Abbildungen

Gegeben seien nichtleere Mengen X und Y. Eine Abbildung oder Funktion f von X nach Y $(f: X \to Y)$ ist eine Vorschrift, die jedem $x \in X$ genau ein $f(x) \in Y$ zuordnet. X heißt Definitions-bereich (Definitionsmenge) von f und Y heißt Wertevorrat von f. Der Graph von $f: X \to Y$ ist die Menge

$$\{(x, f(x)) : x \in X\} \subset X \times Y.$$

Für $M \subset X$ heißt die Menge

$$f(M) = \{f(x) : x \in M\}$$

Bild von M unter f.

Für $N \subset Y$ heißt die Menge

$$f^{-1}(N) = \{x : f(x) \in N\}$$

Urbild von N unter f.

Def Sei $f: X \to Y$ eine Abbildung.

f heißt *injektiv*, falls für alle $x_1, x_2 \in X$ gilt:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

(Äquivalent:
$$\forall x_1, x_2 \in X : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
)

f heißt surjektiv, falls für jedes $y \in Y$ mindestens ein $x \in X$ mit f(x) = y existiert, d.h. wenn f(X) = Y gilt.

f heißt bijektiv, falls f sowohl injektiv als auch surjektiv ist.

Def Ist $f: X \to Y$ bijektiv, so gibt es zu jedem Element $y \in Y$ genau ein Urbild $x \in X$ mit f(x) = y. Man nennt die Abbildung $f^{-1}: Y \to X$, die jedem $y \in Y$ sein Urbild $x \in X$ zuordnet, die inverse Abbildung (auch Umkehrabbildung oder Umkehrfunktion). Kurz: $f^{-1}(y) := x$, wobei f(x) = y.

Def Seien $f\colon X\to Y$ und $g\colon Y\to Z$ zwei Abbildungen. Wir definieren die Komposition

$$g \circ f \colon X \to Z$$

durch

$$(g \circ f)(x) := g(f(x)).$$