Le cours d'Ariane Mézard

Ariane Mézard

27 février 2024

Table des matières

T	Fonctions Holomorpnes	1
1	Fonctions Analytiques 1.1 Séries Entières	
2	Théorie de Cauchy	6
	2.1 Homotopie et Simple Connexité	6
	2.2 Intégrales sur un Chemin	
	2.3 Théorème de Cauchy	
	2.4 Formule de Cauchy	6
	2.5 Inégalités de Cauchy, Premières Applications	12
3	Fonctions Holomorphes	13
	3.1 Définitions	13
	3.2 \mathbb{R} -différentiabilité	14
	3.3 Intégrale sur le bord d'un Compact	16
	3.4 Formule de Green-Riemann	17
	3.5 Analycité des Fonctions Holomorphes	21
4	Propriétés Éléméntaires des Fonctions Holomorphes	2 4
	4.1 Théorème d'inversion locale	24
5	Propriétés Éléméntaires des Fonctions Holomorphes	29
	5.1 Théorème d'inversion locale	29
	5.2 Théorème de l'Application Ouverte	30
	5.3 Lemme de Schwarz	31
	5.4 Disque Unité	32

Première partie

Fonctions Holomorphes

1 Fonctions Analytiques

1.1 Séries Entières

Définition 1.1: Série Entière

Une série entière est une série de la forme $\sum_{n\in\mathbb{N}}a_nz^n$ où $z\in\mathbb{C}$ et $a_n\in\mathbb{C}$. Le domaine de convergence de la série entière est l'ensemble Δ des nombres complexes $z\in\mathbb{C}$ pour lesquels la série converge.

Proposition 1.1: Critère de Cauchy

Soient a_n une suite complexe et $0 < r < r_0$. S'il existe M > 0 tel que

$$|a_n| r_0^n \leq M, n \geq 0$$

alors $a_n z^n$ converge normalement sur $\overline{D}(0,r)$.

Démonstration. Pour tout $n \in \mathbb{N}$ et $z \in \overline{D}(0,r)$ on a :

$$|a_n z^n| \le |a_n| r^n \le M \left(\frac{r}{r_0}\right)^n$$

Comme $0 < r < r_0, M\left(\frac{r}{r_0}\right)^n$ est le terme d'une série géométrique convergente.

Corollaire 1.1: Rayon de Convergence

Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière et $R\in\mathbb{R}_+\cup\{+\infty\}$ défini par

$$R = \sup \left\{ r \geq 0 \text{ tel que la suite } (|a_n| r^n)_{n \in \mathbb{N}} \text{ soit bornée} \right\}$$

Alors le domaine de convergence Δ de la série vérifie :

$$D(0,R) \subseteq \Delta \subseteq \overline{D}(0,R)$$

Définition 1.2: Rayon de Convergence

On appelle le nombre R défini ci-dessus rayon de convergence.

Proposition 1.2: Rayon d'Hadamard

Le rayon de convergence est donné par

$$R = \liminf_{n \to \infty} \frac{1}{\left|a_n\right|^{1/n}}$$

Avec la convention $1/0 = \infty$

Lemme 1.1: Lemme d'Abel

Soit u_n une suite réelle décroissante vers 0 et v_n une suite complexe telle que les sommes partielles $s_n = \sum_{k=0}^n v_k$ soient bornées. Alors la série $\sum u_n v_n$ converge.

Proposition 1.3: Principe des Zéros Isolés

Soit $f(z) = \sum a_n z^n$ la somme d'une série entière de rayon de convergence R > 0. Si au moins un des coefficients a_n n'est pas nul, il existe $r \in]0, +\infty[$ tel que f ne s'annule pas pour $|z| \in]0, r[$.

Démonstration. Soit $l = \min\{n \in \mathbb{N}, a_n \neq 0\}$, on a :

$$f(z) = \sum_{n \ge l} a_n z^n = z^l g(z)$$

avec $g(z) = a_l + a_{l+1}z + \dots$ et $g(0) \neq 0$.

Définition 1.3: Dérivée Complexe

Une fonction $f:U\to\mathbb{C}$ admet une dérivée par rapport à la variable complexe au point z_0 si

$$\lim_{z \to u} \frac{f(z_0 + u) - f(z_0)}{u}$$

existe. Cette limite est alors appelée dérivée de f en z_0 .

Proposition 1.4: Dérivée d'une Série Entière

Soit $f(z) = \sum a_n z^n$ une série entière de rayon de convergence R > 0. Alors, pour tout $l \in \mathbb{N}^*$, les dérivées l-ièmes de f ont pour rayon de convergence R et pour expression :

$$f^{(l)}(z) = \sum_{n \in \mathbb{N}} \frac{(n+l)!}{n!} a_{n+l} z^n$$

Corollaire 1.2: Primitive

Une série entière $f(z) = \sum a_n z^n$ de rayon de convergence R > 0 admet sur D(0, R) une primitive complexe

$$F(z) = \sum \frac{a_n}{n+1} z^{n+1}$$

Proposition 1.5: S

it $f(z) = \sum a_n z^n$ une série entière de rayon de convergence R > 0. Soit $z_0 \in D(0, R)$. La série entière

$$\sum_{n\in\mathbb{N}}\frac{1}{n!}f^{(n)}(z_0)\omega^n$$

a un rayon de convergence supérieur à $R - |z_0|$ et pour tout $z \in D(z_0, R - |z_0|)$,

$$f(z) = \sum_{n>0} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n$$

3

1.2 Fonctions Analytiques

Définition 1.4: Fonction Analytique

Une fonction $f:U\to\mathbb{C}$ est dite analytique si elle est DSE au voisinage de chaque point de U.

Proposition 1.6: Dérivabilité

Une fonction analytique sur un ouvert U de \mathbb{C} admet des dérivées de tous ordres qui sont des fonctions analytiques sur U. De plus, pour tout $z_0 \in U$, f est somme de sa série de Taylor en z_0 sur un voisinage de z_0 .

Corollaire 1.3: Unicité du DSE

Une fonction analytique sur U admet un unique développement en série entière au voisinage de chaque point de U.

Lemme 1.2: Nullité

Si U est connexe et f est analytique sur U, nulle sur un ouvert non-vide de U, alors f est identiquement nulle sur U.

Proposition 1.7: Zéros Isolés

oit f une fonction analytique sur un ouvert connexe U. Si f n'est pas identiquement nulle, ses zéros sont isolés, i.e. si $z_0 \in U$ avec $f(z_0) = 0$, alors il existe r > 0 tel que z_0 soit le seul z_0 de f sur $D(z_0, r)$

Théorème 1.1: Prolongement Analytique

Soit U un ouvert connexe de \mathbb{C} , f, g des fonctions analytiques sur U. Si f, g coincident sur une partie Σ de U qui a un point d'accumulation dans U, alors elles coincident sur U.

Définition 1.5: Primitive

Etant donnée une fonction analytique f sur U, une fonction analytique F de U dans \mathbb{C} est dite primitive de f si F'(z) = f(z) sur U.

1.3 Détermination du Logarithme

Définition 1.6: Détermination de l'Argument

Soit $U \subseteq \mathbb{C}^*$ ouvert. Une fonction continue $\arg: U \to \mathbb{R}$ est dite détermination continue de l'argument sur U si pour tout $z \in U$, $\exp(i \arg(z)) = \frac{z}{|z|}$

Définition 1.7: Détermination Principale

La détermination continue de l'argument

$$\begin{array}{ccc}
\mathbb{C} - \mathbb{R}_{-} & \longrightarrow &]-\pi, \pi[\\
z & \mapsto & 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right)
\end{array}$$

en prenant la racine carrée de z appartenant au demi-plan $\Re z>0$ est appelée détermination principale de l'argument.

Définition 1.8: Logarithme

Soit $U\subseteq \mathbb{C}^*$ ouvert. Une fonction continue $f:U\to \mathbb{C}$ est dite détermination du logarithme sur U si

$$\forall z \in U, \exp(f(w)) = w$$

Définition 1.9: Détermination Principale du Log

On définit pour $\theta \in \mathbb{R}$ la fonction

$$\log_{\theta} : \mathbb{C} \to \mathbb{R}_{-}e^{i\theta}, \log_{\theta}(w) = \log|w| + i\arg_{\theta}(w)$$

La fonction \log_0 est appelée détermination principale du logarithme et notée \log .

Proposition 1.8: DSE du Logarithme

log est DSE sur D(1,1) et sur D(0,1) on a

$$\log(1+z) = \sum \frac{(-1)^{n+1}}{n} z^n$$

Par conséquent, sur $D(z_0, |z_0|)$,

$$g(z) = \log z_0 + i\theta_0 + \sum_{n>1} \frac{(-1)^{n-1}}{n} \left(\frac{z-z_0}{z_0}\right)^n$$

est une détermination analytique du logarithme.

Proposition 1.9: Analycité des Déterminations

Il y a équivalence sur un ouvert connexe U de \mathbb{C}^* pour une application continue l entre :

- ullet est une détermination du logarithme à l'addition d'une constante près
- l est une primitive analytique de $\frac{1}{z}$ sur U.

Définition 1.10: Détermination

Soit $U \subseteq \mathbb{C}^*$ et $\alpha \in \mathbb{C}$. Une détermination continue de z^{α} est une application continue g de U dans \mathbb{C} telle qu'il existe une détermination du logarithme l(z) de z telle que $g(z) = \exp^{\alpha l(z)}$.

2 Théorie de Cauchy

2.1 Homotopie et Simple Connexité

Définition 2.1: Chemin

Soit [a, b] un intervalle de \mathbb{R} . Un chemin $\gamma : [a, b] \to \mathbb{C}$ est une application continue. Le point $\gamma(a)$ est appelé origine et le point $\gamma(b)$ est dit extrémité. On orientera par défaut un chemin dans le sens des paramètres croissants. Si $\gamma(a) = \gamma(b)$, le chemin est dit lacet d'origine $\gamma(a)$.

Définition 2.2: Opérations

- 1. Si γ est constant, son image est réduite à un point. Il est alors appelé chemin (ou lacet) constant.
- 2. Soit $\alpha \in \mathbb{R}^*$, $\gamma : t \in [0,1] \mapsto e^{2i\pi\alpha t}$ est un chemin dont l'image est une partie du cercle unité $\partial D(0,1)$. Si $\alpha = n \in \mathbb{Z}^*$, $\gamma([0,1])$ est le cercle tout entier parcouru n fois.
- 3. Si $\gamma:[a,b]\to\mathbb{C}$ est un chemin, le chemin opposé

$$\gamma^0: t \in [a,b] \mapsto \gamma(a+b-t)$$

est γ parcouru en sens inverse.

4. La juxta position de γ_1,γ_2 tels que $\gamma_1(b)=\gamma_2(c)$ est le chemin $\gamma=\gamma_1\wedge\gamma_2:[a,d+b-c]\to\mathbb{C}$

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{pour } a \le t \le b \\ \gamma_2(t - b + c) & \text{pour } b \le t \le d + b - c \end{cases}$$

Définition 2.3: Homotopie

Soit U un ouvert de \mathbb{C} , $\gamma_i:I\to U,\ i\in\{1,2\}$ deux chemins. Une homotopie de γ_1 à γ_2 dans U est une application continue φ de $I\times J$ dans U où I=[a,b] et J=[c,d] sont deux intervalles de \mathbb{R} telle que :

$$\varphi(t,c) = \gamma_1(t)$$
 et $\varphi(t,d) = \gamma_2(t), t \in I$

Définition 2.4: Simple Connexité

Un espace topologique X connexe par arcs est dit simplement connexe si tout lacet dans X est homotope à un point dans X.

Proposition 2.1

- Un espace topologique est simplement connexe si et seulement si tous les chemins de même extrémités sont homotopes.
- Un ouvert étoilé par rapport à un point est simplement connexe. En particulier, dans \mathbb{C} , le plan, un demi-plan, un disque ouvert, l'intérieur d'un rectangle ou d'un triangle sont simplement connexes.
- Le demi-plan ouvert $\Im z > 0$ auquel nous ôtons un nombre fini de demi-droites fermées $z = t + i\beta_k, \ t \in]-\infty, \alpha_k]$ est simplement connexe non étoilé.
- \bullet \mathbb{C}^{\star} n'est pas simplement connexe car le cercle unité n'est pas homotope à un chemin constant.

