ΛΥΣΗ

α) Οι λύσεις τις εξίσωσης f(x) = g(x) είναι οι τετμημένες των κοινών σημείων των γραφικών παραστάσεων των συναρτήσεων f και g . Έχουμε:

$$f(x) = g(x) \Leftrightarrow$$

$$4^{x} = 2^{x} - \frac{1}{4} \Leftrightarrow$$

$$4 \cdot (2^{x})^{2} - 4 \cdot 2^{x} + 1 = 0 \Leftrightarrow$$

$$4y^{2} - 4y + 1 = 0 \Leftrightarrow$$

$$(2y - 1)^{2} = 0 \Leftrightarrow$$

$$y = \frac{1}{2}.$$

Άρα

$$2^{x} = \frac{1}{2} \Leftrightarrow$$

$$2^{x} = 2^{-1} \Leftrightarrow$$

$$x = -1.$$

Οπότε οι γραφικές παραστάσεις των συναρτήσεων f και g έχουν ακριβώς ένα κοινό σημείο

το
$$A\left(-1,\frac{1}{4}\right)$$
, αφού $f\left(-1\right)=g\left(-1\right)=\frac{1}{4}$.

β) Θα δείξουμε ότι f(x)>g(x) για κάθε $x\neq -1$. Έχουμε ισοδύναμα:

$$f(x) > g(x) \Leftrightarrow$$

$$4^{x} > 2^{x} - \frac{1}{4} \Leftrightarrow$$

$$4 \cdot (2^{x})^{2} - 4 \cdot 2^{x} + 1 > 0 \Leftrightarrow$$

$$4y^{2} - 4y + 1 > 0 \Leftrightarrow$$

$$(2y - 1)^{2} > 0.$$

που ισχύει για κάθε για κάθε πραγματικό αριθμό $y \neq \frac{1}{2}$, δηλαδή για κάθε πραγματικό αριθμό x για τον οποίο ισχύει:

$$2^{x} \neq \frac{1}{2} \Leftrightarrow$$

$$2^{x} \neq 2^{-1} \Leftrightarrow$$

$$x \neq -1$$
.

Άρα η γραφική παράσταση της συνάρτησης f βρίσκεται πάνω από τη γραφική παράσταση της g , με εξαίρεση το σημείο $\mathbf{A}\!\left(-1,\frac{1}{4}\right)$.

γ) Στο παρακάτω σύστημα συντεταγμένων φαίνονται οι γραφικές παραστάσεις των συναρτήσεων f και g. Να σημειώσουμε ότι η γραφική παράσταση της g προκύπτει από κατακόρυφη μετατόπιση της γραφικής παράστασης της $y=2^x$ κατά $\frac{1}{4}$ μονάδες προς τα κάτω και με τη βοήθεια του παρακάτω πίνακα τιμών.

x	-2	-1	0	1
$f(x) = 4^x$	$\frac{1}{16}$	$\frac{1}{4}$	1	4

x	-2	-1	0	1
$g(x) = 2^x - \frac{1}{4}$	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{7}{4}$

