Minh Hang Chu - 30074056

Assignment 5

1. Prove that the following language is not regular: $\{a^ib^jc^k: i=j \lor i=k\}$.

Proof. We prove L is not regular by contradiction using pumping lemma. Case 1: If i = j, then L is not regular

Assume that L is regular. Therefore there exists some pumping length n. Let $z=a^ib^ic^k$.

This word is in L and it is also longer than i: $|z| \ge i$.

Consider z = uvw where $|uv| \le i$ and |v| > 0.

Because our word is $z = a^i b^i c^k$ and $uv = a^i$ that means it can only consist of a. Let $v = a^p$ and $u = a^{i-p}$ where $j \ge 1$. Then $w = b^i c^k$.

Consider the word $z^0 = uv^0w$. This is equal to $a^{i-p}b^ic^k$. Thus the word is not of the form $z = a^ib^ic^k$ and not an element of L.

This contradicts what we assume. Therefore the language is not regular.

Case 2: If i = k, then L is not regular

Assume that L is regular. Therefore there exists some pumping length n. Let $z=a^ib^jc^i$.

This word is in L and it is also longer than i: $|z| \ge i$.

Consider z = uvw where $|uv| \le i$ and |v| > 0.

Because our word is $z = a^i b^j c^i$ and $uv = a^i$ that means it can only consist of a. Let $v = a^p$ and $u = a^{i-p}$ where $j \ge 1$. Then $w = b^j c^i$.

Consider the word $z^0 = uv^0w$. This is equal to $a^{i-p}b^jc^i$. Thus the word is not of the form $z = a^ib^jc^i$ and not an element of L.

This contradicts what we assume. Therefore the language is not regular.

Therefore in both cases, the language is not regular language. \Box

2. Prove that the following language is not regular: $\{0^i 1^j : i \neq j\}$.

Proof. Assume $L = \{0^i 1^j : i \neq j\}$ is a regular language. We apply operations that preserve regularity on L.

We have $\overline{L} \cap 0^*1^* = \{0^i1^i : i \ge 0\}.$

Since L is regular, then \overline{L} is also regular since it preserves regularity using set complement.

Since regular languages preserve regularity under intersection (and 0^*1^* is regular), we get $\{0^i1^i:i\geqslant 0\}$ is also regular. This derives contradiction since $\{0^i1^i:i\geqslant 0\}$ is not a regular language (according to an example in class).

Therefore, the language $\{0^i1^i: i \geq 0\}$ is not regular.

3. Consider the alphabet $\Sigma = \{\emptyset, \epsilon, a, b, (,), +, \star\}$. Provide a context-free grammar that generates all strings in Σ^* that are valid regular expressions. For example, it should be able to generate $aaa\star$ and $a(b+\epsilon)$ but

not () or))bc+.

We have: a context free grammar is $G = (V, \Sigma, P, S)$ where:

S is a starting variable.

 $\Sigma = \{\emptyset, \epsilon, a, b, (,), +, \star\}.$

V is a set of all variables.

 $P = \{S \rightarrow \emptyset | a|b|SS|S^{\star}|S + S|(S)|\epsilon\}$