

### Distributed Deadlock Detection

George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012

# Deadlock Detection

- Centralized Detection
- Distributed Detection
- Hierarchical Detection

## A distributed banking transaction



## Interleaving of transactions *U*, *V* and *W*

| U             |                           | V                       |                           | W                               |               |
|---------------|---------------------------|-------------------------|---------------------------|---------------------------------|---------------|
| d.deposit(10) | lock D                    |                         |                           |                                 |               |
| a.deposit(20) | lock <i>A</i> at <i>X</i> | b.deposit(10)           | lock <i>B</i> at <i>Y</i> |                                 |               |
| b.withdraw(3  |                           |                         |                           | c.deposit(30)                   | lock C at $Z$ |
|               |                           | c.withdraw(20)wait at Z |                           | a.withdraw(20 <b>y</b> vait atX |               |

## Distributed deadlock – Path–Pushing Method Obermarck's Algorithm



# Local and global wait-for graphs

local wait-for graph



local wait-for graph



global deadlock detector



# Distributed Deadlock Detection - Edge - Chasing Method - Chandy, Misra Haas's Algorithm

- Global wait–for graph is not constructed, but each of the servers involved has knowledge about some of its edges.
- The servers attempt to find cycles by forwarding messages called probes, which follow the edges of the graph throughout the distributed system.
- A probe message consists of transaction wait–for relationships representing a path in the global wait–for graph.
- The coordinator is responsible for recording whether the transaction is active or is waiting for a particular object, and participants can get this information from their coordinator.
- Lock managers inform coordinators when transactions start waiting for objects and when transactions acquire objects and become active again.
- When a transaction is aborted to break a deadlock, its coordinator will inform the participants and all of its locks will be removed

# Distributed Deadlock Detection- Edge-Chasing Method – Chandy, Misra Haas's Algorithm

- 3 phases in Edge-Chasing Algorithm
- 1. Initialization of Deadlock Detection
- 2. Detection of Deadlock
- 3. Resolution of Deadlock

## Probes transmitted to detect deadlock



#### Distributed Deadlock Detection- Edge-Chasing Method – Chandy, Misra Haas's Algorithm

- Server X initiates detection by sending probe  $< W \rightarrow U >$  to the server of B (Server Y).
- Server Y receives probe  $< W \rightarrow U >$ , notes that B is held by V and appends V to the probe to produce  $< W \rightarrow U \rightarrow V >$ . It notes that V is waiting for C at server Z.
- This probe is forwarded to server Z.
- Server Z receives probe  $< W \rightarrow U \rightarrow V >$ , notes C is held by W and appends W to the probe to produce  $< W \rightarrow U \rightarrow V \rightarrow W >$ .
- This path contains a cycle. The server detects a deadlock.

#### Transaction Priorities

- Consider transactions T, U, V, W
- Priority is specified as T> U > V> W.
- T as highest Priority, W as least priority.
- Lowest Priority transaction will be aborted first.
- Highest Priority transaction will initiate the deadlock detection.
- Probe messages must be sent from higher priority transaction to lower priority transactions. (Probe Downhill)
- Drawback: Deadlock may be left undetected.
- Solution: Probe Queue.

# Two probes initiated



- (b) detection initiated at object requested by T
- (c) detection initiated at object requested by W



### Probes travel downhill

- (a) V stores probe when U starts waiting (b) Probe is forwarded when V starts waiting



## Summary

- Requires arrangements to pass on probes to new holders and to discard probes that refer to transactions that have been committed or aborted.
- If relevant probes are discarded, undetected deadlocks may occur, and if outdated probes are retained, false deadlocks may be detected.
- Kshemkalyani and Singhal [1994] argued that distributed deadlocks are not very well understood because there is no global state or time in a distributed system.