2.2 Intégrales sur un Chemin

Dorénavant, les chemins sont supposés C^1 par morceaux.

Définition 2.5: Equivalence de Chemins

Deux chemins $\gamma_i:I_i\to\mathbb{C}$ sont dits équivalents s'il existe une bijection croissante $\varphi:I_2\to I_1$ continue de réciproque continue et \mathcal{C}^1 par morceaux telle que :

$$\gamma_2(t) = \gamma_1(\varphi(t)), t \in I_2$$

Définition 2.6: Intégrale le long d'un Chemin

Soit $f:U\to\mathbb{C}$ continue et $\gamma:I=[a,b]\to\mathbb{C}$ un chemin avec $\gamma(I)\subseteq U$. Alors, la fonction $t:f(\gamma(t))\gamma'(t)$ est continue par morceaux dans [a,b]. On appelle intégrale de f le long du chemin γ :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Définition 2.7: Longueur

La longueur d'un chemin est le réel :

$$long(\gamma) = \int_{a}^{b} \left| \gamma^{'}(t) \right| \, \mathrm{d}t$$

Proposition 2.2: Propriétés

• Si F est une primitive de f, pour tout chemin γ :

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

• Si $\gamma_1 \sim \gamma_2$ alors

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

- Si $[Z_0, z_1] \subseteq U$, nous notons $\int_{[z_0, z_1]} f(z) dz = \int_{\gamma} f(z) dz$ où $\gamma: t \in [0, 1] \mapsto (1 t)z_0 + tz_1$.
- Si $\partial D(z_0, r) \subseteq U$, soit le lacet $\gamma : \theta \in [0, 2\pi] \mapsto z_0 + re^{i\theta}$. On a :

$$\int_{\gamma} f(z) dz = \int_{\partial D(z_0, r)} f(z) dz = \int_{0}^{2\pi} f(z_0 + re^{i\theta}) i r e^{i\theta} d\theta$$

 \bullet En séparant parties réelles et imaginaires, f=P+iQ et $\gamma=u+iv,$ on a :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} ((P \circ \gamma) u' - (Q \circ \gamma) v') dt + i \int_{a}^{b} ((Q \circ \gamma) u' + (P \circ \gamma) u') dt$$
$$= \int_{\gamma} (P dx - Q dy) + i \int_{\gamma} (P dy + Q dx)$$

• On a:

$$\int_{\gamma} f(z) dz = -\int_{\gamma^0} f(z) dz$$

• On a :

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le \log(\gamma) \max_{\gamma} |f|$$

2.3 Théorème de Cauchy

Théorème 2.1: de Cauchy

Soit $U \subseteq \mathbb{C}$ un ouvert connexe et f une fonction analytique dans U. Si γ_1, γ_2 sont deux lacets homotopes dans U, alors

$$\int_{\gamma_1} f(z) \, \mathrm{d}z = \int_{\gamma_2} f(z) \, \mathrm{d}z$$

En particulier, si U est simplement connexe, l'intégrale sur un lacet de f est nulle.

Théorème 2.2

Soit $U \subseteq \mathbb{C}$ un ouvert simplement connexe.

- 1. Toute fonction analytique dans U admet une primitive.
- 2. Si $f:U\to\mathbb{C}^\star$ est analytique, alors il existe $g:U\to\mathbb{C}$ analytique tel que $\exp(g)=f$ sur U.

2.4 Formule de Cauchy

Lemme 2.1: Intégrité de l'Indice

Soit $\gamma: I = [c, d] \to \mathbb{C}$ un lacet et $a \notin \gamma(I)$. Alors

$$j(a,\gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z-a} \in \mathbb{Z}$$

Démonstration. Pour $t \in [c, d]$ on pose

$$h(t) = \int_{c}^{t} \frac{\gamma'(s) \, \mathrm{d}s}{\gamma(s) - a}$$

On a $h'(t) = \frac{\gamma'(t)}{\gamma(t)-a}$, sauf en un nombre fini de points de I.

Remarquons que $g(t) = e^{-h(t)} (\gamma(t) - a)$ a pour dérivée

$$g'(t) = -h'(t)e^{-h(t)} (\gamma(t) - a) + \gamma'(t)e^{-h(t)} = 0$$

sauf en un nombre fini de points de I. Comme g est continue, elle est constante et g(c) = g(d). Or, h(c) = 0 donc $g(c) = \gamma(c) - a = g(d) = e^{-h(d)}(\gamma(d) - a)$. Mais γ est un lacet, donc $\gamma(c) = \gamma(d)$. Donc $h(d) = 2in\pi$. Donc $j(a, \gamma) = n \in \mathbb{Z}$.

Définition 2.8: Indice

L'entier $j(a, \gamma)$ est appelé indice de a par rapport au lacet γ et s'interprète comme le nombre de fois que le lacet tourne autour de a lorsque a est intérieur au lacet.

Proposition 2.3: Propriétés

1. Soit $\gamma, \gamma_1, \gamma_2$ des lacets de même origine dont les lacets ne contiennent pas a. Alors,

$$j(a, \gamma^0) = -j(a, \gamma)$$
 et $j(a, \gamma_1 \wedge \gamma_2) = j(a, \gamma_1) + j(a, \gamma_2)$

- 2. En appliquant le théorème de Cauchy à la fonction analytique 1/(z-a) dans $\mathbb{C}-\{a\}$, nous obtenons $j(a,\gamma_1)=j(a,\gamma_2)$ si γ_1,γ_2 sont homotopes dans $\mathbb{C}-\{a\}$.
- 3. Soit $U \subset \mathbb{C}$ un ouvert simplement connexe et $\gamma \subset U$. Si $a \notin U$, alors $j(a, \gamma) = 0$.
- 4. Si γ set un lacet dans \mathbb{C} , pour tout ouvert connexe U de $\mathbb{C} \gamma(I)$, la fonction $z \mapsto j(z,\gamma)$ est constante dans U.
- 5. Soit $\gamma_n: t \mapsto e^{int}$, on a:

$$j(z_0, \gamma_n) = \begin{cases} n & si |z_0| < 1\\ 0 & si |z_0| > 1 \end{cases}$$

Démonstration du point iv. Soit $z \in D(z_0, r) \subseteq U$,

$$j(z,\gamma) = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}u}{u-z} = \frac{1}{2i\pi} \int_{\gamma_1} \frac{\mathrm{d}u}{u-z} = \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}u}{u-z_0} = j(z_0,\gamma)$$

pour $\gamma_1: t \mapsto \gamma(t) + (z - z_0)$ qui est homotopie à γ via

$$\varphi(t,s) = \gamma(t) + s(z - z_0), 0 \le s \le 1$$

Donc $j(\cdot, \gamma)$ est localement constante donc constante sur U connexe.

Théorème 2.3: Formule de Cauchy

Soit $U\subseteq\mathbb{C}$ un ouvert simplement connexe, $\gamma:I\to U$ un lacet dans U. Soit f analytique sur U. Pour tout $w\in U\setminus\gamma(I)$

$$j(w,\gamma)f(w) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z-w} dz$$

Démonstration. La fonction

$$g: z \in U \mapsto \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{si } z \neq w \\ f'(w) & \text{si } z = w \end{cases}$$

est analytique sur U. En effet pour r>0 assez petit, f admet un développement de Taylor sur $D(w,r)\subseteq U$ et donc pour $z\in D(w,r)$:

$$g(z) = f'(w) + \frac{f''(w)}{2!}(z - w) + \dots + \frac{f^{(n)}(w)}{n!}(z - w)^{n-1} + \dots$$

Comme U est simplement connexe, le théorème de Cauchy donne $\int_{\gamma} g = 0$ et comme $w \notin \gamma(I)$, $\int_{\gamma} \frac{f(z) - f(w)}{z - w} dz = 0$ c'est à dire :

$$\int_{\gamma} \frac{f(z) dz}{z - w} = f(w) \int_{\gamma} \frac{dz}{z - w} = 2i\pi j(w, \gamma) f(w)$$

Corollaire 2.1: Valeur en un point

On a:

$$f(w) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} \frac{f(z)}{z - w} \, \mathrm{d}z, w \in D(z_0, r)$$

Proposition 2.4: Continuité sur un Lacet

Soit $\gamma:I=[c,d]\to\mathbb{C}$ un lacet et $g:\gamma(I)\to\mathbb{C}$ une fonction définie et continue sur $\gamma(I)$. Alors :

$$f(z) = \int_{\gamma} \frac{g(u) \, \mathrm{d}u}{u - z}$$

est définie et analytique dans $\mathbb{C} \setminus \gamma(I)$.

Précisément, pour tout $w \in \mathbb{C} \setminus \gamma(I)$ pour tout $n \in \mathbb{N}$ et

$$c_n = \int_{\mathcal{X}} \frac{g(u) \, \mathrm{d}u}{(u - w)^{n+1}}$$

nous avons un développement en série entière convergente

$$f(z) = \sum_{n \ge 0} c_n (z - w)^n$$

dans tout disque ouvert de centre w et de rayon $r = d(w, \gamma(I))$ et

$$f^{(n)}(w) = n!c_n = n! \int_{\gamma} \frac{g(u) du}{(u - w)^{n+1}}$$

Démonstration. Pour tout $u \in \gamma(I), z \in D(w, qr), q \in [0, 1]$, la série

$$\frac{1}{u-z} = \frac{1}{u-w} \frac{1}{1 - \frac{z-w}{u-w}} = \sum_{n=0}^{+\infty} \frac{(z-w)^n}{(u-w)^{n+1}}$$

est convergente. Comme $(g \circ \gamma) \gamma'$ est continue par morceaux sur [c, d] il existe M tel que

$$|g(\gamma(t))\gamma'(t)| \le M$$

Donc:

$$\left| g\left(\gamma(t)\right)\gamma'(t)\frac{(z-w)^n}{\left(\gamma(t)-w\right)^{n+1}} \right| \le M\frac{q^n}{r}, t \in [c,d]$$

Finalement, la série sous l'intégrale est normalement convergente et :

$$f(z) = \int_c^d \frac{g(\gamma(t))\gamma'(t) dt}{\gamma(t) - z} = \int_c^d g(\gamma(t))\gamma'(t) \left(\sum_{n=0}^{+\infty} \frac{(z - w)^n}{(\gamma(t) - w)^{n+1}} \right) dt$$

et donc $f(z) = \sum_{n=0}^{+\infty} c_n (z - w)^n$

Proposition 2.5: Dérivée n-ième

Soit f analytique sur U et γ le bord de $\overline{D}(w,r) \subseteq U$. D'après la formule de Cauchy :

$$f^{(n)}(w) = \frac{n!}{2\pi r^n} \int_0^{2\pi} \frac{f(w + re^{it})}{e^{nit}} dt$$

Corollaire 2.2

- 1. Soit f analytique sur U. Pour tout $a \in U$, la série de Taylor de f au voisinage de a est convergente et a pour somme f(z) dans le plus grand disque ouvert de centre a contenu dans U
- 2. Si f est analytique sur \mathbb{C} , sa série de Taylor en tout point de \mathbb{C} est convergente sur \mathbb{C} .

Démonstration. On applique la formule de Cauchy sur le contour γ d'un disque D(a,r) contenu dans U. Pour $z \in D(a,r), j(z,\gamma) = 1$ et

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} dz$$

La proposition 2.4 donne un développement en série entière de f en z-a convergeant sur D(a,r). Par unicité du développement, il s'agit de la série de Taylor. En faisant tendre r vers $d(a, \mathbb{C}-U)$, nous obtenons le résultat annoncé.

Corollaire 2.3: Constance Locale

Supposons U connexe, $a \in U$ et $f: U \to \mathbb{C}$ analytique. Si pour tout $k > 0, f^{(k)}(a) = 0$, alors f est constante sur U.

Démonstration. D'après le corollaire ??, f est localement somme de sa série de Taylor. Donc f est constante sur un ouvert contenant a. Soit $\Omega = \{w \in U, \forall k > 0, f^{(k)}(w) = 0\}$. Cet ensemble est ouvert, non vide, et fermé. Par connexité de U, $\Omega = U$, f' = 0 sur U et f est constante sur U.

Théorème 2.4: Multiplicité

Soit $f: U \to \mathbb{C}$ analytique non constante au voisinage de $a \in U$. Si f(a) = 0, il existe un unique entier $m \ge 1$ et $g: V \to \mathbb{C}$ analytique sur un voisinage V de a tels que

$$f(z) = (z - a)^m g(z), g(a) \neq 0, z \in V$$

En particulier, le point a possède un voisinage dans lequel il est l'unique zéro de f.

