Матанализ. Неофициальный конспект

Лектор: Сергей Витальевич Кисляков Конспектировал Леонид Данилевич

III семестр, осень 2023 г.

Оглавление

	0.1	Литература
1	Teor	рия меры
	1.1	Меры
	1.2	Обобщения
		1.2.1 Область задания меры (системы множеств)
	1.3	Поговорим про интеграл
		1.3.1 Про счётную аддитивность
		1.3.2 Продолжение меры
		1.3.3 Предмера
	1.4	Структура измеримых множеств
	1.1	1.4.1 Множества меры нуль
		$1.4.2$ σ -множества и $\delta \sigma$ -множества
		1.4.2 σ -множества и $\sigma\sigma$ -множества
		1.4.4 Полнота
		1.4.5 Двоичные (диадические) кубы
	1.5	Поведение меры Лебега при линейных отображениях
2	Инт	еграл Лебега
_	2.1	Измеримые отображения
	2.2	Грани и предельные переходы
	2.3	Интеграл
	2.4	Применения теоремы Леви. Свойства интеграла
	2.5	Интегралы от знакопеременных функций
	2.0	2.5.1 Про линейность интеграла
	2.6	Виды сходимости
	2.7	
	2.1	Классы L^p
		$2.7.1$ Приближение функций из класса L^p
	2.0	2.7.2 Связь интегралов Лебега и Римана
	2.8	Теоремы Тонелли и Фубини
		2.8.1 Как применять
	2.9	Свёртки. Приближение функций с помощью свёрток
		2.9.1 Меры с плотностью
		2.9.2 Образ меры
		2.9.3 Свойства свёртки
		2.9.4 Слегка другой способ построения аппроксимативной единицы 48
	2.10	Преобразования меры при дифференцируемом отображении
	2.11	Мера Лебега на поверхностях
		2.11.1 Частный случай линейного f
		2.11.2 <i>p</i> -мера Хаусдорфа
	2.12	Некоторые конкретные интегралы
3	Эпоз	ленты общей теории меры 59
3	3.1	Разложение Хана
	3.1	
	3.2	Интеграл комплексных функций

	3.2.1	Интеграл по	комплексной	мере	 	 	 	 	63
3.3	Разлох	жение Лебега			 	 	 	 	64

0.1 Литература

- 1. Б. М. Макаров «Теория меры и интеграла»
- 2. ? «Интеграл Лебега»
- 3. Халмош «Теория меры»

Глава 1

Теория меры

Лекция I

6 сентября 2023 г.

Пусть $f:[a,b] \to \mathbb{R}$ — ограниченная функция.

Для того, чтобы интеграл Римана-Дарбу существовал, нам надо, чтобы она была какой-то хорошей — с ограниченными колебаниями, часто просто требуется кусочная непрерывность. А как быть иначе?

Запишем такое, не совсем верное рассуждение.

Paccyждение. Пусть $|f(x)| \leqslant M$ при $x \in [a,b]$. Разобьём отрезок [-M,M] в объединение промежутков $[-M,M] = I_1 \sqcup \cdots \sqcup I_k$, будем считать, что $\forall k: |I_k| < \varepsilon$.

Обозначим за $e_j := f^{-1}(I_j)$. Видно, что $e_1 \sqcup \cdots \sqcup e_k = [a,b]$ — прообразы отрезков I_j образуют разбиение [a,b].

Оценим суммы Дарбу следующим образом:

$$S_{\Delta}f \leqslant \sum_{j=1}^{k} \beta_j |e_j| \qquad s_{\Delta}f \geqslant \sum_{j=1}^{k} \alpha_j |e_j|$$

где |e| — «длина» множества e.

Заметим, что верхние и нижние суммы близки: $S_{\Delta}f - s_{\Delta}f = \sum\limits_{j=1}^b (\beta_j - \alpha_j)|e_j| \leqslant \varepsilon \sum\limits_{j=1}^k |e_j| = \varepsilon (b-a).$

Таким образом, проинтегрировали любую ограниченную функцию. В чём проблема?

Как естественным образом определить длину множества |e|?

Надо, чтобы длина была аддитивной: $|e \sqcup f| = |e| + |f|$.

Замечание. Можно определить длину на всех подмножествах [a,b], но такое определение не конструктивно, и к тому же не единственно.

Пусть I — конечный промежуток, $\{I_j\}_{j=1}^{\infty}$ — тоже конечные промежутки, такие, что $I=\bigsqcup_{j=1}^{\infty}I_j$.

Также хочется, чтобы предельные переходы выполнялись: $|I| = \sum_{j=1}^{\infty} |I_j|$. Это называется *счётной* аддитивностью.

1.1 Меры

Пусть X — множество, \mathcal{A} — система его подмножеств. Пока будем считать только, что $\varnothing \in \mathcal{A}$.

Определение 1.1.1 (Функция множества). Вещественная функция множества $\phi : \mathcal{A} \to \mathbb{R}$, или комплексная функция множества $\phi : \mathcal{A} \to \mathbb{C}$.

Вещественная функция множества $\phi: \mathcal{A} \to \mathbb{R}_{\geq 0}$ называется неотрицательной.

Иногда также разрешают функции приобретать значения на расширенной прямой $\phi: \mathcal{A} \to \overline{\mathbb{R}}_{\geqslant 0} = [0, +\infty].$

Определение 1.1.2 (Мера). Аддитивная функция $\phi: \mathcal{A} \to \overline{\mathbb{R}}_{\geqslant 0}$.

Аддитивность означает, что в случае $e_1, \ldots, e_k \in \mathcal{A}$, если $e \coloneqq \bigsqcup_{j=1}^k e_j \in \mathcal{A}$, то $\phi(e) = \phi(e_1) + \cdots + \phi(e_k)$.

Замечание. Если ϕ — аддитивная функция, то $\phi(\varnothing) = \phi(\varnothing) + \phi(\varnothing)$, откуда $\phi(\varnothing) = 0$ (формально, $\phi(\varnothing) = \infty$ тоже подходит, но тогда из аддитивности $\phi \equiv +\infty$, это скучный случай).

Примеры.

• Пусть $\mathcal{P}_0(\mathbb{R})$ — совокупность конечных промежутков, $\mathcal{P}(\mathbb{R})$ — совокупность всех промежутков.

Тогда для обоих семейств можно ввести меру $\phi(I) = |I|$.

Заметим, что аддитивность действительно выполняется: если отрезок $\langle a,b \rangle$ разбит на отрезки $\langle a_0,a_1 \rangle,\ldots,\langle a_{n-1},a_n \rangle$, где $a_0=a,a_n=b$, то и правда

$$b - a = \sum_{j=1}^{n} (a_j - a_{j-1})$$

• То же самое можно сделать в \mathbb{R}^n : введём множества ограниченных и всех прямоугольных параллелепипедов.

$$\mathcal{P}_0(\mathbb{R}^n) = \{I_1 \times \cdots \times I_n | \text{все } I_j - \text{конечные промежутки}\}$$

$$\mathcal{P}(\mathbb{R}^n) = \{I_1 \times \cdots \times I_n | \text{все } I_j - \text{промежутки}\}$$

Обозначим за V_n объём на \mathcal{P} : $V_n(I_1 \times \cdots \times I_n) = |I_1| \cdot \ldots \cdot |I_n|$, где бесконечность в произведении трактуется так: если есть хотя бы один нуль, то произведение равно нулю, иначе бесконечно.

Почему эта мера аддитивна?

Пусть
$$Q, Q_1, \ldots, Q_k \in \mathcal{P}_0(\mathbb{R}^n)$$
, причём $Q = \bigsqcup_{j=1}^k Q_j$.

Лемма 1.1.1.
$$V_n(Q) = \sum_{j=1}^k V_n(Q_j)$$
.

Доказательство. Пусть f — функция на Q, определим

$$J(f) = \int_{I_n} \left(\cdots \int_{I_2} \left(\int_{I_1} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \right) \, \mathrm{d}x_2 \cdots \right) \, \mathrm{d}x_n$$

J, правда, определён не всегда — иногда какая-то промежуточная функция может быть не интегрируема по Риману-Дарбу.

J корректно определена для некоторой совокупности функций, которые образуют линейное пространство.

Рассмотрим $K=\delta_1\times\cdots\times\delta_n\subset Q$. Тогда для χ_K — характеристической функции K-J определён, причём $J(\chi_K)=|\delta_1|\cdot\ldots\cdot|\delta_n|=V_n(K)$.

Отсюда видно, что так как
$$\chi_Q = \sum\limits_{j=1}^k \chi_{Q_j}$$
, то $V_n(Q) = \sum\limits_{j=1}^k V_n(Q_j)$.

Пускай $\phi:\mathcal{A} \to [0,+\infty]$ — аддитивная функция множеств. ϕ называется *счётно аддитивной*, если для $a\in\mathcal{A},\{a_j\}_{j=1}^\infty\subset\mathcal{A}$ верно $a=\bigsqcup_{j=1}^\infty a_j\Rightarrow\phi(a)=\sum_{j=1}^\infty\phi(a_j)$.

Теорема 1.1.1. Объём в \mathbb{R}^n — счётно аддитивная функция на $\mathcal{P}_0(\mathbb{R}^n)$ (и на $\mathcal{P}(\mathbb{R}^n)$ тоже, но пока не надо).

Доказательство.

Лемма 1.1.2. Пусть $Q_1, \ldots, Q_k, Q \in \mathcal{P}_0(\mathbb{R}^n)$.

- 1. Если Q_1,\ldots,Q_k попарно не пересекаются, и $\forall j:Q_j\subset Q$, то $\sum\limits_{i=1}^kV_n(Q_j)\leqslant V_n(Q)$.
- 2. Если $Q \subset \bigcup_{j=1}^k Q_j$ (условий на дизъюнктность нет), то $V_n(Q) \leqslant \sum_{j=1}^k V_n(Q_j)$.

Доказательство леммы.

- 1. $\sum_{j=1}^{k} \chi_{Q_j} \leqslant \chi_Q$ (поточечно), применяем ранее определённый функционал J.
- 2. $\sum_{j=1}^{k} \chi_{Q_j} \geqslant \chi_Q$ (поточечно), применяем ранее определённый функционал J.

Пусть $Q, Q_j \in \mathcal{P}_0(\mathbb{R}^n)$, где $j \in \mathbb{N}$, $Q = \bigsqcup_{j=1}^{\infty} Q_j$.

• Рассмотрим k параллелепипедов $Q_1,\dots,Q_k\subset Q$. Применяя лемму, получаем $\sum\limits_{j=1}^k V_n(Q_j)\leqslant V_n(Q)$. Это верно для каждого k, переходя к пределу сразу получаем $\sum\limits_{j=1}^\infty V_n(Q_j)\leqslant V_n(Q)$.

Замечание. Эта часть верна для любой аддитивной меры.

• Докажем обратное: $\sum_{j=1}^{\infty} V_n(Q_j) \geqslant V_n(Q)$.

Пусть $Q = I_1 \times \cdots \times I_n$. Если $\exists s : I_s = 0$, то доказывать нечего.

Выберем $\varepsilon>0$. Существуют замкнутые отрезки $\overline{I_1},\ldots,\overline{I_s}$, такие что $\overline{I_j}\subset I_j$, причём для $\overline{Q}=\overline{I_1}\times\cdots\times\overline{I_n}$ его объём уменьшился несильно: $V_n(Q)\leqslant V_n\left(\overline{Q}\right)+\varepsilon$.

Аналогично раздуем составляющие параллелепипеды: $\forall j \in \mathbb{N}$ построим $\widetilde{Q_j} = \widetilde{I_1} \times \cdots \times \widetilde{I_n}$, так что открытый интервал $\widetilde{I_j} \supset I_j$, причём $V_n(\widetilde{Q_j}) \leqslant V_n(Q_j) + \frac{\varepsilon}{2^j}$.

Теперь замкнутый параллелепипед покрывается открытыми, значит, можно выбрать конечное подпокрытие, сразу получив оценку (для некоего $k \in \mathbb{N}$)

$$V_n(Q) - \varepsilon \leqslant \sum_{j=1}^k \left(V_n(Q_j) + \frac{\varepsilon}{2^j} \right) \leqslant \sum_{j=1}^\infty \left(V_n(Q_j) + \frac{\varepsilon}{2^j} \right)$$

Устремляя $\varepsilon \to 0$, получаем требуемое $V_n(Q) \leqslant \sum\limits_{j=1}^\infty V_n(Q_j)$.

1.2 Обобщения

1.2.1 Область задания меры (системы множеств)

Пусть X — множество, \mathcal{A} — система его подмножеств ($\emptyset \in \mathcal{A}$).

Определение 1.2.1 (Кольцо). Система множеств \mathcal{A} , такая что $\forall a, b \in \mathcal{A} : (a \cap b), (a \cup b), (a \setminus b) \in \mathcal{A}$.

Пример (Кольцо). Объединения конечного числа отрезков (или даже параллелепипедов (теорема 1.2.1)) ($\mathcal{P}(\mathbb{R}^n)$ или $\mathcal{P}_0(\mathbb{R}^n)$).

Определение 1.2.2 (Алгебра). Кольцо \mathcal{A} , такое что $X \in \mathcal{A}$.

Замечание. В алгебре $\forall a \in \mathcal{A}: a^{\complement} \in \mathcal{A}$. В частности, из-за законов де Моргана достаточно проверять только одно из $(a \cup b), (a \cap b) \in \mathcal{A}$

Определение 1.2.3 (Полукольцо). Система множеств $\mathcal{A} \subset 2^X$, такое что $\forall a,b \in \mathcal{A} : (a \cap b) \in \mathcal{A}$, а разность $(a \setminus b)$ есть объединение конечного числа попарно непересекающихся подмножеств из \mathcal{A} .

Пример (Полукольцо). Отрезки и конечные отрезки (или даже параллелепипеды (теорема 1.2.1)) $(\mathcal{P}(\mathbb{R}^n)$ или $\mathcal{P}_0(\mathbb{R}^n)$).

Пусть X,Y — множества, $\mathcal{A}\subset 2^X,\mathcal{B}\subset 2^Y$ — полукольца.

Определение 1.2.4 (Обобщённый прямоугольник). Произведение $a \times b$, где $a \in \mathcal{A}, b \in \mathcal{B}$.

Теорема 1.2.1. Множество обобщённых прямоугольников $\mathcal{C} = \{a \times b | a \in \mathcal{A}, b \in \mathcal{B}\}$ есть полукольцо в $X \times Y$.

Доказательство.

- $\varnothing \in \mathcal{C} : \varnothing \times \varnothing = \varnothing$.
- $(a_1 \times b_1) \cap (a_2 \times b_2) = (a_1 \cap a_2) \times (b_1 \cap b_2)$, поэтому C замкнуто относительно пересечения.
- Рассмотрим $u, v \in \mathcal{C}$. $u \setminus v = u \setminus (u \cap v)$, поэтому можно считать, что $v \subset u$.

Пусть $u=a_1\times b_1, v=a_2\times b_2$. Так как $v\subset u$, то $b_2\subset b_1, a_2\subset a_1$. Пусть $a_1\setminus a_2=\bigsqcup_{s=1}^n e_s$, $b_1\setminus b_2=\bigsqcup_{t=1}^m f_t$.

Несложно видеть, что $u\setminus v=\left(a_2\sqcup\bigsqcup_{s=1}^n e_s\right)\times\left(b_2\sqcup\bigsqcup_{t=1}^m f_t\right)\setminus(a_2\times b_2)$, что есть объединение (n+1)(m+1)-1 понятного обобщённого прямоугольника.

Замечание. Даже если \mathcal{A} и \mathcal{B} — кольца или алгебры, множества обобщённых прямоугольников могут всё равно образовывать лишь полукольцо.

Определение 1.2.5 (Мера на полукольце). Неотрицательная аддитивная функция множества (возможно, принимающая значения $+\infty$).

Пусть $\mathcal{P}_0(\mathbb{R})$ — полукольцо конечных отрезков, $f:\mathbb{R}\to\mathbb{R}$ — нестрого возрастающая функция.

Определение 1.2.6 (Квазидлина, порождённая f). $\mu_f(\langle a,b \rangle) \stackrel{def}{=} f(b) - f(a)$.

Эта квазидлина, понятное дело, аддитивна, но не для всех функций она счётно аддитивна.

Контрпример. Пусть
$$f(x) = \begin{cases} 0, x < 1 \\ 1, x \geqslant 1 \end{cases}$$
 . Тогда $1 = f([0,1)) \neq \sum_{i=1}^{\infty} f\left(\left[1 - \frac{1}{2^{i-1}}, 1 - \frac{1}{2^i}\right)\right) = 0$

Теорема 1.2.2. Пускай $\mathcal{A}\subset 2^X, \mathcal{B}\subset 2^Y$ — полукольца, μ и ν на них — (конечные) меры, определим меру на произведении

$$\gamma(u\times v)\coloneqq \mu(u)\cdot \nu(v)$$

Утверждается, что γ аддитивна (теорема 1.3.1)

Лекция II

8 сентября 2023 г.

Пусть \mathcal{A} — полукольцо подмножеств 2^X .

Определение 1.2.7 (Кольцо, порождённое \mathcal{A}). $\mathcal{R}(\mathcal{A}) \stackrel{def}{=} \left\{ \bigsqcup_{j=1}^k d_j \middle| d_j \in \mathcal{A} \right\}$ — всевозможные конечные дизъюнктные объединения.

Лемма 1.2.1. $\mathcal{R}(\mathcal{A})$ есть кольцо подмножеств 2^X .

Доказательство. Пусть $u = c_1 \sqcup \cdots \sqcup c_s; v = d_1 \sqcup \cdots \sqcup d_t$.

• Проверим, что $\mathcal{R}(\mathcal{A})$ замкнуто относительно пересечения. В самом деле,

$$u \cap v = \bigsqcup_{i,j} (c_i \cap d_j)$$

• Проверим, что $\mathcal{R}(\mathcal{A})$ замкнуто относительно разности: индукция по t. База: t=1.

$$(c_1 \sqcup \cdots \sqcup c_s) \setminus d_1 = (c_1 \setminus d_1) \sqcup \cdots \sqcup (c_s \setminus d_1)$$

Переход:

$$(c_1 \sqcup \cdots \sqcup c_s) \setminus (d_1 \sqcup \cdots \sqcup d_t) = \left((c_1 \sqcup \cdots \sqcup c_s) \setminus (d_1 \sqcup \cdots \sqcup d_{t-1}) \right) \setminus d_t$$

• Проверим, что $\mathcal{R}(\mathcal{A})$ замкнуто относительно объединения.

$$u \cup v = (u \setminus v) \sqcup (v \setminus u) \sqcup (u \cap v)$$

Пусть $\mathcal{B}\subset 2^X$ — полукольцо. Среди всех колец, $\mathcal{C}\supset\mathcal{B}$ есть наименьшее — это их пересечение.

Факт 1.2.1. Это кольцо C получается, как $\mathcal{R}(\mathcal{B})$.

1.3 Поговорим про интеграл

 $\mathcal{A}\subset 2^X$ — полукольцо, $\mu:\mathcal{A}\to [0,+\infty]$ — мера.

Определение 1.3.1 (Простая функция (относительно \mathcal{A})). Функция вида $f = \sum_{i=1}^k \alpha_i \chi_{e_i}$, где $e_i \in \mathcal{A}$, $\forall 1 \leq i < j \leq k : e_i \cap e_j = \varnothing$.

Определим «хиленький интеграл», который пока не будем обозначать ∫:

Определение 1.3.2 (Интеграл от простой функции по мере μ). $I_{\mu}(f) = \sum_{j=1}^{k} \alpha_i \mu(e_i)$, если это имеет смысл (считается, что $0 \cdot \infty = 0$, но $(-\infty) + (+\infty)$ не определено).

Лемма 1.3.1. Интеграл от простой функции не зависит от её представления в виде суммы.

Доказательство. Пусть
$$f=\sum\limits_{i=1}^k \alpha_i\chi_{e_i}=\sum\limits_{j=1}^m \beta_j\chi_{e'_j}$$
, где $\alpha_i,\beta_j\neq 0$.

Обозначим $A = \{x \in X | f(x) \neq 0\}$ (кстати, носитель $\mathrm{supp}\, f \stackrel{def}{=} \mathrm{Cl}\, \{x \in X | f(x) \neq 0\}$). Очевидно, (e_1,\ldots,e_k) , как и (e'_1,\ldots,e'_m) — разбиения A. У них есть общее измельчение e'', причём на

каждом элементе $e''_{i,j} \coloneqq e_i \cap e'_j$ выполняется $\alpha_i = \beta_j$, откуда оба интеграла от простой функции — через e' — совпадают с определением через e'':

$$\sum_{i=1}^{k} \alpha_{i} \mu(e_{i}) = \sum_{i=1}^{k} \alpha_{i} \mu\left(\bigsqcup_{j=1}^{m} e_{i,j}\right) = \sum_{i=1}^{k} \sum_{j=1}^{m} \alpha_{i} \mu(e_{i,j}) = \sum_{j=1}^{m} \beta_{j} \mu\left(\bigsqcup_{i=1}^{k} e_{i,j}\right) = \sum_{j=1}^{m} \beta_{j} \mu(e'_{j})$$

Если какой-то e_i бесконечен, то один из конечного числа кусочков, на которые мы его разобьём $(e_i \cap e'_j)$ тоже будет бесконечным, поэтому в случае бесконечностей (если обе суммы определены) обе суммы будут бесконечностями одного знака.

Свойства (Интеграл от простой функции).

- $I_{\mu}(c \cdot f) = c \cdot I_{\mu}(f)$
- Если f,g простые функции, то f+g тоже простая, причём $I_{\mu}(f+g)=I_{\mu}(f)+I_{\mu}(g)$ (если в сумме двух интегралов нет бесконечностей разных знаков).

Доказательство. Пусть $f=\sum\limits_{i=1}^k \alpha_i\chi_{e_i}; \quad g=\sum\limits_{j=1}^m \beta_j\chi_{e'_j},$ где $\alpha_i,\beta_j\neq 0.$

Положим $A\coloneqq\bigsqcup_i e_i;\quad B\coloneqq\bigsqcup_j e_j'.$ Рассмотрим $(A\setminus B),(B\setminus A),(A\cap B)$ — все они лежат в $\mathcal{R}(A).$

Будем считать, что (e_1, \ldots, e_k) , как разбиение A, измельчено так, что оно уважает разбиение $(A \setminus B) \sqcup (A \cap B) = A$.

Аналогично считаем, что e' уважает разбиение $(B \setminus A) \sqcup (B \cap A) = B$

Теперь $\mathcal{E} \coloneqq \left\{ e_i \in \{e_i\}_{i=1}^k \middle| e_i \subset A \cap B \right\}$ и $\mathcal{E}' \coloneqq \left\{ e_j' \in \{e_j'\}_{j=1}^m \middle| e_j \subset A \cap B \right\}$ — разбиения $A \cap B$. Измельчим те элементы, которые попали в \mathcal{E} и \mathcal{E}' , теперь ещё считаем, что e и e' уважают друг друга. Можно считать, что и f, и g определены на разбиениях $\{e_i\}_{i=1}^k \cup \{e_j'\}_{j=1}^m$, и теперь по определению f+g является простой функцией, и I(f+g) = I(f) + I(g).

• Для двух простых интегрируемых функций $f\leqslant g\Rightarrow I_{\mu}(f)\leqslant I_{\mu}(g).$

Доказательство. Если интегралы — бесконечности одного знака, то доказывать нечего.

Иначе $I_{\mu}(g)$ и $I_{\mu}(-f)$ не являются бесконечностями разного знака, то есть определено

$$I_{\mu}(g-f) = I_{\mu}(g) - I_{\mu}(f)$$

Ho (g-f) — функция неотрицательная, по определению её интеграл неотрицателен. $\hfill\Box$

Лемма 1.3.2. Пусть A — полукольцо с мерой μ ; $a, a_1 \dots, a_k \in A$.

- Если a_j попарно дизъюнктны, причём $a_j \subset a$, то $\sum\limits_{j=1}^k \mu(a_j) \leqslant \mu(a)$.
- Если $a \subset \bigcup_{j=1}^k a_j$ (условий на дизъюнктность нет), то $\mu(a) \leqslant \sum_{j=1}^k \mu(a_j)$.

- $I_{\mu}\left(\chi_{\bigcup a_{j}}\right) \leqslant I_{\mu}\left(\chi_{a}\right)$ так как $\chi_{\bigcup a_{j}} \leqslant \chi_{a}$.
- $I_{\mu}\left(\chi_{\bigcup a_{j}}\right)\geqslant I_{\mu}\left(\chi_{a}\right)$, так как $\chi_{\bigcup a_{j}}\geqslant\chi_{a}$.

Теорема 1.3.1. Пусть $\mathcal{A} \subset 2^X, \mathcal{B} \subset 2^Y$ — полукольца обобщённых прямоугольников. Положим $\mathcal{C} \coloneqq \mathcal{A} \times \mathcal{B}$, это полукольцо подмножеств $X \times Y$.

Пусть μ — мера на \mathcal{A} , ν — мера на \mathcal{B} . Определим произведение мер $(\mu \otimes \nu)(a \times b) \stackrel{def}{=} \mu(a)\nu(b)$. Утверждается, что $\mu \otimes \nu$ — мера на \mathcal{C} .

Доказательство. Докажем аддитивность. Пусть $P=a\times b$, причём $P=\bigsqcup_{j=1}^k P_j$, где $P_j=a_j\times b_j$.

Проверим, что $(\mu \otimes \nu)(P) \stackrel{?}{=} \sum_{j=1}^{k} (\mu \otimes \nu)(P_j)$.

Разделим переменные: $\chi_{c\times d}(s,t)=\chi_c(s)\cdot\chi_d(t)$.

Дано, что
$$\chi_P = \sum_{j=1}^k \chi_{P_j}$$
, то есть $\chi_a(s)\chi_b(t) = \sum_{j=1}^k \chi_{a_j}(s)\chi_{b_j}(t)$.

Интегрируем ($I_{\nu,t}$ означает интеграл по мере ν функции от переменной t при фиксированном s):

$$I_{\nu,t}\left(\chi_a(s)\chi_b(t)\right) = \sum_{j=1}^k I_{\nu,t}\left(\chi_{a_j}(s)\cdot\chi_{b_j}(t)\right) \quad \Rightarrow \quad \chi_a(s)\nu(b) = \sum_{j=1}^k \chi_{a_j}(s)\cdot\nu(b_j)$$

$$I_{\mu}\left(\chi_a(s)\nu(b)\right) = \sum_{j=1}^k I_{\mu}\left(\chi_{a_j}(s)\cdot\nu(b_j)\right) \quad \Rightarrow \quad \mu(a)\nu(b) = \sum_{j=1}^k \mu(a_j)\nu(b_j)$$

Данное доказательство также допускает бесконечные меры.

Замечание. Пусть μ — мера на полукольце \mathcal{A} . Для $e \in \mathcal{R}(\mathcal{A})$ положим $\overline{\mu}(e) = I_{\mu}(\chi_e)$.

Введённая $\overline{\mu}$ — мера на $\mathcal{R}(\mathcal{A})$, понятно, что это единственно возможное продолжение — единственная (аддитивная) мера на $\mathcal{R}(\mathcal{A})$, такая, что её сужение на \mathcal{A} совпадает с μ .

Замечание. Если меру определять на кольце, а не на полукольце, то аддитивность достаточно проверять для двух множеств: $e_1, e_2 \in \mathcal{R}(\mathcal{A}) \Rightarrow e_1 \cup e_2 \in \mathcal{R}(\mathcal{A})$.

1.3.1 Про счётную аддитивность

Определение 1.3.3 (Регулярная мера μ). Мера, удовлетворяющая условиям:

- 1. $\forall a \in \mathcal{A} : \mu(a) = \inf \{ \mu(U) | U \supset a; U \text{ открыто}; U \in \mathcal{A} \}.$
- 2. $\forall a \in \mathcal{A} : \mu(a) = \sup \{\mu(U) | K \subset a; K \text{ компактно}; K \in \mathcal{A} \}.$

Пример (Регулярная мера). Мера Лебега на $\mathcal{P}_0(\mathbb{R}^n)$.

Предостережение. Для полукольца возможно бесконечных параллелепипедов теорема Александрова не применима: $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$ не регулярно сверху, всякий параллелепипед, содержащий $\mathbb{R} \times \{0\}$ уже имеет бесконечную меру (но ведь можно приблизить сколь угодно близко открытым множеством, в чём проблема?).

Теорема 1.3.2 (А. Д. Александров). Пусть X — топологическое пространство, $\mathcal{A} \subset 2^X$ — полукольцо, μ — регулярная мера на \mathcal{A} .

Утверждается, что μ счётно аддитивна.

Доказательство. Рассмотрим $a \in \mathcal{A}, \{a_j\}_{j=1}^{\infty} \subset \mathcal{A}$. Пусть $a = \bigsqcup_{j=1}^{\infty} a_j$. Для доказательства $\mu(a) = \sum_{j=1}^{\infty} \mu(a_j)$ покажем неравенства в обе стороны.

• $\forall k \in \mathbb{N} : \sum_{j=1}^k \mu(a_j) \leqslant \mu(a)$ (лемма 1.3.2), производим предельный переход.

• Если $\mu(a_i) = \infty$, или $\mu(a) = 0$, то доказывать нечего.

Выберем $\varepsilon>0$. Найдём такие $U_j, K\in\mathcal{A}$, что U_j открыты, K компактно, $U_j\supset a_j, K\subset a$, причём $\mu(U_j)\leqslant \mu(a_j)+\frac{\varepsilon}{2^j}$ и $\mu(K)\geqslant \mu(a)-\varepsilon$.

Так как из открытого покрытия компакта можно выделить конечное подпокрытие (и пусть N — максимальный номер элемента подпокрытия), то

$$\mu(a) - \varepsilon \leqslant \mu(K) \leqslant \sum_{j=1}^{N} \mu(U_j) \leqslant \sum_{j=1}^{N} \left(\mu(a_j) + \frac{\varepsilon}{2^j}\right) = \sum_{j=1}^{\infty} \mu(a_j) + \varepsilon$$

Устремляя $\varepsilon \to 0$, получаем необходимое.

Примеры (Счётно-аддитивные меры).

• Пусть X — (возможно бесконечное) множество, \mathcal{A} — семейство всех его конечных подмножеств. Можно определить $\mu(a) = \#(a)$ — мощность множества $a \in \mathcal{A}$.

