

Sampling Distribution and Estimation

Lab: 1

Project 1.2: For Ungrouped Data

OBJECT:

ENTER THE FOLLOWING VALUES IN SPSS AND CALCULATE MEAN, S.D, RANGES, MODE, MEDIAN

WEIGHTS: 25, 35, 45, 55, 65, 75

WORKING EXPRESSIONS:

We have,

i.

Mean (X) = $\frac{\sum x}{n}$ Median (Md) = $\frac{n+1}{2}$ ii.

Standard Deviation (S.D.) = $\sqrt{\frac{\sum (X-X)2}{n}}$ iii.

iv. Range = max - min

Mode = maximum repetition of data v.

Standard error (S.E.) = $\frac{S.D.}{\sqrt{n}}$ vi.

Note: Where $\sum x$ represents the sum of all the items in the dataset and n represent the number of items in the given dataset.

CALCULATION:

From SPSS,

MEAN, S.D, RANGES, MODE, MEDIAN FROM THE GIVEN DATA IS SHOWN THROUGH THE TABLE

Statistics

Weights

N	Valid	6
	Missing	0
Mean		49.83

Std. Error of Mean	7.705
Median	50.00
Mode	25ª
Std. Deviation	18.872
Variance	356.167
Range	50
Minimum	25
Maximum	75

RESULT:

From the above table, the following results were obtained:

- I. Mean = 49.83
- II. Median = 50.00
- III. Standard Deviation = 18.872
- IV. Range = 50
- V. Mode = 25 (Multiple modes exists. The smallest value is shown)

Sampling Distribution and Estimation

Lab: 1

Project 1.2: For Ungrouped Data

OBJECT:

ENTER THE FOLLOWING VALUES IN SPSS AND CALCULATE MEAN, S.D, RANGES, MODE, MEDIAN

WEIGHT	MID VALUE	FREQUENCY	
20-30	25	4	
30-40	35	6	
40-50	45	7	
50-60	55	21	
60-70	65	23	
70-80	75	2	

WORKING EXPRESSIONS:

We have,

i. Mean
$$(X) = \frac{\sum x}{n}$$

i. Mean (X) =
$$\frac{\sum x}{n}$$

ii. Median (Md) = $\frac{n+1}{2}$

iii. Standard Deviation (S.D.) =
$$\sqrt{\frac{\sum (X-X)2}{n}}$$

iv.
$$Range = max - min$$

vi. Standard error (S.E.) =
$$\frac{S.D.}{\sqrt{n}}$$

Note: Where $\sum x$ represents the sum of all the items in the dataset and n represent the number of items in the given dataset.

CACLUCATION:

From SPSS,

Statistics

ΝЛ	id	va	םו וו
IVI	IU	va	uc

N	Valid	63
	Missing	0
Mean		54.37
Median	55.00	
Mode		65
Std. Dev	12.556	
Range		50

RESULT:

From the SPSS output table, the following results are obtained:

- i. Mean = 54.37
- ii. Median = 55.00
- iii. Mode = 65
- iv. Standard Deviation (S.D) = 12.556
- v. Range = 50

Sampling Distribution and Estimation

Lab: 1

Project 1.4: CONFIDENCE INTERVAL FOR POPULATION MEAN μ , (σ UNKNOWN AND LARGE n)

OBJECT:

ENTER THE FOLLOWING VALUES IN SPSS AND CREAT A CONFIDENCE INTERVAL ASSUMING NORMAL DISTRUBUTION

LENGTH: 125, 120, 121, 123, 122, 130, 124, 122, 120, 122, 118, 119, 123, 124, 122, 124, 121, 122, 138, 149, 123, 128, 122. 130. 120, 122, 124, 134, 137, 128, 122, 121, 125, 120, 132, 130, 128, 130, 122, 124

WORKING EXPRESSIONS:

- i. Mean (X) = $\frac{\sum x}{n}$
- ii. Median (Md) = $\frac{n+1}{2}$
- iii. Standard Deviation (S.D.) = $\sqrt{\frac{\sum (X-X)2}{n}}$
- iv. Range = max min
- v. Mode = maximum repetition of data
- vi. Standard error (S.E.) = $\frac{S.D.}{\sqrt{n}}$
- vii. Confidence Interval (C.I.)= $\overline{X} \pm Z \frac{S.D.}{\sqrt{n}}$

Note: Where $\sum x$ represents the sum of all the items in the dataset and n represent the number of items in the given dataset.

CALCULATION:

From SPSS, the confidence interval after entering the given value in SPSS is:

One-Sample Test

Test Value = 0

		100110100					
95% Conf		95% Confidence Inte	rval of the Difference				
		t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
	Length	128.879	39	.000	125.275	123.31	127.24

CONCLUSION:

Using SPSS, the confidence interval of the given data is 125.275, 127.4