Abrasive Machining

WORKPIECE SURFACE FINISH

Watch Video Here

Surface Grinding

ABRASIVES AND GRINDING WHEELS

Watch Video Here

Loose Abrasive Grains Irregular Cutting Edges

Knoop Hardness of Grits

Knoop Hardness Values for Common Abrasives

Abrasive Material	Year of Discovery	Hardness (Knoop)	Temperature of Decomposition in Oxygen (°C)	Comments and Uses
Quartz	?	320		Sand blasting
Aluminum oxide	1893	1600–2100	1700–2400	Softer and tougher than silicon carbide; used on steel, iron, brass, silicon
Carbide	1891	2200–2800	1500–2000	Used for brass, bronze, aluminum, and stainless and cast iron
Borazon [cubic boron nitride stainless (CBN)]	1957	4200–5400	1200–1400	For grinding hard, tough tool steels, stainless steel, cobalt and nickel based, superalloys, and hard coatings
Diamond (synthetic)	1955	6000–9000	700–800	Used to grind nonferrous materials, tungsten carbide, and ceramics

Abrasive Grain Size and Geometry

Typical Screens for Sorting Abrasives

Grain Sizes

- Coarse 4-24
- Medium 30-60
- Fine 70-600

Common Grit Sizes

- Aluminum oxide 4 − 240 grit
- Silicon carbide 2 240 grit
- Diamond and CBN 120 400 grit
- Lapping/fine honing (flour sizes) 240 600 grit

Grain Diameter vs. Openings

- Grain diameter, $D \cong {0.7}/_{S}$
- Screen size (number of openings/inch), S
- Grain size is smaller than the opening size

Grits Interact: Cutting, Plowing, Rubbing

Voids between grains collect chips

Positive or Negative Rake Angle

Heat Transfer in Abrasive Machining

- Plowing and Rubbing: energy goes into workpiece
- Cutting: 95 98% of energy (heat) goes into chips to makes sparks – chips burn

SEM Micrograph of Ground Steel Surface

SEM Micrograph of Stainless-Steel Chips

Wheel Structure and Grade

Residual Stress Distributions

Grinding conditions

	Abusive AG	Conventional CG	Low-stress LSG
Wheel	A46MV	A46KV	A46HV or A60IV
Wheel speed ft/min	6,000– 18,000	4,500– 6,500	2500–3000
Down feed in./pass	.002- .004	.001– .003	.0002- .005
Cross feed in./pass	.040– .060	.040– .060	.040060
Table speed ft/min	40– 100	40– 100	40–100
Fluid	Dry	Sol oil (1:20)	Sulfurized oil

BALANCING, TRUING AND DRESSING

Watch Video Here

Truing a Wheel

Stick Dressing vs. Truing

Standard Markings for Grinding Wheels

Standard Grinding Wheel Geometry

Standard Face Contours

GRINDING SAFETY

Watch Video Here

Cylindrical Grinding Between Centers

Movements

1. Wheel

2. Work (rotates)

3. Traverse

4. Infeed

CENTERLESS GRINDING

Watch Video Here

Centerless Grinding

Surface Grinding

Movements

- 1. Wheel 2. Infeed
- 3. Work table traverse

- A. Grinding wheel
- B. Grinding face
- C. Shaft
- D. Workpiece
- . Magnetic chuck on table

- 1. Wheel 2. Work table rotation
- 3. Infeed 4. Cross feed

Movements

- 1. Wheel 2. Infeed
- 3. Work table rotation

Creep-feed Grinding

Tool Grinding

Hand-held Grinding Wheels

Coated Abrasive Belt Composition

Belt composition Grit Size coat Glue or resin bon-

Backing

Backing-Paper or Cloth (cotton, rayon, polyester)

Honing

Superfinishing

ABRASIVE WATERJET CUTTING

Watch Video Here

Abrasive Waterjet Machining

Materials cut by AWC

- Plastics
- Glass
- Ceramics
- Rubber
- Metals
- Composites
- Any material thru choice of abrasives