Collective Entity Resolution

Shobeir Fakhraei University of Southern California

Where are we?

- Information Extraction
 - o Semi-structured: Web, HTML
 - Unstructured: Text, Adds, Tweets,

String Matching

Blocking

- Entity Linkage, Data Cleaning, Normalization
- Logical Data Integration
 - Mediators, Query Rewriting
 - Warehouse, Logical Data Exchange
- Automatic Source Modeling/Learning Schema Mappings
- Semantic Web
 - o RDF, SPARQL, OWL, Linked Data
- Advanced Topics
 - o Geospatial Data Integration, Knowledge Graphs

Motivating Example

Author Disambiguation:

- (1) W. Wang, C. Chen, A. Ansari, "A mouse immunity model"
- (2) W. Wang, A. Ansari, "A better mouse immunity model"
- (3) L. Li, C. Chen, W. Wang, "Measuring protein-bound fluxetine"
- (4) W. W. Wang, A. Ansari, "Autoimmunity in biliar

Probabilistic Graphical Models Background

Background

Bayes Theorem

 Definition of Conditional Probability

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

• Bayes Rule (Thomas Bayes, 1763)

$$P(B \mid A) = \frac{P(A, B)}{P(A)}$$
$$= \frac{P(A \mid B)P(B)}{P(A)}$$

Corollary:
 The Chain Rule

$$P(A \mid B)P(B) = P(A, B)$$

$$P(q_{t}, q_{t-1}, ..., q_{1}) = P(q_{t} | q_{t-1}, ..., q_{1}) P(q_{t-1}, ..., q_{1})$$

$$= P(q_{t} | q_{t-1}, ..., q_{1}) P(q_{t-1} | q_{t-2}, ..., q_{1}) P(q_{t-2}, ..., q_{1})$$

$$= P(q_{1}) \prod_{i=2}^{t} P(q_{i} | q_{i-1}, ..., q_{1})$$

Background Conditional Independence

· Common cause

Y: Project due

X: Newsgroup

busy

Z: Lab full

P(X,Z|Y) = P(X|Y).P(Z|Y)

- Are X and Z independent?
 - No
- Are they conditionally independent given Y?
 - Yes

Background

- Nodes represent random variables
- Edges reflect dependencies between variables

Background: Factor Graphs

Definition 2.1. A distribution $p(\mathbf{y})$ factorizes according to a factor graph G if there exists a set of local functions Ψ_a such that p can be written as

$$p(\mathbf{y}) = Z^{-1} \prod_{a \in F} \Psi_a(\mathbf{y}_{N(a)})$$
(2.3)

$$p(y_1,y_2,y_3) = \Psi_1(y_1,y_2)\Psi_2(y_2,y_3)\Psi_3(y_1,y_3)$$

For all $\mathbf{y}=(y_1,y_2,y_3)$

Background: Markov Random Fields

$$\tilde{p}(A, B, C, D) = \phi(A, B)\phi(B, C)\phi(C, D)\phi(D, A),$$

Normalize ->
$$p(A, B, C, D) = \frac{1}{Z} \tilde{p}(A, B, C, D),$$

$$Z = \sum_{A,B,C,D} \tilde{p}(A,B,C,D)$$

Background: Log-Linear Models

$$\tilde{p}(A, B, C, D) = \phi(A, B)\phi(B, C)\phi(C, D)\phi(D, A),$$

$$\tilde{P} = \prod_i \phi_i(\boldsymbol{D}_i)$$

$$\tilde{P} = \prod_{j} \exp(-w_j f_j(\mathbf{D}_j))$$

$$\tilde{P} = \exp\left(-\sum_{j} w_{j} f_{j}(\boldsymbol{D}_{j})\right)$$

Background: Log-Linear Models

$$\phi(X_1, X_2) = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix}$$

Background: Log-Linear Models

$$\phi(X_1, X_2) = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \qquad \begin{cases} f_{12}^{00} = 1 \{X_1 = 0, X_2 = 0\} \\ f_{12}^{01} = 1 \{X_1 = 0, X_2 = 1\} \\ f_{12}^{10} = 1 \{X_1 = 1, X_2 = 0\} \end{cases}$$

$$f_{12}^{00} = 1{X_1 = 0, X_2 = 0}$$
 $f_{12}^{01} = 1{X_1 = 0, X_2 = 1}$
 $f_{12}^{10} = 1{X_1 = 1, X_2 = 0}$
 $f_{12}^{11} = 1{X_1 = 1, X_2 = 1}$

$$\phi(X_1, X_2) = \exp(\sum_{kl} w_{kl} f_{ij}^{kl}(X_1, X_2))$$

 $w_{kl} = \log a_{kl}$

Markov Networks

Undirected graphical models

Potential functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

Smoking	Cancer	Ф(S,C)
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Markov Networks

