# પ્રશ્ન 1(અ) [3 ગુણ]

CCTV ના મેઇંટેનન્સ ની પ્રક્રિયા વર્ણવો.

જવાબ:

Table: CCTV મેઇંટેનન્સ પ્રક્રિયા

| સ્ટેપ | પ્રક્રિયા        | વિગત                                   |
|-------|------------------|----------------------------------------|
| 1     | કેમેરા ક્લીનિંગ  | મહિને એક વાર લેન્સ અને હાઉસિંગ સાફ કરો |
| 2     | કેબલ ઇન્સ્પેક્શન | ત્રિમાસિક નુકસાન/એક્સપોઝર તપાસો        |
| 3     | રેકોર્ડિંગ ચેક   | માસિક ડેટા સંગ્રહ અને પ્લેબેક ચકાસો    |
| 4     | ફર્મવેર અપડેટ    | ઉપલબ્ધ હોય ત્યારે સૉફ્ટવેર અપડેટ કરો   |
| 5     | એંગલ એડજસ્ટમેન્ટ | જરૂર મુજબ કેમેરા ફરીથી ગોઠવો           |

મેમરી ટ્રીક: "CCRU: ક્લીન, ચેક, રેકોર્ડ, અપડેટ"

# પ્રશ્ન 1(બ) [4 ગુણ]

મેઇંટેનન્સ ના પ્રકારો લખો અને ટૂંકમા સમજાવો.

જવાબ:

Table: મેઇંટેનન્સના પ્રકારો

| уѕіг          | વર્ણન                                 | ક્યારે કરવામાં આવે છે | ફાયદા                          |
|---------------|---------------------------------------|-----------------------|--------------------------------|
| પ્રિવેન્ટિવ   | નિયમિત તપાસ ખરાબી પહેલાં              | નિર્ધારિત સમયાંતરે    | અનપેક્ષિત ડાઉનટાઇમ ઘટાડે છે    |
| કરેક્ટિવ      | ઉપકરણ તૂટી જાય ત્યારે રિપેર           | નિષ્ફળતા પછી          | કાર્યક્ષમતા પુનઃસ્થાપિત કરે છે |
| પ્રિડિક્ટિવ   | ડેટાનો ઉપયોગ નિષ્ફળતાની આગાહી કરવા    | વિશ્લેષણ આદ્યારિત     | મેઇંટેનન્સનો સમય અનુકૂળ કરે છે |
| કન્ડિશન-બેઝ્ડ | વાસ્તવિક ઉપકરણની સ્થિતિ મોનિટર કરે છે | સ્થિતિ સૂચવે ત્યારે   | બિનજરૂરી મેઇંટેનન્સ ઘટાડે છે   |



**મેમરી ટ્રીક:** "PCPC: પ્રિવેન્ટ, કરેક્ટ, પ્રિડિક્ટ, કન્ડિશન"

### પ્રશ્ન 1(ક) [7 ગુણ]

વોશીંગ મશીનના મેઇંટેનન્સ અને ટ્રબલશૂટીંગ ની પ્રક્રિયા સમજાવો.

જવાબ:

Table: વોશીંગ મશીન મેઇંટેનન્સ અને ટ્રબલશૂટિંગ

| સમસ્યા           | સંભવિત કારણ                   | ટ્રબલશૂટિંગ સ્ટેપ્સ                                        |
|------------------|-------------------------------|------------------------------------------------------------|
| મશીન ચાલુ ન થવું | પાવર સમસ્યા, ડોર લોક          | પાવર સપ્લાય તપાસો, ડોર બરાબર બંધ છે તે ખાતરી કરો           |
| પાણી ન લરાવું    | પાણીનો પુરવઠો, ઇનલેટ વાલ્વ    | પાણીના નળ તપાસો, ઇનલેટ હોઝમાં બ્લોક તપાસો                  |
| પાણી ન નીકળવું   | બ્લોક થયેલ ફિલ્ટર, ડ્રેન પંપ  | ફિલ્ટર સાફ કરો, ડ્રેન હોઝ વળાંક માટે તપાસો                 |
| વધુ વાઇબ્રેશન    | અસંતુલિત લોડ, શિપિંગ બોલ્ટ્સ  | કપડાં પુનઃવિતરિત કરો, શિપિંગ બોલ્ટ્સ દૂર કર્યા છે તે તપાસો |
| પાણી લીકેજ       | ક્ષતિગ્રસ્ત હોઝ, ઢીલા કનેક્શન | કનેક્શન તપાસો અને કસો, ક્ષતિગ્રસ્ત હોઝ બદલો                |

#### નિયમિત મેઇંટેનન્સ:

• માસિક: ડિટરજન્ટ ડ્રોઅર અને ડોર સીલ સાફ કરો

• ત્રિમાસિક: ખાલી ગરમ સાયકલ વિનેગર/ક્લીનર સાથે ચલાવો

• **અર્ધવાર્ષિક**: હોઝમાં તિરાડો તપાસો, ફિલ્ટર સાફ કરો



મેમરી ટ્રીક: "POWER: પાવર, ઑબ્ઝર્વ, વોટર, એક્ઝામિન, રિપેર"

# પ્રશ્ન 1(ક OR) [7 ગુણ]

ડીજીટલ ટીવી ના મેઇંટેનન્સ અને ટ્રબલશૂટીંગ ની પ્રક્રિયા સમજાવો.

જવાબ:

Table: ડિજિટલ ટીવી મેઇંટેનન્સ અને ટ્રબલશૂટિંગ

| સમસ્યા            | સંભવિત કારણ                | ટ્રબલશૂટિંગ સ્ટેપ્સ                                    |
|-------------------|----------------------------|--------------------------------------------------------|
| પાવર ન આવવો       | પાવર સપ્લાય સમસ્યા         | પાવર કોર્ડ, વોલ આઉટલેટ તપાસો, જુદા સોકેટમાં પ્રયાસ કરો |
| ચિત્ર ન દેખાવું   | ઇનપુટ/સોર્સ પસંદગી         | યોગ્ય ઇનપુટ પસંદ કર્યું છે તે તપાસો, સોર્સ ઉપકરણ તપાસો |
| નબળું રિસેપ્શન    | એન્ટેના/કેબલ સમસ્યા        | કેબલ કનેક્શન તપાસો, એન્ટેના સ્થિતિ બદલો                |
| વિકૃત રંગો        | ડિસ્પ્લે સેટિંગ્સ          | પિક્ચર સેટિંગ્સ ડિફોલ્ટ પર રીસેટ કરો                   |
| રિમોટ કામ ન કરવું | બેટરી સમસ્યા, સેન્સર બ્લોક | બેટરી બદલો, IR સેન્સર બ્લોક નથી તેની ખાતરી કરો         |

