2	88.6	86.6	85.7	80.3	94.7	142.1
20000	81.6	83•5	85.3	88.5	89.9	86•3	78.3	76.7	80.4	80.0	83.2	83.1	84.3	81.6	81.1	74.7	93.3	140.7
CVERALL	114.2	116.2	119.1	120.9	120.6	7.711 S 10	114.6	112.1 PERCEI	111.9 VED NO	1111.7 ISE LE	112.5 VELS	112.4	113.4	113.4	114.2	113.0	116.2	163.6
61 METERS 305 METEPS	199•6 77•9	110.4 89.9	116.0 98.3	120•1 102•7	121•7 104•1	120.7 103.3	117.	15.	15. 98.	116.5	2700	116.5 98.6	115.9 98.1	112•4 94•5	109.8 91.2	193.5 84.3		

TABLE X. - NOISE OF FAN C CONFIGURATION 308 (SUPPRESSED INLET, FULLY TREATED FAN FRAME, SUPPRESSED EXHAUST,

NOMINAL NOZZLE, MUFFLED CASING, RAKES) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 150 C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3099 rpm; fundamental blade passage frequency, 1342 hertz.

	(PWL)		1 129.5 6 124.0 7 125.1	1 128.5 5 127.9 3 128.7	3 125.7 4 127.8 1 127.5	1 128.5 0 128.4 9 128.3	1 128.5 8 128.2 9 129.3	4 126.8 ⁷ 126.1 8 126.2	2 125.6 6 130.0 7 130.1	8 131•2 2 132•6 2 134•6	7 135.1 2 133.6 9 131.3	7 144.1	
100	'n		82. 76.	81. 80. 81.	78. 80. 89.	81. 81.	81. 80. 81.	79• 78• 78•	78. 82. 82.	83. 85. 87.	87. 86. 83.	•96	
	160		85.0 82.0 84.2	86.3 84.3 83.2	81.0 81.0 79.9	80.8 80.1 79.2	78.8 77.9 78.6	75-7 74-1 73-7	73.5 76.3 74.7	73.6 75.5 73.9	75.3 71.5 65.6	94.5	84.8
	150		81.8 80.9 83.1	85.3 84.9 83.3	.81 • 8 82 • 7 81 • 7	82.8 82.4 81.1	80.8 79.8 80.4	77.8 76.6 76.8	76.1 80.9 78.9	76.9 78.3 78.0	78•8 77•1 72•2	95.3	91.9
	140	ns	80.5 79.4 81.3	84.1 83.6 82.9	80.9 83.2 82.8	84.3 84.1 83.4	83.6 82.3 83.9	80.8 80.4 80.3	79.4 83.2 82.4	80.1 80.8 80.3	80.7 78.6 73.4	96•3	96.8 89.8
	130	R RADI	84.7 81.1 82.5	84.4 83.9 83.9	80.6 84.0 83.0	84.4 84.2 84.1	83.9 82.8 83.7	81.3 81.6 80.4	80.6 84.7 83.1	81.6 83.2 83.1	83.7 80.2 75.0	97.3	99.7 92.9
	120	5-METE	83.4 78.0 79.7	82.9 82.5 84.5	78.7 83.1 82.4	83.7 83.3 83.0	82.7 82.1 82.3	80.4 79.5 79.2	78.9 81.8 80.9	79.9 80.2 80.3	81•1 78•9 73•7	95.8	99.0
	110	ON 30.	81.7 75.3 76.1	79.4 80.9 82.3	76.8 81.5 81.0	82.4 82.1 81.9	81.9 81.3 81.9	79.8 79.2 78.8	77.8 80.4 78.9	77.6 79.8 80.1	81.2 77.5 72.0	94.5 VELS	98
	100	(SPL)	7.8 2.6 3.1	78.3 79.4 80.8	75.9 80.3 80.2	80.9 80.7 81.3	81.1 81.0 81.4	79.0 78.1 77.4	76.3 78.6 76.4	75.6 77.5 77.3	78.3 74.7 70.1	93.0 ISE LE	97.4
E, DEG	06	LEVEL	82.2 73.6 72.5	77.4 78.8 79.8	76.1 78.7 79.0	79.1 79.7 79.8	80.3 80.2 80.0	78.1 77.6 76.8	74.8 76.6 76.1	75.6 75.7 76.4	74.8 72.4 68.0	92.2 VFD ND	96.
ANGLE,	80	SSURE	SURE L 77.7 72.1 71.0	74.9 76.9 80.9	74.9 77.0 78.0	77.6 78.1 78.1	79.1 78.8 79.4	76.6 75.2 74.1	72.6 74.2 73.4	72.6 73.3 73.8	73.3 68.6 63.4	90.5 PERCEI	94•1 87•6
	2	OUND PRE	84.7 73.6 71.5	76.9 77.1 79.6	75.4 76.7 77.8	76.8 77.6 77.4	78.3 78.7 79.0	76•3 75•1 73•8	72•6 74•9 74•1	75.3 76.2 77.1	76.1 70.6 65.5	91.5 EL INE	3.6
	9	BAND SOU	81.3 73.6 73.0	81.3 76.9 77.6	77.8 76.8 77.3	76•3 76•6 76•9	77.8 78.2 79.9	76.8 75.6 74.6	73•3 77•4 77•8	79•3 80•4 82•8	82.3 77.4 71.3	92.6	- 6 -
	20	AVE BA	81.0 75.3 74.5	77.4 76.3 77.1	75.4 76.7 77.0	77.3 77.1 77.3	77.8 78.5 79.7	77.5 76.2 76.8	74.9 80.9 81.9	84.0 84.7 87.2	86.5 82.6 76.5	94.8	95 88 8
	40	1/3-0CT	84•0 74•3 72•8	75.8 75.9 77.4	76.9 76.5 77.0	77.6 77.9 78.4	78.8 79.0 80.9	78.6 77.2 78.4	77•1 84•8 86•4	87.1 86.8 88.8	87.3 84.6 79.5	7 • 96	96.4 89.0
	30	1	80.5 78.8 72.6 70.8 72.0 70.1	81.3 76.4 78.6	78.8 78.3 78.3	79.4 79.1 79.8	80.3 80.7 83.0	80.5 79.1 81.4	80.3 86.6 86.6	88.8 89.2 90.2	88•3 85•2 80•6	98.0	95.3 87.5
	50			78.8 75.9 78.6	82•1 80•0 79•2	80.8 80.6 81.1	81.9 82.7 84.9	81.8 81.2 83.4	82.9 87.4 87.9	89.5 90.3 90.6	89.5 85.5 81.3	99.1	91.8 83.2
	10		77.2 70.1 72.0	83.1 76.6 79.4	80.8 79.8 80.5	81.9 82.9 83.6	85.4 86.2 88.4	85.3 84.2 84.6	84.4 87.9 88.1	88.6 89.8 90.6	89.0 85.4 81.3	1.66	83.5
FREQUENCY			50 63 89	100 125 160	200 250 315	400 500 630	890 1990 1250	1600 2000 2500	3150 4000 5000	6300 8300 10000	12500 16333 20000	OVERALL	61 METERS 113 METERS

(b) Percent of design speed, 70; fan physical speed, 3615 rpm; fundamental blade passage frequency, 1566 hertz.

FREQUENCY								ANGLE,	E, DEG								AVERAGE	POWER
	61	20	30	40	20	69	70	80	66	100	011	120	130	140	150	160	J AS	(PWL)
			ı	1/3-0CT	AVE BA	ND S	OUND PRE	SSURE	LEVEL	(SPL)	ON 30	5-METE!	R RADI	105				
50	77.3	77.6	78.6	77.5	77.1	78.8	78.8	79.1	79.6	79.8	81.8	82.1	83.6	84.6	86.1	87.5	81.5	128.9
63	91.9	87.1	86.3	81.9	82.3	85.1	83.3	85.1	82.1	85.9	89.9	84.0	89.4	89.1	87.9	88.8	86.4	133.8
80 .	76.0	76.6	75.5	74.3	75.1	75.8	75.5	76.1	78.3	79.1	81.6	83.6	86.6	87.5	89.8	91.5	83.2	139.6
100	77.5	75-8	76.3	75.6	76.3	77.8	78.1	80.0	81.5	83.1	85.1	86.6	88.6	90•3	92.0	92.5	85.5	132 • 9
125	83.0	80-5	82.5	81.0	81.0	81.3	81.8	83.0	85.5	87.1	86.8	87.5	89.0	90•1	91.1	90.8	86.4	133 • 8
160	79.8	80-3	80.8	81.3	81.3	82.0	83.0	83.3	85.0	85.3	85.8	86.4	87.0	88•1	88.3	87.7	85.0	132 • 4
200	81.8	81.0	80.7	882	81.5	89.3	82.0	81.8	81.7	82.2	83.2	85.1	87.2	87.3	88.5	87.6	84.0	131 •4
250	84.4	84.4	84.0		84.7	82.0	83.9	82.5	85.4	87.0	87.7	87.6	89.0	88.9	88.5	87.4	86.2	133 •6
315	82.8	81.8	81.7		81.5	81.7	82.0	83.2	84.2	85.3	86.0	86.9	88.2	87.8	87.0	85.4	84.9	132 •3
400	84.6	83.2	82.2	83.1	83.6	81.1	81.4	82.4	84•4	85.9	86.7	87.7	89.4	88.7	87.6	85.5	85.7	133•1
500	85.6	83.7	83.4	82.4	82.1	81.4	82.2	82.9	83•9	85.4	86.7	87.5	89.1	88.6	86.9	84.3	85.5	132•9
630	86.6	83.9	82.8	84.6	81.4	82.6	81.9	83.1	84•8	85.4	86.6	87.5	88.3	87.8	86.4	84.1	85.4	132•8
800	88.5	85.3	83.8	82.6	82.1	82.6	83•1	84.0	85.0	86.1	87.1	87.7	89.0	88.1	85.8	83.3	85.8	133.2
1330	90.1	86.9	84.7	82.9	82.6	82.7	83•1	84.1	85.6	86.1	86.7	87.0	88.2	87.4	85.2	83.1	85.7	133.1
1250	89.8	86.8	85.2	83.7	83.0	82.7	82•8	83.8	85.3	85.8	86.0	86.7	87.8	86.5	84.3	82.2	85.5	132.9
1600	93.8	93.0	89.5	89.8	87.5	84•3	82.6	83.6	84.5	86.3	86.3	89.2	89.3	87.0	84.3	82.3	87.6	135.0
2530	83.6	86.1	83.8	82.5	81.3	80•8	80.3	81.3	83.5	83.5	84.5	85.1	87.1	84.8	82.5	79.9	84.0	131.4
2500	87.6	84.9	82.8	80.9	79.4	79•4	78.6	79.9	82.4	82.8	83.4	83.9	85.1	83.6	81.3	78.3	82.8	130.2
3150	91.9	91.1	90•6	86.3	83.1	81.6	79.9	79.9	81.8	82.8	84.1	85.7	87.3	86.3	82.3	79•3	85.8	133.2
4000	90.9	89.8	88•3	85.5	82.1	80.3	78.4	78.9	81.4	82.6	84.5	85.4	87.5	84.9	82.8	79•7	85.2	132.6
5000	93.3	94.2	92•3	91.0	87.0	84.0	80.0	79.6	82.6	83.3	86.1	87.4	89.3	87.3	85.5	81•2	88.5	135.9
6339	91.8	92.8	92.6	91.3	87.3	83.5	79.5	77.3	80.6	80.5	82.4	84.0	85.1	83.0	80.5	76.9	87.6	135.0
8300	92.3	93.3	92.3	90.0	87.5	84.3	79.8	77.6	80.5	82.1	84.3	84.3	86.8	83.8	81.1	78.6	88.5	135.9
10000	92.7	93.4	93.1	91.3	89.7	87.0	80.7	78.3	81.1	81.3	84.0	84.0	86.5	83.4	81.0	77.3	90.2	137.6
12500	91.7	92.2	91.5	90.8	89.5	87.2	80•3	78•2	79•5	82.4	85.4	84.6	86.7	83.5	81.5	78.0	91.1	138.5
16300	87.6	88.1	88.0	87.8	85.2	82.2	75•5	74•6	78•0	80.2	82.1	83.1	83.5	82.0	80.2	75.3	89.6	137.0
20000	82.6	83.4	83.0	82.3	79.2	75.8	69•7	68•5	73•3	75.3	76.9	77.9	79.3	77.3	75.6	69.8	87.1	134.5
OVERALL DISTANCE	103.2	103.0	101.9	1:30.5	98• 6	96.9 S ID	95.4 EL INE	95.8 PERCEL	97.3 VED NO	98.5 ISE LE	5 99.8 LEVELS	100.3	101.9	101-3	1001	1001	101.0	148.4
61 METERS	88•3	96.2	99.7	100.9	100.3	99.8	99.1	99.8	101.8	102.6	103.6	103.7	194-1	191.2	96.5	89.9		

TABLE X. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4132 rpm; fundamental blade passage frequency, 1790 hertz.

)			-d	(a) (m)			, Local		Î					•			
FREQUENCY								PNGL	€, DEG								AVERAGE	POWER
	10	20	30	4:	50	69	10	8.3 (-)	90	100	119	129	130	140	150	160	3 P.C	3 4
			-	/3-0CT	AVE BAI	NN SOUND	PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADIO	NS				
S.	81.	78.9	80.9	80.6	80.4	81.	81.6	81.9	83.1	83.7	84.4	86.0	87.6	89.4	91.4	93.6	85.7	133.1
	å	ŝ	å	•	•	÷	Š	•	÷	÷	ŝ	æ	æ	ċ	ċ	\$		34.
	ŝ	5	•	ċ	6	<u>.</u>	ċ	\$	÷	2	÷	å	-	ď	ŝ		æ	÷
C	82.3	ď	79.9	70.6	ć	_	ć	ć	,		Ġ	_		. 4		ď	•	9
, (70	, ,	86.2	9,40	, (,	•	• 0	٠,	• -	•	• .		• 1	•	.	סכ
160	84.1	85.5	86.0	86.6	87.0	87.1	88.1	88.0	89.1	000	90.00	91.7	92.3	94.0	94.6	94.0	0 6 6 6	37
))			;	•	:	,		;	,	•		:	,	
0	•	ě	Š	•	•	ŝ	ŝ	Š	•	2	æ	6	÷	ě	•	ě	•	÷
250	88.1	85.4	85.9	86.4	ŝ	ŝ	5	ŝ	8	•	-		3	Š	•		ċ	8
315	86.4	36.3	7.		88•1	88•3	87.9	87.8	88.8	89.4	9.06	91.5	95.6	93.8	93•3	-	90.1	137.5
400	S.	u.	•	25.		Ġ	ď	ş		ď	_		4	,		ď	,	•
200	98.7	90.3	80.8	89.5	~		88.2			٠, •	: -	,		,		, ,	-	38.
630	88•6	87.7	9	89.7	•	89.1	87.4	87.4	89.2	90.4	91.1	91.5	•	92.1	91.2	89.1	90.2	137.6
\sim	91.4	89.2	88.7	87.7				8	ě	ċ	_	2	6	٠,	_:			,
00	93.1	90.1	88.8	87.4	7			8	ć	ċ	ئے :			,	ć			37.
1250	93.1	90.9	89.2	87.4	87.2	87.1	87.4	88.2	89.9	90.1	7.06	91.3	95.6	91.2	89.9	87.3	90.0	137.4
1600	•	۶.	91.6	89.4	_	÷	•		æ	6			9	ċ		Ġ	ċ	
2233	95.7	93.5	95.9		89.0	86.9	9		8	6	å		•	ċ	•	ŝ	•	8
2500	_	6	87.8	86.4		.	83.8	85.3	87.3	81.8	88.8	89.2	89.9	88.4	87.1	84.2	87.9	135.3
3150	93.5	-:	89.5	87.7	•	5	4	4	•	7	ė.		Ö	æ	•	•		35.
4000	93.8	2	95.4	95.0	_	88.5	•	•	ė		6	_	2	6		•	_	37
2000	93.7	95.8	61.6	94•3	9.06	88.9	83.7	83.7	86.7	86.9	88•6	89.9	6.06	88.9	87.1	83.5	90.5	
6300	93.2	93.4	93.1	94.4		6	•	2	5	5	ġ	٠,	æ	•	4	ċ		38•
8008	93.7	94.3	93.6	92.7		÷	å	2	•	ş	8		6	9		•	•	•
10000	93+3	93.9	63.9	95.6	92.4	89.6	83.9	82.1	84.8	85.0	87.5	87.5	89.4	86.3	84.3	80.2	92.2	39
12500	95.6	93.6	93.1	92.3	92.1	89.8	82.7	82.1	83.1	85.5	æ	87.0	•	85.1	•	80.0		ċ
00091	88.5	86.3	89.2	89.1	_	٠	å	÷	:	÷	ŝ	•	86.3		÷	•	•	139.3
20002	83•3	84.4	84.4	83.7	•		3	6		79.3	80.7	81.4	5	6	80	72.9	89.5	•
OVERALL	105.5	104.6	104.2	103.6	102.8	101.4	1.66	0.001	101.7	102.7	103.8	104.8	106.2	106.1	106.2	105.6	104.7	152.1
DISTANCE						S 10	EL INE P	ERCEI	VED NOT	ISE LEV	/ELS							

91.5 98.2 102.3 104.7 105.0 105.2 103.5 104.4 106.4 107.2 108.0 108.2 108.4 105.2 101.4 95.2

36

(d) Percent of design speed, 90; fan physical speed, 4657 rpm; fundamental blade passage frequency, 2018 hertz.

