מדינת ישראל משרד החינוך

נוסחאות ונתונים בפיזיקה

נספח לכל בחינות הבגרות ברמה של 5 יח"ל (החל מקיץ תשפ"ג)

תוכן העניינים

נושא	עמוד	נושא	<u>עמוד</u>
נוסחאות מכניקה	2	קבועים בסיסיים	6
נוסחאות אלקטרומגנטיות	3	נוסחאות מתמטיות	6
נוסחאות קרינה וחומר	5	פירוש קיצורי היחידות	7
		קשרים בין יחידות	7
		קידומות במערכת היחידות	7
		נתונים על אודות השמש והירח	8
		נתונים הקשורים בכוכבי הלכת	8
		המסות של חלקיקים ואטומים אחדים	8

נוסחאות מכניקה

,	
עבודה של כוח הקבוע בגודלו ובכיוונו	לאורך קו ישר
$\mathbf{W} = \mathbf{F}_{\mathbf{x}} \Delta \mathbf{x} = \mathbf{F} \cos \theta \ \Delta \mathbf{s}$, $\Delta \mathbf{s} = \left \Delta \mathbf{x} \right $ כאשר	$v = \frac{dx}{dt}$
$E_k = \frac{1}{2} m v^2$ אנרגייה קינטית	$a = \frac{dv}{dt}$
אנרגייה פוטנציאלית כובדית (שדה אחיד)	$\overline{\mathbf{v}} = \frac{\Delta \mathbf{x}}{\Delta \mathbf{t}}$
$ \left \mathbf{U}_{\mathbf{G}} = \mathbf{mgh} \right \left(\mathbf{U}_{\mathbf{G}(\mathbf{h} = 0)} = 0 \right) $	$v = v_0 + at$
אנרגייה פוטנציאלית אלסטית	$x = x_0 + v_0 t + \frac{1}{2}$
$U_{\rm sp} = \frac{1}{2} k (\Delta \ell)^2$ ($U_{\rm sp} = 0$ (במצב רפוי	$x = x_0 + \frac{v_0 + v}{2}t$
$\mathbf{W}_{_{\mathrm{cridin}}} = \Delta\mathbf{E}_{_{\mathbf{k}}}$ משפט עבודה-אנרגייה	$v^2 = v_0^2 + 2a (x - $
עבודת שקול הכוחות הלא–משמרים	$v_{B,A} = v_B - v_A$
$oxed{W_{\omega}} = \Delta oxed{\mathrm{E}} ($ אנרגייה מכנית כוללת $- oxed{\mathrm{E}})$	D,A D A
$\overline{P} = rac{\Delta W}{\Delta t}$ הספק ממוצע	F = mg
מתקף ותנע	$F = k \Delta \ell$
$\vec{\hat{J}} = \int\limits_{t_{i}}^{t_{2}} \vec{\hat{F}}(t) \mathrm{d}t$ מתקף של כוח משתנה	$f_s \le \mu_s N$
$ec{J}=ec{\mathbf{F}}\Delta \mathbf{t}$ מתקף של כוח קבוע	$f_k = \mu_k N$
$ec{\mathbf{p}} = \mathbf{m} \vec{\mathbf{v}}$ תנע	$\Sigma \vec{F} = m\vec{a}$
$\vec{ m J}_{ m cith} = \Delta ilde{ m p}$ נוסחת מתקף-תנע	והספק
שימור תנע	,
$\left \mathbf{m}_{\mathbf{A}} \vec{\mathbf{v}}_{\mathbf{A}} + \mathbf{m}_{\mathbf{B}} \vec{\mathbf{v}}_{\mathbf{B}} = \mathbf{m}_{\mathbf{A}} \vec{\mathbf{u}}_{\mathbf{A}} + \mathbf{m}_{\mathbf{B}} \vec{\mathbf{u}}_{\mathbf{B}} \right $	אורך ציר x על ידי 'x אורך ציר'
בהתנגשות אלסטית חד–ממדית	$W = \int_{-\infty}^{x_2} F_x(x) dx$
$\left \vec{\mathbf{v}}_{\mathbf{A}} - \vec{\mathbf{v}}_{\mathbf{B}} = - \left(\vec{\mathbf{u}}_{\mathbf{A}} - \vec{\mathbf{u}}_{\mathbf{B}} \right) \right $	\mathbf{x}_1

