Convolutional autoencoder for compression of neural data

CNN for signal compression

Philip Kroll

RWTH Aachen

Wednesday 15th February, 2023

Goal: Investigation of pathological firing in pain receptors

Goal: Investigation of pathological firing in pain receptors

• Thin electrode is injected to record action potentials

Goal: Investigation of pathological firing in pain receptors

- Thin electrode is injected to record action potentials
- Sort those action potentials to individual nerves fibres

Goal: Investigation of pathological firing in pain receptors

- Thin electrode is injected to record action potentials
- Sort those action potentials to individual nerves fibres

Example of the marking method

- Low signal-to-noise ratio
- High variability in spike shapes

- Low signal-to-noise ratio
- High variability in spike shapes
- Problems:
 - Identifying the spikes
 - Sorting spikes to individual nerve fibres

- Low signal-to-noise ratio
- High variability in spike shapes
- Problems:
 - Identifying the spikes
 - Sorting spikes to individual nerve fibres
- Standard Sorting & Clustering Algorithms can not be used

- Low signal-to-noise ratio
- High variability in spike shapes
- Problems:
 - Identifying the spikes
 - Sorting spikes to individual nerve fibres
- Standard Sorting & Clustering Algorithms can not be used
 - \Rightarrow We need to process the data such that it is usable

- Low signal-to-noise ratio
- High variability in spike shapes
- Problems:
 - Identifying the spikes
 - Sorting spikes to individual nerve fibres
- Standard Sorting & Clustering Algorithms can not be used
 - ⇒ We need to process the data such that it is usable
- For the following: Normalize Signal to range [0,1]

Machine Learning

Machine Learning Neural Network (Autoencoder)

 First Compression, then Decompression

- First Compression, then Decompression
- Input Dimension = Output Dimension
- Latent Dimension < Input Dimension

- First Compression, then Decompression
- Input Dimension = Output Dimension
- Latent Dimension < Input Dimension
- Training: Minimize the MSE between Input and Output

- First Compression, then Decompression
- Input Dimension = Output Dimension
- Latent Dimension < Input Dimension
- Training: Minimize the MSE between Input and Output
- Compression Rate
 CR = Input Dimension
 Latent Dimension

- First Compression, then Decompression
- Input Dimension = Output Dimension
- Latent Dimension < Input Dimension
- Training: Minimize the MSE between Input and Output
- Compression Rate $CR = \frac{\text{Input Dimension}}{\text{Latent Dimension}}$
- Different Network Architectures can have different CRs
- We're going to inspect CRs 2,4,8,16,32,64,128

- About 500 sample points
- After compression only 8 points are stored!

Evaluation

- How often does the original signal cross a threshold?
- How often does the decoded signal cross a threshold?

- How often does the original signal cross a threshold?
- How often does the decoded signal cross a threshold?
- How often does the original and the decoded signal cross a threshold at the exact same position? (preserved crossing)

Evaluation continued

Evaluation continued

- Problems:
 - Identifying spikes
 - Sorting spikes to individual nerve fibres

- Problems:
 - Identifying spikes
 - Sorting spikes to individual nerve fibres
- Basic architecture of an autoencoder

- Problems:
 - Identifying spikes
 - Sorting spikes to individual nerve fibres
- Basic architecture of an autoencoder
- De-noising and smoothing of the signal

- Problems:
 - Identifying spikes
 - Sorting spikes to individual nerve fibres
- Basic architecture of an autoencoder
- De-noising and smoothing of the signal
- Performance differences for different compression rates

Future Work

- Practical evaluation
- Optimize the autoencoder with more meaningful metric

Future Work

- Practical evaluation
- Optimize the autoencoder with more meaningful metric
- Check more auto-encoders, with smaller jumps in compression rate

Thank you for listening!