Introduction to Neural Networks

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

Biological Analogy

Figure: Anatomy of a biological neuron [1].

Figure: Neural network neuron [1].

Figure: Activation function

ReLU	ELU	Leaky ReLU
$f(x) = \begin{cases} x & x > 0 \\ 0 & x \le 0 \end{cases}$	$f(x) = \begin{cases} x & x > 0 \\ \alpha(e^x - 1) & x \le 0 \end{cases}$	$f(x) = \begin{cases} x & x \ge 0 \\ 0.01x & x < 0 \end{cases}$
1		

Tanh		
f(x) =	$e^x - e^{-x}$	
f(x) =	$ax \perp a-x$	

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Softmax

$$f(x) = \frac{e^{x_i}}{\sum_{j=1}^{J} e^{x_j}} \quad i = 1, \dots,$$

Gradient Descent

Figure: Gradient descent [3].

Gradient Descent

- Let's define our problem:
 - \triangleright We have dataset $\mathcal{D} = \{x^i, y^{(i)}\}_{i=1}^n$.
 - ▶ f is a single layer perceptron.
 - \triangleright Define $\hat{y}^{(i)} = f(x^{(i)})$.
- We want to minimize following cost function:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}$$

We are going to use gradient descent algorithm. w will be updated as follows:

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \eta \nabla_{\boldsymbol{w}} \mathcal{J}$$

Gradient Descent

Let's find $\nabla_{w} \mathcal{I}$:

$$\begin{split} \frac{\partial J}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_i (y^{(i)} - \hat{y}^{(i)})^2 \\ &= \frac{1}{2} \sum_i \frac{\partial}{\partial w_j} (y^{(i)} - \hat{y}^{(i)})^2 \\ &= \frac{1}{2} \sum_i 2(y^{(i)} - \hat{y}^{(i)}) \frac{\partial}{\partial w_j} (y^{(i)} - \hat{y}^{(i)}) \\ &= \sum_i (y^{(i)} - \hat{y}^{(i)}) \frac{\partial}{\partial w_j} \left(y^{(i)} - \sum_j w_j x_j^{(i)} \right) \\ &= \sum_i (y^{(i)} - \hat{y}^{(i)}) (-x_j^{(i)}) \\ &= \sum_i (y^{(i)} - \hat{y}^{(i)}) (-x_j^{(i)}) \end{split}$$

$$\Delta w_j = -\eta \frac{\partial J}{\partial w_j} = -\eta \sum_i (y^{(i)} - \hat{y}^{(i)}) (-x_j^{(i)}) = \eta \sum_i (y^{(i)} - \hat{y}^{(i)}) x_j^{(i)} \end{split}$$

Limitations of SLP

- What are the limitations of SLP?
- Can we learn all functions with SLP?

Figure: The XOR function is not linear separable.

Limitations of SLP

As we saw in the XOR case, nonlinear separable functions can not be learned by SPLs.

Figure: Examples of nonlinear separable functions.

How to solve this?

Limitations of SLP

What if we knew some feature space which our data is linear separable in?!

Figure: Data is linear separable after transformation.

Multi-Layer Perceptron

So if we know some f_1, \dots, f_4 we can use SLP to solve problem.

Figure: Using feature space f to solve problem.

How to learn this f_i s? Use SLP!

Multi-Layer Perceptron

We can use inputs (x_i) to learn features (f_i)

Figure: Using inputs to learn features.

What if f_i s are not sufficient? We can add more layers!

Multi-Layer Perceptron

Adding more layers we will have a bigger network.

Figure: A 5 layer MLP.

Architecture of MLPs

- Important questions:
 - ▶ How many hidden layer should we have?
 - ▶ In each hidden layer, how many neuron should we have?

Figure: How many layers and neurons should we have?

Architecture of MLPs

In practice:

- You have limited resources
- ▶ There is no universal rule to choose this hyperparameters
- ▶ Need to experiment for different number of layers and neurons in each layer

Figure: Experiment for different architecture and choose the best model.

Activation Function of Hidden Layers

- One can use any activation function for each hidden units
- Usually people use the same activation function for all neurons in one layer
- The important point is to use nonlinear activation functions

Figure: MLP with linear activation functions is equivalent to simple SLP.

XOR problem

- Now let's solve XOR problem with MLPs.
- We have two binary inputs, build an MLP to calculate their **XOR**.
- First let's build logical **AND** and **OR** functions.

Figure: We need to find weights, biases and activation function.

XOR problem

XOR problem

Figure: MLP for XOR function.

- $a_i^{[l]}$: *i*-th neuron outpu in layer l
- $a^{[l]}$: layer l output in vector form

- $lackbox{b}_i^{[l]}$: *i*-th neuron biase in layer *l*
- **b** $^{[l]}$: layer l biases in vector form

 $lackbox{W}_{ij}^{[l]}$: weight of the edge between i-th nuron in layer l-1 and j-th neuron in layer l

- $z_i^{[l]}$: j-th neuron input in layer l
- $z_j^{[l]} = b_j^{[l]} + \sum_{i=1}^n W_{ij}^{[l]} a_i^{[l-1]}$

- $z^{[l]}$: input of layer l in vector form
- $lacksquare z^{[l]} = m{b}^{[l]} + (W^{[l]})^T m{a}^{[l-1]}$

 $\sigma_i^{[l]}$: j-th neuron activation function in layer l

If we assume all neurons in one layer have the same activation function then:

$$\boldsymbol{a}^{[l]} = \sigma^{[l]} \left(\boldsymbol{b}^{[l]} + (W^{[l]})^T \boldsymbol{a}^{[l-1]} \right)$$

