

PAW3399DM-T4QU: Optical Gaming Navigation Chip

General Description

PAW3399DM-T4QU is PixArt Imaging's new low power high end gaming navigation chip with illumination source in a 16-pin molded lead-frame DIP package. It provides best in class gaming experience with the enhanced features of high speed, high resolution, high accuracy and selectable lift detection height to fulfill professional gamers' need. It is designed to be used with LM19-LSI or LOAE-LSI1 to achieve optimum performance.

Key Features

- Low power consumption of typical 2.4mA in run mode (HP Mode)
- 16-pin molded lead-frame DIP package with 850nm illumination source
- Enhanced programmability
 - Gaming Mode
 - High Performance Mode (HP Mode)
 - Low Power Mode (LP Mode)
 - Corded Gaming Mode
 - Lift detection options
 - 1mm, 2mm and 3mm setting
 - Manual lift cut off calibration
 - Selectable resolutions up to 20000cpi with 50cpi step size
 - Angle snapping
 - Angle tunability
- Resolution error of 0.4% (typical) at 5000cpi on QCK up to 200ips
- High speed motion detection 650ips* (typical) and acceleration 50g* (typical)
- Self-adjusting variable frame rate for optimum performance
- Internal oscillator no clock input needed
- 4-wire serial port interface (SPI)
- Motion interrupt output

- Applications
 - Corded and cordless optical gaming mice
 - Integrated input devices

Key Parameters

Parameter	Value
Power supply Range	VDD: 1.80 – 2.05
(V)	VDDIO: 1.80 – 3.30
Lens Magnification	1:1
Interface	4-wire Serial Port Interface
Typical Operating	Run: 2.4 mA (HP Mode)
Current	Run: 1.7 mA (LP Mode)
@ VDD = 1.9V	Rest1: 680 μA
Note: includes LED	Rest2: 15 μA
current	Rest3: 6 μA
	Power Down: 4 μA
Resolution (cpi)	Up to 20000
Tracking Speed (ips)	650* (typical)
Acceleration (g)	50* (typical)
Package Type	16 pin molded lead frame
	DIP package assemble with
	lens
	10.90 x 16.20 x 9.81 mm

Note: * - HP Mode

Ordering Information:

Part Number	Package Type
PAW3399DM-T4QU	16-pin DIP
LM19-LSI	Lens
LOAE-LSI1	Trim Lens

http://www.pixart.com

Table of Contents

PAW3	399DM-T4QU: Optical Gaming Navigation Chip	
Ger	neral Description	
Key	Features	
-	Parameters	
Ord	dering Information:	
	of Contents	
	Figures	
List of	Tables	
1.0	Introduction	
1.1	Chip Overview	6
1.2	o a constant of the constant o	
2.0	Mechanical Specifications	
2.1		
2.2		
2.3	Chip Assembly Drawings	9
2.4	Lens Dimensions	11
2.5	Lens Assembly Drawings	12
2.6		
3.0	Reference Schematics	18
4.0	Electrical Specifications	19
4.1	Regulatory Requirements	19
4.2	Absolute Maximum Ratings	19
4.3	Recommended Operating Conditions	20
4.4	AC Electrical Specifications	21
4.5	DC Electrical Specifications	23
5.0	Serial Peripheral Interface (SPI)	24
5.1	Signal Description	24
5.2	Motion Pin Timing	24
5.3	Chip Select Operation	24
5.4	Write Operation	25
5.5	Read Operation	26
5.6	Required timing between Read and Write Commands (tsxx)	27
5.7	Burst Mode Operation	28
5	5.7.1 Motion Read	28
5	5.7.2 Procedure to Start Motion Burst	29
6.0	Power-Up Sequences	30
6.1	Power-Up	30
6.2	Power-Up Initialization Register Setting	30
6.3	NRESET	33
7.0	Operation Guides	34
Versio	on 1.00 07 Dec 2020 11067ENW	SEE. FEEL. TOUCH.

7.1	RawData Output	34
7.2	Shutdown	36
7.3	Gaming and Office Mode Setting	37
7.4	Universal Lift Cut Off	39
7.5	Manual Lift Cut Off Calibration	39
7.5	5.1 Lift Cut off Calibration Procedures	39
7.5	5.2 Enable Lift Cut off Calibration Register Setting	41
7.5	5.3 Disable Lift Cut off Calibration Register Setting	41
8.0 F	Registers	43
8.1	Registers Summary Table	43
8.2	Registers Description	44
8.3	Bit Masks for Register Write	62
Docume	ent Revision History	

List of Figures

Figure 1. Block Diagram	6
Figure 2. Device Pinout	7
Figure 3. Packages Outline Drawing	8
Figure 4. Recommended Chip Orientation, Mechanical Cutouts and Spacing (Top View)	9
Figure 5. Assembly Drawing of PAW3399DM-T4QU and Distance from Lens Reference Plane To Tracking Surface (2	Z) . 10
Figure 6. Exploded View of Assembly	10
Figure 7. LM19-LSI Lens Outline Drawing	11
Figure 8. Cross Section View of LM19-LSI Lens Assembly	
Figure 9. Recommended Base Plate Opening with LM19-LSI	13
Figure 10. Assembly drawing of PAW3399DM-T4QU and distance from LOAE-LSI1 lens reference plane to tracking surface (Z)	
Figure 11. Exploded View of System Assembly with LOAE-LSI1 Lens	
Figure 12. LOAE-LSI1 trim lens outline drawing and detail	
Figure 13. Cross Section View of LOAE-LSI1 lens Assembly	
Figure 14. Recommended Base Plate Design with LOAE-LSI1 Lens	
Figure 15. Reference Schematic diagram for PAW3399DM-T4QU	18
Figure 16. Write Operation	25
Figure 17. MOSI Setup and Hold Time	25
Figure 18. Read operation	
Figure 19. MISO Delay and hold time	26
Figure 20. Timing between Two Write Commands	27
Figure 21. Timing between Write and Either Write or Subsequent Read Commands	27
Figure 22. Timing between Read and Either Write or Subsequent Read Commands	
Figure 23. Motion Read Sequence	
Figure 24 RawData Man (Surface Referenced)	35

List of Tables

Table 1. Pin Definition	7
Table 2. Package Marking Description	8
Table 3. Recommended R _{LED}	18
Table 4. Absolute Maximum Ratings	19
Table 5. Recommended Operating Condition	20
Table 6. AC Electrical Specifications	21
Table 7. DC Electrical Specifications	
Table 8. SPI Port Signals Description	24
Table 9. State of Signal Pins After VDD is Valid	33
Table 10. Pin Status in Shutdown Mode	36
Table 11. Register List	43

1.0 Introduction

1.1 Chip Overview

PAW3399DM is an optical navigation chip targeted for high-end cordless and corded gaming mouse. It contains a picture element array as Image Acquisition System (IAS), a Digital Signal Processor (DSP), a 4-wire serial port, a power control circuit and built-in LED driver integrated with IR LED in a package as shown in the block diagram. The chip measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values. An external microcontroller reads the Δx and Δy information from the chip serial port. The microcontroller then translates the data into USB, or RF signals before sending them to the host PC or game console.

Figure 1. Block Diagram

1.2 Pin Configuration

Figure 2. Device Pinout

Table 1. Pin Definition

Pin No.	Function	Symbol	Туре	Description
1	Reserved	NC	NC	No connection
2	Reserved	NC	NC	No connection
3	Supply Ground	GND	GND	Ground
4	Supply Voltage	VDD	Power	Input power supply
5	LDO Output	VDDREG	Power	LDO output for digital core (only for internal usage)
6	Reserved	NC	NC	No connection
7	I/O Voltage	VDDIO	Power	I/O power supply
8	I/O Ground	GNDIO	GND	I/O Ground
9	Motion Output	MOTION	Output	Motion detect
10		SCLK	Input	Serial data clock
11	4 wire CDI	MOSI	Input	Serial data input
12	4-wire SPI	MISO	Output	Serial data output
13		NCS	Input	Chip select (Active Low)
14	Reset Control	NRESET	Input	Chip reset (Active Low)
15	LED	LED_P	Input	LED Anode
16	Reserved	NC	NC	No connection

2.0 Mechanical Specifications

This section covers PAW3399's guidelines and recommendations in term of chip, lens & PCB assemblies.

2.1 Chip Package Dimension

Figure 3. Packages Outline Drawing

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

2.2 Package Marking

Table 2. Package Marking Description

Items	Marking	Remark
Product Number	PAW3399DM-T4QU	
Lot Code	AYWWXXXXX	A: Assembly house
		Y : Year
		WW : Week
		XXXXX: PixArt reference

2.3 Chip Assembly Drawings

Figure 4. Recommended Chip Orientation, Mechanical Cutouts and Spacing (Top View)

Note: It is highly recommended to follow the chip orientation in Figure 4 to achieve optimum tracking performance.

