

EI1062 – IR2162
 Diseño de sistemas empotrados
 y de tiempo real

Tema 4 – Comunicaciones en sistemas empotrados (II)

Grado en Ingeniería Informática Grado en Inteligencia Robótica

Buses - comunicaciones

- SPI
- |2C
- 1-wire
- CAN
- RS232 (UART)
- WiFi
- Bluetooth

RS232

- Transmisión de señales a media distancia
- Velocidad de transmisión moderada
- Envío en serie de la información
- Estructuras complejas de transmisor y receptor (conversión serie-paralelo y viceversa)
- Solo dos conductores imprescindibles (datos y masa)

RS232: Conectores

- Conectores Sub-D de 9 o de 25 pines
- DTE:
 - Conector macho en panel
 - Conector hembra aéreo
- DCE:
 - Conector hembra en panel
 - Conector macho aéreo

RS232: Niveles eléctricos

- RS232: 115 Kbit/s a 25 metros.
 - Uno lógico para voltajes más negativos que -3 V
 - Cero lógico para voltajes más positivos que +3 V
- RS422: 100 Kbit/s a 1200 metros.
 - Transmisión por lazo de corriente
 - Emisor y receptor diferencial
- RS423: 3 Kbit/s a 1200 metros. Compatibilidad
 - Emisor no diferencial
 - Receptor diferencial

RS232: Protocolo

- Protocolo de transmisión de una palabra:
 - Marca (HI) (línea en reposo)
 - Bit de inicio (LO) (siempre 1 solo bit)
 - Bits de datos (entre 5 y 8 bits)
 - Paridad (Par, Impar, Ninguna)
 - Bits de stop (HI) (1 ó 2 bits)
 - Marca (HI) (línea en reposo)
- Frecuencia de transmisión (Baud rate)
 - Baudios (velocidad bruta)
 - Bits por segundo (velocidad neta)

RS232: Protocolo

PROTOCOLO EN ESTE EJEMPLO:

- 1 bit de inicio
- 8 bits de datos
- 1 bit de paridad (paridad par)
- 1 bit de stop

En este ejemplo, de cada 11 bits transmitidos (baudios) solo 8 son de datos (bits por segundo, velocidad de transferencia neta)

RS232: Señales del conector

D-25	D-9	FUNCIÓN	NOMBRE	DIRECCIÓN
1	-	Masa Chassis	GND	-
2	3	Transmit Data	TD	SALIDA
3	2	Receive Data	RD	ENTRADA
4	7	Request To Send	RTS	SALIDA
5	8	Clear To Send	CTS	ENTRADA
6	6	Data Set Ready	DSR	ENTRADA
7	5	Masa	GND	-
8	1	Data Carrier Detect	DCD	ENTRADA
20	4	Data Terminal Ready	DTR	SALIDA
22	9	Ring Indicator	RI	ENTRADA

RS232: Cable null modem

- Estándar RS232 diseñado para comunicar un DTE (Data Terminal Equipment) con un DCE (Data Communications Equipment).
- RS232C contempla la comunicación un DTE con otro a través de un cable "null modem":

LOCAL	REMOTO
TD	RD
RD	TD
DTR	DSR
DSR	DTR
RTS	CTS
CTS	RTS
GND	GND

RS232: El Harris 8250

- Controlador fabricado por Harris que cumple con las especificaciones del estándar RS232
- Algunos aspectos del estándar han sido interpretados de forma especial
- Se han añadido algunas funcionalidades
- Integrado típico en el IBM PC original
- Su evolución ha dado lugar a los 16450, 16550 (A y B), 16650 y 16750.

RS232: El Harris 8250

DIR	REG	NOMBRE	NOMBRE	
base	RBR	Receive Buffer Register	Registro de recepción	
base	THR	Transmit Holding Register Registro de transmisión		
base	DLL	Divisor Latch LSB	Byte bajo del divisor	
base+1	IER	Interrupt Enable Register	Activador de interrupciones	
base+1	DLM	Divisor Latch MSB	Byte alto del divisor	
base+2	IIR	Interrupt Identification Register	Identificador de interrupciones	
base+2	FCR	FIFO Control Register	Control de FIFOs (*)	
base+3	LCR	Line Control Register	Registro de control de línea	
base+4	MCR	Modem Control Register	Registro de control de protocolo	
base+5	LSR	Line Status Register	Registro de estado de línea	
base+6	MSR	Modem Status Register	Registro de estado de protocolo	
base+7	SCR	Scratch Register	Registro de uso general	

^(*) Solo en controladores con FIFOs (16550 y posteriores)

Compartición direcciones E/S

- - Lectura
 - base → RBR
 - base + $2 \rightarrow IIR$
 - Escritura
 - base → THR
 - base + 2 \rightarrow

- Por modo de acceso Por registro de control
 - bit 7 de LCR = 0
 - base → THR/RBR
 - base + 1 → IER
 - bit 7 de LCR = 1
 - base → DLL
 - base + 1 \rightarrow DLM

RS232: Selección velocidad

RS232: Transmisión

LCR - Line Control Register (base+3, R/W)

- Número de bits de datos $\begin{cases}
 00 = 5 \text{ bits} \\
 01 = 6 \text{ bits} \\
 10 = 7 \text{ bits} \\
 11 = 8 \text{ bits}
 \end{cases}$
- Número de bits de stop $\begin{cases} 0 = 1 \text{ bit} \\ 1 = 2 \text{ bits } (1.5 *) \end{cases}$
- Generación/cálculo de paridad $\begin{cases} 0 = \text{Sin paridad} \\ 1 = \text{Con paridad} \end{cases}$ 3
- bit 5 Tipo de paridad: impar par
- = 1 : Activa línea en modo espacio 6
- Divisor Latch Access Bit $\begin{cases} 0 = \text{Acceso a THR/RBR e IER} \\ 1 = \text{Acceso a DLL y DLM} \end{cases}$

LSR - Line Status Register (base+5, R)

- O DR (Data Ready): Hay un dato en RBR
- 1 OE (Overrun Error): Sobreescritura de RBR
- PE (Parity Error): Detectado error de paridad
- 3 FE (Frame Error) El bit de stop no está en su sitio
- 4 BI (Break Interrupt): Recibiendo línea en modo espacio
- 5 1 = THR vacío Inforamcion que quiero transmitir
- 1 = THR y TSR vacíos el TSR transmite la informacion THR bit a bit
- 7 1 = Error en FIFO de recepción (16550 y posteriores)

MCR - Modem Control Register (base+4, R/W)

- O Valor de DTR (Data Terminal Ready)
- 1 Valor de RTS (Request To Send)
- 2 = 1 : Activa señal configurable usuario 1 (compat. MIDI)
- 3 = 1 : Activa señal configurable usuario 2 (interrupciones)
- 4 = 1 : Activa modo "loop back"
- 5 = 1 : Modo control automático de flujo (RTS-CTS) (solo 16750)
- 6 7 Siempre tienen que valer cero (reservados)

MSR - Modem Status Register (base+6, R)

- 0 = 1 : Delta CTS (CTS ha cambiado de valor)
- 1 = 1 : Delta DSR (DSR ha cambiado de valor)
- 2 = 1 : Trailing edge RI (el timbre ha dejado de sonar)
- 3 = 1 : Delta DCD (DCD ha cambiado de valor)
- 4 Valor de CTS (Clear To Send)
- 5 Valor de DSR (Data Set Ready)
- 6 Valor de RI (Ring Indicator)
- 7 Valor de DCD (Data Carrier Detect)

FCR - FIFO Control Register (base+2, W)

- 0 = 1 : Activar FIFO
- = 1 : Borrar FIFO de recepción
- = 1 : Borrar FIFO de transmisión 2
- = 1: Modo DMA 3
- 4 Siempre tiene que valer cero (reservado)
- 5 = 1 : Activar FIFO 64 bytes (solo 16750)
- Nivel de interrupción: $\begin{cases}
 00 = 1 \text{ byte} \\
 01 = 2 \text{ bytes} \\
 10 = 8 \text{ bytes} \\
 11 = 14 \text{ bytes}
 \end{cases}$

IER - Interrupt Enable Register (base+1, R/W)

- 0 = 1 : Generar interrupción cuando se recibe un dato
- 1 = 1 : Generar interrupción cuando THR queda vacío
- = 1 : Generar interrupción cuando cambia LSR
- 3 = 1 : Generar interrupción cuando cambia MSR
- 4 = 1 : Activa modo "sleep" (solo 16750)
- 5 = 1 : Activa modo ahorro energía (solo 16750)
- 6 7 Siempre tienen que valer cero (reservados)

IIR - Interrupt Identification Register [(base+2, R)

7 6 5 4 3 2 1 0

2 1 0 Interrupción pendiente y código

BIT 2	BIT 1	BIT 0	PRIO	FLAG	ORIGEN	RESET
Χ	Χ	1	-	-	-	-
1	1	0	1 (MAX)	LSR	OE,PE,FE,BI (ver LSR)	LEER LSR
1	0	0	2	RBR	Dato en RBR	LEER RBR
0	1	0	3	THR	THR vacío	LEER IIR
0	0	0	4 (MIN)	MSR	CTS,DSR,RI,DCD (ver MSR)	LEER MSR

- 3 = 1 : Pendiente interrupción por time-out (16550 y post.)
- 4 Siempre tiene que valer cero (reservado)
- 5 = 1 : Activado FIFO de 64 bytes (sólo 16750)
- Estado FIFO $\begin{cases} 00 = \text{No existen FIFOs} \\ 01 = \text{FIFO activo pero inutilizable (16550)} \\ 11 = \text{FIFO activo (16550A...16750)} \end{cases}$

Buses

- SPI
- I²C
- RS232 (UART)
- 1-wire
- CAN
- WiFi
- Bluetooth

WiFi

- En 1989 se creó el grupo IEEE 802.11 para crear una Ethernet inalámbrica.
- En 1997 se publicó el estándar.
- Posteriormente se ha mejorado con las revisiones a, b, g y n.
- El nombre WiFi viene de "Wireless Fidelity" y fue creado por la empresa Interbrand, contratada específicamente para ello.

WiFi

- WiFi proporciona conectividad inalámbrica en áreas denominadas "hot spots" mediante "access points".
- Su objetivo es permitir la movilidad absoluta manteniendo la conexión a las redes locales o internet a través de una estructura de "access points".

- Las frecuencias asignadas a WiFi se encuentran alrededor de los 2'4 GHz o de los 5 GHz, según la variante de que se trate.
- La variante "a" usa la banda U-NII (Unlicensed National Information Infrastructure) que no precisa de licencia y es poco usada por otros dispositivos.

WiFi 802.11a

- Las frecuencias asignadas a la variante "a" de WiFi se encuentran alrededor de los 5 GHz, en la zona SHF (Super High Frequency) que abarca desde 3 GHz a 30 GHz.
- En el rango de 5'25 a 5'35 GHz existen 12 canales de 20 MHz cada uno, de los cuales WiFi usa 8.

WiFi: Espectro radioeléctrico

Espectro radioeléctrico de la banda UNII

WiFi 802.11b

- Las frecuencias asignadas a la variante "b" de WiFi se encuentran alrededor de los 2'4 GHz, en la zona UHF (Ultra High Frequency) que abarca desde 300 MHz a 3 GHz.
- En el rango de 2'4 a 2'4835 GHz existen 14 canales, de los cuales WiFi usa 11, pero solo tres de ellos simultáneamente, puesto que cada uno ocupa 25 MHz.

