Basic conventions						
Minkowski metric tensor	Totally antisymmetric tensor	Four-momentum	Four-momentum norm	Massive rest-frame		
$\overline{\eta_{\mu u}}$	$\epsilon \eta_{\mu \nu \rho \sigma}$	k^{μ}	$k^2 == k_\mu k^\mu$	$n^{\mu} == \frac{k^{\mu}}{k}$		

Fundamental field	Symmetries	Decomposition in SO(3) irreps	Source
$\Gamma_{lphaeta\chi}$	Symmetry[3, $\Gamma^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$-\frac{1}{2} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#1} + \frac{1}{2} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#1} + \frac{4}{3} \Gamma_{2^{-}\beta\chi\alpha}^{\#1} + \frac{1}{2} \Gamma_{2^{-}\alpha\beta\chi}^{\#2} + \frac{1}{2} \Gamma_{2^{-}\alpha\chi\beta}^{\#2} + \Gamma_{3^{-}\alpha\beta\chi}^{\#1} + \frac{1}{3} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#6} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#6} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#6} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#4} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#4} + \Gamma_{1^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#3} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{3} \Gamma_{1^{-}\chi}^{\#2} \eta_{\alpha} + \frac{1}{3} \Gamma_{1^{-}\chi}^{\#4} \eta_{\alpha} + \frac{1}{3} \Gamma_{1^{-}\chi}^{\#4} \eta_{\alpha} + \frac{1}{3} \Gamma_{1^{-}\chi}^{\#4} \eta_{\beta} + \frac{1}{3}$	$\Delta_{lphaeta\chi}$

-		Expansion in terms of the fundamental field	Source
	Symmetry[0, $\Gamma_{0+}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma_{\alpha}^{\alpha} n_{\beta} + \frac{1}{2} \Gamma_{\alpha}^{\alpha\beta} n_{\beta}$	Δ ₀ ^{#1}
		$\Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ ₀ ^{#2}
	Symmetry[0, $\Gamma_{0}^{#3}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\beta} n_{\alpha} + \Gamma^{\alpha}_{\alpha}{}^{\beta} n_{\beta} + \Gamma^{\alpha\beta}_{\alpha} n_{\beta} - 3 \Gamma^{\alpha\beta\chi}_{\alpha} n_{\alpha} n_{\beta} n_{\chi}$	Δ ₀ ^{#3}
		$\Gamma^{\alpha\beta}_{\beta} n_{\alpha} - \frac{1}{2} \Gamma^{\alpha}_{\alpha}^{\beta} n_{\beta} - \frac{1}{2} \Gamma^{\alpha\beta}_{\alpha} n_{\beta}$	Δ ₀ ^{#4}
-		$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	$\Delta_0^{\#1}$
$^{\prime}$ 1 ⁺ $\alpha\beta$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{\ X} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\alpha}^{\ X} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#1}{}_{\alpha\beta}$
$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	Symmetry[2, $\Gamma_{1+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{2} \Gamma^{\chi}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{\chi}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\chi}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$
Γ#3 1 ⁺ αβ	Symmetry[2, $\Gamma_{1}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha\beta}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X\delta} n_{\gamma} n_{\gamma} n_$	$\Delta_{1}^{\#3}{}_{lphaeta}$
$\Gamma_{1-\alpha}^{#1}$	Symmetry[1, $\Gamma_{1}^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$-\frac{1}{2}\Gamma^{\beta}_{\alpha\beta} + \frac{1}{2}\Gamma^{\beta}_{\beta\alpha} - \frac{1}{2}\Gamma^{\beta}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2}\Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2}\Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2}\Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	$\Delta_{1}^{#1}\alpha$
-	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		$\Delta_{1}^{#2}\alpha$
	Symmetry[1, $\Gamma_1^{\#3} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		$\Delta_{1}^{#3}\alpha$
			$\Delta_{1}^{\#4}$
	Symmetry[1, $\Gamma_1^{\#_5 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		$\Delta_{1}^{\#5}\alpha$
			$\Delta_{1}^{\#6}$
	Symmetry[2, $\Gamma_{2+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,	$-\frac{1}{4} \Gamma_{\alpha\beta}^{ \chi} n_{\chi} + \frac{1}{4} \Gamma_{\alpha\beta}^{ \chi} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ \chi} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{ \chi} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{ \chi \delta} n_{\delta} - 1$	
$\Gamma_{2}^{\#1}{}_{\alpha\beta}$	StrongGenSet[$\{1, 2\}$, GenSet[$\{1, 2\}$]]	$\begin{bmatrix} 4 & \alpha \beta & \chi & 4 & \alpha \beta & \chi & 4 & \beta \alpha & \chi & 4 & \beta \alpha & \chi & 6 & \alpha \beta & \chi & \delta & \alpha \beta & \chi & \delta \\ \frac{1}{6} & \Gamma_{\chi}^{\chi \delta} & n_{\alpha} & n_{\beta} & n_{\delta} + \frac{1}{4} & \Gamma_{\beta}^{\chi \delta} & n_{\alpha} & n_{\chi} & n_{\delta} - \frac{1}{4} & \Gamma_{\alpha}^{\chi \delta} & n_{\beta} & n_{\chi} & n_{\delta} - \frac{1}{4} & \Gamma_{\alpha}^{\chi \delta} & n_{\beta} & n_{\chi} & n_{\delta} - \frac{1}{4} & \Gamma_{\alpha}^{\chi \delta} & n_{\beta} & n_{\chi} & n_{\delta} \end{bmatrix}$	$\Delta_{2}^{\#1}{}_{\alpha\beta}$