Démonstration. D'après le corollaire 2.4, si f n'est pas constante dans un voisinage de a, il existe $m \ge 1$ tel $f^{(m)}(a) \ne 0$ et $f'(a) = \ldots = f^{(m-1)}(a) = 0$.

Comme f(a) = 0, on peut alors factoriser $(z - a)^m$ dans le développement en série de Taylor de f

Définition 2.9: Ordre

L'entier m du théorème précédent est dit ordre de f en a, noté ord(f,a).

2.5 Inégalités de Cauchy, Premières Applications

Proposition 2.6: Inégalités de Cauchy

Soit $f: U \to \mathbb{C}$ analytique, $\overline{D}(w,r) \subset U, r > 0$. On a, pour $n \in \mathbb{N}$:

$$\left| f^{(n)}(w) \right| \le \frac{n!}{r^n} \sup_{z \in \partial D(w,r)} |f(z)|$$

Démonstration. On a :

$$f^{(n)}(w) = \frac{n!}{2\pi r^n} \int_0^{2\pi} \frac{f(w + re^{it})}{e^{nit}} dt$$

On en déduit immédiatement le résultat.

Lemme 2.2: Bornitude et Polynomialité

Soit f analytique sur \mathbb{C} . Supposons qu'il existe $A, B \geq 0$ tels que

$$\forall z \in \mathbb{C}, |f(z)| \leq A (1+|z|)^B$$

Alors f est un polynôme de degré $\leq B$.

Démonstration. Soit $n \ge \lfloor B \rfloor + 1 > B$. Par les inégalités de Cauchy, puisque

$$\sup_{\partial D(z,r)} |f(z)| \le A (1 + |z| + r)^B$$

on a:

$$\left| f^{(n)}(z) \right| \le \frac{n!}{r^n} A (1 + |z| + r)^B$$

En faisant tendre r vers $+\infty$, par croissance comparée, $f^{(n)}(w) = 0$ pour $n \geq B$. Localement, f étant somme de sa série de Taylor, c'est localement un polynôme de degré au plus B, ce qui est donc le résultat.

Théorème 2.5: Liouville

Une fonction analytique bornée sur \mathbb{C} est constante.

Théorème 2.6: d'Alembert-Gauss

Tout polynôme $P \in \mathbb{C}[z]$ de degré ≥ 1 admet une racine dans \mathbb{C} .

Démonstration. Par l'absurde, si $P(z) = \sum_{i=0}^d a_i z^i$ ne s'annule pas, f = 1/P est analytique sur $\mathbb C$ et $|f(z)| \sim \frac{1}{|a_d||z|^d}$ tend vers 0 quand |z| tend vers $+\infty$. En particulier, f est bornée sur $\mathbb C$ donc constante d'après le théorème de Liouville. Ainsi, P = 1/f est constant, ce uqui est absurde.

Théorème 2.7: Topologie

Les ouverts \mathbb{C} et D(0,1) sont homéomorphes mais pas isomorphes.

3 Fonctions Holomorphes

3.1 Définitions

Définition 3.1: Holomorphie

Une fonction $f: U \to \mathbb{C}$ est dite holomorphe en $z_0 \in U$ si la limite

$$\lim_{h \in \mathbb{C} \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

existe. On la note $f'(z_0)$.

On définit $\mathcal{O}(U)$ l'ensemble des fonctions holomorphes.

Proposition 3.1: Exemples Holomorphe

- Si f est constante, f est holomorphe et f' = 0
- $\bullet\,$ Si f est un polynôme, f est holomorphe
- $\bullet\,$ Si f est analytique, f est holomorphe
- \sin, \cos, \exp, \tan sont holomorphes $\sin \mathbb{C}$.
- $z\mapsto \bar{z}$ n'est pas holomorphes en aucun point :

$$\frac{f(z+h) - f(z)}{h} = \frac{\bar{h}}{h}$$

n'a pas de limite en 0.

• $f(z) = |z|^2$ n'est holomorphe que pour z = 0:

$$\frac{\left(z+h\right)\left(\bar{z}+\bar{h}\right)-z\bar{z}}{h}=\frac{h\bar{z}+\bar{h}z+h\bar{h}}{h}$$

n'a une limite que si z = 0.

3.2 \mathbb{R} -différentiabilité

Définition 3.2: Forme Différentielle

Une 1-forme différentielle sur Ω est une application $\alpha: \Omega \to Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{C})$. En particulier, les $dx_i \in Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{C})$ qui à $a \mapsto dx_i(a) = a_i$ permettent d'écrire :

$$\alpha(x) = \sum_{i=1}^{n} \alpha_i(x) \, \mathrm{d}x_i$$

où $\alpha_i:\Omega\to\mathbb{C}$. On a alors :

$$\alpha(x)(a) = \sum_{i=1}^{n} \alpha_i(x) \, \mathrm{d}x_i(a)$$

On dit que α est de classe \mathcal{C}^k si et seulement si tous les α_i sont de classe \mathcal{C}^k .

Définition 3.3: R Différentiabilité

Une fonction f d'un ouvert connexe Ω de \mathbb{R}^n est dite \mathbb{R} -différentiable sur Ω si et seulement si il existe une 1-forme différentielle $\mathrm{d} f:\Omega\to Hom_{\mathbb{R}}\left(\mathbb{R}^n,\mathbb{C}\right)$ telle que

$$f(z+h) = f(z) + df(z)(h) + o(h)$$

On pose $d_x f = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) dx_i$.

Dans la suite on travaille dans $\mathbb{C} \simeq \mathbb{R}^2$ et pour $h \in \mathbb{C}$, on note h = k + il = (k, l) et pour $z \in U = \Omega, z = x + iy = (x, y)$.

Proposition 3.2: Différentielle dans une base

Soit $f: U \to \mathbb{C}$ différentiable de différentielle $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$. On a $\forall z \in U$:

$$d_z f = \frac{\partial f}{\partial x}(z) dx + \frac{\partial f}{\partial y}(z) dy$$

En h = k + il:

$$d_z f(h) = \frac{\partial f}{\partial x}(z)k + \frac{\partial f}{\partial y}(z)l$$

On définit

$$dz = dx + i dy$$
 et $d\bar{z} = dx - i dy$

On a alors:

$$\mathrm{d}f = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \, \mathrm{d}z + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \, \mathrm{d}\bar{z}$$

ce qu'on écrit aussi :

$$\mathrm{d}f = \frac{\partial f}{\partial z} \, \mathrm{d}z + \frac{\partial f}{\partial \bar{z}} \, \mathrm{d}\bar{z}$$

On a par ailleurs

$$\overline{\left(\frac{\partial f}{\partial z}\right)} = \frac{\partial \bar{f}}{\partial \bar{z}}$$

Proposition 3.3: Exemples

- 1. Si $f(z)=z, \, \frac{\partial z}{\partial z}=\frac{\partial f}{\partial z}=1$ et $\frac{\partial z}{\partial \bar{z}}=0$. A l'inverse, $\frac{\partial \bar{z}}{\partial z}=0$.
- 2. Pour $P(x,y)=\sum_{0\leq\alpha,\beta\leq d}c_{\alpha,\beta}x^{\alpha}y^{\beta}$. En notant $x=\frac{z+\bar{z}}{2}$ et $y=\frac{z-\bar{z}}{2i}$, on a :

$$P(z) = \sum_{\alpha,\beta} a_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$

où on a

$$a_{\alpha,\beta} = \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta}}{\partial z^{\alpha} \partial z^{\beta}} P(0)$$

On retrouve que P est holomorphe si on a $a_{\alpha,\beta} = 0$ pour $\beta \geq 1$.

Théorème 3.1: Lien \mathbb{C} -dérivabilité et \mathbb{R} -différentiabilité

Soit $f:U\to\mathbb{C}.$ On a équivalence entre :

- 1. $f \in \mathcal{O}(U)$
- 2. f est $\mathbb{R}\text{-différentiable}$ sur U et $\mathrm{d}_z f$ est $\mathbb{C}\text{-linéaire}$ pour tout $z\in U$
- 3. f est $\mathbb{R}\text{-diff\'erentiable}$ sur U et $\frac{\partial f}{\partial \bar{z}}=0$ pour tout $z\in U$

Démonstration. $i \Rightarrow ii \ f(z+h) = f(z) + hf'(z) + o(h) \Longrightarrow f$ est \mathbb{R} -différentiable en z et $\mathrm{d}_z f: \mathbb{R}^2 \to \mathbb{C}$ qui à $h \mapsto hf'(z)$ est \mathbb{C} -linéaire.

 $ii \Rightarrow iii$ On a :

$$d_z f(h) = \frac{\partial f}{\partial z}(z) dz(h) + \frac{\partial f}{\partial \bar{z}}(z) d\bar{z}(h)$$
$$= \frac{\partial f}{\partial z}(z)h + \frac{\partial f}{\partial \bar{z}}(z)\bar{h}$$
$$d_z f(h) = \frac{\partial f}{\partial z}h + \frac{\partial f}{\partial \bar{z}}\bar{h}$$

On a alors : $\mathrm{d}_z f(ih) = \frac{\partial f}{\partial z} ih - i \frac{\partial f}{\partial \bar{z}} \bar{h}$. Mais $\mathrm{d}_z f$ est \mathbb{C} -linéaire par hypothèse. Donc :

$$d_z f(ih) = i d_z f(h) = i \frac{\partial f}{\partial z} h + i \frac{\partial f}{\partial \bar{z}} \bar{h}$$

Ainsi : $\frac{\partial f}{\partial \bar{z}} = -\frac{\partial f}{\partial \bar{z}} = 0.$

 $iii \Rightarrow i$ On a :

$$d_z f(h) = \frac{\partial f}{\partial z} h$$

D'où

$$f(z+h) = f(z) + \frac{\partial f}{\partial z}h + o(h)$$

Ainsi:

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \frac{\partial f}{\partial z}$$

et f est holomorphe en z.

Proposition 3.4: Équations de Cauchy-Riemann

On note f(x+iy)=P(x,y)+iQ(x,y) où $P,Q:\mathbb{R}^2\to\mathbb{R}.$ Si f est holomorphe, on a :

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$$

i.e.

$$\begin{cases} \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0\\ \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} = 0 \end{cases}$$

Ce sont les équations de Cauchy-Riemann.

Démonstration. On a :

$$d_z f(h) = \frac{\partial f}{\partial x}(z) dx(h) + \frac{\partial f}{\partial y}(z) dy(h) = f'(z)h = f'(z)(k+il)$$

On obtient

$$f'(z)(k+il) = \frac{\partial f}{\partial x}(z)k + \frac{\partial f}{\partial y}(z)l$$

et donc:

$$\begin{cases} f'(z) = \frac{\partial f}{\partial x}(z) \\ if'(z) = \frac{\partial f}{\partial y}(z) \end{cases}$$

On obtient ainsi la première égalité en identifiant.

On réécrit ceci avec $\frac{\partial f}{\partial \bar{z}} = 0$:

$$\begin{cases} \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0\\ \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} = 0 \end{cases}$$

Proposition 3.5: Constance sur un Connexe

Si f est holomorphe sur U connexe on a équivalence entre :

- ullet f est constante sur U
- ℜ f l'est
- 3f l'est
- |f| l'est
- \bar{f} est holomorphe

3.3 Intégrale sur le bord d'un Compact

Définition 3.4: Classe du Bord d'un Compact

Soit K un compact de \mathbb{R}^2 . K est dit à bord compact de classe \mathcal{C}^1 par morceaux si pour tout élément $z_0 \in \partial K$, il existe des coordonnées (u,v) associées à un repère affine de \mathbb{R}^2 d'origine z_0 orienté positivement par rapport à l'orientation canonique de \mathbb{R}^2 et un rectangle ouvert $R = \{-\delta < u < \delta\} \times \{-\eta < v < \eta\}$ tel que :

$$K\cap R=\{(u,v)\in R, v\geq h(u)\}$$

où h est une fonction réelle \mathcal{C}^1 par morceaux sur $[-\delta, \delta]$ avec h(0) = 0 et sup $|h| < \eta$.

Définition 3.5: Orientation du Bord

Soit K un compact à bord de classe \mathcal{C}^1 par morceaux. On appelle orientation canonique du bord l'orientation donnée par les arcs $u \mapsto (u, h(u))$ avec u croissant.