$$v=rac{dx}{dt}$$
 תנועה לאורך קו ישר $v=rac{dx}{dt}$ מהירות רגעית $a=rac{dv}{dt}$ תאצה רגעית $ar{v}=rac{\Delta x}{\Delta t}$ מהירות ממוצעת $ar{v}=rac{\Delta x}{\Delta t}$ תנועה שוות-תאוצה $v=v_0+at$ תנועה שוות-תאוצה $v=v_0+at$ $v=v_0$

כוח F הקבוע בכיוונו

$v = -\omega A \sin(\omega t + \phi)$ מהירות		
$v = \pm \omega \sqrt{A^2 - y}$	$\overline{\zeta^2}$	
$a = -\omega^2 A \cos ($	$\omega t + \varphi)$ תאוצה	
$a = -\omega^2 x$		
$T = 2\pi \sqrt{\frac{m}{c}}$	זמן המחזור	
$T = 2\pi \sqrt{\frac{\ell}{g}}$	מטוטלת פשוטה (מתמטית)	
	כבידה	
$\left(\frac{\overline{r}_1}{\overline{r}_2}\right)^3 = \left(\frac{T_1}{T_2}\right)^2$	החוק השלישי של קפלר	
$F = G \frac{m_1 m_2}{r^2}$	גודל כוח הכבידה	
	אנרגייה פוטנציאלית כובדית	
$U_{G} = -\frac{GMm}{r}$	$\left(U_{G\left(r\to\infty\right)}=0\right)$	
אנרגייה של לוויין במסלול מעגלי		
$E_{k} = \frac{GMm}{2r} = -\frac{U}{2r}$	^J _G קינטית	
$E = -\frac{GMm}{2r}$	כוללת	

תנועות מחזוריות תנועות מחזוריות
$$\omega = 2\pi f = \frac{2\pi}{T}$$
 תדירות זוויתית

תנועה מעגלית

$$\overline{\omega} = \frac{\Delta \, \theta}{\Delta \, t}$$
 מהירות זוויתית ממוצעת

גודל מהירות (בתנועה מעגלית קצובה)

$$v = \frac{2\pi r}{T} = 2\pi r f$$

הקשר בין מהירות קווית ומהירות זוויתית $\mathbf{v} = \omega \mathbf{r}$

תאוצה רדיאלית (צנטריפטלית)

$$a_{R} = \frac{v^{2}}{r} = \omega^{2} r$$

תנועה הרמונית פשוטה

$$\Sigma\vec{F}=-\,c\vec{x}$$
 שקול הכוחות בתנועה הרמונית

$$\omega = \sqrt{\frac{c}{m}}$$

$$x = A \cos(\omega t + \varphi)$$
 נוסחת מקום-זמן

נוסחאות אלקטרומגנטיות

פוטנציאל חשמלי
$$V = \frac{U_E}{q} \qquad \left(U_{E(r \to \infty)} = 0\right)$$
 פוטנציאל חשמלי סביב מטען נקודתי
$$V = k \frac{q}{r} \qquad \left(V_{(r \to \infty)} = 0\right)$$
 אנרגייה של מוליך טעון
$$U = \frac{1}{2} QV \qquad \qquad$$
 פוטנציאל נקודה D ביחס לפוטנציאל נקודה D (מתח חשמלי)