Она счётно-аддитивная, так как если $a = \coprod_{j=1}^{\infty} a_j$, причём $a \in \mathcal{A}$, то почти все (кроме конечного числа) $a_j = \varnothing$.

• Можно продолжить эту меру на 2^X :

$$\mu(b) = \begin{cases} \#(b), & b \text{ конечно} \\ +\infty, & \text{иначе} \end{cases}$$

• Пусть $\{\xi_x\}_{x\in X}\subset \mathbb{R}_{\geqslant 0}$ — числовое семейство. Можно определить $\nu:2^X\to \overline{\mathbb{R}}_{\geqslant 0}, \nu(e)=\sum_{x\in e}\xi_x$. Если семейство суммируемо, то мера конечна.

Лекция III 20 сентября 2023 г.

Вспомним, что мы определяли квазидлину $\mu_f(\langle a,b\rangle)=f(b)-f(a)$ для возрастающей функции $f:\mathbb{R}\to\mathbb{R}$ (определение 1.2.6). Это функция может быть не счётно аддитивной, что случается, если f разрывна.

Поправим это определение, чтобы мера стала счётно-аддитивной. Пусть $f:\langle a,b\rangle \to \mathbb{R}$ — возрастающая функция.

Рассмотрим $\mathcal{P}(\langle a,b \rangle)$ — полукольцо промежутков, содержащихся в $\langle a,b \rangle$, и произвольно доопределим f на некотором открытом интервале, содержащем $\langle a,b \rangle$ (скажем, если $a \in \langle a,b \rangle$, то есть $\langle a,b \rangle$ замкнут слева, то положим $f(a-\varepsilon)=f(a)-\varepsilon$ для $\varepsilon \in (0,1)$).

Определение 1.3.4 (Стилтьесова длина). Длина, определённая по формуле

$$\mu_f(\langle c, d \rangle) = \begin{cases} f(d-) - f(c-), & \langle c, d \rangle = [c, d) \\ f(d-) - f(c+), & \langle c, d \rangle = (c, d) \\ f(d+) - f(c+), & \langle c, d \rangle = (c, d) \\ f(d+) - f(c-), & \langle c, d \rangle = [c, d] \end{cases}$$

где
$$f(x_0+)\stackrel{def}{=}\lim_{x\to x_0+}f(x)$$
 и $f(x_0-)\stackrel{def}{=}\lim_{x\to x_0-}f(x)$.

Предложение 1.3.1. Стилтьесова длина счётно аддитивна.

Доказательство. Выполняется теорема Александрова. Проверим, например, что для полуинтервала [c,d) мера регулярна.

Рассмотрим $\varepsilon > 0$, для открытого подмножества, содержащего [c,d) выберем $(c-\delta,d)$. Для достаточно маленьких δ : $f((c-\delta)+) > f(c-)-\varepsilon$. В качестве компактного подмножества, содержащегося в [c,d), выберем $[c,d-\delta]$. При достаточно маленьких δ : $f((d-\delta)+) > f(d-)-\varepsilon$.

Также можно проверить регулярность для бесконечных промежутков.

1.3.2 Продолжение меры

Продолжать можно только счётно-аддитивные меры, иначе будет неоднозначно.

Определение 1.3.5 (σ -алгебра). Такая алгебра множеств $\mathcal{A} \subset 2^X$, что она замкнута относительно счётных операций: если семейство $\{A_i\}_{i\in\mathbb{N}}$ лежит в \mathcal{A} , то $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$ и $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{A}$.

Теорема 1.3.3. Пусть $\mathcal{C} \subset 2^X$ — система подмножеств X. Тогда в X есть наименьшая σ -алгебра, содержащая \mathcal{C} .

Доказательство. Пересечение любого множества σ -алгебр — σ -алгебра. Хотя бы одна есть — это 2^X . Тогда в качестве наименьшей подойдёт пересечение всех σ -алгебр, содержащих \mathcal{C} .

Теорема 1.3.4. Пусть $\mathcal{P}_0(\mathbb{R}^n)$ — полукольцо всех конечных прямоугольных параллелепипедов, а \mathcal{A} — наименьшая σ -алгебра, содержащая $\mathcal{P}_0(\mathbb{R}^n)$.

Тогда объём на $\mathcal{P}_0(\mathbb{R}^n)$ единственным образом продолжается до счётно аддитивной меры $\lambda_n - n$ -мерной меры Лебега на \mathcal{A} .

Доказательство. Мы это докажем здесь (теорема 1.3.6). Сейчас приведём схему доказательства.

- Обозначим n-мерный объём на параллелепипедах из $\mathcal{P}_0(\mathbb{R}^n)$ за v_n . Построим $v_n \leadsto v_n^*$, заданную на $2^{\mathbb{R}^n}$, которая не будет даже аддитивной.
 - Тем не менее, для всякого $P \in \mathcal{P}_0(\mathbb{R}^n)$: $v_n^*(a) = v_n(P)$
- Теперь сузим v_n^* на некоторую σ -алгебру, содержащую $\mathcal{P}_0(\mathbb{R}^n)$, причём там эта функция будет уже и аддитивной, и счётно аддитивной.

Факт 1.3.1. Все открытые, а значит, и все замкнутые множества, лежат в наименьшей σ -алгебре \mathcal{A} , содержащей $\mathcal{P}_0(\mathbb{R}^n)$.

Доказательство. Открытое множество представимо, как объединение кубов с рациональными координатами вершин, содержащихся в нём. □

Пусть Y — топологическое пространство.

Определение 1.3.6 (Борелевская σ -алгебра). Наименьшая σ -алгебра подмножеств множества Y, содержащая все открытые множества. Обозначают $\mathcal{B}(Y)$.

Замечание. Выше определённая \mathcal{A} совпадает с $\mathcal{B}(\mathbb{R}^n)$.

Факт 1.3.2. Пусть A — алгебра подмножеств множества X. Следующие утверждения эквивалентны.

- 1. $A \sigma$ -алгебра.
- 2. Для всех $A_i \in \mathcal{A}, i \in \mathbb{N}$ верно, что $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$.
- 3. Для всех $A_i \in \mathcal{A}, i \in \mathbb{N}$ верно, что $\bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$.
- 4. Для всех $A_i\in\mathcal{A}$, таких что $A_1\subset A_2\subset\dots$ верно, что $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}.$
- 5. Для всех $A_i \in \mathcal{A}$, таких, что $A_1 \supset A_2 \supset \dots$ верно, что $\bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$.

6. Для всех $A_i \in \mathcal{A}$, таких, что $A_i \cap A_j = \varnothing$ для $i \neq j$ верно, что $\bigsqcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$.

Доказательство.

 $2 \iff 3$ Закон де Моргана.

 $1 \iff (2 \land 3)$ По определению.

 $2 \Rightarrow 4$ Очевидно.

 $4\Rightarrow 2$ Положим $\overline{A}_i:=A_1\cup\cdots\cup A_i$. Тогда \overline{A}_i возрастают по включению, и $\bigcup\limits_{i\in\mathbb{N}}\overline{A}_i\in\mathcal{A}$.

 $4 \iff 5$ Тоже закон де Моргана.

$$4\Rightarrow 6$$
 Пусть $A_i\in\mathcal{A}$, причём $A_i\cap A_j=\varnothing$ для $i\neq j$. Выберем $\widetilde{A}_i\coloneqq A_1\cup\cdots\cup A_i$. Согласно (4) $\bigcup_{i\in\mathbb{N}}\widetilde{A}_i\in\mathcal{A}$.

$$6\Rightarrow 4$$
 Пусть $A_i\in\mathcal{A}$, причём $A_i\subset A_{i+1}$. Положим $e_1=A_1,\ e_j=A_j\setminus A_{j-1}$ для $j\geqslant 2$. Тогда $e_i\cap e_j=\varnothing$ для $i\neq j,$ и $\bigsqcup_{i\in\mathbb{N}}e_i=\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$.

Факт 1.3.3. Пусть $\mathcal{A} \subset 2^X - \sigma$ -алгебра, μ — мера на \mathcal{A} . Следующие условия эквивалентны.

1. µ счётно аддитивна.

2. Если
$$A_i \in \mathcal{A}, A_i \cap A_j = \varnothing$$
 для $i \neq j$, то $\mu\left(\bigsqcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} \mu(A_i)$.

3. Если
$$A_1 \subset A_2 \subset \ldots$$
, то $\mu\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \lim_{i \to \infty} \mu(A_i)$.

Доказательство.

 $1\iff 2$ Так как $\mathcal{A}-\sigma$ -алгебра, то $\bigsqcup_{i\in\mathbb{N}}A_i$ автоматически лежит в \mathcal{A} , и 1 тавтологично 2.

$$2\Rightarrow 3$$
 Пускай $A_1\subset A_2\subset\dots$ Введём $e_1=A_1,\,e_j=A_j\setminus A_{j-1}$ для $j\geqslant 2.$ $e_i\cap e_j=\varnothing$ для $i\neq j.$ Тогда $\mu\left(igcup_{i\in\mathbb{N}}A_i
ight)=\mu\left(igcup_{i\in\mathbb{N}}e_i
ight)=\sum\limits_{i\in\mathbb{N}}\mu(e_i)=\lim\limits_{n\to\infty}\mu\left(igcup_{i=1}^ne_i
ight)=\lim\limits_{n\to\infty}\mu(A_n).$

 $3 \Rightarrow 2$ То же самое в обратном порядке.

Предостережение. Монотонность по убывающим последовательностям не выполняется:

Рассмотрим на кольце $\mathcal{P}(\mathbb{R})$ убывающие по включению множества $A_n \coloneqq (n, +\infty)$. Несмотря на то, что $A_1 \supset A_2 \supset \ldots$, всё-таки $\mu\left(\bigcap_{i \in \mathbb{N}} A_i\right) = \mu(\varnothing) = 0 \neq \lim_{n \to \infty} \mu(A_n) = \infty$.

Теорема 1.3.5. Если
$$B_i \in \mathcal{A},\ B_1 \supset B_2 \supset \ldots,\$$
причём $\mu(B_1) < +\infty,\$ то $\mu\left(\bigcap_{i \in \mathbb{N}} B_i\right) = \lim_{j \to \infty} \mu(B_j).$

Доказательство. Положим $A_i = B_1 \setminus B_i$.

Тогда
$$\bigcap_{i\in\mathbb{N}}B_i=B_1\setminus\bigcup_{i\in\mathbb{N}}A_i$$
, и $\mu\left(\bigcap_{i\in\mathbb{N}}B_i\right)=\mu(B_1)-\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\mu(B_1)-\lim_{n\to\infty}\mu(A_n)=\mu(B_1)-\lim_{n\to\infty}\mu(B_n)$

Так как $\mu(B_1)$ конечна, то все производимые вычитания справедливы — не происходит вычитания бесконечности из бесконечности.

Замечание. Если мера конечна, то справедливо и обратное.

Пусть X — множество, \mathcal{P} — полукольцо его подмножеств, μ — мера на \mathcal{P} (аддитивная, но не факт, что счётно-аддитивная).

Определение 1.3.7 (Внешняя мера, построенная по μ). Функция μ^* , заданная на 2^X , определяемая по формуле

$$\mu^*(e) = \inf \left\{ \sum_{j \in \mathbb{N}} \mu(a_j) \middle| a_j \in \mathcal{P}, e \subset \bigcup_{j \in \mathbb{N}} a_j \right\}$$

Свойства.

- $\mu^*(\varnothing) = 0$. Так, покрытие счётным количеством пустых множеств имеет суммарную меру 0.
- $e_1 \subset e_2 \Rightarrow \mu^*(e_1) \leqslant \mu^*(e_2)$ монотонность.
- Внешняя мера совсем не факт, что является мерой (то есть аддитивна). Тем не менее, верна счётная полуаддитивность: $e \subset \bigcup_{i \in \mathbb{N}} e_i \Rightarrow \mu^*(e) \leqslant \sum_{i \in \mathbb{N}} \mu^*(e_i)$.

Доказательство. Если хотя бы одно из $\mu^*(e_i)$ бесконечно, то доказывать нечего. Далее считаем, что $\forall i: \mu^*(e_i)$ конечно.

Выберем $\varepsilon > 0$. По определению внешней меры $\forall i,k \in \mathbb{N}: \exists a_{i,k} \in \mathcal{P}$, такие, что $\bigcup_{k \in \mathbb{N}} a_{i,k} \supset e_i$, причём $\sum_{k \in \mathbb{N}} \mu(a_{i,k}) \leqslant \mu^*(e_i) + \frac{\varepsilon}{2^i}$.

Тогда
$$e \subset \bigcup_{i,k \in \mathbb{N}} a_{i,k}$$
 и $\mu^*(e) \leqslant \sum_{i,k} \mu(a_{i,k}) = \sum_{i \in \mathbb{N}} \sum_{k \in \mathbb{N}} \mu(a_{i,k}) \leqslant \sum_i \mu^*(e_i) + \varepsilon.$

• Если μ счётно аддитивна, то $\mu^*|_{\mathcal{D}} = \mu$.

Доказательство. Для $b \in \mathcal{P}: \mu^*(b) \leqslant \mu(b)$, так как можно выбрать покрытие из одного элемента.

Докажем, что $\mu(b) \leqslant \mu^*(b)$. Рассмотрим кольцо $\mathcal{R}(\mathcal{P})$ — совокупность дизъюнктных объединений $e_1 \sqcup \cdots \sqcup e_s$, где $e_i \in \mathcal{P}$. Мера μ единственным образом продолжается до меры $\overline{\mu}$ на $\mathcal{R}(\mathcal{P})$.

Лемма 1.3.3.
$$\forall e \subset X: \mu^*(e) = \mu^{\triangle}(e) \coloneqq \inf \left\{ \sum_{j \in \mathbb{N}} \mu(c_j) \middle| \{c_j\}_{j \in \mathbb{N}} \subset \mathcal{P} \ u \ e \subset \bigsqcup_{i \in \mathbb{N}} c_i \right\}$$

Доказательство леммы.

 $\mu^*(e)\leqslant \mu^{\triangle}(e)$, так как всякое дизъюнктное покрытие является покрытием.

Если $e\subset\bigcup_{i\in\mathbb{N}}a_i$, то можно рассмотреть дизъюнктное покрытие множествами $\overline{a}_i:=a_i\setminus(a_1\cup\dots\cup a_{i-1}).$

Так как $\overline{a}_i \in \mathcal{R}(\mathcal{P})$ и $\overline{a}_i \subset a_i$, то $\overline{\mu}(\overline{a}_i) \leqslant \mu(a_i)$.

Согласно свойству $\mathcal{R}(\mathcal{P})$: $\overline{a}_j = \bigsqcup_{s=1}^{k_j} e_{j,s}$, где при данном j все $e_{j,s}$ попарно не пересекаются. Но при разных j они тем более не пересекаются, они лежат в разных \overline{a}_j .

Таким образом,
$$\bigsqcup_{j,s} e_{j,s} \supset e$$
, откуда $\mu^{\triangle}(e) \leqslant \sum_{j,s} \mu(e_{j,s}) = \sum_j \overline{\mu}(\overline{a}_j) \leqslant \sum_j \mu(a_j)$. Переходя к инфимуму, получаем $\mu^{\triangle}(e) \leqslant \mu^*(e)$.

Используя лемму, рассмотрим произвольное дизъюнктное покрытие $e_j \in \mathcal{P}$ такое, что $\bigsqcup_{j \in \mathbb{N}} e_j \supset e$. Введём $\widetilde{e}_j := e_j \cap e$. Для них $\bigsqcup_{i \in \mathbb{N}} \widetilde{e}_j = e$.

Согласно счётной аддитивности $\mu(e)=\sum\limits_{j\in\mathbb{N}}\mu(\widetilde{e}_j)\leqslant\sum\limits_{j\in\mathbb{N}}\mu(e_j).$ Переходя к инфимуму, получаем искомое.

Контрпример (Счётная аддитивность важна). Пусть l_f — квазидлина, порождённая функцией $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \geqslant 0 \end{cases}$.

Покажем, что внешняя мера l_f^* везде равна нулю. Рассмотрим счётное покрытие прямой $\mathbb{R} = \bigsqcup_{n \in \mathbb{N}_0} [n,n+1) \sqcup \bigsqcup_{n \in \mathbb{Z}} [-2^n,-2^{n-1})$. Квазидлины всех составляющих полуинтервала равны 0, значит, внешняя мера прямой равна 0, но тогда по монотонности и внешние веры всех подмножеств тоже равны 0.

Лекция IV 27 сентября 2023 г.

1.3.3 Предмера

Пускай X — множество.

Вещи, обладающие свойствами внешней меры будут возникать у нас разными способами, поэтому удобно уже сейчас обобщить это понятие, аксиоматизировав его.

Определение 1.3.8 (Предмера). Функция $\gamma: 2^X \to \mathbb{R}_+$, обладающая свойствами

- 1. $\gamma(\varnothing) = 0$.
- 2. Монотонность $a \subset b \Rightarrow \gamma(a) \leqslant \gamma(b)$.
- 3. Счётная полуаддитивность $a \subset \bigcup_{i \in \mathbb{N}} a_i \Rightarrow \gamma(a) \leqslant \sum_{i \in \mathbb{N}} \gamma(a_i).$

Замечание. Из 3. следует 2., проверяется выбором $a_i = \begin{cases} b, & i=1 \\ \varnothing, & i>1 \end{cases}$. Более того, можно не требовать положительности, она следует из монотонности по отношению к пустому множеству.

Определение 1.3.9 (γ -измеримое множество $e \subset X$).

$$\forall a \subset X : \gamma(a) = \gamma(a \cap e) + \gamma(a \setminus e) = \gamma(a \cap e) + \gamma\left(a \cap e^{\complement}\right)$$

Теорема 1.3.6 (Лебег — Каратеодори). Совокупность Σ всех γ -измеримых множеств образует σ -алгебру, на которой функция $\gamma|_{\Sigma}$ счётно-аддитивна.

Дополнение. Если $\gamma = \mu^*$, где μ — мера на полукольце \mathcal{P} , то все множества из \mathcal{P} автоматически γ -измеримы.

Дополнение. Если μ счётно аддитивна на исходном полукольце \mathcal{P} , то $\mu^*|_{\mathcal{P}} = \mu$.

- Покажем, что Σ алгебра множеств.
 - Определение симметрично относительно e и $e^{\mathbf{C}}$, поэтому $e \in \Sigma \iff e^{\mathbf{C}} \in \Sigma$.
 - $\varnothing \in \Sigma$ прямо из определения. Используя предыдущий пункт, $X \in \Sigma$.

- Пусть $e_1, e_2 \in \Sigma$. Проверим, что $e_1 \cap e_2 \in \Sigma$. Рассмотрим произвольное $a \subset X$. Запишем измеримость для e_1 при пересечении с a и измеримость для e_2 при пересечении с $a \cap e_1$.

$$\gamma(a) = \gamma(a \cap e_1) + \gamma(a \cap e_1^{\complement})$$
$$\gamma(a \cap e_1) = \gamma(a \cap e_1 \cap e_2) + \gamma(a \cap e_1 \cap e_2^{\complement})$$

Отсюда подстановкой получаем

$$\gamma(a) = \gamma(a \cap e_1 \cap e_2) + \underbrace{\gamma\left(a \cap e_1 \cap e_2^\complement\right) + \gamma\left(a \cap e_1^\complement\right)}_{\text{хотим показать, что это } \gamma(a \cap (e_1 \cap e_2)^\complement)}$$

Записав измеримость e_1 при пересечении с $a \cap \left(e_1^\complement \cup e_2^\complement\right)$, получаем

$$\begin{split} \gamma \left(a \cap (e_1^{\complement} \cup e_2^{\complement}) \right) &= \gamma \left(a \cap (e_1^{\complement} \cup e_2^{\complement}) \cap e_1 \right) + \gamma \left(a \cap (e_1^{\complement} \cup e_2^{\complement}) \cap e_1^{\complement} \right) = \\ &= \gamma \left(a \cap e_1 \cap e_2^{\complement} \right) + \gamma \left(a \cap e_1^{\complement} \right) \end{split}$$

- Так как $(e_1 \cup e_2) = (e_1^{\complement} \cap e_2^{\complement})^{\complement}$ и $(e_1 \setminus e_2) = e_1 \cap e_2^{\complement}$, то Σ действительно алгебра.
- Проверим «усиленную аддитивность»: для произвольного $a \subset X$, $b_1, b_2 \in \Sigma, b_1 \cap b_2 = \varnothing \Rightarrow$

$$\gamma(a \cap (b_1 \sqcup b_2)) = \gamma(a \cap b_1) + \gamma(a \cap b_2)$$

Данный факт потребуется для доказательства того, что $\Sigma-\sigma$ -алгебра.

Доказательство напрямую следует из измеримости b_1 при пересечении с $a \cap (b_1 \cup b_2)$.

Отсюда по индукции видно, что для попарно непересекающихся $b_1,\ldots,b_n\in\Sigma$:

$$\gamma\left(a\cap\bigsqcup_{j=1}^n b_j\right) = \sum_{j=1}^n \gamma(a\cap b_j)$$

• Проверим, что Σ является σ -алгеброй. Для этого достаточно проверить, что для счётного семейства $b_i \in \Sigma: b \coloneqq \bigsqcup_{j \in \mathbb{N}} b_j \in \Sigma.$

Чтобы доказать измеримость множества e, достаточно проверить неравенство $\gamma(a) \geqslant \gamma(a \cap e) + \gamma(a \setminus e)$, потому что неравенство в другую сторону следует из счётной полуаддитивности. Дополнительно можно считать, что $\gamma(a)$ конечно.

Выберем произвольное $a \in X$, для него

$$\gamma(a) = \gamma(a \cap (b_1 \sqcup \cdots \sqcup b_n)) + \gamma(a \setminus (b_1 \sqcup \cdots \sqcup b_n)) \geqslant \left(\sum_{j=1}^n \gamma(a \cap b_j)\right) + \gamma(a \setminus b)$$

Переходя к пределу $n \to \infty$, получаем

$$\gamma(a) \geqslant \left(\sum_{j \in \mathbb{N}} \gamma(a \cap b_j)\right) + \gamma(a \setminus b)$$

Так как $a\cap b=\bigsqcup_{j\in\mathbb{N}}(a\cap b_j)$, то из счётной полуаддитивности $\gamma(a\cap b)\leqslant \sum\limits_{j\in\mathbb{N}}\gamma(a\cap b_j)$. Отсюда

$$\gamma(a) \geqslant \left(\sum_{j=1}^{\infty} \gamma(a \cap b_j)\right) + \gamma(a \setminus b) \geqslant \gamma(a \cap b) + \gamma(a \setminus b)$$

• Проверим, что $\gamma\big|_{\Sigma}$ — «усиленно счётно-аддитивная мера», то есть для счётного семейства дизъюнктных $b_j \in \Sigma$ $\left(b\coloneqq \bigsqcup_{j\in \mathbb{N}} b_j\right)$ и произвольного $\forall a\in X$:

$$\gamma\left(a\cap\bigsqcup_{j\in\mathbb{N}}b_j\right)=\sum_{j\in\mathbb{N}}\gamma(a\cap b_j)$$

При a=X свойство обращается в обычную счётную аддитивность, но усиленная даётся даром, так что докажем и её тоже.

C одной стороны, из счётной аддитивности γ : $\gamma(a\cap b)\leqslant \sum\limits_{j\in\mathbb{N}}\gamma(a\cap b_j)$. C другой стороны,

$$\gamma(a \cap b) \geqslant \gamma(a \cap (b_1 \cup \dots \cup b_n)) = \sum_{j=1}^n \gamma(a \cap b_j)$$

и можно перейти к пределу по n.

• Докажем первое дополнение.

Достаточно показать, что для любого $e \in \mathcal{P}, a \in X$: $\mu^*(a) \geqslant \mu^*(a \cap e) + \mu^*(a \setminus e)$, обратное следует из полуаддитивности внешней меры.

Рассмотрим произвольное счётное покрытие $\{c_i\}_{i\in\mathbb{N}}$ множества a элементами множества $\mathcal{P}.$

- Во-первых, по определению внешней меры $\mu^*(a\cap e)\leqslant \sum\limits_{i\in\mathbb{N}}\mu(c_i\cap e)$
- Во-вторых, оценим $\mu^*(a \setminus e)$.

Каждое $b_i \coloneqq c_i \setminus e$ представимо в виде конечного объединения $b_i = \bigcup_{j=1}^{s_i} d_i^{(j)}$, где $d_i^{(j)} \in \mathcal{P}$ попарно дизъюнктны.

 $\{d_i^{(j)}\}_{i,j}$ — счётная совокупность множеств из \mathcal{A} , покрывающая $a\setminus e$.

- Таким образом

$$\mu^*(a \cap e) + \mu^*(a \setminus e) \leqslant \sum_{i \in \mathbb{N}} \underbrace{\left(\mu(c_i \cap e) + \sum_{j=1}^{s_i} \mu\left(d_i^{(j)}\right)\right)}_{\mu(c_i)}$$

Переходя к инфимуму по всем покрытиям, получаем

$$\mu^*(a \cap e) + \mu^*(a \setminus e) \leqslant \inf \sum_{i=1}^{\infty} \mu(c_i) = \mu^*(a)$$

• Наконец, для доказательства второго дополнения сошлёмся на четвёртый пункт свойств внешней меры (определение 1.3.7).

Определение 1.3.10 (Стандартное продолжение меры μ на полукольце $\mathcal{P} \subset 2^X$). Построенные данным образом Σ , и сужение $\mu^*|_{\Sigma}$ — счётно-аддитивная мера на σ -алгебре.

Примеры.

• Пусть v_n — объём на системе конечных n-мерных прямоугольных параллелепипедов (со сторонами, параллельными координатным осям).

Стандартное продолжение данной меры — мера Лебега λ_n , полученное множество $\Sigma \subset 2^X$ — множество измеримых по Лебегу множеств. Все Борелевские множества, разумеется, измеримы по Лебегу (определение 1.3.6), но обратное неверно — измеримых множеств сильно больше (предложение 1.4.1).

• Пусть λ_f — Стилтьесова длина, порождённая нестрого возрастающей функцией f. Она счётно аддитивна на полукольце промежутков. Её стандартное продолжение — мера Лебега-Стилтьеса. Здесь полученные измеримые множества — элементы Σ — вообще говоря, могут зависеть от f (при одной функции, порождающей меру, множество $x \subset X$ измеримо, но не при другой)

1.4 Структура измеримых множеств

1.4.1 Множества меры нуль

Факт 1.4.1. Пусть γ — предмера на X, рассмотрим такое подмножество $e \subset X$, что $\gamma(e) = 0$. Тогда e является γ -измеримым. В частности, все подмножества e имеют меру 0 (в частности измеримы).

Доказательство. Проверим, что $\forall a \subset X : \gamma(a) \geqslant \gamma(a \cap e) + \gamma(a \setminus e)$.

Это так: по монотонности $\gamma(a \cap e) \leqslant \gamma(e) = 0$ и $\gamma(a \setminus e) \leqslant \gamma(a)$.

Пусть $\gamma = \mu^*$, где μ — счётно-аддитивная мера на полукольце \mathcal{P} .

Факт 1.4.2. Множество $e\subset X$ — множество меры нуль $\iff \forall \varepsilon>0:\exists$ счётное семейство $b_i\in\mathcal{P}$, таких, что $\bigcup_i b_i\supset e$, $u\sum_{i=1}^\infty \mu(b_i)<\varepsilon.$

Примеры (Множества меры нуль).

- Точка.
- Конечное или счётное число точек (например, Q).
- Канторово множество на n-м шаге его мера равна $\left(\frac{2}{3}\right)^n$.

Предложение 1.4.1. Так как канторово множество континуально, то все его подмножества (коих $2^{|\mathbb{R}|}$) имеют меру нуль и измеримы по Лебегу. Отсюда получаем, что всего измеримых множеств на прямой $2^{|\mathbb{R}|}$, так как это уже мощность всех подмножеств прямой.

С другой стороны, Борелевских множеств всего континуум.

 $\mathit{Схема}\ \mathit{доказательства}.$ Пусть \mathcal{A}_0 — все интервалы с рациональными границами. Их счётное число. Но это пока даже не алгебра.

Обозначим за A_1 все их счётные объединения, их континуально. Но это пока не σ -алгебра.

За A_2 обозначим все счётные пересечения множеств из A_1 . За A_3 обозначим все счётные объединения множеств из A_2 .

И так далее. Заведём трансфинитную индукцию, на первом несчётном ординале всё перестанет меняться. Объединение не более чем континуального числа континуальных множеств континуально.

Определение 1.4.1 (Свойство точек множества X выполняется почти всюду). Множество точек, где оно не выполняется, имеет меру нуль.

Пусть \mathcal{P} — полукольцо подмножеств X, μ — счётно аддитивная мера на \mathcal{P} . Стандартное продолжение часто тоже будем обозначать через μ , иногда через $\overline{\mu}$.

1.4.2 σ -множества и $\delta \sigma$ -множества

Определение 1.4.2 (σ -множество относительно \mathcal{P}). Объединение счётного семейства элементов \mathcal{P} .

Все σ -множества измеримы.

Предложение 1.4.2. Если $e \subset X$ μ -измеримо, то $\mu(e) = \inf \{ \mu(b) | e \subset b, b - \sigma$ -множество $\}$.

 \mathcal{A} оказательство. Так как по определению $\mu(e)=\mu^*(e)=\inf\left\{\sum_{i=1}^\infty \mu(c_i)\middle|c_i\in\mathcal{P},\bigcup_i c_i\supset e\right\}$ то можно выбрать в качестве $b\coloneqq\bigcup c_i,\,b-\sigma$ -множество.

Замечание. Любое σ -множество b представимо в виде дизъюнктного объединения счётного числа элементов $d_i \in \mathcal{P}$.

Так как d_j дизъюнктны, то $\mu(b)=\sum\limits_{j=1}^{\infty}\mu(d_j)$, вот такая простая формула меры σ -множества.

Теорема 1.4.1. Если $c-\mu$ -измеримое множество, и $\mu(c)<\infty$, то \exists убывающая по включению последовательность σ -множеств b_k , таких, что $\bigcap_{k=1}^\infty b_k \supset c$ и $\mu\left(\bigcap_{k=1}^\infty b_k\right) = \mu(c)$. Иначе говоря, если $\widetilde{c}\coloneqq\bigcap_{k=0}^{\infty}b_{k}$, to $\mu(\widetilde{c}\setminus c)=0$.

