

APPENDICES

Appendix 1: Abbreviation Key for Mass-Volume Model

Abbreviation
Kf sd = associated rate constant for stomach and duodenum
Ka dj = associated rate constant for duodenum and jejunum
Ka ji = associated rate constant for jejunum and ileum
Ka ie = associated rate constant for ileum and colon
Ka co = associated rate constant for colon and excretion
SD trans = transfer rate between stomach and duodenum
DJ trans = transfer rate between duodenum and jejunum
JL trans = transfer rate between jejunum and ileum
IC trans = transfer rate between ileum and colon
Waste = transfer rate between colon and excretion
pH s = pH stomach
pH s2 = pH duodenum
pH s3 = pH jejunum
pH s4 = pH ileum
pH s5 = pH colon
sol profile = solubility profile for stomach

sol profile 2 = solubility profile for duodenum
sol profile 3 = solubility profile for jejunum
sol profile 4 = solubility profile for ileum
sol profile 5 = solubility profile for colon
stom ka = associated rate constant for stomach compartments 1 and 2
duo ka = associated rate constant for duodenum compartments 1 and 2
Jej ka = associated rate constant for jejunum compartments 1 and 2
Il ka = associated rate constant for ileum compartments 1 and 2
Colon ka = associated rate constant for colon compartments 1 and 2
SA stom = surface area of stomach
SA duo = surface area of duodenum
SA jej = surface area of jejunum
SA il = surface area of ileum
SA colon = surface area of colon
Perm stom = permeability of stomach
Perm duo = permeability of duodenum
Perm jej = permeability of jejunum
Perm il = permeability of ileum
Perm colon = permeability of colon

Ka sd = associated rate construct for stomach fluid absorption

Ka du = associated rate construct for duodeunm fluid absorption

Ka je = associated rate construct for jejunm fluid absorption

Ka il = associated rate construct for ileunm fluid absorption

Ka co = associated rate construct for colon fluid absorption

Note: other abbreviations adhere to above descriptors and are self explanatory

Appendix 2: Equations, Parameters and Values For Mass-Volume Model

```
amt_plasma(t) = amt_plasma(t - dt) + (trans_21 + ka - elimination - trans_12) * dt  
INIT amt_plasma = 0
```

INFLOWS:

```
trans_21 = k21*comp_2
```

```
ka = tot_abs_rate
```

OUTFLOWS:

```
elimination = amt_plasma*k_elim
```

```
trans_12 = k12*amt_plasma
```

```
blood_side_col(t) = blood_side_col(t - dt) + (colon_ka_5) * dt
```

```
INIT blood_side_col = 0
```

INFLOWS:

```
colon_ka_5 = IF Vol_colon*sol_profile_5 >= Colon THEN Colon*SA_colon*perm_colon*3600  
ELSE Vol_colon*sol_profile_5*SA_colon*perm_colon*3600
```

```
blood_side_dou(t) = blood_side_dou(t - dt) + (duo_ka) * dt
```

```
INIT blood_side_dou = 0
```

INFLOWS:

```
duo_ka = IF Vol_duod*sol_profile_2 >= duodenum THEN  
duodenum*SA_duo*perm_duo*3600 ELSE Vol_duod*sol_profile_2*SA_duo*perm_duo*3600
```

```
blood_side_il(t) = blood_side_il(t - dt) + (Il_ka) * dt
```

```
INIT blood_side_il = 0
```

INFLOWS:

```
Il_ka = IF Vol ileum*sol_profile_4 >= Ileum THEN Ileum*SA_Il*perm_Il*3600 ELSE  
Vol ileum*sol_profile_4*SA_Il*perm_Il*3600
```

```
blood_side_jej(t) = blood_side_jej(t - dt) + (Jej_ka) * dt
```

```
INIT blood_side_jej = 0
```

INFLOWS:

```
Jej_ka = IF Vol_jej*sol_profile_3 >= Jejunum THEN Jejunum*SA_jej*perm_jej *3600 ELSE  
Vol_jej*sol_profile_3*SA_jej*perm_jej*3600
```

```
blood_side_sto(t) = blood_side_sto(t - dt) + (stom_ka) * dt
```

```
INIT blood_side_sto = 0
```

INFLOWS:

```
stom_ka = IF Vol_stom*sol_profile >= Stomach THEN Stomach*SA_stom*perm_stom*3600  
ELSE Vol_stom*sol_profile*SA_stom*perm_stom*3600
```

```
Colon(t) = Colon(t - dt) + (IC_trans - Waste - colon_ka_5) * dt
```

```
INIT Colon = 0
```

INFLOWS:

$$IC_trans = ka_ic*Ileum$$

OUTFLOWS:

$$Waste = ka_col*Colon$$

colon_ka_5 = IF Vol_colon*sol_profile_5 >= Colon THEN Colon*SA_colon*perm_colon*3600

ELSE Vol_colon*sol_profile_5*SA_colon*perm_colon*3600

$$comp_2(t) = comp_2(t - dt) + (trans_12 - trans_21) * dt$$

INIT comp_2 = 0

INFLOWS:

$$trans_12 = k12*amt_plasma$$

OUTFLOWS:

$$trans_21 = k21*comp_2$$

duodenum(t) = duodenum(t - dt) + (SD_trans - duo_ka - DJ_trans) * dt

INIT duodenum = 0

INFLOWS:

SD_trans = if Stomach >0 then kf_sd*Stomach else 0

OUTFLOWS:

duo_ka = IF Vol_duod*sol_profile_2 >= duodenum THEN

duodenum*SA_duo*perm_duo*3600 ELSE Vol_duod*sol_profile_2*SA_duo*perm_duo*3600

DJ_trans = ka_dj*duodenum

$$excretion(t) = excretion(t - dt) + (vol_cw) * dt$$

INIT excretion = 0

INFLOWS:

$$vol_cw = Vol_colon*ka_col$$

$$excretion_2(t) = excretion_2(t - dt) + (Waste) * dt$$

INIT excretion_2 = 0

INFLOWS:

$$Waste = ka_col*Colon$$

Ileum(t) = Ileum(t - dt) + (JL_trans - IC_trans - Il_ka) * dt

INIT Ileum = 0

INFLOWS:

$$JL_trans = ka_ji*Jejunum$$

OUTFLOWS:

$$IC_trans = ka_ic*Ileum$$

Il_ka = IF Vol_ilium*sol_profile_4 >= Ileum THEN Ileum*SA_Il*perm_Il*3600 ELSE

Vol_ilium*sol_profile_4*SA_Il*perm_Il*3600

$$Jejunum(t) = Jejunum(t - dt) + (DJ_trans - JL_trans - Jej_ka) * dt$$

INIT Jejunum = 0

INFLOWS:

$$DJ_{trans} = ka_{dj} * duodenum$$

OUTFLOWS:

$$JL_{trans} = ka_{ji} * Jejunum$$

$Jej_{ka} = \text{IF } Vol_{jej} * sol_profile_3 \geq Jejunum \text{ THEN } Jejunum * SA_{jej} * perm_{jej} * 3600 \text{ ELSE } Vol_{jej} * sol_profile_3 * SA_{jej} * perm_{jej} * 3600$

$$serosal_col(t) = serosal_col(t - dt) + (Adsorp_col - col_secretion) * dt$$

INIT serosal_col = 0

INFLOWS:

$$Adsorp_col = PULSE(1.67, 0, .1) + 0 * Vol_colon * ka_co$$

OUTFLOWS:

$$col_secretion = 0$$

$$serosal_dou(t) = serosal_dou(t - dt) + (Adsorp_Duo - duo_secretion) * dt$$

INIT serosal_dou = 0

INFLOWS:

$$Adsorp_Duo = PULSE(10.82, 0, .1) + 0 * Vol_duod * ka_du$$

OUTFLOWS:

$$duo_secretion = PULSE(10.82, 0, .1)$$

$$serosal_ill(t) = serosal_ill(t - dt) + (Adsorp_ill - ile_secretion) * dt$$

INIT serosal_ill = 0

INFLOWS:

$$Adsorp_ill = PULSE(8.83, 0, .10) + 0 * Vol_ileum * ka_il$$

OUTFLOWS:

$$ile_secretion = PULSE(1.50, 0, .1)$$

$$serosal_jej(t) = serosal_jej(t - dt) + (Adsorp_jej - jej_secretion) * dt$$

INIT serosal_jej = 0

INFLOWS:

$$Adsorp_jej = PULSE(15.76, 0, .1) + 0 * Vol_jej * ka_je$$

OUTFLOWS:

$$jej_secretion = PULSE(2.67, 0, .1)$$

$$serosal_sto(t) = serosal_sto(t - dt) + (Adsorp_Stom - Stom_Secretion) * dt$$

INIT serosal_sto = 0

INFLOWS:

$$Adsorp_Stom = 0 * Vol_stom * ka_sd$$

OUTFLOWS:
Stom_Secretion = PULSE(16.67,0,.1)
Stomach(t) = Stomach(t - dt) + (- SD_trans - stom_ka) * dt
INIT Stomach = 1000

