Analisi II - prima parte

Serie numeriche

Serie di numeri reali o complessi

Problema:

Dare significato a somma di ∞ numeri reali o complessi assegnati come termini di una successione

Motivazione ed esempi

- Urti non elastici
 - 0 < q < 1
 - 1. La pallina si ferma? In un tempo finito?
 - 2. Se si, quanto è questo tempo?

$$s=rac{1}{2}gt^2$$
 , $t=\sqrt{rac{2s}{g}}$. $t_0=\sqrt{rac{2h}{g}}$, $t_1=2\sqrt{rac{2qh}{g}}=2t_0\sqrt{q}$, $t_2=2\sqrt{rac{2q^2h}{g}}=2t_0(\sqrt{q})^2$,... $t_n=2t_0(\sqrt{q})^n$ $T=t_o+t_1+...+t_n+...=t_0+2t_0(\sqrt{q}+(\sqrt{q})^2+...+(\sqrt{q})^n+...)$ T . finito o infinito?

- $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1$
- 1+2+3+...
- $1,234 = 1 + 2 \cdot 0, 1 + 3 \cdot 0, 01 + 4 \cdot 0, 001; 1,5 = 1 + \frac{5}{10} + \frac{5}{100} + \dots$
- nastro elastico, formica

$$v=10cm/min$$

$$v=10cm/min$$
 $1\degree min=rac{10}{100}=rac{1}{10}$ di nastro

$$2\degree min = \frac{10}{100} + \frac{10}{200} = \frac{1}{10} + \frac{1}{2\cdot 10}$$
 di nastro

$$3\degree min = \frac{10}{100} + \frac{10}{2:10} + \frac{10}{3:10}$$
 di nastro

se raddoppio la lunghezza del nastro
$$2°min = \frac{10}{100} + \frac{10}{200} = \frac{1}{10} + \frac{1}{2 \cdot 10} \text{ di nastro} \\ 3°min = \frac{10}{100} + \frac{10}{2 \cdot 10} + \frac{10}{3 \cdot 10} \text{ di nastro} \\ n°min = \frac{10}{100} + \frac{10}{2 \cdot 10} + \frac{10}{3 \cdot 10} + \dots + \frac{1}{n \cdot 10} \text{ di nastro}$$

- 1. riuscirrà la formica ad arrivare all'altro estremo?
- 2. se si in quanto tempo?

Idea

$$(a_n)_n$$
 successione di addendi $a_1+a_2+...+a_n+...=?$ $s_2=a_1+a_2$ $s_5=a_1+a_2+a_3+a_4+a_5$... $\lim\limits_{n} s_n$

Definizione di serie di numeri reali

Sia $(a_n)_n$ una successione in \mathbb{R} . $orall n\in\mathbb{N}^+$ poniamo $s_1=a_1$, $s_n=a_1+a_2+...+a_n$ per $n\geq 2$

 s_n sarà la ridotta, parziale, n-esima.

La coppia $((a_n)_n,(s_n)_n)$ si dice serie di numeri reali di cui a_n è il termine generale e s_n è la ridotta n-esima e si indica con $\sum_i^n a_i$ oppure $a_1+a_2+a_3+...+a_n$

• Se esiste finito $\lim_n s_n = s \in \mathbb{R}$ si dice che la serie è **convergente** con somma s e si scrive $s - \sum_n s_n = s$

$$s=\sum_{i}^{+\infty}a_{n}$$

- ullet Se $\lim_n s_n = +\infty$ (o $-\infty$) si dice che la serie diverge a $+\infty$ (o $-\infty$)
- ullet se **non** esiste il $\lim_n s_n$, la serie si dice indeterminata

Esempi importanti

Serie geometrica

È la serie
$$a+ak+ak^2+ak^3+...=\sum_{n=0}^{+\infty}a\cdot k^n$$
 con $a\neq 0, k\in\mathbb{R}$

Si ha
$$s_n=a+ak+ak^2+...+ak^n=$$

•
$$a\frac{1-k^n}{1-k}$$
 se $k \neq 1$

•
$$n \cdot a$$
 se $k = 1$ e quindi

$$ullet |k| < 1 \Rightarrow \lim_{n o +\infty} s_n = a \cdot rac{1}{1-k}$$

$$ullet |k| = 1 \Rightarrow \sum_{n=0}^{+\infty} a \cdot k^n$$
 diverge

ullet $k\geq 1$ diverge

ullet $k \leq -1$ oscilla, la serie è indeterminata

Esempio della pallina che cade

$$T = t_0 + t_1 + ... = t_o + 2t_o(1 + \sqrt{q} + (\sqrt{q})^2 + (\sqrt{q})^3) + ... + (\sqrt{q})^n + ...) o t_0 + 2t_0\sqrt{q}\frac{1}{1-\sqrt{q}}$$

Serie armonica

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{n=1}^{+\infty} \frac{1}{n}$$

si ha
$$s_n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}=\int a(x)dx$$
, dove $a(\cdot)=\frac{1}{n}$ Considero la funzione $\frac{1}{x+1}$ e ho che $a(x)\geq \frac{1}{x+1}$ \Rightarrow area di $a(x)\geq$ area di $\frac{1}{x+1}$ Risulta $s_n=\int a(x)dx\geq \int \frac{1}{x+1}dx=[log(x+1)]_0^n$ se $n\to+\infty$, $(log(n+1)-log(0))\to+\infty\Rightarrow s_n$ diverge

Serie a termini non-negativi

Criterio del confronto

Serie armonica generalizzata

$$\sum rac{1}{n^p}$$
 converge se $p>1$, diverge altrimenti

Notazione di Landau

Siano $(a_n)_n$ e $(b_n)_n$ due successioni in $\mathbb R$, con $b_n
eq 0 orall n$ e $\lim_n a_n = \lim_n b_n = 0 \Rightarrow$

- $a_n=O(b_n)$ se esistono k>0 e n=1 e n=1 e n=1 t.c. $|a_n|\leq k|b_n|$, $\forall n\geq n=1$ (oppure $\frac{|a_n|}{|b_n|}\leq k$, cioè a_n tende più velocemente a zero più velocemente di b_n)
- $a_n = o(b_n)$ se $\lim_n \frac{a_n}{b_n} = 0$

Criterio dell'ordine di infinitesimo

Sia
$$\sum a_n$$
 , $a_n \geq 0$, $orall n$,

1. se esiste
$$p>1$$
 t.c. $a_n=O(rac{1}{n^p})$, allora a_n converge

2. se
$$\lim_n n \cdot a_n > 0$$
 (o $+\infty$), allora $\sum a_n$ diverge

Dimostrazione

1. Poichè
$$a_n=O(\frac{1}{n^p})$$
 esistono $k>0$ e $n\in\mathbb{N}^+$ t.c. $a_n=|a_n|< k\frac{1}{n^p}$, $\forall n\geq n$ Quini $\sum a_n$ è maggiorata dalla serie $\sum \frac{k}{n^p}$ convergente, dunque per il criterio del confronto $\sum_{n=n+1}^{+\infty}a_n$ converge e pertanto converge anche $\sum_{n=1}^{+\infty}a_n$

2. Poichè
$$\lim_n n \cdot a_n > 0$$
, per il teorema di permanenza del segno esiste $L > 0$ e $n \in \mathbb{N}^+$ t.c. $\forall n \geq n$, $n \cdot a_n > L \Leftrightarrow a_n \geq L \cdot \frac{1}{n}$ Essendo la serie $\sum \frac{1}{n}$ divergente anche $\sum_{n=1}^{+\infty} \frac{L}{n}$ diverge e per il criterio del confronto $\sum_{n=n+1}^{+\infty} a_n$ diverge, quindi diverge anche $\sum_{n=1}^{+\infty} a_n$

Criterio del rapporto

Sia
$$\sum a_n$$
, $a_n>0$, $orall n\in \mathbb{N}^+$
Se esite $k\in]0,1[$ t.c. $\dfrac{a_{n+1}}{a_n}\leq k$
allora la serie $\sum a_n$ converge

Dimostrazione

Si ha
$$a_2 \leq a_1 \cdot k$$
, $a_3 \leq a_2 \cdot k \leq a_1 \cdot k^2$, ... dunque $a_{n+1} < k^n a_1$, $orall n \in \mathbb{N}^+$

La serie è maggiorata dalla serie geometrica con ragione k<1, la quale converge, ciò implica che $\sum a_n$ converge

Osservazione

sotto l'ipotesi del rapporto u ha che $a_n=o(\frac{1}{n^p})$, $\forall p>1$, perchè va a zero esponenzialmente

Osservazione₂

Non basta richiedere
$$a_{n+1} < a_n$$
, $orall n \in \mathbb{N}^+$ esempio: $\sum rac{1}{n}$, divergente

Corollario del criterio del rapport (con il limite)

Sia
$$\sum a_n \operatorname{\mathsf{con}} a_n > 0 orall n \in \mathbb{N}^+$$
, si ha

1. se esiste
$$\lim_n rac{a_{n+1}}{a_n} = L$$
, con $L < 1$, allora $\sum a_n$ converge

2. se esiste
$$\lim_n \frac{a_n}{a_n} = L$$
, con $L>1$, allora $\sum a_n$ diverge

Osservazione

se L=1nulla si può dire

Dimostrazione

1.
$$\lim_n \frac{a_{n+1}}{a_n} = L$$
 equivale a $(\forall \varepsilon < 0)(\exists \bar{n})(\forall n)(n > \bar{n} \Rightarrow |\frac{a_{n+1}}{a_n} - L| < \varepsilon)$ $-\varepsilon < \frac{a_{n+1}}{a_n} < \varepsilon$, con ε preso t.c. $L + \varepsilon < 1$ e quindi $\frac{a_{n+1}}{a_n} < L + \varepsilon = K < 1$ Dunque per il criterio del rapporto $\sum_{n=\bar{n}+1}^{+\infty} a_n$ converge, pertanto $\sum a_n$ converge

2. procedendo come nel caso 1. esiste \bar{n} t.c. $\forall n > \bar{n}$

$$rac{a_{n+1}}{a_n}>L-arepsilon$$
, risulta $rac{a_{n+1}}{a_n}>L-arepsilon>1$, $orall n>ar{n}$ cioè $a_{n+1}>a_n>...>a_1>0$

Quindi
$$a_n
ot > 0 \Rightarrow \sum_{n=\bar{n}+1}^{+\infty} a_n$$
 diverge, pertanto anche $\sum a_n$ diverge

Criterio della radice

Sia
$$\sum a_n$$
 con $a_n>0 \forall n\in\mathbb{N}^+$ se esiste $k\in]0,1[$ t.c. $\sqrt[n]{a_n}$ ($\Leftrightarrow a_n\leq k^n$) $orall n\in\mathbb{N}^+$ allora $\sum a_n$ converge

Corollario del criterio della radice (con il limite)

Se
$$\sum a_n$$
, con $a_n>0$, $orall n\in \mathbb{N}^+$ Si ha:

1. se esiste
$$\lim_n \sqrt[n]{a_n} = L$$
, con $L < 1$, $\sum a_n$ converge

2. se esiste
$$\lim_n \sqrt[n]{a_n} = L$$
 ,con $L > 1$, $\sum a_n$ diverge a $+\infty$

Criterio generale di Cauchy

Successioni

Sia
$$(a_n)_n$$
 una successione in $\mathbb R$ $\lim_n a_n = l \Leftrightarrow orall arepsilon > 0 \exists \overset{-}{n}$ t.c. $orall n \geq \overset{-}{n}$, $|a_n - L| < arepsilon$

Condizione di Cauchy

$$(a_n)_n$$
 verifica la condizione di Cauchy se $(orall arepsilon>0)(\exists ar{n})(orall n)(orall p)(n>ar{n}\Rightarrow |a_n-a_m|, dove $m=p+n$$

Teorema

 $(a_n)_n$ è convergente $\Leftrightarrow a_n$ verifica la condizione di Cauchy

• Per le serie: Sia $\sum a_n$ in \mathbb{R} . Si ha $\sum a_n$ convergente \Leftrightarrow esiste finito $\lim_n s_n = s$ cioè $\lim_n a_n = l \Leftrightarrow \forall \varepsilon > 0 \exists \bar{n}$ t.c. $\forall n \geq \bar{n}$, $|s_n - s| < \varepsilon$ $\sum a_n$ è convergente (cioè s_n è convergente) $\Leftrightarrow s_n$ verifica la condizione di Cauchy $(\forall \varepsilon > 0)(\exists \bar{n})(\forall n)(\forall p)(n > \bar{n} \Rightarrow |s_n - s_{n+p}| < \varepsilon)$ Essendo $s_{n+p} - s_n = (a_{n+p} + a_{n+p-1} + \ldots + a_1) - (a_n + \ldots + a_1) = a_{n+1} + \ldots + a_{n+p}$ Allora la condizione di Cauchy diventa $(\forall \varepsilon > 0)(\exists \bar{n})(\forall n)(\forall p)(n > \bar{n} \Rightarrow |a_{n+1} + \ldots + a_{n+p}| < \varepsilon)$

Analisi II - seconda parte

Operazioni con serie (termini generici)

• Combinazione lineare di due serie Se $\sum a_n$ e $\sum b_n$ sono due serie date e $\alpha, \beta \in \mathbb{R}$ allora $\sum c_n$, dove $c_n = \alpha \cdot a_n + \beta \cdot b_n \forall n \in \mathbb{N}^+$ si dice **combinazione lineare** delle due serie

NB:

- $\alpha=\beta=1$ Serie somma
- lpha
 eq 0, eta = 0 Serie prodotto per una costante

Teorema

Se
$$\sum a_n=A\in\mathbb{R}$$
 e $\sum b_n=B\in\mathbb{R}$ allora $\sum (lpha a_n+eta b_n)$, con $lpha,eta\in\mathbb{R}$ converge a $lpha A+eta B$

Dimostrazione

$$orall n$$
, $c_n=lpha a_n+eta b_n$

Serie con termini di segno misto

Si tratta di serie aventi infiniti termini positivi e infiniti termini negativi

Serie assolutamente convergenti e semplicemente convergenti

- ullet Si dice che $\sum a_n$ è assolutamente convergente (AC) se $\sum |a_n|$ è convergente
- Si dice che $\sum a_n$ è **semplicemente convergente** (SC) se è convergente MA $\sum |a_n|$ diverge

Teorema

$$\sum a_n$$
 è AC $\Leftrightarrow \sum a_n$ è convergente

Dimostrazione

Utilizzando il criterio generale di Cauchy Poichè $\sum |a_n|$ è convergente, vale Cauchy, cioè

$$\begin{array}{l} (\forall \varepsilon>0)(\exists \bar{n})(\forall n)(\forall p)(n>\bar{n}\Rightarrow ||a_{n+1}|+|a_{n+2}|+...+|a_{n+p}||<\varepsilon)\\ \text{Si ha } |a_{n+1}+...+a_{n+p}|\leq ||a_{n+1}|+|a_{n+2}|+...+|a_{n+p}||<\varepsilon\\ \text{Quindi } \sum a_n \text{ verifica la condizione di Cauchy e quindi converge} \end{array}$$

Serie a termini di segno alternato

Sia $(a_n)_n$ una successione in $\mathbb R$ t.c. $a_n>0 \forall n\in\mathbb N^+$ La serie $\sum a_n\cdot (-1)^n$ si dice serie a termini di segno alternato

Criterio di Leibniz

Sia una successione $(a_n)_n$ t.c.

- $a_n > 0 \forall n \in \mathbb{N}^+$
- $a_{n+1} \leq a_n$, non crescente Si ha che $\sum a_n \cdot (-1)^n$ converge se e solo se $\lim_n a_n = 0$ Inoltre vale la stime d'errore $|s-s_n| < a_n + 1$

Idea

n dispari \Rightarrow aggiungo/tolgo sempre meno \Rightarrow convergo

Dimostrazione

• Convergenza $\forall k \in \mathbb{N}^+$ si ha

$$\circ \ \ s_{2k+1} = s_{2k} - a_{2k+1} = s_{2k-1} + a_{2k} - a_{2k+1} \geq s_{2k+1} \geq ... \geq s_1$$

$$\circ \ \ s_{2k} = s_{2k-1} + a_{2k} = s_{2k-2} + a_{2k-1} + a_{2k} \leq s_{2k-2} \leq ... \leq s_2$$

$$\circ \ \ s_1 \leq s_{2k+1} \leq s_{2k+2} \leq s_{2k} \leq ... \leq s_2$$

La successione $(s_{2k+1})_k$ è non decrescente, limitata superiormente da s_2 Quindi per il teorema del limite della successione monotona esiste finito $\lim_{n \to 2n+1} s = s' \in \mathbb{R}$

$$s_{2k+1}=s_{2k}-a_{2k+1}$$
, se $k o +\infty$ si ha: $s'=s''-0$ $\lim_{n\to\infty}s_{2k}=\lim_{n\to\infty}s_{2k+1}=s(=s'=s'')$

due sottosuccessioni pari e dispari tendono allo stesso limite \Rightarrow la serie originale converge in quanto le due sottosuccessioni comprendono tutti gli elementi della serie originale

Stima d'errore

Supponiamo che
$$s=\sup_k s_{2k+1}$$
, $s=\sup_k s_{2k}$ e quindi $s_{2k+1}\leq s\leq s_{2n} orall n, k\in \mathbb{N}^+$ Risulta $|s-s_n|=$

- $ullet s-s_{2k+1} \leq s_{2k+2}-s_{2k+1} = a_{2k+2}, \, n=2k+1$
- $egin{aligned} ullet & s_{2k}-s \leq s_{2k}-s_{2k+1}=a_{2k+1}=a_{n+1} \ & ext{cioè} \ |s-s_n|=\leq a_{n+1} orall n \in \mathbb{N}^+ \end{aligned}$

Vale la proprietà

Sia $(a_n)_n$ in \mathbb{C} , $a_n=lpha_n+ieta_n$, dove $lpha_n,eta_N\in\mathbb{R} orall n\in\mathbb{N}^+$ e sia a=lpha+ieta con $lpha,eta\in\mathbb{R}$

Teorema

$$\lim_n a_n = a \Leftrightarrow \lim_n lpha_n = lpha$$
 e $\lim_n eta_n = eta$

Dimostrazione

Basta osservare che $a_n o a\Leftrightarrow lpha_n o lpha$ e $eta_n o eta$ per $n o +\infty$

Serie in $\mathbb C$

Sia $(a_n)_n$ una successione in $\mathbb C$ poniamo $s_n=a_1+...+a_n$. La coppia $((a_n)_n,(s_n)_n)$ si dice serie di numeri complessi e si indica con $\sum a_n$

- ullet si dice che $\sum a_n$ converge con somma $s\in\mathbb{C}$ se esiste $\lim_n s_n=s$
- si dice che $\sum a_n$ è AC se la serie dei moduli $\sum |a_n|$ è convergente
- Sia $a_n=lpha_n+ieta_n$ e $s_n=A_n+iB_n$, $s_n=a_1+...+a_n$, $A_n=A_1+...+A_n$, $B_n=B_1+...+B_n orall n\in \mathbb{N}^+$

Teorema

Si ha che $\sum a_n$ converge con somma $s\Leftrightarrow$ convergono $\sum \alpha_n$ e $\sum \beta_n$. Inoltre, posto $s=\lim_n s_n A=\lim_n A_n$, $B=\lim_n B_n$ si ha che s=A+iB

Teorema

Se $\sum a_n$ è AC, allora è convergente

Dimostrazione

Basta osservare che $|a_n|>|\alpha_n|$ e $>|\beta_n|$ $|\alpha_n|$ e $|\beta_n|$ convergono \Rightarrow convergono anche α_n e $|\beta_n|$ converge anche a_n

Analisi II - terza parte

Successioni e serie di funzioni

Motivazioni

Problemi

Sia una famiglia di funzioni "semplici" $(P_0, P_1, ..., P_n)$ linearmente indipendenti, $\varphi : E \to \mathbb{R}(o\mathbb{C})$.

Si pone il seguente problema

- 1. Data $f: E \to \mathbb{R}(o\mathbb{C})$ esiste una succesione $(c_n)_n \in \mathbb{R}(o\mathbb{C})$ t.c. la serie $\sum c_n \cdot \varphi_n$ converge in qualche caso a f in E?
- 2. Data una successioe $(c_n)_n$ in $\mathbb R$, la serie $\sum c_n\cdot \varphi_n$ converge a qualche $f:E o \mathbb R(o\mathbb C)$?

Succesione di funzioni

Sia $(f_n)_n$ una successione di funzioni $f_n:E o\mathbb{R}(o\mathbb{C})$ e sia $f:E o\mathbb{R}(o\mathbb{C})$ come si definisce una convergenza di $(f_n)_n$?

Convergenza puntuale

Siano $(f_n)_n$ una successione di funzioni $f_n:E o\mathbb{R}(o\mathbb{C})$ e $f:E o\mathbb{R}(o\mathbb{C})$. Si dice che $(f_n)_n$ converge puntualmente a f su E se $\forall x\in E\lim_n f_n(x)=f(x)$ cioè $(\forall x\in E)(\forall \varepsilon>0)(\exists n = n)$ ($n>n = |f_n(x)-f(x)|<\varepsilon$)

Osservazione

 $ar{n}$ dipende da arepsilon, ma anche da x, $ar{n}=ar{n}(arepsilon,x)$ nella convergenza puntuale ----//--data 25/9--//----

Teorema

Siano $(f_n)_n$ una successione di funzioni $f_n:[a,b] o \mathbb{R}$ e $f:[a,b] o \mathbb{R}$, si ha:

1. se $(f_n)_n$ converge uniformemente a f in [a,b] e f_n continua $\forall n$ su [a,b], allora f è continua, cioè $\forall x_o \in [a,b] \lim_{x \to x_o} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_o} (\lim_n f_n(x)) = \lim_n (\lim_{x \to x_o} f_n(x))$

2. Se $(f_n)_n$ converge uniformemente a f su [a,b] e f_n è integrabile $\forall n$, allora f è integrabile e $\int_a^b f(x) dx = \lim_n \int_a^b f_n(x) dx \Leftrightarrow \int_a^b (\lim_n f_n(x)) dx = \lim_n \int_a^b f_n(x) dx$, Teorema del passaggio al limite sotto al segno di integrale

3. Se $(f_n)_n$ converge puntualmente a f in [a,b], f_n è derivabile $\forall n$ e $(f'_n)_n$ converge uniformemente a g su [a,b] allora f è derivaile e f'=g in $[a,b]\Leftrightarrow \frac{d}{dx}\lim_n f_n(x)=\lim_n \frac{d}{dx}f_n(x)$, in [a,b]

Serie di funzioni

Sia $(f_n)_n$ una successione di funzioni con $f_n:E o\mathbb{R}(o\mathbb{C})$, $\forall n$ poniamo $s_1(x)=f_1(x)$, $s_n(x)=f_1(x)+...+f_n(x)$, $\forall x\in E$. La coppia $((f_n)_n,(s_n)_n)$ si dice serie di funzioni e si indica con $\sum f_n$

• Se $(s_n)_n$ coverge puntualmente o uniformemente a $s:E o \mathbb{R}(o\mathbb{C})$ si dice che la serie $\sum f_n$ converge puntualmente (risp. uniformemente) con somma s su E

Condizione necessaria per la convergenza uniforme di serie di funzioni

Se $\sum f_n$ converge uniformemente in E allora $(f_n)_n$ deve convergere uniformemente a 0 in E

Criteri di convergenza uniforme per serie di funzioni

Criterio di Cauchy per la convergenza uniforme

$$\sum f_n$$
 converge uniformemente in $E\Leftrightarrow (orall arepsilon>0)(\exists \bar{n})(orall x\in E)(orall n)(orall p)(n>ar{n}\Rightarrow |f_{n+1}(x)+...+f_{n+p}(x)|$

M-test di Weierstrass

Sia $\sum f_n$, $f_n:E o \mathbb{R}(o\mathbb{C})$, una serie di funzioni. Se esiste $(M_n)_n$ in \mathbb{R} t.c.

1.
$$|f_n(x)| \leq M_n$$
, $orall x \in E$, $orall n$

2. $\sum M_n$ converge $\Rightarrow \sum f_n$ converge uniformemente in E

NB: Spesso sarà $M_n = \displaystyle \sup_{x \in E} f_n(x)$

Criterio di Leibniz per la convergenza uniforme

Sia
$$\sum (-1)^n f_n(x)$$
, con $f_n:E o \mathbb{R}$, una serie di funzioni
Se $orall n$ si ha

1. $f_n(x) > 0$, $\forall x \in E$

2. $f_{n+1}(x) < f_n(x)$, $orall x \in E$

Allora si ha che $\sum (-1)^n f_n(x)$ conv. uniformemente su $E \Leftrightarrow (f_n) o 0$ uniformemente su E

(da condizione necessaria diventa, ora, sufficiente)

Inoltre, vale la seguente stima d'errore

$$|s(x)-s_n(x)| < f_{n+1}(x)$$
, $orall n$, $orall x \in E$

Teorema di passaggio al limite per le serie di funzioni

Sia $\sum f_n$ una serie di funzioni, con $f_n:E o\mathbb{R}$ e sia $f:E o\mathbb{R}$ Si ha:

- 1. Se $\sum f_n o f$ uniformemente in [a,b] e f_n continua in [a,b], cioè $orall x_0\in [a,b]$, $\lim_{x o x_0}(\sum f_n(x))=f(x_0)=\sum f_n(x_0)=\sum (\lim_{x o x_0}f_n(x))$
- 2. Se $\sum f_n$ converge uniformemente con somma f e f_n integrabile $\forall n$, allora f è integrabile in [a,b] e $\int_a^b f(x)dx = \sum \int_a^b f_n(x)dx \Leftrightarrow \int_a^b (\sum f_n(x))dx = \sum \int_a^b f_n(x)dx$
- 3. Se $\sum f_n$ converge puntualmente in [a,b] con somma f, f_n è derivabile $\forall n$ su [a,b] e $\sum f'_n$ converge uniformemente su [a,b] con somma g, allora f è derivabile e $f'=g\Leftrightarrow \frac{d}{dx}(\sum f_n(x))=\sum \frac{d}{dx}f_n(x)$, su [a,b]

Sviluppabilità in serie di potenze

Serie di potenze in ${\mathbb R}$

Siano $(a_n)_n$ una succ. in $\mathbb R$ e $x_0 \in \mathbb R$ fissati.

Posto, $orall n \in \mathbb{N}^+$, $f_n(x) = a_n(x-x_0)^n$, con $x_0 \in \mathbb{R}$.

La serie difunzioni $\sum f_n = \sum a_n (x-x_0)^n$ è la serie di potenze di centro x_0 , a coefficienti reali (a_n)

NB: $0^0=1$ in questo contesto

Lemma di Abel

Se $\sum a_n(x-x_0)^n$ converge in $\bar x
eq x_0$, $\bar x \in \mathbb{R} \setminus \{x_0\}$, allora la serie convereg assolutamente $orall x \in \mathbb{R}$ t.c. $|x-x_0| < |\bar x - x_0|$

Dimostrazione

Poichè $\sum a_n(x-x_0)^n$ converge, si ha $\lim_n a_n(\bar x-x_0)^n=0$ m quindi esiste M<0 t.c. $|a_n(x-x_0)^n| < M$, $\forall n$

Risulta, per
$$x\in\mathbb{R}$$
 t.c. $|x-x_0|<|ar{x}-x_0|$ che $|a_n(x-x_0)^n|=|a_n(rac{x-x_0}{ar{x}-x_0})^n(ar{x}-x_0)^n|=|a_n(ar{x}-x_0)^n||rac{x-x_0}{ar{x}-x_0})^n|=|a_n(ar{x}-x_0)^n||rac{x-x_0}{ar{x}-x_0})^n|=|a_n(ar{x}-x_0)^n||+|a_n(ar{x}-x_0)^n||=|a_n(ar{x}-x_0)^n||+|a_n(ar{x}-x_0)^n|+|a_n(ar{x}-x_0$

Poichè la serie $\sum M \cdot q^n$ converge (serie geometrica), per il criterio del confronto $\sum |a_n(x-x_0)^n|$ converge e quindi $\sum a_n(x-x_0)^n$ converge

Osservazione

Sotto le ipotesi del Lemma di Abel

- $\sum a_n(x-x_0)^n$ converge puntualmente in $]x_0-(\overset{-}{x}-x_0),x_0+(\overset{-}{x}-x_0)[$
- ullet $\sum a_n (x-x_0)^n$ converge uniformemente in $]x_0-r,x_0+r[$, con $0< r<|ar x-x_0|$

Insieme di convergenza

Poniamo $I=\{x\in\mathbb{R}|\sum a_n(x-x_0)^n ext{ converge}\}$

• Raggio di convergenza Poniamo $R=\sup\{|x-x_0|:x\in I\}$ (*) Si ha $R\geq 0$, $R\in [0,+\infty[U\{+\infty\}$

Teorema

Il raggio R definito da (*) soddisfa:

- (a)
 - 1. se $x \in \mathbb{R}$ è t.c. $|x-x_0| < R$, allora $\sum a_n (x-x_0)^n$ converge (assolutamente)
 - 2. se $x \in \mathbb{R}$ è t.c. $|x-x_0| > R$, allora $\sum a_n (x-x_0)^n$ non converge
- (b)
 - $\circ \ \mbox{ se } R' \in [0,+\infty[U\{+\infty\} \mbox{ verifica le condizioni 1. e 2.}$ allora R'=R, con R definito da (*)
 - (a) Sono le proprietà caratteristiche del raggio di convergenza

Dimostrazione

• (a) Sia R il raggo di convergenza definito da (*) Poniamo 1. Sia $x\in\mathbb{R}$ t.c. $|x-x_0|< R$. Per la caratterizzazione dell'estremo superiore $\exists \overset{-}{x}\in I$ t.c.

 $|x-x_0| < |ar{x}-x_0 < R$, per il Lemma di Abel la serie converge assolutamente.

Poniamo 2. Se, per assurdo, esistesse $\bar{x}\in\mathbb{R}$ con $|\bar{x}-x_0|>R$ t.c. $\sum a_n(x-x_0)^n$ sia covergente allora si contraddice la definizione di estremo superiore.

