An introduction to the number theory behind computer science with a specific focus on applications in cryptography.

NOTE: Many topics will likely have to be discarded

- 1. Intro
 - a. Background expected: FOCS
- 2. What is number theory
- 3. What are the applications of number theory in computer science
 - a. Crypto
 - b. Error Correction
 - c. Random Number Generation
- 4. Modular Arithmetic
 - a. Clock stuff
 - b. Why is modular arithmetic important
 - c. Ring of integers mod n
 - d. When does a modular inverse exist
 - e. Field of integers
 - i. Finite fields
- 5. RSA/Diffie hellman
 - a. RSA
 - i. Euler-Fermat
 - b. Diffie Helman
 - i. Discrete Log
- 6. Finding Primes
 - a. How many primes are there?
 - i. Prime counting function
 - ii. Prime number theorem
 - iii. Approximations to prime counting theorem
 - 1. x/log x
 - 2. Logarithmic integral
 - b. Sieve of Eratosthenes
- 7. Primality Checking
 - a. Fermat
 - b. Miller-Rabin
 - c. Baillie-PSW
- 8. Factorization
 - a. Naive
 - b. Pollard p-1
 - c. Pollard Rho
 - d. General Number Field Sieve
 - i. http://www.ams.org/notices/199612/pomerance.pdf

- 9. Strong primes
- 10. Elliptic curve
 - a. NSIT standard
 - b. Nothing up my sleeve numbers
- 11. Other fun topics
 - a. Diophantine equations
 - i. Hilbert's 10th problem
 - b. Reiman hypothesis
 - i. Connection to prime numbers
 - c. Fermat's last theorem