

①

Classifiers algorithms:

• ① - K-nearest neighbor.

(nonparametric Statistics)

• الاحتماليون

• ② - Bayes decision Theory

• Probability

- يفرض وجود $w_1, w_2 \leftarrow 2 \text{ classes}$ \leftarrow الماء معروف (x) انتهي

$$\text{Prior} | \text{class} \cdot P(w_i) = \frac{N_i}{N}$$

- عدد العناصر الموجوده في class (N_i)

- على كل العناصر الموجوده في i classes (N)

• Likelihood \leftarrow The class-conditional probability density function (pdf).

القانون يوضح بمثال (نزل مع الحاضر)

$$P(w_i|x) = \frac{P(x|w_i) * P(w_i)}{P(x)}$$

• Posterior \leftarrow احتمالية ان (x) تأتي لـ w_i .

- هنرى نفس القانون هو نفسه ($i=1, 2$)

- $P(x)$ ذاته كل وره ، يكتب مع هماز في decision

(2)

if $P(\omega_1|x) > P(\omega_2|x)$

$\therefore x \in \omega_1$

if $P(\omega_2|x) > P(\omega_1|x)$

$\therefore x \in \omega_2$

$P(\omega_1) = P(\omega_2)$ uniform Priors ①
 decision based on $P(x)$ ②
 $P(\omega_1) = P(\omega_2)$ the variance is zero if $P(x|\omega_1) \geq P(x|\omega_2)$

في قرار يوضح تطبيقه على المحاضر # من في الـ slides.

feature extraction algorithms

- ① PCA Principal Component analysis. (PCA)
- ② Linear Discriminant Analysis (LDA)
- ③ Scale Invariant Feature Transform. (SIFT).

⇒ PCA (Spatial domain $\xrightarrow{\text{projection}}$ Eigen Domain)

operations in eigen domain $\times 1$
 (eigen space) ↪

The component of eigen space is
 Principal Component (PC), consists
 of eigen vectors.

Eigen vector selection \leftarrow data reduction $\times 2$
 reduction

③

* The Implementation of The algorithm are:-

1) تحويل المدخلات DataBase (objects) إلى مدخلات في 形象 (Image) vector . column vector

$$\xrightarrow{\text{ DataBase (Image) vector}} \mathbf{X} = \begin{bmatrix} \square & \square & \square & \square & \dots \end{bmatrix}$$

$$\mathbf{x} = [x_1, x_2, x_3, \dots]^T$$

2) حساب وتحقيق mean (مقدار وتحقيق المقدار) .
· zero mean (مقدار المقدار) .

$$\mathbf{x}' = \mathbf{x} - \text{mean.}$$

3) Covariance matrix (covariance) .
· covariance (covariance)

· 2 Random values (العلاقتين) .
· y random value \times x random value (لو اد)

كما في
Covariance

if (Covariance) > 0 (+)

(علاقة طردية) معندها ان اد 2 values بيرتبطوا مع بعض

if (Covariance) < 0 (-)

(علاقة انتفاضة) معندها لو واحد يزيد الثاني يقل والعكس

if (Covariance) $= 0$

معندها ان اد two Random value بيعمل علاقه بعده

$$\Sigma = \sum_N (x_i - \text{mean})(x_i - \text{mean})^T$$

$$\text{mean} = (\frac{1}{N}) \sum_N x_i$$

٤) بعد كده هيحسبه الـ Covariance Matrix

بعد كده هيحسب الـ Eigenvalues Selection مع الكبار المهمين وبعمل $K=7$ هم $\text{principle Component}$ ، لأنها تحتوي على أكبر كم من المعلومات عن القيمة الأرضي .

- classes $K=11$ يختار عدده بحسب عدد

Eigen vectors في 100 \Leftrightarrow خرائط \Leftrightarrow class كل وحدة

$$K=100$$

Transformation matrix $W (K \times 1)$

eigen domain \Leftrightarrow spatial domain \Leftrightarrow إلخ

eigen space $\leftarrow Y = (W^T \cdot X)$ \rightarrow Image vector.

[eigenvectors of S]
[corresponding to K largest eigen values]

بعد ما انتقل العوادم إلى eigen space . معقارنة والستوف .

. classifier يصنف class هنئي

Example :- slide 40 \rightarrow 44