Switching 1

Prednáška 4

Local Area Network

- Local Area Network (LAN)
 - Pokrýva geograficky obmedzené územie
 - Poskytuje:
 - Vysoké prenosové rýchlosti
 - Viacbodový prístup k LAN službám
 - Zdieľanie súborov, aplikácií a hw.
 - Elektronická komunikácia apod.
 - _,Full-time" konektivitu

LAN protokoly

- LAN protokoly
 - Definované a pracujú na dvoch najnižších vrstvách ISO OSI
 - Fyzická vrstva
 - Linková vrstva
- Príklady existujúcich LAN protokolov
 - Ethernet / IEEE 802.3
 - Token Ring / IEEE 802.5
 - Fiber Distribution Data Interface (FDDI)
 - Logical Link Control IEEE 802.2
 - Wireless LAN IEEE 802.11_x

LAN a ISO RM

- Rozdelenie ISO Data Link vrstvy na dve podvrstvy:
 - Logical Link Control (LLC)
 - Komunikácia medzi LAN technológiou a vyššími vrstvami
 - Logické oddelenie od médií a prístupovej metódy
 - Majú všetky LAN technológie rovnakú
 - Medium Access Control (MAC)
 - Riadenie prístupu k médiu

Ethernet	IEEE 802.3	Token Passing 802.4	Token Ring 802.5	DQDB 802.6	FDDI

Logical Link Control IEEE 802.2 (LLC)

Logical Link Control IEEE 802.2 sublayer (LLC)

- Logicky oddeľuje vyššiu sieťovú vrstvu od nižšej, špecifickej podvrstvy prístupu k médiu (MAC)
 - Ako napr. IEEE 802.3, IEEE 802.5 a pod.
- Poskytuje jednotné rozhranie voči sieťovej vrstve

Funkcie:

- Riadenie **toku** rámcov, riadenie **opravných procedúr** pri chybe prenosu
- Poskytuje pre sieťové protokoly tzv. prístupové body k médiu
 Service Access Points (SAP)
- SAP identifikuje sieťový protokol, ktorý predáva pakety na prenos LLC vrstve
 - Cez LLC môže komunikovať viacero sieťových protokolov naraz
 - IP, IPX, STP, NetBIOS apod.
 - Source SAP (SSAP), Destination SAP (DSAP)

Logical Link Control

- Funkcie
 - Poskytuje služby prenosu
- Existujúce operačné módy
 - Type1: Nespoľahlivá datagramová služba
 - Rámce sú prenášané nečíslované, nepotvrdzované
 - Type2: Spoľahlivá, spojovo-orientovaná služba
 - Vyžaduje špeciálne LLC riadiace rámce
 - Zostavuje sa spojenie za účelom číslovania rámcov, kontroly chybovosti a riadenia toku
 - Type3: Potvrdzovaná datagramová služba
 - Nespojová služba s potvrdzovaním prenesených rámcov

Medium Access Control

- Medium Access Control sublayer (MAC)
 - Riadi prístup k médiu
 - Zabezpečuje zdieľanie prenosového média
 - Zabezpečuje, že nie viac ako dvaja komunikujú naraz
 - Riadi doručovanie dát cez sieť
 - Adresovanie
 - Doručovanie na základe identifikácie príjemcu a odosielateľa
 - Adresa predstavuje fyzickú adresu zariadenia
 - Funkcie **práce s rámcom**
 - Definícia rámcov (štruktúry)
 - Rozpoznávanie typu a formátu rámcov
 - Počítanie FCS a kontrola FCS pri doručení
- Dve hlavné MAC metódy
 - CSMA/CD (Carrier Sense Multiple Access / Collision Detect)
 - CSMA/CA
 - Token Passing

LAN topológie

- Dva druhy LAN topológií:
 - Fyzická topológia
 - Daná fyzickou kabelážou
 - "Zosieťovaním" siete
 - Logická topológia
 - Daná komunikačným protokolom
 - Použitým na komunikáciu medzi hostami
- Nemusí byť medzi nimi priama väzba
 - Napr. logická zbernica (bus ethernet) môže byť fyzický realizovaná ako hviezda (star)
- Všeobecne rozlišujeme:
 - Zbernica (bus), hviezda (star), kruh (ring) a odvodeniny
- Každá topológia ma svoje výhody a nevýhody
 - Cena, spoľahlivosť a pod.

