日 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて

This is to certify that the annexed is a true copy of the following application as filed

顧年月日 ite of Application:

1999年 8月31日

olication Number:

平成11年特許顯第245183号

icant (s):

株式会社環境電磁技術研究所 岩崎通信機株式会社

> COPY SF JP PRIMATY Document Fles IN PARGUT 09/604,896.

2000年 2月18日

特許庁長官 Commissioner, Patent Office

提出日 平成 1 1 年 8 月 3 1 日 貞: 1/2

整理番号=P110032

【書類名】

特許願

【整理番号】

P110032

【提出日】.

平成11年 8月31日

【あて先】

特許庁長官殿

【国際特許分類】

H03B 29/00

【発明者】

【住所又は居所】

仙台市青葉区南古成6丁目6番地の3 株式会社環境電

磁技術研究所内

【フリガナ】

ヤマネ コウシ

【氏名】

山根 孝二

【発明者】

【住所又は居所】

血台市青葉区南古成6 丁日6 番地の3 株式会社環境電

磁技術研究所內

【フリガナ】

シノブ カ タカシ

【氏名】

篠塚 降

【発明者】

【住所又は居所】

東京都杉並区久我由一丁日7番41号 岩崎通信機株式

会祉内

【フリガナ】

セトク・チ カオル

【瓜名】

瀬戸口 芳

【特許出願人】

【識別番号】

596183206

【氏名又は名称】

株式会社環境電磁技術研究所

【特許出願人】

【識別番号】

181000000

【氏名又は名称】

岩崎通信機株式会社

【代理人】

【識別番号】

100069257

【弁理士】

提出日 平成11年 8月31日 頁: 2/ 2

整型番号-P110032

【氏名又は名称】 人塚 学

【手数料の表示】

【予納台帳番号】 006404

【納付金額】

21,000[1]

【提出物件の目録】

【物件名】

明細書

【物件名】

図曲 1

【物件名】

要約書

【包括委任状番号】 9713217

【プル・フの要否】

.

提出日 平成11年 8月31日 頁: 1/14

整理系写 P110032

【書類名】

明細書

【発明の名称】 擬似雑音発生装置

【特許請求の範囲】

【請求項1】 指定振幅確率分布を指定レベルで、つに分割して、分割された振幅確率分布にそれぞれ対応する乱数信号を生成する任意分布乱数生成部と、

前記指定レベルでの指定パルス幅分布、指定パルス間隔分布に従う乱数信号を 生成する任意分布乱数生成部と、

前記分割された振幅確率分布に対応する乱数信号を前記指定レベルでの指定パルス幅分布、前記指定パルス間隔分布に従う信号で選択する制御部と、

前記選択された信号をアナログ値に変換するD/Aコンパータとを備え、前記 指定振幅確率分布と前記指定レベルでの前記指定パルス幅分布、前記指定パルス 間隔分布に従う擬似雑音を生成するように構成された擬似雑音発生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電磁妨害波に対する電子機器の耐妨害性 (immunity) を評価するための擬似雑音等の発生に用いられる擬似雑音発生装置に関するものである。

[0002]

【従来の技術】

多くのノイズが加算された場合や、熱雑音、都市雑音の場合などでは、ノイズの振幅はガウス分布となる。この分布特性に擬似せしめるためにノイズ・ダイオードを利用しホワイト・ガウス・ノイズを発生させる雑音発生器がある。

また、狭帯域デジタル通信では通信システムのピット誤り率(BER: Bit Er rer Rate)と電磁妨害波の信号確率分布(APD: Amplitude Probability Dist ribution)との間に相関関係があり、電磁妨害波のAPDから通信システムのBERを推定することができるという報告もあり、そこでは任意分布乱数発生器を用いて、指定されたAPDに従うノイズを発生させている。(信学論文誌(A)、vol. J70-A、No.11、pp1681-1690、Nov. 1987 参照)

[0003]

提出日 平成11年 8月31日

整理番号=P110032

【発明が解決しようとする課題】

ノイズの性質を表す際の重要な統計パラメータとして振幅確率分布(APD)、交差率分布(CRD: Crossing Rate Distribution)、パルス幅分布(PDD: Pulse Duration Distribution)、パルス間隔分布(PSD: Pulse Spacing Distribution)などがある。

