A	D			

MEMORANDUM REPORT ARBRL-MR-02880

TURBULENT BOUNDARY LAYER MEASUREMENTS ON THE BOATTAIL SECTION OF A YAWED, SPINNING PROJECTILE SHAPE AT MACH 3.0

Lyle D. Kayser Walter B. Sturek

November 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT ARBRL-MR-02880		
4. TITLE (and Subtitie)		S. TYPE OF REPORT & PERIOD COVERED
TURBULENT BOUNDARY LAYER MEASUREMEN	NTS ON THE	Final
BOATTAIL SECTION OF A YAWED, SPINN		6. PERFORMING ORG. REPORT NUMBER
SHAPE AT MACH 3.0		G. PERFORMING GNG. NE. GW. NGMBEN
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
Lyle D. Kayser		_
Walter B. Sturek		55
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Ballistic Research Labor:	atory	AREA & WORK DIVIT NOMBERS
(ATTN: DRDAR-BLL)		RDT&E 1L161102AH43
Aberdeen Proving Ground, Maryland	21005	12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research and De	velopment Cmd	NOVEMBER 1978
U.S. Army Ballistic Research Labor	atory	13. NUMBER OF PAGES
(ATTN: DRDAR-BL) Aberdeen Proving Ground, Maryland 14. MONITORING AGENCY NAME & ADDRESS(If different	21005	88
14. MONITORING AGENCY NAME & ADDRESS(if differen	t from Controlling Office)	1S. SECURITY CLASS. (of this report)
		Unclassified
		150. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distri	ibution unlimite	d.
		Popost)
17. DISTRIBUTION STATEMENT (of the ebstract entered	in Block 20, it different in	om Kepon)
18. SUPPLEMENTARY NOTES		
1		
	the state of the s	2
19. KEY WORDS (Continue on reverse eide if necessary a	nd identity by block number	,
Turbulent Boundary Layers	,	
Yawed Spinning Bodies Experimental Measurements		
Supersonic Flow		
	Aldonalds by block more boo	(1-1-)
20. ABSTRACT (Continue on reverse eide if necessary or Total pressure measurements were of	htained in the	(1cb)
spinning body of revolution in sur	port of the BRL	Magnus Research Program.
Data were obtained on the boattail	section of a si	lender projectile shape at a
Mach number of 3.0 and angles of a	attack up to 6.3	degrees. This report
presents a tabulation of the bound	dary layer profi	le characteristics in a format
that facilitates comparison with t	theoretical compu	utations. A description of
the experiment and a brief analysi	is or the data at	re grven.

TABLE OF CONTENTS

																				Page
	LIST OF ILLUSTRATIONS .	•	•	•	•	•				•	•		•		•	•			٠	5
I.	INTRODUCTION	٠	•	٠		•	•			•	•	•	•	•	•	•	•	•	٠	7
II.	EXPERIMENT	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•		8
III.	DISCUSSION OF RESULTS .	•	٠	٠	٠	•	٠	•			•	•	•	•	•	•	•	•	٠	10
IV.	CONCLUDING REMARKS					•	٠	•	•	•	•		•		•	•	•	•	٠	11
	REFERENCES			•				•			•		•		•			•		24
	LIST OF SYMBOLS	•	•	•	•		•		•											25
	APPENDIX A		•					•	•			•		•	•	•	•	•		27
	DISTRIBUTION LIST		•		•				•			•		•		•	•	•	•	87

LIST OF ILLUSTRATIONS

Figure		Page
1.	Model Geometry	. 13
2.	Model Installation Photograph	. 14
3.	Surface Pressure Distribution	. 15
4.	Impact Probe Calibration	. 16
5.	Coordinate System	. 17
6.	Velocity Profiles, Theory and Experiment	. 18
7.	Velocity Profiles, Experiment	. 19
8.	Longitudinal Variation of Displacement Thickness	. 20
9.	Angle-of-Attack Effect on Displacement Thickness, Experimental Data	. 21
10.	Effect of Spin on Displacement Thickness	. 22

I. INTRODUCTION

The BRL has been conducting and supporting theoretical and experimental Magnus research efforts in recent years. As a result of this research, numerical techniques have been developed for computing Magnus effects (forces and moments). Details of the computational procedure are described in references 1, 2, 3, and 4. The purpose of the experimental investigation reported here is to acquire detailed three-dimensional turbulent boundary layer profile data for the flow over a projectile boattail. These data are being used for comparison with the numerical computations in order to provide guidance and to help evaluate the theoretical effort.

A substantial number of experiments have been conducted in support of the BRL Magnus program. Types of experiments that have been conducted include: strain-gauge force and moment measurements, surface pressure measurements, and boundary layer studies. Results from some

^{1.} H. A. Dwyer, "Three Dimensional Flow Studies Over a Spinning Cone at Angle of Attack," BRL Contract Report No. 137, February 1974, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD 774795.

^{2.} H. A. Dwyer and B. R. Sanders, "Magnus Forces on Spinning Supersonic Cones. Part I: The Boundary Layer," BRL Contract Report No. 248, July 1975, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A013518. Also, AIAA Journal, Vol. 14, No. 4, April 1976, p. 498.

^{3.} B. R. Sanders, "Three-Dimensional, Steady, Inviscid Flow Field Calculations With Application to the Magnus Problem," PhD Dissertation, University of California, Davis, California, May 1974.

^{4.} W. B. Sturek, et al, "Computations of Turbulent Boundary Layer Development Over a Yawed, Spinning Body of Revolution With Application to Magnus Effect," BRL Report No. 1985, May 1977, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A041338.

of these experiments can be found in references 5 through 9. The primary purpose of this report is to provide a tabulation of the boundary layer profile data and integral parameters. A description of the experiment and a limited analysis of the data are also provided.

II. EXPERIMENT

All boundary layer results presented in this report were obtained on the boattail of the secant-ogive-cylinder-boattail model (SOCBT) shown in Figure 1. The model is 57.15 mm (2.25 inches) in diameter and 342.9 mm (13.5 inches) long. A boundary layer trip was placed on the ogive to insure the location of the start of turbulent flow. The tests were conducted in the BRL Supersonic Wind Tunnel No. 1, which is a continuous flow tunnel with a test section of 330 x 381 mm (13 x 15 inches). Measurements of the total head pressure through the boundary layer were made with a flattened impact pressure probe 1.5 mm wide by 0.15 mm high. The probe was electrically isolated from the probe holder so that contact with the model, for non-spinning runs, could be determined with an ohmmeter. The probe drive mechanism moved the probe perpendicular to the model centerline; also, the probe drive mechanism could be positioned circumferentially about the model. SOC model without the boattail, the probe, and the probe drive mechanism are shown installed in the tunnel in Figure 2.

^{5.} Charles J. Nietubicz, Klaus O. Opalka, and Walter B. Sturek, "Magnus Force Measurements on Bodies of Revolution at Supersonic Speeds," to be published as a BRL Memorandum Report.

^{6.} R. P. Reklis and W. B. Sturek, "Surface Pressure Measurements on Slender Bodies at Angle of Attack in Supersonic Flow," to be published as a BRL Memorandum Report.

^{7.} L. D. Kayser and W. B. Sturek, "Experimental Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Ogive-Cylinder Body of Revolution at Mach 3.0. Part I. Description of the Experiment and Data Analysis," ARBRL-MR-02808, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, January 1978. AD A052301.

^{8.} L. D. Kayser and W. B. Sturek, "Experimental Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Ogive-Cylinder Body of Revolution at Mach 3.0. Part II. Data Tabulation," ARBRL-MR-02813, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, March 1978. AD A053458.

^{9.} L. D. Kayser, W. B. Sturek, and W. J. Yanta, "Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Body of Revolution at Mach 3.0 With a Laser Velocimeter and Impact Probe," AIAA 10th Aerodynamic Testing Conference, San Diego, California, 19-21 April 1978.

The boundary layer survey procedure was to bring the impact probe from outside the boundary layer down to, and touching, the model for the no-spin case; immediately following a no-spin run, the model was brought up to the 333 rps (20,000 rpm) spin rate and the probe was brought down through the boundary layer to within approximately 0.1 mm of the surface. Data were obtained at 5.33 and 5.67 calibers from the nose (i.e., 0.67 and 0.33 caliber from the base) and the angle-of-attack range was 0 to 6.3 degrees. Data were acquired circumferentially around the model in 30 degree increments and also at 10 degrees on each side of the leeward ray (ϕ = 180 degrees). At most positions, surveys were made at both 0 and 333 rps: the spin rate of 333 rps corresponds to a dimensionless spin rate (pd/V) of 0.19 at Mach 3.0. Tunnel conditions for the tests were: Mach 3.0; a supply temperature of 310 K; a supply pressure of 298 kPa. These conditions provided a Reynolds number of 7.3 x 106 based on model length. Local Mach numbers within the boundary layer were determined from the Rayleigh pitot formula assuming a constant static pressure across the boundary layer. The data in this report were reduced using the experimental values of wall static pressure obtained by Reklis⁶. Figure 3 is a comparison of experimental pressures and theoretical surface pressures computed with the inviscid program described in reference 3. The model surface temperature was assumed to be equal to the adiabatic wall temperature for turbulent flow--the recovery factor was taken as the cube root of the Prandtl number. The temperature distribution in the boundary layer was found by assuming the Crocco linear total temperature profile:

$$\frac{T_t - T_w}{T_0 - T_w} = \frac{u}{u_e}.$$

With temperature, pressure, and Mach number determined, local densities and velocities can be calculated. The integral parameters of displacement thickness, momentum thickness, and velocity thickness were determined by integrating from y = 0 to $y = \delta$ where $\delta = y$ at u = 0.985 u_e .

The value of 0.985 provided a more consistent circumferential distribution of boundary layer thicknesses than the conventional value of 0.99 because of slight velocity gradients outside of the boundary layer.

The probe axis was aligned longitudinally with the model axis. Some uncertainty is inherent in the profile data due to the probe not being aligned with the local flow direction within the boundary layer. The uncertainty due to cross flow would be of the order of angle of attack at the outer edge of the boundary layer when probing the sides of the model (ϕ = 90 and 270 degrees). The uncertainty due to spin is expected to be small because the large velocity gradients in a turbulent boundary layer would confine the greatest effect of flow angularity to a very small region near the surface which cannot be probed accurately using a total head probe.

Impact pressure measurements were made in the tunnel freestream at angles of incidence from -10 to +15 degrees in both pitch and yaw--these results are shown in Figure 4. In pitch, the probe pressure does not vary more than $\pm \frac{1}{2}$ percent from approximately -8 to +15 degrees. The pressure variation with yaw is nearly a cosine function and it is within the $\frac{1}{2}$ percent deviation from approximately -6 to +6 degrees. This relative insensitivity to angle of incidence suggests that it would not have been worth any substantial effort to align the probe axis with the local flow direction.

Data Accuracy -- The pressure transducers used are linear to within 0.25% of full scale value. The data acquisition system measurement accuracy is approximately 0.1% of full scale. Full scale is rarely achieved on the transducer or the system measurement range; therefore, the accuracy of measured pressures is estimated to be \pm 1.0%. The positioning of the probe in the y direction was repeatable to within approximately 0.03 mm and the uncertainty in determining the point of probe-model contact was also approximately 0.03 mm. The uncertainty of the probe position relative to the model surface is, therefore, estimated to be within 0.06 mm (0.0025 inch).

The possibility of interference between the model and the probe is also of concern. In recent tests at the Naval Surface Weapons Center⁹, velocities were measured in the boundary layer with laser velocimeter for both spinning and non-spinning conditions. Comparisons of velocity profiles obtained from LDV measurements and from impact pressure measurements show good correlation. These comparisons provide evidence that probe-model interference was not significant for the sizes of boundary layers that were encountered.

III. DISCUSSION OF RESULTS

A test run summary for the boundary layer experiments is given in Table I and a tabulation of all data can be found in Appendix A.

To help clarify the data, the orientation of the probe with respect to the model must be known. The boundary layer and model coordinate system is shown in Figure 5. Circumferential points of ϕ = 0 degrees, at y = 0, lie on the most windward ray of the model when the model is at some angle of attack. Looking upstream at the model base, with the model at positive angle of attack, ϕ = 0 is on the bottom (6 o'clock); ϕ = 90 degrees is to the left (9 o'clock); ϕ = 180 degrees is on the top (12 o'clock); and ϕ = 270 degrees is to the right (3 o'clock). A clockwise spin is positive; therefore, a positive spin gives a surface velocity in the same direction as cross flow on the left side of the model. On the right side, cross flow and model surface velocities are in the opposite direction.

A comparison of experimental and theoretical velocity profiles at two degrees angle of attack is shown in Figure 6. The agreement on the windward side is very good but slight differences do exist in the profile shape on the leeward side near ϕ = 150, 180 degrees. Experimental velocities are slightly lower near the wall and slightly higher in the outer portion of the boundary layer. Figure 7 compares velocity profiles on opposite sides of the model and illustrates that the effects of spin on profile shape are measurable. On the windward side of the model, at ϕ = 30 vs 330 and 60 vs 300, there are no discernible effects of spin. On the leeward side, near ϕ = 120 vs 240 and 150 vs 210, effects of spin on the profile shape are substantial. However, near the leeward ray (ϕ = 170, 180, 190), the effects of spin were generally found to be small.

Figure 8 shows the longitudinal variation of displacement thickness at two degrees angle of attack. Boundary layer data on the cylindrical section were reported in references 7 and 8. The comparison of theory and experiment is encouraging; however, the disagreement is sufficient to suggest that conventional eddy viscosity models are not sufficiently responsive to changes in wall boundary conditions caused by abrupt changes in surface curvature such as occurs at the cylinder-boattail junction. The circumferential variation of displacement thickness for several angles of attack, with and without model spin, are shown in Figure 9. This figure illustrates clearly where the effects of spin are most pronounced. The dips at ϕ = 180 degrees for angles of attack of 4.2, 5.3, and 6.3 degrees are believed to be caused by longitudinal vortices that are forming within the boundary layer. At the higher angles of attack of 5.3 and 6.3 degrees, the dramatic thickening of the boundary layer suggests that leeward separation of the boundary layer may be near. The existence of such longitudinal separation type vortices suggests that boundary layer theory will not be adequate at angles of attack greater than five degrees. However, these data should be of value for comparison with boundary region or Navier-Stokes numeri-Additional displacement thickness data are shown in cal computations. Figure 10. The increment of displacement thickness due to spin, at α = 4 degrees, is shown on an expanded scale as a function of circumferential position. Theoretical calculations for the increment of displacement thickness, on the cylindrical section, compared to experiment (reference 4) showed good agreement and the variation was qualitatively the same as shown in Figure 10.

IV. CONCLUDING REMARKS

A substantial quantity of three-dimensional turbulent boundary layer profile data, including effects of spin, have been acquired on a realistic projectile boattail configuration. The data will be of value for comparison with theoretical computations of three-dimensional turbulent boundary layer development. Preliminary comparisons of theoretical computations to these data using BRL's numerical finite-

difference codes indicate discrepancies which suggest that more sophisticated turbulence models may be required to adequately predict the boundary layer development over shapes with abrupt changes in wall geometry. The higher angle-of-attack data will be useful in defining the limits of boundary layer theory and for comparison with more general type calculations such as obtained from boundary-region or Navier-Stokes type codes.

NOTE: DIMENSIONS ARE IN MILLIMETRES

Figure 1. Model Geometry

Figure 2. Model Installation Photograph

Figure 3. Surface Pressure Distribution

Figure 4. Impact Probe Calibration

Figure 5. Coordinate System

Figure 6. Velocity Profiles, Theory and Experiment

Figure 7. Velocity Profiles, Experiment

Figure 8. Longitudinal Variation of Displacement Thickness

Figure 9. Angle-of-Attack Effect on Displacement Thickness, Experimental Data

Figure 10. Effect of Spin on Displacement Thickness

Table I. Test Run Summary, SOCBT

$\alpha = 6.3$	0,333	0,333	0,333	0,333	0,333	0,333	0
α = 5.3			333 0,333	0,333	0,333	0,333	
$\alpha = 4.2$ $Z/D = 5.67$	0,333	0,333	0,333	0,333	0,333	0,333	0,333
$\alpha = 2.1$	0,333	0,333	0,333	0,333	0,333	0,333	0,333
0 0 0	0	0					
$\alpha = 2.1$	0,333*	0,333	0,333	0,333	0,333	0,333	0,333
$\frac{\alpha = 0}{Z/D = 5.33}$	0	0		0,333			-31/2
허	0 30	09	120	170	190	240	330

* Model spin rate, rps

REFERENCES

- H. A. Dwyer, "Three Dimensional Flow Studies Over a Spinning Cone at Angle of Attack," BRL Contract Report No. 137, February 1974, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD 774795.
- 2. H. A. Dwyer and B. R. Sanders, "Magnus Forces on Spinning Supersonic Cones. Part I: The Boundary Layer," BRL Contract Report No. 248, July 1975, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A013518. Also, AIAA Journal, Vol. 14, No. 4, April 1976, p. 498.
- 3. B. R. Sanders, "Three-Dimensional, Steady, Inviscid Flow Field Calculations With Application to the Magnus Problem," PhD Dissertation, University of California, Davis, California, May 1974.
- 4. W. B. Sturek, et al, "Computations of Turbulent Boundary Layer Development Over a Yawed, Spinning Body of Revolution With Application to Magnus Effect," BRL Report No. 1985, May 1977, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A041338.
- 5. Charles J. Nietubicz, Klaus O. Opalka, and Walter B. Sturek, "Magnus Force Measurements on Bodies of Revolution at Supersonic Speeds," to be published as a BRL Memorandum Report.
- 6. R. P. Reklis and W. B. Sturek, "Surface Pressure Measurements on Slender Bodies at Angle of Attack in Supersonic Flow," to be published as a BRL Memorandum Report.
- 7. L. D. Kayser and W. B. Sturek, "Experimental Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Ogive-Cylinder Body of Revolution at Mach 3.0. Part I. Description of the Experiment and Data Analysis," ARBRL-MR-02808, January 1978, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A052301.
- 8. L. D. Kayser and W. B. Sturek, "Experimental Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Ogive-Cylinder Body of Revolution at Mach 3.0. Part II. Data Tabulation," ARBRL-MR-02813, March 1978, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland. AD A053458.
- 9. L. D. Kayser, W. B. Sturek, and W. J. Yanta, "Measurements in the Turbulent Boundary Layer of a Yawed, Spinning Body of Revolution at Mach 3.0 With a Laser Velocimeter and Impact Probe," AIAA 10th Aerodynamic Testing Conference, San Diego, California, 19-21 April 1978.

LIST OF SYMBOLS

D	diameter of model base
p	model spin rate, radians/second
p _{t2}	impact probe pressure
^p t _{2,0}	impact probe pressure at zero yaw
P_{W}	model wall static pressure
$\mathtt{P}_{_{\boldsymbol{\infty}}}$	free-stream static pressure
SOCBT	secant-ogive-cylinder-boattail
T _o	tunnel total temperature
T _t	local total temperature
T_{W}	model wall temperature
u,w,v	velocities in boundary layer coordinates
^u e	velocity at edge of boundary layer
V	velocity along model trajectory
x ,φ,y	boundary layer coordinates
z	longitudinal model axis coordinate
α	angle of attack, degrees
δ	boundary layer thickness, δ = y at u = 0.985 u_e
$\delta_{\mathbf{x}}^{*}$	longitudinal component of displacement thickness, cm
$\Delta \delta_{\mathbf{x}}^{*}$	increment of displacement thickness due to spin, cm
ф	circumferential boundary layer coordinate, degrees

APPENDIX A

The order of tabulated boundary layer profile data is as follows.

Z/D	<u>α</u>	Page
5.33	0	 29
	2.1	 31
5.67	0	 43
	2.1	 44
	4.2	 56
	5.3	 68
	6.3	 75

Within each angle-of-attack group, data are in order of increasing roll angle (ϕ) with spin and no-spin runs together.

At $\rm Z/D$ = 5.33, data for angles of attack greater than 2.1 degrees were not processed because the outer portion of the boundary layer was in the Prandtl-Meyer expansion fan and the edge of the boundary layer could not be accurately located.

Computer Tabulation Nomenclature

Mach tunnel free-stream Mach number

PO tunnel supply pressure, kPa

TO tunnel supply temperature, deg. K

ALPHA angle of attack, deg.

Z/D distance in calibers from nose

PHI circumferential position, degrees

RPM model spin rate, rpm

PW model wall pressure at point of survey, kPa

REL Reynolds number based on model length

Y distance normal to model surface, cm

TT local total temperature, deg. K

T local static temperature, deg. K

M local Mach number

U local velocity, m/s

RHO local density, m/s

DEL boundary layer thickness, DEL = Y at U = 0.985 UE

DELU velocity thickness, cm

DEL* displacement thickness, cm

THETA momentum thickness, cm

H boundary layer shape parameter, δ^*/θ

UE velocity at edge of boundary layer, m/s

RHOE density at edge of boundary layer, kg/m³

8.2 KPA TO = 312.4 K	33 PHI= 0	KPA REL=7135		.000	454	.551	.627	.668	.702	.739	.763	.779	.799	608	.822	.832	.849	.865	.879	.891	-905	.912	.920	.929	686.	.947	956	*96*	.972	.981	.987	3,307 .992 .965	966.	866.	666.	1.000	620 DEL*= .1737 CM	UE = 661.0 RUN = 204	
59		4	1/10																																	.304	DELU=	E * *	
3.00	0	0	TIVIO	910	9 4 0	640	070	073	976	070	981	985	984	985	986	.987	988	066	.991	.992	.993	*66.	*66	995	966	766	766.	966	666	666	1.000	1.000	1.001	1.001	1.001	1.001	044	.02803	•
MACH =	ALPHA=	RPH	× /DE	100		660		640	070		126	146	185	229	277	313	362	408	.452	.500	.545	.593	.629	.672	.726	5772	823	872	916	070	1.018	1.062	1,114	1,157	1.211	1.261	DFI =	THETA=	1
ניני		PHI= -60. REL=7078049.																.862 .641																CH CH	= 663.	9			
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2010 = 01 AAA 00 10 = 5130	= . 5.33 PHI= -60. = 4.60 KPA REL=7078049		M U/UE RHO/KHO	0000 0000	.908 .439	1.127 .527	1.331 .601	1.537 .668	1.634 .696	1.771 .734	1.892 .764	2.011 .792	2.084 .808	2.130 .818	2.194 .831	2.268 .846		200	2.541 .893	2063	916. 469.7	2.159	2.822 .934	2.882 .942	2.975 .953	3.093 .967	3.194 .978	3.284 .987	3.352 .994	3,391 ,998	3.410 .999		ELU= .0607 DEL*= .1696 CM	H = 6.226 UE = 663.8 M/SE	/A++3 RUN = 26			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 PO = 01 AAM 00 10 = 013.0	Z/D= : 5.33 PHI= -60. PW = 4.60 KPA REL=7078049		TI/TO T/TO M U/UE RHO/KHO	.916916 .000	.953 .818 .908 .439	.961 .766 1.127 .527	.967 .714 1.331 .601	.973 .661 1.537 .668	.975 .636 1.634 .696	.978 .601 1.771 .734	.981 .572 1.892 .764	.983 .543 2.011 .792	.984 .527 2.084 .808	.985 .516 2.130 .818	.986 .502 2.194 .831	. 987 . 487 2.268 .846	2.358 .862	188. 84.2 344. 066.	.991 .433 Z-541 .893	.992 .418 2.623 .906	.993 .405 Z.694 .916	.994 2.159 .926	.995 .384 2.822 .934	.995 .374 2.882 .942	.996 .360 2.975 .953	. 997 . 342 3.093 . 967	.998 .328 3.194 .978	. 999 .316 3.284 .987	.999 .308 3.352 .994	1,000 ,303 3,391 ,998	1.000 .301 3.410 .999		4371 DELU= .0607 DEL*= .1696 CM	23 H = 6.226 UE = 663.8 M/SE	09 KG/M**3 RUN = 26			

	E C
OE	Σ.V
10.2 K 60. 89564. 386. 386. 383. 420. 420. 487. 487. 526. 552. 552. 552. 554. 554.	. 666 . 666 . 725 . 725 . 725 . 934 . 934 . 934 . 934 . 935 . 935 . 935
PHI= PHI= REL=718 .0/UE .000 .497 .597 .618 .618 .716 .745 .745 .791 .812 .828 .841	0000 0000 0000 0000 0000 0000 0000 0000 0000
Q TU 4	2.000 2.000 2.000 2.000 2.000 3.000
2	A C C C C C C C C C C C C C C C C C C C
3.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	990 9991 9993 9994 9996 9996 1000 1000 1000 1001 1001
MACH = ALPHA = RPM	
——————————————————————————————————————	EC NEC
45. 45. 78. 78. 78. 78. 78. 78. 78. 78	. 676 . 727 . 727 . 727 . 822 . 822 . 933 . 933 . 993 . 993 . 993
TO = 310. PHI= 30 REL=71554 0/UE RHO .3 .434 .3 .434 .3 .434 .3 .434 .3 .434 .3 .701 .4 .709 .5 .709 .5 .869 .6	
698.3 KPA 6.61 KPA 7.61 KPA 1.030 1.058 1.058 1.058 1.058 1.0643 1.070 2.106 2.106 2.172 2.240 2.316	2.454 2.5521 2.581 2.622 2.622 2.698 3.142 3.213 3.213 3.320 3.348 3.368 3.368
N	4444 4286 4444 4444 4444 4444 4444 4444
3.000 . 0.00 . 0	9991 9992 9992 9995 9995 9997 9997 9999 9999
AMACH = APPHA = APPHA = APPHA = APPHA = 0000	.456 .502 .502 .551 .664 .694 .735 .735 .987 .980 1.080 1.130 1.180 1.25 DEL = THETA=

.8.3 K 0.)2548.	RH0/RH0E .332	64.	.509	.538	• 556 501	260	53]	649	424	1697	.723	750	777	200	100		000		176.	146.	296.	0.60	980	966			667.1 M/SEC	466		
T0 = 318.3 K PHI= 0. REL=6902548.		.700	• 740	.173	. 192	* 470	0 0 0	200	088	. 903	906	010	150	100	100	104.	106.	116.	V-V-	.985	166.	400.	966.	666.			UE =			
297.6 KPA 5.33 4.63 KPA	100	1.640	1.787	1.917	1.998	2.145	2 202	26262	2.443	2000	2.606	2.602	2 774	1000	L.00.1	2.931	3.011	3.098	3.179	3.232	3.288	3.322	3.347	3.372		.0462	6.284			
P0 = 2 2/D= PW =	1/10	.634	.597	•566	.547	.513	96	784	104	764	164	774	•	145	.314	.366	.354	.342	.330	.323	.316	.312	.308	.305		DELU=	II I	KG/M**3		
3.00	11/10	.976	.979	.982	.983	986	.987	800			100	944	2000	***	666.	966.	166.	866.	966.	666.	666.	666.	1.000	1.000		.3375	•	.1680		
MACH = ALPHA= RPM= 2	Y/DEL	690	160.	.123	.142	.204	.254	6306	000	04.	1000	356	• 586	149.	.707	.762	.823	.882	.947	1.000	1.063	1,129	1.188	1.318		DEL =	THETA=	RHOEF		
	0E																												MISEC	
318.2 K 0. 908582.	RHO/RHOE	.389	. 405	.425	.463	.496	.533	000	, ,	770	457	100	100	00/	. 165	148	.776	-802	.829	.860	.886	.914	.940	.962	.987	966.		.1250		
T0 = 318.2 PHI= 0. REL=6908582	U/UE	.504	.552	009	•674	.723	.768	. 193	170.	0 10	100	0 0	*00	80.0	106.	.918	.930	.941	.951	.961	.970	.978	.985	.991	166.	666.		DEL *=	" "	N N N
5.33 4.63 KPA	x	1.063	1.189	1.323	1.549	1.721	1.894	2.000	62152	417.7	2.302	Z 282	2.467	2.550	2.612	2.684	2.772	2.849	2.926	3.015	3.086	3.161	3.230	3.285	3,349	3.370		•	6.104	
P0 = 2	1/10	782	.751	.716	.657	.614	.571	.546	.517	864.	.480	.463	144.	.431	.420	1040	.392	.379	1367	354	343	.333	324	216	200	306	•	DELU	II I	KG/M**3
3.00	11/10	910	. 963	196	973	.978	.981	.983	.985	.987	.988	686.	.991	.991	266.	.993	766	995	900	100	700	800	000	000			0000		.02048	.1680
MACH = ALPHA= RPM=	YZDEL	0000	220	440	990	060	.123	.149	.198	.253	.307	.361	.414	.471	.521	580	444	700	47.0	000	070	1 40	1000	1.000	100-1	10101	115.1	1100	THETA	RHOE=