LAN topológie

LAN média

- Používané média v LAN sieťach:
 - Metalické média
 - Koaxiálny kábel (Coax.)
 - Netienený skrúcaný pár (UTP)
 - Tienená skrúcaný pár (STP)
 - Optické média
 - Single mode (monomodové)
 - Multi mode (multimódové)
 - Vzduch

LAN média

Coaxiálny kábel

- Rýchlosť: 10 100Mbps
- Cena: Nízka až stredná Outer Jacket
- Veľkosť konektora: stredná
- Max. dĺžka: 500m

Unhielded twister pair (UTP)

- **Rýchlosť:** 10 100 1000 Mbps
- Cena: nízka
- Veľkosť konektora: malá
- Max. dĺžka: 100m

Shielded twister pair (STP)

- Rýchlosť: 10 100Mbps
- Cena: stredná

Multimode

- Braksie o ektora: stredná až veľká
- Max. dĺžka: 100m

Copper Conductor

- Single mode
- Multi mode
 - Cena: vysoká
 - Rýchlosť: desiatky

Gbps

Ethernet / IEEE 802.3

Ethernet / IEEE 802.3

- Začiatok vývoja roku 1973 (Vyvinutý z ALOHA siete)
- Prvý Ethernet štandard
 - 1980 by DIX (DEC, Intel, Xerox)
 - Otvorený štandard (Open standard)
 - 10Base5 (10 Mbps over Thick Coax.- Thicknet)
- Prvý IEEE štandard
 - 1985 IEEE 802.3
 - Dôraz na kompatibilitu s ISO OSI RM
- IEEE a Ethernet plne kompatibilné
 - NIC môže vysielať aj prijímať oba typy
- Súčasnosť: Najrozšírenejšia LAN technológia
- Úspech:
 - Jednoduchosť a jednoduchá správa
 - Spoľahlivosť
 - Nízka cena inštalácií Ethernet sietí a možnosti rozširovania (upgrades)

 KIS FRI ŽU Segeč Počítačové siete 2

Ethernet / IEEE 802.3 vs. ISO RM

- Ethernet / IEEE 802.3:
 - Definovaný na prvých dvoch vrstvách ISO OSI
 - Sú plne kompatibilné

Ethernet / IEEE 802.3

Súčasnosť:

- Podpora mnohých prenosových médií
 - Coax, UTP, STP, Optika
- a rýchlostí
 - 10Mbps až 10Gbps

Vývoj

- v topológií od Bus k Star
- od shared bus k point-to-point

	10Base2	10Base5	10BaseT	100BaseT	100BaseFX	1000BaseCx	1000BaseT	1000BaseSX	1000BaseLX
Media	50ohm coax. (ThinNet)	50ohm coax. (ThickNet)	UTP Cat 3, 4, 5	UTP Cat 5	62.5/125 micro MMF	STP	UTP Cat 5	52,5/50 micro MMF	52,5/50 mikron MMF; 9 mikron SMF
Maximum segment length	185m	500m	100m	100m	400m	25m	100m	275m 62,5; 550m 50;	440m 62, <mark>5;</mark> 550m 50; 10km SMF
Topology	Bus	Bus	Star	Star	Star	Star	Star	Star	Star
Connector	BNC	Atachment unit interface AUI	RJ-45	RJ-45	ST or SC	RJ-45	RJ-45	sc	sc

Ethernet - základy

- Komunikácia
 - Komunikujúci musí byť jednoznačne určený - adresa
- Ethernet adresovanie
 - Fyzické adresovanie
 - Napálená MAC adresa v NIC
 - Plošné adresovanie
 - Nie sú logické väzby medzi adresami
 - Adresa dlhá 48 bitov
 - 24 bit OUI
 - Organizational Unique Identifier
 - Riadi IEEE
 - Pozri: http://standards.ieee.org/regauth/oui/oui.txt

24 bitov (pridelených výrobcom)

Ethernet - základy

- Typy adries:
 - Unicast:
 - Určuje jedno zariadenie
 - Multicast:
 - Určuje skupinu zariadení, ale nie všetky
 - Broadcast:
 - Určuje všetky zariadenia na LAN
 - MAC (samé jednotky): FF-FF-FF-FF-FF
- Z typov adries
 - Vyplývajú spôsoby komunikácie v Ethernet LAN

