Rate-enhancing roles of water molecules in methyltrioxorhenium-catalyzed olefin epoxidation by H₂O₂

Bryan R. Goldsmith, Taeho Hwang, Stefan Seritan, Baron Peters and Susannah L. Scott

"Greening" the Ethylene Oxide Process

replace
$$C_2H_4 + \frac{1}{2}O_2 \rightarrow C_2H_4O \ (+ 2 CO_2, 15 \%)$$

by
$$C_2H_4 + H_2O_2 \rightarrow C_2H_4O + H_2O$$

CsRe-12 wt.% Ag/ α -Al₂O₃

heterogeneous catalyst 10 – 30 bar, 200 – 260 °C

CH₃ReO₃ (methyltrioxorhenium, MTO)

homogeneous catalyst

 C_2H_4O selectivity $\approx 100 \%$ No H_2O_2 decomposition Works with higher olefins (e.g., C_3H_6) $20-40 \, ^{\circ}C$, $50-60 \, \text{bar}$

A. Ayame et al. Appl. Catal. A 244 (2003)

M. Ghanta et al. Ind. Eng. Chem. Res., 52 (2013)

Methyltrioxorhenium activates H₂O₂ for oxygen atom transfer

J. H. Espenson, *Chem. Comm.* 479 (1999)W. A. Herrmann, R. W. Fischer, J. D. G. Correia, *J. Mol. Catal.* 94 (1994)

The 'clean' spectra of MTO make it amenable to kinetic studies

¹H NMR spectra recorded at 3 minute intervals, 23.0 °C

2.60

2.55 ppm

T. Hwang*, B. R. Goldsmith*, B. Peters, S. L. Scott, *Inorg. Chem.* 52 (2013)

2.80

UV-vis spectra recorded at 1 minute intervals, 25.0 °C

$$\boldsymbol{A}_t = \boldsymbol{A}_{\scriptscriptstyle \infty} + \alpha \boldsymbol{e}^{-\boldsymbol{k}_{\text{fast}}t} + \beta \boldsymbol{e}^{-\boldsymbol{k}_{\text{slow}}t}$$

$$\mathbf{A}_{t} = \mathbf{A}_{\infty} + \alpha (1 - \mathbf{e}^{-k_{fast}t}) + \beta \mathbf{e}^{-k_{slow}t}$$

Although MTO is a highly studied system, many discrepancies remain between experiment and theory

Thermodynamics

Calculated	Experimental	
$\Delta H_1 > 0$	$\Delta H_1 < 0$	*JACS, 2015 , 137, 9604 *Inorg. Chem., 2013 , 52, 13904 Chem. Eur. J. 2009 , 15, 1862 (in aq. CH ₃ CN) Inorg. Chem. 2008 , 48, 307 (in H ₂ O) JACS, 2007 , 129, 15794 (in aq. THF) JACS, 2001 , 123, 2365 (in gas phase)
$\Delta S_1 < 0$	$\Delta S_1 > 0$	
$\Delta G_1 > 0$	$\Delta G_1 < 0$	
$\Delta G_1 > \Delta G_2$	$\Delta G_1 < \Delta G_2$	
calc. $\Delta H_2 = \exp. \Delta G_2$		Angew. Chem. Int. Ed. 1998 , 37, 2211 (gas phase)

claimed "excellent agreement"

Kinetics

 $\Delta H_1^{\dagger} > 100 \text{ kJ mol}^{-1}$ (exp. 24.5 kJ mol $^{-1}$)

Besides the thermodynamic and kinetic discrepancies, the remarkable water-dependence has yet to be explained

$$+ H2O2 \xrightarrow{CH3ReO3} + H2O$$
15 °C, CD₃CN(aq)

Strong solvent effect on the *observed* rate

$$X = 1 - \exp(-k_{\text{obs}}t)$$

$$k_{\text{obs}} = -k[H_2O]$$

Benchmark the thermodynamics and kinetics of MTO-catalyzed cyclohexene epoxidation: The key role of H₂O

