DOCUMENT CONTROL SPECIFICATION

Doc.No.: WTIMV50E-01

REV : A PAGE : 1/22

EFFECTIVE DATE : 2017-09-11

Specifications

TFT-LCD module

Model No: WTIMV50E-01

For Customer's Acceptance					
Approved by Comment					

	Signature	Date
Prepared by		
Checked by		
Approved by		

深圳市启明云端科技有限公司

地址:深圳市龙岗区坂田街道 中兴路11号城市山海中心A栋118

Add: Room 115-118, Building A, Chengshishanhai Center, No. 11 Zhongxing Road,

Bantian Sub-District, Longgang district, Shenzhen, PRC 511700

电话(Tel):+86-755-22677752

网址(Web):www.wireless-tag.com

PAGE: 2/21

DOCUMENT CONTROL SPECIFICATION

Contents

No.	ITEM
1.	DOCUMENT REVISION HISTORY
2.	GENERAL DESCRIPTION
3.	OUTLINE DIMENSION
4.	TFT-LCM INTERFACE SPECIFICATION
5.	ABSOLUTE MAXIMUM RATINGS
6.	ELECTRICAL SPECIFICATIONS
7.	TIMING CHARACTERISTICS
8.	POWER SUPPLY CONFIGURATION
9.	OPTICAL SPECIFICATION
10.	RELIABILITY TEST ITEMS
11.	PACKAGE
12.	PRECAUTIONS
13.	INSPECTION STANDARD

PAGE: 3/21 REV : A

EFFECTIVE DATE: 2017-09-11

1. Document revision history:

DOCUMENT CONTROL SPECIFICATION

1. Document revision mistory.						
DOCUMENT REVISION	DATE	DESCRIPTION	PREPARED BY	APPROVED BY		
A	2017-09-11	First Release.				

REV : A PAGE : 4/21

EFFECTIVE DATE: 2017-09-11

2.General Description

DOCUMENT CONTROL SPECIFICATION

WTIMV50E-01 / is a transmissive type a-Si TFT-LCD (amorphous silicon thin film transistor liquid crystal display) module, which is composed of a TFT-LCD panel, a driver circuit a backlight unit, The panel size is 5.0inch and the resolution is 720×1280. High image quality a-Si TFT LCD module. Partial-screen display function is available. Sleep and Stand-by modes are available for power saving.

2.1 Features

No	Item	Specification	Remark
1	Display Mode	Normally Black	
2	Screen Size	5.0inch	
3	Resolution	720 × RGB × 1280	
4	Color Number	262K	
5	Color Arrangement	TFT Active Matrix	
6	Driver IC	ILI9881C	
7	Back Light	White LED 6*2	
8	Viewing Direction	ALL DIRECTION	
9	Interface	MI PI	
10	Surface Treatment	UV Cut	
11	touch panel		
12	CTP Driver IC		
13	Connector Type of CTP		

2.2 Application

- Mobile phone.
- Portable multimedia device.

3. Outline Dimension

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Parameter	Specifications	
Outline dimensions	69.48(W) ×142.18(H) ×2.80(D) (LCM, not include FPC)	mm
Active area	62.1 (W) ×110.4H)	mm
Resolution	$720(H) \times RGB \times 1280(V)$ dots	-
Dot size	0.12825(H) ×0.12825 (V)	mm

VV	深圳市启明云端科技有限公司 WIRELESS-TAG TECHNOLOGY CO.,LTD.	Doc.No.: WTIMV50E-01		
	William Teamoras Too, Erb.	REV: A	PAGE: 5/21	
SPEC TITLE DOCUMENT CONTROL SPECIFICATION		EFFECTIVE DAT	ГЕ: 2017-09-11	

