TEORÍA DE LA DECISIÓN Exámenes

Curso 2019/2020 - 1ª Semana

Un problema de decisión consta de dos acciones posibles a_1 y a_2 y tres estados de la naturaleza θ_1, θ_2 y θ_3 . Las pérdidas asociadas son

$$\begin{array}{ccccc} \theta_1 & \theta_2 & \theta_3 \\ a_1 & 4 & 0 & 1 \\ a_2 & -1 & 3 & 2 \end{array}$$

- A) Determinar la acción aleatorizada minimax y el valor del problema de decisión.
- B) Determinar la acción aleatorizada óptima con el criterio de Savage.
- C) Determinar la acción Bayes frente a cada distribución a priori π sobre los estados de naturaleza. Deducir la distribución menos favorable π_0 y el mínimo riesgo Bayes frente a π_0 .

Antes de tomar la decisión se puede realizar un experimento con dos resultados posibles x_1 o x_2 , cuyas probabilidades, según los estados de la naturaleza son:

- D) Determinar la regla de decisión Bayes frente a cada distribución π sobre los estados de la naturaleza.
- E) Calcular los riesgos frente a π de las reglas de decisión que son reglas Bayes para alguna distribución π .

Solución:

A) Para la decisión aleatorizada a = (a, 1 - a), las funciones de pérdida son

$$L(\theta_1, \mathbf{a}) = 5a - 1$$
 $L(\theta_2, \mathbf{a}) = -3a + 3$ $L(\theta_3, \mathbf{a}) = -a + 2$

Se tiene que

$$\max_{\theta \in \Theta} L(\theta, \boldsymbol{a}) = \begin{cases} -3a + 3 & a \le 1/2 \\ 5a - 1 & a > 1/2 \end{cases}$$

Por tanto, se tiene que el valor del problema de decisión es

$$V = \min_{\boldsymbol{a} \in A^*} \max_{\theta \in \Theta} L(\theta, \boldsymbol{a}) = 3/2$$

y se consigue con la acción aleatorizada a = (1/2, 1/2).

B) La función de decepción viene dada para cada estado de naturaleza y cada acción aleatorizada $\mathbf{a} = (a, 1-a)$, por

$$D(\theta_1, \mathbf{a}) = 5a$$
 $D(\theta_2, \mathbf{a}) = -3a + 3$ $L(\theta_3, \mathbf{a}) = -a + 1$

TEORÍA DE LA DECISIÓN Exámenes

Se trata de aplicar ahora el criterio minimax. Se tiene que

$$\max_{\theta \in \Theta} D(\theta, \mathbf{a}) = \begin{cases} -3a + 3 & a \le 3/8 \\ 5a & a > 3/8 \end{cases}$$

cuyo mínimo se alcanza en a = 3/8. Por tanto, la acción aleatorizada óptima con el criterio de Savage es a = (3/8, 5/8).

C) Sea $\pi = (\pi_1, \pi_2, 1 - \pi_1 - \pi_2)$ una distribución a priori sobre los estados de naturaleza, que debe verificar $0 \le \pi_1 + \pi_2 \le 1$. Sabemos que, para cada distribución a priori sobre los estados de naturaleza, existe una decisión no aleatorizada que alcanza el mínimo riesgo Bayes, dado que el conjunto de decisiones es finito y el número de estados también. Para cada distribución a priori π , se tiene que

$$L(\pi, a_1) = 3\pi_1 - \pi_2 + 1$$
 $L(\pi, a_2) = \pi_1 + \pi_2 + 2$

Se trata de dos planos que se cortan a lo largo de la recta

$$\pi_2 = \pi_1 - \frac{1}{2}$$

Por tanto, se tiene que

- Si $0 \le \pi_1 + \pi_2 \le 1, \pi_2 > \pi_1 \frac{1}{2}$, entonces $r(\pi) = 3\pi_1 \pi_2 + 1$ y la acción Bayes es a_1 .
- Si $0 \le \pi_1 + \pi_2 \le 1$, $\pi_2 = \pi_1 \frac{1}{2}$, entonces $r(\pi) = 2\pi_1 + \frac{3}{2}$ y tanto a_1 como a_2 , como todas las acciones aleatorizadas son acciones Bayes.
- Si $0 \le \pi_1 + \pi_2 \le 1, \pi_2 < \pi_1 \frac{1}{2}$, entonces $r(\pi) = \pi_1 + \pi_2 + 2$ y la acción Bayes es a_2 .

Sabemos que la distribución menos favorable hace que la acción minimax también sea Bayes. Como la acción minimax es aleatorizada, a = (1/2, 1/2), entonces la única posibilidad es que estemos en el segundo caso de los anteriores. Es decir, la distribución menos favorable debe verificar

$$0 \le \pi_1 + \pi_2 \le 1, \pi_2 = \pi_1 - \frac{1}{2}$$
 y $r(\pi) = 2\pi_1 + \frac{3}{2}$

y, con estas condiciones, se trata de maximizar dicho riesgo Bayes, que aumenta con π_1 . Por tanto, se tiene que debe ser

$$\pi_0 = (3/4, 1/4)$$
 v $r(\pi_0) = 3$