- (b) Sia $R' \in [0,+\infty[U\{+\infty\}$, si verificano 1. e 2.
- 1. se R' verifica 1., allora $R' \leq R$
- 2. Se R' verifica 2., allora $R' \geq R$ Si ha R' = R

Teorema di struttura dell'insieme di convergenza

L'insieme di convergenza I è un insieme connesso (intervallo o punto singolo) e verifica:

- $I=\mathbb{R}$ se $R=+\infty$
- $ullet \ |x_0-R,x_0+R[\subset I\subset]x_0-R,x_0+R[$, $0< R< +\infty$
- $I = \{x_0\}$ se R = 0

Dimostrazione

Segue dalle proprietà di $\mathbb R$

Osservazioneù

Sia R il raggio di convergenza, si ha:

- ullet se $|x-x_0| < R, \sum a_n (x-x_0)^n$ converge puntualmente
- ullet $\forall r | 0 < r < R$, $\sum a_n (x-x_0)^n$ converge uniformemente su $]x_0-r, x_0+r[$

Proprietà della funzione somma (di serie di funzioni)

Sia $\sum a_n(x-x_0)^n$ una serie di potenze avente raggio di convergenza R<0. Poniamo $intI=I_R=]x_0-R, x_0+R[$ se $0< R<+\infty$ (= \mathbb{R} se $R=+\infty$) e per ogni $x\in I_R$, $f(x)=\sum a_n(x-x_0)^n$

Teorema integrazione termine a termine

La somma
$$f$$
 è continua in I_R e $\int_{x_0}^x a_n(t-x_0)^n dt = \sum rac{a_n}{n+1}(x-x_0)^{n+1}$ $orall x \in \mathbb{R}.$ Inoltre il raggio di convergenza di $\sum rac{a_n}{n+1}(x-x_0)^{n+1}$ è R

Teorema derivazione termine a termine

La funzione somma è derivabile in I_R e $f'(x)=\sum rac{d}{dx}(a_n(x-x_0)^n)=\sum n\cdot a_n(x-x_0)^n-1$, $\forall x\in\mathbb{R}$ Inoltre il raggio di convergenza di $\sum n\cdot a_n(x-x_0)^n-1$ è R

Corollario

La funzione somma è derivabile infinte volte in I_R e, $orall k \in \mathbb{N}^+$,

$$f_n^{(k)}(x) = \sum rac{d^k}{dx^k} (a_n(x-x_0)^n) = \sum_{n=k}^{+\infty} n \cdot (n-1) \cdot ... \cdot (n-k+1) a_n(x-x_0)^{n-k}$$

(da n=k perchè tutti gil altri termini vanno a zero)

Sviluppabilità in serie di Taylor

Sia $\sum a_n(x-x_0)^n$ una serie di potenza con raggio di convergenza R>0 e sia f(x) la sua somma, $f(x)=\sum a_n(x-x_0)^n$ in I_R . f appartiene a C^∞ in I_R e, $\forall k\in\mathbb{N}^+$, $f^{(k)}(x_0)=\sum n\cdot(n-1)\cdot\ldots\cdot(n-k+1)a_n(x-x_0)^{n-k}$ in I_R In particolare, $f^{(k)}(x_0)=k!a_k$, $\forall k\in\mathbb{N}$ ($f^{(0)}(x_0)=f(x_0)$) pertanto

$$f(x) = \sum a_n (x-x_0)^n = \sum rac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

Serie di Taylor

Sia $f:]x_0-h,x_0+h[o\mathbb{R}$ di classe $C^\infty.$ La serie $\sum rac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ si dice serie di Taylor con punto iniziale x_0

Osservazione

La ridotta (n+1)-esima di $\sum rac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ è $s_{n+1}(x)=\sum rac{f^{(N)}}{N!}(x-x_0)^N$ è il polinomio di Taylor di f di punto iniziale x_0 avente ordine n

ullet Una funzione f si dice sviluppabile in serie di Taylor di punto iniziale x_0 se esiste h>0 t.c.

$$f(x)=\sumrac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
 , $orall x\in]x_0-h,x_0+h[$

Osservazione

La somma di una serie di potenze avente R>0 è sviluppabile in serie di Taylor su I_R

Problema

Data $f \in C^{\infty}$, sotto quali ipotesi f è sviluppabile in serie di Taylor?

Osservazione

Essere di classe C^∞ non è condizione sufficiente per la sviluppabile in serie di Taylor

Analisi II - terza parte bis

Teorema - condizione sufficiente per la sviluppabile in serie di Taylor

Se $f:]x_0-h,x_0+h[o\mathbb{R}$, h>0, è di classe C^∞ ed esiste M>0 t.c. $orall n\in\mathbb{N}$ $|f^{(n)}(x)|\leq Mrac{n!}{h^n}$, in $]x_0-h,x_0+h[$

allora f è sviluppabile in serie di Taylor di punto iniziale x_0 in $]x_0 - h, x_0 + h[$. Inoltre, la serie converge uniformemente a f su $[x_0 - k, x_0 + k]$, $\forall k < h$

Dimostrazione

$$\forall n \in \mathbb{N}^+, \text{ si ha } |s_{n+1}(x) - f(x)| = |f(x) - P_{n,x_0}(x)| = |\frac{f^{(N+1)}(\xi_{N+1})}{(N+1)!}(x - x_0)^{N+1}| = |f^{(N+1)}(\xi_{N+1})| \frac{|x - x_0|^{N+1}}{(N+1!)}) \leq M \frac{(N+1)!}{h^{N+1}} \frac{|x - x_0|^{N+1}}{(N+1)!} = M(\frac{|x - x_0|}{h})^{N+1}, \text{ Essendo } |\xi_{N+1} - x_0| < |x - x_0| < h$$
 Poichè $0 \leq \frac{|x - x_0|}{h} < 1$, Si ha $|f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \to 0$, per $N \to +\infty$ E quando $\sum \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ converge a $f(x)$, $\forall x \in]x_0 - h, x_0 + h[$ Fissato $0 < h < k$ si ottiene, per $x \in [x_0 - k, x_0 + k], |f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \leq M(\frac{k}{h})^{N+1}$ e quindi $\sup_{]x_0 - h, x_0 + h[} |f(x) - s_{N+1}(x)| \leq M(\frac{|x - x_0|}{h})^{N+1} \to 0$, per $N \to +\infty$

Dunque la successione delle ridotte converge e dunque la serie donverge uniformemente a f in $]x_0-h,x_0+h[$

Oservazione

La condizione $\exists M>0$ è tale che $\forall n$, $|f^{(n)}(x)|\leq M\frac{n!}{h^n}$, in $]x_0-h,x_0+h[$ e, in particolare verificata se $\exists K>0$ t.c., $\forall n|f^{(n)}(x_0)|\leq K$ Infatti si ha $\frac{n!}{h^n}\to +\infty$, se $n\to +\infty$

Funzioni analitiche

Si dice che f è analitica in [a,b] se f è sviluppabile in serie di Taylor di punto iniziale x_0 , $\forall x \in]a,b[$

L'insieme delle funzioni analitiche in]a,b[si indica con H(]a,b[)

Osservazione

$$C^0([a,b[)\supset C^1([a,b[)\supset...\supset C^n([a,b[)\supset...\supset C^\infty([a,b[)\supset H([a,b[),$$
 in $\mathbb R$

Spazi metrici

Sia (\mathbb{S},d) uno spazio metrico

Sfera aperta e sfera chiusa

Siano $x_0 \in \mathbb{S}$ e r>0. L'insieme $\mathbb{B}(x_0,r)=\{x\in \mathbb{S}: d(x,x_0)< r\}$. Si dice sfera aperta (chiusa) di centro x_0 e raggio r

Intorno di un punto

Sia $x_0\in\mathbb{S}$. Un'insieme $U\subseteq S$. Si dice intorno di x_0 se esiste k>0 t.c. $\mathbb{B}(x_0,r)\subseteq S$. L'insieme degli intorni di x_0 si indica con \mathfrak{J}_{x_0}

(Alcune) proprietà degli intorni

Sia $x_0 \in \mathbb{S}$. Si ha

- 1. $(\forall u \in \mathfrak{J}_{x_0})(\forall \mathbb{V} \subseteq \mathbb{S})(\mathbb{U}_S \subseteq \mathbb{V} \Rightarrow \mathbb{V} \in \mathfrak{J}_{x_0})$
- 2. $(\forall U, V \in \mathfrak{J}_{x_0})(U \cap \mathbb{V} \in \mathfrak{J}_{x_0})$
- 3. $(\forall x,y\in\mathbb{S})[x
 eq y\Rightarrow (\exists U\in\mathfrak{J}_x)(\exists\mathbb{V}\in\mathfrak{J}_y)U\cap\mathbb{V}=\emptyset]$

Punto di accumulazione

Siano $E\subseteq\mathbb{S}$ e $x_0\in\mathbb{S}$. Si dice che x_0 è di accumulazione per E se in ogni intorno di x_0 ci sono infiniti punti di E o, equivalentemente, in ogni intorno di x_0 c'è almeno un punto di E diverso da x_0

Chiusura di un insiemee insieme chiuso

Sia $E\subseteq \mathbb{S}$. L'insieme $\stackrel{-}{E}=ch(E)=E\cup \{x\in \mathbb{S}: x \text{ è di accumulazione per } E\}$, si dice chiusura di E

Un insieme E si dice chiuso se E=clE

Punto interno

 $E\subseteq \mathbb{S}$, $x_0\in E$. Si dice che x_0 è un punto interno a E se esiste almeno un intorno di x_0 , U, t.c. $U\subset E$.

Interno di un insieme aperto

Sia $E\subseteq \mathbb{S}$. L'insieme $E=intE=\{x\in E: x ext{ è interno a}E\}$, si dice interno di E

Punto di frontiera

Siano $E\subseteq \mathbb{S}$ e $x_0\in \mathbb{S}$. x_0 è di frontiera per E se in ogni intorno di x_0 ci sono punti di E e punti del complementare di E (CE)

Frontiera di un insieme

 $frE = \{x \in \mathbb{S} : x ext{ è di frontiera per } E\}$ si dice frontiera di E

Insieme limitato.

Sia $E\subseteq \mathbb{S}$. Si dice che E è limitato se esiste $x_0\in E$ e raggio r>0 t.c. $E\subseteq B(x_0,r)$ e, equivalentemente, $\sup_{x,y\in E}d(x,y)<+\infty$. $diam(E)=\sup_{x,y\in E}d(x,y)$

Funzioni da \mathbb{R}^n in \mathbb{R}^m

Una funzione $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}^m$ è del tipo $f(x)=f(x_1,...x_n)=egin{pmatrix} f_1(x_1,...x_n)\ ...\ f_m(x_1,...x_n) \end{pmatrix}$ con $x=(x_1,...x_n)^T$ e $f_i:E o\mathbb{R}$ per i=1,...,n

Campi scalari

$$N=2$$
, $M=1$, $f:E(\subseteq \mathbb{R}) o \mathbb{R}$

Insiemi di livello

Sia $f:E(\subseteq\mathbb{R}) o\mathbb{R}$ un campo scalare Per ogni $k\in\mathbb{R}$, l'insieme $L_k(f)=\{\underline{x}\in E:f(\underline{x})=k\}$ si dice insieme di livello

Curve parametriche

- $N=1, M\geq 2$, Sia $\gamma:I(\subseteq\mathbb{R})\to\mathbb{R}^m$ con I intervallo. La coppia $(\gamma,\gamma(I))$ si dice curva parametrica di cui γ è la parametrizzazione e $\Gamma=\gamma(I)$ è il sostegno
- ullet M=2, $Y:I o \mathbb{R}^2$, $\gamma(t)=(x(t),y(t))^T$ è il sostegno

Campi vettoriali

$$N=M\geq 2$$
 , $g:E(\subseteq \mathbb{R}^N)
ightarrow \mathbb{R}^N$

Limiti di funzioni da \mathbb{R}^n in \mathbb{R}^m (dati dalla distanza euclidea)

Sia $f: E(\subseteq \mathbb{R}^N) \to \mathbb{R}^N$ e sia $x_0 \in \mathbb{R}^N$ di accumulazione per E. Si dice $\lim_{\underline{x}-\underline{x_0}} \underline{l} \in \mathbb{R}^N$ se $(\forall \mathbb{V} \in \mathfrak{J}_l)(\exists U \in \mathfrak{J}_{x_0})(\forall \underline{x} \in E)(\underline{x} \in U \setminus \{x_0\}) \Rightarrow f(\underline{x}) \in \mathbb{V}) \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0)(\forall \underline{x} \in E)(0 < d(\underline{x},\underline{x_0}) < \delta \Rightarrow d(f(\underline{x}),l) < \varepsilon)$ Quindi supporremo che E sia aperto e lo indicheremo con A.

Derivata parziale

Sia $\{\underline{e_1},...\underline{e_n}\}$ una base canonica di \mathbb{R}^n e sia $\underline{v}=\underline{e_i}$ per un certo i=1,...,n. Sia $x_0\in int E$. La derivata direzionale $\dfrac{\partial f}{\partial \underline{e_i}}(\underline{x_0})$ si dice derivata parziale i-esima di f in x_0 e si a

indica con
$$\dfrac{\partial f}{\partial x_i}(\underline{x_0}) = f_{x_i}(\underline{x_0})$$

La ragione della notazione è la seguente:

$$egin{aligned} rac{\partial f}{\partial \underline{e_i}}(x_0) &= \lim_{t o 0} rac{f(x_0 + t \underline{v}) + f(\underline{x_0})}{t} = \ \lim_{t o 0} rac{f(x_1^0, ..., x_i^0 + t, ..., x_n^0) - f(x_1^0, ..., x_n^0)}{t} = \ \lim_{x_i o x_i^0} rac{f(x_{0_1}, ..., x_i, ..., x_{0_n}) - f(x_{0_1, ..., x_{0_n}})}{x_i - x_i^0} \end{aligned}$$

Unicità di a

Siano
$$\underline{a},\underline{b}\in\mathbb{R}^n$$
 t.c. $\forall\underline{x}\in\mathbb{R}^n$, $L(\underline{x})=<\underline{x},\underline{a}>$, $L(\underline{x})=<\underline{x},\underline{b}$, cioè $<\underline{x},\underline{a}-\underline{b}>=0$. Se $\underline{x}=\underline{a}-\underline{b}$, si ha $<\underline{a}-\underline{b},\underline{a}-\underline{b}>=0$, cioè $||\underline{a}-\underline{b}||^2=0$ Pertanto, si conclude che $||\underline{a}-\underline{b}||=0\Rightarrow\underline{a}=\underline{b}$

Calcolo differenziale per $f: \mathbb{R}^N o \mathbb{R}^M$

Problema

Siano $f:\mathbb{R}^N o \mathbb{R}^M$ e $x_0 \in E$. Come nel caso N=M=1 si vuol definire la "derivata" di f in x_0 . in modo da poter costruire una funzione lineare che approssima efficacemente f in prossimità di x_0

NB: il rapporto incrementale non esiste per $N\geq 2$

Campo scalare, derivata direzionale

Siano $f: E(\subseteq \mathbb{R}^N) \to \mathbb{R}$ e $x_0 \in int E$. Consideriamo la retta $\underline{x} = \underline{x_0} + t\underline{v}$, $t \in \mathbb{R}$, con $\underline{v} \in \mathbb{R}^N$, $||\underline{v}|| = 1$. Poichè $x_0 \in int E$, $\exists \delta > 0$ t.c. $\underline{x} = \underline{x_0} + t\underline{v} \in \overline{E}$, $\forall |t| < \delta$. Consideriamo la funzione $f(\underline{x_0} + t\underline{v}):] - \delta, \delta[\to \mathbb{R}$

Derivata direzionale: se esiste finito $\lim_{t\to 0} \frac{f(\underline{x_0}+t\underline{v})-f(\underline{x_0})}{t}$ esso si dice derivata direzionale di f in x_0 lungo la direzione orientata v

Osservazione

Si ha che $x_0 \in intE$, perchè altrimenti il rapporto incrementale potrebbe **non** essere definito

NB

$$f(\underline{x})=(f_1(\underline{x}),...,f_M(\underline{x}))^T$$
 e $\underline{l}=(l_1,...,l_n)^T$

Teorema

Si ha
$$\lim_{\underline{x} o x_0} f(\underline{x}) = \underline{l} \Leftrightarrow$$
 per ogni $i=1,..,M$, $\lim_{\underline{x} o x_0} f_i(\underline{x}) = l_i$

Limite sui campi scalari

Sia $f: E(\subseteq \mathbb{R}^N) \to \mathbb{R}$ e sia $\underline{x} \in \mathbb{R}^N$ di accumulazione per E. Si dice che $\lim_{\underline{x} \to \underline{x_0}} f(\underline{v}) = +\infty$ (o $-\infty$) se $(\forall k \in \mathbb{R})(\exists U \in \mathfrak{J}_{x_0})(\forall \underline{x} \in E)(\forall \underline{x} \in U \setminus \{\underline{x_0}\} \Rightarrow f(\underline{x}) > k) \Leftrightarrow (\forall k \in \mathbb{R})(\exists \delta > 0)(\forall \underline{x} \in E)(0 < d(\underline{x},\underline{x_0}) < \delta \Rightarrow f(\underline{x}) > k)$ (o $f(\underline{x}) < k$ per $f(\underline{x}) \to -/\infty$)

Teorema

Sia $f: \mathbb{R}^N \to \mathbb{R}^M$ e $\underline{x_0} \in E$ con $F(\underline{x}) = (F_1(\underline{x}),...,F_N(\underline{x}))^T$ Si dice che F è continua in $\underline{x_0} \Leftrightarrow \forall i=1,...,N$, $\overline{F_i}$ è continua in $\underline{x_0}$.

Definizione

Sia $C\subseteq\mathbb{R}^N$. Si dice che C è **connesso** se $\forall \underline{x},\underline{y}\in C$ esiste una curva continua $\gamma:[a,b]\to\mathbb{R}^N$ t.c. $\gamma(a)=\underline{x}$, $\gamma(b)=\underline{y}$, $\forall t\in[a,b]$, $\gamma(t)\in C$.

NB

In \mathbb{R}^N , N=1 , C è connesso \Leftrightarrow C è un punto singolo o un intervallo

Teorema della connessione

Se $f:C(\subseteq \mathbb{R}^N) o \mathbb{R}^M$ è continua e C è connesso, allora f(C) è connesso

Dimostrazione

Per provare che f(C) è connesso, scegliamo arbitrariamente $\underline{\xi},\underline{\eta}\in f(C)$. Esistono $\underline{x},\underline{y}\in C|f(\underline{x})=\underline{\xi}$ e $f(\underline{y}=\underline{\eta}.$

Poichè C è connesso esiste una curva continua $\gamma:[a,b]\to\mathbb{R}^N|\gamma(a)=\underline{x}$ e $\gamma(a)=\underline{y}$. Pongo $\delta=f\circ\gamma:[a,b]\to\mathbb{R}^N$, δ è una curva continua. Inoltre: $\delta(a)=f(\gamma(a))=\underline{\xi}$, $\delta(b)=f(\gamma(b))=\underline{\eta}$. Inoltre $\delta(t)=f(\gamma(t))\in f(C)$, per ogni $t\in[a,b]$, $\Rightarrow\delta$ è la curva continua che collega $\underline{\xi}$ e $\underline{\eta}$, $\Rightarrow C$ è connesso.

Teorema di Bolzano

Se $f:C(\subseteq\mathbb{R}^N)\to\mathbb{R}$ è continua, C è connesso ed esistono $\underline{x},\underline{y}\in C|f(\underline{x})f(\underline{y})<0$. Allora $\exists\underline{z}\in C$ t.c. $f(\underline{z})=0$

Dimostrazone

Sia $f\underline{x})<0< f(\underline{y})$. Poichè C è conneso e f è continua, f(C) è connesso in \mathbb{R} . Ma essendo f(C) conneso e $f(\underline{x})\neq f(\underline{y})$, allora f(C) è un intervallo: contiene numeri positivi e numeri negativi. Quindi $0\in f(C)$ e pertanto $\exists z\in C|f(\underline{z})=0$

Corollario

Se $f:C(\subseteq\mathbb{R}^N) o\mathbb{R}$ è continua e C è conneso e $f(\underline{x})\neq 0$, $orall \underline{x}\in C$, allora o $f(\underline{x})>0 \forall \underline{x}\in C$ oppure $f(\underline{x})<0 \forall \underline{x}\in C$

Definizione

Sia $K\subseteq\mathbb{R}^N$, si dice che K è compatto se K è chiuso e limitato.

Teorema della compattezza

Se $f:K(\subseteq\mathbb{R}^N) o\mathbb{R}^M$ è continua e K è compatto, allora f(K) è un compatto

Teorema di Weierstrass

Se $f:K(\subseteq\mathbb{R}^N) o\mathbb{R}^M$ è continua e K è compatto, allora esistono $\max_K f$ e $\min_K f$

Dimostrazione

Il teorema di compattezza implica che f(K) è compatto in $\mathbb R$, cioè f(K) è chiuso e limitato. Poichè $f(K)\subseteq\mathbb R$ ho $inff(K)>-\infty$ e $supf(K)<+\infty$. Ma minf(K)=minf e

 $maxf(K)=\max_k f$. Se proviamo che $supf(K)\in f(K)$, allora supf(K)=maxf(K)=maxf (analogamente per il minimo).

Se per assurdo $supf(K) \notin f(K)$, allora supf(K) è un punto di accumulazione per f(K), contro l'ipotesi in quanto contraddice il fatto che f(K) è chiuso (e quindi contiente tutti i suoi punti di accumulazione). Ma allora $supf(K) \in f(K) \Rightarrow supf(K) = \max_k f$

Struttura lineare di \mathbb{R}^N

In \mathbb{R}^n si definiscono le operaazioni di

- 1. somma, $\underline{x}+y=(x_1+y_1,...,x_N+y_N)^T$, con $\underline{x}=(x_1,...,x_n)$ e $y=(y_1,...,y_n)^T$
- 2. prodotto per scalari, $\lambda \underline{x} = ((\lambda x_1,...,\lambda x_N)^T$, con $\underline{x} = (x_1,...,x_n)$ e $\lambda \in \mathbb{R}$ Rispetto a queste operazioni, \mathbb{R}^n è uno spazio vettoriale di dimensione n La base canonica di \mathbb{R}^N è: $\underline{e_1} = (1,0,...,0)^T$,..., $\underline{e_n} = (0,...,0,1)^T$

Definizione

Si introduce in $\mathbb R$ il prodotto scalare euclideo: $<\underline{x},\underline{y}>=x_1y_1+...+x_ny_n$. Questo $\forall \underline{x}=(x_1,...,x_n)\in\mathbb R^n$ e $\forall \underline{y}=(y_1,...,y_n)\in\mathbb R^n$. Si ha che: $<\cdot,\cdot>:\mathbb R^N\to\mathbb R$ verifica, $\forall \underline{x},y,\underline{z}\in\mathbb R^n$ e $\forall \lambda\in\mathbb R$,:

- (S1) $<\underline{x}+\underline{y},\underline{z}=<\underline{x},\underline{z}>+<\underline{y},\underline{z}>$;
- (S2) $<\lambda \underline{x}, y=\lambda <\underline{x}, y>$;
- $\bullet \ \ (\text{S3}) < \underline{x},\underline{y} > = <\underline{y},\underline{x}>$
- (S4) $<\underline{x},\underline{x}> \geq 0$ e $<\underline{x},\underline{x}> = \underline{0} \Leftrightarrow \underline{x} = \underline{0} \to$ è definito positivo

Cauchy-Schwartz

 $\forall \underline{x},\underline{y} \in \mathbb{R}^n, \, |\underline{x},\underline{y}| \leq \sqrt{<\underline{x},\underline{x}>} \cdot \sqrt{<\underline{y},\underline{y}} \text{ e inoltre vale } |<\underline{x},\underline{y}>| = \sqrt{<\underline{x},\underline{x}>} \cdot \sqrt{<\underline{y},\underline{y}} \Leftrightarrow \underline{x} \text{ e } \underline{y} \text{ sono linearmente indipendenti}$

Dimostrazione

Se $\underline{y}=\underline{0}$ vale l'uguaglianza

Se $\underline{\underline{y}} \neq \underline{0}$, $\forall t \in \mathbb{R}$ calcolo: $<\underline{x} - t\underline{y}, \underline{x} - t\underline{y}> = <\underline{x}, \underline{x}> -2 <\underline{x}, \underline{y}> t + <\underline{y}, \underline{y}> t^2$. Polinomio di secondo grado in t, con coefficiente di t positivo.

Studio il delta di questa disuguaglianza: $\frac{\Delta}{4} = <\underline{x}, \underline{y}>^2 - <\underline{x}, \underline{x}> \cdot <\underline{y}, \underline{y}> \le 0 \Leftrightarrow \sqrt{<\underline{x},\underline{y}>^2} = |<\underline{x},\underline{y}>| \le \sqrt{<\underline{x},\underline{x}>} \cdot \sqrt{<\underline{y},\underline{y}>}.$

Vale la disuguaglianza in quanto $CS \Leftrightarrow \Delta = 0$ e quindi \Leftrightarrow esiste un solo $\overline{t} \mid < \underline{x} - 1$

 $\overline{t}\underline{y},\underline{x}-\overline{t}\underline{y}>=<\underline{x},\underline{x}>-2<\underline{x},\underline{y}>\overline{t}+<\underline{y},\underline{y}>\overline{t}^2=0$, ossia $\underline{x}-\overline{t}\underline{y}=0$, cioè \underline{x} e \underline{y} sono linearmente indipendenti.

Definizione

Sia V uno spazio vettoriale su $\mathbb R$. Si dice prodotto scalare un'applicazione $<\cdot,\cdot>:V\times V\to\mathbb R$ verificante (S1), (S2), (S3) e (S4)

Definizione

 $orall \underline{x} \in \mathbb{R}^n$ si definisce la **norma**, con $||x|| = \sqrt{<\underline{x},\underline{x}>} = \sqrt{x_1^2,...,x_n^2}$, norma euclidea

Proposizione

Si ha che $||\cdot||:\mathbb{R}^n o \mathbb{R}$ verifica, $orall \underline{y} \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}$:

- (n1) $||x|| = 0 \Leftrightarrow x = 0$, non degeneratezza
- (n2) $||\lambda \underline{x}|| = |\lambda| \cdot ||\underline{x}||$, omogeneità
- (n3) $||\underline{x}+y|| \leq ||\underline{x}|| + ||y||$, sub-additività

Dimostrazione

- (n1),(n2) banali
- $\bullet \ \ \text{(n3)} \ ||\underline{x}+\underline{y}||^2 = <\underline{x}+\underline{y}>, \underline{x}+\underline{y}> = <\underline{x},\underline{x}>+2<\underline{x},\underline{y}>+<\underline{y}> \leq \\ ||\underline{x}||^2+2||\underline{x}||\cdot||\underline{y}||+||\underline{y}||^2 = (||\underline{x}||+||\underline{y}||)^2 \text{, quindi } ||\underline{x}+\underline{y}||\leq ||\underline{x}||+||\underline{y}||$

Osservazione

 $orall \underline{x} \in \mathbb{R}^n$, $||\underline{x}|| = d(\underline{x},0)$, dato che $\underline{y} \in \mathbb{R}^n$: $d(\underline{x},\underline{y}) = ||\underline{x} - \underline{y}||$

Dimostrazione

 $orall \underline{x}, \underline{y}, \underline{z} \in \mathbb{R}^n$, si ha $d(\underline{x}, \underline{y}) = ||\underline{x} - \underline{y}|| = ||\underline{x} - \underline{z} + \underline{z} - \underline{y}|| \leq ||\underline{x} - \underline{z} + ||\underline{y} - \underline{z}|| = d(\underline{x}, \underline{z}) + d(y, \underline{z})$

Definizione

Sia V uno spazio vettoriale su $\mathbb R$. Un'applicazione lineare $||\cdot||:\mathbb R^n\to\mathbb R$ verificante (n1), (n2), (n3) si dice **norma** in V

Definizione

Si pone $d(\mathbb{R}^n,\mathbb{R}^m)=\{d:\mathbb{R}^n\to\mathbb{R}^m,d \text{ lineare }\}$ e si definisce $\mathbb{M}(m.n)=\{\mathbb{A},\text{ matrice di }n\text{ righe, }m\text{ colonne}\}.$ Ogni volta che si fissa una base $\{\underline{e_1},...,\underline{e_n}\}$ in \mathbb{R}^n e una base $\{\underline{e'_1},...,\underline{e'_m}\}$ in \mathbb{R}^m , esiste un $\mathbf{isomorfismo}\alpha$ tra $(\mathbb{R}^n,\mathbb{R}^m)$. A ogni $\alpha:\mathbb{R}^n\to\mathbb{R}^m$ associo una matrice $\mathbb{A}(m\times n)|\alpha(\underline{x})=\mathbb{A}\underline{x}$, $\forall\underline{x}$. Risulta $\alpha(\underline{e_1})=(a_{11}...a_{m1})^T,..,\alpha(\underline{e_n})=(a_{1n}...a_{mn})^T$, in coordinate rispetto a $\{\underline{e'_1},...,\underline{e'_m}\}$

Analisi II - quarta parte

Teorema di Riesz

Per ogni aplicazione lineare $L\in\mathscr{L}(\mathbb{R}^N,\mathbb{R})$ esiste uno ed un solo $\underline{a}\in\mathbb{R}^n$ t.c. $L(\underline{x})=<\underline{x},\underline{a}>$

Dimostrazione

Sia $L:\mathbb{R}^n o \mathbb{R}$, lineare

• (esistenza di a). Fissiamo $\{\underline{e_1},...,\underline{e_n}\}$ base di \mathbb{R}^n e poniamo $L(\underline{e_1})=a_1,...,L(\underline{e_n})=a_n.$ Definiamo $\underline{a}=(a_1,...,a_n)^T\in\mathbb{R}$. Si ha, $\forall \underline{x}=(x_1,...,x_n)^T=x_1e_1+x_2e_2+...+x_na_n=<\underline{x},\underline{a}>$

Funzioni vettoriali

Derivate direzionali e parziali per funzioni da \mathbb{R}^n in \mathbb{R}^m

Siano $f:A(\subseteq\mathbb{R}^n)\to\mathbb{R}^m$, A aperto e $x_0\in A$ e $\underline{v}\in\mathbb{R}^m$, ||v||=1, si dice che f è dotata di derivata direzionale lungo \underline{v} sul punto x_0 se ogni compontente $f_j:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$ è dotata di derivata direzionale lungo \underline{v} su x_0

 $rac{\partial f}{\partial \underline{v}}(\underline{x_0})=(rac{\partial f_1}{\partial \underline{v}}(\underline{x_0},...,rac{\partial f_m}{\partial \underline{v}}(\underline{x_0}))^T.$ Si dice che f è dotata di derivata parziale i-esima in $\underline{x_0}$ se ogni componente $f_i:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$, per i=1,..,M è dotata di derivata parziale i-esima in x_0

$$rac{\partial f}{\partial x_i}(\underline{x_0}) = (rac{\partial f_1}{\partial x_i}(\underline{x_0}),...,rac{\partial f_m}{\partial x_i}(\underline{x_0}))^T$$
 , per $i=1,..,n$

Matrice Jacobiana

Siano $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}^m$ con A aperto e $\underline{x_0}\in A$. Se $\forall i=1,..,n$ esiste $\frac{\partial f_1}{\partial x_i}(\underline{x_0})$, la matrice

$$egin{pmatrix} rac{\partial f_1}{\partial x_1} ... rac{\partial f_1}{\partial x_n} \ driverontoring & dots & dots \ rac{\partial f_m}{\partial x_1} ... rac{\partial f_m}{\partial x_n} \end{pmatrix} = Jf(\underline{x_0})$$

Si dice matrice Jacobiana di f in $\underline{x_0}$

Esempi

• M=1, campo scalare - $Jf(\underline{x_0})=(\frac{\partial f}{\partial x_1}(\underline{x_0}),...,\frac{\partial f}{\partial x_n}(\underline{x_0}))\in \mathbb{M}(1,n)$, ovvero tutte le n derivate parziali

$$ullet$$
 $N=1$, curva parametrica ($f=\gamma$, $x=t$) - $Jf(t_0)=egin{pmatrix} \gamma_1'(t_0) \ ... \ \gamma_m'(t_0) \end{pmatrix}\in \mathbb{M}(m,1)$

Il concetto di derivabilità per funzioni a più variabili lungo una direzione non è una buona generalizzazione della misura di derivabilità per le funzioni ad una variabile

Riesame del caso unidimensionale

Siano $f:A(\subseteq\mathbb{R}) o\mathbb{R}$, con A aperto, $x_0\in A$. Si ha che f è derivabile in $x_0\Leftrightarrow$ esiste $a\in\mathbb{R}$ t.c.

$$\dfrac{f(x)=f(x_0)+af(x-x_0)+o(|x-x_0|)}{f(x)=f(x_0)+f'(x_0)(x-x_0)}$$
 si dice approssimazione lineare di f in x_0 (polinomio di Taylor di ordine 1)

Osservazione

L'applicazione lineare $L:\mathbb{R}\in\mathbb{R}$ t.c. $L(h)=a\cdot h$ è lineare, cioè $L\in\mathscr{L}(\mathbb{R},\mathbb{R})$. Dunque si ha f derivabile in $x_0\Leftrightarrow$ esiste $L\in\mathscr{L}(\mathbb{R},\mathbb{R})$ t.c. $f(x)=f(x_0)+L(x-x_0)+o(|x-x_0|)$. Questo è il punto di partenza per introdurre la corretta definizione di derivabilità per le funzioni di più variabili.