OUTFLOWS:
SD_trans = if Stomach >0 then kf_sd*Stomach else 0
stom_ka = IF Vol_stom*sol_profile >= Stomach THEN Stomach*SA_stom*perm_stom*3600
ELSE Vol_stom*sol_profile*SA_stom*perm_stom*3600
total_drug_absorbed(t) = total_drug_absorbed(t - dt) + (tot_abs_rate) * dt
INIT total_drug_absorbed = 0

INFLOWS:
tot_abs_rate = stom_ka+duo_ka+Jej_ka+Il_ka+colon_ka_5
Total_Elimination(t) = Total_Elimination(t - dt) + (elimination) * dt
INIT Total_Elimination = 0

INFLOWS:
elimination = amt_plasma*k_elim
Vol_colon(t) = Vol_colon(t - dt) + (vol_ij + col_secretion - vol_cw - Adsorp_col) * dt
INIT Vol_colon = 0

INFLOWS:
vol_ij = Vol_ilium*ka_ic
col_secretion = 0

OUTFLOWS:
vol_cw = Vol_colon*ka_col
Adsorp_col = PULSE(1.67,0,.1)+0*Vol_colon*ka_co
Vol_duod(t) = Vol_duod(t - dt) + (vol_sd + duo_secretion - voil_dj - Adsorp_Duo) * dt
INIT Vol_duod = 0

INFLOWS:
vol_sd = kf_sd*Vol_stom
duo_secretion = PULSE(10.82,0,.1)

OUTFLOWS:
voil_dj = Vol_duod*ka_dj
Adsorp_Duo = PULSE(10.82,0,.1)+0*Vol_duod*ka_du
Vol_ilium(t) = Vol_ilium(t - dt) + (vol_ji + ile_secretion - Adsorpt_ill - vol_ij) * dt
INIT Vol_ilium = 0

INFLOWS:
vol_ji = Vol_jej*ka_ji
ile_secretion = PULSE(1.50,0,.1)

OUTFLOWS:

```
Adsorpt_ll = PULSE(8.83,0,.10)+0*Vol_ilum*ka_il  
vol_ij = Vol_ilum*ka_ic  
Vol_jej(t) = Vol_jej(t - dt) + (voil_dj + jej_secretion - vol_ji - Adsorp_jej) * dt  
INIT Vol_jej = 0
```

INFLOWS:

```
voil_dj = Vol_duod*ka_dj  
jej_secretion = PULSE(2.67,0,.1)
```

OUTFLOWS:

```
vol_ji = Vol_jej*ka_ji  
Adsorp_jej = PULSE(15.76,0,.1)+0*Vol_jej*ka_je  
Vol_stom(t) = Vol_stom(t - dt) + (Stom_Secretion - vol_sd - Adsorp_Stom) * dt  
INIT Vol_stom = PULSE(8.33,0,.1)
```

INFLOWS:

```
Stom_Secretion = PULSE(16.67,0,.1)
```

OUTFLOWS:

```
vol_sd = kf_sd*Vol_stom  
Adsorp_Stom = 0*Vol_stom*ka_sd  
conc_plasma = (amt_plasma/volume)*mg_to_ug  
k12 = .839  
k21 = .67  
ka_co = 1  
ka_col = 3  
ka_dj = 3  
ka_du = 1  
ka_ic = 3  
ka_il = 8.83  
ka_je = 1  
ka_ji = 3  
ka_sd = 1  
kf_sd = 2.8  
k_elim = .161  
mg_to_ug = 1000  
perm_colon = 3.80e-6  
perm_duo = 1.10e-6  
perm_ll = 4.06e-6  
perm_jej = 2.17e-6  
perm_stom = 1.10e-6  
ph_s = 1.5  
ph_s_2 = 6.6  
ph_s_3 = 6.6
```

```
ph_s_4 = 7.5
ph_s_5 = 6.6
SA_colon = 138
SA_duo = 125
SA_Il = 102
SA_jej = 182
SA_stom = 50
volume = 4*19200
sol_profile = GRAPH(ph_s)
(1.00, 63.0), (1.50, 25.0), (2.00, 10.0), (2.50, 5.00), (3.00, 4.00), (3.50, 3.80), (4.00, 3.65), (4.50,
3.50), (5.00, 3.65), (5.50, 3.65), (6.00, 3.65), (6.50, 3.65), (7.00, 3.65), (7.50, 3.65), (8.00, 3.65),
(8.50, 4.00), (9.00, 5.00), (9.50, 12.0), (10.0, 23.5)
sol_profile_2 = GRAPH(ph_s_2)
(1.00, 63.0), (1.50, 25.0), (2.00, 10.0), (2.50, 5.00), (3.00, 4.00), (3.50, 3.80), (4.00, 3.65), (4.50,
3.50), (5.00, 3.65), (5.50, 3.65), (6.00, 3.65), (6.50, 3.65), (7.00, 3.65), (7.50, 3.65), (8.00, 3.65),
(8.50, 4.00), (9.00, 5.00), (9.50, 12.0), (10.0, 23.5)
sol_profile_3 = GRAPH(ph_s_3)
(1.00, 63.0), (1.50, 25.0), (2.00, 10.0), (2.50, 5.00), (3.00, 4.00), (3.50, 3.80), (4.00, 3.65), (4.50,
3.50), (5.00, 3.65), (5.50, 3.65), (6.00, 3.65), (6.50, 3.65), (7.00, 3.65), (7.50, 3.65), (8.00, 3.65),
(8.50, 4.00), (9.00, 5.00), (9.50, 12.0), (10.0, 23.5)
sol_profile_4 = GRAPH(ph_s_4)
(1.00, 63.0), (1.50, 25.0), (2.00, 10.0), (2.50, 5.00), (3.00, 4.00), (3.50, 3.80), (4.00, 3.65), (4.50,
3.50), (5.00, 3.65), (5.50, 3.65), (6.00, 3.65), (6.50, 3.65), (7.00, 3.65), (7.50, 3.65), (8.00, 3.65),
(8.50, 4.00), (9.00, 5.00), (9.50, 12.0), (10.0, 23.5)
sol_profile_5 = GRAPH(ph_s_5)
(1.00, 63.0), (1.50, 25.0), (2.00, 10.0), (2.50, 5.00), (3.00, 4.00), (3.50, 3.80), (4.00, 3.65), (4.50,
3.50), (5.00, 3.65), (5.50, 3.65), (6.00, 3.65), (6.50, 3.65), (7.00, 3.65), (7.50, 3.65), (8.00, 3.65),
(8.50, 4.00), (9.00, 5.00), (9.50, 12.0), (10.0, 23.5)
```

Appendix 3: Abbreviation Key For GI Model

The legend/key has been divided into sub-sections corresponding to the sub-sections of the model diagram.

Numbered suffixes (1, 2, 3, 4, 5, 6) have been assigned to distinguish between intestinal regions (stomach, duodenum, jejunum, ileum, colon, and waste, respectively).

- 1 – stomach
- 2 – duodenum
- 3 – jejunum
- 4 – ileum
- 5 – colon
- 6 – waste

For example, VOL 1 is the volume in the stomach, MASS 3 is the insoluble mass in the jejunum. In the equations, COMP 1 indicates the stomach, COMP 2 the duodenum, COMP 3, the jejunum, etc.

Ghosts are listed under the sub-section containing the original reservoir, flow regulator, or converter.

Abbreviations listed in italics are regionally dependent and set up as arrays to allow independent values for each intestinal region.

In general, ADJ as a prefix indicates a calculated parameter value (ADJ = adjusted), while ADJ as a suffix indicates an adjustment parameter (ADJ = adjustment).

