95.13 MÉTODOS MATEMÁTICOS Y NUMÉRICOS

FACULTAD DE INGENIERIA UNIVERSIDAD DE BUENOS AIRES

TRABAJO PRÁCTICO

1er Cuatrimestre 2024

Resolución de Ecuaciones Diferenciales Ordinarias "Dimensionamiento de Bomba de Desagote"

INTRODUCCIÓN

Últimamente se han registrado grandes inundaciones en distintos puntos del país y alrededores, incluyendo el Noreste Argentino y el Sur de Brasil.

El agua caída en el rango de pocos días supera los 500mm superando el 30% de la media histórica para todo un año.

El presente trabajo práctico consiste en simular una inundación provocada por una lluvia intensa, analizar las consecuencias en un edificio residencial con cocheras subterráneas y evaluar las alternativas para mitigar los efectos de un evento climático.

MODELADO

Las precipitaciones se miden con pluviómetros, instrumentos que registran el volumen de agua caída por unidad de superficie durante un lapso de tiempo dado. Los valores que se registran corresponden a la altura de la película de agua, medida en mm, caída en una superficie de 1 m₂, siendo 1 mm de agua de lluvia equivalente a 1 litro/m₂.

En un terreno se encuentra emplazado un edificio con un sótano. En el mismo, se dispone una bomba de desagote de una capacidad dada, de acuerdo al siguiente esquema:

Este trabajo tiene como objetivos modelar numéricamente el fenómeno físico analizado, dimensionar la bomba para mitigar el efecto de inundaciones producidas por lluvias y experimentar en la resolución numérica del sistema con varios esquemas.

La ecuación de conservación de masa tomando al sótano como volumen de control es:

$$\frac{dV}{dt} = Q_{ent} - Q_{sal} \tag{ec. 1}$$

con condición inicial $V_{(t=0)} = 0$, y donde

V	[m³]	volumen de agua (variable)
t	[h]	tiempo
Q_{ent}	[m³/h]	caudal de entrada al sótano
Q_{sal}	[m³/h]	caudal de salida del sótano

El caudal de entrada viene dado por precipitaciones. La determinación del mismo se hace mediante el "método racional", el cual establece que:

$$Q_{ent} = CIA_{terr} (ec. 2)$$

donde

 $\begin{array}{lll} \textit{C} & & [\text{adim}] & \text{coeficiente de infiltración (variable)} \\ \textit{I} & & [\text{mm/h}] & \text{intensidad de la precipitación (dato, de tabla de recurrencia)} \\ \textit{A}_{terr} & & [\text{ha}] & \text{área del terreno (dato)} \end{array}$

El caudal de salida viene dado por la bomba de desagote, la cual responde a una curva característica con la siguiente forma:

de la cual puede extraerse el caudal en función de la altura de agua en el sótano:

$$Q_{sal} = Q_{max} \sqrt{\frac{\Delta H_{max} - \Delta H}{\Delta H_{max} - \Delta H_{min}}}$$
 (ec. 3)

Donde

Q_{max}	[m ³ /h]	caudal	máximo	que pued	le extra	aer la b	omba

 ΔH_{max} [m] máximo desnivel que puede extraer la bomba, entre la superficie del agua y el desagote

 ΔH_{min} [m] mínimo desnivel que puede extraer la bomba, entre la superficie del agua y el desagote

 ΔH [m] desnivel entre la superficie del agua y el desagote, el cual viene dado por:

$$\Delta H = H_S - H \tag{ec. 4}$$

Donde

 H_s [m] altura del sótano (dato)

H [m] altura de agua por encima del fondo del pozo (variable)

El ΔH debe mantenerse en todo momento dentro de los límites mínimo y máximo que puede extraer la bomba. A su vez, las variables altura y volumen se encuentran relacionadas mediante:

$$H = \frac{V}{A_{sof}} \tag{ec. 5}$$

Donde

V [m³] volumen de agua (variable)

 A_{sot} [m²] superficie del sótano, en planta (dato)

El coeficiente de infiltración presente en la ec. 2 varía teóricamente entre 0 (suelo permeable) y 1 (suelo impermeable), y depende a su vez del volumen de agua almacenado en el sótano, puesto que, a mayor volumen, el suelo se satura y disminuye su capacidad de absorber agua. Asumimos que este fenómeno puede aproximarse con la siguiente expresión:

$$\frac{dC}{dt} = \frac{V}{V_{tot}t_k}(C_{sat} - C) \tag{ec. 6}$$

con condición inicial $\mathcal{C}_{(t=0)}=\mathcal{C}_0$, coeficiente de infiltración con el suelo seco, y donde

 V_{sot} [m³] volumen del sótano (dato)

 t_k [h] tiempo característico (dato)

 C_{sat} [adim] coeficiente de infiltración con el suelo saturado de agua (dato)

Por último, la intensidad de la precipitación presente en la ec. 2 se extrae de la siguiente tabla, en la que figuran duración e intensidad de una tormenta promedio con intervalo de recurrencia de 50 años, comparable a la vida útil de la obra:

Duración	5 min	10 min	15 min	30 min	60 min	3 h	6 h	12 h	24 h	72 h
Intensidad	241.4	190.7	162.6	119.6	85.0	41.7	26.4	16.7	10.9	5.2
[mm/h]										

Tener en cuenta que 1 mm = 10 m³ de agua/hectárea de terreno.

Se pide:

A) Modelación del sistema

A.1) Discretizar la ec. 1 con el método de Euler, tomando $\mathcal{C}=1,\ Q_{sal}=0.$ Correr el modelo para la precipitación de 60 min y verificar que el volumen de agua almacenado en el sótano coincida con el volumen de lluvia.

A.2) Discretizar las ec. 1 y ec. 6 con el método de Euler, considerando \mathcal{C} y Q_{sal} variables. Correr el modelo para todas las duraciónes / intensidades de precipitación, un lapso de tiempo suficiente como para que el sótano se vacíe.

B) Dimensionamiento de la bomba

Redimensionar la bomba adoptando un nuevo Q_{max} para que la altura de agua sobre el piso del sótano no exceda los 0,25m para ninguna de las precipitaciones de la tabla.

C) Experimentación con distintos esquemas

Discretizar las ec. 1 y ec. 6 con el método de Runge-Kutta de orden 2, considerando esta solución como "exacta". Correr el modelo para la precipitación de 60 min con el método de RK-2, y luego con Euler con dos pasos de tiempo distintos. Verificar que Euler es de orden 1 analizando la diferencia con la solución "exacta". Utilizar el Q_{max} obtenido en el punto B.

D) Conclusiones

Presente sus conclusiones del trabajo práctico. En particular, comente sobre la relación problema físico-problema numérico, los tipos de errores involucrados en la resolución del problema numérico, la importancia/efecto de cada uno, estabilidad y consistencia.

Datos

Si el número de padrón es NP, adoptar:

$$A_{terr} = 17.32m * \frac{NP}{3000}m$$
 $A_{sot} = 8.66m * 8.66m$
 $Q_{max} = 8m^3/h$ para la bomba existente
 $\Delta H_{max} = 4m$
 $\Delta H_{min} = 1m$
 $H_{s} = 3.50m$
 $C_{sat} = 0.90$
 $C_{0} = 0.60$
 $t_{k} = \left(1 - \frac{NP}{140000}\right)h$