

UNIVERSITAT POLITÈCNICA DE CATALUNYA – UNIVERSITAT DE BARCELONA Máster en Ingeniería Biomédica

MODELO DE PREDICCIÓN DE INSUFICIENCIA RENAL AGUDA PARA PACIENTES CON RABDOMIÓLISIS

Marc Palomer
June Alberdi
Miranda Silveria
Yanelky Fabian

Tutor: Dr. Guido Muñoz

OGICC - Organización y Gestión de la Información y Conocimientos Clínicos

ÍNDICE

- 1. Descripción del proceso de lenguaje del curso
- 2. Descripción de la pregunta clínica
 - Caso clínico
 - Introducción
 - Extracción, transformación y descripción de la BBDD
 - Modelización
 - Video
- 3. Jupiter Notebook
 - Video

1. WIKI

2. CASO CLÍNICO. INTRODUCCIÓN

OBJETIVO: Desarrollar un modelo de predicción de insuficiencia renal aguda en pacientes diagnosticados con rabdomiólisis.

¿Cuál es la problemática?

RABDOMIÓLISIS

Traumatismos
Enfermedades musculares
Isquemia
Deshidratación
Cirugías prolongadas
Esfuerzo muscular intenso
Consumo de drogas
Convulsiones
Temperaturas extremas
Infecciones

2. CASO CLÍNICO. INTRODUCCIÓN

CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN DE LOS PACIENTES

Pacientes con rabdomiólisis

VARIABLES

¿Qué queremos?

- Potasio
- PH
- Insuficiencia renal aguda
- Rabdomiólisis
- Diabetes
- Insuficiencia renal crónica
- Infección

¿Dónde lo encontramos?

TABLA	ATRIBUTO
patients	gender
1.1.1.2	Buscamos por: label
d_labitems	Seleccionamos: itemid
d_icd_diagnoses	Buscamos por: long_title Seleccionamos: lcd_code

2. CASO CLÍNICO. INTRODUCCIÓN

PROCEDIMIENTOS ÉTICOS Y LEGALES PARA GARANTIZAR LA SEGURIDAD DEL PACIENTE

Pasos para obtener los datos del conjunto de datos MIMIC (Medical Information Mart for Intensive Care):

- 1. Acceder al sitio web oficial de MIMIC
- 2. Revisar los requisitos y políticas de acceso
- 3. Completar los formularios y obtener las aprobaciones necesarias
- 4. Firmar los acuerdos de uso de datos
- 5.Descargar los conjuntos de datos

IMPORTANTE:

- Seguir las instrucciones proporcionadas para garantizar una descarga correcta y segura de los datos.
- El acceso a los datos de MIMIC está sujeto a ciertas restricciones y políticas de uso.

ACCESO A LOS DATOS

Declaramos librerías:

```
import pandas as pd
import numpy as np
import time
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from google.oauth2 import service_account
from google.cloud import bigquery
```

```
import xgboost as xgb
import lightgbm as lgb

from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split, cross_val_score
from google.oauth2 import service_account
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
import pickle
```

• Importamos las **credenciales** (.json) y configuramos el **cliente**.

```
# Definir credenciales
credentials = service_account.Credentials.from_service_account_file("C:/Users/
# Configurar el cliente de Big Query
client = bigquery.Client(credentials=credentials)
```

ACCESO A LOS DATOS

• Guarda los nombres de los datasets tal como los tenemos en BigQuery

```
# Definir el dataset
hosp_dataset_id = 'mimiciv_hosp'
icu_dataset_id = 'mimiciv_icu'
```

 Buscar las tablas donde se recogen las variables que nos interesan. ← Analizar el modelo de relaciones que conectan las tablas

```
#Definimos las tablas
admissions_table = 'admissions'
patients_table = 'patients'
d_items_table = 'd_items'
icustays_table = 'icustays'
chartevents_table = 'chartevents'
labevents_table = 'labevents'
procedureevents_table = 'procedureevents'
diagnoses = 'diagnoses_icd'
```

