Al 5030: Probability and Stochastic Processes

INSTRUCTOR: DR. KARTHIK P. N.

Homework 3

Topics: Probability Measures and Their Properties, Borel σ -Algebra, Lebesgue Measure

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Recall that $\sigma(\mathscr{C})$ denotes the smallest σ -algebra that contains all sets in \mathscr{C} .

1. Argue that for any collection of events $A_1, A_2, \ldots \in \mathscr{F}$, the sets

$$\liminf_{n\to\infty}A_n=\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_k\qquad\text{and}\qquad\limsup_{n\to\infty}A_n=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k$$

are elements of \mathscr{F} .

2. Let $(\Omega, \mathscr{F}, \mathbb{P}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda)$, where λ denotes the Lebesgue measure. Fix $x_1, x_2 \in \mathbb{R}$ with $x_1 < x_2$, and for each $n \in \mathbb{N}$, let

$$A_n := \left\{ x \in \mathbb{R} : x_1 + \frac{1}{n} < x < x_2 - \frac{1}{n} \right\}.$$

Compute $\lim_{n\to\infty} A_n$ and its Lebesgue measure.

3. Prove the following inclusion-exclusion principle: for any $n \in \mathbb{N}$ and sets $A_1, \ldots, A_n \in \mathscr{F}$,

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \ldots + (-1)^{n+1} \mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right).$$

4. Let $A_1,A_2,\ldots\in\mathscr{F}$ be such that $\mathbb{P}(A_i)=1$ for all $i\in\mathbb{N}$. Show that $\mathbb{P}(\bigcap_{i=1}^\infty A_i)=1$.

As a corollary, show that if $A, B \in \mathscr{F}$ are such that $\mathbb{P}(A) = 1$ and $\mathbb{P}(B) = 1$, then $\mathbb{P}(A \cap B) = 1$.

5. Fix $n \in \mathbb{N}$. Suppose that an experiment with sample space Ω is performed repeatedly n times. For any set $E \in \mathscr{F}$, let n(E) denote the number of times that event E occurs in the n trials of the experiment. Let $f: \mathscr{F} \to [0,1]$ be defined as

$$f(E) = \frac{n(E)}{n}, \quad E \in \mathscr{F}.$$

Show that f satisfies the axioms of probability, and is therefore a valid probability measure on (Ω, \mathscr{F}) .

6. Let $(\Omega, \mathscr{F}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

In class, we saw that $\mathscr{B}(\mathbb{R}) = \sigma(\mathcal{O})$, where $\mathcal{O} = \{(a,b) : -\infty \le a < b \le +\infty\}$ is the collection of all open sub-intervals of \mathbb{R} . The purpose of this exercise is to provide an alternative way to arrive at $\mathscr{B}(\mathbb{R})$.

(a) Fix $a \in \mathbb{R}$, and for each $n \in \mathbb{N}$, define

$$A_n \coloneqq \left(-\infty, \ a - \frac{1}{n}\right), \quad B_n \coloneqq \left(-\infty, \ a + \frac{1}{n}\right), \quad C_n \coloneqq \left(-\infty, \ a - \frac{1}{n}\right], \quad D_n \coloneqq \left(-\infty, \ a + \frac{1}{n}\right].$$

Determine $\bigcap_{n=1}^{\infty} A_n$, $\bigcup_{n=1}^{\infty} A_n$, $\bigcap_{n=1}^{\infty} B_n$, $\bigcup_{n=1}^{\infty} B_n$, $\bigcap_{n=1}^{\infty} C_n$, $\bigcup_{n=1}^{\infty} C_n$, $\bigcap_{n=1}^{\infty} D_n$, and $\bigcup_{n=1}^{\infty} D_n$.

(b) Consider the collection

$$\mathscr{D} := \left\{ (-\infty, x] : x \in \mathbb{R} \right\}.$$

Show that any open interval $(a,b) \in \mathcal{O}$ can be expressed in terms of countable unions, complements, and countable intersections of sets in \mathscr{D} .

Hint: use part (a) of the question.

(c) Use the result in part (b) to argue that $\sigma(\mathcal{O}) = \mathscr{B}(\mathbb{R}) = \sigma(\mathscr{D})$.