#### નિયમિત મેઇંટેનન્સ:

- સાપ્તાહિક: માઇક્રોફાઇબર કપડાથી સ્ક્રીન સાવચેતીથી સાફ કરો
- માસિક: કેબલ કનેક્શન તપાસો અને કસો
- વાર્ષિક: જો ઉપલબ્ધ હોય તો ફર્મવેર અપડેટ કરો



મેમરી ટ્રીક: "SPIRE: સપ્લાય, પિક્ચર, ઇનપુટ, રિસેપ્શન, ઇલેક્ટ્રોનિક્સ"

# પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યા આપો: (૧) બ્રાઈટનેસ (૨) લ્યુમિનેન્સ (૩) ક્રોમિનેન્સ

જવાબ:

Table: ટીવી ડિસ્પ્લે ટર્મ્સ

| чε          | વ્યાખ્યા                                                     | માપન એકમ                         |
|-------------|--------------------------------------------------------------|----------------------------------|
| બ્રાઈટનેસ   | ડિસ્પ્લેમાંથી પ્રકાશની તીવ્રતાનું અનુભવાતું મૂલ્ય            | સબ્જેક્ટિવ પર્સેપ્શન (નિટ્સ)     |
| લ્યુમિનેન્સ | પ્રતિ એકમ ક્ષેત્રફળ માટે પ્રકાશની તીવ્રતાનું ઓબ્જેક્ટિવ માપન | કેન્ડેલા પ્રતિ ચોરસ મીટર (cd/m²) |
| ક્રોમિનેન્સ | વિડિઓ સિગ્નલમાં બ્રાઈટનેસથી સ્વતંત્ર રંગ માહિતી              | U અને V કોમ્પોનન્ટ્સ             |

**મેમરી ટ્રીક:** "BLC: બ્રાઈટનેસ એટલે પ્રકાશ અનુભવ, લ્યુમિનેન્સ એટલે ગણિત પ્રકાશ, ક્રોમિનેન્સ એટલે રંગ માહિતી"

### પ્રશ્ન 2(બ) [4 ગુણ]

ડીટીએચ રિસિવર નો બ્લોક ડાયેગ્રામ દોરો અને સમજાવો.

જવાબ:

#### DTH રિસિવર બ્લોક ડાયાગ્રામ:



Table: DTH રિસિવર કોમ્પોનન્ટ્સ

| કોમ્પોનન્ટ              | รเน็                                                       |
|-------------------------|------------------------------------------------------------|
| સેટેલાઈટ ડિશ            | અવકાશમાંથી સેટેલાઈટ સિગ્નલ્સ મેળવે છે                      |
| LNB (લો નોઈઝ બ્લોક)     | ઉચ્ચ-આવૃત્તિના સિગ્નલ્સને નીચી આવૃત્તિમાં પરિવર્તિત કરે છે |
| ટ્યુનર                  | યોક્કસ યેનલ ફ્રિક્વન્સી પસંદ કરે છે                        |
| ડિમો <b>ડ્યુલેટ</b> ર   | કેરિયર સિગ્નલમાંથી ડિજિટલ ડેટા કાઢે છે                     |
| MPEG (Sa)se             | ઓડિઓ/વિડિઓ ડેટા ડિકમ્પ્રેસ કરે છે                          |
| કન્ડિશનલ એક્સેસ મોડ્યુલ | સબ્સ્ક્રિપ્શન એક્સેસ નિયંત્રિત કરે છે                      |

મેમરી ટ્રીક: "SLTDM: સેટેલાઈટ કેપ્ચર કરે, LNB કન્વર્ટ કરે, ટ્યુનર સિલેક્ટ કરે, ડિમોક્યુલેટર એક્સટ્રેક્ટ કરે, MPEG ડિકોડ કરે"

# પ્રશ્ન 2(ક) [7 ગુણ]

કલર ટીવી રિસિવર નો બ્લોક ડાયેગ્રામ દોરો અને સમજાવો.

જવાબ:

કલર ટીવી રિસિવર બ્લોક ડાયાગ્રામ:



Table: કલર ટીવી કોમ્પોનન્ટ્સ અને ફંક્શન્સ

| સેક્શન            | ફંક્શન                                     | મુખ્ય કોમ્પોનન્ટ્સ                   |
|-------------------|--------------------------------------------|--------------------------------------|
| ટ્યુનર            | ઇચ્છિત ચેનલ પસંદ કરે છે                    | RF એમ્પ્લિફાયર, મિક્સર, લોકલ ઓસિલેટર |
| IF એમ્પ્લિફાયર    | ઇન્ટરમીડિયેટ ફ્રિક્વન્સી એમ્પ્લિફાય કરે છે | બેન્ડપાસ ફિલ્ટર્સ, એમ્પ્લિફાયર્સ     |
| વિડિઓ ડિટેક્ટર    | વિડિઓ સિગ્નલ એક્સટ્રેક્ટ કરે છે            | ડાયોડ ડિટેક્ટર, ફિલ્ટર્સ             |
| ક્રોમિનન્સ સેક્શન | રંગ માહિતી પ્રોસેસ કરે છે                  | બેન્ડપાસ ફિલ્ટર, કલર ડિમોડ્યુલેટર    |
| લ્યુમિનન્સ સેક્શન | બ્રાઈટનેસ માહિતી પ્રોસેસ કરે છે            | Y સિગ્નલ એમ્પ્લિફાયર                 |
| RGB મેટ્રિક્સ     | ડિસ્પ્લે માટે સિગ્નલ્સ ભેગા કરે છે         | મિક્સિંગ સર્કિટ્સ                    |
| ઓડિઓ સેક્શન       | અવાજ પ્રોસેસ કરે છે                        | સાઉન્ડ IF, ડિટેક્ટર, એમ્પ્લિફાયર     |

મેમરી ટ્રીક: "TIVACRL: ટ્યુનર ટ્યુન કરે, IF એમ્પ્લિફાય કરે, વિડિઓ ડિટેક્ટ કરે, ઓડિઓ અલગ કરે, ક્રોમિનન્સ ડિમોડ્યુલેટ કરે, RGB મિક્સ કરે, લાઈટ ડિસ્પ્લે કરે"

### પ્રશ્ન 2(અ OR) [3 ગુણ]

એલઇડી ટીવી પર ટૂંકનોંધ લખો.

