Elections, Polls, Campaigns

(or, "Being a better consumer of election news, or a producer of election news, depending on your career goals and whether you have enjoyed working with data so far")

Understanding Political Numbers

April 10, 2019

Understanding election data

Votes for President

Individual data for votes

```
## [1] "Trump" "Trump" "Clinton" "Clinton" "Trump" "Clinton"
```

Individual data for votes

```
## [1] "Trump" "Trump" "Clinton" "Clinton" "Trump" "Clinton"
```

What proportion voted for Trump?

Individual data for votes

```
## [1] "Trump" "Trump" "Clinton" "Clinton" "Trump" "Clinton"
```

What proportion voted for Trump?

```
# logical, returns TRUE or FALSE
# head returns first few elements
head(vote_choice == "Trump")
```

[1] TRUE TRUE FALSE FALSE TRUE FALSE

Individual data for votes

```
## [1] "Trump" "Trump" "Clinton" "Clinton" "Trump" "Clinton"
```

What proportion voted for Trump?

```
# logical, returns TRUE or FALSE
# head returns first few elements
head(vote_choice == "Trump")
```

[1] TRUE TRUE FALSE FALSE TRUE FALSE

```
# add up Trump votes, divided by total
sum(vote_choice == "Trump") / length(vote_choice)
```

[1] 0.461

[1] 0.461

```
Individual data for votes
## [1] "Trump" "Trump" "Clinton" "Clinton" "Trump"
                                                         "Clinton"
What proportion voted for Trump?
 # logical, returns TRUE or FALSE
 # head returns first few elements
 head(vote choice == "Trump")
## [1] TRUE TRUE FALSE FALSE TRUE FALSE
 # add up Trump votes, divided by total
 sum(vote_choice == "Trump") / length(vote_choice)
## [1] 0.461
 # Or, proportions are means of a dummy variable
 mean(vote_choice == "Trump")
```

If x affects votes (y)...

We have *linear* models but a *bounded* outcome...how?

We have *linear* models but a *bounded* outcome...how?

Unbounded representation of probability... "odds ratio"

$$Odds = \frac{p}{(1-p)}$$

We have *linear* models but a *bounded* outcome...how?

Unbounded representation of probability... "odds ratio"

$$Odds = \frac{p}{(1-p)}$$

"Two-to-one chance" that the Patriots win

We have *linear* models but a *bounded* outcome...how?

Unbounded representation of probability... "odds ratio"

$$Odds = \frac{p}{(1-p)}$$

"Two-to-one chance" that the Patriots win

$$2 = \frac{\left(\frac{2}{3}\right)}{\left(\frac{1}{3}\right)}$$

Odds and probability

Odds and probability

Regressions for proportions

Logistic model:

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x + \epsilon$$

Regressions for proportions

Logistic model:

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x + \epsilon$$

Transform back to probability:

$$p = \frac{1}{1 + e^{-(\alpha + \beta x + \epsilon)}}$$

Regressions for proportions

Logistic model:

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x + \epsilon$$

Transform back to probability:

$$p = \frac{1}{1 + e^{-(\alpha + \beta x + \epsilon)}}$$

"Logit transformation" undone by the "inverse logit"

```
(x <- qlogis(0.75))
```

[1] 1.098612

```
plogis(x)
```

[1] 0.75

Voted for Trump_i \sim Bernoulli(p_i)

Voted for Trump_i ~ Bernoulli(p_i) $logit(p_i) = \alpha + \beta x_i$

Voted for Trump_i ~ Bernoulli(p_i) $logit(p_i) = \alpha + \beta x_i$

Hypothetical R example

```
glm(trump_vote ~ partisanship + education + income + race,
   data = vote_data,
   family = binomial(link = "logit"))
```

Voted for Trump_i ~ Bernoulli(p_i) $logit(p_i) = \alpha + \beta x_i$

Hypothetical R example

```
glm(trump_vote ~ partisanship + education + income + race,
    data = vote_data,
    family = binomial(link = "logit"))
```

GLM for "Generalized linear model": relationship between x and y isn't linear, but a transformation of x and y is linear

Voted for Trump_i ~ Bernoulli(p_i) $logit(p_i) = \alpha + \beta x_i$

Hypothetical R example

```
glm(trump_vote ~ partisanship + education + income + race,
    data = vote_data,
    family = binomial(link = "logit"))
```

GLM for "Generalized linear model": relationship between x and y isn't linear, but a transformation of x and y is linear

A whole world of GLMs out there!

Not requiring you to use them, but if you're interested, let's talk

Let's talk about the polls

Don't trust the polls? You should. They've been fairly accurate so far this election cycle.

ARTICLE

Can We Trust the Polls?: It all depends

Michael W. Traugott · Sunday, June 1, 2003

MAY 14, 2018

Can we still trust polls?

BY COURTNEY KENNEDY

Survey: A majority of Americans don't believe polls are accurate

After 2016, Can We Ever Trust the Polls Again?

Data was a rare source of clarity in the 2008 and 2012 elections. In 2016, it failed catastrophically.

By NICOLE NAREA | December 14, 2016

▼Add to Pocket

Don't trust the polls? You should. They've been fairly accurate so far this election cycle.

Can We Trust the Polls?: It all depends

Michael W. Traugott · Sunday, June 1, 2003

MAY 14, 2018

Can we still trust polls?

BY COURTNEY KENNEDY

Survey: A majority of Americans don't believe polls are accurate

After 2016, Can We Ever Trust the Polls Again?

Data was a rare source of clarity in the 2008 and 2012 elections. In 2016, it failed catastrophically.

By NICOLE NAREA | December 14, 2016

Polls aren't perfect (duh) but we're smart enough to understand why

Any poll has sampling error

How popular is Donald Trump?

An updating calculation of the president's approval rating, accounting for each poll's quality, recency, sample size and partisan lean. How this works »

Histogram of 2016 national polls

3.5pt error on average

Random sampling error: estimate is randomly different from the population being sampled

Random sampling error: estimate is randomly different from the population being sampled

Nonrandom biases: is the population being sampled the *population that matters?*

Random sampling error: estimate is randomly different from the population being sampled

Nonrandom biases: is the population being sampled the *population that matters?*

Pollsters try to minimize bias, but there are issues

- Target population: voters
- Sampling frame: who we can contact
- Response rate: who takes the poll if contacted?
- Weighting: making the sample representative

Random sampling error: estimate is randomly different from the population being sampled

Nonrandom biases: is the population being sampled the *population that matters?*

Pollsters try to minimize bias, but there are issues

- Target population: voters
- Sampling frame: who we can contact
- Response rate: who takes the poll if contacted?
- Weighting: making the sample *representative*

"Total Survey Error" sampling error plus everything else

Grading the polls (click here)

More grading (click here)

Difference between poll results and election outcomes

Total Survey Error (click here)

Campaigns using data

Campaign tactics (click here)

Intelligent Machines

How Obama's Team Used Big Data to Rally Voters

How President Obama's campaign used big data to rally individual voters.

Mobilization and Persuasion

How?

Data

• voter file, credit reports, web/ad data

Modeling questions

- what is your party ID?
- Race?
- Ideology?

Gathering data

• Surveys, experiments

Interventions:

• TV, mail, web traffic, issue agenda

Looking ahead

Check the syllabus for cool readings and podcasts and stuff

Next week: judiciary and paper guidelines

In section: regression practice (this week) and then presentations