

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Tópicos de Mécanica Cuántica Tarea 7

Enrique Valbuena Ordonez

Nombre: Giovanni Gamaliel López Padilla

Matricula: 1837522

Un espacio de Hilber \mathcal{H} es un conjunto de elementos vectoriales y escalares que satisfacen la siguientes propiedades:

- 1. \mathcal{H} es un espacio lineal.
- 2. \mathcal{H} tiene un producto escalar definido que es estrictamente positivo. El producto escalar de un elemento φ con otro elemento ϕ es en general un número complejo, denotado producto (φ, ϕ) . El producto escalar satisface las siguientes propiedades:
 - \blacksquare El producto escalar de φ con ϕ es igual al complejo conjugado de ϕ por φ

$$(\varphi, \phi) = (\phi, \varphi)^*$$

■ El producto escalar de ϕ con φ es lineal con respecto al segundo factor si $\varphi = a\varphi_1 + b\varphi_2$

$$(\phi, a\varphi_1 + b\varphi_2) = a(\phi, \varphi_1) + b(\phi, \varphi_2)$$

y antilineal con respecto al primer factor si $\phi = a\phi_1 + b\phi_2$

$$(\phi = a\phi_1 + b\phi_2) = a^*(\phi, \varphi) + b^*(\phi, \varphi)$$

• El producto escalar de un vector φ consigo mismo es un número real y positivo.

$$(\varphi, \varphi) = |\varphi| \ge 0$$

donde la igualdad sostiene sólo para $\varphi = 0$.

3. \mathcal{H} es separable.

Existe una secuencia Cauchy $\varphi_n \epsilon \mathcal{H}(n=1,2,\cdots)$ tal que para cada φ de \mathcal{H} y $\epsilon > 0$, existe al menos una φ_n para la cual:

$$|\varphi - \varphi| < \epsilon$$

4. \mathcal{H} es completo.

Toda secuencia de Cauchy $\varphi_n \in \mathcal{H}$ converge a un elemento de \mathcal{H} . Esto es, para cualquier φ_n , la relación

$$\lim_{n,m\to\infty} |\varphi_m - \varphi_n| = 0,$$

define un límite único φ de \mathcal{H} tal que

$$\lim_{n \to \infty} |\varphi - \varphi_n| = 0$$