Figure 5. Assembly Drawing of PAW3399DM-T4QU and Distance from Lens Reference Plane To Tracking Surface (Z)

Figure 6. Exploded View of Assembly

2.4 Lens Dimensions

Figure 7. LM19-LSI Lens Outline Drawing

2.5 Lens Assembly Drawings

Figure 8. Cross Section View of LM19-LSI Lens Assembly

Figure 9. Recommended Base Plate Opening with LM19-LSI

Note: Surrounding mouse feet should be placed close to the optical opening to stabilize mouse tracking on the surface within the FOV of the chip.

Figure 10. Assembly drawing of PAW3399DM-T4QU and distance from LOAE-LSI1 lens reference plane to tracking surface (Z)

Figure 11. Exploded View of System Assembly with LOAE-LSI1 Lens

Figure 12. LOAE-LSI1 trim lens outline drawing and detail

Figure 13. Cross Section View of LOAE-LSI1 lens Assembly

Figure 14. Recommended Base Plate Design with LOAE-LSI1 Lens

2.6 PCB Assembly Recommendations

- 1. Insert the integrated chip and all other electrical components into PCB.
- 2. Wave-solder the entire assembly in a no-wash solder process utilizing solder-fixture. A solder-fixture is required to protect the chip from flux spray and wave solder paste.
- 3. Avoid getting any solder flux onto the chip body as there is potential for flux to seep into the chip package, the solder fixture should be designed to expose only the chip leads to flux spray & molten solder while shielding the chip body and optical apertures. The fixture should also set the chip at the correct position and height on the PCB.
- 4. Place the lens onto the base plate. Care must be taken to avoid contamination on the optical surfaces.
- 5. Remove the protective Kapton tapes from optical apertures of the chip. Care must be taken to prevent contaminants from entering the apertures. Do not place the PCB with the chip facing up during the entire mouse assembly process. Hold the PCB vertically when removing Kapton tape.
- 6. Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly. The chip package will self-align to the lens via the guide posts. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
- 7. **Recommendation**: The lens can be permanently secured to the chip package by melting the lens' guide posts over the chip with heat staking process. Please refer to Application Note titled "LM19-LSI Lens: PCB Assembly & Lens Heat Staking Recommendations" for details and recommendation on the lens heat staking process.
- 8. Install mouse top case. There must be a feature in the top case to press down onto the PCB assembly to ensure all components are stacked or interlocked to the correct vertical height.
- 9. It is recommended to place mouse feet around the base plate opening to stabilize mouse tracking on the surface.

3.0 Reference Schematics

Figure 15. Reference Schematic diagram for PAW3399DM-T4QU

Note: It is not recommended to leave the NRESET pin floating, it should be constantly driven by an output pin from the microcontroller to establish its state.

Table 3 shows the recommended value of R_{LED} and V_{LED} to obtain 29mA current for LED. Recommend to use R_{LED} with 1% tolerance.

Table 3. Recommended RLED

V _{LED} (V)	Recommended R_{LED} (Ω)
1.9V	13
2.0V	16

4.0 Electrical Specifications

4.1 Regulatory Requirements

- Passes FCC "Part15, Subpart B, Class B", "ICES-003:2016 Issue 6, Class B" and "ANSI C63.4:2014" when assembled into a mouse with shielded USB cable using ferrite bead and following PixArt's recommendations.
- Passes IEC 62471: 2006 Photo biological safety of lamps and lamp systems.

4.2 Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Lead Solder Temperature	T _{SOLDER}		260	°C	For 7 seconds, 1.6mm below seating plane
Completions	V_{DD}	-0.5	2.05	V	
Supply Voltage	V_{DDIO}	-0.5	3.30	V	
ESD	ESD _{HBM}		2	kV	Human Body Model on all pins
Input Voltage	V _{IN}	-0.5	3.30	V	All I/O pins

4.3 Recommended Operating Conditions

Table 5. Recommended Operating Condition

Parameter	Symbol	Min	Тур.	Max	Units	Notes
Operating Temperature	T _A	0		40	°C	
	V_{DD}	1.80	1.90	2.05	V	Excluding supply noise
Power Supply Voltage	V_{DDIO}	1.80	1.90	3.30	V	Excluding supply noise. (VDDIO must be the same or greater than VDD)
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to VDD min
Supply Noise	V_{NA}			100	mVp-p	10 kHz —75 MHz
Serial Port Clock Frequency	f_{SCLK}			10	MHz	50% duty cycle
Distance from Lens Reference Plane to Tracking Surface	Z	2.2	2.4	2.6	mm	
Speed High Performance Mode Low Power Mode Corded Gaming Mode Office Mode Acceleration High Performance Mode Low Power Mode Corded Gaming Mode	S	650 480 650 200 50 40			ips	In run mode at 45 degree
Office Mode		10				
Resolution Error High Performance Mode Low Power Mode Corded Gaming Mode	Res _{Err}		0.4 0.4 0.4		%	Up to 200ips on QCK at 5000cpi
Lift Cutoff 1mm setting	Lift _{1mm}		1		mm	PixArt standard gaming surface
Lift Cutoff 2mm setting	Lift _{2mm}		2		mm	PixArt standard gaming surface
Lift Cutoff 3mm setting	Lift _{3mm}		3		mm	PixArt standard gaming surface

4.4 AC Electrical Specifications

Table 6. AC Electrical Specifications

Chip electrical characteristics over recommended operating conditions. Typical values at 25° C, VDD = 1.9V, VDDIO=1.9V

Parameter	Symbo I	Min	Typical	Max	Units	Notes
Motion Delay After	t _{MOT-RST}	50			ms	From reset to valid motion,
Reset						assuming motion is present
Shutdown	t _{STDWN}			500	ms	From Shutdown mode active to low current
Wake From Shutdown	t _{WAKEUP}	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted
						after a shutdown. Refer to section "Notes on Shutdown"
MISO Rise Time	t _{r-MISO}		6		ns	C _L = 20pF
MISO Fall Time	t _{f-MISO}		6		ns	C _L = 20pF
MISO Delay After SCLK	t _{DLY-MISO}			35	ns	From SCLK falling edge to MISO data valid $C_L = 20pF$
MISO Hold Time	t _{hold-}	25	, (ns	Data held until next falling SCLK edge
MOSI Hold Time	t _{hold-}	25			ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup} -	25			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	t _{sww}	5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte
SPI Time Between Write And Read Commands	t _{swr}	5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte
SPI Time Between Read And Subsequent Commands	t _{SRW}	2			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command
SPI Read Address-Data Delay	t _{SRAD}	2			μѕ	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read
NCS Inactive After Motion Burst Version 1.00 07 Dec 2020	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage SEE. FEEL. TOUCH.

Version 1.00 | 07 Dec 2020 | 11067ENW

Parameter	Symbo I	Min	Typical	Max	Units	Notes
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	From last NCS falling edge to first SCLK rising edge
SCLK To NCS Inactive (For Read Operation)	t _{SCLK-NCS}	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer
SCLK To NCS Inactive (For Write Operation)	t _{SCLK-NCS}	1			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high- Z state
MOTION Rise Time	t _{r-MOTION}		300		ns	$C_L = 20pF$
MOTION Fall Time	t _{f-MOTION}		300		ns	C _L = 20pF
Input Capacitance	Cin		10		pF	SCLK, MOSI, NCS
Load Capacitance	CL			20	pF	MISO, MOTION
Transient Supply Current	I _{DDT}			70	mA	Max supply current during the supply ramp from 0V to V_{DD} with min 150 us and max 20ms rise time. (Does not include charging currents for bypass capacitors)
	Іотпо			60	mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150 us and max 20ms rise time. (Does not include charging currents for bypass capacitors)

4.5 DC Electrical Specifications

Table 7. DC Electrical Specifications

Chip electrical characteristics over recommended operating conditions. Typical values at 25°C, VDD = 1.9V, VDDIO = 1.9V, and with LED current at 29mA.

