CM1103 Week 7: Exercises 2 - Sets

- 1. Let $A = \{3, 4\}$, $B = \{1, 3, 5, 7\}$, $C = \{\}$ and $D = \{a, b, c\}$. Specify the sets given below.
 - (a) $A \cup B$
- (b) $A \cap B$
- (c) $(A B) \cup (B A)$

- (d) $A \cap A$
- (e) $A \cap \overline{A}$
- (f) $A \overline{B}$

- (g) $A \cap C$
- (h) $B \cup C$
- (i) $A \cap D$

(1) $|\overline{D}|$

- (i) $B \cup D$
- $(k)(A \cup B \cup D) \cap C$
- 2. Express each of the following sets by enumerating the elements and also by using set builder notation. Which do you think is the most useful method of expression?
 - (a) Your favourite foods
 - (b) All odd numbers between 50 and 70
- 3. Let *A* and *B* be any sets. Does $A \cup B = A \cap B$? Prove your assertion.
- 4. List all of the subsets of the set $\{a, b, c\}$ of cardinality 2.
- 5. Give a member of the set $\mathbb{Z} \mathbb{N}$.
- 6. How many subsets of $\{1, 2, 3, 4\}$ are there which contain both the element 2 and the element 4? How many subsets of $\{1, 2, 3, 4\}$ contain the element 2 but *not* the element 4?
- 7. Which of the following statements are true:
 - (a) $\{2, 1, 3\} = \{3, 2, 1\}$

(b) $\{1, 2, 3, 1, 2, 3\}$ is a legal set

(c) $\{6,7,8\} \subseteq \{1,2,3,4,5,6,7,8\}$

- (d) $\emptyset \subset A$ for all sets A
- 8. Highlight the set $(A \cup B) C$ in a Venn diagram.
- 9. Let *A*, *B* and *C* be any sets. For each of the following, decide if the statement is true or false. If false, give a counterexample.
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (b) If $A\subseteq (B\cup C)$ then $A\subseteq B$ and $A\subseteq C$
 - (c) Set difference is commutative, i.e. A B = B A
- 10. Decide whether the following is true:

$$A - (B \cup C) = (A - B) \cup (A - C)$$

by drawing Venn diagrams to illustrate the sets $B \cup C$, A - B, A - C and each side of the statement.

- 11. Let $A = \{1\}$, $B = \{1, 2\}$ and $C = \{\{1\}, \{1, 2\}\}$. Find the following powersets
 - (a) $\mathcal{P}(A)$
- (b) $\mathcal{P}(B)$
- (c) $\mathcal{P}(A \cup B)$
- (d) $\mathcal{P}(A \cap B)$

- (e) $\mathcal{P}(C)$
- (f) $\mathcal{P}(A \cup C)$
- (g) $\mathcal{P}(\emptyset)$
- (h) $\mathcal{P}(\mathcal{P}(\emptyset))$

- 12. Find all partitions of the set $\{1, 2, 3\}$
- 13. Show that 'is a subset of' is transitive i.e. that, for any sets A, B and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.