Второе задание

Хохлов Алексей

28 марта 2019 г.

1 Проекция на шар

Если $\|\mathbf{a}\|_2 \leqslant 1$, то, очевидно, проекция $\mathbf{p} = \mathbf{a}$.

Если же $\|\mathbf{a}\|_2 > 1$, очевидно, что искомая точка — точка пересечения прямой, соединяющей центр сферы и \mathbf{a} , с поверхностью единичной сферы. Другими словами, искомая точка $\mathbf{p} = \frac{\mathbf{a}}{\|\mathbf{a}\|_2}$. Чтобы доказать это, покажем, что $\forall \mathbf{x} \in \mathbf{X}$ верно $\|\mathbf{a} - \mathbf{x}\|_2 \geqslant \|\mathbf{a} - \mathbf{p}\|_2$.

Для правой стороны неравенства

$$\|\mathbf{a} - \mathbf{p}\|_2 = \|\mathbf{a} - \frac{\mathbf{a}}{\|\mathbf{a}\|_2}\|_2 = (1 - \frac{1}{\|\mathbf{a}\|_2})\|\mathbf{a}\|_2 = \|\mathbf{a}\|_2 - 1$$
 (1.1)

Для левой стороны неравенства

$$\|\mathbf{a} - \mathbf{x}\|_{2} \ge \|\mathbf{a}\|_{2} - \|\mathbf{x}\|_{2} \ge \|\mathbf{a}\|_{2} - 1 = \|\mathbf{a} - \mathbf{p}\|_{2}$$
 (1.2)

Видим, что для любой точки в единичном шаре точка $\mathbf{p} = \frac{\mathbf{a}}{\|\mathbf{a}\|_2}$ является решением задачи

$$\|\mathbf{a} - \mathbf{x}\|_2 \to \min \tag{1.3}$$

2 Минимизация скалярного произведения

Искомая точка

$$p_i = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases} \tag{2.1}$$

(2.2)

где k — такая, что $c_k = \min(c_1, c_2, ..., c_n)$. Докажем это. Поскольку $c_k \leqslant c_i$ для любого i, то $c_k x_i \leqslant c_i x_i$. Значит, что

$$\langle \mathbf{c}, \mathbf{p} \rangle = c_k = c_k \sum_{i=1}^n x_i = \sum_{i=1}^n c_k x_i \leqslant \sum_{i=1}^n c_i x_i = \langle \mathbf{c}, \mathbf{x} \rangle$$
 (2.3)

3 Максимизация функции правдоподобия

В решении использованы формулы

$$\frac{\partial}{\partial \mathbf{A}} (\operatorname{tr}(\mathbf{A}^{-1}\mathbf{B})) = -(\mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1})^{\mathrm{T}}$$
(3.1)

$$\frac{\partial}{\partial \mathbf{A}} \det(\mathbf{A}) = \det(\mathbf{A}) \mathbf{A}^{-\mathrm{T}}$$
(3.2)

$$tr(\mathbf{ABC}) = tr(\mathbf{BCA}) \tag{3.3}$$

Разложим функцию на слагаемые

$$f = \frac{m}{2} \log \det \Sigma + \frac{1}{2} \sum_{i=1}^{m} (\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) = f_1 + f_2$$
(3.4)

Найдем производные слагаемых по Σ .

Для первого слагаемого воспользуемся (3.2)

$$\frac{\partial}{\partial \Sigma} f_1 = \frac{m}{2} \frac{1}{\det \Sigma} \det(\Sigma) \Sigma^{-T} = \frac{m}{2} \Sigma^{-T}$$
(3.5)

Для второго слагаемого воспользуемся (3.3) и (3.1).

$$\frac{\partial}{\partial \Sigma} f_2 = \frac{1}{2} \frac{\partial}{\partial \Sigma} \operatorname{tr} \left(\sum_{i=1}^m (\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) \right) = \frac{1}{2} \frac{\partial}{\partial \Sigma} \operatorname{tr} \left(\Sigma^{-1} \sum_{i=1}^m (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}} \right) = \\
= -\frac{1}{2} \left(\Sigma^{-1} \left(\sum_{i=1}^m (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}} \right) \Sigma^{-1} \right)^{\mathrm{T}} = -\frac{1}{2} \Sigma^{-T} \left(\sum_{i=1}^m (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}} \right)^{\mathrm{T}} \Sigma^{-T}$$
(3.6)

Приравняем производную функции к нулю

$$\frac{m}{2}\Sigma^{-T} - \frac{1}{2}\Sigma^{-T} \left(\sum_{i=1}^{m} (\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}}\right)^{\mathrm{T}} \Sigma^{-T} = 0$$
(3.7)

