COMPARISON OF THE PERFORMANCE OF TWO MULTI-LAYER PERCEPTRONS IN MNIST DATASET

Submitted by,

Sanjay Sunil

S5 CSE

Roll no: 56

TVE19CS058

SOURCE CODE

The Source code used to train the model can be found here (https://github.com/sanjaysunil34/ML_assignment)

I trained the MNIST dataset in two models. The model summary of the two models is as shown in the images below

Model 1

Model: "sequential"		
Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 80)	62800
dense_1 (Dense)	(None, 10)	810
Total params: 63,610 Trainable params: 63,610 Non-trainable params: 0		

Model 2

IVICACI Z			
Model: "sequential_1"			100
Layer (type)	Output	Shape	Param #
flatten_1 (Flatten)	(None,	784)	0
dense_2 (Dense)	(None,	50)	39250
dense_3 (Dense)	(None,	128)	6528
dense_4 (Dense)	(None,	10)	1290
Total params: 47,068 Trainable params: 47,068 Non-trainable params: 0			

A comparison on both the model training is tabulated below:

Criteria	Model 1	Model 2
# of Hidden layers	1	2
# of parameters	63,610	47,068
Total # of neurons	90	188

Both the models were trained with same Loss function (cross_entropy), same optimization function(Adam) and the same number of epochs(ten).

Validation Accuracy of Model 1 = 94.510% Validation Accuracy of Model 2 = 94.870%

Accuracy vs Epoch Plots

Model 1

Model 2

<u>Inference</u>

The 2nd Model is more accurate than the 1st model.

Both models are trained through 10 epochs.

The 1st model has more parameters than the 2nd.

But the 2nd model has more hidden layers and so it is able to give better predictions with better accuracy.