જવાબ:

Table: LED ટીવી ટેક્નોલોજી

| પાસું             | વર્ણન                                                                                 |
|-------------------|---------------------------------------------------------------------------------------|
| મૂળભૂત ટેક્નોલોજી | ડિસ્પ્લે બેકલાઈટિંગ માટે લાઈટ એમિટિંગ ડાયોડ્સનો ઉપયોગ કરે છે                          |
| પ્રકારો           | એજ-લિટ (કિનારે LED), ડાયરેક્ટ-લિટ (સ્ક્રીન પાછળ LED), ફુલ-એરે (લોકલ ડિમિંગ સાથે)      |
| ફાયદા             | પાતળી પ્રોફાઇલ, ઊર્જા કાર્યક્ષમ, વધુ સારો કોન્ટ્રાસ્ટ રેશિયો, LCD કરતાં લાંબો જીવનકાળ |
| ડિસ્પ્લે પેનલ     | હજુ પણ LCD પેનલનો ઉપયોગ કરે છે; LED ફક્ત બેક્લાઈટિંગ માટે છે                          |

મેમરી ટ્રીક: "BEST: બેકલાઈટિંગ LED સાથે, એનર્જી અસરકારક, સ્લિમ ડિઝાઇન, ટ્રુ કલર્સ"

# પ્રશ્ન 2(બ OR) [4 ગુણ]

પદો ટૂંક મા સમજાવો: (૧)હ્યુ (૨) સેચ્યુરેશન

જવાબ:

Table: રંગ ગુણધર્મો

| чε         | ત્યાખ્યા                                             | રેન્જ                         | ઉદાહરણ                           |
|------------|------------------------------------------------------|-------------------------------|----------------------------------|
| હ્યુ       | વાસ્તવિક રંગ તરંગ લંબાઈ (લાલ, વાદળી,<br>લીલો, વગેરે) | કલર વ્હીલ પર 0-360<br>ડિગ્રી  | લાલ=0°, લીલો=120°,<br>વાદળી=240° |
| સેચ્યુરેશન | રંગની તીવ્રતા અથવા શુદ્ધતા (કેટલો જીવંત)             | 0-100% (ગ્રે થી શુદ્ધ<br>રંગ) | 0%=ગ્રેસ્કેલ, 100%=જીવંત રંગ     |



મેમરી ટ્રીક: "HS: હ્યુ એટલે રંગનો શેડ, સેચ્યુરેશન એટલે રંગની સ્ટ્રેન્થ"

# પ્રશ્ન 2(ક OR) [7 ગુણ]

કલર સર્કલ ડાયેગ્રામ અને ગ્રાસમેનના નિયમ ની મદદ થી એડીટીવ કલર મિક્સિંગ સમજાવો.

જવાબ:

Table: એડિટિવ કલર મિક્સિંગ પ્રિન્સિપલ્સ

| રંગનું સંયોજન      | પરિણામ   | RGB મૂલ્ચ     |
|--------------------|----------|---------------|
| લાલ + લીલો         | પીળો     | (255,255,0)   |
| લીલો + વાદળી       | સિયાન    | (0,255,255)   |
| વાદળી + લાલ        | મેજેન્ટા | (255,0,255)   |
| લાલ + લીલો + વાદળી | સફેદ     | (255,255,255) |
| કોઈ રંગ નહીં       | કાળો     | (0,0,0)       |

#### ગ્રાસમેનના નિયમો:

- નિયમ 1: કોઈપણ રંગ ત્રણ પ્રાથમિક રંગો મિશ્ર કરીને બનાવી શકાય છે
- નિયમ 2: રંગનો દેખાવ માત્ર તેના ટ્રિસ્ટિમ્યુલસ મૂલ્યો પર આધારિત છે
- નિયમ 3: એડિટિવ મિક્સિંગમાં, ટ્રિસ્ટિમ્યુલસ મૂલ્યો એકસાથે ઉમેરાય છે



#### કલર સર્કલ ડાયાગ્રામ:



મેમરી ટ્રીક: "RGB-CMY-W: લાલ, લીલો, વાદળી, સિયાન, મેજેન્ટા, પીળો, અને સફેદ બનાવે છે"

# પ્રશ્ન 3(અ) [3 ગુણ]

માઇક્રોવેવ ઓવન માટે વાયરિંગ અને સેફ્ટી ઇંસ્ટ્રક્શન લખો.

જવાબ:

Table: માઇક્રોવેવ ઓવન વાયરિંગ અને સેફ્ટી ઇન્સ્ટ્રક્શન્સ

| કેટેગરી     | સૂચનાઓ                                                             |
|-------------|--------------------------------------------------------------------|
| વાયરિંગ     | 15-20A સર્કિટ સાથે ગ્રાઉન્ડેડ આઉટલેટનો ઉપયોગ કરો                   |
| પાવર        | વોલ્ટેજ રેટિંગ સાથે મેળ ખાય તેની ખાતરી કરો (સામાન્ય રીતે 220-240V) |
| ઇન્સ્ટોલેશન | વેન્ટિલેશન માટે તમામ બાજુએ 5 સેમી જગ્યા રાખો                       |
| સેફ્ટી      | ક્યારેય ખાલી ન ચલાવો, ક્યારેય ડોર ઇન્ટરલોક્સ બાયપાસ ન કરો          |
| મેઇંટેનન્સ  | સર્વિસિંગ પહેલાં પાવર ડિસ્કનેક્ટ કરો, કેપેસિટર ડિસ્થાર્જ કરો       |

મેમરી ટ્રીક: "POWER: પ્રોપર આઉટલેટ, વાયરિંગ ચેક, એમ્પ્ટી ઓપરેશન અવોઇડેડ, રિપેર્સ બાય પ્રોફેશનલ્સ"

# પ્રશ્ન 3(બ) [4 ગુણ]

એર કંડીશનર ની કાર્યપધ્ધતિ સમજાવો.

જવાબ:

Table: એર કન્ડિશનર વર્કિંગ સાયકલ

| કોમ્પોનન્ટ       | ફંક્શન                                | પ્રક્રિયા                                                |
|------------------|---------------------------------------|----------------------------------------------------------|
| કમ્પ્રેસર        | રેફ્રિજરન્ટ પ્રેશરાઇઝ કરે છે          | ઓછા દબાણવાળી ગેસને ઉચ્ચ દબાણવાળી ગેસમાં પરિવર્તિત કરે છે |
| કન્ડેન્સર        | બહાર ગરમી છોડે છે                     | ગેસને પ્રવાહીમાં પરિવર્તિત કરે છે, ગરમી કાઢે છે          |
| એક્સપાન્શન વાલ્વ | રેફ્રિજરન્ટનો પ્રવાહ નિયંત્રિત કરે છે | પ્રવાહીનું દબાણ ઘટાડે છે                                 |
| ઇવેપોરેટર        | રૂમમાંથી ગરમી શોષે છે                 | પ્રવાહીને ગેસમાં પરિવર્તિત કરે છે, હવા ઠંડી કરે છે       |
| થર્મોસ્ટેટ       | તાપમાન નિયંત્રિત કરે છે               | કમ્પ્રેસર ઓપરેશન રેગ્યુલેટ કરે છે                        |



મેમરી ટ્રીક: "CELT: કમ્પ્રેસ ગેસ, એક્સપેલ હીટ, લોઅર પ્રેશર, ટેક ઇન હીટ"

## પ્રશ્ન 3(ક) [7 ગુણ]

વોશિંગ મશીન માટે ઇલેક્ટ્રોનિક કંટ્રોલર અને ફજી લોજીક વોશિંગ મશીન સમજાવો. વોશિંગ મશીન ના ટેકનીકલ સ્પેસીફીકેશનો પણ લખો.

