# Formal Languages and Automata Theory (181554)

Unit 1

#### FORMAL LANGUAGES AND AUTOMATA THEORY

| Course Code       | 18IS54 | Credits      | 4                        |
|-------------------|--------|--------------|--------------------------|
| Course type       | PC     | CIE Marks    | 50 marks                 |
| Hours/week: L-T-P | 4-0-0  | SEE Marks    | 50 marks                 |
| Total Hours:      | 40     | SEE Duration | 3 Hours for<br>100 marks |

#### Book

- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education, 3/E, 2013.
- John R. Levine and Tony Mason and Doug Brown, Lex and Yacc, "UNIX programming tools", 2/E, 2012.
- 3. S. P. Euguene Xavier "Theory of Automata, Formal Languages and Computation", 5 / E 2011.

#### Reference Books

- Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey
   Ullman, "Compilers Principles, Techniques and Tools", Pearson Education, 2 / E,2008
- Peter Linz, "An Introduction to Formal Languages and Automata", Narosa Publishing House, 5/E, 2011.

# **Automata Theory**

- It is study of abstract computing devices.
- Finite Automaton are useful models.
- In finite automata components are viewed as finite number of states.

Ex: on/off switch



 Finite automata which is part of lexical analyser the job may be to recognize the keyword

## Finite Automata

- Some Applications
  - Software for designing and checking the behavior of digital circuits
  - Lexical analyzer of a typical compiler
  - Software for scanning large bodies of text (e.g., web pages) for pattern finding
  - Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

# Finite Automata: Examples

On/Off switch



Modeling recognition of the word "then"



## **Automata Theory**

Grammars are useful models.

```
Ex: parser: E \Rightarrow E + E
```

- Regular Expression : [A-Z][a-z]\*[]
- Two views decidability and intractability
- Concepts of automata theory

```
alphabet
```

strings

power of an alphabet

languages

# Alphabet

#### An alphabet is a finite, non-empty set of symbols

- We use the symbol  $\sum$  (sigma) to denote an alphabet
- Examples:
  - Binary:  $\Sigma = \{0,1\}$
  - All lower case letters:  $\Sigma = \{a,b,c,...z\}$
  - Alphanumeric:  $\Sigma = \{a-z, A-Z, 0-9\}$

• ...

# Strings

A string or word is a finite sequence of symbols chosen from  $\Sigma$ 

• Empty string is  $\varepsilon$  (or "epsilon")

• Length of a string w, denoted by "|w|", is equal to the number of (non- $\varepsilon$ ) characters in the string

• E.g., 
$$x = 010100$$
  $|x| = 6$ 

• 
$$x = 01 \epsilon 0 \epsilon 1 \epsilon 00 \epsilon$$
  $|x| = ?$ 

xy = concatentation of two strings x and y

# Powers of an alphabet

Let  $\Sigma$  be an alphabet.

- $\Sigma^k$  = the set of all strings of length k  $\Sigma = \{0,1\}$   $\Sigma^2 = \{00,11,10,01\}$
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$
- $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup ...$

# Languages

L is a said to be a language over alphabet  $\Sigma$ , only if  $L \subseteq \Sigma^*$ 

#### **Examples:**

- 1. Let L be the language of <u>all strings consisting of n 0's followed by n 1's</u>:  $L = \{\epsilon, 01, 0011, 000111,...\}$
- 2. Let L be *the* language of <u>all strings of with equal number of 0's and 1's</u>:  $L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001,...\}$

#### Ø denotes the Empty language

• Let  $L = \{ \epsilon \}$ ; Is  $L = \emptyset$ 

# Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
  - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
  - The machine can exist in multiple states at the same time

#### **DFA Deterministic Finite Automata**

A Deterministic Finite Automata denoted by 5-tuple (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub> F) consists of

- The set Q which is simply a set with a finite number of states. Its states can, however, be interpreted as a state that the system (automaton) is in.
- $\sum$  is finite set of input symbols
- The transition function is also called a next state function meaning that the automaton moves into the state  $\delta(p, a) = q$  if it receives the input symbol a while in state p.
- $q_0$  is the start state.
- F is set of final or accepting states and is subset of Q.

