Análisis exploratorio de datos de fitoplancton encontrado en canales Baker y Martinez, bajo CIMAR Fiordo N°20

Duncan Rosales Schulz

30 November, 2021

#CONSIDERACIONES INICIALES

##	## # A tibble: 1,001 x 6								
##	ESPECIE		TIPO	PROFUNDIDAD	CANAL	ESTACIÓN	ABUNDANCIA		
##	<chr></chr>		<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>		
##	1 Cerataulina	bergonii	DIATOMEAS	0	BAKER	6	600		
##	2 Cerataulina	bergonii	DIATOMEAS	0	BAKER	7	1500		
##	3 Cerataulina	bergonii	DIATOMEAS	0	BAKER	8	1600		
##	4 Cerataulina	bergonii	DIATOMEAS	0	MARTÍNEZ	96	2000		
##	5 Cerataulina	bergonii	DIATOMEAS	0	MARTÍNEZ	97	300		
##	6 Chaetoceros	affinis	DIATOMEAS	0	BAKER	5p	3400		
##	7 Chaetoceros	affinis	DIATOMEAS	0	BAKER	5	2400		
##	8 Chaetoceros	affinis	DIATOMEAS	0	BAKER	6	2700		
##	9 Chaetoceros	affinis	DIATOMEAS	0	BAKER	7	900		
##	10 Chaetoceros	affinis	DIATOMEAS	0	BAKER	8	1600		
##	# with 991	more rows	3						

#Variables cuantitativas y factores

La variable cuantitativa, en este estudio, se trató de una cuantitativa de tipo discreta: ABUNDANCIA.

Los factores, que son varios, son los siguientes: ESPECIE, TIPO, PROFUNDIDAD, CANAL, ESTACION.

##	ESPECIE							P0	PROFUNDIDAD
##	Pseudo-nitzsc	nia deli	catissi	ma:	65 DI	ATOME	EAS	:699	0 :325
##	Pseudo-nitzsc	nia subc	urvata	:	54 DI	NOFLA	GELADOS	:301	5 :230
##	Thalassionema	nitzsch	ioides	:	39 SI	LICOF	CLAGELADOS	3: 1	10:168
##	Rhizosolenia	setigera		:	36				20:123
##	Thalassiosira	mendiol	ana	:	34				30:104
##	Leptocylindru	s danicu	S	:	32				50: 51
##	(Other)			:	741				
##	CANAL	EST	ACIÓN		ABUNDANC	CIA			
##	BAKER :609	7	:134	Mi:	n. :	100			
##	MARTÍNEZ:392	6	: 94	1s	t Qu.:	200			
##		5	: 91	Me	dian :	600			
##		96	: 91	Me	an : 1	0441			
##		5p	: 85	3r	d Qu.:	2200			
##		8	: 81	Ma	x. :64	1200			
##		(Other):425						
##	# A tibble: 6 :	ς 6							
##	ESPECIE		TIPO		PROFUND	IDAD	CANAL	ESTACIÓ	N ABUNDANCIA
##	<fct></fct>		<fct></fct>		<fct></fct>		<fct></fct>	<fct></fct>	<dbl></dbl>

```
600
## 1 Cerataulina bergonii DIATOMEAS 0
                                                 BAKER
## 2 Cerataulina bergonii DIATOMEAS 0
                                                 BAKER
                                                          7
                                                                          1500
## 3 Cerataulina bergonii DIATOMEAS 0
                                                 BAKER
                                                                          1600
## 4 Cerataulina bergonii DIATOMEAS 0
                                                                          2000
                                                 MARTÍNEZ 96
## 5 Cerataulina bergonii DIATOMEAS 0
                                                 MARTÍNEZ 97
                                                                          300
## 6 Chaetoceros affinis DIATOMEAS 0
                                                                          3400
                                                 BAKER
                                                          5р
## tibble [1,001 x 6] (S3: tbl_df/tbl/data.frame)
   $ ESPECIE
                 : Factor w/ 90 levels "Centrodinium pavillardi",..: 3 3 3 3 3 11 11 11 11 11 ...
##
   $ TIPO
                 : Factor w/ 3 levels "DIATOMEAS", "DINOFLAGELADOS", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
  $ PROFUNDIDAD: Factor w/ 6 levels "0","5","10","20",...: 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 2 levels "BAKER", "MARTÍNEZ": 1 1 1 2 2 1 1 1 1 1 ...
  $ CANAL
                 : Factor w/ 13 levels "10","11","12",...: 7 8 9 11 12 6 5 7 8 9 ...
   $ ESTACIÓN
   $ ABUNDANCIA : num [1:1001] 600 1500 1600 2000 300 3400 2400 2700 900 1600 ...
```

BALANCE DE DATOS Y VERIFICACIÓN DE DATOS

Tabla de frecuencia sobre factores de clasificacion con función table(), sobre la variable ABUNDANCIA.

##											
##	100	200	300	400	500	600	700	800	900	1000	1100
##	187	113	89	57	41	44	31	30	29	17	18
##	1200	1300	1400	1500	1600	1700	1800	2000	2100	2200	2300
##	20	14	9	5	13	6	7	12	6	9	6
##	2400	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400
##	8	7	5	7	1	5	4	6	2	3	4
##	3500	3600	3700	3800	3900	4000	4100	4200	4300	4400	4500
##	3	1	2	3	1	2	4	1	1	2	1
##	4600	4800	4900	5000	5100	5200	5300	5500	5600	5800	5900
##	3	2	1	1	1	1	1	2	1	4	2
##	6100	6300	6400	6600	6700	7000	7100	7200	7400	7600	8000
##	2	1	3	2	1	1	1	1	1	3	1
##	8200	8300	8500	8600	8700	8900	9000	9500	10000	10300	10500
##	3	1	1	1	2	1	1	1	1	1	2
##	10800	11000	11200	11400	11600	11700	12000	12200	12700	12800	13100
##	1	1	2	1	1	1	2	1	1	3	3
##	13400	13500	13700	14200	15000	15200	15800	16000	16200	16500	16600
##	2	3	1	1	1	1	1	1	2	1	1
##	16800	16900	17000	17100	17500	18100	18300	20600	20800	21300	21400
##	1	1	2	2	1	1	1	1	1	1	1
##	21600	22800	22900	23200	23800	24000	24200			27600	32500
##	1	2	1	1	1	1	2	2	1	1	1
##	32800	33100	33900	34800	36400	36500	36600	39400	40200	41200	44300
##	1	1	1	1	1	1	1	1	1	1	1
##	47900	50400	54000	55800	61400	64700	65000	67600	75600	79200	79400
##	1	1	1	1	1	1	1	1	1	1	1
##	91400	95800	96400	99600	1e+05	100900	101600	102700	106400	108200	110900
##	1	1	1	1	1	1	1	1	1	1	1
##	111000	115700	126200	140700	142800	148200	161500	161800	162200	204800	238400
##	1	1	1	2	1	1	1	1	1	1	1
##	298400		369800		407676				569200	641200	
##	1	1	1	1	1	1	1	1	1	1	

#HISTOGRAMA

Como primera aproximación, se realizó un histograma de la distribución de frecuencia, de la variable ABUNDANCIA.

Se decidió mostrar la distribución de frecuencia de la variable ABUNDANCIA, separada entre DIATOMEAS y DINOFLAGELADOS.

#RELACIÓN ENTRE VARIABLES Y FACTORES

Se realizaron gráficos boxplot entre ABUNDANCIA, variable respuesta, y los factores o variables regresoras.

