数据挖掘和大数据分析

Outline |

1 Review Association Rules

2 Apriori Algorithm

3 Lift & Association Rule Example

Which knowledge is used in this example?

- A Association Rules of DM
- B Classification of DM
- Regression of DM

Frequently Bought Together

Price For All Three: \$166.83

Add all three to Cart Add all three to Wish List

Show availability and shipping details

This item: Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems) by Eibe Frank

▼ The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) by Robert Tibshirani

提交

Review Association Rules

Review Association Rules

Frequent Itemsets

Association Rules

Support(Bread → Milk) = ?

Confidence(Bread → Milk) = ?

- A 1/8 & 1/3
- B 2/8 & 2/3
- 2/8 & 1/3
- 2/8 & 2/4

Transactions	Items	
1	Bread, Jelly, Peanut, Butter	
2	Bread, Butter	
3	Bread, Jelly	
4	Bread, Milk, Butter	
5	Chips, Milk	
6	Bread, Chips	
7	Bread, Milk	
8	Chips, Jelly	

提交

Support(Milk → Bread) = ?

Confidence(Milk → Bread) = ?

A 1/8 & 1/3

B 2/8 & 2/3

2/8 & 1/3

3/8 & 1/3

Transactions	Items	
1	Bread, Jelly, Peanut, Butter	
2	Bread, Butter	
3	Bread, Jelly	
4	Bread, Milk, Butter	
5	Chips, Milk	
6	Bread, Chips	
7	Bread, Milk	
8	Chips, Jelly	

提交

Review Association Rules

Transactions	Items	
1	Bread, Jelly, Peanut, Butter	
2	Bread, Butter	
3	Bread, Jelly	
4	Bread, Milk, Butter	
5	Chips, Milk	
6	Bread, Chips	
7	Bread, Milk	
8	Chips, Jelly	

Itemset	Support
Bread	6/8
Butter	3/8
Chips	2/8
Jelly	3/8
Milk	3/8
Peanut	1/8

Bread → Milk

Support: 2/8

Confidence: 1/3

Milk → Bread

Support: 2/8

Confidence: 2/3

Searching for rules in the form of: Bread → Butter

Review Association Rules

- Support and Confidence are bounded by thresholds:
 - Minimum support o
 - Minimum confidence Φ
- \diamond A frequent (large) itemset is an itemset with support larger than σ .
- \diamond A strong rule is a rule that is frequent and its confidence is higher than Φ .
- Association Rule Problem
 - Given I, D, σ and Φ , to find all strong rules in the form of $X \rightarrow Y$.
- **❖** The number of all possible association rules is huge.
 - Brute force strategy is infeasible.
 - A smart way is to find frequent itemsets first.

DATA ANALYTICS:

DATA MINING AND BIG DATA

— Mining Rules 2

- For each k, we construct
 two sets of k -sets
 (sets of size k):
 - $C_k = candidate \ k$ -sets = those that might be frequent sets (support $\geq s$) based on information from the pass for k-1.
 - L_k = the set of truly frequent k -sets.

{2 3 5}

{2 3 5}

A_Rule	Con	
2->{3,5}	66.7%	
3->{3,5}	66.7%	
5->{2,3}	66.7%	
{3,5}->2	1	
{2,5}->3	66.7%	
{2,3}->5		
	>50%	

Note: $\{1,2,3\}\{1,2,5\}$ and $\{1,3,5\}$ not in C_3

(T1, T2, T3, T4, T5, T6, T7, T8, T9)
{{I1, I2, I5},{I2, I4},{I2, I3},{I1, I2, I4},{I1, I3},{I2, I3},{I1, I2, I3}}

C1

Items	Support
{I1}	6
{12}	7
{13}	6
{14}	2
{15}	2

 $Min_Support = 2$

- CALLORS	

4		7)
	L	ر	Z	,

Items	Support
{I1, I2}	4
{I1, I3}	4
{I1, I4}	<u>-</u>
{I1, I5}	2
{12, 13}	4
{12, 14}	2
{I2, I5}	2
{I3, I4}	<u> </u>
{13, 15}	1
{I4, I5}	<u> </u>

 $Min_Support = 2$

Do you finish the task?