3	(PWL)		37	8	45.	w.	43	2		44	•		145.7	45.		142.3	45.		145.0	•	•	145.0	141.7	41.	141.3	4I.	141.8	•	139.2	156.5		
AVERAGE	SPL		90.5	91•1	95•0	96.2	96.5	95.4	7.46	ø		•	98•3	5	•	6.46		ě	94.6	ċ	•	9.46	94•3	ě	93.9	3	94.4	94.0	91.8	109.1		
	160		6	1001	33•	• *0	102.1	6		œ	•	•	4	•	93.7	93.0	5	ė	91.0	ė	æ	89.1	٠	*	85.2	ě	~	ċ	5	1111.2		100.3
	150		7.96		•	9	č	90		00	99•		97.3	÷		95.4	.	e.	94.2	2•	•	95.0	-		88.6	•	86.1	ŝ	:	111.8		106.6 88.4
•	140	ns	- 4	95.4	∞ .	÷	101.2	6		Ö	96		œ		•	7.	96.5	้หู	95.6	3	5	93.2	2•	ံ	89.7	ċ		•	82.9	1111.3		109.9
ı	130	RRADI	2	93.2	•	•	4.66			œ	æ	•	æ			97.4	.	ģ	98.2	.	8	0.96	e.	-:	95.4	\$	÷	å	85.1	110.6		112.5 94.7
	120	5-METE	ô	90.3	3	•	97.6	•	•	97.5	۲.		~	• * *		•	9	95.5	96.3	93.7	က်	95.0	ě	÷	6.06	ċ	6	89.0	84.4	109.3		112.6 94.8
	119	ON 30.	8	88.4	2•	9 4 6	96.2	5	ě	95.8	5.	Š	95.5	ŝ		\$	95.2	•	95.1	93.2	ູ້ຄ	94.7	92•3	ċ	92•1	ċ	ė	8	84.3	198.2	VELS	112.7 94.7
	100	(SPL)	7.	86.5	•	2	94.7	÷	•	94.8	÷	94.0	95.5	•	•		94.5	•	3	92.2	٥,	95.5	ċ	•	4006	•	8	•	83.1	106.9	ISE LE	1111.6
E, DEG	06	LEVEL	•	85.9	å	ċ	93.4	94.2	ċ	93.4	ě	6	93.8	å	•	m		•	93.4	÷	. :	91.4	91.2	6	88.7	÷	•	ŝ	-	106.0	VED NO	110.9 93.5
ANGL	80	SSURE	3	•	-	œ	91.7	ě	7.06	94.1	ů		94.5	ď	2	95.6	92.5	÷	91.4	÷	6	89.7	æ	÷	86.4	ŝ	85.1	2	•	105.0	PERCEI	109•3 91•8
•	70	CUND PRE	•	84.9	•	86.7	91.0	92.5		95.6	ě	92.5	96.0	5	92.8	92.4	92.0		ċ	89.3	•	90.5	6	8	88.0	٠	85.5	2	17.1	105.2	EL INE	109.0 91.1
	9	S ON	5.	84.2	• 9	5	89.2	1.	:	96.4	5	•	98.7	ë	2.		3	6.06	91.7	90.4	ċ	93.2	3	93.0	95.0	91.3	90.4	Ň	•	106.5	S 10	110.1 91.5
	20	AVE BA	•	84.2	ċ	•	88.7	-	•	~	5		102.5	•	٠,	•	2.	91.9	91.7	5 • 06	•	94.0	•	Š	93•3	5	91.6		•	198•3		110. C 92.2
· ·	. 4	./3-0CT	å	83.7	3			91.0		97.4		95.2	103.8	‡	93.7	95.1	93.5		93.7		93.0	97.2	98•2		94.8		95.6		84.5	1 19.6		110.1 91.3
	3.3	7	ě	84.4	ŝ	84.2	86.5	90.2	89.0	92.1	9 • 6 6	91.2	98.7	95.5	93.5	95.9	91.9	92.0	93.6	92.6	93.0	95.7	95.7	95.2	95.4	94•3	92.9	90.3	84.6	108.0		106.0 85.4
	20		81.6	85.4	94.2	84.2	86.2	90.2	88•0	90.4	92.1	60.0	95.3	91.5	92.7	95.9	93.4	93.4	6.56	93.9	94.0	95.9	95.8	95.7	4.96	95.1	1.46	0	85.1	101•3		191°4 79°2
•	10		85.1	82.5	-	86.2	87.9	87.7	87.7	95.9	87.5	88.2	93.3	90.5	94.3	95.4	95.5	96 • 2	97.1	45.7	94.7	95.7	94.7	94.0	4.46	93.8	92.2	89.0	83.6	107.2		93.4 68.1
FREQUENCY			5.0	63	Ú8	100	125	091	200	250	315	490	500	630	800	1390	1250	1600	2000	2500	3150	4333	2000	6300	8200	10000	12500	16300	20000	OVERALL	DISTANCE	61 METERS 305 METEPS

TABLE XI. - NOISE OF FAN C CONFIGURATION 309 (SUPPRESSED INLET, FULLY TREATED FAN FRAME, SUPPRESSED EXHAUST,

NOMINAL NOZZLE, RAKES) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3099 rpm; fundamental blade passage frequency, 1342 hertz.

POWER	(PWL)		127.9 123.1 124.7	128.4 128.0 128.8	126.0 127.9 127.8	128.7 129.0 129.0	129.4 129.0 130.8	127.5 126.5 126.5	125.8 130.2 130.3	131.5 132.8 134.8	135.4 134.1 131.8	144.4	
AVERA GE	٦ ٨		80.5 75.7 77.3	81.0 80.6 81.4	78.6 80.5 80.4	81.3 81.6 81.6	82.0 81.6 83.4	80.1 79.1 79.1	78.4 82.8 82.9	84.1 85.4 87.4	88.0 86.7 84.4	97.1	
	160		84.0 82.0 83.6	85.7 84.9 82.8	80°7 80°7 79°6	80.7 80.7 79.3	78.7 78.2 79.6	75.5 74.5 74.2	73•3 76•6 75•3	73.7 75.3 74.5	75.3 72.0 65.9	94•3	84.9
	150		81.8 80.3 83.1	85.3 84.7 83.4	81•1 82•3 81•4	82.3 82.1 81.6	81.3 79.9 81.2	77•8 77•1 77•0	76.4 81.2 79.2	77.3 78.5 78.2	79•1 77•8 72•6	95.3	92•1 84•8
	140	SC	80.3 79.4 81.9	84.3 84.3 83.3	81.5 83.5 82.7	84.1 84.0 83.3	84.0 82.6 84.1	80.6 80.4 80.3	79.4 83.3 82.7	80.3 81.3 80.2	80.7 78.9 73.6	96.5	96.9 89.9
	130	R RADIUS	81.6 79.1 81.6	84.0 83.7 83.3	81.3 83.6 82.7	84.3 84.0 84.4	84.3 83.4 83.9	81.6 81.3 80.7	80.6 84.5 83.5	81.6 83.3 83.3	84.0 80.3 75.3	97.1	99.6 92.8
	120	5-METER	81.2 77.8 79.2	83.1 82.6 84.5	79.0 82.7 81.9	83.7 83.4 83.4	82.6 82.0 83.2	80.7 79.5 79.4	79.0 82.0 81.0	79.7 80.2 80.2	80.9 79.2 73.6	95.7	99•0 92•4
	110	08 NO	80.5 74.8 76.4	79.7 80.8 81.1	77.3 82.0 81.5	82.9 82.3 82.4	82.3 81.3 83.6	80.4 79.3 79.0	78.1 81.0 78.8	78•1 79•9 80•3.	81.7 77.6 72.4	94.7 VELS	98.9 92.3
	100	(SPL)	75•1 72•1 73•8	78.2 80.2 80.6	76.5 80.5 80.7	89.8 82.0 82.1	82.0 81.8 83.1	79.6 78.3 77.8	76.7 79.2 77.0	76•1 78•0 77•5	79.9 75.9 70.9	93.6 ISE LE	97.9 91.5
E, DEG	90	LEVEL	80.6 72.6 72.1	77•0 78•7 79•9	76.0 79.8 80.2	80•4 81•0 80•8	81.5 81.3 81.4	78.9 78.3 77.3	75.6 77.2 77.0	76.1 76.7 77.2	76.8 74.4 69.7	92.9 VED NO	97.0 90.5
ANGLE	83	SSURE	75.1 70.4 70.3	76.8 77.7 81.3	75•3 78•0 78•7	78•4 80•3 80•1	81.1 81.1 81.7	78•3 76•6 75•3	73.9 75.2 74.5	73.6 74.3 74.8	76.0 71.3 65.9	91.8 PERCEL	95•3 88•9
	6	PRE	83.5 73.4 70.9	78•7 76•7 79•6	75.3 77.3 78.7	77.9 79.5 79.8	81.3 81.3 81.7	78•3 76•3 75•2	73.6 76.2 75.4	75.8 77.4 78.2	77.6 72.6 67.9	92.5 EL INE	95•4 88•9
	09	AND SOUND	79.0 71.8 71.3	80•7 76•3 77•1	78•1 76•6 78•5	78•1 78•5 79•1	80•3 79•9 83•1	78.6 76.9 76.8	74.9 78.2 78.7	80.5 81.4 84.0	83.4 78.8 72.8	93.6	96•0 89•3
	20	AVE BAI	80.0 71.4 69.8	79•) 75• 8 76•8	75.5 76.1 77.9	77.6 79.3 78.6	79.8 79.4 83.2	79.3 77.4 77.0	75.7 80.7 81.7	84.0 84.5 87.0	86.6 83.0 76.9	95•1	96•1 89•1
	40	1/3-0CT	81.5 71.9 69.8	73•8 76•2 78•4	77.3 77.3 78.4	79.1 79.0 78.9	79.6 79.9 82.6	79•1 78•3 78•3	77•1 84•7 86•5	87.6 86.8 88.7	87.5 85.1 80.1	6 • 96	96•6. 89•2
	30	7	78.5 70.4 70.1	79.8 76.8 81.4	79•1 78•3 78•7	80.3 79.8 80.1	81.9 81.2 85.1	81.1 79.3 81.2	80.7 87.4 86.5	89.3 89.3 90.4	88.4 85.4 81.0	98•4	95.8 88.1
	50		80•1 72•3 71•4	78•0 77•2 82•8	82.6 80.5 80.2	81.1 81.5 81.3	83.0 83.1 85.4	82.4 81.4 83.3	82.4 87.2 88.2	89.5 90.7 91.1	89.4 86.1 81.7	4. 66	91.9 83.4
	1.9		74•3 70•3 72•3	81.5 77.2 81.3	82.3 80.1 80.0	81.9 82.8 83.6	85.6 86.3 89.6	85.8 84.6 84.5	83.9 87.7 87.7	88.3 89.5 92.4	88.8 85.2 81.6	1.66	83•5 75•0
FREQUENCY			63 63 80	100 125 160	200 250 315	500 500 630	800 1309 1250	1600 2000 2500	3159 4330 5000	6300 8330 10000	12500 16090 20090	OVERALL DISTANCE	61 METERS 113 METERS

(b) Percent of design speed, 70; fan physical speed, 3615 rpm; fundamental blade passage frequency, 1566 hertz.

10 20 30 49	0 30	0	40		50	09	02	ANGLE,	5, DEG	100	110	120	130	140	150	160	AVERAGE Spl	POWER LEVEL (PWL)
1/3-OCTAVE	T AV	T AV	T AV	AVE	BA	AND SOUND	PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METEI	R RADIU	S				
77.7 77.0 77.2 76.8 77.3 80.6 87.1 86.0 83.5 82.1 75.9 75.8 74.3 74.1 74.9	77.2 76.8 77. 86.0 83.5 82. 74.3 74.1 74.	2 76.8 77. 0 83.5 82. 3 74.1 74.	77• 82• 74•	7.2.4		78•3 87•5 75•9	78.0 84.6 74.6	78.7 84.0 75.6	79.0 83.0 78.1	80•3 86•5 79•8	81.5 89.8 81.6	82.3 84.9 83.4	84.2 90.5 86.3	84.0 89.3 87.1	85.8 88.3 89.9	88.7 89.8 91.7	81.5 86.9 83.1	128.9 134.3 130.5
77-1 76-4 76-1 76-8 76-9 7 83-3 81-8 83-0 82-8 82-5 83 81-6 82-6 82-0 83-0 83-1 8	76.1 76.8 76.9 7 83.0 82.8 82.5 8 82.0 83.0 83.1 8	76.8 76.9 7 82.8 82.5 8 83.0 83.1 8	76.9 7 82.5 8 83.1 8	6.9 7 2.5 8 3.1 8	F 80 80	7.6 2.2 2.8	77.9 81.7 83.1	79.9 82.8 83.8	81.9 85.5 84.8	83.4 87.2 85.3	84.6 87.3 85.3	86.9 88.1 87.2	88.4 89.3 87.1	89.8 90.5 88.3	92.3 92.0 89.1	92.6 91.4 87.8	85.5 86.9 85.4	132.9 134.3 132.8
82.9 83.8 81.4 84.3 83.4 81 84.9 86.4 82.9 82.2 83.5 84 83.3 82.8 82.0 82.0 82.0	8 81.4 84.3 83.4 8 4 82.9 82.2 83.5 8 8 82.0 82.0 82.0 8	1.4 84.3 83.4 8 2.9 82.2 83.5 8 2.0 82.0 82.0 8	83.4 8 83.5 8 82.0 8	3.4 8 3.5 8 2.0 8	8 8 3	1.8	81.1 84.5 83.1	82.4 83.4 84.2	82•1 86•2 85•2	82.9 88.5 86.3	83.3 87.7 86.5	85.0 88.4 86.9	87.1 88.0 87.8	87.9 89.0 88.0	88.3 88.9 87.5	87.3 87.1 85.4	84.4 86.6 85.4	131 • 8 134 • 0 132 • 8
85.4 84.6 83.9 82.7 83.6 83.8 85.8 87.4 84.4 83.6 84.1 86.8 88.2 87.0 88.2 91.2 86.3 84.	83.9 82.7 83.6 83 84.4 83.6 84.1 86.8 88.2 91.2 86.3 84	9 82.7 83.6 83 4 83.6 84.1 86. 2 91.2 86.3 84	83.6 83 84.1 86. 86.3 84	6 83 1 86 3 84	6 4	71.5	83.1 83.3 86.5	84.1 83.9 86.2	88•1 85•4 85•8	86.9 87.3 87.5	87.1 87.8 87.7	87.7 88.9 87.8	88.7 88.6 89.0	89.1 89.4 88.5	87.4 87.1 87.5	85.3 85.5 85.5	86.4 86.7 87.6	133.8 134.1 135.0
88.7 86.7 85.2 84.7 85.5 86.0 90.2 88.0 86.5 86.7 86.4 87.0 90.8 88.1 86.3 85.6 87.1 85.1	8.0 86.5 86.7 85.5 86.8.0 86.5 86.4 87.8.1 86.3 85.6 87.1 85.	2 84.7 85.5 86. 5 86.7 86.4 87. 3 85.6 87.1 85.	85.5 86. 86.4 87. 87.1 85.	.5 86. 4 87. .1 85.	6. 5.		85.7 87.5 86.9	86.0 36.9 85.4	86.5 86.0 86.1	86.7 88.0 86.4	87.3 86.9 86.4	88.3 88.1 87.4	89.3 89.2 88.4	88.7 88.7 86.6	86.7 86.4 85.1	84.7 84.8 83.0	86.9 87.5 86.8	134•3 134•9 134•2
95.2 97.8 90.2 96.5 101.0 94.7 88.9 86.6 84.4 83.6 84.8 83.1 87.8 85.3 83.1 82.1 81.5 81.0	.8 90.2 96.5 101.0 94. .6 84.4 83.6 84.8 83. .3 83.1 82.1 81.5 81.	2 96.5 101.0 94. 4 83.6 84.8 83. 1 82.1 81.5 81.	101.0 94. 84.8 83. 81.5 81.	.0 94. .8 83. .5 81.	3.		87.7 81.8 80.1	92.0 82.3 81.0	88.5 83.6 82.5	91.0 84.1 83.0	88.3 85.0 83.3	93.8 85.4 84.2	92.5 87.3 85.0	90.3 84.6 83.5	89.8 82.9 81.5	86.2 80.2 78.9	94.1 84.7 83.2	141.5 132.1 130.6
92.9 91.3 89.3 86.8 83.8 83.9 91.7 90.2 88.2 85.9 82.7 81.9 93.3 93.6 92.5 90.3 86.8 84.8	89.2 85.9 82.7 81.92.5 90.3 86.8 84.8	3 86.8 83.8 83. 2 85.9 82.7 81. 5 90.3 86.8 84.	83.8 83. 82.7 81. 86.8 84.	.8 83. .7 81. .8 84.	4.		81•1 79•9 80•3	81.4 79.5 80.6	82.3 81.9 83.1	83.6 83.0 83.3	84.6 85.0 85.9	86.2 85.8 87.4	86.9 87.2 88.6	86.3 84.9 87.3	82.9 82.9 84.8	79.7 79.6 81.5	86.1 85.5 88.3	133. 132. 135.
92.0 93.1 92.4 91.1 87.7 84.4 92.5 93.5 92.2 90.2 87.7 85.2 93.0 93.9 93.1 91.7 89.7 87.1	92.4 91.1 87.7 84. 92.2 90.2 87.7 85. 93.1 91.7 89.7 87.	91.1 87.7 84. 90.2 87.7 85. 91.7 89.7 87	87.7 84. 87.7 85. 89.7 87.	7 85. 7 85.	4.6.	427	80.1 81.0 81.5	78.0 78.2 79.1	81.0 81.0 81.9	80.9 82.4 82.2	82.4 84.5 84.0	84.3 84.3 84.4	84.9 86.7 86.5	83.3 83.9 83.5	80.5 81.5 81.0	77.8 79.2 77.5	88.7 90.5	135•1 136•1 137•9
91.6 92.3 91.4 91.0 89.6 87.5 87.6 88.4 88.0 87.7 85.8 82.9 83.0 84.0 83.1 82.4 79.6 76.6	2.3 91.4 91.0 89.6 87. 8.4 88.0 87.7 85.8 82. 4.0 83.1 82.4 79.6 76.	91.0 89.6 87. 87.7 85.8 82. 82.4 79.6 76.	89.6 87. 85.8 82. 79.6 76.	9.6 87. 5.8 82. 9.6 76.	5.5		81.5 77.1 72.2	79•3 75•8 70•8	81.0 79.6 74.7	82.8 80.7 76.0	85.3 82.4 77.3	84.9 83.2 78.3	87.2 83.8 79.3	83•3 82•1 77•2	81.7 80.7 76.0	78.3 75.5 70.1	91•3 89•9 87•5	138•7 137•3 134•9
103.7 104.1 102.1 102.3 103.2 99.9	102.1 102.3 103.2 99.	102.3 103.2 99.	02.3 103.2 99.	3.2 99.	ċ		7.4	98.0	æ	99.1	1001	101-3	102.2	101.6	101•3	100.6	102.0	149.4
S1 89.2 98.2 99.7 103.2 176.5 194.5	s •2 99•7 103•2 106•5 104•	S 103•2 176•5 194•	S 176•5 194•	S 5 104•	S 1 104•2	106	EL INE 1	PERCEI 103•3	VED NO	ISE L 194•4	EVELS	105.3	104.4	101.4	97.8	91.4		

TABLE XI. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4132 rpm; fundamental blade passage frequency, 1790 hertz.

FREQUENCY				•	•	•		ANGL	F, 0EG				•	• ,	:		AV ER A GE	POWER
	10	20	30	04	20	9	02	80	66	100	110	129	130	140	150	160	SPL	LEVEL (PML)
			-	1/3-OCT	AVE BA	ND SOU	OUND PRE	SSURE	LEVEL	(SPL)	ON 30.	S-METE	R RADIU	IUS				
5.5	81.4	78.4	80.9	80.4		•	_		2		Š	ģ	7.	Ġ	,	93.6		133.3
63	87.7	83.B	88.3	83.7					Š			ď			,	, ,	, ,	: :
80	84.5	81.7	84.4	87.5		80.2	79.5	82.2	83.7	85.5	86.7	89.1	92.0	93.2	95.9	97.2	88.9	136.3
C	8.08	2,0	α α	9	ć		Č	4	9	,	ď			u	۰	c		7 001
125	87.5	88	88.4	86.5	9	• •	; ;		90.0	• 6	: :	• ,	•	ָה מ	•	ė,	•	1000
160	87.1	87.6	88.2	87.1	86.9	86.7	87.6	88.1	90.1	90.2	9006	91.8	93.1	93.7	94.2	94.1	5 °06	137.9
												:	•	,	:	:		
200	86.6	85.6	85.9	86.1	85.1	84.8	ů	5	ŝ	•	÷	ċ	2.	ë	•	ů	6	•
250	86.3	86.9	86.1	87.9	٠,	87.1	87.9	86.9	88•3	90.1	91.6	95.9	93.9	94.6	95.1	93.0	8.06	138.2
315	85.9	87.0	86.5	87.9	æ	å	å	å	å	6	ċ	÷	ë	ë		÷	90•3	•
400	87.3	86.7	86.5	86.3	•			٠	2	ċ	•		•		•	4.06	•	•
200	90.5	1.46	90.2	95.2	3	5	6	å	2		ň	Š	6				6.46	•
9	90.6	95.6	89.0	96.3	91.8	90.3	91.1	89.0	90.3	92.3	91.8	92.9	93.1	92.5	91.8	91.2	92.1	3
C C	ć		6	,		,												;
	73.6	0,1,0	7.6	7.76	.	. œ	.	.	• ·	•	•	'n,	'n,	'n,	ż	ė,	:	139.1
0001	4.6	7.76	41.5	7°05	91.1	91.9	91.1	91.6	92.1	95.6	92.2	93.2	93.7	92.9	92.1	91•1	92•3	139.7
1250	•	92.5	93.1	90.5	ċ	÷	-	ċ	:	•	Š	2.	÷	ż	5	•		139.4
1690	95.9	93.9	93.9	91.4	94.4	~	ć		ċ	•	-	2	•	÷		۴	92.8	140.2
2000	96.8	94.8	95.8	92.2	8 • 96	94.2	2	92.8	90.8		_	2.	98.7	N		:	;	141.6
2500	91.5	4.06	88.5	87.9	86.5	87.7	85.2	85.7		88•2	88.7	89.5	0.06	88.7	87.2	85.0	88.5	135.9
3150	93.2	91.5	0.06	88.2		•	ź	ď	7		6	ć	ć	á	4	3	ď	
4330	93.7	92.9	92.1	92.2		6	6	, ,	86.7		90.0		,		;			•
2000	93.5	93.2	1.16	4.46	90.5	0.06	84.5	84.0	87.0	87.2	88.7	0	90.8	88.7	87.7	84.1		138.1
6300	93.2	93.9	93.2	7.46	2.		3	2	5	Š		æ	ě	٠	84.8	_	0.00	•
8000	93.9	6.46	93.8	95.5	616	89.8	84.8	83.1	85.1	86.8	88.6	88.1	89.8	86.6	84.9	. 6	: :	30
10000	93.4	4.46	93.5	92•3	5	•	•	3.	Š	5	-	7	9	÷	84.5	81.2	~~	139.7
12500	•	93.9	92.7	92.4	2	•	•	82.7	ň	Ġ	88•4		•	ໍ່ເ	•	ċ	93.4	140.8
16300	87.8	89.5	89.0	89.4	88.2	5	ċ	6	9	;	85.8	•	•	;		ě		39.
20000	83.6	84.9	84.1	84•3	:	78.8	14.9	14.6	78.7	19.1	80.8	81.9	82.6	79.7	79.1	73.2	: 0	37
OVERALL	106.0	105.7	105.0	105.2	104.5	103.8	102.2	101.8	102.8	103.7	104.3	105.5	107.7	106.5	197.0	196•2	105.7	153.1
DISTANCE						STD	ELINE	PERCET	VED NO	ISE LEVI	/ELS							
61 METERS	92.3	4.66	103.5	105.8	107.8	107.8	106.7	107.1	107.4	108.7	108.5	108.7	110.6	105.7	102.4	96.5		

(d) Percent of design speed, 90; fan physical speed, 4648 rpm; fundamental blade passage frequency, 2014 hertz.

FREQUENCY								ANGLE	E, DEG								AVERAGE	POWER
4	0.	0	3.)	40	20	09	20	80	06	100	110	129	130	140	159	160	SPL	LEVEL (PWL)
			1	3-0CTA	AVE BAN	AND SOUND	VD PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	ns				
•	ď	α C	c	4	4		ď	ź		- 2	á	ć		93.6		0.66		137.9
3 30	2.5 85	5.5	4.5	84.0	84.1	خي ١	84.5	84.8	80.00	86.1	88.4	9006	93.1	95.4	98.6	O	91.3	138.7
0 91	6	6		3.2	91.2	•		å		æ	2.	6	•	98.9	<u></u>	03.	•	145.5
	8	8	0		٠,	86.5	*	å			7.46		•	1.4	104.2		9.96	144.0
	16	. w			6	90.3	91.0	92.1	93.8	6.56	95.9	œ	0	0.1-1	103.4	6	1.96	
60 91	4	σ		95.4	92.1	95.3	2	m	m	•	95.6	•	•	99•3	99.8	•	95.7	43
6	• 2 9	• 2	4		2.		ô	ċ	•	91.4	ě	95.4	•	1.66		98.6	94.8	142.2
	26 8.7	•1	2.8	8.96	97.3	98.0	95.1	93.8	95.0		96.1	98.1	6	100.9	00	8	97.1	1
15 89	6 6.	6 6	2	å	•	2	•	5.	÷	4.46	5	å	•	9	•66	•		£3
8	9	æ	9		6.96	94.6	92.4	92.1	92.8	95.1	95.3	97.3	98.3	98.8	98.1	95.5	95.7	143.1
32 94	8.9	9	97.6 1(4.1 1	20	0	97.3	92.6	94.3		97.6	8		98.8	0	•	99.0	Ť
6	6 6 6		4	5.1	•	95.7	93.6	3	3.1	95.6	8 • 96	97.1			•	1.46	1 • 96	43.
	6		C		•	•	•		95.0		95.9	6.96	98.6		6.96	94.2	95.9	
	φ.	5.0 96	0.96	97.0	95.0	~	94.1	93.5	94.5	S	1 *96	97.4		-	_	94.5	95.8	143.
:20 86•1	ن		9		÷	•	ů	å	94.8	5	95.8	6.96	•	•	95.8	ë	6.96	143.4
96 0091	4.	σ	0		å	95.4	-	÷		93	94.3	Š	÷	•	•	91.2	•	141.4
76 00	9.9	6 9	5.5	95.5	93.0	95.1	92.5	92.3	93.6	94.6	62.6	96.4	4.16	95.6	3	91.5	95.2	145.6
	9	1 9	4	•	<u>.</u>	90.8	6	ċ	92•1	95	92.8		•	•	•	89.5	•	140
	6	4.7 9	2	ě	2.	6.06	6	6	÷	٠ %	2	ě	. 6	2.	•	6	95.8	140.2
00 95	o o	Φ		98•2	94.5	93.7	90.8	90.3	91.3	92.7	94.2	2.46	96.2	93.2	91.4	9	94.8	145
_	ф Ф	6	4	6	•	34.2	6	89.0		ċ	2	93.2	3	2		87.6	•	142
0	1 9	6	9	•			å	ġ			•	-	2.	ô	•	ŝ	•	141.2
8000	ø. 4	5.8 9	5.7	95.1	93.8	92.1	88.7	86.8	89.2	9006	92.1	91.2	95.6	89.6	88.4	S	94.1	141.
• 46 00	ر و	6	C	•	•	•	7.	• 9	9	•	•	•	2.	6	•	•		4 7•
σ	6 4.	8		•	÷	ံ	ŝ	Š	:	•	-	ċ	91.5	æ	ŝ	•	1.46	142.1
	9 6	8	9		6	:	83.1	5	•			6	89.1	7	•	81.3	9.46	5 5
20000 84	.3	4.9 84	6	85.4	82.2	80.7	78.4	8	82.7	84.2	84.7	85.2	85.7	83.2	N	76.3	92.5	139*
OVERALL 107	7.8 107	01 6.	8.4 1	10.2	08.8 1	08.0	105.9	105.3	106.5	107.3	108.5	109.7	1111.0	1111.4	112.1	1111.6	109.5	156.9
STANCE						SID	EL INE	PERCEI	VED NO	ISE LE	VELS							
METERS 94.	6-0 101-9		106.7 11	6.0	•	1111-1	105.7	109.7		111.8	112.7	112.7	112.7	109.9	9.901	100.8		
^	~			٠,	•	ů		5.3	æ	•	•	å	•	·	•	•		

NOMINAL NOZZLE) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3072 rpm; fundamental blade passage frequency, 1331 hertz.