જવાબ:

### Table: વોશિંગ મશીનમાં ઇલેક્ટ્રોનિક કંટ્રોલર

| કોમ્પોનન્ટ           | ફંક્શન                                                    |
|----------------------|-----------------------------------------------------------|
| માઇક્રોકંટ્રોલર      | બધા ઓપરેશન્સ નિયંત્રિત કરતું સેન્ટ્રલ પ્રોસેસિંગ યુનિટ    |
| સેન્સર્સ             | વોટર લેવલ, તાપમાન, લોડ બેલેન્સ, ડોર સ્ટેટસ ડિટેક્ટ કરે છે |
| ઇનપુટ ઇન્ટરફેસ       | પ્રોગ્રામ પસંદગી માટે બટન/ટચ પેનલ                         |
| ડિસ્પ્લે             | પ્રોગ્રામ સ્ટેટસ, બાકી સમય, એરર કોડ્સ બતાવે છે            |
| એક્સ્યુએટર ડ્રાઇવર્સ | મોટર, વાલ્વ, હીટર, પંપ નિયંત્રિત કરે છે                   |

### ફજી લોજિક વોશિંગ મશીન:

- શ્રેષ્ઠ વોશિંગ માટે આર્ટિફિશિયલ ઇન્ટેલિજન્સનો ઉપયોગ કરે છે
- લોડના આધારે વોટર લેવલ, વોશ ટાઇમ અને સ્પિન સ્પીડ એડજસ્ટ કરે છે
- યોક્કસ મૂલ્યોને બદલે અંદાજિત તર્ક વડે નિર્ણયો લે છે
- વિવિદ્ય ફેબ્રિક પ્રકારો અને મેલના સ્તરો સાથે આપોઆપ અનુકૂલન કરે છે

#### ટેકનિકલ સ્પેસિકિકેશન્સ:

- **ક્ષમતા**: 6-10 કિલો (ફ્રન્ટ લોડ), 5-8 કિલો (ટોપ લોડ)
- **એનર્જી રેટિંગ**: A+++ થી B (EU સ્ટાન્ડર્ડ)
- વોટર કન્ઝમ્પશન: સાયકલ દીઠ 40-70 લિટર
- સ્પિન સ્પી**s**: 800-1600 RPM
- સાયકલ ઓપ્શન્સ: 8-16 પ્રોગામ્સ



મેમરી ટ્રીક: "SCRAM: સેન્સર્સ ડિટેક્ટ, કંટ્રોલર પ્રોસેસ, રૂલ્સ એપ્લાઇડ, એક્ચ્યુએટર્સ ઓપરેટ, મશીન એડેપ્ટ"

# પ્રશ્ન 3(અ OR) [3 ગુણ]

સોલર પાવર સીસ્ટમના મેઇન કોમ્પોનન્ટો અને સોલર પાવર સીસ્ટમના સ્પેસીફીકેશનો લખો.

જવાબ:

Table: સોલર પાવર સિસ્ટમ કોમ્પોનન્ટ્સ

| કોમ્પોનન્ટ          | ફંક્શન                                           |
|---------------------|--------------------------------------------------|
| સોલર પેનલ્સ         | સૂર્યપ્રકાશને DC વીજળીમાં રૂપાંતરિત કરે છે       |
| ઇન્વર્ટર            | DC પાવરને AC પાવરમાં રૂપાંતરિત કરે છે            |
| બેટરી બેંક          | પછીના ઉપયોગ માટે ઊર્જા સંગ્રહિત કરે છે           |
| ચાર્જ કંટ્રોલર      | બેટરીના ઓવરચાર્જિંગને અટકાવે છે                  |
| માઉન્ટિંગ સ્ટ્રક્ચર | પેનલોને ટેકો આપે છે અને શ્રેષ્ઠ રીતે એંગલ કરે છે |

### સ્પેસિફિકેશન્સ:

• **પેનલ કેપેસિટી**: પેનલ દીઠ 250-400 વોટ

• **સિસ્ટમ સાઇઝ**: 1-10 kW (રહેણાંક)

• **બેટરી કેપેસિટી**: 100-200 Ah

• ઇન્વર્ટર એફિશિયન્સી: 90-97%

• **અપેક્ષિત જીવનકાળ**: 25-30 વર્ષ (પેનલ)

મેમરી ટ્રીક: "PIBCM: પેનલ કલેક્ટ, ઇન્વર્ટર કન્વર્ટ, બેટરી સ્ટોર, કંટ્રોલર પ્રોટેક્ટ, માઉન્ટ્સ સપોર્ટ"

## પ્રશ્ન 3(બ OR) [4 ગુણ]

રેક્રીજરેટર ની કાર્યપધ્ધતિ સમજાવો.

જવાબ:

Table: રેફ્રિજરેટર વર્કિંગ સાયકલ

| સ્ટેજ | પ્રક્રિયા   | કોમ્પોનન્ટ       | રેફ્રિજરન્ટની સ્થિતિ                         |
|-------|-------------|------------------|----------------------------------------------|
| 1     | કમ્પ્રેશન   | કમ્પ્રેસર        | ઓછા દબાણવાળી ગેસ → ઉચ્ચ દબાણવાળી ગેસ         |
| 2     | કન્ડેન્સેશન | કન્ડેન્સર કોઇલ્સ | ઉચ્ચ દબાણવાળી ગેસ → ઉચ્ચ દબાણવાળી પ્રવાહી    |
| 3     | એક્સપાન્શન  | એક્સપાન્શન વાલ્વ | ઉચ્ચ દબાણવાળી પ્રવાહી → ઓછા દબાણવાળી પ્રવાહી |
| 4     | ઇવેપોરેશન   | ઇવેપોરેટર કોઇલ્સ | ઓછા દબાણવાળી પ્રવાહી → ઓછા દબાણવાળી ગેસ      |



મેમરી ટ્રીક: "CEHE: કમ્પ્રેસ ગેસ, એક્સપેલ હીટ, હાલ્વ પ્રેશર, એક્સટ્રેક્ટ હીટ"

## પ્રશ્ન 3(ક OR) [7 ગુણ]

માઇક્રોવેવ ઓવન નો બ્લોક ડાયેગ્રામ દોરો અને સમજાવો. માઇક્રોવેવ ઓવન ના પ્રકારો, એપ્લીકેશનો અને ટેકનીકલ સ્પેસીફીકેશનો લખો.

