Langages formels

- 1) Mots, langages
- 2) Automates déterministes
- 3) Grammaires et langages algébriques

Définition 4:

Les langages rationnels sont les langages reconnaissables par des automates finis.

(LP n'est donc pas rationnel)

3) Grammaires et langages algébriques

- 3a) définitions
- <u>Définition 5:</u>

Une grammaire algébrique est un triplet G=(X,Y,P) où:

X est un ensemble fini (alphabet terminal).

Y est un alphabet disjoint de X (alphabet auxiliaire)

P est un sous-ensemble de Y x (X U Y)*

(ensemble des productions ou règles de réécriture)

Exemple 3:

$$G_1: X=\{a,b\}; Y=\{S\}; P=\{\{S,\varepsilon\},\{S,aSbS\}\}$$

Notation abrégée de P:

$$P:S \rightarrow \varepsilon \mid aSbS$$

Exemple 4

$$G_2: X = \{a,b,c,+,-,*,/\}Y = \{S\}$$

 $P: S \to S + S | S - S | S * S | S / S | a | b | c$

 Définitions 6: Soit G=(X,Y,P) une grammaire algébrique et f et g deux mots de (XUY)*.

On dit que g dérive immédiatement de f, on note $f \vdash g$, lorsque:

 \exists u, v, $\alpha \in (XUY)^*$ et $S \in Y$

- 1) $f = u \cdot S \cdot v$.
- 2) g= u•α•v
- 3) $S \rightarrow \alpha$ est une règle de réécriture.

Dérivations immédiates :

$$P: S \rightarrow \varepsilon \mid aSbS$$

Exemple:

S ⊢aSbS ⊢aaSbSbS ⊢aaSbSb ⊢ aaSbb⊢ aabb

Dérivations immédiates :

G2: $S \rightarrow S+S | S*S | S-S | S/S | a | b | c$

Comment obtenir par une suite de dérivations immédiates (commençant par S) le mot **a+b*c** ?

Dérivations immédiates :

G2:
$$P \rightarrow S+S | S*S | S-S | S/S | a | b | c$$
.

Comment obtenir par une suite de dérivations immédiates (commençant par S) le mot **a+b*c** ?

Définitions 6 (suites)

On dit que g dérive à l'ordre k de f (k≥0), et on

écrit $\mathbf{f} \vdash_{\mathsf{k}} \mathbf{g}$ lorsqu'il existe $f_0, f_1, ..., f_k \in (\mathsf{XUY})^*$ tels que:

1)
$$f = f_0$$
 et $g = f_k$.

2) $f_{i-1} \vdash f_i \text{ pour } i \in [1, k]$

Définitions 6 (suites)

On dit que g dérive de f, on note $f \vdash *g$, lorsqu'il existe $k \in IN$ tel que $f \vdash k g$

Dérivations:

$$P: S \rightarrow \varepsilon \mid aSbS$$

S ⊢aSbS ⊢aaSbSbS ⊢aaSbSb ⊢aaSbb ⊢ aabb

On peut écrire aussi:

S ⊢⁵aabb

Ou plus simplement:

S ⊢*aabb

On dira que "aabb dérive de S" (ou "S engendre aabb")

Définitions 7

 Etant donné une grammaire algébrique G=(X,Y,P) et un mot f ∈(XUY)*, on appelle langage engendré par f dans la grammaire G, que l'on note L(G, f) l'ensemble des mots terminaux qui dérivent de f.

$$L(G, f) = \{ m \in X^*/ f \vdash m \}$$

Définitions 7 (suite)

 On appelle langage algébrique tout langage L tel qu'il existe une grammaire algébrique G et un auxiliaire S tel que L = L(G, S).

3b) Propriétés fondamentales

• Propriétés 3:

Soit G=(X, Y, P) une grammaire algébrique Soient f, f', g, g', h, h_1 , $h_2 \in (XUY)^*$, et $\mathbf{u}, \mathbf{v} \in X^*$.

- 1) Si f ⊢*g alors $h_1 \bullet f \bullet h_2 ⊢*h_1 \bullet g \bullet h_2$
- 2) Si f \vdash *g et g \vdash *h alors f \vdash *h
- 3) Si $f \vdash *g$ et $f' \vdash *g'$ alors $f \bullet f' \vdash *g \bullet g'$
- 4) Si f = u f ' v et si f ⊢*g alors g se factorise en g = u g' v et f ' ⊢*g'

Propriétés 3 (suite)

Pour tout f₁, f₂, g ∈(XUY)* et k ∈IN :

$$f_1 \bullet f_2 \vdash kg \Leftrightarrow$$

 $\exists g_1, g_2 \in (XUY)^* \text{ et } k_1 \text{ et } k_2 \in IN \text{ tels que:}$

- 1) $f_1 \vdash k_1 g_1$
- 2) $f_2 \vdash^{k_2} g_2$
- 3) $k_1 + k_2 = k$ 4) $g = g_1 \cdot g_2$

Exemple 5

$$G_3 = \{X = \{a,b\}, Y = \{S\}, P_3 = \{S \rightarrow aSb/\varepsilon\}\}$$

Comment démontrer que, $L(G_3,S)=\{a^nb^n,avec\ n\ un\ entier\ positif\ ou\ nul\}\ ?$

$$G_3 = \{X = \{a,b\}, Y = \{S\}, P_3 = \{S \rightarrow aSb/\varepsilon\}\}$$

 $L(G_3,S)=\{a^nb^n,avec\ n\ un\ entier\ positif\ ou\ nul\}$?

1)Pour tout entier n, Sh*anbn? (par récurrence) 2) Si SH*m alors m est de la forme aⁿbⁿ? (Par récurrence sur le nombre de dérivations)

$$G_3 = \{X = \{a,b\}, Y = \{S\}, P_3 = \{S \rightarrow aSb/\varepsilon\}\}$$

 $L(G_3,S)=\{a^nb^n,avec\ n\ un\ entier\ positif\ ou\ nul\}$?

```
1)Pour tout entier n,
SH*a<sup>n</sup>b<sup>n</sup> ?
(par récurrence)
```

Par convention a⁰b⁰=ε

P(0) ? S⊢*a \circ b \circ =ε car S → ε est une règle de réécriture.

```
P(n)=>P(n+1)?

par HR, S⊢*a<sup>n</sup>b<sup>n</sup> donc (propriété 1)

aSb⊢*aa<sup>n</sup>b<sup>n</sup>b=a<sup>n+1</sup>b<sup>n+1</sup>

et puisque S⊢*aSb (c'est une règle) on a :

S⊢*a<sup>n+1</sup>b<sup>n+1</sup> (P(n+1)) (propriété 2)
```

$$G_3 = \{X = \{a,b\}, Y = \{S\}, P_3 = \{S \rightarrow aSb/\varepsilon\}\}$$

 $L(G_3,S)=\{a^nb^n,avec\ n\ un\ entier\ positif\ ou\ nul\}$?

2) Si SH*m alors m est de la forme aⁿbⁿ? (Par récurrence sur le nombre de dérivations)

P(k):Si SHk m alors m est de la forme anbn (m est terminal)

- P(1)? E est le seul mot terminal qui dérive de S en une dérivation. P(1) est vrai.
- P(n)=>P(n+1) ? Soit m un mot terminal tel que S⊢^{k+1}m avec k>0.
 Donc : S⊢aSb⊢ⁿm
 Par hypothèse de récurrence et d'après la propriété 4, m=a•m'•b avec m'= aⁿbⁿ.

Donc $m = a^{n+1}b^{n+1}$.

3c) Langages rationnels et langages algébriques

Théorème:

Tous les langages rationnels sont algébriques.

Remarque: cette inclusion est stricte.

Passage de l'automate à la grammaire