Parameter	Symbol	Min	Тур.	Max	Units	Notes
DC Supply Current	IDD_RUN		2.4		mA	IDD _{RUN} : Average current consumption,
(High Performance Mode)	IDD_{REST1}		680		μΑ	including LED current with 1ms polling
	IDD_{REST2}		15		μΑ	
	IDD _{REST3}		6		μΑ	IDD _{REST} : Average current consumption,
						including LED current
DC Supply Current	IDD_RUN		1.7		mA	
(Low Power Mode)	IDD_{REST1}		680		μΑ	
	IDD_{REST2}		15		μΑ	
	IDD_{REST3}		6		μΑ	
DC Supply Current	IDD_RUN		13		mA	IDD _{RUN} average up to 200ips
(Corded Gaming Mode)						IDD_{RUN} : Average current consumption,
						including LED current with 0.125ms
						polling
DC Supply Current	IDD_RUN		0.5		mA	IDD _{RUN} average up to 30ips
(Office Mode)	IDD _{REST1}		90		μΑ	
	IDD _{REST2}		15		μΑ	
	IDD _{REST3}		6		μΑ	IDD _{RUN} : Average current consumption,
						including LED current with 8ms polling
						IDD _{REST} : Average current consumption,
						including LED current
Shutdown Current	I _{PD}		4		μΑ	
Input Low Voltage	VIL			0.3*VDDI	V	SCLK, MOSI, NCS
				0		
Input High Voltage	V _{IH}	0.7*V _{DDIO}			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current	l _{leak}		±1	±10	μΑ	Vin=VDDIO or 0V, SCLK, MOSI, NCS
Output Low Voltage	V_{OL}			0.45	V	lout = 1mA for MISO
						lout = 0.1mA for MOTION
Output High Voltage	V_{OH}	V _{DDIO} -			V	lout = -1mA for MISO
		0.45				lout = -0.1mA for MOTION

5.0 Serial Peripheral Interface (SPI)

5.1 Signal Description

The synchronous serial port is used to write and read registers in the chip.

The port is a 4-wire port. The host microcontroller always initiates communication. The chip never initiates any data transfers. SCLK, MOSI and NCS may be driven directly by a microcontroller. The port pins may be shared with other SPI slave devices. When the NCS pin is driven high, the input signals are ignored and the output is tri-stated.

Table 8. SPI Port Signals Description

Signal Name	Functional Description
SCLK	Clock input, generated by the master (microcontroller).
MOSI	Input data. (Master Out/Slave In)
MISO	Output data. (Master In/Slave Out)
NCS	Chip select input (active low). NCS needs to be low to activate the serial port; otherwise,
	MISO will be high Z, and MOSI & SCLK will be ignored. NCS can also be used to reset the
	serial port in case of an error.

5.2 Motion Pin Timing

The motion pin is an active low output that signals the micro-controller when motion has occurred. The motion pin is lowered whenever the motion bit is set; in other words, whenever there is non-zero data in the Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers. Clearing the motion bit (by reading Delta_X_L, Delta_X_H, Delta_Y_L or Delta_Y_H registers) will put the motion pin high.

5.3 Chip Select Operation

The serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset. After a transaction is aborted, the normal address-to-data or transaction-to-transaction delay is required before beginning the next transaction. In order to improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because any ESD and EFT/B event could be interpreted as serial communication and put the chip into an unknown state. In addition, NCS must be raised after each burst-mode transaction is complete or to terminate burst-mode operation. The port is not available for further use until burst-mode is terminated.

5.4 Write Operation

Write operation, defined as data going from the micro-controller to chip, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The chip reads MOSI on rising edges of SCLK.

MOSI Driven by Micro-Controller

Figure 16. Write Operation

Figure 17. MOSI Setup and Hold Time

5.5 Read Operation

A read operation, defined as data going from chip to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over MOSI, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by PAW3399DM-T4QU chip over MISO. The chip outputs MISO bits on falling edges of SCLK and samples MOSI bits on every rising edge of SCLK.

Figure 18. Read operation

Figure 19. MISO Delay and hold time

Note: The minimum high state of SCLK is also the minimum MISO data hold time of PAW3399DM-T4QU chip. Since the falling edge of SCLK is actually the start of the next read or write command, the chip will hold the state of data on MISO until the falling edge of SCLK.

5.6 Required timing between Read and Write Commands (tsxx)

There are minimum timing requirements between read and write commands on the serial port.

If the rising edge of the SCLK for the last data bit of the second write command occurs before the t_{SWW} delay, then the first write command may not complete correctly.

Figure 20. Timing between Two Write Commands

Figure 21. Timing between Write and Either Write or Subsequent Read Commands

If the rising edge of SCLK for the last address bit of the read command occurs before the t_{SWR} required delay, the write command may not complete correctly. During a read operation SCLK should be delayed at least t_{SRAD} after the last address data bit to ensure that the chip has time to prepare the requested data.

The falling edge of SCLK for the first address bit of either the read or write command must be at least t_{SRR} or t_{SRW} after the last SCLK rising edge of the last data bit of the previous read operation. In addition, during a read operation SCLK should be delayed after the last address data bit to ensure that the chip has time to prepare the requested data.

Figure 22. Timing between Read and Either Write or Subsequent Read Commands

Version 1.00 | 07 Dec 2020 | 11067ENW

SEE. FEEL. TOUCH.

5.7 Burst Mode Operation

Burst mode is a special serial port operation mode which is used to reduce the serial transaction time for predefined registers. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address and by not requiring the normal delay period between data bytes.

5.7.1 Motion Read

Reading the Motion_Burst register activates the Motion Read mode. The chip will respond with the following motion burst report in this order.

BYTE[00] = Motion

BYTE[01] = Observation

BYTE[02] = Delta_X_L

BYTE[03] = Delta_X_H

BYTE[04] = Delta_Y_L

BYTE[05] = Delta_Y_H

BYTE[06] = SQUAL

BYTE[07] = RawData_Sum

BYTE[08] = Maximum_RawData

BYTE[09] = Minimum_Rawdata

BYTE[10] = Shutter_Upper

BYTE[11] = Shutter_Lower

After sending the Motion_Burst register address, the microcontroller must wait for t_{SRAD} , and then begins reading data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data is latched into the output buffer after the last address bit is received. After the burst transmission is complete, the microcontroller must raise the NCS line for at least t_{BEXIT} to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

5.7.2 Procedure to Start Motion Burst

- 1. Lower NCS.
- 2. Wait for t_{NCS-SCLK}
- 3. Send Motion_Burst address (0x16). After sending this address, MOSI should be held static (either high or low) until the burst transmission is complete.
- 4. Wait for t_{SRAD}
- 5. Start reading SPI data continuously up to 12 bytes. Motion burst may be terminated by pulling NCS high for at least t_{BEXIT}.
- 6. To read new motion burst data, repeat from step 1.

After sending Motion_Burst Register Address, MOSI should not be toggling during subsequent SCLK cycles

Figure 23. Motion Read Sequence

Note: Motion burst data can be read from the Burst_Motion_Read register even in run or rest mode.

Version 1.00 | 07 Dec 2020 | 11067ENW

6.0 Power-Up Sequences

6.1 Power-Up

Although the chip performs an internal power up self-reset, it is still recommended that the Power_Up_Reset register is written every time power is applied. The recommended chip power up sequence is as follows:

- 1. Apply power to V_{DD} and V_{DDIO} in any order, with a delay of no more than 100ms in between each supply. Ensure all supplies are stable.
- 2. Wait for at least 50 ms.
- 3. Drive NCS high, and then low to reset the SPI port.
- 4. Write 0x5A to Power Up Reset register (or alternatively toggle the NRESET pin).
- 5. Wait for at least 5ms.
- 6. Load Power-up initialization register setting.
- 7. Read registers 0x02, 0x03, 0x04, 0x05 and 0x06 one time regardless of the motion bit state.

6.2 Power-Up Initialization Register Setting

- 1. Write register 0x40 with value 0x80
- 2. Write register 0x7F with value 0x0E
- 3. Write register 0x55 with value 0x0D
- 4. Write register 0x56 with value 0x1B
- 5. Write register 0x57 with value 0xE8
- 6. Write register 0x58 with value 0xD5
- 7. Write register 0x7F with value 0x14
- 8. Write register 0x42 with value 0xBC
- 9. Write register 0x43 with value 0x74
- 10. Write register 0x4B with value 0x20
- 11. Write register 0x4D with value 0x00
- 12. Write register 0x53 with value 0x0D
- 13. Write register 0x7F with value 0x05
- 14. Write register 0x51 with value 0x40
- 15. Write register 0x53 with value 0x40
- 16. Write register 0x55 with value 0xCA
- 17. Write register 0x61 with value 0x31
- 18. Write register 0x62 with value 0x64
- 19. Write register 0x6D with value 0xB8
- 20. Write register 0x6E with value 0x0F
- 21. Write register 0x70 with value 0x02
- 22. Write register 0x4A with value 0x2A
- 23. Write register 0x60 with value 0x26
- 24. Write register 0x7F with value 0x06

Version 1.00 | 07 Dec 2020 | 11067ENW

SEE. FEEL. TOUCH.

- 25. Write register 0x6D with value 0x70
- 26. Write register 0x6E with value 0x60
- 27. Write register 0x6F with value 0x04
- 28. Write register 0x53 with value 0x02
- 29. Write register 0x55 with value 0x11
- 30. Write register 0x7D with value 0x51
- 31. Write register 0x7F with value 0x08
- 32. Write register 0x71 with value 0x4F
- 33. Write register 0x7F with value 0x09
- 34. Write register 0x62 with value 0x1F
- 35. Write register 0x63 with value 0x1F
- 36. Write register 0x65 with value 0x03
- 37. Write register 0x66 with value 0x03
- 38. Write register 0x67 with value 0x1F
- 39. Write register 0x68 with value 0x1F
- 40. Write register 0x69 with value 0x03
- 41. Write register 0x6A with value 0x03
- 42. Write register 0x6C with value 0x1F
- 43. Write register 0x6D with value 0x1F
- 44. Write register 0x51 with value 0x04
- 45. Write register 0x53 with value 0x20
- 46. Write register 0x54 with value 0x20
- 47. Write register 0x71 with value 0x0F
- 48. Write register 0x72 with value 0x0A
- 49. Write register 0x7F with value 0x0A
- 50. Write register 0x4A with value 0x14
- 51. Write register 0x4C with value 0x14
- 52. Write register 0x55 with value 0x19
- 53. Write register 0x7F with value 0x14
- 54. Write register 0x63 with value 0x16
- 55. Write register 0x7F with value 0x0C
- 56. Write register 0x41 with value 0x30
- 57. Write register 0x55 with value 0x14
- 58. Write register 0x49 with value 0x0A
- 59. Write register 0x42 with value 0x00
- 60. Write register 0x44 with value 0x0D
- 61. Write register 0x4A with value 0x12
- 62. Write register 0x4B with value 0x09
- 63. Write register 0x4C with value 0x30

Version 1.00 | 07 Dec 2020 | 11067ENW

- 64. Write register 0x5A with value 0x0D
- 65. Write register 0x5F with value 0x1E
- 66. Write register 0x5B with value 0x05
- 67. Write register 0x5E with value 0x0F
- 68. Write register 0x7F with value 0x0D
- 69. Write register 0x48 with value 0xDD
- 70. Write register 0x4F with value 0x03
- 71. Write register 0x5A with value 0x29
- 72. Write register 0x5B with value 0x47
- 73. Write register 0x5C with value 0x81
- 74. Write register 0x5D with value 0x40
- 75. Write register 0x71 with value 0xDC
- 76. Write register 0x70 with value 0x07
- 77. Write register 0x73 with value 0x00
- 78. Write register 0x72 with value 0x08
- 79. Write register 0x75 with value 0xDC
- 73. White register ox73 With value ox86
- 80. Write register 0x74 with value 0x07 81. Write register 0x77 with value 0x00
- 82. Write register 0x76 with value 0x08
- 83. Write register 0x7F with value 0x10
- _____
- 84. Write register 0x4C with value 0xD0
- 85. Write register 0x7F with value 0x00
- 86. Write register 0x4F with value 0x63
- 87. Write register 0x4E with value 0x00
- 88. Write register 0x52 with value 0x63
- 89. Write register 0x51 with value 0x00 90. Write register 0x5A with value 0x10
- 91. Write register 0x77 with value 0x4F
- o .
- 92. Write register 0x47 with value 0x01
- 93. Write register 0x5B with value 0x40 94. Write register 0x66 with value 0x13
- 95. Write register 0x67 with value 0x0F
- 96. Write register 0x78 with value 0x01
- 97. Write register 0x79 with value 0x9C
- 98. Write register 0x55 with value 0x02
- 99. Write register 0x23 with value 0x70
- 100. Write register 0x22 with value 0x01
- 101. Wait for 1ms

- 102. Read register 0x6C at 1ms interval until value 0x80 is obtained or read up to 60 times, this register read interval must be carried out at 1ms interval with timing tolerance of +/-1%
- 103. If value of 0x80 is not obtained from register0x6C after 60 times:
 - a. Write register 0x7F with value 0x14
 - b. Write register 0x6C with value 0x00
 - c. Write register 0x7F with value 0x00
- 104. Write register 0x22 with value 0x00
- 105. Write register 0x55 with value 0x00
- 106. Write register 0x7F with value 0x00
- 107. Write register 0x40 with value 0x00

During power-up there will be a period of time after the power supply is high but before normal operation. The table below shows the state of the various pins during power-up and reset.

Table 9. State of Signal Pins After VDD is Valid

Pin	During Reset	After Reset
NRESET	Functional	Functional
NCS	Ignored	Functional
MISO	Undefined	Depends on NCS
SCLK	Ignored	Depends on NCS
MOSI	Ignored	Depends on NCS
MOTION	Undefined	Functional

6.3 NRESET

The NRESET pin is used to perform the chip full chip reset. When asserted, it performs the same reset function as the Power_Up_Reset_Register. The NRESET pin needs to be asserted (held to logic 0) for at least 100 ns duration for the chip to reset.

Note: NRESET pin has a built in weak pull up circuit. During active low reset phase, the NRESET pin can draw a static current of up to 600µA.

7.0 Operation Guides

7.1 RawData Output

This section describes the method to download a full array of RawData values.

In order to trigger the RawData Output, write to the RawData_Grab register. The one element of rawdata is retrieved by reading the RAWDATA_GRAB register using register read method after RAWDATA_GRAB_STATUS register reports PG VALID to be TRUE. During the RawData Output process, it is a MUST to place the mouse at stationary position.

RawData Output procedure:

- 1. The chip should be powered up and reset correctly.
- 2. Write register 0x7F with value 0x00
- 3. Write register 0x55 with value 0x04
- 4. Write register 0x50 with value 0x01
- 5. Write register 0x40 with value 0x80
- 6. Continuously read register 0x02 (Motion) until getting both OP_Mode₁ and OP_Mode₀ equal to 0.
- 7. Write register 0x58 with value 0xFF
- 8. Continuously read register 0x59 until getting both PG FIRST and PG VALID as "1"
- 9. Read the first rawdata from register 0x58
- 10. Continuously read register 0x59 until getting PG_VALID is "1".
- 11. Read register 0x58 for 7 bits ADC data (RAWDATA 6-0). Repeat (10) and (11) for 1295 times to form a complete picture element array information.
- 12. Write register 0x40 with value 0x00
- 13. Write register 0x50 with value 0x00
- 14. Write register 0x55 with value 0x00

Figure 24. RawData Map (Surface Referenced)

7.2 Shutdown

The chip can be set in Shutdown mode by writing to the Shutdown register 0x3B with value 0xB6. The SPI port should not be accessed when Shutdown mode is asserted except the power-up command (writing 0x5a to register 0x3a). Other ICs on the same SPI bus can be accessed so long as the chip's NCS pin is not asserted.

To de-assert Shutdown mode, please perform Power-Up sequence from step 2.

Table 10. Pin Status in Shutdown Mode

Pin	Status	
NRESET	High	
NCS	High ^{*1}	
MISO	Hi-Z ^{*2}	
SCLK	Ignore if NCS = 1*3	
MOSI	Ignore if NCS = 1^{*4}	
MOTION	Output High	

Notes:

*1. NCS pin must be held to 1 (high) if SPI bus is shared with other devices. It is recommended to hold to 1 (high) during Shutdown

unless powering up the Chip. It must be held to 0 (low) if the chip is to be re-powered up from shutdown (writing 0x5a to register 0x3a).

- *2. MISO should be pulled up during shutdown in order to meet the low power consumption specification in the datasheet.
- *3. SCLK is ignored if NCS is 1 (high). It is functional if NCS is 0 (low).
- *4. MOSI is ignored if NCS is 1 (high). If NCS is 0 (low), any command present on the MOSI pin will be ignored except power-up command (writing 0x5a to register 0x3a).

CAUTION: There is long wakeup time from shutdown. Shutdown should not be used for power management during normal mouse motion.

7.3 Gaming and Office Mode Setting

PAW3399DM can be programmed to different gaming and office modes per the register settings in the table below. Please note that upon chip start-up per the recommended Power-Up Sequence, the chip is set to High Performance Mode as default.

