Assignment 1 CNN for image recognition (20p)

Goal

To familiarize yourself with which you have learned for building a new CNN model.

Due Date

October 25, 2019 at 08:00am.

Note that it is a **DEADLINE**. You will grade as zero if you return your report and code after the deadline unless you have good reasons and let me know in advance.

Steps

1 Dataset download

- 1.1 Please use the training set and testing set of CIFAR-10 dataset: https://www.cs.toronto.edu/~k riz/cifar.html
- 1.2 Downloading CIFAR-10 dataset following this link: https://pytorch.org/tutorials/beginner/blitz/cifar10 tutorial.html
- 1.3 If you have no GPU at hand, please do it like this:

```
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
```

If you have more questions, please contact our **TA** (**Qian Ren**).

Table 1 your own ResNet model

Layer Name	Output Size	ResNet-18
conv1	$112\times112\times64$	7 × 7, 64, stride 2
conv2_x	$56 \times 56 \times 64$	3×3 max pool, stride 2
		$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$
conv3_x	$28 \times 28 \times 128$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$
conv4_x	$14 \times 14 \times 256$	$\left[\begin{array}{c} 3 \times 3,256 \\ 3 \times 3,256 \end{array}\right] \times 2$
conv5_x	$7 \times 7 \times 512$	$\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 2$
average pool	$1\times1\times512$	7×7 average pool
fully connected	1000	512×1000 fully connections
softmax	1000	

2 Create your own ResNet work shown in Table 1 (19p)

- 2.1 Table 1 is an 18-layer ResNet model. Each block "conv_i-x" has a "shortcut connection". For details, see the Fig. 2 in the paper https://arxiv.org/pdf/1512.03385.pdf
- 2.2 Create this model in Table 1 (8p)
- 2.3 The code in this link might help you https://pytorch.org/docs/stable/_modules/torchvision/modules/resnet.html
- 2.4 Use the downloaded training dataset (see Section 1) to train your created model
- 2.5 Report the final accuracy (10,000 steps) of training and testing for the CIFAR-10 dataset (see Section 1.1) (**2x1=2p**). **Note**: For training in task 2, 10,000 iterations are good. 1,000 iterations are fine if your computation power is limited. However, 100 steps are the **minimum**. Try to train **more iterations** to observe the variations of loss function, cross entropy, accuracy for training dataset and testing set. It would help you to tune the model, parameters for your future task. (*Sum: 10p*)
- 2.6 Visualize the learning progress (e.g., tensorboardX in Pytorch). Please take a picture for the visualized curves in tensorboardX or visdom in Pytorch then paste them here

Fig.1. Accuracy and cross entropy (or loss function)

- accuracy (1p) and
- cross_entropy (or loss function) (1p) as shown in Fig. 1. (Sum: 12p)

2.7 Filter visualization

- Visualization the 64 filters in the layer 'Conv1'(Layer-1 in Table 2) after retraining the whole model by 10,000 steps (3p) and show them in your report. Some examples are shown in Fig. 2. Note: For training in task 2.7, 10,000 iterations are good. 1,000 iterations are fine if your computation power is limited. However, 100 steps are the minimum. (Sum: 15p)
- You might refer to this link: https://github.com/grishasergei/conviz

Fig.2. Filter visualization

2.8 Feature mapping visualization

- Visualize the feature maps of the layer 'Conv1'(Layer-1 in Table 2) and also the last layer in the block Conv5_x (**2*2=4p**)
- Some example figures can be found in Figure 2 of this paper: https://arxiv.org/pdf/1311.2901
 _pdf
- I want both
 - the reconstructed patterns from the validation set that cause high activations in a given feature map (**2p**).
 - the corresponding image patches for each feature map (2p).
- Some example code can be found here: https://github.com/utkuozbulak/pytorch-cnn-visualizations

Document for these code:

http://kvfrans.com/visualizing-features-from-a-convolutional-neural-network/

(Sum: 19p)

3. Feedback (1p)

- Time your spend for this assignment, i.e., how many hours? (0.1p)
- Comments for this course? (0.3p)
- Comments for this assignment? (0.3p)
- Suggestion for the following lectures? (0.3p)

(Sum: 20p)

Report

- **Code** for Task 2. The code should be based on **Pytorch(Version 1.3 is required)** platform and using python language.
- The **results**, curves and filter visualization are suggested to include in report.
- Feedback
- Your code should be **bug free**. You would get **zero point** if there are bugs and we can not run your code to get the results.

Note

If you have questions about the project, please contact with (Qian Ren) as early as possible,
 two days or more before the deadline are preferred

How to submit

- Send an email (reng2019@pku.edu.cn), with the title Al_homework_1_X_Y:
 - where AI is the abbreviation for artificial intelligence;
 - X is your name in Chinese;
 - Y is your studentID;
 - We are sorry that we do not provide file server for you to upload your homework.
 - If you have any questions about this course or assignment, please use a separate email. Do not ask any questions in this assignment-return email.
- Pack your code AND report in one package, using the file name **Al_homework_1_X_Y** instead of AI or something like that.
 - Report is not suggested to put in the email.
 - You are suggested to pack report with your code in one package with the title:
 Report_Al_homework_1_X_Y.
 - Report is suggested to be in PDF and in **ENGLISH**.
 - The default package might be in ".zip" format. If not, please show your format and how we can unpack it (i.e., software).
- **Attach your package** which includes the code and report you have created.

• My email: (renq2019 @pku.edu.cn)

Honor Code

- The honor code applies to all work turned in for this course.
- You must write and debug your own code.
- In particular, all code and documentation should be entirely your own work. You may consult with other students about high-level design strategies related to programming assignments, but you may not copy code or use the structure or organization of another student's program.
- If you use any code or functions found from the internet, please tell us the reference link and how do you use it. **Direct code copy from the internet would be considered violation of this policy**.
- If we find there are two returned assignments same in large proportional code, both of the assignments would be considered violation of this policy