EL2320 - Applied Estimation Lab I Alexandros Filotheou

1 Part I

1.1 Question 1

Since

$$\hat{x}_t = g(u_t, x_{t-1}) + \epsilon_t \tag{1}$$

and

$$z_t = h(x_t) + \delta_t \tag{2}$$

 u_t models a part of the dynamics between x_{t-1} and x_t . So, it is an action that carries information about the change of state in the environment. For example, u_t can be the setting of the desired temperature in a room.

On the other hand, x_t is the environmental state at time t and depends only on the state at the previous timestep x_{t-1} and the control u_t at time t. As an example, x_t can be the actual temperature of a room.

 z_t is the measurement on x_t and depends only on the environmental state x_t at time t. For example z_t can be the reading on a thermometer, when trying to estimate the true temperature of a room.

1.2 Question 2

The uncertainty in the belief during a Kalman filter update step is given by

$$\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t \tag{3}$$

where

$$K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1} \tag{4}$$

If we plug equation 4 into equation 3 and use equation the Sherman/Morrison formula, then

$$\Sigma_t = \bar{\Sigma}_t - \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1} C_t \bar{\Sigma}_t = (\bar{\Sigma}_t^{-1} + C_t^T Q_t^{-1} C_t)^{-1}$$
 (5)

where we know that $C_t^T Q_t^{-1} C_t$ is positive semi-definite. Hence, the uncertainty in the belief during an update cannot increase.

1.3 Question 3

From lecture's 5 notes:

$$\mu_t = \bar{\mu}_t + K_t(z_t - C_t \bar{\mu}_t) = (I - K_t C_t) \bar{\mu}_t + K_t z_t = (I - W) \bar{\mu}_t + W \mu_z$$
 (6)

where $W = \Sigma_t C_t^T Q_t^{-1} C_t$ and $C_t \mu_z = (z_t - \bar{z}_t + C_t \bar{\mu}_t)$. Hence, essentially the relation between Σ_t and Q_t decides the weighting between the measurements and the belief.

1.4 Question 4

If Q is large, then the Kalman Gain will be small and the filter would take more time to converge.

1.5 Question 5

For the measurements to have an increased effect, the Kalman Gain should be large, since $\mu_t = \bar{\mu}_t + K_t(z_t - C_t\bar{\mu}_t)$. For the Kalman Gain to be large, Q_t , that is, the uncertainty regarding the measurements should be small.

1.6 Question 6

The belief uncertainty during prediction is given by equation 7:

$$\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \tag{7}$$

If $A_t \geq I$ then $A_t \Sigma_{t-1} A_t^T$ increases, and noise (R_t) is added. Hence, in general, $\bar{\Sigma}_t$ increases but it depends on A_t and R_t .

1.7 Question 7

1.8 Question 8

If there is no a priori knowledge about the distribution, then the mean of the Kalman Filter can be the MLE of the Gaussian belief. If there is a priori knowledge about the distribution, then a Kalman Filter can be a MAP if the distribution is Gaussian.

1.9 Question 9

The EKF revokes the assumption that a state is a linear function of its previous state, and applies the KF by approximating the non-linear function that is tangent to g at the mean of the posterior. Furthermore, $A_t x_{t-1} + B_t u_t$ is replaced by $g(u_t, x_{t-1})$, $C_t x_t$ by $h(x_t)$, A_t by G_t and C_t by H_t .

1.10 Question 10

No. It depends on the the local nonlinearity of the g function.

1.11 Question 11

We could increase the model uncertainties by increasing the covariances Q_t and R_t .

1.12 Question 12

2 Part II

2.1 Question 1

In this case $\epsilon_k : 2 \times 1$, $\delta_k :$ scalar. In the general case, ϵ_k will be $N \times 1$, where N is the number of state variables, and δ_k will be $M \times 1$, where M is the number of variables the EKF tries to estimate.

A scalar Gaussian is characterized by a mean value μ and a variance σ^2 . A

white Gaussian has $\mu=0$. In the general case, μ is a single-column matrix and the scalar variance is replaced by a covariance matrix Σ . In this case, a white Gaussian has $\mu=0$ and Σ is a diagonal matrix because the noise in each state variable is independent of one another.

2.2 Question 2

Variable	Usage
\overline{x}	The true state of the system.
\hat{x}	The estimate of the true state of the system by the EKF.
P	Estimate error covariance matrix.
G	Identity matrix for mathematical consistency.
D	Identity matrix for mathematical consistency. Scalar here.
Q	Process noise variance.
R	Measurement noise covariance matrix.
wStdP	The actual (simulated) standard deviation of the error in position.
wStdV	The actual (simulated) standard deviation of the error in velocity.
vStd	The actual (simulated) standard deviation of the error in position estimation.
u	Control signal, the acceleration.
PP	Estimate error covariances over time.