LP-III Machine Learning (2024-25)	
Assignment 5: Predict the price of the Uber ride from a given pickup point to the agreed drop-	
off location.	
Student Name:	Roll No. :
Batch:	Division:

Assignment 4:

Predict the price of the Uber ride from a given pickup point to the agreed drop-off location. Perform following tasks:

- 1. Pre-process the dataset.
- 2. Identify outliers.
- 3. Check the correlation.
- 4. Implement linear regression and random forest regression models.
- 5. Evaluate the models and compare their respective scores like R2, RMSE, etc.

Title: Implement Linear Regression and Random Forest Regression algorithm to predict the price of the Uber ride from a given pickup point to the agreed drop-off location using dataset available at https://www.kaggle.com/datasets/yasserh/uber-fares-dataset.

Aim: Predict and Analyse Results of Linear Regression and Random Forest for Regression.

Prerequisites: Linear Regression, Random Forest, Decision Tree.

Theory:

Linear Regression Algorithm:

Regression Analysis is the process of estimating the relationship between a dependent variable and independent variables.

Figure 1: Linear Regression

Simple Linear Regression:

The number of independent variables is one and there is a linear relationship between the independent(x) and dependent(y) variable.

$$y = \alpha_0 + \alpha_1(x) + \varepsilon$$

y = dependent variable

x = independent variable

 α_0 and α_1 = Regression Coefficients

 $\varepsilon = \text{Residual Error}$

Multiple Linear Regression:

The number of independent variables is more then one and there is a linear relationship between the independent(x) and dependent(y) variable.

$$y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \dots + \alpha_n x_n + \varepsilon$$

y = dependent variable

 x_1, x_2, \dots, x_n = independent variable

 $\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_n =$ Regression Coefficients

 $\varepsilon = \text{Residual Error}$

Random Forest:

Ensemble methods is a machine learning technique that combines several base models in order to produce one optimal predictive model. Random Forest works in 2 phases:

- 1. First is to create the random forest by combining N number of decision trees
- 2. Second is to make predictions for each tree created in the first phase.

Algorithm:

Step-1: Select random K data points from the training set using Row Selection with Replacement and Feature Selection with Replacement.

Step-2: Build the decision trees associated with the selected data points (Bootstrap Samples).

Step-3: Choose the number N for decision trees that you want to build.

Step-4: Repeat Step 1 & 2.

Conclusion: Using concept of Linear Regression and Random Forest Regression algorithms, we have predicted price of the Uber ride from a given pickup point to the agreed drop-off location, compared and evaluated Linear Regression and Random Forest algorithm using evaluation metrics.

Questions:

- 1. What are Outliers?
- 2. Explain Intercept and Regression Coefficients?
- 3. What is Ensemble Technique?
- 4. Explain Bagging Technique?
- 5. Explain: 1. head() 2. shape 3. isnull() 4. drop()?