Layout Composition from Attributed Scene Graphs

Subarna Tripathi and Anahita Bhiwandiwalla

Introduction

Scene graph to layout or image generation is an emerging research problem.

Most existing methods use objects (classes) and relationships information.

Source: Johnson et al, Image generation from scene graphs, CVPR'18

How important those attributes are? rectangular table vs round table

How to leverage those for layout generation? **Shape-impacting** vs **color-impacting** attributes

We focus on shape-impacting attributes in this work

Scene Graph: nodes, attributes, edges

Training with Segmentation and Attributes

Fig 1. Mask prediction module uses the location, category and attribute word vectors, but not the GCN embedding vectors.

Dataset constraints

- * Visual Genome has attributes, relations, but no segmentation
- * COCO-stuff has segmentation, relations (synthetic and limited vocabulary), and segmentations
- * We exploit COCO-attributes dataset by matching instance ids, and perform experiments on subset of COCO-stuff for training

Weakly supervised Scene Layout composition

Figure 2: Generating object masks for VG scene graphs. Ground truth (GT) bounding boxes and image are shown for reference. GT segmentation masks not available.

References

- J . Johnson, et al Image generation from scene graphs.
 CVPR, 2018
- A. Jyothi, et al LayoutVAE: Stochastic scene layout generation from a label set. ICCV, 2019.
- S. Tripathi, et al Compact scene graphs for layout composition and patch retrieval. CVPRW, 2019
- G. Patterson et al, COCO Attributes: Attributes for People, Animals, and Objects, ECCV'16
- H. Caesar et al, COCO-Stuff: Thing and Stuff Classes in Context, CVPR'18
- O. Ashual et al. Specifying object attributes and relations in interactive scene generation, ICCV'19