Problem Set #3

Danny Edgel Econ 761: Industrial Organization Theory Fall 2021

October 25, 2021

1 Nevo's Code

The table below displays the estimates for the coefficient on price, α , for each specification. It is generated by the attached code, edgel_ps3.tex. Note that there are fewer observations than are in the data provided; this is due to the specification requiring an "outside option", for which I chose the first brand.

	(1)	(2)	(3)	(4)
	OLS	OLS	IV	IV
α	1.303	-28.260	5.203	-31.355
	(0.615)	(0.971)	(0.661)	(1.438)
FE?		X		X
R^2	-0.09	0.39	-0.11	0.37
N	2162	2162	2162	2162

I follow Berry (1994) in estimating the markup for firm j as

$$\mu_j = \frac{s_j}{\partial s_j / \partial \delta_j} = \frac{1}{(1 - s_j)\alpha}$$

Where $\delta_j = x_j \beta - \alpha p_j + \xi_j$. Thus, by decomposing price into marginal cost and markup, we can also back out firm j's marginal cost, c_j , and calculate its margin, m_j :

$$c_j = p_j - \mu_j, \quad m_j = \frac{p_j}{c_j} - 1$$

Using each $\hat{\alpha}$ from the table above, the mean, median, and standard deviation of markups, margins, and implied marginal costs under each specification are given in the table below.

	(1)	(2)	(3)	(4)
$\operatorname{E}[\mu_{jt}] \operatorname{Var}(\mu_{jt})$	-0.783	0.036	-0.196	0.033
	0.001	0.000	0.000	0.000
$\operatorname{E}[c_{jt}] \operatorname{Var}(\mathbf{c}_{jt})$	0.909 0.001	0.090 0.001	$0.322 \\ 0.001$	$0.093 \\ 0.001$
$\mathbf{E}[m_{jt}] \\ \mathbf{Var}(\mathbf{m}_{jt})$	-0.862	0.466	-0.614	0.397
	0.001	0.063	0.003	0.035