Figure 1: Module specification of the module

Doc.No.: **WTIMV50E-01**

REV: A

PAGE: 7/21

SPEC TITLE
DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

4.TFT-LCM Interface Specification

Pin No	Symbol	Description	Note
1	D0N	Negative polarity of low voltage differential data 0 signal	
2	D0P	Positive polarity of low voltage differential data 0 signal	
3	GND	System Ground	
4	D1N	Negative polarity of low voltage differential data 1 signal	
5	D1P	Positive polarity of low voltage differential data 1 signal	
6	GND	System Ground	
7	D2N	Negative polarity of low voltage differential data 2 signal	
8	D2P	Positive polarity of low voltage differential data 2 signal	
9	GND	System Ground	
10	NC	NC	
11	NC	NC	
12	GND	System Ground	
13	CLKP	Positive polarity of low voltage differential clock signal	
14	CLKN	Negative polarity of low voltage differential clock signal	
15	GND	System Ground	
16	IOVCC	Power supply input for LCM: 1.8V	
17	NC	NC	
18	RESET	Reset Signal	
19	ID(0V)	LCM ID	
20	TE	Tearing Effect Output Signal	
21	VCI	Power supply input for LCM: 2.8V	
22	GND	System Ground	
23	LEDA	Power supply Anode input for backlight	
24	LEDK	Power supply Cathode input for backlight	

REV : A PAGE : 8/21

EFFECTIVE DATE: 2017-09-11

SPEC TITLE
DOCUMENT CONTROL SPECIFICATION

CTP Interface Specification

Pin No	Symbol	Description	
1	SDA(1.8V)	Serial data input signal	
2	SCL(1.8V)	Serial clock signal	
3	EINT(1.8V)	Interrupt signal	
4	VDD(2.8V)	Power supply input for CTP: 2.8V	
5	GND	System Ground	
6	RESET(1.8V)	Reset Signal	

5. Absolute Maximum Ratings

5.1 Electrical Maximum Ratings – for IC Only

<u>Table 3: Electrical Maximum Ratings – for IC</u>

Parameter	Symbol	Min.	Max.	Unit	Note
Power supply voltage (VCI)	VCI	-0.3	+4.0	V	1
Power supply voltage (IOVCC)	IOVCC	-0.3	+3.6	V	1

Note:

1.IOVCC, VCI, GND must be maintained.

2. The modules may be destroyed if they are used beyond the absolute maximum ratings.

5.2 Environmental Condition

Table 4

Item	Operating temperature (Topr)		Storage temperature (Tstg) (Note 1)		Remark	
	Min.	Max.	Min.	Max.		
Ambient temperature	-10°C	+60°C	-20°C	+70°C	Dry	
Humidity (Note 1)	80% max. RH for Ta 40°C < 50% RH for 40°C < Ta Maximum operating temperature				No condensation	

Note 1: Product cannot sustain at extreme storage conditions for long time.

Doc.No.: WTIMV50E-01

REV : A

PAGE: 9/21

EFFECTIVE DATE: 2017-09-11

SPEC TITLE DOCUMENT CONTROL SPECIFICATION

6. Electrical Specifications

Typical Electrical Characteristics

At Ta = 25 $^{\circ}$ C, VCI = 2.6V to 3.3V, IOVCC= 1.65V to 3.3V GND=0V.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage (analog)	VCI-GND		2.6	2.8	3.3	V
Supply voltage (logic)	IOVDD-GND		1.65	1.8	3.3	V
Supply current (Logic & LCD)	ICC	VCI=2.8V	1	-	50	mA
Supply voltage of white LED backlight	VLED =V(BL+)- V(BL-)	Forward current =40 mA Number of LED	ı	19.2	-	V
Luminance (on the module surface)		dies = 12	-	400	-	cd/m ²

Doc.No.: WTIMV50E-01

REV : A

PAGE: 10/21

SPEC TITLE
DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

7. Timing Characteristics

High Speed Data Transmission: Data-Clock Timing

		111	111			
Parameter	Symbol	Min	Тур	Max	Units	Notes
Ul instantaneous	Ulwat	1 1	0	12.5	NI III	1,2,10
Data to Clock Skew [measured at tansmitter]	T _{BKEW} [TX]	-0.15	12	0.15	Ulinst	3
Data to Clock Skew (measured at tall all military)	1 SKEWL 1 AF	0.2		0.2	UI _{NST}	4
Data to Clock Setup Time [measured at receiver]	Tsetue[RX]	-0.15		0.15	Ul _{NST}	5
Data to Copy Secon Time Imeasures at Science I	SETUPITON	-0.2		0.2	Ul _{INST}	6
Data to Clock Hold Time [measured at reciever]	T HOLD[RX]	-0.15		0.15	Ulinst	5
Data to Glock Hold Time Measoned at deserted	1 HOUDINA	-0.2		0.2	UIINST	6
		100		01	рв	9
20% - 80% rise time and fall time	te / te			0.3	Ulinst	7
				0.35	Ul _{INST}	8

