Unsupervised learning

Balázs Pinté

Introduction

Clustering

- k-means
Soft clustering topic models

Dimensionalit

reduction
Covariance.

Principal component

Autoencoders

Unsupervised learning

Balázs Pintér

May 10, 2020

Contents

Unsupervised learning

- Introduction
- Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- Autoencoders

Contents

Unsupervised learning

Balazs Pintei

Introduction

Clustering Hard clusterin

- k-means
Soft clustering topic models

Dimensiona

Covariance, correlation Principal component

Autoencoders

1 Introduction

- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Supervised learning – classification

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
– k-means
Soft clustering topic models

Dimensional

Covariance, correlation Principal component analysis

Supervised learning - regression

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering

– k-means

Soft clustering

Dimensionalit

- Inchisional

Covariance correlation Principal component

Unsupervised learning – clustering

Unsupervised learning

Balázs Pinté

Introduction

Clusterin

Hard clustering

– k-means

Soft clustering –
topic models

Dimensionali[,]

Covariance, correlation Principal component

Unsupervised learning

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
– k-means
Soft clustering –
topic models

Dimensionalit

Covariance, correlation Principal component analysis

- Supervised learning learns a function from labeled data
- Other approaches
 - 1 Unsupervised learning
 - 2 Semi-supervised learning
 - Reinforcement learning
 - 4 Evolutionary algorithms
 - Neuroevolution http://www.youtube.com/watch?v=qv6UVOQ0F44

Contents

Unsupervised learning

Balázs Pintér

Introduction

Clustering

Hard clustering – k-means Soft clustering topic models

Dimensional reduction

Covariance, correlation Principal component analysis

- 1 Introduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Example – distribution-based clustering

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering - k-means Soft clustering -

Dimensionalit

reduction

Covariance correlation Principal component analysis

Example – distribution-based clustering

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering

– k-means

Soft clustering

Dimensionalit

....l.....

Covariance, correlation Principal component

Problem

Unsupervised learning

Balazs Pinte

Introductior

Clustering Hard clustering

Hard clustering – k-means Soft clustering – topic models

Covariance, correlation Principal

- Assign items to groups where similar items should belong to the same group
 - They should be as similar as possible within a group
 - They should be less similar between group
- The items are usually points in \mathbb{R}^n or nodes in a graph, like
 - Client data for market segmentation
 - Documents modeled as bag of words to determine topics or group search results
 - Contexts of words to induce word senses
 - Data about which servers are active together to optimize traffic
- A group is called a *cluster*

Hard and soft clustering

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering – k-means Soft clustering – topic models

reduction Covariance, correlation Principal component

Autoencoders

Hard and soft clustering

- Hard clustering: an item can belong only to a single cluster
- Soft clustering: weights describe the degree to which an item belongs to the clusters
- Finer distinctions
 - Overlapping clustering: an item can belong to multiple clusters, but it either belongs to a cluster or not
 - Hierarchical clustering: the clusters are organized into a hierarchy. The items that belong to a child cluster also belong to the parent cluster.

Hierarchical clustering

Unsupervised learning

Balázs Pintér

Introduction

Clustering

Hard clustering – k-means

Soft clustering topic models

Dimensional

Covariance, correlation Principal component

Naturally occurring clustering of word representations – words with the same meaning are the same color (t-SNE)

Unsupervised learning

Dalazs Fillter

Introduction

Clustering

Hard clusterin

Soft clustering

Dimens

Covariance, correlation Principal component

Autooncodor

Contents

Unsupervised learning

Balázs Pintéi

Introduction

Clustering Hard clustering

- k-means
Soft clustering topic models

topic models

reduction Covariance,

covariance, correlation Principal component analysis

- 1 Introduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Example

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering – k-means

Soft clustering topic models

Dimensionali

reduction

Covariance correlation Principal component

Problem

Unsupervised learning

Balázs Pinté

Introductio

Clustering
Hard clustering
– k-means
Soft clustering topic models

Dimensionalit reduction Covariance, correlation Principal component

Autoencoder

- Given: *k*, the number of clusters
- Each cluster is represented by its centroid
 - the mean of the points in the cluster
- Find the *k* centroids and assign the points to these in a way that minimizes the squared distances of the points from the centroid of their cluster
 - Equivalent to minimizing pairwise distances within clusters
 - NP-hard, so we approximate
 - We can only find a local optimum
 - We can run it multiple times with different random initializations

k-means problem

$$\arg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 = \arg\min_{\mathbf{S}} \sum_{i=1}^k \frac{1}{2|S_i|} \sum_{\mathbf{x}, \mathbf{y} \in S_i} \|\mathbf{x} - \mathbf{y}\|^2$$