Доказательство. Положим $\widetilde{b}_k - \sigma$ -множество, такое, что $\widetilde{b}_k \supset c$, причём $\mu\left(\widetilde{b}_k\right) < \mu(c) + \frac{1}{k}$. Назначим $b_k = \widetilde{b}_1 \cap \cdots \cap \widetilde{b}_k$.

Лемма 1.4.1. Пересечение двух (а значит, и конечного числа) σ -множеств — σ множество.

Доказательство леммы.

Если
$$u=\bigcup\limits_{i=1}^{\infty}e_i,v=\bigcup\limits_{j=1}^{\infty}g_j$$
, где $e_i,g_j\in\mathcal{P}$, то $u\cap v=\bigcup\limits_{i,j=1}^{\infty}(e_i\cap g_j)$

Согласно лемме
$$b_k - \sigma$$
-множество. Так как $\mu(b_k) \leqslant \mu(c) + \frac{1}{k}$, то $\mu\left(\bigcap_{k=1}^\infty b_k\right) = \lim_{k \to \infty} \mu(b_k) = \mu(c)$. \square

Определение 1.4.3 ($\delta\sigma$ -множество относительно \mathcal{P}). Пересечение счётного семейства σ -множеств.

1.4.3 σ -конечность

Определение 1.4.4 (σ -конечная мера μ). Такая мера, что $\exists E_1 \subset E_2 \subset \ldots$, все $E_i \in \Sigma$, все $\mu(E_i) < +\infty$, причём $X = \bigcup\limits_{i=1}^{\infty} E_i$.

Примеры.

- Считающая мера на несчётном множестве не является σ -конечной.
- ullet Мера Лебега в \mathbb{R}^n σ -конечна.

Лекция V

30 сентября 2023 г.

По-прежнему, A — полукольцо, μ — мера на A, обозначим её стандартное продолжение тоже за μ .

Теорема 1.4.2. Пусть стандартное продолжение меры μ на полукольце \mathcal{P} σ -конечно. Пусть $d \subset X$ — μ -измеримо. Тогда $\exists \delta \sigma$ -множество $D \supset d$, такое, что $\mu(D \setminus d) = 0$.

Лемма 1.4.2. Пространство X σ -конечно, если и только если $\exists e_1, e_2, \dots \subset X$: $\mu(e_i) < \infty$ $u \bigsqcup_{i=1}^{\infty} e_i = X$.

Доказательство леммы.

Как обычно, если σ -конечно, то $E_1\subset E_2\subset \dots$ в объединении дают X, рассмотрим $e_i\coloneqq E_{i+1}\setminus E_i$. Наоборот, если даны e_i , то $E_i\coloneqq\bigsqcup_{j=1}^i e_j$.

Выберем $\varepsilon > 0$.

Пусть $e_i \in \Sigma$ — измеримы, причём $\mu(e_i) < \infty$ и $\bigsqcup_{i=1}^\infty e_i = X$. Обозначим за $d_i \coloneqq d \cap e_i$. Тогда $\forall i: \mu(d_i) < \infty$. Согласно (теорема 1.4.1): $\exists \sigma$ -множество $D_i: \mu(D_i \setminus d_i) < \frac{\varepsilon}{2^i}$. Тогда подойдёт $D \coloneqq \bigcup_{i=1}^\infty D_i$: $\mu(D \setminus d) < \varepsilon$.

Но отсюда пересечение D по всем $arepsilon=rac{1}{N}$ даёт подходящее $\delta\sigma$ -множество.

1.4.4 Полнота

Пусть $\mathcal{C}\subset 2^X$ — σ -алгебра, на которой задана счётно-аддитивная мера ν .

Пусть $\mathcal{A}-$ полукольцо, лежащее в \mathcal{C} , $\mu-$ счётно-аддитивная мера на $\mathcal{A},\overline{\mu}-$ стандартное продолжение меры (на μ -измеримые множества, пусть они составляют Σ).

Пусть ν — мера на \mathcal{C} , такая, что $\nu|_{A}=\mu$, причём μ — σ -конечна.

Определение 1.4.5 (Полная мера). Такая счётно-аддитивная мера ν на σ -алгебре \mathcal{C} , что $\forall b \in \mathcal{C}$: $\nu(b) = 0 \Rightarrow \forall a \subset b : a \in \mathcal{C}$.

Теорема 1.4.3. Меры ν и $\overline{\mu}$ совпадают на $\Sigma \cap \mathcal{C}$, а если ν полна, то $\Sigma \subset \mathcal{C}$.

Доказательство.

• Пусть $A \in \Sigma$ есть σ -множество относительно полукольца \mathcal{A} . Тогда $A = a_1 \sqcup a_2 \sqcup \ldots$, где $a_i \in \mathcal{A}$

Отсюда
$$A\in\mathcal{C}$$
, причём $\nu(A)=\sum\limits_{j=1}^{\infty}\nu(a_j)=\sum\limits_{j=1}^{\infty}\mu(a_j)=\overline{\mu}(A).$

• Пусть $B \in \Sigma - \delta \sigma$ -множество относительно полукольца \mathcal{A} , то есть $B = \bigcap_{k=1}^{\infty} A_k$, где $A_k - \sigma$ -множества (дополнительно считаем, что $A_1 \supset A_2 \supset \dots$).

Тогда $B\in\mathcal{C}$. Если $\overline{\mu}(B)<\infty$, то множества A_j тоже можно выбрать конечной меры.

Тогда
$$\nu(B) = \lim_{k \to \infty} \nu(A_k) = \lim_{k \to \infty} \overline{\mu}(A_k) = \overline{\mu}(B).$$

• Пускай $E \in \mathcal{C} \cap \Sigma$. Найдётся такое $\delta \sigma$ -множество $E_1 \supset E$: $\overline{\mu}(E_1 \setminus E) = 0$ (если E бесконечно, то это следует из σ -конечности μ), причём так как $E_1 - \delta \sigma$ -множество относительно \mathcal{A} , то про него уже известно, что $\nu(E_1) = \overline{\mu}(E_1)$. Тогда $E_1 \setminus E$ тоже содержится в $\mathcal{C} \cap \Sigma$.

Лемма 1.4.3. Если
$$b \in \mathcal{C} \cap \Sigma$$
, причём $\overline{\mu}(b) = 0$, то $\nu(b) = 0$.

Доказательство леммы.

Найдётся
$$b_1-\delta\sigma$$
-множество, такое, что $b_1\supset b$ и $\overline{\mu}(b_1)=0$. Тогда $\nu(b_1)=\overline{\mu}(b_1)=0$, откуда $\nu(b)\leqslant \nu(b_1)=0$.

Лемма влечёт $\nu(E_1\setminus E)=0.$ Отсюда на всех множествах из $\mathcal{C}\cap\Sigma$ меры $\overline{\mu}$ и ν совпадают.

• Проверим, что если ν полна, то $\Sigma \subset \mathcal{C}$.

Если $\overline{\mu}(e)=0$, то $e\in\mathcal{C}$, так как найдётся $\delta\sigma$ -множество $e_1\supset e$: $\overline{\mu}(e_1)=0$. Из полноты меры ν автоматически $e\in\mathcal{C}$.

Теперь рассмотрим $D \in \Sigma$. Найдётся $\delta \sigma$ -множество $\overline{D} \supset D$, такое, что $\overline{\mu}(\overline{D} \setminus D) = 0$, то есть $\overline{D} \setminus D \in \mathcal{C}$. Таким образом, $D \in \mathcal{C}$, причём $\nu(\overline{D} \setminus D) = 0$.

1.4.5 Двоичные (диадические) кубы

Определение 1.4.6 (Двоичный отрезок ранга n). Отрезок вида $I_n^{(k)} \coloneqq \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$ (здесь $n, k \in \mathbb{Z}$).

Заметим, что $\forall n \in \mathbb{Z}: \bigsqcup_{k \in \mathbb{Z}} I_n^{(k)} = \mathbb{R}$, причём любые двоичные отрезки либо не пересекаются, либо вложены.

Определение 1.4.7 (Двоичные кубы ранга n). Произведения $I_1 \times \cdots \times I_d$, где I_j — двоичные отрезки ранга n.

Любые двоичные кубы тоже либо не пересекаются, либо вложены.

Теорема 1.4.4. Пусть G — открытое множество в \mathbb{R}^n .

Тогда $G = \coprod_{j=1}^{\infty} Q_j$, где Q_j — попарно не пересекающиеся двоичные кубы, (быть может, какиенибудь $Q_j = \varnothing$) (иными словами, G — дизъюнктное объединение не более чем счётного числа каких-то двоичных кубов).

Доказательство. Рассмотрим точки $x \in G$. Для каждой точки выберем двоичный куб $Q \ni x$, полностью содержащийся в G.

Объединение всех таких кубов даст G. Чтобы кубы не пересекались, мы оставим только кубы положительного ранга, а среди них — максимальные по включению. (Если множество неограниченное, то максимального включения среди **всех** кубов может не найтись, надо ограничить их размер, поэтому мы взяли только кубы положительного ранга)

Вспомним про $\mathcal{P}_0(\mathbb{R}^n)$ — полукольцо ограниченных прямоугольных параллелепипедов, на котором есть мера — n-мерный объём v_n . Σ — σ -алгебра измеримых по Лебегу множеств (относительно v_n), λ_n — стандартное продолжение v_n .

Теперь обозначим $\mathcal{D}(\mathbb{R}^n)$ — полукольцо всех двоичных кубов в \mathbb{R}^n . Положим $\rho_n = v_n \big|_{\mathcal{D}(\mathbb{R}^n)}$. По теореме Лебега — Каратеодори получаем стандартное продолжение μ на множество $\Sigma_1 \subset 2^{\mathbb{R}^n}$.

Тогда
$$\mathcal{D}(\mathbb{R}^n)\subset\mathcal{C}=\Sigma$$
, откуда $\Sigma_1\subset\Sigma$, $\mu=\lambda_n\big|_{\Sigma_1}$.

Также понятно, что все открытые множества являются счётными объединениями кубов из $\mathcal{D}(\mathbb{R}^n)$, откуда $\Sigma \subset \Sigma_1$, то есть на самом деле $\Sigma = \Sigma_1$.

Наконец, так как обе меры совпадают на $\mathcal{D}(\mathbb{R}^n)$, то они равны (теорема 1.4.3).

Лекция VI

4 октября 2023 г.

Теорема 1.4.5. Пусть λ_n — мера Лебега в \mathbb{R}^n , Σ — σ -алгебра измеримых по Лебегу множеств.

- 1. Мера Лебега инвариантна относительно сдвига: если $e\in \Sigma, t\in \mathbb{R}^n: e+t\in \Sigma, \lambda_n(e+t)=\lambda_n(e).$
- 2. Если ν мера, заданная на этой σ -алгебре Σ , и ν инвариантна относительно сдвига ($\forall e \in \Sigma$, $t \in \mathbb{R}^n : \nu(e+t) = \nu(e)$), то тогда $\exists c \geqslant 0 : \forall e \in \Sigma : \nu(e) = c\lambda_n(e)$.

1. Достаточно доказать, что внешняя мера $ho = v_n^*$ инвариантна относительно сдвига.

 $ho(a)=\inf\sum_{j}v_{n}(e_{j})$ по всем e_{j} , таким, что их объединения покрывают a. Но

$$\bigcup_{j} e_{j} \supset a \iff \bigcup_{j} (e_{j} - t) \supset (a - t)$$

Измеримость по Лебегу тоже легко проверить:

$$\rho(a) = \rho(a \cap e) + \rho(a \setminus e) \quad \iff \quad \rho(a-t) = \rho((a-t) \cap (e-t)) + \rho((a-t) \setminus (e-t))$$

2. Обозначим за $c:=rac{
u(Q_0)}{\lambda_n(Q_0)}$, где Q_0 — какой-то фиксированный двоичный куб ранга 0. Тем самым, $\nu(Q)=cv_n(Q)$ для любого двоичного куба ранга 1 (инвариантность при сдвиге).

Может так случиться, что c=0. Тогда в силу счётной аддитивности и σ -конечности мера всего пространства равна 0.

Заметим, что 2^n кубов ранга k дают в объединении куб ранга k-1:

$$\left[0, \frac{1}{2^{k-1}}\right)^n = \left(\left[0, \frac{1}{2^k}\right) \sqcup \left[\frac{1}{2^k}, \frac{1}{2^{k-1}}\right)\right)^n$$

Тем самым, мы по индукции получаем, что на всех двоичных кубах меры ν и λ_n отличаются в c раз.

Дальше применяя теорему о единственности для меры $\rho=\frac{\nu}{c}$, получаем, что $\rho\equiv\lambda_n$ — объём можно задать на двоичных кубах.

Полнота ν получается автоматически из того, что ν задана на всей Σ . В самом деле, всякое множество меры нуль является подмножеством $\delta\sigma$ -множества меры нуль.

1.5 Поведение меры Лебега при линейных отображениях

Пусть $T: \mathbb{R}^n \to \mathbb{R}^n$ — линейное отображение, $e \in \Sigma$. Чему равна $\lambda_n(Te)$?

Пусть (X, A_X) и (Y, A_Y) — пары из множеств и σ -алгебр их подмножеств.

Определение 1.5.1 (Измеримое отображение $F: X \to Y$ (относительно данных σ -алгебр)). Такое отображение F, что $\forall a \in \mathcal{A}_Y : F^{-1}(a) \in \mathcal{A}_X$.

В частном случае $\mathcal{A}_X=\mathcal{B}(X)$ и $\mathcal{A}_Y=\mathcal{B}(Y)$ измеримое отображение называется измеримым по Борелю.

Лемма 1.5.1. Всякое непрерывное отображение $F: X \to Y$ измеримо по Борелю.

Доказательство. Положим $\mathcal{C} \coloneqq \left\{ e \in Y \middle| F^{-1}(e) \in \mathcal{B}(X) \right\}$. $\mathcal{C} - \sigma$ -алгебра, так как взятие прообраза коммутирует со всеми теоретико-множественными операциями (даже несчётными).

Так как прообраз открытого открыт, то \mathcal{C} содержит все открытые множества. Это сразу влечёт, что $\mathcal{C} \supset \mathcal{B}(Y)$, а тогда и подавно $\forall e \in \mathcal{B}(Y) : F^{-1}(e) \in \mathcal{B}(X)$.

Для счётно-аддитивной меры ν , заданной на \mathcal{A}_X можно ввести её образ.

Определение 1.5.2 (Образ меры μ при (измеримом) отображении F). Мера ρ , заданная на \mathcal{A}_Y следующим образом: $\rho(e) = \mu(F^{-1}(e))$.

Пусть $F:\mathbb{R}^n \to \mathbb{R}^n$ непрерывно. Рассмотрим образ меры $\mu(e) \coloneqq \lambda_n(F^{-1}(e))$. Если $e \in \mathcal{B}(\mathbb{R}^n)$, то $F^{-1}(e) \in \mathcal{B}(\mathbb{R}^n)$, и формула имеет смысл: $\mu(e)$ определена.

Иначе же, (если e — измеримое по Лебегу, но не борелевское (например, e — какое-то неприятное множество меры нуль)) может произойти что угодно. Его прообраз может быть вообще неизмеримым по Лебегу.

Образ же даже Борелевского множества необязательно измерим по Лебегу. Так, $\eta(e) \coloneqq \lambda_n(\Phi(e))$ для непрерывного (даже инъективного) Φ может быть не определена на каком-то борелевском множестве. Чтобы таких проблем не было, надо требовать непрерывность обратного отображения.

Факт 1.5.1. Пусть $G_1, G_2 \subset \mathbb{R}^n$ — ограниченные открытые множества, $\Phi: G_1 \to G_2$ — гомеоморфизм. Введём меру ν на $G_1: \nu(e) = \lambda_n(\Phi(e))$. Тогда ν корректно определена на $\mathcal{B}(G_1)$.

Пусть $a\subset G_1$ — измеримое по Лебегу множество, $\lambda_n(a)=0$. Тогда хочется, чтобы выполнялось $\nu(a)=0$. В таком случае $\nu(e)=\lambda_n(\Phi(e))$ будет определена на всех измеримых по Лебегу множествах (всякое измеримое по Лебегу множество — разность $\delta\sigma$ -множества, и множества меры нуль).

Пусть G_1, G_2 — открытые множества в \mathbb{R}^n , $\Phi: G_1 \to G_2$ — гомеоморфизм. В терминах измеримости сказанное выше можно переформулировать в виде: тогда Φ^{-1} измеримо по Борелю, и если Φ липшицево, то Φ^{-1} измеримо по Лебегу.

Теорема 1.5.1. Пусть $\Phi: G_1 \to G_2 - C$ -липшицево отображение, пусть $A \subset G_1$ — меры нуль. Тогда $\Phi(A)$ тоже имеет меру нуль.

Доказательство.

Лемма 1.5.2. Пусть $e \subset \mathbb{R}^n$. Тогда e есть множество меры нуль $\iff \forall \varepsilon > 0: \exists \{a_i\}_{i \in \mathbb{N}}: e \subset \bigcup_i a_i$, причём

$$\sum_{i=1}^{\infty} (\operatorname{diam} a_i)^n < \varepsilon$$

Доказательство леммы.

- $\Rightarrow \lambda_n(e)=0 \iff \lambda_n^*(e)=0 \iff \forall arepsilon>0: \exists \{Q_i\}_{i\in\mathbb{N}}$ такое семейство двоичных кубов, что $\sum\limits_{i=1}^\infty v_n(Q_i)<arepsilon$. Учитывая, что $v_n(Q_i)=\left(rac{\operatorname{diam} Q_i}{\sqrt{n}}
 ight)^n$ сразу получаем $\sum\limits_{i=1}^\infty (\operatorname{diam} Q_i)^n< n^{n/2} arepsilon$.
- \Leftarrow Всякое множество a_i содержится в кубе (необязательно двоичном) Q_i со стороной $\operatorname{diam}(a_i)$ (проекция на любую координатную ось не больше $\operatorname{diam}(a_i)$).

Пусть открытое $e\subset G_1$ имеет меру нуль, предположим, что $\mathrm{dist}(e,G_1^{\complement})>0$. Тем самым, $\forall \varepsilon>0:\exists a_i\subset\mathbb{R}^n:\bigcup_{i\in\mathbb{N}}a_i\supset e,\sum_{i=1}^{\infty}(\mathrm{diam}(a_i))^n<\varepsilon$. Можно считать, что все a_i пересекают e, тогда при маленьких $\varepsilon:a_i\subset G_1$.

Тем самым, $\operatorname{diam}(\Phi(a_i)) \leqslant C \cdot \operatorname{diam}(a_i)$, и $\sum_{i=1}^{\infty} \operatorname{diam}(\Phi(a_i))^n \leqslant C^n \cdot \varepsilon$

Если же ${\rm dist}(e,G_1^{\complement})=0$, то воспользуемся теоремой об исчерпывающей последовательности компактов (теорема 1.5.2). Найдутся компактные $K_i\subset G_1$, в объединении дающие G_1 . Для множества меры нуль $a\subset G_1$ заметим, что оно является объединением счётного числа множеств $a_i=a\cap K_i$, отделённых от границы.

Теорема 1.5.2 (Об исчерпывающей последовательности компактов). Пусть $G \subset \mathbb{R}^n$ — открыто, тогда существует $\exists \{K_i\}_{i \in \mathbb{N}} \colon K_i \subset \operatorname{Int}(K_{i+1})$, причём $\bigcup_i K_i = G$.

Иначе положим $\widetilde{K}_i = \left\{x \in G \middle| \mathrm{dist}(x,G^\complement) \geqslant \frac{1}{i}\right\}$. Несложно видеть, что $\bigcup_i \widetilde{K}_i = G$ — это следует из замкнутости G^\complement . Из непрерывности функции расстояния (она даже липшицева) \widetilde{K}_i тоже замкнуто.

Наконец, $\widetilde{K}_i\subset \operatorname{Int} \widetilde{K}_{i+1}$. Если G неограничено, то \widetilde{K}_i может быть некомпактно хотя и замкнуто. Чтобы избежать этой проблемы, положим $K_i=\widetilde{K}_i\cap \overline{B_i}(0)$.

Замечание. В \mathbb{R}^n любая координатная гиперплоскость имеет лебегову меру нуль: например, она представима в виде объединения счётного числа гиперквадратиков меры нуль.

Итак, с чего мы начали. Пусть $T: \mathbb{R}^n \to \mathbb{R}^n$ — линейное отображение.

Теорема 1.5.3. $\forall e \in \Sigma : \lambda_n(Te) = |\det T| \cdot \lambda_n(e)$, где определитель взят в каком-то ортонормированном базисе.

Доказательство.

• Пусть T — невырожденное отображение, $\det T \neq 0$. Тогда это гомеоморфизм \mathbb{R}^n на себя. В любом случае, T липшицево, например, с константой ||T||.

Таким образом, если положить $\nu = \lambda_n \circ T$, то окажется, что ν — корректно определённая счётно-аддитивная мера на σ -алгебре измеримых по Лебегу множеств. Заметим, что ν инвариантна относительно сдвига: $\forall t \in \mathbb{R}^n$. $\lambda_n(Te+Tt) = \lambda_n(Te)$. Таким образом (теорема 1.4.5): $\exists c : \nu = c\lambda_n$. Осталось проверить, что $c = |\det T|$.

- Если T ортогональное преобразование, то оно сохраняет расстояния, и $\det T=\pm 1$. Выберем B замкнутый шар положительного радиуса с центром в 0. Тогда TB=B, но мера шара не равна 0 (в него можно засунуть кубик положительного диаметра), откуда c=1.
- **Следствия**. Если E собственное линейное подпространство \mathbb{R}^n , то его мера λ_n равна 0. Ортогональным преобразованием его можно перевести в координатную гиперплоскость.

Другим следствие предыдущего пункта является то, что меру Лебега можно начинать строить с любого ортонормированного базиса в \mathbb{R}^n . Мера сохраняется при всяких поворотах и симметриях.

— Воспользуемся полярным разложением оператора. Это значит, что для невырожденного линейного $T:\mathbb{R}^n \to \mathbb{R}^n$: $\exists U,A:T=UA$, где U — ортогональный оператор, а A — эрмитов (диагональный в каком-то базисе). Тогда посчитаем для измеримого $a \in \mathbb{R}^n$ $\lambda_n(Ta) = \lambda_n(UAa) = \lambda_n(Aa)$ Будем считать, что мера Лебега построена в том базисе, в котором A диагонален.

$$A = \begin{pmatrix} \alpha_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_n \end{pmatrix}$$

Всякий куб $Q \subset \mathbb{R}^n$ после применения A переходит в параллелепипед со сторонами $|\alpha_1|,\ldots,|\alpha_n|$. Действительно, $\lambda_n(AQ)=|\alpha_1\cdot\ldots\cdot\alpha_n|\cdot\lambda_n(Q)=|\det A|\cdot\lambda_n(Q)$.

• Если T вырождено, то ${\rm Im}(T)$ — линейное подпространство в \mathbb{R}^n , так как $Te\subset T(\mathbb{R}^n)$, то мера Te тоже нуль.

Глава 2

Интеграл Лебега

Пускай имеется тройка (X,Σ,μ) , где X — множество, $\Sigma\subset 2^X$ — σ -алгебра, μ — счётно-аддитивная мера на Σ .

Определим для некоторых функций $f:X o\mathbb{R}$ интеграл $\int\limits_X f\,\mathrm{d}\mu.$

Раньше мы уже определяли интеграл от простой функции $f = \sum_i c_i \chi_{e_i}$, равный $I(f) = \sum_i c_i \mu(e_i)$. В качестве e_i теперь можно брать произвольные измеримые множества, что уже сильно увеличивает разнообразие простых функций.

Определение 2.0.1 (Простая функция $g: X \to \mathbb{R}$ относительно σ -алгебры Σ). Функция вида $g(x) = \sum_{i=1}^n c_i \chi_{e_i}, \ c_i \in \mathbb{R}, e_i \in \Sigma$. Можно считать, что $e_i \cap e_j = \emptyset$ для $i \neq j$.

Лекция VII

18 октября 2023 г.

Теорема 2.0.1 (Малая теорема Леви). Пусть $g_1, g_2, \ldots,$ — счётное семейство неотрицательных простых функций; пусть g — ещё одна простая функция. Предположим, что $\forall x \in X: g_1(x) \leqslant g_2(x) \leqslant \ldots$, причём $g_j(x) \underset{j \to \infty}{\longrightarrow} g(x)$ (можно записать $g_n(x) \nearrow g(x)$). Тогда $\lim_{j \to \infty} I(g_j) = I(g)$.

 $\ \ \, \mathcal{L}$ оказательство. Сложность заключается в том, что число ступенек у g_j может неограниченно расти.

Заметим, что так как g_j неотрицательны, то $I(g_j)$ всегда определён (число из $\mathbb R$ или $+\infty$).

Если $\exists j: I(g_j) = +\infty$, то $I(g) = +\infty$, и доказывать нечего. Далее считаем, что $\forall j: I(g_j) \in \mathbb{R}$.

Так как g простая, то $g = \sum_{s=1}^n c_s \chi_{e_s}$, где e_s — попарно дизъюнктные множества из Σ . Положим $g_i^s := g_j \cdot \chi_{e_s}$. Эти функции тоже простые.

Зафиксируем s $(1\leqslant s\leqslant n)$, зафиксируем $x\in e_s$, посмотрим на $\lim_{j\to\infty}g_j^s(x)=c_s\chi_{e_s}$. Проверим предельное соотношение для интегралов: так как s пробегает конечное множество значений, то достаточно доказать только для одного значения. Далее считаем, что $g=c\chi_e$.

Тем самым, утверждение свелось к следующему: для $e \in \Sigma$, для последовательности простых функций g_j , таких, что поточечно $0 \leqslant g_1 \leqslant \ldots \leqslant g_j \leqslant g_{j+1} \leqslant \ldots \leqslant c\chi_e = g$, причём $\forall x \in X : \lim_{j \to \infty} g_j(x) = c\chi_e(x)$, необходимо и достаточно показать, что $I(g_j) \underset{j \to \infty}{\longrightarrow} I(c\chi_e) = c\mu(e)$.

Рассмотрим $d\in (0,c)$. Положим $E_n\coloneqq \{x|g_n(x)>d\}$. Понятно, что $E_n\subset e$, причём $\bigcup_{n=1}^\infty E_n=e$.

Обозначим $h_n = d \cdot \chi_{E_n}$. По определению E_n : $h_n \leqslant g_n$. Таким образом,

$$\underbrace{I(h_n)}_{d \cdot \mu(E_n) \xrightarrow[n \to \infty]{} d \cdot \mu(e)} \leqslant I(g_n) \leqslant \underbrace{I(g)}_{c \cdot \mu(e)}$$

Так как $I(g_j) \leqslant I(g_{j+1})$, то существует предел $V = \lim_{j \to \infty} I(g_j)$. Отсюда $d \cdot \mu(e) \leqslant V \leqslant c \cdot \mu(e)$, причём это верно для любого d < c.

2.1 Измеримые отображения

Пускай (X, \mathcal{A}_X) , (Y, \mathcal{A}_Y) — множества и σ -алгебры соответствующих подмножеств. $F: X \to Y$.

Вспомним определение измеримости (определение 1.5.1):

Определение 2.1.1 (Измеримое отображение $F: X \to Y$ (относительно данных σ -алгебр)). Такое отображение F, что $\forall c \in \mathcal{A}_Y : F^{-1}(c) \in \mathcal{A}_X$.

Если в качестве X,Y рассмотреть топологические пространства без определённых σ -алгебр, то в качестве этих σ -алгебр в X,Y можно выбрать σ -алгебры борелевских множеств $\mathcal{B}(X),\mathcal{B}(Y)$. В таком случае F называется измеримой по Борелю.

Теорема 2.1.1. Пусть в Y содержится счётная база топологии \mathcal{A}_Y ; пускай \mathcal{D} — какая-нибудь (даже необязательно счётная) база для топологии в Y.

Если $\forall e \in \mathcal{D} : F^{-1}(e) \in \mathcal{A}_X$, то F измеримо по Борелю.

Доказательство. Рассмотрим открытое $G \subset Y$, докажем, что $F^{-1}(G) \subset \mathcal{A}_X$.

Представим $G = \bigcup_{x \in G} a_x$, где $a_x \in \mathcal{D}$ содержит x.

Пускай \mathcal{A}_Y — счётная база топологии в Y. Для любого $x \in G$: $\exists c_x \in \mathcal{A}_Y : x \in c_x \subset a_x$, где $a_x \in \mathcal{D}$. $\bigcup_{x \in G} c_x = G$. Так как среди c_x всего счётное число различных, то можно выбрать представителей — счётное множество $X \subset G$: $\bigcup_{x \in X} c_x = G$. Тогда и подавно $\bigcup_{x \in X} a_x = G$.

Отсюда $F^{-1}(G)\in\mathcal{A}_X$, так как σ -алгебра выдерживает счётные операции.

Этого достаточно, так как $\left\{ E\subset Y\middle|F^{-1}(E)\in\mathcal{A}_X\right\} - \sigma$ -алгебра, и если в неё содержатся все открытые множества, то и все борелевские содержатся в ней тоже.

Пусть $(X, \Sigma_1), (Y, \Sigma_2), (Z, \Sigma_3)$ — множества со своими σ -алгебрами.

Рассмотрим композицию $X \stackrel{F}{\longrightarrow} Y \stackrel{\Phi}{\longrightarrow} Z$.

Теорема 2.1.2. Композиция измеримых отображений измерима.

Доказательство. $\forall e_3 \in \Sigma_3 : (\Phi \circ F)^{-1}(e) = F^{-1}(\Phi^{-1}(e)).$

Факт 2.1.1. Пусть X_1, X_2 — топологические пространства, $F: X_1 \to X_2$ — непрерывно. Пусть X_1, X_2 наделены своими борелевскими σ -алгебрами. Тогда F измеримо.

Доказательство. Определим $\mathcal{A}\coloneqq \left\{e\in X_2\middle| F^{-1}(e)\in \mathcal{B}(X_1)\right\}$. $\mathcal{A}-\sigma$ -алгебра, причём она содержит все открытые множества.

Следствие 2.1.1. Рассмотрим композицию $X \xrightarrow{F} Y \xrightarrow{\Phi} Z$. X — пространство с σ -алгеброй \mathcal{A} , Y,Z — топологические пространства с борелевскими σ -алгебрами, F измеримо, Φ непрерывно. Тогда $\Phi \circ F$ непрерывно.

