Quel méthode d'échantillonnage utiliser?

En fonction des exigences détaillées de votre projet, je recommande d'utiliser **l'échantillonnage** aléatoire stratifié pour les raisons suivantes :

- 1. Vous avez trois catégories de produits distinctes (pantalons, robes, pulls) qui doivent être analysées séparément et comparées.
- 2. Vos objectifs incluent la compréhension des performances par catégorie et la prise de décisions stratégiques.
- 3. Vous prévoyez de réaliser des tests d'hypothèses entre les catégories ultérieurement.
- 4. Les données serviront à des prédictions de ventes, donc préserver la représentativité est crucial.

Taille de l'échantillon : tout ou un pourcentage ?

Étant donné que vos ensembles de données sont très petits (37, 38, 37 entrées), je recommande fortement d'utiliser **l'ensemble des données** plutôt qu'un échantillon. Voici pourquoi :

1. Considérations pour petits ensembles de données :

- Avec seulement ~37 entrées par catégorie, un échantillon réduit diminuerait significativement la puissance statistique.
- Vous risqueriez de perdre des motifs ou des variations importants dans les données.
- Pour l'apprentissage automatique et l'analyse statistique (que vous envisagez), avoir plus de points de données fournira des résultats plus fiables.

Expliquer le Z-score dans ce contexte

Le Z-score sert à détecter les valeurs aberrantes dans l'analyse de vos données de ventes. Il mesure à combien d'écarts-types un point de données se situe par rapport à la moyenne, c'est-à-dire à quel point une valeur est "inhabituelle" dans votre jeu de données.

La formule du Z-score est :

$$\mathbf{Z} = (\mathbf{X} - \mathbf{\mu}) / \mathbf{\sigma}$$

Où:

- **X** = valeur analysée
- μ = moyenne de l'ensemble de données
- σ = écart-type de l'ensemble de données

Comment choisir le seuil (seuil)?

Le seuil du Z-score est généralement choisi en fonction de plusieurs critères :

1. Théorie statistique :

- \circ **Z > 3**: Capture environ 0,3 % des valeurs les plus extrêmes (règle des 99,7 %).
- \circ **Z** > **2**: Capture environ 5 % des valeurs les plus extrêmes (règle des 95 %).
- o **Z > 1**: Capture environ 32 % des valeurs les plus extrêmes (règle des 68 %).

2. Contexte métier : Pour vos données e-commerce :

- **Ventes (S)**: Un seuil élevé (3-3,5) pourrait être pertinent, car les ventes varient souvent naturellement.
- Pages vues (X4): Un seuil standard (3) peut suffire, car les patterns de trafic sont généralement prévisibles.
- o **Indices clients/transactions (X9, X10)**: Un seuil plus bas (2,5) peut être utilisé si une certaine stabilité est attendue.

3. Taille de l'échantillon :

- Petits jeux de données (<100, comme le vôtre): Envisagez des seuils plus bas (2.5-2.7).
- o **Grands jeux de données (>1000)**: Utilisez des seuils standards plus élevés (3-3,5).
- Très grands jeux de données (>10000): Vous pouvez envisager des seuils encore plus élevés (4+).

Mise à l'échelle des caractéristiques : pourquoi ?

- Les variables de votre dataset (par exemple, ventes, pages vues, indices de transaction) sont exprimées dans des unités différentes : milliards de Yuans, millions, centaines de milliers, etc.
- Ces différences d'échelle peuvent biaiser les résultats des analyses (corrélations, ACP, etc.) et affecter la performance des algorithmes d'apprentissage automatique (régressions, réseaux neuronaux, etc.).
- Exemple : une variable mesurée en milliards aura une influence disproportionnée par rapport à une autre mesurée en centaines de milliers.