Differenziale di Frechèt ($N \geq 1$,M=1, campi scalari)

Siano $f:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$, A aperto e $\underline{x_0}\in A$. Si dice che f è differenziabile secondo Frechèt in $\underline{x_0}$ se esiste $L\in\mathcal{L}(\mathbb{R}^n,\mathbb{R})$ t.c. $f(\underline{x})=f(\underline{x_0})+L(\underline{x}-\underline{x_0})+o(||\underline{x}-\underline{x_0}||)$. Inoltre l'applicazione lineare L si dice **differenziale** (o derivata) di Frechèt di f in $\underline{x_0}$ e si scrive $L=df(\underline{x_0})$.

Rappresentazione di ${\cal L}$

Fissata una base $\{\underline{e_1},..,\underline{e_n}\}$ in \mathbb{R}^nL si rappresena per mezzo di una matrice $\mathbb{A}\in\mathbb{M}(1,n)$, con $\mathbb{A}=(a_1,..,a_n)$, mel senso che $L(h)=\mathbb{A}\cdot h=a_1h_1+...+a_nh_n$, $\forall \underline{h}=(h_1,...,h_n)^T\in\mathbb{R}^n$. Posto $\underline{a}=\mathbb{A}^T=(a_1,...,a_n)\in\mathbb{R}^n$, risulta equivalentemente $L(h)=<\underline{h},\underline{a}>$

Approssimazione lineare

Se f è differenziabile in $\underline{x_0}$, allora la funzione $f(\underline{x}) = f(\underline{x_0}) + L(\underline{x} - \underline{x_0}) = f(\underline{x_0}) + df(\underline{x_0})(\underline{x} - \underline{x_0})$ si dice approssimazione lineare di f in $\underline{x_0}$ e si ha $f(\underline{x}) = \overline{f}(\underline{x}) + o(||\underline{x} - \underline{x_0}||) = f(\underline{x_0}) + df(\underline{x_0})(\underline{x} - \underline{x_0}) + o(||\underline{x} - \underline{x_0}||)$

N=2: piano tangente

Se f è differenziabile in $(\underline{x_0},\underline{y_0})^T$, allora il piano di equazione $z=\overline{f}(x,y)$ si dice piano tangente a G(f) nel punto $(x^0,y^0,\overline{f}(x,y))^T$

NB

$$z=\overline{f}(x,y)\Leftrightarrow z=f(x_0,y_0)+a_1(x-x_0)+a_2(y-y_0)$$
, con (a_1,a_2) matrice rappresentativa di $df(x_0,y_0)$

Proprietà delle funzioni differenziabili

Siano $f:A(\subseteq \mathbb{R}^n) \to \mathbb{R}$, A aperto e $\underline{x} \in A$.

Teorema

Se f è differenziabile in x_0 allora f è continua in x_0

Dimostrazione

Si ha
$$f(\underline{x})=f(\underline{x_0})+<\underline{a},\underline{x}-\underline{x_0}>+o(||\underline{x}-\underline{x_0}||)\xrightarrow{\underline{x}\to\underline{x_0}}f(\underline{x_0})+L(\underline{0})+0=f(x_0)\Rightarrow$$
 è continua

Teorema

Se f è differenziabile in $\underline{x_0}$ allora $orall \underline{v} \in \mathbb{R}$, ||v||=1, esiste L t.c. $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})=L(\underline{v})$, con $L=df(\underline{x_0})$

Dimostrazione

Corollario

Se f è differenziabile allora la matrice $Jf(\underline{x_0})$ cioè $L(\underline{h})=df(\underline{x_0})=Jf(\underline{x_0})\cdot h$, $\forall h\in\mathbb{R}^n$

Dimostrazione

Sia {\underline{e_1},...,\underline{e_n}} la base canonica di \mathbb{R}^n , allora $\frac{\partial f}{\partial \underline{e_i}}(\underline{x_0}) = \frac{\partial f}{\partial \underline{x_i}}(\underline{x_0}) = L(\underline{e_i}) = a_i$, $\forall i = 1,...,n$ Pertanto si ha $\mathbb{A} = (a:1,...,a_n) = (\frac{\partial f}{\partial \underline{x_1}}(\underline{x_0}),...,\frac{\partial f}{\partial \underline{x_n}}(\underline{x_0})) = Jf(\underline{x_0})$

Conseguenza

Se la
$$f$$
 è differenziabile in $\underline{x_0}$, allora, $\forall \underline{v} \in \mathbb{R}^n$, con $||\underline{v}|| = 1$, si ha $\frac{\partial f}{\partial \underline{v}}(\underline{x_0}) = L(\underline{v}) = Jf(\underline{x_0}) \cdot \underline{v} = \frac{\partial f}{\partial x_1}(\underline{x_0})v_1 + ... + \frac{\partial f}{\partial x_n}(\underline{x_0})v_n$, con $\underline{v} = (v_1, ..., v_n)^T$

Gradienti di un campo scalare

Se f è differenziabile in $\underline{x_0}$, si definisce **gradiente** di f in $\underline{x_0}$ il vettore colonna associato a $df(\underline{x_0}) \in \mathcal{L}(\mathbb{R}^n,\mathbb{R})$ del teorema di Riesz e si indica con $\nabla f(\underline{x_0}) = (\frac{\partial f}{\partial x_n}(\underline{x_0}),...,\frac{\partial f}{\partial x_n}(\underline{x_0}))^T = (Jf(\underline{x_0}))^T$

Proprietà del gradiente

- 1. Se f è differenziabile in $\underline{x_0}$, allora $f(\underline{x}) = f(\underline{x_0}) + < \nabla f(\underline{x_0}), \underline{x} \underline{x_0} > + o(||\underline{x} \underline{x_0}||)$. Inoltre, $\forall \underline{v} \in \mathbb{R}^n$ con ||v|| = 1, si ha $\frac{\partial f}{\partial \underline{v}}(\underline{x_0}) = < \nabla f(\underline{x_0}), \underline{x} \underline{x_0} >$
- 2. Se f è differenziabile in $\underline{x_0}$ e $\nabla f(\underline{x_0}) \neq \underline{0}$, allora $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})$ è massimo se $\underline{v} = \frac{\nabla f(\underline{x_0})}{||\nabla f(\underline{x_0})||}$ e $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})$ è minimo se $\underline{v} = -\frac{\nabla f(\underline{x_0})}{||\nabla f(\underline{x_0})||}$

Dimostrazione

- 1. Sia $\underline{v} \in \mathbb{R}^n$, con $||\underline{v}|| = 1$. Si ha $\frac{\partial f}{\partial \underline{v}}(\underline{x_0}) = <\nabla f(\underline{x_0}), \underline{v}> \le ||\nabla f(\underline{x_0})|| \cdot ||\underline{v}|| = ||\nabla f(\underline{x_0})||$ de è $0 \Leftrightarrow \underline{v} = \frac{\nabla f(\underline{x_0})}{||\nabla f(\underline{x_0})||}$
- 2. Similmente da $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})=<\nabla f(\underline{x_0}),\underline{v}>\geq -||\nabla f(\underline{x_0})||$, segue la seconda conclusione (---RECUPERA DATA 2019/10/16---)

Analisi II - quarta parte bis

Conseguenza del teorema del valor medio

- Teorema
 - Se $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$ differenziabile in A aperto e connesso ha $\nabla f(\underline{x})=\underline{0}$ allora $\exists c\in\mathbb{R}$ t.c. $f(\underline{x})=c$ in A.
 - Dimostrazione (Idea)

Fissiamo $\underline{x_0} \in A$ e consideriamo un generico $\underline{x} \in A$. Poichè A è connesso si può provare che esiste una poligonale di vertici $\underline{x}^0,...,\underline{x}^n=\underline{x}$ interamente contenuta in A, $\forall k=0,...,n-1$ il teorema del valor medio applicato al segmento di estremi $\underline{x}^k,\underline{x}^{k+1}$ implica che $f(\underline{x}^{k+1})=f(\underline{x}^k)=<\nabla f(\underline{x}^k)+\vartheta(\underline{x}^{k+1}-\underline{x}^k)),\underline{x}^{k+1}-\underline{x}^k>=0$. Quindi si conclude che $f(\underline{x}^{k+1})=f(\underline{x}^k)$, $\forall k=0,...,1$ e dunque $f(\underline{x})=f(\underline{x}^0)=c$, $\forall \underline{x} \in A$

Derivarte direzionali e parziali di ordine superiore

Sia $f:A(\subseteq\mathbb{R}^n) \to \mathbb{R}$, A aperto e sia $\underline{u} \in \mathbb{R}^n$ un versore. Supponiamo che esista $\frac{\partial f}{\partial \underline{u}}(\underline{x})$ in A. Resta così definita $\frac{\partial f}{\partial \underline{u}}:A(\subseteq\mathbb{R}^n) \to \mathbb{R}$. Siano $\underline{v} \in \mathbb{R}^n$ un versore e $\underline{x_0} \in A$. Se esiste $\frac{\partial}{\partial \underline{v}}(\frac{\partial f}{\partial \underline{u}})(\underline{x_0})$ questa si dice derivata direzionale seconda di f in $\underline{x_0}$ lungo la direzione orientata \underline{u} e \underline{v} nell'ordine e si indica con $f_{\underline{uv}}=\frac{\partial^2 f}{\partial \underline{u}\partial \underline{v}}(\underline{x_0})$

Iterando il processo si definiscono le derivate direzionali successive.

- Sia $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, A aperto. Supponiamo che esista $\dfrac{\partial f}{\partial \underline{x_i}}(\underline{x})$ in A. Resta così definita $\dfrac{\partial f}{\partial x_i}:A(\subseteq\mathbb{R}^n) o\mathbb{R}$
- Sia $\underline{x_0} \in A$. Se esiste $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})(\underline{x}^0)$ questa si dice derivata parziale seconda di f in $\underline{x_0}$ rispetto a x_i e x_j nell'ordine e si indica con $f_{x_ix_j}(\underline{x}^0)=\frac{\partial^2 f}{\partial x_j\partial x_i}(\underline{x}^0)$ Analogamente si definisce la derivata parziale di ordine superiore

Funzioni di classe C^k

Sia $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}A$ aperto, si dice che f è di classe C^k in A e si scrive $f\in C^k(A)$ se f è dotata di tutte le derivate parziali fino all'ordine k e queste sono continue in A.

Teorema di Schwartz

Se $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, A aperto, è di classe C^k in A allora le derivate miste h-esime, con $2\le h\le k$ non dipendono dall'ordine seguiteo nell'eseguire la derivazione

Forme lineari e forme quadratiche

- Un'applicazione $L: \mathbb{R}^n \to \mathbb{R}$, $L(\underline{h}) = \sum a_i h_i = \langle \underline{a}, \underline{h} \rangle$, con $\underline{a} = (a_1, ..., a_n)^T$, è detta forma lineare in \mathbb{R}^n . Se $L \neq 0$ allora L è un polinomio omogeneo di I grado nelle variabili $\ell_1, ..., \ell_n$.
- Un'applicazione $Q:\mathbb{R}^n o\mathbb{R}$, $Q(\underline{h})=\sum\sum a_{ij}h_jh_i=<\mathbb{A}\cdot\underline{h},\underline{h}>$, con $\mathbb{A}=\begin{pmatrix} a_{11}...a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1}...a_{nn} \end{pmatrix}$, è detta forma quadratica in \mathbb{R}^n .

Proprietà delle forme quadratiche

Sia $\mathbb{A} \in M(n,n)$ e $\underline{h},\underline{k} \in \mathbb{R}^n$. Si ha:

- 1. $<\mathbb{A} \cdot \underline{h}, \underline{k}> = <\underline{h}, \mathbb{A} \cdot \underline{k}>$. Infatti $<\mathbb{A} \cdot \underline{h}, \underline{k}> = \sum (\sum a_{ij} \cdot h_j) k_i = \sum (\sum a_{ij} \cdot h_j) k_i = \sum (\sum a_{ij} \cdot h_j) k_i$.
- 2. Se $Q(\underline{h})=<\mathbb{A}\underline{h},\underline{h}>$, allora posto $\mathbb{A}^s=\frac{1}{2}(\mathbb{A}+\mathbb{A}^T)$, \mathbb{A}^s è simmetrica. $Q(\underline{h})=<\mathbb{A}^s\cdot\underline{h},\underline{h}$. Infatti $Q(\underline{h})=<\mathbb{A}\cdot\underline{h},\underline{h}=<\underline{h},\mathbb{A}^T\cdot\underline{h}>$ e quindi $2\cdot Q(\underline{h})=<\mathbb{A}\cdot\underline{h},\underline{h}+<\underline{h},\mathbb{A}^T\cdot\underline{h}>=<(\mathbb{A}+\mathbb{A}^T)\cdot\underline{h},\underline{h}>$. Dunque $Q(\underline{h})=<\frac{1}{2}(\mathbb{A}+\mathbb{A}^T)\cdot\underline{h}>$. $\underline{h},\underline{h}>$

non è restrittivo supporre che $\mathbb{A}=\mathbb{A}^s$

- 3. \circ Se L è una forma lineare, $L(\underline{h})=<\underline{a},\underline{h}>$, si ha $\nabla<\underline{a},\underline{h}>=(\frac{\partial}{\partial h_1}a_1h_1,...,\frac{\partial}{\partial h_n}a_nh_n)=\underline{a}$ (in quanto $\frac{\partial}{\partial h_i}a_ih_i=a_i$)
 - $\begin{array}{l} \circ \ \ \operatorname{Se} \ Q \ \ \operatorname{è} \ \operatorname{una} \ \operatorname{forma} \ \operatorname{quadratica} \ \operatorname{con} \ Q(\underline{h}) = <\mathbb{A} \cdot \underline{h}, \underline{h} >, \nabla <\mathbb{A} \cdot \underline{h}, \underline{h} > = (\mathbb{A} + \mathbb{A}^T) \cdot \underline{h} = 2\mathbb{A}^s \cdot \underline{h}. \ \operatorname{Infatti} \ \operatorname{per} \ N = 2 \colon \nabla \cdot (<\mathbb{A} \cdot \underline{h}, \underline{h} >) = \nabla (a_1 h_1^2 + \ldots + a_n h_n^2) = \begin{pmatrix} 2a_{11}h_1 + a_{12}h_2 + a_{21}h_2 \\ a_{12}h_1 + a_{21}h_1 + 2a_{22}h_1 \end{pmatrix} = \begin{pmatrix} 2a_{11} + a_{12} + a_{21} \\ a_{12} + a_{21} + 2a_{22} \end{pmatrix} \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} a_{11}a_{12} \\ a_{21}a_{22} \end{pmatrix} + \begin{pmatrix} a_{11}a_{21} \\ a_{12}a_{22} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = (\mathbb{A} + \mathbb{A}^T) \cdot \underline{h} \end{aligned}$

Differenziale per campi scalari

Sia $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, A aperto, differenziabile in A e sia $\underline{x}^0\in A$. Sia $g=\nabla f$ in \underline{x}^0 . Si chiama matrice **Hessiana** di f in \underline{x}^0 e risulta $Hf(\underline{x}^0)=Jg(\underline{x}^0=J(\nabla f)(\underline{x}^0)=$

$$\begin{pmatrix} \frac{\partial g_1}{x_1}(\underline{x}^0) \dots \frac{\partial g_1}{x_n}(\underline{x}^0) \\ \vdots \ddots \vdots \\ \frac{\partial g_n}{x_1}(\underline{x}^0) \dots \frac{\partial g_n}{x_n}(\underline{x}^0) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} \dots \frac{\partial^2 f}{\partial x_i x_n} \\ \vdots \ddots \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} \dots \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} \in M(n,n). \text{ La matrice Hessiana è la}$$

matrice di tutte le derivate parziali seconde.

La forma quadratica $Q(\underline{h})=< Hf(\underline{x}^0)\cdot \underline{h}, \underline{h}>= d^2f(\underline{x}^0)=\sum (\sum rac{\partial^2 f}{\partial x_i\partial x_j}(\underline{x}^0)h_j)h_i$

Teorema di Young (sulla simmetrica delle matrici Hessiane)

Se f è due volte differenziabile in \underline{x}^0 , allora $Hf(\underline{x}^0)$ è simmetrica, cioè $\frac{\partial^2 f}{\partial x_i \partial x_j}(\underline{x}^0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\underline{x}^0)$.

Condizione sufficiente affinchè una f sia due volte differenziabile

Se $f\in C^2(A)$, A aperto, allora f è due volte differenziabile in ogni punto di A. Inoltre $g=
abla f\in C^1(A)$. Se $g\in C^1(A)\Rightarrow g$ è differenziabile in A si conclude che f è due volte differenziabile in A

Teorema (formula di Taylor di ordine II)

Se f è due volte differenziabile in \underline{x}^0 , allora $f(\underline{x}) = f(\underline{x}^0) + \langle \nabla f(\underline{x}^0), \underline{x} - \underline{x}^0 \rangle + \frac{1}{2} \langle Hf(\underline{x}^0)(\underline{x} - \underline{x}_0), \underline{x} - \underline{x}^0 \rangle + o(||\underline{x} - \underline{x}^0||)$, approssimazione quadratica di f in \underline{x}^0 o polinomio di Taylor di f in \underline{x}^0 di ordine II

Dimostrazione

Poniamo $\varphi(\underline{x})=f(\underline{x})-(f(\underline{x}^0)+<\nabla f(\underline{x}^0),\underline{x}-\underline{x}^0>+\frac{1}{2}< Hf(\underline{x}^0)(\underline{x}-\underline{x}_0),\underline{x}-\underline{x}^0>+o(||\underline{x}-\underline{x}^0||)).$ Proviamo che $\varphi(\underline{x})=o(||\underline{x}-\underline{x}^0||).$ Poichè f è differenziabile in \underline{x}^0 , anche φ è differenziabile in \underline{x}^0 e $\nabla \varphi(\underline{x})=\nabla f(\underline{x})-\nabla f(\underline{x}^0)-Hf(\underline{x}^0)(\underline{x}-\underline{x}^0).$ Poichè ∇f è differenziabile in \underline{x}^0 , si ha che $\nabla \varphi(\underline{x})=o(||\underline{x}-\underline{x}^0||).$ Applichiamo il teorema del valor medio a $\varphi\colon\varphi(\underline{x})-\varphi(\underline{x}^0)=<\nabla \varphi(\underline{x}^0)=<o(||\underline{x}-\underline{x}^0||),\underline{x}-\underline{x}^0>$, per qualche $\vartheta\in]0,1[$ e quindi $|\varphi(\underline{x})|=|<\nabla \varphi(\underline{x}^0+\vartheta(\underline{x}-\underline{x}^0)),\underline{x}-\underline{x}^0>|\leq ||\nabla \varphi(\underline{x}^0+\vartheta(\underline{x}-\underline{x}^0))||\cdot||\underline{x}-\underline{x}^0||^2=\frac{x\to x^0}{<||o(||\underline{x}-\underline{x}^0||^2)}<||o(||\underline{y}(\underline{x}-\underline{x}^0)||)||\cdot||\underline{x}-\underline{x}^0||^2$

Punti di minimo e massimo relativo

Sia $f: E(\subseteq \mathbb{R}^n) \to \mathbb{R}$, un punto $\underline{x}^0 \in E$. Si dice minimo (massimo) relativo per f se esiste un intorno U di \underline{x}^0 t.c. $f(\underline{x}) > f(\underline{x}^0)$, $\forall \underline{x} \in U \cap E$

Studio degli estremi liberi

Test del quoziente o tesi di Fermat (condizione necessaria per l'esistenza del punto di estremo)

Se $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ è differenziabile in $\underline{x}^0\in intE$ e \underline{x}^0 è punto di estremo relativo per f allora $\nabla f(\underline{x}^0)=\underline{0}$.

Dimostrazione

Fissato un versore $\underline{u} \in \mathbb{R}^n$. Poichè $\underline{x}^0 \in intE$ esiste $\delta > 0$ t.c. $\underline{x} = \underline{x}^0 + t\underline{u} \in E$, $\forall |t| < \delta$. Poniamo $g(t) = f(\underline{x}^0 + t\underline{u})$, $\forall |t| < \delta$. Poichè f ha un punto di minimo in \underline{x}^0 , g ha un punto di minimo in $t = 0, 0 \in]-\delta, \delta[$ ed è derivabile in 0, essendo la composta di funzioni differenziabile e derivabile. Per il teorema di Fermat unidimensionale si ha $0 = g'(0) = <\nabla f(\underline{x}^0), \underline{u} > = \frac{\partial f}{\partial \underline{u}}(\underline{x}^0)$. In particolare risulta $\frac{\partial f}{\partial x_i}(\underline{x}^0) = 0$, per i = 1, ..., n, cioè $\nabla f(x^0) = 0$

Punti critici

Sia $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ differenziabile in $\underline{x}^0\in intE$. Si dice che \underline{x}^0 è punto critico per f se $\nabla f(\underline{x}^0)=0$

Punto di sella

Un punto critico \underline{x}^0 per f si dice punto di sella per f se esistono due versori $\underline{u},\underline{v}\in\mathbb{R}^n$ linearmente indipendenti t.c. posto $g(t)=f(\underline{x}^0+t\underline{u})$ e $h(t)=f(\underline{x}^0+t\underline{v})$, $\forall |t|<\delta$, g ha un punto di minimo relativo per t=0 e h ha un punto di massimo relativo per t=0

Studio della natura dei punti critici

Segno di una forma quadratica (o di una matrice simmetrica)

Sia $Q(\underline{h}):\mathbb{R}^n \to \mathbb{R}$ una forma quadratica con $Q(\underline{h})=<\mathbb{A}\cdot\underline{h},\underline{h}>$ dove \mathbb{A} è una matrice simmetrica $N\times N$.

Si dice che:

- Q (o \mathbb{A}) è definita positiva se $Q(\underline{h})>0$, $orall \underline{h}
 eq \underline{0}$
- Q (o \mathbb{A}) è definita negativa se $Q(\underline{h}) < 0$, $orall \underline{h}
 eq \underline{0}$

ullet Q è indefinita nel segno se esistono $\underline{u},\underline{v}$ t.c. $Q(\underline{u})>0 \land Q(\underline{v})<0$

Criteri di definitezza

Sia $Q:\mathbb{R}^n o \mathbb{R}$ una forma quadratica, esiste $\mathbb{A}(n,n)$ simmetrica t.c. $Q(\underline{h}) = <\mathbb{A} \cdot \underline{h}, \underline{h}>$, $orall \underline{h} \in \mathbb{R}^n$. \mathbb{A} ha n autovalori reali: $\lambda_1,...,\lambda_n$ e n autovettori $\underline{u}_1,...,\underline{u}_n$ t.c. $\mathbb{A} \cdot \underline{u}_i = \lambda_i \underline{u}_i$, per i=1,...,n e li scelgo in modo da avere: $<\underline{u}_i,\underline{u}_j>=\begin{pmatrix} 1 \mathrm{se} i=j \\ 0 \mathrm{se} i \neq j \end{pmatrix} = \delta_{ij}$, per i,j=1,...,n Rango di una matrice di autovettori: $\mathbb{U}=(u_1,...,u_n)$ e definisco la matrice diagonale $\lambda=\begin{pmatrix} \lambda_1 \ldots 0 \\ 0 \ddots \vdots \\ 0 \ldots \lambda_n \end{pmatrix}$. Si ha $\mathbb{U}^t \cdot \mathbb{U}=I_n$, ossia $\mathbb{U}^T=\mathbb{U}^{-1}$ e $\mathbb{U}^T\mathbb{A}\mathbb{U}=\lambda \Leftrightarrow \mathbb{A}\mathbb{U}=\mathbb{U}\lambda$, con λ_i radice di $\det(\mathbb{A}-t\mathbb{I}_n)$

Proposizione

Q è definita positiva $\Leftrightarrow \lambda_1>0,...,\lambda_n>0$. Q è definita negativa $\Leftrightarrow \lambda_1<0,...,\lambda_n<0$. Q è invece indefinita nel segno \Leftrightarrow esistono i,j t.c. $\lambda_i<0<\lambda_j$

Dimostrazione

Prendo $\underline{h} \in \mathbb{R}^n$. Esiste uno ed un solo $\underline{k} \in \mathbb{R}^n$ t.c. $\underline{h} = \mathbb{U} \cdot \underline{k}$. Si ha $Q(\underline{h}) = <\mathbb{A} \cdot \underline{h}, \underline{h}> = <\mathbb{A} \cup \underline{k}, \mathbb{U} \underline{k}>$, per le proprietà delle forme quadratiche: $<\mathbb{A} \mathbb{U} \underline{k}, \mathbb{U} \underline{k}> = <\mathbb{U}^T \mathbb{A} \mathbb{U} \underline{k}, \underline{k}> = <\mathbb{U}^T \mathbb{A} \mathbb{U} \underline{k}, \underline{k}> = <\mathbb{U}^T \mathbb{A} \mathbb{U} \underline{k}$

$$=<\lambda \underline{k},\underline{k}>==\lambda_1k_1^2+...+\lambda_nk_n^2.$$
 Si deduce quindi

immediatamente il criterio enunciato

Criterio di Sylvester

$$Q$$
 è definita positiva \Leftrightarrow dato $\mathbb{A}=egin{pmatrix} a_{11}\dots a_{1n} \ dots & \ddots & dots \ a_{n1}\dots a_{nn} \end{pmatrix}$, simmetrica, $A_1=a_{11}>0$, $A_2=det \begin{pmatrix} a_{11} & a_{12} \ a_{12} & a_{22} \end{pmatrix}>0$, ..., $A_n=det \mathbb{A}>0$. Q è invece definita negativa $\Leftrightarrow A_1<0$, $A_2>0$, ..., $(-1)^n A_n>0$

Lemma

Q è definita positiva $\Leftrightarrow \exists m>0$ t.c. $Q(\underline{h})\geq m||\underline{h}||^2$ per ogni $\underline{h}\in\mathbb{R}^n$. Q è definita negativa $\Leftrightarrow \exists M<0$ t.c. $Q(\underline{h})\leq M||\underline{h}||^2$, per ogni $\underline{h}\in\mathbb{R}^n$

Dimostrazione

Q è definita positiva $\Leftrightarrow \lambda_1>0,...,\lambda_n>0$. Pongo $m=min\{\lambda_1,...,\lambda_n\}>0$. Allora $orall \underline{h}\in\mathbb{R}^n$ esiste $\underline{k}\in\mathbb{R}^n$ t.c. $\underline{h}=\mathbb{U}\underline{k}$. Si ha $Q(\underline{h})=\lambda_1k_1^2+...+\lambda_nk_n^2\geq mk_1^2+...+mk_n^2=m||\underline{k}||^2=m||\mathbb{U}^T\underline{h}||^2=m||\underline{h}||^2$, essendo $\mathbb U$ ortogonale

Test Hessiana (condizione sufficiente per l'esistenza di un punto di estremo)

Teorema

Sia $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ due volte differenziabile in $\underline{x}^0\in intE$ e sia \underline{x}^0 un punto criticodi f, ossia $\nabla f(\underline{x}^0)=\underline{0}$. Si ha:

- 1. Se $Hf(\underline{x}^0)$ è definita positiva, allora \underline{x}^0 è punto di minimo per f
- 2. Se $Hf(\underline{x}^0)$ è definita positiva, allora \underline{x}^0 è punto di massimo per f
- 3. Se $Hf(\underline{x}^0)$ è indefinita nel segno, allora \underline{x}^0 è punto di sella per f

Dimostrazione

$$\begin{split} &f(\underline{x}^0) = f(\underline{x}^0) + <\nabla f(\underline{x}^0), \underline{x} - \underline{x}^0 > + \frac{1}{2} < Hf(\underline{x}^0)(\underline{x} - \underline{x}^0), \underline{x} - \underline{x}^0 > + o(||\underline{x} - \underline{x}_0||^2). \text{ Il punto è critico} \Rightarrow \nabla f(\underline{x}^0) = \underline{0} \Rightarrow <\nabla f(\underline{x}^0), \underline{x} - \underline{x}^0 > = 0. \text{ Allora: } f(\underline{x}) - f(\underline{x}^0) = \frac{1}{2} < Hf(\underline{x}^0)(\underline{x} - \underline{x}^0), \underline{x} - \underline{x}^0 > + o(||\underline{x} - \underline{x}_0||^2). \text{ Nel primo caso } Hf(\underline{x}^0) \text{ è definita positiva e quindi } \exists m > 0 \text{ t.c.} < Hf(\underline{x}^0)\underline{h}, \underline{h} > \geq m||\underline{h}||^2, \forall \underline{h} \in \mathbb{R}^n. \text{ Allora risulta che la funzione } f(\underline{x}) - f(\underline{x}^0) = \frac{1}{2} < Hf(\underline{x}^0)(\underline{x} - \underline{x}^0), \underline{x} - \underline{x}^0 > + o(||\underline{x} - \underline{x}_0||^2) \geq \frac{m}{2}||\underline{x} - \underline{x}^0||^2 + o(||\underline{x} - \underline{x}^0||^2) = \left(\frac{m}{2} + \frac{o(||\underline{x} - \underline{x}^0||^2)}{||\underline{x} - \underline{x}^0||^2}\right)||\underline{x} - \underline{x}^0||^2. \text{ Poichè} \\ \lim_{\underline{x} \to \underline{x}^0} \left(\frac{m}{2} + \frac{o(||\underline{x} - \underline{x}^0||^2)}{||\underline{x} - \underline{x}^0||^2}\right) = \frac{m}{2} > 0 \text{ e, per il teorema di permanenza del segno esiste} \\ \text{un intorno } U \text{ di } \underline{x}^0 \text{ tale per cui } \frac{m}{2} + \frac{o(||\underline{x} - \underline{x}^0||^2)}{||\underline{x} - \underline{x}^0||^2} > 0, \forall \underline{x} \in U \cap E, \text{ con } \underline{x} \neq \underline{x}^0. \text{ Ne segue} \\ \text{che } f(\underline{x}) - f\underline{x}^0) > 0, \forall \underline{x} \in U \cap E, \text{ con } \underline{x} \neq \underline{x}^0, \text{ ossia } \underline{x}^0 \text{ è punto di minimo relativo, la situazione è analoga per il secondo caso.} \\ \text{Nel terzo caso: } Hf(\underline{x}^0) \text{ è indefinita nel segno, quindi } \exists \underline{u}, \underline{v} \in \mathbb{R}^n, \text{ versori, t.c.} < Hf(\underline{x}^0)\underline{u}, \underline{u} > < 0 < < Hf(\underline{x}^0)\underline{v}, \underline{v} >). \text{ Pongo } g(t) = f(\underline{x}^0 + t\underline{u}) \text{ e } h(t) = f(\underline{x}^0 + t\underline{v}). \\ \text{Ho che } g(t) - g(0) = f(\underline{x}^0 + t\underline{u}) - f(\underline{x}^0) = \frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} > + o(||t\underline{x}^0||^2). \\ \text{Ossia: } \frac{1}{2} < Hf(\underline{x}^0)\underline{t}\underline{u}, \underline{t}\underline{u} > + o(||t\underline{x}^0||^2) = \frac{t^2}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} + o(t^2) = \left(\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} > + o(||t\underline{x}^0||^2) + t^2. \end{aligned} \right.$$

Ma allora: $\lim_{t \to 0} \left(\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} > + \frac{o(t^2)}{t^2} \right) t^2 = \frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u}) > < 0$. Allora per il teorema di permanenza del segno esiste $\delta > 0$ t.c. $\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u}) > + \frac{o(t^2)}{t^2} > 0$, per $0 < |t| < \delta$ e quindi g(t) - g(0) < 0, $\forall 0 < |t| < \delta$, ossia g ha un massimo in t = 0. Ugualmente si verificache h ha un minimo in t = 0, ossia \underline{x}^0 è un punto di sella.

Teorema

Sia $f:\mathbb{R}^n o\mathbb{R}$ continua e $\lim_{||\underline{x}^0 o+\infty||}f(\underline{x}^0)=+\infty$ allora esiste $\underset{\mathbb{R}^n}{min}f$, concetto simile alla coercività di \mathbb{R} . Analogmente se $\lim_{||\underline{x}^0 o+\infty||}f(\underline{x}^0)=+\infty$ allora esiste $\underset{\mathbb{R}^n}{max}f$, concetto simile all'anticoercività di \mathbb{R} .

Analisi II - quinta parte

Coordinate polari

- ullet $(x,y)^T$ coordinate cartesiane
- ullet $(
 ho,artheta)^T$ coordinate polari, $ho=||(x,y)^T||=\sqrt{x^2+y^2}$

Curve in \mathbb{R}^n (n=2,3)

Curve in forma parametrica

Sia $\gamma:I(\subseteq\mathbb{R})\to\mathbb{R}^n$, con I intervallo. La coppia $(\gamma,\underbrace{\gamma(I)}_{=\Gamma})$ si dice curva in forma parametrica di cui γ è la rappresentazione parametrica e $\Gamma=\gamma(I)$ è il sostegno

$$ullet N=2$$
 , $\gamma(t)=(x(t),y(t))^T$, $t\in \mathbb{R}$ oppure $egin{cases} x=x(t)\ y=(t) \end{cases}$, $t\in I$

•
$$N=3$$
, $\gamma(t)=(x(t),y(t),z(t))^T$, $t\in\mathbb{R}$ oppure $egin{cases} x=x(t) \ y=(t) \ z=z(t) \end{cases}$

Curva in forma parametrica chiusa

Si dice che γ è una curva in forma parametrica **chiusa** se I=[a,b] e $\gamma(a)=\gamma(b)$

Curva in forma parametrica semplice

Si dice che γ è una curva in forma parametrica **semplice** se $\forall t_1,t_2$, con $t_1\neq t_2$ e almeno uno fra t_1 e t_2 interno ad I, si ha che $\gamma(t_1)\neq\gamma(t_2)$

NB

È permesso che $\gamma(a)=\gamma(b)$, se I=[a,b]

Curva in forma parametrica regolare

Si dice che γ è una curva in forma parametrica **regolare** se $\gamma \in C^1(I)$ e $\gamma'(t) \neq 0$, $\forall t \in intI$. Si dice che $\gamma'(t)$, $t\in int I$ è il vettore tangente e si pone $au(t)=rac{\gamma'(t)}{||\gamma'(t)||}$, au versore tangente

Retta tangente a una curva regolare semplice in forma parametrica

Sia γ una curva in forma parametrica regolare semplice e sia $t_0 \in intI$. La retta in forma parametrica $r(s)=\gamma(t_o)+\gamma'(t_o)s$, con $s\in\mathbb{R}$, si dice retta tangente nel punto $\gamma(t_o)$

Curve in \mathbb{R}^2

Curve regolari in forma cartesiana in \mathbb{R}^2

Sia $f:I(\subseteq\mathbb{R}^2) o\mathbb{R}$, I intervallo, di classe C^1 , la curva in forma parametrica $\gamma:I o\mathbb{R}^2$, con $\gamma(t)=inom{t}{f(t)}$ si dice curva **regolare** in forma cartesiana. Si ha: $\gamma'(t)=inom{1}{f'(t)}
eq 0$, in I e il $sost(\gamma)=\gamma(I)$.

Curve regolari in forma polare in \mathbb{R}^2

Sia $ho:I(\subseteq\mathbb{R}) o\mathbb{R}$, con I intervallo, di classe C^1 e t.c. $ho(\vartheta)\geq 0$ in I e $ho(\vartheta)+
ho'(\vartheta)>0$ in intI. La curva $\gamma:I o\mathbb{R}^2$, con $\gamma(\vartheta)=egin{pmatrix}
ho(\vartheta)cos\vartheta \
ho(\vartheta)sin\vartheta \end{pmatrix}$, si dice curva **regolare** in forma polare. Si ha $\gamma'(\vartheta) = (\rho(\vartheta)^2 - \rho(\vartheta)sin\vartheta, \rho'(\vartheta)sin\vartheta - \rho'(\vartheta)cos\vartheta)^T$ e quindi $||\gamma'(\vartheta)||^2 = (\rho(\vartheta)cos^2\vartheta - \rho(\vartheta)^2sin^2\vartheta - \underline{2\rho(\vartheta)cos\vartheta sin\vartheta} + \rho(\vartheta)^2sin^2\vartheta + \rho'(\vartheta)cos^2\vartheta + \underline{2\rho'(\vartheta)^2cos\vartheta sin\vartheta}) = \rho(\vartheta)^2 + \rho'(\vartheta) > 0$

Curve in \mathbb{R}^2 definite da equazioni

Si considera una funzione $\varphi:A(\subseteq\mathbb{R}^2)\to\mathbb{R}$ e il suo insieme di livello zero, $L_0(\varphi)=\{(x,y)^T\in A: \varphi(x,y)=0\}.$ Se abla arphi = 0, $L_0(arphi)$ non è unidimensionale, infatti dove abla arphi = 0 può essere che non ci sia tangente o che ci sia $L_0(arphi)$ bidimensionale.

Se $abla arphi \neq 0$ si può parlare di curve definite da equazioni

Punti regolari e punti singoli

Sia $\varphi:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, di classe C^1 in A. Un punto $\underline{x}^0=(x_0,y_0)^T\in L_0(\varphi)$ si dice **regolare** se $\nabla \varphi(x^0) \neq 0$, singolare altrimenti.

Teorema di parametrizzazione locale (o della funzione implicita o di Dimi)

Se $arphi:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, di classe C^1 e $\underline{x}^0=(x_0,y_0)^T$ è un punto regolare, $ablaarphi(\underline{x}^0)
eq \underline{0}$, con $arphi(\underline{x}^0)=0$, allora esiste un intorno U di x_0 , un intorno V di y_0 , g:U o V e h:V o U, $g,h\in C^1$ t.c. $L_0(arphi)\cap (U imes V)=$

 $egin{cases} G(g) \ G(h) = 0$, a seconda di cosa posso definire. In base a cosa decido? In base a quale derivata parziale è eq 0. Se lo sono

entrambe cerco la funzione inversa di $oldsymbol{y}$

entrambe cerco la funzione inversa di
$$y$$

$$0 = \begin{cases} G(g) \text{ se } \varphi_g(x_0, y_0) \neq 0 \\ G(h) \text{ se } \varphi_h(x_0, y_0) \neq 0 \end{cases}. \text{ Inoltre si ha:}$$

$$g'(x) = -\frac{\varphi_x(x, g(x))}{\varphi_y(x, h(x))}, \ \forall x \in U, \ \varphi_y(x^0, y^0) \neq 0 \text{ oppure } h'(y) = -\frac{\varphi_y(h(y), y)}{\varphi_x(g(y), y)}, \ \forall y \in V, \ \varphi_x(x^0, y^0) \neq 0.$$
 In particolare, la retta tangente a $L_0(\varphi)$ in $(x^0, y^0)^T$ ha equazione $y = g(x^0) + g'(x^0)(x - x^0) \Leftrightarrow y - y^0 = -\frac{\varphi_x(x^0, y^0)}{\varphi_y(x^0, y^0)}(x - x^0) \ \text{(1), se } \varphi_x(x^0, y^0) \neq 0.$ (1), se $\varphi_x(x^0, y^0) \neq 0.$ (1)(2) e quindi $\Leftrightarrow \varphi_x(x^0, y^0)(x - x^0) + \varphi_y(x^0, y^0)(y - y^0) = 0.$ $\leqslant \nabla \varphi(x^0), x - x^0 > 0.$ allo stesso modo trovo

lo stesso prodotto scalare per $arphi_x(x^0,y^0)=0$, cioè $abla arphi(\underline{x}^0)$ è $oxdot(\underline{x}-\underline{x}^0)$

Consequenze

Sotto le ipotesti del sopracitato teorema si ha $\nabla \varphi(\underline{x}^0)$ è ortogonale alla retta tangente a $L_0(\varphi)$ nel punto \underline{x}^0 e quindi a $L_0(\varphi)$ nel punto 0

Osservazione

 $\lambda(\varphi)\cap(v\times V)=G(g)\Rightarrow \varphi(x,g(x))=0$ in U. Si ha che la funzione y=g(x) è definita in modo implicito dall'equazione $\varphi(x,y)=0$ e della condizione $g(x^0)=y^0$.

Definizione

Sia $\varphi:A(\subseteq\mathbb{R}^2)\to\mathbb{R}$, A aperto, di classe C^1 , tale che $L_0(\varphi)=\{(x,y)\in A|\varphi(x,y)=0\}\neq\emptyset$ e $\nabla\varphi(x,y)\neq0$ per ogni $(x,y)^T\in L_0(\varphi)$. La coppia $(\varphi,L_0(\varphi))$ si dice curva regolare in forma **implicita** di $\varphi(x,y)=0$. $\varphi(x,y)=0$ è l'equazione e $L_0(\varphi)$ è il sostegno.

Definizione

Siano $A(\subseteq \mathbb{R}^2)$ aperto connesso e $\sigma=K=clA(\subseteq \mathbb{R}^2)$, con $\sigma(u,v)=(x(u,v),y(u,v),z(u,v))^T$. Supponiamo allora che:

- 1. σ è di classe C^1 in intK
- 2. $\forall \underline{u} = (u,v)^T \in int K$, $\sigma_u(x_u(u,v),y_u(u,v),z_u(u,v))^T$ e $\sigma_v(u,v) = (x_v(u,v),y_v(u,v),z_v(u,v))^T$ sono linearmente indipendenti. Ossia $\sigma_u(u,v) \times \sigma_v(u,v) \neq 0$
- 3. $\forall u_1, u_2 \in K$, con $u_1 \neq u_2$ e $u_1 \in intK$ e $u_2 \in intK$, allora si ha $\sigma(u_1) \neq \sigma(u_2)$. La coppia formata da $(\sigma, \sigma(k))$ si dice **superficie** regolare sempline in forma parametrica, di cui σ è la parametrizzazione e $\Sigma = \sigma(\kappa)$ è il **sostegno**.

Definizione

Sia $\sigma:K(\subseteq\mathbb{R}^2\to\mathbb{R}^3$ una superficie regolare semplice in forma parametrica. Fisso un $\underline{u}^0=(u^0,v^0)^T\in intK$ e sia il punto $\underline{x}^0=\sigma(\underline{u})\in\Sigma$. Le curve $\sigma(\cdot,v^0):]u^0-\delta,u^0+\delta[\to\mathbb{R}^2$ e $\sigma(u^0,\cdot):]v^0-\delta,v^0+\delta[\to\mathbb{R}^2$ sono regolari semplici e si dicono linee coordinate passanti per \underline{x}^0

Definizione

Il vettore $\sigma_u(u^0,v^0)$ è il vettore tangente alla linea coordinata da u in \underline{x}^0 e il vettore $\sigma_v(u^0,v^0)$ è il vettore tangente alla linea coordinata v in \underline{x}^0 . Il vettore $\sigma_v(u^0,v^0) \times \sigma_u(u^0,v^0)$ si dice vettore **normale** a Σ in \underline{x}^0 e invece il versore

dato da $u(u^0,v^0)=rac{\sigma_v(u^0,v^0) imes\sigma_u(u^0,v^0)}{||\sigma_v(u^0,v^0) imes\sigma_u(u^0,v^0)||}$ è il vettore normale a Σ in \underline{x}^0

Definizione

Il piano generato da $\sigma_u(u^0, v^0)$ e $\sigma_v(u^0, v^0)$ passante per \underline{x}^0 si dice piano tangente a Σ in \underline{x}^0 , ed è rappresentato da:

1.
$$\underline{x}=\lambda\sigma_u(u^0,v^0)+\mu\sigma_v(u^0,v^0)+\underline{x}^0$$
, $\forall (\lambda,\mu)\in\mathbb{R}^2$ \to rappresentazione **parametrica** 2. $<\sigma_u(u^0,v^0)\times\sigma_v(u^0,v^0), \underline{x}-\underline{x}^0>=0$ \to rappresentazione implicita.

Definizione

Sia $f:K=clA(\subseteq\mathbb{R}^2) o\mathbb{R}$, con A aperto e connesso, di classe C^1 in intK. La superficie in forma parametrica $\sigma(u,v)$, dato che $\sigma(u,v)=(u,v,f(u,v))^T$, con $(u,v)\in K$, è una superfice regolare semplice, dove $\Sigma=$

$$\sigma(K) = G(f)$$
 e inoltre vale: $\sigma_u imes \sigma_v = egin{pmatrix} 1 \ 0 \ f_u \end{pmatrix} imes egin{pmatrix} 0 \ 1 \ f_v \end{pmatrix} = det egin{pmatrix} e_1 \ e_2 \ e_3 \ 1 \ 0 \ f_u \ 0 \ 1 \ f_v \end{pmatrix} = egin{pmatrix} -f_u \ -f_v \ 1 \end{pmatrix}$

Definizione

Sia $\varphi:A(\subseteq\mathbb{R}^2)\to\mathbb{R}$, A aperto, di classe C^1 . supponiamo che $\Sigma=L_0(\varphi)=\{(x,y,z)^T=0\}\neq\emptyset$ e per ogni $(x,y,z)^T\in L_0(\varphi)$ sia $\nabla\varphi(x,y,z)\neq0$. La coppia $(\varphi,L_0(\varphi))$ si dice superficie regolare in forma **implicita** di cui $\varphi(x,y,z)=0$ è l'equazione e $\Sigma=L_0(\varphi)$ è il sostegno. Il piano tangente a Σ in \underline{x}^0 è rappresentato dall'equazione $<\nabla\varphi(x^0),x-x^0>=0$.

Definizione, Curve regolari in forma implicita in \mathbb{R}^3

Siano $\varphi, \psi: A(\subseteq \mathbb{R}^3) \to \mathbb{R}$, con A aperto e di classe C^1 , tali che $\Gamma = L_0(\varphi) \cap L_0(\psi) = \{(x,y,z)^T \mid \varphi(x,y,z) = 0, \psi(x,y,z) = 0\} \neq \emptyset$ e $\nabla \varphi(x,y,z) \times \nabla \psi(x,y,z) \neq 0$, per ogni $(x,y,z)^T \in L_0(\varphi) \cap L_0(\psi) = \Gamma$. La coppia $((\varphi,\psi),L_0(\varphi) \cap L_0(\psi))$ si dice curva regolare in forma implicita in \mathbb{R}^3 di cui $\begin{cases} \varphi(x,y,z) = 0 \\ \psi(x,y,z) = 0 \end{cases}$ sono le equazioni e $\Gamma = L_0(\varphi) \cap L_0(\psi)$ è il sostegno. Il vettore $\nabla \varphi(\underline{x}^0) \times \psi(\underline{x}^0)$ è il vettore tangente a Γ in \underline{x}^0 , e la retta $\underline{x} = \underline{x}^0 + t(\nabla \varphi(\underline{x}^0) \times \psi(\underline{x}^0))$, $t \in \mathbb{R}$ è la retta tangente a Γ in \underline{x}^0 , questa è la forma parametrica.

Considero un altro modo per scriverlo: $\begin{cases} <\varphi(\underline{x}^0), \underline{x}-\underline{x}^0>=0 \text{ (piano tangente a } L_0(\varphi)) \\ <\psi(\underline{x}^0), \underline{x}-\underline{x}^0>=0 \text{ (piano tangente a } L_0(\varphi)) \end{cases}$

Lo studio deli estremi di $f: E(\subseteq \mathbb{R}^n) o \mathbb{R}$, A aperto, di classe C^1

Si articola

- ullet nello studio degli estremi in intE, studio degli estremi liberi
- ullet nello studio degli estremi in frE, studio degli estremi vincolati

Estremi vincolati

Vincolo

Se
$$f:E(\subseteq \mathbb{R}^n) o \mathbb{R}$$
. Un insieme $\emptyset
eq \underline{0}V \underset{
eq}{\subset} E$ si dice vincolo per f

Punti di estremo vincolato

Siano $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ e V un vincolo per f. Si dice che $\underline{x}^0\in V$ è un punto di estremo vincolato per f se V se \underline{x}^0 è t.c. $f(\underline{x})>f(\underline{x}^0)$, $orall x\in U\cap I$

V , $\underline{x} eq \underline{x}^0$ (minimo vincolato) oppure $f(\underline{x}) < f(\underline{x}^0)$, $orall x \in U \cap V$, $\underline{x} eq \underline{x}^0$ (massimo vincolato)

Consideriamo

$$N=2, V=\Gamma$$
, curva $\begin{cases} \text{Curva regolare in forma parametrica in } \mathbb{R}^2(\text{T5}) \end{cases}$, V può anche essere solo un punto, $N=3, V=\{\text{curva regolare in forma parametrica } (\text{T1}) \}$, V può anche essere intervalli o altri tipi di insieme V superficie, V V superficie regolare in forma parametrica V in \mathbb{R}^3 superficie regolare in forma implicita V in \mathbb{R}^3

Teorema (T3) (N=2 o N=3, $V=\Gamma$, curva in forma parametrica)

Sia $f:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$, A aperto, di classe C^1 . Sia $\gamma:\iota\to A$ una curva regolare, I intervallo. e $\underline{x}^0=\gamma(t^0)$, con $t^0\in intI$ è un punto di estremo vincolato per f su $\Gamma=\gamma(I)$, allora $<\nabla f(x^0),\gamma'(t^0)>=0$

Osservazione

Se
$$\nabla f(\underline{x}^0) \neq \underline{0}$$
, allora $\nabla f(\underline{x}^0)$ è \bot a $L_f(\underline{x}^0)(f)$ e a Γ in \underline{x}^0 e quindi $L_f(\underline{x}^0)(f)$ e Γ sono tangenti in \underline{x}^0

Dimostrazione

Studiare $f_{|\Gamma}$ equivale a studiare la funzione $\psi:I\to\mathbb{R}$, con $\psi(t)=f(\gamma(t))$. Poichè $f_{|\gamma}$ ha un punto di estremo in \underline{x}^0 , ψ ha un punto di estremo in t^0 con $\gamma(t^0)=\underline{x}^0$, $t^0\in intI$. Essendo f e γ di classe C^1 , ψ è di classe C^1 . Quindi per il teorema di Fermat $0=\psi'(t^0)=<\nabla f(\gamma(t^0)), \gamma'(t^0)>=<\nabla f(\underline{x}^0), \gamma'(t^0)>$.

Teorema (T2) (N=3, $V=\Sigma$, superficie regolare in forma parametrica)

Sia $f:A(\subseteq\mathbb{R}^3) o\mathbb{R}$, A aperto, di classe C^1 e sia $\sigma:k o A$ una superficie regolare semplice. Se $\underline{x}^0=\sigma(\mu^0)$, con $u^0\in int K$, è un punto di etremo per f su $\Sigma=\sigma(K)$, allora (-- MANCA TESI --)

Osservazione

Se $\nabla f(\underline{x}^0) \neq 0$, allora $\nabla f(\underline{x}^0) \perp \sigma_u(\underline{u}^0)$ o $\nabla f(\underline{x}^0) \perp \sigma_v(\underline{u}^0)$ e quindi $\nabla f(\underline{x}^0)$ è \perp al piano tangente Σ in \underline{x}^0 , cioè $\nabla f(\underline{x}^0) \perp \Sigma$.

Poichè $\nabla f(\underline{x}^0) \perp L_{f(\underline{x}^0)}(f)$, si conclude che Σ e $L_{f(\underline{x}^0)}(f)$ sono tangenti in \underline{x}^0

Problema

Es. estremi di f(x,y)=x+y, su $x^4+y^4-4xy=1 o$ curva regolare in forma implicita

Teorema (T3), ($N=2,V=\Gamma$, curva regolare in forma implicita o dei moltiplicatori di Lagrange)

Siano $f_{\varphi}: E(\subseteq \mathbb{R}^2) \to \mathbb{R}$, aperto, di classe C^1 . Se $\underline{x}^0 \in \Gamma = L_0(\varphi) = \{(x,y)^T = \varphi(x,y) = 0\}$ è un punto di estremo vincolato di f su Γ e $\nabla \varphi(\underline{x}^0) \neq \underline{0}$, allora esiste $\lambda \in \mathbb{R}$ t.c. $\nabla f(\underline{x}^0) = \lambda \nabla \varphi(\underline{x}^0)$

Dimostrazione

Poichè $\nabla \varphi(\underline{x}^0) \neq \underline{0}$ il teorema di parametrizzazione locale (Dini) garantisce che \exists un intorno W di \underline{x}^0 e \exists una curva regolare in forma parametrica $\gamma:I\in\mathbb{R}^2$ t.c. $\gamma(I)=\Gamma=L_0(\varphi)\cap W$. (\Rightarrow localmente il vincolo è una curva parametrica \Rightarrow applico (T1)).

Per (T1) si ha $< f(\underline{x}^0), \gamma'(t^0)>=0$, dove $\underline{x}^0=\gamma(t^0)$ e $t^o\in intI$. D'altra parte $abla arphi(\underline{x}^0)\perp\gamma'(t^0)$, <

 $abla arphi(\underline{x}^0), \gamma'(t^0) >= 0$ e quindi $abla f(\underline{x}^0)$ e $abla arphi(\underline{x}^0)$ sono paralleli, cioè esistono $lpha, eta \in \mathbb{R}$ t.c. $lpha
abla f(\underline{x}^0) + 1$ $eta
ablaarphi(\underline{x}^0)=\underline{0}$, con lpha,eta non entrambi nulli. Poichè lpha=0 implicherebbe $ablaarphi(\underline{x}^0)=0$ dev'essere lpha
eq0. Posto $\lambda=0$ $-rac{\beta}{\alpha}$, si conclude che $\nabla f(\underline{x}^0) = \lambda \cdot \nabla \varphi(\underline{x}^0)$

Teorema dei moltiplicatori di Lagrange ($N=2,V=\Gamma$, curve in forma implicita)

Siano $f, arphi: a(\subseteq \mathbb{R}^2) o \mathbb{R}$, A aperto, di classe C^1 e sia $\Gamma = L_0(\gamma) = \{(x,y)^T \in A: arphi(x,y) = 0\}$. Se $\underline{x}^0=(x^0,y^0)\in\Gamma$ è un punto di estremo vincolato per f su Γ e $abla arphi(\underline{x}^0)
eq \underline{0}$ allora esiste $x\in\mathbb{R}$ t.c. $abla f(\underline{x}^0)=$ $\lambda \cdot \nabla \varphi(\underline{x}^0)$

Osservazione: uso del teorema dei moltiplicatori di Lagrange

1. Se Γ è una curva regolare in forma implicita, cioè $\nabla \varphi \neq 0$, $\forall \underline{x} \in \Gamma$ allora i punti di estremo vincolato di f su Γ si ricercano tra le soluzioni $\underline{x} = (x,y)^T$ di

$$ag{L} egin{cases} f_x(x,y) = \lambda arphi_x(x,y) \ f_y(x,y) = \lambda arphi_y(x,y) \end{cases}$$

tre incognite x,y,λ anche se λ è di relativa impotanza)

2. Se Γ non è una curva regolare in forma implicita, cioè esistono punti singolari, allora i punti di estremo vincolato di fsu Γ vanno ricercati tra le soluzioni di (L), ma anche tra le soluzioni di

$$egin{cases} arphi_x(x,y) = 0 \ arphi_y(x,y) = 0 \ arphi(x,y) = 0 \end{cases}$$

Teorema dei moltiplicatori di Lagrange ($N=3, V=\Sigma$ superficie in forma implicita)

Siano $f, \varphi: A(\subseteq \mathbb{R}^3) \to \mathbb{R}$, A aperto, di classe C^1 e sia $\Sigma = \{(x,y,z)^T \in A: \varphi(x,y,z) = 0\} = L_0(\varphi)$. Se $\underline{x}^0 = (x^0,y^0,z^0)^T \in \Sigma$ è punto di estremo vincolato per f su Σ e $\nabla \varphi(\underline{x}^0) \neq \underline{0}$, allora esiste $\lambda \in \mathbb{R}$ t.c. $\nabla f(x^0) = \lambda \nabla \varphi(x^0)$

Osservazione: uso del teorema dei moltiplicatori di Lagrange

I punti di estremo vincolato per f su Σ vanno ricercati tra le soluzioni di:

$$\begin{array}{l} \bullet \ \ \text{punti regolari} \begin{cases} \nabla f(\underline{x}) = \lambda \cdot \nabla \varphi(\underline{x}) \\ \varphi(\underline{x}) = 0 \end{cases}$$

$$\begin{array}{l} \bullet \ \ \text{punti singolari} \end{cases} \begin{cases} \nabla \varphi(\underline{x}) = \underline{0} \\ \varphi(\underline{x}) = 0 \end{cases}$$

$$ullet$$
 punti singolari $egin{cases}
abla arphi(\underline{x}) = \underline{0} \ arphi(\underline{x}) = 0 \end{cases}$

Teorema (N=3, $V=\Sigma$ curva in forma implicita)

Siano $f,F,\psi:A(\subseteq\mathbb{R}^3) o\mathbb{R}$, A aperto, di classe C^1 . Sia $\Gamma=L_0(\varphi)\cap L_0(\psi)$, ossia in forma esplicita $\Gamma=$ $L_0(arphi)\cap L_0(\psi)=\{(x,y,z)^T: arphi(x,y,z)=\psi(x,y,z)=0\}.$ Se $\underline{x}^0=(x^0,y^0,z^0)^T\in \Gamma$ è un estremo vincolato per f su Γ e $\nabla \varphi(\underline{x}^0) imes \nabla \psi(\underline{x}^0) \neq \underline{0}$, allora esistono $\lambda, \mu \in \mathbb{R}$, detti moltiplicatori di Lagrange, tali che $\nabla f(\underline{x}^0) =$ $\lambda \nabla \varphi(\underline{x}^0) + \mu \nabla \psi(\underline{x}^0).$

Osservazione

Se Γ :

1. è una curva regolare in forma implicita, cioè $abla arphi imes
abla \psi
eq 0$ in Γ , allora i punti di estremo vincolato per f su Γ vanno cercati tra:

$$(\mathrm{S}_1) egin{cases} f_x(x,y,z) = \lambda
abla arphi_x(x,y,z) + \mu
abla \psi_x(x,y,z) \ f_y(x,y,z) = \lambda
abla arphi_y(x,y,z) + \mu
abla \psi_y(x,y,z) \ f_z(x,y,z) = \lambda
abla arphi_z(x,y,z) + \mu
abla \psi_z(x,y,z) \ arphi(x,y,z) = 0 \ \psi(x,y,z) = 0 \end{cases}$$

2. Se Γ non è una curva regolare in forma implicita, cioè ci sono punti singolari, i punti di estremo vincolato vanno cercati tra le soluzioni di (S_1) e di

$$\begin{cases} \nabla \varphi(x,y,z) \times \nabla \psi(x,y,z) = \underline{0} \\ \varphi(x,y,z) = 0 \end{cases}$$
 si hanno cinque equazioni in tre incognite $\psi(x,y,z) = 0$

Analisi II - quinta parte bis

Equazioni differenziali e modelli matematici

Modelli matematici

Esempi di modelli

• Decadimento radioattivo N(t)= numero di radionuclidi al tempo t. $\frac{1}{\tau}$ percentuale di radionuclidi che decadono nell'unità di tempo.

$$N(t+h) = N(t) - rac{h}{ au} N(t)$$

$$ullet \left\{ egin{aligned} N((n+1)h) &= N(nh)(1-rac{h}{ au}) \ N(0) &= N_0 \end{aligned}
ight.$$

$$ullet \lim_{h o 0}rac{N(1+h)-N(t)}{h}=-rac{1}{ au}N(t)$$
 , $egin{cases} N'(t)=-rac{1}{ au}N(t)\ N(0)=N_0 \end{cases}$

$$ullet$$
 Modello discreto $N(nh)=N_0(1-rac{h}{ au})$

ullet Modello continuo $N(t)=N_0e^{-rac{1}{ au}t}$

Dinamica delle popolazioni

Popolazione isolata

- 1. Risorse illimitate
- N(t) persone al tempo t (densità di popolazione al tempo t)
- ν natalità (tasso di natalità)
- μ mortalità (tasso di mortalità)

$$N(t+h)=N(t)+
u N(t)-\mu N(t) \ N(t+h)=N(t)+(
u-\mu)N(t)$$
 $\lim_{h o 0}rac{N(t+h)-N(t)}{h}=\sigma N(t) \ N'(t)=\sigma N(t) \ N(0)=N_0$ 2. Risorse limitate $\begin{cases} N'(t)=\sigma N(t)-\varepsilon N^2(t)\ , (\varepsilon>0) \ N(0)=N_0 \end{cases}$

modello di Verhulst (o logistico)

3. Popolazioni non isolate con risorse limitate

3. Popolazioni non isolate con risorse limitate
$$\begin{cases} N'(t) = \sigma N(t) - \varepsilon N^2(t) + \pi(t) \begin{cases} \pi(t) > 0 \text{ immigrazione} \\ \pi(t) < 0 \text{ emigrazione} \end{cases} \\ N(0) = N_0 \end{cases}$$

Preda-predatore, Modello di Lotka-Volterra

x(t) è il numero di prede

y(t) è il numero di predatori

$$egin{cases} x'(t) = a \cdot x(t) - b \cdot x(t) y(t) ext{ a,b>0} \ y'(t) = -c \cdot y(t) + d \cdot x(t) y(t) ext{ c>0} \ x(0) = x_0 \ y(0) = y_0 \end{cases}$$

Modello di epidemie

Malattia non mortale che non consente l'immunità

I(t) numero di infetti

S(t) numero di suscettibili alla malattia

$$\begin{cases} I'(t)=\beta I(t)S(t)\\ S'(t)=-\beta I(t)S(t) \end{cases} \text{ Modello SIS, } S\to I\to S \text{, alternanza immunità/suscettibilità. } (\beta>0)\\ \begin{cases} I'(t)=\beta I(t)(N-I(t))\\ I(0)=I_0 \end{cases} \text{, Modello Logistico}$$

Malattria possibilmente mortale che comporta immunità

- I(t) numero di infetti
- S(t) numero di suscettibili alla malattia
- R(t) numero di recuperati/rimossi, non più suscettibili perchè immuni o morti

$$\begin{cases} S'(t) = \beta \cdot I(t)S(t) \\ I'(t) = \beta \cdot I(t)S(t) - \gamma I(t) \\ R'(t) = \gamma I(t) \\ I(0) = I_0, S(0) = S_0, R(0) = R_0 \end{cases} \text{, Modello SIR, } S \rightarrow I \rightarrow R$$

II legge della dinamica

$$egin{cases} m \cdot \gamma''(t) = F(t,\gamma(t),\gamma'(t)) \ \gamma(t) = (x(t),y(t),z(t))^T \ \gamma(t_0) = P_o \ \gamma'(t_0) = v_0 \end{cases}$$

Linee di campo

Fato un campo vettoriale $g:A(\subseteq\mathbb{R}^n)\to\mathbb{R}^n$ si di ce che $\gamma:I(\subseteq\mathbb{R})\to A$, I intervallo, è una linea di campo di g se $\gamma?(t)=g(\gamma(t))$

(-- manca un'ora di venerdì 2019-11-08 --)

Odine di un'equazione differenziale

È l'ordine massimo di derivazione con cui la funzione incognita compare nell'equazione differenziale

EDO in forma normale

Sono EDO in cui la derivata di ordine massimo compare esplicitata

EDO del primo ordine scalari in forma normale

- Sia $f:E(\subseteq\mathbb{R}^2) o\mathbb{R}$. Un'EDO in \mathbb{R}^2 del tipo y'(x)=f(x,y(x)) (o, sinteticamente, y'=f(x,y)) si dice EDO del I ordine scalare in FN (forma normale), dove $y(\cdot)$ è la funzione incognita
- ullet Una funzione $y(\cdot):I(\subseteq\mathbb{R}^2) o\mathbb{R}$, I intervallo si dice soluzione di y'(x)=f(x,y(x)) in I se:
 - 1. $y(\cdot)$ è derivabile in I
 - 2. $(x,y(x))^T \in E, orall x \in I$, cioè $G(y(\cdot)) \subseteq E$
 - 3. y'(x) = f(x,y(x)), $\forall x \in I$

Interpretazione geometrica di un'EDO scalare del ${\it I}$ ordine in FN

Sia $f: E(\subseteq \mathbb{R}^2) \to \mathbb{R}$. Consideriamo l'EDO y' = f(x,y(x)) e associamo all'EDO il campo vettoriale $g: E(\subseteq \mathbb{R}^2) \to \mathbb{R}^2$, con $g(x,y) = \begin{pmatrix} 1 \\ f(x,y) \end{pmatrix}$. Sia $y(\cdot): I(\subseteq \mathbb{R}^2) \to \mathbb{R}$ la soluzione dell'EDO. Associamo a $y(\cdot)$ la curva in forma cartesiana $\gamma: I(\subseteq \mathbb{R}) \to \mathbb{R}^2$ con $\gamma(x) = \begin{pmatrix} x \\ y(x) \end{pmatrix}$. Risulta $sostg = G(y(\cdot))$. Poichè y'(x) = f(x,y(x)), $\forall x \in I$ e quindi $\gamma(x) = f(x,y(x)) = f(x,y(x))$, $\forall x \in I$. Dunque γ è una linea del campo del campo vettoriale g

Problema di Cauchy (PC)

Siano
$$f: E(\subseteq \mathbb{R}^2) o \mathbb{R}$$
 e $(x_0,y_0) \in E$. Il problema: $\begin{cases} y' = f(x,y) o ext{ EDO} \\ y(x_0) = y_0 o ext{ Condizione Iniziale (CI)} \end{cases}$ si dice Problema di Cauchy

Osservazione

Si cerca una linea di campo passante per $(x_0,y_0)^T$

Soluzione di un PC

una funzione $y(\cdot):I(\subseteq\mathbb{R}^2) o\mathbb{R}$ si dice soluzione del PC se:

1.
$$y(\cdot)$$
 è soluzione di $y'=f(x,y)$

2.
$$y_0 \in I$$

3.
$$y(x_0) = y_0$$

Questioni

Dato il PC $egin{cases} y' = f(x,y) \ y(x_0) = y_0 \end{cases}$ si pongono le seguenti questioni:

- 1. Esistenza di (almeno) una soluzione
- 2. Unicità o molteplicità della soluzione
- 3. Dipendenza continua del dato iniziale
- 4. Studio qualitativo delle soluzioni
- 5. Studio quantitativo delle soluzione (analisi numerica) Il PC è ben posto secondo Hadanard nei conronti di queste questioni

Esistenza di una soluzione per il PC

Osservazione

(L'esistenza di una soluzione di un PC non è in generale garantita)

Supponiamo che esista una soluzion $y(\cdot):[-\delta,+\delta]=I\to\mathbb{R}$, $\delta>0$. Si ha y'(0)=-1 (y decrecente in 0) e quindi esiste h>0 t.c. y(x)< y(0) se $0< x\le h$. Dall'equazione segue che y'(x)=f(x,y(x))=1 se $0< x\le h$ Dunque esiste $0=y(0)=\lim_{x\to 0^+}y(x)=y(x)<0$, il che è impossibile. f è discontinua in 0.