 (X,\mathcal{A}) — пространство с σ -алгеброй. Рассмотрим $f:X \to \mathbb{R}$.

Предложение 2.1.1. f измеримо, если выполнено любое из следующих условий.

1.
$$\forall a, b \in \mathbb{R} : f^{-1}((a, b)) \in \mathcal{A}$$
.

2.
$$\forall a, b \in \mathbb{R} : f^{-1}([a, b]) \in \mathcal{A}$$
.

3.
$$\forall a \in \mathbb{R} : f^{-1}((-\infty, a)) \in \mathcal{A}$$
.

4.
$$\forall a \in \mathbb{R} : f^{-1}((a, +\infty)) \in \mathcal{A}$$
.

Доказательство. Согласно предыдущей теореме (1) сразу влечёт измеримость.

Проверим
$$(3)\Rightarrow (1).$$
 Так как $(-\infty,d]=\bigcap\limits_{n=1}^{\infty}(-\infty,d+1/n),$ то

$$f^{-1}((a,b)) = f^{-1}((-\infty,b) \setminus (-\infty,a]) = f^{-1}\left((-\infty,b) \setminus \bigcap_{n=1}^{\infty} (-\infty,a+1/n)\right)$$

Всё остальное делается аналогично.

Определение 2.1.2 (Лебеговы множества функции f). Для $a \in \mathbb{R}$ это множества вида $\{x|f(x) < a\}$, $\{x|f(x) \leq a\}$, $\{x|f(x) > a\}$, $\{x|f(x) \geq a\}$.

Таким образом, для проверки того, что f измерима, достаточно проверять измеримость только её Лебеговых множеств (достаточно какого-то одного типа).

Теперь рассмотрим отображение $F:X\to \mathbb{R}^n$, где $F(x)=\begin{pmatrix} f_1(x)\\ \vdots\\ f_n(x) \end{pmatrix}$ — столбец координатных функций.

Предложение 2.1.2. F измеримо \iff все f_i измеримы.

Доказательство.

- \Leftarrow . Пускай I_1,\dots,I_n интервалы. Параллелепипеды $P=I_1\times\dots\times I_n$ образуют базу топологии в \mathbb{R}^n . Достаточно доказать на базе, что $F^{-1}(P)\in\mathcal{A}.\ x\in F^{-1}(P)\iff F(x)\in P\iff \forall j:$ $1\leqslant j\leqslant n\Rightarrow f_j(x)\in I_j.\ F^{-1}(P)=\bigcap_{j=1}^n f_j^{-1}(I_j).$
- \Rightarrow . Рассмотрим координатную проекцию $\pi_j:\mathbb{R}^n \to \mathbb{R}. \ \pi_j \circ F$ измеримо. \square

Предложение 2.1.3. Пусть $f_1, f_2: X \to \mathbb{R}$ — измеримы. Тогда измеримыми являются функции

- $\alpha f_1 + \beta f_2$, $r \partial e \alpha, \beta \in \mathbb{R}$.
- $f_1 \cdot f_2$.
- $\frac{f_1}{f_2}$, $ecnu \ \forall x \in X : f_2(x) \neq 0$.

 $extit{Доказательство}.$ Пускай $F:X o\mathbb{R}^2;$ $F=egin{pmatrix} f_1\\f_2 \end{pmatrix}.$ Согласно предыдущей теореме, оно измеримо. Скомпонуем $\psi\circ F$, где $\psi: \begin{pmatrix} \mathbb{R}^2 & \to & \mathbb{R}\\ (x,y) & \mapsto & \alpha x + \beta y \ \text{или} \ xy \end{pmatrix}$ Для частного: $\psi: \begin{pmatrix} \mathbb{R} \times \mathbb{R} \setminus \{0\} & \to & \mathbb{R}\\ (x,y) & \mapsto & \frac{x}{y} \end{pmatrix}$

Ниже нам будет удобно определять функцию f, принимающую бесконечные значения.

$$f: X \to \overline{\mathbb{R}} \stackrel{def}{=} \mathbb{R} \cup \{-\infty, +\infty\}$$

Про такую функцию говорят, что она *измерима*, если $f^{-1}(+\infty), f^{-1}(-\infty) \in \mathcal{A}$ и $f\big|_{f^{-1}(\mathbb{R})}$ измерима в обычном понимании.

К таким функциям можно применять примерно всё то, что уже доказано, только не надо складывать бесконечности разных знаков.

Факт 2.1.2. Если f (возможно) принимает значение $+\infty$, и все множества $\{x|f(x) < a\}$ лежат в A, то f измерима.

Доказательство.
$$f^{-1}(\mathbb{R}) = \bigcup_{n=1}^{\infty} f^{-1}(-\infty, n); \{x | f(x) = +\infty\} = f^{-1}(\overline{\mathbb{R}}) \setminus f^{-1}(\mathbb{R}).$$

2.2 Грани и предельные переходы

Теорема 2.2.1. Пусть $f_n: X \to \mathbb{R}$ — измеримые функции. Пусть $f(x) = \inf_n f_n(x)$. Для простоты считаем, что $\forall x: f_n(x)$ ограничены снизу.

Тогда f измерима.

Доказательство. Рассмотрим
$$\{x|f(x) < a\} = \bigcup_n \{x|f_n(x) < a\}.$$

Следствие 2.2.1. Если функция $g(x) = \sup_n f_n(x)$ всюду конечна, то функция g измерима.

Следствие 2.2.2. Пусть f_n измеримы, и $\forall x$: числовая последовательность $\{f_n(x)\}$ ограничена. Тогда $\varlimsup_n f_n(x) = \varliminf_n f_n(x)$ тоже измеримы.

Доказательство. Например,
$$\overline{\lim}_n f_n(x) = \inf_k \sup_{n \geqslant k} f_n(x)$$
.

Теорема 2.2.2. Пусть f_n всюду конечны и измеримы, пусть $f_n(x) \xrightarrow[n \to \infty]{} f(x)$, где f(x) — тоже конечна. Тогда f измерима.

Доказательство. Это следствие из предыдущего.

Замечание. Пусть $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x)$, но допустимо, чтобы f(x) принимало значения $\pm \infty$. (При этом $\forall n: f_n$ конечна)

Тогда всё равно f измерима.

Доказательство. Пусть $f(x_0) = +\infty$. Тогда $\forall N \in \mathbb{N} : \exists k \in \mathbb{N} : \forall n \geqslant k : f_n(x_0) \geqslant N$.

Тем самым,
$$\{x_0|f(x_0)=+\infty\}=\bigcap_{N\in\mathbb{N}}\bigcup_{k\in\mathbb{N}}\bigcap_{n\geqslant k}\{x_0|f_n(x_0)\geqslant N\}.$$

Определение 2.2.1 (Ступенчатая функция). $f: X \to \mathbb{R}$, такая, что $\exists E_1, E_2, \dots \in \mathcal{A} : E_i \cap E_j = \emptyset$ при $i \neq j$ и $f|_{E_i}$ постоянна (скажем, равна c_i).

Иными словами, ступенчатая функция — функция вида $\sum\limits_{i=1}^{\infty} c_i \chi_{E_i}.$

Замечание. Всякая ступенчатая функция измерима.

Теорема 2.2.3. Если $g: X \to \mathbb{R}$ — измеримая функция, то \exists последовательность ступенчатых функций f_n , такая, что $f_n \rightrightarrows g$.

Если же $g\geqslant 0$, то \exists простые функции $f_n:f_n(x)\nearrow g(x)$ поточечно.

1 Выберем $n \in \mathbb{N}$, рассмотрим двоичные интервалы $I_{j,n} = \left[\frac{j}{2^n}, \frac{j+1}{2^n}\right)$. При фиксированном n: $\bigcup_{j\in\mathbb{Z}} I_{j,n} = \mathbb{R}.$

Пусть $E_{j,n} \coloneqq g^{-1}(I_{j,n}) \in \mathcal{A}$. Определим $f_n(x) = \frac{j}{2^n}$ при $x \in E_{j,n}$. Иными словами, бьётся ось ординат, и если функция g принимает значение в неком двоичном отрезке, то $f_n(x)$ равно нижней границе этого отрезка.

Тогда
$$\forall x: 0 \leqslant g(x) - f_n(x) \leqslant \frac{1}{2^n}$$
.

Заметим, что $\forall x : f_n(x) \leq f_{n+1}(x)$.

2 Аналогично предыдущему пункту, берём полуинтервалы $\left[\frac{j}{2^n},\frac{j+1}{2^n}\right)$, и строим f_n точно так же. Они сходятся к g(x), но, увы, не простые. Тогда положим $\widetilde{f}_n(x) = \min(f_n(x), n)$. Здесь $f_n(x)$ уже простые, по-прежнему возрастают монотонно, и всё ещё сходятся к g.

Замечание. Пусть g принимает ещё и значения $\pm \infty$. Тогда можно построить последовательность ступенчатых f_n , как в теореме, определённых на $g|_{q(x)}$ конечно.

Доопределим
$$\widehat{f_n}(x)=egin{cases} f_n(x), & g(x)\in\mathbb{R} \\ +\infty, & g(x)=+\infty. \\ -\infty, & g(x)=-\infty \end{cases}$$

Тогда это всё ещё ступенчатые функции, и естественно считать, что они сходятся к q равномерно. На том множестве, где g(x) конечно, $|f_n(x)-g(x)|$ равномерно сходится к нулю, а если g(x)бесконечно, то разность, конечно, не определена, но $f_n(x) = g(x)$.

Похожую вещь можно применить и ко второму пункту теоремы.

2.3 Интеграл

Сначала научимся интегрировать неотрицательные измеримые функции.

Пусть (X, Σ, μ) — пространство с мерой, то есть μ — счётно-аддитивная мера, заданная на Σ .

Предположим, что μ — полная мера (определение 1.4.5). Если это не так, то можно продолжить μ по Лебегу — Каратеодори. Тогда в целом ничего особо не поменяется. Так, в предположении σ -конечности для продолжения меры $\widetilde{\mu}$ на $\widetilde{\Sigma}$: $\forall a \in \widetilde{\Sigma} : \mu(a) < +\infty \Rightarrow \exists b \in \Sigma : b \supset a, \widetilde{\mu}(b \setminus a) = 0.$

Пусть f — неотрицательная измеримая функция на X (возможно, принимающая значения $+\infty$).

Определим интеграл $J(f) = \sup \{I(g)|g - \text{простая}, 0 \leqslant g \leqslant f\}.$

 $\it Замечание.\$ Хотя $\it f$ разрешается принимать бесконечные значения, по определению простые функции — суммы $\sum\limits_{i=1}^N c_j\chi_{e_j}$, где $c_j\in\mathbb{R}$ (множества e_j можно считать дизъюнктными).

Определение 2.3.1 (Суммируемая (интегрируемая) функция f). $J(f) < +\infty$.

Свойства (Совсем немного простых свойств).

- Если f неотрицательная простая функция, то J(f) = I(f).
- Если $f_1 \leqslant f_2$ неотрицательные измеримые, то $J(f_1) \leqslant J(f_2)$.

Лекция VIII

25 октября 2023 г.

Пусть a, b — два числа. Для их минимума и максимума иногда используются обозначения

$$a \lor b \stackrel{def}{=} \max(a, b)$$
 $a \land b \stackrel{def}{=} \min(a, b)$

29

В частности, это используется для поточечного максимума или минимума функций:

$$(f \lor g)(x) \stackrel{def}{=} f(x) \lor g(x) \stackrel{def}{=} \max(f(x), g(x))$$

Теорема 2.3.1 (Леви, для неотрицательных функций (теорема о монотонной сходимости)). Пусть f_n — измеримые функции, $0 \leqslant f_1 \leqslant f_2 \leqslant \dots$ Пускай $f(x) = \lim_{n \to \infty} f_n(x)$. Тогда $J(f) = \lim_{n \to \infty} J(f_n)$.

Доказательство. Если $\exists n \in \mathbb{N}: J(f_n) = +\infty$, то доказывать нечего: тогда начиная с этого места $J(f_{\geqslant n})=J(f)=+\infty$. Отметим, что f измерима, как предел измеримых.

Теперь будем считать, что $\forall n: J(f_n) < +\infty$. Понятно, что $J(f) \geqslant \lim_{n \to \infty} J(f_n)$, так как

$$\{g|0\leqslant g\leqslant f,g-\text{простая}\}\supset\bigcup_{n\in\mathbb{N}}\{g_n|0\leqslant g_n\leqslant f_n,g_n-\text{простая}\}$$

Далее мы доказываем, что $J(f) \leqslant \lim_{n \to \infty} J(f_n)$.

 $\forall n:\exists$ простая функция $\psi_n:0\leqslant \psi_n\leqslant f_n, I(\psi_n)\geqslant J(f_n)-\frac{1}{2^{2n}}.$ Сделаем так, чтобы $\{\psi_n\}$ возрастали: $\phi_n \coloneqq \psi_1 \lor \ldots \lor \psi_n$. Отметим, что ϕ_n — тоже простые функции.

Лемма 2.3.1. Почти всюду (для всех x, кроме множества меры нуль) $\lim_{n\to\infty} \phi_n(x) = f(x)$.

Доказательство леммы.

Обозначим $e_n = \{x | \phi_n(x) < f_n(x) - \frac{1}{2^n} \}$. Заметим, что тогда всё ещё $\phi_n + \frac{1}{2^n} \chi_{e_n} \leqslant f_n$. Слева стоит простая функция, откуда $\underbrace{I\left(\phi_n+\frac{1}{2^n}\chi_{e_n}\right)}_{I(\phi_n)+\frac{1}{2^n}\mu(e_n)}\leqslant J(f_n).$ Так как $I(\phi_n)\geqslant J(f_n)-1$

 $\frac{1}{2^{2n}}$, to $\mu(e_n)\leqslant \frac{1}{2^n}$.

Обозначим $E_n = \bigcup_{k\geqslant n} e_k$. Его мера тоже не очень большая: $\mu(E_n)\leqslant \sum_{k\geqslant n} \mu(e_k)\leqslant \sum_{k\geqslant n} \frac{1}{2^k}=$ $\frac{1}{2^{n-1}}$. Так как имеется вложенность $E_1\supset E_2\supset \ldots$, то $E\coloneqq \bigcap_{n>0} E_n$ имеет меру нуль.

Осталось заметить, что $\phi_n(x) \underset{n \to \infty}{\longrightarrow} f(x)$ везде кроме E.

Так как по определению $J(f) \stackrel{def}{=} \sup \{I(g)|0\leqslant g\leqslant f,g$ — простая $\}$, то достаточно доказать, что для всякой простой функции $g\leqslant f\colon I(g)\leqslant \lim_{n\to\infty}I(\phi_n).$

Пусть $E\subset X$ — множество меры нуль, на котором $\phi_n(x)\underset{n\to\infty}{\longrightarrow} f(x)$. Положим $\widetilde{g}=g\wedge\chi_{E^{\complement}}$ (занулим g(x) при $x \in E$). Так как $\mu(E) = 0$, то $I(g) = I(\widetilde{g})$.

Пусть $\widetilde{\phi}_n \coloneqq \phi_n \wedge \widetilde{g}$. Согласно лемме, $\lim_{n \to \infty} \widetilde{\phi}_n(x) = \widetilde{g}(x)$ всюду. Значит, согласно малой теореме Леви (теорема 2.0.1) $\lim_{n\to\infty}I(\widetilde{\phi}_n)=I(\widetilde{g})$. Но так как $\widetilde{\phi}_n\leqslant\phi_n$, а $I(\widetilde{g})=I(g)$, то действительно $\lim_{n\to\infty}I(\phi_n)\geqslant I(g).$

2.4 Применения теоремы Леви. Свойства интеграла

Факт 2.4.1. Пусть $f \geqslant 0$ — измеримая функция, положим $A \coloneqq \{x | f(x) \neq 0\}$. Тогда $J(f) = 0 \iff \mu(A) = 0.$

- \Leftarrow . $J(f) = \sup I(g)$, где $0 \leqslant g \leqslant f$. Из монотонности меры всякая такая g сосредоточена на множестве меры нуль. Считая интеграл g по определению, получаем нуль.
- \Rightarrow . **Лемма 2.4.1** (Неравенство Чебышёва). Пускай $h\geqslant 0$ неотрицательная измеримая функция, $\lambda>0$. Тогда $\mu\left\{x|h(x)>\lambda\right\}\leqslant \frac{1}{\lambda}J(h)$.

Доказательство леммы.

Пусть
$$e = \{x | h(x) > \lambda\}$$
. Заметим, что $h \geqslant \lambda \chi_e$, из монотонности интеграла $J(h) \geqslant \lambda \mu(e)$.

Пусть
$$A_n = \left\{x \middle| f(x) > \frac{1}{n}\right\}$$
. $A = \bigcup_{n\geqslant 1} A_n$. Согласно неравенству Чебышёва $\mu(A_n) \leqslant nJ(f) = 0$.

Замечание. Теорема Леви сохраняет силу, если неравенство $f_n(x) \leqslant f_{n+1}(x)$ выполнено почти всюду (нарушаются на множестве меры нуль), и стремление $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x)$ тоже имеется почти всюду.

Свойства (Свойства интеграла).

• Линейность интеграла.

Пусть
$$f,g\geqslant 0$$
 — измеримые функции, $\alpha,\beta\geqslant 0$. Тогда $J(\alpha f+\beta g)=\alpha J(f)+\beta J(g)$.

Доказательство. Выбираем последовательность простых функций $0 \le u_n \nearrow f$ и $0 \le v_n \nearrow g$ почти всюду, воспользуемся линейностью предела и теоремой Леви:

$$J(\alpha f + \beta g) = \lim_{n \to \infty} I(\alpha u_n + \beta v_n) = \lim_{n \to \infty} (\alpha I(u_n) + \beta I(v_n)) = \alpha J(f) + \beta J(g) \qquad \Box$$

• Счётная аддитивность по множеству. Пусть $f\geqslant 0$ — измеримая функция, положим $\nu(e)=J(f\cdot\chi_e)$ для $e\in\Sigma$. Тогда ν — счётно аддитивная мера на σ -алгебре Σ .

Доказательство. Аддитивность следует из линейности интеграла.

Для проверки счётной аддитивности удостоверимся в монотонной непрерывности: пусть $E_1 \subset E_2 \subset \cdots$, где $E_i \in \Sigma$.

Определим
$$E \coloneqq \bigcup_{j=1}^{\infty} E_j$$
. Надо проверить, что $J(f \cdot \chi_E) = \lim_{n \to \infty} J(f \cdot \chi_{E_n})$.

$$f\cdot\chi_E=\lim_{n o\infty}f\cdot\chi_{E_n}$$
, значит, можно воспользоваться теоремой Леви. \qed

2.5 Интегралы от знакопеременных функций

Пускай f — измеримая функция на X, возможно, принимающая значения $\pm \infty$. Представим $f=f_+-f_-$, где $f_+=f\vee 0, f_-=-(f\wedge 0)$. Тогда $|f|=f_++f_-$, причём f_+ и f_- измеримы, и обе неотрицательны.

Определение 2.5.1 (f обладает интегралом). $J(f_+) < +\infty$, или $J(f_-) < +\infty$. В таком случае $J(f) \stackrel{def}{=} J(f_+) - J(f_-)$.

Определение 2.5.2 (f суммируема (интегируема)). Она обладает конечным интегралом, то есть $J(f_+), J(f_-) < +\infty$.

Предложение 2.5.1. f суммируема \iff |f| суммируема.

$$\Rightarrow$$
. $J(|f|) = J(f_+) + J(f_-) < +\infty$.

$$\Leftarrow$$
. $f_+, f_- \leqslant |f|$.

2.5.1 Про линейность интеграла

Пусть f=g-h, где $g,h\geqslant 0$. Тогда во всяком случае $g\geqslant f_+$ и $h\geqslant f_-$:

$$f=g-h\Rightarrow f\leqslant g$$
, а так как $g\geqslant 0$, то $f_+\leqslant g$ тоже; $f_-=(-f)_+$

Предложение 2.5.2. Если f = g - h, где g,h измеримы и неотрицательны, причём хотя бы одно из J(g), J(h) конечно, то f обладает интегралом J(f) = J(g) - J(h).

Доказательство. Рассмотрим случай, когда $J(g) < +\infty$, в случае $J(h) < +\infty$ всё аналогично.

Тогда $J(f_{+}) < +\infty$, и f по определению обладает интегралом.

$$f = f_{+} - f_{-} = g - h \implies f_{+} + h = g + f_{-}$$

Для неотрицательных функций известна аддитивность, откуда $J(f_+) + J(h) = J(g) + J(f_-)$. Перенося в противоположные части конечные слагаемые $J(f_+)$ и J(g), получаем

$$J(h) - J(g) = J(f_{-}) - J(f_{+})$$

Умножая обе части на -1, получаем искомое.

Следствие 2.5.1. Если f, g суммируемы (и, вообще говоря, знакопеременны), то f + g тоже суммируема, и J(f+g) = J(f) + J(g).

Доказательство.

$$(f_{+} - f_{-}) + (g_{+} - g_{-}) = (f_{+} + g_{+}) - (f_{-} + g_{-})$$

Факт 2.5.1. Если f суммируема, $\alpha \in \mathbb{R}$, то $J(\alpha f) = \alpha J(f)$.

Свойства (Ещё свойства интеграла).

- Основная оценка интеграла: если f обладает интегралом, то $|J(f)|\leqslant J(|f|).$
- Если f,g измеримы, и обладают интегралами, причём $f\leqslant g$, то $J(f)\leqslant J(g)$.

Для $e \in \Sigma$ и измеримой функции $f: X \to \overline{\mathbb{R}}$, имеющей интеграл, имеется обозначение

$$\int_{e} f \, \mathrm{d}\mu = J(f \cdot \chi_e)$$

Теорема 2.5.1 (Абсолютная непрерывность интеграла). Пускай f — суммируемая функция. Тогда $\forall \varepsilon > 0: \exists \delta > 0:$ если $e \in \Sigma, \ \mu(e) < \delta, \ \text{то} \int\limits_e |f| \ \mathrm{d}\mu < \varepsilon.$

Доказательство. От противного: пусть $\exists \varepsilon>0: \forall \delta>0: \exists e\in \Sigma: \mu(e)<\delta$, но $\int |f|\,\mathrm{d}\mu\geqslant \varepsilon.$

Рассмотрим последовательность $\delta_n=\frac{1}{2^n}$. Для каждого δ_n найдётся $e_n\in \Sigma$: $\mu(e_n)\leqslant \frac{1}{2^n}$, но $\int\limits_{e_n}|f|\,\mathrm{d}\mu\geqslant \varepsilon$.

Пусть $E_n = \bigcup_{k\geqslant n} e_k$, тогда из монотонности $\int\limits_{E_n} |f|\,\mathrm{d}\mu\geqslant \varepsilon$. С другой стороны. $\mu(E_n)\leqslant \sum\limits_{k\geqslant n} \mu(e_k)\leqslant \sum\limits_{k\geqslant n} \frac{1}{2^k} = \frac{1}{2^{k-1}}$.

Таким образом, $\mu(E_n) \xrightarrow[n \to \infty]{} 0$, но с другой стороны $E_1 \supset E_2 \supset \cdots$ Положим $E \coloneqq \bigcap_{n \in \mathbb{N}} E_n$. Из счётной аддитивности $\int\limits_E |f| \, \mathrm{d}\mu = \lim\limits_{n \to \infty} \int\limits_{E_n} |f| \, \mathrm{d}\mu$, но левый интеграл равен нулю, как интеграл по множеству меры нуль, а правый предел — хотя бы ε .

Факт 2.5.2. Если f — суммируемая функция, то $\{x|f(x)\neq 0\}$ σ -конечно.

Доказательство. Применить неравенство Чебышёва (лемма 2.4.1).

$$\{x|f(x) \neq 0\} = \bigcup_{n>0} \left\{ x \Big| |f|(x) \geqslant \frac{1}{n} \right\}$$

Теорема 2.5.2 (Общая теорема Леви). Пускай f_1, f_2, \ldots — измеримые функции, монотонно возрастающие: $f_n \leqslant f_{n+1}$.

Предположим, что f_1 суммируема. Тогда $J(f_n) \underset{n \to \infty}{\longrightarrow} J(f)$, где $f(x) = \lim_{n \to \infty} f_n(x)$.

Доказательство. Положим $h_j(x) = f_j(x) - f_1(x)$, и применим теорему Леви для неотрицательных функций.

Теорема 2.5.3 (Вариант теоремы Леви для рядов). Пусть u_n — неотрицательные суммируемые функции, $u(x) \coloneqq \sum_{n=1}^{\infty} u_n(x)$. Тогда u суммируема $\iff \sum_{n=1}^{\infty} \int_X u_n \, \mathrm{d}\mu < +\infty$.

В случае монотонной сходимости почти всегда почти всё можно делать, а если сходимость не монотонна, то есть следующая теорема.

Лекция IX

1 ноября 2023 г.

Теорема 2.5.4 (Лебег, о мажорируемой сходимости). Пусть f,g — измеримые функции, $f_n \overset{\text{почти всюду}}{\underset{n \to \infty}{\longrightarrow}} f$. Предположим, что у f_n есть общая суммируемая мажоранта: $|f_n(x)| \leqslant g(x)$ и $\int\limits_X g \, \mathrm{d}\mu < +\infty$. Тогда $\int\limits_X f_n \, \mathrm{d}\mu \overset{\longrightarrow}{\underset{n \to \infty}{\longrightarrow}} \int\limits_X f \, \mathrm{d}\mu$.

Доказательство. Так как g — мажоранта, то везде на $X: |f_n(x) - f(x)| \leqslant 2g(x)$.

Положим $h_k(x) \coloneqq \sup_{n\geqslant k} |f_n(x)-f(x)|$, заметим, что $h_k \searrow 0$. Так как $0\leqslant h_0(x)\leqslant 2g(x)$, то h_0 суммируема, откуда по теореме Леви: $\int\limits_X h_k(x)\,\mathrm{d}\mu \underset{k\to\infty}{\longrightarrow} 0$.

Осталось применить принцип двух полицейских для проинтегрированного неравенства:

$$0 \leqslant |f_k(x) - f(x)| \leqslant h_k(x) \quad \Rightarrow \quad \int_X 0 \, \mathrm{d}\mu \leqslant \int_X |f_k(x) - f(x)| \, \mathrm{d}\mu \leqslant \int_X h_k(x) \, \mathrm{d}\mu \qquad \Box$$

Контрпример. Совсем без мажоранты ничего не получится. Если $X=\mathbb{R}$, и $f_n=n\chi_{[0,\frac{1}{n}]}$, то f сходятся к нулю почти всюду, но интегралы у всех f_n единичные.

Лемма 2.5.1 (Фату). Пусть $f_n \geqslant 0$ — измеримые функции, тогда $\int\limits_X \left(\underline{\lim}_{n \to \infty} f_n \right) \mathrm{d}\mu \leqslant \underline{\lim}_{n \to \infty} \int\limits_X f_n \, \mathrm{d}\mu$.

Доказательство. Положим $h_k(x)\coloneqq\inf_{n\geqslant k}f_n(x)$. Заметим, что $h_k(x)\nearrow h(x)\coloneqq\varprojlim_{n\to\infty}f_n(x)$.

$$\int_X h \, \mathrm{d}\mu = \lim_{k \to \infty} \int_X h_k \, \mathrm{d}\mu = \lim_{k \to \infty} \int_X h_k \, \mathrm{d}\mu \leqslant \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu \qquad \Box$$

Следствие 2.5.2. Если измеримые $g_n \stackrel{\text{почти всюду}}{\underset{n \to \infty}{\longrightarrow}} g$, и $\int\limits_X |g_n| \,\mathrm{d}\mu \leqslant C$, то g суммируема, причём $\int\limits_Y |g| \,\mathrm{d}\mu \leqslant C$.

2.6 Виды сходимости

- Сходимость почти всюду: мера множества, где сходимости нет, равна нулю.
- Сходимость по мере: $f_n \xrightarrow[n \to \infty]{\mu} f \iff \forall \varepsilon > 0 : \mu \left\{ x \in X \middle| |f_n(x) f(x)| > \varepsilon \right\} \xrightarrow[n \to \infty]{0} 0.$

Определение 2.6.1 (Последовательность Коши по мере). Последовательность измеримых функций f_n , такая, что $\forall \varepsilon > 0: \lim_{(n,m) \to \infty} \mu \left\{ x \in X \middle| |f_n(x) - f_m(x)| > \varepsilon \right\} = 0.$

Факт 2.6.1.

- 1. Если $\mu(X)<\infty$, то из сходимости $f_n\overset{\text{почти всюду}}{\underset{n\to\infty}{\longrightarrow}}f$ следует сходимость по мере $f_n\overset{\mu}{\underset{n\to\infty}{\longrightarrow}}f.$
- 2. Из сходимости по мере $f_n \stackrel{\mu}{\underset{n \to \infty}{\longrightarrow}} f$ следует, что найдётся сходящаяся подпоследовательность $n_1 < n_2 < \ldots : f_{n_k} \stackrel{\text{почтн всюду}}{\underset{k \to \infty}{\longrightarrow}} f$.

Докажем даже более сильное утверждение: для последовательности Коши по мере f_n найдутся измеримая f, и сходящаяся κ ней подпоследовательность $n_1 < n_2 < \ldots$: $f_{n_k} \overset{\text{почти всюду}}{\underset{k \to \infty}{\longrightarrow}} f$.

Доказательство.

