

Immersive and interactive scientific visualization with SkyReal linked to OpenTURNS

SkyReal

Revinventing Interactive Scientific visualisation

CAD Import	Meta-modelling	3D immersive	3D Game Engine
3D reference geometry	Interactive models accurate enough for decision making	Intuitive navigation Natural depth analysis	Unlimited Visual effects for new metaphors
CAD			

4 pillars of project motivation

Use case: Zonal Thermal Model (CFD model)

High dimension modeling

Objectives:

- Explore the design space of an equipment bay through 5 key parameters
- Build a meta-model of the velocity and temperature field as a part of an air conditioning regulation loop

Key figures:

- 5 input parameters
- Thermal simulation with convective flow: 8h/run on 8 CPUs, for a total of 1000 runs.
- Values gathered on a regular grid (11710 probes)

Use case: Zonal Thermal Model (CFD model)

Objective of the project:

- Use CFD simulation results to analyse key parameter's impact
- Define user friendly visualisation technics dedicated for stakeholder review

Use case: Aerothermal simulation

Meta-modeling methodology for a PointToFieldFunction

Ompute the Karhunen-Loeve decomposition of the field $\vec{X} = (T, v_x, v_y, v_z)$ based on a ProcessSample of 10^3 realizations, using KerhunenLoeveSVDAlgorithm:

$$\vec{X}(\vec{u}, \vec{p}(\omega)) = \vec{m}(\vec{u}) + \sum_{k=1}^{\infty} \sqrt{\lambda_k} \xi_k(p(\omega)) \vec{\varphi}_k(\vec{u})$$

where \vec{u} is the location in the domain, \vec{p} is the random vector of input parameters, \vec{m} is the mean field, ξ_k are the KL coefficients and $\vec{\varphi}_k$ are the KL modes.

- 2 Truncate the series to keep 99.99% of the variability: only N=38 coefficients/modes are needed
- 3 Build a polynomial chaos expansion of the function linking the 5 input parameters \vec{p} to the N coefficients (ξ_1, \ldots, ξ_N) using FunctionalChaosAlgorithm.

Use case: Aerothermal simulation

Build the meta-model of \vec{X} using the composition of the Function obtained at the previous step and the KarhunenLoeveLifting class corresponding to the truncated sum (see PointToFieldConnection. Then we perform another composition with the TrendTransform to add \vec{m} .

This meta-model can be extended outside of its spatial domain using the P1LagrangeInterpolation class in order to get meaningful values of the field in the nearby vicinity of the probes.

The performance is compatible with an interactive use (10 evaluations/s on a laptop)

The meta-model is exported in the compressed XML OpenTURNS format to be loaded in the immersive environment.

Coupling implementation

Visual metaphore

Static Drop « Arrow »	Particules	Smoke	Texture
Temp -> ColorSpeed -> SizeDir -> Orientation	 Temp -> Color Speed -> Speed Dir -> Direction Particules navigate through grid 	 Temp -> Color Speed -> Speed Dir -> Direction 1 smoke item / grid unit 	 Temp -> Color Speed -> Ø Dir -> Ø Texture applied on DMU

Scientific Visualisation

Demo

Feedbacks

- Immersive visualisation (VR) is a very convincing for quick analysis of 3D fields thanks to natural depth perception
- Effects with movements give "timeline effect"
- Visual effects should be adapted for each discipline

	Static Drop « Arrow »	Particules	Smoke	Texture
Feedbacks	Very good performance in VR	 Temp -> Color Speed -> Speed Dir -> Direction Particles navigate through grid 	 Good performance Good effect for velocity and temperature field 	 Very interesting rendering even if less values Adapted for quick overview
Improvements	Add rendering density according to gradient	Reduce number of particles and use user's hand as a sensor to generate particles	Adapt smoke particles density	

Conclusions & Next steps

- Good performance on model interaction (OT coupling)
- Positive feedbacks on immersive result analysis

Next steps:

- Multi-disciplinary use case
- Uncertainties visualisation for a given risk with margin representation

