Příklad (7.1) Určete počet

- i dvoučlenných posloupností vektorů (tj. posloupností tvaru (\mathbf{v}_1, v_2)) v prostoru \mathbb{Z}_5^2 , které jsou lineárně nezávislé.
- ii trojčlenných posloupností vektorů (tj. posloupností tvaru (\mathbf{v}_1, v_2, v_3)) v prostoru \mathbb{Z}_2^3 , které jsou lineárně nezávislé.

Řešení (i)

Dva vektory jsou lineárně nezávislé, když jeden není násobkem druhého. Tedy za první vektor vezmeme libovolný vektor^a kromě nulového (ten je násobkem libovolného vektoru), tj. máme $5^2-1=24$ možností. Vektor nad \mathbb{Z}_5 má 5 násobků, tedy za druhý vektor vybíráme jeden z $5^2-5=20$. Dohromady máme tedy $24\cdot 20=480$ posloupností. Počet posloupností až na permutace získáme vydělením počtem permutací (protože prvky posloupnosti nejsou násobky jeden druhého, tak nejsou ani totožné), tedy těch je $\frac{480}{2!}=240$, to po nás ale zadání nechce.

 ${}^a\mathbb{Z}_i^j$ má zřejmě i^j prvků, protože jkrát vybíráme jeden z iprvků \mathbb{Z}_i

Řešení

Nejdříve zjistíme, kolik je dvojčlenných nezávislých posloupností a následně spočítáme kolik vektorů můžeme ke každé takové posloupnosti přidat. Stejně jako výše, vezmeme libovolný vektor (krom nulového) a jeho "nenásobek", tedy máme $(2^3-1)\cdot(2^3-2)=42$. Třetí vektor nemůže být lineární kombinací předchozích dvou, což nad \mathbb{Z}_2 znamená, že nemůže být nulový, nemůže to být ani jeden z nich a nemůže to být jejich součet. Tedy máme $2^3-4=4$ možností, jak volit třetí vektor, nezávisle na tom, jaké jsme zvolili předchozí. Tj. dohromady máme $42\cdot 4=168$ možných trojčlenných posloupností. $(\frac{168}{3!}=28$ až na permutace.)

Příklad (7.2)

Předpokládejme, že ve vektorovém prostoru \mathbf{V} nad tělesem \mathbb{Z}_5 je $(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z})$ lineárně nezávislá posloupnost. Dokažte, že posloupnost $(\mathbf{u} + \mathbf{v} + \mathbf{w} + \mathbf{z}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w} + \mathbf{z}, \mathbf{u} + 3\mathbf{v} + \mathbf{w} + 2\mathbf{z})$ je také lineárně nezávislá posloupnost ve \mathbf{V} .

$D\mathring{u}kaz$

Vyjdeme z jedné z ekvivalentních definicí lineární nezávislosti, a to té, že vektory jsou lineárně nezávislé, pokud pouze jejich triviální lineární kombinace je nulový vektor:

$$k_1 \cdot (\mathbf{u} + \mathbf{v} + \mathbf{w} + \mathbf{z}) + k_2 \cdot (\mathbf{u} + 2\mathbf{v} + 3\mathbf{w} + \mathbf{z}) + k_3 \cdot (u + 3v + w + 2z) = \mathbf{o},$$

$$\mathbf{u} \cdot (k_1 + k_2 + k_3) + \mathbf{v} \cdot (k_1 + 2k_2 + 3k_3) + \mathbf{w} \cdot (k_1 + 3k_2 + k_3) + \mathbf{z} \cdot (k_1 + k_2 + 2k_3) = \mathbf{o}.$$

A jelikož víme, že jediná lineární kombinace $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ dávající \mathbf{o} byla ta triviální, tak koeficienty u vektorů v tomto výrazu musí být rovny 0:

$$k_1 + k_2 + k_3 = 0$$
, $k_1 + 2k_2 + 3k_3 = 0$, $k_1 + 3k_2 + k_3 = 0$, $k_1 + k_2 + 2k_3 = 0$.

Z těchto rovnic dostáváme $k_1=k_2=k_3=0^a$. Tedy trojčlenná posloupnost ze zadání je lineárně nezávislá.

^aTřeba "přičtením" čtyřnásobku první rovnice ke čtvrté dostaneme $k_3 = 0$, "přičtením" čtyřnásobku první rovnice ke třetí dostaneme $2k_2 = 0$, tedy $k_2 = 0$ a následně z libovolné rovnice $k_1 = 0$.

Příklad (7.bonus)

Najděte počet l-členných lineárně nezávislých posloupností v prostoru \mathbb{Z}_p^k .

Řešení

Lineární kombinace i nezávislých vektorů na \mathbb{Z}_p má p^i členů, jelikož každá (= pro všechny koeficienty j_1, j_2, \ldots, j_i ze \mathbb{Z}_p) lineární kombinace je jiným vektorem (z definice nezávislosti). Tedy první člen posloupnosti vybíráme z $|\mathbb{Z}_p^k| - 1$ prvků, druhý z $|\mathbb{Z}_p^k| - p$, ..., l-tý z $|\mathbb{Z}_p^k| - p^{l-1}$, jelikož nemůžeme vybrat ty, které jsou lineární kombinací předchozích. Tedy počet nezávislých l-člených posloupností je

$$\prod_{i=1}^{l} (p^k - p^{i-1}).$$