

Preliminary Technical Data

AD7888
FEATURES

Specified for V_{DD} of 2.7 V to 5.25 V
 700 μ A max @ 200 kSPS Throughput.
 450 μ A max @ 100 kSPS Throughput
 Shut Down Mode 1 μ A max
 Eight Single-Ended Inputs
 Serial Interface: SPI/QSPI/ μ Wire
 16-Pin Narrow SOIC and TSSOP Packages

APPLICATIONS

**Battery-Powered Systems (Personal Digital Assistants,
 Medical Instruments, Mobile Communications)**
Instrumentation and Control Systems
High Speed Modems

GENERAL DESCRIPTION

The AD 7888 is a high speed, low power, 12-bit ADC that operates from a single 2.7 V or 5.25 V power supply. The AD 7888 is capable of 200 kHz throughput rate. The input track-and-hold acquires a signal in 500 ns and features a single ended sampling scheme. The AD 7888 voltage range is 0 to V_{REF} with straight binary output coding. Input signal range is to the supply and the part is capable of converting full power signals to 3 MHz.

C MOS construction ensures low power dissipation of typically 2 mW for normal operation and 3 μ W in power-down mode. The part is available in a 16-lead narrow body small outline (SOIC) and a 16-lead thin shrink outline (TSSOP) package.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Smallest 12-Bit 8-Channel ADC; 16-pin TSSOP is the same area as an 8-pin SOIC and less than half the height.
2. Lowest Power 12-Bit 8-channel ADC.
3. Flexible power management options including automatic powerdown after conversion.
4. Analog input range from 0 V to V_{REF} .
5. Versatile serial I/O port (SPI/QSPI/ μ Wire).

AD7888- SPECIFICATIONS¹

($V_{DD} = +2.7\text{ V to }+5.25\text{ V}$, $\text{REF}_{IN}/\text{REF}_{OUT} = 2.5\text{ V External/Internal Reference unless otherwise noted}$, $f_{SCLK} = 3.2\text{ MHz}$; $f_{SAMPLE} = 200\text{ kHz}$; $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.)