																														2	250				
J			40E																				_		•	- 11	٠.			E					
T0 = 310.1 K	30.	4534	RHO/RHOE	.331	.416	.463	164.	.526	5548	.587	.608	679.	040	0/9	7	1110	0610	920	000	0	160		100		0 0					1345	900	221			
31(.,	=718										ī							٠.		~ .	•		٠.	ο,	70 (.			88		14			
10	Hd	REL	U/UE	000	.584	.676	• 726	.762	.785	.821	.838	949	.864	.879	.91	\$26.	. 935	30.00		90	16.	96	.991		966		666	1.00		DEL	ָרָבְּי	N N N			
KPA		KPA	_	0	1	99	34	<u>س</u>	1	30	4	7.5	23	39	80	49	1,	27	92	68	68	35	06	52	6 4	368	177	182		4	60				
98.0	5.33	4.60	Σ	•	1.27	1.55	1.7	1.8	1.9	2.1	2.5	2.5	2,3	2.4	5.6	2.7	2.8	5.0	0 m	3.0	3.1	3.2	3.5	m m	m .	m m	e.	3.3		.049	6.2E				
- 2			10	16	28	•655	10	92	53	117	86	85	691	125	804	393	381	367	355	343	332	323	316	311	308	306	305	304		DELU=	 	/X**3			
9	Z/D	1	1	•		•	•	un.	un.	•		4.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		۵	I	KG/K			
00	0		11/10	916	996	476.	978	981	983	986	786	986	686	066	663	766	995	966	166	866	866	666	666	000	000	000	000	0000		3547	2134	1713			
3.00		20000	I	•	•	•	•	•	•	•	•										٠									•	•	٠			
HACK	NA TO	RPM=	DEL	000	0.47	074	102	126	150	203	263	313	360	.419	584	.644	.700	.759	.820	.875	.932	.001	*90	.116	.169	.238	.298	.338		DEL =	HETA	RHOE=			
3	•	i à	>																			-	-	7	_			_	ı		-	· ·			
																							۰											SEC	
¥		•	HOE			. 01	01		m	•	_	an	60	4	60	-	'n	. ~	ı,	2	e	1	. 2	8	e	σ.	0	3	J.	2	7		7 CM		
0	30.	88396.	RHO/RHOE	.331	375	.392	.412	.461	.493	.528	.551	.588	•608	.627	.648	.671	•695	.717	.745	• 762	.793	.821	. 862	.888	.903	.929	096°	.973	.985	. 995	.997		.1347 CM		526
	T= 30.	_=7188396.																															.1347	658.5	
0	DH1= 30.	REL=7188396.	U/UE RHO/RHOE			517 392																												658.5	
309.9	DHI= 30.	KPA REL=7188396.	U/UE	000	4.7	.517	574	.673	.721	•765	.788	.822	.837	.851	.865	.880	.893	*06	.917	• 925	.938	846.	.962	.971	.975	.982	066.	*66	166.	666.	1.000		DEL*= .1347	UE = 658.5	RUN II
9 KPA TO # 309.9	DHI 30.	60 KPA	U/UE	000	4.7		574	.673	.721	•765	.788	.822	.837	.851	.865	.880	.893	*06	.917	• 925	.938	846.	.962	.971	.975	.982	066.	*66	166.	666.	1.000		0484 DEL*= .1347	UE = 658.5	RUN II
9 KPA TO # 309.9	E 5.33 PHT= 30.	# 4.60 KPA	₩ O/VE	000	674. 070.	1.097	1.249 .574	1.550 .673	1.715 .721	1.884 .765	1.981 .788	2,135 ,822	2.211 .837	2,285 ,851	2,361 ,865	2.443 .880	2,522 ,893	2.596 .904	2.683 .917	2,736 ,925	2,831 ,938	2.911 .948	3.028 .962	3.099 .971	3,141 ,975	3,209 ,982	3.288 .990	3,323 ,994	3,353 ,997	3,378 ,999	3,384 1,000		.0484 DEL*= .1347	6.179 UE = 658.5	RUN II
0 = 297.9 KPA T0 = 309.9	20. S. 30.	4.60 KPA	₩ O/VE	000	674. 070.	.517	1.249 .574	1.550 .673	1.715 .721	1.884 .765	1.981 .788	2,135 ,822	2.211 .837	2,285 ,851	2,361 ,865	2.443 .880	2,522 ,893	2.596 .904	2.683 .917	2,736 ,925	2,831 ,938	2.911 .948	3.028 .962	3.099 .971	3,141 ,975	3,209 ,982	3.288 .990	3,323 ,994	3,353 ,997	3,378 ,999	3,384 1,000		U= .0484 DEL*= .1347	6.179 UE = 658.5	*+3
9-90E # 01 # 309-9	2.05 PHI 30.	0. PW = 4.60 KPA	O T/TO M U/UE	916 .000 .000	854. 050. 000	774 1-097 -517	736 1.249 .574	. 658 1.550 .673	15 1-715 -721	574 1-884 -765	983 .551 1.981 .788	986 .516 2,135 .822	987 .499 2.211 .837	988 .483 2.285 .851	989 .468 2.361 .865	990 .452 2.443 .880	992 .436 2.522 .893	993 .423 2.596 .904	994 .407 2.683 .917	994 ,398 2,736 ,925	996 .382 2.831 .938	370 2.911 .948	998 .352 3.028 .962	998 ,342 3,099 ,971	999 .336 3.141 .975	999 ,326 3,209 ,982	316 3.288 .990	0000 312 3,323 ,994	308 3.353 .997	000 305 3-378 999	000 .304 3.384 1.000		DELU= .0484 DEL*= .1347	H = 6.179 UE = 658.5	KG/M*+3
9-90E # 01 # 309-9	2.05 5.33 PHI= 30.	0. PW = 4.60 KPA	₩ O/VE	916 -000 -000	857 050 000 uso	1.097	736 1.249 .574	. 658 1.550 .673	15 1-715 -721	574 1-884 -765	.551 1.981 .788	986 .516 2,135 .822	987 .499 2.211 .837	.483 2.285 .851	989 .468 2.361 .865	990 .452 2.443 .880	992 .436 2.522 .893	993 .423 2.596 .904	994 .407 2.683 .917	994 ,398 2,736 ,925	996 .382 2.831 .938	370 2.911 .948	.352 3.028 .962	998 ,342 3,099 ,971	999 .336 3.141 .975	999 ,326 3,209 ,982	.000 316 3.288 .990	.000 .312 3.323 .994	.000 .308 3.353 .997	.305 3.378 .999	.000 .304 3.384 1.000		DELU= .0484 DEL*= .1347	.02181 H = 6.179 UE = 658.5	.1714 KG/M*#3
9-90 # 10 # 309-9	300 2 00 2 00 0 0 0 0 0 0 0 0 0 0 0 0 0	Z*10 Z/D= U*33 0 PW = 4.60 KPA	11/10 M U/UE	916 -000 -000		774 1-097 -517	736 1.249 .574	458 1,550 ,673	. 477 . 4615 1.715 . 721	. 175 1884 . 765	983 .551 1.981 .788	.986 .516 2.135 .822	987 499 2,211 ,837	.988 .483 2.285 .851	989 .468 2.361 .865	990 .452 2.443 .880	.992 .436 2.522 .893	.993 .423 2.596 .904	.994 .407 2.683 .917	994 398 2.736 .925	.996 .382 2.831 .938	.996 .370 2.911 .948	.998 .352 3.028 .962	. 998 .342 3.099 .971	999 336 3.141 .975	.999 .326 3.209 .982	1.000 .316 3.288 .990	1.000 .312 3.323 .994	1.000 .308 3.353 .997	1.000 .305 3.378 .999	1,000 ,304 3,384 1,000		.3599 DELU= .0484 DEL*= .1347	02181 H = 6.179 UE = 658.5	.1714 KG/M*#3

																													•	Ų			
		0E																										;	_	M/SEC			
8.60 50.8 K	11420.	RHO/RHOE	.327	.403	.430	.468	•206	.544	.574	.594	.608	.659	.657	.677	. 701	.726	.752	. 780	.808	.832	.869	.910	.950	.976	.987	.991	\$66.		.1471	660 · 4	245		
T0 = 309.8 K	REL=72	U/UE	000	•562	•625	.692	.744	.785	.813	.830	.840	.855	.873	.885	368.	.910	.922	. 933	* 946	.953	• 965	.977	.988	766	166.	866.	666.		DEL *=	UE =	RCN II		
99.0 KPA	4.54 KPA	1	000	1.222	1.403	1.619	1.812	1.981	2.106	2.189	2.241	2.320	2.421	2.491	2.571	2.653	2.736	2.820	2.903	2.975	3.079	3,189	3.293	3,360	3,388	3.400	3.410		.0532	6.307			
P0 = 2		T/T0	.916	.742	969.	.640	.591	.551	.522	.504	.492	.476	.456	2445	.427	.412	.398	.384	.371	.360	.344	.329	,315	.307	.303	.302	.301		DELU=	II	KG/M**3		
3.00	200002	TT/T0	.916	.964	696.	.975	.979	.983	.985	.986	.987	.988	066.	.991	.992	.993	*66	.995	.995	966.	766.	866.	666.	1.000	1.000	1.000	1.000		.3851	.02333	.1716		
MACH =	RPM= 2	Y/DEL	000	038	.053	.077	.111	.147	197	.253	.296	347	.402	.448	664.	.555	.614	.673	.728	.779	.847	.930	1.027	1.141	1,254	1,363	1.470		DEL =	THETA=	RHOE=		
																																EC	
		10E																														M/SEC	
310.0 K	219717.	RHO/RHOE	.326	.371	.380	•399	• 425	994.	867.	.541	.570	.588	.603	•625	•650	.671	*69*	.717	.748	.779	+08.	.824	•866	.914	.947	.973	• 985	066*	*66*		.1488	6.099	
T0 = 310.0 K	REL=7219717.																											066. 166.				6.099	
9.9 KPA	.55 KPA	U/UE	0000	094.	764.	. 553	•615	069°	.734	.783	.810	.825	.836	.852	.869	.882	.894	906.	.920	. 933	.943	.950	*96*	.978	.987	.993	966.		866*		.0532 DEL*= .1488	6.252 UE = 660.9	RUN II
299.9 KPA	.55 KPA	M U/UE	000 0000	094. 096.	1.043 .494	1.196553	1.374 .615	1.613 .690	1.775 .734	1.972 .783	2.097 .810	2.168 .825	2.224 .836	2,308 ,852	2.399 .869	2,475 ,882	2.551 .894	2,628 .906	2.727 .920	2.823 .933	2.895 .943	2,955 ,950	3,073 ,964	3,205 ,978	3.290 .987	3,358 ,993	3.388 .996	166.	3.410 .998		DEL*= .1488	6.252 UE = 660.9	RUN II
0 P0 = 299.9 KPA	0. PW = 4.55 KPA	3U/U M U/UE	000. 000. 916. 916	.807 .960 .460	.787 1.043 .494	.749 1.196553	.703 1.374 .615	.641 1.613 .690	.600 1.775 .734	.552 1.972 .783	.524 2.097 .810	.508 2.168 .825	.496 2.224 .836	.478 2.308 .852	.460 2.399 .869	.445 2.475 .882	.431 2.551 .894	.417 2.628 .906	.399 2.727 .920	.383 2.823 .933	.372 2.895 .943	363 2,955 ,950	.345 3.073 .964	.327 3,205 ,978	.316 3.290 .987	.307 3.358 .993	.303 3.388 .996	3.400 .997	.300 3.410 .998		DELU= .0532 DEL*= .1488	H = 6.252 UE = 660.9	.1723 KG/M**3 RUN =

97.9 KPA	5.33	4.55 KPA REL=7192505.	M U∕UE R	000.	1.306 .593	1.474 .649	1.618 .693	1.752 .730	1.879 .762	1.987 .788	2.053 .803	2.106 .814	2.176 .829	2,257 .845	2,353 .863	2.449 .880	2.524 .892	2.630 .908	2.804 .933	2.950 .952	3.082 .967	3.207 .981	3.311 .991	3.367 .997			0EL*=	6.370 UE = 659.3 M/SEC			
₽ 0 d	=0/Z	II 34 G	1/10	.916	.721	.677	.640	909.	.575	.549	.534	.522	.507	.489	.470	.450	.436	.417	.387	.364	.344	.327	.313	•306	.303	•	DELU=	II	K6/M**3		
3.00	2.10	20000-	11/T0	.916	996.	.971	.975	.978	.981	.983	.984	.985	986*	.988	686	.991	-992	.993	.995	166.	866.	666.	1.000	1.000	1.001		*4694	.02943	.1706		
MACH =	AL PHA=	RPM= 2	YADEL	000	670	.065	084	.105	.137	.181	.229	.261	•306	.357	.415	.476	.521	.587	*69	.787	.873	996.	1.061	1.151	1.239		DEL =	THETA=	RHOE=		
× 4 00	2001	23563.	מכחמי כחמי	20 KING	360	000	114	5.4	475	205	525	544	.561	578	594	612	642	.670	685	717	7.42	815	.863	800	952	776.	000		.1929 CM	558.6 M/SEC	251
T 0 = 3	1 1	REL=7223563.																							066				DEL *=	UE = (RUN II
SOR O KDA		4.55 KPA	2	000	1 4 4	1.050	1.271	1.428	1.648	1.786	1.892	1.979	2.048	2.120	2,182	2,251	2,361	2.462	2.514	2,619	2,762	0.60	3.056	3.178	3,293	3,359	3,390		.0	6.331	
		1 1 2 3 4	7 / 10	9 6	200	000	120	689	632	598	.572	.551	5535	519	505	491	468	448	438	614	304	369	34.8	23	316	308	304		DELU=	1	KG/M+*3
3.00		.0	71/10	910	190	040	7,00	970	976	979	.981	.983	984	986	987	988	066	166	666	400	900	766	666	1.000	1.001	1.002	1.002		.4765	.03047	
11001	N TO TO	E II	× / 25	100	400		440	0.00	-087	118	.148	.191	234	276	314	360	425	488	57.6	100	484	. 774	.863	047	1.045	1.138	1.217		DEL =	THETA=	RHOE=

RHO/RHOE	• 359	.411	6440	• 476	.504	•520	.534	.548	.575	.607	.640	•678	.715	.758	.801	.845	.890	.932	+96*	.982	.993		_	_	4 56			
UZUE	0000	.575	.657	.700	.738	.757	.773	.787	.812	.838	.861	.884	+06.	*26*	.941	.957	.971	.983	.991	966.	866.		DEL *=	UE =	RUN II			
I	0000	1.255	1.499	1.645	1.784	1.859	1.922	1.984	2.095	2.221	2.346	2.477	2.603	2.739	2.869	2.995	3.119	3.230	3,314	3.360	3,387		.0848	6.348				
	.916	.734	.671	.633	.598	.580	.565	.550	.524	164.	.471	.445	.421	.397	.376	.357	•339	.323	.313	. 307	*304		DELU=	II	KG/M**3			
TT/T0	.916	.964	.972	975	.979	.980	.981	.983	.985	.987	686	.991	266.	*66.	.995	766.	866*	866.	666.	1.000	1.000		.5477	.03545	.1709			
Y/DEL	000	.043	990	260	.125	.158	.190	.229	.297	372	444	519	.589	.667	.749	827	-902	982	1.068	1,144	1,226		DEL =	THETA=	RHOE	1		
																											ပ္ပ	
10E																										Z U	M/SE	
RHO/RHOE	. 369	•371	+04	.433	• 454	.482	.503	.518	.531	.543	.557	.571	.603	•639	•675	.710	.753	.801	.849	•889	. 926	.958	646.	266.			667.8 M/SE	455
UZUE RHOZRHOE																											667.8	RUN = 455
_	000.	• 452	• 560	•626	999•	. 709	• 738	• 756	.912 .770	.967 .783	•025 •796	.082 .809	.209 .835	.345 .861	.470 .883	.590 .902	.726 .922	.871 .942	.010 .959	.121 .971	.223 .982	.303 .990	• 995	.388 .998		DEL*= .2252	667.8	H
U/UE	000-	.937 .452	1.214 .560	1.403 .626	1.530 .666	1.677 .709	1.783 .738	1.855 .756	1.912 .770	1.967 .783	2.025 .796	2.082 .809	2.209 .835	2,345 ,861	2.470 .883	2.590 .902	2.726 .922	2.871 .942	3.010 .959	3.121 .971	3,223 ,982	3,303 ,990	3,355 ,995	3,388 ,998		DEL*= .2252	6.233 UE = 667.8	NOR II
M U/UE	000. 000. 916.	.812 .937 .452	.744 1.214 .560	.696 1.403 .626	.663 1.530 .666	.625 1.677 .709	.598 1.783 .738	.581 1.855 .756	.567 1.912 .770	.554 1.967 .783	.540 2.025 .796	.527 2.082 .809	.499 2.209 .835	.471 2.345 .861	.446 2.470 .883	.424 2.590 .902	.400 2.726 .922	.376 2.871 .942	.354 3.010 .959	.338 3.121 .971	.325 3.223 .982	.314 3.303 .990	.307 3.355 .995	.303 3.388 .998		DELU= .0822 DEL*= .2252	6.233 UE = 667.8	KG/M**3
	TITTO TITO M UIUE R	TI/TO T/TO M U/UE R .916 .916 .000	TT/T0 T/T0 M U/UE R .916 .916 .000 .000 .964 .734 1.255 .575	TT/TO T/TO M U/UE R .916 .916 .000 .000 .964 .734 1.255 .575 .972 .671 1.499 .657	TT/TO T/TO M U/UE R -916 -916 .000 .000 -964 .734 1.255 .575 -972 .671 1.499 .657 -975 .633 1.645 .700	TT/TO T/TO M U/UE R *916 *916 *000 *000 *964 *734 1.255 *575 *972 *671 1.499 *657 *975 *633 1.645 *700 *979 *598 1.784 *738	TT/TO T/TO M U/UE R -916 -916 .000 .000 -964 .734 1.255 .575 -972 .671 1.499 .657 -975 .633 1.645 .700 -979 .598 1.784 .738 -980 .580 1.859 .757	TT/TO T/TO M U/UE R 916 .916 .000 .000 .000 .000 .964 .734 1.255 .575 .972 .671 1.499 .657 .975 .989 .598 1.784 .738 .980 .585 1.952 .773	11/10 1/10 M U/UE R 916 916 000 000 964 734 1.255 575 972 671 1.499 657 975 633 1.645 700 979 598 1.784 738 980 556 1.952 775	TT/TO T/TO M U/UE R -916 -916 -010 -000 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -555 1-982 -773 -983 -554 2-095 -812	TT/TO T/TO M U/UE R -916 -916 -000 -000 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -565 1-922 -773 -983 -550 1-984 -787 -983 -554 2-095 -812	TT/TO T/TO M U/UE R -916 -916 -010 -0100 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -565 1-922 -773 -983 -550 1-984 -787 -985 -554 2-095 -812 -989 -471 2-346 -861	TT/TO T/TO M U/UE R -916 -916 -010 -0100 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -565 1-982 -773 -983 -550 1-984 -787 -985 -554 2-095 -812 -989 -471 2-346 -861	TT/TO T/TO M U/UE R -916 -916 -010 -0100 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -565 1-922 -773 -983 -550 1-984 -787 -983 -550 1-984 -787 -985 -554 2-095 -812 -989 -471 2-346 -861 -991 -445 2-477 -884	TT/TO T/TO M U/UE R -916 -916 -010 -0100 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -565 1-922 -773 -983 -550 1-984 -787 -983 -550 1-984 -787 -983 -550 2-095 -812 -989 -471 2-346 -861 -991 -445 2-477 -884 -994 -421 2-603 -904	TT/TO T/TO M U/UE R -916 -916 -010 -000 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -980 -598 1-784 -738 -981 -565 1-982 -757 -983 -565 1-984 -787 -985 -524 2-095 -812 -987 -497 2-221 -838 -992 -471 2-346 -861 -992 -421 2-603 -924 -994 -397 2-739 -924	TT/TO T/TO M U/UE R -916 -916 -010 -000 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -980 -598 1-784 -738 -981 -565 1-922 -757 -983 -556 1-984 -787 -983 -556 1-984 -787 -983 -524 2-095 -812 -991 -445 2-477 -884 -992 -421 2-603 -904 -994 -357 2-995 -957	TT/TO T/TO M U/UE R -916 -916 -010 -010 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -981 -559 1-922 -773 -983 -556 1-922 -773 -983 -554 2-095 -812 -989 -471 2-346 -861 -991 -445 2-477 -884 -995 -421 2-603 -904 -995 -376 2-869 -941 -995 -3376 2-895 -957	TT/TO T/TO M U/UE R -916 -916 -010 -0100 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -981 -565 1-982 -773 -983 -550 1-984 -787 -985 -554 2-095 -812 -987 -497 2-221 -884 -991 -445 2-477 -884 -992 -421 2-346 -861 -994 -337 2-739 -924 -995 -336 -339 3-119 -971	TT/TO T/TO M U/UE R -916 -916 -010 -0100 -954 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -981 -565 1-922 -773 -983 -556 1-922 -773 -983 -524 2-095 -812 -987 -497 2-221 -884 -991 -445 2-477 -884 -992 -421 2-346 -861 -994 -397 2-739 -924 -995 -376 2-995 -957 -998 -323 3-230 -983	TT/TO T/TO M U/UE R -916 -916 -000 -000 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -979 -598 1-784 -738 -980 -580 1-859 -757 -981 -565 1-922 -773 -983 -556 1-984 -787 -985 -556 1-984 -787 -989 -471 2-346 -861 -991 -445 2-477 -884 -992 -421 2-603 -904 -995 -376 2-995 -957 -998 -323 3-230 -983 -998 -323 3-319 -991	TT/TO T/TO M U/UE R -916 -916 .000 .000 -964 .734 1.255 .575 -972 .671 1.499 .657 -975 .633 1.645 .700 -980 .598 1.784 .738 -981 .565 1.922 .757 -983 .556 1.982 .757 -983 .556 1.984 .787 -987 .497 2.221 .838 -991 .445 2.477 .884 -992 .471 2.603 .904 -994 .397 2.739 .924 -998 .339 3.119 .971 -998 .339 3.230 .998 -998 .333 3.230 .998	0	TT/TO T/TO M U/UE RHO/RHO 916 916 916 916 916 916 916 916 916 916	TT/TO T/TO M U/UE R -916 -916 -000 -000 -964 -734 1-255 -575 -972 -671 1-499 -657 -975 -633 1-645 -700 -975 -633 1-645 -700 -975 -633 1-645 -700 -975 -598 1-784 -738 -981 -550 1-982 -757 -983 -550 1-984 -787 -983 -524 2-095 -812 -991 -445 2-221 -884 -991 -445 2-477 -884 -992 -421 2-346 -961 -994 -376 2-869 -941 -995 -376 2-869 -941 -998 -323 3-230 -998 -998 -323 3-330 -998 -999 -313 3-319 -991 -900 -304 3-387 -998	TT/TO T/TO M U/UE RHO/RHO 916 916 916 916 916 916 916 916 916 916	Y/DEL TT/TO T/TO M U/UE RHO/RHO 000 .916 .000 .000 .329 0043 .964 .734 1.255 .575 .411 008 .972 .671 1.499 .657 .449 008 .972 .671 1.499 .657 .449 125 .975 .633 1.645 .700 .476 125 .979 .598 1.784 .738 .504 126 .981 .565 1.922 .773 .520 127 .983 .524 .987 .757 .558 129 .981 .524 .984 .787 .548 297 .987 .497 2.221 .887 .607 244 .989 .471 2.346 .861 .640 519 .991 .445 2.477 .884 .678 519 .992 .421 2.603 .904 .715 589 .992 .421 2.603 .904 .715 589 .992 .421 2.995 .957 .845 502 .998 .339 3.119 .971 .890 1088 .993 .323 3.314 .991 .964 1088 .999 .339 3.314 .991 .992 1088 .999 .339 3.314 .991 .992 1088 .000 .307 3.360 .996 .993 1081 .000 .307 3.380 .998 .993 THETA= .03545 H = 6.348	TT/TO T/TO M U/UE RHO/RHO -916 -916 -000 -000 -329 -944 -734 1.255 -575 -411 -972 -671 1.499 -657 -449 -975 -633 1.645 -700 -476 -980 -580 1.859 -757 -520 -981 -565 1.984 -787 -548 -983 -554 2.095 -812 -578 -985 -524 2.095 -812 -578 -989 -471 2.346 -861 -640 -991 -445 2.477 -884 -678 -992 -471 2.603 -904 -715 -994 -397 2.739 -924 -715 -995 -313 3.319 -971 -890 -999 -323 3.230 -998 -932 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -964 -999 -313 3.314 -991 -966

		M/SEC
310.4 K 170.	RHO/RHOE • 411 • 448 • 448 • 448 • 506 • 521 • 534 • 560 • 534 • 560 • 589 • 620 • 620 • 688 • 726 • 726 • 726 • 930 • 949 • 940 • 940	.2353 658.6 299
TO = 3 PHI= REL=71	07UE 000 581 649 649 683 683 737 755 755 755 868 868 888 972 972 972 972	DEL*= UE = RUN =
298.4 KPA 5.33 4.73 KPA		6.216
P0 = Z/Z	7/T0 916 730 730 649 649 635 1649 1770 8517 315 315	DELU= H = KG/M**3
	999 999 991 971 975 986 986 998 999 999 999 999 999	
MACH = ALPHA= RPM= 2	7/DEL 000 0044 056 056 019 119 119 123 133 133	DEL = THETA= RHOE=
	lu	A/SEC
310.2 K 170. 192098.	AHO/RHOPRHOPPHOPPHOPPHOPPHOPPHOPPHOPPHOPPHOP	.2327 CI 658.3 M. 298
T0 = PHI= REL=7	000 C C C C C C C C C C C C C C C C C C	DEL*= UE = RUN =
298.4 KPA 5.33 4.74 KPA	33.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	.0856 6.166
P0 = Z/0=	7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0	DELU= H = (G/M**3
	7770 • 916 • 950 • 960 • 973 • 973 • 976 • 986 • 988 • 988 • 988 • 999 • 999 • 999 • 999 • 999	
MACH ALPHA= RPM=	7/0EL 0000 0013 0013 0013 0016 0016 0016 0016	DEL = THETA= RHOE=

																							M/SEC			
18.2 K 180. 12994.	3333	.433	.456	.489	.508	. 523	.535	-562	.591	•623	.655	.691	.728	.769	.807	.851	*89	• 935	896.	988		_	666.5 M/	494		
T0 = 318.2 K PHI= 180. REL=6912994.	U/UE	.619	.661	.714	.738	.756	.770	161.	.822	.847	.868	.890	606.	.928	.943	• 959	.972	*86*	.993	.997		DEL *=	UE =	NON II		
297.4 KPA 5.33 4.71 KPA	100	1.375	1.508	1.686	1.777	1.846	1.900	2.018	2,134	2,257	2,373	2.498	2.619	2.747	2,861	2.986	3,104	3.211	3.297	3.346		.0850	6.243			
P0 = 2 2/0= PW =	1/10	703	699.	.623	009.	.583	.570	.542	.516	.489	• 465	.441	.419	.396	.378	• 358	.341	.326	.315	.309		DELU=	II T	KG/14+3		
3.00 2.10 20000.	11/T0	696	.973	.977	.979	.980	.981	.983	.986	.988	.989	.991	.993	766 °	966	166.	866.	666.	1.000	1.000			.03640			
MACH = ALPHA= RPM= 2	Y/DEL	063	.059	*60	.123	.156	.188	.259	.326	396	.465	.538	.610	686	.758	838	.914	066	1.071	1.146		DEL =	THETA=	RHOE=		
																								S.	SEC	
T0 = 318.3 K PHI= 180. REL=6912994.	RHO/RHOE	.378	.410	.435	•459	.488	• 209	.522	.535	.561	.587	.618	.652	689	.732	.772	.817	.857	.897	.935	896.	.988		.2259 CM		463
10 = . PHI= REL=6	UZUE	.463	.563	•622	•666	.711	.739	.755	.769	.795	.819	.843	.866	.888	.910	.928	946	096.	.973	.983	.992	166.		DEL *=	UE =	RUN II
297.4 KPA 5.33 4.71 KPA	X 6	296.	1.218	1,385	1.523	1.675	1.779	1.841	1.899	2.010	2,118	2.235	2,362	2.489	2.629	2.753	2.886	3.001	3,109	3.209	3.294	3.346		.0829	6.115	
P0 = 34	1/10	806	.743	.700	• 665	•625	.599	.584	.570	.544	.519	464.	.468	.443	.417	.395	.373	.356	.340	.326	.315	.309		DELU=	"I	KG/M**3
3.00	11/T0	.955	*96*	696.	.973	.976	.979	.980	.981	.983	.985	.987	686	.991	266	466	995	166.	866.	666.	666.	1.000				.1703
MACH = ALPHA= RPM=	Y/DEL	014	030	.042	•063	060	.125	.156	.189	.259	.325	392	494	.538	.611	.680	.760	.835	.912	.987	1.067	1,145	•	DEL =	THETA=	RHOE=