Note:

- 1. This value corresponds to a minimum 80 MHz data rate.
- 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.
- 3. Total silicon and package delay budget of 0.3* UIINST when D-PHY is supporting maximum data rate = 1Gbps.
- Total silicon and package delay budget of 0.4* UIINST when D-PHY is supporting maximum data rate > 1Gbps.
- Total setup and hole window for receiver of 0.3* UIINST when D-PHY is supporting maximum data rate = 1Gbps.
- 6. Total setup and hole window for receiver of 0.4° UIINST when D-PHY is supporting maximum data rate > 1Gbps.
- 7. Applicable when operating at HS bit rates ≤ 1 Gbps (UI ≥ 1 ns).
- 8. Applicable when operating at HS bit rates > 1 Gbps (UI < 1 ns).
- 9. Applicable for all HS bit rates. However, to avoid excessive radiation, bit rates ≤ 1 Gbps (UI ≥ 1 ns), should not use values below 150 ps.
- 10. For MIPI speed limitation:
 - [1] Per lane bandwidth is 1Gbps,
 - [2] Total Bit Rate: 4Gbps for 8-8-8; 3Gbps for 6-6-6; and 2.67Gbps for 5-6-5.

SPEC TITLE

深圳市启明云端科技有限公司 WIRELESS-TAG TECHNOLOGY CO.,LTD.

Doc.No.: WTIMV50E-01

REV: A

PAGE: 11/21

EFFECTIVE DATE: 2017-09-11

LP Transmission AC Specification

DOCUMENT CONTROL SPECIFICATION

						11 11 2/1	1
Para	meter	Symbol	Min	Тур	Max	Units	Notes
15%-85% rise t	T _{RLP} / T _{PLP}		1	25	ns	1	
30%-85% rise t	ime and fall time	TREDT	71110	1115	35	ns	1,5,6
ulse width of the LP exclusive-OR	First LP exclusive-OR clock pulse after STOP state or last pulse before stop state	Topped	19		ALL MARKET	ns	4
2000	All other pulses		20	0 1	1121	ns	4
Period of the LP e	exclusive-OR clock	Тымеряли	90	911	11/11/11	ns	
Siew Rate@	0 C _{loup} ■ OpF	2	30	26	500	mV/ns	1,2,3,7
Slew Rate@	C _{LOAD} • 5pF	ōV/ōtsa	30	(200	mV/ns	1,2,3,7
Slew Rate@	Cibio = 20pF	2 More	30		150	mV/ns	1,2,3,7
Siew Rate@	C ₁₀₄₀ ■ 70pF	1	30		100	mV/ns	1,2,3,7
Load Ca	pacitance	CLOAD			70	pF	1

Note:

- 1. CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.
- 2. When the output voltage is between 15% and below 85% of the fully settled LP signal levels.
- Measured as average across any 50 mV segment of the output signal transition.
 This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior.

 5. The rise-time of TREOT starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the
- differential drive.
- 6. With an additional load capacitance CCM between 0-60pF on the termination center tap at RX side of the Lane.
- 7. This value represents a corner point in a piecewise linear curve as bellowed.

