ELCN8005-21F-Sec1-Electronics Design Principles

• Experiment: Voltage Controlled Oscillator (VCO)

• Submitted by:

Name: Naren Subburaj

• Student number: 8772452

• Date: 9/11/2021

OBJECTIVE:

 Design and build a Voltage Controlled Oscillator (VCO) Basic Receiver and Phase-Locked Look (PLL)

EQUIPMENTS:

Hardware	Software
LM348 – 1	Multisim
Resistor – 47k,10k,100k	
Capacitor – 0.1uf	
Power supply – 9v	
Transistor - 1	
Multimeter – 1	
Breadboard – 1	

SCHEMATIC IN MULTISIM:

OUTPUT:

CALCULATIONS:

Formula for Output frequency:

$$f = \frac{1}{(2\pi RC)}$$

R = 47k

C = 0.1uf

Frequency is 33.8Hz

THEORY VS PRACTICAL:

Theory Frequency	Practical Frequency	
	Multisim	Breadbroad
33.8 hz	33 hz	30 hz

CONCLUSION:

The voltage control oscillator has 2 output one is triangle and other is square wave. The first op amp acts as an integrator. The second op amp acts as a schmitt trigger. The output of the voltage controlled oscillator is frequency which is accordance to the control voltage. In the bread board the output is shown in led blinking.

DISCUSSION:

From performing this experiment, I am able to build the voltage controlled oscillator circuit in multi sim and breadboard. Understood the working principle of the VCO.

Reference: https://www.elprocus.com/voltage-controlled-oscillator-working-application/