השינוי בפוטנציאל

 $\Delta V = V_{\rm R} - V_{\rm A}$

מתח בין שתי נקודות במעגל חשמלי	הקשר בין שדה חשמלי אחיד לבין הפרש
$V_{AB} = \Sigma IR - \Sigma \varepsilon$	$\mathrm{E} = -rac{\Delta\mathrm{V}}{\Delta\mathrm{x}}$ פוטנציאלים
זרם רגעי בטעינת קבל או בפריקתו $i(t) = I_0 e^{-\frac{t}{RC}}$	$C = \frac{Q}{V}$ הגדרת הקיבול
מתח רגעי בטעינת קבל t	$C = rac{arepsilon_0 arepsilon_r A}{d}$ קיבול של קבל לוחות
$V_{C}(t) = \varepsilon (1 - e^{-\frac{t}{RC}})$	גודל השדה החשמלי בין לוחות קבל
$V_{C}(t) = V_{0} e^{-\frac{t}{RC}}$ מתח רגעי בפריקת קבל	$E = \frac{V_{AB}}{d} = \frac{\sigma}{\varepsilon_0}$
שדה מגנטי	v. 1 cv.2
גודל כוח הפועל על מטען בשדה מגנטי	$U = \frac{1}{2}CV_{AB}^2$ אנרגייה של קבל טעון
$F = qvB \sin \alpha$	קיבול שקול
גודל כוח הפועל על תיל נושא זרם בשדה מגנטי $F = I \ell B \sin \alpha$	$\frac{1}{C_{\mathrm{T}}} = \sum \frac{1}{C_{\mathrm{i}}}$ של קבלים המחוברים בטור
ר – 12D SIII מ גודל הכוח ליחידת אורך בין שני תילים	$\mathbf{C}_{\mathrm{T}} = \Sigma \mathbf{C}_{\mathrm{i}}$ של קבלים המחוברים במקביל
$\frac{F}{\emptyset} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d}$ ארוכים מקבילים	זרם חשמלי
גודל שדה מגנטי סביב תיל ישר וארוך	$i = \frac{dq}{dt}$ זרם רגעי
$B = \mu_0 \frac{I}{2\pi r}$	V = RI חוק אוהם
$B = \mu_0 \frac{NI}{2R}$ (בעל רדיוס R ו־ N כריכות)	$R = \rho \frac{\ell}{A}$ התנגדות של תיל
בתוך סילונית ארוכה	התנגדות שקולה
$B = \mu_0 \frac{NI}{L}$ (בעלת אורך L ו־ N כריכות)	$R_{T} = \Sigma R_{i}$ של נגדים המחוברים בטור
כא"מ מושרה	$\frac{1}{R_{\mathrm{T}}} = \Sigma \frac{1}{R_{\mathrm{i}}}$ של נגדים המחוברים במקביל
$\phi_{ m B} = { m BA} { m cos} lpha$ שטף מגנטי דרך משטח	עבודת הכוח החשמלי
$\epsilon = -N rac{\mathrm{d} \phi_\mathrm{B}}{\mathrm{d} t}$ חוק פארדיי – לנץ	$W_{A \to B} = V_{AB} It = q V_{AB}$
$\varepsilon = v\ell$ dt (כא"מ מושרה בתיל מוליך $\varepsilon = v\ell$ מושרה בתיל מוליך	${ m P}={ m V}_{\!AB}{ m I}$ הספק חשמלי
$\epsilon = v \epsilon_\perp \mathbf{b}_\perp$ בא ממושרות בוניל מולין $- \ell_\perp$ היטל התיל על הכיוון הניצב למהירות $- \ell_\perp$	$\eta = \frac{P_{eff}}{P_{i.n}}$ נצילות
רכיב השדה המגנטי בכיוון ניצב — B_{\perp}	יוח $^{-1}$ וח הספק מנוצל בחלק מהמעגל או בכולו $ P_{ m eff}$
למישור התנועה	הספק מושקע $-$ R $_{ m in}$
$(ec{A} \ ec{\mathbf{B}} \;, \mathbf{t} = 0 \;$ כא"מ מושרה במחולל (בזמן	$V_{ab} = \varepsilon - rI$ מתח הדקים
$\varepsilon = NBA\omega \sin(\omega t)$	ab — הדקי הסוללה
$\dfrac{\varepsilon_1}{\varepsilon_2} = \dfrac{N_1}{N_2}$ שנאי אידאלי	$\Sigma \varepsilon = \Sigma \mathrm{IR}$ $\Sigma \mathrm{I} = 0$ חוקי קירכהוף

