QCD VBFMET Gridpack Validation

João Pela

Imperial College London

2015-10-29

MadGraph Gridpack characteristics

- A grid pack was generated following the instructions found in the TWiki below:
 - TWiki: QuickGuideMadGraph5aMCatNLO
- Patches to include custom cuts were produced and included in the gridpack generation code

Sample characteristics

- Process: $pp \rightarrow jj, jjj, jjjj$
- At least one dijet with:
 - Jets $p_{\perp} > 30 \; GeV$
 - Dijet $m_{jj} > 800 \text{ GeV}$

What changed from previous studies:

- Different MAdGraph version: MG5_aMC_v2_3_0 → MG5_aMC_v2.3.2.2
- Additional CMS patches and options
 - Physics Model: sm → sm-ckm_no_b_mass
 - PDF choice: nn23lo1 → lhapdf(263000)

At grid pack production the reported process cross section was: $1.03 \times 10^7 \pm 1.657 \times 10^4 \; [pb]$

Preparatory studies reported: $1.11\times10^7\pm1.799\times10^4$ which is compatible considering the changes.

Hadronization

Software

- Using CMSSW_7_1_18 (like in previous studies)
- Showering: Pythia8
- Hadronizer: Configuration/Generator/python/Hadronizer_TuneCUETP8M1_13TeV_MLM_5f_max4j_LHE_pythia8_cff.py

Results

	Events			Cross Section [pb]		
Process	Tried	Passed	accepted [%]	Before	After	
pp o jj	30295	7252	23.9 ± 0.2	$1.673e + 06 \pm 8.616e + 03$	$4.005e + 05 \pm 4.591e + 03$	
pp o jjj	64985	4776	7.3 ± 0.1	$3.547e + 06 \pm 1.826e + 04$	$2.607e + 05 \pm 3.871e + 03$	
pp o jjjj	89720	5843	6.5 ± 0.1	$4.939e + 06 \pm 2.543e + 04$	$3.216e + 05 \pm 4.393e + 03$	
Total	185000	17871	9.7 ± 0.1	$1.016e + 07 \pm 3.247e + 04$	$9.828e + 05 \pm 7.440e + 03$	

The 3 and 4 jets configurations fail more events since there is no restriction on min(jet p_{\perp}) which fails sometime the imposed hadronizer cut.

QCD VBFMET Gridpack Validation

Selected Di-parton I

Custom MadGraph cuts on dijet parton p_{\perp} are implemented correctly.

QCD VBFMET Gridpack Validation

Selected Di-parton II

Jet η distribution looks ok. MadGraph cut is at 5.0.

Custom MadGraph cuts on dijet parton m_{jj} are implemented correctly. $\Delta \eta$ peaks over 6 showing that this variable indeed could not be used to reduce QCD.

Parton-Generator Jet Matching procedure

Pairing Partons and Generator Jets

- ullet Selecting all generator jets within $\Delta R < 0.4$
- ullet From those selecting the generator jet with the lowest p_{\perp} to the parton as a match.
 - ullet This avoids picking up the wrong jet from just picking lowest ΔR

Results

	Process						
n _{match}	jj	jjj	jjjjj	Total			
0	03.54%	0.29%	00.05%	01.53%			
1	25.21%	4.23%	01.35%	11.80%			
2	71.25%	27.55%	08.66%	39.11%			
3		67.92%	36.16%	29.98%			
4			53.77%	17.58%			

Selected diparton has a match: 73.96%

• Generator jet matched not lowest ΔR : 3.57%

With the current matching procedure we can find matches for the selected di-parton most of the times.

- ullet Lead jets: In the bin Parton 30 < ho_{\perp} \le 32 GeV only 2.04% \pm 0.54% generator jets are ho_{\perp} \ge 40 GeV
- ullet Sublead jets: In the bin Parton 30 < p_{\perp} \le 32 GeV only 3.34% \pm 0.49% generator jets are p_{\perp} \ge 40 GeV

Parton to generator jet p_{\perp} migration are under 3.5% at the bin $30 < p_{\perp} \le 32$ and should be even lower at $p_{\perp} < 30$. This is acceptable.

QCD VBFMET Gridpack Validation

Selected Di-partons vs Matched Generator Jet II

Parton to generator jet η migration are in general under 0.5.

Selected Di-partons vs Matched Generator Jet III

ullet m_{jj} : In the bin Di-parton 800 $< m_{jj} \le$ 850 GeV only $1.09\% \pm 0.23\%$ generator dijets are $m_{jj} \ge$ 900 GeV

Migration in dijet m_{jj} are very small even at 900 GeV.

Conclusions

Summary

- A MadGraph gridpack was produce following the CMS Generator Group recommended instructions
- A test run was made producing 185k events where it was demonstrated that the custom proposed cuts were correctly implemented.
- Pythia8 hadronization was performed over the parton level events with an efficiency of 9.7 ± 0.1 and leading to a final sample cross section of $9.828e + 05 \pm 7.440e + 03$.
- A study over the key variable migration was performed showing that they are acceptable for the proposed generator level filter.
- We are ready to pass this gridpack to the generator group and request our new QCD sample production.