- 1. Пусть $\varepsilon > 0$, обозначим $A_n \coloneqq \{x \in X | \exists k \geqslant n : |f_k(x) f(x)| \geqslant \varepsilon \}$. Они вложены: $A_1 \supset A_2 \supset \dots$ Отметим, что A_n измеримы, и пусть $A \coloneqq \bigcap_{n=1}^\infty A_n$. На множестве A нет сходимости: $f_n \not\longrightarrow f$. Но раз есть сходимость почти всюду, то $\mu(A) = 0$, то есть (так как мера конечна) $\mu(A_n) \xrightarrow[n \to \infty]{} 0$.
- 2. Найдутся такие $N_1\leqslant N_2\leqslant\ldots$, что $\mu\left\{x\in X\middle|\forall n,m\geqslant N_k:|f_n(x)-f_m(x)|\geqslant\frac{1}{2^k}\right\}\leqslant\frac{1}{2^k}.$ Положим $E_k\coloneqq\left\{x\in X\middle|\left|f_{N_k}(x)-f_{N_{k+1}}(x)\right|\leqslant\frac{1}{2^k}\right\}.\ \mu(X\setminus E_k)\leqslant\frac{1}{2^k}.$ Пусть $\widetilde{E}_k=\bigcap_{n\geqslant k}E_n,$ тогда $\mu\left(X\setminus\widetilde{E}_k\right)=\mu\left(\bigcup_{n\geqslant k}(X\setminus E_n)\right)\leqslant\sum_{n\geqslant k}\mu(X\setminus E_n)\leqslant\frac{1}{2^{k-1}}.$

Если $x\in \widetilde{E}_k\Rightarrow \forall n\geqslant k: \left|f_{N_n}(x)-f_{N_{n+1}}(x)\right|\leqslant \frac{1}{2^n}$, то есть $\forall x\in \widetilde{E}_k:\sum\limits_{j=1}^{\infty}\left|f_{N_j}(x)-f_{N_{j+1}}(x)\right|$ сходится.

A тогда эта сумма сходится и на $\bigcup\limits_{k=1}^\infty \widetilde{E}_k$. Это влечёт $\forall x \in \bigcup\limits_{k=1}^\infty \widetilde{E}_k: \exists \lim_{k \to \infty} f_{N_k}(x)$. К этому пределу f_{N_k} сходятся почти всюду: мера $X \setminus \bigcup\limits_{k=1}^\infty \widetilde{E}_k = \bigcap\limits_{k=1}^\infty (X \setminus \widetilde{E}_k)$ равна нулю.

Факт 2.6.2. Также для последовательности Коши по мере f_n найдётся измеримая f, такая, что $\underset{n\to\infty}{\stackrel{\mu}{\longrightarrow}} f$.

Доказательство. Выберем, как выше, подпоследовательность $f_{n_k} \stackrel{\text{почти всюду}}{\underset{k \to \infty}{\longrightarrow}} f.$

Зафиксируем $\varepsilon, \delta > 0$.

Так как подпоследовательность — тоже последовательность Коши, то $\exists N_1 \in \mathbb{N}: \forall m, l > N_1: \mu\left\{x \in X ||f_{n_m} - f_{n_l}| > \varepsilon\right\} < \delta$. Устремляя $l \to \infty$, получаем $\forall m > N_1: \mu\left\{x \in X ||f_{n_m} - f| > \varepsilon\right\} \leqslant \delta$.

Далее из того, что исходная последовательность — тоже последовательность Коши, получаем, что $\exists N_2: \forall m,l>N_2: \{x\in X||f_m-f_l|>\varepsilon\}<\delta.$

Из неравенства треугольника $\forall n>\max(n_{N_1},N_2): \mu\left\{x\in X||f_n-f|>2\varepsilon\right\}\leqslant \delta.$

Контрпримеры.

- Последовательность функций $f_n \coloneqq \chi_{[n,n+1]}$ сходится почти всюду к 0, но сходимости по мере нет, так как мера бесконечна.
- Пусть $H_n = \sum_{k=1}^n \frac{1}{k}$ гармоническое число. Обозначим за $\{x\}$ дробную часть числа $x \in \mathbb{R}$.

$$f_n \coloneqq egin{aligned} \chi_{[\{H_n\},\{H_{n+1}\}]}, & \{H_n\} < \{H_{n+1}\} \ \chi_{[\{H_n\},1]} + \chi_{[0,\{H_{n+1}\}]}, & \{H_n\} > \{H_{n+1}\} \end{aligned}$$
 — последовательность Коши по мере, которая сходится по мере к 0 , но сходимости нет нигде на $[0,1]$.

2.7 Классы L^p

Определим $L^p(\mu) \stackrel{def}{=} \left\{ f: X \to \mathbb{R} \middle| f$ — измерима, и $\int\limits_X |f|^p \,\mathrm{d}\mu < \infty \right\}$. Как видно из первой буквы, класс назван в честь Лебега.

В дальнейшем мы будем считать, что $p \geqslant 1$.

Функции $f \in L^p(\mu)$ отвечает норма $||f||_{L^p} = \left(\int\limits_X |f|^p \,\mathrm{d}\mu\right)^{1/p}$. По этой норме, как и по всякой другой, можно построить метрику $d(\underline{\ \ \ \ \ \ \ \ \ \ \ })$.

Теорема 2.7.1. В случае $p\geqslant 1:d$ — реально метрика на $L^p(\mu)$. Чтобы выполнялась положительная определённость ($\|f\|=0\iff f=0$), будем рассматривать функции определённые с точностью до меры нуль на X. Иными словами $\|f\|=0\iff f=0$ почти всюду (факт 2.4.1).

Доказательство.

Лемма 2.7.1 (Неравенство Гёльдера). Пусть p,q>1 — сопряжённые показатели (1/p+1/q=1), тогда для $f\in L^p, g\in L^q: fg\in L^1$, и $\|fg\|_{L^1}\leqslant \|f\|_{L^p}\|g\|_{L^q}$.

Доказательство леммы.

Неравенство однородное, можно считать $\|f\|_{L^p} = \|g\|_{L^q} = 1$ — для этого надо заменить $f \leadsto \frac{f}{\left(\int\limits_X |f|^p\right)^{1/p}}$ и $g \leadsto \frac{g}{\left(\int\limits_X |g|^q\right)^{1/q}}$.

Для a,b>0 имеется неравенство Юнга (доказывали через выпуклость \exp): $\frac{a^p}{p}+\frac{b^q}{q}\geqslant ab$. Применяя его, получаем $|f(x)|\cdot|g(x)|\leqslant \frac{|f(x)|^p}{p}+\frac{|g(x)|^q}{q}$. Интегрируя, получаем искомое $\int\limits_{Y}|f(x)|\cdot|g(x)|\,\mathrm{d}\mu\leqslant \frac{1}{p}+\frac{1}{q}=1$.

Теперь проверим неравенство треугольника $\|f+g\|_{L^p} \leqslant \|f\|_{L^p} + \|g\|_{L^p}$. Для данной нормы оно носит название неравенства Минковского.

$$\|f+g\|_{L^p}^p = \int\limits_X |f+g|^p \, \mathrm{d}\mu = \int\limits_X |f+g| \cdot |f+g|^{p-1} \, \mathrm{d}\mu \leqslant \int\limits_X |f| \cdot |f+g|^{p-1} \, \mathrm{d}\mu + \int\limits_X |g| \cdot |f+g|^{p-1} \, \mathrm{d}\mu \leqslant \int\limits_X |f| \cdot |f+g|^{p-1} \, \mathrm{d}\mu = \int\limits_X |f+g|^p \, \mathrm{d}\mu = \int\limits_X |f+g|^p \, \mathrm{d}\mu = \int\limits_X |f+g|^{p-1} \, \mathrm{d}\mu \leqslant \int\limits_X |f| \cdot |f+g|^{p-1} \, \mathrm{d}\mu \leqslant \int\limits_X |f| \cdot |f+g|^{p-1} \, \mathrm{d}\mu = \int\limits_X |f+g|^p \, \mathrm{d}\mu = \int\limits_X |f+g|^{p-1} \, \mathrm{d}\mu \leqslant \int\limits_X |f| \cdot |f| + \int\limits_X$$

Применив к каждому слагаемому неравенство Гёльдера $(|f+g|^{p-1} \in L^q)$, так как $\int\limits_X |f+g|^{(p-1)q} \,\mathrm{d}\mu = \int\limits_X |f+g|^p \,\mathrm{d}\mu \leqslant 2^p \int\limits_X \max(f,g)^p \,\mathrm{d}\mu \leqslant 2^p \int\limits_X (|f|^p + |g|^p) \,\mathrm{d}\mu)$, получаем

$$(\|f\|_{L^p} + \|g\|_{L^p}) \left(\int_X |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}} = (\|f\|_{L^p} + \|g\|_{L^p}) \left(\int_X |f + g|^p d\mu \right)^{\frac{1}{q}}$$

Далее делим обе части неравенства на $\left(\int\limits_X |f+g|^p\,\mathrm{d}\mu\right)^{\frac{1}{q}}$, и остаётся

$$\underbrace{\left(\int_{X} |f+g|^{p} d\mu\right)^{1-\frac{1}{q}}}_{\|f+g\|_{L^{p}}} \leqslant \|f\|_{L^{p}} + \|g\|_{L^{p}}$$

Теорема 2.7.2. $L^p(\mu)$ — полно.

Доказательство. Рассмотрим последовательность Коши $f_n \in L^p(\mu)$, и пусть $E_{k,l} \coloneqq \{x \in X | |f_k(x) - f_l(x)| > \delta\}$. По определению последовательности Коши $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : k,l \geqslant N \Rightarrow \int\limits_X |f_k - f_l|^p < \varepsilon^p$.

Тогда $\forall k,l\geqslant N: \mu(E_{k,l})=\mu\left\{x\in X||f_k(x)-f_l(x)|^p>\delta^p\right\}\leqslant \frac{\varepsilon^p}{\delta^p}.$ Значит, f_n — последовательность Коши по мере.

Пусть $f_{k_j} \stackrel{\text{почти всюду}}{\longrightarrow} f$, тогда $\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall j,s > N: \int\limits_X |f_{k_j} - f_{k_s}|^p < \varepsilon$. Устремляя $s \to \infty$, по лемме Фату получаем $\int\limits_X |f_{k_j} - f|^p \leqslant \varepsilon$. Значит, f — предел подпоследовательности f_{k_j} , и из неравенства треугольника и фундаментальности можно показать, что f — предел. \square

Лекция X 8 ноября 2023 г.

2.7.1 Приближение функций из класса L^p

В дальнейшем часто будем обозначать меру множества X за |X|.

Теорема 2.7.3. Пусть (X, Σ, μ) — пространство с полной мерой. Тогда простые функции образуют плотное множество в $L^p(\mu)$ при $1 \le p < +\infty$.

Доказательство. Всякая простая функция имеет вид $\phi = \sum_{j=1}^{N} \alpha_j \chi_{e_j}$, дизъюнктные $e_j \in \Sigma$. Если $\phi \in L^p(\mu)$, то меры всех e_j , таких, что $\alpha_i \neq 0$, конечны.

Пусть $f \in L^p(\mu)$, разложим $f = f_+ - f_-$. Приблизим f_+ и f_- по отдельности. Тем самым, без потери общности $f \geqslant 0$.

Раз f измерима, то существует последовательность простых функций $\phi_n \in L^p(\mu): 0 \leqslant \phi_n \leqslant f$, $\phi_n \nearrow f$ почти всюду.

Так как $f-\phi_n \searrow 0$ почти всюду, то $|f-\phi_n|^p \searrow 0$ почти всюду. Применяем теорему Леви, и действительно получаем, что $\int\limits_X |f-\phi_n|^p \,\mathrm{d}\mu \to 0.$

Пусть мера μ получена продолжением по Лебегу — Каратеодори из меры ν на полукольце $\mathcal{A} \subset \Sigma$. Простые функции, полученные из полукольца \mathcal{A} (то есть вида $u = \sum\limits_{j=1}^N \alpha_j \chi_{a_j}, a_j \in \mathcal{A}$) будем называть элементарными.

Теорема 2.7.4. При сделанных предположениях элементарные функции образуют плотное множество в $L^p(\mu)$.

Доказательство. Выберем $\varepsilon>0$. Пускай $f\in L^p(\mu)$. $\exists \phi=\sum\limits_{j=1}^k \alpha_j\chi_{e_j}, e_j\in \Sigma$ — простая функция, хорошо приближающая $f:\|f-\phi\|_{L^p}<\varepsilon$. Теперь достаточно приблизить ϕ , или даже каждое слагаемое ϕ элементарными функциями.

Для всякого $\delta > 0, e_j \in \Sigma$ найдём множество $a_j \in \mathcal{R}(\mathcal{A}) : \|\chi_{a_j} - \chi_{e_j}\|_{L^p} < \delta$.

$$\phi \in L^p(\mu) \Rightarrow \forall j : \mu(e_j) < \infty \Rightarrow \forall j : \exists A_j - \sigma$$
-множество, такое, что $\mu(A_j \setminus e_j) < \frac{\delta}{2}$.

Как
$$\sigma$$
-множество, $A_j=\bigcup\limits_{k=1}^\infty b_k, b_k\in\mathcal{A}.$ Положим $a_j^{(s)}=\bigcup\limits_{k=1}^s b_k\in\mathcal{R}(\mathcal{A}).$

Но тогда

$$\int\limits_{X} |\chi_{a_{j}^{(s)}} - \chi_{e_{j}}|^{p} \,\mathrm{d}\mu = \int\limits_{X} |\chi_{a_{j}^{(s)}} - \chi_{e_{j}}| \,\mathrm{d}\mu \leqslant \int\limits_{X} |\chi_{a_{j}^{(s)}} - \chi_{A_{j}}| \,\mathrm{d}\mu + \int\limits_{X} |\chi_{A_{j}} - \chi_{e_{j}}| \,\mathrm{d}\mu \leqslant \int\limits_{\text{при больших } s} \frac{\delta}{2} + \frac{\delta}{2} \quad \Box$$

Следствие 2.7.1. Линейные комбинации характеристических функций конечных прямоугольных параллелепипедов (или диадических кубов) образуют плотное множество в $L^p(\mathbb{R}^n)$ $(1 \le p < +\infty)$.

Следствие 2.7.2. Непрерывные функции с компактным носителем плотны в $L^p(\mathbb{R}^n)$.

Доказательство. Достаточно доказать, что для любого двоичного куба K: \exists непрерывная функция v с компактным носителем $\|\chi_K - v\|_{L^p} < \varepsilon$. Приблизим $\chi_{\left[\frac{l-1}{2^k}, \frac{l}{2^k}\right]}$ ломаной, которая равна 1 на $\left[\frac{l-1}{2^k}, \frac{l}{2^k}\right]$, и равна нулю вне ε /2-окрестности $\left[\frac{l-1}{2^k}, \frac{l}{2^k}\right]$.

Теперь если n- любое, то $K=I_1\times\cdots\times I_n$, перемножим функции, приближающие I_i .

Пусть $t \in \mathbb{R}^n$, f — функция на \mathbb{R}^n . Тогда $c\partial \mathit{bur}\ f$ на t — это $f_t(x) = f(x+t)$ (иногда пишут минус).

Теорема 2.7.5 (Непрерывность сдвига в среднем). Если $f \in L^p(\mathbb{R}^n), 1 \leqslant p < +\infty$, то $\|f - f_t\|_{L^p} \xrightarrow{t \to 0} 0$.

Доказательство. Пусть $\varepsilon > 0$. Найдём v — непрерывную функцию с компактным носителем, такую, что $\|f - v\|_{L^p(\mathbb{R}^n)} < \varepsilon$.

$$||f - f_t||_{L^p(\mathbb{R}^n)} < ||f - v||_{L^p(\mathbb{R}^n)} + ||v - v_t||_{L^p(\mathbb{R}^n)} + ||v_t - f_t||_{L^p(\mathbb{R}^n)} \le 2\varepsilon + ||v - v_t||_{L^p(\mathbb{R}^n)}$$

Осталось доказать ту же теорему для непрерывной функции с компактным носителем, а она очевидна из теоремы Кантора — v равномерно непрерывна.

Чуть подробнее: выберем $\delta>0$, найдётся шар \overline{B} , такой, что он содержит δ -окрестность $\mathrm{supp}(v)$. На нём $\forall \varepsilon'>0:\exists \delta'\in (0,\delta): |x-y|<\delta'\Rightarrow |v(x)-v(y)|<\varepsilon'$. Интегрируя по шару \overline{B} с конечной мерой, получаем $\|v-v_t\|\leqslant |\overline{B}|\varepsilon'^{1/p}$ и ε' можно сделать сколь угодно малым.

Замечание (Следствие неравенства Гёльдера). $\mu(X) < +\infty \Rightarrow L^p(\mu) \subset L^s(\mu)$ для $p \geqslant s$.

Доказательство. При p=s доказывать нечего, считаем p>s. Положим $r=\frac{p}{s}>1$, к нему есть сопряжённый показатель r'.

Пускай $f \in L^p(\mu)$.

$$\int_{X} |f|^{s} d\mu = \int_{X} |f|^{s} \cdot 1 d\mu \leqslant \left(\int_{X} (|f|^{s})^{r} d\mu \right)^{1/r} \cdot \left(\int_{X} (1)^{r'} d\mu \right)^{1/r'} = \left(\int_{X} |f|^{p} d\mu \right)^{1/r} \cdot \mu(X)^{1/r'}$$

Отсюда видно, что $||f||_{L^s(\mu)} \leqslant ||f||_{L^p(\mu)} \cdot \mu(X)^{\frac{1}{sr'}}$, это особенно красиво при вероятностной мере $-\mu(X)=1$.

В случае конечной меры следствие можно применять к функциям, сосредоточенных на множествах конечной меры.

Введём ещё пространство $L^{\infty}(\mu)$ — множество функций, таких, что $\exists A \in \mathbb{R}_{\geqslant 0}: |f| \leqslant A$ почти всюду.

 $L^{\infty}(\mu)$ — класс всех существенно ограниченных функций.

Если f — существенно ограниченная функция, то среди всех существенных верхних границ $\{K||f(x)|\leqslant K$ почти всюду $\}$ найдётся наименьшая. Назовём её

 $\operatorname{ess\,sup} f = \inf \{ K | K \text{ есть существенная верхняя грань для } f \}$

Теорема 2.7.6. Пусть $A = \operatorname{ess\,sup} f$, тогда $A - \operatorname{существенная}$ граница f.

Доказательство. Пусть $n\in\mathbb{N}$, тогда $A+\frac{1}{n}$ — существенная верхняя граница f. Тем самым, $\exists E_n: |E_n|=0, f(x)\leqslant A+\frac{1}{n}$ при $x\notin E_n$. Выберем $E=\bigcup_{n=1}^\infty E_n$. Тогда $f(x)\leqslant A$ при $x\notin E$, но $\mu(E)=0$.

 ${\it Замечаниe}.$ Пусть f существенно ограниченна, $A=\operatorname{ess\,sup} f.$ Тогда $\exists E: \mu(E)=0$ и $\sup_{x\in X\setminus E}f(x)=A.$

Определение 2.7.1 (Норма $f \in L^{\infty}(\mu)$). $||f||_{L^{\infty}(\mu)} = \operatorname{ess\,sup}_X |f|$.

Если в пространстве L^{∞} отождествить функции, отличающиеся на множестве меры нуль, то $\|_\|$ станет нормой.

Расстояние между функциями в данном пространстве $d(f,g) = \|f-g\|$, неравенство треугольника здесь очевидно:

$$||u+v||_{L^{\infty}} \le ||u||_{L^{\infty}} + ||v||_{L^{\infty}}$$

Теорема 2.7.7. $L^{\infty}(\mu)$ полно.

Доказательство. Пусть $\{f_n\}$ — последовательность Коши в $L^{\infty}(\mu)$, то есть $\operatorname{ess\,sup}_{x\in X}|f_n(x)-f_m(x)|\underset{(n,m)\to\infty}{\longrightarrow} 0$.

Тогда найдутся множества $E_{n,m}$: ess $\sup |f_n - f_m| = \sup_{x \notin E_{n,m}} |f_n(x) - f_m(x)|$.

Положим $E = \bigcup_{n,m} E_{n,m}$, $\mu E = 0$. Тогда $\Big\{ f_n \big|_{X \setminus E} \Big\}_n$ — последовательность Коши на пространстве ограниченных функций на $X \setminus E$. Тем самым, $f_n \Rightarrow f$ равномерно на $X \setminus E$. Доопределим f на E как угодно, её класс эквивалентности в L^∞ не поменяется.

В неравенстве Гёльдера до сих пор рассматривались $p,p':\frac{1}{p}+\frac{1}{p'}=1$ при $1< p,p'<\infty$. Если же подставить одно из p,p' равным 1, то второе станет равным ∞ . Естественно считать 1 и ∞ сопряжёнными показателями.

Неравенство Гёльдера говорило, что $\int\limits_X |fg|\,\mathrm{d}\mu\leqslant \|f\|_{L^p(\mu)}\cdot \|g\|_{L^{p'}(\mu)}.$

Факт 2.7.1. Неравенство Гёльдера сохраняется при p=1 или $p=\infty$.

Доказательство. Пусть p=1. $|f(x)|\cdot |g(x)|\leqslant |f(x)|\cdot \|g\|_{L^{\infty}(\mu)}$ почти всюду. Интегрируя это неравенство, получаем

$$\int_{X} |f| \cdot |g| \, \mathrm{d}\mu \leqslant \int_{X} |f(x)| \, \mathrm{d}\mu \cdot ||g||_{L^{\infty}(\mu)} = ||f||_{L^{1}(\mu)} \cdot ||g||_{L^{\infty}(\mu)}$$

Замечание. Пусть $\mu(X) = 1$ (или просто конечна). Тогда $\|f\|_{L^p(\mu)} \leqslant \|f\|_{L^\infty(\mu)}$ при любом $p < \infty$.

Доказательство.

$$||f||_{L^p} = \left(\int_X |f|^p \, \mathrm{d}\mu\right)^{1/p} \leqslant \left(\int_X ||f||_{L^{\infty}(\mu)}^p \, \mathrm{d}\mu\right)^{1/p} = ||f||_{L^{\infty}(\mu) \cdot \mu(X)}$$

Пусть $\mu(X) = 1$. Зафиксируем измеримую f, рассмотрим строго возрастающую функцию

$$p \mapsto ||f||_{L^p(\mu)}$$

Если $f \notin L^p(\mu)$, то будем считать $||f||_{L^p} = \infty$.

Упражнение 2.7.1. $\lim_{n\to\infty} \|f\|_{L^p} = \|f\|_{L^\infty}$.

2.7.2 Связь интегралов Лебега и Римана

Теорема 2.7.8. Пусть f — функция на отрезке $\langle a,b \rangle$, интегрируемая по Риману — Дарбу. Тогда f суммируема, и интеграл Лебега такой же.

Доказательство. В данной постановке простые функции — линейные комбинации характеристических функций отрезков, $\phi = \sum\limits_{i=1}^N c_j \chi_{I_j}$. В этой лекции они назывались элементарными.

Простые функции интегрируемы и по Риману, и по Лебегу, и интеграл у них один и тот же.

Пусть $\langle a,b\rangle=I_1\sqcup\cdots\sqcup I_k$ — разбиение $\Delta=\{I_1,\ldots,I_k\}$.

Зададим $\phi_{\Delta} = \sum\limits_{j=1}^k \left(\sup_{I_j} f\right) \chi_{I_j}, \psi_{\Delta} = \sum\limits_{j=1}^k \left(\inf_{I_j} f\right) \chi_{I_j}.$ Тогда $\int\limits_{\langle a,b \rangle} \phi_{\Delta}$ — верхняя сумма Дарбу для f по отрезку $\langle a,b \rangle$, $\int\limits_{\langle a,b \rangle} \psi_{\Delta}$ — нижняя сумма Дарбу.

Понятно, что $\psi_{\Delta}\leqslant f\leqslant \phi_{\Delta}$ всюду на $\langle a,b\rangle$, причём для измельчения Δ' верно, что

$$\psi_{\Delta} \leqslant \psi_{\Delta'} \leqslant f \leqslant \phi_{\Delta'} \leqslant \phi_{\Delta}$$

Критерием интегрируемости по Риману является то, что $\operatorname{osc}_{I_j} f$ могут быть сколь угодно малыми, то есть $\forall \varepsilon > 0: \exists \Delta: \int\limits_{\langle a,b \rangle} (\phi_\Delta - \psi_\Delta) \leqslant \varepsilon.$

Выберем последовательность $\varepsilon_n=\frac{1}{n}$, построим разбиения Δ_n так, что каждое следующее является измельчением предыдущего.

Тогда
$$\int\limits_{\mathbb{D}} (\phi_n - \psi_n) \, \mathrm{d}\lambda = \int\limits_{\mathbb{D}} |\phi_n - \psi_n| \, \mathrm{d}\lambda < \frac{1}{n}.$$

Отсюда следует, что существует последовательность индексов n_j , таких, что $\phi_{n_j} - \psi_{n_j} \underset{n \to \infty}{\longrightarrow} 0$ почти всюду. Таким образом, ψ_{n_j} и ϕ_{n_j} стремятся к f почти всюду, тем самым f измерима!

Теперь
$$\int\limits_{\mathbb{R}^n} \psi_{n_j} \leqslant$$
 интеграл Лебега или Римана $f \leqslant \int\limits_{\mathbb{R}^n} \phi_{n_j}.$

Интересный факт (Теорема Лебега). Функция f на конечном отрезке интегрируема по Риману \iff множество точек разрыва f имеет меру нуль.

Замечание. Пусть $f \geqslant 0$, f интегрируема в смысле Римана несобственным образом на конечном или бесконечном интервале $\langle \alpha, \beta \rangle$. Тогда f суммируема на $\langle \alpha, \beta \rangle$.

Доказательство. Например, пусть особенность на конце β : f интегрируема по Риману на любом интервале $\langle \alpha, \beta - \delta \rangle$, причём $\exists \lim_{\delta \to 0} \int\limits_{\alpha}^{\beta - \delta} f(x) \, \mathrm{d}x$. Пускай $f_n = f \cdot \chi_{\left<\alpha, \beta - \frac{1}{n}\right>}$. Тогда $f_n \nearrow f$, по теореме Леви предельная функция тоже суммируема, причём её интеграл — предел интегралов f_n .

Замечание. Если функция знакопеременна, то интегрировать всё ещё бывает полезно в несобственном смысле: $\frac{\sin x}{x}$ не суммируема на $[0,\infty)$, но можно писать

$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \lim_{R \to \infty} \int_{0}^{R} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Лекция XI 15 ноября 2023 г.

2.8 Теоремы Тонелли и Фубини

Рассмотрим два пространства с мерой $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ $(\mathcal{A}, \mathcal{B} - \sigma$ -алгебры, μ, ν — счётно-аддитивные меры на \mathcal{A} и \mathcal{B} соответственно).

Рассмотрим полукольцо $\mathcal{P}=X\times Y$ обобщённых прямоугольников: $c\in\mathcal{P}\iff c=a\times b$ для $a\in\mathcal{A},b\in\mathcal{B}.$

Предложение 2.8.1. Мера $\lambda \coloneqq \mu \otimes \nu$ на \mathcal{P} $(\lambda(a \times b) \coloneqq \mu(a)\nu(b))$ счётно-аддитивна.

 \mathcal{A} оказательство. Выберем $\{a_j\}_{j=1}^{\infty}\subset\mathcal{A},\{b_j\}_{j=1}^{\infty}\subset\mathcal{B},\{c_j\}_{j=1}^{\infty}\subset\mathcal{P}$ так, что $c_j=a_j\times b_j$. Пусть c_j дизъюнктны; положим $c\coloneqq\bigsqcup_{j=1}^{\infty}c_j$, пусть $c\in\mathcal{P}$, то есть $\exists a\in\mathcal{A},b\in\mathcal{B}:c=a\times b$.

Надо проверить, что $\lambda(c) = \sum_{j=1}^{\infty} \lambda(c_j)$.

Рассмотрим равенство $\chi_a(x)\chi_b(y)=\sum\limits_{j=1}^{\infty}\chi_{a_j}(x)\chi_{b_j}(y)$. При каждом фиксированном x обе части — измеримые функции от y.

Интегрируя, получаем по теореме Леви

$$\chi_a(x) \underbrace{\int_{Y} \chi_b(y) \, d\nu(y)}_{\nu(b)} = \sum_{j=1}^{\infty} \chi_{a_j}(x) \underbrace{\int_{Y} \chi_{b_j} \, d\nu(y)}_{\nu(b_j)}$$

Это равенство опять интегриурется, уже по x. В результате действительно получаем $\mu(a)\nu(b)=\sum_{j=1}^\infty \mu(a_j)\nu(b_j)$.

Применяя теорему Лебега — Каратеодори, можно продолжить меру λ , результат тоже обозначают $\mu \otimes \nu$, и называют *произведением мер* μ и ν .

Пусть имеется несколько пространств с мерой $(X_1, \mu_1), \dots, (X_n, \mu_n)$. Можно определить меру произведения $\mu_1 \otimes \dots \otimes \mu_n$. В произведении, вообще говоря, надо указать порядок, но оказывается, что произведение мер ассоциативно.

Пример. Рассмотрим $\mathbb{R}^{n+k} = \mathbb{R}^n \times \mathbb{R}^k$. Пусть λ_n, λ_k — стандартные меры Лебега на \mathbb{R}^n и \mathbb{R}^k . Тогда оказывается, что $\lambda_n \otimes \lambda_k = \lambda_{n+k}$.

Можно заметить, что на обобщённых прямоугольниках мера произведения одна и та же, и применяя теорему об единственности, получаем $\lambda_n \otimes \lambda_k = \lambda_{n+k}$. (причём на само деле неважно, что обобщённые прямоугольники берутся из евклидова пространства, это проверяет ассоциативность в общем виде)

Пускай (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) — пространства со счётно-аддитивными мерами, обе меры полны и обе σ -конечны. В теоремах Тонелли и Фубини теоретически можно обойтись и без этих двух условий, но требуются дополнительные слова. Пусть $\lambda = \mu \otimes \nu$.

Теорема 2.8.1 (Тонелли). Пусть $f - \lambda$ -измеримая функция на $X \times Y, f \geqslant 0$. Тогда

- 1. Для μ -почти всех $x \in X$: $f(x, _)$ измерима на Y.
- 2. Функция $\phi(x) \coloneqq \int\limits_{Y} f(x,\underline{\ }) \,\mathrm{d} \nu$ измерима на X.
- 3. $\int_X \phi(x) d\mu(x) = \int_{X \times Y} f d\lambda.$

Доказательство. Назовём функцию f допустимой, если она определена на $X \times Y$, и удовлетворяет всем трём условиям.

- 1. Если $a \in \mathcal{A}, b \in \mathcal{B}$, то $\chi_{a \times b}$ допустима: $\chi_{a \times b}(x,y) = \chi_a(x)\chi_b(y)$.
- 2. Неотрицательные простые (элементарные) функции, построенные по полукольцу \mathcal{P} , допустимы:
 - Если f, g допустимы, $\alpha, \beta \geqslant 0$, то $\alpha f + \beta g$ тоже допустима.
 - Если f,g допустимы и f суммируема, причём $0\leqslant g\leqslant f$, то f-g тоже допустима.