High Performance Mode (Default)	Low Power Mode	Office Mode
		\ (\)
- write register 0x7F with value 0x05	- write register 0x7F with value 0x05	- write register 0x7F with value 0x05
- write register 0x51 with value 0x40	- write register 0x51 with value 0x40	- write register 0x51 with value 0x28
- write register 0x53 with value 0x40	- write register 0x53 with value 0x40	- write register 0x53 with value 0x30
- write register 0x61 with value 0x31	- write register 0x61 with value 0x3B	- write register 0x61 with value 0x3B
- write register 0x6E with value 0x0F	- write register 0x6E with value 0x1F	- write register 0x6E with value 0x1F
- write register 0x7F with value 0x07	- write register 0x7F with value 0x07	- write register 0x7F with value 0x07
- write register 0x42 with value 0x32	- write register 0x42 with value 0x32	- write register 0x42 with value 0x32
- write register 0x43 with value 0x00	- write register 0x43 with value 0x00	- write register 0x43 with value 0x00
- write register 0x7F with value 0x0D	- write register 0x7F with value 0x0D	- write register 0x7F with value 0x0D
- write register 0x51 with value 0x00	- write register 0x51 with value 0x00	- write register 0x51 with value 0x00
- write register 0x52 with value 0x49	- write register 0x52 with value 0x49	- write register 0x52 with value 0x49
- write register 0x53 with value 0x00	- write register 0x53 with value 0x00	- write register 0x53 with value 0x00
- write register 0x54 with value 0x5B	- write register 0x54 with value 0x5B	- write register 0x54 with value 0x5B
- write register 0x55 with value 0x00	- write register 0x55 with value 0x00	- write register 0x55 with value 0x00
- write register 0x56 with value 0x64	- write register 0x56 with value 0x64	- write register 0x56 with value 0x64
- write register 0x57 with value 0x02	- write register 0x57 with value 0x02	- write register 0x57 with value 0x02
- write register 0x58 with value 0xa5	- write register 0x58 with value 0xa5	- write register 0x58 with value 0xa5
- write register 0x7F with value 0x14	- write register 0x7F with value 0x14	- write register 0x7F with value 0x14
- write register 0x63 with value 0x16	- write register 0x63 with value 0x16	- write register 0x63 with value 0x16
- write register 0x7F with value 0x00	- write register 0x7F with value 0x00	- write register 0x7F with value 0x00
- write register 0x54 with value 0x54	- write register 0x54 with value 0x54	- write register 0x54 with value 0x52
- write register 0x78 with value 0x01	- write register 0x78 with value 0x01	- write register 0x78 with value 0x0A
- write register 0x79 with value 0x9C	- write register 0x79 with value 0x9C	- write register 0x79 with value 0x0F
- write register 0x40 bit[1:0] with	- write register 0x40 bit[1:0] with	- write register 0x40 bit[1:0] with
value 0x0	value 0x1	value 0x02

Note:

Special precaution needs to be taken for register 0x40 to avoid overwrite other bits in the register. When writing the bit[1:0] to configure to different modes, one need to read and store its current value first, then apply bit masking and write back the new value into the register. Refer to section 8.3 for the detail.

Corded Gaming Mode

- write register 0x7F with value 0x05
- write register 0x51 with value 0x40
- write register 0x53 with value 0x40
- write register 0x61 with value 0x31
- write register 0x6E with value 0x0F
- write register 0x7F with value 0x07
- write register 0x42 with value 0x2F
- write register 0x43 with value 0x00
- write register 0x7F with value 0x0D
- write register 0x51 with value 0x12
- write register 0x52 with value 0xDB
- write register 0x53 with value 0x12
- write register 0x54 with value 0xDC
- write register 0x55 with value 0x12
- write register 0x56 with value 0xE4
- write register 0x57 with value 0x15
- write register 0x58 with value 0x2D
- write register 0x7F with value 0x14
- write register 0x63 with value 0x1E
- write register 0x7F with value 0x00
- write register 0x54 with value 0x55
- write register 0x40 with value 0x83

7.4 Universal Lift Cut Off

PAW3399DM chip provides 1mm, 2mm and 3mm universal lift cut off setting and the setting applies to all mats, refer to *LIFT_CONFIG* register for the detail of lift cut off setting configuration. Upon ship start-up per the recommended Power-Up sequence in the datasheet, the chip is set to 1mm lift cut off setting as default.

7.5 Manual Lift Cut Off Calibration

PAW3399DM chip has the capability to optimize its lift performance by tuning parameters on a specific gaming mat or tracking surface, this feature involves end user interaction.

7.5.1 Lift Cut off Calibration Procedures

- 1. Ensured that the chip is powered up according to the Power Up Sequence in section 6.1.
- 2. Prompt the user that the manual lift cut off calibration is about to begin and ensure that the mouse is placed nominally on the surface (mouse is not lifted).
- 3. Start the calibration procedure by loading the following register values in sequence.
 - Read register 0x40 and store its value into Var Mode
 - Write register 0x7F with value 0x00
 - Write register 0x40 with value 0x80
 - Write register 0x7F with value 0x05
 - Write register 0x43 with value 0xE7
 - Write register 0x7F with value 0x04
 - Write register 0x40 with value 0xC0
 - Write register 0x41 with value 0x10
 - Write register 0x44 with value 0x0F
 - Write register 0x45 with value 0x0F
 - Write register 0x46 with value 0x0F
 - Write register 0x47with value 0x0F
 - Write register 0x48 with value 0x0F
 - Write register 0x49 with value 0x0F
 - Write register 0x4A with value 0x0F
 - Write register 0x4B with value 0x0F
 - Write register 0x40 with value 0xC1

- 4. The calibration procedure can be started by a SW prompt to the user or user-initiated through a mouse-click event. Recommend to move the mouse over a distance of >20inch to cover most area of the mat.
- 5. Write register 0x40 with value 0x40 to stop the calibration process.
- 6. Continuously read register 0x4C bit[3:0] to check the status of the calibration process.
 - If returned value equals to 0x5 indicates the calibration is successful. Calibration can proceed to the next step or continue until user initiates a mouse-click event.
 - Else, the calibration is failed, load the following register values to return back to Universal 1mm setting and the calibration process need to be restarted from step 2.
 - Write register 0x4E with value 0x08
 - Write register 0x7F with value 0x05
 - Write register 0x43 with value 0xE4
 - Write register 0x7F with value 0x00
 - Write register 0x40 with Var_Mode
- 7. Write the following set of register values in sequence if the calibration is successful,
 - Read register 0x4D and store its value into VarA
 - Write register 0x7F with value 0x0C
 - If VarA >= 0x32, store value 0x05 into VarB. Else, store value 0x03 into VarB
 - Write register 0x4E with value 0x08
 - Write register 0x7F with value 0x05
 - Write register 0x43 with value 0xE4
 - Write register 0x7F with value 0x00
 - Write register 0x40 with Var Mode

7.5.2 Enable Lift Cut off Calibration Register Setting

Write the following set of register values to enable the lift cut off calibration register setting on a specific gaming mat. VarA and VarB obtained from the section 7.5.1 would be used in this section.

- 1. Write register 0x7F with value 0x0C
- 2. Write register 0x41 with VarA
- 3. Write register 0x43 with value 0x30
- 4. Write register 0x44 with VarB
- 5. Write register 0x4E with value 0x08
- 6. Write register 0x5A with value 0x0D
- 7. Write register 0x5B with value 0x05
- 8. Write register 0x7F with value 0x05
- 9. Write register 0x6E with value 0x0F
- 10. Write register 0x7F with value 0x09
- 11. Write register 0x71 with value 0x0F
- 12. Write register 0x7F with value 0x00

7.5.3 Disable Lift Cut off Calibration Register Setting

Write the following set of register values to disable lift cut off calibration register setting in Section 7.5.2 and revert to default universal 1 mm lift cut off setting.

- 1. Write register 0x7F with value 0x0C
- 2. Write register 0x41 with value 0x30
- 3. Write register 0x43 with value 0x20
- 4. Write register 0x44 with value 0x0D
- 5. Write register 0x4A with value 0x12
- 6. Write register 0x4B with value 0x09
- 7. Write register 0x4C with value 0x30
- 8. Write register 0x4E with value 0x08
- 9. Write register 0x53 with value 0x16
- 10. Write register 0x55 with value 0x14
- 11. Write register 0x5A with value 0x0D
- 12. Write register 0x5B with value 0x05
- 13. Write register 0x5F with value 0x1E14. Write register 0x66 with value 0x30
- 15. Write register 0x7F with value 0x05
- 16. Write register 0x6E with value 0x0F
- 17. Write register 0x7F with value 0x09

Version 1.00 | 07 Dec 2020 | 11067ENW

SEE. FEEL. TOUCH.