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
- k-means
Soft clustering

Dimensional reduction Covariance, correlation Principal component analysis

Autoencoder

- Given: k and the items in \mathbb{R}^n
- Initialize centroids $m_1^{(1)}, m_2^{(1)}, \dots, m_k^{(1)}$ by either
 - choosing k points randomly to be the centroids, or
 - assigning each point randomly to a cluster and computing the centroids of these clusters
- Do the following two steps until convergence
 - 1 Assign each item to the nearest centroid:

$$S_i^{(t)} = \left\{ x_p : \left\| x_p - m_i^{(t)} \right\|^2 \le \left\| x_p - m_j^{(t)} \right\|^2 \, \forall j, 1 \le j \le k \right\}$$

2 Compute the new centroids:

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering – k-means

Soft clustering

Dimensionali

reduction

Covariance

Principal component

Unsupervised learning

Balázs Pintéi

Introduction

a. .

Hard clustering
- k-means

Soft clustering topic models

Dimensionalit

reduction

Covariance correlation Principal component

Unsupervised learning

Balázs Pinté

Introduction

Clusterin

Hard clustering
- k-means

Soft clustering topic models

Dimensionalit

reduction

correlation
Principal
component

Unsupervised learning

Hard clustering – k-means

Unsupervised learning

Hard clustering – k-means

Unsupervised learning

Balázs Pinté

Introduction

Clarkanina

Hard clustering
- k-means

Soft clustering topic models

Dimensionalit

reduction

Covariance correlation Principal component

Unsupervised learning

Balázs Pinté

Introduction

a. .

Hard clustering – k-means

Soft clustering

D:----:---:

- Jane Cara

Covariance

Correlation Principal

Autooncodore

Issue – k is too small

Unsupervised learning

alázs Pintér

Introduction

Clusterin

Hard clustering
- k-means
Soft clustering -

Soft clustering topic models

Dimensionali

Covariance, correlation Principal

Issue – k is too large

Unsupervised learning

Hard clustering – k-means

Issue – bad initialization

Unsupervised learning

alázs Pintér

Introduction

Clustering

Hard clustering - k-means

Soft clustering topic models

Dimensionalit

reduction

correlation
Principal
component

Issue – the real clusters are not centroid based

Unsupervised learning

Balázs Pinté

Introduction

Classical Control

Hard clustering

– k-means

Soft clustering

Dimensionalit

Covariance

Principal componen

Python examples

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering

– k-means

Soft clustering topic models

Dimensional reduction Covariance, correlation Principal component analysis

Autoencoder

Color quantization: http://scikit-learn.org/stable/auto_examples/ cluster/plot_color_quantization.html

Document clustering: https://scikit-learn.org/stable/auto_examples/ text/plot_document_clustering.html

Contents

Unsupervised learning

Soft clustering topic models

- Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- - Covariance, correlation
 - Principal component analysis

Topic models

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering

– k-means

Soft clustering – topic models

Dimensionali

Covariance, correlation Principal component

- Soft clustering example: topic models
 - What topics is a document about?
 - What words belong to a topic?
 - Example: Latent Semantic Analysis (LSA), which is a SVD

Latent Semantic Analysis

Unsupervised learning

Soft clustering – topic models

Group-sparse regularization

Unsupervised learning

Balázs Pintér

Introduction

Clustering
Hard clustering
– k-means

- k-means Soft clustering topic models

reduction

Covariance,

covariance, correlation Principal component analysis

Example: generating odd one out puzzles

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
– k-means
Soft clustering –
topic models

reduction

Covariance,
correlation

Principal
component

Words that belong together				Odd one out
cao superman devil egypt singh language mass voice athens	wei n clark demon egyptian guru	liu luthor hell alexandria sikh linguistic motion hearing pericles	emperor kryptonite soul pharaoh saini spoken velocity sound corinth	king batman body bishop delhi sound orbit view ancient
data function	file problems	format polynomial	compression equation	image physical

Contents

Unsupervised learning

Balazs Pinte

Introduction

Clustering Hard clusterin

Hard clustering
- k-means
Soft clustering
topic models

Dimensionality reduction

Covariance, correlation Principal component analysis

- 1 Introduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Why dimensionality reduction?

Unsupervised learning

Dimensionality

reduction

- The data are low dimensional in a higher dimensional space
- Data visualization
- Noise reduction
- Decrease the complexity of the learning problem (better results, smaller runtimes, ...)
- We can conjecture new relationships on the visualized lower dimensional data
- We need a lower dimensional and/or dense representation to solve a problem

Example: Swiss roll

Unsupervised learning

Balázs Pinté

Introduction

Hard clustering

– k-means

Soft clustering –

Dimensionality reduction

Covariance, correlation Principal component analysis

Example: Rotating a letter

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
– k-means
Soft clustering

Soft clustering topic models

Dimensionality reduction

Covariance correlation Principal component

Contents

Unsupervised learning

Balazs Pintei

Introduction

Clustering Hard clustering

Hard clustering
– k-means
Soft clustering
topic models

reduction

Covariance,
correlation

- 1 Introduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Covariance, correlation

Unsupervised learning

Balázs Pinté

Introduction

a. .

