Training Neural Networks

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$\vdots$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\widehat{y} = g(\Theta^{(L)}a^{(L)})$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Gradient Descent: $\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \widehat{y}) \qquad \forall l$

Gradient Descent:

$$\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \widehat{y})$$

 $\forall l$

Seems simple enough, why are packages like PyTorch, Tensorflow, Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough, Theano, Cafe, MxNet s

1. Automatic differ

2. Convenient libra

```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 3x3 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 \star 6 \star 6, 120) # 6\star6 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

```
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
```

Common training issues

Neural networks are non-convex

- -For large networks, **gradients** can **blow up** or **go to zero**. This can be helped by **batchnorm** or ResNet architecture
- -Stepsize, batchsize, momentum all have large impact on optimizing the training error and generalization performance
- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can significantly improve training
- -Overfitting is common and not undesirable: typical to achieve 100% training accuracy even if test accuracy is just 80%
- Making the network bigger may make training faster!

Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule
- Use GPU resources
- Change batch size
- Use momentum and more exotic optimizers (e.g., Adam)
- Apply batch normalization
- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low

- Try modifying all of the above, plus changing other hyperparameters

Intuition

https://playground.tensorflow.org/

Back Propagation

Forward Propagation

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

Train by Stochastic Gradient Descent:

$$\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta \frac{\partial L(y, \widehat{y})}{\partial \Theta_{i,j}^{(l)}}$$

$$L(y, \widehat{y}) = y \log(\widehat{y}) + (1 - y) \log(1 - \widehat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \widehat{y})}{\partial z_i^{(l+1)}}$$

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}$$

Train by Stochastic Gradient Descent:

$$\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta \frac{\partial L(y, \widehat{y})}{\partial \Theta_{i,j}^{(l)}}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}$$

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

 $a^{(l+1)} = g(z^{(l+1)})$

 $\widehat{y} = a^{(L+1)}$

$$\frac{\partial L(y, \widehat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \widehat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}$$

$$\delta_i^{(l)} = \frac{\partial L(y, \widehat{y})}{\partial z_i^{(l)}} = \sum_k \frac{\partial L(y, \widehat{y})}{\partial z_k^{(l+1)}} \cdot \frac{\partial z_k^{(l+1)}}{\partial z_i^{(l)}}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}$$

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}$$

$$\delta_{i}^{(l)} = \frac{\partial L(y, \hat{y})}{\partial z_{i}^{(l)}} = \sum_{k} \frac{\partial L(y, \hat{y})}{\partial z_{k}^{(l+1)}} \cdot \frac{\partial z_{k}^{(l+1)}}{\partial z_{i}^{(l)}}$$

$$= \sum_{k} \delta_{k}^{(l+1)} \cdot \Theta_{k,i}^{(l)} \ g'(z_{i}^{(l)})$$

$$= a_{i}^{(l)} (1 - a_{i}^{(l)}) \sum_{k} \delta_{k}^{(l+1)} \cdot \Theta_{k,i}^{(l)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}$$

$$a^{(1)} = x$$
 $z^{(2)} = \Theta^{(1)}a^{(1)}$
 $a^{(2)} = g(z^{(2)})$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$\frac{\partial L(y, \widehat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \widehat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}$$

$$\delta_i^{(l)} = a_i^{(l)} (1 - a_i^{(l)}) \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}$$

$$a^{(1)} = x$$
 $z^{(2)} = \Theta^{(1)}a^{(1)}$
 $a^{(2)} = g(z^{(2)})$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}$$

$$\delta_i^{(l)} = a_i^{(l)} (1 - a_i^{(l)}) \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)}$$

$$a^{(l)} = g(z^{(l)})$$

$$= g(z^{(l)})$$

$$= g(z^{(l+1)}) = \frac{\partial L(y, \hat{y})}{\partial z_i^{(L+1)}} = \frac{\partial}{\partial z_i^{(L+1)}} \left[y \log(g(z^{(L+1)})) + (1-y)\log(1-g(z^{(L+1)})) \right]$$

$$= \frac{y}{g(z^{(L+1)})} g'(z^{(L+1)}) - \frac{1-y}{1-g(z^{(L+1)})} g'(z^{(L+1)})$$

$$= y - g(z^{(L+1)}) = y - a^{(L+1)}$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}$$

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(l)} = g(z^{(l)})$$

$$z^{(l+1)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l+1)} = g(z^{(l+1)})$$

$$\vdots$$

$$\hat{y} = a^{(L+1)}$$

$$\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}$$

$$\delta_i^{(l)} = a_i^{(l)} (1 - a_i^{(l)}) \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)}$$

$$\delta^{(L+1)} = y - a^{(L+1)}$$

Recursive Algorithm!

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}$$

Backpropagation

```
Set \Delta_{ij}^{(l)} = 0 \quad \forall l, i, j (Used to accumulate gradient)

For each training instance (\mathbf{x}_i, y_i):

Set \mathbf{a}^{(1)} = \mathbf{x}_i
Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation
Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_i
Compute errors \{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\}
Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}

Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
```

44

Autodiff

Backprop for this simple network architecture is a special case of *reverse-mode auto-differentiation*:

This is the special sauce in Tensorflow, PyTorch, Theano, ...