Sprawozdanie Obliczenia naukowe - Lista 3

Witold Karaś

1 zadanie 1

Zadanie polegało na implementacji funkcji rozwiązującej równanie f(x) = 0 metodą bisekcji. Metoda opiera swoje działanie na twierdzeniu Darboux. Twierdzebnie mówi nam, że jeżeli funkcja ciągła na przedziale (a, b) zmienia znak (tj. f(a)f(b) < 0) to w tym przedziale istnieje punkt c taki że f(c) = 0.

1.1 Opis algorytmu:

Najpierw algorytm sprawdza czy znaki wartości funkcji są różne - zgodnie z twierdzeniem Darboux. Jeśli obie wartości są dodatnie lub obie są ujemne zwracany jest błąd. W przeciwnym wypadku iteracyjnie wykonujemy następujące kroki jeśli nie osiągniemy zadanej dokładności $|a-b| <= \epsilon$. Wyznaczony jest środek przedziału c i jego wartość f(c). Mamy 2 podprzedziały [a,c]] i [c,b]. Z powstałych podprzedziałów wybierany jest ten w którym wartość funkcji f zmienia znak. Podprzedziały wybierane w kolejnych iteracjach są o połowę krótsze zatem funkcja wyznacza nam przybliżenie miejsca zerowego.

Zadanie polegało na implementacji funkcji rozwiązującej równanie f(x) = 0 metodą Newtona(stycznych). Polega ona na iteracyjnym wyznaczaniu kolejnych stycznych do wykresu funkcji aż do momentu znalezienia pierwiastka funkcji.

2.1 Aby skorzystać z metody Newtona, funkcja musi spełniać następujące warunki:

- 1. funkcja f na przedziale [a, b] ma dokładnie jeden pierwiastek.
- 2. wartości funkcji w krańcach przedziału mają różne znaki f(a)f(b) < 0.
- 3. pierwsza i druga pochodna nie zmieniają znaku w przedziale [a, b].

2.2 Opis algorytmu:

Najpierw algorytm sprawdza czy $f(x_0) < \epsilon$. Jeżeli nie to w pętli obliczany jest $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ - współrzędna przecięcia funkcji w $f(x_0)$ z osią OX. Jeżeli $|x_1 - x_0| < \delta$ lub $f(x_0) < \epsilon$ to algorytm kończy działanie. W przeciwnym wypadku $x_0 = x_1$ i iteracyjnie obliczane są kolejne przybliżenia.

Zadanie polegało na implementacji funkcji rozwiązującej równanie f(x) = 0 metodą Eulera(siecznych). Polega ona na przybliżaniu dostatecznie małych odcinków funkcji za pomocą funkcji liniowej.

3.1 Opis algorytmu:

Najpierw algorytm sprawdza oblicza f(a) oraz f(b). Następnie w pętli porównywane są wartości f(a) oraz f(b). W przypadku gdy f(a) > f(b) to a zamieniane jest z b oraz f(a) zamieniane jest z f(b). Obliczane jest nowe a oraz w miejscu przecięcia się siecznej z osią OX oraz nowe f(a). Sprawdzany jest warunek końca $|b-a| < \delta$ lub $|f(a)| < \epsilon$. W przeciwnym wypadku wykonywana jest kolejna iteracja. Metoda siecznych ma tę przewagę nad metodą Newtona że nie musimy znać pochodnej danej funkcji aby znaleźć przybliżenie pierwiastka funkcji.

Zadanie polegało na skorzystaniu z wcześniej zaprogramowanych metod w celu znalezienia pierwistka równania $\sin(x) - (\frac{x}{2})^2 = 0$ dla danych wejściowych:

- 1. **metoda bisekcji:** $a = 1.5, b = 2, \delta = 0.5 \cdot 10^{-5}, \epsilon = 0.5 \cdot 10^{-5}$
- 2. **metoda stycznych:** $x_0 = 2, \ \delta = 0.5 \cdot 10^{-5}, \ \epsilon = 0.5 \cdot 10^{-5}$
- 3. metoda siecznych: $x_0 = 1, x_1 = 2, \delta = 0.5 \cdot 10^{-5}, \epsilon = 0.5 \cdot 10^{-5}$

4.1 Wyniki:

Wyniki działania programu znajdują się w poniższej tabeli

metoda	x	f(x)	iter	error
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	0
stycznych	1.933753779789742	-2.2423316314856834e-8	4	0
siecznych	1.933753644474301	1.564525129449379e-7	4	0

Tabela 1: wartości z wyjścia programu zadanie4.jl

4.2 Wnioski:

Wszystkie 3 metody zwracają podobne wyniki. Jednak należy zwrócić uwagę że metoda bisekcji potrzebowała aż 16 iteracji podczas gdy metody siecznych i stycznych potrzebowały po 4 iteracje by zakończyć działanie. Wynika to z wykładnika zbieżności α dla poszczególnych metod.

metody	zbieżność	wykładnik α	uwagi
bisekcji	globalna	1	stosować hybrydowo
Newtona	lokalna	$\frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$	
stycznych	lokalna	2	konieczność liczenia $f'(x)$

Tabela 2: Tabela porównania metod przedstawiona na wykładzie

Zadanie polegało na skorzystaniu z wcześniej zaprogramowanej metody bisekcji w celu znalezienia punktów przecięcia funkcji

$$f(x) = 3x$$

oraz

$$g(x) = e^x$$

Naturalnie, w celu znalezienia punktów przecięcia zajmiemy się szukaniem miejsc zerowych funkcji

$$h(x) = f(x) - g(x)$$

Dokładność obliczeń będzie ograniczona przez $\delta=10^{-4}$ i $\epsilon=10^{-4}$

Rysunek 1: Wykresy funkcji f(x), g(x) oraz h(x)

5.1 Wyniki:

Wyniki działania programu znajdują się w poniższej tabeli

przedział początkowy	x	h(x)	iter	error
[1.5, 2.0]	1.5120849609375	7.618578602741621e-5	12	0
[0.5, 1.0]	0.619140625	9.066320343276146e-5	8	0

Tabela 3: wartości z wyjścia programu **zadanie5.jl**

5.2 Wnioski:

Pomimo że średnice przedziałów były niewielkich rozmiarów metoda bisekcji potrzebowała 8 i 12 iteracji do znalezienia miejsc zerowych z odpowiednią precyzją.

Zadanie polegało na skorzystaniu z wcześniej zaprogramowanej metod w celu znalezienia miejsc zerowych funkcji

$$f_1(x) = e^{1-x} - 1$$

oraz

$$f_2(x) = xe^{-x}$$

Dokładność obliczeń będzie ograniczona przez $\delta=10^{-5}$ i $\epsilon=10^{-5}$. Dokładne współrzędne x-owe miejsc zerowych dla funkcji to $f_1(1)=0$ i $f_2(0)=0$.

Rysunek 2: Wykresy funkcji $f_1(x)$ oraz $f_2(x)$

6.1 Wyniki:

Wyniki działania programu znajdują się w poniższych tabelach

Przedział którego środkiem będzie miejsce zerowe to w metodzie bisekcji dokładny i natychmiastowy wynik nie zależnie od długości przedziału. Zwiększenie długości przedziału oraz przesunięcie jego środka ma wpływ na ilość wykonywanych iteracji;

Metoda Newtona radzi sobie szybciej ze znalezieniem miejsc zerowych ale przez fakt że używamy pochodnych do "przewidywania" gdzie miejsce

przedział początkowy	funkcja	x	h(x)	iter
[0.5, 1.5]	f_1	1.0	0.0	1
[-5, 15]	f_1	1.0000038146972656	-3.814689989667386e-6	20
[-15, 25]	f_1	1.0000038146972656	-3.814689989667386e-6	21
[-0.5, 1.0]	f_2	-7.62939453125e-6	-7.629452739132958e-6	16
[-2, 15]	f_2	1.9073486328125e-6	1.9073449948371624e-6	19
[-1, 25]	f_2	3.814697265625e-6	3.814682713737527e-6	19

