1 Cauchyfolgen

Definition 1.0.1 (Cauchyfolge). Eine Folge $(a_n)_n$ heißt Cauchyfolge (kurz Cauchy), falls

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : |a_n - a_m| < \varepsilon \text{ für alle } n, m \geq K$$

Bemerkung. Reicht $m, n \in \mathbb{N}$ mit $m > n \ge K$ zu betrachten, da Def. symmetrisch in m, n ist und falls $m = n \Rightarrow a_m - a_n = 0$

Lemma 1.0.2. Jede konvergente Folge ist eine Cauchyfolge.

Beweis.
$$(a_n)_n$$
 $a_n \to a$ für $n \to \infty$
d. h. $\forall \varepsilon > 0 \exists K \in \mathbb{N} : \forall n \ge K$ ist $|a_n - a| < \varepsilon/2$.
Ist $m > n \ge K : |a_m - a_n| = |a_m - a + a - a_n| \le \underbrace{|a_m - a|}_{<\varepsilon/2} + \underbrace{|a - a_n|}_{<\varepsilon/2}$. Also ist $(a_n)_n$ Cauchyfolge.

Lemma 1.0.3. Jede Cauchyfolge ist beschränkt.

Beweis. Sei a_n Cauchyfolge.

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : |a_m - a_n| < \varepsilon \quad \forall m, n \ge K.$$

Wähle $\varepsilon = 1, k_0 : |a_m - a_n| < 1 \quad \forall n, m \ge K_0$ Sei $n \ge k_0 \Rightarrow |a_{K_0} - a_n| < 1$.

$$\Rightarrow |a_n| = |a_n - a_{K_0} + a_{K_0}| \le |a_n - a_{K_0}| + |a_{K_0}| < 1 + |a_{K_0}|$$

für alle $n \geq K_0$

Also setze: $C := \max(|a_1|, |a_2|, \dots, |a_{K_0}|, 1 + |a_{K_0}|) < \infty$

$$\Rightarrow \forall n \in \mathbb{N} \text{ ist } |a_n| < C.$$

Beispiel.

$$a_n = (-1)^n (\operatorname{oder}(-1)^n + 1/n)$$

 $n = 2k, k \in \mathbb{N} \Rightarrow a_{2k} = (-1)^{2k} = 1$
 $a_{2k+1} = (-1)^{2k+1} = -1.$

Die neue Folge $(a_{2k})_{k\in\mathbb{N}}$ ist konstant, also konvergiert sie.

Beispiel. $B = \{b_1, b_2, \dots, b_R\} \subset \mathbb{R} \quad R \in \mathbb{N}$. $(a_n)_n$ Folge mit Werten in B. $a_n \in B \forall n \in \mathbb{N}$ B endliche Menge! \Rightarrow Es gibt mind. ein $r_0 \in \{1, 2, \dots, R\}$, sodass $a_n = b_{r_0}$ für unendlich viele n.

$$\Leftrightarrow \forall K \in \mathbb{N} \exists n > K : a_n = b_{r_0}$$

Jetzt induktiv:

$$n_1 \in \mathbb{N} : a_{n_1} = b_{r_0}.$$

$$n_2 := \min(n > n_1 : a_n = b_{r_0}) > n_1 \quad a_{n_2} = b_{r_0}$$
 induktiv
$$\operatorname{geg.} n_1 < n_2 < \ldots < n_k$$

$$a_{n_l} = b_{r_0} \quad l = \{1, \ldots, k\}$$

$$n_{k+1} = \min(n > n_k : a_n = b_{r_0}) > n_k \text{ und } a_{n_{k+1}} = b_{r_0}.$$

Erhalte $n_k \in \mathbb{N} \quad \forall n \in \mathbb{N} \text{ mit } n_{k+1} > n_k \forall k \in \mathbb{N} \text{ und } a_{n_k} = b_{r_0}$ $\Rightarrow \text{Folge } (a_{n_k})_{k \in \mathbb{N}} \text{ die konstant ist.}$ Außerdem $(a_{n_k})_k$ ist Teil der Folge $(a_n)_n$!

Definition 1.0.4 (Teilfolge). Eine Funktion $\sigma : \mathbb{N} \to \mathbb{N}$ heißt Ausdünnung, falls $\sigma(n+1) > \sigma(n) \quad \forall n \in \mathbb{N}$ (d. h. σ ist streng monoton wachsend).

