静态优化算法 及软件实现

第1讲 线性规划

主讲: 李传江

2019. 7. 4

主要内容

- 1 问题实例
 - 2 标准数学模型
 - 3 求解方法
 - 4 MATLAB 软件求解
- 5 MATHEMATICA 软件求解

问题实例—产出最大问题

例1: 某工厂生产A、B两种规格的自行车,已知两种自行车所需的原材料各为2个和3个单位,所需工时各为4个和2个单位,产值各为6个和4个单位,假定每天能供应的原材料最多为100个单位,所能提供的工时最多为120个单位,试确定各生产A、B两种规格的自行车多少辆才能获得最大产出?

[解] 假设各生产A、B两种自行车 x_1 和 x_2 辆,可转化为求解如下线性规划问题:

$$\max f(x) = 6x_1 + 4x_2$$
s. t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_i \ge 0, (i = 1, 2) \end{cases}$$

问题实例—最优复习方案问题

例2: 期末最优复习方案问题

	马原	英语	电路	模电	优化
不复习预期期末成绩	65	60	70	60	75
复习(提高分/小时)	3	4	5	3	10

可用复习时间18小时。试安排各门功课复习时间,使平均成绩达到80+,且马原和优化分别达到85+和90+。

问题实例——最优复习方案问题

解: 设复习时间分别为 x_1, \dots, x_5 . 易得目标函数和约束条件如下

目标函数:

$$\min f(x) = x_1 + x_2 + x_3 + x_4 + x_5$$

显式约束:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 \le 18 \\ 3x_1 + 4x_2 + 5x_3 + 3x_4 + 10x_5 \ge 70 \\ 3x_1 + 65 \ge 85 \\ 10x_5 + 75 \ge 90 \end{cases}$$

隐式约束:

$$\begin{cases} 3x_1 + 65 \le 100 \\ 4x_2 + 60 \le 100 \\ 5x_3 + 70 \le 100 \\ 3x_4 + 60 \le 100 \\ 10x_5 + 75 \le 100 \\ x_1, \dots, x_5 \ge 0 \end{cases}$$

线性规划数学描述

目标函数: $J = f(x) = c^T x$

$$\boldsymbol{c} = [c_1 \ c_2 \cdots c_n]^T, \boldsymbol{x} = [x_1 \ x_2 \cdots x_n]^T$$

约束条件: $Ax \leq b$, $x \geq 0$

$$\boldsymbol{b} = [b_1 \ b_2 \cdots b_m]^T, \ \boldsymbol{A} \in \mathfrak{R}^{m \times n}$$

线性规划目标:

确定线性目标函数在一组(不)等式约束条件式下的极值。

标准数学模型

各种线性规划实际问题都可转化成如下的标准数学模型:

$$\min f(x) = \sum_{i=1}^{n} c_i x_i$$
s. t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, 2, \dots, m$$

$$x_j \ge 0, j = 1, 2, \dots, m$$

等式约束个数 线性规划<mark>阶数</mark>

优化变量个数 线性规划<mark>维数</mark>

 $\min f(x) = c^T x$ s.t. Ax = b $x \ge 0$

元素描述形式

矩阵描述形式

标准数学模型

矩阵描述形式:

$$\min f(x) = c^T x$$
s. t. $Ax = b$

$$x \ge 0$$

$$c = [c_1 \ c_2 \ \cdots \ c_n]^T$$

$$A = \left\{a_{ij}\right\} \in \Re^{m \times n}$$

$$rank(A) = m \le n$$

$$b = [b_1 \ b_2 \ \cdots b_m]^T \ge 0$$

线性规划问题-LP问题 (Linear Programming)