Ethernet - komunikácia

Unicast

- Najbežnejšia forma komunikácie
- Jeden odosielateľ, jeden príjemca
- Odosielateľ
 - Vyplní rámec s unicast adresou odosielateľa a unicast adresou prijímateľa
- Sieť doručí práve danému prijímateľovi

Broadcast

- Častá forma komunikácie
- Jeden rámec zaslaný všetkým LAN staniciam
 - LAN zariadenia kopírujú rámec na všetky svoje porty

Ethernet - komunikácia

Broadcast cont.

- Odosielateľ
 - Vyplní rámec svojou unicast adresou a všetkých prijímateľov
 - Tzv. Broadcaast adresa
 - FF-FF-FF-FF-FF
- Sieť doručí všetkým uzlom

Multicast

- Skupinová komunikácia
- Jeden rámec zaslaný podskupine prijímateľov (nie všetkým)
- Sieť kopíruje rámec len na porty prijímateľov
- Odosielateľ
 - Vyplní rámec svojou unicast adresou a adresou pod skupiny prijímateľov

Ethernet - základy

- Použitá metóda riadenia prístupu
 - CSMA/CD (po 1 GigaEthernet vrátane)
 - 10GEthernet CSMA/CD nepoužíva
- Ethernet definuje vlastné PDU
 - Rámec
 - Použité na prenos používateľských dát
 - Min 64B max. 1518B.
- Vyskytujúce sa topológie
 - Fyzická:
 - Bus (10Base2, 10Base5), Star (10BaseT, 100Base_XX)
 - Logická:
 - Bus (CSMA/CD)
 - Point-to-Point (10 Giga Ethernet, plne fullduplexný)

CSMA/CD

Ethernet rámce

Ethernet II

Preamble (8B)	Dest. Addr. (6B)	Source Addr. (6B)	Type (2B)	Data (46 - 1500B)	FCS (4B)
---------------	---------------------	----------------------	--------------	-------------------	-------------

IEEE 802.3 LLC

Preai (71		FD 1B)	Dest. Addr. (6B)	Source Addr. (6B)	Length/ Type	DSAP (1B)	SSAP (1B)	Control (1B)	Data (43 - 1497B)	FCS (4B)
(71) ((<u> </u>	וט)	(00)	(00)	(2B)	(15)	(10)	(15)		(4 D)

IEEE 802.3 LLC/SNAP

Preamble	SFD	Dest. Addr.	Source Addr.	Length/	DSAP	SSAP	Control	SNAP protocol ID	Data (38	FCS
(7B)	(1B)	(6B)	(6B)	Type (2B)	(1B)	(1B)	(1B)	(5B)	- 1492B)	(4B)

- V súčasnosti existuje niekoľko druhov rámcov
- Najrozšírenejšie
 - Ethernet II
 - DIX štandard
 - Používaný v IP sieťach
 - Len jeden L3 protokol
 - IEEE 802.3 LLC
 - IEEE štandard
 - Používaný ak stanica má viac L3 protokolov
 - Nepoužíva sa pre IP
 - IEEE 802.3 LLC SNAP
 - Rozširuje 802.3 LLC identifikujem viac protokolov ako 28 pomocou DSAP
 - Použitie aj pre IP

KIS FRI ŽU – Segeč – Počítačové siete 2

←SNAP Header→

Polia ethernet rámcov

- Preamble: 7B IEEE802.3 or 8B (Ethernet)
 - Bitová a rámcová synchronizácia
 - Opakujúca sa postupnosť jednotiek a núl
 - Časová synchronizácia
- Start Of Frame Delimiter: 1B
 - Oznamuje koniec časových informácii v preambule
 - Bitová vzorka: 10101011
- Destination Address: 6B
 - MAC adresa prijímateľa (adresáta)
- Source Address: 6B
 - MAC adresa odosielateľa
- Length/Type: 2B
 - **IEEE 802.3**
 - Ak hodnota < 0x600: Hodnota určuje dĺžku dátovej časti rámca</p>
 - Ak hodnota > 0x600: Hodnota určuje typ sieťového protokolu

