Два вектори \vec{a} та \vec{b} колінеарні ($\vec{a} \, \Big\| \, \vec{b}$), якщо

$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z} = \lambda$$

(λ - число).

Ділення відрізка AB у заданому співвідношенні $\lambda = \frac{AB}{CB}$, де $A(x_1; y_1; z_1)$, $B(x_2; y_2; z_2)$, $C(x_3; y_3; z_3)$ і C - точка ділення.

Координати точки ділення

$$x_c = \frac{x_1 + \lambda x_2}{1 + \lambda}; \qquad y_c = \frac{y_1 + \lambda y_2}{1 + \lambda}; \qquad z_c = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$
 (2.4)

Якщо відрізок AB ділиться точкою C навпіл, то

$$x_c = \frac{x_1 + \lambda x_2}{2}; \qquad y_c = \frac{y_1 + \lambda y_2}{2}; \qquad z_c = \frac{z_1 + \lambda z_2}{2}.$$
 (2.5)

2 Лінійні операції над векторами

${f 1}$ Сума двох векторів ec a та ec b

Сума двох векторів знаходиться за правилом трикутника (рис.2a) або правилом паралелограма (рис. 2б).

Якщо вектори \vec{a} та \vec{b} задано координатами $\vec{a} = \{a_x, a_y, a_z\},$ $\vec{b} = \{b_x, b_y, b_z\},$ то

$$\vec{a} + \vec{b} = \{a_x + b_x, a_y + b_y, a_z + b_z\}$$

Сума кількох векторів знаходиться за правилом многокутника (рис. 3 в)).

Якщо вектори $\vec{a}, \vec{b}, ..., \vec{m}$ задано координатами, то їх сума дорівнює

$$\vec{u} = \vec{a} + \vec{b} + \dots + \vec{m} =$$

$$= \left\{ a_x + b_x + \dots + m_x, a_y + b_y + \dots + m_y, a_z + b_z + \dots + m_z \right\}$$
 (2.6)

2 Множення вектора \vec{a} на число λ

Множення вектора \overline{a} на число λ пояснено на рис.3.

Якщо вектор \vec{a} задано координатами, то вектор $\lambda \vec{a}$ дорівнює

$$\lambda \vec{a} = \left\{ \lambda a_x, \lambda a_y, \lambda a_z \right\}. \tag{2.7}$$

Якщо $\lambda = -1$, то вектор $-\vec{a}$ ϵ

якщо $\lambda = -1$, то вектор -a ϵ протилежно напрямлений по відношенню до \vec{a} (рис. 4) $i - \vec{a} = \{-a_x, -a_y, -a_z\}$

3 Різниця векторів \vec{a} та \vec{b} .

 $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$ (puc. 5).

Якщо вектори \vec{a} та \vec{b} мають спільний початок, то $\vec{a} + \vec{b}$ та $\vec{a} - \vec{b}$ - це вектори, які співпадають з діагоналями паралелограма, побудованого на цих векторах (рис.6).

 $\vec{a}, \vec{b}, \vec{c}, ... \vec{m}$ дорівнює

$$\vec{u} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \vec{c} + ... + \lambda_m \vec{m}$$

 $(\lambda_1,\lambda_2,\lambda_3,...,\lambda_m$ - числа).

Якщо $\vec{a}=\lambda\vec{b}$, то \vec{a} та \vec{b} - колінеарні $(\vec{a}\|\vec{b}\,)$ і умова колінеарності векторів має вигляд

$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z} = \lambda. \tag{2.8}$$

Якщо $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b}$, то вектори $\vec{a}, \vec{b}, \vec{c}$ - компланарні, тобто, лежать в одній або паралельних площинах.

Ортом вектора \vec{a} називається вектор \vec{a}^0 , модуль якого дорівнює одиниці $\left| \vec{a}^0 \right| = 1$), а напрям співпадає із напрямом вектора \vec{a} , тобто

$$\vec{a}^{\,0} = \{\cos\alpha; \cos\beta; \cos\gamma\},\,$$

$$\cos \alpha = \frac{a_x}{|\overline{a}|}; \cos \beta = \frac{a_y}{|\overline{a}|}; \cos \gamma = \frac{a_z}{|\overline{a}|}$$
 (2.9)

- напрямні косинуси вектора \vec{a} (α , β , γ – кути вектора \vec{a} з додатними напрямами відповідно осей координат Ox, Oy, Oz) і

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$
 (2.10)

Тоді

$$\vec{a} = |\vec{a}| \cdot \vec{a}^0, \tag{2.11}$$

де

$$\vec{a}^{0} = \left\{ \frac{a_{x}}{|\vec{a}|}; \frac{a_{y}}{|\vec{a}|}; \frac{a_{z}}{|\vec{a}|} \right\}. \tag{2.12}$$

3 Добутки векторів

3.1 Скалярний добуток двох векторів

Скалярний добуток векторів \vec{a} та \vec{b} - це число, яке дорівнює

$$\overrightarrow{ab} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos(\overrightarrow{a} \wedge \overrightarrow{b}), \qquad (2.13)$$

де $|\vec{a}|, |\vec{b}|$ - модулі векторів \vec{a} та \vec{b} .

Якщо вектори задано координатами, а саме: $\vec{a} = \left\{a_x, a_y, a_z\right\}, \; \vec{b} = \left\{b_x, b_y, b_z\right\}, \; \text{то їх скалярний добуток дорівню} \varepsilon$

$$\overrightarrow{ab} = a_x b_x + a_y b_y + a_z b_z. \tag{2.14}$$