Homework #5

Sam Fleischer

May 10, 2016

Problem 1												•								•			•		 	•	•	•	 	2
Problem 2																				•					 				 	2
Problem 3																														
Problem 4																				•					 				 	3
Problem 5																									 				 	3
Problem 6																									 				 	3

Problem 1

(a) For $f \in L^1(\mathbb{R})$, set $S_R f(x) = (2\pi)^{-\frac{1}{2}} \int_{-R}^R \widehat{f}(\xi) e^{ix\xi} d\xi$. Show that

$$S_R f(x) = K_R * f(x) = \int_{-\infty}^{\infty} K_R(x - y) f(y) dy$$

where

$$K_R(x) = (2\pi)^{-1} \int_{-R}^{R} e^{ix\xi} d\xi = \frac{\sin Rx}{\pi x}.$$

(b) Show that if $f \in L^2(\mathbb{R})$, then $S_R f \to f$ in $L^2(\mathbb{R})$ as $R \to \infty$.

Proof. (a) This proof is simply calculation:

$$(K_R * f)(x) = \int_{-\infty}^{\infty} K_R(x - y) f(y) dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-R}^{R} e^{i(x - y)\xi} d\xi f(y) dy$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-R}^{R} e^{ix\xi} e^{-iy\xi} f(y) d\xi dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-R}^{R} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-iy\xi} dy \right] e^{ix\xi} d\xi$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-R}^{R} \widehat{f}(\xi) e^{ix\xi} d\xi$$

$$= S_R f(x)$$

(b) Next up, some analysis!

Problem 2

Show that for any $R \in (0, \infty)$, there exists $f \in L^1(\mathbb{R})$ such that $S_R f \not\in L^1(\mathbb{R})$. Note that $K_R \not\in L^1(\mathbb{R})$.

Proof.

Problem 3

Assume $w \in \mathcal{S}'(\mathbb{R}^n)$ and $w(x) \ge 0$. Show that if $\widehat{w} \in L^{\infty}(\mathbb{R}^n)$ then $w \in L^1(\mathbb{R}^n)$ and

$$\|\widehat{x}\|_{L^{\infty}(\mathbb{R}^n)} = (2\pi)^{-\frac{n}{2}} \|x\|_{L^1(\mathbb{R}^n)}.$$

Hint: Consider $w_j(x) = \psi\left(\frac{x}{j}\right)w(x)$ with $\psi \in \mathscr{C}_C^{\infty}(\mathbb{R}^n)$ and $\psi(0) = 1$. Use the fact that $w_j \to w$ in $\mathscr{S}'(\mathbb{R}^n)$.

Proof.

Problem 4

Consider the Poisson equation on \mathbb{R} : $u_{xx} = f$.

- (a) Show that $\varphi(x) = \frac{x+|x|}{2}$ and $\varphi(x) = \frac{|x|}{2}$ are both distributional solutions to $u_{xx} = \delta_0$.
- (b) Let f be continuous with compact support in \mathbb{R} . Show that

$$u(x) = \int_{\mathbb{R}} \varphi(x - y) f(y) dy$$

and

$$v(x) = \int_{\mathbb{D}} \phi(x - y) f(y) dy$$

both solve the Poisson equation $w_{xx}(x) = f(x)$ without relying upon distribution theory.

Proof.

Problem 5

Let $T \in \mathcal{S}'(\mathbb{R}^n)$ and $f \in \mathcal{S}(\mathbb{R}^n)$. Show that the Liebniz rule for distributional derivatives holds:

$$\frac{\partial}{\partial x_i}(fT) = f\frac{\partial T}{\partial x_i} + \frac{\partial f}{\partial x_i}T$$

in the sense of distributions.

Proof.

Thus, by the definition of distributional derivative, (fT)' = fT' + f'T.

Problem 6

Show that a function $f \in L^2(\mathbb{R}^n)$ is real if and only if

$$\widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}.$$

Proof. First note the following equality:

$$\overline{\widehat{f}(\xi)} = \overline{\int_{\mathbb{R}} f(x)e^{-ix\xi} dx} = \int_{\mathbb{R}} \overline{f(x)}e^{ix\xi} dx = \int_{\mathbb{R}} \overline{f(x)}e^{-ix(-\xi)} dx = \widehat{\overline{f}}(-\xi)$$

If f is real, then $\overline{f} = f$, and thus $\widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}$. On the other hand, if $\widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}$, then $\widehat{f}(-\xi) = \overline{\widehat{f}}(-\xi)$. Since $f \in L^2$, then the Fourier transform is a bijection, and thus $f = \overline{f}$, which proves f is a real-valued function.