Requested Patent:

DE19919406A1

Title:

LOW COST HIGH QUALITY SHALLOW ISOLATION TRENCH PRODUCTION IN A SILICON SUBSTRATE;

Abstracted Patent:

DE19919406;

Publication Date:

1999-12-02;

Inventor(s):

YUAN JUN (US); THOMAS MICHAEL E (US);

Applicant(s):

NAT SEMICONDUCTOR CORP (US);

Application Number.

DE19991019406 19990428;

Priority Number(s):

US19980072398 19980504;

IPC Classification:

H01L21/762:

Equivalents:

ABSTRACT:

Shallow isolation trenches are formed in a silicon substrate by selectively implanting oxygen, thermally growing silicon dioxide and chemical-mechanical polishing (CMP). A shallow isolation trench oxide is formed in a silicon substrate (10) by: (a) forming a structured STI (shallow trench isolation) mask (12) layer directly on the substrate surface; (b) implanting oxygen into the exposed surface portions (14) to define implanted regions; (c) removing the STI mask; (d) thermally growing silicon dioxide on the surface to form silicon dioxide regions which replace the implanted regions; and (e) removing the oxide from the surface by CMP. An Independent claim is also included for a similar process which comprises: (a') forming a structured photoresist mask layer directly on the substrate surface; (b') implanting O2 into the exposed surface portions to define implanted regions; (c') removing the photoresist mask; (d') heating the substrate to 900-1000 deg C to grow silicon dioxide on the surface and to react the implanted O2 so that the implanted O2 regions are replaced by silicon dioxide; and (e') planarizing the structure. Preferred Features: Chemical-mechanical polishing is used for the planarizing step (e'). Oxygen implantation is carried out such that the peak concentration of implanted oxygen lies at about 2500 Angstrom below the substrate surface.

(B) BUNDESREPUBLIK

DEUTSCHLAND

© Offenlegungsschrift
DE 199 19 406 A 1

(b) Int. Cl.⁵: H 01 L 21/762

DEUTSCHES
PATENT- UND
MARKENAMT

Aktenzeichen: 199 19 406.8
 Anmeldetag: 28. 4. 99

(3) Offenlegungstag: 2. 12. 99

(3) Unionspriorität:

072398

04.05.98 US

(7) Anmelder:

National Semiconductor Corp., Santa Clara, Calff., US

Wertreter:
BOEHMERT & BOEHMERT, 80801 München

(7) Erfinder:

Thomas, Michael E., Senta Clara, Calif., US; Yuan, Jun, Fremont, Calif., US

Die folgenden Angeben sind den vom Anmelder eingereichten Unterlegen entnommen

Prüfungsentrag gem. § 44 PatG ist gestellt

- Werfahren zum Herstellen eines flachen Isolationsgrabens durch Implantieren von O₂ gefolgt von chemisch-mechanischem Polieren
- Bel einem Verfahren zum Herstellen eines flachen, isolierten Grabens in einem Sillziumsubstrat wird eine strukturierte STI-Maskenschicht direkt auf eine Oberseite das Sillziumsubstrats ausgebildet. Die STI-Maske läßt ausgewählte Bereiche der Oberseite des Substrats frei. Dann wird Sauerstoff in die freillegenden Oberflöchenbereiche des Substrats implantiert, um Bereiche aus implantiertem Sauerstoff in dem Substrat zu definieren. Dann wird die STI-Maske entfernt, und Sillziumdioxid wird auf freillegenden Oberseiten des Substrats und in den Bereichen mit der Sauerstoffimplantation thermisch gezüchtet. Anschließend wird mittels chemisch-mechanischen Polierens überschüssiges Siliziumoxid von der Oberseite des Substrats entfernt, wodurch eine ebene Oberfläche erzeugt wird.

DE 199 19 406 A 1

1

Beschreibung

Die Erfindung betrifft Versehren zum Herstellen integrierter Schaltkreisstrukturen und insbesondere ein Versahren zum Herstellen einer stachen Grabenisolation (STI; sballow trench isolation), das thermische Oxidation implantierten Sauerstoffs gesolgt von chemisch-mechanischem Polieren (CNP) einsetzt, um eine ebene Isolationsoberstäche herzustellen.

