CS 561: Uncertainty and Bayes Nets

Uncertainty

- Logical agent performs as per the expectation if
 - Knows enough facts about environment

Unfortunately agents almost never have access to the whole truth of the environment!

Impossible to construct a complete and correct descriptions of how its actions will work

Agents must, therefore, act under uncertainty

Uncertainty

Let action A_t = leave for airport t minutes before flight departs Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:

" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$

Methods for handling uncertainty

- Default or non-monotonic logic (consequences may be derived only because of lack of evidence of the contrary):
 - Assume my car does not have a flat tire
 - Assume *A*₂₅ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?

- Probability
 - Model agent's degree of belief
 - Given the available evidence, A₂₅ will get me there on time with probability 0.04

Probability

- Expresses uncertainty
- Pervasive in many applications of CS
 - Machine learning, Pattern recognition
 - Information Retrieval (e.g., Web)
 - Computer Vision
 - Robotics
- Based on mathematical calculus

Disclaimer: We only discuss finite distributions

Probability

Probabilistic assertions summarize effects of

- Laziness: failure to enumerate exceptions, qualifications, etc.
- Ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

 Probabilities relate propositions to agent's own state of knowledge e.g., P(A₂₅ | no reported accidents) = 0.6

These are not assertions about the world

does not imply that whenever there are no accidents will reach the airport with 0.6

implies: whenever there are no accidents and no other information is available then reach the airport with 0.6

Probabilities of propositions change with new evidence: e.g., $P(A_{25} \mid \text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

```
P(A<sub>25</sub> gets me there on time | ...) = 0.04
P(A<sub>90</sub> gets me there on time | ...) = 0.70
P(A<sub>120</sub> gets me there on time | ...) = 0.95
P(A<sub>1440</sub> gets me there on time | ...) = 0.9999
```

- Which action to choose?
 Depends on my preferences for missing flight vs. time spent waiting, etc.
 - Utility theory is used to represent and infer preferences
 - Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables
- Boolean random variables
 e.g., Cavity (do I have a cavity?)
- Discrete random variables
 e.g., Weather is one of <sunny,rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny \(\times \) Cavity = false

Syntax

 Atomic event: A complete specification of the state of the world about which the agent is uncertain

E.g., if the world consists of only two boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

```
Cavity = false \land Toothache = false
Cavity = false \land Toothache = true
Cavity = true \land Toothache = false
Cavity = true \land Toothache = true
```

Properties of atomic events

- Atomic events are mutually exclusive
 E.g. Cavity ∧ Toothache and Cavity ∧ ¬ Toothache
- Set of atomic events is exhaustive-disjunction of all atomic events is logically equivalent to true
- Atomic event entails the truth or falsehood of every proposition
 - e.g. Cavity \(\strict Toothache \) entails the truth of cavity and falsehood of Toothache
- Logically equivalent to the disjunction of all atomic events that entail the truth of proposition
 - e.g. cavity= (Cavity ∧ Toothache) V (Cavity ∧ ¬ Toothache)

Probability

Probability of a fair coin

$$P(COIN = tail) = \frac{1}{2}$$

$$P(\text{tail}) = \frac{1}{2}$$

Probability

Probability of cancer

$$P(\text{has cancer}) = 0.02$$

$$\triangleright P(\emptyset \text{ has cancer}) = 0.98$$

Joint Probability

Multiple events: cancer, test result

P(has cancer, test positive)

Has cancer?	Test positive?	P(C,TP)
yes	yes	0.018
yes	no	0.002
no	yes	0.196
no	no	0.784

Joint Probability

The problem with joint distributions

It takes 2^D-1 numbers to specify them!

Describes the cancer test:

$$P(\text{test positive} \mid \text{has cancer}) = 0.9$$

 $P(\text{test positive} \mid \emptyset \text{has cancer}) = 0.2$

Put this together with: Prior probability

$$P(\text{has cancer}) = 0.02$$

$$P(A, B) = P(A|B) * P(B) = P(B|A) * P(A)$$

We have:

$$P(C) = 0.02$$
 $P(\emptyset C) = 0.98$
 $P(TP \mid C) = 0.9$ $P(\emptyset TP \mid C) = 0.1$
 $P(TP \mid \emptyset C) = 0.2$ $P(\emptyset TP \mid \emptyset C) = 0.8$

We can now calculate joint probabilities

Has cancer?	Test positive?	P(TP, C)
yes	yes	0.018
yes	no	0.002
no	yes	0.196
no	no	0.784

"Diagnostic" question: How likely do is cancer given a positive test?

P(has cancer | test positive) = ?

