

TÓPICOS

- 1. Introdução
- 2. Modelos de cores
 - 1. RGB
 - 2. CMY(K)
 - 3. HSI
 - 4. L*a*b

VISÃO HUMANA

- Ainda não entendemos totalmente a visão humana
- Córtex Visual parte do cérebro amplamente estudada
- Apenas uma ideia aproximada do que os diferentes componentes fazem
- Novas descobertas em visão o tempo todo
 - Olho pisca para redefinir sua orientação rotacional
 - O córtex visual pode tomar algumas decisões de "alto nível"

VISÃO HUMANA

A visão é fácil ou difícil para humanos?

CORES

Objetos refletem somente alguma luz

RGB

Teoria

Prática

sRGB (*standard RGB*) foi criado por HP e Microsoft em 1996 para uso em monitores, impressoras e internet

EM COMPUTADORES

- Representamos imagens como grid de pixels
- Cada pixel tem uma cor, 3 componentes: RGB
- Nem todas as cores podem ser representadas em RGB
- Podemos representar uma cor com 3 números
 - #ff00ff; (1.0, 0.0, 1.0); 255,0,255
 - Que cor é essa?

IMAGENS COLORIDAS

- Algum intervalo
 - [0,255] (valores absolutos)
 - 0.0 1.0 (valores normalizados)

ESCALA DE CINZA

- É possível simular imagens monocromáticas a partir de RGB
- Ideia é obter uma boa aproximação de quão brilhante a imagem seria sem cores
- Podemos operar em RGB
 - Tipicamente $\approx 0.30R + 0.59G + 0.11B$

MODELOS DE CORES: CMY(K)

- Modelos CMY(K) representam as cores primárias de pigmentos.
- Impressoras requerem imagem no modelo CMY(K) como entrada ou convertem internamente de RGB para CMY.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- Na teoria, adicionar quantidades similares de CMY gera a cor preta. Na prática, um marrom escuro.
- Assim, a cor preta é adicionada como a quarta cor em impressoras, formando o modelo CMYK.

RGB E CMY(K)

HSV (HUE, SATURATION, VALUE)

- Baseado na percepção de luz
- Matiz (Hue): qual cor?
- Saturação: quão colorido?
- Valor: quão brilhante?
- Facilita a transformação de imagem
 - Mudar a matiz (tonalidade)
 - Aumentar saturação

HUE SATURATION VALUE

↑ SATURAÇÃO = CORES INTENSAS

↑ VALOR = IMAGEM MAIS CLARA

MUDA MATIZ = MUDA TONALIDADE

SETAR MATIZ PARA A COR FAVORITA

OU PADRÃO...

AUMENTA E LIMIARIZA A SATURAÇÃO

MAIS DETALHES

- RGB
- HSI/HSV
- CIE L*a*b
- YIQ
- Opponent

padrão para câmeras nos permite separar intensidade mais 2 canais de cores TVs coloridas, Y é intensidade paper Swain & Ballard (1991)

CIELAB, Lab, L*a*b

- Um canal de luminância (*L*) e dois canais de cores (*a* e *b*).
- As diferenças de cores que percebemos correspondem às distâncias euclidianas no CIELab.
- O eixo a vai de green (-a) a red (+a) e o eixo b vai de blue (-b) a yellow (+b). O brilho (L) aumenta de baixo para cima no modelo tridimensional.

O QUE VIMOS?

- Introdução
- Modelos de cores
 - RGB
 - CMY(K)
 - HSI
 - L*a*b

PRÓXIMA VIDEOAULA

Processamento de imagens coloridas