Homework 3 Machine Learning

October 5, 2022

Exercise 4:

We know that when the rows and columns are independent, then matrix A would be invertible and would have non-zero determinant.

We have an $n \times m$ matrix X

If n = m, It is enough for check $det(X) \neq 0$

if $n \neq m$. Precisely, When the rank of X is m (Which forces $n \geq m$)

For $v \in Rm$, Xv = 0 if and only if $X^TXv = 0$.

For the non-trivial implication. If $X^TXv = 0$ then $v^TX^TXv = 0$, that is $(Xv)^TXv = 0$, Which implies that Xv = 0.

If rank(X) = m, this mean that X is one-to-one when acting on Rm.

So by the observation, X^TX is one-to-one, Which makes it Invertible (as it is square).

Conversely, If rank(X) < m there exist $v \in Rm$ with Xv = 0, and X^TX can not Invertible.