- 18. Write register 0x71 with value 0x0F
- 19. Write register 0x72 with value 0x0A
- 20. Write register 0x7F with value 0x00

8.0 Registers

8.1 Registers Summary Table

PAW3399DM-T4QU registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Table 11. Register List

Address	Register	Access	Default Value	Address	Register	Access	Default Value
0x00	Product_ID	R	0x4F	0x4A	Resolution _Y_Low	RW	0x63
0x01	Revision_ID	R	0x00	0x4B	Resolution _Y_High	RW	0x00
0x02	Motion	RW	0x00	0x56	Angle Snap	RW	0x0d
0x03	Delta_X_L	R	0x00	0x58	RawData output	R	0x00
0x04	Delta_X_H	R	0x00	0x59	RawData status	R	0x00
0x05	Delta_Y_L	R	0x00	0x5A	Ripple_Control	RW	0x00
0x06	Delta_Y_H	R	0x00	0x5B	Axis_Control	RW	0x60
0x07	SQUAL	R	0x00	0x5C	Motion_Ctrl	RW	0x02
0x08	RawData_Sum	R	0x00	0x5F	Inv_Product_ID	R	OXB0
0x09	Maximum_RawData	R	0x00	0x77	Run_Downshift	RW	0x14
0x0A	Minimum_RawData	R	0x00	0x78	Rest1_Rate	RW	0x01
0x0B	Shutter_Lower	R	0x00	0x79	Rest1_Downshift	RW	0x90
0x0C	Shutter_Upper	R	0x01	0x7A	Rest2_Rate	RW	0x19
0x15	Observation	RW	0x80	0x7B	Rest2_Downshift	RW	0x5E
0x16	Motion_Burst	RW	0x00	0x7C	Rest3_Rate	RW	0x3F
0X3A	Power_Up_Reset	W	N/A	0x7D	Run_Downshift_Mult	RW	0x07
0x3B	Shutdown	W	N/A	0x7E	Rest_Downshift_Mult	RW	0x55
0x40	Performance	RW	0x00	0x0577*	Angle_Tune1	RW	0x00
0x47	Set_Resolution	W	0x00	0x0578*	Angle_Tune2	RW	0x00
0x48	Resolution _X_Low	RW	0x63	0x0C4E *	Lift_Config	RW	0x08
0x49	Resolution _X_High	RW	0x00				

Note:

- 1. R = Read, W = Write, Read/Write= RW
- 2. * In order to access the register:
 - d. Write register 0x7F with the value of MSB(byte) in the address.
 - e. Read/Write the register value with the lower byte address.
 - f. Write register 0x7F with the value 0x00.

Version 1.00 | 07 Dec 2020 | 11067ENW

Example 1: To write register 0x**0D4F** (Dynamic Cursor Control) with value 0x01

Write register 0x7F with value 0x**0D**,

Write register 0x**4F** with value 0x01, //set to Dynamic Cursor Control Level 2

Write register 0x7F with value 0x00

Example2: To read register 0x**0D4F** (Dynamic Cursor Control)

Write register 0x7F with value 0x**0D**,

Read register 0x4F,

Write register 0x7F with value 0x00

8.2 Registers Description

Register Name	PRODUCT_	ID								
Address	0x00			X						
Access	Read			Reset	Value	0x4F				
Bit	7	6	5	4	3	2	1	0		
Field				PIC) ₇₋₀					
Description	_	his register contains a unique identification assigned to the PAW3399DM-T4QU. The value in his register does not change, it can be used to verify that the serial communications link is								

Register Name	REVISION_ID								
Address	0x01								
Access	Read	Reset Value		0x00					
Bit	7 6	5	4	3	2	1	0		
Field		PID ₇₋₀							
Description	This register contains the current IC revision.								

Register Name	MOTION							
Address	0x02							
Access	Read/Write			Reset Value		0x00		
Bit	7	6	5	4	3	2	1	0
Field	MOT	Reserved	Reserved	Reserved	Lift_Stat	Reserved	OP_Mode ₁	OP_Mode ₀

This register allows the user to determine if motion has occurred since the last time it was read.

The procedure to read the motion registers (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H) is as follows:

- 1. Read the Motion register. This will freeze the Delta_X_L, $Delta_X_H$, $Delta_Y_L$ and $Delta_Y_H$ register values.
- 2. If the MOT bit is set, Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers should be read in the given sequence to get the accumulated motion. Note: if Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H registers are not read before the motion register is read for the second time, the data in Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H will be lost.
- 3. To read a new set of motion data (Delta_X_L, Delta_X_H, Delta_Y_L and Delta_Y_H), repeat from Step 1.

Description

Field Name	Description
МОТ	Motion since last report
	0 = No motion
	1 = Motion occurred, data ready for reading in
	Delta_X_L, Delta_X_H, Delta_Y_L and
	Delta_Y_H registers
Lift_Stat	Indicate the lift status of chip
	0 – Chip on surface
	1 – Chip lifted
OP_Mode _{1:0}	00 – Run Mode
	01 - Rest 1
	10 - Rest 2
	11 - Rest 3
Write any value to this register will clear all motion	on data.

Version 1.00 | 07 Dec 2020 | 11067ENW

Optical Gaming Navigation Chip

Register Name	DELTA_X_L							
Address	0x03							
Access	Read			Reset Value		0x00		
Bit	7	6	5	4	3	2	1	0
Field	X_7	X ₆	X ₅	X ₄	X ₃	X_2	X ₁	X ₀

16 bits 2's complement number. Lower 8 bits of Delta_X.

X movement is counts since last report. Absolute value is determined by resolution.

Register Name	DELTA_X_H											
Address	0x04											
Access	Read			Reset	: Value	0x00						
Bit	7	6	5	4	3	2	1	0				
Field	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁₁	X ₁₀	X ₉	X ₈				
	16 bits 2's c	.6 bits 2's complement number. Upper 8 bits of Delta_X.										

Description Delta_X_H must be read after Delta_X_L to have the full motion data.

Note: It is recommended that register 0x02, 0x03, 0x04, 0x05 and 0x06 to be read sequentially.

Register Name	DELTA_Y_L	DELTA_Y_L									
Address	0x05	05									
Access	Read			Reset Value		0x00					
Bit	7	6	5	4	3	2	1	0			
Field	Y ₇	Y_6	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀			

16 bits 2's complement number. Lower 8 bits of Delta_Y.

Y movement is counts since last report. Absolute value is determined by resolution.

Description

Version 1.00 | 07 Dec 2020 | 11067ENW

SEE. FEEL. TOUCH.

Register Name	DELTA_Y_H							
Address	0x06							
Access	Read			Reset Value		0x00		
Bit	7	6	5	4	3	2	1	0
Field	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y ₉	Y ₈
Description	Delta_Y_H n	nust be read	after Delta	per 8 bits of E _Y_L to have t <i>er 0x02, 0x03</i> ,	– the full moti		be read sequ	uentially.

Register Name	SQUAL							
Address	0x07							
Access	Read			Reset	Value	0x00		
Bit	7 6 5			4	3	2	1	0
Field	SQ ₇	SQ ₆	SQ ₅	SQ ₄	SQ ₃	SQ ₂	SQ ₁	SQ ₀
Description	chip in the Number of The maxim result in ch	current frai f Features = num SQUAL nanges in SQ	me. Use the SQUAL Register valu	er is a measur following form ster Value * 4 e is 0xB6. Sinc ons in SQUAL chip is in run	mula to find ce small char when lookin	the total nur nges in the c ng at a surfac	nber of valid urrent frame e is expected	features.

Register Name	RAWDATA	_SUM								
Address	0x08									
Access	Read			Reset	Reset Value					
Bit	7	6	5	4	3	2	1	0		
Field	RDS ₇	RDS ₆	RDS ₅	RDS ₄	RDS₃	RDS ₂	RDS ₁	RDS_0		
	bit counter	This register is used to find the chip average rawdata value. It reports the upper byte of an 18-bit counter which sums all 1296 rawdata in the current frame. To find the average rawdata value follows the formula below:								
Description	Average pix	cel value = P	IX_ACCUM*:	1024/1296						
	The maxim	um register '	value is 0xA0) (hex) or 160	(dec) and th	ne minimum	register valu	e is 0. The		

Register Name	MAXIMUM	IAXIMUM_RAWDATA							
Address	0x09								
Access	Read			Reset	Value	0x00			
Bit	7 6 5			4	3	2	1	0	
Field	MaxRD ₇	MaxRD ₆	MaxRD ₅	MaxRD ₄	MaxRD₃	MaxRD ₂	$MaxRD_1$	MaxRD ₀	
Description				frame. Mini e every frame		= 0, maximur	n value = 12	7. The	

data sum value can change every frame. Disable rest mode before reading RawData sum value.

Register Name	MINIMUM	_RAWDATA						
Address	0x0A							
Access	Read			Reset	Value	0x7F		
Bit	7	6	5	4	3	2	1	0
Field	MinRD ₇	$MinRD_6$	$MinRD_5$	$MinRD_4$	MinRD ₃	MinRD ₂	$MinRD_1$	$MinRD_0$
Description				frame. Minii e every frame		0, maximum	n value = 127	. The

Register Name	SHUTTER_I	.OWER						
Address	0x0B							
Access	Read			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	S ₇	S_6	S ₅	S ₄	S ₃	S ₂	S_1	S ₀
Description	Lower byte	of the 12-bi	it Shutter reg	gister.				

