# "A hierarchical approach to computer Hex" (Vadim V. Anshelevich, 2002)



Präsentation von Robert Nitsch für das Seminar "Knowledge Engineering und Lernen in Spielen"



#### Gliederung



- Das Spiel Hex
- Konventionen
- Sub-games & virtual (semi)connections (VCs)
- Deduktionsregeln für VCs -> H-Search-Algorithmus
- Evaluationsfunktion
- HEXY

Quellen

#### **Das Spiel Hex**



- 2 Spieler: schwarz & weiß
- rautenförmiges Spielfeld aus Hexagons
- gegenüberliegende Seiten müssen verbunden werden
- dafür werden abwechselnd Steine auf die Hexagons gelegt



#### **Das Spiel Hex - Besonderheiten**



- Der erste Zug gibt einen großen Vorteil => oft mit Tauschregel
- Es kann kein Unentschieden geben
  - Nash zeigte: es existiert eine Gewinnstrategie für den ersten Spieler!
    - (für den Fall, dass kein Tausch erlaubt ist)
  - Gewinnen = Nicht verlieren bzw. "Angriff = Verteidigung"
- sehr hoher Branching-Faktor
  - vergleichbar mit Go; größer als bspw. bei Schach, Dame
- menschliche Spieler haben bei größeren Spielfeldern noch knapp die Oberhand
- Wikipedia: Hex *gelöst* bis zu 9x9

#### Konvention



- Wir betrachten das Spiel im Folgenden aus der Sicht von Schwarz.
  - (Das kann selbstverständlich stets umgedreht werden.)

- Spielfelder: "Zellen" (engl. cells)
- Spielfeld mit Spielstein: schwarze bzw. weiße Zelle
- Gruppe von gleichfarbigen Zellen bildet ihrerseits eine schwarze bzw. weiße Zelle
- Die Spielfeld-Ränder gelten als weiße bzw. schwarze Zellen

### **Konvention - Beispiel**





#### **Two-Bridges: Sichere Verbindungen**



- x und y formen zusammen eine Two-Bridge
- •denn: x und y sind durch 2
  versch. freie Zellen
  verbunden (a und b)
- Weiß kann nicht verhindern, dass Schwarz seine Zellen x und y verbindet



### **Two-Bridges: 2. Beispiel**



- jetzt: **x** und **y** sind die schwarzen Randzellen
- wir wissen: Weiß kann die Verb. von x und y nicht verhindern
- also: Schwarz hat quasi bereits gewonnen



#### Verallgemeinerung des Brückenkonzepts -> Sub-games



- Definition 1:
- Ein Tripel (x, A, y) sei ein *sub-game*, mit
  - x ≠ y den Zellen, die Schwarz verbinden soll
  - A die Menge der leeren Zellen, auf die Steine gelegt werden dürfen
  - x und y dürfen nicht mit A überlappen
- A sei definiert als *carrier* des sub-games ("Träger").
- x und y seien definiert als die ends des sub-games (die "Enden").
- Also: Bei diesen sub-games hat Schwarz das Ziel die Enden x und y über den carrier A miteinander zu verbinden. Weiß versucht das zu verhindern.

#### **Sub-games**



#### Definition 2:

■ Ein sub-game stellt eine **virtual connection** dar gdw. Schwarz eine Gewinnstrategie hat – sogar dann, wenn Weiß zuerst zieht.

#### Definition 3:

- Ein sub-game stellt eine virtual semi-connection dar gdw. Schwarz nur dann eine Gewinnstrategie hat, wenn Schwarz auch zuerst zieht (und sonst nicht).
- "Gewinnstrategie" bezieht sich auf das jeweilige sub-game.
- zu "ziehen" heißt natürlich konkret: einen Stein auf eine der Zellen aus A legen

### Sub-games vs. Two-Bridges



Two-Bridges sind spezielle sub-games

$$A = \{a, b\}$$

- Genauer:
  - Eine Two-Bridge ist eine <u>virtual</u> <u>connection</u>, bei der |A|=2.