	Symmetry[2, $\Gamma_{2^{+}}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,	$\frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha \ \beta}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta \ \alpha}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} $	$\Delta_{2}^{\#2}{}_{lphaeta}$
12+ ~0	rongGenSet[{1, 2}, GenSet[(1,2)]]]	$\frac{1}{3} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi \delta} n_{\delta} - \frac{1}{3} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi \delta} n_{\delta} + \frac{1}{3} \Gamma_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{3} \Gamma_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} - \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma_{\gamma}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma_{\gamma}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma_{\gamma}^$	
		$ \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} - \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} - \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \eta_{\alpha\beta} \Gamma^{\chi\delta\epsilon}_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + 2 \Gamma^{\chi\delta\epsilon}_{\alpha} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} $	
- #3	ymmetry[2, $\Gamma_2^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\begin{bmatrix} -\frac{1}{4} \Gamma_{\alpha\beta}^{ \chi} n_{\chi} - \frac{1}{4} \Gamma_{\alpha}^{ \chi} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ \chi} n_{\chi} - \frac{1}{4} \Gamma_{\beta}^{ \chi} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{ \chi} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ \chi} n_{\chi} - \frac{1}{3} \eta_{\alpha\beta} \Gamma_{\delta}^{ \chi\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\chi} - 1$. #3
1 2 ± 0/B		$\frac{1}{3} \Gamma^{\chi\delta} n_{\alpha} n_{\beta} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma^{\chi\delta} n_{\delta} + \frac{1}{6} \eta_{\alpha\beta} \Gamma^{\chi\delta} n_{\delta} - \frac{1}{6} \Gamma^{\chi\delta} n_{\alpha} n_{\beta} n_{\delta} - \frac{1}{6} \Gamma^{\chi\delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{2} \Gamma^{\chi\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta} n_{\chi} n_{$	$\Delta_{2}^{\#3}_{+\alpha\beta}$
		$\frac{1}{4} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta}^{-\frac{1}{4}} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta}^{+\frac{1}{2}} \Gamma_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta}^{-\frac{1}{4}} \Gamma_{\alpha}^{\chi \delta} n_{\delta}^{-\frac{1}{4}$	
		$ \begin{vmatrix} -\frac{1}{8} \Gamma_{\alpha\beta\chi} + \frac{1}{8} \Gamma_{\alpha\chi\beta} + \frac{1}{8} \Gamma_{\beta\alpha\chi} - \frac{1}{8} \Gamma_{\beta\chi\alpha} + \frac{1}{4} \Gamma_{\chi\alpha\beta} - \frac{1}{4} \Gamma_{\chi\beta\alpha} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{3}{16} \Gamma^{\delta}_{\beta\delta} \eta_{\alpha} \eta_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\beta\delta} \eta_{\alpha} \eta_{\alpha} + \frac{3}{16} \Gamma^{\delta}_{\beta\delta} \eta_{\alpha} + \frac{3}{16} \Gamma^{\delta}_{\beta\delta$	
	41010203	$\frac{3}{16} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} - \frac{3}{16} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{4} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\alpha} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\alpha} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\alpha} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\delta} n_{$	
$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	/mmetry[3, $\Gamma_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\begin{bmatrix} \frac{1}{8} & \frac{1}{\beta \chi} & \frac{1}{\alpha} & \frac{1}{6} & \frac{1}{8} & \frac{1}{\alpha \chi} & \frac{1}{6} & \frac{1}{8} & \frac{1}{\alpha \chi} & \frac{1}{6} & \frac{1}{6} & \frac{1}{4} & \frac{1}{\chi \alpha} & \frac{1}{6} & \frac{1}{6} & \frac{1}{8} & \frac{1}{\alpha \chi} & \frac{1}{6} & \frac{1}{6} & \frac{1}{8} & \frac{1}{2} & \frac{1}{6} & $	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$
