Tutorial 10: Boosting

Rui Zhao rzhao@ee.cuhk.edu.hk

As a neural network

Pseudo code

Given: $(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialise weights $D_1(i) = 1/m$ For $t = 1, \ldots, T$:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Matlab code for adaboost

Matlab code and toy data is provided in the supplementary materials:

'adaboost_demo.m'
'test_data.mat'

Other tools for boosting

Classic adaboost classifier:

Matlab

http://www.mathworks.com/matlabcentral/fileexchange/27813-classic-

adaboost-classifier

Python

http://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.

<u>html</u>

Matlab code for adaboost

http://www.mathworks.com/matlabcentral/fileexchange/27813-classic-adaboost-classifier

Python code for adaboost

http://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.

Famous Applications

Introduction to Jones and Viola's work on face detection using adaboost.

Following slides are borrowed.

Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost

Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li)

Thanks to Fei-Fei Li, Antonio Torralba, Paul Viola, David Lowe, Gabor Melli (by way of the Internet) for slides

Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost

Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li)

Thanks to Fei-Fei Li, Antonio Torralba, Paul Viola, David Lowe, Gabor Melli (by way of the Internet) for slides

Face Detection

Face Detection

Sliding Windows

1. hypothesize:

try all possible rectangle locations, sizes

2. test:

classify if rectangle contains a face (and only the face)

Note: 1000's more false windows then true ones.

Classification (Discriminative)

Background

In some feature space

Image Features

4 Types of "Rectangle filters" (Similar to Haar wavelets Papageorgiou, et al.)

Based on 24x24 grid: 160,000 features to choose from

Image Features

$$f_i(x) = \begin{vmatrix} 1 & \text{if } g_i(x) > \theta_i \\ -1 & \text{otherwise} \end{vmatrix}$$

Need to: (1) Select Features i=1..n,

- (2) Learn thresholds θ_i ,
- (3) Learn weights α_i

A Peak Ahead: the learned features

Why rectangle features? (1) The Integral Image

- The integral image computes a value at each pixel (x,y) that is the sum of the pixel values above and to the left of (x,y), inclusive.
- This can quickly be computed in one pass through the image

Why rectangle features? (2) Computing Sum within a Rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed:

$$sum = A - B - C + D$$

- Only 3 additions are required for any size of rectangle!
 - This is now used in many areas of computer vision

How to select the best features?

How to learn the classification function?

$$F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) +$$

• Defines a classifier using an additive model:

It is a sequential procedure:

Weak learners from the family of lines

 $h \Rightarrow p(error) = 0.5$ it is at chance

This one seems to be the best

This is a 'weak classifier': It performs slightly better than chance

We set a new problem for which the previous weak classifier performs at o

Each data point has a class label:

$$y_t = \begin{cases} +1 & () \\ -1 & () \end{cases}$$

We update the weights:

$$\mathbf{w}_t \leftarrow \mathbf{w}_t \exp\{-\mathbf{y}_t \mathbf{H}_t\}$$

We set a new problem for which the previous weak classifier performs at

Each data point has a class label:

$$y_t = \begin{cases} +1 & () \\ -1 & () \end{cases}$$

We update the weights:

$$\mathbf{w}_t \leftarrow \mathbf{w}_t \exp\{-\mathbf{y}_t \mathbf{H}_t\}$$

We set a new problem for which the previous weak classifier performs at

We set a new problem for which the previous weak classifier performs at

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

AdaBoost Algorithm

Given: m examples $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$

For t = 1 to T

The goodness of h_t is calculated over D, and the bad guesses.

- 1. Train learner h_t with min error $\mathcal{E}_t = \Pr_{i \sim D}[h_t(x_i) \neq y_i]$
- 2. Compute the hypothesis weight $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$ The weight Adapts. The bigger ε_t becomes the
- 3. For each example i = 1 to m

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

Output

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

smaller α_t becomes.

Boost example if incorrectly predicted.

Z_t is a normalization factor.

Linear combination of models.

Boosting with Rectangle Features

- For each round of boosting:
 - Evaluate each rectangle filter on each example (compute g(x))
 - Sort examples by filter values
 - Select best threshold (θ) for each filter (one with lowest error)
 - Select best filter/threshold combination from all candidate features (= Feature f(x))
 - Compute weight (α) and incorporate feature into strong classifier
 F(x) ←F(x) + α f(x)
 - Reweight examples

Boosting fits the additive model

$$F(x) = f_1(x) + f_2(x) + f_3(x) + \dots$$

by minimizing the exponential loss

$$J(F) = \sum_{t=1}^{N} e^{-y_t F(x_t)}$$
Training samples

The exponential loss is a differentiable upper bound to the misclassification error.

Exponential loss

Squared error

$$J = \sum_{t=1}^{N} [y_t - F(x_t)]^2$$

Exponential loss

$$J = \sum_{t=1}^{N} e^{-y_t F(x_t)}$$

$$yF(x) = margin$$

Sequential procedure. At each step we add

$$F(x) \leftarrow F(x) + f_m(x)$$

to minimize the residual loss

$$(\phi_m) = \arg\min_{\phi} \sum_{t=1}^{N} J(y_i, F(x_t) + f(x_t; \phi))$$

Parameters weak classifier

Desired output input

Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084

false positives.

Not quite competitive...

ROC curve for 200 feature classifier

Building Fast Classifiers

 Given a nested set of classifier hypothesis classes

Computational Risk

Minimization

Cascaded Classifier

- A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.
- A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)
 - using data from previous stage.
- A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Output of Face Detector on Test Images

Solving other "Face" Tasks

Facial Feature Localization

Profile Detection

Demographic Analysis