### **Sub-games: weitere Beispiele**





### Sub-games: + Rekursion



#### Definition 2a:

■ Ein sub-game ist eine virtual connection (x, A, y) gdw. für jeden weißen Zug ein schwarzer Zug existiert sodass eine virtual connection (x, A', y) daraus hervorgeht (mit |A'|=|A|-2).

#### Definition 3a:

• Ein sub-game ist eine virtual semi-connection gdw. das sub-game keine virtual connection ist und es einen schwarzen Zug gibt sodass eine virtual connection daraus hervorgeht.

#### Darstellung von sub-games



- 1. schwarz zu schwarz
- 2. schwarz zu leer
- 3. leer zu leer



Fig. 3. Diagrams of virtual connections (left) and virtual semi-connections (right).

### Tiefe von sub-games



- Die Anzahl der Züge die es braucht bis Schwarz ein sub-game gewonnen hat heißt *Tiefe* (engl. depth) des sub-games.
- Bedingung: Schwarz und Weiß spielen jeweils perfekt.
- Bemerke:
  - Eine virtual connection mit Tiefe d besitzt bereits Informationen über den (potenziellen) Spielzustand in d Zügen.

#### Bemerkungen



- Ein Paar benachbarter Zellen formt eine virtual connection mit leerem Träger und der Tiefe 0.
- Two-Bridges: Eine Two-Bridge ist eine virtual connection mit Tiefe d=2.
- Eindeutigkeit: Die Enden x und y können verschiedene virtual connections formen. (Der Träger A kann unterschiedlich gewählt werden.)
  - -> **Minimalität**: Eine virtual connection (x, A, y) ist minimal gdw. es keine virtual connection (x, B, y) gibt mit  $B \subset A$

### Bemerkungen (Fortsetzung)



- Gegeben sei eine minimale virtual connection (x, A, y).
  - Dann sind alle (x, B, y) mit  $A \subset B$  ebenfalls virtual connections (jedoch: nicht mehr minimal).
- \* (x, A, y) ist virtual (semi)connection gdw. (y, A, x) ist virtual (semi)connection
  - Vergleiche: Symmetrie von Relationen

### **AND-Deduktionsregel**



- Gegeben: Virtual connections (x, A, u) und (u, B, y) mit einziger Überlappung bei u (formal:  $x \neq y \land x \notin B \land y \notin A \land A \cap B = \emptyset$ ).
- Dann gilt:
  - (i) Wenn u schwarz ist, dann ist das sub-game (x, A ∪ B, y) eine virtual connection.
  - (ii) Wenn u leer ist, dann ist das sub-game (x, A ∪ u ∪ B, y) eine virtual semi-connection.
- \* (i) Vergleiche: **Transitivität** von Relationen. (Wenn wir x und u sowie u und y garantiert verbinden können, dann auch x und y.)
- \* In Fall (ii) darf u eigentlich nur eine einzelne Zelle sein (!?).

### **OR-Deduktionsregel**



- Gegeben: 2 bis n virtual <u>semi</u>-connections (x, A<sub>i</sub>, y) mit disjunkten A<sub>i</sub>. (i = 1, ..., n.)
- Dann gilt:
  - (x, A, y) ist eine virtual connection mit

$$A = \bigcup_{i=1}^{n} A_i$$

■ Anschaulich: Wenn Weiß bspw. in A<sub>1</sub> einen Stein legt, dann hat Schwarz den 1. Zug in allen anderen A<sub>i</sub>.

### Wdh.: Darstellung von sub-games



- schwarz zu schwarz
- 2. schwarz zu leer
- 3. leer zu leer



Fig. 3. Diagrams of virtual connections (left) and virtual semi-connections (right).

### **Beispiel: Deduktionsregeln**





Fig. 8. The use of AND and OR deduction rules.

