Role of MRTF as a mediator of mechanotransduction in the muscle

cell

Lorraine Montel

PhD student 3rd year

Complex Systems and Materials
University Paris Diderot

Sylvie Hénon

Collaboration:

Genetics, Development and Physiology of Skeletal muscle Institut Cochin

Athanassia Sotiropoulos

Mechanotransduction

Mechanical Signal

Biological Response

Mechanotransduction in the muscles

Mechanical Overload

Exercise Compensation

HYPERTROPHY

No Mechanical Load

Immobilization
Denervation
Low gravity environment

ATROPHY

Right-handed javelin thrower with bigger arm due to exercise

Mechanotransduction

Mechanical Signal

Biological Response

How does that work?

Mechanical Overload

Exercise Compensation

HYPERTROPHY

No Mechanical Load

Immobilization
Denervation
Low gravity environment

ATROPHY

Right-handed javelin thrower with bigger arm due to exercise

Serum Response Factor

Srf is necessary for mechanically-induced hypertrophy/atrophy

	WT	SRF loss of function	Active SRF	Nuclear MRTF
Overload				
Denervation				
Caloric Restriction				

Work from the Sotiropoulos group from Insitut Cochin

The actin cytoskeleton

Red: Filaments of actin Green: Globular actin Blue: DNA

Mechanical cues induce modification of the actin cytoskeleton

C2C12 mouse myoblast

GFP Actin

Before

After 60 minutes

Icard-Arcizet D. et al , Sylvie Hénon team

Myocardin-Related Transcription Factor: a G-actin sensor

NLS included in G-actin binding zone, linking actin binding and MRTF localization

Nuclear MRTF in G-actin scarcity

Cytoplasm

Cytoplasmic MRTF in G-actin Excess

Cytoplasm

Experimental Set-up:

Myoblasts on stretched PDMS substrate

- Stretchable PDMS
- C2C12 Myoblasts
- MRTF-A GFP localization read-out

Experimental Set-up:

Myoblasts on stretched PDMS substrate

Uniform radial constant strain

Strain rate : $\frac{R - R_0}{R_0}$

MRTF-A GFP localization read-out

Localization of MRTF-A

Cytoplasmic Homogeneous Nuclear

MRTF-A GFP

Actin mCherry

DAPI (Nucleus)

Influence of Actin Overexpression on MRTF-A Localization

Influence of Stretching on MRTF-A localization

Classification of events

10% Strain Experiments

30% Strain Experiments

Expulsions at 30 min: Brutal destruction of actin filaments?

F/G ratio on fixed cells

- Red : F-actin (Phalloidin)
- Green : Gactin (DNase I)
- Cyan : MRTF-A GFP
- Magenta: Nucleus (DAPI)

30% Strain Experiments on fixed cells

Summary

Perspective

Live visualization of the cytoskeleton (SiRactin, F-tractin)

AAV-infected MRTF-A GFP primary myoblasts and differenciated myotubes

What is the pathway from mechanics to actin polymerization?

Which target genes are activated?

Acknowledgements

Complex Systems and Materials University Paris Diderot

Sylvie Hénon

A. Pincini

A. Richert

L. Réa

Collaboration:

Genetics, Development and
Physiology
of Skeletal muscle
Institut Cochin

A. Sotiropoulos

