

On Success and Simplicity: A Second Look at Transferable Targeted Adversarial Images

(对有目标对抗图像迁移性的反思)

Zhengyu Zhao (赵正宇), Zhuoran Liu, Martha Larson Radboud University, The Netherlands

- Background of Computer Vision
- Adversarial Image (对抗图像) and its transferability (迁移性)
- New insights into targeted (有目标) transferability
- Summary & Future work

Background: Computer Vision (计算机视觉)

Background: Computer Vision Applications

Applications in different areas

Dog

Perceive

Background: Successful Computer Vision

Background: Failed Computer Vision

Abnormal images

Failed Computer Vision: Adversarial Images (对抗图像)

Adversarial Images: Motivations

Improve **good** computer vision:

Weaken bad computer vision:

Adversarial Images: Motivations

Improve good computer vision:

Weaken **bad** computer vision:

Adversarial Images: How to generate?

$$x' = \arg\max_{x} J(x, y_o)$$

Untargeted (无目标): any class other than \mathcal{Y}_o

$$x' = \arg\min J(x, y_t)$$

Targeted (有目标): one specific class y_t

$$\| x' - x_o \|_{\infty} \leq \varepsilon$$

(Targeted) Adversarial Images: Optimization

Objective function:
$$x' = \underset{x}{\operatorname{arg min}} J(x, y_t)$$
 s.t. $\|x - x_o\|_{\infty} \le \varepsilon$

Optimization: Iterative-Fast Gradient Sign Method (I-FGSM)^[1]

$$x'_0 = x_o, \quad x'_{i+1} = x'_i - \alpha \cdot \operatorname{sign}(\nabla_x J(x'_i, y_i))$$

$$x'_{i+1} \leftarrow \text{clip}(x'_{i+1} - x_o, -\varepsilon, \varepsilon)$$

(Targeted) Adversarial Images: Transferability

Targeted Transferability via Iterative Methods

Iterative-Fast Gradient Sign Method (I-FGSM)^[1]: $x'_0 = x_o$, $x'_{i+1} = x'_i - \alpha \cdot \text{sign}(\nabla_x J(x'_i, y_i))$

Improve transferability

- Gradient stabilization^[2,3] e.g. momentum-based^[2]:

$$g_{i+1} = \mu \cdot g_i + \frac{\nabla_{\boldsymbol{x}} J(\boldsymbol{x}_i', y_t)}{\|\nabla_{\boldsymbol{x}} J(\boldsymbol{x}_i', y_t)\|_1}$$
$$\boldsymbol{x}_{i+1}' = \boldsymbol{x}_i' - \alpha \cdot \operatorname{sign}(\boldsymbol{g}_i)$$

- Input augmentation^[4,5,6] e.g. random transformations^[5]:

$$\mathbf{x}'_{i+1} = \mathbf{x}'_i - \alpha \cdot \operatorname{sign}(\nabla_{\mathbf{x}} J(T(\mathbf{x}'_i, p), y_t))$$

- 1. Kurakin et al. Adversarial Examples in the Physical World. ICLR workshop 2017
- 2. Dong et al. Boosting Adversarial Attacks with Momentum. CVPR 2018.
- 3. Lin et al. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. ICLR 2020
- 4. Dong et al. Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks. CVPR 2019
- 5. Xie et al. Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019
- 6. Wang et al. Admix: Enhancing the transferability of adversarial attacks. ICCV, 2021.

Targeted Transferability via Generative Methods

Iterative vs. Generative Methods

Iterative methods

VS.

Generative methods

Data: Single Input image

Massive additional Data

Model: Single target-agnostic model

Multiple target-specific GANs

• (Targeted) Transferability: Iterative methods << Generative methods

New Insights into Iterative Methods: Conclusion

• (Targeted) Transferability: Iterative methods 🔀 Generative methods

Targeted Transferability (%)

Bound	Attack	D121	V16	D121-ens	V16-ens
$\epsilon = 16$	TTP [8] ours	79.6 75.9	78.6 72.5	92.9 99.4	89.6 97.7
$\epsilon = 8$	TTP [8] ours	37.5 44.5	46.7 46.8	63.2 92.6	66.2 87.0

New Insights into Iterative Methods: More Iterations

Few (≤ 20) iterations in the literature:

- not converge to optimal
- unrealistic iteration budget.

New Insights into Iterative Methods: Better Loss

Cross-Entropy loss (L_{CE}) causes decreasing gradient problem:

$$L_{CE} = -1 \cdot \log(p_t) = -\log(\frac{e^{z_t}}{\sum e^{z_j}}) = -z_t + \log(\sum e^{z_j}),$$

$$\frac{\partial L_{CE}}{\partial z_t} = -1 + \frac{\partial \log(\sum e^{z_j})}{\partial e^{z_t}} \cdot \frac{\partial e^{z_t}}{\partial z_t} = -1 + \frac{e^{z_t}}{\sum e^{z_j}} = -1 + p_t.$$

Logit loss (L_{Logit}) is better:

$$L_{Logit} = -z_t, \ \frac{\partial L_{Logit}}{\partial z_t} = -1.$$

New Insights into Iterative Methods: Better Loss

More challenging&realistic scenarios:

- 1. Model diversity
- 2. Target class diversity

1. Model diversity

Attack	-Inc-v3	-Inc-v4	-IncRes-v2	-Ro-	-Res101	-Res152	Average
CE	85.3	83.3	Satur	ation	93.2	90.7	87.7
Po+Trip	84.4	82.4	Satur	85.0	87.9	85.7	84.4
Logit	85.5	85.8	1،در	90.0	91.4	90.8	88.1

1. Model diversity

2. Target class diversity

1st: tabby cat 66% 2nd: tiger cat 28% 3rd: Egyptian cat 5%

- - -

1000th: airplane 0.1%

Transferability (%) when varying the target class \mathcal{Y}_t .

Attack 2n	d 10th	200th	500th	800th	1000th
CE 89 Po+Trip 82 Logit 83	.9 76.7 .6 77.6	49.7 58.4	43.1 53.6	37.0 49.1	25.1 38.2 52.8

The further the target is, the more difficult it is to transfer.

Logit is best.

Summary

- (Targeted) Transferability: Iterative methods
 Generative methods
 - More iterations
 - Better loss: Logit
- Better evaluation (More challenging&realistic scenarios)
 - Model diversity
 - Target class diversity

Ŷ

Future Work

1. Improve targeted transferability on specific models (Inception).

2. Speed up iterative methods with generative priors.

论文: https://arxiv.org/abs/2012.11207

代码: https://github.com/ZhengyuZhao/Targeted-Tansfer

个人主页: https://zhengyuzhao.github.io/