## Deterministic Finite Automata - Definition

- A Deterministic Finite Automaton (DFA) consists of:
  - Q ==> a finite set of states
  - $\Sigma ==>$  a finite set of input symbols (alphabet)
  - $\delta$  ==> a transition function, which is a mapping between Q x  $\Sigma$  ==> Q
  - q<sub>0</sub> ==> a start state
  - F ==> set of accepting states
- A DFA is defined by the 5-tuple:
  - ( Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F)

# What does a DFA do on reading an input string?

- Input: a word w in ∑\*
- Question: Is w acceptable by the DFA?
- Steps:
  - Start at the "start state" q<sub>0</sub>
  - For every input symbol in the sequence w do
    - Compute the next state from the current state, given the current input symbol in w and the transition function
  - If after all symbols in w are consumed, the current state is one of the accepting states (F) then accept w;
  - Otherwise, reject w.

# Regular Languages

- Let L(A) be a language *recognized* by a DFA A.
  - Then L(A) is called a "Regular Language".

Locate regular languages in the Chomsky Hierarchy

# The Chomsky Hierachy



• A containment hierarchy of classes of formal languages



# Example #1

- Design a DFA that accepts all and only the strings of 0's and 1's that have the sequence 01 somewhere in the string.
- Build a DFA for the following language:
  - L = {w | w is a binary string of the form x01y for some strings x and y consisting of 0's and 1's}
- Steps for building a DFA to recognize L:
  - $\Sigma = \{0,1\}$
  - Decide on the states: Q
  - Designate start state and final state(s)
  - $\delta$ : Decide on the transitions:
- "Final" states == same as "accepting states"
- Other states == same as "non-accepting states"

# DFA for strings containing 01

1001 
$$q_0-1>q_0-0>q_1-0>q_1-1>q_2$$

What makes this DFA deterministic?



 What if the language allows empty strings?

- $Q = \{q_{0}, q_{1}, q_{2}\}$
- $\Sigma = \{0,1\}$
- start state =  $q_0$
- $F = \{q_2\}$
- Transition table

|        |                         | symbols |       |  |
|--------|-------------------------|---------|-------|--|
|        | $\delta$                | 0       | 1     |  |
|        | → <b>q</b> <sub>0</sub> | $q_1$   | $q_0$ |  |
| states | $q_1$                   | $q_1$   | $q_2$ |  |
| Sta    | *q <sub>2</sub>         | $q_2$   | $q_2$ |  |

Example: Design a DFA to accept string of a's and b's having a substring aa

M= ( Q, 
$$\sum$$
,  $\delta$ ,  $q_{0}$ , F )  
Q={ $q_{0}$ ,  $q_{1}$ ,  $q_{2}$ }  
 $\sum$  = {a,b}  
 $q_{0}$  is the start state  
F = { $q_{2}$ }



Example: Design a DFA to accept string of a's and b's having a substring aa

M= ( Q, 
$$\sum$$
,  $\delta$ ,  $q_{0}$ , F )  
Q={ $q_{0}$ ,  $q_{1}$ ,  $q_{2}$ }  
 $\sum$  = {a,b}  
 $q_{0}$  is the start state  
F = { $q_{2}$ }



- $Q = \{q_{0}, q_{1}, q_{2}\}$
- $\Sigma = \{a,b\}$
- start state =  $q_0$
- $F = \{q_2\}$
- Transition table

#### symbols

|        | 3,1110013       |       |       |
|--------|-----------------|-------|-------|
|        | $\delta$        | a     | b     |
|        | →q <sub>0</sub> | $q_1$ | $q_0$ |
| states | $q_1$           | $q_2$ | $q_0$ |
| Ste    | *q <sub>2</sub> | $q_2$ | $q_2$ |

Example: Design a DFA to accept the language consisting of 0's and 1's and L={w | w is of even length and begins with 01 } M= ( Q,  $\sum$ ,  $\delta$ , q<sub>0</sub>, F )



Example: Design a DFA to accept the language consisting of 0's and 1's and L={w|w is of even length and begins with 01}  $M=(Q, \sum, \delta, q_0, F)$ 



- Q =  $\{q_0, q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0,1\}$
- start state =  $q_0$
- $F = \{q_2\}$
- Transition table

|        | symbols         |       |                |
|--------|-----------------|-------|----------------|
|        | $\delta$        | 0     | 1              |
|        | →q <sub>0</sub> | $q_1$ | $q_4$          |
| states | $\mathbf{q_1}$  | $q_4$ | q <sub>2</sub> |
| sta    | *q <sub>2</sub> | $q_3$ | $q_3$          |
|        | $q_3$           | $q_2$ | $q_2$          |
|        | $q_{_{4}}$      | $q_4$ | $q_4$          |