Умножив на Σ и транспонировав, получим

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\mathrm{T}}$$
(3.8)

3.2

Докажем формулу (3.1). Во-первых, из $\mathbf{A}\mathbf{A}^{-1} = \mathbf{E}$ следует

$$\frac{\partial}{\partial a_{pq}} \sum_{i=1}^{n} \tilde{a}_{ij} a_{jk} = \sum_{i=1}^{n} \frac{\partial \tilde{a}_{ij}}{\partial a_{pq}} a_{jk} + \sum_{i=1}^{n} \tilde{a}_{ij} \frac{\partial a_{jk}}{\partial a_{pq}} = 0$$
(3.9)

Домножая справа на обратную матрицу, получим

$$\frac{\partial \tilde{a}_{ij}}{\partial a_{pq}} = -\sum_{k=1}^{n} \sum_{m=1}^{n} \tilde{a}_{im} \frac{\partial a_{mk}}{\partial a_{pq}} \tilde{a}_{kj} = -\tilde{a}_{ip} \tilde{a}_{qj}$$
(3.10)

Раскроем теперь производную следа

$$\frac{\partial}{\partial a_{pq}}(\operatorname{tr}(\mathbf{A}^{-1}\mathbf{B})) = \frac{\partial}{\partial a_{pq}} \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{a}_{ij} b_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial \tilde{a}_{ij}}{\partial a_{pq}} b_{ji}$$
(3.11)

Подставляя значение производной из (3.10)

$$\frac{\partial}{\partial a_{pq}}(\operatorname{tr}(\mathbf{A}^{-1}\mathbf{B})) = -\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{a}_{ip} \tilde{a}_{qj} b_{ji} = -\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{a}_{pi}^{\mathrm{T}} b_{ij}^{\mathrm{T}} \tilde{a}_{jq}^{\mathrm{T}}$$
(3.12)

получим в матричном виде искомую формулу (3.1).

4 Парабола

 $(x-3)(x-1)\leqslant 0$ — задача оптимизации решается на множестве Q=[1;3]

4.1 a

 $\frac{\partial}{\partial x}(x^2+1)=2x>0, \ \frac{\partial^2}{\partial x^2}(x^2+1)=1>0$ — функция строго возрастающая на отрезке [1; 3]. Значит, минимальное значение достигается в точке x=1.

$$\min_{x \in Q} (x^2 + 1) = x^2 + 1|_{x=1} = 2 \tag{4.1}$$

4.2 b

Рис. 1: Целевая функция, допустимое множество и оптимальное значение.

4.3 c

$$L(x,\mu) = x^2 + 1 + \mu(x-1)(x-3) = (1+\mu)x^2 - 4\mu x + (1+3\mu)$$
(4.2)

Лагранжиан — параболическая функция. При $\mu <= -1$ инфинум inf $L = -\infty$. При $\mu > -1$ минимум параболического лагранжиана достигается в точке $x = \frac{2\mu}{(1+\mu)}$. Двойственная функция запишется так:

$$g(\mu) = \inf L(x,\mu) = \frac{4\mu^2}{1+\mu} - \frac{8\mu^2}{1+\mu} + \frac{(1+3\mu)(1+\mu)}{1+\mu} = \frac{-\mu^2 + 4\mu + 1}{1+\mu} = -\mu + 5 - \frac{4}{1+\mu}$$
(4.3)

Рис. 2: График лагранжиана для нескольких μ . $p^* \geqslant \inf_x L(x,\mu)$

4.4 d

Формулировка двойственной задачи:

$$\max g(\mu) = \max(-\mu + 5 - \frac{4}{1+\mu})$$

$$\text{s.t.} \mu \geqslant 0$$

$$(4.4)$$

Найдем первую и вторую производные двойственной функции:

$$\frac{\partial}{\partial \mu}g(\mu) = -1 + \frac{4}{(1+\mu)^2} \tag{4.5}$$

$$\frac{\partial^2}{\partial \mu^2} g(\mu) = -\frac{8}{(1+\mu)^3} \tag{4.6}$$

При $\mu \geqslant 0$, как видно, двойственная функция является вогнутой, и поэтому ее экстремум при $\mu = 1$ является максимумом.

$$\max_{\mu \geqslant 0} g(\mu) = g(\mu)|_{\mu=1} = 2 = (x^2 + 1)|_{x=1} = \min_{x \in Q} (x^2 + 1)$$
(4.7)

Сильная двойственность выполняется.

