20/03/2020 Seninario Pl, CIMAT

Complejor de ciclor de Geisser y repuladores

- e) Complejos Le ciclos ZL(4) y Ze(4).
 pera X/Z
- ·) Homologia de Borel-Moore (motivación)
- .7 Repulador via KLM.
- 1) Alpunos problemas sobre el regulador

Sea X un esquena aritmético le Geisser y repuladas X
separado

L de tipo finito

Spee X (20/03/2020) & Complesos de cidos (2Bloch) Considerences les simplées alpesraices $\Delta^{n} := Spee \mathbb{Z} \left[t_{o}, ..., t_{n} \right] / \left(1 - \sum_{i} t_{i} \right) \left(\sum_{\substack{non \\ can}} A_{n}^{n} \right)$ Recordatorio: la categoria 1 0818601: [n] := {O<1<...< n} mostimos: aplicaciones no decrecientes 9: [n] - [m) Una aplicación no decreciente s: (n) -> (m) induce de nomera funtarial F: 1" -> 1" reciante (si s (i) = p, entonces g(ti)= 2 ts $\widetilde{s}(t_i) := 0$ S(j) = iluego tenemos $1 \times \tilde{S}: X \times \Delta^n \longrightarrow X \times \Delta^m$, de tal manera que XXD: D - Sch ey in eggiena cosimplicial [

Nota: Para un egquena relativo X/s. se define $\Delta s := \Delta^n \times S$, y se obtiene X & Dr: A - Sch/s insa $n, i \in \mathbb{Z}$ pongamos alpebraicos alpebraicos $\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}^i$ $\mathbb{Z} = \mathbb{Z} \times \mathbb{Z}^i$ de dim. n+i con intersección propia con las caras de \mathbb{Z}^i 2) Para X equidinencional de dim 1 $2^{n}(X,i) := \mathbb{Z} \left(2 \in X \times \Delta^{i} \text{ de codim } n \right)$ Nota En el caso qui dinensional $Z_n(X,i) = Z^{d-n}(X,i)$ $2n(X, \bullet): \Delta^{op} \rightarrow \mathcal{A}\mathcal{B}$ 2" (X, .) son poupor abelianos simpliciales Le la dipriente manera

[2]

1) Si S: [i] ~ [j] es injectiva, entonces 1×9: K. D' -> X×D' es une innersión cerrada y tenemo intersección (1×5)(X×1). Z para 2 CX×1) (Cf el artículo de Geisser en "Handbook of K-theog") 2) Si S: [i] > [j] et sorrejectiva, entonces 1×5: X×1 -> X×10 es un mochomo plans y trae el "flat pullback" de ciclos algebraicos

En amber cases se obtiene $\begin{array}{ccc}
\mathcal{E}_{n} & \text{amber cases se obtiene} \\
\mathcal{E}_{n} & \mathcal{E}_{n}(X, j) & \longrightarrow \mathcal{E}_{n}(X, l) \\
\mathcal{E}_{n} & \mathcal{E}_{n}(X, j) & \longrightarrow \mathcal{E}_{n}(X, l)
\end{array}$

Come siempre; a un goupo abeliano simplicial se puede agociar un complejo de cadenay $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$

Agui
$$di = \sum_{0 \le i \le 1} (-1)^i die$$

obesit

dente $de := \int_{0}^{2} e^{it} = la e^{-esima} cora$
 $de(i) := \begin{cases} j, j < e \\ j+1, j > e \end{cases}$

Gavilliticación:

 $define gavillas$

abelianas sobre

 $definición$

Lett y $\frac{1}{2}$ as

 $definición$

Annuación sprusta para

tener consolvir el la seria de la seria consolvir el la seria co

 $\mathbb{Z}(h) := \mathbb{Z}^{n}(L_{1}, -\cdot)[2n]$

Nota En el caso equidinensional $Z^{c}(u) = Z(d-n)[2d].$

I Honologia de Bord-Moore (notivación) definición (Verdier) Sea X un espacio topológico localmente compaero. La homologia de Borel-Moore viene dada por RIBM (X,Z) := RHOM (RS. (X,Z), Z) Him (x,2) := H (RSBM (x,2)). (Para les détalles: Iversen, "Cohoncologs es skeaves") Funtorialidad: 1) para un mapeo propio X-> y (= preimagen de compaeto es compaeta) & obtiene $Rr_c(Y,Z) \longrightarrow Rr_c(X,Z)$ y luck RFBM (X, Z) -> RFBM (Y, Z) ("proper push forward") abjects UCX se obciene $R\Gamma_c(U, \mathbb{Z}) \longrightarrow R\Gamma_c(X, \mathbb{Z})$ y luego RTBM (X,Z) -> RTBM (V,Z) Además, si ZCX es cerrado y V:=X\Z, se obtienen tojanpulos Listingui dos

finitamente senerados para todo

it 7 y n < 0.

<u>[6]</u>

conjenura implice que Este ·) Hi (Xét, Z'(u)) = o para i kadin K ·) H' (Xet, Z'(n)) es dinito de 2-torrión para iso. (ration: aqui interviene le colonologia Le GR = Gal (C/R)) I Repulador Toma valores en la (co)homologia de Deligne-Betlingon, las referencias: Esnault-Viehweg Berlinson volume (1988) Sea I une variedad liva (!) sobre C. Cohomología $H_{D-B}(X, A(k))$ para un subanillo homología $H_i(X, A(k))$ $\mathcal{L}(A \subseteq C)$ Se definer usando una Buena conpactificación X C F C C F X X

(7/

Dualidad de Poincaré torcida" (Janven) $H_{D-5}^{i}(\mathcal{X}, R(k)) \simeq H_{2d_{C}-i}^{D-5}(\mathcal{X}, R(d_{C}-k))$ Aquí Hp-15 (X, R(h)):= Hi ('CD-B (F, D, R(K))) $H_i^{N-1}(X, R(k)) := H_{N-1}^{-1}(X, R(-k))$ Observación Para &>o (!) se tiene un cuaj: - isomor figuro (CD-6 (X, D, R(k)) = RHom (RTe (X(C), R(1-K)), R)[-1] $=: R\Gamma_{BM}(\mathcal{X}(\mathcal{L}), \mathcal{R}(1-k)) [-1]$ donde R(1-6) := (211i) 1-12 R (considerate como una gavilla constante con acción de $G_R := Gal(C/R)$)

Ahora para un esquenca aritmético X/2 asumanos que Lim X = d, y que XC es una variedad lise quasi-projectiva (!)

da := dim Xc = d-1.

[8]

Kerr-Lewis-Müller-Stach (KLM): un morphono en la categoria derivada $\mathcal{Z}^{r}(X_{C}, -\bullet) \rightarrow C_{D-5}$ Tomana r = d-n, Late d = din X, y = n < o (1) $\mathcal{R}^{r}(X_{C}, +ar), \quad \mathcal{Z}^{r-1}(L_{C}, -\bullet) \left(\mathcal{Z}_{R}\right), \quad \mathcal{Z}^{r-1}(L_{R})$ $\mathcal{Z}^{r-2}d_{C} + \bullet \left(\mathcal{X}_{C}, \mathcal{Y}_{R}, \mathcal{Z}_{R}\right), \quad \mathcal{Z}^{r-1}(r-d_{C})$ $\mathcal{R}^{r}(X_{C}, +ar), \quad \mathcal{Z}^{r-1}(L_{R}, -\bullet) \left(\mathcal{Z}_{R}\right), \quad \mathcal{Z}^{r-1}(L_{R}, -\bullet) \left(\mathcal{Z}_{R}\right), \quad \mathcal{Z}^{r-1}(L_{R}, -\bullet) \left(\mathcal{Z}_{R}\right)$ $\mathcal{Z}^{r-1}(X_{C}, -\bullet) \left(\mathcal{Z}_{R}\right), \quad \mathcal{Z}^{r-1}(L_{R}, -\bullet) \left(\mathcal{Z}_{R}\right)$ $\mathcal{Z}^{r-1}(X_{C}, -\bullet) \left(\mathcal{Z}_{R}\right), \quad \mathcal{Z}^{r-1}(L_{R}, -\bullet) \left(\mathcal{Z}_{R}\right)$