Relación ABUNDANCIA y CANAL

Canal Relación ABUNDANCIA y PROFUNDIDAD

Relación ABUNDANCIA y ESTACIÓN

#TRANSFORMACIÓN

A continuación, se transforman los datos ABUNDANCIA; evalúa balance datos, generación histograma, boxplot de lo ya generado

```
##
##
                  2 2.30102999566398 2.47712125471966 2.60205999132796
                187
                                  113
##
  2.69897000433602 2.77815125038364 2.84509804001426 2.90308998699194
##
                                   44
                                                     31
   2.95424250943932
                                    3 3.04139268515822 3.07918124604762
##
##
                 29
                                   17
                                                     18
   3.11394335230684
                    3.14612803567824 3.17609125905568
##
                                                        3.20411998265593
                                                      5
##
                 14
                                    9
                                                                       13
  3.23044892137827 3.25527250510331 3.30102999566398 3.32221929473392
##
                                                     12
##
                  6
                                                                       6
  3.34242268082221 3.36172783601759 3.38021124171161 3.39794000867204
##
##
   3.41497334797082 3.43136376415899 3.44715803134222 3.46239799789896
##
##
##
   3.47712125471966 3.49136169383427 3.50514997831991 3.51851393987789
                  4
                                                                       3
##
   3.53147891704225 3.54406804435028 3.55630250076729 3.56820172406699
                                    3
##
##
  3.57978359661681
                     3.5910646070265 3.60205999132796 3.61278385671974
##
                  3
    3.6232492903979 3.63346845557959 3.64345267648619 3.65321251377534
##
##
                                    1
```

```
## 3.66275783168157 3.68124123737559 3.69019608002851 3.69897000433602
   3.70757017609794 3.7160033436348 3.72427586960079 3.74036268949424
    3.7481880270062 3.76342799356294 3.77085201164214 3.78532983501077
                                   4
                                                    2
                  1
   3.79934054945358 3.80617997398389 3.81954393554187 3.82607480270083
                                   3
   3.84509804001426 3.85125834871908 3.85733249643127 3.86923171973098
                  1
                                   1
                                                    1
   3.88081359228079 3.90308998699194 3.91381385238372 3.91907809237607
                  3
                                   1
                                                    3
   3.92941892571429 3.93449845124357 3.93951925261862 3.94939000664491
                  1
                                   1
                                                    2
  3.95424250943932 3.97772360528885
                                                    4 4 01283722470517
  4.02118929906994\ 4.03342375548695\ 4.04139268515823\ 4.04921802267018
  4.05690485133647 4.06445798922692 4.06818586174616 4.07918124604763
                                   1
  4.08635983067475 4.10380372095596 4.10720996964787 4.11727129565576
                                   1
                                                    3
  4.12710479836481 4.13033376849501 4.13672056715641 4.15228834438306
                                   3
                                                    1
  4.17609125905568 4.18184358794477 4.19865708695442 4.20411998265593
                  1
                                   1
                                                    1
  4.20951501454263\ 4.21748394421391\ 4.22010808804005\ 4.22530928172586
                                                    1
                                   1
   4.22788670461367\ \ 4.23044892137827\ \ 4.23299611039215\ \ 4.24303804868629
                                   2
                                                    2
                  1
   4.25767857486918 4.26245108973043 4.31386722036915 4.31806333496276
                  1
                                   1
                                                    1
   4.32837960343874 4.33041377334919 4.33445375115093 4.35793484700045
                  1
                                   1
   4.35983548233989 4.3654879848909 4.37657695705651 4.38021124171161
                  1
                                   1
                                                    1
  4.38381536598043 4.39445168082622 4.41329976408125 4.44090908206522
                  2
                                   2
##
                                                    1
   4.51188336097887 4.51587384371168 4.51982799377572 4.53019969820308
                  1
                                   1
                                                    1
   4.54157924394658 4.56110138364906 4.56229286445647 4.56348108539441
                  1
                                   1
                                                    1
   4.59549622182557 4.60422605308447 4.61489721603313 4.64640372622307
                 1
                                   1
                                                    1
   4.68033551341456 4.70243053644553 4.73239375982297 4.74663419893758
                                                    1
  4.78816837114117 4.8109042806687 4.81291335664286 4.82994669594164
  4.87852179550121 4.89872518158949 4.8998205024271 4.96094619573383
  4.98136550907854 4.98407703390283 4.9982593384237
                                                                      5
                 1
                                  1
## 5.00389116623691 5.0068937079479 5.01157044359728 5.02694162795903
```

```
## 5.03422726077055 5.04493154614916 5.04532297878666 5.06333335895175
## 1 1 1 1 1 1
## 5.10105935490812 5.14829409743475 5.15472820744016 5.17084820364331
## 1 2 1 1 1
## 5.20817252666712 5.20897851727625 5.21005084987514 5.31132995230379
## 1 1 1 1 1 1 1 1
## 5.3773062510682 5.47479881880063 5.5497387312649 5.56796690682315
## 1 1 1 1 1 1 1
## 5.58500927990246 5.61031514516723 5.62716095237478 5.64048143697042
## 1 1 1 1 1 1 1
## 5.67043140936061 5.75526489141225 5.80699351368211
## 1 1 1 1 1
```