જવાબ:

#### માઇક્રોવેવ ઓવન બ્લોક ડાયાગ્રામ:



#### માઇક્રોવેવ ઓવનના પ્રકારો:

• સોલો: ફક્ત બેઝિક હીટિંગ અને ડિફ્રોસ્ટિંગ

• ગ્રિલ: વધારાના ગ્રિલિંગ એલિમેન્ટ સાથે

• કન્વેક્શન: માઇક્રોવેવ સાથે કન્વેક્શન હીટિંગ

• **ઓવર-ધ-રેન્જ (OTR)**: વેન્ટિલેશન સિસ્ટમ સાથે

• **બિલ્ટ-ઇન**: કેબિનેટ ઇન્સ્ટોલેશન માટે ડિઝાઇન કરેલ

#### એપ્લિકેશન્સ:

• કુકિંગ: ઝડપી ભોજન તૈયારી

• રિહીટિંગ: બચેલા ખોરાક

• ડિફ્રોસ્ટિંગ: ફ્રોઝન ફૂડ

• સ્ટેરિલાઇઝેશન: નાની વસ્તુઓ

• ક્રોમર્શિયલ: ફૂડ સર્વિસ ઇન્ડસ્ટ્રી

#### ટેકનિકલ સ્પેસિફિકેશન્સ:

• કેપેસિટી: 20-40 લિટર

• **પાવર આઉટપુટ**: 700-1200 વોટ

• **પાવર કન્ઝમ્પશન**: 1100-1500 વોટ

• ક્રિક્વન્સી: 2.45 GHz

• **વોલ્ટેજ**: 220-240V AC

મેમરી ટ્રીક: "MICROWAVES: મેગ્નેટ્રોન જનરેટ કરે, ઇન્ટીરિયર રિસીવ કરે, કંટ્રોલ રેગ્યુલેટ કરે, રોટેટિંગ ટર્નટેબલ, ઓવન કેવિટી, વેવગાઇડ ડાયરેક્ટ કરે, AC પાવર આપે, વેન્ટિલેશન ફૂલ કરે, ઇલેક્ટ્રોનિક ટાઇમર, સેફ્ટી ઇન્ટરલોક્સ"

### પ્રશ્ન 4(અ) [3 ગુણ]

એમએફ પ્રિંટર અને એલસીડી પ્રોજેક્ટર ના સ્પેસીફીકેશનો લખો.

જવાબ:

Table: મલ્ટી-ફંક્શન પ્રિંટર સ્પેસિફિકેશન્સ

| સ્પેસિફિકેશન       | સામાન્ય રેન્જ                       |
|--------------------|-------------------------------------|
| પ્રિન્ટ રિઝોલ્યુશન | 600-4800 dpi                        |
| પ્રિન્ટ સ્પીડ      | 20-40 ppm (બ્લેંક), 15-30 ppm (કલર) |
| સ્કેન રિઝોલ્યુશન   | 600-1200 dpi                        |
| કનેક્ટિવિટી        | Wi-Fi, ઇથરનેટ, USB, ક્લાઉડ          |
| પેપર કેપેસિટી      | 100-500 શીટ્સ                       |

### Table: LCD પ્રોજેક્ટર સ્પેસિફિકેશન્સ

| સ્પેસિફિકેશન       | સામાન્ય રેન્જ                    |
|--------------------|----------------------------------|
| બ્રાઈટનેસ          | 2000-5000 લુમેન્સ                |
| રિઝોલ્યુશન         | XGA (1024×768) થી 4K (3840×2160) |
| કોન્ટ્રાસ્ટ રેશિયો | 2000:1 થી 100,000:1              |
| લેમ્પ લાઇફ         | 4000-8000 รตเร                   |
| કનેક્ટિવિટી        | HDMI, VGA, USB, વાયરલેસ          |

મેમરી ટ્રીક: "PSCPL: પ્રિન્ટ રિઝોલ્યુશન, સ્પીડ, કનેક્ટિવિટી, પ્રોજેક્શન બ્રાઈટનેસ, લેમ્પ લાઇફ"

# પ્રશ્ન 4(બ) [4 ગુણ]

ઇન્કજેટ પ્રિંટર નો બ્લોક ડાયેગ્રામ દોરો અને તેની કાર્યપધ્ધતિ ટૂંક મા સમજાવો

જવાબ:

### ઇન્કજેટ પ્રિંટર બ્લોક ડાયાગ્રામ:



#### ઇન્કજેટ પ્રિંટરની કાર્ચપદ્ધતિ:

- 1. **ડોક્યુમેન્ટ પ્રોસેસિંગ**: કંટ્રોલ બોર્ડ ડેટા મેળવે છે અને પ્રિન્ટર કમાન્ડમાં રૂપાંતરિત કરે છે
- 2. **પેપર લોડિંગ**: ફીડ મોટર ટેમાંથી પેપર ખેંચે છે
- 3. **પ્રિન્ટિંગ**: પ્રિન્ટહેડ પેપર પર ચાલે છે અને નાના ઇન્ક ડ્રોપલેટ્સ છોડે છે
- 4. **ડ્રોપલેટ ફોર્મેશન**: થર્મલ અથવા પિઝોઇલેક્ટ્રિક પદ્ધતિ દ્વારા ઇન્ક ડ્રોપલેટ્સને પેપર પર મોકલે છે
- 5. **પેપર એડવાન્સમેન્ટ**: પ્રિન્ટિંગ પૂર્ણ થાય ત્યાં સુધી પેપર લાઇન બાય લાઇન આગળ વધે છે

મેમરી ટ્રીક: "PIPES: પેપર ફીડ્સ, ઇન્ક ઇજેક્ટ્સ, પ્રિન્ટહેડ મૂવ્સ, ઇલેક્ટ્રોનિક કંટ્રોલ, શીટ એડવાન્સીસ"

## પ્રશ્ન 4(ક) [7 ગુણ]

ફોટોકોપીયર ની કાર્યપધ્ધતિ બ્લોક ડાયેગ્રામ સાથે સમજાવો અને તેના ટેકનીકલ સ્પેસીફીકેશનો લખો.

