Compressed Suffix Arrays and Suffix Trees

Outline

- Reminders
- Motivation
- Compression results
 - Time & Space bounds
- Compressed Suffix Tree
- Compressed Suffix Array
 - Proof of bounds

Reminder - Symbols

- $T = t_1 t_2 ... t_{n-1}$
 - text of length n-1
 - eof symbol # at the nth position
- T[i,n] is suffix i of text T
 - i=1,...,n

Reminder - Symbols

- $P = p_1 p_2 ... p_m$ • pattern of length m
- ∘ 0<ε≤1

Reminder - Main Goal

- Search string pattern P within text T
 - Support fast queries
 - Text T being fully scanned only once

Reminder – Suffix Trees

Leaf with value i represents suffix [i,n]

- Build time
 - O(n)
- Search time
 - **O**(m)
- Structure space
 - **O**(n)

Reminder – Suffix Arrays

- Lexicographically ordered
- SA[i] = the starting position in T of the i-th suffix

```
a# # ba# bba# bbba#
```

- ∘ Σ={a,b}
- ្ a<#<b

Reminder – Suffix Arrays

- Build time
 - O(nlogn)
- Search time
 - O(m+logn)
- Structure space
 - O(n)

Motivation

- So Far
 - Greedy in space
 - Fast searching
- Need for <u>space-efficient</u> text indexing
- Reduce both space and query time

Compressed Suffix Tree

- Build time
 - O(n)
- Search time
 - O(m/logn+(logn)^E)
- Structure space
 - $(\epsilon^{-1}+O(1))$ n

Compressed Suffix Tree

- Build Suffix Array
- Build Compressed Suffix Tree
 - Patricia Tries
- Compress Suffix Array

CSA Basic Operations

- Compress(T,SA)
 - Return succinct representation of SA
 - Retain T
 - Discard SA
- Lookup(i)
 - Return SA[i]
 - Use compressed SA

CSA Primary measures

- Compress
 - Preprocessing compressed SA
 - Space of compressed SA
- lookup
 - Query time

Compressed Suffix Array

- Build time
 - O(n)
- Structure space
 - ½nloglogn + O(n)
- lookup time
 - O(loglogn)

Suffix Arrays Optimization

- Main idea
 - Decomposition scheme
 - Recursive structure of permutations

Decomposition Scheme

- K levels, K=0,....,I
- \circ SA₀ = SA (Original SA)
- \circ n₀=n
 - n = |T|
 - assumption n is a power of 2
- \circ n_k=n/2^k
 - $SA_k = \{1, 2, ..., n_k\}$

• SA_k Succinct Representation

- 4 main steps:
 - Produce bit vector B_k
 - Map B_k 0's to 1's
 - Compute 1's for each prefix in B_k
 - Using function rank_k(j)
 - 'Pack' SA_k

Step #1: Produce bit vector B_k

- $|B_k| = n_k$
- B_k[i]=1 if $SA_k[i]$ is even B_k[i]=0 if $SA_k[i]$ is odd

$$T = bba\#$$
 SA_0
 $3 \ 4 \ 2 \ 1$
 B_0
 $0 \ 1 \ 1 \ 0$

• Step #2 : Map B_k 0's to 1's

• New Fuction $\Psi_k(i)$, $i=1,...,n_k$

$$\Psi_{k}(i) = \begin{cases} j & SA_{k}[i] \text{ is odd} \\ \text{and } SA_{k}[j] = SA_{k}[i] + 1 \end{cases}$$

$$\text{otherwise } (SA_{k}[i] \text{ is even})$$

$$T = bba\#_{SA_{0}}$$

$$SA_{0} & 3 + 2 + 1$$

$$B_{0} & 0 + 1 + 0$$

$$\Psi_{0} & 2 + 2 + 3 + 3$$

Step #3 : Compute 1's for B_k

- Recall fuction rank_k(j), j=1,...,l_k
- orank_k(j) = number of 1's on first j bits of B_k

$$T = bba\#$$

$$SA_0 = 3 \ 4 \ 2 \ 1$$

$$B_0 = 0 \ 1 \ 1 \ 0$$

$$rank_0 = 0 \ 1 \ 2 \ 2$$

Step #4: 'Pack' SA_k

- Pack even values of SA_k
 - Divide by 2
- New permutation $\{1,2,...,n_{k+1}\}$
 - $n_{k+1} = n_k/2 = n/2^{k+1}$
- Store new permutation into SA_{k+1}
 - Remove SA_k
 - $|SA_{k+1}| = |SA_k|/2$

Example: level 0, steps 1-3

index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Η	а	þ	þ	а	Ð	þ	а	р	Б	а	ь	р	а	Ð	а	а	а	þ	а	р	а	þ	þ	а	þ	b	þ	а	þ	þ	а	#
SA ₀	15	16	31	13	17	19	28	10	7	4	1	21	24	32	14	30	12	18	27	9	6	3	20	23	29	11	26	8	5	2	22	25
B₀	0	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	1	0	0	1	0	1	0	0	0	1	1	0	1	1	0
rank₀	0	1	1	1	1	1	2	3	3	4	4	4	5	6	7	8	9	10	10	10	11	11	12	12	12	12	13	14	14	15	16	16
Ψο	2	2	14	15	18	23	7	8	28	10	30	31	13	14	15	16	17	18	7	8	21	10	23	13	16	17	27	28	21	30	31	27

Example: level 0, step 4

index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
_	а	Ь	þ	а	þ	р	а	þ	b	а	b	b	а	۵	а	а	а	þ	а	þ	а	Б	þ	а	þ	þ	Б	а	b	þ	а	#
SA ₀	15	16	31	13	17	19	28	10	7	4	1	21	24	32	14	30	12	18	27	9	6	3	20	23	29	11	26	8	5	2	22	25
B₀	0	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	1	0	0	1	0	1	0	0	0	1	1	0	1	1	0
rank₀	0	1	1	1	1	1	2	3	3	4	4	4	5	6	7	8	9	10	10	10	11	11	12	12	12	12	13	14	14	15	16	16
Ψ	2	2	14	15	18	23	7	8	28	10	30	31	13	14	15	16	17	18	7	8	21	10	23	13	16	17	27	28	21	30	31	27

index																
SA₁	8	14	5	2	12	16	7	15	6	9	3	10	13	4	1	11

Lemma: Reconstruct SA_k

- Results of phase k
 - $B_k, \Psi_k, rank_k, SA_{k+1}$
- Reconstruct SA_k

$$SA_{k}[i] = 2*SA_{k+1}[rank_{k}(\Psi_{k}(i))] + (B_{k}[i]-1)$$

Proof, case 1, $B_k[i] = 1$

$$SA_{k}[i] = 2*SA_{k+1}[rank_{k}(\Psi_{k}(i))] + (B_{k}[i]-1)$$

- Step #4 : SA_k[i]/2 stored in rank_k(i)th entry of SA_{k+1}
 - $SA_k[i] = 2 * SA_{k+1}[rank_k(i)]$
- Step #2 : $\Psi_k(i) = i$

Proof, case 2, $B_k[i] = 0$

$$SA_{k}[i] = 2*SA_{k+1}[rank_{k}(\Psi_{k}(i))] + (B_{k}[i]-1)$$

- $\Psi_k(i) = j$
- Step #2 : $SA_k[i] = SA_k[j]-1$ • $B_k[j] = 1$
- Apply case 1 on j
 $SA_k[j] = 2 * SA_{k+1}[rank_k(j)]$

Example, case 1, $B_k[i] = 1$

$$\circ$$
 SA₀[2] = ?

$$_{0}$$
 B₀[2]=1, Ψ₀(2)=2, rank₀(2) = 1

SA₀[2]/2 stored in 1st entry of SA₁

Example, case 2, $B_k[i] = 0$

$$\circ$$
 SA₀[3] = ?

$$_{0}$$
 B₀[3]=0, Ψ₀(3) = 14, rank₀(14) = 6

$$\circ$$
 SA₀[14] = 2 * SA₁[6] = 2 * 16 = 32

$$\circ$$
 SA₀[3] = SA₀[14] - 1 = 32 - 1 = 31

Example - Decomposition

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Т	а	b	b	а	b	b	a	b	b	а	b	ь	а	b	а	a	а	b	а	b	a	b	b	a	b	b	b	а	b	b	a	#
SAo	15	16	31	13	17	19	28	10	7	4	1	21	24	32	14	30	12	18	27	9	6	3	20	23	29	11	26	8	5	2	22	25
Bo	0	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	1	0	0	1	0	1	0	0	0	1	1	0	1	1	0
rk _o	0	1	1	1	1	1	2	3	3	4	4	4	5	6	7	8	9	10	10	10	11	11	12	12	12	12	13	14	14	15	16	16
Ψο	2	2	14	15	18	23	7	8	28	10	30	31	13	14	15	16	17	18	7	8	21	10	23	13	16	17	27	28	21	30	31	27

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SA ₁	8	14	5	2	12	16	7	15	6	9	3	10	13	4	1	11
B ₁	1	1	0	1	1	1	0	0	1	0	0	1	0	1	0	0
rk ₁	1	2	2	3	4	5	5	5	6	6	6	7	7	8	8	8
Ψ1	1	2	9	4	5	6	1	6	9	12	14	12	2	14	4	5

	1	2	3	4	5	6	7	8
SA ₂	4	7	1	6	8	3	5	2
B ₂	1	0	0	1	1	0	0	1
rk ₂	1	1	1	2	3	3	3	4
Ψ_2	1	5	8	4	5	1	4	00

	1	2	3	4
SA ₃	2	3	4	1

Determining I

CSA Structure

- K levels, k = 0,1,...,l-1
 - Store B_k , Ψ_k , rank_k
- Final Level k = I
 - Store only SA_I

CSA Structure & Build

- \circ B_{k}
 - n_k bits per vector
 - O(n_k) build
- rank_k
 - O(n_k(loglogn_k)/logn_k) bits
 - As shown before
 - O(n_k) build
- ∘ Sa_l
 - (n/21)logn bits

CSA Structure space - Ψ_k

- List method
- 2^K lists
 - possibilities for 'prefixes' of suffixes
- Number of lists increases
- $_{\circ}$ L_k = concatenation of all 2^K lists
 - $|L_k| = n_k/2$
 - |L_k| decreases

CSA Structure space - Ψ_k

- For $i = 1,...,n_k/2$ $j = i^{th} 1 \text{ in } B_k$
 - Pattern in 2^K(SA_k[j]-1),..., 2^{K*}SA_k[j]-1 matched to a list

Level 0

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Т	а	b	b	а	b	b	а	þ	b	a	b	b	а	b	а	а	а	b	а	Ь	а	b	Ь	а	b	b	b	а	b	b	а	#
SA_0	15	16	31	13	17	19	28	10	7	4	1	21	24	32	14	30	12	18	27	9	6	3	20	23	29	11	26	8	5	2	22	25
\mathbf{B}_0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	1	0	0	1	0	1	0	0	0	1	1	0	1	1	0
j	0	2	0	0	0	0	7	8	0	10	0	0	13	14	15	16	17	18	0	0	21	0	23	0	0	0	27	28	0	30	31	0

- \circ a list = {2,14,15,18,23,28,30,31}
- \circ b list = {7,8,10,13,16,17,21,27}

Levels 1,2

- Level 1
 - aa = {} //empty list
 - $ab = \{9\}$
 - ba = {1,6,12,14}
 - $bb = \{2,4,5\}$
- Level 2
 - $abba = \{5,8\}$
 - baba = {1}
 - aabb = {4}

Reconstruct Ψ_k

- $B_{k}[i] = 1$ $\Psi_{k}(i) = i$
- \circ B_k[i] =0
 - $h = number of 0's in B_k$
 - $\Psi_k(i) = L_k[h]$

example : Reconstruct Ψ_k

•
$$\Psi_0(25) = ?$$
• $B_0[25] = 0$

$$\Psi_0(25) = L_0[13] = 16$$

index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
T	а	Б	Ь	а	Б	þ	а	Б	þ	а	b	Б	а	b	а	а	а	þ	а	р	а	þ	þ	а	b
SA ₀	15	16	31	13	17	19	28	10	7	4	1	21	24	32	14	30	12	18	27	9	6	ფ	20	23	29
B₀	0	1	0	0	0	0	1	1	0	~	0	0	1	1	1	1	1	1	0	0	1	0	1	0	0
rank₀	0	~	~	1	1	1	2	ო	3	4	4	4	55	6	7	8	മ	10	10	10	11	11	12	12	12
Ψ	2	2	14	15	18	23	7	8	28	10	30	31	13	14	15	16	17	18	7	8	21	10	23	13	16

example : Reconstruct Ψ_k

$$\circ$$
 rank₀(16) = 8

$$\circ$$
 SA₁[8] = ?

