

www.untidar.ac.id

APLIKASI INTEGRAL

Damar W. Teknologi Informasi

GEDUNG dr.H.R. SUPARSONO

1 Menghitung Luas Daerah

a. Misalkan daerah

$$D = \{(x, y) \mid a \le x \le b, 0 \le y \le f(x)\}$$

Luas D = ?

Langkah:

1. Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi f(x) dan alas (lebar) Δx

$$\Delta A \approx f(x) \Delta x$$

2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh:

Luas D = A =
$$\int_{a}^{b} f(x) dx$$

Contoh 1 : Hitung luas daerah yang dibatasi oleh kurva $y = x^2$ sumbu x, dan x = 2.

Luas irisan

$$\Delta A \approx x^2 \Delta x$$

Luas daerah

$$A = \int_{0}^{2} x^{2} dx = \frac{1}{3} x^{3} \bigg]_{0}^{2} = \frac{8}{3}$$

b) Misalkan daerah

$$D = \{(x, y) \mid a \le x \le b, g(x) \le y \le h(x)\}$$

Luas
$$D = ?$$

Langkah:

1. Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(x)-g(x) dan alas(lebar) Δx .

$$\Delta A \approx (h(x) - g(x))\Delta x$$

2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh:

Luas D = A =
$$\int_{a}^{b} (h(x) - g(x)) dx$$

Contoh 2: Hitung luas daerah yang dibatasi oleh garis y = x + 4 dan parabola $y = x^2 - 2$

Titik potong antara garis dan parabola

$$x + 4 = x^2 - 2$$

$$x^2 - x - 6 = 0$$

$$(x-3)(x+2) = 0$$

$$x = -2, x = 3$$

Luas irisan

$$\Delta A \approx ((x+4)-(x^2-2))\Delta x$$

Sehingga luas daerah:

$$A = \int_{-2}^{3} ((x+4) - (x^2 - 2)) dx = \int_{-2}^{3} (-x^2 + x + 6) dx$$
$$= -\frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x \Big|_{2}^{3} = \frac{125}{6}$$

Catatan:

- Jika irisan dibuat tegak lurus terhadap sumbu x, maka tinggi irisan adalah kurva yang terletak disebelah atas dikurangi kurva yang berada disebelah bawah.
- Jika batas atas dan bawah irisan berubah untuk sembarang irisan di D, maka daerah D harus dibagi dua atau lebih.

Contoh 3: Hitung luas daerah yang dibatasi oleh sumbu x,

$$y = x^2 \, dan \, y = -x + 2$$

Jawab:

Titik potong

$$x^{2} = -x + 2 \longrightarrow x^{2} + x - 2 = 0 \longrightarrow (x+2)(x-1) = 0$$

$$\longrightarrow x = -2, x = 1$$

Jika dibuat irisan tegak, maka daerah harus dibagi menjadi dua bagian

Luas irisan I

$$\Delta A_1 \approx x^2 \Delta x$$

Luas irisan II

$$\Delta A_2 \approx (-x+2)\Delta x$$

Luas daerah I

$$A_1 = \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big|_0^1 = \frac{1}{3}$$

Luas daerah II

$$A_2 = \int_{1}^{2} -x + 2 \, dx = -\frac{1}{2} x^2 + 2x \big|_{1}^{2}$$
$$= (-2 + 4) - (-\frac{1}{2} + 2) = \frac{1}{2}$$

Sehingga luas daerah

$$A = A_1 + A_2 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

Contoh 4: Hitung luas daerah yang dibatasi oleh

$$x = 3 - y^2 \quad \text{dan} \quad y = x - 1$$

Jawab:

Titik potong antara garis dan parabola

$$y+1=3-y^{2}$$

 $y^{2}+y-2=0$
 $(y+2)(y-1)=0$
 $y=-2 \text{ dan } y=1$

Luas irisan

$$\Delta A \approx ((3-y^2)-(y+1))\Delta y$$

Sehingga luas daerah:

$$L = \int_{-2}^{1} ((3 - y^2) - (y + 1)) dy = \int_{-2}^{1} (-y^2 - y + 2) dy$$
$$= -\frac{1}{3}y^3 - \frac{1}{2}y^2 + 2y \Big|_{-2}^{1} = \frac{9}{2}.$$

Catatan:

- Jika irisan sejajar dengan sumbu x, maka tinggi irisan adalah kurva yang terletak disebelah kanan dikurangi kurva yang berada disebelah kiri.
- Jika batas kanan dan kiri irisan berubah untuk sembarang irisan di D, maka daerah D harus dibagi dua atau lebih

2 Menghitung volume benda putar

2.1 Metoda Cakram

a. Daerah $D = \{(x, y) \mid a \le x \le b, 0 \le y \le f(x)\}$ diputar terhadap sumbu x

? Volume benda putar

Untuk menghitung volume benda putar gunakan pendekatan iris, hampiri, jumlahkan dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas Δx diputar terhadap sumbu x akan diperoleh suatu cakram lingkaran dengan tebal Δx dan jari-jari f(x),

 Δx

sehingga $\Delta V \approx \pi f^2(x) \Delta x$

$$V = \pi \int_{a}^{b} f^{2}(x) \, dx$$

Catatan:

jari-jari = jarak dari sumbu putar ke batas daerah

UNIVERSITAS TIDAR

Contoh: Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh $y = x_r^2$ sumbu x, dan garis x = 2 diputar terhadap sumbu x

Jika irisan diputar terhadap sumbu x akan diperoleh cakram dengan jari-jari x^2 dan tebal Δx

Sehingga

$$\Delta V \approx \pi (x^2)^2 \Delta x = \pi x^4 \Delta x$$

Volume benda putar

$$V = \pi \int_{0}^{2} x^{4} dx = \frac{\pi}{5} x^{5} \Big|_{0}^{2} = \frac{32}{5} \pi$$

b. Daerah $D = \{(x,y) \mid c \le y \le d, \ 0 \le x \le g(y)\}$ diputar terhadap sumbu y

? Volume benda putar

Untuk menghitung volume benda putar gunakan pendekatan iris, hampiri, jumlahkan dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi g(y) dan alas diputar terhadap sumbu y akan diperoleh suatu cakram lingkaran dengan tebal dan jari-jari g(y).

sehingga

$$\Delta V \approx \pi g^{2}(y) \Delta y$$

$$\downarrow \qquad \qquad \downarrow$$

$$V = \pi \int_{c}^{d} g^{2}(y) dy$$

Contoh : Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh $y = x_r^2$ garis y = 4, dan sumbu y jika diputar terhadap sumbu y

Jika irisan dengan tinggi \sqrt{y} dan tebal Δy diputar terhadap sumbu y akan diperoleh cakram dengan jari-jari \sqrt{y} dan tebal Δy

Sehingga

$$\Delta V = \pi (\sqrt{y})^2 \Delta y = \pi y \Delta y$$

Volume benda putar

$$V = \pi \int_{0}^{4} y \, dy = \frac{\pi}{2} y^2 \mid_{0}^{4} = 8\pi$$

Aplikasi Ilustrasi metode kulit tabung

Analisis Partisipatif dan/ atau Hasil Proyek FINAL PROJECT (PENILAIAN 50%)

Buatlah analisis tentang studi kasus disekitar Anda dalam bentuk makalah sederhana yang diselesaikan dengan materi yang telah kita pelajari

Kelompok 1: Turunan, Aturan pencarian turunan atau Turunan trigonometri

Kelompok 2: Aturan rantai atau Notasi Leibniz

Kelompok 3: Turunan tingkat tinggi

Kelompok 4: Maksimum dan minimum fungsi atau Kemonotonan dan

cekungan

Kelompok 5: Maksimum dan minimum local atau Limit berhingga, limit tak

hingga

Kelompok 6: Integral tak tentu

Kelompok 7: Aplikasi Integral dalam Luas Daerah dan Volume

Dikumpulkan sebelum UAS

PEMBAGIAN KELOMPOK KALKULUS

NPM	KELOMPOK
2310506002	
2310506004	
2310506005	1
2310506006	
2310506007	
2310506008	
2310506009	
2310506010	2
2310506011	
2310506012	

2310506013	
2310506014	
2310506015	3
2310506016	
2320506017	
2320506018	
2320506020	
2320506021	4
2320506022	
2320506024	

2320506025	
2320506026	
2320506027	5
2320506028	
2320506029	
2320506030	
2320506031	
2320506032	6
2320506034	
2320506035	
2320506037	
2320506038	
2320506039	
2320506046	
2330506052	7
2330506054	
2330506058	
2330506068	

SELESAI

THANKS