Relatório 13 - Redes Neurais

Guilherme Loan Schneider

Descrição da atividade

Funcionamento básico das Redes Neurais Artificiais

Resumidamente, uma rede neural artificial é um conjunto de neurônios (forma o pensamento da rede) utilizado para compreender um determinado conjunto de dados e com isso, tentar chegar o mais próximo de um raciocínio humano, mas com respostas mais rápidas e precisas.

Uma Rede Neural Artificial possui os seguintes itens primordiais que irão decidir o desempenho de uma rede:

- Camada de Entrada Ela é basicamente todas as features do seu conjunto de dados, como por exemplo, a base de dados "Iris", que possui como features o tamanho e comprimento da sépala e tamanho e comprimento da pétala, totalizando 4 features.
- Camadas Ocultas Essa camada é responsável por desempenhar o papel de "pensamento", fazendo isso a partir de reajustes de pesos (linhas de um neurônio para os outros). Os pesos são fundamentais para que a rede consiga gerar uma boa decisão para uma determinada previsão. O tamanho dessa camada é calculado da seguinte forma (Numero de features + Numero de classes (camada de saída) / 2). No caso da base "Iris", existem 4 features, e 3 saídas, logo, o cálculo resulta em 3.5, que pode ser arredondado para cima, totalizando 4. Logo, a camada oculta possuirá 4 neurônios.
- Camada de Saída É a camada onde o resultado do pensamento da rede neural é esperado. Essa camada pode possuir desde apenas um neurônio, para problemas onde é feita a previsão de apenas uma classe, e para mais complexos (mais de duas classes), onde pode ser retornado, por exemplo, valores de previsão de venda de um produto em 3 localidades diferentes do mundo.

Aprofundando nas camadas

Para realizar o aprofundamento, utilizaremos a aplicação da tabela verdade do operador XOR (localizada abaixo), implementando-a na questão da rede neural.

X1	X2	Classe
0	0	0
0	1	1
1	0	1
1	1	0

Camada de Entrada

A camada de entrada é responsável por enviar os valores recebidos pelo usuário, ou seja, quando o usuário quiser requisitar uma previsão sobre algo, essa camada irá receber os valores, e enviá-los para a camada seguinte. Nas ligações entre cada neurônio (representados por segmentos de reta), existe os pesos definidos pela rede neural, que à medida que épocas são executadas, rebalanceamentos serão feitos.

Os pesos inicias são definidos aleatoriamente pelo algoritmo.

Camada Oculta (escondida)

Quando a camada oculta recebe os valores da camada anterior, existem duas funções que devem ser calculadas por ela, a função de soma e a função de ativação.

A função de soma consiste em utilizar o valor passado pela camada de entrada e multiplica-lo pelo peso da aresta conectada ao neurônio atual. No exemplo abaixo, o cálculo seria realizado da seguinte forma para <u>CADA</u> neurônio na camada oculta.

Como o primeiro neurônio possui duas ligações provenientes da camada de entrada, o cálculo é o seguinte: (0 * -0.424 + 0 * 0.358). O resultado é igual a 0.

O segundo neurônio é feito o mesmo cálculo, logo, (0 * -0.740 + 0 * -0.577). O resultado é igual a 0.

Para o terceiro neurônio, (0 * - 0.961 + 0 * -0.469). O resultado é igual a 0.

Após esses cálculos, deveremos aplicar a função de ativação ainda na camada oculta. Para esse problema, utilizaremos a função sigmoide, que funciona para quando deseja-se retornar a probabilidade de algo ser verdade, muito utilizado para problemas de classificação binária.

Soma dos sinais de Entradas

Aplicando os valores obtidos na função de soma, obtém-se o valor 0.5 para os três neurônios.

É importante salientar que é realizado esses cálculos para todas as entradas, então a (0,0), (0,1), (1,0), (1,1).

Camada de Saída

Nessa camada, o processo se repete, deverá ser aplicada a função de soma e de aplicação, utilizando os valores de ativação obtidos na camada anterior.

O cálculo da função de soma é o seguinte: (0.5 * -0.017 + 0.5 * - 0.893 + 0.5 * 0.148). O resultado é igual a -0.381. Aplicando esse valor na função de ativação (função sigmoide), obtem-se o resultado igual a 0.406.

Nessa primeira iteração, é possível verificar que o resultado obtido é igual a 0.406, muito diferente no resultado esperado 0.