LP问题标准化处理

约束条件为不等式组 $Ax \leq b$ 则引入非负松弛变量变不等式 约束为等式约束;约束条件为 $Ax \geq b$,则引入非负剩余变量

变不等式约束为等式约束

优化变量不满足 $x \ge 0$,必存在自由变量和非正变量,对自由变量,用两个非负变量的差来替换;对非正变量,用它的反号变量来替换

求目标函数的极大值, 只需将原目标函数取反号, 就能将求极大值问题转化为求极小值问题

 $b \ge 0$ 不满足,则必存在某个 $b_i < 0$,此时将该约束条件两 边乘以-1来处理

LP问题标准化处理

$$\min g(x) = -6x_1 - 4x_2$$
s. t.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 100 \\ 4x_1 + 2x_2 + x_4 = 120 \\ x_i \ge 0, (i = 1, 2, 3, 4) \end{cases}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge 0, c = \begin{bmatrix} -6 \\ -4 \\ 0 \\ 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 2 & 3 & 1 & 0 \\ 4 & 2 & 0 & 1 \end{bmatrix}$$
$$b = \begin{bmatrix} 100 \\ 120 \end{bmatrix} \ge 0$$

LP问题标准化处理

min
$$f = 3x_1 + 5x_2 - 6x_3$$

s. t.
$$\begin{cases} 2x_1 + x_2 \le 1 \\ x_1 + 4x_2 \ge 1 \\ x_1 \ge 0, x_2 \boxminus \boxminus, x_3 \le 0 \end{cases}$$

$$\min f(x) = c^T x$$
s. t. $Ax = b$

$$x \ge 0$$

LP问题求解方法

- ●图解法
- ●单纯形法
- 大M法
- ●兩阶段法
- ●肉点算法
- ●外点算法
-

适用于两变量(2维)LP问题求解

适用于两变量(2维)LP问题求解

适用于多变量(多维)LP问题求解

适用于多变量(多维)LP问题求解

图解法求解LP问题

产出最大问题:

$$\max f(x) = 6x_1 + 4x_2$$
s. t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_i \ge 0, (i = 1, 2) \end{cases}$$

易得最大产量为200!

图解法求解LP问题

期末最优复习方案问题:

$$\min f(x) = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 \le 18 \\ 3x_1 + 4x_2 + 5x_3 + 3x_4 + 10x_5 \ge 70 \\ 3x_1 + 65 \ge 85 \\ 10x_5 + 75 \ge 90 \end{cases}$$

$$\begin{cases} 3x_1 + 65 \le 100 \\ 4x_2 + 60 \le 100 \\ 5x_3 + 70 \le 100 \\ 3x_4 + 60 \le 100 \\ 10x_5 + 75 \le 100 \\ x_1, \dots, x_5 \ge 0 \end{cases}$$

图解法已无法完成求解!

借助单纯形法等方法完成求解!

单纯形法-Simplex Algorithm

美国数学家 G.B.Dantzig于1947年首次提出。

理论根据:线性规划。问题的可行域是D维向量空间中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为*基本可行解*。

基本思想: 先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。

单纯形法-Simplex Algorithm

单纯形法的一些变种:

改进单纯形法 对偶单纯形法 下山单纯形法 变量有界单纯形法

具体求解法请参考:

课程平台中学习资料"线性规划.pdf"

由美国 MathWorks公司开发

MATHEMATICA

由美国 Wolfram 公司开发

基础参考资料:

MATLAB-百度百科

MATLAB-Wikipedia

Mathematica-百度百科

Mathematica-Wikipedia

MATLAB软件求解

Matlab提供专有函数linprog()

求解如下形式的LP问题:

$$\min f(x) = c^{T}x$$

$$\operatorname{s.t.} \begin{cases} Ax \leq b \\ A_{eq}x = b_{eq} \\ lb \leq x \leq ub \end{cases}$$

MATLAB软件求解

函数linprog()的多种不同调用方法和说明:

- \blacksquare x = linprog(c, A, b)
- \blacksquare x = linprog(c, A, b, Aeq, beq)

当线性规划问题中不考虑线性不等式约束时,可以将A,b设为空矩阵,即A = [],b = []。

 \blacksquare x = linprog(c, A, b, Aeq, beq, lb, ub)