Doc.No.: WTIMV50E-01

REV: A

PAGE: 12/21

SPEC TITLE

DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

High-Speed Data Transmission in Bursts

Parameter	Symbol	Min	Тур	Max	Units
Time to drive LP-00 to prepare for HS transmission	THE-PREPARE	40+401	0	85+6UI	ns
Time from start of tHS-TRAIL or tCLK-TRAIL period to start of LP-11 state	TEOT		4	105+12UI	ns
Time to enable Data Lane receiver line termination measured from when Do cross VIL,MAX	THS-TERM-EN	P	all	35+4UI	ns
Time to drive flipped differential state after last payload data bit of a HS transmission burst	THE-TRAIL	60+40/	2/1		ns
Time-out at RX to ignore transition period of EoT	THESKIP	40 11	1 0.	55+4UI	ns
Time to drive LP-11 after HS burst	Тнв-ехіт	100			ns
Length of any Low-Power state period	Tlex	50			ns
Sync sequence period	THE-SYNC	1111	8UI		ns
Minimum lead HS-0 drive period before the Sync sequence	THS-ZERO	105+6UI			ns

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
 2. Ul means Unit Interval, equal to one half HS the clock period on the Clock Lane.
 3. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

Turnaround Procedure

Parameter	Symbol	Min	Тур	Max	Units
Length of any Low-Power state period : Master side	TLPX	50		75	ns
Length of any Low-Power state period : Slave side	TLPX	50		75	ns
Ratio of TLPX(MASTER)/TLPX(SLAVE) between Master and Slave side	Ratio T _{LPX}	2/3		3/2	
Time-out before new TX side start driving	T _{TA-BURE}	Tuex	-78	2T _{LPX}	ns
Time to drive LP-00 by new TX	TTA-GET		5TLPX	397	ns
Time to drive LP-00 after Turnaround Request	Trago		4TLPX		ns

REV : A PAGE : 13/21

EFFECTIVE DATE: 2017-09-11

8. Power Supply Configuration

DOCUMENT CONTROL SPECIFICATION

19.4.1. Power Structure

SPEC TITLE

Figure 130: Power Structure of Power Mode 4

Doc.No.: **WTIMV50E-01**

REV: A

PAGE: 14/21

SPEC TITLE
DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

9. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
D Ti	Rise	Tr	θ=0°		20	35	ms	Note 0	
Response Time	Fall	Tf	0=U°		15	35	ms	Note 3	
Contrast ratio		CR	At optimized viewing angle	800	1000	(==)		Note 4	
NTSC		%	θ=0°	377	70	(50)			
Viewing Angle	Тор				80		deg.	Note 5	
	Bottom		OD 100		80				
	Left	1	CR 100		80				
	Right			20	80		ya .		
Transmitta	nce	%			3.72%				
	1471-14-	X	θ=0°	0.284	0.314	0.344	3	ı.	
	White	Y	0=0°	0.321	0.351	0.381]	
Chromaticity	D-1	X	θ=0°	0.620	0.650	0.680)		
	Red	Y	0=0°	0.307	0.337	0.367	80	Based on	
	0	X	0=0°	0.202	0.232	0.262		H466 BLU spectrum	
	Green	Y	0=0°	0.544	0.574	0.604		spectrum	
	0.	X	θ=0°	0.110	0.140	0.170	3	1	
	Blue	Y	0=0°	0.094	0.124	0.154		1	

Note 1: Measured under Ambient temperature =25°C±2°C.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Doc.No.: WTIMV50E-01

REV: A

PAGE: 15/21

SPEC TITLE
DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (rising time) and from "white" to "black" (falling time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = Photo detector output when LCD is at "White" status
Photo detector output when LCD is at "Black" status

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Doc.No.: **WTIMV50E-01**

REV : A

PAGE: 16/21

SPEC TITLE

DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

10.Reliability Test Items

Item		Test Condition	Criterion			
High Temperature Storage	70 °C, 120 hrs					
Low Temperature Storage	-20 °C, 120 hrs					
High Temp. & High Humidity Storage	40	0°C, 80% RH, 120 hrs	TI 111			
Vibration Test	Freq.:	10~55~10 Hz, Amp.:1.5mm	There should be no			
(Non-operating)	I hr for each direction of X, Y, Z		change which might			
Electrostatic Discharge Test	Terminals 150 pF, 0 Ω , ±300 V, Contact		affect the practical display function when			
(Non-operating)	Panel 150 pF, 330 Ω , ±8 KV, Air		the display quality test			
Thermal Shock			is conducted under			
(Static) High Temperature Operation	60 °C, 120 hrs		normal operating			
Low temperature Operation	-10 °C, 120 hrs		condition.			
High Temperature & High Humidity	-10 C, 120 lits					
(Operating)	40 °C, 70% RH, 120 hrs					
FPC Peeling Strength Test	Pull	speed: 50 mm/min, +90°,	> 400gf/cm			

Doc.No.: WTIMV50E-01

REV: A

PAGE: 17/21

SPEC TITLE
DOCUMENT CONTROL SPECIFICATION

EFFECTIVE DATE: 2017-09-11

11. Package

REV : A PAGE : 18/21

EFFECTIVE DATE: 2017-09-11

SPEC TITLE DOCUMENT CONTROL SPECIFICATION

12.Precautions

Please pay attentions to the followings as using the LCD module.

Handling

- (a) Do not apply strong mechanical stress like drop, shock or any force to LCD module. It may cause improper operation, even damage.
- (b) Because the polarizer is very fragile and easy to be damaged, do not hit, press or rub the display surface with hard materials.
- (c) Do not put heavy or hard material on the display surface, and do not stack LCD modules.
- (d) If the display surface is dirty, please wipe the surface softly with cotton swab or clean cloth.
- (e) Avoid using Ketone type materials (e.g. Acetone), Toluene, Ethyl acid or Methyl chloride to clean the display surface. It might damage the touch panel surface permanently. The recommended solvents are water and Isopropyl alcohol.
- (f) Wipe off water droplets or oil immediately.
- (g) Protect the LCD module from ESD. It will damage the LSI and the electronic circuit.
- (h) Do not touch the output pins directly with bare hands.
- (i) Do not disassemble the LCD module.
- (j) Do not lift the FPC of Touch Panel.

Storage

- (a) Do not leave the LCD modules in high temperature, especially in high humidity for a long time.
- (b) Do not expose the LCD modules to sunlight directly.
- (c) The liquid crystal is deteriorated by ultraviolet. Do not leave it in strong ultraviolet ray for a long time.
- (d) Avoid condensation of water. It may cause improper operation.
- (e) Please stack only up to the number stated on carton box for storage and transportation. Excessive weight will cause deformation and damage of carton box.

REV: A PAGE: 19/21

EFFECTIVE DATE: 2017-09-11

SPEC TITLE

DOCUMENT CONTROL SPECIFICATION

Operation

- (a) When mounting or dismounting the LCD modules, turn the power off.
- (b) Protect the LCD modules from electric shock.
- (c) The Driver IC control algorithms stated above should always obeyed to avoid damaging the LSI and electronic circuit.
- (d) Be careful to avoid mixing up the polarity of power supply for backlight.
- (e) Absolute maximum rating specified above has to be always kept in any case. Exceeding it may cause non-recoverable damage of electronic components or, nevertheless, burning.
- (f) When a static image is displayed for a long time, remnant image is likely to occur.
- (g) Be sure to avoid bending the FPC to an acute shape, it might break FPC.
- (h) Most of the touch screens have air vent to equalize the inside air pressure to the outside one. The air vent must be open and liquid contact must be avoided as the liquid may be absorbed if the liquid is accumulated near the air vent.
- (i) For the fragility of ITO film, it should avoid to use too tapering pen as the input material.

Touch Panel Mounting Notes

- (a) If a cushion is used between bezel/housing and film must be choose as free as enough to absorb the expansion and contraction to avoid the distortion of film.
- (b) The cushion must be placed out of the Viewing Area.
- (c) Bezel/Housing edge must be posited between Key Area and Viewing Area. The edge enters the Key Area may cause unexpected input if the gap is too narrow or foreign particles like dusts exist between Bezel/Housing and ITO film.
- (d) Mounting example:

The corner part has conductivity. Do not touch any metal part after mounting.

Others

- a) If the liquid crystal leaks from the panel, it should be kept away from the eyes or mouth.
- b) For the fragility of polarizer, it is recommended to attach a transparent protective plate over the display surface.
- c) It is recommended to peel off the protection film on the polarizer slowly so that the electrostatic charge can be minimized.

13. Inspection standard

(TBD)