

Recall that for a discrete random variable 4, the distribution is given by its p.m.f, : fy(y)=P(4=y).

2

For our Biromial example, the possible values of the estimator out are is , is , is , is , is , is

Also, $P(\hat{\phi}^{MC} = \frac{14}{16}) = P(X = 14) = \binom{16}{14} \stackrel{14}{\phi}^{M} (1 - \phi)^{16-14}$

the only way the estimater would be is is if we absence x=14

A table to summarize the distribution of pale:

P(B) = 0 (16) 6 (1-6) (16)

Questions we might ask about the sampling distribution:

1) Is $E[\hat{\Theta}] = \Theta$? (On overage across all samples will we recover the correct value of Θ ?)

Defilf E[6]=0 ô is said to be an unbiased estimator of 0.

Def.: The bias of $\widehat{\Theta}$ as an estimator of $\widehat{\Theta}$ is

Bras($\widehat{\Theta}$) = $E(\widehat{\Theta})$ - $\widehat{\Theta}$. We want bias absente \widehat{O} $E(\widehat{\Theta}) = E(\widehat{A}) = \frac{1}{6} \cdot E(X) = \frac{1}{6} \cdot n\widehat{\Theta} = \widehat{\Theta}$. For binomial model, \widehat{G}^{ME} is unbiased,

