Métodos Numéricos Práctica 3: Resolución de ecuaciones no lineales

4) Qué se obtiene al aplicar reiteradamente a un valor cualquiera la función coseno?

Solución:

Aplicar reiteradamente a un valor una función determinada, corresponde a la fórmula general de los métodos iterativos de punto fijo:

$$x_0 \in \mathbb{R} \to \cos x_0 =: x_1 \to \cos x_1 = \cos(\cos x_0) =: x_2 \to \dots$$

$$\to \cos x_n = \cos(\cos(\dots \cos x_0) \dots) =: x_{n+1}.$$
(1)

Definimos $x_{n+1} = g(x_n)$ con $g(x) = \cos x$. Veremos si x_n converge a un punto fijo de $\cos x$.

Observemos primero que, para cualquier $x_0 \in \mathbb{R}$, resulta $-1 \le x_1 = \cos x_0 \le 1$. Luego, sin pérdida de generalidad, podemos suponer que $-1 \le x_0 \le 1$. Por otro lado,

$$-1 \le x \le 1 \Rightarrow -1 \le \cos x \le 1$$
,

$$|g'(x)| = |-\sin x| = |\sin x| \le 0.9, \quad \forall x \in [-1, 1] \Rightarrow \sup_{x \in [-1, 1]} |g'(x)| \le 0.9 < 1.$$

Luego, por Teorema 2, existe una única solución α de g(x) = x en [-1,1] y para todo $x_0 \in [-1,1]$ la iteración $x_{n+1} = g(x_n)$ converge a α .

Como vimos anteriormente, para cualquier $x_0 \in \mathbb{R}$, resulta $-1 \le x_1 = \cos x_0 \le 1$, por lo que la iteración $x_{n+1} = g(x_n)$ converge a α para todo $x_0 \in \mathbb{R}$.

Por lo tanto, al aplicar reiteradamente a un valor cualquiera la función coseno obtenemos su único punto fijo.

6) Convertir la ecuación $x^2-5=0$ en el problema de punto fijo $x=x+c(x^2-5):=g(x)$, con c constante positiva. Elegir un valor adecuado de c que asegure la convergencia de $x_{n+1}=x_n+c(x_n^2-5)$ a $z=-\sqrt{5}$.

Solución:

Observemos que efectivamente podemos convertir la ecuación en el problema de punto fijo:

$$0 = x^2 - 5 \Leftrightarrow 0 = c(x^2 - 5) \Leftrightarrow x = x + c(x^2 - 5) = q(x).$$

Además, $g(-\sqrt{5}) = -\sqrt{5}$, es decir, es un punto fijo de g.

Para determinar el valor adecuado de c, aplicaremos el Corolario 1 con $\alpha = -\sqrt{5}$.

Tenemos que, tanto g(x) como g'(x) son continuas en \mathbb{R} . En particular lo son en un intervalo alrededor de α . Por otro lado,

$$g'(x) = 1 + 2cx \Rightarrow g'(-\sqrt{5}) = 1 + 2c(-\sqrt{5}) = 1 - 2c\sqrt{5}.$$

por lo que

$$|g'(-\sqrt{5})| = |1 - 2c\sqrt{5}| < 1 \Leftrightarrow -1 < 1 - 2c\sqrt{5} < 1$$

$$\Leftrightarrow -2 < -2c\sqrt{5} < 0$$

$$\Leftrightarrow 0 < 2c\sqrt{5} < 2$$

$$\Leftrightarrow 0 < c < \frac{1}{\sqrt{5}}.$$

$$(2)$$

Por lo tanto, por Corolario 1, para $0 < c < \frac{1}{\sqrt{5}}$ tenemos que $x_{n+1} = x_n + c(x_n^2 - 5)$ converge a $-\sqrt{5}$.

Observación: Para mejorar la velocidad de convergencia del método, por lo visto en la teoría, podemos elegir c de modo que $g'(-\sqrt{5}) = 0$ o bien dicho valor sea muy cercano a cero. En nuestro caso:

$$g'(-\sqrt{5}) = 0 \Leftrightarrow 1 - 2c\sqrt{5} = 0 \Leftrightarrow c = \frac{1}{2\sqrt{5}},$$

por lo que el mejor valor para c es $\frac{1}{2\sqrt{5}}$.