1	TO WHOM IT MAY CONCERN:
2	
3	BE IT KNOWN THAT I, JAMES M. GALVEZ, a
4	citizen of the United States of America, residing in
5	Pasadena, in the County of Los Angeles, State of
6	California, have invented a new and useful improvement
7	in
8	
9	
10	PORTABLE, LED ILLUMINATOR
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	BACKGROUND OF THE INVENTION
2	
3	This invention relates generally to portable
4	illumination devices and more particularly to an
5	improved device wherein LEDs are provided within an
6	elongated, hand-held portable carrier.
7	There is need for improvements in portable
8	illumination devices wherein complexity of electrical
9	circuitry required for power supply to LEDs is reduced
10	and wherein there is no need for a transformer to
11	reduce supply voltage. There is also need for an
12	improved simple, lightweight, rugged device employing
13	an elongated tubular carrier in which a row or rows of
14	LEDs is or are supported, as well as a device having
15	improvements in structure and functions as will be
16	seen.
17	
18	SUMMARY OF THE INVENTION
19	
20	It is a major object of the invention to
21	provide for improvements in portable illumination
22	devices as referred to. Basically, the device
23	comprises:
24	a) an elongated portable carrier including
25	a housing and a longitudinal elongated window,

- b) multiple LEDs carried to emit light
- 2 toward and through the window,
- 3 c) and circuitry associated with the
- 4 housing to supply electrical power to the LEDs, said
- 5 circuitry incorporating resistor, capacitor and diode
- 6 elements to reduce AC input voltage to a level for
- 7 supply to the LEDs.
- 8 As will be seen, the LEDs are preferably
- 9 spaced apart longitudinally to face toward the window,
- 10 the spacing of successive LEDs in a row being at least
- 11 1.75 centimeters, and the illumination window itself
- 12 being at least about 12 to 15 inches long. Two such
- 13 rows of LEDs are preferably provided within a generally
- 14 tubular plastic housing or carrier between 2 % and 4
- 15 centimeters in overall diameter or cross section.
- 16 Another object is to provide a hand grip
- 17 sleeve fitting over one end portion of the generally
- 18 tubular carrier, the voltage reducing circuitry located
- 19 at least partly within that end portion, whereby a non-
- 20 bulky, rugged, reliable, lightweight illumination
- 21 device is achieved. A support hook may be associated
- 22 with the opposite end portion of the carrier, as on a
- 23 second sleeve fitting that opposite end portion.
- 24 These and other objects and advantages of the
- 25 invention, as well as the details of an illustrative

1	embodiment, will be more fully understood from the
2	following specification and drawings, in which:
3	
4	DRAWING DESCRIPTION
5	
6	Fig. 1 is a side elevation showing a
7	preferred device incorporating the invention;
8	Fig. 2 is a view taken on lines 2-2 of Fig.
9	1, showing the LEDs;
10	Fig. 3 is an enlarged section taken on lines
11	3-3 of Fig. 2;
12	Fig. 4 is a view taken on lines 4-4 of Fig.3
13	and
14	Fig. 5 is an LED circuit diagram.
15	
16	DETAILED DESCRIPTION
17	
18	In Figs. 1 and 2, the illumination device 10
19	includes an elongated portable carrier 11, having a
20	housing and a longitudinally elongated window 12'. The
21	housing may be integrated with the window, and may
22	comprise a generally tubular body, or tube 12 which may
23	consist of rigid, transparent, plastic material. The
24	window 12', i.e. exposed section of the tube 12.

- 1 extends between or is exposed between locations 13 and
- 2 14 shown in Fig. 2.
- 3 Multiple LEDs 20 are carried to emit light
- 4 through the window, generally in direction 21,
- 5 indicated in Fig. 1. The length of the window, for
- 6 example between 12 and 15 inches, achieves a
- 7 concentrated light beam of that width indicated at 22
- 8 in Fig. 3. The overall diameter of the tube is
- 9 preferably between 2 1/4 and 4 centimeters.
- 10 The LEDs are typically carried by a thin
- 11 circuit board 24 extending within the tube 12, with
- 12 board edges 25 engaging the tube bore 26, for stable
- 13 locations of the board and LEDs. The LEDs 20 are
- 14 indicated as spaced apart in two rows 27a and 27b to
- 15 face the internal side of the window 12'. The LEDs are
- 16 preferably alike, whereby the beam intensity is
- 17 approximately the same across width 22 and along the
- 18 window length. The successive LED spacing ''s'' in
- 19 each row is at least about 1.75 centimeters, and
- 20 preferably about 2.00 centimeters, for optimum
- 21 illumination.
- 22 Figs. 3 and 4 show LED wires or terminals 30
- 23 and 31 projecting through the board, to mount the LEDs,
- 24 and engaging spaced planar electrical conductor areas
- 25 32 on the back side of the board. Note gaps 32a
- 26 between 32. The LEDs are electrically connected in

- 1 series, as is seen in Fig. 5. That view also shows
- 2 resistor, capacitor, and diode circuitry at 36 for
- 3 reducing voltage supplied at 33 from 120 volts to about
- 4 12 volts applied to the LEDs.
- 5 The circuitry 36 includes branch 38
- 6 containing resistor 39 in series with parallel
- 7 connected diodes 40 and 41, reversely poled, as shown.
- 8 Branch 42 includes resistor 43 in series with parallel
- 9 connected diodes 44 and 45, reversely poled as shown.
- 10 Diodes 41 and 45 are connected via DC carrying line 46
- 11 to a circuit 47 at one end 48 of the LED sequence.
- 12 Diodes 40 and 44 are connected via line 50 to the
- 13 opposite end 51 of the LED sequence. A capacitor 57
- 14 and a transient suppressor 58 are connected across
- 15 branches 38 and 42; and circuit 47 includes a parallel
- 16 capacitor 54 and resistor 55, and a voltage regulator
- 17 56. All LEDs may be identified as NSPW500B5
- 18 components, and are connected in series. Typically,
- 19 voltage drops from about 107 volts to 30 volts across
- 20 the LED sequence.
- 21 A protective sleeve 60 fits over one end
- 22 portion of the tube or body 12 as shown in Figs. 1 and
- 23 2. It encloses the circuitry 36 other than the diodes,
- 24 such circuitry typically mounted on the circuit board,
- 25 and sleeve 60 may be bonded to the tube. It provides
- 26 a grip for the user's hand manipulation. Current

1 supply wire 70 extends through the grip, to an

2 electrical plug 71, connectable to 60 cycle, 120 volt

3 AC. A protective sleeve 72 is received on the opposite

4 end portion of tube 12, and may carry a hook 74, to

5 hang the illumination apparatus onto equipment being

6 worked on.