																																										C C		
0.5 X	23	HO/RHOE	.328	.382	.403	.439	.457	.486	.501	.514	.532	.541	•552	.563	.585	5	• 605	.621	.635	.643	9	9	9	~	728	747	758	787	808	.830	.852	.871	.893	.915	.933	.963	.980	686	266		2449 CM	M/S	œ	
T0 = 31	EL=71	U/UE R	00000	.495	• 559	.640	.673	.717	.737	.753	.772	.782	.793	.803	.822	.832	.838	.849	.859	.864	.871	879	894	200	911	020	626	937	945	.953	960	996.	.973	.979	.984	-992	966	866	000		EL	w	RUN II	
98.2 KPA		Σ	00	40	21	44	55	7	77	84	6	96	0	0	14	5	2	ñ	(1)	3	4	4	'n	ŭ	, 4	<u> </u>	- 1	- a	à	ō	3.022	0	7	7	2	3	6	٣,	ָר.	•	.091	6.343		
P0 = 2	. 3	1/10	.916	.787	.745	68	.657	.618	009	486	5	Ç	5	S	S	'n	4	484	4	1467	4	451	454	767	+74.	000	704	365	200.	36.0	353	.345	.337	.329	.322	.312	307	304	606	•	DELU=			
3.00	0000	11/10	.916	95	.963	97	97	6	979	ď	985	6982	.983	984	o	Ö	786	ō	686	ő	Ö	Ö	, 0	766	566	266.	1000	066.	966	700	900	966	666	666	666	9		1.001	•	•	587	.03861	.177	
A C	4	/DE	00000	0	03	0.5	07	, =	י ר	1 4	200	, 6	259	287	926	367	486	417	744	46.5	784		110.		260.	000	400	660.	136		448	978	919	956	600	1.068	1 4 1	1 217	100	007.1	H	THETA=	HOH) }
Z.	.64	3	7850E	35	10	* C	0.6	90	44	19	88	50	1,	56	38	64	59	69	81	89	0.1	14	25	36	191	170	85	66	,32	.51	.770	312	334	355	868	325	643	962	174	066		L	Ε	36
= 310.	HI= 190 EL=72045	č	ř	•	•	•	•	•	•	•	•	•	•	•	•		•		_	_			_	_	ı	_			•	_	. 926					_	_	٥.		•	i		ייי מיייי	
	₫ ₢		5	•	· ·	•	C.	in.	9.	•	- -	7.					. 7	œ	•	•	Φ.	80	8	۰	æ	æ,	80	Φ,	6.	6.	6	·•	•	•	٠ <u>.</u>	•	•	•	٠ <u>.</u>	•	,	. ر		.
98.2 KP	5.33 4.74 KP	;	Σ	2 6		4 1	_	13	44	5	9	9	82	8	9	96	0	0.0	10	=	8	2	27	<u>ب</u>	40	4	4	ķ	9	9	2.757	8	6.	ĕ	7	~	Ñ	Ñ	E,	3	- (.0885	. 21	
0	= "		1770	6	4 .	8	78	4	68	•629	62	.602	20	.577	•565	r U	.544	23	.523	.516	•505	.495	4	4	.460	4	7 7	4	4	4	.395	*375	.365	•356	•339	.330	.323	.316	.312	.307	i	ш	H I	KG/M**3
0	2.10			91												98		6							6		6				966.				6	ŏ	Ö	•	ö			.5763	• 0385	76
IJ	ALPHA= RPM=		Y/DEL	00.	.013	.023	.027	.037	.057	.073	660.	.123	15	.175	20	.232	25	.283	,311	33	.360	.387	4	7 7	4	.519	.545	.577	.640	.678	.713	.787	.827	.860	.933	.976	0	0	õ	1,162		11	THETA=	HOE

																																		(125				
311.0 K	•	3418.	HO/RHOE	,328	904	124	944	.471	964	,514	527	545	,566	588	119	637	660	069	720	710	100	180	.820	.841	.877	.911	.941	. 965	.979	686.	966	0000		2360 5	63.0	223			
T0 = 311	DHI= Z	REL=7123	U/UE RI																															DEL*=		RUN II			
98.5 KPA	33	67 KPA								841	800	978	2.067	158	246	346	101	000	777	700	136	.832	.933	995	• 094	.186	•266	.327	• 363	.388	*402	.413		.0894	On .				
P0 = 29			1/10	.916	.739	.702	.672	.637	409	, c	9 4 4	ָ הארט הארט	000	0 0	000	074	- 1	404	100	014	.39	.381	.365	•355	.341	.328	.317	.310	.305	.302	.300	.299		W	11	(6/M*#3			
3.00	2.10	•0000	TT/T0	.916	.964	.967	.971	476	477	070	0 0 0	190	. 80	700	100	200	0 0 0	000	906	484	.991	.991	- 992	.993	.993	*66*	.995	.995	966.	.995	.995	966.		578	.03809	.1753 K			
MACH =	ALPHA	RPM= 2	Y/DEL	000	.036	640	090	0.085	116		0 0		270	336	000	100	000	\$ C	240.	466	• 653	.710	.768	.802	.861	.916	.972	1.030	1.085	1.146	1,201	1.256		DEL =	THETA=	RHOE=			
Y			L C	1																																	ĭ	M/SEC	•
313.1	210.	134186	a/UHa	305	. מיני	200	667	4.4.0		0.00	מיני	410.	22.	900	2) (.594	.618	• 644	•670	.701	.730	.758	.791	.823	854	889	917	040	965	973	980	985	986	066	663		.2282	662	N
T0 =	PHI	REL=713418	11/116	7 6	***	* 1 * 1	040.	1100	100	103	747	100	111.	67.70	.814	.832	.850	.867	. 883	006.	.914	156.	046	952	296	973	186	9	700	906	200	866	666	666	1.000		DEL *=	UE =	NO.
98	5.33	4.67 KPA	2				0110	V000	010-1	1.000	1 - 799	6/8-1	0 + 6 - 1	2000	2.106	2.196	2.286	2.382	2.473	2.580	2.673	2.761	2.860	2.956	3000	3-140	3.216	2.001	3.341	3,362	3.380	3.301	3.398	3.403	3.412		.0820	6.348	
0	=0/	38	1/10	9 (0		.001	100	907.	000	929	.594	-574	.559	0.540	. 521	-505	• 482	.463	.445	.425	604.	394	378	263	200	336	400	317		706	1000	406	303	305	102		DELU=	II	K6/K+3
0	2.10	0	11/10	200	016	106.	106.	000	1.60	975	.978	.980	.980	286.	.984	. 985	.987	.989	066.	.991	.993	700	500	900	000	000				•	•	•	1.002	, ,	•	•	55	.03595	75
MACH	AL PHA	RPM=	120/ >	•		100	050.	440	000	.087	121	.156	.189	. 239	.290	.349	.399	.453	.507	568	.622	-677	775	708	ים הים הים	410	070	•	•	•	•	•	1.247	•	•	•	DEL =	THETA=	1.1

																														1	S	
v			10E																										ı	_	M/SEC	
9.60	240.	85458	RHO/RHOE	.328	.424	.441	.465	.478	.503	.528	.551	.572	.600	.628	• 669	669.	.735	.772	.809	.848	.884	.923	.950	.972	.984	.991	966.	266				
T0 = 3	PHI=	REL=7185458.	U/UE	000	909.	.641	.684	.704	.737	•766	.790	.810	.832	-852	.878	•895	.913	• 926	* 944	.957	696*	.980	.987	.993	• 995	266.	966.	866.		DEL *=	UE =	SCN II
97.9 KPA		4.55 KPA	Σ	000	1.346	1.452	1.592	1.660	1.783	1.898	2.001	2.090	2.199	2.303	2.451	2.554	2.672	2.785	2.897	3.006	3.107	3.212	3,282	3,338	3.368	3,386	3,398	3.400		.0716		
		11 38 0L	T/T0	.916	.710	.683	.647	•659	.598	.570	.546	•525	.501	64.	.450	.430	604.	.390	.372	.355	.340	.326	,316	.309	•306	.303	.302	.302		DELU=	II T	KG/M**3
3.00	2.10	.0000	TT/T0	.916	.967	.971	.974	.976	.978	.981	.983	.984	.986	.988	066.	.991	.993	*66	.995	966.	166.	866.	866.	666.	666.	666.	666.	666.		.4734	.03049	.1709
		RPM= 2	Y/DEL	0000	.045	.056	.077	-092	.117	.160	.220	.275	.344	404.	.495	.552	.624	.692	.756	.826	.890	.961	1.017	1.075	1.123	1.170	1.214	1.228		DEL =	THETA=	RHOE=
			Į.	ı																										W.	M/SEC	
X	0.04	57032.	SHO/RHC	.329	.367	406	445	474	506	545	.568	.593	.623	.650	680	707	745	784	.822	864	200	931	956	974	.981	066	900	000	• • • •	.1842	660.2	234
TO	2 4	REL=7167032.				0.00	149	1697	740	780	805	826	848	866	48.6	000	215	456	948	962	070	982	989	000	995	266	400	900		DEL *=	111	R NOR
		4.55 KPA	2	000	000	1.221	1.470	1-636	1.796	1.958	2.066	2,169	2.281	7.380	404-6	2.576	2.608	2.816	800.0	2000	3 1 34	3.227	3000	3,330	3.357	3,270	2 201	1000	665.5	9990	491.9	
		= Md	1/10	916	200	742	678	7.5	ָ פַּ פַּ פַ	. ה ה ה	533	800	400	463	644	40.6	404	196	366	000	356	900	314	000	207	406		•	205.	DF1 11	1	K6/M**3
			-) d	t =	٠,	י ס		1 4	. 4) h	0		2 0	100	104	100	700	0 1	0	0 0	0	0 0	0 0	10		0	-	1 0	
6	200	0.0	T / T T	- 6	0	440	0 0			0	ō	Ö		•	•	•	•	•	•	•	•	•	•		• .	•	•	•	•	- 46	0 0	.1705
		0		•																			040									RHOE= .17

	6				N E OU		00		47.6 KPA	T0 = 3	110.5 K
" I	3.00		TLU 00 160		1		•				
DHA	2,10		5,33		300.		2.10			H I	3000
RPM=	•	# 3: 0.	4.52 KPA	REL=71	175612.	RPM= 2	200005	II 35 G	4.53 KPA	REL=71	164669.
i	77/10	1/10	¥	UZUE	RHO/RHOE	YADEL	11/10	1/10	Σ	U/UE	RHOZRHOE
700	4.0	910	000	0000	.326	000	916	.916	0000	000	.326
	016.	100	500	471	.373	040	969	698	1,391	.621	.428
200	956	700	200	560	405	071	975	.632	1.648	.700	.473
100	940	004	986.	9620	.427	103	979	588	1.823	747	.508
100	926	669	1.620	269	468	164	984	.535	2.048	.800	.559
0 0	070	000	1.809	.744	505	.267	.986	664.	2.210	.834	• 599
101	F 40	96.0	2.033	797	. 555	.304	.987	.487	2.268	.845	.614
200	000	200	2.207	.834	.598	.338	.988	177.	2.315	.854	.627
000	900	674	2.305	.853	.624	.397	.989	.458	2.407	.870	• 652
200	000	456	2.421	.873	•656	994.	.991	.437	2.516	.889	.683
471	100	436	2.524	.890	.686	.548	-992	.416	2.634	106.	.719
• 4	600	417	2.626	906	.717	.637	766	.392	2.769	.926	.762
0 6 4	400	306	2.759	.926	.759	.713	966	.375	2.876	.941	197.
100	900	776	2.862	.939	.793	908	166.	.354	3.015	.958	.845
100	700	. ה ה ה	3.005	.957	.842	.923	866.	.330	3.184	.976	906.
000	000	.331	3,172	.976	-905	1.043	666.	.313	3,310	686.	. 955
025	1.000	316	3.290	988	146.	1.162	1.000	.303	3,391	166.	986*
450	1,001	305	3,398	866	686.						
						DEL =	.3697	DELUZ	• 0499	DEL*=	.1407 CM
í	2710	-11	4040	DFL *=	.1410 CM		.02236	# I	6.291	nE =	661.2 M/SEC
	0226	H I	6.252	uE =	660.7 M/SEC	EC RHOE=	.1704	K6/N++3		RUN II	254
	1704	KE**X/SX		RUN II	253						

		m																													2	,	M/SEC		
10.1 K	36268.	RHO/RHOE	0000	711	100	, t	975	9.044	115.	.598	•615	•632	.657	.683	.708	.736	.761	.789	.815	.845	.876	.907	.932	.955	.971	.984	166.	.995	866		0	J (2200	_	
T0 = 310.1 K	REL=716	U/UE											.872	.887	006.	.914	• 925	.937	946	.957	.967	976.	.983	.989	.993	966.	866.	666	1.000		1		9 E	202	
298.0 KPA 5.33	4-60 KPA	I	000	1.456	1.576	1.733	1.844	1.964	2.098	2.182	2.248	2.323	2.402	2.491	2.574	2.664	2.743	2.828	2.904	2.990	3.076	3,161	3.225	3.285	3.328	3,358	3.376	3.388	300	1000		1/40.	• 30		
P0 = 2	- H	T/T0.																													L	OECU=	T :	KG/M**3	
3.00	00	TT/T0	916.	.971	.974	.978	.980	.982	.985	.986	.987	.988	.989	.991	.992	.993	766	995	966	966	2007	000	000	000	666	1.000	1.000	000		000-1		.3421	.02044	.1719	
MACH =	~	Y/DEL	000	.057	.067	260.	.113	.139	.183	.225	• 280	.332	.392	.452	508	585	622	682	739	208	498	400	000	1.047	1.110	1.172	1.236	300	1000	1.357		DEL =	THETA=	RH0E=	
		ī'n																															T.	M/SEC	
7 6.00 330.	87593.	RHO/RHOE	.330	.377	.392	• 425	464	496	545	.575	599	623	638	660	2 4 4	707	100	757	101	1000		000	000	700	476	740	700	000	166.	966.	166.		1285		277
T0 = 3	REL=7187593	UZUE	0000	.472	.521	.607	.681	127	783	.811	832	0 4	9.70	. 873	0 0			700	924	000		106.	. 404	0.40	106.	000		1660	966.	666.	1.000		DEL *=	UE =	RUN
e c	4.60 KPA	2	0000	.985	1.109	1.345	1.575	1.738	1.066	20098	2.186	0.00	0.4.0	000	704.0	2000	6000	2000	2 621	15000	2 927	2.00.0	5.00°	0. L 4. C	2020	3.50	010	700.0	3.376	3,387	3,391		.0457	6.191	
11 1		1/10	.916	801	.771	.711	[5.5]	619	ָ ע ע ע	925	400	4 4 4	424	4 4	144	1007	0740	000		. 606	000	• 354	2 to 0	. 333	.36.	0.00	.310	.30.	.305	.304	.303		DELU=	II I	K6/H**3
3.00	0.0	11/10	.916	956	1961	996	720	0.0	0 0 0	200	700	000	0000			166	266	566.	466	266	966.	166.	866	666	666.	666.	1.000	1.000	1.000	1.000	1.000		.3494		.1716
MACH	ALPHA=	YADEL	000	020	033	740			36.	177	710	710	*		0000	1 0	4 1	455,	-605	900	. 125	281.	.845	906	196.	1.023	1.082	1.150	1.210	1.268	1.329		DEL =		RHOE

			S
× •	HOE		I N
60° 60° 19947	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	46666 H H A B C C C C C C C C C C C C C C C C C C	•1822 655•6 385
T0 = 3 PHI= REL=71		1	DEL*
97.8 KPA 5.67 4.87 KPA		33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.0688 5.959
PO = 2	7 7 9 1 8 9 1 8 9 1 8 9 9 8 9 9 8 9 9 9 9 9		. DELU= H = KG/M**3
3.00	11/10 951 951 961 973 973 979 979 983	988 988 988 988 988 988 988 988 988 988	.4549 .03058 .1740
MACH = ALPHA= RPM=	7/DEL 0034 0034 0039		DEL = THETA= RHOE=
	0		CM M/SEC
310.4 K 0. 243553.	H W W W W W W W W W W W W W W W W W W W	4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 40
TO = PHI= REL=7	U/UE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		898
98.9 KPA 5.67 4.88 KPA	0.010101010000000000000000000000000000	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.9
PO = 2 Z/D= PW =	7	0.0.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	DELU= H = KG/M**3
3.00	11/10 956 965 969 973 973 975 979 979 985	00000000000000000000000000000000000000	4576 3047 1759
MACH =	Y/DEL 000000000000000000000000000000000000		

																																7	M/SEC			
× 0		158.		RHO/RHOE	345	458	964	,530	559	580	409	625	650	.670	069	.714	.736	.758	.781	.803	.828	.853	.879	.903	.931	•955	.972	+16.	.987	466.		_	655.8 M	339		
C.CIF - A.	DHIE STE	REL=7115158									100			873																666		- 11		н		
	ANA	XPA A																												.03)	67	-			
	20.76	4.87									2000																						6.107			
		=0/2		1/10	0 18	4.05		103	177	100	9.1		200.	0 4	4 5 5 5	100	404	414		106	270	440	25.0	348	337	329	323	322	910	216	010	ווווווווווווווווווווווווווווווווווווווו	בי ה ה ה	KG/M**3		
	3.00	2.10	•0000	11/10	9 0	040	7)(4		000	. 983	.984	986	986	686.		166.	366	266	+ u	066	966	066	800	900	900	1.000			000	1.000	100.1	3536	01660	1726		
		ALPHA=		1	17055		160.	160.	.135	.183	.224	.273	.317	.370	024	# L	014°	.000	609.	.661	. 113	99/	618	.00	176.		1.004	100	160.1	1.148	1.199	i	THETA-	1 1 L L L L L L L L L L L L L L L L L L	-120	
					M																	٠													T.	M/SEC
	11.8 K	0	63731.		RHO/RHC	.345	•366	.437	.465	.493	.513	.530	.559	.583	009.	.622	.646	• 665	.687	.708	.728	.752	.779	.806	.828	.854	.872	.892	.919	.947	.971	.984	.993		1357	654.5
	T0 = 3	PHI= 0.	REL=71		U/UE	0000	.505	909.	661	.706	.733	.754	.786	.808	.823	.841	.858	.870	.884	.896	906.	.918	.930	.942	.950	696	996.	.972	.980	.988	.995	866.	1.000	i	DEL *=	= an
		67			I	0000	1.054	1.324	1.490	1.639	1.736	1.813	1.941	2.038	2.108	2.190	2.276	2.344	2.419	2.489	2.553	2.629	2.711	2.794	2.855	2.929	2.979	3.033	3.104	3-177	3.237	3.270	3.291		.0496	900.9
		2/0= 5			T/T0	.918	.785	717	474	635	611	592	.561	538	.523	.504	486	.472	457	.443	.431	.418	.403	.389	.379	.368	.360	.352	342	332	324	.319	.317		DELU=	H
	6	2.10	•		TT/T0	.918	096	696	973	077	070	186	480	986	987	988	066	166	200	600	466	966	966	766.	766.	866	666	1.000	1.000	1.001	1.002	1.002	1.002		.3575	
	1	A PHA	RPM		YADEL	000	150	.047	240		2000	111	177	600	265	313	362	408	457	506	5553	608	651	704	744	808	854	906	067	1,001	1.074	1.126	1.183		DEL =	THETA

70 = 311.1 K	HI= 30.	REL=7169720.																	.920 .761															UE = 654.5 M/SEC		
KPA		4.78 KPA																	2.651												~			6.103		
		H T	1/10	.918	.681	•99•	• 635	.614	.597	.563	.540	.521	.502	.486	694.	.454	.438	.426	.413	-402	.387	.375	.364	.354	.342	• 336	.327	.321	.318	.316	.315		DELU=	H	KG/W**3	
3.00	2.10	20000																	*66														.3653	.02282	.1734	
MACH	ALPHA=	RPM	Y/DEL	000	.063	.070	*60	.116	.137	.184	.232	.273	.321	•369	.418	.466	.517	•566	.618	.664	•716	.768	.820	.871	.931	.986	1.042	1.093	1,143	1,193	1,262		DEL =	THETA=	RHOE=	
310.9 K	30.	REL=7162905.	RHO/RHOE	.342	.392	.423	.440	. 473	.492	.531	• 559	.584	• 605	.627	•650	.670	.691	.713	.736	.761	.789	.818	.839	•856	.873	.897	626*	.954	.973	• 985	*66°	866.		.1390 CM	654.4 M/SEC	361
10 =	PHI=	REL=7]	U/UE	000	644.	.572	.610	•673	-702	.754	.784	.807	.826	.843	.859	.872	.885	.897	606.	.921	.933	.945	.953	•959	.964	.972	-982	686.	*66	166.	666.	1.000		DEL *=	UE =	RCN II
298.2 KPA	5.67	4.78 KPA	1	000	.991	1.229	1.337	1.529	1.628	1.817	1.938	2.039	2.122	2.207	2.290	2.361	2.430	2.502	2.578	2.655	2.738	2.823	2.885	2.932	2.977	3.043	3.126	3.192	3.240	3,269	3.292	3,301		.0516	'n	
# 0d	=0/2	H A	T/T0	.918	.800	.741	.714	•663	•638	.591	.561	.538	.519	.500	.483	.468	.454	044.	.426	.413	.398	•384	.374	.367	.360	.350	.338	.329	.323	.319	.316	.315		DELU=	II	KG/W++3
ന	2.10		TT/T0	.918	.958	.965	696.	.974	.976	.980	.983	.985	.986	.988	686.	066.	.991	-992	.993	*66.	• 995	966.	166.	166.	166.	.998	666.	666.	1.000	1.000	1.000	1.001			.02330	
MACH	ALPHA=	RPM	Y/DEL	0000	.021	•039	.048	. 076	*60.	.142	.184	.230	.273	.319	.372	.417	094.	.510	.560	.610	.662	.715	•766	.816	.862	.914	.975	1.028	1.082	1,133	1.190	1.247		DEL =	THETA=	RHOE=

																																			ပ			
¥		•	HOE																																M/SE			
312.1	128593		RHO/R	.337	.438	.450	.471	.490	.523	.548	•568	.590	•612	•635	•656	119.	. 701	.723	.748	- 769	2610	*19*	1 6 0	. 0	910	626	.961	.979	066.	.995	866.	1.000		149	658.0	8		
T0 = 312.1	REL=7		UZUE	0000	.615	.640	.678	.707	.750	.778	197	.817	•835	.852	•866	618	-892	*06*	916	926	6,430	4400	406	0.70	0 10	984	066.	966.	866.	666.	1.000	1.000		DEL*=	= 3n	RUN =		
297.9 KPA	4.66 KPA		2	0000	1.360	1.433	1.554	1.654	1.811	1.924	2.007	2.097	2.181	2.267	2.342	2.415	2.495	2.568	2.645	2.711	7.7.7	7.840	126.2	3.063	3.13.	3,186	3.243	3.287	3,315	3.327	3,335	3,339		•0569	6.170			
PO = 04	NA	•	1/10	.917	.707	•688	.657	.631	.592	.564	.545	.524	• 506	.487	.472	.457	2445	.428	.414	204.	166.	380	300	746	755	.330	.322	.316	.313	.311	.310	.310		DEL U=	11	KG/M**3		
3.00	0000	•	TT/T0	.917	696.	.971	.974	926.	.980	.982	*86	.985	.987	.988	686	066.	.991	266.	666.	*66.	4000	966	0000	100	800	966	666.	•	1.000	•	•	•		38	.02423	1694		
MACH	RPM# 2		Y/DEL	000	• 052	.061	.078	660.	.146	.189	.224	.275	.320	.364	-407	. 448	.501	•546	165.	.640		137	1910	400	040	995	1.048	1.095	1,155	1.203	1.253	1,310		DEL =	THETA=	RHOE=		
																																					SEC	
			L.																																	X	1	
12.1 K	500.	350130	RHO/RHOE	.337	.386	398	.421	***	694.	.488	.520	.543	.569	.594	•615	•633	.654	•675	.700	.722	.748	.771	197	- 825	. 00	0 00	.921	.941	.961	976	.987	*66	866.	1.000))	1478 C	657.9 M/SI	379
T0 = 312.1 K	PHI= 60.	MEL#/132013.	RHO/R																							640										= .1478 C	57.9	H
98.1 KPA	67	A LA	U/UE RHO/R	000	787	086 .515	254 .578	402 .630	544 .675	646 .705	747. 667.	905 .773	.014	1115 .821	197 .838	.264 .851	337 .865	411 .878	. 497 . 893	*06° 695	.651 .917	722 .927	.799 .938	.881 .949	166. 846.		163	195 .985	245 .991	283 .994	312 .997	329 .999	.338 1.000	343 1.000		0550 DEI *= .1478 C	627.9	RUN =
0 = 298.1 KPA	.67	A-00 -4	M U/UE RHO/R	000	801 .987 .475	777 1.086 .515	1.254 .578	697 1-402 -630	660 1.544 .675	1.646 .705	747. 995. 1.799	569 1.905 .773	543 2.014 .799	520 2.115 .821	502 2.197 .838	488 2.264 .851	473 2,337 ,865	458 2.411 .878	441 2.497 .893	428 2.569 .904	2.651 .917	2.722 .927	388 2.799 .938	2.881 .949	364 2.948 .95/	353 3.019 .966	3-163 -980	329 3.195 .985	3.245 .991	3,283 .994	313 3,312 ,997	3,329 ,999	310 3,338 1,000	3.343 1.000		11 0550 DF1 *= 1478 C	6.091 UE = 657.9	#3 RUN =
00 PO = 298.1 KPA	•10 Z/D= 5•67	- PW III 4-00 NPA	T/TO M U/UE RHO/R	000 000 215	574. 7801 .987 .475	215 1.086 .515	900 373 1.254 .578	697 1-402 -630	974 . 660 1.544 . 675	633 1.646 .705	747. 1-799 .747	569 1.905 .773	984 .543 2.014 .799	986 .520 2.115 .821	987 .502 2.197 .838	988 .488 2.264 .851	990 .473 2.337 .865	991 .458 2.411 .878	992 .441 2.497 .893	993 .428 2.569 .904	994 .413 2.651 .917	994 .401 2.722 .927	995 .388 2.799 .938	374 2.881 .949	756 5.948 .957	998 .353 3.019 .955	086, 641, 266, 060	999 3,195 985	32. 3.245 .991	.000	766 333 3312 997	000 311 3,329 ,999	310 3,338 1,000	3.343 1.000		2707 DELLI= .0550 DEL *= .1478 C	26 H = 6.091 UE = 657.9	.1697 KG/M**3

																									3	NASE C	,			
17.1 K	94072.	RHO/RHOE	.341	1621		0	40	.525	• 560	• 596	•626	629	693	100	1100	00/	.804	.843	.887	916	. 963	066	800		2146	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	614		
T0 = 3	REL=6994072.	UZUE																							** 190	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO.		
98.3 KPA	4.80 KPA								1.950																	*180 *	_			
P0 = 2	E Md	1/10	810		2+/.	.683	.647	.596	.559	525	000	47.4	1	104.	.429	.408	.389	177	25.2	145		. 360	15.0	* 31*		DELU	H	XG/X**W		
3.00	200000	11/10	9 6	076	• 965	.972	.976	980	6 8 0	986	000		066.	266*	*66*	.995	966	000	0000	666	000.1	100.1	10001	1.002				.1702		
MACH H	ALPHA= RPM= 20	× / DE I	100	000	• 034	990°	.105	165	300	000	277	0000	954.	.511	.588	.658	77.5		0 0	200	196	1.052	1.124	1.202		DEL =	THETA=	RHOE=		
		u	٤		`																							X.	M/SEC	
116.1 K	PHI= 120. REL=7030269.	מחמי מחמי	מייני	040	.377	.389	.421	45.4	474		- 10	* to to	185.	.615	.650	.687	723	1	• 100	*61.	.837	.885	• 933	896.	066*	166.		.2168	0.099	
T0 = 3	PHI= REL=70	100	UVUE	0000	.430	674	572	1 4 4	000	.003	4	. 783	.814	.837	-862	288	500		126.	.937	.954	.970	.984	*66	666.	1.001		0EL*=	= 3n	NO.
98.5 KPA	5.67 4.80 KPA	:	Σ	0000	.877	600	1 233	1.600	744	796.I	1. / 68	1.936	5.069	2.179	2.304	454.6	0 0 0	200.7	2.662	2.771	2.896	3.028	3,155	3.244	3.299	3,318		.0820	6.094	
	Z/D=		T/TO	.917	, 826		100	04.	• 686	.655	•603	.562	.531	507	480	404		164.	.412	.393	.373	.353	.335	.323	,315	313		DFLU=) H	KG/M**3
3.00	2.10		11/10	.917	0.53	0 0	0000	. 905	.972	.975	.980	.983	986	988		066	266.	*66.	.995	166.	866	666	1.000	1.002	1.002	1.002		5216		1712
MACH	ALPHA=		Y/OEL	000	4.0	010	020.	• 035	.072	•109	.170	.232	309	285		704	.530	•607	.678	.751	834	916	700	1.076	1 1 2 5	000	1.6237		THETA	RHOEF
															•															