Yes

No

C3

Items	Support
{I1, I2, I3}	2
{I1, I2, I5}	2
{I1, I3, I5}	1
{I1, I2, I4}	1

Min_Support = 2

 \mathbb{C}^2

Items	Support
{I1, I2, I3, I5}	1

```
C_{k}: Candidate itemset of size k
 L_{\nu}: Frequent itemset of size k
 L_1 \leftarrow \{frequent items\}
\begin{array}{l} \textbf{for (k=1; $L_{\mathbf{k}}\neq\emptyset$; $\mathbf{k}++$)} \\ & C_{k+1} \leftarrow candidate(L_k) \\ & \textbf{for each transaction t} \\ & Q \leftarrow \{c \mid c \in C_{k+1} \land c \subseteq t\} \\ & count[c] \leftarrow count[c] + 1, \quad \forall c \in Q \\ & \textbf{end for} \\ & L_{k+1} \leftarrow \{c \mid c \in C_{k+1} \land count[c] / N \geq \sigma\} \end{array} \quad \textbf{filtering}
                                                                                                                                           candidates
 end for
 \texttt{return} \ \bigcup L_{k}
```



```
from akapriori import Apriori
dataset =
[("ariocot", "apple", "cherry", "plum", "banana"), ("strawberry", "plum", "cherry"), ("persimm")
on", "peach", "banana", "apple"), ("kiwi
fruit", "apple", "pear"), ("cherry", "pear", "banana"), ("watermelon", "apple"), ("plum", "banan
a"),("pear","peach","cherry","banana","apricot"),"pineapple","apple","plum",("banana",
"plum","peach"),("grape","cherry"),("mandarin","plum"),("melon","apple","persimmon",
"plum"),("peach","cherry","apple"),("apple","mandarin","plum","persimmon")]
rules = apriori(dataset, support = 0.05, confidence = 0.3, lift = 2)
rules_sorted = sorted(rules,key=lambda x:[x[4],x[3],x[2]],reverse = True)
```


Do you finish the task?

B No

Lift

$$Lift(A \Rightarrow B) > 1$$

Lift
$$(A \Rightarrow B) = \frac{Support(A \Rightarrow B)}{Support(A) * Support(B)}$$

$$Lift(A \Rightarrow B) <= 1$$

$$Lift(A \Rightarrow B) = 1$$

Lift

莲子	商品1	商品2	商品3
1	香草威化	香蕉	狗粮
2	香蕉	面包	酸奶
3	香蕉	苹果	酸奶
4	香草威化	香蕉	生奶油
5	面包	香草威化	酸奶
6	牛奶	面包	香蕉
7	香草威化	苹果	香蕉
8	酸奶	苹果	香草威化
9	香草威化	香蕉	牛奶
10	香蕉	面包	花生酱

Confidence (Vanilla Wafer => Banana) = 4/6 = 67%

Confidence (Banana => Vanilla Wafer) = 4/8 = 50%

Association Rule Example

最佳组合

Cloud Computing Bibl

气象灾害防护指引:暴

Customers Who Bought This Item Also Bought

Cloud Computing Explained: Implementation Handbook... by John Rhoton

常常常常(17)

Cloud Computing Architected: Solution Design Handbook by John Rhoton

******** (3) \$26.37

The Cloud at Your Service by Jothy Rosenberg ****** (5) \$19.79

最佳组合

奇海平光防紫外线防雾游 泳镜2500M黑色(镜片防

奥浪均码男士泳裤8320均

¥59.00

侨丰电动气泵

¥29.00

奇海平光防紫外线防雾游 泳镜2500M蓝色(镜片防

¥49.00

YINGFA英发 OK3800AF 近视泳镜 大镜框 舒适款

¥49.00

Association Rule Example

关于抽查作业, 你的想法?

- A 需要不停补作业,老师很烦人
- **B** 督促学生按时完成作业,不至于积累很多
- <u>C</u> 没有什么意思,该抄还是抄
- □ 作业又不计分,没有必要检查

贵在坚持!