"第一次编程作业"实验报告

苏壮 22307140012

简介(Introduction):

本文中我们将使用 C++语言实现一次**模板匹配(template matching)**。模板匹配是指在一个较大尺寸的图像中寻找一个小尺寸图像(称为模板图像)位置的过程。例如图 1 是一张分辨率为1920 * 1280 的高清图片,而图 2 则是分辨率为 16 * 16 的小模版。我们会在图 1 中找到图 2 对应的位置,图 3 中的绿颜色方框(bounding box)即为寻找结果。

图 1 原图片 source image, 1920 * 1280

图 3 匹配结果, 1920 * 1280

模板匹配的原理,就是将模板放到原图像上,当作一个滑窗,从左到右,从上到下进行二维遍历,过程中不断计算其与原图像对应区域的匹配度。遍历后即可得到匹配度最高的区域。模板匹配的具体实现方法众多,对于不同测试集,常常采用不同的处理方法。观察图 1~3,不难发现模板图 2 不仅仅是从图 1 中截取下来,而是经过模糊,尺度缩放,降采样,亮度变化等一系列操作后得到的。因此我制定了以下流程:

读取并存储图像文件→处理原图像(模糊、缩放、降采样)→用模板遍历原图像并得到匹配 度→输出结果 在下文中,我将会逐一介绍流程中的详细思路。

编译环境(Compilation Environment):

我提供了一个 OBJ.cpp 源文件, 你可以在 Windows 上任何支持 C++20 标准的环境中编译它。没有使用任何图像处理库, 你不必配置例如 OpenCV 的环境才能运行。而 C++20 是必须的, 因为在代码使用了 std::format 这样的特性, 除非你找到对应代码段并将之删除或替换。

我自己是在 vscode 中用 cmake 配置项目, Visual Studio Commutity 2022 Release - amd64 工具集(内含 MSVC 编译器)编译运行的。而我推荐你直接在 Visual Studio 2022 中新建一个项目,将源文件添加或将代码复制到项目中,并且在项目-属性-配置属性-常规-C++语言标准中选择C++20,之后便可正常编译。

另外,我也提供了可执行文件 pj1.exe。你可以在 Windows 上直接运行它,会匹配名为 inpu1.bmp 和 input2.bmp(即图 1 和图 2)的文件,并将结果输出到 output.txt 中。你也可以在终端或命令行中输入 .\pj1.exe 1 或将 1 换成其他 1 到 100 之间的数字,它会在匹配测试集中对应的文件(例如 test001.bmp 和 obj001.bmp)并将统计结果输出到 output.txt,以及一张带有 bounding box 的图片(图片未必输出成功,仅作调试使用)。

读取图像文件(Read the Images):

测试图像的格式是 24 位**位图(bitmap)**。位图并不是常见的图像格式。但它储存数据的方式简单,因此便于学习。如果你感兴趣,可以参考这篇文章

https://zhuanlan.zhihu.com/p/25119530?utm_source=wechat_session&utm_medium=social&utm_oi=1 372317944190476288。对于本项目,我们无需了解位图的全部细节。我直接采用了http://www.kalytta.com/bitmap.h 链接中的代码操作位图,只修改并增加了部分接口,来适配我的需求。OBJ.cpp 中大约前800行便是对应的代码。代码数量比较多,因为支持了很多除24位以外的位图格式。其中接口设计得不方便,因此我不推荐你在自己项目中使用(你可以去尝试stb_image 这种成熟的图像库)。接下来我结合代码来讲此项目必需的位图知识。

```
// read and write bitmap files
class CBitmap {
public:
    BITMAP_FILEHEADER m_BitmapFileHeader;
    BITMAP_HEADER m_BitmapHeader;
    RGBA *m_BitmapData;
    unsigned int m_BitmapSize;
    // Masks and bit counts shouldn't exceed 32 Bits
```

图 4 CBitmap 类

代码主要定义了一个名字是 CBitmap 的类,所有读写位图的函数都写在这个类里。.bmp 文件在颜色数据前有两个文件头,记录了一些文件的总体信息,例如 bmp 文件签名,文件大小,位数,宽度和高度。我们对应定义了两个结构体,在读取文件时将这些信息写入结构体中。信息中最值得关心的是文件的宽度(width)和高度(height)。因为在之后的操作中我们会频繁地获取它们,并且如果我们要改变图片尺寸,也需要手动修改宽度和高度。

