Unobserved Heterogeneous Spillover Effects in Instrumental Variable Models

Huan Wu

University of North Carolina at Chapel Hill

October 31, 2025

Job Market Paper Presentation

Outline

Introduction

Mode

Identification

Estimation and Inference

Application

Appendix

Motivation: Spillover Effects

• **Spillovers**: Each unit's outcome depends on others' treatment $(D_{-i} \rightarrow Y_i)$

- Violation of SUTVA
 - $ightharpoonup Y_i$ depends only on D_i , not on D_{-i}

• Further complication: Treatment D_i may be **endogenous**

• Goal: Study causal effects when there are spillovers and treatment is endogenous

Motivation: An Example

Spillovers within best-friend groups; no spillovers across groups

- Researchers study how college completion (D_i) affects later earnings (Y_i)
- **Spillovers**: Best friend's college completion $(D_{-i}) \rightarrow$ individual's earnings (Y_i)

Motivation: An Example

Spillovers within best-friend groups; no spillovers across groups

- Researchers study how college completion (D_i) affects later earnings (Y_i)
- **Spillovers**: Best friend's college completion $(D_{-i}) \rightarrow$ individual's earnings (Y_i)
- Endogeneity: College decisions are not random
 - ightharpoonup Individual's choice depends on unobserved traits (V_i) that also affect earnings

Motivation: An Example

Spillovers within best-friend groups; no spillovers across groups

- Researchers study how college completion (D_i) affects later earnings (Y_i)
- **Spillovers**: Best friend's college completion $(D_{-i}) \rightarrow$ individual's earnings (Y_i)
- Endogeneity: College decisions are not random
 - ightharpoonup Individual's choice depends on unobserved traits (V_i) that also affect earnings
- Heterogeneity: The effects may differ across individuals
 - ▶ Spillover effect $(D_{-i} \to Y_i)$ and direct effect $(D_i \to Y_i)$ may vary with unobserved V_i

Treatment Effects With Heterogeneity: SUTVA case

Under SUTVA: $Y_i = Y_i(D_i)$

Treatment effect varies with unobserved trait V_i

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid V_i]$$

- V_i in a region: Local average treatment effect (LATE, Imbens & Angrist, 1994)
 - ▶ The return to education for individuals induced to complete college by the instrument
- V_i at a given value: Marginal treatment effect (MTE, Heckman & Vytlacil, 1999, 2001, 2005)
 - ▶ The return to education for individuals with a given level of unobserved ability

Treatment Effects With Heterogeneity: Spillover case

Spillovers exist: $Y_i = Y_i(D_i, D_{-i})$

Spillover effect and direct effect vary with unobserved traits (V_i, V_{-i}) :

$$\mathbb{E}[Y_i(d,1) - Y_i(d,0) \mid V_i, V_{-i}], \quad \mathbb{E}[Y_i(1,d) - Y_i(0,d) \mid V_i, V_{-i}]$$

Contribution of This Paper

This paper: a general framework to study heterogeneous treatment effects with spillovers

- (V_i, V_{-i}) in a region: Local average treatment effect with spillovers
 - Spillover and direct returns to college for individuals and friends whose college decisions change because of the instrument
- (V_i, V_{-i}) at given values: Marginal treatment effect with spillovers
 - Spillover and direct returns to college that vary continuously with the individual's and the friend's unobserved ability

Contribution: Marginal Treatment Effects With Spillovers

Identify marginal treatment effects with spillovers

- Point identified nonparametrically using continuous instruments (e.g., peers' parental background influencing educational choices)
- Can be aggregated to **recover** policy-relevant treatment effects (PRTE) with spillovers
- Generalize the standard MTE framework to settings with spillovers

Preview: Application Results

Estimated spillover effect when individual completes college (peer's V = 0.5)

Estimated direct effect when best friend completes college (peer's V = 0.5)

Contribution: Generalized Local Average Effects With Spillover

General identification of local average treatment effects with spillovers

- Applicable to discrete or continuous instruments
- Characterizes the **instrument variation required** for point identification
- With a binary instrument (e.g. cash transfer offer for college completion)
 - ► Kang & Imbens (2016); Vazquez-Bare (2022); DiTraglia et al. (2023)
 - Rely on one-sided noncompliance
 - E.g., individuals cannot complete college unless receiving the transfer
- More instrument variation is needed for less restrictive conditions

Related Literature

- Peer effects with parametric models
 - Manski (1993), Bramoullé, Djebbari, and Fortin (2009), Blume et al. (2015)
- Spillovers under randomized controlled trials
 - ▶ Hudgens and Halloran(2008), Aronow and Samii (2017), Vazquez-Bare (2021)
- Spillovers with direct strategic interactions
 - ▶ Balat and Han (2023), Hoshino and Yanagi (2023)
 - Require that a unit's treatment does not depend on peer's instruments

Other related literature

Outline

Introduction

Model

Identification

Estimation and Inference

Application

Appendix

Setting

- Consider i.i.d. groups indexed by *g*
 - ► Groups known, predetermined before treatment (e.g., best-friend pairs)
 - Each group contains *n* units
 - Spillovers exist within groups

- For illustration, consider n = 2
 - ▶ Unit indexed by $i \in \{0, 1\}$
 - ightharpoonup Extendable to n > 2

Model and Key Variables

$$\begin{split} Y_{0g} &= m_0 \big(D_{0g}, D_{1g}, U_{0g}, U_{1g} \big), \quad Y_{1g} &= m_1 \big(D_{1g}, D_{0g}, U_{1g}, U_{0g} \big) \\ D_{0g} &= \mathbb{1} \big\{ V_{0g} \leq h_0 (Z_{0g}, Z_{1g}) \big\}, \quad D_{1g} &= \mathbb{1} \big\{ V_{1g} \leq h_1 (Z_{1g}, Z_{0g}) \big\} \end{split}$$

Observe $(Y_{0g}, Y_{1g}, D_{0g}, D_{1g}, Z_{0g}, Z_{1g})$ in each group g

- Outcome $Y_{ig} \in \mathbb{R}$ (e.g. earnings)
- Treatment $D_{ig} \in \{0,1\}$ (e.g. whether the individual completes college)
 - Extendable to continuous treatments
- Instruments $Z_{ig} \in \mathbb{R}^k$ (e.g. peers' characteristics or cash transfer assignment)

Unobserved variables (U_{0g} , U_{1g} , V_{0g} , V_{0g}) in each group g

- Outcome unobservable $U_{ig} \in \mathbb{R}^l$
- Unobserved confounder $V_{ig} \in \mathbb{R}$ (e.g. unobserved ability)

Model: Outcome equation

$$Y_{0g} = m_0(D_{0g}, D_{1g}, U_{0g}, U_{1g}),$$

$$Y_{1g} = m_1(D_{1g}, D_{0g}, U_{1g}, U_{0g})$$

ullet Spillovers in outcome: Outcome Y_{ig} depends on peer's treatment $D_{1-i,g}$

Model: Outcome equation

$$Y_{0g} = m_0(D_{0g}, D_{1g}, U_{0g}, U_{1g}),$$

 $Y_{1g} = m_1(D_{1g}, D_{0g}, U_{1g}, U_{0g})$

- Spillovers in outcome: Outcome Y_{ig} depends on peer's treatment $D_{1-i,g}$
- Flexible structure accommodates heterogeneous spillover effects in outcomes
 - **No functional assumptions** on the outcome equations m_0 , m_1
 - ▶ Outcome Y_{ig} depends on peer's unobservables $U_{1-i,g}$
 - ▶ No dimension restrictions on unobservables (U_{0g}, U_{1g})

Model: Outcome equation

$$Y_{0g} = m_0(D_{0g}, D_{1g}, U_{0g}, U_{1g}),$$

 $Y_{1g} = m_1(D_{1g}, D_{0g}, U_{1g}, U_{0g})$

- Spillovers in outcome: Outcome Y_{ig} depends on peer's treatment $D_{1-i,g}$
- Flexible structure accommodates heterogeneous spillover effects in outcomes
 - **No functional assumptions** on the outcome equations m_0 , m_1
 - ▶ Outcome Y_{ig} depends on peer's unobservables $U_{1-i,g}$
 - ▶ No dimension restrictions on unobservables (U_{0g}, U_{1g})
- Define the potential outcome $Y_{ig}(d,d') \equiv m_i(d,d',U_{ig},U_{1-i,g})$ Example: Structural Equations

$$D_{0g} = \mathbb{1} \{ V_{0g} \le h_0(Z_{0g}, Z_{1g}) \},$$

$$D_{1g} = \mathbb{1} \{ V_{1g} \le h_1(Z_{1g}, Z_{0g}) \}$$

- V_{ig} : continuous unobserved factor driving both treatment and outcomes
 - lacktriangle No distributional restrictions on the joint dependence of V_{0g} and V_{1g}
 - ightharpoonup Treatment take-up depends only on V_{ig} (private information)

$$D_{0g} = \mathbb{1} \{ V_{0g} \le h_0(Z_{0g}, Z_{1g}) \},$$

$$D_{1g} = \mathbb{1} \{ V_{1g} \le h_1(Z_{1g}, Z_{0g}) \}$$

- V_{ig} : continuous unobserved factor driving both treatment and outcomes
 - ightharpoonup No distributional restrictions on the joint dependence of V_{0g} and V_{1g}
 - ightharpoonup Treatment take-up depends only on V_{ig} (private information)
- Unit i's treatment D_{ig} does not depend on peer's treatment $D_{1-i,g}$
 - ▶ Balat & Han (2023), Hoshino & Yanagi (2023): allow direct strategic interactions, but $Z_{1-i,g}$ cannot affect D_{ig}

$$D_{0g} = \mathbb{1} \{ V_{0g} \le h_0(Z_{0g}, Z_{1g}) \},$$

$$D_{1g} = \mathbb{1} \{ V_{1g} \le h_1(Z_{1g}, Z_{0g}) \}$$

- D_{ig} can depend on peer's instruments $Z_{1-i,g}$: Spillovers in treatment
 - ► Accommodates shared or individual-specific instruments: $Z_{0g} = Z_{1g}$ or $Z_{0g} \neq Z_{1g}$

$$D_{0g} = \mathbb{1} \{ V_{0g} \le h_0(Z_{0g}, Z_{1g}) \},$$

$$D_{1g} = \mathbb{1} \{ V_{1g} \le h_1(Z_{1g}, Z_{0g}) \}$$

- D_{ig} can depend on peer's instruments $Z_{1-i,g}$: Spillovers in treatment
 - ► Accommodates shared or individual-specific instruments: $Z_{0g} = Z_{1g}$ or $Z_{0g} \neq Z_{1g}$
- Rationalized by a simultaneous incomplete information game (Aradillas-Lopez, 2010)
 - Interpret h_0 , h_1 as unit 0 and 1's beliefs based on public signals (Z_{0g} , Z_{1g})

$$D_{0g} = \mathbb{1} \{ V_{0g} \le h_0(Z_{0g}, Z_{1g}) \},$$

$$D_{1g} = \mathbb{1} \{ V_{1g} \le h_1(Z_{1g}, Z_{0g}) \}$$

- D_{ig} can depend on peer's instruments $Z_{1-i,g}$: Spillovers in treatment
 - ► Accommodates shared or individual-specific instruments: $Z_{0g} = Z_{1g}$ or $Z_{0g} \neq Z_{1g}$
- Rationalized by a simultaneous incomplete information game (Aradillas-Lopez, 2010)
 - ▶ Interpret h_0 , h_1 as unit 0 and 1's beliefs based on public signals (Z_{0g} , Z_{1g})
- No functional assumptions on threshold functions h_0 , h_1

Monotonicity in Treatment Selection

$$D_{ig} = \mathbb{1}\{V_{ig} \le h_i(Z_{0g}, Z_{1g})\}$$
 implies monotonicity in $D_{ig}(z_0, z_1)$ (cf. Vytlacil, 2002)

- Define propensity score: $P_i(z_0, z_1) \equiv \mathbb{P}(D_{ig} = 1 \mid Z_{0g} = z_0, Z_{1g} = z_1), i \in \{0, 1\}$
- $P_i(z_0, z_1)$ identifies threshold function $h_i(z_0, z_1)$
- Observed propensity scores $P_i(z_0, z_1)$ can be ordered
- The order of $P_i(z_0, z_1) \Rightarrow$ the order of $D_{ig}(z_0, z_1)$
- For $Z_{ig} \in \{0, 1\}$:

$$P_i(0,0) \le P_i(0,1) \le P_i(1,0) \le P_i(1,1)$$

$$\Rightarrow D_{ig}(0,0) \le D_{ig}(0,1) \le D_{ig}(1,0) \le D_{ig}(1,1)$$

Assumptions

1. (Exogeneity) Instruments (Z_{0g} , Z_{1g}) randomly assigned at the group level:

$$(Z_{0g}, Z_{1g}) \perp \!\!\! \perp (V_{0g}, V_{1g}, U_{0g}, U_{1g})$$

2. (Exclusion) (Z_{0g}, Z_{1g}) do not directly affect the outcome $Y_{ig}, i \in \{0, 1\}$:

$$Y_{ig}(d_0, d_1, z_0, z_1) = Y_{ig}(d_0, d_1, z'_0, z'_1)$$

for any $z_0 \neq z_0'$ and $z_1 \neq z_1'$

3. (Continuity) V_{ig} is continuously distributed, normalized Unif(0,1)

These assumptions are maintained throughout the talk

Outline

Introduction

Mode

Identification

Estimation and Inference

Application

Appendix

Generalized local average effects

Definition (Generalized local average effects)

i. Generalized local average controlled spillover effects (LACSE):

LACSE_i^(d)
$$(P) \equiv \mathbb{E}[Y_i(d, 1) - Y_i(d, 0) \mid (V_0, V_1) \in P], P \subset (0, 1)^2$$

ii. Generalized local average controlled direct effects (LACDE):

$$\mathsf{LACDE}_{i}^{(d)}(P) \equiv \mathbb{E}\left[Y_{i}(1,d) - Y_{i}(0,d) \mid (V_{0},V_{1}) \in P\right], P \subset (0,1)^{2}$$

Identifying generalized local average effects

Theorem (Identifying generalized local average effects)

- 1. If two pairs of propensity scores, (p_0, p_1) and $(p_0, p_1') \in \mathcal{P}$, $p_1' \neq p_1$, exist, LACSE for a specific subpopulation can be identified
- 2. If two pairs of propensity scores, (p_0, p_1) and $(p'_0, p_1) \in \mathcal{P}$, $p'_0 \neq p_0$, exist, LACDE for a specific subpopulation can be identified
- 3. If both conditions in 1 and 2 hold, LACSE and LACDE for a specific subpopulation can be identified

Idea: Relies on variation in the *peer's propensity score* to identify the *spillover effect*, and variation in the *individual's propensity score* to identify the *direct effect*

Mapping Treatment Decisions to Unobserved Heterogeneity

$$(p_0,p_1) \in \operatorname{Supp}(P_0,P_1) \colon D_0 = \mathbb{1}\{V_0 \le p_0\}, D_1 = \mathbb{1}\{V_1 \le p_1\}$$

Figure: Treatment Realizations Correspond to Regions in (V_0, V_1)

Local Average of Potential Outcome

Observe
$$\mathbb{E}[Y_0(1-D_0)D_1 \mid P_0 = p_0, P_1 = p_1]$$

Figure: Local average of potential outcome $Y_0(0, 1)$

Observe $(p_0, p_1), (p_0, p'_1), p'_1 > p_1$:

Figure: Local averages of $Y_0(0,1)$ given $(p_0,p_1), (p_0,p_1')$

Take the difference between local averages of $Y_0(0, 1)$

Figure: Local average of $Y_0(0,1)$ between (p_0,p_1) and (p_0,p_1')

Observe $(p_0, p_1), (p_0, p'_1), p'_1 > p_1$:

Figure: Local averages of $Y_0(0,0)$ given (p_0, p_1) , (p_0, p'_1)

Take the difference between local averages of $Y_0(0,0)$

Figure: Local average of $Y_0(0,0)$ between (p_0,p_1) and (p_0,p_1')

Identify Spillover Effects

Difference between local averages of $Y_0(0, 1)$ and $Y_0(0, 0)$

Figure: Local average controlled spillover effect between (p_0, p_1) and (p_0, p_1')

Identify Spillover and Direct Effects

With "rectangle" variations (p_0, p_1) , (p_0, p'_1) , (p'_0, p_1) and (p'_0, p'_1)

• LACSE and LACDE are identified

Figure: LACSE & LACDE between (p_0, p_1) , (p_0, p'_1) , (p'_0, p_1) and (p'_0, p'_1)

▶ Identify marginal effects

Local Averages With Binary Instrument

- Identification relies on variation in propensity scores
 - Change one unit's propensity score while holding the other's fixed
 - Variation in propensity scores is induced by variation in instruments
- Special case: binary instrument $Z_i \in \{0, 1\}$

- ▶ One-sided noncompliance: $P_0(0,0) = P_0(0,1) = 0 \Rightarrow$ local average spillover effect for unit 0
- Returns to education: Individuals cannot complete college without receiving cash transfer
- Without required variation, point identification with a binary instrument fails
 Identification full with a binary IV

Local Averages Not Point Identified With Binary Instrument

 If the propensity scores lack required variation in the support ⇒ need more variation in the instruments

 With continuous instrument variation, the previous idea identifies spillover and direct effects over small neighborhood in the interior of propensity score support

Next: formalize this idea by introducing marginal contolled spillover/direct effect

Definition of Marginal Effects

With continuous variation in propensity scores: take limits $p_1' \rightarrow p_1$ and $p_0' \rightarrow p_0$

Definition (Marginal effects)

i. Marginal controlled spillover effect (MCSE):

$$MCSE_i^{(d)}(p_0, p_1) \equiv \mathbb{E}[Y_i(d, 1) - Y_i(d, 0) \mid V_0 = p_0, V_1 = p_1]$$

ii. Marginal controlled direct effect (MCDE):

$$\mathsf{MCDE}_{i}^{(d)}(p_{0},p_{1}) \equiv \mathbb{E}\left[Y_{i}(1,d) - Y_{i}(0,d) \mid V_{0} = p_{0}, V_{1} = p_{1}\right]$$

Definition of Marginal Effects

With continuous variation in propensity scores: take limits $p_1' \to p_1$ and $p_0' \to p_0$

Definition (Marginal effects)

i. Marginal controlled spillover effect (MCSE):

$$MCSE_i^{(d)}(p_0, p_1) \equiv \mathbb{E}[Y_i(d, 1) - Y_i(d, 0) \mid V_0 = p_0, V_1 = p_1]$$

ii. Marginal controlled direct effect (MCDE):

$$MCDE_i^{(d)}(p_0, p_1) \equiv \mathbb{E}[Y_i(1, d) - Y_i(0, d) \mid V_0 = p_0, V_1 = p_1]$$

• Define the copula between V_0 and V_1 as

$$C(p_0,p_1) \equiv \mathbb{P}\left(V_0 \leq p_0, V_1 \leq p_1\right)$$

• Define marginal treatment response (MTR) function

$$m_i^{(d_0,d_1)}(p_0,p_1) \equiv \mathbb{E}[Y_i(d_0,d_1) \mid V_0 = p_0, V_1 = p_1]$$

Identifying Copula

Lemma: $\mathbb{P}(D_0 = 1, D_1 = 1 \mid P_0 = p_0, P_1 = p_1)$ identifies $C(p_0, p_1), (p_0, p_1) \in \text{Supp}(P_0, P_1)$

Figure: Identify joint distribution of (V_0, V_1)

Identifying Copula Density

Lemma:
$$\mathbb{P}(D_0 = 1, D_1 = 1 \mid P_0 = p_0, P_1 = p_1)$$
 identifies $C(p_0, p_1), (p_0, p_1) \in \text{Supp}(P_0, P_1)$

Assumption 4: (Continuous instruments) At least one component of (Z_0, Z_1) is continuous

• Taking cross derivative of $C(p_0, p_1)$ to identify copula density $c_{V_0, V_1}(p_0, p_1)$

$$\frac{\partial^2 \mathbb{E} \left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1 \right]}{\partial p_0 \partial p_1} = c_{V_0, V_1}(p_0, p_1)$$

if $C(\cdot, \cdot)$ is twice differentiable

Identifying Marginal Controlled Effects

Theorem (Identifying marginal controlled effects)

The marginal controlled spillover effects (MCSEs) are identified as

$$\operatorname{sgn}(2d-1) \cdot \frac{\partial^2 \mathbb{E}\left[Y_i \mathbb{I}\left\{D_i = d\right\} \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1} \int \frac{\partial^2 \mathbb{E}\left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1}$$

The marginal controlled direct effects (MCDEs) are identified as

$$\operatorname{sgn}(2d-1) \cdot \frac{\partial^2 \mathbb{E}\left[Y_i \mathbb{I}\left\{D_{1-i} = d\right\} \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1} / \frac{\partial^2 \mathbb{E}\left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1}$$

for $d \in \{0,1\}$ and (p_0,p_1) in the interior of $\operatorname{Supp}(P_0,P_1)$ • Twice difference strategy • Proof sketch

Identifying Marginal Controlled Effects

Theorem (Identifying marginal controlled effects)

The marginal controlled spillover effects (MCSEs) are identified as

$$\mathrm{sgn}(2d-1) \cdot \frac{\partial^2 \mathbb{E}\left[Y_i \mathbb{I}\left\{D_i = d\right\} \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1} \int \frac{\partial^2 \mathbb{E}\left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1}$$

The marginal controlled direct effects (MCDEs) are identified as

$$\operatorname{sgn}(2d-1) \cdot \frac{\partial^2 \mathbb{E}\left[Y_i \mathbb{I}\left\{D_{1-i} = d\right\} \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1} / \frac{\partial^2 \mathbb{E}\left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1}$$

for $d \in \{0,1\}$ and (p_0,p_1) in the interior of $Supp(P_0,P_1)$ • Twice difference strategy • Proof sketch

Extension

- Identify MCSE & MCDE with *discrete instruments* by imposing parametric assumptions (Brinch et al., 2017), or apply methods similar to Mogstad et al. (2018)
- Identification when groups differ in size Extension: Exposure mapping

Policy Relevant Treatment Effects

Many PRTEs are identified as integrals of MCSE and MCDE

• LACSE: Units with $h_i(z_0, z_1) < V_i \le h_i(z_1, z_0)$ correspond to complier

$$\begin{split} & \mathbb{E}\left[Y_{i}\left(d,1\right)-Y_{i}\left(d,0\right)\mid T_{i}=c,T_{-i}=c\right] \\ & = \frac{1}{\mathbb{P}\left(T_{0}=c,T_{1}=c\right)} \int_{h_{1}\left(z_{0},z_{1}\right)}^{h_{1}\left(z_{1},z_{0}\right)} \int_{h_{0}\left(z_{0},z_{1}\right)}^{h_{0}\left(z_{1},z_{0}\right)} \mathsf{MCSE}_{i}\left(d_{0};v_{0},v_{1}\right) c_{V_{0},V_{1}}\left(v_{0},v_{1}\right) dv_{0} dv_{1}, \\ & \mathbb{P}\left(T_{0}=c,T_{1}=c\right) = \int_{h_{1}\left(z_{0},z_{1}\right)}^{h_{1}\left(z_{1},z_{0}\right)} \int_{h_{0}\left(z_{0},z_{1}\right)}^{h_{0}\left(z_{1},z_{0}\right)} c_{V_{0},V_{1}}\left(v_{0},v_{1}\right) dv_{0} dv_{1} \end{split}$$

• Additional PRTE results: see paper • Examples

Connection to Standard Marginal Treatment Effects

- Without spillovers
 - ► Marginal controlled **spillover effect** = 0
 - Marginal controlled **direct effect** ⇒ **standard MTE**: $\mathbb{E}[Y_i(1) Y_i(0) \mid V_i]$ Marginal effects without spillovers
- With spillovers standard MTE may lose causal interpretation
 - MTE estimand identifies averaged MCDEs plus residual
 - Residuals disappear only if:
 - D_i does not depend on peer's instrument, and
 - Instruments Z_{0g} and Z_{1g} are independent within group

Outline

Introduction

Mode

Identification

Estimation and Inference

Application

Appendix

Semiparametric results in paper: nonparametric convergence rate Semiparametric estimation

Use parametric estimation when sample size is limited

Parametric Assumptions

- 1. $D_i = \mathbb{1}\{\widetilde{V}_i \leq h_i(Z_i, Z_{-i}; \theta_i)\}, h_i \text{ is a } K\text{-th order polynomial, } \widetilde{V}_i \sim N(0, 1)$
- 2. C_{V_0,V_1} is given by Gaussian copula with correlation ρ , $V_i = \Phi(\widetilde{V}_i)$
- 3. The marginal treatment response function satisfies

$$\mathbb{E}\left[Y_{i}\left(d,d'\right)\mid V_{0}=v_{0},V_{1}=v_{1}\right]=\alpha_{idd',0}+\alpha_{idd',1}\Phi^{-1}\left(v_{0}\right)\\ +\alpha_{idd',2}\Phi^{-1}\left(v_{1}\right)+\alpha_{idd',3}\Phi^{-1}\left(v_{0}\right)\Phi^{-1}\left(v_{1}\right)$$

• Point identify MCSE & MCDE with discrete instruments (cf. Brinch et al., 2017)

First stage and second stage: Estimate polynomial parameters θ_i and correlation ρ via maximum likelihood

First stage and second stage: Estimate polynomial parameters θ_i and correlation ρ via maximum likelihood

Third stage: Estimate outcome parameters $\alpha_{idd'}$ through separate regressions

$$\mathbb{E}[Y_{i}\mathbb{I}\{D_{i}=d,D_{-i}=d'\}\mid P_{0g}=p_{0},P_{1g}=p_{1}]\\ =\alpha_{idd'},_{0}I_{dd'}^{0}(p_{0},p_{1},\rho)+\alpha_{idd'},_{1}I_{dd'}^{1}(p_{0},p_{1},\rho)+\alpha_{idd'},_{2}I_{dd'}^{2}(p_{0},p_{1},\rho)+\alpha_{idd'},_{3}I_{dd'}^{3}(p_{0},p_{1},\rho)$$

- \bullet $I_{dd'}$ terms are integrals tied to first- and second-stage estimands
- Generated by plug-in estimators and Gauss-Hermite quadrature (fast, accurate numerical integration)

First stage and second stage: Estimate polynomial parameters θ_i and correlation ρ via maximum likelihood

Third stage: Estimate outcome parameters $\alpha_{idd'}$ through separate regressions

$$\mathbb{E}[Y_{i}\mathbb{I}\{D_{i}=d,D_{-i}=d'\}\mid P_{0g}=p_{0},P_{1g}=p_{1}]\\ =\alpha_{idd'},_{0}I_{dd'}^{0}(p_{0},p_{1},\rho)+\alpha_{idd'},_{1}I_{dd'}^{1}(p_{0},p_{1},\rho)+\alpha_{idd'},_{2}I_{dd'}^{2}(p_{0},p_{1},\rho)+\alpha_{idd'},_{3}I_{dd'}^{3}(p_{0},p_{1},\rho)$$

- \bullet $I_{dd'}$ terms are integrals tied to first- and second-stage estimands
- Generated by plug-in estimators and Gauss-Hermite quadrature (fast, accurate numerical integration)

Inference: Nonparametric bootstrap

• Monte Carlo simulation shows consistency and correct coverage Simulation results

Outline

Introduction

Mode

Identification

Estimation and Inference

Application

Appendix

Application: Best-Friend Spillovers in Education Returns

Direct and spillover effects of returns to education within best-friend groups using Add Health data

- Best-friend pair: mutual best-friend nominations in high school
- Outcome Y: Log of total personal yearly pre-tax income
- Treatment D: 1 if completed \geq 16 years of education, 0 otherwise
- Instrument Z: Average parental education level of the individual's non-best friends
 - Peers' parental backgrounds can influence college completion through self-confidence or aspirations (Cools et al., 2022)
- Covariates X: Age, gender, race, health status, and family income
- The sample comprises 1,019 best-friend pairs: apply parametric procedure

Application: Assumptions

- Best friends' educational choices do not directly influence each other
 - Decision depends on private education costs

Application: Assumptions

- Best friends' educational choices do not directly influence each other
 - Decision depends on private education costs
- Family background of non-best friends is independent
 - Reflects weaker social ties
 - Reasonably independent after controlling for covariates

Application: Assumptions

- Best friends' educational choices do not directly influence each other
 - Decision depends on private education costs
- Family background of non-best friends is independent
 - Reflects weaker social ties
 - Reasonably independent after controlling for covariates
- Family background of non-best friends does not affect outcomes
 - Weaker social ties unlikely to shape long-term labor market outcomes

Application: Results

Positive dependence: Correlation between best friends' unobservables V_i and V_{-i} is 0.36

Parametric estimates of MCDE with 90% CIs (dark gray areas) and 95% CIs (light gray areas)

Application: Results

Parametric estimates of MCSE with 90% CIs (dark gray areas) and 95% CIs (light gray areas)

Conclusion

- Enable identification and estimation of heterogeneous direct and spillover effects
- Consider local average controlled spillover and direct effects
- Define and identify marginal controlled spillover and direct effects
- Provide semiparametric and parametric estimation and apply to best-friend college returns in Add Health
- Several extensions are developed in the paper
 - ► Identify MCSE & MCDE with discrete instruments
 - ► Identify MCSE & MCDE with continuous treatment
 - ► Identify MCSE & MCDE for groups of varying sizes

Thank You!

I welcome your questions

Huan Wu
University of North Carolina at Chapel Hill
huan.wu@unc.edu
https://huanwu-econ.github.io/

Outline

Introduction

Mode

Identification

Estimation and Inference

Application

Appendix

Positioning in the Literature: Multivalued Treatments

View the group-level treatment vector as a multivalued treatment

- The spillover setting is similar to the multivalued treatment framework in Lee and Salanié (2018)
- Lee and Salanié (2018) require an additional exclusion restriction on instruments
 - Translated to spillover model: requires unit's treatment not to depend on peer's instruments
- Marginal effects are point identified without extra exclusion restriction in the spillover model
- The two frameworks are not nested

Treatment response and structural functions

 $Y_{ig}(d, d')$ generally serve as the reduced form of structural models with endogenous effects

• $Y_{ig}(d, d')$ is linear when structural functions are linear in treatments and outcomes

$$\begin{split} Y_{0g} &= \alpha_0 + \alpha_1 D_{0g} + \alpha_2 D_{1g} + \alpha_3 Y_{1g} + U_{0g} + \gamma_1 U_{1g}, \\ Y_{1g} &= \beta_0 + \beta_1 D_{1g} + \beta_2 D_{0g} + \beta_3 Y_{0g} + U_{1g} + \gamma_2 U_{0g} \\ \Longrightarrow Y_{0g} &= \frac{\alpha_0 + \alpha_3 \beta_0 + (\alpha_1 + \alpha_3 \beta_2) D_{0g} + (\alpha_2 + \alpha_3 \beta_1) D_{1g}}{1 - \alpha_3 \beta_3} \\ &+ \frac{(1 + \alpha_3 \gamma_2) U_{0g} + (\gamma_1 + \alpha_3) U_{1g}}{1 - \alpha_3 \beta_3}, \\ Y_{1g} &= \frac{\beta_0 + \beta_3 \alpha_0 + (\beta_1 + \beta_3 \alpha_2) D_{1g} + (\beta_2 + \beta_3 \alpha_1) D_{0g}}{1 - \alpha_3 \beta_3} \\ &+ \frac{(1 + \beta_3 \gamma_1) U_{1g} + (\beta_3 + \gamma_2) U_{0g}}{1 - \alpha_3 \beta_3}, \alpha_3 \beta_3 \neq 1 \end{split}$$

 Relations between treatment response and structural functions are unclear when structural functions are nonlinear

Simultaneous game with incomplete information

		Player 1	
		$D_1 = 1$	$D_1 = 0$
Player 0	$D_0 = 1$	$-V_0 + \alpha_0$,	$-V_0, 0$
		$-V_1 + \alpha_1$	
	$D_0 = 0$	$0, -V_1$	0, 0

- Information structure and beliefs
 - $ightharpoonup V_i$ is only privately observed by player i
 - Z is a publicly observed vector of signals
 - Each player forms a subjective belief $Pr(D_0, D_1 \mid Z)$
- Optimal decisions

$$D_0 = \mathbb{I}\left\{V_0 \le \alpha_0 \underbrace{\Pr_0\left(D_1 = 1 \mid D_0 = 1, Z\right)}_{\text{Player 0's belief, function of } Z}\right.$$

$$D_1 = \mathbb{I}\left\{V_1 \le \alpha_1 \underbrace{\Pr_1\left(D_0 = 1 \mid D_1 = 1, Z\right)}_{\text{Player 1's belief, function of } Z}\right.$$

 Aradillas-Lopez (2010) gives conditions for the existence and uniqueness of equilibrium beliefs
 Back to treatment model

Local Averages Not Point Identified With Binary Instrument

Suppose that $P_i(1, 1) > P_i(1, 0) > P_i(0, 1) > P_i(0, 0)$ (monotonicity)

• Cannot point identify local averages of different potential outcomes for same subpopulation

Figure: Local averages without one-sided noncompliance

Identifying decision threshold

$$D_{ig} = \mathbb{1}\left\{V_{ig} \le h(Z_{ig}, Z_{-ig})\right\}$$

- Identifying $h(\cdot, \cdot)$
 - Propensity score: $P_i(z_1, z_2) \equiv \mathbb{P}(D_i = 1 \mid Z_i = z_1, Z_{-i} = z_2)$
 - $ightharpoonup P_i(z_1, z_2)$ identifies $h(z_1, z_2)$ under exogeneity and continuity

$$P_{i}(z_{1}, z_{2}) = \mathbb{P}(V_{i} \leq h(z_{1}, z_{2}) \mid Z_{i} = z_{1}, Z_{-i} = z_{2})$$

$$= \mathbb{P}(V_{i} \leq h(z_{1}, z_{2}))$$

$$= h(z_{1}, z_{2})$$

Identifying copula density of unobservables

$$D_{ig} = \mathbb{1}\left\{V_{ig} \leq h(Z_{ig}, Z_{-ig})\right\}$$

- Identifying copula density $f_{V_i,V_{-i}}(\cdot,\cdot)$
 - ▶ Define $C(p_1, p_2) \equiv \mathbb{P}(D_i = 1, D_{-i} = 1 \mid P_i = p_1, P_{-i} = p_2)$
 - $ightharpoonup C(p_1, p_2)$ identifies the copula of V_i and V_{-i}

$$C(p_1,p_2)=\mathbb{P}\left(V_i\leq p_1,V_{-i}\leq p_2\right)$$

► Taking cross derivative of $C(p_1, p_2)$ to identify $f_{V_i, V_{-i}}(p_1, p_2)$

$$\frac{\partial^2 C(p_1, p_2)}{\partial p_2 \partial p_1} = f_{V_i, V_{-i}}(p_1, p_2)$$

if $C(\cdot, \cdot)$ is twice differentiable

► The derivative requires continuous instruments

Identifying marginal treatment response

$$Y_{ig} = \sum_{d,d' \in \{0,1\}} Y_i(d,d') \mathbb{1} \{D_i = d\} \mathbb{1} \{D_i = d'\}$$

• Define marginal treatment response function $m_i^{(d_1,d_2)}(p_1,p_2) \equiv \mathbb{E}[Y_i(d_1,d_2) \mid V_i = p_1, V_{-i} = p_2]$

$$\mathbb{E}\left[Y_{i}D_{i}D_{-i} \mid P_{i} = p_{1}, P_{-i} = p_{2}\right]$$

$$= \int_{0}^{p_{2}} \int_{0}^{p_{1}} \left\{ m_{i}^{(1,1)}(v_{1}, v_{2}) \cdot f_{V_{i}, V_{-i}}(v_{1}, v_{2}) \right\} dv_{1} dv_{2}$$

if $m_i^{(1,1)}(\cdot,\cdot)$ is continuous

• Taking cross derivative of $\mathbb{E}[Y_iD_iD_{-i} \mid P_i = p_1, P_{-i} = p_2]$ to identify $m_i^{(1,1)}(p_1, p_2)$

$$\begin{split} &\frac{\partial^{2}\mathbb{E}\left[Y_{i}D_{i}D_{-i}\mid P_{i}=p_{1},P_{-i}=p_{2}\right]}{\partial p_{2}\partial p_{1}}\frac{1}{f_{V_{i},V_{-i}}\left(p_{1},p_{2}\right)} \\ =& m_{i}^{(1,1)}(p_{1},p_{2}) \end{split}$$

if $\mathbb{E}[Y_iD_iD_{-i} \mid \cdot, \cdot]$ is twice differentiable \longrightarrow Main theorem

Policy relevant treatment effect

Propensity score under policy
$$a$$
: $P_i^a\left(Z_i^a,Z_{1-i}^a\right)=\mathbb{P}\left(D_i^a=1\mid Z_i^a,Z_{1-i}^a\right)$

- Assumption (Policy invariances): Distribution of $\left\{ \left(U_0^a, U_1^a, V_0^a, V_1^a \right) \right\}_{d,d' \in \{0,1\}}$ is invariant with a
- Two policies a, a' such that $P_i^{a'} = P_i^a + \varepsilon$, $\varepsilon > 0$
- ullet Policy relevant treatment effect is $\mathbb{E}\left[Y_i^{a'}-Y_i^a\right]/\Delta P$,

$$\begin{split} &\mathbb{E}\left[Y_{i}^{a'}-Y_{i}^{a}\right] = \int_{0}^{1} \int_{0}^{1} \left\{ \text{MCDE}_{i}(0;p_{0},p_{1}) \,\mathbb{P}\left(p_{0}-\varepsilon \leq P_{i}^{a} \leq p_{0}, P_{-i}^{a} \leq p_{1}-\varepsilon\right) \right. \\ &+ \left. \text{MCSE}_{i}(0;p_{0},p_{1}) \mathbb{P}\left(P_{i}^{a} \leq p_{0}-\varepsilon, p_{1}-\varepsilon \leq P_{-i}^{a} < p_{1}\right) \right. \\ &+ \left. \text{MCDE}_{i}(1;p_{0},p_{1}) \mathbb{P}\left(p_{0}-\varepsilon \leq P_{i}^{a} \leq p_{0}, p_{1} \leq P_{-i}^{a}\right) \right. \\ &+ \left. \text{MCSE}_{i}(1;p_{0},p_{1}) \mathbb{P}\left(p_{0} \leq P_{i}^{a}, p_{1}-\varepsilon \leq P_{-i}^{a} < p_{1}\right) \right. \\ &+ \left. \text{(MCDE}_{i}(1;p_{0},p_{1}) + \text{MCSE}_{i}(0;p_{0},p_{1})\right) \\ &\mathbb{P}\left(p_{0}-\varepsilon \leq P_{i}^{a} < p_{0}, p_{1}-\varepsilon \leq P_{-i}^{a} < p_{1}\right) \right\} c_{V_{i},V_{-i}}(p_{0},p_{1}) dp_{0} dp_{1} \end{split}$$

▶ Back to PRTE

Connection with local average effects

- In the spillover setting, MCSE and MCDE can recover local average effects, but the reverse is not true
- Vazquez-Bare (2022) considers a similar setting with binary instrument $Z_i \in \{z_0, z_1\}$
 - ► Monotonicity: $D_i(z_1, z_1) \ge D_i(z_1, z_0) \ge D_i(z_0, z_1) \ge D_i(z_0, z_0)$
 - Define population types

$D_i(1,1)$	$D_i(1,0)$	$D_i(0,1)$	$D_i(0,0)$	Type (T_i)
1	1	1	1	always-taker(at)
1	1	1	0	social-interaction complier (sc)
1	1	0	0	complier (c)
1	0	0	0	group complier (gc)
0	0	0	0	never-taker (nt)

- Partially identify type proportions and local average direct/spillover effects
 - Hard to identify marginal effects by taking derivatives

