In [31]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [70]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\C4_framingham.csv")
a
```

Out[70]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	dia
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
4233	1	50	1.0	1	1.0	0.0	0	1	
4234	1	51	3.0	1	43.0	0.0	0	0	
4235	0	48	2.0	1	20.0	NaN	0	0	
4236	0	44	1.0	1	15.0	0.0	0	0	
4237	0	52	2.0	0	0.0	0.0	0	0	

4238 rows × 16 columns

In [71]:

from sklearn.linear_model import LogisticRegression

```
a=a.head(10)
Out[77]:
      education currentSmoker cigsPerDay BPMeds prevalentStroke prevalentHyp
                                                                                    diabetes
                                                                                             totCl
age
                              0
                                                                   0
   39
             4.0
                                        0.0
                                                  0.0
                                                                                               19
                                        0.0
   46
             2.0
                              0
                                                  0.0
                                                                   0
                                                                                 0
                                                                                          0
                                                                                               250
                                       20.0
                                                                   0
                                                                                 0
                                                                                          0
1
   48
             1.0
                              1
                                                  0.0
                                                                                               24
   61
             3.0
                                       30.0
                                                  0.0
                                                                   0
                                                                                 1
                                                                                          0
                                                                                               22
)
                              1
                                       23.0
   46
             3.0
                              1
                                                  0.0
                                                                   0
                                                                                 0
                                                                                          0
                                                                                               28
                                                                                          0
)
   43
             2.0
                              0
                                        0.0
                                                  0.0
                                                                   0
                                                                                 1
                                                                                               228
                              0
                                        0.0
                                                  0.0
                                                                   0
                                                                                 0
                                                                                          0
                                                                                               20
)
   63
             1.0
)
   45
             2.0
                              1
                                       20.0
                                                  0.0
                                                                   0
                                                                                 0
                                                                                          0
                                                                                               31;
   52
                              0
                                        0.0
                                                  0.0
                                                                   0
                                                                                 1
                                                                                          0
                                                                                               260
             1.0
                                                                                          0
   43
             1.0
                              1
                                       30.0
                                                  0.0
                                                                   0
                                                                                 1
                                                                                               22
 In [78]:
c=a.iloc[:,0:16]
d=a.iloc[:,-1]
In [79]:
c.shape
Out[79]:
 (10, 16)
 In [80]:
d.shape
Out[80]:
 (10,)
 In [81]:
from sklearn.preprocessing import StandardScaler
 In [82]:
fs=StandardScaler().fit_transform(c)
```

In [77]:

```
In [83]:
logr=LogisticRegression()
logr.fit(fs,d)
Out[83]:
LogisticRegression()
In [84]:
e=[[2,5,77,8,6,5,4,66,88,46,65,76,87,45,92,44]]
In [85]:
prediction=logr.predict(e)
prediction
Out[85]:
array([1], dtype=int64)
In [86]:
logr.classes_
Out[86]:
array([0, 1], dtype=int64)
In [87]:
logr.predict_proba(e)[0][0]
Out[87]:
0.0
In [88]:
logr.predict_proba(e)[0][1]
Out[88]:
1.0
In [89]:
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sns
from sklearn.model_selection import train_test_split
```

from sklearn.linear_model import LogisticRegression

In [90]:

```
digits=load_digits()
digits
   hixei_o_o ,
  'pixel_3_7',
  'pixel_4_0',
  'pixel_4_1',
  'pixel_4_2',
  'pixel_4_3',
  'pixel_4_4',
  'pixel_4_5',
  'pixel_4_6',
  'pixel_4_7',
  'pixel_5_0',
  'pixel_5_1',
  'pixel_5_2',
  'pixel_5_3',
  'pixel_5_4',
  'pixel_5_5',
  'pixel_5_6',
  'pixel_5_7',
  'pixel_6_0',
  'pixel_6_1',
```

In [91]:

```
plt.figure(figsize=(20,4))
for index,(image,label)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title('Number:%i\n'%label,fontsize=15)
```


In [92]:

x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)

In [93]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(1257, 64)
```

```
(540, 64)
(1257,)
(540,)
```

In [94]:

```
logre=LogisticRegression(max_iter=10000)
logre.fit(x_train,y_train)
```

Out[94]:

LogisticRegression(max_iter=10000)