Defrances

 $R\Gamma(X\acute{e}t, Z^{(n)}) = R\Gamma(X\acute{e}t, Z_{X}^{d-n}(\omega, -\cdot) Idn)) \rightarrow$ $R\Gamma(X_{Zar}, Z_{X}^{d-n}(\omega, -\cdot) Idn)) \rightarrow$ $R\Gamma(X_{C,Zar}, Z_{X_{C}}^{d-n}(\omega, -\cdot) Idn)) \xrightarrow{KLM}$ $C_{N-B}^{2+\bullet}(\overline{X_{C}}, D, Z(1-n)) \xrightarrow{TR}$ $C_{N-B}^{2+\bullet}(\overline{X_{C}}, D, R(1-n)) \simeq$ $R\Gamma_{BM}(X(C), R(n)) [1].$

Todo esto es equivariante respecto la acción de GIR := Gal (C/IR)

9

Tomando los Ep-invariantes, se obtiene la Aprilube Lefinición El regulador (étale) viene dado Rey: RS (Vet, ZC(n)) -> RSBM (GR, X(C), R(n))[1] donde RTBM (GR,) := RT (GR, RTBM (....))
Conjetura (Beilinson) El mordismo R-dual Reg : RTc (Gm, X(E), R(W)) [-1] - RHon (RT(Xit, 76 a)) R) es un cuari-isomorfismo. I Alguna prepuntas (Problema 1) Bajo la hipótesis de que n20 (!) dar una definición que vaya directamente a $RF_{BM}(G_{R}, X(e), R(h))[1], Sin pasar$ por un avorjoir le cuaj: isomorfismes (Problema 2) Quitar la hipotes; de pue

XC es lisa y quasi-proyectiva que es recesaria para KLM.

(Asurir que n<0)

El repulador Pex, n interviene en las fórmulas (conjempales) para el valor especial de la tunción tera $\begin{cases}
(x,s) := \prod_{x \in X} \frac{1}{1 - N(x)^{-s}}, \quad N(x) := \# k(x) \\
\text{certado}
\end{cases}$ en s=n. La función teto satisface $\S(A_X^r,s)=\S(X,s-r), A_X^r:=A^r \times X$ $\xi(x,s) = \xi(v,s).\xi(7,s)$ Por esto analquier construcción del repulador dese ser compatible con X ~ Ax y con descomposiciones cerrado-asiertous" 24x20 Problème 3) Verificar le connutatividad diagrama $RF(x \in L^{2}(n-r))$ [ar) $\longrightarrow RF(Ax \in L^{2}(n))$ $\downarrow Reg_{X,n-r}$ [2r) $\downarrow Reg_{Ax,n}$ $RF_{BM}(G_{R}, X(C), \mathbb{R}(n-r))$ (2r+1) $\longrightarrow RF_{BM}(G_{R}, A_{X}(C), \mathbb{R}(n))$ [1)

Problema 4) Para Z C X Z V := X /2 benevies "triángules de Borel-Moore" RILLet, Ze(M) - RI (Xét, Ze(M)) -> RI (Vet, Ze(M)) -> [+1] RIBM (GR, Z(a), R(u)) - RIBM (GR, X(C), R(u)) - RIBM (GR, U(a), R(u)) Verificar que en este caso (Rep., Rep., Re es un morfismo de trianquelos distinguidos. en ester coyo la conjence de Beilingen para

Podria contar en otra ocasión:

- ·) los resultados le Geisser 508 re Z (n) y dualidad arithética (la razón de ser de Z(4))
- ·) (co)honología de Deligne-Beilinson
- .) El regulador KLM.