Compilatori

Silviu Filote

July 2023

Contents

1								1
	1.1 Differenze struttura sintattic							
	1.2 Struttura del Front-end (Co							
	1.3 Focus del Corso			 	 			 1
	0 A 44 T 1							
2	<u>*</u>							2
	2.1 Operazioni tra stringhe							2
	2.2 Operazioni sui Linguaggi							
	2.3 Insiemistica			 	 			 2
3	2. Eannagiani a Linguaggi Daga	la :						4
3	1 0 00 0							
	3.1 Sotto-Espressione (S.E.)							4
	3.2 Relazione di Implicazione \Rightarrow							
	3.3 Automa a stati finiti determ							
	3.4 Automa a stati finiti non de							
	3.5 Automa a stati finiti non de	terministico con ε -mosse		 	 			 6
	3.6 Utilità delle ε -mosse:			 	 			 6
	3.7 Algoritmo Complemento			 	 			 7
	3.8 Algoritmo per Eliminare le a	:-mosse		 	 			 7
	3.9 Algoritmo per Eliminare il N							
	3.10 Contenuto capitolo							
	5.10 Contenuto capitolo			 	 	 •	 •	 O
4	4 Esercizio 1							9
	4.1 Automa a stati finiti determ	$_{ m inistico}$		 	 			 9
	4.2 Automa a stati finiti non de	ϵ erministico senza ϵ -moss	se .	 	 			 9
	4.3 Automa a stati finiti non de							
	4.4 Prova: esercizio							
	4.5 Algoritmo Complemento - fo							11
	0 1							
	4.6 Algoritmo per Eliminare le 8							11
	4.7 Algoritmo per Eliminare il N							11
	4.8 Algoritmo Complemento - in							12
	4.9 Algoritmo per Eliminare le a							12
	4.10 Algoritmo per Eliminare il N							12
	4.11 Osservazioni			 	 			 12
	4.12 Robe importanti:			 	 			 13
5								14
	5.1 Contenuto capitolo			 	 			
	5.2 Definizioni			 	 			 15
	5.3 Esercizio da imparare a men	noria: pattern stesso		 	 			 15
_								
6	8 ()							16
	6.1 Definzioni:							16
	6.2 Proprietá:							16
	6.3 Esempio:			 	 			 16
	6.4 Risoluzione $LL(1)$			 	 			 17
	6.5 Tecnica iterativa a Punto Fi	sso: insieme degli inizi		 	 			 18
	6.6 Tecnica iterativa a Punto Fi	sso: insieme dei seguiti		 	 			 18
	6.7 Insieme Guida di una Regola	<u> </u>						18
								_

7	Pars	$\operatorname{Sing} \operatorname{Ascendente} \operatorname{LR}(0)$	19
	7.1	Parti Destre e Automi	19
	7.2	Funzionamento	19
	7.3	Costruzione Automa $LR(0)$	19
	7.4	Procedimento Costruttivo	20
	7.5	Conflitti	20
	7.6	Funzionamento dell'Automa	20
	7.7	Insiemi di Prospezione o look ahead LALR(1)	20
	7.8	Condizioni LALR(1)	21
	7.9	Metodo Operativo iterativo Calcolo LA	21
	7.10	Automa LR(1)	21
	7.11	Creazione Automa LR(1)	21
	7.12	Definzioni LR(0)	22
		Definizioni LALR(1)	
8	Eser	rcizio 2	23
	8.1	Calcolo LR(0)	23
	8.2	Calcolo $\stackrel{.}{LALR}(1)$	
	8.3	Nota bene:	
	8.4	Condizioni LALR(1)	
	8.5	Calcolo LR(1)	
	8.6	Osservazioni:	24

1 Introduzione

- Un traduttore è un componente software che legge un testo scritto in uno specifico linguaggio formale e lo traduce: in un altro linguaggio formale o in una serie di azioni (operazioni).
- Un **compilatore** è un traduttore che traduce un linguaggio di programmazione nella corrispondente versione binaria. É suddiviso in:
 - Front-end: la parte del compilatore che analizza il testo
 - Back-end: la parte che genera il codice binario della specifica piattaforma
- Un **interprete** è un traduttore che traduce un programma scritto in un linguaggio di programmazione in azioni (esegue direttamente il programma)

1.1 Differenze struttura sintattica e semantica di un linguaggio

- La struttura sintattica si occupa delle regole che governano la formazione delle frasi e delle proposizioni in modo che siano grammaticalmente corrette. ⇒ Si occupa dunque della corretta costruzione delle frasi in una lingua.
- La struttura semantica riguarda il significato delle parole, delle frasi e dei testi. Si occupa di come le parole e le unità linguistiche connesse si combinano per formare un significato coerente \Rightarrow riguarda l'interpretazione e il significato del linguaggio.

1.2 Struttura del Front-end (Compilatore)

- Scanner (Lexer): riconosce gli elementi lessicali/simbolici del linguaggio
- Parser (Analizzatore Sintattico): riconosce la struttura sintattica del linguaggio
- Analizzatore Semantico: dà un significato al testo, riconoscendo gli errori semantici

1.3 Focus del Corso

Ci occupiamo del Front-End, cioè della parte linguistica dei traduttori:

- Ambito formale: all'interno del quale le tecniche sono definite
- Automi a Stati Finiti: tecnica usata per il riconoscimento lessicale
- Strutture Sintattiche e Tecniche di Parsing: definire e riconoscere le strutture sintattiche di un linguaggio
- Semantica dei Linguaggi: definire il significato dei linguaggi formali

2 Aspetti Formali

2.1 Operazioni tra stringhe

- Due stringhe: $x = a_1 \dots a_h$ $y = b_1 \dots b_k$
- \bullet La stringa x=uyz, dove u,y e z sono sottostringhe, dove u é il **prefisso** e y é il **suffisso** di x

Concatenamento $x \bullet y = xy = a_1 \dots a_h b_1 \dots b_k$ Prefissi k : x si indica il prefisso di x avente lunghezza kRiflessione $x^R = a_h \dots a_1 \text{ (reverse caratteri)}$ Ripetizioni - potenze $x^n = x^{n-1} \bullet x, \ x^0 = \varepsilon$

Osservazione: l'elevamento a potenza e la riflessione hanno precedenza rispetto al concatenamento.

2.2 Operazioni sui Linguaggi

Definizione: dato un alfabeto Σ e un linguaggio $L = \Sigma$ (linguaggio dei simboli terminali), Σ^* (monoide libero) contiene tutte le stringhe che possono essere costruite concatenando i caratteri terminali. Ogni linguaggio formale L di alfabeto Σ é incluso in Σ^* , $L \subseteq \Sigma^*$.

$$\emptyset^* = \{\varepsilon\}, \quad \{\varepsilon\}^* = \{\varepsilon\}$$

 $L = L_1 \bullet L_2 = \{xy \mid \forall x \in L_1 \ AND \ \forall y \in L_2\}$ Concatenamento di L_1 e L_2 $k: L = \{y \mid x \in L \ AND \ y = k: x\}$ Linguaggio degli Inizi di Lunghezza k di L $Prefissi(L) = \{ y \mid x = yz \ AND \ x \in L \ AND \ z \neq \varepsilon \}$ Linguaggio dei Prefissi (Propri) di **L** $Prefissi(L) \cap L = \emptyset$ Linguaggio L privo di prefissi $L^R = \{x \mid y \in L \ AND \ x = y^R\}$ $Riflessione \ di \ L$ $L^n = L^{n-1} \bullet L, \quad L^0 = \{\varepsilon\} \neq \emptyset, \quad L \bullet \{\varepsilon\} = L, \quad L \bullet \emptyset = \emptyset$ Ripetizione - potenze, n > 0 $L^* = \bigcup_{h=0...\infty} L^h = \{\varepsilon\} \cup L^1 \cup L^2 \cup \dots$ $Operatore\ stella$ $L^{+} = \bigcup_{h=1, \infty} L^{h} = L^{1} \cup L^{2} \cup \dots$ Operatore croce $L^* = L^+ \cup \{\varepsilon\}, \quad L^+ = L \bullet L^* = L^* \bullet L$ Croce: casi Particolari

2.3 Insiemistica

Unione	$L_1 \cup L_2$
Intersezione	$L_1\cap L_2$
Differenza	L_1-L_2
Inclusione	$L_1\subseteq L_2$
Inclusione propria	$L_1 \subset L_2$
Uguaglianza	$L_1 = L_2$
$Compleme to\ dato\ \Sigma$	$\neg L = \Sigma^* - L = \{ x \mid x \in \Sigma^* \ AND \ x \notin L \}$

Sostituzione: si considerino due alfabeti Σ e Δ e i linguaggi $L \subseteq \Sigma^*$ (linguaggio sorgente) e $L^{'} \subseteq \Delta^*$ (linguaggio pozzo). La sostituzione di $L^{'}$ al posto di un carattere $b \in \Sigma$ nella stringa $x = a_1 \dots a_h$ produce il linguaggio di alfabeto $(\Sigma - \{b\}) \cup \Delta$, cosí definita:

$$x = a_1 \dots a_n \qquad y = c_1 \dots c_n \qquad 1 \le i \le n$$

$$\phi_{b \to L'}(x) = \{ y \mid x \in L \text{ AND } \forall (\text{IF } a_i \ne b \text{ THEN } c_i = a_i \text{ ELSE } c_i \in L') \}$$

"Data la stringa x = yb sostituisco la b con ogni elemento in L'"

$$L^{1} = L \bullet L^{0} = L^{1} \bullet \{\varepsilon\} = L$$

$$L^{*} = \{\varepsilon\} \cup L^{1} \cup L^{2} \cup L^{\infty}$$

$$L^{+} = L^{1} \cup L^{2} \cup L^{\infty}$$

$$Se \ \{\varepsilon\} \in L \ \Rightarrow \ L^{+} = L \bullet L^{*} = L^{*} \bullet L = L^{*}$$

$$Se \ \{\varepsilon\} \notin L \ \Rightarrow \ L^{+} = L \bullet L^{*} = L^{*} \bullet L$$

3 Espressioni e Linguaggi Regolari

Le *espressioni regolari* sono definite sfruttando gli operatori di *unione*, *concatenamento e stella*. Dispongono di un meccanismo efficiente di riconoscimento: gli *automi a stati finiti*.

Definizione: Un linguaggio di alfabeto $\Sigma = \{a_1, \ldots, a_n\}$ é detto **regolare** se può essere espresso mediante le operazioni di *concatenamento*, *unione* e *stella* applicate un numero **finito** di volte ai linguaggi unitari $\{a_1\}, \ldots, \{a_n\}$ e al linguaggio vuoto \emptyset .

Definizione: un *espressione regolare (er) r é una stringa* costruita: con i caratteri dell'alfabeto Σ , con i meta-simboli $\{\bullet, \cup, *, \emptyset\}$ e con le parentesi tonde. Si suppone che i meta-simboli non facciano parte dell'alfabeto Σ .

Regole di Costruzione

 $precedenza\ operatori:\ *, \bullet, \cup$

$$\begin{array}{lll} r = \varnothing & r = a & dove \ a \in \Sigma \\ r = (s \cup t) & dove \ s \ e \ t \ sono \ e.r. & \\ r = (s)^* & dove \ s \ e \ t \ sono \ e.r. & \\ r = \varepsilon, & \varepsilon = \varnothing^* & \end{array}$$

Notazioni Comode

$$\begin{array}{ll} e^k = e \dots e & k \geq 0 \ volte & e^+ = ee^* \\ [e]_k^h = e^k \cup e^{k+1} \cup \dots \cup e^h & con \ 0 \leq k \leq h & [e] = [e]_0^1 = \varepsilon \cup e \quad opzionalita \end{array}$$

3.1 Sotto-Espressione (S.E.)

Una Sotto-Espressione (S.E.) di un'espressione regolare è definita come:

- e_k é una S.E. di $(e_1 \cup e_2 \cup \ldots \cup e_k \cup \ldots \cup e_j)$
- e_k é una S.E. di $(e_1 \bullet e_2 \bullet \ldots \bullet e_k \bullet \ldots \bullet e_j)$
- \bullet e é una S.E. di e^* , e^+ e di e^k
- \bullet ε é una S.E. di ogni espressione regolare

3.2 Relazione di Implicazione \Rightarrow

 $e' \Rightarrow e'' \ (e' \text{ implica } e'')$ se le due espressioni si possono *fattorizzare* come:

$$e^{'} = \alpha \beta \gamma$$
 $e^{''} = \alpha \delta \gamma$
 $dove \ \alpha, \beta, \gamma \ sono \ S.E. \ di \ e^{'}$

e tra β e δ vale una delle seguenti relazioni:

 $e_0 \stackrel{+}{\Rightarrow} e_n$

NB: si ha un'implicazione sinistra se α è il più lungo prefisso comune ad $e^{'}$ e $e^{''}$ privo di meta simboli.

n > 0 passi implicazione

Osservazioni:

- Linguaggio generato da un'espressione regolare r: $L(r) = \{x \in \Sigma^* \mid r \stackrel{*}{\Rightarrow} x\}$ con x priva di meta-simboli
- Un linguaggio é detto *regolare* se é generato da espressione regolare (e.r.)
- Due espressioni regolari sono *equivalenti* se generano lo stesso linguaggio

Altri operatori:

Complemento $\neg e$ $L(\neg e) = \Sigma^* - L(e)$ Intersezione $e_1 \cap e_2$ $L(e_1 \cap e_2) = L(e_1) \cap L(e_2)$

Esempio: implicazione sinistra $\alpha = \varepsilon$

$$\alpha\beta\gamma \Rightarrow \alpha\delta\gamma \qquad (a^* \cup b^+) \Rightarrow a^* \Rightarrow \varepsilon$$
$$\varepsilon(a^* \cup b^+)\varepsilon \Rightarrow \varepsilon(a^*)\varepsilon \Rightarrow \varepsilon\varepsilon\varepsilon \qquad (a^* \cup b^+) \stackrel{?}{\Rightarrow} \varepsilon$$

3.3 Automa a stati finiti deterministico

$$M = (Q, \Sigma, \delta, q_0, F)$$

 $egin{array}{lll} Q & Insieme \ degli \ stati \\ \Sigma & Alfabeto \ di \ ingresso \\ \delta & \delta: Q imes \Sigma o Q \ \ funzione \ di \ transizione \\ q_0 & q_0 \in Q \ \ stato \ \ inziale \\ \end{array}$

F $F \subseteq Q \ stati \ finali$

Funzione di transizione transitiva:

 $\delta^*(q, ya) = \delta(\delta^*(q, y), a)$ $con \quad \delta^*(q, \varepsilon) = q$

Una stringa $x \in L(r)$, dove r é un'espressione regolare riconosciuta dall'automa se:

 $\delta^*(q_0, x) = q \quad con \quad q \in F$

3.4 Automa a stati finiti non deterministico senza ε -mosse

$$M = (Q, \Sigma, \delta, q_0, F)$$

 $Q \hspace{1cm} \textit{Insieme degli stati}$

 Σ Alfabeto di ingresso

 δ $\delta: Q \times \Sigma \to (2^Q - \{\emptyset\})$ funzione di transizione **non deterministica**

 $q_0 q_0 \in Q stato inziale$

 $F F \subseteq Q stati finali$

Insieme delle parti: dato un insieme Q, l'insieme delle sue parti 2^Q é l'insieme di tutti i suoi sottoinsiemi. Si noti che $|2^Q| = 2^{|Q|}$

Funzione di transizione transitiva non deterministica senza ε -mosse:

 $\delta^*(q, ya) = \{ p \mid \exists r \in \delta^*(q, y) \text{ AND } p \in \delta(r, a) \}$ $con \quad \delta^*(q, \varepsilon) = \{ q \}$

Una stringa $x \in L(r)$, dove \boldsymbol{r} é un'espressione regolare riconosciuta dall'automa se:

 $\exists q \in F \ tale \ che \ q \in \delta^*(q_0, x)$

Osservazioni:

- La funzione di transizione δ é definita per un insieme di coppie (Q, Σ) e restituisce in uscita un nuovo stato. **Mentre** la funzione di transizione transitiva δ^* ci dice come cambia lo stato dell'automa quando leggi un simbolo dall'input e fai delle modifiche alla pila, basandoti su ciò che hai già calcolato per lo stato precedente e l'input precedente.
- Quando ci spostiamo da uno stato ad un altro per messo di una transazione consumiamo il carattere associata alla transazione della stringa passata come input.
- Data una stringa di input, se arriviamo allo stato finale con una stringa vuota abbiamo una esecuzione corretta, altrimenti errore
- Automa a stati finiti non deterministico senza ε -mosse: il non determinismo é dato dal avere piú transizioni con lo stesso simbolo che escono dallo stesso stato
- Una ε -mossa è una transizione diretta da uno stato all'altro etichettata con ε . Viene detta **mossa spontanea**, perchè la transizione avviene consumando il carattere ε dal dispositivo di ingresso, cioè senza consumare alcun carattere (spontaneamente). In opposizione, le altre mosse vengono dette non spontanee.

3.5 Automa a stati finiti non deterministico con ε -mosse

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q Insieme degli stati
- Σ Alfabeto di ingresso
- $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \to (2^Q \{\emptyset\})$ funzione di transizione **non deterministica**
- $q_0 q_0 \in Q stato inziale$
- $F \qquad F \subseteq Q \ stati \ finali$

Funzione di transizione transitiva non deterministica con ε -mosse:

$$\delta^*(q,ya) = \{ p \mid \exists r \in \delta^*(q,y) \text{ AND } p \in \delta(r,a) \}$$
$$con \ \delta^*(q,\varepsilon) = \{ q \} \text{ se } \delta(q,\varepsilon) \text{ non \'e definita,}$$
$$dove \ a \in \Sigma \cup \{ \varepsilon \}$$

Una stringa $x \in L(r)$, dove r é un'espressione regolare riconosciuta dall'automa se:

$$\exists q \in F \ tale \ che \ q \in \delta^*(q_0, x)$$

3.6 Utilità delle ε -mosse:

Le ε -mosse servono per costruire automi a partire da espressioni regolari di qualsiasi complessità e consentono di comporre liberamente gli automi derivati dalle S.E.

$Composizione: Alternativa \\ Composizione: \\ r = (r_1 \cup r_2 \cup \ldots \cup r_n) \\ r = (r_1)^* \\ \\ r = r_1 \bullet r_2 \\ \\ \hline \\ Composizione: Croce \\ \\ Composizione: Opzionalità$

Composizione: Croce $r = (r_1)^+$

 $r = [r_1]$

3.7 Algoritmo Complemento

Dato un automa finito deterministico M che riconosce il linguaggio L, derivare l'automa deterministico \overline{M} che riconosce il linguaggio $\neg L$. Esiste un algoritmo che deriva l'automa a stati finiti deterministico \overline{M} dall'automa a stati finiti deterministico M.

- Sia $M(Q, \Sigma, \delta, q_0, F)$ l'automa deterministico per L
- Sia $\overline{M}(\overline{Q}, \Sigma, \overline{\delta}, q_0, \overline{F})$ l'automa per $\neg L$ da calcolare

Passaggi:

- 1. Aggiungere agli stati Q uno **stato pozzo** p, dunque $\overline{Q} = Q \cup \{p\}$
- 2. $\forall q \in Q \in \forall a \in \Sigma$, $\overline{\delta}(q, a) = \delta(q, a)$ se $\delta(q, a)$ é definita, altrimenti $\overline{\delta}(q, a) = p$
- 3. $\forall a \in \Sigma$, $\overline{\delta}(p, a) = p$
- 4. gli stati finali sono dunque $\overline{F} = (Q F) \cup \{p\}$

3.8 Algoritmo per Eliminare le ε -mosse

Dato l'automa $M(Q, \Sigma, \delta, q_0, F)$ con ε -mosse, vogliamo ottenere $M'(Q', \Sigma, \delta', q_0, F')$ senza ε -mosse.

- 1. Inserire lo stato q_0 in Q' e in N, dove N é insieme dei nuovi stati
- 2. Impostiamo l'insieme $N' = \emptyset$. $\forall q \in N$, copiare da δ tutte le mosse non spontanee che escono da q, cioé $\delta(q, a) = \overline{q}$, creando $\delta'(q, a) = \overline{q}$ aggiungendo \overline{q} in Q' e in N', se non è già presente in Q'.
- 3. $\forall q \in N$, cercare tutte le transizioni transitive $q \stackrel{+}{\Rightarrow} \overline{q}$ che contengono una sola mossa non spontanea preceduta e/o seguita da mosse spontanee, cioé:

$$q \stackrel{\varepsilon}{\Rightarrow} \dots \stackrel{\varepsilon}{\Rightarrow} q_i \stackrel{a}{\Rightarrow} \overline{q},$$

$$q \stackrel{a}{\Rightarrow} \dots \stackrel{\varepsilon}{\Rightarrow} q_i \stackrel{\varepsilon}{\Rightarrow} \overline{q},$$

$$q \stackrel{\varepsilon}{\Rightarrow} \dots \stackrel{a}{\Rightarrow} q_i \stackrel{\varepsilon}{\Rightarrow} \overline{q}$$

Creare la corrispondente $\delta'(q, a) = \overline{q}$, aggiungendo \overline{q} in Q' e in N', se non è già presente in Q'.

Attenzione: gli stati \overline{q} da considerare per i pattern sono tutti e solo gli stati \overline{q} dai quali non escono mosse oppure esce almeno una mossa non spontanea (non ci si ferma sugli stati nel mezzo di catene di ε dai quali non escono mosse non spontanee, perchè introdurrebbero inutile ridondanza).

- 4. $\forall q \in N$ se esiste un percorso che va da q ad uno stato \overline{q} composto solo di ε -mosse, con $\overline{q} \in F$, inserire q in F' (stato finale di M').
- 5. Se $N' \neq \emptyset$, N = N' e ripartire dal Passo 2, altrimenti terminare

3.9 Algoritmo per Eliminare il Non-Determinismo

Dato l'automa $M(Q, \Sigma, \delta, q_0, F)$ non deterministico senza ε -mosse, vogliamo ottenere $M'(Q', \Sigma, \delta', q_0, F')$ deterministico senza ε -mosse.

- 1. Inserire lo stato q_0 in Q' e in N, dove N é insieme dei nuovi stati
- 2. Impostiamo l'insieme $N'=\emptyset$. $\forall q\in N$ che compare anche in $Q, \forall a\in \Sigma$ per cui $\delta(q,a)=\{q_1,q_2,\ldots,q_n\}$ non vuoto
 - se n > 1, creare uno stato **collettivo** $[q_1, q_2, \ldots, q_n]$ e aggiungere la mossa $\delta'(q, a) = [q_1, q_2, \ldots, q_n]$. Se $[q_1, q_2, \ldots, q_n]$ non é giá in Q', inserirlo in Q' e in N'.
 - Se n = 1, lo stato collettivo diventa uno stato semplice e lo si aggiunge a Q' e a N' se non é giá in Q'.
- 3. $\forall [q_1, q_2, \dots, q_n] \in N, \ \forall q_i \in [q_1, q_2, \dots, q_n] \ e \ \forall a \in \Sigma \ calcolare \ il \ nuovo \ stato \ collettivo \ [\delta(q_1, a) \cup \delta(q_2, a) \cup \dots \cup \delta(q_n, a)]$
 - aggiungere questo stato in Q' e in N' se non é giá in Q'.
 - se il nuovo stato collettivo contiene un solo stato, diventa uno stato semplice.
 - definire $\delta'([q_1, q_2, \dots, q_n], a) = [\delta(q_1, a) \cup \delta(q_2, a) \cup \dots \cup \delta(q_n, a)]$

- 4. $\forall q = [q_1, q_2, \dots, q_n] \in N$ (anche con n = 1), se almeno uno stato $q_i \in q$ è finale in M (cioè $q_i \in F$), inserire q negli stati finali di M', cioé $q \in F'$
- 5. Se $N' \neq \emptyset$, N = N' e ripartire dal Passo 2, altrimenti terminare

3.10 Contenuto capitolo

- Le **espressioni regolari** definite con operatori {∪, •,* } dispongono di un meccanismo efficiente di riconoscimento: gli **automi a stati finiti**
- **Definizione:** linguaggio regolare
- **Definizione:** espressione regolare r é una stringa composta da: $\Sigma \cup \{\bullet, \cup, *, \emptyset\} \cup \{(,)\}$
- Definzione: Sotto-Espressione (S.E.) di un'espressione regolare
- **Definzione:** Relazione di implicazione viene definita come $e' = \alpha\beta\gamma \Rightarrow e'' = \alpha\delta\gamma$
- Precedenza degli operatori: *, •, ∪
- ullet \cup : rappresenta l'alternativa/opzionalitá
- **Definzione:** implicazione sinistra $e' \Rightarrow e''$, se α è il pù lungo prefisso comune ad e' ed e'' privo di meta-simboli
- **Definizione:** automa a stati finiti deterministico
- **Definizione:** Automa a stati finiti non deterministico senza ε -mosse
- **Definizione:** Automa a stati finiti non deterministico con ε -mosse
- \bullet Importanza $\varepsilon-$ mosse: vengono usati per raccordare automi
- Algoritmo Complemento: si parte da un automa deterministimo M
- Algoritmo per Eliminare le ε -mosse
- Algoritmo per Eliminare il Non-Determinismo

4 Esercizio 1

4.1 Automa a stati finiti deterministico

Funzione di transizione transitiva:

$$\delta^*(q, ya) = \delta(\delta^*(q, y), a)$$
$$con \quad \delta^*(q, \varepsilon) = q$$

Una stringa $x \in L(r)$, dove r é un'espressione regolare riconosciuta dall'automa se:

$$\delta^*(q_0, x) = q \quad con \quad q \in F$$

Osservazione: da ogni stato non esistono carateri che si ripetono ossia sono unici e dunque data una funzione di transizione so sempre in che stato finisco.

$$\begin{array}{ll} a \cup b & \quad \quad \text{alternativa o opzionalitá: scelgo a o b} \\ [e] \equiv \varepsilon \cup e & \quad \quad \quad \text{alternativa o opzionalitá: scelgo } \varepsilon \text{ o b} \\ \delta : Q \times \Sigma \to Q & \quad \quad \delta(\underbrace{x}_Q, \underbrace{y}_\Sigma) \to \underbrace{z}_Q \end{array}$$

4.2 Automa a stati finiti non deterministico senza ε -mosse

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q Insieme degli stati
- Σ Alfabeto di ingresso
- δ $\delta: Q \times \Sigma \rightarrow (2^Q \{\emptyset\})$ funzione di transizione **non deterministica**
- $q_0 q_0 \in Q stato inziale$
- $F F \subseteq Q stati finali$

Funzione di transizione transitiva non deterministica senza ε -mosse:

$$\delta^*(q, ya) = \{ p \mid \exists r \in \delta^*(q, y) \text{ AND } p \in \delta(r, a) \}$$
$$con \quad \delta^*(q, \varepsilon) = \{ q \}$$

Una stringa $x \in L(r)$, dove r é un'espressione regolare riconosciuta dall'automa se:

$$\exists q \in F \ tale \ che \ q \in \delta^*(q_0, x)$$

Insieme delle parti: dato un insieme Q, l'insieme delle sue parti 2^Q é l'insieme di tutti i suoi sottoinsiemi. Si noti che $|2^Q| = 2^{|Q|}$

$$Q = \{a, b, c\} \qquad 2^Q = \left\{ \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \emptyset \right\}$$
$$\delta : Q \times \Sigma \to (2^Q - \{\emptyset\})$$
$$\delta(x, y) \to \{z_1, z_2, z_3\}$$

Osservazione: il non determinismo é dato dal fatto che con la funzione di transizione posso raggiungere più stati, dunque esiste in uscita da uno stato lo stessa carattere più volte

9

4.3 Automa a stati finiti non deterministico con ε -mosse

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q Insieme degli stati
- Σ Alfabeto di ingresso
- $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \to (2^Q \{\emptyset\})$ funzione di transizione **non deterministica**
- $q_0 q_0 \in Q stato inziale$
- $F \qquad F \subseteq Q \ stati \ finali$

Funzione di transizione transitiva non deterministica con ε -mosse:

$$\delta^*(q, ya) = \{ p \mid \exists r \in \delta^*(q, y) \text{ AND } p \in \delta(r, a) \}$$
$$con \ \delta^*(q, \varepsilon) = \{ q \} \text{ se } \delta(q, \varepsilon) \text{ non \'e definita,}$$
$$dove \ a \in \Sigma \cup \{ \varepsilon \}$$

Una stringa $x \in L(r)$, dove r é un'espressione regolare riconosciuta dall'automa se:

$$\exists q \in F \ tale \ che \ q \in \delta^*(q_0, x)$$

Osservazioni:

- Viene detta mossa spontanea, perchè la transizione avviene consumando il carattere ε dal dispositivo di ingresso, cioè senza consumare alcun carattere (spontaneamente). In opposizione, le altre mosse vengono dette non spontanee
- $\bullet\,$ Le $\varepsilon-$ mosse servono per costruire gli automi, ossia unire pezzi di automi tra di loro

Composizione: Alternativa

 $r = (r_1 \cup r_2 \cup \ldots \cup r_n)$ Composizione: Stella $r = (r_1)^*$

 $Composizione: \\ Concatenamento$

Composizione: Croce

 $r = (r_1)^+$

Composizione: Opzionalità

$$r = [r_1]$$

4.4 Prova: esercizio

$$r_s = [+ \cup -]d^+[,d^+]$$

4.5 Algoritmo Complemento - formale

Dato un automa finito deterministico M che riconosce il linguaggio L, derivare l'automa deterministico \overline{M} che riconosce il linguaggio $\neg L$.

- Sia $M(Q, \Sigma, \delta, q_0, F)$ l'automa deterministico per L
- Sia $\overline{M}(\overline{Q}, \Sigma, \overline{\delta}, q_0, \overline{F})$ l'automa per $\neg L$ da calcolare

Passaggi:

- 1. Aggiungere agli stati Q uno **stato pozzo** p, dunque $\overline{Q} = Q \cup \{p\}$
- 2. $\forall q \in Q \in \forall a \in \Sigma$, $\overline{\delta}(q, a) = \delta(q, a)$ se $\delta(q, a)$ é definita, altrimenti $\overline{\delta}(q, a) = p$
- 3. $\forall a \in \Sigma$, $\overline{\delta}(p, a) = p$
- 4. gli stati finali sono dunque $\overline{F} = (Q F) \cup \{p\}$

4.6 Algoritmo per Eliminare le ε -mosse

Dato l'automa $M(Q, \Sigma, \delta, q_0, F)$ con ε -mosse, vogliamo ottenere $M'(Q', \Sigma, \delta', q_0, F')$ senza ε -mosse.

- 1. Inserire lo stato q_0 in Q' e in N, dove N é insieme dei nuovi stati
- 2. Impostiamo l'insieme $N' = \emptyset$. $\forall q \in N$, copiare da δ tutte le mosse non spontanee che escono da q, cioé $\delta(q, a) = \overline{q}$, creando $\delta'(q, a) = \overline{q}$ aggiungendo \overline{q} in Q' e in N', se non è già presente in Q'.
- 3. $\forall q \in N$, cercare tutte le transizioni transitive $q \stackrel{+}{\Rightarrow} \overline{q}$ che contengono una sola mossa non spontanea preceduta e/o seguita da mosse spontanee, cioé:

$$q \stackrel{\varepsilon}{\Rightarrow} \dots \stackrel{\varepsilon}{\Rightarrow} q_i \stackrel{\mathbf{q}}{\Rightarrow} \overline{q},$$

$$q \stackrel{\mathbf{q}}{\Rightarrow} \dots \stackrel{\varepsilon}{\Rightarrow} q_i \stackrel{\varepsilon}{\Rightarrow} \overline{q},$$

$$q \stackrel{\varepsilon}{\Rightarrow} \dots \stackrel{\mathbf{q}}{\Rightarrow} q_i \stackrel{\varepsilon}{\Rightarrow} \overline{q}$$

Creare la corrispondente $\delta'(q, a) = \overline{q}$, aggiungendo \overline{q} in Q' e in N', se non è già presente in Q'.

Attenzione: gli stati \overline{q} da considerare per i pattern sono tutti e solo gli stati \overline{q} dai quali non escono mosse oppure esce almeno una mossa non spontanea (non ci si ferma sugli stati nel mezzo di catene di ε dai quali non escono mosse non spontanee, perchè introdurrebbero inutile ridondanza).

- 4. $\forall q \in N$ se esiste un percorso che va da q ad uno stato \overline{q} composto solo di ε -mosse, con $\overline{q} \in F$, inserire q in F' (stato finale di M').
- 5. Se $N' \neq \emptyset$, N = N' e ripartire dal Passo 2, altrimenti terminare

4.7 Algoritmo per Eliminare il Non-Determinismo

Dato l'automa $M(Q, \Sigma, \delta, q_0, F)$ non deterministico senza ε -mosse, vogliamo ottenere $M'(Q', \Sigma, \delta', q_0, F')$ deterministico senza ε -mosse.

- 1. Inserire lo stato q_0 in Q' e in N, dove N é insieme dei nuovi stati
- 2. Impostiamo l'insieme $N'=\emptyset$. $\forall q\in N$ che compare anche in $Q, \forall a\in \Sigma$ per cui $\delta(q,a)=\{q_1,q_2,\ldots,q_n\}$ non vuoto
 - se n > 1, creare uno stato **collettivo** $[q_1, q_2, \ldots, q_n]$ e aggiungere la mossa $\delta'(q, a) = [q_1, q_2, \ldots, q_n]$. Se $[q_1, q_2, \ldots, q_n]$ non é giá in Q', inserirlo in Q' e in N'.
 - Se n = 1, lo stato collettivo diventa uno stato semplice e lo si aggiunge a Q' e a N' se non é giá in Q'.
- 3. $\forall [q_1, q_2, \dots, q_n] \in N, \ \forall q_i \in [q_1, q_2, \dots, q_n]$ e $\forall a \in \Sigma$ calcolare il nuovo stato collettivo $[\delta(q_1, a) \cup \delta(q_2, a) \cup \dots \cup \delta(q_n, a)]$
 - aggiungere questo stato in Q' e in N' se non é giá in Q'.
 - se il nuovo stato collettivo contiene un solo stato, diventa uno stato semplice.
 - definire $\delta'([q_1, q_2, \dots, q_n], a) = [\delta(q_1, a) \cup \delta(q_2, a) \cup \dots \cup \delta(q_n, a)]$

- 4. $\forall q = [q_1, q_2, \dots, q_n] \in N$ (anche con n = 1), se almeno uno stato $q_i \in q$ è finale in M (cioè $q_i \in F$), inserire q negli stati finali di M', cioé $q \in F'$
- 5. Se $N' \neq \emptyset$, N = N' e ripartire dal Passo 2, altrimenti terminare

4.8 Algoritmo Complemento - informale

- Aggiungere stato pozzo p
- Tutte le transizioni che esistevano precedentemente vengono riportate in \overline{M}
- Tutte le transizioni mancanti vengono aggiunte per ogni stato ma vanno a finire nello stato pozzo:

$$\forall q_i \in Q : \forall k \in \Sigma \ where \ k \notin uscita(q_i) \xrightarrow{k} p$$

- \bullet Creare anello su p con tutte le transizioni Σ
- \bullet Scambiare stati finali con stati iniziali + p finale

4.9 Algoritmo per Eliminare le ε -mosse - informale

- 1. Parto da q_0 copio le mosse non spontanee e modello le mosse spontanee creando le nuove transizioni contenendo al massimo un carattere terminale e n mosse spontanee in questa maniera creo nuovi stati adiacenti a q_0 , ossia i q_i
- 2. $\forall q_i$ dal quale **esce almeno una mossa non spotanea** applico gli stessi passaggi precedenti: **creando** nuove transizioni per le spotanee e **copiando** quelle esistenti per le non spotanee.

Attenzione: gli stati \overline{q} da considerare per i pattern sono tutti e solo gli stati \overline{q} dai quali non escono mosse oppure esce almeno una mossa non spontanea (non ci si ferma sugli stati nel mezzo di catene di ε dai quali non escono mosse non spontanee, perchè introdurrebbero inutile ridondanza).

- 3. Se $q_i \stackrel{n,\varepsilon}{\to} q_f$, dove $q_f \in F$, q_i diventa uno stato finale
- 4. Se non esisteno q_i nuovi mi fermo altrimenti riparto dal passo 2

4.10 Algoritmo per Eliminare il Non-Determinismo - informale

- 1. Parto da q_0 e $\forall t \in \Sigma$ creo un nuovo stato q_k :
 - se ho n transizioni con t che arrivano in n stati q_i , ossia $\delta_n(q_i,t)$ creo uno stato $q_k=[q_i]$
 - $\bullet\,$ se ho una sola transizione con tche arriva in q
, ossia $\delta(q,t),$ allora $q_k=q$
- 2. Per ogni stato collettivo $q_k = [q_i]$ itero: $\forall t \in \Sigma$ e $\forall q_i \in q_k$ e vedo dove portano le transizioni
 - viene creato un nuovo stato collettivo con la stessa transizione
 - viene creato uno stato semplice
- 3. Se lo stato collettivo contiene almeno uno stato finale diventa finale

4.11 Osservazioni

- L'algoritmo per calcolare il complemento é applicabile su un automa deterministico
- Se devo calcolare $r_1 \cap r_2 \equiv \neg(\neg r_1 \cup \neg r_2)$ con r_1 e r_2 devono essere automi deterministici poi applico il complemento
- Utilizzo ε mosse per:
 - scelta di percorso senza consumare alcun carattere: **opzionalitá** $[a] = a \cup \varepsilon$, **croce**, **unione** (alternativa)
- con $\delta^*(q,\varepsilon) = \{q\}$ se $\delta(q,\varepsilon)$ non é definita, ossia rimango nello stesso stato iniziale
- Si raccoglie solo se l'ordine dell'espressione regolare lo consente senza modificare la struttura dell'espressione regolare
- precedenza operatori: ∗, •, ∪

4.12 Robe importanti:

$$e^k = e \dots e$$
 $k \ge 0$ volte $e^+ = ee^*$ $[e]_k^h = e^k \cup e^{k+1} \cup \dots \cup e^h$ con $0 \le k \le h$ $[e] = [e]_0^1 = \varepsilon \cup e$ opzionalita

$$L^{1} = L \bullet L^{0} = L^{1} \bullet \{\varepsilon\} = L$$

$$L^{*} = \{\varepsilon\} \cup L^{1} \cup L^{2} \cup L^{\infty}$$

$$L^{+} = L^{1} \cup L^{2} \cup L^{\infty}$$

$$Se \ \{\varepsilon\} \in L \ \Rightarrow \ L^{+} = L \bullet L^{*} = L^{*} \bullet L = L^{*}$$

$$Se \ \{\varepsilon\} \notin L \ \Rightarrow \ L^{+} = L \bullet L^{*} = L^{*} \bullet L$$

5 Grammatiche BNF

5.1 Contenuto capitolo

Le espressioni regolari hanno una significativa limitazione: non sono in grado di gestire gli annidamenti e le strutture parentetiche \Rightarrow Grammatiche BNF (Backus-Naur Form)

Definizione Grammatica BNF: Una Grammaticha BNF è descritta da una tupla $G(V, \Sigma, P, S)$

 $egin{array}{ll} V & alfabeto \ non \ terminale \ & \\ \Sigma & alfabeto \ terminale \end{array}$

P insieme delle regole di produzione

 $S \in V$ assioma

*Si parte sempre da S

Definizione Regola di produzione: é una coppia ordina $(X,\alpha), X \in V$ e $\alpha \in (V \cup \Sigma)^*$

$$X \to \alpha$$

Definizione Derivazioni: date 2 stringhe $\beta, \gamma \in (V \cup \sigma)^*$, si dice che γ deriva da β se:

 $\gamma \ deriva \ \beta \ per \ la \ grammatica \ G \qquad \qquad \beta \to \gamma \qquad \beta = \eta A \delta, \ \ \gamma = \eta \alpha \delta, \ \ A \to \alpha \in P$

Catena di derivazioni $\beta_0 \to \ldots \to \beta_n \equiv \beta_0 \xrightarrow{n} \beta_n$

Definizione Albero Sintattico

- Le regole di produzione possono essere viste come delle relazioni padre-figlio
- Una derivazione è ottenuta partendo dall'assioma, applicando le regole di produzione
- Ogni volta che un Non-Terminale viene espanso con la parte destra di una regola di produzione, viene implicitamente applicata la relazione padre-figlio
- Rappresentando la derivazione in questi termini, si ottiene un albero, detto Albero Sintattico

Definizione Grammatiche lineari:

- Una grammatica è detta lineare se la parte destra di ogni regola di produzione contiene al più un solo non terminale
- Se il non terminale in questione é il simbolo piú a destra la grammatica é detta lineare destra
- Se il non terminale in questione é il simbolo piú a sinitra la grammatica é detta lineare sinistra

Definizione: I linguaggi regolari sono descritti da grammatiche lineari destre o lineari sinistre.

Definizione Ambiguità:

- Data una grammatica G, una frase x del linguaggio L(G) é **ambigua** se è generata da G con due alberi sintattici differenti.
- ullet La grammatica G è detta **ambigua** se almeno una delle frasi da essa generate è ambigua

${\bf Simbologia}$

 $V = \{A, B, C\}$ alfabeto non terminale $\Sigma = \{a, b, c\}$ alfabeto terminale

P insieme delle regole di produzione

 $S \in V$ assioma

5.2 Definizioni

Grammatica:	$G(V, \Sigma, P, S)$
Regola di produzione:	$X \to \alpha, X \in V, \alpha$
γ deriva β per la grammatica G	$\beta \to \gamma, \ \beta = \eta A \delta$
α si riduce ad A	$A \to \alpha \in P \ regol$
Catena di derivazioni	$\beta_0 \to \ldots \to \beta_n \equiv$
$Da\ non-t\ A,\ il\ linguaggio\ generato\ da\ G$	$L_A(G) = \{ x \in \Sigma^*$
$Da\ assioma\ S,\ il\ lunguaggio\ generato\ da\ G$	$L(G) = L_S(G) =$
Derivazione per "aann" (ese)	$S \to aL \to aaaL$
α é una forma di frase	$S \stackrel{*}{\rightarrow} \alpha, \alpha \in (V \cup$
Forma generata da G partendo da A \acute{e} una stringa α	$A \stackrel{*}{\rightarrow} \alpha, A \in V, \alpha$
Frase di $L(G)$ é una forma di frase (stringa)	che non contiene
$Una\ grammatica\ G\ \'e\ pulita\ o\ ridotta\ se\ valgono:$	$\forall A \in V, S \xrightarrow{+} \alpha A_{b}$
Una derivazione é detta ricorsiva	$A \stackrel{n}{\rightarrow} xAy$, non-t
Ricorsione sinistra	$A \stackrel{n}{\to} Ay, x = \varepsilon$
Ricorsione destra	$A \stackrel{n}{\rightarrow} xA \ u = \varepsilon$

 $X \to \alpha, X \in V, \alpha \in (V \cup \Sigma)^*$ $\beta \to \gamma, \ \beta = \eta A \delta, \ \gamma = \eta \alpha \delta, \ A \to \alpha \in P$ $A \to \alpha \in P \ regola \ in \ G$ $\beta_0 \to \dots \to \beta_n \equiv \beta_0 \xrightarrow{n} \beta_n$ $L_A(G) = \{x \in \Sigma^* | A \xrightarrow{+} x\}$ $L(G) = L_S(G) = \{x \in \Sigma^* | S \xrightarrow{+} x\}$ $S \to aL \to aaaL \to aann\varepsilon$ $S \xrightarrow{*} \alpha, \alpha \in (V \cup \Sigma)^*$ $A \xrightarrow{*} \alpha, A \in V, \alpha \in (V \cup \Sigma)^*$ $che \ non \ contiene \ simboli \ non-t$ $\forall A \in V, S \xrightarrow{+} \alpha A \beta \ AND \ L_A(G) \neq \emptyset$ $A \xrightarrow{n} xAy, \ non-t \ A \ \acute{e} \ detto \ ricorsivo$ $A \xrightarrow{n} Ay, x = \varepsilon$ $A \xrightarrow{n} xA, y = \varepsilon$ $\acute{e} \ che \ G \ permetti \ delle \ derivazioni \ ricorsive$

5.3 Esercizio da imparare a memoria: pattern stesso

Esercizio 3.09: Espressioni Matematiche

• $\Sigma = \{n, +, -, *, /, (,)\}$ $V = \{S, E, T, F\}$ • $S \to E$ $E \to E + T$ $E \to E - T$ $E \to T$ $T \to T * F$ $T \to T/F$ $T \to F$ $F \to (E)$ $F \to n$ • Assioma: S

^{*} condizione necessaria e sufficiente

6 Parsing Discendente LL(1)

Ricostruisce le derivazioni Canoniche Sinistre \rightarrow LL(1)

$$L = Left$$
-to-Right $L = Left$ -most $(1) = Look$ -ahead 1

Definzione Look-ahead = prospezione: quanti simboli terminali occorre guardare in avanti per decidere (senza consumarli

Definizione LL(1): Un non-t $A \in V$ é LL1 se, per ogni coppia di regole di produzione con la stessa parte sinsitra risulta $Gui(A \to \alpha_1) \cap Gui(A \to \alpha_2) = \emptyset$. Una Grammatica G è LL(1) se tutti i suoi non-t sono LL1.

$$A \to \alpha_1, \quad A \to \alpha_2$$

Calcolo degli Insiemi degli Inizi di una stringa α , dove $A \to \alpha$ con $\alpha \in (V \cup \Sigma)^*$

- $a \in Ini(\alpha)$ se $\alpha = a\beta$
- $a \in Ini(\alpha)$ se $\alpha = A\beta$ e $a \in Ini(\gamma)$, con $A \to \gamma$
- $a \in Ini(\alpha)$ se $\alpha = A\beta$ e Annullabile(A) e $a \in Ini(\beta)$ con $\beta \in (V \cup \Sigma)^*$
- $Ini(\varepsilon) = \emptyset$

Calcolo dei seguiti di un non-terminale $A \in V$, dove $A \to \alpha$

- $\{\swarrow\} \in Seg(S)$
- $a \in Seg(A)$ se $B \to \alpha A\beta$ e $a \in Ini(\beta)$
- $a \in Seg(A)$ se $B \to \alpha A$, con $B \neq A$, e $a \in Seg(B)$
- $a \in Seg(A)$ se $B \to \alpha A\beta$, con $B \neq A$, $Annullabile(\beta)$ e $a \in Seg(B)$

6.1 Definzioni:

6.2 Proprietá:

Fine stringa $\{\swarrow\}$ $\{\swarrow\} \in Seg(S) \ e \ \{\swarrow\} \in Seg(A) \ se \ S \xrightarrow{+} \alpha A$ non Annullabile : $A \to Ba, B \to \varepsilon$

6.3 Esempio:

6.4 Risoluzione LL(1)

• Equazioni Insiemistiche per gli Insiemi degli Inizi

```
Ini(S \rightarrow AB) = Ini(A) \cup Ini(B)

    Grammatica

                                                                                         Ini(A \rightarrow aA) = \{a\}
• \Sigma = \{a, b, c\} \ V = \{S, A, B, C\}
                                                                                         Ini(A) = Ini(A \rightarrow aA) \cup \emptyset = Ini(aA)

    Regole

                                                                                         Ini(B \rightarrow Bb) = Ini(B)
    S \rightarrow A B
                                                                                         Ini(B \rightarrow C) = Ini(C)
    A \rightarrow a A
                                                                                         Ini(B) = Ini(B \rightarrow Bb) \cup Ini(B \rightarrow C) =
    A \rightarrow \epsilon
                                                                                                    = Ini(Bb) \cup Ini(C) = Ini(B) \cup Ini(C)
    B \rightarrow B \ b
                                                                                         \mathit{Ini}(C \rightarrow c) = \{c\}
    B \rightarrow C
    C \rightarrow c
                                                                                         Ini(C) = Ini(C \rightarrow c) = \{c\}
```

• Tecnica iterativa a Punto Fisso

– **Passo 0:** per ogni regola di produzione $A_i \to \alpha_i$ si definisce l'insieme degli **inizi immediati** (ottenibile direttamente da α_i)

$$Ini^{0}(A_{i} \to \alpha_{i}) = Ini^{0}(\alpha_{i}), inoltre$$

$$Ini^{0}(A) = \bigcup Ini^{0}(A_{i} \to \alpha_{i}), \forall A \in \Sigma$$

- **Passo** $j \geq 1$: si calcolano le parti sinistre delle equazioni insiemistiche $Ini^{j}(\alpha_{i})$ usando, a destra, le versioni degli insiemi degli inizi $Ini^{j-1}(A)$ calcolati al passo j-1
- Se almeno per una produzione $A_i \to \alpha_i$ risulta $Ini^j(A_i \to \alpha_i) \neq Ini^{j-1}(A_i \to \alpha_i)$, si continua, altrimenti ci si ferma (punto fisso raggiunto).

Equazioni Insiemistiche per gli Insiemi degli Inizi

Equazioni Insiemistiche per gli Insiemi dei Seguiti

Calcolo Insieme degli Inizi

Calcolo Insieme dei Seguiti

Non-Term.	0	1	2	3
5	{∠}}	{∠}}	{∠}}	{/}
Α	{c}	{c}	{c}	{ <i>c</i> }
В	{ <i>b</i> }	$\{b,\swarrow\}$	$\{b, \swarrow\}$	$\{b,\swarrow\}$
C	$\overline{\emptyset}$	{b}	{b, ∠}	{b, ∠}

Insiemi Guida

Regole	Ini	Gui	
$S \rightarrow A B$	$\{a,c\}$	$\{a,c\}$	
A o a A	{a}	{a}	
$A o \epsilon$	Ø	{ <i>c</i> }	
$B \rightarrow B b$	{c}	{ <i>c</i> }	Conflitto
$B \rightarrow C$	{c}	{c}	Conflitto
$C \rightarrow c$	{c}	{ <i>c</i> }	

6.5 Tecnica iterativa a Punto Fisso: insieme degli inizi

- 0. Calcolo degli inizi immediati. Supponiamo di avere $A \to \alpha$:
 - $\alpha = a \in \Sigma$, $Ini^0(A \to \alpha) = a$
 - $\alpha = Av \in (V \cup \Sigma)^*$, se $\neg Annullabile(A)$, $Ini^0(A \to \alpha) = \emptyset$
 - $\alpha = Av \in (V \cup \Sigma)^*$, se Annullabile(A), $Ini^0(A \to \alpha) = v$
 - $\alpha = AB \in (V \cup \Sigma)^*$, se Annullabile(A), $Ini^0(A \to \alpha) = \emptyset$
 - $\alpha = \varepsilon$, $Ini^0(A \to \alpha) = \emptyset$
- 1. Passo iterativo j, continuare fino a quando $Ini^j = Ini^{j-1}$. Supponiamo di avere $A \to \alpha$:
 - $\alpha = BC$, con $\neg Annnullabile(B)$, $Ini^j(A \to \alpha) = Ini(A \to \alpha)^0 \cup Ini^J(B)$
 - $\alpha = BC$, con Annnullabile(B), $Ini^{j}(A \to \alpha) = Ini(A \to \alpha)^{0} \cup Ini^{j}(B) \cup Ini^{j}(C)$

Con Ini(X) nel passo iterativo j si pone "freccia" tutte le regole di produzione che hanno come regole di produzione $X \to x$ e si prendono i loro inizi.

6.6 Tecnica iterativa a Punto Fisso: insieme dei seguiti

- -1. Per definizione $Seg(S) = \{\swarrow\}$
- 0. I **seguiti immediati** sono calcolati su tutti i non terminali. Occorre guardare la parte destra di ogni regola di produzione e cercare il simbolo terminale e vedere quello che lo succede. Supponiamo di avere $B \to \alpha A \beta \gamma$
 - se $|\beta| \neq 0, \neg Annullabile(\beta), Ini(\beta) \in Seg(A)$
 - se $|\beta| \neq 0$, $Annullabile(\beta)$, $Ini(\beta)$, $Ini(\gamma) \in Seg(A)$
 - se $|\beta| = 0$, $Seg(A)^0 = \emptyset$
 - se $\beta = b$, $Seg(A)^0 = \{b\}$
- 1. Passo iterativo j, continuare fino a quando $Seg^j = Seg^{j-1}$. Supponiamo di avere $B \to \alpha A\beta$:
 - se $|\beta \neq 0|$, $Annullabile(\beta)$, $Seg(A)^j = Seg(A)^0 \cup Seg(B)^j$, con $B \neq A$
 - se $|\beta = 0|$, $Seg(A)^j = Seg(A)^0 \cup Seg(B)^j$, con $B \neq A$

6.7 Insieme Guida di una Regola di Produzione

Data una regola di produzione $A \to \alpha$

- se $\neg Annullabile(\alpha), Gui(A \rightarrow \alpha) = Ini(A \rightarrow \alpha)$
- se $Annullabile(\alpha)$, $Gui(A \to \alpha) = Ini(A \to \alpha) \cup Seg(A)$
- $Gui(A \to \varepsilon) = Seg(A)$

Un non-t
$$A \in V \notin LL(1)$$
 se $\forall p \in P$: $Gui(A \to \alpha_1) \cap Gui(A \to \alpha_2) = \emptyset$
Una Grammatica $G \in LL(1)$ se $\forall X \in V, X \notin LL(1)$

7 Parsing Ascendente LR(0)

Ricostruisce le derivazioni Canoniche Destre $\rightarrow LR(0)$

$$L = Left$$
-to- $Right$

$$R = Right\text{-}most$$

$$(0) = Look$$
-ahead 0

Cioè senza look-ahead, si consuma il simbolo e si fa qualche cosa (ma senza look-ahead risulta limitata)

7.1 Parti Destre e Automi

- La parte destra di una regola di produzione $A \to \alpha$ è una stringa basata sull'alfabeto $(V \cup \Sigma)$
- Un semplice automa a stati finiti con alfabeto $(V \cup \Sigma)$ é in grado di riconoscerla
- Possiamo immaginare di avere tanti micro-automi, uno per ogni regola
- Consideriamo la grammatica seguente, con $\Sigma = \{a, b, c\}$ e $V = \{S, A\}$ (S_0 é il **super Assioma**)

$$S_0 \to S \checkmark$$

7.2 Funzionamento

- Il simbolo indica la testina di lettura, quando un simbolo viene consumato, si sposta a destra
- Cosa vuol dire consumare un non-terminale? vuol dire aver riconosciuto il sotto-albero in esso radicato, mettiamo delle ε -mosse di raccordo per collegare le regole di profuzione con lo stesso non-t, ma così facendo l'automa diventa non-deterministico e inoltre, occorre associare una pila per gestire gli annidamenti e i punti di decisione
- Quando una regola di produzione viene riconosciuta sul dispositivo di ingresso viene messo il simbolo non-terminale padre della produzione, quindi si deve tornare indietro allo stato dal quale è stata fatta la mossa ε
- \bullet Come fare a eliminare il non-determinismo? Raccogliendo in un unico stato tutte le regole che espandono un non-terminale marcato da \bullet

7.3 Costruzione Automa LR(0)

- Data la grammatica $G(V, \Sigma, P, S_0)$ con $S_0 \to S \swarrow \in P$ e S_0 non ricorsivo
- ullet Uno stato $oldsymbol{s}$ è un insieme di candidate
- Una candidata c ha la seguente forma: $N \to \alpha \bullet \beta \ con \ \alpha, \beta \in (V \cup \Sigma)^* \ e \ N \to \alpha \beta \in P$
- Una candidata é di **spostamento** se $N \to \alpha \bullet \beta$ con $|\beta| > 0$
- Una candidata é di **riduzione** se $N \to \alpha \bullet \beta$ con $|\beta| = 0$
- Una candidata é di **core** se $N \to \alpha \bullet \beta$ con $|\alpha| \neq 0$ o se é $S_0 \to \bullet S$
- Una candidata é di **completamento** se $N \to \alpha \bullet \beta$ con $|\alpha| = 0$ e se vi è una candidata $\overline{c} = M \to \overline{\alpha} \bullet N\overline{\beta}$ nello stesso stato s
- Mosse uscenti: dati due stati s_1 e s_2 , nell'automa esiste una transizione $s_1 \xrightarrow{A} s_2$ con $A \in (V \cup \Sigma)$ se in s_1 vi é un insieme di candidate $m(A) = \{c_{A_1}, \ldots, c_{A_n}\} \neq 0$ con $c_{A_i} : N_i \to \alpha_i \bullet A\beta_i$ e in s_2 vi è un insieme $\overline{m}(A) = \{k_{A_1}, \ldots, k_{A_n}\} \mid \forall c_{A_i} \in m(A) \exists k_{A_i} \mid k_{A_i} : N_i \to \alpha_i A \bullet \beta_i$

7.4 Procedimento Costruttivo

- Passo 1: lo stato iniziale I_1 contiene contiene la candidata core $S_0 \to S \swarrow$
- Passo 2: $\forall s, \forall c = M \to \alpha \bullet N\beta$ con $N \in V$ si aggiungono in s le candidate di completamento $N \to \bullet \alpha_i$, per ogni regola di produzione $N \to \alpha_i \in P$. Si continua ad aggiungere candidate di completamento fino a che tutti i simboli non-terminali marcati con \bullet sono stati completati
- Passo 3: $\forall s$, si determinano le mosse uscenti. $\forall m(a) = \{c_{A_i}\}$ con $c_{A_i}: N_i \to \alpha_i \bullet A\beta_i \ (A \in (V \cup \Sigma)$ cioè le candidate con lo stesso simbolo marcato da \bullet , si crea (se non è già presente) uno stato \overline{s} le cui candidate core sono esattamente $\overline{m}(A) = \{k_{A_i}\} \mid k_{A_i}: N \to \alpha_i A \bullet \beta_i$ deriva da $c_{A_i}: N_i \to \alpha_i \bullet A\beta_i$. Si aggiunge la transizione $S \xrightarrow{A} \overline{s}$. Per ogni nuovo stato s, si ripete dal passo.

7.5 Conflitti

- Si dice che uno stato s presenta un **conflitto spostamento/riduzione** se contiene sia una candidata di spostamento che una candidata di riduzione.
- Si dice che uno stato s presenta un **conflitto riduzione/riduzione** se contiene due diverse candidate di riduzione
- Una stato s é LR(0) se non contiene conflitti di alcun tipo, mentre un automa è detto LR(0) se tutti i suoi stati sono LR(0) e conseguentemente, anche la grammatica è detta LR(0)

7.6 Funzionamento dell'Automa

- Passo 1: inizializzare la pila con lo stato iniziale I_1
- Passo 2: Con uno stato s in cima alla pila, consumare il simbolo c dal dispositivo di ingresso e metterlo in cima alla pila.
- Passo 3: Con una coppia (s, c) in cima alla pila, dove s è uno stato e $c \in (V \cup \Sigma)$, se la transizione $s \xrightarrow{c} s'$ non é definita segnalare errore, altrimenti mettere s' in cima alla pila
- Passo 4: se lo stato s in cima alla pila può ridurre la regola $N \to \alpha$ (dalla candidata $N \to \alpha$ •) rimuovere dalla pila $n = |\alpha|$ coppie (c, s) e impilare N (parte sinistra della regola ridotta).
- \bullet Se la pila contiene solo $[I_1, S_0]$ la stringa è stata riconosciuta altrimenti ripetere dal Passo 2

Stringa	Pila	Azione
cab 🗸	<i>I</i> ₁	
ab 🏑	l ₁ cl ₅ l ₁ cl ₅ al ₇	
b 🗸	$I_1cI_5aI_7$	
~	$l_1cl_5al_7bl_6$ $l_1cl_5al_7Al_8$	Riduzione $A \rightarrow b$
~	$I_1cI_5aI_7AI_8$	Riduzione $A \rightarrow aA$
✓	I ₁ cI ₅ AI ₄ I ₁ cI ₅ SI ₉	Riduzione $S \rightarrow A$
~	$I_1cI_5SI_9$	Riduzione $S \rightarrow cS$
~	I_1SI_2	
	I_1SI_2 $I_1SI_2 \swarrow I_3$ I_1S_0	Riduzione $S_0 \rightarrow S \swarrow$
	I_1S_0	OK

7.7 Insiemi di Prospezione o look ahead LALR(1)

- Come potenziare la tecnica LR(0)? introducendo gli insiemi di prospezione (Look-Ahead Set) per le candidate di riduzione che creano un conflitto
- Dato l'automa di tipo LR(0), ma NON LR(0), negli stati non LR(0) si associano alle **candidate** di riduzione gli insiemi di prospezione $LA(s, N \to \alpha \bullet)$ o, se lo stato s è sottinteso, $LA(N \to \alpha \bullet)$

$$LA(s, N \to \alpha \bullet) = \{a \in \Sigma \mid \exists S_0 \stackrel{*}{\to} \gamma Naz \to \gamma \alpha az \ AND \ \delta^*(I_1, \gamma \alpha) = s\}$$
 derivatione destra

7.8 Condizioni LALR(1)

Uno stato s contenente $LA(s, N \to \alpha \bullet)$ si dice **Adeguato se**

- Per ogni coppia di candidate $N_1 \to \alpha_1$ e $N_2 \to \alpha_2$ $\Rightarrow LA(s, N_1 \to \alpha_1 \bullet) \cap LA(s, N_2 \to \alpha_2 \bullet) = \emptyset$
- Per ogni candidata di riduzione $LA(s, N \to \alpha \bullet) \Rightarrow LA(s, N \to \alpha \bullet) \cap \{b \in \Sigma \mid \delta(s, b) \text{ \'e definita}\} = \emptyset$

Definzione: la grammatica G é **LALR(1)** se tutti gli stati dell'automa sono adeguati (uno stato LR(0) è, di per sé, adeguato), quindi se $LR(0) \Rightarrow LALR(1)$

7.9 Metodo Operativo iterativo Calcolo LA

In uno stato s, data una candidata $c: N \to \alpha \bullet \beta$ vogliamo calcolare $Seg_s(N \to \alpha \bullet \beta)$

• se $|\alpha| > 0$, candidata core, i seguiti arrivano da stati esterni:

$$Seg_s(N \to \alpha \bullet \beta) = \bigcup_{s_j} Seg_s(N \to \bullet \alpha \beta), \forall s_j : \delta^*(s_j, \alpha) = definita$$

• se $|\alpha|=0$, candidata completamento, i seguiti arrivano da altre candidate nello stesso stato s:

$$Seg_s(N \to \bullet \beta) = \bigcup_i Seg_s(N, c_i), \forall c_i : M_i \to \alpha_i \bullet N\beta_i$$

$$Seg_s(N, c_i) = Ini(\beta_i) \qquad se \neg Annullabile(\beta_i)$$

$$Seg_s(N, c_i) = Ini(\beta_i) \cup Seg_s(M_i \to \alpha_i \bullet N\beta_i) \qquad se \ Annullabile(\beta_i)$$

In uno stato s NON LR(0), data una candidata di riduzione $N \to \alpha \bullet$ si calcola

$$LA(N \to \alpha \bullet) = Seg_s(N \to \alpha \bullet)$$

7.10 Automa LR(1)

- È la versione più potente del parsing ascendente con prospezione 1
- Cerca di separare la provenienza dei look-ahead, per gestire separatamente i contesti dei sotto-alberi, calcolando i look-ahead di ogni candidata fin dall'inizio
- Ogni candidata ha SEMPRE associato un Look-ahead set

7.11 Creazione Automa LR(1)

- Nello stato I_1 la candidata core $S_0 \to \bullet S \swarrow$ ha $LA(I_1, S_0 \to \bullet S \swarrow) = \emptyset$
- In ogni stato s, nelle candidate di completamento $N \to \bullet \beta$ e le candidate $c_j : M_j \to \alpha_j \bullet N\beta_j$ dove:

$$Seg_{s}(N, c_{j}) = Ini(\beta_{j})$$
 $se \neg Annullabile(\beta_{j})$
$$Seg_{s}(N, c_{j}) = Ini(\beta_{j}) \cup LA(s, M_{j} \rightarrow \alpha_{j} \bullet N\beta_{j})$$
 $se \ Annullabile(\beta_{j})$
$$LA(s, N \rightarrow \bullet \beta) = \bigcup_{c_{j}} Seg(N, c_{j})$$

- Le candidate core di uno stato diverso da I_1 mantengono il look-ahead set delle candidate di provenienza, quindi se esiste: $s \xrightarrow{X} \overline{s}$, (con $X \in (\Sigma \cup V)$), abbiamo $N \to \alpha \bullet X \beta \in s$ e $N \to \alpha X \bullet \beta \in \overline{s}$ con $LA(\overline{s}, N \to \alpha X \bullet \beta) = LA(s, N \to \alpha \bullet X \beta)$
- I look-ahead set contribuiscono anche all'identità dello stato, quindi se lo spostamento genera uno stato con le stesse candidate core di uno stato già esistente, ma con look-ahead set diversi, si crea un nuovo stato
- Le candidate di completamento di uno stato cambiano generalemnte look-ahead
- Dato uno stato che presenta **conflitti** spostamento/riduzione o riduzione/riduzione, le **condizioni** sono le stesse del caso LALR(1), cioè i look-ahead set delle candidate di riduzione devono essere disgiunti tra di loro e devono essere disgiunti dalle mosse uscenti

7.12 Definzioni LR(0)

 $S_0 \to S \swarrow$ S_0 é il super Assioma é un insieme di candidate Uno stato s/I $N \to \alpha \bullet \beta \ con \ \alpha, \beta \in (V \cup \Sigma)^* \ e \ N \to \alpha\beta \in P$ $Una\ candidata\ {m c}$ $N \to \alpha \bullet \beta$, $con |\beta| > 0$ Candidata di spostamento $N \to \alpha \bullet \beta$, $con |\beta| = 0$ Candidata di **riduzione** $N \to \alpha \bullet \beta$, con $|\alpha| \neq 0$, o se é $S_0 \to \bullet S$ $Candidata\ di\ {\it core}$ $N \to \alpha \bullet \beta$, $con |\alpha| = 0$ $e \overline{c} = M \to \overline{\alpha} \bullet N\overline{\beta} \in s$ Candidata di completamento Mosse uscenti $s_1 \stackrel{A}{\rightarrow} s_2, A \in (V \cup \Sigma)$ $\forall c_{A_i} \in s_1, c_{A_i} : N_i \to \alpha_i \bullet A\beta_i$ $\forall k_{A_i} \in s_2, k_{A_i} : N_i \to \alpha_i A \bullet \beta_i$ $M \to \alpha \bullet N\beta$ $N \in V$ marcato (deve essere letto) $m(a) = \{c_{A_i}\}$ Gruppo di candidate $\exists c_a, c_b \ con \ ca \neq c_b : c_a \in spostamento, c_b \in riduzione$ $Conflitto\ spotamento/riduzione$ $\exists c_a, c_b \ con \ ca \neq c_b : c_a \in riduzione, c_b \in riduzione$ $Conflitto\ riduzione/riduzione$ Una stato s é LR(0) se non contiene alcun conflitto Un Automa è detto LR(0) $\forall s \in LR(0)$

