Secretary Problem

Applications and Generalizations

Negar Sakhaei

February 8, 2020

Outline

- 1 Introduction
- 2 Secretary Problem
 - Applications
 - Variations
- 3 Matroid Secretary Problem
 - Matroids
 - Problem Definition
 - Applications

- 1 Introduction
- 2 Secretary Problem
- 3 Matroid Secretary Problem

Online Algorithms

Definition

An online algorithm is one that can process its input piece-by-piece in a serial fashion, without having the entire input available from the start.

- Need instant response, may later turn out not to be optimal
- How to analyze them?

Analysis

Competitive Analysis:

- Input sequence: σ
- Full knowledge optimum: OPT_{σ} Best result of offline algorithm.
- Online Algorithm cost: ALG_{σ}
- The online algorithm is k-competitive if:

$$\forall \sigma \ ALG_{\sigma} \leq k \ OPT_{\sigma}$$

Probabilistic Analysis

Maximize probability of finding optimum solution

Analysis

Competitive Analysis:

- Input sequence: σ
- Full knowledge optimum: OPT_{σ} Best result of offline algorithm.
- Online Algorithm cost: ALG_{σ}
- The online algorithm is k-competitive if:

$$\forall \sigma \ ALG_{\sigma} \leq k \ OPT_{\sigma}$$

Probabilistic Analysis:

Maximize probability of finding optimum solution

- 1 Introduction
- 2 Secretary Problem
 - Applications
 - Variations
- 3 Matroid Secretary Problem

- Single position to fill
- n rankable candidates, one at a time, random order.
- No look-ahead, can't predict the future
- No undo, can't call back candidates.

- Single position to fill.

- Single position to fill.
- n rankable candidates, one at a time, random order.
- No look-ahead, can't predict the future
- No undo, can't call back candidates.

- Single position to fill.
- n rankable candidates, one at a time, random order.
- No look-ahead, can't predict the future.
- No undo. can't call back candidates.

- Single position to fill.
- n rankable candidates, one at a time, random order.
- No look-ahead, can't predict the future.
- No undo, can't call back candidates.

- **1** Choose the rth candidate. Prob. of success: $\frac{1}{n}$ tends to zero as n tends to infinity.
- **Stopping Rule**: Observe until the rth candidate, accept best candidate afterwards.

- **1** Choose the rth candidate. Prob. of success: $\frac{1}{n}$ tends to zero as n tends to infinity.
- **2 Stopping Rule**: Observe until the rth candidate, accept best candidate afterwards.

- **Stopping Rule**: Observe until the *r*th candidate (reject all of them), accept best candidate afterwards.
 - Candidates 1 to r-1 are rejected. Set M the best candidate in [1, r)
 - lacksquare Pick first candidate after r-1 that is better than M.

It can be shown that the optimal strategy lies in this class of strategies.[4]

- **Stopping Rule**: Observe until the *r*th candidate (reject all of them), accept best candidate afterwards.
 - Candidates 1 to r-1 are rejected. Set M the best candidate in [1,r)
 - Pick first candidate after r-1 that is better than M.

It can be shown that the optimal strategy lies in this class of strategies.[4]

- **Stopping Rule**: Observe until the *r*th candidate (reject all of them), accept best candidate afterwards.
 - Candidates 1 to r-1 are rejected. Set M the best candidate in [1,r)
 - Pick first candidate after r-1 that is better than M.

It can be shown that the optimal strategy lies in this class of strategies.[4]

$$Pr(r) = \sum_{i=1}^{n} Pr(i ext{ is selected} \cap Pr(i ext{ is the best})$$

$$\sum_{i=1}^{n} Pr(i ext{ is selected} \mid i ext{ is the best}) \cdot Pr(i ext{ is the best})$$

$$= \sum_{i=1}^{n} Pr(i \text{ is selected} \mid i \text{ is the best}) \cdot \frac{1}{n}$$

$$= \sum_{i=1}^{n} Pr(\max_{j \in [1,r)} x_j = \max_{j \in [1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{n}$$

$$Pr(r) = \sum_{i=1}^n Pr(i \text{ is selected} \cap Pr(i \text{ is the best})$$

$$= \sum_{i=1}^n Pr(i \text{ is selected} \mid i \text{ is the best}) \cdot Pr(i \text{ is the best})$$

$$= \sum_{i=1}^{n} Pr(i \text{ is selected } | i \text{ is the best}) \cdot \frac{1}{n}$$

$$= \sum_{j=1}^{n} Pr(\max_{j\in[1,r)} x_j = \max_{j\in[1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{r}$$

$$Pr(r) = \sum_{i=1}^n Pr(i \text{ is selected} \cap Pr(i \text{ is the best})$$

$$= \sum_{i=1}^n Pr(i \text{ is selected} \mid i \text{ is the best}) \cdot Pr(i \text{ is the best})$$

$$= \sum_{i=1}^{n} Pr(i \text{ is selected } | i \text{ is the best}) \cdot \frac{1}{n}$$

$$= \sum_{i=1}^{n} Pr(\max_{j \in [1,r)} x_j = \max_{j \in [1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{r}$$

$$\begin{split} Pr(r) &= \sum_{i=1}^n Pr(i \text{ is selected} \cap Pr(i \text{ is the best}) \\ &= \sum_{i=1}^n Pr(i \text{ is selected} \mid i \text{ is the best}) \cdot Pr(i \text{ is the best}) \\ &= \sum_{i=1}^n Pr(i \text{ is selected} \mid i \text{ is the best}) \cdot \frac{1}{n} \\ &= \sum_{i=1}^n Pr(\max_{j \in [1,r)} x_j = \max_{j \in [1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{n} \end{split}$$

10 / 33

$$= \sum_{i=r}^{n} Pr(\max_{j \in [1,r)} x_j = \max_{j \in [1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{n}$$

$$= \sum_{i=r}^{n} \frac{r-1}{i-1} \cdot \frac{1}{n}$$

$$= \frac{r-1}{n} \cdot \sum_{j=1}^{n} \frac{1}{n}$$

$$\begin{split} &= \sum_{i=r}^n Pr(\max_{j \in [1,r)} x_j = \max_{j \in [1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{n} \\ &= \sum_{i=r}^n \frac{r-1}{i-1} \cdot \frac{1}{n} \\ &= \frac{r-1}{n} \cdot \sum_{j=1}^n \frac{1}{j-1} \end{split}$$

$$= \sum_{i=r}^{n} Pr(\max_{j \in [1,r)} x_j = \max_{j \in [1,i)} x_j \mid i \text{ is the best}) \cdot \frac{1}{n}$$

$$= \sum_{i=r}^{n} \frac{r-1}{i-1} \cdot \frac{1}{n}$$

$$= \frac{r-1}{n} \cdot \sum_{i=r}^{n} \frac{1}{i-1}$$

$\mathsf{Theorem}$

Optimal cutoff in the stopping rule tends to $\frac{n}{a}$ as n increases.

Proof.

For cutoff value r, probability of success is:

$$P(r) = \frac{r-1}{n} \cdot \sum_{i=r}^{n} \frac{1}{i-1}$$
 (1)

Theorem

Optimal cutoff in the stopping rule tends to $\frac{n}{e}$ as n increases.

Proof.

For cutoff value r, probability of success is:

$$P(r) = \frac{r-1}{n} \cdot \sum_{i=r}^{n} \frac{1}{i-1}$$
 (1)

For large values of n, $x = \lim_{n \to \infty} \frac{r}{n}$ and $t = \lim_{n \to \infty} \frac{i}{n}$, 1 is a Riemann approximation of an integral:

_

Theorem

Optimal cutoff in the stopping rule tends to $\frac{n}{a}$ as n increases.

Proof.

For large values of n, $x = \lim_{n \to \infty} \frac{r}{n}$ and $t = \lim_{n \to \infty} \frac{i}{n}$, 1 is a Riemann approximation of an integral:

$$P(x) = x \int_{x}^{1} \frac{1}{t} dt = -x \ln x \tag{2}$$

$$P'(x) = -\ln x - 1 = 0 \Rightarrow x = \frac{1}{e}$$

Theorem

Optimal cutoff in the stopping rule tends to $\frac{n}{e}$ as n increases.

Proof.

For large values of n, $x=\lim_{n\to\infty}\frac{r}{n}$ and $t=\lim_{n\to\infty}\frac{i}{n}$, 1 is a Riemann approximation of an integral:

$$P(x) = x \int_{x}^{1} \frac{1}{t} dt = -x \ln x$$
 (2)

Now to find the optimal r:

$$P'(x) = -\ln x - 1 = 0 \Rightarrow x = \frac{1}{e}$$

Theorem

Optimal cutoff in the stopping rule tends to $\frac{n}{e}$ as n increases.

Proof.

For large values of n, $x = \lim_{n \to \infty} \frac{r}{n}$ and $t = \lim_{n \to \infty} \frac{i}{n}$, 1 is a Riemann approximation of an integral:

$$P(x) = x \int_{x}^{1} \frac{1}{t} dt = -x \ln x$$
 (2)

Now to find the optimal r:

$$P'(x) = -\ln x - 1 = 0 \Rightarrow x = \frac{1}{e}$$

- 1 Introduction
- 2 Secretary Problem
 - Applications
 - Variations
- 3 Matroid Secretary Problem

Real-Life Applications

- Apartment hunting! [3] [7]
 Estimated n, used secretary problem to limit the hunting time.
 Optimal result.
- Kepler's Problem(1611): Wanted to find a new wife! 11 candidates, married the 5th one. Not sure about the objective or the algorithm.[4] Apparently optimal result!

Spherical Cow

- Needs knowing the exact value of n in advance.
- Assumes no other information about the candidates.
- No callbacks at all.
- Ranks sometimes not easily determined.
- Hiring the second-best is as bad as hiring the worst.

Assume a spherical cow of uniform density.

...in a vacuum

Figure: Spherical Cow

- 1 Introduction
- 2 Secretary Problem
 - Applications
 - Variations
- 3 Matroid Secretary Problem

How to Solve Them?

- Needs knowing the exact value of n in advance:
 Suppose n is a random variable with a known distribution
- No callbacks at all:
 Set a cost for each callback and minimize the overall cost
- Hiring the second-best is as bad as hiring the worst.
 - Minimize rank: Average rank O(1).[6]
 - Maximize payoff: cutoff at $\sqrt[3]{n}$, result tends to maximum at infinity.[2]

How to Solve Them?

- Needs knowing the exact value of n in advance: Suppose n is a random variable with a known distribution.
- No callbacks at all:
 Set a cost for each callback and minimize the overall cost
- Hiring the second-best is as bad as hiring the worst.
 - Minimize rank: Average rank O(1).[6]
 - Maximize payoff: cutoff at $\sqrt[3]{n}$, result tends to maximum at infinity.[2]

How to Solve Them?

- Needs knowing the exact value of n in advance: Suppose n is a random variable with a known distribution.
- No callbacks at all: Set a cost for each callback and minimize the overall cost.
- Hiring the second-best is as bad as hiring the worst.
 - Minimize rank: Average rank O(1).[6]
 - Maximize payoff: cutoff at $\sqrt[3]{n}$, result tends to maximum at infinity.[2]

How to Solve Them?

- Needs knowing the exact value of n in advance: Suppose n is a random variable with a known distribution.
- No callbacks at all: Set a cost for each callback and minimize the overall cost.
- Hiring the second-best is as bad as hiring the worst.
 - Minimize rank: Average rank O(1).[6]
 - Maximize payoff: cutoff at $\sqrt[2]{n}$, result tends to maximum at infinity.[2]

Googol Game

Definition

Ask someone to take as many slips of paper as she pleases, and on each slip write a different positive number. These slips are turned face down and shuffled. One at a time you turn the slips. The aim is to stop turning when you come to the number you guess is the largest of the series.

- Two-person zero-sum game
- Depends on how Alice chooses the numbers

Googol Game

Definition

Ask someone to take as many slips of paper as she pleases, and on each slip write a different positive number. These slips are turned face down and shuffled. One at a time you turn the slips. The aim is to stop turning when you come to the number you guess is the largest of the series.

- Two-person zero-sum game!
- Depends on how Alice chooses the numbers

Googol Game

Definition

Ask someone to take as many slips of paper as she pleases, and on each slip write a different positive number. These slips are turned face down and shuffled. One at a time you turn the slips. The aim is to stop turning when you come to the number you guess is the largest of the series.

- Two-person zero-sum game!
- Depends on how Alice chooses the numbers.

The difficulty of the problem changes depending on the information we know beforehand about the weights.[5]

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence
- Zero information model: Adversary assigns.

The difficulty of the problem changes depending on the information we know beforehand about the weights.[5]

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution.
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence
- Zero information model: Adversary assigns.

The difficulty of the problem changes depending on the information we know beforehand about the weights.[5]

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution.
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence.

Secretary Problem

■ Zero information model: Adversary assigns.

The difficulty of the problem changes depending on the information we know beforehand about the weights.[5]

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution.
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence.
- Zero information model: Adversary assigns.

- 1 Introduction
- 2 Secretary Problem
- 3 Matroid Secretary Problem
 - Matroids
 - Problem Definition
 - Applications

- 1 Introduction
- 2 Secretary Problem
- 3 Matroid Secretary Problem
 - Matroids
 - Problem Definition
 - Applications

A matroid $M=(S,\mathcal{I})$ is a finite ground set S together with a collection of sets $\mathcal{I}\subseteq 2^S$, known as the independent sets, satisfying the following axioms:

- \blacksquare If $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$.
- If $I, J \in \mathcal{I}$ and |J| > |I|, then there exists an element $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$.

A matroid $M=(S,\mathcal{I})$ is a finite ground set S together with a collection of sets $\mathcal{I}\subseteq 2^S$, known as the independent sets, satisfying the following axioms:

- If $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$.
- If $I, J \in \mathcal{I}$ and |J| > |I|, then there exists an element $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$.

A matroid $M=(S,\mathcal{I})$ is a finite ground set S together with a collection of sets $\mathcal{I}\subseteq 2^S$, known as the independent sets, satisfying the following axioms:

- If $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$.
- If $I, J \in \mathcal{I}$ and |J| > |I|, then there exists an element $z \in J \backslash I$ such that $I \cup \{z\} \in \mathcal{I}$.

A matroid $M=(S,\mathcal{I})$ is a finite ground set S together with a collection of sets $\mathcal{I}\subseteq 2^S$, known as the independent sets, satisfying the following axioms:

- If $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$.
- If $I, J \in \mathcal{I}$ and |J| > |I|, then there exists an element $z \in J \backslash I$ such that $I \cup \{z\} \in \mathcal{I}$.

Examples

- Uniform Matroids: For any ground set S and a specific k, let $I \in \mathcal{I}$ if $|I| \leq k$. Denote this matroid U_S^k
- Graphic Matroids: For an undirected graph G = (V, E), let the ground set S be the set E of edges of the graph. The matroid M(G), sometimes called the cycle matroid of G, is defined as $M(G) = (E, \mathcal{I})$ where $\mathcal{I} = \{F \subseteq E \mid F \text{ is acyclic}\}$.

Examples

- Uniform Matroids: For any ground set S and a specific k, let $I \in \mathcal{I}$ if $|I| \leq k$. Denote this matroid U_S^k
- Graphic Matroids: For an undirected graph G = (V, E), let the ground set S be the set E of edges of the graph. The matroid M(G), sometimes called the cycle matroid of G, is defined as $M(G) = (E, \mathcal{I})$ where $\mathcal{I} = \{F \subseteq E \mid F \text{ is acyclic}\}$.

- 1 Introduction
- 2 Secretary Problem
- 3 Matroid Secretary Problem
 - Matroids
 - Problem Definition
 - Applications

Problem Formulation

Definition

There is a matroid $(S; \mathcal{I})$, and a weight function assigning w(i) to each element $i \in S$. We wish to design an algorithm which given the matroid structure (but not the weights w(i)) selects online an independent set of maximal weight.

Problem Formulation

Definition

There is a matroid $(S;\mathcal{I})$, and a weight function assigning w(i) to each element $i\in S$. We wish to design an algorithm which given the matroid structure (but not the weights w(i)) selects online an independent set of maximal weight.

- The ground set of the matroid is presented in random order.
- When an element i arrives, we learn the weight w(i).

Problem Formulation

Definition

There is a matroid $(S;\mathcal{I})$, and a weight function assigning w(i) to each element $i\in S$. We wish to design an algorithm which given the matroid structure (but not the weights w(i)) selects online an independent set of maximal weight.

- The ground set of the matroid is presented in random order.
- When an element i arrives, we learn the weight w(i).

Models¹

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution.
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence. For general matroids, a *c*—competitive algorithm exists.
- Zero information model: Adversary assigns. For general matroids, a $(log\ r)$ —competitive algorithm exists [1]

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution.
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence. For general matroids, a *c*-competitive algorithm exists.
- Zero information model: Adversary assigns. For general matroids, a $(log\ r)$ —competitive algorithm exists [1]

- Full Information model: Chosen i.i.d. from a known distribution.
- Partial Information model: Chosen i.i.d. from an unknown distribution.
- Random Assignment model: Adversary chooses weights, assigned using a uniform random one-to-one correspondence. For general matroids, a *c*-competitive algorithm exists.
- Zero information model: Adversary assigns. For general matroids, a $(log\ r)$ —competitive algorithm exists. [1]

- 1 Introduction
- 2 Secretary Problem
- 3 Matroid Secretary Problem
 - Matroids
 - Problem Definition
 - Applications

General Framework

- **Standard Version**: Set U to the set of all candidates, \mathcal{I} to all the singleton sets and the empty set.
- Multiple Choice Secretary Problem version: Set the matroid to U_S^k for at most k choices.

General Framework

- **Standard Version**: Set U to the set of all candidates, \mathcal{I} to all the singleton sets and the empty set.
- Multiple Choice Secretary Problem version: Set the matroid to U_S^k for at most k choices.

Domains

Unit-Demand Domain

Domains

- Unit-Demand Domain
- Graphical Matroids
- Truncated Partition Matroids

Domains

- Unit-Demand Domain
- Graphical Matroids
- Truncated Partition Matroids

Refrences I

Babaioff, M., Immorlica, N. & Kleinberg, R. *Matroids,*Secretary Problems, and Online Mechanisms. in Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (Society for Industrial and Applied Mathematics,
New Orleans, Louisiana, 2007), 434–443. ISBN:
9780898716245.

Bearden, N. Skip the Square Root of n: A New Secretary Problem. (Jan. 2005).

Blitzstein, J. Is the solution to the secretary problem ever applied to real life situations?. https://qr.ae/TlzK7R.

Ferguson, T. S. Who Solved the Secretary Problem? *Statist. Sci.* **4.** 282–289.

https://doi.org/10.1214/ss/1177012493 (Aug. 1989).

Refrences II

Thank You!