This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5		(11)	国際公開番号	WO 94/10312
C12N 15/19, C12P 21/02 C12N 5/10	A1	(42)		. 1004CE # 11 CT (11 AF A4)
		(43)	国際公開日	1994年5月11日(11.05.94)
(21) 国際出願番号 PCT/J (22) 国際出願日 1993年10月25日((30) 優先権データ 特願平4/286153 1992年10月23日(23. 10. 92) 特願平4/301387 1992年11月11日(11. 11. 92) 特願平4/329546 1992年12月9日(09. 12. 92) (71) 出願人 (米国を除くすべての指定国について) 中外製業株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA)(JP/ででは、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、対し、	15) 15 16	93)	KR, KZ, LK, L' RU, SD, SK, U/ BE, CH, DE, D NL, PT, SE), O/	AU, BB, BG, BR, BY, CA, CZ, FI, HU, V, MG, MN, MW, NO, NZ, PL, RO, A, US, UZ, VN, K, ES, FR, GB, GR, IE, IT, LU, MC, API 特件 (BF, BJ, CF, CG, CI, CM, IR, NE, SN, TD, TG).
〒412 幹岡県御段場市駒門1丁目135番地中外製業株式会社内 Shizuoka,(JP)(74)代理人 弁理士 協浅恭三,外(YUASA, Kyozo et al.) 〒100 東京都千代田区大手町二丁目2番1号 新大手町ビル206区 過淺法律特許事務所 Tokyo,(JP))		•	

(54) Title: GENE CODING FOR MEGAKARYOCYTE POTENTIATOR

(54) 発明の名称

巨核球増幅因子をコードする遺伝子

(57) Abstract

A gene coding for a polypeptide having a human megakaryocyte potentiator activity; a recombinant vector containing the gene; a host transformed by the vector; and a process for producing a polypeptide having a human megakaryocyte potentiator activity by culturing the host and isolating the polypeptide from the culture medium.

(57) 要約

ヒト巨核球増幅因子活性を有するポリペプチドをコードする遺伝子、この遺伝子。を含有する組換ベクター、該組換ベクターにより形質転換さた宿主、及び該宿主を培養し、その培養物から前記ポリペプチドを採取することを特徴とするヒト 巨核球増幅因子活性を有するポリペプチドの製造方法。

情報としての用途のみ

PCTに基づいて公開される国際出顧のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オオーハー リラリス トトー・ファ ア ア BB ベブル・・ファ BB ベブル・・ファ BB マベブル・・ファ BB アベブ・ファック カ 中 ウェンスコット 中 コスコット ア CH スコット ア CM 中 コスコット ロ CM 中 国

CS ナチェイン 共和国 DE ドチェッツコ 共和国 DE ドデンペーク ES ファッツーク FF アンペインシンド FR ファッツン ド FR ファッツン ド FR ファッツス GA イギン リンイス GR ギハア マード IE アイタ HU IT イタ本 民共和国 KP 朝鮮 民共和国

明 細 書 巨核球増幅因子をコードする遺伝子

技術分野 ...

5

10

15

25

本発明は遺伝子に関し、さらに詳しくは、多能性血液幹細胞より分化した巨核球コロニー形成細胞(Megakaryocyte Colony-Forming Unit.)に作用しインターロイキン-3(IL-3)等の巨核球コロニー刺激因子(Megakaryocyte Colony-Stimulating Factor: Meg-CSFと略記する)活性を有する物質の存在下に巨核球の成熟を促進するヒト由来の巨核球増幅因子(Megakaryocyte Potentiator (以下Meg-POTと略記することあり))活性を有するポリペプチドをコードする遺伝子、該遺伝子を含有する組換ペクター、該ベクターによる形質転換体、及び該遺伝子を用いた巨核球増幅因子の製造方法に関する。

本発明の遺伝子は、in vitroにおいてIL-3存在下、用量依存的に巨核球コロニーを増幅させる作用を有する巨核球増幅因子をコードする。本発明の遺伝子を、適当なベクターに挿入した後、常用の宿主細胞を形質転換することにより大量に均一な巨核球増幅因子を製造することが可能となる。このことから、本発明は、例えば血小板減少あるいは血小板の機能低下を伴う疾患に対して臨床上の有用性が期待される治療剤の提供が可能となる。

背景技術

血小板は、生体の止血、血栓形成に重要な意義を持つ血液有形成分の一つである。血小板は、骨髄中の造血幹細胞から巨核球系前駆細胞を経て巨核芽球となり、さらに成熟した巨核球から血液中に放出される。

骨髄細胞から巨核球コロニーを形成させるには、2種類の異なった作用を持つ因子が必要であると考えられている(Williams,Net al. 「J.Cell Physiol.」 110. 0. 101 (1982))。 すなわち、それを加えるだけで巨核球コロニーが形成される Meg-CSFと、それだけでは巨核球コロニーを形成させる活性はないが、Meg-CSFとともに加えると巨核球コロニー数を増やしたり、その成熟を促進する作用を示すMeg-POTである。

ヒトではMeg-CSF活性を有するものとしてIL-3(Teramura, Met al.

5

10

「Exp. Hematol.」 16, 843 (1988))や顆粒球・マクロファージコロニー刺激因子 (Teramura, Met al.「Exp. Hematol.」 17, 1011 (1989))等が知られている。また、ヒトでMeg-POT活性を有するものとしては、インターロイキン6(Teramura, Mand Mizoguchi, H「Int. J. Cell Cloning」 8, 245 (1990))、インターロイキン11(Teramura, Met al. 「Blood」 79, 327 (1992))、エリスロポエチン(Bruno, Eet al. 「Blood」 73, 671 (1989)) 等が知られている。

しかし、これらのものは巨核球・血小板系に特異的な因子ではなく、むしろ他の血球系や血球系以外の細胞にも作用を有していることが知られている。従って、これらのものを医薬品として巨核球・血小板系への作用を期待して投与した場合、それとは別の作用をも発現してしまうことが危惧される。このようなことから、巨核球・血小板系に特異的に作用し、医薬品としての有用性の高い生理活性物質が望まれている。

そこで巨核球・血小板系に作用する新規な巨核球増殖因子を見出すと同時に、該巨核球増幅因子を医薬用途に用いるために、それを大量に得る必要があった。 巨核球増幅因子を産生細胞の培養上清から単離する方法では、培養上清中の巨核 球増幅因子濃度が低く、均一な巨核球増幅因子を得るには複雑な精製工程を必要 とし、かつ微量にしか得られない等の難点があった。従って上記利用目的のため 、組換えDNA技術を用いて、巨核球・血小板系に作用する新規な巨核球増幅因 子を大量に製造することが望まれていた。

- 20 かかる状況において、本発明者らは、ヒト膵臓癌細胞由来の株化細胞「HPC-Y5」の培養上清中に巨核球増幅活性を見い出し、該培養上清中から巨核球増幅活性を指標として目的とする新規な巨核球増幅因子を精製し、その性状を明ら、かにした(国際出願番号:PCT/JP92/01689、国際公開番号:WO-93/13132)。
- 25 さらに、そのアミノ酸配列の情報をもとにオリゴヌクレオチドプライマーを合成し、「HPC-Y5」より調製したmRNAから作製したcDNAライブラリーから、上記合成プライマーを用いて、ポリメラーゼ連鎖反応(以下PCRと略記する)により、巨核球増幅因子をコードするDNA断片を得た。次いで、このDNA断片をプローブとして、cDNAライブラリーをスクリーニングにかけ、30 目的とする新規な巨核球増幅因子をコードする遺伝子を単離することに成功し、

その全塩基配列を明らかにした。

また、この遺伝子を適当なベクターに挿入した後、この発現ベクターにより形質転換された形質転換体を培養し、次に、産生された目的蛋白質を分離・精製することにより新規な巨核球増幅因子を大量に製造することができることも明らかにした。

発明の開示

5

従って、本発明は、ヒト巨核球増幅因子活性を有するポリペプチドをコードする遺伝子を提供する。

本発明はざらに、ヒト巨核球増幅因子活性を有するポリペプチドをコードする 10 遺伝子を含む組換えベクターを提供する。

本発明はまた、ヒト巨核球増幅因子活性を有するポリペプチドをコードする遺伝子を含む組換えベクターによって形質転換された原核もしくは真核宿主細胞を提供する。

本発明はさらに、ヒト巨核球増幅因子活性を有するポリペプチドをコードする 遺伝子を含む組換えベクターによって形質転換して得られた形質転換株を培養し、産生された目的蛋白質、好ましくはヒト巨核球増幅因子活性を有する蛋白質の 製造方法を提供する。

図面の簡単な説明

図1は実施例3におけるステップ-7の逆相HPLC(III)の結果を示す。

20 図2はプラスミドpKPO27の構造を示す。

図3はプラスミドpRVHKPO27の構造を示す。

図4はプラスミドpRVHKPO27fの構造を示す。

図5はプラスミドpCITE・KPO27の構造を示す。

図6はプラスミドpMBPKPO27の構造を示す。

図7はプラスミドpEFDKPOfの構造を示す。

図8は、CHO細胞を用いて発現した培養上清をSDS/PAGEにて分析して、N末近傍の合成ペプチドを抗原として作成した抗体を用いたウエスタンプロットの図を示す。レーン1:分子量マーカー、レーン2:サンプル。

図9は、CHO細胞を用いて発現した培養上清の各精製画分(実施例29(i) 参照)をSDS/PAGEにて分析して、実施例24で作製するMeg-POTに対する抗体を用いて行ったウエスタンプロットの図を示す。レーン1:分子量マーカー、レーン2:素通りおよび洗浄画分、レーン3:0.1M NaC1画分、レーン4:0.2M NaC1画分、レーン5:0.3M NaC1画分
 ルーン6:0.5M NaC1画分、レーン7:1.0M NaC1画分。

図10は、CHO細胞を用いて発現した培養上清の各精製画分(実施例29(iii)参照)をSDS/PAGEにかけた後行ったウエスタンブロットの図を示す。レーン1:溶出時間42~43分の画分、レーン2:溶出時間43~44分の画分、レーン3:溶出時間44~45分の画分、レーン4:溶出時間45~46分の画分。

図11は、修飾体Meg-POT発現ベクター構築のために実施したPCRのプライマーの位置を示す。

図12は、修飾体Meg-POT発現ベクターpEFNKPOS、pEFNK POL252V、pEFNKPOQ220Eの構造を示す。

20 発明の詳細な説明

15

巨核球増幅因子の遺伝子は、例えば巨核球増幅因子を産生する細胞等からmRNAを調製した後、既知の方法により二本鎖 c D N A に変換することにより得られる。このmRNAの供給源となる細胞は、本発明においてはヒト膵臓癌腫瘍細胞由来の株化細胞「HPC-Y5」(Nozomi Yamaguchi et al. CANCER RESEARC 150 7008 1990). (1991年12月27日 工業技術院微生物工業技術研究所に微工研条寄第3703号(FERM BP-3703)としてブタペスト条約に基づき国際寄託〕を用いたが、腫瘍細胞株に限らず、哺乳動物から分離できる細胞、あるいは樹立した他の細胞株でもよい。

また、mRNAの調製は本発明においてはグアニジンチオシアネート処理後、

5

10

15

20

30

塩化セシウム密度勾配遠心を行い(Chirgwin et al. Biochemistry 18 5294 1979) 全RNAを得たが、すでに他の生理活性蛋白の遺伝子をクローン化する際に用いられた方法、例えばバナジウム複合体等のリポヌクレアーゼインヒビター存在下に界面活性剤処理、フェノール処理を行う(Berger & Birkenmeier, Biochemistry, 18 5143 1979) 方法を用いることができる。

全RNAからのpoly(A) *RNAの調製はオリゴ(dT)を結合した担体、例えばセファロースやセルロース等を用いたアフィニティーカラムクロマトグラフィーかバッチ法により行うことができる。また、ショ糖密度勾配遠心法等によりpoly(A) *RNAをさらに精製することもできる。その他、いったんRNAを調製せずに直接poly(A) *RNAを得る方法もある。

上記の如くして得たmRNAから二本鎖cDNAを得るには、例えばmRNAを鋳型にして、3′端にあるpolyA-鎖に相補的なオリゴ(dT)またはランダムプライマー或いは巨核球増幅因子のアミノ酸配列の一部に相応する合成オリゴヌクレオチドをプライマーとして逆転写酵素で処理してmRNAに相補的なDNA(cDNA)を合成する。

mRNAをアルカリ処理により分解・除去した後、得られた一本鎖 c DNAを鋳型にして逆転写酵素あるいはDNAポリメラーゼ (例えばKlenow断片等) 処理後、S1 ダクレアーゼなどで処理するか、直接RNase HおよびDNAポリメラーゼ等で処理することによっても二本鎖 c DNAを得ることができる(Maniatis et al. Molecular Cloning, Cold Spring Harbor Laboratory 1982およびGubler & Hoffman, Gene 25 263 1983)。

巨核球増幅因子をコードする c D N A を単離するには、例えば巨核球増幅活性を指標とするか抗体を用いて直接発現クローニング等の方法で行うことができる。 巨核球増幅活性の測定は、I L - 3 存在下で骨髄細胞を用いた軟寒天培養法を適用して実施できる。

即ち、ウマ血清(56°C 30分処理、 Biocell社製)0.2 ml、マウス(C 57BL/6N系雄性、6~12週齢)大腿骨骨髄細胞浮遊液0.1 ml(2×10⁵ 有核細胞)、組換え型マウスIL-3を5 ng/ml含むiscove's Modified Du lbecco's培養液(IMDM)0.2 ml、寒天を0.75%含む改変McCoy's 5A 培養液0.4 ml、および被検検体(10%ウマ血清を含むIMDMで希釈したも

5

10

15

30

の) 0 . 1 mlを混合して、直径 3 5 mmの組織培養プラスチックディッシュに入れ て固まらせたのち、 3 7 ℃, 5 %炭酸ガス/ 9 5 %空気、 1 0 0 %湿度の条件で 培養を行う。

培養6日目に寒天層ごとスライドガラス上に取出し乾燥させ、フィルム状標本としたものを5%グルタルアルデヒドで固定し、Nakeffらの方法(Proc.Soc.Exp.Biol.Med. 151 587 1976)に従って、アセチルコリンエステラーゼ染色し、巨核球コロニー数の算定を行う。この際、アセチルコリンエステラーゼ染色陽性細胞を4個以上含む集塊を巨核球コロニーとする。検鏡の倍率は40倍である。なお、Meg-POT活性は、被検検体を添加して生じた巨核球コロニー数と被検検体を添加せずに(10%ウマ血清を含むIMDMのみ添加)組換え型IL-3単独で生じた巨核球コロニー数との差を指標とする。

本発明者らは、巨核球増幅因子を産生する株化細胞の培養上清から巨核球増幅因子を単離精製し、そのアミノ酸配列の情報をもとにプライマーを合成し、PCRを用いて、ヒト由来巨核球増幅活性を有するポリペプチドをコードする遺伝子断片をクローニングした。そのDNAをプローブとして既知の方法によりcDNAライブラリーから目的とする新規な巨核球増幅因子をコードする完全長cDNAを含むクローンをスクリーニングした。

なお、これらの c D N A を pBlue script SK(-)の EcoRI, Xhol 切断部位間に挿入した p K P O 2 7 を含有する大腸菌(E. coli) J M 1 O 9 株、および p K P O 2 1 を含有する大腸菌(E. coli) J M 1 O 9 株は、工業技術院微生物工業技術研究所に、各々、平成 4 年 1 O 月 1 2 日に微工研条寄第 4 O 2 9 号 (F E R M B P - 4 O 2 9)、平成 4 年 1 1 月 1 O 日に微工研条寄第 4 O 7 1 号 (F E R M B P - 4 O 7 1) としてブタペスト条約に基づき国際寄託されている。

また、本発明で用いたPCRを繰り返し行うことで、完全長のcDNAを得る 25 こともできる。また、PCRによらずアミノ酸配列の情報からプローブを合成し 、直接cDNAライブラリーをスクリーニングし、目的とするcDNAを得るこ ともできる。:

このようにして、クローン化された巨核球増幅因子をコードする遺伝子は適当なベクターDNAに組み込むことにより、他の原核細胞または真核細胞の宿主細胞を形質転換させることができる。

5

10

15

30

さらに、これらのベクターに適当なプロモーターおよび形質発現に係る配列を 導入することにより、それぞれの宿主細胞において遺伝子を発現することが可能 である。また、目的とする遺伝子に他のポリペプチドをコードする遺伝子を連結 して、融合蛋白質として発現させ、精製を容易にしたり、発現量を上げ、精製工 程中で適当な処理をほどこすことにより、目的とする蛋白質を切り出すことも可 能である。また、連結する遺伝子を他の生理活性因子のものを用い融合蛋白質の まま、巨核球増幅活性を増強するような試みも可能である。

一般に、真核生物の遺伝子はヒトインターフェロン遺伝子等で知られているように、多形現象を示すと考えられ(例えば、 Nishi等、 J.Biochem. 97 153 198 5)、この多形現象によって1個またはそれ以上のアミノ酸が置換される場合もあれば、塩基配列の変化はあってもアミノ酸は全く変わらない場合もある。

また、配列番号12もしくは13のアミノ酸配列の中の1個またはそれ以上のアミノ酸を欠くかまたは付加したポリペプチドあるいはアミノ酸が1個もしくはそれ以上のアミノ酸で置換されたポリペプチドでも巨核球増幅活性を有することがある。例えば、ヒトインターロイキン2(IL-2)遺伝子のシステインに相当する塩基配列をセリンに相当する配列に変換して得られたポリペプチドがIL-2活性を保持することも既に公知となっている(Wang等、Science, 224 1431 1984)。

また、真核細胞で発現させた場合その多くは糖鎖が付加されるが、アミノ酸を 1 ないしそれ以上変換することにより糖鎖付加を調節することができるがこの場合も、巨核球増幅活性を有することがある。それゆえ、本発明における巨核球増幅因子の遺伝子を人工的に改変したものを用いて得られたポリペプチドをコードする遺伝子は全て本発明に含まれる。その際、無作為にアミノ酸を変換したポリペプチドをコードする遺伝子を作製することもできるが、例えば、ヒト以外の動物種(マウス、ラット、サル等)の巨核球増幅因子活性を有するタンパク質のアミノ酸配列を参考にして塩基配列を置換、欠除して種々の修飾体をコードする遺伝子を作製することも可能である。

さらに、得られたポリペプチドが巨核球増殖活性を有し、配列番号12もしくは13に示されたアミノ酸配列を含むポリペプチドをコードする遺伝子とハイブリダイズする遺伝子も本発明に含まれる。なお、ハイブリダイゼーション条件は

、通常行われているプローブハイブリダイゼーションの条件を適用することもできる(例えばMolecular Cloning: A Laboratory Manual, Sambrook ら、Cold s pring Habor Laboratory Press, 1989)。

本発明の発現ベクターは、複製起源、選択マーカー、発現させようとする遺伝子の前に位置するプロモーター、RNAスプライス部位、ポリアデニル化シグナルなどを含んでいる。

哺乳動物細胞における遺伝子発現のプロモーターとしてはレトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス40(S V 4 0)などのウイルスプロモーターやヒト・ポリペプチド・チェーン・エロンゲーション・ファクター1α(HEF-1α)などの細胞由来のプロモーターを用いればよい。例えばS V 4 0 のプロモーターを使用する場合は、Mulliganなどの方法(Nature 217 108 (1979))に従えば容易に実施することができる。

10

複製起源としては、SV40、ポリオーマウイルス、アデノウイルス、牛パピローマウイルス(BPV)等の由来のものを用いることができ、選択マーカーとしては、ホスホトランスフェラーゼAPH(3′)IIあるいはI(neo) 遺伝子、チミジンキナーゼ(TK) 遺伝子、大腸菌キサンチンーグアニンホスホリボシルトランスフェラーゼ(Ecogpi) 遺伝子、ジヒドロ葉酸還元酵素(DHFR)遺伝子等を用いることができる。

また、原核宿主細胞、例えば大腸菌の場合には、それを宿主とするベクターで ある p B R 3 2 2 を用いて形質転換することができる(Boliver等: Gene 2 95 (1975))。 p B R 3 2 2 はアンピシリンおよびテトラサイクリン耐性の遺伝子を 含んでおり、どちらかの耐性を利用することによって形質転換細胞を同定することができる。原核生物宿主の遺伝子発現に必要なプロモーターとしては、βーラクタマーゼ遺伝子のプロモーター(Chang等: Nature 275 615 (1978))、やラクト - スプロモーター(Goeddel等: Nature 281 544 (1979)) およびトリプトファンプロモーター(Goeddel等: Nucleic Acid Res. 8 4057 (1980)), tacプロモーター等があげられ、どのプロモーターも本発明のヒト巨核球増幅因子の発現に 使用できる。

本発明の発現系に用いる宿主のうち原核生物宿主細胞としては、例えば、大腸 30 菌(<u>Escherichia</u> <u>coli</u>)、バシルス・ズブチリス(<u>Bacillus</u> <u>subtilis</u>)、バ

シルス・サーモフィルス(Bacillus thermophilus)等が挙げられる。また真核生物のうち、真核微生物の宿主細胞としては、例えばサッカロミセス・セレビシエー(Saccharomyces cerevisiae)等が挙げられ、哺乳動物由来の宿主細胞としては、例えばCOS細胞、チャイニーズ ハムスター卵巣(CHO)細胞、C127細胞、3T3細胞、Hela細胞、BHK細胞、ナバルバ細胞などが挙げられる。なお、本発明の形質転換体の培養は、宿主細胞に適した培養条件を適宜選択して行えばよい。

以上のようにして目的とする巨核球増幅因子をコードする遺伝子で形質転換した形質転換体を培養し、産生した巨核球増幅因子は、細胞内または細胞外から分離し均一にまで精製することができる。

なお、本発明の目的蛋白質であるヒト巨核球増幅因子の分離・精製は、通常の蛋白質で用いられる分離・精製方法を使用すればよく、何ら限定されるものではない。例えば各種クロマトグラフィー、限外濾過、塩折、透析等を適宜選択、組合せれば、ヒト巨核球増幅因子は分離・精製することができる。

10 実施例

5

10

本発明の巨核球増幅因子をコードする遺伝子を得る方法、該遺伝子を有する組換えベクター及びこれを含有する形質転換体並びにこの形質転換体を培養し取得した目的の蛋白質、並びに夫々の製造方法について、以下の実施例によって詳細に説明するが、この実施例によって本発明が限定されるものではない。

15 <u>実施例1.Meg-POT産生細胞株HPC-Y5の樹立</u>

膵臓癌患者のリンパ節より得られた腫瘍を10%ウシ胎児血清(FBS)を含むRPMI1640培地を用い、炭酸ガスインキュベーター(炭酸ガス濃度5%、湿度100%)中にて培養することにより樹立した。この細胞株を1%FBS含有Ham's F10培地に順化させ、さらにFBS濃度を徐々に低下させ、最終的に蛋白不含のHam's F10培地中にて増殖し得るまで順化させた。本細胞株はプラスチックディッシュ上で単層状に増殖し、倍化時間は約33時間であった(Nozomi Yamaguchi et al. CANCER RESEARCH 5070081990)。この細胞株をHPC-Y5細胞と称する。

実施例2. HPC-Y5の継代培養およびローラーボトルによる大量培養

['] 5

10

15

20

実施例1で述べたHPC-Y5細胞の継代培養は以下に示す如く行った。プラスチック培養フラスコ(150cm², Corning社製)を用い、10-8M亜セレンナトリウム、1.00U/mlペニシリンGカリウムおよび100μg/ml)硫酸カナマイシンを含む Ham's Nutrient Mixture F12培地50ml中でHPC-Y5細胞を培養し、4日毎に培養液を交換した。

細胞継代時に培養液を除去し、あらかじめ37℃に加温した0.125%トリプシン(GIBCO社製)、0.01%エチレンジアミン四酢酸(EDTA)(和光純薬社製)を含むカルシウム、マグネシウム不含Dulbecco's Phosphate-buffered saline(PBS) 溶液を加え37℃で5分間加温した。ピペッティング操作により細胞を剥離し、15ml容量のプラスチック製遠心管に細胞を移し、1500回転/分、5分間の遠心により細胞を回収した。細胞を上記培地に懸濁し、新しいフラスコ4~5本に継代した。一晩静置後、培養液を非付着性細胞と共に除去し、新たに上記培地を加えて培養を継続した。以後4日毎に培養液を交換した。また、実施例3で述べるMeg-POTの精製に供するためのHPC-Y5細胞のローラーボトルによる大量培養を以下の如く実施した。

上記の如く継代されたHPC-Y5細胞が完全に密に増殖した150cm²のプラスチック培養フラスコより上記の如くトリプシン-EDTAを用いて細胞を回収し、これを0.2%ウシ胎児血清(Hyclone社製)を含有する上記培地250mlに浮遊させ、1700cm²のプラスチック製ローラーボトル(Corning社製)に移し、0.5回転/分の速度で回転培養を行った。7日後に培養液を血清を含まない上記培地に交換し、以後4日毎に上記無血清培地の交換を行うことにより、精製用無血清培養上清を回収した。

<u>実施例3</u>. <u>HPC-Y5株培養上清からのMeg-POTの精製</u>

実施例2で述べた方法に従って得たHPC-Y5細胞の培養上清(27.3リットル)にTween 20を終濃度0.01%となるように加えた後、人工腎臓PAN1200(旭メディカ)を用いて、約200倍に濃縮した。濃縮液を0.01%Tween 20を含む10mM酢酸緩衝液(pH5.0)に対し、4℃で一晩透析した。透析内液に遠心操作(10000×g,60分)を施し不溶物を除去し上清を以下の精製に用いた。

30 (ステップ-1) <u>S-Sepharose イオン交換クロマトグラフィー</u>

上述の遠心上清を0.01%Tween 20を含む20mM酢酸緩衝液(pH5.0)で平衡化したS-Sepharose Fast Flow (Pharmacia社製)カラム (5×10cm)に添加した。同緩衝液でカラムを洗浄した後、同緩衝液中、NaClの濃度を0.15M,0.5M及び1.0Mと順次上げて吸着蛋白質を溶出した。素通り画分、洗浄画分および各塩濃度における溶出画分について前述の方法に従って活性を測定した結果、0.15M-NaCl溶出画分にMeg-POT活性が認められた。 (ステップ-2) DEAE-Sepharose イオン交換クロマトグラフィー

ステップ-1で得た活性画分を0.01%Tween 20を含む10mNトリス-塩酸緩衝液(pH7.4)に対し4℃で一晩透析した。透析内液を同緩衝液で平衡化したDEAE-Sepharose Fast Flow (Pharmacia社製)カラム(2.2×13cm)に添加し、同緩衝液でカラムを洗浄した。同緩衝液中NaClの濃度を0.15M,0.5Mおよび1.0Mと順次上げて吸着蛋白質を溶出した。素通り画分、洗浄画分および各塩濃度における溶出画分について前述の方法に従って活性を測定した結果、0.15M-NaCl溶出画分にMeg-POT活性が認められた。 (ステップ-3) 逆相HPLC(I)

ステップー2で得た活性画分に5%トリフルオロ酢酸(TFA)を加えてpHを約2に調整し、0.1%TFAを含む5%アセトニトリルで平衡化した逆相HPLCカラム(Protein C4,10×250mm, Vydac社製)に流速1.0ml/分で添加した。吸着蛋白質はアセトニトリルの直線濃度勾配(5%→65%、120分、0.5%アセトニトリル/分)により流速1.0ml/分で溶出した。溶出蛋白質の検出は220mmおよび280mmにおける吸光度を追跡することにより行い、1mlずつ分画した。各画分について活性測定を行った結果、アセトニトリル濃度40-45%の画分にMeg-POT活性が認められた。

25 (ステップ-4) <u>逆相HPLC (II)</u>

5

20

30

ステップ-3で得た活性画分を0.1%TFAで2倍希釈し、0.1%TFAを含む35%アセトニトリルで平衡化した逆相HPLCカラム(ProteinC4, 4.6×250 mm, Vydac社製)に流速1.0ml/分で添加した。吸着蛋白質はアセトニトリルの直線濃度勾配(35% + 50%、75分、0.2%アセトニトリル/分)により流速1.0ml/分で溶出した。溶出蛋白質の検出は220 mm お

よび280mの吸光度を追跡することにより行い、1mlずつ分画した。各画分について活性測定を行った結果、アセトニトリル濃度40-45%の画分にMeg-POT活性が認められた。

(ステップ-5) DEAE・イオン交換HPLC

5 ステップー4で得た活性画分を凍結乾燥した後、0.01%Tween 20を含む 10mMトリスー塩酸緩衝液(pB8.0)に溶解し、同緩衝液で平衡化したProtei n Pak G-DEAEカラム(Waters社製、8.2×75mm)に流速0.7ml/分で添加した。吸着蛋白質はNaClの直線濃度勾配(0.0M→0.2M、40分、5mM NaCl/分)により流速0.7ml/分で溶出した。溶出蛋白質は220mで検出し、0.7mlずつ分画した。各画分について活性を測定した結果、NaCl濃度75mM以下の画分にMeg-POT活性が認められた。

(ステップー6) <u>TSKgel G3000SWゲル</u>濾過

ステップ-5で得た活性画分を、0.01%Tween 20及び0.15M Na Clを含む50mlトリス-塩酸緩衝液(pH7.4)で平衡化したTSKgel

15 G3000SWカラム(東ソー社製 21.5×600nm、ガードカラム21.5×75nm)に流速3ml/分でカラムに流し、溶出蛋白質は220nmで検出した。3mlずつ分画した各画分について、活性測定した結果、Meg-POT活性は溶出時間49~54分の画分に認められたので、その画分を回収した。

(ステップ-7) 逆相HPLC (III)

- 20 ステップ-6で得た活性画分を5%TFAを加えてpHを約2に調整し、ステップ-4の逆相HPLC(II)と同一条件下にクロマトグラフィーを行った。各画分について活性を測定した結果、主ピーク(アセトニトリル濃度40%-45%)にMeg-POT活性が認められた。この結果を図1に示す。図1において横棒で示す画分を精製Meg-POTとして回収した。
- 25 <u>実施例4</u>. <u>巨模球増幅因子 (Meg-POT) のアミノ酸配列</u>

(i)<u>N末端アミノ酸配列の</u>決定

実施例3で得た精製Meg-POT試料を気相式プロテインシークエンサー470A型(Applied Biosystems社製)を用いてエドマン分解を行い、得られたフェニルチオヒダントイン(PTH)-アミノ酸をPTHアナライザー120型(30 Applied Biosystems社製)を用いて同定した。その結果、N末端近傍のアミノ酸

配列(配列-1~3)は以下に示す3種が認められた。

[表1]

配列-1

(配列番号: 1 €) ・

Leu Ala Gly Glu Xaa Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu 1 5 10 15

(なお、Xaaは未同定のアミノ酸を示す。以下同じ。)

配列-2.

(配列番号:2):

Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala .

1 10 15

配列 - 3

(配列番号:3)

Gly Glu Thr Gly Gin Glu Ala Ala Pro Leu Asp Gly Val Leu Ala Asn

1 5 10 15

(配列の下に示す数字はエドマン分解時のサイクル数である)

上記配列-1~配列-3のアミノ酸配列において以下のアミノ酸配列が共通していることが認められた。

Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu (配列番号: 4)

(ii) エンドプロテイナーゼG1u-C消化

試料を0.1M炭酸水素アンモニウム緩衝液(pH7.8)に溶解し、尿素およびジチオスライトール(DTT)をそれぞれ終濃度が、7.8Mおよび50mMとなるように加え、37℃で2時間インキュベートした。そこに、 Endo Glu-C(Boehringer-Mannheim社製)を0.5μg加え、37℃で2時間反応させた後

、さらに同量の酵素を加え、再度37℃で18時間反応させた。反応液に10% トリフルオロ酢酸(TFA)を加えてpHを2とした後、0.1%TFAで平衡化 したC18カラム(4.6×25cm, Vydac社製)にかけた。

ペプチドの溶出は0.1%TFA中、アセトニトリルの濃度を128分間に0から64%まで、その後16分間に80%まで直線的に上げて行った。ペプチドは220mmおよび280mmの二波長で検出した。得られた部分消化ペプチド断片について順次、気相式プロテインシークエンサー473A型(Applied Biosystems社製)を用いてアミノ酸配列を分析した。

その結果、部分消化断片のうちのひとつは以下に示す配列を有することがわかった。

Leu-Ala-Val-Ala-Leu-Ala-Gln-Lys-Asn-Val-Lys-Leu-Ser-Thr-Glu-Gln-Leu-Arg-Xaa-Leu-Ala-His-Arg-Leu-Ser-Glu-Pro-Pro-Glu-Asp-Leu-Asp-Ala-Leu-Pro- - - (配列番号 5.)