#### જવાબ:

#### ફોટોકોપીયર બ્લોક ડાયાગ્રામ:



#### કોટોકોપીયરની કાર્યપદ્ધતિ:

- 1. **ચાર્જિંગ**: ફોટોસેન્સિટિવ ડ્રમને યુનિફોર્મ ઇલેક્ટ્રોસ્ટેટિક ચાર્જ આપવામાં આવે છે
- 2. **એક્સપોઝર**: ઓરિજિનલ ડોક્યુમેન્ટ સ્કેન થાય છે, ડ્રમ પર પ્રકાશ પેટર્ન બનાવે છે
- 3. **ડેવેલપિંગ**: ટોનર કણો ડ્રમ પર ચાર્જ કરેલા ક્ષેત્રો તરફ આકર્ષાય છે
- 4. ટ્રાન્સફર: ટોનર ઇમેજ ડ્રમ પરથી પેપર પર ટ્રાન્સફર થાય છે
- 5. **ફ્યુઝિંગ**: હીટ અને પ્રેશરથી ટોનર કાયમી રીતે પેપર પર ફિક્સ થાય છે
- 6. **કલીનિંગ**: આગલા સાયકલ માટે ડ્રમ સાફ કરવામાં આવે છે

#### ટેકનિકલ સ્પેસિકિકેશન્સ:

• **સ્પીડ**: 20-60 પેજ પ્રતિ મિનિટ

• રિઝોલ્યુશન: 600-1200 dpi

• પેપર કેપેસિટી: 250-2000 શીટસ

• મેક્સિમમ પેપર સાઇઝ: A3/11×17 ઇંચ

• अभ रेन्४: 25-400%

• મેમરી: 512MB-2GB

• કનેક્ટિવિટી: ઇથરનેટ, USB, Wi-Fi

મેમરી ટ્રીક: "CETFC: ચાર્જ ડ્રમ, એક્સપોઝ ઇમેજ, ટ્રાન્સફર ટોનર, ફ્યુઝ પર્મેનન્ટલી, ક્લીન ડ્રમ"

### પ્રશ્ન 4(અ OR) [3 ગુણ]

CCTV ઉપર ટૂંક નોંધ લખો.

જવાબ:

Table: CCTV સિસ્ટમ ઓવરવ્યુ

| પાસું        | વર્ણન                                          |
|--------------|------------------------------------------------|
| ફુલ ફોર્મ    | ક્લોઝ્ડ-સર્કિટ ટેલિવિઝન                        |
| હેતુ         | સિક્યુરિટી મોનિટરિંગ અને સર્વેલન્સ             |
| કોમ્પોનન્ટ્સ | કેમેરા, DVR/NVR, મોનિટર્સ, કેબલ્સ, પાવર સપ્લાય |
| પ્રકારો      | એનાલોગ, IP (ડિજિટલ), વાયરલેસ, HD-CVI/TVI/SDI   |
| ફીચર્સ       | મોશન ડિટેક્શન, નાઇટ વિઝન, રિમોટ વ્યુઇંગ        |

#### કી એપ્લિકેશન્સ:

- બિલ્ડિંગ્સનું સિક્યુરિટી મોનિટરિંગ
- ટ્રાફિક મોનિટરિંગ
- રિટેલ લોસ પ્રિવેન્શન
- પબ્લિક એરિયા સર્વેલન્સ
- હોમ સિક્યુરિટી

મેમરી ટ્રીક: "SCRAM: સિક્યુરિટી મોનિટરિંગ, ક્લોઝ્ડ સર્કિટ, રેકોર્ડિંગ ફુટેજ, એક્સેસ રેસ્ટ્રિક્ટેડ, મોનિટરિંગ કન્ટિન્યુઅસ"

### પ્રશ્ન 4(બ OR) [4 ગુણ]

એલસીડી પ્રોજેક્ટર ની કાર્યપધ્ધતિ બ્લોક ડાયેગ્રામ સાથે સમજાવો

જવાબ:

#### LCD પ્રોજેક્ટર બ્લોક ડાયાગ્રામ:



#### LCD પ્રોજેક્ટરની કાર્યપદ્ધતિ:

- 1. **લાઇટ જનરેશન**: હાઇ-ઇન્ટેન્સિટી લેમ્પ સફેદ પ્રકાશ ઉત્પન્ન કરે છે
- 2. **કલર સેપરેશન**: ડિક્રોઇક મિરર્સ પ્રકાશને RGB કોમ્પોનન્ટ્સમાં વિભાજિત કરે છે

3. **ઇમેજ ફોર્મેશન**: LCD પેનલ્સ ઇનપુટ સિગ્નલના આધારે પ્રકાશને મોક્યુલેટ કરે છે

4. **રિકમ્બિનેશન**: પ્રિઝમ RGB ઇમેજને ફુલ-કલર ઇમેજમાં જોડે છે

5. **પ્રોજેક્શન**: લેન્સ સિસ્ટમ અંતિમ ઇમેજને સ્ક્રીન પર પ્રોજેક્ટ કરે છે

મેમરી ટ્રીક: "LSCIP: લાઇટ સોર્સ જનરેટ્સ, સ્પ્લિટ ઇન્ટુ કલર્સ, કંટ્રોલ વિથ LCDs, ઇમેજ કંબાઇન્ડ, પ્રોજેક્ટેડ ઓન સ્ક્રીન"

# પ્રશ્ન 4(ક OR) [7 ગુણ]

#### લેસર પ્રિંટર ની કાર્યપધ્ધતિ બ્લોક ડાયેગ્રામ સાથે સમજાવો

#### જવાબ:

#### લેસર પ્રિંટર બ્લોક ડાયાગ્રામ:



#### લેસર પ્રિન્ટિંગ પ્રોસેસ:

Table: લેસર પ્રિન્ટિંગના છ સ્ટેપ્સ

| સ્ટેપ | પ્રક્રિયા      | કોમ્પોનન્ટ       | ફંક્શન                                       |
|-------|----------------|------------------|----------------------------------------------|
| 1     | ક્લીનિંગ       | ક્લીનિંગ બ્લેડ   | ડ્રમ પરથી બાકી ટોનર દૂર કરે છે               |
| 2     | ચાર્જિંગ       | પ્રાઇમરી કોરોના  | ડ્રમને યુનિફોર્મ નેગેટિવ ચાર્જ આપે છે        |
| 3     | રાઇટિંગ        | લેસર અને મિરર    | ડ્રમ પર ઇલેક્ટ્રોસ્ટેટિક ઇમેજ બનાવે છે       |
| 4     | ડેવેલપિંગ<br>- | ડેવેલપર યુનિટ    | ડ્રમના ચાર્જ કરેલા ક્ષેત્રોમાં ટોનર લગાવે છે |
| 5     | ટ્રાન્સફરિંગ   | ટ્રાન્સફર કોરોના | ડ્રમથી પેપર પર ટોનર ખસેડે છે                 |
| 6     | ફ્યુઝિંગ       | ફ્યુઝર યુનિટ     | ટોનરને કાયમી રીતે પેપર પર પિગળાવે છે         |

### ટેકનિકલ સ્પેસિફિકેશન્સ:

• प्रिन्ट स्पीs: 20-50 ppm

• રિઝોલ્યુશન: 600-2400 dpi

• મેમરી: 128MB-1GB

• **ક્યુટી સાયકલ**: 10,000-150,000 પેજ/મહિનો

• કનેક્ટિવિટી: USB, ઇથરનેટ, Wi-Fi

**મેમરી ટ્રીક:** "CCWDTF: ક્લીન ડ્રમ, ચાર્જ યુનિફોર્મલી, રાઇટ વિથ લેસર, ડેવેલપ વિથ ટોનર, ટ્રાન્સફર ટુ પેપર, ફ્યુઝ પર્મેનન્ટલી"