Lemme 3.1: Existence de l'Orientation

La définition a du sens.

Lemme 3.2: Recoupement de Rectangles

Soit R, R' des rectangles ouverts tels que $\partial K \cap R \cap R' \neq \emptyset$. On définit

$$K \cap R = \{(u, v) \in R, v \ge h(u)\}$$

 et

$$K \cap R'$$
) $\{(u', v') \in R', v' \ge l(u')\}$

Alors, les orientations sur $\partial K \cap R \cap R'$ coïncident.

Démonstration. Soit $z_0 \in \partial K \cap R \cap R'$. h et l sont \mathcal{C}^1 par morceaux. En évitant un nombre fini de points de $\partial K \cap R \cap R'$ on peut supposer h et l \mathcal{C}^1 en z_0 . Autrement dit, le bord admet une tangente en z_0 . On a deux repères affines orientés (z_0, e_1, e_2) et (z_0, e_1', e_2') qui génèrent des coordonnées (u, v) et (u', v'). Quitte à remplacer h par h(u) - h'(0)u on peut supposer que h'(0) = l'(0) = 0. Ainsi, e_1 et e_1' sont colinéaires. Puisqu'on a supposé que (e_1, e_2) et (e_1', e_2') sont orientés positivement par rapport à l'orientation canonique de \mathbb{R}^2 et puisque e_2 et e_2' doivent être dans le même sens (i.e. à l'intérieur du compact), on a bien le fait que e_1 et e_1' sont dans le même sens. Finalement, les orientations sur $\partial K \cap R \cap R'$ coïncident.

3.4 Formule de Green-Riemann

Soit $p, n \in \mathbb{N}^*$. On note $\Lambda^p_{\mathbb{R}}(\mathbb{R}^n)$ le \mathbb{R} -ev des formes p-linéaires alternées sur \mathbb{R}^n . Toute forme $S \in \Lambda^p_{\mathbb{R}}(\mathbb{R}^n)$ s'écrit de manière unique

$$S = \sum_{1 \le i_1 < \dots < i_p \le n} c_{i_1,\dots,i_p} \, \mathrm{d} x_{i_1} \wedge \dots \wedge \, \mathrm{d} x_{i_p}$$

Définition 3.6: Produit Extérieur

Pour $S \in \Lambda^p_{\mathbb{R}}(\mathbb{R}^n), T \in \Lambda^q_{\mathbb{R}}(\mathbb{R}^n)$ on définit le produit extérieur de S et T noté $S \wedge T \in \Lambda^{p+q}_{\mathbb{R}}(\mathbb{R}^n)$ comme :

$$S \wedge T(v_1, \dots, v_{p+q}) = \frac{1}{p!q!} \sum_{\sigma} \operatorname{sgn}(\sigma) S(v_{\sigma(1)}, \dots, v_{\sigma(p)}) T(v_{\sigma(p+1)}, \dots, v_{\sigma(p+q)})$$

Proposition 3.6: Exemples

La paire (dx, dy) forme une base de $\Lambda^1_{\mathbb{R}}(\mathbb{C})$. Les seuls produits extérieurs à considérer sont :

$$dx \wedge dx = dy \wedge dy = 0, \quad dx \wedge dy = -dy \wedge dx$$

De plus, $dx \wedge dy$ est la forme bilinéaire alternée déterminant dans la base canonique.

Définition 3.7: 2-forme différentielle

Une 2-forme différentielle β sur un ouvert U de \mathbb{C} est une application continue de U dans $\Lambda^2_{\mathbb{R}}(\mathbb{C}): \beta = w(x,y) dx \wedge dy$ pour w continue.

Définition 3.8: Intégrale d'une 2-forme

Soit $\beta = w(x, y) dx \wedge dy$ une 2-forme différentielle sur U. On définit :

$$\int_{U} \beta = \int_{U} w(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Définition 3.9: Différentielle d'une Différentielle

Soit $\alpha = u(x, y) dx + v(x, y) dy$ une 1-forme différentielle \mathcal{C}^1 sur U. La différentielle $d\alpha$ de α est la 2-forme différentielle

$$d\alpha = du \wedge dx + dv \wedge dy = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) dx \wedge dy$$

Proposition 3.7: Exemples

1. Soit α une 1-forme différentielle sur U et $f:U\to\mathbb{C}$ de classe \mathcal{C}^1 . Alors

$$d(f\alpha) = df \wedge \alpha + f d\alpha$$

2. Si on écrit la 1-forme différentielle C^1 $\alpha = f dz + g d\bar{z}$ on a :

$$d(f dz + q d\bar{z}) = (\partial_z q - \partial_{\bar{z}} f) dz \wedge d\bar{z} = -2i (\partial_z - \partial_{\bar{z}} f) dx \wedge dy$$

En particulier, si $\alpha = f dz$ avec f holomorphe, alors $\partial_{\bar{z}} f = 0$ et $d\alpha = 0$.

Lemme 3.3: Formule de Green-Riemann sur un rectangle

Soit K un compact de \mathbb{C} à bord de classe \mathcal{C}^1 par morceaux orienté canoniquement. Soit $\alpha = u(x,y) \, \mathrm{d} x + v(x,y) \, \mathrm{d} y$ une forme 1-différentielle de classe \mathcal{C}^1 sur un ouvert de K à support dans un rectangle $R = [-\delta, \delta] \times [-\eta, \eta] \subseteq K$. Alors

$$\int_{\partial K} \alpha = \int_K \, \mathrm{d}\alpha \text{ i.e. } \int_{\partial K} u(x,y) \, \mathrm{d}x + v(x,y) \, \mathrm{d}y = \int_K \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y$$

Démonstration. Comme K est compact, $R \subseteq \mathring{K}$ ou bien $\partial K \cap R$ est le graphe d'une fonction h et $K \cap R$ est la partie située à l'intérieur du graphe.

Supposons $R \subseteq \mathring{K}$, alors u = v = 0 sur ∂R et

$$\int_{-\delta}^{\delta} \frac{\partial v}{\partial x}(x, y) dx = v(\delta, y) - v(-\delta, y) = 0$$

$$\int_{-\eta}^{\eta} \frac{\partial u}{\partial y}(x, y) \, dy = u(x, \eta) - u(x, -\eta) = 0$$

et

$$\int_K \,\mathrm{d}\alpha = \int_R \,\mathrm{d}\alpha = \int_{-\delta \le x \le \delta, -\eta \le y \le \eta} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \,\mathrm{d}x \,\mathrm{d}y = 0$$

Puisque le support de α ne rencontre pas ∂K on a $\int_{\partial K} \alpha = 0 = \int_K d\alpha$. Si $K \cap R = \{(x,y) \in R \mid y \leq h(x)\}$, alors

$$\begin{split} \int_K \mathrm{d}\alpha &= \int_{K\cap R} \mathrm{d}\alpha = \int_{-\delta}^\delta \mathrm{d}x \int_{h(x)}^\eta \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) \, \mathrm{d}y \\ &= \int_{-\delta}^\delta \left(\frac{\partial}{\partial x} \left(\int_{h(x)}^\eta v(x,y) \, \mathrm{d}x\right) + v(x,h(x))h'(x) - \left(u(x,\eta) - u(x,h(x))\right)\right) \, \mathrm{d}x \\ &= \int_{h(\delta),\eta} v(\delta,y) \, \mathrm{d}y - \int_{h(-\delta)}^\eta v(-\delta,y) \, \mathrm{d}y + \int_{-\delta}^\delta \left(v(x,h(x))h'(x) + u(x,h(x))\right) \, \mathrm{d}x \\ &= \int_{-\delta}^\delta \left(v(x,h(x))h'(x) + u(x,h(x))\right) \, \mathrm{d}x \end{split}$$

car $u(x,\eta) = v(\delta,y) = v(-\delta,y) = 0$. Par ailleurs, comme $\partial K \cap R$ est paramétré par y = h(x),

$$\int_{\partial K \cap R} \alpha = \int_{\partial K \cap R} u(x, y) \, \mathrm{d}x + v(x, y) \, \mathrm{d}y = \int_{-\delta}^{\delta} \left(v(x, h(x)) h'(x) + u(x, h(x)) \right) \, \mathrm{d}x$$

Le support de α est inclus dans R. Nous concluons donc :

$$\int_{K} d\alpha = \int_{\partial K} \alpha$$

Définition 3.10: Partition de l'unité

Soit K un compact de \mathbb{C} recouvert par un nombre fini d'ouverts U_i . Une partition de l'unité de classe \mathcal{C}^1 subordonnée au recouvrement U_i est une famille φ_i de fonctions de K dans [0,1] de classe \mathcal{C}^1 à support dans U_i telles que $\sum \varphi_i(x) = 1$ pour tout $x \in K$.

Lemme 3.4: Unité sur un Voisinage

Soit $z \in U$. Il existe V un voisinage de z avec $\overline{V} \subseteq U$ et une fonction \mathcal{C}^1 φ_U à support dans U valant 1 sur V.

Démonstration. Soit r > r' > 0 tel que $D(z,r') \subset D(z,r) \subset U$. On définit les fonctions \mathcal{C}^{∞}

$$f_r : \mathbb{R} \to \mathbb{R}, f_r(t) = \begin{cases} e^{\frac{1}{t^2 - r^2}} & \text{si } |t| < r \\ 0 & \text{sinon} \end{cases}$$

et

$$g_r : \mathbb{R} \to \mathbb{R}, g_r(s) = \frac{\int_{-\infty}^s f_r(t) dt}{\int_{-\infty}^{\infty} f_r(t) dt}$$

En particulier:

$$g_r(s) = \begin{cases} 0 & \text{si } s \le -r \\ 1 & \text{si } s \ge r \end{cases}$$

Alors, V = D(z, r') et $\varphi_U(w) = f_r \left(r + \frac{2r}{r-r'} \left(r' - |w-z| \right) \right)$ conviennent.

Lemme 3.5: Existence d'une Partition

Soit $K \subseteq \mathbb{C}$ un compact et (U_i) un recouvrement fini par des ouverts de K. Il existe une partition de l'unité \mathcal{C}^1 subordonnée au recouvrement U_i

Démonstration. Pour tout $z \in K \setminus U_j$ il existe i tel que $z \in U_i$. Par le lemme 3.4 on constuit ψ_z^j de classe \mathcal{C}^1 qui vaut 1 sur un voisinage ouvert W_z^j de z et dont le support est dans l'ouvert $U_i \cap (K \setminus U_j)$. Le support de ψ_z^j est un fermé de K donc est compact.

On obtient donc un recouvrement ouvert W_z^j du compact $K \setminus U_j$ donc on extrait un sous-recouvrement fini $\left\{W_{z_1}^j, \ldots, W_{z_{j_l}}^j\right\}$.

On procède de même pour tout $j \leq n$. En réindexant on obtient une famille finie $(\psi_l)_{1 \leq l \leq N}$ de fonctions dont l'union des supports recouvre K, i.e. pour tout $z \in K$, il existe l tel que $\psi_l(z) > 0$. On pose alors

$$\psi = \sum \psi_l$$
 et pour $l \le N, \rho_l = \frac{\psi_l}{\psi}$

Ainsi, ρ_l est une partition de l'unité de classe \mathcal{C}^1 de K telle que pour tout l il existe $1 \leq i \leq n$ tel que le support de ρ_l soit inclus dans U_i .

Théorème 3.2: Formule de Green-Riemann

Soit K un compact de \mathbb{C} à bord de classe \mathcal{C}^1 par morceaux orienté canoniquement. Soit α une 1-forme différentielle de classe \mathcal{C}^1 sur un ouvert de K. On a alors

$$\int_{\partial K} \alpha = \int_K d\alpha$$

Démonstration. Comme K est compact, il est recouvert par un nombre fini de rectangles ouverts R_j qui vérifient $R_j \subseteq \mathring{K}$ ou $\partial (K \cap R_j)$ est le graphe d'une fonction h_j et $K \cap R_j$ est la partie située à l'intérieur du graphe. Soit (χ_j) une partition de l'unité subordonnée au recouvrement R_j . Écrivons $\alpha = \sum \alpha_j$ où les 1-formes différentielles $\alpha_j = \chi_j \alpha$ sont de classes \mathcal{C}^1 à support dans R_j . On se ramène alors au cas du lemme 3.3

Théorème 3.3: Cauchy

Soit U un ouvert de \mathbb{C} , K un compact à bord de classe \mathcal{C}^1 par morceaux inclus dans U, avec l'orientation canonique du bord. Alors pour toute fonction holomorphe de classe \mathcal{C}^1 sur K nous avons

$$\int_{\partial K} f(z) \, \mathrm{d}z = 0$$

Démonstration. On applique la formule de Green-Riemann 3.2 à $\alpha = f(z) \, dz$, 1-forme différentielle de classe \mathcal{C}^1 . On a $d\alpha = -\partial_{\bar{z}} f \, dz \wedge d\bar{z} = 0$.