以下これらについて図13を参照して説明する。

振幅確率分布(APD)は電磁妨害波等の信号の瞬時値が予め設定されたしきい値以上になる時間率であり、測定時間 T_0 内にレベル E_k 以上の瞬時値をとる信号の時間総計がどれくらいあるかを表す。交差率分布(CRD)は信号の瞬時値が特定のレベル E_k を正方向(あるいは負方向)に交差する単位時間あたりの回数で定義される。

パルス幅分布(PDD)は信号の瞬時値が所定の測定時間 T。内にしきい値 E を超えている時間 W 、(k) の確率分布で定義され、パルス間隔分布(PSD)は、パルス幅とは逆に、信号の瞬時値が所定の測定時間 T 。内にしきい値 E_k より低い値をとる時間 Z 、(k) の確率分布で定義される。すなわち、PDD、PSDは信号がしきい値に交差してから次に交差するまでの時間幅の確率分布である。

また、確率密度関数(PDF: Probability Density Function)は、測定時間 To 中におけるレベルE, の分布を表す。

ホワイト・ガウス・ノイズを発生させる擬似雑音発生器はノイズの分散と平均を指定することができるが、ノイズの分布はホワイト・ガウス・ノイズに限定されておりAPDを指定することができない。

任意分布乱数発生器を用いたものはノイズのAPDを指定し、任意のAPDを持つノイズを発生することができるが、時間相関のない独立事象を対象としている。しかし、電子レンジや一般の電子機器からのノイズは、電源電圧の周期や動作クロックの周期に依存した非独立事象であり、任意分布乱数発生器を使用した擬似雑音発生器からのノイズのCRD、PDD、PSDなどが、時間相関のある非独立事象のノイズのCRD、PDD、PSDとは異なっている。

[0,004]

提出口 平成11年 8月31日

整型番号=P110032

本発明の目的は、ノイズの振幅確率分布を指定することができ、同時に指定振幅レベルkでのパルス幅分布とバルス間隔分布を指定することができる擬似雑音発生装置を提供することである。

[0005]

【課題を解決するための手段】

この課題を解決するため、本発明による擬似雑音発生装置は、指定振幅確率分 布を指定レベルで二つに分割して、分割された振幅確率分布にそれぞれ対応する 乱数信号を生成する任意分布乱数生成部と、

前記指定レベルでの指定パルス幅分布、指定パルス間隔分布に従う乱数信号を 生成する任意分布乱数生成部と、

前記分割された振幅確率分布に対応する乱数信号を前記指定レベルでの指定パルス幅分布、前記指定パルス間隔分布に従う信号で選択する制御部と、

前記選択された信号をアナログ値に変換するD/Aコンパータとを備え、前記 指定振幅確率分布と前記指定レベルでの前記指定パルス幅分布、前記指定パルス 間隔分布に従う擬似雑音を生成するように構成されている。

[0.00.6]

【発明の実施の形態】

図1は指定APD,指定PDD,指定PSDに従う本発明による擬似雑音発生 装置の原理を説明するためのプロック図である。本装置は図1に示すように任意 分布乱数生成方法を用いた四つの任意分布乱数発生部APD,APD2,PD D。PSD。と一つのセレクタ部SLとから構成されている。

ここではPDD、PSDの設定は同レベル、一箇所とする。これをkとし、k 以上の値を示す乱数符号を生成する任意分布乱数発生器APD、k以下の値を 示す乱数符号を生成する任意分布乱数発生器APD。を用意し、これらを指定さ れたPDD、PSDを満足するように切り替えて、指定されたAPD、PDD、 PSDに従う乱数符号を生成する。すなわち、擬似雑音の生成は、次のように行 われる。

① 任意分布乱数発生器PDD。によりパルス継続時間分布pdd(i,)に 従うNビットの2進符号i,を生成し、パルス継続時間Tioを決定する。時間T

提出日 平成11年 8月31日 白: 4/14

整型番号=P110032

この間、任意分布乱数発生器 APD、により apd、 (x_i) に従うMビットの 2 進符号 x_i を生成し、擬似雑音x として出力する。

② パルス継続時間 T_{11} の終了後、任意分布乱数発生器 PSD_0 によりパルス間隔分布 $psd(i_2)$ に従うNビットの2進符号 i_2 を生成し、パルス継続時間 T_{12} を決定する。時間 T_{12} の間、任意分布乱数発生器 APD_2 により apd_2 (x_2) に従うMビットの2進符号 x_2 を生成し、擬似雑音 x として出力する。

③ ①、②を交互に繰り返す。

以上の操作により、指定APDに従い、同時に指定PDD,指定PSDをも満足するMピットの2進符号列xを生成し、D/A変換し、擬似雑音として出力する。

[0007]

以上のように、本発明による擬似雑音発生装置では、指定振幅確率分布 a p d (x) に従う信号 x を生成する任意分布乱数発生器の代わりに、 a p d $_1$ (x_1) に従う信号 x_1 と a p d $_2$ (x_2) に従う x_2 を排他的に生成する任意分布乱数発生器 100 を用いる。振幅確率分布 a p d $_1$ (x_1) と a p d $_2$ (x_2) は指定振幅確率分布 a p d $_1$ (x_1) から計算される。

また、信号x、を生成するか、信号x2を生成するかを選択するためのメモリ 選択信号s を出力する制御部を有する。

また、任意分布乱数発生器100により生成された信号 $x(x_1)$ または x_2 をアナログ値に変換し出力するための D/Λ コンパータを有する。このD/Aコンパータでアナログ信号に変換された信号は、ケーブルを使用して通信システムに直接入力する。または、アップコンパータなどで信号の周波数帯域を移動させ、アンテナから放射させることができる。

[0008]

このような本発明による擬似雑音発生装置では、任意乱数発生器200により

提出日 平成11年 8月31日

型理番号=P110032

 $pdd(i_1)$ に従う信号 i_1 を生成し、 i_2 に対応する時間 T_{i_1} の間は任意乱数発生器100により apd_1 (x_1) に従う信号 x_1 を生成し続ける。その後、任意乱数発生器200により $psd(i_2)$ に従う信号 i_2 を生成し、 i_2 に対応する時間 T_{i_2} の間は任意乱数発生器100により apd_2 (x_2) に従う信号 x_2 を生成し続ける。この apd_1 (x_1) と apd_2 (x_2) の切り替え、及び $pdd(i_1)$ と $psd(i_2)$ の切り替えはセレクタSLからの信号sにより行う。

 apd_1 (x_1)に従う信号 x_1 は振幅レベルがk以上であり、 apd_2 (x_2)に従う信号 x_2 は振幅レベルがk以下であるので、このように動作させれば、振幅レベルkでのPDD,PSDの指定はpdd(T_{12})に従うことになる。

また、 apd_1 (x_1)と apd_2 (x_2)はapd(x)から計算されており、振幅レベル k でのapd(k)とpdd(i_1)とpsd(i_2)が式(1)の関係を満足すれば、任意分布乱数発生器 100により生成された信号 x(x_1 または x_2)はapd(x)に従う。ここでMは任意分布乱数発生器 100で 作成される信号 x(x_1 または x_2)のビット数、Nは任意分布乱数発生器 200で生成される信号 i(x_1 または i2)のビット数である。

[0009]

【数1】

$$\sum_{i_2=0}^{2^{N}-1} psd(i_2) T_{i_2} = \frac{1-apd(k)}{apd(k)} - \sum_{i_1=0}^{2^{N}-1} psd(i_1) T_{i_1}$$
 (1)

[0010]

本発明においては、パルス幅分布PDDとパルス間隔分布PSDの指定は、分布幅を持つ分布の指定に限定されるものではなく、式(1)の条件を満足すれば、特定の値を分布の特殊例として指定する場合を包含する。

[0011]

【実施例】

図2に擬似雑音発生装置の実施例を示す。この実施例では8ピットの信号を生

提出日 平成11年 8月31日

整理番号=P110032

成する任意分布乱数発生器を用いた。本装置は図2に示すように任意分布乱数発生器1、任意分布乱数発生器2、制御部3、D/Aコンパータ4から構成される。

[0012]

図3に任意分布乱数発生部1の内部構成を示す。任意分布乱数発生部1は8ビットの信号x($x=x_1$ Xは x_2)を生成するために、8個のビット生成部1-1~1-8と8個のラッチ回路1-11~1-18を備えている。任意分布乱数発生器1は各ピット生成部1-1~1-8とラッチ回路1-11~1-18を交互に縦続に接続し、各ビット生成部を各クロックパルスの立ち上がりで同時に動作させている。

[0013]

