Linear Algebra L2 - Affine equation systems

Alexander Binder

February 25, 2023

Learning Goals

· Solving affine equation systems

Task 1

Do this one together:

$$x + 2y - z = 3$$
$$2x - 3y + 2z = 5$$
$$-3x + y + 5z = 13$$

Solve the following affine equation systems

$$3x + 4y = 1$$
$$2x + 3y = 12$$

$$3x - 2y = 4$$
$$-6x + 4y = 7$$

$$2x + y + z - 6 = 0$$
$$4y + z + x = 5$$
$$2x + z + 3y = 7$$

Task 2

Modelling Problem: Solve using Gauss-Jordan elimination.

- are there linear relationships?
- If so, understanding and deriving constraints

In 2010, the average salary for all accountants together in the two cities San Diego, California, and Salt Lake City, Utah, was \$45091.50.

The average salary in San Diego alone, however, was \$5231 greater than the average salary in Salt Lake City alone. What is the average salary of an accountant in each city, assuming that there are the same number of accountants in each city?

Task 3

Modelling Problem: Solve using Gauss-Jordan elimination. A chemist has prepared two acid solutions, one of which is 2% by volume, the other 7% by volume. How many cubic centimetres of each should the chemist mix together to obtain $40cm^3$ of a 3.2% acid solution?

Hint: If we multiply acidity per volume with a certain volume, we get a total amount of acid in this volume. If we sum 2 total amounts, we get another total amount of acid - which is the total amount for the union of the two volumes.

In order to get back to an acidity per volume, we have to divide by the volume.

Task 4

In a hack and slay game, you need bags of three items which you can use to increase your attack, defence and dexterity points. The counts of each item are x, y and z respectively.

The contributions of each item are shown below:					
item	Attack	Defense	Dex		
Aunties Old Table Cloth (x)	-20	40	10		
Rusty old looking dagger (y)	50	10	-10		
Geylang Gift Shop Crystal (z)	10	10	60		

In order to clear a final boss, you need to have 320 attack and 280 defense stats. Note that the stats scale linearly on the item equipped. Also you have 16 slots, which allow you to equip 16 items in total.

PS: Isnt it weird how a small monster can drop a huge item on death?

- a) Derive an affine equation. Let us check in to your progress after 5 minutes .
- b) and solve it.

Task 5

Solve the following affine equation systems. Follow these steps:

- a) Write down the augmented matrix [A|b] of the equation system above
- b) Compute the reduced row echelon form.
 - Show as an intermediate step the augmented matrix when for the first time the zero-th column A[:, 0] became a one-hot vector after performing transformations.
 - Show as an intermediate step the augmented matrix when for the first time the augmented matrix is in row echelon form.
 - Show as final answer the augmented matrix in reduced row echelon form.
- c) Provide one solution which solves the equation system.
- d) Write the set of all solutions as a single vector like this, if there is only one solution

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$

or an affine equation, if there is more than one solution, like this

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} + s \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}$$

or like this

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} + s \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} + t \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

or state that there is no solution, if it has no solution.

$$x + y + z = 1$$
$$2x - y + z = -1$$
$$x + 3y - z = 7$$

$$3x - 4y = 8$$
$$x + y + z = 2$$
$$2x - 5y - z = 6$$

Task 6

Solve these affine equation systems.

Again, write the set of all solutions as a single vector like this, if there is only one solution

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$

or an affine equation, if there is more than one solution, like this

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} + s \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}$$

or like this

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} + s \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} + t \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

or state that there is no solution, if it has no solution.

$$3x_0 - 9x_1 - 6x_2 + 2x_3 = 5$$
$$-2x_0 + 3x_1 + 4x_2 - 2x_3 = -2$$

$$2x_0 - 6x_1 - 6x_2 + 3x_3 = 5$$
$$-x_0 - 2x_1 + 3x_2 - 2x_3 = -2$$
$$2x_0 + 4x_1 - 6x_2 + 4x_3 = 7$$

Task 7

Define 2 or 3 equations in 3 variables with bias terms of your own choosing and solve it!

Verify your obtained solution x by checking that it satisfies Ax = b.

Do you need a Prof to write such things down?

Task 1
Do this one together:

$$x + 2y - z = 3$$

$$2x - 3y + 2z = 5$$

$$-3x + y + 5z = 13$$
Solve the following affine equation systems

$$3x + 4y = 1$$

$$2x + 3y - 12$$

$$3x - 2y = 1$$

$$-6x + 4y = 7$$

$$2x + y + z - 6 = 0$$

$$4y + z + x - 5$$

$$2x + z + 3y = 7$$

$$2x + y + z - 6 = 0$$

$$4y + z + x - 5$$

$$2x + z + 3y = 7$$

$$2x + y + z - 6 = 0$$

$$4y + z + x - 5$$

$$2x + z + 3y = 7$$

$$2x + y + z - 6 = 0$$

$$4y + z + x - 5$$

$$2x + z + 3y = 7$$

$$2x + y + z - 6 = 0$$

$$4y + z + x - 5$$

$$2x + z + 3y = 7$$

$$-3 \quad 1 \quad 5 \quad 13$$

$$-3 \quad 1 \quad 5$$

$$= \begin{bmatrix} 1 & 2 & -1 & 3 & 7 & R_2 \times 1 + R_0 & 1 + Cu1 > = 0 \\ 0 & 1 & 0 & \frac{15}{7} & \frac{21}{6} + 3 & = \frac{13}{2} \\ 0 & 0 & 1 & \frac{21}{6} \end{bmatrix}$$

C-2)+2=0

一些十号 = 2,21

= [1 \ 2 0 2.75] R1 × (-\frac{1}{2}) + R6	(-シ)+(シ)=0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0·25 + 2.75 = 2.5
L00 (10-5)	
= [1 0 0 2.5]	
0 1 0 1 2	
1 2	
1. x= 2.5, y= 0.5, z= 0.5	
Task 2	
Modelling Problem: Solve using Gauss-Jordan elimination. • are there linear relationships ?	
If so, understanding and deriving constraints	
In 2010, the average salary for all accountants together in the two cities San Diego, California, and Salt Lake City, Utah, was \$45091.50. The average salary in San Diego alone, however, was \$5231 greater than the average salary in Salt Lake	
City alone. What is the average salary of an accountant in each city, assuming that there are the same number of accountants in each city?	
Unfinished business	
UNTUNIOC O W	

Took 5

Modelling Problem: Solve using Gauss-Jordan elimination. A chemist has prepared two acid solutions, one of which is 2% by volume, the other 7% by volume. How many cubic centimetres of each should the chemist mix together to obtain 40-m² of a 3.2% acid solution?

Hint: If we multiply acidity per volume with a certain volume, we get a total amount of acid in this volume. If we sum 2 total amounts, we get another total amount of acid - which is the total amount for the union of the two volumes.

In order to get back to an acidity per volume, we have to divide by the volume.

2/.
$$V_0 + 7/. V_1 = 3.2 \% (V_0 + V_1)$$
 $V_0 + V_1 = 40$

2/. $V_0 - 3.2 \% V_0 + 7/. V_1 - 3.2 \% V_1 = 0$
 $V_0 + V_1 = 40$
 $V_0 + V_1$

.. Ans = Take 30 4 cm of No and 9.6 cm of V,

In a hack and slay game, you need bags of three items which you can use to increase your attack, defence and dexterity points. The counts of each item are x, y and z respectively.

The contributions of each item are shown below:

Aunties Old Table Cloth (x) -20 40 10

Rusty old looking dagger (y) 50 10 -10

Gelylang Gift Shop Crystal (z) 10 10 60

In order to clear a final boss, you need to have 320 attack and 280 defense stats. Note that the stats scale linearly on the Item equipped. Also you have 16 slots, which allow you to equip 16 items in total.

PS: Isnt it weird how a small monster can drop a huge item on death?

a) Derive an affine equation. - Let us check in to your progress after 5 minutes .

a) Derive an affine equation Let us check in to your progress after 5 minutes . b) and solve it.	
	1
-20x + 50y + 10z = 320	
40x + log + 102 = 280	
x+y+2=16	
<u> </u>	
[-20 50 10 320] Swap R2 and Ro	
40 10 10 280	
= 1 1 1 16 7 RoxC-40) + R1	-4040=0
40 10 10 280	-40+10=-30
-2° 50 10 320	-40 +10 =-30
	-6to + 280= - 360
= 1 1 1 16 7 Rox(20) + R2 0 -330 - 360 -20 50 10 1 320	
0 -330 -360	20+6-20)=0
20 SO 10 320	20+50=70
	20+10=30
= [1	320 + 320 = 640
0 - 30 - 30 - 360	
0 70 30 640	-30+, (-30) =1
	-30 ÷ (-30) = \
= [-3Go = C-30) = 12
0 1 1 12	
L 0 70 30 640	-70+70=0
	-70+30=-40

-8to +6to=-200

-40°, (-40) =1 -200: (-40) =J

:. x = 4, y = 7, Z = 5

Task 5 Solve the following affine equation systems. Follow these steps: a) Write down the augmented matrix [Alb] of the equation system above b) Compute the reduced row echelon form. • Show as an intermediate step the augmented matrix when for the first time the zero-th column A[:, 0] became a one-hot vector after performing transformations. • Show as an intermediate step the augmented matrix when for the first time the augmented matrix is in row echelon form. • Show as final answer the augmented matrix in reduced row echelon form. c) Provide one solution which solves the equation system. d) Write the set of all solutions as a single vector like this, if there is only one solution

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$

or an affine equation, if there is more than one solution, like this

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ v_1 \end{bmatrix} + s \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}$$

or like this

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix} + s \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} + t \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

2

or state that there is no solution, if it has no solution.

$$x + y + z = 1$$
$$2x - y + z = -1$$
$$x + 3y - z = 7$$

$$3x - 4y = 8$$
$$x + y + z = 2$$
$$2x - 5y - z = 6$$

Ci)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 1 & -1 \\ 1 & 3 & -1 & 7 \end{bmatrix}$$
 $\begin{cases} c & x & c - 2 & 1 \\ 2 & -1 & 1 & -1 \\ 1 & 3 & -1 & 7 \end{cases}$

$$(-2)+2=0$$

 $(-2)+(-1)=-3$
 $(-2)+(-1)=-3$

$$(-1)+1=0$$

 $(-1)+3=2$
 $(-1)+(-1)=-2$
 $(-1)+7=6$

6-6748=2

Sum of vectors - [x] - [16] + 4 - 3]

- 10 7 16 7

-> one-dim affine space (Z=t)

y= -= - + - + +

(-2) + 2 = 0

C-1>+1=0

C=J+2=4

That 6
Both trees after equation system.

Again, with the set of all obtaines as a single vector like this. If there is only one substant
$$A_{pain}$$
, with the set of all obtaines as a single vector like this. If there is only one substant A_{pain} , with the set of all obtaines as a single vector like this. If there is only one substant like the interpretation of the processor of the processo

The solution if a two-dim atthe space
$$(x_2 t)$$

$$x_0 = 1/3 + 2t - 4/34$$

$$x_1 = -4/9 - 2/94$$
Sum of vector = $\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -4/9 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4/3 \\ -1/4 \\ 0 \\ 0 \end{bmatrix}$

$$= \begin{bmatrix} 2 -6 -6 & 3 & 5 \\ -1 -2 & 3 -2 & -2 \\ 2 & 4 -6 & 4 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 -6 -6 & 3 & 5 \\ 0 -5 & 0 & -1/2 & 11/2 \\ 2 & 4 -6 & 4 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 -6 -6 & 3 & 5 \\ 0 -5 & 0 & -1/2 & 11/2 \\ 2 & 4 -6 & 4 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 2 -6 -6 & 3 & 5 \\ 0 -5 & 0 & -1/2 & 11/2 \\ 0 & 10 & 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 -3 -3 & 3/2 & 5/2 \\ 0 -5 & 0 -1/2 & 11/2 \\ 0 & 10 & 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 -3 -3 & 3/2 & 5/2 \\ 0 -5 & 0 -1/2 & 11/2 \\ 0 & 10 & 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 -3 -3 & 3/2 & 5/2 \\ 0 -5 & 0 -1/2 & 11/2 \\ 0 & 10 & 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 -3 -3 & 3/2 & 5/2 \\ 0 -5 & 0 -1/2 & 11/2 \\ 0 & 10 & 0 & 1 & 2 \end{bmatrix}$$

Ans: First time one-hot vector

-6-2=-3

3-,2 = 3/2 5-2=5/2

(-5)=(-5)=(からしいる 1/2=(-5)=-10