Histograma

Relación ABUNDANCIA y CANAL

Canal Relación ABUNDANCIA y PROFUNDIDAD

Relación ABUNDANCIA y ESTACIÓN

#DÓCIMA DE HIPOTESIS

Podría existir una asociación entre la variable respuesta ABUNDANCIA, y el factor ESTACION. Para ello, se presenta la siguiente H0 e H1:

H_0 :

$$\mu_{A_(10)} \cap \mu_{A_(11)} \cap \mu_{A_(12)} \cap \mu_{A_(14)} \cap \mu_{A_(5)} \cap \mu_{A_(5p)} \cap \mu_{A_(6)} \cap \mu_{A_(7)} \cap \mu_{A_(8)} \cap \mu_{A_(9)} \cap \mu_{A_(96)} \cap \mu_{A_(97)} \cap \mu_{A_(98)} = \emptyset$$

H_1 :

$$\mu_{A_(10)} \cap \mu_{A_(11)} \cap \mu_{A_(12)} \cap \mu_{A_(14)} \cap \mu_{A_(5)} \cap \mu_{A_(5p)} \cap \mu_{A_(6)} \cap \mu_{A_(7)} \cap \mu_{A_(8)} \cap \mu_{A_(9)} \cap \mu_{A_(96)} \cap \mu_{A_(97)} \cap \mu_{A_(98)} \neq \emptyset$$

#ESTADÍSTICA PARAMÉTRICA

Se realizan pruebas para establecer si los datos de ABUNDANCIA cumplen con los supuestos de normalidad, para analizar con estadística paramétrica. Se evaluó independencia, homogeneidad de las varianzas, normalidad, usando un modelo lineal.

```
## Call:
## aov(formula = lm.aov)
##
## Terms:
## PROFUNDIDAD Residuals
## Sum of Squares 58.0846 598.3078
## Deg. of Freedom 5 995
##
## Residual standard error: 0.7754446
## Estimated effects may be unbalanced
```


Im(ABUNDANCIA_LOG10 ~ PROFUNDIDAD)

Im(ABUNDANCIA_LOG10 ~ PROFUNDIDAD)

Histograma de residuales


```
##
## Shapiro-Wilk normality test
##
## data: aov_residuals
## W = 0.94287, p-value < 2.2e-16</pre>
```

Interpretando los gráficos logrados, y el test de normalidad de Shapiro-Wilk, con un p-value < 2.2e-16, se establece que los datos estandarizados, no cumplen con los supuestos de la estadística paramétrica, por lo que habría de usarse estadística no paramétrica para evaluarles.