关于颜色,CBitmap 中定义了一个指向 RGBA 类型的指针 m_BitmapData。RGBA 是自定义的结构体类型,里面四个 uint8_t 类型变量分别存储红绿蓝和透明度。感兴趣的同学可以学习色彩空间的知识。读取图片时会在堆上开辟一段连续的储存空间,m_BitmapData 即指向此空间的首地址。需要说明的是,位图中数据不会以 RGBA 的形式存储,我略去了中间的转化细节,事实上 24 位位图不会存储透明度 alpha,但这不会影响我们的项目。

生成灰度图像(Generate Grayscale Image):

在图像处理中,我们经常使用灰度图像进行研究。所以在读取图片后我们要将颜色数据转 为灰度。RGB 转为灰度没有标准的公式。我采用的是公式如图 5 所示:

```
uint8_t R8G8B8A82GR(RGBA rgba)
{
    // quick calculation
    return (rgba.Red * 76 + rgba.Green * 150 + rgba.Blue * 30) >> 8;
}
```

图 5 转化灰度函数

这是一个经验公式,并针对8位颜色进行了计算加速。你可以在 https://blog.csdn.net/a200800170331/article/details/51564854 中找到更多信息。

```
uint8_t* image_gray_buffer = new uint8_t[image_bmp_copy->GetSize()];
RGBA* image_rgba_buffer = reinterpret_cast<RGBA*>(image_bmp_copy->GetBits());

for (unsigned int i = 0; i < image_bmp_copy->GetSize(); ++i)
   image_gray_buffer[i] = R8G8B8A82GR(rgba: image_rgba_buffer[i]);
```

图 6 储存灰度信息

对于每一个像素,调用上述转化为灰度的方法,最后用一个uint8_t 类型的指针储存。

矩阵存储与坐标表示(Use Matrix and Coordinates):

如今我们用数组线性储存灰度。然而图像是由二维的**像素(pixel)**矩阵描述的,我们后续的操作用矩阵描述也更加方便。所以我写了一个 matrix 类,接收灰度数据。

```
// correspond to the coordinate system
matrix(uint8_t* data, unsigned int rows, unsigned int cols) : rows(rows), cols(cols)
{
    allocSpace();
    for (unsigned int i = 0; i < rows; ++i)
    {
        for (unsigned int j = 0; j < cols; ++j)
        {
            p[i][j] = data[(rows - i - 1) * cols + j];
        }
    }
}</pre>
```

图 7 矩阵类的构造函数

可以看到矩阵元素和数组元素的对应方式有些奇怪,这是因为本项目我们采用的坐标系统以左上角为原点,x 轴正半轴水平向右,y 轴正半轴则竖直向下。而位图原始储存方式则从图片左下角开始。这个转化细节被隐藏在 matrix 类的构造函数中,而在使用时则无需考虑,只需要直到本项目的坐标系规定。同时 matrix 也重载了[]运算符,同时和数学中矩阵元素的表示联系在一起。例如 pixel_matrix 是 matrix 类型,则 pixel_matrix[1][2]代表矩阵第 2 行,第 3 列的元素([]表示从 0 开始),同时它的坐标为(x=2,y=1).

	pixel_matrix[1][2]	

图 8 矩阵存储的表示方法

图像相关性度量(Image Correlation):

接下来我们要寻找一种评分标准,采取何种统计量计算匹配度。不同统计量之间有准确率和速度之间的差异,你可以在 OpenCV 的文档上看到直观的对比

https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html。我采用的是一种叫做 the normalized cross correlation coefficient(NCC)的统计量,总的来说它需要的计算量最大,因此速度较慢,但准确率相对更高。NCC的计算方法为:

$$\frac{1}{n\sigma_f\sigma_t}\sum_{x,y}(f(x,y)-\mu_f)(t(x,y)-\mu_t)$$

其中,f(),t()在本项目中为原图和模板的像素灰度矩阵,n 为模板像素总数。 μ 和 σ 分别是均值和标准差。NCC 的值在- $1\sim1$ 之间,越接近 1 匹配程度越高。你可以在https://blog.csdn.net/fb_help/article/details/104162770 中找到更多关于 NCC 的消息。