Teorema di Peano

Se $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, è continua e $(x_o,y_0)^T\in A$ allora esistono un numero h>0e una funzione $y(\cdot):]x_0-h,x_0+h[o\mathbb{R}$ soluzione del PC $egin{cases} y'=f(x,y)\ y(x_0)=y_0 \end{cases}$

Unicità della soluzione del PC

Il teorema di Peano non garantisce l'unicità della soluzione

Teorema di Cauchy-Lipschitz di esistenza e unicità locali

Se $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, continua con $\dfrac{\partial f}{\partial y}$ continua, e $(x_0,y_0)\in A$ allora esiste un numero h>0 ed **una ed una sola** $y(\cdot)_I=]x_0-h, x_0+h[o\mathbb{R}$ soluzione del PC $\begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases}$

Osservazione

Nel teorema di Peano e nel teorema di Cauchy-Lipschitz si ha, poichè y'(x)=f(x,y(x)) in $]x_0-h,x_0+h[$ e $y(\cdot)$ e f sono continue, che $y'(\cdot)$ è continua e quindi $y(\cdot)$ è di classe C^1

Teorema di disuguaglianza continua del dato iniziale

Sia $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, continua con $\dfrac{\partial f}{\partial y}$ continua. Se $(x_0,y_0)^T\in A$ e $y(\cdot):$ $]x_0-h,x_0+h[o\mathbb{R}$ è soluzione di $\begin{cases} y'=f(x,y)\\ y(x_0)=y_0 \end{cases}$, allora per ogni $\varepsilon>0$ esiste $\delta>0$ t.c. $\forall z_0\in\mathbb{R}$, con $|z_0-y_0|<\delta$, la soluzione di $z(\cdot)$ di $\begin{cases} z'=f(x,z)\\ z(x_0)=z_0 \end{cases}$ è definita su $]x_0-h,x_0+h[$ e verifica $|z(x)-y(x)|<\varepsilon$, $\forall xi]x_0-h,x_0+h[$, $\Leftrightarrow (||z(\cdot)-y(\cdot)||_\infty<\varepsilon)$

Conseguenza

Sotto le ipotesi del teorema di Cauchy-Lipschitz il PC è ben posto

Legge del prolungamento

Se $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, è continua e $y(\cdot):]a,b[o\mathbb{R}$ è una oluzione di y'=f(x,y) t.c. esiste un compatto $K\subseteq A$ per cui $G(y(\cdot))\subseteq K$, allora esiste $\delta>0$ t.c. $y(\cdot)$ esiste su $[a-\delta,b+\delta]$

Teorema dell'esistenza globale della soluzione del PC

Se $f:]a,b[imes\mathbb{R} o\mathbb{R}$ è continua, $a\geq -\infty$, $b\leq \grave{e}\infty$, $(x_0,y_0)^T\in\underbrace{]a,b[imes\mathbb{R}}_{=A}$ e ogni compatto $H\subseteq]a,b[$ eistono $\alpha,\beta\in\mathbb{R}$ t.c. $|f(x,y)|\leq \alpha|y|+\beta$, $\forall (x,y)^T\in H\times\mathbb{R}$ (Condizione di sottolinearità), allora il PC $\begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases}$ ha almeno una soluzione $y(\cdot)$ definita su]a,b[

Equazioni a variabili separate

Siano $g:]a,b[o\mathbb{R}$, $a\geq -\infty$, $b\leq +\infty$, continua e $h:]c,d[o\mathbb{R}$, $c\geq -\infty$, $d\leq +\infty$, di classe C^1 .

Consideriamo il PC $egin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases}$, dove $x_0\in]a,b[$, $y_0\in]c,d[$. Poniamo A=]a,b[imes]c,d[e $f:A o \mathbb{R}$, f(x,y)=g(x)h(y), f è continua con $\dfrac{\partial f}{\partial y}$ continua in A. Quindi vale il teorema di esistenza e unicità locale

Metodo risolutorio

Distinguiamo due casi.
$$egin{cases} y' = g(x)h(y) \ y(x_0) = y_0 \end{cases}$$

- 1. caso $h(y_0)=0$, la funzione $y(\cdot)=y_0$ è la soluzione del PC
- 2. caso $h(y_0)
 eq 0$, sia $y(\cdot):]x_0 h, x_0 + h[
 ightarrow \mathbb{R}$ la soluzione del PC. Poichè $h(y(x_0)) = h(y_0)
 eq 0$ e, per il teorema della permanenza del segno, possiamo supporre che $h(y(x)) \neq 0$ in $]x_0 - h, x_0 + h[$

Da
$$y'(t)=g(t)\underbrace{h(y(t))}_{\neq 0}$$
, segue $\int_{x_0}^x \frac{y'(t)}{h(y(t))}dt=\int_{x_0}^x y(t)dt$, $orall x\in]x_0-h, x_0+h[$, since $\int_{x_0}^x \frac{y'(t)}{h(y(t))}dt=\int_{x_0}^x \frac{y'(t)}{h(y(t))}dt=\int_{x_0}^x g(t)dt$.

Siano
$$G$$
 e K tali che $G'=g$ in $]a,b[$ e $K'(s)=rac{1}{h(s)}$ in $Im(y(\cdot))$

Si ottiene

$$K(y(x))-K(y_0)=G(x)-G(x_0) \text{ in }]x_0-h,x_0+h[$$

$$K(y(x))=G(x)+\underbrace{(K(y_0)-G(x_0))}_{\text{costante}}. \text{ Poichè } K \text{ è invertibile in } Im(y(\cdot)). \text{ Si conclude che } y(x)=K^{-1}(G(x)+K(y_0)-G(x_0)) \text{ in }]x_0-h,x_0+h[$$

Difficoltà

- Trovare le primitive G e K
- determinare K^{-1}

Equazioni lineari scalari del I ordine

Motivazioni

- teoria generale completa
- approssimazione di equazioni non lineari con equazioni lineari

Principio di linearizzazione

Sia $f:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, di classe C^1 e $(x_0,y_0)^T\in A$. Si vuole approssimare $y(\cdot)$,

soluzione del PC
$$\begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases}$$
 con la soluzione $z(\cdot)$ del problema "linearizzato" in $(x_0,y_0)^T$, cioè la soluzione di $\begin{cases} z'=f(x,z) \\ z(x_0)=y_0 \end{cases}$, dove $\overline{f}(x,y)=f(x_0,y_0)+\underbrace{f_x(x_0,y_0)}_{\alpha}(x-x_0)+\underbrace{f_y(x_0,y_0)}_{\alpha}(y-y_0)$ è l'approssimazione di f in $(x_0,y_0)^T$. Si ha

$$\overline{f}(x,y)=lpha y+eta x+\gamma$$
, con $lpha,eta,\gamma\in\mathbb{R}$.
$$\begin{cases} z'=lpha y+eta x+\gamma \ ext{dove l'quazione è lineare rispetto a }z \end{cases}$$

Osservazione

EDO lineare scalare del I tipo

Teoria

Siano $a(\cdot),b(\cdot):I\to\mathbb{R}$ con $I\subseteq\mathbb{R}$ intervallo aperto continuo. L'EDO (c) y'=a(x)y+b(x) si dice EDO lineare scalare del I ordine **completa** (o) y'=a(x)y si dice EDO lineare scalare del I ordine **omogenea**

NB

Qui $f(x,y)=a(x)\cdot y+b(x)$ è lineare rispetto a y, ma non necessariamente rispetto a x

Teorema

Per ogni $x_0\in I$ e $y_0\in\mathbb{R}$, il PC $egin{cases} y'=a(x)y+b(x) \\ y(x_0)=y_0 \end{cases}$ ha una ed una sola soluzione definita su I.

Dimostrazione

Si ha che f(x,y)=a(x)y+b(x). $f:I imes\mathbb{R} o\mathbb{R}$ è continua con $\dfrac{\partial f}{\partial y}(x,y)=a(x)$ continua e cresce al più linearmente in y

Definizione

$$L:C^1(I) o C^0(I)$$
 ponendo $L(y(\cdot)) = y'(\cdot) - a(\cdot)y(\cdot)$

Teorema 1

 $L:C^1 o C^0(I)$ è un'applicazione lineare

Dimostrazione

Se
$$\alpha, \beta \in \mathbb{R}$$
 e $y(\cdot), z(\cdot) \in C^1(I)$ allora $L(\alpha y(\cdot) + \beta z(\cdot)) = (\alpha y(\cdot) + \beta z(\cdot))' - a(\cdot)(\alpha y(\cdot) + \beta z(\cdot)) = \alpha(y'(\cdot) - a(\cdot)y(\cdot) + \beta(z'(\cdot) + a(\cdot)z(\cdot)) = \alpha L(y(\cdot)) + \beta L(z(\cdot)).$

Si ha

$$\begin{array}{l} \text{(c) } y'=a(x)y+b(x)\Leftrightarrow L(y(\cdot))=b(\cdot)\Leftrightarrow y(\cdot)\in L^{-1}(b(\cdot))=S_b\\ \underline{\text{(o) } y'=a(x)y+b(x)}\Leftrightarrow L(y(\cdot))=0\Leftrightarrow y(\cdot)\in L^{-1}(0)=S_0=Ker(L) \end{array}$$

Teorema 2 - descrizione di S_b

Le soluzioni di (c) sono tutte e sole le funzioni del tipo $y(\cdot)=\overline{y}(\cdot)+z(\cdot)$, dove $\overline{y}(\cdot)$ è una particolare soluzione di (c) e $z(\cdot)$ è una generica soluzione di (o), cioè $S_b=\overline{y}(\cdot)+S_0$

Dimostrazione

- se $y(\cdot)=\overline{y}(\cdot)+z(\cdot)$, si ha $L(y(\cdot))=L(\overline{y}(\cdot))+L(z(\cdot))=b(\cdot)+0=b(\cdot)$
- se $y(\cdot),\overline{y}(\cdot)$ sono soluzioni di (c), allora, posto $z(\cdot)=y(\cdot)-\overline{y}(\cdot)$. Si ha $L(z(\cdot))=L(y(\cdot))-L(\overline{y}(\cdot))=b(\cdot)-b(\cdot)=0$, cioè $z(\cdot)$ è soluzione di (o)

Teorema 3 (descrizione di $S_0=KerL$)

 $S_0=KerL=\{c\cdot e^{A(\cdot)}:c\in\mathbb{R}\}$ con $A(\cdot)$ una primitiva di $a(\cdot)$ su I (cioè A'(x)=a(x) in I)

Dimostrazione

$$\{c\cdot e^{A(\cdot)}:c\in\mathbb{R}\}\subseteq KerL$$
 Posto $z(\cdot)=ce^{A(x)}\cdot A'(x)=a(x)z(x)$ in $I.\ z(\cdot)$ è soluzione di (o).
$$KerL\subseteq \{ce^{A(\cdot)}:c\in\mathbb{R}\}. \text{ Sia } z(\cdot) \text{ una soluzione di (o), cioè } \forall x\in I,\ z'(x)=a(x)z(x) \text{ equindi } \underbrace{z'(x)e^{-A(x)}-a(x)e^{-A(x)}z(x)}_{}=0.$$

Cioè $\frac{\frac{d}{dx}(z(x)e^{-A(x)})}{\frac{d}{dx}(z(x)e^{-A(x)})}=0$. Dunque esiste $c\in\mathbb{R}$ t.c. $z(x)e^{-A(x)}=c$ in I. Si conclude così che $z(x)=ce^{A(x)}$ in I.

 $\operatorname{NB} \operatorname{dim} \operatorname{Ker} L = 1$

Teorema 4 (Determinazione di una soluzione particolare di (c))

Una soluzione particolare di (c) è $\overline{y}(x)=e^{A(x)}\int_{x_0}^x e^{-A(t)}b(t)dt$, con $x_0\in I$ finito

Dimostrazione (Metodo della variazione delle costanti)

Si cerca una soluzione particolare di (c) del tipo $\overline{y}(\cdot)=c(x)e^{A(x)}$, con $c(\cdot):I\to\mathbb{R}$, funzione di classe C^1 da determinare. Imponiamo che $y(\cdot)$ risolva (c), cioè $\overline{y}(\cdot)=a(x)\overline{y}(\cdot)+b(x)$ in $I\Leftrightarrow c'(x)e^{A(x)}+c(x)a(x)e^{A(x)}=a(x)c(x)e^{A(x)}+b(x)$ in $I\Leftrightarrow c'(x)=b(x)e^{-A(x)}$ in I. Fissiamo $x_0\in I$ e poniamo $c(x)=\int_{x_0}^x b(t)e^{-A(x)}dt$ in I. La funizione $\overline{y}(x)=e^{A(x)}|int_{x_0}^xe^{-A(t)}b(t)dt$ risolve (c)

Corollario 1

La generica soluzione di (c) è $y(x)=ce^{A(x)}+e^{A(x)}\int_{x_0}^x e^{-A(t)}b(t)dt$, $orall x\in I$, con $c\in\mathbb{R}$ e $x_0\in I$

Corollario 2

$$orall x_0\in I$$
 e $y\in\mathbb{R}$ il PC $egin{cases} y'=f(x,y)\ y(x_0)=y_0 \end{cases}$ ha una e una sola soluzione definita su \mathbb{R} data da $y(x)=y_0\exists+\int_{x_0}^x e^{A(x)-A(t)}b(t)dt$

Teorema 5 (Principio di sovrapposizione)

Se $y_1(\cdot)$ è una soluzione di $y'=a(x)y+b_1(x)$ e $y_2(\cdot)$ è una soluzione di $y'=a(x)y+b_2(x)$, allora $y_1(\cdot)+y_2(\cdot)$ è soluzione di $y'=a(x)y+[b_1(x)+b_2(x)]$

Dimostrazione

Si ha
$$L(y_1(\cdot) + y_2(\cdot)) = L(y_1(\cdot)) + L(y_2(\cdot)) = b_1(\cdot) + b_2(\cdot)$$

L'EDO di Bernoulli

L'EDO $y'=a(x)y+b(x)y^{\gamma}$ con $a(\cdot),b(\cdot):I o\mathbb{R}$, I intervallo aperto, continua e $\gamma\in\mathbb{R}\setminus\{0,1\}$, si dice equazione di Bernoulli. Si cercano le soluzioni $y(\cdot)$ con y(x)>0 in $Dom(y(\cdot))$

Sia $y(\cdot)$ una soluzione e si divida per $y(\cdot)^{\gamma}$. Si ottiene $\frac{y'(x)}{y(x)^{\gamma}}=a(x)y(x)^{1-\gamma}+b(x)$ cioè $\frac{d}{dx}(\frac{1}{1-\gamma}y(x)^{1-\gamma})=(1-\gamma)a(x)(\frac{1}{1-\gamma}y(x)^{1-\gamma})+b(x)$, cambio di variabile (dipendente), si ponga $u(x)=\frac{1}{1-\gamma}y(x)^{1-\gamma}$. Allora l'EDO diventa: $u'(x)=(1-\gamma)a(x)u(x)+b(x)$ che è un EDO lineare del I ordine

Analisi II - sesta parte

Sistemi di EDO del I ordine (SEDO)

Motivazioni

SIR

$$\begin{cases} S'(t) = -\beta I(t)S(t) \\ I'(t) = \beta I(t)S(t) - \gamma I(t) \\ R'(t) = \gamma I(t) \end{cases}$$

3 equazioni in 3 incognite, I ordine

• LV $\begin{cases} U'(t) = aU(t) - bU(t)V(t) \\ V'(t) = -cV(t) + dU(t)V(t) \end{cases}$

a,b,c,d>0, 2 equazioni in 2 incognite, ${\cal I}$ ordine

ullet II legge della dinamica

$$egin{cases} m\gamma''(t) = F(t,\gamma(t),Y'(t)) \ \gamma(t) = (x(t),y(t),z(t)^T) \end{cases}$$

3 equazioni in 3 incognite, II ordine

$$\begin{cases} \gamma'(t) = v(t) \\ mv'(t) = F(t, \gamma(t), v(t)) \end{cases}$$

 $\hat{6}$ equazioni in $\hat{6}$ incognite, I ordine

SEDO I ordine

Si consideri il SEDO del ${\it I}$ ordine

$$y_1'(x) = f_1(x,y_1(x),...,y_n(x))$$

$$\vdots \Leftrightarrow Y'(x) = F(x, y(x))$$

$$y_n'(x) = f_n(x, y_1(x), ..., y_n(x))$$

$$ext{dove } F: E(\subseteq \mathbb{R} imes \mathbb{R}^n) o \mathbb{R}^n ext{ con } F(x, \underline{Y}) = F(x, y_1, ..., y_n) = egin{pmatrix} f_1(x, y_1, ..., y_n) \ dots \ f_n(x, y_1, ..., y_n) \end{pmatrix}$$

e
$$Y(x) = egin{pmatrix} y_1(x) \ dots \ y_n(x) \end{pmatrix}$$

Problema di Cauchy

$$(PC) \begin{cases} y_1'(x) = f_1(x,y_1(x),...,y_n(x)) \\ \dots \\ y_n'(x) = f_n(x,y_1(x),...,y_n(x)) \\ y_1(x^0) = y_1^0 \\ \dots \\ y_n(x^0) = y_n^0 \\ \text{dove } (x^0,\underline{Y^0}) = (x^0,y_1^0,...,y_n^0)^T \in E \end{cases} \Leftrightarrow \begin{cases} Y'(x) = F(x,Y(x)) \\ \underline{Y(x^0)} = \underline{Y^0} \\ \dots \\ \underline{Y(x^0)} = \underline{Y^0} \end{cases}$$

- ullet Una funzione $Y(\cdot):I(\subseteq\mathbb{R}) o\mathbb{R}^n$, I intervallo, si dice soluzione di $\underline{Y}'=F(x,\underline{Y})$ se 1. $Y(\cdot)$ è derivabile in I
 - 2. $(x, Y(x)) \in E, \forall x \in I$
 - 3. $\underline{Y}'(x) = F(x,y(x))$, $\forall x \in I$
- ullet Una funzione $Y(\cdot):I(\subseteq\mathbb{R}) o\mathbb{R}^n$, I intervallo, si dice soluzione di $egin{cases} \underline{Y}'=F(x,\underline{Y})\ \underline{Y}(x^0)=\underline{Y}^0 \end{cases}$ se $Y(\cdot)$ è soluzione di $\underline{Y}'=F(x,\underline{Y})$ Valgono, in particolare:

Teorema (esistenza e unicità locali)

Se $F:A\subseteq (\mathbb{R} imes\mathbb{R}^n) o\mathbb{R}^n$, A aperto, è continua allora $orall (x^0,\underline{y}^0)\in A$ esistono un h>0 e una funzione $y(\cdot):]x_0-h,x_0+h[o\mathbb{R}^n$ di classe C^1 soluzione di $egin{cases} \underline{Y}'=f(x,\underline{Y})\\ \underline{Y}(x^0)=\underline{Y}^0 \end{cases}$ Se inoltre le derivate parziali $rac{\partial F}{\partial u_i}$ con i=1,...,n sono continue n A allora tale soluione è unica

Teorema di esistenza globale

Se $F:A=I imes\mathbb{R}^n o\mathbb{R}^n$, I intervallo, A aperto è continua in A, $x^0\in I$, $y^0\in\mathbb{R}^n$ e, per ogni intervallo compatto $H\subset I$, esistono $lpha,eta\in\mathbb{R}$ t.c. $||F(x,\underline{y})||<lpha||\underline{y}||+eta$, $orall x\in H$ e $\underline{y} \in \mathbb{R}^n$ allora il PC $egin{cases} \underline{Y}' = F(x,\underline{Y}) \\ \underline{Y}(x^0) = \underline{Y}^0 \end{cases}$ ha almeno una soluzione $\underline{y}(\cdot)$ determinata su I

SEDO lineari del I ordine di dimensione n

Sia
$$\mathbb{A}(x)=egin{pmatrix} a_{11}(x)\dots a_{1n}(x) \\ \vdots \ddots \vdots \\ a_{n1}(x)\dots a_{nn}(x) \end{pmatrix}$$
 una matrice di $n\times n$ funzioni $a_{ij}(\cdot):I(\subseteq\mathbb{R})\to\mathbb{R}$, per $i,j=1,...,n$, con I intervallo aperto, continue in I e sia $B(x)=egin{pmatrix} b_1(x) \\ \vdots \\ b_n(x) \end{pmatrix}$ un vettore di $b_n(x)$

$$i,j=1,...,n$$
, con I intervallo aperto, continue in I e sia $B(x)=egin{pmatrix} b_1(x)\ dots\ b_n(x) \end{pmatrix}$ un vettore d

N funzioni $b_i(|cdot):I o\mathbb{R}$ per i=1,...,n.

II SEDO (c)
$$\underline{y}'(x)=\mathbb{A}(x)\underline{y}(x)+B(x)\Leftrightarrow \underline{y}'=\underbrace{\mathbb{A}(x)\underline{y}+B}_{F(x,\underline{y})}$$
, con $\underline{y}(x)=\begin{pmatrix}v_1(x)\\\vdots\\y_n(x)\end{pmatrix}$. Si

dice SEDO lineare del ${\cal I}$ ordine di dimensione n completo

Il SEDO (o) $\underline{y}'(x)=\mathbb{A}(x)\underline{y}(x)\Leftrightarrow \underline{y}'=\mathbb{A}(x)\underline{y}$ si dice SEDO del I ordine di dimensione n omogeneto

Teorema 0

Per ogni
$$x^0\in I$$
 e $y^0\in\mathbb{R}^n$, il (PC) $\left\{ egin{align*} \underline{Y}'=\mathbb{A}(x)\underline{y}+B(x) \\ \underline{Y}(x^0)=\underline{Y}^0 \end{array}
ight.$ ha una ed una sola soluzione $y\in C^1$ definita su tutto I (intervallo di definizione dei coefficienti)

Definizione

$$L:C^1(I,\mathbb{R}^n) o C^0(I,\mathbb{R}^n)$$
, ponendo $L(y(\cdot))=y'-\mathbb{A}(\cdot)y(\cdot)$

Teorema 1

 $L:C^1(I,\mathbb{R}^n) o C^0(I,\mathbb{R}^n)$ è un'applicazione lineare

• (c)
$$y'=\mathbb{A}(x)y+B(x)\Leftrightarrow L(y(\cdot)=B(\cdot))\Leftrightarrow y(\cdot)\in L^{-1}(B(\cdot))=S_B$$

$$ullet$$
 (o) $\underline{y}'=\mathbb{A}(x)\underline{y}\Leftrightarrow L(\underline{y}(\cdot))=\underline{0}\Leftrightarrow \underline{y}(\cdot)\in L^{-1}(\underline{0})=S_0=KerL$

Teorema 2 (Struttura di S_B)

L'insieme S_B di tutte le soluzioni di (c) è costituito da tutte e sole le funzioni $\underline{y}(\cdot) = \underline{\overline{y}}(\cdot) + Z(\cdot)$ con \overline{y} una soluzione particolare di (c) e $Z(\cdot)$ soluzione generica di (o)

Teorema 3 (dimensione di $S_0=KerL$)

 $S_0=KerL$ è uno spazion vettoriale di dimensione n

Dimostrazione

Fissato
$$x^0\in I$$
, siano $z_1(\cdot),...,z_n(\cdot)$ le soluzioni di $\left\{ \begin{aligned} &\underline{y}'=\mathbb{A}(x)\underline{y}\\ &\underline{y}(x^0)=\underline{e_1}\end{aligned} \ldots \right\} \underbrace{\left\{ \underline{y}'=\mathbb{A}(x)\underline{y}\\ &\underline{y}(x^0)=\underline{e_1}\end{aligned} \ldots \left\{ \underbrace{\underline{y}'=\mathbb{A}(x)\underline{y}}_{\underline{y}}, \text{ dove } \underbrace{\left\{ \underline{e_1},...,\underline{e_n}\right\}}_{\underline{y}} \right\}$ è una base di \mathbb{R}^n (per esempio la base canonica). Si provi che $\{z_1(\cdot),...,z_n(\cdot)\}$ è una base di S_0 . $z_1(\cdot),...,z_n(\cdot)$ sono linearmente indipendenti, siano $c_1,...,c_n\in\mathbb{R}$ t.c. $c_1z_1(x)+...+_n$

$$z_1(\cdot),...,z_n(\cdot)$$
 sono linearmente indipendenti, siano $c_1,...,c_n\in\mathbb{R}$ t.c. $c_1z_1(x)+...+_nz_n(x)=\underline{0}$, $orall x\in I$.

In particolare: $c_1z_1(x^0)+...+_nz_n(x^0)=\underline{0}=c_1\underline{e_1}+...+c_n\underline{e_n}$. Siccome $\underline{e_1},..,\underline{e_n}$ sono

una base allora sono linearmente indipendenti, $\Rightarrow c_1 = ... = c_n = 0$ Si provi che $z_1(\cdot),...,z_n(\cdot)$ generano S_0 . Sia $z(\cdot) \in S_0$, si ponga $\underline{y}^0 = z(x^0) \in \mathbb{R}$. Si consideri il (PC) $\left\{ \underbrace{\underline{Y}' = \mathbb{A}(x)\underline{Y}}_{\underline{Y}(x^0) = \underline{Y}^0} \right\}$. Se $\underline{y}^0 = c_1\underline{e_1} + ... + c_n\underline{e_n}$ allora il (PC) ha come soluzione $z(\cdot)$ e $\underline{y}(\cdot) = c_1z_1(\cdot) + ... + c_nz_n(\cdot)$. Per l'unicità si ha $z(\cdot) = \underline{y}(\cdot) = c_1z_1(\cdot) + ... + c_nz_n(\cdot) \Rightarrow cz_1,...,z_n$ generano S_0 .

basi di $S_0 = KerL$

Si ottengono risolvendo gli
$$n$$
 (PC) $\left\{ \underbrace{\underline{Y}' = \mathbb{A}(x)\underline{Y}}_{\underline{Y}(x^0) = \underline{Y}^0}, \ldots, \left\{ \underbrace{\underline{Y}' = \mathbb{A}(x)\underline{Y}}_{\underline{Y}(x^0) = \underline{Y}^0}, \operatorname{dove} \left\{ \underline{e_1}, ..., \underline{e_n} \right\} \right\}$ è base di \mathbb{R}^n e $x^0 \in I$ fissato. In particolare, se $\left\{ \underbrace{e_1}, ..., \underbrace{e_n} \right\}$ è la base canonica di \mathbb{R}^n , $\underbrace{e_1}_{\text{colonna}} = (1, 0, ..., 0)^T, ..., \underbrace{e_n}_{\text{e_n}} = (0, ..., 0, 1)^T$, allora la matrice $\mathbb{U}(x) = (\underbrace{z_1(\cdot)}, ..., \underbrace{z_n(\cdot)}_{\text{colonna}})$ si dice matrice risolvente

Osservazione

Se
$$n=1\mathbb{U}(x)=e^{A(x)}$$
, con $A'(x)=a(x)$. Risulta $\mathbb{U}'(\cdot)=(z_1'(\cdot),...,z_n'(\cdot))=(\mathbb{A}z_1(\cdot),...,\mathbb{A}z_n(\cdot))=\mathbb{A}(\cdot)\mathbb{U}(\cdot)$ e $\mathbb{U}(x^0)=\mathbb{I}=I_n$ matrice identità. Cioè \mathbb{U} risolve il (PC) matriciale
$$\begin{cases} \mathbb{U}'=\mathbb{A}(x)\mathbb{U}\\ \mathbb{U}(x^0)=\mathbb{I}=I_n \end{cases}$$

Si ha $det\mathbb{U}(x) \neq 0$, $\forall x \in I$. Infatti supponendo per assurdo che esista $\overline{x} \in I$ t.c. det(mathbbU) = 0, si avrebbe che $z_1(\overline{x},...,z_n(\overline{x})$ sono linearmente dipendenti, cioè $\exists c_1,...,c_n \in \mathbb{R}$ non tutti nulli t.c. $c_1z_1(\overline{x})+...+c_nz_n(\overline{x})=\underline{0}$. Allora la funzione $y(\cdot)=c_1z_1(\cdot)+...+c_nz_n(\cdot)$ è soluzione di $\begin{cases}\underline{y}'=\mathbb{A}(x)\underline{y}\\\underline{y}(\overline{x})=0\end{cases}$ (in quanto combinazione lineare di

soluzioni di (o)). Poichè la funzione nulla 0 è anche soluzione, per l'unicità, dev'essere $\underline{y}(x)=\underline{0}$, $\forall x\in I$ e quindi $c_1=...=c_n=0$, assurdo \forall , $\Rightarrow det(\mathbb{U}\neq 0, \forall x$. Ne consegue che \mathbb{U} è sempre invertibile $\forall x\in I$, esiste $\mathbb{U}^{-1}(x)$.