#REGRESIÓN LINEAL MIXTA

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.181	0.1691	18.81	4.749e-67
ESTACIÓN11	0.1521	0.2528	0.6017	0.5475
ESTACIÓN12	-0.6651	0.3382	-1.966	0.04956
ESTACIÓN14	-0.271	0.2572	-1.054	0.2923
ESTACIÓN5	0.2233	0.2117	1.055	0.2918
ESTACIÓN5p	0.1624	0.2255	0.72	0.4717
ESTACIÓN6	0.07554	0.2107	0.3585	0.7201
ESTACIÓN7	0.1081	0.2139	0.5054	0.6134
ESTACIÓN8	0.08689	0.2117	0.4104	0.6816
ESTACIÓN9	0.28	0.2294	1.22	0.2226
ESTACIÓN96	0.1505	0.2205	0.6826	0.495
ESTACIÓN97	-0.3381	0.2674	-1.265	0.2063
ESTACIÓN98	-0.5344	0.2392	-2.235	0.02568
PROFUNDIDAD5	-0.2614	0.3587	-0.7287	0.4664
PROFUNDIDAD10	-0.562	0.2804	-2.004	0.04537
PROFUNDIDAD20	-0.7957	0.3856	-2.063	0.03937
PROFUNDIDAD30	-0.7914	0.5735	-1.38	0.1679
${\bf PROFUNDIDAD50}$	-0.8795	0.7932	-1.109	0.2678
ESTACIÓN11:PROFUNDIDAD5	0.01754	0.4465	0.03928	0.9687
ESTACIÓN12:PROFUNDIDAD5	0.6179	0.5785	1.068	0.2857
ESTACIÓN14:PROFUNDIDAD5	0.327	0.4362	0.7496	0.4537
ESTACIÓN5:PROFUNDIDAD5	-0.1676	0.4202	-0.3989	0.69
ESTACIÓN5p:PROFUNDIDAD5	-0.2099	0.437	-0.4803	0.6312
ESTACIÓN6:PROFUNDIDAD5	-0.2559	0.4197	-0.6099	0.5421
ESTACIÓN7:PROFUNDIDAD5	0.06352	0.409	0.1553	0.8766
ESTACIÓN8:PROFUNDIDAD5	-0.3222	0.4528	-0.7116	0.4769
ESTACIÓN9:PROFUNDIDAD5	0.00204	0.4275	0.004773	0.9962
ESTACIÓN96:PROFUNDIDAD5	-0.03575	0.4116	-0.08685	0.9308
ESTACIÓN97:PROFUNDIDAD5	0.2535	0.4508	0.5623	0.5741
ESTACIÓN98:PROFUNDIDAD5	0.1873	0.4366	0.429	0.668
ESTACIÓN11:PROFUNDIDAD10	0.2131	0.3759	0.567	0.5708
ESTACIÓN12:PROFUNDIDAD10	0.5837	0.4738	1.232	0.2183
ESTACIÓN14:PROFUNDIDAD10	0.3712	0.5161	0.7194	0.4721
ESTACIÓN5:PROFUNDIDAD10	0.006533	0.402	0.01625	0.987
ESTACIÓN5p:PROFUNDIDAD10	-0.206	0.3885	-0.5303	0.596
ESTACIÓN6:PROFUNDIDAD10	-0.008994	0.375	-0.02398	0.9809
ESTACIÓN7:PROFUNDIDAD10	0.4359	0.3436	1.269	0.2048
ESTACIÓN8:PROFUNDIDAD10	-0.2248	0.3866	-0.5814	0.5611
ESTACIÓN9:PROFUNDIDAD10	-0.2647	0.4034	-0.6561	0.5119
ESTACIÓN96:PROFUNDIDAD10	-0.02478	0.3915	-0.06329	0.9496
ESTACIÓN97:PROFUNDIDAD10	0.7228	0.402	1.798	0.07249
ESTACIÓN98:PROFUNDIDAD10	0.5235	0.3966	1.32	0.1872
ESTACIÓN11:PROFUNDIDAD20	0.192	0.5195	0.3696	0.7118
ESTACIÓN12:PROFUNDIDAD20	0.6869	0.5955	1.153	0.249
ESTACIÓN14:PROFUNDIDAD20	-0.01351	0.6216	-0.02173	0.9827