Corollaire 3.1: Analycité Holomorphe C^1

Soit f holomorphe de classe \mathcal{C}^1 sur un ouvert U. Alors f est analytique sur U.

Démonstration. Soit $\overline{D}(w,r) \subseteq U$ et γ le lacet $t \mapsto w + re^{it}$. Pour $\lambda \leq 1$, on pose

$$g(\lambda) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z + \lambda(u - z))}{u - z} du = \frac{r}{2\pi} \int_{0}^{2\pi} \frac{f(z + \lambda(w + re^{it} - z))}{w + re^{it} - z} e^{it} dt$$

Ainsi, g est continue sur [0,1], dérivable sur]0,1[de dérivée

$$g'(\lambda) = \frac{r}{2\pi} \int_0^{2\pi} f'\left(z + \lambda\left(w + re^{it} - z\right)\right) e^{it} dt = \left[\frac{1}{2i\pi\lambda} f\left(z + \lambda\left(w + re^{it} - z\right)\right)\right]_{t=0}^{2\pi} = 0$$

Donc g est constante avec

$$g(1) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(u) du}{u - z}$$
 et $g(0) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z) du}{u - z} = f(z)$

D'où, par la proposition 2.4, f est analytique

3.5 Analycité des Fonctions Holomorphes

Lemme 3.6: Goursat

Soient $U\subseteq \mathbb{C}$ un ouvert et T un triangle inclus dans U. Pour tout fonction holomorphe sur U

$$\int_{\partial T} f(z) \, \mathrm{d}z = 0$$

 $D\acute{e}monstration$. Nous décopons T en quatre triangles T_i dont les sommets sont ceux de T et les milieux des côtés de T. Nous orientons les arêtes opposées des triangles T_k de telle façon que

$$I = \int_{\partial T} f(z) dz = \sum_{k=1}^{4} \int_{\partial T_k} f(z) dz$$

Il existe donc un indice k avec $\left|\int_{\partial T_k} f(z) \, \mathrm{d}z\right| \ge |I|/4$. De cette façon, nous construisons une suite de triangles emboîtés $T_0' = T, T_1' = T_k$ avec $diam T_n' = diam T/2^n$ et $\left|\int_{\partial T_n'} f(z) \, \mathrm{d}z\right| \ge |I|/4^n$. L'intersection des triangles emboîtés T_n' est réduite à un point z_0 . Comme f est holomorphe en z_0 :

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + (z - z_0)\varepsilon(z)$$

avec $\varepsilon(z)$ qui tend vers 0 quand z tend vers z_0 . On a ainsi :

$$\left| \int_{\partial T'_n} f(z) \, \mathrm{d}z \right| = \left| \int_{\partial T'_n} (z - z_0) \varepsilon(z) \, \mathrm{d}z \right| \le \log(\partial T'_n) \sup_{\partial T'_n} |z - z_0| \, |\varepsilon(z)|$$

et donc

$$\left| \int_{\partial T'_n} f(z) \, \mathrm{d}z \right| \leq 3 \left(\mathrm{diam} T'_n \right)^2 \sup_{\partial T'_n} |\varepsilon(z)|$$

Donc $|I| \le 4^n \left| \int_{\partial T'_n} f(z) \, \mathrm{d}z \right| \le 3 \left(\mathrm{diam} T_n \right)^2 \sup_{\partial T'_n} |\varepsilon(z)|$ et donc I = 0.

Théorème 3.4: Goursat

Soit $U\subseteq\mathbb{C}$ ouvert et K un compact à bord de classe \mathcal{C}^1 avec l'orientation canonique du bord. Pour toute fonction holomorphe sur U on a :

$$\int_{\partial K} f(z) \, \mathrm{d}z = 0$$

Démonstration. On approche K par des compacts à bords polygonaux. Notons $\delta = d(K, \mathbb{C} \setminus U) > 0$. Paramétrons δK par un nombre fini d'arcs \mathcal{C}^1 par morceaux. Pour chaque tel arc $\gamma: [a,b] \to U$, soit une subdivision $a = \tau_0 < \tau_1 < \ldots < \tau_n = b$ telle que $|\gamma(\tau_{j+1}) - \gamma(\tau_j)| \le \varepsilon \le \delta/2$. Chaque segment $[\gamma(\tau_{j+1}), \gamma(\tau_j)] \subset U$. Pour ε assez petit, la réunion de ces segments constitue le bord d'un compact K_{ε} à bord polygonal. $K_{\varepsilon} = \bigcup_i T_i$ est réunion de triangles adjacents et le lemme de Goursat 3.6 implique

$$\int_{\partial K_{\varepsilon}} f(z) d(z) = \sum_{i} \int_{\partial T_{i}} f(z) dz = 0$$

D'après la proposition , on a bien :

$$\lim_{\varepsilon \to 0} \int_{\partial K_{\varepsilon}} = \int_{\partial K} f(z) \, \mathrm{d}z$$

D'où le résultat.

Théorème 3.5: Formule de Cauchy

Soit f holomorphe sur un ouvert $U\subseteq\mathbb{C}$ et K un compact à bord orienté \mathcal{C}^1 par morceaux inclus dans U. Alors, pour tout $z\in K$

$$f(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega$$

Démonstration. Soit r > 0 tel que $\overline{D(z,r)} \subset \mathring{K}$. On note $K_r = K \setminus D(z,r)$. K_r est un compact à bord orienté \mathcal{C}^1 par morceaux dont le bord est $\partial K_r = \partial K \cup \partial D^-(z,r)$ où ∂D^- signifie que ce cercle a l'orientation opposée à celle obtenue comme bord de $\overline{D(z,r)}$. La fonction $g(\omega) = f(\omega)/(\omega - z)$ et holomorphe sur $U \setminus \{z\}$. Le théorème de Goursat 4.5 appliqué à g sur le compact $K_r \subseteq U \setminus \{z\}$ donne

$$\int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega - \int_{\partial D(z,r)} \frac{f(\omega)}{\omega - z} d\omega = 0$$

En posant $\omega = z + re^{it}$ on a :

$$\int_{\partial D(z,r)} \frac{f(\omega)}{\omega - z} d\omega = \int_0^{2\pi} \frac{f(z + re^{it})}{re^{it}} i re^{it} dt = i \int_0^{2\pi} f(z + re^{it}) dt$$

et cette dernière intégrale tend vers $2i\pi f(z)$ lorsque r tend vers 0 par continuité de f au point z.

Théorème 3.6: Équivalence Holomorphie-Analycité

Soit $f:U\to\mathbb{C}$. f est holomorphe sur U si et seulement si elle est analytique.

 \underline{D} émonstration. On a déjà l'implication analycité holomorphie. Supposons f holomorphe sur U et $\overline{D}(z_0, r) \subset U$. Pour $z \in D(z_0, r)$, la formule de Cauchy 4.6 donne

$$f(z)$$
) $\frac{1}{2i\pi} \int_{\partial D(z_0,r)} \frac{f(\omega)}{\omega - z} d\omega$

Or

$$\frac{1}{\omega - z} = \sum_{n=0}^{+\infty} \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}}$$

De plus, pour $\omega = z_0 + re^{it}$,

$$\left| \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}} \right| = \frac{1}{r} \left(\frac{|z - z_0|}{r} \right)^n, \text{ avec } |z - z_0| / r < 1$$

Par convergence normale pour $t \in [0, 2\pi]$, on obtient :

$$f(z) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} f(\omega) \sum_{n=0}^{+\infty} \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}} d\omega$$
$$= \sum_{n=0}^{+\infty} \int_{\partial D(z_0, r)} \frac{f(\omega)}{2i\pi (\omega - z_0)^{n+1}} d\omega (z - z_0)^n$$
$$= \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

et la série entière ci-dessus converge normalement sur les compacts de $D(z_0, r)$.

Corollaire 3.2: Classe des Dérivées

Soit U un ouvert de \mathbb{C} . Toute fonction holomorphe sur U est de classe \mathcal{C}^{∞} sur U. Précisément, pour tout $K \subset U$ compact à bord de classe \mathcal{C}^1 par morceaux et pour tout $z \in \mathring{K}$ nous avons :

1.
$$\forall n \geq 0, \frac{\partial^n f}{\partial z^n}(z) = f^{(n)}(z) = \frac{n!}{2i\pi} \int_{\partial K} \frac{f(\omega)}{(\omega - z)^{n+1}} d\omega$$

2.
$$\forall n \geq 0, \forall m \geq 0, \frac{\partial^{n+m} f}{\partial z^n \partial \bar{z}^m}(z) = 0.$$

En particulier, une fonction holomorphe f admet des dérivées complexes $f^{(n)}$ d'ordre n arbitraire et les dérivées $f^{(n)}$ sont holomorphes.

Théorème 3.7: Morera

Soit f une fonction continue sur un ouvert U de \mathbb{C} . Nous supposons que $\int_{\partial T} f(z) dz = 0$ pour tout triangle T inclus dans U. Alors f est holomorphe sur U.

Démonstration. Soit $z_0 \in U$ et r > 0 tel que $\overline{D}(z_0, r) \subset U$. Pour $z \in D(z_0, r)$, on pose

$$F(z) = \int_{[z_0, z]} f(\omega) \, \mathrm{d}\omega$$

Soit $z \in D(z_0, r)$ et $h \neq 0$ tel que $z + h \in D(z_0, r)$. Comme le triangle de sommets $z_0, z, z + h$ est inclus dans $D(z_0, r)$, nous avons

$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \int_{[z,z+h]} f(\omega) d\omega = \int_0^1 f(z+th) dt$$

Comme f est continue au point z,

$$\lim_{h \in \mathbb{C}^*} \frac{F(z+h) - F(z)}{h} = f(z)$$

Ainsi F est holomorphe sur $D(z_0, r)$ donc analytique d'après le théorème 4.7 et sa dérivée f = F' l'est donc aussi.

Corollaire 3.3: Γ

La fonction Γ

$$\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} \, \mathrm{d}t$$

est holomorphe pour $\Re s > 0$.

Démonstration. L'intégrale converge en t=0 car $\left|t^{s-1}e^{-t}\right| \leq t^{\Re s-1}$. À s fixé pour $t \in \mathbb{R}_+$ grand,

$$|t^{s-1}e^{-t}|=t^{\Re s-1}e^{-t}\leq e^{t/2}e^{-t}=e^{-t/2}$$

Donc $\Gamma(s)$ est bien définie pour $\Re s > 0$. Soit $\gamma : [0,1] \to \{s, \Re s > 0\}$ la courbe décrivant un triangle. Alors, d'après le théorème de Fubini

$$\int_{\gamma} \Gamma(s) \, \mathrm{d}s = \int_{\gamma} \int_{0}^{+\infty} t^{s-1} e^{-t} \, \mathrm{d}t \, \mathrm{d}s = \int_{0}^{+\infty} \left(\int_{\gamma} t^{s-1} \, \mathrm{d}s \right) e^{-t} \, \mathrm{d}t = 0$$

Ainsi, en appliquant le théorème de Morera 4.8, la fonction Γ est holomorphe sur le demi-plan $\Re s > 0$.

4 Propriétés Éléméntaires des Fonctions Holomorphes

4.1 Théorème d'inversion locale

Théorème 4.1: Inversion Locale

Si $f \in \mathcal{O}(U)$, $a \in U$, $f'(a) \neq 0$, alors, $\exists V$ voisinage ouvert de a inclus dans U sur lequel f est biholomorphe sur f(V) ouvert.

Démonstration. Comme $f \in \mathcal{O}(U)$, f est \mathbb{R} -différentiable. Donc il existe un voisinage V ouvert de U contenant a sur lequel $f_{|V}: V \to f(V)$ est un difféomorphisme. Alors, $d_{f(z)}(f^{-1}) = (d_z f)^{-1}$ et donc $f^{-1} \in \mathcal{O}(U)$.

