Physics 129: Particle Physics Lecture 8: Symmetries and Conservation Laws (Part II)

Sept 22, 2020

- Suggested Reading:
 - ► Thomson Sections 1.1, 3.1, 9.1-9.2
 - ► Griffiths Chapter 4
 - ► Perkins Sections 3.1-3.10

Review: Noether's Theorm

- There is a one-to-one correspondance between symmetries of nature and conservation law
- Every symmetry leads to a conservation law and every conservation law corresponds to a symmetery
 - In Quantum Mechanics, this is expresSed in terms of the Hamiltonia

$$\left[\hat{H},\hat{S}\right]=0\Rightarrow\left\langle \hat{S}\right\rangle$$
 is conserved

- In Classical mechanics it is expressed as a symmetery of the action of the LaGrangian, but the correspondence with conservation laws is the same
- Examples for spatial symmetries:

```
 \begin{array}{cccc} \mathsf{Translation} \ \mathsf{in} \ \mathsf{time} & \Rightarrow & \mathsf{energy} \ \mathsf{conservation} \\ \mathsf{Translation} \ \mathsf{in} \ \mathsf{space} & \Rightarrow & \mathsf{momentum} \ \mathsf{conservation} \\ \mathsf{Rotations} & \Rightarrow & \mathsf{angular} \ \mathsf{momentum} \ \mathsf{conservation} \\ \end{array}
```

- Observing conservation laws tells us about the form of the interaction
- Alternately, invoking conservation laws can be used to constrain a problem without solving the equations of motion

Review: Parity

Parity operator defined as spatial inversion

$$(x, y, z) \longrightarrow (-x, -y, -z)$$

 $P(\psi(\vec{r})) = \psi(-\vec{r})$

- Repetition of the operations gives $P^2=1$
 - ightharpoonup P is a unitary operator with eigenvalues ± 1
- ullet If system is an eigenstate of P, its eigenvalue is called the parity of the system
- $P^{\dagger} = P = P^{-1}$
- How do various operators transform under P?

$$P \vec{r} P^{-1} = -\vec{r}$$

 $P \vec{p} P^{-1} = -\vec{p}$
 $P \vec{L} P^{-1} = +\vec{L}$
 $P \vec{S} P^{-1} = +\vec{S}$

First two are called vectors, last two are called axial vectors

• Parity is a multiplicative quantum number

Review: Parity and Elementary Particles

- If parity is a good symmetry of H_{int} , all elementary particles must be eigenstates of P with eigenvalues ± 1 .
- To determine if parity is a good symmetry, see if it's possible to define eigenstates for each elementary particle (independent of reaction)

Note: It is not necessarily true that definition be *unique* as long as we can define it in a consistent one

- Experimental Facts:
 - ► Both Strong and EM interactions conserve parity
 - Weak interactions do not
- Elementary particles have intrinsic parity:
 - ▶ The Photon: $P(\gamma) = -1$
 - ► Spin-1/2 particles
 - Always pair produced
 - Particle and antiparticle have opposite parity
 - Pions: $P(\pi) = -1$
- Nomenclature:
 - Particles like the π with spin-0 and P=-1 are called *pseudoscalar* particles
 - \blacktriangleright Particles like the ρ with spin-1 and P=-1 are calle *vector* particles

Some Perspective: Let's go back to Quantum Mechanics

- [H, P] = 0
 - ► Can have simulateous eigenstates of *H* and *P*
- Eigenstates alternate between even and odd partity

$$P\psi(x) = \pm \psi(x)$$

- Any $\psi(x)$ with even parity can be constructed from the even eigenstates
- Any $\psi(x)$ with odd parity can be constructed from the odd eigenstates
- Given a $\psi(x)$ of definite parity
 - ► If a physical observable \hat{O} is odd under parity

$$\langle \hat{O} \rangle = 0$$

1 Dimensional Infinite Square Well

Applying this idea to particle physics

- ullet Orbital angular momentum state has parity $(-1)^\ell$
- Elementary particles have intrinsic parity
 - ▶ If decay occurs via strong or EM interaction, final state wave function of the decay products must have the same parity as the initial particle
 - Parity of the final wave function product of intrinsic parities and parity from orbital angular momentum
 - We implicitly used this last Thurs to determine the parity of the pion
- Often, in scattering problems, the intial state has definite partity that can be calculated. In that case, if scattering occurs via strong or EM interactions
 - Parity of final state must be same as initial state
 - $ightharpoonup \left\langle \hat{O} \right\rangle = 0$ for any observable that is odd under parity
- For strong and EM interactions, when we have particle decays or when scattering occurs from state of definite parity:
 - ▶ Observables such as decay angular distributions must be even under parity
 - For example, a scattering cross section $d\sigma/d\Omega$ can only contain even powers of $\cos\theta$
 - By the same argument, the rates can be written as a function of scalar quantites not pseudoscalars