<u>実施例5</u>. <u>HPC-Y5細胞からのpoly(A) *RNAの</u>調製

5

10

15

20

25

HPC-Y5細胞からChirgwin等 (Biochemistry, 18 5294 (1979)) により記載されている方法に従って全RNAを調製した。すなわち、約1×10°個のHPC-Y5細胞を49mlの31.25mMクエン酸ナトリウム及び0.625%ラウリルサルコシンナトリウムを含む5Mグアニジンチオシアネート(Fulka社製)溶液中で完全にホモジナイズした。ホモジネートを遠心管中の0.1M EDTAを含む5.3M塩化セシウム溶液層上に重層し、次にこれをSW40ローター(Beckman社製)で31,000rpmにて20℃で17時間遠心分離することによりRNAを沈澱させた。

RNA沈澱物を80%エタノールにて洗浄し、1 mM EDTA及び0.5%ドデシル硫酸ナトリウム (SDS) を含有する10 mMトリス塩酸緩衝液 (pH7.5) 2.4 ml中に溶解し、プロナーゼ(Boehringer Mannheim社製)を0.5 mg/mlとなるように添加した後、37℃にて20分間保温した。RNA溶液をフェノール処理することにより蛋白質を除いた。溶液中の残存フェノールをクロロホルムで抽出した後、RNAをエタノールで沈澱させた。

全RNAからpoly (A) *RNAをoligo (dT) cellulose spun columnからなるmRNA Separator(Clontech laboratories社製) を用いて精製した。キット

添付の処方に従って、二度精製を繰り返すことにより精製度を高めた。

上記操作を2回行い、それぞれ37μg及び190μgのpoly(A) *RNA を得た。

<u>実施例 6</u>. <u>PCR用 c DNA ライブラリーの</u>構築

上記poly (A) *RNA 10μgを材料としてcDNA合成キットc-CLON E (Clontech laboratories社製)を用いて二本鎖cDNAを合成し末端にはE c o R I リンカーを付着した。遊離のE c o R I リンカーはアガロースゲル電気泳動にて分離した後、600塩基対以上の長さを持つcDNAはGeneluter(Invitrogen社製)を用いた電気溶出により回収した。このリンカー付加二本鎖cDNAと予めE c o R I 及びアルカリフォスファターゼ(宝酒造社製)処理した λ Z A P IIベクター (Stratagene社製)とを、7 m M塩化マグネシウム、1 m M D T T 、1 m M A T P 及び2 単位のT 4 D N A リガーゼ(宝酒造社製)を含む50 m M トリス塩酸緩衝液(p H 7.5)中で4℃にて24時間保温して連結した。

これをGigapack Gold II packaging extract (Stratagene社製)を用いてパッケージングし、HPC-Y5細胞のcDNAライブラリーを構築した。さらにこのライブラリーを7つのプール(A-G)に分け、増幅し、5.8g/1塩化ナトリウム、2g/1硫酸マグネシウム・7水和物および0.01%ゼラチンを含む50mMトリス塩酸緩衝液(pH7.5)中に回収した。

実施例7. PCRによるクローニング

A Z A P II の E c o R I サイト近傍の T 7 プロモーター配列のプライマー T 7 、 T 3 プロモーター近傍配列のプライマー T 3 - 2 及び本因子の N 末端近傍の部分アミノ酸配列 Gly-Glu-Thr-Gly-Glu-Alaをコードする遺伝子として可能性のある全てのコドンを含むミックスプライマー N 1 を 3 8 1 A D N A Synthe sizer(Applied Biosystems社製) 用いて合成した。

25 さらに実施例 4 (ii) に示したように、本因子の Endo Glu-C断片(配列番号5)中に Ala-Gln-Lys-Asn-Val-Lys-Leu-Ser-Thr-Glu-Gln-Leu-Arg-Xaa-Leu-Ala-His-Arg-Leu-Ser- Glu-Pro-Pro-Glu-Asp-Leu-Asp-Ala という比較的コドン usage の低い配列(下線部)が見いだされたため、このアミノ酸配列をもとにこれらをコードする遺伝子として可能性のある全ての塩基配列を含むミックスプライマーK4S及びK4-2Aも同様に合成した。これらプライマーの塩基配列を以下に示す。

T 7 : 5 ' - TAATACGACTCACTATAGGG - 3 '

5

T 3 - 2 : 5 ' - CATGATTACGCCAAGCTCGAA - 3 '

N1:5 '-GG(GATC)GA(GA)AC(GATC)GG(GATC)CA(GA)GA(GA)GC-3'(センス)

K 4 S : 5 ' - GC(GATC)CA(AG)AA(AG)AA(TC)GT(GATC)AA(AG)(TC)T - 3 ' (t > x)

K 4 - 2 A : 5 ′ - GC(GA)TC ((GATC)AG or (TC)AA) (AG)TC(TC)TC(GATC)GG (GATC)GG(TC)TC - 3 酢酸マグネシウム、0.1 mM EDTAを含む500 mM酢酸ナトリウム中で破砕し、37℃で16時間保温してDNAを抽出した。エタノールで沈殿させたDNAを1 mMスベルミジン、0.1 mM EDTAを含む20 mMトリス塩酸緩衝液(pH9.5)75 μ1 に溶解し90℃で2分間加熱後、急冷し100 mM 2 - メルカプトエタノール、100 mM塩化マグネシウムを含む500 mMトリス塩酸緩衝液(pH9.5)を10 μ1、10 mM ATPを13 μ1、ポリヌクレオチド キナーゼ(東洋紡社製)を20単位添加後37℃1時間反応させて5′端をリン酸化した。

DNA溶液をフェノール処理することにより蛋白質を除いた。溶液中の残存フェノールをクロロホルムで抽出した後、DNAをエタノールで沈澱させた。制限酵素SmaI(宝酒造社製)及びアルカリフォスファターゼ(宝酒造社製)で処理したベクターpSP73(Promega社製)とこのDNA試料を7mM塩化マグネシウム、1mM DTT,1mM ATP及び2単位のT4 DNAリガーゼ(宝酒造社製)を含む50mMトリス塩酸緩衝液(pH7.5)20μ1中で16℃にて16時間保温して連結した。

次に上記連結混合物のうち10μlを大腸菌JM109のコンピテント細胞100μlに加え、氷上で30分間、42℃にて1分間そして再び氷上で1分間静置した。次いで400μlのSOC培地 (Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, 1989)を加え、37℃にて30分間保温した後50μg/mlのアンピシリンを含むLB寒天培地 (Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, 1989)上にこの大腸菌を広げ、37℃にて16時間保温して大腸菌形質転換体を得た。

現われた形質転換体のうち5クローンについてそれぞれを50μg/mlのアンピシリンを含むLB培地5ml中で37℃にて16時間培養し、その培養物からアルカリ法 (Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, 1989)にてプラスミドDNAを調製した。それぞれの挿入塩基配列をSequenase Version 2.0 (United States Biochemical社製)を用いてジデオキシ・シーケンシング法にて決定したところ、配列番号6に示したようにプライマーK4S及びK4-2Aに挟まれた40塩基対の配列が明らかとなった。

5

10

15

20

25

この塩基配列をもとにセンス・プライマー7D-1S:5′-CTCTCAACAGAGCA GCTGCG-3′及び7D-3S:5′-CTGGCTCACCGGCTCTCTGA-3′とアンチセンス・プライマー7D-1A:5′-AGAGCCGGTGAGCCAGACAG-3′及び7D-2A:5′-GCGCAGCTGCTCTGTTGAGA-3′を合成した。上記と同様の条件でライブラリーDNAを鋳型にT7と7D-1S及びT3-2と7D-1Aの組合せで一段階目のPCRを行なった。さらに二段階目のPCRをそれぞれプライマーT7と7D-3S及びT3-2と7D-2Aの組合せで行なった。

PCR産物を1%アガロースゲル電気泳動で分析し、増幅されたDNA断片を含むゲル部分を切出し、Sephaglas BandPrep Kit(Pharmacia社製)を用いてDNAを抽出した。これらのDNAについてfmol DNA Sequencing System(Promega社製)を用いて直接塩基配列を決定したところ、配列番号7及び8に示したように本因子をコードする遺伝子の一部が確認された。

この塩基配列をもとにセンス・プライマー3AS1:5′ーAACTCCTTGGCTTCCC GTGTG -3′とアンチセンス・プライマー7SA1-5′ーCGCATCTGGGTTGAGGAA TAG -3′を合成し、上記の条件でプールDについてPCRを行なったところ197塩基対(配列番号9)のDNA断片の増幅が確認され、このDNA断片がコードするアミノ酸配列は実施例3で得た精製Meg-POTを用いて決定したアミノ酸配列と一致した。このDNA断片(Q197A)を以下のスクリーニングにプローブとして用いた。

実施例8. c DNAライブラリーのプローブQ197Aによるスクリーニング
 実施例5で得られたpoly(A) *RNA 5μgを材料としてZAP-c DN
 A SYNTHESIS KIT (Stratagene社製)を用いて二本鎖 c DNAを合成し、λ ZA

5

10

15

20

PIIベクター (Stratagene社製) のアームに連結した。これをGigapack Gold II packaging extract (Stratagene社製) を用いてパッケージングし、新たにHPC-Y5細胞のcDNAライブラリーを構築した。

実施例7のPCRで増幅された197bpのDNAをアクリルアミドゲル電気泳動後ゲルから回収し、このDNA断片Q197AをランダムプライマーDNAラベリングキット(宝酒造社製)を用いて32Pで標識した。但し、添付のランダムプライマーの代りにプライマー3AS1及び7SA1を400nMの濃度で用い標識した。遊離のdNTPはNICK-Column(Pharmacia社製)に通搭して除いた。次に、Bentonと Davisの方法(Science 196, 180, 1977)に準じてプラークハイブリダイゼーションを行なった。

ファージブラークの生じた寒天培地上にHybond - N+フィルター(Amersham社製)をのせてファージを移し、以下の順序でフィルターを処理した。1.5 M塩化ナトリウムを含む0.5 N水酸化ナトリウム水溶液にて5 分間 D N A を変性させ、1.5 M塩化ナトリウムを含む0.1 N水酸化ナトリウム水溶液で1 分間続いて1.5 M塩化ナトリウムを含む0.5 Mトリス塩酸緩衝液(pH7.4)で1分間2回、最後に2×SSCP(240mM NaCl,30mM Nagitrate,26 mM KH2PO4,2 mM EDTA)で1分間処理した。

次いでフィルターを乾燥し、0.4 N水酸化ナトリウム水溶液で20分間、5×SSPE (Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, 1989)で1分間2回処理した。50%ホルムアミド,5×SSPE,5×Denhardt's Solution(Molecular Cloning: A Laboratory Manual, Sambrookら、Cold Spring Harbor Laboratory Press, 1989), 0.1%SDS及び0、1mg/ml変性DNA (鮭精巣DNA, Boehringer Mannheim 社製)を含むプレハイブリダイゼーション溶液中で42℃,4時間保温した。

上記の様にして標識したQ197Aプローブを含むハイブリダイゼーション溶液(50%ホルムアミド、5×SSPE、5×Denhardt's Solution、0.1mg/ml変性DNA (鮭精巣DNA)、0.1%SDS)中で42℃にて16時間ハイブリダイゼーションを行なった。フィルターを室温下に0.05%SDSを含む2×SSCで1時間2回洗浄し、次いで68℃で0.1%SDSを含む1×SSCで1時間2回、さらに68℃で0.1%SDSを含む0.2×SSCで1時

間洗浄した後、オートラジオグラフィーで検出した。

5

10

15

20

これらの塩基配列およびそれらによりコードされているアミノ酸配列をGen Bank Re 1.71により調査したところ、塩基配列及びアミノ酸配列はいずれも新規であることが確認された。

なお、前記プラスミド p K P O 2 7 を含有する大腸菌はEscherichia coli JMl 09 (pKP027)、およびプラスミド p K P O 2 1 を含有する大腸菌はEscherichia coli JMl 09 (pKP021) として工業技術院微生物工業技術研究所 (茨城県つくば市東1丁目1番3号)に、各々、平成4年10月12日に微工研条寄第4029号 (F E R M B P - 4029)、および平成4年11月10日に微工研条寄第4071号 (F E R M B P - 4071)としてブダペスト条約に基き国際寄託された。

実施例9. pRVHKPO27ベクターの構築(動物細胞用)

実施例8で得られたpKPO27を10mM MgCl2,1mM DTT,10
 OmM NaClを含む20mMトリス塩酸緩衝液(pH7.5)中37℃にて制限酵素EcoRI(宝酒造社製)で2時間処理しエタノール沈殿としてDNAを回収し、さらに10mM MgCl2,1mM DTT,100mM KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素BamHI(宝酒造社製)で2時間処理した後、アガロースゲル電気泳動を行ない1.8kbpのDNA
 断片を回収した。

ベクターHEF-12h-g 7 1 を上記と同様に制限酵素 E E C o R I 及び B a M H I にて処理した後アルカリフォスファターゼ(宝酒造社製)を加えて65℃ にて2 時間保温することにより脱リン酸してアガロースゲル電気泳動を行ない回収した8.7 kbp D D N A E E D EEE

5

10

図3に示されるごとくこのプラスミドはEF1aプロモーター、ヒトイムノグロブリンH鎖定常領域遺伝子、SV40エンハンサープロモーター、pBR322由来の複製開始領域およびβ-ラクタマーゼ遺伝子(Amp')を含みEF1aプロモーターとヒトイムノグロブリンH鎖定常領域遺伝子の間にヒトMeg-POT cDNAの一部が接続されている。

なお、前記ベクターHEF-12h-gγ1は次の様にして作製した。

ベクターHEF-12h-gγlの構成要素である2.5kbpのHEF-1α

プロモーター-エンハンサー領域は、該遺伝子の5′-末端に接する約1.5kb
pのDNA、第一エクソン中の33bp、第一イントロン中の943bp、及び第二
エクソンの最初の部分の10bpから成る。この2.5kbpのHindIII-Ec
οRI断片をプラスミドpEF321-CAT(D.W.Kimら、Gene 91, 217(199
0);及びT. Uetsukiら、3. Biol. Chem. 264, 5791(1989))から切り出し、そし
てpdKCRベクター(M. Tsuchiyaら、Embo J. 6, 611(1987)), K. 0′ Hara
ら、Proc. Natl, Acad. Sci. USA 78, 1527(1981), (R. Fukunaga ら、Proc.
Natl. Acad. Sci. USA. 81, 5086(1984))にクローニングして、SV40前期プロモーター-エンハンサーを含有する約300bpのHindIII-EcoRI断
片と置き換えてpTEF-1を得た。

pTEF-1をEcoRIで消化し、Klenowポリメラーゼでフィルーインし、そしてHindIII リンカーに連結した。次に、この修飾されたpTEF-1ベクターDNAから約1.6kbpのHindIII-SmaI断片を切り出した。

HCMV-12h-gγ1 (Maeda6, Human Antibodies and Hybridomas 2,
 124 (1991); C.A. Kettleborough6, Protein Engeneering 4, 773 (1991))

5

10

をEcoRIにより部分消化し、Klenowポリメラーゼによりフィルーインし、そして自己連結することにより、 $HCMV-12h-g\gamma1$ からプラスミド $HCMV-12h-g\gamma1$ ($\Delta E2$)を作製した。

プラスミドHCMV-12h-g γ 1(Δ Ε2)をE coRIで消化し、K1 e n o wポリメラーゼでフィルーインし、そしてH i n d III で消化した。ヒト α - I C領域をコードするD N A 配列を含有する約 γ k b p の断片を、 γ H E F - 1 γ プロモーター・エンハンサーを含有する前記の1. 6 k b p H i n d III - S ma I 断片に連結して γ H E F - 1 2 h - g γ 1 を得た。このベクター中の γ H E F - 1 γ プロモーター・エンハンサー領域は、 γ 5 - 領域に接する 3 8 0 b p の D N A を除き、 γ T E F - 1 中のそれと同一であった。

実施例10. COS細胞での巨核球増幅因子(Meg-POT)遺伝子の発現ICOS細胞を1×10⁷個/mlになるようにPBSに懸濁し、この細胞浮遊液0.8mlにpRVHKPO27 10μgを加えた。1900V、25μF、0.4msecの条件でGenePulsar(BioRad社製)を用いて電気穿孔法(electroporation)によりプラスミドをCOS細胞に導入した。室温にて10分間の回復期間の後、エレクトロポレーションした細胞を1%ウシ胎児血清を含むDulbecco's Minimum Essential Medium(DMEM) (GIBCO社製) 25mlに加えた。72時間培養後、培養上清を集めた。

こうして得られたCOS細胞の培養上清の一部をセントリプレップ-10 (Am icon社製)で約10倍に濃縮し、SDS/PAGEにて分析した。コントロールとして同様に無処理のCOS細胞およびベクターのみ導入したCOS細胞の培養上清も同様にそれぞれ約10倍に濃縮したものについても並べて泳動した。ゲル濃度は12%で、Laemmliの方法Nature, 227, 680 (1970)に従って泳動し、一枚は2D-銀染色試薬・!!「第一」(第一化学薬品製)を用いて蛋白質を染色した。

なお分子量マーカーはバイオラッド社製低分子量マーカー (ホスホリラーゼB (92.5kd)、ウシ血清アルブミン (66.2kd)、オボアルブミン (45.0kd)、炭酸脱水素酵素 (31.0kd)、大豆トリプシンインヒビター (21.5kd)、リゾチーム (14.4kd))を用いた。

30 もう一枚はウエスタンブロット法により巨核球増幅因子を検出した。

このときの分子量マーカーは、バイオラッド社製プレステインド分子量マーカー(ホスホリラーゼB(106.0kd)、ウシ血清アルブミン(80.0kd)、オボアルブミン(49.5kd)、炭酸脱水素酵素(32.5kd)、大豆トリプシンインヒビター(27.5kd)、リゾチーム(18.5kd)〕を用いた。一次抗体は、HPC-Y5の培養上清より精製した巨核球増幅因子のN末端配列分析より得られた配列をもとに合成した18残基のペプチドを抗原として家兎に免疫して得たポリクローナル抗体を用いた。

5

10

その結果、銀染色法により染色されたバンドを3者で比較したところ、分子量約33,000にみられたバンドは巨核球増幅因子の遺伝子を導入したCOS細胞の培養上清にのみ認められた。さらに、ウエスタンブロット法でもこの分子量約33,000のバンドのみ強く発色したことから、このバンドが組換え型巨核球増幅因子であると考えられた。

実施例11. C.O S細胞の培養上清中の巨核球増幅因子 (Meg-POT) 活性 測定 I

15 実施例10で得られたCOS細胞の培養上清の巨核球増幅因子活性を前述した 方法に従って測定した。但し、COS細胞への遺伝子の導入刺激で、その培養上 清中にIL-6が誘導されることが知られているので、測定はマウスIL-6受 容体に対する抗体を添加した系で行った。

その結果、表 2 に示したように、遺伝子を導入しなかった無処理のCOS細胞 の培養上清もMeg-POTのcDNAを含まないベクターを導入した対照COS細胞の培養上清も巨核球増幅因子活性を示さなかったが、Meg-POTのcDNAを含むベクターを導入したCOS細胞の培養上清は明らかに巨核球増幅因子活性を示した。

[表 2]

COS細胞の培養上清中の巨核球増幅因子活性

COS細胞	巨核球增幅因子活性 • '		
培養上清濃度(%)	5 0	0.5	0.005
無処理COS	1.5	3	N D b)
対照COS	0	2.5	ND
Meg-POT.cDNA 導入COS	8.5	7	3.5

- a) 形成されたコロニー数からIL-3単独で形成されたコロニー数 (26.5個)を引いた値。
- b) 測定せず。

5

実施例12. COS細胞の培養上清からの組換え型巨核球増幅因子 (Meg-POT) の精製 I

実施例10で得られたCOS細胞の培養上清350mlにTween 20を終濃度が0.01%になるように加え、 Amicon PM-10 (Amicon社製)を用いた限外 濾過法により約10倍濃縮した。この濃縮液から以下の手順で組換え型巨核球増幅因子 (Meg-POT)を精製した。

(i) 0.01%Tween 20を含む10mMトリス塩酸緩衝液(pH8.4)、101に対し前記機縮液を一晩4℃にて透析した後、同緩衝液にて平衡化したDEAE-Sepharose fast flow カラム(2.2×18cm, Pharmacia 社製)に添加した。カラムを同緩衝液で洗浄後、同緩衝液中、NaC1濃度を段階的に0,0.1,0.15,0.2,0.5Mと上げてカラムに吸着した蛋白質を溶出させた。得られた画分をSDS/PAGEで分析した結果、実施例10で認めた分子量約33,000のバンドはNaC1濃度が0.1Mの画分の前半部分にのみ検

出された。この画分を集め、次の逆相HPLCでの精製にかけた。

(ii) 上記画分に10%TFAを加えpHを3以下とした後、0.1%TFAを含む24%アセトニトリルで平衡化したVydac C4カラム(4.6×250mm)に添加し、同溶離液にてカラムを洗浄後、0.1%TFA中アセトニトリル濃度を80分間に24~64%、さらに10分間に80%まで直線的に上げてカラムに吸着した蛋白質を溶出させた。流速は約1ml/minで、蛋白質の検出は220mmおよび280mmの二波長で行った。得られたピークについてSDS/PAGEで分析した結果、アセトニトリルの濃度で約41%に分子量約33,000のバンドが認められた。この画分を0.1%TFAで希釈した後、再び同条件で逆相HPLCを行い、メインピークを回収した。

<u>実施例13</u>. 組換え型巨核球増幅因子 (Meg-POT) のアミノ酸配列分析

実施例12で得られた組換え型Meg-POTについて、気相式プロテインシークエンサー473A型(Applied Biosystems社製)を用いてN末端アミノ酸配列分析を行った。その結果、以下に示す(a)~(c)の3種類のN末端アミノ酸配列が認められ実施例10で認めた分子量約33,000のバンドが組換え型巨核球増幅因子であることが確認された。

15

- (a) Ser-Arg-Thr-Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp......(配列番号11)
- (b) Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-Gly-Val-Leu-Ala-Asn-Pro-Pro-Xaa-Ile-Ser-Xaa-Leu-Xaa-Pro-Arg-------
- (c) Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-Gly-Val-Leu-Ala-Asn-Pro-Pro-Xaa-Ile-Ser-Xaa-Leu-Xaa-Pro-Arg-Gln-Leu-......

これらの内、(b)および(c)は実施例 4 (i)における、HPC-Y5細胞の培養上清からのポリペプチドの配列 -1 (配列番号:1)および配列 -3 (配列番号:3)にそれぞれ対応する。

20 また、組換え型Meg-POTに10mg/mlの臭化シアンを含む70%ギ酸溶液100μlを加え、室温にて24時間臭化シアン分解した後、遠心濃縮機にて過剰の試薬を除いた。その残渣を0.1%TFA1mlに溶解し、0.1% TFAで平衡化したVydac C4カラム (4.6×250mm)に添加し、0.1%TFA中、アセトニトリル濃度を40分間に80%まで直線的に上げ、カラムに吸着

した臭化シアン断片を溶出させた。得られた断片のうちC末側の断片について気相式プロテインシーケンサー473A型を用いてアミノ酸配列分析を行ったところ、以下に示す配列が得られた。この配列は、HPC-Y5の培養上清から得られた巨核球増幅因子(Meg-POT)を同様に臭化シアン分解して得られた臭化シアン断片の部分配列と、次記に示すごとく一致した。

[表3]

15

20

cDNA :Asp-Ala-Leu-Arg-Gly-Leu-Leu-Pro-Val-Leu-Gly-Gln-Pro-Ile-Ile-Arg-Ser-Ile-Pro-Gln-COS :Asp-Ala-Leu-Arg-Gly-Leu-Leu-Pro-Val-Leu-Gly-Gln-Pro-Ile-Ile-Arg-Ser-Ile-Pro-Gln-HPC-Y5:Asp-Ala-Leu-Arg-Gly-Leu-Leu-Pro-Val-Leu-Gly-Gln-Pro-Ile-Ile-..........

25 30 35 40 cDNA :Gly-Ile-Val-Ala-Ala-Trp-Arg-Gln-Arg-Ser-Ser-Arg-Asp-Pro-Ser-Trp-Arg-Gln-Pro-Glu-COS :Gly-Ile-Val-Ala-Ala-Trp-Arg-Gln-Arg-Ser-Ser-Xaa-Asp-Pro-Xaa-Trp-Xaa-Gln-......

上表の「c D N A」表記のアミノ酸配列はM e g - P O T をコードする c D N A の塩基配列から演えきされるアミノ酸配列であり、また「C O S 」表記のアミノ酸配列はM e g - P O T をコードする c D N A を C O S 細胞で発現させた蛋白質を、アミノ酸配列分析で得られた部分配列であり、さらに「H P C - Y 5 」表記のアミノ酸配列は、ヒト膵臓癌細胞由来の株化細胞「H P C - Y 5 」の培養上清から得られたM e g - P O T のアミノ酸配列分析で得られた部分配列である。実施例14.pRVHKPO27fベクターの構築(動物細胞用)

実施例8で得られたpKPO27を10mM MgCl2,1mM DTTおよび100mM NaClを含む50mMトリス塩酸緩衝液(pH7.5)中37℃にて制限酵素XhoI(東洋紡社製)で2時間処理しエタノール沈殿としてDNAを回収した。次に5mM MgCl2,10mM DTT,1mMのdATP,dCTP,dGTP,dTTPを含む20mMトリス塩酸緩衝液(pH7.4)中10℃にてDNAポリメラーゼのKlenow断片で1時間処理し末端を平滑化した。エタノール沈殿としてこのDNAを回収し、次いで10mM MgCl2,1mM DTT,100mM NaClを含む50mMトリス塩酸緩衝液(pH7.5)中37℃にて制限酵業SalI(東洋紡社製)で2時間処理しアガロースゲル電気泳動を行ない、13KbpのDNA断片を回収した。

実施例9で得られたpRVHKPO27を10mM MgCl2,1mM DTT,100mM KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素BamHI(宝酒造社製)で2時間処理した後エタノール沈殿としてDNAを回収した。次に5mM MgCl2,10mM DTT,1mMのdATP,dCTP,dGTP,dTTPを含む20mMトリス塩酸緩衝液(pH7.4)中10℃にてDNAポリメラーゼのKlenow断片で1時間処理し末端を平滑化した。

エタノール沈殿としてこのDNAを回収し、次いで10mM MgCl2,1mM,DTT,100mM NaClを含む50mMトリス塩酸緩衝液(pH7.5)中37℃にて制限酵業Sall(東洋紡社製)で2時間処理し、アルカリフォスファターゼ(宝酒造社製)を加えて65℃にて2時間保温することにより脱リン酸してアガロースゲル電気泳動を行ない8.5 Kbp のDNA断片を回収した。この8.5 Kbp のDNA断片と先の1.3 Kbp のDNA断片とを混合した後、6.6 mM MgCl2,5 mM DTT,1 mM ATPを含む66 mMトリス塩酸緩衝液(pH7.5)中16℃にてT4DNAリガーゼを一晩反応させ、これを大腸菌JM109株に導入してpRVHKPO27fを得た(図4)。

10

15

20

なおpRVHKPO27fは、図4に示されるごとく、EF1αプロモーター、ヒトイムノグロブリンH鎖定常領域遺伝子、SV40エンハンサープロモーター、pBR3ρ2由来の複製開始領域およびβ-ラクタマーゼ遺伝子(Amp')を含み、ヒトMeg-POTcDNAはEF1αプロモーターとヒトイムノグロブリンH鎖定常領域遺伝子の間に接続されている。

実施例15. <u>COS細胞での巨核球増幅遺伝子(Meg-POT)遺伝子の</u> 発現!!

COS細胞を1×10⁷ 個/mlになるようにPBSに懸濁し、この細胞浮遊液
0.8mlにpRVHKPO27f 10µgを加えた。1900V,25uFD 0
25 .4msecの条件でGenePulsar (BioRad社製)を用いて電気穿孔法(electroporation)によりプラスミドをCOS細胞に導入した。室温にて10分間の回復期間の後、エレクトロポレーションした細胞を1%ウシ胎児血清を含むDulbecco's Minimum Essential Medium(DMEM)(GIBCO社製)25mlに加えた。72時間培養後、培養上清を集めた。

30 こうして得られたCOS細胞の培養上清の一部をセントリプレップ-10 (Am

icon社製)で約10倍に濃縮し、SDS/PAGEにて分析した。コントロールとしてベクターのみ導入したCOS細胞の培養上清も同様にそれぞれ約10倍に濃縮したものについて並べて泳動した。ゲル濃度は12%で、Laemmli の方法Nature, 227, 680(1970) に従って泳動し、一枚は2D-銀染色試薬・II「第1」(第1化学薬品製)を用いて蛋白質を染色した。

「なお分子量マーカーはバイオラッド社製低分子量マーカー(ホスホリラーゼB (92.5kd)、ウシ血清アルブミン(66.2kd)、オポアルブミン(45.0kd)、炭酸脱水素酵素(31.0kd)、大豆トリプシンインヒビター(21.5kd)、リゾチーム(14.4kd)」を用いた。

10 もう一枚はウエスタンブロット法により巨核球増幅因子を検出した。

このときの分子量マーカーは、バイオラッド社製プレステインド分子量マーカー (ホスホリラーゼB (106.0kd)、ウシ血清アルブミン(80.0kd)、オボアルブミン(49.5kd)、炭酸脱水素酵素(32.5kd)、大豆トリプシンインヒビター(27.5kd)、リゾチーム(18.5kd)〕を用いた。一次抗体は、HPC-Y5の培養上清より精製した巨核球増幅因子のN末端配列分析より得られた配列をもとに合成した18残基のペプチドを抗原として家兎に免疫して得たポリクローナル抗体を用いた。

その結果、銀染色法により染色されたバンドを両者で比較したところ、分子量約33,000にみられたバンドは巨核球増幅因子の遺伝子を導入したCOS細胞の培養上清にのみ認められた。さらに、ウエスタンブロット法でもこの分子量約33,000のバンドのみ強く発色したことから、このバンドが組換え型巨核球増幅因子であると考えられた。

<u>実施例16. COS細胞の培養上清中の巨核球増幅因子(Meg-POT)</u> 活性測定!!

25 実施例15で得られたCOS細胞の培養上清の巨核球増幅因子活性を前述した 方法に従って測定した。但し、COS細胞への遺伝子の導入刺激で、その培養上 清中にIL-6が誘導されることが知られているので、測定はマウスIL-6受 容体に対する抗体を添加した系で行った。

その結果、表 4 に示したように、遺伝子を導入しなかった無処理のCOS細胞 30 の培養上清もMeg-POTのcDNAを含まないベクターを導入した対照CO

S細胞の培養上清も巨核球増幅因子活性を示さなかったが、Meg-POTのcDNAを含むベクターを導入したCOS細胞の培養上清は明らかに巨核球増幅因子活性を示した。

[表4]

COS細胞の培養上清中の巨核球増幅因子活性

COS細胞		巨核球增幅因子活性 4)			
培養上清濃度(%)	2	0.2	0.02	0.002	
••					
無処理COS	0	ND b)	N D	N D	
対照COS	2	N D	ND	N D	
Meg-POT cDNA 導入COS	7	4	7	1	

- a) 形成されたコロニー数から IL-3 単独で形成されたコロニー数 (10個)を引いた値。
- b) 測定せず。

• ; ;

5

<u>実施例17</u>. <u>COS細胞の培養上清からの組換え型巨核球増幅因子(Meg</u> - POT)の精製II

実施例15で得られたCOS細胞の培養上清350mlにTween 20を終濃度が0.01%になるように加え、 Amicon PM-10 (Amicon社製)を用いた限外 徳過法により約10倍濃縮した。この濃縮液から以下の手順で組換え型巨核球増 幅因子 (Meg-POT)を精製した。

(i) 0.01%Tween 20を含む10mMトリス塩酸緩衝液(pH8.4)、101に対し前記濃縮液を一晩4℃にて透析した後、同緩衝液にて平衡化したDEAE-Sepharose fast flow カラム(2.2×18cm, Pharmacia 社製)に添加した。カラムを同緩衝液で洗浄後、同緩衝液中、NaC1濃度を段階的に0,0

・1,0.15,0.2,0.5Mと上げてカラムに吸着した蛋白質を溶出させた。得られた画分をSDS/PAGEで分析した結果、実施例15で認めた分子量約33,000のバンドはNaCl濃度が0.1Mの画分に検出され、この画分を次の逆相HPLCでの精製にかけた。

5 (ii) 上記画分に10%TFAを加えpHを3以下とした後、0.1%TFAを含む24%アセトニトリルで平衡化したVydac C4カラム(4.6×250mm)に添加し、同溶離液にてカラムを洗浄後、0.1%TFA中アセトニトリル濃度を80分間に24~64%、さらに10分間に80%まで直線的に上げてカラムに吸着した蛋白質を溶出させた。流速は約1ml/min で、蛋白質の検出は220mおよび280nmの二波長で行った。得られたピークについてSDS/PAGEで分析した結果、アセトニトリルの濃度で約41%に分子量約33,000のバンドが認められた。この画分を0.1%TFAで希釈した後、再び同条件で逆相HPLCを行い、メインピークを回収した。