Connection with local average effects

- Once identifying copula density and marginal effects
 - ► Choose z_0, z_1 such that $h_i(z_0, z_0) \le h_i(z_0, z_1) \le h_i(z_1, z_0) \le h_i(z_1, z_1)$
- Create a mapping from unobservable V_i to type T_i , e.g.,

$$T_i = c \text{ if } h_i(z_0, z_1) < V_i \le h_i(z_1, z_0)$$

- Identify the type proportions and relevant local average effects
 - Probability that both units are compliers

$$\mathbb{P}\left(T_{i}=c,T_{-i}=c\right)=\int_{h_{-i}(z_{0},z_{1})}^{h_{-i}(z_{1},z_{0})}\int_{h_{i}(z_{0},z_{1})}^{h_{i}(z_{1},z_{0})}f_{V_{i},V_{-i}}\left(v_{0},v_{1}\right)dv_{0}dv_{1}$$

Local average spillover effects given both units are complier

$$\begin{split} & \mathbb{E}\left[Y_{i}\left(d_{0},1\right)-Y_{i}\left(d_{0},0\right)\mid T_{i}=c,T_{-i}=c\right]\mathbb{P}\left(T_{i}=c,T_{-i}=c\right) \\ & = \int_{h_{-i}\left(z_{0},z_{1}\right)}^{h_{-i}\left(z_{1},z_{0}\right)} \int_{h_{i}\left(z_{0},z_{1}\right)}^{h_{i}\left(z_{1},z_{0}\right)} \mathsf{MCSE}_{i}\left(d_{0};v_{0},v_{1}\right)f_{V_{i},V_{-i}}\left(v_{0},v_{1}\right)dv_{0}dv_{1}, \end{split}$$

▶ Back to comparisons

Without spillovers, marginal controlled effects are the same as standard marginal treatment effect

$$\bullet$$
 Suppose that $Y_i(D_i,d)=Y_i(D_i,d')\equiv Y_i(D_i), h_i(Z_i,z)=h_i(Z_i,z')\equiv h_i(Z_i)$

Without spillovers, marginal controlled effects are the same as standard marginal treatment effect

- Suppose that $Y_i(D_i,d)=Y_i(D_i,d')\equiv Y_i(D_i), h_i(Z_i,z)=h_i(Z_i,z')\equiv h_i(Z_i)$
- The propensity score identifies

$$P_i(z_0,z_1)=h_i(z_0)$$

Without spillovers, marginal controlled effects are the same as standard marginal treatment effect

- Suppose that $Y_i(D_i,d)=Y_i(D_i,d')\equiv Y_i(D_i), h_i(Z_i,z)=h_i(Z_i,z')\equiv h_i(Z_i)$
- The propensity score identifies

$$P_i(z_0, z_1) = h_i(z_0)$$

• The differentiation of $C_g(\cdot, \cdot)$ is

$$\partial^{2}C_{g}\left(p_{1},p_{2}\right)/\partial p_{2}\partial p_{1}=1$$

Without spillovers, marginal controlled effects are the same as standard marginal treatment effect

- Suppose that $Y_i(D_i, d) = Y_i(D_i, d') \equiv Y_i(D_i)$, $h_i(Z_i, z) = h_i(Z_i, z') \equiv h_i(Z_i)$
- The propensity score identifies

$$P_i(z_0,z_1)=h_i(z_0)$$

• The differentiation of $C_g(\cdot, \cdot)$ is

$$\partial^{2}C_{g}\left(p_{1},p_{2}\right)/\partial p_{2}\partial p_{1}=1$$

- Marginal controlled spillover effects are identified as 0
- Marginal controlled **direct effects** are identified as **standard MTE**: $\mathbb{E}[Y_i(1) Y_i(0) \mid V_i]$

Comparison to Standard MTE

Standard MTE may lose causal interpretation if spillovers exist

• $\partial \mathbb{E} [Y_i \mid P_i(Z_i) = p_0] / \partial p_0$ identifies averaged MCDEs **plus some residuals**

$$\begin{split} &\int_{0}^{1} \int_{0}^{p_{1}} \text{MCDE}_{i}(1; p_{1}, p_{2}) f_{V_{i}, V_{-i}}(p_{0}, v_{1}) f_{P_{-i}|P_{i} = p_{0}}(p_{1}) \, dv_{1} dp_{1} \\ &+ \int_{0}^{1} \int_{p_{1}}^{1} \text{MCDE}_{i}(0; p_{1}, p_{2}) f_{V_{i}, V_{-i}}(p_{0}, v_{1}) f_{P_{-i}|P_{i} = p_{0}}(p_{1}) \, dv_{1} dp_{1} \\ &+ \text{residuals} \end{split}$$

61

Comparison to Standard MTE

Standard MTE may lose causal interpretation if spillovers exist

• $\partial \mathbb{E}[Y_i \mid P_i(Z_i) = p_0] / \partial p_0$ identifies averaged MCDEs **plus some residuals**

$$\begin{split} &\int_{0}^{1} \int_{0}^{p_{1}} \text{MCDE}_{i}(1; p_{1}, p_{2}) f_{V_{i}, V_{-i}}(p_{0}, v_{1}) f_{P_{-i}|P_{i} = p_{0}}(p_{1}) \, dv_{1} dp_{1} \\ &+ \int_{0}^{1} \int_{p_{1}}^{1} \text{MCDE}_{i}(0; p_{1}, p_{2}) f_{V_{i}, V_{-i}}(p_{0}, v_{1}) f_{P_{-i}|P_{i} = p_{0}}(p_{1}) \, dv_{1} dp_{1} \\ &+ \text{residuals} \end{split}$$

- Residuals are generally nonzero
- Residuals are zero when both conditions hold:
 - ► A unit's treatment decision does not depend on peer's instrument
 - ▶ The instruments Z_{0g} and Z_{1g} are mutually independent within groups

▶ Back to Connection to MTE

Testable Implications

Nesting inequality: Copula density and probabilities are nonnegative ⇒

$$\begin{split} &\frac{\partial^{2}}{\partial p_{1}\partial p_{0}}\mathbb{E}\left[\mathbb{1}\left\{Y_{i}\in A_{1},Y_{-i}\in A_{2}\right\}\mathbb{1}\left\{D_{i}=d,D_{-i}=d\right\}\mid P_{i}=p_{0},P_{-i}=p_{1}\right]\\ &=\mathbb{P}\left(Y_{i}\left(d,d\right)\in A_{1},Y_{-i}\left(d,d\right)\in A_{2}\mid V_{i}=p_{0},V_{-i}=p_{1}\right)c_{V_{i},V_{-i}}(p_{0},p_{1})\geq0,\\ &-\frac{\partial^{2}}{\partial p_{1}\partial p_{0}}\mathbb{E}\left[\mathbb{1}\left\{Y_{i}\in A_{1},Y_{-i}\in A_{2}\right\}\mathbb{1}\left\{D_{i}=d,D_{-i}=1-d\right\}\mid P_{i}=p_{0},P_{-i}=p_{1}\right]\\ &=\mathbb{P}\left(Y_{i}\left(d,1-d\right)\in A_{1},Y_{-i}\left(d,1-d\right)\in A_{2}\mid V_{i}=p_{0},V_{-i}=p_{1}\right)c_{V_{i},V_{-i}}(p_{0},p_{1})\geq0. \end{split}$$

62

Testable Implications

Nesting inequality: Copula density and probabilities are nonnegative \implies

$$\begin{split} &\frac{\partial^{2}}{\partial p_{1}\partial p_{0}}\mathbb{E}\left[\mathbb{1}\left\{Y_{i}\in A_{1},Y_{-i}\in A_{2}\right\}\mathbb{1}\left\{D_{i}=d,D_{-i}=d\right\}\mid P_{i}=p_{0},P_{-i}=p_{1}\right]\\ &=\mathbb{P}\left(Y_{i}\left(d,d\right)\in A_{1},Y_{-i}\left(d,d\right)\in A_{2}\mid V_{i}=p_{0},V_{-i}=p_{1}\right)c_{V_{i},V_{-i}}(p_{0},p_{1})\geq0,\\ &-\frac{\partial^{2}}{\partial p_{1}\partial p_{0}}\mathbb{E}\left[\mathbb{1}\left\{Y_{i}\in A_{1},Y_{-i}\in A_{2}\right\}\mathbb{1}\left\{D_{i}=d,D_{-i}=1-d\right\}\mid P_{i}=p_{0},P_{-i}=p_{1}\right]\\ &=\mathbb{P}\left(Y_{i}\left(d,1-d\right)\in A_{1},Y_{-i}\left(d,1-d\right)\in A_{2}\mid V_{i}=p_{0},V_{-i}=p_{1}\right)c_{V_{i},V_{-i}}(p_{0},p_{1})\geq0 \end{split}$$