נוסחאות קרינה וחומר

$E_{ph} = E_k +$	B אפקט פוטואלקטרי
ין	האטום והגרע
$m_e v_n r_n = n \frac{h}{2\pi}$ $E_{ph} = E_f - E_i $	הנחות בוהר
$\mathbf{L}_{\mathrm{ph}} = \mathbf{L}_{\mathrm{f}} - \mathbf{L}_{\mathrm{i}} $	רמות אנרגייה באטום מימן
$E_{n} = -\frac{R^{*}}{n^{2}}$	·
$R^* = \frac{2\pi^2 k^2 m_e}{h^2}$	$\frac{e^4}{8\epsilon_0^2 h^2} = \frac{m_e e^4}{8\epsilon_0^2 h^2} = 13.6 \text{ eV}$
ל האלקטרון	רדיוסי המסלולים המותרים שי
$r_n = r_1 n^2$	באטום המימן
$T_1 = \frac{h^2}{4\pi^2 m_e^2 \text{ ke}}$	$_{\overline{2}} = 0.529 \text{ Å}$
$\lambda = \frac{h}{mv} = \frac{h}{p}$	נוסחת דה־ברויי
$\Delta \times \Delta p \geqslant \frac{h}{4\pi}$	עקרון אי־הוודאות
$\Delta E = \Delta mc^2$	שקילות מסה-אנרגייה
$\Delta E(MeV) = \Delta$	$m(u) \cdot 931.494 \frac{MeV}{u}$
	דעיכה של מקור רדיואקטיבי
$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$	קבוע הדעיכה $-\lambda$
$N = N_0 e^{-\lambda t}$	
$R = \lambda N$	פעילות של מקור רדיואקטיבי
$\Gamma_{1/2} = \frac{\ell n2}{\lambda}$	זמן מחצית החיים

: גאומטרית	אופטיקה
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	חוק סנל
$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	נוסחת העדשות
$m = \frac{H_i}{H_o} = \frac{ v }{ u }$	הגדלה קווית
$C = \frac{1}{f}$	עוצמת העדשה
אלקטרומגנטיים	גלים מכניים ו
$v = \lambda f$	מהירות גל מחזורי
$\frac{\sin\theta_1}{\sin\theta_2} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$	חוק השבירה
$\ell=\mathrm{n}rac{\lambda}{2}$ ניו קשורים	גל עומד במיתר שקצוח
	קווי מקסימום ראשיים מקורות (ויותר) שווי־מ
	קווי מינימום בהתאבכו $rac{\lambda}{\mathrm{d}}$
$\frac{\Delta X}{L} = \frac{\lambda}{d}$	נוסחת יאנג
כות בסריג עקיפה	קווי מקסימום בהתאב
$\sin \theta_{n} = n \frac{\lambda}{d} = nN * \lambda$	
$\sin \theta_n = \frac{X_n}{L_n} = n \frac{\lambda}{w}$	קווי צומת בעקיפה בס
$E_{ph} = hf$	אנרגייה של פוטון

קבועים בסיסיים

(ערכי הקבועים רשומים בדיוק נמוך מהדיוק הניסיוני הידוע, ומשמשים לבחינת בגרות.)

ערך	יחידות	סימון	שם הקבוע
6.67 • 10 ⁻¹¹	$N \cdot m^2 \cdot kg^{-2}$	G	קבוע הגרביטציה
9 • 10 ⁹	$N \cdot m^2 \cdot C^{-2}$	k	המקדם בחוק קולון
3 · 10 ⁸	m • s ^{−1}	С	מהירות האור בריק
$1.257 \cdot 10^{-6}$ $4\pi \cdot 10^{-7}$	$T \cdot m \cdot A^{-1}$	μ_0	פרמיאביליות הריק
$8.85 \cdot 10^{-12}$	$C^2 \cdot N^{-1} \cdot m^{-2}$	ε ₀	דיאלקטריות הריק
$1.60 \cdot 10^{-19}$	С	e	המטען החשמלי היסודי
$6.63 \cdot 10^{-34}$ $4.14 \cdot 10^{-15}$	J·s eV·s	h	קבוע פלאנק
9.11·10 ⁻³¹	kg	m _e	מסת אלקטרון
$1.67 \cdot 10^{-27}$	kg	m _p	מסת פרוטון
$1.67 \cdot 10^{-27}$	kg	m _n	מסת נויטרון
$6.02 \cdot 10^{23}$	mol ⁻¹	N _A	קבוע אבוגדרו