5 Задача бинарного линейного программирования

5.1

Задачу можно переписать в виде

$$\min_{\mathbf{x}} \mathbf{c}^{\mathrm{T}} \mathbf{x}$$

$$x_i(x_i - 1) = 0, i = 1, ..., n$$

$$\mathbf{A} \mathbf{x} \leqslant \mathbf{b}$$
(5.1)

Лагранжиан запишется в виде

$$L(\mathbf{x}, \lambda, \mu) = \sum_{i=1}^{n} (c_i x_i + \lambda_i x_i (x_i - 1)) + \sum_{j} \mu_j (\sum_{j=1}^{n} a_{ji} x_i - b_j) =$$
 (5.2)

$$= \sum_{i=1}^{n} \left(\lambda_i x_i^2 + \left[c_i - \lambda_i + \sum_j \mu_j a_{ji} \right] x_i \right) + \sum_j \mu_j b_j$$
 (5.3)

Лагранжиан — параболическая функция. Рассмотрим лагранжиан при разных параметрах.

Если найдется такая i,что $\lambda_i < 0$, то инфинум inf $L = -\infty$.

Если найдется такая i,что $\lambda_i=0, c_i+\sum_i \mu_j a_{ji}\neq 0$, то инфинум $\inf L=-\infty$.

Пусть теперь либо $\lambda_i = 0, c_i + \sum_j \mu_j a_{ji} = 0$, либо $\lambda_i > 0$. Если для i выполнено первое условие, то вклад в инфинум функции от слагаемых, соответвующих этим i, равен нулю. Слагаемые, для

которых выполнено второе условие, достигают минимума в точке $x_i = -\frac{c_i - \lambda_i + \sum\limits_j \mu_j a_{ji}}{2\lambda_i}$

Инфинум запишется в виде

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{x} L = -\sum_{i} \frac{\left(c_{i} - \lambda_{i} + \sum_{j} \mu_{j} a_{ji}\right)^{2}}{4\lambda_{i}} + \sum_{j} \mu_{j} b_{j}$$

$$(5.4)$$

Суммирование ведется по таким i, что $\lambda_i > 0$.

5.2

Задача для непрерывной релаксации перепишется следующим образом:

$$\min_{\mathbf{x}} \mathbf{c}^{\mathrm{T}} \mathbf{x}
x_i(x_i - 1) \leq 0, i = 1, ..., n$$

$$\mathbf{A} \mathbf{x} \leq \mathbf{b}$$
(5.5)

Видно, что двойственная функция $g(\boldsymbol{\mu}, \tilde{\boldsymbol{\mu}})$ запишется в таком же виде, что и в (5.4), только $\tilde{\mu}_i$ вместо λ_i , причём для $\tilde{\mu}_i$ условие $\tilde{\mu}_i \geqslant 0$ будет автоматически выполнено при поиске решения двойственной задачи. Соответственно, при $\lambda_i \geqslant 0$ максимумы двойственных функций совпадут друг с другом, и, иными словами, нижняя оценка релаксации Лагранжа совпадет с оценкой непрерывной релаксации.

5.3

6 Задача наименьших квадратов

6.1

Лагранжиан для задачи запишется так:

$$L(\mathbf{x}, \lambda) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 + \lambda^{\mathrm{T}} (\mathbf{G}\mathbf{x} - \mathbf{h})$$
(6.1)

Производная лагранжиана по ${\bf x}$ такова

$$\frac{\partial}{\partial \mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{A}^{\mathrm{T}} (\mathbf{A} \mathbf{x} - \mathbf{b}) + \mathbf{G}^{\mathrm{T}} \boldsymbol{\lambda} = \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} - (\mathbf{A}^{\mathrm{T}} \mathbf{b} - \mathbf{G}^{\mathrm{T}} \boldsymbol{\lambda})$$
(6.2)

С одной стороны, по теореме о ранге произведения матриц, ранг матрицы $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ не превосходит n. С другой стороны, по неравенству Сильвестра $2n = \mathrm{rank}(\mathbf{A}^{\mathrm{T}}) + \mathrm{rank}(\mathbf{A}) \leqslant \mathrm{rank}(\mathbf{A}^{\mathrm{T}}\mathbf{A}) + n$. Итак, ранг матрицы $(n \times n)$ $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ равен n— значит, для неё существует обратная.

Тогда $\frac{\partial}{\partial \mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}) = 0$ при $\mathbf{x}^* = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} (\mathbf{A}^{\mathrm{T}} \mathbf{b} - \mathbf{G}^{\mathrm{T}} \boldsymbol{\lambda})$. Отсюда можно получить двойственную функцию.