### **H-Search-Algorithmus**



- Gegeben: Ein Spielzustand (node).
- Beginnend mit einer Grundmenge von virtual (semi)connections werden wiederholt die AND- bzw. OR-Regel angewandt, bis
  - keine weiteren Verbindungen erzeugt werden
  - oder eine gewinnende Verbindung erzeugt wurde
- Grundmenge: Im einfachsten Fall alle Paare zueinander benachbarter cells.
- Aber: genannte Deduktionsregeln sind nicht vollständig, können also i.A. nicht alle virtual connections erzeugen/finden
  - (Man könnte sie entsprechend erweitern, wurde hier aber nicht gemacht.)

#### **Evaluations funktion**



- Gegeben: Ein Spielzustand (node).
- Gesucht: Eine Funktion die schätzt wie "gut" diese Position für Schwarz/Weiß ist.
- Idee: Spielzustand als gegenüberliegende Seiten verbindender Graph. (Je 1 Graph für Schwarz und Weiß.)
  - Aus den Graphen lässt sich eine Distanz berechnen als Maß dafür, wie nah die Spieler an ihrem Ziel sind.
- 2 Fragen stellen sich:
  - Kanten <-> virtuelle Verbindungen? mit welchen Kosten?
  - Distanz <-> kürzester Pfad durch den jeweiligen Graphen?
  - = > verschiedene Ansätze möglich!

#### **Evaluations funktion**



- Die Evaluationsfunktion ist allgemein  $E = log(D_{Schwarz}/D_{Weiß})$ .
- Anshelevich bevorzugt einen Ansatz, der so ähnlich erstmals von Shannon angewendet wurde ("Shannon switching game").
  - Man fasst die Graphen als Schaltkreise auf.
  - An den Rändern wird eine elektrische Spannung angelegt.

#### Also:

- Kanten <-> elektrische Verb. mit ihren Kosten als Widerstand
- Distanz <-> totaler Widerstand der jeweiligen Schaltung (physikalische Größe)

### **Spielfeld als Schaltkreis**





Fig. 10. Black's and White's circuits.

#### Die Schaltkreise im Detail



- Also: Zu jeder Spielposition werden 2 "Schaltkreise" modelliert, jeweils für Schwarz bzw. Weiß.
- Jeder Zelle c wird ein Widerstand r (resistance) zugewiesen
  - In Schwarz' Schaltkreis: ■ (analog für Weiß)  $r_{B}(c) = \begin{cases} 1 & \text{if } c \text{ is empty,} \\ 0 & \text{if } c \text{ is occupied by a black piece,} \\ +\infty & \text{if } c \text{ is occupied by a white piece.} \end{cases}$
- Benachbarte Zellen c1 und c2 werden verbunden mit Widerstand  $r_B(c1) + r_B(c2)$  bzw.  $r_W(c1) + r_W(c2)$ .
- Weitere virtuell verbundene Zellen x und y werden verbunden mit Widerstand 3+ (um direkte Verbindungen aufzuwerten).
- (Verallgemeinert entsprechen diese Verbindungen den Kanten des Graphen, der die Ränder miteinander verbindet.)

#### Die Schaltkreise im Detail 2



- Berechnet werden können dann die totalen Widerstände des Schaltkreises von Schwarz (R<sub>B</sub>) und von Weiß (R<sub>W</sub>).
  - (Totaler Widerstand kann berechnet werden durch Lösung eines linearen Gleichungssystems.)
- Warum eigentlich so kompliziert?
  - Aus der Physik weiß man (Kirchhoffsche Regeln):
    - der totale Widerstand berücksichtigt nicht nur die Länge des kürzesten Pfades sondern auch alle anderen Pfade, ihre Längen und ihre Kreuzungen/Überschneidungen.
  - Also berücksichtigt diese Evaluationsfunktion nicht nur die einfachste zu vervollst. Kette, sondern auch alle weiteren möglichen Ketten.
  - Außerdem: Dank der virtual connections blickt die Evaluationsfunktion sehr weit voraus! Nicht selten VCs mit Tiefe 20!