Доказательство. Пусть $\phi(x)=\int\limits_X f(x,_)\,\mathrm{d}\nu$. В силу 3. она суммируема, откуда ϕ конечна почти всюду. Пусть $\psi(x)=\int\limits_X g(x,_)\,\mathrm{d}\nu$. Так как $\psi\leqslant\phi$, то ψ тоже конечна почти всюду, тогда дальше всё хорошо.

3. Пусть f_n — допустимые функции на $X \times Y$, пусть $0 \leqslant f_1 \leqslant f_2 \leqslant \ldots$, пусть $f(x,y) = \lim_{n \to \infty} f_n(x,y)$. Автоматически f измерима. Тогда f тоже допустима.

Доказательство. Пускай $E_n=\{x\in X|f_n(x,_)$ не измерима $\}$. $\forall n:\mu E_n=0$, так как f_n допустимы. Положим $E\coloneqq\bigcup_{n\in\mathbb{N}}E_n,\ \mu E=0$.

 $x \notin E \Rightarrow$ все функции $f_n(x,_)$ измеримы на Y. Имеется монотонная сходимость $f_n \nearrow f$, значит $f(x,_)$ тоже измерима на Y при $x \notin E$.

Построим $\phi(x) = \int\limits_Y f(x,\underline{\ }) \,\mathrm{d}\nu, \phi_n(x) = \int\limits_Y f_n(x,\underline{\ }) \,\mathrm{d}\nu.$ По теореме Леви (относительно меры ν) для $x \notin E: \phi(x) = \lim_{n \to \infty} \phi_n(x).$ Тем самым ϕ измерима, как предел измеримых функций.

Более того, $\phi_n \nearrow \phi$, опять по теореме Леви (относительно меры μ):

$$\int\limits_X \phi \, \mathrm{d}\mu = \lim_{n \to \infty} \int\limits_X \phi_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int\limits_{X \times Y} f_n \, \mathrm{d}\lambda \, \underset{\text{теорема Леви относительно } \lambda}{=} \int\limits_{X \times Y} f \, \mathrm{d}\lambda \qquad \qquad \Box$$

4. Пусть f_n — допустимые функции на $X \times Y$, пусть $f_1 \geqslant f_2 \geqslant \ldots$, пусть $f(x,y) = \lim_{n \to \infty} f_n(x,y)$. Автоматически f измерима. Если f_1 суммируема, то f тоже допустима.

Доказательство. Аналогично предыдущему пункту.

5. Если $A\subset X imes Y$ — σ -множество. то χ_A допустима.

Доказательство. Представим A в виде $A = \bigsqcup_{j=1}^{\infty} A_j$. $\sum_{j=1}^{N} \chi_{A_j} \nearrow_{n \to \infty} \chi_A$.

6. Если $A\subset X imes Y$ — $\delta\sigma$ -множество конечной меры λ , то χ_A допустима.

 7. Если $e\subset X imes Y$ измеримо, и $\lambda(e)=0$, то χ_e допустимо.

Доказательство. Пусть $\overline{e} - \delta \sigma$ -множество, такое, что $\overline{e} \supset e$, и $\lambda(\overline{e}) = 0$.

Тогда $\chi_e \leqslant \chi_{\overline{e}}$. $\chi_{\overline{e}}$ допустима, в частности, $\chi_{\overline{e}}(x,_)$ измерима на Y для почти всех $x \in X$. Обозначив $\overline{\phi}(x) = \int\limits_V \chi_{\overline{e}}(x,_) \,\mathrm{d}\nu$ видим, что $\overline{\phi}$ измерима на X, а так как

$$\int_{X} \overline{\phi} \, \mathrm{d}\mu = \int_{X \times Y} \chi_{\overline{e}} \, \mathrm{d}\lambda = 0$$

то $\overline{\phi}(x) = 0$ для почти всех $x \in X$.

Пусть $E=\left\{x\in X\middle|\overline{\phi}(x)\neq0\right\}$. Для $x\notin E:\int\limits_{Y}\chi_{\overline{e}}(x,_)\,\mathrm{d}\nu=0$. Иными словами, $\nu\left\{y\in Y\middle|(x,y)\in\overline{e}\right\}=0$.

Но тогда из полноты меры (здесь мы ей пользуемся в первый раз) $\nu\left\{y\in Y|(x,y)\in e\right\}=0.$ Тогда любая функция на e измерима, в частности, $\chi_e(x,_)$ измерима на Y.

Зная измеримость χ_e уже несложно доказать, что в пунктах 2 и 3 все интегралы равны нулю: в частности, $\phi(x) = \int\limits_{\mathcal{C}} \chi_e(x,\underline{\ }) \,\mathrm{d}\nu$ равна нулю всюду кроме E.

8. Если $A\subset X\times Y$ — измеримое множество относительно меры λ , причём $\lambda(A)<+\infty$, то χ_A допустима.

 \overline{A} Доказательство. $\exists \delta \sigma$ -множество $\overline{A} \supset A$, такое, что $\lambda(\overline{A} \setminus A) = 0$. Применим второй • из 2. $\chi_A = \chi_{\overline{A}} - \chi_{A \setminus \overline{A}}$.

9. Пусть f — простая функция относительно σ -алгебры λ -измеримых множеств, $f \geqslant 0$. Иными словами,

$$f = \sum_{i=1}^N lpha_j \chi_{e_j}, lpha_j \geqslant 0, e_i \cap e_j = arnothing$$
 (при $i
eq j$)

Если $\forall j : \lambda e_i < +\infty$, то f допустима.

10. Пусть f — неотрицательная измеримая функция на $X \times Y$, $\lambda \left\{ (x,y) | f(x,y) \neq 0 \right\} < +\infty$. Тогда f допустима.

Доказательство. $\exists f_n$ — простые функции, $0 \leqslant f_n \leqslant f$, $f_n \nearrow f$. Все f_n допустимы, значит и f допустима.

11. Все неотрицательные измеримые функции допустимы.

Доказательство. $\exists X_1 \subset X_2 \subset \ldots$, такие, что $X = \bigcup_i X_i$, и все $\mu(X_i) < +\infty$. Аналогично $\exists Y_1 \subset Y_2 \subset \ldots$, такие, что $Y = \bigcup_i Y_i$, и все $\mu(Y_i) < +\infty$. (Здесь мы пользуемся σ -конечностью в первый раз).

Положим $f_n(x,y)=f(x,y)\chi_{X_n}(x)\chi_{Y_n}(y)$. f_n из пункта 10, значит, f допустима, так как $f_n\nearrow f$.

Теорема 2.8.2 (Фубини). Пусть $(X, \mu), (Y, \nu)$ — два пространства с мерой, $\lambda = \mu \otimes \nu$.

Если $f \in L^1(\lambda)$, то

- Для почти всех $x \in X: \phi(x) \coloneqq \int\limits_{V} f(x,_) \,\mathrm{d} \nu$ суммируема на X.
- $\int_X \phi \, \mathrm{d}\mu = \int_{X \times Y} f \, \mathrm{d}\lambda$.

Доказательство. f суммируема $\Rightarrow f_+, f_-$ суммируемы по λ . К каждой из них применима теорема Тонелли. Вычитаем заключения теоремы Тонелли для f_+ и f_- .

Задача 2.8.1. Придумать функцию f, такую, что $\phi(x)\coloneqq\int\limits_{Y}f(x,_)\,\mathrm{d}\nu$ суммируема, но $f\notin L^1(\lambda)$.

2.8.1 Как применять

Пусть $f - \lambda$ -измеримая функция (про знак ничего не известно).

Чтобы доказать, что f суммируема, надо доказать, что |f| суммируема.

По теореме Тонелли |f| суммируема $\iff \int\limits_X \int\limits_Y |f|(x,y) \,\mathrm{d}\nu(y) \,\mathrm{d}\mu(x)$. Если интеграл сошёлся, то f тоже суммируема, и для исходной функции тоже можно сводить интеграл к повторному.

2.9 Свёртки. Приближение функций с помощью свёрток

Пускай f,g — измеримые функции на \mathbb{R}^n .

Определение 2.9.1 (Свёртка f*g). $(f*g)(x)=\int\limits_{\mathbb{R}^n}f(y)g(x-y)\,\mathrm{d}y$. Свёртка определена в тех точках, где интеграл определён.

Рассмотрим $L:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$, $(x,y) \mapsto (y,x-y)$. L линейно, значит, L,L^{-1} измеримы по Лебегу. Определив $T:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $(u,v) \mapsto f(u)g(v)$, видим, что T измерима, откуда $(T \circ L)(x,y) = f(y)g(x-y)$ тоже измерима.

Теорема 2.9.1. Если $f,g\in L^1(\mathbb{R}^n)$, то (f*g) определена почти всюду, и $\|f*g\|_{L^1}\leqslant \|f\|_{L^1}\|g\|_{L^1}$.

Доказательство. Рассмотрим $\phi(x,y) = |f(x)| \cdot |g(x-y)|$. Она неотрицательна, применяем теорему Тонелли:

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \phi \, d\lambda_{2n} = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(y)| \cdot |g(x-y)| \, dx \right) dy =$$

$$= \int_{\mathbb{R}^n} |f(y)| \left(\int_{\mathbb{R}^n} |g(x-y)| \, dx \right) dy = \int_{\mathbb{R}^n} |f(y)| \left(\int_{\mathbb{R}^n} |g(x)| \, dx \right) dy = ||f||_{L^1} ||g||_{L^1}$$

По теореме Тонелли ϕ суммируема, тем самым, $(x,y) \mapsto f(y)g(x-y)$ тоже суммируема. По теореме Фубини (f*g)(x) определена для почти всех x, причём она суммируема.

$$\int_{\mathbb{R}^n} |(f * g)(x)| \, \mathrm{d}x \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x - y)| \, \mathrm{d}y \, \mathrm{d}x \le ||f||_{L^1} ||g||_{L^1}$$

Замечание. Неформально говоря, если сворачивать f с какими-то хорошими свойствами, и g с какими-то другими хорошими свойствами, то свёртка обладает всеми хорошими свойствами каждой из них. В этом мы убедимся на некоторых примерах.

Утверждение 2.9.1. f * g = g * f всегда, когда существует:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, \mathrm{d}y = \left\| \begin{array}{c} z = x - y \\ y = x - z \end{array} \right\| = \int_{\mathbb{R}^n} f(z)g(x - z) \, \mathrm{d}z$$

Упражнение 2.9.1. Свёртка ассоциативна: f * (g * h) = (f * g) * h всегда, когда существует.

Лекция XII 22 ноября 2023 г.

2.9.1 Меры с плотностью

Пусть (X, Σ, μ) — пространство с мерой. Пусть $\phi \geqslant 0$ — измеримая функция на X.

Можно определить меру, индуцированную функцией ϕ : $\nu(e) = \int\limits_e \phi \,\mathrm{d}\mu$ для $e \in \Sigma$. Тогда ϕ называется плотностью меры ν относительно μ .

Куда должна бить $\phi \geqslant 0$?

1. Можно считать, что $\phi: X \to \mathbb{R}$, но, возможно, меняет знак. Надо предположить, что либо ϕ_+ , либо ϕ_- суммируемы.

Тогда сохраняется счётная аддитивность: $e = \coprod_{i=1}^{\infty} e_i \Rightarrow \nu(e) = \sum_{i=1}^{\infty} \nu(e_i)$. Тем не менее, всякие монотонности могут перестать выполняться, так как функция перестала быть неотрицательной.

2. Можно считать, что $\phi: X \to \mathbb{C}$. Комплексный интеграл берётся отдельно по вещественной и мнимой частям:

$$\int_{e} (\alpha + \beta i) d\mu = \int_{e} \alpha d\mu + i \int_{e} \beta d\mu$$

В обоих случаях ν перестаёт быть мерой в заявленном определении, это просто какая-то счётно-аддитивная функция множества, и ϕ во всех случаях называется её плотностью.

Интегрирование по мере ν

Пусть ν определена, как выше.

Факт 2.9.1. Если $g\geqslant 0$ — измеримая функция на X, то $\int\limits_X g\,\mathrm{d}\nu=\int\limits_X g\phi\,\mathrm{d}\mu$.

Доказательство. Формула верна для $g = \chi_e$:

$$\int_{Y} \chi_e \, \mathrm{d}\nu = \nu(e) = \int_{Y} \chi_e \phi \, \mathrm{d}\mu$$

Значит, формула верна для неотрицательных простых функций.

Теперь пусть g — произвольная измеримая. Существуют неотрицательные простые $g_n \nearrow g$, применяем теорему Леви (два раза, в левой и правой частях равенства).

Следствие 2.9.1. Неотрицательная функция $g \ \nu$ -суммируема $\iff g \phi \ \mu$ -суммируема.

Следствие 2.9.2. h (возможно, меняющая знак) ν -суммируема $\iff h\phi$ μ -суммируема, причём $\int\limits_X h \, \mathrm{d}\nu = \int\limits_X h\phi \, \mathrm{d}\mu.$

2.9.2 Образ меры

Пусть $(X,\mathcal{A}),(Y,\mathcal{B})$ — два пространства, \mathcal{A},\mathcal{B} — σ -алгебры подмножеств в X и Y соответственно.

Пусть $F: X \to Y$ измеримо относительно $(\mathcal{A}, \mathcal{B})$.

Пускай $\mu\geqslant 0$ — счётно-аддитивная мера на (X,\mathcal{A}) . Её образ $F^0(\mu)=:\nu$ — счётно-аддитивная мера на (Y,\mathcal{B}) , такая, что $\nu(b)=\mu(F^{-1}(b))$. Счётная аддитивность следует из того, что прообраз уважает все теоретико-множественные операции.

44

Интегрирование по мере ν

Пусть ν определена, как выше.

$$\int\limits_{V} \chi_e \, \mathrm{d}\nu = \nu(b) = \int\limits_{V} \chi_{F^{-1}(b)} \, \mathrm{d}\mu$$

Заметим, что $\chi_{F^{-1}(b)} = \chi_b \circ F$.

Факт 2.9.2. Если $g\geqslant 0$ — измеримая функция на X, то $\int\limits_X g\,\mathrm{d}\nu=\int\limits_X g\circ F\,\mathrm{d}\mu.$

Доказательство. Формула верна для $g=\chi_e$. Значит, формула верна для неотрицательных простых функций.

Теперь пусть g — произвольная измеримая. Существуют неотрицательные простые $g_n \nearrow g$, применяем теорему Леви (два раза, в левой и правой частях равенства).

Все замечания из предыдущего раздела повторяются:

Следствие 2.9.3. Неотрицательная функция $g \ \nu$ -суммируема $\iff g \circ F \ \mu$ -суммируема.

Следствие 2.9.4. h (возможно, меняющая знак) ν -суммируема $\iff h \circ F$ μ -суммируема, причём $\int\limits_X h \, \mathrm{d} \nu = \int\limits_X h \circ F \, \mathrm{d} \mu.$

Данная формула очень полезна при замене переменной в интеграле.

Например, ранее записанное равенство $\int\limits_X f(x-y)\,\mathrm{d}y=\int\limits_X f(\xi)\,\mathrm{d}\xi$ видно из данной формулы при F(y)=x-y — здесь образ меры будет ей самой.

2.9.3 Свойства свёртки

Пусть $1 \leqslant p \leqslant \infty$.

Теорема 2.9.2. Если $g \in L^1(\mathbb{R}^n)$, $f \in L^p(\mathbb{R}^n)$, то $\|f * g\|_{L^p(\mathbb{R}^n)} \leqslant \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)}$.

Доказательство. Пусть $p=\infty$. Тогда это следует из оценки

$$|(f * g)(x)| \leqslant \int_{\mathbb{R}^n} |f(x - y)| \cdot |g(y)| \, \mathrm{d}y \leqslant \underbrace{\|f\|_{L^{\infty}}}_{\text{ess sup}(f)} \int_{\mathbb{R}^n} |g(y)| \, \mathrm{d}y$$

При p=1 доказано выше (теорема 2.9.1).

Теперь пусть 1 — сопряжённый к <math>p показатель.

$$\int_{\mathbb{R}^n} |(f * g)(x)|^p dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x - y)| |g(y)| dy \right)^p dx =$$

Определим из меры Лебега новую меру с плотностью |g(y)|: $\nu(e)\coloneqq\int\limits_e|g(y)|\,\mathrm{d} y$. Это конечная мера на \mathbb{R}^n , так как $g\in L^1$.

Теперь применим неравенство Гёльдера относительно данной меры ν .

Тем самым, $\|f*g\|_{L^p}^p \leqslant \|g\|_{L^1}^{\frac{p}{q}+1} \|f\|_{L^p}^p$ и $\|f*g\|_{L^p} \leqslant \|f\|_{L^p} \|g\|_{L^1}$.

Упражнение 2.9.2 (Неравенство Юнга). Пусть $f \in L^s(\mathbb{R}^n), g \in L^t(\mathbb{R}^n)$, где s,t>1. Предположим, что $\frac{1}{r}=\frac{1}{s}+\frac{1}{t}-1$, и пусть $r\geqslant 1$. Тогда $\|f*g\|_{L^r}\leqslant \|f\|_{L^s}\|g\|_{L^t}$.

Упражнение 2.9.3. Если $\frac{1}{p} + \frac{1}{q} = 1$, и $1 < p, q < \infty$, то $\|f * g\| \leqslant \|f\|_{L^p} \|g\|_{L^q}$, и при этом f * g непрерывна и стремится κ нулю на ∞ .

Факт 2.9.3. Пусть $g \in L^1(\mathbb{R}^n)$, $g \geqslant 0$, $\int\limits_{\mathbb{R}^n} g(x) \, \mathrm{d}x = 1$. Тогда для $f \in L^p(\mathbb{R}^n)$ при $1 \leqslant p < \infty$:

$$||f * g - f||_{L^p}^p \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x - y) - f(x)|^p g(y) \, dy \, dx$$

Доказательство. $(f*g)(x) - f(x) = \int\limits_{\mathbb{R}^n} f(x-y)g(y) \,\mathrm{d}y - \int\limits_{\mathbb{R}^n} f(x)g(y) \,\mathrm{d}y = \int\limits_{\mathbb{R}^n} (f(x-y) - f(x))g(y) \,\mathrm{d}y$ Возьмём модуль, возведём в степень p, и проинтегрируем:

$$\int_{\mathbb{R}^n} |(f * g)(x) - f(x)|^p dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x - y) - f(x)|g(y) dy \right)^p dx$$

Далее вводим меру $\nu(e) = \int\limits_e g(y) \,\mathrm{d}y$, и опять применяем неравенство Гёльдера к $|f(x-y) - f(x)| \cdot 1$ (применяем к выражению внутри скобок):

$$\int_{\mathbb{R}^n} (|f(x-y) - f(x)| \cdot 1) \nu(y) \leqslant \left(\int_{\mathbb{R}^n} |f(x-y) - f(x)|^p \nu(y) \right)^{\frac{1}{p}} \cdot \underbrace{\left(\int_{\mathbb{R}^n} 1^q \nu(y) \right)^{\frac{1}{q}}}_{1} = \left(\int_{\mathbb{R}^n} |f(x-y) - f(x)|^p g(y) \, \mathrm{d}y \right)^{\frac{1}{p}}$$

Далее, подставляя внутрь скобок полученную оценку, получаем

$$\int_{\mathbb{R}^n} \left(\left(\int_{\mathbb{R}^n} |f(x-y) - f(x)|^p g(y) \, \mathrm{d}y \right)^{\frac{1}{p}} \right)^p \mathrm{d}x$$

Будем обозначать пространство бесконечно дифференцируемых функций на \mathbb{R}^n с компактным носителем значком $\mathcal{D}(\mathbb{R}^n)$.

Теорема 2.9.3. Пусть u — непрерывна, с компактным носителем, $f \in L^p(\mathbb{R}^n)$. Тогда f * u непрерывна. Если $u \in \mathcal{D}(\mathbb{R}^n)$, то $f * u \in C^\infty(\mathbb{R}^n)$.

Доказательство.

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)u(x - y) \, dy =$$

Проверим непрерывность в $x_0 \in \mathbb{R}^n$, рассмотрим $B_r(x_0)$. Пусть $S \coloneqq \operatorname{supp} u$. Можно считать, что интегрирование берётся по компакту $K \coloneqq \overline{B_r(x_0)} - S$.

$$igoplus_{ ext{при }x\in B_r(x_0)}\int\limits_K f(y)u(x-y)\,\mathrm{d}y$$

Заметим, что для всякой последовательности $x_j \to x_0: u(x_j-y) \to u(x_0-y)$, откуда при x_j , близких к x_0 : $\exists C: |f(y)u(x_j-x_0)| \leqslant C|f(y)|$, и можно применить теорему Лебега о мажоранте:

Лемма 2.9.1. Пусть $K \subset \mathbb{R}^n$ — компактное множество, $I = (a,b) \subset \mathbb{R}$ — интервал, $v: K \times I \to \mathbb{R}$. Пусть $\exists \frac{\partial}{\partial t} v(x,t)$, и она непрерывна на (a,b) при всяком фиксированном $x \in K$. Также предположим наличие суммируемой мажоранты w на K: для всех $t \in (a,b): \left|\frac{\partial}{\partial t} v(x,t_0)\right| \leqslant w(x)$.

Определим $\phi(t) \coloneqq \int\limits_K v(x,t) \, \mathrm{d}x$ (предполагаем, что v(x,t) суммируема при всяком t). Тогда ϕ дифференцируема на (a,b), и

$$\phi'(t_0) = \int_K \frac{\partial}{\partial t} v(x, t) \, \mathrm{d}x$$

Доказательство леммы.

Выберем последовательность $t_n \to t_0$, запишем разностное отношение $\frac{\phi(t_n) - \phi(t_0)}{t_n - t_0} = \int\limits_K \frac{v(x,t_n) - v(x,t_0)}{t_n - t_0} \, \mathrm{d}x \xrightarrow[n \to \infty]{} \phi'(t_0)$. По формуле Лагранжа $\frac{v(x,t_n) - v(x,t_0)}{t_n - t_0} = \frac{\partial}{\partial t} v(x,\xi)$ для некой $\xi \in (t_n,t_0)$. $\left|\frac{\partial}{\partial t}v(x,\xi)\right| \leqslant w(x)$, значит, у подынтегральной функции есть мажоранта, и можно перейти к пределу.

Заметим, что $(f*u)(x)=\int\limits_K f(y)u(x-y)\,\mathrm{d}y$, и её действительно можно дифференцировать бесконечно много раз:

$$(f * u)^{(k)}(x) = \int_{K} f(y)u^{(k)}(x - y) \,dy$$

Замечание. Пусть $\operatorname{supp} f = A, \operatorname{supp} g = B.$ Тогда $\operatorname{supp} (f * g) \subset A + B.$

Определение 2.9.2 (Аппроксимативная единица для \mathbb{R}^n). Последовательность функций $g_j \in L^1(\mathbb{R}^n), \ g_j \geqslant 0, \int\limits_{\mathbb{R}^n} g_j = 1, \forall \delta > 0: \int\limits_{|y| > \delta} g_j(y) \,\mathrm{d}y \underset{j \to \infty}{\longrightarrow} 0$

Теорема 2.9.4. Пусть g_j — аппроксимативная единица, $f \in L^p(\mathbb{R}^n)$, $f * g_j \xrightarrow[j \to \infty]{L^p} f$.

Тогда $||f * g_j - f||_{L^p} \longrightarrow_{j \to \infty} 0.$

Если f непрерывна с компактным носителем (достаточно потребовать равномерной непрерывности), то $f*g_j
ightharpoonup f$

Доказательство. При $1 \leqslant p < \infty$:

$$\|(f * g_{j}) - f\|_{L^{p}} \leqslant \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(x - y) - f(x)|^{p} g_{j}(y) \, dx \, dy = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(x - y) - f(x)|^{p} \, dx \cdot g_{j}(y) \, dy =$$

$$= \int_{|y| < \delta} g_{j}(y) \int_{\mathbb{R}^{n}} |f(x - y) - f(x)|^{p} \, dx \, dy + \int_{|y| \ge \delta} g_{j}(y) \int_{\mathbb{R}^{n}} \underbrace{|f(x - y) - f(x)|^{p}}_{\le 2^{p} (|f(x - y)|^{p} + |f(y)|^{p})} \, dx \, dy$$

 $2^p \int\limits_{\mathbb{R}^n} |f(x-y)|^p + |f(y)|^p \,\mathrm{d}x \leqslant 2^{p+1} \int\limits_{\mathbb{R}^n} |f(x)|^p \,\mathrm{d}x$, и это конечно. Значит, по определению аппроксимативной единицы второе слагаемое мало при больших j.

Для первого слагаемого применим непрерывность сдвигов для $f \in L^p(\mathbb{R}^n), 1 \leqslant p < \infty$: $\forall \varepsilon > 0 : \exists \delta : |y| \leqslant \delta \Rightarrow \int\limits_{\mathbb{R}^n} |f(x-y) - f(x)|^p \, \mathrm{d}x < \varepsilon.$ Значит, оно тоже маленькое.

Теперь проверим равномерную сходимость. Так как f имеет компактный носитель, то она равномерно непрерывна: $\forall \varepsilon > 0: \exists \delta > 0: |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$ Пусть $K = \max_{x \in \mathbb{R}^n} |f(x)|$.

$$(f * g_j)(x) - g(x) = \int_{\mathbb{R}^n} f(x - y)g_j(y) \, dy - f(x) = \int_{\mathbb{R}^n} (f(x - y) - f(x)) g_j(y) \, dy$$
$$|(f * g_j)(x) - g(x)| \leqslant \int_{|y| < \delta} |f(x - y) - f(x)|g_j(y) \, dy + \int_{|y| \geqslant \delta} (|f(x - y)| + |f(x)|) g_j(y) \, dy \leqslant \varepsilon + 2K \int_{|y| \geqslant \delta} g_y(y) \, dy \xrightarrow[j \to \infty]{} 0$$

Факт 2.9.4. Пространство $\mathcal{D}(\mathbb{R}^n)$ плотно в $L^p(\mathbb{R}^n)$ для $1\leqslant p<+\infty$.

Доказательство. Построим специальную аппроксимативную единицу.

1. Пускай $\phi: \mathbb{R} \to \mathbb{R}$ — бесконечно дифференцируемая неотрицательная функция с компактным носителем, $\phi = 0$ вне (-1,1).

Например,
$$\phi(x) = \begin{cases} \exp\left(\frac{1}{x^2 - 1}\right), & |x| < 1\\ 0, & |x| \geqslant 1 \end{cases}$$
.

- 2. Положим $a\coloneqq\int\limits_{\mathbb{R}}\phi\,\mathrm{d}x.$ Положим $\psi\coloneqq\frac{\phi}{a}.$ Это функция с единичным интегралом.
- 3. $\Psi(x_1,\ldots,x_n) \coloneqq \psi(x_1)\cdot\ldots\cdot\psi(x_n)$. Это функция с единичным интегралом, сосредоточенная на единичном кубе со стороной 2 и центром в нуле.
- 4. В качестве аппроксимативной единицы выберем $\Psi_j(x) = j^n \Psi(jx)$. Интеграл по-прежнему равен единице, так как якобиан скалярного умножения на j в \mathbb{R}^n равен j^n .

Теперь выберем $\varepsilon > 0$, и функции $f \in L^p(\mathbb{R}^n)$ сопоставим g с компактным носителем, такую, что $\|f - g\|_{L^p} < \varepsilon$. При больших j:

$$|g * \Psi_j - g|_{L^p} < \varepsilon \qquad \qquad \Box$$

Лекция XIII

6 декабря 2023 г.

2.9.4 Слегка другой способ построения аппроксимативной единицы

Этот способ практически повторяет способ с предыдущей лекции, но тут не требуется уметь строить бесконечно дифференцируемую функцию с компактным носителем.

Пусть $\Phi:\mathbb{R}^n\to\mathbb{R}^n$ — суммируемая функция, отнормируем её так, что $\int_{\mathbb{R}^n}\Phi(x)\,\mathrm{d}x=1$. Теперь положим в качестве аппроксимативной единицы $\Phi_j(t)=j^n\Phi(jt)$. Интеграл по всему пространству Φ_j равен 1, так как якобиан домножения на j в \mathbb{R}^n — это j^n . Наконец,

$$\int_{|x|>\delta} \Phi_j(x) \, \mathrm{d}x = \int_{|x|>\delta} j^n \Phi(jx) \, \mathrm{d}x = \int_{|x|>j\delta} \Phi(jx) \, \mathrm{d}x \xrightarrow[j\to\infty]{} 0$$

Также можно вместо дискретного параметра j выбрать непрерывный параметр t. Пусть t мало, и пусть $\phi_t = \frac{1}{t^n} \Phi\left(\frac{x}{t}\right)$ — аппроксимативные единицы.

Тогда для $g \in L^p(\mathbb{R}^n)$: $g * \phi_t \xrightarrow[t \to 0]{} g$ — разумеется правда, так как вместо обычной сходимости можно рассматривать сходимости по последовательностям, стремящимся к нулю.

Пусть $K \subset \mathbb{R}^n$ — компактное множество положительной меры (|K| > 0). Можно также положить $\phi = \frac{\chi_K}{|K|}$, и $\phi_t(x) = \frac{1}{t}\phi\left(\frac{x}{t}\right)$. Это ещё один пример аппроксимативной единицы.

2.10 Преобразования меры при дифференцируемом отображении

Пусть $G \subset \mathbb{R}^n$ — открыто, пусть $F: G \to \mathbb{R}^n$ — непрерывно дифференцируемая инъекция, и пусть дифференциал невырожден везде в G.

Пусть $e \subset G$ — измеримое множество. Научимся вычислять |F(e)|.

Теорема 2.10.1. $|F(e)| = \int\limits_e |J_F(x)| \, \mathrm{d}x$, где $J_F(x)$ — якобиан отображения F в точке x.

Прежде чем приступить к доказательству данной теоремы, вспомним несколько вещей.

Так, в условиях теоремы (можно рассмотреть исчерпывающую последовательность компактов для G, на них производная ограничена и F липшицева) для всякого измеримого $e \subset G$: F(e) измеримо по Лебегу, и $|e| = 0 \Rightarrow |F(e)| = 0$.

Рассмотрим некоторое расширение понятия меры. Пусть (S, Σ) — пространство с σ -алгеброй.