Parameter	A Version ¹	B Version ¹	Units	Test Conditions/Comments
DYNAMIC PERFORMANCE				
Signal to Noise + Distortion Ratio ² (SNR)	70	71	dB min	Typically SNR is 72 dB
Total Harmonic Distortion (THD)	-78	-78	dB max	$V_{IN} = 10\text{ kHz Sine Wave}$, $f_{SAMPLE} = 200\text{ kHz}$
Peak Harmonic or Spurious Noise	-78	-78	dB max	$V_{IN} = 10\text{ kHz Sine Wave}$, $f_{SAMPLE} = 200\text{ kHz}$
Intermodulation Distortion (IMD)				$V_{IN} = 10\text{ kHz Sine Wave}$, $f_{SAMPLE} = 200\text{ kHz}$
Second Order Terms	-78	-80	dB typ	$f_a = 9.983\text{ kHz}$, $f_b = 10.05\text{ kHz}$, $f_{SAMPLE} = 200\text{ kHz}$
Third Order Terms	-78	-80	dB typ	$f_a = 9.983\text{ kHz}$, $f_b = 10.05\text{ kHz}$, $f_{SAMPLE} = 200\text{ kHz}$
Channel-to-Channel Isolation				$V_{IN} = 25\text{ kHz}$
Full Power Bandwidth	-90	-90	MHz typ	@ 3 dB
DC ACCURACY				
Resolution	12	12	Bits	Any Channel
Integral Nonlinearity	± 2	± 1	LSB max	
Differential Nonlinearity	± 1	± 1	LSB max	Guaranteed No Missed Codes to 12 Bits.
Total Unadjusted Error	± 3	± 3	LSB typ	
Unipolar Offset Error	± 3	± 3	LSB max	
Unipolar Offset Error Match	3	3	LSB max	
Positive Full-Scale Error	± 3	± 3	LSB max	
Positive Full-Scale Error Match	3	3	LSB max	
ANALOG INPUT				
Input Voltage Ranges	0 to V_{REF}	0 to V_{REF}	Volts	
Leakage Current	± 1	± 1	μA max	
Input Capacitance	20	20	pF typ	
REFERENCE INPUT/OUTPUT				
REF_{IN} Input Voltage Range	$2.3/V_{DD}$	$2.3/V_{DD}$	V min/max	Functional from 1.2 V
Input Impedance	10	10	k Ω typ	
REF_{OUT} Output Voltage	2.475/2.525	2.475/2.525	V min/max	
REF_{OUT} Tempco	20	20	ppm/ $^{\circ}\text{C}$ typ	
LOGIC INPUTS				
Input High Voltage, V_{IH}	2.4	2.4	V min	$V_{DD} = 4.75\text{ V to }5.25\text{ V}$
	2.1	2.1	V min	$V_{DD} = 2.7\text{ V to }3.6\text{ V}$
Input Low Voltage, V_{IL}	0.8	0.8	V max	$V_{DD} = 2.7\text{ V to }5.25\text{ V}$
Input Current, I_{IN}	± 10	± 10	μA max	Typically 10 nA, $V_{IN} = 0\text{ V}$ or V_{DD}
Input Capacitance, C_{IN} ³	10	10	pF max	
LOGIC OUTPUTS				
Output High Voltage, V_{OH}	$V_{DD} - 0.5$	$V_{DD} - 0.5$	V min	$I_{SOURCE} = 400\text{ }\mu\text{A}$
Output Low Voltage, V_{OL}	0.4	0.4	V max	$V_{DD} = 2.7\text{ V to }5.25\text{ V}$
Floating-State Leakage Current	± 10	± 10	μA max	$I_{SINK} = 1.6\text{ mA}$
Floating-State Output Capacitance ⁴	10	10	pF max	
Output Coding	Straight (Natural) Binary			
CONVERSION RATE				
Throughput Time	16	16	SCLK cycles	Conversion Time + Acquisition Time
Track/Hold Acquisition Time	1.5	1.5	SCLK cycles	
Conversion Time	14.5	14.5	SCLK cycles	

Parameter	A Version ¹	B Version ¹	Units	Test Conditions/Comments
POWER REQUIREMENTS				
V_{DD}	+2.7/+5.25	+2.7/+5.25	V min/max	
I_{DD}				
Normal Mode ⁴	700	700	μA max	$f_{SAMPLE} = 200$ kHz
Using Standby Mode	450	450	μA max	$f_{SAMPLE} = 100$ kHz
Using Shutdown Mode	50	50	μA max	$f_{SAMPLE} = 10$ kHz
Using Shutdown Mode	6	6	μA max	$f_{SAMPLE} = 1$ kHz
Standby Mode	200	200	μA max	$V_{DD} = 4.75$ V to 5.25 V. Typically 150 nA
Shutdown Mode	1.0	1.0	μA max	$V_{DD} = 4.75$ V to 5.25 V. Typically nA
Normal Mode Power Dissipation	3.675	3.675	mW max	$V_{DD} = 5.25$ V. Typically mW
	2.1	2.1	mW max	$V_{DD} = 3.0$ V. Typically mW
Shutdown Power Dissipation			μW typ	$V_{DD} = 5.25$ V.
Standby Power Dissipation			μW typ	$V_{DD} = 3.0$ V.
			μW typ	$V_{DD} = 5.25$ V.
			μW typ	$V_{DD} = 3.0$ V.

