

AST20105 DATA STRUCTURES & ALGORITHMS COURSE LOGISTICS

Garret Lai

LEARNING OBJECTIVES

Upon successful completion of this course, students will be able to:

- 1. Identify the basic abstract data types and algorithms for storing, retrieval, and searching;
- 2. Design and implement linked list, stack, queue, tree and graph structures;
- 3. Analyse algorithms, including different sorting methods for appropriate usage and fine tuning;
- 4. Perform execution measurement and performance evaluation with asymptotic notation;
- 5. Apply and select the appropriate abstract data types for different applications.

AREA COVERED

Types of data structure

- Array and Link list
- Tree and Graph
- Hash, and more...

Algorithm Efficiency Analysis

• Big-O, Big-Omega

Sorting Algorithms

Merge sort, insertion sort, quick sort, bubble sort, etc

Design of Algorithm

Time and space limitation

WEEKLY SCHEDULE (TENTATIVE)

WK	Lecture	Lab
1	 Course Introduction Introduction to data structure Importance of algorithm analysis 	• Quick revision of C++
2	 Revision on mathematics related computing complexity Algorithm complexity definition 	• C++ template study
3	 Algorithm complexity analysis 	Recursive function
4	 Programming design approaches and their complexity 	Analysis of algorithm
5	Array and linked listComplexity analysis on array and linked list structures	Array and link listRelease of project
6	Stack and queue	Stack and queue

WEEKLY SCHEDULE (TENTATIVE)

WK	Lecture	Lab
7	 Tree, binary search tree and their operations AVL Tree and their operations 	Binary Tree
8	 AVL Tree, B-tree and their operations 	AVL Tree
9	• Graphs I	B-treeMid-term Test (Practical) on Sat
10	• Graphs II	 Analysis of algorithm
11	 Sorting algorithms and their complexity analysis (I) Selection sort, Insertion sort, Merge sort, Partitioning and quick sort 	Sorting algorithm I

WEEKLY SCHEDULE (TENTATIVE)

WK	Lecture	Lab
12	 Comparison-based sorting continued Non-comparison-based sorting: Counting sort, bucket sort and radix sort 	Project prototype demo
13	 Non-comparison-based sorting: Counting sort, bucket sort and radix sort Revision 	Non-comparison-based sortingProject due

ASSESSMENT SCHEDULE

Examination (60%)

2 hours closed book

Lab Exercises (15%)

Practice of theories learnt in classes

Test (10%)

Practical test

Programming Assignments (15%)

Working in groups

SHOULD YOU NEED HELP...

Consultation hours (will be stated next week)

By appointment (if consultation hours don't fit you)

Tel: 34425780

Room: AC2 6433

Email me: yikhglai2@cityu.edu.hk

Q & A