(A)

Conventional model:

$$M = \sum_{1Mh} b_j SNP_j + \epsilon$$

Incorporate **local ancestry** (LA) by dissecting the original genotype SNP_j by AFR and EUR ancestry

$$SNP_{j} = SNP_{j,AFR} + SNP_{j,EUR}$$

$$= SNP_{j1}I(LA_{j1} = AFR) + SNP_{j2}I(LA_{j2} = AFR)$$

$$+SNP_{j1}I(LA_{j1} = EUR) + SNP_{j2}I(LA_{j2} = EUR)$$

Basic LA model:

$$M = \sum_{1Mb} (b_{j,AFR}SNP_{j,AFR} + b_{j,EUR}SNP_{j,EUR}) + \epsilon$$

Preselection:

determine if the *j*th SNP has LAspecific effects and belongs to the *LA set* by comparing the ancestral model with the null model

1		CpG _m	
DNA methylation data M		Methylated count	Unmethylated count
	id ₁	9	1
	id_2	900	100
	id_3	70	30
	id_N	80	20

Input

LA Methylation Predictor with Preselection step (LAMPP):

$$M = \sum_{j \notin LA \ set} b_{j}SNP_{j} + \sum_{j \in LA \ set} (b_{j,AFR}SNP_{j,AFR} + b_{j,EUR}SNP_{j,EUR}) + \epsilon$$

$$= \sum_{j \notin LA \ set} b_{j}SNP_{j} + \sum_{j \in LA \ set} (b_{j,average} \cdot SNP_{j} + b_{j,diff} \frac{SNP_{j,AFR} - SNP_{j,EUR}}{2}) + \epsilon$$

Regularized logistic regression

Beta coefficients to predict DNA methylation levels for CpG_m

Null model $M \sim b_i SNP_i$

Ancestry model $M \sim b_{i,AFR}SNP_{i,AFR} + b_{i,EUR}SNP_{i,EUR}$

$$\sim \frac{b_{j,AFR} + b_{j,EUR}}{2} \left(SNP_{j,AFR} + SNP_{j,EUR} \right) + \frac{b_{j,AFR} - b_{j,EUR}}{2} \left(SNP_{j,AFR} - SNP_{j,EUR} \right)$$

$$\sim b_{j,average} \cdot SNP_j + b_{j,diff} \frac{(SNP_{j,AFR} - SNP_{j,EUR})}{2}$$