Computation of Self-Attention

Intuition behind Self Attention

"The kids were scared of the lions, so they left right away."

Intuition behind Self Attention

"The kids were scared of the lions, so they left right away."

Intuition behind Self Attention

"The kids were scared of the lions, so they left right away."

 Each encoder or decoder has a self attention layer and a feed forward network Feed Forward Network Self Attention X_1 X_2 X^3

 Each encoder or decoder has a self attention layer and a feed forward network

 Self attention layer encodes a token by incorporating information from other tokens

 Each encoder or decoder has a self attention layer and a feed forward network

 Self attention layer encodes a token by incorporating information from other tokens

 x_i are the input embeddings and z_i are the outputs of self attention layer

Embeddings

Embeddings

Weight Matrices

Concepts of Query, Key, and Value

Concepts of Query, Key, and Value

Word	q vector	k vector	v vector	score
Action	q_1	k ₁	V ₁	q ₁ .k ₁
gets		k ₂	V ₂	q ₁ .k ₂
results		k ₃	V ₃	q ₁ .k ₃

Word	q vector	k vector	v vector	score
Action		k ₁	V ₁	q ₂ .k ₁
gets	$q_{\scriptscriptstyle 2}$	K ₂	V ₂	q ₂ .k ₂
results		k ₃	V ₃	q ₂ .k ₃

Word	q vector	k vector	v vector	score
Action		k ₁	V ₁	q ₃ .k ₁
gets		k ₂	Vzic	q ₃ .k ₂
results	q ₃	k ₃	V ₃	q ₃ .k ₃

Word	q vector	k vector	v vector	score	score / 8
Action	q ₁	k ₁	V ₁	q ₁ .k ₁	q ₁ .k ₁ /8
gets		k ₂	V ₂	q ₁ .k ₂	q ₁ .k ₂ /8
results		k ₃	V ₃	q ₁ .k ₃	q ₁ .k ₃ /8

Word	q vector	k vector	v vector	score	score / 8	Softmax
Action	q ₁	k ₁	V ₁	q ₁ .k ₁	q ₁ .k ₁ /8	X ₁₁
gets		k ₂	V ₂	q ₁ .k ₂	q ₁ .k ₂ /8	X ₁₂
results		k ₃	V ₃	q ₁ .k ₃	q ₁ .k ₃ /8	X ₁₃

Word	q vector	k vector	v vector	score	score / 8	Softmax	Softmax * v	Sum
Action	q_1	k ₁	V ₁	q ₁ .k ₁	q ₁ .k ₁ /8	X ₁₁	x ₁₁ * v ₁	Z ₁
				A 10 -	- Ivehi			
gets		k ₂	V ₂	q ₁ .k ₂	q ₁ .k ₂ /8	x ₁₂	X ₁₂ * V ₂	
results		k ₃	v ₃	q ₁ .k ₃	q ₁ .k ₃ /8	X ₁₃	x ₁₃ * v ₃	

Word	q vector	k vector	v vector	score	score / 8	Softmax	Softmax * v	Sum [#]
Action		k ₁	V ₁	q ₂ .k ₁	q ₂ .k ₁ /8	x ₂₁	x ₂₁ * v ₁	
			7	A m	N/hi			
gets	q_2	k ₂	V_2	q ₂ .k ₂	q ₂ .k ₂ /8	x ₂₂	$x_{22}^{*} v_{2}$	z_2
			V	VIU	IIVd			
results		k ₃	V_3	q ₂ .k ₃	q ₂ .k ₃ /8	x ₂₃	$X_{23}^* V_3$	

Word	q vector	k vector	v vector	score	score / 8	Softmax	Softmax * v	Sum [#]
Action		k ₁	v ₁	q ₃ .k ₁	q ₃ .k ₁ /8	X ₃₁	x ₃₁ * v ₁	
			7	An.	Slyti	00		
gets		k ₂	V_2	q ₃ .k ₂	q ₃ .k ₂ /8	x ₃₂	$X_{32}^* V_2$	
			V	VIU	NVd			
results	q_3	k ₃	V ₃	q ₃ .k ₃	q ₃ .k ₃ /8	x ₃₃	$x_{33}^* v_3$	z ₃

 Multiple sets of W_q, W_k, W_v and query, key and value vectors..

Analytics
Vidhya

Multi-Head Attention

 Multiple sets of W_q, W_k, W_v and query, key and value vectors.

Transformer uses 8 self-attention heads.

Multi-Head Attention

- Multiple sets of W_q, W_k, W_v and query, key and value vectors.
- Transformer uses 8 self-attention heads.
- Each head represents the input embeddings into a different representation space.

Multi-Head Attention

- Multiple sets of W_q, W_k, W_v and query, key and value vectors.
- Transformer uses 8 self-attention heads.
- Each head represents the input embeddings into a different representation space.
- $(q_0, k_0, v_0), (q_1, k_1, v_1), (q_2, k_2, v_2), ..., (q_7, k_7, v_7)$

Multi-Head Attention

- Each head produces a Z-score matrix (Z₀, Z₁, Z₂,..., Z₇)
- These Z matrices are concatenated and multiplied with another weight matrix W to arrive at the final Z_f matrix.

Multi-Head Attention

