

ENGENHARIA DE COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO BÁSICA DE COMPUTADORES — LABORATÓRIO

Exp. N.º1
FLIP FLOP

Turma: CP300TIN1 (segunda-feira, 19h)

Nome: Douglas Braz Machado — RA: 210034 Nome: João Victor Athayde Grilo — RA: 210491 Nome: Julio Cesar Bonow Manoel — RA: 210375

Professor: Rafael Rodrigues da Paz

Sorocaba / SP 21/03/22

1. PROCEDIMENTO EXPERIMENTAL

Tem-se como objetivo principal deste experimento, a introdução aos conceitos de memória através da utilização do Flip Flop, que é um circuito capaz de armazenar um bit ou um dígito binário.

O software Digital será utilizado para fazer a construção e verificação do funcionamento de dois circuitos Flip Flop, sendo o primeiro um Flip Flop R – S Assíncrono e o segundo um Flip Flop síncrono.

Para a primeira etapa do experimento, será colocada uma entrada *RESET* conectada a uma das portas de uma porta lógica NOR que é conectada ao Q. Em seguida, uma entrada *SET* é conectada a uma segunda porta NOR que segue para uma saída Q barra. Por fim, as ligações de seus respectivos terminais são cruzadas e conectadas as portas remanescentes uma da outra.

Figura 1 – Primeira etapa do experimento

Fonte: Autoral

Na segunda etapa do experimento utilizaremos uma entrada *CLOCK* em que sua ligação é dividida em duas e vão até os terminais de uma porta AND, onde uma dessas ligações é negada através de uma porta *NOT*. Feito isso, adicionaremos duas portas AND onde uma terá como entrada o *SET*, a outra o *RESET* e os terminais remanescentes de cada serão serão ligados entre sí. As saídas S e R são conectadas respectivamente as entradas *SET* e *RESET* de um componente Flip Flop, onde suas saídas Q e Q barra seguem respectivamente para duas saídas Q e Q barra.

S - SET

AND

CLOCK NOT

FLIP FLOP

SR

Q

D

AND

R - RESET

AND

AND

Figura 2 – Segunda etapa do experimento

2. ANÁLISE DE DADOS

Os resultados obtidos com o experimento estão de acordo com o esperado, o que pode ser verificado a seguir através das figuras dos circuitos em funcionamento e da tabela verdade.

Figura 3 – Flip Flop assíncrono com SET e RESET desligados.

Fonte: Autoral

Figura 4 – Flip Flop assíncrono com *SET* ligado.

Figura 5 – Flip Flop assíncrono com *RESET* ligado.

Fonte: Autoral

Figura 6 – Flip Flop assíncrono com SET e RESET ligados.

Figura 7 – Flip Flop síncrono com *CLK* desligado.

Fonte: Autoral

Figura 8 – Flip Flop assíncrono com *CLK* ligado.

Figura 9 – Tabela verdade.

Tabela Verdade

S	R	Qa	Qf			
0	0	0	0	s	R	Saída
0	0	1	1	0	0	Não muda
0	1	0	0	0	1	Q=0
0	1	1	0	1	0	Q=1
1	0	0	1	1	1	inválido
1	0	1	1			
1	1	0	inválido			
1	1	1	inválido			

Fonte: https://slideplayer.com.br/slide/49315/