Определение 2.10.1 (Знакопеременная мера). Счётно-аддитивная (необязательно положительная) функция $\nu:\Sigma\to\mathbb{R}$. Счётная аддитивность понимается в обычном смысле: для непересекающихся $\int_{-\infty}^{\infty}$ $\int_{-\infty}^{\infty}$

$$e_j \in \Sigma : \nu \left(\bigsqcup_{j=1}^{\infty} e_j \right) = \sum_{j=1}^{\infty} \nu(e_j).$$

Из определения сразу следует, что сходимость должна быть абсолютной: формула верна с любой перестановкой.

Иногда такую меру называет *зарядом* — если обычная мера является аналогом массы, распределённой по всему пространству, то знакопеременная — аналог заряда, который сокращается при разных знаках.

Примеры (Знакопеременная мера).

- Пусть $g \in L^1(\mathbb{R}^n)$. Можно определить $\nu(e) = \int\limits_e g(x) \,\mathrm{d} x$. Интеграл счётно-аддитивен, значит, u знакопеременная мера.
- Есть и другие меры (например, δ_0 мера всякого множества равна 1, если оно содержит 0, и 0 иначе.)

Пусть (S,Σ,λ) — пространство с мерой $\lambda\geqslant 0$; предположим, что λ — σ -конечна. Пусть ν — знакопеременная мера на Σ .

Определение 2.10.2 (ν абсолютно непрерывна относительно λ). $\forall e \in \Sigma : \lambda(e) = 0 \Rightarrow \nu(e) = 0$.

Интересный факт (Теорема Радона — Никодима). Следующие два условия эквивалентны.

- ν абсолютно непрерывна относительно λ .
- $\exists g \in L^1(\lambda) : \forall e \in \Sigma : \nu(e) = \int_e g \, d\lambda.$

Это весьма фундаментальная теорема, и у неё довольно длинное непростое доказательство. Нам эту теорему докажут в курсе функционального анализа, так как там есть некий трюк с гильбертовыми пространствами, позволяющий существенно упростить доказательство.

Если такая g существует, то она называется *плотностью* меры μ относительно меры λ . Также g зовут *производная Радона* — Hикодима, причины к чему мы увидим ниже.

3амечание. Плотность абсолютно непрерывной меры ν единственна.

Доказательство. Если g_1, g_2 — две различные плотности, то $\forall e: \nu(e) = \int\limits_e g_1 \, \mathrm{d}\lambda = \int\limits_e g_2 \, \mathrm{d}\lambda$, и значит $\int\limits_e (g_1 - g_2) \, \mathrm{d}\lambda = 0$. Рассматривая положительные и отрицательные части этой разности, получим, что она равна нулю почти всюду, что и требовалось.

Замечание. $\nu \geqslant 0 \iff$ плотность $g \geqslant 0$.

Доказательство. g не может быть отрицательной на множестве положительной меры e, иначе бы было $\nu(e) < 0$

Вернёмся к ситуации дифференцируемого отображения $F:G\to \mathbb{R}^n$. Определим $\nu(e)=|F(e)|$ — образ меры Лебега λ_n на F(G) при отображении F^{-1} . ν — мера на G, определённая на той же алгебре λ_n -измеримых подмножеств $\Sigma\subset 2^G$ (да?).

Факт $|e|=0 \Rightarrow \nu(e)=0$ как раз и говорит, что ν абсолютно непрерывна относительно меры Лебега λ_n на G.

Рассмотрим U=F(G) — открытое множество в \mathbb{R}^n . Пусть K_j — исчерпывающая последовательность компактов для U, и положим $L_j \coloneqq F^{-1}(K_j)$. Тогда L_j — исчерпывающая последовательность компактов для G, но нам важно даже не то, что они компактны, а то, что $\forall j: \nu(L_j) < \infty$.

Теперь рассмотрим сужение меры ν на L_j — это не совсем сужение в теоретико-множественном смысле, а просто мера, определённая на подмножествах L_j . Это сужение конечно, и тогда по теорема Радона — Никодима $\exists g \in L^1(L_j)$, такая, что $\forall e \in L_j : \nu(e) = \int g_j \, \mathrm{d}\lambda$.

Теперь рассмотрим g_k для k>j. $\nu(e)=\int\limits_e g_k\,\mathrm{d}\lambda$. Понятно, что $g_k\big|_{L_j}$ — плотность меры ν на L_j , и получается, что эти плотности согласованы: из единственности плотности $g_k\big|_{L_j}=g_j$ почти всюду. Тогда они «склеиваются» в одну измеримую функцию $g:G\to\mathbb{R}$, для которой всё верно: $\forall e\in G:|F(e\cap L_j)|=\int\limits_{e\cap L_j}g\,\mathrm{d}\lambda$, и можно перейти к пределу. Не исключено, что полученная G не суммируема, что естественно — образ маленького множества даже при дифференцируемом отображении может очень сильно растянуться.

Следствие 2.10.1 (Вывод из теоремы Радона — Никодима). \exists измеримая на G функция g, измеримая по Лебегу, такая, что $|F(e)| = \int\limits_{C} g(x) \, \mathrm{d}x$.

Таким образом, такая функция g найдётся, осталось её как-то найти, а точнее, доказать, что это $|J_F(x)|$.

Bonpoc. Как искать плотность h у (вообще говоря знакопеременной) меры ν на G, если известно, что такая плотность есть?

Известно, что $\nu(e) = \int\limits_e h(x) \,\mathrm{d}x$. Предположим, что данная функция h локально суммируема: $\forall x \in G: \exists U \ni x: \int\limits_U |h(x)| \,\mathrm{d}x < \infty$. Функция, полученная из теоремы Радона — Никодима, именно такая.

Значит, плотность можно искать по кусочкам: $\forall e \in U \cap G : \nu(e) = \int\limits_{e}^{} h(x) \chi_U(x) \, \mathrm{d}x.$

Интересный факт (Теорема о дифференцировании). Пусть B_r — шар (или куб) радиуса r с центром в $0 \in \mathbb{R}^n$. Тогда в этих условиях ($h \in L^1(\mathbb{R}^n)$ — локально суммируема, $\nu(e) = \int\limits_e h(x) \,\mathrm{d}x$) почти всюду $h(x) = \lim\limits_{r \to 0} \frac{1}{|B_r|} \nu(x+B_r)$.

В случае одномерного пространства n=1 это оказывается теоремой Ньютона — Лейбница. Если h непрерывна в x, то доказательство работает то же самое, но оказывается, что это правда не только в случае непрерывной h.

Теорема 2.10.2 (Слабая теорема о дифференцировании). $\forall h \in L^1(\mathbb{R}^n): \exists$ последовательность $r_n: r_n \xrightarrow[n \to \infty]{} 0$, и почти всюду

$$\frac{1}{|B_{r_n}|} \int_{x+B_{r_n}} h(y) \, \mathrm{d}y \underset{n \to \infty}{\longrightarrow} h(x)$$

Доказательство. Это, конечно, частный случай теоремы о дифференцировании, но зато доказывается проще.

Построим аппроксимативную единицу по функции $\phi \coloneqq \frac{1}{|B_1|} \chi_{B_1}$.

Она будет иметь вид $\phi_r(x) = \frac{1}{r^n}\phi\left(\frac{x}{r}\right) = \frac{1}{r^n|B_1|}\phi\left(\frac{x}{r}\right) = \frac{1}{|B_r|}\chi_{B_r}(x)$. Известно, что $h*\phi_r \overset{L^1(\mathbb{R}^n)}{\underset{r\to\infty}{\longrightarrow}} h$.

Запишем

$$h * \phi_r = \int_{\mathbb{R}^n} h(y)\phi_r(x - y) \, dy = \int_{\mathbb{R}^n} h(y) \frac{1}{|B_r|} \chi_{B_r}(x - y) \, dy = \frac{1}{|B_r|} \int_{|x - y| < r} h(y) \, dy$$

Справа как раз стоит выражение, про которое мы хотим показать, что стремится к h(x). Сходимость в L^1 означает сходимость по мере, а раз имеется сходимость по мере, то имеется последовательность r_n , стремящаяся к нулю, такая что $h * \phi_{r_n} \longrightarrow h$ почти всюду.

Осталось доказать, что всюду

$$\frac{|F(x+B_r)|}{|B_r|} \xrightarrow[r \to 0]{} |J_F(x)| \tag{*}$$

Раз доказав это, мы получим, что так как левая часть почти всюду сходится к плотности h, и тогда окажется, что плотность как раз равна модулю якобиана.

Лемма 2.10.1 (Об искажении). Пусть $H:U\to\mathbb{R}^n$, выберем $x_0\in U$, пусть H непрерывно дифференцируемо и $\mathrm{d}H(x_0,_)=E$, тождественный оператор. Положим $y_0:=H(x_0)$. Утверждается, что $\forall \varepsilon\in (0,1):\exists \delta>0: r\in (0,\delta)\Rightarrow B_{r(1-\varepsilon)}(y_0)\subset H(B_r(x_0))\subset B_{r(1+\varepsilon)}(y_0)$.

 \mathcal{A} оказательство. Выберем маленький $u\in\mathbb{R}^n$. По определению дифференцируемости $H(x_0+u)=y_0+\underbrace{\mathrm{d} H(x_0,u)}_{}+v(u),$ где v(u)=o(|u|).

Выберем $\varepsilon \in (0,1)$, по определению o-маленького: $\exists \delta > 0: |u| < \delta \Rightarrow |v(u)| < \varepsilon |u|$. Тогда, действительно, $r < \delta \Rightarrow |H(x_0 + u) - y_0| \leqslant |u| + |v(u)| \leqslant (1 + \varepsilon)|u| \leqslant (1 + \varepsilon)r$. Это доказывает правое включение.

Для доказательства левого включения возьмём H^{-1} , определённое в некоторой окрестности y_0 , причём $\mathrm{d} H^{-1}(y_0,\underline{\ })=E$. Здесь уже доказано $\forall \varepsilon>0:\exists \delta>0:\rho<\delta\Rightarrow H^{-1}(B_\rho(y_0))\subset B_{\rho(1+\varepsilon)}(x_0).$

Применяя H ко включению, получаем $B_{\rho}(y_0)\subset H\left(B_{\rho(1+\varepsilon)}\right)(x_0)$. Обозначив $r=\rho(1+\varepsilon)$, получаем искомое включение, так как $B_{r(1-\varepsilon)}\subset B_{\frac{r}{1+\varepsilon}}$.

Приступим к доказательству (*). Пусть $A = dF(x_0, _)$.

$$\frac{\nu(B_r(x_0))}{|B_r(x_0)|} = \frac{|F(B_r(x_0))|}{|B_r(x_0)|} = \frac{|AA^{-1}F(B_r(x_0))|}{|B_r(x_0)|} = |\det A| \frac{|A^{-1}F(B_r(x_0))|}{|B_r(x_0)|} = \left\|\phi := A^{-1}F\right\| = |J_F(x_0)| \frac{|\phi(B_r(x_0))|}{|B_r(x_0)|} = |J_F(x_0)| \frac{|\phi(B_r(x_0))|}{|B_r(x_0)|} = |\Delta A| + |\Delta A| +$$

Но раз $\det \phi(x_0,\underline{\ })=E$, то по лемме об искажении и принципу двух полицейских $\frac{|\phi(B_r(x_0))|}{|B_r(x_0)|}\underset{r\to 0}{\longrightarrow} 1$:

$$\frac{r^n(1-\varepsilon)^n v}{r^n v} = \frac{|B_{r(1-\varepsilon)}(y_0)|}{|B_r(x_0)|} \leqslant \frac{|\phi(B_r(x_0))|}{|B_r(x_0)|} \leqslant \frac{|B_{r(1+\varepsilon)}(y_0)|}{|B_r(x_0)|} = \frac{r^n(1+\varepsilon)^n v}{r^n v}$$

Лекция XIV

9 декабря 2023 г.

2.11 Мера Лебега на поверхностях

Пусть теперь $m\leqslant n$, и для $U\subset\mathbb{R}^m$ имеется гладкое инъективное $f:U\to\mathbb{R}^n$ со всюду невырожденным дифференциалом.

Тогда $\forall e \in U : f(e)$ — какая-то m-мерная поверхность в \mathbb{R}^n , и её n-мерная мера равна нулю, но есть же у поверхности какая-то площадь, и хочется уметь её вычислять.

2.11.1 Частный случай линейного f

Пусть $A: \mathbb{R}^m \to \mathbb{R}^n$ — линейный оператор. Тогда $A(\mathbb{R}^m)$ — линейное подпространство размерности m в \mathbb{R}^n , и в нём есть какая-то своя m-мерная мера Лебега.

Пусть $e \subset \mathbb{R}^m$ — измеримо. Как вычислить A(e)?

Выберем ортонормированные базисы e_1,\dots,e_m — в \mathbb{R}^m и g_1,\dots,g_m — в $A(\mathbb{R}^m)$. Пусть T — матрица оператора в этих базисах: $T_{i,j}=\langle Ae_i,g_j\rangle$. Тогда $\lambda(Ae)=|\det T|\cdot |e|$.

В этой формуле есть тот недостаток, что при определении T используется произвольно выбранный базис g_1, \ldots, g_m в $A(\mathbb{R}^m)$. От этой проблемы можно избавиться так: $(\det T)^2 = \det(T^t T)$. Оказывается, матрица $T^t T$ выглядит приятно:

$$(T^{t}T)_{i,k} = \sum_{j=1}^{m} \langle Ae_{i}, g_{j} \rangle \langle Ae_{k}, g_{j} \rangle$$

Так как g_j — ортонормированный базис, то выше написано скалярное произведение $\langle Ae_i, Ae_k \rangle$.

Обозначим эту матрицу за $\Gamma(A)$: $\Gamma(A)_{i,k} = \langle Ae_i, Ae_k \rangle$. Эта $\Gamma(A)$ называется матрицей Грама для оператора A. В частности, $\det \Gamma(A)$ — определитель Грама для оператора A.

Тем самым, для линейного $f = A : \lambda(Ae) = (\det \Gamma(A))^{1/2} |e|$. Несложно догадаться, что для нелинейного f формула будет такая (хотя мы ещё не определили меру f(e), но догадаться-то можно):

$$\lambda(f(e)) = \int_{e} (\det \Gamma(d_f(x, \underline{\ })))^{1/2} dx$$

Самым главным вопросом является — как определить меру Лебега на такой поверхности.

2.11.2 *p*-мера Хаусдорфа

Здесь произвольное p>0. Нам понадобятся только случаи $p\in\mathbb{N}$, но теорию удобнее развивать для всех положительных p. Также всё это можно провернуть в произвольном метрическом пространстве.

Пусть $e\subset\mathbb{R}^n$ — любое (необязательно измеримое) подмножество. Пусть $\varepsilon>0$. Рассмотрим всевозможные не более, чем счётные, покрытия этого множества системой множеств $\{a_j\}$ ($e\subset\bigcup_j a_j$),

таких, что $\forall j: \mathrm{diam}(a_j) \leqslant \varepsilon$. Назовём любое такое покрытие ε -покрытием.

Положим $\mu_p(e,\varepsilon)=\inf\sum_j\left(\frac{{\rm diam}\,a_j}{2}\right)^p$, где инфимум берётся по всем таким покрытиям $\{a_j\}$. Двойка в знаменателе стоит «по традиции», чтобы μ_p было больше похоже на меру Лебега.

Факт 2.11.1.
$$\varepsilon_1 < \varepsilon_2 \Rightarrow \mu_p(e, \varepsilon_1) \geqslant \mu_p(e, \varepsilon_2)$$
.

Доказательство. Все покрытия диаметра не более ε_2 являются и покрытиями диаметра не более ε_1 .

Раз так, то $\exists\lim_{\varepsilon\to 0}\mu_p(e,\varepsilon)=\sup_{\varepsilon>0}\mu_p(e,\varepsilon)\stackrel{def}{=}\mu_p^*(e)$ (где-то супремум конечен, где-то бесконечен).

Факт 2.11.2. $\mu_p^* - npe \partial mepa$ на \mathbb{R}^n .

Доказательство.

- $\mu_n^*(\varnothing) = 0.$
- $e_1 \subset e_2 \Rightarrow \mu_p^*(e_1) \leqslant \mu_p^*(e_2)$, так как при уменьшении множества ε -покрытий становится больше, то есть $\forall \varepsilon > 0 : \mu_p(e_1, \varepsilon) \leqslant \mu_p(e_2, \varepsilon)$.
- Осталась счётная полуаддитивность: пусть $e \subset \bigcup_{k=1}^{\infty} e_k$, тогда надо проверить, что $\mu_p^*(e) \leqslant \sum_k \mu_p^*(e_k)$.

Доказательство. Можно считать, что $\forall k: \mu_n^*(e_k) < \infty$, иначе доказывать нечего.

Возьмём $\varepsilon>0, \delta>0$, для каждого k выберем ε -покрытие $\{a_{k,j}\}_j$ множества e_k , такое, что $\sum_j \left(\frac{\operatorname{diam} a_{k,j}}{2}\right)^p < \mu_p(e_k,\varepsilon) + \frac{\delta}{2^k}$. Так как мера Хаусдорфа больше каждого из этих чисел, то они все конечны.

Таким образом,
$$\{a_{k,j}\}_{k,j} - \varepsilon$$
-покрытие e , откуда $\mu_p(e,\varepsilon) \leqslant \sum\limits_{j,k} \left(\frac{\operatorname{diam} a_{k,j}}{2}\right)^p \leqslant \sum\limits_k \mu_p(e_k,\varepsilon) + \delta$. Устремляя $\delta \to 0$, получаем $\mu_p(e,\varepsilon) \leqslant \sum\limits_k \mu_p(a_k,\varepsilon)$.

Теперь можно применить теорему Лебега — Каратеодори, и получить настоящую меру. Хочется узнать, какие множества будут измеримыми после данной процедуры.

Факт 2.11.3. *Если* $\operatorname{dist}(e_1, e_2) > 0$, *mo* $\mu_p^*(e_1 \sqcup e_2) = \mu_p^*(e_1) + \mu_p^*(e_2)$.

Доказательство. В определении $\mu_p(e,\varepsilon)$ можно ограничиться ε -покрытиями $\{a_j\}$, такими, что $\forall j: a_j \cap e \neq \varnothing$.

В силу счётной полуаддитивности $\mu_p^*(e_1 \sqcup e_2) \leqslant \mu_p^*(e_1) + \mu_p^*(e_2)$.

Пусть $\delta=\mathrm{dist}(e_1,e_2)$, рассмотрим $\varepsilon<\delta$. Пусть $\{a_j\}$ — ε -покрытие объединения, такое, что $\forall j: a_j\cap (e_1\cup e_2)\neq\varnothing$. Тогда для каждого $j: a_j\cap e_1=\varnothing$ либо $a_j\cap e_2=\varnothing$. Стало быть

$$\mu_p(e_1 \sqcup e_2, \varepsilon) = \sum_j \left(\frac{\operatorname{diam}(a_j)}{2}\right)^p =$$

$$= \sum_{j: a_j \cap e_1 \neq \varnothing} \left(\frac{\operatorname{diam}(a_j)}{2}\right)^p + \sum_{j: a_j \cap e_2 \neq \varnothing} \left(\frac{\operatorname{diam}(a_j)}{2}\right)^p \geqslant \mu_p(e_1, \varepsilon) + \mu_p(e_2, \varepsilon) \quad \Box$$

Теорема 2.11.1. Пусть (X,d) — метрическое пространство, пусть η — предмера на X, причём $\forall e_1,e_2\subset X: \mathrm{dist}(e_1,e_2)>0 \Rightarrow \eta(e_1\sqcup e_2)=\eta(e_1)+\eta(e_2).$ Тогда все замкнутые множества в X η -измеримы.

Доказательство. Пусть $F\subset X$ замкнуто, проверим, что $\forall a\in X: \eta(a)=\eta(a\cap F)+\eta(a\setminus F)$. Из полуаддитивности достаточно проверять $\eta(a)\geqslant \eta(a\cap F)+\eta(a\setminus F)$.

Пусть
$$F_n \coloneqq \left\{x \in X \middle| \operatorname{dist}(x,F) < \frac{1}{n} \right\}$$
. Из замкнутости $F \colon \bigcap_{n \geqslant 1} F_n = F$. Пусть $C_n \coloneqq a \setminus F_n$.

Если $x \in a \cap F$, а $y \in C_n$, то разумеется $\operatorname{dist}(x,y) \geqslant 1/n$. Таким образом, заведомо $\eta(a) \geqslant \eta(a \cap F) + \eta(C_n)$. Так как C_n , возрастая, в объединении дают $a \setminus F$, то хочется проверить, что $\lim_{n \to \infty} \eta(C_n) = \eta(a \setminus F)$. Запишем

$$a \setminus F = \bigcup_{n=1}^{\infty} C_n = C_n \sqcup \bigsqcup_{j \geqslant n} (C_{j+1} \setminus C_j)$$

Из счётной полуаддитивности $\eta(a \setminus F) \leqslant \eta(C_n) + \sum_{j \geqslant n} \eta(C_{j+1} \setminus C_j)$, но с другой стороны $\eta(a \setminus F) \geqslant \eta(C_n)$. Значит, необходимо и достаточно доказать, что $\sum_{j \geqslant n} \eta(C_{j+1} \setminus C_j) \xrightarrow[j \to \infty]{} 0$. Но это просто значит, что ряд $\sum_{i=1}^{\infty} \eta(C_{j+1} \setminus C_j)$ сходится.

Разобьём ряд на два: $\sum\limits_{j=2k}\eta(C_{j+1}\setminus C_j)+\sum\limits_{j=2k+1}\eta(C_{j+1}\setminus C_j)$. Теперь все подряд идущие слагаемые отстоят друг от друга на положительное расстояние: $\operatorname{dist}(C_{2k+1} \setminus C_{2k}, C_{2k-1} \setminus C_{2k-2}) > 0$.

Стало быть,
$$\forall n: \sum\limits_{j=2k}^{j\leqslant n} \eta(C_{j+1}\setminus C_j)\leqslant \eta\left(\bigcup\limits_{j=1}^n j\right)\leqslant \eta(a)$$
. Аналогично сходится ряд $\sum\limits_{j=2k+1} \eta(_{j+1}\setminus j)$.

Следствие 2.11.1. Все борелевские множества μ_p^* -измеримы.

Предложение 2.11.1. Пусть $E_1, E_2 - \partial \mathcal{B} \mathcal{B}$ евклидовых пространства (возможно, разных размерностей). Пусть $a \subset E_1, \Phi: a \to E_2$ — C-липшицево отображение.

Тогда $\mu_n^*(\Phi(a)) \leqslant C^p(\mu_n^*(a)).$

 Доказательство. Пусть $\{b_j\}$ — ε -покрытие a. Тогда $\mathrm{diam}(\Phi(b_j))\leqslant C\varepsilon$. Иными словами, $\{\Phi(b_j)\}_j$ — $C\varepsilon$ -покрытие множества $\Phi(a)$. Таким образом, $\mu_p(\Phi(a), C\varepsilon) \leqslant \mu_p(a, \varepsilon)$.

Следствие 2.11.2. Мера Хаусдорфа не меняется при изометриях.

Теорема 2.11.2. Пусть $a \in \mathbb{R}^n$ — какое-то. Пусть $\exists p>0: \mu_n^*(a)<\infty$. Тогда $\forall s>p: \mu_s^*(a)=0$.

 \mathcal{A} оказательство. Выберем $\varepsilon>0$, так как $\mu_p^*(a)<\infty$, то $\exists \varepsilon$ -покрытие $\{b_j\}$ множества a, такое, что $\sum_{j} \left(\frac{\operatorname{diam} b_{j}}{2}\right)^{p} \leqslant \mu_{p}^{*}(a) + 1$. Тогда $\sum_{j} \left(\frac{\operatorname{diam} b_{j}}{2}\right)^{s} = \sum_{j} \left(\frac{\operatorname{diam} b_{j}}{2}\right)^{p} \underbrace{\left(\frac{\operatorname{diam} b_{j}}{2}\right)^{p}}_{\leq s/2} \underbrace{\left(\frac{\operatorname{diam} b_{j}}{2}\right)^{s}}_{\leq s/2}$. Тем самым,

$$\sum_{j} \left(\frac{\operatorname{diam} b_{j}}{2} \right)^{s} \leqslant \left(\frac{\varepsilon}{2} \right)^{s-p} \left(\mu_{p}^{*}(a) + 1 \right) \underset{\varepsilon \to 0}{\longrightarrow} 0$$

Следствие 2.11.3. Пусть $\alpha = \inf \{ p > 0 | \mu_*^p(a) < \infty \}$. Тогда $\mu_*^s(a) = 0$ при $s > \alpha$, и $\mu_*^s(a) = \infty$ при $s < \alpha$.

Определение 2.11.1 (Хаусдорфова размерность $a \subset \mathbb{R}^n$). Вот это число α , отвечающее a. Обозначается $\dim_H(a)$.

Интересный факт. Хаусдорфова размерность стандартного Канторова множества равна $\frac{\log 2}{\log 3}$.

Теорема 2.11.3. $\dim_H(\mathbb{R}^n) = n$.

Доказательство. Пусть $K=[0,1]^n$ — куб в \mathbb{R}^n . Докажем, что $\mu_n^*(K)\in(0,\infty)$ (или что $\mu_n(K)\in$ $(0,\infty)$, куб — борелевское множество, поэтому неважно). Так как счётное число кубов покрывает всё \mathbb{R}^n (и при сдвиге мера не меняется), то легко показать, что размерность \mathbb{R}^n такая же, как и размерность куба.

Пусть $\{e_j\}$ — произвольное ε -покрытие куба K, и пусть b_j — шар радиуса $\operatorname{diam}(e_j)$, содержащий e_j . Тогда $\{b_j\}$ — тоже покрытие, откуда $\sum |b_j| \, \geqslant \, |K|$. n-мерная мера Лебега шара $B_r \, \subset \, \mathbb{R}^n$ пропорциональна r^n . Для конкретики положим, что она равна cr^n .

$$1 = |K| \leqslant c \sum_{j} (\operatorname{diam}(e_{j}))^{n} = 2^{n} c \cdot \sum_{j} \left(\frac{\operatorname{diam}(e_{j})}{2}\right)^{n}$$

В другую сторону пойдём так: разобьём куб K на диадические кубы ранга s, пусть K_s — диадические кубы ранга s, содержащиеся в K. Тогда $\left\{\overline{K}_s\right\}_s$ образуют ε -покрытие K при $\varepsilon=2^{-s}\sqrt{n}$. Отсюда получаем оценку

$$\mu_n^* \left(K, 2^{-s} \sqrt{n} \right) \leqslant \sum_s \left(\frac{\operatorname{diam} K_s}{2} \right)^n = 2^{sn} \cdot \left(\frac{2^{-s} \sqrt{n}}{2} \right)^n = \left(\frac{\sqrt{n}}{2} \right)^n$$

Размерность m-мерного подпространства в \mathbb{R}^n равна m, например, потому что оно изометрично \mathbb{R}^m .

Обозначим за μ_p результат продолжения предмеры μ_p^* по теореме Лебега — Каратеодори.

Факт 2.11.4.
$$\exists C_{(m)} : C_{(m)}\mu_n = \lambda_n$$
.

Доказательство. μ_n не меняется при изометриях, в частности, при сдвиге. Значит, по теореме единственности, они пропорциональны.

Пусть $m \leqslant n$ (нас интересует на самом деле случай m < n, если равно, то всё и так известно), посмотрим на μ_m .

Понятно, что $C_{(m)}\mu_m$ совпадает с m-мерной мерой Лебега на всех m-мерных подпространствах в \mathbb{R}^n . Обозначим её за λ_m , что имеет смысл, так как оно везде совпадает с λ_m , где λ_m определено.

Теперь научимся вычислять $\lambda_m(f(e))$, где $e\subset\mathbb{R}^m, f:\underbrace{U}_{\supset e}\to\mathbb{R}^n$ — гладкая инъекция.

Лекция XV 13 декабря 2023 г.

Теорема 2.11.4. При сделанных предположениях $\lambda_m(f(e)) = \int\limits_e |\det \Gamma(\mathrm{d}_f(x,_))|^{1/2} \,\mathrm{d}x.$

Доказательство.

• Сначала обоснуем вообще, что $\dim_H(f(e)) = m$.

Теорема 2.11.5 (Регулярность меры Лебега). \forall измеримого по Лебегу $e \subset \mathbb{R}^k$, $\forall \varepsilon > 0$: \exists открытое $U \supset e$: $|U \setminus e| < \varepsilon$. Кроме того, $|e| = \sup_{K \subset e} |K|$, где K -компактны (запись другая, так как мера любого компактного множества конечна).

Доказательство.

— Пусть $|e|<\infty$. Так как оно измеримо, то \exists параллелепипеды $\{P_j\}_j$, такие, что $\bigcup_j P_j \supset e, \left|\bigcup_j P_j\right|<|e|+\varepsilon$. Можно считать, что они открыты: параллелепипед с номером j можно раздуть так, что $\widetilde{P}_j\supset P_j$ открыт, и $\left|\widetilde{P}_j\right|<\frac{\varepsilon}{2^j}$. Положим $U:=\bigcup_{j=1}^\infty \widetilde{P}_j$, тогда U открыто, и $|U|<|e|+2\varepsilon$.

Теперь если $|e|=\infty$, то воспользуемся σ -конечностью: пусть $\mathbb{R}^k=\bigcup_{s=1}^\infty B_s$, тогда подберём открытые $U_s\supset (e\cap B_s):|U_s\setminus (e\cap B_s)|<\frac{\varepsilon}{2^s}$. Объединение $U\coloneqq\bigcup_s U_s$ подходит: $U\supset e$, и $|U\setminus a|<\varepsilon$.

— Из предыдущего пункта можно найти подходящее замкнутое множество: пусть $a:=\mathbb{R}^k\setminus e$, найдётся открытое $U\supset a, |U\setminus a|<\varepsilon$, тогда для замкнутого $F:=\mathbb{R}^k\setminus U: |e\setminus F|=|U\setminus a|<\varepsilon$.

Чтобы сделать
$$F$$
 компактным, возьмём пересечения $F_s\coloneqq F\cap \overline{B_s}$, где $\mathbb{R}^k=\bigcup_{s=1}^\infty B_s$. Тогда легко видеть, что $|e|=\sup_s |F_s|$.

