UFRJ – IM - DCC

Sistemas Operacionais I

Unidade II - Processos

Organização da Unidade

- Processos
 - Conceituação
 - Estruturas de Controle
 - Modos de execução do S.O.
 - Estados de um processo
- Threads
- Concorrência
- Deadlock e Starvation

Processos Conceituação

Processo x Programa

- ✓ Programa em execução
- ✓ Unidade de alocação do processador

Estrutura de um Processo

Contexto de Hardware

✓ Armazena o conteúdo dos registradores da UCP. Fundamental para sistemas multitarefa.

Contexto de Software

✓ Especifica características e limites dos recursos que podem ser alocados pelo processo – definidos pelo administrador do sistema.

Espaço de Endereçamento

√ Área de memória pertencente ao processo (instruções e dados).

Estrutura de um Processo

Imagem de um Processo

PCB

Área de Código

Área de Dados

Pilha do Processo

Área Compartilhada

Identificação Estado Controle

Processos

7

Estrutura de Controle

PCB => Process Control Block

- **≻**Identificação
- >Estado
- **Controle**

registrador SP
registrador PC
registradores de uso geral
informações de escalonamento
limites de memória
privilégios
relação de arquivos abertos

8

UFRJ – IM – DCC Profa. Valeria M. Bastos

Modos de Execução do S.O.

Modo usuário → instruções associadas ao uso não privilegiado

Modo kernel → instruções associadas ao uso privilegiado

Configuração:

Onde ?? Um bit do PSW
Quando ??? em resposta a determinados eventos

UFRJ – IM – DCC Profa. Valeria M. Bastos

Ciclo de Vida de um Processo

P_A
Criação Execução Término

P_B Criação Execução Término

P_K
Criação Execução Término

Criação de um processo

Quando ocorre?

- Nova tarefa em batch
- "Login" interativo
- Serviço do S.O
- Processo filho

Exemplo: Unix

12

Etapas de criação

- Atribui um identificador único (PID)
- Aloca uma entrada na tabela de processos
- Aloca espaço para o processo
- Inicializa o PCB (Process Control Block)
- Coloca o processo na fila apropriada
- Cria estruturas auxiliares

Como criar processos no Linux?

```
retorno = fork ();
if (retorno == 0)
{ /* o processo filho */
    execl ("/bin/ls", "ls", 0); /* troca programa
    exit (1); /* não consegui executar pwd */
/* o processo pai */
if (retorno > 0)
   waitpid (-1, &status, 0);
else
   exit (1); /* não consegui dar o fork */
```


ADE O

A execução concorrente de processos leva a situações que ensejam:

- Trocas de Contexto
- Trocas de Modo de Execução
- Formas de Execução do SO

Processos Troca de contexto

Interrupção: Reação a um evento assíncrono

Causas Trap: Associado a erro na execução de uma instrução

System Call: Requisição explícita.

Ações Tomadas

- ◆ Salva o estado do processador
- Muda o estado do processo
- ◆ Muda o processo para a fila apropriada
- ◆ Seleciona o novo processo
- ◆ Atualiza o PCB do novo processo
- Modifica os mapeamentos de memória
- Restaura o estado do processador

Troca de Modo de Execução

- É uma troca menor e mais rápida que a troca de contexto;
- O estado do processo corrente não é alterado;
- Ocorre geralmente quando o processador ao final de um ciclo de instrução detecta a existência de uma interrupção pendente. Nestes casos o processador realiza os seguintes passos:
 - Salva o PC e a PSW do processo em execução na pilha;
 - Carrega o PC com o endereço inicial da rotina de interrupção;
 - Troca o modo de execução de usuário para kernel (privilegiado) para que instruções privilegiadas do tratador de interrupções possam ser executas.

Resumo

Troca de Contexto

Troca de Modo de Execução

Sendo um processo, como as rotinas do SO devem ser executadas e controladas?

As principais abordagens encontradas na literatura são:

- Como Kernel separado
- Dentro do processo usuário
- Como processos separados

Como Kernel separado

(*) Nesta abordagem as rotinas do SO sempre são executadas como entidades separadas que operam no modo privilegiado e no espaço de endereçamento do Kernel.

Dentro do processo usuário

Funções de Troca de Contexto

(*) Nesta abordagem as rotinas do SO são executadas dentro dos processos usuários, que apenas mudam de modo de execução.

Como processos separados

(*) Nesta abordagem as rotinas do SO são executadas como processos no modo usuário, trocando o modo de execução quando necessário.

Estados de um Processo

UFRJ – IM – DCC Profa. Valeria M. Bastos 22

Estados de um Processo

UFRJ – IM – DCC Profa. Valeria M. Bastos 23

Término de um Processo

- Término Normal
- Erros
 - Limite de tempo
 - Falta de recurso
 - Violação de acesso
 - ...
 - Forçado

