分子雲中でのGlycine形成に ついての理論的検討

NH2CH2CO・中間体を経由する低温ラジカル反応

筑波大学 物理学類4年 北澤優也

背景

▶ 始まりはマーチソン隕石中のアミノ酸

生命の起源は宇宙にある!?

観測されている分子の一例

H₂, CO, NH₃, CS, H₂O, CH₄
HCN, CH₃CN, HC₅N
H₂CO, CH₂NH, CH₃OH
NH₂CH₂CN($7 \ge 17 + 1 = 1 \le 1 \le 1$)

アミノ酸

➤ Garrod,R.T.(2013)の論文
「A THREE PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE」
でGlycine生成機構(T~40K,55K,75-90K)が提案された。

目的

▶ 最も単純なアミノ酸であるGlycineの生成過程を調べる。

- ▶ T~40KでのGlycine生成機構を検討する。
 - Garrodによって提案されたGlycine生成経路(T~40K)について、エネルギー状態や最安定構造を求める。

- ➤ Glycine生成過程(T~40K)
 - ダストを3-phaseモデル(気相+ice表面+bulk ice mantle)で仮定
 - ダスト表面でのラジカル反応(気相反応は効かない)

 - 2 $\cdot CH_2NH_2 + H_2CO + 3OH \cdot$

 - $\begin{array}{c|c} \hline \textbf{6} & \underline{\text{NH}_2\text{CH}_2\text{COOH}} + 2\text{H}_2\text{O} \\ \hline \hline \textbf{Glycine} \\ \hline \end{array}$

計算手法

- 分子軌道を第一原理的に求めることで、分子の正確なエネルギーや構造を予測する。
 - Software : Gaussian09
 - 構造最適化計算 (UB3LYP/6-31G(d))
- > 密度汎関数理論
 - Kohn-Sham equation

$$\left[-\frac{1}{2}\Delta - \sum_{A}^{N_{atom}} \frac{Z_A}{|r - R_A|} + \int \frac{\rho(r')}{|r - r'|} dr' + \mu_{XC} \right] \phi_i(r) = \epsilon_i \phi_i(r)$$

 $ho(r) = \sum_{i=1}^{N_{elec}} |\phi_i(r)|^2$: 電子密度 Z_A , R_A : 原子核Aの電荷、座標 $\phi_i(r)$: 分子軌道 μ_{XC} : 交換相関ポテンシャル ϵ_i :Kohn-Sham軌道エネルギー

結果

 $CH_2NH + H \cdot + H_2CO + 3OH \cdot \rightarrow NH_2CH_2COOH(Glycine) + 2H_2O$

考察1

- ▶ ①→②の反応と⑤→⑥の反応がエネルギー差が大きく、反応が起こりやすい。
 - \bigcirc CH₂NH+H• \rightarrow CH₂NH₂ (-123.323kcal/mol)
 - $\textcircled{5} \rightarrow \textcircled{6}: NH_2CH_2CO \cdot + OH \cdot \rightarrow NH_2CH_2COOH (-94.562kcal/mol)$

▶ 始状態から終状態までのエネルギー差が 355kcal/mol と大きいため反応障壁が低くなると考 えられる。この反応過程を使えば低温でもGlycineが 生成できる。

考察2

ただし、T=55Kの場合やT=75~90Kの場合に比べて反応にはH・と多くのOH・が必要となる。

- \circ T=40K CH₂NH-(H•)+H₂CO-(3OH•)→Glycine+2H₂O
- T=55K NH_2 +OH+ $CH_3COOH+NH_3$ + $Glycine+H_2O+NH_3$
- \circ T=75~90K HCOOH+CH₃NH₂ +2OH \rightarrow Glycine+2H₂O

まとめ

- T~40KでのGlycine生成は355kcal/mol(15.4eV)の 発熱反応であることがわかった。
- すべての過程で反応物より生成物のほうがエネルギーが低くなった。
- ▶ H・と多くのOH・が存在すれば、この反応経路によって Glycineは生成できると考えられる。

今後は遷移状態の計算をし、T~40KでのGlycine生成機構を明らかにしたい。