Intestinal model

Reservoirs/Compartments

VOL ABS	Fluid volume absorbed
VOL	Fluid volume
C REL	Mass of drug contained with a formulation or controlled release device
MASS	Insoluble mass of drug (not contained within the formulation or controlled release device)
SOL	Soluble mass of drug
ABSORPTION	Mass of drug absorbed

Flow regulators

REABS	Rate of water absorption
VOL OUT	Fluid volume transit rate
CR OUT	Formulation or controlled release device transit rate
CR INPUT	Drug release rate from formulation or controlled release device
MASS OUT	Insoluble drug mass transit rate
DISS PRECIP	Dissolution rate
SOL OUT	Soluble drug mass transit rate
FLUX	Absorption rate

ADJ PARMS (Adjustment Parameters)

VOL ADJ	Fluid volume absorption adjustment parameter
DISS ADJ	Dissolution rate adjustment parameter
TRANSIT ADJ	Transit time adjustment parameter
SA ADJ	Surface area adjustment parameter
FLUX ADJ	Passive Absorption adjustment parameter
EFFLUX ADJ	Efflux or secretion adjustment parameter
CARRIER ADJ	Active absorption adjustment parameter

PARMS (Parameters)

VOL PARM	Fluid volume absorption rate constant
SURFACE AREA	Surface area available for absorption
DOSE	The administered dose of drug
INIT VOLUME	The administered volume of water or fluid
TIME IN HOURS	A clock
pH	The physiological pH value
PARACELLULAR	A user controlled switch used to adjust absorption based on absorption mechanism

TRANSIT TIME

TRANSFERS	GI transit rate constant
CUMU TT	Cumulative transit time
ADJ TRANSIT TIME	Adjusted GI transit time incorporating adjustment parameter and user input
USER TT INPUT	User controlled adjustments to the GI transit time

OUTPUT CALCULATIONS

ABSORBED TOTAL	Total mass of drug absorbed (sum of ABSORPTION 1...5)
----------------	---

FDp%	Fraction or the dose absorbed into portal vein x 100
FLUX TOTAL	Total absorption rate (sum of FLUX 1...5)
CUM DISS	Cumulative drug mass dissolved
CR Release	Cumulative drug mass released from formulation
CUM DISS RATE	Sum of DISS PRECIP 1...5
CR cumrate	Summ of CR INPUT 1...5

PERMEABILITY CALCULATION

ADJ PERM	Adjusted permeability incorporating all transport mechanisms and relevant adjustment parameters
ACT PE	Active or carrier-mediated absorptive permeability
Km	Constant from the Michaelis-Menten type permeability equation for active transport
REGIONAL	Passive permeability after regional correlation calculation (same as PASS PE if regional correlation is not used)
PASS PE	Passive permeability entered by user
RC	A logical function used in determining the regional correlation
RCSUM	A logical function used in determining the regional correlation

SOLUBILITY CALCULATION

USER pH	User supplied pH value for which a solubility value is available
USER SOLUB	User supplied solubility value corresponding to the USER pH value
ADJ SOLUB	Solubility calculated (if necessary) at the appropriate pH value using the entered USER pH and USER SOLUB values

CONTROLLED RELEASE CALCULATION

CR RATE	The instantaneous release rate from the formulation
CR DOSE	The total dose contained with the formulation
CR AT TIME	The cumulative drug mass release profile
CR AT LAST	The cumulative drug mass release profile

Note: CR AT TIME holds the value at the current time value (t), CR AT LAST holds the value at the immediately preceding time value (t-1)

CONC CALCULATION

CONCENTRATIONS	The dissolved drug concentration
----------------	----------------------------------

DISSOLUTION CALCULATION

PRECIP	Precipitation rate constant
DISSOL	Dissolution rate constant
ADJ DISS PRECIP	Adjusted rate constant incorporating PRECIP, DISSOL and calculated concentration

Appendix 4: Equations, Parameters and Values For GI Model

□ ADJ PARMS

- CARRIER_ADJ[COMP_S] = 0
- DISS_ADJ[COMP_1] = 1
- DISS_ADJ[COMP_2] = 1
- DISS_ADJ[COMP_3] = 1
- DISS_ADJ[COMP_4] = 1
- DISS_ADJ[COMP_5] = 1
- EFFFLUX_ADJ[COMP_S] = 1
- FLUX_ADJ[COMP_1] = 1
- FLUX_ADJ[COMP_2] = 10
- FLUX_ADJ[COMP_3] = 8
- FLUX_ADJ[COMP_4] = 2
- FLUX_ADJ[COMP_5] = 1
- SA_ADJ[COMP_1] = 1
- SA_ADJ[COMP_2] = 1
- SA_ADJ[COMP_3] = 1
- SA_ADJ[COMP_4] = 1
- SA_ADJ[COMP_5] = 1
- TRANSIT_ADJ[COMP_1] = 1
- TRANSIT_ADJ[COMP_2] = 1
- TRANSIT_ADJ[COMP_3] = 1
- TRANSIT_ADJ[COMP_4] = 1
- TRANSIT_ADJ[COMP_5] = 1
- VOL_ADJ[COMP_1] = 1
- VOL_ADJ[COMP_2] = 1
- VOL_ADJ[COMP_3] = 1
- VOL_ADJ[COMP_4] = 1
- VOL_ADJ[COMP_5] = 1

□ CONC CALCULATION

- CONCENTRATIONS[COMP_1] = if VOL_1=0.0 then 0 else if
ADJ_SOLUB[COMP_1]<SOL_1/VOL_1 then ADJ_SOLUB[COMP_1] else SOL_1/VOL_1 +
0*(SOL_2+SOL_5+SOL_3+SOL_4+VOL_3+VOL_2+VOL_4+VOL_5)
- CONCENTRATIONS[COMP_2] = if VOL_2 = 0.0 then 0 else if (VOL_2<1e-6 AND SOL_2<1e-7)
then 0 else if ADJ_SOLUB[COMP_2]<SOL_2/VOL_2 then ADJ_SOLUB[COMP_2] else
SOL_2/VOL_2
+0*(SOL_1+SOL_5+SOL_3+SOL_4+VOL_3+VOL_5+VOL_4)
- CONCENTRATIONS[COMP_3] = if VOL_3 = 0.0 then 0 else if (VOL_3<1e-6 AND SOL_3<1e-7)
then 0 else if ADJ_SOLUB[COMP_3]<SOL_3/VOL_3 then ADJ_SOLUB[COMP_3] else
SOL_3/VOL_3
+0*(SOL_1+SOL_2+SOL_4+SOL_5+VOL_5+VOL_4+VOL_1+VOL_2)
- CONCENTRATIONS[COMP_4] = if VOL_4 = 0.0 then 0 else if (VOL_4<1e-6 AND SOL_4<1e-7)
then 0 else if ADJ_SOLUB[COMP_4]<SOL_4/VOL_4 then ADJ_SOLUB[COMP_4] else
SOL_4/VOL_4
+0*(SOL_1+SOL_2+SOL_3+SOL_5+VOL_1+VOL_2+VOL_3+VOL_5)

CONCENTRATIONS[COMP_5] = if VOL_5 = 0.0 then 0 else if (VOL_5<1e-6 AND SOL_5<1e-7) then 0 else if ADJ_SOLUB[COMP_5]<SOL_5/VOL_5 then ADJ_SOLUB[COMP_5] else SOL_5/VOL_5
+0*(SOL_1+SOL_4+SOL_3+SOL_2+VOL_3+VOL_1+VOL_2+VOL_4)

