Algoritmos II

Algoritmos de Ordenamiento

QuickSort

- Elegir Pivote
- Dividir en menores y mayores
- Volver a elegir pivote en cada subdivisión
- Usa recursividad

Algoritmos de Ordenamiento

MergeSort

- Divide el conjunto en dos grupos iguales y los ordena recursivamente los dos grupos
- Junta los grupos ordenados.

Algoritmos de Búsqueda

Lineal

Se recorre todo el conjunto, examinando cada elemento hasta encontrar buscado o recorrer todo el conjunto. Es de complejidad O(N).

Algoritmos de Búsqueda

Binaria

Se recorre un árbol binario

Complejidad de de O(log(N))

Almacena objetos que tienen relación entre sí. Esos objetos se especifican como **Nodos**. La relación se especifica como **Enlaces** y puede tener asociado una etiqueta ó un valor numérico y además, esa relación entre los nodos puede ser unidireccional o bidireccional.

- V: Set de nodos (También llamados vértices).
- E: Enlaces, aristas o "edges".
- Grafo = (Vértices, Enlaces) ==> G = (V, E)

El **grado** de un vértice es el numero de enlaces o aristas que tienen a ese vértice como extremo. Un bucle cerrado contribuye en 2 unidades al grado de un vértice.

Redes Sociales

Sistemas de Navegación

Problema de la Distancia más corta:

El algoritmo de **Dijkstra** es utilizado para encontrar la distancia más corta posible desde un vértice de origen a cualquier otro vértice posible que exista en un gráfico ponderado, siempre que el vértice sea accesible desde el vértice de origen:

- 1. Dados un par de vértices no visitados, seleccione el vértice con la menor distancia desde la fuente y visítelo.
- 2. A continuación, se actualiza la distancia de cada vecino. Lo mismo se hace para el vértice visitado, que tiene una distancia actual mayor que la suma y el peso del borde dado entre ellos.
- 3. Los pasos 1 y 2 deben repetirse hasta que no queden vértices no visitados.

Grafos - Matríz de Adyacencia

- Se utiliza para representar un grafo.
- Es simétrica.
- Si un vértice es aislado entonces la correspondiente fila (columna) esta compuesta sólo por ceros.
- Si el grafo es simple entonces la matriz de adyacencia contiene solo ceros y unos (matriz binaria) y la diagonal esta compuesta sólo por ceros.
- La suma de las filas de cada vértice es el total de grados que tiene el vértice

Grafos - Matríz de Adyacencia