Example: Design a DFA to accept string of a's and b's having eactly one a

M= ( Q, 
$$\sum$$
,  $\delta$ ,  $q_{0}$ , F )  
Q={ $q_{0}$ ,  $q_{1}$ ,  $q_{2}$ }  
 $\sum$  = {a,b}  
 $q_{0}$  is the start state  
F = {q1}



Example: Design a DFA to accept string of a's and b's having eactly one a

M= ( Q, 
$$\sum$$
,  $\delta$ ,  $q_{0}$ , F )  
Q={ $q_{0}$ ,  $q_{1}$ ,  $q_{2}$ }  
 $\sum$  = {a,b}  
 $q_{0}$  is the start state  
F = {q1}



- $Q = \{q_{0}, q_{1}, q_{2}\}$
- $\Sigma = \{a,b\}$
- start state =  $q_0$
- F = {q1}
- Transition table

#### symbols

|        | $\delta$        | a     | b       |
|--------|-----------------|-------|---------|
|        | •q <sub>0</sub> | $q_1$ | $q_0$   |
| )<br>) | *q <sub>1</sub> | $q_2$ | $q_{1}$ |
|        | q <sub>2</sub>  | $q_2$ | $q_2$   |

- Like DFA NFA has finite set of states, finite set of input symbols, one start state and a set of accepting states.
- Difference between DFA and NFA is  $\delta$  function in NFA it takes a state and input symbol as arguments but returns a set of zero, one or more states.

#### A Non Deterministic Finite Automaton (NFA) consists of:

Q ==> a finite set of states

 $\Sigma ==>$  a finite set of input symbols (alphabet)

 $\delta ==> a$  transition function, which is a mapping between Q x  $\Sigma ==> Q$ 

 $q_0 ==> a start state$ 

F ==> set of accepting states

#### A NFA is defined by the 5-tuple:

$$(Q, \Sigma, \delta, q_0, F)$$

• Design a NFA which accepts exactly those strings that have the symbol 1 in second last position.



• Design a NFA which accepts exactly those strings that have the symbol 1 in second last position.



- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{0,1\}$
- start state =  $q_0$
- $F = \{q_2\}$
- Transition table

#### 

• Design a NFA where L={w|w ends in 01}.



• 
$$Q = \{q_0, q_1, q_2\}$$

• 
$$\Sigma = \{0,1\}$$

• 
$$F = \{q_2\}$$

• Transition table

#### symbols

|        | $\delta$        | 0                 | 1     |
|--------|-----------------|-------------------|-------|
|        | •q <sub>0</sub> | $\{q_{0,}q_{1}\}$ | $q_0$ |
| states | $q_1$           | Ø                 | $q_2$ |
| Sta    | *q <sub>2</sub> | Ø                 | Ø     |

Design a NFA which accepts exactly those strings that have the symbol 1 in second last position.



- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a,b\}$
- start state =  $q_0$
- F = {q1}
- Transition table

#### 

• Design a NFA which accepts exactly those those strings that have the symbol 1 in second last position.



|        | $\delta$                | 0                                 | 1                                                 |
|--------|-------------------------|-----------------------------------|---------------------------------------------------|
|        | <b>→</b> q <sub>0</sub> | $q_0$                             | $\{q_{0,}q_{1}\}$                                 |
| states | $q_{0}, q_{1}$          | {q <sub>0,</sub> q <sub>2</sub> } | {q <sub>0</sub> ,q <sub>1</sub> ,q <sub>2</sub> } |
| Sta    | $q_0q_2$                |                                   |                                                   |
|        |                         |                                   |                                                   |
|        |                         | 1                                 |                                                   |

• Design a NFA which accepts exactly those those strings that have the symbol 1 in second last position.



|        | $\delta$                                          | 0                                 | 1                       |
|--------|---------------------------------------------------|-----------------------------------|-------------------------|
|        | $\rightarrow q_0$                                 | $q_0$                             | $\{q_{0,}q_{1}\}$       |
| states | $q_0, q_1$                                        | {q <sub>0,</sub> q <sub>2</sub> } | $\{q_{0,}q_{1},q_{2}\}$ |
| Sta    | *q <sub>0</sub> q <sub>2</sub>                    | $q_0$                             | $\{q_{0,}q_{1}\}$       |
| *      | {q <sub>0</sub> ,q <sub>1</sub> ,q <sub>2</sub> } | {q <sub>0,</sub> q <sub>2</sub> } | $ _{\{q_{0,}q_1,q_2\}}$ |

• Design a NFA which accepts exactly those those strings that have the symbol 1 in second last position.