Возьмём исчерпывающую последовательность компактов $K_1 \subset K_2 \subset \cdots \subset \mathbb{R}^m$ $(K_i \subset \operatorname{Int} K_{i+1}).$

Рассмотрим измеримое $E\subset K_j$. $|E|=C_{(m)}\mu_m^*(E)<+\infty$. Тем самым, согласно регулярности, найдутся вложенные компакты $\Phi_1\subset\Phi_2\subset\cdots\subset E$, такие, что $|\Phi_j|\underset{j\to\infty}{\longrightarrow}|E|$. Положим

$$\Phi \coloneqq \bigcup_{j=1}^{\infty} \Phi_j.$$

А раз так, то $f(E) = f(E \setminus \Phi) \cup \bigcup_{j=1}^{\infty} f(\Phi_j)$. Значит, f(E) измеримо — это объединение множества меры нуль $f(E \setminus \Phi)$, и счётного числа компактов $f(\Phi_j)$.

Получается, на измеримых подмножествах K_j корректно определена мера $\rho := \lambda_m(f)$ ($\rho(e) := \lambda_m(f(e))$).

• Пусть $\rho(e) = \lambda_m(f(e))$ — мера на U.

Лемма 2.11.1. ρ абсолютно непрерывна относительно меры Лебега λ_m на U.

Доказательство леммы.

Пусть
$$\lambda_m(e)=0$$
. Тогда $\mu_m(e)=0$, и так как f — локально липшицева, то $\lambda_m(f(e))=0$.

По теореме Радона — Никодима: $\exists g_j: K_j \to \mathbb{R}$ — неотрицательные измеримые функции, такие, что

$$\forall e \subset K_j : \rho(e) = \lambda_m(f(e)) = \int_e w(x) dx$$
 (*)

Далее, как и раньше, g_{j+1} почти всюду совпадает с g_j , поэтому $\exists g:U\to\mathbb{R}$ — искомая плотность меры.

• Осталось показать, что $g(x) = |\det \Gamma(\mathrm{d}_f(x,\underline{\ }))|^{1/2}$, а это делается с помощью слабой теоремы о дифференцируемости.

A именно, из теоремы о дифференцируемости $\exists r_n \xrightarrow[n \to \infty]{} 0 : g(x) = \lim_{n \to \infty} \frac{1}{|B_{r_n}(x)|} \int_{B_{r_n}(x)} g(x) \, \mathrm{d}x.$

Теперь достаточно показать $\forall x \in U: \lim_{r \to 0} \frac{\lambda_m(f(B_r(x)))}{|B_r(x)|} = |\det \Gamma(\mathrm{d}_f(x,\underline{\ }))|^{1/2}.$

Пусть $x_0 \in U, y_0 \coloneqq f(x_0)$, тогда $\Pi \coloneqq \mathrm{d}_f(x_0,\mathbb{R}^m) - m$ -мерная касательная плоскость к f в точке x_0 . Для удобства будем считать $y_0 = 0$ (заменим $f \leadsto f - y_0$).

В предыдущем семестре была доказана теорема о том, что $\exists V \ni 0$, такая, что $A \coloneqq f(U) \cap V$ задаётся в виде $A = \{h(u) \coloneqq (u, \phi(u)) | u \in W\}$, где $W \subset \Pi$ — окрестность нуля, $\phi : \Pi \to \Pi^{\perp}$ — некоторое непрерывно дифференцируемое отображение, причём $\mathrm{d}_{\phi}(x_0, \underline{\ }) = 0$.

Пусть $P:\mathbb{R}^n o \Pi$ — ортогональный проектор. Тогда P и h взаимно обратны ($P\circ h=\mathrm{id}$).

Из непрерывной дифференцируемости ϕ : $\forall \varepsilon>0: \exists \rho>0: |u|\leqslant \rho\Rightarrow h$ — липшицево с константой не выше $1+\varepsilon$:

$$h(u_1)-h(u_2)\leqslant |u_1-u_2|+\underbrace{|\phi(u_1)-\phi(u_2)|}_{\leqslant |\operatorname{d}_\phi(v,u_1-u_2)|}$$
, где некая точка $v\in [u_1,u_2].$

Устроим $\widetilde{f}:U\to\Pi,\widetilde{f}(x)=Pf(x)$. Заметим, что меры $f(B_r(x_0))$ и $\widetilde{f}(B_r(x_0))$ близки. В самом деле, из липшицевости P: всегда $\mu_m(Pf(B_r(x_0)))\leqslant \mu_m(f(B_r(x_0)))$, и при $r\leqslant \rho:\mu_m(f(B_r(x_0)))=\mu_m(h(\widetilde{f}(B_r(x_0))))\leqslant (1+\varepsilon)^m\mu_m(\widetilde{f}(B_r(x_0)))$. Отсюда видно, что

$$\lim_{r \to 0} \mu_m(\widetilde{f}(B_r(x_0))) = \lim_{r \to 0} \mu_m(f(B_r(x_0)))$$

Но так как \widetilde{f} — отображение между двумя m-мерными евклидовыми пространствами, то можно записать $\lim_{r \to 0} \frac{\mu_m(f(B_r(x_0)))}{B_r(x_0)} = \lim_{r \to 0} \frac{\mu_m(\widetilde{f}(B_r(x_0)))}{B_r(x_0)} = |J_{\widetilde{f}}(x)|.$

Осталось заметить, что образом $d_f(x_0,_)$ является П. Значит, P не меняет дифференциал, $d_{\widetilde{f}}(x_0,_) = d_f(x_0,_)$.

Рассмотрим оператор $A: \mathbb{R}^m \to \mathbb{R}^n$, где m < n. Пусть e_j — стандартный базис в \mathbb{R}^m , тогда Ae_j — столбцы матрицы A.

Можно посчитать определитель Грама матрицы A: $\det(\langle Ae_i, Ae_j \rangle)_{i,j}$ по формуле Бине — Коши: $\det(A^tA) = \sum\limits_{I \subset [n], |I| = m} \det((A^t)_I) \det(A^I) = \sum\limits_{I \subset [n], |I| = m} \det(A^I)^2$.

Примеры (Меры поверхностей).

- Пусть m=1. Рассмотрим путь $\gamma:(a,b)\to\mathbb{R}^n$. $\gamma=\begin{pmatrix} \gamma_1\\ \vdots\\ \gamma_n \end{pmatrix}$. Тогда $J_\gamma(x_0,_)=\begin{pmatrix} \gamma_1'(x_0)\\ \vdots\\ \gamma_n'(x_0) \end{pmatrix}$, и $|\Gamma(\mathrm{d}_\gamma(x_0,_))|=\sqrt{|\gamma_1^2(x_0)+\dots+\gamma_n^2(x_0)|}$. Если γ инъективна, то получается формула длины пути $\int\limits_0^b\sqrt{|\gamma_1^2(x)+\dots+\gamma_n^2(x)|}\,\mathrm{d}x$.
- Пусть $G\subset\mathbb{R}^2$, и отображение представляет собой график: $F(x,y)=(x,y,\phi(x,y))$, где $\phi:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$. Здесь матрица Якоби $J_F(x,y)=\begin{pmatrix}1&0\\0&1\\\partial_1\phi(x,y)&\partial_2\phi(x,y)\end{pmatrix}$, где ∂_i производная по i-му аргументу. Тем самым, $\mu_2(F(e))=\int\limits_e\sqrt{1+(\partial_1\phi)^2+(\partial_2\phi)^2}\,\mathrm{d}\lambda_2$.

2.12 Некоторые конкретные интегралы

- 1. Заинтересуемся сходимостью $\int\limits_{\mathbb{R}^n\setminus B_1}|x|^{\alpha}\,\mathrm{d}x$. Сделаем полярную замену $r,\phi_1,\dots,\phi_{n-1}$. Интеграл обращается в $\int\limits_1^\infty r^{n-1}r^{\alpha}\,\mathrm{d}r\cdot\Psi(\phi_1,\dots,\phi_n)$. Отсюда видно, что так как $\Psi(\phi_1,\dots,\phi_n)$ интегрируемо, то интеграл сходится $\iff n-1+\alpha<-1\iff \alpha<-n$.
- 2. Вычислим $\int\limits_0^\infty e^{-x^2}\,\mathrm{d}x$. Разумеется, интеграл суммируем. Пусть $I\coloneqq\int\limits_{-\infty}^\infty e^{-x^2}\,\mathrm{d}x$.

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} dx dy =$$

Так как функция $e^{-x^2}e^{-y^2}$ суммируема на плоскости, то по теореме Фубини он равен двойному интегралу:

Тем самым,
$$I=\sqrt{\pi}$$
, и из чётности функции e^{-x^2} :
$$\int\limits_0^\infty e^{-x^2}\,\mathrm{d}x = \frac{\sqrt{\pi}}{2}$$

Глава 3

Элементы общей теории меры

Пусть (X,Σ) — пространство с σ -алгеброй, на которой мы будем рассматривать разные меры.

Так как у этих мер могут быть разные множества меры нуль, то может не получиться пополнить одну, продолжив на новые подмножества — элементы Σ -алгебры — и другую, поэтому здесь никаких предположений о полноте мер скорее не будет.

Здесь мера — счётно-аддитивная и, вообще говоря, комплексная функция $\nu:\Sigma \to \mathbb{C}$. Вспомним, что счётная аддитивность означает $\nu\left(\bigsqcup_j e_j\right) = \sum_j \nu(e_j)$.

В силу технических соображений мы запретим мере принимать бесконечные значения, хотя на самом деле их можно и разрешить.

Пусть $\nu=\alpha+i\beta$, где α,β — вещественные меры ($\alpha=\Re(\nu),\beta=\Im(\nu)$). Понятно, что ν счётно-аддитивна $\iff \alpha,\beta$ каждая счётно-аддитивна.

Предложение 3.0.1. Для всяких непересекающихся e_j : ряд $\sum\limits_j \nu(e_j)$ сходится абсолютно.

Доказательство. По определению сумма не зависит от перестановок слагаемых.

Теорема 3.0.1. Множество значений любой комплексной (конечной) меры ограничено.

Доказательство. В пределах данного доказательства назовём множество $a \in \Sigma$ «плохим», если $\sup\{|\nu(b)||b \subset a,b \in \Sigma\} = +\infty$. Пусть наше пространство $-(X,\Sigma)$.

Лемма 3.0.1. Если e-nлохое множество, и $e=e_1\sqcup e_2$, то хотя бы одно из e_1 и e_2-n лохое.

Доказательство леммы.

От противного: если оба хорошие, то и e хорошее, так как $\forall b \subset e : b = (b \cap e_1) \cup (b \cap e_2)$, и меры $(b \cap e_1)$ и $(b \cap e_2)$ ограничены.

Лемма 3.0.2. Если e- плохое множество, то $\exists F,G:F\sqcup G=e$, такие, что $|\nu(F)|,|\nu(G)|\geqslant 1$.

Доказательство леммы.

Так как
$$e-$$
 плохое, то $\exists F: |\nu(F)| \geqslant |\nu(e)| + 1$. Но тогда для $G \coloneqq e \setminus F: |\nu(G)| = |\nu(e) - \nu(F)| \geqslant |\nu(F)| - |\nu(e)| \geqslant 1$.

От противного: пусть X — плохое. Тогда $\exists a,b: a \sqcup b = X$, где $|\nu(a)|, |\nu(b)| \geqslant 1$. Одно из них плохое, обозначим его через F_1 , а второе обозначим G_1 . Применяя ту же самую конструкцию к F_1 , получим $F_1 = F_2 \sqcup G_2$, где $|\nu(F_2)|, |\nu(G_2)| \geqslant 1$, причём F_2 — плохое.

И так далее, в итоге $X = \coprod_{j=1}^{\infty} G_j \sqcup \bigcap_{j=1}^{\infty} F_j$.

Тогда
$$\nu\left(\bigsqcup_{j=1}^{\infty}G_{j}\right)=\sum_{j=1}^{\infty}\nu(G_{j})=\infty$$
, ряд не сходится, противоречие. \square

Лекция XVI

20 декабря 2023 г.

3.1 Разложение Хана

Сужение меры можно определить так $\mu|_E(a) \stackrel{def}{=} \mu(a \cap E)$.

Иногда сужение определяют немного по-другому: $\mu\big|_E(a)$ — мера, заданная как μ , но теоретико-множественно суженная на $\{b\in\Sigma|b\subset E\}$.

Разницы особой нет (конечно, предполагается, что $E \in \Sigma$), можно считать и так, и так.

Теорема 3.1.1 (Хан). Пусть μ — **конечная** вещественная мера на (X, Σ) . Тогда $\exists E, F \in \Sigma : E \sqcup F = X$, такие, что $\mu\big|_E \geqslant 0$, $\mu\big|_F \leqslant 0$. Такое E, что $\mu\big|_E \geqslant 0$ называется множеством положительности (аналогично, F — множество отрицательности).

 \mathcal{A} оказательство. $\{\mu(b)|b\in\Sigma\}$ ограничено (теорема 3.0.1), пусть $M=\sup_{b\in\Sigma}\mu(b)$. Так как $\mu(\varnothing)=0$, то $M\geqslant 0$. Рассмотрим два случая.

- M=0. Тогда $\mu\leqslant 0$, и $F\coloneqq X, E\coloneqq\varnothing$ подходят.
- M>0. По определению супремума $\exists b_k \in \Sigma: M-\frac{1}{2^k} \leqslant \mu(b_k) \leqslant M$.

Лемма 3.1.1. Пусть $b \subset X$, $\mu(b) = M - \varepsilon$. Если измеримое $e \subset b$, то $\mu(e) \geqslant -\varepsilon$.

Доказательство леммы.

От противного: пусть $\exists e \subset b_k : \mu(e) < -\varepsilon$. Тогда мера $b_k \setminus e$ больше супремума M.

Положим $\overline{b_k} = \bigcup_{n \geq k} b_k$. Оценим $\mu\left(\overline{b_k}\right)$ снизу:

$$\mu(b_k \cup b_{k+1} \cup \dots \cup b_n) = \mu(b_k) + \mu(b_{k+1} \setminus b_k) + \mu(b_{k+2} \setminus (b_k \cup b_{k+1})) + \dots + \mu(b_n \setminus (\dots)) \geqslant \left(M - \frac{1}{2^k}\right) - \frac{1}{2^{k+1}} - \frac{1}{2^{k+2}} - \dots - \frac{1}{2^n} \geqslant M - \frac{1}{2^{k-1}}$$

Переходя к пределу в силу счётной аддитивности, получаем $\mu\left(b_k \cup b_{k+1} \cup \cdots\right) \geqslant M - \frac{1}{2^{k-1}}$.

Теперь заметим, что $\overline{b_1}\supset \overline{b_2}\subset\cdots$ Положим $E\coloneqq\bigcap_{k=1}^\infty\overline{b_k}$. В силу монотонной непрерывности $\mu(E)=\lim_{k\to\infty}\mu(\overline{b_k})=M$.

Теперь в силу леммы все подмножества E имеют положительную меру. Положим $F := X \setminus E$, все подмножества F имеют отрицательную меру (от противного: если $f \subset F$ имеет положительную меру, то $\mu(E \cup f) > M$).

Такие $E, F \subset X$ из теоремы — разложение Хана. Оно единственно с точностью до множества меры нуль — если $A \subset E$ имеет меру нуль, то все его измеримые подмножества тоже имеют меру нуль, и $(E \setminus A, F \cup A)$ — тоже разложение Хана.

Теперь можно определить положительную и отрицательную части меры $\mu^+(a) \stackrel{def}{=} \mu(A \cap E)$ и $\mu^-(a) \stackrel{def}{=} -\mu(a \cap E)$. Тогда $\mu(a) = \mu^+(a) - \mu^-(a)$, тем самым любая конечная вещественная мера есть разность двух неотрицательных.

Определение 3.1.1 (Модуль меры). $|\mu|(a) \stackrel{def}{=} \mu^+(a) + \mu^-(a)$.

Введём естественный частичный порядок на мерах: поточечно $\mu \leqslant \nu \iff \forall e \in \Sigma : \mu(e) \leqslant \nu(e)$.

Предложение 3.1.1. μ^+ есть наименьшая из неотрицательных мер $\nu: \nu \geqslant \mu$.

Доказательство. Пусть E, F — разложение Хана для μ . Пусть неотрицательная $\nu \geqslant \mu$. Тогда $\nu(a) = \nu(a \cap E) + \nu(a \cap F) \geqslant \mu(a \cap E) = \mu^+(a)$.

Замечание. $\mu^- = (-\mu)^+$.

Замечание. Пусть
$$g:X \to \mathbb{R}, g(x) = \begin{cases} 1, & x \in E \\ -1, & x \in F \end{cases}$$
. Тогда $\mu(e) = \int\limits_e g \,\mathrm{d}|\mu|$.

Доказательство.

$$\int_{e} g \, \mathrm{d}|\mu| = \int_{e \cap E} \, \mathrm{d}|\mu| - \int_{e \cap F} \, \mathrm{d}|\mu| = \int_{e \cap E} \, \mathrm{d}\mu^{+} - \int_{e \cap F} \, \mathrm{d}\mu^{-} = \mu^{+}(e \cap E) - \mu^{-}(e \cap F) = \mu(e)$$

3.2 Интеграл комплексных функций

Пусть (X,Σ) — пространство с σ -алгеброй, и ρ — неотрицательная счётно-аддитивная мера.

Пусть $\phi: X \to \mathbb{C}$ является Σ -измеримым (прообраз любого борелевского множества измерим). Разложим $\phi = \alpha + i\beta$, где α, β — вещественные измеримые функции.

Определим $\int\limits_a \phi \,\mathrm{d}\rho \stackrel{def}{=} \int\limits_a \alpha \,\mathrm{d}\rho + i\int\limits_a \beta \,\mathrm{d}\rho.$ Данный интеграл обладает всеми свойствами, которые от него ожидаются — аддитивность, $\mathbb C$ -линейность, счётная аддитивность по функции.

Основную оценку интеграла удобно доказывать так:

$$\exists \theta \in \mathbb{R} : e^{i\theta} \int_{a} \phi \, \mathrm{d}\rho \in \mathbb{R}_{\geqslant 0}$$
$$\left| \int_{a} \phi \, \mathrm{d}\rho \right| = \Re \int_{a} e^{i\theta} \phi \, \mathrm{d}\rho = \left| \int_{a} \Re(e^{i\theta} \phi) \, \mathrm{d}\rho \right| \leqslant \int_{a} |e^{i\theta} \phi| \, \mathrm{d}\rho = \int_{a} |\phi| \, \mathrm{d}\rho$$

Многие комплексные меры (как счётно-аддитивные функции множеств) как раз происходят из таких интегралов.

Пускай μ — комплексная мера на Σ .

Определение 3.2.1 (Полная вариация
$$\mu$$
 на $a\in \Sigma$). $|\mu|(a)=\sup\left\{\sum\limits_{j=1}^N|\mu(e_j)|\left|e_1\sqcup\cdots\sqcup e_N=a\right.\right\}$

Теорема 3.2.1. $|\mu|$ есть неотрицательная конечная счётно-аддитивная мера на Σ .

Замечание. Если μ вещественна, то $|\mu|(a)=\mu^+(a)+\mu^-(a)$, где $|\mu|$ понимается, как полная вариация.

Иными словами, не зря модуль меры и её полную вариацию обозначают одинаково.

Доказательство. Если $a \in \Sigma$, и $e_1 \sqcup \cdots \sqcup e_n = a$, то $\sum_{j=1}^n |\mu(e_j)| \leqslant \sum_{j=1}^n \mu^+(e_j) + \mu^-(e_j) \leqslant \mu^+(a) + \mu^-(a)$.

Обратно, разобъём $a=(a\cap E)\cup (a\cap F)$ (где E,F — разложение Хана). Тогда $|\mu|(a)\geqslant |\mu(a\cap E)|+|\mu(a\cap F)|=\mu^+(a)+\mu^-(a)$.

Лемма 3.2.1. Пусть ρ_1, ρ_2 — комплексные меры на Σ , $\alpha, \beta \in \mathbb{C}$. Тогда $\forall a \in \Sigma : |(\alpha \rho_1 + \beta \rho_2)(a)| \leq |\alpha||\rho_1|(a) + |\beta||\rho_2|(a)$.

Доказательство. Пусть $a=e_1\sqcup\cdots\sqcup e_n$. Оценим

$$\sum_{j=1}^{n} |(\alpha \rho_1 + \beta \rho_2)(e_j)| \leq |\alpha| \sum_{j=1}^{n} |\rho_1(e_j)| + |\beta| \sum_{j=1}^{n} |\rho_2(e_j)| \leq |\alpha| |\rho_1|(a) + |\beta| |\rho_2|(a)$$

и перейдём к супремуму по всем разбиениям $a=e_1\sqcup\cdots\sqcup e_n$.

Следствие 3.2.1. Если ρ — комплексная мера, то $\forall a: |\rho|(a) < +\infty$.

Доказательство. Разложим $\rho=\rho_1+i\rho_2$. ρ_1,ρ_2 — вещественные меры, их модули принимают конечные значения.

Предложение 3.2.1. Пусть ν — неотрицательная (необязательно конечная) мера на Σ , пусть g — комплексная суммируемая (относительно ν) функция. Определим $\mu(e) \coloneqq \int g \, \mathrm{d} \nu$.

Тогда $|\mu|(a) = \int_a |g| d\nu$.

Доказательство.

- 0. Пусть $g \in L^1(\nu)$. Тогда $|\mu|(a) \leqslant \int\limits_a |g| \, \mathrm{d}\nu$. Действительно, пусть $e_1 \sqcup \cdots \sqcup e_n = a$. Тогда $\sum_{j=1}^n |\mu(e_j)| = \sum_{j=1}^n \left| \int\limits_{e_j} g \, \mathrm{d}\nu \right| \leqslant \sum_{j=1}^n \int\limits_{e_j} |g| \, \mathrm{d}\nu = \int\limits_a |g| \, \mathrm{d}\nu.$
- 1. Пусть $g=\sum\limits_{j=1}^k c_j\chi_{e_j}$ простая функция, где мы считаем, что $e_j\in \Sigma$ попарно не пересекаются.

Рассмотрим разбиение $a=(a\cap e_1)\sqcup\cdots\sqcup(a\cap e_k)\sqcup \left(a\setminus\bigcup_{j=1}^k e_j\right)$.

$$|\mu|(a) \geqslant \sum_{j=1}^{k} |\mu(a \cap e_j)| + \underbrace{\left|\mu\left(a \setminus \bigcup_{j=1}^{k} e_j\right)\right|}_{=0} = \sum_{j=1}^{k} \left|\int_{a \cap e_j} g \,\mathrm{d}\nu\right| = \sum_{j=1}^{k} |c_j|\nu(a \cap e_j) = \int_{a} |g| \,\mathrm{d}\nu$$

2. Пусть $g\in L^1(\nu)$ $(g:X\to\mathbb{C})$. Выберем $\varepsilon>0$. Тогда так как простые функции плотны в L^1 , то $\exists h:X\to\mathbb{C}$ — простая функция, такая, что $\int\limits_X |g-h|\,\mathrm{d}\nu<\varepsilon$ (отдельно приблизим вещественную и мнимую части).

Пусть $\mu_1(a) = \int\limits_a h \,\mathrm{d}\nu$, и положим $\mu_2 \coloneqq \mu - \mu_1$.

$$\mu(a) = \int_{a} h \, d\nu + \int_{a} (g - h) \, d\nu = \mu_{1}(a) + \mu_{2}(a)$$

$$\begin{cases} |\mu|(a) \leqslant |\mu_1(a)|(a) + |\mu_2|(a) \\ |\mu_1|(a) \leqslant |\mu|(a) + |\mu_2|(a) \end{cases} \Rightarrow |\mu_1|(a) - |\mu_2|(a) \leqslant |\mu|(a) \leqslant |\mu_1|(a) + |\mu_2|(a)$$

Оценим $\mu_2(a)$:

$$|\mu_2(a) \leqslant \int_a |g - h| \, d\nu \leqslant \int_X |g - h| \, d\nu \leqslant |\varepsilon|$$

Отсюда получается

$$\int_{a} |h| \, d\nu - \varepsilon \leqslant |\mu|(a) \leqslant \int_{a} |h| \, d\nu + \varepsilon$$

И наконец можно заменить h на g, при этом мы ошибёмся не больше, чем на arepsilon.

$$\int_{a} |g| \, d\nu - 2\varepsilon \leqslant |\mu|(a) \leqslant \int_{a} |g| \, d\nu + 2\varepsilon$$

Устремим $\varepsilon \to 0$.

Теперь докажем теорему, сформулированную ранее.

Теорема 3.2.2. $|\mu|$ есть неотрицательная конечная счётно-аддитивная мера на Σ .

Доказательство. Пусть μ — комплексная мера на Σ , разложим $\mu = \mu_1 + i\mu_2$, где μ_1, μ_2 — вещественные меры. Пусть $\nu = \mu_1^+ + \mu_2^+ + \mu_1^- + \mu_2^-$. Все четыре слагаемых — абсолютно непрерывные меры относительно ν , то есть по теореме Радона — Никодима они представляются через плотность: $\exists g_{1,2}^{\pm} \in L^1(\nu) : \mu_{1,2}^{\pm}(e) = \int\limits_{e}^{e} g_{1,2}^{\pm} \, \mathrm{d}\nu$.

Тогда $|\mu|(e)=\int\limits_e |g|\,\mathrm{d}\nu$, и действительно получаем, что $|\mu|$ — неотрицательная конечная счётно-аддитивная мера на Σ .

3.2.1 Интеграл по комплексной мере

Пусть $g: X \to \mathbb{C}$ измерима относительно комплексной меры $\mu = \mu_1 + i\mu_2$.

Определим
$$\int\limits_a g \,\mathrm{d}\mu \stackrel{def}{=} \int\limits_a g \,\mathrm{d}\mu_1^+ - \int\limits_a g \,\mathrm{d}\mu_1^- + i \left(\int\limits_a g \,\mathrm{d}\mu_2^+ - \int\limits_a g \,\mathrm{d}\mu_2^-\right)$$

В данном определении предполагается, что g суммируема относительно всех четырёх мер. Оказывается, $g \in L^1(\mu_{1,2}^\pm) \iff g \in L^1(|\mu|)$, так как $\mu_{1,2}^\pm \leqslant |\mu|$.

Лемма 3.2.2 (Линейность по мере). Пусть $\rho, \sigma - \partial se$ комплексные меры на Σ , пусть g суммируема относительно $|\rho|$ и $|\sigma|$. Утверждается, что

$$\int_{a} g \, d(\rho + \sigma) = \int_{a} g \, d\rho + \int_{a} g \, d\sigma$$

Доказательство. Утверждается, что $\exists \lambda$ — положительная мера на Σ , относительно которой ρ , σ абсолютно непрерывны: $\exists u, v: X \to \mathbb{C}$, такие, что $\rho(e) = \int\limits_e u \, \mathrm{d}\lambda$ и $\sigma(e) = \int\limits_e v \, \mathrm{d}\lambda$. Например, в качестве λ можно взять $\rho_1^+ + \rho_1^- + \rho_2^+ + \rho_2^- + \sigma_1^+ + \sigma_1^- + \sigma_2^+ + \sigma_2^-$.

Разложим на вещественную и мнимую части $u = u_1 + iu_2, v = v_1 + iv_2$.

$$\int_{a} g \, \mathrm{d}\rho = \int_{a} g u_{1}^{+} \, \mathrm{d}\lambda - \int_{a} g u_{1}^{-} \, \mathrm{d}\lambda + i \left(\int_{a} g u_{2}^{+} \, \mathrm{d}\lambda - \int_{a} g u_{2}^{-} \, \mathrm{d}\lambda \right) = \int_{a} g u \, \mathrm{d}\lambda$$

Аналогично $\int_a g \, d\sigma = \int_a g v \, d\lambda$.

$$\int_{a} g \, d\rho + \int_{a} g \, d\sigma = \int_{a} g(u+v) \, d\lambda = \int_{a} g \, d(\rho+\sigma)$$

3.3 Разложение Лебега

Пусть (X, Σ, λ) — пространство с неотрицательной σ -конечной мерой $\lambda \geqslant 0$.

Пусть ρ — комплексная мера на Σ .

Определение 3.3.1 (ρ абсолютно непрерывна относительно λ). $\lambda(e) = 0 \Rightarrow \rho(e) = 0$.

Определение 3.3.2 (ρ сингулярна относительно λ). $\exists a \in \Sigma : \lambda(a) = 0$ и $\forall e \subset X \setminus a : |\rho|(e) = 0$.

Пример. Стандартная мера Лебега λ_1 на $\mathbb R$ взаимно сингулярна точечной δ -мере δ_0 .

Теорема 3.3.1 (Лебег). Для произвольной комплексной меры ρ на Σ существует и единственно представление $\rho = \rho_1 + \rho_2$, где ρ_1 абсолютно непрерывна относительно λ , а ρ_2 сингулярна относительно λ .

Доказательство. Положим $A \coloneqq \sup \{ |\rho|(e)|e \in \Sigma, \lambda(e) = 0 \}$. Тогда $\exists e_n \in \Sigma : |\rho|(e_n) > A - \frac{1}{n}$.

Положим $\overline{e_n}=e_n\cup e_{n+1}\cup\cdots$. Тогда $\overline{e_1}\subset\overline{e_2}\subset\cdots$, и положим $E=\bigcup_{n=1}^\infty\overline{e_n}$.

В силу монотонной непрерывности $|\rho|(E)=\lim_{n\to\infty}|\rho|(e_n)=A.$ Так как $\forall n:\lambda(\overline{e_n})=0,$ то $\lambda(E)=0.$

Разложим $\rho_1(e) \coloneqq \rho(e \setminus E), \rho_2(e) \coloneqq \rho(a \cap E)$. В таком представлении ρ_2 очевидно сингулярна относительно λ . Абсолютную непрерывность ρ_1 относительно λ докажем от противного.

Пусть $\exists b \in \Sigma, b \subset X \setminus E : |\rho_1(b)| > 0, \lambda(b) = 0$. Тогда определим $E_1 = E \cup b$, и окажется, что $|\rho|(E_1) = |\rho|(E) + |\rho|(b) \geqslant A + |\rho_1|(b) > A$, противоречие.

Пример. Определим рекурсивно канторову лестницу $C:[0,1] \to [0,1]$.

Построив по данной функции меру $\mu(e) = \int\limits_e C(x) \, \mathrm{d}x$, мы получим меру, сосредоточенную на канторовом множестве меры нуль. Она сингулярна относительно стандартной меры Лебега на $\mathbb R$.