Has cancer?	Test positive?	P(TP, C)
yes	yes	0.018
yes	no	0.002
no	yes	0.196
no	no	0.784

$$P(C \mid TP) = P(C, TP) / P(TP) = 0.018 / 0.214 = 0.084$$

Bayes Network

• We just encountered our first Bayes network:

Chain rule is derived by successive application of product rule:

$$\begin{aligned} \mathbf{P}(X_{1}, \dots, X_{n}) &= \mathbf{P}(X_{1}, \dots, X_{n-1}) \ \mathbf{P}(X_{n} \mid X_{1}, \dots, X_{n-1}) \\ &= \mathbf{P}(X_{1}, \dots, X_{n-2}) \ \mathbf{P}(X_{n-1} \mid X_{1}, \dots, X_{n-2}) \ \mathbf{P}(X_{n} \mid X_{1}, \dots, X_{n-1}) \\ &= \dots \\ &= \pi_{i=1} ^{n} \mathbf{P}(X_{i} \mid X_{1}, \dots, X_{i-1}) \end{aligned}$$

Start with the joint probability distribution:

	toothache		¬ toc	thache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition φ, sum the atomic events where it is true: $P(φ) = Σ_{ω:ω} \models φ P(ω)$

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition φ, sum the atomic events where it is true: $P(φ) = Σ_{ω:ω} \models φ P(ω)$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint probability distribution:

	toothache		¬ too	thache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition φ, sum the atomic events where it is true: $P(φ) = Σ_{ω:ω} \models φ P(ω)$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint probability distribution:

	toothache		¬ toc	othache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = \underbrace{P(\neg cavity \land toothache)}_{P(toothache)}$$

$$= \underbrace{0.016+0.064}_{0.108 + 0.012 + 0.016 + 0.064}$$

$$= 0.4$$

Normalization

	toothache		¬ too	othache
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

```
\begin{aligned} \textbf{P}(\textit{Cavity} \mid \textit{toothache}) &= \alpha, \ \textbf{P}(\textit{Cavity,toothache}) \\ &= \alpha, \ [\textbf{P}(\textit{Cavity,toothache,catch}) + \textbf{P}(\textit{Cavity,toothache}, \neg \; \textit{catch})] \\ &= \alpha, \ [<0.108, 0.016 > + <0.012, 0.064 >] \\ &= \alpha, \ <0.12, 0.08 > = <0.6, 0.4 > \end{aligned} \alpha = P(\text{toothache})
```

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Independence

• A and B are independent iff P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Independence

Independence

$$P(C, TP) = P(C) \times P(TP)$$

- What does this mean for our test?
 - Don't take it!

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product of two simpler distributions
- This implies:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent

Example: Independence

N fair, independent coin flips:

Example: Independence?

Η	Р
warm	0.5
cold	0.5

 $P_2(T,W)$

Т	W	Р
warm	sun	0.3
warm	rain	0.2
cold	sun	0.3
cold	rain	0.2

P(W)

W	Р
sun	0.6
rain	0.4

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a Toothache, a dental probe might be more likely to catch
- But: if I have a cavity, the probability that the probe catches doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, ¬cavity) = P(+catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Bayes Network Representation

Versus: $2^3-1 = 7$ parameters

Example Bayes Network: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (they may not!)

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Alarm Network

Variables

B: Burglary

A: Alarm rings

M: Mary calls

J: John calls

E: Earthquake!

Problem Description

- New burglar alarm installed
- Detects burglary fairly but also responds on occasion to minor earthquake
- John and Mary- two neighbors
 - Calls when they hear the alarm
 - Sometimes confuses the telephone ringing with the alarm and then calls
 - John likes loud music and often misses the alarm together
- Given the evidence of who has or has not called, we would like to estimate the probability of a burglary

Bayes Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process
 - Uncertain relationships

$$P(X|A_1\ldots A_n)$$

Probabilities in BNs

- Bayes nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

$$P(+cavity, +catch, \neg toothache)$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(h, h, t, h) =$$

Example: Traffic

$$P(+r, \neg t) =$$

Example: Alarm Network

Α	7	P(J A)
+a	+j	0.9
+a	一j	0.1
⊸а	+j	0.05
¬а	−j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	−m	0.3
¬а	+m	0.01
¬a ¬m		0.99

Ш	P(E)
+e	0.002
¬е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	¬а	0.05
+b	¬е	+a	0.94
+b	¬е	¬а	0.06
¬b	+e	+a	0.29
⊸b	+e	¬а	0.71
¬b	¬е	+a	0.001
¬b	¬е	¬а	0.999

Example: Alarm Network

$$\prod P(X_i|\operatorname{Parents}(X_i)) = P(B) \cdot P(E) \cdot P(A|B,E) \cdot P(J|A) \cdot P(M|A)$$

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

- Find Conditional (In)Dependencies
 - Concept of "d-separation"

Causal Chains

This configuration is a "causal chain"

Y: Rain

X: Low pressure

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y) \qquad \text{Yes!}$$

Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
$$= P(z|y)$$
$$= P(z|y)$$
Yes!

Y: Alarm

X: John calls

Z: Mary calls

 Observing the cause blocks influence between effects

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes

X: Raining

Z: Ballgame

Y: Traffic

The General Case

 Any complex example can be analyzed using these three canonical cases

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: Remove shaded nodes.
 If two nodes are still connected by an undirected path, they are not conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T does n't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

Example

Example

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B$$
 Yes

$$L \bot\!\!\!\bot B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

Variables:

R: Raining

■ T: Traffic

D: Roof drips

S: I'm sad

• Questions:

$$T \perp \!\!\! \perp D$$

$$T \perp \!\!\! \perp D | R$$

Yes

$$T \perp \!\!\! \perp D | R, S$$

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence