# Vaccine Supervision

Progetto di Ingegneria del Software

# Virginia Filippi e Chiara Solito

Corso di Laurea in Bioinformatica Università degli studi di Verona A.A. 2021/22 La presente è la documentazione blablabla. Insieme a questo documento in formato PDF viene fornito anche il codice LATEX con cui è stato generato.

# Contents

| 1 | Traccia dell'Elaborato                                      | 2        |
|---|-------------------------------------------------------------|----------|
|   | Analisi e Specifica dei Requisiti 2.1 Specifiche casi d'uso | <b>2</b> |
| 3 | Implementazione del DataBase                                | 3        |

### 1 Traccia dell'Elaborato

# 2 Analisi e Specifica dei Requisiti

(...)

#### 2.1 Specifiche casi d'uso

In questa sezione definiamo le proprietà dell'applicazione.

Come dichiarato nella traccia il sistema prevede l'utilizzo da parte di due tipologie di personale medico: Medico e Farmacologo. Entrambi i tipi di utente possono utilizzare l'applicazione dopo opportuno login: in questa sede si è previsto che gli utenti siano pre-registrati da un amministratore di sistema esterno (sul modello di sistemi medici già noti). Non è stato quindi previsto un form di registrazione, durante lo sviluppo.



Figure 1: Caso d'uso Medico

## 3 Implementazione del DataBase

Come richiesto dalla traccia si è implementato un database con cui l'applicazione potesse interagire. Il Database è stato creato sulla base dell'ER qui riportato: Si è scelto di implementare il Database in PostgreSQL.



Figure 2: Da modificare!!!

Riportiamo anche le query usate per la creazione delle tabelle, che ci aiutano a comprendere com'è fatto:

#### Tabella PAZIENTE

```
CREATE TABLE Paziente(
    codice SERIAL PRIMARY KEY,
    annonascita NUMERIC(4) NOT NULL,
    CHECK (annonascita >= 1900),
    provincia VARCHAR(20) NOT NULL,
    professione VARCHAR(20) NOT NULL
);
```

#### Tabella FATTORERISCHIO

```
CREATE TABLE FattoreRischio(
  nome VARCHAR(20) PRIMARY KEY,
  descrizione VARCHAR(50),
  lvlrischio NUMERIC(1) NOT NULL,
  CHECK ( lvlrischio >= 1 AND lvlrischio <= 5 )
);</pre>
```

#### Tabella VACCINAZIONE

```
CREATE TABLE Vaccinazione(
   pazienteID INTEGER REFERENCES paziente(codice),
   vaccino VARCHAR(15) NOT NULL,
   tiposomministrazione VARCHAR(10) NOT NULL,
   PRIMARY KEY (pazienteID, vaccino, tiposomministrazione),
```

```
sedevaccino VARCHAR(10) NOT NULL,
datavaccino DATE NOT NULL
);
```

#### Tabella REAZIONEAVVERSA

```
CREATE TABLE ReazioneAvversa(
   nome VARCHAR(20) PRIMARY KEY,
   gravita NUMERIC(1) NOT NULL,
   CHECK(gravita >= 1 AND gravita <= 5),
   descrizione VARCHAR(50) NOT NULL
);</pre>
```

#### Tabella SEGNALAZIONE

```
CREATE TABLE Segnalazione(
    codice SERIAL PRIMARY KEY,
    datareazione DATE NOT NULL,
    datasegnalazione DATE NOT NULL DEFAULT CURRENT_DATE,
    reazione VARCHAR(20) NOT NULL REFERENCES reazioneavversa(nome),
    pazienteID INTEGER NOT NULL,
    vaccino VARCHAR(15) NOT NULL,
    tiposomm VARCHAR(10) NOT NULL,
    FOREIGN KEY(pazienteID, vaccino, tiposomm)
        REFERENCES vaccinazione(pazienteid, vaccino, tiposomministrazione)
);
```

#### Tabella RISCHIOPAZIENTE

```
CREATE TABLE RischioPaziente(
   pazienteID INTEGER NOT NULL REFERENCES paziente(codice),
   rischio VARCHAR(20) NOT NULL REFERENCES fattorerischio(nome),
   PRIMARY KEY(pazienteID, rischio)
);
```

Inoltre è stata creata una tabella per tenere traccia degli users, che però non è in alcun modo relazionata al resto del database.

#### Tabella USERS

```
CREATE TABLE users(
    username VARCHAR(10) NOT NULL,
    password VARCHAR(12) NOT NULL,
    PRIMARY KEY (username, password)
);
```