Lecture 3

Big-O notation, more recurrences!!

Announcements!

- HW1 is posted! (Due Friday)
- See Piazza for a list of HW clarifications

• First recitation section was this morning, there's another tomorrow (same material). (These are optional, it's a chance for TAs to go over more examples than we can get to in class).

FAQ

- How rigorous do I need to be on my homework?
 - See our example HW solution online
 - In general, we are shooting for:

You should be able to give a friend your solution and they should be able to turn it into a rigorous proof without much thought.

- This is a delicate line to walk, and there's no easy answer. Think of it like more like writing a good essay than "correctly" solving a math problem.
- What's with the array bounds in pseudocode?
 - SORRY! I'm trying to match CLRS and this causes me to make mistakes sometimes. In this class, I'm trying to do:
 - Arrays are 1-indexed
 - A[1..n] is all entries between 1 and n, inclusive
 - I will also use A[1:n] (python notation) to mean the same thing (not python notation).
 - Please call me out when I mess up.

Last time....

- Sorting: InsertionSort and MergeSort
- Analyzing correctness of iterative + recursive algs
 - Via "loop invariant" and induction
- Analyzing running time of recursive algorithms
 - By writing out a tree and adding up all the work done.

Today

- How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis
- Recurrence relations:
 - Integer Multiplication and MergeSort again
- The "Master Method" for solving recurrences.

Recall from last time...

- We analyzed INSERTION SORT and MERGESORT.
- They were both correct!
- INSERTION SORT took time about n²
- MERGESORT took time about n log(n).

A few reasons to be grumpy

Sorting

should take zero steps...why nlog(n)??

• What's with this T(MERGE) < 2 + 4n <= 6n?

Analysis

T(n) = time to run MERGESORT on a list of size n This is called a recurrence relation: it describes the running time of a problem of size n in terms of the running time of smaller problems.

$$T(n) = T(n/2) + T(n/2) + T(MERGE) = 2T(n/2) + 6n$$

T(MERGE two lists of size n/2) is the time to do:

- 3 variable assignments (counters ← 1)
- n comparisons
- n more assignments
- 2n counter increments

So that's

2T(assign) + n T(compare) + n T(assign) + 2n T(increment)

or 4n + 2 operations

Or 4n + 3...

We will see later how automagically...bu

SLIDE FROM

I AST TIME

Let's say $T(MERGE \text{ of size } n/2) \leq 6n$ operations

Lucky the lackadaisical lemur

relations like these first principles.

Plucky the pedantic penguin

A few reasons to be grumpy

Sorting

should take zero steps...why nlog(n)??

What's with this T(MERGE) < 2 + 4n <= 6n?

• The "2 + 4n" operations thing doesn't even make sense. Different operations take different amounts of time!

 We bounded 2 + 4n <= 6n. I guess that's true, but that seems pretty dumb.

How we will deal with grumpiness

- Take a deep breath...
- Worst case analysis
- Asymptotic notation

Worst-case analysis

Sorting a sorted list should be fast!!

1 2 3 4 5 6 7 8

• In this class, we will focus on worst-case analysis

Here is my algorithm!

Algorithm:
Do the thing
Do the stuff
Return the answer

Algorithm designer

- Pros: very strong guarantee
- Cons: very strong guarantee

Big-O notation

How long does an operation take? Why are we being so sloppy about that "6"?

- What do we mean when we measure runtime?
 - We probably care about wall time: how long does it take to solve the problem, in seconds or minutes or hours?
- This is heavily dependent on the programming language, architecture, etc.
- These things are very important, but are not the point of this class.
- We want a way to talk about the running time of an algorithm, independent of these considerations.

Remember this slide?

n	n log(n)	n^2
8	24	64
16	64	256
32	160	1024
64	384	4096
128	896	16384
256	2048	65536
512	4608	262144
1024	10240	1048576

Change nlog(n) to 5nlog(n)....

n	5n log(n)	n^2
8	120	64
16	320	256
32	800	1024
64	1920	4096
128	4480	16384
256	10240	65536
512	23040	262144
1024	51200	1048576

Asymptotic Analysis

How does the running time scale as n gets large?