Polia ethernet rámcov

Ethernet II

- Type: Hodnota určuje typ sieťového protokolu
- Napr:
 - 0x0806: ARP protokol
 - 0x0800: IPv4 protokol

LLC Header

- DSAP (Destination Service Access Point): 1B
 - Identifikuje cieľový L3 protokol
- SSAP (Source Service Access Point): 1B
 - Identifikuje zdrojový L3 protokol nesený v rámci
- Control: 1B
 - Identifikuje typ LLC rámca
- SNAP (SubNetwork Access Protocol) Header
 - Protocol ID: 5B
 - Rozširuje možnosti na identifikáciu viac a ďalších protokolov ako umožňuje LLC

Polia ethernet rámcov

Data: Variable Length

- Dátová časť
- Dĺžka závisí od typu rámca
 - 46 až 1500 B dlhá

FCS (Frame Check Sequence): 4B

- Kontrolná suma (CRC) cez rámec
 - Nezahŕňa sa preambula a SOF
- Zabezpečenie voči chybám pri prenose

Ethernet zariadenia

- Repeater, Hub
 - Pracujú na fyzickej vrstve (L1)
- Bridge (Most), Switch (Prepínač), NIC (Sieťová karta)
 - Pracujú na linkovej vrstve (L2)

Opakovač (Repeater)

- L1 zariadenie
 - Rozlišuje len bity (nie rámce)
 - Neumožňuje žiadne operácie nad rámcami
- Zosilňuje a obnovuje signál
 - Príjme signál na jednom segmente
 - Zosilní a obnoví (retime) signál
 - Odošle na druhý segment
- Rozširuje celkovú rozlohu LAN
 - Umožňuje čiastočne preklenúť geografické obmedzenie LAN
 - Prepája len LAN siete toho istého typu (Ethernet na Ethernet)
 - 5-4-3 pravidlo
- Rozširuje kolíznu doménu
- Rozširuje broadcast doménu

5-4-3 pravidlo

- LAN sieť nemôžeme rozširovať do nekonečna
 - Z dôvodu obmedzení protokolu
 - Ako aj fyzikálnych a elektrických obmedzení

Hub

- L1 zariadenie
 - Rozlišuje len bity (nie rámce)
 - Neumožňuje žiadne operácie nad rámcami
- Funkcionálne rovnaké ako Opakovač
 - HUB = viac portový opakovač (Repeater)
 - Repeater zvyčajne dvoj portový
 - 📙 Hub 4 a viac portový
 - Zosilňuje a obnovuje signál
 - Príjme signál na jednom segmente
 - Zosilní a obnoví (retime) signál
 - Odošle na všetky svoje porty
 - Rozširuje kolíznu doménu
 - Rozširuje broadcast doménu
- Používaný hlavne v 10BaseT a 100baseT sieťach
- Mení fyzickú topológiu z <u>Bus na Star</u> alebo Extended Star v Ethernet sieťach
 - Prístupový mechanizmus je stále Bus

Hub - komunikácia

- Načúva kanál
- Vytvorí rámec
- 3. Pošle rámec

HUB:

- Tvorí kolíznu doménu
- Ak jeden host komunikuje, ostatné musia čakať
- Ináč vznikne kolízia

- Na základe vyššieho protokolu zistí že dáta sú určené jemu.
- **Formuluje** rámec s odpoveďou (vie zdroj adr).
- Odošle rámec.

Hub prijaté rámce -obnoví

- -zosilní a
- pošle na všetky výstupné porty

KIS FRI ŽU – Segeč – Počítačové siete 2

Problém s kolíziami (Kolíznou doménou) nie je pri malých segmentoch s malým počtom zariadení Problém vzniká pri neopatrnom návrhu siete a jej rozširovaní o ďalšie segmenty pomocou Hubov, ktoré rozširujú kolíznu doménu, t.j. časť siete kde pri komunikácii viac ako jedného vzniká kolízia.

V takejto nesprávne navrhnutej sieti vzniká veľké množstvo kolízií, ktoré prudko znižujú priepustnosť siete.

Half-Duplex Ethernet Design

- Most important are receive (Rx), transmit (Tx), and collision detection
- · Ethernet physical connector provides several circuits

Network Congestion

Balance depends on having enough bandwidth to meet the needs of the users and the applications.

