Show that every ideal of \mathbb{Z} is principal.

Proof: Let n > 0 be an integer. Suppose $I \subseteq \mathbb{Z}$ is an ideal. If $I = \{0\}$, then we are done since I = (0), so suppose not. Since $\mathbb{Z} \neq \emptyset$, by the well-ordering principle, take n to be the smallest positive element in I.

- $((n) \subseteq I)$ Let $a \in (n)$. Then a = nr for $r \in \mathbb{Z}$, and since $n \in I$, $nr \in I$. So $(n) \subseteq I$.
- $((n) \supseteq I)$ Let $a \in I$. Then a = nq + r for unique $q, r \in \mathbb{Z}$. Note that since $a, n \in I$, we have $nq, r \in I$. We have that r = 0 since otherwise, r < n, which contradicts the assumption that n is the smallest element. This yields $a = nq \in (n)$, so $(n) \supseteq I$.

Therefore, I = (n). Since n was arbitrary, every ideal of \mathbb{Z} is principal.

Problem

Let n > 0 be an integer. Show that every ideal of \mathbb{Z}/n is principal.

Proof: Let n > 0 be an integer and consider \mathbb{Z}/n . Define the canonical projection map $\pi : \mathbb{Z} \to \mathbb{Z}/n$ given by $a \mapsto [a]$. Let $I \subseteq \mathbb{Z}/n$, and let $J = \pi^{-1}(I) \subseteq \mathbb{Z}$ be the preimage of I under π . Since every ideal in \mathbb{Z} is principal, write J = (a) for some $a \in \mathbb{Z}$. We claim that I = ([a]).

 $I \subseteq ([a])$: Take $[x] \in I = \pi(\pi^{-1}(I)) = \pi(J)$. This implies that

$$x \in \pi^{-1}(\pi(J)) = \pi^{-1}(\pi((a))) = (a)$$

so x = ar for some $r \in R$. Then $[x] = [ar] \in ([a])$, so $I \subseteq ([a])$.

 $I \supseteq ([a])$: Take $a \in J = (a)$. Since J is an ideal, we have that $ar \in J$ so we get

$$[ar] = [a][r] \in \pi(J) = \pi(\pi^{-1}(I)) = I$$

1

This implies that $([a]) \subseteq I$.

Therefore, I = ([a]) and every ideal in \mathbb{Z}/n is principal.

Let $R = \mathbb{Z}/625$. Show that ([5]) is a prime ideal. Is it maximal?

Proof: Let $R = \mathbb{Z}/625$. Consider ([5]) $\subseteq \mathbb{Z}/625$. Define the canonical projection map $\mathbb{Z} \to \mathbb{Z}/625$ given by $a \mapsto [a]$. Note that $(625) \subseteq (5)$. Define $I = \pi((5)) = ([5])$. Then by the correspondence theorem, we have

$$R/I \cong \mathbb{Z}/(5)$$

Since 5 is prime, we have that (5) is prime. Further, since \mathbb{Z} is a PID, we have that (5) is maximal, which shows that $\mathbb{Z}/(5)$ is a field. This implies that $I = \pi((5)) = ([5])$ is maximal and therefore also prime.

Suppose R is an integral domain. Show that prime elements are irreducible. If R is a PID, show that irreducibles are prime.

Proof: Let R be an integral domain and $p \in R$ be prime. Let $a \mid p$ for some $a \in R$. Then ab = p for some $b \in R$ nonzero. Since p is prime, $p \mid ab$ so either $p \mid a$ or $p \mid b$. If $p \mid a$, then a = px for some $x \in R$, so ab = (px)b = p. Since p is nonzero and R is an integral domain, apply the cancellation property to get xb = 1. This shows that b is a unit and implies that a is an associate of p. A similar argument can be made if $p \mid b$. Therefore, p is irreducible.

Let R be a PID and $p \in R$ be an irreducible. Consider $(p) \subseteq I = (a) \subseteq R$. Since $p \in (a)$, we have that p = ab for $b \in R$. Since p is irreducible, either a or b is a unit. If a is a unit, then (a) = R. If b is a unit, then (a) = (p). This implies that (p) is maximal, which further implies that (p) is prime. Since (p) is prime if and only if p is prime, we have that $p \in R$ is prime.

Suppose R is an integral domain. Show that maximal ideals are prime ideals. If R is a PID, show that prime ideals are maximal.

Proof: Let R be an integral domain. Let $M \subsetneq R$ be maximal. We want to show that M is prime; i.e. if $ab \in M$, then either $a \in M$ or $b \in M$. Let $ab \in M$. If $a \in M$, then we are done, so suppose not. Then M + (a) = R. Then m + ar = 1 for $m \in M$, $ar \in (a)$. Multiplying both sides by $b \in R$, we get mb + arb = b. But $ab \in M$ so $(ab)r \in M$. Therefore, we have $mb + abr = b \in M$. This shows that M is prime.