In [95]:

```
logre.predict(x_test)
```

Out[95]:

```
array([4, 6, 2, 6, 6, 9, 8, 7, 7, 9, 6, 6, 7, 7, 0, 2, 2, 9, 2, 0, 1, 8,
       8, 3, 6, 5, 4, 3, 6, 5, 1, 5, 2, 8, 0, 3, 2, 3, 5,
                                                          9, 2, 8, 1, 9,
       2, 0, 4, 3, 9, 6, 4, 9, 9, 0, 6, 4, 6, 3, 2, 7, 9, 7, 0, 5, 2, 5,
      1, 1, 8, 7, 9, 1, 7, 6, 0, 2, 1, 4, 5, 4, 5, 7, 0, 7, 0, 6, 3, 4,
      8, 1, 5, 6, 2, 1, 3, 6, 0, 2, 7, 5, 8, 5, 3, 8, 1, 9, 3, 0, 2, 6,
      0, 5, 0, 9, 9, 2, 7, 5, 3, 5, 2, 1, 8, 3, 4, 5, 7, 5, 7, 6, 7, 3,
      6, 2, 5, 6, 9, 1, 5, 7, 9, 5, 1, 4, 0, 0, 1, 5, 6, 6, 1, 0, 4, 4,
      4, 0, 6, 5, 2, 3, 6, 0, 3, 0, 4, 6, 3, 2, 3, 0, 6, 6, 8, 2, 4, 9,
      7, 4, 5, 2, 8, 4, 6, 6, 4, 9, 4, 9, 2, 8, 2, 4, 5, 5, 9, 1, 5, 5,
       5, 9, 6, 5, 6, 1, 0, 7, 2, 3, 0, 8, 3, 4, 8, 8, 4, 1, 7, 6, 9, 2,
      0, 6, 1, 9, 7, 9, 8, 1, 8, 1, 1, 1, 4, 6, 9, 0, 4,
                                                          9, 4, 7, 5, 4,
      4, 8, 4, 0, 5, 6, 3, 2, 3, 3, 6, 6, 5, 7, 2, 0, 7,
                                                          9, 0, 6, 6, 2,
       3, 6, 3, 3, 9, 6, 5, 7, 1, 0, 6, 1, 2, 9, 2, 4, 1, 2, 4, 3, 4, 4,
      7, 9, 6, 6, 5, 3, 9, 0, 6, 7, 8, 3, 8, 2, 5, 7, 8, 1, 4, 3, 4, 0,
      3, 4, 9, 3, 6, 8, 4, 5, 0, 6, 0, 8, 2, 7, 9, 3, 1, 9, 6, 9, 6, 9,
       5, 7, 0, 2, 8, 0, 1, 9, 8, 1, 8, 0, 0, 8, 8, 5, 3, 4, 8, 6, 4, 1,
      9, 7, 4, 6, 5, 3, 0, 5, 7, 5, 5, 6, 8, 8, 2, 9, 9, 7, 2, 7, 1, 5,
      6, 1, 8, 5, 3, 1, 5, 5, 4, 2, 7, 4, 3, 6, 2, 2, 7, 7, 3, 4, 0, 1,
      6, 7, 6, 2, 5, 0, 8, 2, 8, 6, 0, 7, 4, 4, 3, 1, 9, 2, 2, 1, 6, 8,
      8, 2, 3, 7, 5, 4, 0, 0, 1, 0, 4, 0, 0, 6, 0, 6, 3, 0, 2, 9, 4, 8,
      0, 2, 1, 1, 0, 6, 4, 7, 7, 1, 8, 0, 2, 2, 6, 5, 6, 2, 5, 9, 3, 6,
      1, 9, 3, 0, 4, 5, 8, 4, 6, 7, 2, 5, 8, 9, 7, 3, 1, 8, 2, 3, 4, 8,
      9, 7, 4, 3, 9, 9, 7, 5, 7, 2, 9, 2, 1, 7, 9, 8, 6, 0, 4, 7, 5, 1,
      7, 5, 9, 1, 0, 9, 4, 5, 1, 4, 1, 1, 9, 6, 2, 8, 0, 7, 4, 1, 8, 0,
      8, 1, 2, 4, 1, 0, 9, 3, 4, 3, 6, 8])
```

In [96]:

```
logre.score(x_test,y_test)
```

Out[96]:

0.9703703703703703

In [97]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [109]:

```
a=a.head(10)
a
```

Out[109]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabet
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
5	0	43	2.0	0	0.0	0.0	0	1	
6	0	63	1.0	0	0.0	0.0	0	0	
7	0	45	2.0	1	20.0	0.0	0	0	
8	1	52	1.0	0	0.0	0.0	0	1	
9	1	43	1.0	1	30.0	0.0	0	1	
4 (•

In [110]:

```
a['TenYearCHD'].value_counts()
```

Out[110]:

0812

Name: TenYearCHD, dtype: int64

In [111]:

```
x=a.drop('TenYearCHD',axis=1)
y=a['TenYearCHD']
```

In [112]:

```
g1={"g":{'g':1,'b':2}}
a=a.replace(g1)
print(a)
```

	maıe	age	education	currentSmoker	cigsPerDay	BPMeas	prevalentStroke	\
0	1	39	4.0	0	0.0	0.0	0	
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
5	0	43	2.0	0	0.0	0.0	0	
6	0	63	1.0	0	0.0	0.0	0	
7	0	45	2.0	1	20.0	0.0	0	
8	1	52	1.0	0	0.0	0.0	0	
9	1	43	1.0	1	30.0	0.0	0	

	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	\
0	0	0	195.0	106.0	70.0	26.97	80.0	77.0	
1	0	0	250.0	121.0	81.0	28.73	95.0	76.0	
2	0	0	245.0	127.5	80.0	25.34	75.0	70.0	
3	1	0	225.0	150.0	95.0	28.58	65.0	103.0	
4	0	0	285.0	130.0	84.0	23.10	85.0	85.0	
5	1	0	228.0	180.0	110.0	30.30	77.0	99.0	
6	0	0	205.0	138.0	71.0	33.11	60.0	85.0	
7	0	0	313.0	100.0	71.0	21.68	79.0	78.0	
8	1	0	260.0	141.5	89.0	26.36	76.0	79.0	
9	1	0	225.0	162.0	107.0	23.61	93.0	88.0	

In [113]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
```

In [114]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [115]:

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[115]:

RandomForestClassifier()

```
In [116]:
```

In [117]:

from sklearn.model_selection import GridSearchCV

In [118]:

```
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[118]:

In [119]:

```
grid_search.best_score_
```

Out[119]:

0.7083333333333333

In [120]:

```
rfc_best=grid_search.best_estimator_
```

In [121]:

```
from sklearn.tree import plot_tree
```

```
In [122]:
```

```
plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],filled=True
```

Out[122]:

[Text(2232.0, 1087.2, 'gini = 0.0\nsamples = 3\nvalue = [7, 0]\nclass = Yes')]

```
gini = 0.0
samples = 3
value = [7, 0]
class = Yes
```

In []: