ISGS LATEX Beginner's Workshop LATEX2006 - Exercise Sheet # 1

Trung C. Nguyen email nguyencanhtrung@me.com

December 9, 2016

Contents

1	Booktabs with Multicolumn & Multirow	2
2	Math2.1 Alignment2.2 Dot-less vector2.3 Golden Ration	2
3	1+1=2	2
4	Theorem & Definitions	3

1 Booktabs with Multicolumn & Multirow

2 Math

2.1 Alignment

$$a_1 x + a_2 x^2 = 0 (1)$$

$$b_1 x + b_2 x^2 + b_3 x^3 = 0 (2)$$

2.2 Dot-less vector

$$\vec{k} = \vec{i} \times \vec{j}$$

or

$$\vec{k} = \imath \times \jmath$$

2.3 Golden Ration

Two quantities a and b are said to be in the golden ration φ if

$$\frac{a}{b} = \frac{a+b}{a} = \varphi \tag{3}$$

By the way: $\varphi = 1 + \frac{1}{\varphi}$

3 1+1=2

$$1 + 2 = 2 \tag{4}$$

$$1 = \ln e \tag{5}$$

$$1 = \sin^2 \alpha + \cos^2 \alpha \tag{6}$$

$$2 = \sum_{n=0}^{\infty} \frac{1}{2^n} \tag{7}$$

$$\ln e + \left(\sin^2 \alpha + \cos^2 \alpha\right) = \sum_{n=0}^{\infty} \frac{1}{2^n}$$
 (8)

$$1 = \cosh \varphi \cdot \sqrt{1 - \tanh^2 \varphi} \tag{9}$$

4 Theorem & Definitions

hello world

Definition 1 This is a user defined definition

Lemma 1 This is lemma