Index sufficiency: For any $(z_0, z_1) \neq (\tilde{z}_0, \tilde{z}_1)$ such that $P_i(z_0, z_1) = P_i(\tilde{z}_0, \tilde{z}_1), P_{-i}(z_0, z_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1) = P_{-i}(\tilde{z}_0, \tilde{z}_1), P_{-i}(\tilde{z}_0, \tilde{z}_1)$

$$\begin{split} & \mathbb{E}\left[\mathbbm{1}\left\{Y_i \in A_1, Y_{-i} \in A_2\right\} \mathbbm{1}\left\{D_i = d, D_{-i} = d'\right\} \mid Z_i = z_0, Z_{-i} = z_1\right] \\ = & \mathbb{E}\left[\mathbbm{1}\left\{Y_i \in A_1, Y_{-i} \in A_2\right\} \mathbbm{1}\left\{D_i = d, D_{-i} = d'\right\} \mid Z_i = \tilde{z}_0, Z_{-i} = \tilde{z}_1\right] \end{split}$$

Extension: (i) prove sharpness; (ii) develop implementation • Back to Connection to MTE

Semiparametric Estimation Procedure

The data
$$\{(Y_{0g}, Y_{1g}, D_{0g}, D_{1g}, Z_{0g}, Z_{1g}) : g = 1, \dots, G\}$$
 is i.i.d.

Estimand:

$$\begin{split} m_i^{(d,d')}(p_0,p_1) &= \frac{\partial^2 \mathbb{E}\left[Y_{idd'} \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1} / \frac{\partial^2 \mathbb{E}\left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1}, \\ Y_{idd'} &\equiv Y_i \mathbb{I}\{D_0 = d, D_1 = d'\}, i, d, d' \in \{0,1\} \end{split}$$

• Semiparametric estimation methods (Carneiro and Lee, 2009)

First stage: Estimate $\mathbb{P}(D_i = 1 \mid Z_0 = z_0, Z_1 = z_1)$ using partial linear regression and series estimation (Belloni et al., 2015)

Second stage: Estimate $m_i^{(d,d')}(p_0,p_1)$ using two local polynomial regressions \bullet Detailed procedure

Asymptotic distributions

Theorem: Under regularity conditions,

$$(Gh_G^6)^{1/2}\left(\hat{m}_i^{(d,d')}(p_0,p_1)-m_i^{(d,d')}(p_0,p_1)\right)\xrightarrow{d}N\left(0,V_{dd'}(p_0,p_1)\right)$$

• Limiting distribution of MCSEs & MCDEs can be characterized

$$\begin{split} (Gh_G^6)^{1/2} \left(\widehat{MCSE}_i(d; p_0, p_1) - MCSE_i(d; p_0, p_1) \right) &\xrightarrow{d} N\left(0, V_{d1}(p_0, p_1) + V_{d0}(p_0, p_1)\right), \\ \widehat{MCSE}_i(d; p_0, p_1) &= \hat{m}_i^{(d,1)}(p_0, p_1) - \hat{m}_i^{(d,0)}(p_0, p_1), \\ MCSE_i(d; p_0, p_1) &= m_i^{(d,1)}(p_0, p_1) - m_i^{(d,0)}(p_0, p_1) \end{split}$$

▶ Back to parametric estimation

First stage: Estimate propensity score

• Assume $\mathbb{P}(D_i = 1 \mid Z_0 = z_0, Z_1 = z_1) \equiv P_i(z_0, z_1)$ is partially linear

$$P_i(z_0, z_1) = \varphi_{01}(z_{01}) + \dots + \varphi_{0d}(z_{0d}) + \varphi_{11}(z_{11}) + \dots + \varphi_{1d}(z_{1d})$$

- Approximate φ_{ij} via a spline basis $\{p_k : k = 1, 2, ...\}$
- Given a positive integer κ , define regressors

$$P_{\kappa}(z_0, z_1) = [p_1(z_{01}), \cdots, p_{\kappa}(z_{01}), \cdots, p_1(z_{1d}), \cdots, p_{\kappa}(z_{1d})]$$

- Regress D_i linearly on $P_{\kappa}(z_0, z_1)$ to get $\hat{P}_i(z_0, z_1)$
- Lemma: Under regularity assumptions in Belloni et al. (2015),

$$\max_{g=1,\dots,G} \left| \hat{P}_i \left(Z_{0g}, Z_{1g} \right) - P_i \left(Z_{0g}, Z_{1g} \right) \right| = O_p \left[\sqrt{\frac{\kappa \log \kappa}{G}} + \kappa^{-s} \right],$$

 $\kappa \to \infty$ as $G \to \infty$, $\kappa^{m/(m-2)} \log \kappa/G = O(1)$ for any m > 2, s: exponent of the Hölder condition

Second stage: Estimate marginal treatment response

Step 1: Estimate the denominator of estimand

$$\frac{\partial^2 \mathbb{E} \left[D_0 D_1 \mid P_0 = p_0, P_1 = p_1 \right]}{\partial p_0 \partial p_1}$$

• Conducting a local polynomial regression of order three with bandwidth h_{G1}

$$\min_{b_0, \dots, b_9} \sum_{g=1}^{G} \left[D_{0g} D_{1g} - b_0 - b_1 (\hat{P}_{0g} - p_0) - \dots b_4 (\hat{P}_{0g} - p_0) (\hat{P}_{1g} - p_1) - \dots - b_9 (\hat{P}_{1g} - p_1)^3 \right]^2 K_{h_{G1}} \left(\hat{P}_g - p \right)$$

 \hat{b}_4 estimates $\partial^2 \mathbb{E}[D_0 D_1 \mid P_0 = p_0, P_1 = p_1] / \partial p_0 \partial p_1$

Second stage: Estimate marginal treatment response

Step 2: Estimate the numerator of estimand

$$\frac{\partial^2 \mathbb{E}\left[Y_{idd'} \mid P_0 = p_0, P_1 = p_1\right]}{\partial p_0 \partial p_1}$$

ullet Conducting a local polynomial regression with bandwidth h_{G2}

$$\min_{c_0, \dots, c_9} \sum_{g=1}^G \left[Y_{idd'} - c_0 - c_1 (\hat{P}_{0g} - p_0) - \dots c_4 (\hat{P}_{0g} - p_0) (\hat{P}_{1g} - p_1) - \dots - c_9 (\hat{P}_{1g} - p_1)^3 \right]^2 K_{h_{G2}} \left(\hat{P}_g - p \right)$$

$$\hat{c}_4 \text{ estimates } \partial^2 \mathbb{E} [Y_{idd'} \mid P_0 = p_0, P_1 = p_1] / \partial p_0 \partial p_1$$

Step 3: Estimate marginal treatment response $m_i^{(d,d')}(p_0,p_1)$

$$\hat{m}_i^{(d,d')}(p_0,p_1) = \frac{\hat{c}_4}{\hat{b}_4}$$

▶ Back to Estimation

Exposure to function of peer treatments

$$\left\{ \begin{array}{l} Y_{ig} = Y_{ig}\left(1, H_g\right) D_{ig} + Y_{ig}\left(0, H_g\right) \left(1 - D_{ig}\right) \\ D_{ig} = \mathbb{1} \left\{V_{ig} \leq h(Z_{ig})\right\} \\ H_g = m\left(Z_g, \varepsilon_g\right) \end{array} \right.$$

- Group size n_g can be large and heterogeneous
 - E.g., groups can be defined as villages
- $Z_g \in \mathbb{R}^k$ is instrument randomly assigned to groups: the proportion of treated children in a cash transfer program
- $Z_{ig} \in \mathbb{R}^l$ is instrument received by unit i: whether the child i receives cash transfer and the proportion of cash transfer assignment
- Treatment $D_{ig} \in \{0,1\}$ depends on Z_{ig} and individual unobservable V_{ig} : School dropout depends on cash transfer assignment and individual ability

Exposure to function of peer treatments

$$\left\{ \begin{array}{l} Y_{ig} = Y_{ig}\left(1, H_g\right) D_{ig} + Y_{ig}\left(0, H_g\right) \left(1 - D_{ig}\right) \\ D_{ig} = \mathbb{1} \left\{V_{ig} \leq h(Z_{ig})\right\} \\ H_g = m\left(Z_g, \varepsilon_g\right) \end{array} \right.$$

- $H_g: D_g \mapsto \mathbb{R}$ is a known continuous exposure mapping
 - ► E.g., $H_g = \sum_{i=1}^{n_g} D_{ig}/n_g$ is the dropout proportion in a village
 - Express H_g as a reduced-form function of (Z_g, ε_g)
- $\varepsilon_g \in \mathbb{R}$ is a continuous group-level unobservable
 - ightharpoonup E.g., ε_g captures the group's unobserved homophilic preference
 - No restrictions on correlation between V_{ig} and ε_g
- Outcome $Y_{ig} \in \mathbb{R}$ depends on D_{ig} and H_g
 - ► E.g., individual's long-term outcome depends on her dropout status and the village dropout rate

Exposure setting assumptions

Additional assumption

4. (Monotonicity) m(z, e) is continuous and strictly monotonic in e given z

- E.g., the village dropout rate monotonically decreases with the group preference for attending high school, given instrument values
- $\varepsilon_g = m_z^{-1}(H_g)$ by inverting $H_g = m(z, \varepsilon_g)$ w.r.t. ε_g given $Z_g = z$
- Propensity score function identifies $m_{Z_g}^{-1}\left(H_g\right)$
- Identify MCSEs and MCDEs using propensity scores as control functions
 Back to main theorem

Explicit reduced function of exposure level

Suppose that
$$H_g = \sum_{i=1}^{n_g} D_{ig}/n_g$$
 and $D_{ig} = \mathbb{1}\{V_{ig} \le h(Z_g)\}$

Two types of individuals, I_g : the set of individual indices in group g

- Type 1: $V_{ig} = \varepsilon_g$, $i \in I_g^1 \subseteq I_g$
- Type 2: $V_{jg} = 1 \varepsilon_g, j \in I_g^2 = I_g \setminus I_g^1$
- $|I_g^1|/|I_g| = \varepsilon_g$
- $\varepsilon_g \in (0,1)$: (i) captures the unobserved heterogeneity among group members; (ii) reflects the proportion of individual type

$$\begin{split} H_g &= \frac{1}{n_g} \sum_{i=1}^{n_g} D_{ig} = \frac{1}{n_g} \sum_{i \in \mathcal{I}_g^1} D_{ig} + \frac{1}{n_g} \sum_{i \in \mathcal{I}_g^2} D_{ig} \\ &= \varepsilon_g \mathbb{1} \left\{ \varepsilon_g \le h(Z_g) \right\} + (1 - \varepsilon_g) \mathbb{1} \left\{ 1 - \varepsilon_g \le h(Z_g) \right\} \equiv m(Z_g, \varepsilon_g) \end{split}$$

Generally, $m(\cdot, \cdot)$ is an unknown reduced-form function, ε_g summarizes the group's unobserved characteristics \bullet Back to Extension. Model

Identification in exposure setting

• Identify threshold function $h_i(\cdot)$

$$P_{ig}(z) \equiv \mathbb{P}\left(D_{ig} = 1 \mid Z_g = z\right)$$
$$= \mathbb{P}\left(V_{ig} \le h_i\left(Z_g\right) \mid Z_g = z\right) = h_i(z)$$

• Identify the inverse of $m(\cdot)$

$$\begin{split} P_g\left(Z_g,h\right) &\equiv \mathbb{P}\left(H_g \leq h \mid Z_g = z\right) \\ &= \mathbb{P}\left(\varepsilon_g \leq m_z^{-1}(h) \mid Z_g = z\right) = m_z^{-1}(h) \end{split}$$

72

Identification in exposure setting

ullet Identify conditional distribution of $V_{ig} \mid arepsilon_g$

$$\begin{split} & \mathbb{P}\left(D_{ig}=1\mid H_g=h, P_{ig}\left(Z_g\right)=p_0, P_g\left(Z_g, H_g\right)=p_1\right) \\ =& \mathbb{P}\left(V_{ig} \leq p_0 \mid \varepsilon_g=m_{Z_g}^{-1}(h), h_i\left(Z_g\right)=p_0, m_{Z_g}^{-1}(h)=p_1\right) \\ =& \mathbb{P}\left(V_{ig} \leq p_0 \mid \varepsilon_g=p_1\right) \end{split}$$

• Identify the density $f_{V_{ig}|_{\mathcal{E}_g=p_1}}(p_0)$ as

$$\frac{\partial}{\partial p_0} \mathbb{P}\left(D_{ig} = 1 \mid H_g = h, P_{ig}\left(Z_g\right) = p_0, P_g\left(Z_g, H_g\right) = p_1\right)$$

if $\mathbb{P}\left(D_{ig}=1\mid\cdot,\cdot,\cdot\right)$ is differentiable

73

Identification in exposure setting

- Define the marginal treatment response function as $\mathbb{E}\left[Y_{ig}(d,h)\mid V_{ig}=p_0, \varepsilon=p_1\right]$
 - ► Take $\mathbb{E}\left[Y_{ig}(1,h) \mid V_{ig} = p_0, \varepsilon_g = p_1\right]$ as example

$$\begin{split} &\mathbb{E}\left[Y_{ig}D_{ig}\mid H_g=h, P_{ig}\left(Z_g\right)=p_0, P_g\left(Z_g, H_g\right)=p_1\right]\\ =&\mathbb{E}\left[Y_{ig}\mathbb{1}\left\{V_{ig}\leq p_0\right\}\mid \varepsilon_g=p_1\right] \end{split}$$

▶ If $\mathbb{E}\left[Y_{ig}D_{ig} \mid \cdot, \cdot, \cdot\right]$ is differentiable

$$\begin{split} &\frac{\partial}{\partial p_0} \mathbb{E}\left[Y_{ig} D_{ig} \mid H_g = h, P_{ig}\left(Z_g\right) = p_0, P_g\left(Z_g, H_g\right) = p_1\right] \\ = &\mathbb{E}\left[Y_{ig}(1, h) \mid V_{ig} = p_0, \varepsilon_g = p_1\right] \cdot f_{V_{ig} \mid \varepsilon_g = p_1}\left(p_0\right) \end{split}$$

MCSEs and MCDEs are identified from marginal treatment response functions
 Back to Extension: Identification

Parametric Procedure: Estimation Bias

Estimation Bias						
	(0.4,0.6)	(0.5,0.5)	(0.6,0.4)	ρ		
Panel A1: MCDE (n=1000)						
D = 1	0.106	0.100	0.075	0.001		
D = 0	0.007	-0.030	-0.072	-0.001		
Panel A2: MCSE (n=1000)						
D = 1	0.036	0.078	0.121	0.001		
D = 0	-0.064	-0.051	-0.026	-0.001		
Panel B1: MCDE (n=10000)						
D = 1	0.083	0.056	0.034	0.0007		
D = 0	0.017	-0.010	-0.041	-0.0007		
Panel B2: MCSE (n=10000)						
D = 1	0.030	0.048	0.076	0.0007		
D = 0	-0.036	-0.018	0.001	-0.0007		

Note: Monte Carlo simulations are repeated 500 times.

Parametric Procedure: Coverage Rates

95% Confidence Interval Coverage Rate						
	(0.4,0.6)	(0.5, 0.5)	(0.6, 0.4)	ρ		
Panel A1: MCDE (n=1000)						
D = 1	0.952	0.964	0.972	0.040		
D = 0	0.958	0.962	0.96	0.948		
Panel A2: MCSE (n=1000)						
D = 1	0.962	0.972	0.966	0.040		
D = 0	0.968	0.956	0.954	0.948		
Panel B1: MCDE (n=10000)						
D = 1	0.938	0.948	0.954	0.04		
D = 0	0.936	0.948	0.946	0.94		
Panel B2: MCSE (n=10000)						
D = 1	0.95	0.946	0.94	0.04		
D = 0	0.952	0.95	0.954	0.94		

Note: CIs are based on 500 bootstrap replications. Monte Carlo simulations are repeated 500 times.