## પ્રશ્ન 5(અ) [3 ગુણ]

વ્યાખ્યા આપો: (૧) પીચ (૨) રીવબર્રેશન (૩) માઇક્રોફ્રોન

જવાબ:

Table: ઓડિઓ ટર્મિનોલોજી

| чε         | વ્યાખ્યા                                                              | માપન એકમ                  |
|------------|-----------------------------------------------------------------------|---------------------------|
| પીચ        | ધ્વનિની અનુભવાતી આવૃત્તિ; ટોન કેટલો ઊંચો કે નીચો લાગે છે              | శక్త్ (Hz)                |
| રીવબર્રેશન | સ્ત્રોત બંધ થયા પછી ધ્વનિનું સાતત્ય; પરાવર્તનને કારણે થાય છે          | સેકન્ડ (RT60)             |
| માઇક્રોફોન | ટ્રાન્સડ્યુસર જે ધ્વનિ તરંગોને ઇલેક્ટ્રિકલ સિગ્નલમાં રૂપાંતરિત કરે છે | સેન્સિટિવિટી dB/mV/Pa માં |

મેમરી ટ્રીક: "PRM: પીચ એટલે ફ્રિક્વન્સી, રીવબર્રેશન એટલે રિફ્લેક્શન, માઇક્રોફોન એટલે કન્વર્ટર"

## પ્રશ્ન 5(બ) [4 ગુણ]

પીએ સિસ્ટમનો બ્લોક ડાયેગ્રામ દોરો અને સમજાવો

જવાબ:

#### PA સિસ્ટમ બ્લોક ડાયાગ્રામ:



Table: PA સિસ્ટમ કોમ્પોનન્ટ્સ

| કોમ્પોનન્ટ       | ફંક્શન                                                      |
|------------------|-------------------------------------------------------------|
| માઇક્રોફોન       | અવાજ કેપ્યર કરે છે અને ઇલેક્ટ્રિકલ સિગ્નલમાં કન્વર્ટ કરે છે |
| પ્રી-એમ્પ્લિફાયર | નબળા માઇક્રોફોન સિગ્નલને લાઇન લેવલ સુધી બૂસ્ટ કરે છે        |
| મિક્સર           | મલ્ટિપલ ઓડિઓ સોર્સ કમ્બાઇન કરે છે, લેવલ્સ એડજસ્ટ કરે છે     |
| ઇસ્વલાઇઝર        | શ્રેષ્ઠ સાઉન્ડ માટે ફ્રિક્વન્સી રિસ્પોન્સ એડજસ્ટ કરે છે     |
| પાવર એમ્પ્લિફાયર | સ્પીકર્સને ડ્રાઇવ કરવા માટે સિગ્નલ સ્ટ્રેન્થ વધારે છે       |
| સ્પીકર સિસ્ટમ    | ઇલેક્ટ્રિકલ સિગ્નલને પાછા ધ્વનિ તરંગોમાં કન્વર્ટ કરે છે     |

મેમરી ટ્રીક: "MPMEPA: માઇક્રોફોન પિક્સ, પ્રીએમ્પ મેગ્નિફાઇઝ, ઇક્વલાઇઝર એડજસ્ટ્સ, પાવર એમ્પ્લિફાયર ડ્રાઇવ્સ, ઓડિયન્સ હિયર્સ"

### પ્રશ્ન 5(ક) [7 ગુણ]

ક્રિસ્ટલ માઇક્રોફોન સમજાવો.

જવાબ:

Table: ક્રિસ્ટલ માઇક્રોફોન ખાસિયતો

| ખાસિયત              | นย์า                                               |
|---------------------|----------------------------------------------------|
| ઓપરેટિંગ પ્રિન્સિપલ | પિએઝોઇલેક્ટ્રિક ઇફેક્ટ                             |
| રચના                | મેટલ પ્લેટ્સ વચ્ચે ક્રિસ્ટલ એલિમેન્ટ (રોશેલ સોલ્ટ) |
| રિસ્પોન્સ           | હાઇ આઉટપુટ, મોડરેટ ફ્રિક્વન્સી રિસ્પોન્સ           |
| ઇમ્પીડન્સ           | ખૂબ ઊંચી (સામાન્ય રીતે > 1 MΩ)                     |
| ટકાઉપણું            | હીટ અને ભેજ પ્રત્યે સંવેદનશીલ                      |

#### **કાર્યપ્રણાલી**:

જ્યારે ધ્વનિ તરંગો ડાયાફ્રામ પર આઘાત કરે છે, ત્યારે તેઓ ક્રિસ્ટલ એલિમેન્ટ પર દબાણ ઉત્પન્ન કરે છે. પિએઝોઇલેક્ટ્રિક અસરને કારણે, ક્રિસ્ટલ મિકેનિકલ સ્ટ્રેસના પ્રમાણમાં વોલ્ટેજ ઉત્પન્ન કરે છે. આ વોલ્ટેજ ધ્વનિનું ઇલેક્ટ્રિકલ પ્રતિનિધિત્વ છે.



#### એપ્લિકેશન્સ:

- ટેલિફોન રિસીવર્સ
- એકુસ્ટિક ઇન્સ્ટ્રુમેન્ટ્સ માટે કોન્ટેક્ટ પિકઅપ્સ
- ઓછી કિંમતના રેકોર્ડિંગ ડિવાઇસીસ
- પબ્લિક એડ્રેસ સિસ્ટમ્સ

#### કાયદા અને મર્યાદાઓ:

| ફાયદા                | મર્યાદાઓ                     |
|----------------------|------------------------------|
| ઉચ્ચ આઉટપુટ વોલ્ટેજ  | નબળી ફ્રિક્વન્સી રિસ્પોન્સ   |
| બાહ્ય પાવર જરૂરી નથી | તાપમાન/ભેજ પ્રત્યે સંવેદનશીલ |
| સરળ રચના             | ઉચ્ચ ડિસ્ટોર્શન              |
| ઓછી કિંમત            | નાજુક ક્રિસ્ટલ એલિમેન્ટ      |

મેમરી ટ્રીક: "PIES: પ્રેશર અપ્લાઇડ, ઇમ્પીડન્સ હાઇ, ઇલેક્ટ્રિસિટી જનરેટેડ, સાઉન્ડ કન્વર્ટેડ"

## પ્રશ્ન 5(અ OR) [3 ગુણ]

હોમ થીયેટર સાંઉડ સિસ્ટમ નો બ્લોક ડાયેગ્રામ દોરો.

