Examination of the impact of using shorter time periods to collate data into General Insurance Run-off triangles and Comparison with Curve fitting techniques

MSc Dissertation

Rubhan Antony Xavier Raj

1 September 2017

Supervisor: Mr. David Hargreaves

The dissertation is submitted as part of the requirements for the award of the MSc in Actuarial Science

Cass Business School

City, University of London

Abstract

Reserving is one of the complex tasks performed in an insurance company. Usually, the data is collated into yearly bins, while calculating reserves by using Chain Ladder Method. In this project, the impact of using shorter time periods (half-yearly, Quarterly and monthly) to collate data into general insurance run-off triangles is examined. And then it is compared with the Actual Simulated Reserve and with the Curve fitting techniques and is critically analysed. Computer generated data from statistical distributions are collated into Yearly, Half-yearly, Quarterly and Monthly bins and reserves are calculated for each type of collation. On analysing the output, it is observed that the standard deviation of the reserve calculations increases, if we collate data into shorter time periods in Chain Ladder Method. But it gives a very clear picture of the progression of the claims by year segments. It is also inferred that the more the data available, the accurate the prediction is. And in the second part of the project, the same claims data that was generated early is used and a curve is fitted to it and its accuracy is examined. Curves are fitted to both Incremental and Cumulative claims data. It is observed that collation of data into shorter time periods provides more details for cure fitting and collation into shorter time periods provide the best fit. Fitting curves to cumulative data rather than incremental data provides better results.

Acknowledgements

This Dissertation is one of the most interesting works I have done in my course. I would like to thank **Mr. David Hargreaves** for guiding me all through the dissertation and for providing vital help to bring this dissertation into good shape. And I would like to thank **Professor. Jens Perch Nielson** for motivating and guiding me to choose this topic.

Contents

List of Figures

List of Tables

1 Introduction	8
2 Chain Ladder Method	8
2.1-Data requirements for Chain Ladder Method	8
2.2-Incremental Triangle	11
2.3-Cumulative Triangle	12
2.4-Forward Factors	12
2.5-Determination of cumulative claim loss settlements	13
2.6-Finding Reserves	14
2.7-Comparison with simulated reserve	16
2.8-Shortening the time periods to collate data in run of triangles	17
2.8.1-Half – Yearly Reserve	17
2.8.2-Quarterly Reserves	19
2.8.3-Monthly Reserves	21
2.9-Comparison of Reserves (10,000 Claims)	22
2.10-Comparison of Reserves (1,000 claims)	25
2.11-Inference	27
3 Curve Fitting	28
3.1-Fitting curves to the tail of Incremental Data	28
3.2-Quadratic equations and Cubic equations can't be used	30
3.3-Craighead Curve Fitting Method	32
3.3.1-Effect of varying "c" speed factor on claims ratio	32

3.3.2-Effect of varying "b" tail factor on claims ratio	33
3.3.3-Curve fitting process	34
3.4-Fitting Curves to Cumulative data	35
3.4.1-Algorithm (Curve Fitting - Cumulative claims)	36
3.5-Limitations of Curve fitting	38
3.6-Inference	38
4 Conclusion	40
5 Appendix	41
6 Bibliography	42

List of Figures

Table 1 Ten Claim Amounts and their Accident Year and Development Year 9
Table 2 Data Generation-Technical Specifications10
Table 3 Projections in Incremental Data11
Table 4 Projections in Cumulative Data12
Table 5 Projections in Cumulative Data13
Table 6 Forward Factors13
Table 7 Projections in Cumulative Data (filled)14
Table 8 Projections in Incremental Data (filled)15
Table 9 Simulated Reserve16
Table 10 Half Yearly reserves
Table 11 Quarterly Reserves19
Table 12 Average and Std. Deviation of 100 simulations ($10,\!000$ Claims)23
Table 13 Error in Reserves (10,000 Claims)24
Table $14A$ verage and Standard Deviation of 100 simulations (1, 000 Claims) 26
Table 15 Error in Reserves (1,000 Claims)27
Table 16 Paid Claims of 2002 (10,000 Claims)29
Table 17 Difference between values29
Table 18 Effect of Varying parameter "c"33
Table 19 Effect of varying parameter "b"33

List of Tables

TABLE 1 TEN CLAIM AMOUNTS AND THEIR ACCIDENT YEAR AND DEVELOPMENT YEAR.	9
TABLE 2 DATA GENERATION-TECHNICAL SPECIFICATIONS	10
TABLE 3 PROJECTIONS IN INCREMENTAL DATA	11
Table 4 Projections in Cumulative Data	12
Table 5 Projections in Cumulative Data	13
Table 6 Forward Factors	13
Table 7 Projections in Cumulative Data (filled)	14
TABLE 8 PROJECTIONS IN INCREMENTAL DATA (FILLED)	
Table 9 Simulated Reserve	16
TABLE 10 HALF YEARLY RESERVES	17
TABLE 11 QUARTERLY RESERVES	19
Table 12 Average and Std. Deviation of 100 simulations (10,000 Claims)	23
Table 13 Error in Reserves (10,000 Claims)	24
Table $14~\mathrm{Average}$ and $\mathrm{Standard}$ Deviation of $100~\mathrm{Simulations}$ (1,000 Claims)	26
Table 15 Error in Reserves (1,000 Claims)	27
Table 16 Paid Claims of 2002 (10,000 Claims)	29
TABLE 17 DIFFERENCE BETWEEN VALUES	29
TABLE 18 EFFECT OF VARYING PARAMETER "C"	33
TABLE 19 EFFECT OF VARYING PARAMETER "B"	33

1 Introduction

Methods of calculating reserves in General Insurance are different from those used in Life Insurance, Health Insurance and Pensions and benefits since General Insurance contracts are generally for shorter duration. And the premiums are mostly paid only once at the start of the contract. Typical travel insurance policies last for only few days to few weeks (En.wikipedia.org, 2017). Thus, analysis of shorter time periods of policies becomes mandatory and the consequences of using shorter time data to predict far future must be clearly known. To meet these future liabilities and to generate consistent dividends for the shareholders, the insurance companies must hold adequate reserves and this helps the insurance company to remain solvent. The Solvency II, the directive in European Union Law for insurance regulation also demands that every company must hold a certain amount of reserve to do business in the European Market (En.wikipedia.org, 2017). To calculate these reserves, various companies use various reserving techniques. The most popular techniques among them are the Chain Ladder Method and Bornheutter-Ferguson Method.

2 Chain Ladder Method

The Chain Ladder Method is one of the most prominent actuarial loss reserving technique in the insurance industry. It estimates the Incurred But Not Reported Claims (IBNR) and projects Ultimate loss amounts. The chain ladder method is used property and casualty and health insurance fields. The main assumption in this method is that the historic loss development patterns follow in the future as well (En.wikipedia.org, 2017). Under Solvency II, the projection of Run-off triangles is one of the allowed methods for calculating reserves (www.fh-vie.ac.at, 2017).

2.1-Data requirements for Chain Ladder Method

The chain ladder method requires three main information. They are as follows:

- 1. Claim Amounts
- 2. Accident Year (Occurrence Year or Reporting Year)
- 3. Development Year (Settlement Year or Settlement Year)

A small sample for data requirement is shown in the table below:

Accident Year or	Development	
Reporting Year	Year	Claim Amounts (£)
29/10/2002	17/11/2002	2879.16623
5/1/2005	4/2/2005	2782.27107
25/1/2001	2/4/2001	2728.83535
26/3/2001	7/5/2001	2831.11756
26/12/2003	28/1/2004	2952.31339
26/11/2003	31/12/2003	3005.73209
10/1/2002	15/1/2002	2965.24890
15/10/2001	18/3/2002	2758.77006
31/3/2003	7/5/2003	2924.19438

Table 1 Ten Claim Amounts and their Accident Year and Development Year

This is a computer-generated data. The technical specification of the data is as follow:

Accident Year	Uniform Distribution U \sim (0,1). It is			
	generated in excel by using the function			
	RANDBETWEEN(startDate, endDate)			
	For Example: RANDBETWEEN			
	("1/1/2001", "31/12/2005"). In this			
	simulation, I have used a 5 year triangle.			
Development Year	As the development Year is a date which			
	should be higher than the accident date,			
	a random date is generated from a			
	LogNormal Distribution and is added to			
	the Accident Year.			
	For Example: Accident Year + L			

	Where L ~ LogNormal(5.76957,		
	1.010768).		
	These values of μ and σ denotes a mean		
	value of 1.5 years (534 days) with a		
	standard deviation of with a standard		
	deviation of 2 years (712 days). More		
	randomness to the settlement date can		
	be added by adjusting values of μ and $\sigma.$		
Claim Amounts	This is generated form a lognormal		
	Distribution.		
	For Example: Claim Amount		
	C~LogNormal(μ, σ)		
	The number of data generated depends		
	on a Poisson Random Variable N ~		
	Pois(λ). Using Poisson distribution for N		
	makes more sense, rather than using a		
	deterministic value, as the Number of		
	Claims received in an insurance		
	company is always random.		

Table 2 Data Generation-Technical Specifications

Thus, the data is being generated for more than 9 years and in those 9 years data, 5 years of data is used. (The 4 years of data is used to fill the lower triangle in the Simulated Data Rectangle, which is used to calculate the Actual simulated reserve). Depending on the requirement of mean and standard deviation, the corresponding μ and σ values can be generated using the formula of Log Normal Distribution,

$$E(X) = e^{\mu + \frac{1}{2}\sigma^2}, \text{ var}(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right)$$

Where,

E(X) represents Expected Value Var(X) represents Variance μ, σ represents parameters

2.2-Incremental Triangle

Typically, the claims that are reported are not paid on the same date. After background check and analysis, the insurance company settles the claims with a time delay. The day in which the claim was reported is called as the Occurrence Date or the reporting date and the date in which the claim amount is being settled is called as the Settlement date. The corresponding year of occurrence is called as the Accident Year or Reporting Year and the corresponding years taken settlement of the claim are called the Development Years. Thus, the generated data can be distributed in a triangular form based on the year of Accident and year of development as follows.

	Development Year					
		1	2	3	4	5
	2001	16,50,302	24,35,751	8,75,830	4,17,449	1,78,099
Accident	2002	16,23,278	25,23,247	9,12,021	3,59,375	
Year	2003	17,35,831	27,57,961	9,48,491		
	2004	16,96,850	26,81,896			
	2005	15,68,067				

Table 3 Projections in Incremental Data

The value (1650302) in the row **2001** and the column **1** represents the Ultimate claim amounts reported in the year 2001 and settled in the same year. The value (912021) in the row **2002** and the column **3** represents the Ultimate claim amounts reported in the year 2003 and settled in 2004.

2.3-Cumulative Triangle

Then the cumulative triangle can be created by cumulating the data every year. For example, the claims settled in the year 2001 are added to the claims settled in the year 2002 and this amount is added to 2003 and so on.

In the below table, the value (40,86,053) in the row **2001** and the column **2** equals "1650302" and "4086053" in Table 3. The value (50,58,546) in the row **2003** and the column **3** equals "1735831", "2757961" and "948491" in Table 3.

	Development Year					
		1	2	3	4	5
	2001	16,50,302	40,86,053	49,61,883	53,79,332	55,57,432
Accident	2002	16,23,278	41,46,524	50,58,546	54,17,921	
Year	2003	17,35,831	44,93,792	54,42,284		
	2004	16,96,850	43,78,746			
	2005	15,68,067				

Table 4 Projections in Cumulative Data

2.4-Forward Factors

Then next step is to find the forward factors using the cumulative triangle. The total cumulative claim amounts in the first column till the second last value is added and is divided the total cumulative claim amounts in the second column. This gives the forward factor f_1 .

Forward Factor
$$F_{j} = \frac{\sum_{i=1}^{n+1-j} C_{ij}}{\sum_{i=1}^{n+1-j} C_{i,j-1}}$$

Equation 2 Forward Factor

Where,

i, j represents row and column

n represents the number of years

 C_{ij} represents the corresponding claim amount.

	Development Year					
		1	2	3	4	5
	2001	16,50,302	40,86,053	49,61,883	53,79,332	55,57,432
Accident	2002	16,23,278	41,46,524	50,58,546	54,17,921	
Year	2003	17,35,831	44,93,792	54,42,284		
	2004	16,96,850	43,78,746			
	2005	15,68,067				

Table 5 Projections in Cumulative Data

For Example,

$$F_j = \frac{1650302 + 1623278 + 1735831 + 1696850}{4086053 + 4146524 + 4494792 + 4378764} = 2.288568$$

And thus, the forward factors are:

	F ₁	$\mathbf{F_2}$	F ₃	F ₄
Forward Factors	2.550619	1.215014	1.077524	1.033108

Table 6 Forward Factors

2.5-Determination of cumulative claim loss settlements

The next step is to calculate the cumulative claim loss settlement amounts using the latest available claim loss settlement amount. This is done by using the below formula.

$$\widehat{C_{i,j}} = \widehat{C_{i,j-1}} \times F_j$$

$$\widehat{C_{i,n}} = C_{i,n+1-i} \times \prod_{j=n+2-i}^{n} F_j$$

Equation 3 Formula to find cumulative claim amounts

Where,

 C_{ij} represents cumulative claim amount, i represents accident year and j represents development year.

 $\emph{\emph{C}}_{\emph{in}}$ represents cumulative claim amounts, i represents accident year and n represents development year.

 $\mathbf{F}_{\mathbf{j}}$ represents development factor or forward factor. The filled table looks like below.

		Development Year				
		1	2	3	4	5
	2001	16,50,302	40,86,053	49,61,883	53,79,332	55,57,432
Accident	2002	16,23,278	41,46,524	50,58,546	54,17,921	55,97,298
Year	2003	17,35,831	44,93,792	54,42,284	58,64,192	60,58,344
	2004	16,9,6850	43,78,746	53,20,237	57,32,683	59,22,481
	2005	15,68,067	39,99,541	48,59,498	52,36,226	54,09,587

Table 7 Projections in Cumulative Data (filled)

2.6-Finding Reserves

To derive the estimated incremental claim settlement amounts, we must find the difference between the two consecutive settlement amounts (www.fh-vie.ac.at, 2017). Thus, by finding the difference back again from column 5 down to column 1, for every consecutive cell, we obtain the incremental settlement amounts as shown below.

		Development Year								
		1	2	3	4	5		Projections by Year		
	2001	16,50,302	24,35,751	8,75,830.5	4,17,449.2	1,78,099.2		by rear		
Accident	2002	16,23,278	25,23,247	9,12,021.7	3,59,375.6	1,79,376.8		3974,249		
Year	2003	17,35,831	27,57,961	9,48,491.8	4,21,908.2	1,941,51.9		14,66,554		
	2004	16,96,850	26,81,896	9,41,490.5	4,12,446.6	1,89,797.9		5,66,526		
	2005	15,68,067	24,31,474	8,59,956.3	3,76,728.2	1,73,361.2		1,73,361		
						Reserve		61,80,691		

Table 8 Projections in Incremental Data (filled)

In this table, the yearly projections of reserves are obtained by adding the diagonal claim amounts. Thus, the reserve estimate for the year 2006 is 302436.6, 2007 is 75050.29 and so on. The overall reserve estimate is got by the addition of all the yearly projections and the Ultimate estimate is £ 61,80,691 in this case. The graphical representation is shown below:

Figure 1 Paid Claims (Yearly)

2.7-Comparison with simulated reserve

As we have used the Log normal distribution to simulate this data, we use the same parameters to calculate a simulated reserve. Thus, the we obtain a whole rectangle of simulated values, of which, the upper triangle represents the available data till date and the lower triangle represents the estimates for the future years. We can use this reserve to evaluate the efficiency of the Chain ladder method. An example of a fully simulated table is shown below:

			Devel	lopment Year	r	
		1	2	3	4	5
	2001	16,50,302	24,35,751	8,75,830.5	4,17,449.2	1,78,099.2
Accident	2002	16,23,278	25,23,247	9,12,021.7	3,59,375.6	1,95,407.7
Year	2003	17,35,831	27,57,961	9,48,491.8	3,35,465.8	2,48,577.9
	2004	16,96,850	26,93,331	9,52,687	3,40,085.6	2,12,737.2
	2005	15,74,518	25,74,123	8,31,646.9	3,45,929.2	1,73,195
					Reserve	62,09,856

Table 9 Simulated Reserve

In the above table both the upper triangle and the lower triangle are simulated values using the same Lognormal parameters (distribution used in this case). The value of the actual simulated reserve seems different from the CLM reserve. But to understand the true nature of the reserves we shall conduct the experiment 100 times and analyse the average output in later sections.

2.8-Shortening the time periods to collate data in run of triangles

2.8.1-Half - Yearly Reserve

Before repeating the simulation, we shall do the simulation for shorter time periods to collate data. So, we should put the data into bins like Half yearly, Quarterly and Monthly cumulative claim amounts. If the same Chain Ladder Method is followed, the incremental triangle for Half years after calculation of reserves will look like as shown in Table 9. Each cell in the table shows the cumulated claim amounts in the respective half years.

	1	2	3	4	5	6	7	8	9	10	Projection
											by Future
2001-1	344567	949598	540044	366689	217839	141296	107606	71028	41580	26570	Year
2001-2	356136	911580	617438	324877	191818	139103	99712	57572	52378	26287	2384340
2002-1	305865	968740	559985	332318	196136	156123	100845	57825	46277	26033	1472129
2002-2	348672	954096	676848	330757	229005	120716	79989	64430	48466	27265	880063
2003-1	316943	1055158	701473	338033	224194	103908	103443	66853	50289	28291	559313
2003-2	363731	974769	743686	379532	240858	144577	107500	69475	52261	29400	354002
2004-1	356946	985384	666708	320222	220011	136376	101402	65534	49297	27732	223437
2004-2	354520	1006260	688706	357944	227395	140953	104805	67733	50951	28663	128962
2005-1	337126	954302	635729	336579	213822	132540	98550	63691	47910	26952	66361
2005-2	276638	785642	522927	276857	175882	109022	81063	52389	39409	22170	22170
										Reserve	6090779

Table 10 Half Yearly reserves

The graphical representation of half-yearly reserves is shown below. This clearly shows the well spread figures in half yearly time span.

Figure 2 Paid Claims (Half Yearly)

2.8.2-Quarterly Reserves

					rve ¥		43	88	14	89	88	33	39	33	27	61	16	11	28	23	F
Projection by Future Year Segments		1243456.938	996152.744	772375.6896	596948.3842	462849.9697	366160.1443	292595.5658	234060.3114	187777,4768	149910.4288	117899.4233	91899.53439	71041.12333	54181.7057	38571.63061	23951.49716	15050.1707	8302.637378	3126.397323	***************************************
20	5899.38	6627.63	6375.68	6010.26	5992.12	6274.89	6600.77	6245.75	6608.48	6699.24	7147.79	6708.46	6225.42	6846.7	6742.67	6795.37	6509.59	6152.93	5486.04	3126.4	
19	8208.21	3077.48	5743.9	5414.69	5398.35	5653.1	5946.69	5626.85	5953.64	6035.4	6439.5	6043.71	5608.53	6168.25	6074.53	6122.01	5864.55	5543.23	4942.42	2816.6	
18	5692.06	9384.82	8834.59	7602.84	7579.89	7937.59	8349.82	7900.74	8359.58	8474.39	9041.79	8486.05	7875.01	8660.92	8529.32	8595.99	8234.49	7783.32	6939.72	3954.82	
11	6097.54	11831.5	21586.9	0	9504.45	9952.97	10469.9	9906.75	10482.1	10626.1	11337.5	10640.7	9874.49	10859.9	10694.9	10778.5	10325.2 8	9759.52	8701.73 (4958.96	
16	32772.6 6	17958.9 1	8616.96 2	21956.3	11879.7	18920 9	19902.5	18832.1 9	19925.8 1	20199.5	21551.9 1	20227.2	18770.8	20644.1 1	20330.4 1	20489.3 1	19627.6 1	18552.2	16541.4 8	9426.67 4	
15	23186.9 3	5595.79 1	8 81.7899	21580.7 2	0 1	23597.4	14318 1	13547.9	14334.7	14531.6 2	15504.5 2	14551.6 2	13503.8	14851.4 2	14625.8 2	14740.1	14120.2	13346.6 1	11900 1	6781.59 9	
14	27355.5 23	9472.58 55	20771 66	20686.2 21	18038	22348 23	3810.24	17473.2 13	18488 14	18741.9 14	19996.7	18767.7 14	17416.3 13	19154.4 14	18863.4 14	19010.8 14	18211.3 14	17213.5 13	15347.8	8746.45 67	
13	17165.4 27	29324.2 94	17226.8	34065.4 20	32594.2	26875	16979.6 38	15801.1 17	25103.1	25447.9 18	27151.7 19	25482.9 18	23648 17	26008 19	25612.8 18	25813 19	24727.5 18	73372.6	20839.4 15	11876 87	
11	31752.7 17	33760.9 29	32702 17	27648.7 34	9515.06 32	23337.8 2	28112.5 16	43398.1 15	15488 25	29065.2 25	31011.3 27	29105.2 25	27009.5	29705	29253.7 25	29482.3	28242.4 24	26695 23	23801.7 20	13564.1 1	
11	38380.9 317	38584.1 337	28218 3	43852.1 276	41859.4 951	46045.7 233	25745.5 281	43930.3 433	29052.5	19408.3 290	40073.3 310	37610.3 291	34902.2 270	38385.3 2	37802.1 292	38097.6 294	36495.4 282	34495.8 2	30756.9 238	17527.8 135	
10	50623.7 383	32578.6 385	23539.3 28	34331.4 438	35389.2 418	58702.9 460	55013.7 257	22928.2 439	49277.3 290	39959.6 194	44438.2 400	42524.6 376	39462.6 349	43400.9 383	42741.5 378	43075.5 380	41264 364	39003.1 344	34775.7 307	19818.1 175	
6								44675 229				62101 425									
∞	8.5 38627.2	0.8 78117.7	5.1 63745.9	32 42900.7	6.4 69562.4	0.7 35394.2	6.2 56734.2		3.5 40522.1	0.9 51803.9	5.1 55811.2		0.8 51615.7	69246 56766.8	3.9 55904.3	6.9 56341.3	6.6 53971.9	9.4 51014.7	4.6 45485.4	9.7 25921.3	
7	1.6 57318.5	78 50470.8	1.2 76835.1	42 61632	.8 49726.4	1.8 55790.7	91 61086.2	.9 72582.5	7.6 65983.5	6.1 82590.9	3.8 70825.1	3 78507.5	8.00200.8		1.4 68193.9	8.8 68726.9	9.6 65836.6	1.6 62229.4	1.3 55484.6	1.5 31619.7	
9	.9 61814.6	77 107678	7 90764.2	57242	6 86042.8	4 83424.8	12 96291	.7 80446.9	9 85517.6	17 78715.1	0 96156.8	6 95593.3	7 67029.8	76919.1	89 86924.4	1 87603.8	86 83919.6	7 79321.6	.8 70724.3	.7 40304.5	
го	8 93406.9	2 139877	6 118997	7 100036	4 100306	8 113124	5 146142	0 92932.7	3 115849	0 107817	5 154120	6 116956	5 124197	0 115973	2 116989	7 123061	5 117886	2 111427	8 99349.8	9 56617.7	
4	7 91700.8	143802	3 147026	3 132627	3 155974	7 141588	5 185525	180320	178683	175900	223895	163546	5 172305	5 161220	5 162072	3 177637	162665	7 153752	137088	3 78123.9	
	197297	211134	162533	218788	7 211383	162117	177866	164862	251904	231042	218392	5 202124	159485	208986	288986	1 232008	3 195050	194887	173764	99025.3	
3	225425	241981	275505	246872	242067	290786	255689	281097	269384	236139	239499	241795	226032	311196	220802	247624	264678	279960	216521	123392	
2	240002	284896	264714	226671	199381	224504	255920	239443	191193	297730	262209	275083	294878	288671	254416	248847	252063	214615	227134	121580	
H	72216.5	32348.5	51492.8	39930	53577.6	52906.3	51965.2	40786.4	82091.3	43658.6	50721.6	50800.8	38028.5	24040	38779.4	61324.8	52299.2	32763.8	26527	22977.3	
	2001-1	2001-2	2001-3	2001-4	2002-1	2002-2	2002-3	2002-4	2003-1	2003-2	2003-3	2003-4	2004-1	2004-2	2004-3	2004-4	2005-1	2002-2	2005-3	2005-4	

Table 11 Quarterly Reserves

Thus, when collated into Quarterly bins, the ripples in the graph are furthermore visible, which is shown in fig 3.

Figure 3 Paid Claims (Quarterly)

2.8.3-Monthly Reserves

The ripples in the incremental claims data increases as the time period of collation is decreased. The monthly data has the highest number of ripples compared to the other 4 types of collations.

Figure 4 Paid Claims (Monthly)

The graphs clearly show that the smoothness of the curve decreases as we separate the data and put into separate bins of Half-yearly, Quarterly and Monthly. The size of the table of Monthly reserves is 60 columns and its table is not shown here. Thus, on the same data, 5 types of simulations were done and the reserve values were calculated.

2.9-Comparison of Reserves (10,000 Claims)

On repeating the simulation 100 times and analysing the average and the standard deviation, the values of standard deviation seemed increasing from the yearly reserve to the Monthly reserve.

The error is calculated by the formula,

Root Mean Square Error % =
$$\frac{\sqrt{\sum (Calculated\ Reserve\ - Simulated\ Reserve)^2/n}}{Calculated\ Reserve}$$
 * 100 %

Equation 4 Root Mean Square Error

Where,

Calculated reserve is the reserve value form Chain Ladder Method **Simulated reserve** is the fully simulated reserve

n is the number of data

The overall graph of the 100 runs is showing the highest ripples for Monthly Reserves and the lowest ripple for yearly reserves.

Figure 5 Reserves Calculated in 100 simulations (10,000 Claims)

On stacking the graphs one above the other the ripples are visible clearly.

Figure 6 Reserves Calculated in 100 simulations (10,000 Claims) (Stacked)

	Average	Std. Deviation
Yearly	63,15,795	2,68,395
Half-Yearly	65,13,743	3,30,067
Quarterly	65,36,373	4,30,918
Monthly	66,93,934	8,96,706
Simulated Reserve	63,35,699	1,64,340

Table 12 Average and Std. Deviation of 100 simulations (10,000 Claims)

Figure 7 Average and Standard Deviation of 100 simulations (10,000 Claims)

	RMS Error % (Simulated Vs
	CLM)
Yearly	5.001257941
Half-Yearly	6.246861338
Quarterly	7.756131889
Monthly	14.47521815

Table 13 Error in Reserves (10,000 Claims)

Figure 8 Error in Reserves (10,000 Claims)

2.10-Comparison of Reserves (1,000 claims)

If the number of claims analysed (generated data) is decreased to 1000, the error and the standard deviation increases. This is shown below:

Figure 9 Reserves Calculated in 100 simulations (1,000 Claims)

On stacking the graph one above the other, the increased ripples due to the lesser available data. This can be compared with fig 5 and fig 6.

Figure 10 Reserves Calculated in 100 simulations (1,000 Claims) (Stacked)

Figure 11 Average and Standard Deviation of 100 simulations (1,000 Claims)

	Average	Std. Deviation
Yearly	6,49,377	79,874
Half-Yearly	6,76,532	1,00,539
Quarterly	6,74,634	1,32,451
Monthly	6,73,466	2,48,619

Table 14 Average and Standard Deviation of 100 simulations (1,000 Claims)

Figure 12 Error in Reserves (1,000 Claims)

	RMS Error %
	(Simulated Vs CLM)
Yearly	14.75933303
Half-Yearly	18.17936778
Quarterly	21.98786401
Monthly	38.178164

Table 15 Error in Reserves (1,000 Claims)

Thus, if we use more data to analyse the claims, the error is significantly reduced.

2.11-Inference

- 1. Using shorter time periods to collate data increases the standard deviation in the reserve calculation.
- 2. But this can be used to get a clear picture of progression of claims by year segments.
- 3. Increasing the number of data (number of claims) used in the calculation of reserves increases the accuracy of the calculation. *It means, if the estimate is calculated using 10, 000 claims data, the results are accurate, when compared to an estimate calculated using 1,000 claims data.*

3 Curve Fitting

It is a process of fitting a curve to a series of points using a mathematical equation or a statistical distribution. The fitted curve can then be used to analyse the data. It can either involve Interpolation or Extrapolation. In Interpolation, a smooth curve is fitted to the data for data visualisation and statistical inference like relation between two random variables or uncertainty present in a curve is analysed. In Extrapolation, a curve is fitted beyond the observed range of data to analyse its future pattern. (En.wikipedia.org, 2017)

3.1-Fitting curves to the tail of Incremental Data

Likewise, in Reserving, a curve can be fitted to the pattern in the claims data and the progression of the reserving can be analysed. The type of curve fitted to the data depends on the nature and the shape of the data. In our case the data is in the shape of a normal distribution bell curve (from the second line of the Incremental triangle – Table 7).