Für die Herstellung integrierter Schaltkrelsstrukturen mit 10 Designregeln für 0,25 µm und darüberhinzus benötigt man eine flache Grabenisolation (STI), um die Topologie zwischen dem aktiven Bereich des Bauteils und dem Isolationsfeld zu reduzieren und den bekannten "Vogelschnabel" zu eliminieren, der mit herkömmlichen versenkten LOCOS- 15 Prozessen (LOCOS = Lokale Oxidation von Silizium) hergestellt wird.

Bei einem üblichen STI-Prozeß wird eine Silizium-Nitrid-Schlicht auf einem Siliziumdioxid abgeschieden, das auf der Oberfläche des Siliziumsubstrats ausgebildet ist. Anschließend werden flache Gräben nach dem Strukturieren des zusammengesetzten Körpers geätzt, gefolgt von dem Abscheiden von Siliziumdioxid. Danach wird eine CNP (chemisch-mechanisches Polieren) ausgeführt, um die Oberfläche eben zu machen. Schließlich wird das verbleibende Siliziumoitrid entfernt.

Unglücklicherweise ist es schwierig, die berkömmlichen STI Prozesse zu kontrollieren, und sie sind nicht wirtschaftlich.

Die vorliegende Erfindung sieht ein Verfahren zum Herstellen eines flachen Isolationsgrabens in einem Siliziumsubstrat vor. Bei dem erfindungsgemäßen Verfahren wird eine strukturierte STI-Maskenschicht direkt auf der Oberseite des Siliziumsubstrats ausgebildet, um ausgewählte Bereiche der Oberseite des Siliziumsubstrats freizulassen, 35 Dann wird Sauerstoff in die freiliegenden Oberflächenbereiche des Substrats implantiert, wobei die Spitzenkonzentration des Sauerstoffs bei einer vorgewählten Tiefe unter der Siliziumoberfläche auftritt. Dann wird die STI-Maske entfernt, und das Substrat wird bei hoher Temperatur oxidiert. 40 Danach wird mittels chemisch-mechanischem Polieren überschüssiges Siliziumoxid von der Oberseite des Siliziumsubstrats entfernt, um eine ebene Oberfläche zu erzeu-

Dieses Verfahren hat wenigstens drei Vorteile gegenüber 45 herkömmlichen STI-Verfahren. Zunächst ist das Verfahren wesentlich einfacher und wirtschaftlicher. Zweitens ist die Qualität des thermischen Oxids wesentlich besser als die von abgeschiedenen Oxiden. Drittens müssen bei der Erfindung Probleme in Verbindung mit dem Füllen von Lücken 50 für das thermische Züchten von Siliziumdioxid nicht berücksichtigt werden.

Bin noch besseres Verständnis der Merkmale und Vorteile der Erfindung erhält man aus der folgenden detaillierten Beschreibung bevorzugter Ausführungsformen, in denen die 55 Grundsätze der Erfindung umgesetzt sind, in Verbindung mit der Zeichnung. In den Figuren zeigen:

Fig. 1A bis 1C Schnittdarstellungen, welche die aufeinanderfolgenden Schritte eines Verfahrens gemäß der Brfindung illustrieren.

Ein Verfahren zum Herstellen flacher Isolationsgräben in einem Siliziumsubstrat gemäß den Grundsätzen der Erfindung ist im folgenden in Verbindung mit den Fig. 1 A bis 1C beschrieben.

Wie in Fig. 1A gezeigt, beginnt der Prozeß mit der Ausbildung einer strukturierten STI-Photoresistmaskenschicht 12 direkt auf einer Oberseite eines Siliziumsubstrats 10. Die STI-Maske 12 läßt Bereiche 14 der Oberseite des Silizium2

substrats 10 frei. Dann wird Sauerstoff in die freiliegenden Oberstächenbereiche 14 des Substrats 10 implantert; die Tiefe der Spitzenkonzentration der O₂-Implantationsstoffe wird abhängig von dem herzustellenden Bauteil und der gewünschten Dicke der STI-Isolation gewählt. Um eine Isolationsoxiddicke von etwa 5000 Å zu erreichen, sollte die Spitzenkonzentration des O₂-Implantationsstoffs z. B. bei etwa 2500 Å unter der Oberstäche des Siliziumsubstrats 10 liegen.