Let R be a PID. Let $P \subsetneq R$ be prime. We want to show that P is maximal; i.e. if there is an ideal $I \supsetneq P$, then P+I=R. Suppose we have $P \subsetneq I \subseteq R$. Since R is a PID, we have that P=(p) and I=(a) for $p,a\in R$. Then $p\in (p)\subsetneq (a)$, so p=ar for $r\in R$. Since P is prime, either $a\in P$ or $r\in P$. If $a\in P$, then (a)=(p). If $r\in P$, then r=ps for some $s\in R$. Then we have p=ar=a(ps)=p(as). Since R is an integral domain and p is nonzero, apply the cancellation property to get 1=as, which shows that a is a unit, so (a)=R. Therefore, P is maximal.

Suppose R is a commutative ring, let $I_1, I_2 \subseteq R$, and let $P \subseteq R$ be prime. Suppose $I_1 \cap I_2 \subseteq P$. Show that we either have $I_1 \subseteq P$ or $I_2 \subseteq P$.

Proof: Suppose R is a commutative ring, let $I_1, I_2 \subseteq R$, and let $P \subseteq R$ be prime. Suppose $I_1 \cap I_2 \subseteq P$. Suppose for the sake of contradiction that neither $I_1 \subseteq P$ nor $I_2 \subseteq P$. Take $a \in I_1 \setminus P$ and $b \in I_2 \setminus P$. Then $ab \in I_1$ and $ab \in I_2$ since they are both ideals. By definition, this means that $ab \in I_1 \cap I_2$. But $ab \in P$ and neither $a \in P$ nor $b \in P$, a contradiction.

Let R be an integral domain and $p \in R$. Show (p) is a prime ideal if and only if p is prime.

Proof: Let R be an integral domain and $p \in R$.

(\Longrightarrow) Suppose (p) is a prime ideal. Consider $ab \in (p)$. Then by definition, ab = pr for some $r \in R$, so $p \mid ab$. By definition of a prime ideal, either $a \in (p)$ or $b \in (p)$. Without loss of generality, suppose $a \in (p)$. Then a = ps for some $s \in R$, so $p \mid a$. Therefore, p is prime.

(\iff) Suppose $p \in R$ is prime. Consider $p \mid ab$. Then either $p \mid a$ or $p \mid b$. Without loss of generality, suppose $p \mid a$. Consider the ideal generated by (p). Since $p \mid ab$, we have $ab = pr \in (p)$. Similarly, since $p \mid a$, we have $a = ps \in (p)$. Therefore, (p) is a prime ideal.

Since we have shown both directions, (p) is a prime ideal if and only if p is prime.

Let R be a commutative ring, and let $x \in R$ such that, for every maximal ideal $M \subseteq R$, we have $x \in M$. Show that 1 + x is a unit.

[Hint: You may use, without proof, the fact that any proper ideal is contained in a maximal ideal.]

Proof: Let R be a commutative ring, and let $x \in R$ such that, for every maximal ideal $M \subseteq R$, $x \in M$. Suppose for the sake of contradiction that 1 + x is not a unit. Consider the ideal generated by 1 + x. Then $(1+x) \subseteq M$, which implies that $1 + x \in M$. But we also have $x \in M$, and since M is an ideal, it is closed under subtraction, so $1 + x - x = 1 \in M$. This is a contradiction.

Let R be a commutative ring, and let $S \subseteq R$ be the *subset* of nonunits. Show that the following are equivalent:

- (a) The set S forms a maximal ideal of R.
- (b) R has a unique maximal ideal.

[Hint: You may use, without proof, the fact that any proper ideal is contained in a maximal ideal.]

Proof: Let R be a commutative ring, and let $S \subseteq R$ be the *subset* of nonunits.

- (a) \Longrightarrow (b): Suppose the set S forms a maximal ideal of R. Then suppose for the sake of contradiction that there exists another maximal ideal $M \subsetneq R$. Take $x \in M \setminus S$. This implies that x is a unit since S is the subset of nonunits, a contradiction. Therefore, S is the unique maximal in R.
- (a) \Leftarrow (b): Suppose R has a unique maximal M. We claim that M = S. Clearly, $M \subseteq S$ since otherwise, M contains at least one unit, a contradiction. Consider the ideal generated by $x \in S$. Since x is not a unit, $(x) \subseteq R$, so $(x) \subseteq M$. Therefore, M = S, which shows that S is maximal.

Let $f:R\to S$ be surjective, and let $P\subseteq S$ be a prime ideal. Show that $f^{-1}(P)\subseteq R$ is a prime ideal.

Response

Proof. Suppose $f: R \to S$ is a surjective ring homomorphism and $P \subseteq S$ is prime. Consider the ideal $f^{-1}(P) \subseteq R$. Take $a, b \in R$ such that $ab \in f^{-1}(P)$. Then $f(ab) = f(a)f(b) \in P$. Since P is prime, either $f(a) \in P$ or $f(b) \in P$. Then by definition of the preimage, either $f^{-1}(f(a)) = a \in f^{-1}(P)$ or $f^{-1}(f(b)) = b \in f^{-1}(P)$, which shows that $f^{-1}(P)$ is prime. \square