

Bauingeniuerwesen Institut für Statik und Dynamik

Beleg 1

BIW4-05 SIMULATION DYNAMISCHER SYSTEME

Philipp Göbel

Matrikelnummer: 4607083 Immatrikulationsjahr: 2018

21. Mai 2023

Betreuer Ines Wollny Jakob Platen

Betreuender Hochschullehrer Univ.-Prof. Dr.-Ing. habil. Michael Kaliske

Inhaltsverzeichnis

1	Lösung des Beleges	5
2	Julia-Code	9

1. Beleg	BIW4-05 SIMULATION DYNAMISCHER SYSTEME	SS 2023
Thema	Elastisch gebetteter Balken	
	Bauingenieurwesen	8. Semester

Gegeben ist das als Balken auf elastischer Bettung idealisierte Modell einer Schiene (siehe Abbildung 1) mit den zugehörigen Materialparametern:

Abbildung 1: Elastisch gebetteter Balken

$$E = 21 \cdot 10^{10} \frac{\text{N}}{\text{m}^2}, \quad I = 3055 \,\text{cm}^4, \quad \mu = 60 \,\frac{\text{kg}}{\text{m}}, \quad k = 3 \cdot 10^6 \,\frac{\text{N}}{\text{m}^2}.$$

Die dynamische Steifigkeit $K(\eta)$ des Balkens kann analytisch abgeleitet werden:

$$\hat{F}_0 = \overline{K}(\eta) \, \hat{v}_0, \quad \overline{K}(\eta) = 8 \, EI \, W^3, \quad W = \frac{\sqrt{2}}{2} \, \sqrt[4]{\frac{k}{EI} \, (1 - \eta^2)}, \quad \eta^2 = \Omega^2 \, \frac{\mu}{k}.$$

Für $\eta > 1.0$ gilt $\sqrt[4]{-1} = \frac{\sqrt{2}}{2} (1+i)$. Die Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit $\tilde{K}(\omega)$,

$$\overline{K}(\Omega) \approx \tilde{K}(\Omega) = \frac{P_0 + i\Omega P_1 + (i\Omega)^2 P_2 + \ldots + (i\Omega)^5 P_5}{1 + i\Omega Q_1 + \ldots + (i\Omega)^4 Q_4},$$

wurden mit Hilfe der Fehlerquadratmethode bereits ermittelt:

 $P_0 = 10337706,5 \text{ N m}^{-1}$

 $P_1 = 48744,172 \text{ N m}^{-1} \text{ s}^1$

 $P_2 = 455,205728 \text{ N m}^{-1} \text{ s}^2$

 $P_3 = 1,13950676 \text{ N m}^{-1} \text{ s}^3$

 $P_4 = 0.00483245447 \text{ N m}^{-1} \text{ s}^4$

 $P_5 = 3,11054119 \cdot 10^{-6} \text{ N m}^{-1} \text{ s}^5$

 $Q_1 = 0.00490648418 \text{ s}$ $Q_2 = 2.71147593 \cdot 10^{-5} \text{ s}^2$

 $Q_3 = 5,42912842 \cdot 10^{-8} \text{ s}^3$

 $Q_4 = 6,94958499 \cdot 10^{-12} \text{ s}^4$

Aufgabenstellung:

- 1. Überführen Sie die gebrochenrationale Steifigkeitsbeziehung in ein System von linearen Gleichungen in $(i\Omega)$: $i\Omega \mathbf{A} \hat{\mathbf{z}} + \mathbf{B} \hat{\mathbf{z}} = \mathbf{r}$.
- 2. Transformieren Sie das System in den Zeitbereich.
- 3. Zum Zeitpunkt t=0 befindet sich das System in Ruhe und die Durchbiegung v_0 ist gleich Null. Ermitteln Sie numerisch eine Lösung im Zeitbereich für die Durchbiegung $v_0(t)$ infolge der gegebenen Erregung für $0 \le t \le 1$ s.

$$v_0(t) = v(x = 0, t)$$

Abbildung 2: Erregung

1 Lösung des Beleges

Mithilfe der bereits gegebenen Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit und des Arbeitsblattes aus Übung 1 kann die Steifigkeitsbeziehung in ein System von linearen Gleichungen $i\Omega A\hat{z} + B\hat{Z} = r$ überführt werden.