Tabela 4: wartości z wyjścia programu zadanie6.jl - metoda bisekcji

przedział początkowy	funkcja	x	h(x)	iter
1.0	f_1	1.0	0.0	1
1.5	f_1	0.9999999984736215	1.5263785790864404e-9	4
2.5	f_1	0.9999934982589662	6.501762170207925e-6	6
0.1	f_2	-1.4906619716777104e-8	-1.490661993898442e-8	3
0.5	f_2	-3.0642493416461764e-7	-3.0642502806087233e-7	5
1.1	f_2	14.272123938290509	9.040322779745447e-6	3

Tabela 5: wartości z wyjścia programu zadanie6.jl - metoda stycznych

zerowe może leżeć, ta metoda nie zawsze odnajdzie prawdziwe miejsce zerowe. Przykładem tego może być ostatni wynik w tabeli dla funkcji f_2 , $(\lim_{x\to\infty} f_2 = 0)$ gdzie dla punktu startowego $x_0 = 1.1$ tuż "za" ekstremum funkcji metoda "znalazła" przybliżenie miejsca zerowego mimo że go tam nie ma.

przedział początkowy	funkcja	x	h(x)	iter
[0.5, -1.0]	f_1	0.9999977863660099	2.2136364401514896e-6	5
[-5.0, 5.0]	f_1	4.975665372740593	-0.9812331895845449	3
[-5.0, 25.0]	f_1	24.92563743470281	-0.999999999593343	3
[-1.0, 0.5]	f_2	-1.1737426154042664e-6	-1.1737439930768023e-6	7
[-5.0, 5.0]	f_2	14.70482129398244	6.04278309521908e-6	13
[-5.0, 25.0]	f_2	24.99999999985963	3.471985966287791e-10	1

Tabela 6: wartości z wyjścia programu zadanie6.jl - metoda siecznych

W metodzie siecznych podobnie jak w metodzie stycznych źle dobrane wartości początkowe mogą dać niepoprawne wyniki. Widać również że przez zbyt długi przedział metoda może zwrócić błędne wyniki.

6.2 b)

Co się stanie, gdy w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1, \infty]$ a dla f_2 wybierzemy $x_0 > 1$, oraz $x_0 = 1$ dla f_2 ?

x_0	funkcja	x	h(x)	iter	error
1.0	f_1	0.9999999810061002	1.8993900008368314e-8	5	0
1.5	f_1	0.999999995278234	4.721767421500545e-10	21	0
2.5	f_1	$\operatorname{nothing}$	nothing	nothing	1
0.1	f_2	14.398662765680003	8.03641534421721e-6	10	0
0.5	f_2	14.398662765680003	$8.03641534421721\mathrm{e}\text{-}6$	9	0
1.1	f_2	14.636807965014	$6.438155219843286\mathrm{e}\text{-}6$	6	0
1.1	f_2	nothing	nothing	nothing	2

Tabela 7: wartości z wyjścia programu zadanie6.jl

6.3 Wnioski:

Dla f_1 wybierając punkt początkowy $x_0 \in (1,\infty]$ pochodna $x \to \infty$ dąży do 0, przez co dla $x_0 = 8.0$ metoda zwracała błąd o przekroczeniu maksymalnej liczny iteracji. Dla f_2 wybierając punkt początkowy $x_0 \in (1,\infty]$ tak jak w ostatnim przypadku dla tej metody pochodna będzie przybliżać miejsce zerowe którego tam tak naprawdę nie ma. Wybierając $x_0 = 1.0$ wartość pochodnej w tym punkcie wynosi 0 zatem metoda zwraca błąd "2" mowiący o wartości pochodnej bliskiej 0.