FREQUENCY	•					•		ANGLE	F. DEG				•		;		AVEDACE	5
	01	20	30	40	50	09	۶	80	96	100	110	120	130	140	150	160	SPL	LEVEL
	,		-	/3-0CT	AVE BA	S QN	OUND PRE	SS URE	LEVEL	(SPL)	ON 30.	5-METEI	R RADIO	108				
50		c				•	2.	75.6	ě	ġ	77.7	ď		ď	,	,	ď	
63	104.2	73.6	71.9	71.1	711.7	72.1	72.2	71.2	72.1	73.1	74.7	76.2	78.2	79.6	81.0	,	; ;	1
80	ċ	5		71.7	•	:		72.0	3	5	77.5	8	•	2		85.1	78.1	125.5
100	86•2	85.2	85.7	79.3			ď	ċ	ċ	•	•	4	4	ď	Ş	٧	ď	
125	79.4	77.5	77.5	77.2	77.2	77.5	77.5	71.7	19.4		0	,	2	;;			• 6	• •
160	81•3	80•3	80•2	78.8	•	8	æ	ċ	80.2	80•3	•	83.6	81.5	85.8	~	82.9	80.9	128.3
200	83.9	•	79.5	77.4	77.5		ŝ	•		77.4	•		•	2	2		79.4	
250	81.7	80.7	78.1	77.2	77.2	76.9	77.9	77.6	79.4		80.7	82.2	82.6	83.1	82.4	0		27
315	81.7	o	78.2	78.1	77.2		7.	•	8	6	•	•	2•	5	-		79.8	127.2
400	83.4	O	6	78.9			ģ		•	ċ	-	2		(1)	•	79.5	80.7	•
200	84.5	81.7	80.4	78.9	78.7	7.77	77.0	77.0	78.2	80.4	0	82.3	83.2	83.9	81.9	78.9	87.6	28
630	85.9	~	ċ	79.1	è.	•	۲.		æ	6	ċ	2.	œ.	ë.	ċ	77.9	80.5	127.9
800	88.5	4	٠,	81.0	•	÷	8	۴		6	ċ	÷		m	87.5		81.0	28.
0001	1 06	85.6	83.5	81.5	80.0	8	78.9	78.5	œ	19.1	80.1	81.2	82.6	81.7	4.61	-	-	128.7
1250	97.0	•		88•0	ŝ	•		•	•	82.0	ë.	2.		ċ	81.5	è.		33.
1600	91.4	ဖ	2	81.0	•	77.7	7.	•		æ		•	-	ö		75.4	80.7	
2000	000	85.9	82.0	19.9	78.2		16.0	15.9	16.9	77.0	11.5	78.5	80.9	19.9	77.2	4.4.	4.61	27
2500	94•8	'n	ė.	86•6			æ	•	-		•	6	÷	81.0	8	÷	84.4	•
3150	91.3	89.5		84.4	•	8	ŝ	•	ķ	ġ		79.1	ċ			74.7	82.1	
4000	94.3	93•3	93•3	92•3	87.7	84.2	80.5	17.2	78.3	19.8	81.5		85.0	83.5	81.5	7.17	87.4	134.8
2000	93.7	2.	-	92.9	•	•	ô	٠,		å	ċ	•	÷	3	6	76.2	87.5	•
6300	93.1	92.9	93.1	92.2	•	•	ં	ŝ	•		å	80.1	÷	80.9		74.0	•	•
8200	93.0	95.8	91.7	89.6		3	78.7	75.2	76.5	78.2	79.7		83.0	80.7		74.4		34
10000	93•2	92•3	92.0	900	8	• '	6	ŝ	2		•	19.1	5	80.3	•	72.6	8	136.1
12500	91.2	ċ	•	88.9		•		Š	•	æ	ċ	ô	2	6	8	72.7		•
16000	•	87.2	86.9	86.7	84.9	19.9	73.0	71.1	74.5	76.2	78.5	78.5	79.3	77.2	76.2	69.4	87.8	135.2
20030	•	•		84•3	ċ	ŝ	65.8	66.4	ċ	å	3	•	ŝ	m	-	•	_	134.8
OVERALL	101.5	193.0	101.6	100.6	98.0	95.0	92.5	91.3	92•2	93.0	94.2	95.3	96.5	96.4	95.5	94.3	98.9	146.3
DISTANCE						S TO	EL INE	PERCET	VED NO	ISE LEV	VELS							
61 METERS	91.0 81.8	97.0 89.1	100.3	101.9	100.7	99.2	97.3 90.7	95.8	96.9	97.8	98.7	99.0	99.5	96.9	92.4	85.3		
) 			1	;	:	,	,	,	;	j	•	;	•		

(b) Percent of design speed, 70; fan physical speed, 3583 rpm; fundamental blade passage frequency, 1552 hertz.

FREQUENCY								ANGLE,	E, OEG								AVERAGE	POWER
	10	20	30	40	20	09	02	80	06	100	110	120	130	140	150	160	SPL	(PWL)
			1	1/3-0CT	AVE BA	ONDOS ON	PRE	SSURE	LEVEL	(SPL)	ON 30	5-METE	R RADIU	ns				
50	91.4	76•6	76.9	78.2	77.4	78•1	77•6	78.6	79.2	79.7	80.6	81.7	83.6	84.7	86.2	87.9	81.9	129•3
63	104.6	82•4	78.1	86.7	80.6	80•9	79•2	79.7	78.7	81.4	81.9	83.8	85.6	85.7	88.1	89.6	88.2	135•6
80	82.1	76•4	74.1	74.1	75.1	75•8	75•8	77.3	78.8	80.9	82.3	84.0	86.4	88.6	90.9	92.5	84.0	131•4
100	80.2	77.2	77.4	77.9	77.2	78.5	79.4	81•2	82.7	84.2	85.7	87.3	88.9	91.0	92.4	92.7	86.1	133.5
125	84.9	81.1	82.6	84.3	83.3	83.3	83.1	84•1	85.4	86.1	87.1	88.5	89.3	90.4	92.3	91.0	87.0	134.4
162	84.1	82.7	83.1	82.1	82.7	83.2	83.1	84•1	84.9	85.1	85.6	86.3	87.1	87.9	88.4	87.3	85.2	132.6
200	85.2	82.7	81.9	81.7	80.9	80•9	80.7	81.7	82.1	82.4	84.1	85.5	87.2	88.2	88.9	87.0	84.3	131 • 7
250	86.8	87.1	86.0	86.1	83.0	85•8	83.3	82.8	86.6	88.6	88.1	88.6	88.8	89.3	89.3	88.2	87.1	134 • 5
315	84.8	82.1	81.6	82.1	81.8	81•9	83.1	83.4	84.8	84.3	85.1	86.5	87.9	87.9	87.8	85.0	84.9	132 • 3
400	86.0	83.4	83.7	82•2	85.0	81.7	83.4	83.4	86.4	85.9	87.4	87.8	88.6	88.2	87.0	85.4	85.9	133 • 3
500	87.2	85.7	85.1	84•1	84.2	85.1	82.6	83.7	86.7	87.6	86.9	88.3	88.6	88.2	86.6	84.3	86.4	133 • 8
630	88.7	89.2	92.7	89•4	87.4	83.5	86.5	86.9	84.7	88.9	88.9	87.8	88.9	88.9	86.4	85.1	88.1	135 • 5
800	92.1	87.9	86.1	85.1	85.4	84.6	83.6	84.3	84.1	85.3	86.1	87.0	88.1	88•1	85.8	83.6	86.1	133.5
1330	93.8	93.5	90.1	86.8	84.8	87.8	87.6	84.8	85.1	87.0	85.5	87.1	88.5	88•1	86.0	83.9	87.4	134.8
1250	94.4	90.7	88.0	87.4	85.5	87.0	84.9	84.4	84.7	85.2	85.2	86.5	87.4	86•4	84.5	81.9	86.7	134.1
1690	193•1	100.3	97.1	100•1	94.4	100.8	87.6	93.4	92.8	90.8	88.1	93.0	90.8	89.9	89.4	85.7	95.6	143.0
2339	93•6	90.1	87.8	86•8	84.3	84.4	81.4	82.4	83.1	82.9	83.8	84.7	86.6	84.8	82.6	80.0	85.4	132.8
2503	94•2	92.2	89.7	86•3	84.0	82.5	81.0	81.)	82.5	82.3	83.0	83.2	85.1	83.8	81.8	79.4	85.4	132.8
3150	99.6	97.9	96.6	94•6	90.4	86.7	84.9	83.2	84.6	84.2	84.9	86.7	88.1	86.4	85.1	82.6	90•8	138.2
4330	97.7	96.5	94.7	94•3	93.2	86.8	83.2	81.5	82.1	83.3	85.2	85.8	88.0	85.3	83.5	80.4	89•9	137.3
5000	100.1	99.1	96.8	98•9	95.4	91.4	86.1	82.9	84.1	83.7	86.4	87.0	90.1	87.7	85.9	82.3	93•4	140.8
, 6309	97.0	96•6	97.4	96.7	94.5	93•4	85.4	81.1	82.1	81.8	83.6	84.6	85.7	83.8	81.7	78.8	92.2	139•6
8330	95.8	96•3	95.5	93.8	91.8	89•3	83.3	79.9	81.2	82.4	84.9	84.4	86.9	83.6	81.2	78.3	91.3	138•7
10000	95.5	95•3	95.0	94.2	92.2	90•6	84.1	80.5	81.9	81.5	84.3	83.9	86.1	82.5	80.7	76.3	92.2	139•6
12500	93.5	93.2	92.4	92.0	91•1	89.0	82.0	79.6	80.2	82.5	85.1	83.9	86.3	81.2	80.6	76.1	92.0	139•4
16300	89.9	89.1	89.6	89.6	87•7	84.3	77.5	76.1	79.8	80.4	83.3	83.3	83.3	80.0	79.3	73.5	91.0	138•4
20003	87.4	87.0	86.5	86.8	83•3	79.4	74.3	71.8	76.3	76.8	77.7	78.7	80.0	77.0	75.6	68.6	90.2	137•6
DVERALL	110.3	107.3	106.0	106.2	103• C	103.5 S IDE	97.8 EL INE F	98.3 PERCEIN	98.9 VED NO	99•3 ISE LEV	99.7	100.9	101.9 1	101•5	101-4	100.5	103.7	151•1
61 METERS	95.6	9•101	95.6 101.6 104.8 107.3	107.3	106.3	108.2	102.6	104.2	104.7	104.1	103.8	104.8	104.4	101.4	97.8	91.4		

TABLE XII. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4095 rpm; fundamental blade passage frequency, 1774 hertz.

FR.E QUENCY								ANGLE	E, DEG								AVERAGE	POWER
	10	20	30	40	20	9	02	80	90	100	110	120	130	140	150	160	SPL	(PWL)
			7	1/3-0CT	AVE BA	ND SOUND	PRE	SSURE	LEVEL ((SPL) (ON 30.	5-METER	R RADI	us				
ני	4 .10	2 2	9		_		ć	c			u	V	,	•		,	;	;
) «	104.4	7.70	400		•	: ,	,		•	•	ů,	• • •	• .	• 6	• •	•	.	• • !
6	88.2	8.4	2,0	20.0	80.2	, C C		81.2	0 40	0 0	000	7.00	0 2 6 6	****	0.00	400	106	13/05
3		•			•	•	,	•	•	•	•	•	•	•	•	ė	•	•
C	95.6	83.1	81.6		÷	3	ě	5	87.3	89.1		92.7	•	96.8	•	99.5		139.3
125	9006	87.4	86.2	85.7	87.2	87.4	88•2	88.7	89.9	~	92.4	93.8	'n	9	œ,	97.0		139.9
160	900	88•6	87.6		8	۲.	å	è.	6	•	•	92.4		94.8	ŝ	ě	91.2	138.6
200	91.6	87.7	86.2		•		ď		86.0		o d		ď			0	d	ŕ
250	92.1	89.3	87.1				٠.				010	,	, 4	r c		, ,	•	900
315	89.6	90.3	89.3	87.9	88.1	89.4	88•1	- ∞	89.1	89.9	9008	' (1	93.8	14	93.9	91.0	8.06	138.2
004	1.00	87.9	1.08		,	á	4	_	o			9.00	6	4	r	C		
520	95.5	94.5	95.0			á	,	4 6	95.0		,	ي د	,		• (7 7 6	90.9	•
630	0.96	94.4	92.4	98.5	93.9	91.2	90.7	88.7	90.1	91.7	91.9	92.6	94.4	93.2	صر	1 C	1000	140.5
						•	3			•	;	j		•	.	•	7.66	•
80	98.9	95.2	95.4	4.4	•	:	ċ	æ	_	ċ	÷	2	9	ě		6	~	39
1000	2.66	95.1	96•2	93.9	93.1	94.2	91.7	91.6	106	92.1	616	93.8	93.7	93.2	93.1		93.4	140.8
52	0.66	9.96	95.5	96•3	•	ż	ċ	ċ		ċ	ċ	2•	÷	5	•	•	÷	6
1600		101.6	100.1		6	•	å	_:	÷	•		93.0	•	~	2	æ	96.3	143.7
2000	103.8	102.6	10101	9 % 6	9 • 66	97.3	94.1	91.4	91.3	91.6	92.3	N	97.1	92.9	95.8	88.2	8.96	144.2
2500		97.8	0.96		•	2		÷	۴	•	_	ċ	ċ	6	:	S	92•1	139.5
3150	~	99.2	97.	7.96	96.4		æ				89.5	ö	÷	6		8	93.5	Ĉ
4000	101.6	100.1	99.5	4.66	99.1	96.1	91.1	87.6	91.6	88.4	90.2	91.7	92.7	89.9	88.4	85.8	95.6	143.0
2000	_	9.66	97.7	100.6	99.7	•	-	æ	å	æ	90.68	÷	ä	ċ	å	÷	ŝ	£
9300	98•8	98.7	98.0	64.6	•	•	ċ	•	86.8	•	:	å	8	÷	÷	~	95.6	143.0
8000	98.4	99.0	97.9	97.3	97.2	95.7	89.3	85.9	85.9	86.9	8	88.6	ċ	ŏ	Š		95.2	142.6
10000	97.0	97.0	0.96	0.96	•	•	٠,	•	84.7	÷	:	٠,	89.2	85.7	83.8	G	4.7	142.1
12500	94.6	6.46	93.4		93.4	÷	ŝ	ě		ŝ		7		-	,	6	94.2	141.6
16000	90.7	92.3	90°	•	90.7	88.5	80.3	79.4		ë	ŝ	•	9		-	3	93.6	Ġ
20000	87.4	90.2	87.4	88•5	86.5			15.1	19.4	81.0	81.5	82.3	83.4	19.4	78.2	73.1	92.8	140.2
OVERALI	112.5	110.7	109.5	109.8	109.0	107.5	103.7	102.6	103.0 1	103.4	104.5	105.8	107.9	107.1	107.7	106.6	107.8	155.2
DISTANCE						S 10	TOEL INE P	PERCEIVED	VED NOISE	SE LEVEL	/ELS							
61 METERS	98.9	105.5	108.4	1111.3	112.6	111.8	108.8	107.4	107.8 1	108.1	108.7	109.3 1	110.2	106.3	103.5	9.96		

(d) Percent of design speed, 90; fan physical speed, 4607 rpm; fundamental blade passage frequency, 1996 hertz.

