Arroweemb - Recition Friday - HWI due thurs - HW2 due rext Thus (9/27) Corregue of sepure X1, X2, X3, ... we say Xn -> X if NEND TO AF OF34 1X-X < E Xn~Unif(0, t) Xi indpulled $X_{n} = (-1)^{n} X$, $X \sim N(0,1)$ $\chi_{N} = \begin{cases} \frac{1}{N} & \omega \cdot p \cdot \left| \frac{1}{N^{2}} \right| \\ N & \omega \cdot p \cdot \frac{1}{N^{2}} \end{cases}$

Almost sure convergence Xn -> X almost surry it P[{wan: X,(w) -> X(w)}] = [Conveyer in quadrete mean (L2) $\mathbb{E}[(X^{N}-X)_{J}] \rightarrow 0$ Convergence in probability if YE70 P[|X_-X|]9] P[{w472: | X(w) - X(w) | > E]] Convergue in distribilion Xn-> X in distribution it F, (+) -> F(+) Ht when Fis continuous.

Ex.
$$X_1, X_2, \dots, X_n$$
 (independent identicity distributed $\mathbb{E}[X_i] = \mu$ (identicity $\mathbb{E}[X_i] = \mu$ $\mathbb{E}[X_i] = \mathbb{E}[(X_i - \mu)^2]$)

 $\mathbb{E}[X_n] = \mathbb{E}[\frac{1}{n}(X_n + \mu)]$
 $\mathbb{E}[X_n] = \mathbb{E}[X_n] + \mathbb{E}[X_n] + \mathbb{E}[X_n]$
 $\mathbb{E}[X_n] = \mathbb{E}[X_n] + \mathbb{E}[X_n]$

 $\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \left[X_{1} + \cdots + X_{n} \right]$

= 5

= T(N[x'] + ... + N[x"])

= N2 (02 + ··· 02)

Law of large Numbers

The (week LLN)

$$X_1, X_2, ..., X_n$$
 and iid

Let $X_n = \frac{1}{n} \stackrel{?}{\geq} X_i$

Then $X_n \stackrel{P}{\Rightarrow} E[X_i]$

Central Limit Theorem

Theorem (CLT)

 $X_1, ..., X_n$ iid $E[X_i] = p$
 $X_n = \frac{1}{n} \stackrel{?}{\Rightarrow} X_i$
 $Z_n = \frac{1}{n} \stackrel{?}{\Rightarrow} Z_n \stackrel{?}{\Rightarrow} X_i$
 $Z_n = \frac{1}{n} \stackrel{?}{\Rightarrow} Z_n \stackrel{?}$

$$\frac{Z_{n} \xrightarrow{\lambda} Z_{n} Z_{n} \times N(0,1)}{\lim_{n \to \infty} P\left[Z_{n} \leq Z\right] \to \int_{1/2\pi}^{2\pi} \exp\left(-\frac{x^{2}}{2}\right) dx}$$

$$F_{n}(3) \qquad F(x)$$

