

[学习笔记][数学][数论][线性筛][莫比乌斯函数] [莫比乌斯反演]

莫比乌斯反演学习笔记

2月 13, 2020

STATISTICS

在线用户:1

累计访问: 93,045

莫比乌斯反演

数论函数

定义域为正整数的函数称为数论函数。

TEAMS

NULL (2019)

One,Two,Three,AK

(2018)

积性函数

如果 $\forall a,b,(a,b)=1,$ f(ab)=f(a)f(b) ,这样的数论函数称为积性函数。

常见的数论函数:

- 欧拉函数(如果 (a,b)=1 ,则有 $\varphi(ab)=\varphi(a)\varphi(b)$
- 莫比乌斯函数
- 除数函数 ,用 $d_k(n)$ 表示。其值等于所有 n 的因子的 k 次方之和。

TEMPLATE

Template

CATEGORIES

完全积性函数

如果 $\forall a, b, f(ab) = f(a)f(b)$, 这样的数论函数称为完全积 性函数。

Categories

选择分类目录

常见的完全积性函数有:

- $f(x) = e^x$
- f(x) = x

ARCHIVE

Archive

Dirichlet 卷积

两个数论函数 f, q 的 Dirichlet 卷积为:

$$(f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$$
.

选择月份

其中 Dirichlet 卷积的单位元定义为
$$e$$
,且

$$e(n) = e(n) = \begin{cases} 1 & (n = 1) \\ 0 & (n \neq 1) \end{cases}$$

SEARCH

【结论】如果 f, q 均为积性函数,则 f * q 也为积性函数。

莫比乌斯函数

如果 n 含有平方因子,那么 $\mu(n) = 0$; 否则 $\mu(n) = (-1)^k$,其中k为n的本质不同的质因子个数。

【性质】
$$e(n) = \sum_{d|n} \mu(d)$$
.

COMMENTS

Search ...

Q

【证明】我们令 $n = \prod p_i^{q_i}, n' = \prod p_i$ 。

显然, 枚举n的因子和枚举n'因子的差异就在于少枚举了含 有平方因子的因子。

QAQ发表在《圆方树 学习笔记》

则有
$$\sum_{d|n} \mu(d) = \sum_{d|n'} \mu(d)$$
 。

此时的 d, 我们就可以考虑在 $p_1, p_2, \cdots p_k$ 中任意选取组成

FRIENDS

$$\sum_{d|n'} \mu(d) = \sum_{i=0}^{k} \binom{k}{i} (-1)^i = \sum_{i=0}^{k} \binom{k}{i} (-1)^i \cdot 1^{(k-i)} = (-1+1)^k = 0^k$$

也就是只有当 k=0 的时候 $\sum_{d|n}\mu(d)=1$, 其他时候

$$\sum_{d|n} \mu(d) = 0$$
 .

frank_c1

而显然当 k=0 的时候, n=1 , 于是就证明了。

Awd

Claris

莫比乌斯反演

zerol

设 f(n), g(n) 是两个数论函数, 如果有 $f(n) = \sum_{d|n} g(d)$,那么有 $g(n) = \sum_{d|n} f(d) \mu(\frac{n}{d})$ 。

【证明】因为我们有 $e=\mu*1$, 而 $f(n)=\sum_{d\mid n}g(d)$ 其实 就是 f = g * 1。

于是 $\mu * f = q * 1 * \mu = q * (1 * \mu) = q * e = q$ 即 $g = f * \mu$ 也就是 $g(n) = \sum_{d|n} f(d) \mu(\frac{n}{d})$.

不过一般情况下构造一个 $f(n) = \sum_{d|n} g(d)$ 形式的式子是 比较难的,一般情况下我们会直接化成 [gcd(i,j)=1] 的形 式, 然后通过 $\sum_{d|acd(i,j)}\mu(d)$ 来计算。

一种比较常见的问题是这样的: 求

$$\sum_{i=1}^{n}\sum_{j=1}^{m}f(gcd(i,j))(n\leq m)$$
 .

我们考虑枚举 gcd(i,j) 的结果, 假设 d = gcd(i,j), 于是 就有 $\sum_{i=1}^{n} \sum_{j=1}^{m} f(gcd(i,j))$

$$= \sum_{d=1}^{n} \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor} \sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor} f(d) [gcd(i,j) = 1]$$

考虑将 [gcd(i,j)=1] 部分反演,则有

$$\begin{split} &\sum_{d=1}^{n} \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor} \sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor} f(d) [gcd(i,j) = 1] \\ &= \sum_{d=1}^{n} \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor} \sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor} f(d) \sum_{d' \mid gcd(i',j')} \mu(d') \\ &= \sum_{d=1}^{n} \sum_{d'=1}^{\left\lfloor \frac{n}{d} \right\rfloor} \mu(d') f(d) \left\lfloor \frac{n}{dd'} \right\rfloor \left\lfloor \frac{m}{dd'} \right\rfloor \end{split}$$

我们令
$$g(T) = \sum_{d|T} f(d) \mu(\frac{T}{d}) = f * \mu$$

则有
$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(gcd(i,j)) = \sum_{T=1}^{n} g(T) \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor$$

【例9】HAOI2011 Problemb

【HAOI2011】Problem b

題意 求 \ $(\sum_{i=a}^b$ $\sum_{j=c}^d$ [gcd(i,j)=k]\)。 分 析 因为 ... 继续阅读

Xiejiadong's Blog

0

【例10】SPOJ5971 LCMSUM

cubercsl cxhscst2 Manchery oldjang lkmcfj jxtxzzw godweiyang zkx06111

billChen

[SPOJ] LCM Sum

题意 求 \(\sum_{i=1}^n lcm(i,n)\)。 分析 我们并 不太会直接求 lcm , 于是考虑 ... 继续阅读

Xiejiadong's Blog

0

【例11】hdu4944 FSF's game

【HDU4944】FSF's game

题意 求 \(\sum

{i=1}^n\sum{j=i}^n\sum_{d|i,j}\frac{ij}{g ... 继续 阅读

【例12】BZOJ3601 一个人的数论

xiejiadong.com/?p=1173 4/7

【湖北省队互测】一个人的数 论

题意 求所有 \(\le n\) 且与 \(n\) 互质的数 的 \(m\) 次幂的和。 分析 题目要求的就 是 ... 继续阅读

By Xiejiadong . No Comment

f y 8+ v

XIEJIADONG Edit your profil

Edit your profile or check this video to know

more

YOU MAY ALSO LIKE

"计算理论基础"学习 笔记 "数据库"学习笔记 3月 12, 2020 "编译原理"学习笔记

3月 18, 2020

020 3月 11, 2020

LEAVE A COMMENT

Your Message

发表评论前,请滑动滚动条解锁

b	
i	
link	

xiejiadong.com/?p=1173 5/7

b-quote
del
ins
img
ul
ol
li
code
more
美闭标签
crayon
our name *
our email *
our emuti-
our webiste
在此浏览器中保存我的姓名、电子邮件和站点地址。

发表评论

xiejiadong.com/?p=1173 6/7

莫比乌斯反演学习笔记 – Xiejiadong's Blog

Copyrights © 2020 all rights reserved by Jiadong Xie

沪ICP备19039963号

xiejiadong.com/?p=1173 7/7