Undirected graphical models

Log-linear model:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$
Weight of Feature *i* Feature *i*

$$f_1(\text{Smoking, Cancer}) = \begin{cases} 1 & \text{if } \neg \text{ Smoking } \lor \text{ Cancer} \\ 0 & \text{otherwise} \end{cases}$$

How to build the MRF model?

Markov Logic Networks

Artificial Intelligence

Robotics

Planning

Applications

NLP

Multi-Agent

Vision

Systems

Interface Layer

Markov Logic

Representation

Infrastructure

Inference

Learning

Markov Logic

Background: First-Order Logic

- Constants, variables, functions, predicates
 - Anna, x, MotherOf(x), Friends(x,y)
- Grounding: Replace all variables by constants
 - Friends (Anna, Bob)
- Formula: Predicates connected by operators
 - \circ Smokes(x) \Rightarrow Cancer(x)
- Knowledge Base (KB): A set of formulas
 - Can be equivalently converted into a clausal form
- World: Assignment of truth values to all ground predicates

Markov Logic

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints:
 When a world violates a formula,
 It becomes less probable, not impossible
- Give each formula a weight
 (Higher weight ⇒ Stronger constraint)

 $P(world) \propto exp(\sum weights of formulas it satisfies)$

Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - o w is a real number
- Together with a finite set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

```
\forall x \ Smokes(x) \Rightarrow Cancer(x)
```

 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)
```

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)
```

Two constants: **Ana** (A) and **Bob** (B)

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)
```

Two constants: **Ana** (A) and **Bob** (B)


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)
```

Two constants: **Ana** (A) and **Bob** (B)

Friends(A,B)

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ 1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Two constants: **Ana** (A) and **Bob** (B)

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ 1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Two constants: **Ana** (A) and **Bob** (B)

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ 1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Two constants: **Ana** (A) and **Bob** (B)

State of the World $\equiv \{0,1\}$ Assignment to the nodes

Markov Logic Networks

- MLN is template for ground Markov networks
- Probability of a world x:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{k \in ground \ formulas} w_k f_k(x)\right)$$

One feature for each ground formula

$$f_k(x) = \begin{cases} 1 \text{ if } kth \text{ formula is satisfied given x} \\ 0 \text{ otherwise} \end{cases}$$

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world x:

$$P(x) = \frac{1}{Z} \exp \left(\sum_{k \in ground \ formulas} w_k f_k(x) \right)$$

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i \in \text{MLN formulas}} w_i n_i(x)\right)$$

Weight of formula i

No. of true groundings of formula i in x

Inference

Most Probable Explanation (MPE) Inference

What is the most likely state of Smokes(A), Smokes(B), Cancer(B)?

MPE Inference

Problem: Find most likely state of world given evidence

MPE Inference

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} P(y \mid x) =$$

$$= \underset{y}{\operatorname{arg\,max}} \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y) \right)$$

MPE Inference

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} P(y \mid x) =$$

$$= \underset{y}{\operatorname{arg\,max}} \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y) \right)$$

=
$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- Bipartite network of nodes (variables) and features
- In Markov logic:
 - Nodes = Ground atoms
 - Features = Ground clauses
- Exchange messages until convergence
- Messages
 - Current approximation to node marginals

Learning Parameters (Weights)

```
w_1? \forall x \ Smokes(x) \Rightarrow Cancer(x)

w_2? \forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)
```

Three constants: Ana, Bob, John

Learning Parameters (Weights)

$$w_1$$
? $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
 w_2 ? $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Three constants: Ana, Bob, John

Smokes

Smokes(Ana)

Smokes(Bob)

Cancer

Cancer(Ana)

Cancer(Bob)

Friends

Friends(Ana, Bob)

Friends(Bob, Ana)

Friends(Ana, John)

Friends(John, Ana)

Closed World Assumption:
Anything not in the database is assumed false.

