International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 1

molecules
Country: CZE

Detekování molekul

Petr pracuje ve společnosti, která vyvíjí stroje na detekci molekul. Každá molekula má kladnou celočíselnou váhu. Stroj má detekční rozsah [l,u], kde l a u jsou kladná celá čísla. Takový stroj může detekovat určitou množinu molekul právě tehdy, když tato množina obsahuje podmnožinu molekul, jejichž součet vah leží v detekčním rozsahu stroje.

Řečeno formálně, uvažujme n molekul s kladnými celočíselnými vahami w_0,\dots,w_{n-1} . Detekce bude úspěšná, jestliže existuje množina navzájem různých indexů $I=\{i_1,\dots,i_m\}$ taková, že $l\leq w_{i_1}+\dots+w_{i_m}\leq u$.

Je zajištěno, že rozdíl mezi l a u bude vždy větší nebo roven rozdílu mezi vahami nejtěžší a nejlehčí molekuly. Formálně tedy platí, že $u-l \geq w_{max}-w_{min}$, kde $w_{max}=\max(w_0,\ldots,w_{n-1})$ a $w_{min}=\min(w_0,\ldots,w_{n-1})$.

Vaším úkolem je napsat program, který buď najde jakoukoliv podmnožinu molekul, jejichž součet vah leží v detekčním rozsahu, nebo zjistí, že taková podmnožina neexistuje.

Implementační detaily

Implementujte jednu funkci (metodu):

- int[] solve(int I, int u, int[] w)
 - la u: krajní meze detekčního rozsahu,
 - w: váhy molekul.
 - o pokud požadovaná podmnožina existuje, funkce vrátí pole indexů těch molekul, které tvoří jednu takovou vhodnou podmnožinu. Jestliže existuje více správných řešení, nalezněte jedno libovolné z nich.
 - o pokud požadovaná podmnožina neexistuje, funkce vrátí prázdné pole.

V programovacím jazyce C vypadá hlavička funkce následovně:

- int solve(int I, int u, int[] w, int n, int[] result)
 - o n: počet prvků v poli w (tj. počet molekul),
 - o ostatní parametry mají stejný význam, jako je uvedeno výše.
 - o namísto toho, aby funkce vracela pole obsahující m indexů (jako je tomu výše), zde funkce zapíše příslušné indexy do prvních m prvků pole result a vrátí hodnotu m.
 - pokud požadovaná podmnožina neexistuje, function nic nezapíše do pole result a vrátí hodnotu 0.

Váš program může zapsat indexy vybraných molekul do návratového pole (nebo do pole 'result' v případě programovacího jazyka C) v libovolném pořadí.

Detaily implementace ve vašem programovacím jazyce najdete v poskytnutých vzorových souborech.

Příklady

Příklad 1

```
solve(15, 17, [6, 8, 8, 7])
```

V tomto příkladu máme čtyři molekuly s vahami 6, 8, 8 a 7. Stroj může detekovat podmnožiny molekul se součtem vah mezi 15 a 17, včetně obou krajních hodnot. Poznamenejme, že opravdu platí $17-15\geq 8-6$. Součet vah molekul číslo 1 a 3 je $w_1+w_3=8+7=15$, takže funkce může vrátit pole [1, 3]. Dalšími možnostmi správné odpovědi jsou pole [1, 2] ($w_1+w_2=8+8=16$) a [2, 3] ($w_2+w_3=8+7=15$).

Příklad 2

solve(14, 15, [5, 5, 6, 6])

V tomto příkladu máme čtyři molekuly s vahami 5, 5, 6 a 6. Hledáme jejich podmnožinu se součtem vah mezi 14 a 15, včetně. Opět si všimněte, že $15-14 \geq 6-5$. Žádná podmnožina molekul se součtem vah mezi 14 a 15 neexistuje, takže funkce vrátí prázdné pole.

Příklad 3

solve(10, 20, [15, 17, 16, 18])

V tomto příkladu máme čtyři molekuly s vahami 15, 17, 16 a 18. Hledáme jejich podmnožinu se součtem vah mezi 10 a 20, včetně. Opět platí $20-10 \geq 18-15$. Každá podmnožina tvořená právě jednou molekulou má celkovou váhu mezi 10 a 20, takže existují čtyři možné správné odpovědi: [0], [1], [2] a [3].

Podúlohy

- 1. (9 bodů): $1 \leq n \leq 100$, $1 \leq w_i \leq 100$, $1 \leq u, l \leq 1000$, všechny hodnoty w_i jsou shodné.
- 2. (10 bodů): $1\leq n\leq 100$, $1\leq w_i,u,l\leq 1000$, $\max(w_0,\ldots,w_{n-1})-\min(w_0,\ldots,w_{n-1})\leq 1$.
- 3. (12 bodů): $1 \leq n \leq 100$, $1 \leq w_i, u, l \leq 1000$.
- 4. (15 bodů): $1 \le n \le 10\,000$, $1 \le w_i, u, l \le 10\,000$.
- 5. (23 bodů): $1 \le n \le 10\,000$, $1 \le w_i, u, l \le 500\,000$.
- 6. (31 bodů): $1 \le n \le 200\,000$, $1 \le w_i, u, l < 2^{31}$.

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím tvaru:

- \circ řádek 1: celá čísla n , l , u .
- \circ řádek 2: n celých čísel: w_0,\ldots,w_{n-1} .