Register Name	SHUTTER_U	JPPER						
Address	0x0C							
Access	Read			Reset	Value	0x01		
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Reserved	Reserved	Reserved	S ₁₁	S ₁₀	S_9	S ₈
Description	oscillator(read conse	nominal 68M ecutively. Th ranges. The	1Hz). Read SI e shutter is a shutter value	hutter_Upper adjusted to ke	r first, then eep the ave and automa	vcles of the into Shutter_Lower rage rawdata tically adjuste	er. They show values within	n normal

Register Name	CHIP_OBSE	RVATION						
Address	0x15							
Access	Read/Write	Read/Write			Value	0x80		
Bit	7	6	5	4	3	2	1	0
Field	CO ₇	CO ₆	CO ₅	CO ₄	CO ₃	CO ₂	CO ₁	CO ₀
Description	register. The may be use $T_{\rm dly_obs} is de chip is in Re$	e value of C d as part of fined as the est3 mode. C	O ₇₋₀ should k recovery sch longest fram Clock frequer	writing 0x00, be 0xB7 or 0x deme to detect the period + 10 decy tolerance ded, then T _{dly_c}	BF if the chiet a problem Owww.variation. Value need to	ip is working caused by El The longest to be conside	correctly. The state of the sta	ne register event. d is when

Register Name	BURST_MC	URST_MOTION_READ						
Address	0x16	0x16						
Access	Read			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	MB_7	MB_6	MB_5	MB ₄	MB_3	MB_2	MB_1	MB_0
Description	Delta_X_L, [Delta_X_H, D awData, Shu	elta_Y_L, De utter_Upper	used for high- elta_Y_H, SQU and Shutter_	JAL, RawDat	a_Sum, Maxi	imum_RawD	ata,

Register Name	POWER_U	P_RESET						
Address	0x3A							
Access	Write			Reset	Value	N/A		
Bit	7	6	5	4	3	2	1	0
Field	PRST ₇	PRST ₆	PRST ₅	PRST ₄	PRST ₃	PRST ₂	PRST ₁	PRST ₀
Description		_		the chip and a	all settings w	vill revert to o	default value	s. Reset is

Register Name	SHUTDOW	N						
Address	0x3B							
Access	Write			Reset	Value	N/A		
Bit	7	6	5	4	3	2	1	0
Field	SD ₇	SD_6	SD ₅	SD_4	SD_3	SD_2	SD_1	SD_0
Description	Write 0xB6 on recovery		•	own mode. Re	efer to the S	hutdown sec	tion for mor	e details

Register Name	PERFORMA	ANCE						
Address	0x40							
Access	Read/Write	2		Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	AWAKE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	This registe	er configures	the operatir	ng mode of th	ne chip.			
Description	Field Nam	ie			Descriptio	n		
Description	AWAKE				0: Enable F	Rest Mode		
					1: Disable	Rest Mode		

Register Name	SET_RESOL	UTION						
Address	0x47							
Access	Write			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SET_RES
	•	After update the resolution setting, either in RESOLUTION_X or/and RESOLUTION_Y, write v 0x01 into SET_RESOLUTION for the chip to use the new resolution setting.						rite value
Description								
	Field Nam	ie		Description	1			
	SET_RES			1: update r	esolution set	tting		

Register Name	RESOLUTIO	N_X_LOW						
Address	0x48							
Access	Read/Write			Reset	Value	0x63		
Bit	7	6	5	4	3	2	1	0
Field	RESX ₇	RESX ₆	RESX ₅	RESX ₄	RESX ₃	RESX ₂	RESX ₁	RESX ₀
Description	Lower byte o				=	_X_LOW first	then	

Optical Gaming Navigation Chip

Register Name	RESOLUTIO	N_X_HIGH						
Address	0x49							
Access	Read/Write			Reset	Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	RESX ₁₅	RESX ₁₄	RESX ₁₃	$RESX_{12}$	RESX ₁₁	RESX ₁₀	RESX ₉	RESX ₈
	After update the resolution setting, either in RESOLUTION_X or/and RESOLUTIO 0x01 into SET_RESOLUTION for the chip to use the new resolution setting. Note: It is recommended to set bit-7 in RIPPLE_CONTROL register to enable the when select 9000 CPI and above.							
Description	Field Nam	ıe	Description	1				
	RESX [15:0)]	Set X-axis R 0x000: 50C 0x001: 100 0x002: 150	PI CPI				

Register Name	RESOLUTIO	RESOLUTION_Y_LOW								
Address	0x4A									
Access	Read/Write			Reset	Value	0x63				
Bit	7	6	5	4	3	2	1	0		
Field	RESY ₇	RESY ₆	RESY ₅	RESY ₄	RESY ₃	RESY ₂	RESY ₁	RESY ₀		
Description			_ •	er. Write to R be written co	=	_Y_LOW first	, then			

Optical Gaming Navigation Chip

Register Name	RESOLUTIO	N_Y_HIGH									
Address	0x4B										
Access	Read/Write			Reset	Value	0x00					
Bit	7	6	5	4	3	2	1	0			
Field	RESY ₁₅	RESY ₁₄	RESY ₁₃	$RESY_{12}$	RESY ₁₁	RESY ₁₀	RESY ₉	RESY ₈			
	After update 0x01 into SE Note: It is re	irst, then RESOLUTION_Y_HIGH. They should be writer consecutively. After update the resolution setting, either in RESOLUTION_X or/and RESOLUTION_Y, write value 0x01 into SET_RESOLUTION for the chip to use the new resolution setting. Note: It is recommended to set bit-7 in RIPPLE_CONTROL register to enable the ripple control when select 9000 CPI and above.									
Description	Field Nam RESY [15:0		:	esolution: PI CPI							

Register Name	ANGLE_SNAF	•							
Address	0x56								
Access	Read/Write			Reset	Value	0x0D			
Bit	7	6	5	4	3	2	1	0	
Field	EN	0	0	0	1	1	0	1	
	Write to this register to enable angle snap feature.								
Description	Field Name				Description				
Description	EN		0: Angle snap disable						
		1: Angle snap enable							

Register Name	RAWDATA_	AWDATA_GRAB							
Address	0x58								
Access	Read/Write	•		Reset	Value	0x00			
Bit	7	6	5	4	3	2	1	0	
Field	RAWDATA ₇	RAWDATA ₆	RAWDATA ₅	RAWDATA ₄	RAWDATA ₃	RAWDATA ₂	RAWDATA ₁	RAWDATA ₀	
Description	_	WDATA ₇ RAWDATA ₆ RAWDATA ₅ RAWDATA ₄ RAWDATA ₃ RAWDATA ₂ RAWDATA ₁ RAWDA iis register contains the rawdata levels when the RawData Grab process is enabled. For detail the RawData Grab process please refer to section 7.1.							

Register Name	RAWDATA	RAWDATA_GRAB_STATUS									
Address	0x59										
Access	Read			Reset	Value	0x00					
Bit	7	6	5	4	3	2	1	0			
Field	PG_VALID	PG_FIRST	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved			
	This registe	r provides a	dditional info	ormation for	user to moni	tor the chip	navigation s	tatus.			
Dagovintian	Field Nam	ie			Descriptio	n					
Description	PG_VALID				1: RawData	a Grab valid					
	PG_FIRST				1: RawData	a Grab first					

Register Name	RIPPLE_CO	RIPPLE_CONTROL								
Address	0x5A									
Access	Read/Write		Reset	Value	0x00					
Bit	7 6 5			4	3	2	1	0		
Field	CTRL ₈	CTRL ₈ Reserved Reserved 1 Reserved Reserved Reserved						Reserved		
	Write to this register to enable or disable Ripple Control feature. Upon chip start-up per the recommended Power-Up sequence in the section 6.1, Ripple Control is disabled as default.									
Description	Field Nam	e	Description							
	CTRL ₈	O: Ripple Control disable								
		1: Ripple Control enable								

Register Name	AXIS_CONT	ROL						
Address	0x5B							
Access	Read/Write			Reset	Value	0x60		
Bit	7	6	5	4	3	2	1	0
Field	Swap_XY	INV_Y	INV_X	Reserved	Reserved	Reserved	Reserved	Reserved
	The register	set the axis	direction of	the chip repo	orting.			
	Field Nam	е			Descriptio	n		
Description	Swap_XY				1: Swap XY	directions		
	INV_Y				1: Invert Y	direction		
	_INV_X				1: Invert X	direction		

Register Name	MOTION_C	MOTION_CTRL								
Address	0x5C									
Access	Read/Write	1		Reset	Value	0x02	0x02			
Bit	7	6	5	4	3	2	1	0		
Field	MOT_Set	Reserved	Reserved	Reserved	Reserved	Reserved	RES_MOD	Reserved		
		Configures the motion pin setting and select the X-axis and Y-axis resolution mode. Field Name Description								
Description	MOT_Set		tion active lo							
Description	RES_Mod	RESO	LUTION_X_H	Y-axis resolu IIGH n is defined b		ŕ		OW and		

and RESOLUION_Y_HIGH (default)

RESOLUTION_X_HIGH and Y-axis resolution is defined by RESOLUION_Y_LOW

Register Name	INV_PROD_	NV_PROD_ID								
Address	0x5F									
Access	Read			Reset	Value	0xB0				
Bit	7	6	5	4	3	2	1	0		
Field				IPIC) ₇₋₀					
Description	This registe	r value is the	e inverse of	the Product_	ID register	value. It is use	d to test the	e SPI port		
Description	hardware.									

