Peluruhan Radioaktif				
Perhitungan aktivitas	Penggunaan umur Paro			
Waktu Paro				
Dosimetri Eksternal	Dosimetri Internal			
Paparan/Eksposur (X)	Aktivitas Spesifik			
specially Endposter (c.)	, man and opcoming			
Dosis Serap (D)	Waktu paro spesifik			
Dosis Ekuivalen (H)				
Dosis Efektif (E)				
Dosis Efektif (E)				
 Dosis kolektif (S_E) 				
December 2011 Control of				
Pengendalian Bahaya Radiasi Eksternal	Domahan .			
Waktu	Penahan			
Jarak				
Develop Bulling				
Penahan Radiasi				
Rumus Gabungan				

1.	Hitunglah berapa jumlah peluruhan per menit dari suatu sumber radioaktif dengan aktivitas sebesar 1 μCi ?
2.	Technicium-99m mempunyai umur paro sebesar 6 jam. Berapa persenkah Tc yang masih tersisa selama 2 hari kemudian?
3.	Setelah disimpan selama 40 hari, suatu unsur radioaktif masih tersisa sebanyak 6,25% dari jumlah semula, maka umur paro unsur tersebut adalah

Hitunglah umur paro efektif dari Co-60 di dalam jaringan tubuh jika umur paro radioaktifnya adalah 1900 hari
dan umur paro biologinya 10 hari!
 Consequent assessment and additional first the North Annual All and a second a second and a second and a second and a second and a second a second and a second a second and a
Seseorang mendapat pemasukan zat radioaktif (intake)) I-131 sebanyak 15 mCi. Diketahui umur paro zat radioaktif tersebut adalah 8 hari dan dalam waktu 5 hari, 50% dari zat radioaktif tersebut dikeluarkan dari dalam tubuh karena proses biologi. Aktivitas 1-131 tersebut yang masih berada di dalam tubuh 9 hari setelah intake adalah
Apabila seorang pekerja radiasi menerima dosis serap 20 mGy dari radiasi partikel alfa pada bagian tubuhnya, berapa dosis ekuivalen yang diterimanya?

7.	Berapa besarnya dosis ekuivalen yang mengenai suatu organ apabila diketahui dosis serap dari radiasi gamma 0,5 Gy dan dosis serap dari radiasi neutron dengan energi 20 KeV adalah 200 rad? (Diketahui faktor bobot radiasi gamma = 1 dan neutron 20 Kev = 10)
8.	Seorang Pemegang Izin menetapkan pembatas dosis sehingga pekerja radiasinya hanya diizinkan menerima dosis sebesar 30 mrem dalam 1 minggu. Berapa jam seminggu pekerja radiasi boleh pekerja dalam medan radiasi dengan laju dosis terukur sebesar10 mrem/jam?
9.	Laju dosis pada penguburan 2 meter dari tabung pesawat sinar-X adalah 50 mR/jam. Berapa laju dosis yang diterima pada jarab 5 meter?

10.	Sebuah sumber radiasi memberikan laju dosis sebesar 200 mGy/jam pada jarab 1 meter. Apabila laju dosis setelah menembus perisai dengan HVL = 3 mm yang ditempatkan pada jarab 10 cm dari sumber tersebut adalah 1,25 Gy/jam, maka tebal perisai adalah
11.	Suatu sumber radiasi yang dianggap sebagai sumber titik memberikan laju dosis pada jarab 4 meter sebesar 240 mR/jam. Pekerja yang berada pada jarab 8 meter dari sumber radiasi tersebut selama 15 menit aban menerima dosis sebanyak
12.	Jika satu tabir/perisai radiasi mampu menyerap intensitas radiasi sebesar 90%, maka jika 2 buah tabir yang sama digunakan sebagai perisai secara bersamaan (bertumpuk), maka intensitas radiasi yang mampu melewati perisai menjadi sebesar

13.	Jika diketahui HVL timbal (Pb) untuk sinar-X yang digunakan pada suatu pekerjaan radiografi adalah 1 mm, maka tebal yang diperlukan untuk mengurangi radiasi sinar-X tersebut hingga sebesar 93,75% adalah
1.4	HVL suatu bahan perisai A adalah X cm, sedangkan HVL bahan perisai B adalah 4 mm Apabila untuk dapat
14.	mengurangi intensitas radiasi di tempat tertentu diperlukan bahan perisai A setebal 4 cm atau bahan perisai B setelah 16 mm, maka X adalah
15.	Pada sebuah bangunan yang digunakan sebagai tempat penyimpanan zat radioaktif pemancar radiasi gamma telah dibuat beton dengan ketebalan 25 cm, sehingga laju dosis serap setelah melalui beton tersebut menjadi 1,25 μ Gy/jam. Apabila dibetahui HVL beton adalah 25 mm untub radiasi gamma tersebut, maka laju dosis serap sebelum melalui beton tersebut adalah?
Ī	

16.	Laju dosis di balik dinding setebal 20 cm adalah 0,064 mGy/jam. Untuk menurunkan laju dosis radiasi, dinding tersebut dipertebal menjadi 35 cm dengan bahan yang sama, sehingga laju dosis turun menjadi 0,002 mGy/jam. Dengan demikian, maka nilai HVL dari bahan dinding tersebut adalah
17.	Tiga macam upaya telah dilakukan untuk memperkecil penerimaan dosis radiasi terhadap pekerja radiasi, yaitu: 1. Memperbesar jarab menjadi 2 kali dari barga semula 2. Memasang penahan radiasi setebal 0,6 cm (HVL = 2 mm) 3. Waktu penyinaran disingkat menjadi 1/5 dari barga semula Dari ketiga upaya tersebut, urutan dari yang paling sedikit hingga paling banyak dalam pengurangan penerimaan dosis radiasi adalah
18.	Suatu sumber radiasi gamma yang merupakan sumber titik menghasilkan laju dosis radiasi sebesar 0,3 mGy/jam pada jarab 1 m. Kemudian sumber tersebut diberi perisai timah hitam setebal 2 HVL yang diletakkan dekat sumber. Berapa lama seorang operator dapat berada pada jarak 0,5 meter dari sumber yang berperisai tadi agar dosis radiasi yang diterimanya tidak lebih besar dari 0,05 mGy?