WiFi: Espectro radioeléctrico

WiFi

	802.11a	802.11b	802.11
Fecha aprobación	Sep 1999	Sep 1999	Jul 1997
Banda de frecuencia	5'15 a 5'35 GHz 5'725 a 5'825 GHz	2'4 a 2'4835 GHz	2'4 a 2'4835 GHz
Ancho de banda disponible	300 MHz	83'5 MHz	83'5 MHz
Número de canales sin solape	12	3	3
Tasa de transmisión por canal	6, 9, 12, 18, 24, 36, 48, 54 Mbits/s	1, 2, 5'5, 11 Mbits/s	1'2 Mbits/s
Tipo de modulación	OFDM	DSSS	FHSS, DSSS

WiFi 802.11n

- En 2009 se publicó la revisión "n" del estándar 802.11 mejorando el alcance y el ancho de banda:
 - MIMO (Multiple Input Multiple Output). Utiliza múltiples antenas emisoras y receptoras.
 - Channel Bonding (40 MHz). Usa dos canales adyacentes de 20 MHz.
 - Multiplexado de División Espacial (SDM). También requiere varias antenas.
- Se consiguen 300 Mbps y hasta 300 m.

Buses

- SPI
- I²C
- RS232 (UART)
- 1-wire
- CAN
- WiFi
- Bluetooth

- El estándar surgió en 1994 creado por Jaap Haartsen y Mattisson Sven trabajando en Lund, Suecia, para la compañía Ericsson.
- Recibe el nombre del vikingo Harald
 Bluetooth, rey de Dinamarca en los años 900.
 Durante su reinado unificó Noruega y
 Dinamarca e instauró el cristianismo.
- El estándar estaba pensado para redes de datos, pero su potencial llevó a explotar sus posibilidades.

- Para supervisar su desarrollo se creó en 1998 el Special Interest Group (SIG) formado por Intel, IBM, Nokia y Toshiba.
- En la actualidad este grupo se ha extendido a 3Com, Ericsson, IBM, Intel, Lucent, Microsoft, Motorola, Nokia, Toshiba y muchas más.
- El SIG se preocupa especialmente de asegurar la compatibilidad.

- Las características de los dispositivos Bluetooth se centran en tres aspectos:
 - Bajo consumo: Alrededor de 10 μA en modo espera y 50 mA para transmisión o recepción.
 - Tamaño reducido: Chips de alrededor de 9 mm².
 - Bajo precio.

- Existen dos conceptos importantes en cuanto a dispositivos Bluetooth:
 - Modelos de utilización: Se refieren a las propuestas de productos y aplicaciones.
 - Acceso a Internet: El dispositivo busca conexiones en el entorno.
 - Headset: Porporciona comunicación sin necesidad de utilizar el terminal.
 - Sincronización automática.
 - Perfiles: Cómo desarrollar los protocolos para conseguir la interoperatividad deseada.

- Un aspecto determinante en una tecnología inalámbrica es el rango de frecuencias que emplea.
- Determina las propiedades de la comunicación, potencia utilizable y el posible coste en licencias de transmisión.
- Establece el tamaño de las antenas.
- Bluetooth trabaja en la banda mundial sin licencia ISM (Industrial Scientific and Medical) de 2'4 GHz de UHF (300 MHz – 3 GHz).

- ISM está definida para las frecuencias comprendidas entre 902 y 908 MHz y las comprendidas entre 2'4 y 2'484 GHz.
- Bluetooth opera entre 2'4 y 2'484 GHz.
- Al no precisar licencia es una tecnología económica.
- Al tratarse de una banda de ámbito mundial proporciona total compatibilidad.

Espectro de frecuencias de la banda ISM

- El número de canales varía de unos países a otros.
- En España hay 28 canales.
- En algunos países se puede utilizar hasta 79 canales.
- El ancho de banda o separación entre canales es de 1 MHz.