図 4 は各ピット生成部 1-1-1-8の構成を示す。各ピット生成部 1-1-1-8 は一様乱数発生部 1 1、メモリ 1 2 と比較部 1 3 から構成されている。メモリ 1 2 内には信号 x (x=x, x) の各ピット (x) の各ピット (x) を決定するためのデータッが次のように計算され格納されている。

 apd_1 (x_1) $はapd_2$ (x) に従う信号x $(-x_1)$ のうち $k \le x$ である x_1 を生成する部分に相当し、式(2)で表される。

[0014]

【数2】

$$apd_{1}(x_{1}) = \begin{cases} 1 & (0 \le x_{1} < k) \\ \frac{apd(x_{1})}{apd(k)} & (k \le x_{1} \le 2^{n} - 1) \end{cases}$$
 (2)

[0015]

 apd_2 (x_2) はapd(x) に従う信号x $(-x_2)$ のうちk>xであるx, を生成する部分に相当し、式(3) で表される。

整型番号=P110032

提出日 平成11年 8月31日 日: 7/14

【数3】

$$apd_{2}(x_{2}) = \begin{cases} \frac{apd(x_{2}) - apd(k)}{apd(0) - apd(k)} & (0 \le x_{2} < k) \\ 0 & (k \le x_{2} \le 2^{s} - 1) \end{cases}$$
(3)

[0016]

式 (2) 、 (3) により計算されたapd (x_1) 、apd (x_2) は、式 (4) 、 (5) により条件付確率 pc_1 (j 、r)、 pc_2 (j 、r) に変換され、図 5 のように各ピット生成部内のメモリに各ピットを決定するためのデータッとして格納される。但し、j=1 、2 、 \cdots 8 、r=0 、1 、 \cdots 2^{j-1} -1 である。

[0017]

【数4】

$$pc_1(j,r) = \frac{apd_1((2r+1)\cdot 2^{M-1}) - apd_1((2r+2)\cdot 2^{M-1})}{apd_1((2r\cdot 2^{M-1}) - apd_1((2r+2)\cdot 2^{M-1})}$$
(4)

$$pc_{2}(j,r) = \frac{apd_{2}((2r+1)\cdot 2^{M-j}) - apd_{2}((2r+2)\cdot 2^{M-j})}{apd_{2}((2r\cdot 2^{M-j}) - apd_{2}((2r+2)\cdot 2^{M-j})}$$
(5)

[0.018]

次に図6及び図4を用いて任意分布乱数発生器1の動作を解説する。 \

任意分布乱数発生器1内の第2ビット生成部1-2には直前の clock1の各パルスの立ち上がりで第1ビット生成部1-1からラッチ11を介してその出力A(s, a,)というビットデータが送られる。このs, はメモリ選択信号sであり、a, は第1ビット生成部1-1で生成された任意分布乱数xの第1ビットaである。

同時に clock 1 の各パルスの立ち上がりで、図4に示す如き構成を有する第2 ピット生成部1-2内の一様乱数生成部11は一様乱数 2 を生成する。そして(s,,a,)をアドレスとしてメモリ12から第2ピット生成部1-2で使用す

提出日 平成11年 8月31月

整理番号=P110032

るデータッを取り出し、 $y \ge z$ を比較部12で比較する。このときの比較器12の出力は、 $y \le z$ ならば任意分布乱数xの第2ビットb,は1であり、 $y \ge z$ ならば第7ビットb,は0である。

[0019].

第2ピット生成部1-2は次の clock1のパルスの立ち上がりで(s₁, a₁, b₁) というピットデータを図示しない第3ピット生成部に送り、新たに第1ピット生成部1-1から(s₂, a₂) というピットデータを送られ、このピットデータから第2ピット生成部1-2で次のクロックの第2ピットb₂を生成する。

各ピット生成部も同様に前段のピット生成部から送られたピットデータから当該ピットを生成し、前段のピット生成部から送られたピットデータと当該ピット生成部で生成されたピットを併せて、次段のピット生成部に送る。

[0020]

ただし、第1ピット生成部1-1は初段であるので前段のピット生成部から送られたピットデータではなく、図6のように制御部3からのメモリ選択信号sのみが人力される。第8ピット生成部1-8は最終段であるので、次段にメモリ選択信号sを送る必要がなく図6のようにメモリ選択信号sを取り除いた信号x(x=a, b, \cdots , h)をD/Aコンバータ4に送る。

[0021]

以上の動作により任意分布乱数発生部 1 は制御部 3 からのメモリ選択信号 s が 1 のとき clock 1 のパルスに同期して a p d , (x_1) に従う信号 x , を生成し、制御部 3 からのメモリ選択信号 s が "0" のとき clock 1 のパルスに同期して a p d , (x_2) に従う信号 x , を生成する。

