802 Project Summary

Maksuda Aktar Toma, Jo Charbonneau, Ryan Lalicker

November 29, 2024

	${\tt Batches}$	${\tt Inoculation_Method}$	${\tt Thickness}$	Week	Response
1	1	Dry	1/4-inch	1	4.301801
2	1	Dry	1/4-inch	2	4.273007
3	1	Dry	1/4-inch	3	4.200168
4	1	Dry	1/4-inch	4	4.442244
5	1	Dry	1/4-inch	5	4.737077
6	1	Dry	1/8-inch	1	4.808217

Introduction

For more information on the experiment, the data, or any other files used in this paper see our Github page which can be found at https://github.com/maksudatoma/Stat-802-Project. The coding languages used in the paper are R and SAS. The corresponding code can be found in $Appendix\ A$ - R Code and $Appendix\ B$ - SAS Code respectively.

Variables

Missing Values

Summary Statistics

Two plots

Figure 1: ?(caption)

Exploring the Data

Model

Models can be written as

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + u_k + e_{ijk}$$

where Y_{ijk} represents the final weight for the ith treatment, the jth sex, and the kth sire. μ represents the overall mean, while α_i is the fixed effect for the ith treatment, β_j is the fixed effect for the jth sex, and $(\alpha\beta)_{ij}$ is their interaction. The random sire effect is represented by u_k and we assume u_k $N(0, \sigma_k^2)$. We also assume the residual term e_{ijkl} is distributed as $N(0, \sigma^2)$.

Conclusion

Future Work

References

Appendix A - R Code

Appendix B - SAS Code