

# Automatic Sound Recognition

CHANAKYA DEX 8 MAY 2019

# The Challenge:

- Chimpanzee vocalizations in Issa Valley, Tanzania
- Raw sound files with chimp calls, birds, leaves, human generated sounds
- Implementation on Raspberry Pi 3
- Realtime classification
- Requires concepts of DSP, ML and embedded systems
- Localization, surveillance, Ecomonitoring



#### Key Steps

- Signal preprocessing
- Feature extraction
- Classification
- Realtime Inference



## Signal Preprocessing

- Sound attributes like Sampling rate, n-channels, bit depth, length
- Depends on existing data and recording devices
- Normalization to remove bias during classification
- 11025 Hz, mono channel, 16 bit depth, 4 second chunks



#### Feature Extraction

- Time domain vs Frequency Domain
- Fourier transform
- Psychoacoustic properties



#### Feature Extraction part.2

- MFCC's: Frequencies equally spaced on the Mel scale
- GTCC's: Frequencies represented as how humans perceive sound









## Building the classifier: Input vectors

- MFCCs and GTCCs extracted from the filterbanks
- 2D vector depending on number of CC features and length









#### Building the classifier: Sound corpus

- Increases classifier robustness
- Urbansound8K dataset
- This dataset contains 8732 labeled sound excerpts (<=4s) of urban sounds from 10 classes
- o = air\_conditioner
  - 1 = car\_horn
  - 2 = children\_playing
  - 3 = dog\_bark
  - 4 = drilling
  - 5 = engine\_idling
  - 6 = gun\_shot
  - 7 = jackhammer
  - 8 = siren
  - 9 = street\_music

#### Building the classifier: Network Architecture

- Experimented with 3 classifiers
- SVM's: Preferred choice pre deep learning era
- Neural Network with fully connected layers: expensive and robust
- Neural Network with Convolutional Layers: lightweight and relevant



## Building the classifier: CNN

- Experiment with layer depth and number of hidden nodes
- Follows commonly used pattern of CONV-POOL-CONV-POOL layers
- Penultimate layer is FC with the last layer as a dense Softmax layer
- Grid search for hyperparameter tuning





## Building the classifier: Results

Accuracy Metrics : Precision-Recall



|             | precision | recall | f1-score | support |  |
|-------------|-----------|--------|----------|---------|--|
| 0           | 0.82      | 0.97   | 0.89     | 805     |  |
| 1           | 1.00      | 0.89   | 0.94     | 168     |  |
| 2           | 0.89      | 0.91   | 0.90     | 786     |  |
| 3           | 1.00      | 0.80   | 0.89     | 537     |  |
| 4           | 0.93      | 0.92   | 0.92     | 648     |  |
| 5           | 0.97      | 0.94   | 0.95     | 759     |  |
| 6           | 1.00      | 1.00   | 1.00     | 14      |  |
| 7           | 0.91      | 0.95   | 0.93     | 637     |  |
| 8           | 0.99      | 0.96   | 0.98     | 719     |  |
| 9           | 0.93      | 0.92   | 0.93     | 816     |  |
|             |           |        |          |         |  |
| 11          | 1.00      | 1.00   | 1.00     | 1199    |  |
| avg / total | 0.95      | 0.94   | 0.94     | 8242    |  |

#### Realtime Inference: Raspberry Pi

- Raspberry Pi 3b+
- SoC: Broadcom BCM2837 (roughly 50% faster than the Pi 2)
- CPU: 1.2 GHZ quad-core ARM Cortex A53 (ARMv8 Instruction Set)
- GPU: Broadcom VideoCore IV @ 400 MHz.
- Memory: 1 GB LPDDR2-900 SDRAM.
- USB ports: 4.
- Network: 10/100 MBPS Ethernet, 802.11n Wireless LAN, Bluetooth 4.0.



#### Realtime Inference: Audio Chunks

- The ASR system takes 4 secs of audio as input
- Continuous audio stream is chunked
- For inference at t=0-1 seconds, we take the audio frame from t'=t-3 to the current frame.
- Inference is performed every second
- For inference on Block 1:



#### Realtime Inference: Classifier Characteristics

- Low memory footprint : model <30 mb</li>
- Classification power: >90% accuracy
- Prediction speed : Inference time <1 second</li>
- Evaluate tradeoffs

#### Future Improvements

- Embedded systems with specialized hardware (Nvidia Jetson Nano)
- Usage of LSTMs for context and long term dependencies
- Optimal spectral characteristics
- Traingulation and localization

# Thank You

