

CS 372 Lecture #30

IP Datagram Fragmentation

- Maximum Transmission Unit (MTU)
- Datagram re-assembly

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Encapsulation across multiple hops

- Whenever a datagram <u>transits</u> a physical network, it is <u>encapsulated</u> in a frame appropriate to that network.
 - Hardware frame encapsulation/un-encapsulation at the <u>link layer</u>
 - Hardware frame formats may differ
- Each router in the path from the source to the destination:

Un-encapsulates incoming datagram from frame (link layer)

Processes datagram - determines next hop (network layer)

Re-encapsulates datagram in outgoing frame (link layer)

- Datagram itself is (almost!) unchanged
 - may be <u>fragmented</u>

MTU

- Every hardware technology specification includes the definition of the maximum size of the frame data area
 - maximum transmission unit (MTU)
- Any datagram encapsulated in a hardware frame must be smaller than the MTU for that hardware
- Internet has variety of network technologies with different MTUs
 - Source doesn't know path MTU
 - <u>smallest MTU for complete route</u> to destination
 - Easy for source to limit IP datagram size to local MTU
 - link layer must pass local MTU up to transport layer for TCP segments
 - A downstream network might have smaller MTU than local network

Choosing datagram size

- IP datagrams can be much larger than hardware MTUs
 - IP TOTAL LENGTH: maximum is 65,535 bytes (including header)
- Typical hardware frames:
 - Ethernet: 1500 bytes
 - Token ring: 2048 or 4096 bytes
- One technique limit datagram size to smallest MTU of any known network
 - Problem: impedes use of newer technologies
- IPv4 uses fragmentation

Fragmentation

- Router detects <u>inbound</u> datagram that is larger than the <u>outbound</u> <u>network MTU</u>
 - Splits datagram into fragments
 - Each fragment is smaller than the MTU of the outbound network
- Each fragment is an <u>independent</u> <u>datagram</u>
 - Includes all header fields
 - All fragments have the IDENTIFIER of the original datagram
 - 3-bit FLAGS field indicates if datagram is a fragment
 - 13-bit FRAGMENT OFFSET gives order of fragment in original datagram

IP datagram format

ver	head len	service type	length	
16-bit identifier			flgs	fragment offset
time to live		upper layer	header checksum	
32 bit source IP address				
32 bit destination IP address				
Options (if any)				
data (variable length, typically a TCP or UDP segment)				

IP Fragmentation and Reassembly

Example

- 4000-byte datagram
- MTU = 1500 bytes

One large datagram becomes several smaller datagrams

fragflag: 0 = not a fragment, 1 = is a fragment

dontfrag: 0 = OK to fragment, 1 = do not fragment

morefrag: 0 = last fragment, 1 = more fragments

Re-assembly

- Reconstruction of original datagram is called re-assembly
 - performed by protocol stack at final destination
- IDENTIFICATION field in each fragment matches original datagram
 - fragments from different datagrams can arrive out of order and still be sorted out
- FLAGS field bit identifies fragment containing end of data from original datagram
- FRAGMENT OFFSET specifies re-assembly order
 - counted in 8-byte blocks

Re-assembly

- Once a datagram is fragmented, it stays fragmented until it reaches destination.
- The final destination performs the reassembly.
 - Reassembly is not done along the way, even if an outbound network has a larger MTU.
- Two advantages to having the final destination do the reassembly:
 - It reduces the amount of information needed by routers.
 - It allows routers to change dynamically.
 - It avoids re-fragmenting

Fragment loss

- IP does not guarantee datagram delivery, so fragments may be lost.
- Destination
 - Sets timer with first fragment
 - If timer expires before all fragments arrive
 - one or more fragments assumed lost
 - Destination drops entire original datagram
 - Source is assumed to retransmit entire original datagram
- Reasons for the all-or-nothing behavior:
 - There's no mechanism for a receiver to tell a sender which fragments arrived.
 - The sender does not know about any fragmentation that happened along the way.
 - Even if the sender could retransmit a single fragment, it might take a different route and be fragmented differently.

Fragmenting a fragment

- Fragment may encounter subsequent network with even smaller MTU
- Router fragments the fragment to fit local MTU
- Resulting (sub)fragments look just like original datagrams (except for size and offsets)
- No need to reassemble hierarchically
- IP does not distinguish among "original" fragmentation and subsequent fragmentations
- Re-assembly is entirely the responsibility of the protocol on the destination host

Summary

Lecture #30

- Definitions:
 - MTU
 - local MTU, network MTU, path MTU
- fragmentation, fragments, sub-fragments
- re-assembly