• Design a NFA where L={w|w ends in 01}.



|        | symbol            |                                     |                   |  |
|--------|-------------------|-------------------------------------|-------------------|--|
|        | $\delta$          | 0                                   | 1                 |  |
|        | →q <sub>0</sub>   | $\{q_{0,}q_{1}\}$                   | $q_0$             |  |
| states | $\{q_{0,}q_{1}\}$ | $\left\{ q_{0,}^{}q_{1}^{}\right\}$ | $\{q_{0,}q_{2}\}$ |  |
| sta    |                   |                                     |                   |  |

• 
$$Q = \{q_0, q_1, q_2\}$$

• 
$$\Sigma = \{0,1\}$$

• start state = 
$$q_0$$

• 
$$F = \{q_2\}$$

• Transition table

| Sy | m | b | O | ls |
|----|---|---|---|----|
|    |   |   |   |    |

|        | $\delta$        | 0                 | 1     |
|--------|-----------------|-------------------|-------|
| states | •q <sub>0</sub> | $\{q_{0,}q_{1}\}$ | $q_0$ |
|        | $q_1$           | Ø                 | $q_2$ |
|        | *q <sub>2</sub> | Ø                 | Ø     |

• Design a NFA where L={w|w ends in 01}.



|        |                                    | symbol                            |                 |  |  |
|--------|------------------------------------|-----------------------------------|-----------------|--|--|
|        | $\delta$                           | 0                                 | 1               |  |  |
|        | •q <sub>0</sub>                    | $\{q_{0,}q_{1}\}$                 | $q_0$           |  |  |
| states | $\{q_{0,}q_{1}\}$                  | {q <sub>0,</sub> q <sub>1</sub> } | ${q_{0,}q_{2}}$ |  |  |
| ste    | *{q <sub>0</sub> ,q <sub>2</sub> } | ${q_{0,}q_{1}}$                   | $q_0$           |  |  |

• 
$$Q = \{q_0, q_1, q_2\}$$

• 
$$\Sigma = \{0,1\}$$

• start state = 
$$q_0$$

• 
$$F = \{q_2\}$$

• Transition table

|        |                 | symbols           |       |
|--------|-----------------|-------------------|-------|
|        | $\delta$        | 0                 | 1     |
| states | •q <sub>0</sub> | $\{q_{0,}q_{1}\}$ | $q_0$ |
|        | $q_1$           | Ø                 | $q_2$ |
|        | *q <sub>2</sub> | Ø                 | Ø     |

• Design a NFA where L={w|w ends in 01}.



### ε-NFA

ε-NFA is represented by A = ( Q,  $\sum$ , δ, q<sub>0</sub>, F)

 $\delta$  is now a function that takes as arguments

- 1. A state in Q and
- 2. A member of  $\Sigma$  U  $\{\epsilon\}$  either an input symbol or the symbol  $\epsilon$

With this feature a transition is allowed on  $\varepsilon$  the empty string,  $\varepsilon$  contributes nothing to the string along the path.

Ex: Design an  $\epsilon$ -NFA that accepts decimal numbers consisting of

- 1. an optional + or sign
- 2.a string of digits
- 3.a decimal point
- 4. Another string of digits. Either this string of digits or the string in 2 can be empty but atleast one of the two strings of digits must be non empty.











