PROOF

Let L be a language on some alphabet T such that $\varepsilon \in L$ and let G=(V,T,P,S) be a grammar such that $L(G)=L-\{\varepsilon\}$.

Prove that the grammar $G'=(V'=V\cup \{S'\},\ T,\ P'=P\cup \{S'\longrightarrow S|\epsilon\},\ S')$ satisfies L(G')=L

Proof that L(G')⊆L:

Let $w \in L(G')$, there are two case: $w = \varepsilon \lor w \neq \varepsilon$

If $w=\epsilon$:

Since $\varepsilon \in L$ we get that $w \in L$

If w≠ε:

Since $w \in L(G')$ we get that $S' \Longrightarrow_{G'} w$ and so: $\exists n \in \mathbb{N}, S' \Longrightarrow_{G'} w$

It must be the case that $n\neq 0$ because if n=0 we get $S'\Longrightarrow_{G'}0$ w and so w=S', Since |S'|=1 we get that $w\in T$, Also since $S'\in V'$ we get that $w\in V'$ and so $w\in T\cap V'$ and we get that $T\cap V'\neq \emptyset$ which contradicts the fact $T\cap V'=\emptyset$.

Also it must be the case that $n\neq 1$ because if n=1 we get $S' \Longrightarrow_{G'}^{1} W$, There are two cases for the production rules used: $(S' \longrightarrow S)$ or $(S' \longrightarrow \varepsilon)$ If the rule used was $S' \longrightarrow S$ then we get that $S' \Longrightarrow_{G'}^{1} S$ and so we get that w=S, Since |S|=1 we get that $w\in T$, Also since $S\in V$ we get that $w\in V$ and so $w\in T\cap V$ and we get $T\cap V\neq \emptyset$ which contradicts the fact $T\cap V=\emptyset$. If the rule used was $S' \longrightarrow \varepsilon$ then we get that $S' \Longrightarrow_{G'}^{1} \varepsilon$ and so we get that $w=\varepsilon$ but this contradicts the facts that $w\neq \varepsilon$.

We've shown that $n\neq 0,1$ and so $\exists 2\leq n\in\mathbb{N}, S'\Longrightarrow_{G^{,n}} w$.

And so, The first rule applied to S' must be the rule S' \longrightarrow S and we get that S' $\Longrightarrow_{G^{,n-1}}$ W, In particular S $\Longrightarrow_{G^{,n-1}}$ W, Since all the production rules used in this derivation sequence must be production rules from the set P we get that S $\Longrightarrow_{G^{n-1}}$ W and so S $\Longrightarrow_{G^{*}}$ W, Now by definition of the set L(G) we get that $w \in L(G) = L - \{ \epsilon \}$ and so $w \in L$.

Proof that $L\subseteq L(G')$:

Let $w \in L$, there are two cases $w = \varepsilon \lor w \neq \varepsilon$.

If $w=\epsilon$:

Since $(S' \longrightarrow \varepsilon) \in P'$ we get that $S' \Longrightarrow_{G'} 1 \varepsilon = w$ and so $w \in L(G')$.

If w≠ε:

We get that $w \in L-\{\varepsilon\}=L(G)$ and so $S \Longrightarrow_{G}^{*} w$,

Now since G is sub grammar of G' we get that $S \Longrightarrow_{G'} w$,

Also since $S' \Longrightarrow_{G'} S$ we get $S' \Longrightarrow_{G'} S \Longrightarrow_{G'} w$ and so $S' \Longrightarrow_{G'} w$,

Now by definition of the set L(G') we get that $w \in L(G')$.

Q.E.D.