用 C++计算 NCC 需要多次遍历,因为标准差的求解依赖于均值,不能同时得到,具体操作可参照代码。另外关于遍历的其他细节,例如遍历范围的上下界问题,请同样参考代码,不在此处讲解。

尺度缩放(Scaling):

如果模板只是从原图片中截图得到,那么做到这里已经可以匹配到了。因为模板会和原图中某一部分重合,NCC值为1。但是上文提到,图2经历了模糊,尺度缩放,降采样,亮度变化等一系列操作。NCC可以包容亮度变化,而模糊和降采样是尺度缩放的中间步骤。因此,接下来我们会对原图进行尺度缩放到相同比例,再统计NCC。而具体的缩放程度,需要人为设置一个范围和步长,匹配多次直至得到结果。

高斯滤波(Gaussian Filtering):

高斯滤波或者高斯模糊是降采样前的必经步骤,它可以滤去图片信号中的高频部分,避免 降采样后图像形成锯齿。高斯模糊利用了卷积计算,使用的卷积核叫高斯核。高斯核是一个正 方形大小的滤波核,其中每个元素的计算都是基于下面的高斯方程:

$$G_{(x,y)} = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

其中, σ是标准差(一般取值为 1), x 和 y 分别对应了当前位置到卷积核中心的整数距离。在 本项目中, 我们使用了 5*5 的高斯核, 并将之拆分为两个一维高斯核。

0.0030	0.0133	0.0219	0.0133	0.0030							0.0545
0.0133	0.0596	0.0983	0.0596	0.0133							0.2442
0.0219	0.0983	0.1621	0.0983	0.0219	\rightarrow	0.0545	0.2442	0.4026	0.2442	0.0545	0.4026
0.0133	0.0596	0.0983	0.0596	0.0133							0.2442
0.0030	0.0133	0.0219	0.0133	0.0030							0.0545

图 9 一个 5 * 5 大小的高斯核。左图显示了标准方差为 1 的高斯核的权重分布, 我们可以把这个二维高斯核拆分成两个 一维的高斯核(右图) 图片来源《Unity Shader 入门精要》冯乐乐著

代码中 void GaussianFilter(CBitmap* bmp)函数有详细的实现过程。由于一维高斯核的对称性,我们实际只需要存储 3 个数就可以实现高斯模糊。一次高斯模糊的结果通常不明显,这时可以多进行几次得到更好的效果。

最近邻插值(Nearest Interpolation):

通常的降采样实现方法是在滤波后,保留原图片偶数或奇数行和列,但本项目需要各向异性缩放,所以用这种方法并不方便。代码中函数 void DownSample(CBitmap* bmp)提供了其实现,虽然我们不会使用它。

我们最终采取的是插值方法中的最近邻插值,它在能保证一定精度的同时速度最快。用最近邻插值缩放的思想是对于缩放后图片的像素点,利用缩放比例找到缩放前的像素点,直接采用其颜色。在代码实现时,需注意取整和边界处理。经测试,最近邻插值可以满足本项目的需求。如果你需要,也可以自行实现双线性插值(Bilinear)等其他插值方法。

输出结果(Output the Results):

现在终于能够统计 NCC 来得到匹配结果了!我们定义一个矩阵来记录个像素点的 NCC 值。理论上,只需要得到 NCC 最大的值即是匹配结果。但也可以统计高于一个阈值的所有像素点。

衡量一个图像匹配算法的量有准确率和运行时间,这是很直观的,好的方法会运行得又快 又准。运行时间可以通过 C++标准库函数得到,而本项目采用**准确率(Accuracy)和交并比(IoU)** 来衡量准确程度。准确率用匹配结果和**真实数据(Ground Truth)**的重叠面积除以模板面积得到, 交并比是指重叠面积与匹配结果和真实数据的面积和减去重叠面积(即所谓"并"面积)的比值 求得。当然也可以调用代码提供的 DrawRectangle 函数画出 bounding box。你也可以自己实现生 成 NCC 灰度图的函数,将统计结果输出到一张图中。

结语(Conclusion):

至此我们便完成了一次模板匹配。模板匹配还有很多其他的方法,例如基于灰度的匹配,基于边缘检测的匹配。另外,本项目测试集(应该)没有对模板进行旋转和切变,这两种变换以及缩放变换都是**线性变换(Linear Transformation)**,可以在我们的代码上直接应用变换矩阵加以解决。