Handout

Jan van Waaij

18 July 2018

1 Model

We observe a sample path $X^T = (X_t : t \in [0, T])$ of

$$dX_t = \theta_0(X_t)dt + dW_t,$$

where $\theta : \mathbb{R} \to \mathbb{R}$ is measurable, one-periodic and $\int_0^1 \theta(x)^2 dx < \infty$.

Definition 1. Let $(\varepsilon_T)_{T>0}$ be a sequence of positive numbers converging to zero. We say that the posterior contracts with rate ε_T when for some constant M>0,

$$\mathbb{E}_{\theta_0} \Pi(\theta : \|\theta - \theta_0\| \le M\varepsilon_T \mid X^T) \to 1, \text{ as } T \to \infty.$$

2 Specification of the priors

2.1 Gaussian process prior

$$\theta = \sum_{k=1}^{\infty} k^{-\alpha - 1/2} Z_k \phi_k,$$

$$\phi_{2k}(x) = \sqrt{2} \cos(2\pi kx),$$

$$\phi_{2k-1}(x) = \sqrt{2} \sin(2\pi kx),$$

$$Z_k \stackrel{iid}{\sim} N(0, 1),$$

$$\alpha > 0 \text{ is constant.}$$

2.2 Hierarchical prior

2.2.1 Prior on scaling

$$E \sim \text{Exp}(1),$$

$$S = \frac{E^{\alpha+1/2}}{\sqrt{T}}$$

$$\theta \mid S = S \sum_{k=1}^{\infty} k^{-\alpha-1/2} Z_k \phi_k.$$

2.2.2 Prior on baseline smoothness

$$\pi(\alpha) \propto e^{-T^{\frac{1}{1+2\alpha}}}, \alpha \in (0, \log T],$$
$$\theta \mid \alpha = \sum_{k=1}^{\infty} k^{-\alpha - 1/2} Z_k \phi_k.$$

3 Rates of convergence

Theorem 2. When θ_0 is β -Sobolev smooth, $\beta > 0$, then the Gaussian process prior contracts with rate $T^{-\frac{\beta}{1+2\beta}}$ when $\alpha = \beta$, the hierarchical prior with the hyperprior on the scaling achieves this rate when $\beta \leq \alpha + 1/2$ and the hierarchical prior with the hyperprior on α attains it for every $\beta > 0$.

4 Empirical Bayes

Likelihood estimator for scaling.

$$\hat{s} = \operatorname{argmax}_s \int p^{\theta}(X^T) d\Pi_s(\theta), \quad s \in \left\{ kT^{-\frac{1}{4+4\alpha}} : k \in \left\{ 1, \dots, \left\lfloor T^{\alpha + \frac{1}{4+4\alpha}} \right\rfloor \right\} \right\}$$

Inference with plug-in posterior $\Pi_{\hat{s}}(\cdot \mid X^T) = \Pi_{s}(\cdot \mid X^T)\Big|_{s=\hat{s}}$, with

$$\Pi_s \sim \theta = s \sum_{k=1}^{\infty} k^{-\alpha - 1/2} Z_k \phi_k.$$

Theorem 3. When θ_0 is β -Sobolev smooth, $0 < \beta \le \alpha + 1/2$ then for some constant M > 0,

$$\mathbb{E}_{\theta_0} \left[\Pi_{\hat{s}} \left(\theta : \|\theta - \theta_0\|_2 \le M T^{-\frac{\beta}{1+2\beta}} \mid X^T \right) \right] \to 1, \ as \ T \to \infty.$$

5 More information

- J. van Waaij (2018). "Adaptive posterior contraction rates for diffusions". PhD thesis. University of Amsterdam. ISBN: 978-94-028-0883-4. eprint: http://hdl.handle.net/11245.1/6b890997-2565-4718-9b0f-719c755fa0d9
- J. van Waaij. Slides and additional material of my talk on 18 July 2018. https://github.com/Jan-van-Waaij/wias
- J. van Waaij (2017-2018). BayesianNonparametricStatistics.jl, a Julia package to simulate SDE's and sample from the posterior. URL: https://github.com/Jan-van-Waaij/BayesianNonparametricStatistics.jl