Density-functional theory

Microkinetic modeling

Experimental kinetic measurements

UV-vis, ¹H NMR, proton inventory

In acetonitrile solvent with 1–4 M [H₂O]

B. R. Goldsmith, T. Hwang, S. Seritan, B. Peters, S. L. Scott, *J. Am. Chem. Soc.* 137 (2015) T. Hwang, B. R. Goldsmith, B. Peters, S. L. Scott, *Inorg. Chem.* 52 (2013)

First-principles computational approach

Range separated exchange-correlation functional ωB97X-D

J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008)

Def2-TZVP basis set, with 2 optimized f-orbitals for Re

D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta, 77 (1990)

Include implicit acetonitrile solvation effects

Geometries optimized in a polarizable continuum model (CPCM) Tomasi, B. Mennucci, R. Cammi, *Chem. Rev.* 105 (2005)

Ideal gas-phase entropies corrected for solvation

D. H. Wertz J. Am. Chem. Soc. 102 (1980)

Semi-classical proton tunneling corrections $\Gamma_{\rm i}$ and experimental ${\rm H_2O}$ concentration included in reported thermodynamic and activation parameters

B. R. Goldsmith, T. Hwang, S. Seritan, B. Peters, S. L. Scott, J. Am. Chem. Soc. 137 (2015)

Cyclohexene epoxidation: Experiments and theory indicate that water only weakly accelerates the kinetics

UV-vis experiments suggest water dramatically accelerates the formation of peroxo complexes A and B

 $CH_3ReO_3 + H_2O_2 + H_2O$ UV-vis, 25.0 °C, CH₃CN

$$A_t = A_{\infty} + \alpha (1 - e^{-k_{fast}t}) + \beta e^{-k_{slow}t}$$

Free energy profiles for the formation of **A** and **B**

Initial rate predictions too slow by 8 orders of magnitude!

Activation free energy for the formation of **A** and **B** vs. number of water in the transition states

-H--OH

"linearity of H-bonds in the transition state balances the entropic penalty of bringing four molecules together"

Proton inventory suggests two waters participating on average during peroxo complex formation

Measure solvent isotope effect on reaction kinetics

Keep $[H_2O + D_2O]$ constant

m = # of water molecules in transition state

$$k_n / k_0 = (1 - n + n\varphi^*)^{m+1}$$

Vary mole fraction of D₂O

Experimental proton inventory

The full catalytic cycle and the roles of water

B. R. Goldsmith, T. Hwang, S. Seritan, B. Peters, S. Scott, *J. Am. Chem. Soc.* 137 (2015) T. Hwang*, B. R. Goldsmith*, B. Peters, S. L. Scott, *Inorg. Chem.* 52 (2013)

Careful benchmarking between experiment and theory can lead to new insight that is both explanatory and predictive

Thermodynamic and activation parameters for all key steps fully characterized via both theory & experiment

- ✓ calc. $\Delta G_1 \approx \exp. \Delta G_1$
- ✓ calc. $\Delta G_2 \approx \exp$. ΔG_2 ✓ calc. $\Delta G_2^{\dagger} \approx \exp$. ΔG_2^{\dagger} ✓ calc. $\Delta G_1 < \Delta G_2$ ✓ Similarly for ΔH_i^{\dagger} and ΔS_i^{\dagger}
- ✓ calc. $\Delta G_1^{\dagger} \approx \exp. \Delta G_1^{\dagger}$

On average two H₂O participate in the rate-determining transition states

Strong water dependence is anticipated for other MTO-catalyzed oxidations

e.g., oxidation of alkenes, alkynes, aldehydes, ketones, amines, sulfides, phosphines, and arenes

Acknowledgements

Thanks to all of my colleagues at UC Santa Barbara and the Fritz

Baron Peters
Susannah L. Scott

Matthias Scheffler Luca Ghiringhelli

Advertisement: My upcoming presentations at AIChE

Poster: "Role of van der Waals and entropy on gold cluster (meta)stability"

Comp. Mol. Sci. Eng. Forum, Monday

Talk: "Local pattern discovery for uncovering structure-property relationships of materials"

Data Min. Mach. Learn. Mol. Sci., Friday