Matriche esponenziale

Sia $\mathbb{A}(\cdot)$ indipendente da x, cioè $\mathbb{A}(\cdot)=\mathbb{A}$. Allora il sistema si dice **autonomo**. $\underline{y}=\mathbb{A}\underline{y}$. In questo caso $\mathbb{U}(x)$ si indica con $e^{\mathbb{A}x}$. In particolare $e^{\mathbb{A}}$ si dice **matrice esponenziale**.

Osservazione

Se
$$n=1$$
, $\mathbb{A}=(a)$, con $a\in\mathbb{R}$, $\mathbb{U}(x)=e^{ax}$. Si ha che $e^{\mathbb{A}x}=\sum_{n=0}^{+\infty}\frac{1}{n!}\mathbb{A}^nx^n=\mathbb{I}+\mathbb{A}x+\frac{1}{2}\mathbb{A}^2x^2+...+\frac{1}{n!}\mathbb{A}^nx^n$, con $x\in\mathbb{R}$

Osservazione

Se
$$n=1$$
: $e^{\mathbb{A}x}=\sum rac{1}{n!}a^nx^n$, con $x\in\mathbb{R}$

Teorema 4 (determinazioe delle soluzioni particolari di (c))

Una soluzione particolare di (c) è data da $\underline{y}(x)=\int_{x_0}^x \mathbb{U}(x)\mathbb{U}^{-1}(t)B(t)dt$, $\forall x\in I$, $x_0\in I$.

Osservazione

Se
$$n=1$$
: $\underline{y}(x)=\int_{x_0}^x e^{\mathbb{A}x}e^{-\mathbb{A}(t)}b(t)dt.$

La funzione matriciale $G(x,t)=\mathbb{U}(x)\mathbb{U}^{-1}(t)$, con $x,t\in I$ si dice funzione di Green ed è tale che $\overline{\underline{y}}(x)=\int_{x_0}^x G(x,t)B(t)dt$

Osservazione

Se
$$n=1$$
, $G(x,t)=e^{\mathbb{A}(x)-\mathbb{A}(t)}$ con $\mathbb{A}'(x)=a(x)$, $\sigma(x)=a(x)$

Dimostrazione

$$\begin{array}{l} \operatorname{Si\ ha}\, \underline{\overline{y}}'(x) = \frac{d}{dt}(\mathbb{U}(x)\int_{x_0}^x \mathbb{U}^{-1}(t)B(t)dt) = \underbrace{\mathbb{U}'(x)}_{\mathbb{A}(x)\cdot\mathbb{U}(x)} \cdot \int_{x_0}^x \mathbb{U}^{-1}B(t)dt + \\ \underbrace{\mathbb{U}(x)\cdot\mathbb{U}^{-1}(x)}_{=\mathbb{I}=I_n} \cdot B(x) = \mathbb{A}(x)\cdot\mathbb{U}(x) \cdot \int_{x_0}^x \mathbb{U}^{-1}(t)B(t)dt + B(x) = \\ \underline{\mathbb{A}(x)}\underline{\overline{y}}(x) + B(x) = \underline{\overline{y}}(x), \forall x \in I \end{array}$$

Analisi II - sesta parte bis

Teorema 5 (Principio di sovrapposizione)

Se $\underline{y}_1(\cdot)$ è soluzione di $\underline{y}'=\mathbb{A}(x)\underline{y}+B_1(x)$ e $\underline{y}_2(\cdot)$ è soluzione di $\underline{y}'=\mathbb{A}(x)\underline{y}+B_2(x)$ allora $\underline{y}(\cdot)=\underline{y}_1(\cdot)+\underline{y}_2(\cdot)$ è soluzione di $\underline{y}'=\mathbb{A}(x)\underline{y}+(B_1(x)+B_2(x))$ (conseguenza della linearità)

Problema

Come determinare la matrice risolvente?

• SEDO del I ordine autonomo Sia $\mathbb{A}(\cdot)=\mathbb{A}$ una matrice $n\times n$ costante, cioè $\mathbb{A}\in M(n,n)$. Il SEDO (o) $\underline{y}'=\mathbb{A}\underline{y}$ Si dice SEDO lineare del I ordine autonomo.

Osservazione

$$N=1$$
, $y'=ay$, $a\in\mathbb{R}$, $y(x)=c\cdot e^{ax}$

Si cercano soluzioni del tipo $\underline{y}(x) = e^{\lambda x} + c$, con $x \in \mathbb{R}$, dove $\lambda \in \mathbb{R}$ (o \mathbb{C}) e $\underline{c} \in \mathbb{R}^n \neq \underline{0}$. Si impone che $\underline{y}(\cdot)$ sia soluzione di (o), cioè $\lambda e^{\lambda x} \cdot \underline{c} = \mathbb{A}(e^{\lambda x}\underline{c}) = e^{\lambda x}\mathbb{A}\underline{c}$, $\forall x \in \mathbb{R}$ e quindi $\mathbb{A}\underline{c} = \lambda\underline{c}$, cioè λ è autovalore di \mathbb{A} e \underline{c} è l'autovettore corrispondente.

Esiste una base di \mathbb{R}^n (o \mathbb{C}^n) formata da autovettori? Cioè, esistono n autovettori linearmente indipendenti?

Questo è vero se $\mathbb A$ è simmetrica o $\mathbb A$ ha n autovalori distinti (e quindi..)

Teorema

Se $\mathbb A$ ha n autovettori linearmente indipendenti $\{\underline u_1,...,\underline u_n\}$ allora le funzioni $z_1(x)=e^{\lambda_1 x}\underline u_1,...,z_n(x)=e^{\lambda_n x}\underline u_n$ formano una bse di S_0 e quindi $\mathbb U(x)=\underbrace{(e^{\lambda_1 x}\cdot\underline u_1,...,e^{\lambda_n x}\cdot\underline u_n)}_{colonna}$

Linea di massima discesa (o ascesa).

Dato un campo $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, di classe C^1 si dice linea di massima discesa per $\underline{x}^0\in A$ la curva $\gamma:I o A$ t.c. $\begin{cases} \gamma'(t)=-\nabla f(\gamma(t))\\ +\\ \gamma(t^0)=\underline{x}^0 \end{cases}$

SEDO di ordine superiore

EDO scalari del IIordine

Sia $f: E(\subseteq \mathbb{R}^3) o \mathbb{R}$, l'EDO y''(x) = f(x,y(x),y'(x)) (o, sinteticamente, y'' =f(x,y,y')) si dice EDO scalare del II ordine

Osservazione

Riduzione ad un SEDO del I ordine:

Se si pone
$$y_1(x)=y(x)$$
 e $y_2(x)=y'(x)$ e $F(x,y_1,y_2)=\begin{pmatrix}y_2\\f(x,y_1,y_2)\end{pmatrix}$ allora l'equazione differenziale scalare $y''(x)=f(x,y(x),y'(x))$ è equivalente al SEDO del I

ordine di dimensione 2.

$$egin{cases} y_1'(x)=y_2(x) \ y_2'(x)=f(x,y_1(x),y_2(x)) \Leftrightarrow egin{cases} y_1(x) \ y_2(x) \end{pmatrix}' = F(x,y_1(x),y_2(x)) \end{cases}$$

- ullet Una funzione $y(\cdot):I(\subseteq\mathbb{R}) o\mathbb{R}$, con I intervallo, si dice soluzione di y''=f(x,y,y')se
- 1. $y(\cdot)$ è derivabile in I
- 2. $(x, y(x), y'(x))^T \in E$, $\forall x \in I$
- 3. y''(x) = f(x,y(x),y'(x)), f(x) = f(x,y(x),y'(x))

Siano $f:E(\subseteq\mathbb{R}^3) o\mathbb{R}$ e $(x^0,y^0,v^0)^T\in E$. Il problema $\begin{cases} y''=f(x,y,y')\ y(x^0)=y^0 \end{cases}$ si dice problema di Cauchy $y'(x^0)=v^0$

- ullet Una funzione $y(\cdot):I(\subseteq\mathbb{R}) o\mathbb{R}$, si dice soluzione del (PC) se
- 1. $y(\cdot)$ è soluzione dell'equazione y''=f(x,y,y')
- 2. $x^0 \in I$
- 3. $y(x^0) = y^0$, $y'(x^0) = v^0$

Teorema di esistenza e unicità locali

Se $f:A(\subseteq\mathbb{R}^3) o\mathbb{R}$, A aperto, è continua e $(x^0,y^0,v^0)^T\in A$, allora esistono h>0 e

una funzione
$$y(\cdot):]x_0-h, x_0+h[$$
 di classe C^1 soluzione del (PC) $egin{cases} y''=f(x,y,y') \ y(x^0)=y^0 \ y'(x^0)=v^0 \end{cases}$. Se

inoltre $\frac{\partial f}{\partial u}$ e $\frac{\partial f}{\partial z}$ sono continue allora tale soluzione è anche unica.

Teorema di esistenza globale

Se $f:I imes\mathbb{R}^2 o\mathbb{R}$, I intervallo aperto, è continua, $x^0\in I$ e $(y^0,v^0)\in\mathbb{R}^2$ e per ogni intervallo compatt $H\subseteq I$ esistono $lpha,eta,\gamma\in\mathbb{R}$ t.c. $|f(x,y,z)|\leq lpha|y|+eta|z|+\gamma$, $orall x\in$

Equazione di Newton autonoma e conservativa

Sia $f:J(\subseteq\mathbb{R})\to\mathbb{R}$, J intervallo aperto, di classe C^1 . L'EDO y''=f(y) si dice equazione di Newton autonoma (f dipende da y) e conservativa, cioè senza dissipazione (f non dipende da y').

Considerando il (PC)
$$egin{cases} y''=f(y)\ y(x^0)=y^0\ ,\ ext{con}\ x^0\in\mathbb{R}\ (f:\mathbb{R} imes J imes \mathbb{R}) o\mathbb{R}\ y'(x^0)=v^0 \end{cases}$$

Metodo risolutivo basato sulla conservazione dell'energia

Sia $y(\cdot):I(\subseteq\mathbb{R})\to J(\subseteq\mathbb{R})$ la soluzione del (PC). Moltiplicando l'EDO per $y'(\cdot)$ e integrando tra x_0 e x si ottiene

The grando trace
$$f(x)$$
 of $f(x)$ of $f(x)$ of the expression of $f(x)$ of

Energia meccanica

L'energia si conserva nel tempo

Ponendo $E(y,v)=\frac{1}{2}v^2-F(y)$, per $y\in J$, $v\in\mathbb{R}$, si ha che la coppia $(y(\cdot),y'(\cdot))^T$ parametrizza l'insieme di livello della funzione energia, $E:(y(x),y'(x))^T\in L_{\frac{1}{2}v_0^2-F(y_0)}(E)$ Supponendo che $\forall x\in I$, $y'(x)^2=2F(y(x))+(v_0^2-2F(y_0))$

Allora in un intorno di x_0 si ha:

$$v_0>0$$
: $egin{cases} y'(\cdot)=\sqrt{2F(y(\cdot))+(v_0^2-2F(y_0))}\ y(x_0)=y_0\ v_0<0$: $\begin{cases} y'(\cdot)=\sqrt{2F(y(\cdot))+(v_0^2-2F(y_0))}\ y(x_0)=y_0 \end{cases}$

Se invece $v_0=0$

$$egin{cases} f(y_0) > 0: y'(\cdot) = sign(x-x_0) \cdot \sqrt{2F(y(\cdot)) + (v_0^2 - 2F(y_0))} \ f(y_0) < 0: y'(\cdot) = -sign(x-x_0) \cdot \sqrt{2F(y(\cdot)) + (v_0^2 - 2F(y_0))} \ f(y_0) = 0: y'(\cdot) = y_0 \end{cases}$$

EDO scalari del II ordine con coefficienti costanti

Siano $a,b\in\mathbb{R}$ e $c(\cdot):I\to\mathbb{R}$, I intervallo aperto, continua. L'EDO (c) y''+ay'+by=c(x) si dice EDO scalare del II ordine con coefficienti costanti completa

L'EDO (c) $y^{\prime\prime}+ay^{\prime}+by=0$ si dice EDO scalare del II ordine con coefficienti costanti omogenea

Motivazioni

- Vibrazioni meccaniche
- Circuiti

Teorema 0

Per ogni
$$(x_0,y_0,z_0)^T\in I imes \mathbb{R}^2$$
, il (PC) $egin{cases} y''+ay'+by=c(x)\ y(x_0)=y_0\ y'(x_0)=v_0 \end{cases}$ ha una ed una sola soluzione $y(\cdot)$ definita su I .

Definizione

$$L:C^2(I) o C^0(I)$$
, ponendo $L(y(\cdot))=y''(\cdot)+ay^2(\cdot)+by(\cdot)$

Teorema 1

L è un'applicazione lineare. Si ha

• (c)
$$\Leftrightarrow L(y(\cdot)) = c(\cdot) \Leftrightarrow y(\cdot) \in L^{-1}(\{c(\cdot)\}) = S_c$$

• (o)
$$\Leftrightarrow L(y(\cdot)) = 0 \Leftrightarrow y(\cdot) \in L^{-1}(\{0\}) = S_0 = KerL$$

Teorema 2 (struttura di S_c)

L'insieme S_c è costituito da tutte e sole le funzioni $y(\cdot)=\overline{y}(\cdot)+z(\cdot)$, con $\overline{y}(\cdot)$ soluzione particolare di (c) e $z(\cdot)$ soluzione generica di (o), cioè $S_c=\overline{y}(\cdot)+KerL$

Osservazione

l'EDO
$$y''+ay'+by=c(\cdot)$$
 è equivalente al SEDO $egin{cases} y_1'=y_2 \\ y_2'=-ay_2-by_1+c(x) \end{cases}$ dove si è posto $y_1=y(\cdot)$ e $y_2(\cdot)=y'(\cdot)$

Teorema 3a

 $S_0=KerL$ è uno spazio vettoriale di dimensione 2.

Dimostrazione

Segue direttamente dall'equivalenza di EDO e SEDO

Teorema 3b - Idea

Si cerca una soluzione di (o) del tipo $z(x)=e^{\lambda x}$, $\lambda\in\mathbb{C}$. Imponendo che sia soluzione si ottiene

$$z''(x) + az'(x) + bz(x) = \lambda^2 e^{\lambda x} + a\lambda e^{\lambda x} + be^{\lambda x} = 0$$

Osservazione

 $\lambda=\alpha+\beta i\in\mathbb{C}$, $e^{\lambda x}=e^{\alpha x}(cos\beta x+isin\beta x)(\leftarrow$ formula di Eulero), \$\forall x\in \mathbb{R}.

Il che equivale a richiedere che $\lambda^2 + a\lambda + b = 0$.

Equazione caratteristica

(k)
$$\lambda^2 + a\lambda + b = 0$$

Teorema 3b

Si ha:

- 1. Se $\Delta=a^2-4b>0$, allora dette $\lambda_1,\lambda_2\in\mathbb{R}$ ($\lambda_1\neq\lambda_2$), le radici di (k), $\{e^{\lambda_1x},e^{\lambda_2x}\}$ è una base di S_0
- 2. Se $\Delta=a^2-4b<0$, dette $\lambda_1=\alpha+ieta$, $\lambda_2=\alpha-ieta$ con $eta\neq 0$ le radici di (k), allora $\{e^{lpha x}cos(eta x),e^{lpha x}sin(eta x)\}$ è una base di S_0
- 3. Se $\Delta=a^2-4b=0$, detta $\lambda_0\in\mathbb{R}$ l'unica radice di (k), allora $\{e^{\lambda_0x},xe^{\lambda_0x}\}$ forma una base di S_0

Osservazione

Siano $\lambda_1,\lambda_2\in\mathbb{R}$ soluzioni di (k), con $\lambda_1\neq\lambda_2$, allora e^{λ_1x} e $\frac{e^{\lambda_1x}-e^{\lambda_2x}}{\lambda_1-\lambda_2}$ sono soluzioni di (o)

Se
$$\lambda_2 o \lambda_1$$
, allora $\dfrac{e^{\lambda_1 x} - e^{\lambda_2 x}}{\lambda_1 - \lambda_2} = e^{\lambda_1 x} \cdot \dfrac{1 - e^{-(\lambda_1 - \lambda_2) x}}{\lambda_1 - \lambda_2} = e^{\lambda_1 x} = \left(\dfrac{e^{-(\lambda_1 - \lambda_2) x}}{-(\lambda_1 - \lambda_2) x}\right) x o e^{\lambda_1 x} x$, se $t = -(\lambda_1 - \lambda_2) o 0$, $\dfrac{e^{t-1}}{t} o 1$

Dimostrazione teorema 3b

Dal teorema 3a segue che $dim S_0=2$. Quindi basta verificare che le funzioni considerate sono linearmente indipendenti.

• Caso (1) Siano $c_1,c_2\in\mathbb{R}$ t.c. $c_1e^{\lambda_1x}+c_2e^{\lambda_2x}=0$, $\forall x\in\mathbb{R}$. Derivando si ottiene $\lambda_1c_1e^{\lambda_1x}+\lambda_2c_2e^{\lambda_2x}=0$, $\forall x\in\mathbb{R}$ Valutando in x=0, si ha:

$$egin{cases} c_1+c_2=0 \ \lambda_1c_1+\lambda_2c_2=0 \end{cases}$$
 , $det \begin{pmatrix} 1 & 1 \ \lambda_1 & \lambda_1 \end{pmatrix} = \lambda_2-\lambda_1
eq 0$ Quindi $c_1=c_2=0$.

Analogamente di procede su (2) e (3)

Teorema 4 (determinazione di una soluzione particolare)

Una soluzione particolare di (c) è data da

$$\overline{y}(x) = \int_{x_0}^x \dot{G}(x,t) x(t) dt$$
 , $x_0 \in I \leftarrow$ Green

$$G(x,t) = rac{detegin{pmatrix} z_1(0) & z_2(0) \ z_1(x-t) & z_2(x-t) \end{pmatrix}}{detegin{pmatrix} z_1(0) & z_2(0) \ z_1'(0) & z_2'(0) \end{pmatrix}}$$
 , $((x,t)^T \in \mathbb{R}^2)$

dove $\{z_1(\cdot),z_2(\cdot)\}$ è base di S_0

NB

$$y'=ay$$
, $a\in\mathbb{R}$, $G(x,t)=e^{ax}x^{-at}=e^{a(x-t)}$

Metodo di somiglianza

Sia $c(x)=P(x)e^{\lambda x}$, $P\in\mathbb{R}[x]$ e $\lambda\in\mathbb{R}$. Si cerca una soluzione particolare di (c) del tipo $\overline{y}(x)=Q(x)e^{\lambda x}\in\mathbb{R}[x]$

- 1. Se $\lambda \in \mathbb{R}$ non è radice di (k), allora degQ = degP
- 2. se $\lambda\in\mathbb{R}$ è radice di (k) di molteplicità $u\in\{1,2\}$, allora $Q(x)=x^{
 u}R(x)$, con $R\in\mathbb{R}[x]$ e degR=degQ

Sia $c(x)=P(x)e^{\alpha x}cos\beta x$ (o $P(x)e^{\alpha x}sin\beta x$) con $P\in\mathbb{R}[x]$ e $\alpha,\beta\in\mathbb{R}$, $\beta\neq 0$. Si cerca una soluzione particolare di (c) del tipo $\overline{y}(x)=Q_1(x)e^{\alpha x}cos(\beta x)+Q_2(x)e^{\alpha x}sin(\beta x)$, con $Q_1,Q_2\in\mathbb{R}[x]$

- 1. Se $lpha+ieta\in\mathbb{C}$ non è radice di (k) allora $degQ_1=degP$
- 2. SE $lpha+ieta\in\mathbb{C}$ è radice di (k) (necessariamente di molteplicità 1), allora $Q_1(x)=xR_1(x)$ e $Q_2(x)=xR_2(x)$, con $R_1,R_2\in\mathbb{R}[x]$ e $degR_1=degR_2=degP$

Teorema 5 (principio di sovrapposizione)

Sia
$$y_1(\cdot)$$
 soluzione di $y''+ay'+by=c_1(x)$ e sia $y_2(\cdot)$ soluzione di $y''+ay'+by=c_2(x)$, allora $y(\cdot)=y_1(\cdot)+y_2(\cdot)$ è soluzione di $y''+ay'+by=(c_1(x)+c_1(x))$

Dimostrazione

Segue dalla linerarità di ${\cal L}$

Metodo risolutivo

Sia $(x(\cdot), y(\cdot))$ una soluzione che risulta essere di classe C^2 , si hanno due casi:

1.
$$b \cdot c = 0$$

Sia, per esempio, b=0. Si ha

$$egin{cases} x'(t) = ax(t) + f(t) ext{ equazione disaccoppiata da } y \ y'(t) = cy(t) + (cx(t) + g(t)) \end{cases}$$

Risolvo x(t) e la metto nella seconda riga che mi ritorna un'equazione risolvibile Si risolve la I equazione e si inserisce la soluzione $x(\cdot)$ nella II equazione. La coppia così costruita è la soluzione generale del sistema.

2.
$$b \cdot c
eq 0$$

(s)
$$egin{cases} x'(t) = ax(t) + by(t) + f(t) \ y'(t) = cx(t) + dy(t) + g(t) \end{cases}$$
 , equazione accoppiata.

Si deriva, per esempio, la I equazione, si ottiene: x''(t) = ax'(t) + by'(t) + f'(t) = ax'(t) + bcx(t) + d(x'(t) - ax(t) - f(t)) + bg(t) + f'(t) e quindi (E): $x''(t) - \underbrace{(a+d)}_{tx(\mathbb{A}) = \sum_i a_{ii}} x'(t) + \underbrace{(ad-bc)}_{det(\mathbb{A})} x(t) = bg(t) - df(t) - f'(t)$.

$$tx(\mathbb{A}) = \sum_i a_{ii}$$
 $det(\mathbb{A})$ Sia $x(\cdot)$ la soluzione generale di (E), si ha

$$y(\cdot)=rac{1}{h}(x'(\cdot)-ax(\cdot)-f(\cdot))$$
. La coppia $(x(\cdot),y(\cdot))$ è la soluzione generale di (S)

Sistema di Lotka-Volterra

1. Senza prelievo esterno

$$\begin{cases} x' = ax - bxy & x = x(t) \text{ numero di prede al tempo } t \\ y' = cxy - dy & y = y(t) \text{ numero di predatori al tempo } t \end{cases}$$

con
$$a,b,c,d\in\mathbb{R}^+$$

Si cerca $\gamma(t):I o\mathbb{R}^2$, $\gamma(t)=(x(t),y(t))^T$, t.c. posto $g:\mathbb{R}^2$

Si cerca
$$\gamma(t):I o\mathbb{R}^2$$
, $\gamma(t)=(x(t),y(t))^T$, t.c. posto $g:\mathbb{R}^2 o\mathbb{R}^2$, $g(x,y)=(ax-bxy,cxy-dy)^T$

 $\gamma'(t)=g(\gamma(t))$, γ linea di campo del campo vettoriale g.

 $g(\frac{d}{c}, \frac{a}{b}) = \underline{0}$, il punto $(\frac{d}{c}, \frac{a}{b})$ è un equilbrio, cioè è una soluzione costante del sistema, le traiettorie "circolano" vicino al punto di equilibrio

prede aumentano geometricamente

$$\begin{cases} x\frac{x'}{y} = \frac{a}{y} - b/\cdot - y' \\ x\frac{y'}{y} = c - \frac{d}{y}/\cdot + x' \end{cases}$$
; sommando le due equazione si ottiene:
$$0 = \frac{a}{y}y' - by' - \frac{d}{x}x' + cx'$$

$$0 = \frac{d}{dt}(-alogy + by - dlogy + cx), \text{ quindi } -alog(y(\cdot)) - dlog(x(\cdot)) + cx(\cdot) + dy(\cdot) = K.$$

Ponendo f(x,y) = -dlogx - alogy + cx + by si ha che $y(\cdot)$ parametrizza una linea di

$$L_k(f)=\{(x,y)^T:f(x,y)=K\}$$
 , $abla f(x,y)=(-rac{d}{x}+c,-rac{a}{y}+b)^T=\underline{0}\Leftrightarrow (x,y)^T=(rac{d}{c},rac{a}{b})^T$

 $Hf(x,y)=egin{pmatrix} rac{d}{x^2} & 0 \ 0 & rac{a}{x^2} \end{pmatrix}$, Hf(x,y) è definita positiva, quindi $(rac{d}{c},rac{a}{b})^T$ è un punto di minimo.

Poichè f è "coerciva", nel I quadrante, $(\frac{d}{c},\frac{a}{b})^T$ è il punto di minimo assoluto per f. Le linee di livello di f sono curve chiuse e quindi $x(\cdot)$ e $y(\cdot)$ sono funzioni T-periodiche per

qualche T>0 (che dipende dalla funzione $y(\cdot)$)

$$\begin{split} & \operatorname{Si\,ha} \int_0^T \frac{x'(t)}{x(t)} dt = \int_0^T (a - by(t)) dt \Leftrightarrow log(x(T)) - log(x(0)) = 0 = \int_0^T a dt - b \int_0^T y(t) dt = 0 / \cdot \frac{b}{T} \\ & \Rightarrow \frac{1}{T} \int_0^T y(t) dt = \frac{a}{b} \operatorname{e} \\ & \int_0^T \frac{y'(t)}{y(t)} dt = \int_0^T (cx(t) - d) dt \Rightarrow \frac{1}{T} \int_0^T x(t) dt = \frac{d}{c} \end{split}$$

Le due medie integrali sono il numero medio di individui (prede/predatori) su un periodo T2. Con prelievo esterno (pesca selettiva)

$$egin{cases} x' = ax - bxy - arepsilon_1 x \ y' = cxy - dy - arepsilon_2 y \end{cases}$$
 con $0 < arepsilon_1 < a$ e $arepsilon_2 > 0$ $\begin{cases} x' = (a - arepsilon_1)x - bxy \ y' = cxy - (d + arepsilon_2)y \end{cases}$

Il nuovo equilibrio si trova in $\left(\frac{d+\varepsilon_2}{c}, \frac{a-\varepsilon_1}{b}\right)$

Paradosso: si ha $\begin{cases} rac{1}{T} \int_0^T x(t) dt = rac{d+arepsilon_2}{c}
ightarrow ext{aumento delle prede} \ rac{1}{T} \int_0^T y s(t) dt = rac{a-arepsilon_1}{b}
ightarrow ext{diminuzione dei predatori} \end{cases}$

$$\overline{g}(x,y)=g(rac{d}{c},rac{a}{b})+Jg(rac{d}{c},rac{a}{b})egin{pmatrix}x+rac{d}{c}\y-rac{a}{b}\end{pmatrix}
ightarrow$$
 Sistema linearizzato $\gamma'(t)=\overline{g}(\gamma(t))$

Analisi II - settima parte

Integrazione

Integrazione secondo Riemann in \mathbb{R}^n (N=2,3)

Integrazione secondo Riemann su rettangoli in \mathbb{R}^2

Sia $R = [a_1,b_1] imes [a_2,b_2]$ un rettangolo in \mathbb{R}^2

Decomposizione di ${\cal R}$

Siano:

- ullet $a_1 < x_0 < x_1 < ... < x_n = b_1 n + 1$ punti di $[a_1,b_1]$
- $a_2 < y_0 < y_1 < ... < y_m = b_2 m + 1$ punti di $[a_2,b_2]$ Per i=1,...,n e j=1,...,m si pone $R_{ij}=[x_{i-1},x_i] \times [y_{j-1},y_j]$. La collezione di tutti i rettangoli si indica con δ , $\delta=\{R_{ij}:i=1,...,n,j=1,...,m\}$, si dice decomposizione di R

Insieme delle decomposizioni di ${\it R}$

Sia f una funzione **limitata**, $-\infty < l = \inf_R f \le L = \sup_R f < +\infty$. Si pone $\Delta(R) = \{\delta : \delta \text{ è decomposizione di } R\} \leftarrow \text{è l'insieme delle decomposizioni.}$

Somme inferiori e somme superiori

Sia una $\delta \in \Delta(R)$

$$\sum_{i=1}^m \sum_{i=1}^n l_{ij} \cdot m_2(R_{ij}) = s(\delta,f) o$$
Somma inferiore,

 $\widetilde{l}_{ij} = \inf_{R-ij} f o$ altezza, misurata fino al minimo della funzione in quell'area

$$m_2(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1})
ightarrow A_{ ext{base}}$$
 , $orall i = 1,...,n, j = 1,...,m$

 $l_{ij} \cdot m_2$ è dunque il volume inscritto nella figura solida, delimitata dal valore minimo della funzione e dal piano xy

$$\sum_{j=1}^m \sum_{i=1}^n L_{ij} \cdot m_2(R_{ij}) = \mathbb{S}(\delta,f) o$$
Somma superiore,

 $L_{ij} = \sup_{R-ij} f
ightarrow$ altezza, misurata fino al massimo della funzione in quell'area

$$m_2(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1})
ightarrow A_{ ext{base}}, orall i = 1,...,n, j = 1,...,m$$

 $L_{ij} \cdot m_2$ è dunque il volume del parallelpipedo circoscritto alla figura solida, delimitata dal valore massimo della funzione e dal piano xy

Proposizione

$$orall \delta_1, \delta_2 \in \Delta(R)$$
, si ha $s(\delta_1, f) \leq \mathbb{S}(\delta_2, f)$

Conseguenza

Le classi

$$\sigma(f)=\{s(\delta,f):\delta\in\Delta(R)\}$$
 e $\Sigma(f)=\{\mathbb{S}(\delta,f):\delta\in\Delta(R)\}$ sono classi separate

Integrale secondo Riemann su un rettagolo in \mathbb{R}^2

Se $\sigma(f)$ e $\Sigma(f)$ sono classi contigue, cioè $sup\sigma(f)=inf\Sigma(f)$, allora si dice che f è integrabile su R e si pone $\int\int_R f(x,y)dxdy=sup\sigma(f)=inf\Sigma(f)$

Significato geometrico

Sia
$$f:R(\subseteq\mathbb{R}^2) o\mathbb{R}$$
, integrabile su R e $f(x,y)>0$ in R . Si pone $T=\{(x,y,z)^T\in R, 0< z\leq f(x,y)\}$. Si ha $m_3(T)=\int\int_R f(x,y)dxdy$

Integrazione secondo Riemann su un parallelepipedo in \mathbb{R}^3

• Sia $R = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$

Decomposizione di R

- $a_1 < x_0 < x_1 < ... < x_n = b_1 n + 1$ punti di $[a_1, b_1]$
- ullet $a_2 < y_0 < y_1 < ... < y_m = b_2 m + 1$ punti di $[a_2,b_2]$
- $a_3 < z_0 < z_1 < ... < z_m = b_3l + 1$ punti di $[a_3,b_3]$ Per $i=1,...,n,\,j=1,...,m,\,k=1,...,l.$ La collezione $\delta=\{R_{ijk}:i=1,...,n,j=1,...,m,k=1,...,l\}$ si dice decomposizione di R.