CONTROL RELEASE CALCULATION

- CR_DOSE = 0
- CR_RATE = (CR_AT_TIME-CR_AT_LAST)*20*(CR_DOSE/100)
- CR_AT_LAST = GRAPH(TIME-DT)
(0.00, 0.00), (0.25, 17.7), (0.5, 31.5), (0.75, 42.2), (1.00, 50.6), (1.25, 57.1), (1.50, 62.1), (1.75, 66.1), (2.00, 69.2), (2.25, 71.6), (2.50, 73.4), (2.75, 74.9), (3.00, 76.0), (3.25, 76.9), (3.50, 77.6), (3.75, 78.1), (4.00, 78.5), (4.25, 78.9), (4.50, 79.1), (4.75, 79.3), (5.00, 79.5), (5.25, 79.6), (5.50, 79.7), (5.75, 79.7), (6.00, 79.8), (6.25, 79.8), (6.50, 79.9), (6.75, 79.9), (7.00, 79.9), (7.25, 79.9), (7.50, 80.0), (7.75, 80.0), (8.00, 80.0), (8.25, 80.0), (8.50, 80.0), (8.75, 80.0), (9.00, 80.0), (9.25, 80.0), (9.50, 80.0), (9.75, 80.0), (10.0, 80.0), (10.3, 80.0), (10.5, 80.0), (10.8, 80.0), (11.0, 80.0), (11.3, 80.0), (11.5, 80.0), (11.8, 80.0), (12.0, 80.0), (12.3, 80.0), (12.5, 80.0), (12.8, 80.0), (13.0, 80.0)...
CR_AT_TIME = GRAPH(TIME)
(0.00, 0.00), (0.25, 17.7), (0.5, 31.5), (0.75, 42.2), (1.00, 50.6), (1.25, 57.1), (1.50, 62.1), (1.75, 66.1), (2.00, 69.2), (2.25, 71.6), (2.50, 73.4), (2.75, 74.9), (3.00, 76.0), (3.25, 76.9), (3.50, 77.6), (3.75, 78.1), (4.00, 78.5), (4.25, 78.9), (4.50, 79.1), (4.75, 79.3), (5.00, 79.5), (5.25, 79.6), (5.50, 79.7), (5.75, 79.7), (6.00, 79.8), (6.25, 79.8), (6.50, 79.9), (6.75, 79.9), (7.00, 79.9), (7.25, 79.9), (7.50, 80.0), (7.75, 80.0), (8.00, 80.0), (8.25, 80.0), (8.50, 80.0), (8.75, 80.0), (9.00, 80.0), (9.25, 80.0), (9.50, 80.0), (9.75, 80.0), (10.0, 80.0), (10.3, 80.0), (10.5, 80.0), (10.8, 80.0), (11.0, 80.0), (11.3, 80.0), (11.5, 80.0), (11.8, 80.0), (12.0, 80.0), (12.3, 80.0), (12.5, 80.0), (12.8, 80.0), (13.0, 80.0)...

DISSOLUTION CALCULATION

- ADJ_DISS_PRECIP[COMP_1] = if VOL_1=0 then 0 else if (SOL_1/VOL_1<ADJ_SOLUB[COMP_1]) then (DISSOL[COMP_1]*DISS_ADJ[COMP_1]*MASS_1*(ADJ_SOLUB[COMP_1]-SOL_1/VOL_1)) else ((SOL_1/VOL_1)-ADJ_SOLUB[COMP_1])*PRECIP[COMP_1]+0*(MASS_1+MASS_2+MASS_3+MASS_4+MASS_5+SOL_1+SOL_2+SOL_3+SOL_4+SOL_5+VOL_1+VOL_2+VOL_3+VOL_4+VOL_5)
- ADJ_DISS_PRECIP[COMP_2] = if VOL_2=0 then 0 else if (SOL_2/VOL_2<ADJ_SOLUB[COMP_2]) then (DISSOL[COMP_2]*DISS_ADJ[COMP_2]*MASS_2*(ADJ_SOLUB[COMP_2]-SOL_2/VOL_2)) else ((SOL_2/VOL_2)-ADJ_SOLUB[COMP_2])*PRECIP[COMP_2]+0*(MASS_1+MASS_2+MASS_3+MASS_4+MASS_5+SOL_1+SOL_2+SOL_3+SOL_4+SOL_5+VOL_1+VOL_2+VOL_3+VOL_4+VOL_5)
- ADJ_DISS_PRECIP[COMP_3] = if VOL_3=0 then 0 else if (SOL_3/VOL_3<ADJ_SOLUB[COMP_3]) then (DISSOL[COMP_3]*DISS_ADJ[COMP_3]*MASS_3*(ADJ_SOLUB[COMP_3]-SOL_3/VOL_3)) else ((SOL_3/VOL_3)-ADJ_SOLUB[COMP_3])*PRECIP[COMP_3]+0*(MASS_1+MASS_2+MASS_3+MASS_4+MASS_5+SOL_1+SOL_2+SOL_3+SOL_4+SOL_5+VOL_1+VOL_2+VOL_3+VOL_4+VOL_5)

ADJ_DISS_PRECIP[COMP_4] = if VOL_4=0 then 0 else if
 (SOL_4/VOL_4<ADJ_SOLUB[COMP_4]) then
 (DISSOL[COMP_4]*DISS_ADJ[COMP_4]*MASS_4*(ADJ_SOLUB[COMP_4]-SOL_4/VOL_4)) else
 ((SOL_4/VOL_4)-ADJ_SOLUB[COMP_4])*PRECIP[COMP_4]
 +0*(MASS_1+MASS_2+MASS_3+MASS_4+MASS_5+SOL_1+SOL_2+SOL_3+SOL_4+SOL_5+V
 OL_1+VOL_2+VOL_3+VOL_4+VOL_5)
 ADJ_DISS_PRECIP[COMP_5] = if VOL_5=0 then 0 else if
 (SOL_5/VOL_5<ADJ_SOLUB[COMP_5]) then
 (DISSOL[COMP_5]*DISS_ADJ[COMP_5]*MASS_5*(ADJ_SOLUB[COMP_5]-SOL_5/VOL_5)) else
 ((SOL_5/VOL_5)-ADJ_SOLUB[COMP_5])*PRECIP[COMP_5]
 +0*(MASS_1+MASS_2+MASS_3+MASS_4+MASS_5+SOL_1+SOL_2+SOL_3+SOL_4+SOL_5+V
 OL_1+VOL_2+VOL_3+VOL_4+VOL_5)
 DISSOL[COMP_1] = 1
 DISSOL[COMP_2] = 1
 DISSOL[COMP_3] = 1
 DISSOL[COMP_4] = 1
 DISSOL[COMP_5] = 1
 PRECIP[COMP_1] = 10
 PRECIP[COMP_2] = 10
 PRECIP[COMP_3] = 10
 PRECIP[COMP_4] = 10
 PRECIP[COMP_5] = 10
INPUTS
INTESTINAL MODEL
 ABSORPTION_1(t) = ABSORPTION_1(t - dt) + (FLUX_1) * dt
 INIT ABSORPTION_1 = 0
INFLOWS:
 \Rightarrow FLUX_1 =
 CONCENTRATIONS[COMP_1]*ADJ_PERM[COMP_1]*SURFACE_AREA[COMP_1]
 ABSORPTION_2(t) = ABSORPTION_2(t - dt) + (FLUX_2) * dt
 INIT ABSORPTION_2 = 0
INFLOWS:
 \Rightarrow FLUX_2 =
 CONCENTRATIONS[COMP_2]*ADJ_PERM[COMP_2]*SURFACE_AREA[COMP_2]
 ABSORPTION_3(t) = ABSORPTION_3(t - dt) + (FLUX_3) * dt
 INIT ABSORPTION_3 = 0
INFLOWS:
 \Rightarrow FLUX_3 =
 CONCENTRATIONS[COMP_3]*ADJ_PERM[COMP_3]*SURFACE_AREA[COMP_3]
 ABSORPTION_4(t) = ABSORPTION_4(t - dt) + (FLUX_4) * dt
 INIT ABSORPTION_4 = 0
INFLOWS:

\Rightarrow FLUX_4 =
 CONCENTRATIONS[COMP_4]*ADJ_PERM[COMP_4]*SURFACE_AREA[COMP_4]

ABSORPTION_5(t) = ABSORPTION_5(t - dt) + (FLUX_5) * dt
 INIT ABSORPTION_5 = 0
 INFLOWS:
 \Rightarrow FLUX_5 = if time < 32 then
 CONCENTRATIONS[COMP_5]*ADJ_PERM[COMP_5]*SURFACE_AREA[COMP_5]*(32-t)
 me)/48*(VOL_5/17.2) else 0

C_REL_1(t) = C_REL_1(t - dt) + (- CR_OUT_1 - CR_INPUT_1) * dt
 INIT C_REL_1 = CR_DOSE
 OUTFLOWS:
 \Rightarrow CR_OUT_1 = IF TIME >= CUMU_TT[COMP_1] THEN C_REL_1*10000 ELSE 0
 \Rightarrow CR_INPUT_1 = if TIME > CUMU_TT[COMP_1] then 0 else CR_RATE

