### Bibliographie

■Danièle BEAUQUIER, Jean BERSTEL et Philippe CHRETIENNE:

#### Eléments d'algorithmique, Masson 1992

(ce livre est épuisé, mais téléchargeable sur le Web à l'adresse http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html)

Il comporte plusieurs chapitres qui peuvent (doivent ?) vous intéresser à différents titres (cours d'algorithmique, maths discrètes) et le chapitre 9 qui concerne les automates.

### Bibliographie

 John HOPCROFT, Jeffrey ULLMAN: Introduction to Automata Theory and Computation, Addison Wesley, 1979.

Nouvelle édition, revue et corrigée :

John HOPCROFT, Rajeev MOTWANI, Jeffrey ULLMAN: Introduction to Automata Theory, Languages and Computation, Addison Wesley, 2001.

### Bibliographie

- Michael SIPSER: Introduction to the Theory of Computation, PWS publishing comp. 1997.
- Jacques STERN : Fondements mathématiques de l'informatique, McGraw Hill, 1990.
- Pierre WOLPER: Introduction à la calculabilité, Inter Éditions 1991 (deuxième édition: Dunod, 2001).

# Bibliographie

 Pierre WOLPER: Introduction à la calculabilité, Inter Éditions 1991 (deuxième édition: Dunod, 2001).

#### Concaténation

- $\Sigma^*$  = collection de tous les mots finis sur  $\Sigma$  = ensemble de tous les mots finis
- Opération interne associée: concaténation "."

$$\begin{array}{c} \Sigma^* \times \Sigma^* \to \Sigma^* \\ (u,v) \to u.v \end{array}$$

u=ES, v=SI, u.v=ESSI

- Élément neutre: mot vide  $m.\epsilon = \epsilon.m = m$
- concaténation = opération associative :

$$(u.v).w = u.(v.w)$$

•  $(\Sigma^*,.)$  est un monoïde

#### Monoide

#### de Wikipédia:

- Un monoïde est une structure algébrique consis-tant en un ensemble muni d'une loi de compo-sition interne associative et d'un élément neutre.
- En d'autres termes, (E, \*) est un monoïde si :
  - $\blacksquare$  ∀ x,y ∈ E, x\*y ∈ E (composition interne)
  - $\forall x,y,z \in E, x^*(y^*z) = (x^*y)^*z$  (associativité)
  - $\exists$  e  $\in$  E  $\dagger$ .q. :  $\forall$  x  $\in$  E, x\*e=e\*x=x

### Autre vision des langages

- Langage = ensemble de mots (infini?)
- Langage = sous-ensemble de  $\Sigma^*$  ensemble des nombres ordinaires ensemble des programmes Java (syntaxiquement corrects)
- Langage vide  $L = \{ \} = \emptyset \neq \{ \epsilon \}$
- $L = \{\varepsilon\}$ , langage du mot vide
- Langage fini de mots finis
   L={ab,ba,aca}
- Langage infini dénombrable de mots finis
   L={mots binaires pairs}

# Opération \* de Kleene

- L un langage,  $L^*$  = concaténation de mots de L  $L^0$  = { $\epsilon$ },  $L^1$  = L,  $L^{i+1}$  =  $L^i$  . L  $\forall i \ge 0$  $L^*$  =  $\cup_{i>0} L^i$  ,  $L^*$  =  $\cup_{i>1} L^i$
- L={a,0} L²={aa,a0,0a,00} L³={aaa,aa0,a0a,a00,0aa,0a0,00a,000}
- $\mathcal{L}^*$  = plus petit langage de  $\Sigma^*$  clos pour la concaténation contenant  $\epsilon$  et  $\mathcal{L}$ . C'est un sous-monoïde de  $\Sigma^*$
- Opération idempotente: (∠\*)\*=∠\*

### Langages rationnels

- Intérêt particulier pour la suite
- sous-ensemble de l'ensemble des langages
- définition inductive
- Notation simplifiée par expressions rationnelles (recherche sur le Web, etc...)

#### Définition inductive

- Base :
  - Ø est un langage rationnel
  - $\{\epsilon\}$  est un langage rationnel
  - $\forall a \in \Sigma$ , {a} est un langage rationnel
- Induction:
  - Si R et S sont deux langages rationnels,  $R \cup S$ , R. S et  $R^*$  sont aussi rationnels

### Expressions rationnelles (ER)

- Base:
  - Ø est une expression rationnelle (ER)
  - $\epsilon$  est une ER qui représente  $\{\epsilon\}$
  - ∀a ∈Σ, a est un ER qui représente {a} (le mot a)
- Induction: Si ret s sont des ER,
  - (r+s) est une ER qui représente  $R \cup S$
  - (rs) est une ER qui représente R.S
  - $(r^*)$  est une ER qui représente  $R^*$

### Exemples

- (a+b)\* tous les mots avec des a et des b
- (a+b)\*ab(a+b)\*=(b\*a\*)\*ab(a+b)\*
- (b+ba)\* mots sans facteur aa et qui ne commencent pas par un a
- (a+ε)(b+ba)\* mots sans facteur aa



Le théorème de Kleene

# Théorème de Kleene

- Rat( $\Sigma$ \*)=classe des ER sur  $\Sigma$
- Rec( $\Sigma^*$ )=classe des langages reconnus par AF sur  $\Sigma$

**Théorème**: Un langage sur  $\Sigma$  est rationnel si et seulement si il est reconnu par un automate fini.

- On veut montrer que  $\mathrm{Rat}(\Sigma^*)\!\!\subseteq\!\mathrm{Rec}(\Sigma^*)$  i.e. étant donnée une ER, on peut construire un AF qui la reconnaît
- Et que  $\operatorname{Rec}(\Sigma^*) \subseteq \operatorname{Rat}(\Sigma^*)$  i.e, étant donné un AF, on peut trouver une ER qui le dénote (prochaine fois)

# Preuve Rat( $\Sigma^*$ ) $\subseteq$ Rec( $\Sigma^*$ )

- Par induction sur le nombre d'opérateurs de l'ER
- Base
  - -Øest une ER,
- $\rightarrow$
- $\epsilon$  est une ER,
- →(()
- $\forall a \in S$ , a est une ER  $\rightarrow \bigcirc$   $\stackrel{a}{\longrightarrow}$   $\bigcirc$

# Preuve pour t=(r+s)

r et s ont strictement moins d'opérateurs que t; par HR, il existe N₁ et N₂, deux AFND tq L(N₁)=r et L(N₂)=s.



# Preuve pour t=(r.s)

r et s ont strictement moins d'opérateurs que t; par HR, il existe N<sub>1</sub> et N<sub>2</sub>, deux AFND tq L(N<sub>1</sub>)=r et L(N<sub>2</sub>)=s.



#### Preuve pour t=(r)\*

■ r a strictement moins d'opérateurs que t; par HR, il existe  $N_1$  un AFND tq  $L(N_1)=r$ .



#### Le théorème de Kleene

- $Rec(\Sigma^*)$  = langages reconnus par AF
- Rat( $\Sigma^*$ ) = ensemble des ER (construit inductivement)

  - Base :  $\emptyset$ ,  $\varepsilon$ , et  $a \in \Sigma$  sont des ER Induction : r et s des ER, (r+s), (r.s) et  $(r)^*$  sont des FR

**Théorème**: Un langage sur  $\Sigma$  est rationnel si et seulement si il est reconnu par un automate fini.

- On a montré (cours 2) que  $Rat(\Sigma^*) \subseteq Rec(\Sigma^*)$ (étant donnée une ER, on peut construire un AF qui la reconnaît)
- On montre la réciproque :  $\operatorname{Rec}(\Sigma^*) \subseteq \operatorname{Rat}(\Sigma^*)$  (étant donné un AF, on peut trouver une ER qui le dénote)

# Le problème

- Donnée : A un automate fini déterministe
- Problème : trouver une expression rationnelle qui représente le langage reconnu par A, L(A).

#### Idée de résolution

Étant donné un AFD

- ullet On considère les chemins de i vers tout t
- L'ER correspondant à chacun de ces chemins est obtenue en concaténant les étiquettes des transitions en traitant les boucles par une \*
- L'ER finale est l'union des différentes ER ainsi obtenues.

### Idée de résolution (suite)

- Arcs étiquetés par des lettres et il faut prendre en compte les boucles.
- Mots reconnus en partant de *i* et arrivant dans l'état j en ne passant que par les états {1,2,...,*k*}:

 $R_{i,j} = \{ m \in \Sigma^* | \delta(i,m) = j \text{ et } \forall p <_{pref} m, \delta(i,p) = n, n \leq k \}$ 

Algorithme de McNaughton-Yamada

#### Intuitivement

R<sub>ii</sub>k = ensemble des mots permettant d'aller de / à j en ne passant que par  $\{1,...,k\}$ . Ces mots sont

- dans  $R_{ij}^{k-1}$  i.e. ils ne passent que par états  $\leq k-1$
- composés de R<sub>ik</sub>k-1

(mènent A dans l'état k pour la première fois) suivis de l'itération des mots de R<sub>kk</sub>k-1

(forment un cycle pour ksans passer par des états d'un numéro supérieur à k) suivis des mots de Rkik-1

(qui mènent A de l'état kà l'état j).

# Définition inductive des Riik

#### ■ Base :

- $R_{ij}^0 = \{a \mid \delta(i,a) = j\}$  pour  $i \neq j$  $R_{ii}^0$  peut être  $\varnothing$  si la transition n'est pas définie
- $R_{ii}^0 = \{ a \mid \delta(i,a) = i \} \cup \{ \epsilon \}$  $R_{ii}^0 = \epsilon \text{ si } i \text{ sans boucle}$

#### Règle :

 $R_{ij}^{k} = R_{ik}^{k-1}(R_{kk}^{k-1})^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1}$ 

Reste à prouver que les  $R_{ij}^{\ k}$  sont rationnels !

### les $R_{ii}^{\ k}$ sont rationnels

 $R_{ij}^{0} = \{a : \delta(i,a) = j\} \text{ pour } i \neq j$   $R_{ii}^{0} = \{a : \delta(i,a) = i\} \cup \{\epsilon\}$   $R_{ii}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{ki}^{k-1} \cup R_{ii}^{k-1}$ 

- On montre par induction sur k que, pour chaque i,j,k il existe r<sub>ij</sub>k, ER qui représente le langage R<sub>ij</sub>k
- Base :  $R_{ij}$  : ensemble fini de chaînes composées soit de  $a \in \Sigma$  soit de  $\epsilon$ 
  - pour i=j: r<sub>ii</sub><sup>0</sup> =ε+a<sub>1</sub>+...+a<sub>p</sub> (ε, s'il n'y a pas de boucle sur i)
  - pour  $i \neq j$ :  $r_{ij}^0 = a_1 + ... + a_p \{a_1, ..., a_p\} = \{a \in \Sigma : \delta(i, a) = j \}$ ( $\emptyset$ , s'il n'y a pas de transition de i vers j.)

### les $R_{ij}^{\ k}$ sont rationnels

 $\begin{array}{c} \mathsf{R}_{ij}^{\,0} = \{a : \delta(i,a) = j\} \text{ pour } \not= j \\ \mathsf{R}_{ii}^{\,0} = \{a : \delta(i,a) = i\} \cup \{\epsilon\} \\ \mathsf{R}_{ij}^{\,k} = \mathsf{R}_{ik}^{\,k-1}(\mathsf{R}_{kk}^{\,k-1})^* \, \mathsf{R}_{kj}^{\,k-1} \cup \mathsf{R}_{ij}^{\,k-1} \end{array}$ 

- Induction (HR): pour tout /et m  $r_{lm}^{k-1}$ , est une ER qui représente  $R_{lm}^{k-1}$ . L'ER pour  $r_{ij}^{k}$  est  $r_{ii}^{k} = r_{ik}^{k-1}.(r_{kk}^{k-1})^{*}$ .  $r_{ki}^{k-1} + r_{ii}^{k-1}$
- R<sub>1j</sub><sup>n</sup> représente les chemins qui conduisent de l'état initial (état 1) vers les états de reconnaissance de A, l'ER qui représente L(A) est :

$$\sum_{m \in F} r_{1m}^{n}$$

|                              | k=0 | k=1 | k=2 | k=3 |
|------------------------------|-----|-----|-----|-----|
| r <sub>11</sub> k            |     |     |     |     |
| r <sub>12</sub> k            |     |     |     |     |
| r <sub>13</sub> <sup>k</sup> |     |     |     |     |
| r <sub>21</sub> k            |     |     |     |     |
| r <sub>22</sub> k            |     |     |     |     |
| r <sub>23</sub> k            |     |     |     |     |
| r <sub>31</sub> k            |     |     |     |     |
| r <sub>32</sub> k            |     |     |     |     |
| r <sub>33</sub> k            |     |     |     | 28  |

### Exemple

 $R_{ij}^{0} = \{a : \delta(i,a) = j\} \text{ pour } i \neq j$   $R_{ii}^{0} = \{a : \delta(i,a) = i\} \cup \{\epsilon\}$   $R_{ii}^{k} = R_{ik}^{k-1}(R_{kk}^{k-1})^{*} R_{ki}^{k-1} \cup R_{ii}^{k-1}$ 



|                              | k=0 | k=1 | k=2 | k=3 |
|------------------------------|-----|-----|-----|-----|
| r <sub>11</sub> k            |     |     |     |     |
| r <sub>12</sub> <sup>k</sup> |     |     |     |     |
| r <sub>13</sub> <sup>k</sup> |     |     |     |     |
| r <sub>21</sub> <sup>k</sup> |     |     |     |     |
| r <sub>22</sub> k            |     |     |     |     |
| r <sub>23</sub> <sup>k</sup> |     |     |     |     |
| r <sub>31</sub> <sup>k</sup> |     |     |     |     |
| r <sub>32</sub> k            |     |     |     |     |
| r <sub>33</sub> k            |     |     |     |     |

- Base :  $R_{ij}^0$  : ensemble fini de chaînes composées soit de  $a \in \Sigma$  soit de  $\epsilon$ 
  - pour i=j: r<sub>ii</sub><sup>0</sup> =ε+a<sub>1</sub>+...+a<sub>p</sub> (ε, s'il n'y a pas de boucle sur i)
  - pour  $i \neq j$ :  $r_{ij}^0$  =  $a_1 + ... + a_p \{a_1, ..., a_p\}$  =  $\{a \in \Sigma : \delta(i, a) = j\}$  $(\emptyset, s'il n'y a pas de transition de <math>i$  vers j.)
- On obtient :
  - $r_{32}^0 = \emptyset$
  - $r_{11}^{0} = r_{22}^{0} = \epsilon$
  - $r_{13}^{0} = r_{23}^{0} = a$
  - $r_{12}^0 = r_{21}^0 = r_{31}^0 = b$
  - r<sub>33</sub>0 = ε+α



|                              | k=0 | k=1 | k=2 | k=3 |
|------------------------------|-----|-----|-----|-----|
| r <sub>11</sub> <sup>k</sup> | 3   |     |     |     |
| r <sub>12</sub> <sup>k</sup> | b   |     |     |     |
| r <sub>13</sub> k            | а   |     |     |     |
| r <sub>21</sub> k            | b   |     |     |     |
| r <sub>22</sub> k            | 3   |     |     |     |
| r <sub>23</sub> k            | а   |     |     |     |
| r <sub>31</sub> k            | b   |     |     |     |
| r <sub>32</sub> k            | Ø   |     |     |     |
| r <sub>33</sub> k            | ε+a |     |     |     |

| $r_{ij}^{k} = r_{ik}^{k-1} \cdot (r_{kk}^{k-1})^{*} \cdot r_{kj}^{k-1} + r_{ij}^{k-1}$                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{r}_{12}^{1} = (\mathbf{r}_{11}^{0})^* \mathbf{r}_{12}^{0} = \varepsilon^* b = b$                                                                   |
| $\mathbf{r}_{13}^{1} = (\mathbf{r}_{11}^{0})^* \mathbf{r}_{13}^{0} = \varepsilon^* a = a$                                                                   |
| $\mathbf{r}_{22}^{1} = \mathbf{r}_{21}^{0} (\mathbf{r}_{11}^{0})^{*} \mathbf{r}_{12}^{0} + \mathbf{r}_{22}^{0} = b\epsilon^{*}b + \epsilon = \epsilon + bb$ |
| • r <sub>23</sub> ¹ = r <sub>21</sub> ⁰(r <sub>11</sub> ⁰)* r <sub>13</sub> ⁰+ r <sub>23</sub> ⁰ = bε*a+a = <b>a</b> +ba                                    |
| $\mathbf{r}_{32}^{1} = \mathbf{r}_{31}^{0} (\mathbf{r}_{11}^{0})^{*} \mathbf{r}_{12}^{0} + \mathbf{r}_{32}^{0} = b\epsilon^{*}b + \emptyset = bb$           |
| $ Arr r_{33}^1 = r_{31}^0 (r_{11}^0)^* r_{13}^0 + r_{33}^0 = b\epsilon^* a + \epsilon + a = \epsilon + a + ba$                                              |
| b a                                                                                                                                                         |
| →(1) b (2) a → (3)                                                                                                                                          |
|                                                                                                                                                             |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                       |

