Avaliação dos modelos

1 - Bibliotecas

```
In [1]:

*matplotlib notebook
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import neighbors

import graphviz
from sklearn.tree import export_graphviz
```

2 - Carregando a base de dados sobre frutas

```
In [2]: fruits = pd.read_table('./Data/fruit_data_with_colors.txt')

X_fruits_2d = fruits[['height', 'width']]
y_fruits_2d = fruits['fruit_label']

fruits.head()
```

Out[2]:		fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
	0	1	apple	granny_smith	192	8.4	7.3	0.55
	1	1	apple	granny_smith	180	8.0	6.8	0.59
	2	1	apple	granny_smith	176	7.4	7.2	0.60
	3	2	mandarin	mandarin	86	6.2	4.7	0.80
	4	2	mandarin	mandarin	84	6.0	4.6	0.79

```
In [4]: fruits.shape
Out[4]: (59, 7)
```

Validação Cruzada

3 - Validação Cruzada

```
In [5]:
    from sklearn.model_selection import cross_val_score

    clf = KNeighborsClassifier(n_neighbors = 5)
    X = X_fruits_2d.values
    y = y_fruits_2d.values
    cv_scores = cross_val_score(clf, X, y, cv=5)

    print('Validação cruzada:', cv_scores)
    print('Média: {:.3f}'.format(np.mean(cv_scores)))
```

Validação cruzada: [0.75 0.75 0.83333333 0.83333333 0.81818182] Média: 0.797

4 - Curva de Validação

```
In [6]:
        from sklearn.svm import SVC
         from sklearn.model selection import validation curve
         param range = np.logspace(-3, 3, 4)
         train scores, test scores = validation curve(SVC(C=1), X, y,
                                                     param name='gamma',
                                                     param range=param range, cv=5)
         print(train scores)
         print(test scores)
        [[0.46808511 0.40425532 0.40425532 0.34042553 0.333333333]
         [0.82978723 0.78723404 0.76595745 0.74468085 0.75
         [0.87234043 0.89361702 0.89361702 0.89361702 0.85416667]
         [0.9787234 1.
                          0.9787234 1.
                                                     0.9791666711
        [[0.58333333 0.33333333 0.33333333 0.25
                                                    0.272727271
         [0.83333333 0.66666667 0.66666667 0.75
                                                    0.727272731
         [0.41666667 0.66666667 0.83333333 0.83333333 0.81818182]
         [0.33333333 0.33333333 0.25 0.33333333 0.36363636]
       5 - Plot da Validação
In [7]:
         # Exemplo do scikit-learn: validation plot
         # http://scikit-learn.org/stable/auto examples/model selection/plot validation curve.html
         plt.figure()
         train scores mean = np.mean(train scores, axis=1)
         train scores std = np.std(train scores, axis=1)
         test scores mean = np.mean(test scores, axis=1)
         test scores std = np.std(test scores, axis=1)
         plt.title('Validation Curve with SVM')
         plt.xlabel('$\gamma$ (gamma)')
         plt.ylabel('Score')
         plt.ylim(0.0, 1.1)
         lw = 2
         plt.semilogx(param range, train scores mean, label='Escore de Treinamento',
                     color='darkorange', lw=lw)
         plt.fill between (param range, train scores mean - train scores std,
                         train scores mean + train scores std, alpha=0.2,
                         color='darkorange', lw=lw)
         plt.semilogx(param range, test scores mean, label='Escore da validação cruzada',
```

color='navy', lw=lw)

plt.legend(loc='best')

plt.show()

color='navy', lw=lw)

plt.fill_between(param_range, test_scores_mean - test_scores_std,

test scores mean + test scores std, alpha=0.2,

Validation Curve with SVM

Árvores de Decisão

6 - Importar dataset Íris e executar árvore de decisão

```
In [8]:
    from sklearn.datasets import load_iris
    from sklearn.tree import DecisionTreeClassifier

    iris = load_iris()

    X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state = clf = DecisionTreeClassifier().fit(X_train, y_train)

    print('Acurácia da árvore de decisão no conjunto de treinamento: {:.2f}'.format(clf.score print('Acurácia da árvore de decisão no conjunto de teste: {:.2f}'.format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(X_test)).format(clf.score(
```

