高等数学A(上)

第二章

本章重点

导数 — 描述函数变化快慢 微分 — 描述函数变化程度 微分学 — 基本概念是导数与微分

微分学

基本概念是导数与微分

中值定理

罗尔、拉格朗日、柯西

导 数

描述函数变化快慢

应用一

研究函数性质 及曲线性态

微分

描述函数变化程度

应用二

利用导数解决 实际问题

第二章 目录 CONTENTS

第一节 导数与微分的概念

第二节 导数与微分的运算性质

第三节 隐函数及由参数方程所确定的

函数的导数 相关变化率

第四节 高阶导数

第五节 微分中值定理与泰勒公式

第六节 洛必达法则

第七节 函数及其图像性态的研究

第三节 高阶导数

一、高阶导数的概念

二、高阶导数求导法则举例

一、高阶导数的概念

1. 问题: 变速直线运动的加速度

位置函数
$$s = s(t)$$
,

速度
$$v = \frac{\mathrm{d}s}{\mathrm{d}t}$$
 或 $v = s'$

加速度
$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}s}{\mathrm{d}t}\right) = \frac{\mathrm{i}t}{\mathrm{d}t^2}$$

$$a = v' = (s')'$$
 记作 s''

叫做s对t的 二阶导数

所以直线运动的加速度就是位置函数s对时间t的二阶导数.

2. 高阶导数的定义

如果函数y = f(x)的导数y' = f'(x)可导,则称f'(x)的导数

为
$$f(x)$$
的二阶导数. 记作 $f''(x), y'', \frac{d^2y}{dx^2}$ 或 $\frac{d^2f(x)}{dx^2}$.

- 二阶导数的导数称为三阶导数, f'''(x), y''', $\frac{d^2y}{dx^3}$.
- 三阶导数的导数称为四阶导数, $f^{(4)}(x)$, $y^{(4)}$, $\frac{d^4y}{dx^4}$.
- 一般地, 函数f(x)的n-1阶导数的导数称为函数f(x)的n阶导数,

即
$$\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}^{n-1} y}{\mathrm{d}x^{n-1}} \right)$$
. 二阶和二阶以上的导数统称为高阶导数.

相应于高阶导数, f(x)称为零阶导数, f'(x)称为一阶导数.

例1 设
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
, 求 $y^{(n)}$.

$$y' = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1},$$

$$y'' = 2 \cdot 1a_2 + 3 \cdot 2a_3x + \dots + n(n-1)a_nx^{n-2},$$

$$y''' = 3 \cdot 2 \cdot 1a_3 + 4 \cdot 3 \cdot 2a_4 x + \dots + n(n-1)(n-2)a_n x^{n-3},$$

依次类推, 可得 $y^{(n)} = n! a_n$.

思考 设 $y = x^{\mu} (\mu$ 为任意常数), 问 $y^{(n)} = ?$

答案:
$$(x^{\mu})^{(n)} = \mu(\mu-1)(\mu-2)\cdots(\mu-n+1)x^{\mu-n}$$

当
$$\mu = n$$
时 , $(x^n)^{(n)} = n!$, $(x^n)^{(n+k)} = 0$ ($k = 1, 2, \dots$).

例2 证明: 函数 $y = \sqrt{2x - x^2}$ 满足关系式 $y^3y'' + 1 = 0$.

$$\mathbf{ff} \qquad y' = \frac{2 - 2x}{2\sqrt{2x - x^2}} = \frac{1 - x}{\sqrt{2x - x^2}},$$

$$y'' = \frac{-\sqrt{2x - x^2} - (1 - x) \frac{2 - 2x}{2\sqrt{2x - x^2}}}{2x - x^2} = \frac{-(2x - x^2) - (1 - x)^2}{(2x - x^2) \sqrt{2x - x^2}}$$

$$= -\frac{1}{(2x - x^2)\sqrt{2x - x^2}} = -\frac{1}{y^3}.$$
 于是 $y^3y'' + 1 = 0$. 得证

例3 设 $y=\sin x$, 求 $y^{(n)}$.

$$y' = \cos x = \sin \left(x + \frac{\pi}{2} \right)$$

$$y'' = \cos\left(x + \frac{\pi}{2}\right) = \sin\left(x + \frac{\pi}{2} + \frac{\pi}{2}\right) = \sin\left(x + 2 \cdot \frac{\pi}{2}\right)$$

$$y''' = \cos\left(x + 2 \cdot \frac{\pi}{2}\right) = \sin\left(x + 3 \cdot \frac{\pi}{2}\right)$$

.....

$$y^{(n)} = \sin\left(x + n \cdot \frac{\pi}{2}\right)$$
 即 $(\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right)$

同理可得
$$(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)$$

例4 设 $y = e^{ax}$, 求 $y^{(n)}$.

$$y'=ae^{ax},$$

$$y'' = a^2 e^{ax},$$

$$y''' = a^3 e^{ax},$$

$$y^{(n)} = a^n e^{ax},$$

$$(e^{ax})^{(n)} = a^n e^{ax}$$

特别有
$$(e^x)^{(n)} = e^x$$

例5 设 $y = \ln(1+x)$, 求 $y^{(n)}$.

$$\mathbf{p}'' = \frac{1}{1+x}, \ y'' = -\frac{1}{(1+x)^2},$$
$$y''' = \frac{2!}{(1+x)^3}, \ y^{(4)} = -\frac{3!}{(1+x)^4},$$

$$y^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \ge 1, \ 0! = 1)$$

$$[\ln(1+x)]^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \ge 1, \quad 0! = 1)$$

由例5的结果

$$[\ln(1+x)]^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} (n \ge 1, \ 0! = 1)$$

容易得到

$$[\ln(1-x)]^{(n)} = -\frac{(n-1)!}{(1-x)^n} \quad (n \ge 1, \ 0! = 1)$$

进一步还可得到

$$\left(\frac{1}{a+x}\right)^{(n)} = (-1)^n \frac{n!}{(a+x)^{n+1}}, \quad \left(\frac{1}{a-x}\right)^{(n)} = \frac{n!}{(a-x)^{n+1}}.$$

二、高阶导数求导公式和法则

1. 常用高阶导数公式 建议记忆

$$(1) (a^x)^{(n)} = a^x \cdot \ln^n a (a > 0) \qquad (e^{ax})^{(n)} = a^n e^x \qquad (e^x)^{(n)} = e^x$$

(2)
$$(\sin kx)^{(n)} = k^n \sin\left(kx + n \cdot \frac{\pi}{2}\right)$$

(3)
$$(\cos kx)^{(n)} = k^n \cos \left(kx + n \cdot \frac{\pi}{2}\right)$$

(4)
$$(x^{\mu})^{(n)} = \mu(\mu - 1) \cdots (\mu - n + 1) x^{\mu - n}$$

$$(5) \left[\ln(1+x)\right]^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} (n \ge 1) \left(\frac{1}{a-x}\right)^{(n)} = \frac{n!}{(a-x)^{n+1}}.$$

2. 高阶导数的运算法则

设函数u=u(x), v=v(x)具有n阶导数,则

(1)
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

$$(2) (Cu)^{(n)} = Cu^{(n)} (C 是常数)$$

$$(3) (u \cdot v)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + \cdots + \frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)} + \cdots + uv^{(n)}$$

简记为
$$(u\cdot v)^{(n)} = \sum_{k=0}^{\infty} C_n^k u^{(n-k)} v^{(k)}$$
. 莱布尼茨公式

3. 高阶导数求导举例

例6 设
$$y = x^2 e^{2x}$$
, 求 $y^{(20)}$.

解 设
$$u = e^{2x}$$
, $v = x^2$.

解 设
$$u = e^{2x}$$
, $v = x^2$.

$$v^{(k)} = 2^k e^{2x} \quad (k = 1, 2, \dots, 20)$$

$$v^{(k)} = 0 \quad (k = 3, \dots, 20)$$
代入莱布尼茨公式

$$y^{(20)} = (e^{2x})^{(20)} \cdot x^2 + 20(e^{2x})^{(19)} \cdot (x^2)' + \frac{20(20-1)}{2!} (e^{2x})^{(18)} \cdot (x^2)'' + 0$$
$$= 2^{20}e^{2x}(x^2 + 20x + 95).$$

例7 求由方程 $x-y+\frac{1}{2}\sin y=0$ 所确定的隐函数的二阶导数y''.

解 方程两边对x求导, 得 $1 - y' + \frac{1}{2}\cos y \cdot y' = 0$.

$$\therefore y' = \frac{2}{2 - \cos y}.$$

上式两端再对x求导, 得

$$\therefore y'' = \frac{-2\sin y \cdot y'}{(2 - \cos y)^2} = \frac{-2\sin y \cdot \frac{2}{2 - \cos y}}{(2 - \cos y)^2} = \frac{-4\sin y}{(2 - \cos y)^3}.$$

三、由参数方程确定的函数的导数

若参数方程 $\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$ 确定 y = x 间的 函数关系, 称此为由参数方程

所确定的函数.

$$\begin{cases} x = 2t, \\ y = t^2, \end{cases}$$

例如:
$$\begin{cases} x = 2t, \\ y = t^2, \end{cases}$$
 消去参数 t
$$y = \frac{x^2}{4} : y' = \frac{1}{2}x$$

摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 消参困难!

问题 消参困难或无法消参如何求导?

在方程
$$\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$$
中,

① 设函数
$$x = \varphi(t)$$
具有单调连续的反函数 $t = \varphi^{-1}(x)$,

$$\therefore y = \psi[\varphi^{-1}(x)]$$

(2) 再设函数 $x = \varphi(t), y = \psi(t)$ 都可导, 且 $\varphi'(t) \neq 0$,

由复合函数及反函数的求导法则得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)} \qquad \boxed{\square} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)}$$

③ 若函数
$$\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$$
 二阶可导, 且 $\varphi'(t) \neq 0$,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\psi'(t)}{\varphi'(t)} \right) \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\varphi'^2(t)} \cdot \frac{1}{\varphi'(t)}$$

$$\mathbb{P}\left[\frac{d^{2}y}{dx^{2}} = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\varphi'^{3}(t)}\right] = \frac{\left|\frac{\varphi'(t)}{\varphi''(t)}\frac{\psi'(t)}{\psi''(t)}\right|}{\varphi'^{3}(t)}$$

例8 求摆线方程 $\begin{cases} x = a (t - \sin t) \\ y = a (1 - \cos t) \end{cases}$ 的二阶导数 $\frac{d^2y}{dx^2}.$

$$\mathbf{H} : \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{a\sin t}{a - a\cos t} = \frac{\sin t}{1 - \cos t}$$

$$= \frac{\cos t (1 - \cos t) - \sin t \cdot \sin t}{(1 - \cos t)^2} \cdot \frac{1}{a (1 - \cos t)} = -\frac{1}{a (1 - \cos t)^2}.$$