Introduction to Pandas

- Library for computation with tabular data
- Mixed types of data allowed in a single table
- Columns and rows of data can be named
- Advanced data aggregation and statistical functions

pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

Source: http://pandas.pydata.org/

Introduction to Pandas

Basic data structures

Introduction to Pandas

Basic data structures

Use data from step tracking application to create a Pandas Series

Code

Use data from step tracking application to create a Pandas Series

Code

```
>>> 0 3620
1 7891
2 9761
3 3907
4 4338
5 5373
Name: steps, dtype: int64
```

Add a date range to the Series

Code

```
print(step_counts)
```

Add a date range to the Series

Code

```
>>> 2015-03-29 3620

2015-03-30 7891

2015-03-31 9761

2015-04-01 3907

2015-04-02 4338

2015-04-03 5373

Freq: D, Name: steps,

dtype: int64
```

Select data by the index values

Code

```
# Just like a dictionary
print(step_counts['2015-04-01'])
```

Select data by the index values

Code

Output

```
# Just like a dictionary
print(step_counts['2015-04-01'])
```

>>> 3907

Select data by the index values

Code

```
# Just like a dictionary
print(step_counts['2015-04-01'])
# Or by index position--like an array
print(step counts[3])
```

Output

>>> 3907

Select data by the index values

Just like a dictionary print(step_counts['2015-04-01']) >>> 3907 # Or by index position--like an array print(step counts[3])

Select data by the index values

Cod

```
# Just like a dictionary
print(step_counts['2015-04-01'])

# Or by index position--like an array
print(step_counts[3])

# Select all of April
print(step_counts['2015-04'])
```

Output

>>> 3907

>>> 3907

Select data by the index values

Code

```
# Just like a dictionary
print(step_counts['2015-04-01'])

# Or by index position--like an array
print(step_counts[3])

# Select all of April
print(step_counts['2015-04'])
```

Output

>>> 3907

>>> 3907

>>> 2015-04-01 3907 2015-04-02 4338 2015-04-03 5373

Freq: D, Name: steps,

dtype: int64

Data types can be viewed and converted

Code

```
# View the data type
print(step_counts.dtypes)
```

Data types can be viewed and converted

Code

View the data type print(step_counts.dtypes)

Output

>>> int64

Data types can be viewed and converted

Code

```
# View the data type
print(step_counts.dtypes)

# Convert to a float
step_counts = step_counts.astype(np.float)

# View the data type
print(step counts.dtypes)
```

Output

>>> int64

Data types can be viewed and converted

print(step counts.dtypes)

```
# View the data type
                                                   >>> int.64
print(step counts.dtypes)
# Convert to a float
step counts = step counts.astype(np.float)
# View the data type
```

>>> float64

Invalid data points can be easily filled with values

Code

```
# Create invalid data
step_counts[1:3] = np.NaN

# Now fill it in with zeros
step_counts = step_counts.fillna(0.)
# equivalently,
# step_counts.fillna(0., inplace=True)
print(step_counts[1:3])
```

Invalid data points can be easily filled with values

Code

```
# Create invalid data
step_counts[1:3] = np.NaN

# Now fill it in with zeros
step_counts = step_counts.fillna(0.)
# equivalently,
# step_counts.fillna(0., inplace=True)
print(step_counts[1:3])
```

```
>>> 2015-03-30 0.0
2015-03-31 0.0
Freq: D, Name: steps,
dtype: float64
```

DataFrames can be created from lists, dictionaries, and Pandas Series

Code

```
# Cycling distance
cycling data = [10.7, 0, None, 2.4, 15.3,
                10.9, 0, None]
# Create a tuple of data
joined data = list(zip(step data,
                        cycling data))
# The dataframe
activity df = pd.DataFrame(joined data)
print(activity df)
```

DataFrames can be created from lists, dictionaries, and Pandas Series

Code

Labeled columns and an index can be added

Code

```
# Add column names to dataframe
activity_df = pd.DataFrame(
    joined_data,
    index=pd.date_range('20150329', periods=6),
    columns=['Walking','Cycling'])
print(activity_df)
```

Labeled columns and an index can be added

Code

·	Walking	Cycling
2015-03-29	3620	10.7
2015-03-30	7891	0.0
2015-03-31	9761	NaN
2015-04-01	3907	2.4
2015-04-02	4338	15.3
2015-04-03	5373	10.9

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

```
# Select row of data by index name
print(activity_df.loc['2015-04-01'])
```

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

```
# Select row of data by index name
print(activity df.loc['2015-04-01'])
```

Output

>>> Walking 3907.0 Cycling 2.4

Name: 2015-04-01,

dtype: float64

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

```
# Select row of data by integer position
print(activity_df.iloc[-3])
```

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

```
# Select row of data by integer position
print(activity df.iloc[-3])
```

Output

>>> Walking 3907.0 Cycling 2.4

Name: 2015-04-01,

dtype: float64

DataFrame columns can be indexed by name

Code

```
# Name of column
print(activity_df['Walking'])
```

DataFrame columns can be indexed by name

Code

```
# Name of column
print(activity df['Walking'])
```

```
>>> 2015-03-29 3620

2015-03-30 7891

2015-03-31 9761

2015-04-01 3907

2015-04-02 4338

2015-04-03 5373

Freq: D, Name: Walking,

dtype: int64
```

DataFrame columns can also be indexed as properties

Code

```
# Object-oriented approach
print(activity_df.Walking)
```

DataFrame columns can also be indexed as properties

Code

```
# Object-oriented approach
print(activity df.Walking)
```

```
>>> 2015-03-29 3620

2015-03-30 7891

2015-03-31 9761

2015-04-01 3907

2015-04-02 4338

2015-04-03 5373

Freq: D, Name: Walking,

dtype: int64
```

DataFrame columns can be indexed by integer

Code

```
# First column
print(activity_df.iloc[:,0])
```

DataFrame columns can be indexed by integer

Code

```
# First column
print(activity df.iloc[:,0])
```

```
>>> 2015-03-29 3620

2015-03-30 7891

2015-03-31 9761

2015-04-01 3907

2015-04-02 4338

2015-04-03 5373

Freq: D, Name: Walking,

dtype: int64
```

Reading Data with Pandas

CSV and other common filetypes can be read with a single command

Code

```
# The location of the data file
filepath = 'data/Iris_Data/Iris_Data.csv'

# Import the data
data = pd.read_csv(filepath)

# Print a few rows
print(data.iloc[:5])
```

Reading Data with Pandas

CSV and other common filetypes can be read with a single command

Code

```
# The location of the data file
filepath = 'data/Iris_Data/Iris_Data.csv'

# Import the data
data = pd.read_csv(filepath)

# Print a few rows
print(data.iloc[:5])
```


_							
	sepal_length	sepal_width	petal_length	petal_width	species		
0	5.1	3.5	1.4	0.2	Iris-setosa		
1	4.9	3.0	1.4	0.2	Iris-setosa		
2	4.7	3.2	1.3	0.2	Iris-setosa		
3	4.6	3.1	1.5	0.2	Iris-setosa		
4	5.0	3.6	1.4	0.2	Iris-setosa		

Assigning New Data to a DataFrame

Data can be (re-)assigned to a DataFrame column

Code

Assigning New Data to a DataFrame

Data can be (re-)assigned to a DataFrame column

Code

	petal_width	species	sepal_area
0	0.2	Iris-setosa	17.85
1	0.2	Iris-setosa	14.70
2	0.2	Iris-setosa	15.04
3	0.2	Iris-setosa	14.26
4	0.2	Iris-setosa	18.00

Applying a Function to a DataFrame Column

Functions can be applied to columns or rows of a DataFrame or Series

Code

Applying a Function to a DataFrame Column

Functions can be applied to columns or rows of a DataFrame or Series

Code

Concatenating Two DataFrames

Two DataFrames can be concatenated along either dimension

Code

Concatenating Two DataFrames

Two DataFrames can be concatenated along either dimension

Code

Aggregated Statistics with GroupBy

Using the groupby method calculated aggregated DataFrame statistics

Code

Aggregated Statistics with GroupBy

Using the groupby method calculated aggregated DataFrame statistics

Code

```
>>> species
   Iris-setosa 50
   Iris-versicolor 50
   Iris-virginica 50
   dtype: int64
```

Pandas contains a variety of statistical methods—mean, median, and mode

Code

```
# Mean calculated on a DataFrame
print(data.mean())
```

Pandas contains a variety of statistical methods—mean, median, and mode

Code

```
# Mean calculated on a DataFrame
print(data.mean())
```

Output

>>> sepal_length 5.843333
 sepal_width 3.054000
 petal_length 3.758667
 petal_width 1.198667
 dtype: float64

Pandas contains a variety of statistical methods—mean, median, and mode

Code

```
# Mean calculated on a DataFrame
print(data.mean())
```

```
# Median calculated on a Series
print(data.petal_length.median())
```

Output

>>> 4.35

```
>>> sepal_length 5.843333 sepal_width 3.054000 petal_length 3.758667 petal_width 1.198667 dtype: float64
```

Pandas contains a variety of statistical methods—mean, median, and mode

Code

```
# Mean calculated on a DataFrame
print(data.mean())

# Median calculated on a Series
print(data.petal_length.median())

# Mode calculated on a Series
print(data.petal_length.mode())
```

Output

```
>>> sepal_length 5.843333
    sepal_width 3.054000
    petal_length 3.758667
    petal_width 1.198667
    dtype: float64
>>> 4.35
>>> 0 1.5
```

dtype: float64

Standard deviation, variance, SEM and quantiles can also be calculated

Code

Standard deviation, variance, SEM and quantiles can also be calculated

Code

```
>>> 1.76442041995
3.11317941834
0.144064324021
```

Standard deviation, variance, SEM and quantiles can also be calculated

Code

Output

```
3.11317941834
0.144064324021
>>> sepal_length 4.3
sepal_width 2.0
petal_length 1.0
petal_width 0.1
Name: 0, dtype: float64
```

>>> 1.76442041995

Multiple calculations can be presented in a DataFrame

Code

```
print(data.describe())
```

Multiple calculations can be presented in a DataFrame

Code

print(data.describe())

Output

>>>

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Sampling from DataFrames

DataFrames can be randomly sampled from

Code

```
print(sample.iloc[:,-3:])
```

Sampling from DataFrames

DataFrames can be randomly sampled from

```
# Sample 5 rows without replacement
sample = (data)
          .sample (n=5,
                   replace=False,
                   random state=42))
print(sample.iloc[:,-3:])
```


>>>		petal_length	petal_width	species
	73	4.7	1.2	Iris-versicolor
	18	1.7	0.3	Iris-setosa
	118	6.9	2.3	Iris-virginica
	78	4.5	1.5	Iris-versicolor
	76	4.8	1.4	Iris-versicolor

Sampling from DataFrames

DataFrames can be randomly sampled from

Code

Output

>>>		petal_length	petal_width	species
	73	4.7	1.2	Iris-versicolor
	18	1.7	0.3	Iris-setosa
	118	6.9	2.3	Iris-virginica
	78	4.5	1.5	Iris-versicolor
	76	4.8	1.4	Iris-versicolor

SciPy and NumPy also contain a variety of statistical functions.

Visualization Libraries

Visualizations can be created in multiple ways:

- Matplotlib
- Pandas (via Matplotlib)
- Seaborn
 - Statistically-focused plotting methods
 - Global preferences incorporated by Matplotlib

Scatter plots can be created from Pandas Series

Code

Scatter plots can be created from Pandas Series

Code

Multiple layers of data can also be added

Code

Multiple layers of data can also be added

Code

Histograms with Matplotlib

Histograms can be created from Pandas Series

Code

Output

plt.hist(data.sepal_length, bins=25)

Histograms with Matplotlib

Histograms can be created from Pandas Series

Code

plt.hist(data.sepal_length, bins=25)

Customizing Matplotlib Plots

Every feature of Matplotlib plots can be customized

Code

Colp

Customizing Matplotlib Plots

Every feature of Matplotlib plots can be customized

Code

Incorporating Statistical Calculations

Statistical calculations can be included with Pandas methods

Code

Incorporating Statistical Calculations

Statistical calculations can be included with Pandas methods

Code

Joint distribution and scatter plots can be created

Code

Joint distribution and scatter plots can be created

Code

import seaborn as sns

Correlation plots of all variable pairs can also be made with Seaborn

Code

```
sns.pairplot(data, hue='species', size=3)
```

Correlation plots of all variable pairs can also be made with Seaborn

Code

sns.pairplot(data, hue='species', size=3)

