OTIMIZAÇÃO DE HIPERPARÂMETROS E COMPARAÇÃO DE MODELOS

MOISÉS SALES

1. Algoritmo K-NN

- 1.1. Selecionando Hiperparâmetros. Foi realizada uma busca sistemática, através do RandomizedSearch, em busca dos melhores hiperparâmetros para o modelo. O seguinte espaço de busca foi criado:
 - Número de vizinhos (n-neighbors): conjunto indo {1,100} vizinhos;
 - Peso (weights): 'uniform' ou 'distance';
 - Métrica para calcular a distância: 'euclidean' e 'manhattan'.

Os melhores hiperparâmetros obtidos, com 10 interações na função RandomizedSearch, foram:

Número de vizinhos: 99, Métrica para distância: Manhattan, Peso: Distância

1.2. **Avaliando o modelo.** Treinando o modelo com os hiperparâmetros que foram selecionados pelo RandomizedSearch, temos os seguintes resultados para as métricas avaliativas do modelo:

Acurácia Valid. Cruzada	Acurácia conj. teste	F1-score	Precisão	Recall
18%	18%	17%	20%	19%

Tabela 1. Avaliação do modelo K-NN.

2. Algoritmo LVQ

- 2.1. Selecionando Hiperparâmetros. Foi realizada uma busca sistemática, através do RandomizedSearch, em busca dos melhores hiperparâmetros para o modelo. O seguinte espaço de busca foi criado:
 - Número de protótipos por classe: [1, 2, 3, 4, 5];

O melhor hiperparâmetro obtido, com 3 interações na função RandomizedSearch, foram:

Número de protótipos por classe: 2

2.2. **Avaliando o modelo.** Treinando o modelo com o hiperparâmetro que foi selecionado pelo RandomizedSearch, temos os seguintes resultados para as métricas avaliativas do modelo:

Acurácia Valid. Cruzada	Acurácia conj. teste	F1-score	Precisão	Recall
17%	18%	16%	16%	19%

Tabela 2. Avaliação do modelo LVQ

Date: June 2025.

2

3. Algoritmo SVM

- 3.1. Selecionando Hiperparâmetros. Foi realizada uma busca sistemática, através do RandomizedSearch, em busca dos melhores hiperparâmetros para o modelo. O seguinte espaço de busca foi criado:
 - C: [0.01, 0.1, 1];
 - Kernel: 'poly', 'rbf', 'sigmoid';
 - Gamma: [0.1, 1];
 - Grau: [3, 5]

Os melhores hiperparâmetros obtidos, com 3 interações na função RandomizedSearch, foi:

C: 1, kernel: poly, Gamma: 0.1, Grau: 5

3.2. **Avaliando o modelo.** Treinando o modelo com os hiperparâmetros que foram selecionados pelo RandomizedSearch, temos os seguintes resultados para as métricas avaliativas do modelo:

Acurácia Valid. Cruzada	Acurácia conj. teste	F1-score	Precisão	Recall
20%	22%	20%	24%	23%

Tabela 3. Avaliação do modelo SVM.

4. Conclusões

Podemos observar que todos os 3 algoritmos resultaram em resultados semelhantes e insatisfatórios.

	Acurácia Valid. Cruzada	Acurácia conj. teste	F1-score	Precisão	Recall
K-NN	18%	18%	17%	20%	19%
LVQ	17%	18%	16%	16%	19%
SVM	20%	22%	20%	24%	23%

Tabela 4. Comparativo entre todos os modelos.

O modelo que melhor desempenhou entre os candidatos foi o SVM, que obteve um desempenho melhor em todas as métricas.

Se tratando dessa base de dados, uma melhor escolha das features se mostra necessária. A inclusão, ou exclusão, de certas variáveis pode incrementar a capacidade preditiva do modelo. Visto que, com as variáveis utilizadas, o desempenho não foi agradável. Também pode-se analisar a possibilidade de utilizar diferentes modelos de aprendizado de máquina para lidar com esse banco de dados.