The given time integration method was solved to obtain u_2 , \dot{u}_2 , \ddot{u}_2 , \ddot{u}_3 , \dot{u}_3 , and \ddot{u}_3 (code attached on subsequent pages)

At node 2:

For k = 5,

 $\bullet \quad \text{ the following figure gives } u_2 \text{ with respect to time } t : \\$

 $\bullet \quad$ the following figure gives \dot{u}_2 with respect to time t:

 $\bullet \quad$ the following figure gives \ddot{u}_2 with respect to time t:

For
$$k = 10^7$$
,

• the following figure gives \mathbf{u}_2 with respect to time t:

 $\bullet \quad$ the following figure gives \dot{u}_2 with respect to time t:

• the following figure gives \ddot{u}_2 with respect to time t:

At node 3:

For k = 5,

 $\bullet \quad \text{the following figure gives } u_3 \text{ with respect to time } t : \\$

 $\bullet \quad$ the following figure gives \dot{u}_3 with respect to time t:

 $\bullet \quad$ the following figure gives \ddot{u}_3 with respect to time t:

For
$$k = 10^7$$
,

• the following figure gives u_3 with respect to time t:

 $\bullet \quad$ the following figure gives \dot{u}_3 with respect to time t:

• the following figure gives \ddot{u}_3 with respect to time t:

