JP92000-253 10/003,684 00280823AA

The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1	1 (Currently amended). A computer-implemented auction method for holding an
2	auction for a product comprising the steps of:
3	receiving bids from at least one computer or from multiple computers within a
4	network of computers that include minimum desired volumes and maximum desired
5	volumes and evaluation prices for said product wherein said evaluation prices are
6	represented as a non-linear function relative to the desired volume of said product in
7	said transaction;
8	generating, using computing resources, a finite set of bids that include as an
9	element said bids that were received from said at least one computer or from multiple
10	computers within said network of computers;
11	employing dynamic programming using said computing resources to generate,
12	using said bids that were received in said receiving bids step, a subset of bids wherein
13	a maximum gain is obtained within a range represented by a count of said product
14	available for sale, wherein said dynamic programming includes
15	(i) allocating a two-dimensional array V, representing a maximum gain, to a
16	memory area by using said dynamic programming using said computing resources;
17	(ii) initializing said two-dimensional array V; and
18	(iii) recursively solving the recursive equation for said two-dimensional array
19	V, wherein
20	$\underline{V(k, j)} := \max \{V(k+1, j), V(k, j+1), \max_{1 \le n \le hk} \{V(k+1, j+x) + e_k(x)\}\}$
21	is used as the recursive equation, where V(k, j) denotes said two-dimensional array V
22	populated with said evaluation prices; where k represents the bid number and denotes
23	an integer equal to or greater than 1 and equal to or smaller than n; j represents the

	JP92000-253	10/003,684	00280823AA
24	number of the product an	d denotes an integer equal to or greater	r than 0 and equal to
25	or smaller than s; n denotes the number of bids; s denotes the number of products		
26	available for the transaction; e_k denotes the evaluation price when x units of products		
27	are purchased according to the bid b_k ; l_k denotes the minimum volume of the bid b_k ;		
28	and h_k denotes the maximum volume of the bid b_k ; and		
29	identifying or accepting a bid from said subset of bids, wherein a bid is		
30	selected by back tracking of said two-dimensional array V from the element on the		
31		smallest row and in the smallest column.	
1	2-4. Canceled		
1	5 (Currently amended). T	he auction method according to claim	1, further comprising:
2		auction method for holding an auction	
3	comprising the steps of:		
4	receiving bids from	m at least one computer or from multip	le computers within a
5	network of computers tha	t include minimum desired volumes ar	nd maximum desired
6	volumes and evaluation p	rices for said product wherein said eva	luation prices are
7	represented as a non-linea	er function relative to the desired volum	ne of said product in
8	said transaction;		
9	generating, using o	computing resources, a finite set of bid	s that include as an
10	element said bids that wer	e received from said at least one comp	uter or from multiple
11	computers within said net	work of computers;	
12	employing dynami	ic programming using said computing i	resources to generate,
13		eceived in said receiving bids step, a s	
14		ed within a range represented by a cou	
15		said dynamic programming includes	****

(ii) initializing said two-dimensional arrays V and Q; and

16

17

18

19

programming;

(i) allocating two-dimensional arrays V, representing a maximum gain, and Q,

representing a count of a product available, to a memory area by using said dynamic

JP92000-253 10/003,684 00280823AA

(iii) recursively solving recursive equations for said two-dimensional arrays V and Q using said computing resources,

wherein

$$V(k,j) := \begin{cases} V(k+1,j) \\ V(k,j+1) \\ V(k,j+1) + e_k & \text{if } 1k \le Q(k,j+1) < h_k) \\ V(k+1,j+1_k) + e_k 1_k \end{cases}$$

23
$$Q(k,j) := \begin{cases} Q(k,j+1)+1 & (if \ V(k,j)=V(k,j+1)+e_k \\ 1_k & (if \ (k,j)=V(k+1,j+1_k)+e_k 1_k \\ Q(k,j+1) & (if \ V(k,j)=Vk,j+1) \\ 0 & (otherwise) \end{cases}$$

JP92000-253 10/003,684 00280823AA 13 (Currently amended). An auction system of computing resources for holding an 1 2 auction for a product comprising: 3 means for receiving bids from at least one computer or from multiple computers within a network of computers that include minimum desired volumes and 4 maximum desired volumes and evaluation prices for said product; 5 6 means for generating, using computing resources, a finite set of bids that 7 include as an element said bids that were received from said at least one computer or from multiple computers within said network of computers; 8 means for employing dynamic programming using said computing resources 9 10 to generate, using said bids that were received from said at least one computer or from multiple computers within said network of computers, a subset of bids wherein a 11 12 maximum gain is obtained within a range represented by a count of said product available for sale, wherein said means for employing dynamic programming 13 (i) allocates a two-dimensional array V, representing a maximum gain, to a 14 memory area by using said dynamic programming using said computing resources; 15 16 (ii) initializes said two-dimensional array V; and (iii) recursively solves the recursive equation for said two-dimensional array 17 V, wherein 18 $\underline{V(k, j)} := \max \{ V(k+1, j), V(k, j+1), \max_{1 \le n \le hk} \{ V(k+1, j+x) + e_k(x) \} \}$ 19 is used as the recursive equation, where V(k, i) denotes said two-dimensional array V 20 21

is used as the recursive equation, where V(k,j) denotes said two-dimensional array V populated with said evaluation prices; where k represents the bid number and denotes an integer equal to or greater than 1 and equal to or smaller than n; j represents the number of the product and denotes an integer equal to or greater than 0 and equal to or smaller than s; n denotes the number of bids; s denotes the number of products available for the transaction; e_k denotes the evaluation price when s units of products are purchased according to the bid s; s0 denotes the minimum volume of the bid s0, and s1 and s2 denotes the maximum volume of the bid s3.

22

23

24

25

26

		-6-	
	JP92000-253	10/003,684	00280823AA
28	means for identifying or accepting a bid from said subset of bids, wherein a		
29	bid is selected by back tracking of said two-dimensional array V from the element on		
30	the smallest row and in the smallest column.		
1	14-16. Canceled		
1	17 (Currently amended)). The auction system according to cla	im 13, further
2	comprising:		,
3	An auction system of co	omputing resources for holding an auc	ction for a product
4	comprising:		*
5	means for receiv	ring bids from at least one computer o	r from multiple
6		vork of computers that include minim	
7		nes and evaluation prices for said prod	
8	means for genera	ating, using computing resources, a fin	nite set of bids that
9		aid bids that were received from said a	
10		s within said network of computers;	•
11	means for emplo	ying dynamic programming using said	d computing resources
12	to generate, using said b	ids that were received from said at lea	ast one computer or from
13	multiple computers with	in said network of computers, a subse	et of bids wherein a
14		ed within a range represented by a cou	
15		in said means for employing dynamic	
16		ns for allocating two-dimensional arra	
17	maximum gain, and Q, r	epresenting a count of a product avail	able, to a memory area
18	by using said dynamic pr	ogramming using said computer reso	urces;
19		ans for initializing said two-dimension	

(iii) recursively solves means for recursively solving recursive equations for

said two-dimensional arrays V and Q using said computing resources,

20

21

22

wherein

JP92000-253 10/003,684 00280823AA

$$V(k,j) := \begin{cases} V(k+1,j) \\ V(k,j+1) \\ V(k,j+1) + e_k & \text{if } 1k \le Q(k,j+1) < h_k) \\ V(k+1,j+1_k) + e_k 1_k \end{cases}$$

23
$$Q(k,j) := \begin{cases} Q(k,j+1)+1 & (if \ V(k,j)=V(k,j+1)+e_k \\ 1_k & (if \ (k,j)=V(k+1,j+1_k)+e_k 1_k \\ Q(k,j+1) & (if \ V(k,j)=Vk,j+1) \\ 0 & (otherwise) \end{cases}$$

	JP92000-253	10/003,684	00280823AA
35	18-24. Canceled		
1	25 (Currently amended).	A computer-readable storage medi	um on which a program
2	for holding an auction for a product is stored, said program enabling computing		
3	resources to perform:		
4	a process for receiving bids from at least one computer or from multiple		
5	computers within a network of computers that include minimum desired volumes and		mum desired volumes and
6	maximum desired volumes and evaluation prices for said product wherein said		oduct wherein said
7	evaluation prices for said product are represented as a non-linear function relative to		inear function relative to
8	the desired volume of said product;		
9	a process for gene	erating, using computing resources,	a finite set of bids that
10	include as an element sai	d bids that were received from said	at least one computer or
11	from multiple computers within said network of computers;		
12	a process for emp	loying dynamic programming using	g said computing
13	resources to generate, using said bid set that were received while using said process		while using said process
14	for receiving bids, a subset of bids wherein a maximum gain is obtained within a		
15	range represented by a co	ount of said product available for sa	le, wherein said dynamic
16	programming includes		
17	(i) allocating a tw	o-dimensional array V, representing	g a maximum gain, to a
18	memory area by using sai	d dynamic programming using said	d computing resources;
19	(ii) initializing sai	d two-dimensional array V; and	
20	(iii) recursively solving the recursive equation for said two-dimensional array		id two-dimensional array
21	V, wherein		
22	$V(k, j) := \max\{V(k+1, j),$	$V(k, j+1), \max_{1k \le n \le hk} \{V(k+1, j+x)\}$	$+e_k(x)\}$
23	is used as the recursive ed	quation, where V(k, j) denotes said	two-dimensional array V
24	populated with said evaluation prices; where k represents the bid number and denotes		
25	an integer equal to or greater than 1 and equal to or smaller than no i represents the		

number of the product and denotes an integer equal to or greater than 0 and equal to

	JP92000-253	10/003,684	00280823AA
27	or smaller than s; n denote	es the number of bids; s denotes the	e number of products
28	available for the transaction	on; e _k denotes the evaluation price v	when x units of products
29	are purchased according to	o the bid b _k ; l _k denotes the minimur	n volume of the bid b _k :
30	and h _k denotes the maxim	um volume of the bid b_k ; and	
31	a process for ident	ifying or accepting a bid from said	subset of bids, wherein a
32	bid is selected by back tra-	cking of said two-dimensional arra	y V from the element on
33	the smallest row and in the	e smallest column.	
1	26-27. Canceled		