ELEMENTS DE TRAITEMENT DU SIGNAL / SIGNAUX PERIODIQUES/ INPHB/ MP/ 2016-2017

Exercice 1

- 1) Qualifier les deux filtres suivants (filtre1 : circuit RC ; filtre2 : circuit LCR) et calculer leur gain, leur déphasage et leur(s) pulsation(s) de coupure. A.N: R=500Ω; L=10mH; C=10nF.
- 2) On applique en entrée la tension rectangulaire u(t), périodique de période T, définie par : $\begin{cases} t \in]0, \alpha T[:u(t) = E \\ t \in]\alpha T, T[:u(t) = 0 \end{cases}$ est le rapport cyclique, avec $\alpha=1/2$ et $T=2\pi.10^{-5}$ s. Représenter le spectre de décomposition de Fourier de la tension d'entrée, puis celui de la tension de sortie pour chacun des deux filtres.

Exercice 2 : Filtrage d'une tension en rampe montante

On applique la tension périodique de période T, définie par : $t \in]0,T[:u_e(t)=\frac{E}{T}t$ à l'entrée d'un filtre RL. On donne : T=20ms ; $R=5\Omega$; L=10 mH.

- 1) Faire une étude du filtre : nature, fonction de transfert, gain G et déphasage θ .
- 2) Calculer les paramètres C_{ne} et φ_{ne} de la décomposition Fourier de la tension d'entrée $u_e(t)$.
- 3) En déduire les paramètres C_{ns} et φ_{ns} de la décomposition Fourier de la tension de sortie u_s(t).

Exercice 3 : Opérations sur les signaux

- 1) On considère le signal carré, d'amplitude crête à crête 2E, périodique de période T avec :
 - Pour $0 \le t \le T/2$; $v_e(t) = E$
 - Pour $T/2 \le t \le T$; $v_e(t) = -E$
- 1-a) Représenter $v_e(t)$, exprimer son développement en série de Fourier et tracer son spectre d'amplitude.
- **1-b) Translation temporelle**: le signal $v_s(t)$ est retardée d'une valeur $\theta = T/4$ et $v_s(t)$ est tel que $v_s(t) = v_e(t-\theta)$. Représenter $v_s(t)$, exprimer son développement en série de Fourier et tracer son spectre d'amplitude : conclusion.
- 1-c) Translation de niveau: On ajoute au signal $v_e(t)$ une valeur constante E. Représenter $v_s(t)$, exprimer son développement en série de Fourier et tracer son spectre d'amplitude : conclusion.
- 2) **Dérivation**: On considère le signal triangulaire $v_e(t)$ d'amplitude crête à crête 2V périodique de période T avec $v_e(0) = V$ et $v_e(T/2) = -V$. $v_s(t)$ est tel que $v_s(t) = \tau \frac{dv_e(t)}{dt}$. Représenter $v_s(t)$, à l'aide du développement en série de Fourier de $v_e(t)$ en déduire celui de $v_s(t)$. Montrer qu'en choisissant convenablement la valeur de τ on retrouve un signal carré d'amplitude crête à crête 2E.
- 3) Translation fréquentielle : On considère deux $v_l(t)$ et $v_2(t)$ appliqués aux entrées d'un multiplicateur analogique tel que $v_s(t) = K.v_1(t).v_2(t)$.
- **3-a)** Pour $v_1(t) = V_1 \cos \omega_1 t$, $v_2(t) = V_2 \cos \omega_2 t$ avec $\omega_2 >> \omega_1$, représenter l'allure de $v_s(t)$ ainsi que son spectre d'amplitude.
- **3-b**) lorsque $v_1(t)$ est un signal carré d'amplitude E et de pulsation $\omega_0 << \omega_2$ avec $v_2(t) = V_2 \cos \omega_2 t$, exprimer $v_s(t)$ sous la forme d'une somme infinie de sinusoïdes et représenter son spectre d'amplitude.

Fourier.

harmoniques

carré,

que

Exercice 4: Signal rectangulaire impulsionnel pair

Soit le signal périodique formé par la répétition périodique (période T) d'impulsion de durée τ (représenté sur la figure). On définit le rapport cyclique par $\alpha = \frac{\tau}{\tau}$.

1. Déterminer les coefficients a_n et b_n de la décomposition en série de

u(t)

à l'exception de l'ordre 0. Existe-t-il d'autres valeurs du rapport cyclique pour lesquelles cette propriété est vraie ?

