- **27.6.** Stosując definicję logarytmu sprowadzić daną nierówność do prostej nierówności trygonometrycznej. Od razu ograniczyć się do dziedziny (I ćwiartka, cosinus dodatni), co pozwala łatwo rozwiązać tę nierówność.
- 27.7. Rozważmy losowanie jednej liczby i odpowiadający mu model probabilistyczny Ω_0 i P_0 . Niech $A \subset \Omega_0$ oznacza zdarzenie, że liczba czytana od strony lewej do prawej jest podzielna przez 4, a B zdarzenie, że liczba czytana od strony prawej do lewej jest podzielna przez 4. Wówczas zdarzenia A, B są niezależne (dlaczego?). $P_0(A \cup B)$ obliczyć, znając $P_0(A)$ i $P_0(B)$. Zauważyć, że $P_0(A \cup B)$ jest prawdopodobieństwem sukcesu w schemacie czterech prób Bernoulliego.
- **27.8.** Szukany zbiór jest przekrojem pasa pomiędzy dwiema prostymi równoległymi i zbioru punktów leżących pod wykresem i na wykresie funkcji $f(x) = \sqrt[3]{x}$. Zwrócić uwagę na przebieg tej funkcji w otoczeniu punktu x = 0. W dwóch punktach wykres funkcji f(x) jest styczny do danych prostych, a w dwóch innych przecina te proste pod tym samym kątem (dlaczego?). Do obliczenia tangensa tego kąta użyć pochodnej.
 - 28.1. Nie wyznaczać prędkości obu punktów, lecz od razu ich stosunek.
- **28.2.** Aby nierówność była spełniona dla każdego $x \in \mathbf{R}$, mianownik nie może mieć pierwiastków rzeczywistych, czyli jest dodatni na całej prostej. Wtedy można obie strony pomnożyć przez ten mianownik, zachowując znak nierówności i badać nieujemność otrzymanego trójmianu kwadratowego. Przypadek p=1 rozpatrzyć oddzielnie.
- **28.3.** Zastosować twierdzenie cosinusów. Nie wyznaczać długości boków, lecz od razu ich iloczyn. Określić dziedzinę dla α , r i d.
- **28.4.** Przekrój płaszczyzną symetrii zawiera środek kuli, środek jednej nóżki oraz środek odcinka łączącego pozostałe nóżki. Wykonać rysunek tego przekroju, przyjmując r bardzo małe w porównaniu z R. Korzystać z twierdzenia o okręgach stycznych zewnętrznie.
- **28.5.** Rozwiązanie w przedziale $(-\infty,0)$ wyznaczyć bezpośrednio, korzystając ze wzoru na sześcian sumy. W $(0,\infty)$ wyznaczyć przedziały mono-