Acurácia da árvore de decisão no conjunto de treinamento: 1.00 Acurácia da árvore de decisão no conjunto de teste: 0.95

7 - Profundidade da árvore (evitar overfitting)

```
In [9]: clf2 = DecisionTreeClassifier(min_samples_leaf = 10).fit(X_train, y_train)

print('Acurácia da árvore de decisão no conjunto de treinamento: {:.2f}'.format(clf2.score print('Acurácia da árvore de decisão no conjunto de teste: {:.2f}'.format(clf2.score(X_testate)).

Acurácia da árvore de decisão no conjunto de treinamento: 0.96

Acurácia da árvore de decisão no conjunto de teste: 0.95
```

In [31]:

conda install python-graphviz

8 - Visualizando árvores de decisão

```
In [15]:
           def plot decision tree(clf, feature_names, class_names):
                export graphviz(clf, out file="adspy temp.dot", feature names=feature names,
                                   class names=class names, filled = True, impurity = False)
                with open("adspy temp.dot") as f:
                     dot graph = f.read()
                return graphviz.Source(dot graph)
           plot decision tree(clf, iris.feature names, iris.target names)
Out[15]:
                                           petal length (cm) <= 2.45
                                                samples = 112
                                              value = [35, 38, 39]
                                                class = virginica
                                                              False
                                           True
                                                        petal width (cm) <= 1.65
                                    samples = 35
                                                              samples = 77
                                   value = [35, 0, 0]
                                                            value = [0, 38, 39]
                                    class = setosa
                                                            class = virginica
                                         petal length (cm) <= 4.95
                                                                       petal length (cm) <= 4.85
                                               samples = 40
                                                                             samples = 37
                                                                           value = [0, 1, 36]
                                             value = [0, 37, 3]
                                             class = versicolor
                                                                           class = virginica
                                          sepal width (cm) <= 2.75
                                                                        sepal width (cm) <= 3.1
                     samples = 36
                                                                                                     samples = 34
                                                samples = 4
                                                                             samples = 3
                    value = [0, 36, 0]
                                                                                                    value = [0, 0, 34]
                                              value = [0, 1, 3]
                                                                            value = [0, 1, 2]
                    class = versicolor
                                                                                                    class = virginica
                                              class = virginica
                                                                           class = virginica
                   sepal width (cm) <= 2.45
                                                  samples = 2
                                                                           samples = 2
                                                                                                 samples = 1
                        samples = 2
                                                value = [0, 0, 2]
                                                                          value = [0, 0, 2]
                                                                                               value = [0, 1, 0]
                       value = [0, 1, 1]
                                                class = virginica
                                                                                              class = versicolor
                                                                          class = virginica
                      class = versicolor
              samples = 1
                                   samples = 1
            value = [0, 0, 1]
                                  value = [0, 1, 0]
            class = virginica
                                 class = versicolor
```

9 - Pré-podagem

```
In [16]:
          plot decision tree(clf2, iris.feature names, iris.target names)
```

Out[16]:

10 - Importância da Característica

```
In [17]:
    def plot_feature_importances(clf, feature_names):
        c_features = len(feature_names)
        plt.barh(range(c_features), clf.feature_importances_)
        plt.xlabel("Importância")
        plt.ylabel("Característica")
        plt.yticks(np.arange(c_features), feature_names)

In [18]:
    plt.figure(figsize=(10,4), dpi=80)
    plot_feature_importances(clf2, iris.feature_names)
    plt.show()
    print('Importâncias: {}'.format(clf2.feature_importances_))
```


Importâncias: [0.00213291 0. 0.54485625 0.45301083]

Classificadores dummy e Base de dados pré-carregadas

11 - Carregando base de dados (digits)

```
In [19]:
          from sklearn.datasets import load digits
          dataset = load digits()
          X, y = dataset.data, dataset.target
          for class name, class count in zip(dataset.target names, np.bincount(dataset.target)):
              print(class name, class count)
         0 178
         1 182
         2 177
         3 183
         4 181
         5 182
         6 181
         7 179
         8 174
         9 180
```

