Examen - Session 1 Mardi 2 janvier 2019 - 2h

Documents et calculatrices interdits, hormis une feuille A4 recto-verso manuscrite.

N.B.: La rédaction sera prise en compte dans la notation. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Il est toutefois préférable de conserver l'ordre proposé (difficulté croissante)

Exercice 1

- 1. Soit f la fonction définie par $\forall x \in \mathbb{R}$, $f(x) = \frac{1}{1+x^2}$. Montrer que $f \in L^1(\mathbb{R})$ et calculer $\int_{-\infty}^{+\infty} f(x) dx$.
- 2. Pour $n \in \mathbb{N}^*$, on définit la suite de fonctions f_n par :

$$\forall x \in \mathbb{R}_+, \ f_n(x) = \frac{n \sin(x/n)}{x(1+x^2)}$$

- (i) Soit $g_n(x) = n \sin(x/n)$. Montrer que la suite g_n converge simplement vers $x \mapsto x$.
- (ii) Montrer que pour tout $u \ge 0$, $\sin(u) \le u$.
- (iii) En déduire que f_n est majorable par une fonction intégrable sur \mathbb{R}_+ .
- (iv) Calculer:

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx$$

(on justifiera les calculs).

Exercice 2

On note $\mathcal F$ l'application qui à une fonction f associe sa transformée de Fourier $\widehat f:\mathcal F(f)=\widehat f.$

- 1. (Cours)
 - (i) Soit $f \in L^1(\mathbb{R})$. Rappeler la définition de la transformée de Fourier de f, notée \widehat{f} .
 - (ii) Soit $\alpha > 0$. On pose : $\forall x \in \mathbb{R}$; $f_{\alpha}(x) = f(\alpha x)$. Démontrer la propriété du cours :

$$\forall \nu \in \mathbb{R}, \quad \mathfrak{F}(f_{\alpha})(\nu) = \frac{1}{\alpha} \widehat{f}(\frac{\nu}{\alpha})$$

- 2. Soit $G(x) = e^{-\pi x^2}$. On rappelle que la transformée de Fourier de la fonction G est égale $\hat{a}: \hat{G} = G$.
- 3. On pose pour a > 0: $G_a(x) = e^{-ax^2}$.
 - (i) Calculer la relation entre $G_a(x)$ et G(x).
 - (ii) En déduire que la transformée de Fourier de G_a est égale à :

$$\forall \nu \in \mathbb{R}, \ \widehat{G}_a(\nu) = \sqrt{\frac{\pi}{a}} \ e^{-\frac{\pi^2 \nu^2}{a}}$$

4. Calculer la transformée de Fourier du produit de convolution $G_a * G_b$, a, b > 0.

5. En déduire, en le justifiant, que $G_a * G_b = \lambda G_c$ où λ et c sont des constantes à préciser.

Exercice 3

Pour $x \in \mathbb{R}$ on pose $f(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) dt$.

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- 2. Montrer que f vérifie l'équation différentielle $y' = -\frac{x}{2}y$.
- 3. En déduire une expression explicite de f(x). (On rappelle que $\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$)
- 4. Montrer que cette expression de f(x) aurait pu être trouvée en utilisant la transformée de Fourier de $t \to e^{-t^2}$.

Exercice 4

Soit 0 < a < b deux réels et soit $A = \mathbb{R}_+ \times]a, b[$.

- 1. Montrer que l'application définie $f(x,y)=e^{-xy}$ est intégrable sur A.
- 2. Déduire de la question précédente la valeur de :

$$\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} \, dx$$

Exercice 5

Soit E l'espace vectoriel des fonctions continues de [0,1] à valeurs dans \mathbb{R} muni de l'application $f \to ||f||_1$ avec : $||f||_1 = \int_0^1 |f(x)| dx$.

- 1. Vérifier que $\|\cdot\|_1$ est une norme sur E.
- 2. On considère l'application $L: E \to \mathbb{R}$ définie par L(f) = f(1).
 - (i) Montrer que L est une application linéaire.
 - (ii) En considérant les fonctions $f_n: x \mapsto \sqrt{n} x^n$, montrer que L n'est pas continue.

Exercice 6

Pour $n \in \mathbb{N}^*$ et $x \in]0, +\infty[$ on pose

$$I_n(x) = \int_0^{+\infty} \frac{1}{(t^2 + x^2)^n} dt.$$

- 1. Montrer que I_n est dérivable sur $]0, +\infty[$ et calculer sa dérivée en fonction de I_{n+1} .
- 2. En déduire la valeur de

$$\int_0^{+\infty} \frac{1}{(t^2+1)^3} dt.$$

Exercice 7 (Facultatif)

Soit $f_n(x) = \arctan(nx)e^{-x^n}$.

- 1. Justifier que $f_n \in L^1(\mathbb{R}^+)$.
- 2. Déterminer, si elle existe, la limite

$$\lim_{n \to \infty} \int_0^{+\infty} f_n(x) dx.$$

Exercice 8 (Facultatif)

Soit f une application définie sur [0,1], à valeurs strictement positives, et continue. Pour $\alpha \geq 0$ on pose $F(\alpha) = \int_0^1 f^{\alpha}(t) dt$.

- 1. Justifier que F est dérivable sur \mathbb{R}^+ et calculer F'(0).
- 2. En déduire la valeur de

$$\lim_{\alpha \to 0} \left(\int_0^1 f^{\alpha}(t) dt \right)^{\frac{1}{\alpha}}$$