

Project Objective:

"Emissions of pesticides in the European Union: a new regional-level dataset." by Udias et al.

- Assessing the risks of pesticides is challenging because there are so many in use, and we don't have enough detailed data on how and where they are being used.
- To address this problem, the study used for this project estimated pesticide use across the EU by analyzing detailed data on 150 different chemicals.
- The aim of this project is to use Unsupervised
 Machine Learning to find where significant use it.
 - Clustering techniques like K-Means and dimensionality reduction methods like PCA and t-SNE will aid in achieving our objective.

Data Understanding

 Country, NUTS3(level 3 units), category to which substance belongs, chemical class, EU id for pesticides, chemical abstract service council number identified, international number identifier, substance common name, land cover emissions.

data	ca										
GOUNT		UNTRY NUTS3 Categories_of_products		Chemical_Class_Substance	ID_EUPDB	CAS	CIPAC	Substances_common_names	Arab_KG	Fruit_KG	Oliv_KG
0	AT	AT111	Other fungicides and bactericides	ANILIDE FUNGICIDES	1040	188425- 85-6	673.0	BOSCALID	760.385094	0.000000	0.0
1	AT	AT112	Other fungicides and bactericides	ANILIDE FUNGICIDES	1040	188425- 85-6	673.0	BOSCALID	2702.234726	0.000000	0.
2	AT	AT113	Other fungicides and bactericides	ANILIDE FUNGICIDES	1040	188425- 85-6	673.0	BOSCALID	1521.092730	0.000000	0.
3	AT	AT121	Other fungicides and bactericides	ANILIDE FUNGICIDES	1040	188425- 85-6	673.0	BOSCALID	2262.038900	0.000000	0
4	AT	AT122	Other fungicides and bactericides	ANILIDE FUNGICIDES	1040	188425- 85-6	673.0	BOSCALID	702.788789	0.000000	0
205284	UK	UKN01	Physiological plant growth regulators	OTHER PHYSIOLOGICAL PLANT GROWTH REGULATORS	856	86-87-3	313.0	1-NAPHTHYLACETIC ACID (1- NAA)	0.000000	0.000000	C
205285	UK	UKN02	Physiological plant growth regulators	OTHER PHYSIOLOGICAL PLANT GROWTH REGULATORS	856	86-87-3	313.0	1-NAPHTHYLACETIC ACID (1- NAA)	0.001873	0.000000	C
205286	UK	UKN03	Physiological plant growth regulators	OTHER PHYSIOLOGICAL PLANT GROWTH REGULATORS	856	86-87-3	313.0	1-NAPHTHYLACETIC ACID (1- NAA)	0.004087	0.397035	C
205287	UK	UKN04	Physiological plant growth regulators	OTHER PHYSIOLOGICAL PLANT GROWTH REGULATORS	856	86-87-3	313.0	1-NAPHTHYLACETIC ACID (1- NAA)	0.003429	0.000000	С
205288	UK	UKN05	Physiological plant growth regulators	OTHER PHYSIOLOGICAL PLANT GROWTH REGULATORS	856	86-87-3	313.0	1-NAPHTHYLACETIC ACID (1- NAA)	0.000909	0.469333	С
205289 r	ows × 15 col	lumns									

Data Understanding

- 35 Countries
- Six land cover classes
 - Arable Land
 - Fruit Trees
 - Grassland
 - Olive Groves
 - Vineyards
 - Rice Fields
- 22 Categories of Products

Data Preprocessing

```
# Group by country and aggregate the emission columns for all six land covers
grouped_by_country = data.groupby('COUNTRY').aggregate({
    'Arab_KG': 'sum',
    'Fruit_KG': 'sum',
    'Oliv_KG': 'sum',
    'Vines_KG': 'sum',
    'Grass_KG': 'sum',
    'Rice_KG': 'sum',
    'KG_TOT': 'sum'
})
grouped_by_country = grouped_by_country.reset_index()
grouped_by_country
```

```
#remove unknown COUNTRY ISO code (e.g., 1-, 2-, etc)
grouped_by_country = grouped_by_country.iloc[6:]
grouped_by_country
```

- Grouped land use type by country
- Removed unknown country ISO codes
- Created a total_by_country feature to show usage of pesticide by country
- Converted from pandas to numpy array and found z-score of each country before conducting PCA

```
#transform pandas df into numpy array
total_by_country_value = total_by_country_values
total_by_country_value
```

```
#import zscore package from scipy
from scipy import stats
#normalize the data using zscore
total_by_country_value_z = stats.zscore(total_by_country_value)
total_by_country_value_z
```

Data Exploration: Common Names

- ∘ (150, 6) shape.
- Z-score to normalize the data.
- Re-index
- Used PCA for dimension reduction

	Arable	Grassland	Fruit	Olive	Vines	Rice
Substances_common_names						
1-NAPHTHYLACETIC ACID (1-NAA)	7.158690e+01	0.000000	2645.632076	0.000000	0.000000	0.0
2,4-DB	3.104680e+05	0.000000	0.000000	0.000000	0.000000	0.0
ACETAMIPRID	5.965268e+04	0.000000	22690.306996	0.000000	3284.764587	0.0
ACLONIFEN	2.137123e+06	0.000000	0.000000	0.000000	0.000000	0.0
ACRINATHRIN	3.057213e+03	0.000000	0.000000	0.000000	4866.075996	0.0
TRI-ALLATE	2.354593e+06	0.000000	0.000000	0.000000	0.000000	0.0
TRICLOPYR	2.999254e+05	150149.531075	0.000000	0.000000	0.000000	0.0
TRIFLOXYSTROBINE	3.475378e+05	0.000000	52183.950174	6761.498656	56869.553173	0.0
ZIRAM	2.478025e+05	0.000000	321961.819484	0.000000	0.000000	0.0
ZOXAMIDE	6.000562e+04	0.000000	0.000000	0.000000	46345.448046	0.0
150 rows × 6 columns						

```
pca.explained_variance_ratio_

[83]:
array([0.44821953, 0.1669513 , 0.15771962])

[84]:
pca.explained_variance_ratio_.sum()

[84]:
np.float64(0.7728904443689487)

[85]:
1 - pca.explained_variance_ratio_.sum()

[85]:
np.float64(0.22710955563105129)
```


Data Processing

- Poland shows significant pesticide usage.
- Map was developed using GeoPandas and merging aggregated data onto the European shapefile. This shows the distribution of emission geospatially on the EU map.

- The first three components explain 90.4% of the total variance in the dataset.
- Countries in this cluster may share similarities in agricultural practices, climate, or economic factors tied to the features
- Principal components focus on important features influencing emissions as explained by:

variance explained in n component 3 pca?
pca_3.explained_variance_ratio_

array([0.52246419, 0.22556544, 0.15594409])

KMeans Clustering

 Why did we visualize k-means clustering results in PCA coordinates?

Silhouette Score for 5 clusters: 0.6560715839504054

Clustering Improvement: Using TSNE

*non-linear approach

	TSNE1	TSNE2		Country
0	-6.373781	2.998195	-42 . 753185	1-
1	-6.373781	2.998195	-42.753185	2-
2	-6.373781	2.998195	-42.753185	3–
3	-6.373781	2.998195	-42.753185	4-
4	-6.373781	2.998195	-42.753185	5-
5	-6.373781	2.998195	-42.753185	6-
6	-6.092248	-89.616875	47.044476	AT
7	-120.396286	-8.934873	-26.851919	BE
8	-70.721169	-60.718315	0.374296	BG
9	93.459045	-13.063423	-48.040974	CY
10	99.712990	64.994820	-18.700502	CZ
11	-39.629089	135.375046	-80.076721	DE
12	-80.338486	-3.642405	-109.042831	DK
13	2.538164	-50.552940	116.710991	EE
14	-47.499779	12.551329	121.422134	EL
15	79.111206	7.836456	112.784737	ES
16	128.047958	-16.439491	28.601910	FI
17	-58.110081	97.621445	82.697525	FR
18	51.686378	-78.584175	-9.679397	HR
19	-47.582546	14.253402	41.510025	HU
20	42.623234	52.207787	28.846365	IE
21	87.413582	-78.310867	88.240509	IT
22	25.488886	-19.751251	44.481167	LT
23	-48.173866	83.259857	-1.200919	LU
24	-96.541092	60.485477	-55.420376	LV
25	-121.670044	10.099753	54.603489	MT
26	45.505329	-67.938820	-94.424751	NL
27	-6.373781	2.998195	-42.753185	NO
28	-89.352440	-85.829552	75.438400	PL
29	14.812978	62.283527	104.883064	PT
30	10.095901	129.819305	29.436085	R0
31	55.835361	34.134247	-114.128510	SE
32	-44.481133	-79.463760	-85.398384	SI
33	30.526255	94.891090	-52.077217	SK
34	-24.632862	-128.601639	-18.569016	UK

Plotting t-SNE to K-Means Clusters

- Clustering display of a higher dimension.
- N_components
- Perplexity(It can be considered a measure of how many nearest neighbors are considered when computing the pairwise similarities of points.) We focused more local.

merged_df.shape

(92186, 9)

Hierarchical Clustering

• n_clusters

z_kg_by_country.shape

metric='euclidean'

(29, 56)

Used for comparison to show the shape of the data

Silhouette Score for 2 clusters: 0.8253041207093019

Conclusions/ Model Improvements

- Based on the Silhouette Scores of 0.825, the clustering used in this project is fairly good but could be improved using other clustering and tuning methods.
- While there is separation in the plotted points, there is ambiguity in the clustering as boundary is not clearly defined.
- A larger dataset or selecting different features and hypertuning would likely result in better clustering.
- Maps showing where and how much pesticides are likely used can be applied when studying their effects, like pollution in rivers.
- Understanding the application of pesticide usage and by country and land type can help suggest agricultural management, assess the ecotoxicology of arable land for future use, and develop sustainable policy.
- This helps fill the data gap and provide a clearer picture of pesticide use across Europe.

References

- KMeans scikit-learn 1.5.2 documentation
- TSNE scikit-learn 1.5.2 documentation
- Udias, A., Galimberti, F., Dorati, C., & Pistocchi, A. (2023, December 5). Emissions of pesticides in the European Union: A new regional-level dataset. Nature News. https://www.nature.com/articles/s41597-023-02753-4