Another discrete symmetry: Charge Conjugation (C) (I)

- In classical E&M, if sign of all charges is changed $q \Rightarrow -q$:
 - lacktriangle All $ec{E}$ and $ec{B}$ fields change direction
 - Force on a particle:

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

- lacktriangle Equations of motion invariant under transformation $q\Rightarrow -q$
- Define a transform C called *Charge Conjugation*
- C reverses the sign of the charge and magnetic moment and leaves spatial coordinates unchanged
- This is not a great name since this transform does more than change the sign of the charge
- It in fact changes particles into anti-particles
 - $ightharpoonup e^- \Rightarrow e^+$ Lepton number changes sign
 - $p \Rightarrow \overline{p}$ Baryon number changes sign

Another discrete symmetry: Charge Conjugation (C) (II)

• C is more difficult to study than P because elementary particles aren't in general eigenstates of C

$$C\left|\pi^{+}\right\rangle = \eta\left|\pi^{-}\right\rangle \neq \pm\left|\pi^{+}\right\rangle$$

 If C is a good symmetry of our iteraction, neutral particles will be eigenstates of C

$$C |\psi\rangle = \pm |\psi\rangle$$

if the charge of $|\psi\rangle=0$

- Just as elementary particles have intrinsic parity, neutral elementary particles have an intrinsic C quantum number
- The photon is an elementary particle and EM interaction is symmetric under C
- We can determine C for the photon from form of EM interaction
 - ► To find the sign, note that EM fields are produced from charges
 - lacktriangle Changing sign of charge changes direction of ec E

The photon has
$$C = -1$$

C for the Neutral Pion

$$C\left|\pi^{0}\right\rangle = \eta\left|\pi^{0}\right\rangle$$

with $|\eta|^2=1$ so $\eta=\pm 1$

- Since $\pi^0 \to \gamma \gamma$, π^0 has C=1
- ullet Consequence: $\pi^0 o 3\gamma$ is forbidden

$$\frac{\pi^0 \to 3\gamma}{\pi^0 \to 2\gamma} < 3.1 \times 10^{-8} \quad 90\% \text{ cl}$$

Note:

Although charged particles aren't eigenstates of $\mathsf{C},\,\mathsf{C}$ invariance is still useful for relating reaction rates

$$\mathcal{M}(ab \to cd) = \mathcal{M}(\overline{a}\overline{b} \to \overline{c}\overline{d})$$

Time Reversal (T)

- Operator T turns $t \to -t$
- Tested experimentally for strong interactions by applying principle of detailed balance
- T is also a good symmetry of EM. Small T violations in Weak interaction (more in a few weeks)
- A good test of T symmetry in strong and EM interactions:

Limit on electric dipole moment (EDM) of neutron

- \blacktriangleright Electric dipole moment \vec{d} would have to point along axis of spin \vec{S} (no other preferred direction in center of mass)
- $ightharpoonup \vec{d}$ is a vector, but \vec{S} is a pseudovector
- \blacktriangleright An EDM for for neutron would violate P symmetry but would also violate T symmetry since \vec{S} changes sign under T
- Current limit:

$$|\vec{d}^n| \le 1.8 \times 10^{-26} \text{ e cm}$$

• Same argument holds for electron EDM

$$|\vec{d}^3| \le 1.1 \times 10^{-29}$$
 e cm

Flavor Symmetry Overview (I)

- 3 generations of leptons (e, μ , τ and respective ν)
 - Pointlike, as far as we can measure
 - Conserved quantum number
 - Total lepton number absolutely conserve (as far as we know)
 - Individual e, μ, τ number conserved except in ν oscillations (more later this semester)
- Hundreds of hadrons:
 - Are they fundamental?
 - Look for patterns in mass, spin, charge
 - Rules to relate interaction and decay rates
- First classification:
 - ▶ Baryons (eg p and n) have spin-1/2 (fermions)
 - Must be produced in pairs
 - Baryon number absolutely conserved for all known interactions
 - Mesons (eg π and K) have integer spin (bosons)
 - Can be produced singly

Flavor Symmetry Overview (II)

- Futher classification of hadrons
 - Hadrons are composite particles made of quarks
 - If we could calculate the hadron wave functions (as we do for the hydrogen atom), we could determine the mass of the hadrons
 - But even without knowin wave function, can use observed patterns of hadron masses to learn about the strong force
- In 1960's no one knew whether quarks were real or just mathematical constructs
 - ► We'll discuss how we learned that quarks were real in a few weeks
 - For now, take that as a postulate
- Since baryons and mesons are so different, we'll first discuss them separately and then see how to relate what we learn in the two cases
- First hadrons studied were the baryons, since they make up the nucleus