Learning Parameters (Weights)

- Given training data
- Maximize conditional likelihood of query (y) given evidence (x)
- Use gradient ascent
- Requires inference at each step (slow!)
- Approximate expected counts by counts in MPE state of y given x

$$\frac{\partial}{\partial w_i} \log P_w(y \mid x) = n_i(x, y) - E_w[n_i(x, y)]$$
No. of true groundings of clause *i* in data

Expected no. true groundings according to model

Entity Resolution with MLN

Entity Resolution

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relational domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.

Poon H. (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Entity Resolution

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., & Domingos, P. (2006). Menlory-efficent inference in relational domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505) Boston, MA: AAAI Press.

H. Roon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.

Poon H. (2006). Efficent inference In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

Entity Resolution

Author Title

Venue

Parag Singla and Pedro Domingos, "Memory-Efficient Inference in Relational Domains" (AAAI-06).

Singla, P., & Domingos, P. (2006). Menlory-efficent inference in relational domains. In Froceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505) Boston, MA: AAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies", in Proc. AAAI-06, Boston, MA, 2006.

Poon H. (2006). Efficent inference In Proceedings of the Twenty-First National Conference on Artificial Intelligence

ER: Predicates

```
HasWord(field, token)
HasField(record, field)
SameField(field, field)
SameRecord(record, record)
```

ER: Predicates & Formulas

```
HasWord(field, token)
HasField(record, field)
SameField(field, field)
SameRecord(record, record)
```

```
HasWord(f_1,t) \land HasWord(f_2,t) \Rightarrow SameField(f_1,f_2)
(Similarity of fields based on shared tokens)
```

ER: Predicates & Formulas

```
HasWord (field, token)
  HasField (record, field)
  SameField(field, field)
  SameRecord (record, record)
HasWord(f_1, t) \land HasWord(f_2, t) \Rightarrow SameField(f_1, f_2)
(Similarity of fields based on shared tokens)
HasField(r_1, f_1) \wedge HasField(r_2, f_2) \wedge SameField(f_1, f_2)
           \Leftrightarrow SameRecord (r_1, r_2)
(Similarity of records based on similarity of fields and
vice-versa)
```

ER: Predicates & Formulas

```
HasWord (field, token)
  HasField (record, field)
  SameField (field, field)
  SameRecord (record, record)
HasWord(f_1,t) \wedge HasWord(f_2,t) \Rightarrow SameField(f_1,f_2)
(Similarity of fields based on shared tokens)
HasField(r_1, f_1) \wedge HasField(r_2, f_2) \wedge SameField(f_1, f_2)
           \Leftrightarrow SameRecord (r_1, r_2)
(Similarity of records based on similarity of fields and
vice-versa)
SameRecord (r_1, r_2) ^ SameRecord (r_2, r_3) \Rightarrow SameRecord (r_1, r_3)
(Transitivity)
```

Example: Author Disambiguation

HasTitle(b_1, t_1) ∧ **HasTitle**(b_2, t_2) ∧ **HasWord**($t_1, word$) ∧ **HasWord**($t_2, word$) ⇒ **SameBib**(b_1, b_2)

SameBib(b_1 , b_2) \land SameBib(b_2 , b_3) \Rightarrow SameBib(b_1 , b_3)

HasAuthor(b_1, a_1) \land **HasAuthor**(b_2, a_2) \land **SameBib**(b_1, b_2) \Rightarrow **SameAuthor**(a_1, a_2)

HasAuthor(b_1, a_1) \land **HasAuthor**(b_2, a_2) \land **SameAuthor**(a_1, a_2) \Rightarrow **SameBib**(b_1, b_2)