 $\Delta(R)$ è l'insieme di tutte le composizioni di R

Somme inferiori e somme superiori

Sia δ una decomposizione di R, $\delta \in \Delta(R)$, si pone

$$egin{aligned} \sum_{k=1}^{l} \sum_{j=1}^{n} j &= 1^m \sum_{i=1}^{n} l_{ijk} m_3(R_{ijk}) = s(\delta,f) \ \sum_{k=1}^{l} \sum_{j=1}^{n} j &= 1^m \sum_{i=1}^{n} L_{ijk} m_3(R_{ijk}) = S(\delta,f) \end{aligned}$$

dove
$$l_{ijk}=\inf_{R_{ijk}}f\leq L_{ijk}=\sup_{R_{ijk}}f$$
 e $m_3(R_{ijk})=(x_i-x_{i-1})(y_j-y_{j-1})(z_k-z_{k-1})$, per $i=1,...,n$, $j=1,...,m$, $k=1,...,l$.

Proposizione

$$orall \delta_1, \delta_2 \in \Delta(R)$$
 si ha $s(\delta_1, f) \leq S(\delta_2, f)$

Conseguenza

Le classi

$$\sigma(f)=\{s(\delta,f):\delta\in\Delta(R)\}$$
 e $\Sigma(f)=\{\mathbb{S}(\delta,f):\delta\in\Delta(R)\}$ sono classi separate

Integrale secondo Riemann su un parallelepipedo su ${\cal R}$

Se $\sigma(f)$ e $\Sigma(f)$ sono contigue, cioè $sup\sigma(f)=inf\Sigma(f)$, allora si dice che f è integrabile su R e si pone $\iiint_R f(x,y,z)dxdydz=sup\sigma(f)=inf\Sigma(f)$

Rettangoli n-dimensionali ("n-rettangoli") e integrazione su n-rettangoli

Se n=1, allora $R=[a,b]\subseteq\mathbb{R}$ è un rettangolo 1-dimensionale, "1-rettangolo" Se n=2, allora $R=[a_1,b_1]\times[a_2,b_2]\subseteq\mathbb{R}^2$ è un rettangolo 2-dimensionale, "2-rettangolo"

In generale $R=[a_1,b_1] imes[a_2,b_2] imes\cdots imes[a_n,b_n]\subseteq\mathbb{R}^n$ è un rettangolo n-dimensionale, "n-rettangolo"

La stessa costruzione fatta in precedenza permette di definire l'integrale di $f:R(\subseteq\mathbb{R}^n) o\mathbb{R}$, con R rettangolo limitato, si indica con $\int_R f$

Condizioni di integrabilità

Se $f:R(\subseteq\mathbb{R}^n) o\mathbb{R}$, Rn-rettangolo, continua, allora f è integrabile su R

Formula di riduzione

Problema

Come calcolare un integrale doppio o un integrale triplo?

- n=1 se $f:R=[a,b](\subseteq\mathbb{R}) o\mathbb{R}$ è continua allora $\int_a^bf(x)dx=F(b)-F(a)$, per il teorema di Torricelli, con F'=f in R
- ullet $n\geq 2$ si cerca di ridurre l'integrale doppio (triplo) a due (tre) successive integrazioni unidimensionali

Formule di riduzione per integrali doppi su rettangoli

Teorema di Fubini

Se $f:R=[a,b] imes [c,d](\subseteq\mathbb{R}^2) o\mathbb{R}$, è integrabile su R e, per ogni $\overline{x}\in[a,b]f(\overline{x},\cdot):[c,d] o\mathbb{R}$ (x fissato, y libero), è integrabile su [c,d], allora, posto $g(x)=\int_c^d f(x,y)dy$, si ha che $g:[a,b] o\mathbb{R}$ è integrabile, $\int_a^b g(x)dx=\iint_R f(x,y)dxdy$, cioè $\underbrace{\int_a^b (\int_c^d f(x,y)dy)dx}_{\text{integrale iterato}}=\underbrace{\iint_R f(x,y)dxdy}_{\text{integrale doppio}}, \text{ dove l'integrale doppio si ricava dalle somme}$ inferiori e superiori

NB

Vale il risultato analogo in cui x e y si scambiano i ruoli nel teorema di Fubini: Se $f:R=[a,b]\times [c,d](\subseteq\mathbb{R}^2)\to\mathbb{R}$, integrabile su R e $\forall \overline{y}\in [c,d]$ la funzione $f(\cdot,\overline{y}):[a,b]\to\mathbb{R}$ è integrabile su [a,b], allora, posto $h(y)=\int_a^b f(x,y)dx$, la funzione $h:[c,d]\to\mathbb{R}$ è integrabile su [c,d] e $\int_c^d h(y)dy=\iint_R f(x,y)dxdy$ cioè $\int_c^d (f(x,y)dx)dy=\iint_R f(x,y)dxdy$

Osservazione

Se $f:R o\mathbb{R}$, è continua allora valgono entrambe le versioni del teorema di Fubini

Formule di riduzione per integrazione su parallelepipedi rettangoli in \mathbb{R}^3

Due strade percorribili:

1. Integrazione per corda

2. Integrazione per corda

Riduzioni per corde

Teorema di Fubini

Se $f: R=[a_1,b_1] imes [a_2,b_2] imes [a_3,b_3] o \mathbb{R}$, integrabile su R e, $\forall (\overline{x},\overline{y}) \in S=[a_1,b_1] imes [a_2,b_2]$ la funzione $f((\overline{x},\overline{y},\cdot)$ è integrabile su $[a_3,b_3]$, allora posto $g(x,y)=\int_{a_3}^{b_3} f(x,y,z)dz$, la funzione $g: S \to \mathbb{R}$ è integrabile su S e $\iint_S g(x,y)dxdy=\iiint_R f(x,y,x)dxdydz$, cioè $\iint_S (\int_{a_3}^{b_3} f(x,y,z)dz)dxdy=\iiint_R f(x,y,z)dxdydz$ Valgono analoghi gli altri risultati in cui le variabili si scambiano i ruoli

Riduzione per sezione

Teorema di Fubini

Sia $f:R=[a_1,b_1] imes [a_2,b_2] imes [a_3,b_3] o \mathbb{R}$, integrabile su R. $orall \overline{z}\in [a_3,b_3]$ la funzione $f(\cdot,\overline{z})$ è integrabile su $S=[a_1,b_1] imes [a_2,b_2]$, allora posto $h(z)=int_Sf(x,y,z)dxdy$, la funazione $h:[a_3,b_3] o \mathbb{R}$ è integrabile su $[a_3,b_3]$ e $\int_{a_3}^{b_3}h(z)dz=\iiint_R f(x,y,z)dxdydz$, cioè $\int_{a_3}^{b_3}(\iint_S f(x,y,z)dxdy)dz)=\iiint_R f(x,y,z)dxdydz$. Valgono analoghi gli altri risultati in cui le variabili si scambiano i ruoli

Proprietà dell'integrale su *n*-rettangoli

Sia $R(\subseteq \mathbb{R}^n)$ un n-rettangolo e si ponga $\mathscr{R}(R)=\{f_R o \mathbb{R}$, f integrabile su $R\}$.

• Linearità Se $f,g\in\mathscr{R}(R)$ e $\alpha,\beta\in\mathbb{R}$, allora $\alpha f+\beta g\in\mathscr{R}(R)$ e $\int_R(\alpha f+\beta g)=\alpha\int_R f+\beta\int_R g$

 $\mathscr{R}(R)$ è uno spazio vettoriale e l'integrale è un'applicazione lineare

• Monotonia

Se
$$f,g\in\mathscr{R}(R)$$
 e $f(\underline{x})\leq g(\underline{x})orall \underline{x}\in R$, allora $\int_R f\leq \int_R g$

Integrale del prodotto

Se
$$f,g\in\mathscr{R}(R)$$
, allora $f\cdot g\in\mathscr{R}(R)$

Integrale del valore assoluto

Se
$$f \in \mathscr{R}(R)$$
, allora $|f| \in \mathscr{R}$ e $|\int_R f| \leq \int_R |f|$

Proprietà della media

Se
$$f\in \mathscr{R}(R)$$
, allora

$$\inf_R f = l < rac{\int_R f}{m_n(R)} < L = \sup_R f$$

Inoltre se
$$f$$
 è continua, allora esiste $\underline{x}^0 \in R$ t.c. $\underbrace{f(\underline{x}^0)}_{Valormedio} = \underbrace{\frac{\int_R f}{m_n(R)}}_{mediaintegrale}$

Integrale della restrizione

Se
$$f \in \mathscr{R}(R)$$
 e $R' \subseteq R$ è un n -rettangolo allora $f_{|_{R'}} \in \mathscr{R}(R')$

Additività rispetto al dominio

Se
$$R,R',R''$$
 sono n -rettangoli tali che $R'\cup R''=R$ e $int(R')\cap int(R'')=\emptyset$ e $f:R o \mathbb{R}$ t.c. $f_{|_{R'}}\in \mathscr{R}(R')$ e $f_{|_{R''}}\in \mathscr{R}(R'')$ allora $f\in \mathscr{R}(R)$ e $\int_R f=\int_{R'} f+\int_{R''} f$

Insufficienza della teoria dell'integrazione su n-rettangoli

Come definire l'area di E?

$$E = \{(x, y)^T : 0 < y < x^2 \land y \le 1 - x\}$$

Come calcolare il volume di E?

$$E = \{(x,y,z)^T : x^2 + y^2 \le 1 + z^2, 0 \le z \le 4\}$$

Integrazione di funzione limitate su insiemi limitati

Sia $E(\subseteq \mathbb{R}^n)$, un insieme limitato e sia $f:E \to \mathbb{R}$ una funzione limitata. Sia R un n-rettangolo t.c. $E \subseteq R$

Si ponga
$$f:0:R o\mathbb{R}$$
 con $f_0(\underline{x})f_0(\underline{x})=egin{cases} f(\underline{x}),\underline{x}\in E\ x,\underline{x}\in R\setminus E \end{cases}$

Si dice che f è integrabile su E se la funzione f_0 è integrabile su R e si pone $\int_E f = \int_R f_0$

Osservazione

La definizione non dipende da particolare n-rettangolo R con $E\subseteq R$

Problema

In generale, anche se f è continua in Ef_0 può essere discontinua su R.

Come stabilire, allora l'integrabilità di f_0 su R?

Bisogna trarre condizioni più generali della continuità che garantiscano l'integrabilità su n-rettangoli

Teoria della misura secondo Peano-Jordan

Insieme misurabile

Sia $E\subseteq\mathbb{R}^n$ un insieme limitato, si dice che E è misurabile (secondo P-J) in \mathbb{R}^n se la funzione 1 è integrabile su E e si pone $m_n=\int_E 1$

Osservazione

Funzione caratteristica di un insieme:

Sia
$$E(\subseteq \mathbb{R}^n)$$
 la funzione $\mathbf{X}_E:\mathbb{R}^n o \mathbb{R}$ definita da $\mathbf{X}_E(\underline{x}) = egin{cases} 1, \underline{x} \in E \\ \underline{x} \notin E \end{cases}$. Si dice funzione caratteristica di E

Osservazione

Un insieme $E(\subseteq \mathbb{R}^n)$ limitato è misurabile se e solo se $\mathrm{X}(E)$ è integrabilie su un n-rettangolo $R\supseteq E$

Definizione

$$\mathscr{M}(\mathbb{R}^n)=\{E\subseteq\mathbb{R}^n: E ext{ è misurabile in } \mathbb{R}^n\}$$
 e $m_n:\mathscr{M}(\mathbb{R}^n) o\mathbb{R}$, con $m_n(E)=\int_E 1$

Proprietà della misura

1. Se
$$A,B\in\mathscr{M}(\mathbb{R}^n)$$
, allora $A\cap B,A\cup B,A\setminus B\in\mathscr{M}(\mathbb{R}^n)$

• Dimostrazione. Poichè $A,B\in \mathscr{M}(\mathbb{R}^n)$, \mathcal{X}_A , \mathcal{X}_B sono integrabili in R. Si ha: $\mathcal{X}_{A\cap B}=\mathcal{X}_A\cdot\mathcal{X}_B$, che è integrabile in R.

Si ha
$$\mathcal{X}_{A\cup B}=\mathcal{X}_A+\mathcal{X}_B-\mathcal{X}_{A\cap B}$$
 che è integrabile su R e inoltre $\int_R\mathcal{X}_{A\cup B}=\int_R\mathcal{X}_A+\int_R\mathcal{X}_B-\int_R\mathcal{X}_{A\cap B}$. quindi $m_n(A\cup B)=m_n(A)+m_n(B)-m_n(A\cap B)$.

Si ha
$${\cal X}_{A\setminus B}={\cal X}_A-{\cal X}_{A\cap B}$$
 e $\int_R {\cal X}_{A\setminus B}=\int_R {\cal X}_A-\int_R {\cal X}_{A\cap B}$, $m_n(A\setminus B)=m_n(A)-m_n(A\cap B)$

2. Se
$$A,B\in\mathscr{M}(\mathbb{R}^n)$$
 e $A\subseteq B$. aòòpra $m_n(A)\leq m_n(B)$.

• Dimostrazione. Se $A\subseteq B$, allora $orall \underline{x}\in R$ si ha $\mathcal{X}_1(\underline{x})\leq \mathcal{X}_2(\underline{x})$ e quindi $\int_R \mathcal{X}_A \leq \int_R \mathcal{X}_B$

Insieme di misura nulla o insieme trascurabile

Sia $T(\subseteq \mathbb{R}^n)$ limitato. Si dice che T è **trascurabile in** \mathbb{R}^n (o di misura nulla) se $m_N(T)=0$

Proposizione (caratteristica dell'insieme trascurabile)

Sia $T\subseteq \mathbb{R}^n$. Si ha che T è trascurabile in \mathbb{R}^n se e solo se $orall arepsilon>0 \exists R_1,..,R_k n$ -rettangoli tali

che
$$T\subseteq igcup_{i=1}^k R_i$$
 e $\sum_{i=1}^k m_n(R_i)$

Proprietà

- 1. Se $T=\{\underline{x}^0\}\subseteq\mathbb{R}^n$, allora $m_n(T)=0$, $orall n\geq 1$
- 2. Se $T=\{\underline{x}^1,...,\underline{x}^n\}\subseteq \mathbb{R}^n$, allora $m_n(T)=0 orall n\geq 1$
- 3. Se $T\subseteq \mathbb{R}^n$ è un 1-rettangolo, allora $m_n(T)=0 orall n\geq 2$
- 4. Se $T\subseteq \mathbb{R}^n$ è un 2-rettangolo, allora $m_n(T)=0 orall n\geq 3$
- 5. Se $\varphi:R(\subseteq\mathbb{R}^n)\to\mathbb{R}$ è integrabile sul n-rettangolo R, allora $G(\varphi)=\{(\underline{x},\varphi(\underline{x}):\underline{x}\in R\}\subseteq\mathbb{R}^n$
- Dimostrazione. Caso n=1. Poichè $\varphi:R=[a,b] o\mathbb{R}$ è integrabile $sups(\delta,\varphi)=infS(\delta,\varphi)$. Fissato $\varepsilon>0$, Esiste $\delta\in\Delta(R)$ t.c. $\varepsilon>S(\delta)-s(\delta)=\sum_{i=1}^kL_i(x_i-x_{i-1})-\sum_{i=1}^kl_i(x_i-x_{i-1})$. $R_i=[x_{i-1},x_i] imes[l_i,L_i]$, per i=1,...,k, t.c. $G(\varphi)=R_1\cup R_2\cup...R_k$

Condizione di integrabilità su n-rettangoli

Teorema

Se $f:R(\subseteq\mathbb{R}^n) o\mathbb{R}$, Rn-rettangolo, è limitata e continua su $R\setminus T$, con $m_n(T)=0$, allora f è integrabile su R.

Teorema (caratterizzazione degli insiemi misurabili in \mathbb{R}^n)

Sia $E\subseteq \mathbb{R}^n$ un insieme limitato. Si ha che E è misurabile in \mathbb{R}^n se e solo se $m_n(frE)=0$

Dimostrazione

Proviamo solo che se $m_n(frE)=0$, allora E è misurabile in \mathbb{R}^n .

Sia R un n-rettangolo con $E\subseteq R$.

La funzione caratteristica \mathcal{X}_E è limitata su R e continua su $R\setminus frE$. Dunque \mathcal{X}_E è integrabile e pertanto E è misurabile in \mathbb{R}^n .

Condizione di integrabilità su insiemi limitati

Se $f: E(\subseteq \mathbb{R}^n) \to \mathbb{R}$ è continua su E, compatto, misurabile, allora f è integrabile su E.

Dimostrazione

Poichè f è continua su E compatto, f è limitata su E.

Sia R un n-rettangolo con $E\subseteq R$ e sia $f_0:R o R$ definita da $f_0(\underline{x})=egin{cases} f(\underline{x}),\underline{x}\in E\ 0,\underline{x}\in R\setminus E \end{cases}$

 f_0 è limitata su R ed è continua su $R\setminus frE$, con $m_n(frE)=0$, essendo E misurabile in \mathbb{R}^n . Quindi f_0 è integrabile su R e perciò f è integrabile su E

Proprietà dell'integrale su insiemi misurabili

- Linearità
- Monotonia
- Integrale del prodotto
- Integrale del valore assoluto
- Proprietà della media

Se $f: E(\subseteq \mathbb{R}^n) \to \mathbb{R}$ è integrabile su E misurabile allora $\inf_E f \leq \frac{\int_E f}{m_n(E)} \leq \sup_E f$ Se risulta E insieme compatto e connesso, allora $\exists \underline{x}^0 \in E$ t.c. $f(\underline{x}^0) = \frac{\int_E f}{m_n(E)}$

- Integrale rispetto al dominio Se $A,B,C(\subseteq\mathbb{R}^n)$ sono insiemi misurabili tali che $C=A\cup B$ e $m_n(A\cap B)=0$ e $f:C\to\mathbb{R}$ è t.c. $f_{|_A}$ è integrabile su A e $f_{|_B}$ è integrabile su B, allora f è integrabile su C e $\int_C f=\int_A f+\int_B f$
- Integrale della restrizione Se $f:A(\subseteq \mathbb{R}^n) o \mathbb{R}$ è integrabile su A misurabile e $B\subseteq A$ è misurabile allora $f_{|_B}$ è integrabile su B
- Invarianza dell'integrale rispetto agli insiemi di misura nulla Se $f_E(\subseteq\mathbb{R}) o\mathbb{R}$ integrabile su E misurabile, $g:E o\mathbb{R}$ è imitata e $f(\underline{x})=g(\underline{x})$ su $E\setminus T$ con $m_n(T)=0$, allora g è integrabile su E e $\int_E g=\int_E f$

Metodi per il calcol di integrali su insiemi limitati

Formule di riduzione per integrali doppi

Insiemi normali in \mathbb{R}^2 .

Siano $\varphi,\psi:[a,b]\to\mathbb{R}$ continue con $\varphi(x)\leq \psi(x)$ in [a,b] L'insieme $E=\{(x,y)^T:a\leq x\leq b, \varphi(x)\leq y\leq \psi(x)\}$ si dice insieme normale rispetto all'asse x, Analogamente si hanno insiemi normali rispetto all'asse y

Proposizione

Ogni insieme normale è un compatto misurabile in \mathbb{R}^2

Dimostrazione

È ovvio che E è in compatto. Proviamo che è misurabile verificando che frE è trascurabile in \mathbb{R}^2 . Si ha $frE=G(arphi)\cup G(\psi)\cup \sigma_a\cup \sigma_b$, con $\sigma_a=\{(a,y)^T:arphi(a)\leq y\leq \psi(a)\}$ e $\sigma_b = \{(b, y)^T : \varphi(b) \leq y \leq \psi(b)\}.$

Poichè φ e ψ sono integrabili su [a,b], $G(\varphi)$ e $G(\psi)$ sono trascurabili in \mathbb{R}^2 e così pure i seguenti σ_a , σ_b . Dunque $m_2(frE)=0$

Teorema

Se
$$f:E(\subseteq \mathbb{R}^2) o \mathbb{R}$$
 è continua ed E e $\iint_E f(x,y)dxdy=\int_a^b (\int_{arphi(x)}^{\psi(x)} f(x,y)dy)dx$

Dimostrazione

L'integrabilità di f su E seque dal teorema e dalla proposizione precedente

Poniamo
$$m=\displaystyle{\min_{[a,b]}}arphi$$
 e $M=\displaystyle{\max_{[a,b]}}\psi$ e $R=[a,b] imes[m,M]$

Poniamo
$$m=min arphi$$
 e $M=max \psi$ e $R=[a,b] imes [m,M]$ $f_0:R o \mathbb{R}$, dove $f_0(x,y)=egin{cases} f(x,y),(x,y)^T\in E \ 0,(x.y)^T\in R1setminusE \end{cases}$

Si ha f_0 integrabile su R e $f_0(\overline{x},\dot{\cdot}):[m,M] o\mathbb{R}$, è limitata e continua su $[m,M]\setminus$ $[\varphi(\overline{x}), \psi(\overline{x})]$ e quindi integrabile. Il teorema di Fubini si può applicare e

$$\iint_R f_o(x,y) dx dy = \int_a^b (\int_m^M f(x,y) dy) dx = \int_a^b (\underbrace{\int_m^{arphi(x)} f_0(x,y) dy}_0) +$$

$$\iint_R f_o(x,y) dx dy = \int_a^b (\int_m^M f(x,y) dy) dx = \int_a^b (\underbrace{\int_m^{\varphi(x)} f_0(x,y) dy}_{=0} + \underbrace{\int_a^{\psi(x)} f_0(x,y) dy}_{=0} + \underbrace{\int_a^b (\int_{\varphi(x)}^{\psi(x)} f_0(x,$$

Vale un analogo risultato per gli insiemi normali rispetto all'asse y

Formule di riduzione per gli integrali tripli

Riduzione per corde

Insiemi normali in \mathbb{R}^3

Siano $\Phi,\Psi:K(\subseteq\mathbb{R}^2) o\mathbb{R}$ continue con $\Phi(x,y)\leq \Psi(x,y)$ in K , con K compatto e misurabile.

L'insieme $E = \{(x,y,z)^T: (x,y)^T \in K, \Phi(x) \leq z \leq \Psi(x)\}$ si dice insieme normale rispetto al piano xy.

Analogamente si definiscono insiemi normali rispetto ai piani xz e yx

Proposizione

Ogni insieme normale è un compatto misurabile in \mathbb{R}^3 .

Teorema (integrazione per corde)

Se $f: E(\subseteq \mathbb{R}^3) \to \mathbb{R}$ è continua e E èun insieme normale rispetto al piano xy, allora f è integrabile su E e $\iiint_E f(x,y,z) dx dy dz = \iint_K (\int_{\Phi(x)}^{\Psi(x)} f(x,y,z) dz) dx dy$. Valgono analoghe le formule per insiemi normali rispetto agli altri due piani

Riduzione per sezioni

Insiemi sezionabili in \mathbb{R}^3

Sia E un compatto misurabile in \mathbb{R}^3 . Si dice che E è un insieme sezionabile in \mathbb{R}^3 rispetto all'asse z se posto $m=min\{z:(x,y,z)^T\in E\}$ e $M=max\{z:(x,y,z)^T\in E\}$. $\forall \overline{z}\in [m,M]$, la sezione $S_{\overline{z}}=\{(x,y)^T|(x,y,\overline{z})^T\in E\}$ sia misurabile in \mathbb{R}^2 . Analogamente si definiscono gli insiemi sezionabili rispetto agli assi x e y

Teorema (integrazione per sezioni)

Sia $f:E(\subseteq\mathbb{R}^2) o\mathbb{R}$ è continua, con E insieme sezionabile. Si ha $\iiint_E f(x,y,z)dxdydz=\int_m^M(\iint_{S_z} f(x,y,z)dxdy)dz$ Valgono risultati analoghi per gli insiemi sezionabili rispetto agli assi x e y.

Solidi di rotazione

Siano $\varphi,\psi:[a,b]\to\mathbb{R}$ continue, con $0\le \varphi(z)\le \psi(z)$ e sia $D=\{(x,z)^T,a\le z\le b, \varphi(z)\le x\le \psi(z)\}$. Il solido $E=\{(x,y,z)^T:a\le z\le b, \varphi(z)\le \sqrt{x^2+y^2}\}\le \psi(z)$ ottenuto facendo ruotare di $2\pi D$ intorno all'asse z si dice solido di rotazione rispetto all'asse z.

I Teorema di Pappo-Guldino

Ogni solido di rotazione è un compatto misurabile (anzi, sezionabile rispeto all'asse z) e $m_3(E)=2\pi x_Bm_2(D)$, dove x_b è l'ascissa del baricentro di D. ($S_z=\{(x,y)^T:\varphi(z)\leq \sqrt{x^2+y^2}\leq \psi(z)\}$)

Dimostrazione

E è misurabile rispetto all'asse z.

$$m_3(E) = \iiint_E 1 dx dy dz = \int_a^b (\iint_{S_z} 1 dx dy) dz = \int_a^b m_2(S_z) dz = \int_a^b (\pi \psi^2(z) - \pi \varphi^2(z)) dz = 2\pi \int_a^b (rac{1}{2} \psi^2(z) - rac{1}{2} \varphi^2(z)) dz =$$

$$egin{aligned} &=2\pi\int_a^b\left[rac{x^2}{2}
ight]_{arphi(z)}^{\psi(z)}dx=2\pi\int_a^b(\int_{arphi(z)}^{\psi(z)}xdx)dz=2\pi\iint_Dxdxdz=2\pi m_2(D)\cdot \ &rac{\iint_Dxdxdz}{m_2(D)}=2\pi x_bm_2(D). \end{aligned}$$

 $2\pi x_b$ è la distanza sulla circonferenza che il baricentro percorre

Cambio di bariabili negli integrali multipli

ullet Caso N=1

Teorema

Se $f:I=[a,b] o\mathbb{R}$ è continua è arphi:K=[lpha,eta] o I è t.c.

1.
$$arphi \in C^1$$

2. φ è biiettiva

3.
$$arphi'(t)
eq 0 orall t \in K$$
, cioè $arphi'(t) > 0 orall t \in K$ o $arphi'(t) < 0 orall t \in K$

allora
$$\int_a^b f(x)dx = \begin{cases} \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt \\ \int_\beta^\alpha f(\varphi(t))\varphi'(t)dt \end{cases}, \text{ cioè}$$

$$\int_\alpha^\beta f(\varphi(t))\varphi'(t)dt = -\int_\beta^\alpha f(\varphi(t))\varphi'(t)dt$$
 cioè
$$\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$$

Integrali generalizzati in \mathbb{R}^n

Premessa

Come definire:

$$\iint_{\mathbb{R}^2} e^{-x^2-y^2} dx dy$$

Insieme localmente misurabile

Sia $J\subseteq\mathbb{R}^n$. Si dice che J è localmente misurabile uin \mathbb{R}^n se $\forall E$, insieme misurabile in \mathbb{R}^n si ha che $J\cap E$ è misurabile in \mathbb{R}^n

Funzione localmente integrabile

Sia $f:J(\subseteq \mathbb{R}^n) \to \mathbb{R}$ una funziona, J localmente misurabile in \mathbb{R}^n . Si dice che f è localmente integrabile se essite una successione $(A_n)_n$ di insiemi **misurabili** in \mathbb{R}^n t.c.

- 1. $A_n \supset An + 1 \forall n$
- 2. orall E insieme misurabile in \mathbb{R}^n , con $E\subseteq J$, $\lim_{n o +\infty}(m_n(E\setminus A_n))=0$
- 3. $f_{|_{A_n}}$ è integrabile su A_n , orall n

Funzione integrabile in seno generalizzato

Sia $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile, con $f(\underline{x})\geq 0$ $orall x\in J$.

Si dice che f è integrabile in senso generalizzato su J se esiste **finito** $\lim_{n \to +\infty} \int_A f$ e si poine

$$\int_{J}f=\lim_{n
ightarrow+\infty}\int_{A_{n}}f$$

NB

esiste sempre finito o infinito $\lim_{n o +\infty} \int_{A_n} f$ poichè $\int_{A_n} f \leq \int_{A_n} f orall n$ (per monotonia)

Teorema

Sia $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile. Se $(A_n)_n$ e $(B_n)_n$ sono successioni di insiemi misurabili in \mathbb{R}^n verificanti (1), (2) e (3), allora $\lim_{n\to+\infty}\int_{A_n}f=\lim_{n\to+\infty}\int_{B_n}f$

Integrale in senso generalizzato (caso generale)

 $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile. Si dice che f è integrabile in senso generalizzato su J se e solo se $f^+(\underline{x})$ e $f^-(\underline{x})$ sono integrabili in senso generalizzato su J e si pone $\int_J f = \int_J f^+ - \int_J f^-$

Teorema

Sia $f:J(\subseteq\mathbb{R}^n) o\mathbb{R}$ localmente integrabile su J localmente misurabile. Si ha che f è integrabile in senso generalizzato su J se e solo se |f| è integrabile in senso generalizzato su J

Inoltre risulta $\int_J f = \lim_n \int_{A_n} f$, dove $(A_n)_n$ è una successone di insiemi misurabili verificante (1), (2) e (3).

Misure in senso generalizzato in \mathbb{R}^n

Sia J localmente misurabile in \mathbb{R}^n . Si dice che J è misurabile in senso generalizzato in \mathbb{R}^n se \mathcal{X}_J è integrabile in senso generalizzato su J e si pone $m_n(J)=\int_J 1$

Misurazione e integrazione su curve e superfici

Lunghezza di una curva in \mathbb{R}^n (n=2 o n=3)

Idea - Rettificabilità e lunghezza di una curva

Sia $Y:I=[a,b] o\mathbb{R}$ continua. Sia $\delta\in\Delta(I)$ individuata dai nodi $a=t_0,t_1,...,t_n=b$ Si consideri la poligonale $\pi(\delta)$ formata dagli n segmenti $\sigma_i(t):[0,1] o\mathbb{R}^n$ con $\sigma_i(s)=\gamma(t_{i-1})+s(\gamma(t_i)-\gamma(t_{i-1}))$, per i=1,...,n

Si ha
$$l(\pi(\delta)) = \sum_{i=1}^n ||\gamma(t_i) - \gamma(t_{i-1})||$$
 se $\sup_{\delta \in \Delta(I)} l(\pi(\delta)) < +\infty$, si dice che γ è rettificabile e si pone $l(\gamma) = \sup_{\delta \in \Delta(I)} l(\pi(\delta))$

Osservazione

Non tutte le curve continue sono rettificabili

Lemma

Se
$$g:[a,b] o\mathbb{R}^n$$
 è continua, allora si pone $\int_a^bg(t)dt=(\int_a^bg_1(t)dt,...,\int_a^bg_n(t)dt)^T$ e si ha $||\underbrace{\int_a^bg(t)dt}||\leq\int_a^b||g(t)||dt$

Teorema di rettificabilità

Se
$$\gamma:I=[a,b] o\mathbb{R}$$
 è di classe C^1 , allora γ è rettificabile e $l(\gamma)=\int_a^b||\gamma'(t)||dt$

Dimostrazione

Sia
$$\delta \in \Delta(I)$$
. Si ha $l(\pi(\delta)) = \sum_{i=1}^n ||\gamma(t_i) - \gamma(t_{i-1})|| = \sum_{i=1}^n ||\int_{t_{i-1}}^{t_i} \gamma'(t) dt|| \leq \sum_{i=1}^n \int_{t_{i-1}}^{t_i} ||\gamma'(t)|| dt = \int_a^b ||\gamma'(t)|| dt < +\infty$ Quindi risulta $\sup_{\delta \in \Delta(I)} l(\pi(\delta)) \leq \int_a^b ||\gamma'(t)|| dt < +\infty$

Poichè γ è rettificabile e $l(\gamma) \leq \int_a^b ||\gamma'(t)|| dt < +\infty$ si pone la validità della disuguaglianza posta

Lunghezza di una curva in forma cartesiana

Sia
$$f:[a,b] o\mathbb{R}$$
 di classe C^1 una curva in forma cartesiana $\gamma(t)=(t,f(t))^T$, $t\in[a,b]$, rettificabile $l(G(f))=\int_a^b\sqrt{1+(f'(t))^2}dt$

Lunghezza di una curva in forma polare

Sia
$$ho:(\cdot):[lpha,eta] o\mathbb{R}\in C^1$$
 con $ho(\vartheta)\geq 0$ in $[lpha,eta]$ una curva in forma polare $\gamma(\vartheta)=(
ho(\vartheta)cos\vartheta,
ho(\vartheta)sin\vartheta)^T$, $l(\gamma)=\int_lpha^\beta||\gamma'(t)||d\vartheta=\int_lpha^\beta\sqrt{(
ho(\vartheta))^2+(
ho'(\vartheta))^2}d\vartheta$

Analisi II - ottava parte

Curve equivalenti

Siano $\gamma_1:I_1\to\mathbb{R}^n$ e $\gamma_2:I_2\to\mathbb{R}^n$. Si dice che γ_1 e γ_2 sono equivalenti se esiste $h:I_2\to I_1$ t.c.