		$\begin{bmatrix} 8 & \alpha\beta & \gamma\chi & \gamma\delta & 8 & \alpha\beta & \gamma\chi & \gamma\delta & 8 & \beta\alpha & \gamma\chi & \gamma\delta & 8 & \beta\alpha & \gamma\chi & \gamma\delta & 4 & \alpha\beta & \gamma\chi & \gamma\delta & 4 & \beta\alpha & \gamma\chi & \gamma\delta & 16 & \gamma\beta\chi & \delta & \gamma\alpha & \gamma\epsilon & \gamma\delta & \gamma\delta & \gamma\delta & \gamma\delta & \gamma\delta & \gamma\delta & \gamma\delta$	
		$\frac{3}{16} \eta_{\alpha \chi} \Gamma^{\delta \epsilon}_{\beta} n_{\delta} n_{\epsilon}^{-\frac{3}{16}} \Gamma^{\delta \epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon}^{+\frac{3}{16}} \Gamma^{\delta \epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon}^{+\frac{3}{16}} \Gamma^{\delta \epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon}^{-\frac{3}{16}} \Gamma^{\delta \epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon}^{-\frac{3}{16}} \Gamma^{\delta \epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon}$	
		$\frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\delta\alpha}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha}^{\ \delta} n_{\alpha} n_{\chi} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\alpha$	
		$\begin{bmatrix} \frac{1}{6} & \Gamma^{\delta}_{\beta\delta} & n_{\alpha} & n_{\chi} + \frac{1}{6} & \Gamma^{\delta}_{\delta\beta} & n_{\alpha} & n_{\chi} + \frac{1}{3} & \Gamma^{\delta}_{\alpha\delta} & n_{\beta} & n_{\chi} - \frac{1}{6} & \Gamma^{\delta}_{\alpha\delta} & n_{\beta} & n_{\chi} - \frac{1}{6} & \Gamma^{\delta}_{\delta\alpha} & n_{\beta} & n_{\chi} + \frac{1}{3} & \Gamma^{\delta}_{\beta\chi} & n_{\alpha} & n_{\delta} - \frac{1}{3} & \Gamma^{\delta}_{\gamma\chi} & n_{\alpha} & n_{\delta} - \frac{1}{3} & \Gamma^{\delta}_{\gamma\chi} & n_{\alpha} & n_{\delta} - \frac{1}{3} & \Gamma^{\delta}_{\gamma\chi} & n_{\alpha} & n_{\gamma\chi} & n_{\gamma$	
	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$,	$ \begin{vmatrix} \frac{1}{3} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{3} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{3} \Gamma^{\delta}_{\chi\alpha} n_{\beta} n_{\delta} - \frac{1}{3} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\gamma} n_{\beta} n_{\delta} - \frac{1}{3} \eta_{\alpha\gamma} \Gamma^{\delta\epsilon}_{\epsilon} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\gamma} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\gamma} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\gamma} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\alpha\gamma} n_{\gamma} n_{\gamma} - \frac{1}{3} \Gamma^{\delta}_{\alpha\gamma} n_{\gamma} - \frac{1}{3} \Gamma^{\delta}$	
$\Gamma_{2}^{\#2}_{\alpha\beta\chi}$	trongGenSet[$\{1, 2\}$, GenSet[$-(1,2)$]]	$ \begin{vmatrix} \frac{1}{3} \Gamma_{\alpha \beta}^{\delta} n_{\chi} n_{\delta} + \frac{1}{3} \Gamma_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} + \frac{1}{3} \Gamma_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \eta_{\beta \chi} \Gamma_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} - \frac{1}{6} \eta_{\beta \chi} \Gamma_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \Gamma_{\delta}^{\delta \epsilon} n_{\beta} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \Gamma_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} + \frac{1}{6}$	$\Delta_2^{\#2}_{\alpha\beta\chi}$
		$\frac{1}{3} \eta_{\beta \chi} \Gamma_{\alpha}^{\delta \epsilon} n_{\delta} n_{\epsilon}^{-\frac{1}{3}} \eta_{\alpha \chi} \Gamma_{\beta}^{\delta \epsilon} n_{\delta} n_{\epsilon}^{-\frac{1}{6}} \eta_{\beta \chi} \Gamma_{\alpha}^{\delta \epsilon} n_{\delta} n_{\epsilon}^{+\frac{1}{6}} \eta_{\alpha \chi} \Gamma_{\beta}^{\delta \epsilon} n_{\delta} n_{\epsilon}^{-\frac{1}{6}} \eta_{\beta \chi} \Gamma_{\alpha}^{\delta \epsilon} n_{\delta} n_{\epsilon}^{+\frac{1}{6}} \eta_{\alpha \chi} \Gamma_{\beta}^{\delta \epsilon} n_{\delta} n_{\epsilon}^{-\frac{1}{6}} \eta_{\delta \chi} \Gamma_{\alpha}^{\delta \epsilon} n_{\delta}^{\delta \epsilon} n_{\delta}^{\delta$	
		$\frac{1}{3} \Gamma_{\beta}^{\delta \epsilon} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{1}{6} \Gamma_{\beta}^{\delta \epsilon} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{1}{6} \Gamma_{\beta}^{\delta \epsilon} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{1}{3} \Gamma_{\alpha}^{\delta \epsilon} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{6} \Gamma_{\alpha}^{\delta \epsilon} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{6} \Gamma_{\alpha}^{\delta \epsilon} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon}$	
