Predicate Logic

Lunjin Lu

Topics

- Syntax
- Semantics
- Clausal Form
- Resolution
- Substitutions

Formalization

- Predicate logic is a formalization of declarative sentences
- 1. Every mother loves her children
- Mary is a mother and Tom is Mary's child
- Mary loves Tom
- (i) $\forall X(\forall Y(((mother(X) \land child_of(Y,X)) \rightarrow loves(X,Y)))$
- (ii) mother(mary) ∧ child_of(tom, mary)
- (iii) loves(mary,tom)

Alphabet A

- Variables X ranging over V
- lacksquare Function symbols f ranging over Σ
- Predicate symbols p ranging over
- Logical connectives: ¬ ∧ ∨ → ↔
- Quantifiers: ∀ ∃
- Auxiliary symbols (,)

Terms and Formulae

Terms t ranging over T

$$t ::= X | f(t_1,...,t_n)$$

Formulae F ranging over Wff

F::=
$$p(t_1,...,t_n) | (\neg F_1) | (F_1 \land F_2)$$

| $(F_1 \lor F_2) | (F_1 \to F_2) | (F_1 \leftrightarrow F_2)$
| $(\forall X F_1) | (\exists X F_1)$

Closed formulae do not have free variables

Interpretation

- An interpretation J of an alphabet A is a non-empty domain D (|J|) and a mapping that associate
 - an n-ary function symbol f in \boldsymbol{A} with a function f_J : $D^n \rightarrow D$
 - an n-ary predicate symbol p in \boldsymbol{A} with a relation $p_j \subseteq D^n$

Semantics of Terms

- A valuation φ is a mapping from V to |J|.
- The meaning φ_J of t with respect to J and φ
 - $\bullet \phi_{J}(X) = \phi(X)$

Logical Consequences

- An interpretation J is a model of a set of closed formulae P iff every formula in P is true in J
- A formula F is a logical consequence of a set of formulae iff F is true in every model of P

Semantics of Formulae

- $J/=_{\varphi} (F_1 \wedge F_2)$ iff $J/=_{\varphi} F_1$ and $J/=_{\varphi} F_2$
- $J/=_{\phi}$ (F₁ \rightarrow F₂) iff $J/=_{\phi}$ F₂ whenever $J/=_{\phi}$ F₁
- $J/=_{\varphi} (F_1 \leftrightarrow F_2)$ iff $J/=_{\varphi} (F_1 \rightarrow F_2)$ and $J/=_{\varphi} (F_2 \rightarrow F_1)$
- $J/=_{\phi} (\forall X F_1)$ iff $J/=_{\phi[X\to t]} F_1$ for **every** t in |J|
- $J/=_{\phi} (\exists X F_1)$ iff $J/=_{\phi[X \to t]} F_1$ for some t in |J|
- Write J |= F if F is a closed formula

Clausal forms

- A literal L is an atom or negation of an atom
- A clause is of the form ∀ (L₁ ∨ L₂ ∨ ... Lk) with all variable universally quantified
- Any first predicate logic formula is logically equivalent to a conjunction of clauses

Modus Pollens

- To prove a closed formula F is a logical consequence of a set P of closed formulae
- It is equivalent to proving that {¬F}∪P is un-satisfiable.

Resolution

- If {¬F}∪P is in clausal form then it can be done mechanically by repeated applying resolution to derive an empty clause (false).
- Let \forall (L₁ \vee L₂ \vee ... L_n) and \forall (K₁ \vee K₂ \vee ... K_m) be clauses that do not share variables, L_i=p(t) and K_j = \neg p(s) such that θ (t) = θ (s) then θ (\vee _{o≠i} L_o \vee \vee _{o≠j} K_o) is a logical consequence of L₁ \vee L₂ \vee ... L_n and K₁ \vee K₂ \vee ... K_m