- 1. h è biiettiva
- 2. h è di classe C^1 con h'(s)
 eq 0 in I_2 , ovvero h è solo crescente o decrescente
- 3. $\gamma_1(h(s)) = \gamma_2(s)$, $orall s \in I_2$

Osservazione

Se γ_1 e γ_2 sono equivalenti allora $sost(\gamma_1) = sost(\gamma_2)$

Orientazione di una curva

Siano γ_1 e γ_2 due curve equivalenti.

Si dice che γ_1 e γ_2 hanno la stessa orientazione/sono equiverse se $h'(s)>0 \forall s\in I_2$ e si scrive $\gamma_1\sim\gamma_2$

Si dice che γ_1 e γ_2 hanno orientazione opposte se $h'(s) < 0 orall s \in I_2$ e si scrive $\gamma_1 \sim -\gamma_2$

Osservazione

Siano γ_1,γ_2 due curve **regolari** ($\gamma_1'(t) \neq 0$ e $\gamma_2'(t) \neq 0$, $\forall t$) equivalenti. Si ha:

- ullet se γ_1 e γ_2 hanno la stessa orientazione, allora $au_1(h(s))= au_2(s)$ in I_2
- ullet altrimenti ($\gamma_1 \sim -\gamma_2$), allora $au_1(h(s)) = - au_2(s)$ in I_2 Infatti:

$$au_2(s) = rac{\gamma_2'(s)}{||\gamma_2'(s)||} = rac{rac{d}{ds}\gamma_1(h(s))}{||rac{d}{ds}\gamma_1(h(s))||} = rac{\gamma_1'(h(s))\cdot h'(s)}{||\gamma_1'(h(s))\cdot h'(s)||} = rac{\gamma_1'(h(s))\cdot h'(s)}{||\gamma_1'(h(s))\cdot h'(s)||} = egin{cases} au_1(h(s)) & ext{set} & au_1 \sim \gamma_2 \ - au_1(h(s)) & ext{set} & au_1 \sim -\gamma_2 \end{cases}$$

Integrazione su curve

Integrazione di linea di un campo scalare

Siano $\gamma:I=[a,b] o\mathbb{R}^n$ una curva regolare e $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ un campo scalare (---...? ----)

Si definisce integrale di f su $\gamma \int_{\gamma} f ds = \int_a^b f(\gamma(t)) ||\gamma'(t)|| dt$

Osservazione

Se
$$f=1$$
 in E allora $\int_{\gamma}1ds=\int_{a}^{b}||\gamma'(t)||dt=l(\gamma)$

Proposizione

Se γ_1 e γ_2 sono curve regolari equivalenti e f è un campo scalare continuo $\int_{\gamma_1}fds=\int_{\gamma_2}fds$

(si verifica tramite la funzione $h:I_2 o I_1$ e cambio di variabile integrazione unidimensionale)

Integrali di linea di campi vettoriali

Siano $\gamma:I=[a,b]\to\mathbb{R}^n$ una curva regolare e $g:E(\subseteq\mathbb{R}^n)\to\mathbb{R}^n$ un campo vettoriale continuo, con $\gamma(I)\subseteq E$. Si definisce integrale di linea di g su $\gamma\int_{\gamma}< g, \tau>ds=\int_a^b< g(\gamma(t)), \gamma'(t)>dt$

Osservazione

$$\int_a^b < g(\gamma(t)), \gamma'(t) > dt) = \int_a^b < g(\gamma(t)), \underbrace{rac{\gamma'(t)}{||\gamma'(t)||}}_{ au(t)} > \cdot ||\gamma'(t)||dt = \int_a^b < g(\gamma(t)), au(t) > ||\gamma'(t)||dt = \int_\gamma < g, au > dt$$

Proposizione

Se γ_1 e γ_2 sono curve regolari equivalenti con la stessa orientazione, allora $\int_{\gamma_1} < g, au>$ $ds=\int_{\gamma_2} < g, au> ds$

Se γ_1 e γ_2 sono curve regolari equivalenti con orientazione opposta, allora $\int_{\gamma_1} < g, au>$ $ds=-\int_{\gamma_2} < g, au>ds$

Intepretazione fisica

Sia g un campo di forze: $\int_{\gamma} < g, au > ds$ è il lavoro che il campo g compie per portare un punto dalla posizione $\gamma(a)$ alla posizione $\gamma(b)$ lungo il percorso γ

Notazione

$$\begin{array}{l} \bullet \quad N=2 \text{, } g(x,y)=(X(x,y),Y(x,y))^T \text{ e } \gamma(t)=(x(t),y(t))^T \\ \int_{\gamma} < g, \tau > ds = \int_a^b < g(\gamma(t)), \gamma'(t) > dt = \int_a^b (X(\gamma(t))x'(t) + t)^T dt \\ \end{array}$$

$$Y(\gamma(t))y'(t))dt=$$
 $=\int_{\gamma}Xdx+Ydy o$ forma differenziale $egin{pmatrix}x(t)dt=dx\\y(t)dt=dy\end{pmatrix}$
 $ullet$ $N=3$, $g(x,y,z)=(X(z,y,z)+Y(z,y,z)+Z(z,y,z))^T$ $\gamma(t)=(x(t),y(t),z(t))^T$ $\int_{\gamma}< g, au>ds=\int_a^b < g(\gamma(t)), \gamma'(t)>dt=\int_a^b < g(\gamma(t)), \gamma'(t)>dt=\int_a^b (X(\gamma(t)x'(t)+Y(\gamma(t))y'(t)+Z(\gamma(t))z'(t))dt$ $\int_{\gamma}Xdx+Ydy+Zdz o$ forma differenziale

Problemi

Siano $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2 o 3) un campo vettoriale continuo, con A aperto e $\gamma:[a,b] o A$ una curva regolare

- 1. Quando $\int_{\gamma} < g, au > ds$ dipende dal punto iniziale $\gamma(a)$ e dal punto terminale $\gamma(b)$, ma non dal percorso?
- 2. Quando esiste un campo scalare $f:A o\mathbb{R}$ differenziale tale che abla f=g in A?

Campi vettoriali conservativi

Si dice che $g:A(\subseteq\mathbb{R}^n)\to\mathbb{R}^n$, con A aperto è conservativo in A se esiste $f:A\to\mathbb{R}$ differenziabile in A e si dice che f è un potenziale di g su A

NB

Se N=1:

- 1. g conservativo $\Leftrightarrow g$ primitivabile
- 2. q continua $\Rightarrow q$ primitivabile \Rightarrow conservativa

Proposizione

Se $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$, A aperto connesso, è conservativo in A e $f_1,f_2:A o\mathbb{R}$ sono potenziali di g in A, allora esiste $c\in\mathbb{R}$ t.c. $f_1(x)=f_2(x)+c$ in A

Dimostrazione

Poniamo

$$h=f_1-f_2$$
. Si ha che $abla h(\underline{x})=
abla f_1(\underline{x})-
abla f_2(\underline{x})=g(\underline{x})-g(\underline{x})=0$ in A . Poichè A è aperto e connesso si conclude che esiste $c\in\mathbb{R}$ t.c. $h(\underline{x})=c$ in A .

Teorema (di Torricelli per campi vettoriali conservativi)

Se $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ è continuo e conservativo in A e $\gamma:[a,b] o A$ è una curva regolare, allora si ha $\int_\gamma < g, au>ds=f(\gamma(b))-f(\gamma(a))$ dove f è un potenziale di g su A.

Dimostrazione

Si ha
$$\int_{\gamma} < g, au > ds = \int_a^b \underbrace{< g(\gamma(t)), \gamma'(t) >}_{\frac{d}{dt}f(\gamma(t))} dt = \int_A^b < \nabla f(\gamma(t)), \gamma'(t) > dt = f(\gamma(b)) - f(\gamma(a))$$

Intepretazione fisica

Siano

- ullet punto materiale di massa m
- $\gamma(t)$ legge oraria
- $g(\underline{x})$ campo di forze conservativo (stazionario)
- $f(\underline{x})$ potenziale di g

e quindi
$$\frac{1}{2}m||\gamma'(t_1)||^2-\frac{1}{2}m||\gamma'(t_2)||^2=f(Y(t_2))-f(\gamma(t_1)), \text{ cioè}\\ \frac{1}{2}m||\gamma'(t_2)||^2-\underbrace{f(\gamma(t_2))}_{\text{Energia potenziale}}=\frac{1}{2}m||\gamma'(t_1)||^2-f(\gamma(t_1))\\ \frac{1}{2}m||\gamma'(t_2)||^2-\underbrace{f(\gamma(t_2))}_{\text{Energia meccanica}}=\frac{1}{2}m||\gamma'(t_1)||^2-f(\gamma(t_1))$$

Conclusione

Energia meccanica+Energia potenziale=Energia meccanica Si conserva nel tempo (teorema di conservazione dell'energia)

Caratterizzazione dei campi conservativi

Curva regolare a tratti

Si dice che una curva $\gamma:I=[a,b] o\mathbb{R}^n$ continua è regolare a trattise esiste una decomposizione $\delta\in\Delta(I)$, individuata dai nodi $a=t_0< t_1< ...< t_n=b$ t.c. $\gamma_{|_{[t_{i-1}-t_i]}}$ è una curva regolare per i=1,...,n Sia $A\in\mathbb{R}^n$ aperto e connesso. $\forall \underline{x},y\in A$ poniamo

 $\Gamma(\underline{x},\underline{y}))=\{\gamma:[a,b] o A|\gamma$ è una curva regolare a tratti e $\gamma(a)=\underline{x}$ e $\gamma(b)=\underline{y}\}$ $\Gamma(\underline{x},\overline{y})\neq\emptyset$ poichè A è connesso

Caratterizzazione dei campi conservativi

Sia $g:A(ackslash \mathbb{R}^n) o \mathbb{R}^n$ un campo vettoriale continuo con A aperto connesso. Si ha che g è conservativo in A se e solo se

(c)
$$orall \underline{x}, \underline{y} \in A$$
 e per ogni $\gamma_1, \gamma_2 \in \Gamma(\underline{x}, \underline{y})$, $\int_{\gamma_1} < g, au > ds = \int_{\gamma_2} < g, au > ds$

Dimostrazione (idea)

- g conservativo \Rightarrow (c) (segue dal teorema di Torricelli)
- $ullet \ int_{\gamma_1} < g, au > ds = f(\underline{y}) f(\underline{x}) = \int_{\gamma_2} < g, au > ds$ con f è un potenziale di g in A
- (c) $\Rightarrow g$ conservativo Fissiamo $\underline{x}^0 \in A$ generico Poniamo $f(\underline{x}) \int_{\gamma} < g, \tau > ds$, dove $\gamma \in \Gamma(\underline{x}^0, \underline{x})$. Per (c) il valore $f(\underline{x})$ non dipende da γ si verifica che f è differenziabile e $\nabla f = g$ in A.

Notazione

Per ogni $\underline{x},\underline{y}\in A$ e $\forall \gamma_1,\gamma_2\in \Gamma(\underline{x},\underline{y})$ indichiamo con $-\gamma_2$ la curva equivalente a γ_2 orientata in senso opposto e con γ la curva chiusa individuata da γ_1 e $-\gamma_2$

Osservazione

Si ha
$$\int_{\gamma_1} < g, au > ds = \int_{\gamma_2} < g, au > ds \Leftrightarrow 0 = \int_{\gamma_1} < g, au > ds - \int_{\gamma_2} < g, au > ds = \int_{\gamma_1} < g, au > ds + \int_{-\gamma_2} < g, au > ds = \int_{\gamma} < g, au > ds$$
 La condizione (c) è equivalente a (D) per ogni curva chiusa regolare a tratti, $\gamma:[a,b] \to A$, $\oint_{\gamma} < g, au > ds = 0$

Circuitazione o circotazione di g su γ

Problema

trovare condizioni più agevoli da verificare di (c) o (D)

Operatori differenziali

Gradiente, rotore, divergenza

Sia $A\subseteq \mathbb{R}^3$ un aperto

L'operatore gradiente associa ad ogni campo scalare $f:A \to \mathbb{R}$ differenziabile. Il campo vettoriale $gradf = \nabla f: A(\subseteq \mathbb{R}^3) \to \mathbb{R}^3$ con $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})^T$, si ha gradf:

Campo scalare \mapsto Campo Vettoriale

L'operatore rotore associa a ogni campo vettoriale $g:A o\mathbb{R}^3$ differenziabile, il campo vettoriale $rotg=
abla imes g:A o\mathbb{R}^3$, con

$$rotg = det egin{pmatrix} rac{e_1}{\partial} & rac{e_1}{\partial} & rac{e_1}{\partial} \ rac{\partial}{\partial x} & rac{\partial}{\partial z} \end{pmatrix} = \left(rac{\partial z}{\partial y} - rac{\partial y}{\partial z}
ight) \underline{e}_1 - \left(rac{\partial z}{\partial x} - rac{\partial x}{\partial z}
ight) \underline{e}_2 + rac{\partial z}{\partial z} + rac{\partial$$

$$\left(rac{\partial y}{\partial x}-rac{\partial x}{\partial y}
ight)\underline{e}_{3}=\left(rac{\partial z}{\partial y}-rac{\partial y}{\partial z},rac{\partial z}{\partial x}-rac{\partial x}{\partial z},rac{\partial y}{\partial x}-rac{\partial x}{\partial y}
ight)^{T}$$

Dove $g(x,y,z)=(X(z,y,z),Y(x,y,z),Z(x,y,z))^T$

L'operatore divergenza associa ad ogni campo vettoriale $g:A \to \mathbb{R}^3$ differenziabile. Il campo scalare $divg=<\nabla,g>:A \to \mathbb{R}$ con $divg=\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}+\frac{\partial Z}{\partial z}$

• Caso N=2 Sia $g:A(\subseteq \mathbb{R}^2) o \mathbb{R}^2$ un campo vettoriale differenziabile in A Si pone $\tilde{g}(x,y,z)=(X(x,y),Y(x,y),0)^T$, dove $g(x,y)=(X(x,y),Y(x,y))^T$ e si definiscono $rotg=rot\tilde{g}=\left(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y}\underline{e}_3\right)$

Campi vettoriali irrotazionali

Si dice che $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2 o 3) differenziabile in A aperto è irrotazionale se $rot g(\underline{x})=\underline{0}$ in A

Osservazione

$$\bullet \quad N = 3, \, rotg = \begin{pmatrix} \frac{\partial z}{\partial y} - \frac{\partial y}{\partial z}, \frac{\partial x}{\partial z} - \frac{\partial z}{\partial x}, \frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} \end{pmatrix}^T = \underline{0} \Leftrightarrow Jg = \begin{pmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} \end{pmatrix} \ \, \text{è simmetrica}$$

Un campo vettoriale è irrotazione se la matrice Jacobiana del campo è simmetrica

Teorema (condizione necessaria affinchè un campo vettoriale sia conservativo)

Se $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2,3) è un campo vettoriale conservativo allora è irrotazionale (Jg è simmetrica)

Se g è conservativo e differenziabile, allora esiste un campo scalare f t.c. $\nabla f=g$, con f due volte differenziabile.

Per il teorema di Young si ha che Hf=Jg è simmetrica ossita $rotg=\underline{0}$ in A

Problema

Un campo vettoriale è conservativo? In generale, no

Insieme stellato

Sia $A\subseteq\mathbb{R}^n$ un aperto. Si dice che A è stellato se $\exists \underline{x}^0\in A$ t.c. $\forall \underline{x}\in A$ (il segmento) $\sigma(t)=\underline{x}^0+t(\underline{x}-\underline{x}^0)\in A$, $\forall t\in[0,1]$ cioè il segmento che congiunge \underline{x}^0 e \underline{x} è interamente contenuto in A.

Osservazione

 $A \text{ convesso} \Rightarrow A \text{ stellato} \Rightarrow A \text{ connesso}$

Teorema di Poincarrè

Sia $g:A(\subseteq\mathbb{R}^n) o\mathbb{R}^n$ (N=2,3) un campo vettoriale di classe C^1 e sia A aperto e stellato. Si ha che g è conservativo in $A\Leftrightarrow rot g=\underline{0}$ in A

Dimostrazione (Idea)

- ullet g è conservativo $\Rightarrow rotg = \underline{0}$ in A
- $rotg = \underline{0} \Rightarrow g$ è conservativo in A Si definisce $F: A \to \mathbb{R}$, ponendo $\forall x \in A$ $f(\underline{x}) = \int_{\sigma} < g, \tau > ds = \int_{0}^{1} < g(\underline{x}^{0} + t(\underline{x} \underline{x}^{0})), \underline{x} \underline{x}^{0} > dt$ Dove $\sigma(t) = \underline{x}^{0} + t(\underline{x} \underline{x}^{0})$ e \underline{x}^{0} è un punto rispetto al quale A è stellato

Misure e integrazioni su superfici

Premessa

Siano $\underline{a},\underline{b}\in\mathbb{R}^3$ linearmente indipendenti, cioè $\underline{a}\times\underline{b}\neq\underline{0}$ $\sigma:K=[0,1]\times[0,1]\to\mathbb{R}$ $\sigma(u,v)=\underline{a}u+\underline{b}v.$

$$\sigma_u = \underline{a}$$
, $\sigma_v = \underline{b}$, $\sigma_u imes \sigma_v = \underline{a} imes \underline{b}
eq 0$

Superficie regolare semplice

Questa formula, valida per i parallelogrammi, si estende ad una generica superficie regolare semplice

Area di una superficie

Sia $\sigma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$ con K=clA(=frA), A aperto misurabile in \mathbb{R}^2 , una superficie regolare semplice

Si definisce
$$A(\Sigma)=\iint_K ||\sigma_u(u,v) imes\sigma_v(u,v)||dudv$$
, con $\Sigma=\sigma(K)$

Superficie in forma cartesiana

Sia $f:K(\subseteq\mathbb{R}^2) o\mathbb{R}$ di classe C^1 . La superficie in forma cartesiana $\sigma:K(\subseteq\mathbb{R}^2) o\mathbb{R}^3$, con $\sigma(u,v)=(u,v,f(u,v))^T$, è t.c. $\Sigma=\sigma(K)=G(f)$

Si ha
$$\sigma_u imes \sigma_v = det egin{pmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ 1 & 0 & f_u \\ 0 & 1 & f_v \end{pmatrix} = (-f_u, -f_v, 1)^T \ \mathrm{e} \ ||\sigma_v imes \sigma_u|| = (-f_u, -f_v, 1)^T \$$

$$\sqrt{1+(f_u)^2+(f_v)^2} = \sqrt{1+||
abla f||^2} \ A(G(f)) = \iint_K \sqrt{1+||
abla f||^2} dxdy$$

Superfici cilindriche

Sia $\gamma:[a,b]\to\mathbb{R}^2$ una curva regolare semplice e siano $f,g:E(\subseteq\mathbb{R}^2)\to\mathbb{R}$, con $sost(\gamma)\subseteq E$ e f(x,y)< g(x,y) in E. Sia $\Sigma=\{(x,y,z)^T:(x,y)^T\in sost(\gamma),f(x,y)\leq z\leq g(x,y)\}$ Σ è il sostegno della superficie regolare semplice $\sigma(u,v)=x(u),y(u),v)^T$, con $\sigma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$ e $K=\{(u,v):a\leq u\leq b,f(\gamma(u))\leq v\leq g(\gamma(u))\}$ dove $(x(u),y(u))^T=\gamma(u). \text{ Si ha } \sigma_u\times\sigma_v=\det\begin{pmatrix}\frac{\underline{e}_1}{x'(u)}&\frac{\underline{e}_2}{y'(u)}&\frac{\underline{e}_3}{0}\\0&0&1\end{pmatrix}=(\underline{e}_1\cdot y'(u)-\underline{e}_2\cdot x'(u)+0\cdot\underline{e}_3)=(y'(u),-x'(u),0)^T\\||\sigma_u\times\sigma_v||\to \text{ norma del vettore normale}\\||\gamma'(u)||\to \text{ norma del vettore tangente}\\|\gamma(u)=(x'(u),y'(u),0)^T\\|\int_K||\sigma_u\times\sigma_v||dudv=\int_K||\gamma'(u)||dudv=\int_a^b(\int_{f(\gamma(u))}^{g(\gamma(u))}||\gamma'(u)||dv)du=\int_a^b(g(\gamma(u))-f(\gamma(u)))\cdot||\gamma'(u)||du=\int_\gamma(g-f)ds$

Superfici di rotazione

Sia $\gamma:[a,b] o \mathbb{R}^2$ una curva regolare semplice, con $\gamma(u)=(x(u),z(u))^T$. x(u)>0 in]a,b[.

Facendo ruotare $sost(\gamma)$ intorno all'asse z si 2π si ottiene il sostegno Σ di una superficie regolare semplice $\sigma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$, con $\sigma(u,v)=(x(u)cosv,x(u)sinv,z(u))^T$ e

$$K = [a,b] \times [0,2\pi]. \text{ Si ha } \sigma_u \times \sigma_v = det \begin{pmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ x'(u)cosv & x^(u)sinv & z' \\ -x(u)sinv & x(u)cosv & 0 \end{pmatrix} = \begin{pmatrix} (-x(u)z(u)cosv, -x(u)z'(u)sinv, x(u)x'(u))^T \\ e \mid |\sigma_u \times \sigma_v| \mid = [(x(u)z'(u)cosv)^2 + (x(u)z'(u)sinv)^2 + (x(u)x'(u))^2]^{\frac{1}{2}} = \begin{pmatrix} (x(u)z(u))^2 + (x(u)x'(u))^2 \\ \hline (x(u)z(u))^2 + (x(u)x'(u))^2 \\ \hline |x(u)|\sqrt{x'(u)+z'(u)} \end{pmatrix} = x(u) \cdot ||\gamma'(u)||$$
 Quindi $A(\Sigma) = \iint_K x(u)||\gamma'(u)||dudv \stackrel{Fubini}{=} \int_a^b (\int_0^{2\pi} x(u)||\gamma'(u)||dv)du = \begin{pmatrix} (x_0 + x_0) & (x_0$

Quindi
$$A(\Sigma)=\iint_K x(u)||\gamma'(u)||dudv\stackrel{Funn}{=}\int_a^b (\int_0^{2\pi}x(u)||\gamma'(u)||dv)du=2\pi\int_a^b x(u)||\gamma'(u)||du=2\pi\underbrace{\int_\gamma xds}_{baricentro}l(\gamma)=2\pi x_Bl(\gamma)$$
, II teorema di Pappo-Guldino

Integrale di superficie del campo scalare

Sia $\gamma:K(\subseteq\mathbb{R}^2)\to\mathbb{R}^3$ con K=clA, A aperto misurabile una superficie regolare semplice Sia $f:E(\subseteq\mathbb{R}^3)\to\mathbb{R}$ un campo scalare continuo con $\Sigma=\sigma(K)\subseteq E$. Si definisce

integrale di superficie di f su E: $\iint_\Sigma f \cdot \sigma = \iint_K f(\gamma(u,v)) \cdot \sigma_u(u,v) imes \sigma_v(u,v) ||du dv|$

Osservazione

Se
$$f=1$$
 allora $\iint_{\Sigma}1d\sigma=\iint_{K}||\sigma_{u} imes\sigma_{v}||dudv=A(\Sigma)$

Applichiamo il calcolo di massa, baricentro, momento d'inerzia di una lamina piana di densità di massa $\mu(x,y,z)$, appoggiata sul $sost\Sigma$ di una superficie regolare semplice

Sia $\gamma:K(\subseteq\mathbb{R}^2) o\mathbb{R}^3$ con K=clA, A aperto misurabile una superficie regolare semplice.

Sia $g:E(\subseteq\mathbb{R}^3)\to\mathbb{R}^3$ un campo vettoriale continuo con $\Sigma\subseteq E$ si definisce integrale di superficie di g su Σ

$$\iint_{\Sigma} \langle g,v
angle ds = \iint_{K} \langle g(\sigma(u,v)), \sigma_{u}(u,v) imes \sigma_{v}(u,v)
angle dudv$$

Giustificazione della rotazione

$$\iint_K < g(\sigma(u,v)), \sigma_u(u,v) imes \sigma_v(u,v) > dudv$$
 $\iint_K < g(\sigma(u,v)), rac{\sigma_u(u,v) imes \sigma_v(u,v)}{||\sigma_u(u,v) imes \sigma_v(u,v)||} > \cdot ||\sigma_u(u,v) imes \sigma_v(u,v)||dudv =$ $= \iint_K < g(\sigma(u,v)),
u(u,v) imes ||\sigma_u(u,v) imes \sigma_v(u,v)||dvdu = \iint_\Sigma < g,
u > ds$, dove $u = rac{\sigma_u imes \sigma_v}{||\sigma_u imes \sigma_v||}$

Intepretazione fisica

Sia g un campo di velocità di un fluido in movimento $\iint_K < g,
u > ds$ ha il significato di flusso attraverso Σ

Dominio generalmente regolare in \mathbb{R}^2

Un aperto limitato e connesso $D\subseteq\mathbb{R}^2$ si dice (generalmente) regolare se esiste una curva γ regolare $\gamma:[a,b]\to\mathbb{R}$ regolare (a tratti) semplice e chiusa t.c. $frD=sost(\gamma)$ γ orienta positivamente frD e in tal caso γ si indica con +frD, se al crescere di $t\in[a,b]$. Il punto $\gamma(t)$ percorre frD in verso antiorario

Si ha
$$\underbrace{\tau(t)}_{ ext{Vettore tangente}} = \frac{(x'(t), y'(t))^T}{||\gamma'(t)||}$$
, dove $\gamma = (x(t), y(t))^T$ $\nu(t) = \frac{(y'(t) - x'(t))^T}{||\gamma'(t)||}$, versore normale esterno

Osservazione

frD misurabile $\Rightarrow D$ misurabile, sia $\sigma:B(\subseteq \mathbb{R}^2) o \mathbb{R}^3$, B aperto, t.c.

1.
$$\sigma$$
 è di classe C^1 in B

2.
$$\sigma_u imes \sigma_v
eq 0$$
 in B

3. σ è iniettiva

Sia D un dominio generalmente regolare $(D\subseteq B)$, t.c. $clD\subseteq B\Rightarrow \sigma_{|_{clD}}$ è una superficie regolare semplice

Sia $\gamma:[a,b] o B$ regolare a tratti semplice e chiusa che orienta positivamente frD, cioè $\gamma=+frD$

Indichiamo con $+\partial\Sigma$ regolare a tratti $\sigma\circ\gamma:[a,b] o\mathbb{R}^3$ si dice **bordo** di Σ

Teorema di Stokes (del rotore)

Se $g:A(\subseteq\mathbb{R}^3) o\mathbb{R}^3$ è un campo vettoriale di classe C^1 con $\Sigma\subset A$, allora $\underbrace{\iint_\Sigma < rotg, \nu>d\sigma}_{\text{Flusso del rotore}} = \underbrace{\int_{+\partial\Sigma} < g, \tau>ds}_{\text{Circolazione del campo}}$

Caso particolare

Se
$$\sigma(u,v)=(u,v,0)^T$$
 , si ha che $\Sigma=clD$ e quindi $\iint_{clD} < rotg$, $\underbrace{e_3}_{ ext{Normale a }clD} > d\sigma \iint (Y_x-X_y) dx dy \stackrel{ ext{Stokes}}{=} \int_{+frD} < g, au > ds$

Dominio regolare nello spazio \mathbb{R}^3

Sia $D\subseteq\mathbb{R}^3$ un aperto limitato e connesso. Si dice che D è un dominio regolare in \mathbb{R}^3 se esiste $\varphi:\mathbb{R}^3\to\mathbb{R}$ di classe C^1 t.c. $D=\{\underline{x}\in\mathbb{R}^3:\varphi(\underline{x})=0\}$. $frD=\{\underline{x}\in\mathbb{R}^3,\varphi(\underline{x})=0\}$ = D e una superficie regolare in forma implicita). Il versore D0 e una superficie regolare in forma implicita).

Teorema della divergenza (di Gauss)

Se $g:A(\subseteq\mathbb{R}^3) o\mathbb{R}^2$, di classe C^1 e D è un dominio regolare in \mathbb{R}^3 con $clD\subseteq A$, allora $\iiint_D divg(x,y,z)dxdydz=\iint_{frD} < g, \nu>d\sigma$

Osservazione

frD è trascurabile $\Rightarrow D$ è misurabile

Significato del rotore e della divergenza in \mathbb{R}^2

Sia $g:A(\subseteq\mathbb{R}^2) o\mathbb{R}^2$ un campo vettoriale di classe C^1A aperto, che interpretiamo come un campo di velocità

Per ogni arepsilon>0 sono

$$D_arepsilon = \{(x,y)^T: (x-x^0)+(y-y^0)$$

$$C_arepsilon=frD_arepsilon$$
 e $\gamma_arepsilon=(x^0+arepsilon cost,y^0+arepsilon sint)^T$, $T\in[0,2\pi]$ Si ha $\gamma_arepsilon=+frD_arepsilon$

Scomponiamo g lungo τ e ν :

$$g = < g, \tau > \tau + < g, \nu > \nu$$

Rotore, per il teorema di Stokes si ha:

$$\iint_{D_{arepsilon}} < rotg, \underline{e}_3 > dx dy = \int_{+frD_{arepsilon}} < g, au > ds.$$

Per il teorema della media integrale si ha:

$$2\piarepsilon^2 < rotg, x^arepsilon, y^arepsilon, \underline{e}_3> = rac{1}{arepsilon^2} \int_{+frD_arepsilon} < g, au > ds$$

Se
$$e o 0^+$$
: $2\pi < rotg(x^0,y^0), \underline{e}_3> = lim_{arepsilon o 0^+} \int_{+frD_arepsilon} < g, au > ds$

Identificando D_{ε} con una rotellina centrata in $(\underline{x}^0,\underline{y}^0)^T$ di raggio $\varepsilon>0$, si ha per ε sufficientemente piccolo, $< rotg(x^0,y^0),\underline{e}_3>>0 \Rightarrow \int_{+frD_{\varepsilon}} < g,\tau>ds>0 \Rightarrow$ la rotellina ruota in senso antiorario attorno a $(x^0,y^0)^T$

 $< rotg(x^0,y^0),\underline{e}_3> <0 \Rightarrow \int_{+frD_{arepsilon}} < g, au> ds <0 \Rightarrow$ la rotellina ruota in senso orario attorno a $(x^0,y^0)^T$