Уравнение Ляпунова:

- A^T∗H + H∗A = -I непрерывный случай
- A_dT*H_d*A_d H_d = -I дискретный случай

Решение уравнения - матрица Н. Если все собственные значения положительны, то система устойчива.

Показатели устойчивости:

```
    κ(A) = ||H||

                             - непрерывный случай
     • \varkappa_d(A_d) = ||H_d|| - дискретный случай
s = poly(0, 's')
T0 = 0.79
n = 3
ПИ-регулятор
T = 0
       K = 1.5
       Ti = 2.375
       Wtmp = K * (1+1/(Ti * s)) * (1/((1+s*T0)^n))
T = 1.5
       K = 0.9
       Ti = 4
       e = 1 + (-s * 1.5) + ((-s*1.5)^2) / 2
       Wtmp = K * (1+1/(Ti * s)) * (e/((1+s*T0)^n))
e^x = \sum_{n=0}^{\infty} rac{x^n}{n!} = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} +
kappa_c = 9.4209436
kappa_d = 184.31064
ПИД-регулятор
T = 0
       K = 10
       Ti = 2
       Td = Ti/4
       Tc = Td / 8
       Wtmp = K * (1+1/(Ti * s) + (Td * s)/(1 + Tc * s)) * (1/((1+s*T0)^n))
T = 1.5
       K = 0.8
       Ti = 2.65
       Td = Ti/4
       Tc = Td / 8
       e = 1 + (-s * 1.5) + ((-s*1.5)^2) / 2
```

Wtmp = $K * (1+1/(Ti * s) + (Td * s)/(1 + Tc * s)) * (e/((1+s*T0)^n))$

 $kappa_c = 8.4882798$ $kappa_d = 312.99425$

W = Wtmp / (1 + Wtmp)

Sys = syslin('c', W)

https://help.scilab.org/docs/6.1.0/ru RU/syslin.html

tau = 0.1 Sysd = dscr(Sys,tau) [A, B, C, D] = abcd(Sys) [Ad, Bd, Cd, Dd] = abcd(Sysd)

I = eye(A)

https://help.scilab.org/lyap

H = Iyap(A, -I, 'c')Hd = Iyap(Ad, -I, 'd')

Теорема 8. Пусть спектр $\{\lambda_1(A), \dots, \lambda_n(A)\}$ матрицы $A \in \mathbb{R}^{n \times n}$ не имеет точек, симметричных относительно мнимой оси: $\lambda_i(A) + \overline{\lambda_j(A)} \neq 0$, где черта обозначает комплексное сопряжение. И пусть $H \in \mathbb{R}^{n \times n}$ — решение матричного уравнения Ляпунова

$$A^{\top}H + HA = -I. \tag{4.22}$$

Тогда: 1) матрица Н существует и единственна;

- 2) она симметрична $H^{\top} = H$;
- 3) устойчивость (гурвицевость) матрицы A влечет строгую положительную определенность H>0;
 - 4) обратно, если $H>0\,,$ то матрица A устойчива.

Для матрицы $A \in \mathbb{R}^{n \times n}$ определим ее характеристический многочлен $a(\lambda) \doteq \det{(\lambda I - A)}$.

Определение. Матрица A называется $\mathit{гурвицевой}$, или $\mathit{устойчивой}$, если устойчив характеристический многочлен $a(\lambda)$.

проверим симметричность:

H == H'

Известно, что любая вещественная симметричная квадратная матрица $H=H^{\top}$ допускает разложение $H=P\Lambda P^{\top}$, где P — ортогональная матрица $(P^{\top}P=I)$ и $\Lambda=\mathrm{diag}\;(\lambda_1,\ldots,\lambda_n)$ — диагональная матрица из собственных чисел H, которые все вещественны. Если H положительно определена, то все λ_i положительны, и наоборот.

https://help.scilab.org/docs/2024.0.0/ru_RU/spec.html найдем собственные числа H:

$$J = spec(H)$$

 $Jd = spec(Hd)$

Если все
$$Ji > 0$$
 , то $H > 0$ $J > 0$

Значит, А устойчива, значит система устойчива Найдем количественную меру устойчивости:

Следствие 5. При условии устойчивости матрицы А верны равенства

$$\varkappa(A) = \sup_{v(0) \neq 0} \frac{\int_0^\infty v(t)^\top v(t) dt}{v(0)^\top v(0)} = \sup_{v(0) \neq 0} \frac{v(0)^\top H v(0)}{v(0)^\top v(0)} = \|H\|.$$

kappa=norm(H,2)

Физический смысл карра:

Чем менее устойчиво решение v(t), тем больше его норма. Показатель устойчивости $\varkappa(A) = \|H\| = \frac{1}{2(1+a)}$ зависит от a: чем больше a, тем более устойчива система.