ACCESO A LOS DATOS

• Para cada variable hacer una **query** sobre la tabla en la que se encuentra para identificar su **código**:

	Dataset	Tabla	Condición	Guardamos		
Género		patient		gender		
Creatina cinasa (CK)			Label: contenga '%creati%' Fluid: 'blood'			
Potasio		d_labitems	Label: contenga '%potassium%' , '%K+%' o '%K%' Fluid: 'blood'	itemid		
рН	hosp_dataset_id		Label: contenga '%p_%' y 2 caracteres de longitud			
Insuficiencia renal aguda			Long_title: contenga 'acute kidney%'			
Rabdomiólisis			Long_title: contenga 'rhab%'			
Diabetes		diagnoses	Long_title: contenga '%diabetes%'	icd_code		
Insuficiencia renal crónica			Long_title: contenga 'chronic kidney%'			
Infección			Long_title: contenga 'infec%'			

ACCESO A LOS DATOS

- Utilizamos los códigos para crear una query y unificar todas las variables en un dataframe.
- Cálculo del tiempo de consulta.

La consulta tardó 35.890196561813354 segundos en ejecutarse.

	subject_id	hadm_id	stay_id	ce_charttime	SEX	crea	ck	potassium	ph	rhabdomiolisis	chronickidneydisease	diab_code	insuf_renal
0	10014136	24097334	30374965	2176-05-12 23:22:00	М	NaN	NaN	NaN	NaN	72888	0	0	5845
1	10014136	24097334	30374965	2176-05-13 00:15:00	М	NaN	NaN	NaN	NaN	72888	0	0	5845
2	10014136	24097334	30374965	2176-05-13 00:41:00	М	NaN	NaN	NaN	NaN	72888	0	0	5845
3	10014136	24097334	30374965	2176-05-13 00:43:00	М	NaN	NaN	NaN	NaN	72888	0	0	5845
4	10014136	24097334	30374965	2176-05-13 00:59:00	М	NaN	NaN	NaN	NaN	72888	0	0	584

MANIPULACIÓN DE LA BBDD

Manipulación:

- Eliminar las filas que tienen más de 11 variables vacías
- Eliminar filas duplicadas
- Eliminar filas sin insuficiencia renal aguda (valor a predecir)
- Eliminar la columna de pH

```
# Conteo del número de no-null en cada fila (paciente)
row_non_null_counts = data_df.notnull().sum(axis=1)

# Eliminamos los pacientes con más NaN
df_filtered = data_df[row_non_null_counts >= 11]
df_filtered

#Eliminamos pacientes duplicados
data_dup = df_filtered.drop_duplicates()

#Eliminamos los pacientes con NaN en la columna de insuficiencia renal
data_df=data_dup.dropna(subset='insuf_renal', thresh = 1)

#Eliminamos todos los pH porque la mayoría estan vacíos
data_df = data_df.drop('ph', axis=1)

#DF:
data_df
```

MANIPULACIÓN DE LA BBDD

• Estadística descriptiva de las variables numéricas:

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 634 entries, 20 to 351315
Data columns (total 12 columns):
    Column
                         Non-Null Count Dtype
    subject_id 634 non-null
                                        Int64
    hadm id
                         634 non-null
                                        Int64
   stay_id
ce_charttime
                         634 non-null
                                        Int64
                         634 non-null
                                        datetime64[ns]
                         634 non-null
                                        object
   crea
                         582 non-null
                                        float64
                         465 non-null
                                        float64
    potassium
                         589 non-null
                                        float64
    rhabdomiolisis
                         634 non-null
                                        object
   chronickidneydisease 634 non-null
                                        object
10 diab_code
                         634 non-null
                                        object
11 insuf renal
                         634 non-null
                                        object
dtypes: Int64(3), datetime64[ns](1), float64(3), object(5)
memory usage: 66.2+ KB
```

	subject_id	hadm_id	stay_id	crea	ck	potassium
count	6.340000e+02	6.340000e+02	6.340000e+02	582.000000	465.000000	589.000000
mean	1.484377e+07	2.514375e+07	3.496694e+07	2.306529	14162.294624	4.262649
std	2.871501e+06	2.937797e+06	2.897955e+06	2.213608	31625.986994	0.989003
min	1.001414e+07	2.000136e+07	3.008916e+07	0.300000	28.000000	1.900000
25%	1.223740e+07	2.272712e+07	3.267639e+07	0.900000	1589.000000	3.700000
50%	1.486092e+07	2.531087e+07	3.463456e+07	1.600000	4486.000000	4.100000
75%	1.739961e+07	2.761291e+07	3.763851e+07	2.775000	12062.000000	4.600000
max	1.999784e+07	2.996045e+07	3.996048e+07	22.700000	285260.000000	10.600000

MANIPULACIÓN DE LA BBDD

Revisar coherencia de los datos:

#Agrupamos por pacientes contamos el número de muestras que tiene de cada variable a=data_df.groupby('subject_id') a.count()							data_df.	groupby('h	adm_id	').count() #	#Rep	etim	os pa	ra Las admi	siones									
	hadm_id	stay_id	ce_chartt	ime	SEX	crea	ck potassii	um rhabdomiolis	sis chronickidneydiseas	e diab_co	de insuf_renal	hadm_id		stay_id	ce_charttime	SE	X cr	ea ck	potassium	rhabdomiolisis	chronickidneydisease	e diab_cod	le insuf_	renal
subject_id												20001361	1	1	1		1	1 0	1	1	1	1	1	1
10014136	1	1		1	1	1	1	1	1	1	1 1	20024997	1	1	1		1	1 1	1	1	1	1	1	1
10021487	1	1		1	1	1	1	1	1	1	1 1	20044149	2	2	2		2	2 0	2	2		2	2	2
10027704	1	1		1	1	1	0	1	1	1	1 1	20053897	1	1	1		1	0 1	1	1	•	1	1	1
10029874	1	1		1	1	1	1	1	1	1	1 1	20059818	1	1	1		1	1 1	1	1	1	1	1	1
10076506	1	1		1	1	1	1	1	1	1	1 1													
												29927537	1	1	1		1	1 1	1	1	,	1	1	1
19882264	1	1		1	1	1	1	1	1	1	1 1	29941974	. 1	1	1		1	1 1	1	1	•	1	1	1
19920096	1	1		1	1	1	1	1	1	1	1 1	29942574		2	2		2	1 1	1	2		2	2	2
19957847	1	1		1	1	1	1	1	1	1	1 1	29949595		1	1		1	1 1	'	-	•	-	1	1
19970892	1	1		1	1	1	1	0	1	1	1 1			1	1		1	1 1	1	1			1	1
19997843	1	1		1	1	1	1	1	1	1	1 1	29960453	1	1	1		1	1 1	1	1		1	1	1
539 rows ×	11 columi	ns										541 rows	× 11 column	s										

MANIPULACIÓN DE LA BBDD

Binarización de los datos:

```
#Creamos una copia:
data_dup_na_coerced= data_df.copy()

#Binarizamos Las variables:

#Si el paciente no tiene el diagnóstico o es NA = 0, si tiene cualquier otro ID =1
data_dup_na_coerced['diab_code']=data_dup_na_coerced['diab_code'].apply(lambda y: 0 if y == '0' else 1)
data_dup_na_coerced['insuf_renal'] = data_dup_na_coerced['insuf_renal'].apply(lambda y: 0 if y == '0' else pd.NA if pd.isna(y) el
data_dup_na_coerced['chronickidneydisease'] = data_dup_na_coerced['chronickidneydisease'].apply(lambda y: 0 if y == '0' else pd.N
data_dup_na_coerced['rhabdomiolisis'] = data_dup_na_coerced['rhabdomiolisis'].apply(lambda y: 0 if y == '0' else pd.NA if pd.isna
#Si es hombre "Male" = 0, si es mujer =1:
data_dup_na_coerced['SEX'] = data_dup_na_coerced['SEX'].apply(lambda y: 0 if y == 'M' else pd.NA if pd.isna(y) else 1)
```

MANIPULACIÓN DE LA BBDD

Adecuar el tipo de datos

subject_id	Int64
hadm_id	Int64
stay_id	Int64
ce_charttime	<pre>datetime64[ns]</pre>
SEX	object
crea	float64
ck	float64
potassium	float64
rhabdomiolisis	object
chronickidneydisease	object
diab_code	object
insuf_renal	object
dtype: object	

subject_id	Int64
hadm_id	Int64
stay_id	Int64
ce_charttime	datetime64[ns]
SEX	int64
crea	float64
ck	float64
potassium	float64
rhabdomiolisis	int64
chronickidneydisease	int64
diab_code	int64
insuf_renal	int64
dtype: object	

MANIPULACIÓN DE LA BBDD

• Definir variables dependientes (X) y la variable independiente (Y): Y es la columna de la insuficiencia renal aguda, que es lo que queremos predecir, X es el resto

```
# Definir las variables dependientes e independientes
#La etiqueta que queremos predecir
y = data_dup_na_coerced['insuf_renal']
#Cogemos todas menos la columna de insuficiencia renal aguda
X = data_dup_na_coerced.loc[:,data_dup_na_coerced.columns != 'insuf_renal']
```

Imputamos los missing values con la media.

```
#DATA INPUTATION
#print(y.isna().sum())
print(X.isna().sum())
X['crea'].fillna(X['crea'].mean(), inplace=True)
X['ck'].fillna(X['ck'].mean(), inplace=True)
X['potassium'].fillna(X['potassium'].mean(), inplace=True)
```

HERRAMIENTAS PARA LA DESCRIPCIÓN

Después del preprocesado nos quedamos con 632 pacientes.

```
: data_dup_na_coerced.info()
  <class 'pandas.core.frame.DataFrame'>
  Int64Index: 634 entries, 20 to 351315
  Data columns (total 12 columns):
                           Non-Null Count Dtype
      Column
      subject_id
                           634 non-null
                                          Int64
      hadm id
                          634 non-null
                                         Int64
                                         Int64
      stay_id
                           634 non-null
    ce charttime
                           634 non-null
                                         datetime64[ns]
      SEX
                           634 non-null
                                         int64
                           582 non-null
                                         float64
      crea
                          465 non-null float64
      potassium
                           589 non-null float64
    rhabdomiolisis
                           634 non-null int64
      chronickidneydisease 634 non-null
                                         int64
  10 diab code
                           634 non-null
                                         int64
  11 insuf renal
                          634 non-null
                                          int64
  dtypes: Int64(3), datetime64[ns](1), float64(3), int64(5)
  memory usage: 66.2 KB
```

HERRAMIENTAS PARA LA DESCRIPCIÓN

Histogramas de frecuencias absolutas de las variables independientes X.

HERRAMIENTAS PARA LA DESCRIPCIÓN

Evaluamos el histograma de frecuencia de Y

- Dividimos los datos en conjunto de entrenamiento (70%) y de prueba (30%).
- Elegimos los modelos:

APRENDIZAJE AUTOMÁTICO CLÁSICO

Supervisado de Clasificación:

- Logistic Regression
- Support Vector Machine

APRENDIZAJE AUTOMÁTICO MODERNO

Métodos de Ensamble:

Empaquetamiento

-Random Forest

Impulso:

- -LightGBM
- -XGBoost

Evaluación de los modelos por validación cruzada con los datos con y sin escalar.