如果对某优化变量没有上界约束,则可以设置 ub(i) = Inf,同样,如果没有下界约束,则可以设置 lb(i) = -Inf;另外,如果此时没有等式约束,则可以设置 $A_{eq} = []$, $b_{eq} = []$ 。

$$\min f(x) = c^{T} x$$

$$\text{s. t.} \begin{cases} Ax \leq b \\ A_{eq} x = b_{eq} \\ lb \leq x \leq ub \end{cases}$$

MATLAB软件求解

函数linprog()的多种不同调用方法和说明:

- \blacksquare [x, fval] = linprog(···)
- \blacksquare [x, fval, exitflag] = linprog(···)

返回线性规划问题的状态指示exitflag:

exitflag	物理意义
1	已经收敛到最优解x
0	已经达到最大迭代次数限制options.MaxIter
-2	没有找到问题的可行点
-3	问题无有限最优解
-4	在算法执行过程中遇到了NaN值
-5	原线性规划问题和其对偶问题均不可行
-7	搜索方向变化太小,无法进一步获得更优解,表明原线性规划问题或者约束条件是病态的

$$\min f(x) = c^{T}x$$

$$\text{s.t.} \begin{cases} Ax \leq b \\ A_{eq}x = b_{eq} \\ lb \leq x \leq ub \end{cases}$$

MATLAB软件求解

函数linprog()的多种不同调用方法和说明:

\blacksquare [x, fval, exitflag, output] = linprog(···)

返回结构变量output, 其属性如下表所示:

属性名称	属性含义
output.iterations	优化过程的实际迭代次数
output.algorithm	优化过程中所采用的具体算法
output.cgiterations	0 (仅用于大型规模算法,为了后向兼容性而设置的参数)
output.message	退出信息

$$\min f(x) = c^{T} x$$

$$\text{s. t.} \begin{cases} Ax \leq b \\ A_{eq} x = b_{eq} \\ lb \leq x \leq ub \end{cases}$$

例1: 求解LP问题

$$\max f(x) = 6x_1 + 4x_2$$
s. t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_i \ge 0, (i = 1, 2) \end{cases}$$

[解] MATLAB计算程序如下:

例2:求解LP问题

$$\max f = x_1 + 7x_2 + 4x_3 + 3x_4 + x_5$$

$$\begin{cases} 2x_1 + 6x_2 + x_3 \le 7 \\ 2x_1 + 3x_2 + 4x_3 + x_4 + x_5 \le 8 \\ x_1 + 2x_2 + 3x_4 + x_5 \le 5 \\ x_i \ge 0, \qquad (i = 1, 2, 3, 4, 5) \end{cases}$$

运行后返回如下结果:

Optimization terminated.

```
x = 0.0000
```

1.0000

1.0000

1.0000

0.0000

fval = -14.0000

exitflag = 1

output = iterations: 7

algorithm: 'large-scale: interior point'

cgiterations: 0

message: 'Optimization terminated.'

使用linprog()求解期末最优复习方案问题.

$$\min f(x) = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 \le 18 \\ 3x_1 + 4x_2 + 5x_3 + 3x_4 + 10x_5 \ge 70 \\ 3x_1 + 65 \ge 85 \\ 10x_5 + 75 \ge 90 \end{cases}$$

$$\begin{cases} 3x_1 + 65 \le 100 \\ 4x_2 + 60 \le 100 \\ 5x_3 + 70 \le 100 \\ 3x_4 + 60 \le 100 \\ 10x_5 + 75 \le 100 \\ x_1, \dots, x_5 \ge 0 \end{cases}$$

使用linprog()求解期末最优复习方案问题.

Matlab m-代码:

```
c=ones(1,5);
x1_min=20/3; x1_max=35/3;
x2 max=10;
x3_max=6;
x4 max = 40/3;
x5_min=3/2; x5_max=5/2;
lb=[x1_min,0,0,0,x5_min];
ub=[x1_max,x2_max,x3_max,x4_max,x5_max];
A=[1 1 1 1 1;-3 -4 -5 -3 -10];
b=[18;-70];
[x,fval,exitflag,output]=linprog(c,A,b,[],[],lb,ub)
```


MATHEMATICA软件求解

专有函数LinearProgramming[·]

的多种不同调用方法和说明:

■ LinearProgramming [c, A, b]

$$\min f = c^T x$$
, s.t. $Ax \le b$, $x \ge 0$.

