CSE 613: Parallel Programming

Lecture 8 (Parallel Quicksort and Selection)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

Input: An array A[q:r] of distinct elements, and an element x from A[q:r].

Output: Rearrange the elements of A[q:r], and return an index $k \in [q,r]$, such that all elements in A[q:k-1] are smaller than x, all elements in A[k+1:r] are larger than x, and A[k] = x.

```
Par-Partition (A[q:r], x)
 1. n \leftarrow r - q + 1
 2. if n = 1 then return q
 3. array B[0: n-1], lt[0: n-1], gt[0: n-1]
 4. parallel for i \leftarrow 0 to n - 1 do
 5. B[i] \leftarrow A[q+i]
 6. if B[i] < x then lt[i] \leftarrow 1 else lt[i] \leftarrow 0
 7. if B[i] > x then gt[i] \leftarrow 1 else gt[i] \leftarrow 0
 8. lt [0: n-1] \leftarrow Par-Prefix-Sum (lt[0: n-1], +)
 9. gt[0: n-1] \leftarrow Par-Prefix-Sum(gt[0: n-1], +)
10. k \leftarrow q + lt [n-1], A[k] \leftarrow x
11. parallel for i \leftarrow 0 to n-1 do
12. if B[i] < x then A[q + lt[i] - 1] \leftarrow B[i]
        else if B[i] > x then A[k + gt[i]] \leftarrow B[i]
14. return k
```

A: 9 5 7 11 1 3 8 14 4 21 **x=8**

 B:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 B:
 9
 5
 7
 11
 1
 3
 8
 14
 4
 21

										9
It:	0	1	1	0	1	1	0	0	1	0

	0	1			4	5	6	/	8	9
gt:	1	0	0	1	0	0	0	1	0	1

 B:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 B:
 9
 5
 7
 11
 1
 3
 8
 14
 4
 21

prefix sum

prefix sum

prefix sum prefix sum

	0	1	2	3	4	5	6	7	8	9	
A :											

Parallel Partition: Analysis

```
Par-Partition (A[q:r], x)
 1. n \leftarrow r - q + 1
 2. if n = 1 then return q
 3. array B[0: n-1], lt[0: n-1], gt[0: n-1]
 4. parallel for i \leftarrow 0 to n - 1 do
 5.
         B[i] \leftarrow A[q+i]
        if B[i] < x then lt[i] \leftarrow 1 else lt[i] \leftarrow 0
         if B[i] > x then gt[i] \leftarrow 1 else gt[i] \leftarrow 0
 8. lt [0: n-1] \leftarrow Par-Prefix-Sum (lt[0: n-1], +)
 9. gt[0: n-1] \leftarrow Par-Prefix-Sum(gt[0: n-1], +)
10. k \leftarrow q + lt \lceil n - 1 \rceil, A \lceil k \rceil \leftarrow x
11. parallel for i \leftarrow 0 to n-1 do
12.
         if B[i] < x then A[q + lt[i] - 1] \leftarrow B[i]
         else if B[i] > x then A[k + gt[i]] \leftarrow B[i]
13.
14. return k
```

Work:

$$T_1(n) = \Theta(n)$$
 [lines 1 – 7]
+ $\Theta(n)$ [lines 8 – 9]
+ $\Theta(n)$ [lines 10 – 14]
= $\Theta(n)$

Span:

Assuming $\log n$ depth for parallel for loops:

$$T_{\infty}(n) = \Theta(\log n)$$
 [lines 1 – 7]
+ $\Theta(\log^2 n)$ [lines 8 – 9]
+ $\Theta(\log n)$ [lines 10 – 14]
= $\Theta(\log^2 n)$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n}{\log^2 n}\right)$$

Randomized Parallel QuickSort

Input: An array A[q:r] of distinct elements.

Output: Elements of A[q:r] sorted in increasing order of value.

```
Par-Randomized-QuickSort (A[q:r])
1. n ← r − q + 1
2. if n ≤ 30 then
3. sort A[q:r] using any sorting algorithm
4. else
5. select a random element x from A[q:r]
6. k ← Par-Partition (A[q:r], x)
7. spawn Par-Randomized-QuickSort (A[q:k-1])
8. Par-Randomized-QuickSort (A[k+1:r])
9. sync
```

```
Par-Randomized-QuickSort (A[q:r])

1. n \leftarrow r - q + 1

2. if n \le 30 then

3. sort A[q:r] using any sorting algorithm

4. else

5. select a random element x from A[q:r]

6. k \leftarrow Par-Partition (A[q:r], x)

7. spawn Par-Randomized-QuickSort (A[q:k-1])

8. Par-Randomized-QuickSort (A[k+1:r])

9. sync
```

Lines 1—6 take $\Theta(\log^2 n)$ parallel time and perform $\Theta(n)$ work.

Also the recursive spawns in lines 7—8 work on disjoint parts of A[q:r]. So the upper bounds on the parallel time and the total work in each level of recursion are $\Theta(\log^2 n)$ and $\Theta(n)$, respectively.

Hence, if D is the recursion depth of the algorithm, then

$$T_1(n) = O(nD)$$
 and $T_{\infty}(n) = O(D \log^2 n)$

```
Par-Randomized-QuickSort (A[q:r])

1. n \leftarrow r - q + 1

2. if n \le 30 then

3. sort A[q:r] using any sorting algorithm

4. else

5. select a random element x from A[q:r]

6. k \leftarrow Par-Partition (A[q:r], x)

7. spawn Par-Randomized-QuickSort (A[q:k-1])

8. Par-Randomized-QuickSort (A[k+1:r])

9. sync
```

We will show that w.h.p. recursion depth, $D = O(\log n)$.

Hence, with high probability,

$$T_1(n) = O(n \log n)$$
 and $T_{\infty}(n) = O(\log^3 n)$

Approach: We will show the following

- 1. For any specific element v, the sizes of the partitions containing v in any two consecutive levels of recursion decrease by a constant factor with a certain probability.
- 2. With probability $1 O\left(\frac{1}{n^6}\right)$, the partition containing v will be of size 30 or less after $O(\log n)$ levels of recursion.
- 3. With probability $1 O\left(\frac{1}{n^5}\right)$, the partition containing every element will be of size 30 or less after $O(\log n)$ levels of recursion.

Lemma 1: Let v be an arbitrary element of the original input array A of size $n=n_0$, and let n_j be the size of the partition containing v after partitioning at recursion depth $j \geq 1$. Then for any $j \geq 0$,

$$\Pr\left[n_{j+1} \ge \frac{7}{8}n_j\right] \le \frac{1}{4}.$$

Proof: Suppose at recursion depth $j+1 \ge 1$ element x was chosen as the pivot element.

One of the new partitions will have at least $\frac{7}{8}n_j$ elements provided x is among the smallest or largest $\frac{1}{8}n_j$ elements in the old partition.

The probability that x is among the smallest or largest $\frac{1}{8}n_j$ elements in the old partition is clearly $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$.

Lemma 2: In $20 \log n$ levels of recursion, the probability that an element goes through $20 \log n - \log(n/30)$ unsuccessful partitioning steps (i.e., partitioning steps with $n_{j+1} \geq (7/8)n_j$) is $O(1/n^6)$. [all logarithms are to the base 8/7]

Proof: The events consisting of the partitioning steps being successful can be modeled as *Bernoulli trials*.

Let X be a random variable denoting the number of unsuccessful partitioning steps among the $20 \log n$ steps. Then

$$\Pr[X > 20 \log n - \log(n/30)] \le \Pr[X > 19 \log n]$$

$$\leq \sum_{j>19\log n} {20\log n \choose j} \left(\frac{1}{4}\right)^j \left(\frac{3}{4}\right)^{20\log n - j}$$

Lemma 2: In $20 \log n$ levels of recursion, the probability that an element goes through $20 \log n - \log(n/30)$ unsuccessful partitioning steps (i.e., partitioning steps with $n_{j+1} \geq (7/8)n_j$) is $O(1/n^6)$. [all logarithms are to the base 8/7]

Proof: $\Pr[X > 20 \log n - \log(n/30)] \le \Pr[X > 19 \log n]$

$$\leq \sum_{j>19\log n} {20\log n \choose j} \left(\frac{1}{4}\right)^j \left(\frac{3}{4}\right)^{20\log n - j}$$

$$\leq \sum_{j>19\log n} \left(\frac{20e\log n}{j}\right)^j \left(\frac{1}{3}\right)^j = \sum_{j>19\log n} \left(\frac{20e\log n}{3j}\right)^j$$

$$\leq \sum_{j>19\log n} \left(\frac{20e\log n}{57\log n} \right)^{j} = \sum_{j>19\log n} \left(\frac{20e}{57} \right)^{j} = O\left(\frac{1}{n^{6}} \right)$$

Theorem 1: The recursion depth of *Par-Randomized-Quicksort* is $\leq 20\log_{8/7}n$ with probability $1 - O(1/n^5)$.

Proof: The probability that one or more elements of A go through $20\log_{8/7}n - \log_{8/7}(n/30)$ unsuccessful partitioning steps is

$$O\left(n \times \frac{1}{n^6}\right) = O\left(\frac{1}{n^5}\right)$$
 [using Lemma 2]

Hence, the probability that at least $\log_{8/7}(n/30)$ of the $20\log_{8/7}n$ partitioning steps is successful for all elements is $1 - O(1/n^5)$.

After $t = \log_{8/7}(n/30)$ successful partitioning steps involving an

element, the element belongs to a partition of size $\left(\frac{7}{8}\right)^t n = 30$.

Hence, Par-Randomized-Quicksort terminates in $\leq 20\log_{8/7}n$ levels of recursion with probability $1 - O(1/n^5)$.

Parallel Selection

Input: A subarray A[q:r] of an array A[1:n] of n distinct elements, and a positive integer $k \in [1, r-q+1]$.

Output: An element x of A[q:r] such that rank(x, A[q:r]) = k.

```
Par-Selection (A[q:r], n, k)
 1. n' \leftarrow r - q + 1
 2. if n' \le n / \log n then
        sort A[q:r] using a parallel sorting algorithm and return A[q+k-1]
4. else
 5.
        partition A[q:r] into blocks B_i's each containing \log n consecutive elements
        parallel for i \leftarrow 1 to \lceil n' / \log n \rceil do
 6.
            M[i] \leftarrow \text{median of } B_i \text{ using a sequential selection algorithm}
 7.
        find the median m of M[1: \lceil n' / \log n \rceil] using a parallel sorting algorithm
 8.
 9.
        t \leftarrow Par-Partition (A[q:r], m)
10.
        if k = t - q + 1 then return A[t]
        else if k < t - q + 1 then return Par-Selection (A[q:t-1], n, k)
             else return Par-Selection (A[t+1:r], n, k-t+q-1)
12.
```

Parallel Selection

Lemma 3: In Par-Selection (lines 11—12)

$$|A[q:t-1]| \le \frac{3n'}{4}$$
 and $|A[t+1:r]| \le \frac{3n'}{4}$.

Proof: It suffices to show that $\frac{n'}{4} \le rank(m, A[q:r]) \le \frac{3n'}{4}$.

Since m is the median of M[i]'s, it is larger than one half of the M[i]'s. But each M[i] is larger than $\frac{\log n}{2}$ elements in B_i .

Hence,
$$rank(m, A[q:r]) \ge \frac{n'}{2 \log n} \times \frac{\log n}{2} = \frac{n'}{4}$$
.

Similarly, one can show that $rank(m, A[q:r]) \leq \frac{3n'}{4}$.

Parallel Selection

Lemma 4: In *Par-Selection* $n' \le \frac{n}{\log n}$ after at most $\log_{4/3} \log n$ levels of recursion.

Proof: It follows from Lemma 3 that $n' \leq \left(\frac{3}{4}\right)^k n$ after k levels of recursion.

Hence, for reaching $n' \le \frac{n}{\log n}$, we need

$$\frac{n}{\log n} \ge \left(\frac{3}{4}\right)^k n \Rightarrow k \le \log_{4/3} \log n.$$

Deterministic Parallel Selection

```
Par-Selection (A[q:r], n, k)
 1. n' \leftarrow r - q + 1
 2. if n' \le n / \log n then
        sort A[q:r] using a parallel sorting algorithm and return A[q+k-1]
4. else
        partition A[q:r] into blocks B_i's each containing \log n consecutive elements
        parallel for i \leftarrow 1 to \lceil n' / \log n \rceil do
 6.
 7.
            M[i] \leftarrow \text{median of } B_i \text{ using a sequential selection algorithm}
        find the median m of M[1: \lceil n' / \log n \rceil] using a parallel sorting algorithm
 8.
 9.
        t \leftarrow Par-Partition (A[q:r], m)
       if k = t - q + 1 then return A[t]
10.
        else if k < t - q + 1 then return Par-Selection (A[q:t-1], n, k)
11.
12.
             else return Par-Selection (A[t+1:r], n, k-t+q-1)
```

Step 7: Use a linear time (worst-case) sequential selection algorithm (see Section 9.3 of "Introduction to Algorithms", 3rd Ed. by Cormen et al.).

Steps 3 and 8: Use the parallel mergesort with parallel merge (see Lecture 7) that runs in $O(\log^3 n)$ parallel time and performs $O(n\log n)$ work in the worst case.

Deterministic Parallel Selection

```
Par-Selection (A[q:r], n, k)
1. n' \leftarrow r - q + 1
```

- 2. if $n' \le n / \log n$ then
- 3. sort A[q:r] using a parallel sorting algorithm and return A[q+k-1]
- 4. else
- 5. partition A[q:r] into blocks B_i 's each containing $\log n$ consecutive elements
- 6. parallel for $i \leftarrow 1$ to $\lceil n' / \log n \rceil$ do
- 7. $M[i] \leftarrow \text{median of } B_i \text{ using a}$ sequential selection algorithm
- 8. find the median m of $M[1: \lceil n' / \log n \rceil]$ using a parallel sorting algorithm
- 9. $t \leftarrow Par-Partition (A[q:r], m)$
- 10. if k = t q + 1 then return A[t]
- 11. else if k < t q + 1 then return Par-Selection (A[q:t-1], n, k)
- 12. else return Par-Selection (A[t+1:r], n, k-t+q-1)

Last Level of Recursion

Work:
$$O\left(\frac{n}{\log n}\log\left(\frac{n}{\log n}\right)\right) = O(n)$$

Span:
$$O\left(\log^3\left(\frac{n}{\log n}\right)\right) = O(\log^3 n)$$

Any Other Recursion Level (except last)

Work:
$$O\left(\frac{n'}{\log n} \times \log n\right)$$
 [lines 5 – 7]
+ $O\left(\frac{n'}{\log n}\log\left(\frac{n'}{\log n}\right)\right)$ [line 8]
+ $O(n')$ [line 9]
= $O(n')$

Span:
$$O\left(\log\left(\frac{n'}{\log n}\right) + \log n\right)$$
 [lines 5 – 7]

$$+ O\left(\log^3\left(\frac{n'}{\log n}\right)\right)$$
 [line 8]

$$+ O(\log^2 n')$$
 [line 9]

$$= O(\log^3 n)$$

Deterministic Parallel Selection

```
Par-Selection (A[q:r], n, k)
1. n' \leftarrow r - q + 1
```

- 2. if $n' \le n / \log n$ then
- 3. sort A[q:r] using a parallel sorting algorithm and return A[q+k-1]
- 4. else
- 5. partition A[q:r] into blocks B_i 's each containing $\log n$ consecutive elements
- 6. parallel for $i \leftarrow 1$ to $\lceil n' / \log n \rceil$ do
- 7. $M[i] \leftarrow \text{median of } B_i \text{ using a}$ sequential selection algorithm
- 8. find the median m of $M[1: \lceil n' / \log n \rceil]$ using a parallel sorting algorithm
- 9. $t \leftarrow Par-Partition (A[q:r], m)$
- 10. if k = t q + 1 then return A[t]
- 11. else if k < t q + 1 then return Par-Selection (A[q: t 1], n, k)
- 12. else return Par-Selection (A[t+1:r], n, k-t+q-1)

Overall

Work:

$$T_1(n) = O\left(n + \sum_{i=0}^{\log_{4/3} \log n} \left(\frac{3}{4}\right)^i n\right)$$
$$= O(n)$$

Span:

$$T_{\infty}(n) = O\left(\left(\log_{4/3}\log n\right)\log^3 n\right)$$

= $O(\log^3 n \log\log n)$