																																/SEC)			
			HOE																			4									S	Σ				
X		3482	RHO/RH	.344	414.	.435	.457	.488	.513	.536	.559	.588	.600	.621	.645	.668	169	01/0	747		800	.860	.889	.921	646	.973	.986	.992	966		1	ي ا	399			
~	HI= 150	969=	u.																												*		4			
-	PHIHA	REL	U/UE	0000	.541	.595	.641	*69°	.730	.758	.782	.810	.821	.838	.855	.870	. 885	006	216.	926	070	961	970	980	.988	966	866.	1.000	1.000		ב	<u> </u>	NIN	2		
40	1	KPA		0	4		ري. اي	L)	. 00	4	2	4	2	0	٩	80	6 0	۰	4	20 0	ر د د	i a	9 00	. E	9	ហ	6	23	~	į		.	-4			
1		.97	Σ	00	1.14	1.29	1.42	1.59	1.71	1.82	1.92	2.04	2.09	2.17	2.25	2.338	2.41	2.50	2.58	200	7.0	0 0	30.0	3.00	3.16	3.2	3.2	3.2	3		700	9	•			
•	V		0	00	· ~	9	: =	-		0.00	55	37	92	60	06	.473	21	0	56	60	30	1 0	0 4	9	33	2,5	21	6	8	2	-		1 4	2		
	107	M. A.	1/1	6	76	7	4	4		, ir	, is	ı	in	in.	4	4	4	•	4	4		3 6	י ר						. "	•	6	2 3	E 2	E / 9 Y		
	0 0		1 O	0	2 4	2 4	3 5	1.4	0 0		. 60	S C	86	88	0	.991	260	660	760	95	966	2 0	0 0	, ,	200		100	100	100	900	9	2 10	27.6	3		
•	٥-	000	11/	. 0	. 0	•	•	•	•	• 0							5	5	•	•	•	•	•		-	-	-	-	•	-	L	n	0	-:		
	n j	20		J C	۰ د) r	- 0	J F		٦.	- (*)	0		. ~) 4	m	พ้	ស៊	ű,	8	0	= :	ນ ເ	u 0	, ,	J 0	0 7	1 0	N 6	2			I A =	li Li		
	ACH.	AL PHA	10/	9 6	•	2 0	1 1	5 -	77.	100	ָ פֿ נ] ~	3 6		. 4	493	5	5.5	• 64	• 65	.7	8	0			•			- 7	7.7	i	DEL	THET	Z Z		
	Z •	4 (L	>	-																																
																																			SEC	
																																		I	s/	
	¥	•		A POE	+ L	ο.	* 1	n (, n	ø	ກເ	, (V 4	* 4	10	- 1-	. 0	. ~	9	0	7	4	m	0	NI		4 :	*	4	_	<u>س</u>	9		S	ž ×	_
	9	. 49		HO/KHUE	# C C C	• 365	4000	-415	. 433	• 456	700	¥00.	250	4000	0 7 0 1	714	630	6662	.686	.709	.737	.764	.793	.820	.852	.88	• 924	* C.	416.	.987	666.	966.		2452 CM	ĭ	398
	318.6	150.		x																														2452 CM	661.7 M/	9 6
	318.6	150.																																2452 CM	= 661.7 M/	9 6
	318.6	PHI= 150. REL=6918164														160. 018.																		2452 CM	661.7 M/	9 6
	KPA T0 = 318.6	PHI= 150. KPA REL=6918164		UZUE	000	.445	.478	• 544	• 590	.638	-085	. 723	. 152	000	96/	010	ָ פַּ פַּ	8.48	980	. 893	906	.921	.934	.945	.957	.968	.980	988	*66.	.997	866.	666.		3 DEL*= .2452 CM	5 UE = 661.7 M/	9 6
	8.3 KPA T0 = 318.6	.67 PHI= 150. .96 KPA REL=6918164		UZUE	000	.445	98 .478	.54544	.590	•17 •638	565 . 685	966 . 723	304 • 152	100	963 • 198		000 CC1	712	998	476 .893	906. 199	651 .921	735 .934	816 .945	196. 106	001 .968	086 860	176 .988	228 .994	258 .997	866. \$72	282 .999		0953 DEL*= .2452 CM	5 UE = 661.7 M/	9 6
	8.3 KPA T0 = 318.6	67 PHI= 150. 96 KPA REL=6918164		M UZUE	000.	606.	.988	1.154 .544	1.278 .590	1.417 .638	1.565 .685	1.696	1.804 . 152	106.1	1.993	2.075 .816	CCO. CCT.	2.217	2,348	2.476 .893	2.567 .908	2.651 .921	2.735 .934	2.816 .945	2.907	3.001 .968	3.098 .980	3.176 .988	3.228 .994	3,258 ,997	3.274 .998	3.282 .999		.0953 DEL*= .2452 CM	5.975 UE = 661.7 M/	3 RUN = 39
	= 298.3 KPA T0 = 318.6	.67 PHI= 150.		M UZUE	000.	606.	.988	1.154 .544	1.278 .590	1.417 .638	1.565 .685	1.696	1.804 . 152	106.1	1.993	530 2.075 .816	CCO. CCT.	494 C-C30000	461 2.398 a.880	2.476 .893	428 2.567 .908	2.651 .921	2.735 .934	2.816 .945	2.907	3.001 .968	3.098 .980	3.176 .988	3.228 .994	3,258 ,997	3.274 .998	3.282 .999		0953 DEL*= .2452 CM	= 5.975 UE = 661.7 M/	**3 RUN = 39
	P0 = 298.3 KPA T0 = 318.6	Z/D= 5.67 PHI= 150. PW = 4.96 KPA REL=6918164		1/10 M U/UE	.918 .000	.820 .909 .445	.801 .988 .478	.761 1.154544	.729 1.278 .590	.693 1.417 .638	.655 1.565 .685	.621 1.696 .723	.594 1.804 .752	106-I 0/5°	.549 1.993 .798	.530 Z.075 .816	CCO+ CCI+2 21C+	0000 15202 464°	2000 17000	446 2.476 .893	.428 2.567 .908	413 2.651 .921	.399 2.735 .934	.385 2.816 .945	.371 2.907 .957	.356 3.001 .968	.342 3.098 .980	.331 3.176 .988	.324 3.228 .994	.320 3.258 .997	.318 3.274 .998	.317 3.282 .999		19 DELU= .0953 DEL*= .2452 CM	04 H = 5.975 UE = 661.7 M/	22 KG/M**3 RUN = 39
	.00 P0 = 298.3 KPA T0 = 318.6	.10 Z/D= 5.67 PHI= 150. 0. PW = 4.96 KPA REL=6918164		/T0 T/T0 M U/UE	.918 .000	.820 .909 .445	.801 .988 .478	.761 1.154544	.729 1.278 .590	.971 .693 1.417 .638	.655 1.565 .685	.621 1.696 .723	.594 1.804 .752	106-I 0/5°	.549 1.993 .798	530 2.075 .816	CCO+ CCI+2 21C+	0000 15200 1640 127 7 127 1865	2000 17000	446 2.476 .893	.428 2.567 .908	413 2.651 .921	.399 2.735 .934	.385 2.816 .945	.371 2.907 .957	.356 3.001 .968	.342 3.098 .980	.331 3.176 .988	.000 .324 3.228 .994	.000 .320 3.258 .997	.318 3.274 .998	.000 .317 3.282 .999		819 DELU= .0953 DEL*= .2452 CM	04104 H = 5.975 UE = 661.7 M/	.1722 KG/M**3 RUN = 39
	3.00 P0 = 298.3 KPA T0 = 318.6	2 2 10 Z/D= 5.67 PHI= 150. 0 PW = 4.96 KPA REL=6918164		TT/T0 T/T0 M U/UE	000. 000. 816. 816.	.955 .820 .909 .445	.958 .801 .988 .478	.963 .761 1.154544	.967 .729 1.278 .590	. 971 .693 1.417 .638	.975 .655 1.565 .685	.978 .621 1.696 .723	.980 .594 1.804 .752	.982 .570 I.901 720	.984 .549 I.993 .798	.986 .530 Z.075 .61b	CCO CCI+2 71C+ /86+	0000 153.2 164.0 886.0 0000 115.0 174.0 000	088 8087 198	992 446 2.476 .893	993 .428 2.567 .908	994 413 2.651 .921	.995 .399 2.735 .934	.996 .385 2.816 .945	.997 .371 2.907 .957	.998 .356 3.001 .968	.999 .342 3.098 .980	.999 .331 3.176 .988	1,000 .324 3,228 .994	1,000 ,320 3,258 ,997	1,000 ,318 3,274 ,998	1,000 ,317 3,282 ,999		.5819 DELU= .0953 DEL*= .2452 CM	04104 H = 5.975 UE = 661.7 M/	.1722 KG/M**3 RUN = 39
	3.00 P0 = 298.3 KPA T0 = 318.6	2.10 Z/D= 5.67 PHI= 150. 0 PW = 4.96 KPA REL=6918164		TT/T0 T/T0 M U/UE	000. 000. 816. 816.	.955 .820 .909 .445	.958 .801 .988 .478	.963 .761 1.154544	.967 .729 1.278 .590	. 971 .693 1.417 .638	.975 .655 1.565 .685	.978 .621 1.696 .723	.980 .594 1.804 .752	.982 .570 I.901 720	.984 .549 I.993 .798	.530 Z.075 .816	CCO CCI+2 71C+ /86+	0000 153.2 164.0 886.0 0000 115.0 174.0 000	088 8087 198	992 446 2.476 .893	993 .428 2.567 .908	994 413 2.651 .921	.995 .399 2.735 .934	.996 .385 2.816 .945	.997 .371 2.907 .957	.998 .356 3.001 .968	.999 .342 3.098 .980	.999 .331 3.176 .988	1,000 .324 3,228 .994	1,000 ,320 3,258 ,997	1,000 ,318 3,274 ,998	1,000 ,317 3,282 ,999		.5819 DELU= .0953 DEL*= .2452 CM	04104 H = 5.975 UE = 661.7 M/	.1722 KG/M**3 RUN = 39

																														X	M/SEC		
17.6 K	170.	54776.	RHO/RHOE	.344	904.	.421	.450	.469	.489	.505	615	840	•575	209.	.631	•659	.689	.722	267.	261.	.829	.864	106.	.936	696.	. 985	666	966.		-	660.2 M	114	
T0 = 3	PH1=	REL=6954776.	U/UE	0000	.519	.561	.627	• 663	• 695	.718	• 736	.771	. 798	-822	.844	.864	. 883	.901	916	.934	646.	.961	.973	.984	.993	266.	666.	1.000		DEL *=	UE =	RON II	
8.0 KPA		5.00 KPA	x	0000	1.089	1.198	1.385	1.495	1.599	1.679	1.744	1.878	1.992	2.098	5.206	5.309	2.410	2.519	2.614	2.734	2.843	2.940	3.040	3,132	3.215	3.257	3.275	3.283		1660.	6.048		
		H A	1/10	.918	.777	.749	.701	•673	•646	•625	609.	.576	.549	.524	.501	644.	• 458	.437	.420	.399	.381	.366	.351	.337	.326	.320	.318	.317		DEL U=	II I	(G/M**3	
3.00	2,10	.0000	11/10	.918	.961	*96*	.970	.973	916.	.978	616.	.982	. 984	.986	.988	066.	.991	266.	*66°	966.	966*	166.	866.	666.	1.000	1.000	1.001	1.001		.6204	.04224	.1749 K	
		RPM= 2	Y/DEL	0000	030	.039	*90*	.088	.119	.143	.171	.228	.286	.345	407	•466	.529	.590	.648	.722	064.	•829	.925	.991	1.064	1,135	1.207	1.277		DEL =	THETA=	RHOE=	
																																ပ္ပ	
			OE.																												_	MISEC	
17.0 K	170.	.6252	RHO/RHOE	43	7	91	*	145	65	484	00	2	Ň	_	m	_		_	S	r.	82	20	~	-	37	0	~	3	9		88	28.6	0
11			풊	e.	'n	٣,	•	•	4	4	Ñ	S	.54	.57	.59	.627	.657	.684	.71	.74	7.	80	.85	.89	6	.97	86.	66.	66.		•25	629	4
T.0	PHI	REL=6982579.																										1.000				9	RUN = 4
X C	2 2 2 2 2 2	OO KPA	UZUE	0000	.387	.472	.545	•619	•658	•689	.713	.733	.768	• 795	.820	.843	.864	.881	868.	.915	.930	946	696	.973	.985	*66	866		1.000		DEL*= .	Φ	RUN =
X C	5.67	KPA	UZUE	000.	.777	.972 .472	1,155 ,545	1.360 .619	1.477 .658	1.578 .689	1,660 .713	1.732 .733	1.867 .768	1.977 .795	2.088 .820	2.198 .843	2,305 .864	2,398 .881	2.501 .898	2.604 .915	2.709 .930	2.821 .946	2.924 .959	3.033 .973	3.138 .985	466° ECC.E	3.264 .998	1.000	3.288 1.000		DEL*= .	6.042 UE = 6	RUN =
AGX C. AGC = AG	7.00= 5.67	5.00 KPA	TITO M UVUE	918 .000 .000	. 848 . 777 . 387	805 .972 .472	760 1,155 ,545	.708 1.360 .619	.677 1.477 .658	.651 1.578 .689	.630 1.660 .713	.612 1.732 .733	.579 1.867 .768	.552 1.977 .795	527 2.088 .820	.503 2.198 .843	480 2,305 ,864	.461 2.398 .881	.441 2.501 .898	422 2.604 .915	603 2-709 .930	385 2.821 .946	368 2.924 .959	352 3.033 .973	337 3,138 ,985	466 EGG E 300	3.24 .998	3.280 1.000	317 3.288 1.000		DEL*= .	6.042 UE = 6	KG/M**3

		*		
ν· ν Σ· ν	78H0E +3 228 51 70 35	0 4 8 1 1 8 4 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	990 997 977 977 977 977 977 977 977 977	99 99 90 90 93 93 97 1 M/SEC
12. 180 232	0 0 4 4 4 4		000000000000000000000000000000000000000	0000 0000 0000
T0 = 3 PHI= REL=71	000 000 000 000 000 000	.713 .731 .748 .763 .777	88888888888888888888888888888888888888	9998 9998 9999 0EL*=
5.67 5.00 KPA	00000 00000 00000 00000	27.72 7.79 7.90 9.90	2002 2003 2003 2003 2003 2003 2003 2003	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
P0 = 2 2/D= PW =	F-100 F-4	63 63 63 63 63 63 63 63		# E 3338
3.00 2.10 20000.	917/10 918 956 970 973	90 90 90 90 90 90 90 90		0000 000
A P B B B B B B B B B B B B B B B B B B	MOW SO T	13 16 19 19 19 19 19 19 19		MH HOWOL
	10E			E X SEC
312.2 K 180. 165754.		7 4 4 6 C C C C C C C C C C C C C C C C C	788. 788.	
T0 = PHI= REL=7	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7 4 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
98.5 KPA 5.67 5.01 KPA		38 49 50 73 73 85 85	1.9909	10 000
P0 = 2 2/0= PW =		64 63 63 63 63 63 63 63 63		
3.00				
MACH = ALPHA= RPM=		000111000	8470	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

																					ပ္ပ		
	0E																			_	M/SEC		
18.3 K 190. 31590.	RHO/RHOE	417	465	483	.525	.580	•606	.633	299.	.723	.759	. 795	.834	9 0	047	.974	.987	.993		• 5659	661.5	401	
T0 = 318.3 K PHI= 190. REL=6931590.	U/UE • 000	5506	959.	.708	-744	.802	•825	946	999	.901	.919	.935	.950	*04.	986	*66	166.	866.		DEL *=	UE =	NO.	
298.5 KPA 5.67 5.00 KPA	¥00	1.171	1.474	1.571	1.775	1.905	2,115	2.217	2.4322	2.525	2.636	2.746	2.859	2.00	3 163	3,231	3.263	3.277	,	.1050	6.060		
= 04 Z/D= Md	.918	.785	.678	.653	.601	6 9 0. 4 4 4	.520	.498	•476	436	.416	.397	.378	395.		324	320	.318	,	DELU=	H	KG/M+#3	
3.00 2.10	11/10 .918	.963	.972	.975	616.	982	986	.988	.990	993	*66.	666.	966.	166.	866.	1.000	1.000	1.000		.6347	.04388	.1749	
MACH = ALPHA= RPM= 2	Y/DEL	080	4000	117	.190	.252	367	.429	488	.612	.674	.739	-807	.875	146.	1.075	1.145	1.216		DEL =	THETA=	RHOE=	
	iai												,								I	H/SEC	
17.9 K 190. 52031.	RHO/RHOE	373	40	469	503	32	83	10	60	0 0	132	766	806	940	900	א ני	77	87	60			660.7	000
m or		• •	4 4	•	•	សិស	. u	•	9	0 1	•	•	•	•	•		• 0			•			
10 = 317.9 K PHI= 190. REL=6952031.		.495																				NE = 66	
8.3 KPA .67 .00 KPA	U/UE		.565	.664	717.	.753	.806	.829	.851	000	106.	.923	046.	• 956	9968	086	900	800	000		_1000 DEL*=	6.032 UE =	
X A A	. 000.	. 495	1.381 .626	1.497 .664	1.674 .717	1.809 .753	2.029 .806	2.132 .829	.851	2.452 .840	2-555	2.663 .923	2.780 .940	2.896 .956	2.998 .968	3.095	3000 0000	2 267	25.58		1000 DEL*=	6.032 UE =	RUN
298.3 KPA 5.67 5.00 KPA	1/T0 M U/UE .918 .000 .000	1.028 .495	.746 1.210 .565 .702 1.381 .626	.672 1.497 .664	.627 1.674 .717	.593 1.809 .753	.541 2.029 .806	.517 2.132 .829	.493 2.242 .851	472 2.343 .010 450 2.452 .890	431 2-555 -907	411 2.663 .923	.391 2.780 .940	.373 2.896 .956	.357 2.998 .968	.343 3.095 .980	3000 0000	25.5 25.5 21.5	פססי נשכיר שור	1000	DFLU= .1000 DEL*=	6.032 UE =	-1748 KG/M++3

		S
	m o	X/SE
316.3 K 210. 7000971.	AHOVRHOE 3455 434 4534 4534 6530 5538 5650 650 650 714 716 912 992	354
*	0/UE 000 000 0642 0723 758 758 831 811 857 896 996 996 996 1000	NOE E
298.3 KPA 5.67 4.96 KPA	1.6777 1.6729 1.6729 1.6729 1.6620 1.6620 1.663	6.063
PW = 04	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	DELU= H = KG/M+*3
3.00 2.10 20000	08744981887918459899111	.03988 .1748
MACH = ALPHA= RPM= 2	Y/DEL 0000 0042 0170 0170 1126 1126 1126 1126 11002 11002 11002 11002 11002 11002	DEL = THETA= RHOE=
		C.M. SEC
315.6 K 210. 030480.	346 346 385 450 429 457 457 457 543 653 653 663 663 663 772 777 777 791 870 870 913 983	
T0 = 3) PHI= 2 REL=70	0.000 0.0000 0.00000 0.	DEL*
298.4 KPA 5.67 4.96 KPA		
2 = 0d 2/0= PW =	7/10 1/4.	.319 DELU= H = KG/M**3
3.00	995 995 995 995 997 997 997 998 999 999 999 999 1000 1000	
MACH =	Y/DEL . 000 . 000 . 028 . 028 . 128 . 276 . 276 . 276 . 276 . 276 . 276 . 336 . 529 . 529 . 529 . 100 . 100	1.251 DEL = THETA= RHOE=

MACH =	3.00	= 0d	298.8 KPA	T0 = 3	310.0 K	MACH =	3.00	H 04	298.4 KPA	T0 = 5	
ALPHAE	7	Z/D=	9	n	•				.00		-047
RPM	0	11 2	8	ī	16040.		-00002		œ		814
L	TT/TO	1/10	`Ι	UZUE	RHO/RHOE	Y/DEL	TT/T0	1/10	1	U/UE	RHO/RHOE
10	410	.917	•	0000	.340	000	.917	.917	0000	000	0
2	954	823	•	.437	.379	.047	.967	.727	1.285	.591	•459
0.50	2965	.769	-	.531	904.	• 063	.970	.702	1.381	•624	***
9	1967	.734	-	.582	• 425	.079	.972	.683	1.454	.648	.457
07	972	.683	-	.650	.457	.108	.975	•655	1.562	.682	.476
113	976	648	7	.692	.482	.145	.977	•659	1.665	.712	964.
14	978	622	-	.720	.502	.174	.979	909	1.748	.735	.513
170	980	.601	-	.743	•520	•209	.981	.587	1.833	.757	.532
7:	982	.581	-	.765	.538	.243	.982	• 569	1.904	.775	.548
747	983	.566	-	.780	.552	.278	.984	• 553	1.973	.792	• 564
1 0	985	546	N	.799	.572	•309	.985	.538	2.037	908.	.580
322	986	.532	N	.813	.587	.346	.986	.524	2.101	.820	• 596
, 6	987	.516	N	.829	• 605	.381	.987	•509	2.167	.834	.613
, 6	988	.505	Ň	.839	•619	.418	.988	.495	2.231	.847	.630
1	989	487	Ň	.855	.641	.453	.989	.482	2.294	•829	.648
4	991	474	N	.868	099.	064.	066.	694.	2.354	.870	• 665
7.07	991	.461	N	.879	.678	• 526	.991	.458	2.412	.880	.681
S	992	6440	~	.889	•695	.562	266.	.446	2.472	.891	669.
, K	666	0440	N	868.	.711	.597	.993	.435	2,531	006.	.717
625	*66.	.427	Ň	606	.732	•635	.993	.454	2.591	.910	.736
665	995	.415	Ň	.919	.753	•619	*66*	.411	2.661	.921	• 159
×	966.	.405	Ň	.927	.772	.719	. 995	•366	2,731	.931	.782
-	966	.397	Ň	.934	.788	• 755	966.	.389	2.791	• 636	-802
. 2	166	.384	Ň	.945	.813	.795	166.	.379	2.857	.948	.825
Œ	866	.374	N	.953	.835	.832	.997	•369	2.917	•926	.846
.872	666	.364	2	.962	.860	.877	866.	.359	2.985	*96*	.870
.913	666	.354	m	.970	.884	.914	866.	.349	3.048	.972	*89*
Ó		345	m	.977	.907	.951	666.	.345	3.102	.978	.914
ŏ		.335	e	.984	.933	166.	•	.333	3.165	.985	.938
		.328	m	066.	• 955	1,035	•	.326	3.218	066.	• 626
5		.322	e	. 995	.973	1.069	•	.321	3.251	*66	.972
		.317	6	866.	• 985	1.119	•	.316	3.289	866.	.987
~		.314	m	1.001	966.	1,164	1.001	.314	3,308	666.	• 665
1.297	1.002	.314	e.	1.001	166.	1.245	•	.312	3,319	1.001	666.
i	L	1	077	DEI *	2025 C	DEL =	507	DET U=	083	DEL *=	212
THE R		I	• •	UE =	653.4 M/SEC	THETA=	.03433	I	6.191	± 30	654.7 M/SE
RHOE=	.1741		•	RUN =	371	RHOE=	139	K6/W##3		RUN H	-

	lu					
319.6 K 300. 886466.	RHO/RHDE .333	666 6723 6733		.676 .697 .718	805 805 805 805 883 907	
T0 = 31 PH1= 3 REL=688	U/UE .	.677 .723 .756	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888 889 900 400 415	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0
97.9 KPA 5.67 4.66 KPA	X 0 0 4				2.422 2.853 2.922 2.998 3.072 3.137	
P0 = 2 Z/D= P¥ =	1/T0 .917 .680	.655 .615 .583	2 2 3 3 4 4 4 4 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	4.51 4.37 4.12	4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.319
3.00	.917 .917	978	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9991	4 4 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	666.
MACH = ALPHA= RPM= 20	Y/DEL .000	110	.196 .239 .283 .327 .371	4 4 N N O	651 651 651 651 651 651 651 651	1.033
319.5 K 300. 889393.	RHD/RHDE •333 •380	6. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	. 500 . 500		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.907
T0 = PH1= REL=6	U/UE .000	.500 .598 .663	725 758 788 808 828	8862 875 888 899	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	976.
98.0 KPA 5.67 4.66 KPA	× 000	1.313	1.727 1.852 1.977 2.065 2.160	2.409 2.409 2.5409	2.612 2.633 2.733 2.862 2.930 3.000	3.206
P0 = 20 Z/D= PW =	.917 .917	785	.512 .581 .552 .531 .510	44444 44444 70-10-40 70-00-40	6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	327
3.00	.917 .917	959	8 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9666
MACH =	Y/DEL .000	026	118 1148 1198 1239	. 372 . 417 . 557 . 503		931 988 1045

																															/SEC				
× •	HOE																													ပ	I				
316.2 1 330. 05663	RHO/RHOE	338	.436	.463	. 482	.521	.550	.574	.596	.617	.641	.663	.684	. 709	.734	. 758	.179	.800	.826	.850	.874	.903	.926	.951	.973	.987	.993	.997			661.6				
T0 = 316.2 K PHI= 330. REL=7005663.	UZUE	000	+09*	. 663	• 695	.747	.779	.803	.822	.839	•856	.871	.883	.897	.910	.921	.931	.939	646.	.958	•966	.975	.981	.988	*66*	866.	666.	1.000		DEL *=	nE =	RUN II			
298.3 KPA 5.67 4.78 KPA	I	000	1.324	1.504	1.609	1.798	1.926	2.030	2.116	2.197	2.284	2.365	2.435	2.518	2.599	2.674	2.740	2.802	2.876	2.945	3.009	3.089	3.148	3.214	3.269	3.304	3,320	3,330		.0575	6.258				
P0 = 2 2/0= PW =	1/10	.917	.717	.670	.643	.595	.564	.540	.520	.502	• 484	.467	.453	.438	.423	604.	.398	.388	.375	• 365	.355	.344	.335	.326	.319	.314	.312	.311		DELUE	II.	KG/Mee3			
3.00 2.10 20000.	TT/T0	.917	.968	.973	.976	.980	.982	.985	.986	.987	.989	066.	.991	.992	.993	*66	966.	966.	166.	166.	866.	666.	666	1.000	1.001	1.001	1.001	1.001		.3791	.02379	.1711			
MACH = ALPHA= RPM= 2	YZDEL	000	• 059	620.	660.	.149	.189	.236	.281	.328	.371	.424	.465	.517	.568	.615	999.	.714	.767	.821	.871	.923	.972	1.027	1.083	1.138	1.189	1.248		DEL =	THETA=	RHOE=			
																																	į	C	
~ .	40E																																_	MISEC	
315.6 K 330. 041803.	RHO/RHOE	337	.383	.411	**	*47*	964.	.514	.532	.560	.581	.601	.624	.646	.670	-695	.715	.744	.771	. 195	.818	.838	.857	.879	.907	.932	.957	.975	.986	.993	966*		.1431	4.099	386
T0 = 315.6 PHI= 330. REL=7041803	U/UE RHO/RHOE																																_	4.099	RUN = 386
98.2 KPA T0 = 315.6 5.67 PHI= 330. 4.78 KPA REL=7041803		000	640	181 .553	.402 .631	.567 .683	.682 .716	.771 .741	.762	.975 .791	.059 .810	139 .827	.225 .845	.308 .861	.390 .876	.465 .889	.540 .901	.635 .916	.719 .928	.789 .938	.856 .947	.913 .954	.967 .961	.028 .968	.102 .977	.167 .984	.232 .991	.278 .996	*306 *998	.323 1.000	.330 1.001		0527 DEL*= .1431	123 UE = 660.4	11
.67 PHI= 330. -78 KPA REL=7041803	U/UE	000.	640	1.181 .553	1.402 .631	1.567 .683	1.682 .716	1.771 .741	1.853 .762	1.975 .791	3 2.059 .810	5 2-139 .827	2.225 .845	2.308 .861	2.390 .876	3 2.465 .889	3 2.540 .901	5 2.635 .916	2.719 .928	2.789 .938	7 2.856 .947	2.913 .954	361 2.967 .961	352 3.028 .968	342 3.102 .977	333 3.167 .984	4 3.232 .991	3.278 .996	3.306 .998	3,323 1,000	1 3,330 1,001		ELU= .0527 DEL*= .1431	= 6.123 UE = 660.4	11
0 = 298.2 KPA T0 = 315.6 /D= 5.67 PHI= 330. W = 4.78 KPA REL=7041803	M U/UE	.917 .000	.805 .971	.753 1.181 .553	.696 1.402 .631	.653 1.567 .683	.624 1.682 .716	.602 1.771 .741	981 .582 1.853 .762	983 .552 1.975 .791	985 .533 2.059 .810	.515 2.139 .827	.497 2.225 .845	990 .479 2.308 .861	.462 2.390 .876	.448 2.465 .889	993 .433 2.540 .901	.416 2.635 .916	995 .402 2.719 .928	996 .390 2.789 .938	997 .379 2.856 .947	998 .370 2.913 .954	998 .361 2.967 .961	998 .352 3.028 .968	.000 .342 3.102 .977	.000 .333 3.167 .984	.001 .324 3.232 .991	.002 .318 3.278 .996	.001 .314 3.306 .998	.002 .312 3.323 1.000	.311 3.330 1.001		3726 DELU= .0527 DEL*= .1431	= 6.123 UE = 660.4	KG/M++3 RUN =

