Metody selekcji zmiennych w modelach skoringowych – klasyka kontra AI/ML

SAS dla Administratorów i Praktyków 2020

Sebastian Zając, Karol Przanowski

Szkoła Główna Handlowa

27.10.2020

Analiza danych

Nie bój się – to tylko synonimy analityki

S.Zając et al. (SGH) 27.10.2020

Zastosowanie ... danych

PRZYKŁADY BRANŻ, W KTÓRYCH MODELE PREDYKCYJNE MOGĄ BYĆ WYKORZYSTYWANE

FINANSE

- o Fundusze inwestycyjne i gwarancyjne
- Ubezpieczenia
- o Kredyty / Leasing/ Faktoring
- Windykacja
- Ochrona przed nadużyciami

MARKETING

- Częstotliwości i rodzaj kontaktu z klientem
- Programy lojalnościowe
- · Retencja w usługach abonamentowych
- Promocje cenowe
- Sprzedaż internetowa

INNE

- Centra usług wspólnych
- o Punkty masowej obsługi klienta
- Domy wysyłkowe
- Logistyka
- o Firmy windykacyjne

NAUKA

Prosty przykład

Wyniki Finansowe

4 / 15

Występują zauważalne zyski, ale czy można je poprawić?

S.Zajac et al. (SGH) 27.10.2020

Prosty przykład

Wyniki Finansowe

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

• dobór cech (feature selection)

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)
- nowe cechy z nowych danych

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)
- nowe cechy z nowych danych

o czym nie będzie ? feature extraction / streaming feature selection

PCA oraz autoencondery czyli liniowe i nieliniowe kombinacje zmiennych. wybieranie zmiennych w czasie rzeczywistym

S.Zając et al. (SGH) 27.10.2020

Przygotowanie danych

Python

```
from random import choice
import pandas as pd
import numpy as np
from sklearn.datasets import make-classification
import os
class DataOptions(object):
   n_samp = 50000
    n_feat = 50
    n_{infor} = [10, 11, 12, 13, 14, 15]
    n_{-red} = [0, 1, 2, 3, 4, 5, 6, 7]
    w_weights = []
    flip_y = [0,0.01,0.02,0.03]
   names = ['zm'+str(x) for x in range(n-feat)]
   def __init__(self):
        self.n_informative = choice(self.n_infor)
        self.n_redundant = choice(self.n_red)
        self.flipv = choice(self.flip_v)
```

20 zestawów danych:

50 zmiennych po 50.000 przypadków.

SAS - generator danych

ABT: 1600 zmiennych, 700.000 przypadków.

(Pre)Selekcja

• Wariancja, testy statystyczne dla zmiennych - univariate methods

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection (SAS)

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection (SAS)

Metody modelowe

Regularyzacja lasso

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection (SAS)

Metody modelowe

- Regularyzacja lasso
- drzewa decyzyjne, lasy losowe

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection (SAS)

Metody modelowe

- Regularyzacja lasso
- drzewa decyzyjne, lasy losowe
- Xgboost, sieci neuronowe, SGDClassifier

S.Zając et al. (SGH)

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection (SAS)

Metody modelowe

- Regularyzacja lasso
- drzewa decyzyjne, lasy losowe
- Xgboost, sieci neuronowe, SGDClassifier

Metody zaawansowane

Branch and bound w SAS

Podejście klasyczne vs AI/ML

Przygotowanie danych - podejście klasyczne

- Preselekcja (usuwanie dużej korelacji)
- Dyskretyzacja zmiennych
- Transformacja zmiennych do WOE
- Finalny model regresji logistycznej

Podejście AI/ML

- Zmienne indykatorowe dla braków danych
- Uzupełnienie braków danych przez średnią
- Finalne modele AI/ML

Metody klasyczne

Metody klasyczne

S.Zając et al. (SGH) 27.10.2020

Metody klasyczne

S.Zając et al. (SGH)

Metody AI/ML

S.Zając et al. (SGH) 27.10.2020

Metody AI/ML

S.Zając et al. (SGH)

Podsumowanie

Dziękujemy za uwagę! kprzan@sgh.waw.pl, sebastian.zajac@sgh.waw.pl

S.Zając et al. (SGH) 27.10.2020 15/15