МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студент гр. 9382	 Кузьмин Д. И.
Преподаватель	 Ефремов М. А.

Санкт-Петербург 2020

Цель работы.

Изучить режимы адресации в языке ассемблер.

Основные теоретические положения.

Выполнение работы производилось при помощи эмулятора операционной системы MS-DOS, DosBox. Для отладки программы использовался инструмент afdpro.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы.

1) Описание ошибок:

mov mem3, [bx] – некорректно, потому что операндами инструкции mov не могут быть два участка памяти.

mov cx,vec2[di] - Размер элементов массива 'vec2' 1 байт, а 'cx' - 2 байта mov cx,matr[bx][di] - Размер элементов матрицы 'matr' 1 байт, а 'cx' - 2 байта

mov ax,matr[bx*4][di] — некорректно, потому что в режиме индексной адресации с масштабированием нельзя использоваться регистр bx

mov ax,matr[bp+bx] — некорректно, потому что база не может определяться двумя регистрами

mov ax,matr[bp+di+si] — некорректно, потому что индекс не может определяться тремя регистрами

push mem1, push mem2 – программа не завершится, если в вершине стека не содержится соответствующая команда(int 20) (в данном случае там содержится mem2, поэтому после выполнения ret 2 программа не завершится)

- 2) Операторы, содержащие ошибки, были закомментированы.
- 3) Затем программа была протранслирована с создание файла листинга.
- 4) Далее был скомпанован загрузочный модуль
- 5) Затем с помощью отладчика afdpro было реализовано выполнение программы по шагам. Каждый шаг указан в табл.1

Исходный код файлов main.asm и main.lst представлен в приложении А. Результат отладки main.exe показаны в табл. 1

Табл. 1 отладка файла main.exe
Начальное содержимое сегментных регистров
(CS) = 1A05, (ES) = 19F5, (DS) = 19F5, (SS) = 1A05

Адрес	Символический	16-ричный	Содержимое регистров и	
команды	код команды	код команды	ячеек памяти	
			До	После
			выполнения	выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(IP) = 0000	(IP) = 0001
0001	SUB AX, AX	2BC0	(IP) = 0001	(IP) = 0003
0003	PUSH AX	50	(SP) = 0016	(SP) = 0014
			(IP) = 0003	(IP) = 0004
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(IP) = 0004	(IP) = 0007

0007	MOV DS, AX	8ED8	(DS) = 19F5 (IP) = 0007	(DS) = 1A07 (IP) = 0009
0009	MOV AX, 01F4	B8F401	(AX) = 1A07 (IP) = 0009	(AX) = 01F4 (IP) = 000C
000C	MOV CX, AX	8BC8	(CX) = 00B8 (IP) = 000C	(CX) = 01F4 (IP) = 000E
000E	MOV BL, 24	B324	(BL) = 00 (IP) = 000E	(BL) = 24 (IP) = 0010
0010	MOV BH, CE	B7CE	(BH) = 00 (IP) = 0010	(BH) = CE (IP) = 0012
0012	MOV [0002], FFCE	C7060200CEF F	(IP) = 0012	(IP) = 0018
0018	MOV BX, 0006	BB0600	(BX) = CE24 (IP) = 0018	(BX) = 0006 (IP) = 001B
001B	MOV [0000], AX	A30000	(IP) = 001B	(IP) = 001E
001E	MOV AL, [BX]	8A07	(AL) = F4 $(IP) = 001B$	(AL) = 05 (IP) = 0020
0020	MOV AL, [BX + 03]	8A4703	(AL) = 05 (IP) = 0020	(AL) = 08 (IP) = 0023
0023	MOV CX, [BX + 03]	8B4F03	(CX) = 01F4 (IP) = 0023	(CX) = 0C08 (IP) = 0026
0026	MOV DI, 0002	BF0200	(DI) = 0000 (IP) = 0026	(DI) = 0002 (IP) = 0029
0029	MOV AL, [000E + DI]	8A850E00	(AL) = 08 (IP) = 0029	(AL) = 14 (IP) = 002D
002D	MOV BX, 0003	BB0300	(BX) = 0006 (IP) = 002D	(BX) = 0003 (IP) = 0030
0030	MOV AL, [0016 + BX + DI]	8A811600	(AL) = 14 (IP) = 0030	(AL) = 03 (IP) = 0034
0034	MOV AX, 1A07	B8071A	(AX) = 0103 (IP) = 0034	(AX) = 1A07 (IP) = 0037
0037	MOV ES, AX	8EC0	(ES) = 19F5 (IP) = 0037	(ES) = 1A07 (IP) = 0029
0039	MOV AX, ES: [BX]	268B07	(AX) = 1A07 (IP) = 0039	(AX) = 00FF (IP) = 003C
003C	MOV AX, 0000	B80000	(AX) = 1A07 (IP) = 003C	(AX) = 0000 (IP) = 003F
003F	MOV ES, AX	8EC0	(ES) = 1A07 (IP) = 003F	(ES) = 0000 (IP) = 0041
0041	PUSH DS	1E	(SP) = 0014 (IP) = 0041	(SP) = 0012 (IP) = 0042

0042	POP ES	07	(SP) = 0012	(SP) = 0014
			(IP) = 0042	(IP) = 0043
0043	MOV CX, ES:	268B4FFF	(CX) = 0203	(CX) = FFCE
	[BX-01]		(IP) = 0043	(IP) = 0047
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
			(IP) = 0047	(IP) = 0048
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
			(IP) = 0048	(IP) = 004B
004B	MOV ES:[BX +	268901	(ES) = 1A07	(ES) = 1A07
	DI], AX		(IP) = 004B	(IP) = 0056
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(IP) = 004E	(IP) = 0050
0050	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(IP) = 0050	(IP) = 0052
0052	MOV DX, [BP +	8B5602	(DX) = 0000	(DX) = 19F5
	02]		(IP) = 0052	(IP) = 0055
0055	RET FAR 0002	CA0200	(SP) = 0010	(SP) = 0016
0000	CD20	INT 20		

Выводы.