$$\Psi_1[8] = ?$$

$$B_1[8] = 0$$

$$h = 8 - 5 = 3$$

$$\Psi_1(8) = L_1[3] = 6$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SA ₁	8	14	5	2	12	16	7	15	6	9	3	10	13	4	1	11
B₁	1	1	0	1	1	1	0	0	1	0	0	1	0	1	0	0
rk ₁	1	2	2	3	4	5	5	5	6	6	6	7	7	8	8	8
Ψ1	1	2	9	4	5	6	1	6	9	12	14	12	2	14	4	5

Lemma

- S sorted integers
 - w bits per number
 - S < 2w
- Store integers
 - S(2+w-logs)+O(s/loglogs)
- Retrieve hth integer
 - O(1)

Store L_k

- Store integers
 n(1/2+3/2^{K+1})+O(n/2^kloglogn)
- Retrieve hth integer
 O(1)
- Preprocess time
 - $O(n/2^k+2^{2^k})$

CSA Structure - Summary

```
rank<sub>k</sub>
     O(n<sub>k</sub>(loglogn<sub>k</sub>)/logn<sub>k</sub>)
Sa
     (n/21)logn
     n(\frac{1}{2} + 3/2^{K+1}) + O(\frac{n}{2^k \log \log n})
```

Summing it up...

nlogn/2| + ½|*n + 5n + O(n/loglogn)
 ≤½nloglogn+n

Preprocess - summary

- $\circ \quad \mathsf{B}_{\mathsf{k}} \\ \quad \bullet \quad \mathsf{O}(\mathsf{n}_{\mathsf{k}})$
- rank_kO(n_k)
- Ψ_k
 O(n/2^k+2^{2^k})
- Summing up 0,..,l-1 levels
 Preprocess time O(n)

lookup(i)

- lookup(i) refers to SA₀[i]
 - Need to reconstruct SA₀[i]
- New procedure rlookup(i,k)
 - Recursive
 - Based on lemma of reconstructing SA_k

rlookup(i,k)

```
    rlookup(i,k)
    If k = I
    Return Sa<sub>I</sub>[i]
    else
    Return 2*rlookup(rank<sub>k</sub>(Ψ<sub>k</sub>(i)),k+1)+
    (B<sub>k</sub>[i]-1)
```

Reconstruct SA_k

- Lemma
 - $2*SA_{k+1}[rank_k(\Psi_k(i))] + (B_k[i]-1)$
- lookup(i) = rlookup(i,0)

Example - lookup(i)

o lookup(5) = rlookup(5,0), l=3

 \sim 2*rlookup(rank₀(Ψ₀(5)),1)+(B₀[5]-1)

Bo	0	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	1
rko	0	1	1	1	1	1	2	3	3	4	4	4	5	6	7	8	9	10
Ψο	2	2	14	15	18	23	7	8	28	10	30	31	13	14	15	16	17	18

2*rlookup(10,1)+(-1)

Example – cont.

o rlookup(10,1) = 2*rlookup(rank₁(Ψ₁(10)),2)+ (B₁[10]-1)

B₁	1	1	0	1	1	1	0	0	1	0	0	1	0	1	0	0
rk ₁	1	2	2	3	4	5	5	5	6	6	6	7	7	8	8	8
Ψ_1	1	2	თ	4	5	6	1	6	9	12	14	12	2	14	4	5

2*rlookup(7,2)+(-1)

Example - cont.

rlookup(7,2) = 2*rlookup(rank₂(Ψ₂(7)),3)+ (B₂[7]-1)

B ₂	1	0	0	1	1	0	0	1
rk ₂	1	1	1	2	3	3	3	4
Ψ_2	1	5	8	4	5	1	4	8

 \circ 2*rlookup(2,3)+(-1)

Example - cont.

o lookup(5) =
$$2*(2*(2*3+(-1))+(-1))+(-1)$$

= $2*(2*(5)+(-1))+(-1) = 2*(9)+(-1) = 17$

	1	2	3	4	5	6
Т	a	۵	ь	а	b	b
SAo	15	16	31	13	17	19

lookup(i)

- o lookup(i) = rlookup(i,0)
 - I+1 levels
 - O(1) per level
 - O(loglogn) lookup time

Compressed Suffix Array

- Build time
 - O(n)
- Structure space
 - ½nloglogn + O(n)
- lookup time
 - O(loglogn)

Compressed Suffix Tree

- Build time
 - O(n)
- Search time
 - O(m/logn+(logn)^E)
- Structure space
 - $(\epsilon^{-1}+O(1))$ n