### **Evaluationsfunktion im Überblick**



- Zu jedem Spielzustand modelliert man also wie gezeigt 2 Graphen bzw. "Schaltkreise" mit totalen Widerständen R<sub>B</sub> und R<sub>W</sub> als Distanzen.
- Die bevorzugte Evaluationsfunkt. von Anshelevich ergibt sich dann insgesamt als

• 
$$E = log(R_B/R_W)$$

• \* 
$$E = 0$$
 <-> ausgeglichen

#### **HEXY**



- HEXY ist Anshelevichs Hex-Software (nur 192KB!).
- HEXY gewann bei der "5th Computer Olympiad" (Hex) in London, im August 2000.
  - International Computer Games Association: <a href="http://www.icga.org/">http://www.icga.org/</a>
    - neben Hex viele weitere Spiele!
- Bemerkung:
  - nach London 2000 hat HEXY an keiner Computer Olympiad mehr teilgenommen

#### **HEXY - Vorgehen**



- Verwendet eine Kombination aus game tree search & H-Search.
  - alpha-beta Such-Algorithmus (quasi Minimax-Algorithmus).
  - Benutzt KEIN opening book o.ä.!
- Alle bei der alpha-beta-Suche betrachteten nodes werden wie gezeigt evaluiert.
- Bei diesen Evaluationen kommt H-Search zum Einsatz um die virtual connections zu jeder node zu finden.

### **HEXY – Vorgehen 2**



- In der Praxis behält HEXY von node zu node so viele virtual connections wie möglich bei.
  - Es wird analysiert, wie sich die Menge der virtual connections verändert, wenn ein Spielstein hinzukommt.
  - Insbesondere berechnet HEXY nur minimale virtual connections.
- \* Zugreihenfolge: Es werden diejenigen Zellen bevorzugt belegt, die in dem Evaluationsgraphen am schlechtesten "vernetzt" sind.
  - (Es werden quasi zuerst die Schwachstellen ausgemerzt.)

### **HEXY - Optimierung**



- Wichtige Parameter wurden experimentell optimiert.
- Am einflussreichsten sind die Parameter D, M und K.
  - D: Tiefe der game tree search.
  - M: Limitiert die Anzahl verschiedener minimaler virtual connections zwischen gleichen Enden x und y, die von HEXY erzeugt/mitgeführt werden.
  - K: schränkt die Anzahl der virtual semi-connections ein die als Eingabe für die OR-Regel verwendet werden.
    - Typische Werte: K=4 oder K=5
- Bspw. für 10x10 Hex beste Wahl: D=3 und M=20.

## Hex Computer Olympiad -> Nach London 2000



| Edition | Event<br>(Teilnehmer)            | Gewinner   | Gewinner basiert auf<br>HEXYs Konzepten |
|---------|----------------------------------|------------|-----------------------------------------|
| 15      | Kanazawa 2010<br>Steht noch aus! | -          | -                                       |
| 14      | Pamplona 2009 (4)                | MoHex 2009 | ?                                       |
| 13      | Beijing 2008 (4)                 | Wolve 2008 | Ja                                      |
| 11      | <u>Turin 2006</u> (3)            | Six        | Ja                                      |
| 9       | Ramat-Gan 2004 (2)               | Six        | Ja                                      |
| 8       | <u>Graz 2003</u> (2)             | Six        | Ja                                      |
| 5       | <u>London 2000</u> (3)           | HEXY       | (natürlich)                             |

### Quellen



- "A hierarchical approach to computer Hex"
  - Vadim V. Anshelevich, 2002
  - Download: <a href="http://home.earthlink.net/~vanshel/">http://home.earthlink.net/~vanshel/</a>
- "The Game of Hex: An Automatic Theorem Proving Approach to Game Programming"
  - Vadim V. Anshelevich, 2000
  - Download: <a href="http://home.earthlink.net/~vanshel/">http://home.earthlink.net/~vanshel/</a>
- ICGA Hex Tournaments
  - http://www.grappa.univ-lille3.fr/icga/game.php?id=7

### Fragen?



- **■** ???
- **■** ???
- **■** ???
- **■** ???
- **■** ???
- **■** ???