The directed homotopy hypothesis ACCAPT 2016, Aalborg University

Jérémy Dubut (LSV, ENS Cachan, France) joint work with Eric Goubault (LIX, Ecole Polytechnique, France) Jean Goubault-Larrecq (LSV, ENS Cachan, France)

13th April, 2016

ı

Grothendieck's homotopy hypothesis

Homotopy hypothesis: the motto

« Topological spaces are the same as ∞ -groupoids. »

Topological spaces as ∞-groupoids

 ∞ -category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

```
objects = points

1-cells = paths (= 0-homotopies)

2-cells = (1-)homotopies

:

n-cells = (n-1)-homotopies
```

 ∞ -groupoid = ∞ -category whose n-cells are invertible up-to (n+1)-cells

Here : n-homotopies are invertible up-to (n+1)-homotopies

Ex : a path γ has $t\mapsto \gamma(1-t)$ as inverse up-to homotopy

But what are exactly ∞ -groupoids?

Many ways to « model » ∞ -groupoids

 ∞ -groupoids = Kan complexes

n-cells = n-simplices

n-cells have inverse up-to (n+1)-cells = n-horns have (n+1)-fillers

Singular simplicial complex $Sing : Top \longrightarrow Kan (\subseteq Simp)$

But what are exactly ∞ -groupoids?

Many ways to « model » ∞ -groupoids

 ∞ -groupoids = Kan complexes

n-cells = n-simplices

n-cells have inverse up-to (n+1)-cells = n-horns have (n+1)-fillers

Singular simplicial complex $Sing : Top \longrightarrow Kan (\subseteq Simp)$

A formal statement of the homotopy hypothesis

Theorem [Quillen 67]:

The Quillen-Serre model structure on topological spaces is Quillen-equivalent to the Kan-Quillen model structure on simplicial sets.

A few consequences:

- a topological space is weakly homotopy equivalent to the geometric realization of its singular simplicial complex (and so to a CW-complex)
- two topological spaces are weakly homotopy equivalent iff the geometric realization of their singular simplicial complex are weakly homotopy equivalent

A formal statement of the homotopy hypothesis

Theorem [Quillen 67]:

The Quillen-Serre model structure on topological spaces is Quillen-equivalent to the Kan-Quillen model structure on simplicial sets.

A few consequences:

- a topological space is weakly homotopy equivalent to the geometric realization of its singular simplicial complex (and so to a CW-complex)
- two topological spaces are weakly homotopy equivalent iff the geometric realization of their singular simplicial complex are weakly homotopy equivalent

« Comparing topological spaces up-to weak homotopy equivalence is the same as comparing ∞ -groupoids (up-to weak equivalence in the suitable model structure) »

Ш

A first proposal of directed homotopy hypothesis

Topological spaces as ∞-groupoids

 ∞ -category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

```
objects = points

1-cells = paths (= 0-homotopies)

2-cells = (1-)homotopies

:

n-cells = (n-1)-homotopies
```

 ∞ -groupoid = ∞ -category whose n-cells are invertible up-to (n+1)-cells

Here : n-homotopies are invertible up-to (n+1)-homotopies

Ex : a path γ has $t\mapsto \gamma(1-t)$ as inverse up-to homotopy

Directed topological spaces as ∞-groupoids

 ∞ -category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

```
objects = points

1-cells = dipaths (= 0-dihomotopies)

2-cells = (1-)dihomotopies

:

n-cells = (n-1)-dihomotopies
```

 ∞ -groupoid = ∞ -category whose n-cells are invertible up-to (n+1)-cells

Here : n-dihomotopies are invertible up-to (n+1)-dihomotopies

Directed topological spaces as ∞-groupoids

 ∞ -category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

```
objects = points

1-cells = dipaths (= 0-dihomotopies)

2-cells = (1-)dihomotopies

:

n-cells = (n-1)-dihomotopies
```

 ∞ -groupoid = ∞ -category whose n-cells are invertible up-to (n+1)-cells

Here : n-dihomotopies are invertible up-to (n+1)-dihomotopies

True for $n \ge 1$, but dipaths are not invertible up-to dihomotopy!

Directed topological spaces as $(\infty,1)$ -categories

 ∞ -category = objects + 1-cells (= morphisms between objects) + 2-cells (= morphisms between 1-cells) + ...

```
\begin{array}{lll} \text{objects} &=& \text{points} \\ \text{1-cells} &=& \text{dipaths} \; (= \, \text{0-dihomotopies}) \\ \text{2-cells} &=& (1-) \\ \text{dihomotopies} \\ &\vdots \\ \text{n-cells} &=& (\text{n-1}) \\ \text{-dihomotopies} \end{array}
```

 $(\infty,1)$ -category = ∞ -category whose n-cells are invertible up-to (n+1)-cells for $n \ge 1$

Here : n-dihomotopies are invertible up-to (n+1)-dihomotopies for $n \ge 1$

Directed homotopy hypothesis: the motto?

« Directed topological spaces are the same as $(\infty,1)$ -categories. »

But what are exactly $(\infty, 1)$ -categories?

```
Many ways to « model » (\infty, 1)-categories :

• quasi-categories (= weak Kan complexes) [Joyal]

• enriched categories in Kan complexes [Bergner]
```

```
\begin{array}{rcl} (\infty,1)\text{-categories} &=& \text{enriched categories in Kan complexes}\\ & \text{objects} &=& \text{objects}\\ & \text{n-cells} &=& (\text{n-1})\text{-simplices of Hom-objects}\\ & \text{n-cells have inverse} &=& (\text{n-1})\text{-horns of Hom-objects}\\ & \text{up-to (n+1)-cells for } n \geq 1 \end{array}
```

. . .

Weak equivalences of $(\infty, 1)$ -categories

Weak equivalence from C to D = enriched functor F from C to D such that :

• for every objects x, y of C, the simplicial maps

$$F_{x,y}: \mathcal{C}(x,y) \longrightarrow \mathcal{D}(F(x),F(y))$$

induces a weak homotopy equivalence between the geometric realization (i.e. is a weak equivalence in the Kan-Quilled model structure)

• F induces an equivalence of categories between the categories of components $\pi_0(\mathcal{C})$ and $\pi_0(\mathcal{D})$

Category of components $\pi_0(\mathcal{C}) =$

- objects = objects of C
- morphisms from x to y = 0-simplices of C(x, y) up-to 1-simplices

One direction of a directed homotopy hypothesis?

Singular trace category $\mathbb{T}: dTop \longrightarrow KanCat \subseteq SimpCat$ [Porter] $\mathbb{T}(X) = \text{simplicially enriched category such that }:$

- objects = points of X
- Hom-object from x to $y = \text{singular simplicial complex of } \overrightarrow{\mathcal{T}}(X)(x,y)$

« Can we compare (weak) dihomotopy types of directed spaces by their singular trace categories (up-to weak equivalence)? »

Not yet: the case of the directed segment

In any reasonable equivalence, \overrightarrow{I} is equivalent to a point *

 $\mathbb{T}(\overrightarrow{I})$ and $\mathbb{T}(*)$ are not weakly equivalent :

- for x < y, $\overrightarrow{T}(\overrightarrow{I})(y,x)$ is empty while $\overrightarrow{T}(*)(*,*)$ is not
- their category of components are not equivalent (one has empty Hom-sets while the other has not)

Ш.

The need for equivalences in directed algebraic topology

In the litterature...

In the litterature...

 \dots there are ((way) too) many equivalences of directed spaces \dots

In the litterature...

... there are ((way) too) many equivalences of directed spaces ...

... too bad, there will be many others at the end of this talk.

The simplest one

X and Y are dihomotopy equivalent iff there are dmaps $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ such that $f \circ g$ and $g \circ f$ are dihomotopic to identities.

 $Ex : \overrightarrow{I}$ is dihomotopy equivalent to a point

Ex:

The Fahrenberg's matchbox is dihomotopy equivalent to a point while it should not.

Why?

Reminder on classical algebraic topology

A (strong) deformation retract of X on a subspace A is a continuous map

$$H: X \longrightarrow P(X) = [[0,1] \rightarrow X]$$

such that :

- for every $x \in X$, H(x)(0) = x;
- for every $a \in A$, $t \in [0,1]$, H(a)(t) = a;
- for every $x \in X$, $H(x)(1) \in A$.

Theorem:

Two topological spaces are homotopy equivalent iff there is a span of deformation retracts between them.

Definition in directed algebraic topology

A future deformation retract of X on a sub-dspace A is a continuous map

$$H:X\longrightarrow \overrightarrow{P}(X)$$

such that:

- for every $x \in X$, H(x)(0) = x;
- for every $a \in A$, $t \in [0,1]$, H(a)(t) = a;
- for every $x \in X$, $H(x)(1) \in A$;
- for every $t \in [0,1]$, the map $H_t : x \mapsto H(x)(t)$ is a dmap;
- for every δ of A from z to $H_1(x)$ there is a dipath γ of X from y to x with $H_1(y) = z$ and $H_1 \circ \gamma$ dihomotopic to δ .

Definition:

Two dspaces are dihomotopy equivalent iff there is a zigzag of future and past deformation retracts between them.

Something's wrong, isn't it?

There is a future deformation retract from the matchbox to its upper face (and so to its upper corner)!

Something's wrong, isn't it?

There is a future deformation retract from the matchbox to its upper face (and so to its upper corner)!

Problem : the dipaths along which we deform do not preserve the fact that dipaths are not dihomotopic.

Inessential dipaths

Idea from [Fajstrup, Goubault, Haucourt, Raussen] for category of components.

The set $\Im(X)$ of inessential dipaths of X is the largest set of dipaths such that :

- it is closed under concatenation and dihomotopy;
- for every $\gamma \in \mathfrak{I}(X)$ from x to y, for every $z \in X$ such that $\overrightarrow{P}(X)(z,x)$, the map $\gamma \star _ : \overrightarrow{P}(X)(z,x) \longrightarrow \overrightarrow{P}(X)(z,y)$ $\delta \mapsto \gamma \star \delta$ is a homotopy equivalence;
- symmetrically for $\star \gamma$;
- $\mathfrak{I}(X)$ has the right and left Ore condition modulo dihomotopy :

Ex: ϵ is not inessential in the matchbox

Better definition in directed algebraic topology

A future deformation retract of X on a sub-dspace A is a continuous map

$$H: X \longrightarrow \mathfrak{I}(X)$$

such that:

- for every $x \in X$, H(x)(0) = x;
- for every $a \in A$, $t \in [0,1]$, H(a)(t) = a;
- for every $x \in X$, $H(x)(1) \in A$;
- for every $t \in [0,1]$, the map $H_t : x \mapsto H(x)(t)$ is a dmap;
- for every δ of A from z to $H_1(x)$ there is a dipath γ of X from y to x with $H_1(y) = z$ and $H_1 \circ \gamma$ dihomotopic to δ .

Definition:

Two dspaces are dihomotopy equivalent iff there is a zigzag of future and past deformation retracts between them.

A first invariance

Theorem [Dubut 16]:

If two dspaces are dihomotopically equivalent, then their natural homology are bisimilar.

Since the natural homology of the matchbox is not bisimilar to the one of a point [Dubut, Goubault, Goubault-Larrecq 15], the matchbox cannot be dihomotopy equivalent to a point.

IV.

