Robot Learning from Demonstration by Constructing Skill Trees

Seminar on Computational Intelligence

Manuel Zellhöfer

Machine Learning and Robotics Lab - Institut für Informatik

2. Juli 2012

Gliederung

Learning from Demonstration

Constructing Skill Trees

Idee

Verwendete Methoden und Techniken

Zusammenfassung

Experimente

Pinball Domain

Mobile Robot Manipulation

Fazit

- Bringe einem Agenten anhand von Beispieltrajektorie(n) gewünschtes Verhalten bei
- ► Intuitives Programmieren von Robotern, auch für Laien...!
- ► *Imitation Learning*, eine Form von Reinforcement Learning
- Vermeidung von unnötiger Exploration

- Bringe einem Agenten anhand von Beispieltrajektorie(n) gewünschtes Verhalten bei
- ► Intuitives Programmieren von Robotern, auch für Laien...!
- ► *Imitation Learning*, eine Form von Reinforcement Learning
- Vermeidung von unnötiger Exploration

- Bringe einem Agenten anhand von Beispieltrajektorie(n) gewünschtes Verhalten bei
- ► Intuitives Programmieren von Robotern, auch für Laien...!
- ► *Imitation Learning*, eine Form von Reinforcement Learning
- Vermeidung von unnötiger Exploration

- Bringe einem Agenten anhand von Beispieltrajektorie(n) gewünschtes Verhalten bei
- ► Intuitives Programmieren von Robotern, auch für Laien...!
- ► *Imitation Learning*, eine Form von Reinforcement Learning
- Vermeidung von unnötiger Exploration

Löst Markov Decision Process...

```
Zustände S\subset\mathbb{R}^d Aktionen A\subset\mathbb{R}^n Returns R:S\times A\to\mathbb{R} (usw.)
```

$$\pi:S\to A$$

- Maximieren des Erwarteten Returns
- ▶ Value-Function V(s) bewertet jeden Zustand anhand der von ihm erreichbaren Returns \rightarrow Formalismus um π zu berechnen
- Approximierung durch ein lineares Modell

$$\bar{V}(s) = \mathbf{w} \cdot \mathbf{\Phi}(s) = \sum_{i} w_{i} \phi_{i}(s)$$

Löst Markov Decision Process...

```
Zustände S\subset\mathbb{R}^d Aktionen A\subset\mathbb{R}^n Returns R:S\times A\to\mathbb{R} (usw.)
```

$$\pi:S\to A$$

- Maximieren des Erwarteten Returns
- ▶ Value-Function V(s) bewertet jeden Zustand anhand der von ihm erreichbaren Returns → Formalismus um π zu berechnen
- Approximierung durch ein lineares Modell

$$\bar{V}(s) = \mathbf{w} \cdot \mathbf{\Phi}(s) = \sum_{i} w_{i} \phi_{i}(s)$$

Löst Markov Decision Process...

```
Zustände S\subset\mathbb{R}^d Aktionen A\subset\mathbb{R}^n Returns R:S\times A\to\mathbb{R} (usw.)
```

$$\pi: S \to A$$

- ► Maximieren des Erwarteten Returns
- ▶ Value-Function V(s) bewertet jeden Zustand anhand der von ihm erreichbaren Returns \rightarrow Formalismus um π zu berechnen
- Approximierung durch ein lineares Modell

$$\bar{V}(s) = \mathbf{w} \cdot \mathbf{\Phi}(s) = \sum_{i} w_{i} \phi_{i}(s)$$

Löst Markov Decision Process...

```
Zustände S\subset\mathbb{R}^d
Aktionen A\subset\mathbb{R}^n
Returns R:S\times A\to\mathbb{R} (usw.)
```

$$\pi: S \to A$$

- Maximieren des Erwarteten Returns
- ▶ Value-Function V(s) bewertet jeden Zustand anhand der von ihm erreichbaren Returns \rightarrow Formalismus um π zu berechnen
- Approximierung durch ein lineares Modell

$$\bar{V}(s) = \mathbf{w} \cdot \mathbf{\Phi}(s) = \sum_{i} w_{i} \phi_{i}(s)$$

Löst Markov Decision Process...

```
Zustände S\subset\mathbb{R}^d
Aktionen A\subset\mathbb{R}^n
Returns R:S\times A\to\mathbb{R} (usw.)
```

$$\pi:S\to A$$

- Maximieren des Erwarteten Returns
- ▶ Value-Function V(s) bewertet jeden Zustand anhand der von ihm erreichbaren Returns \rightarrow Formalismus um π zu berechnen
- Approximierung durch ein lineares Modell

$$\bar{V}(s) = \mathbf{w} \cdot \mathbf{\Phi}(s) = \sum_{i} w_{i} \phi_{i}(s)$$

- kontinuierliche, hochdimensionale Zustände und Aktionen
- ► Komplexe Strategien
- Wiederverwenden und Verbessern von bereits Gelerntem

- kontinuierliche, hochdimensionale Zustände und Aktionen
- ► Komplexe Strategien
- Wiederverwenden und Verbessern von bereits Gelerntem

- kontinuierliche, hochdimensionale Zustände und Aktionen
- ► Komplexe Strategien
- Wiederverwenden und Verbessern von bereits Gelerntem

- kontinuierliche, hochdimensionale Zustände und Aktionen
- ► Komplexe Strategien
- Wiederverwenden und Verbessern von bereits Gelerntem

Gliederung

Learning from Demonstration

Constructing Skill Trees

Idee

Verwendete Methoden und Techniken

Zusammenfassung

Experimente

Pinball Domain

Mobile Robot Manipulation

Fazit

Vorgehen

- Komplexe RL Probleme lösen
- Dimensionalität reduzieren
- ► Beispieltrajektorien verwenden

Hierarchisches RL: Options

Was ist das?

Aktionen mit eigener Strategie

```
Policy \pi_o
Initiation Set I_o \subseteq S
Termination Condition eta_o(s)
```

- ► Eigenständiges RL Problem
- Verwendet der Agent als zusätzliche Aktion

Was kann das?

- ► Aufteilen komplexer RL Probleme in mehrere, einfache
- ► Zeitlich fortdauernde Aktionen Beschreiben

Hierarchisches RL: Options

Was ist das?

► Aktionen mit eigener Strategie

```
\begin{array}{ccc} & \text{Policy} & \pi_o \\ & \text{Initiation Set} & I_o \subseteq S \\ & \text{Termination Condition} & \beta_o(s) \end{array}
```

- Eigenständiges RL Problem
- Verwendet der Agent als zusätzliche Aktion

Was kann das?

- ► Aufteilen komplexer RL Probleme in mehrere, einfache
- ► Zeitlich fortdauernde Aktionen Beschreiben

Hierarchisches RL: Options

Was ist das?

Aktionen mit eigener Strategie

```
\begin{array}{ccc} & \text{Policy} & \pi_o \\ & \text{Initiation Set} & I_o \subseteq S \end{array} \begin{array}{ccc} \text{Termination Condition} & \beta_o(s) \end{array}
```

- Eigenständiges RL Problem
- Verwendet der Agent als zusätzliche Aktion

Was kann das?

- Aufteilen komplexer RL Probleme in mehrere, einfache
- Zeitlich fortdauernde Aktionen Beschreiben

Skill Chaining

Löst ein RL Problem durch aufteilen in eine Kette von Skills:

- 1. Finde Ziel (hier die Lampe)
- 2. Erstelle Skill mit $\beta_o = \text{Ziel}$
- 3. Lerne I_o durch Trial & Error und Klassifikator

Bei erreichen des Initiation Sets (I_o) eines vorhandenen Skills:

- Setze Ziel für neuen Skill auf I_o des vorhandenen Skills
- Sehr viele Episoden nötig

Abstraction

Abstraction M sind zwei Abbildungen (σ_M, τ_M)

$$\sigma_M:S\to S_M$$

$$\tau_M:A\to A_M$$

und Basisfunktionen Φ_M um V(s) zu approximieren.

- ► Geeignete Abstractions werden vorher definiert
- ▶ in der Regel: $S_M \subset S$ bzw. $A_M \subset A$
- ► *Idee:* Jeder Skill hat seine eigene Abstraction

Abstraction Selection

► Welche Abstraction passt zu welchem Skill?

Abstraction

Abstraction M sind zwei Abbildungen (σ_M, τ_M)

$$\sigma_M:S\to S_M$$

$$\tau_M:A\to A_M$$

und Basisfunktionen Φ_M um V(s) zu approximieren.

- Geeignete Abstractions werden vorher definiert
- ▶ in der Regel: $S_M \subset S$ bzw. $A_M \subset A$
- ► *Idee:* Jeder Skill hat seine eigene Abstraction

Abstraction Selection

▶ Welche Abstraction passt zu welchem Skill?

Abstraction

Abstraction M sind zwei Abbildungen (σ_M, τ_M)

$$\sigma_M:S\to S_M$$

$$\tau_M:A\to A_M$$

und Basisfunktionen Φ_M um V(s) zu approximieren.

- Geeignete Abstractions werden vorher definiert
- ▶ in der Regel: $S_M \subset S$ bzw. $A_M \subset A$
- Idee: Jeder Skill hat seine eigene Abstraction

Abstraction Selection

► Welche Abstraction passt zu welchem Skill?

Abstraction

Abstraction M sind zwei Abbildungen (σ_M, τ_M)

$$\sigma_M:S\to S_M$$

$$\tau_M:A\to A_M$$

und Basisfunktionen Φ_M um V(s) zu approximieren.

- Geeignete Abstractions werden vorher definiert
- ▶ in der Regel: $S_M \subset S$ bzw. $A_M \subset A$
- ▶ *Idee:* Jeder Skill hat seine eigene Abstraction

Abstraction Selection

► Welche Abstraction passt zu welchem Skill?

Abstraction

Abstraction M sind zwei Abbildungen (σ_M, τ_M)

$$\sigma_M:S\to S_M$$

$$\tau_M:A\to A_M$$

und Basisfunktionen Φ_M um V(s) zu approximieren.

- Geeignete Abstractions werden vorher definiert
- ▶ in der Regel: $S_M \subset S$ bzw. $A_M \subset A$
- Idee: Jeder Skill hat seine eigene Abstraction

Abstraction Selection

Welche Abstraction passt zu welchem Skill?

- Anstelle Skills mühsam zu erlernen werden Beispieltrajektorien segmentiert
- "Changepoints" in der Trajektorie stellen Start- / Zielmengen einzelner Skills dar

- lacktriangle Versteckte Zustände entsprechen den linearen Modellen $(oldsymbol{\Phi}_M)$ der Abstractions
- ► Übergangswahrscheinlichkeiten hängen ab von
 - der Länge des aktuellen Segments
 - der a-priori Wahrscheinlichkeit für das Model
- Ausgabewahrscheinlichkeiten durch Fitten der Modelle (Regression)

- ► Anstelle Skills mühsam zu erlernen werden Beispieltrajektorien segmentiert
- "Changepoints" in der Trajektorie stellen Start- / Zielmengen einzelner Skills dar

- lacktriangle Versteckte Zustände entsprechen den linearen Modellen $(oldsymbol{\Phi}_M)$ der Abstractions
- ▶ Übergangswahrscheinlichkeiten hängen ab von
 - ▶ der Länge des aktuellen Segments
 - der a-priori Wahrscheinlichkeit für das Model
- Ausgabewahrscheinlichkeiten durch Fitten der Modelle (Regression)

- Anstelle Skills mühsam zu erlernen werden Beispieltrajektorien segmentiert
- "Changepoints" in der Trajektorie stellen Start- / Zielmengen einzelner Skills dar

- lacktriangle Versteckte Zustände entsprechen den linearen Modellen $(oldsymbol{\Phi}_M)$ der Abstractions
- ▶ Übergangswahrscheinlichkeiten hängen ab von
 - der Länge des aktuellen Segments
 - der a-priori Wahrscheinlichkeit für das Model
- Ausgabewahrscheinlichkeiten durch Fitten der Modelle (Regression)

- Anstelle Skills mühsam zu erlernen werden Beispieltrajektorien segmentiert
- "Changepoints" in der Trajektorie stellen Start- / Zielmengen einzelner Skills dar

- Versteckte Zustände entsprechen den linearen Modellen (Φ_M) der Abstractions
- Übergangswahrscheinlichkeiten hängen ab von
 - der Länge des aktuellen Segments
 - der a-priori Wahrscheinlichkeit für das Modell
- Ausgabewahrscheinlichkeiten durch Fitten der Modelle (Regression)

HMM zur Changepoint Detection

On-Line Viterbi Algorithmus:

- lacktriangle Wsk. für Changepoint zum Zeitpunkt j < t mit Modell q
- ▶ Viele Kombinationen $j,q \rightarrow \mathsf{Partikelfilter}$
- Iterativer Algorithmus

Beispiel - Changepoint Detection & Abstraction Selection

- $y_i = R_t$
- 3 Abstractions:
 - ► *d*(Roboter,Tür)
 - ► *d*(Roboter,Schlüssel)
 - ► *d*(Roboter,Schloss)

