MC VBF+MET QCD Samples

J. Pela

Imperial College London

2013-11-17

Introduction and Motivation

Motivation

- Create a set of QCD MC samples that would model adequately events passing our selection.
- \bullet Generate enough statistics to represent 2012 dataset (20 fb⁻¹)

Caveats:

- Huge cross section of QCD
- We cannot do post RECO selection since this would too time consuming.
- Need to define a QCD Hard scattering minimum to avoid rising cross section of low p_T interactions where VBF+MET type events are not likely anyway

Methodology

We will be looking at gen level particles only to avoid the RECO process

MET

- Select all produced neutrinos and add them vectorially.
- Determine their p_T.

VBF Jets

- Run AK5 genJets (without neutrinos) over gen-particles.
- Select all jets with a given p_T and $|\eta|$.
- Calculate $\Delta \eta$ and M_{ii} for all possible dijet combinations.
- Accept event if one of combinations passes all requirements.

Caveats:

- Thresholds must be set carefully and low enough to represent the QCD that actually passes the analysis (at some cut L1+HLT, dijet, etc).
- Trigger/variable turn on and efficiency should be taken into account.

QCD Cross Sections and event predictions for 20 fb^{-1}

From the current samples and cross sections we can easily extrapolate what would be the expected number of events for each p_T hat for an integrated luminosity of 20 fb^{-1} .

Sample	Cross Section (pb) Events for 20 fa	
QCD-Pt-30to50-pythia6	66285328	1325706560000
QCD-Pt-50to80-pythia6	8148778	162975560000
QCD-Pt-80to120-pythia6	1033680	20673600000
QCD-Pt-120to170-pythia6	156293,3	3125866000
QCD-Pt-170to300-pythia6	34138,15	682763000
QCD-Pt-300to470-pythia6	1759,549	35190980
QCD-Pt-470to600-pythia6	113,8791	2277582
QCD-Pt-600to800-pythia6	26,9921	539842
QCD-Pt-800to1000-pythia6	3,550036	71000,72
QCD-Pt-1000to1400-pythia6	0,737844	14756,88
QCD-Pt-1400to1800-pythia6	0,03352235	670,45
QCD-Pt-1800-pythia6	0,001829005	36,58

If we consider a minimum p_T for hard scattering of 80 GeV the total cross section for 1226016 pb which implies we need a rejection factor of 10000 to be able to produce a 20 fb^{-1} sample with 2.5M events.

First tests

table and discussion of choice of values

Filter Efficiency per p_T hat

	Cross Sections						
Sample	Gen. Ev	Pass MET	Pass Dijet	Factor	Sample	Ev. S	
QCD-Pt-50to80-pythia6	1000000	127	3	0,000003	488927	82,0	
QCD-Pt-80to120-pythia6	1000000	1172	41	0,000041	847618	70,7	
QCD-Pt-120to170-pythia6	1000000	4276	293	0,000293	915879	68,2	
QCD-Pt-170to300-pythia6	1000000	9315	1012	0,001012	690956	66,2	
QCD-Pt-300to470-pythia6	1000000	17956	2598	0,002598	91426	67,3	
QCD-Pt-470to600-pythia6	1000000	23913	4187	0,004187	9536	68,	

Steps for production

Explain steps to be done and CMSSW versions

Production Status

Explain steps to be done and CMSSW versions

Problems found

PU etc.

Conclusions