Erinnerung: Folge ist eine Funktion $f: \mathbb{N} \to X$ $\sigma: \mathbb{N} \to \mathbb{N} \Rightarrow f \circ \sigma: \mathbb{N} \to X, n \mapsto f(\sigma(n))$ ist auch eine Folge. $a_n = f(n), \qquad a_{\sigma(n)} = f(\sigma(n)) = (f \circ \sigma)(n)$ Geg. Folge $(a_n)_{n \in \mathbb{N}}$ und eine Ausdünnung $\sigma: \mathbb{N} \to \mathbb{N}$. Setzen wir $n_k := \sigma(k), k \in \mathbb{N}$ und $(a_{\sigma(k)})_k = (a_{n_k})_{k \in \mathbb{N}}$ Teilfolge von $(a_n)_{n \in \mathbb{N}}$. Beobachtung: abg. und beschr. Intervalle sind aus Folgensicht fast so gut wie

Lemma 1.0.5. Sei $I = [b, c], b, c \in \mathbb{R}, b \le c.(a_n)_n \subset I.$ d. h. $a_n \in I \forall n \in \mathbb{N}$, dann gibt es eine Teilfolge, von $(a_n)_n$, die mit Grenzwert in I konvergiert.

Beweis.
$$I_0 = [a, b]$$

Bild:
 $\begin{bmatrix} \infty & \text{endl.} \\ b & z_1 := \frac{b+c}{2} \end{bmatrix}$

Fallunterscheidung:

endliche Mengen!

```
1.) Es sind \infty-viele a_n \in I_1 := [b, z_1]. Dann setze b_1 := b, c_1 := z_1, I_1 = I_{1,-} = [b_1, c].
```

2.) Nun endlich viele
$$a_n \in I_{1,-} \Rightarrow b_1 := z_1, c_1 := c, I_1 := I_1 := I_{1,+} := [z_1, c] = [b_1, c_1] \Rightarrow \exists \infty$$
-viele $a_n \in I_1$.

$$|I_1| = \text{Länge von } I_1 = c_1 - b_1 = \frac{c-b}{2}. \ n_1 = \min(n \in \mathbb{N} : a_n \in I_1) \Rightarrow n_1 \ge 1.a_{n_1} \in I_1. \ \text{Dann } z_2 := \frac{b_1 + c_1}{2}$$

$$\Rightarrow$$
 Sind ∞ -viele $a_n \in I_{2,-} := [b_1, z_2]$, sp setze $I_2 := I_{2,-}$. Somit sind ∞ -viele $a_n \in I_{2,+} = [z_1, c_1]$. Setze dann $I_2 := I_{2,+}$.

$$n_2 := \min(n > n_1 : a_n \in I_2) \Rightarrow a_{n_2} \in I_2 \text{ und } n_2 > n_1 \ge 1. |I_2| = \frac{|I_1|}{2} = \frac{c - b}{2}.$$

Iteriere dies: Ang. haben $I_k = [b_k, c_k] \subset I_{k-1} \subset \ldots \subset I_1 \subset I_0 = [b, c]. |I_k| = \frac{|I_0|}{2}.$

 $z_{k+1} := \frac{b_k + c_k}{2}$ Mittelpunkt von I_k .

Sind ∞ -viele a_n in $I_{k+1} := [b_k, z_{k+1}]$, so setze $I_{k+1} := I_{k+1,-}$ $b_{k+1} = b_k, c_{k+1} = z_k + 1$.

Somit $I_{k+1} := I_{k+1,+} = [z_{k+1,c_k}]/b_{k+1} = z_{k+1}, c_{k+1} = c_k$.

Nach Konstruktion sind ∞ -viele $a_n \in I_{k+1}$. (d. h. $\forall K \in \mathbb{N} \exists n > k : a_n \in I_{k+1}$) $n_{k+1} := \min(n > n_k : a_n \in I_{k+1}) > n_k$

 \Rightarrow Folge von Indizes $n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$

 $n_k \in \mathbb{N} \text{ mit } a_{n_k} \in I_k, |I_k| = \frac{\tilde{I}_0}{2^k}$

 $I_k = [b_k, c_k]$

$$b_k \le a_{n_k} \le c_k \quad \forall k \in \mathbb{N}(*)$$

 $(b_k)_k$ mon. wachsende Folge $b_k \leq c \forall k$.

 $(c_k)_k$ mon. fallende Folge $c_k \ge b \forall k$. Mon. Konv.

 $b = \lim_{k \to \infty} b_k$ exist.

