Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_MCQ

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: MCQ

1. The following function takes a singly linked list of integers as a parameter and rearranges the elements of the lists.

The function is called with the list containing the integers 1, 2, 3, 4, 5, 6, 7 in the given order. What will be the contents of the list after the function completes execution?

```
struct node {
  int value;
  struct node* next;
};

void rearrange (struct node* list) {
  struct node *p,q;
  int temp;
  if (! List || ! list->next) return;
```

```
p=list; q=list->next;
while(q) {
    temp=p->value; p->value;
    q->value=temp;p=q->next;
    q=p?p->next:0;
}

Answer
2, 1, 4, 3, 6, 5, 7

Status: Correct

Marks: 1/1
```

2. Consider the singly linked list: $15 \rightarrow 16 \rightarrow 6 \rightarrow 7 \rightarrow 17$. You need to delete all nodes from the list which are prime.

What will be the final linked list after the deletion?

Answer

15 -> 16 -> 6

Status: Correct Marks: 1/1

3. The following function reverse() is supposed to reverse a singly linked list. There is one line missing at the end of the function.

What should be added in place of "/*ADD A STATEMENT HERE*/", so that the function correctly reverses a linked list?

```
struct node {
  int data;
  struct node* next;
};
static void reverse(struct node** head_ref) {
  struct node* prev = NULL;
  struct node* current = *head_ref;
  struct node* next;
  while (current != NULL) {
```

```
next = current->next;
    current->next = prev;
    prev = current;
    current = next;
}
/*ADD A STATEMENT HERE*/
}
Answer
*head_ref = prev;
Status : Correct
```

4. Given the linked list: 5 -> 10 -> 15 -> 20 -> 25 -> NULL. What will be the output of traversing the list and printing each node's data?

Marks: 1/1

Answer

5 10 15 20 25

Status: Correct Marks: 1/1

5. Consider the singly linked list: $13 \rightarrow 4 \rightarrow 16 \rightarrow 9 \rightarrow 22 \rightarrow 45 \rightarrow 5 \rightarrow 16 \rightarrow 6$, and an integer K = 10, you need to delete all nodes from the list that are less than the given integer K.

What will be the final linked list after the deletion?

Answer

13 -> 16 -> 22 -> 45 -> 16

Status: Correct Marks: 1/1

6. Given a pointer to a node X in a singly linked list. If only one point is given and a pointer to the head node is not given, can we delete node X from the given linked list?

Answer

Status : Correct Marks: 1/1

- 7. Consider an implementation of an unsorted singly linked list. Suppose it has its representation with a head pointer only. Given the representation, which of the following operations can be implemented in O(1) time?
- i) Insertion at the front of the linked list
- ii) Insertion at the end of the linked list
- iii) Deletion of the front node of the linked list
- iv) Deletion of the last node of the linked list

Answer

I and III

Status: Correct Marks: 1/1

Marks: 1/1

8. Which of the following statements is used to create a new node in a singly linked list?

```
struct node {
  int data:
struct node * next;
typedef struct node NODE;
NODE *ptr;
Answer
ptr = (NODE*)malloc(sizeof(NODE));
Status: Correct
```

9. Linked lists are not suitable for the implementation of?

Answer

Binary search
Status: Correct

10. In a singly linked

201724

Marks : 1/1

10. In a singly linked list, what is the role of the "tail" node?

Answer

It stores the last element of the list

Status: Correct Marks: 1/1

241901124

241901124

247901124

247901124

24,001,124

241901124

247907124

24,901,124

241901124

24,901,124

24,1901,124

24,901,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Janani is a tech enthusiast who loves working with polynomials. She wants to create a program that can add polynomial coefficients and provide the sum of their coefficients.

The polynomials will be represented as a linked list, where each node of the linked list contains a coefficient and an exponent. The polynomial is represented in the standard form with descending order of exponents.

Input Format

The first line of input consists of an integer n, representing the number of terms in the first polynomial.

The following n lines of input consist of two integers each: the coefficient and the exponent of the term in the first polynomial.

The next line of input consists of an integer m, representing the number of terms in the second polynomial.

The following m lines of input consist of two integers each: the coefficient and the exponent of the term in the second polynomial.

Output Format

The output prints the sum of the coefficients of the polynomials.

Sample Test Case

```
Input: 3
    22
    3,12
    40
    22
    3 1
    40
    Output: 18
    Answer
    // You are using GCC
    #include<stdio.h>
    #include<stdlib.h>
int data1, data2;
    typedef struct node {
      struct node *link;
    } node;
    int main() {
      int n, m;
      int sum = 0;
      struct node no;
      scanf("%d", &n);
      for(int i = 0; i < n; i++) {
       scanf("%d %d", &no.data1, &no.data2);
        sum += no.data1;
```

```
scanf("%d", &m);
for(int i = 0; i < m; i++) { // Changed 'n' to 'm' here
scanf("%d %d", &no.data1 &no.data2):
       sum += no.data1;
       }
       printf("%d", sum); // Removed '&' and fixed variable name to 'sum'
       return 0;
     }
                                                                                       Marks: 10/10
     Status: Correct
```

247901124

0A190112A

247901124

24,301,124

24,901,124

24,1901,124

24,1901,124

24,001,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Arun is learning about data structures and algorithms. He needs your help in solving a specific problem related to a singly linked list.

Your task is to implement a program to delete a node at a given position. If the position is valid, the program should perform the deletion; otherwise, it should display an appropriate message.

Input Format

The first line of input consists of an integer N, representing the number of elements in the linked list.

The second line consists of N space-separated elements of the linked list.

The third line consists of an integer x, representing the position to delete.

Position starts from 1.

Output Format

The output prints space-separated integers, representing the updated linked list after deleting the element at the given position.

If the position is not valid, print "Invalid position. Deletion not possible."

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
82317
    Output: 8 3 1 7
    Answer
    #include <stdio.h>
    #include <stdlib.h>
    void insert(int);
    void display_List();
    void deleteNode(int);
   struct node {
      int data:
       struct node* next;
    } *head = NULL, *tail = NULL;
    void insert(int value) {
      struct node *new_node = (struct node*)malloc(sizeof(struct node));
      new_node->data = value;
      new node->next = NULL:
      if (head == NULL) {
         head = new_node;
tail = } else {
        tail = new_node;
         tail->next = new_node;
```

241901124

```
tail = new_node;
                                                                                24,901,124
     void display_list() {
       struct node *temp = head;
       if (temp == NULL) {
         printf("List is empty\n");
         return;
       }
       while (temp != NULL) {
                                                                                241901124
         printf("%d ", temp->data);
         temp = temp->next;
       printf("\n");
     void deleteNode(int pos) {
       if (head == NULL) {
         printf("Invalid position. Deletion not possible.\n");
         return;
       }
       struct node *temp = head;
if (pos == 1) {
    head = h
         head = head->next;
         free(temp);
         display_list();
         return;
       }
       struct node *prev = NULL;
       int count = 1;
       while (temp != NULL && count < pos) {
          prev = temp;
                                                                                241901124
                                                      241901124
cemp = te
count++;
         temp = temp->next;
```

```
printf("Invalid position. Deletion not possible.\n"); return;
if (temp == NULL) {
   prev->next = temp->next;
   if (temp == tail) {
     tail = prev;
   free(temp);
   display_list();
int main() {
   int num_elements, element, pos_to_delete;
   scanf("%d", &num_elements);
   for (int i = 0; i < num_elements; i++) {
     scanf("%d", &element);
     insert(element);
   }
   scanf("%d", &pos_to_delete);
   deleteNode(pos_to_delete);
   return 0;
 Status: Correct
                                                                      Marks: 10/10
```

241901124

241901124

241901124

241901124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Imagine you are working on a text processing tool and need to implement a feature that allows users to insert characters at a specific position.

Implement a program that takes user inputs to create a singly linked list of characters and inserts a new character after a given index in the list.

Input Format

The first line of input consists of an integer N, representing the number of characters in the linked list.

The second line consists of a sequence of N characters, representing the linked list.

The third line consists of an integer index, representing the index(0-based) after

which the new character node needs to be inserted.

The fourth line consists of a character value representing the character to be inserted after the given index.

Output Format

If the provided index is out of bounds (larger than the list size):

- 1. The first line of output prints "Invalid index".
- 2. The second line prints "Updated list: " followed by the unchanged linked list values.

Otherwise, the output prints "Updated list: " followed by the updated linked list after inserting the new character after the given index.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5
a b c d e
2
X
Output: Updated list: a b c X d e

Answer

#include <stdio.h>
#include <stdlib.h>

struct node {
    char data;
    struct node* next;
};

struct node* create_node(char data) {
    struct node* new_node = (struct node*)malloc(sizeof(struct node));
    new_node->data = data;
    new_node->next = NULL;
```

```
return new_node;
    void insert(struct node* head, int index, char value) {
      struct node* temp = head;
      int count = 0;
      while (temp != NULL && count < index) {
         temp = temp->next;
         count++;
      }
      if (temp == NULL) {
        printf("Invalid index\n");
        return;
      struct node* new_node = create_node(value);
      new_node->next = temp->next;
      temp->next = new_node;
    }
    void print_list(struct node* head) {
      struct node* temp = head;
      printf("Updated list: ");
      while (temp != NULL) {
       printf("%c ", temp->data);
         temp = temp->next;
      printf("\n");
    int main() {
      int n, index;
      char ch, new_char;
      struct node *head = NULL, *tail = NULL;
      scanf("%d", &n);
      getchar();
                                                                                 241901124
                                                     241901124
scanf("%c", &ch);
getchar()·
      for (int i = 0; i < n; i++) {
```

```
241901124
       struct node* new_node = create_node(ch);
        if (head == NULL) {
          head = new_node;
          tail = new_node;
        } else {
          tail->next = new_node;
          tail = new_node;
       }
      }
      scanf("%d", &index);
      getchar();
      scanf("%c", &new_char);
if (index < 0 || index >= n) {
        printf("Invalid index\n");
      } else {
        insert(head, index, new_char);
      print_list(head);
      return 0;
                                                                      Marks: 10/10
    Status: Correct
```

241901124

241901124

24,190,174

24,001,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

As part of a programming assignment in a data structures course, students are required to create a program to construct a singly linked list by inserting elements at the beginning.

You are an evaluator of the course and guide the students to complete the task.

Input Format

The first line of input consists of an integer N, which is the number of elements.

The second line consists of N space-separated integers.

Output Format

The output prints the singly linked list elements, after inserting them at the beginning.

241901124

241901124

Refer to the sample output for formatting specifications.

```
Sample Test Case
    Input: 5
    78 89 34 51 67
    Output: 67 51 34 89 78
    Answer
    #include <stdio.h>
#include <stdlib.h>
    struct Node {
      int data:
      struct Node* next;
    };
    void insertAtFront(struct Node** head, int value){
      struct Node* newm=(struct Node*)malloc(sizeof(struct Node));
      newm->data=value;
      newm->next=*head:
      *head=newm;
   void printList(struct Node* head){
      struct Node* temp=head;
      while(temp!=NULL){
        printf("%d ",temp->data);
        temp=temp->next;
      }
      printf("\n");
    int main(){
      struct Node* head = NULL;
int n;
      scanf("%d", &n);
```

```
for (int i = 0; i < n; i++) {
    int activity;
    scanf("%d", &activity);
    insertAtFront(&head, activity);
}

printList(head);
struct Node* current = head;
while (current != NULL) {
    struct Node* temp = current;
    current = current->next;
    free(temp);
}

return 0;
}
```

Status: Correct Marks: 10/10

241901124

241901124

247901124

241901124

24,901,124

24,901,124

24,1901,124

24,190,1,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Imagine you are tasked with developing a simple GPA management system using a singly linked list. The system allows users to input student GPA values, insertion should happen at the front of the linked list, delete record by position, and display the updated list of student GPAs.

Input Format

The first line of input contains an integer n, representing the number of students.

The next n lines contain a single floating-point value representing the GPA of each student.

The last line contains an integer position, indicating the position at which a student record should be deleted. Position starts from 1.

Output Format

After deleting the data in the given position, display the output in the format "GPA: " followed by the GPA value, rounded off to one decimal place.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 4
3.8
3.2
3.5
4.1
Output: GPA: 4.1
GPA: 3.2
GPA: 3.8
Answer
#include <stdio.h>
#include <stdlib.h>
struct node {
  float data;
  struct node *next;
void insert(struct node** head, float data) {
  struct node* newn = (struct node*)malloc(sizeof(struct node));
  newn->data = data:
  newn->next = *head;
   *head = newn;
}
void deletepos(struct node** head, int pos) {
  struct node* temp = *head;
  if_{0}(pos == 1) {
    *head = temp->next;
     free(temp);
```

```
return;
                                                                                 24,1901,124
                                                      24,1901,124
       struct node* prev = NULL;
       for (int i = 1; temp != NULL && i < pos; i++) {
          prev = temp;
         temp = temp->next;
       }
       if (temp == NULL) return;
       prev->next = temp->next;
       free(temp);
     }
     void print(struct node* head) {
                                                                                 241901124
while (temp != NULL) {
printf("GPA: % 15"
       struct node* temp = head;
         printf("GPA: %.1f\n", temp->data);
         temp = temp->next;
       }
     }
     int main() {
       struct node* head = NULL;
       int n;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         float gpa;
        scanf("%f", &gpa);
         insert(&head, gpa);
       int pos;
       scanf("%d", &pos);
       deletepos(&head, pos);
       print(head);
       return 0;
     }
                                                                          Marks: 10/10
     Status: Correct
```

241901124

241901124

241901124

241901124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 6

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is tasked with creating a program to manage student roll numbers using a singly linked list.

Write a program for John that accepts students' roll numbers, inserts them at the end of the linked list, and displays the numbers.

Input Format

The first line of input consists of an integer N, representing the number of students.

The second line consists of N space-separated integers, representing the roll numbers of students.

Output Format

The output prints the space-separated integers singly linked list, after inserting the roll numbers of students at the end.

241901124

241901124

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
    23 85 47 62 31
    Output: 23 85 47 62 31
    Answer
    #include <stdio.h>
#include <stdlib.h>
    struct Node {
      int rollNumber;
      struct Node* next;
    };
    struct Node* insertAtEnd(struct Node* head, int rollNumber) {
      struct Node* newn = (struct Node*)malloc(sizeof(struct Node));
      newn->rollNumber = rollNumber;
      newn->next = NULL;
      if(head == NULL) {
        return newn;
      struct Node* temp = head;
      while(temp->next != NULL) {
        temp = temp->next;
      temp->next = newn;
      return head:
    }
                                                    241901124
    void display(struct Node* head) {
while(temp != NULL) {
    printf("%d" **
      struct Node* temp = head;
        printf("%d ", temp->rollNumber);
```

```
temp = temp->next;
}
printf("\n");
}
                                                                       241901124
    int main() {
      struct Node* head = NULL;
      int n, roll;
      scanf("%d", &n);
display.
                                                                       24,901,124
      struct Node* temp;
      while(head != NULL) {
        temp = head;
        head = head->next;
        free(temp);
      }
      return 0;
Status : Correct
                                                                 Marks: 10/10
```

24,901,124

24,901,124

24,190,174

24,190,1,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 1_COD_Question 7

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Dev is tasked with creating a program that efficiently finds the middle element of a linked list. The program should take user input to populate the linked list by inserting each element into the front of the list and then determining the middle element.

Assist Dev, as he needs to ensure that the middle element is accurately identified from the constructed singly linked list:

If it's an odd-length linked list, return the middle element. If it's an evenlength linked list, return the second middle element of the two elements.

Input Format

The first line of input consists of an integer n, representing the number of elements in the linked list.

The second line consists of n space-separated integers, representing the elements of the list.

Output Format

The first line of output displays the linked list after inserting elements at the front.

The second line displays "Middle Element: " followed by the middle element of the linked list.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
10 20 30 40 50
Output: 50 40 30 20 10
Middle Element: 30
Answer
#include <stdio.h>
#include <stdlib.h>
struct Node {
  int data:
struct Node* next;
struct Node* push(struct Node* head, int data) {
  struct Node* newm = (struct Node*)malloc(sizeof(struct Node));
  newm->data = data;
  newm->next = head;
  return newm:
}
int printMiddle(struct Node* head) {
  struct Node* slow = head;
struct Node* fast = head:
  while(fast != NULL && fast->next != NULL) {
```

```
slow = slow->next;
         fast = fast->next->next;
      return slow->data;
    int main() {
      struct Node* head = NULL;
      int n;
      scanf("%d", &n);
      int value;
      for (int i = 0; i < n; i++) {
         scanf("%d", &value);
        head = push(head, value);
      struct Node* current = head;
      while (current != NULL) {
         printf("%d ", current->data);
         current = current->next;
      }
      printf("\n");
      int middle_element = printMiddle(head);
      printf("Middle Element: %d\n", middle_element);
      current = head;
      while (current != NULL) {
         struct Node* temp = current;
         current = current->next;
         free(temp);
      }
      return 0;
Status : Correct
                                                                         Marks : 10/10
```