			ĮĮ.																										Ŧ,	M/SEC		
15.5 K	•	40174.	RHO/RHOE	.345	.503	.526	.550	.570	.588	• 605	•632	.658	.685	.715	.740	.770	.795	.826	.852	.880	.910	.936	.962	.974	686.	966.	866.		.0991		350	
T0 = 3	PHI= 0.	REL=70	U/UE	000	.715	.745	.772	.793	.809	.824	.845	.863	.880	868.	.911	.925	.936	976.	.958	.967	.977	.985	-992	966.	666.	1.000	1.001		DEL *=	nE =	RUN II	
98.4 KPA		4.97 KPA	Σ	000.	1.662	1.771	1.878	1.963	2.035	2.100	2.205	2.295	2.388	2.490	2.569	2.662	2.736	2.825	2.900	2.976	3.055	3.124	3.189	3.221	3.258	3.273	3.278			6.178		
	=0/2		1/10	.918	.630	.602	.576	.556	.539	.524	.501	.482	.463	6449	.428	.412	•399	.384	.372	.360	.349	.339	.330	.326	.321	.319	.318		OEL U=	u I	KG/W++B	
3.00	4.20	200002	11/10	.918	.978	.980	-982	.984	.985	.987	.988	066.	.991	.993	466.	.995	966.	166.	866.	666.	1.000	1.000	1.001	1.001	1.001	1.002	1.002				.1758	
MACH	ALPHA=	RPM= 2	Y/DEL	000	.084	.112	.143	.170	.200	•229	.290	.348	.408	479	.538	.603	.663	.736	797.	.867	.934	966.	1.073	1,123	1.214	1.283	1.358		OEL =	THETA=	RHOE=	
																															M/SEC	
∞		52.	RHO/RHOE	4 ئ	17	54	88	.511	58	16	56	26	83	13	37	68	01	30	25	71	00	35	9	75	88	46	96	161				0
313,	PHI= 0.	71083	RHO	.345	4	4	4.	S.	ស	S.	•	•	•	-	. 7	. 7	80	8	80	80	6.	6.	6.	6.	6	6.	6.	6.			655.1	
101	PH]=	REL =	U/UE	000.	.547	•635	*69	.727	.782	.819	.842	.863	.880	868	.910	• 925	.939	.951	.959	• 965	.975	.984	.866.	966.	1.000	1.001	1.002	1.002		0EL*	UE =	S S S
298.6 KPA	5.67	4.97 KPA	Σ	000	1.158	1.404	1.590	1.705	1.916	2.075	2,185	2.291	2.386	2.485	2.563	2.658	2.755	2.839	2.902	2.955	3.033	3,115	3,187	3.226	3.258	3.272	3.278	3,280		.0364	5.989	
P 0 =	=0/2	H 3	T/T0	.918	.760	169.	.648	.619	.567	.530	• 506	.483	.464	444.	.430	.413	.396	.382	.372	•364	.352	.340	.331	.325	.321	.319	.319	.318		DELU=	II I	KG/H+#3
0			,0	80	4		91	4	84	98	68	060	266	666	96	96	160	966	666	666	.000	001	002	200	003	003	1.003	003		90	01664	
3.0	4.20	0	TT/T	.91	96.	6	6	6	6	6	5	6.	•	•	6.	6.	6.	•	•	•	1		-	-	7.	-	-	7		.27	.016	•
MACH = 3.0	**	RPM= 0.	F	00				.101													-		.068		.207						M=	

HACH = 3.00 PD = 298.9 KPA TO = 397.9 K MACH = 3.00 PD = 299.0 KPA TO = 398.8 K ACH = 4.00 PD = 299.0 KPA TO = 398.8 K ACH = 4.00 PD = 299.0 KPA TO = 398.8 K ACH = 4.00 PD = 299.0 KPA TO = 398.8 K ACH = 4.00 PD = 299.0 KPA TO = 398.8 K ACH = 20000. PW = 4.00 PD = 299.0 KPA REL=7260397. Y/DEL T/YOE TY/O TY/O M	
3.00 PO E 298.9 KPA TO E 307.9 K MACH = 3.00 PO E 299.0 KPA TO E 30.0 PHI = 3.00 PHI = 3	<u>u</u>
3.00 PO E 298.9 KPA TO E 307.9 K MACH = 3.00 PO E 299.0 KPA TO E 30.0 PHI = 3.00 PHI = 3	740/47 - 440 - 440 - 640 - 660 -
3.00 PD = 298.9 KPA TD = 307.9 K MACH = 3.00 PD = 299.0 4.20 Z/D= 5.67 PHI= 30. ALPHA= 4.20 Z/D= 5.67 7.01	0/UE 0000
3.00 PO = 298.9 KPA TO = 307.9 K MACH = 3.00 PO = 4.20 Z/D= 5.67 PHI = 30. ALPHA = 4.20 Z/D= 7.00 PHI = 3.00 PHI = 20000. PHI = 717 KPA REL=7309357. RPM = 20000. PHI = 7170 T/TO T/TO T/TO 1.20 0.00 0.00 0.340 0.00 0.01 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.918 0.928 0.928 0.928 0.928 0.928 0.928 0.938 0.9	15288 15388 15388 15388 2553 2553 2553 2553
3.00 PD = 298.9 KPA TO = 307.9 K MACH = 30. 4.20 Z/D= 5.67 PHI= 30. 0. PW = 4.77 KPA REL=7309357. RPM= 200 17/10 T/TO	07.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.00 PO = 298.9 KPA TO = 307.9 K MACH = 6.20 Z/D= 5.67 PHI= 30. ALPHA= 0. PW = 4.77 KPA REL=7309357. RPW= TT/TO T/TO W U/UE RHO/RHOE Y/DEL 917 .000 .000 .340 .003 .003 .003 .003 .003	71/10 • 917 • 976 • 980 • 981 • 981 • 988 • 980 • 990
3.00 PO = 298.9 KPA TO = 307.9 K 4.20	Y/DEL .000 .073 .073 .124 .124 .125 .326 .326 .382 .382
3.00 PO = 298.9 KPA TO = 307.9 K 4.20	W
3.00 PD = 298.9 KPA 4.20 Z/D= 5.67 PA 0. PW = 4.77 KPA 917 917 000 940 917 767 1.128 970 623 1.689 981 623 1.689 988 623 1.689 989 623 1.689 989 623 1.689 998 623 1.689 998 623 1.689 998 648 2.268 999 742 2.683 995 640 2.48 995 640 2.48 997 2.88 997 2.88 998 2.268 998 650 2.96 998 3.08 1.000 3.53 3.023 1.000 3.53 3.023 1.000 3.53 3.253 1.000 3.253 3.253 1	A HONNE CONTRACT CONT
3.00 PD = 298.9 4.20 Z/D= 5.67 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00 PD = 4.20	11.5512 10.00 11.5346 11.5346 11.5346 11.5346 12.689 12.689 13.688
	7
	1771 101
X40 >	Y/DEL 0000 0000 0000 0000 0000 0000 0000 0
	.989 .488 2.268 .855 .639 .440 .991 .452 2.443 .886 .991 .469 2.359 .872 .665 .502 .993 .436 2.527 .900

			LJ.																				•									3	¥ ;	MISEC			
1.3 K	.09	0171.	RHO/RHOE	• 328	.437	.445	.477	.495	.517	• 555	.578	.600	•626	.653	•680	• 106	.730	. 755	.785	. 808	.832	.859	.885	.911	.943	.961	978	986	244.	966.	866.		1276	6009	385		
T0 = 311.3 K	PHIE	REL=716		0000																													DEL *=	nE =	NO.		
297.9 KPA		4.31 KPA	1	000.	1.433	1.483	1.654	1.747	1.853	2.018	2.115	2.203	2.301	2.397	2.492	2.579	2.656	2.736	2.826	2.895	2.964	3.042	3.111	3.184	3,265	3,313	3,357	3.384	3.394	3.401	3.407		.0482	6.46			
	2/D=		_	.916	•	•	•	•	•	•	•	•	Ī		Ī	Ī	•	_	-														DELU=	II I	KG/K+#3		
3.00	4.20	.000	TT/T0	.916	.970	.972	.976	.978	.980	984	.985	.987	.988	066.	.991	-992	.993	*66	666.	966.	166.	166.	866.	666.	1.000	1.000	1.000	1.001	1.001	1.001	1.001		.3261	.01974	.1619		
MACH =	ALPHA=	RPM= 20	YADEL	0000	.067	.071	960.	.121	.146	197	.246	.291	349	.397	.456	.508	.561	.615	.672	.727	787	840	668	.951	1.012	1.068	1.130	1.200	1,257	1.326	1.446		DEL =	THETA=	RH0E=		
			OE																																	M/SEC	
310.8 K	•09	65446.	RHO/RH	•328	.376	.393	.410	.447	.470	964.	.519	.551	.579	.603	•659	.654	.683	.709	.733	.762	.792	.820	.848	.875	906.	.932	.957	.970	.983	686	.993	966.	.997		.1233	660.1	381
T0 = 3	=IHd	REL=7165446	UZUE	0000	.476	.531	.578	•656	.695	.731	.759	.793	.818	.837	.856	.872	.889	.903	.915	.927	666	.950	096.	.968	.977	.985	.991	*66	166.	666.	1.000	1.001	1.001		DEL*=	UE =	RUN
97	5.67	4.30 KPA	1	000	966.	1,136	1.263	1.496	1.624	1.755	1.863	2.007	2,124	2.218	2.314	2.405	2.505	2.594	2.671	2.760	2.851	2.935	3,013	3.090	3.172	3.241	3.306	3,341	3,372	3,387	3,398	3.405	3.409	•	•	6.366	
0	11	3	1/10	.916	.798	.764	732	672	9	605	579	545	8 6	864	478	459	044	423	410	394	379	366	354	343	.332	.322	.314	.310	306	304	.303	302	301		DELU=	I	3
0	4.20	0	11/10	916	956	196	199	070	770	078	180	780	980	780	080	000	000	993	400	995	900	200	800	000				1.001							314	·	
ACH =	AL PHA=	RPM=	130/ A	000	420	850	0.00	420	400	701	200	100	9 0	705	246	415	475		575	640	200	751	8 8	278	000	900	1.058	1.108	1.178	1.230	1.302	1.366	1.502		DF!	THETAE	RHOE=

	Ĕ																				۱	T.	M/SEC				
17.9 K 120. 35651.	RHO/RHDE	.345	.387	.463	. 507	.550	.589	.621	• 655	.688	.724	.761	.799	.840	.883	.923	.962	.986	966.	266.		.2160	661.7	451			
10 = 317.9 K PHI= 120. REL=6935651.	UZUE	0000	.461	• 655	.723	.774·	.812	.838	.862	.883	.903	.921	.937	.953	.968	.980	.991	166.	666.	1.000		DEL *=	UE =	RUN			
298.0 KPA 5.67 4.62 KPA	I	000	.947	1.471	1.702	1.896	2.058	2.182	2.306	2.418	2.539	2.655	2.768	2.887	3.004	3.110	3.210	3.271	3.295	3.298		.0832	_				
P0 = 2 2/D= PW	T/T0	.918	.811	.678	.619	.571	.533	.506	.479	.457	434	.412	.393	.374	.356	.340	.327	.319	.316	.315		DELU=	H	K6/M**3			
3.00	11/10	.918	•926	.972	978	.982	.985	.987	.989	166.	-992	*66*	.995	966.	866.	666.	1.000	1.000	1.000	1.000		.5335	.03599	.1622			
MACH = ALPHA= RPM= 2	Y/DEL	0000	.025	160.	.153	.222	293	.359	.433	.498	.584	.654	.723	.801	.886	.963	1.044	1,116	1.202	1.280		DEL =	THETA=	RHDE=			
																									Ç	י נ	
	ÐE																								NO.		
317.7 K 120. 960772.	RHO/RHDE	.340	.371	.383	.422	. 448	.469	.489	.529	• 566	.598	.633	999•	.702	.741	.781	.827	.870	.913	.957	.985	966*	866.		.2283	606.3	
10 = 317.7 K PHI= 120. REL=6960772.	U/UE RHO/RHDE																									606.3	
A A	U/UE	000	004.	• 455	•575	.633	.670	.702	.754	.794	.822	.849	.871	.893	.912	.931	646	*96 *	.978		166.	1.000	1.000		.2283	UE = 662.3	
	U/UE	000 - 000	.808	.935 .455	1.241 .575	1.407 .633	1.524 .670	1.629 .702	1.821 .754	1.983 .794	2.112 .822	2.242 .849	2.360 .871	2.484 .893	2.607 .912	2.731 .931	2.864 .949	2.986 .964	3,102 ,978	3.215 .990	3.285 .997	3.314 1.000	3.317 1.000		.0899 DEL*= .2283	6.147 UE = 662.3	II ZOX
298.2 KPA 5.67 4.62 KPA	T/T0 M U/UE	.917 .000000	.841 .808 .400	.813 .935 .455	.738 1.241 .575	.695 1.407 .633	.665 1.524 .670	.638 1.629 .702	.590 1.821 .754	.551 1.983 .794	.521 2.112 .822	.493 2.242 .849	.468 2.360 .871	.444 2.484 .893	.421 2.607 .912	.399 2.731 .931	.377 2.864 .949	.358 2.986 .964	342 3,102 ,978	3.215 .990	.317 3.285 .997	.313 3.314 1.000	.313 3.317 1.000		DEL*= .2283	H = 6.147 UE = 662.3	XG/X**N

		Į.																											;		MISEC		
15.9 K	3908.	RHO/RHOE	.343	.397	.427	• 446	.463	164.	.519	.544	.567	• 590	.603	.642	.670	.701	• 733	• 766	.800	.834	.868	206.	.935	.961	626	.989	.993	166.			658.7	389	
TO = 315.9 K	REL=70		000	264.	.577	•622	•654	.700	.738	.768	.791	.813	.824	.853	.872	.890	806.	.923	.938	.951	.963	*16.	.984	.991	966.	866.	666.	1.000		DEL *=	nE =	N N N N	
298.2 KPA	5.01 KPA	¥	000	1.022	1.243	1.370	1.468	1.616	1,753	1.867	1.964	2.059	2.110	2.254	2.354	2.456	2.561	2.663	2.765	2.862	2.958	3.048	3.136	3.202	3.249	3.272	3,283	3,293		.1211			
	H Md	1/10	.918	.793	.738	.705	.680	.641	.607	.578	.555	.533	.522	064.	0440	.450	.430	.411	.394	.378	.363	.349	.337	.328	.322	.319	.317	.316		10年10年	H	KG/#**3	
3.00	200002	11/10	.918	959	996	.970	.972	976	.979	.981	984	.985	186.	.989	066.	266.	.993	.995	966.	166.	866.	666.	1.000	1.000	1.001	1.001	1.001	1.001			•	.1763	
MACH #	ALPHA= RPM= 2	YADEL	000	800	051	100	101	146	196	540	566	352	.378	459	.514	.572	631	.687	.749	807	.866	156.	266	1.051	1.110	1,172	1.237	1.301		DEL =	THETA	RHOE=	
¥		40	1				,																								O.	M/SEC	
315.0	150.	SONG/ONG	341	384	409	.430	944.	.460	.485	508	.530	.550	.573	.597	.622	.648	.677	.708	.741	.776	.810	.847	.881	.912	.942	696	984	.991	466.			657.5	
10 =	PHI= REL=7	31711	0000	4.7	.538	.592	.626	.654	.695	.728	.755	.778	.800	.822	.842	.861	.879	.897	.914	. 930	776.	958	696.	979	988	995	666	1.000	1.001		DEL *=	UE =	RCN II
298.7 KPA	5.02 KPA	3	000	930	1.138	1.282	1.382	1.466	1.598	1.715	1.816	1.905	2.001	2.098	2.193	2.290	2.391	2.494	2.599	2.708	2.807	2.913	3.006	3.089	3,168	3.237	3.273	3.290	3.299		.1242	6.133	
# 0d	# Ad	1/10	918	815	.765	.728	.702	.680	•646	•616	.591	.570	.547	• 525	.504	.483	.463	.443	.423	+04.	.387	.370	.356	.344	.333	.324	.319	.317	.316		DELU=	II	KG/X**3
3.00	0.0	11/10	.918	.955	.963	.968	.971	.973	.977	.979	.981	.983	.986	.987	.989	066.	266.	*66.	.995	166.	866.	666.	1.000	1.001	1.002	1.002	1.003	1.003	1.004		.7401	.05214	
MACH =	RPKI	YABEL	000	.010	.029	.053	.076	660.	.143	.191	.241	.289	.341	.394	.446	•500	.555	.608	•666	.726	.780	.839	868.	.962	1.018	1.077	1,138	1.201	1.260		DEL =	THETA=	RH0E≥

	L	LÍ.																														Z.	M/SEC		
18.1 K 170.	010/010	מהאילים א	.344	.401	.432	844.	.464	.492	•516	.537	.557	•579	• 599	• 622	.644	.668	.693	.718	.744	.771	. 797	.827	.854	.881	606.	.938	.963	.984	*66	866.		.3456	660.8	4 13	
TO = 318.1 K PHI= 170. REL=6929590.		30/0	0000	664.	.585	.622	.653	869.	.732	. 757	.779	.800	.818	.837	.853	.869	.884	868.	.912	.925	.936	146.	.958	.967	.975	· 984	.991	966.	666.	1.000		DEL *=		NON II	
297.9 KPA 5.67 5.14 KPA	١.	•	000	1.038	1.264	1.369	1.464	1.610	1.727	1.823	1,913	2.002	2.082	2,169	2.252	2,335	2.420	2.502	2.586	2,669	2.747	2.832	2.910	2.984	3.057	3,132	3,197	3.250	3.275	3.284		.1350	6.01		
2/D# 2/D#																									.348							DEL U=	u T	KG/K+#3	
3.00		TT/TO	.918	.959	.967	.970	.972	976	976	.981	.983	.984	.986	.987	.988	066.	.991	.992	.993	.995	.995	966.	166.	866	866.	666.	1.000	1.000	1.000	1.000		.8395	.05744	.1795	
MACH =		Y/DEL	000	• 025	045	. 062	0.085	125	166	-208	.252	.297	.340	.389	434	.482	.531	.581	.631	-682	.730	.784	.836	.887	.941	.993	1.046	1.100	1,152	1.205		DEL =	THETA=	RHOE=	
317.8 K 170.	• 15 995	RHO/RHOE	.344	.372	904	434	451	466	004	515	536	556	.576	265	619	.641	444	889	713	739	765	104	128	848	876	006	726	95.5	080	200	866		.3494 CM	660.7 M/SEC	
T0 = 317.8 # PHI= 170.		U/UE	0000	.386	517	200	620	657	100	732	757	.779	798	817	835	851	867	882	896	010	000	938	946	955	.965	.973	981	989	900	400	1.000		DEL *=	UE =	RUN II
297.9 KPA 5.67	# T.O.	Σ	0000	.774	1.084	1.285	1,389	1.475	1.617	1.729	1.823	1.910	1.992	2.079	2,163	2.243	2.324	2.408	.104.6	2.573	2.655	2.741	2.820	2.896	2.971	3.038	3-109	3-179	3.242	3.273	3.287		.1340	5.954	
P0 = Z/D=		1/10	.918	.849	178	727	700	678	641	5612	280	568	549	529	510	493	476	459	. 44	1627	413	398	384	372	361	.351	341	331	322	318	317	1	DELU=	II T	KG/M**3
4.20	•	TT/T0	.918	950	1961	1967	070	679	976	979	981	.983	984	986	987	989	066	166	000	003	100	900	966	100	966	866	000	666	1.000	1,000	1.000		.8552	.05869	
ALPHA =		Y/DEL	0000	6000	400	043	.063	080	123	162	203	.247	. 290	.334	.381	426	471	521	570	619	. 66B	719	770	128	.872	.921	973	1.026	1.081	1,131	1,183		DEL =	THETA=	RHOE

¥			HOE													64									••					•	•		•	(6 M/SEC		
13.7	180.		RHO/R	.344	434	.453	.467	.480	.504	.524	.544	.564	.583	• 605	•626	.648	.673	.691	.724	.750	.775	-805	. 82E	. 855	. 882	906	.936	96	.98	766	.995	66.	66.	0	656.6	4	
TO = 313.7	PHI	REL=70				633								.824	.841	.857	.873	.887	- 905	.915	.926	.938	. 846	.958	.967	.975	.984	066.	966.	866.	666.	1.000	1.000		UE =	RUN #	
97.	5.67	5.14 KPA	x	0000	1.287	1.402	1.482	1.554	1.674	1.770	1.858	1.947	2.025	2.110	2.191	2.271	2.357	2.438	2.526	2.608	2.684	2.766	2.842	2.918	2.990	3.060	3.134	3.196	3.246	3.274	3.282	3.288	3.292		6.039		
2			1/10	918	.727	169.	.676	.657	•626	-602	.581	.559	.541	.522	.504	.487	694.	.453	.436	.421	.407	.393	.381	.369	.358	.348	.337	•329	.322	.318	.317	.316	.316	:	0ELU=		
3.00	4.20	20000	11/10	918	968	971	.973	.975	.978	.980	.982	.983	.985	.986	.988	.989	066.	.991	-992	· 993	766.	966.	966.	166.	866	866.	666.	1.000	1.000	1.000	1.000	1.000	1.001		.8343	181	;
MACH	AI PHAE	RPM= 2(YARE	•	1037		070	960	135	.176	.216	.261	302	.346	.390	.435	.485	.531	.582	.630	.679	.730	.783	.832	884	.937	066	1.042	1.095	1,154	1.203	1.282	1,363		DEL =	100	1
Y			9	300							_				L L																						ž
312.6	100	109828	0	776	0.00	40.4	436	4	46	478	503	7	4	563	583	604	.626	648	672	696	723	750	775	604		9 2	488	606	950	961	.981	666	966	666	0	-	
10		1	11.7116		004	570	597	1631	658	.678	.715	742	765	.786	805	.823	.841	857	672	1887	106	.915	926	920	0 4 0	950	968	975	983	066	966	866	666	1.000	1.000		11
297.3 KPA	?	5.15 KPA	2	E 0	1.017	200	1.299	1.397	1.480	1.545	1.670	1.766	1.857	1.942	2.022	2.106	2,190	2.271	2.355	2.440	2.524	2.607	2.685	2,767	200	2000	2.996	3.062	3, 134	3,195	3.247	3.275	3.284	3.290	3.295		. 12/3
H 04	7/0=	1 A	1/10	0	104	742	.724	698	676	.660	.627	603	.581	.560	.542	.522	.504	487	470	452	436	.421	407	203	280	368	1357	347	337	329	.322	.318	.317	.316	.315		DELUZ
3.00	4.20	. 0	TT/TD	9.0	950	965	968	.970	.973	476.	.977	980	.981	.983	.984	.986	988	989	066	.991	266.	666	766	995	900	266	166	666	666		1.000			1.000			00000
MACH #	AI PHA	RP K	Y / NF.	•	600	.027	.038	.057	.078	.095	.135	.176	.216	.261	.301	.344	.389	.436	.485	.533	.582	.630	.679	.731	784	832	883	.932	686		•		•	1.281	•		DEL =

																																							SEC			
		ı		ĐĘ																																_		S	M/SE			
18.7 K	190.	06607.		RHO/RHOE	.344	.398	904.	.431	U		9/4	.502	.524	.544	.564	584	406	424	010	.040	2/00	969	.721	747	A77.	804	.831	858	885	110	040	946		90	*66.	866.		• 3555	661.6	403		
TO = 318.7 K	PHI	REL=69		U/UE	0000	.491	515	584	-	670.	919.	.713	.742	.765	786	808	700	049		928	.871	.886	006.	.913	956	938	646	950	840	926	900		1660	966.	666.	1.000		DEL +=	nE =	RUN =		
98.0 KPA	5.67	5.14 KPA		r	0000	1.020	1.080	1.262	7070	1.378	1.538	1.662	1.765	1.856	1.040	2.023		101	20110	5.265	2.348	2.430	2.513	2.595	2.678	2.765	2. BAA	2.018	000	2000	2000	601.00	3.500	3.249	3.274	3,283			5.992			
	86			T/T0	.918	704	770		500	.703	.661	•659	.603	583	195	100		170.	.500	.488	.471	454	438	423	404	000	000	2000	1000	-000	- 450	336	.328	.321	.318	715		DF1 13	I	KG/M**3		
3.00	4.20		•	TT/T0	918	000	190	106.	. 966	.970	.974	776.	979	[80]	400	900	200	986	186.	.989	066.	.991	000	500	900	1000	2000	0.00	166.	866.	866.	666.	666.	1.000	1.000	000	000	26.02	2000	1702	76 1 7 0	
HOAM	AI PHA	۸	4	YADEL	000	000	770.	970.	*0*	.063	.104	146	יי	900	0770	607.	315.	.358	204.	.450	764.	544	400	447		260.	***	40.0	4 6	6893	**6*	966.	1.047	1.100	1.154		1.199	1	TUETAL		ואמטעע	
				Ų	7																																			Z.	M/SEC	
,	318.0 A	190.	928448.	oner one	אינים אינים אינים	***	.371	.383	• 406	.430	44	0 0 0 0	101	.475	.500	.522	.542	.560	583	603	767	070.	.648	+19.	.697	. 723	.752	.780	.810	.840	-865	894	100		000	*16.	066.	966.		.3516	661.4	405
	0 :	PHI= 190.	REL=6	41.711	3000	000	.376	.432	.517	582	433	770.	000	.673	.710	.739	.763	.783	FOR	000	770	0	.856	.873	.887	.901	.916	.929	.941	.952	.961	.971	070	100	104	*66.	866.	666.		DEL *=	UE =	RUN
	8	2.67	7	;	E	000	• 753	.879				•	•	•							•	•	•			2.519	•	•				•	•	•	•	•		•		.1371	9	
		=Q/Z	H 3E	*	01/1	916.	.853	.826	.778	735	104		.003	• 665	.633	•606	.584	.564	544	464	- 10	.505	.488	.469	•454	.437	.420	.405	.390	.377	365	456	6 4 6		. 333	• 325	.320	.318		DELU	H I	KG/M**3
	3.00	4.20	•		0171	.918	.950	.954	.961	1967	040	0.40	216.	.974	.977	.979	.981	.983	480	700	• 200	. 988	.989	066.	.991	.993	*66	966.	966	166	100	800	000	6660	•	•	•	1.000		.8435	.05874	
8	MACH	ALPHA=	RPM=	•	TABEL	0000	600.	• 015	-027	540	446	100.	• 089	•105	.146	.188	.232	273	310	470	0000	714.	.459	.508	.555	909.	.657	.705	.758	. R10	B57	010	1000	•	•	•	•	1.172		PEL #	THE TA=	RHOE=

