1. Importing Clean and prepare feedback dataset

```
import pandas as pd
from google.colab import files
uploaded = files.upload()
data = pd.read_csv("feedback.csv")
data.head()
```

Choose Files feedback.csv

• feedback.csv(text/csv) - 33786 bytes, last modified: 27/6/2025 - 100% done Saving feedback.csv to feedback.csv

	StudentID	Name	Course	Overall_Event_Rating	Speaker_Clarity	Organization	Content_Usefulness	Recommend	Additional_Cc
0	1	Fatima Martin	BA Economics	1	1	2	5	5	Excell mana
1	2	Anjali Fernandez	BBA	5	4	2	2	5	Too long, c
2	3	John Taylor	BA Economics	5	5	3	3	3	Speakers were hear a
3	4	Nisha Martin	BCom	4	3	2	5	3	Not clear, ra
4	5	Daniel Martin	BCA	3	2	1	4	1	Excell mana

Next steps: (Generate code with data

View recommended plots

New interactive sheet

2. Analyze ratings (1-5 scale) to find patterns of satisfaction

```
print(" Ratings Summary:")
print(data['Overall_Event_Rating'].describe())
₹
     Ratings Summary:
              500.000000
     count
                2.918000
     mean
     std
                1.361979
     min
                1.000000
     25%
                2.000000
     50%
                3.000000
     75%
                4.000000
                5.000000
     max
     Name: Overall_Event_Rating, dtype: float64
print("\n Ratings Counts:")
print(data['Overall_Event_Rating'].value_counts().sort_index())
→
      Ratings Counts:
     Overall_Event_Rating
     1
          98
          107
     2
     3
          117
     4
           94
           84
     Name: count, dtype: int64
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(6,4))
sns.countplot (x='Overall\_Event\_Rating', data=data, palette=['Blue','Green','Red','Yellow','Pink'])
plt.title('Rating Distribution (1-5 Scale)')
plt.xlabel('Rating')
plt.ylabel('Number of Responses')
plt.show()
```

y / timp/ ipy thon-input-4-190/291000.py.4. Tutul ewal hing.

sns.countplot(x='Overall_Event_Rating', data=data, palette=['Blue','Green','Red','Yellow','Pink'])

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le


```
mean_rating = data['Overall_Event_Rating'].mean()
if mean_rating >= 4:
    print(f"\n Average rating is {mean_rating:.2f}. High overall satisfaction.")
elif mean_rating >= 3:
    print(f"\n Average rating is {mean_rating:.2f}. Mixed/neutral satisfaction.")
else:
    print(f"\n Average rating is {mean_rating:.2f}. Low satisfaction. Needs improvement.")
```

→

₹

Average rating is 2.92. Low satisfaction. Needs improvement.

3. Use NLP tools to score sentiment in comments (positive/neutral/negative)

```
#installing textblob library
!pip install textblob
from textblob import TextBlob
    Requirement already satisfied: textblob in /usr/local/lib/python3.11/dist-packages (0.19.0)
     Requirement already satisfied: nltk>=3.9 in /usr/local/lib/python3.11/dist-packages (from textblob) (3.9.1)
     Requirement already satisfied: click in /usr/local/lib/python3.11/dist-packages (from nltk>=3.9->textblob) (8.2.1)
     Requirement already satisfied: joblib in /usr/local/lib/python3.11/dist-packages (from nltk>=3.9->textblob) (1.5.1)
     Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.11/dist-packages (from nltk>=3.9->textblob) (2024.11.6)
     Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from nltk>=3.9->textblob) (4.67.1)
print(data.columns)
Index(['StudentID', 'Name', 'Course', 'Overall_Event_Rating', 'Speaker_Clarity', 'Organization', 'Content_Usefulness', 'Recommend',
             'Additional_Comments'],
           dtype='object')
def score_sentiment(text):
    if pd.isna(text) or text.strip() == '':
        return 'Neutral'
    polarity = TextBlob(text).sentiment.polarity
    if polarity > 0.1:
        return 'Positive'
    elif polarity < -0.1:
        return 'Negative'
    else:
        return 'Neutral'
data['additional_comment_sentiment'] = data['Additional_Comments'].apply(score_sentiment)
\verb|print(data[['Additional\_Comments', 'additional\_comment\_sentiment']].head())| \\
print(data['additional_comment_sentiment'].value_counts())
```

Additional_Comments additional_comment_sentiment

Positive

Neutral

Negative

Excellent time management.

Too long, could be shorter.

2 Speakers were hard to hear at times.

```
3 Not clear, ran out of time. Neutral
4 Excellent time management. Positive
additional_comment_sentiment
Positive 322
Neutral 128
Negative 50
Name: count, dtype: int64
```

4. Visualize trends with beautiful charts and graphs

```
plt.figure(figsize=(6,4))
sns.countplot(
    x='additional_comment_sentiment',
    data=data,
    order=['Positive', 'Neutral', 'Negative'],
    palette=['green','purple','yellow']
)
plt.title('Sentiment Distribution in Additional Comments')
plt.xlabel('Sentiment')
plt.ylabel('Number of Comments')
plt.show()
```

/tmp/ipython-input-10-2783385026.py:2: FutureWarning:

0

Positive

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(

Negative

Neutral

Sentiment

```
sentiment_counts = data['additional_comment_sentiment'].value_counts()
plt.figure(figsize=(6,6))
plt.pie(
    sentiment_counts,
    labels=sentiment_counts.index,
    autopct='%1.1f%%',
    colors=['green','purple','yellow'],
    startangle=140
)
plt.title('Sentiment Proportions in Additional Comments')
plt.show()
```



```
heat_data = pd.crosstab(data['Overall_Event_Rating'], data['additional_comment_sentiment'])
sns.heatmap(heat_data, annot=True, cmap='YlGnBu')
plt.title('Rating vs Sentiment in Additional Comments')
plt.xlabel('Sentiment')
plt.ylabel('Rating')
plt.show()
```



```
import plotly.express as px

fig = px.pie(
    values=sentiment_counts.values,
    names=sentiment_counts.index,
    title='Interactive Sentiment Proportions in Additional Comments',
    color_discrete_sequence=['yellow', 'green', 'red']
)
fig.update_traces(textinfo='percent+label', pull=[0.05, 0.05, 0.05])
fig.show()
```

Interactive Sentiment Proportions in Additional Comments


```
fig = px.bar(
    x=sentiment_counts.index,
    y=sentiment_counts.values,
    color=sentiment_counts.index,
    color_discrete_sequence=['yellow', 'green', 'red'],
    title='Interactive Sentiment Distribution in Additional Comments',
    labels={'x': 'Sentiment', 'y': 'Number of Comments'}
)
fig.show()
```

_

Interactive Sentiment Distribution in Additional Comments


```
from wordcloud import WordCloud
import matplotlib.pyplot as plt
```

```
# Combine all non-empty comments into one string
text = ' '.join(data['Additional_Comments'].dropna().astype(str))
# Generate a WordCloud
wordcloud = WordCloud(
    width=800,
    height=400,
    background_color='white',
    colormap='viridis',
```

```
max_words=100
).generate(text)

# Display the WordCloud
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Most Frequent Words in Feedback Comments', fontsize=16)
plt.show()
```

Most Frequent Words in Feedback Comments

The Content slides

Excellent time Clear range Loved small

Note of the Content shorter of the

engaging

5. Suggest Improvements for future events

Average

a. Improve Speaker Clarity

₹

Use better audio systems and guide speakers for clearer delivery.

experienceGood

b. Fix Organizational Gaps

Ensure smooth coordination, session timing, and flow.

c. Make Content More Relevant

Align topics with student interests through pre-event surveys.

d. Shorten and Structure Sessions

Keep sessions concise and well-timed to avoid fatigue.

e. Encourage Interactive Sessions

Include Q&A, polls, and discussions to boost engagement.