One algorithm is "faster" than another if its runtime grows more "slowly" as n gets large.

This will provide a formal way of saying that n² is "worse" than 100 n log(n).

Pros:

- Abstracts away from hardware- and languagespecific issues.
- Makes algorithm analysis Without much more tractable.

This is especially relevant now, as data get bigger and bigger and bigger...

Cons:

• Only makes sense if n is large (compared to the constant factors).

2¹⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰ n is "better" than n² ?!?!

Now for some definitions...

- Quick reminders:
 - 3: "There exists"
 - ∀: "For all"
 - Example: ∀ students in CS161, ∃ an algorithms problem that really excites the student.
 - Much stronger statement: ∃ an algorithms problem so that, ∀ students in CS161, the student is excited by the problem.
- We're going to formally define an upper bound:
 - "T(n) grows no faster than f(n)"

O(...) means an upper bound

- Let T(n), f(n) be functions of positive integers.
 - Think of T(n) as being a runtime: positive and increasing in n.
- We say "T(n) is O(f(n))" if f(n) grows at least as fast as T(n) as n gets large.
- Formally,

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot f(n)$$

Parsing that...

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot f(n)$$

T(n) = O(f(n)) means:

Eventually, (for large enough n) something that grows like f(n) is always bigger than T(n).

Example 1

•
$$T(n) = n$$
, $f(n) = n^2$.

•
$$T(n) = O(f(n))$$

$$T(n) = O(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s. t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot f(n)$$

$$c=1$$
 $c f(n) = f(n)$

Examples 2 and 3

- All degree k polynomials with positive leading coefficients are O(n^k).
- For any $k \ge 1$, n^k is not $O(n^{k-1})$.

(On the board)

Take-away from examples

• To prove T(n) = O(f(n)), you have to come up with c and n_0 so that the definition is satisfied.

- To prove T(n) is NOT O(f(n)), one way is by contradiction:
 - Suppose that someone gives you a c and an n_0 so that the definition is satisfied.
 - Show that this someone must by lying to you by deriving a contradiction.

$\Omega(...)$ means an upper bound, and $\Omega(...)$ means a lower bound

• We say "T(n) is $\Omega(f(n))$ " if f(n) grows at most as fast as T(n) as n gets large.

Formally,

$$T(n) = \Omega(f(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s. t. } \forall n \geq n_0,$$

$$0 \leq c \cdot f(n) \leq T(n)$$
Switched these!

Parsing that...

$\Theta(...)$ means both!

• We say "T(n) is $\Theta(f(n))$ " if:

$$T(n) = O(f(n))$$

$$-AND$$

$$T(n) = \Omega(f(n))$$

Yet more examples

- $n^3 n^2 + 3n = O(n^3)$
- $n^3 n^2 + 3n = \Omega(n^3)$
- $n^3 n^2 + 3n = \Theta(n^3)$

- 3ⁿ is **not** O(2ⁿ)
- $n \log(n) = \Omega(n)$
- n log(n) is **not** $\Theta(n)$.

Fun exercise: check all of these carefully!!

We'll be using lots of asymptotic notation from here on out

- This makes both Plucky and Lucky happy.
 - Plucky the Pedantic Penguin is happy because there is a precise definition.
 - Lucky the Lackadaisical Lemur is happy because we don't have to pay close attention to all those pesky constant factors like "4" or "6".
- But we should always be careful not to abuse it.
- In the course, (almost) every algorithm we see will be actually practical, without needing to take $n \ge n_0 = 2^{10000000}$.

This is my happy face!

Back to recurrence relations

T(n) = time to solve a problem of size n.

We've seen three recursive algorithms so far.