Cálculo do erro

O cálculo do erro, nesse exemplo mais simples, é calculado a partir do valor da resposta correta menos a resposta calculada.

x1	x2	Classe	Calculado	Erro
0	0	0	0.406	-0.406
0	1	1	0.432	0.568
1	0	1	0.437	0.563
1	1	0	0.458	-0.458

Após isso, é calculada a média absoluta, que é o somatório em módulo, dos valores de erro obtidos (0.406 + 0.568 + 0.563 + 0.458), totalizando 0.498. O objetivo é sempre reduzir o valor do erro.

Reduzindo o valor do erro

Existem vários conjuntos de técnicas para tentar reduzir o valor do erro, abaixo estão algumas que foram utilizadas no desenvolvimento do curso:

Ajuste dos pesos: Utiliza o backpropagation para realizar os ajustes nos pesos da rede neural.

Cálculo do Erro: A rede realiza uma previsão, compara com o valor real e calcula o erro usando uma função de custo (ex: erro quadrático médio ou entropia cruzada).

Descida do Gradiente: Utiliza o gradiente da função de custo em relação aos pesos para determinar a direção e a intensidade da atualização necessária para minimizar o erro.

Descida do Gradiente Estocástico (SGD - Stochastic Gradient Descent): Em vez de calcular o gradiente com todos os dados de treinamento (descida do gradiente batch), o SGD atualiza os pesos com base em um pequeno subconjunto (batch) aleatório, tornando o treinamento mais rápido e eficiente.

Cálculo do Parâmetro Delta: O delta representa a correção necessária para os pesos com base no erro propagado pela retropropagação (backpropagation). Ele é calculado a partir da derivada da função de ativação multiplicada pelo gradiente do erro.

Redes Neurais Artificiais na prática

Criando uma rede neural a fim de ser treinada com os dados da base "Breast Cancer" e realizar previsões se um tumor é considerado benigno ou maligno.

Nesse caso temos um problema de classificação binária (ou é benigno ou é maligno), logo, utilizaremos a função de ativação sigmoide.

A nossa base de dados possui 569 linhas e 31 colunas no total. Como ela está dividida em dois arquivos, o primeiro contendo 30 colunas, que são as nossas features, e o segundo contendo 1 coluna, com as respostas de cada tumor, classificando-o como benigno (0) ou maligno (1).

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave_points_mean	symmetry_mean	fractal_dimension_mean
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871
1	20.57		132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999
3	11.42	20.38		386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	198.00000	0.10430	0.1809	0.05883
564	21.56	22.39	142.00	1479.0	111.00000	0.11590	0.24390	0.13890	0.1726	0.05623
565	20.13	28.25	131.20		0.09780	0.10340	144.00000	0.09791		0.05533
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	159.0000	0.05648
567	20.60	29.33	140.10	1265.0	0.11780	277.00000	0.35140	152.00000	0.2397	0.07016
568	7.76	24.54		181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884
569 rd	ws × 30 column	s								

Nessa implementação, dividimos a base de dados no tipo TrainTest, 75% dos dados serão utilizados para treino, e 25% para teste e avaliação da rede neural.

```
# X_treinamento = previsores de treinamento (que são as características dos tumores)
# X_teste = previsores de teste
# y_treinamento = classe de treinamento (que são os resultados dos tumores)
# y_teste = classe de teste
X_treinamento, X_teste, y_treinamento, y_teste = train_test_split(X, y, test_size=0.25) # 25% para teste

[7]

X_treinamento.shape, y_treinamento.shape # 426 registros para treinamento

[8]

... ((426, 30), (426, 1))

X_teste.shape, y_teste.shape # 143 registros para teste

[9]
... ((143, 30), (143, 1))
```

Em seguida, criamos a rede neural com 30 neurônios na camada de entrada, uma camada oculta com 16 neurônios, seguindo o cálculo para obter esse resultado, e a camada de saída com um único neurônio pois ele apenas retornará 0 ou 1.

```
# Criação da estrutura da rede neural
rede_neural = Sequential([
tf.keras.layers.InputLayer(shape = (30,)), # Camada de entrada com 30 neurônios (características)
tf.keras.layers.Dense(units = 16, activation = 'relu', kernel_initializer = 'random_uniform'), # Camada oculta com 16 neurônios
# (número de neurônios da camada oculta é a média entre a quantidade de neurônios da camada de entrada e da camada de saída (30+1)/2 = 16)
tf.keras.layers.Dense(units = 1, activation = 'sigmoid') # Camada de saída com 1 neurônio (resultado binário)
])
[12]
```

Na imagem abaixo é possível ver a camada oculta e o seu total de conexões. Totaliza 496 por conta de possui 30 neurônios na camada de entrada, e 16 na camada oculta (30 * 16 = 480). Além desses neurônios, existem mais 16 neurônios de bias, um em cada neurônio da camada oculta, que farão com que mesmo que um peso seja zero, a rede ainda consiga compreender os padrões dos dados, totalizando 496.

