

Enhancing our data exploration

Topics to be covered today;

- Scaling of existing metrics.
 - o Min-max: "Normalization". From 0 to 1.
 - o Standardization: assuming normal distribution.
 - Mean in 0 and standard deviation = 1.
- To be discarded metrics. Features correlated among themselves.
- Bonus track: feature engine.

Scaling of existing metrics

Why is it important to scale features?

Different reasons behind:

- Ease generic visualizations about dispersions such as histograms.
- Increase accuracy of the models:
 - Some models such as the ones defined by "distance" are very sensitive to those metrics if not scaled: KNN, K-means.
 - Facilitate building of combined features when both of them
 are in different scales (grams vs kgs etc)

Ease generic visualizations about dispersions such as histograms

Ease generic visualizations about dispersions such as histograms

Increases accuracy of all the models?

Note that scaling is not a magic feature. It doesn't lead to increase in accuracy in all models.

le; it will have no impact in OLS linear regressions but be very useful in the distance ones.

We will see an example afterwards.

Normalise or standardise? this is the question

- Standardise if you think the scaled column is following a normal distribution pattern.
- Recommendation; test both methods.

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

$$x_{new} = \frac{x - \mu}{\sigma}$$

Normalise

Standardise

To be discarded metrics

What to discard?

- P-valued > 0.05.
- All features predicting a single record have to be different among themselves.
 - One useful way to detect similarity is correlation among features.

- 0.8

- 0.4

- 0.0

- -0.4

- -0.8

Let's see this example adding all the MPG ones

]:

```
X=dfnumeric[['City MPG', 'Highway MPG', 'Combined MPG']]
Y=dfnumeric['Fuel Cost/Year']
X = sm.add_constant(X)
results = sm.OLS(Y, X).fit()
results.summary()
                      OLS Regression Results
   Dep. Variable:
                     Fuel Cost/Year
                                         R-squared:
                                                            0.767
          Model:
                             OLS
                                     Adi. R-squared:
                                                            0.766
         Method:
                     Least Squares
                                         F-statistic:
                                                       3.934e+04
                  Thu, 25 Feb 2021
                                  Prob (F-statistic):
                                                             0.00
           Time:
                         12:44:23
                                     Log-Likelihood: -2.4879e+05
No. Observations:
                           35952
                                               AIC:
                                                       4.976e+05
    Df Residuals:
                                                       4.976e+05
                           35948
                                               BIC:
       Df Model:
                                3
Covariance Type:
                        nonrobust
                     coef std err
                                            P>|t|
                                                     [0.025
                                                               0.975]
         const 3628.9646
                            5.397
                                   672.364
                                            0.000
                                                   3618.386
                                                             3639.544
                   19.1152
     City MPG
                            2.425
                                     7.882
                                            0.000
                                                     14.362
                                                               23.869
 Highway MPG
                   3.7787
                            1.359
                                     2.781
                                           0.005
                                                       1.115
                                                                6.442
Combined MPG
                -108.5794
                            3.527
                                    -30.786
                                            0.000
                                                    -115.492
                                                              -101.667
```

Let's use only the combined one

```
X=dfnumeric[['Combined MPG']]
[122]:
        Y=dfnumeric['Fuel Cost/Year']
        X = sm.add constant(X)
        results = sm.OLS(Y, X).fit()
        results.summary()
                              OLS Regression Results
[122]:
            Dep. Variable:
                             Fuel Cost/Year
                                                  R-squared:
                                                                    0.766
                  Model:
                                      OLS
                                             Adi. R-squared:
                                                                    0.766
                 Method:
                             Least Squares
                                                  F-statistic:
                                                                1.176e+05
                          Thu, 25 Feb 2021
                                           Prob (F-statistic):
                                                                     0.00
                   Time:
                                  12:42:01
                                             Log-Likelihood: -2.4883e+05
        No. Observations:
                                    35952
                                                        AIC:
                                                                4.977e+05
             Df Residuals:
                                    35950
                                                        BIC:
                                                                4.977e+05
                Df Model:
         Covariance Type:
                                 nonrobust
                             coef std err
                                                      P>|t|
                                                              [0.025
                                                                        0.9751
                                                            3611.969
                 const 3622.1727
                                    5.206
                                            695.800
                                                     0.000
                                                                      3632.376
        Combined MPG
                         -86.7854
                                    0.253 -342.999
                                                     0.000
                                                             -87.281
                                                                       -86.289
```

Let's see some code :D

Thank you for coming =)