<u>実施例18.精製組換え型Meg-POTの巨核球増幅因子活性測定</u>

実施例17で精製された組換え型巨核球増幅因子(Meg-POT)を10% ウマ血清を含む l'scove's Modified Dulbecco's 培養液(IMDM)で所定濃度(50.1,3.1,0.2 ng/ml)に希釈した被検検体0.1 ml,ウマ血清(56℃30分処理、Biocell 社製)0.2 nl、マウス(C57BL/6N系雄性、6~12週齢)大腿骨骨髄細胞浮遊液0.1 ml(2×10⁵ 有核細胞)、組換え型マウスIL-3を5 ng/mlを含むIMDM 0.2 ml、および寒天を0.75%含む改変McCoy's 5 A培養液0.4 mlを混合した。次いで、これらを直径35 nnの組織培養プラスチックディッシュに入れて固まらせたのち、37℃、5% 炭酸ガス/95%空気、100%湿度の条件で培養を行った。

培養 6 日目に寒天層ごとスライドガラス上に取出し乾燥させ、フィルム状標本 25 としたものを 5 % グルタルアルデヒドで固定し、Nakefiらの方法 (Proc. Soc. Exp. Biol. Med. 151 587 1976)にしたがって、アセチルコリンエステラーゼで染色し、巨核球コロニー数の算定を行った。この際、アセチルコリンエステラーゼ 染色陽性細胞を 4 個以上含む集塊を巨核球コロニーとした(コロニーの検鏡は 4 0 倍の倍率で行なった)。

30 なお、巨核球増幅因子活性は、組換え型Meg-POTを添加して生じた巨核

球コロニー数と組換え型Meg-POT無添加(10%ウマ血清を含むIMDMのみ添加)で組換え型IL-3単独で生じた巨核球コロニー数との差を指標とした。

その結果、表 5 に示したように、精製組換え型Meg-POTは巨核球増幅因 5 子活性を示した。

[表5]

精製組換え型Meg-POTの巨核球増幅因子活性

Meg-POT濃度	巨核球增幅因子活性		
(ng/ml)*)	·		
		_	
50.1	9.5		
3.1	8.5		
0.2	3	_	

- a) アミノ酸分析法により測定。
- b) 形成されたコロニー数から I L 3 単独で形成されたコロニー数 (19.5) を引いた値。

<u>実施例19.巨核球増幅因子(Meg-POT)をコードする遺伝子の試験管内</u> <u>・ 転写翻訳</u>

実施例8で得られたpKPO27を10mM MgCl2,1mM DTT,100mM KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素10 XhoI(東洋紡社製)で2時間処理し、次いでアガロースゲル電気泳動を行ない、1.9KbpのDNA断片を回収した。ベクターpCITE-2c(Novagen社製)を10mN、MgCl2,1mM DTT,100mM KClを含む20mMトリス塩酸緩衝液 (pH8.5)中37℃にて制限酵素XhoI(東洋紡社製)で2時間処理した後アルカリフォスファターゼ (宝酒造社製)を加えて65℃にて2

5

30

時間保温することにより脱リン酸して得られたDNAをフェノール処理を行なうことにより精製した。これと先の1.9 KbpのDNA断片と混合後、6.6 mMMgCl2,5 mMDTT,1 mMATPを含む66 mMトリス塩酸緩衝液(pH7.5)中16℃にてT4DNAリガーゼを一晩反応させ、大腸菌JM109株に導入してpCITE・KPO27を得た(図5)。

pCITE・KPO27を10mM MgCl2,1mM DTTを含む10mM Tris-HCl(pH7.5)中37℃にて制限酵素NaeI(東洋紡社製)で2時間処理した後、DNAをフェノール処理を行なうことにより精製した。この鋳型DNAに2mM spermidine,6mM MgCl2,10mM NaCl,1単位10 /μl RNasin ribonuclease inhibitor(Promega社製)、0.5mMのATP,GTP,CTP,UTPを含む40mMトリス塩酸緩衝液(pH7.5)中37℃にてT7 RNA Polymeraseを反応させて転写を行なった。これをフェノール処理を行なうことにより精製し、エタノール沈殿としてRNAを回収した。つづいてRed Nova Lysate (Novagen社製)を用いて35S-メチオニンを含む標15 識体としてRNAを翻訳させた。この反応物をSDSポリアクリルアミドゲル電気泳動にかけ、オートラジオグラフィーをとったところ約70,000の分子量のバンドが認められた。

<u>実施例20.pMBPKPO27ベクターの</u>構築(大腸菌用)

実施例8で得られたpKPO27を10mN MgCl2,1mM DTT,10

OmN KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素
XhoI(東洋紡社製)で2時間処理しエタノール沈殿としてDNAを回収し、
5mM MgCl2,10mM DTT,1mMのdATP,dCTP,dGTP,d
TTPを含む20mMトリス塩酸緩衝液(pH7.4)中10℃にてDNAポリメラーゼのKlenow断片で1時間処理し末端を平滑化した。次いでアガロースゲル電気

35 泳動を行ない、1.9KbpのDNA断片を回収した。

ベクターp M A L -c (New England BioLabs社製)を10 mM M g C 1_2 , 1 mM D T T, 50 mM N a C 1 を含む20 mMトリス塩酸緩衝液(p B 7 0 にて制限酵素 S t u I で 2 時間処理した後アルカリフォスファターゼ(宝酒造社製)を加えて65 0 にて2 時間保温することにより脱リン酸した。DNAをフェノール処理を行なうことにより除蛋白し、エタノール沈澱として回収した。

これと先の1.9 Kbp のDNA断片と混合後6.6 mN MgCl₂,5 mM DTT,1 mM ATPを含む66 mNトリス塩酸緩衝液(pE7.5)中16℃にてT4 DNAリガーゼを一晩反応させ、これを大腸菌JM109株に導入してpMBPKPO27を得た(図6)。図6に示されるごとくこのプラスミドは発現ユニットとしてtacプロモーターの下流にマルトース結合蛋白質(MBP)遺伝子(ma1EA2-26)、Factor Xaの認識配列およびMeg-POTの34番めのアミノ酸Ser以降のcDNAがフレームが一致するように接続されている。

実施例21. 大腸菌JM109株での融合蛋白質の発現

5

25

30

10 実施例20においてpMBPKPO27で形質転換した大腸菌を50 ug/mlのアンピシリンおよび0.2%グルコースを含むLB培地5 ml中で37℃にて16時間培養し、この培養液4 mlを50 ug/mlのアンピシリンおよび0.2%グルコースを含むLB培地400 mlに加えた。37℃にて約2時間培養後、0.3 mMになるようにイソプロピルーβ-D-チオガラクトシドを加えさらに3時間培養を続けた。この培養菌体を実施例10と同様にSDSポリアクリルアミド電気泳動にかけ、上記抗Meg-POTペプチド血清または抗MBP血清によるウエスタンブロッティングをおこなったところMBPとMeg-POTの融合蛋白質の発現が確認された。

発現された組換え型巨核球増幅因子(Meg-POT)を菌体より下記のとお 20 り精製した。

10mM EDTAを含む20mM トリス塩酸緩衝液 (pH 7.5) 中、超音波処理 (20 分間) により破砕した懸濁液を遠心操作 (10,000rpm x 30min, 4°C, SA 600ローター、Sorvall社製) にかけ、集めた沈澱を蒸留水に懸濁した。懸濁液を再び遠心操作 (10,000g x 90min) にかけ、集めた沈澱を 1% 2 - メルカプトエタノール(2-ME)及び 8 M尿素を含む25mM トリス塩酸緩衝液 (pH 8.0) に溶解し、再び遠心操作(35,000rpm x 60min)を行い不溶物を除去した後、10mM 2-ME, 10mM EDTA, 200mM NaClを含む10mM トリス塩酸緩衝液 (pH 8.0)で 2 倍希釈した。この溶液を同緩衝液にて平衡化したアミロースカラム (75ml,BioLabs社製) に添加し、同緩衝液にてカラムを洗浄した。10mM マルトースを含む同緩衝液にてカラムに結合している蛋白を溶出させた。この画分をFactor Xa の消化緩衝液である 2 mM

CaCl₂及び150mM NaClを含む20mM トリス塩酸緩衝液(pH 7.4)に対して透析した。透析内液にFactor Kaを加え、31°Cで16時間酵素消化した。反応液を、メンプランフィルターPM-10(アミコン社製)にて濃縮後、上記アミロースカラムの平衡化緩衝液で平衡化したPD-10カラムに通した後、再びアミロースカラムに添加し、同緩衝液にてカラムを洗浄して、素通り画分及び洗浄画分を集めた。セントリプレップー10にて上記画分を濃縮した。

このようにして得た組換え型巨核球増幅因子を、Freundの完全アジュバンドとともに家兎に2週間ごとに5回感作した。最終感作後10日目に、けい動脈より全採血し、抗巨核球増幅因子抗血清を得た。

10 <u>実施例22. pEFDKPOfベクターの</u>構築(動物細胞用)

5

pKPO27を10mM MgCl₂, 1mM DTT, 100mM KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素EcoRI、Bam HI(宝酒造社製)で処理した後、アガロースゲル電気泳動を行い1.8kbpのDNA断片を回収した。

*ベクターDHFR-△E-RVhをEcoRI、BamHIにて同様に処理した後、アルカリフォスファターゼ(宝酒造社製)で60℃、2時間処理することにより脱リン酸してアガロースゲル電気泳動を行ない回収した7kbpDNAを先の1.8kbpのDNA断片と連結させpEFDKPO5'を得た。

これを10mM MgCl2、1mM DTT、100mM KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素BamHI処理した後、6.7mM MgCl2、16.6mM(NH4)2SO4、10mM 2-メルカプトエタノール、6.7mM EDTA、330mM dNTPを含む67mMトリス緩衝液中37℃、5分間T4DNAポリメラーゼで処理し末端を平滑化した。さらにKpnIリンカー(Amersham社製)と連結しpEFDKPO5′Kを得た。新たにpKPO27を10mM MgCl2、1mM DTT、100mM KClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素XhoIで切断後、6.7mM MgCl2、16.6mM(NH4)2SO4、10mM 2-メルカプトエタノール、6.7mM EDTA、330mM dNTPを含む67mMトリス緩衝液中37℃、5分間T4DNAポリメラーゼで処理し末端を平滑化した。これ

30 をさらに10mM MgCl2、1mM DTT、100mM NaClを含む50mM

トリス塩酸緩衝液(pH7.5)中37℃にて制限酵素SalIで処理しアガロースゲル電気泳動を行い1.3kbpのDNA断片を回収した。ベクターpCDM8 (Invitrogen社製)を10mMMgCl2、1mMDTT、100mMKClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素XhoIで処理した後さらに10mMMgCl2、1mMDTT、100mMKClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素XhoIで処理した後さらに10mMMgCl2、1mMDTT、100mMKClを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素HpaIで切断後、アガロースゲル電気泳動を行ない回収した3.3kbpDNAを先の1.3kbpのDNA断片と連結しpCDMKPO3′を得た。pEFDKPO5′KとpCDMKPO3′を10mMMgCl2、1mMDTTを含む10mMトリス塩酸緩衝液(pH7.5)中37℃にて制限酵素KpnIで処理しアガロースゲル電気泳動を行ない、それぞれ10kbp、0.9kbpの断片を回収3して、これらを連結しpEFDKPOfを得た(図7)。図に示されるごとくこのプラスミドはジヒドロ葉酸還元酵素遺伝子(dhfr)を含みEF1aプロモーターとSV40polyAシグナルの間にヒトMeg-POT cDNAが接続されている。

なお、前記ベクターDHFR $-\Delta$ E -R V h は国際公開WO 9 2 / 1 9 7 5 9 号公報に記載のDHFR $-\Delta$ E -PMh -g γ 1 及びR V h -PM 1 f - 4 を用いて次の様に作製した。

DHFR-ΔE-PMh-g7l及びRVh-PM1f-4を10mM Mg

20 Cl₂、1mM DTT、100mM KCl、0.01%BSAを含む20mMトリス塩酸緩衝液(pH8.5)中37℃にて制限酵素PvuI, BamHI(宝酒造社製)で処理しアガロースゲル電気泳動を行い4kbp、3kbpの断片を回収して、これらを連結することによりDHFR-ΔE-RVhを作製した。

実施例23. CHO細胞での巨核球増幅因子 (Meg-POT) 遺伝子の発現

CHO細胞DXB-11を1×10⁷ 個/mlになるようにphosphate-buffered saline(PBS)に懸濁し、この細胞浮遊液0.
 8mlにpEFDKPOfを10μg加えた。1900V、25μFの条件でGenePulsar(Bio Rad社製)を用いて電気穿孔法(electroporation)によりプラスミドをCHO細胞に導入した。室温にて100000円の回復期間の後、エレクトロポレーションした細胞を10%ウシ胎児血清を

含むα-MEM培地(GIBCO社製)25mlに加えた。37℃,24時間培養後、トリプシン処理にて回収した細胞を100倍に希釈し、10%ウシ胎児血清添加リボヌクレオシド及びデオキシリボヌクレオシド非含有α-MEM培地(GIBCO社製)で3週間培養した。この時3~4日に一度の割合で培地交換を行った。コロニーが肉眼で確認できるまでに成長したのでクローンを拾い、クローン毎に培養を続けた。その後、先の培地にmethotrexate (MTX)(Sigma社製)を添加し、選択培養を続けた。一次選択時のMTX濃度は10nMとし、得られた耐性クローンに対してMTX濃度50nMの培地で二次選択を行った。最終的に得られたクローンを50nM MTX及び2%FCSを含むIMDM培地(GIBCO社製)にて大量培養し、その培養上清を精製に供した。

培養上清をSDS/PAGEにて分析し、N末近傍の合成ペプチドを抗原として作製した抗体を用いたウエスタンプロッテイング法によりMeg-POTを検出した。なお、分子量マーカーとしては、実施例15に示すバイオラッド社製プレステインド分子量マーカーを使用した。図8に示すように、分子量約33kd、30kd、27.5kdに3本のバンドが検出された。

実施例24. CHO細胞の培養上清からの組換え型巨核球増幅因子 (Meg-POTの精製 I

15

実施例23で調製したCHO細胞の培養上清100にTween20を、終濃度が
0.01%になるように加え、5μmのメンプランフィルター(富士フィルム社製)を通して不容物を除去した。この培養上清から以下の手順により組換え型巨核球増幅因子を精製した。

(i) 上記培養上清を0.01% Tween 20及び0.2M NaClを含む50mMトリス塩酸緩衝液(pH 8)で平衡化したBlue-Sephar ose fast flowカラム(5.0×20cm、Pharmacia社製)に添加した。カラムを同緩衝液で洗浄した後、0.01% Tween 20及び2M KClを含む50mMトリス塩酸緩衝液(pH 9)でカラムに吸着した蛋白を溶出させた。この画分を集め、ミニタン(millipore社製)にて濃縮し、0.01% Tween 20を含む20mM酢酸緩衝液(pH 5)を加えての希釈する操作を繰り返し脱塩した後、生じた不溶物を遠心操作(10,000

pm × 30 min) により除去した。上清を次のカチオン交換クロマトグラフィーでの精製にかけた。

(ii) 0.01% Tween 20を含む20mM酢酸緩衝液(pH 5)で平衡化したS-Sepharose fast flowカラム(5.0×12cm)に上記画分を添加し、同緩衝液にてカラムを洗浄した後、同緩衝液中、NaCl濃度を0.1、0.2、0.3、0.5Mと上げてカラムに吸着したタンパク質を容出させた。

5

- (iii) 組換え型Meg-POTを含む0.1M NaCl画分を、あらかじめ0.1%TFAを含む24%アセトニトリルで平衡化したVydac C4カラム(10×250mm)に添加し、同溶離液にてカラムを洗浄した後、0.1%TFA中アセトニトリル濃度を48分間に24~48%まで直線的に上げてカラムに吸着したタンパク質を溶出させた。流速は1ml/minで、タンパク質の検出は220nm及び280nmの二波長で行った。アセトニトリル濃度が40~45%の組換え型Meg-POTを含む画分を集め、次のGel Permeation Chromatographyにかけた。
 - (iv) 組換え型Meg-POTを含む画分を0.01%TFAを含む40% アセトニトリルで平衡化したTSKgel G3000SWカラム(21.5×60cm)に添加した。流速は3ml/minでタンパク質の検出は280nmで行った。37~44分に溶出された主要ピークを集め、0.1%TFAにて希釈後、(iii)と同条件にて逆相HPLCを行い主要ピークを回収した。

こうして得られた組換え型巨核球増幅因子(Meg-POT)をSDS/PAGEにて分析した。ゲル濃度は12%で、Laemmliの方法Nature,227,680(1970)に従って泳動し、2D-銀染色試薬・「第一」(第一化学薬品製)を用いてタンパク質を染色した。なお分子量マーカーはバイオラッド社製低分子量マーカー [ホスホリラーゼB(92.5kd)、ウシ血清アルブミン(66.2kd)、オボアルブミン(45.0kd)、炭酸脱水素酵素(31.0kd)、大豆トリプシンインヒビター(21.5kd)、リゾチーム(14.4kd)]を用いた。

その結果、精製された組換え型Meg-POTは分子量約33,000に単一30 バンドを与えた。

<u>実施例25.</u> 組換え型巨核球増幅因子(Meg-POT)のN末端及びC末端 アミノ酸配列分析

- (i) 実施例24で得られた組換え型Meg-POTについて、気相式プロテインシークエンサー476A型(Applied Biosystems社製)を用いてN末端アミノ酸配列分析を行った。その結果、以下に示す(a)~(c)の3種類のN末端アミノ酸配列が認められた。
 - (a) Ser-Arg-Thr-Leu-Ala-Gly-Glu-Thr-Gly-Glu-Ala-Ala- · · · ·
 - (b) Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp- · · ·
 - (c) Gly-Glu-Thr-Gly-Glu-Ala-Ala-Pro-Leu-Asp-Gly-Val- · · ·
- 10 これらの配列は実施例13における、配列(a)~(c)に対応する。
 - (ii) 組換え型Meg-POTのC末端アミノ酸配列分析を行った。

組換え型Meg-POTに10mg/mlの臭化シアンを含む70%ギ酸溶液 100μlを加え、室温にて24時間臭化シアン分解した後、遠心濃縮機にて過剰の試薬を除いた。その残渣を0.1%TFAに溶解し、0.1%TFA中で平 15 衡化したVydac C4カラム(4.6×250mm)に添加し、0.1%TFA中アセトニトリル濃度を40分間に80%まで直線的に上げ、カラムに吸着した臭化シアン断片を溶出させた。得られた2本のピークのうち、C末ペプチド断片について更に Endo Asp-N消化した。C末ペプチドを50mMリン酸緩衝液(pH 8.0)に溶解し、Endo Asp-Nを加え、室温に

20 て16時間酵素消化した。反応液に10%TFAを加えpHを3とした後、0.1%TFAで平衡化したVydac C18カラムに添加し、アセトニトリル濃度を48分間に0~48%に直線的に上げカラムに吸着したペプチドを溶出させた。得られた断片を気相式プロテインシークエンサー476A型にて分析した結果、C末断片のアミノ酸配列は以下に示す如くであった。

Asp-Pro-Ser-Trp-Arg-Gln-Pro-Glu-Arg

25 <u>実施例26. CHO細胞の培養上清中の巨核球増幅因子(Meg-POT)</u> 活性の測定

実施例23で得られたCHO細胞の培養上清及び、実施例24で精製した組換

え型巨核球増幅因子の巨核球増幅因子活性を前述した方法に従って測定した。 その結果表 6 に示したように、巨核球増幅因子の c D N A を含むベクターを導入した C H O 細胞の培養上清は明らかに巨核球増幅因子活性を示し、それより精製した組換え型巨核球増幅因子も巨核球増幅因子活性を示した。

5 なお、精製品の蛋白量はアミノ酸分析法によりAla=28として算出した。

[表6]

(

CHO細胞の培養上清中及び精製組換え型Meg-POTの巨核球増幅因子活性

PCT/JP93/01540

被検々体	本終濃度	1	巨核球コロニー数
СНОЯ	田胞培養上清	0.08%	4 *)
	<u>;</u>	0.31%	11"
	٠.	1.25%	10.5*)
	•	5 %	1 2 *)
看製品 精製品	*	0.01ng/ml	О ь)
	• ';	0.1 ng/m1	6 b)
	•	1 n g/m 1	8 ы
	1	0 n g / m 1	1 1 b)

- a) 形成されたコロニー数から I L 3 単独で形成されたコロニー数 (25個)を引いた値。
- b) 形成されたコロニー数から I L 3 単独で形成されたコロニー数 (20.5個)を引いた値。

実施例27. CHO細胞の培養上清からの組換え型巨核球増幅因子 (Meg-POT) の精製 II

実施例23で調製したCHO細胞の培養上清101(10リットル)にTween 20を終濃度が0.01%になるように加え、5μmのメンプランフィルター(富士フィルム社製)を通して不容物を除去した。この培養上清から以下の手順により組換え型巨核球増幅因子を精製した。

(i) 上記培養上清を、スパイラルカートリッジ (アミコン社製) を用いて20倍に

濃縮した。濃縮液を4°Cにて撹拌しながら硫安を最終的に50%飽和濃度になるように加え、析出した蛋白を遠心操作($10,000g \times 30min$)により沈澱として集め、10mM トリス塩酸緩衝液(pH 7.4)に溶解した。その画分に、終濃度が1Mとなるように硫安を加え、次の疎水クロマトグラフィーにかけた。

(ii) 1 M 硫安を含む10mM トリス塩酸緩衝液(pH 7.4)で平衡化したPhenyl-sephar ose 6FFカラム (5.0 x 15cm, Pharmacia 社製) に添加した。カラムを同緩衝液で洗浄した後、硫安濃度を0.1M まで下げてカラムを再び洗浄後、0.1% Tween 20を含む10mM トリス塩酸緩衝液(pH 8.5)で組換え型Meg-POTを溶出させた。この画分をメンブランフィルターPM-10 (アミコン社製) にて濃縮後、0.01% Tween 20を含む10mM トリス塩酸緩衝液(pH 8.5)で10倍希釈し、アニオン交

換クロマトグラフィーにかけた。

15

30

(iii)上記画分を希釈に用いた緩衝液にて平衡化したDEAE-sepharose fast flow カラム (5 x 13cm) に添加し、同緩衝液にてカラムを洗浄後、同緩衝液中NaCl 濃度を0.1Mに上げてカラムに吸着した蛋白を溶出した。組換え型Meg-POTを含むこの画分を10% TFAを加えてpHを3とし、次に、下記に示す条件で逆相 HPLCにかけた。

(iv)0.1% TFAを含む32%アセトニトリルで平衡化したVydac C4カラム(10 x 250mm

-)に上記画分を添加し、同溶離液にてカラムを洗浄後、0.1% TFA中アセトニトリル濃度を64分間に32~48%まで直線的に上げ、カラムに吸着した蛋白を溶出した。流速は1.0 ml/minで、蛋白の検出は220nm及び280nmの2波長で行った。40-45%のアセトニトリル濃度で溶出される画分を集め、0.1% TFAで2倍に希釈した。この溶液を同条件で逆相HPLCを行い、40-45%のアセトニトリル濃度に溶出する
- (v)0.1% TFA を含む40% アセトニトリルで平衡化したTSK G3000SWカラム(21.5 x 60cm)に上記画分を添加した。流速3ml/minで蛋白の検出は280nmで行った。42-47分間に溶出された主要ピークを集め、0.1% TFAで希釈した。

主要ピークを集め、次のGel Permeation Chromatographyにかけた。

(vi)上記画分を(iv)と同条件にて逆相HPLCを行い、主要画分を回収した。 必要に応じて、この画分をカチオン交換クロマトグラフィーにかけ、有機溶媒 及びTFAを除いた。上記画分を0.01% Tween 20 を含む20mM 酢酸緩衝液(pH 5.0) で10倍希釈し、同緩衝液にて平衡化した5-sepharose fast flowカラムに添加し

、同級衝液でカラムを洗浄後、0.3M NaClを含む同級衝液にて組換え型Meg-POTを溶出させた。

こうして得られた組換え型巨核球増幅因子(Meg-POT)をSDS/PAGEにて分析した。ゲル濃度は12%で、Laemmliの方法 Nature, 227, 680 (1970)に従って泳動し、2D-銀染色試薬・「第一」(第一化学薬品製)を用いてタンパク質を染色した。なお分子量マーカーは実施例15で使用したバイオラッド社製低分子量マーカーを用いた。

5

その結果、精製された組換え型Meg-POTは分子量約30,000に単一バンドを与えた。

10 このものの巨核球増幅因子活性を前述した方法に従って測定し、実施例24で 得た分子量約33,000のものと比較した。その結果、表7に示したように、 分子量約30,000のものは測定したいずれの濃度においても活性を示さなかった。

[表 7] 精製された巨核球増幅因子の巨核球増幅因子活性

分子量	巨	核球増幅因	子活性*)	
終濃度(ng/ml)	4 0	10	2.5	0.625
約33、000	11	8.5	5	7
約30、000	1	0.5	0	1.5

a) 形成されたコロニー数から11-3単独で形成されたコロニー数(25) を引いた値。

<u>実施例28. 組換え型巨核球増幅因子(Meg-POT)のN末端及びC末端ア</u> 15 ミノ酸配列分析 II

(i)実施例27で得られた分子量約30,000の組換え型Meg-POTに

ついて、気相式プロテインシークエンサー476A型(Applied Biosystems社製)を用いてN末端アミノ酸配列分析を行った。その結果、以下に示す(a)~(c)の3種類のN末端アミノ酸配列が認められた。

- (a) Ser-Arg-Thr-Leu-Ala-Gly-Glu-Thr-Gly-Glu-Ala-Ala- · · · ·
- (b) Leu-Ala-Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp- · · ·
- (c)Gly-Glu-Thr-Gly-Gln-Glu-Ala-Ala-Pro-Leu-Asp-Gly-Val-・・・・ これらの配列は、実施例25における、配列(a)~(c)に対応する。
- 5 (ii)組換え型Meg-POTのC末端アミノ酸配列分析を行った。

10

25

分子量約30,000の組換え型Meg-POTに10mg/mlの臭化シアンを含む70%ギ酸溶液 100μ lを加え、室温にて24時間臭化シアン分解した後、遠心濃縮機にて過剰の試薬を除いた。その残渣を0.1%TFAに溶解し、0.1%TFAで平衡化したVydac C4カラム(4.6 x 250nm)に添加し、0.1%TFA中アセトニトリル濃度を40分間に80%まで直線的に上げ、カラムに吸着した臭化シアン断片を溶出させた。流速は1 ml/min、ペプチドの検出は220nm及び280nmで行った。得られた2本のピークについて気相式プロテインシークエンサー476A型にて分析した結果、C末断片のアミノ酸配列は以下に示す如くであった。

Asp-Ala-Leu-Arg-Gly-Leu-Leu-Pro-Val-Leu-Gly-Gln-Pro-Ile-Ile-Arg

15 実施例25から実施例28より、分子量約33,000と分子量約30,00 0のアミノ酸配列のN末端は同等であるが、C末端のみが相違する。一方、巨核 球増幅因子活性については、分子量約33,000のものは活性を示すが、分子 量約30,000のものは活性を示さない。したがって、分子量約33,000 と約30,000の間のC末端のアミノ酸配列中に巨核球増幅因子活性に関与す 30 を重要な部位が存在することが考えられる。

<u>実施例29</u>. <u>組換え型巨核球増幅因子(Meg-POT)</u>の精製Ⅲ

(i)実施例24のBlue sepharose fast flow カラムから2M KClにより溶出されたMeg-POT画分をミニタン (millipore) にて脱塩後、4°Cにて硫安を50%飽和になるように加え30分撹拌し、生じた沈澱を遠心操作(10,000g x 30分間) により集め、蒸留水で溶解した。この溶液を4°Cにて一晩、0.01% Twe

en 20 を含む10mM トリス塩酸緩衝液(pB 8.0)に対して透析し、同緩衝液にて平衡化した0-sepharosc fast flow カラム(5 x 10cm、Pharmacia)に添加した。同緩衝液にてカラムを洗浄後、同緩衝液中NaCl濃度を0.1, 0.2, 0.3, 0.5, 1.0M と段階的に上げてカラムに吸着した蛋白質を溶出させた。各画分をSDS/PAGEにかけた後、実施例23で作製したMeg-POTに対する抗体を用いてウエスタンブロッティング法でMeg-POTを検出した。この時の分子量マーカーは、バイオラッド社製プレステインド分子量マーカー(ホスフォリラーゼB(106kd)、ウシ血清アルブミン(80.0kd)、オボアルブミン(49.5kd)、炭酸脱水素酵素(32.5kd)、大豆トリプシンインヒビター(27.5kd)、リゾチーム(18.5kd))を用いた。その結果、分子量約70,000にもバンドが染色された(図9)。この分子種にもMeg-POT活性が認められるか否か確認するため、分子量約33,000の分子種と分離すべく以下に示す如く精製を行った。

(ii)分子量約70,000の分子種が含まれる0.2M NaCl画分に酢酸を加えp Hを5とした後、0.1% TFA を含む32% アセトニトリルで平衡化したVydac C4カ ラムに添加した。同溶離液にてカラムを洗浄後、0.1% TFA 中アセトニトリル濃 度を32-48% まで40分間に直線的に上げ、カラムに吸着した蛋白を溶出させた。 アセトニトリルの濃度が39-41%の画分を集め、次のゲル濾過にかけた。

(iii)上記画分を C.OI% Tween 20 を含む PBS で希釈し、セントリプレップ-1
 0 で濃縮し、同緩衝液にて平衡化した TSK G3000 SWカラムに添加した。流速は 3 ml/minで、蛋白の検出は 220 nm 及び 280 nm の 2 波長で行った。 1 ml ずつ分画し、一部をコロニー形成法により Meg-POT活性を測定し、また SDS/PAGE後ウエスタンブロティング法により、Meg-POTの検出を行った。その結果、分子量約 7 0,000 の分子種は、42~46分に溶出され、その画分には分子量約 3 3,000 の分子種は検出されなかった(図10)。なお、分子量マーカーは前述のバイオラッド社製分子量マーカーを用いた。

実施例 26 と同様に 42 ~ 46 分の画分のMeg-POT活性を測定したところ、表 8 に示すごとく、この 42 ~ 46 分の画分にもMeg-POT活性が認められたことから、分子量約 70 ,000 の分子種にもMeg-POT活性があると推定された。

30

[表 8] · CHO細胞の培養上清の各精製画分の巨核球増幅因子活性

TSK	G3000SW画分(分)	42-43	43-44	44-45	45-46
巨核球均	曾幅因子活性 •)	1 2	9	10.5	5.5

a):形成されたコロニー数から、IL-3単独で形成されたコロニー数 (19.5)を引いた値。

実施例30. 修飾体の発現ベクターの構築及びCOS細胞での発現

(1) pEFNKPOSベクターの構築

5

修飾体のMeg-POT遺伝子を得るためにPCRを用いた。PCRに用いるプライマーとして次に示すオリゴヌクレオチドを配列番号10に示した遺伝子の塩基配列をもとに381A DNA Synthesizer(Applied Biosystems社製)を用いて合成した。

プライマー3S:5'-CTGGCTCACCGGCTCTCTGA-3'

プライマーG982A :5'-ATGGATCCTTACCGCCGGAACCGCGGCCG-3'

BamHI

組換えCHO細胞の培養上精から精製されたMeg-POTのC末端付近に存在する動物 細胞内プロセシング酵素Furinの認識配列Arg-x-Arg-Arg²⁹⁵までをコードするMeg-POT遺伝子を作製し、これを用いてその発現ベクターを構築した。

pKP027を鋳型としてDNA Thermal Cycler(Perkin Elmer Cetus社製)を用いてPCR

を行なった。pKP027 1μgを20mM Tris-HCl(pH8.8),10mM KCl,6mM (NH4)2SO4,2mM

MgCl2,0.1% Triton X-100,0.1mg/ml BSA,100mM deoxynucleotide triphosphate

(dNTP),プライマー3S及びG982Aそれぞれ100pmolを含む100μ1のPCR反応溶液中で

増幅した。まず95℃で6分間変性後、85℃に冷却し2.5単位のPfu DNA Polymerase

(Stratagene社製)を加えた。その後、変性94℃ 1分間、アニール60℃ 30秒間、 伸長72℃、2分間のサイクルを30回繰返してPCRを行なった(図11)。サンプル はアガロースゲル電気泳動し、増幅された590bpDNA断片を抽出した。Polynucleo tide kinaseを用いてDNAの5'端をリン酸化し、予め制限酵素Smalとアルカリフォ スファターゼで処理したベクターpSP13と連結し、pSP982Aを得た。この挿入塩基 配列をDideoxy sequencing法にて決定し、982番目のGがTに置換されその3'側にB amllIサイトがあり、その他に変異がないことを確認した。

pSP982AとpRVHKP021を制限酵素Sall、BamHI処理した後、アガロ-スゲル電 気泳動を行ないそれぞれより190bp、9.5kbpのDNA断片を回収し、これらを連結さ せpEFNKPOSを得た(図12)。