12 - Transformando a base de dados para não-balanceada

13 - Verificando proporções da base de dados não-balanceada

14 - Treinando um classificador SVC

15 - Classificadores "bôbos" Dummy

```
In [23]: from sklearn.dummy import DummyClassifier
# DummyClassifier?
```

```
dummy majority = DummyClassifier(strategy = 'most frequent').fit(X train, y train)
 y dummy predictions = dummy majority.predict(X test)
 y dummy predictions
 Out [23]:
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
```

16 - Escore de teste do classificador dummy

```
In [24]:
          dummy majority.score(X test, y test)
         0.904444444444445
Out [24]:
```

17 - Carregar novo classificador SVC linear e verificar escore de teste

```
In [25]:
          svm = SVC(kernel='linear', C=1).fit(X train, y train)
          svm.score(X test, y test)
         0.977777777777777
```

Out [25]:

[43

011

Matrizes de Confusão (Confusion matrices)

True Negative (TN) | False Positive (FP)

False Negative (FN) | True Positive (TP)

18 - Matrizes de confusão binária

```
In [26]:
          from sklearn.metrics import confusion matrix
          dummy majority = DummyClassifier(strategy = 'most frequent').fit(X train, y train)
          y majority predicted = dummy majority.predict(X test)
          confusion = confusion matrix(y_test, y_majority_predicted)
          print('Classe mais frequente\n', confusion)
         Classe mais frequente
          [[407
                 0 ]
```

```
19 - Matriz de confusão - classificador Dummy
In [27]:
          dummy classprop = DummyClassifier(strategy='stratified').fit(X train, y train)
          y classprop predicted = dummy classprop.predict(X test)
          confusion = confusion matrix(y test, y classprop predicted)
          print('Estratificado\n', confusion)
         Estratificado
          [[370 37]
          [ 39 4]]
        20 - Matriz de confusão - SVC
In [28]:
          svm = SVC(kernel='linear', C=1).fit(X train, y train)
          svm predicted = svm.predict(X test)
          confusion = confusion matrix(y test, svm predicted)
          print('SVC (kernel linear, C=1)\n', confusion)
         SVC (kernel linear, C=1)
          [[402
                5]
          [ 5 38]]
        21 - Matriz de confusão - Regressão Logística
In [29]:
          from sklearn.linear model import LogisticRegression
          lr = LogisticRegression().fit(X train, y train)
          lr predicted = lr.predict(X test)
          confusion = confusion matrix(y test, lr predicted)
          print('Regressão Logística\n', confusion)
         Regressão Logística
          [[401
                61
          [ 8 35]]
         /Users/marinaramalhetedesouza/opt/anaconda3/envs/ml-impa/lib/python3.8/site-packages/sklea
         rn/linear model/ logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
```

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 n iter i = check optimize result(

22 - Matriz de confusão - Árvore de decisão

```
In [30]:
    from sklearn.tree import DecisionTreeClassifier

    dt = DecisionTreeClassifier(max_depth=3).fit(X_train, y_train)
        tree_predicted = dt.predict(X_test)
        confusion = confusion_matrix(y_test, tree_predicted)

    print('Arvore de decisão (max_depth = 2) \n', confusion)

form sklearn.tree import DecisionTreeClassifier

    dt = DecisionTreeClassifier (max_depth=3).fit(X_train, y_train)
    tree_predicted = dt.predict(X_test)
    confusion = confusion_matrix(y_test, tree_predicted)
```

```
Árvore de decisão (max_depth = 2)
[[404 3]
[13 30]]
```

Métricas de avaliação para classificação binária

Acurácia = TP + TN / (TP + TN + FP + FN)

Precisão = TP / (TP + FP) aka PPV (Positive predictive value)

Recall = TP / (TP + FN) aka TPR (True Positive Rate)

F1 = 2 Precisão Recall / (Precisão + Recall)

23 - Computando métricas

```
In [32]:
    from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
    print('Acurácia: {:.2f}'.format(accuracy_score(y_test, tree_predicted)))
    print('Precisão: {:.2f}'.format(precision_score(y_test, tree_predicted)))
    print('Recall: {:.2f}'.format(recall_score(y_test, tree_predicted)))
    print('F1: {:.2f}'.format(f1_score(y_test, tree_predicted)))

Acurácia: 0.96
    Precisão: 0.91
    Recall: 0.70
```

24 - Reporte combinado

F1: 0.79

```
In [33]: from sklearn.metrics import classification_report

print(classification_report(y_test, tree_predicted, target_names=['not 1', '1']))
```

precision	recarr	II-SCOLE	support
0.97	0.99	0.98	407
0.91	0.70	0.79	43
		0.96	450
0.94	0.85	0.89	450
0.96	0.96	0.96	450
	0.97 0.91	0.97 0.99 0.91 0.70 0.94 0.85	0.97 0.99 0.98 0.91 0.70 0.79 0.96 0.94 0.85 0.89

25 - Outros reportes combinados

```
Estratificado (dummy)
            precision recall f1-score support
     not 1
              0.90 0.91
                               0.91
                                          407
               0.10
                       0.09
                                0.10
                                           43
                                 0.83
                                          450
   accuracy
                0.50
                       0.50
                                0.50
                                          450
  macro avg
weighted avg
                0.83
                        0.83
                                 0.83
                                           450
```

SVM	precision	recall	f1-score	support					
not 1 1	0.99	0.99	0.99	407 43					
accuracy macro avg weighted avg	0.94 0.98	0.94	0.98 0.94 0.98	450 450 450					
Regressão Logística									
	precision	recall	f1-score	support					
not 1 1	0.98 0.85	0.99	0.98 0.83	407 43					
accuracy macro avg weighted avg	0.92 0.97	0.90 0.97	0.97 0.91 0.97	450 450 450					
Árvore de Decisão									
	precision	recall	f1-score	support					
not 1 1	0.97 0.91	0.99	0.98 0.79	407 43					
accuracy macro avg weighted avg	0.94 0.96	0.85	0.96 0.89 0.96	450 450 450					

Funções de Decisão

26 - Função de decisão

```
In [35]: X_train, X_test, y_train, y_test = train_test_split(X, y_binary_imbalanced, random_state=(
    y_scores_lr = lr.fit(X_train, y_train).decision_function(X_test)
    y_score_list = list(zip(y_test[0:20], y_scores_lr[0:20]))

    y_score_list

/Users/marinaramalhetedesouza/opt/anaconda3/envs/ml-impa/lib/python3.8/site-packages/sklea
    rn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
```

(0, -29.82878883428098), (0, -19.38292791420195), (0, -29.198327257201743), (0, -21.746174115798574), (0, -22.64239804996128), (0, -11.80601316319518), (1, 6.496016572624416), (0, -23.35456282787909), (0, -27.543436971220387), (0, -26.88821968799928), (0, -31.86269074250119), (0, -22.486131395524808), (0, -25.31799892081813),

```
(0, -13.384564231087923),

(0, -13.565608315834),

(0, -13.308404562543435),

(1, 12.180778621399947),

(0, -34.36249371177895),

(0, -13.231503124195685),

(0, -29.593934459364586)]
```

27 - Função Proba

```
In [36]:
          X train, X test, y train, y test = train test split(X, y binary imbalanced, random state=0
          y proba lr = lr.fit(X train, y train).predict proba(X test)
          y proba list = list(zip(y test[0:20], y proba lr[0:20,1]))
          y proba list
         /Users/marinaramalhetedesouza/opt/anaconda3/envs/ml-impa/lib/python3.8/site-packages/sklea
         rn/linear model/ logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
         [(0, 1.1105077627365785e-13),
Out[36]:
          (0, 3.8203342505101854e-09),
           (0, 2.0860638224426631e-13),
           (0, 3.5954775289931444e-10),
           (0, 1.4673424093995484e-10),
           (0, 7.459511542756899e-06),
           (1, 0.9984928349973813),
           (0, 7.198503772008908e-11),
           (0, 1.0915341073965711e-12),
           (0, 2.1018153589129763e-12),
           (0, 1.4528113762683703e-14),
           (0, 1.715525648508253e-10),
           (0, 1.0104917586429055e-11),
           (0, 1.5387105925755556e-06),
           (0, 1.2838982508367566e-06),
           (0, 1.6604760443198858e-06),
           (1, 0.9999948719431359),
           (0, 1.1927751884236894e-15),
           (0, 1.793207006513804e-06),
           (0, 1.404486491577931e-13)]
```