						S
	10E		U		. 8	
316.9 K 210. 68769.	.343	44444 44444 0044 0044 0044 0044 0044 0	556 579 602 627 657	684 750 754 790 790 790		. 5353 660 . 2 356
10 = 316.9 K PHI= 210. REL=6968769.	.000 .513	608 608 407 607 605 605		9690 900 900 900 900 900	975	SOUR SOUR SOUR SOUR SOUR SOUR SOUR SOUR
298.0 KPA 5.67 5.01 KPA	. 000 1. 075	1.236 1.330 1.405 1.649	1.833 1.918 2.011 2.198	2.536 2.5398 2.736 2.847 2.847		•130 • 6•168
P0 = Z/D=	1/10 .918 .780	. 739 . 716 . 696 . 661 . 633	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 316 . 316 . 316	X6/X + 3
3.00	11/10 .918	. 965 . 969 . 971 . 977	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9991 998 998	1.000	.05387 .05387
MACH = ALPHA= RPM= 2	Y/DEL .000	. 052 . 045 . 140 . 187		8464 8464 8764 8764	1.087 1.087 1.176	DEL = THETA= RHOE=
· .	TOE					CM M/SEC
T0 = 316.7 K PHI= 210. REL=6984656.	.344 .373	W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6655 6655 7750 7555	936 936 936 936	.998 .3060 659.6
TO = PHI= REL=6	.000 .393	. 524 . 524 . 581 . 613 . 645	725 753 779 801	8643 860 990 917	9999 9999 9991 9991	066 = 06 = 06 = 06 = 06 = 06 = 06 = 06
298.0 KPA 5.67 5.01 KPA	. 000 . 791	1.101 1.253 1.343 1.509	1.583 1.404 1.911 2.007	2.595 2.595 2.516 2.625	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.290 3.290 1223 6.066
P 10 X 2 M M M M M M M M M M M M M M M M M M	.918 .845	. 808 . 774 . 735 . 712 . 687	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.44444 0000000000000000000000000000000	20000000000000000000000000000000000000	.318 .316 DELU= H = KG/M**3
3.00	.918 .951	. 951 . 961 . 969 . 972	. 945 . 981 . 983 . 985	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	996 998 1000 1000	.001 .001 7052 5044 1771
MACH = ALPHA= RPM=	Y/DEL .000	010 0031 0051 1000 1000	1000 1000 1000 1000 1000 1000	66788 68888	806 867 9891 10050	.334 .334 EL = HETA= HOE=

	4.62 KPA REL=7	20000° PW = 4-62 NF NELLI	M 0T/T 0T/TT	.917 .917 .000 .000	.962 .758 1.163 .545	.963 .752 1.184 .553	.964 .745 1.215 .564	.967 .724 1.294 .593	.970 .698 1.396 .628	.973 .672 1.497 .660	.975 .648 1.588 .688	.977 .624 1.682 .715	.979 .604 1.762 .737	.982 .562 1.932 .780	.528 2.080 .813	.498 2.217 .842	.471 2.348 .866	.446 2.471 .888	.420 2.609 .910	.398 2.741 .929	.375 2.878 .948	.354 3.016 .965	.337 3.131 .978	.321 3.253 .991	.312 3.319 .998	.309 3.345 1:000	2,400	.5194 DELU= .0910 DELTE	: .03584 H B 6.311 OE = 63161
TO = 310.8 K MACH = 3.00 PO = 298.4 KPA TO =	20000 DW = 4.62 KPA REL=7	20000° PW = 4-62 NF NELLI	TT/T0 T/T0 M U/UE 6	.917 .917 .000 .000	.962 .758 1.163 .545	.963 .752 1.184 .553	.964 .745 1.215 .564	.967 .724 1.294 .593	.970 .698 1.396 .628	.973 .672 1.497 .660	.975 .648 1.588 .688	.977 .624 1.682 .715	.979 .604 1.762 .737	.982 .562 1.932 .780	.528 2.080 .813	.498 2.217 .842	.471 2.348 .866	.446 2.471 .888	.420 2.609 .910	.398 2.741 .929	.375 2.878 .948	.354 3.016 .965	.337 3.131 .978	.321 3.253 .991	.312 3.319 .998	.309 3.345 1:000		.5194 DELU= .0910 DELTE	03584 H H
TO = 310.8 K MACH = 3.00 PO = 298.4 KPA TO =	20000 DW = 4.62 KPA REL=7	20000. FR 4-82 NF ALL	M 0T/T 0T/TT	. 917 . 917 . 000	.962 .758 1.163	.963 .752 1.184	.964 .745 1.215	.967 .724 1.294	.970 .698 1.396	.973 .672 1.497	.975 .648 1.588	.977 .624 1.682	.979 .604 1.762	.982 .562 1.932	.528 2.080	.498 2.217	.471 2.348	.446 2.471	.420 2.609	.398 2.741	.375 2.878	.354 3.016	.337 3.131	.321 3.253	.312 3.319	.309 3.345		.5194 DELU= .0910	03584 H = 6.311
TO = 310.8 K MACH = 3.00 PO = 298.4	20000 Z/DE 5-6/2	Z0000° PW = +-52	TT/T0 T/T0	716. 716.	.962 .758	.963 .752	.964 .745	.967 .724	869. 026.	.973 .672	.975 .648	.977 .624	*09. 616.	.982 .562	.528	*498	.471	• 446	.420	.398	.375	.354	.337	.321	.312	.309		.5194 DELU=	03584 H H
TO = 310.8 K	20000 Z/DE	Z00002	11/10	-917	-962	.963	*96*	196.	076.	.973	.975	.977	626.	.982													1	.5194	. 03584
T0 = 310.8 K	"	V													.985	.987	066.	.991	.993	: 662	966.	866.	666.	1.000	1.000	1.001	1	.5194	. 03584
T0 = 310.8 K	"	V	YADEL	000	0+0	.042	.049	• 065	.093	125	'n																		11
									,		.15	.188	.218	.288	.359	.430	.501	.575	.652	.723	.804	.884	.954	1.046	1,121	1.204		DEL =	THETA
																												EC	
	240.	53534.	PHO/PHOF	339	.371	+04	.437	.459	.479	.500	.520	.543	.580	.616	•656	.689	.730	.771	.813	.854	. 006.	046.	.974	.993	1.000		.2055 CM		373
¥	PHIE	REL=71	11/11	000	404	527	.610	. 653	.688	.718	.744	.770	.806	.837	.864	.885	106.	.926	.943	.958	.973	.985	*66.	666.	1.000		DEL *=	UE =	RUN II
298.5 KI		4.62 KPA	3	000	818	1.115	1.340	1.469	1.583	1.689	1.784	1.886	2.041	2.184	2.327	2.442	2.576	2.704	2.827	2.944	3.068	3,175	3.261	3,309	3,325		.0801	6.120	
u	2/D=	88	1/10	.017	839	.770	.713	.679	.650	.622	.599	.574	.537	.505	.475	.452	.427	+04.	.383	.365	.346	.331	.320	.314	.312		DELU=	II I	KG/M+#3
3.00	4.20	•	TT/TO	1017	.951	-965	696.	.972	.975	978	.980	.982	.985	.987	.989	.991	.993	466.	966.	166.	966.	666.	1.000	1.000	1.000		1664.	03358	
MACH #	¥ H	11 1	, DFI	000	015	034	190	660	.130	.164	•195	.235	-302	.374	1440	.512	.594	.677	.750	.833	.919	666.	1.087	1,168	1.251		DEL =	THETA	RH0E=

																															-	MISEC			
~			HOE																										_	i	_	_			
TO = 319.8 K	300	75620	RHO/RHOE	.321	.443	.461	.478	.520	.554	.580	.608	•636	• 661	.688	.712	. 738	• 765	.790	.815	.841	.866	868	.928	.952	.972	986	*66	.997	666.		130	613.5	459		
H	H	×68		0	_	C.	9	œ	a	.	'n	4	0	Z.	_	60	0	0	0	00	ហ	n.	m	6	4	_	0	0	0		DEL *=	#	WOW #		
10	I	REI	0/0	00.	99.	69	.71	.76	.80	.82	.845	.86	.87	.895	06.	.91	• 93	*6.	646	.958	96.	.97	98	.98	766	.997	666.	1.00	1.00		90	OE.	2		
KPA		KPA		0	9		_	33	6	9	4.	99	30	*	4.0	36	25	1	7	9	91	40	35	14	96	34	53	61	99		2	4			
297.9	2.67	4.31	2.	00	1.52	1.63	1.71	1.92	2.06	2.17	2.284	2.38	2.46	2.5	2.6	2.7	2.83	2.8	2.9	3.0	3.1	3.2	3.2	3,3	3,3	3.4	3.4	4.0	3.4		•0482				
			T.0	15	63	36	14	64	30	909	.483	291	44	92	112	868	384	371	360	349	339	327	316	308	302	862	295	295	564		DELU=	Ħ	**3		
9	2/0	3	7	6	• 6	•	9.				4.	•	•	*	•	•	•	•	•	•	•	•	•	`•	•	•	•	•	•		۵	I	KG/H**3		
00	20	•	/T0	915	972	.975	716	981	984	986	988	686	066	266	993	766	766	966	966	166	166	866	666	666	000 .1	000	000	000	000		1363	975	.1607		
		20000	TIT																												•				
MACH =	PHA=	RPM= 2	Y/DEL	000	068	083	00	151	205	256	309	363	415	467	520	575	633	069	,739	802	855	920	982	043	160	166	.221	.278	.347		= 130	HETA	RHDE=		
M	AL	æ	*	•	•	•	•	•	•	•				•		•	•	•	•	Ī				-	7	-	~	-	-		۵	F	œ		
																																		EC.	
¥		_	4DF	1																														H/SEC	
7.6	.00	REL=6877237.	RHD/RHDF	125	276	207	400	***	100	000	561	a d	613	642	670	969	724	750	775	797	.819	842	BAT	808	933	956	975	088	900	966	666		.1275	73.3	428
310	3(±687	ā																														44		ш
10	HIH	REL	UZUE	000		100	200	000	100	711	B07	9	4 4 4	867	884	808	911	923	933	942	950	957	946	075	999	000	900	007	000	999	1.000		DEL	± ∃n	S S S
KPA	1	KPA		_		• •	1 (- -		- 0	0 u	۱ د		,		٠,) <u> </u>	, -			. 00	4		t -	4 0	9 6	00	ı u	0		•	1)	_	_	
7.8	29	31	3			1.00	77.1	1 · 1	7007	1.0	2 006	200	200	2.40	7.50	7.7	2.6	7.77	2. B4	2.91	2.97	3.04		700	200	2 .	4	2 4 6	3.4	3.46	3.46		0450	6.370	
5		4																															=0	_	m
B 0 d	7/0=	1	1/1	0	• •	0 1	* .	90	•		900	40.	4	•	. 4		1 4		7.		3 6	36						•		200		Ĵ	DELU=	x	KG/M*
c		•	01/	u	1 1	200	200	0 / 0	# !	- 0	796.	100	0 0	000	100	200	200	700	400	200	900	. 200	100	- 0	0 0	0 0	700						357	001	.1605
,	4		11	-	•	•	•	•	•	•	•	•	•	•	•	•	• `	•	• •	• •	• •	• •	•	•	• ,	•	• _	•	• -	-	-	•	M	•	
14	-	RPM=	_		> (າ ເ	า เ	n .	4 .	* (,	0 -	÷ 6	י ר) a	0 4	0 1	, 4	9 4	<u> </u>			1	* 0	4	ם ר) ~	4 6	2 4	. =	: 5	•	H	H	11
1	i	I I	L	1 6	2 6	. 0 63	ם ו	ອ	0	2;	4 6	2 6	י נ	2 4	7	77	F	, ,	1	2 4	1	- a	0 0	0 0	,	,	5 -	7 -	4 6	3 6	י נ	2	_	THETA	5

			W																													X.	M/SEC				
7.7 K	30.	0539.	RHO/RHOE	• 336	.468	-492	513	06.0	100	57.5	5000	.633	•658	.687	.711	.739	764	100	0.0	618	940	.875	.901	.934	• 956	.978	066.	166.	666	1000	000	1114	664.5	305			
T0 = 31	PHI= 3	REL=6930539.	U/UE R	0000	.674	2112	072		*C1 •	• 805	.829	.851	.868	.885	888	210	400	* 36.	4000	946	• 926	996.	.974	.983	.989	666	866	666	000		1.000		1 1				
97.7 KPA	5.67	4.76 KPA	x	000	1.545	1.674	1 1	10110	168.1	5.046	2.156	2.267	2.357	2.458	2.53B	2 637	2000	C0/+7	2.179	2.868	2.947	3.026	3.098	3.184	3,239	3.296	3,326	3.342	0 40	P + 1 + 1	3.350		0460				
2 11 00		H C	1/10	. 917	659	767	070.	.600	.582	.536	.511	.487	694	644	4 2 3	7.	14.	+0+.	.391	.376	.364	.352	342	330	322	215	110			.308	•308		DELUE	u '	K6/M**3		
000	000	200002	TT/TO	017	974		1.6.	.979	.981	.985	986	988	080	100	1660	266.	666.	466.	666	966	766	100	800	000	000		000	000	000-1	1.000	1.000		.2985	.01785	.1700		
1	TACE I	RPM= 20	× /ne:	100	000	200.	260.	.114	.135	197	250	בנב	9 4 6	000	000	.483	.544	• 602	629	727	785	0 4 4		116.	7000	0 0 0	1.116	+81-1	1.250	1,318	1,385		DEL =	THETA=	RHOE=		
			Ļ	ב																															T C	M/SEC	
	317.7 K	330. 41686.		מאינה א	0000	166.	.412	• 436	694	506	F 2 5	174	100	000	.635	• 629	.686	.709	736	761	107	100	0000	.850	918	.910	646	696.	.984	-992	966.	666.	1.000		.1107	664.3	394
	# 01	PHI= 330. REL=6941686		070E	000.	164.	.557	.615	479	731	754	100		200	268.	.868	.885	868	110	1160	. 76.0	076		1957	.961	.976	.986	266.	966.	866.	666.	1.000	1.000		DEL *=	= 30	RUN II
-	297.8 KPA	5.67 4.76 KPA	,	E	000.	1.041	1.198	1.359	1.550	1.742	000	2007	140.0	1110	4.216	2.362	2.455	2.532	2.418	2070	06000	10100	088.7	2.958	3.034	3.120	3.207	3.272	3,310	3,330	3.340	3.346	3,349		6040.	6.100	
	21	=Q/Z			116.	. 788	.749	.707	. 65B	609	700	-00-	000	- 00.	.485	.468	644.	454	410	101	000	046.	4150	.362	.351	.339	.327	.318	.313	.311	•309	.309	.308		DELU=	H	KG/M**3
	3.00	4.20		01/11	116.	• 958	.964	.968	440	070	000	. 400	486	986	. 988	686	.991	200	000	200	***	666.	966	166.	866.	866.	666.	666	1.000	1.000	1.000	1.000	1.000		.2929		1071.
	MACH	ALPHA= RPM=	i	YZDEL	0000	• 056	.043	.061	ואט	116		077	0020	862.	•314	.370	• 436	492	222	9000	610.	01	. 745	.806	.873	.934	1.006	1.070	1.139	1.207	1.252	1,310	1.412		DEL =		RHOE=

.340 .421 DELTE UE = RUN = 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. 297.9 KPA 5.67 4.46 KPA 11.763 22.110 22.246 22.623 22.623 23.033 33.1033 .0880 .5218 DELU= .03437 H = .1571 KG/M**3 418 398 378 465 PO = 2/0F 00000 MACH = 3.00 ALPHA= 5.28 RPM= 20000. DEL = THETA= RHDE= 110 190 1277 354 140 .264 .335 .405 550 550 630 704

NOTE: Data not available for RPM = 0.

MACH	3.00	H 04	298.1 KPA	T0 =	316.4 K	MACH	3.00		298.0 KPA	T0 = 3	16.9 K
1	92.0	=0/7		PHI	PHI= 150.	ALPHA=	5.28		5.67	PHIT	150.
II I	0	3	4.97 KPA	REL=6	.200466	RPM= 2	200005	H	4.97 KPA	REL=6975701.	75701.
YADEL	TT/T0	T/T0	×	UZUE	RHOZRHDE				3	117	100 On O
000	.917		000	000	340	Y/DEL	01711	01/1	Σ .	UZUE	בחשאיטרא
010	000		000	9 0		0000	.918	.918	0000	• 000	.341
	900		000	B/C.	. 200	.032	.956	.810	646.	.461	.386
020	000		4000	• 455	• 383	.042	.961	.777	1.090	.518	.403
460.	.963		1.154	.543	. 410	990	.965	.737	1.246	.577	.425
090	996.		1.266	.584	• 456	780	696	.711	1,347	.613	044
• 082	.969		1.348	.613	.439	130	.073	A 6.8	1.511	1990	468
• 125	.973		1.488	•629	. 462	176	077	630	1,651	407	495
.169	.976		1.599	.693	.483	200	070	603	1.767	741	519
•216	.978		1.696	.721	.502	271	0	570	1.866	766	541
.261	.980		1.784	.745	.521	300	400	A PA	1.963	789	563
•308	.982		1.864	.765	.538	326			2.061	618	4
.357	.984		1.951	.786	.558	403	7 40	11.4	2.157	25.8	612
· +07	.985		2.045	.808	.581	674	000	004	2.254	655	638
• 456	.987		2.138	.828	• 605	704	000	470	2.352	870	*666
.507	.989		2.237	.848	.631	0.44	000	044	2.4.0	0 00	769
• 555	066.		2.336	.867	•659	700	2660	420	2000	900	730
.610	266.		2.450	.887	269	900	2440	410	2 673	000	766
.665	666		2.556	400	124	***	***	010	1,000	940	
718	900		2.666	100	750	641.	.995	395	Z-114	.93/	06.6
771	100		101	174.	601	.803	166.	•376	2.874	.951	• 633
- 6	0 10 0		2115	.93/	*194	.862	266.	.362	2.963	-965	.865
628.	166.	.375	2.878	.951	•831	.920	866.	.348	3.054	.973	868
189.	866.	•360	5.979	.963	.867	.976	666	.337	3.134	.982	.929
.936	666.	.345	3.076	.975	.903	1.033	1.000	.327	3.204	.989	•956
066.	1.000	• 334	3.157	.984	.934	1.089	1.000	.321	3.252	*66*	.975
1.047	1.000	•325	3.219	066.	.958	1,151	1.000	.317	3.282	166.	.987
1.105	1.000	.320	3.261	.995	.975	1.212	1.000	.315	3.296	666	.993
1,163	1.001	.316	3.291	866.	.987	1 269	000	314	3.205	1,000	760
1.216	1.001	.314	3.307	666.	.993						
	1					DEL =	.7656	DELU=	.1363	DEL *=	.3328 CM
DEL #		DELU=	.1455	DEL *=		THETA=	.05338	H	6.235	UE =	661.1 M/SEC
THETA=	.05801	H	Φ	UE =	661.0 M/SEC	RHDF		KG/M**3		RUN	391
RHDE=		KG/W**3		RUN #				;			

118.6 K	151	•	•	.422	~	m	ın	S	_	O.	.501	.520	•539	.557	.577	• 596	•615	•636	.657	.679	.701	.723	.747	.770	•793	.818	.842	.865	.890	•916	.942	.967	.984	266°		3931 CM	2	415		
T0 = 3		U/UE	000	.567	•559	• 605	.634	.660	.680	.700	.716	.741	.763	.782	.801	.818	.834	.849	.864	.878	.890	· 903	.914	.925	.935	.945	.954	.962	.970	.978	. 985	266.	966.	666.		DEL *=	UE =	RUN II		
297.6 KPA	7	x	00.	.21	•19	.32	. 40	.48	.55	•61	•67	• 76	•85	• 93	• 01	• 08	• 16	•23	•31	•39	.46	.53	•61	•68	2.752	.82	.89	•95	• 05	60.	• 16	•25	• 26	•28		.1492	66			
P0 =	# 	1/10	.918	.744	.750	.717	969.	.675	.657	.640	•626	.603	.582	.563	.544	.526	.510	*64.	.478	.462	.448	.434	.420	.408	966.	.384	.373	.363	.352	.343	.333	.325	.3.19	.316		DELU=	86	K6/M**3		
3.00	0000	11/10	.918	• 965	*96*	.968	.971	.973	.975	.976	.978	.980	.981	.983	.984	.986	.987	.988	066.	.991	.992	.993	*66*	566°.	966.	966.	.997	166.	866.	666.	•	1.000	•	•		O	.06562	œ		
MACH =		Y/DEL	000	.016	•034	.051	.067	.085	.101	.121	.140	.177	.215	.252	•293	•334	•375	.414	.459	.501	.546	- 595 -	.637	.680	.724	.771	.817	*862	.910	.957	1.002	1.049	1.094	1,138		DEL =	THETA	RHOE=		
318.3 K	10	RHO/RHOE	.342	• 366	.387	.410	• 426	***	• 459	.472	.484	964.	.506	• 526	.544	.563	.581	• 599	.618	.638	.657	.678	869.	.720	.742	. 765	.787	608	.832	• 855	.880	. 907	.934	.961	086°	686		3964 CM	2.3	_
10 10 11	£L≈6	U/UE	000.	.364	.461	.538	.580	.620	649	.672	.691	.709	.723	.748	.769	.788	.805	.821	.836	.851	.864	.877	.889	.901	-912	.923	.933	.942	.950	• 959	.967	.975	.983	.991	966.	866.		DEL *=	UE =	RUN II
297.9 KPA	5.15 KPA	I	000	-	O	7	N	F)	4	'n	w	9	٦.		Ψ,	5	9	7	7	17	177	177	٦.	u;	2.597		٦.	۳.	w	້	·.	٦	٦.	13	.4	.4		.1493	16	
P0 = 2	# D. M.	1/10	.918	.858	.810	.764	.736	.706	.683	• 665	.648	.632	.620	.597	.577	.557	.540	.524	.508	264.	.477	.463	644.	.436	.423	.410	.398	.388	.377	.367	.357	.346	.336	.326	.320	.317		OELU=	u I	K6/M**3
3.00	10	11/10	.918	646.	•956	.963	.967	.970	.972	.974	.976	176.	.978	.980	.982	.983	.985	.986	.987	.989	066.	.991	266.	. 993	.993	*66*	966.	966.	166.	166.	866.	666.	666*	•	•	1.001		.9722	m	1811
ACH =	RPM	Y/DEL	000	.008	.016	•024	.033	.051	.068	.084	.102	.120	.136	.175	.212	.251	.290	.330	.371	.411	.453	964.	.540	.584	.627	.672	.716	.761	.807	.851	.897	.945	.989	1.035	1,080	1.124		DEL =	THETA=	RHOE

																																		S					
¥			HOF																														ĭ	M/SE					
3.9	•	5737	RHO/R	Ţ	.475	.487	.509	.529	.549	.568	.589	609.	.628	.652	.670	• 695	.715	.735	.759	.780	.803	.823	. 844		700	931	.954	.974	.987	966.	1.000		374	657.3	m				
	#	7	UZUF	000	.673	-695	.724	.750	.772	.791	.810	.828	.842	•859	.871	.886	168.	106.	.919	.928	• 938	946	456	106.	975	982	.988	.993	166.	666.	1.000		_1	≡ 30	RUN =				
298.0 KPA	5.67	5.17 KPA	2	000		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2.888	•	•	•			•		•		64	6.186					
11 0	u	# d.	1/10	918	.663	.647	.619	.595	.574	•555	.535	.517	.501	.483	.470	.453	044.	•459	•415	+0+	.392	.383	.373	405	347	338	.330	.323	.319	.316	.315		DELU=	H	*	;			
0	5.28	0000	11/10	918	476	.975	.978	.980	.982	.983	.985	.986	.987	.988	066.	.991	266.	-992	.993	*66	995	966.	966	700	800	000	666	666.	•	1.000	•		955	.06059	182				
MACH	ALPHA=	RPM= 2	YADE	000	080	*60	.129	•165	-202	.238	.278	.317	.354	.400	•436	.483	.524	.565	.612	•655	.703	•746	.791	000	700	975	1.024	1.074	1,121	1.184	1.254		DEL =	HET	RHOFF				
																																						ပ	
v			101	+																																	E S	M/SE	
313.9 K		0719	9	.343	.376	•389	.407	• 454	.443	•456	.483	.505	• 525	.543	.563	•580	.601	•622	****	• 665	-686	**	753	777	799	.819	.841	.861	.885	806.	.930	.953	.972	.987	666.	1.001	3766 CM	.1 M/S	342
313.9	180.	=7071965	RHO/RHO	.343			523				686	718	744		786	803						* 100	506		936	446	953								000	~	= .3766 CM	= 657.1 M/S	RUN = 342
= 313.9	PHI= 180.	=7071965	U/UE RHO/RHO	.000	.408	.461	.523	• 569	•614	0+9*	•686	.718	.744	•765	.786	.803	.821	•838	.853	.867	.881	* 100	506.	126	936	446.	.953	096.	896*	.975	.982	.988	.993	266.	1.000	1.000 1	DEL*= .3766 CM	UE = 657.1 M/S	UN = 34
.1 KPA T0 = 313.9	.67 PHI= 180.	.17 KPA REL=7071965	U/UE RHO/RHO	.000	.408	.947 .461	.100 .523	.221 .569	.346 .614	.426640	.573 .686	.682 .718	.776 .744	.858 .765	.945 .786	.015 .803	. 099	177 .838	.256 .853	.331 .867	405 .881	100	506	726. 469	758 936	816 .944	.879 .953	.937 .960	896* 000	.062 .975	120 .982	179 .988	.227 .993	.263 .997	293 1.000	299 1.000 1	L*= .3766 CM	911 UE = 657.1 M/S	UN = 34
PO = 298.1 KPA TO = 313.9	/D= 5.67 PHI= 180.	W = 5.17 KPA REL=7071965,	M U/UE RHO/RHO	.000 .000	.824 .408	.947 .461	1.100 .523	1.221 .569	1.346 .614	1.426640	1.573 .686	1.682 .718	1.776	1.858 .765	559 1.945 .786	543 2.015 .803	524 2.099 .821	2-177 -838	2.256 .853	474 2.331 .867	459 6405 881	1400 0040	432 2.424 .905	2.694 .927	395 2.758 .936	385 2.816 .944	2.879 .953	366 2.937 .960	356 3.000 .968	3.062 .975	3.120 .982	3,179 ,988	3.227 .993	3.263 .997	3.293 1.000	3.299 1.000 1	U= .1418 DEL*= .3766 CM	H = 5.911 UE = 657.1 M/S	/X*** RUN = 34
0 = 298.1 KPA T0 = 313.9	.28 Z/D= 5.67 PHI= 180.	• PW = 5.17 KPA REL=7071965,	T/TO M U/UE RHO/RHO	.918 .000 .000 .343	.838 .824 .408	.811 .947 .461	.774 1.100 .523	.743 1.221 .569	.711 1.346 .614	.690 1.426640	.652 1.573 .686	.624 1.682 .718	.600 1.776 .744	.580 1.858 .765	983 .559 1.945 .786	984 .543 2.015 .803	986 .524 2.099 .821	.507 2.177 .838	988 .490 2.256 .853	989 .474 2.331 .867	459 2405 6881	160° 001° 0 007 000	432 2.424 .905	994 -406 2-694 -927	995 395 2,758 ,936	996 .385 2.816 .944	.375 2.879 .953	.366 2.937 .960	.356 3.000 .968	.347 3.062 .975	.339 3.120 .982	.331 3.179 .988	.999 .324 3.227 .993	.319 3.263 .997	.000 .316 3.293 1.000	.000 .315 3.299 1.000 1	ELU= .1418 DEL*= .3766 CM	6371 H = 5.911 UE = 657.1 M/S	829 KG/X**3 RUN = 34