જવાલ:

હોમ થીયેટર સાઉન્ડ સિસ્ટમ બ્લોક ડાયાગ્રામ:



મેમરી ટ્રીક: "SAVS: સોર્સ પ્રોવાઇડ્સ, એમ્પ્લિફાયર પ્રોસેસીસ, વેરિયસ સ્પીકર્સ ડિલિવર, સરાઉન્ડ એક્સપીરિયન્સ ક્રિએટેડ"

## પ્રશ્ન 5(બ OR) [4 ગુણ]

ઓપ્ટિકલ સાઉન્ડ રેકોર્ડિંગ સમજાવો.

જવાબ:

Table: ઓપ્ટિકલ સાઉન્ડ રેકોર્ડિંગ પ્રક્રિયા

| સ્ટેપ | પ્રક્રિયા     | કોમ્પોનન્ટ                                                                         |
|-------|---------------|------------------------------------------------------------------------------------|
| 1     | સાઉન્ડ કેપ્ચર | માઇક્રોફોન ધ્વનિને ઇલેક્ટ્રિકલ સિગ્નલમાં રૂપાંતરિત કરે છે                          |
| 2     | મોડ્યુલેશન    | સિગ્નલ લાઇટ સોર્સની તીવ્રતા અથવા એરિયા મોક્યુલેટ કરે છે                            |
| 3     | એક્સપોઝર      | મોક્યુલેટેડ લાઇટ ફોટોગ્રાફિક ફિલ્મને એક્સપોઝ કરે છે                                |
| 4     | ડેવેલપમેન્ટ   | વૃશ્યમાન સાઉન્ડ ટ્રેક બનાવવા માટે ફિલ્મ પ્રોસેસ કરવામાં આવે છે                     |
| 5     | પ્લેબેક       | લાઇટ ટ્રેક મારફતે પસાર થાય છે, ફોટોડિટેક્ટર ઇલેક્ટ્રિકલ સિગ્નલમાં રૂપાંતરિત કરે છે |

### ઓપ્ટિકલ સાઉન્ડ ટ્રેક્સના પ્રકારો:

• વેરિએબલ ડેન્સિટી: લાઇટની તીવ્રતા બદલાય છે (ઘાટા/પાતળા ક્ષેત્રો)

• **વેરિએબલ એરિયા**: અપારદર્શક પૃષ્ઠભૂમિ સામે પારદર્શક ક્ષેત્રની પહોળાઈ બદલાય છે



મેમરી ટ્રીક: "CAREP: કેપ્ચર સાઉન્ડ, એમ્પ્લિફાય સિગ્નલ, રેકોર્ડ ઓપ્ટિકલી, એક્સપોઝ ફિલ્મ, પ્લે બેક"

## પ્રશ્ન 5(ક OR) [7 ગુણ]

લાઉડસ્પીકર ની વ્યાખ્યા આપો. લાઉડસ્પીકર ના પ્રકારો લખો અને કોઇ પણ એક લાઉડસ્પીકર ની કાર્યપધ્ધતિ સમજાવો.

#### જવાબ:

#### વ્યાખ્યા:

લાઉડસ્પીકર એ ઇલેક્ટ્રોએકુસ્ટિક ટ્રાન્સક્યુસર છે જે ઇલેક્ટ્રિકલ સિગ્નલને ધ્વનિ તરંગોમાં રૂપાંતરિત કરે છે, જેમાં ડાયાફ્રામ હલનચલન કરીને વાયુના દબાણમાં ફેરફાર કરે છે.

Table: લાઉડસ્પીકરના પ્રકારો

| язіг                 | કાર્યસિદ્ધાંત                        | ફ્રિક્વન્સી રેન્જ | એપ્લિકેશન્સ                  |
|----------------------|--------------------------------------|-------------------|------------------------------|
| ડાયનેમિક/મુવિંગ કોઇલ | ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શન          | 20Hz-20kHz        | સૌથી સામાન્ય, જનરલ પર્પંઝ    |
| ઇલેક્ટ્રોસ્ટેટિક     | પ્લેટ્સ વચ્ચે ઇલેક્ટ્રોસ્ટેટિક ફોર્સ | 100Hz-20kHz       | હાઇ-ફ્રિડેલિટી ઓડિઓ સિસ્ટમ્સ |
| પિએઝોઇલેક્ટ્રિક      | પિએઝોઇલેક્ટ્રિક ઇફેક્ટ               | 1kHz-25kHz        | ટ્વીટર્સ, અલાર્મ્સ, બઝર્સ    |
| રિબન                 | મેગ્નેટિક ફિલ્ડમાં રિબન મારફતે કરંટ  | 2kHz-50kHz        | હાઇ-ફ્રિક્વન્સી રિપ્રોડક્શન  |
| પ્લેનર મેગ્નેટિક     | કન્ડક્ટર શીટ પર મેગ્નેટિક ફોર્સ      | 30Hz-20kHz        | ઓડિયોફાઇલ હેડફોન્સ, સ્પીકર્સ |

### ડાયનેમિક/મુવિંગ કોઇલ લાઉડસ્પીકરની કાર્યપદ્ધતિ:



#### કાર્થપદ્ધતિ:

- 1. ઓડિઓ કરંટ વોઇસ કોઇલમાંથી પસાર થાય છે
- 2. કરંટ ઇલેક્ટ્રોમેગ્નેટિક ફિલ્ડ ઉત્પન્ન કરે છે
- 3. ઇલેક્ટોમેર્ગેટિક ફિલ્ડ પર્મેનન્ટ મેર્ગ્નેટ સાથે ઇન્ટરેક્ટ કરે છે
- 4. સિગ્નલ પોલેરિટીના આધારે વોઇસ કોઇલ આગળ/પાછળ ખસે છે

- 5. જોડાયેલ કોન/ડાયાફ્રામ ખસે છે, જે વાયુના દબાણમાં ફેરફાર કરે છે
- 6. વાયુના દબાણના ફેરફારો ધ્વનિ તરંગો તરીકે ફેલાય છે

### કોમ્પોનન્ટ્સ:

- **કોન/ડાયાફામ**: ધ્વનિ ઉત્પન્ન કરવા માટે વાયુને ખસેડે છે
- **વોઇસ કોઇલ**: ઓડિઓ સિગ્નલ કરંટ વહન કરે છે
- મેગ્નેટ: સ્ટેટિક મેગ્નેટિક ફિલ્ડ ઉત્પન્ન કરે છે
- **સસ્પેન્શન**: કોનને કેન્દ્રિત રાખે છે, હલનચલનની મંજૂરી આપે છે
- ફ્રેમ/બાસ્કેટ: કોમ્પોનન્ટ્સને યોગ્ય એલાઇનમેન્ટમાં રાખે છે

મેમરી ટ્રીક: "SEPVADICS: સિગ્નલ એન્ટર્સ, પ્રોક્યુસેસ વાઇબ્રેશન્સ, એક્ટિવેટ્સ ડાયાફ્રામ, ઇન કોઓર્ડીનેશન વિથ સસ્પેન્શન"