Informing IPCC accounting of forest carbon using the global forest carbon database (ForC v4.0)

Madison Williams¹, Valentine Herrmann¹, Rebecca Banbury Morgan^{1,2}, Ben Bond-Lamberty³, Susan Cook-Patton⁴, Helene Muller-Landau⁵, Camille Piponiot⁶, Teagan Rogers¹, and Kristina J. Anderson-Teixeira^{1,5}*

Correspondence: Kristina J. Anderson-Teixeira (teixeirak@si.edu)

Abstract. Forests are critical for climate change mitigation and consitute a substantial portion of planned emissions reductions under the 2015 Paris Agreement. Yet, the efficacy of greenhouse gas mitigation planning and reporting is dependent upon the quality of available emission factors data, including forest carbon (C) stocks and changes therein. Tens of thousands of relevant forest C estimates have been published, yet are not readily accessible to the practitioners compiling national greenhouse gas inventories. Many of these data have, however, been compiled in the Global Forest C database (ForC; https://forc-db.github.io/) and stand to be of value to greenhouse gas accounting if made available through the Emission Factor Database (EFDB) of the International Panel on Climate Change (IPCC). Here, we develop and document a process for semi-automated transfer of data from ForC into the EFDB, assess the data available and transferred to date, and provide recommendations for improving forest data collection, analysis, and reporting to improve accounting of forest-sector greenhoouse gas emissions and removals. We begin by reconciling terminology and mapping ForC fields into EFDB. This process required some updates to the ForC database structure, leading to the release of a new version of ForC (v4.0; described here). At the time of writing, ForC contained ## values that would qualify for inclusion in the EFDB, ## of which have been transferred to date. (Some analysis of representation/gaps.) In the future, forest C estimates in EFDB can be improved through targetted research to fill critical gaps, reporting of information required by IPCC, and continued submission of data from scientific publications to the EFDB.

15 1 Introduction

Forests are critical to management of atmospheric concentrations of the greenhouse gas carbon dioxide (CO₂), and thereby climate change. In recent decades, CO₂ uptake by forests, woodlands, and savannas has exceeded releases from deforestation and other severe disturbances, resulting in a net carbon CO₂ sink of ~0.88 Gt C yr⁻¹ (all biomes with trees, Xu et al., 2021) to ~1.6 Gt C yr⁻¹ (forests only, Harris et al., 2021). This has offset an estimated 10% to 18% of anthropogenic CO₂ emissions from fossil fuels and cement (Xu et al., 2021; Harris et al., 2021), dramatically slowing the pace of atmospheric CO₂ accumulation

¹Center for Conservation Ecology, Smithsonian Conservation Biology Institute, Front Royal, VA, United States

²School of Geography, University of Leeds, Leeds, UK

³Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, United States

⁴The Nature Conservancy; Arlington VA 22203, USA

⁵Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama

⁶CIRAD, Montpellier, France

and climate change. Going into the future, the fate of this important CO₂ sink is highly uncertain, depending both upon forest responses to climate change, which are likely to reduce the sink strength (McDowell et al., 2020; Hammond et al., 2022), and on human conservation, restoration, and management of forests (IPCC, 2019b, 2022).

Reflecting their strong influence on Earth's climate, forests play a central role in international plans for climate change mitigation under the Paris Agreement (UNFCCC, 2015). Forest conservation, reforestation, and improved sustainable management all have significant – and relatively cost-effective – potential as climate change mitigation options, with conservation and reforestation having the fourth and fifth largest net emission reduction potentials or all mitigation options (?). As of 2016, forest-based mitigation accounted for 26% of total planned greenhouse gas mitigation within Nationally Determined Contributions under the Paris Agreement (Grassi et al., 2017). Yet, envisioned forest-based climate change mitigation initiatives do not always correspond to actual emission reductions through on-the-ground implementation (e.g., Badgley et al., 2022). One critical need for ensuring that forest-based climate change mitigation initiatives are effective is realistic planning and reporting, underlain by solid scientific data (Anderson-Teixeira and Belair, 2022; Deng et al., 2021).

The International Panel on Climate Change (IPCC) provides guidance for national greenhouse gas inventories for reporting to the United Nations Framework Convention on Climate Change (UNFCCC, IPCC, 2006, 2019a). Under this guidance, greenhouse gas inventories include all managed land, including most of the world's forest land (Ogle, 2018). The IPCC inventory guidelines include specific instructions for accounting for greenhouse gas (mainly CO₂) exchanges between forest land and the atmosphere (IPCC, 2006, 2019a). This guidance has improved over the years as more of the relevant underlying data has become available (Requena Suarez et al., 2019; Rozendaal et al., 2022), but there remains room for continuous improvement as the science advances. For example, the year following the release of the latest IPCC guidelines, Cook-Patton et al. (2020) found that the latest default rates may underestimate rates of C accumulation in regrowth forests by 32% on average and fail to capture eight-fold variation within ecozones. In addition, Cuni-Sanchez et al. (2021) found that aboveground C stocks in mature African tropical montane forests were two-thirds higher than the IPCC default values for these forests. This rapid evolution of scientific information on the climate mitigation potential of forests is beneficial to climate mitigation efforts, but requires improved mechanisms for communicating the latest information from scientific researchers to the practitioners who need reliable estimates for greenhouse gas mitigation planning. Moreover, high variability of forest C cycling within ecozones (e.g., Cook-Patton et al., 2020; Cuni-Sanchez et al., 2021) implies that it is useful for practitioners to have access to locally-specific information, when available.

To improve the data accessible for C accounting, the IPCC created the Emission Factor Database (EFDB; https://www.ipcc-nggip.iges.or.jp/EFDB/main.php), which is intended as a recognized library of emission factors and other parameters that can be used for estimating greenhouse gas emissions and removals. The EFDB can be used both for efforts to tally a nation's intended or accomplished greenhouse gas reductions, or as a basis of comparison for external parties to evaluate these inventories. The EFDB encourages researchers to submit estimates of emission factors or other related parameters from peer-reviewed journal papers or other accepted sources for inclusion in the database. In the case of forests, emission factors include carbon stocks, increments ("stock changes"), and fluxes ("gains" and "losses") for various pools (IPCC, 2006, 2019a).

The Global Forest Carbon Database, ForC (https://forc-db.github.io/), is the largest collection of published estimates of forest carbon stocks, increments, and annual fluxes (Anderson-Teixeira et al., 2018, 2021). For C currently contains NA records from NA plots in NA distinct geographical areas, along with records of stand age and disturbance history. As such, ForC is positioned to improve forest C accounting through the transfer of data to EFDB. The purpose of this publication is to document that process and provide recommendations for future improvements.

Here, we (1) review IPCC methods and definitions for tallying forest C; (2) describe mapping of ForC to IPCC's EFDB; (3) describe updates to ForC (ForC v4.0), most of which were implemented to facilitate data transfer to EFDB; (4) summarize the data in ForC that's relevant to EFDB and records that have been transferred to date; and (5) provide recommendations for improving data collection, analysis, database, and accounting.

2 IPCC methods and definitions

The end goal of IPCC greenhouse gas inventories is to quantify greenhouse gas emissions to, or withdrawals from, the atmosphere on an annual basis, most commonly on a national level (IPCC, 2006, 2019a). For each stratum of subdivision within a land-use category, annual stock changes (ΔC ; t C yr⁻¹) are calculated as the sum of changes in various pools (section 2.1), plus any harvested wood products. For each pool, ΔC may be calculated using the "Gain-Loss Method", which takes the difference between gains and losses (influx and outflux variables in Fig. 1), or using the "Stock-Difference Method", which computes ΔC based on C stocks at two points in time (IPCC, 2006). Thus, C cycle variables relevant to the IPCC methodology and to EFDB include C stocks, increments, and fluxes in the IPCC-defined pools.

2.1 Carbon pools

Forest ecosystem C pools may be parsed in various ways, and while certain definitions and thresholds are more common than others, there is no single standard for measuring or reporting that is adhered to by all – or even most – studies. IPCC parses forest C pools into biomass (aboveground and belowground), dead organic matter (dead wood and litter), and soil organic matter (Table 1). While there is some flexibility around the components included in each pool, each national inventory must apply these in a consistent manner. In this section, we define and review the IPCC definitions in the context of typical forest C estimation methodologies.

2.1.1 Biomass

Biomass includes living vegetation, above- and below-ground, both woody and herbaceous, but with a focus on woody plants and trees given their much greater potential to sequester large amounts of C (IPCC, 2006).

Aboveground biomass, which is typically <200 t C ha⁻¹ but can exceed 700 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is defined by the IPCC as "all biomass of living vegetation above the soil including stems, stumps, branches, bark, seeds, and foliage" (IPCC, 2003, 2006). IPCC's guidance is that the understory may be excluded the understory if it constitutes a "minor" component, where quantitative definitions of "understory" and "minor" are not provided, but where a commonly applied

Table 1. IPCC-defined forest carbon pools with definitions and measurement methods. Definitions from IPCC Table 1.1. (See Table 1.1 in IPCC guidance).

pool	definition	important sources of estimate	IPCC guidance
		variation	
aboveground biomass	all biomass of living vegetation	min dbh	may exclude understory if
			minor component
		include non-dicot trees?	?
		include dead standing?	no
		biomass allometry	?
belowground biomass	all biomass of live roots	all factors relevant to	see above
		aboveground biomass	
		allometry or assumed ratio of	can estimate based on R
		below- to above-ground	
		biomass (R)	
		min root diameter	may exclude fine roots
		sampling depth	?
dead wood	all non-living woody biomass	min diameter	10 cm default, but may be
	above a specified diameter,		chosen by country
	aboveground or belowground		
		include belowground?	yes
litter	all non-living biomass smaller	max diameter (= min diameter	10 cm default, but may be
	than dead wood but larger than	for deadwood)	chosen by country
	soil organic matter, in various		
	states of decomposition both		
	above or within the mineral or		
	organic soil		
	-	min size (= size limit for soil	?
		organic matter)	
		layers included	entire O horizon: litter (OL),
			fumic (OF), and humic (OH)
			layers
		include belowground?	yes
soil organic matter	organic carbon in mineral soils	sampling depth	30 cm default, but may be
	to a specified depth		chosen by country

Figure 1. Schematic illustrating the carbon pools quantified under IPCC accounting; ForC variables corresponding to the stock, increment, influx and outflux; and relationships among them. Correspondence of ForC variables to IPCC criteria often depends upon measurement protocols (e.g., min DBH). Additional caveats are as follows: (a,b) branch fall and mortality of stems below census min DBH, which are necessary for a full accounting of dead organic matter production but typically assumed negligible for calculations of biomass change, are excluded by common measurement practice (a) or ForC variable definition (b); (c) assumes that leaf production equals leaf fall, and that changes in foliage biomass are negligible; (d,e) belowground components excluded by common measurement practice (d) or ForC variable definition (e); (f) excludes movement of dead wood into litter through breakage or size reduction; (g) measurements often limited to litter horizon (OL) and may exclude larger branches and stems classified as litter and/or the more decomposed layers of the O horizon.

minimum size sampling threshold for mature forests would be 10 cm stem diameter at breast height (DBH). A recent study characterizing the contributions of trees in different DBH classes to ecosystem C stocks and fluxes found that trees 1 - 10 cm DBH contributed up to \sim 8% aboveground biomass, \sim 17% aboveground woody net primary productivity ($ANPP_{woody.stem}$), and \sim 20% woody mortality (M_{woody}) of mature closed-canopy forests worldwide (Piponiot et al., 2022). In regrowth forests, woodlands, or savannas, small trees and shrubs contribute a much larger proportion of C stocks and fluxes (Piponiot et al., 2022; ?), and, correspondingly, biomass estimates for these ecosystems tend include smaller size classes (e.g., ?). Beyond the minimum DBH sampled, forest censuses and biomass estimates also differ in their inclusion of life forms other than dicot trees – including lianas, ferns, palms, and bamboo – which in some places can reach large sizes and/or constitute a large fraction of forest C. [explain IPCC guidance] Further, it is important to note that this excludes standing dead wood, which is included in remote sensing biomass estimates (Duncanson et al., 2021).

A universal challenge in estimating biomass (living or dead) from forest census data is applying appropriate allometries to convert DBH measurements to biomass. Selection of allometries has an enormous influence on estimates of biomass stocks, increments, of fluxes (Clark and Clark, 2000; Clark et al., 2001). While trusted and standardized allometric equations are becoming increasingly available (Chave et al., 2014; Réjou-Méchain et al., 2017; Gonzalez-Akre et al., 2022), large uncertainties remain. [explain IPCC guidance]

Belowground biomass is defined as "all biomass of live roots" (IPCC, 2003, 2006), a definition including both coarse roots, whose biomass is typically estimated based on stem censuses and allometries or belowground to aboveground biomass ratios, and fine roots, whose biomass is typically estimated via extraction of roots from soil samples. The former, which is typically <40 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is methodologically linked to aboveground biomass estimates, sharing the same methodological sources of variation, but tending to be far more uncertain. Fine root biomass generally constitutes a much smaller C pool (typically <5 t C ha⁻¹, Anderson-Teixeira et al., 2021), and IPCC guidance is that it can be excluded when fine roots cannot be distinguished empirically from soil organic matter or litter (IPCC, 2006), which can be a painstaking process. Field methods for estimating root biomass are highly variable. IPCC's default method for Tier 1 estimates is to apply a ratio of belowground to aboveground biomass, with default factors defined based on ecological zone, continent, and forest age (IPCC, 2006, 2019a).

2.1.2 Dead Organic Matter

100

105

110

115

Dead organic matter includes all non-living biomass that is not within the mineral soil layer and smaller than the litter size threshold. It's inclusion in inventories is not required under Tier 1 methodology for Forest Land remaining Forest Land (see section 2.2), but is required for land that has transitioned to or from forest within the past 20 years (IPCC, 2006).

Dead wood, which is typically <50 t C ha⁻¹ but can exceed 150 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is defined by IPCC as "all non-living woody biomass not contained in the litter, either standing, lying on the ground, or in the soil" (IPCC, 2003, 2006). This pool includes standing and fallen dead wood, stumps, and dead roots of diameter ≥10 cm (or a diameter specified by the country). While dead wood stocks and fluxes can be quite variable across forests (Anderson-Teixeira et al., 2021), and can at times be the dominant pool in a forest ecosystem [e.g., following a severe natural disturbance; Carmona et al.

(2002)], aboveground dead wood remains relatively poorly characterized at a global scale (Anderson-Teixeira et al., 2021), and belowground dead wood is rarely studied (Merganičová et al., 2012). In turn, they are poorly characterized in large-scale forest C budgets (Pan et al., 2011; Harris et al., 2021), and IPCC's latest Tier 1 default values are based on just 1-31 references per climate zone (Table 2.2 in IPCC, 2019a).

Litter, which is typically <40 t C ha⁻¹ but can exceed 100 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is defined by IPCCC as including "all non-living biomass with a diameter less than a minimum diameter chosen by the country (for example 10 cm), lying dead, in various states of decomposition above the mineral or organic soil" (IPCC, 2003, 2006). As noted above, live fine roots may be included in litter when difficult to separate empirically. The definition includes the entire O horizion, including litter (OL), fumic (OF), and humic (OH) layers, in addition to litter embedded within the soil. This definition contrasts with empirical studies that focus on aboveground litter, often including only the OL layer in the definition of litter, and do not always specify the components included. Similar to dead wood, litter is poorly characterized in large-scale forest C budgets (Pan et al., 2011; Harris et al., 2021), and IPCC's latest Tier 1 default values are based on just 1-7 references per climate zone (Table 2.2 in IPCC, 2019a).

2.1.3 Soil Organic Matter/ Carbon

Soil organic matter/ carbon (SOM/ SOC), which (*statistic on how much C is typial*) (?), is defined by IPCC as "organic carbon in mineral and organic soils (including peat) to a specified depth chosen by the country and applied consistently through the time series" (IPCC, 2003, 2006). Live fine roots (suggested diameter cutoff of 2 mm) may be included with soil organic matter when it is not feasible to distinguish them empirically. The greatest source of methodological variation in measuring SOM/ SOC is sampling depth, which has a suggested default of 30 cm but may vary by country provided that consistent criteria are applied.

140 2.2 Land use categories

125

150

IPCC defines land-use categories to include six categories – Forest Land, Grassland, Wetlands, Cropland, Settlements, and Other Land (IPCC, 2006). Sub-divisions include land that has remained in a particular category for >20 years (e.g., Forest Land remaining Forest Land) and land that has been converted from one category to another in the past 20 years (e.g., Cropland converted to Forest Land). Forest Land is defined as at least 10-30% crown cover of trees with potential to reach a minimum height of 2-5 m *in situ* (IPCC, 2003). Definitions of forest are allowed to vary by country, but must be applied consistently. Forest Land includes land where vegetation temporarily falls below the threshold values for forest (e.g., due to disturbance), but is expected to exceed those thresholds in the future (IPCC, 2003).

Inventories are conducted only for managed land, which is defined by IPCC to include "all forests subject to some kind of human interactions (notably commercial management, harvest of industrial round-wood (logs) and fuelwood, production and use of wood commodities, and forest managed for amenity value or environmental protection if specified by the country), with defined geographical boundaries" (IPCC, 2003). As such, managed land constitutes all or the majority of Forest Land in most

countries; however, many countries have not yet reported their approach for defining managed land (Ogle, 2018; Deng et al., 2021).

3 Updates to ForC (ForC v4.0)

Previous versions of ForC (?) contained most of the information required for transfer to EFDB, and, more broadly, to inform C accounting under IPCC guidelines. However, modest changes to the structure and contents of ForC were needed in order to provide all information required by EFDB and to improve ForC's capacity to serve as a repository of valuable information for forest C accounting under IPCC guidelines. To support export of data to EFDB, and to improve the overall quality of the ForC database, we added or modified ## fields (Table ##), defined 15 new variables, implemented enhanced quality control, manually reviewed ># records to obtain additional required information, and added # new records.

This section describes changes relative to ForC v2.0 (Anderson-Teixeira et al., 2018).

3.1 New or modified fields

3.2 New variables

We added a total of 15 new variables to the set of named and defined variables, counting each pair of variables with units in C (ending in _C) or organic matter (ending in _OM) as one. All of these variables are relevant to C accounting under IPCC, and hence to EFDB (Fig. 1) This included eleven increment variables, adding to only one previously defined increment variable (aboveground biomass increment, *delta.agb*). These are directly related to C stocks as previously defined in ForC, with "*delta*." added in front of the variable name. Further, we added variables capturing the belowground component of woody mortality (*woody.mortality_root*) and the combined aboveground and belowground components of woody mortality (*woody.mortality*).

Although most of these variables currently lack records in ForC, the structure exists such that records can be populated over time.

Further, to provide better definition of the previously existing variable *organic.layer*, which has a nebulous definition that reflects the varied definitions adopted by original studies, we added two clearly defined variables: *litter* (relatively undecomposed plant material/ OL horizon), and *O.horizon* (entire O-horizon, including *litter* (OL)).

175 3.3 Quality control measures

Prior to releasing ForC v4.0, we executed several quality control measures. First, we implemented a system of continuous integration using GitHub Actions (*sensu* Kim et al. in review) to run some automatic checks any time the master data files are updated. Second, to improve information on geographic coordinates, we flagged and reviewed records with suspected low precision (*Issue #29*)[https://github.com/forc-db/ForC/issues/229]. Third, to identify erroneous climate data... (*Issue #212*)[https://github.com/forc-db/ForC/issues/212].

Because ForC v4.0 contained known duplicate records, we used R scripts to remove likely duplicates, as detailed in Anderson-Teixeira et al. (2021). Henceforth, we refer to the set of records with likely duplicates removed as "independent records". All records sent to EFCB were ensured to be original through manual review, as detailed below.

3.4 Manual review of records to be sent to EFDB

185 EFDB data submissions require information that was not recorded in previous versions of ForC. It was therefore necessary to return to original publications to retrieve relevant information, including the following:

Data location within source- Because EFDB will not accept data which has been digitized (from graphs) while ForC does, it was necessary to review and note the location of the data within the original source

3.5 Addition of new records

190 4 ForC to EFDB data transfer

To transfer data from ForC into the EFDB, we populated EFDB's bulk import form ("EFDB bulk import.xlsx"), using R scripts to restructure complete, reviewed records for entry into this form.

4.1 Mapping ForC to EFDB

4.1.1 Carbon cycle variables

195 Mapping of variables is shown in Fig. 1.

4.1.2 Land use categories

Documented at https://github.com/forc-db/IPCC-EFDB-integration/blob/main/doc/ForC-EFDB_mapping/defining_land_subcategory.md, https://github.com/forc-db/IPCC-EFDB-integration/blob/main/doc/ForC-EFDB_mapping/IPCC_LandUse_mapping.csv, and in issue #8.

The UNFCCC requires greenhouse gas reporting for all managed lands in a country, where management is defined as "human interventions and practices have been applied to perform production, ecological or social functions" [IPCC 2006 full report REF]. This definition is applied differently across countries, and is not clearly defined by the majority of governments (Ogle, 2018). Given this, and because the IPCC definition of management does not necessarily match that which would be reported in scientific publications and hence in ForC, we do not transfer any classification of land management status from ForC to the EFDB, but do provide auxiliary info that may be useful in making this determination (e.g., geographical location).

Figure 2. Map of sites in ForC shaded by number of records relevant to (circles) and transferred to (triangles) EFDB. Symbols are colored according to the number of records at each site. Underlying map shows FAO ecozones, which are coded as follows:

4.2 Review and posting of data

5 Results

5.1 ForC v4.0 contents

As of April 16, 2022, ForC (v4.0) contained NA independent records (NA total), NA of which were for variables relevant to EFDB (Fig. 1). These records were distributed across all forested continents and ecozones, with particularly high concentrations in [ecozone(s)] and low concentrations in [ecozone(s)] (Fig. 2). The most widely represented forest type was [type], followed by [type] and [type] (Fig. 3).

ForC contained data for ## of the ## variables relevant to EFDB (Table 2, Fig. 1).

Table 2: **Numbers of records of ForC variables relevant to, and sent to, EFDB.** Relationships of variables to IPCC-defined forest C pools (Table 1) and to each other are illustrated in Figure 1.

variable	n in ForC	n independent	n reviewed	n sent to EFDB
		records in ForC		
Biomass				

biomass
delta.biomass
NPP_woody
woody.mortality
Aboveground
biomass
biomass_ag
biomass_ag_woody
biomass_ag_foliage
delta.agb
ANPP_woody
ANPP_foliage
woody.mortality_ag
Belowground
biomass
biomass_root
biomass_root_fine
biomass_root_coarse
delta.biomass_root
delta.biomass_root_coarse
delta.biomass_root_fine
woody.mortality_root
BNPP_root_fine
BNPP_root.turnover_fine
BNPP_root_coarse
Dead wood
deadwood
deadwood_standing
deadwood_down
delta.deadwood
delta.deadwood_standing
delta.deadwood_down
R_het_deadwood 0
Litter

O.horizon
delta.O.horizon
litter
delta.litter
NPP_litterfall
R_het_litter
Soil organic matter
SOM / SOC
delta.SOM /
delta.SOC
R_het_soil
TOTAL

5.2 Data transfers to EFDB

As of April 16, 2022, we had reviewed and sent NA, NA of which have been reviewed, accepted, and posted (Fig. 2-3, Table 2). [DETAILS]

6 Recommendations

225

230

(strongly flag both useful variables that the EFDB does not track and useful variables that papers fail to include that EFDB needs)

220 6.1 Data collection and analysis needs

(Paragraph highlighting important gaps in variables / regions)

Several variables of value to IPCC, including standing dead wood, woody mortality, delta.agb, are not calculated and presented as frequently as are AGB and ANPP_woody, even though they can readily be derived from the same census data. We recommend that researchers calculate and report these, following the reporting guidelines specified below. Furthermore, there is an opportunity to fill data gaps by calculating these from existing census data. For example, the core census protocol of the Forest Global Earth Observatory [ForestGEO; Anderson-Teixeira et al. (2015),Davies et al. (2021)] collects the data required to calculate standing dead wood, woody mortality, and delta.agb, but these have not been calculated and reported for all sites for which the appropriate number of censuses are available (but see Piponiot et al., 2022, ?).

Given widespread trends of increasing tree mortality(?), including through severe natural disturbance (?), better characterization of dead wood will be critical.

Figure 3. Histograms of number of records in ForC relevant to (grey) and transferred to (black) EFDB, organized by (a) dominant vegetation type, (b) FAO ecozone, (c) continent, and (d) stand age. For dominant vegetation (a), 'Other' includes deciduous needleleaf, mixed broadleaf- needleleaf, non-woody vegetation (e.g., early successional), and incompletely classified or mixed forest types. For FAO ecozones (b), codes are as listed in the caption of Figure 2.

6.2 Data reporting needs

235

240

We recommend that, unless they have some specific reason to do otherwise, researchers calculate and report the values according to IPCC standards:

- adopt common standards for variables like min diameter of deadwood, select soil sampling increments to include a cutoff at 30.
 - report 95% CIs, SE, or STD and n
 - report C variables in article text, table, or SI table. EFDB cannot accept data digitized from figures
- present calculations of all variables that would be useful to IPCC. EFDB requires that data in the database be presented
 in the original article, and as such cannot accept subsequent calculations. For example, if aboveground biomass and total
 biomass are presented, but root biomass is not presented, root biomass cannot be subsequently calculated and sent to
 EFDB. Similarly, fine and coarse root biomass can't be summed; soil carbon can't be summed across depth increments,
 etc.

For data synthesis projects, compilation can only be useful to the EFDB if they include all the required, along with transparent description on the methodology applied to derive emission factors (or have a brief description and a reference to the original source) and the original emission factor values are present (not modified/rounded).

Contributing data to ForC and/or EFDB directly will ensure its broader impact. The latter is more efficient for getting data to EFDB, but does not get the data into ForC, where it can be more broadly useful—for example, being used for basic science (e.g., Banbury Morgan et al., 2021; Anderson-Teixeira et al., 2021) or model benchmarking (Fer et al., 2021).

6.3 Database needs

250 There are plenty of relevant, published data that are not included in ForC. Systematic review of the literature could vastly improve data coverage. (*There are some efforts underway, including a few that Susan can specify.*)

6.4 IPCC protocol considerations

An important challenge is that forests are changing rapidly, and data collected a decade ago may no longer be relevant, particularly in the cases of C increments and fluxes.

Remote sensing biomass estimates include standing dead wood (Duncanson et al., 2021).

7 Conclusions

8 Appendix A

Table 3: Mapping of ForC fields to EFDB. See footnotes at end of table (still need to be properly inserted).

Other Properties 1996 Source/Sink Categories, 2006	direct mapping	(no)
	1. 1.	
Categories 2006	used to determine	yes
Categories, 2000	land subcategories	
Source/Sink	(see defin-	
Categories	ing_land_subcategory.r	nd)
1996 Source/Sink	used to determine	(yes)
Categories, 2006	land subcategories	
Source/Sink	(see defin-	
Categories,	ing_land_subcategory.r	nd),
Parameters/	directly listed in	
Conditions	Parameters/	
	Conditions	
Parameters/	direct mapping/	no
Conditions	linking to	
	dominant.veg	
	description	
-	link to variable info in	yes
	ForC_variables table	
Other Properties	direct mapping	no
37.1	1'	
		yes
	direct mapping	yes
	direct manning	yes
		(yes)
	direct of calculated	(yes)
	direct mapping	no
1	11 0	
3		Parameters/ direct mapping/ Conditions linking to dominant.veg description - link to variable info in ForC_variables table Other Properties direct mapping Value direct mapping Value in Common direct mapping Units Common Unit direct mapping Lower Confidence direct or calculated Limit, Upper Confidence Limit

Table 3: Mapping of ForC fields to EFDB. See footnotes at end of table (still need to be properly inserted). (continued)

orC table	ForC field	EFDB field	Usage	Required
	allometry_1,	Comments from Data	link to biomass	no
	allometry_2	Provider	allometry source,	
			when provided	
	data.location.within.sou	ıree	confirm that data	yes
			weren't digitized,	
			facilitate finding data	
			in original publication	
	ForC.investigator	Data Provider, Data	link to Data Provider,	yes
		Provider Contact	Data Provider	
			Contact info	
tes	site.ID, sites.sitename	Other Properties	direct mapping	(no)
	lat, lon	Region/Regional	direct mapping; used	(no)
		conditions	to extract continent,	
			Koeppen, and	
			FAO.ecozone	
	country, state, city,	Region/Regional	direct mapping	no
	masl, mat, map	conditions		
	continent, Koeppen	Region/Regional	direct mapping	auto
	soil.texture, sand, silt,	conditions Parameters/	direct mapping	no
		Conditions	direct mapping	ПО
	clay,	Conditions		
	soil.classification FAO.ecozone	Parameters/	direct mapping	auto
		Conditions		
story	date, hist.cat,	1996 Source/Sink	used to determine	(yes)/no**
	hist.type	Categories, 2006	distmrs.type for	
		Source/Sink	Source/Sink	
		Categories,	Categories, generate	
		Abatement/Control	list of events for	
			Abatement/Control	
		C		
	plot.area	Other Properties	direct mapping	no
ots	•			(no)
ots	plot.area plot.ID, plot.name	technologies	Abatement/Control technologies	no (no)

Table 3: Mapping of ForC fields to EFDB. See footnotes at end of table (still need to be properly inserted). (continued)

to
to
to
to
to
to
to
to
to
to
s/auto
s/auto
s/auto /auto
t

^{&#}x27;Required' field indicates whether the field is required by EFDB: yes = value required; (yes) = input required, missing value acceptable if not reported; auto = present within ForC infrasructure, and therefore will always be exported to EFDB; (no) =

not required for EFDB, but required for ForC and therefore will always be exported to EFDB; no = not required, but exported to EFDB when a value is present.

** '(yes)' for most recent severe disturbance; 'no' for other history events

9 Appendix B

Table 4: Table of changes to ForC fields.

Table	Column	Description	Changes	Motivation
Sites	coordinates.precision	Precision of	field added	allow identification of
		geographic		records with poor
		coordinates, as		coordinate precision
		reported by source or		
		estimated from maps.		
Measurements	data.location.within.sou	rdeocation of data	field added	facilitate review,
		within the source		ensure traceability
		listed in citation.ID.		
	sd, se, lower95%CI,	Standard deviation,	replaces 'stat' and	cleaner format; ability
	upper 95%CI	standard error, and	'stat.name'	to handle
		lower and upper 95		assymetrical 95
		percent confidence		percent confidence
		intvervals,		intervals
		respectively.		
	mean.in.original.units,	mean value and units	fields added	provide IPCC with
	original.units	presented in original		original units, reduce
		publication		errors/improve
				reproducibility
	C.conversion.factor	Assumed/ measured	field added	track units
		C content of organic		conversion, allow
		matter used to convert		back-calculation of
		organic matter to C.		OM if conversion
				factor deemed
				inappropriate

Table 4: Table of changes to ForC fields. (continued)

Table	Column	Description	Changes	Motivation
PFT	description	Definition of the	field added	
		pftcode at the		
		community level.		
		Differs from		
		individual level in		
		that properly		
		describes mixed plant		
		functional types.		
	description.individual	Definition of the	field name change	
		pftcode at the	(previously	
		individual plant level.	'description')	
Citations	citation.citation	Full citation. Most of	field added	field required by
		these records are		IPCC
		automatically		
		generated in R based		
		upon DOI lookup.		
	citation.language	Language of original	field added	field required by
		publication,		IPCC
		automatically		
		generated based on		
		the title and abstract,		
		with some manual		
		entries and		
		corrections.		
	citation.url	URL of original	field added	field required by
		publication, generally		IPCC
		retrieved		
		automatically via		
		URL lookup.		
	citation.abstract	Abstract, generally	field added	field required by
		retrieved		IPCC
		automatically via		
		DOI lookup.		

Table 4: **Table of changes to ForC fields.** (continued)

Table	Column	Description	Changes	Motivation
	source.type	citation source type	field added	field required by
				IPCC
	pdf.in.repository	Indicates whether pdf	field added	housekeeping
		of original study has		
		been retrieved and		
		saved in ForC's		
		reference repository		
	EFDB.ready	Indicates whether	field added	housekeeping
		data have been		
		checked for export to		
		EFDB.		

Code and data availability. use this to add a statement when having data sets and software code available

Appendix A: Mapping ForC to EFDB

CURRENT TABLE 3 GOES HERE

Appendix B: Updates to ForC

265

CURRENT TABLE 4 GOES HERE

Author contributions. (fill this in)

270 Competing interests. The authors declare no competing interests.

Acknowledgements. Thank you to all researchers who collected and published the data contained in ForC, and to all research assistants and collaborators who have helped to build the database. Funding for this study was provided by Bezos Earth Fund to The Nature Conservancy, the Institute for Global Environmental Strategies, WLS(?)

References

300

- Anderson-Teixeira, K. J. and Belair, E. P.: Effective Forest-Based Climate Change Mitigation Requires Our Best Science, Global Change Biology, 28, 1200–1203, https://doi.org/10.1111/gcb.16008, 2022.
 - Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, E. B., Muller-Landau, H. C., Joseph Wright, S., Abu Salim, K., Almeyda Zambrano, A. M., Alonso, A., Baltzer, J. L., Basset, Y., Bourg, N. A., Broadbent, E. N., Brockelman, W. Y., Bunyavejchewin, S., Burslem, D. F. R. P., Butt, N., Cao, M., Cardenas, D., Chuyong, G. B., Clay, K., Cordell, S., Dattaraja, H. S., Deng, X., Detto, M., Du,
- X., Duque, A., Erikson, D. L., Ewango, C. E., Fischer, G. A., Fletcher, C., Foster, R. B., Giardina, C. P., Gilbert, G. S., Gunatilleke, N., Gunatilleke, S., Hao, Z., Hargrove, W. W., Hart, T. B., Hau, B. C., He, F., Hoffman, F. M., Howe, R. W., Hubbell, S. P., Inman-Narahari, F. M., Jansen, P. A., Jiang, M., Johnson, D. J., Kanzaki, M., Kassim, A. R., Kenfack, D., Kibet, S., Kinnaird, M. F., Korte, L., Kral, K., Kumar, J., Larson, A. J., Li, Y., Li, X., Liu, S., Lum, S. K., Lutz, J. A., Ma, K., Maddalena, D. M., Makana, J.-R., Malhi, Y., Marthews, T., Mat Serudin, R., McMahon, S. M., McShea, W. J., Memiaghe, H. R., Mi, X., Mizuno, T., Morecroft, M., Myers, J. A., Novotny, V.,
- de Oliveira, A. A., Ong, P. S., Orwig, D. A., Ostertag, R., den Ouden, J., Parker, G. G., Phillips, R. P., Sack, L., Sainge, M. N., Sang, W., Sri-ngernyuang, K., Sukumar, R., Sun, I.-F., Sungpalee, W., Suresh, H. S., Tan, S., Thomas, S. C., Thomas, D. W., Thompson, J., Turner, B. L., Uriarte, M., Valencia, R., Vallejo, M. I., Vicentini, A., Vrška, T., Wang, X., Wang, X., Weiblen, G., Wolf, A., Xu, H., Yap, S., and Zimmerman, J.: CTFS-ForestGEO: A Worldwide Network Monitoring Forests in an Era of Global Change, Global Change Biology, 21, 528–549, https://doi.org/10.1111/gcb.12712, 2015.
- Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., Herrmann, V., Tepley, A. J., Bond-Lamberty, B., and LeBauer, D. S.: For C: A Global Database of Forest Carbon Stocks and Fluxes, Ecology, 99, 1507–1507, https://doi.org/10.1002/ecy.2229, 2018.
 - Anderson-Teixeira, K. J., Herrmann, V., Morgan, R. B., Bond-Lamberty, B., Cook-Patton, S. C., Ferson, A. E., Muller-Landau, H. C., and Wang, M. M. H.: Carbon Cycling in Mature and Regrowth Forests Globally, Environmental Research Letters, 16, 053 009, https://doi.org/10.1088/1748-9326/abed01, 2021.
- Badgley, G., Freeman, J., Hamman, J. J., Haya, B., Trugman, A. T., Anderegg, W. R., and Cullenward, D.: Systematic Over-Crediting in California's Forest Carbon Offsets Program, Global Change Biology, 28, 1433–1445, https://doi.org/10.1111/gcb.15943, 2022.
 - Banbury Morgan, R., Herrmann, V., Kunert, N., Bond-Lamberty, B., Muller-Landau, H. C., and Anderson-Teixeira, K. J.: Global Patterns of Forest Autotrophic Carbon Fluxes, Global Change Biology, 27, 2840–2855, https://doi.org/10.1111/gcb.15574, 2021.
 - Carmona, M. R., Armesto, J. J., Aravena, J. C., and Pérez, C. A.: Coarse Woody Debris Biomass in Successional and Primary Temperate Forests in Chiloé Island, Chile, Forest Ecology and Management, 164, 265–275, https://doi.org/10.1016/S0378-1127(01)00602-8, 2002.
 - Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent, G.: Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees, Global Change Biology, 20, 3177–3190, https://doi.org/10.1111/gcb.12629, 2014.
- Clark, D., Brown, S., Kicklighter, D., Chambers, J., Thomlinson, J., Ni, J., and Holland, E.: Net Primary Production in Tropical Forests: An Evaluation and Synthesis of Existing Field Data, Ecological Applications, 11, 371–384, 2001.
 - Clark, D. B. and Clark, D. A.: Landscape-Scale Variation in Forest Structure and Biomass in a Tropical Rain Forest, Forest Ecology and Management, 137, 185–198, https://doi.org/10.1016/S0378-1127(99)00327-8, 2000.
- Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L., Crowther, T. W., Ellis, P. W., Griscom, H. P., Herrmann, V., Holl, K. D., Houghton, R. A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi,

- Y., Paquette, A., Parker, J. D., Paul, K., Routh, D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W. S., Wheeler, C. E., Wood, S. A., Xu, L., and Griscom, B. W.: Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth, Nature, 585, 545–550, https://doi.org/10.1038/s41586-020-2686-x, 2020.
- Cuni-Sanchez, A., Sullivan, M. J. P., Platts, P. J., Lewis, S. L., Marchant, R., Imani, G., Hubau, W., Abiem, I., Adhikari, H., Albrecht, T.,
- Altman, J., Amani, C., Aneseyee, A. B., Avitabile, V., Banin, L., Batumike, R., Bauters, M., Beeckman, H., Begne, S. K., Bennett, A. C., Bitariho, R., Boeckx, P., Bogaert, J., Bräuning, A., Bulonvu, F., Burgess, N. D., Calders, K., Chapman, C., Chapman, H., Comiskey, J., de Haulleville, T., Decuyper, M., DeVries, B., Dolezal, J., Droissart, V., Ewango, C., Feyera, S., Gebrekirstos, A., Gereau, R., Gilpin, M., Hakizimana, D., Hall, J., Hamilton, A., Hardy, O., Hart, T., Heiskanen, J., Hemp, A., Herold, M., Hiltner, U., Horak, D., Kamdem,
 - M.-N., Kayijamahe, C., Kenfack, D., Kinyanjui, M. J., Klein, J., Lisingo, J., Lovett, J., Lung, M., Makana, J.-R., Malhi, Y., Marshall,
- 320 A., Martin, E. H., Mitchard, E. T. A., Morel, A., Mukendi, J. T., Muller, T., Nchu, F., Nyirambangutse, B., Okello, J., Peh, K. S.-H.,
 - Pellikka, P., Phillips, O. L., Plumptre, A., Qie, L., Rovero, F., Sainge, M. N., Schmitt, C. B., Sedlacek, O., Ngute, A. S. K., Sheil,
 - D., Sheleme, D., Simegn, T. Y., Simo-Droissart, M., Sonké, B., Soromessa, T., Sunderland, T., Svoboda, M., Taedoumg, H., Taplin, J.,
 - Taylor, D., Thomas, S. C., Timberlake, J., Tuagben, D., Umunay, P., Uzabaho, E., Verbeeck, H., Vleminckx, J., Wallin, G., Wheeler, C.,
 - Willcock, S., Woods, J. T., and Zibera, E.: High Aboveground Carbon Stock of African Tropical Montane Forests, Nature, 596, 536-542,
- Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S.,
 - Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyayeichewin, S.,
 - Burslem, D. F., Cao, M., Cárdenas, D., Chang, L.-W., Chang-Yang, C.-H., Chao, K.-J., Chao, W.-C., Chapman, H., Chen, Y.-Y., Chisholm,
 - Bulletin, D.T., Cuc, III, Chang, E. W., Chang, T. T., Chan
 - R. A., Chu, C., Chuyong, G., Clay, K., Comita, L. S., Condit, R., Cordell, S., Dattaraja, H. S., de Oliveira, A. A., den Ouden, J., Detto, M.,
- Dick, C., Du, X., Duque, Á., Ediriweera, S., Ellis, E. C., Obiang, N. L. E., Esufali, S., Ewango, C. E., Fernando, E. S., Filip, J., Fischer,
 - G. A., Foster, R., Giambelluca, T., Giardina, C., Gilbert, G. S., Gonzalez-Akre, E., Gunatilleke, I., Gunatilleke, C., Hao, Z., Hau, B. C.,
 - He, F., Ni, H., Howe, R. W., Hubbell, S. P., Huth, A., Inman-Narahari, F., Itoh, A., Janík, D., Jansen, P. A., Jiang, M., Johnson, D. J.,
 - Jones, F. A., Kanzaki, M., Kenfack, D., Kiratiprayoon, S., Král, K., Krizel, L., Lao, S., Larson, A. J., Li, Y., Li, X., Litton, C. M., Liu,
 - Y., Liu, S., Lum, S. K., Luskin, M. S., Lutz, J. A., Luu, H. T., Ma, K., Makana, J.-R., Malhi, Y., Martin, A., McCarthy, C., McMahon,
- S. M., McShea, W. J., Memiaghe, H., Mi, X., Mitre, D., Mohamad, M., Monks, L., Muller-Landau, H. C., Musili, P. M., Myers, J. A.,
 - - Nathalang, A., Ngo, K. M., Norden, N., Novotny, V., O'Brien, M. J., Orwig, D., Ostertag, R., Papathanassiou, K., Parker, G. G., Pérez,
 - R., Perfecto, I., Phillips, R. P., Pongpattananurak, N., Pretzsch, H., Ren, H., Reynolds, G., Rodriguez, L. J., Russo, S. E., Sack, L., Sang,
 - W., Shue, J., Singh, A., Song, G.-Z. M., Sukumar, R., Sun, I.-F., Suresh, H. S., Swenson, N. G., Tan, S., Thomas, S. C., Thomas, D.,
 - Thompson, J., Turner, B. L., Uowolo, A., Uriarte, M., Valencia, R., Vandermeer, J., Vicentini, A., Visser, M., Vrska, T., Wang, X., Wang,
- 340 X., Weiblen, G. D., Whitfeld, T. J., Wolf, A., Wright, S. J., Xu, H., Yao, T. L., Yap, S. L., Ye, W., Yu, M., Zhang, M., Zhu, D., Zhu, L.,
 - Zimmerman, J. K., and Zuleta, D.: ForestGEO: Understanding Forest Diversity and Dynamics through a Global Observatory Network,
 - Biological Conservation, 253, 108 907, https://doi.org/10.1016/j.biocon.2020.108907, 2021.

325

https://doi.org/10.1038/s41586-021-03728-4, 2021.

- Deng, Z., Ciais, P., Tzompa-Sosa, Z. A., Saunois, M., Qiu, C., Tan, C., Sun, T., Ke, P., Cui, Y., Tanaka, K., Lin, X., Thompson, R. L., Tian,
 - H., Yao, Y., Huang, Y., Lauerwald, R., Jain, A. K., Xu, X., Bastos, A., Sitch, S., Palmer, P. I., Lauvaux, T., d'Aspremont, A., Giron, C.,
- Benoit, A., Poulter, B., Chang, J., Petrescu, A. M. R., Davis, S. J., Liu, Z., Grassi, G., Albergel, C., and Chevallier, F.: Comparing National
 - Greenhouse Gas Budgets Reported in UNFCCC Inventories against Atmospheric Inversions, Earth System Science Data Discussions, pp. 1–59, https://doi.org/10.5194/essd-2021-235, 2021.

- Duncanson, L., Armstron, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., Herold, M., MacBean, N., McRoberts, R., Minor, D., Paul, K., Réjou-Méchain, M., Roxburgh, S., Williams, M., Albinet, C., Baker, T., Bartholomeus, H., Bastin, J. F., Coomes, D., Crowther, T., Davies, S., de Bruin, S., De Kauwe, M., Domke, G., Labriere, N., Lucas, R., Mitchard, E., Morsdorf, F., Næsset, E., Park, T., Phillips, O. L., Ploton, P., Puliti, S., Quegan, S., Saatchi, S., Schaaf, C., Schepaschenko, D., Scipal, K., Stovall, A., Thiel, C., Wulder, M., Camacho, F., Nickeson, J., Román, M., and Margolis, H.: Aboveground Woody Biomass Product Validation Good Practices Protocol, in: Good Practices for Satellite-Derived Land Product Validation, edited by Duncanson, L., Disney, M., Armston, J., Nickeson, J., Minor, D., and Camacho, F., p. 236, Land Product Validation Subgroup (Working Group on Calibration and Validation, Committee on Earth Observation Satellites), https://doi.org/10.5067/doc/ceoswgcv/lpv/agb.001, 2021.
 - Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M., Kauwe, M. G. D., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K. D., Hoffman, F. M., Johnston, M. R., Kooper, R., LeBauer, D. S., Mantooth, J., Parton, W. J., Poulter, B., Quaife, T., Raiho, A., Schaefer, K., Serbin, S. P., Simkins, J., Wilcox, K. R., Viskari, T., and Dietze, M. C.: Beyond Ecosystem Modeling: A Roadmap to Community Cyberinfrastructure for Ecological Data-Model Integration, Global Change Biology, 27, 13–26, https://doi.org/10.1111/gcb.15409, 2021.

360

365

370

- Gonzalez-Akre, E., Piponiot, C., Lepore, M., Herrmann, V., Lutz, J. A., Baltzer, J. L., Dick, C. W., Gilbert, G. S., He, F., Heym, M., Huerta, A. I., Jansen, P. A., Johnson, D. J., Knapp, N., Král, K., Lin, D., Malhi, Y., McMahon, S. M., Myers, J. A., Orwig, D., Rodríguez-Hernández, D. I., Russo, S. E., Shue, J., Wang, X., Wolf, A., Yang, T., Davies, S. J., and Anderson-Teixeira, K. J.: Allodb: An R Package for Biomass Estimation at Globally Distributed Extratropical Forest Plots, Methods in Ecology and Evolution, 13, 330–338, https://doi.org/10.1111/2041-210X.13756, 2022.
- Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., and Penman, J.: The Key Role of Forests in Meeting Climate Targets Requires Science for Credible Mitigation, Nature Climate Change, 7, 220–226, https://doi.org/10.1038/nclimate3227, 2017.
- Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D. D., and Allen, C. D.: Global Field Observations of Tree Die-off Reveal Hotter-Drought Fingerprint for Earth's Forests, Nature Communications, 13, 1761, https://doi.org/10.1038/s41467-022-29289-2, 2022.
- Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., and Tyukavina, A.: Global Maps of Twenty-First Century Forest Carbon Fluxes, Nature Climate Change, pp. 1–7, https://doi.org/10.1038/s41558-020-00976-6, 2021.
- IPCC: Good Practice Guidance for Land Use, Land-Use Change and Forestry, Institute for Global Environmental Strategies, Hayama, Japan, 2003.
 - IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (Eds)., IGES, Japan, 2006.
 - IPCC: Agriculture, Forestry, and Other Land Use, in: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, edited by Eggleston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Institute for Global Environmental Strategies, Hayama, Japan, 2006.
- 380 IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC, Switzerland, 2019a.
 - IPCC: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (Eds.)], Tech. rep., 2019b.

- 385 IPCC: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (Eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA., https://doi.org/10.1017/9781009157926.001, 2022.
- McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord,
 C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M.,
 Seidl, R., Turner, M. G., Uriarte, M., Walker, A. P., and Xu, C.: Pervasive Shifts in Forest Dynamics in a Changing World, Science, 368,
 https://doi.org/10.1126/science.aaz9463, 2020.
 - Merganičová, K., Merganič, J., Svoboda, M., Bače, R., and Šebeň, V.: Dadwood in Forest Ecosystems, BoD Books on Demand, 2012.
- Ogle, S. M.: Delineating Managed Land for Reporting National Greenhouse Gas Emissions and Removals to the United Nations Framework

 Convention on Climate Change, p. 13, 2018.
 - Pan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., Phillips, O., Shvidenko, A., Lewis, S., Canadell, J., Ciais, P., Jackson, R., Pacala, S., McGuire, A., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's Forests, Science, 333, 988–993, 2011.
- Piponiot, C., Anderson-Teixeira, K. J., Davies, S. J., Allen, D., Bourg, N. A., Burslem, D. F. R. P., Cárdenas, D., Chang-Yang, C.-H.,
 Chuyong, G., Cordell, S., Dattaraja, H. S., Duque, Á., Ediriweera, S., Ewango, C., Ezedin, Z., Filip, J., Giardina, C. P., Howe, R., Hsieh,
 C.-F., Hubbell, S. P., Inman-Narahari, F. M., Itoh, A., Janík, D., Kenfack, D., Král, K., Lutz, J. A., Makana, J.-R., McMahon, S. M.,
 McShea, W., Mi, X., Bt. Mohamad, M., Novotný, V., O'Brien, M. J., Ostertag, R., Parker, G., Pérez, R., Ren, H., Reynolds, G., Md Sabri,
 M. D., Sack, L., Shringi, A., Su, S.-H., Sukumar, R., Sun, I.-F., Suresh, H. S., Thomas, D. W., Thompson, J., Uriarte, M., Vandermeer,
 J., Wang, Y., Ware, I. M., Weiblen, G. D., Whitfeld, T. J. S., Wolf, A., Yao, T. L., Yu, M., Yuan, Z., Zimmerman, J. K., Zuleta, D., and
 Muller-Landau, H. C.: Distribution of Biomass Dynamics in Relation to Tree Size in Forests across the World, New Phytologist, n/a,
 - https://doi.org/10.1111/nph.17995, 2022.

 Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., and Hérault, B.: Biomass: An r Package for Estimating above-Ground Biomass and Its Uncertainty in Tropical Forests, Methods in Ecology and Evolution, 8, 1163–1167, https://doi.org/10.1111/2041-210X.12753, 2017.
- Requena Suarez, D., Rozendaal, D. M. A., Sy, V. D., Phillips, O. L., Alvarez-Dávila, E., Anderson-Teixeira, K., Araujo-Murakami, A.,
 Arroyo, L., Baker, T. R., Bongers, F., Brienen, R. J. W., Carter, S., Cook-Patton, S. C., Feldpausch, T. R., Griscom, B. W., Harris, N.,
 Hérault, B., Coronado, E. N. H., Leavitt, S. M., Lewis, S. L., Marimon, B. S., Mendoza, A. M., N'dja, J. K., N'Guessan, A. E., Poorter,
 L., Qie, L., Rutishauser, E., Sist, P., Sonké, B., Sullivan, M. J. P., Vilanova, E., Wang, M. M. H., Martius, C., and Herold, M.: Estimating
 Aboveground Net Biomass Change for Tropical and Subtropical Forests: Refinement of IPCC Default Rates Using Forest Plot Data,
 Global Change Biology, 25, 3609–3624, https://doi.org/10.1111/gcb.14767, 2019.
- Als Rozendaal, D. M. A., Suarez, D. R., Sy, V. D., Avitabile, V., Carter, S., Yao, C. Y. A., Alvarez-Davila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., Barca, B., Baker, T. R., Birigazzi, L., Bongers, F., Branthomme, A., Brienen, R. J. W., Carreiras, J. M. B., Gatti, R. C., Cook-Patton, S. C., Decuyper, M., DeVries, B., Espejo, A. B., Feldpausch, T. R., Fox, J., Gamarra, J. G. P., Griscom, B. W., Harris, N., Hérault, B., Coronado, E. N. H., Jonckheere, I., Konan, E., Leavitt, S. M., Lewis, S. L., Lindsell, J. A., N'Dja, J. K., N'Guessan, A. E., Marimon, B., Mitchard, E. T. A., Monteagudo, A., Morel, A., Pekkarinen, A., Phillips, O. L., Poorter, L., Qie, L., Rutishauser, E.,
- Ryan, C. M., Santoro, M., Silayo, D. S., Sist, P., Slik, J. W. F., Sonké, B., Sullivan, M. J. P., Laurin, G. V., Vilanova, E., Wang, M. M. H., Zahabu, E., and Herold, M.: Aboveground Forest Biomass Varies across Continents, Ecological Zones and Successional Stages: Refined

- IPCC Default Values for Tropical and Subtropical Forests, Environmental Research Letters, 17, 014 047, https://doi.org/10.1088/1748-9326/ac45b3, 2022.
- UNFCCC: Adoption of the Paris Agreement, 2015.
- Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E., Woodall, C., Nabuurs, G.-J., de-Miguel, S., Keller, M., Harris, N., Maxwell, S., and Schimel, D.: Changes in Global Terrestrial Live Biomass over the 21st Century, Science Advances, 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829, 2021.