	Estimate	Std. Error	t value	$\Pr(> t)$
ESTACIÓN5:PROFUNDIDAD20	0.1398	0.4686	0.2985	0.7654
ESTACIÓN5p:PROFUNDIDAD20	0.2403	0.4701	0.5112	0.6093
ESTACIÓN6:PROFUNDIDAD20	0.09417	0.4632	0.2033	0.839
ESTACIÓN7:PROFUNDIDAD20	0.384	0.4395	0.8737	0.3825
ESTACIÓN8:PROFUNDIDAD20	0.03514	0.4637	0.07578	0.9396
ESTACIÓN9:PROFUNDIDAD20	0.009425	0.4561	0.02066	0.9835
ESTACIÓN96:PROFUNDIDAD20	0.6882	0.5185	1.327	0.1847
ESTACIÓN97:PROFUNDIDAD20	0.6333	0.5267	1.202	0.2295
ESTACIÓN98:PROFUNDIDAD20	1.174	0.5722	2.052	0.04049
ESTACIÓN11:PROFUNDIDAD30	-0.09874	0.6565	-0.1504	0.8805
ESTACIÓN12:PROFUNDIDAD30	0.577	0.7074	0.8156	0.4149
ESTACIÓN14:PROFUNDIDAD30	0.4978	0.6975	0.7136	0.4756
ESTACIÓN5:PROFUNDIDAD30	0.1774	0.6482	0.2737	0.7844
ESTACIÓN5p:PROFUNDIDAD30	0.1814	0.6334	0.2864	0.7746
ESTACIÓN6:PROFUNDIDAD30	0.1049	0.6479	0.1619	0.8715
ESTACIÓN7:PROFUNDIDAD30	0.4311	0.6237	0.6913	0.4895
ESTACIÓN8:PROFUNDIDAD30	-0.1315	0.6418	-0.2049	0.8377
ESTACIÓN9:PROFUNDIDAD30	0.06953	0.8082	0.08603	0.9315
ESTACIÓN96:PROFUNDIDAD30	0.04474	0.6316	0.07084	0.9435
ESTACIÓN97:PROFUNDIDAD30	0.6325	0.6869	0.9207	0.3575
ESTACIÓN98:PROFUNDIDAD30	0.7062	0.6462	1.093	0.2748
ESTACIÓN11:PROFUNDIDAD50	-0.3027	0.9822	-0.3081	0.7581
ESTACIÓN12:PROFUNDIDAD50	1.08	1.008	1.072	0.2842
ESTACIÓN14:PROFUNDIDAD50	-0.03003	0.9311	-0.03225	0.9743
ESTACIÓN5:PROFUNDIDAD50	-0.04445	0.8551	-0.05198	0.9586
ESTACIÓN5p:PROFUNDIDAD50	0.02351	0.8586	0.02738	0.9782
ESTACIÓN6:PROFUNDIDAD50	0.3024	0.8917	0.3392	0.7346
ESTACIÓN7:PROFUNDIDAD50	0.07737	0.8494	0.09109	0.9274
ESTACIÓN8:PROFUNDIDAD50	-0.03844	0.9725	-0.03953	0.9685
ESTACIÓN9:PROFUNDIDAD50	-0.1989	0.9238	-0.2154	0.8295
ESTACIÓN96:PROFUNDIDAD50	0.08247	0.9216	0.08948	0.9287
ESTACIÓN97:PROFUNDIDAD50	0.4438	0.8901	0.4986	0.6182
ESTACIÓN98:PROFUNDIDAD50	0.6537	0.8988	0.7273	0.4672

Table 2: Modelo de efectos fijos con interacción, de los datos df2, transformados $\log 10 ({\rm ABUNDANCIA})$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2	
1001	0.775	0.1555	0.08503	

Con un r 2 de 0.155, se puede establecer que no existe relación estadísticamente significativa entre las relaciones establecidas en el modelo de regresión lineal mixta.