FREQUENCY								ANGLE,	E, DEG								AVERAGE	POWER
	10	20	30	40	20	9	10	80	90	100	110	120	130	140	150	160	74	(PWL)
			-	1/3-0CT	TAVE BA	AND SOUND	INO PRE	SSURE	LEVEL	(SPL)	ON 30.	S-METE	R RADIU	ns				
50 63 80	92•0 104•3 92•0	83•3 85•6 88•7	84.7 84.6 89.5	85.0 84.5 87.3	85.3 84.3 87.3	85.7 85.0 89.3	86.3 84.8 84.5	86.5 84.8 87.3	87.3 86.1 89.5	88.0 86.6 90.7	89.3 89.0 92.2	90.6 91.1 93.9	92.7 93.6 97.2	94.5 96.1 99.3	97.5 98.6 102.3	100.4	91.2 92.8 95.1	138.6 140.2 142.5
100 125 160	88.3 93.8 95.0	86.2 90.2 91.7	86.3 89.8 93.0	85.5 90.2 91.7	85.8 91.2 93.7	87.3 91.7 92.5	88.3 92.2 93.7	89.8 92.5 94.0	91.8 94.2 94.7	93.3 96.0 95.0	95.8 97.0 96.2	97•3 98•3 97•1	99.5 100.0 98.7	102•3 102•0 100•5	104.8 104.5 101.0	104.6 192.9 99.6	97•1 97•5 96•3	144.5 144.9 143.7
200 250 315	94•1 98•3 92•5	91•6 94•3 96•9	92.4 96.5 102.9	94.7 101.5 103.9	93.9 99.7 100.2	93.9 99.5 94.4	93.6 99.0 93.2	91.6 95.3 93.0	91.9 95.7 93.4	92.9 96.5 95.5	94.1 96.3 95.9	95.8 98.3 98.5	98.2 99.5 99.0	100.6 101.2 100.0	101•1 101•2 99•7	98.6 98.7 96.9	95.7 98.6 98.3	143.1 146.0 145.7
400 500 630	93.5 99.6 94.7	93.0 99.8 93.4	93.5 100.0 98.0	96.8 104.6 96.7	98•1 103•0 97•9	95.1 100.3 94.7	93.6 97.8 93.9	92.6 95.0 94.2	93.3 95.0 92.4	94.8 97.6 95.5	95.5 99.5 97.2	97.6 97.9 97.8	98•8 100•8 98•5	99.6 99.1 98.4	98.5 100.0 97.0	95.4 95.9 93.7	96•3 99•8 96•4	143.7 147.2 143.8
800 1250 1250	101.7 101.4 101.2	98.7 98.8 100.7	98.0 95.9 99.9	97.8 99.8 100.5	96.5 96.8 101.7	96.5 95.3 97.5	96.1 94.6 94.7	92.6 93.1 93.5	94.5 93.6 94.0	95.0 94.8 94.5	96.5 95.6 95.7	96.9 97.2 97.3	98.5 98.1 97.7	98.8 97.9 97.4	96.5 95.8 95.4	93.5 93.6 92.4	96.8 96.5 97.7	144.2 143.9 145.1
2500 2500 2500 3150	100.9 105.8 102.3 101.5	98.1 104.1 101.0 100.3	99.1 102.9 101.6 100.8	96.8 101.4 101.1 100.3	000 00	93.9 98.1 95.8 95.2	92.4 94.3 92.0	92.4 93.3 91.8 91.3	92.4 94.1 92.1 91.5	93.4 94.4 92.6 92.5	995.9	95.5 97.0 93.9 93.9	9.4 43	95.6 96.4 94.1 93.5	93.6 94.6 92.3 91.8	90.5 91.3 89.5 88.9	95.4 98.6 96.6 96.4	45. 45. 43.
5000 5000 8300 10000	99.5 98.4 97.3	99.5	99.	03. 01. 98.	99.1 97.5 95.1	95.5 95.2 93.5	93.2 92.1 90.6 89.3	4 6 6 6			** ***	94.2 92.0 91.2	94.4 94.4 92.0 93.0	. 66.	92.0 92.0 89.6 88.9	น นูนูน	98.0 96.1 96.3	145.4 144.1 143.7 142.9
12500 16000 20000	94•6 90•7 87•9	94•3 90•2 87•5	94•1 91•2 88•0	93.9 92.1 89.6	93.2 91.2 86.8	92.0 87.9 83.5	86.6 82.7 79.9	85.9 82.7 79.0	86.1 85.8 83.2	88.1 86.9 84.0	90.8 89.6 84.8	89.4 89.3 86.1	91.1 88.9 87.0	85.6 84.8 82.6	85.6 84.8 82.0	81.5 79.1 76.1	95.0 94.8 94.3	142.4 142.2 141.7
DVERAL ISTANC		112.1	112.5	113.	2.1	_	10 7. 4 EL INE	o .::	ر ا	107.7 ISE LE	0	0	1•3	0	•	11.	111.0	158.4
61 METERS 305 METERS	100.8	107.2 85.3	111.8 91.3	115.4 95.0	115.5 96.3	114.3 95.4	111.9 93.8	1111.0 93.2	1111.2	112.3	113.3 95.4	113•3 95•5	113•1 95•1	110.5	107-2 89-2	100.7 82.4		

TABLE XIII. - NOISE OF FAN C CONFIGURATION 311 (HARD INLET, FULLY TREATED FAN FRAME, SUPPRESSED EXHAUST, NOMINAL

NOZZLE) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3053 rpm; fundamental blade passage frequency, 1322 hertz.

POWER	χ Σ		129.2	27.	Č	200	130.0	,	20.	28	20,	200	129.5	Ç	200	143.3		31.	138.3	3	37.	136.1	34.	35	135.9	4	36	137.5	149.2			
AVERAGE SPL			81.8	•	,	82.2		6		81.2	_		82.1	,	, ,	95.9	•	•	6.06	ġ	90.3	å	,	ě	88.5	ď		90.1	101.8			
4	00		84.0	ຳຄ	ž	85.5	3	_	: :	81.0	ć	ċ	79.1	70, 6		86.6	æ	•	79.3	Š	77.9	75.1		3	71.9	,		, &	7.56		7	80.3
Ų	150		83.3	• •	ď	85.8		,	,	82.0	,		81.2		; ;	86.5	ċ	æ	80.8		81.8	6			77.5	ď		74.2	96.4		,	85.9
٧.	G# 7	O.S	81.3	. m	v	85.0	;	,	,	83.5	7		83.2	,	, ,	87.2		ô	82.2	ċ	83.2	2	ċ	ċ	19.8	œ	,	76.2	97.2		,	90.4
•	GC T	R PADI	81.3	•	۲,	83.6	•		,	83.0	4	3	83.1	,	; ;	87.9	2	-	82.0	ċ	84.5	2.	•	2	81.9	2	ċ	17.1	97.3		6	92.9
66.	o :	5-METE	80.3	6	ď	83.4	2.	ć	,	82.6	ς.	'n	82.3	-	; ;	86.5	်	6	81.3	6	82.6	ċ	å	ċ	79.5	ċ	6	76.8	0.96		•	92.8
-	2	ON 30.	78.8		6	82.0	81.8	ď	٠.	81.3	ς.	2	81.6	-	: -	87.7	ċ	•	81.0	ě	81.5	ċ	ŝ	6	19.4	ċ	6	75.9	95.3	VFLS	ě	92.8
	001	(SPL)	76.9	3	ď	80.8	÷	•		80.1	Ġ	ċ	80.5	•		86.7	6	77.7	C		79.8	•	5	-	76.7	æ	ŝ	73.6	93.9	ISE LE	ě	91.9
E, 066		LEVEL	80.9	8	ď	87.5	;			69.3	ċ	(T)		ع	ے :	88.9	ို	78.2	81.0	•	78.8	æ	75.6		76.4	2		~	9.46	VED NO	æ	92.8
ANGL	6	SSURE	77.9	ģ	ď	79.3	6			79.0	30	å	78.2	•	ځ :	90.5	-	7.27	÷		19.6		•	•	73.9	•	71.2	61.9	4.46	PEPCEI	8	92.9
9	2 8	SOUND PRE	85.4	8	2	82.5	คื	6	6	80.3	6	6	79.1	٥		93.0	ě	79.4	85.2	6	83.3	ċ	æ	-	78.1	76.4	72.7	71.0	97.3	EL INE	-	95.0
4	n .	AND SOL	83.1	. 6		80.8	2.	ě	6	80.3	•	81.3	80.1	•	,	97.4	٠,	83.4	ċ	•	90.0	٠,	÷		86.6	•	ě	80.2	101.2	\$ 10	•	98.2
Ç	3	TAVE B/	84.1	ô	اما •	81.3	æ			80.3	•	83.3	•	ı,	:	101.5	•	87.2	Š	88.9	93.7	•	ċ		89.3		87.4	•	104.7		07.	100.7
4	}	1/3-0C	82.3			80.0			80.0	80.3		83.8	•			100.7	91.6		97.2		96.3		92.4	٠.	90.6	_	88.6		105.7		107.	100.2
C	,	•	81.4			78.3		81.5	80.3	80.6	٠,	84.3	5	86.8	89.5	102.2	92.8	90.2	97.2	92.4	96.1	93.4	92.3	95.4	91.4	ô	88.5		106.4		104.6	97.5
20			8008	3	•	80.6	•	5	83.0	2		84.8	•	88	90.	66	95.6	91.0	•	92.2	•	÷	92.3	•	•	ċ	88.9		105.6		199	92.4
O			77.3	74.4	•	Č	•	*	82.8	2•	å	84.9	ŝ	88.5	8.06	100.2	92.0	89.9	94.8	90.6	•	•	90.8	91.4	90.8	89.2	87.7	86.0	104.8		90.3	82.1
FREQUENCY		٠	50 63	80	0	125	•	0	250	-	400	500	630	0	S	1250	1600	2300	2500	3150	4300	5000	6300	8330	10000	12500	16339	20000	OVERALL	DISTANCE	1 METER	Σ

(b) Percent of design speed, 70; fan physical speed, 3562 rpm; fundamental blade passage frequency, 1543 hertz.

POWER	(PWL)		131 • 4 132 • 3 132 • 4	134•3 135•2 133•6	132.2 134.6 133.3	134.5 135.8 138.1	135 • 8 138 • 2 139 • 8	152.4 139.0 138.8 145.6 140.9	140.5 140.4 139.9	139.7 139.9 140.3	155.7
~ 0	346		84.0 84.9 85.0	86.9 87.8 86.2	84.8 87.2 85.9	87.1 88.4 90.7	88•4 90•8 92•4	105.0 91.6 91.4 98.2 93.5	93•1 93•0 92•5	92•3 92•5 92•9	108•3
	160		88.5 89.1 91.9	93.0 91.7 88.9	88.2 87.3 85.9	87.4 84.5 85.0	84.3 84.6 84.5	94.7 82.3 81.5 85.2 81.2	78.3 78.1 75.8	76.0 74.7 71.6	101.7
	150		87.5 87.8 90.6	92.6 92.5 89.5	89•1 89•5 88•0	88.4 87.6 88.3	86.8 86.9 86.8	97.5 84.5 83.2 86.4 86.1	81.3 81.2 80.1	80.7 80.4 77.9	103•1
	140	ns	86.3 86.6 89.0	91.3 91.5 89.0	88 89 89 8	88.3 90.1	88.8 88.6 88.6	97.5 86.5 84.7 88.1 85.6	83.9 83.1 82.3	80.9 80.5 79.3	103•3
	130	R RADI	86.5 87.3 88.6	90.5 90.8 88.2	87.6 89.6 88.2	89.2 89.6 90.6	88.3 88.6 88.4	96.5 87.2 85.4 88.9 88.1	84.8 86.0 85.2	86.0 84.1 81.9	103+3
	120	5-METEI	85.4 84.3 85.7	88.4 89.1 87.9	85.9 88.5 87.6	88.6 90.0 90.6	88•2 88•5 87•5	96.0 85.6 84.9 88.1 86.4	84.0 84.2 82.9	84.0 83.9 80.4	102+3
	110	08 NO	84.0 83.6 83.8	86.6 87.7 86.3	84.1 87.1 86.2	87.2 88.1 89.1	86•3 86•2 86•6	95.0 84.2 84.2 85.3 85.5	83.3 83.8 83.4	83.9 84.0 80.5	0 101+3 LEVELS
	109	(SPL)	81.6 81.4 80.8	84.0 86.5 85.5	82.5 86.1 85.0	88.2 86.9 87.0	85.8 87.4 86.8	97.0 84.4 83.4 87.1 84.0	81.0 81.5 80.2	81.5 80.7 78.6	4 101.0 NOISE LE
E, DEG	06	LEVEL	83.6 82.6 81.8	83.5 86.3 85.7	82.5 87.3 85.7	86.2 85.8 89.5	85.3 86.6 87.6	99.8 85.4 84.4 83.6 84.6	81.8 80.5 80.7	79.6 80.2 77.8	4 S
ANGLE,	80	SSURE	81.6 83.1 80.5	82.1 84.0 84.0	81.8 83.0 83.5	82.7 86.3 84.1	84.5 87.1 87.9	985.0 84.1 89.4 84.8	80.8 79.7 78.8	78.6 76.4 73.3	101.3 192. PERCEIVED
	20	PRE	83.6 83.8 82.6	82.8 84.5 84.7	82.3 82.3 83.7	83.7 85.8 87.6	86.5 89.1 90.3	103.5 88.9 87.4 93.3 88.4	86.3 84.6 83.5	81.2 77.9 76.0	2 105.3 IDEL INE
	09	AND SOUND	82.1 84.6 80.3	81.3 84.0 83.7	82•1 86•3 83•3	84.4 86.9 90.5	89.0 92.1 93.1	106.5 93.5 92.9 99.9 94.9	93.9 93.7 92.3	90•4 87•2 83•8	109•2 SID
	20	AVE BAI	81.6 82.8 80.3	81•1 83•8 84•0	82.0 85.6 83.8	85.7 90.4 94.3	90.8 94.6 96.8	110.5 96.0 94.8 102.3 97.1	96.3 94.9 93.3	91.8 90.4 87.2	112•5
	40	1/3-0CT	87.5 87.3 77.6	79.6 86.3 83.3	82.3 85.8 84.3	85.9 90.4 93.3	91.5 94.5 97.4	1111.0 96.5 97.1 103.4 98.6 101.6	98.3 96.4 94.8	92°4 91°2 89°3	113•3
	30	1	89.1 83.1 78.3	79.6 83.2 84.5	83.8 88.0 85.8	87.2 90.8 95.6	91•1 94•8 97•3	109.5 96.4 96.9 104.3 98.8	97.3 97.1 95.4	93.4 90.9 89.5	112.5
	20		79.1 84.1 79.0	79.8 83.7 84.0	84.6 88.8 85.7	88.0 89.1 92.3	91.5 94.8 96.6	108.2 96.2 96.3 102.6 97.8	96.7 96.7 94.9	93•4 90•9 89•3	1111.4
	10		81.5 86.8 78.6	80. 86.3 83.3	84.3 87.8 85.3	88.2 88.3 91.3	92.0 94.2 94.9	105.2 94.9 95.1 102.6 96.8	95•4 94•9 93•8	91.2 89.6 88.0	109.7
FREQUENCY			50 63 80	100 125 160	200 250 315	400 500 630	800 1339 1250	1600 2330 2500 3150 4300 5003	6300 8220 10020	12500 16000 20000	OVERALL DISTANCE

96.6 106.5 111.7 115.0 116.0 114.1 111.1 107.5 108.7 107.0 106.6 106.6 106.2 104.6 101.5 95.3

TABLE XIII. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4067 rpm; fundamental blade passage frequency, 1762 hertz.

									ı									
FREQUENCY								ANGLE	E, DEG								AVERA GE	POWER
	01	29	30	40	20	09	20	80	90	100	110	120	130	140	150	160	7	(PML)
			-	1/3-0C1	TAVE BA	AND SOUND	IND PRE	SSURE	LEVEL	(SPL)	90. 30	S-METER	R RADIU	105				
20	84.1	80.5	84.0	82.	2	ě	ŝ	•	•	Š								
63	90.3	86.9	90.6	85.9	Ň		•	ě	•	;		8				, ic	6	
80	85.0	83.3	84.5	81.	81.8		84.6	83.0	85.1	85.5	88.5	4.06	95.6	94.6	96.8	98.2	0.06	137.4
100	83.8	82.3		82.	ς.	4	4	4	,	ó	_	ć	Ú	6	-	00	·	
125	4.68	87.0		9 8	, ,		• a	5 a	٠,	•	.	ů,	• •	0	7 % 6	٠,	•	•
160	87.2	87.5	88.7		87.8	88.5	89.0	89.5	90.5	90.5	91.7	92.8	93.2	95.2	95.5	94.9	92.9	140.3
•																		
200	86.7	88	87.3	87.0	86	86.5	87.2	87.0	87.7	87.5	0		ě	94.8	95.7	4	90•3	137.7
250	89.0				83	:			89.5	•	•	Ŕ	94.3	95.3	95.8	93.7		139.0
315	88•3				88		٠,	6	6	•	-	5	ů	•	_	:	91.1	38
400	616		95.3	92.4	95.	2	2	-	6	ě	2	93.7	8	Š	Š	,		•
200	9.66		136.3	106.6	108	04.	00	-	6		6	'n	00		٠.			69
630	101.0	100.6	0.601	1111.0	109.6	104.5	101.3	9 8 8	95.3	97.8	99.0	100.4	6	96.3	93.6	7.46	104.0	151.4
6			!				,	,			!	,						
000	7.66	103.8	10101	10/01	601	8	£ • • 01	103.7	101.0	Ο 1	97.2	97.1	97.8	97.8	94.3	~ 1	*	151.8
2007	200.	0.07	9.601	A - 10 T	113	5	.			•	91.0	79.4	•	۰	•	•	106.0	23
0621	1.7.7	K.>7C.1	- + O I	0.4601	111	980	•	င်	÷	ŝ	4.1	Ġ	•	ŝ	•	ě	•	151.7
1600	108.0	110.0	112.0	112.0	112.	60	90	0				æ	æ	•	95.4	•	107.0	
2000	107.4	139.4	1111.2	111.2	~		90	010		•	•		6.26	'n	94.4	'n	106.5	
2500	101.9	103.4	104.7	106.2	106.	;	98.9	94	93.4	91.4	91.7	1.16	6116	91.9	90.2	88.6	101.1	148.5
3150	101.4	103.8	104.8	1,95.6	105			'n	91.8	•	ċ	,	,	6400	6	0.88		
4000	102.1	104.0	104.8	106.0	106.	03.		2	ċ	ċ	-		;	ċ		1		8
2000	99•3	101.6	102.1	104.6	103.6	101.5	95.3	89.8	89.3	88.1	89.8	91.0	91.0	90.1	88.0	84.9	9	146.6
6300	97.T				100	98.8	2	•	ġ	Š		å	ď	87.4	85.6			164.6
8300	97.2				66	8		3	3	•				86.2	86.7	: :		
10000	95.4	91.6	91.6	97.7	97.	6.96	89.3	83.8	84.3	83.6	86.8	86.7	87.8	85.4	83.1	79.2	0.96	. 6
12500	93.1				96		,	2		•	ċ	Š	7	6	,	ď	ď	142.0
16000	1.06				94	-		6				, ,	: 2	, ,	,	5 6	•	7
20000	88.4	90.06	91.1	91.7	16	88.3	81.6	77.1	80.6	82.1	83.4	83.5	84.6	81.8	80.0	74.8	' w	143.1
OVERALL	114.1	116.1	118.4	119.3	120.1	117.7	113.7	110.2	108.2	107.3	108.0	108.4 1	108.9 1	1.80	108.9	108•2	115.0	162.4
DISTANCE						SID	EL INE	PERCEI	VED NO	ISE L	EVELS							
SOSTEM 17		711 7 111 7 111					•			•	•	•	•			,		

101.1 111.0 117.0 120.1 122.6 120.9 118.2 114.8 112.9 111.6 112.1 111.7 111.0 108.3 104.9 100.7 61 METERS

(d) Percent of design speed, 90; fan physical speed, 4575 rpm; fundamental blade passage frequency, 1982 hertz.

