0000

OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fann-Sénégal Serveur Vocal : 628 05 59

Téléfax (221) 33 864 67 39 - Tél. : 824 95 92 - 824 65 81

n° 1-19 G 26 A - 20 4 heures Série S2-S2A-S4-S5 Coef 5

Epreuve du 1^{er} groupe

0,75 pt

MATHEMATIQUES CORRIGÉ

Exercice 1 (04, 5 points).

1.
$$p_1 = \frac{30}{45} = \frac{2}{3}$$
. 0,5 pt

2. On donne l'arbre de choix pour déterminer les probabilités conditionnelles.

a.
$$p(E_2/E_1) = \frac{1}{2}$$
 et $p(E_2/\overline{E}_1) = \frac{1}{3}$. (0, 25 + 0, 25) pt
b. $p(E_2) = p(E_2/E_1) \times p(E_1) + p(E_2/\overline{E}_1) \times p(\overline{E}_1) = \frac{4}{9}$. 0, 5 pt
3.

$$E_{n+1} = (E_{n+1} \cap E_n) \cup (E_{n+1} \cap \overline{E}_n),$$

d'après l'axiome des probabilités totales. D'où

$$p(E_{n+1}) = p(E_{n+1} \cap E_n) + p(E_{n+1} \cap \overline{E}_n)$$

car $E_{n+1}\cap E_n$ et $E_{n+1}\cap \overline{E}_n$ sont des événements incompatibles. Donc

$$p_{n+1} = p(E_{n+1}/E_n) \times p_n + p(E_{N+1}/\overline{E}_n) \times p(\overline{E}_n).$$

Ce qui donne

$$p_{n+1} = \frac{1}{2} \times p_n + \frac{1}{3} \times (1 - p_n).$$

D'où
$$p_{n+1} = \frac{1}{6} p_n + \frac{1}{3}$$
.

4. Soit la suite (u_n) définie pour tout entier naturel non nul n, par : $u_n = p_n - \frac{2}{5}$.

$$u_{n+1} = p_{n+1} - \frac{2}{5} = \frac{1}{6} p_n + \frac{1}{3} - \frac{2}{5}.$$

2/7

 $m n^{\circ}$ 1-19 G 26 A - 20 Série S2-S2A-S4-S5 **Epreuve du** 1^{er} **groupe**

$$u_{n+1} = \frac{1}{6} p_n - \frac{1}{15} = \frac{1}{6} \left(p_n - \frac{2}{5} \right).$$
$$u_{n+1} = \frac{1}{6} u_n.$$

0,5 pt

D'où $(u_n)_{n\geq 1}$ est une suite géométrique de raison $q=\frac{1}{6}$ et de premier terme $u_1=\frac{4}{15}$.

(0, 25 + 0, 25 pt)

b. $u_n = u_1(\frac{1}{6})^{n-1}$, d'où $u_n = \frac{4}{15}(\frac{1}{6})^{n-1}$ et $p_n = \frac{4}{15}(\frac{1}{6})^{n-1} + \frac{2}{5}$ pour $n \ge 1$.

 $({f 0},{f 5}+{f 0},{f 5})\,\,{f pt}$

c. Ainsi $\lim_{n \to \infty} p_n = \frac{2}{5} \text{ car } q = \frac{1}{6} < 1.$

0,25 pt

Exercice 2 (05, 5 points).

Partie A

Pour tout $z \in \mathbb{C}$ on note $f(z) = z^5 + 2z^4 + 2z^3 - z^2 - 2z - 2$.

1. Déterminons le polynôme Q tel que, $\forall z \in \mathbb{C}, f(z) = (z^3 - 1)Q(z)$.

En faisant la division euclidienne de f(z) par z^3-1 ou trouve que $Q(z)=z^2+2z+2$. **0**, **5** pt

2. Résolvons dans \mathbb{C} l'équation (E): f(z) = 0.

f(z) = 0 si, et seulement si $(z^3 - 1)(z^2 + 2z + 2) = 0$.

$$z^3 - 1 = 0$$
 ou $z^2 + 2z + 2 = 0$.

$$(z-1)(z^2+z+1) = 0$$
 ou $z^2+2z+2 = 0$.

Ce qui donne z=1 ou $z=-\frac{1-i\sqrt{3}}{2}$ ou $z=-\frac{1+i\sqrt{3}}{2}$ ou z=-1-i ou z=-1+i.

D'où l'ensemble des solutions de l'équation f(z)=0 est :

$$S = \left\{1; -\frac{1 - i\sqrt{3}}{2}; -\frac{1 + i\sqrt{3}}{2}; -1 - i; -1 + i\right\}.$$

0,5 pt

3. a. Ecriture des solutions de (E) sous forme trigonométrique :

On pose:

 $-z_0 = 1 = \cos 0 + i \sin 0 \operatorname{car} \operatorname{arg}(1) = 0 [2\pi].$

 $-z_1 = -\frac{1-i\sqrt{3}}{2} , \quad |z_1| = 1 \text{ et } \arg z_1 = \frac{2\pi}{3} [2\pi] .$ $\text{d'où } z_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} ,$

 $-z_2 = -\frac{1+i\sqrt{3}}{2} = \overline{z}_1, \quad |z_2| = 1 \text{ et arg } z_2 = -\frac{2\pi}{3} [2\pi].$ d'où $z_2 = \cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3},$

 $-z_3 = -1 + i$, $|z_3| = \sqrt{2}$ et $\arg z_3 = \frac{3\pi}{4} [2\pi]$. d'où $z_3 = \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}$,

 $-z_4 = -1 - i = \overline{z}_3, \quad |z_4| = \sqrt{2} \text{ et arg } z_4 = -\frac{3\pi}{4} [2\pi].$ d'où $z_4 = \cos \frac{3\pi}{4} - i \sin \frac{3\pi}{4}.$

0,5 pt

b. Plaçons les points G, A, D, B et C d'affixes respectives z_0 , z_1 , z_2 , z_3 et z_4 dans le plan complexe P muni d'un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

0,5 pt

Partie B

1. La nature du quadrilatère ABCD :

 $z_{\overrightarrow{BC}} = -2i$ et $z_{\overrightarrow{AD}} = -i$ d'où $z_{\overrightarrow{BC}} = 2z_{\overrightarrow{AD}}$ ce qui implique que (BC) et (AD) sont parallèles. $z_{\overrightarrow{AB}} = -\frac{1}{2} + i(1 - \frac{\sqrt{3}}{2})$ et $z_{\overrightarrow{CD}} = \frac{1}{2} + i(1 - \frac{\sqrt{3}}{2})$.

 $\frac{z_{\overrightarrow{AB}}}{z_{\overrightarrow{CD}}}$ non réel donc (AB) et (CD) sont sécantes.

Or (BC) et (AD) parallèles, et puis AB = CD donc ABCD est un trapèze isocèle. $\mathbf{0}, \mathbf{5}$ pt

2. r étant une rotation de centre Ω qui transforme A en D. On a : $r(\Omega) = \Omega$ et r(A) = D.

Soit f l'application de \mathbb{C} dans \mathbb{C} associée à r, alors f(z) = az + b avec $a \in \mathbb{C}^* \setminus \{1\}, b \in \mathbb{C}$ et |a| = 1.

 $r(\Omega) = \Omega$ équivaut à $f(z_{\Omega}) = z_{\Omega}$ et r(A) = D équivaut à $f(z_A) = z_D$. Ce qui donne :

$$\begin{cases} z_{\Omega} = az_{\Omega} + b \\ z_{D} = az_{A} + b \end{cases}$$

$$a = \frac{z_{D} - z_{\Omega}}{z_{A} - z_{\Omega}} = \frac{1 + i\sqrt{3}}{2},$$

$$b = z_{\Omega} - az_{\Omega} = \frac{1 - i\sqrt{3}}{2},$$

ce qui donne

$$f(z) = \frac{1 + i\sqrt{3}}{2}z + \frac{1 - i\sqrt{3}}{2}.$$

0,5 pt

3. Nature du triangle ΩAD :

On sait que r(A) = D donc $\Omega A = \Omega D = 3$, or $AD = |z_D - z_A| = \sqrt{3}$,

d'où le triangle ΩAD est isocèle en Ω .