A new proposal of directed homotopy hypothesis

The symptomatic case of the directed segment

In any reasonable equivalence, \overrightarrow{I} is equivalent to a point *

 $\mathbb{T}(\overrightarrow{I})$ and $\mathbb{T}(*)$ are not weakly equivalent :

- for x < y, $\overrightarrow{T}(\overrightarrow{I})(y,x)$ is empty while $\overrightarrow{T}(*)(*,*)$ is not
- their category of components are not equivalent (one has empty Hom-sets while the other has not)

The symptomatic case of the directed segment

In any reasonable equivalence, \overrightarrow{I} is equivalent to a point *

 $\mathbb{T}(\overrightarrow{I})$ and $\mathbb{T}(*)$ are not weakly equivalent :

- for x < y, $\overrightarrow{T}(\overrightarrow{I})(y,x)$ is empty while $\overrightarrow{T}(*)(*,*)$ is not
- their category of components are not equivalent (one has empty Hom-sets while the other has not)

Empty path spaces have a particular behavior that must be studied with care

Reminder on enriched categories and functors

Let (V, U, \otimes) be a monoidal category.

A (small) enriched category $\mathcal C$ on V consists in the following data :

- a set of objects Ob(C)
- for every pair of objects A, B, an object $\mathcal{C}(A,B)$ of V
- for every triple of objects A, B, C, a morphism in V

$$\circ_{A,B,C}: \mathcal{C}(A,B)\otimes\mathcal{C}(B,C)\longrightarrow\mathcal{C}(A,C)$$

for every object A, a morphism in V

$$u_A: U \longrightarrow \mathcal{C}(A,A)$$

satisfying some coherence diagrams (associativity, unity).

An enriched functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ on V consists in the following data :

- a function $F: Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D})$;
- ullet for every pair of objects A, B of C, a morphism in V

$$F_{A,B}: \mathcal{C}(A,B) \longrightarrow \mathcal{D}(F(A),F(B))$$

satisfying some coherence diagrams (composition, unity).

A better definition to handle emptiness

Let (V, U, \otimes) be a monoidal category.

A (small) partially enriched category ${\mathcal C}$ on V consists in the following data :

- a preordered set of objects $Ob(\mathcal{C})$, \leq
- for every pair of objects $A \leq B$, an object $\mathcal{C}(A, B)$ of V
- for every triple of objects $A \leq B \leq C$, a morphism in V

$$\circ_{A,B,C}: \mathcal{C}(A,B)\otimes\mathcal{C}(B,C)\longrightarrow\mathcal{C}(A,C)$$

for every object A, a morphism in V

$$u_A: U \longrightarrow \mathcal{C}(A,A)$$

satisfying some coherence diagrams (associativity, unity), compatible with \leq .

An enriched functor $F:\mathcal{C}\longrightarrow\mathcal{D}$ on V consists in the following data :

- a monotonic function $F: Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D})$;
- for every pair of objects $A \leq B$ of C, a morphism in V

$$F_{A,B}: \mathcal{C}(A,B) \longrightarrow \mathcal{D}(F(A),F(B))$$

satisfying some coherence diagrams (composition, unity), compatible with \leq .

From dTop to PeCat(HoTop): the dipath category

 $\mathbb{P}(X) = \text{partially enriched category on } HoTop :$

- objects = points of X;
- $x \le y$ iff $\overrightarrow{P}(X)(x,y) \ne \emptyset$;
- for $x \leq y$, $\mathbb{P}(X)(x,y) = \overrightarrow{P}(X)(x,y)$;
- composition = concatenation up-to homotopy;
- unit = constant path.

We can have defined it with value in *HoSimp* or *Ab* by composing with singular simplicial complex or homology.

We recover the fundamental category $\pi_1(X)$ by composing with the connected components functor.

What about the category of components?

For [Bergner], it is just $\pi_1(X)$.

What about the category of components?

For [Bergner], it is just $\pi_1(X)$.

No good for directed segment.

Already known since [Fajstrup, Goubault, Haucourt, Raussen].

What about the category of components?

For [Bergner], it is just $\pi_1(X)$.

No good for directed segment. Already known since [Fajstrup, Goubault, Haucourt, Raussen].

