In [2]:

```
#importing all necessary libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [3]:

```
#question 1
A = [1,2,3,4,5,6]
B = [13, 21, 34]
print(A)
A_B = A.extend(B)
print(A)
print(A,B)
```

```
[1, 2, 3, 4, 5, 6]
[1, 2, 3, 4, 5, 6, 13, 21, 34]
None
```

In [98]:

```
np.identity(3)
```

Out[98]:

In [4]:

unique 9
top mcf
freq 11354

Name: fuel_unit, dtype: object

In [5]:

```
fuel_data.isnull().sum()
#Question 6

missingvaluesInFuelunit = fuel_data["fuel_unit"].isnull().sum()
valuesInFuelunit= fuel_data["fuel_unit"].count()
percentage = (missingvaluesInFuelunit/valuesInFuelunit)*100
print("No of values in fuelunit is %d; the number of missing values is %d and the percent
age of missing values is %.3f "%(valuesInFuelunit, missingvaluesInFuelunit, percentage))
#Feature: fuel_unit, Total: 180, Percent: 0.613)
```

No of values in fuelunit is 29343; the number of missing values is 180 and the percentage of missing values is 0.613

In [6]:

```
#filling empty data in fuel units with mcf as earlier stated
fuel_data[["fuel_unit"]]=fuel_data[["fuel_unit"]].fillna("mcf")
#Question 3
fuel_data.groupby("fuel_type_code_pudl")["fuel_cost_per_unit_delivered"].describe()
```

Out[6]:

	count	mean	std	min	25%	50%	75%
fuel_type_code_pudl							
coal	8547.0	116.951141	4043.732781	-40.725	21.7400	31.407	43.38050
gas	11486.0	12.095172	157.032849	0.000	2.8300	4.295	6.49250
nuclear	818.0	28616.915039	411287.325331	0.000	0.0000	0.000	28.91900
oil	8064.0	313.907691	9015.713229	-874.937	32.1545	58.240	95.74075
other	167.0	16.871485	27.659197	-118.340	2.4830	8.500	19.85300
waste	441.0	18.413052	27.966921	-174.670	7.2400	21.560	31.33000

In [7]:

```
#the analysis above shows that gas has the least average cost per unit delivered

#Question 4
fuel_data["fuel_mmbtu_per_unit"].describe()
#Answer: The standard deviation is 10.60 and 75th percentile is 17.01
```

Out[7]:

```
29523.000000
count
             8.492111
mean
std
            10.600220
min
             0.000001
25%
             1.024000
50%
             5.762694
75%
            17.006000
           341.260000
max
Name: fuel mmbtu per unit, dtype: float64
```

In [7]:

```
#Question 5
import scipy.stats as stat
skew = stat.skew(fuel_data["fuel_qty_burned"])
kurtosis = stat.kurtosis(fuel_data["fuel_qty_burned"])
print("The skewness is %.2f and the kurtosis is %.2f"%(skew, kurtosis))
# The skewness is 15.85 and the kurtosis is 651.26
```

The skewness is 15.85 and the kurtosis is 651.26

In [8]:

```
#Question 8
t=fuel_data["fuel_cost_per_unit_burned"].corr(fuel_data["fuel_qty_burned"])
r=fuel_data["fuel_cost_per_unit_burned"].corr(fuel_data["fuel_cost_per_unit_delivered"])
e=fuel_data["fuel_cost_per_unit_burned"].corr(fuel_data["report_year"])
w=fuel_data["fuel_cost_per_unit_burned"].corr(fuel_data["fuel_mmbtu_per_unit"])
q=fuel_data["fuel_cost_per_unit_burned"].corr(fuel_data["utility_id_ferc1"])
corrArray=[t,r,w,e,q]
print(corrArray)
corrArray.sort(reverse=True) #to sort in descending Order

print(corrArray)

# the Output shows that t is second to last and e is third to the last
# the Output shows that correlation of fuel cost per unit burned with fuel qty burned and report year are
# second to the last and third to the last respectively
```

```
[-0.018535416794825232, 0.011007403299165127, -0.010033808428853076, 0.013599 13443813416, -0.037862707599972574] [0.01359913443813416, 0.011007403299165127, -0.010033808428853076, -0.0185354 16794825232, -0.037862707599972574]
```

In [30]:

```
#Ouestion 9
is 1998=fuel_data["report_year"]==1998
is 1994=fuel data["report year"]==1994
year 1998=pd.DataFrame(fuel data[is 1998])
year 1994=pd.DataFrame(fuel data[is 1994])
sum98=year_1998.groupby("fuel_type_code_pudl")["fuel_cost_per_unit_burned"].sum()
sum94=year_1994.groupby("fuel_type_code_pudl")["fuel_cost_per_unit_burned"].sum()
print("summary for year 1998 is")
print(sum98)
print("summary for year 1994 is")
print(sum94)
print("fuel cost per unit of coal burned in 1998 is %.5f for 1994 it is %.5f"%(sum98["coa
1"],sum94["coal"]))
change_percent= (sum98["coal"]-sum94["coal"])*100/sum98["coal"]
print(" the percentage change from 1998 to 1994 is %f"%change percent)
# THe output gives a negative value, so we can say the usage of coal actually reduced in t
he year 1998 from 1994 and by 25.89%
summary for year 1998 is
fuel type code pudl
coal
            11902.597
             7475.596
gas
nuclear
           117788, 269
oil
             2608,657
other
              225.428
              238.109
waste
Name: fuel cost per unit burned, dtype: float64
summary for year 1994 is
fuel type code pudl
coal
            14984.572
            10792.496
gas
           227983.354
nuclear
oil
             9362.194
other
              116.737
               52.762
waste
Name: fuel cost per unit burned, dtype: float64
fuel cost per unit of coal burned in 1998 is 11902.59700 for 1994 it is 1498
4.57200
```

http://localhost:8889/lab 5/6

the percentage change from 1998 to 1994 is -25.893299

In [44]:

```
#Question 10

years=pd.DataFrame(fuel_data.groupby("report_year")
["fuel_cost_per_unit_delivered"].mean())

print(years)

# the results shows that 1997 has the highest mean for Cost Per Unit delivered
```

fuel_cost_per_unit_delivered

	- del_cose_pedille_dellerer ed
report_year	
1994	63.636060
1995	32.735269
1996	9196.705948
1997	11140.197239
1998	287.154420
1999	25.551627
2000	985.362877
2001	60.050396
2002	47.594361
2003	55.663493
2004	139.524275
2005	41.438184
2006	38.657484
2007	43.325023
2008	58.588197
2009	652.694163
2010	91.862105
2011	59.774667
2012	60.994502
2013	172.307591
2014	192.737183
2015	326.535511
2016	103.901761
2017	46.196861
2018	499.269966

In []: