COMP6247: Reinforcement and Online Learning

Mahesan Niranjan

School of Electronics and Computer Science University of Southampton

Sample of Case Studies

Spring Semester 2020/21

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

1/26

Review of Recent Papers

- Li, K. and Malik, J. Learning to Optimize Neural Networks, arXiv preprint arXiv:1703.00441
- Mnih, V. et al. Human-level control... [Atari games], Nature (2015)
- Yuan, X. et al. Reinforcement Learning for Elevator Control, IFAC Conference (2008)
- Popova, M. et al. Deep reinforcement learning for de novo drug design, Science Advances (2018)
- Mao, H. et al. Resource management with deep reinforcement learning, 15th ACM Workshop on Hot Topics in Networks (2016).

Mahesan Niranjan (UoS) COMP6247 MDP/DP

2/26

Review of Recent Papers

When reviewing for the assignment... look for:

- State and action spaces
- Reward, cost function
- Representations
- Algorithm
- Empirical work to illustrate the point
- Ignore some technical / algorithmic details outside the scope of what we have studied

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

3/26

I. Li and Malik: Learning to Optimize Neural Networks

- Training algorithm:
 - Objective function f
 - Initial conditions $\mathbf{x}^{(0)}$
 - Learning curve: $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(T)}$
- We do a lot of this:
 - $f_1, f_2, ..., f_n$
- We tune hyper-parameters, choose step size, taper down learning rate...
- Can we learn from the experience of training networks, to efficiently train new networks?
- Reinforcement Learning formulation:
 - Step size selection as actions
 - Past updates as observation / state: o_t , features Ψ_t
 - Cost to minimize, rather than reward to maximize

Li and Malik: Learning to Optimize Neural Networks

Formulation

Goal: Policy that minimizes expected total cost over time (epochs)

algorithm is to learn a policy π^* that minimizes the total expected cost over time. More precisely,

$$\pi^* = \arg\min_{\pi} \mathbb{E}_{s_0, a_0, s_1, \dots, s_T} \left[\sum_{t=0}^{T} c(s_t) \right],$$

where the expectation is taken with respect to the joint dis-

Probability distribution over trajectory (state sequence)

$$q(s_0, a_0, s_1, \dots, s_T) = \int_{o_0, \dots, o_T} p_i(s_0) p_o(o_0|s_0)$$

$$\prod_{t=0}^{T-1} \pi(a_t|o_t, t) p(s_{t+1}|s_t, a_t) p_o(o_{t+1}|s_{t+1}).$$

- Policy: $\pi(a_t|o_t,t)$, conditional probability over actions
- $\mu^{\pi}(o_t)$ and $\Sigma^{\pi}(o_t)$ come from function approximators (neural networks)

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

5/26

Guided Policy Search

- Searching over large class of policies: π , probability distribution over actions (discrete / continuous)
- Idea is to maintain two policies:
 - ullet ψ Linear, learned in closed form
 - \bullet π More expressive, desired
 - In each iteration, solve ψ and use it to train π .
- Objective function as constrained optimization problem:

More precisely, GPS solves the following constrained optimization problem:

$$\min_{\theta,\eta} \mathbb{E}_{\psi} \left[\sum_{t=0}^{T} c(s_{t}) \right] \text{ s.t. } \psi \left(\left. a_{t} \right| s_{t}, t; \eta \right) = \pi \left(\left. a_{t} \right| s_{t}; \theta \right) \ \forall a_{t}, s_{t}, t$$

where η and θ denote the parameters of ψ and π respectively, $\mathbb{E}_{\rho}\left[\cdot\right]$ denotes the expectation taken with respect to the trajectory induced by a policy ρ and $\pi\left(a_{t}|s_{t};\theta\right)\coloneqq\int_{o_{t}}\pi\left(a_{t}|o_{t};\theta\right)p_{o}\left(o_{t}|s_{t}\right)^{2}$.

Guided Policy Search (cont'd)

Constrained optimization

$$\min_{\boldsymbol{\theta}, \boldsymbol{\eta}} E_{\psi} \left[\sum_{t=0}^{T} c(o_{t}) \right]$$
subject to $\psi(a_{t}|s_{t}, t; \boldsymbol{\eta}) = \pi(a_{t}|s_{t}; \boldsymbol{\theta})$

Relaxed version:

$$\min_{\theta,\eta} E_{\psi} \left[\sum_{t=0}^{T} c(o_t) \right]$$

subject to $E_{\psi}[a_t] = E_{\psi}[E_{\pi}[a_t|s_t]]$

The simpler model and the desired model to be the same (select the same action) in expectation (on average).

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

7/26

Solution

Iterative algorithm (ADMM)

Update groups of parameters

$$\begin{split} \eta &\leftarrow \arg\min_{\eta} \sum_{t=0}^{T} \mathbb{E}_{\psi} \left[c(s_{t}) - \lambda_{t}^{T} a_{t} \right] + \nu_{t} D_{t} \left(\eta, \theta \right) \\ \theta &\leftarrow \arg\min_{\theta} \sum_{t=0}^{T} \lambda_{t}^{T} \mathbb{E}_{\psi} \left[\mathbb{E}_{\pi} \left[a_{t} | s_{t} \right] \right] + \nu_{t} D_{t} \left(\theta, \eta \right) \\ \lambda_{t} &\leftarrow \lambda_{t} + \alpha \nu_{t} \left(\mathbb{E}_{\psi} \left[\mathbb{E}_{\pi} \left[a_{t} | s_{t} \right] \right] - \mathbb{E}_{\psi} \left[a_{t} \right] \right) \ \forall t, \end{split}$$
 where
$$D_{t} \left(\theta, \eta \right) \coloneqq \mathbb{E}_{\psi} \left[D_{KL} \left(\pi \left(a_{t} | s_{t}; \theta \right) \| \psi \left(a_{t} | s_{t}; t; \eta \right) \right) \right] \\ \text{and} \ D_{t} \left(\eta, \theta \right) \coloneqq \mathbb{E}_{\psi} \left[D_{KL} \left(\psi \left(a_{t} | s_{t}; t; \eta \right) \| \pi \left(a_{t} | s_{t}; \theta \right) \right) \right]. \end{split}$$

- Recall: $D_{\mathrm{KL}}(p||q) = E_p \left[\log(p/q) \right] = \int_{-\infty}^{\infty} p(x) \log(p(x)/q(x)) dx$

Setting the densities:

The algorithm assumes that $\psi\left(a_{t}|s_{t},t;\eta\right)=\mathcal{N}\left(K_{t}s_{t}+k_{t},G_{t}\right)$, where $\eta\coloneqq\left(K_{t},k_{t},G_{t}\right)_{t=1}^{T}$ and $\pi\left(a_{t}|o_{t};\theta\right)=\mathcal{N}\left(\mu_{\omega}^{\pi}(o_{t}),\Sigma^{\pi}\right)$, where $\theta\coloneqq\left(\omega,\Sigma^{\pi}\right)$ and $\mu_{\omega}^{\pi}(\cdot)$ can be an arbitrary function that is typically modelled using a nonlinear function approximator like a neural net.

Recall: linear transform; Multi-variate Gaussian!

$$\widetilde{p}(s_{t+1}|s_t, a_t, t; \xi) = \mathcal{N}(A_t s_t + B_t a_t + c_t, F_t)$$

Draw samples of trajectory (using ψ) and fit linear model above.

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

9/26

Quadratic approximation to cost function

samples of s_t drawn from the trajectory induced by ψ so that $c(s_t) \approx \bar{c}(s_t) \coloneqq \frac{1}{2} s_t^T C_t s_t + d_t^T s_t + h_t$ for s_t 's that are near the samples.

With these assumptions, the subproblem that needs to be solved to update $\eta=(K_t,k_t,G_t)_{t=1}^T$ becomes:

$$\begin{split} & \min_{\eta} \sum_{t=0}^{T} \mathbb{E}_{\tilde{\psi}} \left[\tilde{c}(s_{t}) - \lambda_{t}^{T} a_{t} \right] + \nu_{t} D_{t} \left(\eta, \theta \right) \\ & \text{s.t. } \sum_{t=0}^{T} \mathbb{E}_{\tilde{\psi}} \left[D_{KL} \left(\psi \left(\left. a_{t} \right| s_{t}, t; \eta \right) \right) \| \psi \left(\left. a_{t} \right| s_{t}, t; \eta' \right) \right) \right] \leq \epsilon, \end{split}$$

- Heavy in detail **skip**; But, But, But... Have we seen this before?
- Recall Extended Kalman Filter:
 - We had a nonlinear function
 - We had quadratic cost
 - We updated using local gradient
 - Got a Gaussian approximation going from n-1|n-1 to n|n-1

Experimental Work

• Features (to define state)

Because of the stochasticity of gradients and objective values, the state features $\Phi(\cdot)$ are defined in terms of summary statistics of the history of iterates $\left\{x^{(i)}\right\}_{i=0}^t$, gradients $\left\{\nabla\hat{f}(x^{(i)})\right\}_{i=0}^t$ and objective values $\left\{\hat{f}(x^{(i)})\right\}_{i=0}^t$. We define the following statistics, which we will refer to as the average recent iterate, gradient and objective value respectively:

•
$$\overline{x^{(i)}} := \frac{1}{\min(i+1,3)} \sum_{j=\max(i-2,0)}^{i} x^{(j)}$$

•
$$\overline{\nabla \hat{f}(x^{(i)})} \coloneqq \frac{1}{\min(i+1,3)} \sum_{j=\max(i-2,0)}^{i} \nabla \hat{f}(x^{(j)})$$

•
$$\hat{f}(x^{(i)}) := \frac{1}{\min(i+1,3)} \sum_{j=\max(i-2,0)}^{i} \hat{f}(x^{(j)})$$

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

11/26

Results

Review:

- Show that you understand the framework
- Disuss if the results are persuasive
- Enjoy learning about the algorithm

II. Mnih, V. et al. Human-level control... [Atari games]

- Long history of computer games and machine learning
- Driven more by artificial intelligence than by statistical pattern recognition
- Sutton and Barto:
 - Samuel's checker player
 - Tesauro's Backgammon player
- Recent headline-grabbing developments in Atari Games (this paper), Go, Chess etc.
- What we are familiar with:

$$Q^*(s, a) = \max_{\pi} E \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... | s_t = s, a_t = 1, \pi \right]$$

- Q(s, a) represented by a function approximator (e.g. RBF in the mountain car problem)
- Temporal difference error between Q(s, a) and $r + \gamma \max_{a'} Q(s', a')$
- Issues with scaling up; two solutions in this paper (experience replay and updating frequency)

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

13/26

II. Mnih, V. et al. Human-level control... [Atari games] (cont'd)

Architecture

II. Mnih, V. et al. Human-level control... [Atari games] (cont'd)

Results

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

15/26

II. Mnih, V. et al. Human-level control... [Atari games] (cont'd)

Visualization

Mahesan Niranjan (UoS)

Experience Replay

II. Mnih, V. et al. Human-level control... [Atari games] (cont'd)

- Agent's experience at time t: $e_t = \{s_t, a_t, r_t, s_{t+1}\}$
- Dataset $D_t = \{e_1, e_2, ..., e_t\}$
- Sample minibatches (subsets) from stored data: U(D)
- Minimize objective function:

$$L_i(\theta_i) = E_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right) \right]$$

- Note:
 - iteration i, time t
 - θ_i^- Network parameters when we took the move
 - θ_i variable with respect to which we minimize

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

17/26

II. Mnih, V. et al. Human-level control... [Atari games] (cont'd)

When summarising:

- Note details in Supplementary material (style of journal)
- Core algorithmic setting
- How persuasive are results claimed
- What do they find by visualizing what the models learned (tSNE similar to PCA, NMF)

Mahesan Niranjan (UoS)

III: Yuan, X. et al. Reinforcement Learning for Elevator Control

- Sum of rewards: $R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}$
- lacktriangle Bellman: $Q^*(x,u) \sum_{x' \in \mathcal{X}} f(x,u,x') \left[\rho(x,u,x') + \gamma \max_{u' \in \mathcal{U}} Q^*(x',u') \right]$
- Algorithms (good revision material):

Table 1. The Q-value iteration algorithm

```
\begin{aligned} & \textbf{Input } f, \rho, \gamma, \text{ convergence threshold } \theta \\ & \textbf{Initialize } Q_0 \text{ arbitrarily, e.g. } Q_0(x,u) = 0, \text{ for all } x \in X, u \in U \\ & k = 0 \\ & \textbf{Repeat} \\ & \textbf{For each } x \in X, u \in U \\ & Q_{k+1}(x,u) = \\ & \sum_{x' \in X} f(x,u,x')[\rho(x,u,x') + \gamma \max_{u' \in U} Q_k(x',u')] \\ & \underline{\textbf{EndFor}} \\ & k = k+1 \\ \textbf{Until } \max_{x,u} |Q_k(x,u) - Q_{k-1}(x,u)| < \theta \\ & \textbf{Output } \pi^*(x) = \arg\max_{u \in U} Q_k(x,u) \quad \forall x \in X \end{aligned}
```

```
 \begin{aligned} & \textbf{Input } \gamma, \, \alpha_t, \, \text{exploration parameters (e.g., } \varepsilon, \, \tau) \\ & \textbf{Initialize } \, Q_0 \, \text{arbitrarily, e.g.} \, Q_0(x,u) = 0, \, \text{for all } x \in X, \, u \in U \\ & \textbf{Initialize } \, x_0 \\ & \textbf{Repeat } \, \text{at each time step } t \text{:} \\ & \textbf{Choose } \, u_t \, \text{in } x_t \, \text{using policy derived from } Q_t \\ & & \text{(e.g. Boltzmann)} \\ & \textbf{Apply } \, u_t, \, \text{observe } \, r_{t+1}, \, x_{t+1} \\ & Q_{t+1}(x_t, u_t) = Q_t(x_t, u_t) + \\ & \alpha_t[r_{t+1} + \gamma \max_{u \in U} Q_t(x_{t+1}, u) - Q_t(x_t, u_t)] \end{aligned}
```