Были изучены различные режимы адресации языка ассемблер.

ПРИЛОЖЕНИЕ А. ИСХОДНЫЙ КОД

Файл main.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
 DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB -5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -4, 8, 7, 6, 5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
 push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx,ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al, [bx]
 ;mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
; mov cx, matr[bx][di]
```

```
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx,ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
;mov ax,matr[bp + bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
;push mem1
 ;push mem2
mov bp,sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

Файл main.lst

#Microsoft (R) Macro Assembler Version 5.10

```
07:45:5
                                                               Page
                      ; Программа изучения режи?
                      ?ов адресации процессора I
                      ntelX86
= 0024
                           EOL EQU '$'
= 0002
                           ind EQU 2
= 01F4
                           n1 EQU 500
=-0032
                           n2 EQU -50
                      ; Стек программы
0000
                      AStack SEGMENT STACK
0000
      100001
                            DW 12 DUP(?)
        3333
                 ]
0018
                      AStack ENDS
                      ; Данные программы
0000
                      DATA SEGMENT
                      ; Директивы описания данн?
      0000
                           mem1 DW 0
0000
0002
      0000
                           mem2 DW 0
0004
      0000
                           mem3 DW 0
0006 05 06 07 08 0C 0B
                          vec1 DB 5,6,7,8,12,11,10,9
       0A 09
                          vec2 DB -20,-30,20,30,-40,-50,40,50
000E
      EC E2 14 1E D8 CE
       28 32
0016 FB FA F9 F8 04 03
                          matr DB -5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -
4,8,7,6,5
       02 01 FF FE FD FC
       08 07 06 05
0026
                      DATA ENDS
                      ; Код программы
0000
                      CODE SEGMENT
                      ASSUME CS:CODE, DS:DATA, SS:AStack
                      ; Головная процедура
0000
                      Main PROC FAR
                      push DS
0000 1E
      2B C0
0001
                            sub AX, AX
0003 50
                       push AX
0004 B8 ---- R
                      mov AX, DATA
0007 8E D8
                            mov DS, AX
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСА?
                      ?ИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
0009 B8 01F4
                            mov ax, n1
000C 8B C8
                            mov cx, ax
000E B3 24
                            mov bl, EOL
0010 B7 CE
                            mov bh, n2
                      ; Прямая адресация
```

10/22/20

1-1

0012	С7	06 0002 R	R FFCE mov mem2,n2
0018	BB	0006 R	mov bx, OFFSET vec1
001B	A3	0000 R	mov mem1,ax
			; Косвенная адресация
001E	8A	07	mov al,[bx]
			;mov mem3,[bx]
			; Базированная адресация

```
mov al, [bx]+3
0020 8A 47 03
0023 8B 4F 03
                        mov cx, 3[bx]
                   ; Индексная адресация
                    mov di,ind
mov al,vec2[di]
0026 BF 0002
0029 8A 85 000E R
                  ;mov cx,vec2[di]
                   ; Адресация с базирование?
                   ? и индексированием
                   mov bx,3
mov al,matr[bx][di]
002D BB 0003
0030 8A 81 0016 R
                  ;mov cx,matr[bx][di]
                  ;mov ax,matr[bx*4][di]
                   ; ПРОВЕРКА РЕЖИМОВ АДРЕСА?
                   ?ИИ С УЧЕТОМ СЕГМЕНТОВ
                   ; Переопределение сегмент
                  ; ----- вариант 1
                 mov ax, SEG vec2
0034 B8 ---- R
0037 8E CO
                   mov es, ax
0039 26: 8B 07
                  mov ax, es:[bx]
003C B8 0000
                   mov ax, 0
                   ; ----- вариант 2
003F 8E C0
                       mov es, ax
0041 1E
                   push ds
0042 07
                   pop es
0043 26: 8B 4F FF
                   mov cx, es: [bx-1]
0047 91
                  xchg cx,ax
                   ; ---- вариант 3
                  mov di,ind
0048 BF 0002
004B 26: 89 01
                   mov es:[bx+di],ax
                   ; ---- вариант 4
                     mov bp,sp
004E 8B EC
                   ; mov ax, matr[bp + bx]
                   ;mov ax,matr[bp+di+si]
                   ; Использование сегмента ?
                   ?тека
                   ; push mem1
                   ;push mem2
0050 8B EC
                       mov bp,sp
0052 8B 56 02
                       mov dx, [bp] + 2
0055 CA 0002
                        ret 2
0058
                  Main ENDP
                  CODE ENDS
0058
                   END Main
```

Segments and Groups:

	N a m e	Length Alig	n Combine Class
		0000	NONE
Symbols:			
	N a m e	Type Value	Attr
EOL		NUMBER	0024
IND		NUMBER	0002
MAIN		L WORD	0000 CODE Length = 0058 0016 DATA 0000 DATA 0002 DATA 0004 DATA
		NUMBER NUMBER	01F4 -0032
VEC1 VEC2			0006 DATA 000E DATA
_		TEXT 0101 TEXT main TEXT 510	n

⁸³ Source Lines

47828 + 459432 Bytes symbol space free

⁸³ Total Lines

¹⁹ Symbols

⁰ Warning Errors

O Severe Errors