Mathematics for Economists Kapitel 11 Differensligninger

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus Universitet

Disposition Kapitel 11

- Differensligninger af første orden (11.1)
- Økonomiske Anvendelser (11.2)
- DL af anden orden (11.3)
- Anden-ordens DL med konstante koefficienter (11.4)
- Systemer af DL (11.6)

Lad f(t,x) være en funktion defineret for alle naturlige tal t (nul inkluderet) og alle reelle tal x. En differensligning af første orden i x_t kan almindeligvis skrives som

$$x_{t+1} = f(t, x_t), \quad t = 0, 1, 2, \dots$$
 (1)

Vi taler om første orden fordi ligningen relaterer værdien for funktionen i periode t+1 til og kun til værdien for den samme funktion i periode t.

Antag at x_0 er givet. Gentagne anvendelse af ligningen (1) giver

$$x_1 = f(0, x_0)$$

$$x_2 = f(1, x_1) = f(1, f(0, x_0))$$

$$x_3 = f(2, x_2) = f(2, f(1, f(0, x_0)))$$

og så videre. For en givet værdi for x_0 kan vi beregne x_t for hver værdi for t.

I visse tilfælde kan en eksplicit formel for x_t bestemmes, men tit er det ikke muligt. En **fuldstændig løsning** for (1) er en funktion af formen $x_t = g(t; \alpha)$ der opfylder (1) for hver værdi for den vilkårlige konstant α . Konstanten bruges at tilpasse løsningen til begyndelsesbetingelser således at $g(0, \alpha) = x_0$.

Eksempel

Betragt DL'en (nu står DL for differensligning)

$$x_{t+1} = ax_t, \quad t = 0, 1, 2, \dots$$

Derved følger at

$$x_{t+1} = ax_t = a^2x_{t-1} = a^3x_{t-2} = \dots$$

Iteration af ligningen giver

$$x_t = a^t x_0.$$

Lad a = -3, så fås

$$x_t = (-3)^t x_0$$

som fuldstændig løsning. I dette tilfælde er $\alpha=x_0$. For begyndelsesbetingelsen $x_0=5$ er løsningen

$$x_t = 5(-3)^t.$$

Eksempel

Lad Y_t være indkomst, S_t opsparing, I_t investering.

$$S_t = \alpha Y_t, \quad \alpha > 0,$$

$$I_{t+1} = \beta (Y_{t+1} - Y_t), \quad \beta > \alpha,$$

$$S_t = I_t.$$

Ligevægtsbetingelsen giver

$$I_{t+1} = \alpha Y_{t+1},$$

altså

$$\alpha Y_{t+1} = \beta (Y_{t+1} - Y_t),$$

eller

$$Y_{t+1} = \frac{\beta}{\beta - \alpha} Y_t = \left(1 + \frac{\alpha}{\beta - \alpha}\right) Y_t = \left(1 + \frac{\alpha}{\beta - \alpha}\right)^t Y_0,$$

med vækstraten

$$\frac{\alpha}{\beta - \alpha} = \frac{Y_{t+1} - Y_t}{Y_t}.$$

Lineære ligninger af første orden med konstante koefficienter

Betragt den inhomogene DL

$$x_{t+1} = ax_t + b, \quad t = 0, 1, \dots$$
 (2)

med a og b konstanter. Iteration af ligningen giver

$$x_t = a^t x_0 + (a^{t-1} + a^{t-2} + \cdots + a + 1)b.$$

Fra formlen for den geometriske række får vi at $1+a+a^2+\cdots+a^{t-1}=(1-a^t)/(1-a)$, for $a\neq 1$. Derved gælder for $t=0,1,2,\ldots$, at

$$x_{t+1} = ax_t + b \iff x_t = a^t \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a} \quad (a \neq 1).$$
 (3)

For a = 1 fås $1 + a + \cdots + a^{t-1} = t$ og $x_t = x_0 + tb$ for $t = 1, 2, \dots$

Ligevægtspunkter og stabilitet

Antag at konstanten a i (3) har absolutværdi mindre end 1, dvs. -1 < a < 1. Så følger at $a^t \to 0$ når $t \to \infty$, og (3) implicerer, at

$$x_t o x^* = b/(1-a)$$
 når $t o \infty$.

Hvis |a|<1, så konvergerer løsningen til ligevægten når $t\to\infty$. Ligningen kaldes for **globalt asymptotisk stabil**.

Figure 1

Tidsafhængig højre side

Betragt tilfældet hvor den højre side i ligningen (3) er en vilkårligt givet funktion af t: $x_{t+1} = ax_t + b_t, \quad t = 0, 1, \dots$ (4

og a er stadig konstant. Iteration giver den fuldstændige løsning

$$x_{t+1} = ax_t + b_t \iff x_t = a^t x_0 + \sum_{k=1}^t a^{t-k} b_{k-1}, \quad t = 1, 2, \dots$$
 (5)