Approximieren des Returns mit einer einzelnen Abstraction je Segment

Ein ausgeklügelter Ansatz

Options Framework / Skill-Chaining

- HierarchischesReinforcement Learning
- Ermöglicht komplexe Strategien

Abstraction Selection

- "Feature Selection"
- Verringert die berücksichtigten Zustände/Aktionen

On-Line Changepoint Detection

- ,,Live" Skill-Chaining
- Beschleunigt lernen (LfD) deutlich

Ein ausgeklügelter Ansatz

Options Framework / Skill-Chaining

- HierarchischesReinforcement Learning
- Ermöglicht komplexe Strategien

Abstraction Selection

- ,,Feature Selection"
- Verringert die berücksichtigten Zustände/Aktionen

On-Line Changepoint Detection

- ,,Live" Skill-Chaining
- Beschleunigt lernen (LfD) deutlich

Ein ausgeklügelter Ansatz

Options Framework / Skill-Chaining

- HierarchischesReinforcement Learning
- Ermöglicht komplexe Strategien

Abstraction Selection

- ,,Feature Selection"
- Verringert die berücksichtigten Zustände/Aktionen

On-Line Changepoint Detection

- ▶ "Live" Skill-Chaining
- Beschleunigt lernen (LfD) deutlich

Gliederung

Learning from Demonstration

Constructing Skill Trees

Idee

Verwendete Methoden und Techniken

Zusammenfassung

Experimente

Pinball Domain

Mobile Robot Manipulation

Fazit

Pinball Domain

- ▶ 4 Zustände x, y, \dot{x}, \dot{y}
- ▶ 5 Aktionen
 - \dot{x}, \dot{y} erhöhen, verringern (r=-5)
 - ▶ nichts tun (r = -1)
- ightharpoonup Ziel erreichen: r = 10000
- 2 Demonstrationen

Vergleich:

- einfaches Skill Chaining
- Agent mit vorgegebenen Skills
- Constructing Skill Trees

Pinball Domain, Ergebnis

Pinball Domain, Video

Mobile Robot Manipulation

- 6 Abstractions:
- Zustände:
 - a) $d(\mathsf{Hand}, \mathsf{3} \; \mathsf{Marker}) \in \mathbb{R}^3$
 - b) $d(\mathsf{Torso}, \mathsf{3}\;\mathsf{Marker}) \in \mathbb{R}^2$
- Aktionen:
 - a) Endeffektor Position $(\in \mathbb{R}^3)$
 - b) Vorwärtsgeschwindigkeit und Winkel $(\in \mathbb{R}^2)$
 - r = -1
- ▶ 12 Demonstrationen

Mobile Robot Manipulation, Ergebnis

- ▶ 6 gelernte Skills
- 2-3 Demonstrationen nötig um jeweiligen Skill fehlerfrei auszuführen

Mobile Robot Manipulation, Video

Mobile Robot Manipulation, cont.

- ► Komplexere Aufgabe
 - Knopf drücken um Hebel zu aktivieren
 - Hebel drücken um Tür zu öffnen
 - 3. Schalter drücken
- Vorgegebene Aktionen
- RL um optimale Strategie zu finden

Dann:

- Trajektorien extrahiert und CST angewendet
- Vergleich der Vorgegeben Aktionen mit den gelernten Skills

- ▶ Komplexes Gesamtsystem, Robotik auf hohem Niveau
- ▶ Viele moderne Konzepte aus maschinellem Lernen
- ► Faszinierend!
- ► Noch ein Weiter weg...

- Komplexes Gesamtsystem, Robotik auf hohem Niveau
- ▶ Viele moderne Konzepte aus maschinellem Lernen
- ► Faszinierend!
- ▶ Noch ein Weiter weg...

- Komplexes Gesamtsystem, Robotik auf hohem Niveau
- ▶ Viele moderne Konzepte aus maschinellem Lernen
- Faszinierend!
- ▶ Noch ein Weiter weg...

- Komplexes Gesamtsystem, Robotik auf hohem Niveau
- ▶ Viele moderne Konzepte aus maschinellem Lernen
- Faszinierend!
- ▶ Noch ein Weiter weg...

Learning from Demonstration Constructing Skill Trees Experimente Fazit

Vielen Dank!

Quellen

G.D. Konidaris, S.R. Kuindersma, R.A. Grupen and A.G. Barto. Robot Learning from Demonstration by Constructing Skill Trees. The International Journal of Robotics Research 31(3), pages 360-375, March 2012.

http://people.csail.mit.edu/gdk/arsa.html http://flickr.com/photos/willowgarage/sets/72157624356302313/