POWER	3		39.	147.6	44	144.9	43.	143.7	146.7	41	64	•	•	S	152.1	2	•	52	64	47.	148.0	46.		144.8	144.1	143.8	\$	•	163.4			
AV ER A GE	5		•	95.2	, ,		96.5	96•3	99•3	6*66	102.1	108.7	104.2	197.6		104.0			N		100.6	4.66	4.16	97.4	49.7		96.8	97.3	116.0			
	160		00	101.2		Š	8	•	9066		•	101.5	6.96			7.46	92.5		91.5	ċ	89.8	87.8	Š	•	84.0	•	•	78.0	112.5		102•6 84•5	
	150			102.1	4		101.0	÷	010	0	9	;	86	66.6		97.3	95.6	3	93.8			91.5	6		86.7	•	Š	83.2	113.2		108•3 90•5	
	140	ns	Š.	900	, ,	2	100.6	90	2.	90	00	93.	101.0	2.	96	98.6	7.96		95.4	ę	3	93•0	ċ	6	87.7	4	•	84.5	113.1		1111.6	
	130	R RADI	ů.	94.5	. 6	, ;	98.5	å	1.66	100.2	•66	2	66	6	6	99.1	- 2	. 6	95.4	4		3		2	0	6	6	87.5	1111.9		113.5	
	120	5-METE	.	94.9			98•2	•	98.1	æ	98.	÷	66	ó	98	-	Š		95.4	4	ŝ	93.5	ċ	ċ	88.8	6	6	87.1	1111.0		113.8 96.5	
	110	ON 30.	ô	97.3	, 4	: :	0.96	4	96.3		98	90		6		97.3	•		94.4	ě	ŝ	93.0	90.8	91.0	89.6	6		_	1111.5	VELS	114.7 98.3	
	100	(SPL)	6	88.0	,	95.0	95.6	2	95.2		98.3	106.3	97.7		1001	97.	ď		(n)	2	ě	90.8	88.8	6	87.1	87.4	86.8	85.4	111.0	ISE LE	114.4 98.1	
E, DEG	90	LEVEL	æ,	88.3	,	, ,	95.0	2.	93.5	æ	å		1.86	,	99	99.8	ž	8	94.9	ě	95.8	91.8	•	8	87.1	5	\$	84.9	1111.8	VED NO	115.0 98.8	
ANGLE	80	SSURE		87.8	ď	; ;	94.0	2	95.0	98.5	99.1	07.	100.2	m		0	Ś	4	95.8	4	ě	91.1	8	:	85.7	•	82.7	80.4	112.3	PERCEI	115.4 99.3	
	20	DUND PRE	6.	8 4 6 9	: 6	: .	94.1	å	97.2		01.	6	104.0	50	101.6	03	ć	; ;	6 6 6	8	å	95.6	ě	2	91.2	å	ŝ	84.6	115.3	EL INE	117.8 101.4	
	9	S QN	•	85.7			92.8	5	100.0	98•	03.	08	107.5	ċ	Š	105.5		20	. 5	02.	02.	100.8	8	8	97.1	Š	2	89.5	117.5	SID	120.9 103.4	
	50	AVE BA	•	86.2		d	94.3	_	_	8	07.	11.	108.8	6	110.7	109.9			106.9	104.6	104.7	103.8	101.4	66.6	98• 6			92.7	120.4		122.1 104.4	
	6-5	/3-0CT	ŝ	80,03	86.7	90.5	91.8	98.7	104.3	103•3	107.8	113.6	110.0	1111.2	111.8	108.9	106.6	111.6	107.7	105.4	135.3	104.3	101.6	1001	98•2	96.1	94.7	95.6	120.8		121•3 103•0	
	3.3	-	Š.	86.3	86.3	89.7	95.6	92.8	97.5	105.7	101.1	113.3	106.5	_	6	106.6	0			104.9	134.3	102.1	99.	1001	97.1	95.4	92.5	91.3	119.0		117.0 97.1	
	20		_ (n) (90.4) LC		92.0	m	97.8	6	102.8	109.8	104.1	107.2	133.1	105.6	104.4	1001	105.7			101.5			97.2	94.4	92.2	89.1	117.1		111.8 90.6	
	01		•	83.8	4.78	91.7	93.5	92.5	96.2	99.8	99.1					104.5			103.6			66.5	98.0	97.3	95.4	92.4	89.8	87.4	114.9		101.9 77.2	
FREQUENCY			53	m C	001	125	091	200	250	315	400	200	CE9	800	1333	1250	1630	טננג	2500	3150	4000	2000	6300	8330	10000	12500	16300	20000	OVERALL	DISTANCE	61 METERS 305 METERS	

TABLE XIV. - NOISE OF FAN C CONFIGURATION 312 (HARD INLET, FULLY TREATED FAN FRAME, SUPPRESSED EXHAUST, LARGE

NOZZLE) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3032 rpm; fundamental blade passage frequency, 1313 hertz.

	3_	1010	(a) to come or academ	۵.	peca, oo,	į	mare frui	, poor	1 1000	Pull, 101	T T T T T T T T T T T T T T T T T T T	ramannement Drane	c passag	U	n equency,	TOTO HELLS	.5.	
FREQUENCY								ANGL	5, DEG								AVERAGE	POWER
	10	20	30	40	50	09	92	80	06	100	011	120	13ū	140	150	169	٦ ١	(PWL)
			-	/3-OCT	AVE BA	ND S	OUND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METER	R PADIU	Sí				
20	77.1	79.4	77.1	81.9	19.9		6	•	•	76.6	77.9	76.4	œ	•		_	79.5	126.9
63	69.1	71.9	9.69	72.1	71.4	71.6	73.1	74.9	74.4	73.1	74.9	74.9	78.1	œ	81.1	: :	75.6	
80	71.9	71.6	6.69	71.4	10.6	•	2.	•	ě	73.4	76.4	6.91	ô	81.6	82.6	84.5	77.1	124.5
100	85.4	ທ	84.9	83.4	82.7	8	8	•	77.2	77.2	79.7	÷	4	ູ້	4.	Š	2	
125	76.9	78.1	76.4	75.9	76.4	75.6	76.6	77.4	. 6 • 1.2	78.9	80.6	80.9	81.9	82.6	83.9	3	19.6	127.0
160	83.9	m	19.4	78.7	ô	:	:	82.9	78.7	80.4	81.4	;	÷	e.	•	85.8	:	29.
0ü2	84.2	87.2	81.2	76.7	19.9		74.7	~	75.7	76.7	78.2			0		ċ		•
250	80.2	80.7	78.2	77.9	77.2	76.4	76.4	4.9	77.4	79.2	79.7	. О	<u> </u>	81.9	0	80.1		126.5
315	80.7	81.4	79.4	79.2	78.4	•	77.2	6•9	4.77	78.4	4.62	•	•	81.2	•	8	79.2	126.6
400	81.4	82.4	80.9	79.6		77.4	76.1	76.1	77.6		81.4	ċ	2	•		æ	82.1	•
500	83.3	83.1	81.3	81.1	80.8	78.8	78.1	77.3	77.6	മ	80.3	80.6	81.8	81.8			d	•
630	84.6	84.4	82.6	81.6		78.1	77.1	76.4	17.6	•	19.6	6		81.1	79.1	77.5	80.0	127.4
603	87.5	87.2	87.0	85.2	•	•	•	ě	78.5	79.7		ć				ď	,	20
0001	89.5	89.0	87.7	86.7	85.7	83.0	81.2	80.0	79.5	80.5	ċ	80.2		81.5	79.5		83.4	
1250	99.8	8.66	101.0	97.8	ò	5.	÷		87.8	85+0	86.5	ŝ	80	•		84.7	•	45
1600	9.06	91.1	91.1	89.4	ě	•	-:			77.9				0		77.1	5	2
2300	88.5	0.06	88.8	87.8	85.5	82.0	å	•		77.0		8	ċ	O		75.2		5
2500	93.7	96.4	96•2	6*56	4.7	90.4	85.2	81.1	80.4	79.6	80.1	6.61	81.4	82.2	79.1	78.1	90.2	137.6
3150	89.1	9.06	90.4	89.6		ě	8	ŝ			77.1	77.9		•		•		31.
4000	92.2	94.2	1.46	6.46	95.4	88.9	82.4	77.9	77.4	78.4	80.7	-	mě	m	Ö	76.6	89.1	136.5
5000	90.2	92.2	92•2	93.5	•		6	ŝ	•	÷	å	80•1	•	•		ů	•	35
0069	89.6	91.3	90.5	91•1	•	•	78.	ě	74.3	74.3	ŝ	77.9	•			٠,	ģ	33
8000	89.8	92.3	91.0	90.4	88.5	87.0	77.5	72.8	74.6	76•3	78.8	79.2	81.8	0	77.1	72.9	87.3	134.7
10000	88.9	91.1	90•1	89•3	•	v	7.7	m	76.3	76.3	6	78.4	÷	ô		:	۴	34.
12500		•	88.9	87.6	•	5	•	4	74.9		80.1	•	2	0			æ	35.
16300	85.4	88.1	86.9	87.5	85.9	83.8	72.8	72.1	75.8	76.4	80.1	80.0	80.3	78.6	6.11	71.6	88.7	136.1
20000	:	Š	.86•0	86.0	•	ċ	ċ	å	73.3		76.2	•	æ	·o		•	6	36.
OVERALL	103.9	105.0	105.0	103.8	103.7	60.66	95.4	95.9	93.0	92.7	2.46	94.3	96•3	96.1	95.1	94.2	100.6	148.0
DISTANCE						S 1D	EL INE	PERCEIV	VED NOT	ISE LEV	VELS							
61 METERS	89.5	99.5	103.3	105.5	106.2	103.8	99.6	97.4	97.4	97.1	98.3	7.76	98.7	9.96	91.7	85.6		
	,)	1				•	•	7		•	_	•	•	0	å		

(b) Percent of design speed, 70; fan physical speed, 3537 rpm; fundamental blade passage frequency, 1532 hertz.

POWER	(PWL)		•	-	1.30 • 4	122.6	7 :	131.7	30.	32.	31	•	•	137.3	5	•		139•2		139.0	139.4	145.2	140.7	142.4			139.2	•	139.8	140.1	1.55.0	
AVERA GE	۲ ۲		_	; ;	83.0	ŭ	•,	86.3	83.2	ŝ	•	5	6	0.08		88.6	91.6	91.8	104.0		92.0		3	95.0	92.4	2	91.8		_	92.7	107.6	
	160		-	. 4	91.2	0,10	91.9	87.7	\$	•	84.7	84.6	60	84.1		83.2	•	84•0	94.2	•	81.0	•	ċ	81.1	77.0	77.4	75.3	•	ŝ	72.5	100.8	
	150		ş	; ;	89.8	_	• .	87.5	87.8			•	ċ	86.5	,		87.6	85.9	97.8	83.6	82.1	•	8	84.6			79.4	÷	ċ	78.2	102.3	
	140	NS	7	3	87.5	c	•	86.8	87.3	•	87.0	,		2 0	•	88.1		86.1	•	4	83.8	ě	ໍຜໍ	86.1	2	•	82.5	å	-	4.67	101.5	
	130	R RADIU		, 4	85.5	c	ė,	86.0	S	٠	86.0			90.5	•	•	87.1	87.4	4	•	85.6	ě	-	88.1	4	9	84.9	86.5	•	82.9	101.9	
	120	5-METE		;	83.3		•	85.3	å	•	85.3	•	88.0	86.8	,	87.9	-	86.1		,	83.9	œ	ŝ	86.5	2	ě	82.2	83.7	٠	81.5	100.5	
	110	ON 30.		, ,	82.3		•	84.8	5	ŝ	84.8	ģ	6	88.7		ŝ	Ś	86.4	94.8	•	84.1	•	;	85.6	2	8	82.6	6	•	80.9	100.6	LEVELS
	100	(SPL)		, ,	79.0	,	•	84.3	-		84.5	Š		86.7	•	85.6	ŝ	87.6	100.0	84.	83.6	ģ		83.6	•	•	19.6		-	19.6	102.3	NOISE LE
E, DEG	90	LEVEL	_		79.0		<u>:</u> ,	83.5 83.5	ċ	÷	83.5	•		700		84.3	86.1	86.4	96.5	84.8	83.8	Š		83.6	80.2	79.4	79.4	•	ċ	78.4	100.4	EIVED NO
ANGLE	80	SSURE	á	, ,	76.5		٠,	83.3	80.5	-	85.8	•		25.0	,	ŝ	-	89.1	٠,	86.	85.1	å	•	84.9	ံ	6	78.7	78.5	77.3	74.4	103.8	PERCEI
	70	ND PRE	á	3	75.5	o	.	82.0	ô	÷	81.8	e.	ģ	2 2	5	2	91.1	89.4	99,3	8	88.3	۴		89.1	86.3	ŝ	83.0	2	8	76.4	103.0	IDEL INE
	09	BAND SOUND	ď	3 -	75.8	٥	•	87.9	80.3	;	ċ	6	Š	90.	,	6	6.46	ě	3	95	94.1	9 9 9 5	95.3	96.1	93.4	93.5	91.7	ô		83.9	108.8	STD
	90	AVE	,		75.0		•	82.8	ċ		81.3	84.8	6	0.70		•	93.8	9 2 9	107.8	96	96.1		97.	98.9	96.0	94.8	92.7	91.0	89.8	86.9	110.7	
	40	1/3-OCT			74.0	۰	ָם פֿרי	81.8	81.5		83 • 5	87.3	91.5	91.3				9.96	109	95	94.6	103.3	98.3	100.4	97.0	96.0	94.2	92.5	91.3	89.1	112.4	
	30		78.5	84.2	75.0		•	82.8	ä	ŝ	83•3	86.0	91.0	92.5	,	92.3	9 • 96	96•1	109.3	96.1	97.3	103.8	97.7	98.9	96.5	96.0	94•2	92.5	90.0	88.4	112.1	
	20		74.8	78.5	76.0	7	•	82.5	83•3	87.8	85.3		0	93.5	,	92.1	97.5	97.1	109.5	96.3	9.96	103.0	98.3	9*66	96.5	96•3	94.5	95.8	91.9	88.5	112.2	
	1.0		78.3	8 6	74.5	ניני	0.00	82.e 80.e	82.0	85.0	83.5	86.5	0.68	92.0	•	91.8	4.46	94•1	104.0	94.3	95.1	101.8	95.7	6.96	94.2	94.3	92.5	90•3	88.5	86.4	138.8	
FREQUENCY			C C	, v	80		200	160	200	250	315	490	500	089	9	803	1000	1250	1600	2000	2500	3150	4000	5000	6300	8300	00001	12500	16000	20000	OVEPALL	DISTANCE

95.5 107.3 111.2 114.1 114.3 113.6 108.8 109.7 106.5 108.3 105.8 104.5 104.7 102.3 101.1

TABLE XIV. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4042 rpm; fundamental blade passage frequency, 1751 hertz.

