EE 40 - Semiconductor Basics

EE 40 Spring 2012 Michel M. Maharbiz Slide 8-1

What's inside the active devices?

The inside of active devices

- I've been avoiding the issue of how active devices work all semester
 - passives
 - resistors (heat loss)
 - inductors (magnetic field storage element)
 - capacitors (electric field storage element)
 - actives
 - diodes (LED's, solar cells)
 - transistors (BJT's, MOSFET's, JFET's, etc.)

What's inside classic actives?

What is a Semiconductor?

- Low resistivity => "conductor"
- High resistivity => "insulator"
- Intermediate resistivity => "semiconductor"
 - conductivity lies between that of conductors and insulators
 - generally crystalline in structure for IC devices
 - In recent years, however, non-crystalline semiconductors have become commercially very important.

Semiconductor Materials

		III	IV	V	
•					
		Boron (B)	Carbon (C)		
	•	Aluminum (Al)	Silicon (Si)	Phosphorus (P)	
		Gallium (Ga)	Germanium (Ge)	Arsenic (As)	
			•		

•

•

Silicon

- Atomic density: 5 x 10²² atoms/cm³
- Si has four valence electrons. Therefore, it can form covalent bonds with four of its nearest neighbors.
- When temperature goes up, electrons can become free to move about the Si lattice.
- These electrons can contribute to electric conduction.

Electron-Hole Pair Generation

- When a conduction electron is thermally generated, a "hole" is also generated.
- A hole is associated with a positive charge, and is free to move about the Si lattice as well.

Generating free electrons

Two questions emerge:

- 1. Is there a minimum energy required to 'pop' an electron out of the lattice (i.e. generate a free electron)?
 - Yes: this is called the bandgap energy, Eg
 - Eg = 1.12 eV
 - 1 eV = $1.6 \times 10^{-19} \text{ J}$
 - This is how much energy you need to move one electron across a potential of 1 V
- 2. How many electrons are present at a given temperature?

Carrier Concentrations in Intrinsic Si

- The "band-gap energy" E_g is the amount of energy needed to remove an electron from a covalent bond.
- The concentration of conduction electrons in intrinsic silicon, n_i , depends exponentially on E_g and the absolute temperature (T):

$$n_i = 5.2 \times 10^{15} T^{3/2} \exp \frac{-E_g}{2kT} electrons / cm^3$$

$$n_i \cong 1 \times 10^{10} electrons / cm^3$$
 at 300K
 $n_i \cong 1 \times 10^{15} electrons / cm^3$ at 600K

Carrier concentrations

Seems like big numbers but silicon has 5 x 10^{22} atoms/cm³ so: $1.6 \times 10^{15} / 5 \times 10^{22} \rightarrow 0.0000032$ % of lattice atoms have a free electron @ 600 K

Electronic Properties of Si

- Silicon is a semiconductor material.
 - Pure Si has a relatively high electrical resistivity at room temperature.
- There are 2 types of mobile charge-carriers in Si:
 - Conduction electrons are negatively charged;
 - Holes are positively charged.
- The concentration (#/cm³) of conduction electrons & holes in a semiconductor can be modulated in several ways:
 - by adding special impurity atoms (dopants)
 - 2. by applying an electric field
 - 3. by changing the temperature
 - 4. by irradiation

Doping (N type)

- Si can be "doped" with other elements to change its electrical properties.
- For example, if Si is doped with phosphorus (P), each P atom can *donate* a conduction electron, so that the Si lattice has more electrons than holes, *i.e.* it becomes "N type":

Notation:

n = conduction electron
concentration

Doping (P type)

• If Si is doped with Boron (B), each B atom can accept an electron (creating a hole), so that the Si lattice has more holes than conduction electrons, *i.e.* it becomes "P type":

Notation:

p = hole concentration

Terminology

donor: impurity atom that increases *n*

acceptor: impurity atom that increases p

N-type material: contains more electrons than holes

P-type material: contains more holes than electrons

majority carrier: the most abundant carrier

minority carrier: the least abundant carrier

<u>intrinsic</u> semiconductor: $n = p = n_i$

extrinsic semiconductor: doped semiconductor

Intrinsic vs. Extrinsic Semiconductor

Intrinsic Semiconductor

Electron and Hole Concentrations

• Under thermal equilibrium conditions, the product of the conduction-electron density and the hole density is ALWAYS equal to the square of n_i : $np = n_i^2$

N-type material

$$n \approx N_D$$
$$p \approx \frac{n_i^2}{N_D}$$

P-type material

$$p \approx N_A$$

$$n \approx \frac{n_i^2}{N_A}$$

Dopant Compensation

- An N-type semiconductor can be converted into P-type material by counter-doping it with acceptors such that $N_A > N_D$.
- A compensated semiconductor material has both acceptors and donors.

N-type material
$$(N_{D} > N_{A})$$

$$n \approx N_{D} - N_{A}$$

$$p \approx \frac{n_{i}^{2}}{N_{D} - N_{A}}$$

P-type material
$$(N_{A} > N_{D})$$

$$p \approx N_{A} - N_{D}$$

$$n \approx \frac{n_{i}^{2}}{N_{A} - N_{D}}$$

Charges in a Semiconductor

Negative charges:

- Conduction electrons (density = n)
- Ionized acceptor atoms (density = N_A)

Positive charges:

- Holes (density = p)
- Ionized donor atoms (density = N_D)
- The net charge density (C/cm³) in a semiconductor is

$$\rho = q(p - n + N_D - N_A)$$

Summary

- The band gap energy is the energy required to free an electron from a covalent bond.
 - E_q for Si at 300K = 1.12eV
- In a pure (undoped) Si crystal, conduction electrons and holes are formed in pairs.
 - Holes can be considered as positively charged mobile particles which exist inside a semiconductor.
 - Both holes and conduction electrons can conduct current.
- Substitutional dopants in Si:
 - Group-V elements (*donors*) contribute conduction electrons
 - Group-III elements (acceptors) contribute holes
 - Very low ionization energies (<50 meV)