

Rob J Hyndman

Forecasting using

3. Autocorrelation and seasonality

OTexts.com/fpp/2/ OTexts.com/fpp/6/1

Forecasting using R

Outline

1 Time series graphics

2 Seasonal or cyclic?

3 Autocorrelation

Time plots

R command: plot or plot.ts

Seasonal plots

R command: seasonplot

Seasonal subseries plots

R command: monthplot

Lag plots

R command: lag.plot

ACF plots

R command: Acf

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: seasonplot

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: seasonplot

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: seasonplot

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: seasonplot

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: monthplot

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: monthplot

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: monthplot

Quarterly Australian Beer Production

```
beer <- window(ausbeer,start=1992)
plot(beer)
seasonplot(beer,year.labels=TRUE)
monthplot(beer)</pre>
```


Outline

1 Time series graphics

2 Seasonal or cyclic?

3 Autocorrelation

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- **Seasonal** pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - **Cyclic** pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

1 Time series graphics

2 Seasonal or cyclic?

3 Autocorrelation

Autocorrelation

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series *y*.

We measure the relationship between: y_t and y_{t-1} y_t and y_{t-2} y_t and y_{t-3}

Autocorrelation

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series *y*.

We measure the relationship between: y_t and y_{t-1} y_t and y_{t-2} y_t and y_{t-3}

Autocorrelation

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series *y*.

We measure the relationship between: y_t and y_{t-1} y_t and y_{t-2} y_t and y_{t-3} etc.

Example: Beer production

> lag.plot(beer,lags=9)

Example: Beer production

> lag.plot(beer,lags=9,do.lines=FALSE)

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and
$$r_k = c_k/c_0$$

- r_1 indicates how successive values of y relate to each other
- r₂ indicates how y values two periods apart relate to each other
- \mathbf{x}_k is almost the same as the sample correlation between v_k and v_{k-k} .

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and
$$r_k = c_k/c_0$$

- $lacktriangleright r_1$ indicates how successive values of y relate to each other
- r₂ indicates how y values two periods apart relate to each other
- r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Forecasting using R Autocorrelation

27

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and
$$r_k = c_k/c_0$$

- $ightharpoonup r_1$ indicates how successive values of y relate to each other
- Arr r₂ indicates how y values two periods apart relate to each other
- r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Forecasting using R Autocorrelation

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = rac{1}{T} \sum_{t=k+1}^{T} (y_t - ar{y})(y_{t-k} - ar{y})$$

and
$$r_k = c_k/c_0$$

- $ightharpoonup r_1$ indicates how successive values of y relate to each other
- r₂ indicates how y values two periods apart relate to each other
- r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Forecasting using R Autocorrelation

Results for first 9 lags for beer data:

Results for first 9 lags for beer data:

- r₄ higher than for the other lags. This is due to **the seasonal pattern in the data:** the peaks tend to be **4 quarters** apart and the troughs tend to be **2 quarters** apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the *autocorrelation* or ACF.
- The plot is known as a correlogram

- r₄ higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the *autocorrelation* or ACF.
- The plot is known as a correlogram

- r₄ higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the *autocorrelation* or ACF.
- The plot is known as a correlogram

- r₄ higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the *autocorrelation* or ACF.
- The plot is known as a correlogram

ACF

ACF

Forecasting using R Autocorrelation

Recognizing seasonality in a time series

If there is seasonality, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

- For seasonal monthly data, a large ACF value will be seen at lag 12 and possibly also at lags 24, 36, . . .
- For seasonal quarterly data, a large ACF value will be seen at lag 4 and possibly also at lags 8, 12,...

Recognizing seasonality in a time series

If there is seasonality, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

- For seasonal monthly data, a large ACF value will be seen at lag 12 and possibly also at lags 24, 36, . . .
- For seasonal quarterly data, a large ACF value will be seen at lag 4 and possibly also at lags 8, 12, . . .

Time plot shows clear trend and seasonality. The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

Time plot shows clear trend and seasonality. The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

Which is which?

Time series graphics

■ Time plots

R command: plot.ts

Seasonal plots

R command: seasonplot

Seasonal subseries plots

R command: monthplot

Lag plots

R command: lag.plot

ACF plots

R command: Acf