28 - Curvas de Precisão-Recall

```
In [46]:
    from sklearn.metrics import precision_recall_curve

    precision, recall, thresholds = precision_recall_curve(y_test, y_scores_lr)
    closest_zero = np.argmin(np.abs(thresholds))
    closest_zero_p = precision[closest_zero]

    closest_zero_r = recall[closest_zero]

plt.figure()
    plt.xlim([0.0, 1.01])
    plt.ylim([0.0, 1.01])
    plt.plot(precision, recall, label='Curva de Precisão-Recall')
    plt.plot(closest_zero_p, closest_zero_r, 'o', markersize = 12, fillstyle = 'none', c='r',
    plt.xlabel('Precisão', fontsize=16)
    plt.ylabel('Recall', fontsize=16)
    # plt.axes().set_aspect('equal')
    plt.show()
```


29 - Área abaixo da curva ROC (Característica de Operação do Receptor)

```
In [48]:
          from sklearn.metrics import roc curve, auc
          X train, X test, y train, y test = train test split(X, y binary imbalanced, random state=(
          y score lr = lr.fit(X train, y train).decision function(X test)
          fpr lr, tpr lr, = roc curve(y test, y score lr)
          roc auc lr = auc(fpr lr, tpr lr)
          plt.figure()
          plt.xlim([-0.01, 1.00])
          plt.ylim([-0.01, 1.01])
          plt.plot(fpr lr, tpr lr, lw=3, label='Regressão Logística (area = {:0.2f})'.format(roc aud
          plt.xlabel('Taxa FP', fontsize=16)
          plt.ylabel('Taxa TP', fontsize=16)
          plt.title('Curva ROC (classificador de digitos)', fontsize=16)
          plt.legend(loc='lower right', fontsize=13)
          plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
          # plt.axes().set aspect('equal')
          plt.show()
```

/Users/marinaramalhetedesouza/opt/anaconda3/envs/ml-impa/lib/python3.8/site-packages/sklea rn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
```


30 - Curvas ROC

```
In [49]:
          from matplotlib import cm
          X train, X test, y train, y test = train test split(X, y binary imbalanced, random state=0
          plt.figure()
          plt.xlim([-0.01, 1.00])
          plt.ylim([-0.01, 1.01])
          for g in [0.01, 0.1, 0.20, 1]:
              svm = SVC(gamma=g).fit(X train, y train)
              y score svm = svm.decision function(X test)
              fpr svm, tpr svm, = roc curve(y test, y score svm)
              roc auc svm = auc(fpr svm, tpr svm)
              accuracy svm = svm.score(X test, y test)
              print("gamma = {:.2f} accuracy = {:.2f} AUC = {:.2f}".format(g, accuracy svm,
                                                                               roc auc svm))
              plt.plot(fpr svm, tpr svm, lw=3, alpha=0.7,
                       label='SVM (gamma = \{:0.2f\}, area = \{:0.2f\})'.format(g, roc auc svm))
          plt.xlabel('Taxa FP', fontsize=16)
          plt.ylabel('Taxa TP (Recall)', fontsize=16)
          plt.plot([0, 1], [0, 1], color='k', lw=0.5, linestyle='--')
          plt.legend(loc="lower right", fontsize=11)
          plt.title('Curvas ROC', fontsize=16)
          # plt.axes().set aspect('equal')
          plt.show()
```



```
gamma = 0.10
gamma = 0.20
gamma = 1.00
              accuracy = 0.90
                                AUC = 0.50
```

In []: