Problem 1. Show that the following sets of subsets of \mathbb{R} generates the same σ -algebra:

$$B := \{(a, b) : a < b\}, B_1 := \{(a, b] : a < b\}, B_2 := \{(-\infty, b] : b \in \mathbb{R}\}$$

Proof: To show that $\mathcal{B} := \sigma(B) = \sigma(B_1) =: \mathcal{B}_1$. For any $(a, b) \in B$, $(a, b) = \bigcup_n (a, b - \frac{1}{n}]$, where n choose sufficiently large such that $a < b - \frac{1}{n}$, thus $\mathcal{B} \subseteq \mathcal{B}_1$. Conversely, For any $(a, b] \in B_1$, $(a, b] = \bigcap_{n \in \mathbb{N}} (a, b + \frac{1}{n})$, then $\mathcal{B}_1 \subseteq \mathcal{B}$, hence $\mathcal{B} = \mathcal{B}_1$.

To show $\mathcal{B}_1 = \mathcal{B}_2$. Similarly, for any $(a, b] \in B_1$, $(a, b] = (-\infty, b] \cup (-\infty, a]^c$, thus $\mathcal{B}_1 \subseteq \mathcal{B}_2$. Conversely, for $(-\infty, b] \in B_2$, $(-\infty, b] = \bigcup_n (-n, b]$, where -n is chosen such that -n < b, thus $\mathcal{B}_2 \subseteq \mathcal{B}_1$, hence $\mathcal{B}_1 = \mathcal{B}_2$.

Problem 2. Show that every open subset G of \mathbb{R} is a disjoint countable union of open intervals.

Proof: For fixed $x \in G$, consider the largest interval such that it is contained in G, namely $I_x = (a, b)$ where

$$a = \inf\{y : y < x, y \in G\}, \ b = \sup\{z : x < z, z \in G\}$$

then $G = \bigcup_{x \in G} I_x$. Notice that for I_x, I_y defined as above for $x \neq y$ such that $I_x \cap I_y \neq \emptyset$, for $x, I_x \cup I_y$ would be a larger interval containing x and contained in G, hence $I_x = I_y$, indicating that $\{I_x : x \in G\}$ are collection of disjoint open intervals automatically. Finally, we are left to show that it is countable union. Indeed, for each I_x (assuming the Axiom of Choice implicitly makes the specification valid), it contains a rational number, then we create a one-to-one correspondence between $\{I_x : x \in G\}$ and a subset of \mathbb{Q} , suggesting that is indeed a countable union.

Problem 3. Let τ be the set of all open subsets of \mathbb{R} , and let the π -system

$$\pi(\mathbb{R}) := \{(-\infty, x] : x \in \mathbb{R}\}\$$

Deduce from Problem 1 and 2 that $\mathcal{B}(\mathbb{R}) := \sigma(\tau) = \sigma(\pi(\mathbb{R}))$.

Proof: Thanks to conclusion in Problem 1, $\sigma(\pi(\mathbb{R})) = \sigma(\{(a,b) : a < b\})$, then we are left to show that $\sigma(\tau) = \sigma(\{(a,b) : a < b\})$. $\sigma(\{(a,b) : a < b\}) \subseteq \sigma(\tau)$ is immediate since $\{(a,b) : a < b\} \subseteq \tau$. Conversely, applying conclusion in Problem 2, we see that for any open subset $G \in \tau$, $G = \bigcup_{i=1}^n I_i$ for disjoint sequence of open intervals $\{I_i\}$, thus $\sigma(\tau) \subseteq \sigma(\{(a,b) : a < b\})$. To conclude, $\mathcal{B}(\mathbb{R}) = \sigma(\pi(\mathbb{R}))$.

Problem 4. Let μ be a finite-valued, additive set function on an algebra \mathcal{A} . Show that μ is countably additive iff for any sequence $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ with

$$A_n \supseteq A_{n+1} \ \forall n \in \mathbb{N}, \ \bigcap_{n \in \mathbb{N}} A_n = \emptyset \implies \mu(A_n) \to 0 \ as \ n \to \infty.$$

Proof: Suppose that μ is countably additive, and consider $\{A_n^c\}$, then $A_n^c \subseteq A_{n+1}^c$. Define $B_i = A_{i+1}^c \setminus A_i^c$, then $\{B_i\}$ are disjoint, and

$$\mu\left(\bigcup_{i} A_{i}^{c}\right) = \mu\left(\bigcup_{i} B_{i}\right) = \sum_{i} \mu\left(B_{i}\right) = \lim_{n \to \infty} \left(\sum_{i=2}^{n} \left(\mu(A_{i}^{c}) - \mu(A_{i-1}^{c})\right) + \mu(A_{1}^{c})\right)$$
$$= \lim_{n \to \infty} \mu(A_{n}^{c})$$

