冬

邻接矩阵:构思

邓俊辉 deng@tsinghua.edu.cn

Graph模板类

```
❖ template <typename Tv, typename Te> class Graph {
private: void <u>reset()</u> { //所有顶点、边的辅助信息复位
             for ( int i = 0; i < n; i++ ) { //顶点
                status(i) = UNDISCOVERED; dTime(i) = fTime(i) = -1;
                parent(i) = -1; priority(i) = INT_MAX;
                for ( int j = 0; j < n; j++ ) //\dot{D}
                   if ( exists(i, j) ) type(i, j) = UNDETERMINED;
             } //for
          } //reset
public: /* ... 顶点操作、边操作、图算法:无论如何实现,接口必须统一 ... */
                                                  Data Structures & Algorithms, Tsinghua University
} //Graph
```

邻接矩阵 + 关联矩阵

❖ adjacency matrix:记录顶点之间的邻接关系

一一对应:矩阵元素 ⇔ 图中可能存在的边

既然只考察简单图,对角线统一设置为@

空间复杂度为Θ(n²),与图中实际的边数无关

空间复杂度为 $Θ(n*e) = O(n^3)$

空间利用率 = 2e/ne = 2/n

解决某些问题时十分有效

i

实例

(a) undigraph

redundancy

(b) digraph

0	A	В	С	D
A			1	
В	1		1	1
С	1			
D		1		

(c) network

∞	A	В	С	D
Α			3	
В	7		9	2
С	4			
D		5		