Peter Reithofer, 394407 László Dirks, 398777 Khulan Bayarkhuu, 394604

 $\sigma = (2a3\phi)^{w}$ is not accepted but $\sigma \in P_1$

Exercise 2 (LTL Formulae):

20/20

20/20

- (i) ⋄winter ✓
- (ii) □awesome ✓
- $(iii) \ \mathtt{here} \land \diamond (\neg \mathtt{here} \land \diamond (\mathtt{here})) \ \textcolor{red}{\checkmark}$
- $(\mathrm{iv}) \ (\mathtt{live} \land \mathtt{hero}) \land \hspace{-0.1cm} \textcolor{red}{(} \mathtt{live} \land \mathtt{hero}) U(\mathtt{hero} \oplus \mathtt{live}) \hspace{0.2cm} \checkmark$
- $(v) \diamond \Box (\neg in_debt)$
- (vi) true
- (vii) First we define auxiliary formulas:
 - $\varphi_l := \operatorname{legen} \wedge \neg \operatorname{wait_for_it} \wedge \neg \operatorname{dary}$
 - $\varphi_w := \neg \mathtt{legen} \wedge \mathtt{wait_for_it} \wedge \neg \mathtt{dary}$
 - $\bullet \ \varphi_d := \neg \mathtt{legen} \wedge \neg \mathtt{wait_for_it} \wedge \mathtt{dary}$

And finally: $\varphi_7 := \varphi_l \wedge \bigcirc (\varphi_w \wedge \varphi_w U \varphi_d)$

Aufgabe 3 (Equivalence of LTL Formulae)

5/5

(a) It holds that: $\Diamond \Box \varphi \Rightarrow \Box \Diamond \varphi$

Beweis. Let $\sigma \models \diamond \Box \varphi$ be a trace. Then we know that

$$\exists n. \forall k ((k \ge n) \to \sigma[k..] \models \varphi) \tag{1}$$

Let $a \in \mathbb{N}$. We need to show that $\exists b \geq a.\sigma[b..] \models \varphi$

- Case $a \ge n$: chose b := a + 1. Because of 1 we know that $b > a \ge n \Rightarrow \sigma[b..] \models \varphi$

Exercise Sheet 4

Peter Reithofer, 394407 László Dirks, 398777 Khulan Bayarkhuu, 394604

- Case a < n: chose b := n. We know that n > a and because of 1 we can conclude that $\sigma[n...] \models \varphi$

To see that these formulas are not equivalent we can look at the trace

$$\sigma:=(ab)^\omega$$
 and the formula $\varphi:=a$

Its easy to see that $\sigma \not\models \diamond \Box \varphi$ but $\sigma \models \Box \diamond \varphi$

(b) It holds that: $\Diamond \Box \varphi \land \Diamond \Box \psi \iff \Diamond (\Box \varphi \land \Box \psi)$

Beweis. Let σ be a trace such that $\sigma \models \diamond \Box \varphi \land \diamond \Box \psi$. This entails that we can find n_1, n_2 such that for all $k_1 \geq n_1$ and $k_2 \geq n_2$ it holds that $\sigma[k_1...] \models \varphi \land \sigma[k_2...] \models \checkmark$

Now let $m := \max\{n_1, n_2\}$. We know that for all:

$$-k_1 \ge m \Rightarrow k_1 \ge n_1 \Rightarrow \sigma[k_1..] \models \varphi$$

$$-k_2 \ge m \Rightarrow k_2 \ge n_2 \Rightarrow \sigma[k_2..] \models \psi.$$

Thus $\sigma \models \Diamond (\Box \varphi \land \Box \psi)$.

Its easy to see the other direction. Assume $\sigma \models \Diamond(\Box \varphi \land \Box \psi)$. We know that

$$\exists n. (\forall (k_1 \geq n). \sigma[k_1..] \models \varphi \land \forall (k_2 \geq n). \sigma[k_2..] \models \psi)$$

which implies that

$$\exists n_1.(\forall (k_1 \geq n).\sigma[k_1..] \models \varphi) \land \exists n_2.(\forall (k_2 \geq n).\sigma[k_2..] \models \psi)$$

(simply choose $n_1 = n_2 = n$).

(c) It holds that:
$$\varphi \wedge \Box(\varphi \rightarrow \bigcirc \diamond \varphi) \Rightarrow \Box \diamond \varphi$$

Beweis. Let σ be a trace such that

$$\sigma \models \varphi \land \Box(\varphi \to \bigcirc \diamond \varphi) \tag{2}$$

Let $M := \{n \in \mathbb{N} | \sigma[n] \models \varphi\}$. Now we proof that M is infinite by showing that

- (IB) $0 \in M$: this follows directly from the first part of 2.
- (IS) $x \in M \Rightarrow \exists x' \in M.x' > x$: follows from the second part of 2 because for each position x where φ holds we know that there eventually is a position x' after the succesor of x (which is thus strictly greater than x) that also satisfies φ .

From the lecture we know that $\Box \diamond \varphi$ is equivalent to: $\exists^{\infty} x. (\sigma[x..] \models \varphi)$. Because M is infinite we know that σ satisfies this.

To show that the formulas are not equivalent we consider the trace:

$$\sigma := ab^{\omega}$$
 and the formula $\varphi := b$

$$\sigma[0] \not\models \varphi$$
 and thus $\sigma \not\models \varphi \land \Box(\varphi \to \bigcirc \diamond \varphi)$ however $\sigma \models \Box \diamond \varphi$.

(d) These two formulas are incomparable.

Beweis. Let

$$-\beta_1 := (\varphi U \psi) U \pi$$
 and $\beta_2 := \varphi U (\psi U \pi)$

$$-AP := \{a, b, c\}$$

$$-\varphi := a, \ \psi := b \text{ and } \pi := c$$

$$-\sigma_1 := \{a\}\{b\}\{a\}\{b\}\{c\}^{\omega} \text{ and } \sigma_2 := \{a\}\{c\}\emptyset^{\omega}$$

It holds that:

$$-\sigma_1 \models \beta_1 \text{ and } \sigma_1 \not\models \beta_2$$

$$-\sigma_2 \models \beta_2 \text{ and } \sigma_2 \not\models \beta_1$$

Peter Reithofer, 394407 László Dirks, 398777 Khulan Bayarkhuu, 394604

Aufgabe 4 (Positive Normal Form)

9/19

a)

$$\theta = (a \Rightarrow \neg \bigcirc b) \cup (a \land b)$$

$$\equiv (\neg a \lor \neg \bigcirc b) \cup (a \land b)$$

$$\equiv (\neg a \lor \bigcirc \neg b) \cup (a \land b)$$

b)

$$\neg \theta \equiv \neg((a \Rightarrow \neg \bigcirc b) \cup (a \land b))
\equiv \neg(\neg a \lor \neg \bigcirc b) R \neg(a \land b)$$

$$\equiv (a \land \bigcirc b) R (\neg a \lor \neg b)$$

c)

d)