- Needlessly recursive integer multiplication
- T(n) = 4 T(n/2) + O(n)
- $T(n) = O(n^2)$

(Reminders on board)

- Karatsuba integer multiplication
- T(n) = 3 T(n/2) + O(n)
- $T(n) = O(n^{\log_2(3)} \approx n^{1.6})$
- MergeSort
- T(n) = 2T(n/2) + O(n)
- $T(n) = O(n\log(n))$

What's the pattern?!?!?!?!

The master theorem

- A formula that solves recurrences when all of the sub-problems are the same size.
- (We'll see an example Wednesday when not all problems are the same size).

A useful formula it is.
Know why it works you should.

Jedi master Yoda

The master theorem

• Suppose
$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$$
. Then

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Three parameters:

a: number of subproblems

b: factor by which input size shrinks

d: need to do nd work to create all the subproblems and combine their solutions.

Many symbols those are....

Examples

(details on board)

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d).$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

- Needlessly recursive integer mult.
- T(n) = 4 T(n/2) + O(n)
- $T(n) = O(n^2)$

- a = 4
- b = 2
- d = 1
- a > b^d

- Karatsuba integer multiplication
- T(n) = 3 T(n/2) + O(n)
- $T(n) = O(n^{\log_2(3)} \approx n^{1.6})$

- a = 3
- d = 1
- b = 2 $a > b^d$

- MergeSort
- T(n) = 2T(n/2) + O(n)
- T(n) = O(nlog(n))

- a = 2
- b = 2 $a = b^d$
- d = 1

Proof of the master theorem

- We'll do the same recursion tree thing we did for MergeSort, but be more careful.
- Suppose that $T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$.

Hang on! The hypothesis of the Master Theorem was the the extra work at each level was $O(n^d)$. That's NOT the same as work <= cn for some constant c.

Plucky the Pedantic Penguin

That's true ... we'll actually prove a weaker statement that uses this hypothesis instead of the hypothesis that $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. It's a good exercise try to make this proof work rigorously with the O() notation.

Lucky the lackadaisical lemur

n/b^t

n/b^t

n/b^t

n/b^t

n/b^t

(Size 1)

n/b^t

 $log_h(n)$

each problem

 $c \cdot n^d$ $ac \left(\frac{n}{b}\right)^d$

Amount of

work at this

level

n/b

 $a^2c\left(\frac{n}{h^2}\right)^d$

 n/b^2

 $a^t c \left(\frac{n}{h^t}\right)^d$

 $a^{\log_{-}b(n)}c$

n/b^t

at

alog_b(n)

Now let's check all the cases (on board)

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Even more generally, for T(n) = aT(n/b) + f(n)...

Theorem 3.2 (Master Theorem). Let $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$ be a recurrence where $a \ge 1$, b > 1. Then,

- If $f(n) = O\left(n^{\log_b a \epsilon}\right)$ for some constant $\epsilon > 0$, $T(n) = \Theta\left(n^{\log_b a}\right)$.
- If $f(n) = \Theta\left(n^{\log_b a}\right)$, $T(n) = \Theta\left(n^{\log_b a} \log n\right)$.
- If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some constant $\epsilon > 0$ and if $af(n/b) \leq cf(n)$ for c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Recap

- O() notation makes our lives easier.
- The "Master Method" also make our lives easier.

Next time:

- What if the subproblems are different sizes?
- And when might that happen?

Extra slides...

Some brainteasers

- Are there functions f, g so that NEITHER f = O(g) nor f = $\Omega(g)$?
- Are there non-decreasing functions f, g so that the above is true?
- Define the n'th fibonacci number by F(0) = 1, F(1) = 1, F(n) = F(n-1) + F(n-2) for n > 2.
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

True or false:

- $F(n) = O(2^n)$
- $F(n) = \Omega(2^n)$

A few more O() examples

Example A

$$T(n) = O(f(n))$$
 \Leftrightarrow

 $\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,$

•
$$g(n) = 2$$
, $f(n) = 1$.

$$0 \le T(n) \le c \cdot f(n)$$

• g(n) = O(f(n)) (and also f(n) = O(g(n)))

