Stability Analyses of a Composite Breakwater Subjected to Tsunami

- **◆**Tsunami forces(P_t)
- ◆Seismic forces (Q_H&Q_v)
- **◆**Hydrodynamic forces (P_{dyn})
- **♦** Hydrostatic forces (P_{st})
- **♦**Buoyancy force (U)
- **♦** Frictional force (F_f)

- ightharpoonupTsunami forces(P_t)
- **♦**Hydrostatic forces (P_{st})
- **♦**Buoyancy force (U)
- lacktriangle Frictional force (F_f)

Tsunami force due to tsunami

- **◆**Tsunami forces(P_t)
- **♦** Hydrostatic forces (P_{st})
- **♦**Buoyancy force (U)
- **♦** Frictional force (F_f)

Hydrostatic forces due to presence of seawater

- **◆**Tsunami forces(P_t)
- **♦**Hydrostatic forces (P_{st})
- **♦**Buoyancy force (U)
- lacktriangle Frictional force (F_f)

Buoyancy force due submergence of breakwater in seawater

- **◆**Tsunami forces(P_t)
- **♦** Hydrostatic forces (P_{st})
- **♦**Buoyancy force (U)
- **♦**Frictional force (F_f)

Frictional force due to mass of breakwater

Forces Acting on Breakwater

Tsunami Forces

Japanese design guidelines for coastal structure (MLIT, 2013*)

• Tsunami wave pressure acting on vertical face of the breakwater

$$p_1 = \alpha_f \gamma_w (h_t + h_w)$$

$$p_2 = [(h_t - h_c)/(h_t + h_w)]P_1$$

$$p_3 = \alpha_r \gamma_w (h_L + h_w)$$

• The tsunami wave forces acting on

Seaside,
$$P_{ts} = \frac{1}{2}(P_1 + P_2)H$$

Harbour side,
$$P_{th} = \frac{1}{2} P_3 (h_w + h_L)$$

Where,

 α_r =0.9 and α_f =1.05 from hydraulic experiments, h_t = height of tsunami wave, h_L =Increase in height of sea water level on harbour side during tsunami,

^{*}MLIT (Ministry of Land, Infrastructure, Transport and Tourism, Japan), 2013. Guidelines for tsunami resistant design of the breakwater, Bureau of Port and harbor, Ministry of Land, Infrastructure, Transport and Tourism, Japan (Japanese).

Forces Acting on Breakwater

Effective Weight of the Breakwater

$$W' = W - U - Q_{\nu}(t)$$

Frictional force

$$F_f = \mu N = \mu W'$$

>Stability of the breakwater

Total driving forces,
$$F_D = Q_h(t) + P_{dyns} + P_{ts}$$

Where, W=weight of breakwater, U=buoyancy force N=normal reaction at the base of breakwater and μ =coefficient of friction at base of the breakwater

◆Factor of safety (FOS) against sliding mode of failure

$$FOS_s = \frac{F_R}{F_D}$$

Forces Acting on Breakwater

Seaside

- Moments of all the forces about the bottom point (D) of the breakwater
- Total resisting moment (M_r)

Total resisting moment
$$(M_r)$$

$$M_r = W'\left(\frac{B}{2}\right) + P_{dynh}(0.4h_w) + P_{th}(y_h) h_w$$

$$y_s$$

$$Y_{th}$$

$$Y_{t$$

• Total driving moment (M_d)

$$M_d = Q_H \left(\frac{H}{2}\right) + Q_v \left(\frac{B}{2}\right) + P_{dyns}(0.4h_w) + P_{ts}(y_s)$$

▶ Factor of safety (FOS) against overturning mode of failure

$$FOS_o = \frac{M_r}{M_d}$$

Harbor side

Breakwater

Parameters for the Study

Items	Value
Unit weight of breakwater (γ)	23 kN/m^3
Height of breakwater (H)	20 m
Width of breakwater (B)	12-28 m
Depth of seawater before tsunami (h _w)	12-20 m
Velocity of shear wave (V _s)	2500 m/s
Velocity of primary wave (V _p)	3900 m/s
Horizontal seismic acceleration coefficient (k _h -)	0-0.5
Vertical seismic acceleration coefficient (k _v)	0-k _h
Amplification factor (F _a)	1-1.4
Unit weight of seawater (γ_w)	10.3 kN/m^3
Height of tsunami above sea water level (h _t)	0-20 m
Time period of earthquake motion (T)	0.4s
Coefficient of friction between mound and	0.6
breakwater (µ)	

Parametric Studies

\Box Effects of height of tsunami (h_t)

FOS against sliding mode of failure

FOS_s decreases with increase in h_t

FOS against overturning mode of failure

FOS_o decreases with increase in h_t

Report Preparation

- Chapter 1- Introduction
- Chapter 2-Methodology
- Chapter 3-Results and discussions
- Chapter 4-Conclusions
- References