נוסחאות מתמטיות

היקף מעגל	$2\pi R$	נפח כדור	$\frac{4}{3}\pi R^3$
שטח עיגול	πR^2	לזוויות קטנות	$\sin\theta\approx tg\theta$
שטח פני כדור	$4\pi R^2$	לזוויות קטנות ברדיאנים	$\sin\theta \approx \theta$

פירוש קיצורי היחידות

סימן יחידה F		
אמפר A אמפר Ω אוהם V וולט T טסלה H הנרי Hz	יחידה	סימן
אוהם Ω אוהם V וולט T טסלה H הנרי Hz	פרד	F
וולט V טסלה T הנרי H הרץ Hz	אמפר	A
טסלה T הנרי H הרץ Hz	אוהם	Ω
הנרי H הרץ Hz	וולט	V
אבי Hz	טסלה	Т
(, , , ,	הנרי	Н
Pa פסקל	הרץ	Hz
, I	פסקל	Pa

יחידה	סימן
ג'ול	J
אלקטרון וולט	eV
מיליון אלקטרון וולט	MeV
ואט	W
מול	mol
מעלת צלזיוס	°C
קלווין	K
קולון	С

יחידה	סימן
מטר	m
אנגסטרם	Å
קילוגרם	kg
גרם	g
יחידת מסה אטומית	u
שנייה	S
שעה	h
ניוטון	N

קשרים בין יחידות

$$1eV = 1.6 \cdot 10^{-19} J$$
 $1nm = 10^{-9} m$ $1\mathring{A} = 10^{-10} m$

$$1 \text{Å} = 10^{-10} \text{ m}$$

<u>אורך</u>

$$t_C = T_K - 273$$

$$\frac{a v c}{a v c}$$
 $\frac{a v c}{a v c}$ $\frac{a v c}{$

$$1\frac{\text{kg} \cdot \text{m}}{\text{s}} = 1.87 \cdot 10^{21} \frac{\text{MeV}}{\text{c}}$$

קידומות במערכת היחידות

גודל	סימן	שם
10^{-3}	m	מילי
10^{-6}	μ	מיקרו
10 ⁻⁹	n	ננו
10^-12	p	פיקו

גודל	סימן	שם
10^{3}	k	קילו
10 ⁶	M	מגה
10 ⁹	G	ג'יגה
10 ¹²	Т	טרה

נתונים על אודות השמש והירח

זמן מחזור (יממות)	רדיוס מסלול ממוצע סביב כדור הארץ (m)	רדיוס (m)	מסה (kg)	
		6.96 • 10 ⁸	1.99 • 10 ³⁰	שמש
27.3	3.84 • 10 ⁸	1.74 • 10 ⁶	$7.35 \cdot 10^{22}$	ירח

נתונים הקשורים בכוכבי הלכת

זמן מחזור (שנים)	רדיוס מסלול ממוצע $(10^9 \mathrm{m})$	רדיוס (10 ⁶ m)	מסה (10 ²⁴ kg)	כוכב לכת
0.2408	57.9	2.44	0.330	כוכב חמה (Mercury)
0.6152	108.2	6.05	4.869	נוגה (Venus)
1.00	149.6	6.38	5.974	(Earth) ארץ
1.881	227.9	3.40	0.642	(Mars) מאדים
11.86	778.3	71.4	1899.1	(Jupiter) צדק
29.46	1427.0	60.0	568.6	שבתאי (Saturn)
84.01	2871.0	26.1	86.98	(Uranus) אורנוס
164.8	4497.1	24.3	103	(Neptun) נפטון

המסות של חלקיקים ואטומים אחדים

u–ב המסה ב	האטום
1.007825	¹ H מימן
2.014101	2 H דויטריום
4.00260	⁴ He הליום
7.01601	⁷ Li ליתיום
12.00000	¹² C פחמן

$\frac{\text{MeV}}{\text{c}^2}$ –המסה ב	u–ב המסה ב	החלקיק
0.511	0.000549	אלקטרון
938.272	1.007276	פרוטון
939.566	1.008665	נויטרון