```
# Evaluar los modelos utilizando validación cruzada
for name, model in models.items():
    print(f'{name}:')
    # Volidación cruzada
    scores = cross_val_score(model, X_train, y_train, cv=7, scoring = 'balanced_accuracy')
    print(f'Mean cross-validation score: {scores.mean():.3f}')
    print(f'Standard deviation: {scores.std():.3f}')
   #Ajuste con train:
   model.fit(X_train, y_train)
    #Predicción con test:
   y pred = model.predict(X test)
    #Resultados
    accuracy = accuracy_score(y_test, y_pred)#Exactitud
    precision = precision_score(y_test, y_pred, average='weighted')#Precisión
    recall = recall_score(y_test, y_pred, average='weighted')
    print(f'Accuracy score on test data: {accuracy:.3f}')
    print(f'Precision score on test data: {precision:.3f}')
    print(f'Recall score on test data: {recall:.3f}\n')
```

Resultados sin escalar los datos:

Random Forest:

Mean cross-validation score: 0.816

Standard deviation: 0.055

Accuracy score on test data: 0.874 Precision score on test data: 0.885 Recall score on test data: 0.874

Logistic Regression:

Mean cross-validation score: 0.560

Standard deviation: 0.074

Accuracy score on test data: 0.785 Precision score on test data: 0.775 Recall score on test data: 0.785

Support Vector Machine:

Mean cross-validation score: 0.500

Standard deviation: 0.000

Accuracy score on test data: 0.707 Precision score on test data: 0.500 Recall score on test data: 0.707

XGBoost:

Mean cross-validation score: 0.820

Standard deviation: 0.030

Accuracy score on test data: 0.853
Precision score on test data: 0.853
Recall score on test data: 0.853

LightGBM:

Mean cross-validation score: 0.829

Standard deviation: 0.047

Accuracy score on test data: 0.843
Precision score on test data: 0.849
Recall score on test data: 0.843

Resultados escalando los datos:

Random Forest:

Mean cross-validation score: 0.789

Standard deviation: 0.065

Accuracy score on test data: 0.859
Precision score on test data: 0.866
Recall score on test data: 0.859

Logistic Regression:

Mean cross-validation score: 0.739

Standard deviation: 0 066

Accuracy score on test data: 0.864 Precision score on test data: 0.862 Recall score on test data: 0.864

Support Vector Machine:

Mean cross-validation score: 0.771

Standard deviation: 0.053

Accuracy score on test data: 0.822 Precision score on test data: 0.834 Recall score on test data: 0.822

LightGBM:

Mean cross-validation score: 0.803

Standard deviation: 0.050

Accuracy score on test data: 0.827 Precision score on test data: 0.838 Recall score on test data: 0.827

XGBoost:

Mean cross-validation score: 0.814

Standard deviation: 0.079

Accuracy score on test data: 0.848
Precision score on test data: 0.853
Recall score on test data: 0.848

MODELO FINAL: XGBoost

Mean cross-validation score: 0.855

Standard deviation: 0.039

Accuracy score on test data: 0.848
Precision score on test data: 0.849
Recall score on test data: 0.848

MODELO FINAL: XGBoost

Pacientes clasificados correctamente: 162

- No desarrollan insuficiencia renal aguda (TN): 42
- Sí desarrollan insuficiencia renal aguda (TP): 120

Pacientes clasificados incorrectamente: 29

- Clasificados como no pero sí desarrollan insuficiencia renal aguda (FN): 14
- Clasificados como sí, pero no desarrollan insuficiencia renal aguda (FP): 15

Mean cross-validation score: 0.855

Standard deviation: 0.039

Accuracy score on test data: 0.848
Precision score on test data: 0.849
Recall score on test data: 0.848

3. NOTEBOOK

UNIVERSITAT POLITÈCNICA DE CATALUNYA – UNIVERSITAT DE BARCELONA Máster en Ingeniería Biomédica

Muchas gracias ¿Alguna pregunta?