Training Session: Topic models

Pablo Barberá

Networked Democracy Lab University of Southern California

May 2, 2017

materials: github.com/NetDem-USC/training

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Fig. 1 in Grimmer and Stewart (2013)

Latent Dirichlet allocation (LDA)

➤ **Topic models** are powerful tools for exploring large data sets and for making inferences about the content of documents

Latent Dirichlet allocation (LDA)

➤ **Topic models** are powerful tools for exploring large data sets and for making inferences about the content of documents

 Many applications in information retrieval, document summarization, and classification

Latent Dirichlet allocation (LDA)

➤ **Topic models** are powerful tools for exploring large data sets and for making inferences about the content of documents

 Many applications in information retrieval, document summarization, and classification

► LDA is one of the simplest and most widely used topic models

Latent Dirichlet Allocation

- Document = random mixture over latent topics
- ► Topic = distribution over n-grams

Probabilistic model with 3 steps:

- 1. Choose $\theta_i \sim \text{Dirichlet}(\alpha)$
- 2. Choose $\beta_k \sim \text{Dirichlet}(\delta)$
- 3. For each word in document *i*:
 - Choose a topic $z_m \sim \text{Multinomial}(\theta_i)$
 - ► Choose a word w_{im} ~ Multinomial($\beta_{i,k=z_m}$)

where:

 α =parameter of Dirichlet prior on distribution of topics over docs.

 θ_i =topic distribution for document *i*

 δ =parameter of Dirichlet prior on distribution of words over topics

 β_k =word distribution for topic k

 $\beta = M \times K$ matrix where β_{im} indicates prob(topic=k) for word m

 $\beta = M \times K$ matrix where β_{im} indicates prob(topic=k) for word m

 $\beta = M \times K$ matrix where β_{im} indicates prob(topic=k) for word m $\theta = N \times K$ matrix where θ_{ik} indicates prob(topic=k) for document i

 $\beta = M \times K$ matrix where β_{im} indicates prob(topic=k) for word m $\theta = N \times K$ matrix where θ_{ik} indicates prob(topic=k) for document i

 $\beta = M \times K$ matrix where β_{im} indicates prob(topic=k) for word m $\theta = N \times K$ matrix where θ_{ik} indicates prob(topic=k) for document i

From Quinn et al, AJPS, 2010:

1. Semantic validity

- 1. Semantic validity
 - ► Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?

- 1. Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity

- 1. Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity
 - ▶ Do the topics match existing measures where they should match?

- Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity
 - ▶ Do the topics match existing measures where they should match?
 - Do they depart from existing measures where they should depart?

- Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity
 - ▶ Do the topics match existing measures where they should match?
 - ▶ Do they depart from existing measures where they should depart?
- 3. Predictive validity

- Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity
 - ▶ Do the topics match existing measures where they should match?
 - ▶ Do they depart from existing measures where they should depart?
- 3. Predictive validity
 - Does variation in topic usage correspond with expected events?

- 1. Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity
 - ▶ Do the topics match existing measures where they should match?
 - ▶ Do they depart from existing measures where they should depart?
- 3. Predictive validity
 - Does variation in topic usage correspond with expected events?
- 4. Hypothesis validity

- Semantic validity
 - Do the topics identify coherent groups of tweets that are internally homogenous, and are related to each other in a meaningful way?
- 2. Convergent/discriminant construct validity
 - ▶ Do the topics match existing measures where they should match?
 - ▶ Do they depart from existing measures where they should depart?
- 3. Predictive validity
 - Does variation in topic usage correspond with expected events?
- 4. Hypothesis validity
 - Can topic variation be used effectively to test substantive hypotheses?

Bauer, Barberá et al, Political Behavior, 2016.

- ▶ Data: General Social Survey (2008) in Germany
- ► Responses to questions: Would you please tell me what you associate with the term "left"?and would you please tell me what you associate with the term "right"?
- Open-ended questions minimize priming and potential interviewer effects
- Sparse Additive Generative model instead of LDA (more coherent topics for short text)
- ightharpoonup K = 4 topics for each question

Table 1: Top scoring words associated with each topic, and English translations)

Left topic 1: Parties (proportion = .26, average lr-scale value = 5.38)

linke, spd, partei, linken, pds, politik, kommunisten, parteien, grünen, punks

the left, spd, party, the left, pds, politics, communists, parties, greens, punks

Left topic 2: **Ideologies** (proportion = .26, average lr-scale value = 5.36)

kommunismus, links, sozialismus, lafontaine, rechts, aber, gysi, linkspartei, richtung, gleichmacherei

communism, left, socialism, lafontaine, right, but, gysi, left party, direction, levelling

Left topic 3: Values (proportion = .24, average lr-scale value = 4.06)

soziale, gerechtigkeit, demokratie, soziales, bürger, gleichheit, gleiche, freiheit, rechte, gleichberechtigung social, justice, democracy, social, citizen, equality, equal, freedom, rights, equal rights

Left topic 4: Policies (proportion = .24, average lr-scale value =4.89)

sozial, menschen, leute, ddr, verbinde, kleinen, einstellung, umverteilung, sozialen, vertreten social, humans, people, ddr, associate, the little, attitude, redistribution, social, represent

Right topic 1: **Ideologies** (proportion = .27, average lr-scale value = 5.00)

konservativ, nationalsozialismus, rechtsradikal, radikal, ordnung, politik, nazi, recht, menschen, konservative conservative, national socialism, right-wing radicalism, radical, order, politics, nazi, right, people, conservatives

Right topic 2: Parties (proportion = .25, average lr-scale value = 5.26)

npd, rechts, cdu, csu, rechten, parteien, leute, aber, verbinde, rechtsradikalen

npd, right, cdu, csu, the right, parties, people, but, associate, right-wing radicalists