3. Commenter l'évolution des coefficients du développement au fur et à mesure que la durée de l'impulsion diminue.

ELEMENTS DE TRAITEMENT DU SIGNAL / SIGNAUX PERIODIQUES/ INPHB/ MP/ 2016-2017

Exercice 5 : Spectre d'un signal modulé sinusoïdalement en amplitude

Un signal porteur $s_p(t) = A_p cos(2\pi f_p t)$ est modulé en amplitude lorsque son amplitude A_p est fonction d'un signal modulant $s_m(t)$ de fréquence $f_m \ll f_p$. Dans le cas d'une modulation sinusoïdale, le signal modulant est sinusoïdal $s_m(t) = A_m \cos(2\pi f_m t)$ et le signal modulé est de la forme $s(t) = A_p[1 + mcos(2\pi f_m t)]cos(2\pi f_p t)$, où m est l'indice de modulation.

- 1. Le modulateur utilisé étant représenté ci-contre, calculer l'indice de modulation m.
- **2.** Déterminer le spectre de fréquence du signal modulé s(t).
- **3.** Donner l'allure du signal modulé pour un indice de modulation m < 1.
- 4. Calculer la bande passante nécessaire à la transmission d'un signal audio encombrant la plage de fréquence $f_{m_1} = 300Hz \le f_{m_2} = 4.5kHz$, sachant que la porteuse utilisée est de fréquence $f_p = 1MHz$.
- 5. En admettant que nous disposons, à la réception, d'un oscillateur local $s_p' = A_p' cos(2\pi f_p t)$ synchrone de l'oscillateur utilisé à l'émission, expliquer le principe du circuit représenté ci-après, où le filtre passe-bas (1) a une fréquence de coupure f_{H_1} telle que $f_{H_1} < f_p$ et le filtre passe-bas (2) une fréquence de coupure $f_{H_2} < f_m$.

Exercice 6 : Signal redressé monoalternance

$$s(t) = \begin{cases} 0, & \text{pour } t \epsilon \left[-\frac{T}{2}, 0 \right]; \\ \\ E \sin \left(\frac{2\pi t}{T} \right), & \text{pour } t \epsilon \left[0, \frac{T}{2} \right]. \end{cases}$$

Le signal s(t) (nommé tension redressée monoalternance) est une fonction périodique de période T du temps et de fréquence f = 50 Hz

- **1.** Représenter la fonction s en fonction du temps t.
- **2.** Donner les expressions et valeurs numériques de la période T et de la pulsation ω de s(t).
- **3.** Développer s(t) en série de Fourier.
- **4.** Calculer le facteur de forme F et le taux d'ondulation δ_0 de ce signal.

Exercice 7

Un signal s(t) peut être décomposé en série de Fourier de la façon suivante : $s(t) = 5 + 7\sin(500t) + 10\sin(1000t) + 2\sin(1500t) + 1,5\sin(2000t)$

Représenter le spectre de s(t).

Exercice 8

Soit un système physique qui, à une grandeur d'entrée fonction du temps e(t), fait correspondre une grandeur de sortie fonction du temps s(t). A quelle condition ce système peut-il être dit linéaire ? On étudie expérimentalement plusieurs systèmes (système 1, système 2 et système 3) à l'aide d'un analyseur numérique. Pour cela on applique à leur entrée le même signal e(t).

- **(b)** Le système 1 est-il linéaire ? Quel est son rôle ?
- (c) Qu'en est-il des systèmes 2 et 3?

On donne ci-contre les spectres de Fourier du signal e(t) et ceux des signaux obtenus en sortie des trois systèmes.

Exercice 9

- 1) Calculer, en utilisant sa définition, la valeur efficace I d'un courant sinusoïdal redressé double alternance. Comparer au signal non redressé.
- 2) Ce courant redressé est filtré par un filtre passe bas parfait, de fréquence de coupure f_H . Déterminer la valeur minimale de la fréquence de coupure pour que 99% de la puissance moyenne soit transmise. Comparer au signal non redressé.

Exercice 11: Distorsion harmonique d'un amplificateur

La caractéristique $v_s = f(v_e)$, donnée ci-contre, est celle d'un amplificateur soumis à des tensions sinusoïdales $v_e(t) = v_{e_m} \cos{(\omega t)}$ dont les fréquences sont comprises dans sa bande passante. Sachant que l'équation de cette caractéristique est de la forme $v_s = av_e + bv_e^3$ (a > 0, b > 0), déterminer le taux de distorsion harmonique δ_h de cet amplificateur.