Idée des Séries Majorantes.

• On suppose d'abord a=0, f(a)=0, f'(a)=1. On a

$$f(z) = z - \sum_{n>2} a_n z^n, z \in D(0, r)$$

On veut résoudre $f(z) = \omega = z - \sum_{n \geq 2} a_n z^n$ i.e. $z = \omega + \sum_{n \geq 2} a_n z^n$. Mais, $\sum_{n \geq 2} a_n z^n = \mathcal{O}(w^2)$:

$$z = \omega + \sum_{n \ge 2} a_n \left(\omega + \mathcal{O}(\omega^2) \right)^n = \omega + a_2 \omega^2 + \mathcal{O}(\omega^3)$$

On peut alors réinjecter :

$$z = \omega + a_2 \omega^2 + (2a_2^2 + a_3) \omega^3 + \mathcal{O}(\omega^4)$$

et ainsi de suite :

$$z = \omega + \sum_{n=2}^{N} P_n(a_2, \dots, a_n) \omega^n + \mathcal{O}(\omega^{N+1})$$

où les $P_n \in \mathbb{N}[X_2, \dots, X_n]$.

• Montrons maintenant que cette série converge lorsque $N \to \infty$. On sait que la série $\sum a_n z^n$ converge sur D(0,r). Pour r' < r, $|a_n r'^n| \to 0$. Donc il existe M > 0 tel que $|a_n| \le M^n$. Or,

$$z = \omega + \sum_{n=2}^{+\infty} P_n (M^2, \dots, M^n) \omega^n$$

est solution de :

$$\omega = z - \sum_{n \ge 2} M^n z^n$$
$$= z - \left(\frac{1}{1 - Mz} - 1 - Mz\right)$$

Donc

$$(1 - Mz) \omega = z(1 - Mz) - 1 + 1 - Mz + Mz(1 - Mz)$$

C'est à dire :

$$z^{2}(M+M^{2})+z(-M\omega-1)+\omega=0$$

ou

$$z = \frac{\left(M\omega + 1\right) - \sqrt{\left(1 + M\omega\right)^2 - 4\omega\left(M + M^2\right)}}{2(M + M^2)}$$

On prend ici pour $\sqrt{\cdot}$ la détermination holomorphe de ()^{1/2} qui existe sur D(1,1) et pour laquelle $\sqrt{1} = 1$ de sorte que pour $\omega = 0$, z = 0.

La série définissant $\sqrt{\cdot}$ converge alors sur D(0,R) où $R=\frac{1}{\left(1+\sqrt{2}\right)M+4M^2}$. En effet, alors, on a

$$\left|M^2\omega^2\right| \le M^2 \left|\omega\right| R \le \frac{M^2 \left|\omega\right|}{\left(1+\sqrt{2}\right) M} = \left(\sqrt{2}-1\right) M \left|\omega\right|$$

et donc

$$\left|\left(2M+4M^2\right)\omega-M^2\omega^2\right|\leq \left(2M+4M^2\right)\left|\omega\right|+\left|M^2\omega^2\right|\leq \left(\left(1+\sqrt{2}\right)M+4M^2\right)\left|w\right|<1$$

D'où la convergence de $g(\omega) = \omega + \sum_{n\geq 2} P_n\left(a_2,\ldots,a_n\right)\omega^n$ sur D(0,R). et $g(D(0,R))\subset D(0,1/M)$.

• Par identification de la série entière en zéro et principe du prolongement analytique, nous avons $f \circ g(\omega) = \omega$ pour $\omega \in D(0,R)$. De plus, par construction, g est injective sur W = D(0,R) et l'image $\omega = f(z)$ atteint surjectivement W sur $g(W) \subseteq D(0,1/M) \cap f^{-1}(W)$. Prenons V la composante connexe de 0 dans $D(0,1/M) \cap f^{-1}(W)$. Alors $f(V) \subset W$ et $g(W) \subset V$. V, W sont ouverts et $f_{|V|} \circ g_{|W|} = id_W$. Par connexité de V et prolongement analytique, $g_{|W|} \circ f_{|V|} = id_V$.

Théorème 4.2: Pré-Application Ouverte

Soit $f \in \mathcal{O}(U)$ non constante au voisinage de $a \in U$, f(a) = 0 et

$$m = \min\{k \in \mathbb{N}^* \mid f^{(k)}(a) \neq 0\}$$

Il existe alors un voisinage ouvert V de a, un voisinage ouvert W de 0 et un biholomorphisme $\varphi:V\to W$ tel que φ envoie a sur 0 et $f(z)=f(a)+\varphi(z)^m$.

Démonstration. D'après le théorème 2.4 il existe $U'\subseteq U$ un voisinage de a et $g\in\mathcal{O}(U')$ tels que pour tout $z\in U'$

$$f(z) - f(a) = \alpha(z - a)^m g(z)$$

avec $\alpha \in \mathbb{C}^*$ et g(a) = 1.

Soit $V = \{z \in U' \mid |g(z) - 1| < 1\}$. C'est un voisinage de a sur lequel $\exp \frac{1}{m} \log(g(z))$ existe. On a alors

$$\forall z \in V', f(z) = f(a) + (\varphi(z))^m$$

οù

$$\varphi(z) = \alpha_m(z-a) \exp\left(\frac{1}{m}\log(g(z))\right)$$

où $\alpha_m^m = \alpha$. Alors, $\varphi \in \mathcal{O}(V')$ avec $\varphi(a) = 0$ et $\varphi'(a) = 1$. Par théorème d'inversion locale 5.1, on a un voisinage $V \subset V'$ de a sur lequel φ est un biholomorphisme.

Corollaire 4.1: Solutions d'une Équation

Soit $f \in \mathcal{O}(U)$ non constante au voisinage de $a \in U$ et

$$m = \min\{k \in \mathbb{N}^* \mid f^{(k)}(a) \neq 0\}$$

. Alors, $\exists r, \rho \in \mathbb{R}_+^*$ tels que $\forall \omega \in D(f(a), \rho) \setminus \{f(a)\}$ l'équation $f(z) = \omega$ a exactement m solutions dans D(a, r).

Démonstration. On écrit par le théorème 5.2 précédent $f(z) = \omega = f(a) + \varphi(z)^m$ où $\varphi: V \to W$ est tel que $\varphi(a) = 0$. On suppose $\varphi(z) = (\omega - f(a))^{1/m}$ pour une certaine détermination de l'exponentielle. On prend r tel que $D(a,r) \subset V$. $\varphi(D(a,r))$ est un ouvert de W voisinage de 0.

Il existe un ρ' tel que $D(0, \rho')$ est inclus dans $\varphi(D(a, r))$. Alors, pour tout $\omega \in D(f(a), \rho'^m)$, $(\omega - f(a))^{1/m} \in D(0, \rho')$. Mézalor, $e^{2ik\pi/m} (w - f(a))^{1/m}$ sont dans $D(0, \rho')$. On obtient alors

$$z_k = \varphi^{-1} \left(e^{2ik\pi/m} \left(\omega - f(a) \right)^{1/m} \right) \in D(a, r)$$

Les z_k sont solutions de $f(z) = \omega$ et donc il y en a bien exactement m.

De même, l'équation f(z)=f(a) n'a qu'une solution z=a dans D(a,r) de multiplicité m.

Théorème 4.3: Application Ouverte

Une fonction holomorphe non constante sur un ouvert U connexe est une application ouverte.

Démonstration. Par le corollaire 5.1, tout point $z_0 \in U$ admet un voisinage $V_{z_0} \subset U$ tel que $f(V_{z_0}) = D(f(z_0), \rho(z_0))$. Ainsi, $f(U) = \bigcup D(f(z_0), \rho(z_0))$ est ouvert.

Théorème 4.4: Théorème d'Inversion Gloable

Soit U un ouvert connexe et $f \in \mathcal{O}(U)$ injective. Alors :

- 1. f(U) est un ouvert de \mathbb{C}
- 2. f' ne s'annule pas sur U
- 3. $f: U \to f(U)$ est un biholomorphisme

Démonstration. 1. D'après le théorème de l'application ouverte 5.3, f, injective donc non constante, est ouverte donc f(U) est ouverte et f est une bijection continue ouverte de U dans f(U), i.e., un homéomorphisme.

- 2. Supposons qu'il existe z_0 pour lequel $f'(z_0) = 0$. Dans le théorème 5.1, on a un entier $m \ge 2$ et donc f n'est pas injective au voisinage de z_0 ce qui est absurde. Donc f' ne s'annule pas sur U
- 3. D'après les deux premiers points et le théorème 5.1 d'inversion locale, f^{-1} est holomorphe sur f(U) et $f: U \to f(U)$ est un biholomorphisme.

Théorème 4.5: Goursat

Soit $U\subseteq\mathbb{C}$ ouvert et K un compact à bord de classe \mathcal{C}^1 avec l'orientation canonique du bord. Pour toute fonction holomorphe sur U on a :

$$\int_{\partial K} f(z) \, \mathrm{d}z = 0$$

Démonstration. On approche K par des compacts à bords polygonaux. Notons $\delta = d(K, \mathbb{C} \setminus U) > 0$. Paramétrons δK par un nombre fini d'arcs \mathcal{C}^1 par morceaux. Pour chaque tel arc $\gamma : [a,b] \to U$, soit une subdivision $a = \tau_0 < \tau_1 < \ldots < \tau_n = b$ telle que $|\gamma(\tau_{j+1}) - \gamma(\tau_j)| \le \varepsilon \le \delta/2$. Chaque segment $[\gamma(\tau_{j+1}), \gamma(\tau_j)] \subset U$. Pour ε assez petit, la réunion de ces segments constitue le bord d'un compact K_{ε} à bord polygonal. $K_{\varepsilon} = \bigcup_i T_i$ est réunion de triangles adjacents et le lemme de Goursat 3.6 implique

$$\int_{\partial K_{\varepsilon}} f(z) d(z) = \sum_{i} \int_{\partial T_{i}} f(z) dz = 0$$

D'après la proposition, on a bien:

$$\lim_{\varepsilon \to 0} \int_{\partial K_{\varepsilon}} = \int_{\partial K} f(z) \, \mathrm{d}z$$

D'où le résultat.

Théorème 4.6: Formule de Cauchy

Soit f holomorphe sur un ouvert $U\subseteq\mathbb{C}$ et K un compact à bord orienté \mathcal{C}^1 par morceaux inclus dans U. Alors, pour tout $z\in K$

$$f(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega$$

Démonstration. Soit r > 0 tel que $\overline{D(z,r)} \subset \mathring{K}$. On note $K_r = K \setminus D(z,r)$. K_r est un compact à bord orienté \mathcal{C}^1 par morceaux dont le bord est $\partial K_r = \partial K \cup \partial D^-(z,r)$ où ∂D^- signifie que ce cercle a l'orientation opposée à celle obtenue comme bord de $\overline{D(z,r)}$. La fonction $g(\omega) = f(\omega)/(\omega - z)$ et holomorphe sur $U \setminus \{z\}$. Le théorème de Goursat 4.5 appliqué à g sur le compact $K_r \subseteq U \setminus \{z\}$ donne

$$\int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega - \int_{\partial D(z,r)} \frac{f(\omega)}{\omega - z} d\omega = 0$$

En posant $\omega = z + re^{it}$ on a

$$\int_{\partial D(z,r)} \frac{f(\omega)}{\omega - z} d\omega = \int_0^{2\pi} \frac{f(z + re^{it})}{re^{it}} i re^{it} dt = i \int_0^{2\pi} f(z + re^{it}) dt$$

et cette dernière intégrale tend vers $2i\pi f(z)$ lorsque r tend vers 0 par continuité de f au point z.

Théorème 4.7: Équivalence Holomorphie-Analycité

Soit $f:U\to\mathbb{C}$. f est holomorphe sur U si et seulement si elle est analytique.

