Interpolation With RBFs

Interpolation With RBFs Is Similar To Any Other GLM

If we choose the basis centers to be the training points (so s = p), then we get a system of equations of the form

$$\hat{f}(x^{(j)}, \alpha) = \sum_{k=1}^{p} \alpha_k \phi(\|x^{(j)} - x^{(k)}\|) = f(x^{(j)}), \quad \forall j = 1, 2, \dots, s$$

or, in matrix form, $K\alpha = y$ where α and y are defined as before and

$$K = \begin{bmatrix} \phi(0) & \phi(\|x^{(1)} - x^{(2)}\|) & \cdots & \phi(\|x^{(1)} - x^{(p)}\|) \\ \phi(\|x^{(2)} - x^{(1)}\|) & \phi(0) & \cdots & \phi(\|x^{(2)} - x^{(p)}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|x^{(s)} - x^{(1)}\|) & \phi(\|x^{(s)} - x^{(2)}\|) & \cdots & \phi(0) \end{bmatrix} \right\} \begin{array}{c} \text{each} \\ \text{Sample} \\ \text{g ets} \\ \text{a row} \\ \text{each basis gets a column} \\ \end{array}$$

The Matrix K Is Called the Gram Matrix In The Context of RBFs

If K is invertible, then the parameters are given by

$$\alpha = K^{-1}y$$

- Unfortunately, K is only guaranteed to be invertible if Gaussian RBF are chosen;
 even then, K can be highly ill-conditioned
- If we wish to use ϕ that are not Gaussian, a polynomial term must be included in the interpolation; see [KN05, pg. 229] for further details.

Let's Consider An RBF Surrogate Using Gaussian Basis Functions

Let's Consider An RBF Surrogate Using Gaussian Basis Functions (cont.)

Let's Consider An RBF Surrogate Using Gaussian Basis Functions (cont.)

Let's Consider An RBF Surrogate Using Gaussian Basis Functions (cont.)

References

Andy J. Keane and Prasanth B. Nair, *Computational Approaches for Aerospace Design: The Pursuit of Excellence*, John Wiley & Sons, Ltd, Chichester, UK, June 2005.