We have to define a category of « directed » components.

Yoneda morphisms, category of directed components

A slight modification of [Fajstrup, Goubault, Haucourt, Raussen]

The set $\mathfrak{Y}(\mathcal{C})$ of Yoneda morphisms of a category \mathcal{C} is the largest set of morphisms such that :

- it is closed under concatenation;
- for every $f: c \longrightarrow c' \in \mathfrak{Y}(\mathcal{C})$, for every object c'' of \mathcal{C} such that $\mathcal{C}(c',c'') \neq \emptyset$, the function $_\circ f: \mathcal{C}(c',c'') \longrightarrow \mathcal{C}(c,c'')$ $g \longmapsto g \circ f$ is a bijection;
- symmetrically for $f \circ ;$
- it has right and left Ore conditions

$$\overrightarrow{\pi_0}(\mathcal{C}) = \mathcal{C}[\mathfrak{Y}(\mathcal{C})^{-1}] = \mathcal{C}$$
 in which we inverse the morphisms in $\mathfrak{Y}(\mathcal{C})$ $\overrightarrow{\pi_0}(X) = \overrightarrow{\pi_0}(\pi_1(X))$

Example: the directed segment

 $\mathbb{P}(\overrightarrow{I})$ is such that :

- $x \le y$ is the usual ordering on I;
- for every $x \leq y$, $\mathbb{P}(\overrightarrow{I})(x,y)$ is contractible.

The fundamental category $\pi_1(\overrightarrow{I})$ is the poset (I, \leq) .

The category of components $\pi_0(\overrightarrow{I})$ is the preordered set $(I, I \times I)$, which is equivalent to the category with one object and one morphism.

Weak dihomotopy equivalence

We say that a dmap $f: X \longrightarrow Y$ is a weak dihomotopy equivalence iff

- it induces an equivalence between the categories of directed components
- it induces a fully-faithful enriched functor between dipath categories i.e. for $x \le_X x'$, the map

$$\mathbb{P}(f)_{x,x'}:\mathbb{P}(X)(x,x')\longrightarrow\mathbb{P}(Y)(f(x),f(x'))$$

which maps γ to $f\circ\gamma$ is a homotopy equivalence.

We say that two dspaces are weakly dihomotopy equivalent iff there is zigzag of weak dihomotopy equivalence between them.

Examples

 \overrightarrow{I} is weakly equivalent to a point.

 $\mathbb{P}(s,t)$ is homotopy equivalent to a two point space, so the match box cannot be weakly equivalent to a point.

Invariance

Theorem [Dubut 16]:

If two dspaces are dihomotopy equivalent, then they are weakly dihomotopy equivalent.

Invariance

Theorem [Dubut 16]:

If two dspaces are dihomotopy equivalent, then they are weakly dihomotopy equivalent.

« One can compare dspaces by comparing their dipath category (up-to weak equivalence). »

Invariance

Theorem [Dubut 16]:

If two dspaces are dihomotopy equivalent, then they are weakly dihomotopy equivalent.

« One can compare dspaces by comparing their dipath category (up-to weak equivalence). »

« Are dspaces the same as partially enriched categories in HoTop (or HoSimp)? »

Conclusion

Summary:

- We have defined a dihomotopy equivalence, which behaves well on examples and for which natural homology is an invariant.
- We have defined a new structure, closed to $(\infty, 1)$ -categories, and designed its weak equivalence, for which it is an invariant of dihomotopy equivalence.

Many open questions:

- Are there two weakly equivalent dspaces that are not dihomotopy equivalent?
- Are there model structures on dspaces (or partially enriched categories) for which the weak equivalence is dihomotopy equivalence (or weak equivalence)?
- Do we have a kind of geometric realization from partially enriched categories to dspaces in order to formulate a complete directed homotopy equivalence?
- Are the partially enriched categories (in Top or Simp) a nice model of $(\infty, 1)$ -categories?

Thank you!