Network Latency

Latency, or delay, is the time a frame or a packet takes to travel from the source station to the final destination.

Ethernet 10BASE-T Transmission Times

Frame Size in Bytes	Transmission Time in Microseconds
64	51.2
512	410
1000	800
1518	1214

- Bit time (or slot time) The basic unit of time in which 1 bit can be sent. For electronic or optical devices to recognize a binary 1 or 0, there is a minimum duration during which the bit is "on" or "off."
- Transmission time equals the number of bits to be sent times the bit time for a given technology. Another way to think about transmission time is the interval between the start and end of a frame transmission, or between the start of a frame transmission and a collision. Small frames take a shorter amount of time. Large frames take a longer amount of time.

Factors that Impact Network Performance

- Network traffic (congestion).
- Multitasking desktop operating systems (Windows, UNIX, and Mac) allow simultaneous network transactions.
- Faster desktop operating systems (Windows, UNIX, and Mac) can initiate faster network activity.
- Increased number of client/server applications using shared network data.

Typical Causes of Network Congestion

Ethernet 802.3

- Performance of a shared-medium Ethernet/802.3 LANs is negatively affected by factors such as the following:
 - The broadcast delivery nature of Ethernet.
 - Carrier sense multiple access collision detect (CSMA/CD) access method allows only one host to transmit at a time.
 - Multimedia applications with higher bandwidth demand such as video and the Internet.
 - The latency of additional devices added by the extension of LANs by using repeaters.
 - The distance added by using Layer 1 repeaters.

LAN Segmentation

Segmentation allows network congestion to be significantly reduced within each segment.

KIS FRI ŽU – Segeč – Počítačové siete 2

Most (Bridge)

- Vzniká potreba rozdeliť sieť do menších kolíznych častí
 - LAN segmentov
- Segmentácia (Delenie siete do segmentov)
 - Znižuje možnosti vzniku kolízií
 - Zvyšuje priepustnosť siete
- Most (Bridge)
 - L2 zariadenie
 - Rozlišuje a číta rámce
 - Filtering and forwarding
 - "Inteligentné" zariadenie
 - Dokáže sa učiť
 - 📙 + všetky funkcie L1 zariadení
 - Zosilnenie, obnova signálu
 - Rozširuje broadcast doménu
 - Redukuje kolíznu doménu
 - Kolízna doména zvyčajne jeden port Bridge
 - Implementovaný zvyčajne softvérovo
 - Pridáva do siete oneskorenie
 - Vždy prijíma celý rámec a prepočítava FCS
 - Umožňuje prepájať aj LAN segmenty iných typov
 - Ethernet na Token Ring a pod.

Bridge

- Bridge po zapnutí
 - Sa učí o pozícií staníc na segmentoch
 - Self-learning process
 - Čítaním zdrojovej MAC adresy v rámcoch počas komunikácie staníc
 - Informácie zapisuje do Bridging table
 - Aká MAC adresa na akom jeho porte
- Činnosť Bridge je pre stanice transparentná
 - tzv. Transparent Bridging

BRIDGING TABLE	
00-50-DA-0D-F5-2D	1
00-50-04-7C-2B-01	1
00-50-F1-12-8A-00	1
00-50-C2-43-1F-1B	2
00-50-B5-00-11-22	2
00-50-AA-41-52-63	2

Computer 00-50-DA-0D-F

Bridge – budovanie tabuľky

Príklad:

- -Stanica A chce komunikovať so stanicou D
- -Úvodný stav, všetky tabuľky sú prázdne

Stanica A vytvorí unicast rámec:

- -Sender MAC:
 - -00-50-DA-0D-F5-2D
- -Destination MAC:
 - -00-50-C2-43-1F-1B
 - -Rámec odošle
- -Stanice B a C neodpovedajú, rámec nie je určený im
- -Bridge príjme rámec, prečíta Sender MAC, prečíta Destin.