C_REL_2(t) = C_REL_2(t - dt) + (CR_OUT_1 - CR_OUT_2 - CR_INPUT_2) * dt
 INIT C_REL_2 = 0
 INFLOWS:
 \Rightarrow CR_OUT_1 = IF TIME >= CUMU_TT[COMP_1] THEN C_REL_1*10000 ELSE 0
 OUTFLOWS:
 \Rightarrow CR_OUT_2 = IF TIME >= CUMU_TT[COMP_2] THEN C_REL_2*10000 ELSE 0
 \Rightarrow CR_INPUT_2 = if TIME > CUMU_TT[COMP_2] then 0 else CR_RATE

C_REL_3(t) = C_REL_3(t - dt) + (CR_OUT_2 - CR_OUT_3 - CR_INPUT_3) * dt
 INIT C_REL_3 = 0
 INFLOWS:
 \Rightarrow CR_OUT_2 = IF TIME >= CUMU_TT[COMP_2] THEN C_REL_2*10000 ELSE 0
 OUTFLOWS:
 \Rightarrow CR_OUT_3 = IF TIME >= CUMU_TT[COMP_3] THEN C_REL_3*10000 ELSE 0
 \Rightarrow CR_INPUT_3 = if TIME > CUMU_TT[COMP_3] then 0 else CR_RATE

C_REL_4(t) = C_REL_4(t - dt) + (CR_OUT_3 - CR_OUT_4 - CR_INPUT_4) * dt
 INIT C_REL_4 = 0
 INFLOWS:
 \Rightarrow CR_OUT_3 = IF TIME >= CUMU_TT[COMP_3] THEN C_REL_3*10000 ELSE 0
 OUTFLOWS:
 \Rightarrow CR_OUT_4 = IF TIME >= CUMU_TT[COMP_4] THEN C_REL_4*10000 ELSE 0
 \Rightarrow CR_INPUT_4 = if TIME > CUMU_TT[COMP_4] then 0 else CR_RATE

C_REL_5(t) = C_REL_5(t - dt) + (CR_OUT_4 - CR_OUT_5 - CR_INPUT_5) * dt
 INIT C_REL_5 = 0
 INFLOWS:
 \Rightarrow CR_OUT_4 = IF TIME >= CUMU_TT[COMP_4] THEN C_REL_4*10000 ELSE 0
 OUTFLOWS:
 \Rightarrow CR_OUT_5 = IF TIME >= CUMU_TT[COMP_5] THEN C_REL_5*10000 ELSE 0
 \Rightarrow CR_INPUT_5 = if TIME > CUMU_TT[COMP_5] then 0 else CR_RATE

C_REL_6(t) = C_REL_6(t - dt) + (CR_OUT_5) * dt
 INIT C_REL_6 = 0
 INFLOWS:
 \Rightarrow CR_OUT_5 = IF TIME >= CUMU_TT[COMP_5] THEN C_REL_5*10000 ELSE 0

- $\text{MASS_1}(t) = \text{MASS_1}(t - dt) + (\text{CR_INPUT_1} - \text{MASS_OUT_1} - \text{DISS_PRECIP_1}) * dt$
INIT MASS_1 = DOSE
INFLows:
 - ⇒ CR_INPUT_1 = if TIME > CUMU_TT[COMP_1] then 0 else CR_RATE
- OUTFLOWS:
 - ⇒ MASS_OUT_1 = MASS_1 * TRANSFERS[COMP_1]
 - ⇒ DISS_PRECIP_1 = ADJ_DISS_PRECIP[COMP_1]
- $\text{MASS_2}(t) = \text{MASS_2}(t - dt) + (\text{MASS_OUT_1} + \text{CR_INPUT_2} - \text{MASS_OUT_2} - \text{DISS_PRECIP_2}) * dt$
INIT MASS_2 = 0
INFLows:
 - ⇒ MASS_OUT_1 = MASS_1 * TRANSFERS[COMP_1]
 - ⇒ CR_INPUT_2 = if TIME > CUMU_TT[COMP_2] then 0 else CR_RATE
- OUTFLOWS:
 - ⇒ MASS_OUT_2 = MASS_2 * TRANSFERS[COMP_2]
 - ⇒ DISS_PRECIP_2 = ADJ_DISS_PRECIP[COMP_2]
- $\text{MASS_3}(t) = \text{MASS_3}(t - dt) + (\text{CR_INPUT_3} + \text{MASS_OUT_2} - \text{MASS_OUT_3} - \text{DISS_PRECIP_3}) * dt$
INIT MASS_3 = 0
INFLows:
 - ⇒ CR_INPUT_3 = if TIME > CUMU_TT[COMP_3] then 0 else CR_RATE
 - ⇒ MASS_OUT_2 = MASS_2 * TRANSFERS[COMP_2]
- OUTFLOWS:
 - ⇒ MASS_OUT_3 = MASS_3 * TRANSFERS[COMP_3]
 - ⇒ DISS_PRECIP_3 = ADJ_DISS_PRECIP[COMP_3]
- $\text{MASS_4}(t) = \text{MASS_4}(t - dt) + (\text{CR_INPUT_4} + \text{MASS_OUT_3} - \text{MASS_OUT_4} - \text{DISS_PRECIP_4}) * dt$
INIT MASS_4 = 0
INFLows:
 - ⇒ CR_INPUT_4 = if TIME > CUMU_TT[COMP_4] then 0 else CR_RATE
 - ⇒ MASS_OUT_3 = MASS_3 * TRANSFERS[COMP_3]
- OUTFLOWS:
 - ⇒ MASS_OUT_4 = MASS_4 * TRANSFERS[COMP_4]
 - ⇒ DISS_PRECIP_4 = ADJ_DISS_PRECIP[COMP_4]
- $\text{MASS_5}(t) = \text{MASS_5}(t - dt) + (\text{CR_INPUT_5} + \text{MASS_OUT_4} - \text{MASS_OUT_5} - \text{DISS_PRECIP_5}) * dt$
INIT MASS_5 = 0
INFLows:
 - ⇒ CR_INPUT_5 = if TIME > CUMU_TT[COMP_5] then 0 else CR_RATE
 - ⇒ MASS_OUT_4 = MASS_4 * TRANSFERS[COMP_4]
- OUTFLOWS:
 - ⇒ MASS_OUT_5 = if time > 4 then MASS_5 * TRANSFERS[COMP_5] else 0
 - ⇒ DISS_PRECIP_5 = ADJ_DISS_PRECIP[COMP_5]
- $\text{MASS_6}(t) = \text{MASS_6}(t - dt) + (\text{MASS_OUT_5}) * dt$
INIT MASS_6 = 0
INFLows:

$\Rightarrow \text{MASS_OUT_5} = \text{if time}>4 \text{ then MASS_5*TRANSFERS[COMP_5] else 0}$
 $\text{SOL_1(t)} = \text{SOL_1}(t - dt) + (\text{DISS_PRECIP_1} - \text{SOL_OUT_1} - \text{FLUX_1}) * dt$
 INIT $\text{SOL_1} = 0$
 INFLOWS:
 $\Rightarrow \text{DISS_PRECIP_1} = \text{ADJ_DISS_PRECIP[COMP_1]}$
 OUTFLOWS:
 $\Rightarrow \text{SOL_OUT_1} = \text{SOL_1} * \text{TRANSFERS[COMP_1]}$
 $\Rightarrow \text{FLUX_1} =$
 $\text{CONCENTRATIONS[COMP_1]} * \text{ADJ_PERM[COMP_1]} * \text{SURFACE_AREA[COMP_1]}$

 $\text{SOL_2(t)} = \text{SOL_2}(t - dt) + (\text{SOL_OUT_1} + \text{DISS_PRECIP_2} - \text{SOL_OUT_2} - \text{FLUX_2}) * dt$
 INIT $\text{SOL_2} = 0$

 INFLOWS:
 $\Rightarrow \text{SOL_OUT_1} = \text{SOL_1} * \text{TRANSFERS[COMP_1]}$
 $\Rightarrow \text{DISS_PRECIP_2} = \text{ADJ_DISS_PRECIP[COMP_2]}$
 OUTFLOWS:
 $\Rightarrow \text{SOL_OUT_2} = \text{SOL_2} * \text{TRANSFERS[COMP_2]}$
 $\Rightarrow \text{FLUX_2} =$
 $\text{CONCENTRATIONS[COMP_2]} * \text{ADJ_PERM[COMP_2]} * \text{SURFACE_AREA[COMP_2]}$