Hard clustering – k-means

Soft clustering topic models

Dimensionali

Covariance, correlation

Principal component analysis

Covariance, correlation

Unsupervised learning

Balázs Pintéi

Introduction

cı . .

Hard clustering
- k-means
Soft clustering

Dimensional

Covariance, correlation Principal component analysis

Covariance, (Pearson) correlation

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
– k-means
Soft clustering –
topic models

reduction
Covariance,
correlation
Principal

- They measure the degree to which the *X*, *Y* random variables move together
- They only show linear relationships
- Cov(X, Y) = E[(X E[X])(Y E[Y])]
- For example, if it's positive: If X > E(X), then Y > E(Y), if X < E(X), then Y < E(Y)
- $\bullet \mathsf{Cov}(X,Y) = \mathsf{E}\left[XY\right] \mathsf{E}[X]\,\mathsf{E}[Y]$
- Correlation: "normalized" covariance, between -1 and 1

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

The correlation is 0.816 for all four datasets

Unsupervised learning

Balázs Pinté

Introduction

Clustorina

Hard clustering
- k-means
Soft clustering

Dimension:

Covariance, correlation
Principal component

Autoopcodor

Covariance matrix

Unsupervised learning

Covariance. correlation

- **X** is a vector whose elements are random variables
- The entries of the covariance matrix are covariances between X_i , X_i
- $\mu_i = \mathrm{E}(X_i)$ $\lceil \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] \quad \ \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] \quad \cdots \quad \ \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \rceil$

$$\mathbb{E}[(X_1 - \mu_1)(X_1 - \mu_1)] \quad \mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)] \quad \cdots \quad \mathbb{E}[(X_1 - \mu_1)(X_n - \mu_n)]$$

$$\mathbb{E}[(X_2 - \mu_2)(X_1 - \mu_1)] \quad \mathbb{E}[(X_2 - \mu_2)(X_2 - \mu_2)] \quad \cdots \quad \mathbb{E}[(X_2 - \mu_2)(X_n - \mu_n)]$$

 $\text{E}[(X_n - \mu_n)(X_1 - \mu_1)] \quad \text{E}[(X_n - \mu_n)(X_2 - \mu_2)] \quad \cdots \quad \text{E}[(X_n - \mu_n)(X_n - \mu_n)]$

■ Equivalent: $\Sigma = E(\mathbf{X}^{\top}\mathbf{X}) - \mu^{\top}\mu$

Contents

Unsupervised learning

Balazs Pintei

Introduction

Clustering Hard clustering - k-means

Hard clustering
– k-means
Soft clustering
topic models

reduction Covariance,

Principal component analysis

- 1 Introduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Example – normal distribution in 2d

Unsupervised learning

Balázs Pinté

Introduction

Clustering

Hard clustering

– k-means

Soft clustering

Soft clustering topic models

Dimensionali¹

reduction

correlation

Principal

component analysis

Principal component analysis

Unsupervised learning

Balazs Pinte

Introduction

Clustering
Hard clustering
– k-means
Soft clustering topic models

Dimensionality reduction Covariance, correlation Principal component analysis

- Principal component analysis (PCA)
- Demo: http: //setosa.io/ev/principal-component-analysis/
- The dataset is transformed to a new coordinate system whose axes are orthogonal
- The projection of the dataset with the greatest variance is on the first axis (principal component)
- The projection with the second greatest variance is on the second principal component, . . .
- New variables/data: we project the original variables to the principal components. These are uncorrelated.
- Dimensionality reduction: We discard the axes (and coordinates) with small variance

Principal component analysis

Unsupervised learning

Balazs Pinte

Introduction

Clustering
Hard clustering
– k-means
Soft clustering topic models

Dimensional reduction Covariance, correlation Principal component analysis

Autoencoder

X $\in \mathbb{R}^{n \times p}$: data set, one row is an item

■ $\mathbf{t}_{(i)} = (t_1, \dots, t_l)_{(i)}$: the items transformed to the new coordinate system using $\mathbf{w}_{(k)} = (w_1, \dots, w_p)_{(k)}$

$$t_{k(i)} = \mathbf{x}_{(i)} \cdot \mathbf{w}_{(k)}$$
 for $i = 1, ..., n$ $k = 1, ..., l$