Dabei ist $\hat{f}_0 = 0$, weil es keine Anfangsbelastung gibt.

1 Lösung des Beleges

Aus den Beziehungen lassen sich die Matrizen A, B, f wie folgt belegen:

$$A = \begin{bmatrix} s_1^{(0)} & 0 & 0 & 0 & 0 \\ 0 & -s_1^{(1)} & 0 & 0 & 0 \\ 0 & 0 & s_1^{(2)} & 0 & 0 \\ 0 & 0 & 0 & -s_1^{(3)} & 0 \\ 0 & 0 & 0 & 0 & s_1^{(4)} \end{bmatrix}$$

$$B = \begin{bmatrix} s_0^{(0)} & 0 & 0 & 0 & 0 \\ 0 & -s_0^{(1)} & 0 & 0 & 0 \\ 0 & 0 & s_0^{(2)} & 0 & 0 \\ 0 & 0 & 0 & -s_0^{(3)} & 0 \\ 0 & 0 & 0 & 0 & s_0^{(4)} \end{bmatrix}$$

$$\hat{f} = \begin{bmatrix} \hat{f}_0 \\ \hat{f}_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 447586.61 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & -4.92 \times 10^{-14} & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & -7.92 \times 10^{8} & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & -2.25 \times 10^{-13} & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 8.68 \times 10^{7} \end{bmatrix}$$

$$B = \begin{bmatrix} -2.80 \times 10^9 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & -1.0 & -3.58 \times 10^{-10} & -1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 1.75 \times 10^{-13} & -1.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.06 \times 10^{10} \end{bmatrix}$$

$$\hat{f} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

Um die numerische Lösung im Zeitbereich für die Durchbiegung $v_0(t)$ infolge der gegebenen Erregung zu ermitteln, muss die Lösung in Zeitschritten integriert werden. Zunächst muss das System von dem Frequenzbereich in den Zeitbereich transformiert wer-

den. Für den Frequenzbereich gilt:

$$\lambda A \hat{z} + B \hat{z} = \hat{F} \tag{1.1}$$

$$\mathbf{z}(t) = \hat{\mathbf{z}} \cdot e^{i\omega t} = \hat{\mathbf{z}}e^{\lambda t} \tag{1.2}$$

$$\mathbf{F}(t) = \hat{\mathbf{F}} \cdot e^{i\omega t} = \hat{\mathbf{F}} e^{\lambda t} \tag{1.3}$$

(1.4)

Die Ableitung der Zeit ergibt:

$$\dot{\mathbf{z}}(t) = \lambda \hat{\mathbf{z}} e^{\lambda t} \tag{1.5}$$

Daraus folgt:

$$A \dot{z}(t) + B z(t) = F(t)$$
 (1.6)

Hierbei sind die Matrizen A und B zeitlich konstante Matrizen.

Nun zur Lösung durch Integration

$$\int [A \dot{z}(t) + B z(t) = F(t)] dt = \int F(t) dt$$
(1.7)

Die lineare Ansatzfunktion ergibt sich für den Bereich $t_0 \le t \le t_1$ zu:

$$z(t) \approx z_0 \left(1 - \frac{\tau}{\Delta t}\right) + z_1 \left(\frac{\tau}{\Delta t}\right)$$
 (1.8)