Dann wird die STI-Maske 12 entfernt, und das Substrat 10 wird, wie in Fig. 1B gezeigt, bei hoher Temperatur oxidiert, d. h. z. B. bei 900°C bis 1000°C, so daß Siliziumdioxid 16 über den freillegenden Bereichen der Oberseite des Siliziumsubstrats 10 thermisch wächst, um flache Silizium-dioxidgrabenbereiche in dem Substrat 10 auszubilden.

Wie in Fig. 1C gezeigt, wird dann mittels chemisch-mechanischen Polierens (CMP) überschüssiges Siliziumdioxid 16 von der Oberseite des Siliziumsubstrats 10 entfernt, wodurch die Oberfläche plan wird, um flache Oxidgrüben 18 abzugrenzen.

Man sollte verstehen, daß zahlreiche Alternativen der hier beschriebenen Ausführungsformen der Erfindung bei der Umsetzung der Erfindung eingesetzt werden können. Die folgenden Ansprüche sollen den Bereich der Erfindung definieren, und Verfahren innerhalb des Bereichs dieser Ansprüche sowie deren Äquivalente sind durch die Erfindung umfaßt

Patentansprüche

1. Verfahren zum Herstellen eines flachen, isolierten Grabenoxids in einem Siliziumsubstrat mit folgenden Verfahrensschritten:

Ausbilden einer strukturierten STI-Maskenschicht direkt auf einer Oberseite des Siliziumsubstrats, die ausgewählte Bereiche der Oberseite des Siliziumsubstrats freiläßt:

Implantieren von Sauerstoff in die freiliegenden, ausgewählten Bereiche der Oberseite, um Bereich aus implantiertem Sauerstoff in dem Siliziumsubstrat zu definieren:

Entfernen der STI-Maske;

thermisches Züchten von Siliziumdioxid auf freiliegenden Oberseiten des Siliziumsubstrats zum Ausbilden von Siliziumdioxidbereichen, um die Bereiche aus implantierten Sauerstoff zu ersetzen; und

chemisch-mechanisches Polieren zum Entfernen von Siliziumdioxid von der Oberseite des Siliziumsubstrats.

2. Verfahren zum Herstellen eines flachen, isolierten Grabenoxids in einem Siliziumsubstrat mit folgenden Verfahrensschritten:

Ausbilden einer strukturierten Photoresistmaske direkt auf einer Oberseite des Sillziumsubstrats, wobei ausgewählte Bereiche der Oberseite des Siliziumsubstrats freigelassen werden;

Implantieren von O_2 in die freiliegenden, ausgewählten Bereiche der Oberseite, um Bereiche aus implantierten O_2 in dem Siliziumsubstrat zu definieren;

Entfernen der Photoresistmaske:

Erwärmen des Siliziumsubstrats auf erwa 900°C bis 1000°C, so daß auf den freiliegenden Oberseiten des Siliziumsubstrats Siliziumdioxid wächst und das implantierte O₂ mit Silizium reagiert, um die Bereiche des implantieren O₂ durch Siliziumdioxid zu ersetzen; und Planarisieren der aus den vorhergebenden Schritten resultierenden Struktur.

3. Verfahren nach Anspruch 2. bei dem zum Planari-

DE 199 19 406 A 1

sieren chemisch-mechanisches Polieren eingesetzt wird.

4. Versahren nach Anspruch 2 oder 3, bei dem das O₂ so implantiert wird, daß eine Spitzenkonzentration des O₂-Implantationsstoffs bei etwa 2500 Å unter der 5 Obersläche des Sillziumsubstrats liegt,

Hierzu 1 Seite(n) Zeichnungen

ZEICHNUNGEN SEITE 1

Nummer: Int. Cl.⁶: Offenlegungstag: DE 199 19 406 A1 H 01 L 21/762 2. Dezember 1999

FIG. 1A

FIG. 1B

FIG. 1C