

مبانی و کاربرد های هوش مصنوعی

فاز سوم پروژه

مسیریابی به کمک یادگیری تقویتی در

محيط هزارتو

آرین جعفری

محمد حسن حيدري

• نمای کلی پروژه

محیطی که عامل در این فاز در آن مشغول به مسیریابی است ، محیطی غیرقطعی ، مشاهده پذیر جزئی و فاقد مدل انتقال میباشد ؛ شرایطی که عامل را مجبور میکند همزان با اکتشاف ، محیط و ارزش هر کنش را یاد بگیرد . محیط ، یک هزار تو (Maze) و شامل تعدادی پورتال است که در صورت ورود عامل به هر یک از این پورتال ها ، به پورتال همرنگ و جفت آن وارد میشود . خانه ای که عامل از آن یادگیری را شروع میکند خانه ی آبی رنگ با مختصات (0,0) و خانه مقصد ، خانه ی قرمز با مختصات (n, n) است .

• یادگیری تقویتی

یادگیری تقویتی یا Reinforcement Learning نوعی یادگیری ماشین است که با فرایندهای تصمیم گیری متوالی سروکار دارد و شامل یک عامل (Agent) ، یک محیط (Environment) و یک مکانیسم بازخورد برای هدایت اقدامات عامل است. عامل یاد می گیرد که اقداماتی را در محیط انجام دهد تا سیگنال پاداش تجمعی ادبان به عنوان (Returned Reward) را به حداکثر برساند. این سیگنال پاداش جمعی به عنوان نیروی محرکه برای یادگیری عمل می کند.

● الگوريتم Q Learning

در فرایند های تصمیم مارکوف ، کنش عامل تنها وابسته به موقعیتی است که اکنون در آن قرار دارد ، و نه اینکه چگونه و با چه کنش هایی به موقعیت فعلی رسیده است . عامل در هر زمان با توجه به سیاست خود ، بهترین کنش را انتخاب میکند . در سیستم هایی با سیاست از قبل مشخص شده نیازی به یادگیری بهترین سیاست نیست ؛ اما هدف یادگیری عمیق این است که عامل در هر زمان ، کنشی را انجام دهد که بیشترین بازگشت پاداش را برای آن داشته باشد . با توجه به این مورد ، یادگیری محیط در شرایطی که پاداش ها از قبل مشخص شده و مدل انتقال محیط در دسترس باشد مفید نخواهد بود ؛ اما چنین شرایطی معمولا در مسائل مختلف در دسترس نیست . در واقع تا قبل از یادگیری محیط و مشخص کردن ارزش هر کنش ، عامل سیاست بهینه برای انتخاب بهترین کنش را در اختیار ندارد .

یکی از الگوریتم هایی که به ما کمک میکند ارزش هر کنش در هر موقعیت از محیط را بدست بیاوریم ، الگوریتم یادگیری کیفیت (Q Learning) است . به کمک این الگوریتم ارزش هر کنش به صورت متوالی بر اساس ارزش وزن دار کنش بعد و بر اساس نرخ یادگیری آلفا به روز رسانی خواهد شد .

```
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
      Choose a from S using policy derived from Q
            (e.g., ε-greedy)
      Take action a, observe r, s'
      Q(s, a) <-- Q(s, a) + α [r + γ max<sub>α</sub>, Q(s', a') - Q(s, a)]
      s <-- s';
   until S is terminal</pre>
```

• پیاده سازی

```
import gym
import gym_maze
import numpy as np
```

مطابق با قطعه کد بالا ، ماژول های مورد نیاز برای پیاده سازی پروژه را استفاده میکنیم

```
# Create an environment
env = gym.make("maze-random-10x10-plus-v0")
observation = env.reset()

#initializing Q table and hyperparameters
q_table = np.zeros((100, 4))
learning_rate = 0.1
discount_factor = 0.9 #gamma

#number of wins
k = 0
```

محیط شخصی سازی شده هزارتو را مطابق قطعه کد بالا پیاده سازی میکنیم . سپس جدول Q را مقدار دهی اولیه میکنیم . این جدول به تعداد موقعیت ها سطر و به تعداد کنش های ممکن برای هر موقعیت ، ستون دارد . محیط ما شامل Q کنش ممکن است .

نرخ یادگیری را معادل 0.1 و وزن کاهشی (discount weight) را معدل 0.9 قرار میدهیم . وزن کاهشی به ما گوشزد میکند که پاداشی که اکنون بدست آید بهتر است از پاداشی که در آینده در اختیار عامل قرار گیرد . (این مقادیر بنا بر اختیار توسعه دهنده میتوانند شخصی سازی شوند)

حلقه اصلی پروژه جایی است که عامل همزمان با اکتشاف محیط ، ویژگی های آنرا یاد میگیرد . این حلقه به صورت زیر پیاده میشود :

```
# Define the maximum number of iterations
NUM_EPISODES = 1000

for episode in range(NUM_EPISODES):
    state = env.reset()

    for t in range(100):

        row = state[0]
        col = state[1]
        state = int(row*10 + col)

        #choosing best action based on our policy
        action = np.argmax(q_table[state])

        next_state, reward, done, info = env.step(action)
        next_max = np.max(q_table[next_state[0] * 10 + next_state[1]])

        # Update Q-value for the current state-action pair
        q_table[state][action] = (1 - learning_rate) * q_table[state][action]
+ learning_rate * (reward + discount_factor * next_max)

        state = next_state

    if done:
        k += 1
        print(f'Wins : {k}')
        break
        env.render()

# Close the environment
env.close()
```

در ابتدای هر اپیزود ، موقعیت عامل در خانه اول قرار میگیرد . با ورود به حلقه داخلی ، عامل به تعداد 100 کنش جلو میرود و با توجه به معادله اصلی الگوریتم ، پاداش کنش های انتخاب شده هر موقعیت را به روز میکند . سیاست عامل برای انتخاب کنش بعدی ، بهترین کنش است ؛ یعنی کنشی که بیشترین پاداش بازگشتی را داشته باشد . این مقدار در ابتدای شروع الگوریتم برای تمامی کنش ها در تمامی موقعیت ها برابر با صفر است . وظیفه الگوریتم این است که به تعداد مناسبی تکرار شده و این مقادیر را مطابق با پاداش خانه هدف به روز کند .

 $S \leftarrow S'$ عامل پس از انتخاب هر کنش به احتمال 0.6 وارد خانه بعدی میشود

پس از ورود به خانه ی بعدی ، دوباره معادله اصلی برای موقعیت فعلی عامل محاسبه شده و این چرخه به تعداد 100 کنش تکرار میشود تا اپیزود فعلی به پایان برسد .

- منابع استفاده شده
- Coursera Machine Learning Specialization -
 - Youtube contents -
 - Microsoft copilot -