0,5 pt

4. Soit S le centre du cercle circonscrit au triangle ΩAD .

Puisque le triangle ΩAD est isocèle en Ω donc S appartient à la médiatrice du

4 /7

 $m n^{\circ}$ 1-19 G 26 A - 20 Série S2-S2A-S4-S5 **Epreuve du** 1^{er} **groupe**

segment [AD] qui est l'axe réel, ce qui implique que

 z_S l'affixe de S est réelle et SA = SD.

On pose $z_S = x$ ($x \in \mathbb{R}$), puisque S est le centre du cercle circonscrit au triangle ΩAD on a aussi : $|z_S - z_{\Omega}| = |z_S - z_{D}|$,

ce qui implique $|x-1|=|x+\frac{1-i\sqrt{3}}{2}|$ d'où

$$(x-1)^2 = (x+\frac{1}{2})^2 + \frac{3}{4}$$

ou

$$x^{2} - 2x + 1 = x^{2} + x + \frac{1}{4} + \frac{3}{4}$$

Ce qui donne x = 0.

Donc S est confondu avec O l'origine du repère d'affixe 0.

0,5 pt

5. $u_n = (z_A)^n, n \in \mathbb{N}^*$, où z_A est l'affixe du point A.

On sait que $z_A = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}$, d'où

$$u_n = e^{i\frac{2n\pi}{3}}.$$

 u_n est réel si, et seulement si sin $\frac{2\pi}{3}n=0,$ ce qui implique :

$$\frac{2\pi}{3}n = k\pi, \ k \in \mathbb{Z}, \ n \in \mathbb{N}^*$$

ou

$$n = \frac{3}{2}k, \ k \in \mathbb{Z}, \ n \in \mathbb{N}^*.$$

En prenant k = 2, alors 3 est la valeur minimale de n pour que u_n soit un réel.

1 pt

6. La forme algébrique de u^{2019} :

$$u_{2010} = e^{i\frac{4038\pi}{3}} = e^{i1346\pi}$$

d'où

$$u_{2019} = 1.$$

0,5 pt

PROBLEME (10 points).

Partie A

Soit g la fonction numérique définie pour tout réel x par : $g(x) = -1 + xe^{\frac{x}{2}}$.

1.
$$\lim_{x \to \infty} x e^{\frac{x}{2}} = +\infty$$
 ce qui implique que $\lim_{x \to \infty} g(x) = +\infty$. 0,25 pt

On sait que $\lim_{x\to-\infty}Xe^X=0$ ce qui implique après un changement de variable que $\lim_{x\to-\infty}g(x)=-1.$ 0,5 pt

2.

$$x \to e^{\frac{x}{2}}$$
 est définie, continue et dérivable sur $\mathbb R$ par composée, $x \to xe^{\frac{x}{2}}$ est définie, continue et dérivable sur $\mathbb R$ par produit, d'où $g: x \to -1 + xe^{\frac{x}{2}}$ est définie, continue et dérivable sur $\mathbb R$ par somme.

$$g'(x) = e^{\frac{x}{2}} + \frac{1}{2}xe^{\frac{x}{2}} = e^{\frac{x}{2}}(1 + \frac{1}{2}x)$$
$$g'(x) = \frac{1}{2}e^{\frac{x}{2}}(x+2)$$

g'(x) a le même signe que x + 2:

sur]
$$-\infty$$
; $-2[g'(x) < 0$; sur] -2 ; $+\infty[g'(x) > 0$ et $g'(x) = 0$ si $x = -2$. **0,5 pt**

0,5 pt

3. g est continue et strictement croissante sur $]-2;+\infty[$, donc g est une bijection de $]-2;+\infty[$ sur $g(]-2;+\infty[)=]-1-\frac{2}{e};+\infty[$.

Or $0 \in]-1-\frac{2}{e};+\infty[$, donc l'équation g(x)=0 admet une unique solution $\alpha \in]-2;+\infty[$.

 $g(0.70) \simeq -0.007$ et $g(0.71) \simeq 0.012$, d'où $g(0.7) \times g(0.71) < 0$ donc $\alpha \in]0.70; 0.71[$. **0**, **75** pt

Sur
$$]-\infty; \alpha[g(x)<0; \text{ sur } [\alpha;+\infty[g(x)\geq 0.$$
 0, 5 pt

Partie B

1. Soit f la fonction définie pour tout réel x par : $f(x) = -x + 2 + (2x - 4)e^{\frac{x}{2}}$.

a.
$$\begin{cases} x \to e^{\frac{x}{2}} \text{ est dérivable sur } \mathbb{R} \text{ par composée,} \\ x \to x - 2 \text{ est dérivable sur } \mathbb{R}, \\ x \to (2x - 4)e^{\frac{x}{2}} \text{ est dérivable sur } \mathbb{R} \text{ par produit,} \\ \text{d'où } f: x \to -x + 2 + (2x - 4)e^{\frac{x}{2}} \text{ est dérivable sur } \mathbb{R} \text{ par somme.} \end{cases}$$

$$f'(x) = -1 + e^{\frac{x}{2}}(2 + \frac{1}{2}(2x - 4)) = -1 + e^{\frac{x}{2}}(2 + x - 2) = -1 + xe^{\frac{x}{2}},$$

d'où f'(x) = g(x) pour tout réel x.

0,5 pt

b. Donc
$$f'(x) < 0$$
 sur $]-\infty; \alpha[; f'(x) \ge 0$ sur $[\alpha; +\infty[$.

0,5 pt

c. On sait que, d'après 3) <u>Partie A</u>, $g(\alpha) = 0$ ce qui est équivalent à $\alpha e^{\frac{\alpha}{2}} = 1$ ou encore $e^{\frac{\alpha}{2}} = \frac{1}{\alpha}$ avec $\alpha \in]0.70; 0.71[$.

d'où
$$f(\alpha) = -\alpha + 2 + (2\alpha - 4)\frac{1}{\alpha}$$
.

Donc
$$f(\alpha) = 4 - \alpha - \frac{4}{\alpha}$$
.

0,5 pt

2. $0.70 \le \alpha \le 0.71$ ce qui implique $4 - \frac{4}{0.70} - 0.71 \le 4 - \frac{4}{\alpha} - \alpha \le 4 - \frac{4}{0.71} - 0.70$, d'où $-2.4 \le f(\alpha) \le -2.3$,

0,5 pt

3. a.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x + 2 + (2x - 4)e^{\frac{x}{2}} = \lim_{x \to +\infty} (-x + 2)(1 - 2e^{\frac{x}{2}}) = +\infty,$$
 0, 5 pt

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} (-1 + \frac{2}{x})(1 - 2e^{\frac{x}{2}}) = +\infty.$$
 0, 25 pt

b.
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x + 2 + (2x - 4)e^{\frac{x}{2}} = \lim_{x \to -\infty} (-x + 2)(1 - 2e^{\frac{x}{2}}) = +\infty,$$
 0.25 pt

4.
$$\lim_{x \to -\infty} (f(x) - (-x+2)) = \lim_{x \to -\infty} xe^{\frac{x}{2}} - 4e^{\frac{x}{2}} = 0$$
,

donc
$$(D): y = -x + 2$$
 est une asymptote à la courbe (\mathbf{C}_f) au voisinage de $-\infty$. 0, 5 pt 5.

7/7

 $m n^{\circ}$ 1-19 G 26 A - 20 Série S2-S2A-S4-S5 **Epreuve du** 1^{er} **groupe**7

6. 1,5 pt

7.
$$I(x) = \int_0^x (2t - 4)e^{\frac{t}{2}}dt = \left[(4t - 16)e^{\frac{t}{2}} \right]_0^x$$
 d'où
$$I(x) = (4x - 16)e^{\frac{x}{2}} + 16.$$

 $0,75\ pt$

8.
$$A = \int_{\lambda}^{0} (-x+2+x-2-(2x-4)e^{\frac{t}{2}})dx \times u.a = \int_{0}^{\lambda} (2x-4)e^{\frac{x}{2}}dx \times 4cm^{2} = \left[(4\lambda-16)e^{\frac{\lambda}{2}} + 16 \right] \times 4cm^{2}$$
,

$$A = \left[(16\lambda - 64)e^{\frac{\lambda}{2}} + 64 \right] cm^2.$$

 $0,25\ pt$

$$\lim_{\lambda \to -\infty} A = \lim_{\lambda \to -\infty} \left[(16\lambda - 64)e^{\frac{\lambda}{2}} + 64 \right] cm^2 = 64cm^2.$$

0,5 pt