MAC

- -Pre Dest. MAC prehľadá Bridging table, či nenájde mapovanie
- -Ak nenájde mapovanie, prepne rámec na všetky svoje výstupné porty
- -Do BT pridá mapovanie
 - PC A MAC na port 1

Ak stanica D odpovie, prebehne ten istý proces, do tabuľky pribudne ďalšie mapovanie

BRIDGING TABLE	
	1
00-50-C2-43-1F-1B	2

00

Computer A
vv-50-DA-0D-F5-2D

Segment 2

KIS FRI ŽU – Segeč – Počítačové siete 2

Bridge – frame filtering

Frame Filtering

- -nastáva ak prebieha komunikácia na tom istom segmente
- -Bridge neprepúšťa intra segment komunikáciu na iné porty – Filtruje ju

Príklad:

Stanica A vytvorí unicast rámec:

- -Sender MAC:
 - -00-50-DA-0D-F5-2D
- -Destination MAC:
 - -00-50-F1-12-8A-00
 - -Rámec odošle

Bridge:

- -na základe vybudovanej tabuľky zistí, že komunikácia bude prebiehať len na segmente 1 -neprepustí prevádzku na segment 2
- Prepúšťa len **inter-segment** komunikáciu

Na segmente 2 môže prebehnúť paralelne iná intra segment komunikácia

BRIDGING TABLE	
	1
00-50-04-7C-2B-01	1
00-50-F1-12-8A-00	1
00-50-C2-43-1F-1B	2
00-50-B5-00-11-22	2
00-50-AA-41-52-63	2

Computer A

Segment 2

Bridge - Flooding

- Záplavové šírenie rámcov (na všetky výstupné porty) prebieha:
 - Ak bridge nenájde mapovanie pre Dest. MAC address vo svojej Bridging table
 - Ak rámec je poslaný na Broadcast adresu
 - Bridge musí BCast rámec poslať na všetky výstupné porty
 - Ak rámec je poslaný na L2 Multicast adresu

Bridge – domény

Kolízna doména:

- Miesto vzniku možnej kolízie
- Každý jeho port zvlášť

Broadcast doména:

- Kam budú šírené BCast rámce
- Všetky jeho porty

LAN Switch - prepínač

LAN Switch – LAN prepínač

- L2 zariadenie
 - Pracuje s rámcami, MAC adresami
- Prepínač veľmi podobný bridge
 - Len viac portový
 - Ponúka väčšiu hustotu portov ako bridge
 - Funkcionálne
 - Prepínač = Multi port bridge
- Prepínač je sofistikovanejší ako bridge
 - Nové vlastnosti
 - Podpora paralelnej komunikácie
 - Full Duplex komunikácia
 - Podpora Virtuálnych LAN
 - Prispôsobovanie rýchlosti portov NIC (Auto Sensing)
 - Rôzne metódy prepínania rámcov a pod.
 - Implementovaný zvyčajne Hardvérovo
 - Pracuje na ďaleko vyšších rýchlostiach ako bridge
 - Prepínanie rámcov Mishkyžu Segeč Počítačové siete 2

Mikro segmentácia

- Prepínač používa mikro segmentáciu
 - Micro-segmentation
 - Rozdelenie siete do malých segmentov
 - Poskytuje dedikované prenosové pásmo
 - Za predpokladu jeden host per port
 - Host má poskytnutý prístup k plnej kapacite portu
 - Virtually dedicated segment
 - Host nemusí bojovať o možnosť prenosu s inými hostami
 - Collision free
 - Umožňuje prepínanie paralelných komunikácií simultánne
 - Cez svoju prepínaciu maticu

Full duplex komunikácia

- Dva duplexné módy používané v LAN
 - Half Duplex
 - Pôvodný prenosový režim v LAN Ethernet (do 10BaseT)
 - Povinný pri zdieľaných prenosových médiach
 - Ak komunikujú dvaja naraz KOLÍZIA
 - Full Duplex
 - Prinášajú prepínače

Full duplex

- Zdvojnásobuje priepustnosť medzi uzlami
 - Stanica môže vysielať aj prijímať rámce bez vzniku kolízie
 - Napr. 100 Mbps oboma smermi
- Vyžaduje dve prenosové cesty
 - Dva páry vodičov pri krútených pároch
 - Dve optické vlákna
- Bezkolízne prostredie
 - Vytvárajú prostredie Point-to-Point
- 100% využitie prenosovej cesty

