Kummer's thm

Assume char O. The Let p be a prime & F a field that contains pth roots of 1. Then the following are equ.

1) FCK Galois of deg p

(2) $K \cong F[x]/(x^{p}b)$ for some $b \in F$ not a pth power: identity on F.

If $0 \Rightarrow 3$. Let $\sigma \in Aut(K/F)$ be a generator.

Enough to show $\exists a \in K \quad s.t. \quad \sigma(a) = \int_{i \in \{1, 2, \dots, p-1\}}^{i}$

Set $b = a^p \in F$ Then min poly g a is $X^p - b$.

 \Rightarrow $\sigma: K \rightarrow K$ has eigenvalue Sp for some $i \in \{1, ..., p-1\}$

F[a,B,r] > F[VA] G = A₃ = cyclic perms. J= (XBY) Taking α, β, γ as a basis $\sigma = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ o: K+K linear map o: F+F Let FCL be an ext. s.t. charpoly of o splits in L.

We Know $\sigma^P = Td. \Rightarrow$ Eigenvalues of σ are ρ^{th} roots of unity. =) L was unnecessary (F=L suffices).

Use Cayley-Hamilton Thm: A matrix satisfies its own char poly. Rule out: Char poly of or is $(X-1)^P$, suppose it is. or satisfies $(X-1)^p = 0$ & $X^p - 1 = 0$ =) satisfies $g(d((X-1)^p, X-1))$ =) Sutisfies X-1=0. contradiction. because $\sigma \neq id$.

2 = 1 b EF not a pth power. Want: XP-b is irred. F[x]/(xP-b) is Galois of dep. Let FCK be a Splitting field of ack be a root. We show a has deg p over F. =) $\chi^{p}b$ is its min poly = $\chi^{p}b$ is irred. Degree of a = # Galois conjugates of a Orbit of a under G = Aut (K/F). Take $\sigma \in G$ that does not fix a. $\sigma(a) = \int_{p}^{c} a \quad \text{for some } i \in \{1, -, p-1\}.$ a Fi Tpa Fia ... gives p Gelvis conj $\Rightarrow \deg(a/F) \geq p$ but also $\leq p$ a sat $\frac{x^p}{b}$.

Then $F[x]/(x^2-b)$ is the splitting field $g(x^2-b)$ = Galois. $g(x^2-b)$ also of deg p. FCK (Sal. gp is Z/pZ. by soot ext. can we find FCK Galois Given

Given $F \subset K$ Galois can we find $F = F_0 \subset F_1 \subset F_2 \subset \cdots \subset K = F_k$ $\text{Where } F_i \subset F_{iH} \text{ is a pth noot} \iff \text{Gabois with ext.}$

Galois. Want FCK FCLCK.
Galois Gabis.

1 automatic. NOT \mathbb{Q} \mathbb{Q} ex. Galois.

Q C Q [53] C Q [21/3, 53]
Galois.
Galois.

Let FCK be a Gabois ext. G = Aut(K/F). L be an intermediate field with H = Aut(K/L). The following are eqv.

(1) LDF is Galois.

2 + JEG we have J(L) = L

3) HCG is a normal subgroup.

In this case, have a hom.

Aud
$$(K/F)$$
 \longrightarrow Aud (L/F)
 G
 G/H

This is sunj. with Kernel H.

FCLCK Galois Galois Galois.

G/H H.