AUTOMATA THEORY

Tutorial 4

TABLE OF CONTENTS

- Assignment updates
- Regex Parsing
- CYK algorithm

ASSIGNMENT UPDATES

- •Assignment 2 will be released soon
- An example input file for Programming assignment II (Q3 & Q4) will be uploaded by tonight, the pdf is updated to fix question numbers are running command

PARSING

- Automata theory is pervasively used in all branches of informatics to model situations or phenomena classifiable as time
 & space discrete systems.
- Formal language: A language whose form & meaning are algorithmically defined, l.e. a computer must be able to determine it's correctness and derive it's meaning. All programming languages are formal languages
- Translation from a programming language to machine code is known as compilation, to check if a program will compile is a decision problem. Compilers do more than just checking; they convert the program into meaningful tokens.

PARSING IN PROGRAMMING ASSIGNMENT

- The assignment is to help you understand the conversion from regex to NFA, we do not expect you to learn parsing on your own!
- Regex requires a very simple parsing algorithm which can be implemented using a stack.

Regex to be parsed: a*b(c+b)*c

Stack

Regex to be parsed: a*b(c+b)*c

Stack

Stack

Stack

Stack

Stack

QUESTION TO PONDER

Can you model the Above as a PDA?

MODELING THE TOKEN IN C++

A token can be modelled simply as a struct in C++

```
struct Token {
   //...
   vector<Token> tokens;
};
```

CFG & MEMBERSHIP

Above we were able to parse and validate a regular expression. If a language is more complex, such as a context free one, can we decide the language? What will be the algorithm for deciding the language?

THE MEMBERSHIP PROBLEM

- Given a context-free grammar G and a string w
 - $G = (V, \sum, P, S)$ where
 - V finite set of variables
 - \sum (the alphabet) finite set of terminal symbols
 - P finite set of rules
 - S start symbol (distinguished element of V)
 - V and \sum are assumed to be disjoint
 - G is used to generate the string of a language
- Question:
 - Is w in L(G)?
 - Algorithm (\mathcal{C}/\mathcal{K}) is a good example of dynamic programming or table filling and runs in time $O(n^3)$, where n = |w|.

TESTING MEMBERSHIP AND THE CYK ALGORITHM

- CYK algorithm is a bottom-up dynamic programming parser
- CYK algorithm was independently developed by
 - J. Cocke
 - D. Younger
 - T. Kasami
- The CYK algorithm was developed to solve the membership problem.

CONDITIONS OF THE CYK ALGORITHM

- 1. Assume G is in CNF or convert the given grammar to CNF.
- 2. Any CFG can be converted to a weakly equivalent grammar in CNF.
- 3. Each rule in the grammar must satisfy
 - A \longrightarrow BC at most 2 symbols on right side
 - A \longrightarrow a, or terminal symbol
 - $S \rightarrow \varepsilon$ null string
- 4. $w = \varepsilon$ is a special case, solved by testing if the start symbol is nullable.

CYK ALGORITHM

- Let $w = a_1...a_n$.
- We construct an n-by-n triangular array of sets of variables.
- Xij = {variables $A \mid A = >^* a_i...a_j$ }. It means $A \in Xij$ if the sequence of letters starting from i to j can be generated from the non-terminal A.
- Induction on j-i+1 (length of the substring).
 - Till we reach the length of the derived string w.
- Finally, ask if S is in X_{1n} .

X _{1,5}				
X _{1,4}	X _{2,5}			
X _{1, 3}	X _{2, 4}	X _{3,5}		
X _{1, 2}	X _{2,3}	X _{3,4}	X _{4,5}	
X _{1, 1}	X _{2,2}	X _{3, 3}	X _{4,4}	X _{5, 5}

Table for string 'w' that has length 5

BASIS OR INITIAL CONDITION

- $Xii = \{A \mid A \rightarrow a_i \text{ is a production}\}.$
- For example:
 - CNF of a grammar G
 - \bullet S \longrightarrow AB | BC
 - $A \longrightarrow BA \mid a$
 - B → CC | b
 - $C \longrightarrow AB \mid a$
 - w is baaba

INDUCTION

- $\lambda ij = \{A \mid \text{there is a production } A \rightarrow BC \text{ and an integer } k, \text{ with } i \leq k < j, \text{ such that } B \text{ is in } \lambda_{ik} \text{ and } C \text{ is in } \lambda_{k+1,j} \}.$
- $\chi_{1,2} = (\chi_{i,i}, \chi_{i+1,i}) = (\chi_{1,1}, \chi_{2,2})$
- $\{B\}\{A,C\} = \{BA,BC\}$
- Steps:
 - Look for production rules to generate BA or BC
 - There are two: S and A
 - $\chi_{1,2} = \{S,A\}$

FINAL TABLE

- Is baaba in L(G)? Yes
 - We can see the S in the set X_{1n} where 'n' = 5
 - We can see the table the cell $X_{15} = \{S, A, C\}$ then
 - if $S \in X_{15}$ then baaba $\in L(G)$
- The running time of the algorithm is $O(n^3)$.
- Let r = |N| symbols (the size of the non-terminal set).
- Time complexity $O(r^2n^3) = O(n^3)$.
- Space complexity: A three dimensions table at size n^*n^*r or a n^*n table with lists of size up to r. So, space complexity $O(rn^2) = O(n^2)$.

{S, A, C}				
Ø or {}	{S, A, C}			
Ø or {}	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
Ь	a	a	Ь	a

REFERENCES

- S. C. Reghizzi, L. Breveflieri, A. Morzenti, Formal Languages and compilation, Second Edition, Springer
- J. E. Hopcroft, R. Motwani, J. D. Ullman, *Introduction to Automata Theory, Languages and Computation*, Second Edition, Addison Wesley, 2001
- T.A. Sudkamp, An Introduction to the Theory of Computer Science Languages and Machines, Third Edition, Addison Wesley, 2006