Proof. The proof of Theorem 47.8 applies with A instead of \widehat{A} , and we can show that

$$c_{K^*}A_{K^*}^{-1}A_{N^*} \ge c_{N^*},$$

and that $y^* = c_{K^*} A_{K^*}^{-1}$ satisfies, $cu^* = y^*b$, and

$$y^* A_{K^*} = c_{K^*} A_{K^*}^{-1} A_{K^*} = c_{K^*},$$

$$y^* A_{N^*} = c_{K^*} A_{K^*}^{-1} A_{N^*} \ge c_{N^*}.$$

Let P be the $n \times n$ permutation matrix defined so that

$$AP = \begin{pmatrix} A_{K^*} & A_{N^*} \end{pmatrix}.$$

Then we also have

$$cP = \begin{pmatrix} c_{K^*} & c_{N^*} \end{pmatrix},$$

and using the above equations and inequalities we obtain

$$y^* (A_{K^*} \ A_{N^*}) \ge (c_{K^*} \ c_{N^*}),$$

that is, $y^*AP \ge cP$, which is equivalent to

$$y^*A \ge c$$

which shows that y^* is a feasible solution of (D) (remember, y^* is arbitrary so there is no need for the constraint $y^* \ge 0$).

The reduced costs are given by

$$(\overline{c}_{K^*})_i = c_i - c_{K^*} A_{K^*}^{-1} A^i,$$

and since for j = n - m + 1, ..., n the column A^j is the (j + m - n)th column of the identity matrix I_m , we have

$$(\overline{c}_{K^*})_j = c_j - (c_{K^*} A_{K^*}^{-1})_{j+m-n} \quad j = n-m+1, \dots, n,$$

that is,

$$y^* = c_{(n-m+1,\dots,n)} - (\overline{c}_{K^*})_{(n-m+1,\dots,n)},$$

as claimed. Since the last m rows of the final tableau is obtained by multiplying $[u_0 \ A]$ by $A_{K^*}^{-1}$, and the last m columns of A constitute I_m , the last m rows and the last m columns of the final tableau constitute $A_{K^*}^{-1}$.

Let us now take a look at the complementary slackness conditions of Theorem 47.11. If we go back to the version of (P) given by

maximize cx

subject to
$$\begin{pmatrix} A \\ -A \end{pmatrix} x \le \begin{pmatrix} b \\ -b \end{pmatrix}$$
 and $x \ge 0$,