09/775,676 (PRO-128) PATENT

AMENDMENTS TO THE CLAIMS:

ì	1.	(Currently amended) A probe apparatus for testing a circuit chip, said probe
2		apparatus comprising a probe group having two or more probes, each of said two
3		or more probes having a conductive core, an insulation layer, and a tip, at least
4		two of said two or more probes having a common contacting center within a probe
5		target area, and each of said two or more probes independently conductively
6		contacting within a guiding boundary for independently conductively contacting a
7		single terminal of said circuit chip and allowing a test path resistance be measured
8		without affecting said circuit chip.
1	2.	(Previously amended) The probe apparatus of claim 1, further comprising an
2		electronic circuit capable of recognizing said test path resistance and
3		correspondingly compensating a voltage drop of an operational signal passing
4		through at least one of said probes.
1	3.	(Original) The probe apparatus of claim 2, wherein said probe group comprises
2		three probes and said electronic circuitry is capable of recognizing
3		a) a first path resistance of said resistance condition between said first and
4		said second contacting means along said single test terminal;
5		b) a second path resistance of said resistance condition between said first and
6		said third contacting means along said single test terminal;
7		c) a third path resistance of said resistance condition between said second and
8		said third contacting means along said single test terminal; and
9		wherein said electronic circuitry is capable of compensating said voltage drop
10		individually and in correspondence to one, two or three operational signal paths
11		related to said probes.
1	4.	(Original) The probe apparatus of claim 2, wherein said probe group comprises
2		four probes and said electronic circuitry is capable of recognizing said test path

resistance according to 4-Wire Ohm's Measurement.

3

1 5. (Original) The probe apparatus of claim 1, wherein at least one of said two or more probes is a buckling beam.

- 6. (Original) The probe apparatus of claim 1, wherein said probe group is bundled in a single perforation of a sheath being part of said probe apparatus.
- 7. (Original) The probe apparatus of claim 6, wherein said single perforation is a long hole.
- 1 8. (Original) The probe apparatus of claim 6, wherein said single perforation is a circular hole.
 - 9. (Original) The probe apparatus of claim 1, wherein said two or more probes have probe tips essentially concentrically arranged in correspondence to a rotation axis of said single terminal having a rotationally symmetric and non planar contact surface such that said two or more probes contact said single terminal in a self centering fashion.
- 1 10. (Original) The probe apparatus of claim 9, wherein said probe tips are essentially spherical.
- 1 11. (Original) A method for compensating a voltage drop of an operational signal
 2 passing through an operational signal path having a constant resistance and a
 3 variable resistance related to a contact quality of a probe and a terminal of said
 4 operational signal path, said method comprising the steps of:

5

6

7

8

9

contacting said terminal with a group of two or more of said probes; recognizing a path resistance along said probes of said group, said terminal and interfaces between said probes and said terminal; deriving an operational signal path resistance from said path resistance; and

<u>م</u> ١	11
$\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{\prime}$	\r
(App)	^ 2
	3
	4

10

5

6

12.

compensating said voltage drop in correspondence to said operational signal path resistance.

(Previously amended) The method of claim 11, wherein said contacting is provided by said group including a first, a second and a third of said probes, wherein said recognizing includes recognizing a first, second and a third path resistance corresponding to said first, second and said third of said probes, and wherein said deriving includes deriving an absolute value of a first, second and third operational signal path resistance corresponding to said first, second and said third path resistance.