Modélisation E/R des Données

- 1. Objectifs et principes
- 2. Le modèle Entité-Association (E/R)
- 3. Passage au relationnel
- 4. Conclusion

1. Objectifs de la Modélisation

- Permettre une meilleure compréhension
 - Le monde réel est trop complexes
 - Abstraction des aspects cruciaux du problème
 - Omission des détails
- Permettre une conception progressive
 - Abstractions et raffinements successifs
 - Possibilité de prototypage rapide
 - Découpage en modules ou packages
 - Génération des structures de données (et de traitements)

Élaborer un modèle conceptuel

- Isoler les concepts fondamentaux
 - Que vont représenter les données de la BD ?
 - Découvrir les concepts élémentaires du monde réel
 - Décrire les concepts agrégés et les sous-concepts
- Faciliter la visualisation du système
 - Diagrammes avec notations simple et précise
 - Compréhension visuelle et non seulement intellectuelle

Dériver le schéma de la BD

- Schéma
 - Définition de tous les types de données de la base et de leurs liens
- Agrégation de données
 - Type élémentaire (de base): Entier, Réel, String, ...
 - Type complexe (composé): Collection de types élémentaires
 - Tuple:
 - Exemple: Type Personne (nom: String, Prenom: String, age: Réel)
 - Instance ou occurrence Personne("Dupont", "Jules", 20)
 - Set :
 - Exemple: Voitures {id:String}; Voitures {"75AB75", "1200VV94"}
 - Bag, List, ...
- Possibilité d'intégrer des relations entre données (liens)
 - Exemple : Personne → Voitures; "Dupont" → "75AB75"

Modélisation à plusieurs niveaux

HT - 2011

Générations de méthodes

- Méthodes d'analyse et de décomposition hiérarchiques
 - 1e génération basée sur des arbres fonctionnels
 - Diviser pour régner (Problème --> Sous-problème)
 - Warnier, SADT, Jackson, De Marco
- Méthodes d'analyse et de représentation systémiques
 - 2e génération basée sur entité-association
 - Séparation des données et traitements
 - Merise, Axial, SSADM
- Méthodes d'analyse et de conception orientées objets
 - 3e génération basée sur les objets
 - Réconciliation données et traitements
 - Réutilisation de composants

Objectifs des méthodes

- Réduire la distance sémantique entre le langage des utilisateurs et le langage des concepteurs
 - meilleure communication entre utilisateurs et concepteurs
 - abstraction du réel perçu en termes compréhensibles et visibles
- Regrouper l'analyse des données et des traitements
 - meilleure compréhension des choses
 - plus grande cohérence entre l'aspect statique et l'aspect dynamique
- Simplification des transformations entre niveau conceptuel et niveau interne
 - implémentation directe éventuelle du schéma conceptuel
 - établissement possible de règles de transformations automatisées

2. Le Modèle Entité – Association (E/R Model)

- Ensemble de concepts pour modéliser les données d'une application (d'une entreprise)
- Ensemble de symboles graphiques associés
- Formalisé en 1976 par P. Chen
- Etendu vers E/R généralisé puis vers l'objet

Exemple de modèle E/R

Entité

- Un objet du monde réel qui peut être identifié et que l'on souhaite représenter
 - La <u>classe d'entité</u> correspond à une collection d'entités décrites par leur type commun (le format)
 - L'<u>instance d'entité</u> correspond à un élément particulier de la classe d'entité (un objet)
 - Attention: on dit entité pour les deux! Comprendre selon le contexte.
- Il existe généralement plusieurs entités dans une classe

Représentation

Rectangle avec attributs (UML)

Exemple d'instance

Attribut

- Description des propriétés des entités
- Toutes les instances d'une entité ont les mêmes attributs
 - Attribut simple: attribut ayant une valeur d'un type de base
 - Attribut composé: attribut constitué d'un groupe d'attributs
 - Attribut multi-valué: attribut pouvant avoir plus d'une valeur
- Avec le modèle E/R de base tout attribut est simple
- Avec le modèle E/R étendu, les attributs peuvent etre complexes
 - Composés et multi-valués

Identifiant ou Clé

- Un identifiant aussi appelé clé est un attribut qui permet de retrouver une instance d'entité unique à tout instant parmi celles de la classe.
 - Exemple: NVeh dans Voitures, NSS dans Personnes
- Un identifiant peut être constitué de plusieurs attributs (clé composée)
 - Exemple:
 - [N°, Rue, Ville] pour Maisons
 - [Nom, Prénom] pour Personnes

Association

- Les entités sont reliées ensemble par des associations
 - Entre instances: par exemple 1 véhicule est associé à 1 personne
 - Entre classes: abstraction des associations entre instances
- Une association peut avoir des attributs (propriétés)
- Elle peut relier plusieurs entités ensemble
- Il est possible de distinguer le rôle d'une entité (elle peut en avoir plusieurs)

Association: quelques définitions

- Association (Association)
 - Une relation entre des instances de deux (ou plus) classes
- Lien (Link)
 - Une instance d'association
- Rôle (Role)
 - Une extrémité d'une association
- Attribut de lien (Link attribute)
 - Un attribut de l'association instancié pour chaque lien
- Cardinalité (Multiplicity)
 - Le nombre d'instance d'une entité pour chaque instance de l'autre

Représentation

Voiture

Vins

Degré d'une association

Cardinalité d'une association

- 1:1
- 1:N

• N:M

Cardinalités min et max

- Cardinalité maximum
 - Indique le nombre maximum d'instances d'une classe d'entité participant à une association
- Cardinalité minimum
 - Indique le nombre minimum d'instances d'une classe d'entité participant à une association

Cardinalités: notations UML

1	1
*	plusieurs (0 à N)
01	optionnel (0 ou 1)
1 *	obligatoire (1 ou plus)
	ordonné (0 à N)
35	limité (de 3 à 5)

21

Exemple

22

Domaines

- Ensemble nommé de valeurs
 - Un attribut peut prend valeur dans un domaine
 - Généralisation des types élémentaires
- Exemples
 - Liste de valeurs (1,2,3)
 - Type contraint (<0< int <100)
- Permettent de préciser les valeurs possibles des attributs
- Réduisent les ambiguïtés

La pratique de la conception

- Bien comprendre le problème à résoudre
- Essayer de conserver le modèle simple
- Bien choisir les noms
- Ne pas cacher les associations sous forme d'attributs
 - utiliser les associations
- Faire revoir le modèle par d'autres
 - définir en commun les objets de l'entreprise
- Documenter les significations et conventions
 - élaborer le dictionnaire

3. Passage au relationnel

- Implémentations des entités et associations sous forme de tables
 - mémorisent les états des entités et liens
 - pas nécessaire d'avoir une BD E/R
- Les attributs correspondent aux colonnes des tables
 - nom attribut → nom colonne
 - Ensemble de valeurs → domaine

Traduction des associations

- Règle de base
 - Une association est représentée par une table dont le schéma est le nom de l'association et la liste des clés des entités participantes suivie des attributs de l'association
 - Exemples:
 - POSSEDE (N° Ss, N° Veh, Date , Prix)
 - ABUS (Nv, Nb, Date, Quantité)
- Amélioration possible
 - Regrouper les associations 1 --> n avec la classe cible
 - Exemple :
 - VOITURE (N°VEH, MARQUE, TYPE, PUISSANCE, COULEUR)
 - POSSEDE (N° SS, N° VEH, DATE, PRIX)
 - regroupés si toute voiture a un et un seul propriétaire

Exemple

6. Conclusion

- Intérêt de l'utilisation d'une méthode de conception
 - proche du monde réel
 - démarche sémantique claire
 - diagramme standards
- Passage au relationnel semi-automatique
 - outils du commerce utilisables (Objecteering, Rose, etc.)
 - supporteront les extensions objet-relationnel à venir
- Extensions à venir avec la conception objet