Figure 13 Paid Claims (for the year 2002)

The points after year 2 can be fitted in an exponential curve. In this case we are considered about the tail of the graph to predict the year 5's incremental claim amount.

Year		
Segment		Reserves
	1	1623278
	2	2523247
	3	912021.7
	4	359375.6
	5	

Table 16 Paid Claims of 2002 (10,000 Claims)

The next step is to find an equation to fit in the data. In this case I have taken the equation,

$$f(x) = A^* e^{-t}$$

Equation 5 A simple equation with exponent to fit the tail

where,

A is the Scaling factor

t is time in years

On fitting a curve, the following curve is obtained. The converging algorithm found a value A=6856843. On substituting it in the equation, we get,

$$f(x) = 6856843 * e^{-t}$$

And thus, the Incremental Claim amount for the year 5 is **125587.46.** On comparing it with the value obtained using Chain ladder method,

	Reserve
CLM	179376.8
Curve fitting	125163.5

Table 17 Difference between values

Figure 14 Curve fitted to the tail

As seen in table 16, the difference between the values is quite large. But fitting a better curve better results can be obtained.

3.2-Quadratic equations and Cubic equations can't be used

To fit 3 to 4 points, quadratic equations or cubic equations can be used, which will give a better fit for the points. You can use an equation like,

$$f(x) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Equation 6 A cubic equation

where,

 a_0 , a_1 , a_2 , a_3 are coefficients t is time in years

But these equations can't be extrapolated. If you try to extrapolate them, they do not converge. This is shown in fig 14 &15. So, we must fit the curve in an exponential equation.

A complex code can be written to fit the curve separately in different segments. For the starting part of the curve, quadratic splines or cubic splines can be fitted

and the tail can be designed as an exponential equation as this depicts the real-world scenario of reserving.

Figure 15 On extrapolating the curve rises (Quadratic)

Figure 16 On extrapolating the curve rises (Cubic)

3.3-Craighead Curve Fitting Method

Besides using quantitative methods, IBNR (Incurred But Not Reported) claims can be estimated using Craighead Curve. This curve can only be used if there are more than two points. (www.actuaries.org.uk, 2017). This method requires premiums data to find the Loss ratio. (note: Chain Ladder method does not require collected Premiums data)

The formula used for the curve is:

L(x+t) = A(x) * {1 -
$$e^{(\frac{-t}{b})^{\wedge}c}$$
}

Equation 7 Craighead curve equation

Where,

L (x + t) is Actual Observed paid claims ratio at duration t for year of occurrence x

A (x) is Estimated Ultimate Claims Ratio for year x

t is time in years from year of occurrence x

b is parameter representing the tail of the curve

c represents the speed of claim settlement

If the tail of the paid claims curve is longer, parameter b will have higher values. If the claims take long time to settle, parameter c will have higher values.

3.3.1-Effect of varying "c" speed factor on claims ratio

The nature of the Craighead curve can be studied by varying the different factors in the curve. Keep A(x) and b as constants and varying c, we get,

t	1	2	3	4	5
A(x)	1.2	1.2	1.2	1.2	1.2
b	3.7	3.7	3.7	3.7	3.7
С	0.25	0.5	1	2	4

Table 18 Effect of Varying parameter "c"

Figure 17 Effect of Varying parameter "c"

3.3.2-Effect of varying "b" tail factor on claims ratio

On keeping A(x) and c as constants and varying b, we get,

t	1	2	3	4	5
A(x)	1.2	1.2	1.2	1.2	1.2
b	1	1.5	2	3	4
С	2	2	2	2	2

Table 19 Effect of varying parameter "b"

Figure 18 Effect of varying parameter "b"

Thus, we can change the values of b and c iteratively, and fit a curve to the data as close as possible. This process requires the ultimate paid claims ratio for the particular line of business.

3.3.3-Curve fitting process

The following steps are mentioned in the Claims Reserving Manual – Vol 2 in the Institute and Faculty of Actuaries website and in the Insurance Regulatory and Development Authority of India (IRDA) website.

The algorithm for fitting the curve can be designed by the following procedure.

- 1. Use the most developed year as the base for the simulation and use the cumulative paid plus outstanding ratio (cumulative claims ratio) as the value of A(x).
- 2. Start with an initial guess for **b** and **c**. (b = 1, c = 0.5)
- 3. Calculate the value of L(x + t).
- 4. Run an iterative algorithm and minimise the square of the differences between, Observed and the calculated values of L (x + t).
- 5. The output of the code should give values of A(x), b, c which fits the graph.

6. Thus, by substituting the value of t (time in years) for the future years, the value of L(x+t) for future years can be obtained.

As the result of the simulation is cumulative data, the difference in value between two consecutive years gives the value of incremental data. (www.irdaindia.org, 2008)

3.4-Fitting Curves to Cumulative data

In generated data in Table 1, we don't have the any information about premiums. So, the Craighead curve fitting method cannot be used. But a similar formula can be used to fit the data by iteratively finding the value of **A**.