Двойственная задача запишется так:

$$\max_{\lambda} \frac{1}{2} \|\mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}(\mathbf{A}^{\mathrm{T}}\mathbf{b} - \mathbf{G}^{\mathrm{T}}\lambda) - \mathbf{b}\|_{2}^{2} + \lambda^{\mathrm{T}} \left(\mathbf{G}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}(\mathbf{A}^{\mathrm{T}}\mathbf{b} - \mathbf{G}^{\mathrm{T}}\lambda) - \mathbf{h}\right)$$
(6.3)

Для исходной задачи выполнено условие Слейтера — значит, выполняется сильная двойственность, т.е. решение двойственной задачи совпадает с решением исходной.

6.2

Найдём решение исходной задачи. Подставим найденное \mathbf{x}^* в равенство $\mathbf{G}\mathbf{x} = \mathbf{h}$. Получим

$$\mathbf{G}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}(\mathbf{A}^{\mathrm{T}}\mathbf{b} - \mathbf{G}^{\mathrm{T}}\boldsymbol{\lambda}^{*}) = \mathbf{h}$$
(6.4)

$$\mathbf{G}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b} - \mathbf{h} = \mathbf{G}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{G}^{\mathrm{T}}\boldsymbol{\lambda}^{*}$$
(6.5)

Матрица перед λ^* представляет собой произведение трех матриц: **G** размера $p \times n$ и ранга p, $(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}$ размера $n \times n$ и ранга n, \mathbf{G}^{T} размера $n \times p$ и ранга p. Итоговая матрица имеет размер $p \times p$. Если $p \leqslant n$, то применяя теорему о ранге произведения и неравенство Сильвестра, получим, что ранг итоговой матрицы $(p \times p)$ равен p— она обратима. Тогда решение исходной задачи запишется как

$$\lambda^* = \left[\mathbf{G} (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{G}^{\mathrm{T}} \right]^{-1} \left[\mathbf{G} (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b} - \mathbf{h} \right]$$
(6.6)

$$\mathbf{x}^* = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}(\mathbf{A}^{\mathrm{T}}\mathbf{b} - \mathbf{G}^{\mathrm{T}}\boldsymbol{\lambda}^*)$$
(6.7)

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2 = g(\lambda^*) = \max_{\lambda} g(\lambda)$$
(6.8)

7

7.1

Из критерия Сильвестра (все главные миноры неотрицательны) равносильная запись задачи

$$\min(y_1)
s.t. y_2 \ge 0
 y_1 + 1 \ge 0
 y_2(y_1 + 1) \ge 0
 -y_1^2(y_1 + 1) \ge 0
 -y_1^2 \ge 0$$
(7.1)

Или, избавившись от лишних условий:

$$\min(y_1)$$
s.t. $y_2 \ge 0$

$$y_1 = 0$$

$$(7.2)$$

Решение - $y_1 = 0, y_2 \geqslant 0$

Лагранжиан можно записать как

$$L(y_1, y_2, \Lambda) = y_1 - \operatorname{tr}(\mathbf{Y}^{\mathrm{T}}\mathbf{\Lambda}) = y_1 - y_1\lambda_{21} - y_1\lambda_{12} - y_2\lambda_{22} - (y_1 + 1)\lambda_{33} = = y_1(1 - \lambda_{21} - \lambda_{12} - \lambda_{33}) - \lambda_{22}y_2 - \lambda_{33}$$
(7.3)

$$\mathbf{Y}^{\mathrm{T}}\mathbf{\Lambda} = \begin{pmatrix} 0 & y_1 & 0 \\ y_1 & y_2 & 0 \\ 0 & 0 & y_1 + 1 \end{pmatrix} \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix} = \begin{pmatrix} y_1\lambda_{21} & \dots & \dots \\ \dots & y_1\lambda_{12} + y_2\lambda_{22} & \dots \\ \dots & \dots & (y_1 + 1)\lambda_{33} \end{pmatrix}$$

$$\frac{\partial}{\partial y_1} L(y_1, y_2, \Lambda) = 1 - \lambda_{21} - \lambda_{12} - \lambda_{33} = 0$$

$$\frac{\partial}{\partial y_2} L(y_1, y_2, \Lambda) = -\lambda_{22} = 0$$
(7.4)

Отсюда

$$L(y_1, y_2, \Lambda) = -\lambda_{33} \tag{7.5}$$

Для двойственной задачи

$$\inf_{y_1, y_2} L = \begin{cases} -\infty, \, \lambda_{22} \neq 0, 1 - \lambda_{21} - \lambda_{12} - \lambda_{33} \neq 0 \\ \lambda_{33}, \, \lambda_{22} = 0, 1 - \lambda_{21} - \lambda_{12} - \lambda_{33} = 0 \end{cases}$$
 (7.6)

(7.7)

$$\max g(\Lambda) = \max \lambda_{33} = +\infty \tag{7.8}$$