Octupole Merger Window Update

Yubo Su

October 27, 2020

1 Simulation

I implemented the equations from Appendix A of Liu et. al. 2015, LK oscillations in orbital elements, and added GW dissipation to a_1 , e_1 , and apsidal precession in ω_1 . The fiducial parameters are:

$$m_{12} = 50 M_{\odot},$$
 $m_3 = 30 M_{\odot},$ $a_{1,0} = 100 \,\text{AU},$ $a_2 = 6000 \,\text{AU},$ $e_{1,0} = 10^{-3},$ $e_{2,0} = 0.6.$

I ran an example simulation using $I_{\rm tot,0}=I_{1,0}+I_{2,0}=93.5^{\circ}$, initial angles $\Omega_{1,0}=\Omega_{2,0}+\pi=\omega_{1,0}=0$, $\omega_{2,0}=0.7$ rad, and masses $m_1=30M_{\odot}$, $m_2=20M_{\odot}$, so resembling Fig. 10 of LL18. The resulting evolution of the orbit is shown in Fig. 1.

2 Population

I then swept over $I_{\text{tot},0} \in [91^{\circ},95^{\circ}]$ for mass ratios q = 1.0,0.7,0.5,0.4,0.3,0.2. I used 60 different initial inclinations, and for each initial inclination, I randomly chose $\Omega_{1,0}$, $\omega_{1,0}$, and $\omega_{2,0}$ five times. The resulting merger times are shown below in Fig. 2.

Figure 1: Fiducial simulation using same params & ICs as Fig. 10 of LL18, but with completely different results (failing to merge in 10^{10} yr). However, it bears noting that for q = 0.7, $I_{\text{tot},0} = 93.5^{\circ}$ (this simulation has q = 2/3), I got many simulations merging in a few 10^{8} yr, see Fig. 2, so it is possible this is just an abnormally long lived IC.

Figure 2: Merger times with varying q using the fidicual parameters, where every initial mutual inclination is retried 5 times with different Ω, ω . In order: q=1.0,0.7,0.5,0.4,0.3,0.2. Blue points denote systems that do not merger within a Hubble time 10 Gyr, while green points denote systems that do. The qualitative trend seems to agree with Fig. 9 of LL18, where as ϵ_{oct} is increased, the merger window grows towards larger inclinations first.