

Active Inference

Melih Kandemir

University of Southern Denmark Department of Mathematics and Computer Science (IMADA) mymail@imada.sdu.dk

October 7, 2024

The brain and Bayes

- Brain as a predictive machine (Kant's second Copernican revolution)
- Perception as unconscious inference (Helmholtz, 1866)
- Bayesian brain hypothesis (Doya, 2007)
 - Perception is not a purely bottom-up transduction of sensory states into internal representations
 - It is an inferential process that combines
 - ★ (Top-down) Prior info about most likely causes of sensations
 - ★ (Bottom-up) Sensory stimuli
- Perception is a constructive inside-out process
 - ► The brain uses sensations to confirm/disconfirm hypotheses about how they were generated

Translating Bayesian terms to the brain language

Forward model:

- ullet P(x): Organism's guess about a concept, i.e. a perceptual regularity
- ullet P(y|x): Organism's knowledge about how concepts relate to sensory inputs

Surprise: $-\log P(y) \Rightarrow$ organism cannot explain environment \Rightarrow danger \Rightarrow model update

Bayesian surprise: How much belief update required given an observation

$$D_{KL}[P(x|y)||P(x)] = E_{x \sim P(x|y)}[\ln P(x|y) - \ln P(x)].$$

The Bayesian brain example

M. Kandemir (SDU/IMADA)

Perception as inference

Generative model \neq Generative process Generative model is subjective and limited by the computational and mnemonic resources of the organism.

Actions for optimal belief updates

What does the ELBO mean to a brain?

$$F[Q, y] = \underbrace{-\mathbb{E}_{Q(x)}[\ln P(y, x)]}_{Energy} - \underbrace{H[Q(x)]}_{Entropy}$$

$$= \underbrace{D_{KL}[Q(x) || P(x)]}_{Complexity} - \underbrace{\mathbb{E}_{Q(x)}[\ln P(y | x)]}_{Accuracy}$$

$$= \underbrace{D_{KL}[Q(x) || P(x | y)]}_{Divergence} - \underbrace{\ln P(y)}_{Evidence}$$

How does the ELBO relate to the outside world?

Expected Free Energy: When actions come to play

$$G(\pi) = -\underbrace{\mathbb{E}_{Q(\tilde{x},\tilde{y}|\pi)}[D_{KL}[Q(\tilde{x}\,|\,\tilde{y},\pi)\,||\,Q(\tilde{x}\,|\,\pi)]]}_{\text{Information gain}} - \underbrace{\mathbb{E}_{Q(\tilde{y}|\pi)}[\ln P(\tilde{y}\,|\,C)]}_{\text{Pragmatic value}}$$

$$= \underbrace{\mathbb{E}_{Q(\tilde{x}|\pi)}[H[P(\tilde{y}\,|\,\tilde{x})]]}_{\text{Expected ambiguity}} + \underbrace{D_{KL}[Q(\tilde{y}\,|\pi)\,||\,P(\tilde{y}\,|\,C)]}_{\text{Risk (outcomes)}}$$

$$\leq \underbrace{\mathbb{E}_{Q(\tilde{x}\,|\pi)}[H[P(\tilde{y}\,|\,\tilde{x})]]}_{\text{Expected ambiguity}} + \underbrace{D_{KL}[Q(\tilde{x}\,|\pi)\,||\,P(\tilde{x}\,|\,C)]}_{\text{Risk (states)}}$$

$$= -\underbrace{\mathbb{E}_{Q(\tilde{x},\tilde{y}\,|\pi)}[\ln P(\tilde{y},\tilde{x}\,|\,C)]}_{\text{Expected energy}} - \underbrace{H[Q(\tilde{x}\,|\pi)]}_{\text{Entropy}}$$

$$Q(\tilde{x},\tilde{y}\,|\,\pi) \triangleq Q(\tilde{x}\,|\pi)P(\tilde{y}\,|\,\tilde{x})$$

What does Expected Free Energy mean to a brain?

EXPECTED FREE ENERGY

$$G(\pi) = -\mathbb{E}_{Q(\tilde{y} \mid \pi)} \left[\ln P(\tilde{y} \mid C) \right] - D_{KL} \left[Q(\tilde{y} \mid \tilde{x}) \ Q \left(\tilde{x} \mid \pi \right) \parallel Q \left(\tilde{y} \mid \pi \right) \ Q \left(\tilde{x} \mid \pi \right) \right]$$

 $D_{KL}\left[Q(\tilde{y}\mid \tilde{x})\;Q\;(\tilde{x}\mid \pi) \parallel Q\;(\tilde{y}\mid \pi)\;Q\;(\tilde{x}\mid \pi)\right]$

$$= \mathbb{E}_{Q(\tilde{y} \mid \pi)} \left[D_{KL} \left[Q(\tilde{x} \mid \tilde{y}, \pi) \mid\mid Q(\tilde{x} \mid \pi) \right] \right]$$

BAYESIAN SURPRISE
OPTIMAL BAYESIAN DESIGN
INTRINSIC MOTIVATION
INFOMAX PRINCIPLE

 $D_{KL}\left[Q(\tilde{y}\mid\pi)\parallel P(\tilde{y}\mid C)\right]$

RISK-SENSITIVE POLICIES
KL CONTROL

 $\mathbb{E}_{Q(\tilde{y}\mid\pi)}\left[\ln P\left(\tilde{y}\mid C\right)\right]$

BAYESIAN DECISION THEORY EXPECTED UTILITY THEORY