 \underline{D} émonstration. On a déjà l'implication analycité holomorphie. Supposons f holomorphe sur U et $\overline{D}(z_0, r) \subset U$. Pour $z \in D(z_0, r)$, la formule de Cauchy 4.6 donne

$$f(z) = \frac{1}{2i\pi} \int_{\partial D(z_0,r)} \frac{f(\omega)}{\omega - z} d\omega$$

Or

$$\frac{1}{\omega - z} = \sum_{n=0}^{+\infty} \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}}$$

De plus, pour $\omega = z_0 + re^{it}$,

$$\left| \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}} \right| = \frac{1}{r} \left(\frac{|z - z_0|}{r} \right)^n, \text{ avec } |z - z_0| / r < 1$$

Par convergence normale pour $t \in [0, 2\pi]$, on obtient :

$$f(z) = \frac{1}{2i\pi} \int_{\partial D(z_0, r)} f(\omega) \sum_{n=0}^{+\infty} \frac{(z - z_0)^n}{(\omega - z_0)^{n+1}} d\omega = \sum_{n=0}^{+\infty} \int_{\partial D(z_0, r)} \frac{f(\omega)}{2i\pi (\omega - z_0)^{n+1}} d\omega (z - z_0)^n = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

et la série entière ci-dessus converge normalement sur les compacts de $D(z_0, r)$.

Corollaire 4.2: Classe des Dérivées

Soit U un ouvert de \mathbb{C} . Toute fonction holomorphe sur U est de classe \mathcal{C}^{∞} sur U. Précisément, pour tout $K \subset U$ compact à bord de classe \mathcal{C}^1 par morceaux et pour tout $z \in \mathring{K}$ nous avons :

1.
$$\forall n \geq 0, \frac{\partial^n f}{\partial z^n}(z) = f^{(n)}(z) = \frac{n!}{2i\pi} \int_{\partial K} \frac{f(\omega)}{(\omega - z)^{n+1}} d\omega$$

2.
$$\forall n \geq 0, \forall m \geq 0, \frac{\partial^{n+m} f}{\partial z^n \partial \bar{z}^m}(z) = 0.$$

En particulier, une fonction holomorphe f admet des dérivées complexes $f^{(n)}$ d'ordre n arbitraire et les dérivées $f^{(n)}$ sont holomorphes.

Théorème 4.8: Morera

Soit f une fonction continue sur un ouvert U de \mathbb{C} . Nous supposons que $\int_{\partial T} f(z) dz = 0$ pour tout triangle T inclus dans U. Alors f est holomorphe sur U.

Démonstration. Soit $z_0 \in U$ et r > 0 tel que $\overline{D}(z_0, r) \subset U$. Pour $z \in D(z_0, r)$, on pose

$$F(z) = \int_{[z_0, z]} f(\omega) \, \mathrm{d}\omega$$

Soit $z \in D(z_0, r)$ et $h \neq 0$ tel que $z + h \in D(z_0, r)$. Comme le triangle de sommets $z_0, z, z + h$ est inclus dans $D(z_0, r)$, nous avons

$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \int_{[z,z+h]} f(\omega) d\omega = \int_0^1 f(z+th) dt$$

Comme f est continue au point z,

$$\lim_{h \in \mathbb{C}^*} \frac{F(z+h) - F(z)}{h} = f(z)$$

Ainsi F est holomorphe sur $D(z_0, r)$ donc analytique d'après le théorème 4.7 et sa dérivée f = F' l'est donc aussi.

Corollaire 4.3: Γ

La fonction Γ

$$\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} \, \mathrm{d}t$$

est holomorphe pour $\Re s > 0$.

Démonstration. L'intégrale converge en t=0 car $\left|t^{s-1}e^{-t}\right| \leq t^{\Re s-1}$. À s fixé pour $t \in \mathbb{R}_+$ grand,

$$|t^{s-1}e^{-t}|=t^{\Re s-1}e^{-t}\leq e^{t/2}e^{-t}=e^{-t/2}$$

Donc $\Gamma(s)$ est bien définie pour $\Re s > 0$. Soit $\gamma : [0,1] \to \{s, \Re s > 0\}$ la courbe décrivant un triangle. Alors, d'après le théorème de Fubini

$$\int_{\gamma} \Gamma(s) \, \mathrm{d}s = \int_{\gamma} \int_{0}^{+\infty} t^{s-1} e^{-t} \, \mathrm{d}t \, \mathrm{d}s = \int_{0}^{+\infty} \left(\int_{\gamma} t^{s-1} \, \mathrm{d}s \right) e^{-t} \, \mathrm{d}t = 0$$

Ainsi, en appliquant le théorème de Morera 4.8, la fonction Γ est holomorphe sur le demi-plan $\Re s > 0$.

5 Propriétés Éléméntaires des Fonctions Holomorphes

5.1 Théorème d'inversion locale

Théorème 5.1: Inversion Locale

Si $f \in \mathcal{O}(U)$, $a \in U$, $f'(a) \neq 0$, alors, $\exists V$ voisinage ouvert de a inclus dans U sur lequel f est biholomorphe sur f(V) ouvert.

Démonstration. Comme $f \in \mathcal{O}(U)$, f est \mathbb{R} -différentiable. Donc il existe un voisinage V ouvert de U contenant a sur lequel $f_{|V}: V \to f(V)$ est un difféomorphisme. Alors, $d_{f(z)}(f^{-1}) = (d_z f)^{-1}$ et donc $f^{-1} \in \mathcal{O}(U)$.

Idée des Séries Majorantes. ??

• On suppose d'abord a = 0, f(a) = 0, f'(a) = 1. On a

$$f(z) = z - \sum_{n>2} a_n z^n, z \in D(0, r)$$

On veut résoudre $f(z) = \omega = z - \sum_{n \geq 2} a_n z^n$ i.e. $z = \omega + \sum_{n \geq 2} a_n z^n$. Mais, $\sum_{n \geq 2} a_n z^n = \mathcal{O}(w^2)$:

$$z = \omega + \sum_{n \ge 2} a_n \left(\omega + \mathcal{O}(\omega^2) \right)^n = \omega + a_2 \omega^2 + \mathcal{O}(\omega^3)$$

On peut alors réinjecter :

$$z = \omega + a_2 \omega^2 + (2a_2^2 + a_3) \omega^3 + \mathcal{O}(\omega^4)$$

et ainsi de suite :

$$z = \omega + \sum_{n=2}^{N} P_n(a_2, \dots, a_n) \omega^n + \mathcal{O}(\omega^{N+1})$$

où les $P_n \in \mathbb{N}[X_2, \dots, X_n]$.

• Montrons maintenant que cette série converge lorsque $N \to \infty$. On sait que la série $\sum a_n z^n$ converge sur D(0,r). Pour r' < r, $|a_n r'^n| \to 0$. Donc il existe M > 0 tel que $|a_n| \le M^n$. Or,

$$z = \omega + \sum_{n=2}^{+\infty} P_n (M^2, \dots, M^n) \omega^n$$

est solution de :

$$\omega = z - \sum_{n \ge 2} M^n z^n$$
$$= z - \left(\frac{1}{1 - Mz} - 1 - Mz\right)$$

Donc

$$(1 - Mz) \omega = z(1 - Mz) - 1 + 1 - Mz + Mz(1 - Mz)$$

C'est à dire :

$$z^{2}\left(M+M^{2}\right)+z\left(-M\omega-1\right)+\omega=0$$

ou

$$z = \frac{(M\omega + 1) - \sqrt{(1 + M\omega)^2 - 4\omega (M + M^2)}}{2(M + M^2)}$$

On prend ici pour $\sqrt{\cdot}$ la détermination holomorphe de ()^{1/2} qui existe sur D(1,1) et pour laquelle $\sqrt{1} = 1$ de sorte que pour $\omega = 0$, z = 0.

La série définissant $\sqrt{\cdot}$ converge alors sur D(0,R) où $R=\frac{1}{\left(1+\sqrt{2}\right)M+4M^2}$. En effet, alors, on a

$$\left|M^2\omega^2\right| \le M^2 \left|\omega\right| R \le \frac{M^2 \left|\omega\right|}{\left(1+\sqrt{2}\right) M} = \left(\sqrt{2}-1\right) M \left|\omega\right|$$

et donc

$$\left|\left(2M+4M^2\right)\omega-M^2\omega^2\right|\leq \left(2M+4M^2\right)|\omega|+\left|M^2\omega^2\right|\leq \left(\left(1+\sqrt{2}\right)M+4M^2\right)|w|<1$$

D'où la convergence de $g(\omega) = \omega + \sum_{n\geq 2} P_n\left(a_2,\ldots,a_n\right)\omega^n$ sur D(0,R). et $g(D(0,R))\subset D(0,1/M)$.

• Par identification de la série entière en zéro et principe du prolongement analytique, nous avons $f \circ g(\omega) = \omega$ pour $\omega \in D(0,R)$. De plus, par construction, g est injective sur W = D(0,R) et l'image $\omega = f(z)$ atteint surjectivement W sur $g(W) \subseteq D(0,1/M) \cap f^{-1}(W)$. Prenons V la composante connexe de 0 dans $D(0,1/M) \cap f^{-1}(W)$. Alors $f(V) \subset W$ et $g(W) \subset V$. V, W sont ouverts et $f_{|V|} \circ g_{|W|} = id_W$. Par connexité de V et prolongement analytique, $g_{|W|} \circ f_{|V|} = id_V$.

5.2 Théorème de l'Application Ouverte

Théorème 5.2: Pré-Application Ouverte

Soit $f \in \mathcal{O}(U)$ non constante au voisinage de $a \in U$, f(a) = 0 et

$$m = \min\{k \in \mathbb{N}^* \mid f^{(k)}(a) \neq 0\}$$

Il existe alors un voisinage ouvert V de a, un voisinage ouvert W de 0 et un biholomorphisme $\varphi:V\to W$ tel que φ envoie a sur 0 et $f(z)=f(a)+\varphi(z)^m$.

Démonstration. D'après le théorème 2.4 il existe $U'\subseteq U$ un voisinage de a et $g\in\mathcal{O}(U')$ tels que pour tout $z\in U'$

$$f(z) - f(a) = \alpha(z - a)^m g(z)$$

avec $\alpha \in \mathbb{C}^*$ et g(a) = 1.

Soit $V = \{z \in U' \mid |g(z) - 1| < 1\}$. C'est un voisinage de a sur lequel $\exp \frac{1}{m} \log(g(z))$ existe. On a alors

$$\forall z \in V', f(z) = f(a) + (\varphi(z))^m$$

οù

$$\varphi(z) = \alpha_m(z-a) \exp\left(\frac{1}{m}\log(g(z))\right)$$

où $\alpha_m^m = \alpha$. Alors, $\varphi \in \mathcal{O}(V')$ avec $\varphi(a) = 0$ et $\varphi'(a) = 1$. Par théorème d'inversion locale 5.1, on a un voisinage $V \subset V'$ de a sur lequel φ est un biholomorphisme.

Corollaire 5.1: Solutions d'une Équation

Soit $f \in \mathcal{O}(U)$ non constante au voisinage de $a \in U$ et

$$m = \min\{k \in \mathbb{N}^* \mid f^{(k)}(a) \neq 0\}$$

. Alors, $\exists r, \rho \in \mathbb{R}_+^*$ tels que $\forall \omega \in D(f(a), \rho) \setminus \{f(a)\}$ l'équation $f(z) = \omega$ a exactement m solutions dans D(a, r).

Démonstration. On écrit par le théorème 5.2 précédent $f(z) = \omega = f(a) + \varphi(z)^m$ où $\varphi: V \to W$ est tel que $\varphi(a) = 0$. On suppose $\varphi(z) = (\omega - f(a))^{1/m}$ pour une certaine détermination de l'exponentielle. On prend r tel que $D(a,r) \subset V$. $\varphi(D(a,r))$ est un ouvert de W voisinage de 0. Il existe un ρ' tel que $D(0,\rho')$ est inclus dans $\varphi(D(a,r))$. Alors, pour tout $\omega \in D(f(a),\rho'^m)$, $(\omega - f(a))^{1/m} \in D(0,\rho')$. Mézalor, $e^{2ik\pi/m} (w - f(a))^{1/m}$ sont dans $D(0,\rho')$. On obtient alors

$$z_k = \varphi^{-1} \left(e^{2ik\pi/m} \left(\omega - f(a) \right)^{1/m} \right) \in D(a, r)$$

Les z_k sont solutions de $f(z) = \omega$ et donc il y en a bien exactement m. De même, l'équation f(z) = f(a) n'a qu'une solution z = a dans D(a, r) de multiplicité m.

Théorème 5.3: Application Ouverte

Une fonction holomorphe non constante sur un ouvert U connexe est une application ouverte.

