# Отчет о выполнении тестового задания на стажировку по Data Science, Гринатом

Выполнила: Куроедова А. П.

### 1. Модель-основа – "bert-base-uncased"

В размеченном датасете IMDB представлены позитивные и негативные отзывы с рейтингами 1-4 и 7-10, и не представлены нейтральные (5-6).

Главной метрикой выбрана f1 score для восьми классов.

За основу была взята предобученная модель "bert-base-uncased" для задачи классификации текстов с huggingface.

Предсказание одного из восьми классов получается стандартным путем (argmax из выходного слоя). Предсказание одного из двух классов производиться на основе сравнения сумм вероятностей принадлежности классам от 1 до 4 и от 7 до 10.

После дообучения на одной эпохе, были получены скоры:

|                   | Для 8 классов (1-4 и 7-10) |          | Для 2 классов (+/-) |          |
|-------------------|----------------------------|----------|---------------------|----------|
|                   | <u>f1-score</u>            | accuracy | f1-score            | accuracy |
| bert-base-uncased | 0.45                       | 0.5      | 0.95                | 0.95     |

Модель недостаточно хорошо распознает классы 2 и 9, предсказав их соответственно 11 и 0 раз на фрагменте тестового датасета:



#### Confusion matrix:



### 2. Исправление дисбаланса классов



Чтобы сгладить дисбаланс датасета, выражающийся в преобладании классов 1 и 10 с соотношением  $\sim 2:1$  к каждому из остальных классов, было принято решение разделить тренировочные данные для классов 1 и 10 на половины, и каждую эпоху чередовать эти половины. Таким образом, датасет для одной эпохи будет состоять из  $\sim 2500$  элементов каждого класса.

## 3.1. Метод предсказания на основе бинарного поиска – "bert binary tree"

Можно воспользоваться взаимосвязью между классами: 1-4 — отрицательно, 7-10 — положительно. 1-2 — резко отрицательно, 3-4 — слегка отрицательно, 1 - наиболее резко отрицательно, и так далее.

Было разработано дополнение базовой модели, находящее prediction по принципу бинарного дерева. Чтобы получить предсказание по вектору вероятностей, нужно сначала сравнить суммы вероятностей принадлежности к классам 1-4 и классам 7-10, а потом проделать то же самое внутри бинарных подклассов.

Оно не влияет на обучение весов модели, но позволяет делать более точные предсказания.

#### Результаты:



## 3.2. Классификация порядковых данных bert multilabel ordinary

Попробуем воспользоваться порядковостью данных. Закодируем каждый из 10 классов вектором размера 9:

Возьмем базовую модель "bert-based-uncased", но для задачи multilabel classification для 9 классов.

### Результаты:



## 4. Графики обучения



### 5. Результаты на тестовой выборке

|                          | Для 8 классов (1-4 и 7-10) |          | Для 2 классов (+/-) |          |
|--------------------------|----------------------------|----------|---------------------|----------|
|                          | f1-score                   | accuracy | f1-score            | accuracy |
| bert_binary_tree         | 0.54                       | 0.53     | 0.94                | 0.94     |
| bert_multilabel_ordinary | 0.46                       | 0.44     | 0.94                | 0.94     |

## 6. Лучшая модель

Лучший результат показала модель "bert\_binary\_tree".

### 7. Нейтральный класс

Для инференса этой модели установим порог 0.2. Если модуль разности вероятностей принадлежности отзыва к положительному и негативному классу меньше порога, то считаем, что он принадлежит нейтральному классу.