Región	Rango Regulatorio	Canales
Estados Unidos, Europa	2.4 - 2.4835 GHz	79
España	2.445 - 2.475 GHz	23
Japón	2.4 - 2.4835	79

- Para evitar interferencias se emiten señales de 1 mW (frente a los hasta 3 W de algunos teléfonos móviles).
- Pese a ello, las señales pueden atravesar ciertos objetos (a diferencia de IrDA que necesita línea de visión).
- Hasta ocho dispositivos pueden conectarse entre sí en un radio de unos 10 metros.
- Para evitar colisiones cada dispositivo cambia su frecuencia de transmisión 1600 veces por segundo (spread-spectrum frequency hopping / ampliación de espectro por salto de frecuencia).

- Cuando dos dispositivos se detectan, establecen automáticamente un diálogo y deciden si necesitan conectarse.
- Si establecen conexión, constituyen una red "personal area network" (PAN) o piconet.
- Cualquier otro dispositivo que no forme parte de la piconet es ignorado.
- La dirección única de cada dispositivo indica las funcionalidades que contiene.

- A partir del estándar original que contenía ciertas deficiencias y fallos se han introducido mejoras:
 - En la potencia, ampliando la original de 1 mW (clase 3 – 1 m) a 2'5 mW (clase 2 – 10 m) y 100 mW (clase 1 – 30 m).
 - En el ancho de banda:
 - 1.2: 1 Mbit/s.
 - 2.0: 3 Mbit/s.
 - 3.0: 24 Mbit/s.
 - 4.0: 24 Mbit/s.

Bluetooth. Versión 1.0

- Presentaba multitud de problemas de compatibilidad entre dispositivos de diferentes fabricantes.
- Incorporaba la identificación del dispositivo por hardware y se usaba en cada transmisión, haciendo imposible el anonimato.

Bluetooth. Versión 1.1

- Ratificado como estándar IEEE 802.15.1-2002.
- Se resolvieron muchas deficiencias de la versión 1.0.
- Se añadieron canales no cifrados.
- Se incorporó medición de RSSI.

Bluetooth. Versión 1.2

- Conexión rápida y Discovery (detección de dispositivos).
- Mayor velocidad de transmisión que en 1.1 (hasta 721 Kbit/s).
- Optimización de la transmisión de audio con reenvío de paquetes corruptos.
- Host controller con interfaz UART de tres hilos.
- Ratificado como estándar 802.15.1-2005

Bluetooth. Versión 2.0

- Incorporación de EDR (Extended Data Rate) llegando teóricamente a los 3 Mbit/s y en la práctica a 2'1 Mbit/s.
- EDR es una opción, de forma que los dispositivos que la incorporan se denominan V2.0+EDR.
- Presenta un menor consumo de energía gracias a un ciclo de trabajo reducido.

Bluetooth. Versión 2.1

- Incorporación de SSP (Secure Simple Pairing) que mejora el emparejamiento y aumenta la seguridad.
- Orta mejora es EIR (Enhanced Investigation Response) que mejora la fase de búsqueda y localización de dispositivos en el rango de alcance.

Bluetooth. Versión 3.0

- Utiliza un enlace 802.11 (WiFi) para la transmisión de datos a una velocidad de hasta 24 Mbit/s.
- La búsqueda, negociación y emparejamiento se realiza mediante Bluetooth.
- Permite utilizar MAC/PHY para la transmisión de grandes cantidades de datos a costa de un aumento del consumo.

Bluetooth. Versión 4.0

- Conserva las características de la versión 3.0 mejorando considerablemente el consumo en determinados modos.
- Pensado para dispositivos de un único chip alimentados con pila de botón.

EI1062 – IR2162
 Diseño de sistemas empotrados
 y de tiempo real

Tema 4 – Comunicaciones en sistemas empotrados (II)

Grado en Ingeniería Informática Grado en Inteligencia Robótica