#### symbol

|        | C                   | ε                 | +,- |                   | 1                                 |
|--------|---------------------|-------------------|-----|-------------------|-----------------------------------|
|        | 0                   |                   |     | •                 | 0,1,9                             |
| states | $q_0$               | {q <sub>1</sub> } | q1  | ø                 | ø                                 |
|        |                     |                   |     |                   |                                   |
|        | $\mathbf{q}_{_{1}}$ | ø                 | Ø   | {q <sub>2</sub> } | {q <sub>1</sub> ,q <sub>4</sub> } |
|        | q <sub>2</sub>      | Ø                 | Ø   | Ø                 | {q <sub>3</sub> }                 |
|        | q <sub>3</sub>      | {q <sub>5</sub> } | Ø   | Ø                 | {q <sub>3</sub> }                 |
|        | $q_4$               | Ø                 | Ø   | {q <sub>3</sub> } | Ø                                 |
|        | *q <sub>5</sub>     | Ø                 | Ø   | Ø                 | Ø                                 |

#### ε-closures

ECLOSE:

ECLOSE( $q_0$ ) in previous example is {q0,q1} ECLOSE( $q_3$ ) is {q3,q5}

ECLOSE(1) is {1,2,3,4,6} ECLOSE(2) is {2,3,6}





Eliminating  $\epsilon$  transitions results in DFA that accepts the same language as E



Eliminating ε transitions results in DFA that accepts the same language as E



Eliminating ε transitions results in DFA that accepts the same language as E



Eliminating ε transitions results in DFA that accepts the same language as E



Eliminating ε transitions results in DFA that accepts the same language as E



Design a DFA to accept strings of a's and b's except those containing the substring aab.

Design a DFA to accept strings of a's and b's except those containing the substring aab.



Design a DFA to accept strings of a's and b's having atleast one a

Design a DFA to accept strings of a's and b's having atleast one a





```
\delta(q_0,a)=\{q1\}
                                                                                                                                                                                                                           \delta(q_0,b)=\emptyset
                                                                                                   δ(q_0,b)=Ø
δ(q_1,b)={q2,q3,q4,q6}
\delta(q_1,a)=\emptyset
εclosure(q0)={q0}-----(A)
\delta(A,a) = \epsilon \operatorname{closure}(\delta N(A,a)) = \epsilon \operatorname{closure}(\delta N(q0,a)) = \{q1\} ----- (B)
\delta(A,b) = \epsilon \operatorname{closure}(\delta N(A,b)) = \epsilon \operatorname{closure}(\delta N(q0,b)) = \emptyset
\delta(B,a) = \epsilon(\delta N(B,a)) = \epsilon(\delta N(q1,a)) = \emptyset
\delta(B,a) = \epsilon(\delta N(B,b)) = \epsilon(\delta N(q1,b)) = \epsilon(\delta N(q1,b)
\delta(C,a) = \epsilon \operatorname{closure}(\delta N(C,a)) = \epsilon \operatorname{closure}(\delta N(q2,q3,q4,q6,q9),a)) = \epsilon \operatorname{closure}(q5) = \{q5,q8,q9,q3,q4,q6\} ---- (D)
\delta(C,b) = \epsilon(\delta N(C,b)) = \epsilon(\delta N(Q_2,Q_3,Q_4,Q_6,Q_9),b) = \epsilon(\delta N(Q_2,Q_3,Q_4,Q_6,Q_9),b) = \epsilon(\delta N(Q_3,Q_4,Q_6,Q_7,Q_8,Q_9),b)
\delta(D,a) = \epsilon(\delta N(D,a)) = \epsilon(\delta N(Q_3,Q_4,Q_5,Q_6,Q_8,Q_9),a)) = \epsilon(Q_5,Q_8,Q_9,Q_8,Q_9,Q_8,Q_9,Q_8,Q_9) = \epsilon(Q_5,Q_8,Q_9,Q_8,Q_9,Q_8,Q_9,Q_8,Q_9)
\delta(D,b) = \epsilon(\delta N(D,b)) = \epsilon(\delta N(Q_5,Q_3,Q_4,Q_6,Q_7,Q_8,Q_9),b)) = \epsilon(Q_7) = \{Q_3,Q_4,Q_6,Q_7,Q_8,Q_9\} ---- (E)
\delta(E,a) = \epsilon \operatorname{closure}(\delta N(E,a)) = \epsilon \operatorname{closure}(\delta N(q3,q4,q6,q7,q8,q9),a)) = \epsilon \operatorname{closure}(q5) = \{q5,q8,q9,q3,q4,q6\} ---- (D)
\delta(E,b) = \epsilon(\delta N(E,b)) = \epsilon(\delta N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (E)
```

### ε-NFA to DFA



#### Convert & NFA to DFA