The formula that can be used in this case is.

$$C(t) = A * \{1 - e^{(\frac{-t}{b})^{\wedge} c}\}$$

Equation 8 Better Equation to fit cumulative data based on Craighead equation

Where,

C (t) is the cumulative paid claims at time t

A is the ultimate cumulative claims at time n, where n is the last year considered.

b is the tail factor

c is the speed factor.

Before starting the curve fitting process, let us have a look at the cumulative claims data used in the Chain Ladder Method. The graph of the upper triangle is shown below. As you can see in fig. 17. the curve of the cumulative data is very smooth and it is suitable for curve fitting compared to complex shaped incremental data curve.

Figure 19 Cumulative claims (Monthly)

3.4.1-Algorithm (Curve Fitting - Cumulative claims)

- 1. Start with an initial guess for the maximum and the minimum values for A. For Example, the maximum value can be chosen as £ 600,000 and the minimum value can be chosen as £ 100,000. This is shown by a red line in the fig. 17.
- 2. Start with an initial guess for values of b and c. Fix the min and max values. $say\ b(min) = 1$, c(min) = 0.5, b(max) = 10, c(max) = 10.

3. Use a **triple iteration algorithm** to find the values of A, b and c, by minimising the square of difference between the observed and calculated values of **C(t)**.

The final values of A, b and c are then used to find the cumulative claims for the future by substituting in the C(t) equation. The fit for the quarterly data is shown in fig 20.

Figure 20 Fitted curve

If the monthly claims data are used, then the fit is furthermore accurate. The fig.21 shows the increased accuracy of curve fitting. The extended orange line shows the prediction based on the A, b, c values obtained.

Figure 21 Fitted graph (Monthly Claims)

The prediction from 52^{nd} month to the 60^{th} month is very close to the pattern observed in the cumulative data.

3.5-Limitations of Curve fitting

- To fit a curve at least 3 points are needed. So, curves can't be fitted where lesser details are available.
- For complex shaped curves, curve fitting becomes tedious.
- As we are extrapolating, it is subjected to higher degree of uncertainty.
- On extrapolating, as the time increases the uncertainty in result increases.

3.6-Inference

- Using shorter time periods to collate data provides more points to fit the
 data and thus a better fit can be obtained. Because if the claims data is put
 into monthly bins, even 6 months data can give 6 points to fit a curve.
 While when considering yearly bins 3 years data give just 3 points for
 curve fitting.
- 2. Using shorter time periods to collate data increase the ripples in the incremental claims data and curve fitting becomes more complex (while fitting curve to Incremental data).

- 3. To fit the curve better and to obtain better results, complex equations must be used (in case of incremental claims data).
- 4. Best fit for the curve is obtained by **fitting curves to the cumulative data**, rather than incremental data.

4 Conclusion

It is concluded that the collation of the data into shorter time periods in Chain Ladder Method increases the standard deviation of the calculation. But if more data is used for estimation this standard deviation is significantly reduced. And collation of data provides clear picture of the progression of claims received. Thus, when new products are launched in an insurance company, and when the data is available for only few years, the shorter time periods collation can give a good picture of the claims progression. Also in curve fitting, the collation of data into shorter time periods provides more points to fit the curve. Thus, we can get better results in curve fitting as well. Fitting curves to cumulative data provides better results when compared to incremental data, as it has a smooth curve. Thus, collation of data into shorter time periods has good advantages at the cost of little variance in the estimated data.

5 Appendix

The VBA macro coded for this analysis is available in the following link:

https://drive.google.com/open?id=0B6CZTL2bvynzeGZmWmV2aDNfcEk

6 Bibliography

En.wikipedia.org. (2017). *Curve fitting*. [online] Available at: https://en.wikipedia.org/wiki/Curve_fitting [Accessed 31 Aug. 2017].

En.wikipedia.org. (2017). *Loss reserving*. [online] Available at: https://en.wikipedia.org/wiki/Loss_reserving [Accessed 2 Sep. 2017].

En.wikipedia.org. (2017). *Solvency II Directive 2009*. [online] Available at: https://en.wikipedia.org/wiki/Solvency_II_Directive_2009 [Accessed 28 Aug. 2017].

En.wikipedia.org. (2017). *Chain-ladder method*. [online] Available at: https://en.wikipedia.org/wiki/Chain-ladder_method [Accessed 28 Aug. 2017].

www.fh-vie.ac.at. (2017). A practical guide to the use of the chain ladder method for determining technical provisions for outstanding reported claims in non-life insurance. [online] Available at: http://www.fh-vie.ac.at/var/em_plain_site/storage/original/application/428aa414bf1ba9198d d84455133b4abd.pdf [Accessed 28 Aug. 2017].

www.actuaries.org.uk. (2017). *Claims Reserving Manual - Vol 2*. [online] Available at: https://www.actuaries.org.uk/documents/claims-reserving-manual-volume-2 [Accessed 31 Aug. 2017].