Démonstration. Par le corollaire 5.1, tout point $z_0 \in U$ admet un voisinage $V_{z_0} \subset U$ tel que $f(V_{z_0}) = D(f(z_0), \rho(z_0))$. Ainsi, $f(U) = \bigcup D(f(z_0), \rho(z_0))$ est ouvert.

Théorème 5.4: Théorème d'Inversion Gloable

Soit U un ouvert connexe et $f \in \mathcal{O}(U)$ injective. Alors :

- 1. f(U) est un ouvert de \mathbb{C}
- 2. f' ne s'annule pas sur U
- 3. $f: U \to f(U)$ est un biholomorphisme

Démonstration. 1. D'après le théorème de l'application ouverte 5.3, f, injective donc non constante, est ouverte donc f(U) est ouverte et f est une bijection continue ouverte de U dans f(U), i.e., un homéomorphisme.

- 2. Supposons qu'il existe z_0 pour lequel $f'(z_0) = 0$. Dans le théorème 5.1, on a un entier $m \ge 2$ et donc f n'est pas injective au voisinage de z_0 ce qui est absurde. Donc f' ne s'annule pas sur U.
- 3. D'après les deux premiers points et le théorème 5.1 d'inversion locale, f^{-1} est holomorphe sur f(U) et $f: U \to f(U)$ est un biholomorphisme.

5.3 Lemme de Schwarz

Théorème 5.5: Principe du Maximum

Soit $f \in \mathcal{O}(U)$

- 1. Si |f| admet une maximum local en un point $a \in U$, alors f est constante sur la composante connexe contenant a.
- 2. Pour tout $K \subset U$

$$\max_{K} |f| = \max_{\partial K} |f| \,, \max_{K} \Re f = \max_{\partial K} \Re f, \max_{K} \Im f = \max_{\partial K} \Im f$$

Démonstration. 1. Supposons f non constante sur la composante connexe U_0 de U contenant a avec $|f(a)| = \sup_{U} |f| = \sup_{U_0} |f|$. D'après le théorème de l'application ouverte, f est ouverte sur U_0 . L'image $f(U_0)$ est un voisinage de f(a) donc contient des points de module strictement supérieur à |f(a)|.

2. Si $\max_{\partial K} \Re f < \max_K \Re f$, il existe $z_0 \in \mathring{K}$ avec $\Re f(z_0) = \max_K \Re f$. Soit U_0 une composante connexe de z_0 dans \mathring{K} et f non constante dans U_0 . Alors $f(U_0)$ est un ouvert qui contient $f(z_0)$ et qui est contenue dans le demi-plan $\{w \mid \Re w \leq \Re f(z_0)\}$. Donc f est constante sur U_0 et $\Re f_{|\partial U_0} = \Re f(z_0)$ par continuité de f. Or

$$\varnothing \neq \partial U_0 \subset \partial \mathring{K} = \overline{\mathring{K}} \setminus \mathring{K} \subseteq \overline{K} \setminus \mathring{K} = \partial K$$

ainsi, $\max_K \Re f = \Re f(z_0)$ est atteint sur ∂K . Les cas |f| et $\Im f$ sont analogues.

Théorème 5.6: Lemme de Schwarz

Soit f holomorphe sur D(0,1) avec f(0)=0 et $|f(z)|\leq 1$ sur D(0,1). Alors, on a

$$\forall z \in D(0,1), |f(z)| \le |z| \text{ et } |f'(0)| \le 1$$

De plus si

$$\exists z_0 \in D(0,1) \setminus \{0\}, |f(z_0)| = |z_0| \text{ ou } |f'(0)| = 1$$

alors f est une rotation : f(z) = az pour $a \in \mathbb{C}, |a| = 1$.

Démonstration. L'application g(z) = f(z)/z est holomorphe sur D(0,1) et vérifie g(0) = f'(0). En appliquant le principe du maximum à la fonction g sur D(0,r), r < 1, on obtient :

$$\sup_{D(0,r)} |g| = \sup_{\partial D(0,r)} |g| = \sup_{\partial D(0,r)} |f| \, /r \leq 1/r$$

En faisant tendre r vers 1, nous obtenons

$$\sup_{D(0,1)} |g| \le 1 \Longleftrightarrow \begin{cases} |f(z)| \le |z| & \forall z \in D(0,1) \setminus \{0\} \\ |f'(0)| \le 1 \end{cases}$$

De plus, si $\exists z_0 \in D(0,1) \setminus \{0\}$, $|f(z_0)| = |z_0|$ ou si |g(0)| = |f'(0)| = 1, alors |g| admet un maximum local en z_0 ou 0 donc g = a est constante avec |a| = 1.

Corollaire 5.2: Point Fixe

Soit $f: D(0,1) \to D(0,1)$ holomorphe, $f \neq \text{Id}$. Alors f a au plus un point fixe.

Démonstration. Supposons que nous ayons $a \neq b \in D(0,1)$ avec f(a) = a et f(b) = b. Si a = 0, f(0) = 0, f(b) = b, le lemme de Schwarz montre que $f = e^{i\theta}z$ et comme $f(b) = b, f = \mathrm{Id}$. On peut donc supposer $a \neq 0$. Posons $\varphi_{\alpha}(z)^1 = \frac{z-a}{1-\bar{a}z}$ et

$$g = \varphi_{\alpha} \circ f \circ \varphi_{\alpha}^{-1}$$
 et $\lambda = \varphi_{\alpha}(b) \neq 0$

Ainsi, $g:D(0,1)\to D(0,1)$ avec deux points fixes $g(0)=0,g(\lambda)=\lambda$. Donc $g=\mathrm{Id}=f$. Absurde.

5.4 Disque Unité

Définition 5.1: Automorphisme

Un automorphisme de U est une bijection holomorphe de U dans U. On note Aut U l'ensemble des automorphismes de U.

^{1.} C'est la fonction du jour!

On rappelle que le groupe unitaire de signature (n, m) est le groupe des matrices préservant une forme hermitienne de signature (n, m). Il est isomorphe au groupe U(n, m) préservant la forme hermitienne diagonale de signature (n, m):

$$U(n,m) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{GL}_{n+m}(\mathbb{C}) \middle| \begin{array}{l} AA * -BB * = I_n \\ DD * -CC * = I_m \\ AC * = BD * \end{array} \right\}$$

Théorème 5.7: Automorphisme du Disque Unité

$$\operatorname{Aut} D(0,1) = \left\{ \varphi_{\alpha} : z \longmapsto e^{i\theta} \frac{z - a}{1 - \bar{a}z} \mid \theta \in \mathbb{R}, a \in \mathbb{C}, |a| < 1 \right\} = \operatorname{PSU}(1,1)$$

Démonstration. • Nous vérifions que $\varphi_{\alpha} \in \text{Aut } D$. Soit $f \in \text{Aut } D$. On note a = f(0). On a $\varphi_{\alpha} \circ f(0) = 0$ et pour tout $z \in D$, $|\varphi_{\alpha} \circ f(z)| < 1$. Le lemme de Schwarz 5.6 implique alors que $g = \varphi_{\alpha} \circ f$ vérifie $|g(z)| \leq |z|$ et de même $|g^{-1}(z)| \leq |z|$ donc |g(z)| = |z| pour $z \in D$. Donc il existe $\theta \in \mathbb{R}$ tel que $g(z) = e^{i\theta}z$.

• L'application :

$$\varphi_{\alpha} \longmapsto \frac{1}{1-|a|^2} \begin{pmatrix} e^{i\theta/2} & -\alpha e^{i\theta/2} \\ -\bar{\alpha}e^{-i\theta/2} & e^{-i\theta/2} \end{pmatrix}$$

induit un automorphisme

$$\operatorname{Aut} D \to \operatorname{PSU}(1,1) = \left\{ \left(\frac{A}{A} \quad \frac{B}{B} \right) \mid |A|^2 - |B|^2 = 1 \right\} / \pm \operatorname{Id}$$

Corollaire 5.3: Schwarz-Pick

Soit $f: D(0,1) \to D(0,1)$ holomorphe. Pour $z \in D(0,1)$ on a :

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

avec égalité si et seulement si $f \in \text{Aut } D(0,1)$.

Démonstration. La dérivée de $\varphi_{\alpha}(z) = \frac{z-\alpha}{1-\bar{\alpha}z} \in \text{Aut } D$ vérifie :

$$\varphi_{\alpha}'(z) = \frac{1 - |\alpha|^2}{(1 - \bar{\alpha}z)^2}, \varphi_{\alpha}'(0) = 1 - |\alpha|^2, |\varphi_{\alpha}'(\alpha)| = \frac{1}{1 - |\alpha|^2}$$

Soit $z_0 \in D$ et $g = \varphi_{f(z_0)} \circ f \circ \varphi_{-z_0}$. On a g(0) = 0 et $g : D \to D$. Le lemme de Schwarz 5.6 implique que $|g(z)| \le |z|$ et $|g'(0)| \le 1$. L'inégalité attendue résulte de

$$g'(0) = \varphi_{f(z_0)}(f(z_0))f'(z_0)\varphi'_{-z_0}(0) = \frac{1}{1 - |f(z_0)|^2}f'(z_0)(1 - |z_0|)^2$$

Le cas d'égalité correspond à |q'(0)| = 1. Alors q et donc f sont des automorphismes de D.

Théorème 5.8: Bloch-Landau

Soit $f \in \mathcal{O}(D(z_0, r))$ telle que $f'(z_0) \neq 0$. Alors il existe $U \subset D(z_0, r)$ tel que $f_{|U}$ est un biholomorphisme de U sur $f(U) = D(\omega_0, R)$ disque de rayon $R \geq \frac{r}{12} |f'(z_0)|$.

Démonstration. Quitte à considérer la restriction de f et à remplacer f par $f(z_0 + rz)$ on peut considérer définie au voisinage du disque fermé $\overline{D}(0,1)$. On pose

$$m = \sup_{z \in \overline{D}(0,1)} \left(1 - |z|^2\right) |f'(z)| \ge |f'(0)|$$

La valeur m est atteinte en $\alpha \in D(0,1)$ et alors $m = \left(1 - |\alpha|^2\right) |f'(\alpha)|$. Posons $h = f \circ \varphi_{-\alpha}$. On a :

$$h(0) = f(\alpha), h'(0) = f'(\alpha)\varphi_{-\alpha}(0) = (1 - |\alpha|^2)f'(\alpha), |h'(0)| = m \ge |f'(0)|$$

De plus, pour |z| < 1, d'après le corollaire de Schwarz-Pick 5.3 :

$$\left(1 - |z|^{2}\right) |h'(z)| = \frac{\left(1 - |z|^{2}\right) |\varphi'_{-a}(z)|}{1 - |\varphi_{-\alpha}(z)|^{2}} \left(1 - |\varphi_{-\alpha}(z)|^{2}\right) |f'(\varphi_{-\alpha}(z))| \le m$$

Quitte à remplacer h par $\frac{1}{h'(0)}(h-h(0))$, on peut supposer h(0)=0 et m=h'(0)=1. Donc :

$$|h'(z)| \le \frac{1}{1 - |z|^2}, z \in D(0, 1)$$

Le rayon de convergence du développement en série entière ²

$$h(z) = z + \sum_{n=2}^{+\infty} a_n z^n$$

est supérieur à 1 et les inégalités de Cauchy appliquées à h' sur le disque $D(0,\rho)$ donnent

$$h^{(n)}(\omega) = \frac{(n-1)!}{2\pi\rho^{n-1}} \int_0^{2\pi} \frac{h'(\omega + re^{it})}{e^{i(n-1)t}} dt \text{ et } n |a_n| \le \frac{1}{(1-\rho^2)\rho^{n-1}}$$

Or, $\rho \mapsto (1-\rho^2)\rho^{n-1}$ atteint son maximum en $\rho = \sqrt{\frac{n-1}{n+1}}$. Pour ce ρ , on obtient :

$$|a_n| \le \frac{n+1}{2n} \left(1 + \frac{2}{n-1}\right)^{(n-1)/2}$$

et pour $M = 3^{3/4}/2$, $|a_n| \le M^n$ si $n \ge 2$.

En reprenant la preuve du théorème d'inversion locale par la méthode des séries majorantes 5.1, on obtient que h est un biholomorphisme d'un ouvert U sur le disque D(0,R) avec :

$$R = \frac{1}{\left(1 + \sqrt{2}\right)M + 4M^2} > \frac{1}{12}$$

2. DONC DE TAYLOR