So for a network with L layer, and x as its input we will have:

$$\boldsymbol{o} = \boldsymbol{a}^{[L]} = \boldsymbol{\sigma}^{[L]} \left(\boldsymbol{b}^{[L]} + (W^{[L]})^T \boldsymbol{\sigma}^{[L-1]} \left(\cdots \boldsymbol{\sigma}^{[1]} \left(\boldsymbol{b}^{[1]} + (W^{[1]})^T \boldsymbol{x} \right) \cdots \right) \right)$$

Learning MLPs

- Till here we have used networks with predefined weights and biases.
- How to learn these parameters?
- The idea is to use gradient descent

Learning MLPs

- Let's define the learning problem more formal:
 - $\triangleright \{(x^{(i)}, y^{(i)})\}_{i=1}^n$: dataset
 - ▶ f: network
 - \triangleright W: all weights and biases of the network ($W^{[l]}$ and $b^{[l]}$ for different l)
 - L: loss function
- We want to find W^* which minimizes following cost function:

$$\mathcal{J}(W) = \sum_{i=1}^{n} L\left(f(x^{(i)}; W), y^{(i)}\right)$$

We are going to use gradient descent, so we need to find $\nabla_W \mathcal{J}$.

Forward Propagation

- First of all we need to find loss value.
- It only requires to know the inputs of each neuron.

Figure: $a_{j}^{[l]} = \sum_{i=1}^{m} W_{ij}^{[l]} a_{i}^{[l-1]} + b_{j}^{[l]}$

So we can calculate these outputs layer by layer.

Forward Propagation

- After forward pass we will know:
 - ▶ Loss value
 - ▶ Network output
 - Middle values

Figure: Forward pass

Backward Propagation

- Now we need to calculate $\nabla_W \mathcal{J}$.
- First idea:
 - Use analytical approach.
 - Write down derivatives on paper.
 - \triangleright Find the close form of $\nabla_W \mathcal{J}$ (if it is possible to do so).
 - ▶ Implement this gradient as a function to work with.
 - Pros:
 - Fast
 - Exact
 - ▶ Cons:
 - Need to rewrite calculation for different architectures

Backward Propagation

Second idea:

- Using modular approach.
- ▶ Computing the cost function consists of doing many operations.
- ▶ We can build a computation graph for this calculation.
- ▶ Each node will represent a single operation.

Figure: An example of computational graph, Source.

Backward Propagation

- In this approach if we know how to calculate gradient for single node or module, then we can find gradient with respect to each variables.
- Let's say we have a module as follow:

- It gets x and y as its input and returns z = f(x, y) as its output.
- How to calculate derivative of loss with respect to module inputs?

- We know:
 - \triangleright Module output for x_0 and y_0 , let's call it z_0 .
 - \triangleright Gradient of loss with respect to module output at z_0 , $\left(\frac{\partial L}{\partial z}\right)$.
- We want:
 - ▶ Gradient of loss with respect to module inputs at x_0 and y_0 , $\left(\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}\right)$.

We can use chain rule to do so.

Chain rule:

$$\left. \begin{array}{c} z = f(x,y) \\ L = L(z) \end{array} \right\} \quad \Longrightarrow \quad \frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \times \frac{\partial z}{\partial x}$$

Backpropagation for single module:

- Let's solve a simple example using backpropagation.
- We have $f(x, y, z) = \frac{x^2y}{z}$.
- Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ at x = 3, y = 4 and z = 2.

Figure: Computational graph of f.

- First let's find gradient analytically.
- We have:

$$\begin{cases} v = x^2 \\ u = vy \\ f = \frac{u}{z} \end{cases} \qquad \begin{cases} \frac{\partial f}{\partial z} = -\frac{u}{z^2} \\ \frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} \times \frac{\partial f}{\partial u} = v \times \frac{1}{z} = \frac{v}{z} \\ \frac{\partial f}{\partial x} = \frac{\partial v}{\partial x} \times \frac{\partial u}{\partial v} \times \frac{\partial f}{\partial u} = 2x \times y \times \frac{1}{z} = \frac{2xy}{z} \end{cases}$$

$$(x = 3, y = 4, z = 2) \implies \begin{cases} v = 9 \\ u = 36 \\ f = 18 \end{cases} \implies \begin{cases} \frac{\partial f}{\partial z} = -9 \\ \frac{\partial f}{\partial y} = 4.5 \\ \frac{\partial f}{\partial x} = 12 \end{cases}$$

- Now let's use backpropagation.
- First we do forward propagation.

Second we will do backpropagation for each module.

Backpropagation for / module:

■ Backpropagation for / module:

Backpropagation for \times module:

Backpropagation for \times module:

Backpropagation for ² module:

■ Backpropagation for _² module:

Results are the same as analytical results.

- So after backward propagation we will have:
 - ▶ Gradient of loss with respect to each parameter.
 - ▶ We can apply gradient descent to update parameters.

Figure: Backward pass

Thank You!

Any Question?

References

M. D. Ergün Akgün, "Biological and neural network neuron," 2018.

https://www.researchgate.net/publication/326417061_Modeling_Course_Achievements_of_Elementary_Education_Teacher_Candidates_with_Artificial_Neural_Networks.

L. Nalborczyk, "A gentle introduction to deep learning in r using keras," 2021. https://www.barelysignificant.com/slides/vendredi_quanti_2021/vendredi_quantis#1.

//subscription.packtpub.com/book/big-data-&-business-intelligence/9781788397872/1/ch01lvl1sec22/gradient-descent.

F.-F. L. J. J. S. Yeung, "Training neural networks," 2018. http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf.

I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*.

MIT Press, 2016. http://www.deeplearningbook.org.

K. Katanforoosh and D. Kunin, "Initializing neural networks," 2019. https://www.deeplearning.ai/ai-notes/initialization/.