Now, consider $E_i = A_1 \setminus A_i$, then $E_n \subseteq E_{n+1}$

$$\mu\left(\bigcup_{i} E_{i}\right) = \lim_{i \to \infty} \mu\left(E_{i}\right) = \lim_{i \to \infty} (\mu(A_{1}) - \mu(A_{i})) = \mu(A_{1}) - \lim_{i \to \infty} \mu(A_{i})$$

while at the same time,

$$\mu\left(\bigcup_{i} E_{i}\right) = \mu\left(A_{1} \cap \left(\bigcap_{i} A_{i}\right)^{c}\right) = \mu(A_{1}) - \mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)$$

hence

$$0 = \mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} \mu(A_i)$$

Conversely, for $\{E_i\}$ collection of disjoint sets such that $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$, consider the collection $\{A_n\}$ where $A_n = (\bigcup_{i=1}^{\infty} E_i) \setminus (\bigcup_{i=1}^n E_i)$, then obviously A_n is decreasing and $\bigcap_{i=1}^{\infty} A_i = \emptyset$, then

$$\lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu\left(\bigcup_{i=1}^{\infty} E_i \setminus \bigcup_{i=1}^{n} E_i\right) = \mu\left(\bigcup_{i=1}^{\infty} E_i\right) - \lim_{n \to \infty} \mu\left(\bigcup_{i=1}^{n} E_i\right)$$
$$= \mu\left(\bigcup_{i=1}^{\infty} E_i\right) - \sum_{i=1}^{\infty} \mu(E_i) = 0$$

then we obtain the countable additivity.

Problem 5. Given $\alpha < \beta$, let A be the algebra of finite unions of disjoint intervals of the form

$$A = (a_1, b_1] \cup \cdots \cup (a_n, b_n], \ \alpha \le a_k, b_k \le \beta, \ 1 \le k \le n$$

and define, for every $A \in \mathcal{A}$, $\mu(A) := \sum_{i=1}^{n} (b_i - a_i)$.

- (i). Check that μ is well-defined.
- (ii). Prove, using Problem 4, that μ is countably additive on A.

Proof: (i). If $A := \bigcup_{i=1}^{n} (a_i, b_i] = \bigcup_{i=1}^{m} (a'_i, b'_i] =: A'$, then we can obtain a refined partition $\alpha \leq p_1 < p_2 < \cdots < p_N \leq \beta$, where p_i are endpoints of A and A' such that A = A' =

$$\bigcup_{i=1}^{N} (p_i, p_{i+1}]$$

$$\mu(A) = \sum_{i=1}^{N} (p_{i+1} - p_i) = \mu(A')$$

which proves that μ is well-defined.

(ii). First, finite additivity is immediate from definition of μ , suppose we have collection of disjoint $\{E_i\}_{i=1}^n$ in \mathcal{A} , each of the form $E_i = \bigcup_{i=1}^{n_i} (a_{i,k}, b_{i,k}]$, then

$$\mu\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \sum_{k=1}^{n_{i}} (b_{i,k} - a_{i,k}) = \sum_{i=1}^{n} \mu(E_{i})$$

Now suppose we have a decreasing sequence $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ such that $\mu(A_n)\geq\epsilon$ for some $\epsilon>0$, we aim to find a decreasing bounded subsets $B_n\in\mathcal{A}$ such that $\overline{B_n}\subseteq A_n$ with $\bigcap_{n\in\mathbb{N}}B_n\neq\emptyset$. For each $A_n=\bigcup_{i=1}^n(a_{n,i},b_{n,i}]$, we can shrink each interval by a small margin to $C_n=\bigcup_{i=1}^n(a_{n,i}+\delta_{n,i},b_{n,i}]$ such that $\mu(A_n\setminus C_n)\leq\epsilon/2^{n+1}$, and define $B_n=\bigcap_{i=1}^nC_n$, then B_n is decreasing sequence of bounded subsets, we also have

$$\mu(A_n \setminus B_n) \le \mu\left(\bigcup_{i=1}^n (A_n \setminus C_i)\right) \le \mu\left(\bigcup_{i=1}^n (A_i \setminus C_i)\right) \le \sum_{i=1}^\infty \epsilon/2^i + 1 = \epsilon/2$$

then

$$\mu(B_n) = \mu(A_n) - \epsilon/2 \ge \epsilon/2$$

Also, for each B_n , $\overline{B_n} \subseteq A_n$, since each $\overline{C_n} \subseteq A_n$. $\{\overline{B_n}\}$ is the collection of decreasing compact sets, then the intersection of them is nonempty, thus $\bigcap_{i=1}^{\infty} A_i$ is nonempty. Finally, we can apply Problem 4 to obtain that μ is countable additive.

Problem 6. Using Problem 5, prove that there exists, for all $\alpha, \beta \in \mathbb{R}$, a unique Borel measure μ on $(\alpha, \beta]$ such that, for all $a, b \in (\alpha, \beta]$ with a < b,

$$\mu((a,b]) = b - a$$

Prove also there exists a unique such measure on the whole of \mathbb{R}

Proof: From Problem 5 we've prove that μ is countable additive on algebra \mathcal{A} with $\mu(\mathcal{A}) = \beta - \alpha < \infty$, then by Caratheodory's extension theorem, there exists a unique Borel measure on $(\alpha, \beta]$.

For the case of \mathbb{R} , we consider the algebra \mathcal{A} generated by

$$\varepsilon = \begin{cases} (a, b] & \text{for } -\infty \le a < b < +\infty \\ (a, +\infty) & \end{cases}$$

and the measure on \mathcal{A} is defined similarly, $\mu((a,b]) = b-a$, $\mu((a,+\infty)) = \infty$, and $\mu((-\infty,a]) = \infty$, then we are left to prove that μ is countable additive. Suppose we have $\{A_i\}$ collection of disjoint elements in \mathcal{A} and that $A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, then if A is unbounded, then the countable additivity is immediate from definition, otherwise, $A = \bigcup_{i=1}^{n} (a_i, b_i]$, then by the countable additivity for μ restricted on bounded A with finite measure, we conclude that μ is indeed countable additive. Then by Caratheodory extension theorem, there exists a measure.

Further, since $\varepsilon \cup \{\emptyset\}$ is a π -system, the measure is indeed unique.

Problem 7. Given A_1, \ldots, A_m subsets of a nonempty set E, let $\mathcal{A} := \{A_1, \ldots, A_m\}$ and let $\varepsilon := \sigma(\mathcal{A})$. For $\epsilon \in \{0, 1\}^m$, define $A^{\epsilon} := A_1^{\epsilon_1} \cap \cdots \cap A_m^{\epsilon_m}$ where $A_k^0 = A_k^c$, $A_k^1 = A_k$.

(i). Prove that

$$A \in \varepsilon \iff A = \bigcup_{\epsilon \in I} A^{\epsilon} \text{ for some } I \subseteq \{0, 1\}^m$$

- (ii). Deduce that, for all $\epsilon \in \{0,1\}^m$ and $A \in \varepsilon$, either $A \cap A^{\epsilon} = \emptyset$ or $A^{\epsilon} \subseteq A$. The subsets A^{ϵ} are called atoms of ε .
- (iii). Deduce that, if $f:(E,\varepsilon)\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ is measurable, then there exist $a_{\epsilon}\in\mathbb{R}$, $\epsilon\in\{0,1\}^m$, such that

$$f = \sum_{\epsilon \in \{0,1\}^m} a_{\epsilon} \mathbf{1}_{A^{\epsilon}}$$

- **Proof:** (i). The direction from right to left is trivial from the definition of σ -algebra. Conversely, we only need to show that the collection $\mathcal{C} = \{\bigcup_{\epsilon \in I} A^{\epsilon} : I \subseteq \{0,1\}^m\}$ is a σ -algebra. Indeed, $\emptyset = \bigcup_{\epsilon \in \emptyset} A^{\epsilon}$ and $E = \bigcup_{\epsilon \in \{0,1\}^m} A^{\epsilon}$. For $F = \bigcup_{\epsilon \in I} A^{\epsilon}$, $F^c = \bigcup_{\epsilon \in \{0,1\}^m \setminus I} A^{\epsilon} \in \mathcal{C}$, since for each $\epsilon_1 \neq \epsilon_2$, $A^{\epsilon_2} \cap A^{\epsilon_2} = \emptyset$. Now for countable union, notice that since the cardinality of $\{0,1\}^m$ is finite, we are essentially dealing with finite union, and finite union is obviously satisfied by the definition. Finally, since ε is the smallest σ -algebra generated by \mathcal{A} , left to right implication is proved.
 - (ii). For $\epsilon \in \{0,1\}^m$ and $A \in \varepsilon$, we know from previous result that we may write

$$A = \bigcup_{\epsilon \in I} A^{\epsilon}$$
 for some $I \subseteq \{0, 1\}^m$

If $\epsilon' \in I$, then $A^{\epsilon'} \subseteq \bigcup_{\epsilon \in I} A^{\epsilon} = A$. Otherwise if $\epsilon' \notin I$, we know that, as we also have mentioned in previous proof, from definition if $\epsilon_1 \neq \epsilon_2 \in \{0,1\}^m$ then $A^{\epsilon_1} \cap A^{\epsilon_2} = \emptyset$, that's because there exists some A_i such that $A^{\epsilon_1} \subseteq A_i$ and $A^{\epsilon_2} \subseteq A_i^c$. Thus $A \cap A^{\epsilon'} = \emptyset$.

(iii). Since f is measurable, then consider $H_r := \{x \in E : f(x) > r\} \in \varepsilon$, then according to conclusion part (ii), we must have either $H_r \cap A^{\epsilon} = \emptyset$ or $H_r \supseteq A^{\epsilon}$. In other word, for any $x, y \in A^{\epsilon}$, f(x), f(y) must be either both greater than r or both less or equal to r, and since the choice of r can be arbitrary, we have f(x) = f(y), indicating that f is constant on each atom of ε . Finally, since A^{ϵ} is a partition of E, we write

$$f = \sum_{\epsilon \in \{0,1\}^m} a_{\epsilon} \mathbf{1}_{A^{\epsilon}}$$

where a_{ϵ} is the constant value on atom A^{ϵ} .

Problem 8. (i). Suppose that A_1, A_2, \ldots are independent and $\mathbb{P}(A_n) < 1$ for all $n \geq 1$. Prove that

$$\mathbb{P}(A_n \ i.o.) = 1 \iff \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = 1$$

(ii). Let X_1, X_2, \ldots be independent random variables. Prove that

$$\mathbb{P}\left(\sup_{n\geq 1} X_n < \infty\right) = 1 \iff \sum_{n=1}^{\infty} \mathbb{P}(X_n > a) < \infty$$

for some positive real number a.

Proof: (i). If $\mathbb{P}(A_n \text{ i.o.}) = 1$, then $\mathbb{P}\left(\bigcup_{m=1}^{\infty} \bigcap_{n\geq m} A_n^c\right) = 0 = \sum_{m=1}^{\infty} \mathbb{P}\left(\bigcap_{n\geq m} A_n^c\right)$, thus in particular we have $\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n^c\right) = 0$, hence $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = 1$. Conversely, we have

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = 1 - \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n^c\right) = 1 - \prod_{n=1}^{\infty} (1 - \mathbb{P}(A_n)) = 1$$

we can do approximation as follows,

$$\prod_{n=1}^{\infty} (1 - \mathbb{P}(A_n)) \le \prod_{n=1}^{\infty} e^{-\mathbb{P}(A_n)} = e^{-\sum_{n=1}^{\infty} \mathbb{P}(A_n)} = 0$$

then $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$. By Second Borel-Cantelli lemma, $\mathbb{P}(A_n \text{ i.o}) = 1$.

(ii). Suppose that $\sum_{n=1}^{\infty} \mathbb{P}(X_n > a) = \infty$ for all a, then by Borel-Cantelli lemma $(\{X_n > a\}_n)$ are independent since $\{X_n\}$ are independent), $\mathbb{P}(X_n > a \text{ i.o.}) = 1$. By the conclusion in Recitation 1, $\mathbb{P}\left(\bigcap_{m=1}^{\infty} \{X_n > m \text{ i.o.}\}\right) = 1$, then we have $\mathbb{P}(\sup_{n \geq 1} X_n = \infty) = 1$, which leads to a contradiction.

Conversely, Since $\sum_{n=1}^{\infty} \mathbb{P}(X_n > a) < \infty$ for some real a, by First Borel-Cantelli lemma, we have $\mathbb{P}(X_n > a \text{ i.o.}) = 0$, then almost surely there exists a N such that for $n \geq N$, $X_n \leq a$, then its immediate that $\mathbb{P}\left(\sup_{n \geq 1} X_n < \infty\right) = 1$.