

- Backbone 이란 ? (Feature extractor)

Detection, Segmentation 등 고도화된 이미지 처리 인공지능 모델에서, 이미지 특징 추출을 위해 사용되는 Image Classification 모델

※ Pretrained: ImageNet 등 데이터셋에 대해 사전 학습된 모델의 가중치(weight)

- Backbone을 사용해야 하는 이유?
 - Object detection의 Faster R-CNN, Libra R-CNN의 경우, backbone 모델에 따라 판독 성능이 차이나는 것을 확인할 수 있음
 - ResNet-50-FPN, ResNet-101-FPN, ResNeXt-101-FPN 순으로 정확<mark>도 향상</mark>

Faster R-CNN*	ResNet-50-FPN	1×	36.2	58.5	38.9	21.0	38.9	45.3
Faster R-CNN*	ResNet-101-FPN	1×	38.8	60.9	42.1	22.6	42.4	48.5
Faster R-CNN*	ResNet-101-FPN	2×	39.7	61.3	43.4	22.1	43.1	50.3
Faster R-CNN*	ResNeXt-101-FPN	$1 \times$	41.9	63.9	45.9	25.0	45.3	52.3
RetinaNet*	ResNet-50-FPN	1×	35.8	55.3	38.6	20.0	39.0	45.1
Libra R-CNN (ours)	ResNet-50-FPN	1×	38.7	59.9	42.0	22.5	41.1	48.7
Libra R-CNN (ours)	ResNet-101-FPN	1×	40.3	61.3	43.9	22.9	43.1	51.0
Libra R-CNN (ours)	ResNet-101-FPN	$2\times$	41.1	62.1	44.7	23.4	43.7	52.5
Libra R-CNN (ours)	ResNeXt-101-FPN	1×	43.0	64.0	47.0	25.3	45.6	54.6
Libra RetinaNet (ours)	ResNet-50-FPN	1×	37.8	56.9	40.5	21.2	40.9	47.7

- Backbone을 사용해야 하는 이유?

- ImageNet 기반에서 1~2% 성능 차이가 나는 경우 실제 모델 적용 상황(targettask)에서도 2~3% 이상 성능 차이 발생
- 그림의 왼쪽, 오른쪽 column은 ImageNet Classification에서 1~2% 성능 차이가 나는 모델로, COCO2017에서 backbone으로 사용되었을 때 2~3% 성능 차이를 보였으나, 실제 detection 결과는 매우 차이남
- 더 좋은 Backbone을 사용한다면 더 높은 detection 수준을 가질 것으로 기대

- Fine tuning 이란?
 - Transfer learning: Pre-trained model을 가져와 사용하는 것
 - Finet uning: 사전 학습된 가중치를, 사용 목적에 맞도록 업데이트하는 것
 - Object detection의 YOLO v1 모델을 가져와 transfer learning을 진행할 때, 추가된 layer의 가중치를 학습하기 위해 backbone의 가중치를 고정하고 미세 튜닝

- 사전 학습 모델을 자신의 프로젝트에 적합하도록 변형하기 위해, 기존 모델의Classifier을 적절한 Classifier로 대체함

Fine tuning 전략

- 일반적으로 아래의 3가지 전략 중 하나를 선택해 finetuning 진행
 - 1) 전체 모델 새로 학습: 사전 학습된 모델의 구조를 사용하<mark>되</mark>, 데이터셋에 맞춰 새로 학습시 키는 방법. 대규모 데이터셋과 우수한 컴퓨팅 능력이 필요함
 - 2) Convolutional base의 일부만 고정하고, 나머지 계층과 Classifier 새로 학습: 신경망의 가중치 파라미터 중 어느 정도까지 재학습할지 결정해야 함
 - 낮은 라벨 계층: 모든 문제 해결에 있어 보편적인 특징 추출
 - 높은 레벨 계층: 문제에 따라 달라지는 구체적인 특징 추출 데이터셋이 작은데 많은 레이어를 재학습하는 경우 Overfitting 주의
 - 3) Convolutional base는 고정하고, Classifier만 새로 학습: Convolutional base 는 feature extractor로 계속 사용하고, Classifier만 재학습 시키는 방법. 컴퓨팅 연산이 부족하거나 데이터셋이 너무 작은 경우 및 해결하고자 하는 문제와 사전에 학습된 모델이 해결할 수 있는 문제가 매우 비슷한 경우 고려할 수 있음

Fine tuning 전략

- Fine tuning을 할 때는 이전에 학습된 내용이 지워지지 않도록 작은 Learning rate를 사용하는 것이 바람직함

Yoga Pose classification

라벨 종류

Warrior2

