Modelling uncertainty of the Rhenium-Osmium cosmic clock

Øyvind Brynhildsvoll Svendsen¹

Supervisor: Sijing Shen¹ Co-supervisor: Signe Riemer-Sørensen¹

¹Institute of Theoretical Astrophysics, University of Oslo

Friday 15th June 2018 Svein Rosselands hus 209 Intro

Results

- ▶ ¹⁸⁷₇₅Re in interstellar gas
- ▶ ¹⁸⁷Os in interstellar gas
- $ightharpoonup f_{187} = rac{^{187}_{76} Os}{^{187}_{75} Re}$
- Rate of neutron star mergers
- Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

Yields without postprocessing

Yields with postprocessing

t=14.00Gyr

Comparing models

Model	$^{187}_{76}\mathrm{Os}_c/~^{187}_{75}\mathrm{Re}$	λ_{Re}	λ_{rncp}
Clayton	$\frac{\Lambda - \lambda}{\lambda} e^{\lambda t} \frac{1 - e^{-\Lambda t}}{1 - e^{-(\Lambda - \lambda)t}} - 1$	$\lambda = \frac{\ln 2}{\tau_{Re}}$	Λ
Clayton Sudden synthesis	$e^{\lambda t} - 1$	$\tau_{\rm Re} = 47 \pm 10 Gyr$	$\Lambda \to \infty$
Clayton Uniform synthesis	$\frac{\lambda t}{1 - e^{-\lambda t}} - 1$		$\Lambda \to 0$
Luck	$\frac{\lambda_{Re}/\beta(1-e^{-\beta t})-(1-e^{-\lambda_{Re}t})}{e^{-\beta t}-e^{-\lambda_{Re}t}}$	$\lambda_{\text{Re}} = {1.62 \pm 0.08 \atop \times 10^{-11} yr^{-1}}$	β
Luck Sudden synthesis			$\beta=10^{-6}yr^{-1}$
Luck Steady state			$\beta = 10^{-12} yr^{-1}$
Shizuma	$\frac{(1-e^{-\lambda_{\beta}^{\text{eff}}t})-(1-e^{-\lambda t})\lambda_{\beta}^{\text{eff}}/\lambda}{e^{-\lambda_{\beta}^{\text{eff}}t}-e^{-\lambda t}}$	$\lambda_{\beta}^{\rm eff} = \tfrac{1.2 \ln 2}{\tau_{Re}} = 2.00 \times 10^{-11} [yr^{-1}]$	$\lambda \in [0,2] Gyr^{-1}$
SciPy curvefit to Fiducial Omega-model-data		1.33×10^{-11} $\pm 2.767 \times 10^{-14}$ [yr ⁻¹]	5.42×10^{-10} $\pm 5.79 \times 10^{-12}$ [yr ⁻¹]

Comparing models

Comparing models

TODO! insert new plot of nsm-rates here

Uncertainties of Yields+IMFslope

Uncertainties of Yields+IMFslope

TODO! insert plot of rates here

Uncertianties of Yields+IMFslope+NSM

Uncertianties of Yields+IMFslope+NSM

