11th Annual Harvard-MIT Mathematics Tournament

Saturday 23 February 2008

Individual Round: Algebra Test

1. [3] Positive real numbers x, y satisfy the equations $x^2 + y^2 = 1$ and $x^4 + y^4 = \frac{17}{18}$. Find xy.

Answer: $\left[\frac{1}{6}\right]$ We have $2x^2y^2 = (x^2 + y^2)^2 - (x^4 + y^4) = \frac{1}{18}$, so $xy = \frac{1}{6}$.

2. [3] Let f(n) be the number of times you have to hit the $\sqrt{\ }$ key on a calculator to get a number less than 2 starting from n. For instance, f(2) = 1, f(5) = 2. For how many 1 < m < 2008 is f(m) odd?

Answer: 242 This is $[2^1, 2^2) \cup [2^4, 2^8) \cup [2^{16}, 2^{32}) \dots$, and $2^8 < 2008 < 2^{16}$ so we have exactly the first two intervals.

3. [4] Determine all real numbers a such that the inequality $|x^2 + 2ax + 3a| \le 2$ has exactly one solution in x.

Answer: 1,2 Let $f(x)=x^2+2ax+3a$. Note that f(-3/2)=9/4, so the graph of f is a parabola that goes through (-3/2,9/4). Then, the condition that $|x^2+2ax+3a|\leq 2$ has exactly one solution means that the parabola has exactly one point in the strip $-1\leq y\leq 1$, which is possible if and only if the parabola is tangent to y=1. That is, $x^2+2ax+3a=2$ has exactly one solution. Then, the discriminant $\Delta=4a^2-4(3a-2)=4a^2-12a+8$ must be zero. Solving the equation yields a=1,2.

4. [4] The function f satisfies

$$f(x) + f(2x + y) + 5xy = f(3x - y) + 2x^{2} + 1$$

for all real numbers x, y. Determine the value of f(10).

Answer: -49 Setting x = 10 and y = 5 gives f(10) + f(25) + 250 = f(25) + 200 + 1, from which we get f(10) = -49.

Remark: By setting $y = \frac{x}{2}$, we see that the function is $f(x) = -\frac{1}{2}x^2 + 1$, and it can be checked that this function indeed satisfies the given equation.

5. [5] Let $f(x) = x^3 + x + 1$. Suppose g is a cubic polynomial such that g(0) = -1, and the roots of g are the squares of the roots of f. Find g(9).

Answer: 899 Let a, b, c be the zeros of f. Then f(x) = (x - a)(x - b)(x - c). Then, the roots of g are a^2, b^2, c^2 , so $g(x) = k(x - a^2)(x - b^2)(x - c^2)$ for some constant k. Since abc = -f(0) = -1, we have $k = ka^2b^2c^2 = -g(0) = 1$. Thus,

$$g(x^2) = (x^2 - a^2)(x^2 - b^2)(x^2 - c^2) = (x - a)(x - b)(x - c)(x + a)(x + b)(x + c) = -f(x)f(-x).$$

Setting x = 3 gives g(9) = -f(3)f(-3) = -(31)(-29) = 899.

6. [5] A root of unity is a complex number that is a solution to $z^n = 1$ for some positive integer n. Determine the number of roots of unity that are also roots of $z^2 + az + b = 0$ for some integers a and b.

Answer: 8 The only real roots of unity are 1 and -1. If ζ is a complex root of unity that is also a root of the equation $z^2 + az + b$, then its conjugate $\bar{\zeta}$ must also be a root. In this case, $|a| = |\zeta + \bar{\zeta}| \le |\zeta| + |\bar{\zeta}| = 2$ and $b = \zeta\bar{\zeta} = 1$. So we only need to check the quadratics $z^2 + 2z + 1$, $z^2 + z + 1$, $z^2 + 1$, $z^2 - z + 1$, $z^2 - 2z + 1$. We find 8 roots of unity: ± 1 , $\pm i$, $\frac{1}{2}(\pm 1 \pm \sqrt{3}i)$.

1

7. [5] Compute $\sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{k}{2^{n+k}}$.

Answer: $\begin{bmatrix} \frac{4}{9} \end{bmatrix}$ We change the order of summation:

$$\sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \frac{k}{2^{n+k}} = \sum_{k=1}^{\infty} \frac{k}{2^k} \sum_{n=k+1}^{\infty} \frac{1}{2^n} = \sum_{k=1}^{\infty} \frac{k}{4^k} = \frac{4}{9}.$$

(The last two steps involve the summation of an infinite geometric series, and what is sometimes called an infinite arithmetico-geometric series. These summations are quite standard, and thus we omit the details here.)

8. [6] Compute $\arctan (\tan 65^{\circ} - 2 \tan 40^{\circ})$. (Express your answer in degrees as an angle between 0° and 180° .)

Answer: 25° First Solution: We have

$$\tan 65^{\circ} - 2\tan 40^{\circ} = \cot 25^{\circ} - 2\cot 50^{\circ} = \cot 25^{\circ} - \frac{\cot^{2} 25^{\circ} - 1}{\cot 25^{\circ}} = \frac{1}{\cot 25^{\circ}} = \tan 25^{\circ}.$$

Therefore, the answer is 25° .

Second Solution: We have

$$\tan 65^{\circ} - 2\tan 40^{\circ} = \frac{1 + \tan 20^{\circ}}{1 - \tan 20^{\circ}} - \frac{4\tan 20^{\circ}}{1 - \tan^2 20^{\circ}} = \frac{(1 - \tan 20^{\circ})^2}{(1 - \tan 20^{\circ})(1 + \tan 20^{\circ})} = \tan(45^{\circ} - 20^{\circ}) = \tan 25^{\circ}.$$

Again, the answer is 25° .

9. [7] Let S be the set of points (a,b) with $0 \le a,b \le 1$ such that the equation

$$x^4 + ax^3 - bx^2 + ax + 1 = 0$$

has at least one real root. Determine the area of the graph of S.

Answer: $\begin{bmatrix} \frac{1}{4} \end{bmatrix}$ After dividing the equation by x^2 , we can rearrange it as

$$\left(x + \frac{1}{x}\right)^2 + a\left(x + \frac{1}{x}\right) - b - 2 = 0$$

Let $y = x + \frac{1}{x}$. We can check that the range of $x + \frac{1}{x}$ as x varies over the nonzero reals is $(-\infty, -2] \cup [2, \infty)$. Thus, the following equation needs to have a real root:

$$y^2 + ay - b - 2 = 0.$$

Its discriminant, $a^2 + 4(b+2)$, is always positive since $a, b \ge 0$. Then, the maximum absolute value of the two roots is

$$\frac{a+\sqrt{a^2+4(b+2)}}{2}.$$

We need this value to be at least 2. This is equivalent to

$$\sqrt{a^2 + 4(b+2)} \ge 4 - a.$$

We can square both sides and simplify to obtain

$$2a \ge 2 - b$$

This equation defines the region inside $[0,1] \times [0,1]$ that is occupied by S, from which we deduce that the desired area is 1/4.

10. [8] Evaluate the infinite sum

$$\sum_{n=0}^{\infty} \binom{2n}{n} \frac{1}{5^n}.$$

Answer: $\sqrt{5}$ **First Solution:** Note that

Then, by the binomial theorem, for any real x with $|x| < \frac{1}{4}$, we have

$$(1-4x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} (-4x)^n = \sum_{n=0}^{\infty} {\binom{2n}{n}} x^n.$$

Therefore,

$$\sum_{n=0}^{\infty} {2n \choose n} \left(\frac{1}{5}\right)^n = \frac{1}{\sqrt{1 - \frac{4}{5}}} = \sqrt{5}.$$

Second Solution: Consider the generating function

$$f(x) = \sum_{n=0}^{\infty} {2n \choose n} x^n.$$

It has formal integral given by

$$g(x) = I(f(x)) = \sum_{n=0}^{\infty} \frac{1}{n+1} {2n \choose n} x^{n+1} = \sum_{n=0}^{\infty} C_n x^{n+1} = x \sum_{n=0}^{\infty} C_n x^n,$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the *n*th Catalan number. Let $h(x) = \sum_{n=0}^{\infty} C_n x^n$; it suffices to compute this generating function. Note that

$$1 + xh(x)^{2} = 1 + x \sum_{i,j \ge 0} C_{i}C_{j}x^{i+j} = 1 + x \sum_{k \ge 0} \left(\sum_{i=0}^{k} C_{i}C_{k-i}\right)x^{k} = 1 + \sum_{k \ge 0} C_{k+1}x^{k+1} = h(x),$$

where we've used the recurrence relation for the Catalan numbers. We now solve for h(x) with the quadratic equation to obtain

$$h(x) = \frac{1/x \pm \sqrt{1/x^2 - 4/x}}{2} = \frac{1 \pm \sqrt{1 - 4x}}{2x}.$$

Note that we must choose the - sign in the \pm , since the + would lead to a leading term of $\frac{1}{x}$ for h (by expanding $\sqrt{1-4x}$ into a power series). Therefore, we see that

$$f(x) = D(g(x)) = D(xh(x)) = D\left(\frac{1 - \sqrt{1 - 4x}}{2}\right) = \frac{1}{\sqrt{1 - 4x}}$$

and our answer is hence $f(1/5) = \sqrt{5}$.