Right topic 3: **Xenophobia** (proportion = .25, average lr-scale value = 4.55)

 $aus l\"{a}nder feindlich keit, gewalt, aus l\"{a}nder, demokratie, nationalismus, rechtsradikalismus, diktatur, national, intoleranz, faschismus$

xenophobia, violence, foreigners, democracy, nationalism, right-wing radicalism, dictatorship, national, intolerance, fascism

Right topic 4: Right-wing extremists (proportion = .23, average lr-scale value = 4.90)

nazis, neonazis, rechtsradikale, rechte, radikale, radikalismus, partei, ausländerfeindlich, reich, nationale nazis, neonazis, right-wing radicalists, rightists, radicals, radicalism, party, xenophobia, rich, national

Note: "proportion" indicates the average estimated probability that any given response is assigned to a topic. "average lr-scale value" is the mean position on the left-right scale (from 0 to 10) of individuals whose highest probability belongs to that particular topic.

Bauer, Barberá et al, Political Behavior, 2016.

Fig. 6: Left-right scale means for different subsamples of associations with left (dashed = sample mean, bars = 95% Cis)

Fig. 7: Left-right scale means for different subsamples of associations with **right** (dashed = sample mean, bars = 95% Cis)

Bauer, Barberá et al, Political Behavior, 2016.

Fig. 9: Systematic relationship between associations with "left" and "right" and characteristics of respondents

Note: Each line indicates a 95% confidence interval (and 66% confidence interval in darker color) for the coefficient of eight different regressions of topic usage (in a scale from 0 to 100) at the respondent level on seven individual-level characteristics. The line on the bottom right corner (second row, second plot), for example, shows that individual a one-category change in age is associated with around one percentage point increase in the probability that the individual associated "right" with political parties.

Bauer, Barberá et al, Political Behavior, 2016.

Example: topics in US legislators' tweets

- ▶ Data: 651,116 tweets sent by US legislators from January 2013 to December 2014.
- ▶ 2,920 documents = 730 days \times 2 chambers \times 2 parties
- Why aggregating? Applications that aggregate by author or day outperform tweet-level analyses (Hong and Davidson, 2010)
- ightharpoonup K = 100 topics (more on this later)
- ▶ Validation: http://j.mp/lda-congress-demo

Choosing the number of topics

► Choosing *K* is "one of the most difficult questions in unsupervised learning" (Grimmer and Stewart, 2013, p.19)

Choosing the number of topics

- ► Choosing *K* is "one of the most difficult questions in unsupervised learning" (Grimmer and Stewart, 2013, p.19)
- We chose K = 100 based on cross-validated model fit.

Choosing the number of topics

- ► Choosing *K* is "one of the most difficult questions in unsupervised learning" (Grimmer and Stewart, 2013, p.19)
- We chose K = 100 based on cross-validated model fit.

▶ BUT: "there is often a negative relationship between the best-fitting model and the substantive information provided".

Choosing the number of topics

- ► Choosing *K* is "one of the most difficult questions in unsupervised learning" (Grimmer and Stewart, 2013, p.19)
- We chose K = 100 based on cross-validated model fit.

- ▶ **BUT**: "there is often a negative relationship between the best-fitting model and the substantive information provided".
- GS propose to choose K based on "substantive fit."

Extensions of LDA

- 1. Structural topic model (Roberts et al, 2014, AJPS)
- 2. Dynamic topic model (Blei and Lafferty, 2006, ICML; Quinn et al, 2010, AJPS)
- 3. Hierarchical topic model (Griffiths and Tenembaun, 2004, NIPS; Grimmer, 2010, PA)

Why?

- Substantive reasons: incorporate specific elements of DGP into estimation
- ► Statistical reasons: structure can lead to better topics.

Structural topic model

- Prevalence: Prior on the mixture over topics is now document-specific, and can be a function of covariates (documents with similar covariates will tend to be about the same topics)
- ➤ Content: distribution over words is now document-specific and can be a function of covariates (documents with similar covariates will tend to use similar words to refer to the same topic)

Dynamic topic model

Source: Blei, "Modeling Science"

Dynamic topic model

Source: Blei, "Modeling Science"

► Goal: unsupervised scaling of ideological positions

- ► Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- ▶ Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

▶ where:

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician *i*

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician i ψ_m is frequency of word m

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician i ψ_m is frequency of word m β_m is discrimination parameter of word m

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician i ψ_m is frequency of word m β_m is discrimination parameter of word m

Estimation using EM algorithm.

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

```
\alpha_i is "loquaciousness" of politician i
\psi_m is frequency of word m
\beta_m is discrimination parameter of word m
```

- Estimation using EM algorithm.
- ► Identification:

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician i ψ_m is frequency of word m β_m is discrimination parameter of word m

- ▶ Estimation using EM algorithm.
- ▶ Identification:
 - Unit variance restriction for θ_i

- Goal: unsupervised scaling of ideological positions
- ▶ Ideology of politician i, θ_i is a position in a latent scale.
- Word usage is drawn from a Poisson-IRT model:

$$W_{im} \sim \text{Poisson}(\lambda_{im})$$

 $\lambda_{im} = exp(\alpha_i + \psi_m + \beta_m \times \theta_i)$

where:

 α_i is "loquaciousness" of politician i ψ_m is frequency of word m β_m is discrimination parameter of word m

- ▶ Estimation using EM algorithm.
- ▶ Identification:
 - Unit variance restriction for θ_i
 - ▶ Choose *a* and *b* such that $\theta_a > \theta_b$