The lightest baryons

- Earliest examples: p and n
 - ▶ Both see same nuclear force
 - Masses almost the same
 - $m_p = 938.20 \text{ MeV}$
 - $m_n = 939.57 \text{ MeV}$
- ullet Natural natural to of them as 2 states of same particle: the nucleon N

$$N \equiv \left(egin{array}{c} p \ n \end{array}
ight)$$

- Writing the two as a doublet is suggestive
 - ► There must be a transformation that turns on of these particles into the other
 - Think of this transformation as a "rotation" of some new quantum number
 - ► The rotation will have an infinitesmal operator associated with it
 - Commutation properties of the operator will define this new quantum number

Introducing Isospin

- We will call this new quantum number isospin
- Postulate that it has the same algebra as spin
- Test this hypothesis against measurements
- If nucleon is a doublet, then N has $I = \frac{1}{2}$:

$$N \equiv \begin{pmatrix} p \\ n \end{pmatrix}$$

$$p = \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

$$n = \left| \frac{1}{2} - \frac{1}{2} \right\rangle$$

- ullet Here the z component of isospin is usually written I_3 instead of I_z
- Before testing is our postulate is correct, we'll need to introduce isospin for the pions

Isospin for the pions

• Three charges π^+ , π^0 , π^- so I=1:

$$\Pi \equiv \begin{pmatrix} \pi^{+} \\ \pi^{0} \\ \pi^{-} \end{pmatrix}$$

$$\pi^{+} = |11\rangle$$

$$\pi^{0} = |10\rangle$$

$$\pi^{-} = |1-1\rangle$$

- Pions are an isotriple
- Note: Both for the N and for the Π , changing I_3 by 1 unit changes the charge of the particle by 1 unit
 - ► This is a general fact we will come back to next time

Testing our isospin postulate

- We called our quantum number isospin hoping that the transforamtion would have the same properties as spin
- \bullet If that were true the isospin \vec{I} would have 3 components that satisfy the commutation relation

$$[I_i, I_j] = i\epsilon_{ijk}I_k$$

- Addition of isospin would follow the same rules as addition of angular momentum
- If isospin is a good symmetry of the strong interactions, then it is conserved
 - If we know the isospin of the inital state, we know the isospin of the final state
- Given two initial particles with isospin I₁ amd I₂, the total isospin of the inital state can take any value from I₁ + I₂ to |I₁ - I₂|
 - ▶ If the interaction H_{int} doesn't depend on I_3 but only on I, then $\langle \psi | H_{int} | \psi \rangle$ (aka the matrix element) does not depend on I_3
 - ightharpoonup We have only one matrix element for each value of I
 - Can relate rates for processes with the same I and different I₃ using Clebsh-Gordon coefficients

Does the algebra of SU(2) hold? πN scattering

- Use isospin to relate reaction rates
- ullet One matrix element per value of I_{Tot}
- $\Rightarrow I_{Tot} = \frac{3}{2}$ or $\frac{1}{2}$ so two indep matrix elements:

$$\mathcal{M}_{\frac{1}{2}} \equiv \left\langle \frac{1}{2} \middle| H \middle| \frac{1}{2} \right\rangle \quad \mathcal{M}_{\frac{3}{2}} \equiv \left\langle \frac{3}{2} \middle| H \middle| \frac{3}{2} \right\rangle$$

• Examples of decomposition

$$p\pi^{+} = \left| \frac{3}{2} \frac{3}{2} \right\rangle$$

$$p\pi^{0} = \sqrt{\frac{2}{3}} \left| \frac{3}{2} \frac{1}{2} \right\rangle - \sqrt{\frac{1}{3}} \left| \frac{1}{2} \frac{1}{2} \right\rangle$$

• Working through the math:

$$\sigma(\pi^+ p \to \pi^+ p) \sim \left| \mathcal{M}_{\frac{3}{2}} \right|^2$$

$$\sigma(\pi^+ n \to \pi^+ n) \sim \left| \frac{1}{3} \mathcal{M}_{\frac{3}{2}} + \frac{2}{3} \mathcal{M}_{\frac{1}{2}} \right|^2$$

$$\sigma(\pi^- p \to \pi^0 n) \sim \left| \frac{\sqrt{2}}{3} \mathcal{M}_{\frac{3}{2}} - \frac{\sqrt{2}}{3} \mathcal{M}_{\frac{1}{2}} \right|^2$$

More on πN scattering

- Large bumps: "resonances"
- Eg: near 1236 MeV
 - Width $\sim 120~{\rm MeV} \Rightarrow {\rm short}$ lifetime: $\Delta E \Delta t \sim \hbar$:

$$\begin{array}{lll} \Delta t & \sim & \frac{\hbar}{\Delta E} \\ & \sim & \frac{6.58 \times 10^{-22} \text{ MeV s}}{120 \text{ MeV}} \\ & \sim & 5 \times 10^{-24} \text{ s} \end{array}$$

- This is the Δ
 - Four states: I = 3/2: $\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$
 - ▶ There is NO Δ^{--}