Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola:	

Esercizio 1

_	condere alle seguenti domande a risposta multipla, segnando TUTTE le risposte ette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).	
(a)	Sia B un insieme non vuoto e sia $L=\{S\}$ un linguaggio del prim'ordine con S simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle B,S\rangle$, l'affermazione: " S è irriflessiva"? $ \Box \ \forall x \forall y (\neg (R(x,y) \to x=y)) $ $ \Box \ \forall x \neg (R(x,x)=x) $	2 punti
	$\Box \exists x \neg R(x, x)$	
	$\Box \ \forall x \neg R(x,x)$	
(b)	Sia $L=\{h\}$ un linguaggio del prim'ordine con h simbolo di funzione	2 punti
	binario. Quali delle seguenti affermazioni sono formalizzate dalla formula	
	$\forall y \forall z (h(y,z) = h(z,y))$ relativamente alla struttura $\langle \mathbb{Q}, \cdot \rangle$?	
	□ "Il prodotto tra numeri razionali è associativo."	
	\square "Ciascun numero razionale y è divisibile per $z.$ "	
	\Box "Non esistono numeri razionali y,z tali che $y\cdot z\neq z\cdot y$."	
	□ "L'operazione di moltiplicazione tra numeri razionali è commutativa."	
(c)	Dati due insiemi D e A , indichiamo con D^A l'insieme delle funzioni da A in D . Sia B un insieme non vuoto di cardinalità finita. Stabilire quali	2 punti
	delle seguenti affermazioni sono corrette.	
	$\Box B^B$ è un insieme infinito.	
	\square \mathbb{N}^B è un insieme infinito numerabile.	
	\square B^B è certamente in biezione con $\mathcal{P}(A)$.	
	\square $B^{\mathbb{N}}$ è necessariamente più che numerabile.	
(d)	Siano C , D sottoinsiemi di B e sia $g \colon B \to B$. Stabilire quali delle seguenti	2 punti
	affermazioni sono corrette.	
	$\square C \subseteq g^{-1}[g[C]].$	
	\square Se $g[C] \subseteq g[D]$ allora si deve avere che $C \subseteq D$.	
	\square Se $C \supseteq D$ allora certamente accade che $g[C] \subseteq g[D]$.	

(e) Siano R e S formule proposizionali. Quali delle seguenti affermazioni sono corrette?

2 punti

- \Box $\neg\neg R \lor (\neg S \to \neg R)$ è una tautologia.
- □ Se S è soddisfacibile allora certamente non è una tautologia.
- $\Box \neg (S \leftrightarrow R) \not\equiv \neg (S \to R) \land \neg (R \to S)$
- \square Se S \models R, allora \neg (S $\land \neg$ R) è una tautologia.
- (f) Siano B, C, D lettere proposizionali e Q una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

В	\mathbf{C}	D	Q
\mathbf{V}	\mathbf{V}	V	\mathbf{F}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{F}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{V}	${f F}$	\mathbf{F}
${f F}$	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

- $\Box \neg C \land D \models \neg Q$
- \square $\neg Q$ non è insoddisfacibile.
- $\Box \ \neg \mathbf{Q}$ è insoddisfacibile.
- \square Q $\models \neg D$
- (g) Sia $g: \mathbb{Z} \to \mathbb{Z}$ definita da $g(y) = \frac{3y+9}{3} y$ per ogni $y \in \mathbb{Z}$. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- \square g(y) = 3 per ogni $y \in \mathbb{Z}$.
- \square q è iniettiva.
- \square g(y) = 5 per qualche $y \in \mathbb{Z}$.
- \square g è suriettiva.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{S, g, d\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario S, un simbolo di funzione binario g e un simbolo di costante d. Sia φ la formula

$$(\neg \exists z (g(z, z) = y) \to S(g(w, d), y)).$$

Consideriamo la *L*-struttura $\mathcal{N} = \langle \mathbb{N}, \leq, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists z (g(z,z) = y)[y/m,z/k]$ se e solo se m è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[y/1, z/0, w/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[y/2, z/1, w/0]$?
- 5. È vero che $\mathcal{N} \models \varphi[y/5, z/1, w/5]$?
- 6. È vero che $\mathcal{N} \models \forall y \, \varphi[y/0, z/0, w/0]$?
- 7. È vero che $\mathcal{N} \models \forall y \, \varphi[y/0, z/0, w/5]$?
- 8. È vero che $\mathcal{N} \models \exists w \forall y \, \varphi$?
- 9. È vero che $\mathcal{N} \models \forall w \forall y \, \phi$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia B un insieme non vuoto, siano C,D sottoinsiemi di B e sia $g\colon B\to B$ una funzione. Formalizzare relativamente alla struttura $\langle B,C,D,g\rangle$ mediante il linguaggio $L=\{C,D,g\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. g è suriettiva
- 2. $g \circ g$ è la funzione identica (ovvero manda ciascun elemento di B in se stesso)
- 3. $g^{-1}[C] \subseteq D$
- 4. $g[C] \subseteq D$.