																																					SEC			
			HOE																																	Y				
15.1 K	190.	62029	æ	.341	.412	.426	.445	.460	* 14 TA	164.	.519	.539	.558	.577	.596	.615	.633	.653	.672	.693	.712	.733	.753	*//-	. 795	.818	.839	.863	. 889	.913	938	.963	.982	.991	966.	395	658.0	407		
	11	H	U/UE	000.	.544	.580	.623	•652	.677	.712	.741	.765	.785	.803	.820	.835	.849	.863	.875	.887	868	606.	.918	.928	.937	946	.954	- 962	.971	0/6.	986	-992		1.000			H	2		
98.	5.67	5.16 KPA	I	0000	1.154	1.252	1.372	1.463	1.541	1.659	1.766	1.856	1.938	2.017	2.094	2.164	2.233	2.304	2.371	2.441	2.504	2.572	2.634	2.698	2.762	2.829	2.889	2.955	3.025	3.089	3.156	3.220	3.267	3.290	3,301	148	64049			
P0 = 2		3	1/10	.918	.760	.736	.705	.681	.661	.630	.603	.581	.561	.543	• 525	.510	.495	.480	.467	.453	.440	.428	.416	.405	.395	.383	.374	.364	.353	.344	.334	.326	.320	.317	.315	L	3 11			
0	5.28	.0000	TT/T0	.918	.963	.966	.970	.972	.974	.977	.980	.981	.983	.985	.986	.987	686	066.	.991	266.	.993	*66	.995	.995	966.	166.	866.	666.	1.000							1	6770	10.25	3	
HOAM	AL PHA=	O.I	Y/DEL	000	.024	.033	.050	.067	.085	.119	.154	.192	•230	692.	.308	.348	.389	.430	.471	.516	.559	.603	.645	689	.732	.780	.823	.866	.916	.960	1.004	1.052	1.096	1.140	1,183	1	11111			
																																				,			ט	
	٠		i i	2																																	;	Ξ,	#/SE	
	100	152989,	1d/OHd	340	366	9 0	420	4 4 8	4.7	164	0 4	2,5	520	547	565	584	602	.621	641	.662	683	705	.727	750	772	795	RIA	842	.866	.891	916	941	945	978	.987	.991	- 4	9	1959	
•		_	11/115	000	000	475	571	619	244	640	705	723	757	777	705	813	820	843	858	872	88	1897	606	020	930	940	676	958	996	476	.982	989	900	000	1.001	1.002		DEL *=	1 100	200
	1966	5.16 KPA	3	000	900	0 0	•	•	•	•	•		, ,	•		•	•		•		•		•		•	•	•	•				•	•	•	3.290			• 1 • 8 •	-	
1		1 d	1/10	710	250	100	743	713	9	9999	637	613	.59]	572	100	535	519	504	488	472	458	444	.430	.417	406	394	383	372	.362	.352	.342	.333	325	320	.318	.316	i	L.	# # T/ U	- E .O
-	9 0	10	11/10	710	950	. 057	990	040	670	470	770	080	985	984	985	1987	986	066	166	266	666	995	966	007	966	666	•	•	•	•	•	•	•	•	1.006	•	-	926	10482	000
1	N PHA	W M	YZDFI	, 0	800	910	450	040	9.00 a	780	121	157	197	235	.275	315	354	395	438	482	.527	.571	.616	.661	.705	.750	0	.841	888	.936	.981	. 02	0.7		1.165	.20	i	# :	D 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	

36					CM M/SEC
343 .413 .413	4.4.4.4.4.5.1.1.4.4.1.4.1.4.1.4.1.4.1.4.	502	588 611 639 702 737	477 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•3789 654•0 360
.000 .541	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	715	. 492 . 811 . 830 . 851 . 891	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DEL +
	1.934	1.671 1.739 1.814 1.893	N N N N N N N N N N N N N N N N N N N	00000000000000000000000000000000000000	. 1582 6.231
					S X
.918 .963	.966 .969 .971	, 60 0 0 7 7 6 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.8097 .06080
Y/DEL .000 .036	.057 .077 .098 .138	227		10041 10048	DEL = THETA= RHOE=
JE .					CM M/SEC
840/8H	. 382 . 410 . 426 . 451	. 643 . 513 . 533	603 603 603 603 603 703 703 703 703	00000000000000000000000000000000000000	
.000 .381	538	. 733 . 733 . 757	7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000 1.001 DEL*= UE = RUN =
.000 .763	.899 1.136 1.245	1.529 1.635 1.733 1.823	2.413 2.413 2.413 2.413 2.413	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	J. L. 4
.918 .851	765	664 637 612	0.00.0.4.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.	* u u u u u u u u u u u u u u u u u u u	.318 .317 DELU= H = KG/H**3
18	63 67 71	2200	4 9 8 9 - 0 4	0 - 8 5 0 - 0 0 0 6	
.91	0000	9 9 9 9			1.003 1.003 .7533 .05491
	0 T/T0 M U/UE RHO/RHOE Y/DEL TT/T0 T/T0 M U/UE RHO/RHO 8 .918 .000 .000 .342 .000 .918 .918 .000 .000 .343 0 .851 .763 .381 .369 .036 .963 .762 1.148 .541 .413	0 T/TO M U/UE RHO/RHOE Y/DEL TT/TO T/TO M U/UE RHO/RHO 8 918 000 000 342 000 918 0918 000 000 343 9 082 089 041 382 057 096 774 1.256 582 0428 3 765 10136 538 0410 077 096 775 1.401 0632 0440 7 738 10245 579 0426 098 0971 0697 1.401 0632 0451 1 0697 10402 0633 0451 1.31 0973 0670 1.505 066 0470	T/TO M U/UE RHO/RHOE Y/DEL TT/TO T/TO M U/UE RHO/RHO 851 .763 .381 .369 .000 .000 .342 852 .899 .441 .362 .057 .966 .734 1.256 .582 .428 8765 1.386 .579 .426 .077 .969 .715 1.334 .609 .440 877 1.402 .633 .451 .388 .973 .670 1.505 .666 .470 864 1.529 .674 .473 .227 .977 .627 1.697 1.505 .666 .470 878 1.245 .734 .253 .451 .388 .973 .670 1.505 .666 .470 879 1.402 .633 .451 .388 .973 .670 1.505 .666 .470 870 1.635 .706 .493 .227 .977 .627 1.671 .715 .502 871 1.635 .733 .513 .270 .979 .610 1.739 .734 .550	T/TO H U/UE RHO/RHOE Y/DEL TT/TO T/TO M U/UE RHO/RHOE 918 .000 .000 .343 .343 .369 .036 .963 .762 1.148 .541 .413 .345 .000 .000 .000 .342 .343 .369 .441 .382 .036 .963 .762 1.148 .561 .428 .582 .428 .440 .077 .969 .715 1.256 .582 .428 .440 .077 .969 .715 1.256 .582 .428 .440 .077 .969 .715 1.334 .609 .440 .077 .969 .715 1.334 .609 .440 .077 .969 .715 1.334 .609 .440 .098 .971 .697 1.401 .632 .451 .473 .227 .977 .610 1.505 .666 .470 .632 .486 .647 1.592 .692 .486 .493 .757 .533 .270 .977 .610 1.739 .775 .532 .757 .533 .317 .980 .591 1.814 .754 .550 .774 .550 .565 .486 .657 .462 .985 .554 .969 .792 .568 .811 .589 .551 .2115 .866 .629 .486 .657 .987 .492 .224 .881 .589 .492 .224 .881 .639 .611 .589 .457 .2218 .884 .687 .687 .614 .990 .471 .2347 .870 .668 .448 .667 .2523 .992 .448 .244 .881 .687 .693 .477 .2344 .881 .687 .694 .477 .2344 .881 .687 .694 .477 .2344 .881 .702 .448 .444 .687 .248 .881 .2463 .881 .702 .448 .444 .687 .2524 .899 .448 .2463 .899 .471 .2344 .471 .471 .471 .471 .471 .471 .471 .4	TYTO H UVUE RHOVRHOE Y/DEL TT/TO T/TO W UVUE RHO/RHO

	, LLI																											I	I/SEC		
312.0 K 240. 7137873.	RHO/RHOE	.332	.400	.406	.422	.436	.451	.466	.484	.513	.542	.571	009.	.630	.660	.691	.723	.757	.792	.828	.867	.888	.925	096.	.982	*66.	,	\$622.	660.3	378	
T0 = 31 PHI= 2 REL=713	_	000	.540	.554	.595	.626	.655	.680	.707	.746	.778	.806	.830	.853	.872	.890	-907	.922	.937	.951	*96*	.970	.981	.991	966	666.		DEL*=	ne =	RUN	
298.0 KPA 5.67 4.46 KPA	T	0000	1.156	1.193	1.309	1.397	1.487	1.571	1.663	1.806	1.937	2.062	2.174	2.289	2,395	2.502	2.608	2.714	2.821	2.927	3.036	3.092	3.192	3.284	3.338	3.369		0760.	6.486		
P0 # 29 Z/D= PW =	1/10	.916	.759	.750	.720	169.	.674	.652	.629	.593	.561	.532	507	.483	.461	0440	.421	402	384	367	.351	.343	.329	.317	310	306		DELU=	II.	K6/H++3	
3.00 5.28 20000.	11/10	916	-962	.963	1965	970	.972	.974	976	980	982	985	986	988	066	166	663	400	000	966	966	866	000	1.000	1,000	1.000		.5133			
MACH = ALPHA= RPM= 2(YADE	000	. 045	050	083	113	142	175	202	.261	310	366	417	473	625	5.84	444	405	756	200	BBO	416	975	1.042	1,101	1.165		DEL =	THETAR	RHOFF	1
	HOE																												S.	M/SEC	
311.8 K 240. 139383.	RHO/RHOE	.337	.366	.392	.410	.433	.452	•475	.498	.520	• 554	.587	.617	.646	.677	.703	.735	.765	.799	.832	.867	206.	.923	.955	.977	266.	.998				377
TO = PHI= REL=7	U/UE	000	.392	.497	.551	.607	•645	•684	.719	.747	• 785	.815	.839	.860	.879	. 894	.910	.924	.938	.951	.963	.974	.980	.989	.995	866.	1.000	i	DEL*=	= n	RUN =
298.0 KPA 5.67 4.45 KPA	X	000	.792	1.039	1.178	1.334	1.449	1.576	1.695	1.801	1.952	2.086	2.203	2.310	2.416	2.505	2.607	2.701	2.803	2.899	2.998	3.092	3.148	3.228	3.284	3,322	3,338	•	.0821	ġ	
P0 = Z/D=	T/T0	.917	.844	.789	.754	.714	.684	.651	.621	.594	.558	.527	. 501	.478	.457	.440	.421	+0+.	.387	.372	.357	.343	.335	.324	.317	.312	.310		DELU=	II	KG/H+#3
3.00	TT/T0	.917	.950	.959	.963	.968	.972	.975	.978	.980	.983	.985	.987	.989	.991	266.	.993	*66*	.995	966.	.997	866.	666	666.	1.000	1.000	1.000		• 4870		.1623 #
MACH = ALPHA= RPM=	Y/DEL	000.	•016	•036	.053	.087	.118	.154	.188	.223	.278	.332	.387	.443	.503	.555	.618	•619	.738	.800	.863	.928	.967	1.029	1.091	1.162	1.229				RHOE

																													2	MISF				
:	6.5 X	•	10548.		RHO/RHOE	.354	.509	.542	.571	595	619	.640	.670	.700	.732	.766	.793	.822	.857	.883	•16•	.942	.964	.982	266.	166.	666	1.000			352			
	T0 = 31	PHI=	REL=6980548.		U/UE R	0000	.709	.751	.783	1807	827	843	.864	.884	.901	. 616	.931	.943	.957	996.	916.	.985	.991	966.	866.	1.000	1.000	1.000		DEL*=	RUN =			
	97.8 KPA		5.30 KPA		I	000	1.631	1.783	1.006	2005	2.096	2.174	2.279	2,383	2.484	2.590	2.670	2.754	2.854	2.924	3.007	3.080	3,136	3.179	3.203	3.217	3.222	3.224		• 0309				
	P0 = 2		1		1/10	.919	638	600	240	444	200	804	200	464	777	424	410	.396	.379	.368	.355	.345	.337	.331	.328	.326	.325	.325	ı	DELU=	K6/H**3			
	3.00	6.34	20000		11/10	919	077	1 00	1000	000	. 400	000			600	400	900	966	166	966	966	666	1.000	1.000	1.000	1.000	1.000	1.000		.2287	.01343			
	MACH	4	C INGO		Y / DF1	000	440	4[[977	177	2020	9000	445	794	• 044 6 15	444	767	000	917	400	1.077	1.156	1.238	1,324	1.398	1.573		DEL =	THETA= RHOE=			
						ıl																										CM	/ 3E L	
	7 6 71	V 2001	FHIE CO	03636		RHUZKHUE	. 353	.430	.450	.477	+64.	.535	• 559	. 585	.613	.634	• 665	400	871.	207	1610	610	0 0 0 0	000	076	0 40	001	991	166	666.	000	.0811 C		
	0	າ		>																											_			
	+	> :	HILL	A L			000	.557	• 605	• 659	.687	.743	.771	191	-822	840	-862	.881	006.	916	0560	746	*000		100	* 000	700	866	1.000	1.001	-	DEL *=	- 11	
	4	4		4		UZUE																94.0		9330							1.001		RUN II	
	407	2001 ATA		D.50 ATA	:	M UZUE	000	1.178	1.308	1.466	1.556	1.751	1.859	1.965	2.075	2.156	2.264	2.365	2.475	2.582	0000	961.00	2.830	2 930	2000	3.073	2 1 2 3	3.203	3.218	1.001	3.225 1.001 1	ELU= .0306 DEL#=	3.183 UE =	
	2 0000	AN TOOL IN	79.0	THE DOTO NA		IVIO M UVUE	000. 616.	.755 1.178	.722 1.308	.680 1.466	.657 1.556	.608 1.751	.581 1.859	.555 1.965	.530 2.075	.512 2.156	.489 2.264	.468 Z.365	.446 2.475	2,50 2.582	201 2 100	391 20148	.383 Z.830	356 6.936	0.00 0.01B	336 3.073	621.00 100	27.00 ACC.	326 3.218	.325 3.224 1.001	3.225 1.001 1	.0306 DEL*=	KG/M**3 D. 183 UE E	
	4000	3.00 FO II CYO. I ATA	19.5 =0/2	O. THE INCOMPA		11/10 I/10 M U/UE	0000 616. 616.	.965 .755 1.178	.969 .722 1.308	.973 .680 1.466	.976 .657 1.556	.980 .608 1.751	.982 .581 1.859	.984 .555 1.965	.986 .530 2.075	.988 .512 2.156	.990 .489 2.264	.99] .468 2.365	.993 .446 2.475	994 426 2.582	9992 1140 5990	940 931 20148	.997 .383 2.830	998 306 2.930	010 0 000 0000 0000	. 999	1.000 COC. COC.	1.001 .001	1.001 .326 3.218 1	1.001 .325 3.224 1.001	.325 3.225 1.001 1	.2313 DELU= .0306 DEL#=	KG/M**3 D. 183 UE E	

	ш																									¥	MISEC		
309.4 K 30.	RHO/RHOE	.482	964.	.509	.536	.562	.588	.623	.653	.687	.717	.749	.780	.810	.840	.869	006.	.927	• 956	.973	.987	*66.	166.	666.		.0919 C	_	368	
TO = 309.4 K PHI= 30. REL=7213892.	U/UE	.683	.704	.723	.757	.785	. 809	.838	.860	.881	868.	.914	.928	.941	.952	.963	.973	.981	.989	*66*	166.	666.	1.000	1.000		DEL *=	UE =	RUN II	
298.3 KPA 5.67 4.92 KPA	100	1.557	1.629	1.695	1.821	1.934	2.039	2.176	2.284	2.401	2.500	2.602	2.695	2.784	2.870	2.951	3.033	3.103	3.179	3.223	3.257	3.274	3.282	3.287		.0364	6.208		
P0 = 2 Z/D= PW =	.918	•656	.638	.621	.590	.562	.538	.507	.484	.460	.441	• 422	.405	.390	.376	.364	.351	.341	.331	•325	.320	.318	.317	.317		DELU=	H I	KG/H++3	
3.00	.918	.975	.976	.978	.981	.983	.985	186.	686	.991	-992	.993	*66 °	966.	166.	166.	866.	666.	666.	1.000	1.000	1.000	1.000	1.001		.2501			
MACH = ALPHA= RPM= 2	Y/DEL	.089	.102	.115	.142	.175	.207	.268	• 339	.407	.471	.539	609.	.680	.752	.818	.892	.958	1.046	1.111	1.192	1.261	1,343	1.413		DEL =	THETA=	RH0E=	
	ŧu.																										r	M/SEC	
09.2 K 30. 27258.	RHO/RHOE	.432	.466	.491	.521	.550	.573	.598	.637	.667	169.	.732	.761	.796	.824	.847	.876	. 905	.935	.962	.978	.988	*66.	866.	666.		_	_	367
T0 = 309.2 K PHI= 30. REL=7227258.	U/UE	.587	•656	.697	.738	.772	.795	.818	.848	.869	.887	906	.920	.935	146.	.955	.965	.974	.983	.991	. 995	866.	666.	1.000	1.000		DEL *=		
298.2 KPA 5.67 4.92 KPA	100	1.269	1.470	1.606	1.751	1.882	1.978	2.079	2.224	2.332	2.434	2.547	2.637	2.741	2.824	2.889	2.969	3.047	3.126	3.194	3,235	3.259	3.275	3.283	3.286		.0319	5.910	
P0 = 2 Z/D= PW =	1/10	.731	619.	.644	.607	.575	.552	.529	164.	474.	.454	.432	.416	.398	.384	.373	.361	.350	.338	.329	.323	.320	.318	.317	.317		DELU=	II	KG/M**3
3.00 6.34 0.	11/10	.967	.972	.976	.979	.982	.984	.986	.988	066.	.991	.993	*66	.995	966.	166.	866.	666.	666.	1.000	1.000	1.000	1.001	1.001	1.001		.2461	.01477	.1767 K
MACH =																												_	

																												-	MISEC			
		_	JOE																													
12.1 K	•09	29434	RHO/RHOE	.324	.453	.468	.505	.524	.567	•596	.622	.651	.684	.713	.741	.770	. 787	.821	.853	.880	906	.937	• 959	.977	.986	*66*		9/019	663.9	384		
T0 = 312.1 K	PHIH	REL=71	U/UE	000.	.673	.697	.747	.768	.810	.834	.852	.872	.890	-905	.918	066.	.937	.950	.961	696.	.977	• 985	.991	• 995	166.	666.	8	DEL	# B	SCN II		
97.9 KPA		4.02 KPA	I	000	1.558	1.641	1.827	1.915	2.100	2.216	2.312	2.421	2.534	2.631	2.720	2.809	2.862	2,962	3.053	3,128	3.204	3.282	3.339	3,383	3.407	3.428		.0398	6.518			
P0 = 2			1/T0	.916	.655	•634	.587	.566	.523	864.	.477	•456	•434	.416	.401	.386	.377	.362	.348	.337	.327	.317	309	906	.301	.298		DELU=	II I	KG/M++3		
3.00	6.34	20000	TT/T0	.916	.973	.975	.979	.981	.985	986	.988	066.	.991	-992	.993	. 995	.995	966.	166.	866.	866.	666.	666.	1.000	1.000	1.000		.2870		.1524	•	
MACH =	ALPHA=	RPM= 2	YADEL	0000	.071	.083	.118	.141	.196	.258	.310	.370	.436	064.	.554	.613	.654	.731	.803	.861	.929	1.000	1.062	1.125	1.178	1.251		DEL =	THETA=	RHOE		
13.8 K	•09	1462.	RHOZRHOE	.324	375	200	427	462	064	515	558	.593	.618	.648	.678	707	.736	.764	.795	.821	.848	.877	106.	6836	.961	.980	066.	966*		.1095 CM	563.7 M/SEC	383
T0 = 31	PHI	REL=7141462.			F84	9 2 2	626	9	128	759	5805	.832	850	.870	888	600	.917	.929	.941	.950	959	996	.977	986	266	966.	866.	1.000			UE = (
297.9 KPA		4.02 KPA	1	000	1.027	1.215	1-410	1.600	1.754	1.875	2.064	2.206	2,302	2.412	2.518	2.614	2.709	2.797	2.889	2.965	3.042	3,123	3.206	3.290	3.349	3,397	3.421	3.436		.0397	6.411	
	Z/D=	II A	1/10	.916	701	744	404	645	406	576	531	200	480	457	16437	419	403	388	.373	.361	350	338	.327	316	308	305	.300	.298		DELU=	II	KG/M**3
3.00	6.34	0	11/10	916	940	970	070	976	979	9.0	486	786	989	000	991	600	700	966	966	166	166	966	666	000	1.000	1.000	1.001	1.001		.2849	.01709	
CH	PHA	RPM=	YABEL	000	700	240	040	000	120	146	204	265	317	370	439	501	563	621	683	740	21.5	877	940	100	067	145	216	274		± 730	ETA=	RH0E=
¥	V	2	>			•	•	•					•	•	•	• (•	•		•	•	•	•	-	-	-	-	-		90	F	Æ

318.6 K 120. 909603.	10/RH0E	4000	557 601	6579 717 758 798	900 900 900 900 900	.2067 CM 562.1 M/SEC 425
TO = 318 PHI= 12 REL=6909					969 991 996 999	DEL*= .2 UE = 66 RUN = 4
297.8 KPA 5.67 4.28 KPA	¥ 0	1.265	1.921 2.096 2.241	2.380 2.507 2.635 2.756 882	3.008 3.208 3.256 3.283	• 0854 6•228
P 0 4	.918	732	5865	444 444 404 404 475	.355 .327 .320 .317	DELU= .C H = 6. KG/M**3
3.00	11/10	.960 .966 .971	6 6 6 6	066 066 066 066 066	.997 .998 .999 1.000	.5003 .03318 .1493
MACH = ALPHA= RPM=	Y/DEL .000	.086	300 400 400 500	. 558 . 538 . 716	.884 1.966 1.055 1.130 1.220	DEL = THETA= RHOE=
318.5 K = 120. 5914011.	0/RH0E 337 364	392 458 62	505 551 595	639 723 766	. 905 . 905 . 984 . 997 1.001	.2279 CM 665.1 M/SEC 424
TO = 318, PHI= 120 REL=69140					975 987 996 999 1.000	DEL*= +2 UE = 66 RUN = 4
298.2 KPA 5.67 4.28 KPA	. 000 759	1.043 1.310 1.508	1.735 1.940 2.120	2.287 2.519 2.513 2.509	2.487 3.103 3.218 3.306 3.340 3.440	.0946 6.335
P 0 4 5 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	.917	787.	.611 .561 .519	4 4 4 5 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		DELU= H = KG/M++3
0 0 0 0 0 0 0 0 0	917 917 949	959	.978 .982 .986	9999 9999 9999		
MACH ALPHA == RPM ==	Y/DEL .000	0440	.248 .319	. 5466 . 541 . 619 . 694	.857 .931 1.016 1.106 1.181	DEL = THETA= RHOE=

	Ļ	ų																															;	Z	M/SEC		
17.4 K 150. 46484.		NAC AND	.337	.383	.407	.454	.436	.462	.483	.504	.524	.545	• 568	.593	.618	949.	.678	.711	.746	. 781	. 817	.850	- 882	.915	246.	.963	.978	. 985	.991	. 993	• 995	866.	i	m ·	663.6	393	
T0 = 317. PHI= 150 REL=69464						•585	.614	.663	.697	.727	.751	.775	.798	.820	.839	.860	.880	868	.916	.931	946	.957	.968	.978	.986	166.	.995	166.	866.	666.	666.	1.000		DEF *=	44	RUN =	
97.9 KPA 5.67 4.89 KPA		Σ	0000	.957	1,153	1.274	1.354	1.506	1.620	1.723	1.817	1.911	2.010	2.108	2.204	2.310	2.421	2,531	2.642	2.749	5.856	5.949	3.037	3.126	3.196	3.250	3.288	3.305	3,319	3,325	3,329	3,338		_	31		
P0 = 2 2/0= P¥ =	į	_	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	Ī	Ĭ	•		•	•	Ĭ	Ī	.314	Ī	·				DELU=	T	KG/M**3	
3.00		TT/TO	-917	• 956	.963	.966	696	.973	.976	.978	.980	-982	.984	.986	.987	. 989	.991	266.	*66.	966.	966.	166.	866.	866.	666.	1.000	1.000	1.000	1.000	1.000	1.000	1.000		.8002	.05621	.1741	
MACH = ALPHA= RPM= 20	š	Y/DEL	000	.027	.046	690	060	, 133	.175	.220	.267	.317	.366	.416	.465	.517	.570	.621	675	.726	.782	.834	068.	.948	1.005	1.061	1,115	1,165	1.228	1.282	1,334	1.470		DEL =	THETA=	RHOE=	
2 • 9		RHO/RHOE		.361	.387	408	420	432	452	468	482	764	512	528	548	5568	.591	618	648	678	108	.751	2790	825	857	892	956	955	.973	983	186	066	.995			663.9 M/SEC	392
TO = 317, PHI= 15,	ָ נ	U/UE	000	.371	4.85	540	נאני	209	640	.677	698	.720	739	759	780	000	820	841	862	881	868	919	936	040	960	971	981	986	400	966	166	966	666		DEL *=	UE =	RUN =
297.8 KPA 5.67		Σ	000	747	1.0.1	1-176	1.264	1.338	1.463	1.553	1.626	1.704	1.772	046	1.936	2.02	2,114	2.217	2.32B	2.432	2.534	2.670	2.789	000	000.0	3.077	3.166	3.242	3.28B	3,313	3,373	3,329	3.342		.165	6.313	
= 04 Z/D=	r	T/T0	710	4	795	754	130	713	0 8 9	657	43.8	618	103	282	562	542	200	404	475	454	434	410	280	676	0.00	245	332	322	316	313	210	311	309		DELU=	1	KG/M**3
3.00	•	TT/TO	-017	040	970	063	770	940	070	440	076	077	070	081	000	400	900	740	080		000	700	900	700	2000	900	000	1.000	•	•	•	•	1.000		866	.06407	.1752
MACH =	I L	YADEL	000	000	400	043	640	200	100	163	000	240	200	336	400	000	474	400	574	000	444	727	774	100	*20*	7/00	076	1.00 B	1 070	1 1 24	1 1 1 1	1.230	1.359		DF!		RHOE=

			w																																				I	1/ SEC			
18	170.	696	RHO/RHO	.340	.401	•426	.443	• 456	.470	.493	.511	.528	.547	.563	.581	• 598	.616	.634	• 652	.672	.692	.712	.733	.753	27.	.795	.815	.836	.858	.879	• 903	126.	646	696.	.984	*66	866.		4348	;	-1-		
T0 = 3		REL=68	U/UE	0000	.515	.584	.621	.648	.671	.707	.731	• 753	.774	. 790	.807	.822	.836	.849	.862	.875	.886	868	806	.916	126.	• 936	**6	.952	096.	196.	.974	.981	.987	266.	966.	666.	1.000		OEL *=	44	NO.		
97.6 KPA		5.14 KPA	Σ	000.																			2.584																1650	n			
2 # 0	=0/		1/10	.917	.778	.731	.705	.683	•664	.633	.610	.590	.570	•554	.537	.521	• 506	.492	.478	• 464	.451	.438	.425	.414	.403	.392	• 383	.373	•363	•355	.345	.337	.328	• 322	.317	.314	.313		OELU=	Ξ.	(G/M**3		
0	6.34	0000	11/10	.917	096.	996.	696.	.972	. 974	.976	.978	.980	.982	.983	.985	•986	.987	.988	686.	066.	.991	.992	666	*66	*66.	966.	966.	966.	166.	866.	866.	666.	666.		1.000				1.0681	7187	81		
MACH	AL PHA=	2	Y/OEL	0000	02	.036	.052	.068	8	.118	.150	.185	.221	•52•	.291	.329	.367	40	.442	46	5	.563	•605	.645	•686	.727	.768	.810	.852	.893	.935	6	0	ö	1.099	_	Ξ		DEL =	THETA=	RH0E=		
			iui																																						CM	36	
A. A.	702	03101.	SHO/RHO	.341	.373	004.	.421	.442	.458	.472	. 485	.508	.528	.545	.563	.580	965.	.611	.628	•644	099.	.676	.693	.710	.729	.749	.768	.785	908	•829	.851	.872	968.	.920	.943	.963	.980	.993	166.		.4290	414	4
10 = 3	HILL	=69			408		568			•					190	805	819	831	845	856	867	877	887	968														666.			DEL*=	1 2 0	
	47	5.14 KPA	×	000	.827	1.073	1.222	1,365	1.456	1.533	1.602	1.717	1.809	1.887	1,965	2.033	2.097	2,154	2.219	2.277	2,335	2,390	2.447	2.502	2.566	2.627	2.686	2.736	2.800	2.866	2.928	2,985	3.049	3,115	3.173	3.225	3,268	3.299	3.309		1559	. 4	
C	1		1/10	917	83	78	7	70	68	99	9	6	S	S	5	IN.	2	.512	498	485	473	462	4	4	.428	.417	407	.398	.388	.377	.367	.359	349	340	332	325	310	315	.314		w	I	KG/Mers
ć	2 ,	1 2																																									
	- N	0.0	7	0	. 6	9	96	96	.972	6	. 6	6	980	98	9	9	986	9	980	9	, 6	166	, 9	6	. 993	6	760	995	966	966	2007	997	000	000	000	Č	•		1.000		1.0807	25	181
6	3.00	0.0	0F! TT/T	000	26. 700	015 .96	96.	96 980	192	0	087 97	0	148 .98	182 .98	216 98	96	90.	324	0	300	430	47A	518 . 90	6	66. 965	637	0	0	757	801	ō	ō	o	ā	400		100	721	0		EL = 1.080	A= .0725	HOE= .181