Em seguida, compilamos a rede neural com o algoritmo de ajuste dos pesos, nesse caso o Adam, juntamente com a função de erro sendo a Binary Cross Entropy (BCE), por fim a métrica de avaliação binária.

```
rede_neural.compile(optimizer = 'adam', # Algoritmo de ajuste dos pesos
loss = 'binary_crossentropy', # Função de erro
metrics = ['binary_accuracy']) # Métrica de avaliação (binária)

[14]
```

Então, executamos o algoritmo para efetuar, de fato, o treinamento da nossa rede neural. Aqui é definido o tamanho do batch como 10, então ele irá acessar 10 linhas aleatórias dos nossos dados de treinamento, e em seguida atualizar os pesos da rede. O algoritmo fará isso até não haver mais linhas na base de dados. Além disso, é definido o número de epochs, que indica quantas vezes a rede neural irá executar o algoritmo e rebalancear os pesos.

```
rede_neural.fit(X_treinamento, y_treinamento, batch_size = 10, epochs = 100)
    # Definição do tamanho do batch sendo 10, ou seja, a cada 10 registros a rede neural fará o ajuste dos pesos
    # Total de 42 batchs criados (426 / 10 = 42)
Epoch 1/100
                          - 2s 2ms/step - binary_accuracy: 0.4990 - loss: 17.7261
Epoch 2/100
43/43
                           0s 3ms/step - binary_accuracy: 0.7156 - loss: 2.1332
Epoch 3/100
43/43
                           0s 2ms/step - binary accuracy: 0.7617 - loss: 1.1355
Epoch 4/100
43/43
                           0s 2ms/step - binary_accuracy: 0.8113 - loss: 0.6328
Epoch 5/100
43/43
                           0s 1ms/step - binary_accuracy: 0.8444 - loss: 0.6641
Epoch 6/100
43/43
                           0s 1ms/step - binary_accuracy: 0.8433 - loss: 0.5904
Epoch 7/100
43/43
                           0s 1ms/step - binary_accuracy: 0.8576 - loss: 0.5547
Epoch 8/100
                           0s 1ms/step - binary accuracy: 0.7921 - loss: 1.1426
43/43
Epoch 9/100
                          • 0s 1ms/step - binary accuracy: 0.8920 - loss: 0.3958
43/43
Epoch 10/100
                           0s 1ms/step - binary_accuracy: 0.8805 - loss: 0.4696
43/43
Epoch 11/100
43/43
                           0s 2ms/step - binary_accuracy: 0.8870 - loss: 0.3381
Epoch 12/100
 43/43
                           0s 2ms/step - binary_accuracy: 0.8658 - loss: 0.4385
Epoch 13/100
Epoch 99/100
43/43
                           0s 2ms/step - binary accuracy: 0.9379 - loss: 0.2193
Epoch 100/100
43/43
                          - 0s 2ms/step - binary_accuracy: 0.8988 - loss: 0.3168
```

Após o termino do treinamento, passamos os dados de teste para o algoritmo fazer as predições, classificando as características passadas como um tumor benigno ou maligno. No código abaixo já existe também a transformação dos valores retornados em valores True ou False, como estamos utilizando a função sigmoide, podemos utilizar um valor 0.5 para transformar esses dados (esse valor depende do nível de confiança do algoritmo).

```
previsoes = rede_neural.predict(X_teste) # Previsões da rede neural
previsoes = previsoes > 0.5 # Transformação das previsões em valores binários (True ou False)
```

Por fim, podemos verificar a acurácia alcançada a partir da rede neural, juntamente com a matriz de confusão, que indica onde o algoritmo mais cometeu erros.

```
accuracy_score(y_teste, # Resultado real previsoes # Resultado previsto )

[23]

... 0.8111888111888111

confusion_matrix(y_teste, # Resultado real previsoes # Resultado previsto )

[24]

... array([[46, 6], [21, 70]], dtype=int64)
```

A rede neural acertou 46 tumores benignos e 70 tumores malignos, mas errou 21 tumores malignos (classificando-os como benignos) e 6 tumores benignos (classificando-os como malignos).

Por fim, temos a avaliação da rede neural, com uma acurácia de 81%.

Referencias

Deep Learning com Python de A a Z - Seção 2 à 7

https://www.tensorflow.org/tutorials?hl=pt-br