|                              | k=0         | k=1    | k=2 | k=3 |
|------------------------------|-------------|--------|-----|-----|
| r <sub>11</sub> k            | 8           |        |     |     |
| r <sub>12</sub> <sup>k</sup> | b           | b      |     |     |
| r <sub>13</sub> k            | а           | а      |     |     |
| r <sub>21</sub> k            | b           |        |     |     |
| r <sub>22</sub> k            | 8           | ε+bb   |     |     |
| r <sub>23</sub> k            | а           | a+ba   |     |     |
| r <sub>31</sub> k            | b           |        |     |     |
| r <sub>32</sub> k            | Ø           | bb     |     |     |
| r <sub>33</sub> <sup>k</sup> | <b>ε</b> +a | ε+a+ba |     |     |



|                              | k=0         | k=1    | k=2           | k=3 |
|------------------------------|-------------|--------|---------------|-----|
| r <sub>11</sub> k            | 3           |        |               |     |
| r <sub>12</sub> k            | b           | b      |               |     |
| r <sub>13</sub> <sup>k</sup> | а           | а      | b*a           |     |
| r <sub>21</sub> k            | b           |        |               |     |
| r <sub>22</sub> k            | 3           | ε+bb   |               |     |
| r <sub>23</sub> k            | а           | a+ba   |               |     |
| r <sub>31</sub> k            | b           |        |               |     |
| r <sub>32</sub> k            | Ø           | bb     |               |     |
| r <sub>33</sub> k            | <b>ε</b> +a | ε+a+ba | <b>ε</b> +b*a |     |

$$r_{ij}^{k} = r_{ik}^{k-1} \cdot (r_{kk}^{k-1})^{*} \cdot r_{kj}^{k-1} + r_{ij}^{k-1}$$

$$r_{13}^{3} = r_{13}^{2} \cdot (r_{33}^{2})^{*} = b^{*} \cdot a \cdot (\epsilon + b^{*} \cdot a)^{*} = (b^{*} \cdot a)^{*}$$

|                              | k=0         | k=1    | k=2   | k=3  |
|------------------------------|-------------|--------|-------|------|
| r <sub>11</sub> <sup>k</sup> | ε           |        |       |      |
| r <sub>12</sub> <sup>k</sup> | b           | b      |       |      |
| r <sub>13</sub> k            | а           | а      | b*a   | b*a+ |
| r <sub>21</sub> <sup>k</sup> | b           |        |       |      |
| r <sub>22</sub> k            | 8           | ε+bb   |       |      |
| r <sub>23</sub> k            | а           | a+ba   |       |      |
| r <sub>31</sub> k            | b           |        |       |      |
| r <sub>32</sub> <sup>k</sup> | Ø           | bb     |       |      |
| r <sub>33</sub> k            | <b>ε</b> +a | ε+a+ba | ε+b*a |      |

# Complexité

- Il faut calculer pour k=0,1,2,...,n
  - Pour chaque paire d'états

- Soit *n* fois pour chaque paire d'états
- Au total n³ opérations
- Complexité O(n³)

(p.e. le cas où il y a O(n) états d'acceptation ...)

#### Questions

- Est-ce que l'ER dépend de la numérotation des états?
- Est-ce qu'il faut tout calculer?

Non, puisqu'on parcourt la totalité du graphe

Seulement ce qui nous sert...

# $Rec(\Sigma^*) = Rat(\Sigma^*)$

- On a donc montré que les langages rationnels sont reconnus par AF et seulement par ceuxci
- Les AF caractérisent les langages rationnels

7