Mip-NeRF:

A Multiscale Representation for Anti-Aliasing Neural Radiance Fields

Seungyeol Lee

CHAPTER

- 1. Purpose of Research
- 2. Limitations of Previous Research
- 3. Mip-NeRF
- 4. Key Components of Mip-NeRF
- 5. Experiments
- 6. Conclusions

Part 1 Purpose of Research

- Novel View Synthesis that prevents "blurring" and "aliasing"

Blurring

Part 1 Purpose of Research

- Novel View Synthesis that prevents "blurring" and "aliasing"

Aliasing

Part 1 Purpose of Research

- Mipmap

1. Anti-aliasing in Rendering

(1) Supersampling-based techniques

- cast multiple rays per pixel while rendering to closer to the Nyquist frequency.

- can reduce aliasing, but expensive, as runtime generally scales linearly.

- typically used only in offline rendering contexts.

1. Anti-aliasing in Rendering

(2) Prefiltering-based techniques

- better suited for real-time rendering.

- correct scale can be used at a render time depending on the target sampling rate.

- tracing a cone instead of a ray through each pixel.

2. Scene Representations for View Synthesis

(1) Volumetric Representations

- Using gradient-based methods to optimize mesh geometry and topology is difficult.

(due to discontinuities and local minima.)

- Volumetric representations have therefore become increasingly popular.

2. Scene Representations for View Synthesis

- (2) Coordinate-based Neural Representations
 - represents 3D scenes as continuous functions parameterized by MLPs (that map from a 3D coordinate to properties of the scene at that location)

- anti-aliased using supersampling, which exacerbates slow rendering procedure.

- anti-alised using multiscale representation based on sparse voxel octrees (but requires the scene geometry be known a priori.)

Part 3 Mip-NeRF

Must learn a prefiltered representation of the scene during training.

Part 3 Mip-NeRF

Notion of scale is continuous instead of discrete.

1. Ray Tracing - Cone

NeRF casts a single infinitesimally narrow ray per pixel, resulting in aliasing

1. Ray Tracing - Cone

Mip-NeRF casts a cone from each pixel, resulting in anti-aliasing.

1. Ray Tracing - Cone

O: the camera's center of projection

1. Ray Tracing - Cone

Ϋ́

The radius of the cone at the image plane

(set to the width of the pixel in world coordinates) (yields a cone that matches the variance of the pixel's footprint)

1. Ray Tracing - Cone

 $[t_0, t_1]$ A conical frustum between t values

1. Ray Tracing - Cone

2. Integrated Positional Encoding

- We approximate the conical frustum with a multivariate Gaussian,
 which allows for an efficient approximation to the desired feature.
- We must compute the mean and variance of multivariate Gaussian.
- Then, we derive the IPE (Integrated Positional Encoding), which is the expectation of a positionally-encoded coordinate distributed according to the aforementioned Gaussian.

2. Integrated Positional Encoding

$$\begin{split} \gamma(\boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \mathrm{E}_{\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\gamma}, \boldsymbol{\Sigma}_{\gamma})}[\gamma(\mathbf{x})] \\ &= \begin{bmatrix} \sin(\boldsymbol{\mu}_{\gamma}) \circ \exp(-(1/2) \operatorname{diag}(\boldsymbol{\Sigma}_{\gamma})) \\ \cos(\boldsymbol{\mu}_{\gamma}) \circ \exp(-(1/2) \operatorname{diag}(\boldsymbol{\Sigma}_{\gamma})) \end{bmatrix} \end{split}$$

IPE feature

as the expected sines and cosines of the mean and the diagonal of the covariance matrix

X Please refer to the paper for the detailed derivation process of the equation.

2. Integrated Positional Encoding

$$\begin{split} \gamma(\boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \mathrm{E}_{\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\gamma}, \boldsymbol{\Sigma}_{\gamma})}[\gamma(\mathbf{x})] \\ &= \begin{bmatrix} \sin(\boldsymbol{\mu}_{\gamma}) \circ \exp(-(1/2) \operatorname{diag}(\boldsymbol{\Sigma}_{\gamma})) \\ \cos(\boldsymbol{\mu}_{\gamma}) \circ \exp(-(1/2) \operatorname{diag}(\boldsymbol{\Sigma}_{\gamma})) \end{bmatrix} \end{split}$$
$$\mathrm{diag}(\boldsymbol{\Sigma}_{\gamma}) = \begin{bmatrix} \mathrm{diag}(\boldsymbol{\Sigma}), 4 \operatorname{diag}(\boldsymbol{\Sigma}), \dots, 4^{L-1} \operatorname{diag}(\boldsymbol{\Sigma}) \end{bmatrix}^{\mathrm{T}} \end{split}$$

- $-\Sigma_{\gamma}$ is prohibitively expensive to compute due its relative size
- So, we directly compute the diagonal of Σ_{γ} .