[0022]

図7は任意分布乱数発生部2の構成と動作を表している。任意分布乱数発生器 2はapd、 (x_1) に従う信号 x_1 の生成時間 T_1 とapd。 (x_2) に従う信号 x_2 の生成時間 T_1 を決定する信号1、1、を交互に生成する。

任意分布乱数発生部2も任意分布乱数発生器1と同様に動作する。但し、 clock 1 の代わりに clock 2 を使用する。また、各ピット生成部2-1~2-8内の

提出日 平成11年 8月31日 頁: 9/ 14

整型番号=P110032

[0023]

【数5】

$$pdd(i_1) = \frac{n(T_{11})}{\sum n(T_{11})}$$
 (6)

[0024]

 $psd(i_2)$ も $pdd(i_1)$ と同様に設定する。バルス間隔 T_{12} の分布を個数 $m(T_{12})$ で表したものから、任意分布乱数化成部 2 で使用するデータ $psd(i_2)$ を式(7)により計算する。

[0025]

【数6】

$$psd(i_2) = \frac{m(T_{i_2})}{\sum m(T_{i_2})}$$
 (7)

[0026]

この p d d (i_1) , p s d (i_2) を式 (8) ,式 (9) により試行確率 p c_1 (j_1 , p c_2 (j_2 , r)に変換し任意分布乱数生成部 2 のメモリ 1 2 に終納する。ここで、式 (6) ,式 (7) における i_1 および i_2 は式 (8) では括弧内のように j_2 と r で表されている。但し、ビット信号 j_2 一 1 。 2 、 … , 8 , r=0 , 1 , … , 2^{j_2-1} 一 1 である。ここで、 r は (j-1) 回日までの試行結果により決定される値である。各ビット生成部 2-1 ~ 2 ~ 8 のメモリ 1 2 内へのデータ配置は任意分布乱数生成部 1 と同様に図 5 に示す通りである。

 $\sim [0027]$

整埋番号=P110032

提出日 平成1²1年 8月31日 頁: 10/14

【数7】

$$pc_{i}(i,r) = \frac{pdd((2r+1)\cdot 2^{n-1}) - pdd((2r+2)\cdot 2^{n-1})}{pdd(2r\cdot 2^{n-1}) - pdd((2r+2)\cdot 2^{n-1})}$$
(8)

$$pc_{2}(j,k) = \frac{psd((2r+1)\cdot 2^{s-1}) - psd((2r+2)\cdot 2^{s-1})}{psd(2r\cdot 2^{s-1}) - psd((2r+2)\cdot 2^{s-1})}$$
(9)

[0028]

次に制御部 3 について述べる。制御部 3 の構成を図 8 に示す。制御部 3 は 1 ー T変換部 2 0 、 3 2 ピットのダウンカウンタ 2 1 、メモリ選択信号 1 化成部 2 2 と clock 2 生成部 2 3 が図 8 のように接続されたものである。1 1 1 変換部 2 1 は 1 1 アドレス 1 ピット、データ 1 1 1 と アドレスとして人力し、アドレスに格納されているデータ 1 、 1 (* 1 1 1 or 1 1 1 を 引力する。

[0029]

いま、メモリ選択信号 s が"1" でダウンカウンタ 2 1 のカウンタ値 c を 1 ずつ減算していく。この間、任意分布乱数発生器 1 では a p d p

カウンタ値 c が " 0 " になると、 clock1 のパルスの立ち下がりでメモリ選択信号 s を " 0 " に反転させ、任意分布乱数発生器 1 で a p d z (x z)に従う信号 x 。 を生成する準備を行う。

[00,30]

ダウンカウンタ21はカウンタ値 c が "0" になると clock1 の次のパルスの立ち上がりで新たに T_{12} をカウンタにセットする。

同時にカウンタ値が"O"になると clock 1 の次のパルスの立ち上がりで clo

提出日 平成11年 8月31日

整理番号=P110032

ck2のパルスp2を出力し、任意分布乱数発生器2を動作させ任意分布乱数発生器2で新たにi,を生成する。同時にI-T変換部20はi,をT,, に変換す

る。

以上の動作により、制御部 3 のダウンカウンタ 2 1 には T_{11} と T_{12} が交互にセットされ、 T_{11} と T_{12} に対応してs が "1" と "0" と交互に反転し、a p d 。 (x,)に従う信号 x, とa p d a b に従う信号 x, の生成の制御を行う

