Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа $N_{2}1$

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $(\mbox{группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

2025

Содержание

1	Формулировка задания	3
	1.1 Задача 1	3
	1.2 Задача 2	3
2	Формализация	4
3	Выполнение работы	4
4	Результаты	5
	4.1 Плотности вероятности и гистограммы	5
	4.1 Плотности вероятности и гистограммы	7
5	Вывод	9

1 Формулировка задания

Для 4 распределений:

- Нормальное распределение N(x, 0, 1)
- ullet Распределение Коши C(x,0,1)
- \bullet Распределение Пуассона P(k,10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

1.1 Задача 1

Сгенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.

1.2 Задача 2

Стенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: $\bar{x}, medx, z_Q$. Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов. Вычислить оценку дисперсии. Представить полученные данные в виде таблиц.

2 Формализация

• Выборочное среднее:

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i \tag{1}$$

• Выборочная медиана:

$$medx = \begin{cases} z_{\frac{n+1}{2}} & n \text{ - нечётное} \\ \frac{z_{\frac{n}{2}} + z_{\frac{n+2}{2}}}{2} & n \text{ - чётное} \end{cases}$$
 (2)

• Полусумма квартилей:

$$z_Q = \frac{z_{\frac{1}{4}} + z_{\frac{3}{4}}}{2} \tag{3}$$

• Среднее:

$$E(z) = \bar{z} \tag{4}$$

• Оценка дисперсии:

$$D(z) = \bar{z^2} - \bar{z}^2 \tag{5}$$

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, scipy, pandas, mathplotlib. Были сгенерированны выборки, построены графики и гистограммы (сохранялись в виде файлов png), оценены характеристики распределений (выводились в консоль в формате таблиц LATEX). Программа отработала корректно.

4 Результаты

4.1 Плотности вероятности и гистограммы

Рис. 1: Нормальное распределение.

Рис. 2: Распределение Коши.

Рис. 3: Распределение Пуассона.

Рис. 4: Равномерное распределение.

4.2 Характеристики распределений Normal distribution

Sample size 10

	x ⁽¹⁾	$med x^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$ $D(z)^{(5)}$	0.00013 0.1085	0.0074 0.1437	-0.0019 0.1309

Sample size 100

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$ $D(z)^{(5)}$	-0.0028 0.01005	0.0029 0.01622	-0.018 0.01255

Sample size 1000

	$x^{(1)}$	$\mod x^{(2)}$	$\mathbf{z}_Q^{(3)}$
$E(z)^{(4)}$	9.9e-05	0.00055	-0.0012
$D(z)^{(5)}$	0.0009126	0.001500	0.001180

Cauchy distribution

Sample size 10

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	-0.39	-0.015	0.021
$D(z)^{(5)}$	414.0	0.3318	1.077

Sample size 100

	$x^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	1.6	0.0084	-0.033
$D(z)^{(5)}$	5911	0.02428	0.0540

Sample size 1000

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	-0.00087	-0.0019	-0.0069
$D(z)^{(5)}$	1534	0.002519	0.004812

Poisson distribution

Sample size 10

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	10	9.8	9.9
$D(z)^{(5)}$	1.024	1.541	1.241

Sample size 100

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	10	9.8	9.9
$D(z)^{(5)}$	0.09076	0.2092	0.1575

Sample size 1000

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	10	10	10
$D(z)^{(5)}$	0.009762	0.005964	0.003220

Uniform distribution

Sample size 10

	$\mathbf{x}^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	0.00048	-0.0045	0.0073
$D(z)^{(5)}$	0.09636	0.2190	0.1309

Sample size 100

	x ⁽¹⁾	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_{Q}^{(3)}$
$E(z)^{(4)}$	9.7e-05	0.0020 0.02848	-0.015
$D(z)^{(5)}$	0.009923		0.01523

Sample size 1000

	$x^{(1)}$	$\text{med } \mathbf{x}^{(2)}$	$\mathbf{z}_Q^{(3)}$
$E(z)^{(4)}$	0.00072	0.00058 0.002697	-0.00069
$D(z)^{(5)}$	0.0009012		0.001381

В сносках указаны номера формул, по которым происходило вычисление/ оценка.

Дисперсия оценивалась с точностью до четырёх значащих цифр, среднее - до двух.

5 Вывод

В ходе лабораторной работы было изучено четыре распределения: нормальное, Пуассона, Коши, равномерное. Для каждого были сгенерированны выборки размеров, указанных в соответствующих пунктах задания.

Для каждого распределения и размера выборки были построены гистограммы и графики плотности вероятности. Было замечено, что при увеличении числа элементов в выборке, гистограмма становится более похожей на график функции плотности.

Также были оценены различные характеристики каждой выборки.

В случае нормального распределения можно заметить, что характеристики положения и рассеивания с увеличением выборки приближаются к нулю, что объясняется симметричностью распределения.

Распределение Коши имеет особое поведение: выборочное среднее не имеет конечного математического ожидания или дисперсии, поэтому значение оказывается нестабильным. Характеристики положения и рассеивания медианы и полусуммы квартилей в случае распределения Коши приближаются к нулю (также в силу симметричности).

В случае распределения Пуассона характеристики положения оказались примерно равными 10. Оценка дисперсии стремится к нулю при увеличении числа элементов, что также согласуется с теорией (здесь, например, $D(\bar{x}) = \frac{10}{n}$).

Для равномерного распределения оценки также устремляются к нулю,

что согласуется с их теоретической оценкой (в силу симметричности интервала математическое ожидание величин должно быть равно нулю, а в силу обратной зависимости от количества элементов дисперсии оно также приближается к нулю).

Также отметим, что выборочное среднее будет иметь самую низкую дисперсию среди всех оценок, не считая распределения Коши, поскольку для них оно наилучшим образом приближает мат ожидание.

Таким образом, в ходе данной лабораторной работы были изучены свойства основных распределений и их оценки.