(2) COS細胞での発現

5

10

15

COS細胞を1×10⁷個/mlになるようにPBSに懸濁し、この細胞浮遊液0.8mlにpEF NKPOSを20μg加えた。1500V、25μFDの条件でGenePulsar(BioRad社製)を用いて 電気穿孔法 (electroporation) によりプラスミドをCOS細胞に導入した。エレク トロポレーションした細胞を1%ウシ胎児血清を含むDMEM培地(GIBCO社製)に加 え、72時間培養後培養上清を集めた。それぞれの培養上清をセントリプレップー 10で約10倍に濃縮し、SDSポリアクリルアミドゲル電気泳動にかけた。実施例2 1 で得られた大腸菌にて発現させ精製したMeg-POT蛋白質を抗原として家兎に免 疫して得た抗巨核球増幅因子抗血清を用いて、ウエスタンブロッティングを行な 20 い、培養上清中にMeg-POT修飾体の蓄積を確認した。

この培養上清の巨核球増幅因子活性を前述した方法に従って測定した。その結 果を表9に示した。

[表9]

COS細胞の培養上清中の巨核球増幅因子活性

COS細胞 ·	巨核球增幅因子活性*)							
培養上清濃度(%)	10	5	2.5	1.25	0.625			

対照COS	1	0	0	1	1
pRVHKP027f導入COS	9.5	9.5	6.5	1 2	0
pEFNKPOS導入COS	9.5	0.5	1	0	0

a) 形成されたコロニー数からIL-3単独で形成されたコロニー数 (40.5)を引いた値。

(3) アミノ酸置換Meg-POT発現ベクターの構築

PCRに用いるプライマーとして次に示すオリゴヌクレオチドを配列番号10に示した遺伝子の塩基配列をもとに381A DNA Synthesizer(Applied Biosystems社製)を用いて合成した。

プライマーT3-2 :5'-CATGATTACGCCAAGCTCGAA-3'

プライマー754GA :5'-GCTGCCTCCTCCTGGTCCTGGTCCAGGGGTCC-3'

プライマー754GS :5'-CCAGGACCAGGAGGAGGCAGCCAGGGCGGC-3'

プライマー850GA :5'-AGCACGGGCACCAGGCCCCGCAGAGCGTCC-3'

プライマー850GS: :5'-CTGCGGGGCCTGGTGCCCGTGCTGGGCCAGCCC-3'

5 pEFNKPOSの252番目のLeuをValに置換したMeg-POT修飾体発現ベクターpEFNKPOL 252Vを構築した。上記と同様の条件でpKPO27 をプライマーT3-2と850GAの組み合わせと850GSとG982Aの組み合わせでそれぞれPCRを行なった。サンプルはゲル電気泳動を行い、それぞれ0.9kbp、150bpDNAを抽出した。これらDNA断片を混合後、プライマーT3-2とG982Aを用いて再度PCRを行なった(図11)。アガロースゲル電気泳動を行い、増幅された1kbpDNAを抽出した。Polynucleotide kinaseを用

	`	
		·

いてDNAの5'端をリン酸化し、予め制限酵素Smalとアルカリフォスファターゼで処理したベクターpSP73と連結しpSP850Gを得た。この挿入塩基配列をDideoxy sequencing法にて決定し、850番目のCがGに、982番目のGがTに置換されその3'側にBamHIサイトがあり、その他に変異がないことを確認した。pSP850GとpRVHKP027を制限酵素SalI、BamHI処理した後、アガロースゲル電気泳動を行ないそれぞれより190bp、9.5kbpのDNA断片を回収し、これらを連結させpEFNKP01252Vを得た(図12)。

またpEFNKPOSの220番目のGlaをGluに置換したMeg-POT修飾体発現ベクターpEFN KPOQ220Eを構築した。上記と同様の条件でpKPO27 をプライマーT3-2と754GAの組 み合わせと754GSとG982Aの組み合わせでそれぞれPCRを行なった。サンプルはゲ 10 ル電気泳動を行い、それぞれ0.9kbp、150bpDNAを抽出した。これらDNA断片を混 合後、プライマーT3-2とG982Aを用いて再度PCRを行なった。アガロースゲル電気 泳動を行い、増幅されたlkbpDNAを抽出した。Polynucleotide kinaseを用いてDN Aの5'端をリン酸化し、予め制限酵素Smalとアルカリフォスファターゼで処理し 15 たベクターpSP73と連結しpSP754Gを得た。この挿入塩基配列をDideoxy sequenci ng法にて決定し、754番目のCがGに、982番目のGがTに置換されその3'側にBamH I サイトがあり、その他に変異がないことを確認した。pSP154GとpRVHKP027を制限 酵素EcoRI、BamHI処理した後、アガロ-スゲル電気泳動を行ないそれぞれより lkbp、8.7kbpのDNA断片を回収し、これらを連結させpEFNKP0Q220Eを得た(図 1 20 2)。

(4) アミノ酸置換Meg-POTのCOS細胞での発現

5

上記と同様にして電気穿孔法 (electroporation) によりpEFNKPOL252V、pEFNK POQ220E をCOS細胞に導入した。それぞれの72時間培養上清をセントリプレップ - 10で約10倍に濃縮し、SDSポリアクリルアミドゲル電気泳動にかけた。同様に 25 実施例21で得られた大腸菌にて発現させ精製したMeg-POT蛋白質を抗原として 家兎に免疫して得た抗巨核球増幅因子抗血清を用いてウエスタンブロッティング を行ない、培養上清中にMeg-POT修飾体の蓄積を確認した。

配列表

配列番号:1

配列の長さ:16

配列の型:アミノ酸

トポロジー:直線状

配列の種類:ペプチド

配列:

Leu Ala Gly Glu Xaa Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu

1

5

10

15

配列番号:2

配列の長さ:16

配列の型:アミノ酸

トポロジー:直線状

配列の種類:ペプチド

配列:

Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala

l

5

10

15

配列番号:3

配列の長さ:16

配列の型:アミノ酸

トポロジー:直線状

配列の種類:ペプチド

配列:

Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu Ala Asn

1

5

10

15

配列番号: 4

配列の長さ:14

配列の型:アミノ酸

トポロジー:直線状

配列の種類:ペプチド

配列:

Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu Asp Gly Val Leu

1 5

10

配列番号:5

配列の長さ:35

配列の型:アミノ酸

トポロジー:直線状

配列の種類:ペプチド

配列:

Leu Ala Val Ala Leu Ala Gln Lys Asn Val Lys Leu Ser Thr Glu

1 5 10 15

Gln Leu Arg Xaa Leu Ala His Arg Leu Ser Glu Pro Pro Glu Asp

20 25 30

Leu Asp Ala Leu Pro

35

配列番号:6

配列の長さ:40

配列の型:核酸

鎖の数:二本鎖

トポロジー:直線状

配列の種類:DNA

配列:

CTCAACAGAG CAGCTGCGCT GTCTGGCTCA CCGGCTCTCT

40

配列番号:7

配列の長さ:69

配列の型:核酸

鎖の数:二本鎖

トポロジー:直線状

配列の種類: cDNA

配列:

CGC CAA CTC CTT GGC TTC CCG TGT GCG GAG GTG TCC GGC CTG AGC 45

Arg Glo Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu Ser

1 5 10 15

ACG GAG CGT GTC CGG GAG CTG GCT 69

Thr Glu Arg Val Arg Glu Leu Ala

. 20

配列番号:8

配列の長さ:75

配列の型:核酸

鎖の数:二本鎖

トポロジー:直線状

配列の種類:cDNA

配列:

CTC TCT GAG CCC CCC GAG GAC CTG GAC GCC CTC CCA TTG GAC CTG 45

Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu

1 5 10 15

CTG CTA TTC CTC AAC CCA GAT GCG TTC TCG 75

Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser

2 0 2 5

配列番号:9

配列の長さ:197

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状 配列の種類: c D N A

起源

生物名:ヒト

特徴:ヒト膵臓癌患者のリンパ節から得られた培養細胞に由来し、ヒト巨核球 増幅因子活性を有するポリペプチドの一部分をコードする c D N A 。

)

配列:

AA CTC CTT GGC TTC CCG TGT GCG GAG GTG TCC GGC CTG AGC ACG

Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu Ser Thr

1 5 10

GAG CGT GTC CGG GAG CTG GCT GTG GCC TTG GCA CAG AAG AAT GTC 89
Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys Asn Val
15 20 25

AAG CTC TCA ACA GAG CAG CTG CGC TGT CTG GCT CAC CGG CTC TCT 134 Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg Leu Ser 30 40 GAG CCC CCC GAG GAC CTG GAC GCC CTC CCA TTG GAC CTG CTA 179 Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu Leu Leu 45 50 55 TTC CTC AAC CCA GAT GCG 197 Phe Leu Asn Pro Asp Ala 60 6 5

配列番号:10

配列の長さ:2129

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA

起源

生物名:ヒト

直接の起源:プラスミドpKPO27

特徴:ヒト膵臓癌患者のリンパ節から得られた培養細胞に由来し、ヒト巨核球 増幅因子活性を有するポリペプチドをコードする c D N A 。

配列:

GAATTCGGCA CGAGGCCACT CCCGTCTGCT GTGACGCGCG GACAGAGAGC 50 TACCGGTGGA CCCACGGTGC CTCCCTCCCT GGGATCTACA CAGACC ATG GCC 102 Met Ala 1 TTG CCA ACG GCT CGA CCC CTG TTG GGG TCC TGT GGG ACC CCC GCC 147 Leu Pro Thr Ala Arg Pro Leu Leu Gly Ser Cys Gly Thr Pro Ala 10 CTC GGC AGC CTC CTG TTC CTG CTC TTC AGC CTC GGA TGG GTG CAG 192 Leu Gly Ser Leu Leu Phe Leu Leu Phe Ser Leu Gly Trp Val Gln 25 20 30 CCC TCG AGG ACC CTG GCT GGA GAG ACA GGG CAG GAG GCT GCA CCC 237 Pro Ser Arg Thr Leu Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro 35 40 45 CTG GAC GGA GTC CTG GCC AAC CCA CCT AAC ATT TCC AGC CTC TCC 282 Leu Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser 50 55 60 CCT CGC CAA CTC CTT GGC TTC CCG TGT GCG GAG GTG TCC GGC CTG 327 Pro Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu 65 70 75 AGC ACG GAG CGT GTC CGG GAG CTG GCT GTG GCC TTG GCA CAG AAG 372 Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Glo Lys

		8	0				8 5	5				9	0		
A A '	r gt	C AA	G CT	C TC	A ACA	GAG	CAC	CT(G CG(CTG	т сто	GC	T CA	C CGG	417
Ası	a Va	l Ly	s Le	u Se	r Thi	Glu	Glo	Let	Arg	у Су	s Leu	Al	a His	s Arg	
		9	5				100)				10	5		
CTO	TC.	T GA	G CC	c cc	GAG	GAC	CTG	GAC	GCC	CT	C CCA	TT	G GA(CTG	462
Leu	Se	r Gl	u Pr	o Pro	Glu	Asp	Leu	Asp	Ala	Let	Pro	Let	ı Asp	Leu	
		11	0				115					120)		
ста	CT/	TT	C CT	C AAC	CCA	GAT	GCG	TTC	TCG	GGG	ccc	CAG	GCC	TGC	507
Leu	Lei	ı Ph	e Let	ı Asn	Pro	Asp	Ala	Phe	Ser	Gly	Pro	Glo	Ala	Cys	
		125	5				130					1 3 5			
ACC	CGT	TTO	TTC	TCC	CGC	ATC	ACG	AAG	GCC	AAT	GTG	GAC	CTG	CTC	5 5 2
Thr	Arg	Phe	Phe	Ser	Arg	Ile	Thr	L y s	Ala	Asn	V a l	Asp	Leu	Leu	
		140					145					150			
CCG	AGG	GGG	GCT	ccc	GAG	CGA	CAG	CGG	CTG	CTG	CCT	GCG	GCT	CTG	5 9 7
Pro	Arg	Gly	Ala	Pro	Glu	Arg	Gln	Arg	Leu	Leu	Pro	Ala	Ala	Leu	
		155					160					165			
GCC	TGC	TGG	GGT	GTG	CGG	GGG	TCT	CTG	CTG	AGC	GAG	GCT	GAT	GTG	6 4 2
Ala	Суs	Trp	Gly	V a 1	Arg	Gly	Ser	Leu	l e u	Ser	Glu	Ala	Asp	V a l	
		170					175			٠		180			
CGG	GCT	CTG	GGA	GGC	CTG	GCT	TGC	GAC	CTG	сст	GGG	CGC	TTT	GTG	687
Arg	Ala	Leu	Gly	Gly	Leu	Ala	Суs	Asp	Leu	Pro	Gly	Arg	Phe	V a 1	
		185				•	190					195			
GCC	GAG	TCG	GCC	GAA	GTG	CTG	CTA	ccc	CGG	CTG	GTG	AGC	TGC	CCG	732
Ala	Glu	Ser	Ala	Glu	V a l	Leu	Leu	Pro	Arg	Leu	V a 1	Ser	Cys	Pro	
		200					205					210			
GGA	CCC	CTG	GAC	CAG	GAC	CAG	CAG	GAG	GCA	GCC	AGG	GCG	GCT	CTG	777
Gly	Pro	Leu	Asp	Gln	Asp	Gln (Gln	Glu.	Ala	Ala	Arg.	Ala	Ala	Leu	
		215				:	2 2 0	•				2 2 5			

CAC	G GG	C GG	G GG	A CC	ccc	CTAC	GG	ccc	ccc	G TC	G ACA	TGG	тся	GTC	822
Gli	Gl	y Gi	y Gly	y Pro	Pro	Tyr	Gly	Pro	Pro	Sei	r Thi	Trp	Ser	Val	
		230	0				2 3 5	;				2 4 0	ŧ		
TCO	ACC	G AT	G GAO	C GCT	CTO	CGG	GGC	сто	CTO	CCC	C GTG	CTG	GGC	CAG	867
Ser	Thi	r Met	Asp	Ala	Leu	Arg	Gly	Leu	Lev	Pro	Val	Leu	Gly	Gln	
		2 4 5	i				250					2 5 5			
CCC	AT(ATC	CGC	AGC	ATC	CCG	CAG	GGC	ATC	GTO	GCC	GCG	TGG	CGG	912
Pro	Ile	lle	Агд	Ser	Ιle	Pro	Gln	Gly	Ile	Val	Ala	Ala	Trp	Arg	
		260	ì				265					270			
CAA	CGC	тсс	тст	CGG	GAC	CCA	TCC	TGG	CGG	CAG	CCT	GAA	CGG	ACC	957
Gln	Arg	Ser	Ser	Arg	Asp	Pro	Ser	Trp	Arg	Gln	Pro	Glu	Αrg	Thr	
		275					280					285			
ATC	CTC	CGG	CCG	CGG	TTC	CGG	CGG	GAA	GTG	GAG	AAG	ACA	GCC	TGT	1002
I 1 e	Leu	Arg	Pro	Arg	P h e	Arg	Arg	Glu	V a 1	Glu	Lys	Thr	Ala	Cys	
		290					295					300			
CCT	TCA	GGC	AAG	AAG	GCC	CGC	GAG	ATA	GAC	GAG	AGC	CTC	ATC	TTC	1047
Pro	Ser	G 1 y	Lys	Lys	Ala	Arg	Glu	I l e	Asp	Glu	Ser	Leu	I 1 e	Phe	
		305					310					3 1 5			
TAC	AAG	AAG	TGG	GAG	CTG	GAA	GCC	TGC	GTG	GAT	GCG	GCC	CTG	CTG	1092
Tyr	Lys	Lys	Trp	Glu	Leu	Glu	Ala	Cys	V a I	Asp	Ala	Ala	Leu	Leu	
		320					3 2 5					330			
GCC	ACC	CAG	ATG	GAC	CGC	GTG	AAC	GCC	ATC	CCC	TTC	ACC	TAC	GAG	1137
Ala	Thr	Gln	Me t	Asp	Arg	Val	Asn	Ala	Ile	Pro	Phe	Thr	Tyr	Glu	
		3 3 5					3 4 0					3 4 5			
CAG	CTG	GAC	GTC	CTA	AAG	CAT	AAA	CTG	GAT	GAG	CTC	TAC	CCA	CAA	1182
Gln	Leu	Asp	V a l	Leu	Lys	His	Lys	Leu	Asp	Glu	Leu	Tyr .	Pro	Gln	
	٠	350					3 5 5					360			
GGT	TAC	CCC	GAG	TCT	GTG	ATC	CAG	CAC	CTG	GGC	TAC	CTC	TTC	CTC	1227