 $\text{SOL_3(t)} = \text{SOL_3}(t - dt) + (\text{DISS_PRECIP_3} + \text{SOL_OUT_2} - \text{SOL_OUT_3} - \text{FLUX_3}) * dt$
 INIT $\text{SOL_3} = 0$

 INFLOWS:
 $\Rightarrow \text{DISS_PRECIP_3} = \text{ADJ_DISS_PRECIP[COMP_3]}$
 $\Rightarrow \text{SOL_OUT_2} = \text{SOL_2} * \text{TRANSFERS[COMP_2]}$
 OUTFLOWS:
 $\Rightarrow \text{SOL_OUT_3} = \text{SOL_3} * \text{TRANSFERS[COMP_3]}$
 $\Rightarrow \text{FLUX_3} =$
 $\text{CONCENTRATIONS[COMP_3]} * \text{ADJ_PERM[COMP_3]} * \text{SURFACE_AREA[COMP_3]}$

 $\text{SOL_4(t)} = \text{SOL_4}(t - dt) + (\text{DISS_PRECIP_4} + \text{SOL_OUT_3} - \text{SOL_OUT_4} - \text{FLUX_4}) * dt$
 INIT $\text{SOL_4} = 0$

 INFLOWS:
 $\Rightarrow \text{DISS_PRECIP_4} = \text{ADJ_DISS_PRECIP[COMP_4]}$
 $\Rightarrow \text{SOL_OUT_3} = \text{SOL_3} * \text{TRANSFERS[COMP_3]}$
 OUTFLOWS:
 $\Rightarrow \text{SOL_OUT_4} = \text{SOL_4} * \text{TRANSFERS[COMP_4]}$
 $\Rightarrow \text{FLUX_4} =$
 $\text{CONCENTRATIONS[COMP_4]} * \text{ADJ_PERM[COMP_4]} * \text{SURFACE_AREA[COMP_4]}$

 $\text{SOL_5(t)} = \text{SOL_5}(t - dt) + (\text{DISS_PRECIP_5} + \text{SOL_OUT_4} - \text{SOL_OUT_5} - \text{FLUX_5}) * dt$
 INIT $\text{SOL_5} = 0$

 INFLOWS:

$\Rightarrow \text{DISS_PRECIP_5} = \text{ADJ_DISS_PRECIP}[\text{COMP_5}]$
 $\Rightarrow \text{SOL_OUT_4} = \text{SOL_4} * \text{TRANSFERS}[\text{COMP_4}]$
OUTFLOWS:
 $\Rightarrow \text{SOL_OUT_5} = \text{if time} > 4 \text{ then } \text{SOL_5} * \text{TRANSFERS}[\text{COMP_5}] \text{ else } 0$
 $\Rightarrow \text{FLUX_5} = \text{if time} < 32 \text{ then } \text{CONCENTRATIONS}[\text{COMP_5}] * \text{ADJ_PERM}[\text{COMP_5}] * \text{SURFACE_AREA}[\text{COMP_5}] * (32 - \text{time}) / 48 * (\text{VOL_5} / 17.2) \text{ else } 0$
 $\text{SOL_6(t)} = \text{SOL_6(t - dt)} + (\text{SOL_OUT_5}) * dt$
 INIT $\text{SOL_6} = 0$
INFLOWS:
 $\Rightarrow \text{SOL_OUT_5} = \text{if time} > 4 \text{ then } \text{SOL_5} * \text{TRANSFERS}[\text{COMP_5}] \text{ else } 0$
 $\text{VOL_1(t)} = \text{VOL_1(t - dt)} + (-\text{REABS_1} - \text{VOL_OUT_1}) * dt$
 INIT $\text{VOL_1} = \text{INIT_VOLUME}$
OUTFLOWS:
 $\Rightarrow \text{REABS_1} = \text{VOL_1} * \text{VOL_PARM}[\text{COMP_1}]$
 $\Rightarrow \text{VOL_OUT_1} = \text{VOL_1} * \text{TRANSFERS}[\text{COMP_1}]$
 $\text{VOL_2(t)} = \text{VOL_2(t - dt)} + (\text{VOL_OUT_1} - \text{VOL_OUT_2} - \text{REABS_2}) * dt$
 INIT $\text{VOL_2} = 0$
INFLOWS:
 $\Rightarrow \text{VOL_OUT_1} = \text{VOL_1} * \text{TRANSFERS}[\text{COMP_1}]$
OUTFLOWS:
 $\Rightarrow \text{VOL_OUT_2} = \text{VOL_2} * \text{TRANSFERS}[\text{COMP_2}]$
 $\Rightarrow \text{REABS_2} = \text{VOL_2} * \text{VOL_PARM}[\text{COMP_2}]$
 $\text{VOL_3(t)} = \text{VOL_3(t - dt)} + (\text{VOL_OUT_2} - \text{VOL_OUT_3} - \text{REABS_3}) * dt$
 INIT $\text{VOL_3} = 0$
INFLOWS:
 $\Rightarrow \text{VOL_OUT_2} = \text{VOL_2} * \text{TRANSFERS}[\text{COMP_2}]$
OUTFLOWS:
 $\Rightarrow \text{VOL_OUT_3} = \text{VOL_3} * \text{TRANSFERS}[\text{COMP_3}]$
 $\Rightarrow \text{REABS_3} = \text{VOL_3} * \text{VOL_PARM}[\text{COMP_3}]$
 $\text{VOL_4(t)} = \text{VOL_4(t - dt)} + (\text{VOL_OUT_3} - \text{VOL_OUT_4} - \text{REABS_4}) * dt$
 INIT $\text{VOL_4} = 0$
INFLOWS:
 $\Rightarrow \text{VOL_OUT_3} = \text{VOL_3} * \text{TRANSFERS}[\text{COMP_3}]$
OUTFLOWS:
 $\Rightarrow \text{VOL_OUT_4} = \text{VOL_4} * \text{TRANSFERS}[\text{COMP_4}]$
 $\Rightarrow \text{REABS_4} = \text{VOL_4} * \text{VOL_PARM}[\text{COMP_4}]$
 $\text{VOL_5(t)} = \text{VOL_5(t - dt)} + (\text{VOL_OUT_4} - \text{VOL_OUT_5} - \text{REABS_5}) * dt$
 INIT $\text{VOL_5} = 0$
INFLOWS:
 $\Rightarrow \text{VOL_OUT_4} = \text{VOL_4} * \text{TRANSFERS}[\text{COMP_4}]$
OUTFLOWS:
 $\Rightarrow \text{VOL_OUT_5} = \text{VOL_5} * \text{TRANSFERS}[\text{COMP_5}]$
 $\Rightarrow \text{REABS_5} = \text{VOL_5} * \text{VOL_PARM}[\text{COMP_5}]$
 $\text{VOL_6(t)} = \text{VOL_6(t - dt)} + (\text{VOL_OUT_5}) * dt$
 INIT $\text{VOL_6} = 0$

INFLOWS:

$$\Rightarrow \text{VOL_OUT_5} = \text{VOL_5} * \text{TRANSFERS[COMP_5]}$$

VOL_ABS_1(t) = VOL_ABS_1(t - dt) + (REABS_1) * dt
INIT VOL_ABS_1 = 0

INFLOWS:

$$\Rightarrow \text{REABS_1} = \text{VOL_1} * \text{VOL_PARM[COMP_1]}$$

VOL_ABS_2(t) = VOL_ABS_2(t - dt) + (REABS_2) * dt
INIT VOL_ABS_2 = 0

INFLOWS:

$$\Rightarrow \text{REABS_2} = \text{VOL_2} * \text{VOL_PARM[COMP_2]}$$

VOL_ABS_3(t) = VOL_ABS_3(t - dt) + (REABS_3) * dt
INIT VOL_ABS_3 = 0

INFLOWS:

$$\Rightarrow \text{REABS_3} = \text{VOL_3} * \text{VOL_PARM[COMP_3]}$$

VOL_ABS_4(t) = VOL_ABS_4(t - dt) + (REABS_4) * dt
INIT VOL_ABS_4 = 0

INFLOWS:

$$\Rightarrow \text{REABS_4} = \text{VOL_4} * \text{VOL_PARM[COMP_4]}$$

VOL_ABS_5(t) = VOL_ABS_5(t - dt) + (REABS_5) * dt
INIT VOL_ABS_5 = 0

INFLOWS:

$$\Rightarrow \text{REABS_5} = \text{VOL_5} * \text{VOL_PARM[COMP_5]}$$

MULTI DOSE CALCULATION

OUTPUT CALCULATIONS

CR_Release(t) = CR_Release(t - dt) + (CR_cumrate) * dt
INIT CR_Release = 0

INFLOWS:

$$\Rightarrow \text{CR_cumrate} = \text{CR_INPUT_1} + \text{CR_INPUT_2} + \text{CR_INPUT_3} + \text{CR_INPUT_4} + \text{CR_INPUT_5}$$