[0031]

以下に従来法と本発明装置を用いた計算機による擬似雑音発生のシミュレーションを示す。シミュレーションでは電子レンジからの妨害波のAPD、PDD、PSDを測定し、設定値として用いた。このAPD、PDD、PSDは現実の妨害波から測定したものなので、必然的に式(1)を満たしている。

図9 (a) (b) (c),図10が電子レンジ妨害波とAPDのみを指定した従来法による擬似雑音の結果である。図9 (a) の実線が電子レンジからの妨害液のAPDを表し、従来法によるこのAPDを設定値として用いた。また、図9 (b) の実線が電子レンジからの妨害液のPDFを表している。図9 (c) の実線が電子レンジからの妨害液のPDFを表している。図9 (a) (b) (c) におけるそれぞれの記号が擬似雑音のAPD(○)、CRD(黒△)、PDF(×)を表している。図10は電子レンジ妨害波のPDD(実線)と擬似雑音のPDD(●)を表している。図9 (a) (b) (c),図10からも分かるように、電子レンジの妨害波と擬似雑音とがAPDとPDFでは一致しているが、CRD、PDDでは異なっている。

[0032]

一方、図11(a)(b)(c),図12は電子レンジ妨害波とAPD,PDD,PSDを指定した本発明による擬似雑音の結果である。図11(a)の実線

提出日 平成11年 8月31日 百 12/14

整理番号=P110032

が電子レンジからの妨害波のAPDを表し、このAPDを設定値として用いた。また、図11(b)の実線が電子レンジからの妨害波のCRD、図11(c)の実線がPDFを表している。図11(a)(b)(c)において、それぞれの記号が擬似雑音のAPD(○)、CRD(△)、PDF(×)を表している。図12(a)では実線で電子レンジ妨害波のPDDを表し、図12(b)では、実線で電子レンジ妨害波のPDDを表し、図12(b)において、このPDD、PSDを設定値として発生させた擬似雑音のPDDを○で表し、このPDD、PSDを設定値として発生させた擬似雑音のPDDを○で表し、PSDを×で表している。図11、図12からも分かるように、電子レンジの妨害波と擬似雑音とがAPDとPDFに加えPDD、PSDも一致している。しかし、CRDはなお不一致である。

[0033]

【発明の効果】

以上の説明から明らかなように本発明によれば、比較的簡略化した構成と制御により、時間相関のある非独立事象の擬似雑音をapd(x), $pdd(T_{ij})$ $psd(T_{ij})$ の指定により所型の特性を有するようにに生成することができる。従って、電子機器の耐妨害性の評価等において、実用的効果は極めて人である

【図面の簡単な説明】

【図1】

本発明の原理を説明するためのプロック図である。

[1×12]

擬似雑音発生装置の構成を示すプロック図である。

[図3]

任意分布乱数発生器1の構成例を示すプロック図である。

【図4】

任意分布乱数発生器1,2内の各ビット生成部の構成例を示すプロック図である。

【図5】

各ピット生成部に用いるメモリ内のデータの配置を示した図である。

THE REPORT OF THE PARTY OF THE

提出日 平成11年 8月31日

整理番号=P110032

[図6]

任意分布乱数発生器 1 の構成例と動作例を説明するためのプロック図及びタイムチャートである。

【図7】

任意分布乱数発生器2の構成例と動作例を説明するためのプロック図及びタイムチャートである。

[图8]

制御部3の構成例と動作例を説明するためのプロック図及びタイムチャートである。

[|| 9]

電子レンジ妨害波と振幅確率分布を指定した場合の電子レンジ妨害波と擬似維 音とにおける振幅確率分布(a),交差率分布(b)及び確率密度関数(c)の 従来法による測定例を示す特性図である。

【図10】

電子レンジ妨害波と振幅確率分布を指定した場合の電子レンジ妨害波と擬似雑 音とにおけるパルス幅分布の従来法による測定例を示す特性図である。

【図11】

電子レンジ妨害波と振幅確率分布を指定した場合の電子レンジ妨害波と擬似雑音とにおける振幅確率分布(a)、交差分布(b)、確率密度関数(c)の本発明による測定例を示す特性図である。

