machine learning (732A99) lab
1 Block 2

Anubhav Dikshit(anudi287) 4 December 2018

Contents

Loading The Libraries	1
1. Your task is to evaluate the performance of Adaboost classification trees and random forests on the spam data. Specifically, provide a plot showing the error rates when the number of trees considered are 10,20,,100. To estimate the error rates, use 2/3 of the data for training and 1/3 as hold-out test data. Loading Input files	2 2 2 2
2 Your task is to implement the EM algorithm for mixtures of multivariate Bernoulli distributions. Please use the template in the next page to solve the assignment. Then, use your implementation to show what happens when your mixture models has too few and too many components, i.e. set $K=2,3,4$ and compare results. Please provide a short explanation as well. Description of the EM algorithm	4 4 8
K=4	14 31 57
	57 50
Loading The Libraries	
<pre>if (!require("pacman")) install.packages("pacman") pacman::p_load(mboost, randomForest, dplyr, ggplot2)</pre>	
<pre>options(scipen = 999)</pre>	

1. Your task is to evaluate the performance of Adaboost classification trees and random forests on the spam data. Specifically, provide a plot showing the error rates when the number of trees considered are 10,20,...,100. To estimate the error rates, use 2/3 of the data for training and 1/3 as hold-out test data.

Loading Input files

```
spam_data <- read.csv(file = "spambase.data", header = FALSE)
colnames(spam_data)[58] <- "Spam"
spam_data$Spam <- factor(spam_data$Spam, levels = c(0,1), labels = c("0", "1"))</pre>
```

Splitting into Train and Test with 66% and 33% ratio.

```
set.seed(12345)
n = NROW(spam_data)
id = sample(1:n, floor(n*(2/3)))
train = spam_data[id,]
test = spam_data[-id,]
```

Trainning the Model

Adaboost with varying depth

```
final result <- NULL
for(i in seq(from = 10, to = 100, by = 10)){
ada_model <- mboost::blackboost(Spam~.,</pre>
                                   data = train,
                                   family = AdaExp(),
                                 control=boost_control(mstop=i))
forest_model <- randomForest(Spam~., data = train, ntree = i)</pre>
prediction function <- function(model, data){</pre>
  predicted <- predict(model, newdata = data, type = c("class"))</pre>
  predict_correct <- ifelse(data$Spam == predicted, 1, 0)</pre>
  score <- sum(predict_correct)/NROW(data)</pre>
 return(score)
}
train_ada_model_predict <- predict(ada_model, newdata = train, type = c("class"))</pre>
test_ada_model_predict <- predict(ada_model, newdata = test, type = c("class"))</pre>
train_forest_model_predict <- predict(forest_model, newdata = train, type = c("class"))</pre>
test_forest_model_predict <- predict(forest_model, newdata = test, type = c("class"))</pre>
```

```
test_predict_correct <- ifelse(test$Spam == test_forest_model_predict, 1, 0)</pre>
train_predict_correct <- ifelse(train$Spam == train_forest_model_predict, 1, 0)</pre>
train_ada_score <- prediction_function(ada_model, train)</pre>
test_ada_score <- prediction_function(ada_model, test)</pre>
train_forest_score <- prediction_function(forest_model, train)</pre>
test_forest_score <- prediction_function(forest_model, test)</pre>
iteration_result <- data.frame(number_of_trees = i,</pre>
                                accuracy = c(train_ada_score,
                                              test_ada_score,
                                              train_forest_score,
                                              test_forest_score),
                                type = c("train", "test", "train", "test"),
                                model = c("ADA", "ADA", "Forest", "Forest"))
final_result <- rbind(iteration_result, final_result)</pre>
final_result$error_rate_percentage <- 100*(1 - final_result$accuracy)
ggplot(data = final_result, aes(x = number_of_trees,
                                 y = error_rate_percentage,
                                 group = type, color = type)) +
  geom_point() +
  geom_line() +
  ggtitle("Error Rate vs. increase in trees") + facet_grid(rows = vars(model))
```

Error Rate vs. increase in trees

Analysis:

From the plots we can clearly see that ADA boosted methods uses more trees(~ 50) to reduce the test error, while randomforest achieves saturation in short number of trees(~ 10). We also see that random forest achieves less error than ADA tree for both tree and test cases.

2 Your task is to implement the EM algorithm for mixtures of multivariate Bernoulli distributions. Please use the template in the next page to solve the assignment. Then, use your implementation to show what happens when your mixture models has too few and too many components, i.e. set K=2,3,4 and compare results. Please provide a short explanation as well.

Description of the EM algorithm

EM is an iterative expectation maximumation technique. The way this works is for a given mixed distribution we guess the components of the data. This is done by first guessing the number of components and then randomly initializing the parameters of the said distribution (Mean, Varience).

Sometimes the data do not follow any known probability distribution but a mixture of known distributions such as:

$$p(x) = \sum_{k=1}^{K} p(k).p(x|k)$$

where p(x|k) are called mixture components and p(k) are called mixing coefficients: where p(k) is denoted by

 π_k

With the following conditions

$$0 < \pi_k < 1$$

and

$$\sum_{k} \pi_k = 1$$

We are also given that the mixture model follows a Bernoulli distribution, for bernoulli we know that

$$Bern(x|\mu_k) = \prod_i \mu_{ki}^{x_i} (1 - \mu_{ki})^{(1-x_i)}$$

The EM algorithm for an Bernoulli mixed model is:

Set pi and mu to some initial values Repeat until pi and mu do not change E-step: Compute p(z|x) for all k and n M-step: Set pi^k to pi^k(ML) from likehood estimate, do the same to mu

M step:

$$p(z_{nk}|x_n, \mu, \pi) = Z = \frac{\pi_k p(x_n|\mu_k)}{\sum_k p(x_n|\mu_k)}$$

E step:

$$\pi_k^{ML} = \frac{\sum_N p(z_{nk}|x_n, \mu, \pi)}{N}$$

$$\mu_{ki}^{ML} = \frac{\sum_{n} x_{ni} p(z_{nk} | x_n, \mu, \pi)}{\sum_{n} p(z_{nk} | x_n, \mu, \pi)}$$

The maximum likehood of E step is:

$$\log_e p(X|\mu, \pi) = \sum_{n=1}^{N} \log_e \sum_{k=1}^{K} .\pi_k . p(x_n|\mu_k)$$

Code

To compare the results for K = 2,3,4, the em_loop-function provides a graphical analysis for every iteration. The function includes comments which explain what I did at which step to create the EM algorithm. The function will be finally run with K = 2,3,4.

```
em_loop = function(K) {
# Initializing data
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N = 1000 # number of training points
D = 10 # number of dimensions
```

```
x = matrix(nrow=N, ncol = D) # training data
true_pi = vector(length = K) # true mixing coefficients
true_mu = matrix(nrow = K, ncol = D) # true conditional distributions
true_pi = c(rep(1/K, K))
if (K == 2) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
plot(true mu[1,], type = "o", xlab = "dimension", col = "blue",
vlim = c(0,1), main = "True")
points(true_mu[2,], type="o", xlab = "dimension", col = "red",
main = "True")
} else if (K == 3) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue", ylim=c(0,1),
main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
} else {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true mu[1,], type = "o", xlab = "dimension", col = "blue",
vlim = c(0,1), main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
points(true_mu[4,], type = "o", xlab = "dimension", col = "yellow",
main = "True")
}
z = matrix(nrow = N, ncol = K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow = K, ncol = D) # conditional distributions
llik = vector(length = max_it) # log likelihood of the EM iterations
# Producing the training data
for(n in 1:N) {
k = sample(1:K, 1, prob=true_pi)
for(d in 1:D) {
x[n,d] = rbinom(1, 1, true_mu[k,d])
}
}
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
mu[k,] = runif(D, 0.49, 0.51)
}
#EM algorithm
```

```
for(it in 1:max_it) {
# Plotting mu
# Defining plot title
title = paste0("Iteration", it)
if (K == 2) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
} else if (K == 3) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
} else {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
points(mu[4,], type = "o", xlab = "dimension", col = "yellow", main = title)
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for (n in 1:N) {
# Creating empty matrix (column 1:K = p_x-given_k; column K+1 = p(x|all\ k)
p_x = matrix(data = c(rep(1,K), 0), nrow = 1, ncol = K+1)
# Calculating p(x|k) and p(x|all k)
for (k in 1:K) {
# Calculating p(x/k)
for (d in 1:D) {
p_x[1,k] = p_x[1,k] * (mu[k,d]^x[n,d]) * (1-mu[k,d])^(1-x[n,d])
p_x[1,k] = p_x[1,k] * pi[k] # weighting with pi[k]
# Calculating p(x|all k) (denominator)
p_x[1,K+1] = p_x[1,K+1] + p_x[1,k]
\# Calculating z for n and all k
for (k in 1:K) {
z[n,k] = p_x[1,k] / p_x[1,K+1]
}
# Log likelihood computation
for (n in 1:N) {
for (k in 1:K) {
log_term = 0
for (d in 1:D) {
\log_{\text{term}} = \log_{\text{term}} + x[n,d] * \log(mu[k,d]) + (1-x[n,d]) * \log(1-mu[k,d])
llik[it] = llik[it] + z[n,k] * (log(pi[k]) + log_term)
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if (it != 1) {
if (abs(llik[it] - llik[it-1]) < min_change) {</pre>
```

```
}
}
# M-step: ML parameter estimation from the data and fractional component assignments
# Updating pi
for (k in 1:K) {
pi[k] = sum(z[,k])/N
}
# Updating mu
for (k in 1:K) {
mu[k,] = 0
for (n in 1:N) {
    mu[k,] = mu[k,] + x[n,] * z[n,k]
mu[k,] = mu[k,] / sum(z[,k])
}
}
# Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
```

K=2

em_loop(2)

iteration: 1 log likelihood: -7623.897

iteration: 2 log likelihood: -7610.745

iteration: 3 log likelihood: -7463.445

iteration: 4 log likelihood: -6575.121

iteration: 5 log likelihood: -5731.559

iteration: 6 log likelihood: -5656.174

iteration: 7 log likelihood: -5648.904

iteration: 8 log likelihood: -5646.139

iteration: 9 log likelihood: -5644.608

iteration: 10 log likelihood: -5643.615

iteration: 11 log likelihood: -5642.913

iteration: 12 log likelihood: -5642.386

iteration: 13 log likelihood: -5641.977

iteration: 14 log likelihood: -5641.649

iteration: 15 log likelihood: -5641.382

iteration: 16 log likelihood: -5641.161

iteration: 17 log likelihood: -5640.975

iteration: 18 log likelihood: -5640.819

iteration: 19 log likelihood: -5640.685

iteration: 20 log likelihood: -5640.571

iteration: 21 log likelihood: -5640.473


```
## $pi
## [1] 0.5110531 0.4889469
##
## $mu
                                  [,3]
##
             [,1]
                       [,2]
                                            [,4]
                                                      [,5]
                                                                [,6]
                                                                           [,7]
## [1,] 0.4931735 0.3974606 0.5967811 0.2785480 0.6927917 0.2184957 0.8018491
## [2,] 0.4989543 0.6255823 0.3804363 0.7171478 0.3230343 0.7778699 0.2049559
                        [,9]
                                    [,10]
## [1,] 0.1116477 0.88054439 0.004290353
## [2,] 0.9140913 0.08997919 0.999714736
##
## $logLikelihoodDevelopment
## NULL
```

K=3

```
em_loop(3)
```


iteration: 1 log likelihood: -8029.723

iteration: 2 log likelihood: -8027.183

iteration: 3 log likelihood: -8024.696

iteration: 4 log likelihood: -8005.631

iteration: 5 log likelihood: -7877.606

iteration: 6 log likelihood: -7403.513

iteration: 7 log likelihood: -6936.919

iteration: 8 log likelihood: -6818.582

iteration: 9 log likelihood: -6791.377

iteration: 10 log likelihood: -6780.713

iteration: 11 log likelihood: -6774.958

iteration: 12 log likelihood: -6771.261

iteration: 13 log likelihood: -6768.606

iteration: 14 log likelihood: -6766.535

iteration: 15 log likelihood: -6764.815

iteration: 16 log likelihood: -6763.316

iteration: 17 log likelihood: -6761.967

iteration: 18 log likelihood: -6760.727

iteration: 19 log likelihood: -6759.572

iteration: 20 log likelihood: -6758.491

iteration: 21 log likelihood: -6757.475

iteration: 22 log likelihood: -6756.521

iteration: 23 log likelihood: -6755.625

iteration: 24 log likelihood: -6754.784

iteration: 25 log likelihood: -6753.996

iteration: 26 log likelihood: -6753.26

iteration: 27 log likelihood: -6752.571

iteration: 28 log likelihood: -6751.928

iteration: 29 log likelihood: -6751.328

iteration: 30 log likelihood: -6750.768

iteration: 31 log likelihood: -6750.246

iteration: 32 log likelihood: -6749.758

iteration: 33 log likelihood: -6749.304

iteration: 34 log likelihood: -6748.88

iteration: 35 log likelihood: -6748.484

iteration: 36 log likelihood: -6748.114

iteration: 37 log likelihood: -6747.767

iteration: 38 log likelihood: -6747.444

iteration: 39 log likelihood: -6747.14

iteration: 40 log likelihood: -6746.856

iteration: 41 log likelihood: -6746.589

iteration: 42 log likelihood: -6746.338

iteration: 43 log likelihood: -6746.102

iteration: 44 log likelihood: -6745.88

iteration: 45 log likelihood: -6745.67

iteration: 46 log likelihood: -6745.472

iteration: 47 log likelihood: -6745.285

iteration: 48 log likelihood: -6745.108

iteration: 49 log likelihood: -6744.939

iteration: 50 log likelihood: -6744.78

iteration: 51 log likelihood: -6744.627

iteration: 52 log likelihood: -6744.483

iteration: 53 log likelihood: -6744.344

iteration: 54 log likelihood: -6744.212

iteration: 55 log likelihood: -6744.086

iteration: 56 log likelihood: -6743.964

iteration: 57 log likelihood: -6743.848

iteration: 58 log likelihood: -6743.736

iteration: 59 log likelihood: -6743.628

iteration: 60 log likelihood: -6743.524

iteration: 61 log likelihood: -6743.423

iteration: 62 log likelihood: -6743.326

\$pi ## [1] 0.3259592 0.3044579 0.3695828

```
## $mu
##
                       [,2]
                                  [,3]
                                            [,4]
                                                      [,5]
                                                                [,6]
                                                                           [,7]
             [,1]
## [1,] 0.4737193 0.3817120 0.6288021 0.3086143 0.6943731 0.1980896 0.7879447
## [2,] 0.4909874 0.4793213 0.4691560 0.4791793 0.5329895 0.4928830 0.4643990
## [3,] 0.5089571 0.5834802 0.4199272 0.7157107 0.2905703 0.7667258 0.2320784
##
             [,8]
                       [,9]
                                  [,10]
## [1,] 0.1349651 0.8912534 0.01937869
## [2,] 0.4902682 0.4922194 0.39798407
## [3,] 0.8516111 0.1072226 0.99981353
## $logLikelihoodDevelopment
## NULL
```

K=4

em_loop(4)

iteration: 1 log likelihood: -8316.904

iteration: 2 log likelihood: -8291.114

iteration: 3 log likelihood: -8286.966

iteration: 4 log likelihood: -8264.806

iteration: 5 log likelihood: -8161.19

iteration: 6 log likelihood: -7868.89

iteration: 7 log likelihood: -7570.873

iteration: 8 log likelihood: -7445.719

iteration: 9 log likelihood: -7389.741

iteration: 10 log likelihood: -7356.803

iteration: 11 log likelihood: -7337.208

iteration: 12 log likelihood: -7326.118

iteration: 13 log likelihood: -7319.998

iteration: 14 log likelihood: -7316.6

iteration: 15 log likelihood: -7314.666

iteration: 16 log likelihood: -7313.528

iteration: 17 log likelihood: -7312.829

iteration: 18 log likelihood: -7312.367

iteration: 19 log likelihood: -7312.024

iteration: 20 log likelihood: -7311.723

iteration: 21 log likelihood: -7311.407

iteration: 22 log likelihood: -7311.036

iteration: 23 log likelihood: -7310.574

iteration: 24 log likelihood: -7309.988

iteration: 25 log likelihood: -7309.248

iteration: 26 log likelihood: -7308.322

iteration: 27 log likelihood: -7307.185

iteration: 28 log likelihood: -7305.809

iteration: 29 log likelihood: -7304.176

iteration: 30 log likelihood: -7302.273

iteration: 31 log likelihood: -7300.1

iteration: 32 log likelihood: -7297.671

iteration: 33 log likelihood: -7295.014

iteration: 34 log likelihood: -7292.171

iteration: 35 log likelihood: -7289.196

iteration: 36 log likelihood: -7286.15

iteration: 37 log likelihood: -7283.093

iteration: 38 log likelihood: -7280.079

iteration: 39 log likelihood: -7277.151

iteration: 40 log likelihood: -7274.34

iteration: 41 log likelihood: -7271.66

iteration: 42 log likelihood: -7269.116

iteration: 43 log likelihood: -7266.7

iteration: 44 log likelihood: -7264.398

iteration: 45 log likelihood: -7262.189

iteration: 46 log likelihood: -7260.051

iteration: 47 log likelihood: -7257.96

iteration: 48 log likelihood: -7255.892

iteration: 49 log likelihood: -7253.824

iteration: 50 log likelihood: -7251.733

iteration: 51 log likelihood: -7249.603

iteration: 52 log likelihood: -7247.419

iteration: 53 log likelihood: -7245.17

iteration: 54 log likelihood: -7242.853

iteration: 55 log likelihood: -7240.472

iteration: 56 log likelihood: -7238.038

iteration: 57 log likelihood: -7235.571

iteration: 58 log likelihood: -7233.095

iteration: 59 log likelihood: -7230.64

iteration: 60 log likelihood: -7228.239

iteration: 61 log likelihood: -7225.925

iteration: 62 log likelihood: -7223.725

iteration: 63 log likelihood: -7221.663

iteration: 64 log likelihood: -7219.755

iteration: 65 log likelihood: -7218.01

iteration: 66 log likelihood: -7216.431

iteration: 67 log likelihood: -7215.013

iteration: 68 log likelihood: -7213.748

iteration: 69 log likelihood: -7212.621

iteration: 70 log likelihood: -7211.62

iteration: 71 log likelihood: -7210.727

iteration: 72 log likelihood: -7209.929

iteration: 73 log likelihood: -7209.208

iteration: $74 \log likelihood$: -7208.552

iteration: 75 log likelihood: -7207.946

iteration: 76 log likelihood: -7207.38

iteration: 77 log likelihood: -7206.844

iteration: 78 log likelihood: -7206.327

iteration: 79 log likelihood: -7205.824

iteration: 80 log likelihood: -7205.326

iteration: 81 log likelihood: -7204.829

iteration: 82 log likelihood: -7204.327

iteration: 83 log likelihood: -7203.816

iteration: 84 log likelihood: -7203.294

iteration: 85 log likelihood: -7202.756

iteration: 86 log likelihood: -7202.201

iteration: 87 log likelihood: -7201.627

iteration: 88 log likelihood: -7201.032

iteration: 89 log likelihood: -7200.414

iteration: 90 log likelihood: -7199.773

iteration: 91 log likelihood: -7199.107

iteration: 92 log likelihood: -7198.416

iteration: 93 log likelihood: -7197.7

iteration: 94 log likelihood: -7196.957

iteration: 95 log likelihood: -7196.188

iteration: 96 log likelihood: -7195.392

iteration: 97 log likelihood: -7194.57

iteration: 98 log likelihood: -7193.722

iteration: 99 log likelihood: -7192.847

iteration: 100 log likelihood: -7191.946


```
## $pi
## [1] 0.2880470 0.2533761 0.2933710 0.1652060
##
## $mu
             [,1]
                        [,2]
                                  [,3]
                                            [,4]
                                                       [,5]
                                                                 [,6]
                                                                           [,7]
##
## [1,] 0.3714855 0.3899958 0.4790260 0.5731886 0.5022651 0.5108478 0.2835691
## [2,] 0.5199997 0.6135841 0.3891214 0.7132736 0.2722448 0.7785461 0.2168891
## [3,] 0.4383456 0.4042497 0.5489526 0.3298363 0.6578057 0.2049012 0.7825505
  [4,] 0.3428531 0.7784238 0.5591637 0.6319621 0.5167044 0.4629058 0.7311279
##
             [,8]
                         [,9]
                                   [,10]
## [1,] 0.3519184 0.36924863 0.48252239
## [2,] 0.9337959 0.08504806 0.99916297
## [3,] 0.1703330 0.80517853 0.04500171
  [4,] 0.6601375 0.46532151 0.48814639
##
## $logLikelihoodDevelopment
```

Analysis

Comparing the final plots for each of the cases, it becomes clear that when the mixture model has more components (K = 4), the EM algorithm does not perform as accurate as for fewer components (K = 2) or K = 3. The segregation between each component gets diluted as the components get higher.

EM algo with matrix

```
em_mat <- function(k){</pre>
set.seed(1234567890)
# max number of EM iterations
max_it <- 100
# min change in log likelihood between two consecutive EM iterations
min_change <- 0.1
#----- Producing Training data and Initialization -----#
# number of training points
N < -1000
# number of dimensions
D <- 10
# training data
x <- matrix(nrow=N, ncol=D)
# true mixing coefficients
true_pi <- vector(length = k)</pre>
true_pi <- rep(1/k, k)
# true conditional distributions
true mu <- matrix(nrow = k, ncol = D)</pre>
if(k == 2){
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
else if(k == 3){
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
}else {
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
points(true_mu[4,], type="o", col="yellow")
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)}
# Producing the training data
for(n in 1:N) {
1 <- sample(1:k,1,prob=true_pi)</pre>
```

```
for(d in 1:D) {
x[n,d] \leftarrow rbinom(1,1,true_mu[1,d])
}
}
# fractional component assignments
z <- matrix(nrow = N, ncol = k)</pre>
# mixing coefficients
pi <- vector(length = k)</pre>
# conditional distributions
mu <- matrix(nrow = k, ncol = D)</pre>
# log likelihood of the EM iterations
llik <- vector(length = max_it)</pre>
# Random initialization of the paramters
pi \leftarrow runif(k, 0.49, 0.51)
pi <- pi / sum(pi)
for(i in 1:k) {
mu[i,] \leftarrow runif(D,0.49,0.51)
#----- Iteration stage -----
for(it in 1:max_it) {
if(k == 2){
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
else if(k == 3){
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
points(mu[3,], type="o", col="green")
}else{
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
points(mu[3,], type="o", col="green")
points(mu[4,], type="o", col="yellow")}
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
# Updating z matrix
p_Xn_MUn \leftarrow exp(x \% * log(t(mu)) + (1 - x) \% * log(1 - t(mu)))
numerator <- matrix(rep(pi,N), ncol = k, byrow = TRUE) * p_Xn_MUn</pre>
denominator <- rowSums(numerator)</pre>
Z_nk <- numerator/denominator</pre>
# Updating pi
pi <- colSums(Z_nk)/N
# Updating mu
mu \leftarrow (t(Z_nk) %*% x)/colSums(Z_nk)
#Log likelihood computation.
llik[it] \leftarrow sum(Z_nk * ((x %*% log(t(mu)) + (1 - x) %*% log(1 - t(mu)))
) + matrix(rep(pi,N), ncol = k, byrow = TRUE)))
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if(it \ge 2){
if((llik[it] - llik[it-1]) < min_change){break()}</pre>
#M-step: ML parameter estimation from the data and fractional component assignments
```

```
# pi_ML
pi_ML <- pi
#mu ML
mu_ML <- mu
}
#--
              ----- output stage -----
df <- data.frame(Iteration = 1:length(llik[which(llik != 0.000)])</pre>
, log_likelihood = llik[which(llik != 0.000)])
plot <- ggplot(data = df) +</pre>
geom_point(mapping = aes(x = Iteration, y = log_likelihood),
color = 'black') +
geom_line(mapping = aes(x = Iteration, y = log_likelihood),
color = 'black', size = 1) +
ggtitle('Maximum likelihood vs Number of iterations') +
theme(plot.title = element_text(hjust = 0.5)) +
theme_light()
output <- list(pi_ML = pi_ML,</pre>
mu_ML = mu_ML,
plot = plot
)
output
}
EM_2 \leftarrow em_mat(2)
```


iteration: 1 log likelihood: -6428.122

iteration: 2 log likelihood: -6403.127

iteration: 3 log likelihood: -6101.854

iteration: 4 log likelihood: -4889.04

iteration: 5 log likelihood: -4486.667

iteration: 6 log likelihood: -4460.54

iteration: 7 log likelihood: -4455.219

iteration: 8 log likelihood: -4452.797

iteration: 9 log likelihood: -4451.369

iteration: 10 log likelihood: -4450.418

iteration: 11 log likelihood: -4449.735

iteration: 12 log likelihood: -4449.219

iteration: 13 log likelihood: -4448.816

iteration: 14 log likelihood: -4448.492

iteration: 15 log likelihood: -4448.227

iteration: 16 log likelihood: -4448.008

iteration: 17 log likelihood: -4447.824

iteration: 18 log likelihood: -4447.668

iteration: 19 log likelihood: -4447.536

iteration: 20 log likelihood: -4447.422

iteration: 21 log likelihood: -4447.324

EM_2\$plot

Maximum likelihood vs Number of iterations

EM_2\$pi_ML

[1] 0.5110531 0.4889469

EM_2\$mu_ML

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.4931735 0.3974606 0.5967811 0.2785480 0.6927917 0.2184957 0.8018491
[2,] 0.4989543 0.6255823 0.3804363 0.7171478 0.3230343 0.7778699 0.2049559
[,8] [,9] [,10]
[1,] 0.1116477 0.88054439 0.004290353
[2,] 0.9140913 0.08997919 0.999714736

EM_3 <- em_mat(3)</pre>

iteration: 1 log likelihood: -6595.475

iteration: 2 log likelihood: -6594.971

iteration: 3 log likelihood: -6590.744

iteration: 4 log likelihood: -6558.775

iteration: 5 log likelihood: -6359.678

iteration: 6 log likelihood: -5818.144

iteration: 7 log likelihood: -5482.541

iteration: 8 log likelihood: -5397.642

iteration: 9 log likelihood: -5373.097

iteration: 10 log likelihood: -5362.128

iteration: 11 log likelihood: -5355.483

iteration: 12 log likelihood: -5350.765

iteration: 13 log likelihood: -5347.103

iteration: 14 log likelihood: -5344.094

iteration: 15 log likelihood: -5341.521

iteration: 16 log likelihood: -5339.255

iteration: 17 log likelihood: -5337.222

iteration: 18 log likelihood: -5335.372

iteration: 19 log likelihood: -5333.675

iteration: 20 log likelihood: -5332.111

iteration: 21 log likelihood: -5330.664

iteration: 22 log likelihood: -5329.325

iteration: 23 log likelihood: -5328.085

iteration: 24 log likelihood: -5326.935

iteration: 25 log likelihood: -5325.871

iteration: 26 log likelihood: -5324.884

iteration: 27 log likelihood: -5323.971

iteration: 28 log likelihood: -5323.124

iteration: 29 log likelihood: -5322.34

iteration: 30 log likelihood: -5321.613

iteration: 31 log likelihood: -5320.939

iteration: 32 log likelihood: -5320.314

iteration: 33 log likelihood: -5319.734

iteration: 34 log likelihood: -5319.195

iteration: 35 log likelihood: -5318.694

iteration: 36 log likelihood: -5318.228

iteration: 37 log likelihood: -5317.794

iteration: 38 log likelihood: -5317.389

iteration: 39 log likelihood: -5317.012

iteration: 40 log likelihood: -5316.66

iteration: 41 log likelihood: -5316.33

iteration: 42 log likelihood: -5316.021

iteration: 43 log likelihood: -5315.732

iteration: 44 log likelihood: -5315.461

iteration: 45 log likelihood: -5315.205

iteration: 46 log likelihood: -5314.965

iteration: 47 log likelihood: -5314.739

iteration: 48 log likelihood: -5314.526

iteration: 49 log likelihood: -5314.324

iteration: 50 log likelihood: -5314.133

iteration: 51 log likelihood: -5313.952

iteration: 52 log likelihood: -5313.78

iteration: 53 log likelihood: -5313.617

iteration: 54 log likelihood: -5313.461

iteration: 55 log likelihood: -5313.313

iteration: 56 log likelihood: -5313.172

iteration: 57 log likelihood: -5313.036

iteration: 58 log likelihood: -5312.907

iteration: 59 log likelihood: -5312.782

iteration: 60 log likelihood: -5312.663

iteration: 61 log likelihood: -5312.548

iteration: 62 log likelihood: -5312.437

iteration: 63 log likelihood: -5312.331

iteration: 64 log likelihood: -5312.228

iteration: 65 log likelihood: -5312.128

EM_3\$plot

Maximum likelihood vs Number of iterations


```
EM_3$pi_ML
```

[1] 0.3253079 0.3054648 0.3692273

```
EM_3$mu_ML
```

```
##
             [,1]
                       [,2]
                                 [,3]
                                            [,4]
                                                      [,5]
                                                                [,6]
                                                                          [,7]
## [1,] 0.4737641 0.3814787 0.6287272 0.3083381 0.6946440 0.1979384 0.7880918
## [2,] 0.4908688 0.4794407 0.4696385 0.4792674 0.5328539 0.4924305 0.4649473
## [3,] 0.5090026 0.5835152 0.4198282 0.7158080 0.2904951 0.7669771 0.2318423
             [,8]
                       [,9]
                                 [,10]
## [1,] 0.1347064 0.8915450 0.01871995
## [2,] 0.4899193 0.4926427 0.39851709
## [3,] 0.8518488 0.1069488 0.99986452
```

EM_4 <- em_mat(4)</pre>

iteration: 1 log likelihood: -6655.473

iteration: 2 log likelihood: -6654.384

iteration: 3 log likelihood: -6648.24

iteration: 4 log likelihood: -6615.956

iteration: 5 log likelihood: -6476.236

iteration: 6 log likelihood: -6163.491

iteration: 7 log likelihood: -5923.696

iteration: 8 log likelihood: -5823.047

iteration: 9 log likelihood: -5773.59

iteration: 10 log likelihood: -5743.739

iteration: 11 log likelihood: -5725.322

iteration: 12 log likelihood: -5714.141

iteration: 13 log likelihood: -5707.236

iteration: 14 log likelihood: -5702.736

iteration: 15 log likelihood: -5699.586

iteration: 16 log likelihood: -5697.217

iteration: 17 log likelihood: -5695.317

iteration: 18 log likelihood: -5693.707

iteration: 19 log likelihood: -5692.276

iteration: 20 log likelihood: -5690.95

iteration: 21 log likelihood: -5689.674

iteration: 22 log likelihood: -5688.403

iteration: 23 log likelihood: -5687.099

iteration: 24 log likelihood: -5685.724

iteration: 25 log likelihood: -5684.246

iteration: 26 log likelihood: -5682.631

iteration: 27 log likelihood: -5680.847

iteration: 28 log likelihood: -5678.867

iteration: 29 log likelihood: -5676.669

iteration: 30 log likelihood: -5674.239

iteration: 31 log likelihood: -5671.576

iteration: 32 log likelihood: -5668.691

iteration: 33 log likelihood: -5665.614

iteration: 34 log likelihood: -5662.386

iteration: 35 log likelihood: -5659.059

iteration: 36 log likelihood: -5655.693

iteration: 37 log likelihood: -5652.346

iteration: 38 log likelihood: -5649.071

iteration: 39 log likelihood: -5645.908

iteration: 40 log likelihood: -5642.885

iteration: 41 log likelihood: -5640.016

iteration: 42 log likelihood: -5637.303

iteration: 43 log likelihood: -5634.736

iteration: 44 log likelihood: -5632.298

iteration: 45 log likelihood: -5629.969

iteration: 46 log likelihood: -5627.724

iteration: 47 log likelihood: -5625.538

iteration: 48 log likelihood: -5623.385

iteration: 49 log likelihood: -5621.241

iteration: 50 log likelihood: -5619.084

iteration: 51 log likelihood: -5616.894

iteration: 52 log likelihood: -5614.658

iteration: 53 log likelihood: -5612.364

iteration: 54 log likelihood: -5610.009

iteration: 55 log likelihood: -5607.596

iteration: 56 log likelihood: -5605.138

iteration: 57 log likelihood: -5602.654

iteration: 58 log likelihood: -5600.168

iteration: 59 log likelihood: -5597.712

iteration: 60 log likelihood: -5595.319

iteration: 61 log likelihood: -5593.02

iteration: 62 log likelihood: -5590.845

iteration: 63 log likelihood: -5588.818

iteration: 64 log likelihood: -5586.954

iteration: 65 log likelihood: -5585.263

iteration: 66 log likelihood: -5583.748

iteration: 67 log likelihood: -5582.404

iteration: 68 log likelihood: -5581.223

iteration: 69 log likelihood: -5580.191

iteration: 70 log likelihood: -5579.295

iteration: 71 log likelihood: -5578.519

iteration: 72 log likelihood: -5577.847

iteration: 73 log likelihood: -5577.263

iteration: 74 log likelihood: -5576.755

iteration: 75 log likelihood: -5576.308

iteration: 76 log likelihood: -5575.911

iteration: 77 log likelihood: -5575.555

iteration: 78 log likelihood: -5575.229

iteration: 79 log likelihood: -5574.926

iteration: 80 log likelihood: -5574.641

iteration: 81 log likelihood: -5574.366

iteration: 82 log likelihood: -5574.097

iteration: 83 log likelihood: -5573.831

iteration: 84 log likelihood: -5573.563

iteration: 85 log likelihood: -5573.291

iteration: 86 log likelihood: -5573.014

iteration: 87 log likelihood: -5572.727

iteration: 88 log likelihood: -5572.431

iteration: 89 log likelihood: -5572.124

iteration: 90 log likelihood: -5571.804

iteration: 91 log likelihood: -5571.471

iteration: 92 log likelihood: -5571.123

iteration: 93 log likelihood: -5570.762

iteration: 94 log likelihood: -5570.385

iteration: 95 log likelihood: -5569.993

iteration: 96 log likelihood: -5569.585

iteration: 97 log likelihood: -5569.161

iteration: 98 log likelihood: -5568.722

iteration: 99 log likelihood: -5568.267

iteration: 100 log likelihood: -5567.797

EM_4\$plot

Maximum likelihood vs Number of iterations


```
EM_4$pi_ML
## [1] 0.2880470 0.2533761 0.2933710 0.1652060
EM_4$mu_ML
##
             [,1]
                       [,2]
                                  [,3]
                                            [,4]
                                                      [,5]
                                                                 [,6]
                                                                           [,7]
## [1,] 0.3714855 0.3899958 0.4790260 0.5731886 0.5022651 0.5108478 0.2835691
## [2,] 0.5199997 0.6135841 0.3891214 0.7132736 0.2722448 0.7785461 0.2168891
## [3,] 0.4383456 0.4042497 0.5489526 0.3298363 0.6578057 0.2049012 0.7825505
## [4,] 0.3428531 0.7784238 0.5591637 0.6319621 0.5167044 0.4629058 0.7311279
             [,8]
                        [,9]
                                   [,10]
##
## [1,] 0.3519184 0.36924863 0.48252239
## [2,] 0.9337959 0.08504806 0.99916297
## [3,] 0.1703330 0.80517853 0.04500171
## [4,] 0.6601375 0.46532151 0.48814639
```