Name	Formula	Use
Standard score	$rac{X-\mu}{\sigma}$	Normalizing errors when population parameters are known. Works well for populations that are normally distributed ^[2]
Student's t- statistic	$rac{\widehat{eta}-eta_0}{ ext{s. e.}(\widehat{eta})}$	the departure of the estimated value of a parameter from its hypothesized value, normalized by its standard error.
Studentized residual	$egin{aligned} rac{\hat{arepsilon}_i}{\hat{\sigma}_i} = rac{X_i - \hat{\mu}_i}{\hat{\sigma}_i} \end{aligned}$	Normalizing residuals when parameters are estimated, particularly across different data points in regression analysis.
Standardized moment	$rac{\mu_k}{\sigma^k}$	Normalizing moments, using the standard deviation σ as a measure of scale.
Coefficient of variation	$\frac{\sigma}{\mu}$	Normalizing dispersion, using the mean μ as a measure of scale, particularly for positive distribution such as the exponential distribution and Poisson distribution.
Min-max feature scaling	$X' = rac{X - X_{ m min}}{X_{ m max} - X_{ m min}}$	Feature scaling is used to bring all values into the range [0,1]. This is also called unity-based normalization. This can be generalized to restrict the range of values in the dataset between any arbitrary points a and b , using for example $X' = a + \frac{\left(X - X_{\min}\right)\left(b - a\right)}{X_{\max} - X_{\min}}.$

Hypothèse Statistique et Test de Normalité

Si vous devez effectuer un test d'hypothèse mais que vous ne savez pas si votre échantillon suit une loi normale, voici les étapes à suivre :

1. Vérifier la Normalité de Vos Données

Pour déterminer si vos données suivent une distribution normale, utilisez :

- Méthodes Visuelles
 - o Graphiques comme les Q-Q plots ou les histogrammes
- Tests Statistiques
 - o Test de Shapiro-Wilk (adapté aux petits échantillons)
 - o Test de Kolmogorov-Smirnov

2. Que Faire si Vos Données Ne Sont Pas Normales?

Deux options s'offrent à vous :

- 1. Utiliser des tests non paramétriques qui ne supposent pas la normalité.
- 2. Appliquer le **Théorème Central Limite (TCL)** si votre échantillon est suffisamment grand (généralement n > 30).

Échantillon Supérieur à 30 : Utilisation du TCL

Si votre échantillon contient plus de 30 observations, vous pouvez vous fier au **Théorème Central Limite** (**TCL**):

Pourquoi ?

• Le TCL indique que, quelle que soit la distribution initiale de vos données, la distribution de l'échantillon moyen sera approximativement normale pour un grand échantillon.

• Conséquence :

 Vous pouvez procéder à des tests paramétriques (comme les tests t ou z), même si vos données d'origine ne sont pas parfaitement normales.

3. Tester une Hypothèse Spécifique

Comparaison des Moyennes de Deux Groupes :

Si vous comparez les moyennes de deux groupes indépendants, suivez ces étapes :

- 1. Calculer les Moyennes et Écarts-Types des deux groupes.
- 2. Tester l'Égalité des Variances :
 - Utilisez le test de Levene pour vérifier si les variances sont égales. Cela déterminera si vous devez utiliser des variances combinées ou non.
- 3. Effectuer un Test t (ou test de Student pour deux échantillons indépendants) :
 - o Basé sur :
 - La différence entre les moyennes des échantillons
 - L'erreur standard de la différence entre moyennes
 - Les degrés de liberté appropriés

Hypothèse à tester(test bilatéral):

 H_0 :" μ et μ' ne sont pas significativement différentes" H_1 :" μ et μ' sont significativement différentes"

alors, sous
$$H_0$$
 la v.a $T = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{\sigma^2}{n_A} + \frac{{\sigma'}^2}{n_B}}} \rightarrow N(0,1)$

Fixons un seuil de risque α et soit l'unique réel strictement positif t_{α} telque $P(|T| \le t_{\alpha}) = 1 - \alpha$

$$(t_{\alpha} = \Pi^{-1}(1 - \frac{\alpha}{2}))$$

Règle de décision du test:

- $Si |T| \le t_{\alpha}$, on ne rejete pas H_0 , avec un risque β de se tromper.
- $Si |T| \succ t_{\alpha}$, on rejete H_0 , avec le risque α de se tromper.

Mise en œuvre du test:

On calcule le nombre
$$t = \frac{m_A - m_B}{\sqrt{\frac{\sigma^2}{n_A} + \frac{{\sigma'}^2}{n_B}}}$$
 et on compare $|t| \grave{a} t_{\alpha}$;

et on utilise la régle de décision pour conclure.

En général σ et σ' sont inconnus et remplacés par leurs estimateurs

respectifs
$$\hat{\sigma}_A = \sigma_A \sqrt{\frac{n_A}{n_A - 1}}$$
 et $\hat{\sigma}_B = \sigma_B \sqrt{\frac{n_B}{n_B - 1}}$

Bien sûr! Voici l'explication en français:

1. Interpréter l'Erreur Quadratique Moyenne (MSE)

- L'Erreur Quadratique Moyenne (MSE) mesure la différence moyenne au carré entre les valeurs prédites et réelles. Plus la MSE est faible, meilleure est la performance du modèle.
- Si 0.14370.1437 est une "bonne" erreur dépend du scale (échelle) de votre variable cible yy :
 - o Si les valeurs de yy varient entre 0 et 1, un MSE de 0.1437 est relativement élevé.
 - o Si yy varie entre 0 et 100, cet MSE pourrait être acceptable.

Action : Vérifiez la plage des valeurs de yy pour savoir si cette erreur est tolérable dans ce contexte.

2. Interpréter le R2R^2

- Le R2R^2 (coefficient de détermination) mesure dans quelle mesure le modèle explique la variance de la variable cible :
 - o R2=1.0R^2 = 1.0 : Ajustement parfait.
 - o R2>0.5R^2 > 0.5 : Indique généralement un bon modèle.
 - o R2=0R^2 = 0 : Le modèle ne prédit pas mieux que la moyenne.
 - o R2<0R^2 < 0 : Le modèle est pire qu'une simple prédiction par la moyenne.

Votre Résultat : $R2=0.16R^2 = 0.16$:

- Cela signifie que seulement 16 % de la variance de yy est expliquée par le modèle.
- C'est assez faible dans la plupart des applications, ce qui suggère que le modèle ne capture pas bien la relation.

3. Pourquoi le modèle pourrait sous-performer ?

1. Ordre du modèle incorrect (p,d,qp, d, q) :

- o L'ordre ARIMAX choisi (1, 0, 0) peut ne pas être adapté à vos données.
- Utilisez des outils comme les graphiques ACF/PACF pour guider la sélection de pp et qq, et effectuez des tests de stationnarité pour déterminer dd.

2. Variables Exogènes:

- Si les variables exogènes n'ont pas une forte relation avec yy, elles n'aideront pas beaucoup.
- Évaluez la corrélation entre xx et yy. Envisagez d'ajouter d'autres variables exogènes ou de les supprimer totalement.

3. Stationnarité:

- Si vos données ne sont pas stationnaires (moyenne et variance constantes dans le temps), le modèle pourrait avoir du mal à prédire correctement.
- o La différenciation (en définissant d>0d > 0) pourrait aider.

4. Relations complexes:

- o ARIMAX suppose des relations linéaires. Si la relation entre xx et yy ou entre yty_t et yt−1y_{t-1} est non-linéaire, ARIMAX peut sous-performer.
- Envisagez d'autres modèles comme LSTM ou la régression non linéaire si vous suspectez des relations non-linéaires.

5. Bruit dans les données :

 Si les données contiennent beaucoup de bruit ou ont un faible rapport signal/bruit, la prédiction devient plus difficile.

4. Étapes Suivantes pour Améliorer le Modèle

• Vérifiez la stationnarité des données :

```
ullet from statsmodels.tsa.stattools import adfuller
```

- result = adfuller(df['y'])
- print(f"Statistique ADF : {result[0]}")
- print(f"P-value : {result[1]}")
 - Si la p-value > 0.05, vos données ne sont pas stationnaires. Envisagez de les différencier.

Utilisez les graphiques ACF/PACF pour ajuster pp et qq :

- from statsmodels.graphics.tsaplots import plot acf, plot pacf
- plot_acf(df['y'])

- plot pacf(df['y'])
- plt.show()
- Essayez différents ordres ARIMAX : Testez des combinaisons comme (1, 1, 1), (2, 1, 0), etc.
- Génération de nouvelles caractéristiques :
 - Si xx n'est pas fortement corrélé avec yy, essayez d'ajouter d'autres variables pertinentes.
 - Exemple : utilisez des caractéristiques basées sur le temps comme le jour de la semaine, la saison, etc.

5. Autres Approches

- Si ARIMAX ne s'améliore pas, explorez d'autres modèles de séries temporelles :
 - o **Prophet** (idéal pour les tendances et la saisonnalité).
 - Modèles de Machine Learning (comme les forêts aléatoires ou LSTM pour les séries temporelles).

En résumé:

- Votre R2R^2 et MSE suggèrent que le modèle actuel n'est pas optimal.
- Affinez le modèle en vérifiant la stationnarité, en ajustant p,d,qp, d, q, et en évaluant les variables exogènes.
- Faites-moi savoir si vous avez besoin d'aide avec ces étapes!