- Q Learning: $Q_{t+1}(x_t, u_t) = Q_t(x_t, u_t) + \alpha_t [r_{t+1} + \gamma \max_{u \in \mathcal{U}} Q_t(x_{t+1}, u) Q_t(x_t, u_t)]$
- Convergence; exploration

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

19/26

Elevator

- System Description
 - The number of elevators (positive integer). In general, there are several elevators in elevator systems. In order to simplify the problem, we assume here that the system consists of a single elevator.
 - The number of floors (positive integer). Set here to 5.
 - The height of a floor (positive real). Set here to 6 m.
 - The elevator speed (positive real). Here we set it to $3 \,\mathrm{m/s}$. This means the elevator takes $2 \,\mathrm{s}$ to travel between two adjacent floors.
 - The elevator capacity (positive integer). Set here to 4 passengers.
 - The stop time, i.e., the sum of the intervals needed by the passengers to enter and exit the elevator on a floor. The stop time is set to 2s. The fact that the

Elevator

What you should look for in summarising

StateSpace

The state space of the elevator system is discrete and has 7 dimensions. The state signal x is composed of the following variables:

$$x = [c_1, c_2, c_3, c_4, p, v, o]^T.$$
(8)

where:

- c_i, i = 1,2,3,4: Binary values, representing call requests (call flags) on each floor i. There is no call request on the ground floor in the down-peak traffic scenario.
- p: Discrete elevator position, taking values in {0, 1, 2, 3, 4}.
- v: Discrete vertical velocity taking values in $\{-3, 0, 3\}$ m/s.
- o: Discrete elevator occupancy, taking values in {0,1,2,3,4}. The number 0 means no passengers are inside the elevator; the number 4 means that the elevator is at its maximum capacity.

The cardinality of the state space is:

$$2^4 \cdot 5 \cdot 3 \cdot 5 = 1200 \tag{9}$$

- Discrete action space; {-1, 0, 1}
- Constraints on actions
- Reward: $-\sum_{i=1}^{4} c_i 0$; (call requests and occupancy)
- Passenger arrival/departure models to simulate;
- Evaluation

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

21/26

IV: Popova, M. *et al.* Deep reinforcement learning for *de novo* drug design

- Biology, chemistry offer challenging machine learning problems
- Easy to construct molecules (synthetic chemistry)
- Difficult to experimentally vaildate their properties
- Learn from molecules whose properties are known; test new ones.
- Drug design: Molecular structure, representation, function prediction

Drug design (cont'd)

A generative model and a predictive model!

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

23/26

Drug Design (cont'd)

What to look for in the paper

- States as representation of molecules as strings
- Terminal states when length T is reached
- Reward from the predictive model for a string of lenth T
- Policy $p(a_t|s_{t-1})$ enables the string to grow (the generative model)
- Policy network: $J(\Theta) = \sum_{s_T \in S^*} p_{\Theta}(s_T) r(s_T)$
- Solved by Policy Gradient methods (Section 13.1, Sutton and Barto)
 - $\pi(a|s,\theta)$, diffrentiable function of θ
 - REINFORCE class of algorithms

REINFORCE Algorithm

Monte Carlo Policy Gradient

- Cost function $J(\theta)$ and its gradient $\nabla J(\theta)$
- Stochastic gradient descent $\theta_{t+1} = \theta_t + \alpha, \widehat{\nabla J(\theta)}$
- Parameterize the policy (softmax):

$$\pi(a|s,\theta) = \frac{\exp(h(s,a,\theta))}{\sum_b \exp(h(s,b,\theta))}$$

- Policy gradient theorem ** skip **
- Algorithm: Eqn 13.7 & 13.8 of S & B.
- Monte Carlo: run multiple episodes and average (as seen before)

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

25/26

IV: Mao, H. et al. Resource management

- Captures ideas we discussed around the elevator and drug design problems.
- Optimize allocation of jobs to clusters in computing
 - Optimization problems
 - Gradient descent on (parameterized) policy
- See how the REINFORCE algorithm is specified in Eqn 2

$$\theta \leftarrow \theta + \alpha \sum_{t} \nabla_{\theta} \log \pi_{\theta}(s_{t}, a_{t}) v_{t}$$

- Sample multiple trajectories and estimate reward v_t
- Look for simulation details and performance in review.