Register Name	RUN_DOWI	NSHIFT							
Address	0x77								
Access	Read/Write			Reset	Value	0x14	RD ₂ RD ₁ RD nula below for calculation. (default 256) x 50us		
Bit	7	6	5	4	3	2	1	0	
Field	RD ₇	RD_6	RD ₅	RD_4	RD ₃	RD ₂	RD_1	RDo	
Description	This register set the Run to Rest1 downshift time. Use the formula below for calculation. Run Downshift time (ms) = RD[7:0] x RUN_DOWNSHIFT_MULT (default 256) x 50us Default Run Downshift = 20 x 256 x 50us = 256ms Max Downshift time is 256x 256(default) x 50us = 3276ms Min value is 0x01. A value of 0x00 will be internally clipped to 0x01.								

Register Name	REST1_PERI	OD						
Address	0x78							
Access	Read/Write			Reset	Value	0x01		
Bit	7	6	5	4	3	2	1	0
Field	R1R ₇	R1R ₆	R1R ₅	R1R ₄	R1R ₃	R1R ₂	R1R ₁	R1R ₀
Description	Min value is	d = R1P[7:0] t1 period = 1 0x01. A val	x 1ms 1 x 1ms = 1m ue of 0x00 is		% tolerance			

Register Name	REST1_DO\	NNSHIFT						
Address	0x79							
Access	Read/Write			Reset	Value	0x90		
Bit	7	6	5	4	3	2	1	0
Field	R1D ₇	R1D ₆	R1D ₅	R1D ₄	R1D₃	R1D ₂	R1D ₁	$R1D_0$
Description	Rest1 Dowr (default 1m Default = 14 Min value is	nshift time (i is) 44 x 64 x 1m s 0x01. A val	ms) = R1D[7: ns = 9216ms ue of 0x00 w	downshift tim 0] x REST1_D = 9.2s vill be interna o have +/- 10	OOWNSHIFT_	_MULT (defau		

Register Name	REST2_PER	EST2_PERIOD							
Address	0x7A	0x7A							
Access	Read/Write			Reset	Value	0x19			
Bit	7	6	5	4	3	2	1	0	
Field	R2P ₇	R2P ₆	R2P ₅	R2P ₄	R2P ₃	R2P ₂	$R2P_1$	R2P ₀	
Description	Rest2 perio Default Res Min value is	t2 period =	x slow clock 25 x 1ms x 4: ue of 0x00 is	= 100ms	% tolerance				

Register Name	REST2_DO\	WNSHIFT						
Address	0x7B							
Access	Read/Write	Read/Write			Reset Value			
Bit	7 6 5		4	3	2	1	0	
Field	R2D ₇	R2D ₆	R2D ₅	R2D ₄	R2D₃	R2D ₂	R2D ₁	R2D ₀
Description	Rest2 Dowr (default 100 Default = 94 Min value is	nshift time (r Oms) 4 x 64 x 100r s 0x01. A val	ms) = R2D[7: ms = 601.6s ue of 0x00 w	downshift tim O] x REST2_D = 10min vill be interna o have +/- 109	OWNSHIFT_ lly clipped to	MULT (defau		

Register Name	REST3_PER	IOD						
Address	0x7C	0x7C						
Access	Read/Write	Read/Write			Reset Value			
Bit	7 6 5		4	3	2	1	0	
Field	R3P ₇	R3P ₆	R3P ₅	R3P ₄	R3P₃	R3P ₂	R3P ₁	R3P ₀
Description	Rest3 perio Default Res Min value is	t3 period = 6	x slow clock 53 x 1ms x 8 ue of 0x00 is	= 504ms	% tolerance.			

Register Name	RUN_DOW	UN_DOWNSHIFT_MULT								
Address	0x7D	0x7D								
Access	Read/Write	Read/Write			Reset Value		0x07			
Bit	7	6	5	4	3	2	1	0		
Field	Reserved	Reserved	Reserved	Reserved	RUN_M ₃	RUN_M ₂	RUN_M ₁	RUN_M₀		

This register set the Run Downshift Multiplier. (Refer to the formula in Register RUN_DOWNSHIFT)

	Field Name	Descriptio	n
	RUN_M _{0:3}	Hex	RUN_DOWNSHIFT_MULT
		0x0	2
		0x1	4
Description		0x2	8
Description		0x3	16
		0x4	32
		0x5	64
		0x6	128
		0x7	256 (default)
		0x8	512
		0x9	1024
		0xA	2048

Register Name	REST_DOW	EST_DOWNSHIFT_MULT									
Address	0x7E										
Access	Read/Write			Reset Value		0x55					
Bit	7	7 6		4	3	2	1	0			
Field	Reserved	REST_M ₆	REST_M ₅	REST_M ₄	Reserved	REST_M ₂	REST_M ₁	REST_M ₀			

This register set the REST Downshift Multiplier.

(Refer to the formula in Register REST1_DOWNSHIFT and REST2_DOWNSHIFT)

	Field Name	Descriptio	n
	REST_M _{0:2}	Hex	REST1_DOWNSHIFT_MULT
		0x0	2
		0x1	4
		0x2	8
		0x3	16
		0x4	32
Description		0x5	64 (default)
Description		0x6	128
		0x7	256
	REST_M _{4:6}	Hex	REST2_DOWNSHIFT_MULT
		0x0	2
		0x1	4
		0x2	8
		0x3	16
		0x4	32
		0x5	64 (default)
	X	0x6	128
		0x7	256

Register Name	ANGLE_TU	NE1						
Address	0x0577							
Access	Read/Write	Read/Write			: Value	0x00		
Bit	7	6	5	4	3	2	1	0
Field	ANGLE ₇	ANGLE ₆	ANGLE ₅	ANGLE ₄	ANGLE ₃	ANGLE ₂	ANGLE ₁	ANGLE ₀
	Field Name De			escription				
	ANGLE[7:0	ANGLE[7:0] OXE			xE2 -30 degree			
Description			OxI	6 -10 degree	e			
0x00 0 degree (default)								
		0>			OF +15 degree			
			0x:	1E +30 degre				

Register Name	ANGLE_TU	NE2							
Address	0x0578	x0578							
Access	Read/Write	ead/Write			Reset Value 0x00				
Bit	7	6	5	4	3	2	1	0	
Field	EN	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
	Write to this register to enable angle tune feature.							_	
Description	Field Nam	ie	D	escription	escription				
Description	EN		0	: Angle tune d	Angle tune disable (default)				
			1	: Angle tune er	gle tune enable				

Register Name	LIFT_CONF	IFT_CONFIG							
Address	0x0C4E								
Access	Read/Write			Reset Value		0x08			
Bit	7	6	5	4	3	2	1	0	
Field	Reserved	Reserved	Reserved	Reserved	1	Reserved	LIFT ₁	LIFT ₀	

This register configures the lift setting.

Description

Field Name	Descript	Description				
LIFT[1:0]	Hex	Lift Setting				
	0x0	1mm (default)				
	0x1	2mm				
	0x2	3mm				

Version 1.00 | 07 Dec 2020 | 11067ENW

SEE. FEEL. TOUCH.

8.3 Bit Masks for Register Write

Special precaution needs to be taken for some of the registers have "Reserved" bit. In order to overwrite specific bits in the register, one need to read and store its current value first, then apply bit masking and write back the new value into the register. This is accomplished by using bitwise operators such as AND(&), OR(|), or INVERSE(~).

Example:

To disable the Rest Mode in Register 0x40 (set bit-7 to 1)

Read register 0x40 and store in VarA

VarA |= 0x80

Write register 0x40 with value VarA

To enable the Rest Mode in Register 0x40 (set bit-7 to 0)

Read register 0x40 and store in VarA

VarA &= ~ 0x80

Write register 0x40 with value VarA

Document Revision History

Revision Number	Date	Description
0.80	28 Sept 2020	Initial Creation
1.00	7 Dec 2020	Added Corded Gaming Mode