 $c = \lim_{k \to \infty}^{k \to \infty} c_k \text{ exist.}$

und $0 \le c_k - b_k \le \frac{c-b}{2^k} \to 0 (k \to \infty)$.

 $\Rightarrow b = c \stackrel{(*)}{\Rightarrow} (a_{n_k})_k$ konvergiert gegen b.

d. h. $(a_{n_k})_k$ ist konv. Teifolge von $(a_n)_n$.

Korollar 1.0.6. Jede beschränkte (reelle) Folge hat eine konvergente Teilfolge (Satz von Bolzano-Weierstraß).

Beweis. Sei $0 \le C < \infty . |a_n| \le C \quad \forall n \in \mathbb{N}.$

$$\Rightarrow -C \le a_n \le C, a_n \in [-C, C] \quad \forall n \in \mathbb{N}.$$

 \Rightarrow Beh. folgt aus Lemma 5!

Korollar 1.0.7. Jede Cauchy-Folge hat eine konv. Teilfolge.

Beweis. Nach Lemma 3 ist $(a_n)_n$ beschränkt. Wende Korrolar 6 an.

Hauptbeobachtung:

Lemma 1.0.8. Sei $(a_n)_n$ eine Cauchyfolge. Dann gilt

 $(a_n)_n$ konvergiert $\Leftrightarrow (a_n)_n$ hat eine konvergente Teilfolge.

Bemerkung. Ist $(a_n)_n$ konvergente Folge, so konvergiert jede Teilfolge gegen den gleichen Grenzwert von $(a_n)_n$.

Bemerkung. $(a_n)_n$ Cauchyfolge

$$\Leftrightarrow \forall \varepsilon > 0 \exists K \in \mathbb{N} : |a_m - a_n| < \varepsilon \quad \forall m > n \ge K.$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists K \in \mathbb{N} : |a_{n+p} - a_n| < \varepsilon \quad \forall n \ge K, p \in \mathbb{N}$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists K \in \mathbb{N} : \sup \underbrace{|a_{n+p} - a_n|}_{\text{muss gleichm. in } p \in \mathbb{N} \text{ klein sein für } n \text{ groß}} < \varepsilon \quad \forall m > n \geq K$$

Beweis. " \Rightarrow ": Nach Bem 1 konvergiert jede Teilfolge von $(a_n)_n$ gegen denselben Grenzwert.

" \Rightarrow ": Ang. Teilfolge $(a_{n_k})_k$ konvergiert gegen $L \in \mathbb{R}$. $L = \lim_{k \to \infty} a_{n_k}$ existiert.

$$n_k \in \mathbb{N}, n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$$

Auch: $(a_n)_n$ ist Cauchy, d. h.

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : |a_m - a_n| < \varepsilon \quad \forall m > n \ge K(*).$$

$$n_1 \ge 1 \Rightarrow n_2 > n_1 \ge 1 \Rightarrow n_2 \ge 2 \dots n_k \ge k \forall k$$

D. h. ist $k > n \Rightarrow m = n_k \ge k > n \stackrel{(*)}{\Rightarrow} |a_{n_k} - a_n| < \varepsilon \quad \forall k > n \ge K$. Sei $\varepsilon > 0, K$ gegeben

$$\Rightarrow |a_{n_k} - a_n| < \varepsilon \quad \forall k > n \ge K \Rightarrow \lim_{k \to \infty} |a_{n_k} - a_n| = \lim_{k \to \infty} |a_{\sigma(k)} - a_n| = |L - a_n| \le \varepsilon$$

$$\sigma(k) = n_k, \lim_{k \to \infty} a_{\sigma(k)} = L$$

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : |L - a_n| \le \varepsilon \forall n \ge K$$

 $\Rightarrow (a_n)_n$ konvergiert gegen L!

Satz 1.0.9. Eine (reelle) Folge $(a_n)_n$ konvergiert $\Leftrightarrow (a_n)_n$ ist Cauchyfolge.

Beweis. \Rightarrow "ist Lemma 2.

$$\Leftarrow$$
 " $(a_n)_n$ Cauchy $\stackrel{\text{Kor. 7}}{\Rightarrow}$ \exists konv. Teilfolge von $(a_n)_n \stackrel{\text{Lem. 8}}{\Rightarrow} (a_n)_n$ konvergiert.

z. B. $(a_n)_n$ Cauchyfolge. $\Rightarrow \exists$ Teilfolge mit $|a_{n_{k+1}} - a_{n_k}| < 2^{-k}$.