LAN prepínač - činnosti

- V činnostiach podobný bridge
 - Schopnosti učiť sa topológiu
 - Na akom porte sa nachádza aká MAC
 - Budovanie Bridging table
 - Tu nazvaná CAM Content Addresable Memory
 - Prepínanie rámcov
 - Na základe CAM
 - Záplavové šírenie rámcov
 - Neznámych rámcov
 - Broadcast rámcov
 - Multicast rámcov
 - Filtrovanie rámcov (Frame Filtering)
 - Udržovanie inter segment komunikácie na danom segmente
 - Rozširuje broadcast doménu
 - Redukuje kolíznu doménu
 - Kolízna doména zvyčajne jeden port prepínača

LAN switching – prepinanie v LAN

LAN prepinanie podľa priepustnosti

- LAN prepínače môžu byť charakterizované podľa priepustnosti prideľovanej na porty prepínača (LAN bandwidth switching)
 - Symmetric switching (symetrické prepínanie)
 - Poskytuje prepínanú, rovnako distribuovanú priepustnosť pre všetky porty
 - Asymmetric switching (asymetrické prepínanie)
 - Poskytuje mechanizmy prepínania medzi portami rôznych prenosových rýchlostí

Symetrický LAN prepínač

Symetrický LAN prepínač

- Poskytuje prepínané prepojenie medzi portami rovnakej rýchlosti
 - Všetky 10Mbps (napr. 10BaseT)
 - Všetky 100Mbps (napr. 100BaseT)
- Vhodné v peer sieťach
 - Serverovské farmy
 - Prostredie desktopových PC
- Optimalizovaný pre distribuované rozloženie záťaže
- Mikrosegmentácia (prepínanie paralélnych tokov) zvyšuje priepustnosť siete

Asymetrický LAN prepínač

Asymetrický LAN prepínač

- Poskytuje prepínané prepojenie medzi portami nerovnakej rýchlosti
 - Napr. kombinácia 10Mbps, 100Mbps a 1000Mbps portov
- Vhodné v klient/server sieťach
 - Môžeme dedikovať porty vyšších rýchlosti pre napr. servery
 - Zabránenie zahltenia serverovských liniek
 - Predpoklad, že cez port prebieha viac komunikácii
 - Dotazov na server
- Optimalizovaný pre agregované zaťaženie určitých portov
- Vyžaduje vyrovnávaciu pamäť (Memory buffering)
 - Vyrovnávanie asymetrickosti rýchlosti portov

Vyrovnávacia pamäť

- Je použitá vyrovnávacia pamäť (Memory buffer)
 - Na uloženie a prepnutie rámca (store and forward)
 - Ak výstupný port je obsadený
 - Prebieha na ňom komunikácia
- Dva druhy použitia vyrovnávacích pamätí:
 - Port-based memory buffering
 - Rámce sú ukladané do fronty, ktorá je spojená so špecifickým vstupným portom
 - Shared-memory buffering
 - Všetky rámce a porty požívajú a zdieľajú jednu zdieľanú pamäť (memory buffer)
 - Rámce v pamäti sú dynamicky mapované na daný výstupný port.
 - Táto technika napomáha balansovať 10 a 100Mbps porty

Port-based memory buffering

Port-based memory buffering

- Rámce sú ukladané do fronty, ktorá je spojená so špecifickým vstupným portom
- Rámec je prenesený len ak:
 - Jeho cieľový výstupný port je voľný
 - Sú obslúžené všetky rámce vo fronte pred ním
- Problém:
 - Jeden rámec môže zablokovať obsluhu celej fronty rámcov za ním ak jeho cieľový port je stále obsadený

Shared-memory buffering

Shared-memory buffering

- Všetky rámce a porty požívajú a zdieľajú jednu pamäť (memory buffer)
- Rámce v pamäti sú dynamicky mapované na daný výstupný port
 - Prepínač si udržuje dynamickú tabuľku mapovaní, ktorý rámec kam prepnúť
 - Po prenesení rámca je mapovanie zmazané
- Táto technika umožňuje prepnúť napr. väčšie rámce na úkor menších (aj za cenu odhodenia menších)
 - Šetrenie bandwidth
 - Mechanizmus napomáha balansovať 10 a 100Mbps porty
 - Výhodné pri asymetrickom prepínaní
- Počet rámcov v pamäti
 - Závisí od veľkosti zdieľanej pamäte