FREQUENCY								ANGLE	.E, DEG								AVERAGE	POWER
	CI	2.0	30	42	53	69	70	80	06	100	110	120	130	140	150	160	SPL	(PWL)
			1	1/3-0CT	FAVE BA	ONDOS ONV	JND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METER	R RADIU	ns				
50	80.9	78.6	81.4	80.4	80.6	81.1	81.6	82.4	83.1	83.6	84.4	85.9	87.1	89.1	91.4	93.5	85.6	133.0
63	89.7	88.7	87.2	85.2	83.2	81.7	83.2	83.2	86.7	86.0	84.7	87.5	88.5	91.2	93.0	94.3	87.6	135.0
80	82.2	81.7	80.7	79.9	79.2	78.9	79.4	81.4	82.9	83.9	86.4	87.9	90.9	93.2	95.2	97.1	88.3	135.7
100	81.4	79.9	80.9	80.1	80.4	80.9	82.1	84.1	85.9	87.6	90•1	91.1	92.9	95•1	97.1	97.8	90•3	137.7
125	86.2	84.5	87.7	87.5	86.7	86.0	86.5	87.5	89.0	90.5	91•7	93.0	94.0	95•2	96.5	96.3	91•3	138.7
160	85.0	85.0	86.5	86.2	86.0	86.0	86.7	88.2	88.5	89.0	90•0	91.0	91.5	93•5	93.5	93.4	89•6	137.0
200	85.4	86.7	85.7	84.7	84•2	84.7	84.7	84.9	85.4	86.4	87.9	89.9	91.9	93.2	93.7	92.6	88•6	136.0
250	87.6	87.1	89.4	89.6	90•4	87.4	86.4	87.4	87.4	88.1	89.9	91.4	92.4	93.6	94.1	91.8	90•1	137.5
315	88.0	86.5	90.0	88.5	88•5	86.3	86.0	87.5	88.3	89.0	90.8	90.0	91.5	92.8	92.5	90.1	89•5	136.9
400	88•3	90.1	95.6	100•1	98•8	98•1	93.8	91.6	93.8	93.3	95.3	91•3	94.3	92.6	94.6	91.7	95.4	142.8
500	98•7	104.2	108.2	111•4	109•7	108•9	104.2	99.9	103.2	92.9	104.9	96•4	101.2	94.2	102.2	97.8	105.4	152.8
630	100•2	102.6	112.4	113•1	109•7	107•9	101.7	97.2	95.1	102.4	96.6	94•7	96.6	96.2	97.6	97.0	105.7	153.1
890	99.2	102.0	106.7	106.5	111.0	109.2	106.7	105.0	101.0	100.2	98.0	94.8	98.5	99•0	94.7	92.4	105.0	152.4
1000	105.3	105.3	107.8	109.1	113.8	111.3	104.8	101.6	99.6	99.8	94.8	97.1	98.3	97•5	94.8	96.2	106.4	153.8
1250	100.6	103.1	134.3	109.1	111.8	108.1	104.3	102.8	98.8	98.1	94.6	96.1	96.6	94•8	94.3	93.5	104.7	152.1
1609	107.4	108.7	109.2	110•4	111.4	109•4	104•4	101•2	96.9	97.4	98.7	95.2	98.4	95.9	94•9	94.6	105.7	153•1
2330	106.1	106.8	137.6	109•8	109.8	107•6	102•6	99•6	95.8	95.5	97.0	93.8	96.5	94.6	93•3	93.0	104.3	151•7
2500	101.7	102.9	103.2	106•2	106.2	103•9	98•7	95•2	93.2	91.2	91.2	91.0	91.7	90.4	89•2	87.8	100.6	148•0
3150	101.4	102.4	103.9	104.9	105.1	102.6	97.6	93.4	90.4	90.6	89.9	90.7	92.4	90.1	88. 5	87.1	99.9	147.3
4330	101.2	102.7	103.7	104.9	104.9	102.9	96.9	91.9	89.7	89.4	90.4	90.2	92.7	89.4	88. 2	86.1	100.0	147.4
5003	98.8	100.3	102.0	104.0	103.5	103.8	94.3	89.8	89.0	87.0	89.0	89.4	91.0	87.0	86. 8	83.8	98.7	146.1
6300	97.4	98.9	99°4	103.9	100°7	97.9	92.0	86.7	85.7	85.1	86.9	86.7	87.4	85.1	83.7	81.0	96.4	143.8
8339	97.1	98.4	99°4	99.6	99°6	98.1	90.6	85.4	84.6	85.4	87.6	86.9	88.8	86.6	83.6	80.5	96.5	143.9
19000	95.2	96.4	97°2	97.7	97°2	96.4	88.9	83.4	83.7	83.5	86.2	85.4	88.0	84.7	82.5	78.3	95.5	142.9
12599	92.6	94.4	95.1	95.1	96•2	94•4	87.4	82.7	82.8	84.9	87.6	86.6	88.1	84.4	82.8	78.6	95.4	142 • 8
16000	90.1	92.1	92.6	94.1	94•6	91•9	84.1	80.9	84.6	84.9	88.1	87.6	88.1	84.1	83.3	77.8	95.9	143 • 3
20000	87.7	89.7	91.0	91.7	91•5	88•3	82.0	79.3	82.5	83.8	85.3	85.3	86.0	83.0	81.0	76.0	96.1	143 • 5
OVERAL I STANC	113.8	115•2	118.0		120.4	18• S	3 113.4 IDEL INE	0.7 RCEI	108.8 Ved na	108•3 ISE LE	6		108.6 1	07.5		107.4	115.0	162.4
61 METERS	100.2	109.5	115.1	119.5	121•6	120.6	116.5	114•0	1111.8	1111-3	1111.9	109.2	110.3	197.0	104.7	99.2		

52

(d) Percent of design speed, 90; fan physical speed, 4547 rpm; fundamental blade passage frequency, 1970 hertz.

POWER LEVEL (PWL)	137.6 138.1 141.6 143.0	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• • • • • • • • •	144.0 143.8 143.2 143.3 144.1 164.7
AVERAGE SPL		<i>∨ ∨ ∨ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢</i>	800 0m0 KH	96.6 96.4 95.8 95.9 97.3
160	• • • •	10 96 96 10 10 10 10 10 10 10 10 10 10 10 10 10	6 4 6 0 7 6 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	83.2 84.0 81.3 80.9 80.3 78.6
150	96.7 97.7 101.2	099.5 7.999.5 7.999.5 7.999.5 7.999.9		86.7 86.7 84.5 84.4 85.1 83.3
140 US	ကို ထို ကို	00 00 00 00 00 00 00 00 00 00 00 00 00	92. 2. 8 4.0. 0.09.	87.9 88.8 86.7 85.5 85.5 111.8
130 R RADI	91. 92. 96.	97.0 97.2 97.0 98.3 100.5 101.2	250 470 870	89.9 91.1 90.0 90.4 89.9 88.8
120 5-METE	3.2	96.0 96.0 96.3 99.3 95.9	999 999	89.6 89.6 87.9 88.9 90.1 87.8
110 0N 30•	88 2.0 4.0 4.0 4.0	94.5 94.5 92.7 95.3 98.3 96.7 96.7	5 % % 4 % % 8 % % % % % % % % % % % % % %	89.9 97.1 88.7 89.4 90.6 87.9
100 (SPL)	7. 96.4 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	94.5 94.5 90.7 93.8 97.3 100.2	921 946 648	87.7 88.2 86.0 87.4 87.6 86.8
E, DEG 90 LEVEL	9 20 0		46, 46, 110	87.5 86.5 86.5 85.9 87.4 85.8 111.8
ANGL 80 SSURE	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	91.0 93.0 94.5 94.5 100.0 100.9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	87.7 86.9 86.0 85.5 83.9 82.0
70 TO PRE	3.7.5	99.67 92.55 93.2 96.8 99.0 104.2 1110.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	91.7 91.2 89.2 87.9 84.9 83.6 115.4
, 09 S QN	440 99	95.0 95.0 98.8 98.8 98.5 104.4	000 000 000 000 000 000 000 000	97.2 96.8 96.3 93.7 90.9 87.6 116.5
50 50 AVE BA	84.	93.5 93.5 95.2 99.3 101.3 110.7	114. 1111. 108. 106. 106. 104. 104.	101.0 99.4 98.0 97.0 95.7 92.9
40 40 1/3-9CT	920 60		1111. 1111. 108. 105. 1106. 104. 104.	101.2 99.4 97.4 95.2 93.9 92.0
30	84.5 90.0 90.0	98.2 91.2 92.0 97.5 108.3 100.7 1112.4		98.9 96.7 96.4 94.4 91.2 89.5
20	88 99 99 99 99 99 99 99 99 99 99 99 99 9	91.00 92.55 95.88 100.5 103.4 108.4 108.4	106.3 102.1 105.8 105.8 106.6 104.2 102.4	98.2 97.9 96.2 93.4 93.4 90.7
10	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	90.7 90.5 90.5 94.3 101.8 95.9	104.3 103.3 101.8 102.5 105.1 101.7 99.7	97.2 96.7 95.2 94.0 92.6 91.3
FREQUENCY	50 63 80 100 100	165 165 200 315 500 630	809 1250 1250 2200 2500 3159 5000	6390 8373 10000 12590 16300 20000 OVERALL

61 METERS 305 METERS

1000-2 1100-2 1150-4 1200-6 1210-5 1190-5 1170-6 1150-8 1140-8 1140-9 1120-6 1130-1 1120-3 1190-2 1960-4 1010-4 750-2 890-2 960-8 1020-3 1030-9 1020-0 1010-3 990-7 980-7 980-8 950-5 960-6 940-8 930-4 880-5 830-4

TABLE XV. - NOISE OF FAN C CONFIGURATION 313 (HARD INLET, FULLY TREATED FAN FRAME, SUPPRESSED EXHAUST, SMALL

NOZZLE) TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/sq m; PWL re 0.1 picowatt.]

(a) Percent of design speed, 60; fan physical speed, 3044 rpm; fundamental blade passage frequency, 1319 hertz.

							ANGL	ANGLE, 'DEG								AVERA GE	POWER
	20	30	40	20	09	70	80	90	100	110	120	130	140	150	160	740	(PWL)
		-	1/3-0CT	βVE	BAND SOUI	OUND PRE	SSURE	13A31	(SPL)	ON 30.5	5-METER	R RADIO	105				
Ç	~	1.		84.0	4	•	ô	•	ံ		•	ė	2.	2	•	2	
-	78.3	76.3	76.4	76.1	80.8	79.1	79•3	82.4	77.6	77.3	78.4	80.3	81.9	83.1	84.2	79.9	127.3
m	σ.	•	•	74.3	ė.	ô	ċ		ė.	•	ċ	÷	•	Š	-	:	•
ď		•	ŝ		2	÷	÷	ň	-	÷	•	•				4	131.9
	84.8	84.5	83.5	81.5	82.3	82.0	81.5	83.3	83•0	83.5	84.9	85.3	86.8	87.9	87.6	84.1	
86.7	86.2	Š	ġ	•	2•	÷	•	3.	÷	.	÷	•	•	•	ŝ	*	132.3
8	w	ŝ	-		-	79.5	6	6	6	å	•	2	4	_		2	29.
87.0	87.3	86.0	84.7	82.7	82.7	81.0	81.5	85.8	82.7	83.5	•	86.3	86.3		83.2		31.
5.8	86.8	85.8	ŝ	•	2•	82.0	2	2•	5	÷	•	85.5	85.5	84.0	\$		131.3
7.4	87.7	87.1			2.	င္ပံ	÷	_	ě	•	ů	÷	ġ	•	2	•	31.
88.2	88.1	87.7	87.4	85.4	82.9	81.2	81.2	81.4	82.7	83.6	84.7	85.9	85.7	83.4	82.0	4	132.
9•0	88.7	88.7	•	ທໍ	5	ċ	÷	_	÷	÷	•	5.	Ŗ,	5	ċ	•	n
91.0	90.5	89.7		•	ě	2	ij		-	2	ň	Š	•	2			132.6
5.6	95.6	95.8	91.1	89.1	85.6	83.3	81.5	81.3	81.5	81.8	85.6	83.8	83.6	81.8	80.3	•	34.
1. 1.	100.6	104.5		•	ċ	ę	5.	•	æ	•	å	6	å		87.4	0.86	145.4
93.9	95.1	95.7	94.1		89.4	•	2	81.6	÷	•	2	6	2	81.1		89.2	ġ
0.50	93.5	93.1	91.8	89.1	85.0	61.3	79.3	19.4	79.1	80.4	80.7	82.6	81.4	79.6	77.9	•	34.
15.7	97.2	91.6	97.7	ŝ	•	2.	ě	82.7	2.	•	5	3.	2.	81.6	•	-	139.0
92.7	94.1	94.1	93.1	90.2	86.1	81.1	78.2		æ	æ	ė	2.	÷	78.9	77.8		35.
4.6	95.8	97.0			90.5	ě	ċ		81.1	č	ë	\$					38
3.3	94.5	95.0	-	•	6	81.8	å	79.2	ò	80.8	82.1	84.0	82.7	80.7	17.4	68.6	137.3
95.8	93.8	ě		•	8	ं	•			79.5	ċ	2	_	78.6	75.6	•	Ġ
3.1	4.46	93.8	_	_		6	ŝ				•					6	37.
2 • 5	93.7	ů	91.8	90.5	81.8	19.0	75.3	11.1	17.8	19.9	80.3	82.9	80.8	78.2	73.7	89.8	137.2
	91.7		ċ	•	•		Š	•	6		•	6	ċ		74.3	•	137.4
89.0	0006	89•3	89.6	87.8	83.8	73.6	72.3					ċ		-	71.6	ċ	-
	87.7	•		84.8	6	ċ		72.1	73.1	14.9	75.8	77.4	75.1	73.9	67.5	406	137.8
96.5	107.0	108.3	107.0	106.9	103.1	97.8	9.96	96•4	95.7	4.96	97.3	98.8	98.7	97.5	97.1	103.3	150.7
					S 10	EL INE	PERCEIN	VED	NOISE LEVEL	VELS							
92.2	101.6	106.2	108.4	108.9	106.4	102.0	101.0	100.5	100.001	100.3 1	100.5	101.0	98.5	93.9	88.8		
		• 6 6	_	0.70	5	តំ	•	_	ů	70.0	ů	•	.	•	•		

(b) Percent of design speed, 70; fan physical speed, 3551 rpm; fundamental blade passage frequency, 1538 hertz.