2. Integrated Positional Encoding

$$\begin{split} \gamma(\boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \mathrm{E}_{\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\gamma}, \boldsymbol{\Sigma}_{\gamma})}[\gamma(\mathbf{x})] \\ &= \begin{bmatrix} \sin(\boldsymbol{\mu}_{\gamma}) \circ \exp(-(1/2) \operatorname{diag}(\boldsymbol{\Sigma}_{\gamma})) \\ \cos(\boldsymbol{\mu}_{\gamma}) \circ \exp(-(1/2) \operatorname{diag}(\boldsymbol{\Sigma}_{\gamma})) \end{bmatrix} \end{split}$$

$$\operatorname{diag}(\boldsymbol{\Sigma}_{\gamma}) = \left[\underline{\operatorname{diag}(\boldsymbol{\Sigma})}, 4\,\underline{\operatorname{diag}(\boldsymbol{\Sigma})}, \dots, 4^{L-1}\,\underline{\operatorname{diag}(\boldsymbol{\Sigma})}\right]^{\mathrm{T}}$$

$$\underline{\operatorname{diag}(\mathbf{\Sigma})} = \sigma_t^2(\mathbf{d} \circ \mathbf{d}) + \sigma_r^2 \left(\mathbf{1} - \frac{\mathbf{d} \circ \mathbf{d}}{\|\mathbf{d}\|_2^2} \right)$$

- σ_t^2 : the variance along the ray
- σ_r^2 : the variance perpendicular to the ray

- o : element-wise multiplication

2. Integrated Positional Encoding

PE preserves all frequencies up to some manually-tuned hyperparameter L.

2. Integrated Positional Encoding

IPE preserves frequencies that are constant over an interval, removes frequencies that vary over an interval softly.

2. Integrated Positional Encoding

IPE features are effectively anti-aliased positional encoding features that smoothly encode the size and shape of a volume of space.

3. Single Network

- Model size is cut in half.

- Renderings are more accurate.

- Sampling is more efficient.

3. Single Network

[Optimization Problem]

$$\min_{\boldsymbol{\Theta}} \ \sum_{\mathbf{r} \in \mathcal{R}} \left(\lambda \left\| \mathbf{C}^*(\mathbf{r}) - \mathbf{C}(\mathbf{r}; \boldsymbol{\Theta}, \mathbf{t}^c) \right\|_2^2 + \left\| \mathbf{C}^*(\mathbf{r}) - \mathbf{C}(\mathbf{r}; \boldsymbol{\Theta}, \mathbf{t}^f) \right\|_2^2 \right)$$

- Coarse loss must be balanced against the fine loss.
- In Mip-NeRF, λ is set to 0.1. (In NeRF, λ is 1.)

Part 5 **Experiments**

Evaluation Metrics

- PSNR, SSIM, and LPIPS

- Also use an "average" error metric that summarizes 3 metrics.

$$MSE = 10^{-PSNR/10}$$

$$\sqrt{1-SSIM}$$

LPIPS

Part 5 **Experiments**

Multiscale Blender Dataset

- Straightforward modification to NeRF's Blender Dataset

- Designed to probe aliasing and scale-space reasoning

- Ablation study on Misc, Single MLP, Area Loss, and IPE

Part 5 Experiments

Multiscale Blender Dataset

8	PSNR ↑				SSIM ↑				LPIPS ↓						
	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Full Res.	1/2 Res.	1/4 Res.	1/8 Res.	Full Res.	1/2 Res.	1/4 Res.	1/8 Res	Avg. ↓	Time (hours)	# Params
NeRF (Jax Impl.) [11, 30]	31.196	30.647	26.252	22.533	0.9498	0.9560	0.9299	0.8709	0.0546	0.0342	0.0428	0.0750	0.0288	3.05 ± 0.04	1,191K
NeRF + Area Loss	27.224	29.578	29.445	25.039	0.9113	0.9394	0.9524	0.9176	0.1041	0.0677	0.0406	0.0469	0.0305	3.03 ± 0.03	1,191K
NeRF + Area, Centered Pixels	29.893	32.118	33.399	29.463	0.9376	0.9590	0.9728	0.9620	0.0747	0.0405	0.0245	0.0398	0.0191	3.02 ± 0.05	1,191K
NeRF + Area, Center, Misc.	29.900	32.127	33.404	29.470	0.9378	0.9592	0.9730	0.9622	0.0743	0.0402	0.0243	0.0394	0.0190	2.94 ± 0.02	1,191K
Mip-NeRF	32.629	34.336	35.471	35.602	0.9579	0.9703	0.9786	0.9833	0.0469	0.0260	0.0168	0.0120	0.0114	2.84 ± 0.01	612K
Mip-NeRF w/o Misc.	32.610	34.333	35.497	35.638	0.9577	0.9703	0.9787	0.9834	0.0470	0.0259	0.0167	0.0120	0.0114	2.82 ± 0.03	612K
Mip-NeRF w/o Single MLP	32.401	34.131	35.462	35.967	0.9566	0.9693	0.9780	0.9834	0.0479	0.0268	0.0169	0.0116	0.0115	3.40 ± 0.01	1,191K
Mip-NeRF w/o Area Loss	33.059	34.280	33.866	30.714	0.9605	0.9704	0.9747	0.9679	0.0427	0.0256	0.0213	0.0308	0.0139	2.82 ± 0.01	612K
Mip-NeRF w/o IPE	29.876	32.160	33.679	29.647	0.9384	0.9602	0.9742	0.9633	0.0742	0.0393	0.0226	0.0378	0.0186	2.79 ± 0.01	612K

- Misc: whether to add small changes that slightly improve the stability of training
- Single MLP: whether to use NeRF's training scheme or Mip-NeRF's scheme
- Area Loss: whether to add the loss scaling by pixel area
- IPE: whether to use positional encoding or integrated positional encoding

Part 6 Conclusions

- Model: multiscale NeRF-like model that addresses the inherent aliasing of NeRF

- Ray casting : cones

- Encoding: positions and sizes of conical frustums (IPE)

- Training : single neural network that models the scene at multiple scales