ASSIGNMENT # 2 CSE356- FORMAL METHODS

DUE DATE: 13-11-2020 TOTAL MARKS: 30

Instructions:

•	Assignment should be hand written or typed on A4 page size, with front page having the following
	details. (Note: Failing to attach the front page with the following details will result in deduction of
	5 marks)

Reg. # :
Name :
Course Title :
Section :
Assignment #:
Submitted to :
Date :
(Font size 16, Times New Roman

- Questions should solve in order as given in assignment.
- No marks for late submission.
- Assignment should be well formatted.
- While solving each question, do show all intermediate steps.

Question 1: [Marks: =20]

A database of application of wholesaler can be modelled by means of the relations *price*, in_stock and *supplies*. *Price* is a relation over *products* $\times 1...30$, which models the association between prices and stock items. In_stock is a relation over $products \times N$, which models the association between stock items and the current number in stock of product. *Supplies* is a relation over *suppliers* $\times products$ which models the relation between a supplier and the product that is delivered by that supplier. If the current value of these relations are following:

```
price = {(nut, 5), (bolt, 13), (screw, 3), (board, 25), (fastener, 23)},
in_stock = {(nut, 700), (bolt, 2200), (screw, 55), (board, 0), (fastener, 600)},
supplies = {(Thomas, nut), (Thomas, bolt), (Wilks, bolt), (Wilks, screw), (Wilks, board), (Wilks, fastener), (Rogers, board), (Rogers, fastener)},
```

then what is the value of the following expressions?

```
i. {nut, bolt} < price</li>ii. dom(price > 1...15).
```

- iii. rng(price > 1...10).
- iv. $dom(supplies; (in_stock \triangleright \{0\})).$

```
v. price \oplus \{(hanger, 5), (screw, 7)\}
```

- vi. dom(supplies;(price > 5...25)).
- vii. supplies (|{Rogers, Wilson}|).
- viii. ((supplies; price) \triangleright 1...15) (|{Robinson, Rogers}|).
 - ix. $\{Thomas\} \triangleleft supplies.$
 - x. $(in_stock \triangleright \{0\}) (|\{nut, bolt\}|)$.

Question 2: [Marks: =10]

Suppose owns and can_read are relations over user \times files and their current values are

```
owns = {(Roberts, archive), (Wilson, tax), (Roberts, summary), (Jones, old)}
```

can_read = {(Roberts, archive), (Wilson, archive), (Wilson, tax), (Jones, tax), (Roberts, summary), (Jones, old), (Jones, archive)}.

Indicate which of the following predicates are true and which are false.

- i. (Jones, tax) $\in owns \land (Roberts, archive) \in can_read$.
- ii. $owns \subset can_read$.
- iii. #owns = 7.
- iv. $dom \ owns = dom \ can \ read$.
- v. Thomas $\in owns \vee Ince \in dom can_read$.
- vi. dom *owns* \cap dom *can_read* \neq {Wilson, Timms}.
- vii. dom $owns \cap \{Timms\} = \{\}$
- viii. dom *owns* \cap {Timms} \neq {Wilson, Timms}.
 - ix. $\#can_read > 7$.
 - x. $\{(Roberts, archive)\} \cup \{(Wilson, tax)\} \subset can_read.$