POWER	(PWL)		131 • 1 132 • 5 132 • 7	135•3 137•1 134•8	133 • 5 136 • 8 134 • 9	135.8 136.3 137.8	136.8 138.4 140.7	53. 39. 39.	44 4	141-3	140.3 140.2 140.2	156.4
AVERAGE	L		83.7 85.1 85.3	87.9 89.7 87.4	86.1 89.4 87.5	88 88 90 90 4	89.4 91.0 93.3	105.7 91.7 91.7	* 6 4	93.9	92.9 92.8 92.8	109.0
	160		90•3 90•4 93•3	94.6 93.0 90.9	89.4 89.9 87.4	88•1 86•5 86•7	86.0 85.7 86.3	5 6 6	66 6	79.6	76.9 75.0 71.5	103.5
	150		88•1 89•2 91•9	94.0 93.7 90.7	90.2 91.8 89.7	89.8 88.6 89.1	87.6 87.2 87.5			82.4	80.5 80.2 77.3	104•1
	140	105	86.1 87.3 89.9	92.4 92.7 90.2	90.0 91.8 90.2	90.6 90.7 90.9	89.5 88.5 88.7	97.1 86.6 85.5	8 4	85.1	82.8 81.3 78.5	124.0
	130	R RADI	85.6 85.7 88.0	90.9 92.7 89.4	89.0 91.8 89.7	90.9 90.4 90.9	90°0 89°8 89°5	6.85	80	87.3 86.1	87.2 84.6 81.8	103.9
	120	5-METE	83.3 83.5 85.3	89.0 91.1 88.6	86.8 90.2 88.5	89.8 89.7 89.9	88.7 88.4 87.6	ທູລະທີ່ ຄ	8 . 4	85.0	84.6 84.0 80.2	102.6
	011	ON 30.	82.7 82.8 83.9	87.5 89.7 87.5	85.5 89.5 87.6	88.8 89.2 89.2	87.3 87.5 87.2	ພູນ ທູ	9. 4	85.0	84.5 84.1 79.9	6 102.0 LEVELS
	100	(SPL)	83.6 83.5 82.5	85.9 88.8 86.7	84.0 88.7 87.4	88.3 86.9 87.4	86.8 86.8 87.7	0 v 4 0	800	83.0	83.1 82.1 79.1	6 102.6 NOISE LE
E, DEG	06	LEVEL	81.6 81.5 81.2	84.2 87.7 86.4	83.5 85.5	86.1 86.4 88.4	86.1 86.0 87.0	F 16.4 F	* 50 %	81.5	80•7 80•3 76•6	5 101.6 EIVED NO
ANGL E,	80	SSURE	80.4 83.5 78.5	82.4 85.5 85.2	82.3 85.2 85.6	84.8 85.9 85.4	85.8 87.8 88.7		* 6 %	80.5	79.0 76.4 72.3	101.5 PERCET
	70	OUND PRE	81•1 82•3 78•7	82.2 86.8 85.4	82.8 85.8 5.4	85.1 84.7 87.4	86.3 88.4 91.2	~ ° ° ° °	80 %	85.7 84.0	82•1 77•9 75•0	4 105.7 IDEL INE
	09	AND SOU	82.4 84.8 78.9	81.7 87.8 85.0	83.5 88.0 84.9	85.4 87.1 88.9	89.0 90.6 93.7		95. 97.	94.0	90.5 86.9 82.9	109.4 S ID
	20	AVE BAI	80•1 81•8 76•9	80.4 86.8 84.7	83.3 87.7 85.7	87.4 89.1 92.5	91•1 95•1 97•4			95.5	91.8 90.2 87.0	113•1
	40	/3~0CT	81.2 88.0 77.0	81.2 89.3 85.0	83.5 87.7 87.1	87.8 90.7 93.5	92.5 95.2 98.7	112.4 97.1 97.4 104.1	99.3	97.9	93.6 92.3 90.1	114.5
	30	-	80.2 84.7 78.2	81 • 9 86 • 8 86 • 2	86.3 92.3 87.7	89.1 91.9 94.7	93.1 94.9 98.5			97.7	93.8 91.1 89.2	113.0
	50		80.7 82.7 80.5	82.4 86.8 86.4	86.5 90.0 88.4	89.9 91.2 93.9	93.1 95.1 97.9	108-1 97-0 96-7 103-3		97.7	93.8 91.4 89.1	112.0
	01		85.2 88.0 82.0	83.4 87.3 85.4	85.8 89.3 87.6	90.1 90.2 92.4	94•1 95•0 96•2			95.7	92.6 90.2 87.6	110.7
FR EQUENCY			50 63 80	100 125 160	200 250 315	400 500 630	800 1200 1250	1693 2303 2500 3150	4200 5230 6300	8300	12500 16300 23009	OVERALL

98.0 107.1 112.3 116.2 116.5 114.3 111.4 107.7 107.8 108.7 107.1 106.5 106.5 105.0 102.5 97.3

TABLE XV. - Concluded.

(c) Percent of design speed, 80; fan physical speed, 4058 rpm; fundamental blade passage frequency, 1758 hertz.

						ANGLE,	E, DEG								AVERAGE SPL	ãà
30		40	20	60	ć2	80	66	100	110	120	130	140	150	160		(PWL)
1		1/3-0CT/	AVE BAND	O SCUND	PRE	SSURE	LEVEL	(SPL) (ON 30+	S-METER	R P.ADTU	Sr				
83.6		83.6	3	ě	•		84.9		87.1	88•3		91.9	93.6	96.1	88.2	135.6
2.6		86.6	85.9	82.2	83.9	3	86.9	~	å	89.7	90.2	6		Š	89.3	36
	_	81.9	•	:	:		5.	•	88.8	1.06	93.1	96•3	98.1	9.66	91.0	138.4
0	~	84.1	•		85.1	86.8	88.8		2		95.8			ċ	93.1	140.5
8.9	~	89.4	4.06	88.8	6	90.1	-	95.6	4	•			6.66		94.0	•
7	w	89.4	•	•	89.4	4.06	91.6		93.1	93.8	9.46	•		96.5	95.6	5
	w	87.4		•		٠		6		91.8	•	•		•	4.16	138.8
	6	91.1	91.3	89.0	8	90.1	-	93.3		95.9	96.1			3	93.7	
91•1 9	6	91)•3	•	6	89.3	90•3	97.8	:	~	ů	95.0	•	94.8	. ~	92.2	33
	6	~	÷	ċ	40.6	4.06	•	2		94.5	0.96	95.7		•	93.1	140.5
~	σ	97.7	104.2	86.5	97.3	1.96	97.3	-	98•3	96.3	98.2		-	5	_	
<u>-</u>	0	4	ŝ	01.	•	9.96	•	6.16	•	æ	ġ	6.56	95.2	93.6	100.5	41
	0	~	107.7	97.2	2.7	101.5	•	å	7.16	_	97.9	7.16		9.46	102.5	149.9
	C	109.4	110.4 1	6.60	-	101.8	98•3	98•3	9.76	99.5	97.3	6	6.76	95.8	105.0	152.4
0	റ		~	7.90	2• 5	98.5	•	•	95.7	5.8	6.56	8.96	•	-	192.6	23
		ഹ	۲.	ω	8.9	å	m	109.2	ა•66	98.1		98.5	97.8	6.96	109.4	
1111.7 1111.	-	_	0.0	F • 4	2.5	21.	8.9	m	97.7		7.76	97.1	7.96	95.5	107.9	155.3
	0	9	۲.	2	8• 1	ŝ	÷	2•	92•2		\$	91.4	•	•		
106.0 106.	0	2	6.7 1	35.	6	•	3	· 2	2	2.	2.	÷	•	6	101.7	49
105.0 106.0	ŏč	o ,	106.2 1	04.8	97.8	93.0	91.7	91.5	92.0	92.3	93.2	91.7	90.5	89.1	101.4	\$ 1
	5	n	7	•	5	•	•	•	•	•	•	•		•	£ 001	14/41
01 0 • 101	0	90	6.6	00	5	.	٠.	9		8	6		9	•	•	5
98-8 98-8	ه د	· œ	1 0 10	98.2	92.0	86.8	86.5	85.2	88.7	88.4	90.1	88.2	86.3	84.2	98.1	145.5
	1) :)	,		,	`	,	`	•	:	•	,	•	•	•	· ·
	٠. ر	96.3	2.0	å.	٠,	ň.	÷.	ŵ.		·.	6	*	82.8	79.8	•	•
92.0	, O.	93.1	92.7	90.5	83.7	7.08	84.1	84.6	83.2	86. / 84.0	87.1 84.6	83.5	82.4 80.0	74.6	96.6	144.0
118.3 1		118.5	121.2 1	118.4 1	113.1	6.601	108.0	108.2	108.5	108.5 1	10601	109.6	109.5	108.8	115.2	162.6
				SIDEL	N E	PERCEI	VED NO	ISE LEVEL	FLS							

61 METERS 102.4 111.4 117.1 119.6 124.0 122.3 117.6 114.8 113.3 112.9 112.7 111.6 111.3 109.3 106.3 101.1

(d) Percent of design speed, 90; fan physical speed, 4566 rpm; fundamental blade passage frequency, 1978 hertz.

POWER	(PWL)		140.3 140.6 144.0	146.0 146.5 145.5	144 • 1 145 • 9 148 • 7	149.8 154.1 150.9	153.6 151.9 151.3	150.2 154.3 150.0	148.6 148.9 147.5	145.6 145.5 144.8	144.6 144.7 144.7	163.4		
AVERAGE	SPL		92.9 93.2 96.6	98.6 99.1 98.1	96.7 98.5 101.3	102.4 106.7 103.5	106.2 1.04.5 103.9	102.8 106.9 102.6	101.2 101.5 100.1	98.2 98.1 97.4	97.2 97.3 97.3	116.0		
	160		101.5 101.7 105.7	106.2 104.2 101.8	100•4 100•6 98•9	98.3 100.0 97.3	99.7 96.6 95.9	94.3 96.2 92.6	91.7 91.5 89.5	86.9 86.9 84.6	83.3 81.3 78.8	113.7		103.9 85.0
	150		99.5 100.4 103.8	105.9 105.7 102.6	102.2 102.5 101.2	100 • 6 101 • 1 99 • 8	101.0 99.3 98.5	96.6 98.4 95.0	93.6 93.2 92.9	90.5 89.3 87.5	85.1 84.1 81.7	114.3		109.6
	140	ns	96.3 97.8 191.1	104.1 104.2 102.1	101.8 103.2 101.9	101.4 102.6 101.6	102.3 100.2 99.6	97.4 98.3 95.7	94.8 94.6 92.8	91.6 91.5 89.2	87.1 85.8 83.9	114.0		112.4
	130	R RADI	93.7 95.1 98.3	100.9 101.5 100.3	100.0 101.7 102.0	100.6 103.8 100.8	101.1 130.2 99.5	98.4 100.1 96.7	95.6 96.6 94.9	92.2 92.8 91.9	91.0 88.8 86.4	113.2		114.6 97.1
	120	5-METE	92.9 92.7 95.9	99,2 100.4 100.0	97.9 100.1 100.8	99.2 100.2 99.0	100•2 99•3 98•6	97.8 99.2 96.3	95.1 96.2 94.7	92.0 91.0 90.4	89.1 88.7 84.9	111.8		114.7 97.5
	110	ON 30.	91•3 91•3 93•9	97.1 98.8 97.8	95.5 98.3 98.7	98.2 104.6 98.9	99.8 99.0 98.3	97.2 98.8 95.5	94.6 95.1 94.1	91.6 91.4 90.0	89.3 89.0 85.1	1111.5	VELS	115.0 98.0
	100	(SPL)	90.2 88.4 92.1	94•9 97•2 97•5	94.0 96.5 98.0	100.4 105.0 98.8	100•6 99•0 98•1	97.1 98.1 94.8	93.9 94.4 92.4	89.9 90.0 87.8	88.2 86.7 83.6	1111.2	ISE LE	114.8 98.3
E, DEG	06	LEVEL	89.8 88.1 91.4	92.6 96.0 96.8	92.8 95.3 98.7	99.6 104.8 98.9	102•3 99•3 98•0	97.4 99.6 95.8	94.4 93.4 93.1	90.6 89.3 88.5	86.4 86.1 83.3	1111.3	VED NO	115.5 98.6
ANGL	80	SSURE	88.5 87.1 90.1	91.3 94.2 95.8	92.5 93.8 98.9	102.7 106.5 101.6	102•3 99•5 99•6	97.9 99.8 96.0	94.8 94.1 92.3	89.5 88.5 87.2	85.9 83.3 79.6	112.2	PERCEI	115.6 99.1
	70	OUND PRE	88•3 86•9 87•4	89.9 93.3 95.0	92•3 94•0 98•4	101.1 107.8 104.1	108•1 103•5 103•1	102.4 103.9 100.2	95.4 98.7 96.9	94•0 93•2 91•7	89.7 85.5 83.9	114.9	EL INE	118.5
	09	S QN	88.0 87.1 88.1	89.4 93.3 94.1	92.3 95.0 98.2	103.1 105.3 107.4	109.0 126.7 135.6	105.1 108.9 104.0	102.9 103.2 101.1	99•1 99•1 97•7	96.1 93.1 89.6	117.1	S 10	121•3 103•7
	20	AVE BA	87.2 86.1 90.4	87.8 92.0 93.6	92.5 96.2 102.4	107.6 108.3 106.6	1111.1 110.2 109.3	108•1 1111•6 107•5	105.4 105.4 103.8	101.3 100.3 98.7	97•3 96•0 92•8	119.6		122.6 104.7
	40	/3-0CT	87.2 86.3 90.3	88.6 92.2 93.1	93.7 97.5 105.7	106.7 1111.1 108.9	110•3 110•7 109•0	107.4 113.1 108.5	106.6 106.6 105.4	102.8 101.2 99.3	97.3 96.4 94.7	120.5		122.0 103.5
	30	1	86.3 85.8 91.3	89.3 92.8 94.6	93.5 97.0 107.2	98.6 112.5 104.6	110.0 105.8 107.1	106•1 1111•4 106•3	104.9 105.4 103.1	100.9 100.5 98.3	96.6 93.6 91.4	119.1		117.8 98.4
	2.0		85.0 86.8 90.8	89.1 93.0 94.8	94.7 96.3 130.2	191.4 197.5 190.8	106.5 194.7 196.3	135.7 110.8 106.3	104.1 104.6 102.3	100.6 99.8 97.8	95.9 92.6 89.8	117.2		103.1 112.7 117.8 77.2 91.3 98.4
	10		89.7 87.9 89.6	90.9 94.7 94.8	94.0 96.7 101.0	98.9 103.1 98.8	133.6 133.8 104.6	133.7 109.1 104.0	102.6 103.1 100.3	99.2 98.3 96.3	94.1 90.6 87.6	115.4		103.1
FREQUENCY			50 63 8)	109 125 169	200 250 315	429 530 630	800 1000 1250	1600 2300 2500	3150 4000 5000	6300 8303 10000	12500 16000 20000	OVERALL	DISTANCE	61 METERS 305 METERS

Figure 1. - Cutaway view of one configuration of fan test assembly.

Figure 2. - Fan C performance map for acoustical tests.

	152. 4 (60. 0)
$-\gamma$	
	Adapter -
	Inlet suppressor

Flow-passage acoustical treatment specifications (for inlet suppressor, see ref. 6)				
	Fan frame	Bypass exhaust duct suppressor		Core suppressor
		Walls	Splitter	
Facing sheet: Thickness, cm (in.) Hole diameter, cm (in.) Open area, percent	10	0. 051 (0. 020) 0. 127 (0. 050) 8	0.127 (0.050) 4.5	0. 076 (0. 030) 0. 318 (0. 125) 23
Backing material Cell size, cm (in.)	MDOFa	Hexagonal-cell honeycomb 0, 95 (3/8)	Hexagonal-cell honeycomb 0, 95 (3/8)	Scottfelt SF3-900
Backing depth, cm (in.)	2.54 (1.00)	3.71 (1.46)	0. 787 (0. 31)	5.08 (2.00)

^aMulti-degree of freedom (ref. 4).

Figure 3. - Cross sections of hardware for acoustical testing. All dimensions are in centimeters (in.).

Figure 4. - Full-scale fan noise test facility.

Figure 5. - Plan view of full-scale fan noise test facility.

Figure 6. - Standard-day 1/3-octave band spectra on a 30.5-meter (100-ft) radius at each angle. Configuration 305: hard inlet, fully treated fan frame, hard exhaust, and nominal nozzle.

Figure 6. - Continued.

Figure 6. - Continued

Figure 6. - Concluded.

Figure 7. - Standard-day 1/3-octave band spectra on a 30.5-meter (100-ft) radius at each angle. Configuration 309: suppressed inlet, fully treated fan frame, suppressed exhaust, and nominal nozzle.

Figure 7. - Continued.

Figure 7. - Concluded.

Figure 8. - Continuous 20-hertz constant bandwidth spectra at peak noise angles at 30.5-meter (100-ft) radius for configuration 305 (hard inlet, fully treated fan frame, hard exhaust, and nominal nozzle).

Figure 9. - Continuous 20-hertz constant bandwidth spectra at peak noise angles at 30.5-meter (100-ft) radius for configuration 309 (suppressed inlet, fully treated fan frame, suppressed exhaust, and nominal nozzle).

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION
451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546