Exercice 1. /10

Les courbes C_f et C_g données ci-dessous représentent respectivement, dans un repère orthonormal, les fonctions f et g définies sur l'intervalle]0; $+\infty[$ par

$$f(x) = \ln x$$
 et $g(x) = (\ln x)^2$.

1. On cherche à déterminer l'aire \mathcal{A} (en unités d'aire) de la partie du plan hachurée.

On note $I = \int_1^e \ln x \, dx$ et $J = \int_1^e (\ln x)^2 \, dx$.

- (a) Vérifier que la fonction F définie sur l'intervalle]0; $+\infty[$ par $F(x) = x \ln x x$ est une primitive de la fonction logarithme népérien. En déduire I.
- (b) Démontrer à l'aide d'une intégration par parties que J = e 2I.
- (c) En déduire J.
- (d) Donner la valeur de A.
- 2. Dans cette question le candidat est invité à porter sur sa copie les étapes de sa démarche même si elle n'aboutit pas.

Pour x appartenant à l'intervalle [1; e], on note M le point de la courbe C_f d'abscisse x et N le point de la courbe C_g de même abscisse. Pour quelle valeur de x la distance MN est maximale? Calculer la valeur maximale de MN.

Exercice 2. /10

Soit la fonction définie sur \mathbb{R} par $f(x) = \cos(x) + \sin^2(x)$.

- 1. (a) Démontrer que f est 2π périodique.
 - (b) Démontrer que f est paire.
 - (c) Déterminer l'intervalle d'étude de la fonction f.
- 2. (a) Calculer la fonction dérivée f' et démontrer que $f'(x) = \sin(x)(2\cos(x) 1)$.
 - (b) Étudier le signe de f'(x) sur $[0; \pi]$ puis dresser le tableau de variation de la fonction f sur $[0; \pi]$.
- 3. On a représenté la courbe $\mathscr C$ représentative de la fonction f sur $[0; \pi]$ ci-dessous. Compléter ce tracé pour avoir $\mathscr C$ sur $[-2\pi; 2\pi]$:

