Санкт-Петербургский государственный университет Прикладная математика, программирование и искусственный интеллект

Отчет по учебной практике 2 (научно-исследовательской работе) (семестр 3) Сингулярное разложение и анализ главных компонент.

Выполнила:

Барабашева Анастасия Дмитриевна,

группа 22.Б04-мм

Las

Научный руководитель:

Кандидат физико-математических наук,

доцент

Голяндина Нина Эдуардовна.

Кафедра статистического моделирования

Работа выполнена на хорошем уровне и может быть зачтена с оценкой А.

Tias

Санкт-Петербург

2023

I. Введение

В ходе работы я познакомилась с сингулярным разложением и с основами анализа главных компонент. Я выполнила упражнения, связанные с сингулярным разложением, также провела анализ данных при помощи анализа главных компонент, математической основой которого является сингулярное разложение.

II. Основная часть

1. Сингулярное разложение

Сингулярным разложением (SVD) матрицы называем равенство

$$X = \sum_{i=1}^{p} \sqrt{\lambda_i} U_i V_i^T.$$

Где $\sqrt{\lambda_i}$ - сингулярные числа матрицы X, векторы U_i и V_i - левые и правые сингулярные векторы матрицы X. Набор $(\sqrt{\lambda_i}, U_i, V_i)$ называется i-той собственной тройкой матрицы X.

Здесь U_i - ортонормальные линейно независимые собственные векторы матрицы $XX^T,$ а λ_i собственные векторы этой матрицы.

$$V_i = \frac{1}{\sqrt{\lambda_i}} X^T U_i$$

Основные свойства.

Пусть есть разложение матрицы $X = \sum_{i=1}^L c_i P_i Q_i^T$, где $P_1,, P_L, Q_1,, Q_L$ - некоторые ортонормированные системы в $R_L, R_K, c_1 >= >= c_L >= 0$.

Тогда:

1) $P_1,....,P_L$ - собственные векторы матрицы $XX^T,\,P_i$ соответствует собственному числу λ_i

2)
$$c_i^2 = \lambda_i \quad (i = 1, ..., d)$$

3)
$$Q_i = \frac{X^T P_i}{\sqrt{\lambda_i}}$$
 $(i = 1, \dots, d)$

Вектор

$$Z_i = (c_1(U_i), \dots, c_K(U_i))^T = X^T U_i$$

называем вектором і-х главных компонент.

Перейдем к выполнению упражнений, связанных с сингулярным разложением.

Упражнение 1:

Как, не делая сингулярного разложения (не считая собственных векторов и пр.), легко ответить на вопрос, является ли разложение сингулярным (имеется в виду разложение в сумму матриц ранга 1) Задание:

Является ли разложение матрицы

$$Y = (1, 1)^T (1, 1, 1) + (-1, 1)^T (1, -1, 1)$$

сингулярным?

А это (матрица другая)

$$Y = (1,1)^T (1,1,1) + (-1,1)^T (2,-1,-1)$$
?

Если разложение сингулярное, выпишите сингулярные тройки, упорядочив их по λ_i .

Решение:

Если есть некоторое разложение матрицы $X = \sum_{i=1}^{L} c_i P_i Q_i^T$, то из свойств достаточно будет проверить ортонормированность P_i и Q_i

У матрицы 1 векторы (1, 1, 1) и (1, -1, 1) не ортогональны, так как их скалярное произведение не равно 0, значит, разложение не сингулярное.

У матрицы 2 векторы (1, 1, 1) и (2, -1, -1) и векторы (1, 1) и (-1, 1) являются ортогональными, так как их скалярное произведение равно нулю. Значит разложение является сингулярным,

(не)нормировка не мешает. Перенормируем векторы и запишем сингулярные тройки, упорядочив по вкладу, первая тройка с наи-большим вкладом.

$$\begin{array}{l}(2\sqrt{3},(-1/\sqrt{2},1/\sqrt{2}),(2/\sqrt{6},-1/\sqrt{6},-1/\sqrt{6}));\\(\sqrt{6},(1/\sqrt{2},1/\sqrt{2}),(1/\sqrt{3},1/\sqrt{3},1/\sqrt{3}))\end{array}$$

Упражнение 2.

Условие:

Пусть матрица X имеет размерность 2 на 4. Это можно представить как четыре двумерных вектора, т.е., их можно рисовать как точки на плоскости. Нарисуйте точки так, чтобы ранг г матрицы X был 1 и 2. Нарисуйте вектора U_i , $i = 1, \ldots, r$, которым (примерно, навскидку) соответствуют ваши рисунки. Проверьте вычислениями в R.

Решение:

Если ранг равен 1, то векторы лежат на одной прямой, главный вектор единственен и тоже лежит на этой прямой. Пример такой матрицы:

$$X = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 2 & 4 \end{bmatrix}$$

$$U = (\sqrt{0,2}; 2\sqrt{0,2})$$

Проверим вычислениями в R:

$$\mathrm{mat} < - \ \mathrm{matrix} \left(\, c \, (\, 1 \, , \ \ 2 \, , \ \ 1 \, , \ \ 2 \, , \ \ 4 \, , \ \ 2 \, , \ \ 4 \,) \, , \ \ \mathrm{nrow} \, = \, 2 \right)$$

 $svd_result <- svd(mat)$

 $U <\!\!- svd_result\$u$

print (U)

Вывод:

- -0.4472136 -0.8944272
- -0.8944272 0.4472136

Полученные векторы совпали с верными с точностью до зна-ка.

Если ранг равен 2 (максимальный) - векторы расположены как угодно на плоскости. Тогда U_1 поместим визуально "посередине" векторов и чуть-чуть в сторону более длинных (т.к. лин. пространство, по-

рождаемое этим вектором лучше всего приближает набор векторов). U_2 будет ортогонален U_1 (из свойств неважное в какую сторону). Пример матрицы:

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

$$U_1 = (\sqrt{0,5}, \sqrt{0,5})$$

 $U_2 = (\sqrt{0,5}, -\sqrt{0,5})$

Проверим вычислениями в R:

 $\mathrm{mat} < - \ \mathrm{matrix} \left(\, c \, (\, 1 \, , \ \, 2 \, , \ \, 3 \, , \ \, 4 \, , \ \, 4 \, , \ \, 3 \, , \ \, 2 \, , \ \, 1 \, \right) \, , \ \ \mathrm{nrow} \, = \, 2 \right)$

 $svd_result <- svd(mat)$

 $U <\!\!- svd_result\$u$

print (U)

Вывод:

- -0.7071068 -0.7071068
- -0.7071068 0.7071068

Полученные векторы совпали с верными с точностью до знака.

Теперь посмотрим что будет с примерами, если данные центрировать по строкам, т.е. из каждой строки вычесть среднее арифметическое.

Матрица 1. Центрированная матрица:

$$X = \begin{bmatrix} -0,5 & 0,5 & -0,5 & 0,5 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

$$U_1 = (\sqrt{0.2}, 2\sqrt{0.2})$$

 $U_2 = (-2\sqrt{0.2}, \sqrt{0.2})$

Была произведена проверка на языке R - результаты совпали. Ранг матрицы остался единичным.

Матрица 2. Центрированная матрица:

$$X = \begin{bmatrix} -1,5 & -0,5 & 0,5 & 1,5 \\ 1,5 & 0,5 & -0,5 & -1,5 \end{bmatrix}$$

$$U_1 = (\sqrt{0,5}, \sqrt{0,5})$$

 $U_2 = (-\sqrt{0,5}, \sqrt{0,5})$

Была произведена проверка на языке R - результаты совпали. Ранг матрицы стал единичным.

Вывод: при центрировании матрицы по строкам собственные векторы не меняются, при этом ранг либо остается таким же (если минимальный), либо уменьшается, при этом работать с матрицей становится удобней.

2. Анализ главных компонент

Суть анализа главных компонент: имеются данные, по столбцам в которых находятся некоторые признаки. С помощью сингулярного разложения находим новые признаки (главные компоненты), которые раскладываются в линейную комбинацию изначальных. По новыым признакам анализировать данные удобней. Напомню, что вектор $Z_i = (c_1(U_i), \dots, c_K(U_i))^T = X^T U_i$

называем вектором i-х главных компонент.

Работа проводилась с данными, в которых строки — это школьники, которые поступают в школу ФТШ. Признаки — баллы, полученные за решение задач по математике и по физике, всего их 11. Столбец res — прошел или нет мальчик во второй тур. Отрезок данных для примера:

```
M1
       M2 M3 M4 P1 P2 P3
                              P4 P5 P6 P7
                                             RES
                    2
                            0
                                       2
1
    0
        0
            0
                0
                        1
                               0
                                   0
                                          0
                                               0
2
                    3
    0
        0
            0
                0
                        1
                            0
                               0
                                       0
                                          0
                                               0
                                   0
                    3
3
    0
        0
            0
                6
                       1
                            0
                                       0
                                          0
                                               0
                                       5
4
    0
                    3
                        0
                           1
                               3
                                          0
        1
                0
                                               1
                                       5
5
   5
        2
            2
                               3
                0
                    0 3
                          1
                                          0
                                               1
                                       5
6
    8
            0
                    3 2
                           0
                               3
                                          0
        0
                0
                                   0
                                               1
                                      5
7
    0
        2
            4
                3
                    3 1
                          1
                               3 3
                                          4
                                               1
8
                    0
                        0
                           0
                               0
                                       0
                                               0
    0
        0
            0
                0
                                   0
                                          0
9
    0
        0
            0
                0
                    3
                        3
                            0
                               3
                                   0
                                       5
                                          0
                                               1
                    3
                                       5
10
    0
        0
            4
                0
                        1
                            3
                               0
                                   3
                                          0
                                               0
```

В ходе работы был проведен анализ главных компонент, получены коэффициенты линейной комбинации и по ним сделаны выводы о интерпретации новых признаков.