Prepínacie metódy rámcov

- LAN prepínač môže pracovať s viacerými prepínacími metódami
 - Store and Forward switching
 - Rámec je prijatý celý do pamäte prepínača kým sa prepne
 - Cut through switching
 - Rámec je prepínaný na výstup skôr ako je celý prijatý

Store and Forward

- LAN prepínač používajúci Store and Forward:
 - Príjme a uloží do pamäte celý rámec
 - Skontroluje dĺžku rámca
 - Ak veľkosť rámca je menšia ako 64 bytov Runt rámec je zahodený
 - Ak veľkosť rámca je väčšia ako 1518 bytov Giant rámec je zahodený
 - Skontroluje CRC
 - Kontrola chybovosti
 - Ak je detekovaná neopraviteľná chyba rámec je zahodený
 - Prečíta cieľovú a zdrojovú MAC adresu
 - Aplikuje filtrovacie pravidlo (ak existuje)
 - Prehľadá prepínaciu tabuľku podľa cieľovej MAC a zistí výstupné rozhranie
 - Prepne rámec

Nevýhody

- Vnáša do prenosovej cesty oneskorenie
 - Celý rámec musí byť prijatý
 - Oneskorenie väčšie pri väčších rámcoch

Výhody:

- Detekcia chýb, prenášané sú len korektné rámce
- Šetrenie kapacity siete

Cut through

- LAN prepínač používajúci Cut through:
 - Prepne rámec na výstupný port skôr ako je prijatý celý rámec
 - Minimálne musí byť prijatá cieľová MAC adresa
- Cut through znižuje oneskorenie
 - Prepína rámce čo najskôr
- Cut through znižuje možnosti detekcie chybných rámcov
 - Nerobí sa CRC kontrola
 - Prenášajú sa aj chybné rámce
- Exitujú dve varianty Cut through:
 - Fast forward
 - Fragment free

Cut through

Fast forward:

- Poskytuje najnižšie možné oneskorenie pri prepínaní rámcov
- Rámec je prepínaný okamžite po prečítaní cieľovej MAC adresy (prvých 6 bytov)

Fragment free:

- Kolízne fragmenty rámcov (chybné rámce)
 - Bývajú zvyčajne menšie ako 64B
- Rámec je prepnutý, ak bolo prijatých viac ako 64B
 - Berie sa do úvahy predpoklad, že teda nie je potom kolízny

Prepínacie metódy rámcov

Layer switching

- Nová problematika
- Prepínanie môže nastať na L2 a L3 vrstve
 - Rozdiel na základe akej informácie sa prepína

Layer 2 switching

- Pracuje na L2 vrstve
- Prepínanie na základe MAC adresy
- Používajú prepínače a bridge
- Flat siete (Fyzická segmentácia)

Layer 3 switching

- Pracuje na L3 vrstve
- Prepínanie na základe IP adresy
- Používajú smerovače a L3 prepínače
- L2 prepínače so smerovacími modulmi
- Fyzická aj logická segmentácia

L3 switch

- Hardware-based packet forwarding
- High-performance packet switching
- High speed scalability
- Low latency
- Low cost per port
- Uses IP addresses
- Flow accounting
- Security
- QoS

L2 switch - Hardware based

- switching
- Wire speed performance
- Low latency
- Uses MAC addresses
- Low cost

Smerovač vs. L3 prepínač

- Smerovač
 - Pracuje na L3
 - Spracovanie každého paketu softvérovo
 - Smerovacím modulom
 - Potom prepnutie

- L3 prepínač
 - Pracuje na L2/L3
 - Spracovanie prvého paketu toku ako na smerovači
 - Smerovacím modulom
 - Ďalšie rámce toho istého toku spracované v hardvéri
 - Použitie Application specific integrated circuit (ASIC) HW

Problém s broadcastom. Pri malých sieťach mänší. Pri väčších vážny problém.

LAN Switch - Problémy

Pridávanie redundancie (záložných trás a prvkov) do siete, tvorba a vznik slučiek.

Broadcast domain

Riešenie

- Slučky
 - Spanning Tree Protocol (STP)
- Rozdelenie broadcast domény
 - Použitie Virtuálnych LAN (VLAN)
 - Použitie L3 zariadenia
 - Smerovač, L3 prepínač