【図12】

電子レンジ妨害波と振幅確率分布を指定した場合の電子レンジ妨害波と擬似雑音とにおけるパルス幅分布(a)とパルス間隔分布(b)の本発明による測定例を示す特性図である。

【図13】

本願に用いられる技術用語を説明するためのタイムチャートである。

【符号の説明】

- 1, 2 任意分布乱数発生器
- 3 制御部

提出日 平成11年 8月31日 頁: 14/14

整理番号=P110032

4 D/Aコンバータ

1-1, 1-2, 1-3, …, 1-8 ヒット生成部

1-11, 1-12, …, 1-18 ラッチ

2-1, 2-2, 2-3, …, 2-8 ピット生成部

2-11, 2-12, …, 2-18 ラッチ

11 一樣乱数生成部

12 メモリ

13 比較部

20 I-T変換部

21 ダウンカウンタ

22 メモリ選択信号生成部

23 clock 24.成部

APD, APD, 100 任意分布乱数発生部

PDD。, PSD。, 200 任意分布乱数発生部

提出日 平成11年 8月31日 頁: 1/13

整理番号= P 1 1 0 0 3 2 【書類名】 図面 図面

提出日 平成11年 8月31日 頁: 2/13

整理番号=P110032 [図2]

整理番号=P110032 【図3】

提出日 平成11年 8月31日 頁: 3/13

整理器号=P110032 【図4】

提出日 平成 1 1 年 8 月 3 1 日 頁: 4/13

提出日 平成11年 8月31日 頁: 5/13

整四番号=P110032 【図5】

• • • •			ď,									
第8ピット生成部用メモリメモリ	TKVX F-AY	2	pc ₂ (8,0)	pc ₇ (8,1)			pc ₂ (8,127)	pc ₁ (8,0)			pc ₁ (8,126)	pc _r (8,127)
第8万~	アドレス	S,a,b,,b	0,,0,0	0,0,1			0,1,,1	0,,0,1	• •	••	1,1,0	1,1,,1
	2	, , , , , , , , , , , , , , , , , , ,			:							
					;							
第2.アント生成的 用メホリ	データッ	ጀ	pc ₂ (2,0)	pc ₂ (2,1)	pc ₁ (2,0)	pc ₁ (2,1)						
第2アット年用メルリ	アドレス	S,8	0,0	0,1	1,0	1,1						
生成部用・リ	データソ	8.	pc ₂ (1,0)	pc ₁ (1,0)			. *					
第1アット生成部用メナリ	アドレス	S	0	_							• ,	

提出日 平成11年 8月31日 頁: 6/13

整理浴号=P110032 【図6】

提出日 平成11年 8月31日 頁: 7/13

整理番号=P110032 【図7】

提出日 平成11年 8月31日 頁: 8/13

整理番号= P 1 1 0 0 3 2 【図 8】

整理番号=P110032

提出日 平成11年 8月31日 頁: 9/13

提出口 平成11年 8月31日 頁: 10/13

整理番号- P110032 【図10】

整理番号= P 1 1 0 0 3 2

[図11]

提出口 平成11年 8月31日 頁: 11/13

10-1

104

10.

10.10

10 " E

10.

(c)

PDF

Amplitude[V]

提出日 平成11年 8月31日 頁: 12/ 13

整理番号=P110032

【図12】

(a)

(b)

PDD

PSD

提出日 平成11年 8月31日 頁: 13/13

整型番号=P110032 【図13】

整理番号=P110032

平成11年 8月31日 日 1/1

【書類名】要約書

【要約】

【課題】ノイズの振幅確率分布を指定することができ、同時に指定振幅レベルkでのパルス幅分布とパルス間隔分布を指定することができる擬似維き発生装置を提供する。

【解決手段】指定振幅確率分布を指定レベルで二つに分割して、分割された振幅 確率分布にそれぞれ対応する乱数信号を生成する任意分布乱数生成部と、前記指 定レベルでの指定パルス幅分布、指定パルス間隔分布に従う乱数信号を生成する 任意分布乱数生成部と、前記分割された振幅確率分布に対応する乱数信号を前記 指定レベルでの指定パルス幅分布、前記指定パルス間隔分布に従う信号で選択する制御部と、前記選択された信号をアナログ値に変換するD/Aコンパータとを 備え、前記指定振幅確率分布と前記指定レベルでの前記指定パルス幅分布、前記 指定パルス間隔分布に従う擬似雑音を生成するように構成されている。

【選択図】図1