DPP: 数学基础

王树森

- 2 维空间的超平行体为平行四边形。
- 平行四边形中的点可以表示为:

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2.$$

系数α₁和α₂取值范围是[0,1]。

- 2 维空间的超平行体为平行四边形。
- 平行四边形中的点可以表示为:

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2.$$

• 系数 α₁ 和 α₂ 取值范围是 [0,1]。

$$\mathbf{x} = \mathbf{v}_1 + \mathbf{v}_2$$

- 2 维空间的超平行体为平行四边形。
- 平行四边形中的点可以表示为:

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2.$$

• 系数 α₁ 和 α₂ 取值范围是 [0,1]。

- 3 维空间的超平行体为平行六面体。
- 平行六面体中的点可以表示为:

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \alpha_3 \boldsymbol{v}_3.$$

系数 α₁, α₂, α₃ 取值范围是 [0,1]。

• 一组向量 $v_1, \dots, v_k \in \mathbb{R}^d$ 可以确定一个 k 维超平行体:

$$\mathcal{P}(\boldsymbol{v}_1,\cdots,\boldsymbol{v}_k) = \{\alpha_1\boldsymbol{v}_1 + \cdots + \alpha_k\boldsymbol{v}_k \mid 0 \leq \alpha_1,\cdots,\alpha_k \leq 1\}.$$

- 一组向量 $v_1, \dots, v_k \in \mathbb{R}^d$ 可以确定一个 k 维超平行体: $\mathcal{P}(v_1, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid 0 \leq \alpha_1, \dots, \alpha_k \leq 1\}.$
- 要求 $k \le d$, 比如 d = 3 维空间中有 k = 2 维平行四边形。
- 如果 v_1 , …, v_k 线性相关,则体积 $vol(\mathcal{P}) = 0$ 。(例:有 k = 3 个向量,落在一个平面上,则平行六面体的体积为 0。)

- 面积 = ||底||₂ × ||高||₂。
- 以 v_1 为底,计算高 q_2 ,两个向量必须正交。

以 v_1 为底,如何计算高 q_2 ?

• 计算 v₂ 在 v₁ 上的投影:

$$\text{Proj}_{v_1}(v_2) = \frac{v_1^T v_2}{||v_1||_2^2} \cdot v_1.$$

以 v_1 为底,如何计算高 q_2 ?

• 计算 v₂ 在 v₁ 上的投影:

$$\text{Proj}_{v_1}(v_2) = \frac{v_1^T v_2}{||v_1||_2^2} \cdot v_1.$$

- 计算 $q_2 = v_2 \text{Proj}_{v_1}(v_2)$ 。
- 性质:底 v₁ 与高 q₂ 正交。

以 v_2 为底,如何计算高 q_1 ?

• 计算 v₁ 在 v₂ 上的投影:

$$\text{Proj}_{\boldsymbol{v}_2}(\boldsymbol{v}_1) = \frac{\boldsymbol{v}_1^T \boldsymbol{v}_2}{||\boldsymbol{v}_2||_2^2} \cdot \boldsymbol{v}_2.$$

以 v_2 为底,如何计算高 q_1 ?

• 计算 v_1 在 v_2 上的投影:

$$\text{Proj}_{v_2}(v_1) = \frac{v_1^T v_2}{||v_2||_2^2} \cdot v_2.$$

- 计算 $\boldsymbol{q}_1 = \boldsymbol{v}_1 \operatorname{Proj}_{\boldsymbol{v}_2}(\boldsymbol{v}_1)$ 。
- 性质:底 v₂ 与高 q₁ 正交。

平行六面体的体积

- 体积 = 底面积 × ||高||,。
- 平行四边形 $\mathcal{P}(v_1, v_2)$ 是平行六面体 $\mathcal{P}(v_1, v_2, v_3)$ 的底。
- 高 q_3 垂直于底 $\mathcal{P}(v_1, v_2)$ 。

平行六面体的体积

体积何时最大化、最小化?

- 设 v_1 、 v_2 、 v_3 都是单位向量。
- 当三个向量正交时,平行六面体为 正方体,体积最大化, vol = 1。
- 当三个向量线性相关时,体积最小 ℓ · vol = ℓ ·

衡量物品多样性

- 给定 k 个物品,把它们表征为单位向量 $\boldsymbol{v}_1, \cdots, \boldsymbol{v}_k \in \mathbb{R}^d$ 。 $(d \ge k)$
- 用超平行体的体积衡量物品的多样性,体积介于①和1之间。
- •如果 v_1 ,…, v_k 两两正交(多样性好),则体积最大化,vol=1。
- •如果 $v_1, ..., v_k$ 线性相关(多样性差),则体积最小化,vol = 0。

衡量物品多样性

- 给定k个物品,把它们表征为单位向量 $v_1, \dots, v_k \in \mathbb{R}^d$ 。 $(d \ge k)$
- 把它们作为矩阵 $V \in \mathbb{R}^{d \times k}$ 的列。
- 设 $d \ge k$, 行列式与体积满足:

$$\det(\mathbf{V}^T\mathbf{V}) = \operatorname{vol}(\mathcal{P}(\mathbf{v}_1, \dots, \mathbf{v}_k))^2.$$

• 因此,可以用行列式 $\det(V^TV)$ 衡量 向量 v_1, \dots, v_k 的多样性。

Thank You!