Amendments to the Claims

Please cancel Claims 9 and 21. Please amend Claims 1, 10, 13, 22 and 25. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

- 1. (Currently Amended) An apparatus for irradiating surfaces comprising:
 - an electron beam generator for generating a beam of electrons, the beam of electrons exiting the electron beam generator through an exit window; and
 - a robotic device for moving the beam of electrons over the surfaces to irradiate selected regions of the surfaces, the robotic device including a propulsion system for propelling the robotic device, the robotic device capable of controllably spacing the exit window of the electron beam generator a desired distance away from the surfaces as the electron beam generator is moved over the surfaces.
- 2. (Original) The apparatus of Claim 1 in which the robotic device includes a robotic arm for maneuvering the electron beam generator.
- 3. (Original) The apparatus of Claim 2 in which the robotic device includes a horizontal rotary joint for swinging the robotic arm.
- 4. (Original) The apparatus of Claim 3 in which the robotic arm comprises:
 - an upper arm member;
 - a rotary shoulder joint rotatably coupled to the upper arm member for raising and lowering the robotic arm;
 - a lower arm member rotatably coupled to the upper arm member by a rotary elbow joint, the elbow joint for raising and lowering the lower arm member relative to the upper arm member;
 - a bracket rotatably coupled to the lower arm member by a rotary wrist joint, the wrist joint for swinging the bracket from side to side; and

a rotary bracket joint rotatably coupling the electron beam generator to the bracket for rotating the electron beam generator.

- 5. (Original) The apparatus of Claim 1 in which the propulsion system comprises:
 - a first pair of rotatable wheels rotatably fixed and spaced apart from each other along a first axis, the first pair of wheels being rotatably driven; and
 - a second pair of rotatable wheels spaced apart from each other along a second axis transverse to the first axis, the wheels of the second pair each being pivotably mounted and steerable.
- 6. (Original) The apparatus of Claim 5 in which the second pair of wheels is rotatably driven.
- 7. (Original) The apparatus of Claim 6 in which each wheel in the first and second pairs of rotatable wheels can be independently driven.
- 8. (Original) The apparatus of Claim 1 in which the robotic device moves along a track.
- 9. (Canceled)
- 10. (Currently Amended) The apparatus of Claim [[9]] 1 in which the robotic device is capable of continuously and actively spacing the exit window of the electron beam generator the desired distance away from the surfaces.
- 11. (Original) The apparatus of Claim 10 in which the electron beam generator is hermetically sealed.
- 12. (Original) The apparatus of Claim 1 in which irradiating the surfaces includes any of sterilization, decontamination, curing, destroying molecules and facilitating chemical reactions.

13. (Currently Amended) A method of irradiating surfaces comprising:

generating a beam of electrons with an electron beam generator, the beam of electrons exiting the electron beam generator through an exit window; [[and]]

moving the beam of electrons over the surfaces with a robotic device to irradiate selected regions of the surfaces, the robotic device including a propulsion system for propelling the robotic device: and

controllably spacing the exit window of the electron beam generator a desired distance away from the surfaces as the electron beam generator is moved over the surfaces.

- 14. (Original) The method of Claim 13 further comprising maneuvering the beam of electrons over the surfaces with a robotic arm.
- 15. (Original) The method of Claim 14 further comprising swinging the robotic arm with a horizontal rotary joint.
- 16. (Original) The method of Claim 14 further comprising:

raising and lowering the robotic arm with a rotary shoulder joint coupled to an upper arm member of the robotic arm;

raising and lowering a lower arm member of the robotic arm relative to the upper arm member by a rotary elbow joint rotatably coupling the lower arm member to the upper arm member;

swinging the electron beam generator from side to side with a rotary wrist joint rotatably coupling the lower arm member to a bracket housing the electron beam generator; and

rotating the electron beam generator with a rotary bracket joint rotatably coupling the electron beam generator to the bracket.

17. (Original) The method of Claim 13 further comprising:

propelling the robotic device with a first pair of rotatable wheels rotatably fixed and spaced apart from each other along a first axis, the first pair of wheels being rotatably driven; and

steering the robotic device with a second pair of rotatable wheels spaced apart from each other along a second axis transverse to the first axis, the wheels of the second pair each being pivotably mounted.

- 18. (Original) The method of Claim 17 further comprising rotatably driving the second pair of wheels.
- 19. (Original) The method of Claim 18 further comprising independently driving each wheel in the first and second pairs of rotatable wheels.
- 20. (Original) The method of Claim 13 further comprising moving the robotic device along a track.
- 21. (Canceled)
- 22. (Currently Amended) The method of Claim [[21]] 13 further comprising continuously and actively spacing the exit window of the electron beam generator the desired distance away from the surfaces.
- 23. (Original) The method of Claim 22 further comprising hermetically sealing the electron beam generator.
- 24. (Original) The method of Claim 13 further comprising irradiating the surfaces for any of sterilization, decontamination, curing, destroying molecules and facilitating chemical reactions.

25. (Currently Amended) A method of forming an apparatus for irradiating surfaces comprising:

providing an electron beam generator for generating a beam of electrons, the beam of electrons exiting the electron beam generator through an exit window; and

arranging a robotic device relative to the electron beam generator for moving the beam of electrons over the surfaces to irradiate selected regions of the surfaces, the robotic device including a propulsion system for propelling the robotic device, the robotic device capable of controllably spacing the exit window of the electron beam generator a desired distance away from the surfaces as the electron beam generator is moved over the surfaces.