Experimental Project for Testing and Practice

Tom Thorpe
April 17, 2018

Objective

View different plots of the cleaned Forest Cover data from the previous section to learn more about the data. Include required libraries.

```
progStart=Sys.time()
print(paste("R script started at",progStart))
## [1] "R script started at 2018-05-24 09:02:25"
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(ggplot2)
Point to data. The forestcover clean full.csv is the cleaned data to be graphed.
infile="C:/Users/Tom/git/datasciencefoundation/ForestCoverage/forestcover_clean_full2.csv"
infile="C:/Users/Tom/git/datasciencefoundation/ForestCoverage/forestcover_clean_full_sample2.csv"
out2file="C:/Users/Tom/git/datasciencefoundation/ForestCoverage/forestcover_graph.csv"
\#out1file="C:/Users/Tom/qit/datascience foundation/ForestCoverage/forestcoversmall\_clean\_full.csv"
\#out2file="C:/Users/Tom/git/datascience foundation/Forest Coverage/forest coversmall\_clean.csv"
alphaVal<-0.01 # large data
alphaVal<-0.1 # small data
Load the data.
startTime=Sys.time()
print(paste("Data load started at",startTime))
## [1] "Data load started at 2018-05-24 09:02:26"
forestcover <- read.csv(infile,header=TRUE,sep=",") %>% tbl_df()
# Shorten some names
forestcover$ClimateName <- as.character(forestcover$ClimateName)</pre>
forestcover$ClimateName[forestcover$ClimateZone == 1] <- "MonLowDry" # was "Mont_LowDry"
forestcover$ClimateName[forestcover$ClimateZone == 2] <- "MonLow" # was "Montane Low"
forestcover$ClimateName[forestcover$ClimateZone == 3] <- "MonDry" # was "Montane_Dry"
```

forestcover\$ClimateName[forestcover\$ClimateZone == 4] <- "Montane" # was "Montane"

```
forestcover$ClimateName[forestcover$ClimateZone == 5] <- "M&MDry" # was "Mon&Mon_Dry"
forestcover$ClimateName[forestcover$ClimateZone == 6] <- "MonSubAlp" # was "Mon_SubAlp"
forestcover$ClimateName[forestcover$ClimateZone == 7] <- "SubAlpine" # was "SubAlpine"
forestcover$ClimateName[forestcover$ClimateZone == 8] <- "Alpine" # was "Alpine"
forestcover$ClimateName <- as.factor(forestcover$ClimateName)
endTime=Sys.time()
    print(paste("Data load completed at",endTime))

## [1] "Data load completed at 2018-05-24 09:02:27"
    print(paste("Elapsed time=",endTime-startTime,"seconds."))

## [1] "Elapsed time= 1.10402512550354 seconds."</pre>
```

Data Overview

The forest cover data has a row for each sample representing a 30 meter by 30 meter square area of land.

```
#glimpse(forestcover)
```

List Data Ranges for Non-Binary Data

```
List Data Ranges for Non-Binary Data.
myranges <- function(name,x) { c(name, min = min(x), mean = mean(x), max = max(x)) }
forestDataRanges <- data.frame("Data"=character(), "min"=double(), "mean"=double(), "max"=double(),</pre>
                                 stringsAsFactors=FALSE)
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("Elev",forestcover$Elev)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("Aspect",forestcover$Aspect)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("Slope",forestcover$Slope)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("H2OHD",forestcover$H2OHD)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("H20VD",forestcover$H20VD)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("RoadHD",forestcover$RoadHD)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("FirePtHD", forestcover$FirePtHD)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("Shade9AM",forestcover$Shade9AM)
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("Shade12P",forestcover$Shade12PM)
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("Shade3PM",forestcover$Shade3PM)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("RWwild",forestcover$RWwild)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("NEwild",forestcover$NEwild)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("CMwild",forestcover$CMwild)</pre>
forestDataRanges[nrow(forestDataRanges)+1,] <- myranges("CPwild",forestcover$CPwild)</pre>
forestDataRanges
```

```
##
         Data min
                                 mean
                                       max
## 1
         Elev 1880
                     2960.07332185886 3857
## 2
       Aspect
                 0
                     155.431755593804 360
## 3
        Slope
                 0
                     14.0944061962134
        H20HD
## 4
                 0
                     268.901118760757 1307
                     46.6323580034423 508
## 5
        H20VD -159
## 6
       RoadHD
                0
                     2356.4578313253 6944
## 7 FirePtHD
                 0
                    1981.99277108434 7107
## 8 Shade9AM
                 0
                     212.124010327022 254
```

##	9	Shade12P	110	223.240791738382	254
##	10	Shade3PM	0	142.524354561102	249
##	11	RWwild	0	0.449569707401033	1
##	12	NEwild	0	0.0503442340791738	1
##	13	CMwild	0	0.437263339070568	1
##	14	CPwild	0	0.0628227194492255	1

Data distributions

Now check some basic distributions.

Elevation - Figure 1

```
# plot 1
  jpeg(filename="ExpFigure01.jpg")
  plot(table(forestcover$Elev))
  dev.off()

## pdf
## 2
```

The distribution of the elevation seems reasonable for Colorado's high country.

Elevation Histogram 2 - Figure 2

```
# Figure 32
g <- ggplot(forestcover,aes(Elev)) +
        geom_histogram(bins=100) # +
        # facet_grid(. ~ factor(CovName)) +
        ggsave("ExpFigure02.jpg")</pre>
```

Saving 6.5 x 4.5 in image

shapiro.test(forestcover\$Elev) # Does myVec follow a normal distribution?

Error Message: "Sample size must be between 3 and 5000"

Figure 1: Elevation Histogram 1

Figure 2: Elevation Histogram 2

Aspect - Figure 3

```
# plot 1
  jpeg(filename="ExpFigure03.jpg")
  plot(table(forestcover$Aspect))
  dev.off()

## pdf
## 2
```

The distribution of the Aspect follows the full 360 degrees of the compass.

Aspect Histogram 2 - Figure 2

Saving 6.5×4.5 in image

Figure 3: Aspect Histogram 1

Figure 4: Aspect Histogram 2

Slope - Figure 5

```
# plot 1
  jpeg(filename="ExpFigure05.jpg")
  plot(table(forestcover$Slope))
  dev.off()

## pdf
## 2
```

The distribution of the slope seems reasonable.

Slope Histogram 2 - Figure 6

Saving 6.5×4.5 in image

Figure 5: Slope Histogram 1

Figure 6: Slope Histogram 2

Figure 7: Plot 11

Tree Type vs Elevation - Plot 11

Saving 6.5×4.5 in image

Elevation vs Tree Type shows that trees reside in a range of elevations and will help in determining tree type, but more information will be needed where there is overlap in elevation.

This graph looks a little strange. The next graph reverses the axes.

Figure 8: Plot 13

13

Saving 6.5×4.5 in image

blah blah blah

Figure 9: Elevation vs Wilderness Area with Tree Type

Elevation vs Wilderness Area with Tree Type - Figure 32

Saving 6.5×4.5 in image

Elevation vs Wilderness area shows the wilderness area should be able to help classifying tree type.