7.13 Definizioni LALR(1)

 $s \notin LR(0) \qquad \forall \ candidate \ di \ riduzione \in s \ si \ associa \ LA(s,N \to \alpha \bullet)$ $LA(s,N \to \alpha \bullet) = \{a \in \Sigma \mid \exists S_0 \stackrel{*}{\to} \gamma Naz \to \gamma \alpha az \ AND \ \delta^*(I_1,\gamma \alpha) = s\}$ $s \ adeguato \ se: \qquad N_1 \to \alpha_1 \bullet \ e \ N_2 \to \alpha_2 \bullet \Rightarrow LA(s,N_1 \to \alpha_1 \bullet) \cap LA(s,N_2 \to \alpha_2 \bullet) = \emptyset$ $\forall LA(s,N \to \alpha \bullet) \Rightarrow LA(s,N \to \alpha \bullet) \cap \{b \in \Sigma \mid \delta(s,b) \ \'e \ definita\} = \emptyset$ $dato \ s$ $e \ LALR(1) \ se: \ \forall s \in adeguato$ $se \ s \in LR(0) \Rightarrow LALR(1)$ $ini(\beta)$ $carattere \ immediatamente \ dopo \ il \ \beta \ marcato$

8 Esercizio 2

8.1 Calcolo LR(0)

- Data la grammatica $G(V, \Sigma, P, S_0)$ si aggiunge $S_0 \to S \swarrow \in P$
- Si crea il primo stato I_1 con candidata core (per definizione) $S_0 \to \bullet S \swarrow$
- Si aggiungono tute le candidate di completamento per ogni simbolo non-terminale marcato (esempio: $\bullet A \in V$) all'interno dello stesso stato
- Si definiscono tutte le mosse uscenti per ogni regola di produzione: $s_1 \stackrel{\alpha}{\to} s_2$, $\alpha \in (V \cup \Sigma)$
- Si e prosegue iterativamente allo stesso modo per ogni stato

8.2 Calcolo LALR(1)

- Calcolo il LR(0)
- Controllo se esistono conflitti negli stati: se stato s presenta conflitto, s non é LR(0)
 - Conflitto riduzione/riduzione: $\exists c_a, c_b \ con \ c_a \neq c_b : c_a \in riduzione, c_b \in riduzione$
 - Conflitto spostamento/riduzione: $\exists c_a, c_b \ con \ c_a \neq c_b : c_a \in spostamento, c_b \in riduzione$
- $\forall s$ non LR(0) calcolo **Look-ahead set** $Seg_s(N \to \alpha \bullet \beta)$ solo sulle candidate di riduzione. Si tratta di un processo iterativo, inizio da una candidata di riduzione per poi applicare (a) e (b):
 - (a) se $|\alpha| > 0$, candidata core, i seguiti arrivano da stati esterni:

$$Seg_s(N \to \alpha \bullet \beta) = \bigcup_{s_j} Seg_s(N \to \bullet \alpha \beta), \forall s_j : \delta^*(s_j, \alpha) = definita$$

(b) se $|\alpha| = 0$, candidata completamento, i seguiti arrivano da altre candidate nello stesso stato s:

$$Seg_s(N \to \bullet \beta) = \bigcup_i Seg_s(N, c_i), \forall c_i : M_i \to \alpha_i \bullet N\beta_i, \quad M_i \neq N$$

$$Seg_s(N, c_i) = Ini(\beta_i) \qquad \qquad se \neg Annullabile(\beta_i)$$

$$Seg_s(N, c_i) = Ini(\beta_i) \cup Seg_s(M_i \to \alpha_i \bullet N\beta_i) \qquad \qquad se \ Annullabile(\beta_i)$$

$$se \ Annullabile(\beta_i)$$

• NB: in uno stato s NON LR(0), data una candidata di riduzione $N \to \alpha \bullet$ si calcola

$$LA(N \to \alpha \bullet) = Seq_s(N \to \alpha \bullet)$$

8.3 Nota bene:

Candidata core dello stato: $M_i \to \alpha_i \bullet N\beta_i$ Candidata di completamento: $N \to \bullet \beta$

8.4 Condizioni LALR(1)

Uno stato s contenente $LA(s, N \to \alpha \bullet)$ si dice **Adeguato se**

- Per ogni coppia di candidate $N_1 \to \alpha_1$ e $N_2 \to \alpha_2$ $\Rightarrow LA(s, N_1 \to \alpha_1 \bullet) \cap LA(s, N_2 \to \alpha_2 \bullet) = \emptyset$
- Per ogni candidata di riduzione $LA(s, N \to \alpha \bullet) \Rightarrow LA(s, N \to \alpha \bullet) \cap \{b \in \Sigma \mid \delta(s, b) \text{ \'e definita}\} = \emptyset$

Definzione: la grammatica G é **LALR(1)** se tutti gli stati dell'automa sono adeguati (uno stato LR(0) è, di per sé, adeguato), quindi se $LR(0) \Rightarrow LALR(1)$

Esempio: $I_2: A \to \alpha \bullet$

Gli LA vengono calcolati solo per le candidate di riduzione. Parto da una candidata di core: devo andare negli stati esterni I_i che hanno come mossa uscente α e cercare all'interno di ogni I_i la regola di produzione che deve consumare α (a).

$$I_{10}: X \to vX \bullet$$
 and are stati adiacenti $c \in core$
$$I_{6} \stackrel{X}{\to} I_{10} \qquad \qquad I_{6}: X \to v \bullet X \qquad \qquad c \in core$$

$$I_{4} \stackrel{v}{\to} I_{6} \qquad \qquad I_{4}: X \to \bullet vX \qquad \qquad c \in completamento$$

Ora mi ritrovo ad avere una **regola di produzione di completamento:** devo cercare all'interno dello stesso stato \overline{I}_i la regola di produzione che mi ha portato a quel punto, ossia il terminale marcato in questione e selezioni tutte le candidate c_i con quel simbolo marcato

$$c$$
 di completamento: $simbolo \ marcato \ nello \ stato \ corrente$ $I_4: X \to ullet v X$ $c_1: L \to ullet X g$ $\underline{c_2: X \to ullet X n}$ $c_3: Z \to ullet X Z$ $c_4: Z \to ullet X W$

 $\forall c_i$ selezionata calcolo i seguiti:

$$\begin{split} Seg_{I_4}(X,c_1) &= Ini(g) = g \\ Seg_{I_4}(X,c_3) &= Ini(Z) \\ Seg_{I_4}(X,c_4) &= Ini(Z) \cup Seg_{I_4}(Z \to \bullet XW) \end{split} \qquad \begin{aligned} se &\neg Annullabile(a) \\ se &\neg Annullabile(Z) \\ se &Annullabile(W) \end{aligned}$$

Nell'ultimo caso: $eg_{I_4}(Z \to \bullet XW)$, devo trovare tutti i $\bullet Z$ (Z marcati) precedenti risalendo nella pila

8.5 Calcolo LR(1)

- Nello stato I_1 la candidata core $S_0 \to \bullet S \swarrow$ ha $LA(I_1, S_0 \to \bullet S \swarrow) = \emptyset$
- In ogni stato s, nelle candidate di completamento $N \to \bullet \beta$ e le candidate $c_j: M_j \to \alpha_j \bullet N\beta_j$ dove:

$$Seg_{s}(N, c_{j}) = Ini(\beta_{j})$$
 se $\neg Annullabile(\beta_{j})$

$$Seg_{s}(N, c_{j}) = Ini(\beta_{j}) \cup LA(s, M_{j} \rightarrow \alpha_{j} \bullet N\beta_{j})$$
 se $Annullabile(\beta_{j})$

$$LA(s, N \rightarrow \bullet \beta) = \bigcup_{c_{j}} Seg(N, c_{j})$$

- Le candidate core di uno stato diverso da I_1 mantengono il look-ahead set delle candidate di provenienza, quindi se esiste: $s \xrightarrow{X} \overline{s}$, (con $X \in (\Sigma \cup V)$), abbiamo $N \to \alpha \bullet X \beta \in s$ e $N \to \alpha X \bullet \beta \in \overline{s}$ con $LA(\overline{s}, N \to \alpha X \bullet \beta) = LA(s, N \to \alpha \bullet X \beta)$
- I look-ahead set contribuiscono anche all'identità dello stato, quindi se lo spostamento genera uno stato con le stesse candidate core di uno stato già esistente, ma con look-ahead set diversi, si crea un nuovo stato
- La candidate core mantengono gli stessi LA dallo stato di partenza al nuovo stato, mentre le candidate di completamento all'interno del nuovo stato cambiando quansi sempre LA.
- Dato uno stato che presenta **conflitti** spostamento/riduzione o riduzione/riduzione, le **condizioni** sono le stesse del caso LALR(1), cioè i look-ahead set delle candidate di riduzione devono essere disgiunti tra di loro e devono essere disgiunti dalle mosse uscenti

8.6 Osservazioni:

- quando la candidata é una core, $A \to \alpha\beta$ S, devo andare indietro di: $\alpha\beta$ mosse, fino ad arrivare ad ottenere $A \to \bullet \alpha\beta S$ e cercare ora all'interno dello stato \overline{A}
- quando la candidata é di completamento, $A \to \bullet \alpha \beta S$, devo cercare nello stato corrente \overline{A} initemize

- quando la candidata é una core, $A \to \alpha\beta$ $S\gamma$, devo andare indietro di: $\alpha\beta$ mosse, fino ad arrivare ad ottenere $A \to \bullet \alpha\beta S$ e cercare ora all'interno dello stato \overline{A}
- $\bullet\,$ Se la \overline{A} é tipo: $N \to \alpha\beta \bullet A\gamma,$ LA é dato da:

$$\begin{array}{ll} Annullabile(\gamma) & & ini(\beta) \\ \neg Annullabile(\gamma) & & ini(\beta) \cup LA(N \rightarrow \alpha\beta \bullet A\gamma) \\ & & e \ poi \ si \ riparte \ iterativamente \end{array}$$