MACH = 3.00 Do = 2.67																																										S			
LHAR 3.00 DO = 297.8 KPA TO = 31.1 KPA MACH = 3.00 DO = 297.8 KPA TO = 31.1 KPA MACH = 3.00 DO = 297.8 KPA TO = 31.1 KPA DO = 3.00 KPA DO = 297.8 KPA TO = 31.1 KPA DO = 3.00 KPA DO =	7	•		_																																					Š	S			
Math = 3.00 Do = 677.8 KPA TO = 314.1 K Math = 3.00 Do = 677.8 KPA TO = 314.1 K Math = 6.34 Zo = 627.8 KPA TO = 314.1 K Math = 6.34 Zo = 627.8 KPA TO = 314.1 K Math = 6.34 Zo = 627.8 KPA TO = 314.1 K Math = 6.34 Zo = 627.8 KPA TO = 714.1 KP	5	180	5744	-	.342	.425	.445	.460	.475	.498	.517	.539	.559	.580	.601	.621	.643	.663	.684	.704	.722	.740	.759	.776	.792	.809	.823	.840	.858	.876	.895	.915	.935	• 954	.972	.987	• 995	666.	1.001		378	57.	*		
LEHA = 3.00 DO = 297.8 KPA TO = 314.1 K MACH = 3.00 PO = 297.8 KPA PHI = 10.104. PHI = 10.1	1	H	EL=7	U/UE	000	.575	.620	649.	•675	.710	.736	.762	.784	.803	.821	.837	.853	.867	.880	.891	.901	.910	.919	.927	.934	046.	.946	.952	656	.965	.971	.977	.983	.988	.993	166.	666.	1.000	1.000		*	UE =			
ACH = 3.00 DO = 297.8 KPA TO = 314.1 K MACH = 3.00 DO = 297.8 KPA TO = 314.1 K MACH = 3.00 DO = 297.8 KPA	97.8 KP	5.67	.15 KP	I	•	13		٦.		•	-	w		٦	7	7	19	"	4	4		4	¥	-		-	8	8	ς.	5	٠,	9	7	ີ.	Ŋ	10	ů	7	т,		132	.76			
ACCH = 3.00 DO = 297.6 KPA TO = 314.1 K MACH = 3.00 LPHA = 6.34 DA = 5.07 ALPHA = 6.34 ALPHA = 6.34 JODO PA = 5.07 ALPHA = 6.34 ALPHA = 6.34 JODO 1918 .000 .000 .374 .000 .918 1013 .952 .948 1.000 .482 .374 .000 .918 1013 .958 .798 1.000 .482 .392 .023 .975 1013 .958 .798 1.000 .482 .472 .003 .975 1014 .969 .708 1.000 .482 .472 .003 .975 1028 .974 .663 1.458 .663 .472 .033 .975 1039 .974 .673 .472 .472 .073 .984 1040 .906 .907 .472 .472 <t< td=""><th>0</th><td>?</td><td>3</td><td>1/10</td><td>.918</td><td>.738</td><td>70</td><td>68</td><td>99</td><td>63</td><td>9</td><td>58</td><td>56</td><td>54</td><td>52</td><td>50</td><td>48</td><td>47</td><td>45</td><td>44</td><td>43</td><td>.424</td><td>.414</td><td>64</td><td>39</td><td>.388</td><td>38</td><td>.373</td><td>36</td><td>35</td><td>35</td><td>34</td><td>• 335</td><td>32</td><td>32</td><td>3</td><td>.315</td><td>,314</td><td>.313</td><td></td><td>ELU</td><td>"</td><td>8/H**</td><td></td><td></td></t<>	0	?	3	1/10	.918	.738	70	68	99	63	9	58	56	54	52	50	48	47	45	44	4 3	.424	.414	64	39	.388	38	.373	36	35	35	34	• 335	32	32	3	.315	,314	.313		ELU	"	8/H**		
ACH = 3.00 DO = 297.8 KPA TO = 314.1 K MACH = ACH	0	3	0		91	96	97	97	97	97	97	98	98	98	98	98	98	98	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	6	666.	66	66.	000	.00		.042	0655	1829		
ACH = 3.00		PHA	PH	2	000	.007	.023	.039	• 054	.083	.115	.149	.184	.219	.253	.288	.326	.363	.403	.442	.480	.521	.562	•604	.643	.686	.726	• 769	.810	.852	.897	.941	.983	1.025	1.067	1.108	1.148	1.192	1,258		EL	HETA	ш		
ACH = 3.00 PO = 297.8 KPA TO = 314.1 K LPHA= 6.34 Z/D= 5.67 PHI= 180. PHI= 1				Ē.																																							I	SE	
LPHA= 6.34		80	7443	HO/RH	34	37	.392	•419	. 442	• 459	.472	49	21	23	25	57	5	61	63	65	67	68	70	72	7	7	F	5	8	8	.851	æ	æ	0	. 932	.950	996	. 984	666.	166.	1.000		401	58.	4
ACH = 3.00 PO = 297.8 KP LPHA = 6.34 Z/D = 5.67 PW = 0.00 .013 .0918 .018 .000 .013 .0958 .747 1.206 .038 .097 .063 1.658 .053 .097 .663 1.658 .053 .097 .663 1.658 .053 .097 .663 1.658 .194 .098 .562 1.655 .229 .098 .562 1.0937 .229 .098 .562 1.0937 .229 .098 .562 1.0937 .229 .098 .562 1.0937 .229 .098 .562 1.0937 .229 .098 .562 1.0937 .229 .098 .562 1.0937 .229 .099 .451 2.665 .095 .095 .096 .295 .006 .099 .329 3.168 .007 .099 .329 3.168 .007 .099 .329 3.168 .008 .336 .338 3.234 .1000 .318 3.274 .1184 1.000 .318 3.317 .250 1.000 .318 3.317 .250 1.000 .318 3.317 .250 1.000 .318 3.317 .250 1.000 .318 3.317	0 = 3	HI=	EL=70	U/UE	000.	.410	.482	.562	.617	•650	.673	.712	.740	.763	.783	.802	.819	.833	.848	.861	.873	.884	*68*	*06*	.913	.922	.929	•936	.943	.950	.957	.963	.970	.977	.982	.987	- 992	966.	666.	1.000	1.000		F.*	ш	S
ACH = 3.00 PD = LPHA= 6.34 Z/D= PN= 0.00 PN =	97.8 KP	5.67	.15 KP	I	0	œ	0	w	(7)	4	u,	w	_	w	ů.	~	~	_	"	"7		٧.	7.		~	~	٠.	٠.	~	-	-	_	•	•									145	.89	
ACH = 3.00 PH = 6.34 O = 9.10 O = 0.10 O =		±0/	3	T/T0	91	83	4	7	70	68	99	62	9	58	56	5	5	5	4	4	46	4	4	4	4	4	4	m	E	.376	.368	.360	•352	.343	•336	.329	.323	.318	,315	,314	.313		ELU	n T	6/H**
PACH PACH	0		0	Ľ	91	95	95	96	96	97	97	97	97	86	96	98	96	96	86	96	6	66	56	6	6	6	6	6	6	6	6	6	6	6	666.	6	ō	0	0	Ö	0		.062	0681	.183
	HU	PHA	PI	/DE	00	00	0	• 022	.038	.053	90	60	13	16	19	22	26	29	6	3	41	4	48	5	5	9	4	9	7	7	8	90	8	6	6	0	0	-	7	7	7			Z	10

																																							C	LI.		
			OE																																			(5 3	E		
16.6 K	-	95273•	RHO/RH(.341	904.	.420	744.	.460	487	214	.532	200.	.572	160.	609.	979.	.643	.657	-672	.687	.703	.719	. 734	.751	. 768	186	000	678.	0	908		920		900		166.	• 440	č	64243	• 6	>	
TO = 316.6	HILL	REL=69	U/UE	000	.528	.567	.619	•653	.698	. 732	. 758	611.	. 799	918.	.830	440	•856	•866	.875	.884	.893	.901	606.	.917	• 925	.933	.941	846	926	.963	1/6.	9,60	- 200	0000	066.	666	1.000		0EL*=		N ZOX	
98.1 KPA	_	5.15 KPA	x	0000	1.115	1.218	1.365	1.467	1.615	1.737	1.832	1.918	2.003	5.079	2.146	2.212	2.273	2.326	2.376	5.429	2.481	2.532	2,582	2.633	2.686	2.740	2.198	2.854	5.914	2.970	3.034	3.046	3.156	3.212	3.259	3.295	3.308			•		
P0 = 2	-0/	H 38	1/10	.917	.770	.744	• 106	.680	.642	.611	.587	• 566	.546	•529	.514	.500	• 486	.476	•465	.455	.445	.435	•456	.417	104.	.398	.388	.379	.370	.361	.352	.343	334	.327	.320	.316	.314		DELU=	T	X6/N**3	
3.00	۳,	0	11/10	.917	.962	•965	.970	.973	.976	.979	.981	.983	. 984	.986	.987	.988	686.	066.	166.	266.	266.	.993	*66	*66°	.995	966.	966.	166.	166.	866.	666.	1.000	1.000	1.000	1.001	1.001	1.001		1.0895	.07138	.1824	
MACH #	ALPHA=	RPM= 20	Y/OFL	000	.016	.022	.036	.053	.083	.116	.148	.181	.215	.250	.286	.323	.361	.397	.434	474.	.514	.554	.594	.633	.671	.713	.753	.793	.836	.874	.916	.957	966.	1.036	1.075	1.118	1.158		OEL =	THETA=	RHOE	
																																									ပ	
¥		•	u C	•																																				Š	M/SE	
316.1	190.	23515	a/ona	230	365	378	.411	.435	.453	.479	.502	.521	.537	.556	.573	589	606	629	639	65.5	673	600	708	728	747	.767	.787	.807	.828	.850	.871	.893	.916	.938	.958	.978	066.	966.		434	660.4	408
10 =	PHI	REL=7	11/11	700	375	.434	.548	.607	-645	.687	.721	.745	.765	.785	.801	.815	829	842	854	865	876	200	897	200	916	. 925	.934	.942	.950	.958	.965	.972	.979	.985	066.	966.	666.	1.000		DEL *=	UE =	RUN II
œ	5.67	5.15 KPA	2		.753	.887			•		1.698	•						, ,				•	•	•						•	•									159	5.995	
0	9	H A	1/10	017	.852	.824	.757	.715	.688	.650	.620	.598	.579	.560	.544	.529	514	501	1487	476	663	450	0440	428	-417	406	.396	.386	.377	.367	.358	.349	.340	.332	.326	.319	.315	.313		OEL U=	II	KG/M**3
0	6		11/10	. 5	949	95	96	96	97	97	97	98	98	98	96	98	9	8	9	0	.00	0	0	00	766	6	6	66	66	66	66	66	66	00.	.00	00.	00	.00		980		835
	ALPHA=		L	10,	.007	0	02	03	05	08	_	7	18	2	25	28	5	3	40	4	1		55	50	63	67	7	75	79	84	8	N	95	.00	.04	.08	12	•16		F	THETA=	된

																																i	ũ	
			M																													E	M/SEC	
N 0 0	210.	REL=7188599.	RHD/RHDE	• 336	.399	*04.	.416	.429	.439	• 456	694.	.480	064.	.502	.514	.528	•544	• 563	•586	.610	.640	.673	.712	.758	.799	.842	.863	.903	.941	.978	.993	.4181	624.9	370
,) ``	=716																			_		~	_	~		٥.			10	0		44	H Z
-	PHI	REL	UZUE	• 000	.511	.527	.562	.593	.616	•649	.672	069.	.705	.721	.737	.754	.772	.791	.812	.832	.854	.876	.896	.921	.936	• 95	.96	.97	986	66	666.	DEL	NE OF	ACN N
40	4	KPA		0	4	ហ	80	_	80	_	0	Š	-	6	0	4	7	ī	99	*	5	00	Ž	57	91	4	73	81	81	75	13	9	80	
2 600	5.67		1	00.	1.07	1.11	1.20	1.29	1.35	1.45	1.530	1.59	1.64	1.69	1.76	1.82	1.89	1.97	2.06	2.16	2.2	2.30	2.5	2.6	2.7	2.9	2.973	3.0	3.1	3.2	3,313	.1756		
			10	17	80	10	47	56	80.	82	63	47	35	20	902	689	111	525	33	210	98	162	137	110	389	369	360	345	330	318	.313	DELU=	0	**3
8	2/2	# Q.	1																															KG/M++3
	3.00	.0000	TT/T0	.917	096	.961	964	.967	696	.972	.974	.975	.977	.978	.979	.981	.982	.984	.985	.987	686	066	266	966	. 995	766.	.997	966	000	1.000	1.000	. 8538	.06627	.1780
			_	0	· Lr	. 0	4	· N	. N	0	0	4	e	0	2	0	-	m	2	9	0	-	00	-	· =	0	9		0		4 0	- 16	I A =	M Isl
	MACH	RPR	Y/DEL	00	0	. 02	40	90	000	.12	•16	.20	24	.29	.33	38	.42	14.	55	.56	.61	99	.7	-	8	8	8	0			1.160	DEL =	THE	RHDE=
								0																								C.	,	
			DE C	5															•	•												CM M/SFC		
	× 8 .	4640.	HD/RHOE	339	176	670	1000	, 504 704	000		0 4	484	101	51.0	5.28	560	600	606	633	. 666	707	741	782	100	867	400	050	071	1000	2000	066.	.3752 CM		•
	309.8 X	7194640.	RHD/RHOF					. 504 . 704									60.00															- 3752	369	
		PF1= 210. REL=7194640.									40.00																						369	
	= 01	•	11/116	100		205.	114.	9	150.	060	650	100		747	777	000	000	, o	20.00	200	100	010	120	1060	043	976	000	•	266	866.	1.000	DEL*= .3752	DIN = 369	
	KPA TO =	KPA	11/116	100		205.	114.	9	150.	060		100		747	777	000	000	, o	20.00	200	100	010	776 - 676	1060	06.3		000		266	866.	1.000	- 3752	DIN = 369	
	KPA TO =	•	311/11	300	000	. 707.	114. 658.	994	1.141 .537	1.301 .596	1.424 .050	1100 62001	100	147 466	10101	1001	2001	700° +C0°7	טייי טייי טיייי	726.000	100	7 616	217.0	1040 541.0	640 700 6	2000 0000	3.060	3.500	3.259	3.305 .998	3,322 1,000	.1570 DEL*= .3752	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	י אַפֿאַ
	= 298.0 KPA TO =	5.67 4.89 KPA	311/11	300	000	. 707.	114. 658.	994	1.141 .537	1.301 .596	650	1100 62001	100	147 466	10101	1001	2001	700° +C0°7	0 200 C	726.000	100	7 616	217.0	1040 541.0	640 700 6	2000 0000	3.060	3.500	3.259	3.305 .998	3,322 1,000	ELU= ,1570 DEL*= ,3752	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	00 PO = 298.0 KPA TO =	34 Z/D= 5.67 0. PW = 4.89 KPA	11/11E	1000 E 01/1 01/	000. 000. /16.	. 661 . 707 . 133	114. CER. SER.	799 . 799 . 697	.763 1.141 .557	•723 I.301 •376	.691 I-424 .050	7100 62C0T 4990	160. 410.1 149.	127. 1464. 177.	1110 +0101 VVV	-578 I-870 -100	2001	5534 C-053 453	.513 C-141	128 726 6 72.	100 100 100	442 2.493 .093	217.0 410.2 024.	1040 541-2 166.	.375 2.817 .75	328 C 550 C 575	- 344 3-080 - 710	966. 477. 126. 966.	.000 .320 3.259 .73	.000 .314 3.305 .998	.000 .312 3.322 1.000	DELU= .1570 DEL*= .3752	067.0 = H	1 20x
	00 PO = 298.0 KPA TO =	4 Z/D= 5.67 PW = 4.89 KPA	31/11 M	1000 E 01/1 01/11	000. 000. /16. /16.	.947 .861 .707 .353	114. 258. 283. 256.	766 662 856	.962 .763 1.141 .537	966 .723 1.301 .396	.971 .691 I.424 .030	1100 62001 4990 4760	1200 +1001 1490 9260	978 .621 1.696 .724	77E 6F6 6F1 6F1	.982 .578 I.870 .789	983 .555 1.963 .809	500° +C0°2 +C°2° 500°	.986 .513 E-141 .027	128 726 C 727	100 10007 1000 0660	560° 5645 544° 566°	2740 47007 0740 6660	166. 541.2 756. 366.	540 560 5 575 696	506. 064.2 8CE. 766.	616. 616. 666.	0060 \$120 0060	1.000 .320 3.29	1,000 .314 3.305 .998	1,000 ,312 3,322 1,000	.7961 DELU= .1570 DEL*= .3752		• 1782 KG/X+*3
	3.00 PO = 298.0 KPA TO =	34 Z/D= 5.67 0. PW = 4.89 KPA	311/11 N	1000 E 01/1 01/11	000. 000. /16. /16.	.947 .861 .707 .353	114. 258. 283. 256.	766 662 856	.962 .763 1.141 .537	966 .723 1.301 .396	.971 .691 I.424 .030	1100 62001 4990 4760	1200 +1001 1490 9260	978 .621 1.696 .724	77E 6F6 6F1 6F1	.982 .578 I.870 .789	983 .555 1.963 .809	500° +C0°2 +C°2° 500°	.986 .513 E-141 .027	128 726 C 727	100 10007 1000 0660	560° 5645 544° 566°	2740 47007 0740 6660	166. 541.2 756. 366.	540 560 5 575 696	506. 064.2 8CE. 766.	616. 616. 666.	0060 \$120 0060	1.000 .320 3.29	1,000 .314 3.305 .998	.000 .312 3.322 1.000	DELU= .1570 DEL*= .3752		• 1782 KG/X+*3

¥ .•	₽	CM M/SEC
311.6 240. 146557	AHOE 327 HOE 327 HOE 327 HOE 327 HOE 5069 5069 5066	.2325 662.4 376
TO = PHI= REL=7		JI H
297.9 KPA 5.67 4.29 KPA		3.421 .0973 6.684
PN = NA	7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	.299 .299 DELU= H =
3.00 6.34 20000.	770 916. 966. 966. 966. 966. 977. 977. 9	.5068 03479
MACH = ALPHA= RPM=	Y/DEL .000	1.210 DEL = THETA= RHOE=
	يا د	CM M/SEC
311.4 k 240. 151050.	AH WAY	.995 1.000 .2018 658.3
T0 = 3 PHI= REL=71	U V V V V V V V V V V V V V V V V V V V	1.000 DEL*= UE = RUN =
297.9 KPA 5.67 4.28 KPA	2.926 2.926 11.185 11.185 11.526 11.526 11.526 11.526 11.526 12.926 13.106 13.106 13.106	• •
P0 = Z/D=	7 0 8 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.309 .307 .307 DELU= H = KG/M**3
3.00	91777 9177 9177 9179 9179 9179 9179 917	
MACH = ALPHA= RPM=	Y/DEL 0000 00106 0	1.218 1.313 DEL = THETA=

																	ပ													
			JC.														MISEC													
T0 = 319.8 K	300	867857.	RHO/RHOE	.251	.818	.819	•825	.834	.844	.859	.879	906	.939	.971				431										.1e.	nited.	
10	PHI=	REL=6	UZUE	000.	.965	.965	996.	.968	.971	.974	.978	.984	066.	.995		DEL *=	UE =	SCN .										r profi	of com	I
297.8 KPA		4.01 KPA	¥	000	3.589	3.590	3.610	3.636	3.668	3,713	3,773	3.855	3.946	4.035														Partial boundary layer profile	Integral narameters not complified	TO TO TO THE
		T.	T/T0	.907	.279	.279	.276	.274	.270	.266	.259	.251	.243	.235		DELU=	H I	KG/K**3										al boun	red lea	ıaı bar
3.00	6.34	20000	TT/T0	106.	166.	166.	.997	166.	.998	.998	866.	666.	666.	1.000														Parti	Tatod	THILES
MACH =	AL PHA=	RPM= 2	Y/DEL	0000	.488	.564	.637	. 710	.783	.854	.924	.989	1.053	1,113		DEL =	THETA=	RHOE=										NOTE		
7 8°6	00	8018.	RHOZRHOE	312	366	383	431	494	004	550	587	618	645	678	.710	.740	.169	.795	.822	.850	.877	*06*	.933	.957	.976	686	966.	.1099 CM	77.6 M/SEC	
T0 = 31	PHT	REL=6868018.			000	7,00	65.0	.711	755	807	837	859	875	893	606.	.922	.934	.944	.953	. 296.	.970	176.	• 985	.991	966.	866.	666.		0E = 6	
297.7 KPA		4.01 KPA	3	000	2200	0.0	1.530	1-714	088	2.120	2.269	2,389	2.400	2,604	2.711	2.809	2.901	2.979	3.058	3.140	3,215	3,289	3,366	3,431	3,481	3.513	3.530		6.619	
H 04	7/0=	10 38	1/10	4.0	770	744	.661	615	677	81.8	40.4	1461	442	125	402	.385	.371	.359	.347	.335	.325	.315	.306	.298	.292	.288	•286	DELU=	II	K6/#**3
3.00	45.34	•	11/10	410	970	0.40	. 971	976	0	400	986	900	000	100	663	466	. 995	995	966	166.	866.	866.	666.	666.	666.	1.000	1.000	.2929	.01661	.1542
MACH	AI DHA	RPM	V / DF1		200	750	960	1000	700	102	246	300	365	100	487	.552	613	670	.737	.803	.867	.929	.995	1.066	1,138	1.208	1.270	DEL =	THETA=	RH0E=

			OE																										3	M/SEC				
118.4 K	330.	17394.	RHO/RHOE	.338	.488	.508	.539	• 566	.590	.613	.630	.662	069.	.721	.752	.781	.812	.840	.875	.907	.934	.959	.976	686.	966.	666.	1.000		.0902	664.0	397			
10 = 3	PHI= 330.	REL=69	U/UE	• 000	.702	.730	.767	.795	.816	.835	.847	.869	.886	-902	.918	.931	.943	.954	.965	.975	.983	066.	*66.	166.	666.	1.000	1.000		DEL *=	UE =	RUN II			
97.8 KPA		4.91 KPA	I	0000	1.633	1.735	1.876	1.993	2.088	2,177	2.240	2.357	2.453	2.552	2.652	2.741	2.831	2.913	3.008	3.094	3,166	3.231	3.274	3.305	3.322	3,329	3,332		.0346	6.266				
		H M																											DELU=	H I	KG/K+#3			
3.00	6.34	200002	11/10	.917	.976	.978	.981	.984	.985	.987	.988	066.	.991	266.	.993	. 995	966.	966*	166.	866.	666.	666.	1.000	1.000	1.000	1.000	1.000		.2497		.1738			
MACH	ALPHA=	RPM= 2	Y/DEL	000	.083	.106	.139	.171	.205	.236	•266	.341	•405	.475	.544	•610	.687	.754	.829	906.	.980	1.057	1,131	1.208	1.290	1,369	1.448		DEL =	THETA=	RHOE			
	•		4-1																														M/SEC	
317.8 K	330.	REL=6932989.	RHO/RHOE	.339	.400	.423	.446	.472	.501	.529	.563	.584	•659	.658	.684	.715	.748	.780	608	.841	.871	+06.	.938	656.	.975	.988	666.	866.	1.000	1.000		*0908 C		396
T0 =	PHI=	REL=69	U/UE	000	.516	.578	.630	.676	.721	.755	.791	.811	.846	.866	.882	668.	.916	.930	246.	.954	*96	.974	.984	066.	*66*	166.	666.	1.000	1.000	1.000		DEL *=		
298.3 KPA		4.91 KPA	Σ	0000	1.088	1.252	1.401	1.547	1.700	1.829	1.978	2.064	2.235	2,339	2.429	2.533	2.638	2.734	2.822	2.913	2.995	3.085	3.175	3.227	3.269	3.300	3.318	3.326	3,330	3,331		.0337	6.061	
		II B	1/10	.917	.777	.735	969.	•629	.620	.587	.551	.532	464.	.472	.454	.434	.415	.399	.384	.369	.357	.344	,331	.324	.319	.315	.312	.311	.311	.311		DELU=	II I	KG/M**3
3.00	6.34	•	11/10	.917	096.	996.	.970	476.	.978	.980	.983	.985	.988	.989	.991	-992	.993	*66°	966.	966.	166.	866.	666.	666.	1.000	1.000	1.000	1.000	1.000	1.000		.2470		
MACH	ALPHA=	A P	Y/DÉL	0000	.031	.048	•064	.082	.109	.135	.173	.199	.278	.343	604.	.478	.548	.621	.695	• 169	.838	.914	.989	1.069	1.141	1.224	1,305	1.382	1.457	1.626		DEL =	THETA=	RHOE=

DISTRIBUTION LIST

No. of No. of Copies Organization Copies Organization 12 Commander 3 Commander US Army Missile Research Defense Documentation Center and Development Command ATTN: DDC-DDA DRDMI - R Cameron Station Alexandria, VA 22314 DRDMI-T DRDMI-TD, Dr. D. Spring Redstone Arsenal, AL 35809 1 Commander US Army Materiel Development 1 Commander and Readiness Command US Army Missile Materiel ATTN: DRCDMD-ST 5001 Eisenhower Avenue Readiness Command Alexandria, VA 22333 ATTN: DRSMI-AOM Redstone Arsenal, AL 35809 1 Commander 1 Commander US Army Aviation Research US Army Tank Automotive and Development Command Research & Development Cmd ATTN: DRSAV-E ATTN: DRDTA-UL 12th and Spruce Streets Warren, MI 48090 St. Louis, MO 63166 Commander 1 Director US Army Armament Research US Army Air Mobility Research and Development Command and Development Laboratory ATTN: DRDAR-TSS (2 cys) Ames Research Center DRDAR-LCA-F Moffett Field, CA 94035 Mr. D. Mertz Mr. S. Wasserman 1 Commander US Army Electronics Research Mr. A. Loeb Dover, NJ 07801 and Development Command Technical Support Activity Commander ATTN: DELSD-L US Army Armament Materiel Fort Monmouth, NJ 07703 Readiness Command ATTN: DRSAR-LEP-L, Tech Lib 1 Commander Rock Island, IL 61299 US Army Jefferson Proving Ground ATTN: STEJP-TD-D Director Madison, Indiana 47250 US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib 1 Commander

US Army Communications Rsch and Development Command

ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703 White Sands Missile Range

NM 88002

DISTRIBUTION LIST

of oies		No. of Copies	
1	Commander US Army Research Office P. O. Box 12211 Research Triangle Park NC 27709	1	Arnold Research Organization, Inc. von Karman Gas Dynamics Facility ATTN: Dr. John C. Adams, Jr. Aerodynamics Division Projects Branch Arnold AFS, TN 37389
2	Commander Naval Surface Weapons Center ATTN: Code 313, Mr. R. Lee Dr. W. Yanta Silver Spring, MD 20910	1	Douglas Aircraft Company McDonnell-Douglas Corporation ATTN: Dr. Tuncer Cebeci 3855 Lakewood Boulevard Long Beach, CA 90801
2	Director National Aeronautics and Space Administration Ames Research Center ATTN: MS-202-1, Dr. H. Lomax Dr. R. MacCormack Dr. J. Steger Dr. L. Schiff Dr. C. M. Hung Dr. J. Rakich Dr. R. Agarwal Moffett Field, CA 94035 Director National Aeronautics and Space Administration Langley Research Center ATTN: MS-185, Tech Lib	1	Polytechnic Institute of New York ATTN: Dr. S. G. Rubin Farmingdale, NY 11735 Princeton University James Forrestal Research Center Gas Dynamics Laboratory ATTN: Prof. S. Bogdonoff Princeton, NJ 08540 University of California Department of Mechanical Engineering ATTN: Prof. H. A. Dwyer Davis, CA 95616
	MS-161, Mr. D. Bushnel Langley Station Hampton, VA 23365	1 1	University of Delaware Mechanical and Aerospace Engineering Department ATTN: Dr. James E. Danberg
2	Aeronutronic Division Aeronutronic Ford Corporation ATTN: Dr. A. Demetriades Dr. A. Laderman Ford Road Newport Beach, CA 92663	Ab	Newark, DE 19711 erdeen Proving Ground Dir, USAMSAA Cdr, USATECOM ATTN: DRSTE-SG-H