A work-flow for using ICP on paired LiDAR Point Clouds

Ed Nissen, Aravindhan Krishnan, Srikanth Saripalli, Ramon Arrowsmith

Arizona State University, 1 October 2012

A. Some useful session commands

ICP can take a long time to run. Session commands allow you to log in and out of the experiment session, as well as quickly re-type each command when a new experiment is started.

screen	creates a session
[control] A D	detaches from session, allowing you to close window
screen -ls	lists all active (attached + detached) sessions
screen -r [name of session]	attaches back into session

B. Running ICP

Create a directory containing your LiDAR data and run ICP from here. The three programs we use (texttopcd, registration, get_displacements) should be up one level of directory.

1. Pre- and post-event LAS files should first be converted into text files (e.g. using las2txt). In the text files, we only require the x, y and z values, separated by spaces. If the first line of the text file is a header, this should also be removed.

```
awk 'NR>1 {gsub(/,/," "); print $1, $2, $3}' pre-txt-file > pre-xyz-file
awk 'NR>1 {gsub(/,/," "); print $1, $2, $3}' post-txt-file > post-xyz-file
```

2. Use **texttopcd** to change xyz files to pcd (PCL-compatible) files by adding a header. It also removes an offset (x and y value) to reduce coordinates from 6-7 figures to 3-4 figures. Values for x-offset and y-offset should be round numbers near the center of the dataset and they should be the same for the pre and post dataset. Write them down!

```
../texttopcd -h (brings up usage for texttopcd program)

../texttopcd -i pre-xyz-file -s " " -o pre-pcd-file -x x-offset -y y-offset

../texttopcd -i post-xyz-file -s " " -o pre-post-file -x x-offset -y y-offset
```

3. Use **registration** to do the actual ICP analysis.

The options in this last step are as follows:

-t	distance threshold (in meters) for the closest point pairings. If the distance between a source point and its closest target point is greater than this value, the pair will be discarded until the next iteration. 5 m is a good value to start with.
-e	termination threshold for ICP. If the sum of the components of the 4 x 4 transformation matrix change by less than this value between one iteration and the next, ICP is regarded as having converged and the iterations stop. We suggest using 0.0001.
wx andwy	window dimensions of the pre-event data in the x and y directions, in meters. Here we use 100 m x 100 m.
dx and dy	the "fringe" of additional search space given to the post-event window in both the positive and negative x and y directions, also in meters. Here we use a 10 m fringe, so each post-event windows is 120 x 120 m in size

4. Use **get_displacements** to turn the log file into a final displacement file, and then use awk to geocode this file by adding back in the x-offset and y-offset values from stage 2. The columns for the final file are x, y, alpha, beta, gamma, E-displacement, N-displacement, Z-displacement. (I use the suffix .xyabcenz).

```
../get_displacements -h (brings up usage)

../get_displacements -i log-file -o displacement-file -b x/window- -x 0 -y 0

awk `{printf ``%6.2f %7.2f %1.5f %1.5f %1.5f %1.5f %1.5f %1.5f %1.5f\n", ($1+x-offset), ($2+y-offset), $3, $4, $5, $6, $7, $8}' displacement-file > geo-displacement-file

mv x x-experiment-name
```

Remember to make a new directory called x for your next ICP experiment.

C. Adding synthetic earthquake displacements to a point cloud

Imagine a synthetic fault striking exactly NW–SE through your xyz point cloud. Find a point on the fault, and add its x and y UTM coordinates together to produce a value we'll call "sum". Let's move points NE of the fault 2 m to the SE, and raise them by 1 m.

```
awk '($1+$2)>=sum {printf "%6.2f %7.2f % %4.2f\n", ($1+1.41), ($2-1.41), ($3+1)}' xyz-file > xyz-NE-file
```

Now let's move points SE of the fault 2 m to the NW. $(2 = sqrt((1.41)^2 + (-1.41)^2)$

```
awk '($1+$2)<=sum {printf "%6.2f %7.2f % %4.2f\n", ($1-1.41), ($2+1.41), $3}' xyz-file > xyz-SW-file
```

Add together the two files for the final deformed dataset.

```
cat xyz-NE-file xyz-SE-file > xyz-deformed-file
```

Acknowledgements

We are grateful for support from the US National Science Foundation EarthScope Program grant (EAR-1148302) and the Southern California Earthquake Center.