

Verkabelter Multiplizierer

Labor Digitales Design

Inhalt

1 Ziel	1
2 Multiplizierer für natürliche Zahlen	2
2.1 Algorithmus	2
2.2 Analyse	2
2.3 Schaltung	
2.4 Erstellung	3
3 Multiplizierer für Arithmetische Zahlen	4
3.1 Algorithmus	4
3.2 Analyse	4
3.3 Erstellung	
4 Analyse	5
Glossar	6

1 | Ziel

In diesem Labor wird der Entwurf von iterativen arithmetischen Schaltungen anhand von kombinatorischen Logikgattern geübt. Das Labor zeigt die Realisierungstechnik von Multiplizierern für natürliche wie auch für ganze Zahlen.

2 | Multiplizierer für natürliche Zahlen

2.1 Algorithmus

Abbildung 1 stellt den Algorithmus zur Multiplikation von 2 Zahlen von je 4 Ziffern dar. Das Produkt ist gegeben durch die Summe von Teilprodukten. Die Teilprodukte werden erstellt durch die Multiplikation von einer der Zahlen durch eine Ziffer der anderen Zahl.

				a_3	a_2	a_1	a_0	
				\times b ₃	\mathbf{b}_2	b_1	b_0	
		h. a.	b _{1*} a ₃	_	b ₀ *a ₂ b ₁ *a ₁	b _{0*} a ₁ b _{1*} a ₀	b _{0*} a ₀	
	b _{3*} a ₃	b _{2*} a ₃ b _{3*} a ₂	b _{2*} a ₂ b _{3*} a ₁	b _{2*} a ₁ b _{3*} a ₀	b _{2*} a ₀			
p ₇	p ₆	p 5	p ₄	p ₃	p_2	p_1	p ₀	
Abbildung 1 - Multiplikationsalgorithmus								

2.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten natürlichen Zahlen (unsigned), bestimmen Sie den Binärwert des grösstmöglichen Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit n_1 , respektiv mit n_2 Bits codiert sind.

2.3 Schaltung

Abbildung 2 zeigt die Schaltung eines Multiplizierers, welcher nach dem oben angegebenen Algorithmus arbeitet.

2.4 Erstellung

Mit Hilfe von INV, UND, ODER und XOR Gattern, ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 und überprüfen Sie seine Funktionalität.

3 | Multiplizierer für Arithmetische Zahlen

3.1 Algorithmus

Abbildung 3 stellt den Algorithmus von Baugh-Wooley zur Multiplikation von zwei im Zweier-Komplement codierten arithmetischen Zahlen (signed) mit derselben Anzahl an Bits dar.

				\mathbf{a}_3	\mathbf{a}_2	a_1	\mathbf{a}_0
				\times b ₃	b_2	b_1	b_0
			1	b _{0*} a ₃	b ₀ *a ₂	b ₀ *a ₁	b ₀ *a ₀
			b _{1*} a ₃	b_1*a_2	$b_{1}*a_{1}$	b_1*a_0	
		b _{2*} a ₃	b_2*a_2	b_2*a_1	b_2*a_0		
1	b _{3*} a ₃	b _{3*} a ₂	b _{3*} a ₁	b _{3*} a ₀			
p ₇	p_6	p_5	p ₄	p_3	p_2	p_1	p_0

Abbildung 3 - Multiplikationsalgorithmus für Zahlen im Zweier-Komplement

3.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten ganzen Zahlen, bestimmen Sie den minimalen und den maximalen Wert des Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit n_1 , respektiv mit n_2 Bits codiert sind.

3.3 Erstellung

Ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 mit Hilfe von kombinatorischen Logikgattern und überprüfen Sie seine Funktionalität.

4 | Analyse

Unter der Annahme, dass alle Logikgatter dieselbe Verzögerung von 1 ns vorweisen, bestimmen Sie die maximale Berechnungsverzögerung der erstellten Operatoren.

Schlagen Sie eine andere Struktur vor, um die Geschwindigkeit dieser Operatoren zu vergrössern.

Glossar