Jetzt wird die Ableitung gebildet und in (1.7) eingesetzt:

$$\hat{\mathbf{z}}(t) \approx \mathbf{z}_0(t) \, \frac{1}{\Delta t} + \mathbf{z}_1(t) \, \frac{1}{\Delta t} \tag{1.9}$$

$$\int_{0}^{\Delta t} \left[\mathbf{A} \cdot (-\mathbf{z}_{0} + \mathbf{z}_{1}) \frac{1}{\Delta t} + \mathbf{B} \left[\mathbf{z}_{0} (1 - \frac{\tau}{\Delta t}) + \mathbf{z}_{1} (\frac{\tau}{\Delta t}) \right] \right] d\tau = \int_{0}^{\Delta t} = \mathbf{F}(t) d\tau \tag{1.10}$$

$$\left(A + \frac{\Delta t}{2}B\right)z_1 + \left(\frac{\Delta t}{2}B - A\right)z_0 = \int_0^{\Delta t} F(t)d\tau \qquad (1.11)$$

nach Umstellen auf z, gilt für einen Zeitschritt:

$$\mathbf{z}_{1} = (\mathbf{A} + \frac{\Delta t}{2}\mathbf{B})^{-1} \cdot \left[\int_{0}^{\Delta t} F(t)d\tau - \left(\frac{\Delta t}{2}\mathbf{B} - \mathbf{A}\right) \mathbf{z}_{0} \right]$$
 (1.12)

Für die Integration von F(t) gilt:

$$\int_0^{\Delta t} \mathbf{F}(t)d\tau = \frac{\mathbf{F}_0 + \mathbf{F}_1}{2} \Delta t \tag{1.13}$$

Dabei ist für die Integration zu beachten, dass F(t) auch als Vektor F(t) darzustellen ist. Die erste Stelle des Vektors wird mit $\hat{F} = 100kN$ befüllt und der Rest ist null.

Für die Berechnung von z_1 habe ich $\Delta t = 0.0001$ s gewählt. Als Ergebnis für z_1 komme ich auf folgendes Ergebnis.

$$z_{1} = \begin{bmatrix} 0.000305824231123104 \\ 835182.7143650816 \\ -8.958575596555298e - 7 \\ 23107.04125860822 \\ 6.00216711715513e - 6 \end{bmatrix}$$
(1.14)

Der erste Wert von z_1 stellt die gesuchte Größe v_0 dar.

Somit ist das Endergebnis:

$$v_0(t) = 0.000305824231123104 \frac{m}{s} \tag{1.15}$$

Der Verlauf von z_1 ist im folgenden Diagramm über den Zeitraum von $0 \le t \le 1$ dargestellt.

Abbildung 1.1: Verlauf von z_1 über $0 \le t \le 1s$

Es ist deutlich die Belastung infolge von F(t) zu sehen, die dann mit der Zeit abklingt.

2 Julia-Code

```
1 using Plots
 2
3 # Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit
4 P0 = 10337706.5
 5 P1 = 48744.172
6 P2 = 455.205728
7 P3 = 1.13950676
8 P4 = 0.00483245447
9 P5 = 3.11054119e-6
10
11 \quad Q0 = 1
12 Q1 = 0.00490648418
13 \quad Q2 = 2.71147593e-5
14 \quad Q3 = 5.42912842e - 8
15 \quad Q4 = 6.94958499e-12
16
18
19
20
21 #Abspaltung
22
23 s1_0 = P5/Q4
24 s0_0 = (P4-s1_0*Q3)/Q4
25 \quad r3_0 = P3-s0_0*Q3-s1_0*Q2
26 	 r2_0 = P2-s0_0*Q2-s1_0*Q1
27 r1_0 = P1-s0_0*Q1-s1_0
28 \quad r0_0 = P0_0
29
30
31 	 s1_1 = Q4/r3_0
32 	ext{ s0\_1} = (Q3-s1\_1*r2\_0)/r3\_0
33 r2_1 = Q2-s0_1*r2_0-s1_1*r1_0
34 r1_1 = Q1-s0_1*r1_0-s1_1*r0_0
35 \quad r0_1 = Q0-s0_1*r0_0
36
```

```
37
38 	 s1_2 = r3_0/r2_1
39 \ s0_2 = (r2_0-s1_2*r1_1)/r2_1
40 \quad r1_2 = r1_0-s0_2*r1_1-s1_2*r0_1
41 \quad r0_2 = r0_0 - s0_2 * r0_1
42
43
44 	 s1_3 = r2_1/r1_2
45 	ext{ s0}_3 = (r1_1-s1_3*r0_2)/r1_2
46 \quad r0_3 = r0_1-s0_3*r0_2
47
48
49 	 s0_4 = r0_2/r0_3
50 	 s1_4 = r1_2/r0_3
51
52
53 f0 = 0
54
55
56 A = [s1_0 0 0 0 0;
57
        0 -s1_1 0 0 0;
58
        0 0 s1_2 0 0;
59
        0 0 0 -s1_3 0;
       0 0 0 0 s1_4]
60
61
62 B = [s0_0 1 0 0 0;
63
       1 -s0_1 -1 0 0;
64
       0 -1 s0_2 1 0;
65
       0 0 1 -s0_3 -1;
        0 0 0 -1 s0_4]
66
67
68
69
70 r = [0;0;0;0;0]
71
72 println(A)
73 println(B)
74 \text{ println}(r)
75
76
77
79
80
81 #Zeitschrittlnge wird hier im Skript mit t anstatt delta t beschrieben
82 t = 0.0001 \#s
83
84 #Anzahl der Iteratiosschritte
85 # Die Anzahl der Iterationsschritte ergeben sich aus der Gr e von t
86
87
```

```
88 j_ges = Int(1/t+1)
 89 j_Schritt = Int(1/t)
 90 println("Anzahl der Zeitschritte: ",j_Schritt)
 91
 92 #Befllen der Anfangsarrays
 93 z0 = [0;0;0;0;0]
 94
 95 #Array f r die Darstellung des Plots
 96 	 z3 = zeros(j_ges)
 97
 98 # Erstellen eines Arrays ber die Zeitschritte, f r in die Integration
 99 j = zeros(j_ges, 1)
100 for i in 1:j_ges
101
         j[i, 1] = (i - 1) * t
102 end
103
104
105
106 # Funktionen von F(t)
107 # Diese sind in 3 Teilen unterteilt, wie aus der Grafik in der Aufgabenstellung
108 # zu entnehmen ist
109 function F1(k)
110
          return [1;0;0;0;0]*100000/0.01*k
111 end
112
113 F2 = [1;0;0;0;0]*100000
114
115 function F3(k)
116
          return [1;0;0;0;0]*(100000 - 100000/0.01*k)
117 end
118
119
120 # Integration ber den Gesamten Zeitbereich von 1 Sekunden
121 # Dabei wird mit der if Anweisung geschaut, in welchem Bereichen des Graphen
122 # man sich befindet
123 for i =1:j_ges
124
125
          if i == 1
126
               z1 = (A+0.001/2*B)^{-1} * (F1(j[i])+F1(j[i+1]))/2*t
127
               global z0 = z1
128
          end
129
130
          if i>1 && i<=0.01*j_Schritt</pre>
131
               z1 = inv((A+t/2*B)) * ((F1(j[i])+F1(j[i+1]))/2*t-(t/2*B-A)*z0)
132
               global z0 = z1
133
          end
134
135
          if i>0.01*j_Schritt && i<=0.02*j_Schritt</pre>
136
               z1 = inv((A+t/2*B)) * (F2*t-(t/2*B-A)*z0)
137
               global z0 = z1
138
          end
```

```
139
140
         if i>0.02*j_Schritt && i<=0.03*j_Schritt</pre>
141
               z1 = inv((A+t/2*B)) * ((F3(j[i])+F3(j[i+1]))/2*t-(t/2*B-A)*z0)
142
               global z0 = z1
143
          end
144
145
         if i>0.03*j_Schritt
146
               z1 = inv(A+t/2*B) * -(t/2*B-A)*z0
147
               global z0 = z1
148
         end
149
150
         z3[i] = z1[1]
151
152 end
153
154 #Ausgabe der Ergebnisse
155 println("L sung f r z1")
156 println(z0)
157
158 plot(j, z3, xlabel = "Sekunden", ylabel = "Werte f r z1")
159 savefig("plot.png")
```