Example: Author Disambiguation

```
\mathbf{HasTitle}(b_1, t_1) \land \mathbf{HasTitle}(b_2, t_2) \land \mathbf{HasWord}(t_1, word) \land \mathbf{HasWord}(t_2, word) \Rightarrow \mathbf{SameBib}(b_1, b_2)
```

```
SameBib(b_1, b_2) \land SameBib(b_2, b_3) \Rightarrow SameBib(b_1, b_3)
```

```
HasAuthor(b_1, a_1) \land HasAuthor(b_2, a_2) \land SameBib(b_1, b_2) \Rightarrow SameAuthor(a_1, a_2)
```

```
HasAuthor(b_1, a_1) \land HasAuthor(b_2, a_2) \land SameAuthor(a_1, a_2) \Rightarrow SameBib(b_1, b_2)
```

```
HasAuthor(b,a<sub>1</sub>) \land HasAuthor(b,a<sub>2</sub>) \Rightarrow Coauthor(a<sub>1</sub>,a<sub>2</sub>)
```

```
Coauthor(a_1, a_2) \land Coauthor(a_1, a_3) \Rightarrow SameAuthor(a_1, a_3)
```

Experimental Results

Table 1. Experimental results on the Cora database.

	Citation		Author		Venue	
System	CLL	AUC	CLL	AUC	CLL	AUC
NB	-0.637 ± 0.010	0.913 ± 0.000	-0.133 ± 0.021	0.986 ± 0.000	-0.747 ± 0.017	0.738 ± 0.002
MLN(B)	-0.643 ± 0.010	0.915 ± 0.000	-0.131 ± 0.022	0.987 ± 0.000	-0.760 ± 0.017	0.736 ± 0.002
MLN(B+C)	-0.809 ± 0.012	0.891 ± 0.000	-0.386 ± 0.064	0.968 ± 0.000	-1.163 ± 0.034	0.741 ± 0.001
MLN(B+T)	-0.369 ± 0.003	0.949 ± 0.000	-0.213 ± 0.036	0.994 ± 0.000	-1.036 ± 0.029	0.745 ± 0.002
MLN(B+C+T)	-0.597 ± 0.007	0.964 ± 0.000	-0.171 ± 0.043	0.984 ± 0.000	-0.704 ± 0.023	0.828 ± 0.002
MLN(B+C+T+S)	-0.503 ± 0.006	0.988 ± 0.000	-0.100 ± 0.033	0.992 ± 0.000	-0.874 ± 0.027	0.807 ± 0.002
MLN(B+N+C+T)	-0.879 ± 0.008	0.952 ± 0.000	-0.096 ± 0.032	0.992 ± 0.000	-0.781 ± 0.023	0.817 ± 0.002
MLN(G+C+T)	-0.394 ± 0.004	0.973 ± 0.000	-0.263 ± 0.053	0.980 ± 0.000	-1.196 ± 0.031	0.743 ± 0.002

Table 2. Experimental results on the BibServ database.

	Citation		Author		Venue	
System	CLL	AUC	CLL	AUC	CLL	AUC
MLN(B)	-0.008 ± 0.003	0.997 ± 0.001	-0.586 ± 0.114	0.910 ± 0.013	-0.806 ± 0.121	0.908±0.011
MLN(B+C)	-0.001 ± 0.000	0.999 ± 0.000	-0.544 ± 0.113	0.887 ± 0.007	-1.166 ± 0.151	0.876±0.012
MLN(B+T)	-0.006 ± 0.003	0.993 ± 0.003	-0.600 ± 0.116	0.909 ± 0.013	-0.827 ± 0.123	0.898±0.010
MLN(B+C+T)	-0.006 ± 0.004	0.998 ± 0.000	-0.473 ± 0.105	0.928 ± 0.009	-1.146 ± 0.149	0.876±0.012
MLN(B+C+T+S)	-0.006 ± 0.004	0.970 ± 0.020	-0.486 ± 0.107	0.926 ± 0.010	-1.133 ± 0.148	0.876±0.012
MLN(B+N+C+T)	-0.018 ± 0.005	1.000 ± 0.000	-0.363 ± 0.091	0.940 ± 0.008	-0.936 ± 0.133	0.897±0.012
MLN(G+C+T)	-0.735 ± 0.101	0.491 ± 0.000	-4.679 ± 0.256	0.432 ± 0.001	-0.716 ± 0.112	0.906±0.012

Software Packages

Alchemy

University of Washington

http://alchemy.cs.washington.edu

Tufy

Stanford University

http://i.stanford.edu/hazy/tuffy/

Continuous Variables

Probabilistic Soft Logic

University of Maryland/ UC Santa Cruz

https://psl.lings.org/

Entity Resolution Example:

https://github.com/linqs/psl-examples/tree/master/entity-resolution