Ниже приведен код на языке R.

```
data <- read.table("exboy.txt", header = TRUE)
res_column <- data$RES
data <- data[, 2:12]
data_scaled <- scale(data)
svd_result <- svd(data_scaled)
loadings <- svd_result$v
print(loadings)
new_features <- data_scaled %*% loadings
data_with_res <- cbind(data, RES = res_column)</pre>
```

```
plot(new_features[,1], new_features[,2],
col = ifelse(data_with_res$RES == 1, "red", "blue"),
pch = 16, main = "PCA:_Novye_priznaki", xlab = "PC1",
ylab = "PC2")
```

Сначала загружаем данные, затем сохраняем столбец RES и удаляем его из данных. Затем стандартизируем данные, находим главные компоненты и коэффициенты в разложении новых признаков по старым, рассчитываем новые признаки. Затем добавляем столбец RES обратно в данные и визуализируем первую и вторую компоненты, выделяя цветом поступивших и непоступивших.

Коэффициенты линейной комбинации при разложении новых признаков по старым можно найти в приложении - признаки получены с помощью кода, приведенного выше. Помимо этого в приложении есть график, на котором красные обозначены как успешно поступившие, синим - не поступившие.

По коэф-там можно посмотреть, какие начальные признаки оказывают наибольшее влияние на каждую из компонент.

Первую можно интерпретировать как общий успех решения задач, у нее все положительные веса.

У второй:

Положительные веса: М1, М2, М3, М4

Отрицательные веса: Р1, Р2, Р3, Р4, Р5, Р6, Р7

Все результаты по математике вносят положительный вклад, по физике - отрицательный, ученики с высокими баллами по математике вносят большой положительный вклад, а ученики с высокими баллами по физике - отрицательный. Интерпретируем ее как разницу между способностями по математике и по физике.

Ш. Заключение

В ходе выполнения работы я укрепила знания в области линейной алгебры, познакомилась с сингулярным разложением и анализом главных компонент, изучила теоретические основы методов. Выполнила несколько упражнений на свойства и оптимальные свойства сингулярного разложения, проверив правильность их выполнения на языке R, внутри которых исследовала влияние централизации на собственные векторы. В процессе выполнения работы я проанализировала данные при помощи анализа главных компонент, получив новые признаки и проинтепретировав их, построила график по полученным признакам.

IV. Список литературы

1. Н.Э.Голяндина «Метод «Гусеница»-SSA : анализ временных рядов : Учеб. пособие.» - СПб., 2004 - 76 с. (Приложение А: сингулярное разложение матриц стр.56)

V. Приложение

> print(loadings)											
> print(loadings)											
100	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11
M1	0.1024850	0.029501291	-0.608169682	0.4701964	-0.39726943	0.22596972	-0.05215319	-0.38052498	-0.13537721	-0.14897408	0.02732625
M2	0.2920734	0.483101607	-0.200037009	0.1876333	0.08454086	-0.01578747	0.34074782	0.31541117	0.06630398	0.52863451	0.31503102
м3	0.3309481	0.402665199	-0.210166664	-0.1806907	0.31631606	0.14290274	0.09979127	0.21156786	-0.13360698	-0.55638191	-0.38588466
М4	0.2392464	0.402205075	0.139187442	-0.2519013	-0.56286609	-0.21325456	-0.52724825	0.04925168	-0.06724594	0.14695090	-0.17127772
P1	0.3963334	-0.068894534	0.219965729	-0.0375327	0.06907231	-0.26913098	0.38255844	-0.55972298	-0.35615377	0.21870990	-0.27723089
P2	0.2970503	-0.450130296	0.072611649	0.3002552	-0.19290328	0.19716896	0.04915009	0.46737353	0.08741199	0.19391011	-0.52109038
Р3	0.2824015	-0.365791984	-0.301415151	-0.2764955	0.27829798	0.09302892	-0.39155386	0.12652666	-0.49991534	0.19702427	0.27383074
P4	0.3841025	-0.128589568	0.383503480	0.1554806	-0.27998632	-0.06265185	0.15982066	0.18064574	-0.14793599	-0.47015673	0.53033508
P5	0.3562116	-0.001317689	0.174050134	-0.2686729	0.02640441	0.65834088	-0.06216255	-0.32844613	0.44978232	0.08860852	0.12093982
P6	0.3318585	-0.034386218	-0.001461324	0.4060333	0.40563282	-0.41785891					
P7	0.1667429	-0.288005878	-0.452429765	-0.4673026	-0.23472499	-0.38843822	0.27857362	0.03473335	0.41424431	-0.08780079	0.04569380