CUM_DISS(t) = CUM_DISS(t - dt) + (CUMM_DISS_RATE) * dt
INIT CUM_DISS = 0

INFLOWS:

$$\Rightarrow \text{CUMM_DISS_RATE} = \text{DISS_PRECIP_1} + \text{DISS_PRECIP_2} + \text{DISS_PRECIP_3} + \text{DISS_PRECIP_4} + \text{DISS_PRECIP_5}$$

ABSORBED_TOTAL = ABSORPTION_2 + ABSORPTION_3 + ABSORPTION_4 + ABSORPTION_5

FDp% = ABSORBED_TOTAL/DOSE * 100

FLUX_TOTAL = FLUX_2 + FLUX_3 + FLUX_4 + FLUX_5

PARMs

DOSE = 1000

INIT_VOLUME = 100

PARACELLULAR = 1

pH[COMP_1] = 1.5

pH[COMP_2] = 5

pH[COMP_3] = 6.5

pH[COMP_4] = 7
 pH[COMP_5] = 6.5
 SURFACE_AREA[COMP_1] = if PARACELLULAR =0 then 50*SA_ADJ[COMP_1] else
 50*SA_ADJ[COMP_1]
 SURFACE_AREA[COMP_2] = if PARACELLULAR=0 then 150*SA_ADJ[COMP_2] else
 7.5*SA_ADJ[COMP_2]
 SURFACE_AREA[COMP_3] = if PARACELLULAR=0 then 1000*SA_ADJ[COMP_3] else
 50*SA_ADJ[COMP_3]
 SURFACE_AREA[COMP_4] = if PARACELLULAR=0 then 1000*SA_ADJ[COMP_4] else
 50*SA_ADJ[COMP_4]
 SURFACE_AREA[COMP_5] = if PARACELLULAR=0 then 850*SA_ADJ[COMP_5] else
 42.5*SA_ADJ[COMP_5]
 TIME_IN_HOURS = TIME
 VOL_PARM[COMP_1] = 0*VOL_ADJ[COMP_1]
 VOL_PARM[COMP_2] = 0*VOL_ADJ[COMP_2]
 VOL_PARM[COMP_3] = 1.75*VOL_ADJ[COMP_3]
 VOL_PARM[COMP_4] = 1.75*VOL_ADJ[COMP_4]
 VOL_PARM[COMP_5] = 0.10*VOL_ADJ[COMP_5]

PERMEABILITY CALCULATION

- ACT_PE[COMPS] = [0 ,
0 ,
0 ,
0]
- ADJ_PERM[COMP_1] =

$$(2/(1+EFFLUX_ADJ[COMP_1])) * REGIONAL[COMP_1] * FLUX_ADJ[COMP_1] * 3600 + (CARRIER_DJ[COMP_1] * ACT_PE[COMP_1] * 3600 / (1 + (CONCENTRATIONS[COMP_1] / (Km[COMP_1])))) * 0$$
- ADJ_PERM[COMP_2] =

$$(2/(1+EFFLUX_ADJ[COMP_2])) * REGIONAL[COMP_2] * FLUX_ADJ[COMP_2] * 3600 + (CARRIER_DJ[COMP_2] * ACT_PE[COMP_2] * 3600 / (1 + (CONCENTRATIONS[COMP_2] / (Km[COMP_2]))))$$
- ADJ_PERM[COMP_3] =

$$(2/(1+EFFLUX_ADJ[COMP_3])) * REGIONAL[COMP_3] * FLUX_ADJ[COMP_3] * 3600 + (CARRIER_DJ[COMP_3] * ACT_PE[COMP_3] * 3600 / (1 + (CONCENTRATIONS[COMP_3] / (Km[COMP_3]))))$$
- ADJ_PERM[COMP_4] =

$$(2/(1+EFFLUX_ADJ[COMP_4])) * REGIONAL[COMP_4] * FLUX_ADJ[COMP_4] * 3600 + (CARRIER_DJ[COMP_4] * ACT_PE[COMP_4] * 3600 / (1 + (CONCENTRATIONS[COMP_4] / (Km[COMP_4]))))$$
- ADJ_PERM[COMP_5] =

$$(2/(1+EFFLUX_ADJ[COMP_5])) * REGIONAL[COMP_5] * FLUX_ADJ[COMP_5] * 3600 + (CARRIER_DJ[COMP_5] * ACT_PE[COMP_5] * 3600 / (1 + (CONCENTRATIONS[COMP_5] / (Km[COMP_5]))))$$

○ Km[COMP5] = [1 ,
 1 ,
 1 ,
 1 ,
 1]
 ○ PASS_PE[COMP5] = [0 ,
 1.10E-06 ,
 2.17E-06 ,
 4.06E-06 ,
 3.80E-06]
 ○ RC[COMP_1] = PASS_PE[COMP_1]*0
 ○ RC[COMP_2] = IF PASS_PE[COMP_2]>0 THEN 1 ELSE 0
 ○ RC[COMP_3] = IF PASS_PE[COMP_3]>0 THEN 2 ELSE 0
 ○ RC[COMP_4] = IF PASS_PE[COMP_4]>0 THEN 4 ELSE 0
 ○ RC[COMP_5] = PASS_PE[COMP_5]*0
 ○ RCSUM = RC[COMP_2]+RC[COMP_3]+RC[COMP_4]
 ○ REGIONAL[COMP_1] = PASS_PE[COMP_1]+RCSUM*0
 ○ REGIONAL[COMP_2] = if RCSUM=2 then
 (EXP(-9.011926 + 2.594378 *LOGN(1/PASS_PE[COMP_2]) -0.065515
 *LOGN(1/PASS_PE[COMP_2])^2))^(-1) else
 if RCSUM=4 then
 (EXP(-0.369414*LOGN(1/PASS_PE[COMP_4])+0.23756*LOGN(1/PASS_PE[COMP_4])^2-0.009
 9719*LOGN(1/PASS_PE[COMP_4])^3))^(-1) else
 if RCSUM=6 then
 0.5*(EXP(-9.011926 + 2.594378 *LOGN(1/PASS_PE[COMP_3]) -0.065515
 *LOGN(1/PASS_PE[COMP_3])^2))^(-1)
 +0.5*(EXP(-21.009845 + 4.544238 *LOGN(1/PASS_PE[COMP_4]) -0.140815
 *LOGN(1/PASS_PE[COMP_4])^2))^(-1) else
 PASS_PE[COMP_2]
 ○ REGIONAL[COMP_3] = if RCSUM=1 then
 (EXP(-3.238469 + 1.509131 *LOGN(1/PASS_PE[COMP_2]) -0.022109
 *LOGN(1/PASS_PE[COMP_2])^2))^(-1) else
 if RCSUM=4 then
 (EXP(-0.093739*LOGN(1/PASS_PE[COMP_4])+0.182344*LOGN(1/PASS_PE[COMP_4])^2-0.00
 23631*LOGN(1/PASS_PE[COMP_4])^3))^(-1) else
 if RCSUM=5 then
 0.5*(EXP(-3.238469 + 1.509131 *LOGN(1/PASS_PE[COMP_2]) -0.022109
 *LOGN(1/PASS_PE[COMP_2])^2))^(-1)
 +0.5*(EXP(-15.415683 + 3.543563 *LOGN(1/PASS_PE[COMP_4]) -0.100318
 *LOGN(1/PASS_PE[COMP_4])^2))^(-1) else
 PASS_PE[COMP_3]

