Дискретная оптимизация. Весенний семестр 2013.

Задание по второй лекции. Крайний срок сдачи: 10 марта, 23:59MSK

Для зачёта по заданию нужно набрать в сумме хотя бы 7 баллов. Любые вопросы задавайте по почте.

- 1. (1 балл) В доказательстве леммы об изолировании при определении величины $\alpha(s)$ рассматриваются максимумы вида $\max_{A\in\mathcal{F},s\notin A}w(A)$. Вопрос: что делать, если таких множеств A в семействе \mathcal{F} не найдётся?
- 2. (2 балла) Пусть G=(V,E) полный граф, каждому ребру которого приписан положительный вес. Пусть $\mathcal F$ семейство всевозможных подмножеств рёбер графа G, которые можно дополнить до гамильтонова цикла в G. Покажите, что при $|V|\geqslant 4$ пара $(V,\mathcal F)$ не является матроидом.
- 3. (2 балла) Докажите аналог леммы об изолировании, при условии, что теперь вес множества определяется не суммой, а произведением весов всех его элементов. Веса всех элементов предполагаются положительными.
- 4. (2 балла) Пусть (S', \mathcal{F}') и (S'', \mathcal{F}'') матроиды, причём $S' \cap S'' = \varnothing$. Положим $S := S' \cup S''$, $\mathcal{F} := \{A' \cup A'' \mid A' \in \mathcal{F}', A'' \in \mathcal{F}''\}$. Докажите, что пара (S, \mathcal{F}) также является матроидом.
- 5. Пусть S произвольное конечное множество, k фиксированное натуральное число, $1 \leqslant k \leqslant |S| 1$. Положим $\mathcal{F} = \{A \subseteq S \mid |A| \leqslant k\}$.
 - (a) (1 балл) Докажите, что пара (S, \mathcal{F}) матроид.
 - (b) (4 балла) Положим n:=|S|. Пусть P(n,k,N) вероятность того, что в данном матроиде при случайном выборе весов из множества $\{1,\ldots,N\}$ в задаче поиска допустимого множества максимального веса будет единственное решение. Докажите, что

$$P(n,k,N) = \binom{n}{k} \cdot \sum_{i=1}^{N-1} \left(\left(1 - \frac{i}{N} \right)^k - \left(1 - \frac{i+1}{N} \right)^k \right) \left(\frac{i}{N} \right)^{n-k}.$$

6. (2 балла) Пусть S — множество мощности n, а \mathcal{F} — наследственная система подмножеств S. Пусть веса элементов множества S принадлежат множеству $\{1,\ldots,N\}$. Допустим, что пара (S,\mathcal{F}) не является матроидом. Какое максимальное значение может принимать разность $\max_{A\in\mathcal{F}}w(A)-w(A')$, где A' — множество, построенное жадным алгоритмом? Дайте ответ в виде функции от величин n, N. Заметьте, что в описании жадного алгоритма не сказано, как он выбирает элемент в случае, когда ему доступно для выбора несколько самых «тяжёлых» элементов. Поэтому рассмотрите две постановки указанной задачи: первая, когда жадному алгоритму «везёт» в таких случаях, и вторую, когда «не везёт».