CS 310 (sec 20) - Spring 2005 - Final Exam (solutions)

SOLUTIONS

- 1. (Functions) For each of the following functions determine whether it is one-to-one, onto or a bijection. If it is a bijection find its inverse.
 - 1. $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1.
 - 2. $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1.
 - 3. $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $f(x,y) = 2x^2 + y$.
 - 4. $f: \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}, f(x,y) = x/y.$
 - 5. $f: \mathbb{N} \to \mathbb{N} \times \{0, 1, 2\}, \ f(x) = (\lfloor x/3 \rfloor, x 3 \cdot \lfloor x/3 \rfloor), \text{ where } \lfloor x \rfloor = \text{greatest integer less than or equal to } x.$

- 1. One-to-one. It is not onto because the image contains only odd integers.
- 2. Bijection, $f^{-1}(x) = (x-1)/2$.
- 3. Onto. It is not one-to-one because, e.g., f(0,2) = f(1,0) = 2.
- 4. Onto. It is not one-to-one because, e.g., f(2,3) = 2/3 = 4/6 = f(4,6).
- 5. Bijection, $f^{-1}(x, y) = 3x + y$.

2. (Algorithms) Let f(n) be the function defined with the following pseudocode:

```
1: procedure f(n)
2:    if n = 0 then
3:       return 1
4:    else
5:       return (n * f(n-1))
6: end f
```

- 1. Find the exact value of f(n) for every integer $n \geq 0$.
- 2. Find the slowest growing function g(n) among the following ones such that f(n) = O(g(n)):

1,
$$\log \log n$$
, $\log n$, n , $n \log n$, n^k $(k \in \mathbb{Z}^+, k \ge 2)$, 2^n , n^n .

- 3. Among those same functions find the fastest growing one such that $f(n) = \Omega(g(n))$.
- 4. Is $f(n) = \Theta(g(n))$ for any of those functions? If yes, which one? If not, why not?

Solution:

1.
$$f(n) = n!$$

The answers to the next two questions are based on the double inequality $2^n < n! < n^n$ for every $n \ge 4$.

2.
$$g(n) = n^n$$
, i.e., $f(n) = O(n^n)$.

3.
$$g(n) = 2^n$$
, i.e., $f(n) = \Omega(2^n)$.

4. No. Among the functions shown only n^n and 2^n are "candidates" for the g(n) such that $f(n) = \Theta(g(n))$. We need $C_1 g(n) \le n! \le C_2 g(n)$ for some positive constants C_1 , C_2 , and for every n large enough. We already have $C_1 2^n \le n! \le C_2 n^n$, but we cannot have $C_1 n^n \le n!$ or $n! \le C_2 2^n$ because $n^n/n! \to \infty$ and $n!/2^n \to \infty$ as $n \to \infty$.

3. (Induction) For which positive integers n is n < (n-1)!? Prove your answer using mathematical induction.

Solution:

We can see by inspection that the claim is false for n=1,2,3, but we will prove by induction that it is true for every $n \geq 4$.

- 1. Basis Step: For n = 4 we have 4 < 6 = 3!, so the proposition is true for n = 4.
- 2. Inductive Step: We must prove that for any $n \geq 4$,

$$n < (n-1)! \Rightarrow n+1 < n!$$

So, assume that $n \geq 4$, and n < (n-1)! Then for n+1 we have

$$n+1 < n \cdot n < (n-1)! \cdot n = n!$$

$$\uparrow$$
(induction hypothesis)

This completes the Inductive Step.

Hence the claim is true for every integer $n \geq 4$.

4. (Graphs/Counting)

- 1. How many simple graphs are there with 10 vertices and 3 edges?
- 2. How many simple graphs are there with 10 vertices (and any number of edges)?
- 3. How many multigraphs are there with 10 vertices and 3 edges?
- 4. How many pseudographs are there with 10 vertices and 3 edges?

Assume the vertices are labeled $1, 2, 3, \ldots$, so for instance graph G_1 with set of edges $E_1 = \{(1, 2), (2, 3), (3, 1)\}$, and graph G_2 with set of edges $E_2 = \{(2, 3), (3, 4), (4, 2)\}$, are considered different even though they are isomorphic.

Recall that in a *simple graph* multiples edges and loops are not allowed. In a *multigraph* multiples edges are allowed, but loops are not. In a *pseudograph* both multiples edges and loops are allowed.

Solution:

The problem deals with different ways of choosing edges among all possible (unordered) pairs of 10 vertices. If the vertices must be different (no loops) then there are $\binom{10}{2} = 45$ such pairs. Otherwise (loops allowed) there are $\binom{10}{2} + 10$, or equivalently $\binom{11}{2} = 55$ such pairs. Also recall that he number of combinations of n objects taken r at a time with repetition is $\binom{n+r-1}{r}$.

- 1. Number of simple graphs with 10 vertices and 3 edges = $\binom{\binom{10}{2}}{3}$ = $\binom{45}{3}$ = 14190.
- 2. Number of simple graphs with 10 vertices and any number of edges $=2^{\binom{10}{2}}=2^{45}=35184372088832.$
- 3. Number of multigraphs with 10 vertices and 3 edges = $\binom{\binom{10}{2} + 3 1}{3}$ = $\binom{47}{3}$ = 16215.
- 4. Number of pseudographs with 10 vertices and 3 edges = $\binom{\binom{11}{2} + 3 1}{3}$ = $\binom{57}{3}$ = 29260.

5. (Search Trees) Build a binary search tree for the words banana, peach, apple, pear, coconut, mango, and papaya using alphabetical order.

6. (Spanning Trees) Find the spanning trees of the following graph with its vertices sorted in alphabetical order:

- 1. Using Breadth-First Search.
- 2. Using Depth-First Search.

Breadth-First

Depth-First

- 7. (Boolean Algebras) Find Boolean expressions (as simple as possible) for the following Boolean functions with three arguments:
 - 1. Majority Voting, i.e., f(x, y, z) = 1 if the algebraic sum $x + y + z \ge 2$, and f(x, y, z) = 0 otherwise.
 - 2. Parity: f(x, y, z) = 0 if the algebraic sum x + y + z is even, and f(x, y, z) = 1 if it is odd.
 - 3. All or Nothing: f(0,0,0) = f(1,1,1) = 1, otherwise f(x,y,z) = 0.

Solution:

1. Majority Voting:

$$f(x, y, z) = x \cdot y + x \cdot z + y \cdot z$$

2. Parity:

$$f(x, y, z) = x \cdot y \cdot z + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z$$
$$= x \oplus y \oplus z$$

3. All or Nothing:

$$f(x, y, z) = x \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot \overline{z}$$

8. (Logic Gates) Construct a circuit for a half subtractor using AND gates, OR gates and NOT gates. A half subtractor has two bits x, y as input and produces as output a difference bit d = x - y and a borrow b, according to the following table:

X	У	d	b
1	1	0	0
1	0	1	0
0	1	1	1
0	0	0	0

Solution:

The difference bit is $d = x \oplus y = x \cdot \overline{y} + \overline{x} \cdot y$. The borrow is $b = \overline{x} \cdot y$.

This is another design similar to the previous one but with $x \cdot \overline{y}$ replaced with $\overline{x} + y$.

Another design, using $d = x \oplus y = (x + y) \cdot \overline{x \cdot y}$.

Other designs are possible.

9. (Languages and Automata)

1. Find the language recognized by the following automaton:

2. Design (give the transition diagram of) an automaton that recognizes the language over $\{a,b\}$ defined by the regular expression $a^* + b^*$, consisting of all strings (including the empty string) containing only a's, or only b's, but not both: $L = \{\lambda, a, b, aa, bb, aaa, bbb, \dots\}$.

Solution:

1. Possible answers:

- (a) Strings over $\{a, b\}$ with an odd number of a's.
- (b) Language defined by the following regular expression: $b^*ab^*(ab^*ab^*)^*$.

(Other descriptions of the language are possible.)

2. The following automaton recognizes the desired language:

- 10. (Grammars) A palindrome is a string that reads the same forward and backward.
 - 1. Define a grammar for all palindromes over $\{a,b\}$ with an even number of symbols (including the empty string), e.g., λ , 'aa', 'bb', 'aaaa', 'abba', 'baab, 'bbbb', 'aabbaa', etc.
 - 2. Define a grammar for all palindromes over $\{a,b\}$ with an odd number of symbols, e.g., 'a', 'b', 'aaa', 'aba', 'bab', 'bab', 'aaaaa', 'aabaa', etc.

- 1. $S \to aSa$, $S \to bSb$, $S \to \lambda$.
- $2. \quad S \to aSa, \quad S \to bSb, \quad S \to a, \quad S \to b.$