		$\frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\chi\alpha} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\beta\alpha} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\chi\delta}^{\delta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}$	
		$ \begin{vmatrix} \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\chi\delta} - \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\delta\chi} + \frac{1}{15} \Gamma^{\delta}_{\chi\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\chi\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\delta\chi} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\beta\delta} \eta_{\alpha} \eta_{\gamma} + \frac{1}{15} \Gamma^{\delta}_{\beta\delta} \eta_{\gamma} + \frac{1}{15} \Gamma^{\delta}_{\beta\delta} \eta_{\alpha} \eta_{\gamma} + \frac{1}{15} \Gamma^{\delta}_{\beta\delta} \eta_{\gamma} + \frac{1}{15} \Gamma^{\delta}_{\gamma\delta} \eta_{\gamma}$	
		$\frac{1}{15} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{6} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{6} \Gamma^{\delta}_{\gamma\beta} n_{\alpha} n$	
13- ary		$\frac{1}{6} \Gamma_{\chi \beta}^{\delta} n_{\alpha} n_{\delta}^{-\frac{1}{6}} \Gamma_{\beta \chi}^{\delta} n_{\alpha} n_{\delta}^{-\frac{1}{6}} \Gamma_{\chi \beta}^{\delta} n_{\alpha} n_{\delta}^{+\frac{1}{15}} \eta_{\beta \chi} \Gamma_{\epsilon}^{\delta \epsilon} n_{\alpha} n_{\delta}^{-\frac{1}{6}} \Gamma_{\alpha \chi}^{\delta} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma_{\alpha \chi}^{\delta} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma_{\chi \alpha}^{\delta} n_{\beta}^{\delta} n_{\delta}^{\delta} $	
		$\frac{1}{6} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\chi\alpha} n_{\beta} n_{\delta}^{+\frac{1}{15}} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\alpha\beta} n_{\chi}^{-\frac{1}{6}} \Gamma^{\delta}_{\alpha\beta} n_{\chi}^{-1$	
	/mmetry[3, $\Gamma_{3}^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \to -a, \bullet 2 \to -b, \bullet 3 \to -c \}$, StrongGenSet[{1, 2, 3}, GenSet[(1,2), (2,3)]]]	$\frac{1}{6} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\epsilon} n_{\chi} n_{\delta} - \frac{1}{5} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta} n_{\gamma} n_{\delta} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta} n_{\gamma} n_{\gamma} n_{\delta} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta} n_{\gamma} $	$\Delta_{3}^{#1}{}_{\alpha\beta\chi}$
		$\frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\ \delta} n_{\beta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\ \delta} n_{\chi} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\ \delta} n_{\chi} n_{\epsilon} - \frac{1}{5} \Gamma^{\delta}_{\ \delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} - \frac{1}{5} \Gamma^{\delta\epsilon}_{\ \delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\ \delta} n_{\chi} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta}$	
		$\frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\chi}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\chi}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\alpha}^{\delta\epsilon} n_{\delta} n_{\delta} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\alpha}^{\delta\epsilon} n_{\delta} n_{\delta$	
		$\frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\beta} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\chi}^{\delta\epsilon} n_{\alpha} n_{\beta} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta}_{\chi} n_{\alpha} n_{\beta} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\chi} n_{\alpha} n_{\beta} n_{\delta} n$	
		$\frac{4}{15} \Gamma_{\beta}^{\delta \epsilon} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\beta}^{\delta \epsilon} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\beta}^{\delta \epsilon} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\alpha}^{\delta \epsilon} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\alpha}^{\delta \epsilon} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\alpha}^{\delta \epsilon} n_{\gamma} n_{\gamma} n_{\delta} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\delta} n_{\gamma} n_$	
		$\frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{5} \eta_{\beta\chi} \Gamma^{\delta\epsilon\phi} n_{\alpha} n_{\delta} n_{\epsilon} n_{\phi} - \frac{1}{5} \eta_{\alpha\chi} \Gamma^{\delta\epsilon\phi} n_{\beta} n_{\delta} n_{\epsilon} n_{\phi} - \frac{1}{5} \eta_{\alpha\beta} \Gamma^{\delta\epsilon\phi} n_{\chi} n_{\delta} n_{\epsilon} n_{\phi} - \frac{2}{5} \Gamma^{\delta\epsilon\phi} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} n_{\phi}$	