VE 492 Homework9

Due: 23:59, July. 22th

Q1. Naive Bayes

Your friend claims that he can write an effective Naive Bayes spam detector with only three features: the hour of the day that the email was received $(H \in \{1,2,...,24\})$, whether it contains the word 'viagra' ($W \in \{ves, no\}$), and whether the email address of the sender is Known in his address book, Seen before in his inbox, or Unseen before $(E \in \{K,S,U\})$.

(a) Flesh out the following information about this Bayes net:

Graph structure:

Parameters:

Ospan,
$$\theta_{H,i,c}$$
, $\theta_{W,c}$, $\theta_{E,\bar{J},c}$, where $\bar{i} \in \{1,2,\cdots,23\}$, $\bar{j} \in \{K,S\}$, $c \in \{spam, ham\}$

Size of the set of parameters:

Suppose now that you labeled three of the emails in your mailbox to test this idea:

spam or ham?	H	W	E
spam	3	yes	S
ham	14	no	K
ham	15	no	K

(b) Use the three instances to estimate the maximum likelihood parameters. $\theta_{\text{spam}} = \frac{1}{3}, \quad \theta_{\text{H,3,spam}} = \frac{1}{3}, \quad \theta_{\text{H,14,ham}} = \frac{1}{2}, \quad \theta_{\text{H,15,ham}} = \frac{1}{2}, \quad \theta_{\text{W,spam}} = \frac{1}{3}, \quad \theta_{\text{E,S,spam}} = \frac{1}{3}, \quad \theta$

(d) $\theta_{\text{spain}} = \frac{2}{7}$, $\theta_{\text{H,3,spain}} = \frac{2}{49} = 3$, W = no, E = U. $\theta_{\text{H,other,spain}} = \frac{2}{49}$, $\theta_{\text{H,4,hain}} = \frac{2}{50}$ (d) Now use the three to estimate the parameters using Laplace smoothing and k = 2. Do not

 $Q_{H,15,hom} = \frac{2}{50}$, $Q_{H,other,hom} = \frac{2}{50}$ forget to smooth both the class prior parameters and the feature values parameters. $Q_{W,spom} = \frac{2}{5}$, $Q_{W,hom} = \frac{2}{5}$ forget to smooth both the class prior parameters and the feature values parameters. $Q_{W,spom} = \frac{2}{5}$, $Q_{W,hom} = \frac{2}{5}$ (e) $Q_{E,S,spom} = \frac{2}{7}$, $Q_{E,other,hom} = \frac{2}{7}$ Using the parameters obtained with Laplace smoothing, find the predicted class of a new datapoint with H = 3, W = no, E = U. Q_{W}

(f) You observe that you tend to receive spam emails in batches. In particular, if you receive one spam message, the next message is more likely to be a spam message as well. Explain a new graphical model which most naturally captures this phenomena.

Graph structure:

Ospam,
$$\theta_{H,\bar{\imath},c}$$
, $\theta_{W,c}$, $\theta_{E,\bar{\jmath},c}$, where $i\in\{1,2,--,23\}$, $j\in\{K,S\}$, $c\in\{spam,ham\}$, $\theta_{ham,spam}$

Size of the set of parameters:

Q2. Perceptron

- \bigwedge (a) Suppose you have a binary perceptron in 2D with weight vector $\mathbf{w} = r [w_1, w_2]^T$. You are given w_1 and w_2 , and are given that r > 0, but otherwise not told what r is. Assume that ties are broken as positive. Can you determine the perceptron's classifification of a new example x with known feature vector f(x)?
 - A. Always
 - Sometimes В.
 - C. Never
 - (b) Now you are learning a multi-class perceptron between 4 classes. The weight vectors are currently $[1,0]^T$, $[0,1]^T$, $[-1,0]^T$, $[0,-1]^T$ for the classes A, B, C, and D. The next training example x has a **label of A** and feature vector f(x).

For the following questions, do not make any assumptions about tie-breaking. (Do not write down a solution that creates a tie.)

If the answer does not exist, write down Not possible

(i) Write down a feature vector in which no weight vectors will be updated. $f(x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

(ii) Write down a feature vector in which only wa will be updated by the perceptron. Now

(iii) Write down a feature vector in which **only** \mathbf{w}_A and \mathbf{w}_B will be updated by the perceptron. $f(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(iv) Write down a feature vector in which only \mathbf{w}_A and \mathbf{w}_C will be updated by the perceptron. $\mathbf{f}(\mathbf{x}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

The weight vectors are the same as before, but now there is a bias feature with value of 1 for all x and the weight of this bias feature is 0, -2, 1, - 1 for classes A, B, C, and D respectively. As before, the next training example x has a **label of A** and a feature vector f(x). The always "1" bias feature is the first entry in f(x).

If the answer does not exist, write down Not possible

$$f(x) = \begin{bmatrix} 1 \\ \end{bmatrix}$$
 O Not possible

(v) Write down a feature vector in which **only** $\mathbf{w}B$ and $\mathbf{w}C$ will be updated by the perceptron. \mathbb{N}

(vi) Write down a feature vector in which only wA and wC will be updated by the perceptron.