Maximizing variance on the first principal component

$$\mathbf{w}_{(1)} = \underset{\|\mathbf{w}\|=1}{\operatorname{arg max}} \left\{ \sum_{i} (t_1)_{(i)}^2 \right\} = \underset{\|\mathbf{w}\|=1}{\operatorname{arg max}} \left\{ \sum_{i} (\mathbf{x}_{(i)} \cdot \mathbf{w})^2 \right\}$$

Principal component analysis

Unsupervised learning

Balázs Pinté

Introduction

Clustering
Hard clustering
– k-means
Soft clustering
topic models

Dimensional reduction Covariance, correlation Principal component analysis

Autoencoders

■ The same with a matrix:

$$\mathbf{w}_{(1)} = \mathop{\arg\max}_{\|\mathbf{w}\|=1} \left\{ \|\mathbf{X}\mathbf{w}\|^2 \right\} = \mathop{\arg\max}_{\|\mathbf{w}\|=1} \left\{ \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right\}$$

As w is a unit vector:

$$\mathbf{w}_{(1)} = \operatorname{arg\ max} \left\{ \frac{\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \right\}$$

- This is the Rayleigh-quotient, whose largest possible value is the largest eigenvalue of **X**^T**X**, where **w** is the corresponding eigenvector
- This is also true for the other components \rightarrow the principal components are the eigenvectors of $\mathbf{X}^T\mathbf{X}$

Principal component analysis – algorithm

Unsupervised learning

Balázs Pinté

Introductio

Clustering
Hard clustering
– k-means
Soft clustering
topic models

Dimensionality reduction

Covariance, correlation

Principal component analysis

- Our dataset is in the X matrix
- Make the dataset zero mean (subtract the mean)
- Compute covariance matrix $\mathbf{Q} = \mathbf{X}^T \mathbf{X}$
- Determine the eigenvalues and eigenvectors of this matrix
- The eigenvectors are the principal components, the basis that consists of the eigenvectors is the new coordinate system
- The principal component that corresponds to the largest eigenvalue has the largest variance, and so on
- Dimensionality reduction: we only keep the *k* principal components with the largest eigenvalues

PCA and SVD

Unsupervised learning

Principal component analysis

SVD

$$X = U\Sigma W^T$$

Computing PCA with SVD

$$\mathbf{X}^{T}\mathbf{X} = \mathbf{W}\mathbf{\Sigma}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{W}^{T}$$
$$= \mathbf{W}\mathbf{\Sigma}^{T}\mathbf{\Sigma}\mathbf{W}^{T}$$
$$= \mathbf{W}\mathbf{\hat{\Sigma}}^{2}\mathbf{W}^{T}$$

 \blacksquare W contains the eigenvectors of $\mathbf{X}^T\mathbf{X}$. The singular values are the square roots of the eigenvalues.

PCA is linear too

Unsupervised learning

Balázs Pintér

Introduction

Clusterin

Hard clustering

– k-means

Soft clustering –

Dimensional

reduction Covariance,

correlation

Principal component analysis

Python examples

Unsupervised learning

Principal

component analysis

Importance of feature scaling: http://scikit-learn.org/stable/auto_examples/ preprocessing/plot_scaling_importance.html

Contents

Unsupervised learning

Balazs Pintei

Introduction

Clustering

Hard clustering – k-means Soft clustering topic models

Dimensiona

Covariance, correlation Principal component

- 1 Introduction
- 2 Clustering
 - Hard clustering k-means
 - Soft clustering topic models
- 3 Dimensionality reduction
 - Covariance, correlation
 - Principal component analysis
- 4 Autoencoders

Autoencoders

Unsupervised learning

Balázs Pinté

Introduction

Clusterin

Hard clustering
- k-means
Soft clustering topic models

Dimensionali¹

reduction

Covariance,
correlation

Principal component analysis

Autoencoders

Unsupervised learning

Balázs Pintéi

Introduction

Clustering

Hard clustering

– k-means

Soft clustering

topic models

Dimensionali reduction Covariance, correlation Principal component analysis

Autoencoders

Simple autoencoders

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2 = \|\mathbf{x} - \sigma'(\mathbf{W}'(\sigma(\mathbf{W}\mathbf{x} + \mathbf{b})) + \mathbf{b}')\|^2$$

- This simple autoencoder projects to the subspace of PCA
- Flexible, there are many variations
 - Denoising autoencoder: produces noiseless output from noisy input
 - Sparse autoencoder: the hidden representation is sparse
 - VAE: A probabilistic framework, approximates the posterior distribution
- Autoencoders can be important when pretraining a deep neural network
- https://transcranial.github.io/keras-js/#/mnist-vae

Thank you for your attention!

Unsupervised learning

Autoencoders

Thank you for your attention!