Appendix

```
knitr::opts_chunk$set(echo = TRUE)
if (!require("pacman")) install.packages("pacman")
pacman::p_load(mboost, randomForest, dplyr, ggplot2)
options(scipen = 999)
```

```
spam_data <- read.csv(file = "spambase.data", header = FALSE)</pre>
colnames(spam_data)[58] <- "Spam"</pre>
spam_data$Spam <- factor(spam_data$Spam, levels = c(0,1), labels = c("0", "1"))</pre>
set.seed(12345)
n = NROW(spam_data)
id = sample(1:n, floor(n*(2/3)))
train = spam_data[id,]
test = spam_data[-id,]
final result <- NULL
for(i in seq(from = 10, to = 100, by = 10)){
ada_model <- mboost::blackboost(Spam~.,</pre>
                                   data = train,
                                   family = AdaExp(),
                                 control=boost_control(mstop=i))
forest_model <- randomForest(Spam~., data = train, ntree = i)</pre>
prediction_function <- function(model, data){</pre>
  predicted <- predict(model, newdata = data, type = c("class"))</pre>
  predict_correct <- ifelse(data$Spam == predicted, 1, 0)</pre>
  score <- sum(predict_correct)/NROW(data)</pre>
 return(score)
}
train_ada_model_predict <- predict(ada_model, newdata = train, type = c("class"))</pre>
test_ada_model_predict <- predict(ada_model, newdata = test, type = c("class"))</pre>
train_forest_model_predict <- predict(forest_model, newdata = train, type = c("class"))</pre>
test_forest_model_predict <- predict(forest_model, newdata = test, type = c("class"))</pre>
test_predict_correct <- ifelse(test$Spam == test_forest_model_predict, 1, 0)</pre>
train_predict_correct <- ifelse(train$Spam == train_forest_model_predict, 1, 0)</pre>
train_ada_score <- prediction_function(ada_model, train)</pre>
test_ada_score <- prediction_function(ada_model, test)</pre>
train_forest_score <- prediction_function(forest_model, train)</pre>
test_forest_score <- prediction_function(forest_model, test)</pre>
iteration_result <- data.frame(number_of_trees = i,</pre>
                                 accuracy = c(train_ada_score,
                                               test_ada_score,
                                               train_forest_score,
                                               test_forest_score),
                                 type = c("train", "test", "train", "test"),
                                 model = c("ADA", "ADA", "Forest", "Forest"))
final_result <- rbind(iteration_result, final_result)</pre>
```

```
final_result$error_rate_percentage <- 100*(1 - final_result$accuracy)</pre>
ggplot(data = final_result, aes(x = number_of_trees,
                                y = error_rate_percentage,
                                group = type, color = type)) +
  geom_point() +
  geom line() +
  ggtitle("Error Rate vs. increase in trees") + facet_grid(rows = vars(model))
em loop = function(K) {
# Initializing data
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N = 1000 # number of training points
D = 10 # number of dimensions
x = matrix(nrow=N, ncol = D) # training data
true_pi = vector(length = K) # true mixing coefficients
true_mu = matrix(nrow = K, ncol = D) # true conditional distributions
true_pi = c(rep(1/K, K))
if (K == 2) {
true mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
plot(true mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type="o", xlab = "dimension", col = "red",
main = "True")
} else if (K == 3) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue", ylim=c(0,1),
main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
} else {
true mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
points(true_mu[4,], type = "o", xlab = "dimension", col = "yellow",
main = "True")
}
z = matrix(nrow = N, ncol = K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow = K, ncol = D) # conditional distributions
```

```
llik = vector(length = max_it) # log likelihood of the EM iterations
# Producing the training data
for(n in 1:N) {
k = sample(1:K, 1, prob=true_pi)
for(d in 1:D) {
x[n,d] = rbinom(1, 1, true_mu[k,d])
}
}
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
mu[k,] = runif(D, 0.49, 0.51)
}
#EM algorithm
for(it in 1:max_it) {
# Plotting mu
# Defining plot title
title = paste0("Iteration", it)
if (K == 2) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
} else if (K == 3) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
} else {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
points(mu[4,], type = "o", xlab = "dimension", col = "yellow", main = title)
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for (n in 1:N) {
# Creating empty matrix (column 1:K = p_x_qive_k; column K+1 = p(x|all\ k)
p_x = matrix(data = c(rep(1,K), 0), nrow = 1, ncol = K+1)
# Calculating p(x|k) and p(x|all k)
for (k in 1:K) {
# Calculating p(x/k)
for (d in 1:D) {
p_x[1,k] = p_x[1,k] * (mu[k,d]^x[n,d]) * (1-mu[k,d])^(1-x[n,d])
p_x[1,k] = p_x[1,k] * pi[k] # weighting with pi[k]
# Calculating p(x|all k) (denominator)
p_x[1,K+1] = p_x[1,K+1] + p_x[1,k]
# Calculating z for n and all k
for (k in 1:K) {
z[n,k] = p_x[1,k] / p_x[1,K+1]
}
# Log likelihood computation
```

```
for (n in 1:N) {
for (k in 1:K) {
log_term = 0
for (d in 1:D) {
\log_{\text{term}} = \log_{\text{term}} + x[n,d] * \log(mu[k,d]) + (1-x[n,d]) * \log(1-mu[k,d])
llik[it] = llik[it] + z[n,k] * (log(pi[k]) + log_term)
}
}
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if (it != 1) {
if (abs(llik[it] - llik[it-1]) < min_change) {</pre>
break
}
}
# M-step: ML parameter estimation from the data and fractional component assignments
# Updating pi
for (k in 1:K) {
pi[k] = sum(z[,k])/N
}
# Updating mu
for (k in 1:K) {
mu[k,] = 0
for (n in 1:N) {
    mu[k,] = mu[k,] + x[n,] * z[n,k]
mu[k,] = mu[k,] / sum(z[,k])
}
}
# Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
em_loop(2)
em_loop(3)
em_loop(4)
em_mat <- function(k){</pre>
set.seed(1234567890)
# max number of EM iterations
max_it <- 100
# min change in log likelihood between two consecutive EM iterations
min_change <- 0.1
#-----# Producing Training data and Initialization -----------------------------
```

```
# number of training points
N <- 1000
# number of dimensions
D <- 10
# training data
x <- matrix(nrow=N, ncol=D)
# true mixing coefficients
true_pi <- vector(length = k)</pre>
true pi \leftarrow rep(1/k, k)
# true conditional distributions
true_mu <- matrix(nrow = k, ncol = D)</pre>
if(k == 2){
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
else if(k == 3){
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
}else {
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
points(true_mu[4,], type="o", col="yellow")
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)}
# Producing the training data
for(n in 1:N) {
1 <- sample(1:k,1,prob=true_pi)</pre>
for(d in 1:D) {
x[n,d] <- rbinom(1,1,true_mu[1,d])
}
}
# fractional component assignments
z <- matrix(nrow = N, ncol = k)</pre>
# mixing coefficients
pi <- vector(length = k)</pre>
# conditional distributions
mu <- matrix(nrow = k, ncol = D)</pre>
# log likelihood of the EM iterations
llik <- vector(length = max_it)</pre>
# Random initialization of the paramters
pi \leftarrow runif(k, 0.49, 0.51)
pi <- pi / sum(pi)
for(i in 1:k) {
mu[i,] \leftarrow runif(D,0.49,0.51)
}
```

```
#----- Iteration stage -----
for(it in 1:max_it) {
if(k == 2){
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
else if(k == 3){
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
points(mu[3,], type="o", col="green")
}else{
plot(mu[1,], type="o", col="blue", ylim=c(0,1))
points(mu[2,], type="o", col="red")
points(mu[3,], type="o", col="green")
points(mu[4,], type="o", col="yellow")}
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
# Updating z matrix
p_X_nMUn \leftarrow exp(x \% \log(t(mu)) + (1 - x) \% \log(1 - t(mu)))
numerator <- matrix(rep(pi,N), ncol = k, byrow = TRUE) * p_Xn_MUn</pre>
denominator <- rowSums(numerator)</pre>
Z nk <- numerator/denominator</pre>
# Updating pi
pi <- colSums(Z_nk)/N
# Updating mu
mu \leftarrow (t(Z_nk) %*% x)/colSums(Z_nk)
#Log likelihood computation.
llik[it] \leftarrow sum(Z_nk * ((x %*% log(t(mu)) + (1 - x) %*% log(1 - t(mu)))
) + matrix(rep(pi,N), ncol = k, byrow = TRUE)))
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if(it >= 2){
if((llik[it] - llik[it-1]) < min_change){break()}</pre>
#M-step: ML parameter estimation from the data and fractional component assignments
# pi_ML
pi_ML <- pi
#mu ML
mu_ML <- mu
}
#-----#
df <- data.frame(Iteration = 1:length(llik[which(llik != 0.000)])</pre>
, log_likelihood = llik[which(llik != 0.000)])
plot <- ggplot(data = df) +</pre>
geom_point(mapping = aes(x = Iteration, y = log_likelihood),
color = 'black') +
geom_line(mapping = aes(x = Iteration, y = log_likelihood),
color = 'black', size = 1) +
ggtitle('Maximum likelihood vs Number of iterations') +
theme(plot.title = element_text(hjust = 0.5)) +
theme_light()
output <- list(pi_ML = pi_ML,</pre>
mu_ML = mu_ML,
```

```
plot = plot
)
output
}

EM_2 <- em_mat(2)

EM_2$plot

EM_2$pi_ML

EM_2$mu_ML

EM_3 <- em_mat(3)

EM_3$plot

EM_3$plot

EM_3$pi_ML

EM_3$mu_ML

EM_4 <- em_mat(4)

EM_4$plot

EM_4$pi_ML

EM_4$pi_ML

EM_4$mu_ML</pre>
```