Exhibit 12

Environmentally Friendly Quantum Dots for Display Applications

Eunjoo JangSAIT, Samsung Electronics

QD Forum 2018/March/13th

Contents

- 1. Introduction
- 2. Material synthesis/Mass production
- 3. QD Film
- 4. QD CF
- 5. QD-LED
- 6. Summary

The active technology for the past 35 years

Trends

Wide color gamut display with RoHS compliant materials

Cd-free QDs

Alternatives: Emission range, QY, FWHM, Reabsorption, Decay time → InP, ZnSe:Mn, CuInS2

Table III. Comparison of typical properties of Cd-based and non-Cd QD composites.			ECS J. SS Sci. & Tech.(2013) Nanoco	
	Intrinsic QDs		Other non-Cd QDs	
Property	Cd-based QDs	Non-Cd QDs	Doped non-Cd QDs	Non-Cd alloy QDs
Chemical composition Emission color FWHM (nm) Toxic substance Stokes shift (meV) Reabsorption	CdSe/ZnS Tunable in VIS <40 Toxic (Cd) ~40 ⁸⁵ Reabsorption/self-quen	InP-based core-shell Tunable in VIS 40-60 no Cd, no Pb ~80 ⁸⁶ aching (small Stokes shift)	ZnSe:Mn/ZnS Yellow-orange ~155 no Cd, no Pb ~1060–1423 ^{9,87} No reabsorption /self-quenching (large Stokes shift)	CuInS ₂ /ZnS Tunable (Y,O,R) ~125 no Cd, no Pb ~500-600 ¹¹ Some reabsorption/self-quenching (moderate Stokes shift compared to doped QDs)

InP-based QDs

■ High quality core → Core/Shell → Multi shell

JPC ('94) Nozik

InP precursor with TOPO 270 C, 3 days

NL ('02) Peng

In(OAc) + acid ligand, ODE, 270 C, 180min JACS ('07) Peng

C8 amine, 180 C → 450~750nm, QY=40% CM ('11) Char

InP/ZnSeS gradient shell QY=70%, FWHM=45nm

CM ('17) Lee

InCl3+Aminophosphine

XII

Chem. Mater. ('15) Hens

In(X), + (Amino), P R-NH, InP QDs

FWHM: G 36nm, R 45nm

1990 2000

2020

JACS ('08) Reiss

InP/ZnS One pot (510~580nm) QY=70%, ~50h photo stability JMC ('08) Nann

2010

Zn, HAD → size control (480~750nm)

JACS ('10) Delpech

PO4, InPO3, acid ligand
→ Ketone & Water

CM ('15) Cossairt

Magic sized cluster

Case 2:20-cv-00038-JRG Document 1-13 Filed 02/14/20 Page 8 of 23 PageID #: 281 Progress of Materials

Progress in QE of QDs

Case 2:20-cv-00038-JRG Document 1-13 Filed 02/14/20 Page 9 of 23 PageID #: 282

Specifically tailored structure for light emission

Potential materials

Other III-V semiconductor QDs and 2D structures

GaP Eg=2.78eV

Small (2005) Rao

InN Eg=0.65~0.7eV

ZnInP/GaP/ZnS

GaN, Abs 360~450nm

Chem. Comm. (2015) Cossairt

GaSe, Abs 360~450nm

QY = 52%(566nm)

Process Optimization → **Basic design** → **Scale-up**

Parameters: Precursors, Intermediates, Solvents, Surfactants, Additives, Reaction Process

Case 2:20-cv-00038-jRG Document 1-13 Filed 02/14/20 Page 12 of 23 PageID #: 285

Wide color gamut display → Improve FWHM, Reduce cost

Case 2:20-cv-00038-JRG Document 1-13 Filed 0 Accelerating R&D Process

Synchronize Technology Roadmap from the beginning stage of research

Synchronized Roadmap

ref. H. Chang, MRS 2014 Fall Meeting

Case 2:20-cv-00038-jRG Document 1-13 Filed 02/14/20 Page 14 of 23 PageID #: 287 Development Team

Environmental Issues, Market size, Cost, Eco system, Patent portfolio

Material Design & Synthesis

Interface Design & Fabrication

Device Application & Evaluation

- Multi shell passivation
 - Mass production

- Encapsulation (stability)
 - Process stability

- Customer requirements
- Supply chain/Eco system

The Next2 mnovation in Two Lep 5 of 23 PageID #: 288

Case 2:20-cv-00038-jRG Document 1-13 Filed 02/14/20 Page 16 of 23 PageID #: 289 Improvements in InP QDs

Optimized structure for uniformity and efficiency

BT2020, High stability

QD Film

Solve the disadvantages (Viewing angle, Contrast)

Case 2:20-cv-00038-jRG Document 1-13 Filed 02/14/20 Page 18 of 23 PageID #: 291

Challenge in stability, PL quenching, Emission shift, and packaging

Case 2:20-cv-00038-jRG Document 1-13 Filed 02/14/20 Page 19 of 23 PageID #: 292

Perfect viewing angle (Emissive CF)

QD-LEDs

Better contrast (Pixelated RGB LED)

Expansion of technology based on QDs

Patterning

#Samsung / VD / SDI / SDC

#Hansol Chemical