- REGIONAL[COMP_4] = if RCSUM=1 then
 $(\text{EXP}(14.455255 - 1.264630 * \text{LOGN}(1/\text{PASS_PE[COMP_2]})) + 0.082015 * \text{LOGN}(1/\text{PASS_PE[COMP_2]}^2))^{\wedge}(-1)$ else
 if RCSUM=2 then
 $(\text{EXP}(11.480333 - 0.791109 * \text{LOGN}(1/\text{PASS_PE[COMP_3]})) + 0.066063 * \text{LOGN}(1/\text{PASS_PE[COMP_3]}^2))^{\wedge}(-1)$ else
 if RCSUM=3 then
 $0.5 * (\text{EXP}(14.455255 - 1.264630 * \text{LOGN}(1/\text{PASS_PE[COMP_2]})) + 0.082015 * \text{LOGN}(1/\text{PASS_PE[COMP_2]}^2))^{\wedge}(-1)$
 $+ 0.5 * (\text{EXP}(11.480333 - 0.791109 * \text{LOGN}(1/\text{PASS_PE[COMP_3]})) + 0.066063 * \text{LOGN}(1/\text{PASS_PE[COMP_3]}^2))^{\wedge}(-1)$ else
 PASS_PE[COMP_4]
 - REGIONAL[COMP_5] = $\text{PASS_PE[COMP_5]} + \text{RCSUM} * 0$
- SOLUBILITY CALCULATION
 - ADJ_SOLUB[COMP_1] = if $\text{USER_pH[COMP_1]} >= \text{pH[COMP_1]}$ then $\text{USER_SOLUB[COMP_1]}$
 else
 $((\text{USER_SOLUB[COMP_2]} - \text{USER_SOLUB[COMP_1]}) / (\text{USER_pH[COMP_2]} - \text{USER_pH[COMP_1]})) * (\text{pH[COMP_1]} - \text{USER_pH[COMP_1]} + \text{USER_SOLUB[COMP_1]})$
 - ADJ_SOLUB[COMP_2] = if $\text{USER_pH[COMP_2]} = \text{pH[COMP_2]}$ then $\text{USER_SOLUB[COMP_2]}$
 else if $\text{USER_pH[COMP_2]} < \text{pH[COMP_2]}$ then
 $((\text{USER_SOLUB[COMP_3]} - \text{USER_SOLUB[COMP_2]}) / (\text{USER_pH[COMP_3]} - \text{USER_pH[COMP_2]})) * (\text{pH[COMP_2]} - \text{USER_pH[COMP_2]} + \text{USER_SOLUB[COMP_2]})$
 $else$
 $((\text{USER_SOLUB[COMP_2]} - \text{USER_SOLUB[COMP_1]}) / (\text{USER_pH[COMP_2]} - \text{USER_pH[COMP_1]})) * (\text{pH[COMP_2]} - \text{USER_pH[COMP_1]} + \text{USER_SOLUB[COMP_1]})$
 - ADJ_SOLUB[COMP_3] = if $\text{USER_pH[COMP_3]} = \text{pH[COMP_3]}$ then $\text{USER_SOLUB[COMP_3]}$
 else if $\text{USER_pH[COMP_3]} < \text{pH[COMP_3]}$ then
 $((\text{USER_SOLUB[COMP_4]} - \text{USER_SOLUB[COMP_3]}) / (\text{USER_pH[COMP_4]} - \text{USER_pH[COMP_3]})) * (\text{pH[COMP_3]} - \text{USER_pH[COMP_3]} + \text{USER_SOLUB[COMP_3]})$
 $else$
 $((\text{USER_SOLUB[COMP_3]} - \text{USER_SOLUB[COMP_2]}) / (\text{USER_pH[COMP_3]} - \text{USER_pH[COMP_2]})) * (\text{pH[COMP_3]} - \text{USER_pH[COMP_2]} + \text{USER_SOLUB[COMP_2]})$
 - ADJ_SOLUB[COMP_4] = if $\text{USER_pH[COMP_4]} = \text{pH[COMP_4]}$ then $\text{USER_SOLUB[COMP_4]}$
 else if $\text{USER_pH[COMP_4]} < \text{pH[COMP_4]}$ then
 $((\text{USER_SOLUB[COMP_5]} - \text{USER_SOLUB[COMP_4]}) / (\text{USER_pH[COMP_5]} - \text{USER_pH[COMP_4]})) * (\text{pH[COMP_4]} - \text{USER_pH[COMP_4]} + \text{USER_SOLUB[COMP_4]})$
 $else$
 $((\text{USER_SOLUB[COMP_4]} - \text{USER_SOLUB[COMP_3]}) / (\text{USER_pH[COMP_4]} - \text{USER_pH[COMP_3]})) * (\text{pH[COMP_4]} - \text{USER_pH[COMP_3]} + \text{USER_SOLUB[COMP_3]})$
 - ADJ_SOLUB[COMP_5] = if $\text{USER_pH[COMP_3]} = \text{pH[COMP_3]}$ then $\text{USER_SOLUB[COMP_3]}$
 else if $\text{USER_pH[COMP_3]} < \text{pH[COMP_3]}$ then
 $((\text{USER_SOLUB[COMP_4]} - \text{USER_SOLUB[COMP_3]}) / (\text{USER_pH[COMP_4]} - \text{USER_pH[COMP_3]})) * (\text{pH[COMP_3]} - \text{USER_pH[COMP_3]} + \text{USER_SOLUB[COMP_3]})$
 $else$
 $((\text{USER_SOLUB[COMP_3]} - \text{USER_SOLUB[COMP_2]}) / (\text{USER_pH[COMP_3]} - \text{USER_pH[COMP_2]})) * (\text{pH[COMP_3]} - \text{USER_pH[COMP_2]} + \text{USER_SOLUB[COMP_2]})$
 - $\text{USER_pH[COMPS]} = [1.5, 5, 6.5, 7, 7.5]$

```
USER_SOLUB[COMPS] = [31 ,  
3.65 ,  
3.65 ,  
3.65 ,  
3.65 ]
```

TRANSIT TIME

```
ADJ_TRANSIT_TIME[COMP_1] = .5*TRANSIT_ADJ[COMP_1]*USER_TT_INPUT  
ADJ_TRANSIT_TIME[COMP_2] = .25*TRANSIT_ADJ[COMP_2]*USER_TT_INPUT  
ADJ_TRANSIT_TIME[COMP_3] = 1.5*TRANSIT_ADJ[COMP_3]*USER_TT_INPUT  
ADJ_TRANSIT_TIME[COMP_4] = 1.5*TRANSIT_ADJ[COMP_4]*USER_TT_INPUT  
ADJ_TRANSIT_TIME[COMP_5] = 24*TRANSIT_ADJ[COMP_5]*USER_TT_INPUT  
CUMU_TT[COMP_1] = ADJ_TRANSIT_TIME[COMP_1]  
CUMU_TT[COMP_2] = ADJ_TRANSIT_TIME[COMP_1]+ADJ_TRANSIT_TIME[COMP_2]  
CUMU_TT[COMP_3] =  
ADJ_TRANSIT_TIME[COMP_1]+ADJ_TRANSIT_TIME[COMP_2]+ADJ_TRANSIT_TIME[COMP_3]  
CUMU_TT[COMP_4] =  
ADJ_TRANSIT_TIME[COMP_1]+ADJ_TRANSIT_TIME[COMP_2]+ADJ_TRANSIT_TIME[COMP_3]+ADJ_TRANSIT_TIME[COMP_4]  
CUMU_TT[COMP_5] =  
ADJ_TRANSIT_TIME[COMP_1]+ADJ_TRANSIT_TIME[COMP_2]+ADJ_TRANSIT_TIME[COMP_3]+ADJ_TRANSIT_TIME[COMP_4]+ADJ_TRANSIT_TIME[COMP_5]  
TRANSFERS[COMP_1] = LOGN(10)/ADJ_TRANSIT_TIME[COMP_1]  
TRANSFERS[COMP_2] = LOGN(10)/ADJ_TRANSIT_TIME[COMP_2]  
TRANSFERS[COMP_3] = LOGN(10)/ADJ_TRANSIT_TIME[COMP_3]  
TRANSFERS[COMP_4] = LOGN(10)/ADJ_TRANSIT_TIME[COMP_4]  
TRANSFERS[COMP_5] = LOGN(10)/ADJ_TRANSIT_TIME[COMP_5]  
USER_TT_INPUT = 1
```

United States Patent & Trademark Office
Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

Page(s) _____ of _____ were not present
for scanning. (Document title)

Page(s) _____ of _____ were not present
for scanning. (Document title)

Scanned copy is best available.

*Pages number 97 to Pages 121
as part of specification
are Appendicies.*