Gly	Туг	Pr.o	Glu	Ser	Val	lle	Gln	His	Leu	Gly	Туг	Leu	Phe	Leu	
		365					370					3 7 5			
AAG	ATG	AGC	CCT	GAG	GAC	ATT	CGC	AAG	TGG	AAT	GTG	ACG	TCC	CTG	1 2 7 2
Lys	Met	Ser	Pro	Glu	Asp	Ile	Arg	L y s	Trp	Asn	V a 1	T b r	Ser	Leu	
		380					385					390			
GAG	ACC	CTG	AAG	GCT	TTG	CTT	GAA	GTC	AAC	AAA	GGG	CAC	GAA	ATG	1317
Glu	Thr	Leu	Lys	Ala	Leu	Leu	Glu	V a 1	Asn	Lys	Gly	His	Glu	Met	
		395					400					405			

AGT CCT CAG GTG GCC ACC CTG ATC GAC CGC TTT GTG AAG GGA AGG Ser Pro Gln Val Ala Thr Leu Ile Asp Arg Phe Val Lys Gly Arg 410 415 420 GGC CAG CTA GAC AAA GAC ACC CTA GAC ACC CTG ACC GCC TTC TAC 1407 Gly Gln Leu Asp Lys Asp Thr Leu Asp Thr Leu Thr Ala Phe Tyr 425 430 435 . CCT GGG TAC CTG TGC TCC CTC AGC CCC GAG GAG CTG AGC TCC GTG 1452 Pro Gly Tyr Leu Cys Ser Leu Ser Pro Glu Glu Leu Ser Ser Val 440 445 CCC CCC AGC AGC ATC TGG GCG GTC AGG CCC CAG GAC CTG GAC ACG 1497 Pro Pro Ser Ser Ile Trp Ala Val Arg Pro Gln Asp Leu Asp Thr 455 460 TGT GAC CCA AGG CAG CTG GAC GTC CTC TAT CCC AAG GCC CGC CTT Cys Asp Pro Arg Gln Leu Asp Val Leu Tyr Pro Lys Ala Arg Leu 470 475 480 GCT TTC CAG AAC ATG AAC GGG TCC GAA TAC TTC GTG AAG ATC CAG 1587 Ala Phe Gln Asn Met Asn Gly Ser Gln Tyr Phe Val Lys Ile Gln 485 490 495 TCC TTC CTG GGT GGG GCC CCC ACG GAG GAT TTG AAG GCG CTC AGT 1632 Ser Phe Leu Gly Gly Ala Pro Thr Glu Asp Leu Lys Ala Leu Ser

		500					505					510			
CAG	CAG			AGC	ATG	GAC			A C G	ፐፐር	ATG			CGG	1677
														Arg	
• • •		515		500		,	520				1000	525			
ACG	GAT			CTG	CCG	ፐፐር		GTG	ር C T	GAG	GTG			CTT	1722
					Pro										1.55
101	пзр	530		Ltu	110	Ltu	535	1 4 1	ліа	GIU	141	540	Гуз	DCu	
		330					333					340			
•															
CTG	GGA	ccc	CAC	GTG	GAG	ccc	ርፕር	AAG	ccc	GAG	GAG	ccc	CAC	cec	1767
															1101
Leu	Uly	545	піз	141	Glu	Gly	550	rys	ліа	GIU	GIU	555	піз	тій	
ccc	ርፕር		CAC	TCC	ልጥሮ	ሮ ፕ ል		CAC	ccc	CAC	CAC		_ር ተር	CAC	1812
					ATC										1012
FIO	Vai		ASP	111	lle	reu		GID	Arg	GIB	ASP		Leu	ASP	
	000	560	0.00.0	000	0.00.1	010	565	000		000		570		0.00	1058
					CTA.						•				1857
Thr	Leu		Leu	Gly	Leu	Gln		Gly	lle	Pro	Asn		Туг	Leu	
		575					580					5 8 5			
														TGC	1902
Val	Leu		Leu	Ser	Val	Gln		Ala	Leu	Ser	Gly		Pro	Cys	
		590					5 9 5					600			
					CCT										1947
Leu	Leu	•	Pro	Gly	Pro			Thr	Val	Leu	AIa		Leu	Leu	
		605					610					615			
GCC					TGA										1965
Ala	Ser		Leu	Ala											
		620													
GGGC													•		2015
CAGG															2065
AGTA	AACG	GG A	ACAT	GCCC	C CT	GCAG	ACAC	GTA	AAAA	AAA	AAAA	AAAA	AA		2115

AAAAAAACT CGAG 2129

配列番号:11

配列の長さ:17

配列の型:アミノ酸トポロジー:直線状

配列の種類:ペプチド

配列:

Ser Arg Thr Leu Ala Gly Glu Thr Gly Glu Glu Ala Ala Pro Leu 1 5 10 15

Asp Gly

配列番号:12

配列の長さ:584

配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列

Gly Glu Thr Gly Gln Glu Ala Ala Pro

Leu Asp Gly Va, Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser 10 15 20

Pro Arg Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu

25 . 30 35

Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys

40 . 45 . 50

Asn Val Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg

5 5 6 0 6 5

Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu

70 75 80

Leu	Leu	Phe	Leu	Asa	Pro	Asp	Ala	Phe	Ser	Gly	Pro	Gli	Ala	Cys
8 5					9 0					9 5				
Thr	Arg	Phe	Phe	Ser	Arg	Ile	Thr	Lys	Ala	Ast	Val	Asp	Leu	Leu
100)				105					110)			
Pro	Arg	Gly	Ala	Pro	Glu	Arg	Gln	Arg	Leu	Leu	Pro	Ala	Ala	Leu
115					120					1 2 5				
Ala	Суs	Trp	Gly	V a l	Arg	Gly	Ser	Leu	Leu	Ser	Glu	Ala	Asp	V a l
130					135					140				
Arg	Ala	Leu	Gly	Gly	Leu	Ala	Суs	Asp	Leu	Pro	Gly	Arg	Phe	V a 1
145					150					155				
Ala	Glu	Ser	Ala	Glu	V a 1	Leu	Leu	Pro	Ar g	Leu	V a 1	Ser	Cys	Pro
160					165					170				
Gly	Pro	Leu	Asp	Gln	Asp	Gln	Gln	Glu	Ala	Ala	Arg	Ala	Ala	Leu
175		,			180					185				
Gln	Gly	Gly	Gly	Pro	Pro	Tyr	Gly	Pro	Pro	Ser	Thr	Trp	Ser	V a 1
190					195					200				
Ser	Thr	Met	'Asp	Ala	L e u	Arg	Gly	Leu	L e u	Pro	V a 1	Leu	Gly	Gln
205					210					2 1 5				
Pro	ΙΙe	Ιle	Arg	Ser	Ile	Pro	Gln	Gly	Ile	V a 1	Ala	Ala	Trp	Arg
220					225			•		230				
Gln	Arg	Ser	Ser	Arg	Asp	Pro	Ser	Trp	Arg	Gln	Pro	Glu	Arg	Thr
235					240	•				2 4 5				
lle	Leu	Arg	Pro	Arg	Phe	Arg	Arg	Glu	V a 1	Glu	Lys	Thr	Ala	Cys
250					255					260				
Pro	Ser	Gly	Lys	Lys	Ala	Arg	Glu	Ιle	Asp	Glu	Ser	Leu	Ile	Phe
265					270					275				
Tyr	Lys	Lys	Trp	Glu	Leu	Glu	Ala	Суs	Val	Asp	Ala	Ala	Leu	Leu
280					285					290				
Ala	Tbr	Gln	Met	Asp	Arg	Val	Asa	Alà	Ile	Pro	Phe	Thr	Tyr	Glu
905					200					2 0 5				

GI	n Le	u As	p Va	l Lei	u Ly	s His	Lys	s Leu	Asp	GII	ıleı	ı Ty	r Pro	Gli
3 1	0				3 1	5				3 2 ()			
Gl	у Ту	r Pr	o Gl	u Sei	r Va	llle	Glo	His	Leu	Gly	7 Tyr	Lei	ı Phe	Lev
3 2	5				33()				3 3 5	i			
L y	s Me	t Se	r Pr	o Glu	ı Ası	lle	Arg	Lys	Trp	Ası	Val	Th	Ser	Leu
34	0				3 4 5	j				350)			
Ğlı	ı Th	r Le	u Ly	s Ala	Leu	Leu	Glu	Val	Asn	Lys	Gly	His	Glu	Met
355	5				3 6 0)				365				
Sei	Pro	Gl	n •V a	l Ala	Thr	Leu	Ile	Asp	Arg	Phe	V a 1	Lys	Gly	Arg
370)				3 7 5				•	380				
Gly	Gln	Le	u Ası) Lys	Asp	Thr	Leu	Asp	Thr	Leu	Thr	Ala	P h e	T y r
385	i				390				-	395				
Pro	Gly	Ty	r Lei	ı Cys	Ser	Leu	Ser	Pro	Glu	Glu	Leu	Ser	Ser	Vál
400					4 0 5					410				
Pro	Pro	Sei	r Ser	Ile	Trp	Ala	V a 1	Arg	Pro	'G l n	Asp	Leu	Asp	Thr
415					420					425				
Суs	Asp	Pro	Ar g	Gln	Leu	Asp	V a l	Leu	Tyr	Pro	Lys	Ala	Arg	Leu
430					4 3 5					440				
Ala	Phe	Gln	Asn	Met	Asn	Gly	Ser	Glu	Туг	Phe	V a 1	Lys	Ile	Gln
4 4 5			•		450					455				
Ser	P h e	Leu	G 1 y	G 1 y	Ala	Pro	Thr	Glu	Asp	Leu	Lys	Ala	Leu	Ser
460			:		465					470				
Gln	Gln	Asn	VaÏ	Ser	Met	Asp	Leu	Ala	Thr	Phe	Met	Lys	Leu	Arg
475					480					485				
Thr	Asp	Ala	V a 1.	Leu	Pro	Leu	Thr	V a l	Ala	G 1 u	V a 1	Gln	Lys	Leu
490				,	495					500				
Leu	Gly	Pro	His	V a 1	Glu	Gly	Leu	Lys	Ala	Glu	Glu	Arg	His	Arg
5 0 5					510					515				
Pro	V a l	Arg	Asp	Trp	Ile	Leu	Arg	Gln.	Arg	Gln	Asp	Asp	Leu	Asp
5 2 0					5 2 5				!	5 3 0				

Thr Leu Gly Leu Gly Leu Gln Gly Gly Ile Pro Asn Gly Tyr Leu

535 540 545

Val Leu Asp Leu Ser Val Glo Glu Ala Leu Ser Gly Thr Pro Cys

550 555 560

Leu Leu Gly Pro Gly Pro Val Leu Thr Val Leu Ala Leu Leu Leu

565 570 575

Ala Ser Thr Leu Ala

580 584

配列番号:13

配列の長さ:248

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

Gly Glu Thr Gly Gln Glu Ala Ala Pro

5

Leu Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser

10 15 20

Pro Arg Gln Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu

25 30 35

Ser Thr Glu Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys

40 45 50

Asn Val Lys Leu Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg

55 60 6!

Leu Ser Glu Pro Pro Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu

70 75 80

Leu Leu Phe Leu Asn Pro Asp Ala Phe Ser Gly Pro Gln Ala Cys

85 90 95

Thr Arg Phe Phe Ser Arg lle Thr Lys Ala Aso Val Asp Leu Leu

100					105					110)			
Pro	Arg	Gly	Ala	Pro	Glu	Arg	Glo	Arg	Leu	Leu	Pro	Ala	Ala	Leu
115					120					1 2 5				
Ala	Суs	Trp	Gly	V a l	Arg	Gly	Ser	Leu	Leu	Ser	Glu	Ala	Asp	V a l
130					135					140				
Arg	Ala	Leu	Gly	Gly	Leu	Ala	Суs	Asp	Leu	Pro	Gly	Arg	Phe	V a 1
145					150					155				
Ala	Glu	Ser	Ala	Glu	V a 1	Leu	Leu	Pro	Arg	Leu	V a l	Ser	Суs	Pro
160					165					170				
Gly	Pro	Leu	Asp	Gln	Asp	Gin	G1n	Glu	Ala	Ala	Arg	Ala	Ala	Leu
175					180					185				
Gln	Gly	Gly	Gly	Pro	Pro	Tyr	Gly	Pro	Pro	Ser	Thr	Trp	Ser	V a l
190					195					200				
Ser	Thr	Met	Asp	Ala	L e u	Arg	Gly	Leu	Leu	Pro	V a 1	Leu	Gly	Gln
205					210					2 1 5				
Pro	1 1 e	Ile	Arg	Ser	Ιle	Pro	Gln	Gly	Ile	V a l	Ala	Ala	Trp	Arg
220					2 2 5					230				
Gln	Arg	Ser	Ser	Arg	Asp	Pro	Ser	Trp	Arg	Gln	Pro	Glu	Arg	
235					240					2 4 5			248	

請求の範囲

- 1. 配列番号12に示すアミノ酸配列をコードする塩基配列、またはこれを一部置換、欠除もしくは付加した塩基配列、あるいはこれらにハイブリダイズする塩基配列を含むDNA。
- 5 2. 請求項1記載のDNAを含有する組換えベクター。
 - 3. 請求項2記載の組換えベクターにより形質転換された原核または真核 宿主細胞。
 - 4. 請求項3記載の宿主細胞を培養し、産生されたタンパク質を分離することを特徴とする組換えタンパク質の製造方法。
- 10 5. 請求項4記載の組換えタンパク質が巨核球増幅因子活性を有するタンパク質である組換えタンパク質の製造方法。
 - 6. 配列番号13に示すアミノ酸配列をコードする塩基配列、またはこれを一部置換、欠除もしくは付加した塩基配列、あるいはこれらにハイブリダイズする塩基配列を含むDNA。
- 7. 請求項6記載のDNAを含有する組換えベクター。
 - 8. 請求項7記載の組換えベクターにより形質転換された原核または真核宿主細胞。
 - 9. 請求項8記載の宿主細胞を培養し、産生されたタンパク質を分離することを特徴とする組換えタンパク質の製造方法。
- 20 10. 請求項9記載の組換えタンパク質が巨核球増幅因子活性を有するタンパク質である組換えタンパク質の製造方法。

Fig. 1

Fig. 2

Fig. 3

Fig. 5

Fig. 6

Meg-POTcDNA

Fig. 7

4/8

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP93/01540

	ASSIFICATION OF SUBJECT MATTER		-		
	C1 ⁵ C12N15/19, C12P21/02	•			
	to International Patent Classification (IPC) or to bol	II nanonai ciassificanon ano ir C			
	ocumentation searched (classification system followed	hv classification symbols)			
	C1 ⁵ C12N15/19, C12P21/02	• • •			
Documenta	tion searched other than minimum documentation to the	extent that such documents are included in the	ne fields searched		
CAS	ata base consulted during the international search (name ONLINE, WPI, WPI/L IS PREVIEWS	e of data base and, where practicable, search t	terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.		
А	JP, A, 4-295500 (Asahi Che Co., Ltd.), October 20, 1992 (20. 10. & WO, A, 92/17500 & AU, A,	1-10			
P, Ā	WO, A1, 93/16106 (Asahi Ch Co., Ltd.), August 19, 1993 (19. 08.	_	1-10		
P, A	WO, A1, 93/13132 (Chugai P. Co., Ltd.) July 8, 1993 (08. 07. 93), & ZA, A, 9209991	harmaceutical	1-10		
Further	documents are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: A" document defining the general state of the art which is not considered to be of particular relevance E" earlier document but published on or after the international filing date and not in conflict with the application but cited to understate the principle or theory underlying the invention cannot considered movel or cannot be considered to involve an invent step when the document is taken alone "" document referring to an oral disclosure, use, exhibition or other means P" document published after the international filing date but later than the principle or theory underlying the invention cannot considered novel or cannot be considered to involve an invention cannot considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an invention cannot ca					
	ctual completion of the international search	Date of mailing of the international seam January 25, 1994 (25			
lame and ma	ailing address of the ISA/	Authorized officer			
Japan	ese Patent Office	•			
ocsimile No	·	Telephone No			

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. CL⁵ C12N15/19, C12P21/02, C12N5/10

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. CL⁵ C12N15/19, C12P21/02, C12N5/10

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE, WPI, WPI/L BIOSIS PREVIEWS

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP,A,4-295500(旭化成工業株式会社), 20.10月.1992(20.10.92), &WO,A,92/17500&AU,A,9214350	1-10
P,A	WO,A1,93/16106(旭化成工業株式会社), 19.8月.1993(19.08.93)(ファミリーなし)	1-10
P,A	WO,A1,93/13132(中外製薬株式会社), 8.7月.1993(08.07.93),&ZA,A,9209991	1-10

C個の続きにも文献が列挙されてい	۵,	١,
------------------	----	----

「 パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に貫及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって出願と 矛盾するものではなく、発明の原理又は理論の理解のため に引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって追歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 05.01.94 名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号 国際調査報告の発送日 特許庁審査官(権限のある職員) 佐伯裕子 の 電話番号 03-3581-1101 内線 3449