Übungsblatt 8.

Abgabetermin: Montag, 08.01.2024, 14:00 Uhr.

Bitte verwenden Sie bei Abgabe in Papierform diese Seite als Deckblatt und tragen Sie oben Ihren Namen und Ihre Übungsgruppe ein. Bitte heften Sie die Blätter zusammen.

Aufgabe 1 (8 Punkte). Berechnen Sie

- (i) \bar{a}^6 und \bar{a}^7 für alle $\bar{a} \in \mathbb{Z}/7\mathbb{Z}$,
- (ii) \bar{a}^8 und \bar{a}^9 für alle $\bar{a} \in \mathbb{Z}/8\mathbb{Z}$.

Anmerkung: Beachten Sie, dass die Notation für die Äquivalenzklasse modulo n, $[a]_n$ und \bar{a} genau das Gleiche bedeuten. Das heißt $[a]_n = \bar{a} = \{a + k \cdot n, \ k \in \mathbb{Z}\} = a + n\mathbb{Z}$.

Aufgabe 2 (10 Punkte). Sei φ die eulersche Phi-Funktion.

- (i) Berechnen Sie $\varphi(1)$, $\varphi(2025)$, $\varphi(121)$ und $\varphi(120)$.
- (ii) Zeigen Sie, dass $\varphi(n)$ genau dann ungerade ist, wenn $n \in 1, 2$.

Aufgabe 3 (12 Punkte). Beweisen Sie für die eulersche Phi-Funktion:

(i) Ist $n \in \mathbb{N}$ mit Primfaktorzerlegung $n = p_1^{e_1} \cdots p_r^{e_r}$, dann gilt

$$\varphi(n) = n \cdot \prod_{i=1}^{r} (1 - \frac{1}{p_i}).$$

(ii) Für alle $a, b \in \mathbb{N} \setminus \{0\}$ gilt

$$\varphi(ab) = \varphi(a) \cdot \varphi(b) \cdot \frac{\operatorname{ggT}(a, b)}{\varphi(\operatorname{ggT}(a, b))}.$$

Aufgabe 4 (10 Punkte). Beweisen Sie, dass für $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^*$ die Multiplikation

$$m_a: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

 $\bar{x} \mapsto \bar{a}\bar{x}$

ein Isomorphismus (von Gruppen) ist.

Zusatzaufgabe 5. Seien $a, b \in \mathbb{Z}$ teilerfremd und sei $c \in \mathbb{Z}$ beliebig. Beweisen Sie $ggT(a, c) = ggT(a, c \cdot b)$.

Zusatzaufgabe 6. (i) Berechnen Sie die kleinste natürliche Zahl n mit $\bar{4}^7 = \bar{n}$ in $\mathbb{Z}/13\mathbb{Z}$.

(ii) Berechnen Sie die kleinste natürliche Zahl n mit $\bar{6}^{21} = \bar{n}$ in $\mathbb{Z}/39\mathbb{Z}$.