NOTES

¹Temperature ranges as follows: A, B Versions: -40°C to +85°C.²SNR calculation includes distortion and noise components.³Sample tested @ +25°C to ensure compliance.⁴All digital inputs @ AGND except SYNC @ V_{DD} . No load on the digital outputs. Analog inputs @ AGND.⁵SCLK @ DGND when SCLK off. All digital inputs @ DGND except for SYNC @ V_{DD} . No load on the digital outputs. Analog inputs @ AGND.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹(T_A = +25°C unless otherwise noted)

V_{DD} to AGND	-0.3 V to +7 V
V_{DD} to DGND	-0.3 V to +7 V
Analog Input Voltage to AGND	-0.3 V to V_{DD} + 0.3 V
Digital Input Voltage to DGND	-0.3 V to V_{DD} + 0.3 V
Digital Output Voltage to DGND	-0.3 V to V_{DD} + 0.3 V
REF _{IN} /REF _{OUT} to AGND	-0.3 V to V_{DD} + 0.3 V
Input Current to Any Pin Except Supplies ²	±10 mA
Operating Temperature Range	
Commercial (A, B Versions)	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
µSOIC, TSSOP Package, Power Dissipation	450 mW
θ_{JA} Thermal Impedance .. 75°C/W (µSOIC) 115°C/W (TSSOP)	
θ_{JC} Thermal Impedance .. 25°C/W (µSOIC) 35°C/W (TSSOP)	
Lead Temperature, Soldering	
Vapor Phase (60 secs)	+215°C
Infrared (15 secs)	+220°C

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.²Transient currents of up to 100 mA will not cause SCR latch up.

PINOUTS FOR SOIC AND TSSOP

Figure 1. Load Circuit for Digital Output Timing Specifications

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD788

TIMING SPECIFICATIONS¹ ($V_{DD} = DV_{DD} = +2.7\text{ V to }+5.25\text{ V}$; $f_{SCLK} = 3.2\text{ MHz}$; $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted)

Parameter	Limit at T_{MIN}, T_{MAX} (A, B Versions)		Units	Description
	5V	27V		
f_{SCLK}	3.2	3.2	MHz max	
$t_{CONVERT}$	$14 t_{SCLK}$	$14 t_{SCLK}$		Throughput Time = $t_{CONVERT} + t_{acq} = 16 t_{SCLK}$
t_{acq}	$1.5 t_{SCLK}$ min	$1.5 t_{SCLK}$ min		Throughput Time = $t_{CONVERT} + t_{acq} = 16 t_{SCLK}$
t_1	$-0.4 t_{SCLK}$	$-0.4 t_{SCLK}$	ns min	$\overline{\text{SYNC}} \downarrow$ to $\overline{\text{SCLK}} \downarrow$ Setup Time (N oncontinuous SCLK Input)
	$70.4 t_{SCLK}$	$70.4 t_{SCLK}$	ns min/max	$\overline{\text{SYNC}} \downarrow$ to $\overline{\text{SCLK}} \downarrow$ Setup Time (Continuous SCLK Input)
t_2^4	50	90	ns max	Delay from $\overline{\text{SYNC}} \downarrow$ Until DOUT 3-State Disabled
t_3^4			ns max	Delay from $\overline{\text{SYNC}} \downarrow$ Until DIN 3-State Disabled
t_4^4	75	115	ns max	Data Access Time After $\overline{\text{SCLK}} \downarrow$
t_5	40	60	ns min	Data Setup Time Prior to $\overline{\text{SCLK}} \uparrow$
t_6	20	30	ns min	Data Valid to SCLK Hold Time
t_7	$0.4 t_{SCLK}$	$0.4 t_{SCLK}$	ns min	SCLK High Pulse Width
t_8	$0.4 t_{SCLK}$	$0.4 t_{SCLK}$	ns min	SCLK Low Pulse Width
t_9	30	50	ns min	$\overline{\text{SCLK}} \uparrow$ to $\overline{\text{SYNC}} \uparrow$ Hold Time (Continuous SCLK)
t_{10}^5	50	50	ns max	Delay from $\overline{\text{SYNC}} \uparrow$ Until DOUT 3-State Enabled

NOTES

¹ Sample tested at $+25^\circ\text{C}$ to ensure compliance. All input signals are specified with $t_r = t_f = 5\text{ ns}$ (10% to 90% of V_{DD}) and timed from a voltage level of 1.6 Volts.

² Mark/Space ratio for the SCLK input is 40/60 to 60/40.

³ The $\overline{\text{SYNC}}$ pulse width will here only applies for normal operation. When the part is in power-down mode, a different $\overline{\text{SYNC}}$ pulse width will apply (see Power-D own section).

⁴ Measured with the load circuit of Figure 1 and defined as the time required for the output to cross 0.8 V or 2.4 V.

⁵ t_{12} is derived form the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back to remove the effects of charging or discharging the 100 pF capacitor. This means that the time, t_{12} , quoted in the timing characteristics is the true bus relinquish time of the part and is independent of the bus loading.

⁶ t_{14} is derived form the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back to remove the effects of charging or discharging the 100 pF capacitor. This means that the time quoted in the Timing Characteristics is the true delay of the part in turning off the output drivers and configuring the DIN line as an input. Once this time has elapsed the user can drive the DIN line knowing that a bus conflict will not occur.

Specifications subject to change without notice.

ORDERING GUIDE

Model	Linearity Error (LSB) ¹	Package Option ²
AD 7888AR	± 2	R-16
AD 7888BR	± 1	R-16
AD 7888ARU	± 2	RU-16
EVAL-AD 7888CB ³		
EVAL-CONTROL BOARD ⁴		

NOTES

¹ Linearity error here refers to integral linearity error.

² R = SOIC; RS = SSOP.

³ This can be used as a stand-alone evaluation board or in conjunction with the EVAL-CONTROL BOARD for evaluation/demonstration purposes.

⁴ This board is a complete unit allowing a PC to control and communicate with all Analog Devices evaluation boards ending in the CB designators.

TYPICAL TIMING DIAGRAMS

Figures 2 shows the typical read and write timing diagrams for serial Interface of the AD 7888. The reading and writing occurs during conversion.

The rising edge of the SCLK signal after the first one and one-half cycles (t_{acq}) of the SCLK, following the falling edge of the SYNC signal initiates the conversion on the AD 7888. On the falling edge of SYNC line, the on-chip track/hold acquires the input signal for the first one and one-half cycles (t_{acq}) of the SCLK. On the next rising edge of the SCLK, the on-chip track/hold goes from track to hold mode.

The conversion cycle will take 14.5 SCLK periods from this SCLK rising edge. After the rising edge of the 16th SCLK edge, the conversion is complete, resulting in a conversion time of 5 μ s (16t_{SCLK}, SCLK = 3.2 MHz). The SYNC input will then have to be taken high. If the SYNC is left low a new conversion will be initiated. The result of the conversion can be read by accessing the data through the serial interface during the conversion.

At least one and one-half periods of SCLK (acquisition time) must be allowed (the time from the falling edge of SYNC to the next rising edge of SCLK) before the next conversion begins to ensure that the part is settled to the 12-bit level.

Figure 2. AD7888 Timing Diagram for Reading/Writing during Conversion)

Table I. Power Management Options

PM1 Bit	PM0 Bit	Comment
0	0	Normal Operation
0	1	Full Shutdown
1	0	Auto Shutdown
1	1	Standby

The AD 7888 provides a number of power-down options. The four modes of operation are the Normal, Full Shutdown, Auto Shutdown and Standby. These options are controlled by the PM 1 and PM 0 bits in the Control Register. When both these bits are 0 (default status on power-up), the AD 7888 is in normal mode of operation. With these bits at 0, 1 the part enters a Full Shutdown mode. With these bits at 1, 0 the AD 7888 enters Full Shutdown mode after every conversion. Finally, with these bits at 1, 1 the part enters the Standby mode. The advantage of the Standby mode is that the part will require significantly less time to "power-up" than from the Full Shutdown mode. In this Standby mode the reference voltage stays powered up so if this is being used external to the AD 7888 it is still available even though the AD 7888 is effectively powered down. Table I summarizes the power management options.

Table II. Address Decode Options

ADD2 Bit	ADD1 Bit	ADD0 Bit	Comment
0	0	0	Ain 1
0	0	1	Ain 2
0	1	0	Ain 3
0	1	1	Ain 4
1	0	0	Ain 5
1	0	1	Ain 6
1	1	0	Ain 7
1	1	1	Ain 8