记A矩阵的第i行为 a_i ($i=1,\cdots,m$)。则当 s_i 取1时, $a_ix \geq b_i$; 当 s_i 取0时, $a_ix = b_i$;当 s_i 取-1时, $a_ix \leq b_i$ 。

MATHEMATICA软件求解

专有函数LinearProgramming[·]

的多种不同调用方法和说明:

■ LinearProgramming [c, A, b, lb]

$$\min f = c^T x$$
, s.t. $Ax \le b$, $x \ge lb$.

■ LinearProgramming [c, A, b, $\{lb_1, lb_2, \dots, lb_n\}$]

$$\min f = c^T x$$
, s.t. $Ax \le b$, $x_i \ge lb_i$ $(i = 1, 2, \dots, n)$.

MATHEMATICA软件求解

专有函数LinearProgramming[.]

的多种不同调用方法和说明:

■ LinearProgramming[c, A, b,{{ lb_1,ub_1 },{ lb_2,ub_2 },...,{ lb_n,ub_n }}]

$$\min f = c^T x$$
, s.t. $Ax \le b$, $lb_i \le x_i \le ub_i$ $(i = 1, 2, \dots, n)$.

■ LinearProgramming [c, A, b, lb, dom]

在指定域dom中求解LP问题 $\min f = c^T x$, s.t. $Ax \le b$, $x \ge lb$, dom可以是Reals或Integers, 对应着实数规划和整数规划。

MATHEMATICA软件求解

专有函数LinearProgramming[·]

的多种不同调用方法和说明:

■ LinearProgramming [c, A, b, lb, $\{dom_1, dom_2, \dots, dom_n\}$]

适用于xi在指定的域domi中求解相应的LP问题。

MATHEMATICA软件求解

专有函数LinearProgramming[·]的几点说明:

- ① 优化变量边界值lb_i,ub_i必须是实数或Infinity或-Infinity;
- ② 当不存在任何不等式或等式约束时,函数的输入参量位置处可以通过{}赋空;
- ③ 如果LinearProgramming的输入包含明确的有理数,则它将返回明确的有理数结果或者整数结果;
 - ④ 如果没有找到任何解, 函数将返回不计算的形式;

MATHEMATICA软件求修

- 2. $\min f = x_1 + x_2$, s. t. $2x_1 + x_2 \ge 3$, $x_1 \ge -1$, $x_2 \ge -1$ $In[2]=LinearProgramming[\{1, 1\}, \{\{2, 1\}\}, \{3\}, \{-1, -1\}]]$ $Out[2]=\{2, -1\}$
- 3. $\min f = x_1 + x_2$, s. t. $2x_1 + x_2 \ge 3$, $1 \ge x_1 \ge -1$, $2 \ge x_2 \ge -1$ $\ln[3] = \text{LinearProgramming}[\{1,1\}, \{\{2,1\}\}, \{3\}, \{\{-1,1\}, \{-1,2\}\}]]$ $\operatorname{Out}[3] = \{1, 1\}$

MATHEMATICA软件求值。例

4. $\min f = x_1 + x_2$, s. t. $5x_1 + 2x_2 \ge 3$, $x_1 \ge 0$, $x_2 \ge 0$ $In[4] = \text{LinearProgramming}[\{1., 1.\}, \{\{5., 2.\}\}, \{3.\}]]$ $Out[4] = \{0.6, 0.\}$

In[5] = LinearProgramming[$\{-1, -7, -4, -3, -1\}$, $\{\{2,6,1,0,0\}, \{2,3,4,1,1\}, \{1,2,0,3,1\}\}, \{\{7,-1\}, \{8,-1\}, \{5,-1\}\}\}$] Out[5]= $\{0,1,1,1,0\}$

MATHEMATICA軟件求能使

5. 使用LinearProgramming[]求解期末最优复习方案问题.

Standard form:

Out[1] =
$$\left\{\frac{20}{3}, 0, 5, 0, \frac{5}{2}\right\}$$

