METHODS AND COMPOUNDS FOR MODULATING NUCLEAR RECEPTOR COACTIVATOR BINDING

ing

ACKNOWLEDGEMENTS

This invention was supported in part by grants from the National Institutes of Health: Grant Nos. DK 51083, DK 51281, and P41-RR01081 and from the Army of the United States: Grant No. AIBS#562. The U.S. Government may have rights in this invention.

INTRODUCTION

20

10

15

Technical Field

The present invention relates to methods and compounds for modulating nuclear receptor coactivator binding.

Background

25

30

Cells contain receptors that can elicit a biological response by binding various molecules including proteins, hormones and/or drugs. Nuclear receptors represent a super family of proteins that are hormone/ligand-activated transcription factors that enhance or repress transcription in a cell type-, ligand- and promoter-dependent manner. The nuclear receptor family includes receptors for glucocorticoids (GRs), androgens (ARs), mineralocorticoids (MRs), progestins (PRs), estrogens (ERs), thyroid hormones (TRs), vitamin D (VDRs), retinoids (RARs and RXRs), peroxisomes (XPARs and PPARs) and icosanoids (IRs). The so-called "orphan receptors" for which ligands have not been identified are also part of the nuclear receptor superfamily, as they are structurally homologous to the classic nuclear receptors, such as steroid and thyroid receptors.

Although overall sequence conservation between nuclear receptors varies between different families of receptors, sequence conservation between functional regions, or modules, of the receptors is high. For example, nuclear receptors can be organized into functional modules comprising an N-terminal transcriptional activation domain, a central DNA binding domain (DBD), and a C-terminal ligand binding domain (LBD). The LBD of nuclear receptors represents a hormone/ligand-dependent molecular switch. Binding of hormone to a nuclear receptor's LBD changes its ability to modulate transcription of DNA, although they may have transcription-independent actions. Nuclear receptors also bind proteins, such as chaperone complexes, corepressors, or coactivators, that are involved in receptor function. Hormone binding by a nuclear receptor can increase or decrease binding affinity to these proteins, and can influence or mediate the multiple actions of the nuclear receptors on transcription. For example, nuclear receptors can stimulate transcription in response to hormone binding by recruiting coactivator proteins to promoters of responsive genes (Glass et al., Curr. Opin. Cell Biol. (1997) 9:222-32); and Horwitz et al., Mol. Endocrinol. (1996) 10:1167-77).

Coactivators of the p160 family mediate activity of a transcriptional activation domain, called AF2, that is part of the nuclear receptor's LBD. A few receptor mutants deficient in coactivator-dependent activation have been isolated (TR: Collingwood et al. *Proc. Natl. Acad. Sci.* (1997) 94:248-253; VDR: Jurutka et al., J. *Biol. Chem.* (1997) 227:14592-14599, Masayama et al., *Mol. Endocrinol.* (1997) 11:1507-1517; ER and RAR: Henttu et al., *Mol. Cell Biol.* (1997) 17:1832-1839). While these studies support the physiological relevance of the observed interaction, the structural and functional nature of the site to which coactivators bind has not been defined.

The medical importance of nuclear receptors is significant. They have been implicated in breast cancer, prostate cancer, cardiac arrhythmia, infertility, osteoporosis, hyperthyroidism, hypercholesterolemia, obesity and other conditions. However, limited treatments are available and current agonist/antagonist drugs used to target nuclear receptors are ligands that bind to the receptor's LBD buried deep within the receptor. Although additional targets on nuclear receptors are desired for drug development, the structural and functional basis of such sites, including the coactivator binding site, has not been described.

Accordingly, a need exists for identification and characterization of the coactivator binding sites of nuclear receptors, and molecules that affect their interaction with cellular coactivator proteins. This would provide a major new target for iterative drug design, synthesis, and selection. It also would be advantageous to devise methods and compositions for reducing the time required to discover compounds that target the coactivator binding site of nuclear receptors and administer them to organisms to modulate physiological processes regulated by nuclear receptors.

25

5 Relevant Literature

Wagner et al., (*Nature* (1995) 378:690-697) disclose the crystal structure of rat TR-alpha-LBD. Various references disclose mutations in carboxyl-terminal helices of nuclear receptors (Henttu et al., *supra*; O'Donnell et al., *Mol. Endocrinol.* (1991) 5:94-99; Whitfield et al., *Mol. Endocrinol.* (1995) 9:1166-79; Saatcioglu et al., *Mol. Cell Biol.* (1997) 17:4687-95; Collingwood et al., *supra*; Kamei et al., *Cell* (1996) 85:403-14). Hong et al. (*Proc. Natl. Acad. Sci. USA* (1996) 93(10):498-49452) and Hong et al. (*Mol. Cell. Biol.* (1997) 17:2735-2744) disclose cloning and expression of GRIP1 coactivator. Torchia et al., (*Nature* (1997) 387:677-84), Le Douarin et al., (*EMBO J* (1996) 15:6701-6715) and Heery et al. (*Nature* (1997) 387:733-736) disclose sequence alignment of various coactivator proteins showing a (SEQ ID NO: 1) LxxLL motif.

15

10

SUMMARY OF THE INVENTION

The present invention relates to identification and manipulation of the coactivator binding site of nuclear receptors. Identification of this site permits design and obtention of compounds that bind to the coactivator binding site of nuclear receptors and modulate coactivator binding to the receptor. The compounds include agonists and antagonists that modulate nuclear receptor activity by promoting (agonists) or blocking (antagonists) hormone-dependent coactivator binding to the receptor, particularly antagonists. The compounds of the invention can be receptor-, cell- and/or tissue-specific.

The present invention also includes protein cocrystals of nuclear receptors with a molecule bound to the coactivator binding site and methods for making them. The cocrystals provide means to obtain atomic modeling information of the specific amino acids and their atoms forming the coactivator binding site and that interact with molecules that bind to the site, such as coactivator. The cocrystals also provide modeling information regarding the coactivator:nuclear receptor interaction, as well as the structure of coactivators bound thereto.

30 DESCRIPTION 1

The present invention further provides methods for identifying and designing small molecules that bind to the coactivator binding site using atomic models of nuclear receptors. The method involves modeling test compounds that fit spacially into a nuclear receptor coactivator binding site of interest using an atomic structural model comprising a nuclear receptor coactivator binding site or portion thereof screening the test compounds in a biological assay characterized by binding of a test compound to a nuclear receptor coactivator binding site, and identifying a test compound that modulates coactivator binding to the nuclear receptor.

30

35

5

10

15

The invention also includes compositions and methods for identifying coactivator binding sites of nuclear receptors. The methods involve examining the surface of a nuclear receptor of interest to identify residues that modulate coactivator binding. The residues can be identified by homology to the coactivator binding site of human TR described herein. Overlays and superpositioning with a three dimensional model of a nuclear receptor LBD, or a portion thereof that contains a coactivator binding site, also can be used for this purpose. Additionally, alignment and/or modeling can be used as a guide for the placement of mutations on the LBD surface to characterize the nature of the site in the context of a cell.

Also provided is a method of modulating the activity of a nuclear receptor. The method can be *in vitro* or *in vivo*. The method comprises administering, *in vitro* or *in vivo*, a sufficient amount of a compound that binds to the coactivator binding site. Preferred compounds bind to the site with greater affinity than coactivator proteins found in a cell of interest. Binding at this site, the compound can compete for binding of coactivator proteins, thereby inhibiting gene transcription, or in some cases promoting it, even when hormone is or is not bound.

The invention further includes a method for identifying an agonist or antagonist of coactivator binding to a nuclear receptor. The method comprises providing the atomic coordinates comprising a nuclear receptor coactivator binding site or portion thereof to a computerized modeling system; modeling compounds which fit spacially into the nuclear receptor coactivator binding site; and identifying in an assay for nuclear receptor activity a compound that increases or decreases activity of the nuclear receptor through binding the coactivator binding site.

Also provided is a machine-readable data storage medium with information for constructing and manipulating an atomic model comprising a coactivator binding site or portion thereof. The medium comprises a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex for a nuclear receptor coactivator binding site.

Also provided is a method of identifying a compound that selectively modulates the activity of one type of nuclear receptor compared to other nuclear receptors. The method is exemplified by modeling test compounds that fit spacially and preferentially into a nuclear receptor coactivator binding site of interest using an atomic structural model of a nuclear receptor coactivator binding site, selecting a compound that interacts with one or more residues of the coactivator binding site unique in the context of that site, and identifying in an assay for coactivator binding activity a compound that selectively binds to the coactivator binding site compared to other nuclear receptors.

15

20

30

5 The unique features involved in receptor-selective coactivator binding can be identified by comparing atomic models of different receptors or isoforms of the same type of receptor.

The invention finds use in the selection and characterization of peptide, peptidomimetic, as well as other small molecule compounds, such as small organic molecules, identified by the methods of the invention, particularly new lead compounds useful in treating nuclear receptor-based disorders.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the specific effects of mutations on hTRβ1 transcriptional activation in HeLa cells and correlation with effects on binding to GST-GRIP1. T₃ dependent activation of transcription of a reporter gene, expressed as the percentage of WT is plotted for each mutant. GST-GRIP1 binding, analyzed by autoradiography after separation using 10% SDS-PAGE, was also expressed as the percentage of WT and plotted for each mutant. The GST-GRIP1 used included GRIP1 amino acids 721-1121; the same results were obtained using a GST-GRIP1 construct including GRIP1 amino acids 563-1121 (data not shown).

Figure 2 shows that overexpression of full-length GRIP1 rescues loss of transcriptional activation by hTR β 1 mutants. Indicated amounts of the expression vector for full-length GRIP1, pSG5-GRIP1, is included in the cotransfections, which otherwise are performed as in Figure 1. The WT or different representative hTR β 1 mutants are indicated.

Figure 3 shows specific hERα surface mutants cause loss of transcriptional activation in

HeLa cells in parallel with their loss of *in vitro* GRIP1 binding. The fold E₂ activation, expressed as the percentage of WT, and the phosphorimager quantitation of *in vitro* binding of [³⁵S]-labeled hERα WT and mutants to GST-GRIP1 (GRIP1 amino acids 721-1121) also expressed as the percentage of WT is plotted for each mutant.

Figure 4 shows a plot of the fold E_2 activation observed when the indicated amounts of the full-length GRIP1 expression vector, pSG5-GRIP1, are added to the co-transfection experiment, which otherwise is performed as for Figure 3. The WT or different hER α mutants are indicated.

15

20

30

The data represent the averages of three independent experiments, with standard deviations less than 10%.

Figure 5 shows a CPK model of the $TR\alpha$ -LBD, indicating the LBD surface locations of mutations made in the full-length hTR β 1. Mutated residues having no effect on GRIP1 binding or effect on activation in HeLa cells are shaded gray. Mutated residues with diminished GRIP1 and SRC-1a binding and diminished activation in HeLa cells are colored to reflect chemical properties of the residues: red, blue (purple), and green indicate acidic, basic, and hydrophobic residues, respectively. The main chain structures of the $TR\alpha$ - and $TR\beta$ -LBDs are the same (data not shown).

Figure 6 shows sequence alignment of amino acid residues of members of the p160 coactivator family. Single amino acid designations are used. Members of the p160 coactivator family interact with the nuclear receptors through conserved (SEQ ID NO: 1) LxxLL motifs.

Figure 7 shows binding affinity assays of GST-GRIP1 constructs with NR-boxes 1, 2, and/or 3 and their interaction with TR LBD. GRIP-1 NR boxes 1,2 and 3 interact differently with TR β LBD. Single letter designations are used for the amino acids.

Figure 8 shows binding affinity assays of GST-GRIP1 constructs with NR-boxes 1, 2, and/or 3 and their interaction with TR and GR LBDs. TR and GR differ in their interactions with GRIP-1.

Figure 9 shows binding affinity assays for NR-box 2- and 3-peptides and GRIP1 and their interaction with TR LBD. NR box 2- and 3-containing peptides reproduce the affinity and specificity of the NR interaction domain.

Figure 10 shows binding affinity assays for NR-box 2- and 3-peptides and their interaction with TR LBD. Sequence adjacent to the (SEQ ID NO: 1) LxxLL motif modulate the affinity of NR-box-TRβ LBD interactions.

Figure 11 shows binding affinity assays for mutant GRIP1 and NR-box 2- and 3-peptides and their interaction with TR LBD. The individual leucine residues of the (SEQ ID NO: 1) LxxLL motif are crucial for binding of the GRIP-1 NR interaction domain to TR β LBD.

10

15

20

25

Figure 12 shows the contents of the asymmetric unit of the crystallized hTRß LBD:GRIP1 NR-box 2 peptide complex. The crystal lattice consists of a repeating unit containing a 2:2 complex of hTR LBD and GRIP1 site 2 peptide. Positions of the two GRIP1 site 2 peptides are boxed, in green (site1), and red (site 2), with the peptides drawn as a C-alpha trace. The two NCS related monomers of the hTR LBD are shown as a secondary structure ribbon drawing, with monomer 1 in light grey, and monomer 2 in dark grey. The side chains of the hydrophobic residues I689, L690, L693, L694 of the GRIP1 NR-box 2 peptides are drawn to emphasize those interactions observed in both bound peptides.

Figure 13 shows a ribbon diagram depicting the interaction of the GRIP1 NR-box 2 peptide with the hTR β LBD. The GRIP1 NR-box 2 peptide (dark grey) forms three turns of α -helix, and binds the hTR LBD (light gray) in a hydrophobic cleft defined by helices H3, H4, H5, and H12. Portions of the hTR β LBD, and the neighboring monomer, are omitted for clarity.

Figure 14 shows interface between the GRIP1 NR-box 2 peptide and the hTRß LBD. Side chains of residues of the hTRß LBD within 4.5Å of the GRIP-1 NR-box 2 peptide are labeled. The color of the individual side chains reflects the chemical nature of the residue: acidic residues are red, basic residue are blue, aliphatic residues are green, aromatic residues are brown, and polar residues are orange. The peptide is depicted as a C-alpha trace with the side chains of (SEQ ID NO: 2) ILxxLL motif shown explicitly.

Figure 15 shows residues in the hTRß LBD that are necessary for transactivation. The transactivation mutations are mapped onto the interface between the GRIP1 NR-box 2 peptide and the hTRß LBD.

Figure 16 shows molecular surface of the hTR LBD. The side chains of the leucines resides fit within a hydrophobic groove formed from helices H3, H5, and H12, while the side chain of the non-conserved isoleucine residue packs against the outside edge of the groove. The remainder of the peptide is shown as main chain.

Figure 17 shows complementarity between the (SEQ ID NO: 1) LxxLL motif and the surface of the hTR LBD. The side chains of the (SEQ ID NO: 2) ILxxLL motif are shown in a CPK representation, with the main chain of the peptide drawn as a C-alpha trace. The three leucince

15

residues fit into pockets of the coactivator binding site of the hTRß LBD, depicted as mesh, while the isoleucine residue rests on the edge of the site's cleft.

Figure 18 shows the coactivator binding site cleft, one side of which is formed by conformationally hormone-responsive residues. On the left is a view of the TR-LBD molecular surface showing the concave surfaces in gray. The cavity is shown at the center of the figure. On the right is shown a CPK model of the TR-LBD, overlaid with a molecular surface view, which is restricted to a 12Å radius of the hydrophobic cavity. Mutated residues of the coactivator binding site that are hormone-insensitive (V284, K288, I302 and K306) are located on one side of the cleft and are colored yellow. Mutated CBS residues likely undergo a conformational change upon hormone binding (L454 and E457) are located on the opposite side of the cleft and are colored red.

Figure 19 shows alignment of amino acid sequences (single letter amino acid designations) containing residues that form the coactivator binding sites of several nuclear receptors. The boxes represent residues of alpha-helix (H3, H4, H5, H6 and H12); lower case letters "h" and "q" represent hydrophobic and polar residues, respectively.

10

15

20

25

30

35

DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention provides methods and compositions for identifying compounds that modulate nuclear receptor activity. The compounds can be nuclear receptor agonists or antagonists that bind to the coactivator binding site (and that act as mimetics to the coactivator in this regard), and promote (agonists) or block (antagonists) binding of the coactivator to the target nuclear receptor. Compounds that bind to the coactivator binding site also are provided. The compounds can be natural or synthetic. Preferred compounds are small organic molecules, peptides and peptidomimetics (e.g., cyclic peptides, peptide analogs, or constrained peptides).

As described in the Examples, mutagenesis and coactivator binding studies, coupled with analysis of atomic models derived from cocrystals, reveals for the first time a previously unknown structure for nuclear receptors, the coactivator binding site. By "coactivator binding site" is intended a structural segment or segments of nuclear receptor polypeptide chain folded in such a way so as to give the proper geometry and amino acid residue conformation for binding a coactivator. This is the physical arrangement of protein atoms in three-dimensional space forming a coactivator binding site pocket or cavity. Residues forming the site are amino acids corresponding to (i.e., the same as or equivalent to) human TR residues of C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Leu454, Glu457, Val458 and Phe459). The coactivator binding site is highly conserved among the nuclear receptor super family (Figure 19). corresponds to a surprisingly small cluster of residues on the surface of the LBD that form a The hydrophobic cleft is formed by hydrophobic residues prominent hydrophobic cleft. corresponding to human TR residues of C-terminal helix 3 (Ile280, Val283, Val284, and Ala287), helix 4 (Phe293), helix 5 (Ile302 and Leu305), helix 6 (Cys309), and helix 12 (Leu454, Val458 and Phe459). The hydrophobic cleft of the coactivator binding site also is highly conserved among the nuclear receptor super family (Figure 19).

The invention also includes compositions and methods for identifying coactivator binding sites of nuclear receptors. The methods involve examining the surface of a nuclear receptor of interest to identify residues that modulate coactivator binding. The residues can be identified by homology to the coactivator binding site of human TR described herein. A preferred method is alignment with the residues of any nuclear receptor corresponding to (i.e., equivalent to) human TR residues of the C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4

10

15

20

5

30

35

(Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Pro453, Leu454, Glu457, Val458 and Phe459). Overlays and superpositioning with a three-dimensional model of a nuclear receptor LBD, or a portion thereof that contains a coactivator binding site, also can be used for this purpose. For example, three-dimensional structures of TR, RAR, RXR and ER LBDs can be used for this purpose. For example, nuclear receptors identifiable by homology alignment include normal nuclear receptors or proteins structurally related to nuclear receptors found in humans, natural mutants of nuclear receptors found in humans, normal or mutant receptors found in animals, as well as non-mammalian organisms such as pests or infectious organisms, or viruses.

Alignment and/or modeling also can be used as a guide for the placement of mutations on the LBD surface to characterize the nature of the site in the context of a cell. Selected residues are mutated to preserve global receptor structure and solubility. To destroy the coactivator binding interaction, preferred mutations are to charged residues (e.g., Arg, Lys, or Glu) on the basis that bulky, surface charged residues might disrupt coactivator binding, yet preserve global receptor structure and solubility. Mutants can be tested for coactivator binding as well as the relative change in strength of the binding interaction. Ligand-dependent coactivator interaction assays also can be tested for this purpose, such as those described herein.

Compounds that bind to the coactivator binding site of nuclear receptors can be identified by computational modeling and/or screening. For example, coactivator agonists or antagonists can be identified by providing atomic coordinates comprising a nuclear receptor coactivator binding site or portion thereof to a computerized modeling system, modeling them, and identifying compounds that fit spacially into the coactivator binding site. By a "portion thereof" is intended the atomic coordinates corresponding to a sufficient number of residues or their atoms of the coactivator binding site that interact with a compound capable of binding to the site. This includes receptor residues having an atom within 4\5\A of a bound compound or fragment thereof. For instance, human TR residues V284, Phe293, Ile302, Leu305 and Leu454 contain side chain atoms that are within 4.5Å, and interact with, hydrophobic residues of a (SEQ ID NO: 1) LxxLL motif of an NRbox 2 coactivator peptide. As another\example, an atomic structural model utilized for computational modeling and/or screening of compounds that bind to the coactivator binding site may include a portion of atomic coordinates of amino acid residues corresponding to the site composed of residues of human thyroid receptor selected from Val284, Lys288, Ile302, Lys306, Leu454 and Glu457, or their structural and functional equivalents found in other receptors. Thus, for example, the atomic coordinates provided to the modeling system can contain atoms of the nuclear receptor LBD, part of the LBD such as atôms corresponding to the coactivator binding site

10

15

20

30

35

or a subset of atoms useful in the modeling and design of compounds that bind to a coactivator binding site.

The atomic coordinates of a compound that fits into the coactivator binding site also can be used for modeling to identify compounds or fragments that bind the site. By "modeling" is intended quantitative and qualitative analysis of molecular structure/function based on atomic structural information and receptor-coactivator agonists/antagonists interaction models. This includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models. Modeling is preferably performed using a computer and may be further optimized using known methods. By "fits spacially" is intended that the three-dimensional structure of a compound is accommodated geometrically by a cavity or pocket of a nuclear receptor coactivator hinding site.

Compounds of particular interest fit spacially and preferentially into the coactivator binding By "fits spacially and preferentially" is intended that a compound possesses a threedimensional structure and conformation for selectively interacting with a nuclear receptor coactivator binding site. Compounds that fit spacially and preferentially into the coactivator binding site interact with amino acid residues forming the hydrophobic cleft of this site. particular, the hydrophobic cleft of the coactivator binding site comprises a small cluster of hydrophobic residues. The site also contains polar or charged residues at its periphery. The present invention also includes a method for dentifying a compound capable of selectively modulating coactivator binding to different nuclear receptors. The method comprises the steps of modeling test compounds that fit spacially and preferentially into the coactivator binding site of a nuclear receptor of interest using an atomic structural model\of a nuclear receptor, screening the test compounds in a biological assay for nuclear receptor activity characterized by preferential binding of a test compound to the coactivator binding site of a huclear receptor, and identifying a test compound that selectively modulates the activity of a nuclear receptor. Such receptor-specific compounds are selected that exploit differences between the coactivator binding sites of one type of receptor versus a second type of receptor, such as the differences denicted in Figure 19.

The invention also is applicable to generating new compounds that distinguish nuclear receptor isoforms. This can facilitate generation of either tissue-specific or function-specific compounds. For instance, GR subfamily members have usually one receptor encoded by a single gene, although there are exceptions. For example, there are two PR isoforms, A and B, translated from the same mRNA by alternate initiation from different AUG codons. There are two GR forms,

10

15

one of which does not bind ligand. This method is especially applicable to the TR subfamily which usually has several receptors that are encoded by at least two (TR: α , β) or three (RAR, RXR, and PPAR: α , β , γ) genes or have alternate RNA splicing.

The receptor-specific compounds of the invention preferably interact with conformationally constrained residues of the coactivator binding site that are conserved among one type of receptor compared to a second type of receptor. "Conformationally constrained" is intended to refer to the three-dimensional structure of a chemical or moiety thereof having certain rotations about its bonds fixed by various local geometric and physical-chemical constraints. Conformationally constrained structural features of a coactivator binding site include residues that have their natural flexible conformations fixed by various geometric and physical-chemical constraints, such as local backbone, local side chain, and topological constraints. These types of constraints are exploited to restrict positioning of atoms involved in receptor-coactivator recognition and binding.

For instance, comparison of sequences of the GR and TR coactivator interaction surface shows a highly negatively charged sequence at the C-terminal end of TR helix 12 (E460 and D461) that is neutral in the equivalent positions in GR helix 12 (GR residues T788 and N759, corresponding to TR residue positions 460 and 461, as depicted in Figure 19). As described in the Examples, the cocrystal of the hTRB LBD complexed with the GRIP1 NR-box 2 peptide shows that TR residues E460 and D461 interact with positively charged residues of the NR-box 2 peptide. Also, when comparing the RAR LBD structure to that of the TR LBD, conformation of helix 12 differs slightly, whereas helices 3, 4, 5 and 6 are substantially the same. Thus, differences in helix 12, particularly charge differences at the C-terminal end of the helix, may modulate preferential interaction of TR for NR-box 2 containing coactivators. As further demonstrated in the Examples, TR and GR differ in their specificity for different NR-boxes containing the conserved (SEQ ID NO: 1) LxxLL motif found in members of the p160 family of coactivator proteins. As also demonstrated in the Examples, GR but not TR is able to interact with peptides containing the hydrophobic interaction motifs of p53 (SEQ ID NO: 3; FxxLW) and VP16 (SEQ ID NO: 4; FxxAL). Thus, TR exhibits preferential interaction with NR-box peptides comprising the (SEQ ID NO: 1) LxxLL motif, but GR does not discriminate and can bind peptides containing a generic amphipathic helix motif. Accordingly, these real differences among the various nuclear receptors can be exploited in the identification and design of compounds that modulate coactivator binding to one nuclear receptor compared to another.

For modeling, docking algorithms and computer programs that employ them can be used to identify compounds that fit into the coactivator binding site. For example, docking programs can be

used to predict how a small molecule of interest can interact with the nuclear receptor coactivator binding site. Fragment-based docking also can be used in building molecules *de novo* inside the coactivator binding site, by placing chemical fragments that complement the site to optimize intermolecular interactions. The techniques can be used to optimize the geometry of the binding interactions. This design approach has been made possible by identification of the coactivator binding site structure thus, the principles of molecular recognition can now be used to design a compound which is complementary to the structure of this site. Compounds fitting the coactivator binding site serve as a starting point for an iterative design, synthesis and test cycle in which new compounds are selected and optimized for desired properties including affinity, efficacy, and selectivity. For example, the compounds can be subjected to addition modification, such as replacement and/or addition of R-group substituents of a core structure identified for a particular class of binding compounds, modeling and/or activity screening if desired, and then subjected to additional rounds of testing.

Computationally small molecule databases can be screened for chemical entities or compounds that can bind in whole, or in part, to a nuclear receptor coactivator binding site of interest. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity (DesJalais et al., *J. Med. Chem.* (1988) 31:722-729) or by estimated interaction energy (Meng et al., *J. Comp. Chem.* (1992) 13:505-524). The molecule databases include any virtual or physical database, such as electronic and physical compound library databases, and are preferably used in developing compounds that modulate coactivator binding.

Compounds can be designed intelligently by exploiting available structural and functional information by gaining an understanding of the quantitative structure-activity relationship (QSAR), using that understanding to design new compound libraries, particularly focused libraries having chemical diversity of one or more particular groups of a core structure, and incorporating any structural data into that iterative design process. For example, one skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with the coactivator binding site of a nuclear receptor of interest. This process may begin by visual inspection of, for example, the coactivator binding site on the computer screen. Selected fragments or chemical entities may then be positioned into all or part of the site. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force-fields, such as CHARMM and AMBER.

For example, compounds and/or fragments can be designed to fill up the hydrophobic cleft, the pocket deep within the cleft, the upper end of the site, and/or the lower end of the site. Residues comprising a coactivator binding site, when defined by the user as those residues having an atom within 4.5Å of an atom of a bound chemical entity, can be modeled to look for energetic contributions and interaction with the bound chemical entity. For example, a compound or fragment can be designed to contain hydrophobic groups that interact with hydrophobic residues of the coactivator binding site. As described in the examples, human TR residues V284, Phe293, Ile302, Leu305 and Leu454 contain side chain atoms that are within 4.5Å, and interact with, hydrophobic residues of a (SEQ ID NO: 1) LxxLL motif of an NR-box 2 coactivator peptide. Thus, for example, peptides and/or peptide mimetics having a hxxhh motif, where "h" is a hydrophobic residue and x is any residue, can be constructed. Small organic molecules that mimic one or more of these particular interactions also can be designed, for example, by including one or more R-groups that are hydrophobic and fit into the site.

Specialized computer programs may also assist in the process of selecting chemical entity fragments or whole compounds. These include: GRID (Goodford, *J. Med. Chem.* (1985) 28:849-857; available from Oxford University, Oxford, UK); MCSS (Miranker et al., *Proteins: Structure, Function and Genetics*, (1991) 11:29-34; available from Molecular Simulations, Burlington, MA); AUTODOCK (Goodsell et al., *Proteins: Structure, Function and Genetics* (1990) 8:195-202; available from Scripps Research Institute, La Jolla, CA); and DOCK (Kuntz et al, *J. Mol. Biol.* (1982) 161:269-288; available from University of California, San Francisco, CA).

Additional commercially available computer databases for small molecular compounds include Cambridge Structural Database and Fine Chemical Database (Rusinko, *Chem. Des. Auto. News* (1993) 8:44-47).

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound. Assembly may be proceeded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of a nuclear receptor. This can be followed by manual model building using software such as Quanta or Sybyl.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include: CAVEAT (Bartlett et al., "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", In: *Molecular Recognition in Chemical and Biological Problems*", Special Pub., *Royal Chem. Soc.* (1989) 78:182-196; CAVEAT is available from the University of California, Berkeley, CA); 3D Database systems such as MACCS-3D (MDL

Information Systems, San Leandro, CA; reviewed in Martin, *J. Med. Chem.* (1992) 35:2145-2154); and HOOK (available from Molecular Simulations, Burlington, MA).

In addition to building a compound in a step-wise fashion, one fragment or chemical entity at a time as described above, compounds that bind to a coactivator binding site of interest also may be designed as a whole or *de novo* using either an empty coactivator binding site or optionally including some portion(s) of a molecule known to binds to the site, such as an NR-box type peptide. These methods include: LUDI (Bohm, *J. Comp. Aid. Molec. Design* (1992) 6:61-78; LUDI is available from Biosym Technologies, San Diego, CA); LEGEND (Nishibata et al., *Tetrahedron* (1991) 47:8985; LEGEND is available from Molecular Simulations, Burlington, MA); and LeapFrog (available from Tripos Associates, St. Louis, MO).

Other molecular modeling techniques may also be employed in accordance with this invention. See, for example, Cohen et al., *J. Med. Chem.* (1990) 33:883-894); Navia et al., *Curr. Opin. Struct. Biol.* (1992) 2:202-210). For example, where the structures of test compounds are known, a model of the test compound may be superimposed over the model of the structure of the invention. Numerous methods and techniques are known in the art for performing this step, any of which may be used. See, for example, Farmer, "*Drug Design*," Ariens, E.J., ed., 10:119-143 (Academic Press, New York, 1980); U.S. Patent No. 5,331,573; U.S. Patent No. 5,500,807; Verlinde, *Structure*, (1994) 2:577-587); and Kuntz et al., *Science*, (1992) 257:1078-1082). The model building techniques and computer evaluation systems described herein are not a limitation on the present invention.

Using these computer modeling systems a large number of compounds may be quickly and easily examined and expensive and lengthy biochemical testing avoided. Moreover, the need for actual synthesis of many compounds can be substantially reduced and/or effectively eliminated.

Compounds identified through modeling can be screened in an assay characterized by binding of the compound to a coactivator binding site of interest for coactivator binding activity, such as a biologically based assay. Screening can be *in vitro* and/or *in vivo*. Preferred assays include cell-free competition assays and cell culture based assays. The biological screening preferably centers on activity-based response models, binding assays (which measure how well a compound binds to the receptor), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity - high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity.

10

15

20

25

30

As an example, in vitro binding assays can be performed in which compounds are tested for their ability to block the binding of a coactivator protein, fragment, fusion or peptide thereof, to a coactivator binding site of interest. For cell and tissue culture assays, they may be performed to assess a compound's ability to block function of cellular coactivators, such as members of the p160 family of coactivator proteins, such as SRC-1, AIB1, RAC3, p/CIP, and GRIP1 and its homologues TIF 2 and NcoA-2, and those that exhibit receptor and/or isoform-specific binding affinity. In a preferred embodiment, compounds of the invention bind to a nuclear receptor coactivator binding site with greater affinity than the cellular coactivator proteins. Tissue profiling and appropriate animal models also can be used to select compounds. Different cell types and tissues also can be used for these biological screening assays. Suitable assays for such screening are described herein and in Shibata et al. (Recent Prog. Horm. Res. 52:141-164 (1997)); Tagami et al. (Mol. Cell Biol. (1997) 17(5):2642-2648); Zhu et al. (J. Biol. Chem. (1997) 272(14):9048-9054); Lin et al. (Mol. Cell Biol. (1997) 17(10):6131-6138); Kakizawa et al. (J. Biol. Chem. (1997) 272(38):23799-23804); and Chang et al. (Proc. Natl. Acad. Sci. USA (1997) 94(17):9040-9045), which references are incorporated herein in their entirety by reference. For example, coactivators or binding fragments thereof can be expressed and/or assayed for binding as for GRIP1 (Hong et al., MCB supra; and Hong et al., PNAS supra) and/or SRC-1 (Spencer et al., Nature (1997) 389:194-198; Onate et al., Science (1995) 270:1354-1357), incorporated by reference.

The compounds selected can have agonist and/or antagonistic properties. The compounds also include those that exhibit new properties with varying mixtures of agonist and antagonist activities, depending on the effects of altering coactivator binding in the context of different activities of nuclear receptors, either hormone-dependent or hormone-independent, which are mediated by proteins other than coactivators, and which interact with the receptors at locations other than the coactivator binding site. The compounds also include those, which through their binding to receptor locations that are conformationally sensitive to hormone binding, have allosteric effects on the receptor by stabilizing or destabilizing the hormone-bound conformation of the receptor, or by directly inducing the same, similar, or different conformational changes induced in the receptor by the binding of hormone.

Of particular interest is use of such compounds in a method of modulating nuclear receptor activity in a mammal by administering to a mammal in need thereof a sufficient amount of a compound that fits spatially and preferentially into a coactivator binding site of a nuclear receptor of interest. By "modulating" is intended increasing or decreasing activity of a nuclear receptor. For example, pre-clinical candidate compounds can be tested in appropriate animal models in order to measure efficacy, absorption, pharmacokinetics and toxicity following standard techniques known

10

15

20

25

30

35

in the art. Compounds exhibiting desired properties are then tested in clinical trials for use in treatment of various nuclear receptor-based disorders. These include ER-based disorders, such as postmenopausal symptoms and cancer resulting from loss of estrogen production, and osteoporosis and cardiovascular disease stemming from traditional estrogen replacement therapy. Others include TR-based disorders including cardiovascular disease, metabolic disorders, hyperthyroidism, glaucoma and skin disorders. GR-based disorders include Type II diabetes and inflammatory conditions such as rheumatic diseases.

The invention also provides for cocrystals made from nuclear receptor ligand binding domains with a molecule bound to the coactivator binding site. As exemplified in the Examples, TR LBDs are co-crystallized with a peptide molecule comprising a coactivator NR-box 2 peptide sequence bound to the coactivator binding site, and the hormone/ligand T₃.

Crystals are made from purified nuclear receptor LBDs that are usually expressed by a cell culture, such as *E. coli*. Preferably, different crystals (cocrystals) for the same nuclear receptor are separately made using different coactivators-type molecules, such as protein fragments, fusions or small peptides. The coactivator-type molecules preferably contain NR-box sequences necessary for binding to the coactivator binding site, or derivatives of NR-box sequences. Other molecules can be used in co-crystallization, such as small organics that bind to the coactivator or hormone binding site(s). Heavy atom substitutions can be included in the LBD and/or a co-crystallizing molecule.

After the three dimensional structure of the cocrystal is determined, the structural information can be used in computational methods to design synthetic compounds for the nuclear receptor, and further structure-activity relationships can be determined through routine testing using the assays described herein and known in the art.

Since nuclear receptor LBDs may crystallize in more than one crystal form, the structure coordinates of such receptors or portions thereof, as provided in **Appendix 1**, are particularly useful for solving the structure of those other crystal forms of nuclear receptors. They may also be used to solve the structure of mutants or co-complexes of nuclear receptors having sufficient structural similarity.

One method that may be employed for this purpose is molecular replacement. In this method, the unknown crystal structure, may be determined using the structure coordinates of this invention as provided in **Appendix 1**. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

Atomic coordinate information gleaned from the crystals of the invention can be stored. In a preferred embodiment, the information is provided in the form of a machine-readable data storage medium. This medium contains information for constructing and/or manipulating an atomic model of a coactivator binding site or portion thereof. For example, the machine readable data for the coactivator binding site comprises structure coordinates of amino acids corresponding to human TR amino acids selected from C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Pro453, Leu454, Glu457, Val458 and Phe459), or a homologue of the molecule or molecular complex comprising the site. The homologues comprise a coactivator binding site that has a root mean square deviation from the backbone atoms of the amino acids of not more than 1.5Å. A preferred molecule or complex represents a compound bound to the coactivator binding site.

The machine-readable data storage medium can be used for interative drug design and molecular replacement studies. For example, a data storage material is encoded with a first set of machine-readable data that can be combined with a second set of machine-readable data. For molecular replacement, the first set of data can comprise a Fourier transform of at least a portion of the structural coordinates of the nuclear receptor or portion thereof of interest, and the second data set comprises an X-ray diffraction pattern of the molecule or molecular complex of interest. Using a machine programmed with instructions for using the first and second data sets a portion or all of the structure coordinates corresponding to the second data can be determined.

Protein for crystals and assays described herein can be produced using expression and purification techniques described herein and known in the art. For example, high level expression of nuclear receptor LBDs can be obtained in suitable expression hosts such as $E.\ coli$. Expression of LBDs in $E.\ coli$, for example, includes the TR LBD and other nuclear receptors, including members of the steroid/thyroid receptor superfamily, such as the receptors ER, AR, MR, PR, RAR, RXR and VDR. Yeast and other eukaryotic expression systems can be used with nuclear receptors that bind heat shock proteins as these nuclear receptors are generally more difficult to express in bacteria, with the exception of ER, which can be expressed in bacteria. Representative nuclear receptors or their ligand binding domains have been cloned and sequenced: human RAR- α , human RAR- α , human PPAR- α , human PP

Coactivator proteins can be expressed using techniques known in the art, particularly members of the p160 family of coactivator proteins that have been cloned and/or expressed previously, such as SRC-1, AIB1, RAC3, p/CIP, and GRIP1 and its homologues TIF 2 and NcoA-2. A preferred method for expression of coactivator protein is to express a fragment that retains transcriptional activation activity using the "yeast 2-hybrid" method as described by Hong et al. (PNAS <u>supra</u>; and MCB <u>supra</u>), for GRIP1 expression, which reference is herein incorporated by reference.

The proteins can be expressed alone, as fragments of the mature or full-length sequence, or as fusions to heterologous sequences. For example, TR can be expressed without any portion of the DBD or amino-terminal domain. Portions of the DBD or amino-terminus can be included if further structural information with amino acids adjacent the LBD is desired. Generally, for the TR the LBD used for crystals will be less than 300 amino acids in length. Preferably, the TR LBD will be at least 150 amino acids in length, more preferably at least 200 amino acids in length, and most preferably at least 250 amino acids in length. For example the LBD used for crystallization can comprise amino acids spanning from Met 122 to Val 410 of the rat TR- α or Glu 202 to Asp 461 of the human TR- β .

Typically the LBDs are purified to homogeneity for crystallization. Purity of LBDs can be measured with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mass spectrometry (MS) and hydrophobic high performance liquid chromatography (HPLC). The purified LBD for crystallization should be at least 97.5 % pure, preferably at least 99.0% pure, more preferably at least 99.5% pure.

Initially, purification of the unliganded receptor can be obtained by conventional techniques, such as hydrophobic interaction chromatography (HPLC), ion exchange chromatography (HPLC), and heparin affinity chromatography.

To achieve higher purification for improved crystals of nuclear receptors, especially the TR subfamily and TR, the receptors can be ligand-shift-purified using a column that separates the receptor according to charge, such as an ion exchange or hydrophobic interaction column, and then bind the eluted receptor with a ligand, especially an agonist. The ligand induces a change in the receptor's surface charge such that when re-chromatographed on the same column, ligand-bound receptor is separated from unliganded receptor. Usually saturating concentrations of ligand are used in the column and the protein can be preincubated with the ligand prior to passing it over the

25

30

35

5

10

15

column. The structural studies detailed herein indicate the general applicability of this technique for obtaining super-pure nuclear receptor LBDs for crystallization.

Purification can also be accomplished by use of a purification handle or "tag," such as with at least one histidine amino acid engineered to reside on the end of the protein, such as on the N-terminus, and then using a nickel or cobalt chelation column for purification. (Janknecht et al., *Proc. Natl. Acad. Sci. USA*, (1991) 88:8972-8976) incorporated by reference.

Typically purified LBD, such as TR LBD, is equilibrated at a saturating concentration of ligand at a temperature that preserves the integrity of the protein. Ligand equilibration can be established between 2 and 37°C, although the receptor tends to be more stable in the 2-20°C range. Preferably crystals are made with the hanging drop methods detailed herein. Regulated temperature control is desirable to improve crystal stability and quality. Temperatures between 4 and 25°C are generally used and it is often preferable to test crystallization over a range of temperatures. The crystals are then subjected to vapor diffusion and bombarded with x-rays to obtain x-ray diffraction pattern following standard procedures.

For co-crystallization with a peptide that binds to the coactivator binding site, various concentrations of peptides containing a sequence that binds to a coactivator binding site of a nuclear receptor of interest can be used in microcrystallization trials, and the appropriate peptides selected for further crystallization. Any number of techniques, including those assays described herein can assay peptides for binding to the coactivator binding site of a nuclear receptor of interest. In a preferred embodiment, a NR-box 2 sequence-containing peptide is used for crystallization with TR LBD. A preferred peptide contains a NR-box (SEQ ID NO: 1) LxxLL motif, and suitable flanking sequences necessary for binding and forming complex with coactivator binding site of the nuclear receptor of interest, such as a TR LBD. The binding peptides are then tested in crystallization trials at various concentrations and ratios of concentrations with a nuclear receptor of interest, for example, as described herein and in the Examples. For crystallization trials with TR LBD, the hanging drop vapor diffusion method is preferred. Conditions of pH, solvent and solute components and concentrations and temperature can be adjusted, for instance, as described in the Examples. In the handing drop method, to obtain suitable crystals for x-ray diffraction analysis, seeding of prepared drops with microcrystals of the complex can be used. Collection of structural information can be determined by molecular replacement using the structure of TR LBD determined herein or previously by Wagner et al., supra. The structure is refined following standard techniques known in the art.

10

There are many uses and advantages provided by the present invention. For example, the methods and compositions described herein are useful for identifying peptides, peptidomimetics or small natural or synthetic organic molecules that modulate nuclear receptor activity. The compounds are useful in treating nuclear receptor-based disorders. Methods and compositions of the invention also find use in characterizing structure/function relationships of natural and synthetic coactivator compounds.

The following examples illustrate various aspects of this invention. These examples do not limit the scope of this invention.

15

20

25

30

35

5 **EXAMPLES**

Example 1: Expression and purification of wild-type and mutant nuclear receptors and coactivators

Human TRB LBD A.

Human TRß LBD (His6-E202-D461) was expressed and purified as described (Shiau et al., Gene (1996) 179(2):205-10). Briefly, the protein was expressed from pET (e.g., pET3 and pET28) in BL21DE3 at 14°C, induced at OD(600nm) 0.7 with 1mM IPTG and incubation was extended for 24 hours. Cells were harvested and lysed in 50mM sodium-phosphate buffer (pH 8.0), 0.3M NaCl, 10% glycerol, 25mM \(\beta\)-merceptoethanol and 0.1mM PMSF as described above. The lysate was cleared by ultracentrifugation (Ti45, 36000 rpm, 1h, 4°C), loaded on a Talon column equilibrated in the sodium phosphate buffer described above, washed with 12mM imidazole and eluted with an imidazole gradient (12 - 300 mM). TRB LBD containing fractions were loaded in 0.6M ammonium sulfate on a TSK-phenyl hydrophobic interaction column and eluted with a reverse ammonium sulfate gradient [0.6 – 0 M] in 50% glycerol and 10% acetonitrile. Fractions containing TRB LBD were tested for hormone binding, pooled and incubated with a 3-fold molar excess of T₃ (Sigma). The hydrophobic interaction run was repeated with liganded receptor under the same conditions. Liganded receptor, which elutes earlier than unliganded receptor, was collected and buffer changed to 20mM Hepes pH7.0, 3mM DTT and 0.1μM T₃ using NAP columns (Pharmacia). For crystallization, the protein was concentrated by ultrafiltration (Millipore UFV2BGC10 concentrators) to a final concentration of 9mg/ml. The yield was about 9.5mg protein per liter bacterial culture.

В. **Human TR mutants**

Thirty-seven thyroid receptor mutants were created by synthesizing double-stranded oligonucleotides which encode the mutant sequence and which have ends allowing them to be ligated as a cassette using pairs of the NsiI, PstI, SstI, AlwNI, ApoI, PflMI, BstXI, BseRI, BsmFI, PvuII, NspI, SmaI, PmII, BglII and BsmI restriction sites of the hTRβ1 cDNA sequence, or the 3' plasmid polylinker Sall, or BamHI restriction sites. The hTRβ1 sequences thus mutated were subcloned into the pCMX vector encoding the full-length 461 amino acid hTRβ1 sequence. Some of the mutations of the hTR β 1 in the CMX vector and all three mutations of the hER α in the pSG5-ER-HEGO vector (Tora et al., EMBO (1989) 8:1981) were created using Quick Change Site-Directed Mutagenesis Kits (Stratagene). The mutated sequences were verified by DNA sequencing

using Sequenase Kits (Stratagene).

10

15

20

25

30

35

C. Human ERa LBD

The human ERα-LBD 297-554 was overexpressed as described previously (Seielstad, et al., *supra*) in BL21(DE3)pLysS cells transformed with a modified pET-23d-ERG vector that contained the sequence Met-Asp-Pro fused to residues 297 to 554 of the hERα (provided by Paul Sigler of Yale University). Clarified bacterial lysates were adjusted to 3 M in urea and 0.7 M in NaCl and then applied to a 10-ml column of estradiol-Sepharose (Greene, et al., *Proc. Natl. Acad. Sci. USA* (1980) 77:5115-5119; Landel, et al., *Mol. Endocrinol.* (1994) 8:1407-1419; Landel, et al., *J. Steroid Biochem. Molec. Biol.* (1997) 63:59-73).

To carboxymethylate the solvent-accessible cysteines, the bound hERα-LBD was treated with 5 mM iodoacetic acid in 10 mM Tris, pH 8.1, 250 mM NaSCN (Hegy, et al., *Steroids* (1996) 61:367-373). Protein was eluted with 3 x 10-5 M ligand (either DES or OHT) in 30-100 ml of 50 mM Tris, 1 mM EDTA, 1 mM DTT and 250 mM NaSCN, pH 8.5. The yield of hERα-LBD was typically close to 100% (Seielstad, et al., *Biochemistry* (1995) 34:12605-12615). The affinity-purified material was concentrated and exchanged into 20 mM Tris, 1 mM EDTA, 4 mM DTT, pH 8.1 by ultrafiltration. The protein was bound to a Resource Q column (Pharmacia) and then eluted with a linear gradient of 25-350 mM NaCl in 20 mM Tris, pH 8.1, 1 mM DTT. The hERα-LBD-ligand complexes eluted at 150-200 mM NaCl. Pooled fractions were concentrated by ultrafiltration and analyzed by SDS-PAGE, native PAGE, and electrospray ionization mass spectrometry.

D. Human ER mutants

To test the importance of the NR box peptide/LBD interface observed in the crystal, a series of site-directed mutations were introduced into the ERα LBD. These mutations were designed either to simultaneously perturb the structural integrity and the nonpolar character of the floor of the binding groove (Ile 358->Arg, Val 376->Arg and Leu 539->Arg) or to prevent the formation of the capping interactions (Lys 362->Ala and Glu 542->Lys). Fusions of glutathione-S-transferase (GST) to the wild-type and mutant LBDs were analyzed for their ability to bind ³⁵S-labeled GRIP1 in the absence of ligand or in the presence of DES or OHT.

³⁵S-labeled GRIP1 was incubated with either immobilized GST, immobilized wild type GST-hERα LBD, or immobilized mutant GST-LBDs in the absence of ligand or in the presence of DES or OHT. The bound GRIP1 was quantitated after SDS-PAGE. I358R, mutant LBD containing a Ile->Arg substitution at residue 358; K362A, mutant LBD containing a Lys->Ala substitution at residue 362; V376R, mutant LBD containing a Val->Arg substitution at residue 376;

15

20

25

30

35

5 L539R, mutant LBD containing a Leu->Arg substitution at residue 539; E542K, mutant LBD containing a Glu->Lys substitution at residue 542.

In the absence of ligand or in the presence of OHT, fusions to the wild-type protein and all of the mutant LBDs showed no detectable binding to GRIP1. The Ile 358->Arg, Val 376->Arg and Leu 539->Arg mutants were all unable to interact with coactivator in the presence of agonist, confirming the importance of the packing interactions observed in the crystal. Disruption of either the N- or C-terminal capping interaction also compromised GRIP1 binding in the presence of agonist. Only the wild-type GST-LBD was able to recognize the coactivator in the presence of DES.

E. Human ER LBD-GST Fusion Protein

A fusion between glutathione-S-transferase (GST) and amino acids 282-595 of hERα was constructed by subcloning the EcoRI fragment from pSG5 ERα-LBD (Lopez et al., submitted manuscript) into pGEX-3X (Pharmacia). The Ile 358-> Arg, Lys 362->Ala, and Leu 539->Arg mutations were introduced into the GST-LBD construct using the QuikChange Kit (Stratagene) according to the manufacturer's instructions. The Val 376->Arg and Glu 542->Lys mutations were created in the GST-LBD construct by subcloning the BsmI/HindIII fragments of derivatives of pSG5-ER-HEGO (Tora, et al., *supra*) into which these mutations had already been introduced. All constructs were verified by automated sequencing (University of Chicago Cancer Research Center DNA Sequencing Facility).

F. Radiolabeled full-length receptors and coactivator proteins

Wild-type (WT) or mutant pCMV-hTRβ1 vector and the pSG5-GRIP1 and pCMX-SRC-1a vectors were used to produce radiolabeled full-length receptors and coactivator proteins using the TNT coupled Reticulocyte Lysate System (Promega) and [35S]-Met (DuPont). GST-GRIP1 (amino acids 721-1221), GST-GRIP1 (amino acids 563-1121), GST-SRC-1a (amino acids 381-882), GST-hTRβ1 (full-length, WT or mutants, WT provided by. C. Costa), and the GST-hRXRα (full-length provided by. C. Costa), fusion proteins were produced in *E. coli* strain HB101 as per the manufacturer's protocol (Pharmacia Biotech).

G. Coactivator GRIP1 563-767 His6 GST fusion protein

GRIP1 563-767 was cloned as a Bam HI-Xho I fragment derived from pGEX-2TK GRIP1 563-1121 into the corresponding sites of pGEX-4T1. A His6-tag was added by inserting a Xho I-Nae I fragment of pET23a into Xho I-Bsa AI sites of this pGEX-4T1 construct yielding pGEX

10

15

20

25

30

35

GRIP1 563-767His6. Mutants of GRIP1 563-767 were generated by PCR or single stranded mutagenesis using oligonucleotides carrying the mutations and a pSG5 GRIP1 vector as template. The mutations were confirmed by sequence analysis and integrated into pGEX GRIP1 563-767His6 as NgoMI - Xho I fragments. The GRIP1 563-767 His6 GST fusion protein was expressed in HB101 at 37°C. Protein expression was induced with 1mM IPTG at an optical density (600 nm) of 0.7 and extended for 4 hours after induction. Cells were harvested by centrifugation, resuspended in sonication buffer (20mM TrisHCl pH 8.0, 0.1M NaCl, 10%glycerol, 0.1mM PMSF and protease inhibitors (Complete, EDTA free, Boehringer Mannheim)). The resuspended cells were freezethawed once, incubated on ice with 0.1mg/ml lysozyme for 20 minutes and lysed per sonication. The lysate was cleared by ultracentrifugation (Ti 45, 36000rpm, 1h 4°C), the supernatant filtered (Costar 0.2µm top filter) and loaded on a Talon column (Clontech). The column was washed with 10 column volumes of sonication buffer supplemented with 12mM imidazole and eluted with an imidazole gradient [12 - 100mM]. At this step the fusion proteins are about 95% pure. Imidazole was removed by gelfiltration on NAP columns (Pharmacia), and protein concentrations determined using the Biorad protein assay. Equal concentrations of the different derivatives of the fusion fragment were incubated with glutathione agarose (1h, 4°C) which was equilibrated in binding buffer (sonication buffer supplemented with 1mM DTT, 1mM EDTA and 0.01% NP-40). Beads were washed with at least 20 volumes of this buffer, diluted in binding buffer with 20% glycerol to 40%, frozen in aliques and stored at -70° C.

H. Coactivator GRIP1 563-767 His6

GRIP1 563-767 was cloned as a Bam HI - Xho I fragment derived fron pGEX GRIP1 563-767His6 into corresponding cloning sites of pET23a yielding pETGRIP1 563-767His6. The fragment was expressed in BL21DE3. Expression, cell lysis and Talon purification was identical as described for GST GRIP1 563-767His6. The protein eluted from a Talon column in two fractions, one at 12mM and one between 40 and 70mM imidazole. In the earlier eluting fraction the fragment was associated with a 70 kDa protein which was removed by a MonoQ run in 50mM TrisHCl pH7.5, 10% glycerol, 1mM EDTA, 1mM DTT, 0.1mM PMSF and protease inhibitors. GRIP1 563-767His6 eluted in the flow through and was concentrated by ultrafiltration. At this step the protein was more than 95% pure.

Example 2: Peptide synthesis

Coactivator peptides were obtained using standard techniques. All peptides were HPLC purified and analyzed by mass spectroscopy. Peptide concentrations were either determined

15

20

25

30

spectroscopically using the tyrosine signal ($A_{276} = 1450 \text{ M-1cm-1}$) or by amino acid analysis following standard techniques.

Example 3: Binding assays with nuclear receptors and coactivators

A. GST-GRIP Pull-down Assays and Peptide Competition Assays

Binding experiments were performed by mixing glutathione beads containing 10 μ g of GST fusion proteins (Coomassie Plus Protein Assay Reagent, Pierce) with 1-2 μ l of the [35 S]-labeled wild-type or mutant hTR β 1 (25 fmoles, 4000 cpm of receptor), or coactivators in 150 μ l of binding buffer (20 mM HEPES, 150 mM KCl, 25 mM MgCl₂, 10% glycerol, 1 mM dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, and protease inhibitors) containing 2 mg/ml BSA for 1.5 hrs in the presence or absence of 1 μ M T₃. Beads were washed 3 times with 1 ml of binding buffer and the bound proteins were separated using 10% SDS-PAGE and visualized by autoradiography. Binding was quantitated by phosphorimaging using ImageQuant (Molecular Dynamics).

For in vitro binding studies GR, TR and their derivatives were translated in the presence of [35S]methionine using the TNT Coupled Reticulocyte System (Promega). Separate translations were performed in the presence and absence of 10µM dexamethasone or 1µM RU486 for GR and 10µM triiodothyronine for TR. Expression was quantified by phosphoimager analysis (BAS2000, Fuji). For all binding assays 50µl of a 20% bead suspension containing either 1.6 or 4.0 µM bound purified GST GRIP1 fragment (either 568-767 or 563-1121) was incubated with 0.2µl or 1.4µl in vitro transcribed and translated TR or GR, respectively. Binding was performed in the binding buffer described above supplemented with 20 µg/ml BSA and appropriate hormone. The chosen GST GRIP1 fragment concentrations were sufficient to bind either 70 or 100% of the TR derivatives. The reaction was incubated at 4°C under rotation for 2 hours. In case of competition experiments, the appropriate concentration of peptides were added to the reaction before addition of receptors. However, no differences in the results were noted by adding the peptides after half of the incubation of the GST GRIP1 fragment with nuclear receptors. This demonstrates that equilibrium is reached under the chosen conditions. Beads were washed five times with 200µl binding buffer + BSA at 4°C before elution of the bound proteins in 20µl SDS loading buffer. Eluted beads and input labeled protein were subjected to SDS-PAGE. The fraction of bound nuclear receptors was determined by phosphoimager analysis.

10

15

20

25

30

B. GST-hTRβ1 Pull-down Assays

Assay and analysis was performed as for Example 3A. *In vitro* binding of [³⁵S]-labeled full-length GRIP1, [³⁵S]-labeled full-length SRC-1a, and [³⁵S]-labeled full-length hRXRα, to GST-hTRβ1 wild-type (WT) and mutants was performed. Mutants V284R, K288A, I302R, L454R, and E457K all bound to hRXRα with an affinity equivalent to wild type hTR. All of these mutants showed decreased ability to bind GRIP1 and SRC-1a, as expected from the results of Example 3A. The same results were obtained when a GST-SRC1 construct including SRC-1a amino acids 381-882 was tested for binding of [³⁵S]-Met-labeled full-length hTRβ1 WT and mutants (data not shown).

C. GST-hERa LBD Pull-down Assays

The wild-type and mutant GST-hERα LBDs were expressed in BL21(DE3) cells. Total ligand binding activity was determined by a controlled pore glass bead assay (Greene, et al., *Mol. Endocrinol.* (1988) 2:714-726) and protein levels were monitored by western blotting with a monoclonal antibody to hERα (H222). Cleared extracts containing the GST- hERα LBDs were incubated in buffer alone (50 mM Tris, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1 mM DTT, 0.5% NP-40 and a protease inhibitor cocktail) or with 1 μM of either DES or OHT for 1 hour at 4°C. Extract samples containing thirty pmol of GST-LBD were then incubated with 10 μl glutathione-Sepharose-4B beads (Pharmacia) for 1 hour at 4°C. Beads were washed five times with 20 mM HEPES, pH 7.4, 400 mM NaCl, and 0.05% NP-40. ³⁵S-labeled GRIP1 was synthesized by *in vitro* transcription and translation using the TNT Coupled Reticulocyte Lysate System (Promega) according to the manufacturer's instructions and pSG5-GRIP1 as the template. Immobilized GST-hERα LBDs were incubated for 2.5 hours with 2.5 μl aliquots of crude translation reaction mixture diluted in 300 μl of Tris-buffered saline (TBS). After five washes in TBS containing 0.05% NP-40, proteins were eluted by boiling the beads for 10 minutes in sample buffer. Bound ³⁵S-GRIP1 was quantitated by fluorography following SDS-PAGE.

D. <u>Electrophoretic Mobility Shift Assays</u>

GRIP1, a mouse p160 coactivator, recognizes the ER α LBD in a ligand-dependent manner. The binding of agonists to the ER α LBD promotes recruitment of GRIP1, whereas binding of antagonists prevents this interaction (Norris, et al., *J. Biol. Chem.* (1998) 273:6679-88). While

15

20

25

30

35

5 agonist-bound receptor will bind to all three of the NR boxes from GRIP1, ERα strongly prefers NR-box 2 (Ding, et al., *Mol. Endocrinol.* (1998) 12:302-13).

An electrophoretic mobility shift assay was used to directly assess the ability of the NR-box 2 peptide to bind the purified ER α LBD in the presence of either DES or OHT. Eight microgram samples of purified hER α -LBD bound to either DES or OHT were incubated in the absence of the peptide, i.e., buffer alone, or in the presence of either a 2-fold or 10-fold molar excess of the GRIP1 NR-box 2 peptide. The binding reactions were performed on ice for 45 minutes in 10 μ l of buffer containing 20mM Tris, pH 8.1, 1mM DTT, and 200mM NaCl and then subjected to 6% native PAGE. Gels were stained with GELCODE Blue Stain reagent (Pierce).

In the presence of the NR-box 2 peptide, the migration of the DES-hER α -LBD complex was retarded. In contrast, peptide addition had no effect on the mobility of the OHT-hER α -LBD complex. Hence, this peptide fragment of GRIP1 possesses the ligand-dependent receptor binding activity characteristic of the full-length protein.

Example: 4 Transfection assays with TR and hERa

HeLa cell transfection and assay conditions are described (Webb et al., *Mol Endocrinol* (1995) 9:443). For TR assays, 5 μg of the reporter p(DR-4)₂ -TK-LUC consisting of two copies of the DR-4 element (a direct repeat of the consensus TR response element (TRE) spaced by 4 base pairs) placed upstream of a minimal (-32/+45) thymidine kinase gene promoter linked to luciferase (LUC) coding sequences were used. A reporter containing palindromic TREs gave the same results (data not shown). Also, 2 μg of the hTRβ1 expression vector, pCMX-TR (WT or mutant), and 0.5 μg transfection control vector, pJ3LacZ, which contains the SV40 promoter linked to the β-galactosidase gene, were used. Other cells co-transfected with vector or receptor constructs can be used for same purpose. Alternative cells expressing sufficient levels of an endogenous receptor(s), or cells selected that express a single reporter, can be used for transfection assays, including MCF-7 cells expressing ER (Webb et al., *supra*), and GC cells expressing TR (Norman et al., *J. Biol. Chem.* (1989) 264:12063-12073).

For hER α assays, 5 µg of estrogen responsive reporter plasmid encoding chloramphenicol acetyltransferase (CAT), pERE-collTATA (Sadovsky, et al., Mol Cell Biol. (1995) 15:1554), 0.5 µg expression vector encoding full-length hER α , pSG5-er HEGO (WT or mutants), and 2 µg of pj3lacz, were used. For the experiments of **Figures 2** and **4**, 0.5 µg of a full-length GRIP1 expression vector, pSG5-GRIP1, was also included in the transfection. Transfected cells were

10

15

20

25

30

treated with or without 1 μM T₃ or E₂, as indicated. After culturing for 24 hrs, the LUC or CAT activities were assayed and the β-galactosidase activities were also assayed to correct for differences in transfection efficiencies. The triplicate points were averaged and standard deviations were less than 10%.

Example 5: Hormone binding assays for wild-type and mutant TRs

The T₃ binding affinity constants (Kd) for *in vitro* -translated WT and mutant TRs were measured using [¹²⁵I] 3,5,3' triiodo-L-thyronine ([¹²⁵I]T₃) in gel filtration binding assays as described (Apriletti et al., *Protein Expr. Purif.* (1995) 6:363). Both the Kd and standard error (S.E.) values were calculated using the Prism computer program (GraphPad Software, Inc.). Mutations are indicated by the single-letter amino acid abbreviations, with the native residue name, followed by the primary sequence position number, and then the mutated residue name. The affinity of the WT TR is 81 ± 12 pM. The relative affinity was determined by dividing the WT Kd by each mutant Kd. The 37 mutants tested with their relative affinities are: E217R (123%), E227R (109%), K242E (92%), E267R (117%), H271R (123%), T277R (7%), T281R (145%), V284R (105%), D285A (89%), K288A (98%), C294K (94%), E295R (118%), C298A (87%), C298R (141%), E299A (171%), I302A (86%), I302R (99%), K306A (6%), K306E (6%), P384R (164%), A387R (107%), E390R (151%), E393R (146%), L400R (95%), H413R (109%), H416R (153%), M423R (156%), R429A (48%), S437R (170%), L440R (174%), V444R (89%), T448R (234%), E449R (36%), P453E (32%), L454R (26%), L456R (46%), E457K (71%).

Example 6: Coactivator binding assays for wild-type and mutant TRs

Wild type (WT) TR and most of the TR mutants liganded to 3,5,3'-triiodo-L-thyronine (T₃) bind equally well to the coactivator, GRIP1. In all cases, GRIP1 binding was hormone-dependent (data not shown). Mutations L454R and E457K in surface residues of helix 12 abolish GRIP1 binding (Figure 1). Mutations in two residues of helix 3, V284R and K288A, and two residues of helix 5, I302R and K306A, also impair binding (Figure 1). Five mutations with diminished GRIP1 binding (V284R, K288A, I302R, L454R, and E457K) also show decreased binding to another coactivator, SRC-1a (data not shown). Thus, these results show that two different coactivators recognize the same TR surface residues.

25

30

35

10

15

5 Example 7: TR residues involved in ligand-dependent transcription activation in context of a cell

Residues involved in ligand-mediated transcription activation were identified by testing the TR mutants of Example 8 in HeLa cells. T₃ increased reporter gene activity 5-fold in cells expressing either WT TR or mutated TRs showing normal GRIP1 binding (representative mutants are shown in **Figure 1**. By contrast, TR mutants with diminished or absent GRIP1 binding (V284R, K288A, I302R, K306A, L454R, and E457K) show a diminished or absent response to T₃ which correlates with the GRIP1 binding defect. Overexpression of GRIP1 increases activation by the WT TR and rescues activation by TR mutants roughly in proportion to the severity of the defect of GRIP1 binding and activation (**Figure 2**). These results suggest that the same residues are required for coactivator binding, function of the endogenous coactivator(s) in HeLa cells, and responsiveness of TRs to GRIP1.

Example 8: Effect of TR mutations on other receptor functions

The effects of the mutations on other receptor functions also were examined. All of the mutants bound radiolabeled thyroid hormone (Kd values, 6%-234% that for native receptor); occasional lower values were expected because some residues have partially buried side chains. None of the residues that decrease GRIP1 binding affected TR binding to a GST-RXR fusion protein or to DNA using three different DNA half-site arrangements and testing with or without added RXR (data not shown). Some mutations that affect GRIP1 binding occur in a region spanning helices 3-5, which has been suggested as important for TR/RXR heterodimerization (O'Donnell et al., *supra*; Lee et al., *Mol. Endocrinol.* (1992) 6:1867-1873). In contrast, however, the above results indicate that these residues do not contribute to TR/RXR heterodimerization. Further, TRs mutated in the CBS residues retain the ability of WT TR of T₃—dependent inhibition of the activity of the Jun and Fos transcription factors at an AP-1 site (Saatcioglu et al., *supra*), suggesting that the CBS residues do not participate in TR actions mediated through these proteins. These data indicate that the mutational effects are specific, the amount of input labeled TR in the different reactions is comparable, and the levels of expression of the mutant TRs are comparable to those of WT receptors.

Example 9: Coactivator binding site in ER

Three separate mutations (K362A, V376R, and E542K) were created in human estrogen receptor-α (hERα) which align to three of the effective positions in hTRβ1 (K288A, I302R, and

10

15

20

25

30

35

E457K). All three mutations diminish GRIP1 binding and abolish transcriptional activation (Figure 3), and mutant V376R, with 10% residual GRIP1 binding, was rescued partially by overexpression of GRIP1 (Figure 4). As a control, the ER mutants demonstrated a normal hormone-dependent ability to activate a vitellogenin-LUC hybrid reporter gene, GL45, which responds to the ER amino-terminal activation function (Berry et al., EMBO J (1990) 9:2811-2818) (data not shown). The finding that similar residues are required for GRIP1 binding and transcription activation activity in the TR and ER suggests that the coactivator binding site residues are similar in different nuclear receptors.

Example 10: Coactivator NR-box binding affinity for TR

To study the interaction between nuclear receptors and GRIP1 in vitro, a fragment of GRIP1 (563-767) was purified that contains all three NR-boxes (**Figures 6** and **7**). The fragment was found to be highly soluble and, in agreement with a secondary structure prediction using PhD, displays a mainly alpha-helical far UV-CD spectrum (data not shown). Three of the four helices predicted for the fragment include the NR-boxes at their C-terminus, suggesting that these boxes are part of amphipathic alpha-helices. These results show that the NR-boxes of GRIP1 are contained in a soluble, alpha-helical 24kD fragment.

Binding assays show that GRIP1 NR-boxes 1, 2 and 3, interact differentially with hTRß LBD (**Figure 7**). A GST-fusion of the GRIP1 (563-767) fragment strongly binds TR (kD or EC50) in a ligand depend fashion. Replacement of the hydrophobic residues of NR-box 3 with alanine does not reduce binding of TR significantly, whereas similar replacement of NR-box 2 results in loss of TR binding of about 50%. By titrating the amount of GRIP1 fragment, about a 4-fold stronger binding of TR for NR-box 2 (EC50 = 1.0 μ M) over NR-box 3 (EC50 = 4.0 μ M) was estimated. In the absence of functional NR-boxes 2 and 3, almost no binding to TR was detected suggesting that under these experimental conditions NR-box 1 is not a cognate binding site for TR. Full length TR or TR-LBD bound GRIP1 equally. These results show that TR recognizes GRIP1 NR-box 2 and 3, with preference for NR-box 2.

Example 11: Coactivator NR-box binding affinity for GR

GR also was found to bind GRIP1 (563-767) in a ligand-dependent manner (**Figure 8**). However, in contrast to TR, extension of GRIP1 (563-767) to residue 1121 increases binding to GR about 3-fold suggesting an additional binding site on GRIP1 for GR. Binding of the larger fragment remains ligand-dependent; no interaction can be observed in the presence of the GR partial

30

5

10

15

antagonist RU486. These results are in agreement with *in vivo* 2-hybrid GR GRIP1 interaction studies. In the presence of ligand no difference was detected in the binding of GRIP1 by full length GR or a deletion mutant of GR that lacks the N-terminal activation domain AF-1. However in the absence of ligand, binding of GR to GRIP1 (563-1121) increased by about 10-fold indicating that sequences in the GR N-terminus are able to suppress binding of unliganded GR to this additional binding site in GRIP1. Additionally, GR did not bind to a GRIP1 (563-767) mutant in which both NR-box 2 and 3 are replaced by alanines, and binds most strongly to a fragment that lacks a functional NR-box 2. As with TR, GR does not recognize NR-box 1. In contrast to TR, the GR prefers NR-box 3 to NR-box 2. These results demonstrate that GR prefers binding to NR-box 3 and interacts with an additional GRIP1 site within the CREB (cAMP - response - element binding protein) - binding protein (CBP) binding site.

Example 12: Coactivator peptide binding affinity for TR

To investigate whether the preference of TR for NR-box 2 is dependent on the sequence or structural context of the NR-boxes, competition studies on the interaction of GRIP1 with hTRß LBD were performed using coactivator peptides containing different NR- boxes (NR-box 2 peptide (residues 11-23 of SEQ ID NO: 6) EKHKILHRLLQDS, and NR-box 3 peptide (residues 9-21 of SEQ ID NO: 7) ENALLRYLLDKDD) (**Figure 9**). Consistent with the interaction of hTR LBDß with GRIP1 (563-767) NR-box mutants, a peptide containing NR-box 1 competes the interaction of GRIP1 with hTRß LBD only at very high concentrations (EC50 = 130 μ M). Peptides containing either NR-box 2 or 3 compete GRIP1 (563-767) efficiently and display the preference of hTRß LBD for NR-box 2 (EC50 (NR-box 2) = 1.5 μ M, EC50 (NR-box 3) = 4 μ M). The apparent affinities (EC50) for peptides of NR-box 2 and 3 are comparable with the analogous GRIP1 (563-767) NR-box mutants suggesting that the preference of TR for NR-boxes is solely dependent on the sequence and independent of the structural context of the NR-boxes.

Peptides of NR-box 2 or 3 compete GRIP1 (563-767) containing functional NR-boxes 2 and 3 or a mutant of this fragment that contains only a functional NR-box 2 with comparable affinity. Thus, while TR can bind both NR-box 2 and 3, in a GRIP1 coactivator peptide fragment containing both boxes, TR preferentially binds NR-box 2.

These results show the preference of TR for NR-box 2 is sequence dependent.

10

15

20

25

The same types of assays for TR competition are performed to assess coactivator peptide binding affinity for GR. The peptide concentrations are normalized relative to TR for obtaining comparable dose response curves.

Example 13: Binding affinity of TR for extended coactivator peptides

Sequence identity between all three central NR-boxes of the p160 coactivator family is limited to the conserved leucine residues of the (SEQ ID NO: 1) LxxLL motif (**Figure 6**). However, the sequence conservation of a particular NR-box can extend into neighboring residues. To investigate the contribution of these neighboring residues to affinity and specificity of the different NR-boxes for TR, the ability of peptides containing individual NR-boxes with different lengths of adjacent sequences to compete with the interaction of GRIP1 (563-767) with hTRß LBD were compared (**Figure 10**).

A peptide consisting of the minimal motif of NR-box 3 (residues 12-17 of SEQ ID NO: 7; LLRYLL) does not compete the TR LBD interaction with GRIP1 (563-767). A peptide consisting of the NR-box 2 (residues 15-20 of SEQ ID NO: 6; ILHRLL) also does not sufficiently compete the interaction (data not shown). Extending peptides containing a (SEQ ID NO: 1) LxxLL motif to include adjacent residues increased affinity for both NR-box motifs and magnified the preference of TR for NR-box 2 (NR-box 2 peptides: (residues 11-23 SEQ ID NO: 6) EKHKILHRLLQDS and (residues 7-23 of SEQ ID NO: 6) TSLKEKHKILHRLLQDS; and NR-box 3 peptides: (residues 8-24 of SEQ ID NO: 7) KENALLRYLLDKDDTKD and (residues 5-24 of SEQ ID NO: 7) PKKKENALLRYLLDKDDTKD). A chimeric peptide containing the NR-box 3 motif in the context of the NR-box 2 flanking sequences (SEQ ID NO: 31; TSLKEKHKLLRYLLQDSS) binds like a NR-box 2 peptide.

These results demonstrates that preference of TR for NR-box 2 is at least partially due to features of the bound peptide (residues 15-20 of SEQ ID NO: 6; ILHRLL), but that their affinity and specificity is modulated by adjacent sequences.

30 Example 14: Binding affinity of TR and GR for mutant coactivator

A. TR affinity for ILxxLL motif residues

To investigate the role of the hydrophobic residues in NR-box 2, individual residues of the (residues 15-20 of SEQ ID NO: 6) ILHRLL motif were replaced by alanine in the background of GRIP1 (563-767) containing a non-functional NR-box 3 (**Figure 11**). Surprisingly, replacement of

10

15

20

25

30

35

any of the conserved leucines prevents binding to TR almost completely. Only replacement of the nonconserved isoleucine exhibited a lessened but still severe impact on the affinity of NR-box 2 for TR. As replacement of a single leucine by alanine is sufficient to overcome the interaction of both the remaining hydrophobic residues and adjacent sequences with hTR\$ LBD, it appears that their contribution to the affinity of NR-box 2 for hTR\$ LBD is cooperative rather than additive.

Similar results were obtained by competing the interaction of hTRß LBD with the GRIP1 (563-767) NR-box 3 mutant using peptides in which either IL, HR or LL of the NR-box 2 motif are replaced by alanines (**Figure 11**). Whereas the peptides containing the IL or LL replacement failed to interact with the hTRß LBD even at very high concentrations, in agreement with a proposed alpha-helical structure of the motif, replacement of the "HR spacer" by alanines showed a marginal effect on the affinity of the peptide for TR-LBD.

Replacement of single leucine residues of NR-box 2 by phenylalanine reduced the affinity of NR-box 2 peptides for TR LBD about 100-fold, replacement of the isoleucine about 10-fold (**Figure 11**). Therefore, the interaction of TR with GRIP1 relies not simply on the hydrophobicity of the (SEQ ID NO: 1) LxxLL motif, but also on positive contributions by the leucine residues themselves.

These results demonstrate that single mutations of the conserved leucines in the (SEQ ID NO: 1) LxxLL motif strongly reduce affinity of GRIP1 for hTRß LBD.

Collectively, the above examples demonstrate that peptides containing NR-boxes, particularly NR-box 2, reproduce the affinity and specificity of the interaction of GRIP1 (563-767) with hTR\$\text{BD}\$.

B. TR affinity of FxxLW and FxxAL motif residues

The three conserved leucines of the NR-box 2 (SEQ ID NO: 2) ILxxLL motif are embedded in the hydrophobic cleft of the hTRß LBD:NR-box 2 interaction surface, whereas the non conserved isoleucine is located on the rim of this cleft where structural changes can be more easily accommodated (See Example 18). In agreement with this structure, replacement of this residue by alanine or phenylalanine reduced binding to hTRß LBD to a less extent than the comparable mutations of the conserved leucine residues. The surface generated by the three conserved leucines (L690, L693, L694) of the NR-box 2 peptide (residues 12-24 of SEQ ID NO: 6) 686-KHKILHRLLQDSS-698 is highly complementary to the corresponding binding site in the hTRß LBD (Figures 16 and 17). Comparison of this binding site to other nuclear receptors shows that it

contains a structural motif that is unique, highly conserved and present in all known structures of nuclear receptor LBDs (Wurtz et al., *Nat Struct Biol.* (1996) 3:87-94; Wagner et al., *supra*; Renaud et al., *Nature* (1995) 378:681-689; Bourguet et al., *Nature* (1995) 375:377-382; and Brzozowski et al., *Nature* (1997) 389:753-758).

Interaction of highly conserved hydrophobic motifs, which are part of amphipathic alphahelices, with complementary hydrophobic surfaces resembles a feature observed for the interaction of several other transcriptional activators with their target proteins (p53:MDM2, VP16:TAFII31 or CREB:KIX-CBP). However, the motifs of p53 (FxxLW), VP16 (FxxAL) and CREB (YxxIL) differ from the (SEQ ID NO: 1) LxxLL motif of nuclear receptor coactivators. A Fxxxh motif may be generally involved in interaction with TAFII31, where "h" represents any hydrophobic residue. Though with respect to the known structures, complementarity of the interacting hydrophobic surfaces identified here seem to be a common feature of these interactions, cross-reactions between different motifs are possible. For instance, VP16, p53, and p65 (FxxFL) are able to functionally interact with TAFII31, or p53 and E2F1-DP1 (FxxLL) both interact with MDM2. These interactions are sensitive to mutations in the Fxxxh motif. Therefore it appears that either complementarity of the hydrophobic surfaces is not an absolute requirement or that induced fitting of the interacting surfaces is possible.

Based on these observations, studies were performed to determine whether GRIP1 interacts with TAFII31 or MDM2. However, no interaction was detected. GRIP1 mutants changing NR-box 2 (SEQ ID NO: 1; LxxLL) to VP16 (SEQ ID NO: 4; FxxAL) or p53 (SEQ ID NO: 3; FxxLW) like binding sites also failed to bind TAFII31 or MDM2 demonstrating that the presence of the correct binding site is not sufficient to create binding (data not shown). Moreover, peptides containing the VP16 or p53 binding sites are not able to compete the interaction of GRIP1 with TR, even in very high concentration, but do compete the interaction with GR (data not shown). The affinity of this interaction is weak, but comparable to affinity of a peptide of NR-box 2 that, in the context of a GRIP1 mutant lacking NR-box 3, binds GR *in vivo* (Ding et al., *supra*). This binding is only about ten times less than a peptide containing NR-box 3, GR's primary binding site.

As shown above, GR binds GRIP1 (563-767) with about one-fifth the affinity than a comparable amount of TR. Thus, the high concentration of NR-box 3 peptide required to compete the interaction of GR with GRIP1 (563-767) may rather reflect a weak affinity of GR for the peptide rather than a particular strong interaction of GR with GRIP1 (563-767).

10

15

These results suggest that at least on the peptide level, other hydrophobic motifs besides (SEQ ID NO: 1) LxxLL can interact with the coactivator binding site, but that it is receptor dependent.

C. TR affinity for residues adjacent to ILxxLL motif

Peptides containing a FxxLL motif bind TR but with two orders of magnitude lower affinity than a (SEQ ID NO: 1) LxxLL motif (Figure 11). To test whether the additional changes in the hydrophobic motif or adjacent sequences of the VP16 peptide prevent its binding to TR, a chimeric peptide containing the NR box-2 motif (SEQ ID NO: 1) LxxLL in the context of the VP16 sequence was constructed. This peptide binds to TR but with an about 100-fold lower affinity than the original NR-box 2 peptide. Thus, the inability to bind the VP16 peptide appears to be due to the combination of an imperfect hydrophobic motif and the incompatibility of TR to adjacent sequences of the VP16 motif.

As the interaction of the chimeric peptide with GR was comparable to the original NR-box 2 and VP16 peptides, this incompatibility appears due to TR-specific features in the NR-box interaction surface. These results show sequences adjacent the NR-box motif LxxLL can reduce binding of NR-box 2 to TR, but not GR.

Example 15: Crystallization and Structure Determination of NR LBD Complexes

A. Crystallization of hTRß LBD with T₃ and GRIP1 NR-box 2 Peptide

 \mathcal{L}^{25}

30

Several peptides containing GRIP1 NR-box 2 were tested in crystallization trials with the hTRß LBD. The complex of the hTRß LBD with the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) produced crystals that were dependent on both the presence and the concentration of the peptide. Without the peptide, the hTRß LBD precipitated immediately. However, nucleation was erratic, but could be overcome through seeding of prepared drops with microcrystals of the hTRß LBD:GRIP1 NR-box 2 peptide complex. Structure of the hTRß LBD:GRIP1 NR-box 2 peptide complex was determined by molecular replacement using the structure of the hTRß LBD determined previously (Wagner et al., <u>supra</u>), and refined to a resolution of 3.6Å (**Table 1**). The refined model consists of residues K211-P254 and V264-D461 of monomer 1 of the hTRß LBD, residues K211-P254 and G261-D461 of monomer 2 of the hTRß LBD, and the GRIP1 NR-box 2 peptides (residues 14-24 of SEQ ID NO: 6) 688-

15

5 KILHRLLQDSS-698, and (residues 14-22 of SEQ ID NO: 6) 688-KILHRLLQD-696 (Appendix 1).

Briefly, the complex between the hTRß LBD and the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) was prepared by mixing (equal) volumes of a solution of 9mg/ml hTRß LBD in 20mM HEPES pH 7.4 with a solution of 14 mM GRIP1 in 0.4mM ammonium acetate pH 4.72, and incubating the mixture on ice for 1 hour. Crystals were obtained after 2 days at 4°C using hanging drop vapor diffusion from a drop containing 1.5µl of hTRß LBD:GRIP1 complex, prepared as described, and 0.5µl 15%PEG 4K, 0.2M sodium citrate pH 4.9, suspended above a reservoir containing 10% PEG 4K, 0.1M ammonium acetate, and 0.05 M sodium citrate (pH 5.6). After allowing the drop to equilibrate for 1 hour, 0.2µl of 10-3 to 10-5 dilutions of microcrystals in reservoir buffer were introduced to provide nucleation. Crystals are of space group P3121 (a=95.2, b=95.2, c=137.6) and contain two molecules of the hTRß LBD and two molecules of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6).

			Da	ita collection	n	
Data set		olution (Å)	Reflec	ctions	Coverage (%)	R _{sym}
Native	3	3.6	measured 35565	unique 8490	96.3	0.007
			Ro	tation searc	h	
Search model		Eule	er angles (°)		Correlation	on coefficient
		Θ1	Θ_2	Θ_3	Highest peak	Highest false peak
hTR β LBD	M1	60.12	80.68	241.90	16.3	
	M2	9.93	87.70	180.6	15.9	14.2
		-		ıslation seai		
]	Fractional coc	rdinates	Trans	slation function
		х	У	Z		Highest false peak (o)
	M1	0.522			19.52	10.02
	M2	0.200	0.932	0.119	26.11	5.77
			I	Refinement		
		solution	Ref	lection	R	R _{free}
	Re	(Å)				
F > 2(Re		7	614	0.2990	0.3219 0.317

 $R_{\text{sym}} = \Sigma_h \Sigma_i \mid I_{h,i} \hat{\mathbf{u}} \left(I_h(\mid / \Sigma I_h \text{ for the intensity } (I) \text{ of } i \text{ observations of reflection } h.$ Correlation coefficient = $\Sigma_h Eo^2 Ec^2 - Eo^2 Ec^2 / \left[\Sigma_h \left(Eo_2 - Eo^2 \right)^2 \Sigma_h \left(Ec^2 - Ec^2 \right)^2 \right]^{1/2}$ Translation function $(t_a, t_b, ...) = \Sigma_h \left(|Eo_{(h)}|^2 - \Sigma_h < |Eo_{(h)}|^2 \right) \left(Ec_{(h,t_a,t_b,...)}|^2 - < |Ec_{(h)}|^2 \right)$ where E_0 represents the normalized observed structure factor amplitudes, and E_c represents the normalized structure factors for the search model in a triclinic unit cell with dimensions identical to that of the crystal. The reported peak height represents the value of the function for the translation (t_a, t_b) of the NCS monomers, divided by the rms value of the translation function density.

R factor = $\Sigma \mid F_{\text{obs}}$ - $F_{\text{calc}} \mid / \Sigma \mid F_{\text{obs}} \mid$.

R_{free} is calculated the same as R factor, except only for 10% of the reflections that were set aside for cross validation and not used in refinement.

10

15

20

25

30

35

B. Crystallization of hERa LBD with DES and GRIP1 NR-box 2 Peptide

Crystals of a DES-hER\alpha LBD-GRIP1 NR-box 2 peptide complex were obtained by hanging drop vapor diffusion. Prior to crystallization, the DES-hERa LBD (residues 297-554) complex was incubated with a 2-4 fold molar excess of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) for 7-16 hr. Two µL samples of this solution were mixed with equal volume samples of reservoir buffer consisting of 25-27% (w/v) PEG 4000, 90 mM Tris (pH 8.75-9.0) and 180 mM Na Acetate and suspended over wells containing 800 μL of the reservoir buffer. After 4-7 days at 19-21°C, rod-like crystals were obtained. The coactivator complex crystals lie in the spacegroup P2₁ with cell dimensions a=54.09, b=82.22, c=58.04 and β =111.34. Two molecules each of the DES-LBD and the coactivator peptide form the asymmetric unit. A 200 μm x 40 μm x 40 μm crystal was transferred to a cryosolvent solution containing 25% (w/v) PEG 4000, 10% (w/v) ethylene glycol, 100 mM Tris (pH 8.5), 200 mM Na Acetate and 10 μM peptide and frozen in an N₂ stream at -170°C in a rayon loop. Diffraction data from this crystal were measured at -170°C using a 300 mm MAR image plate at the Stanford Synchrotron Radiation Laboratory (SSRL) at beamline 7-1 at a wavelength of 1.08 Å. The diffraction images were processed with DENZO and scaled with SCALEPACK (Otwinowski, et al., Methods Enzymol. (1997) 276:307-326) using the default -3σ cutoff.

C. Crystallization of hERa LBD with OHT

Crystals of the hER α LBD (residues 297-554) complexed to OHT were obtained by the hanging drop vapor diffusion method. Equal volume aliquots (2 μ L) of a solution containing 3.9 mg/mL protein-ligand complex and the reservoir solution containing 9% (w/v) PEG 8000, 6% (w/v) ethylene glycol, 50 mM HEPES (pH 6.7) and 200 mM NaCl were mixed and suspended over 800 μ L of the reservoir solution. Hexagonal plate-like crystals formed after 4-7 days at 21-23°C. Both crystal size and quality were improved through microseeding techniques. These crystals belong to the space group P6₅22 with cell parameters a=b=58.24 Å and c=277.47 Å. The asymmetric unit consists of a single hER α LBD monomer; the dimer axis lies along a crystallographic two-fold. A single crystal (400 μ m x 250 μ m x 40 μ m) was briefly incubated in a cryoprotectant solution consisting of 10% (w/v) PEG 8000, 25% (w/v) ethylene glycol, 50 mM HEPES (pH 7.0) and 200 mM NaCl and then flash frozen in liquid N₂ suspended in a rayon loop. Diffraction data were measured at -170°C using a 345 mm MAR image plate at SSRL at beamline 9-1 and at a wavelength of 0.98 Å. The diffraction images were processed with DENZO and scaled with SCALEPACK (Otwinowski, et al., supra) using the default -3 σ cutoff.

10

15

20

25

30

35

Example 16: Structure determination and refinement of NR LBD complexes

A. Structure of hTR\$\beta\$ LBD with T3 and GRIP1 NR-box 2 Peptide

Data were measured using Cu Ka radiation from an R-axis generator at 50 kV and 300 mA with a 0.3mM collimator and a Ni filter. Reflections were measured using an R-Axis II detector and integrated with Denzo, and equivalent reflections scaled using Scalepack (Otwinowski and Minor, "Processing of x-ray diffraction data collected in oscillation mode." In Macromolecular Crystallography, Part A (ed. C.W. Carter, Jr. and R.M. Sweet), pp. 307-326. Academic Press, New York, NY). Possible rotation function solutions were calculated using normalized amplitudes in AMORE from a model of hTRß LBD with the ligand, T₃, omitted; translation function solutions were subsequently determined using TFFC for the two rotation solutions with the highest correlation coefficients. For two hTRß LBD molecules in the asymmetric unit, the calculated solvent content is 52%. After rigid body refinement of the two hTRB LBD molecules, electron density maps were calculated. Strong positive density present in both the anomalous and conventional difference Fourier maps for the iodine atoms of the T₃ ligand confirmed the correctness of the solution. The iodine atoms for both T₃ ligands were modeled as a rigid body, and the structure refined with strict NCS symmetry using CNS. Both 2FoFc and FoFc electron density maps showed interpretable density, related by the NCS operator, near H12 of both molecules of the hTRß LBD. The electron density could be modeled as a short α-helix, and the observed side chain density was used to tentatively assign the sequence and direction to the chain. The refined model consists of residues of the hTR\$ LBD, and peptide residues of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6).

Atomic coordinates of the hTRß LBD:GRP1 site 2 peptide complex are attached as Appendix 1.

B. Structure of hERa LBD with DES and GRIP1 NR-box 2 Peptide

Initial efforts to determine the structure of the DES-hERα LBD-NR box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) complex utilized a low resolution (3.1 Å) data set (data not shown). A self-rotation search implemented with POLARRFN ("The CCP4 suite: programs for protein crystallography", *Acta Crystallogr*. (1994) D50:760-763) indicated the presence of a noncrystallographic dyad. The two LBDs in the asymmetric were located by molecular replacement in AMoRe (CCP4, 1994) using a partial polyalanine model of the human RARγ LBD (Renaud, et al., *supra*) as the search probe (R=58.2%, CC=35.6% after placement of

25

30

35

5

10

15

both monomers). Given that the model at this point was both inaccurate (r.m.s.d. 1.7 Å between this model and the final model based on Cα positions) and incomplete (accounting for only ~45% of the total scattering matter in the asymmetric unit), an aggressive density modification protocol was undertaken. Iterative cycles of two-fold NCS averaging in DM (CCP4, 1994) interspersed with model building in MOLOC (Muller, et al., *Bull. Soc. Chim. Belg.* (1988) 97:655-667) and model refinement in REFMAC (Murshudov, et al., *Acta Crystallogr.* (1997) D53:240-255) (using tight NCS restraints) were used to quickly build a model of the LBD alone. For this procedure, MAMA (Kleywegt, et al., "Halloween...masks and bones. In From First Map to Final Model", Bailey, et al, eds., Warrington, England, SERC Daresbury Laboratory, 1994) was used for all mask manipulations and PHASES (Furey, et al., PA33 *Am. Cryst. Assoc. Mtg. Abstr.* (1990) 18:73) and the CCP4 suite (CCP4, 1994) were used for the generation of structure factors and the calculation of weights.

However, although the DES-hERα LBD-NR complex model accounted for ~90% of the scattering matter in the asymmetric unit, refinement was being hampered by severe model bias. The high-resolution data set of the DES-hER\alpha LBD-NR-box 2 peptide complex became available when the R_{free} of the OHT-hER α LBD model was ~31%. Both monomers in the asymmetric unit of the DES complex crystal were relocated using AMoRe and the incompletely refined OHT-hERa LBD model (with helix 12 and the loop between helices 11 and 12 removed) as the search model. The missing parts of the model were built and the rest of the model was corrected using MOLOC and two-fold averaged maps generated in DM. Initially, refinement was carried out with REFMAC using tight NCS restraints. At later stages, the model was refined without NCS restraints using the simulated annealing, minimization and B-factor refinement protocols in X-PLOR and a maximumlikelihood target. All B-factors were refined isotropically and anisotropic scaling and a bulk solvent correction were used. The R_{free} set contained a random sample of 6.5% of all data. In refinement, all data between 27 and 2.03 Å (with no σ cutoff) were used. The final model was composed of residues 305-549 of monomer A, residues 305-461 and 470-554 of monomer B, residues 687-697 of peptide A, residues 686-696 of peptide B, 164 waters, two carboxymethyl groups and a chloride ion. According to PROCHECK, 93.7% of all residues in the model were in the core regions of the Ramachandran plot and none were in the disallowed regions. Thus, the structure of the DES-hERa LBD-NR-box 2 peptide complex has been refined to a crystallographic R-factor of 19.9% $(R_{free}=25.0\%)$ using data to 2.03 Å resolution.

Ile 689 from the peptide interacts with three receptor residues (Asp 538, Glu 542 and Leu 539). The γ -carboxylate of Glu 542 forms hydrogen bonds to the amides of residues 689 and 690 of

the peptide. A water-mediated hydrogen bond network is formed between the imidazole ring of His 377, the γ-carboxylate of Glu 380, and the amide of Tyr 537. Three residues (Glu 380, Leu 536 and Tyr 537) interact with each other through van der Waals contacts and/or hydrogen bonds. Intriguingly, mutations in each these three residues dramatically increase the transcription activity of unliganded ERα LBD (Eng, et al., *Mol. Cell. Biol.* (1997) 17:4644-4653); Lazennec, et al., *Mol. Endocrinol.* (1997) 11:1375-86; White, et al., *EMBO J.* (1997) 16:1427-35). Atomic coordinates of DES-LBD-peptide complex are attached as **Appendix 2**.

Table 2
Summary of Crystallographic Statistics

	Lig	and
Data Collection	<u>DES</u>	<u>OHT</u>
Space group	P2 ₁	P6 ₅ 22
Resolution	2.03	1.90
Observations	104189	269253
Unique	30265	23064
Completeness (%)	98.4	99.1
$R_{\text{sym}}(\%)^a$	7.8	7.0
Average I/σI	9.8	16.1
Refinement		
Number of non-hydrogen atoms	4180	2070
R_{cryst} (%) $^b/R_{free}$ (%)	19.9/25.0	23.0/26.1
Bond r.m.s. deviation (Å)	0.006	0.006
Angle r.m.s. deviation (°)	1.05	1.05
Average B factor (Å ²)	34.0	40.4
^a $R_{sym} = \sum_{i} I_{i} < I_{i} > /\sum_{i}$	$\sum_{i} I_{i}$ where $\langle I_{i} \rangle$	is the average intensi
over symmetry equiv	alents	
	Space group Resolution Observations Unique Completeness (%) $R_{\text{sym}}(\%)^a$ Average I/ σ I Refinement Number of non-hydrogen atoms R_{cryst} (%) $^b/R_{\text{free}}$ (%) Bond r.m.s. deviation (Å) Angle r.m.s. deviation (°) Average B factor (Å ²) a $R_{\text{sym}} = \sum_i I_i - \langle I_i \rangle / \sum_i$	Data CollectionDESSpace group $P2_1$ Resolution 2.03 Observations 104189 Unique 30265 Completeness (%) 98.4 R_{sym} (%) $^{\text{a}}$ 7.8 Average I/ σ I 9.8 RefinementNumber of non-hydrogen atoms 4180 R_{cryst} (%) $^{\text{b}}$ / R_{free} (%) $19.9/25.0$ Bond r.m.s. deviation (Å) 0.006 Angle r.m.s. deviation (°) 1.05 Average B factor (Å 2) 34.0

20

25

30

35

5

C. Structure of hERa LBD-OHT complex

The OHT complex data set was then collected. Starting with one of the monomers of the preliminary low-resolution DES-hER\alpha LBD-NR-box 2 peptide model as the search probe, molecular replacement in AMoRe was used to search for the location of LBD in this crystal form in both P6₁22 and P6₅22. A translation search in P6₅22 yielded the correct solution (R=53.8%, CC=38.2%). In order to reduce model bias, DMMULTI (CCP4, 1994) was then used to project averaged density from the DES complex cell into the OHT complex cell. Using MOLOC, a model of the hERa LBD was built into the resulting density. The model was refined initially in REFMAC and later with the simulated annealing, positional and B-factor refinement protocols in X-PLOR (Brunger, X-PLOR Version 3.843, New Haven, Connecticut: Yale University, 1996) using a maximum-likelihood target \((Adams, et al., Proc. Natl. Acad. Sci. USA (1997) 94:5018-23). Anisotropic scaling and a bulk solvent correction were used and all B-factors were refined isotropically. Except for the Ritee set (a random sampling consisting of 8% of the data set), all data between 41 and 1.9 Å (with no ocutoff) were included. The final model consisted of residues 306-551, the ligand and 78 waters. According to PROCHECK (CCP4, 1994), 91.6% of all residues in the model were in the core regions of the Ramachandran plot and none were in the disallowed regions. Thus, the structure of the QHT-hERα LBD complex has been refined against data of comparable resolution (1.90 Å) to a crystallographic R-factor of 23.0% (R_{free}=26.2%). Atomic coordinates of OHT-hERα LBD complex are attached as **Appendix 3**.

Example 17: Structural analysis of hTR\$\textit{BD:GRIP 1 NR-box 2 peptide complex}

A. Structure of cocrystal complex (contents of asu)

The asymetric unit (asu) of the crystal contains two monomers of the hTRß LBD and two molecules of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6), which observes the NCS relation of the two TR monomers (**Figure 12**). The structure of the hTRß LBD, which closely resembles that of the rTRα LBD (Wagner et al., <u>supra</u>), consists of twelve alpha-helices and two β-strands organized in three layers, resembling an alpha-helical sandwich. The only significant difference between the hTRß LBD and the rTRα LBD is disorder in the loop between helices H1 and H3. The GRIP1 NR-box 2 peptide forms an amphipathic α-helix of about 3 turns, preceded by 2 residues and followed by 3 residues in extended coil conformation.

The relation of the two monomers of the hTRß LBD is primarily translational, and does not resemble the homodimer structures reported for the hRXR, or the hER (Bourguet et al., <u>supra</u>;

Brzozowski et al., <u>supra</u>). Furthermore, the interface between the two monomers does not involve residues necessary for formation of the physiological TR dimer. Instead, one of the cocrystal peptides appears to bridge the interaction between the two monomers. The hydrophobic face of the alpha-helix of the cocrystal peptide contacts monomer 1 of the hTRß LBD at H3, H5, and H12, while the hydrophilic face contacts monomer 2 at the hairpin turn preceding strand S3. The second cocrystal peptide also contacts monomer 2 at H3, H5, and H12, and the two cocrystal peptides observe the same NCS relation as TR LBD monomers.

The common interface between both cocrystal peptides and the hTRß LBD buries the hydrophobic residues that define the cocrystal peptide (SEQ ID NO: 1) LxxLL sequence motif, residues Ile689, Leu690, Leu693, and Leu694; against the surface of the receptor LBD (Figures 16 and 17). The presence of the second peptide in the crystal, duplicating the interactions of the hydrophobic residues, suggests those interactions are specific and drive the interaction of the peptide with the hTRß LBD, while the hydrophilic interactions provide a fortuitous crystal contact and account for the dependence of crystallization on the presence and concentration of the peptide.

B. Structure of the GRIP1 NR-box 2 peptide

The GRIP1 NR-box 2 peptide used in the crystallization is 13 amino acids long (residues 12-24 of SEQ ID NO: 6; 686-KHKILHRLLQDSS-698). For the NR-box 2 peptide in monomer 1 (peptide 1), 12 amino acids are ordered in the crystal. Residues K688 - Q694 form an amphipathic helix, with residues K686-H687 and D695-S698 on either end in extended coil conformations. For the NR-box 2 peptide in monomer 2 (peptide 2), residues K688 - Q694 again form an amphipathic helix, but the ends of the peptide are disordered. While the resolution of the current data prevents absolute assignment of hydrogen bonds, it is evident from the periodicity of the side chain density that the central residues form an alpha-helix. In the absence of TR the far UV-CD spectrum of the GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) appears to be random coil (data not shown). Stable helix formation may thus be induced by the interaction of the hydrophobic amino acids with the receptor LBD as it has been proposed in other protein:protein interactions, such as p53:MDM2 (Kussie et al., *Science* (1996) 274:948-953), VP16:TAF31 (Uesugi et al., *Science* (1996) 277:1310-1313), and CREB:KIX-CBP (Radhakrishnan et al., *Cell* (1997) 91:741-752).

C. Structure of the hTRB LBD:GRIP1 NR-box 2 peptide interface

The hTRß LBD of the cocrystal contributes residues from three helices, H3, H5, and H12 to the interface, which pack against one another to create a hydrophobic cleft. The residues lining the cleft are I280, T281, V283, V284, A287, and K288 from H3; Q301, I302, L305, and K306 from H5; and L454, E457, V458, and F459 from H12. A cysteine residue (C309) from H6 appears to provide a partial surface that is buried deep within the bottom of the cleft.

The GRIP1 NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) binds at the junction of H3 and H12. Leu690 of the bound peptide inserts into a shallow but defined depression at the base of the cleft, making van der Waals contact with L454 and V458 of H12, while peptide residue Ile689 packs against L454 of H12 outside the edge of the cleft; L454, then, interdigitates between the two residues. One further turn C-terminal along the alpha-helix, L693 and L694 of the bound peptide pack into complementary pockets within the hydrophobic cleft. Peptide residue L693 forms van der Waals contact with V284 of H3, while peptide residue L694, bound more deeply in the cleft, makes contact with F298 and L305 of H4 and H5. The hydrophobic interactions of the GRIP1 NR-box 2 peptide with the hTR\$ LBD are observed for both cocrystal peptides 1 and 2 in their respective monomers of the crystal dimer complex, suggesting that the interactions are specific to the peptide, and not induced by crystallization.

Example 18: Overall Structure of the DES-hERα-LBD-NR-box 2 Peptide Complex

The asymmetric unit of the DES-hERα LBD-NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) complex crystals contains the same noncrystallographic dimer of LBDs that has been observed in the previously determined structures of the LBD bound to both E2 and RAL (Brzozowski, et al., supra and Tanenbaum, et al., supra). Beyond the flexible loops between helices 2 and 3 and helices 9 and 10, the two LBDs of the dimer adopt similar structures (r.m.s.d. 0.47 Å based on Cα positions). The conformation of each LBD complexed with DES closely resembles that of the LBD bound to E2 (Brzozowski, et al., supra); each monomer is a wedge shaped molecule consisting of three layers of eleven to twelve helices and a single beta hairpin. In each LBD, the hydrophobic face of helix 12 is packed against helices 3, 5/6 and 11 covering the ligand binding pocket. One NR-box 2 peptide is bound to each LBD in a hydrophobic cleft composed of residues from helices 3, 4, 5 and 12 and the turn between 3 and 4. The density for both peptides in the asymmetric unit is continuous and unambiguous. Residues 687 to 697 from peptide A and residues 686 to 696 from peptide B have been modeled; the remaining residues are disordered. Given that each peptide lies within a different environment within the crystal, it is

15

25

30

striking that from residues Ile 689 to Gln 695 each peptide forms a two turn, amphipathic α helix. Flanking this region of common secondary structure, the peptides adopt dissimilar random coil conformations.

Example 19: Structure of the OHT-hERa LBD Complex

The binding of OHT induces a conformation of the hER\alpha LBD that differs in both secondary and tertiary structural organization from that driven by DES binding. In the DES complex, the main chain from residues 339 to 341, 421 to 423, and 527 to 530 form parts of helices 3, 8 and 11 respectively. In contrast, these regions adopt an extended conformation in the OHT complex. In addition, the composition and orientation of helix 12 are different in the two structures. Helix 12 in the DES complex consists of residues 538 to 546 whereas helix 12 in the OHT complex consists of residues 536 to 544. Most dramatically, rather than covering the ligand binding pocket as it does in the DES complex, helix 12 in the OHT complex occupies the part of the coactivator binding groove formed by residues from helices 3, 4, and 5, and the turn connecting helices 3 and 4. This alternative conformation of helix 12 appears to be similar to that observed in the RAL complex (Brzozowski, et al., *supra*).

20 Example 20: Coactivator binding site structure and function

A. TR coactivator binding site

The above examples demonstrate that nuclear receptors, exemplified by TR, GR and ER, are recognized by specific coactivators that bind thereto through a coupling surface comprising a hydrophobic cleft and a charged hydrophobic perimeter. Identification and characterization of this coupling surface and the coactivator binding site of nuclear receptors offers a new target for the design and selection of compounds that modulate binding of coactivator to nuclear receptors.

Residues forming the coactivator binding site were found to cluster within a surprisingly small area with well-defined borders (see, e.g., **Figures 5, 14,** and **15**). As is shown in above Examples, mutated residues nearby this area do not affect coactivator binding or transcriptional activation. Additionally, the coactivator binding assays and structural analyses demonstrated that NR-box containing proteins and peptides bind to this site. These results also showed that the GRIP1 coactivator protein binds to the site through a highly (SEQ ID NO: 1) LxxLL.

10

15

20

25

30

35

The structural analyses showed that residues contacting a conserved leucine residue of the (SEO ID NO: 1) LxxLL motif included V284, F293, I302, L305 and L454. Residues within 4.5Å of an atom of the bound peptide included T281, V284, K288, F293, Q301, I302, L305, K306, P453, L454 and E457. Structural analyses also revealed two other features of the site: a hydrophobic residue from helix 12 (Phe459) that contributes to local packing, and a cysteine residue contributed by helix 6 (Cys309) that provides a partial surface buried deep within the site. Mutational analyses showed that residues which block GRIP1 and SRC-1 coactivator binding when mutated are residues V284, K288, I302, K306, L454, and V458. Mutated residues likely to undergo a conformational change upon hormone binding included Leu454 and Glu457. Thus, the site identified by mutational, binding assays and crystallography corresponds to a surprisingly small cluster of residues on the surface of the LBD that define a prominent hydrophobic cleft formed by hydrophobic residues corresponding to human TR residues of C-terminal helix 3 (Ile280, Val283, Val284, and Ala287), helix 4 (Phe293), helix 5 (Ile302 and Leu305), helix 6 (Cys309), and helix 12 (Leu454, Val458 and Phe459). Collectively, the Examples indicate that residues forming the site are amino acids corresponding to human TR residues of C-terminal helix 3 (Ile280, Thr281, Val283, Val284, Ala287, and Lys288), helix 4 (Phe293), helix 5 (Gln301, Ile302, Leu305, Lys306), helix 6 (Cys309), and helix 12 (Pro453, Leu454, Glu457, Val458 and Phe459). The coactivator binding site is highly conserved among the nuclear receptor super family (Figure 19).

The coactivator binding site of TR contains charged and hydrophobic residues at its periphery, but only hydrophobic residues at its center (see, e.g., Figures 5 and 18). The hydrophobic cleft at the center of the site may play a significant role in driving the coactivator binding reaction. The site is comprised of two parts (Figure 18), right). Residues contained in helices 3, 5 and 6 (Figure 18, yellow residues) likely form a constitutive part, since their positions are identical in all nuclear receptor structures reported, including the liganded, activated states of the TR, RAR, and ER, the unliganded RXR, and the inhibitor-liganded ER. By contrast, the residues of helix 12 (Figure 18, red residues) are differently positioned in the active and inactive states reported. Thus the coactivator binding site for the nuclear receptors is likely to be formed in response to an active hormone by positioning helix 12 against a scaffold formed by helices 3-6. Because the coactivator binding site is so small, it is easy to understand how even slight changes in the position of helix 12, which may, for example, be induced by an antagonist ligand, could impair coactivator binding, and thus receptor activation.

B. ER coactivator binding site

Binding of the NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) to the ERα LBD buries 1000 Ų of predominantly hydrophobic surface area from both molecules. The NR-box 2 peptide binding site is a shallow groove composed of residues Leu 354, Val 355, Ile 358, Ala 361 and Lys 362 from helix 3; Phe 367 and Val 368 from helix 4; Leu 372 from the turn between helices 3 and 4; Gln 375, Val 376, Leu 379 and Glu 380 from helix 5; and Asp 538, Leu 539, Glu 542 and Met 543 from helix 12. The floor and sides of this groove are completely nonpolar, but the ends of this groove are charged. Therefore, structural characterization of the binding site of the NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) to the ERα LBD, which is the same NR-box 2 peptide utilized to crystallize the T₃-TR LBD, supports the findings for TR that residues forming the coactivator binding site of nuclear receptors is composed of a well defined hydrophobic cleft and a charged hydrophobic perimeter. These residues are highly conserved among the nuclear receptor super family (Figure 19). Structural characterization of the coactivator peptide-bound ER LBD also supports the concept of exploiting the slight differences among the coactivator binding sites of nuclear receptors in designing and identifying compounds that target specific nuclear receptors.

The ERα LBD interacts primarily with the hydrophobic face of the NR-box 2 peptide 686-KHKILHRLLQDSS-698 (residues 12-24 of SEQ ID NO: 6) α helix formed by the side chains of Ile 689 and the three (SEQ ID NO: 1) LxxLL motif leucines (Leu 690, Leu 693 and Leu 694). The side chain of Leu 690 is deeply embedded within the groove and forms van der Waals contacts with the side chains of Ile 358, Val 376, Leu 379, Glu 380 and Met 543. The side chain of Leu 694 is similarly isolated within the groove and makes van der Waals contacts with the side chains of Ile 358, Lys 362, Leu 372, Gln 375, Val 376 and Leu 379. In contrast, the side chains of both Ile 689 and the second NR box leucine, Leu 693, rest against the rim of the groove. The side chain of Ile 689 lies in a shallow depression formed by the side chains of Asp 538, Leu 539 and Glu 542. The side chain of Leu 693 makes nonpolar contacts with the side chains of Ile 358 and Leu 539.

The charged and polar side chains which form the hydrophilic face of the peptide helix project away from the ERα receptor and either interact predominantly with solvent or form symmetry contacts. None of the side chains of the polar and charged residues outside the helical region of either peptide in the asymmetric unit, with the exception of Lys 688 of peptide B, is involved in hydrogen bonds or salt bridges with its associated ERα LBD monomer. The ε-amino group of Lys 688 of peptide B hydrogen bonds to the side chain carboxylate of Glu 380 of monomer B. This interaction is presumably a crystal artifact; the main chain atoms of the N-

25

30

35

10

15

5 terminal three residues of peptide B are displaced from monomer B and interact extensively with a symmetry-related ERα LBD.

In addition to interacting with the hydrophobic face of the peptide helix, the ER α LBD stabilizes the main chain conformation of the NR box peptide by forming capping interactions with both ends of the peptide helix. Glu 542 and Lys 362 are positioned at opposite ends of the peptide binding site. The side chains of Glu 542 and Lys 362 form van der Waals contacts with main chain and side chain atoms at the N- and C-terminal turns of the peptide helix respectively. These interactions position the stabilizing charges of the γ -carboxylate of Glu 542 and ϵ -amino group of Lys 362 near the ends of the NR box peptide helix. The side chain carboxylate of Glu 542 hydrogen bonds to the amides of the residues of N-terminal turn of the peptide helix (residues 688 and 689 of peptide A; residues 689 and 690 of peptide B). Similarly, the ϵ -amino group of Lys 362 hydrogen bonds to the carbonyls of the residues of the C-terminal turn of the peptide helix (residue 693 of peptide A; residues 693 and 694 of peptide B).

Except for the orientation of helix 12, the structure of the peptide binding groove of the ER α LBD is almost identical in the DES and OHT complexes. The region of this groove outside of helix 12 is referred to herein as the "static region" of the NR box binding site. Helix 12 in the OHT complex and the NR box peptide helix in the DES complex interact with the static region of the coactivator recognition groove in strikingly similar ways.

Helix 12 mimics the hydrophobic interactions of the NR box peptide with the static region of the groove with a stretch of residues (residues 540 to 544) that resembles an NR box ((residues 6-10 of SEQ ID NO: 43) <u>LLEML</u> instead of (SEQ ID NO: 1) LxxLL). The side chains of Leu 540 and Met 543 lie in approximately the same locations as those of the first and second motif leucines (Leu 690 and Leu 693) in the peptide complex. Leu 540 is inserted into the groove and makes van der Waals contacts with Leu 354, Val 376 and Glu 380. Met 543 lies along the edge of the groove and forms van der Waals contacts with the side chains of Leu 354, Val 355 and Ile 358. The side chain position of Leu 544 almost exactly overlaps that of the third NR box leucine, Leu 694. Deep within the groove, the Leu 544 side chain makes van der Waals contacts with the side chains of Ile 358, Lys 362, Leu 372, Gln 375, Val 376 and Leu 379.

Helix 12 in the OHT complex is also stabilized by N- and C-terminal capping interactions. Lys 362 interacts with the C-terminal turn of helix 12 much as it does with the equivalent turn of the peptide helix. The Lys 362 side chain packs against the C-terminal turn of the helix 12 with its ε-amino group hydrogen bonding to the carbonyls of residues 543 and 544. Given that the capping

15

20

5 interaction at the N-terminal turn coactivator helix is formed by a helix 12 residue (Glu 542), the N-terminal turn of helix 12 in the antagonist complex is forced to interact with another residue, Glu 380. The Glu 380 γ-carboxylate forms van der Waals contacts with Tyr 537 and interacts with the amide of Tyr 537 through a series of water-mediated hydrogen bonds.

In addition to forming these "NR box-like" interactions, helix 12 also forms van der Waals contacts with areas of the ERα LBD outside of the coactivator recognition groove. The side chain of Leu 536 forms van der Waals contacts with Glu 380 and Trp 383 and that of Tyr 537 forms van der Waals contacts with His 373, Val 376 and Glu 380. As a result of these contacts, helix 12 in the OHT complex buries more solvent accessible surface area (~1200 Ų) than the NR box peptide in the DES-ERα LBD-peptide complex.

Identification and characterization of the coactivator binding site for TR, and extension of this information to other nuclear receptors shows that this site is common for all nuclear receptors identified to date. Additionally, sequence and structural comparison, coupled with the Examples showing differential specificity for coactivator binding to TR, GR and ER, reveal that minor differences between the receptors, such as found in helix 12, are likely to influence specificity of a coactivator for different types of nuclear receptors. Thus, the Examples presented herein demonstrate that information derived from the structure and function of the TR coactivator binding site can be applied in design and selection of compounds that modulate binding of coactivator proteins to nuclear receptors for all members of the nuclear receptor super family.

25 REFERENCES

- 1. U.S. Patent No. 5,331,573
- 2. U.S. Patent No. 5,500,807
- 3. Adams, P. D., Pannu, N. S., Read, R. J., and Brunger, A. T. (1997). Proc. Natl. Acad. Sci. USA 94, 5018-23.
- 30 4. Apriletti et al., Protein Expr. Purif. (1995) 6:363
 - 5. Bartlett et al., In: Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc. (1989) 78:182-196
 - 6. Berry, M., Metzger, D., and Chambon, P. (1990). EMBO J 9, 2811-8.
 - 7. Bohm, J. Comp. Aid. Molec. Design (1992) 6:61-78

J

20

- 8. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., and Moras, D. (1995). Nature 375, 377-82.
 - 9. Brzozowski, A., Pike, A., Dauter, Z., Hubbard, R., Bonn, T., Engstrom, O., Ohman, L., Greene, G., Gustafsson, J., and Carlquist, M. (1997). Nature 389, 753-758.
 - 10. Chang et al., Proc. Natl. Acad. Sci. USA (1997) 94(17):9040-9045
- 10 11. Cohen et al., *J. Med. Chem.* (1990) 33:883-894)
 - 12. Collingwood et al. Proc. Natl. Acad Sci. (1997) 94:248-253
 - 13. DesJalais et al., J. Med. Chem. (1988) 31:722-729
 - 14. Ding, S., Anderson, C., Ma, H., Hong, H., Uht, R., Kushner, P., and Stallcup, M. (1998). Mol. Endocrinol. *12*, 302-313.
- 15. Eng, F. C. S., Lee, H. S., Ferrara, J., Willson, T. M., and White, J. H. (1997). Mol. Cell. Biol. *17*, 4644-4653.
 - 16. Farmer, "Drug Design," Ariens, E.J., ed., 10:119-143 (Academic Press, New York, 1980)
 - 17. Furey, et al., PA33 Am. Cryst. Assoc. Mtg. Abstr. (1990) 18:73
 - 18. Glass, C. K., Rose, D. W., and Rosenfeld, M. G. (1997). Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9, 222-32.
 - 19. Goodford, J. Med. Chem. (1985) 28:849-857
 - 20. Goodsell et al., Proteins: Structure, Function and Genetics (1990) 8:195-202
 - 21. Greene, G., Harris, K., Bova, R., Kinders, R., Moore, B., and Nolan, C. (1988). Mol. Endocrinol. *2*, 714-726.
- 25 22. Greene, G., Nolan, C., Engler, J., and Jensen, E. (1980). Proc. Natl. Acad. Sci. USA 77, 5115-5119.
 - 23. Heery, D., Kalkhoven, E., Hoare, S., and Parker, M. (1997). Nature 387, 733-736.
 - 24. Hegy, G., Shackleton, C., Carlquist, M., Bonn, T., Engstrom, O., Sjoholm, P., and Witkowska, H. (1996). Steroids *61*, 367-373.
- 30 25. Henttu, P. M., Kalkhoven, E., and Parker, M. G. (1997). Mol. Cell. Biol. 17, 1832-9.
 - 26. Hong et al., Mol. Cell Biol. (1997) 17:2735-44
 - 27. Hong, H., Kohli, K., Trivedi, A., Johnson, D. L., and Stallcup, M. R. (1996). Proc. Natl. Acad. Sci. USA *93*, 4948-4952.
 - 28. Horwitz et al., Mol. Endocrinol. (1996) 10:1167-77
- 35 29. Janknecht et al., *Proc. Natl. Acad. Sci. USA*, (1991) 88:8972-8976
 - 30. Jurutka et al., J. Biol. Chem. (1997) 227:14592-14599

- 5 31. Kakizawa et al., J. Biol. Chem. (1997) 272(38):23799-23804
 - 32. Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996). Cell 85, 403-14.
 - 33. Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J. A. (1997). Endocrinology 138, 863-70.
- 10 34. Kuntz et al, *J. Mol. Biol.* (1982) *161*:269-288
 - 35. Kuntz et al., Science, (1992) 257:1078-1082
 - 36. Kussie et al., Science (1996) 274:948-953
 - 37. Landel, C., Kushner, P., and Greene, G. (1994). Mol. Endocrinol. 8, 1407-1419.
- 38. Landel, C., Potthoff, S., Nardulli, A., Kushner, J., and Greene, G. (1997). J. Steroid Biochem. Molec. Biol. *63*, 59-73.
 - 39. Lazennec, G., Ediger, T. R., Petz, L. N., Nardulli, A. M., and Katzenellenbogen, B. S. (1997). Mol. Endocrinol. 11, 1375-86.
 - 40. Le Douarin, B., Nielsen, A. L., Garnier, J. M., Ichinose, H., Jeanmougin, F., Losson, R., and Chambon, P. (1996). EMBO J 15, 6701-15.
- 20 41. Lee et al., Mol. Endocrinol. (1992) 6:1867-1873
 - 42. Lin et al., Mol. Cell Biol. (1997) 17(10):6131-6138
 - 43. Masayama et al., Mol. Endocrinol. (1997) 11:1507-1517
 - 44. Meng et al., J. Comp. Chem. (1992) 13:505-524
 - 45. Miranker et al., Proteins: Structure, Function and Genetics, (1991) 11:29-34
- 46. Muller, K., Amman, H. J., Doran, D. M., Gerber, P. R., Gubernator, K., and Schrepfer, G. (1988). Bull. Soc. Chim. Belg. 97, 655-667.
 - 47. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997). Acta Crystallogr. D 53, 240-255.
 - 48. Navia et al., Curr. Opin. Struct. Biol. (1992) 2:202-210
 - 49. Nishibata et al., Tetrahedron (1991) 47:8985;
- 30 50. Norman et al., J. Biol. Chem. (1989) 264:12063-12073
 - 51. Norris, J. D., Fan, D., Stallcup, M. R., and McDonnell, D. P. (1998). J Biol Chem 273, 6679-88.
 - 52. O'Donnell et al., Mol. Endocrinol. (1991) 5:94-99
 - 53. Onate et al., Science (1995) 270:1354-1357
 - 54. Radhakrishnan et al., Cell (1997) 91:741-752

- 55. Renaud, J., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., and Moras, D. (1995). Nature *378*, 681-689.
 - 56. Saatcioglu et al., Mol. Cell Biol. (1997) 17:4687-4695
 - 57. Sadovsky, et al., Mol Cell Biol. (1995) 15:1554
- 58. Seielstad, D., Carlson, K., Katzenellenbogen, J., Kushner, P., and Greene, G. (1995a). Mol. Endocrinol. *9*, 647-658.
 - 59. Seielstad, et al., Biochemistry (1995) 34:12605-12615
 - 60. Shiau et al. Gene (1996) 179(2):205-10
 - 61. Shibata et al., Recent Prog. Horm. Res. 52:141-164 (1997)
- 62. Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1997). Nature *389*, 194-8.
 - 63. Tagami et al., Mol. Cell Biol. (1997) 17(5):2642-2648
 - 64. Tanenbaum, D. M., Wang, Y., Williams, S. P., and Sigler, P. B. (1998). Proc. Natl. Acad. Sci. U S A 95, 5998-6003.
 - 65. Tora, L., Mullick, A., Metzger, D., Ponglikitmongkol, M., Park, I., and Chambon, P. (1989). EMBO J 8, 1981-6.
 - 66. Torchia, J., Rose, D., Inostroza, J., Kamel, Y., Westin, S., Glass, C., and Rosenfeld, M. (1997). Nature 387, 677-684.
 - 67. Uesugi et al., Science (1996) 277:1310-1313
 - 68. Verlinde, *Structure*, (1994) 2:577-587)
- 69. Wagner, R., Apriletti, J., McGrath, M., West, B., Baxter, J., and Fletterick, R. (1995). Nature 378, 690-697.
 - 70. Webb et al., Mol Endocrinol (1995) 9:443
 - 71. White, R., Sjoberg, M., Kalkhoven, E., and Parker, M. G. (1997). EMBO J 16, 1427-35.
 - 72. Whitfield et al., Mol. Endocrinol. (1995) 9:1166-79
- 30 73. Wurtz, J. M., Bourguet, W., Renaud, J. P., Vivat, V., Chambon, P., Moras, D., and Gronemeyer, H. (1996). Nat. Struct. Biol. *3*, 87-94.
 - 74. Zhu et al., J. Biol. Chem. (1997) 272(14):9048-9054

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

ATOM

34

С

5 Appendix 1

Atomic Coordinates for Human TR-B Complexed With T₃, and a GRIP1 NR-box 2 Peptide

REMARK full length numbering 10 REMARK all residue names correct REMARK peptide sequence REMARK two molecules of TRB - CHAIN A and CHAIN B REMARK two molecules of T3 - CHAIN J and CHAIN K REMARK two molecules of GRIP-1 peptide - CHAIN X and CHAIN Y 15 REMARK chain X lies between A and B REMARK chain Y interacts with B only REMARK residues differing between A and B include: REMARK A 217 Glu, A 252 Gln, A 263 Lys (missing side chains) REMARK B 237 Ser, B239 His, B 394 Lys (missing side chains) 20 REMARK additionally Gly 261, Gly 262 are not visible in chain A REMARK residues differing between X and Y include: REMARK A 692 Arg REMARK additionally, residues Lys 688, Lys 689; Ser 697, Ser 698 REMARK are not visible in chain Y 25 23.912 35.239 1.00 45.76 7 ATOM 1 Ν LYS A 211 52.546 2 LYS A 211 52.944 24.345 36.586 1.00 43.42 6 MOTA CA 3 С LYS A 211 52.035 23.665 37.836 1.00 35.68 6 MOTA 4 LYS A 211 51.511 22.556 37.763 1.00 33.58 8 MOTA 0 LYS A 211 5 СВ 52.610 25.825 36.779 1.00 46.72 6 MOTA 7 30 6 PRO A 212 51.678 24.182 39.199 1.00 35.64 MOTA Ν 7 6 PRO A 212 52.082 25.474 39.842 1.00 38.60 MOTA CD 23.379 8 PRO A 212 40.166 1.00 38.35 6 MOTA CA 50.809 9 50.670 24.194 41.440 1.00 38.95 6 MOTA CB PRO A 212 25.469 41.255 1.00 42.00 6 MOTA 10 CG PRO A 212 51.455 35 49.433 23.097 39.594 1.00 38.78 6 PRO A 212 MOTA 11 С MOTA 12 0 PRO A 212 48.920 23.949 38.802 1.00 34.64 8 7 21.948 40.014 1.00 40.31 MOTA 13 Ν GLU A 213 48.901 6 14 CA GLU A 213 47.609 21.419 39.529 1.00 43.87 MOTA 20.307 6 MOTA 15 CBGLU A 213 47.943 38.520 1.00 45.16 40 20.708 6 MOTA 16 CG GLU A 213 49.125 37.601 1.00 47.60 6 17 **GLU A 213** 49.284 19.828 36.353 1.00 50.68 MOTA CD MOTA 18 OE1 GLU A 213 49.355 18.547 36.474 1.00 59.18 8 MOTA 19 OE2 GLU A 213 49.356 20.368 35.180 1.00 49.06 8 6 20 GLU A 213 46.711 20.988 40.747 1.00 45.96 MOTA С 45 21 21.136 41.910 1.00 43.13 8 MOTA 0 GLU A 213 47.111 45.463 20.460 40.515 1.00 46.52 7 MOTA 22 Ν PRO A 214 20.184 6 **ATOM** 23 CD PRO A 214 44.985 39.148 1.00 46.44 20.124 6 24 44.447 41.596 1.00 47.52 ATOM CA PRO A 214 25 PRO A 214 43.249 19.629 40.816 1.00 45.40 6 ATOM CB 50 CG ATOM 26 PRO A 214 43.588 19.674 39.327 1.00 49.89 6 27 44.787 19.082 42.625 1.00 45.70 6 ATOM С PRO A 214 ATOM 28 PRO A 214 45.816 18.466 42.535 1.00 44.49 8 0 29 43.915 18.876 43.606 1.00 45.24 7 ATOM Ν THR A 215 MOTA 30 CA THR A 215 44.161 17.890 44.686 1.00 49.36 6 55 6 MOTA 31 CB THR A 215 44.163 18.586 46.093 1.00 44.86 8 MOTA 32 OG1 THR A 215 42.878 18.447 46.728 1.00 52.26 6 ATOM 33 CG2 THR A 215 44.514 20.031 45.974 1.00 39.43

16.995

44.667

1.00 52.51

42.934

THR A 215

	5	ATOM	35	0	THR	Α	215	41.816	17.501	44.691	1.00	53.48	8
		ATOM	36	N	ASP	Α	216	43.118	15.683	44.607	1.00	58.81	7
		ATOM	37	CA	ASP	Α	216	41.973	14.740	44.615	1.00	61.51	6
		MOTA	38	CB	ASP	Α	216	42.386	13.451	45.343	1.00	70.57	6
		ATOM	39	CG	ASP	Α	216	42.399	12.283	44.475	1.00	78.07	6
	10	ATOM	40	OD1	ASP	Α	216	41.532	12.161	43.586	1.00	82.31	8
		ATOM	41	OD2	ASP	Α	216	43.293	11.436	44.684	1.00	86.55	8
		MOTA	42	С	ASP			40.640	15.311	45.268	1.00	58.42	6
		MOTA	43	0	ASP			39.598	14.840	44.924		56.85	8
		ATOM	44	N	GLU			40.673	16.270	46.217		54.92	7
	15	ATOM	45	CA	GLU			39.502	16.937	46.856		53.37	6
		ATOM	46	СВ	GLU			39.943	17.459	48.216		51.02	6
		ATOM	47	C	GLU			39.113	18.144	45.956		53.55	6
		ATOM	48	0	GLU			37.905	18.394	45.695		54.33	8
		ATOM	49	N	GLU			40.162	18.895	45.511		49.20	7
	20	ATOM	50	CA	GLU			39.933	20.073	44.661		45.94	6
	20	ATOM	51	CB	GLU			41.232	20.855	44.304		43.43	6
		ATOM	52	CG	GLU			41.907	21.579	45.479		40.86	6
		ATOM	53	CD	GLU			43.061	22.446	45.074		39.88	6
		ATOM	54	OE1	GLU			43.895	22.019	44.232		37.61	8
ű	25	ATOM	55	OE2	GLU			43.183	23.583	45.599		34.01	8
IJ	23	ATOM	56	C	GLU			39.249	19.647	43.390		44.71	6
IJ		ATOM	57	0	GLU			38.302	20.291	42.964		45.31	8
i=		ATOM	58	N	TRP			39.720	18.553	42.797		44.02	7
		ATOM	59	CA	TRP			39.720	18.061	41.574		46.97	6
<u></u>	30		60	CB	TRP			39.799	16.793	41.074	1.00		6
1.	30	ATOM						40.879		40.141	1.00		6
#I		ATOM	61 62	CG	TRP			40.879	17.029	38.733	1.00	54.61 55.24	6
		ATOM	62	CD2	TRP				17.256				6
IJ		ATOM	63	CE2	TRP			42.067	17.523	38.245	1.00	53.67	
IJ	35	ATOM	64	CE3	TRP			39.691	17.234	37.828	1.00	54.55	6
	33	ATOM	65	CD1	TRP			42.159	17.159 17.485	40.447		55.75	6 7
		ATOM	66 67	NE1	TRP			42.895		39.339		54.43	
ıİ		ATOM	67	CZ2	TRP			42.330	17.851	36.895		52.54	6
		ATOM	68	CZ3	TRP			39.943	17.535	36.509		55.17	6
	40	ATOM	69 70	CH2	TRP			41.239	17.820	36.029		55.59	6
	40	ATOM	70	С	TRP			37.646	17.743	41.812		47.32	6
		ATOM	71	0	TRP			36.788	18.028	40.978		43.56	8
		ATOM	72	N	GLU			37.376	17.142	42.965		49.91	7
		ATOM	73	CA	GLU			36.021	16.769	43.316		53.57	6
	15	ATOM	74	CB	GLU			36.052	16.055	44.649		58.18	6
	45	ATOM	75 76	CG	GLU			35.149	14.930	44.672		73.13	6
		ATOM	76	CD	GLU			35.735	13.935	45.442	•	80.06	6
		ATOM	77	OE1	GLU			36.886	13.575	45.173		82.12	8
		ATOM	78		GLU			35.078	13.478	46.378		82.78	8
	50	ATOM	79	С	GLU			35.161	18.026	43.381		50.51	6
	50	ATOM	80	0	GLU			33.991	18.010	42.995		49.94	8
		ATOM	81	N	LEU			35.761	19.120	43.865		43.71	7
		ATOM	82	CA	LEU			35.047	20.398	43.951		42.81	6
		ATOM	83		LEU			35.935	21.510	44.510		39.21	6
		ATOM	84	CG	LEU			35.375	22.908	44.353		36.34	6
	55	ATOM	85		LEU			33.941	22.929	44.836		36.93	6
		ATOM	86		LEU			36.226	23.910	45.122		24.18	6
		ATOM	87	С	LEU			34.563	20.815	42.575		43.46	6
		ATOM	88	0	LEU	A	221	33.392	21.104	42.395	1.00	45.25	8

5	MOTA	89	N			35.498	20.871	41.628		
10										
15										
20										
20										
25										
25										
30										
30										
35										
,,,										
40										
		127	N							
	MOTA	128	CA			27.602	19.562	37.204	1.00 36.	
45	ATOM	129	СВ	ALA A	227	27.526	18.600	38.381	1.00 38.	
	ATOM	130	С	ALA A	227	26.507	20.604	37.318	1.00 37.	69 6
	ATOM	131	0	ALA A	227	25.444	20.489	36.718	1.00 40.	94 8
	ATOM	132	N	ALA A	228	26.811	21.630	38.107	1.00 32.	36 7
	ATOM	133	CA	ALA A	228	25.903	22.734	38.356	1.00 32.	48 6
50	ATOM	134	CB	ALA A	228	26.448	23.587	39.486	1.00 28.	25 6
	ATOM	135	С	ALA A	228	25.732	23.570	37.101	1.00 36.	12 6
	MOTA	136	0	ALA A	228	24.673	23.560	36.473	1.00 37.	8 8
	ATOM	137	N	HIS A	229	26.782	24.306	36.752	1.00 33.	58 7
	MOTA	138	CA	HIS A	229	26.762	25.158	35.585	1.00 32.	97 6
55	ATOM	139	СВ	HIS A	229	28.155	25.691	35.266	1.00 33.	69 6
	MOTA	140	CG			28.250	26.333	33.929		
	MOTA	141				29.025	26.081	32.838		
	ATOM	142	ND1	HIS A	229	27.386	27.368	33.542	1.00 30.	47 7
	50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 90 ATOM 91 ATOM 92 ATOM 93 10 ATOM 94 ATOM 95 ATOM 96 ATOM 96 ATOM 97 ATOM 98 15 ATOM 99 ATOM 100 ATOM 101 ATOM 102 ATOM 103 20 ATOM 104 ATOM 105 ATOM 106 ATOM 107 ATOM 108 25 ATOM 109 ATOM 110 ATOM 111 ATOM 112 ATOM 113 30 ATOM 114 ATOM 115 ATOM 115 ATOM 116 ATOM 117 ATOM 118 35 ATOM 120 ATOM 121 ATOM 121 ATOM 121 ATOM 122 ATOM 123 40 ATOM 122 ATOM 123 40 ATOM 124 ATOM 125 ATOM 126 ATOM 127 ATOM 128 45 ATOM 127 ATOM 131 ATOM 132 ATOM 131 ATOM 131 ATOM 132 ATOM 133 50 ATOM 131 ATOM 131 ATOM 131 ATOM 132 ATOM 133 51 ATOM 131 ATOM 131 ATOM 131 ATOM 131 ATOM 132 ATOM 133 ATOM 131 ATOM 131 ATOM 131 ATOM 131 ATOM 132 ATOM 133 ATOM 134 ATOM 137 ATOM 137 ATOM 138 55 ATOM 139 ATOM 131	ATOM 91 CB ATOM 92 CG2 ATOM 93 CG1 10 ATOM 94 CD1 ATOM 95 C ATOM 96 O ATOM 97 N ATOM 98 CA 15 ATOM 99 CB ATOM 100 CG ATOM 101 CD ATOM 102 CE ATOM 103 NZ 20 ATOM 104 C ATOM 105 O ATOM 106 N ATOM 107 CA ATOM 108 CB 25 ATOM 109 OG1 ATOM 110 CG2 ATOM 111 C ATOM 112 O ATOM 112 CA ATOM 113 N 30 ATOM 114 CA ATOM 115 CB ATOM 116 CG1 ATOM 117 CG2 ATOM 118 C 35 ATOM 119 O ATOM 120 N ATOM 120 N ATOM 121 CA ATOM 122 CB ATOM 120 N ATOM 121 CA ATOM 122 CB ATOM 120 N ATOM 121 CA ATOM 122 CB ATOM 123 OG1 ATOM 124 CG2 ATOM 125 C ATOM 126 O ATOM 127 N ATOM 128 CA 45 ATOM 129 CB ATOM 127 N ATOM 128 CA 45 ATOM 129 CB ATOM 130 C ATOM 131 O ATOM 131 O ATOM 132 N ATOM 133 CA 50 ATOM 134 CB ATOM 135 C ATOM 136 O ATOM 137 N ATOM 137 N ATOM 138 CA 55 ATOM 139 CB ATOM 140 CG ATOM 140 CG ATOM 140 CG	ATOM 90 CA ILE A ATOM 91 CB ILE A ATOM 92 CG2 ILE A ATOM 93 CG1 ILE A ATOM 94 CD1 ILE A ATOM 95 C ILE A ATOM 96 O ILE A ATOM 97 N LYS A ATOM 98 CA LYS A ATOM 100 CG LYS A ATOM 101 CD LYS A ATOM 102 CE LYS A ATOM 103 NZ LYS A ATOM 104 C LYS A ATOM 106 N THR A ATOM 106 N THR A ATOM 107 CA THR A ATOM 108 CB THR A ATOM 101 CD LYS A ATOM 102 CE LYS A ATOM 104 C LYS A ATOM 105 O LYS A ATOM 106 N THR A ATOM 107 CA THR A ATOM 108 CB THR A ATOM 110 CG2 THR A ATOM 111 C THR A ATOM 111 C THR A ATOM 111 C THR A ATOM 112 O THR A ATOM 113 N VAL A ATOM 115 CB VAL A ATOM 116 CG1 VAL A ATOM 117 CG2 VAL A ATOM 118 C VAL A ATOM 117 CG2 VAL A ATOM 119 O VAL A ATOM 110 CG2 THR A ATOM 111 CA THR A ATOM 112 CA THR A ATOM 115 CB VAL A ATOM 116 CG1 VAL A ATOM 117 CG2 VAL A ATOM 120 N THR A ATOM 121 CA THR A ATOM 121 CA THR A ATOM 121 CA THR A ATOM 122 CB THR A ATOM 123 OG1 THR A ATOM 120 N THR A ATOM 121 CA THR A ATOM 122 CB THR A ATOM 123 OG1 THR A ATOM 124 CG2 THR A ATOM 125 C THR A ATOM 126 O THR A ATOM 127 N ALA A ATOM 128 CA ALA A ATOM 129 CB ALA A ATOM 131 O ALA A ATOM 132 N ALA A ATOM 133 CA ALA A ATOM 134 CB ALA A ATOM 135 C ALA A ATOM 136 C ALA A ATOM 137 N ALA A ATOM 137 N ALA A ATOM 138 CA ALA A ATOM 137 N ALA A ATOM 137 N ALA A ATOM 138 CA ALA A ATOM 137 N HIS A ATOM 136 C ALA A ATOM 137 N HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 137 N HIS A ATOM 138 CA HIS A ATOM 138 CA HIS A ATOM 139 CB HIS A ATOM 130 CB HIS A ATOM 131 CB HIS A ATOM 131 CB HIS A ATOM 132 CB HIS A ATOM 133 CB HIS A ATOM 134 CB HIS A ATOM 135 CB HIS A ATOM 136 CB HIS A	ATOM 91 CB ILE A 222 ATOM 92 CG2 ILE A 222 ATOM 93 CG1 ILE A 222 ATOM 94 CD1 ILE A 222 ATOM 95 C ILE A 222 ATOM 96 O ILE A 222 ATOM 97 N LYS A 223 ATOM 98 CA LYS A 223 ATOM 99 CB LYS A 223 ATOM 100 CG LYS A 223 ATOM 101 CD LYS A 223 ATOM 102 CE LYS A 223 ATOM 103 NZ LYS A 223 ATOM 104 C LYS A 223 ATOM 105 O LYS A 223 ATOM 106 N THR A 224 ATOM 107 CA THR A 224 ATOM 108 CB THR A 224 ATOM 100 CG2 THR A 224 ATOM 110 CG2 THR A 224 ATOM 111 C THR A 224 ATOM 110 CG2 THR A 224 ATOM 111 C THR A 225 ATOM 111 C THR A 225 ATOM 111 C THR A 225 ATOM 112 O THR A 225 ATOM 113 N VAL A 225 ATOM 114 CA VAL A 225 ATOM 115 CB VAL A 225 ATOM 116 CG1 VAL A 225 ATOM 117 CG2 VAL A 225 ATOM 118 C VAL A 225 ATOM 119 O VAL A 225 ATOM 110 CG2 THR A 224 ATOM 111 C THR A 224 ATOM 112 CA THR A 224 ATOM 113 N VAL A 225 ATOM 114 CA VAL A 225 ATOM 115 CB VAL A 225 ATOM 116 CG1 THR A 226 ATOM 120 N THR A 226 ATOM 121 CA THR A 226 ATOM 122 CB THR A 226 ATOM 123 CG1 THR A 226 ATOM 124 CG2 THR A 226 ATOM 125 C THR A 226 ATOM 126 O THR A 226 ATOM 127 N ALA A 225 ATOM 128 CA ALA A 227 ATOM 128 CA ALA A 227 ATOM 128 CA ALA A 227 ATOM 129 CB ALA A 227 ATOM 130 C ALA A 228 ATOM 131 O ALA A 228 ATOM 131 O ALA A 228 ATOM 132 N ALA A 228 ATOM 133 CA ALA A 228 ATOM 134 CB ALA A 228 ATOM 135 C ALA A 228 ATOM 136 CA ALA A 228 ATOM 137 N ALA A 228 ATOM 138 CA ALA A 229 ATOM 138 CA ALA A 229 ATOM 139 CB HIS A 229	ATOM 90 CA ILE A 222 35.192 ATOM 91 CB ILE A 222 36.379 ATOM 92 CG2 ILE A 222 35.970 ATOM 93 CG1 ILE A 222 37.532 10 ATOM 94 CD1 ILE A 222 38.804 ATOM 95 C ILE A 222 34.067 ATOM 96 O ILE A 222 33.033 ATOM 97 N LYS A 223 34.301 ATOM 99 CB LYS A 223 33.316 15 ATOM 99 CB LYS A 223 33.316 15 ATOM 100 CG LYS A 223 32.741 ATOM 101 CD LYS A 223 32.741 ATOM 101 CD LYS A 223 32.859 ATOM 102 CE LYS A 223 31.798 ATOM 103 NZ LYS A 223 31.990 20 ATOM 104 C LYS A 223 31.913 ATOM 105 O LYS A 223 31.913 ATOM 106 N THR A 224 30.805 ATOM 107 CA THR A 224 30.805 ATOM 108 CB THR A 224 30.805 ATOM 110 CG2 THR A 224 30.805 ATOM 111 C THR A 224 30.167 ATOM 111 C THR A 224 30.177 30 ATOM 111 C THR A 224 30.577 31 ATOM 112 C THR A 224 30.572 ATOM 113 N VAL A 225 30.777 30 ATOM 114 CA VAL A 225 30.777 31 ATOM 115 CB VAL A 225 30.777 31 ATOM 116 CG2 THR A 224 30.505 ATOM 117 CG2 VAL A 225 30.777 31 ATOM 116 CG1 VAL A 225 30.777 ATOM 117 CG2 VAL A 225 30.532 ATOM 119 O VAL A 225 30.770 35 ATOM 119 O VAL A 225 30.770 36 ATOM 120 N THR A 226 32.343 ATOM 121 CA THR A 226 30.489 ATOM 122 CB THR A 226 30.489 ATOM 123 CG THR A 226 30.489 ATOM 124 CG2 VAL A 225 30.770 ATOM 125 C THR A 226 32.343 ATOM 120 N THR A 226 32.343 ATOM 121 CA THR A 226 32.343 ATOM 122 CB THR A 226 32.343 ATOM 123 CG THR A 226 32.365 ATOM 124 CG2 THR A 226 32.365 ATOM 129 CB ALA A 227 26.507 ATOM 121 CA THR A 226 32.805 ATOM 122 CB THR A 226 32.805 ATOM 123 CG THR A 226 32.805 ATOM 124 CG2 THR A 226 32.905 ATOM 125 C THR A 226 32.905 ATOM 126 C ALA A 227 27.526 ATOM 130 C ALA A 228 26.811 ATOM 131 C ALA A 227 27.526 ATOM 132 CA ALA A 228 26.811 ATOM 133 CA ALA A 228 26.811 ATOM 134 CB ALA A 228 26.815 ATOM 135 C ALA A 228 26.815 ATOM 136 C ALA A 228 26.815 ATOM 137 N HLS A 229 26.762 55 ATOM 139 CB HLS A 229 28.550 ATOM 136 C ALA A 229 28.550 ATOM 137 N HLS A 229 28.555 ATOM 139 CB HLS A 229 28.555	ATOM 91 CA ILE A 222 35.192 21.226 ATOM 91 CB ILE A 222 36.379 20.997 ATOM 92 CGZ ILE A 222 37.532 21.922 10 ATOM 94 CDI ILE A 222 37.532 21.922 11 ATOM 95 C ILE A 222 38.804 21.586 ATOM 96 O ILE A 222 33.033 20.873 ATOM 97 N LYS A 223 33.033 20.873 ATOM 97 N LYS A 223 33.316 18.100 15 ATOM 99 CB LYS A 223 33.603 16.713 ATOM 100 CG LYS A 223 32.741 15.631 ATOM 101 CD LYS A 223 32.741 15.631 ATOM 102 CE LYS A 223 31.798 13.318 ATOM 103 NZ LYS A 223 31.798 13.318 ATOM 104 C LYS A 223 31.900 11.985 ATOM 105 O LYS A 223 31.900 11.985 ATOM 106 N THR A 224 31.849 19.236 ATOM 107 CA THR A 224 30.602 19.792 ATOM 108 CB THR A 224 30.602 19.792 ATOM 101 CGZ THR A 224 30.805 20.206 25 ATOM 109 CGI THR A 224 30.805 20.206 ATOM 111 C THR A 224 30.805 20.206 ATOM 112 O THR A 224 29.500 20.684 ATOM 113 N VAL A 225 30.777 22.160 ATOM 114 CA VAL A 225 30.777 24.292 ATOM 115 CB VAL A 225 31.512 25.636 ATOM 116 CGI VAL A 225 30.783 23.464 ATOM 117 CG2 VAL A 225 30.783 23.466 ATOM 118 C VAL A 225 30.783 23.466 ATOM 119 O VAL A 225 30.783 23.466 ATOM 110 CG2 THR A 224 30.805 20.909 ATOM 111 C THR A 224 30.805 20.206 ATOM 113 N VAL A 225 30.777 24.292 ATOM 116 CGI VAL A 225 30.777 24.292 ATOM 116 CGI VAL A 225 30.777 24.292 ATOM 116 CGI VAL A 225 30.777 24.292 ATOM 117 CG2 VAL A 225 30.783 23.466 ATOM 118 C VAL A 225 30.783 23.3663 ATOM 120 N THR A 226 30.893 23.166 ATOM 121 CA THR A 226 30.893 23.166 ATOM 121 CA THR A 226 30.893 23.166 ATOM 122 CB THR A 226 30.895 21.696 40 ATOM 123 CG THR A 226 32.805 21.696 41 ATOM 124 CG2 THR A 226 32.805 21.696 42 ATOM 125 C THR A 226 32.805 21.696 43 ATOM 126 O THR A 227 25.644 20.489 ATOM 127 N ALA A 227 25.644 20.489 ATOM 128 CA ALA A 227 27.502 19.552 45 ATOM 130 C ALA A 228 26.6811 21.630 ATOM 131 N ALA A 228 26.6811 21.630 ATOM 132 N ALA A 228 26.6811 21.630 ATOM 133 C ALA A 228 26.681 22.5593 ATOM 134 CB ALA A 229 26.762 25.158 55 ATOM 139 CB HIS A 229 26.762 25.158	ATOM 91 CB ILE A 222 35.192 21.226 40.254 ATOM 92 CG2 ILE A 222 35.970 21.182 37.893 ATOM 93 CG1 ILE A 222 35.970 21.182 37.893 ATOM 94 CD1 ILE A 222 37.532 21.922 39.707 10 ATOM 95 C ILE A 222 38.804 21.586 39.004 ATOM 96 C ILE A 222 38.804 21.586 39.004 ATOM 97 C ILE A 222 38.804 21.586 39.705 ATOM 97 C ILE A 222 38.0077 20.365 39.735 ATOM 97 N LYS A 223 31.033 20.873 39.319 ATOM 98 CA LYS A 223 33.033 20.873 39.319 ATOM 99 CB LYS A 223 33.316 18.100 39.276 ATOM 100 CG LYS A 223 33.603 16.713 39.852 ATOM 101 CD LYS A 223 33.603 16.713 39.852 ATOM 101 CD LYS A 223 31.990 11.985 40.106 ATOM 103 NZ LYS A 223 31.990 11.985 40.106 ATOM 104 C LYS A 223 31.990 11.985 40.106 ATOM 105 C LYS A 223 31.990 11.985 40.106 ATOM 106 N THR A 224 31.849 19.236 40.833 ATOM 107 CA THR A 224 31.849 19.236 40.833 ATOM 107 CA THR A 224 31.849 19.236 40.833 ATOM 108 CB THR A 224 31.849 19.236 40.833 ATOM 108 CB THR A 224 31.849 19.236 40.833 ATOM 109 CG1 THR A 224 31.849 19.236 40.833 ATOM 110 CG2 THR A 224 31.849 19.236 40.833 ATOM 110 CG2 THR A 224 31.849 19.236 40.833 ATOM 110 CG2 THR A 224 31.849 19.236 40.833 ATOM 110 CG2 THR A 224 31.849 19.236 40.833 ATOM 111 C CTHR A 224 31.849 19.236 40.833 ATOM 110 CG2 THR A 224 31.849 19.236 40.833 ATOM 111 C CTHR A 224 31.849 19.236 40.833 ATOM 111 C CTHR A 224 30.602 19.792 41.378 ATOM 111 C THR A 224 30.602 19.792 41.378 ATOM 111 C THR A 224 30.602 19.792 41.378 ATOM 111 C THR A 224 30.602 19.792 40.832 ATOM 112 O THR A 224 30.603 20.206 64 28.851 ATOM 113 N VAL A 225 30.552 23.426 40.137 ATOM 114 CA VAL A 225 30.552 23.426 40.137 ATOM 115 CB VAL A 225 30.552 23.426 40.137 ATOM 116 CG1 VAL A 225 30.552 23.426 40.137 ATOM 117 CA THR A 226 30.602 19.903 39.655 ATOM 119 O VAL A 225 30.552 23.493 38.984 ATOM 120 N THR A 226 30.602 19.903 38.038 ATOM 120 N THR A 226 30.602 19.903 38.038 ATOM 120 N THR A 226 30.602 19.903 38.038 ATOM 120 N THR A 226 30.603 30.793 32.3195 36.038 ATOM 120 N THR A 226 30.603 30.793 32.3195 36.038 ATOM 120 N THR A 226 30.603 30.909 39.6083 ATOM 120 N THR A 226	ATOM 90 CA ILE A 222 35.192 21.226 40.254 1.00 35. ATOM 91 CB ILE A 222 35.970 21.182 37.893 1.00 38. ATOM 92 CG2 ILE A 222 35.970 21.182 37.893 1.00 28. ATOM 93 CG1 ILE A 222 37.532 21.922 39.707 1.00 33. 10 ATOM 94 CD1 ILE A 222 34.067 20.365 39.735 1.00 34. ATOM 95 C ILE A 222 34.067 20.365 39.735 1.00 34. ATOM 95 C ILE A 222 34.067 20.365 39.735 1.00 34. ATOM 97 N LYS A 223 34.301 19.058 39.750 1.00 39. ATOM 98 CA LYS A 223 34.301 19.058 39.750 1.00 34. ATOM 99 CA LYS A 223 34.301 39.058 39.750 1.00 34. ATOM 99 CA LYS A 223 33.316 18.100 39.276 1.00 44. ATOM 100 CG LYS A 223 33.316 18.100 39.276 1.00 44. ATOM 101 CD LYS A 223 32.741 15.631 39.227 1.00 62. ATOM 102 CE LYS A 223 31.903 19.3943 1.00 74. ATOM 102 CE LYS A 223 31.903 19.3943 1.00 74. ATOM 103 NZ LYS A 223 31.900 11.985 40.106 1.00 75. ATOM 104 C LYS A 223 31.900 11.985 40.106 1.00 75. ATOM 105 O LYS A 223 31.903 18.565 39.681 1.00 42. ATOM 106 N THR A 224 31.849 19.236 40.833 1.00 39. ATOM 106 CB THR A 224 30.805 20.206 42.851 1.00 40. ATOM 107 CA THR A 224 31.849 19.236 40.833 1.00 39. ATOM 109 OG1 THR A 224 31.849 19.236 40.833 1.00 39. ATOM 109 CG THR A 224 30.805 20.206 42.851 1.00 40. ATOM 110 CG THR A 224 30.805 20.206 42.851 1.00 40. ATOM 111 C THR A 224 30.805 20.206 42.851 1.00 40. ATOM 111 C THR A 224 30.805 20.206 42.851 1.00 40. ATOM 111 C THR A 224 30.805 20.206 42.851 1.00 38. ATOM 111 C THR A 224 30.805 20.206 42.851 1.00 38. ATOM 111 C THR A 224 30.805 20.206 42.851 1.00 38. ATOM 111 C C THR A 224 30.805 20.206 43.811 1.00 38. ATOM 112 C THR A 224 30.805 20.206 43.811 1.00 38. ATOM 115 CG VAL A 225 30.777 22.160 40.832 1.00 38. ATOM 116 CG1 VAL A 225 30.777 22.160 40.832 1.00 38. ATOM 117 CG2 VAL A 225 30.777 22.160 40.832 1.00 38. ATOM 118 C VAL A 225 30.783 38.796 38.209 1.00 38. ATOM 118 C VAL A 225 30.783 38.796 38.798 1.00 38. ATOM 120 C THR A 226 30.783 22.316 38.708 1.00 39. ATOM 121 C THR A 226 30.783 22.316 38.708 1.00 39. ATOM 128 C A ALA 227 28.800 20.260 37.222 1.00 39. ATOM 128 C A ALA 227 28.800 20.260 37.222 1.00

22.127

22.542

1.00 75.35

6

25.938

ATOM

196

С

SER A 237

	5	ATOM	197	0	SER	Α	237	26.605	21.418	21.797	1.00	75.47	8
		ATOM	198	N	HIS			24.648	22.410	22.353		75.56	7
		ATOM	199	CA	HIS			23.842	21.981	21.236		75.46	6
		ATOM	200	СВ	HIS			22.990	20.732	21.661		75.85	6
		ATOM	201	CG	HIS			22.408	19.933	20.542		40.00	6
	10	ATOM	202		HIS			22.790	18.757	19.957		40.00	6
		ATOM	203		HIS			21.223	20.303	19.875		40.00	7
		ATOM	204		HIS			20.951	19.365	18.953		40.00	6
		ATOM	205		HIS			21.874	18.444	18.994		40.00	7
		ATOM	206	C	HIS			22.971	23.284	20.964		74.10	6
	15	ATOM	207	0	HIS			21.863	23.137	20.441		75.34	8
	13	ATOM	208	N	TRP			23.487	24.510	21.368		73.39	7
		ATOM	209	CA	TRP			22.872	25.894	21.195		74.02	6
		ATOM	210	CB	TRP			23.563	27.026	22.005		81.77	6
		ATOM	211	CG	TRP			25.022	27.366	21.688		89.67	6
	20	ATOM	212	CD2	TRP			25.532	28.662	21.240		93.19	6
	20	ATOM	213	CE2	TRP			26.961	28.522	21.136		95.46	6
		ATOM	214	CE3	TRP			24.936	29.911	20.969		95.35	6
		ATOM	215	CD1	TRP			26.102	26.548	21.781		94.16	6
1		ATOM	216	NE1	TRP			27.268	27.241	21.475		97.48	7
Ü	25	ATOM	217	CZ2				27.208	29.598	20.764		96.23	6
	23	ATOM	218	CZ3	TRP			25.763	30.967	20.569		96.75	6
Ø		ATOM	219	CH2	TRP			27.171	30.825	20.482		97.32	6
		ATOM	220	Сп2	TRP			22.799	26.407	19.774		70.77	6
·J		ATOM	221	0	TRP			21.706	26.562	19.263		71.70	8
<u>_</u>	30	ATOM	222	N	LYS			23.946	26.701	19.263		67.10	7
1-4	30		223		LYS			23.948	27.180	17.783		65.63	6
Ħ!		ATOM	223	CA	LYS			25.314	26.780	17.763		66.65	6
		ATOM		CB									6
IJ		ATOM	225 226	CG	LYS			26.529	27.342	17.872		69.83	6
	35	ATOM	227	CD	LYS			27.805	27.037	17.108		71.49	6
	33	ATOM		CE	LYS			28.980	27.720	17.776		71.31	7
ī		MOTA	228	NZ	LYS LYS			30.238	27.438	17.034 16.895		72.23	6
		MOTA	229	С	LYS			22.808	26.699 27.298			66.19 65.20	8
		ATOM	230	O N	ASN			22.550 22.113	25.640	15.851		66.69	7
	40	ATOM	231	N				20.976		17.325			
	40	ATOM	232	CA	ASN				25.078	16.599		67.53	6
		ATOM	233	CB	ASN			21.122	23.562	16.550		67.98	6
		ATOM	234	CG	ASN			22.304	23.121	15.693		70.19 71.37	6
		ATOM	235		ASN			22.404	23.506	14.503			8
	45	ATOM	236		ASN			23.176	22.310	16.271		71.48	7
	43	ATOM	237	С	ASN			19.570	25.421	17.152		66.62	6
		ATOM	238	0	ASN			18.581	24.822	16.731		64.76	8
		ATOM	239	N	LYS			19.475	26.380	18.069		66.86	7
		ATOM	240	CA	LYS			18.191	26.786	18.642		67.46	6
	50	ATOM	241	CB	LYS			18.164	26.396	20.119		67.93	6
	50	ATOM	242	CG	LYS			18.250	24.896	20.337		71.52	6
		ATOM	243	CD	LYS			17.004	24.149	19.821		74.32	6
		ATOM	244	CE	LYS			15.755	24.491	20.643		74.41	6
		ATOM	245	ΝZ	LYS			15.927	24.161	22.109		74.44	7
	<i></i>	ATOM	246	С	LYS			18.143	28.291	18.483		66.28	6
	55	ATOM	247	0	LYS			17.102	28.923	18.592		67.61	8
		ATOM	248	N	ARG			19.334	28.813	18.204		64.19	7
		ATOM	249	CA	ARG			19.617	30.219	17.975		62.43	6
		ATOM	250	СВ	ARG	A	243	21.070	30.274	17.463	1.00	60.12	6

	5	ATOM	251	CG	ARG	Α	243	21.665	31.636	17.305	1.00	40.00	6
		ATOM	252	CD	ARG	Α	243	23.213	31.599	17.267	1.00	40.00	6
		ATOM	253	NE	ARG	Α	243	23.826	31.217	15.996	1.00	40.00	7
		ATOM	254	CZ	ARG	Α	243	25.113	31.439	15.714	1.00	40.00	6
		ATOM	255	NH1	ARG	Α	243	25.905	32.041	16.616	1.00	40.00	7
	10	ATOM	256	NH2	ARG	Α	243	25.592	31.097	14.520	1.00	40.00	7
		ATOM	257	С	ARG			18.639	30.789	16.950	1.00	62.97	6
		ATOM	258	0	ARG			18.662	30.390	15.784	1.00	63.96	8
		ATOM	259	N	LYS			17.771	31.692	17.393		62.41	7
		ATOM	260	CA	LYS			16.790	32.309	16.498	1.00	61.57	6
	15	ATOM	261	СВ	LYS			15.368	31.974	16.962		63.68	6
	_	ATOM	262	CG	LYS			15.102	30.471	17.104		71.29	6
		ATOM	263	CD	LYS			13.641	30.167	17.468		73.83	6
		ATOM	264	CE	LYS			13.182	30.908	18.737		74.71	6
		ATOM	265	NZ	LYS			13.951	30.536	19.970		73.32	7
	20	ATOM	266	C	LYS			17.009	33.806	16.501		59.30	6
		ATOM	267	0	LYS			16.562	34.514	17.399		56.34	8
		ATOM	268	N	PHE			17.705	34.264	15.468		57.06	7
		ATOM	269	CA	PHE			18.045	35.692	15.333		59.01	6
		ATOM	270	СВ	PHE			18.825	35.947	14.049		59.62	6
Ē	25	ATOM	271	CG	PHE			19.908	34.979	13.834		66.60	6
IŲ		ATOM	272		PHE			19.618	33.714	13.399		67.17	6
ij		ATOM	273		PHE			21.198	35.309	14.139		69.25	6
-		ATOM	274		PHE			20.614	32.794	13.255		69.92	6
-		ATOM	275		PHE			22.189	34.385	13.994		70.50	6
 	30	ATOM	276	CZ	PHE			21.897	33.126	13.552		70.89	6
اله ا		ATOM	277	C	PHE			16.856	36.620	15.340		60.68	6
iii .:===.		ATOM	278	0	PHE			15.946	36.516	14.528		62.37	8
		ATOM	279	N	LEU			16.919	37.558	16.272		60.10	7
IJ.		ATOM	280	CA	LEU			15.884	38.554	16.437		59.44	6
	35	ATOM	281	СВ	LEU			16.227	39.510	17.585		57.43	6
i stali		ATOM	282	CG	LEU			15.100	40.384	18.086		54.41	6
1		ATOM	283		LEU			14.010	39.474	18.640		52.43	6
-		ATOM	284		LEU			15.575	41.325	19.151		51.69	6
		ATOM	285	С	LEU			15.717	39.330	15.135		62.05	6
	40	ATOM	286	0	LEU			16.706	39.609	14.430		59.85	8
		ATOM	287	N	PRO			14.473		14.784		63.33	7
		ATOM	288	CD	PRO					15.534		64.44	6
		ATOM	289	CA	PRO			14.198	40.421	13.558		63.56	6
		ATOM	290	СВ	PRO			12.687	40.671	13.600		64.42	6
	45	ATOM	291	CG	PRO	Α	247	12.161	39.922	14.729		64.90	6
		ATOM	292	С	PRO			14.996		13.496	1.00	61.94	6
		ATOM	293	0	PRO				42.455	14.486		61.60	8
		ATOM	294	N	GLU			15.506	42.006	12.299		61.33	7
		ATOM	295	CA	GLU .			16.280	43.197	11.976		63.50	6
	50	ATOM	296	СВ	GLU .			16.481	43.273	10.437		66.94	6
		ATOM	297	CG	GLU			17.012	44.671	9.966		68.70	6
		ATOM	298	CD	GLU			16.981	44.939	8.471		40.00	6
		ATOM	299		GLU			16.432	44.144	7.644		40.00	8
		ATOM	300		GLU			17.509	46.015	8.086		40.00	8
	55	ATOM	301		GLU			15.624	44.489	12.458		64.19	6
		ATOM	302		GLU				45.395	12.918		65.56	8
		ATOM	303		ASP			14.300		12.323		64.36	7
		ATOM	304		ASP.					12.673		63.33	6

5	ATOM	19	С	ASP A	265	12.326	49.943	22.952	1.00	65.64	6
	ATOM	20	0	ASP A	265	12.771	48.850	22.655	1.00	68.81	8
	ATOM	21	N	LEU A	266	11.256	50.152	23.702	1.00	65.12	7
	ATOM	22	CA	LEU A	266	10.368	49.169	24.288	1.00	63.40	6
	ATOM	23	CB	LEU A	266	9.115	49.938	24.708	1.00	67.34	6
10	ATOM	24	CG	LEU A	266	9.399	51.124	25.618	1.00	69.35	6
	ATOM	25	CD1	LEU A	266	8.304	52.148	25.533	1.00	68.24	6
	ATOM	26	CD2	LEU A	266	9.581	50.631	27.021	1.00	70.47	6
	ATOM	27	С	LEU A	266	9.940	47.888	23.559	1.00	59.67	6
	ATOM	28	0	LEU A	266	9.694	46.879	24.220	1.00	53.35	8
15	ATOM	29	N	GLU A	267	9.815	47.904	22.235	1.00	58.01	7
	ATOM	30	CA	GLU A	267	9.417	46.682	21.572	1.00	58.34	6
	ATOM	31	СВ	GLU A		9.311	46.855	20.048	1.00	59.21	6
	ATOM	32	CG	GLU A		9.129	45.494	19.322	1.00	62.89	6
	ATOM	33	CD	GLU A		8.736	45.592	17.883	1.00	67.66	6
20	ATOM	34	OE1			9.433	46.263	17.080		69.95	8
	ATOM	35	OE2	GLU A	267	7.710	44.974	17.503	1.00	69.40	8
	ATOM	36	С	GLU A		10.504	45.683	21.895		57.67	6
	ATOM	37	0	GLU A		10.255	44.485	21.988		58.34	8
	ATOM	38	N	ALA A		11.712	46.222	22.054		53.43	7
13 14 14 15 15	ATOM	39	CA	ALA A		12.903	45.454	22.374		49.00	6
	ATOM	40	СВ	ALA A		14.137	46.241	21.983		45.72	6
Ũ	ATOM	41	С	ALA A		12.908	45.196	23.873		45.76	6
	MOTA	42	0	ALA A		12.887	44.042	24.307		41.50	8
	MOTA	43	N	PHE A		12.918	46.277	24.663		41.43	7
30	MOTA	44	CA	PHE A		12.920	46.158	26.118		43.96	6
<u>_</u> 30	ATOM	45	СВ	PHE A		12.395	47.426	26.777		40.10	. 6
31 ga s ay	ATOM	46	CG	PHE A		12.332	47.345	28.271		40.44	6
	MOTA	47	CD1			13.457	47.595	29.034		38.98	6
14 14 15 15	ATOM	48	CD2			11.165	46.946	28.903		37.15	6
35	MOTA	49	CE1	PHE F		13.409	47.469	30.436		32.12	6
	ATOM	50	CE2	PHE F		11.105	46.815	30.303		38.41	6
	ATOM	51	CZ	PHE A		12.228	47.070	31.071		40.55	6
182	ATOM	52	С	PHE A		12.017	45.012	26.520		49.76	6
	ATOM	53	0	PHE F		12.277	44.324	27.484		52.15	8
40	ATOM	54	N	SER A		10.934	44.835	25.768		53.15	7
	MOTA	55	CA	SER A		9.988	43.768	26.043		52.29	6
	ATOM	56	СВ	SER A		8.727	43.943	25.215		51.85	6
	MOTA	57	OG	SER A		7.785	42.918	25.497		53.42	8
	ATOM	58	С	SER A		10.637	42.464	25.685		49.38	6
45	MOTA	59	0	SER A		11.068	41.741	26.562		48.74	8
	ATOM	60	N	HIS A		10.683	42.173	24.383		50.15	7
	ATOM	61	CA	HIS A		11.276	40.932	23.877		51.67	6
	ATOM	62	СВ	HIS P		11.797	41.118	22.455		58.52	6
	ATOM	63	CG	HIS A		10.775	40.885	21.399		68.97	6
50	ATOM	64		HIS A		10.633	39.891	20.485		70.88	6
	ATOM	65		HIS A		9.673	41.732	21.199		71.98	7
	ATOM	66		HIS A		8.936	41.242	20.209		73.91	6
	ATOM	67		HIS A		9.495	40.132	19.764		73.59	7
	ATOM	68	C	HIS A		12.402	40.416	24.745		48.33	6
55	ATOM	69	0	HIS A		12.707	39.225	24.728		48.39	8
	ATOM	70	N	PHE A		13.029	41.334	25.487		41.34	7
	ATOM	71	CA	PHE A		14.130	41.001	26.384	1.00		6
	ATOM	72	CB	PHE A		15.077	42.194	26.512		36.67	6
					- · -	_0.0.,			• •		•

5		73	CG	PHE A 272			25.282	1.00 3		6
	ATOM	74		PHE A 272			25.093	1.00 3		6
	ATOM	75		PHE A 272			24.346	1.00 3		6
	MOTA	76		PHE A 272		43.807	23.988	1.00 3		6
	MOTA	77	CE2	PHE A 272		41.585	23.244	1.00 4	3.28	6
10	MOTA	78	CZ	PHE A 272	17.634	42.786	23.068	1.00 3	9.74	6
	ATOM	79	С	PHE A 272	13.650	40.528	27.764	1.00 4	0.75	6
	ATOM	80	0	PHE A 272	2 14.081	39.476	28.227	1.00 3	5.51	8
	ATOM	81	N	THR A 273	12.756	41.266	28.428	1.00 4	1.64	7
	ATOM	82	CA	THR A 273	12.290	40.854	29.757	1.00 4	5.97	6
15	ATOM	83	СВ	THR A 273	11.651	42.025	30.506	1.00 5	1.52	6
	ATOM	84	OG1	THR A 273	3 10.442	42.422	29.859	1.00 4	5.74	8
	ATOM	85	CG2	THR A 273	12.601	43.211	30.565	1.00 4	9.73	6
	ATOM	86	С	THR A 273		39.731	29.664	1.00 4		6
	ATOM	87	0	THR A 273		39.183	30.680	1.00 4		8
20		88	N	LYS A 274		39.412	28.440	1.00 4		7
	ATOM	89	CA	LYS A 274		38.362	28.211	1.00 5		6
	ATOM	90	СВ	LYS A 274		38.405	26.773	1.00 5		6
	ATOM	91	C	LYS A 274		37.015	28.515	1.00 5		6
	ATOM	92	Ō	LYS A 274		36.044	28.759	1.00 5		8
₫ 25		93	N	ILE A 275		36.973	28.491	1.00 5		7
TU Z	ATOM	94	CA	ILE A 275		35.746	28.767	1.00 5		6
D	ATOM	95	СВ	ILE A 275		35.346	27.543	1.00 4		6
	ATOM	96	CG2			34.829	26.429	1.00 4		6
Ŋ	ATOM	97	CG1	ILE A 275		36.532	27.026	1.00 4		6
30		98	CD1	ILE A 275		36.242	25.771	1.00 3		6
~ <u>.</u>	ATOM	99	C	ILE A 275		35.870	29.982	1.00 5		6
3 1	ATOM	100	0	ILE A 275		34.873	30.503	1.00 4		8
	ATOM	101	N	ILE A 276		37.107	30.415	1.00 5		7
IJ	ATOM	102	CA	ILE A 276		37.389	31.537	1.00 5		6
14 12 13 13 13 14 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		103	CB	ILE A 276		38.877	31.844	1.00 5		6
	ATOM	103		ILE A 276		39.340	32.261	1.00 5		6
	ATOM	104	CG1			39.206	32.201	1.00 5		6
1	ATOM	106		ILE A 276		38.942	32.655	1.00 6		6
	ATOM	107	C	ILE A 276		36.644	32.828	1.00 50		6
40		107	0	ILE A 276		36.458	33.691	1.00 5		8
40	ATOM	109	N	THR A 277		36.209	32.963	1.00 4		7
	ATOM	110	CA	THR A 277		35.523	34.158	1.00 4		6
	ATOM	111	CB	THR A 277		35.456	34.217	1.00 4		6
	ATOM	112		THR A 277		36.777	34.217	1.00 4		8
45		113	CG2	THR A 277		34.838	35.539	1.00 4		6
43		113					34.304			
	ATOM		С	THR A 277		34.118		1.00 39		6
	ATOM	115	0	THR A 277		33.796	35.365	1.00 40		8
	ATOM	116	N	PRO A 278		33.261	33.288	1.00 38		7
50	ATOM	117	CD	PRO A 278		33.534	32.023	1.00 3		6
50		118	CA	PRO A 278		31.894	33.363	1.00 30		6
	ATOM	119	CB	PRO A 278		31.244	32.064	1.00 32		6
	ATOM	120	CG	PRO A 278		32.291	31.239	1.00 35		6
	ATOM	121	С	PRO A 278		31.932	33.476	1.00 38		6
	ATOM	122	0	PRO A 278		30.981	33.898	1.00 3		8
55		123	N	ALA A 279		33.051	33.035	1.00 3		7
	ATOM	124	CA	ALA A 279		33.277	33.041	1.00 33		6
	ATOM	125	СВ	ALA A 27.9		34.599	32.348	1.00 30		6
	ATOM	126	С	ALA A 279	17.624	33.312	34.452	1.00 33	3.47	6

6	· P ,

									1 00 00 74	0
5	ATOM	127	0	ALA A	279	18.523	32.555	34.789	1.00 33.74	8
_	ATOM	128	N	ILE A	280	17.060	34.215	35.260	1.00 29.96	7
	ATOM	129	CA	ILE A	280	17.459	34.362	36.646	1.00 25.94	6
	ATOM	130	СВ	ILE A	280	16.686	35.484	37.315	1.00 26.95	6
	ATOM	131	CG2	ILE A		17.109	35.632	38.733	1.00 15.40	6
10	ATOM	132	CG1	ILE A		16.931	36.808	36.595	1.00 26.73	6
10	ATOM	133	CD1	ILE A		16.292	38.002	37.272	1.00 34.31	6
		134	C	ILE A		17.263	33.066	37.412	1.00 31.39	6
	ATOM			ILE A		18.116	32.679	38.207	1.00 35.69	8
	MOTA	135	0	THR A		16.145	32.386	37.165	1.00 30.90	7
	MOTA	136	N	THR A		15.854	31.118	37.851	1.00 33.49	6
15	MOTA	137	CA			14.598	30.413	37.277	1.00 37.18	6
	MOTA	138	СВ	THR A			30.413	35.898	1.00 46.48	8
	MOTA	139	OG1			14.795		37.444	1.00 32.85	6
	MOTA	140	CG2			13.352	31.281	37.713	1.00 32.03	6
	MOTA	141	С	THR A		17.045	30.176	38.684	1.00 25.55	8
20	MOTA	142	0	THR A		17.478	29.546		1.00 23.33	7
	MOTA	143	N	ARG A		17.561	30.076	36.489	1.00 32.70	6
	MOTA	144	CA	ARG A		18.692	29.198	36.218	1.00 34.27	6
	ATOM	145	CB	ARG A		19.136	29.374	34.780		6
	ATOM	146	CG	ARG A		19.272	28.086	34.013	1.00 45.15	
₫ 25	ATOM	147	CD	ARG A	. 282	18.179	27.921	32.977	1.00 58.24	6 7
:1 1	MOTA	148	NE	ARG A		18.041	29.077	32.117	1.00 68.41	
	MOTA	149	CZ	ARG A	. 282	19.018	29.529	31.352	1.00 72.31	6
	MOTA	150	NH1	ARG A	282	20.190	28.886	31.327	1.00 77.89	7
⁺ •4]	ATOM	151	NH2	ARG A	282	18.802	30.593	30.595	1.00 69.25	7
30	MOTA	152	С	ARG A	282	19.823	29.582	37.170	1.00 34.81	6
	ATOM	153	0	ARG A	282	20.380	28.735	37.855	1.00 36.03	8
81	ATOM	154	N	VAL A	283	20.135	30.882	37.190	1.00 31.71	7
j	ATOM	155	CA	VAL A		21.171	31.434	38.057	1.00 30.16	6
i.j.	ATOM	156	СВ	VAL A		21.198	32.965	37.981	1.00 29.00	6
1 35 1 2 35	ATOM	157	CG1			22.208	33.533	38.952	1.00 28.64	6
	ATOM	158	CG2			21.525	33.415	36.578	1.00 28.28	6
- 15 E	ATOM	159	C	VAL A		20.942	30.992	39.498	1.00 32.50	6
1. E. S.	ATOM	160	Ö	VAL F		21.879	30.717	40.229	1.00 33.48	8
	ATOM	161	N	VAL A		19.671	30.941	39.892	1.00 30.96	7
40		162	CA	VAL A		19.289	30.527	41.239	1.00 29.14	6
40	ATOM	163	CB	VAL A		17.822	30.865	41.548	1.00 31.27	6
	ATOM			L VAL A		17.472	30.461	42.945	1.00 24.21	6
	ATOM	164		VAL A		17.555	32.334	41.360	1.00 30.51	6
	ATOM	165		VAL A		19.529	29.037	41.353	1.00 28.89	6
4.5	MOTA	166				20.073	28.568	42.345	1.00 27.29	8
45	MOTA	167		VAL A		19.121	28.296	40.327	1.00 28.76	7
	MOTA	168			A 285	19.121	26.842	40.306	1.00 35.32	6
	MOTA	169			A 285	18.586	26.234	39.072	1.00 33.29	6
	MOTA	170			A 285		26.234	39.149	1.00 38.15	6
	MOTA	171			A 285	17.083		40.110	1.00 34.70	8
50	MOTA	172		1 ASP		16.484	25.743	38.231	1.00 34.70	8
κ.	MOTA	173	OD	2 ASP		16.431	26.828		1.00 34.43	6
	ATOM	174	С		A 285	20.751		40.305	1.00 36.70	8
	ATOM	175	0		A 285	21.106		40.808		7
	MOTA	176	N		A 286	21.604		39.737	1.00 35.96	6
55	MOTA	177	CA		A 286	23.029		39.704	1.00 37.10	
	ATOM	178	СВ		A 286	23.754		38.793		6
	ATOM	179			A 286	25.252		38.987		6
	MOTA	180	CD	1 PHE	A 286	25.963	26.849	38.974	1.00 36.75	6

	5	ATOM	181	CD2	PHE	Α	286	25.931	29.218	39.199	1.00	33.83	6
		ATOM	182	CE1	PHE	Α	286	27.331	26.860	39.161	1.00	39.55	6
		ATOM	183	CE2	PHE	Α	286	27.307	29.233	39.387	1.00	38.08	6
		ATOM	184	CZ	PHE	Α	286	28.008	28.052	39.371	1.00	34.44	6
		ATOM	185	С	PHE	Α	286	23.631	27.105	41.083	1.00	36.83	6
	10	MOTA	186	0	PHE	Α	286	24.317	26.192	41.504	1.00	35.61	8
		ATOM	187	N	ALA			23.393	28.228	41.752	1.00	37.33	7
		ATOM	188	CA	ALA			23.917	28.448	43.087	1.00	36.34	6
		ATOM	189	СВ	ALA			23.523	29.828	43.555	1.00	36.40	6
		MOTA	190	С	ALA			23.346	27.393	44.027	1.00	38.76	6
	15	MOTA	191	0	ALA			23.994	26.973	44.981	1.00	41.98	8
		ATOM	192	N	LYS			22.114	26.979	43.735	1.00	38.28	7
		ATOM	193	CA	LYS			21.429	25.971	44.538		45.26	6
		ATOM	194	СВ	LYS			19.994	25.746	44.054		48.35	6
		ATOM	195	CG	LYS			19.025	26.819	44.464	1.00	51.43	6
	20	ATOM	196	CD	LYS			17.628	26.246	44.682	1.00	60.23	6
		ATOM	197	CE	LYS			17.135	25.478	43.485	1.00	62.81	6
		ATOM	198	ΝZ	LYS			17.196	26.327	42.268	1.00	64.69	7
		ATOM	199	С	LYS			22.120	24.632	44.536		43.31	6
		ATOM	200	0	LYS			21.967	23.857	45.462		45.66	8
ıÕ	25	ATOM	201	N	LYS			22.865	24.366	43.467		41.70	7
ī.		ATOM	202	CA	LYS			23.571	23.120	43.351	1.00		6
IJ		ATOM	203	СВ	LYS			23.655	22.708	41.877		42.25	6
j=		ATOM	204	CG	LYS			22.271	22.492	41.247	1.00	39.53	6
; <u>.</u>		ATOM	205	CD	LYS			22.331	21.606	40.012		43.19	6
:	30	ATOM	206	CE	LYS			20.941	21.362	39.447		45.74	6
أيد		ATOM	207	NZ	LYS			20.273	20.165	40.006	1.00	52.49	7
81		ATOM	208	С	LYS			24.948	23.185	44.003		41.50	6
		ATOM	209	Ō	LYS			25.642	22.184	44.080	1.00	39.77	8
		ATOM	210	N	LEU			25.312	24.370	44.490		40.68	7
l.U ≕	35	ATOM	211	CA	LEU			26.594	24.583	45.149	1.00	39.33	6
		ATOM	212	СВ	LEU			27.153	25.972	44.829	1.00	36.14	6
ili =		ATOM	213	CG	LEU			27.358	26.290	43.365	1.00	34.81	6
1.52		ATOM	214	CD1	LEU			27.945	27.675	43.208		29.07	6
		ATOM	215		LEU			28.267	25.242	42.757		33.45	6
	40	ATOM	216	С	LEU			26.434	24.405	46.652	1.00	40.08	6
		ATOM	217	0	LEU			25.803	25.235	47.333	1.00	42.00	8
		ATOM	218	N	PRO			27.028	23.333	47.210	1.00	40.27	7
		ATOM	219	CD	PRO	Α	291	27.851	22.330	46.519	1.00	39.65	6
		ATOM	220	CA	PRO			26.905	23.096	48.659		38.28	6
	45	ATOM	221	СВ	PRO			27.755	21.860	48.911	1.00	35.88	6
		ATOM	222	CG	PRO			28.202	21.355	47.585	1.00	34.19	6
		ATOM	223	С	PRO	Α	291	27.327	24.298	49.522	1.00	40.05	6
		ATOM	224	0	PRO	Α	291	26.571	24.739	50.391		41.33	8
		ATOM	225	N	MET			28.522	24.843	49.299		40.59	7
	50	ATOM	226	CA	MET			29.021	25.957	50.097		42.86	6
		ATOM	227	СВ	MET			30.313	26.475	49.477		43.28	6
		ATOM	228	CG	MET			31.269	25.378	49.050		50.35	6
		ATOM	229	SD	MET			32.895	26.096	48.757		51.17	16
		ATOM	230	CE	MET			33.812	24.647	48.074		54.63	6
	55	ATOM	231	C	MET			27.984	27.066	50.149		41.05	6
		ATOM	232	0	MET			27.986	27.886	51.057		39.66	8
		ATOM	233	N	PHE			27.080	27.078	49.172		39.30	7
		ATOM	234	CA	PHE			26.030	28.091	49.114		40.92	6
		-				_							

5	ATOM	289	N	ASP A	300	21.467	35.765	53.294	1.00 45.17	7
	MOTA	290	CA	ASP A	300	22.661	36.042	52.509	1.00 43.32	6
	ATOM	291	СВ	ASP A	300	23.919	35.513	53.213	1.00 37.38	6
	MOTA	292	CG	ASP A	300	24.223	36.239	54.473	1.00 36.23	6
	ATOM	293	OD1	ASP A		24.153	37.488	54.493	1.00 35.87	
10		294	OD2			24.572	35.575	55.483	1.00 40.14	
10	ATOM	295	C	ASP A		22.514	35.390	51.138	1.00 42.81	
	ATOM	296	Ö	ASP A		22.775	36.021	50.113	1.00 46.02	
	ATOM	297	N	GLN A		22.095	34.124	51.137	1.00 38.60	
	ATOM	298	CA	GLN A		21.896	33.390	49.902	1.00 30.00	
1.5				GLN A					1.00 40.00	
15		299	CB			20.991	32.179	50.137		
	ATOM	300	CG	GLN A		21.644	31.003	50.808	1.00 40.26	
	MOTA	301	CD	GLN A		20.690	29.824	50.988	1.00 44.15	
	MOTA	302	OE1	GLN A		19.658	29.957	51.675	1.00 45.73	
•	MOTA	303	NE2	GLN A		21.027	28.685	50.394	1.00 46.13	
20		304	С	GLN A		21.242	34.305	48.877	1.00 41.64	
	MOTA	305	0	GLN A		21.482	34.185	47.686	1.00 45.02	
	MOTA	306	N	ILE A		20.413	35.228	49.372	1.00 41.01	
	ATOM	307	CA	ILE A		19.726	36.179	48.511	1.00 40.23	
I	MOTA	308	CB	ILE A		18.502	36.774	49.217	1.00 39.52	
□ 25	ATOM	309	CG2	ILE A	302	17.818	37.788	48.342	1.00 31.98	
	MOTA	310	CG1	ILE A	302	17.502	35.673	49.581	1.00 40.77	
Ü	MOTA	311	CD1	ILE A	302	17.003	34.897	48.385	1.00 45.43	
	MOTA	312	С	ILE A	302	20.698	37.268	48.096	1.00 38.58	6
4	ATOM	313	0	ILE A	302	20.960	37.453	46.906	1.00 40.81	8
30	MOTA	314	N	ILE A	303	21.228	37.972	49.097	1.00 37.50	7
`*•.j	MOTA	315	CA	ILE A	303	22.179	39.060	48.874	1.00 39.33	6
Bf	MOTA	316	СВ	ILE A	303	23.023	39.338	50.109	1.00 39.06	6
	ATOM	317	CG2	ILE A	303	23.946	40.522	49.861	1.00 36.19	6
i.i.	ATOM	318	CG1	ILE A	303	22.141	39.653	51.313	1.00 40.15	6
14 35 12 15	ATOM	319	CD1	ILE A	303	22.916	39.806	52.589	1.00 36.93	6
	ATOM	320	С	ILE A	303	23.093	38.705	47.722	1.00 36.49	6
111	ATOM	321	0	ILE A	303	23.354	39.509	46.835	1.00 36.58	8
111	ATOM	322	N	LEU A		23.580	37.477	47.762	1.00 32.91	7
	ATOM	323	CA	LEU A		24.465	36.964	46.734	1.00 27.55	6
40			СВ	LEU A		24.935	35.554	47.123	1.00 22.35	6
	MOTA	325	CG	LEU A		26.150	35.480	48.029	1.00 26.88	
	MOTA	326		LEU A		26.267	36.731	48.876	1.00 24.82	6
	ATOM	327		LEU A		26.084	34.226	48.861	1.00 23.69	
	ATOM	328	C	LEU A		23.764	36.968	45.389	1.00 28.05	
45		329	0	LEU A		24.212	37.623	44.443	1.00 24.68	8
	ATOM	330	N	LEU A		22.657	36.236	45.318	1.00 26.34	7
	ATOM	331	CA	LEU A		21.892	36.147	44.089	1.00 20.34	6
	ATOM	332	CB	LEU A		20.565	35.434	44.359	1.00 30.51	6
		333	CG	LEU A		20.637	33.950	44.635	1.00 32.30	6
50	ATOM									
50		334		LEU A		19.247	33.370	44.779	1.00 33.87	6
	ATOM	335		LEU A		21.340	33.280	43.466	1.00 31.72	6
	ATOM	336	C	LEU A		21.665	37.524	43.477	1.00 29.76	6
	ATOM	337	0	LEU A		21.954	37.747	42.301	1.00 29.33	8
~ ~	ATOM	338	N	LYS A		21.157	38.439	44.298	1.00 29.72	7
55		339	CA	LYS A		20.868	39.800	43.864	1.00 34.28	6
	ATOM	340	CB	LYS A		20.293	40.615	45.026	1.00 35.98	6
	ATOM	341	CG	LYS A		18.919	40.163	45.511	1.00 43.35	6
	ATOM	342	CD	LYS A	306	18.397	41.127	46.559	1.00 51.50	6

MOTA

MOTA

395

396

0

Ν

MET A 313

SER A 314

6 7

6

8

7

6

6

8 7

6

6

6

8 7

6

6

6

8

7

6

6

6

6

6

8

7

6

6 6

6

8

8

6

8

7

6

6

6

6

6

6

8

7

6

6

6

6

6

8

7

1.00 28.61

1.00 24.88

16

16

16

16

35.814

37.859

25.116

25.209

31.308

32.253

5	MOTA	451	СВ	TYR	Α	321	30.083	36.810	21.575	1.00	38.01	6
	ATOM	452	CG	TYR	Α	321	30.601	37.650	20.448	1.00	37.94	6
	ATOM	453	CD1	TYR	Α	321	29.733	38.296	19.574	1.00	33.85	6
	ATOM	454	CE1	TYR	Α	321	30.235	39.037	18.494	1.00	34.49	6
	ATOM	455	CD2	TYR	Α	321	31.966	37.743	20.224	1.00	28.03	6
10	MOTA	456	CE2	TYR	Α	321	32.473	38.475	19.153	1.00	32.69	6
	ATOM	457	CZ	TYR			31.612	39.125	18.276		35.18	6
	ATOM	458	ОН	TYR			32.107	39.866	17.223		39.48	8
	ATOM	459	C	TYR			30.085	35.005	19.877		45.51	6
	ATOM	460	0	TYR			31.261	34.697	19.951		48.02	8
15	ATOM	461	N	ASP			29.354	34.879	18.773		44.56	7
13	ATOM	462	CA	ASP			29.912	34.400	17.502		45.86	6
	ATOM	463	CB	ASP			28.804	33.670	16.736		46.64	6
	ATOM	464	CG	ASP			29.050	33.608	15.255		40.00	6
	ATOM	465		ASP			30.010	34.256	14.768		40.00	8
20			OD1	ASP			28.262	32.929	14.786		40.00	8
20	ATOM	466							16.755			
	ATOM	467	С	ASP			30.460	35.629			45.82	6
	ATOM	468	0	ASP			29.678	36.464	16.271		45.38	8 7
	ATOM	469	N	PRO			31.800	35.735	16.584		46.53	
25	ATOM	470	CD	PRO			32.774	34.719	16.991		47.16	6
25	ATOM	471	CA	PRO			32.424	36.889	15.890		46.63	6
	ATOM	472	CB	PRO			33.921	36.603	15.936		43.95	6
	ATOM	473	CG	PRO			34.099	35.303	16.582		43.93	6
	ATOM	474	C	PRO			31.953	37.087	14.453		48.34	6
20	ATOM	475	0	PRO			31.797	38.210	13.960		50.84	8
30	ATOM	476	N	GLU			31.778	35.970	13.752		52.39	7
	ATOM	477	CA	GLU			31.339	35.968	12.370		55.85	6
	ATOM	478	CB	GLU			31.035	34.528	11.965		55.54	6
	ATOM	479	CG	GLU			32.224	33.584	12.104		40.00	6
25	ATOM	480	CD	GLU			33.432	34.023	11.310		40.00	6
35	ATOM	481	OE1	GLU			33.350	35.040	10.555		40.00	8
	ATOM	482	OE2	GLU			34.506	33.356	11.415		40.00	8
	ATOM	483	С	GLU			30.077	36.798	12.277		54.94	6
	ATOM	484	0	GLU			30.070	37.892	11.730		59.81	8
40	ATOM	485	N	SER			29.009	36.212	12.810		52.95	7
40	ATOM	486	CA	SER			27.695	36.812	12.839		50.10	6
	ATOM	487	CB	SER			26.701	35.797	13.402		48.23	6
	ATOM	488	OG	SER			27.183	35.239	14.615		48.71	8
	MOTA	489	С	SER			27.651	38.093	13.659		50.61	6
15	ATOM	490	0	SER			26.885	38.992	13.354		52.19	8
45	ATOM	491	N	GLU			28.495	38.168	14.687		45.64	7
	ATOM	492	CA	GLU			28.567	39.341	15.546		43.35	6
	MOTA	493	СВ	GLU			28.830	40.608	14.711		42.74	6
	MOTA	494	CG	GLU			30.148	40.606	13.945		50.32	6
	ATOM	495	CD	GLU			30.451	41.925	13.313		56.34	6
50	ATOM	496	OE1	GLU			31.509	42.046	12.649		59.31	8
	ATOM	497		GLU			29.656	42.890	13.452		55.74	8
	ATOM	498	С	GLU			27.288	39.526	16.340		40.23	6
	MOTA	499	0	GLU			26.695	40.603	16.340		40.44	8
<i></i>	ATOM	500	N	THR			26.888	38.474	17.051		35.90	7
55	ATOM	501	CA	THR			25.663	38.506	17.860		37.29	6
	ATOM	502	CB	THR			24.466	38.057	17.024		37.63	6
	ATOM	503		THR			24.661	36.709	16.580		38.12	8
	ATOM	504	CG2	THR	A	327	24.269	38.965	15.810	1.00	39.90	6

ŧΰ

īŪ

Ħ

1

1...

į.

إ.

81

Į.

24.591

1.00 28.60

7

5

	5	ATOM	721	СВ	MET	Α	358	35.143	40.606	21.009	1.00	34.56	6
		ATOM	722	CG			358	33.949	41.145	20.290		46.43	6
		ATOM	723	SD			358	34.207	42.776	19.514		42.13	16
		ATOM	724	CE			358	34.507	43.855	20.994	1.00	44.29	6
		MOTA	725	С			358	36.256	38.762	22.230		33.26	6
	10	ATOM	726	0			358	36.894	37.807	21.795		36.39	8
		ATOM	727	N			359	36.637	39.491	23.281		33.31	7
		ATOM	728	CA			359	37.860	39.226	24.019		34.39	6
		ATOM	729	СВ			359	37.869	40.067	25.295		30.84	6
		ATOM	730	OG			359	39.135	40.008	25.930		47.14	8
	15	ATOM	731	C			359	37.984	37.748	24.357		36.43	6
	10	ATOM	732	0			359	38.900	37.078	23.896		35.46	8
		ATOM	733	N			360	37.046	37.264	25.166		36.74	7
		ATOM	734	CA	LEU			37.017	35.875	25.604		35.44	6
		ATOM	735	CB	LEU			35.708	35.579	26.336		34.16	6
	20	ATOM	736	CG	LEU			35.471	36.290	27.644		34.59	6
	20	ATOM	737	CD1				34.225	35.765	28.312		33.53	6
		ATOM	738		LEU			36.658	36.052	28.541		31.69	6
		ATOM	739	C	LEU			37.203	34.862	24.500		38.72	6
i mar		ATOM	740	0	LEU			37.820	33.828	24.728		38.29	8
	25	ATOM	741	N	SER			36.635	35.147	23.328		40.96	7
T <u>u</u>	23	ATOM	742	CA	SER			36.777	34.262	22.186		45.67	6
Ü		ATOM	743	CB	SER			36.518	35.045	20.904		46.45	6
int.		ATOM	744	OG	SER			35.210	35.598	20.906		51.81	8
,		ATOM	745	C	SER			38.166	33.627	22.145		44.49	6
	30	ATOM	746	0	SER			38.347	32.538	21.625		46.67	8
	50	ATOM	747	N	SER			39.134	34.348	22.703		41.44	7
Ē;		ATOM	748	CA	SER			40.525	33.918	22.790		42.13	6
=		ATOM	749	CB	SER			41.408	35.131	23.066		42.61	6
W W		ATOM	750	OG	SER			41.219	36.136	22.076		51.87	8
IJ	35	ATOM	751	C	SER			40.798	32.870	23.876		38.41	6
	55	ATOM	752	0	SER			41.553	31.938	23.641		38.01	8
		ATOM	753	N	PHE			40.198	33.039	25.058		34.55	7
ũ		ATOM	754	CA	PHE			40.417	32.126	26.174		32.96	6
		ATOM	755	СВ	PHE			39.832	32.718	27.447		31.99	6
	40	ATOM	756	CG	PHE			40.448	34.036			29.97	6
		ATOM	757		PHE			40.102	34.650	29.020		30.61	6
		ATOM	758		PHE			41.379	34.646	27.014		32.02	6
		ATOM	759		PHE			40.685	35.856	29.391		33.67	6
		ATOM	760		PHE			41.959	35.843	27.377		30.91	6
	45	ATOM	761	CZ	PHE			41.615	36.456	28.558		29.33	6
		ATOM	762	C	PHE			39.883	30.716	25.967		30.52	6
		ATOM	763	0	PHE			40.436	29.766	26.526		32.19	8
		ATOM	764	N	ASN			38.817	30.570	25.175		33.51	7
		ATOM	765	CA	ASN			38.239	29.264	24.918		38.03	6
	50	ATOM	766	CB	ASN			39.240	28.404	24.139		42.32	6
	50	ATOM	767	CG	ASN			39.696	29.065	22.861		53.11	6
		ATOM	768		ASN			38.874	29.330	21.954		59.51	8
		ATOM	769		ASN			40.986	29.330	22.772		55.95	7
		ATOM	770	C	ASN			37.916	28.572	26.235		31.89	6
	55	ATOM	771	0	ASN			38.324	27.428	26.233		30.28	8
	55	ATOM	772	N	LEU			37.176	29.271	27.094		27.62	7
		ATOM	773	CA	LEU			36.806	28.743	28.406		29.36	6
		ATOM	774	CB	LEU			36.195	29.866	29.237		27.54	6
		ATOM	114	CD	υüŲ	$\boldsymbol{\Lambda}$	303	30.133	29.000	27.231	1.00	21.74	O

IU ID

1=1

١٠..

i ni

إيدا

8!

	5	ATOM	991	CE	LYS A			33.265	54.681		40.00	6
		ATOM	992	NZ	LYS A	394	41.516	33.602	54.162	1.00	40.00	7
		MOTA	993	С	LYS A	394	36.568	30.778	50.966		46.69	6
		ATOM	994	0	LYS A			30.427	49.988		49.13	8
		MOTA	995	N	TYR A			30.514	51.095		46.57	7
	10	MOTA	996	CA	TYR A	395	34.553	29.823	50.022	1.00	43.33	6
		MOTA	997	CB	TYR A	395	33.059	30.123	50.076	1.00	48.44	6
		MOTA	998	CG	TYR A	395	32.275	29.236	50.994	1.00	53.83	6
		MOTA	999	CD1	TYR A	395	31.010	29.598	51.415		56.43	6
		MOTA	1000	CE1	TYR A	395	30.266	28.769	52.252	1.00	59.73	6
	15	MOTA	1001	CD2	TYR F	395	32.790	28.033	51.428	1.00	56.47	6
		MOTA	1002	CE2	TYR A	395	32.054	27.198	52.265	1.00	62.60	6
		MOTA	1003	CZ	TYR A	395	30.787	27.565	52.687	1.00	63.18	6
		MOTA	1004	ОН	TYR A	395	30.059	26.753	53.528	1.00	64.46	8
		ATOM	1005	С	TYR A	395	35.120	30.356	48.716	1.00	37.30	6
	20	MOTA	1006	0	TYR A	395	35.643	29.601	47.908	1.00	34.10	8
		ATOM	1007	N	GLN A	396	35.029	31.670	48.522	1.00	31.92	7
		MOTA	1008	CA	GLN A	396	35.563	32.273	47.305	1.00	34.81	6
		MOTA	1009	CB	GLN A	396	35.403	33.801	47.329	1.00	32.64	6
		MOTA	1010	CG	GLN A	396	36.088	34.485	46.162	1.00	29.57	6
Û	25	MOTA	1011	CD	GLN A	396	35.616	35.891	45.927	1.00	29.46	6
IJ		MOTA	1012	OE1	GLN A	396	35.599	36.726	46.862	1.00	34.65	8
Ü		MOTA	1013	NE2	GLN A	396	35.245	36.173	44.689	1.00	27.21	7
1=4		MOTA	1014	С	GLN A	396		31.909	47.167	1.00	37.13	6
`j		MOTA	1015	0	GLN A	396	37.511	31.590	46.080	1.00	37.36	8
14	30	ATOM	1016	N	ASP A	397	37.751	31.970	48.285	1.00	38.61	7
		ATOM	1017	CA	ASP A	397	39.164	31.642	48.298	1.00	40.37	6
		MOTA	1018	CB	ASP F	397		31.869	49.704	1.00	40.51	6
i.J		ATOM	1019	CG	ASP A	397	39.813	33.319	50.095	1.00	43.77	6
ira Isi		ATOM	1020		ASP F			34.123	49.334	1.00	46.50	8
	35	ATOM	1021		ASP A			33.702	51.184	1.00	51.34	8
i		MOTA	1022	С	ASP F			30.176	47.898	1.00	38.62	6
1		MOTA	1023	0	ASP A			29.809	47.199	1.00	39.20	8
		MOTA	1024		SER A			29.359	48.344		37.84	7
		MOTA	1025	CA	SER A			27.929	48.063		37.80	6
	40	MOTA	1026	CB	SER A				48.878		34.28	6
		MOTA	1027	OG	SER A			25.826	48.755		46.60	8
		MOTA	1028	С	SER A			27.639	46.581		38.41	6
		ATOM	1029	0	SER A			26.642	46.075		39.98	8
	4.5	ATOM	1030	N	PHE A			28.507	45.893		34.82	7
	45	MOTA	1031	CA	PHE A			28.325	44.462		35.96	6
		ATOM	1032	CB	PHE A			28.983	44.015		35.75	6
		ATOM	1033	CG	PHE A			28.216	44.403		39.30	6
		ATOM	1034		PHE A			28.294	45.677		39.86	6
	50	MOTA	1035		PHE A			27.393	43.488		36.81	6
	50	ATOM	1036	CE1	PHE A			27.557	46.013		41.25	6
		MOTA	1037		PHE A			26.661	43.825		43.61	6
		ATOM	1038	CZ	PHE A			26.740	45.087		40.34	6
		MOTA	1039	С	PHE A			28.890	43.630		33.48	6
	<i></i>	ATOM	1040	0	PHE A			28.200	42.756		26.86	8
	55	ATOM	1041	N	LEU A			30.156	43.877		31.47	7
		ATOM	1042	CA	LEU A			30.796	43.132		37.41	6
		ATOM	1043	CB	LEU A			32.100	43.814		34.24	6
		MOTA	1044	CG	LEU A	400	39.239	33.265	43.628	1.00	35.10	6

	5	MOTA	1045	CD1	LEU	A	400	39.803	34.531	44.256	1.00	26.60	6
		MOTA	1046	CD2	LEU .	A	400	39.065	33.479	42.137	1.00	29.44	6
		ATOM	1047	С	LEU .	A	400	40.941	29.872	42.947	1.00	38.84	6
		ATOM	1048	0	LEU .	A	400	41.367	29.632	41.821	1.00	40.38	8
		MOTA	1049	N	LEU .	Α	401	41.464	29.350	44.055	1.00	42.79	7
	10	MOTA	1050	CA	LEU .	A	401	42.605	28.449	43.988	1.00	43.48	6
		MOTA	1051	CB	LEU .	Α	401	42.900	27.821	45.355	1.00	44.73	6
		MOTA	1052	CG	LEU .	Α	401	44.105	26.899	45.354	1.00	51.39	6
		MOTA	1053	CD1	LEU .	A	401	45.374	27.749	45.143	1.00	50.11	6
		MOTA	1054	CD2	LEU .	Α	401	44.205	26.122	46.662	1.00	49.30	6
	15	MOTA	1055	С	LEU .	Α	401	42.324	27.340	42.981	1.00	41.62	6
		ATOM	1056	0	LEU .	Α	401	43.052	27.180	42.004	1.00	45.14	8
		ATOM	1057	N	ALA .	Α	402	41.269	26.574	43.245	1.00	37.92	7
		ATOM	1058	CA	ALA .	Α	402	40.873	25.469	42.386	1.00	29.90	6
		ATOM	1059	СВ	ALA .	Α	402	39.522	24.928	42.834	1.00	30.70	6
	20	ATOM	1060	С	ALA .	A	402	40.798	25.909	40.929	1.00	28.88	6
		ATOM	1061	0	ALA .			41.277	25.203	40.034	1.00	32.14	8
		ATOM	1062	N	PHE .			40.200	27.086	40.707	1.00	31.07	7
		ATOM	1063	CA	PHE .			40.052	27.642	39.363	1.00	29.90	6
		ATOM	1064	СВ	PHE .			39.379	29.019	39.438		27.03	6
Ō	25	ATOM	1065	CG	PHE			38.943	29.574	38.100		26.97	6
11		ATOM	1066	CD1	PHE .			38.228	30.758	38.033		25.55	6
Ü		ATOM	1067	CD2	PHE			39.224	28.905	36.925		19.75	6
		ATOM	1068	CE1	PHE			37.784	31.266	36.808		27.90	6
إيها		ATOM	1069	CE2	PHE .			38.780	29.416	35.694		22.56	6
 	30	ATOM	1070	CZ	PHE .			38.063	30.596	35.640		22.24	6
'n		ATOM	1071	C	PHE .			41.429	27.756	38.719		28.82	6
#: 		ATOM	1072	0	PHE			41.666	27.210	37.646		26.00	8
		ATOM	1073	N	GLU .			42.329	28.463	39.402		30.25	7
IJ		ATOM	1074	CA	GLU Z			43.695	28.665	38.922		34.03	6
W	35	ATOM	1075	CB	GLU			44.513	29.416	39.983		39.45	6
		ATOM	1076	CG	GLU Z			45.867	29.935	39.489		47.68	6
		ATOM	1077	CD	GLU Z			46.734	30.507	40.571		54.02	6
i.		ATOM	1078	OE1	GLU			46.236	31.298	41.408		57.27	8
		ATOM	1079	OE2	GLU Z			47.956	30.202	40.606		63.85	8
	40	ATOM	1080	C	GLU Z			44.352	27.322	38.634		36.01	6
	. •	ATOM	1081	0	GLU Z			44.936	27.112	37.574		38.64	8
		ATOM	1082	N	HIS			44.259	26.420	39.610		29.56	7
		ATOM	1083	CA	HIS			44.840	25.093	39.468		31.69	6
		ATOM	1084	СВ	HIS			44.540	24.228	40.694		33.75	6
	45	ATOM	1085	CG	HIS A			45.292	24.657	41.908		34.75	6
		ATOM	1086		HIS			46.198	25.640	42.130		34.58	6
		ATOM	1087		HIS			45.161	23.984	43.130		32.43	7
		ATOM	1088		HIS A			45.975	24.568	44.018		36.15	6
		ATOM	1089		HIS A			46.601	25.561	43.430		39.84	7
	50	ATOM	1090	C	HIS A			44.274	24.445	38.225		34.21	6
	50	ATOM	1091	0	HIS A			45.029	23.949	37.386		37.06	8
		ATOM	1091	N	TYR A			42.947	24.453	38.100		30.83	7
		ATOM	1092	CA	TYR A			42.313	23.859	36.930		28.85	6
		ATOM	1093	CB	TYR A			40.805	24.080	36.934		31.48	6
	55	ATOM	1094	CG	TYR A			40.803	23.494	35.709		23.49	6
	55	ATOM	1095					40.139	22.123	35.532		19.42	6
		ATOM	1096					39.517	21.577	34.382		23.80	6
		ATOM	1097		TYR A			39.646	24.313	34.302		21.81	6
		ATOM	1090	CDZ	TIK	. 7.		37.040	24.010	57.704	1.00	~ 1 · U 1	U

	5	MOTA	1423	CG1	VAL	Α	444	11.952	58.195	34.174		64.00	6
		MOTA	1424	CG2	VAL	Α	444	12.999	56.891	36.035	1.00	59.27	6
		ATOM	1425	С	VAL	Α	444	11.043	55.730	32.861	1.00	68.61	6
		ATOM	1426	0	VAL	Α	444	9.937	56.210	32.612	1.00	70.60	8
		ATOM	1427	N	GLU	Α	445	11.814	55.173	31.935	1.00	70.71	7
	10	ATOM	1428	CA	GLU	Α	445	11.457	55.152	30.514	1.00	71.45	6
		ATOM	1429	CB	GLU	Α	445	12.725	55.255	29.664	1.00	72.36	6
		ATOM	1430	CG	GLU	Α	445	13.598	56.429	30.022	1.00	40.00	6
		ATOM	1431	CD	GLU	Α	445	14.875	56.472	29.239	1.00	40.00	6
		ATOM	1432	OE1	GLU	Α	445	15.155	55.565	28.414	1.00	40.00	8
	15	MOTA	1433	OE2	GLU	Α	445	15.663	57.430	29.430	1.00	40.00	8
		ATOM	1434	С	GLU	Α	445	10.724	53.912	30.049	1.00	71.46	6
		ATOM	1435	0	GLU			10.536	53.701	28.844	1.00	73.02	8
		ATOM	1436	N	CYS			10.301	53.099	30.999		71.12	7
		ATOM	1437	CA	CYS			9.628	51.899	30.634	1.00	70.83	6
	20	ATOM	1438	СВ	CYS			10.595	50.719	30.687	1.00	71.05	6
		ATOM	1439	SG	CYS			12.009	50.842	29.573		72.83	16
		ATOM	1440	C	CYS			8.454	51.671	31.535	1.00	71.91	6
		ATOM	1441	0	CYS			8.495	52.014	32.728		72.06	8
		ATOM	1442	N	PRO			7.372	51.133	30.978		73.12	7
Ū	25	ATOM	1443	CD	PRO			7.267	50.764	29.560		72.88	6
IU		ATOM	1444	CA	PRO			6.150	50.853	31.740		74.22	6
IJ		ATOM	1445	СВ	PRO			5.187	50.281	30.714		72.98	6
]=E		ATOM	1446	CG	PRO			5.875	50.271	29.437		74.77	6
'n		ATOM	1447	C	PRO			6.435	49.843	32.831		75.94	6
	30	ATOM	1448	0	PRO			7.181	48.908	32.612		76.67	8
	30	ATOM	1449	N	THR			5.820	50.002	33.997		76.91	7
81		ATOM	1450	CA	THR			6.024	49.066	35.113		78.24	6
		ATOM	1451	CB	THR			5.528	49.734	36.401		81.33	6
IJ		ATOM	1452	OG1	THR			4.105	49.917	36.328		84.46	8
i.i	35	ATOM	1453	CG2	THR			6.192	51.081	36.585		83.51	6
	33	ATOM	1454	C C	THR			5.113	47.912	34.755		77.42	6
		ATOM	1455	0	THR			4.915	46.995	35.519	1.00	77.65	8
١D		ATOM	1456	N	GLU			4.539	48.021	33.565	1.00	76.29	7
		ATOM	1457	CA	GLU			3.630	47.023	33.024	1.00	75.03	6
	40	ATOM	1458	CB	GLU			2.600	47.773	32.191		74.62	6
	40	ATOM	1459	CG	GLU			2.145	47.051	31.001		40.00	6
		ATOM	1460	CD	GLU			1.297	47.889	30.178		40.00	6
		ATOM	1461		GLU			1.479	49.137	30.146		40.00	8
		ATOM	1462		GLU			0.424	47.322	29.497		40.00	8
	45	ATOM	1463	C	GLU			4.434	46.036	32.179		73.49	6
	45	ATOM	1464	0	GLU			3.882	45.142	31.559		70.24	8
		ATOM	1465	N	LEU			5.747	46.224	32.161		70.80	7
			1466		LEU			6.608	45.347	31.378		68.82	6
		ATOM	1467	CA	LEU			7.301	46.154	30.277		71.91	6
	50	ATOM	1467	CB				6.464	46.134	29.217		76.62	6
	30	ATOM		CG	LEU							77.95	
		ATOM	1469		LEU			7.337	47.662	28.328			6
		ATOM	1470		LEU			5.786	45.750	28.415		76.46	6
		ATOM	1471	С	LEU			7.669	44.673	32.243		66.22	6
	55	ATOM	1472	0	LEU			8.427	43.841	31.752		66.01	8
	55	ATOM	1473	N	PHE			7.705	45.039	33.530		61.96	7
		ATOM	1474	CA	PHE			8.681	44.506	34.480		58.44	6
		ATOM	1475	CB	PHE			9.041	45.562	35.540		61.34	6
		MOTA	1476	CG	PHE	А	451	9.873	46.717	35.008	1.00	63.02	6

	5	MOTA	1477	CD1	PHE	Α	451	9.426	47.507	33.963	1.00	62.92	6
		ATOM	1478	CD2	PHE	Α	451	11.089	47.017	35.593	1.00	63.07	6
		ATOM	1479	CE1	PHE	Α	451	10.199	48.598	33.521	1.00	65.12	6
		ATOM	1480	CE2	PHE	Α	451	11.860	48.102	35.156	1.00	64.66	6
		ATOM	1481	CZ	PHE	Α	451	11.410	48.897	34.118	1.00	67.12	6
	10	MOTA	1482	С	PHE	Α	451	8.259	43.264	35.260	1.00	56.41	6
		ATOM	1483	0	PHE	Α	451	7.641	43.392	36.331	1.00	56.56	8
		ATOM	1484	N	PRO			8.555	42.045	34.755		53.28	7
		ATOM	1485	CD	PRO			9.177	41.689	33.481		50.46	6
		ATOM	1486	CA	PRO			8.153	40.859	35.543		50.26	6
	15	ATOM	1487	СВ	PRO			8.739	39.680	34.780		49.19	6
		ATOM	1488	CG	PRO			9.178	40.206	33.482		45.89	6
		ATOM	1489	С	PRO			8.770	40.999	36.935		49.62	6
		ATOM	1490	0	PRO			9.867	41.529	37.094		52.35	8
		ATOM	1491	N	PRO			8.139	40.425	37.947		51.50	7
	20	ATOM	1492	CD	PRO			7.001	39.542	37.797		49.66	6
		ATOM	1493	CA	PRO			8.610	40.528	39.323		50.89	6
		ATOM	1494	СВ	PRO			7.675	39.659	40.109		51.49	6
		ATOM	1495	CG	PRO			6.703	39.141	39.185		50.82	6
		ATOM	1496	С	PRO			10.015	40.084	39.532		50.99	6
-2	25	ATOM	1497	0	PRO			10.876	40.900	39.838		54.17	8
1		ATOM	1498	N	LEU			10.255	38.781	39.423		51.21	7
IJ		ATOM	1499	CA	LEU			11.585	38.298	39.674		47.17	6
ļh		ATOM	1500	СВ	LEU			11.813	36.962	38.975		44.44	6
. 4		ATOM	1501	CG	LEU			13.167	36.375	39.289		41.33	6
i.	30	ATOM	1502		LEU			13.524	36.638	40.720		35.93	6
اً الله		ATOM	1503		LEU			13.169	34.907	38.992		34.79	6
E:		ATOM	1504	С	LEU			12.541	39.375	39.182		42.25	6
		ATOM	1505	0	LEU			13.477	39.718	39.886		40.82	8
W		ATOM	1506	N	PHE			12.270	39.957	38.011		39.29	7
	35	ATOM	1507	CA	PHE			13.133	41.005	37.473		41.81	6
		ATOM	1508	СВ	PHE			12.527	41.592	36.192		47.22	6
Ē		ATOM	1509	CG	PHE			13.433	42.565	35.467		56.97	6
144		ATOM	1510	CD1	PHE			14.715	42.189	35.135	1.00	57.23	6
		ATOM	1511	CD2	PHE			12.999	43.840	35.126		59.40	6
	40	ATOM	1512		PHE			15.557	43.059	34.466		56.58	6
		ATOM	1513		PHE			13.848	44.716	34.452	1.00	61.80	6
		ATOM	1514	CZ	PHE	Α	455	15.129	44.322			59.94	6
		MOTA	1515	С	PHE			13.273	42.085	38.534		45.12	6
		MOTA	1516	0	PHE	Α	455	14.361	42.323	39.034	1.00	39.95	8
	45	MOTA	1517	N	LEU	Α	456	12.155	42.735	38.849	1.00	43.92	7
		ATOM	1518	CA	LEU			12.122	43.803	39.840	1.00	44.08	6
		ATOM	1519	СВ	LEU			10.680	44.251	40.093		50.20	6
		ATOM	1520	CG	LEU	Α	456	10.062	45.242	39.144		55.79	6
		ATOM	1521		LEU			8.598	45.432	39.450		54.70	6
	50	ATOM	1522		LEU			10.807	46.548	39.295		53.01	6
		ATOM	1523	С	LEU			12.739	43.355	41.136		44.65	6
		ATOM	1524	0	LEU			13.597	44.022	41.685		45.93	8
		ATOM	1525	N	GLU			11.973	41.761	41.851		44.56	7
		ATOM	1526	CA	GLU			12.475	41.179	43.105		46.37	6
	55	ATOM	1527	С	GLU			14.005	41.236	43.132		43.60	6
		ATOM	1528	Ō	GLU			14.583	41.724	44.117		42.69	8
		ATOM	1529	СВ	GLU			12.024	39.723	43.223		50.16	6
		ATOM	1530	CG	GLU			11.114	39.476	44.427		20.00	6
					-				-				

	5	ATOM	1531	CD	GLU	Α	457	10.807	37.994	44.648	1.00	20.00	6
		ATOM	1532	OE1	GLU	Α	457	11.673	37.099	44.311	1.00	20.00	8
		MOTA	1533	OE2	GLU	Α	457	9.683	37.639	45.172	1.00	20.00	8
		MOTA	1534	N	VAL	Α	458	14.928	41.078	41.903	1.00	43.21	7
		MOTA	1535	CA	VAL	Α	458	16.412	41.094	41.868	1.00	44.98	6
	10	MOTA	1536	CB	VAL	Α	458	16.881	40.306	40.642	1.00	44.83	6
		ATOM	1537	CG1	VAL	Α	458	18.365	40.106	40.698	1.00	49.72	6
		MOTA	1538	CG2	VAL	A	458	16.185	38.979	40.558	1.00	40.89	6
		MOTA	1539	С	VAL	Α	458	17.130	42.420	41.877	1.00	42.72	6
		MOTA	1540	0	VAL	Α	458	18.061	42.617	42.658	1.00	42.88	8
	15	ATOM	1541	N	PHE	Α	459	16.713	43.325	41.010	1.00	44.53	7
		ATOM	1542	CA	PHE	Α	459	17.385	44.606	40.892	1.00	48.18	6
		ATOM	1543	СВ	PHE	Α	459	17.281	45.104	39.494	1.00	43.60	6
		ATOM	1544	CG	PHE	Α	459	17.915	44.190	38.547	1.00	40.79	6
		MOTA	1545	CD1	PHE	Α	459	17.325	42.983	38.244	1.00	41.01	6
	20	MOTA	1546	CD2	PHE	Α	459	19.153	44.483	38.054	1.00	39.48	6
		MOTA	1547	CE1	PHE	À	459	17.988	42.081	37.441	1.00	40.62	6
		ATOM	1548	CE2	PHE	Α	459	19.814	43.589	37.257	1.00	36.87	6
		ATOM	1549	CZ	PHE	Α	459	19.233	42.385	36.940	1.00	36.39	6
		ATOM	1550	С	PHE	Α	459	16.837	45.648	41.744	1.00	52.71	6
٠Đ	25	ATOM	1551	0	PHE	Α	459	17.492	46.682	42.017	1.00	51.34	8
TU TU		ATOM	1552	N	GLU	Α	460	15.606	45.422	42.161	1.00	62.92	7
I		ATOM	1553	CA	GLU	Α	460	15.066	46.428	42.965	1.00	69.33	6
		MOTA	1554	СВ	GLU	Α	460	13.552	46.352	43.094	1.00	72.95	6
		ATOM	1555	CG	GLU	Α	460	12.978	47.767	42.957	1.00	78.35	6
	30	ATOM	1556	CD	GLU	Α	460	12.246	48.261	44.157	1.00	82.97	6
44		ATOM	1557	OE1	GLU	Α	460	12.471	47.759	45.281	1.00	88.28	8
		ATOM	1558	OE2	GLU	Α	460	11.422	49.200	44.017	1.00	84.80	8
		ATOM	1559	С	GLU	Α	460	15.736	46.245	44.272	1.00	71.87	6
IJ.		ATOM	1560	0	GLU	Α	460	16.187	45.170	44.691	1.00	74.51	. 8
	35	ATOM	1561	N	ASP	A	461	15.790	47.373	44.917	1.00	78.50	7
ī		ATOM	1562	CA	ASP	Α	461	16.415	47.505	46.173	1.00	84.19	6
Ď		ATOM	1563	СВ	ASP	Α	461	16.394	48.981	46.471	1.00	85.82	6
- 2222		ATOM	1564	CG	ASP	Α	461	16.801	49.786	45.276	1.00	89.62	6
		ATOM	1565	OD1	ASP	Α	461	16.692	49.344	44.086	1.00	93.00	8
	40	ATOM	1566	OD2	ASP	Α	461	17.239	50.923	45.482	1.00	93.04	8
		ATOM	1567	С	ASP	Α	461	15.639	46.703	47.214	1.00	86.80	6
		ATOM	1568	0	ASP	Α	461	16.245	45.748	47.731	1.00	88.70	8
		ATOM	1569	TXO	ASP	Α	461	14.457	47.026	47.451	1.00	88.70	8
		TER											
	45	ATOM	1	CB	LYS			-20.802	66.251	39.780		46.72	6
		ATOM	2	CG	LYS	В	211	-19.566	65.345	39.922	1.00	56.48	6
		ATOM	3	CD	LYS	В	211	-18.264	66.114	40.045	1.00	60.93	6
		ATOM	4	CE	LYS	В	211	-18.043	67.067	38.886	1.00	61.95	6
		ATOM	5	NZ	LYS	В	211	-19.008	68.224	38.903	1.00	69.93	7
	50	MOTA	6	С	LYS	В	211	-22.418	67.861	40.818	1.00	35.68	6
		ATOM	7	0	LYS	В	211	-23.356	67.113	40.454	1.00	33.58	8
		ATOM	8	N	LYS	В	211	-20.742	66.675	42.239	1.00	45.76	7
		ATOM	9	CA	LYS	В	211	-20.998	67.285	40.894	1.00	43.42	6
		ATOM	10	N	PRO	В	212	-22.610	69.205	41.068	1.00	35.64	7
	55	ATOM	11	CD	PRO	В	212	-21.526	70.177	41.287	1.00	38.60	6
		MOTA	12	CA	PRO	В	212	-23.943	69.861	41.036	1.00	38.35	6
		ATOM	13	CB	PRO			-23.657	71.320	41.420	1.00	38.95	6
		MOTA	14	CG	PRO	В	212	-22.226	71.474	41.551	1.00	42.00	6

	5	MOTA	15	С	PRO	. B	212	-24.798	69.772	39.807	1.00	38.78	6
		MOTA	16	0	PRO	В	212	-24.350	70.045	38.696	1.00	34.64	8
		MOTA	17	N	GLU	В	213	-26.058	69.424	40.032	1.00	40.31	7
		MOTA	18	CA	GLU	В	213	-27.081	69.290	39.003	1.00	43.87	6
		MOTA	19	CB	GLU	В	213	-27.895	68.004	39.265	1.00	45.16	6
	10	ATOM	20	CG	GLU	В	213	-27.032	66.709	39.286	1.00	47.60	6
		MOTA	21	CD	GLU	В	213	-27.807	65.421	39.199	1.00	50.68	6
		ATOM	22	OE1	GLU	В	213	-28.847	65.244	39.886	1.00	59.18	8
		ATOM	23	OE2	GLU	В	213	-27.382	64.516	38.442	1.00	49.06	8
		ATOM	24	С	GLU	В	213	-27.924	70.576	39.080	1.00	45.96	6
	15	MOTA	25	0			213	-27.624	71.467	39.859	1.00	43.13	8
		ATOM	26	N	PRO	В	214	-28.987	70.698	38.308	1.00	46.52	7
		ATOM	27	CD			214	-29.484	69.635	37.446		46.44	6
		ATOM	28	CA			214	-29.843	71.907	38.302		47.52	6
		ATOM	29	СВ			214	-30.799	71.639	37.210		45.40	6
	20	ATOM	30	CG			214	-30.530	70.257	36.805		49.89	6
		MOTA	31	C			214	-30.574	72.330	39.535		45.70	6
		ATOM	32	0			214	-30.597	71.595	40.483		44.49	8
		ATOM	33	N			215	-31.180	73.515	39.506		45.24	7
		ATOM	34	CA			215	-31.965	74.036	40.652		49.36	6
	25	ATOM	35	CB			215	-31.443	75.420	41.091		44.86	6
ī.		ATOM	36	OG1	THR			-32.249	76.464	40.534		52.26	8
ij		ATOM	37	CG2	THR			-30.011	75.617	40.659		39.43	6
ļ.		ATOM	38	C			215	-33.386	74.239	40.114		52.51	6
		ATOM	39	0			215	-33.562	74.868	39.078		53.48	8
	30	ATOM	40	N	ASP			-34.387	73.741	40.829		58.81	7
,	50	ATOM	41	CA	ASP			-35.795	73.865	40.435		61.51	6
81		ATOM	42	СВ	ASP		216	-36.674	74.005	41.650		70.57	6
		ATOM	43	CG	ASP			-37.675	72.981	41.710		78.07	6
ΙΨ		ATOM	44		ASP			-38.228	72.588	40.652		82.31	8
IJ	35	ATOM	45		ASP			-37.983	72.567	42.830		86.55	8
	55	ATOM	46	C	ASP			-35.920	75.123	39.648		58.42	6
		ATOM	47	0	ASP			-36.847	75.317	38.827		56.85	8
ű		ATOM	48	N	GLU			-34.954	75.979	39.984		54.92	7
		ATOM	49	CA	GLU			-34.851	77.259	39.353		53.37	6
	40	ATOM	50	CB	GLU			-34.104	78.264			51.02	6
	10	ATOM	51	CG	GLU			-34.151	79.689	39.679		40.00	6
		ATOM	52	CD			217	-34.301	80.745	40.739		40.00	6
		ATOM	53		GLU			-34.089	80.443	41.945		40.00	8
		ATOM	54		GLU			-34.625	81.921	40.411		40.00	8
	45	ATOM	55	C	GLU			-34.232	77.163	37.957		53.55	6
	73	ATOM	56	0	GLU			-34.815	77.612	37.018		54.33	8
		ATOM	57	N	GLU			-33.063	76.572	37.839		49.20	7
		ATOM	58	CA	GLU			-32.318	76.372	36.608		45.20	6
			59		GLU			-30.965		36.981		43.43	6
	50	ATOM		CB					75.793				
	30	ATOM	60	CG	GLU			-30.065	76.728	37.801		40.86	6 6
		ATOM	61	CD OF1	GLU			-28.713	76.159	38.072		39.88	
		ATOM	62		GLU			-28.606	74.967	38.449		37.61	8
		ATOM	63		GLU			-27.707	76.901	37.945		34.01	8
	55	ATOM	64	С	GLU			-33.014	75.475	35.610		44.71	6
	55	ATOM	65	0	GLU				75.686	34.405		45.31	8
		ATOM	66	N	TRP				74.439	36.131		44.02	7
		ATOM	67	CA	TRP				73.490	35.290		46.97	6
		ATOM	68	СВ	TRP	В	219	-35.046	72.408	36.119	1.00	48.42	6

	5	MOTA	69	CG	TRP	В	219	-34.195	71.230	36.374	1.00	54.61	6
		ATOM	70	CD2	TRP	В	219	-34.048	70.120	35.478		55.24	6
		MOTA	71	CE2	TRP	В	219	-33.076	69.248	36.063	1.00	53.67	6
		MOTA	72	CE3	TRP	В	219	-34.615	69.771	34.252	1.00	54.55	6
		MOTA	73	CD1	TRP	В	219	-33.399	71.019	37.415	1.00	55.75	6
	10	ATOM	74	NE1	TRP	В	219	-32.697	69.838	37.236	1.00	54.43	7
		MOTA	75	CZ2	TRP	В	219	-32.635	68.075	35.431	1.00	52.54	6
		MOTA	76	CZ3	TRP	В	219	-34.214	68.603	33.643	1.00	55.17	6
		MOTA	77	CH2	TRP	В	219	-33.234	67.758	34.214	1.00	55.59	6
		MOTA	78	С	TRP	В	219	-35.409	74.199	34.459	1.00	47.32	6
	15	ATOM	79	0	TRP	В	219	-35.561	73.914	33.277	1.00	43.56	8
		MOTA	80	N	GLU	В	220	-36.126	75.130	35.084	1.00	49.91	7
		ATOM	81	CA	GLU	В	220	-37.158	75.874	34.402	1.00	53.57	6
		ATOM	82	СВ	GLU			-37.811	76.820	35.373		58.18	6
		ATOM	83	CG	GLU			-39.251	76.812	35.221	1.00	73.13	6
	20	ATOM	84	CD	GLU			-39.824	76.858	36.489		80.06	6
		ATOM	85	OE1	GLU	В	220	-39.485	75.995	37.324	1.00	82.12	8
		ATOM	86	OE2	GLU			-40.635	77.740	36.718		82.78	8
		ATOM	87	C	GLU			-36.539	76.645	33.250		50.51	6
		ATOM	88	0	GLU			-37.160	76.793	32.195		49.94	8
Ī	25	ATOM	89	N	LEU			-35.312	77.135	33.455		43.71	7
ī.	-	ATOM	90	CA	LEU			-34.604	77.884	32.411		42.81	6
H		ATOM	91	СВ	LEU			-33.214	78.324	32.865		39.21	6
ink		ATOM	92	CG	LEU			-32.321	78.833	31.754		36.34	6
إلى: "		ATOM	93	CD1	LEU	В	221	-33.073	79.843	30.927		36.93.	6
i d 'uj	30	ATOM	94		LEU		221	-31.058	79.446	32.331		24.18	6
ٳۣٞۑڎٵ		ATOM	95	C	LEU			-34.454	77.011	31.192		43.46	6
Ħ		ATOM	96	0	LEU			-34.819	77.406	30.104		45.25	8
		ATOM	97	N	ILE			-33.878	75.829	31.398		39.09	7
IJ		ATOM	98	CA	ILE			-33.687	74.857	30.330		35.47	6
	35	ATOM	99	СВ	ILE		222	-33.224	73.516	30.871		33.74	6
		ATOM	100	CG2	ILE		222	-33.204	72.488	29.776		28.86	6
		ATOM	101	CG1	ILE		222	-31.840	73.631	31.493		33.33	6
۱ <u>.</u>		ATOM	102	CD1	ILE		222	-31.435	72.419	32.264		34.85	6
		ATOM	103	C	ILE			-34.991	74.627	29.598		34.26	6
	40	ATOM	104	0	ILE			-35.082	74.832	28.392		31.90	8
		ATOM	105	N	LYS			-35.992	74.183	30.346		39.49	7
		ATOM	106	CA	LYS			-37.300	73.892	29.785		44.43	6
		ATOM	107	СВ	LYS			-38.351	73.876	30.882		50.81	6
		ATOM	108	CG	LYS			-39.693	73.358	30.411		62.51	6
	45	ATOM	109	CD	LYS			-40.795	73.532	31.449		72.22	6
		ATOM	110	CE	LYS			-42.163	73.249	30.827		74.55	6
		ATOM	111	NZ	LYS			-43.268	73.378	31.837		75.78	7
		ATOM	112	С	LYS			-37.648	74.942	28.755		42.81	6
		ATOM	113	0	LYS			-38.337	74.661	27.796		40.36	8
	50	ATOM	114	N	THR			-37.146	76.156	28.979		39.89	7
		ATOM	115	CA	THR			-37.353	77.293	28.074		39.93	6
		ATOM	116	CB	THR			-36.956	78.609	28.776		40.57	6
		ATOM	117	OG1	THR			-37.646	78.740	30.028		39.27	8
		ATOM	118	CG2	THR			-37.040	79.805	27.893		38.11	6
	55	ATOM	119	CGZ	THR			-37.273 -36.521	77.094	26.789		39.96	6
	JJ	ATOM	120	0	THR			-37.043	76.677	25.756		36.67	8
		ATOM	121	N	VAL			-35.231	77.421	26.888		38.02	7
		ATOM	122	CA	VAL			-34.263	77.421	25.801		38.12	6
		111011	144	CA	ΛΥT	ט	223	33.203	11.200	20.001	1.00	JU.12	J

	5	ATOM	123	СВ	VAL B	225	-32.869	77.015	26.348	1.00	38.19	6
		ATOM	124	CG1	VAL B	225	-31.863	76.983	25.226	1.00	36.77	6
		ATOM	125	CG2	VAL B	225	-32.483	78.050	27.353	1.00	41.76	6
		ATOM	126	С	VAL B	225	-34.656	76.191	24.843	1.00	37.52	6
		ATOM	127	0	VAL B	225	-34.621	76.364	23.638	1.00	36.77	8
	10	ATOM	128	N	THR B	226	-35.005	75.046	25.410	1.00	34.02	7
		ATOM	129	CA	THR B	226	-35.423	73.887	24.638	1.00	34.67	6
		ATOM	130	СВ	THR B	226	-35.677	72.707	25.574	1.00	30.56	6
		ATOM	131	OG1	THR B		-34.432	72.225	26.084	1.00	32.20	8
		ATOM	132	CG2			-36.413	71.595	24.874	1.00	20.99	6
	15	ATOM	133	С	THR B	226	-36.664	74.170	23.803	1.00	36.41	6
		ATOM	134	0	THR B		-36.633	74.054	22.578	1.00	39.64	8
		ATOM	135	N	ALA B		-37.746	74.542	24.480	1.00	39.20	7
		ATOM	136	CA	ALA B	227	-39.008	74.861	23.822	1.00	36.93	6
		ATOM	137	СВ	ALA B		-39.914	75.631	24.785	1.00	38.06	6
	20	ATOM	138	С	ALA B		-38.686	75.719	22.608	1.00	37.69	6
		ATOM	139	0	ALA B	227	-39.317	75.616	21.566	1.00	40.94	8
		ATOM	140	N	ALA B		-37.677	76.572	22.785	1.00	32.86	7
		ATOM	141	CA	ALA B		-37.216	77.483	21.753	1.00	32.48	6
		ATOM	142	СВ	ALA B		-36.252	78.458	22.358	1.00	28.25	6
£	25	ATOM	143	С	ALA B		-36.545	76.704	20.638	1.00	36.12	6
IU ID		ATOM	144	0	ALA B	228	-37.078	76.586	19.544	1.00	37.86	8
II		ATOM	145	N	HIS B		-35.364	76.175	20.924	1.00	33.58	7
		ATOM	146	CA	HIS B	229	-34.611	75.409	19.956	1.00	32.97	6
, 4 ₀		ATOM	147	СВ	HIS B	229	-33.418	74.721	20.597	1.00	33.69	6
<u></u>	30	ATOM	148	CG	HIS B	229	-32.776	73.714	19.715	1.00	28.39	6
, "da",		ATOM	149	CD2	HIS B	229	-32.535	72.384	19.863	1.00	28.83	6
11 4 11		ATOM	150	ND1	HIS B	229	-32.336	74.030	18.426	1.00	30.47	7
		ATOM	151	CE1	HIS B	229	-31.867	72.929	17.855	1.00	26.95	6
		ATOM	152	NE2	HIS B	229	-31.976	71.927	18.700	1.00	31.27	7
U	35	ATOM	153	С	HIS B	229	-35.362	74.352	19.202	1.00	38.40	6
		ATOM	154	0	HIS B	229	-35.069	74.131	18.045	1.00	41.49	8
£		ATOM	155	N	VAL B	230	-36.296	73.688	19.882	1.00	38.55	7
·mr		ATOM	156	CA	VAL B	230	-37.077	72.634	19.263	1.00	40.40	6
		ATOM	157	CB	VAL B	230	-37.744	71.747	20.310	1.00	44.68	6
	40	ATOM	158	CG1	VAL B	230	-38.381	70.537	19.637	1.00	39.39	6
		ATOM	159	CG2	VAL B		-36.742	71.311	21.356		42.18	6
		ATOM	160	С	VAL B		-38.133	73.130	18.284		44.28	6
		ATOM	161	0	VAL B		-38.375	72.505	17.248		45.94	8
		ATOM	162	N	ALA B		-38.774	74.240	18.623	1.00	45.59	7
	45	ATOM	163	CA	ALA B		-39.820	74.804	17.792		47.84	6
		ATOM	164	CB	ALA B		-40.736	75.661	18.647		45.08	6
		ATOM	165	С	ALA B		-39.235	75.636	16.673		48.04	6
		ATOM	166	0	ALA B		-39.959	76.128	15.816		49.95	8
		ATOM	167	N	THR B		-37.914	75.773	16.669	1.00	47.26	7
	50	ATOM	168	CA	THR B		-37.220	76.563	15.654		43.64	6
		ATOM	169	СВ	THR B		-36.482	77.746	16.315		41.93	6
		ATOM	170		THR B		-35.385	77.270	17.098		39.10	8
		ATOM	171	CG2			-37.423	78.523	17.232		29.80	6
		ATOM	172	С	THR B		-36.194	75.719	14.914		43.97	6
	55	ATOM	173	0	THR B		-35.401	76.252	14.155		40.55	8
		ATOM	174	N	ASN B		-36.195	74.407	15.157		48.62	7
		ATOM	175	CA	ASN B		-35.247	73.511	14.483		58.62	6
		'ATOM	176	CB	ASN B	233	-34.621	72.537	15.500	1.00	62.44	6

	5	ATOM	177	CG	ASN F	3 233	-33.407	71.812	14.946	1.00	68.35	6
		ATOM	178	OD1	ASN E	3 233	-32.569	72.427	14.256	1.00	65.50	8
		ATOM	179	ND2	ASN E	3 233	-33.288	70.529	15.265	1.00	74.29	7
		ATOM	180	С	ASN E	3 233	-36.033	72.755	13.437	1.00	65.06	6
		ATOM	181	0	ASN E		-36.950	72.005	13.754		69.47	8
	10	ATOM	182	N	ALA I		-35.674	72.986	12.182		68.80	7
	10	ATOM	183	CA	ALA I		-36.352	72.376	11.036		70.98	6
		ATOM	184	CB	ALA I		-35.585	72.701	9.769		71.43	6
			185	СВ	ALA I		-36.556	70.880			73.83	6
		ATOM							11.111			
	1.5	ATOM	186	0	ALA E		-35.677	70.142	11.501		74.33	8
	15	ATOM	187	N	GLN E		-37.754	70.479	10.717		75.07	7
		ATOM	188	CA	GLN E		-38.149	69.095	10.690		76.32	6
		ATOM	189	CB	GLN E		-37.468	68.365	9.533		76.98	6
		MOTA	190	CG	GLN E		-38.120	68.540	8.170		77.07	6
		ATOM	191	CD	GLN E		-38.572	69.940	7.909	1.00	80.85	6
	20	ATOM	192	OE1	GLN E	3 235	-39.575	70.401	8.491	1.00	82.01	8
		MOTA	193	NE2	GLN E	3 235	-37.862	70.620	7.040	1.00	78.80	7
		ATOM	194	С	GLN E	3 235	-37.904	68.331	11.953	1.00	77.15	6
		ATOM	195	0	GLN E	3 235	-38.087	67.137	11.947	1.00	76.06	8
		ATOM	196	N	GLY E	3 236	-37.511	68.985	13.039	1.00	77.46	7
Ĭ	25	ATOM	197	CA	GLY E	3 236	-37.304	68.263	14.288	1.00	78.37	6
IJ		ATOM	198	С	GLY E		-36.717	66.882	14.217		79.43	6
ij		ATOM	199	0	GLY E		-35.717	66.650	13.542		79.47	8
		ATOM	200	N	SER E		-37.420	66.007	14.943		77.98	7
,44		ATOM	201	CA	SER E		-37.117	64.600	15.092		76.49	6
	30	ATOM	202	СВ	SER E		-38.118	63.953	16.066		76.46	6
	50	ATOM	203	C	SER E		-37.181	63.895	13.737	1.00		6
Ξí		ATOM	204	0	SER E		-36.493	62.911	13.737	1.00		8
1245 1865		ATOM	205	N	HIS E		-38.004	64.443	12.845		75.56	7
ليا			206									
W	35	ATOM		CA			-38.293	63.926	11.519		75.46	6
	33	ATOM	207	СВ	HIS E		-39.663	64.397	11.096		75.85	6
		ATOM	208	C	HIS E		-37.369	64.216	10.380		74.10	6
		ATOM	209	0	HIS E		-37.747	64.135	9.222		75.34	8
		ATOM	210	N	TRP E		-36.127	64.427	10.651		73.39	7
	40	ATOM	211	CA		239	-35.345	64.786	9.519	1.00		6
	40	MOTA	212	СВ	TRP E		-34.121	65.542	9.934	1.00		6
		ATOM	213	CG	TRP E		-33.085	64.786	10.737	1.00		6
		ATOM	214		TRP E		-31.727	64.530	10.302	1.00		6
		ATOM	215		TRP E		-31.069	63.848	11.393	1.00		6
		ATOM	216	CE3	TRP E	239	-30.949	64.941	9.196	1.00	95.35	6
	45	ATOM	217	CD1	TRP E	239	-33.237	64.180	11.926	1.00	94.16	6
		MOTA	218	NE1	TRP E	239	-32.022	63.631	12.347	1.00	97.48	7
		ATOM	219	CZ2	TRP E	239	-29.706	63.475	11.348	1.00	96.23	6
		ATOM	220	CZ3	TRP E	239	-29.613	64.533	9.128	1.00	96.75	6
		ATOM	221	CH2	TRP E	239	-28.978	63.870	10.215	1.00	97.32	6
	50	ATOM	222	С	TRP E	239	-34.994	63.722	8.539	1.00	70.77	6
		ATOM	223	0	TRP E		-35.423	63.772	7.388	1.00	71.70	8
		ATOM	224	N	LYS E		-34.165	62.791	8.955	1.00		7
		ATOM	225	CA	LYS E		-33.724	61.744	8.077	1.00		6
		ATOM	226	СВ	LYS E		-33.321	60.539	8.906	1.00		6
	55	ATOM	227	CG	LYS E		-32.210	60.824	9.905	1.00		6
		ATOM	228	CD	LYS E		-31.759	59.553	10.602	1.00		6
		ATOM	229	CE	LYS E		-30.576	59.843	11.493	1.00		6
		ATOM	230	NZ	LYS E		-30.376	58.604	12.157	1.00		7
		111 011	230	112	T10 E	240	50.100	50.004	12.101	1.00	, J	,

	5	ATOM	285	CD1	LEU	В	246	-28.481	70.137	-4.349	1.00	52.43	6
		ATOM	286	CD2	LEU	В	246	-26.112	70.470	-3.719	1.00	51.69	6
		ATOM	287	С	LEU	В	246	-27.585	66.379	-4.740	1.00	62.05	6
		ATOM	288	0	LEU	В	246	-26.789	65.446	-4.486	1.00	59.85	8
		ATOM	289	N	PRO	В	247	-27.930	66.693	-5.984	1.00	63.33	7
	10	ATOM	290	CD	PRO	В	247	-28.839	67.781	-6.363	1.00	64.44	6
		MOTA	291	CA	PRO	В	247	-27.391	65.958	-7.130	1.00	63.56	6
		ATOM	292	СВ			247	-27.976	66.675	-8.340	1.00	64.42	6
		ATOM	293	CG	PRO		247	-28.873	67.714	-7.841		64.90	6
		ATOM	294	С			247	-25.866	65.947	-7.143		61.94	6
	15	ATOM	295	0	PRO		247	-25.223	66.944	-6.856		61.60	8
		ATOM	296	N	GLU			-25.333	64.771	-7.478		61.33	7
		ATOM	297	CA	GLU			-23.896	64.516	-7.590		63.50	6
		ATOM	298	СВ	GLU			-23.630	63.154	-8.248		66.94	6
		ATOM	299	CG	GLU			-22.168	62.953	-8.713		68.70	6
	20	ATOM	300	CD	GLU			-21.898	61.745	-9.580		40.00	6
		ATOM	301	OE1	GLU			-22.863		-10.035		40.00	8
		ATOM	302	OE2	GLU			-20.709	61.460	-9.838		40.00	8
		ATOM	303	С	GLU			-23.158	65.571	-8.415		64.19	6
	-	ATOM	304	0	GLU			-22.056	65.975	-8.066		65.56	8
Ē	25	ATOM	305	N	ASP			-23.796	66.019	-9.498		64.36	7
IJ		ATOM	306	CA	ASP			-23.254		-10.436		63.33	6
II		ATOM	307	СВ	ASP			-24.122		-11.698		62.97	6
		ATOM	308	CG	ASP			-25.437		-11.489		64.63	6
, -J		ATOM	309		ASP			-26.235		-10.629		64.84	8
	30	ATOM	310		ASP			-25.726		-12.189		66.52	8
اله.		ATOM	311	C	ASP			-23.068	68.413	-9.960		64.31	6
31		ATOM	312	0	ASP			-22.117		-10.355		64.73	8
		ATOM	313	N	ILE			-23.987	68.892	-9.136		63.09	7
IJ		ATOM	314	CA	ILE			-23.921	70.281	-8.660		64.39	6
	35	ATOM	315	СВ	ILE			-25.124	70.575	-7.798		65.79	6
		ATOM	316	CG2	ILE			-25.559	72.041	-7.858		64.78	6
Ē		ATOM	317	CG1	ILE			-26.348	69.752	-8.206		65.28	6
£		ATOM	318	CD1	ILE			-27.671	70.444	-7.887		65.08	6
		ATOM	319	C	ILE			-22.815	70.488	-7.714		65.21	6
	40	ATOM	320	0	ILE			-22.754	69.847	-6.656		64.05	8
		ATOM	321	N	GLY			-22.024	71.392	-8.103		65.48	7
		ATOM	322	CA	GLY			-20.873	71.721	-7.342		67.32	6
		ATOM	323	С	GLY			-19.808	70.806	-7.800		68.52	6
		ATOM	324	0	GLY			-19.791	70.548	-9.025		65.49	8
	45	ATOM	325	N	GLN			-19.074	70.440	-6.799		72.26	7
		ATOM	326	CA	GLN			-17.949	69.540	-6.883		74.10	6
		ATOM	327	СВ	GLN			-18.460	68.098	-6.723		75.82	6
		ATOM	328	CG	GLN			-17.367	67.088	-6.356		77.81	6
		ATOM	329	CD	GLN			-17.924	65.759	-5.824		79.38	6
	50	ATOM	330		GLN			-18.615	65.042	-6.549		80.55	8
	50	ATOM	331		GLN			-17.661	65.380	-4.586		78.12	7
		ATOM	332	C	GLN			-17.258	69.727	-8.258		77.17	6
		ATOM	333	0	GLN			-17.977	70.009	-9.227		76.50	8
		ATOM	334	N	ALA			-15.718	69.795	-8.279		80.78	7
	55	ATOM	335	CA	ALA			-14.615	70.766	-8.544		83.70	6
		ATOM	336	CB	ALA			-13.794	70.700	-7.255		83.23	6
		ATOM	337	C	ALA			-13.605	70.732	-9.731		85.59	6
		ATOM	338		ALA			-13.186		-10.171		85.69	8
		111 011	550	J	ייחני	ر	200	10.100	JJ. UJI	10.1/1	1.00	55.05	J

	5	ATOM	101	CA	LYS	В	274	-31.983	79.774	-2.147	1.00	54.53	6
		ATOM	102	СВ	LYS	В	274	-32.133	78.724	-3.232	1.00	54.36	6
		ATOM	103	С	LYS		274	-32.819	79.396	-0.931		56.88	6
		ATOM	104	0	LYS			-34.025	79.624	-0.906		57.98	8
		ATOM	105	N			275	-32.151	78.820	0.076		56.48	7
	10	ATOM	106	CA			275	-32.791	78.381	1.332		52.64	6
	10		107	CB			275						
		ATOM						-32.638	76.863	1.519		49.15	6
		ATOM	108	CG2	ILE			-33.505	76.105	0.529		47.42	6
		ATOM	109	CG1	ILE			-31.188	76.441	1.343		45.31	6
		ATOM	110	CD1	ILE			-30.990	74.952	1.391		37.22	6
	15	ATOM	111	С			275	-32.241	79.086	2.574		51.78	6
		ATOM	112	0			275	-32.858	79.049	3.622	1.00	49.80	8
		MOTA	113	N	ILE	В	276	-31.071	79.709	2.435	1.00	51.76	7
		ATOM	114	CA	ILE	В	276	-30.410	80.409	3.533	1.00	52.58	6
		ATOM	115	CB	ILE	В	276	-29.145	81.110	3.042	1.00	55.04	6
	20	ATOM	116	CG2	ILE	В	276	-29.486	82.172	2.017	1.00	53.28	6
		ATOM	117	CG1	ILE	В	276	-28.396	81.786	4.203	1.00	57.31	6
		ATOM	118	CD1	ILE			-27.862	80.854	5.231		60.32	6
		ATOM	119	C			276	-31.282	81.461	4.237		50.70	6
		ATOM	120	0	ILE			-31.015	81.817	5.385	1.00		8
ı	25	ATOM	121	N	THR			-32.322	81.953	3.568		47.33	7
IJ	23	ATOM	122	CA	THR			-33.174	82.968	4.141		42.59	6
177			123		THR			-34.042	83.632	3.048		44.97	6
		ATOM		CB									
14.1		ATOM	124	OG1	THR			-33.202	84.145	2.001	1.00		8
	20	ATOM	125	CG2	THR			-34.856	84.781	3.653	1.00		6
, real	30	MOTA	126	С	THR			-34.069	82.447	5.267	1.00		6
		MOTA	127	0	THR			-34.083	83.026	6.375	1.00		8
		MOTA	128	N	PRO			-34.832	81.385	5.017	1.00		7
		ATOM	129	CD	PRO			-34.925	80.666	3.747	1.00	36.34	6
ine Lil		ATOM	130	CA	PRO	В	278	-35.711	80.834	6.059	1.00	36.63	6
1.4±1 :===	35	MOTA	131	CB	PRO	В	278	-36.475	79.715	5.357	1.00	32.95	6
ind Ti		MOTA	132	CG	PRO	В	278	-35.833	79.516	4.056	1.00	35.75	6
Tabal LaFa		MOTA	133	С	PRO	В	278	-34.892	80.324	7.220	1.00	38.60	6
* Auf		ATOM	134	0	PRO	В	278	-35.372	80.157	8.331	1.00	37.67	8
		ATOM	135	N	ALA	В	279	-33.636	80.040	6.927	1.00	37.05	7
	40	ATOM	136	CA	ALA	В	279	-32.696	79.525	7.903	1.00	33.18	6
		ATOM	137	СВ	ALA	В	279	-31.391	79.195	7.205	1.00	30.56	6
		ATOM	138	С	ALA	В	279	-32.447	80.536	8.991	1.00		6
		ATOM	139	0	ALA			-32.623	80.238	10.158	1.00		8
		ATOM	140	N	ILE			-32.010	81.728	8.577	1.00		7
	45	ATOM	141	CA	ILE			-31.728	82.809	9.501	1.00		6
		ATOM	142	СВ	ILE			-31.190	84.040	8.754	1.00		6
		ATOM	143		ILE			-30.881	85.149	9.715	1.00		6
		ATOM	144		ILE			-29.904	83.696	8.007	1.00		
		ATOM											6
	50		145		ILE			-29.255	84.878	7.362	1.00		6
	50	ATOM	146	C	ILE			-32.964	83.172	10.310	1.00		6
		ATOM	147	0	ILE			-32.882	83.378	11.522	1.00		8
		ATOM	148	N	THR			-34.113	83.233	9.647	1.00		7
		ATOM	149	CA	THR			-35.361	83.586	10.328	1.00		6
		ATOM	150	CB	THR			-36.598	83.396	9.419	1.00		6
	55	ATOM	151		THR			-36.703	82.034	9.005	1.00		8
		ATOM	152		THR			-36.525	84.289	8.198	1.00		6
		ATOM	153	С	THR	В	281	-35.523	82.706	11.556	1.00	29.94	6
		ATOM	154	0	THR	В	281	-35.855	83.186	12.634	1.00	25.55	8
											•		

	5	ATOM	155	N	ARG I	в :	282	-35.296	81.405	11.378	1.00	32.70	7
		MOTA	156	CA	ARG 1	в :	282	-35.439	80.449	12.475	1.00	34.27	6
		MOTA	157	СВ	ARG I	в :	282	-34.999	79.060	12.020	1.00	33.78	6
		ATOM	158	CG	ARG I	в :	282	-35.986	77.944	12.280	1.00	45.15	6
		ATOM	159	CD	ARG I	в :	282	-36.701	77.514	11.015	1.00	58.24	6
	10	ATOM	160	NE	ARG I	в :	282	-35.771	77.153	9.969	1.00	68.41	7
		MOTA	161	CZ	ARG I	в :	282	-34.862	76.200	10.098		72.31	6
		ATOM	162	NH1				-34.779	75.502	11.232		77.89	7
		ATOM	163	NH2				-34.022	75.963	9.096		69.25	7
		ATOM	164	С	ARG I			-34.556	80.919	13.622		34.81	6
	15	ATOM	165	0	ARG I			-35.008	81.034	14.753		36.03	8
		ATOM	166	N	VAL			-33.288	81.183	13.289		31.71	7
		ATOM	167	CA	VAL I			-32.304	81.667	14.249		30.16	6
		ATOM	168	СВ	VAL I		283	-30.993	82.029	13.559		29.00	6
		ATOM	169	CG1				-30.015	82.617	14.557		28.64	6
	20	ATOM	170		VAL I			-30.385	80.816	12.915		28.28	6
	20	ATOM	171	C	VAL I			-32.848	82.884	14.994		32.50	6
		ATOM	172	0	VAL I			-32.619	83.057	16.185		33.48	8
		ATOM	173	N	VAL I			-33.573	83.728	14.265		30.96	7
		ATOM	174	CA	VAL I			-34.177	84.925	14.844		29.14	6
1	25	ATOM	175	CB	VAL I			-34.672	85.892	13.751		31.27	6
īŪ	23	ATOM	176		VAL I			-35.278	87.129	14.371		24.21	6
n i		ATOM	177		VAL I			-33.554	86.270	12.812		30.51	6
		ATOM	178	C	VAL I			-35.336	84.498	15.747		28.89	6
		ATOM	179	0	VAL I			-35.491	84.994	16.860		27.29	8
-4 -4	30	ATOM	180	N	ASP I			-36.143	83.564	15.250		28.76	7
	30	ATOM	181	CA	ASP I			-37.299	83.057	15.983		35.32	6
ē:		ATOM	182	CB	ASP I			-38.129	82.098	15.111		33.29	6
		ATOM	183	CG	ASP I			-38.881	82.795	14.013		38.15	6
IJ		ATOM	184	OD1				-39.660	83.729	14.305		34.70	8
	35	ATOM	185		ASP I			-38.741	82.406	12.821		34.43	8
	33	ATOM	186	C	ASP I			-36.863	82.339	17.257		36.70	6
£		ATOM	187	0	ASP I			-37.606	82.304	18.237		37.96	8
Ē		ATOM	188	N	PHE I			-35.663	81.755	17.235		35.96	7
		ATOM	189	CA	PHE I			-35.134	81.053	18.401		37.10	6
	40	ATOM	190	CB	PHE I			-33.134	80.262	18.052		37.10	6
	40	ATOM	191	CG	PHE I			-33.079	79.818	19.258		36.50	6
		ATOM	192		PHE I			-33.704	79.168	20.294		36.75	6
		ATOM	193		PHE I			-31.721	80.063	19.343		33.83	6
		ATOM	194		PHE I			-32.987	78.769	21.401		39.55	6
	45	ATOM	195		PHE I			-30.997	79.662	20.456		38.08	6
	73	ATOM	196	CZ	PHE I			-31.632	79.002	21.486		34.44	6
			197	C	PHE E			-31.832	82.023	19.504		36.83	6
		ATOM	197		PHE E			-34.808	81.845				
		ATOM		0						20.631		35.61	8 7
	50	ATOM	199	N	ALA H			-34.005	83.027	19.169		37.33	
	50	ATOM	200	CA	ALA E			-33.599	84.035	20.132		36.34	6
		ATOM	201	СВ	ALA I			-32.644	85.008	19.469		36.40	6
		ATOM	202	С	ALA E			-34.831	84.769	20.657		38.76	6
		ATOM	203	0	ALA E			-34.882	85.193	21.814		41.98	8
	55	ATOM	204	N G7	LYS E			-35.820	84.912	19.779		38.28	7
	55	ATOM	205	CA	LYS E			-37.066	85.584	20.112		45.26	6
		ATOM	206	CB	LYS E			-37.983	85.690	18.898		48.35	6
		ATOM	207	CG	LYS E			-37.577	86.756	17.916		51.43	6
		ATOM	208	CD	LYS E	3 2	288	-38.806	87.359	17.226	1.00	60.23	6

	5	ATOM	209	CE	LYS	В	288	-39.680	86.308	16.564	1.00	62.81	6
		MOTA	210	NZ	LYS	В	288	-38.897	85.460	15.614	1.00	64.69	7
		ATOM	211	С	LYS	В	288	-37.846	84.901	21.191	1.00	43.31	6
		ATOM	212	0	LYS	В	288	-38.650	85.532	21.857	1.00	45.66	8
		ATOM	213	N	LYS	В	289	-37.618	83.604	21.345	1.00	41.70	7
	10	ATOM	214	CA	LYS	В	289	-38.313	82.849	22.351	1.00	40.67	6
		ATOM	215	СВ			289	-38.554	81.418	21.845	1.00	42.25	6
		ATOM	216	CG			289	-39.438	81.368	20.589		39.53	6
		ATOM	217	CD	LYS		289	-40.093	80.010	20.422		43.19	6
		ATOM	218	CE	LYS		289	-41.025	79.987	19.223		45.74	6
	15	ATOM	219	NZ	LYS		289	-42.391	80.476	19.512		52.49	7
		ATOM	220	С	LYS		289	-37.555	82.871	23.668		41.50	6
		ATOM	221	0	LYS		289	-38.057	82.366	24.657	1.00		8
		ATOM	222	N	LEU			-36.365	83.482	23.661		40.68	7
		ATOM	223	CA	LEU			-35.539	83.599	24.854	1.00		6
	20	ATOM	224	СВ	LEU			-34.053	83.499	24.491		36.14	6
		ATOM	225	CG	LEU			-33.640	82.240	23.767		34.81	6
		ATOM	226		LEU			-32.147	82.255	23.523		29.07	6
		ATOM	227	CD2				-34.013	81.040	24.607		33.45	6
		ATOM	228	C	LEU			-35.832	84.915	25.577		40.08	6
ū	25	ATOM	229	0	LEU			-35.479	86.006	25.088		42.00	8
		ATOM	230	N	PRO			-36.462	84.840	26.765		40.27	7
		ATOM	231	CD	PRO		291	-36.819	83.613	27.494		39.65	6
		ATOM	232	CA	PRO		291	-36.782	86.069	27.501		38.28	6
		ATOM	233	CB	PRO			-37.376	85.574	28.811		35.88	6
 	30	ATOM	234	CG	PRO			-37.549	84.110	28.695		34.19	. 6
الم	30	ATOM	235	C	PRO			-35.570	87.002	27.714		40.05	6
81		ATOM	236	0	PRO			-35.625	88.197	27.403		41.33	8
		ATOM	237	N	MET		292	-34.474	86.476	28.258		40.59	7
W		ATOM	238	CA	MET		292	-33.296	87.286	28.545		42.86	6
	35	ATOM	239	CB			292	-32.149	86.376	28.975		43.28	6
ij	55	ATOM	240	CG			292	-32.553	85.302	29.970		50.35	6
Į		ATOM	241	SD	MET			-31.070	84.609	30.755		51.17	16
ij		ATOM	242	CE	MET			-31.797	83.212	31.701		54.63	6
		ATOM	243	C	MET			-32.895	88.077	27.315		41.05	6
	40	ATOM	244	0	MET			-32.228	89.098	27.420		39.66	8
		ATOM	245	N	PHE	_		-33.322	87.604	26.143		39.30	7
		ATOM	246	CA	PHE			-33.017	88.271	24.878		40.92	6
		ATOM	247	СВ	PHE			-33.296	87.329	23.707		40.98	6
		ATOM	248	CG	PHE			-32.937	87.909	22.365		42.78	6
	45	ATOM	249		PHE			-31.653	88.354	22.120		44.40	6
		ATOM	250		PHE			-33.872	87.972	21.350		43.66	6
		ATOM	251		PHE			-31.306	88.869	20.872		39.83	6
		ATOM	252		PHE			-33.525	88.486	20.100		46.21	6
		ATOM	253	CZ	PHE			-32.239	88.926	19.859		45.18	6
	50	ATOM	254	C	PHE			-33.873	89.518	24.744		45.54	6
	50	ATOM	255	0	PHE			-33.369	90.626	24.579		42.01	8
		ATOM	256	N	CYS			-35.181	89.305	24.808		47.05	7
		ATOM	257	CA	CYS			-36.146	90.382	24.689		50.15	6
		ATOM	258	CB	CYS			-37.553	89.793	24.756		45.90	6
	55	ATOM	259	SG	CYS			-37.333 -37.899	88.607	23.449		51.50	16
	55	ATOM	260	C	CYS			-37.899	91.474	25.751		51.38	6
		ATOM	261	0	CYS			-36.585	92.536	25.656		53.83	8
		ATOM	262	N	GLU			-35.137	91.200	26.753		49.72	7
		111 OF	202	7.4	0110	٦	2,0	55.157	J1.200	20.733	1.00	37.16	,

	5	MOTA	317	0	GLN	В	301	-3	0.162	90.662	18.100	1.00	45.02	8
		MOTA	318	N	ILE	В	302	-2	9.916	92.864	17.674	1.00	41.01	7
		MOTA	319	CA	ILE	В	302	-2	9.424	92.692	16.311	.1.00	40.23	6
		ATOM	320	СВ	ILE	В	302	-2	9.584	93.978	15.498	1.00	39.52	6
		MOTA	321	CG2	ILE	В	302	-2	9.034	93.792	14.100	1.00	31.98	6
	10	MOTA	322	CG1	ILE	В	302	-3	1.059	94.385	15.416	1.00	40.77	6
		ATOM	323	CD1	ILE	В	302	-3	1.939	93.317	14.775	1.00	45.43	6
		ATOM	324	С	ILE	В	302	-2	7.966	92.260	16.342	1.00	38.58	6
		ATOM	325	0	ILE	В	302	-2	7.613	91.197	15.830	1.00	40.81	8
		ATOM	326	N	ILE	В	303	-2	7.128	93.111	16.933	1.00	37.50	7
	15 [.]	ATOM	327	CA	ILE	В	303	-2	5.692	92.846	17.062	1.00	39.33	6
		ATOM	328	СВ	ILE	В	303	-2	5.066	93.648	18.203	1.00	39.06	6
		ATOM	329	CG2	ILE	В	303		3.566	93.405	18.257	1.00	36.19	6
		ATOM	330	CG1	ILE	В	303	-2	5.309	95.143	18.020	1.00	40.15	6
		ATOM	331	CD1	ILE	В	303	-2	4.816	95.966	19.173	1.00	36.93	6
	20	ATOM	332	С	ILE	В	303	-2	5.470	91.365	17.323	1.00	36.49	6
		ATOM	333	0	ILE	В	303	-2	4.619	90.725	16.712	1.00	36.58	8
		ATOM	334	N	LEU	В	304	-2	6.244	90.843	18.266	1.00	32.91	7
		ATOM	335	CA	LEU	В	304	-2	6.194	89.433	18.633	1.00	27.55	6
		ATOM	336	CB	LEU	В	304	-2	7.172	89.182	19.793	1.00	22.35	6
Ü	25	ATOM	337	CG	LEU	В	304	-2	6.623	89.449	21.187	1.00	26.88	6
IJ		ATOM	338	CD1	LEU	В	304	-2	5.540	90.495	21.136	1.00	24.82	6
ij		MOTA	339	CD2	LEU	В	304	-2	7.747	89.840	22.121	1.00	23.69	6
		MOTA	340	С	LEU	В	304	-2	6.505	88.547	17.425	1.00	28.05	6
1		ATOM	341	0	LEU	В	304	-2	5.668	87.751	16.983	1.00	24.68	8
	30	ATOM	342	N	LEU	В	305	-2	7.716	88.700	16.897	1.00	26.34	7
, ₄		ATOM	343	CA	LEU	В	305	-2	8.145	87.939	15.741	1.00	30.91	6
:: ::		ATOM	344	CB	LEU	В	305	-2	9.460	88.514	15.199	1.00	32.50	6
		ATOM	345	CG	LEU	В	305	-3	0.699	88.305	16.050	1.00	33.36	6
		MOTA	346	CD1	LEU		305	-3	1.938	88.839	15.342	1.00	33.87	6
inter inter	35	ATOM	347	CD2	LEU			-3	0.863	86.812	16.298	1.00	31.72	6
i fil		ATOM	348	С	LEU				7.072	87.922	14.666		29.76	6
î		ATOM	349	0	LEU				6.687	86.860	14.202		29.33	8
		ATOM	350	N	LYS				6.597	89.107	14.291		29.72	7
		ATOM	351	CA	LYS				5.576	89.254	13.264		34.28	6
	40	ATOM	352	CB	LYS				5.224	90.732	13.077		35.98	6
		ATOM	353	CG	LYS				6.350	91.581	12.494		43.35	6
		ATOM	354	CD	LYS				5.852	92.987	12.182		51.50	6
		ATOM	355	CE	LYS				4.706	92.932	11.190		53.26	6
	4.5	ATOM	356	ΝZ	LYS				3.883	94.161	11.251		59.61	7
	45	ATOM	357	C	LYS				4.308	88.484	13.556		35.25	6
		ATOM	358	0	LYS				3.681	87.917	12.653		33.95	8
		ATOM	359	N	GLY				3.918	88.478	14.829		35.79	7
		ATOM	360	CA	GLY				2.702	87.793	15.227		34.59	6
	50	ATOM	361	C	GLY				2.811	86.291	15.383		33.80	6
	50	ATOM	362	0	GLY				1.944	85.564	14.895		31.59	8
		ATOM	363	N	CYS				3.861	85.843	16.071		31.15	7
		ATOM	364	CA	CYS				4.069	84.434	16.320		29.04	6
		ATOM	365	CB	CYS				4.761	84.240	17.663		27.59	6
	55	ATOM	366	SG	CYS				6.496	84.629	17.608		30.50	16
	55	MOTA	367	С	CYS				4.911	83.712	15.266		30.59	6
		ATOM	368	O N	CYS CYS				5.088	82.499	15.365		33.77	8 7
		ATOM ATOM	369 370	N Cn					5.432 6.270	84.429 83.787	14.266		28.46 30.10	, 6
		AT ON	370	CA	CYS	D	309	-2	0.2/0	03.707	13.265	1.00	20.10	О

	5	ATOM	371	СВ	CYS	В	309	-26.706	84.761	12.194	1.00	33.43	6
		ATOM	372	SG	CYS			-27.875	84.011	11.089	1.00	35.20	16
		ATOM	373	С	CYS	В	309	-25.617	82.608	12.603	1.00	27.72	6
		ATOM	374	0	CYS	В	309	-26.170	81.518	12.610	1.00	27.69	8
		ATOM	375	N	MET			-24.447	82.829	12.011	1.00	26.15	7
	10	ATOM	376	CA	MET		310	-23.737	81.748	11.352	1.00	26.06	6
		ATOM	377	СВ	MET		310	-22.439	82.263	10.712		25.32	6
		ATOM	378	CG	MET		310	-21.584	81.157	10.080		24.08	6
	,	ATOM	379	SD	MET		310	-22.555	80.324	8.758		27.71	16
		ATOM	380	CE	MET		310	-21.549	78.826	8.427		28.50	6
	15	ATOM	381	C	MET		310	-23.416	80.673	12.374		25.94	6
	13	ATOM	382	0	MET		310	-23.659	79.489	12.151		28.09	8
		ATOM	383	N	GLU		311	-22.865	81.117	13.500		25.39	7
		ATOM	384	CA	GLU		311	-22.466	80.231	14.576		27.03	6
		ATOM	385	CB	GLU		311	-22.036	81.048	15.797		24.39	6
	20	ATOM	386	CG	GLU		311	-21.019	82.141	15.509		26.00	6
	20	ATOM	387	CD	GLU			-20.524	82.835	16.740		23.95	6
		ATOM	388	OE1				-21.321	83.108	17.668		19.72	8
		ATOM	389	OE2				-19.313	83.163	16.815		26.51	8
		ATOM	390	C	GLU			-23.582	79.264	14.964		27.51	6
ı.	25	ATOM	391	0	GLU			-23.347	78.068	15.093		29.67	8
IJ	23	ATOM	392	N	ILE			-24.794	79.792	15.145		26.82	7
Ü			393	CA	ILE			-25.933	78.967	15.527		25.71	6
		ATOM						-23.933 -27.125	79.814	16.021		23.71	6
j		ATOM	394	CB CG2	ILE			-27.123 -28.327	78.933	16.021		20.27	6
	20	ATOM	395		ILE					17.325		20.27	6
14 14	30	ATOM	396		ILE			-26.771	80.541			18.15	6
Ei		ATOM	397		ILE			-27.952	81.163	18.028			
		ATOM	398	С	ILE		312	-26.370	78.072	14.392		27.91	6
ليا	35	ATOM	399	0	ILE		312	-26.769	76.926	14.605		28.96	8
		ATOM	400	N	MET		313	-26.303	78.603	13.174		27.66	7
		ATOM	401	CA	MET		313	-26.696	77.832	11.999		30.18	6
ij		ATOM	402	CB	MET		313	-26.696	78.691	10.734		36.89	6
ũ		ATOM	403	CG	MET			-27.882	79.634	10.607		37.95	6
		ATOM	404	SD	MET		313	-28.238	80.275	8.907		42.38	16
	40	ATOM	405	CE	MET			-26.787	81.316	8.639		40.68	6
	40	ATOM	406	C	MET			-25.791	76.632	11.808		27.43	6
		ATOM	407	0	MET			-26.258	75.501	11.893		28.61	8
		ATOM	408	N	SER			-24.508	76.882	11.549		24.88	7
		ATOM	409	CA	SER			-23.533	75.824	11.346		27.98	6
	15	ATOM	410	CB	SER			-22.150	76.441	11.165		29.64	6
	45	ATOM	411	OG	SER			-21.844	77.316	12.227		43.44	8
		ATOM	412	С	SER			-23.514	74.774	12.465		22.30	6
		ATOM	413	0	SER			-23.279	73.592	12.199		24.18	8
		ATOM	414	N	LEU			-23.760	75.187	13.714		23.99	7
	5 0	ATOM	415	CA	LEU			-23.792	74.219	14.811		25.07	6
	50	ATOM	416	CB	LEU			-24.095	74.869	16.169		19.11	6
		ATOM	417	CG	LEU			-24.507	73.860	17.234		20.39	6
		ATOM	418		LEU			-23.390	72.878	17.493		18.92	6
		ATOM	419		LEU			-24.895	74.560	18.514		12.93	6
		ATOM	420	С	LEU			-24.892	73.219	14.517		24.53	6
	55	ATOM	421	0	LEU			-24.672	72.014	14.550		26.32	8
		ATOM	422	N	ARG			-26.079	73.762	14.254		28.18	7
		ATOM	423	CA	ARG			-27.278	72.996	13.971		27.54	6
		ATOM	424	CB	ARG	В	316	-28.432	73.941	13.651	1.00	27.39	6

	5	MOTA	479	С	ASP	В	322	-23.044	60.659	8.682	1.00	45.82	6
		ATOM	480	0	ASP	В	322	-22.738	60.783	7.495	1.00	45.38	8
		ATOM	481	N	PRO	В	323	-22.242	60.005	9.549	1.00	46.53	7
		ATOM	482	CD	PRO	В	323	-22.594	59.676	10.934	1.00	47.16	6
		ATOM	483	CA	PRO	В	323	-20.910	59.487	9.162	1.00	46.63	6
	10	ATOM	484	СВ	PRO	В	323	-20.367	58.847	10.433	1.00	43.95	6
		ATOM	485	CG	PRO	В	323	-21.398	58.958	11.454	1.00	43.93	6
		ATOM	486	С	PRO	В	323	-20.933	58.489	8.017	1.00	48.34	6
		ATOM	487	0	PRO		323	-20.040	58.457	7.171	1.00	50.84	8
		ATOM	488	N	GLU		324	-21.951	57.631	8.022		52.39	7
	15	ATOM	489	CA	GLU			-22.126	56.615	7.008		55.85	6
		ATOM	490	СВ	GLU			-23.491	55.960	7.216		55.54	6
		ATOM	491	CG	GLU			-23.678	55.332	8.581		40.00	6
		ATOM	492	CD	GLU			-22.642	54.294	8.888		40.00	6
		ATOM	493	OE1	GLU			-21.796	53.979	8.000		40.00	8
	20	ATOM	494		GLU		324	-22.645	53.751	10.029		40.00	8
		ATOM	495	C	GLU		324	-22.087	57.292	5.655		54.94	6
		ATOM	496	0	GLU		324	-21.144	57.149	4.896		59.81	8
		ATOM	497	N	SER			-23.165	58.022	5.389		52.95	7
		ATOM	498	CA	SER		325	-23.358	58.762	4.163		50.10	6
Õ	25	ATOM	499	CB	SER		325	-24.768	59.357	4.163		48.23	6
IJ	2,3	ATOM	500	OG	SER		325	-25.051	59.976	5.403		48.71	8
I		ATOM	501	C	SER			-22.324	59.861	3.964		50.61	6
		ATOM	502	0	SER			-21.956	60.176	2.848		52.19	8
ال ال		ATOM	503	N	GLU			-21.851	60.422	5.070		45.64	7
./] 	30	ATOM	504	CA	GLU		326	-20.854	61.476	5.050		43.35	6
, , , ,	30	ATOM	505	CB	GLU			-19.602	61.022	4.277		42.74	6
ā:		ATOM	506	CG	GLU			-19.882	59.814	4.277		50.32	6
		ATOM	507	CD	GLU		326	-10.000 -17.576	59.524	4.207		56.34	6
IJ		ATOM	508	OE1	GLU		326	-17.376	58.545	4.608		59.31	8
IJ	35	ATOM	509		GLU		326	-10.090	60.255	3.266		55.74	
	33	ATOM	510	C	GLU		326	-17.177	62.731	4.418		40.23	8 6
1			511		GLU		326		63.285	3.514		40.23	8
ıÏ		ATOM ATOM	512	O N	THR		327	-20.793 -22.528	63.208	4.934		35.90	7
			513	N C7	THR			-22.326 -23.163	64.418	4.401		37.29	6
	40	ATOM	514	CA CB	THR			-23.163 -24.146	64.418	3.285		37.63	6
	40	ATOM											
		ATOM	515		THR			-25.172	63.199	3.803		38.12	8
		MOTA	516		THR			-23.445	63.342	2.130		39.90	6
		ATOM	517	C	THR			-23.961	65.125	5.473		39.49	6
	45	MOTA	518	0	THR			-24.645	64.473	6.264		40.50	8
	43	ATOM	519	N	LEU			-23.909	66.454	5.473		36.64	7
		ATOM	520	CA	LEU			-24.675	67.239	6.447		37.73	6
		ATOM	521	CB	LEU			-24.061	68.637	6.620		37.78	6
		ATOM	522	CG	LEU			-22.586	68.750	6.931		36.26	6
	50	ATOM	523		LEU			-22.260	70.145	7.411		36.56	6
	50	ATOM	524		LEU			-22.231	67.751	8.000		39.85	6
		ATOM	525	С	LEU			-26.090	67.344	5.897		37.27	6
		ATOM	526	0	LEU			-26.358	66.855	4.805		34.96	8
		MOTA	527	N	THR			-26.989	67.975	6.647		39.73	7
	<i></i>	ATOM	528	CA	THR			-28.369	68.132	6.215		40.81	6
	55	ATOM	529	СВ	THR			-29.279	67.135	6.918		42.67	6
		ATOM	530	OG1	THR			-28.799	65.809	6.686		42.52	8
		ATOM	531	CG2				-30.702	67.255	6.375		43.52	6
		ATOM	532	С	THR	В	329	-28.853	69.529	6.498	1.00	44.31	6

	5	ATOM	533	0	THR I	3 3	329	-29.432	69.801	7.535	1.00	43.72	8
		ATOM	534	N	LEU E	3 3	330	-28.589	70.413	5.546	1.00	44.62	7
		ATOM	535	CA	LEU F	3 3	330	-28.983	71.812	5.658	1.00	45.09	6
		ATOM	536	СВ	LEU E	3 3	330	-28.354	72.608	4.510	1.00	44.66	6
		ATOM	537	CG	LEU E	3 3	330	-26.847	72.735	4.539	1.00	51.06	6
	10	ATOM	538	CD1	LEU E	3 3	330	-26.226	71.367	4.640	1.00	48.58	6
		ATOM	539	CD2	LEU E	3 3	330	-26.364	73.450	3.299	1.00	45.18	6
		ÄTOM	540	С	LEU E		330	-30.508	71.965	5.652	1.00	48.06	6
		ATOM	541	0	LEU E		330	-31.211	71.244	4.959		49.33	8
		ATOM	542	N	ASN I		331	-30.988	72.911	6.458		52.20	7
	15	ATOM	543	CA	ASN I			-32.407	73.214	6.588		54.41	6
		ATOM	544	СВ	ASN I			-32.870	74.013	5.370		54.94	6
		ATOM	545	CG	ASN I			-33.687	75.220	5.749		60.35	6
		ATOM	546		ASN I			-33.182	76.130	6.430	1.00	61.84	8
		ATOM	547		ASN I			-34.935	75.242	5.324		65.92	7
	20	ATOM	548	C	ASN I			-33.251	71.959	6.731	1.00	58.00	6
	20	ATOM	549	0	ASN E			-34.464	72.000	6.579		60.17	8
		ATOM	550	N	GLY E			-32.596	70.846	7.054		58.45	7
		ATOM	551	CA	GLY E			-33.295	69.587	7.235		58.55	6
		ATOM	552	C	GLY E			-33.909	69.004	5.984		59.79	6 ·
ij	25	ATOM	553	0	GLY E			-34.609	68.000	6.065		61.32	8
IJ	23	ATOM	554	N	GLU E			-33.639	69.628	4.838		60.28	7
Ū		ATOM	555	CA	GLU E			-34.196	69.182	3.571		59.13	6
		ATOM	556	CB	GLU E			-34.966	70.323	2.885		62.40	6
اً إِنْ ا		ATOM	557	CG	GLU F		333	-36.099	70.963	3.690		75.69	6
	30	ATOM	558	CD	GLU E			-36.720	72.135	2.998		80.41	6
`*• <u>*</u>	30	ATOM	559	OE1	GLU I			-35.984	73.081	2.618		79.98	8
21		ATOM	560	OE2	GLU E		333	-37.966	72.158	2.830		83.81	8
1		ATOM	561	C	GLU E		333	-33.110	68.722	2.624		57.18	6
		ATOM	562	0	GLU I		333	-33.236	67.689	1.974		57.50	8
IJ	35	ATOM	563	N	MET E		334	-32.054	69.528	2.539		55.20	7
	55	ATOM	564	CA	MET E		334	-30.926	69.259	1.653		50.85	6
ij		ATOM	565	CB	MET E		334	-30.514	70.563	0.984		48.70	6
ũ		ATOM	566	CG	MET E			-29.244	70.460	0.194		45.39	6
		ATOM	567	SD	MET E			-28.743	72.008	-0.624		44.56	16
	40	ATOM	568	CE	MET E			-30.307	72.445			45.25	6
	10	ATOM	569	С	MET E			-29.711	68.634	2.319		51.59	6
		ATOM	570	0	MET E			-29.185	69.161	3.291		52.52	8
		ATOM	571	N	ALA E			-29.270	67.515	1.758		51.00	7
		ATOM	572	CA	ALA E			-28.106	66.802	2.267		48.98	6
	45	ATOM	573	CB	ALA E			-28.377	65.304	2.274		47.86	6
	15	ATOM	574	C	ALA E			-26.931	67.108	1.371		51.01	6
		ATOM	575	0	ALA E			-26.936	66.760	0.190		51.61	8
		ATOM	576	N	VAL E			-25.921	67.770	1.930		46.62	7
		ATOM	577	CA	VAL E			-24.730	68.142	1.152		42.35	6
	50	ATOM	578	CB	VAL E			-24.750	69.635	1.258		42.41	6
	50	ATOM	579		VAL E			-24.400	70.418	0.860		42.41	6
			580						70.418	2.642		40.32	
		ATOM			VAL E			-24.018					6
		ATOM	581 582	С	VAL E			-23.493 -23.464	67.390 66.775	1.611 2.681		45.33 47.42	6 Ջ
	55	ATOM		O N	THR E			-23.464 -22.461	67.478	0.781		41.60	8 7
	J J	ATOM	583	N CA	THR E			-22.461 -21.172	66.818	1.041		39.69	6
		ATOM	584	CA	THR E			-21.172 -20.720	66.011	-0.173		41.35	6
		ATOM	585 586	CB OG1								49.35	8
		ATOM	586	OGI	THR E))) <i>I</i>	-20.273	66.887	-1.213	1.00	49.33	0

	5	ATOM	695	CG2	ILE	В	353	-20.529	72.673	9.195	1.00	23.68	6
		ATOM	696	CG1	ILE	В	353	-19.108	74.657	8.869	1.00	27.33	6
		ATOM	697	CD1	ILE	В	353	-20.141	75.313	7.964	1.00	26.23	6
		ATOM	698	С	ILE	В	353	-18.309	71.002	9.775	1.00	30.88	6
		MOTA	699	0	ILE	В	353	-19.021	70.499	10.639	1.00	31.22	8
	10	MOTA	700	N	PHE	В	354	-17.728	70.279	8.822	1.00	29.86	7
		MOTA	701	CA	PHE	В	354	-17.881	68.831	8.797	1.00	31.08	6
		ATOM	702	СВ	PHE	В	354	-17.461	68.249	7.439	1.00	28.80	6
		MOTA	703	CG	PHE	В	354	-18.568	68.233	6.405	1.00	28.80	6
		ATOM	704	CD1			354	-19.031	69.403	5.833		30.96	6
	15	ATOM	705	CD2	PHE			-19.150	67.027	6.034		29.45	6
		ATOM	706		PHE			-20.066	69.362	4.902		27.12	6
		MOTA	707	CE2	PHE			-20.186	66.978	5.104		25.19	6
		MOTA	708	CZ	PHE			-20.644	68.146	4.535		28.09	6
		ATOM	709	С	PHE			-17.041	68.223	9.913		29.17	6
	20	ATOM	710	0	PHE			-17.544	67.429	10.700		32.62	8
		ATOM	711	N			355	-15.761	68.593	9.972		23.86	7
		ATOM	712	CA	ASP			-14.864	68.090	11.005		25.34	6
		ATOM	713	СВ			355	-13.582	68.929	11.045		21.41	6
		ATOM	714	CG			355	-12.548	68.456	10.086		32.08	6
	25	ATOM	715		ASP			-12.899	68.069	8.944		33.58	8
IJ		ATOM	716		ASP			-11.345	68.477	10.450		33.20	8
IJ		ATOM	717	C	ASP			-15.570	68.153	12.357		27.86	6
		ATOM	718	0	ASP			-15.430	67.257	13.182		32.42	8
		ATOM	719	N	LEU			-16.339	69.223	12.561		26.84	7
<u></u>	30	ATOM	720	CA	LEU			-17.085	69.400	13.803		28.66	6
`~		ATOM	721	СВ	LEU			-17.832	70.742	13.800		25.37	6
81		ATOM	722	CG	LEU			-18.655	71.091	15.023		27.61	6
		ATOM	723		LEU			-17.729	71.248	16.191		25.43	6
14		ATOM	724				356	-19.430	72.363	14.808		27.49	6
IJ.	35	ATOM	725	С			356	-18.084	68.260	13.883		30.44	6
		ATOM	726	0	LEU		356	-18.054	67.445	14.804		31.55	8
		ATOM	727	N	GLY			-18.972	68.214	12.891		32.69	7
L		ATOM	728	CA	GLY			-20.001	67.186	12.846		29.87	6
		ATOM	729	С	GLY			-19.486	65.832	13.279		33.12	6
	40	ATOM	730	0	GLY	В	357	-20.032	65.246	14.207	1.00	29.41	8
		ATOM	731	N	MET	В	358	-18.444	65.351	12.593	1.00	33.31	7
		ATOM	732	CA	MET	В	358	-17.834	64.066	12.902	1.00	35.87	6
		ATOM	733	СВ	MET	В	358	-16.513	63.903	12.151	1.00	34.56	6
		ATOM	734	CG	MET	В	358	-16.649	63.908	10.657	1.00	46.43	6
	45	ATOM	735	SD	MET	В	358	-15.094	63.597	9.751	1.00	42.13	16
		ATOM	736	CE	MET	В	358	-14.121	65.063	10.228	1.00	44.29	6
		ATOM	737	С	MET	В	358	-17.552	63.976	14.392	1.00	33.26	6
		ATOM	738	0	MET	В	358	-18.019	63.075	15.075	1.00	36.39	8
		ATOM	739	N	SER	В	359	-16.766	64.933	14.875	1.00	33.31	7
	50	ATOM	740	CA	SER			-16.380	64.998	16.270	1.00	34.39	6
		ATOM	741	СВ	SER	В	359	-15.724	66.339	16.541	1.00	30.84	6
		ATOM	742	OG	SER			-15.130	66.355	17.825	1.00	47.14	8
		ATOM	743	С	SER			-17.579	64.813	17.169	1.00	36.43	6
		ATOM	744	0	SER			-17.635	63.853	17.922		35.46	8
	55	ATOM	745	N	LEU			-18.525	65.744	17.079		36.74	7
		ATOM	746	CA	LEU			-19.741	65.729	17.889		35.44	6
		ATOM	747	СВ	LEU			-20.706	66.817	17.405		34.16	6
		ATOM	748	CG	LEU			-20.263	68.255	17.575		34.59	6

	5	ATOM	749	CD1	LEU	В	360	-21.394	69.181	17.212	1.00	33.53	6
		ATOM	750	CD2	LEU	В	360	-19.869	68.486	19.010	1.00	31.69	6
		ATOM	751	С	LEU	В	360	-20.464	64.397	17.924	1.00	38.72	6
		ATOM	752	0	LEU	В	360	-21.021	64.011	18.958	1.00	38.29	8
		MOTA	753	N	SER	В	361	-20.466	63.708	16.791	1.00	40.96	7
	10	ATOM	754	CA	SER	В	361	-21.106	62.416	16.721	1.00	45.67	6
		ATOM	755	СВ	SER	В	361	-20.532	61.630	15.551	1.00	46.45	6
		ATOM	756	OG	SER	В	361	-20.750	62.314	14.322	1.00	51.81	8
		ATOM	757	С	SER			-20.895	61.638	18.018	1.00	44.49	6
		ATOM	758	0	SER			-21.696	60.793	18.362	1.00	46.67	8
	15	ATOM	759	N	SER		362	-19.811	61.953	18.726	1.00	41.44	7
		ATOM	760	CA	SER		362	-19.453	61.309	19.972		42.13	6
		ATOM	761	СВ	SER		362	-17.962	61.510	20.234		42.61	6
		ATOM	762	OG	SER			-17.164	61.025	19.158		51.87	8
		ATOM	763	С	SER		362	-20.228	61.812	21.174		38.41	6
	20	ATOM	764	0	SER		362	-20.602	61.025	22.035		38.01	8
		ATOM	765	N	PHE		363	-20.455	63.123	21.228		34.55	7
		ATOM	766	CA	PHE		363	-21.150	63.735	22.346		32.96	6
		ATOM	767	СВ	PHE		363	-21.006	65.245	22.285		31.99	6
		ATOM	768	CG	PHE			-19.578	65.719	22.378		29.97	6
ī	25	ATOM	769	CD1				-19.286	67.058	22.447		30.61	6
IL		ATOM	770	CD2	PHE		363	-18.536	64.800	22.391		32.02	6
IJ		ATOM	771	CE1	PHE		363	-17.966	67.489	22.543		33.67	6
] =		ATOM	772	CE2	PHE		363	-17.221	65.222	22.484		30.91	6
٠		ATOM	773	CZ	PHE		363	-16.927	66.557	22.554		29.33	6
į.	30	ATOM	774	C	PHE		363	-22.617	63.361	22.482		30.52	6
		ATOM	775	Ō	PHE		363	-23.142	63.331	23.596		32.19	8
HI.		ATOM	776	N	ASN		364	-23.279	63.075	21.361		33.51	7
		ATOM	777	CA	ASN		364	-24.683	62.701	21.377		38.03	6
Ų		ATOM	778	СВ	ASN		364	-24.855	61.369	22.111		42.32	6
	35	ATOM	779	CG	ASN			-24.008	60.271	21.524		53.11	6
		ATOM	780	OD1	ASN		364	-24.183	59.895	20.344		59.51	8
		ATOM	781		ASN			-23.102	59.746	22.325		55.95	7
Ē		ATOM	782	С	ASN			-25.494	63.771	22.091		31.89	6
		ATOM	783	0	ASN			-26.279	63.471	22.990		30.28	8
	40	ATOM	784	N	LEU			-25.306	65.018	21.673		27.62	7
		ATOM	785	CA	LEU			-26.005	66.144	22.280		29.36	6
		ATOM	786	СВ	LEU			-25.402	67.443	21.743		27.54	6
		ATOM	787	CG	LEU			-23.897	67.453	21.738		38.91	6
		ATOM	788	CD1	LEU			-23.391	68.766	21.190		34.47	6
	45	ATOM	789		LEU			-23.393	67.214	23.143		34.24	6
		ATOM	790	С	LEU			-27.496	66.074	21.987		26.23	6
		ATOM	791	0	LEU			-27.911	65.790	20.863		27.06	8
		ATOM	792	N	ASP			-28.296	66.321	23.022		25.23	7
		MOTA	793	CA	ASP			-29.752	66.320	22.878		26.07	6
	50	ATOM	794	СВ	ASP			-30.441	65.651	24.076		29.68	6
		ATOM	795	CG	ASP			-30.221	66.374	25.360		35.74	6
		ATOM	796		ASP			-30.277	67.617	25.387		36.78	8
		ATOM	797		ASP			-30.017	65.711	26.410		41.23	8
		ATOM	798	C	ASP			-30.230	67.752	22.740		27.70	6
	55	ATOM	799	0	ASP			-29.552	68.678	23.171		31.94	8
		ATOM	800	N	ASP			-31.409	67.913	22.142		29.18	7
		ATOM	801	CA	ASP			-32.031	69.225	21.930		32.72	6
		ATOM	802	СВ	ASP			-33.558	69.106	22.071		38.04	6
												· 	-

5	ATOM	965	N	ALA 1	3 3 9 0	-22.561	94.159	30.332	1.00 52.68	7
	MOTA	966	CA	ALA 1	3 3 9 0	-22.684	93.570	31.659	1.00 48.41	6
	MOTA	967	СВ	ALA I	390	-22.650	94.681	32.716	1.00 45.19	6
	MOTA	968	С	ALA 1	390	-23.905	92.697	31.877	1.00 47.63	6
	MOTA	969	0	ALA	3 3 9 0	-23.784	91.576	32.369	1.00 51.95	8
10	ATOM	970	N	ARG I	3 3 9 1	-25.075	93.216	31.498	1.00 47.11	7
	ATOM	971	CA	ARG I	3 391	-26.330	92.481	31.656	1.00 51.64	6
	ATOM	972	СВ	ARG I	3 3 9 1	-27.502	93.318	31.122	1.00 54.22	6
	ATOM	973	CG	ARG I	3 3 9 1	-28.887	92.713	31.430	1.00 64.20	6
	ATOM	974	CD		3 3 9 1	-30.059	93.582	30.929	1.00 73.80	6
15	ATOM	975	NE	ARG I		-31.361	93.097	31.378	1.00 79.76	7
	ATOM	976	CZ	ARG I		-31.736	93.015	32.656	1.00 84.27	6
	ATOM	977		ARG I		-30.887	93.372	33.625	1.00 85.28	7
	ATOM	978	NH2	ARG I		-32.957	92.566	32.955	1.00 86.84	7
	ATOM	979	С	ARG I		-26.277	91.133	30.940	1.00 48.18	6
20	ATOM	980	0	ARG I		-26.724	90.119	31.465	1.00 49.57	8
	ATOM	981	N	ILE I		-25.743	91.167	29.718	1.00 45.01	7
	ATOM	982	CA	ILE I		-25.592	89.999	28.867	1.00 48.77	6
	ATOM	983	СВ	ILE I		-25.112	90.424	27.469	1.00 46.45	6
	ATOM	984	CG2	ILE I		-24.805	89.221	26.614	1.00 42.35	6
25	ATOM	985	CG1	ILE I		-26.178	91.283	26.768	1.00 49.69	6
	ATOM	986	CD1	ILE E		-25.762	91.768	25.386	1.00 51.09	6
	ATOM	987	C	ILE H		-24.671	88.935	29.462	1.00 50.90	6
	ATOM	988	0	ILE H		-25.086	87.780	29.605	1.00 52.21	8
	ATOM	989	N	GLU I		-23.431	89.298	29.790	1.00 50.43	7
30	ATOM	990	CA	GLU I		-22.504	88.328	30.378	1.00 50.30	6
	ATOM	991	СВ	GLU I		-21.314	89.022	31.044	1.00 53.97	6
	ATOM	992	CG	GLU I		-20.063	89.005	30.209	1.00 62.18	6
	ATOM	993	CD	GLU I		-18.877	89.415	30.976	1.00 67.69	6
	ATOM	994	OE1	GLU I		-17.709	89.264	30.656	1.00 66.42	8
35	ATOM	995	OE2	GLU I		-18.897	89.976	32.052	1.00 70.64	8
	ATOM	996	C	GLU I		-23.251	87.477	31.416	1.00 49.31	6
	ATOM	997	Ō	GLU I		-23.226	86.260	31.303	1.00 49.53	8
	ATOM	998	N	LYS E		-23.898	88.153	32.409	1.00 46.07	7
	ATOM	999	CA	LYS H		-24.721	87.579	33.506	1.00 45.76	6
40	ATOM	1000	СВ	LYS E		-25.594	88.693	34.161	1.00 43.85	6
	ATOM	1001		LYS E		-25.626	86.548	32.851	1.00 46.69	6
	ATOM	1002	Ō	LYS I		-25.772	85.430	33.329	1.00 49.13	8
	ATOM	1003	N	TYR I		-26.203	86.948	31.719	1.00 46.57	7
	ATOM	1004	CA	TYR I		-27.076	86.078	30.938	1.00 43.33	6
45	ATOM	1005	СВ	TYR E		-27.621	86.821	29.716	1.00 48.44	6
	ATOM	1006	CG	TYR E		-28.827	87.688	29.980	1.00 53.83	6
	ATOM	1007	CD1			-29.204	88.680	29.080	1.00 56.43	6
	ATOM	1008	CE1	TYR E		-30.331	89.469	29.309	1.00 59.73	6
	ATOM	1009		TYR E		-29.596	87.509	31.113	1.00 56.47	6
50	ATOM	1010	CE2	TYR E		-30.723	88.295	31.346	1.00 62.60	6
50	ATOM	1011	CZ	TYR E		-31.090	89.281	30.446	1.00 63.18	6
	ATOM	1012	OH	TYR E		-32.189	90.068	30.440	1.00 64.46	8
	ATOM	1012	C	TYR E		-26.276	84.867	30.485	1.00 37.30	6
	ATOM	1013	0	TYR E		-26.611	83.737	30.825	1.00 37.30	8
55	ATOM	1014	N	GLN E		-25.213	85.108	29.718	1.00 34.10	7
55	ATOM	1013	CA	GLN E		-24.380	84.018	29.718	1.00 31.92	6
	ATOM	1017	CB	GLN E		-23.176	84.550	28.464	1.00 34.81	6
	ATOM	1017	CG	GLN E		-22.184	83.470	28.103	1.00 32.84	6
	111 011	1010	J	CTITA E	, 590	22.104	55.470	20.100	1.00 27.51	J

5	ATOM	1127	0	ASN	В	408	-24.624	64.253	35.105	1.00	42.16	8
-	ATOM	1128	N	TYR			-26.122	65.924	35.003		35.62	7
	ATOM	1129	CA	TYR			-27.273	65.024	35.073		35.91	6
	ATOM	1130	CB	TYR			-28.597	65.787	34.931		34.41	6
	ATOM	1131	CG	TYR			-29.788	64.868	34.685		38.73	6
10	ATOM	1131	CD1	TYR			-30.064	63.819	35.549		41.34	6
10				TYR			-31.130	62.962	35.309		47.16	6
	ATOM	1133	CE1									6
	ATOM	1134	CD2	TYR		409	-30.613	65.037	33.579		46.20	
	ATOM	1135	CE2	TYR		409	-31.684	64.176	33.341	1.00		6
1.5	MOTA	1136	CZ	TYR		409	-31.942	63.143	34.206	1.00		6
15	MOTA	1137	OH	TYR		409	-33.002	62.312	33.978		53.14	8
	MOTA	1138	С	TYR		409	-27.215	64.020	33.951		38.16	6
	MOTA	1139	0	TYR		409	-27.558	62.857	34.111		41.83	8
	MOTA	1140	N	ARG		410	-26.824	64.528	32.796		42.25	7
	MOTA	1141	CA	ARG			-26.734	63.739	31.594		42.83	6
20	MOTA	1142	CB	ARG			-26.350	64.646	30.441	1.00		6
	ATOM	1143	CG	ARG			-27.440	65.585	29.945	1.00		6
	ATOM	1144	CD	ARG			-28.284	64.863	28.917	1.00		6
	MOTA	1145	NE	ARG			-27.455	64.378	27.829	1.00		7
	ATOM	1146	CZ	ARG	В	410	-27.926	63.656	26.824	1.00		6
- 25	MOTA	1147	NH1	ARG	В	410	-29.234	63.379	26.782	1.00		7
	ATOM	1148	NH2	ARG	В	410	-27.095	63.227	25.868	1.00		7
	ATOM	1149	С	ARG	В	410	-25.688	62.664	31.733	1.00	46.67	6
	MOTA	1150	0	ARG	В	410	-25.859	61.547	31.257	1.00	41.78	8
	ATOM	1151	N	LYS	В	411	-24.602	63.028	32.413	1.00	52.99	7
30	ATOM	1152	CA	LYS	В	411	-23.471	62.145	32.609	1.00	58.32	6
	ATOM	1153	CB	LYS	В	411	-23.684	61.249	33.833	1.00	64.99	6
	ATOM	1154	CG	LYS	В	411	-24.998	60.544	33.968	1.00	70.48	6
	ATOM	1155	CD	LYS	В	411	-25.070	59.887	35.349	1.00	77.18	6
	ATOM	1156	CE	LYS	В	411	-26.272	58.944	35.474	1.00	84.30	6
35	ATOM	1157	NZ	LYS	В	411	-26.286	58.242	36.809	1.00	86.48	7
	ATOM	1158	С	LYS	В	411	-23.172	61.341	31.365	1.00	56.66	6
	ATOM	1159	0	LYS	В	411	-23.574	60.199	31.210	1.00	55.47	8
	ATOM	1160	N	HIS	В	412	-22.458	62.026	30.479	1.00	54.67	7
	ATOM	1161	CA	HIS	В	412	-22.019	61.474	29.214	1.00	48.67	6
40	ATOM	1162	СВ	HIS	В	412	-21.500	62.599	28.310	1.00	43.14	6
	ATOM	1163	CG	HIS	В	412	-22.559	63.501	27.784	1.00	41.36	6
	ATOM	1164	CD2	HIS	В	412	-23.159	64.603	28.299	1.00	35.44	6
	ATOM	1165		HIS			-23.163	63.290	26.539	1.00	38.19	7
	ATOM	1166		HIS			-24.076	64.238	26.353		34.75	6
45	ATOM	1167		HIS			-24.090	65.034	27.396		35.52	7
	ATOM	1168	С	HIS			-20.894	60.596	29.644		46.35	6
	ATOM	1169	0	HIS			-20.218	60.892	30.644		42.73	8
	ATOM	1170	N	HIS			-20.708	59.469	28.973		48.92	7
	ATOM	1171	CA	HIS			-19.593	58.614	29.371		53.15	6
50	ATOM	1172	CB	HIS			-20.022	57.147	29.421		55.27	6
50	ATOM	1173	CG	HIS			-20.814	56.823	30.636		58.77	6
	ATOM	1174		HIS			-22.019	56.223	30.822		61.65	6
	ATOM	1175		HIS			-20.360	57.159	31.921		60.31	7
		1176		HIS			-21.267	56.758	32.809		63.01	6
55	ATOM ATOM	1176		HIS			-21.267	56.758	32.809		62.93	7
55				HIS			-18.426	58.862	28.438		53.19	6
	ATOM	1178	С						27.699		54.93	8
	ATOM	1179	O N	HIS			-17.975	57.996				7
	ATOM	1180	N	VAL	В	414	-17.970	60.113	28.521	1.00	53.77	,

	5	ATOM	1289	CG2	THR E	426	-12.153	78.174	19.782	1.00	25.40	6
		ATOM	1290	С	THR E	426	-14.677	77.742	18.706	1.00	32.53	6
		ATOM	1291	0	THR E	426	-14.639	78.530	17.763	1.00	35.19	8
		ATOM	1292	N	ASP E	427	-14.749	76.425	18.566	1.00	28.83	7
		ATOM	1293	CA	ASP E		-14.796	75.807	17.257	1.00	35.12	6
	10	ATOM	1294	СВ	ASP E		-15.096	74.302	17.380	1.00	39.14	6
		ATOM	1295	CG	ASP E		-13.910	73.496	17.806		45.80	6
		ATOM	1296	OD1			-12.786	73.774	17.348		41.97	8
		ATOM	1297	OD2			-14.064	72.517	18.583		50.06	8
		ATOM	1298	С	ASP E		-15.883	76.502	16.429		33.94	6
	15	ATOM	1299	Ō	ASP E		-15.673	76.815	15.262		38.02	8
		ATOM	1300	N	LEU E		-17.040	76.741	17.048		27.15	7
		ATOM	1301	CA	LEU E		-18.154	77.388	16.367		29.99	6
		ATOM	1302	СВ	LEU E		-19.448	77.190	17.168		22.49	6
		ATOM	1303	CG	LEU E		-20.086	75.818	17.089		25.54	6
	20	ATOM	1304	CD1	LEU E		-21.282	75.729	18.012		20.60	6
	20	ATOM	1305	CD2			-20.509	75.564	15.651		17.24	6
		ATOM	1306	C	LEU E		-17.901	78.863	16.103		28.94	6
		ATOM	1307	0	LEU E		-18.328	79.388	15.076		31.26	8
		ATOM	1308	N	ARG E		-17.213	79.524	17.035		27.64	7
Ī	25	ATOM	1309	CA	ARG E		-16.894	80.937	16.883		28.13	6
ijŲ	23	ATOM	1310	CB	ARG E		-16.274	81.507	18.160		29.59	6
ij		ATOM	1311	CG	ARG E		-17.246	81.752	19.302		34.85	6
] = !		ATOM	1312	CD	ARG E		-16.626	82.653	20.372		47.18	6
المحالة		ATOM	1313	NE	ARG E		-17.373	82.714	21.620		57.93	7
.~! 	30	ATOM	1314	CZ	ARG E		-18.632	83.124	21.716		63.62	6
, -4 ⁻ ij	50	ATOM	1315		ARG E		-19.263	83.579	20.622		60.71	7
# :		ATOM	1316		ARG E		-19.238	83.130	22.916		62.38	7
		ATOM	1317	C	ARG E		-15.930	81.146	15.728		29.81	6
IJ		ATOM	1318	0	ARG E		-16.101	82.061	14.933		30.81	8
	35	ATOM	1319	N	MET E		-14.908	80.295	15.670		29.64	7
	55	ATOM	1320	CA	MET E		-13.920	80.343	14.614		34.72	6
		ATOM	1321	CB	MET E		-12.939	79.192	14.763		34.97	6
٩Ū		ATOM	1322	CG	MET E		-11.787	79.431	15.689		45.34	6
		ATOM	1323	SD	MET E		-10.729	80.768	15.158		52.55	16
	40	ATOM	1324	CE	MET B		-10.070	80.157	13.610		55.56	6
		ATOM	1325	C	MET B		-14.638	80.217	13.284		34.01	6
		ATOM	1326	0	MET B		-14.395	80.996	12.385		37.29	8
		ATOM	1327	N	ILE B		-15.516	79.217	13.176		29.99	7
		ATOM	1328	CA	ILE B		-16.296	78.992	11.963		28.82	6
	45	ATOM	1329	СВ	ILE B		-17.391	77.929	12.177		27.39	6
		ATOM	1330		ILE B		-18.314	77.841	10.959		23.87	6
		ATOM	1331		ILE B		-16.784	76.555	12.449		25.56	6
		ATOM	1332		ILE B		-17.826	75.464	12.498		17.29	6
		ATOM	1333	C	ILE B		-16.953	80.288	11.538		29.49	6
	50	ATOM	1334	0	ILE B		-16.837	80.725	10.398		24.19	8
	50	ATOM	1335	N	GLY B		-17.657	80.904	12.474		25.25	7
		ATOM	1336	CA	GLY B		-18.357	82.142	12.179		30.38	
		ATOM	1337	C	GLY B		-17.395	83.209	11.725		32.75	6
		ATOM	1338	0	GLY B		-17.531	83.740	10.637		36.38	8
	55	ATOM	1339	'n	ALA B		-16.431	83.522	12.586		26.77	7
	J.J.	ATOM	1340	CA	ALA B		-15.407	84.514	12.299		26.48	6
		ATOM	1341	CB	ALA B		-14.240	84.338	13.253		19.90	6
		ATOM	1341	СВ	ALA B		-14.905	84.433	10.867		30.73	6
		AION	1942	C	נידוע ס	300	-14.903	04.400	10.007	1.00	50.75	U

	5	MOTA	1559	0			459	-21.414	91.050	6.791		51.34	8
		MOTA	1560	N	GLU	В	460	-23.489	91.531	5.976		62.92	7
		ATOM	1561	CA	GLU	В	460	-22.953	92.741	5.533	1.00	69.33	6
		ATOM	1562	CB	GLU	В	460	-23.851	93.487	4.505	1.00	72.95	6
	-	ATOM	1563	CG	GLU	В	460	-22.917	94.002	3.412	1.00	78.35	6
	10	ATOM	1564	CD	GLU	В	460	-22.908	95.480	3.256	1.00	82.97	6
		MOTA	1565	OE1	GLU	В	460	-23.257	96.213	4.217	1.00	88.28	8
		ATOM	1566	OE2	GLU	В	460	-22.524	95.977	2.167		84.80	8
		ATOM	1567	С	GLU		460	-22.790	93.576	6.786		71.87	6
		ATOM	1568	0	GLU		460	-23.471	93.391	7.802		74.51	8
	15	ATOM	1569	N	ASP		461	-21.796	94.449	6.696		78.50	7
		ATOM	1570	CA	ASP			-21.401	95.328	7.701		84.19	6
		ATOM	1571	СВ	ASP			-20.182	96.032	7.125		85.82	6
		ATOM	1572	CG	ASP			-19.261	95.066	6.463		89.62	6
		ATOM	1573		ASP		461	-19.670	93.929	5.982		93.00	8
	20	ATOM	1574		ASP			-18.084	95.361	6.387		93.04	8
	20	ATOM	1575	C	ASP		461	-22.540	96.291	8.012		86.80	6
		ATOM	1576	0	ASP		461	-23.063	96.176	9.139		88.70	8
		ATOM	1577		ASP		461	-22.962	97.048	7.098		88.70	8
		TER	13//	OXI	ASE	ם	401	-22.902	97.040	7.090	1.00	00.70	O
ü	25	ATOM	4002	C1	Т3	J	1	20.152	36.643	29.561	1.00	22.34	6
N		MOTA	4003	C2	Т3	J	1	19.021	41.567	29.283	1.00	21.84	6
Ñ		ATOM	4004	С3	Т3	J	1	18.880	37.086	29.226	1.00	23.43	6
		ATOM	4005	C4	Т3	J	1	18.249	42.606	28.776	1.00	22.31	6
1		ATOM	4006	C5	Т3	J	1	18.747	38.372	28.866	1.00	24.83	6
d -	30	ATOM	4007	С6	Т3	J	1	17.938	43.621	29.664	1.00	25.16	6
آيدا ً		ATOM	4008	C7	Т3	J	1	19.799	39.296	28.753		24.65	6
## 		ATOM	4009	C8	Т3	J	1	18.330	43.594	31.028	1.00	21.93	6
		ATOM	4010	С9	Т3	J	1	21.101	38.940	29.075		25.09	6
		ATOM	4011	C10	Т3	J	1	19.063	42.558	31.465	1.00	23.66	6
1.42	35	ATOM	4012	C11	Т3	J	1	21.254	37.600	29.456	1.00	23.12	6
1 mail		ATOM	4013	C12	Т3	J	1	19.459	41.490	30.621		19.67	6
ī		ATOM	4014	C13	Т3	J	1	20.370	35.228	30.075		18.97	6
1		ATOM	4015	C15	Т3	J	1	21.549	34.480	29.455		19.32	6
		ATOM	4016	C17	Т3	J	1	21.535	33.003	29.710		19.02	6
	40	ATOM	4017	I1	Т3	J	1	16.898	39.029	28.661		25.29	53
		ATOM	4018	12	Т3	J	1	17.058	45.327	29.154		26.49	53
		ATOM	4019	13	Т3	J	1	22.763	40.262	29.169		25.67	53
		ATOM	4020	N1	Т3	J	1	21.800	34.859	28.024		15.12	7
		ATOM	4021	01	Т3	J	1	17.934	44.682	31.806		21.79	8
	45	ATOM	4022	02	Т3	J	1	19.432	40.560	28.362		22.05	8
	_	ATOM	4023	03	Т3	J	1	21.911	32.260	28.776		20.38	8
		ATOM	4024	04	T3	J	1	21.137	32.622	30.840		20.16	8
		TER		٠.		•	_		02.022	001010	2.00		•
		ATOM	4025	C1	т3	K	1	-28.131	75.928	7.543	1 00	22.34	6
	50	ATOM	4026	C2	т3	K	1	-24.676	77.673	4.318		21.84	6
	50	ATOM	4027	C3	т3	K.	1	-28.490	76.351	6.201		23.43	6
		ATOM	4027	C4	T3	K	1	-24.217	77.893	2.989		22.31	6
		ATOM	4020	C5 ·	T3	K	1	-27.485	76.499	5.233		24.83	6
				C6	T3								
	55	MOTA	4030 4031	C6		K	1	-23.545 -26.132	79.124	2.700		25.16	6
	55	ATOM			Т3	K	1	-26.132	76.227	5.581		24.65	6
		ATOM	4032	C8	T3	K	1	-23.382	80.104	3.772		21.93	6
		ATOM	4033	C9	Т3	K	1	-25.685	75.833	6.855		25.09	6
		ATOM	4034	C10	ТЗ	K	1	-23.867	79.823	5.042	1.00	23.66	6

	5	ATOM	4035	C11		K	. 1	-26.708	75.670	7.834		23.12	6
		ATOM	4036	C12		K	1	-24.521	78.610	5.376		19.67	6
		MOTA	4037	C13	TЗ	K	1	-29.211	75.830	8.626	1.00	18.97	6
		ATOM	4038	C15	Т3	K	1	-29.181	74.567	9.488	1.00	19.32	6
		ATOM	4039	C17	т3	K	1	-30.440	74.343	10.264	1.00	19.02	6
	10	ATOM	4040	11	Т3	K	1 ·	-27.868	77.342	3.316	1.00	25.29	53
		ATOM	4041	12	Т3	K	1	-22.732	79.619	0.850	1.00	26.49	53
		ATOM	4042	13	Т3	K	1	-23.602	75.792	7.334	1.00	25.67	53
		ATOM	4043	N1	Т3	K	1	-28.680	73.342	8.762		15.12	7
		ATOM	4044	01	Т3	K	1	-22.742	81.265	3.443		21.79	8
	15	ATOM	4045	02	Т3	K	1	-25.267	76.388	4.595		22.05	8
	13	ATOM	4046	03	Т3	K	1	-30.816	73.159	10.382		20.38	8
		ATOM	4047	04	Т3	K	1	-31.028	75.359	10.729		20.16	8
		TER	1011	04	13	11	_	31.020	73.333	10.723	1.00	20.10	U
		ATOM	1	С	TVC	v	686	13.868	40.176	48.888	1 00	40.00	6
	20	ATOM	2	0			686	13.914	40.170	47.639		40.00	8
	20		3					14.374				40.00	7
		ATOM		N			686		42.245	50.489			
		ATOM	4	CA			686	14.937	41.070	49.710		40.00	6
a militar.		MOTA	5	N	HIS			13.038	39.527	49.705		40.00	7
	0.5	ATOM	6	CA	HIS			11.891	38.518	49.521		40.00	6
E I	25	ATOM	7	CB	HIS			10.639	39.000	50.212		40.00	6
11		ATOM	8	CG	HIS			10.981	39.526	51.563		40.00	6
IJ		ATOM	9		HIS			11.021	38.908	52.753		40.00	6
, ~] -		ATOM	10		HIS			11.354	40.844	51.754		40.00	. 7
TE LL	• •	MOTA	11		HIS			11.614	40.994	53.034		40.00	6
14.j	30	MOTA	12		HIS			11.422	39.847	53.646		40.00	7
::		MOTA	13	С	HIS			11.183	38.108	48.208		40.00	6
		ATOM	14	0	HIS			11.674	38.361	47.094		40.00	8
		ATOM	15	N	LYS			10.064	37.458	48.649		40.00	7
H		ATOM	16	CA	LYS			8.911	36.858	47.931		40.00	6
	35	MOTA	17	СВ	LYS			8.292	37.850	46.968		40.00	6
ī		MOTA	18	С	LYS			9.246	35.573	47.161		40.00	6
-		ATOM	19	0	LYS			9.319	34.473	47.722		40.00	8
- 1507		MOTA	20	N			689	9.426	35.754	45.865	1.00	40.00	7
		MOTA	21	CA	ILE	Χ	689	9.661	34.640	44.924	1.00	40.00	6
	40	ATOM	22	CB	ILE	Χ	689	9.731	35.167	43.498	1.00	40.00	6
		ATOM	23	CG2	ILE	Χ	689	9.638	34.053	42.453	1.00	40.00	6
		ATOM	24	CG1	ILE	Χ	689	8.597	36.141	43.176	1.00	40.00	6
		ATOM	25	CD1	ILE	Х	689	8.250	36.183	41.688	1.00	40.00	6
		ATOM	26	C	-ILE	Х	689	10.954	33.869	45.228	1.00	40.00	6
	45	ATOM	27	0	ILE	Х	689	10.920	32.657	45.511	1.00	40.00	8
		ATOM	28	N	LEU	Х	690	12.065	34.579	45.140	1.00	40.00	7
		ATOM	29	CA	LEU			13.391	33.996	45.397		40.00	6
		ATOM	30	СВ	LEU			14.349	35.043	45.892		40.00	6
		ATOM	31	CG	LEU			14.450	36.168	44.906		40.00	6
	50	ATOM	32		LEU			15.397	37.261	45.363		40.00	6
		ATOM	33		LEU			14.940	35.695	43.540		40.00	6
		ATOM	34	C	LEU			13.271	32.999	46.466		40.00	6
		ATOM	35	0	LEU			13.633	31.832	46.315		40.00	8
		ATOM	36	N	HIS			12.773	33.472	47.541		40.00	7
	55	ATOM	37	CA	HIS			12.773	32.559	48.569		40.00	6
	55	ATOM	38	CB	HIS			11.729	33.212	49.658		40.00	6
		ATOM	39	CG	HIS			12.588	34.116	50.564		40.00	6
		ATOM	40		HIS			13.648	33.852	51.385		40.00	6
		MION	40	CDZ	1112	Λ	ロシエ	13.040	JJ. UJZ	JI.J0J	1.00	40.00	U

	5	ATOM	41	ND1	HIS	Х	691	12.359	35.484	50.669	1.00	40.00	7
		ATOM	42	CE1	HIS	Х	691	13.242	35.991	51.513	1.00	40.00	6
		ATOM	43	NE2	HIS	Х	691	14.016	35.031	51.949	1.00	40.00	7
		ATOM	44	С	HIS	Х	691	11.954	31.331	47.861	1.00	40.00	6
		ATOM	45	0	HIS	Х	691	12.505	30.240	47.882	1.00	40.00	8
	10	ATOM	46	N	ARG			10.839	31.494	47.167	1.00	40.00	7
		ATOM	47	CA	ARG			10.169	30.333	46.518	1.00		6
		ATOM	48	СВ	ARG			9.118	30.800	45.517	1.00		6
		ATOM	49	С	ARG			11.153	29.402	45.752		40.00	6
		ATOM	50	0	ARG			11.030	28.168	45.779		40.00	8
	15	ATOM	51	N	LEU			12.117	30.000	45.072		40.00	7
		ATOM	52	CA	LEU			13.078	29.252	44.226		40.00	6
		ATOM	53	СВ	LEU			13.784	30.210	43.274		40.00	6
		ATOM	54	CG	LEU			12.796	31.012	42.432		40.00	6
		ATOM	55	CD1	LEU			13.479	31.969	41.458		40.00	6
	20	ATOM	56	CD2				11.884	30.126	41.579		40.00	6
		ATOM	57	C	LEU			14.143	28.531	45.054		40.00	6
		ATOM	58	0	LEU			14.702	27.508	44.633		40.00	8
		ATOM	59	N	LEU			14.400	29.079	46.209		40.00	7
12		ATOM	60	CA	LEU			15.407	28.538	47.115		40.00	6
-	25	ATOM	61	СВ	LEU			15.871	29.626	48.084		40.00	6
īŪ		ATOM	62	CG	LEU			16.692	30.716	47.404		40.00	6
II		ATOM	63	CD1	LEU			17.279	31.724	48.391		40.00	6
<u></u>		ATOM	64		LEU			17.879	30.156	46.619		40.00	6
اله.		ATOM	65	C	LEU			14.837	27.404	47.957		40.00	6
14	30	ATOM	66	0	LEU			15.555	26.747	48.716		40.00	8
'n.	20	ATOM	67	N	GLN			13.554	27.157	47.809		40.00	7
£1		ATOM	68	CA	GLN			12.883	26.188	48.685		40.00	6
		ATOM	69	С	GLN			12.423	24.910	47.977		40.00	6
IJ		ATOM	70	0	GLN			12.309	23.845	48.598		40.00	8
	35	ATOM	71	СВ	GLN			11.681	26.858	49.322		40.00	6
		ATOM	72	CG	GLN			12.074	28.125	50.080		20.00	6
		ATOM	73	CD	GLN			10.899	28.768	50.801		20.00	6
1		ATOM	74	OE1	GLN			9.772	28.296	50.671		20.00	8
		ATOM	75		GLN			11.092	29.828	51.560		20.00	7
	40	MOTA	76	N	ASP			12.155	25.020	46.714		40.00	7
		ATOM	77	CA	ASP			11.698	23.885	45.910	1.00	40.00	6
		ATOM	78	СВ	ASP			11.450	24.400	44.497		40.00	6
		MOTA	79	CG	ASP			10.782	23.411	43.548		40.00	6
		ATOM	80		ASP			10.550	22.203	43.920	1.00	40.00	8
	45	ATOM	81		ASP			10.449	23.804	42.362	1.00	40.00	8
		ATOM	82	С	ASP			12.774	22.806	45.876		40.00	6
		ATOM	83	0	ASP			13.937	23.077	45.562		40.00	8
		ATOM	84	N	SER			12.370	21.610	46.213		40.00	7
		MOTA	85	CA	SER			13.258	20.453	46.128		40.00	6
	50	ATOM	86	СВ	SER			12.685	19.371	47.049		40.00	6
		ATOM	87	OG	SER			12.535	19.899	48.374		40.00	8
		ATOM	88	C.	SER			13.329	20.130	44.613		40.00	6
		ATOM	89	0	SER			14.247	20.573	43.914		40.00	8
		ATOM	90	N	SER			12.355	19.357	44.183		40.00	7
	55	ATOM	91	CA	SER			11.985	19.100	42.752		40.00	6
		ATOM	92	СВ	SER			11.693	20.417	42.036		40.00	6
		ATOM	93	OG	SER			10.510	21.000	42.577		40.00	8
		ATOM	94	C.	SER			12.887	18.340	41.758		40.00	6
													-

	5	ATOM	95	0	SER :	X	698	13.2	53	17.158	42.026	1.00	40.00	8
		ATOM	96	OXT	SER :	X	698	13.1	31	18.976	40.714	1.00	40.00	8
		TER												
		ATOM	1	СВ	LYS	Y	688	-33.7	93	96.885	6.491	1.00	40.00	6
		ATOM	2	С	LYS	Y	688	-35.0	02	95.370	8.130	1.00	40.00	6
	10	ATOM	3	0	LYS	Y	688	-36.0	27	95.520	8.779	1.00	40.00	8
		ATOM	4	N	LYS			-32.7	17	96.619	8.695	1.00	40.00	7
		ATOM	5	CA	LYS			-34.0		96.591	7.954		40.00	6
		MOTA	6	N	ILE			-34.5		93.781	6.908		40.00	. 7
		MOTA	7	CA	ILE			-35.8		93.106	7.268		40.00	6
	15	ATOM	8	СВ	ILE			-35.9		91.759	6.572		40.00	6
		ATOM	9	CG2				-37.2		91.077	6.932		40.00	6
		ATOM	10		ILE			-35.9		91.937	5.062		40.00	6
		ATOM	11		ILE '			-36.3		90.691	4.289		40.00	6
		ATOM	12	C	ILE '			-36.0		92.870	8.780		40.00	6
	20	ATOM	13	0	ILE '			-36.9		93.446	9.442		40.00	8
		ATOM	14	N	LEU '			-35.0		92.834	9.787		40.00	7
		ATOM	15	CA	LEU '			-34.9		92.320	11.163		40.00	6
		ATOM	16	CB	LEU .			-33.5		92.432	11.697		40.00	6
		ATOM	17	CG	LEU .			-32.5		91.647	10.864		40.00	6
	25	ATOM	18		LEU .			-31.0		91.764	11.397		40.00	6
ī	20	ATOM	19		LEU .			-32.8		90.148	10.812		40.00	6
Ď		ATOM	20	C	LEU '			-35.8		93.123	12.065		40.00	6
j _e		ATOM	21	0	LEU '			-36.5		92.492	12.928		40.00	8
		ATOM	22	N	HIS '			-36.0		94.731	11.373		40.00	7
	30	ATOM	23	CA	HIS '			-36.6		94.923	12.683		40.00	6
1	50	ATOM	24	CB	HIS '			-36.8		96.383	12.935		40.00	6
S :		ATOM	25	CG	HIS :			-35.6		97.153	13.078		40.00	6
		ATOM	26		HIS			-34.7		97.640	12.159		40.00	6
		ATOM	27		HIS :			-35.1		97.579	14.319		40.00	7
لہا	35	ATOM	28		HIS :			-34.0		98.290	14.122		40.00	6
	55	ATOM	29		HIS			-33.7		98.346	12.815		40.00	.7
ũ		ATOM	30	C	HIS :			-37.9		94.287	12.756		40.00	6
ı.		ATOM	31	0	HIS Y			-38.2		93.417	13.545	1.00	40.00	8
		ATOM	32	N	ARG			-38.2		94.388	11.505		40.00	7
	40	ATOM	33	CA	ARG			-39.5		93.869	11.276		40.00	6
		ATOM	34	СВ	ARG			-39.6		93.692	9.795		40.00	6
		ATOM	35	CG	ARG			-40.7		92.764	9.329		40.00	6
		ATOM	36	CD	ARG			-40.6		92.422	7.848		40.00	6
		ATOM	37	NE	ARG			-41.8		92.641	7.091		40.00	7.
	45	ATOM	38	CZ	ARG			-41.8		92.758	5.763		40.00	6
		ATOM	39		ARG			-40.7		92.695	5.024		40.00	7
		ATOM	40		ARG			-43.0		92.940	5.080		40.00	7
		ATOM	41	C	ARG			-39.9		92.547	11.995		40.00	6
		ATOM	42	0	ARG			-41.0		92.440	12.649		40.00	8
	50	ATOM	43	N	LEU Y			-39.0		91.576	11.816		40.00	7
	50	ATOM	44	CA	LEU :			-39.0 -39.2		90.232	12.395		40.00	6
		ATOM	45	CB	LEU S			-38.3		89.337	11.615		40.00	6
			46	CG	LEU :			-38.7		89.375	10.132		40.00	
		ATOM ATOM	47		LEU :			-38.7 -37.7		89.375	9.247		40.00	6 6
	55	ATOM	48		LEU :			-37.7 -40.1		88.827	9.247		40.00	6
	55	ATOM	49	CD2	LEU :			-38.9		90.378	13.816		40.00	6
		ATOM	50	0	LEU :			-38.9 -39.1		89.474	14.615		40.00	8
		ATOM	51	N	LEU :			-39.1 -38.3		91.533	14.015		40.00	7
		WI ON	JΙ	IA	про :	L	024	-30.3	00	91.000	14.0/6	1.00	40.00	′

5	MOTA	52	CA	LEU	Y	694	-38.174	91.885	15.435	1.00	40.00	6
	MOTA	53	СВ	LEU	Y	694	-37.181	93.002	15.561	1.00	40.00	6
	MOTA	54	CG	LEU	Y	694	-35.799	92.377	15.869	1.00	40.00	6
	MOTA	55	CD1	LEU	Y	694	-34.897	93.275	16.702	1.00	40.00	6
	MOTA	56	CD2	LEU	Y	694	-35.897	91.055	16.661	1.00	40.00	6
10	ATOM	57	С	LEU	Y	694	-39.596	91.903	15.915	1.00	40.00	6
	ATOM	58	0	LEU	Y	694	-39.985	91.253	16.858	1.00	40.00	8
	MOTA	59	N	GLN	Y	695	-40.787	92.229	15.048	1.00	40.00	7
	ATOM	60	CA	GLN	Y	695	-42.034	91.457	15.543	1.00	40.00	6
	ATOM	61	С	GLN	Y	695	-43.054	90.901	14.240	1.00	40.00	6
15	MOTA	62	0	GLN	Y	695	-43.102	91.557	13.189	1.00	40.00	8
	ATOM	63	СВ	GLN	Y	695	-42.362	92.025	16.923	1.00	40.00	6
	MOTA	64	CG	GLN	Y	695	-41.013	92.101	17.768	1.00	40.00	6
	ATOM	65	CD	GLN	Y	695	-40.943	91.235	19.059	1.00	40.00	6
	MOTA	66	OE1	GLN	Y	695	-41.828	90.426	19.318	1.00	40.00	8
20	MOTA	67	NE2	GLN	Y	695	-39.938	91.399	19.916	1.00	40.00	7
	MOTA	68	N	ASP	Y	696	-43.802	89.498	14.402	1.00	40.00	7
	MOTA	69	CA	ASP	Y	696	-44.784	88.354	13.428	1.00	40.00	6
	MOTA	70	С	ASP	Y	696	-46.034	88.934	12.759	1.00	40.00	6
	MOTA	71	0	ASP	Y	696	-46.266	88.655	11.529	1.00	40.00	8
25	MOTA	72	СВ	ASP	Y	696	-45.211	87.192	14.322	1.00	40.00	6
	MOTA	73	CG	ASP	Y	696	-44.021	86.560	15.058	1.00	40.00	6
	ATOM	74	OD1	ASP	Y	696	-42.823	86.994	14.844	1.00	40.00	8
	ATOM	75	OD2	ASP	Y	696	-44.212	85.591	15.889	1.00	40.00	8
	END											

Appendix 2

Atomic Coordinates for Human ERa Complexed with DES, and a GRIP1 NR-box 2 Peptide

	CRYST1	54.0	94 82	2.217	58.	041	90.00	11	.1.33 9	0.00	P 21	2
10												
	ORIGX1		00000	0.00			00000		00000			
	ORIGX2		00000	1.00			00000		00000			
	ORIGX3		00000	0.00			00000		00000	•		
1.5	SCALE1		018486	0.00			07221		00000			
15			00000	0.01			00000		00000			
	SCALE3	0.0	00000	0.00	0000	0.0	18497	0.	00000			
	ATOM	1	CB	SER	A	305		.230		7 -1.163	1.00	73.26
•	ATOM	2	С	SER	Α	305		.331	-14.303		1.00	72.95
20		3	0	SER	A	305		.146	-13.984		1.00	72.46
	ATOM	4	N	SER	A	305		. 797			1.00	74.06
	ATOM	5	CA	SER	A	305		.138	-14.713		1.00	73.59
	ATOM	6	N	LEU	A	306		982	-14.313		1.00	72.21
-	ATOM	7	CA	LEU	Α	306		.329	-13.950		1.00	71.05
口 25 心 心 瓜 上		8	CB	LEU	A	306		.251	-14.256		1.00	70.19
	ATOM	9	С	LEU	Α	306		929	-12.478		1.00	69.57
	ATOM	10	0	LEU	Α	306		.580	-11.638			69.96
i.i.	ATOM	11	N	ALA	Α	307		851	-12.176		1.00	68.06
	ATOM	12	CA	ALA	A	307		358	-10.810		1.00	64.88
30		13	CB	ALA	A	307		841			1.00	65.83
<u>.</u>	ATOM	14	С	ALA	Α	307		792			1.00	63.36
	ATOM	15	0	ALA	Α	307		878	-8.984		1.00	62.73
;; **** ;	ATOM	16	N	LEU	A	308			-11.062		1.00	62.52
leed I.I.a.	ATOM	17	CA	LEU	Α	308		487			1.00	62.57
₩ 35		18	CB	LEU	Α	308		423	-11.745		1.00	62.81
ليفية يعدي	MOTA	19	CG	LEU	Α	308			-12.688		1.00	64.21
	ATOM	20	CD1	LEU	A	308		188		10.406	1.00	66.28
35 1 1 1	ATOM	21	CD2	LEU	Α	308		919	-11.898		1.00	63.80
	ATOM	22	C	LEU	Α	308		903	-10.037		1.00	61.61
40		23	0	LEU	A	308		385	-9.445		1.00	62.92
	ATOM	24	N	SER	A	309		561	-10.219		1.00	60.50
	MOTA	25	CA	SER	A	309		928	-9.743		1.00	58.73
	ATOM	26	CB	SER	A	309		720	-10.750		1.00	59.53
	MOTA	27	OG	SER	A	309		889	-10.283		1.00	59.47
45		28	С	SER	A	309		986	-8.373		1.00	57.05
	MOTA	29	0	SER	Α	309		965	-7.637		1.00	56.70
	MOTA	30	N	LEU	A	310		940	-8.038		1.00	52.69
	MOTA	31	CA	LEU	Α	310		877	-6.759		1.00	48.20
	MOTA	32	CB	LEU	Α	310	35.	516	-6.596	3.974	1.00	48.32
50	MOTA	33	CG	LEU	Α	310	35.	301	-7.188	2.583	1.00	44.94
	MOTA	34	CD1	LEU	Α	310	33.	951	-6.728	2.055	1.00	46.45
	ATOM	35	CD2	LEU	Α	310	36.	417	-6.755	1.650	1.00	43.19
	ATOM	36	С	LEU	Α	310	37.	086	-5.589	5.609	1.00	46.44
	MOTA	37	0	LEU	Α	310	36.	605	-5.607	6.741	1.00	46.78
55	MOTA	38	N	THR	Α	311	37.	812	-4.576	5.148	1.00	44.36
	MOTA	39	CA	THR	Α	311	38.	034	-3.380	5.949	1.00	42.88
	ATOM	40	CB	THR	Α	311		313	-2.633		1.00	42.31
	ATOM	41	OG1	THR	Α	311		079	-1.936		1.00	42.50
	MOTA	42	CG2	THR	Α	311		464	-3.606		1.00	46.02
60		43	С	THR	Α	311		834	-2.475		1.00	43.21
	ATOM	44	0	THR	A	311		021	-2.776		1.00	42.12

	5	ATOM	45	N	ALA	Α	312	36.726	-1.372	6.409	1.00	42.16
		MOTA	46	CA	ALA	Α	312	35.616	-0.444	6.228	1.00	40.10
		ATOM	47	CB	ALA	Α	312	35.741	0.709	7.205	1.00	40.07
		ATOM	48	C	ALA	Α	312	35.561	0.090	4.799	1.00	41.80
		ATOM	49	Ö	ALA	A	312	34.510	0.074	4.154	1.00	37.81
	10	MOTA	50	N	ASP	A	313	36.698	0.564	4.304	1.00	42.35
	10											
		MOTA	51	CA	ASP	Α	313	36.752	1.104	2.953	1.00	42.27
		ATOM	52	CB	ASP	Α	313	38.133	1.703	2.680	1.00	43.74
		ATOM	53	CG	ASP	Α	313	38.323	3.054	3.348	1.00	46.62
		ATOM	54	OD1	ASP	Α	313	39.414	3.645	3.205	1.00	51.01
	15	ATOM	55	OD2	ASP	Α	313	37.380	3.529	4.015	1.00	48.89
		ATOM	56	С	ASP	Α	313	36.422	0.027	1.926	1.00	38.68
		ATOM	57	0	ASP	A	313	35.704	0.281	0.959	1.00	38.75
		ATOM	58	N	GLN	A	314	36.931	-1.179	2.145	1.00	34.76
	20	ATOM	59	CA	GLN	A	314	36.666	-2.277	1.229	1.00	33.55
	20	ATOM	60	CB	GLN	A	314	37.462	-3.512	1.643	1.00	36.90
		ATOM	61	CG	GLN	Α	314	38.963	-3.384	1.436	1.00	40.45
		ATOM	62	CD	GLN	A	314	39.700	-4.610	1.905	1.00	43.13
		MOTA	63	OE1	GLN	A	314	39.394	-5.196	2.935	1.00	43.60
		MOTA	64	NE2	GLN	A	314	40.701	-5.032	1.117	1.00	44.03
ij	25	ATOM	65	C	GLN	Α	314	35.176	-2.595	1.201	1.00	34.95
Ō		ATOM	66	0	GLN	A	314	34.605	-2.860	0.140	1.00	32.89
IJ		ATOM	67	N	MET	A	315	34.542	-2.564	2.374	1.00	32.54
IJ		ATOM	68	CA	MET	A	315	33.115	-2.848	2.470	1.00	35.46
اليانية				CB	MET			32.650	-2.794	3.926	1.00	37.09
	20	ATOM	69			A	315					
i Marii	30	ATOM	70	CG	MET	A	315	31.137	-2.777	4.097	1.00	39.42
de de		MOTA	71	SD	MET	Α	315	30.443	-4.426	4.053	1.00	46.55
-		ATOM	72	CE	MET	Α	315	31.351	-5.205	5.397	1.00	45.29
äi		ATOM	73	C	MET	A	315	32.311	-1.859	1.640	1.00	31.83
		ATOM	74	0	MET	Α	315	31.453	-2.247	0.852	1.00	32.10
	35	ATOM	75	N	VAL	Α	316	32.587	-0.560	1.830	1.00	32.62
1.1		ATOM	76	CA	VAL	Α	316	31.882	0.470	1.079	1.00	31.09
: ===== : ======		ATOM	77	СВ	VAL	Α	316	32.395	1.888	1.425	1.00	34.77
		ATOM	78	CG1	VAL	A	316	31.786	2.899	0.461	1.00	34.10
144		ATOM	79	CG2	VAL	A	316	32.021	2.246	2.862	1.00	34.40
II.	40	ATOM	80	C	VAL	A	316	32.021		-0.414	1.00	33.48
	40											
		ATOM	81	0	VAL	A	316	31.145		-1.200	1.00	32.49
		ATOM	82	N	SER	A	317	33.337	-0.027		1.00	33.49
		ATOM	83	CA	SER	A	317	33.682	-0.280		1.00	32.88
		MOTA	84	CB	SER	Α	317	35.165	-0.635	-2.297	1.00	35.77
	45	MOTA	85	OG	SER	Α	317	35.825	0.277	-3.154	1.00	42.70
		MOTA	86	C	SER	Α	317	32.849	-1.396	-2.801	1.00	30.71
		ATOM	87	0	SER	Α	317	32.279	-1.238	-3.880	1.00	31.14
		ATOM	88	N	ALA	Α	318	32.792	-2.529	-2.111	1.00	29.51
		ATOM	89	CA	ALA	Α	318	32.035	-3.676		1.00	29.93
	50	ATOM	90	CB	ALA	A	318	32.156	-4.811		1.00	28.56
	50	ATOM	91	C	ALA		318	30.565	-3.305		1.00	31.55
						A						
		ATOM	92	0	ALA	Α	318	29.961	-3.642		1.00	30.64
		MOTA	93	N	LEU	Α	319	29.997	-2.614		1.00	34.13
		MOTA	94	CA	LEU	Α	319	28.597	-2.212		1.00	32.93
	55	ATOM	95	CB	LEU	Α	319	28.170	-1.576	-0.540	1.00	31.15
		ATOM	96	CG	LEU	Α	319	28.076	-2.555	0.632	1.00	32.27
		ATOM	97	CD1	LEU	Α	319	27.523	-1.840	1.852	1.00	32.14
		ATOM	98	CD2	LEU	Α	319	27.194	-3.733		1.00	31.82
		ATOM	99	C	LEU	Α	319	28.340	-1.257		1.00	34.41
	60	ATOM	100	Õ	LEU	A	319	27.430	-1.475		1.00	35.23
	50		101	N	LEU	A	320		-0.195		1.00	32.53
		ATOM						29.140				
		ATOM	102	CA	LEU	Α	320	28.972	0.756	-4.212	1.00	35.33
								1 7 1				

	5	ATOM	103	СВ	LEU	Α	320	30.052	1.839 -4.155	1.00	33.52
		MOTA	104	CG	LEU	A	320	29.974	2.899 -3.054	1.00	34.60
		MOTA	105	CD1	LEU	Α	320	31.060	3.940 -3.292	1.00	33.69
		MOTA	106	CD2	LEU	Α	320	28.611	3.562 -3.044	1.00	31.05
		MOTA	107	С	LEU	A	320	29.052	0.040 -5.561	1.00	35.41
	10	ATOM	108	0	LEU	A	320	28.230	0.271 -6.446	1.00	39.16
		ATOM	109	N	AASP	Α	321	30.042	-0.833 -5.720	0.50	36.33
		ATOM	110	N	BASP	Α	321	30.041	-0.839 -5.695	0.50	35.76
		MOTA	111	CA	AASP	Α	321	30.214	-1.559 -6.977	0.50	37.71
		MOTA	112	CA	BASP	Α	321	30.258	-1.595 -6.925	0.50	37.11
	15	ATOM	113	CB	AASP	A	321	31.537	-2.334 -6.973	0.50	40.01
		ATOM	114	CB	BASP	A	321	31.573	-2.374 -6.826	0.50	39.41
		ATOM	115	CG	AASP	Α	321	31.694	-3.230 -8.195	0.50	41.93
		ATOM	116	CG	BASP	Α	321	32.770	-1.562 -7.284	0.50	39.96
		ATOM	117	OD1	AASP	Α	321	31.523	-2.733 -9.329	0.50	42.11
	20	ATOM	118	OD1	BASP	Α	321	33.312	-1.868 -8.366	0.50	43.41
		ATOM	119	OD2	AASP	Α	321	31.988	-4.432 -8.022	0.50	42.69
		ATOM	120	OD2	BASP	A	321	33.170	-0.622 -6.564	0.50	41.33
		ATOM	121	C	AASP	A	321	29.069	-2.524 -7.275	0.50	37.19
		ATOM	122	C	BASP	А	321	29.123	-2.565 -7.253	0.50	36.68
	25	ATOM	123	0	AASP	A	321	28.820	-2.861 -8.434	0.50	36.87
Ü		ATOM	124	0	BASP	Α	321	28.934	-2.942 -8.411	0.50	36.08
I		ATOM	125	N	ALA	Α	322	28.374	-2.968 -6.235	1.00	35.35
IJ		ATOM	126	CA	ALA	Α	322	27.268	-3.902 -6.417	1.00	31.59
ļ.		ATOM	127	CB	ALA	A	322	27.124	-4.781 -5.175	1.00	30.73
1	30	ATOM	128	C	ALA	A	322	25.946	-3.204 -6.709	1.00	30.07
		ATOM	129	0	ALA	Α	322	24.955	-3.857 -7.036	1.00	26.53
; ;,j		ATOM	130	N	GLU	A	323	25.932	-1.880 -6.596	1.00	27.98
#		ATOM	131	CA	GLU	A	323	24.713	-1.117 -6.827	1.00	29.88
		ATOM	132	CB	GLU	A	323	25.027	0.380 -6.855	1.00	30.98
	35	ATOM	133	CG	GLU	Α	323	24.870	1.068 -5.509	1.00	31.62
i i i		ATOM	134	CD	GLU	Α	323	23.463	0.940 -4.960	1.00	31.98
122		ATOM	135	OE1	GLU	A	323	23.183	-0.056 -4.257	1.00	33.10
		ATOM	136	OE2	GLU	Α	323	22.640	1.836 -5.233	1.00	30.01
		ATOM	137	С	GLU	Α	323	24.010	-1.515 -8.123	1.00	30.86
" Start"	40	ATOM	138	0	GLU	Α	323	24.655	-1.705 -9.151	1.00	28.86
		ATOM	139	N	PRO	Α	324	22.674	-1.659 -8.083	1.00	30.66
		ATOM	140	CD	PRO	Α	324	21.774	-1.466 -6.935	1.00	
		ATOM	141	CA	PRO	Α	324	21.935	-2.032 -9.290	1.00	30.29
		ATOM	142	СВ	PRO	Α	324	20.613	-2.598 -8.760	1.00	31.42
	45	MOTA	143	CG	PRO	Α	324	20.626	-2.363 -7.258	1.00	33.66
		ATOM	144	С	PRO	A	324	21.717	-0.785-10.138	1.00	27.46
		ATOM	145	0	PRO	Α	324	21.893	0.332 -9.668	1.00	26.19
		ATOM	146	N	PRO	A	325	21.335	-0.959-11.403	1.00	27.80
		ATOM	147	CD	PRO	Α	325	21.082	-2.198-12.161	1.00	27.35
	50	ATOM	148	CA	PRO	Α	325	21.125	0.242-12.211	1.00	25.59
		ATOM	149	CB	PRO	Α	325	21.258	-0.266-13.637	1.00	24.02
		ATOM	150	CG	PRO	Α	325	20.773	-1.695-13.559	1.00	26.00
		ATOM	151	С	PRO	Α	325	19.749	0.830-11.954	1.00	23.73
		ATOM	152	0	PRO	Α	325	18.873	0.165-11.402	1.00	24.83
	55	ATOM	153	N	ILE	Α	326	19.571	2.081-12.352	1.00	22.11
		ATOM	154	CA	ILE	A	326	18.296	2.762-12.212	1.00	24.01
		ATOM	155	CB	ILE	A	326	18.502	4.282-12.133	1.00	25.97
		ATOM	156	CG2	ILE	A	326	17.168	4.992-12.286	1.00	20.75
		ATOM	157	CG1	ILE	A	326	19.189	4.632-10.805	1.00	29.31
	60	ATOM	158	CD1	ILE	A	326	19.301	6.120-10.525	1.00	32.91
		ATOM	159	C	ILE	A	326	17.506	2.408-13.471	1.00	25.72
		ATOM	160	0	ILE	A	326	17.906	2.758-14.581	1.00	25.55
		-		-							

	5	ATOM	161	N	LEU	Α	327	16.392	1.703-13.301	1.00	25.57
		MOTA	162	CA	LEU	Α	327	15.595	1.279-14.439	1.00	23.80
		ATOM	163	CB	LEU	Α	327	14.872	-0.029-14.104	1.00	23.96
		ATOM	164	CG	LEU	Α	327	15.778	-1.210-13.728	1.00	19.89
		ATOM	165	CD1	LEU	Α	327	14.944	-2.462-13.583	1.00	21.19
	10	ATOM	166	CD2	LEU	Α	327	16.850	-1.415-14.805	1.00	17.53
		ATOM	167	С	LEU	Α	327	14.598	2.317-14.935	1.00	27.16
		ATOM	168	0	LEU	Α	327	14.161	3.202-14.194	1.00	25.98
		ATOM	169	N	TYR	Α	328	14.251	2.207-16.210	1.00	26.56
		ATOM	170	CA	TYR	Α	328	13.303	3.123-16.814	1.00	24.45
	15	ATOM	171	СВ	TYR	Α	328	13.724	3.465-18.245	1.00	26.72
		ATOM	172	CG	TYR	Α	328	14.587	4.693-18.314	1.00	27.73
		ATOM	173	CD1	TYR	A	328	14.021	5.949-18.518	1.00	28.56
		ATOM	174	CE1	TYR	A	328	14.798	7.092-18.509	1.00	29.10
		ATOM	175	CD2	TYR	A	328	15.962	4.612-18.110	1.00	26.01
	20	ATOM	176	CE2	TYR	A	328	16.750	5.753-18.098	1.00	30.63
		ATOM	177	CZ	TYR	A	328	16.157	6.988-18.297	1.00	30.07
		ATOM	178	OH	TYR	A	328	16.917	8.130-18.265	1.00	37.94
		ATOM	179	C	TYR	A	328	11.923	2.501-16.827	1.00	24.95
		ATOM	180	0	TYR	A	328	11.774	1.274-16.846	1.00	27.02
	25	ATOM	181	N	SER	A	329	10.912	3.358-16.800	1.00	25.60
Ü	23	ATOM	182	CA	SER	A	329	9.533	2.908-16.837	1.00	29.45
TU		ATOM	183	CB	SER	A	329	8.661	3.858-16.020	1.00	30.80
Ü		ATOM	184	OG	SER	A	329	7.297	3.721-16.364	1.00	33.74
i.i.		ATOM	185	C	SER	A	329	9.129	2.947-18.313	1.00	31.30
1	30	ATOM	186	0	SER	A	329	9.908	3.397-19.154	1.00	27.35
	30	ATOM	187	N	GLU		330	7.930	2.469-18.629	1.00	32.98
=		ATOM	188	CA	GLU	A	330	7.459	2.482-20.007	1.00	35.10
·			189	CB		A	330	6.031	1.968-20.074	1.00	
11 3222		ATOM		СВ	GLU	A	330	7.532	3.924-20.505		34.67
	35	ATOM	190		GLU	A				1.00	40.06
IJ	33	ATOM	191	O N	GLU	A	330	7.068	4.841-19.826	1.00	42.65
<u>L</u>		ATOM	192	N	TYR	A	331	8.124	4.126-21.681	1.00	41.16
		ATOM	193	CA	TYR	A	331	8.263	5.470-22.234	1.00	42.66
Ę		ATOM	194	CB	TYR	A	331	9.323	5.482-23.350	1.00	42.54
1	40	ATOM	195	CG	TYR	A	331	9.202	4.347-24.345	1.00	38.67
	40	ATOM	196	CD1	TYR	A	331	10.105	3.284-24.334	1.00	34.66
		ATOM	197	CE1	TYR	A	331	9.985	2.228-25.233	1.00	34.89
		ATOM	198	CD2	TYR	A	331	8.174	4.327-25.287	1.00	37.88
		ATOM	199	CE2	TYR	A	331	8.045	3.276-26.193	1.00	34.65
	15	ATOM	200	CZ	TYR	A	331	8.950	2.232-26.159	1.00	30.73
	45	ATOM	201	OH	TYR	A	331	8.814	1.191-27.042	1.00	30.97
		ATOM	202	C	TYR	A	331	6.943	6.043-22.754	1.00	46.24
		ATOM	203	0	TYR	A	331	6.018	5.301-23.096	1.00	45.38
		ATOM	204	N	ASP	Α	332	6.868	7.372-22.792	1.00	49.11
	50	MOTA	205	CA	ASP	Α	332	5.684	8.092-23.262	1.00	52.40
	50	MOTA	206	CB	ASP	Α	332	5.781	8.321-24.772	1.00	52.86
		ATOM	207	С	ASP	Α	332	4.356	7.410-22.926	1.00	52.90
		ATOM	208	0	ASP	Α	332	3.561	7.116-23.818	1.00	53.94
		ATOM	209	N	PRO	Α	333	4.103	7.144-21.632	1.00	53.63
		ATOM	210	CD	PRO	Α	333	4.962	7.418-20.465	1.00	53.63
	55	MOTA	211	CA	PRO	Α	333	2.840	6.497-21.253	1.00	53.55
		ATOM	212	CB	PRO	Α	333	3.070	6.076-19.802	1.00	53.78
		ATOM	213	CG	PRO	Α	333	4.101	7.028-19.290	1.00	53.42
		ATOM	214	С	PRO	Α	333	1.673	7.478-21.398	1.00	52.17
		ATOM	215	0	PRO	Α	333	1.879	8.690-21.395	1.00	51.19
	60	ATOM	216	N	THR	Α	334	0.457	6.956-21.532	1.00	52.26
		ATOM	217	CA	THR	Α	334	-0.724	7.802-21.687	1.00	54.21
		ATOM	218	CB	THR	Α	334	-1.997	6.949-21.813	1.00	53.90

	5	MOTA	219	OG1	THR	Α	334	-1.971	6.256-23.065	1.00	53.92
		ATOM	220	CG2	THR	Α	334	-3.237	7.821-21.761	1.00	54.15
		MOTA	221	С	THR	Α	334	-0.864	8.782-20.525	1.00	56.34
		MOTA	222	0	THR	Α	334	-1.389	8.443-19.461	1.00	56.44
		MOTA	223	N	ARG	Α	335	-0.386	10.002-20.766	1.00	58.24
	10	MOTA	224	CA	ARG	Α	335	-0.377	11.099-19.801	1.00	57.96
		MOTA	225	CB	ARG	Α	335	-0.569	12.427-20.531	1.00	60.22
		MOTA	226	С	ARG	Α	335	-1.349	10.996-18.627	1.00	56.61
		MOTA	227	0	ARG	Α	335	-0.919	10.908-17.475	1.00	60.70
		MOTA	228	N	PRO	Α	336	-2.667	11.015-18.889	1.00	52.43
	15	MOTA	229	CD	PRO	Α	336	-3.389	11.117-20.165	1.00	49.06
		MOTA	230	CA	PRO	Α	336	-3.587	10.915-17.752	1.00	49.58
		MOTA	231	CB	PRO	Α	336	-4.911	11.456-18.302	1.00	48.66
		ATOM	232	CG	PRO	Α	336	-4.645	11.809-19.760	1.00	51.33
		MOTA	233	С	PRO	Α	336	-3.698	9.468-17.279	1.00	49.25
	20	ATOM	234	0	PRO	Α	336	-4.340	8.644-17.929	1.00	48.06
		ATOM	235	N	PHE	Α	337	-3.063	9.170-16.147	1.00	47.90
		MOTA	236	CA	PHE	Α	337	-3.055	7.821-15.582	1.00	46.61
		ATOM	237	CB	PHE	Α	337	-2.063	7.732-14.421	1.00	47.73
		ATOM	238	CG	PHE	Α	337	-0.649	8.011-14.805	1.00	46.27
	25	ATOM	239	CD1	PHE	Α	337	-0.017	9.168-14.368	1.00	46.55
Ī		ATOM	240	CD2	PHE	Α	337	0.061	7.113-15.591	1.00	48.12
IJ		ATOM	241	CE1	PHE	Α	337	1.305	9.429-14.707	1.00	48.09
IJ		ATOM	242	CE2	PHE	Α	337	1.386	7.364-15.938	1.00	47.57
		ATOM	243	CZ	PHE	A	337	2.009	8.525-15.495	1.00	48.40
14	30	ATOM	244	С	PHE	Α	337	-4.401	7.338-15.071	1.00	46.15
		ATOM	245	0	PHE	Α	337	-5.250	8.127-14.671	1.00	48.34
		MOTA	246	N	SER	Α	338	-4.573	6.022-15.080	1.00	45.06
±:		MOTA	247	CA	SER	Α	338	-5.781	5.385-14.578	1.00	45.12
		MOTA	248	CB	SER	Α	338	-6.477	4.594-15.684	1.00	44.49
	35	ATOM	249	OG	SER	Α	338	-6.227	3.206-15.554	1.00	45.78
		ATOM	250	C	SER	Α	338	-5.292	4.439-13.488	1.00	47.04
17		MOTA	251	0	SER	Α	338	-4.090	4.186-13.387	1.00	44.08
. 7		ATOM	252	N	GLU	Α	339	-6.206	3.916-12.676	1.00	45.63
.fi		MOTA	253	CA	GLU	Α	339	-5.802	3.012-11.608	1.00	45.40
. 222	40	ATOM	254	CB	GLU	Α	339	-7.015	2.521-10.814	1.00	45.66
		MOTA	255	CG	GLU	Α	339	-6.637	1.680 -9.600	1.00	46.81
		MOTA	256	CD	GLU	Α	339	-7.717	1.652 -8.535	1.00	47.56
		MOTA	257	OE1	GLU	Α	339	-8.471	0.656 -8.477	1.00	47.37
		MOTA	258	OE2	GLU	Α	339	-7.810	2.625 -7.754	1.00	49.29
	45	ATOM	259	C	GLU	Α	339	-5.040	1.821-12.170	1.00	45.23
		ATOM	260	0	GLU	Α	339	-3.862	1.641-11.872	1.00	46.51
		ATOM	261	N	ALA	Α	340	-5.712	1.010-12.982	1.00	42.87
		ATOM	262	CA	ALA	Α	340	-5.078	-0.158-13.574	1.00	40.24
		MOTA	263	CB	ALA	Α	340	-6.055	-0.871-14.496	1.00	41.40
	50	MOTA	264	C	ALA	Α	340	-3.837	0.273-14.350	1.00	38.83
		MOTA	265	0	ALA	Α	340	-2.909	-0.515-14.543	1.00	35.58
		MOTA	266	N	SER	Α	341	-3.836	1.535-14.773	1.00	35.79
		ATOM	267	CA	SER	Α	341	-2.742	2.133-15.537	1.00	36.58
		ATOM	268	CB	SER	Α	341	-3.231	3.454-16.154	1.00	39.01
	55	ATOM	269	OG	SER	A	341	-2.211	4.130-16.864	1.00	36.09
		ATOM	270	C	SER	Α	341	-1.480	2.376-14.691	1.00	35.63
		ATOM	271	0	SER	Α	341	-0.389	1.913-15.038	1.00	33.20
		ATOM	272	N	MET	Α	342	-1.626	3.115-13.595	1.00	35.92
		ATOM	273	CA	MET	Α	342	-0.498	3.396-12.708	1.00	35.88
	60	ATOM	274	CB	MET	A	342	-0.912	4.396-11.623	1.00	35.96
		ATOM	275	CG	MET	Α	342	0.241	5.218-11.059	1.00	38.02
		ATOM	276	SD	MET	Α	342	-0.308	6.374 -9.780	1.00	44.73

	5	ATOM	277	CE	MET	Α	342	0.626	7.815-10.205	1.00	42.49
		ATOM	278	С	MET	Α	342	-0.011	2.100-12.059	1.00	34.17
		ATOM	279	0	MET	Α	342	1.195	1.880-11.909	1.00	33.40
		ATOM	280	N	MET	A	343	-0.957	1.243-11.687	1.00	29.95
			281	CA	MET	A	343	-0.640	-0.034-11.062	1.00	31.96
	10	ATOM									
	10	MOTA	282	СВ	MET	A	343	-1.921	-0.810-10.751	1.00	31.70
		MOTA	283	CG	MET	Α	343	-2.667	-0.337 -9.502	1.00	37.13
		ATOM	284	SD	MET	Α	343	-1.749	-0.507 -7.940	1.00	36.00
		ATOM	285	CE	MET	Α	343	-1.468	-2.299 -7.886	1.00	32.14
		ATOM	286	C	\mathtt{MET}	Α	343	0.234	-0.875-11.979	1.00	31.72
	15	ATOM	287	0	MET	Α	343	1.159	-1.558-11.527	1.00	30.26
		MOTA	288	N	\mathtt{GLY}	Α	344	-0.069	-0.823-13.272	1.00	29.04
		MOTA	289	CA	\mathtt{GLY}	Α	344	0.688	-1.591-14.242	1.00	24.94
		ATOM	290	C	GLY	A	344	2.104	-1.085-14.396	1.00	26.01
		ATOM	291	Õ	GLY	A	344	3.046	-1.873-14.463	1.00	28.72
	20										
	20	ATOM	292	N	LEU	A	345	2.257	0.232-14.471	1.00	26.97
		MOTA	293	CA	LEU	A	345	3.576	0.839-14.608	1.00	31.15
		ATOM	294	CB	LEU	Α	345	3.459	2.361-14.753	1.00	30.06
		MOTA	295	CG	LEU	A	345	2.765	2.924-15.995	1.00	33.50
		MOTA	296	CD1	LEU	Α	345	2.901	4.439-15.999	1.00	33.52
	25	MOTA	297	CD2	LEU	Α	345	3.379	2.324-17.257	1.00	33.22
ıD		MOTA	298	C	LEU	Α	345	4.433	0.534-13.383	1.00	30.31
IU		MOTA	299	0	LEU	Α	345	5.564	0.061-13.505	1.00	32.80
IJ		MOTA	300	N	LEU	Α	346	3.884	0.813-12.205	1.00	27.83
i.i.		ATOM	301	CA	LEU	Α	346	4.595	0.596-10.947	1.00	26.19
,	30	ATOM	302	СВ	LEU	A	346	3.729	1.063 -9.783	1.00	24.51
74 #	50	ATOM	303	CG	LEU	A	346	3.483	2.569 -9.682	1.00	26.33
14		ATOM	304	CD1	LEU	A	346	2.623	2.844 -8.463	1.00	27.33
2 : 2 : : : : : : : : : : : : : : : : :		ATOM	305	CD2	LEU	A	346	4.809	3.317 -9.587	1.00	24.89
	2.5	ATOM	306	C	LEU	A	346	5.032	-0.848-10.707	1.00	25.72
IJ	35	ATOM	307	0	LEU	A	346	6.181	-1.102-10.345	1.00	29.86
		ATOM	308	N	THR	A	347	4.117	-1.793-10.891	1.00	23.80
		ATOM	309	CA	THR	Α	347	4.436	-3.196-10.674	1.00	23.91
		MOTA	310	CB	THR	Α	347	3.164	-4.058-10.641	1.00	26.39
ī		MOTA	311	OG1	THR	Α	347	2.421	-3.860-11.849	1.00	24.57
-	40	MOTA	312	CG2	THR	Α	347	2.301	-3.682 -9.444	1.00	23.98
		ATOM	313	С	THR	Α	347	5.366	-3.734-11.756	1.00	26.17
		MOTA	314	0	THR	Α	347	6.176	-4.622-11.496	1.00	27.44
		ATOM	315	N	ASN	Α	348	5.242	-3.197-12.970	1.00	25.48
		MOTA	316	CA	ASN	Α	348	6.092	-3.617-14.082	1.00	23.77
	45	ATOM	317	CB	ASN	A	348	5.657	-2.926-15.385	1.00	24.59
		ATOM	318	CG	ASN	A	348	6.522	-3.302-16.571	1.00	29.93
		ATOM	319	OD1	ASN	A	348	7.616	-2.799-16.771	1.00	24.81
		ATOM	320	ND2	ASN	A	348	6.010	-4.236-17.391	1.00	32.61
	~ 0	MOTA	321	C	ASN	A	348	7.532	-3.229-13.741	1.00	22.82
	50	ATOM	322	0	ASN	Α	348	8.453	-4.027-13.870	1.00	18.83
		ATOM	323	N	LEU	Α	349	7.711	-1.993-13.288	1.00	22.58
		ATOM	324	CA	LEU	Α	349	9.030	-1.507-12.914	1.00	21.85
		MOTA	325	CB	LEU	Α	349	8.929	-0.028-12.536	1.00	22.00
		ATOM	326	CG	LEU	Α	349	10.155	0.673-11.953	1.00	23.64
	55	ATOM	327	CD1	LEU	Α	349	11.224	0.826-13.017	1.00	19.35
		ATOM	328	CD2	LEU	Α	349	9.726	2.040-11.415	1.00	21.97
		ATOM	329	C	LEU	A	349	9.564	-2.335-11.734	1.00	22.94
		ATOM	330	0	LEU	A	349	10.724	-2.749-11.717	1.00	23.97
		ATOM	331	N	ALA	A	350	8.705.		1.00	21.67
	60			CA			350 350	9.113	-3.356 -9.586		21.87
	50	ATOM	332		ALA	A				1.00	
		ATOM	333	CB	ALA	A	350	7.963	-3.441 -8.593	1.00	18.95
		ATOM	334	C	ALA	Α	350	9.568	-4.757 -9.985	1.00	21.90

	_	7.0014	202	25	MEN	-	255	15 051 6 555 2 521 1 00 02 64
	5	MOTA	393	SD	MET	A	357	15.051 -6.755 -3.531 1.00 23.64
		MOTA	394	CE	MET	Α	357	14.189 -5.332 -4.163 1.00 23.13
		ATOM	395	С	\mathtt{MET}	Α	357	18.411 -8.259 -6.192 1.00 23.69
		MOTA	396	0	MET	·A	357	19.337 -8.328 -5.389 1.00 24.41
		MOTA	397	N	ILE	Α	358	17.856 -9.331 -6.746 1.00 27.14
	10	MOTA	398	CA	ILE	Α	358	18.314 -10.672 -6.425 1.00 28.79
		MOTA	399	CB	ILE	Α	358	17.529 -11.725 -7.232 1.00 32.42
		ATOM	400	CG2	ILE	Α	358	18.267 -13.064 -7.220 1.00 32.77
		ATOM	401	CG1	ILE	Α	358	16.125 -11.880 -6.644 1.00 31.94
		ATOM	402	CD1	ILE	A	358	15.062 -12.196 -7.680 1.00 34.85
	15	ATOM	403	C	ILE	A	358	19.801 -10.802 -6.728 1.00 28.75
	13	ATOM	404	Ö	ILE	A	358	20.569 -11.305 -5.912 1.00 31.60
		ATOM	405	N	ASN		359	20.207 -10.325 -7.897 1.00 27.91
						A		
		ATOM	406	CA	ASN	A	359	21.601 -10.401 -8.293 1.00 29.16
	20	ATOM	407	CB	ASN	A	359	21.721 -10.172 -9.801 1.00 31.88
	20	ATOM	408	CG	ASN	A	359	21.253 -11.381-10.599 1.00 39.34
		MOTA	409	OD1	ASN	Α	359	21.916 -12.422-10.612 1.00 41.27
		MOTA	410	ND2	ASN	Α	359	20.102 -11.255-11.253 1.00 38.58
		ATOM	411	С	ASN	Α	359	22.476 -9.436 -7.510 1.00 30.75
		MOTA	412	0	ASN	Α	359	23.686 -9.629 -7.412 1.00 33.35
	25	MOTA	413	N	TRP	Α	360	21.872 -8.400 -6.940 1.00 30.07
٠D		ATOM	414	CA	TRP	Α	360	22.634 -7.451 -6.132 1.00 27.87
ij		MOTA	415	CB	TRP	Α	360	21.849 -6.150 -5.948 1.00 24.80
iI		MOTA	416	CG	TRP	Α	360	22.196 -5.392 -4.691 1.00 23.04
įmi		ATOM	417	CD2	TRP	Α	360	21.501 -5.443 -3.438 1.00 19.83
1	30	ATOM	418	CE2	TRP	Α	360	22.147 -4.543 -2.564 1.00 22.31
		ATOM	419	CE3	TRP	A	360	20.392 -6.165 -2.972 1.00 20.09
,#]		ATOM	420	CD1	TRP	A	360	23.212 -4.488 -4.529 1.00 18.99
		ATOM	421	NE1	TRP	A	360	23.187 -3.974 -3.255 1.00 21.17
51 3 25 0		ATOM	422	CZ2	TRP	A	360	21.721 -4.340 -1.243 1.00 20.43
	35	ATOM	423	CZ3	TRP	A	360	19.968 -5.965 -1.661 1.00 20.12
IJ	33	ATOM	423	CH2	TRP	A	360	20.635 -5.057 -0.812 1.00 18.54
IJ					TRP			
		ATOM	425	C		A	360	22.892 -8.099 -4.766 1.00 24.88
		ATOM	426	0	TRP	A	360	23.978 -7.980 -4.198 1.00 25.00
1	40	ATOM	427	N	ALA	A	361	21.879 -8.789 -4.252 1.00 24.08
	40	ATOM	428	CA.	ALA	A	361	21.972 -9.462 -2.958 1.00 26.06
		ATOM	429	CB	ALA	Α	361	20.676 -10.203 -2.672 1.00 20.27
		ATOM	430	C	ALA	Α	361	23.161 -10.433 -2.897 1.00 28.44
		ATOM	431	0	ALA	Α	361	23.843 -10.531 -1.876 1.00 28.95
		ATOM	432	N	LYS	Α	362	23.414 -11.144 -3.992 1.00 31.41
	45	ATOM	433	CA	LYS	Α	362	24.530 -12.097 -4.047 1.00 33.33
		ATOM	434	CB	LYS	Α	362	24.564 -12.824 -5.390 1.00 34.81
		ATOM	435	CG	LYS	Α	362	23.319 -13.608 -5.756 1.00 36.27
		ATOM	436	CD	LYS	Α	362	23.458 -14.178 -7.167 1.00 38.30
		ATOM	437	CE	LYS	Α	362	22.369 -15.193 -7.472 1.00 40.94
	50	ATOM	438	NZ	LYS	Α	362	22.111 -15.322 -8.937 1.00 42.49
		ATOM	439	C	LYS	A	362	25.854 -11.351 -3.893 1.00 34.17
		ATOM	440	0	LYS	A	362	26.880 -11.977 -3.595 1.00 35.40
		ATOM	441	N	AARG	A	363	25.826 -10.059 -4.095 0.50 34.23
		ATOM	442	N	BARG	A	363	25.826 -10.059 -4.095 0.50 34.03
	55	ATOM	443	CA		A	363	27.035 -9.254 -3.987 0.50 33.25
	55							
		ATOM	444	CA		A	363	27.035 -9.254 -3.987 0.50 32.83
		ATOM	445	CB		A	363	27.031 -8.153 -5.044 0.50 34.67
		ATOM	446	CB	BARG		363	27.031 -8.153 -5.045 0.50 34.20
	60	ATOM	447	CG		A	363	26.933 -8.654 -6.478 0.50 36.32
	60	ATOM	448	CG		A	363	26.930 -8.654 -6.480 0.50 35.56
		ATOM	449	CD	AARG	A	363	27.745 -7.775 -7.415 0.50 38.39
		ATOM	450	CD	BARG	Α	363	27.752 -7.781 -7.414 0.50 37.18
								1.57

	5	ATOM	509	CB	LEU	Α	370	22.980	-17.173	4.110	1.00	41.42
		MOTA	510	CG	LEU	A	370	23.404	-16.015	5.014	1.00	41.45
		MOTA	511	CD1	LEU	Α	370	22.219	-15.095	5.245	1.00	42.25
		MOTA	512	CD2	LEU	Α	370	23.931	-16.552	6.332	1.00	38.35
		ATOM	513	C	LEU	Α	370	23.449	-19.360	3.013	1.00	44.03
	10	MOTA	514	0	LEU	Α	370	23.773	-19.423	1.829	1.00	43.63
		ATOM	515	N	THR	Α	371		-20.206	3.575	1.00	44.29
		ATOM	516	CA	THR	A	371		-21.272	2.806	1.00	44.84
		ATOM	517	CB	THR	A	371		-22.302	3.730	1.00	45.65
		ATOM	518	OG1	THR	A	371		-21.663	4.495	1.00	46.43
	15	ATOM	519	CG2	THR	A	371		-22.903	4.677	1.00	46.48
	15	ATOM	520	C	THR	A	371		-20.684	1.864	1.00	44.93
		ATOM	521	0	THR	A	371		-19.585	2.092	1.00	44.36
		ATOM	522	N	LEU	A	372		-21.418	0.804	1.00	43.83
	20	ATOM	523	CA	LEU	A	372		-20.971		1.00	44.62
	20	ATOM	524	CB	LEU	A	372		-22.043		1.00	47.17
		ATOM	525	CG	LEU	A	372		-21.690		1.00	46.91
		ATOM	526	CD1	LEU	A	372		-20.417		1.00	48.73
		ATOM	527	CD2	LEU	A	372		-22.844		1.00	51.12
.: mbs.	25	ATOM	528	C	LEU	A	372		-20.644	0.512	1.00	44.84
13	25	ATOM	529	0	LEU	A	372		-19.602	0.261	1.00	43.25
ıİ.		ATOM	530	N	HIS	A	373		-21.558	1.382	1.00	43.14
T.		ATOM	531	CA	HIS	A	373		-21.353	2.100	1.00	42.23
ïŽ.		ATOM	532	CB	HIS	A	373		-22.525	3.062	1.00	45.38
	20	MOTA	533	CG	HIS	A	373			3.934	1.00	51.43
`	30	MOTA	534	CD2	HIS	Α	373		-22.621	3.743	1.00	54.99
=		ATOM	535	ND1	HIS	A	373		-21.716	5.174	1.00	54.26
^ا يياً		MOTA	536	CE1	HIS	A	373		-21.663	5.709	1.00	53.77
#!		ATOM	537	NE2	HIS	A	373		-22.206	4.861	1.00	55.27
	2.5	ATOM	538	C	HIS	Α	373		-20.047	2.885	1.00	39.78
IJ	35	MOTA	539	0	HIS	Α	373		-19.324	2.971	1.00	37.71
		ATOM	540	N	ASP	A	374		-19.738	3.440	1.00	36.38
		ATOM	541	CA	ASP	A	374		-18.516	4.219	1.00	37.21
ı		MOTA	542	CB	ASP	A	374		-18.620	5.073	1.00	38.17
Œ	40	ATOM	543	CG	ASP	A	374		-19.425	6.344	1.00	41.47
	40	ATOM	544	OD1	ASP	A	374		-19.543	6.772	1.00	37.09
		ATOM	545	OD2	ASP	A	374		-19.940	6.912	1.00	44.40
		MOTA	546	C	ASP	A	374		-17.277		1.00	37.19
		ATOM	547	0	ASP	A	374		-16.208	3.696	1.00	38.13
	45	ATOM	548	N	GLN	A	375	18.688	-17.431	2.152	1.00	33.13
	45	ATOM	549	CA	GLN	A	375	18.788	-16.339	1.198	1.00	31.94
		ATOM	550	CB	GLN	A	375	19.634	-16.756		1.00	28.81
		ATOM	551	CG	GLN	Α	375	21.125	-16.570	0.189	1.00	31.71
		ATOM	552	CD	GLN	Α	375	21.920	-17.222		1.00	34.49
		ATOM	553	OE1	GLN	Α	375		-17.267		1.00	36.09
	50	MOTA	554	NE2	GLN	A	375		-17.736		1.00	40.32
		ATOM	555	С	GLN	Α	375		-16.009	0.730	1.00	31.50
		MOTA	556	0	GLN	Α	375		-14.840	0.653	1.00	
		MOTA	557	N	VAL	A	376		-17.056	0.429	1.00	30.38
		MOTA	558	CA	VAL	Α	376		-16.907		1.00	33.50
	55	ATOM	559	CB	VAL	Α	376		-18.286		1.00	30.57
		MOTA	560	CG1	VAL	Α	376		-18.122	-0.516	1.00	33.14
		MOTA	561	CG2	VAL	Α	376		-18.952	-1.485	1.00	30.79
		MOTA	562	С	VAL	A	376		-16.159	1.002	1.00	33.80
		MOTA	563	0	VAL	Α	376	13.653	-15.237	0.661	1.00	34.89
	60	MOTA	564	N	HIS	A	377	14.500	-16.568	2.261	1.00	33.35
		MOTA	565	CA	HIS	Α	377		-15.941	3.329	1.00	32.81
		MOTA	566	CB	HIS	Α	377	13.966	-16.694	4.644	1.00	35.24

	5	3 most		~~	****	~	200	12 420	15 000	F 0F1	1 00	40 15
	3	ATOM	567	CG	HIS	A	377		-15.989	5.851	1.00	40.15
		MOTA	568	CD2	HIS	A	377	14.054		6.946	1.00	40.86
		MOTA	569	ND1	HIS	A	377	12.090		6.012	1.00	43.08
		MOTA	570	CE1	HIS	A	377	11.913	-15.062	7.154	1.00	42.44
		MOTA	571	NE2	HIS	Α	377	13.089	-14.922	7.740	1.00	44.85
	10	ATOM	572	С	HIS	Α	377	14.058	-14.454	3.507	1.00	28.63
		MOTA	573	0	HIS	Α	377	13.158	-13.619	3.613	1.00	29.20
		ATOM	574	N	LEU	Α	378	15.343	-14.125	3.544	1.00	24.41
		ATOM	575	CA	LEU	A	378	15.759	-12.738	3.721	1.00	23.21
		ATOM	576	CB	LEU	A	378	17.289	-12.650	3.743	1.00	20.98
	15	ATOM	577	CG	LEU	A	378	17.960	-13.190	5.016	1.00	24.22
	13	ATOM	578	CD1	LEU	A	378	19.471	-13.041	4.924	1.00	21.07
				CD1								
		ATOM	579		LEU	A	378	17.431	-12.446	6.221	1.00	20.24
		ATOM	580	C	LEU	A	378	15.190	-11.827	2.630	1.00	24.78
	20	ATOM	581	0	LEU	A	378	14.638	-10.766	2.922	1.00	22.09
	20	MOTA	582	N	LEU	Α	379	15.321	-12.242	1.374	1.00	24.13
		MOTA	583	CA	LEU	Α	379	14.812	-11.447	0.262	1.00	25.02
		ATOM	584	CB	LEU	Α	379	15.307	-12.025		1.00	27.12
		MOTA	585	CG	LEU	Α	379		-11.600		1.00	24.39
		MOTA	586	CD1	LEU	Α	379	17.299	-12.557	-2.470	1.00	27.58
	25	MOTA	587	CD2	LEU	A	379	16.679	-10.178	-1.983	1.00	29.05
·D		ATOM	588	C	LEU	Α	379	13.287	-11.355	0.246	1.00	27.61
I		ATOM	589	0	LEU	A	379	12.726	-10.301	-0.062	1.00	26.16
IJ		MOTA	590	N	GLU	Α	380	12.616	-12.454	0.576	1.00	25.65
i=		ATOM	591	CA	GLU	Α	380		-12.471	0.592	1.00	26.85
, s,	30	ATOM	592	CB	GLU	Α	380	10.640	-13.882	0.871	1.00	29.38
		ATOM	593	CG	GLU	A	380	10.718	-14.796		1.00	35.58
ال. ا		ATOM	594	CD	GLU	A	380	10.228	-16.194		1.00	39.31
=		ATOM	595	OE1	GLU	A	380	10.142	-17.008		1.00	42.89
		ATOM	596	OE2	GLU	A	380	9.927	-16.478	1.153	1.00	39.45
i.L	35	ATOM	597	C	GLU	A	380	10.604	-11.526	1.649	1.00	25.43
1.4	33											*
		ATOM	598	0	GLU	A	380	9.551	-10.925	1.469	1.00	27.75
		ATOM	599	N	CYS	A	381	11.324	-11.400	2.753	1.00	25.57
ij.		ATOM	600	CA	CYS	A	381	10.907	-10.530	3.843	1.00	26.46
Ĩ	40	ATOM	601	CB	CYS	A	381	11.570	-11.000	5.149	1.00	31.46
	40	MOTA	602	SG	CYS	Α	381	11.305	-9.946	6.623	1.00	45.32
		ATOM	603	C	CYS	Α	381	11.262	-9.059	3.589	1.00	24.77
		ATOM	604	0	CYS	A	381	10.516	-8.166	3.975	1.00	25.01
		ATOM	605	N	ALA	Α	382	12.377	-8.815	2.903	1.00	22.23
		ATOM	606	CA	ALA	Α	382	12.855	-7.449	2.681	1.00	21.83
	45	ATOM	607	CB	ALA	Α	382	14.319	-7.383	3.095	1.00	21.56
		ATOM	608	С	ALA	Α	382	12.705	-6.778	1.311	1.00	19.78
		ATOM	609	0	ALA	Α	382	12.996	-5.587	1.182	1.00	17.01
		ATOM	610	N	TRP	Α	383	12.261	-7.507	0.294	1.00	17.61
		ATOM	611	CA	TRP	Α	383	12.164	-6.915	-1.036	1.00	18.06
	50	ATOM	612	CB	TRP	Α	383	11.580	-7.928		1.00	20.28
		ATOM	613	CG	TRP	Α	383	10.105	-8.201		1.00	20.50
		ATOM	614	CD2	TRP	A	383	9.049	-7.509		1.00	22.48
		ATOM	615	CE2	TRP	A	383	7.836	-8.138		1.00	20.41
		ATOM	616	CE3	TRP	A	383	9.012	-6.420		1.00	22.06
	55	ATOM	617	CD1	TRP	A	383	9.506	-9.189		1.00	23.38
	55											
		ATOM	618	NE1	TRP	A	383	8.142	-9.159		1.00	22.59
		ATOM	619	CZ2	TRP	A	383	6.598	-7.713		1.00	21.98
		ATOM	620	CZ3	TRP	A	383	7.780	-5.998		1.00	25.50
	60	ATOM	621	CH2	TRP	A	383	6.589	-6.647		1.00	23.11
	60	ATOM	622	C	TRP	A	383	11.448	-5.564		1.00	19.18
		MOTA	623	0	TRP	Α	383	11.972	-4.663		1.00	19.27
		ATOM	624	N	LEU	Α	384	10.273	-5.396	-0.567	1.00	18.32

	5	ATOM	625	CA	LEU	Α	384	9.586	-4.118	-0.719	1.00	16.38
		MOTA	626	CB	LEU	Α	384	8.125	-4.218	-0.258	1.00	16.79
		ATOM	627	CG	LEU	A	384	7.211	-3.013		1.00	18.39
									· ·			
		ATOM	628	CD1	LEU	Α	384	7.464	-2.485	-1.995	1.00	13.91
		ATOM	629	CD2	LEU	Α	384	5.750	-3.432	-0.410	1.00	18.38
	10	ATOM	630	С	LEU	Α	384	10.324	-3.027	0.051	1.00	18.80
	• •	ATOM		Ö	LEU	A	384	10.334	-1.870		1.00	20.90
			631									
		ATOM	632	N	${ t GLU}$	A	385	10.949	-3.404	1.163	1.00	18.61
		ATOM	633	CA	${ t GLU}$	Α	385	11.718	-2.462	1.970	1.00	19.58
		ATOM	634	CB	GLU	Α	385	12.274	-3.154	3.213	1.00	17.43
	15	ATOM	635	CG	GLU	A	385	11.292	-3.237	4.357	1.00	22.92
	1.5											
		ATOM	636	CD	GLU	Α	385	11.963	-3.676	5.640	1.00	25.83
		ATOM	637	OE1	GLU	Α	385	12.431	-2.799	6.391	1.00	23.69
		MOTA	638	OE2	${ t GLU}$	Α	385	12.027	-4.897	5.889	1.00	27.64
		ATOM	639	С	GLU	Α	385	12.890	-1.934	1.156	1.00	19.46
	20	ATOM	640	Ο.	GLU	Α	385	13.206	-0.743	1.196	1.00	15.04
	20											
		MOTA	641	N	ILE	A	386	13.539	-2.842	0.431	1.00	13.32
		ATOM	642	CA	ILE	Α	386	14.685	-2.484	-0.388	1.00	15.01
		ATOM	643	CB	ILE	Α	386	15.475	-3.763	-0.807	1.00	17.43
		ATOM	644	CG2	ILE	Α	386	16.544	-3.424	-1.849	1.00	17.99
5	25	ATOM	645	CG1	ILE	A	386	16.185	-4.338	0.432	1.00	20.31
111		ATOM	646	CD1	ILE	A	386	16.682	-5.766	0.284	1.00	23.97
		ATOM	647	С	ILE	Α	386	14.273	-1.645		1.00	16.10
IJ		ATOM	648	0	ILE	Α	386	14.993	-0.724	-2.004	1.00	17.42
į.		ATOM	649	N	LEU	Α	387	13.112	-1.944	-2.167	1.00	17.61
	30	ATOM	650	CA	LEU	Α	387	12.620	-1.173		1.00	18.20
74	50											
		ATOM	651	CB	LEU	A	387	11.359	-1.814		1.00	17.51
٠ <u>٠</u>		ATOM	652	CG	LEU	Α	387	11.519	-3.064		1.00	26.37
ä:		MOTA	653	CD1	LEU	Α	387	10.173	-3.406	-5.395	1.00	24.63
		ATOM	654	CD2	LEU	A	387	12.589	-2.824	-5.808	1.00	21.58
W	35	ATOM	655	С	LEU	Α	387	12.283		-2.838	1.00	17.60
144		ATOM	656	0	LEU	A	387	12.571		-3.530	1.00	17.15
W												
		ATOM	657	N	MET	Α	388	11.677		-1.660	1.00	17.65
		MOTA	658	CA	\mathtt{MET}	Α	388	11.286	1.656	-1.121	1.00	18.49
Đ		ATOM	659	CB	MET	Α	388	10.302	1.460	0.034	1.00	19.65
" day?	40	ATOM	660	CG	MET	Α	388	8.893	1.105	-0.435	1.00	15.12
		ATOM	661	SD	MET	Α	388	7.744	0.769	0.910	1.00	18.73
		ATOM	662	CE	MET	A		6.163				
							388		0.908	0.048	1.00	18.34
		ATOM	663	C	MET	Α	388	12.451		-0.691	1.00	22.62
	•	ATOM	664	0	MET	Α	388	12.417	3.767	-0.928	1.00	22.49
	45	ATOM	665	N	ILE	Α	389	13.482	1.988	-0.064	1.00	21.45
		ATOM	666	CA	ILE	Α	389	14.604	2.831	0.331	1.00	18.54
		ATOM	667 [.]	СВ	ILE	A	389	15.590	2.108	1.299	1.00	19.35
		MOTA	668	CG2	ILE	Α	389	16.362	0.998	0.578	1.00	15.50
		MOTA	669	CG1	ILE	A	389	16.556	3.142	1.889	1.00	21.95
	50	ATOM	670	CD1	ILE	Α	389	17.373	2.658	3.080	1.00	15.86
		ATOM	671	С	ILÈ	Α	389	15.333	3.322	-0.922	1.00	18.67
		ATOM	672	0	ILE	A	389	15.813		-0.970	1.00	19.75
		ATOM	673	N	GLY	Α	390	15.410		-1.943	1.00	20.58
		MOTA	674	CA	GLY	A	390	16.049	2.895	-3.183	1.00	19.33
	55	MOTA	675	C	GLY	Α	390	15.243	4.021	-3.819	1.00	17.48
		ATOM	676	0	GLY	Α	390	15.801		-4.318	1.00	21.87
		ATOM	677	N	LEU	A	391	13.920		-3.787	1.00	19.17
		MOTA	678	CA	LEU	Α	391	13.018		-4.343	1.00	21.50
		MOTA	679	CB	LEU	Α	391	11.561	4.420	-4.194	1.00	18.25
	60	MOTA	680	CG	LEU	Α	391	10.480	5.497	-4.342	1.00	21.98
		ATOM	681	CD1	LEU	Α	391	10.579	6.156		1.00	21.39
		ATOM	682	CD2	LEU	A	391	9.115		-4.148	1.00	17.15
		111011	002	UD2		~	٠,٠	J. 11J	±.000	4.140	1.00	11.13

	5	MOTA	683	C	LEU	Α	391	13.208	6.216 -3.620	1.00	23.27
		MOTA	684	0	LEU	Α	391	13.440	7.255 -4.243	1.00	23.60
		MOTA	685	N	∇AL	Α	392	13.122	6.170 -2.295	1.00	23.04
		MOTA	686	CA	VAL	Α	392	13.282	7.357 -1.469	1.00	24.42
		MOTA	687	CB	VAL	Α	392	13.186	6.993 0.042	1.00	27.38
	10	MOTA	688	CG1	VAL	Α	392	13.733	8.129 0.897	1.00	30.37
		MOTA	689	CG2	VAL	Α	392	11.739	6.712 0.414	1.00	23.48
		MOTA	690	C	VAL	Α	392	14.626	8.014 -1.754	1.00	27.55
		MOTA	691	0	VAL	Α	392	14.728	9.242 -1.832	1.00	27.50
		MOTA	692	N	TRP	A	393	15.652	7.186 -1.924	1.00	23.65
	15	MOTA	693	CA	TRP	Α	393	16.999	7.670 -2.204	1.00	24.76
		MOTA	694	CB	TRP	Α	393	17.977	6.491 -2.199	1.00	22.86
		ATOM	695	CG	TRP	Α	393	19.287	6.784 -2.857	1.00	25.90
		MOTA	696	CD2	TRP	Α	393	20.341	7.605 -2.339	1.00	28.09
		MOTA	697	CE2	TRP	Α	393	21.375	7.612 -3.302	1.00	29.94
	20	ATOM	698	CE3	TRP	Α	393	20.512	8.335 -1.154	1.00	30.20
		ATOM	699	CD1	TRP	Α	393	19.710	6.339 -4.077	1.00	26.55
		MOTA	700	NE1	TRP	Α	393	20.963	6.833 -4.351	1.00	30.64
		ATOM	701	CZ2	TRP	A	393	22.566	8.323 -3.120	1.00	32.43
		ATOM	702	CZ3	TRP	Α	393	21.698	9.044 -0.971	1.00	34.58
	25	ATOM	703	CH2	TRP	Α	393	22.709	9.030 -1.950	1.00	36.54
٠Đ		ATOM	704	С	TRP	Α	393	17.082	8.414 -3.547	1.00	25.02
IJ		ATOM	705	0	TRP	Α	393	17.767	9.435 -3.650	1.00	20.97
IJ		ATOM	706	N	ARG	Α	394	16.399	7.897 -4.568	1.00	23.06
[= L		ATOM	707	CA	ARG	Α	394	16.412	8.531 -5.890	1.00	25.97
الِحة "	30	ATOM	708	CB	ARG	Α	394	15.776	7.633 -6.965	1.00	24.05
<u>-</u>		ATOM	709	CG	ARG	A	394	16.243	6.195 -7.024	1.00	26.05
, 4		ATOM	710	CD	ARG	A	394	15.830	5.551 -8.352	1.00	22.70
E:		MOTA	711	NE	ARG	A	394	14.443	5.071 -8.363	1.00	20.71
	2.5	ATOM	712	cz	ARG	Α	394	14.053	3.912 -7.841	1.00	21.26
IJ	35	ATOM	713	NH1	ARG	Α	394	14.944	3.108 -7.267	1.00	20.09
IJ		ATOM	714	NH2	ARG	Α	394	12.783	3.544 -7.907	1.00	21.26
		ATOM	715	C	ARG	A	394	15.622	9.833 -5.879	1.00	23.40
		ATOM	716	0	ARG	A	394	15.889	10.729 -6.677	1.00	28.61
	40	ATOM	717	N	SER	A	395	14.638	9.924 -4.988	1.00	26.65
	40	ATOM	718	CA	SER	A	395	13.776	11.104 -4.902	1.00	27.46
		ATOM	719	CB	SER	A	395	12.395	10.696 -4.382	1.00	26.70
		ATOM	720	OG	SER	A	395	11.916	9.530 -5.029	1.00	22.95
		ATOM	721	C	SER	A	395	14.316	12.240 -4.033	1.00	31.45
	15	ATOM	722	0	SER	A	395	13.726	13.324 -3.977	1.00	28.11
	45	ATOM	723	N	MET	A	396	15.437	11.986 -3.368	1.00	33.83
		ATOM	724	CA	MET	A	396	16.061	12.954 -2.475	1.00	38.83
		ATOM	725	CB	MET	A	396	17.466	12.483 -2.112	1.00	39.47
		ATOM	726	CG	MET	A	396	17.585	11.919 -0.715	1.00	41.37
	50	ATOM	727	SD	MET	A	396	19.192	12.262 0.004	1.00	42.20
	50	ATOM	728	CE	MET	A	396	20.263	11.996 -1.404	1.00	42.84
		MOTA	729	C	MET	A	396	16.143	14.376 -3.018	1.00	40.69
		ATOM	730	0	MET	A	396	15.637	15.316 -2.403	1.00	38.85
		ATOM	731	N	GLU	A	397	16.794	14.526 -4.166	1.00	42.19
	55	ATOM	732	CA	GLU	A	397	16.971	15.831 -4.790	1.00	44.80
	55	ATOM	733	CB	GLU	A	397	18.184	15.785 -5.729	1.00	46.02
		ATOM	734	CG	GLU	A	397	17.883	15.189 -7.096	1.00	54.42
		ATOM	735	CD OF1	GLU	A	397	19.117	14.665 -7.810	1.00	59.40
		ATOM	736	OE1	GLU	A	397	19.219	13.430 -7.990	1.00	60.63
	60	ATOM	737	OE2	GLU	A 7	397 397	19.980	15.485 -8.196	1.00	62.71
	50	ATOM	738 739	C	GLU	A 7	397	15.735	16.322 -5.554	1.00	42.94
		ATOM	739 740	O N	GLU	A A	397	15.830	17.229 -6.376 15.728 -5.280	1.00	44.68
		ATÓM	740	N	HIS	Α	398	14.579	15.720 -5.280	1.00	40.82

	5	ATOM	741	CA	HIS	Α	398	13.342	16.118 -5.950	1.00	39.21
		ATOM	742	CB	HIS	Α	398	12.924	15.043 -6.956	1.00	39.05
		ATOM	743	CG	HIS	Α	398	13.870	14.886 -8.104	1.00	41.57
		ATOM	744	CD2	HIS	Α	398	13.904	15.484 -9.318	1.00	39.28
		ATOM	745	ND1	HIS	A	398	14.940	14.017 -8.074	1.00	41.85
	10	ATOM	746	CE1	HIS	A	398	15.592	14.086 -9.220	1.00	40.88
	•	ATOM	747	NE2	HIS	A	398	14.985	14.969 -9.993	1.00	42.30
		ATOM	748	C	HIS	A	398	12.216	16.332 -4.944	1.00	37.04
		ATOM	749	0	HIS	A	398	11.282	15.535 -4.864	1.00	
											36.51
	1.5	ATOM	750	N	PRO	A	399	12.283	17.427 -4.171	1.00	39.19
	15	ATOM	751	CD	PRO	A	399	13.328	18.467 -4.198	1.00	35.36
		ATOM	752	CA	PRO	A	399	11.243	17.709 -3.173	1.00	37.10
		ATOM	753	CB	PRO	A	399	11.603	19.101 -2.654	1.00	37.86
		ATOM	754	CG	PRO	Α	399	13.050	19.267 -2.963	1.00	35.83
	•	ATOM	755	С	PRO	Α	399	9.828	17.663 -3.744	1.00	37.02
	20	ATOM	756	0	PRO	Α	399	9.554	18.249 -4.789	1.00	38.52
		MOTA	757	N	GLY	Α	400	8.938	16.954 -3.057	1.00	33.58
		MOTA	758	CA	\mathtt{GLY}	Α	400	7.559	16.865 -3.503	1.00	32.12
		MOTA	759	С	GLY	Α	400	7.230	15.706 -4.428	1.00	32.43
		ATOM	760	0	\mathtt{GLY}	Α	400	6.063	15.344 -4.574	1.00	33.21
	25	ATOM	761	N	LYS	A	401	8.237	15.112 -5.055	1.00	31.35
٠Д		ATOM	762	CA	LYS	Α	401	7.972	14.007 -5.966	1.00	30.75
N		ATOM	763	CB	LYS	Α	401	8.235	14.430 -7.415	1.00	35.43
IJ		ATOM	764	CG	LYS	Α	401	8.130	15.927 -7.675	1.00	35.15
l=		ATOM	765	CD	LYS	Α	401	9.096	16.353 -8.774	1.00	36.88
	30	ATOM	766	CE	LYS	Α	401	8.733	17.721 -9.331	1.00	36.71
<u></u>		ATOM	767	NZ	LYS	Α	401	7.295	18.027 -9.116	1.00	34.22
h.j		ATOM	768	C	LYS	A	401	8.768	12.746 -5.677	1.00	30.97
## ##		ATOM	769	0	LYS	A	401	9.809	12.776 -5.006	1.00	27.60
		ATOM	770	N	LEU	A	402	8.256	11.635 -6.197	1.00	27.28
IJ	35	ATOM	771	CA	LEU	A	402	8.889	10.334 -6.050	1.00	29.07
IJ.	-	ATOM	772	CB	LEU	A	402	7.866	9.294 -5.590	1.00	22.55
144		ATOM	773	CG	LEU	A	402	7.265	9.555 -4.207	1.00	24.94
		ATOM	774	CD1	LEU	A	402	6.126	8.583 -3.937	1.00	19.32
***		ATOM	775	CD2	LEU	A	402	8.355	9.416 -3.157	1.00	21.54
Ĩ	40	ATOM	776	C	LEU	A	402	9.448	9.948 -7.414	1.00	28.78
	40	ATOM	777	0	LEU	A	402	8.704	9.836 -8.389	1.00	29.98
			778	N	LEU				9.770 -7.487	1.00	
		ATOM				A	403	10.761			27.57
		ATOM	779 700	CA	LEU	A	403	11.393	9.400 -8.744	1.00	27.17
	45	ATOM	780	CB	LEU	A	403	12.825	9.937 -8.816	1.00	26.95
	43	ATOM	781	CG	LEU	A	403	13.401	10.027-10.238	1.00	30.42
		ATOM	782	CD1	LEU	A	403	14.519	11.046-10.288	1.00	30.76
		ATOM	783	CD2	LEU	A	403	13.915	8.665-10.676	1.00	33.11
		ATOM	784	C	LEU	A	403	11.419	7.891 -8.901	1.00	24.78
	50	MOTA	785	0	LEU	Α	403	12.428	7.257 -8.619	1.00	24.68
	50	MOTA	786	N	PHE	Α	404	10.306	7.319 -9.344	1.00	23.11
		ATOM	787	CA	PHE	Α	404	10.239	5.881 -9.546	1.00	26.93
		ATOM	788	CB	PHE	Α	404	8.826	5.470 -9.946	1.00	27.04
		MOTA	789	CG	PHE	Α	404	7.850	5.513 -8.816	1.00	27.89
		ATOM	790	CD1	PHE	Α	404	7.028	6.623 -8.631	1.00	26.20
	55	MOTA	791	CD2	PHE	Α	404	7.750	4.444 -7.925	1.00	23.10
		ATOM	792	CE1	PHE	Α	404	6.116	6.668 -7.573	1.00	25.29
		ATOM	793	CE2	PHE	A	404	6.845	4.481 -6.870	1.00	21.01
		ATOM	794	CZ	PHE	Α	404	6.026	5.595 -6.693	1.00	22.91
		ATOM	795	С	PHE	Α	404	11.232	5.507-10.637	1.00	26.04
	60	ATOM	796	0	PHE	A	404	11.882	4.464-10.578	1.00	27.27
		ATOM	797	N	ALA	A	405	11.348	6.383-11.626	1.00	28.80
		ATOM	798	CA	ALA	A	405	12.271	6.195-12.740	1.00	29.21
		= = =			-			1.60		· - -	

	_										
	5	ATOM	799	CB	ALA	Α	405	11.650	5.287-13.806	1.00	26.89
		ATOM	800	С	ALA	Α	405	12.549	7.578-13.317	1.00	30.23
		ATOM	801	0	ALA	Α	405	11.770	8.508-13.109	1.00	27.38
		ATOM	802	N	PRO	A	406	13.672	7.737-14.032	1.00	30.05
	1.0	ATOM	803	CD	PRO	A	406	14.712	6.745-14.352	1.00	26.31
	10	MOTA	804	CA	PRO	Α	406	13.977	9.053-14.604	1.00	32.10
		ATOM	805	CB	PRO	A	406	15.232	8.800-15.438	1.00	31.28
		ATOM	806	CG	PRO	Α	406	15.865	7.602-14.776	1.00	31.44
		ATOM	807	С	PRO	Α	406	12.820	9.589-15.436	1.00	32.58
		ATOM	808	0	PRO	Α	406	12.605	10.796-15.507	1.00	32.58
	15	ATOM	809	N	ASN	A	407	12.063	8.690-16.053	1.00	32.86
	13										
		ATOM	810	CA	ASN	A	407	10.935	9.119-16.865	1.00	32.78
		ATOM	811	CB	ASN	A	407	10.950	8.418-18.228	1.00	34.73
		ATOM	812	CG	ASN	Α	407	10.884	6.907-18.121	1.00	35.37
		ATOM	813	OD1	ASN	Α	407	11.189	6.317-17.077	1.00	30.24
	20	ATOM	814	ND2	ASN	Α	407	10.486	6.268-19.215	1.00	34.08
		ATOM	815	С	ASN	Α	407	9.605	8.901-16.166	1.00	34.90
		ATOM	816	0	ASN	Α	407	8.549	8.897-16.798	1.00	36.09
		ATOM	817	N	LEU	A	408	9.660	8.724-14.851	1.00	33.56
		ATOM	818	CA	LEU	A	408	8.452	8.544-14.061	1.00	35.59
. portion	25										
IJ	23	MOTA	819	CB	LEU	A	408	8.141	7.062-13.851	1.00	33.81
		ATOM	820	CG	LEU	Α	408	6.696	6.823-13.397	1.00	36.44
IJ		ATOM	821	CD1	LEU	A	408	5.746	7.479-14.390	1.00	34.14
II		MOTA	822	CD2	LEU	Α	408	6.406	5.334-13.287	1.00	32.96
1-4		MOTA	823	C	LEU	Α	408	8.607	9.245-12.717	1.00	38.03
إيه:	30	ATOM	824	0	LEU	Α	408	8.880	8.614-11.695	1.00	36.38
į.		ATOM	825	N	LEU	Α	409	8.441	10.563-12.741	1.00	37.87
·		ATOM	826	CA	LEU	A	409	8.548	11.395-11.553	1.00	37.95
		ATOM	827	CB	LEU	A	409	9.373	12.636-11.877	1.00	39.52
21		ATOM	828	CG	LEU	A	409	10.023	13.399-10.728	1.00	
	35										42.46
ليا	33	ATOM	829	CD1	LEU	A	409	11.100	12.547-10.082	1.00	43.24
L.		ATOM	830	CD2	LEU	A	409	10.614	14.691-11.266	1.00	46.05
1		ATOM	831	C	LEU	Α	409	7.132	11.792-11.163	1.00	37.13
		MOTA	832	0	LEU	Α	409	6.482	12.546-11.882	1.00	35.70
- 150g		ATOM	833	N	LEU	Α	410	6.654	11.284-10.030	1.00	35.29
-	40	ATOM	834	CA	LEU	A	410	5.297	11.576 -9.583	1.00	33.33
		ATOM	835	CB	LEU	Α	410	4.503	10.277 -9.449	1.00	29.37
		ATOM	836	CG	LEU	Α	410	4.645	9.238-10.560	1.00	32.75
		ATOM	837	CD1	LEU	A	410	4.026	7.925-10.104	1.00	29.16
		ATOM	838	CD2	LEU		410	3.958	9.744-11.819	1.00	
	45					A					30.70
	43	ATOM	839	C	LEU	A	410	5.207	12.332 -8.261	1.00	35.14
		ATOM	840	0	LEU	Α	410	6.078	12.214 -7.400	1.00	36.94
		ATOM	841	N	ASP	Α	411	4.141	13.108 -8.105	1.00	34.76
		ATOM	842	CA	ASP	Α	411	3.933	13.843 -6.873	1.00	35.40
		MOTA	843	CB	ASP	Α	411	3.733	15.341 -7.144	1.00	40.02
	50	ATOM	844	CG	ASP	Α	411	2.471	15.645 -7.928	1.00	41.32
		ATOM	845	OD1	ASP	Α	411	1.570	14.785 -8.001	1.00	45.03
		ATOM	846	OD2	ASP	A	411	2.383	16.764 -8.474	1.00	45.01
					ASP		411				
		ATOM	847	C		A		2.727	13.234 -6.179	1.00	36.10
		MOTA	848	0	ASP	Α	411	2.033	12.395 -6.762	1.00	34.08
	55	MOTA	849	N	ARG	Α	412	2.480	13.647 -4.940	1.00	35.99
		MOTA	850	CA	ARG	Α	412	1.375	13.099 -4.169	1.00	39.37
		MOTA	851	CB	ARG	Α	412	1.260	13.824 -2.825	1.00	39.75
		MOTA	852	CG	ARG	Α	412	0.562	15.168 -2.870	1.00	40.49
		ATOM	853	CD	ARG	Α	412	0.454	15.736 -1.465	1.00	40.65
	60	ATOM	854	NE	ARG	A	412	-0.261	14.826 -0.577	1.00	37.48
		ATOM	855	CZ	ARG	A	412	-1.574	14.855 -0.384	1.00	42.84
		ATOM	856	NH1	ARG	A	412	-2.316	15.754 -1.024	1.00	40.82
		ALOPI	550	7411T	TING.	_	-12	2.510	13.734 -1.U24	1.00	40.UZ

	5	MOTA	1089	0	GLY	Α	442	25.642	5.245	-0.154	1.00	33.18
		ATOM	1090	N	GLU	Α	443	27.340	6.603	0.416	1.00	30.60
		MOTA	1091	CA	GLU	Α	443	28.057	5.567	1.150	1.00	30.85
		ATOM	1092	CB	GLU	Α	443	29.376	6.111	1.704	1.00	32.74
		ATOM	1093	CG	GLU	Α	443	30.425	6.378	0.646	1.00	36.30
	10	MOTA	1094	CD	GLU	Α	443	30.310	7.770	0.066	1.00	40.92
		ATOM	1095	OE1	GLU	Α	443	29.677	8.630	0.716	1.00	42.27
		ATOM	1096	OE2	GLU	Α	443	30.853	8.003	-1.038	1.00	46.82
		MOTA	1097	C	GLU	Α	443	27.206	5.048	2.299	1.00	30.43
		MOTA	1098	0	GLU	Α	443	27.211	3.854	2.595	1.00	28.11
	15	ATOM	1099	N	GLU	Α	444	26.482	5.955	2.948	1.00	30.26
		ATOM .	1100	CA	GLU	Α	444	25.619	5.589	4.067	1.00	28.18
		ATOM	1101	CB	GLU	Α	444	25.147	6.843	4.797	1.00	26.32
		MOTA	1102	CG	GLU	Α	444	26.250	7.633	5.463	1.00	29.27
		MOTA	1103	CD	GLU	Α	444	25.748	8.944	6.023	1.00	29.62
	20	ATOM	1104	OE1	GLU	Α	444	25.006	9.652	5.304	1.00	32.00
		ATOM	1105	OE2	GLU	A	444	26.088	9.268	7.182	1.00	29.02
		ATOM	1106	C	GLU	A	444	24.403	4.813	3.572	1.00	26.93
		ATOM	1107	0	GLU	A	444	23.970	3.841	4.191	1.00	24.78
		ATOM	1108	N	PHE	A	445	23.861	5.256	2.443	1.00	27.79
12	25	ATOM	1109	CA	PHE	A	445	22.688	4.633	1.853	1.00	24.50
		ATOM	1110	CB	PHE	A	445	22.254	5.416	0.610	1.00	25.40
T		ATOM	1111	CG	PHE	A	445	21.372		-0.316	1.00	23.74
Ħ		ATOM	1112	CD1	PHE	A	445	20.034		-0.004	1.00	23.00
i.e.		ATOM	1113	CD2	PHE	A	445	21.885		-1.489	1.00	22.37
٠	30	ATOM	1114	CE1	PHE	A	445	19.215		-0.855	1.00	22.57
	50	ATOM	1115	CE2	PHE	A	445	21.079		-2.342	1.00	21.69
.4J		ATOM	1116	CZ	PHE	A	445	19.741		-2.023	1.00	22.25
		ATOM	1117	C	PHE	A	445	22.913	3.169	1.489	1.00	22.81
1 		ATOM	1118	0	PHE	A	445	22.083	2.316	1.796	1.00	22.92
	35	ATOM	1119	N	VAL	A	446	24.019	2.868	0.822	1.00	22.46
1.4.2		ATOM	1120	CA	VAL	A	446	24.278	1.481	0.447	1.00	22.26
		ATOM	1121	CB	VAL	A	446	25.522		-0.465	1.00	22.87
		ATOM	1122	CG1	VAL	A	446	25.251		-1.799	1.00	22.57
		ATOM	1123	CG2	VAL	A	446	26.735	1.968	0.217	1.00	22.38
	40	ATOM	1124	C	VAL	A	446	24.467	0.614		1.00	23.68
	.0	ATOM	1125	0	VAL	A	446	24.177	-0.586	1.680	1.00	22.91
		ATOM	1126		CYS	A	447	24.962	1.223		1.00	22.02
		ATOM	1127	CA	CYS	A	447	25.155	0.503	4.025	1.00	24.17
		ATOM	1128	CB	CYS	A	447	25.953	1.359	5.011	1.00	23.95
	45	ATOM	1129	SG	CYS	A	447	27.738	1.324	4.731	1.00	28.57
		ATOM	1130	C	CYS	A	447	23.781	0.178	4.618	1.00	21.14
		ATOM	1131	0	CYS	A	447	23.512	-0.960	5.002	1.00	19.37
		ATOM	1132	N	LEU	A	448	22.915	1.186	4.680	1.00	19.28
		ATOM	1132	CA	LEU	A	448	21.568	1.002	5.219	1.00	21.31
	50	ATOM	1134	CB	LEU	A	448	20.803	2.324	5.219	1.00	21.90
	50	ATOM	1134	CG	LEU	A	448	21.142	3.337	6.303	1.00	26.61
		ATOM	1136	CD1	LEU		448	20.328	4.594	6.072	1.00	27.74
						A						
		ATOM	1137	CD2	LEU	A A	448	20.827	2.760	7.672	1.00	24.03
	55	ATOM	1138	C	LEU	A	448	20.766	-0.038	4.442	1.00	21.72
	55	ATOM	1139	0	LEU	A	448	20.006	-0.803	5.030	1.00	20.87
		ATOM	1140	N	LYS	A	449	20.929	-0.055	3.119	1.00	21.42
		ATOM	1141	CA	LYS	A	449	20.205	-0.997	2.269	1.00	20.98
		ATOM	1142	CB	LYS	A	449	20.440	-0.659	0.788	1.00	21.55
	60	ATOM	1143	CG	LYS	A	449	19.438	-1.297		1.00	24.82
	60	ATOM	1144	CD	LYS	A	449	19.456	-0.613		1.00	23.33
		ATOM	1145	CE	LYS	A	449	20.816	-0.754		1.00	23.58
		MOTA	1146	NZ	LYS	Α	449	20.741	-0.482	-3.698	1.00	28.77

	5	ATOM	1147	С	LYS	Α	449	20.629	-2.436	2.548	1.00	20.33
		MOTA	1148	0	LYS	A	449	19.800	-3.345	2.552	1.00	20.57
		MOTA	1149	N	SER	Α	450	21.924	-2.637	2.777	1.00	19.25
		MOTA	1150	CA	SER	A	450	22.451	-3.965	3.074	1.00	21.84
		MOTA	1151	CB	SER	Α	450	23.982	-3.953	3.041	1.00	20.59
	10	MOTA	1152	OG	SER	Α	450	24.460	-3.975	1.702	1.00	29.78
		MOTA	1153	С	SER	Α	450	21.975	-4.408	4.454	1.00	21.58
		ATOM	1154	0	SER	Α	450	21.728	-5.590	4.682	1.00	20.06
		MOTA	1155	N	ILE	A	451	21.853	-3.449	5.369	1.00	22.20
		MOTA	1156	CA	ILE	Α	451	21.385	-3.741	6.726	1.00	22.82
	15	MOTA	1157	CB	ILE	Α	451	21.452	-2.476	7.616	1.00	19.62
		MOTA	1158	CG2	ILE	A	451	20.593	-2.658	8.886	1.00	21.11
		MOTA	1159	CG1	ILE	A	451	22.909	-2.210	7.999	1.00	22.20
		MOTA	1160	CD1	ILE	Α	451	23.115	-0.960	8.850	1.00	24.48
		MOTA	1161	С	ILE	A	451	19.952	-4.250	6.662	1.00	21.82
	20	MOTA	1162	0	ILE	A	451	19.575	-5.184	7.369	1.00	21.72
		MOTA	1163	N	ILE	Α	452	19.152	-3.642	5.795	1.00	20.18
		MOTA	1164	CA	ILE	A	452	17.763	-4.058	5.649	1.00	18.13
		MOTA	1165	CB	ILE	A	452	17.024	-3.145	4.627	1.00	19.72
		ATOM	1166	CG2	ILE	A	452	15.720	-3.792	4.169	1.00	18.99
	25	ATOM	1167	CG1	ILE	Α	452	16.725	-1.788	5.282	1.00	18.33
Ū		ATOM	1168	CD1	ILE	Α	452	16.284	-0.707	4.306	1.00	23.25
I		ATOM	1169	C	ILE	Α	452	17.725	-5.517	5.191	1.00	19.50
II		ATOM	1170	0	ILE	Α	452	16.980	-6.340	5.737	1.00	17.60
		ATOM	1171	N	LEU	Α	453	18.555	-5.844	4.209	1.00	19.23
ų	30	ATOM	1172	CA	LEU	A	453	18.589	-7.205	3.679	1.00	21.60
į.		ATOM	1173	CB	LEU	Α	453	19.624	-7.316	2.554	1.00	21.50
إي		ATOM	1174	CG	LEU	Α	453	19.835	-8.729	1.989	1.00	25.06
81		ATOM	1175	CD1	LEU	Α	453	18.550	-9.250	1.364	1.00	25.27
		ATOM	1176	CD2	LEU	A	453	20.948	-8.694	0.953	1.00	24.73
IJ	35	ATOM	1177	C	LEU	A	453	18.906	-8.245	4.746	1.00	19.41
		MOTA	1178	0	LEU	A	453	18.198	-9.241	4.891	1.00	20.75
		MOTA	1179	N	LEU	A	454	19.966	-7.997	5.499	1.00	21.35
1 mars		MOTA	1180	CA	LEU	Α	454	20.410	-8.925	6.530	1.00	23.67
		ATOM	1181	CB	LEU	Α	454	21.870	-8.625	6.878	1.00	20.69
·	40	MOTA	1182	CG	LEU	A	454	22.816	-8.584	5.673	1.00	24.92
		ATOM	1183	CD1	LEU	Α	454	24.222	-8.268	6.132	1.00	24.27
		ATOM	1184		LEU	Α	454	22.785	-9.913	4.952	1.00	22.84
		ATOM	1185	C	LEU	Α	454	19.572	-8.945	7.807	1.00	26.06
		ATOM	1186	0	LEU	A	454	19.413	-9.997		1.00	27.44
	45	ATOM	1187	N	ASN	Α	455	19.011	-7.795	8.167	1.00	25.01
		ATOM	1188	CA	ASN	Α	455	18.240	-7.681	9.400	1.00	26.10
		ATOM	1189	CB	ASN	Α	455	18.439	-6.295	10.002	1.00	22.67
		ATOM	1190	CG	ASN	Α	455	17.627	-6.109		1.00	26.67
		ATOM	1191	OD1	ASN	A	455	17.899	-6.751		1.00	25.16
	50	ATOM	1192	ND2	ASN	Α	455	16.615	-5.246	11.212	1.00	20.73
		ATOM	1193	С	ASN	Α	455	16.739	-7.957		1.00	25.78
		MOTA	1194	0	ASN	Α	455	16.230	-8.516	10.380	1.00	29.22
		MOTA	1195	N	SER	Α	456	16.027	-7.549	8.381	1.00	28.51
		ATOM	1196	CA	SER	A	456	14.578	-7.704	8.371	1.00	32.52
	55	MOTA	1197	CB	SER	Α	456	14.019	-7.213	7.033	1.00	35.98
		ATOM	1198	OG	SER	Α	456	14.266	-5.818	6.897	1.00	30.88
		MOTA	1199	С	SER	Α	456	14.033	-9.086	8.711	1.00	33.00
		MOTA		0	SER	Α	456	13.112	-9.202	9.523	1.00	33.07
		MOTA	1201	N	GLY	Α	457		-10.130	8.117	1.00	28.40
	60	ATOM		CA	GLY	Α	457	14.115	-11.464	8.413	1.00	36.28
		ATOM		C	\mathtt{GLY}	Α	457	15.055	-12.289	9.277	1.00	40.41
		ATOM	1204	0	GLY	Α	457	14.831	-13.486	9.456	1.00	38.20

	5	ATOM	1263	0	LYS	Α	467	23.032	-22.990	11.849	1.00	88.50
		MOTA	1264	N	SER	Α	468	20.981	-23.610	12.536	1.00	86.02
		ATOM	1265	CA	SER	Α	468	20.384	-22.315	12.252	1.00	84.10
		ATOM	1266	CB	SER	Α	468		-22.333		1.00	84.08
		ATOM	1267	OG	SER	A	468		-23.378		1.00	83.03
	10	ATOM	1268	C	SER	A	468		-21.230		1.00	83.39
	10											
		ATOM	1269	0	SER	A	468	21.264			1.00	83.48
		ATOM	1270	N	LEU	A	469	21.558			1.00	82.04
		ATOM	1271	CA	LEU	A	469	22.276			1.00	80.28
		ATOM	1272	CB	LEU	Α	469	22.595			1.00	79.81
	15	ATOM	1273	C	LEU	Α	469	23.564	-20.174	14.419	1.00	79.18
		MOTA	1274	0	LEU	Α	469	24.111	-19.122	14.756	1.00	78.61
		ATOM	1275	N	GLU	Α	470	24.044	-20.969	13.466	1.00	76.69
		ATOM	1276	CA	GLU	Α	470	25.256	-20.638		1.00	74.84
		ATOM	1277	СВ	GLU	A	470	25.803	-21.880		1.00	74.12
	20	ATOM	1278	C	GLU	A	470	24.920	-19.565		1.00	73.77
	20			0			470		-18.556			72.94
		ATOM	1279		GLU	A					1.00	
		ATOM	1280	N	GLU	A	471	23.842	-19.792		1.00	72.08
		ATOM	1281	CA	GLU	Α	471	23.396	-18.842	9.945	1.00	70.05
	~-	ATOM	1282	CB	GLU	Α	471		-19.526	8.944	1.00	71.52
	25	ATOM	1283	CG	GLU	A	471		-19.976	7.668	1.00	72.90
		ATOM	1284	CD	GLU	Α	471		-20.586	7.932	1.00	74.01
īŪ		MOTA	1285	OE1	GLU	Α	471	25.469	-20.258	7.198	1.00	74.22
I		ATOM	1286	OE2	GLU	Α	471	24.626	-21.395	8.878	1.00	75.18
		ATOM	1287	С	GLU	Α	471	22.667	-17.692	10.630	1.00	67.33
	30	ATOM	1288	0	GLU	Α	471	21.685	-17.165	10.107	1.00	67.77
~ <u>.</u>		ATOM	1289	N	LYS	Α	472		-17.319		1.00	62.63
		ATOM	1290	CA	LYS	A	472		-16.229		1.00	57.41
		ATOM	1291	CB	LYS	A	472		-16.777		1.00	58.74
##				CG			472	20.683	-15.776			
13	35	ATOM	1292		LYS	A					1.00	60.32
W	33	ATOM	1293	CD	LYS	A	472		-16.342		1.00	60.73
W		ATOM	1294	CE	LYS	A	472		-15.909		1.00	61.78
		ATOM	1295	NZ	LYS	Α	472		-15.788		1.00	60.09
ī		ATOM	1296	С	LYS	A	472		-15.339		1.00	53.42
		ATOM	1297	0	LYS	Α	472	23.631	-14.120	12.978	1.00	50.87
184	40	ATOM	1298	N	ASP	Α	473	24.628	-15.949	13.830	1.00	47.52
		ATOM	1299	CA	ASP	Α	473	25.732	-15.194	14.405	1.00	45.55
		ATOM	1300	CB	ASP	Α	473	26.613	-16.094	15.269	1.00	50.48
		ATOM	1301	CG	ASP	A	473	26.380	-15.885	16.749	1.00	55.50
		ATOM	1302	OD1	ASP	Α	473	25.272	-15.436	17.118	1.00	58.06
	45	ATOM		OD2	ASP	Α	473		-16.170		1.00	59.81
		ATOM	1304	C	ASP	A	473		-14.611		1.00	42.62
		ATOM	1305	0	ASP	A	473		-13.506		1.00	42.10
		ATOM	1306	N	HIS	A	474		-15.364		1.00	38.05
	50	ATOM	1307	CA	HIS	A	474		-14.904		1.00	37.25
	50	ATOM	1308	CB	HIS	A	474		-15.978	9.941	1.00	35.07
		ATOM	1309	CG	HIS	A	474		-15.523	8.653	1.00	37.36
		ATOM	1310	CD2	HIS	A	474		-15.113	8.355	1.00	38.86
		ATOM	1311	ND1	HIS	Α	474	27.322	-15.452	7.476	1.00	41.31
		ATOM	1312	CE1	HIS	Α	474	28.110	-15.020	6.509	1.00	40.86
	55	ATOM	1313	NE2	HIS	Α	474	29.311	-14.807	7.016	1.00	44.49
		ATOM	1314	С	HIS	Α	474		-13.640		1.00	36.68
		ATOM	1315	0	HIS	A	474		-12.676		1.00	36.48
		ATOM	1316	N	ILE	A	475		-13.652		1.00	35.93
		ATOM	1317	CA	ILE	A	475		-12.499	9.963	1.00	36.21
	60	ATOM	1318	CB	ILE	Ā	475		-12.797	9.868	1.00	36.31
	50	ATOM	1319	CG2	ILE		475		-12.797	9.513	1.00	38.19
						A						
		MOTA	1320	CG1	ILE	Α	475		-13.874	8.813	1.00	36.97
								177				

174

	_											
	5	MOTA	1437	CD1	LEU	A	489	29.945	4.856 5.	125	1.00	33.21
		ATOM	1438	CD2	LEU	Α	489	32.183	5.701 4.	378	1.00	35.92
		MOTA	1439	C	LEU	Α	489	32.124	8.320 7.	954	1.00	33.97
		MOTA	1440	0	LEU	Α	489	32.587	9.365 7.	507	1.00	33.22
		MOTA	1441	N	MET	Α	490	31.387	8.274 9.	058	1.00	31.33
	10	ATOM	1442	CA	MET	Α	490	31.056		801	1.00	30.61
	- 0	ATOM	1443	CB	MET	A	490	30.000	9.161 10.		1.00	32.34
		ATOM	1444	CG	MET	A	490	28.607	8.940 10.		1.00	30.71
				SD			490		8.247 11.		1.00	
		ATOM	1445		MET	A		27.457				31.14
	1.5	ATOM	1446	CE	MET	A	490	26.321	7.408 10.		1.00	30.36
	15	ATOM	1447	C	MET	A	490	32.287	10.108 10.		1.00	32.22
		ATOM	1448	0	MET	Α	490	32.412	11.330 10.		1.00	28.25
		ATOM	1449	N	ALA	Α	491	33.184	9.262 10.		1.00	33.81
		MOTA	1450	CA	ALA	Α	491	34.407	9.730 11.		1.00	39.92
		MOTA	1451	CB	ALA	Α	491	35.168	8.554 12.	185	1.00	37.22
	20	ATOM	1452	С	ALA	Α	491	35.275	10.445 10.	550	1.00	42.68
		MOTA	1453	0	ALA	Α	491	35.865	11.487 10.	838	1.00	45.32
		ATOM	1454	N	LYS	Α	492	35.339	9.876 9.	347	1.00	44.39
		ATOM	1455	CA	LYS	Α	492	36.122	10.440 8.	248	1.00	44.80
		ATOM	1456	CB	LYS	Α	492	36.136	9.477 7.	052	1.00	46.96
ij	25	ATOM	1457	CG	LYS	Α	492	37.490		744	1.00	47.20
i		ATOM	1458	CD	LYS	Α	492	37.390		595	1.00	45.71
144		ATOM	1459	CE	LYS	A	492	38.631		518	1.00	45.55
		ATOM	1460	NZ	LYS	A	492	38.357		948	1.00	36.28
IJ		ATOM	1461	C	LYS	A	492	35.534		809	1.00	45.61
. J	30	ATOM	1462	0	LYS	A	492	36.227		215	1.00	46.18
7	30			N			493	34.254		100	1.00	43.75
		ATOM	1463		ALA	A						
4		ATOM	1464	CA	ALA	A	493	33.590		728	1.00	42.42
E:		ATOM	1465	CB	ALA	A	493	32.097		528	1.00	40.92
	25	ATOM	1466	C	ALA	A	493	33.816		796	1.00	41.78
i.i	35	ATOM	1467	0	ALA	A	493	33.277		707	1.00	40.76
		ATOM	1468	N	GLY	A	494	34.604		811	1.00	41.01
		ATOM	1469	CA	GLY	A	494	34.903	14.904 10.		1.00	41.63
i		ATOM	1470	С	GLY	Α	494	33.857	15.060 11.		1.00	41.18
		ATOM	1471	0	GLY	Α	494	33.916	16.011 12.		1.00	38.22
. 222	40	ATOM	1472	N	LEU	Α	495	32.905	14.138 12.	043	1.00	39.53
		ATOM	1473	CA	LEU	Α	495	31.876	14.248 13.	068	1.00	38.91
		ATOM	1474	CB	LEU	. A	495	30.713	13.304 12.	769	1.00	39.20
		ATOM	1475	CG	LEU	Α	495	29.540	13.901 11.	988	1.00	40.73
		ATOM	1476	CD1	LEU	Α	495	29.976	14.170 10.	553	1.00	37.80
	45	ATOM	1477	CD2	LEU	Α	495	28.349	12.943 12.	026	1.00	40.94
		ATOM	1478	С	LEU	Α	495	32.461	13.923 14.	431	1.00	36.01
		ATOM	1479	0	LEU	Α	495	33.347	13.074 14.	544	1.00	34.85
		ATOM	1480	N	THR	Α	496	31.979	14.604 15.	459	1.00	37.52
		ATOM	1481	CA	THR	A	496	32.462	14.350 16.		1.00	35.45
	50	ATOM	1482	CB	THR	A	496	31.925	15.375 17.		1.00	37.55
	50	ATOM	1483	OG1	THR	A	496	30.498	15.263 17.		1.00	32.93
		ATOM	1484	CG2	THR	A	496	32.315	16.797 17.		1.00	36.16
		ATOM	1485	C	THR	A	496	31.933	12.987 17.		1.00	35.67
	66	ATOM	1486	0	THR	A	496	31.081	12.427 16.		1.00	34.34
	55	ATOM	1487	N	LEU	A	497	32.429	12.452 18.		1.00	34.88
		ATOM	1488	CA	LEU	A	497	31.965	11.151 18.		1.00	35.67
		ATOM	1489	CB	LEU	Α	497	32.689	10.760 20.		1.00	41.10
		MOTA	1490	CG	LEU	A	497	33.714	9.640 19.		1.00	45.27
		MOTA	1491	CD1	LEU	Α	497	34.755	9.692 21.		1.00	45.09
	60	MOTA	1492	CD2	LEU	Α	497	32.988	8.305 19.		1.00	47.77
		MOTA	1493	C	LEU	Α	497	30.455	11.198 19.	026	1.00	33.72
		MOTA	1494	0	LEU	Α	497	29.712	10.350 18.	534	1.00	33.20
								175				

	5	MOTA	1553	CA	LEU	Α	504	23.953	6.406	13.496	1.00	22.60
		ATOM	1554	CB	LEU	Α	504	24.971	5.621	14.323	1.00	25.43
		MOTA	1555	CG	LEU	Α	504	24.781	4.100	14.344	1.00	25.23
		MOTA	1556	CD1	LEU	Α	504	25.166	3.505	12.991	1.00	28.52
		MOTA	1557	CD2	LEU	Α	504	25.627	3.495	15.444	1.00	22.14
	10	MOTA	1558	C	LEU	Α	504	22.541	6.030	13.934	1.00	22.84
		MOTA	1559	0	LEU	Α	504	21.846	5.288	13.245	1.00	21.51
		MOTA	1560	N	ALA	Α	505	22.120	6.547	15.083	1.00	20.16
		ATOM	1561	CA	ALA	Α	505	20.784	6.262	15.585	1.00	21.08
		ATOM	1562	CB	ALA	Α	505	20.605	6.868	16.980	1.00	23.57
	15	ATOM	1563	C	ALA	Α	505	19.738	6.832	14.628	1.00	20.20
		ATOM	1564	0	ALA	Α	505	18.754	6.164	14.293	1.00	17.31
		MOTA	1565	N	GLN	Α	506	19.954	8.066	14.184	1.00	22.11
		ATOM	1566	CA	GLN	Α	506	19.013	8.711	13.277	1.00	21.70
		MOTA	1567	CB	${\tt GLN}$	A	506	19.502	10.111	12.903	1.00	22.26
	20	ATOM	1568	CG	GLN	Α	506	19.240	11.158	13.975	1.00	25.84
		ATOM	1569	CD	GLN	Α	506	20.187	12.333	13.857	1.00	32.88
		ATOM	1570	OE1	GLN	Α	506	20.704	12.614	12.777	1.00	31.23
		MOTA	1571	NE2	GLN	Α	506	20.423	13.025	14.968	1.00	32.97
		MOTA	1572	С	GLN	Α	506	18.813	7.881	12.016	1.00	23.57
	25	MOTA	1573	0	GLN	Α	506	17.684	7.715	11.550	1.00	21.83
Ē		MOTA	1574	N	LEU	A	507	19.905	7.354	11.474	1.00	19.98
î.		MOTA	1575	CA	LEU	Α	507	19.827	6.537	10.263	1.00	22.03
ij		MOTA	1576	CB	LEU	Α	507	21.231	6.244	9.725	1.00	23.02
i.i.		MOTA	1577	CG	LEU	Α	507	22.026	7.457	9.225	1.00	25.80
	30	MOTA	1578	CD1	LEU	Α	507	23.371	6.994	8.713	1.00	27.67
		MOTA	1579	CD2	LEU	Α	507	21.264	8.176	8.130	1.00	25.62
, , , , , , , , , , , , , , , , , , ,		ATOM	1580	C	LEU	Α	507	19.090		10.496	1.00	22.35
=		MOTA	1581	0	LEU	Α	507	18.242	4.825	9.695	1.00	19.33
		ATOM	1582	N	LEU	Α	508	19.402		11.592	1.00	21.29
1 mar	35	ATOM	1583	CA	LEU	Α	508	18.755		11.881	1.00	20.72
		ATOM	1584	CB	LEU	Α	508	19.501		13.001	1.00	22.29
12		ATOM	1585	CG	LEU	Α	508	20.977		12.678	1.00	24.70
. 57		MOTA	1586	CD1	LEU	Α	508	21.642		13.814	1.00	21.37
===	4.0	ATOM	1587	CD2	LEU	Α	508	21.095		11.367	1.00	27.88
1 525	40	ATOM	1588	С	LEU	A	508	17.279		12.239	1.00	19.14
		ATOM	1589	0	LEU	A	508	16.498		12.003	1.00	17.80
		ATOM	1590		LEU	Α	509	16.895		12.815	1.00	19.23
		ATOM	1591		LEU	A	509	15.495		13.173	1.00	20.14
	45	ATOM	1592	CB	LEU	A	509	15.347		13.999	1.00	20.28
	45	ATOM	1593	CG	LEU	A	509	15.710		15.479	1.00	21.35
		ATOM	1594	CD1	LEU	A	509	15.354		16.263	1.00	19.29
		ATOM		CD2	LEU	A	509	14.989		16.038	1.00	20.84
		ATOM	1596	C	LEU	A	509	14.681		11.885	1.00	21.69
	50	ATOM	1597	0	LEU	A	509	13.493		11.854	1.00	22.40
	50	ATOM	1598	N	ILE	A	510	15.343		10.815	1.00	20.22
		ATOM	1599	CA	ILE	A	510	14.710	5.397		1.00	20.40
		ATOM	1600	CB	ILE	A	510	15.720	5.946	8.464	1.00	28.34
		ATOM	1601	CG2	ILE	A	510	15.208	5.710	7.056	1.00	32.54
	<i></i>	ATOM	1602	CG1	ILE	A	510	15.965	7.438	8.696	1.00	28.23
	55	ATOM	1603	CD1	ILE	A	510	14.789	8.189	9.288	1.00	33.16
		ATOM	1604	C	ILE	A	510	14.210	4.025	9.049	1.00	23.21
		ATOM	1605	0	ILE	A	510	13.120	3.906	8.474	1.00	21.16
		ATOM	1606	N	LEU	A	511	14.998	2.989	9.323	1.00	18.38
	60	ATOM	1607	CA	LEU	A	511	14.633	1.634	8.917	1.00	20.10
	60	ATOM	1608	CB	LEU	A	511	15.754	0.656	9.267	1.00	21.69
		ATOM	1609	CG	LEU	A	511	17.128	1.022	8.692	1.00	26.03
		ATOM	1610	CD1	LEU	Α	511	18.024	-0.206	8.724	1.00	22.68

	5	MOTA	1611	CD2	LEU	A	511	16.996	1.544	7.267	1.00	26.00
		MOTA	1612	С	LEU	A	511	13.326	1.181	9.543	1.00	18.51
		MOTA	1613	0	LEU	Α	511	12.663	0.283	9.025	1.00	17.40
		ATOM	1614	N	SER	Α	512	12.963		10.664	1.00	18.68
		ATOM	1615	CA	SER	A	512	11.718		11.331	1.00	18.67
	10	ATOM	1616	CB	SER	A	512	11.661		12.720	1.00	
	10											18.58
		ATOM	1617	OG	SER	A	512	10.315		13.165	1.00	27.92
		ATOM	1618	С	SER	Α	512	10.572		10.464	1.00	18.43
		MOTA	1619	0	SER	Α	512	9.584		10.236	1.00	13.91
		MOTA	1620	N	HIS	Α	513	10.713	3.228	9.982	1.00	18.95
	15	MOTA	1621	CA	HIS	Α	513	9.698	3.831	9.124	1.00	20.82
		MOTA	1622	CB	HIS	Α	513	10.013	5.315	8.894	1.00	24.36
		MOTA	1623	CG	HIS	Α	513	9.923	6.146	10.136	1.00	32.13
		ATOM	1624	CD2	HIS	Α	513	8.863	6.744	10.734	1.00	35.29
		ATOM	1625	ND1	HIS	Α	513	11.010		10.949	1.00	35.00
	20	ATOM	1626	CE1	HIS	A	513	10.624		11.995	1.00	34.67
	20	ATOM	1627	NE2	HIS	A	513	9.326		11.889	1.00	35.82
		ATOM	1628	C	HIS		513	9.650	3.079	7.790	1.00	
						A						19.08
		ATOM	1629	0	HIS	A	513	8.575	2.863	7.220	1.00	21.20
	25	MOTA	1630	N	ILE	A	514	10.809	2.662	7.297	1.00	15.58
-	25	ATOM	1631	CA	ILE	Α	514	10.849	1.921	6.038	1.00	16.48
ıÖ		ATOM	1632	CB	ILE	Α	514	12.312	1.678	5.576	1.00	20.09
ĩ.		ATOM	1633	CG2	ILE	A	514	12.349	0.602	4.499	1.00	19.55
ID		MOTA	1634	CG1	ILE	Α	514	12.891	2.986	5.019	1.00	22.62
		ATOM	1635	CD1	ILE	Α	514	14.393	2.992	4.874	1.00	27.34
1.	30	ATOM	1636	C	ILE	A	514	10.112	0.590	6.210	1.00	16.40
~ [ATOM	1637	0	ILE	Α	514	9.364	0.164	5.328	1.00	17.91
H		ATOM	1638	N	ARG	Α	515	10.301	-0.071	7.347	1.00	18.20
14.		ATOM	1639	CA	ARG	Α	515	9.585	-1.327	7.564	1.00	18.05
2: :::::::::::::::::::::::::::::::::::		ATOM	1640	СВ	ARG	A	515	9.984	-1.980	8.889	1.00	18.36
	35	ATOM	1641	CG	ARG	A	515	9.173	-3.237	9.213	1.00	17.84
IJ	55	ATOM	1642	CD	ARG	A	515	9.823	-4.470	8.606	1.00	17.94
W		AIOM	1042	CD	DAM	A		9.0∠3	-4.4/0	0.000	1.00	
		3 ED () M		NTT1	300	70		11 020		0 224	7 00	26 26
1		MOTA	1643	NE	ARG	A	515	11.038	-4.813	9.334	1.00	26.96
ij		ATOM	1643 1644	CZ	ARG	A	515	11.406	-4.813 -6.051	9.641	1.00	25.13
lj L	10	MOTA MOTA	1643 1644 1645	CZ NH1	ARG ARG	A A	515 515	11.406 10.654	-4.813 -6.051 -7.080	9.641 9.281	1.00	25.13 23.49
	40	ATOM ATOM ATOM	1643 1644 1645 1646	CZ NH1 NH2	ARG ARG ARG	A A A	515 515 515	11.406 10.654 12.511	-4.813 -6.051 -7.080 -6.254	9.641 9.281 10.340	1.00 1.00 1.00	25.13
	40	MOTA MOTA	1643 1644 1645 1646 1647	CZ NH1 NH2 C	ARG ARG	A A	515 515	11.406 10.654	-4.813 -6.051 -7.080 -6.254 -1.020	9.641 9.281 10.340 7.594	1.00	25.13 23.49
	40	ATOM ATOM ATOM	1643 1644 1645 1646	CZ NH1 NH2 C	ARG ARG ARG	A A A	515 515 515	11.406 10.654 12.511	-4.813 -6.051 -7.080 -6.254	9.641 9.281 10.340 7.594	1.00 1.00 1.00	25.13 23.49 32.16 18.29
	40	ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647	CZ NH1 NH2 C	ARG ARG ARG ARG	A A A	515 515 515 515	11.406 10.654 12.511 8.089	-4.813 -6.051 -7.080 -6.254 -1.020	9.641 9.281 10.340 7.594	1.00 1.00 1.00	25.13 23.49 32.16 18.29
	40	ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648	CZ NH1 NH2 C	ARG ARG ARG ARG ARG	A A A A	515 515 515 515 515	11.406 10.654 12.511 8.089 7.275	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759	9.641 9.281 10.340 7.594 7.038 8.237	1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22
	40 45	ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1649 1650	CZ NH1 NH2 C O N CA	ARG ARG ARG ARG ARG HIS	A A A A A	515 515 515 515 515 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441	9.641 9.281 10.340 7.594 7.038 8.237	1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78
		ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1649 1650 1651	CZ NH1 NH2 C O N CA CB	ARG ARG ARG ARG HIS HIS	A A A A A A	515 515 515 515 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166	1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84
		ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1649 1650 1651	CZ NH1 NH2 C O N CA CB	ARG ARG ARG ARG HIS HIS	A A A A A A	515 515 515 515 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312	1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16
		ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653	CZ NH1 NH2 C O N CA CB CG CD2	ARG ARG ARG ARG HIS HIS HIS	A A A A A A	515 515 515 515 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17
		ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654	CZ NH1 NH2 C O N CA CB CG CD2 ND1	ARG ARG ARG ARG HIS HIS HIS HIS	A A A A A A A	515 515 515 515 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70
	45	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1	ARG ARG ARG ARG HIS HIS HIS HIS HIS	A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52
		ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS	A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16
	45	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63
	45	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58
	45	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29
	45 50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58
	45	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29
	45 50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073 4.730	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58
	45 50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS	A A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925 6.837	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589 2.576	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.689 6.073 4.730 4.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58 18.66
	45 50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS MET MET MET MET	A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925 6.837 6.805 7.670	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589 2.576 3.978 5.243	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073 4.730 4.002 4.631 3.701	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58 18.66 16.88 24.08
	45 50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB CG CC CC CC CC CC CC CC CC CC CC CC CC	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS MET MET MET MET MET	A A A A A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925 6.837 6.805 7.670 9.390	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589 2.576 3.978 5.243 4.777	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073 4.730 4.730 4.631 3.701 3.962	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58 18.66 16.88 24.08 14.30
	45 50 55	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1660 1661 1662 1663 1664 1665	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB CG CC CC CC CC CC CC CC CC CC CC CC CC	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS MET MET MET MET MET MET	A A A A A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925 6.837 6.805 7.670 9.390 5.773	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589 2.576 3.978 5.243 4.777 0.289	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073 4.730 4.002 4.631 3.701 3.962 3.940	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58 16.88 24.08 14.30 17.86
	45 50	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1660 1661 1662 1663 1664 1665 1666	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB CG O O CA CB CG O O CA CB CG O O CA CB CG O O CA CB CG O O CA CB CG CG CG CG CG CG CG CG CG CG CG CG CG	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS MET MET MET MET MET MET	A A A A A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925 6.837 6.805 7.670 9.390 5.773 4.791	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589 2.576 3.978 5.243 4.777 0.289 0.101	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073 4.730 4.002 4.631 3.701 3.962 3.940 3.224	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58 18.66 16.88 24.08 14.30 17.86 18.25
	45 50 55	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1643 1644 1645 1646 1647 1648 1650 1651 1652 1653 1654 1655 1656 1657 1658 1660 1661 1662 1663 1664 1665	CZ NH1 NH2 C O N CA CB CG CD2 ND1 CE1 NE2 C O N CA CB CG O N CA CB CG O N CA CB CO N	ARG ARG ARG ARG HIS HIS HIS HIS HIS HIS HIS HIS MET MET MET MET MET MET	A A A A A A A A A A A A A A A A A A A	515 515 515 515 516 516 516 516 516 516	11.406 10.654 12.511 8.089 7.275 7.726 6.317 6.126 4.692 3.967 3.830 2.633 2.689 5.708 4.598 6.438 5.925 6.837 6.805 7.670 9.390 5.773	-4.813 -6.051 -7.080 -6.254 -1.020 -1.759 0.085 0.441 1.702 2.101 3.061 1.469 2.022 2.992 0.659 0.216 1.334 1.589 2.576 3.978 5.243 4.777 0.289	9.641 9.281 10.340 7.594 7.038 8.237 8.330 9.166 9.312 8.691 10.180 10.089 9.191 6.954 6.689 6.073 4.730 4.002 4.631 3.701 3.962 3.940	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	25.13 23.49 32.16 18.29 16.22 19.33 17.78 16.84 18.16 21.17 20.70 21.52 20.16 16.63 18.58 15.29 16.58 16.88 24.08 14.30 17.86

	5	ATOM	1785	CB	VAL	Α	533	-6.223	-3.371 -9.865	1.00	59.20
		ATOM	1786	CG1	VAL	Α	533	-6.181	-2.163-10.785	1.00	59.21
		ATOM	1787	CG2	VAL	Α	533	-7.574	-3.467 -9.172	1.00	59.57
		ATOM	1788	C	VAL	A	533	-4.452	-4.767-10.907	1.00	57.86
		ATOM	1789	Ō	VAL	A	533	-3.846	-3.874-11.499	1.00	60.56
	10										
	10	MOTA	1790	N	VAL	A	534	-3.852	-5.863-10.451	1.00	56.03
		MOTA	1791	CA	VAL	Α	534	-2.417		1.00	54.11
		MOTA	1792	CB	VAL	Α	534	-1.767	-6.632 -9.341	1.00	54.02
		MOTA	1793	CG1	VAL	Α	534	-0.300	-6.950 -9.601	1.00	52.37
		ATOM	1794	CG2	VAL	Α	534	-1.900	-5.635 -8.200	1.00	55.70
	15	ATOM	1795	C	VAL	Α	534	-2.089	-7.008-11.770	1.00	54.31
		ATOM	1796	0	VAL	Α	534	-2.519	-8.164-11.780	1.00	51.66
		ATOM	1797	N	PRO	Α	535	-1.315	-6.527-12.755	1.00	53.54
		ATOM	1798	CD	PRO	A	535	-0.749	-5.172-12.874	1.00	54.28
		ATOM	1799	CA	PRO	A	535	-0.949	-7.373-13.893	1.00	53.24
	20	ATOM	1800	CB	PRO	A	535	0.011	-6.500-14.697	1.00	52.71
	20										
		ATOM	1801	CG	PRO	A	535	-0.353	-5.102-14.319	1.00	53.19
		ATOM	1802	C	PRO	A	535	-0.296	-8.664-13.411	1.00	54.25
		MOTA	1803	0	PRO	Α	535	0.121	-8.768-12.254	1.00	54.56
		MOTA	1804	N	LEU	Α	536	-0.203	-9.645-14.299	1.00	53.63
	25	MOTA	1805	CA	LEU	Α	536	0.382	-10.926-13.937	1.00	53.11
ifi		MOTA	1806	CB	LEU	Α	536	-0.250	-12.046-14.763	1.00	51.88
		MOTA	1807	CG	LEU	Α	536	-0.686	-13.256-13.938	1.00	51.83
IJ		MOTA	1808	CD1	LEU	Α	536	-1.953	-12.917-13.173	1.00	49.51
ia H		ATOM	1809	CD2	LEU	Α	536	-0.905	-14.449-14.854	1.00	53.43
`~J	30	ATOM	1810	C	LEU	Α	536	1.895	-10.990-14.081	1.00	52.58
** <u>!</u>		ATOM	1811	0	LEU	A	536	2.414		1.00	55.33
		ATOM	1812	N	TYR	A	537	2.601		1.00	48.72
ال."		ATOM	1813	CA	TYR	A	537	4.057		1.00	44.22
#1							537				
	35	ATOM	1814	CB	TYR	A		4.627	-9.134-12.709	1.00	44.52
	33	ATOM	1815	CG	TYR	A	537	4.331	-8.053-13.731	1.00	45.18
		MOTA	1816	CD1	TYR	A	537	3.623	-6.905-13.376	1.00	43.77
		MOTA	1817	CE1	TYR	Α	537	3.334	-5.915-14.317	1.00	45.23
ñ		ATOM	1818	CD2	TYR	Α	537	4.747	-8.187-15.058	1.00	46.91
£		ATOM	1819	CE2	TYR	Α	537	4.462	-7.202-16.008	1.00	43.93
.==	40	MOTA	1820	CZ	TYR	Α	537	3.757	-6.071-15.631	1.00	46.70
		MOTA	1821	OH	TYR	Α	537	3.472	-5.097-16.565	1.00	48.35
		ATOM	1822	C	TYR	Α	537	4.401	-11.562-12.056	1.00	41.29
		ATOM	1823	0	TYR	Α	537	4.330	-11.319-10.856	1.00	41.82
		ATOM	1824	N	ASP	Α	538	4.748	-12.748-12.540	1.00	40.34
	45	ATOM	1825	CA	ASP	Α	538	5.055	-13.896-11.691	1.00	38.84
		ATOM	1826	СВ	ASP	Α	538		-15.037-12.554	1.00	43.47
		ATOM	1827	CG	ASP	A	538	•	-15.531-13.566	1.00	47.67
		ATOM	1828	OD1	ASP		538		-16.373-14.416	1.00	49.33
						A					
	50	ATOM	1829	OD2	ASP	A	538		-15.073-13.511	1.00	48.07
	50	MOTA	1830	C	ASP	A	538		-13.676-10.508	1.00	37.28
		MOTA	1831	0	ASP	Α	538		-13.964 -9.371	1.00	38.55
		ATOM	1832	N	LEU	Α	539		-13.200-10.766	1.00	33.83
		MOTA	1833	CA	LEU	Α	539	8.155	-12.959 -9.692	1.00	32.80
		ATOM	1834	CB	LEU	Α	539	9.419	-12.323-10.263	1.00	32.78
	55	ATOM	1835	CG	LEU	Α	539	10.561	-12.031 -9.292	1.00	30.93
		ATOM	1836	CD1	LEU	Α	539		-13.280 -8.492	1.00	33.81
		ATOM	1837	CD2	LEU	A	539		-11.538-10.077	1.00	25.92
		ATOM	1838	C	LEU	A	539		-12.050 -8.614	1.00	31.85
		ATOM	1839	0	LEU	A	539		-12.367 -7.423	1.00	25.63
	60	ATOM	1840	Ŋ	LEU	A	540		-10.917 -9.042	1.00	32.07
	00								-9.976 -8.111		
		ATOM	1841	CA	LEU	A	540	6.411		1.00	31.03
		ATOM	1842	CB	LEU	Α	540	5.792	-8.800 -8.861	1.00	30.56

	_											
	5	MOTA	1843	CG	LEU	A	540	5.124		-7.945	1.00	31.12
		MOTA	1844	CD1	LEU	A	540	6.092		-6.838	1.00	29.76
		MOTA	1845	CD2	LEU	Α	540	4.693	-6.572	-8.762	1.00	30.85
		MOTA	1846	С	LEU	Α	540	5.337	-10.660	-7.282	1.00	34.55
		ATOM	1847	0	LEU	Α	540	5.316	-10.522	-6.063	1.00	31.60
	10	MOTA	1848	N	LEU	Α	541	4.446	-11.388	-7.941	1.00	35.64
		ATOM	1849	CA	LEU	Α	541	3.378	-12.101	-7.245	1.00	37.84
		ATOM	1850	CB	LEU	Α	541		-12.771		1.00	38.49
		ATOM	1851	CG	LEU	A	541		-11.932		1.00	39.80
		ATOM	1852	CD1	LEU	A	541		-11.476		1.00	40.02
	15	ATOM	1853	CD2	LEU	A	541		-10.733		1.00	40.48
	15	ATOM	1854	C	LEU	A	541		-13.147		1.00	40.10
		ATOM	1855	0	LEU	A	541	3.472			1.00	42.72
		ATOM	1856	N	GLU	A	542	4.929			1.00	38.45
	20	ATOM	1857	CA	GLU	A	542	5.535			1.00	39.59
	20	ATOM	1858	CB	GLU	A	542		-15.566		1.00	41.73
		ATOM	1859	CG	GLU	A	542		-16.327		1.00	48.34
		ATOM	1860	CD	GLU	A	542		-17.747		1.00	52.57
		ATOM	1861	OE1	GLU	A	542	8.049			1.00	52.70
		ATOM	1862	OE2	GLU	Α	542		-18.647		1.00	53.69
	25	MOTA	1863	С	GLU	Α	542	5.989	-14.299	-4.553	1.00	39.94
:ā		MOTA	1864	0	GLU	Α	542	5.567	-14.710	-3.472	1.00	40.99
T		MOTA	1865	N	MET	Α	543	6.844	-13.287	-4.663	1.00	38.29
Ď		ATOM	1866	CA	MET	Α	543	7.380	-12.580	-3.503	1.00	38.11
		MOTA	1867	CB	MET	Α	543	8.242	-11.408	-3.963	1.00	37.34
	30	MOTA	1868	CG	MET	Α	543	9.311	-11.797	-4.953	1.00	40.59
Tegi ia.		ATOM	1869	SD	MET	Α	543	10.829	-12.223	-4.114	1.00	45.64
4. 1		ATOM	1870	CE	MET	Α	543	12.014	-11.399	-5.151	1.00	42.61
اً عِيلًا		ATOM	1871	С	MET	Α	543		-12.064		1.00	37.94
:: :::::::::::::::::::::::::::::::::::		ATOM	1872	0	MET	Α	543		-12.127		1.00	39.20
اليورة	35	ATOM	1873	N	LEU	A	544	5.218			1.00	39.44
H		ATOM	1874	CA	LEU	A	544	4.100			1.00	40.91
IJ		ATOM	1875	CB	LEU	A	544		-10.344		1.00	39.88
		ATOM	1876	CG	LEU	A	544	1.775		-2.688	1.00	42.70
		ATOM	1877	CD1	LEU	A	544	2.060		-1.586	1.00	37.35
£	40	ATOM	1878	CD2	LEU	A	544	0.854		-3.741	1.00	38.47
	40	ATOM	1879	CD2	LEU	A	544	3.420	-12.120		1.00	42.83
				0								
		ATOM	1880	_	LEU	A	544		-11.899		1.00	42.73
		ATOM	1881	N	ASP	A	545		-13.313		1.00	46.32
	15	ATOM	1882	CA	ASP	A	545		-14.456		1.00	50.65
	45	ATOM	1883	CB	ASP	A	545		-15.617		1.00	53.67
		ATOM	1884	CG	ASP	A	545		-15.278		1.00	57.35
		ATOM	1885	OD1	ASP	Α	545		-14.568		1.00	59.99
		ATOM	1886	OD2	ASP	Α	545		-15.718		1.00	59.68
		ATOM	1887	C	ASP	Α	545		-14.898		1.00	50.74
	50	ATOM	1888	0	ASP	Α	545	3.004	-15.388	0.657	1.00	49.39
		ATOM	1889	N	ALA	Α	546	4.874	-14.723	-0.401	1.00	51.82
		ATOM	1890	CA	ALA	Α	546	5.750	-15.095	0.702	1.00	53.12
		ATOM	1891	CB	ALA	Α	546	7.180	-14.678	0.395	1.00	53.19
		ATOM	1892	С	ALA	Α	546	5.269	-14.424	1.987	1.00	54.67
	55	MOTA	1893	0	ALA	Α	546	5.476	-14.940	3.085	1.00	52.32
		ATOM	1894	N .	HIS	Α	547		-13.270	1.838	1.00	56.66
		ATOM	1895	CA	HIS	Α	547		-12.520	2.978	1.00	59.19
		ATOM	1896	CB	HIS	A	547		-11.017	2.684	1.00	56.70
		ATOM	1897	CG	HIS	A	547	5.489		2.896	1.00	54.64
	60	ATOM	1898	CD2	HIS	A	547		-10.506	2.199	1.00	53.92
		ATOM	1899	ND1	HIS	A	547	5.748	-9.514	3.925	1.00	52.17
		ATOM	1900	CE1	HIS	A	547	7.004	-9.111	3.853	1.00	52.16
		21 Old	1900	C11 I	1110	^	J= /	7.004	- 2.111	5.055	1.00	JZ.10

	5	ATOM	2017	С	MET	В	315	16.490	9.665 32.	311 1.	00 27.99
		MOTA	2018	0	MET	В	315	15.302	9.351 32.	396 1.	00 26.60
		ATOM	2019	N	VAL	В	316	17.481	8.823 32.	598 1.	00 27.26
		MOTA	2020	CA	VAL	В	316	17.229	7.447 33.	027 1.	00 24.54
		ATOM	2021	CB	VAL	В	316	18.554	6.708 33.	351 1.	00 26.22
	10	ATOM	2022	CG1	VAL	В	316	18.272	5.404 34.	096 1.	00 29.81
		ATOM	2023	CG2	VAL	В	316	19.302	6.410 32.		00 29.75
		ATOM	2024	C	VAL	В	316	16.326	7.389 34.		00 27.22
		ATOM	2025	Ö	VAL	В	316	15.397	6.579 34.		00 25.55
		ATOM	2026	N	SER	В	317	16.601	8.243 35.		00 24.40
	15	ATOM	2027	CA	SER	В	317	15.799	8.268 36.		00 27.63
	13	ATOM	2027	CB	SER	В	317	16.358	9.294 37.		00 27.63
		ATOM	2029	OG G	SER	В	317	17.492	8.771 38.		00 39.97
		ATOM	2030	C	SER	В	317	14.346	8.600 36.		00 26.73
	20	ATOM	2031	0	SER	В	317	13.434	7.932 36.		00 25.65
	20	MOTA	2032	N	ALA	В	318	14.135	9.634 35.		00 24.19
		MOTA	2033	CA	ALA	В	318	12.786	10.049 34.		00 24.17
		MOTA	2034	CB	ALA	В	318	12.850	11.250 34.		00 21.44
		MOTA	2035	C	ALA	В	318	12.038	8.890 34.	306 1.	00 21.63
		MOTA	2036	0	ALA	В	318	10.902	8.598 34.		00 20.25
	25	MOTA	2037	N	LEU	В	319	12.695	8.225 33.	364 1.	00 23.37
111		ATOM	2038	CA	LEU	В	319	12.098	7.102 32.	652 1.	00 25.42
Ū		ATOM	2039	CB	LEU	В	319	13.050	6.635 31.	548 1.	00 22.03
Ü		ATOM	2040	CG	LEU	В	319	13.264	7.622 30.	394 1.	00 20.71
		ATOM	2041	CD1	LEU	В	319	14.146	6.995 29.	331 1.	00 23.60
M. III	30	ATOM	2042	CD2	LEU	В	319	11.918	8.020 29.	803 1.	00 23.82
74 <u>2</u>		ATOM	2043	С	LEU	В	319	11.729	5.926 33.		00 27.26
[# '4]		ATOM	2044	0	LEU	В	319	10.615	5.396 33.		00 28.91
		ATOM	2045	N	LEU	В	320	12.656	5.516 34.		00 26.58
51 2 00 0		ATOM	2046	CA	LEU	В	320	12.399	4.405 35.		00 26.73
	35	ATOM	2047	CB	LEU	В	320	13.657	4.075 36.		00 26.87
H		ATOM	2048	CG	LEU	В	320	14.846	3.460 35.		00 26.15
L.		ATOM	2049	CD1	LEU	В	320	16.053	3.375 36.		00 28.04
		ATOM	2050	CD2	LEU	В	320	14.484	2.076 34.	*	00 26.96
ī		ATOM	2051	C	LEU	В	320	11.249	4.722 36.		00 29.19
ı,	40	ATOM	2052	0	LEU	В	320		3.849 36.		00 26.66
	40	ATOM		N	ASP	В		10.449			
			2053				321	11.160	5.976 36.		00 29.72
		ATOM	2054	CA	ASP	В	321	10.112	6.371 37.		00 31.36
		ATOM	2055	CB	ASP	В	321	10.494	7.683 38.		00 36.60
	15	ATOM	2056	CG	ASP	В	321	11.407	7.461 39.		00 46.11
	45	ATOM	2057	OD1	ASP	B -	321	10.897	7.058 40.		00 46.64
		ATOM	2058	OD2	ASP	B	321	12.635	7.676 39.		00 45.98
		ATOM	2059	С	ASP	В	321	8.742	6.494 36.		00 28.29
		ATOM	2060	0	ASP	В	321	7.715	6.432 37.		00 27.19
		ATOM	2061	N	ALA	В	322	8.726	6.650 35.		00 28.34
	50	ATOM	2062	CA	ALA	В	322	7.469	6.779 34.		00 25.55
		MOTA	2063	CB	ALA	В	322	7.668	7.668 33.	728 1.	00 24.11
		ATOM	2064	C .	ALA	В	322	6.911	5.420 34.	523 1.	00 22.80
		ATOM	2065	0	ALA	В	322	5.810	5.338 33.	979 1.	00 24.54
		ATOM	2066	N	GLU	В	323	7.662	4.355 34.	781 1.	00 20.16
	55	ATOM	2067	CA	GLU	В	323	7.229	3.021 34.	386 1.	00 21.44
		ATOM	2068	CB	GLU	В	323	8.196	1.982 34.		00 23.72
		ATOM	2069	CG	GLU	В	323	9.393	1.746 34.		00 23.58
		ATOM	2070	CD	GLU	В	323	8.988	1.134 32.		
		ATOM	2071	OE1	GLU	В	323	8.852	1.881 31.		
	60	ATOM	2072	OE2	GLU	В	323	8.809	-0.095 32.		
		ATOM	2072	C	GLU	В	323	5.796	2.696 34.		
		ATOM	2073		GLU	В	323	5.409	2.926 35.		
		71014	20/4	5	GTO	Б	343	5.409	4.340 35.	951 1.	00 22.34
								1 () =			

51

	5	ATOM	2249	CB	THR	В	347	-9.152	-7.388 23.601	1.00	21.65
		ATOM	2250	OG1	THR	В	347	-10.218	-8.190 24.123	1.00	19.65
		ATOM	2251	CG2	THR	В	347	-8.676	-7.955 22.262	1.00	22.01
		ATOM	2252	C	THR	В	347	-8.426	-6.590 25.853	1.00	23.60
		ATOM	2253	0	THR	В	347	-8.358	-5.357 25.883	1.00	20.31
	10	ATOM	2254	N	ASN	В	348	-8.884	-7.314 26.874	1.00	22.27
		ATOM	2255	CA	ASN	В	348	-9.293	-6.667 28.114	1.00	23.99
		ATOM	2256	CB	ASN	В	348	-10.008	-7.642 29.056	1.00	22.32
		ATOM	2257	CG	ASN	В	348	-10.342	-7.022 30.398	1.00	28.26
		ATOM	2258	OD1	ASN	В	348	-9.478	-6.746 31.216	1.00	27.14
	15	ATOM	2259	ND2	ASN	В	348	-11.647	-6.764 30.625	1.00	27.02
		ATOM	2260	С	ASN	В	348	-8.035	-6.120 28.798	1.00	19.48
		ATOM	2261	0	ASN	В	348	-8.014	-4.991 29.271	1.00	18.26
		ATOM	2262	N	LEU	В	349	-6.984	-6.931 28.832	1.00	19.07
		ATOM	2263	CA	LEU	В	349	-5.724	-6.516 29.446	1.00	20.37
	20	ATOM	2264	CB	LEU	В	349	-4.716	-7.674 29.434	1.00	18.21
		ATOM	2265	CG	LEU	В	349	-3.297	-7.316 29.889	1.00	18.24
		ATOM	2266	CD1	LEU	В	349	-3.323	-6.904 31.356	1.00	12.44
		ATOM	2267	CD2	LEU	В	349	-2.370	-8.504 29.672	1.00	21.28
		ATOM	2268	C	LEU	В	349	-5.131	-5.307 28.718	1.00	19.92
2222	25	ATOM	2269	Ö	LEU	В	349	-4.738	-4.322 29.349	1.00	16.56
		ATOM	2270	N	ALA	В	350	-5.067	-5.391 27.391	1.00	16.67
1 <u>1</u> 1		ATOM	2271	CA	ALA	В	350	-4.529	-4.308 26.578	1.00	17.11
i Li		ATOM	2272	CB	ALA	В	350	-4.587	-4.690 25.095	1.00	14.15
IJ		ATOM	2273	C	ALA	В	350	-5.272	-2.988 26.805	1.00	17.92
] ==	30	ATOM	2274	0	ALA	В	350	-4.650	-1.926 26.904	1.00	18.71
	50	ATOM	2275	N	ASP	В	351	-6.600	-3.053 26.857	1.00	17.51
- <u>-</u> -		ATOM	2276	CA	ASP	В	351	-7.409	-1.856 27.074	1.00	16.57
		MOTA	2277	СВ	ASP	В	351	-8.902	-2.202 27.041	1.00	18.97
ii		ATOM	2278	CG	ASP	В	351	-9.785	-0.974 26.858	1.00	21.80
	35	ATOM	2279	OD1	ASP	В	351	-9.660	-0.292 25.824	1.00	24.62
W	55	ATOM	2280	OD2	ASP	В	351	-10.604	-0.682 27.754	1.00	22.78
		ATOM	2281	C	ASP	В	351	-7.064	-1.228 28.415	1.00	16.81
		ATOM	2282	0	ASP	В	351	-6.963	-0.009 28.534	1.00	15.75
ı		ATOM	2283	N	ARG	В	352	-6.894	-2.056 29.438	1.00	13.75
ũ	40	ATOM	2284	CA	ARG	В	352	-6.552	-1.509 30.742	1.00	16.09
		ATOM	2285	CB	ARG	В	352	-6.728	-2.571 31.833	1.00	15.78
		ATOM	2286	CG	ARG	В	352	-8.189	-2.819 32.189	1.00	17.93
		ATOM	2287	CD	ARG	В	352	-8.323	-3.882 33.279	1.00	19.84
		ATOM	2288	NE	ARG	В	352	-8.010	-5.222 32.785	1.00	21.36
	45	ATOM	2289	CZ	ARG	В	352	-7.187	-6.075 33.387	1.00	21.18
		ATOM	2290	NH1	ARG	В	352	-6.579	-5.741 34.516	1.00	20.51
		ATOM	2291	NH2	ARG	В	352	-6.980	-7.275 32.864	1.00	28.51
		ATOM	2292	C	ARG	В	352	-5.123	-0.975 30.728	1.00	15.81
		ATOM	2293	0	ARG	В	352	-4.835	0.057 31.339	1.00	15.61
	50	ATOM	2294	N	GLU	В	353	-4.231	-1.665 30.019	1.00	15.45
	50	ATOM	2295	CA	GLU	В	353	-2.838	-1.228 29.935	1.00	16.59
		ATOM	2296	CB	GLU	В	353	-1.990	-2.243 29.168	1.00	14.64
		ATOM	2297	CG	GLU		353		-3.456 29.973	1.00	18.23
						В		-1.554			
	55	ATOM	2298	CD OF1	GLU	В	353	-0.620	-4.355 29.176	1.00	22.72
	<i>))</i>	ATOM		OE1	GLU	В	353	-1.099	-5.078 28.275	1.00	21.94
		ATOM		OE2	GLU	В	353	0.599	-4.324 29.442	1.00	24.41
		ATOM		C	GLU	В	353	-2.729	0.119 29.219	1.00	15.85
		ATOM	2302	0	GLU	В	353	-1.872	0.939 29.540	1.00	13.76
	60	ATOM	2303	N	LEU	В	354	-3.594	0.335 28.235	1.00	12.93
	60	ATOM	2304	CA	LEU	В	354	-3.556	1.575 27.472	1.00	15.33
		ATOM	2305	CB	LEU	В	354	-4.616	1.534 26.360	1.00	16.44
		ATOM	2306	CG	LEU	В	354	-4.174	0.750 25.112	1.00	17.03

	_	2 5014	0005	an a		_	254	F 373	0 500 24 100	1 00	7.6 70
	5	ATOM	2307	CD1	LEU	В	354	-5.373	0.509 24.189	1.00	16.70
		ATOM	2308	CD2	LEU	В	354	-3.069	1.531 24.384	1.00	14.52
		ATOM	2309	С	LEU	В	354	-3.747	2.805 28.361	1.00	12.78
		MOTA	2310	0	LEU	В	354	-3.123	3.850 28.141	1.00	14.28
		ATOM	2311	N	VAL	В	355	-4.600	2.682 29.369	1.00	12.60
	10	ATOM	2312	CA	VAL	В	355	-4.844	3.791 30.279	1.00	16.78
		ATOM	2313	CB	VAL	В	355	-5.925	3.429 31.327	1.00	16.84
		ATOM	2314	CG1	VAL	В	355	-6.070	4.561 32.344	1.00	19.88
		ATOM	2315	CG2	VAL	В	355	-7.254	3.187 30.639	1.00	19.33
		ATOM	2316	C	VAL	В	355	-3.533	4.161 30.986	1.00	19.17
	15	ATOM	2317	Ö	VAL	В	355	-3.158	5.328 31.049	1.00	17.30
	13	ATOM	2318	N	HIS	В	356	-2.826	3.160 31.499	1.00	19.68
		ATOM	2319	CA	HIS	В	356	-1.559	3.418 32.177	1.00	20.64
		ATOM	2320	CB	HIS	В	356	-1.110	2.174 32.945	1.00	21.03
			2321	CG	HIS	В	356	-2.018	1.818 34.085	1.00	22.88
	20	ATOM							1.045 34.085		21.70
	20	ATOM	2322	CD2	HIS	В	356	-3.128		1.00	
		ATOM	2323	ND1	HIS	В	356	-1.838	2.312 35.358	1.00	19.24
		ATOM	2324	CE1	HIS	В	356	-2.802	1.860 36.145	1.00	18.84
		ATOM	2325	NE2	HIS	В	356	-3.598	1.088 35.426	1.00	17.92
		ATOM	2326	C	HIS	В	356	-0.479	3.861 31.184	1.00	19.67
	25	ATOM	2327	0	HIS	В	356	0.424	4.614 31.547	1.00	19.61
ı		MOTA	2328	N	MET	В	357	-0.566	3.413 29.931	1.00	14.92
Ī		ATOM	2329	CA	MET	В	357	0.428	3.830 28.939	1.00	15.13
Ü		MOTA	2330	CB	MET	В	357	0.239	3.099 27.604	1.00	13.94
[=£		MOTA	2331	CG	MET	В	357	1.149	3.631 26.476	1.00	14.71
, e. [30	MOTA	2332	SD	\mathtt{MET}	В	357	0.747	3.014 24.826	1.00	17.75
<u></u>		MOTA	2333	CE	MET	В	357	0.746	1.222 25.122	1.00	15.21
`~ <u>[</u>		ATOM	2334	C	MET	В	357	0.316	5.334 28.699	1.00	14.94
		ATOM	2335	0	MET	В	357	1.319	6.031 28.560	1.00	17.02
		ATOM	2336	N	ILE	В	358	-0.909	5.839 28.659	1.00	18.01
W	35	ATOM	2337	CA	ILE	В	358	-1.122	7.263 28.423	1.00	19.77
1.4		ATOM	2338	CB	ILE	В	358	-2.634	7.577 28.287	1.00	23.11
		ATOM	2339	CG2	ILE	В	358	-2.879	9.080 28.450	1.00	25.00
		ATOM	2340	CG1	ILE	В	358	-3.137	7.105 26.913	1.00	24.19
1		ATOM	2341	CD1	ILE	В	358	-4.600	6.653 26.890	1.00	20.17
1	40	ATOM	2342	C	ILE	В	358	-0.501	8.100 29.550	1.00	22.93
	. •	ATOM	2343	Ō	ILE	В	358	0.080	9.153 29.299	1.00	23.33
		ATOM	2344	N	ASN	В	359	-0.619	7.631 30.790	1.00	22.34
		ATOM	2345	CA	ASN	В	359	-0.029	8.341 31.924	1.00	23.24
		ATOM	2346	CB	ASN	В	359	-0.480	7.726 33.224	1.00	25.10
	45	ATOM	2347	CG	ASN	В	359	-1.831	8.171 33.649	1.00	32.65
	43	ATOM	2348	OD1	ASN	В	359	-2.421	9.069 33.042	1.00	32.98
		ATOM	2349	ND2	ASN	В	359	-2.364	7.549 34.691	1.00	33.87
			2350	C C	ASN	В	359	1.473	8.306 31.837	1.00	24.77
		ATOM									
	50	ATOM	2351	0	ASN	В	359	2.152	9.285 32.149	1.00	24.19
	50	ATOM	2352	N	TRP	В	360	1.995	7.149 31.438	1.00	20.82
		ATOM	2353	CA	TRP	В	360	3.439	6.965 31.310	1.00	19.29
		ATOM	2354	CB	TRP	В	360	3.754	5.524 30.878	1.00	18.59
		ATOM	2355	CG	TRP	В	360	5.085	5.363 30.176	1.00	18.21
		ATOM	2356	CD2	TRP	В	360	5.310	5.308 28.756	1.00	14.38
	55	ATOM	2357	CE2	TRP	В	360	6.698	5.129 28.561	1.00	13.42
		ATOM	2358	CE3	TRP	В	360	4.475	5.392 27.633	1.00	15.52
		MOTA	2359	CD1	TRP	В	360	6.306	5.221 30.762	1.00	13.34
		ATOM	2360	NE1	TRP	В	360	7.283	5.078 29.800	1.00	16.05
		ATOM	2361	CZ2	TRP	В	360	7.272	5.032 27.288	1.00	16.84
	60	ATOM	2362	CZ3	TRP	В	360	5.045	5.296 26.363	1.00	15.11
		ATOM	2363	CH2	TRP	В	360	6.431	5.115 26.202	1.00	16.12
		ATOM	2364	С	TRP	В	360	3.979	7.939 30.273	1.00	20.13
								100			

	5	ATOM	2365	0	TRP	В	360	4.991	8.606 30.497	1.00	17.26
	3	ATOM	2366	N	ALA	В	361	3.295	8.012 29.135	1.00	19.34
		ATOM	2367	CA	ALA	В	361	3.708	8.900 28.051	1.00	22.01
		ATOM	2368	CB	ALA	В	361	2.682	8.855 26.921	1.00	19.53
		ATOM	2369	C	ALA	В	361	3.883	10.336 28.552	1.00	22.39
	10	ATOM	2370	0	ALA	В	361	4.858	11.005 28.210	1.00	19.57
	10	ATOM	2371	N	LYS	В	362	2.932	10.794 29.361	1.00	21.96
		ATOM	2372	CA	LYS	В	362	2.966	12.139 29.923	1.00	26.45
		ATOM	2372	CB	LYS	В	362	1.741	12.363 30.811	1.00	29.79
		ATOM	2374	CG	LYS	В	362	0.426	12.417 30.064	1.00	33.57
	15	ATOM	2375	CD	LYS	В	362	-0.563	13.304 30.805	1.00	36.83
	13	ATOM	2376	CE	LYS	В	362	-1.620	12.490 31.512	1.00	36.89
		ATOM	2377	NZ	LYS	В	362	-2.873	13.276 31.664	1.00	39.07
		ATOM	2378	C	LYS	В	362	4.223	12.379 30.757	1.00	27.77
		ATOM	2379	0	LYS	В	362	4.661	13.517 30.922	1.00	26.93
	20	ATOM	2379	N	ARG	В	363	4.805	11.302 31.278	1.00	26.61
	20	ATOM	2380	CA	ARG	В	363	5.996	11.414 32.109	1.00	27.74
		ATOM	2381	CB	ARG	В	363	5.887	10.457 33.298	1.00	28.93
		ATOM	2382	CG	ARG	В	363	4.650	10.704 34.158	1.00	36.07
		ATOM	2384	CD	ARG	В	363	4.569	9.745 35.344	1.00	42.83
4 1254	25	ATOM	2385	NE	ARG	В	363	4.477	8.344 34.928	1.00	42.83
	23	ATOM	2386	CZ	ARG	В	363	3.395	7.582 35.080	1.00	51.48
1		ATOM	2387	NH1	ARG	В	363	2.300	8.081 35.648	1.00	52.17
11		ATOM	2388	NH2	ARG	В	363	3.405	6.316 34.668	1.00	40.24
Ħ		ATOM	2389	C	ARG	В	363	7.308	11.190 31.367	1.00	25.80
	30	ATOM	2399	0	ARG	В	363	8.374	11.190 31.367	1.00	29.36
	30	ATOM	2391	N	VAL	В	364	7.231	11.103 31.973	1.00	24.28
į d		ATOM	2391	CA	VAL	В	364	8.431	10.823 29.248	1.00	21.87
,4 <u>"</u>		ATOM	2393	CB	VAL	В	364	8.116	10.048 27.947	1.00	21.84
i:		ATOM	2394	CG1	VAL	В	364	9.267	10.184 26.968	1.00	15.85
	35	ATOM	2395	CG2	VAL	В	364	7.860	8.560 28.268	1.00	16.24
L.	55	ATOM	2396	C	VAL	В	364	8.925	12.241 28.923	1.00	28.14
		ATOM	2397	0	VAL	В	364	8.219	13.023 28.285	1.00	24.24
		ATOM	2398	N	PRO	В	365	10.141	12.591 29.375	1.00	28.57
1		ATOM	2399	CD	PRO	В	365	11.061	11.726 30.137	1.00	30.58
ı,	40	ATOM	2400	CA	PRO	В	365	10.719	13.919 29.138	1.00	32.16
	••	ATOM	2401	CB	PRO	В	365	12.189	13.739 29.507	1.00	32.70
		ATOM	2402	CG	PRO	В	365	12.170	12.671 30.545	1.00	33.35
		ATOM	2403	C	PRO	В	365	10.546	14.464 27.726	1.00	32.22
		ATOM	2404	Õ	PRO	В	365	11.056	13.897 26.766	1.00	37.04
	45	ATOM	2405	N	GLY	В	366	9.821	15.570 27.609	1.00	34.09
		ATOM	2406	CA	GLY	В	366	9.612	16.182 26.310	1.00	32.54
		ATOM	2407	C	GLY	В	366	8.241	15.969 25.700	1.00	33.46
		ATOM	2408	Ō	GLY	В	366	7.791	16.779 24.886	1.00	33.73
		ATOM	2409	N	PHE	В	367	7.564	14.895 26.096	1.00	31.08
	50	ATOM	2410	CA	PHE	В	367	6.250	14.593 25.542	1.00	28.60
	-	ATOM	2411	CB	PHE	В	367	5.745	13.244 26.058	1.00	25.96
		ATOM	2412	CG	PHE	В	367	4.629	12.671 25.239	1.00	22.75
		ATOM	2413	CD1	PHE	В	367	3.313	12.771 25.669	1.00	22.62
		ATOM	2414	CD2	PHE	В	367	4.897	12.025 24.033	1.00	22.29
	55	ATOM	2415	CE1	PHE	В	367	2.272	12.233 24.914	1.00	25.63
		ATOM	2416	CE2	PHE	В	367	3.867	11.486 23.272	1.00	20.82
		ATOM	2417	CZ	PHE	В	367	2.553	11.588 23.711	1.00	25.50
		ATOM	2418	C	PHE	В	367	5.178	15.646 25.781	1.00	26.79
		ATOM	2419	Ö	PHE	В	367	4.458	16.001 24.854	1.00	23.37
	60	ATOM	2420	N	VAL	В	368	5.049	16.143 27.009	1.00	31.26
		ATOM	2421	CA	VAL	В	368	4.020	17.151 27.277	1.00	35.71
		ATOM	2422	CB	VAL	В	368	3.817	17.412 28.795	1.00	35.98
								- -			

	_										
	5	MOTA	2481	OE1	GLN	В	375	-0.044	14.953 25.602	1.00	32.82
		ATOM	2482	NE2	GLN	В	375	0.895	16.953 25.236	1.00	33.98
		ATOM	2483	С	GLN	В	375	-0.259	12.630 21.104	1.00	24.52
		MOTA	2484	0	GLN	В	375	0.074	11.451 21.221	1.00	23.56
		ATOM	2485	N	VAL	В	376	-1.426	13.013 20.599	1.00	21.87
	10	ATOM	2486	CA	VAL	В	376	-2.409	12.055 20.140	1.00	23.44
	••	ATOM	2487	CB	VAL	В	376	-3.718	12.760 19.717	1.00	22.09
		ATOM	2488	CG1	VAL	В	376	-4.572	11.823 18.877	1.00	24.14
		ATOM	2489	CG2	VAL	В	376	-4.486	13.192 20.954	1.00	16.96
				CG2 C	VAL	В	376		11.257 18.965		24.15
	15	ATOM	2490					-1.852		1.00	
	15	ATOM	2491	0	VAL	В	376	-1.949	10.032 18.938	1.00	22.26
		ATOM	2492	N	HIS	В	377	-1.251	11.953 18.007	1.00	25.85
		ATOM	2493	CA	HIS	В	377	-0.689	11.284 16.843	1.00	25.68
		ATOM	2494	CB	HIS	В	377	-0.078	12.306 15.886	1.00	25.27
	• •	MOTA	2495	CG	HIS	В	377	0.535	11.690 14.667	1.00	30.63
	20	MOTA	2496	CD2	HIS	В	377	1.828	11.559 14.287	1.00	31.03
		MOTA	2497	ND1	HIS	В	377	-0.217	11.086 13.683	1.00	35.05
		MOTA	2498	CE1	HIS	В	377	0.588	10.607 12.750	1.00	33.12
		ATOM	2499	NE2	HIS	В	377	1.833	10.882 13.093	1.00	31.06
		ATOM	2500	С	HIS	В	377	0.365	10.237 17.210	1.00	24.37
	25	ATOM	2501	0	HIS	В	377	0.321	9.109 16.719	1.00	21.47
100		ATOM	2502	N	LEU	В	378	1.307	10.609 18.072	1.00	19.24
		ATOM	2503	CA	LEU	В	378	2.365	9.691 18.474	1.00	20.09
177		ATOM	2504	CB	LEU	В	378	3.363	10.402 19.388	1.00	18.64
i.e.		ATOM	2505	CG	LEU	В	378	4.230	11.489 18.736	1.00	22.15
, rij	30	ATOM	2506	CD1	LEU	В	378	5.104	12.148 19.796	1.00	22.51
74 [44	50	ATOM	2507	CD2	LEU	В	378	5.094	10.885 17.638	1.00	20.68
		ATOM	2508	C	LEU	В	378	1.832	8.433 19.161	1.00	18.91
		ATOM	2509	0	LEU	В	378	2.262	7.320 18.859	1.00	17.52
Ei 		ATOM	2510	N	LEU	В	379	0.888	8.610 20.077		18.25
	35									1.00	
IJ	33	ATOM	2511	CA	LEU	В	379	0.317	7.486 20.795	1.00	18.60
IJ		ATOM	2512	CB	LEU	В	379	-0.526	7.989 21.968	1.00	16.77
		ATOM	2513	CG	LEU	В	379	0.292	8.353 23.214	1.00	17.90
1		ATOM	2514	CD1	LEU	В	379	-0.578	9.092 24.211	1.00	15.84
ı	40	ATOM	2515	CD2	LEU	В	379	0.851	7.075 23.842	1.00	22.09
	40	ATOM	2516	С	LEU	В	379	-0.518	6.605 19.872	1.00	20.17
		ATOM	2517	0	LEU	В	379	-0.476	5.377 19.968	1.00	18.11
		MOTA	2518	N	GLU	В	380	-1.273	7.222 18.971	1.00	19.40
		MOTA	2519		GLU	В	380	-2.086	6.435 18.049		20.19
		MOTA	2520	CB	${ t GLU}$	В	380	-2.994	7.350 17.222	1.00	22.43
	45	MOTA	2521	CG	GLU	В	380	-4.182	7.874 18.007	1.00	25.30
		MOTA	2522	CD	GLU	В	380	-5.070	8.789 17.188	1.00	29.44
		ATOM	2523	OE1	GLU	В	380	-6.206	9.066 17.625	1.00	31.70
		ATOM	2524	OE2	GLU	В	380	-4.631	9.230 16.110	1.00	31.75
		ATOM	2525	С	GLU	В	380	-1.210	5.594 17.117	1.00	18.92
	50	ATOM	2526		GLU	В	380	-1.586	4.491 16.722	1.00	19.83
		ATOM	2527		ACYS		381	-0.039	6.113 16.772	0.75	17.41
		MOTA	2528	N	BCYS		381	-0.035	6.113 16.779	0.25	17.76
		ATOM	2529		ACYS		381	0.860	5.384 15.887	0.75	20.19
		ATOM	2530		BCYS		381	0.875	5.407 15.884	0.75	17.50
	55	ATOM	2531		ACYS		381	1.870	6.342 15.248	0.25	24.20
	55										
		ATOM	2532		BCYŚ		381	1.830	6.406 15.226	0.25	16.63
		ATOM	2533		ACYS		381	1.167	7.518 14.060	0.75	33.54
		ATOM	2534		BCYS		381	3.048	5.656 14.128	0.25	10.36
	CO	ATOM	2535		ACYS		381	1.626	4.269 16.592	0.75	20.59
	60	ATOM	2536		BCYS		381	1.689	4.305 16.561	0.25	19.19
		ATOM	2537		ACYS		381	1.737	3.161 16.069		19.16
		ATOM	2538	0	BCYS	В	381	1.904	3.241 15.982	0.25	19.25
								100			

•

	5	ATOM	2539	N	ALA	В	382	2.134	4.560 17.785	1.00	19.04
		MOTA	2540	CA	ALA	В	382	2.955	3.602 18.530	1.00	20.27
		ATOM	2541	CB	ALA	В	382	4.135	4.364 19.143	1.00	18.68
		ATOM	2542	С	ALA	В	382	2.356	2.702 19.607	1.00	16.82
		MOTA	2543	0	ALA	В	382	3.070	1.852 20.142	1.00	13.37
	10	ATOM	2544	N	TRP	В	383	1.074	2.855 19.916	1.00	15.30
		ATOM	2545	CA	TRP	В	383	0.487	2.089 21.013	1.00	15.80
		ATOM	2546	CB	TRP	В	383	-1.009	2.410 21.160	1.00	16.63
		ATOM	2547	CG	TRP	В	383	-1.871	1.775 20.129	1.00	19.93
		ATOM	2548	CD2	TRP	В	383	-2.493	0.483 20.198	1.00	20.80
	15	MOTA	2549	CE2	TRP	В	383	-3.226	0.309 19.003	1.00	19.27
		MOTA	2550	CE3	TRP	В	383	-2.506	-0.542 21.155	1.00	21.32
		MOTA	2551	CD1	TRP	В	383	-2.236	2.312 18.933	1.00	18.59
		MOTA	2552	NE1	TRP	В	383	-3.051	1.439 18.250	1.00	23.67
		ATOM	2553	CZ2	TRP	В	383	-3.963	-0.853 18.733	1.00	21.55
	20	MOTA	2554	CZ3	TRP	В	383	-3.243	-1.702 20.888	1.00	20.29
		MOTA	2555	CH2	TRP	В	383	-3.960	-1.844 19.686	1.00	19.03
		MOTA	2556	С	TRP	В	383	0.701	0.579 21.020	1.00	17.35
		MOTA	2557	0	TRP	В	383	0.982	0.010 22.077	1.00	13.92
		MOTA	2558	N	LEU	В	384	0.568	-0.087 19.879	1.00	14.07
	25	ATOM	2559	CA	LEU	В	384	0.773	-1.532 19.903	1.00	15.98
ű		ATOM	2560	CB	LEU	В	384	0.181	-2.200 18.656	1.00	12.19
TŲ		ATOM	2561	CG	LEU	В	384	0.173	-3.735 18.720	1.00	12.97
I		ATOM	2562	CD1	LEU	В	384	-0.352	-4.240 20.089	1.00	10.65
		ATOM	2563	CD2	LEU	В	384	-0.707	-4.259 17.586	1.00	17.84
	30	ATOM	2564	С	LEU	В	384	2.262	-1.861 20.034	1.00	14.64
i=		MOTA	2565	0	LEU	В	384	2.627	-2.833 20.690	1.00	13.78
7		ATOM	2566	N	GLU	В	385	3.116	-1.046 19.414	1.00	14.96
		ATOM	2567	CA	GLU	В	385	4.565	-1.260 19.509	1.00	13.79
ii geog		ATOM	2568	CB	GLU	В	385	5.336	-0.179 18.739	1.00	15.34
	35	ATOM	2569	CG	GLU	В	385	5.297	-0.312 17.207	1.00	15.38
1,4,5		ATOM	2570	CD	GLU	В	385	6.162	0.738 16.520	1.00	23.97
1.1.1 1.00		MOTA	2571	OE1	GLU	В	385	7.381	0.500 16.358	1.00	21.03
ئىد! چە		ATOM	2572	OE2	GLU	В	385	5.622	1.808 16.149	1.00	22.19
* <u>L</u>		ATOM	2573	С	GLU	В	385	4.963	-1.161 20.987	1.00	15.79
H	40	ATOM	2574	0	GLU	В	385	5.788	-1.942 21.463	1.00	15.04
		ATOM	2575	N	ILE	В	386	4.389	-0.213 21.690	1.00	13.32
		ATOM	2576	CA	ILE	В	386	4.723	-0.019 23.108	1.00	14.06
		ATOM	2577	CB	ILE	В	386	4.173	1.326 23.614	1.00	15.36
		ATOM	2578	CG2	ILE	В	386	4.374	1.451 25.130	1.00	15.97
	45	ATOM	2579	CG1	ILE	В	386	4.910	2.476 22.907	1.00	17.95
		ATOM	2580	CD1	ILE	В	386	4.118	3.768 22.874	1.00	21.12
		ATOM	2581	C	ILE	В	386	4.227	-1.164 23.993	1.00	14.97
		ATOM	2582	0	ILE	В	386	4.905	-1.560 24.941	1.00	19.60
		ATOM	2583	N	LEU	В	387	3.038	-1.675 23.709	1.00	15.18
	50	ATOM	2584	CA	LEU	В	387	2.516	-2.791 24.478	1.00	15.98
		ATOM	2585	CB	LEU	В	387	1.070	-3.097 24.080	1.00	17.15
		ATOM	2586	CG	LEU	В	387	-0.031	-2.113 24.486	1.00	19.65
		ATOM	2587	CD1	LEU	В	387	-1.371	-2.628 23.972	1.00	17.77
		ATOM	2588	CD2	LEU	В	387	-0.075	-1.966 26.002	1.00	15.38
	55	ATOM		С	LEU	В	387	3.391	-4.013 24.180	1.00	14.69
		ATOM		0	LEU	В	387	3.712	-4.792 25.076	1.00	14.03
		ATOM		N	MET	В	388	3.785	-4.178 22.921	1.00	16.43
		ATOM	2592	CA	MET	В	388	4.602	-5.329 22.547	1.00	16.67
		ATOM	2593	CB	MET	В	388	4.673	-5.460 21.026	1.00	14.83
	60	MOTA	2594	CG	MET	В	388	3.403	-6.066 20.453	1.00	13.91
		ATOM	2595	SD	MET	В	388	3.364	-6.193 18.675	1.00	17.23
		ATOM		CE	MET	В	388	1.906	-7.225 18.511	1.00	14.97

	5	MOTA	2597	С	MET	В	388	6.004	-5.332 23.133	1.00	20.19
		ATOM	2598	0	MET	В	388	6.460	-6.366 23.636	1.00	21.50
		ATOM	2599	N	ILE	В	389	6.707	-4.203 23.074	1.00	15.34
		ATOM	2600	CA	ILE	В	389	8.044	-4.209 23.634	1.00	15.59
		MOTA	2601	CB	ILE	В	389	8.836	-2.911 23.322	1.00	14.95
	10	MOTA	2602	CG2	ILE	В	389	8.330	-1.746 24.158	1.00	12.81
		MOTA	2603	CG1	ILE	В	389	10.325	-3.164 23.602	1.00	17.24
		ATOM	2604	CD1	ILE	В	389	11.228	-1.972 23.357	1.00	15.65
		ATOM	2605	C	ILE	В	389	7.950	-4.446 25.147	1.00	14.30
		ATOM	2606	0	ILE	В	389	8.844	-5.044 25.739	1.00	18.72
	15							6.855			
	13	ATOM	2607	N	GLY	В	390		-4.007 25.761	1.00	13.99
		ATOM	2608	CA	GLY	В	390	6.681	-4.219 27.189	1.00	14.87
		ATOM	2609	C	GLY	В	390	6.444	-5.702 27.463	1.00	18.54
		MOTA	2610	0	GLY	В	390	6.989	-6.282 28.403	1.00	16.54
		ATOM	2611	N	LEU	В	391	5.623	-6.325 26.628	1.00	16.15
	20	ATOM	2612	CA	LEU	В	391	5.334	-7.743 26.775	1.00	18.91
		MOTA	2613	CB	LEU	В	391	4.332	-8.179 25.699	1.00	19.55
		ATOM	2614	CG	LEU	В	391	4.157	-9.689 25.457	1.00	20.91
		ATOM	2615	CD1	LEU	В	391	3.580	-10.351 26.699	1.00	19.41
	25	ATOM	2616	CD2	LEU	В	391	3.232	-9.913 24.268	1.00	20.70
	25	MOTA	2617	С	LEU	В	391	6.649	-8.518 26.625	1.00	20.31
ı,		ATOM	2618	0	LEU	В	391	7.002	-9.352 27.465	1.00	18.66
I		ATOM	2619	N	VAL	В	392	7.378	-8.215 25.557	1.00	18.71
IJ		MOTA	2620	CA	VAL	В	392	8.649	-8.868 25.278	1.00	19.51
1.1		MOTA	2621	CB	VAL	В	392	9.288	-8.281 24.005	1.00	23.77
	30	ATOM	2622	CG1	VAL	В	392	10.751	-8.687 23.920	1.00	24.63
74 : :		ATOM	2623	CG2	VAL	В	392	8.520	-8.773 22.767	1.00	19.94
		ATOM	2624	C	VAL	В	392	9.615	-8.707 26.450	1.00	22.80
haj		ATOM	2625	0	VAL	В	392	10.336	-9.637 26.811	1.00	19.36
##											
	25	ATOM	2626	N	TRP	В	393	9.617	-7.522 27.046	1.00	22.10
Ш	35	MOTA	2627	CA	TRP	В	393	10.492	-7.241 28.171	1.00	23.20
111		ATOM	2628	CB	TRP	В	393	10.388	-5.773 28.578	1.00	19.22
; ==		MOTA	2629	CG	TRP	В	393	11.056	-5.479 29.895	1.00	22.53
Fastal Lates		ATOM	2630	CD2	TRP	В	393	12.453	-5.591 30.193	1.00	20.36
- 64		ATOM	2631	CE2	TRP	В	393	12.624	-5.208 31.545	1.00	25.65
111	40	MOTA	2632	CE3	TRP	В	393	13.578	-5.976 29.449	1.00	22.12
		ATOM	2633	CD1	TRP	В	393	10.452	-5.046 31.044	1.00	23.02
		ATOM	2634	NE1	TRP	В	393	11.387	-4.881 32.037	1.00	24.91
		ATOM	2635	CZ2	TRP	В	393	13.876	-5.200 32.171	1.00	23.00
									-5.968 30.072		23.98
	15	ATOM	2636	CZ3	TRP	В	393	14.829		1.00	
	45	MOTA	2637	CH2	TRP	В	393	14.964	-5.582 31.423	1.00	23.20
		ATOM	2638	C	TRP	В	393	10.208	-8.114 29.388	1.00	24.36
		ATOM	2639	0	TRP	В	393	11,128	-8.717 29.944	1.00	23.04
		MOTA	2640	N	ARG	В	394	8.952	-8.189 29.819	1.00	21.29
		ATOM	2641	CA	ARG	В	394	8.680	-9.003 30.990	1.00	22.43
	50	MOTA	2642	CB	ARG	В	394	7.365	-8.601 31.667	1.00	23.97
		ATOM	2643	CG	ARG	В	394	6.259	-8.149 30.759	1.00	26.16
		ATOM	2644	CD	ARG	В	394	5.026	-7.727 31.574	1.00	20.86
		ATOM	2645	NE	ARG	В	394	3.817	-7.937 30.786	1.00	19.54
	55	ATOM	2646	CZ	ARG	В	394	3.327	-7.059 29.915	1.00	20.58
	55	ATOM	2647	NH1	ARG	В	394	3.944	-5.902 29.722	1.00	17.41
		ATOM	2648	NH2	ARG	В	394	2.229	-7.347 29.220	1.00	16.82
		ATOM	2649	С	ARG	В	394	8.695	-10.502 30.713	1.00	21.78
		MOTA	2650	0	ARG	В	394	8.657	-11.294 31.648	1.00	23.44
		ATOM	.2651	N	SER	В	395	8.767	-10.880 29.438	1.00	17.10
	60	ATOM	2652	CA	SER	В	395		-12.289 29.041	1.00	25.08
		ATOM	2653	CB	SER	В	395		-12.473 27.638	1.00	19.47
		ATOM	2654		SER	В	395		-12.136 27.619	1.00	21.73
			2004	-		_	575	105			,_

	5	ATOM	2655	С	SER	В	395	10.239	-12.831 29.031	1.00	26.29
		ATOM	2656	0	SER	В	395	10.458	-14.030 28.854	1.00	23.75
		ATOM	2657	N	MET	В	396	11.206	-11.938 29.210		30.79
		MOTA	2658	CA	MET	В	396	12.620	-12.307 29.205		35.07
		ATOM	2659	CB	MET	В	396	13.479	-11.063 29.423		33.84
	10	ATOM	2660	CG	MET	В	396	14.155	-10.569 28.171		36.88
		ATOM	2661	SD	MET	В	396	15.149	-9.127 28.491		40.96
		ATOM	2662	CE	MET	В	396	16.675	-9.849 28.998		39.67
		MOTA	2663	C	MET	В	396	12.983	-13.353 30.250		35.88
		MOTA	2664	0	MET	В	396	13.828	-14.215 30.011		34.52
	15	ATOM	2665	N	GLU	В	397	12.348	-13.266 31.410		36.19
	13	ATOM	2666	CA	GLU	В	397	12.604	-14.206 32.492		39.24
		ATOM	2667	CB	GLU	В	397	12.153	-13.605 33.821		44.38
		ATOM	2668	CG	GLU	В	397	12.133	-12.422 34.271		54.05
		ATOM	2669	CD	GLU	В	397		-12.422 34.271		
	20							13.483			56.78
	20	ATOM	2670	OE1	GLU	В	397	13.380	-11.621 36.470		60.90
	·	ATOM	2671	OE2	GLU	В	397	13.975	-13.688 36.013		60.82
		ATOM	2672	C	GLU	В	397	11.878	-15.528 32.273		36.65
		ATOM	2673	0	GLU	В	397	12.021	-16.459 33.061		35.84
	25	ATOM	2674	N	HIS	В	398	11.100	-15.609 31.202		32.14
	25	ATOM	2675	CA	HIS	В	398	10.347	-16.823 30.914		29.48
		ATOM	2676	CB	HIS	В	398	8.863	-16.567 31.178		29.87
		ATOM	2677	CG	HIS	В	398	8.582	-16.111 32.574		31.80
		ATOM	2678	CD2	HIS	В	398	8.215	-16.801 33.678		29.12
:	20	ATOM	2679	ND1	HIS	В	398	8.727	-14.799 32.972		33.27
	30	ATOM	2680	CE1	HIS	В	398	8.462	-14.701 34.262		32.19
:		ATOM	2681	NE2	HIS	В	398	8.148	-15.902 34.714		33.48
		ATOM	2682	C	HIS	В	398	10.556	-17.317 29.492		25.95
		ATOM	2683 2684	O N	HIS PRO	B B	398 399	9.637 11.771	-17.291 28.672 -17.801 29.186		27.47
	35	ATOM	2685	CD		В		12.926			29.09
	33	ATOM ATOM	2686	CA	PRO PRO	В	399 399	12.926	-17.922 30.096 -18.300 27.845		29.93 27.40
		ATOM	2687	CB	PRO	В	399	13.434	-18.988 28.016		32.09
		ATOM	2688	CG	PRO	В	399	14.062	-18.284 29.170		30.81
		ATOM	2689	C	PRO	В	399	11.002	-19.246 27.319		29.76
	40	ATOM	2690	0	PRO	В	399	10.552	-20.137 28.035		29.18
	10	ATOM	2691	N	GLY	В	400	10.532	-19.035 26.071		27.45
		ATOM	2692	CA	GLY	В	400	9.588	-19.884 25.466		26.93
		ATOM	2693	C	GLY	В	400	8.161	-19.537 25.849		26.73
		ATOM	2694	0	GLY	В	400		-20.153 25.356		28.36
	45	ATOM	2695	N	LYS	В	401	7.220	-18.554 26.727		25.50
	13	ATOM	2696	CA	LYS	В	401		-18.139 27.165		23.45
		ATOM	2697	CB	LYS	В	401		-18.563 28.619		28.50
		ATOM	2698	CG	LYS	В	401		-20.069 28.879		
		ATOM	2699	CD	LYS	В	401		-20.353 30.349		28.58
	50	ATOM					401		-20.353 30.349		35.47 38.59
	50		2700	CE	LYS	В		6.073 7.177	-21.647 30.633		
		ATOM	2701	NZ	LYS	В	401				42.39
		ATOM	2702	C	LYS	В	401		-16.622 27.060		21.78
		ATOM	2703	0	LYS	В	401		-15.872 27.035		21.45
	55	ATOM	2704	N	LEU	В	402		-16.181 26.995		23.45
	33	ATOM	2705	CA	LEU	В	402		-14.759 26.925		21.37
		ATOM	2706	CB	LEU	В	402		-14.449 25.689		18.47
		ATOM	2707	CG CD1	LEU	В	402		-14.673 24.360		16.89
		ATOM	2708	CD1	LEU	В	402		-14.395 23.211		21.23
	60	ATOM	2709	CD2 C	LEU	В	402		-13.760 24.277		23.15
	50	ATOM ATOM	2710 2711	0	LEU LEU	B B	402 402		-14.399 28.179 -14.880 28.381		19.66
		ATOM	2711	N	LEU	В	402		-14.880 28.381		18.05 19.54
		AION	~/14	14	υeυ	ט	±03	4.743	13.339 23.013	1.00	19.34

E

	_										
	5	MOTA	3061	CZ	PHE	В	445	9.674	-1.997 28.755	1.00	16.01
		ATOM	3062	С	PHE	В	445	13.758	0.304 27.888	1.00	15.87
		ATOM	3063	0	PHE	В	445	13.008	0.617 26.966	1.00	20.27
		ATOM	3064	N	VAL	В	446	13.872	1.044 28.986	1.00	15.90
	10	ATOM	3065	CA	VAL	В	446	13.074	2.269 29.112	1.00	16.78
	10	MOTA	3066	CB	VAL	В	446	13.165	2.895 30.531	1.00	18.32
		MOTA	3067	CG1	VAL	В	446	12.574	1.923 31.551	1.00	21.14
		ATOM	3068	CG2	VAL	В	446	14.598	3.251 30.879	1.00	21.04
		ATOM	3069	С	VAL	В	446	13.450	3.295 28.051	1.00	17.91
		ATOM	3070	0	VAL	В	446	12.596	4.028 27.561	1.00	19.37
	15	ATOM	3071	N	CYS	В	447	14.723	3.335 27.674	1.00	18.81
	13										
		ATOM	3072	CA	CYS	B	447	15.161	4.255 26.635	1.00	17.34
		ATOM	3073	CB	CYS	В	447	16.682	4.224 26.512	1.00	19.33
		ATOM	3074	SG	CYS	В	447	17.538	5.134 27.798	1.00	23.60
		MOTA	3075	С	CYS	В	447	14.537	3.826 25.301	1.00	18.09
	20	ATOM	3076	0	CYS	В	447	13.988	4.643 24.563	1.00	17.52
		MOTA	3077	N	LEU	В	448	14.623	2.533 25.006	1.00	15.60
		ATOM	3078	CA	LEU	В	448	14.072	1.994 23.767	1.00	16.67
		ATOM	3079	CB	LEU	В	448	14.328	0.490 23.684	1.00	14.82
	25	ATOM	3080	CG	LEU	В	448	15.730	0.009 23.301	1.00	23.57
13	25	ATOM	3081	CD1	LEU	В	448	15.722	-1.522 23.169	1.00	21.61
ij		ATOM	3082	CD2	LEU	В	448	16.167	0.658 21.986	1.00	18.92
IJ		ATOM	3083	C	LEU	В	448	12.573	2.249 23.652	1.00	15.98
Ħ		ATOM	3084	0	LEU	В	448	12.078	2.633 22.590	1.00	18.91
		ATOM	3085	N	LYS	В	449	11.849	2.037 24.745	1.00	17.94
	30	MOTA	3086	CA	LYS	В	449	10.405	2.232 24.733	1.00	16.66
7-ji		ATOM	3087	CB	LYS	В	449	9.796	1.745 26.047	1.00	16.45
		ATOM	3088	CG	LYS	В	449	8.285	1.861 26.115	1.00	16.12
				CD				7.730			
#:		ATOM	3089		LYS	В	449		0.952 27.193	1.00	19.09
	2.5	ATOM	3090	CE	LYS	В	449	8.201	1.380 28.580	1.00	17.04
l.i	35	ATOM	3091	NZ	LYS	В	449	7.159	1.088 29.593	1.00	17.25
i a i		ATOM	3092	C	LYS	В	449	10.058	3.696 24.486	1.00	18.78
127		ATOM	3093	0	LYS	В	449	9.103	3.996 23.769	1.00	14.84
1=2		ATOM	3094	N	SER	В	450	10.837	4.610 25.059	1.00	14.50
		ATOM	3095	CA	SER	В	450	10.591	6.032 24.849	1.00	17.11
-11	40	ATOM	3096	CB	SER	В	450	11.440	6.866 25.815	1.00	21.20
	. •	ATOM	3097	OG	SER	В	450	10.859	6.868 27.108	1.00	30.66
		ATOM	3098	C	SER	В	450				
				_		_		10.921	6.418 23.405	1.00	17.84
		ATOM	3099	0	SER	В	450	10.279	7.292 22.821	1.00	18.82
	4.5	ATOM	3100	N	ILE	В	451	11.926	5.768 22.828	1.00	16.88
	45	ATOM	3101	CA	ILE	В	451	12.305	6.063 21.450	1.00	17.11
		ATOM	3102	CB	ILE	В	451	13.564	5.268 21.025	1.00	16.69
		ATOM	3103	CG2	ILE	В	451	13.724	5.298 19.505	1.00	19.31
		MOTA	3104	CG1	ILE	В	451	14.804	5.897 21.676	1.00	18.96
		ATOM	3105	CD1	ILE	В	451	16.083	5.130 21.431	1.00	18.98
	50	ATOM	3106	C	ILE	В	451	11.142	5.711 20.527	1.00	18.09
		ATOM	3107	Ö	ILE	В	451	10.820	6.464 19.608	1.00	17.07
		ATOM	3108	N	ILE	В	452	10.505	4.571 20.786	1:00	18.13
		ATOM	3109	CA	ILE	В	452	9.373	4.137 19.976	1.00	16.77
		MOTA	3110	CB	ILE	В	452	8.804	2.775 20.477	1.00	17.40
	55	ATOM	3111	CG2	ILE	В	452	7.464	2.496 19.831	1.00	14.33
		ATOM	3112	CG1	ILE	В	452	9.763	1.635 20.107	1.00	15.36
		ATOM	3113	CD1	ILE	В	452	9.449	0.323 20.805	1.00	17.76
		ATOM	3114	C	ILE	В	452	8.271	5.195 20.024	1.00	17.47
		ATOM	3115	0	ILE	В	452	7.733	5.586 18.992	1.00	16.50
	60	ATOM	3116	N	LEU		453	7.943	5.665 21.222		
	00					В				1.00	16.06
		ATOM	3117	CA	LEU	В	453	6.903	6.680 21.374	1.00	17.17
		ATOM	3118	CB	LEU	В	453	6.736	7.061 22.850	1.00	16.23
								202			

	5	MOTA	3293	0	ILE	В	482	19.621	7.722 24.640	1.00	25.55
		MOTA	3294	N	THR	В	483	19.569	8.896 22.722	1.00	21.89
		MOTA	3295	CA	THR	В	483	20.701	8.176 22.141	1.00	22.67
		MOTA	3296	CB	THR	В	483	21.030	8.662 20.695	1.00	23.34
		ATOM	3297	OG1	THR	В	483	19.890	8.475 19.851	1.00	27.33
	10	MOTA	3298	CG2	THR	В	483	22.203	7.882 20.116	1.00	24.46
		MOTA	3299	С	THR	В	483	21.913	8.441 23.035	1.00	23.51
		MOTA	3300	0	THR	В	483	22.650	7.520 23.381	1.00	27.01
		MOTA	3301	N	ASP	В	484	22.119	9.703 23.404	1.00	22.88
		ATOM	3302	CA	ASP	В	484	23.237	10.058 24.276	1.00	24.93
	15	MOTA	3303	CB	ASP	В	484	23.201	11.546 24.652	1.00	28.69
		MOTA	3304	CG	ASP	В	484	23.504	12.464 23.485	1.00	29.19
		MOTA	3305	OD1	ASP	В	484	23.982	11.984 22.437	1.00	29.63
		ATOM	3306	OD2	ASP	В	484	23.256	13.681 23.627	1.00	32.02
	• •	MOTA	3307	С	ASP	В	484	23.125	9.249 25.567	1.00	24.40
	20	MOTA	3308	0	ASP	В	484	24.125	8.780 26.103	1.00	25.60
		MOTA	3309	N	THR	В	485	21.899	9.096 26.066	1.00	20.16
		ATOM	3310	CA	THR	В	485	21.670	8.365 27.307	1.00	22.28
		MOTA	3311	CB	THR	В	485	20.203	8.521 27.763	1.00	24.64
	0.5	ATOM	3312	OG1	THR	В	485	19.878	9.914 27.830	1.00	24.28
1	25	MOTA	3313	CG2	THR	В	485	19.993	7.896 29.133	1.00	23.32
٠Đ		ATOM	3314	C	THR	В	485	22.017	6.881 27.188	1.00	22.13
IJ		ATOM	3315	0	THR	В	485	22.574	6.284 28.115	1.00	23.30
IJ		ATOM	3316	N	LEU	В	486	21.686	6.290 26.045	1.00	23.08
	20	ATOM	3317	CA	LEU	В	486	21.969	4.881 25.792	1.00	22.26
¹ 5.	30	ATOM	3318	CB	LEU	В	486	21.346	4.452 24.464	1.00	20.93
j=£		ATOM	3319	CG	LEU	В	486	19.878	4.031 24.533	1.00	24.92
,#¶		ATOM	3320	CD1	LEU	В	486	19.295	4.003 23.123	1.00	21.96
≣:		ATOM	3321	CD2	LEU	В	486	19.763	2.658 25.196	1.00	23.90
ū	25	ATOM	3322	C	LEU	В	486	23.477	4.634 25.742	1.00	24.12
ليا	35	ATOM	3323	0	LEU	В	486	23.984	3.681 26.334	1.00	24.02
L		ATOM	3324	N	ILE	В	487	24.191	5.490 25.022	1.00	24.53
		ATOM	3325	CA	ILE	В	487	25.640	5.345 24.913	1.00	25.16
1		ATOM	3326	CB	ILE	В	487	26.207	6.379 23.899	1.00	25.57
ũ	40	ATOM	3327	CG2	ILE	В	487	27.725	6.522 24.051	1.00	24.54
	40	ATOM ATOM	3328	CG1	ILE	B B	487	25.857	5.936 22.470	1.00	25.63
			3329	CD1	ILE		487	26.538	4.646 22.021	1.00	25.68
		ATOM	3330		ILE	В	487 487	26.275 27.200	5.518 26.307	1.00	23.60
		ATOM ATOM	3331 3332		ILE	В	488	25.755	4.794 26.671 6.456 27.081	1.00	23.65 21.75
	45	ATOM		CA	HIS HIS	B B	488	26.251	6.720 28.431	1.00	26.07
	73	ATOM	3334		HIS	В	488	25.450	7.871 29.041	1.00	26.07
		ATOM		CG	HIS	В	488	25.818	8.196 30.455	1.00	33.06
		ATOM		CD2	HIS	В	488	25.245	7.838 31.629	1.00	32.79
		ATOM	3337	ND1	HIS	В	488	26.869	9.025 30.779	1.00	36.45
	50	ATOM	3338		HIS	В	488	26.927	9.164 32.091	1.00	35.93
	50	ATOM	3339		HIS	В	488	25.953	8.453 32.630	1.00	33.88
		ATOM	3340		HIS	В	488	26.123	5.463 29.292	1.00	26.85
		ATOM		0	HIS	В	488	27.071	5.054 29.967	1.00	28.52
		ATOM	3342		LEU	В	489	24.949	4.850 29.266	1.00	28.00
	55	ATOM	3343		LEU	В	489	24.715	3.642 30.040	1.00	25.94
	55	ATOM	3344		LEU	В	489	23.298	3.127 29.788	1.00	23.94
		ATOM ·		CG	LEU	В	489	23.298	3.127 29.788	1.00	31.71
		ATOM		CD1	LEU	В	489	20.827	3.516 29.799	1.00	28.08
		ATOM		CD1	LEU	В	489	22.143	3.616 31.949	1.00	29.30
	60	ATOM	3347	CD2	LEU	В	489	25.718	2.561 29.642	1.00	26.84
		ATOM	3349		LEU	В	489	26.241	1.832 30.486	1.00	20.86
		ATOM	3350		MET	В	490	25.978	2.453 28.345	1.00	23.82
		-11014	2220	14	1-110 T	ט	4 J U	23.770	2.333 20.343	1.00	23.02

44.21

-8.449

0.293 19.964

1.00

20.41

MOTA

3756

0

LEU

В

#1

C

C

690

690

LEU

LEU

ARG

В

548

1.00

54.66

59.94

62.81

64.81

67.59

68.06

69.12

68.96

70.70

18.55

17.72

21.17

22.05

21.32

21.61

24.89

24.94

24.08

24.67

16.67

15.39

17.62

16.16

20.04

15.55

18.94

15.20

17.61

11.63

55.80

55.56

56.04

57.04

87.39

87.68

86.22

87.65

63.34

63.49

63.87

65.42

64.86

62.00

60.81

61.76

57.47

57.64

55.74

53.09

53.83

54.55

52.90

50.45

50.82

51.28

48.01

47.33

42.51

1.00

1.00

5

MOTA

ATOM

MOTA

3871

3872

CA

CB

13.362 -16.570 -6.534

12.812 -16.058 -5.199

C

696

ASP

5

MOTA

MOTA

3930

C

3873

CG

LEU

C

690

13.835 -15.501 -4.206

1.00

40.67

39.95

38.77

48.87

46.71

51.36

53.35

58.64

62.94

64.95

65.49

68.18

68.77

52.19

47.53

52.37

52.90

54.04

57.52

58.25

61.43

64.32

63.22

65.93

53.09

53.06

50.73

49.53

49.56

49.78

50.30

48.79

48.38

46.35

46.74

49.41

45.20

40.19

41.65

35.91

54.15

53.55

57.44

62.46

61.95

61.49

62.78

63.33

60.37

65.13

65.87

67.67

70.66

71.06

71.70

72.47

71.41

72.41

1.00

22.951 -19.132-11.169

≣!

5	HETATM	4105	0	HOH	73	6.291	14.878 29.070	1.00	28.21
	HETATM	4106	0	HOH	74	-1.721	6.480 13.381	1.00	49.91
	HETATM	4107	0	HOH	75	10.091	-15.427 26.194	1.00	24.17
	HETATM	4108	0	HOH	76	5.029	7.461 17.718	1.00	18.91
	HETATM	4109	0	HOH	77	3.758	2.086 14.306	1.00	28.28
10	HETATM	4110	0	HOH	78	-1.390	-18.739 33.183	1.00	41.11
	HETATM	4111	0	HOH	79	12.703	-8.687 32.119	1.00	36.21
	HETATM	4112	0	нон	80	22.270	-6.451 14.844	1.00	33.21
	HETATM	4113	0	нон	81	1.458	4.605 34.026	1.00	23.59
	HETATM	4114	O	нон	82	1.759	-2.158 30.374	1.00	28.78
15	HETATM	4115	Ō	НОН	83	6.153	-21.372 23.188	1.00	31.14
10	HETATM	4116	0	нон	84	36.525	0.463 20.792	1.00	45.26
	HETATM	4117	o	нон	85	13.832	9.696 13.792	1.00	33.12
	HETATM	4118	o	нон	86	31.166	6.635 24.924	1.00	35.12
	HETATM	4119	0	нон	87	8.844	-10.389 34.180	1.00	48.80
20	HETATM	4120	0	нон	88	9.581	-6.956 34.136	1.00	42.95
20	HETATM	4121					15.887 27.596		
			0	нон	89	-1.563		1.00	39.35
	HETATM	4122	0	нон	90	-5.286	10.345 32.757	1.00	35.20
	HETATM	4123	0	нон	91	15.035	0.607 13.339	1.00	29.53
25	HETATM	4124	0	нон	92	-10.984	-1.500 30.272	1.00	29.84
23	HETATM	4125	0	нон	93	-7.239	-0.271 -1.207	1.00	48.98
	HETATM	4126	0	нон	94	18.022	-4.902 34.286	1.00	35.28
	HETATM	4127	0	нон	95	29.347	-6.319 19.920	1.00	37.20
	HETATM	4128	0	нон	96	-14.309	-19.369 20.945	1.00	30.23
20	HETATM	4129	0	нон	97	31.496	4.614 18.716	1.00	38.79
30	HETATM	4130	0	НОН	98	26.567	9.759 25.629	1.00	29.72
	HETATM	4131	0	нон	99	2.848	14.531 1.134	1.00	38.08
	HETATM HETATM	4132	0	HOH	100	-9.373	5.699 -7.953	1.00	53.23
	HETATM	4133 4134	0	НОН НОН	101 102	-10.137 10.558	-0.553 -6.742 -10.363 15.403	1.00 1.00	47.72
35	HETATM	4135	0	нон нон		21.079			40.97
33	HETATM	4136	0	нон	103 104	25.810	17.166 18.929 -5.921 22.506	1.00	32.40 37.69
	HETATM	4137	0	нон нон	104	22.493	-1.311 34.465	1.00	49.94
	HETATM	4137	0	нон нон	105	19.317	10.977 38.703	1.00	49.54
	HETATM	4139	0	нон	107	4.479	13.951 3.045	1.00	45.33
40	HETATM	4140	0	нон	108	20.418	19.353 34.044	1.00	
. 40	HETATM	4141	0	нон	108	-3.065	8.936 14.062	1.00	42.18 38.41
	HETATM	4141					-4.674-10.940		
				нон	110	26.856			
	HETATM	4143		НОН	111	2.032	-6.387 5.614	1.00	42.23
45	HETATM	4144		нон	112	0.601	0.228-17.268	1.00	40.57
43	HETATM	4145		HOH	113	4.903	13.488-14.050	1.00	47.72
	HETATM	4146		нон	114	3.986	16.140 -0.960	1.00	40.66
	HETATM	4147		нон	115	12.968		1.00	40.76
	HETATM	4148	0	нон	116	7.170	15.583 2.599	1.00	43.69
50	HETATM	4149		нон	117	-1.966	10.606 3.572	1.00	52.63
50	HETATM	4150		НОН	118	29.030	10.644 6.707	1.00	42.54
	HETATM	4151		НОН	119	0.468	4.354 8.374	1.00	38.69
	HETATM		0	нон	120	29.086	17.119 19.272	1.00	45.51
	HETATM		0	нон	121	24.614	17.609 20.174	1.00	53.55
55	HETATM	4154		нон	122	-15.318	0.362 26.686	1.00	36.77
55	HETATM		0	нон	123	-3.857		1.00	39.64
	HETATM		0	НОН	124	21.728	22.178 31.983	1.00	43.73
	HETATM	4157		НОН	125	31.650	-7.370 21.642	1.00	40.53
	HETATM	4158	0	нон	126	25.421	10.436 21.161	1.00	32.31
60	HETATM	4159	0	нон	127	10.317	-9.457 12.998	1.00	37.77
60	HETATM	4160	0	нон	128	22.723	14.887 15.427	1.00	47.90
	HETATM	4161	0	нон	129	6.702	9.556 37.596	1.00	47.81
	HETATM	4162	O	нон	130	27.987	13.557 7.167	1.00	41.15

5	HETATM	4163	0	нон	131	30.798	16.499 7.588	1.00	58.47
	HETATM	4164	0	нон	132	10.071	-0.571-20.393	1.00	38.79
	HETATM	4165	0	HOH	133	9.562	8.334-21.392	1.00	36.80
	HETATM	4166	0	HOH	134	6.712	6.058 8.822	1.00	37.43
	HETATM	4167	0	нон	135	5.927	8.454 10.594	1.00	42.34
10	HETATM	4168	0	нон	136	4.472	6.306 10.973	1.00	37.35
	HETATM	4169	0	HOH	137	6.792	7.721 7.051	1.00	47.23
	HETATM	4170	0	НОН	138	24.513	11.582 33.724	1.00	45.55
	HETATM	4171	0	НОН	139	-2.528	-20.361 12.354	1.00	52.13
	HETATM	4172	0	НОН	140	-7.864	7.706 19.248	1.00	47.82
15	HETATM	4173	0	НОН	141	11.577	-16.962 24.398	1.00	39.43
	HETATM	4174	0	нон	142	18.087	12.263 -5.507	1.00	33.36
	HETATM	4175	0	НОН	143	-6.816	-14.190 10.674	1.00	51.32
	HETATM	4176	0	НОН	144	-7.377	-16.701 33.528	1.00	57.11
	HETATM	4177	0	нон	145	-5.379	-20.107 32.689	1.00	43.01
20	HETATM	4178	0	нон	146	8.766	-7.947-16.274	1.00	49.96
	HETATM	4179	0	НОН	147	10.946	-7.937-18.142	1.00	55.67
	END								

Atomic Coordinates for Human ER α Complexed With OHT

	10	CRYST1	58.2	42 58.	242	277.4	67 90.00	90.00	120.00	P 65	2 2	12
	10	ORIGX1	1 (00000	0 00	0000	0.000000	0.00	000			
		ORIGX2		00000		00000	0.000000					
		ORIGX3		00000		00000	1.000000					
		SCALE1		17170		09913	0.000000					
	15	SCALE2		00000		19826	0.000000					
	10	SCALE3		00000		00000	0.003604					
		MOTA	1	СВ	LEU	306	6.638	11.502		1.00	61.	
		MOTA	2	C	LEU	306	7.381	10.684		1.00	61.	
	20	MOTA	3	0	LEU	306	6.407	11.020		1.00	62.	
		MOTA	4	N	LEU	306	6.369	9.128		1.00	62.	
		MOTA	5	CA	LEU	306	7.232	10.330		1.00	61.	
		MOTA	6	N	ALA	307	8.609	10.605		1.00	60.	
	25	MOTA	7	CA	ALA	307	8.891	10.912		1.00	58.	
	25	ATOM	8	CB	ALA	307	10.318	10.501		1.00	59.	
111		ATOM	9	C	ALA	307	8.692	12.393		1.00	57.	
		ATOM	10	0	ALA	307	8.451	12.770		1.00	57.	
1,4,1		ATOM	11	N	LEU	308	8.789	13.228		1.00	55.	
<u>-</u> -	30	ATOM ATOM	12	CA CB	LEU LEU	308	8.638 9.298	14.668 15.402		1.00 1.00	56. 57.	
74 lab	30	ATOM	13 14	CG	LEU	308 308	10.637	14.822		1.00	59.	
		ATOM	15	CD1	LEU	308	10.474	14.189		1.00	60.	
		ATOM	16	CD2	LEU	308	11.694	15.920		1.00	58.	
		ATOM	17	C	LEU	308	7.190	15.130		1.00	56.	
in i	35	ATOM	18	0	LEU	308	6.935	16.307		1.00	55.	
1.1	55	ATOM	19	N	SER	309	6.246	14.208		1.00	57.	
in the second		ATOM	20	CA	SER	309	4.828	14.544		1.00	56.	
		ATOM	21	CB	SER	309	4.034	13.896		1.00	56.	
1		ATOM	22	OG	SER	309	4.071	12.479		1.00	57.	
-	40	ATOM	23	С	SER	309	4.261	14.095		1.00	56.	
		ATOM	24	0	SER	309	3.166	14.507	9.398	1.00	55.	17
		ATOM	25	N	LEU	310	5.016	13.257	9.706	1.00	54.	31
		ATOM	26	CA	LEU	310	4.591	12.749	11.004	1.00	53.	55
		MOTA	27	CB	LEU	310	5.651	11.811		1.00	54.	
	45	ATOM	28	CG	LEU	310	5.586	10.333	11.189	1.00	56.4	49
		ATOM	29	CD1	LEU	310	5.530	10.200	9.676	1.00	57.	
		ATOM	30	CD2	LEU	310	6.809	9.610		1.00	57.	
		ATOM	31	С	LEU	310	4.330	13.865	12.003	1.00	53.	
	50	ATOM	32	0	LEU	310	4.993	14.905	11.984	1.00	53.	
	50	ATOM	33	N	THR	311	3.352	13.641	12.874	1.00	51.	
		ATOM	34	CA	THR	311	3.017	14.604	13.912	1.00	49.	
		ATOM	35	CB	THR	311	1.527	14.554	14.275	1.00	48.	
		ATOM	36	OG1	THR	311	1.242	13.311		1.00	47.2	
	55	ATOM	37	CG2	THR	311	0.666	14.688	13.027	1.00	50.5	
	33	ATOM	38	C	THR	311	3.815	14.201	15.145	1.00	48.8	
		ATOM	39	O	THR	311	4.371	13.103	15.197	1.00	46.0	
		ATOM ATOM	40 41	N CA	ALA ALA	312 312	3.857 4.590	15.078 14.798	16.141 17.369	1.00	48.7 47.7	
		ATOM	41	CB	ALA	312	4.359	15.910	18.378	1.00	47.	
	60	ATOM	43	C	ALA	312	4.171	13.460	17.964	1.00	47.4	
		ATOM	44	0	ALA	312	5.009	12.609	18.262	1.00	45.5	
				-			2.005					

5	ATOM	161	CE1	TYR	328	18.152	-11.114	32.864	1.00	36.01
	ATOM	162	CD2	TYR	328	17.996	-10.862	30.110	1.00	36.05
	ATOM	163	CE2	TYR	328			30.899	1.00	37.27
	ATOM	164	CZ	TYR	328	16.973	-10.702	32.274	1.00	37.66
	ATOM	165	OH	TYR	328	15.896		33.071	1.00	44.66
10	ATOM	166	C	TYR	328	22.529		29.067	1.00	33.66
10	ATOM	167	Ö	TYR	328	22.884	-10.744	27.910	1.00	34.78
	ATOM	168	N	SER	329	23.359		30.103	1.00	33.97
	ATOM	169	CA	SER	329	24.767		29.962	1.00	37.29
	ATOM	170	CB	SER	329	25.526	-10.342	31.204	1.00	36.51
15	ATOM	171	OG	SER	329	26.787	-10.965	31.282	1.00	37.13
13	ATOM	172	C	SER	329	24.835	-12.317	29.832	1.00	40.43
	ATOM	173	0	SER	329	23.980	-13.028	30.363	1.00	40.43
	ATOM	174	N	GLU	330	25.845	-13.028	29.128	1.00	41.40
	ATOM	175	CA	GLU	330	25.992	-12.811	28.928	1.00	47.43
20	ATOM	176	CB	GLU	330	26.423	-14.524	27.484	1.00	48.64
20			CG		330	25.278				
	ATOM	177		GLU			-14.870	26.542	1.00	50.20
	ATOM	178	CD	GLU	330	25.765	-15.405	25.198	1.00	53.25
	ATOM	179	OE1	GLU	330	25.909	-16.640	25.062	1.00	53.27
25	ATOM	180	OE2	GLU	330	26.004	-14.590	24.280	1.00	51.80
25	ATOM	181	C	GLU	330	26.999	-14.852	29.893	1.00	49.67
	ATOM	182	0	GLU	330	28.207	-14.741	29.696	1.00	50.11
	ATOM	183	N	TYR	331	26.498	-15.493	30.942	1.00	53.62
	ATOM	184	CA	TYR	331	27.373	-16.130	31.921	1.00	58.16
20	ATOM	185	CB	TYR	331	28.092	-15.078	32.774	1.00	59.55
30	ATOM	186	CG	TYR	331	27.239	-14.460	33.860	1.00	63.08
	ATOM	187	CD1	TYR	331	26.656	-13.205	33.682	1.00	64.50
	ATOM	188	CE1	TYR	331	25.864		34.676	1.00	65.99
	ATOM	189	CD2	TYR	331	27.010	-15.128	35.065	1.00	63.52
2.5	ATOM	190	CE2	TYR	331	26.219	-14.563	36.066	1.00	65.60
35	MOTA	191	CZ	TYR	331	25.648	-13.314	35.864	1.00	67.20
	ATOM	192	OH	TYR	331	24.855	-12.753	36.839	1.00	67.40
	MOTA	193	C	TYR	331	26.603	-17.080	32.823	1.00	59.05
	MOTA	194	0	TYR	331	25.393	-16.942	33.002	1.00	59.22
40	MOTA	195	N	ASP	332	27.320	-18.045	33.387	1.00	61.62
40	MOTA	196	CA	ASP	332	26.719	-19.026	34.281	1.00	64.20
	ATOM	197	CB	ASP	332	27.681	-20.194	34.500	1.00	65.99
	ATOM	198	CG	ASP	332	26.961	-21.516	34.648	1.00	68.11
	MOTA	199	OD1	ASP	332	27.575	-22.564	34.351	1.00	69.54
	ATOM	200	OD2	ASP	332	25.781	-21.505	35.060	1.00	67.40
45	ATOM	201	С	ASP	332	26.393	-18.371	35.619	1.00	63.33
	MOTA	202	0	ASP	332	27.292	-18.073	36.406	1.00	63.90
	ATOM	203	N	PRO	333	25.096	-18.148	35.896	1.00	63.64
	ATOM	204	CD	PRO	333	23.945	-18.509	35.053	1.00	64.35
	ATOM	205	CA	PRO	333	24.677	-17.521	37.154	1.00	63.52
50	ATOM	206	CB	PRO	333	23.165	-17.333	36.993	1.00	63.53
	ATOM	207	CG	PRO	333	22.866	-17.611	35.556	1.00	64.15
	ATOM	208	С	PRO	333	25.010	-18.419	38.332	1.00	63.29
	ATOM	209	0	PRO	333	25.129	-17.964	39.468	1.00	63.28
	ATOM	210	N	THR	334	25.160	-19.704	38.037	1.00	64.26
55	ATOM	211	CA	THR	334	25.475	-20.697	39.050	1.00	66.09
	ATOM	212	CB	THR	334	24.929	-22.080	38.645	1.00	66.90
	ATOM	213	OG1	THR	334	25.571	-22.513	37.439	1.00	68.06
	ATOM	214	CG2	THR	334	23.423	-22.012	38.411	1.00	67.57
	ATOM	215	С	THR	334	26.982	-20.804	39.269	1.00	65.67
60	ATOM	216	0	THR	334	27.432	-21.323	40.289	1.00	64.77
	ATOM	217	N	ARG	335		-20.308	38.313	1.00	65.65
	ATOM	218	CA	ARG	335		-20.360	38.421	1.00	66.60
		-	-		_		_	-	•	

5	ATOM	219	СВ	ARG	335	29.835	-20.500	37.030	1.00	66.74
,	ATOM	220	C	ARG	335	29.757	-19.113	39.123	1.00	67.09
	ATOM	221	.0	ARG	335	29.100	-18.071	39.148	1.00	67.31
	ATOM	222	N	PRO	336	30.968	-19.207	39.702	1.00	67.62
	ATOM				336	31.820	-20.408	39.702	1.00	67.30
10		223	CD	PRO						
10	ATOM	224	CA	PRO	336	31.601	-18.086	40.410	1.00	67.42
	MOTA	225	CB	PRO	336	32.982	-18.621	40.783	1.00	66.43
	ATOM	226	CG	PRO	336	32.829	-20.097	40.779	1.00	67.52
	ATOM	227	C	PRO	336	31.701	-16.828	39.561	1.00	68.26
15	ATOM	228	0	PRO	336	31.996	-16.895	38.371	1.00	69.04
15	ATOM	229	N	PHE	337	31.460	-15.681	40.183	1.00	69.49
	ATOM	230	CA	PHE	337	31.529	-14.408	39.480	1.00	71.39
	ATOM	231	CB	PHE	337	30.818	-13.323	40.294	1.00	72.31
	ATOM	232	CG	PHE	337	31.219	-11.924	39.921	1.00	73.21
20	MOTA	233	CD1	PHE	337	30.632	-11.287	38.833	1.00	72.82
20	MOTA	234	CD2	PHE	337	32.191	-11.245	40.653	1.00	73.43
	ATOM	235	CE1	PHE	337	31.006	-9.993	38.479		73.28
	ATOM ATOM	236	CE2	PHE	337	32.573	-9.950	40.306 39.217	1.00	73.00
		237	CZ	PHE	337	31.980	-9.323		1.00	72.90
25	ATOM ATOM	238	C	PHE	337	32.985 33.336	-14.013	39.245		71.38
23		239	O N	PHE	337 338	33.336	-13.487	38.189 40.241	1.00	71.56 71.53
	ATOM ATOM	240	N CA	SER SER	338	35.248	-14.273 -13.947	40.241	1.00 1.00	70.98
	ATOM	241 242	CB	SER	338	35.240	-13.947	41.414	1.00	70.43
	ATOM	242	OG	SER	338	35.547	-15.818	41.679	1.00	69.59
30	ATOM	243	C	SER	338	35.931	-14.504	38.924	1.00	71.20
50	ATOM	245	0	SER	338	36.951	-13.972	38.475	1.00	71.35
	ATOM	245	N	GLU	339	35.368	-15.572	38.369	1.00	70.20
	ATOM	247	CA	GLU	339	35.930	-16.215	37.183	1.00	69.48
	ATOM	248	CB	GLU	339	35.279	-17.585	36.971	1.00	71.07
35	ATOM	249	CG	GLU	339	35.996	-18.740	37.656	1.00	72.60
	ATOM	250	CD	GLU	339	35.382	-20.089	37.318	1.00	74.26
	ATOM	251	OE1	GLU	339	34.786	-20.220	36.227	1.00	73.51
	ATOM	252	OE2	GLU	339	35.496	-21.020	38.144	1.00	76.44
	ATOM	253	C	GLU	339	35.770	-15.385	35.910	1.00	68.15
40	ATOM	254	Ō	GLU	339	36.722	-15.216	35.144	1.00	68.99
	ATOM	255	N	ALA	340	34.562	-14.874	35.694	1.00	64.41
	ATOM	256	CA	ALA	340	34.246	-14.083	34.507	1.00	60.69
	ATOM	257	СВ	ALA	340		-13.709	34.523	1.00	61.17
	MOTA	258	С	ALA	340		-12.824	34.326	1.00	57.00
45	ATOM	259	0	ALA	340		-12.270	35.287	1.00	57.46
	ATOM	260	N	SER	341		-12.388	33.076	1.00	52.15
	ATOM	261	CA	SER	341		-11.188	32.736	1.00	46.53
	ATOM	262	CB	SER	341		-11.439	31.497	1.00	48.64
	ATOM	263	OG	SER	341	37.184	-10.226	30.846	1.00	46.48
50	ATOM	264	C	SER	341	34.957	-10.087	32.444	1.00	43.52
	MOTA	265	0	SER	341	34.090	-10.248	31.589	1.00	39.92
	MOTA	266	N	MET	342	35.052	-8.978	33.166	1.00	41.24
	ATOM	267	CA	MET	342	34.121	-7.875	32.960	1.00	42.46
	ATOM	268	CB	MET	342	34.449	-6.723	33.912	1.00	45.61
55	ATOM	269	CG	MET	342	33.228	-6.089	34.560	1.00	52.39
	ATOM	270	SD	MET	342	31.791	-7.201	34.631	1.00	57.92
	ATOM	271	CE	MET	342	31.999	-7.881	36.239	1.00	56.18
	ATOM	272	С	MET	342	34.124	-7.365	31.516	1.00	40.22
	ATOM	273	0	MET	342	33.063	-7.121	30.938	1.00	39.23
60	ATOM	274	N	MET	343	35.307	-7.204	30.930	1.00	38.72
	ATOM	275	CA	MET	343	35.395	-6.708	29.558	1.00	38.50
	ATOM	276	CB	MET	343	36.838	-6.318	29.216	1.00	41.15
						227	7	•	•	

5	ATOM	277	CG	MET	343	37.022	-5.749	27.804	1.00	40.31
	ATOM	278	SD	MET	343	36.032	-4.260	27.427	1.00	45.23
	ATOM	279	CE	MET	343	36.113	-3.358	28.987	1.00	40.45
	ATOM	280	C	MET	343	34.880	-7.741	28.561	1.00	35.36
	ATOM	281	Ō	MET	343	34.368	-7.384	27.501	1.00	35.51
10	ATOM	282	N	GLY	344	35.017	-9.020	28.902	1.00	35.53
10	ATOM	283	CA	GLY	344	34.533	-10.072	28.024	1.00	33.41
	ATOM	284	C	GLY	344	33.015	-10.063	28.047	1.00	31.74
	MOTA	285	0	GLY	344	32.359	-10.233	27.019	1.00	29.58
1.5	MOTA	286	N	LEU	345	32.459	-9.860	29.238	1.00	32.89
15	MOTA	287	CA	LEU	345	31.011	-9.804	29.415	1.00	34.95
	MOTA	288	CB	LEU	345	30.665	-9.631	30.902	1.00	37.56
	MOTA	289	CG	LEU	345	30.942	-10.774	31.883	1.00	43.03
	MOTA	290	CD1	LEU	345	30.537	-10.357	33.297	1.00	41.57
	ATOM	291	CD2	LEU	345	30.164	-11.998	31.449	1.00	42.80
20	ATOM	292	С	LEU	345	30.430	-8.614	28.633	1.00	33.71
	MOTA	293	0	LEU	345	29.479	-8.757	27.868	1.00	30.29
	ATOM	294	N	LEU	346	31.021	-7.443	28.843	1.00	30.20
	ATOM	295	CA	LEU	346	30.569	-6.217	28.193	1.00	32.00
	ATOM	296	СВ	LEU	346	31.317	-5.016	28.771	1.00	28.16
25	ATOM	297	CG	LEU	346	31.091	-4.767	30.269	1.00	29.84
	ATOM	298	CD1	LEU	346	31.815	-3.498	30.668	1.00	
	MOTA	299	CD2	LEU	346	29.614	-4.644	30.581	1.00	33.97
	ATOM	300	CDZ	LEU	346	30.732	-6.250	26.682	1.00	30.70
20	ATOM	301	0	LEU	346	29.869	-5.765	25.955	1.00	29.13
30	MOTA	302	N	THR	347	31.839	-6.816	26.212	1.00	30.47
	MOTA	303	CA	THR	347	32.086	-6.911	24.781	1.00	30.93
	MOTA	304	CB	THR	347	33.472	-7.501	24.497	1.00	29.97
	MOTA	305	OG1	THR	347	34.481	-6.604	24.982	1.00	35.40
	MOTA	306	CG2	THR	347	33.666	-7.707	23.004	1.00	33.58
35	MOTA	307	C	THR	347	31.036	-7.804	24.122	1.00	31.97
	ATOM	308	0	THR	347	30.516	-7.486	23.049	1.00	30.75
	MOTA	309	N	ASN	348	30.737	-8.926	24.768	1.00	29.31
	MOTA	310	CA	ASN	348	29.757	-9.868	24.242	1.00	32.63
	MOTA	311	CB	ASN	348	29.767	-11.161	25.065	1.00	31.64
40	ATOM	312	CG	ASN	348	28.646	-12.117	24.662	1.00	39.14
	ATOM	313	OD1	ASN	348	27.549	-12.078	25.220	1.00	41.91
	ATOM	314	ND2	ASN	348	28.920	-12.970	23.683	1.00	42.05
	MOTA	315	C	ASN	348	28.361	-9.251	24.262	1.00	29.02
	MOTA	316	0	ASN	348	27.558	-9.477	23.353	1.00	32.76
45	MOTA	317	N	LEU	349	28.078	-8.467	25.298	1.00	28.74
	ATOM	318	CA	LEU	349	26.782	-7.811	25.421	1.00	28.58
	ATOM	319	СВ	LEU	349	26.650	-7.148	26.795	1.00	26.56
	ATOM	320	CG	LEU	349	25.376	-6.328	27.050	1.00	33.67
	ATOM	321	CD1	LEU	349	24.140	-7.199	26.840	1.00	
50										28.82
50	MOTA	322	CD2	LEU	349	25.392	-5.779	28.471	1.00	33.11
	ATOM	323	C	LEU	349	26.638	-6.762	24.319	1.00	28.07
	MOTA	324	0	LEU	349	25.616	-6.703	23.629	1.00	25.22
	MOTA	325	N	ALA	350	27.675	-5.941	24.157	1.00	28.50
	ATOM	326	CA	ALA	350	27.668	-4.886	23.148	1.00	28.46
55	MOTA	327	CB	ALA	350	28.972	-4.094	23.209	1.00	28.12
	MOTA	328	С	ALA	350	27.468	-5.461	21.750	1.00	28.75
	MOTA	329	0	ALA	350	26.649	-4.958	20.983	1.00	30.90
	ATOM	330	N	ASP	351	28.213	-6.509	21.420	1.00	27.20
	MOTA	331	CA	ASP	351	28.093	-7.143	20.112	1.00	29.75
60	ATOM	332	CB	ASP	351	29.036	-8.345	20.010	1.00	34.16
	ATOM	333	CG	ASP	351	30.498	-7.940	19.978	1.00	37.50
	ATOM	334	OD1	ASP	351	31.354	-8.831	20.148	1.00	37.55

	_			~		264		e =01	10 171	1 00	22 10
	5	MOTA	451	С	VAL	364	13.360	6.591	12.171	1.00	33.19
		MOTA	452	0	VAL	364	14.028	6.531	11.146	1.00	33.04
		MOTA	453	N	PRO	365	12.225	7.310	12.234	1.00	34.69
		MOTA	454	CD	PRO	365	11.359	7.492	13.413	1.00	34.19
		ATOM	455	CA	PRO	365	11.724	8.050	11.069	1.00	35.96
	10	MOTA	456	CB	PRO	365	10.608	8.918	11.645	1.00	36.59
		MOTA	457	CG	PRO	365	10.135	8.157	12.842	1.00	39.59
		ATOM	458	С	PRO	365	12.756	8.878	10.321	1.00	37.19
		ATOM	459	0	PRO	365	13.430	9.726	10.907	1.00	40.29
		ATOM	460	N	GLY	366	12.878	8.624	9.023	1.00	34.78
	15	ATOM	461	CA	GLY	366	13.816	9.371	8.212	1.00	33.54
	13	ATOM	462	C	GLY	366	15.168	8.722	8.007	1.00	34.26
		ATOM	463	0	GLY	366	15.858	9.035	7.034	1.00	37.15
								7.814			
		ATOM	464	N	PHE	367	15.554		8.901	1.00	33.13
	20	ATOM	465	CA	PHE	367	16.860	7.164	8.787	1.00	32.04
	20	MOTA	466	CB	PHE	367	17.138	6.291	10.016	1.00	30.22
		ATOM	467	CG	PHE	367	18.544	5.773	10.080	1.00	30.60
		ATOM	468	CD1	PHE	367	18.827	4.446	9.751	1.00	31.94
		ATOM	469	CD2	PHE	367	19.589	6.601	10.485	1.00	29.20
		MOTA	470	CE1	PHE	367	20.133	3.950	9.828	1.00	28.30
	25	ATOM	471	CE2	PHE	367	20.896	6.122	10.568	1.00	28.12
المسا		ATOM	472	CZ	PHE	367	21.171	4.791	10.240	1.00	25.41
T		ATOM	473	С	PHE	367	17.033	6.333	7.524	1.00	31.46
H		ATOM	474	0	PHE	367	18.073	6.405	6.883	1.00	32.30
W		ATOM	475	N	VAL	368	16.027	5.541	7.165	1.00	35.20
	30	ATOM	476	CA	VAL	368	16.123	4.718	5.959	1.00	38.98
آية "		ATOM	477	CB	VAL	368	15.076	3.584	5.945	1.00	40.61
		ATOM	478	CG1	VAL	368	15.543	2.447	6.843	1.00	41.48
÷J		ATOM	479	CG2	VAL	368	13.717	4.113	6.390	1.00	41.60
##		ATOM	480	C	VAL	368	15.965	5.523	4.673	1.00	40.06
	35	ATOM	481	0	VAL	368	16.156	4.992	3.579	1.00	41.66
IJ	55							6.798	4.798		
u		ATOM	482	N	ASP	369	15.608	7.646	3.621	1.00	38.65
: ::::::::::::::::::::::::::::::::::::		ATOM	483	CA	ASP	369	15.465			1.00	37.15
: 1		ATOM	484	CB	ASP	369	14.700	8.929	3.954	1.00	39.89
	40	ATOM	485	CG	ASP	369	13.254	8.671	4.302	1.00	45.59
- 1927	40	MOTA	486	OD1	ASP	369	12.686	7.672	3.806	1.00	46.34
		MOTA	487	OD2	ASP	369	12.681	9.472	5.074	1.00	49.13
		MOTA	488	С	ASP	369	16.855	8.010	3.136		34.91
		MOTA	489	0	ASP	369	17.038	8.431	1.995	1.00	34.25
		MOTA	490	N	LEU	370	17.838	7.841	4.016	1.00	31.76
	45	ATOM	491	CA	LEU	370	19.229	8.153	3.705	1.00	28.08
		ATOM	492	CB	LEU	370	20.020	8.339	5.003	1.00	28.81
		MOTA	493	CG	LEU	370	19.523	9.395	6.000	1.00	28.74
		ATOM	494	CD1	LEU	370	20.315	9.275	7.299	1.00	30.81
		ATOM	495	CD2	LEU	370	19.693	10.792	5.404	1.00	29.77
	50	ATOM	496	С	LEU	370	19.884	7.043	2.893	1.00	31.25
		ATOM	497	0	LEU	370	19.341	5.943	2.784	1.00	31.78
		ATOM	498	N	THR	371	21.052	7.333	2.331	1.00	28.86
		ATOM	499	CA	THR	371	21.793	6.336	1.569	1.00	32.90
		ATOM	500	СВ	THR	371	22.979	6.944	0.818	1.00	33.44
	55	ATOM	501	OG1	THR	371	23.880	7.523	1.766	1.00	34.59
	55	ATOM	502	CG2	THR	371	22.514	8.002	-0.178	1.00	32.63
•		ATOM	502	CG2	THR	371	22.373	5.315	2.539	1.00	35.31
		ATOM	504	O	THR	371	22.536	5.591	3.733	1.00	31.27
	60	MOTA	505	N	LEU	372	22.702	4.141	2.015	1.00	34.34
	60	ATOM	506	CA	LEU	372	23.273	3.073	2.822	1.00	35.46
		ATOM	507	CB	LEU	372	23.518	1.841	1.944	1.00	37.73
		ATOM	508	CG	LEU	372	24.362	0.704	2.515	1.00	42.43
							001				

5	MOTA	683	CB	TRP	393	18.066	5.046	29.906	1.00	30.09
	MOTA	684	CG	TRP	393	16.605	4.670	29.953	1.00	33.50
	ATOM	685	CD2	TRP	393	15.516	5.499	30.369	1.00	31.76
	MOTA	686	CE2	TRP	393	14.336	4.725	30.264	1.00	38.11
	ATOM	687	CE3	TRP	393	15.419	6.821	30.824	1.00	32.56
10	MOTA	688	CD1	TRP	393	16.057	3.459	29.618	1.00	34.31
	ATOM	689	NE1	TRP	393	14.696	3.486	29.801	1.00	34.36
	MOTA	690	CZ2	TRP	393	13.073	5.233	30.597	1.00	37.93
	ATOM	691	CZ3	TRP	393	14.162	7.326	31.155	1.00	35.24
	MOTA	692	CH2	TRP	393	13.007	6.531	31.039	1.00	37.77
15	ATOM	693	С	TRP	393	18.256	4.051	32.191	1.00	32.07
	ATOM	694	0	TRP	393	17.460	4.275	33.109	1.00	32.12
	ATOM	695	N	ARG	394	18.738	2.837	31.957	1.00	31.90
	ATOM	696	CA	ARG	394	18.288	1.729	32.787	1.00	36.63
	ATOM	697	CB	ARG	394	18.492	0.389	32.065	1.00	36.41
20	ATOM	698	CG	ARG	394	19.914	0.009	31.764	1.00	36.50
	ATOM	699	CD	ARG	394	19.929	-1.132	30.748	1.00	36.34
	ATOM	700	NE	ARG	394	21.282	-1.561	30.417	1.00	33.97
	ATOM	701	CZ	ARG	394	21.864	-1.350	29.239	1.00	31.61
	ATOM	702	NH1	ARG	394	21.208	-0.715	28.281	1.00	32.42
25	ATOM	703	NH2	ARG	394	23.098	-1.784	29.022	1.00	29.81
	ATOM	704	С	ARG	394	18.911	1.697	34.180	1.00	36.69
	ATOM	705	0	ARG	394	18.445	0.966	35.048	1.00	37.07
	ATOM	706	N	SER	395	19.954	2.492	34.395	1.00	33.63
	MOTA	707	CA	SER	395	20.603	2.564	35.701	1.00	35.69
30	ATOM	708	CB	SER	395	22.112	2.784	35.540	1.00	32.94
	ATOM	709	OG	SER	395	22.696	1.811	34.688	1.00	32.37
	MOTA	710	С	SER	395	20.010	3.713	36.531	1.00	36.44
	ATOM	711	0	SER	395	20.389	3.916	37.687	1.00	38.68
	ATOM	712	N	MET	396	19.076	4.449	35.937	1.00	36.46
35	ATOM	713	CA	MET	396	18.431	5.588	36.589	1.00	43.08
	MOTA	714	CB	MET	396	17.275	6.104	35.725	1.00	43.87
	MOTA	715	CG	MET	396	17.481	7.507	35.176	1.00	46.18
	MOTA	716	SD	MET	396	15.962	8.278	34.581	1.00	49.58
	ATOM	717	CE	MET	396	14.988	8.298	36.065	1.00	53.58
40	ATOM	718	C	MET	396	17.906	5.303	37.992	1.00	46.18
	ATOM	719	0	MET	396	18.125	6.089	38.913	1.00	46.34
	ATOM	720	N	GLU	397	17.215	4.180	38.152	1.00	49.39
	ATOM	721	CA	GLU	397	16.645	3.821	39.444	1.00	52.12
4.5	ATOM	722	CB	GLU	397	15.296	3.130	39.246	1.00	55.34
45	MOTA	723	CG	GLU	397	14.166	4.073	38.873	1.00	58.86
	ATOM	724	CD	GLU	397	13.195	3.448	37.891	1.00	63.28
	ATOM	725	OE1	GLU	397	13.660	2.925	36.854	1.00	64.68
	MOTA	726	OE2	GLU	397	11.972	3.475	38.155	1.00	65.39
50	ATOM	727	С	GLU	397	17.548	2.933	40.283	1.00	52.75
50	MOTA	728	0	GLU	397	17.071	2.187	41.139	1.00	53.96
	MOTA	729	N	HIS	398	18.851	3.014	40.040	1.00	50.25
	ATOM	730	CA	HIS	398	19.813	2.220	40.792	1.00	49.34
	ATOM	731	CB	HIS	398	20.271	1.018	39.963	1.00	52.04
<i></i>	ATOM	732	CG	HIS	398	19.187	0.017	39.721	1.00	53.95
55	ATOM	733	CD2	HIS	398	18.750	-1.022	40.472	1.00	53.92
	MOTA	734	ND1	HIS	398	18.374	0.054	38.608	1.00	55.91
	ATOM	735	CE1	HIS	398	17.482	-0.917	38.685	1.00	55.53
	ATOM	736	NE2	HIS	398	17.688	-1.585	39.806	1.00	55.81
60	ATOM	737	C	HIS	398	20.999	3.084	41.196	1.00	47.44
60	ATOM	738	0	HIS	398	22.121	2.887	40.730	1.00	44.91
	ATOM	739	N	PRO	399	20.755	4.049	42.096	1.00	46.45
	ATOM	740	CD	PRO	399	19.443	4.300	42.721	1.00	47.27

	5	ATOM	1089	CD	GLU	443	6.483	9.008	27.302	1.00	53.96
		ATOM	1090	OE1	GLU	443	5.619	8.123	27.498	1.00	57.66
		MOTA	1091	OE2	GLU	443	7.159	9.515	28.225	1.00	56.13
		ATOM	1092	C	GLU	443	10.408	10.551	25.311	1.00	35.27
		ATOM	1093	0	GLU	443	10.759	10.704	24.145	1.00	33.85
	10	ATOM	1094	N	GLU	444	10.984	11.179	26.331	1.00	32.09
		ATOM	1095	CA	GLU	444	12.097	12.095	26.126	1.00	33.92
		ATOM	1096	CB	GLU	444	12.332	12.924	27.388	1.00	34.97
		MOTA	1097	CG	GLU	444	11.169	13.845	27.732	1.00	38.28
		ATOM	1098	CD	GLU	444	11.383	14.610	29.023	1.00	38.11
	15	ATOM	1099	OE1	GLU	444	11.800	13.993	30.026	1.00	39.53
		ATOM	1100	OE2	GLU	444	11.132	15.834	29.036	1.00	40.77
		ATOM	1101	С	GLU	444	13.356	11.305	25.770	1.00	33.59
		ATOM	1102	0	GLU	444	14.085	11.670	24.842	1.00	33.35
		ATOM	1103	N	PHE	445	13.590	10.215	26.501	1.00	30.68
	20	ATOM	1104	CA	PHE	445	14.753	9.357	26.276	1.00	32.49
		ATOM	1105	CB	PHE	445	14.703	8.139	27.203	1.00	29.35
		ATOM	1106	CG	PHE	445	15.667	7.047	26.828	1.00	30.78
		ATOM	1107	CD1	PHE	445	17.036	7.201	27.030	1.00	28.25
		ATOM	1108	CD2	PHE	445	15.205	5.863	26.266	1.00	30.62
	25	ATOM	1109	CE1	PHE	445	17.933	6.195	26.675	1.00	28.67
السا		ATOM	1110	CE2	PHE	445	16.095	4.848	25.908	1.00	31.37
u		ATOM	1111	CZ	PHE	445	17.460	5.015	26.113	1.00	30.37
i të i Y Ti		MOTA	1112	C	PHE	445	14.850	8.885	24.829	1.00	31.11
II II		ATOM	1113	0	PHE	445	15.924	8.947	24.221	1.00	32.20
	30	ATOM	1114	N	VAL	446	13.739	8.415	24.266	1.00	28.63
		ATOM	1115	CA	VAL	446	13.787	7.943	22.889	1.00	27.94
		ATOM	1116	CB	VAL	446	12.478	7.193	22.478	1.00	28.48
		ATOM	1117	CG1	VAL	446	12.318	5.939	23.343	1.00	29.61
:: :::::::::::::::::::::::::::::::::::		ATOM	1118	CG2	VAL	446	11.265	8.092	22.607	1.00	27.23
	35	ATOM	1119	C	VAL	446	14.099	9.064	21.900	1.00	27.28
i Adi		MOTA	1120	0	VAL	446	14.781	8.837	20.904	1.00	28.07
		ATOM	1121	N	CYS	447	13.619	10.275	22.166	1.00	28.97
العدا يعدن		MOTA	1122	CA	CYS	447	13.919	11.394	21.272	1.00	29.14
*## .#		ATOM	1123	CB	CYS	447	13.156	12.653	21.693	1.00	28.90
"AJ	40	ATOM	1124	SG	CYS	447	11.389	12.591	21.309	1.00	35.68
		ATOM	1125	C	CYS	447	15.420	11.677	21.328	1.00	28.03
		ATOM	1126	0	CYS	447	16.063	11.885	20.302	1.00	29.34
		ATOM	1127	N	LEU	448	15.969	11.686	22.538	1.00	27.28
		ATOM	1128	CA	LEU	448	17.392	11.938	22.729	1.00	25.30
	45	ATOM	1129	CB	LEU	448	17.733	11.932	24.220	1.00	27.72
		ATOM	1130	CG	LEU	448	17.248	13.135	25.040	1.00	29.54
		ATOM	1131	CD1	LEU	448	17.807	13.042	26.454	1.00	30.85
		ATOM	1132	CD2	LEU	448	17.688	14.434	24.376	1.00	30.24
		ATOM	1133	С	LEU	448	18.245	10.902	22.008	1.00	27.62
	50	ATOM	1134	0	LEU	448	19.207	11.252	21.327	1.00	25.10
		ATOM	1135	N	LYS	449	17.905	9.621	22.162	1.00	25.16
		ATOM	1136	CA	LYS	449	18.673	8.570	21.506	1.00	27.55
		ATOM	1137	CB	LYS	449	18.135	7.185	21.900	1.00	28.99
		MOTA	1138	CG	LYS	449	19.134	6.052	21.694	1.00	34.70
	55	ATOM	1139	CD	LYS	449	18.737	4.789	22.459	1.00	32.67
		ATOM	1140	CE	LYS	449	17.267	4.419	22.220	1.00	31.87
		ATOM	1141	NZ	LYS	449	17.022	2.967	22.472	1.00	29.14
		ATOM	1142	С	LYS	449	18.626	8.749	19.990	1.00	25.88
		ATOM	1143	0	LYS	449	19.610	8.489	19.296	1.00	25.93
	60	MOTA	1144	N	SER	450	17.482	9.197	19.480	1.00	26.07
		MOTA	1145	CA	SER	450	17.323	9.421	18.052	1.00	27.24
		ATOM	1146	CB	SER	450	15.857	9.705	17.721	1.00	32.24
							2.42				

	5	ATOM	1263	CD1	LEU	466	22.156	18.002	-7.482	1.00	48.32
		ATOM	1264	CD2	LEU	466	22.033	18.594	-5.057	1.00	48.14
		MOTA	1265	С	LEU	466	23.817	16.397	-3.650	1.00	48.16
		ATOM	1266	0	LEU	466	22.961	16.845	-2.883	1.00	45.90
		MOTA	1267	N	LYS	467	24.093	15.099	-3.750	1.00	46.47
	10	MOTA	1268	CA	LYS	467	23.399	14.100	-2.947	1.00	47.45
		MOTA	1269	CB	LYS	467	23.802	12.693	-3.395	1.00	49.38
		MOTA	1270	CG	LYS	467	22.829	11.602	-2.974	1.00	52.70
		ATOM	1271	CD	LYS	467	23.561	10.301	-2.682	1.00	56.48
		MOTA	1272	CE	LYS	467	23.105	9.180	-3.604	1.00	59.54
	15	ATOM	1273	NZ	LYS	467	24.150	8.117	-3.732	1.00	61.22
		ATOM	1274	С	LYS	467	23.738	14.284	-1.472	1.00	46.89
		ATOM	1275	0	LYS	467	22.884	14.108	-0.604	1.00	46.06
		MOTA	1276	N	SER	468	24.989	14.644	-1.202	1.00	45.82
		MOTA	1277	CA	SER	468	25.457	14.854	0.160	1.00	46.82
	20	MOTA	1278	CB	SER	468	26.976	15.050	0.173	1.00	47.85
		ATOM	1279	OG	SER	468	27.407	15.537	1.435	1.00	55.73
		MOTA	1280	C	SER	468	24.778	16.063	0.790	1.00	44.24
		ATOM	1281	0	SER	468	24.473	16.062	1.983	1.00	42.98
		ATOM	1282	N	LEU	469	24.547	17.100	-0.011	1.00	42.33
1	25	ATOM	1283	CA	LEU	469	23.890	18.301	0.486	1.00	40.42
		ATOM	1284	CB	LEU	469	24.002	19.427	-0.545	1.00	44.47
		ATOM	1285	CG	LEU	469	25.438	19.874	-0.849	1.00	46.70
in		ATOM	1286	CD1	LEU	469	25.514	20.477	-2.246	1.00	46.70
ine Ini	• •	ATOM	1287	CD2	LEU	469	25.890	20.883	0.199	1.00	47.32
	30	ATOM	1288	С	LEU	469	22.423	17.996	0.786	1.00	39.06
		ATOM	1289	0	LEU	469	21.856	18.505	1.760	1.00	34.97
'n.		ATOM	1290	N	GLU	470	21.814	17.151	-0.046	1.00	35.46
==		ATOM	1291	CA	GLU	470	20.418	16.768	0.145	1.00	34.38
	2.5	ATOM	1292	CB	GLU	470	19.914	15.963	-1.052	1.00	38.02
	35	ATOM	1293	CG	GLU	470	19.772	16.773	-2.329	1.00	42.67
lii.		MOTA	1294	CD	GLU	470	19.339	15.923	-3.509	1.00	48.30
		ATOM	1295	OE1	GLU	470	19.671	14.716	-3.538	1.00	50.53
Ď		ATOM	1296	OE2	GLU	470	18.666	16.463	-4.412	1.00	51.06
i.	40	ATOM	1297	C	GLU	470	20.290	15.916	1.403	1.00	34.37
	40	ATOM	1298	0	GLU	470	19.321	16.035	2.157	1.00	32.60
		ATOM	1299	N	GLU	471	21.274	15.046	1.606	1.00	34.66
		ATOM	1300	CA	GLU	471	21.309	14.162	2.766	1.00	35.68
		ATOM ATOM	1301 1302	CB CG	GLU GLU	471 471	22.515	13.222	2.671 1.614	1.00	34.57
	45	ATOM	1302	CD	GLU	471	22.376 21.476	12.122 10.989	2.063	1.00	37.98 39.79
	73	ATOM	1303	OE1	GLU	471	20.268	11.027	1.743	1.00	41.12
		ATOM	1304	OE1	GLU	471	20.200	10.061	2.737	1.00	32.11
		ATOM	1305	C	GLU	471	21.374	14.983	4.052	1.00	34.79
		ATOM	1307	0	GLU	471	20.596	14.793	4.969	1.00	32.80
	50	ATOM	1307	N	LYS	472	20.358	15.898	4.112	1.00	33.93
	50	ATOM	1309	CA	LYS	472	22.518	16.739	5.291	1.00	35.58
		ATOM	1310	CB	LYS	472	23.683	17.710	5.097	1.00	39.11
		ATOM	1311	CG	LYS	472	25.050	17.710	5.138	1.00	41.47
		ATOM	1312	CD	LYS	472	26.080	17.050	5.794	1.00	46.97
	55	ATOM	1312	CE	LYS	472	27.445	17.286	5.862	1.00	48.40
		ATOM	1314	NZ	LYS	472	27.850	16.702	4.547	1.00	51.55
		ATOM	1315	C	LYS	472	21.237	17.523	5.582	1.00	34.78
		ATOM	1316	0	LYS	472	20.795	17.523	6.724	1.00	33.95
		ATOM	1317	N	ASP	473	20.733	18.097	4.545	1.00	33.47
	60	ATOM	1318	CA	ASP	473	19.420	18.865	4.720	1.00	34.63
		ATOM	1319	CB	ASP	473	18.923	19.404	3.380	1.00	37.21
		ATOM	1320	CG	ASP	473	17.654	20.221	3.522	1.00	43.24
						_ , _					

II

į...

إلى: "

اً الله

لا

	_			~		500	04 154	10 207	05 540	1 00	06.00
	5	ATOM	1611	С	LEU	509	24.154	18.327	27.540	1.00	26.08
		ATOM	1612	0	LEU	509	25.354	18.068	27.547	1.00	23.92
		MOTA	1613	N	ILE	510	23.254	17.462	27.993	1.00	24.60
		MOTA	1614	CA	ILE	510	23.712	16.172	28.496	1.00	25.12
		MOTA	1615	CB	ILE	510	22.568	15.368	29.161	1.00	28.51
	10	ATOM	1616	CG2	ILE	510	23.051	13.965	29.506	1.00	31.67
		ATOM	1617	CG1	ILE	510	22.141	16.060	30.459	1.00	31.18
		ATOM	1618	CD1	ILE	510	20.712	15.749	30.882	1.00	37.16
		ATOM	1619	С	ILE	510	24.337	15.351	27.364	1.00	23.86
		ATOM	1620	Ō	ILE	510	25.225	14.534	27.600	1.00	24.14
	15	ATOM	1621	N	LEU	511	23.889	15.586	26.133	1.00	25.10
	13	ATOM	1622	CA	LEU	511	24.420	14.862	24.977	1.00	25.63
		ATOM	1623	CB	LEU	511	23.628	15.225	23.714	1.00	23.89
				CG		511				1.00	
		ATOM	1624		LEU		22.152	14.801	23.659		25.78
	20	ATOM	1625	CD1	LEU	511	21.648	14.920	22.224	1.00	26.55
	20	MOTA	1626	CD2	LEU	511	21.990	13.363	24.146	1.00	26.29
		ATOM	1627	С	LEU	511	25.912	15.152	24.771	1.00	27.10
		MOTA	1628	0	LEU	511	26.641	14.332	24.214	1.00	24.98
		ATOM	1629	N	SER	512	26.372	16.319	25.213	1.00	24.75
		MOTA	1630	CA	SER	512	27.787	16.637	25.076	1.00	23.68
4 150	25	MOTA	1631	CB	SER	512	28.023	18.129	25.358	1.00	26.12
- and		ATOM	1632	OG	SER	512	29.271	18.327	25.986	1.00	37.17
444		ATOM	1633	С	SER	512	28.594	15.765	26.050	1.00	23.15
		ATOM	1634	0	SER	512	29.742	15.383	25.769	1.00	22.15
W		ATOM	1635	N	AHIS	513	27.993	15.456	27.192	0.50	21.53
14	30	ATOM	1636	N	BHIS	513	28.008	15.453	27.202	0.50	20.99
1		ATOM	1637	CA	AHIS	513	28.645	14.624	28.196	0.50	21.79
<u> </u>		ATOM	1638	CA	BHIS	513	28.696	14.607	28.174	0.50	20.94
, : * ^E		ATOM	1639	CB	AHIS	513	27.920	14.776	29.536	0.50	23.59
āi		ATOM	1640	CB	BHIS	513	27.991	14.636	29.536	0.50	21.59
	35	ATOM	1641	CG	AHIS	513		16.109	30.179	0.50	27.34
W	33						28.145				
IJ		ATOM	1642	CG	BHIS	513	28.800	14.032	30.642	0.50	23.94
		ATOM	1643	CD2	AHIS	513	29.223	16.616	30.824	0.50	27.56
1		ATOM	1644	CD2	BHIS	513	30.095	14.211	31.001	0.50	24.22
£	40	ATOM	1645	ND1	AHIS	513	27.204	17.117	30.160	0.50	30.62
1.22	40	ATOM	1646	ND1	BHIS	513	28.285	13.105	31.523	0.50	27.00
		MOTA	1647	CE1	AHIS	513	27.693	18.185	30.763	0.50	26.32
		MOTA	1648	CE1	BHIS	513	29.225	12.740	32.376	0.50	24.40
		ATOM	1649	NE2	AHIS	513	28.916	17.908	31.176	0.50	28.30
		ATOM	1650	NE2	BHIS	513	30.334	13.396	32.081	0.50	25.54
	45	MOTA	1651	С	AHIS	513	28.666	13.164	27.738	0.50	19.81
		MOTA	1652	C	BHIS	513	28.720	13.171	27.652	0.50	19.42
		ATOM	1653	0	AHIS	513	29.601	12.426	28.026	0.50	22.45
		ATOM	1654	0	BHIS	513	29.707	12.457	27.809	0.50	22.62
		MOTA	1655	N	ILE	514	27.633	12.753	27.015	1.00	20.76
	50	ATOM	1656	CA	ILE	514	27.572	11.396	26.492	1.00	20.94
		ATOM	1657	СВ	ILE	514	26.154	11.086	25.953	1.00	27.76
		ATOM	1658	CG2	ILE.	514	26.169	9.800	25.123	1.00	28.26
		ATOM	1659	CG1	ILE	514	25.185	10.965	27.139	1.00	27.91
		ATOM	1660	CD1	ILE	514	23.752	10.649	26.753	1.00	34.31
	55	ATOM	1661	C	ILE	514	28.641	11.256	25.398	1.00	20.66
	55	ATOM	1662			514		10.226	25.285	1.00	22.21
				O N	ILE		29.298				
		ATOM	1663	N	ARG	515	28.825	12.294	24.589	1.00	20.48
		ATOM	1664	CA	ARG	515	29.861	12.243	23.554	1.00	21.98
	C C	ATOM	1665	CB	ARG	515	29.861	13.535	22.726	1.00	23.11
	60	ATOM	1666	CG	ARG	515	31.003	13.611	21.737	1.00	25.76
		ATOM	1667	CD	ARG	515	30.664	12.818	20.491	1.00	28.55
		ATOM	1668	NE	ARG	515	29.580	13.482	19.788	1.00	36.24
							0.51				

	5	ATOM	1785	CE	MET	528	39.231	-4.412	23.554	1.00	72.57
	,	ATOM	1786	C	MET	528	42.726	-3.502	21.513	1.00	70.33
				0			42.720	-4.602			70.33
		ATOM	1787		MET	528			21.513	1.00	
		ATOM	1788	N	LYS	529	42.834	-2.739	20.428	1.00	71.53
	10	ATOM	1789	CA	LYS	529	42.274	-3.122	19.136	1.00	72.00
	10	MOTA	1790	CB	LYS	529	42.508	-2.004	18.119	1.00	71.30
		MOTA	1791	C	LYS	529	42.813	-4.439	18.587	1.00	72.47
		MOTA	1792	0	LYS	529	43.990	-4.762	18.751	1.00	70.37
		MOTA	1793	N	CYS	530	41.932	-5.191	17.930	1.00	74.48
		MOTA	1794	CA	CYS	530	42.279	-6.474	17.325	1.00	76.67
	15	ATOM	1795	CB	CYS	530	41.004	-7.245	16.952	1.00	77.23
		ATOM	1796	SG	CYS	530	40.447	-8.491	18.146	1.00	79.38
		ATOM	1797	С	CYS	530	43.098	-6.220	16.065	1.00	78.08
		ATOM	1798	0	CYS	530	43.241	-5.076	15.623	1.00	78.81
		ATOM	1799	N	LYS	531	43.637	-7.289	15.487	1.00	78.22
	20	ATOM	1800	CA	LYS	531	44.424	-7.187	14.267	1.00	78.15
		ATOM	1801	CB	LYS	531	45.600	-8.182	14.305	1.00	78.33
		ATOM	1802	C	LYS	531	43.508	-7.467	13.067	1.00	77.93
		ATOM	1803	Ö	LYS	531	42.549	-6.734	12.839	1.00	78.07
		ATOM	1804	N	ASN	532	43.784	-8.539	12.328	1.00	77.80
	25	ATOM	1805	CA	ASN	532	42.984	-8.902	11.152	1.00	77.30
	23	ATOM	1805	CB	ASN	532	43.550	-10.166	10.521	1.00	77.55
ij				СВ			43.330				77.33
		ATOM	1807		ASN	532		-9.082	11.423	1.00	
IJ		ATOM	1808	0	ASN	532	40.904	-10.123	11.118	1.00	78.13.
	20	ATOM	1809	N	VAL	533	40.859	-8.055	11.988	1.00	76.13
; ;,,[30	ATOM	1810	CA	VAL	533	39.436	-8.098	12.280	1.00	73.77
		ATOM	1811	CB	VAL	533	39.155	-7.715	13.752	1.00	73.62
,		ATOM	1812	CG1	VAL	533	39.690	-6.327	14.047	1.00	73.13
=:		ATOM	1813	CG2	VAL	533	37.662	-7.782	14.021	1.00	73.14
		ATOM	1814	С	VAL	533	38.685	-7.143	11.352	1.00	72.97
	35	ATOM	1815	0	VAL	533	39.024	-5.960	11.252	1.00	73.91
1.4		ATOM	1816	N	VAL	534	37.671	-7.666	10.666	1.00	70.02
144		ATOM	1817	CA	VAL	534	36.866	-6.867	9.747	1.00	66.70
1 mei		ATOM	1818	CB	VAL	534	35.619	-7.646	9.328	1.00	67.32
		ATOM	1819	С	VAL	534	36.463	-5.541	10.393	1.00	63.87
1	40	ATOM	1820	0	VAL	534	35.895	-5.519	11.486	1.00	63.55
•		ATOM	1821	N	PRO	535	36.756	-4.415	9.719	1.00	60.92
		ATOM	1822	CD	PRO	535	37.424	-4.354	8.408	1.00	61.01
		ATOM	1823	CA	PRO	535	36.424	-3.077	10.229	1.00	56.83
		ATOM	1824	CB	PRO	535	36.867	-2.135	9.107	1.00	58.70
	45	ATOM	1825	CG	PRO	535	37.023	-3.009	7.893	1.00	61.55
		ATOM	1826	C	PRO	535	34.944	-2.902	10.571	1.00	52.90
		ATOM	1827	o	PRO	535	34.067	-3.461	9.908	1.00	52.01
		ATOM	1828	N	LEU	536	34.672	-2.120	11.610	1.00	48.60
		ATOM	1829	CA	LEU	536	33.301	-1.874	12.042	1.00	45.08
	50	ATOM	1830	CB	LEU	536	33.280	-0.796	13.128	1.00	44.35
	50	ATOM	1831	CG	LEU	536	32.267	-0.790	14.273	1.00	43.48
		ATOM	1832	CD1	LEU	536	31.919	0.490	14.745	1.00	43.41
		ATOM	1833	CD2	LEU	536	31.022	-1.654	13.835	1.00	39.55
	<i>5 5</i>	ATOM	1834	C	LEU	536	32.434	-1.433	10.871	1.00	43.58
	55	ATOM	1835	0	LEU	536	31.287	-1.862	10.734	1.00	42.14
		ATOM	1836	N	TYR	537	32.992	-0.575	10.024	1.00	43.02
		MOTA	1837	CA	TYR	537	32.269	-0.066	8.866	1.00	43.34
		ATOM	1838	CB	TYR	537	33.200	0.786	7.997	1.00	44.76
		ATOM	1839	CG	TYR	537	32.483	1.558	6.913	1.00	48.28
	60	ATOM	1840	CD1	TYR	537	32.190	0.964	5.687	1.00	48.46
		ATOM	1841	CE1	TYR	537	31.504	1.660	4.693	1.00	52.48
		ATOM	1842	CD2	TYR	537	32.073	2.875	7.123	1.00	49.99

5	MOTA	1843	CE2	·TYR	537	31.383	3.584	6.135	1.00	53.73
	MOTA	1844	CZ	TYR	537	31.100	2.967	4.924	1.00	54.01
	ATOM	1845	OH	TYR	537	30.401	3.648	3.952	1.00	55.90
	MOTA	1846	С			31.683	-1.199	8.032	1.00	43.15
	ATOM	1847	0		537	30.500	-1.191	7.696	1.00	41.54
10	ATOM	1848	N	ASP	538	32.521	-2.175	7.702	1.00	44.67
	MOTA	1849	CA	ASP	538	32.097	-3.309	6.893	1.00	45.49
	MOTA	1850	CB	ASP	538	33.322	-4.126	6.479	1.00	51.32
	MOTA	1851	CG	ASP	538	34.361	-3.284	5.748	1.00	56.17
	MOTA	1852	OD1	ASP	538	35.436	-3.820	5.396	1.00	57.29
15	MOTA	1853	OD2	ASP	538	34.097	-2.079	5.526	1.00	59.24
	MOTA	1854	С	ASP	538	31.071	-4.195	7.587	1.00	43.48
	MOTA	1855	0	ASP	538	30.177	-4.738	6.940	1.00	43.95
	MOTA	1856	N	LEU	539	31.193	-4.345	8.901	1.00	41.57
	MOTA	1857	CA	LEU		30.244	-5.157	9.654	1.00	39.11
20	MOTA	1858	CB	LEU	539	30.734	-5.351	11.092	1.00	41.88
	MOTA	1859	CG	LEU		29.770	-6.065	12.044	1.00	46.11
	MOTA	1860	CD1	LEU		29.298	-7.379	11.423	1.00	46.99
	MOTA	1861	CD2	LEU		30.474	-6.319	13.377	1.00	45.76
	MOTA		C	LEU	539	28.891	-4.451	9.651	1.00	36.38
25	ATOM	1863	0	LEU	539	27.849	-5.070	9.436	1.00	35.74
	ATOM	1864	N	LEU	540	28.919	-3.146	9.894	1.00	35.50
	MOTA	1865	CA	LEU	540	27.703		9.903	1.00	35.59
	ATOM	1866	CB	LEU	540	28.061	-0.877	10.219	1.00	37.63
						27.856	-0.252		1.00	40.28
30						27.526			1.00	38.55
										41.04
•										35.50
										33.21
										37.01
35										38.51
										39.67
										40.92
										42.44
40										44.18
40										39.75
										36.48
15										
43										50.60
										55.80
										58.81
										57.19
50										41.58
30										42.82
										40.09
										36.43
										39.95
55										41.95
33										47.17 40.88
										35.02
60										
00										
	AION	1300	CG	חפט	244	23.266	-0.362	0.450	1.00	31.94
	 5 10 15 20 25 30 40 45 50 55 60 	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 1844 ATOM 1845 ATOM 1846 ATOM 1847 10 ATOM 1848 ATOM 1849 ATOM 1850 ATOM 1850 ATOM 1851 ATOM 1852 15 ATOM 1853 ATOM 1854 ATOM 1855 ATOM 1856 ATOM 1857 20 ATOM 1858 ATOM 1860 ATOM 1861 ATOM 1862 25 ATOM 1863 ATOM 1863 ATOM 1866 ATOM 1866 ATOM 1867 30 ATOM 1868 ATOM 1867 30 ATOM 1868 ATOM 1870 ATOM 1870 ATOM 1870 ATOM 1871 ATOM 1872 35 ATOM 1873 ATOM 1876 ATOM 1876 ATOM 1876 ATOM 1876 ATOM 1878 ATOM 1887 ATOM 1887 ATOM 1888 ATOM 1888 ATOM 1888 ATOM 1888 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1889 ATOM 1890 ATOM 1891 ATOM 1892	ATOM 1845 OH ATOM 1845 OH ATOM 1846 C ATOM 1847 O 10 ATOM 1848 N ATOM 1849 CA ATOM 1850 CB ATOM 1851 CG ATOM 1852 OD1 15 ATOM 1853 OD2 ATOM 1855 O ATOM 1855 O ATOM 1856 N ATOM 1857 CA 20 ATOM 1859 CG ATOM 1860 CD1 ATOM 1861 CD2 ATOM 1862 C ATOM 1862 C ATOM 1866 CB ATOM 1866 CB ATOM 1866 CB ATOM 1867 CG 30 ATOM 1866 CB ATOM 1867 CG 310 ATOM 1868 CD1 ATOM 1869 CD2 ATOM 1870 C ATOM 1870 C ATOM 1870 C ATOM 1870 C ATOM 1870 C ATOM 1870 C ATOM 1871 O ATOM 1872 N 35 ATOM 1872 N 35 ATOM 1873 CA ATOM 1874 CB ATOM 1875 CG ATOM 1876 CD1 ATOM 1875 CG ATOM 1876 CD1 ATOM 1877 CD2 40 ATOM 1878 C ATOM 1880 N ATOM 1887 C ATOM 1880 N ATOM 1881 CA ATOM 1882 CB 45 ATOM 1882 CB 45 ATOM 1888 O ATOM 1888 O ATOM 1889 CA ATOM 1889 N ATOM 1889 CA ATOM 1899 CB	ATOM 1844 CZ TYR ATOM 1845 OH TYR ATOM 1846 C TYR ATOM 1847 O TYR ATOM 1848 N ASP ATOM 1850 CB ASP ATOM 1851 CG ASP ATOM 1852 OD1 ASP ATOM 1853 OD2 ASP ATOM 1855 O ASP ATOM 1855 O ASP ATOM 1855 CA LEU ATOM 1858 CB LEU ATOM 1859 CG LEU ATOM 1860 CD1 LEU ATOM 1861 CD2 LEU ATOM 1861 CD2 LEU ATOM 1862 C LEU ATOM 1865 CA LEU ATOM 1865 CA LEU ATOM 1866 CB LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1867 CG LEU ATOM 1871 O LEU ATOM 1871 C LEU ATOM 1872 N LEU ATOM 1872 N LEU ATOM 1874 CB LEU ATOM 1875 CG LEU ATOM 1877 CD2 LEU ATOM 1876 CD1 LEU ATOM 1877 CD2 LEU ATOM 1878 C LEU ATOM 1878 C LEU ATOM 1879 C LEU ATOM 1879 C LEU ATOM 1880 N GLU ATOM 1881 CA GLU ATOM 1881 CA GLU ATOM 1881 CA GLU ATOM 1883 CG GLU ATOM 1884 CD GLU ATOM 1885 OE1 GLU ATOM 1887 C GLU ATOM 1888 O GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB GLU ATOM 1889 CB LEU ATOM 1899 CB LEU	ATOM	ATOM	ATOM 1845 CZ TYR 537 31.100 2.967 ATOM 1846 C TYR 537 30.401 3.648 ATOM 1846 C TYR 537 30.401 3.648 ATOM 1848 N ASP 537 30.500 -1.191 ATOM 1848 N ASP 538 32.521 -2.175 ATOM 1849 CA ASP 538 32.521 -2.175 ATOM 1850 CB ASP 538 32.521 -2.175 ATOM 1851 CG ASP 538 32.521 -2.175 ATOM 1852 OD1 ASP 538 33.322 -4.126 ATOM 1852 OD1 ASP 538 33.322 -4.126 ATOM 1853 OD2 ASP 538 34.361 -3.284 ATOM 1855 O ASP 538 34.097 -2.079 ATOM 1855 N LEU 539 31.097 -4.195 ATOM 1855 C ASP 538 31.071 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1855 C ASP 538 30.077 -4.738 ATOM 1850 CD LEU 539 30.244 -5.157 ATOM 1850 CG LEU 539 29.770 -6.065 ATOM 1860 CD1 LEU 539 29.770 -6.065 ATOM 1861 CD2 LEU 539 29.770 -6.065 ATOM 1863 C LEU 539 29.770 -6.065 ATOM 1863 C LEU 539 29.770 -6.065 ATOM 1866 CB LEU 539 29.770 -2.376 ATOM 1866 CB LEU 539 27.849 -5.070 ATOM 1866 CB LEU 540 28.919 -3.146 ATOM 1866 CB LEU 540 27.703 -2.336 ATOM 1866 CB LEU 540 27.703 -2.336 ATOM 1866 CB LEU 540 27.703 -2.336 ATOM 1868 CD1 LEU 540 27.7526 -0.252 ATOM 1867 CG LEU 540 27.526 -0.252 ATOM 1871 C LEU 540 27.526 -0.252 ATOM 1873 CA LEU 541 27.482 -2.289 ATOM 1874 CB LEU 541 28.591 -2.152 ATOM 1875 CG LEU 541 28.591 -2.152 ATOM 1876 CD LEU 541 28.591 -2.152 ATOM 1877 CD LEU 541 28.591 -2.152 ATOM 1878 C LEU 541 28.591 -2.152 ATOM 1879 CD LEU 541 28.591 -2.152 ATOM 1880 N GLU 542 27.010 -8.457 ATOM 1881 CA GLU 541 28.591 -2.176 ATOM 1880 N GLU 542 27.010 -8.457 ATOM 1881 CA GLU 541 28.591 -2.176 ATOM 1888 O GLU 542 27.010 -8.677 ATOM 1880 N GLU 542 27.010 -8.677 ATOM 1881 CA GLU 541 28.591 -2.176 ATOM 1888 O GLU 542 27.010 -8.677 ATOM 1889 N GLU 542 27.010 -8.677 ATOM 1889 N GLU 542 27.010 -8.677 AT	ATOM 1845 CH TYR 537 30.401 3.648 3.952 ATOM 1846 C TYR 537 30.401 3.648 3.952 ATOM 1847 O TYR 537 30.401 3.648 3.952 ATOM 1848 N ASP 538 32.521 -2.175 7.002 ATOM 1848 N ASP 538 32.521 -2.175 7.702 ATOM 1850 CB ASP 538 32.521 -2.175 7.702 ATOM 1851 CG ASP 538 32.521 -2.175 7.702 ATOM 1851 CG ASP 538 32.521 -2.175 7.702 ATOM 1850 CB ASP 538 33.322 -4.126 6.479 ATOM 1851 CG ASP 538 34.361 -3.284 5.748 ATOM 1852 OD1 ASP 538 34.361 -3.284 5.748 ATOM 1853 OD2 ASP 538 34.097 -2.079 5.526 ATOM 1855 O ASP 538 31.071 -4.195 7.587 ATOM 1855 O ASP 538 31.071 -4.195 7.587 ATOM 1855 C ASP 538 31.071 -4.195 7.587 ATOM 1855 C ASP 538 30.177 -4.738 6.940 ATOM 1855 CB LEU 539 30.177 -4.738 6.940 ATOM 1855 CB LEU 539 30.244 -5.157 9.654 ATOM 1855 CB LEU 539 30.734 -5.351 11.092 ATOM 1856 CB LEU 539 30.734 -5.351 11.092 ATOM 1850 CD1 LEU 539 29.298 7.379 11.423 ATOM 1861 CD2 LEU 539 29.298 7.379 11.423 ATOM 1863 C LEU 539 30.474 -6.319 13.377 ATOM 1865 CA LEU 539 29.298 7.379 14.423 ATOM 1866 CB LEU 539 29.298 7.379 1.423 ATOM 1865 CA LEU 539 27.849 -5.070 9.436 ATOM 1865 CA LEU 539 27.849 -5.070 9.436 ATOM 1865 CA LEU 540 28.919 -3.146 9.894 ATOM 1866 CB LEU 540 28.919 -3.146 9.894 ATOM 1867 CA LEU 540 28.919 -3.146 9.894 ATOM 1867 CA LEU 540 28.919 -3.146 9.894 ATOM 1868 CD1 LEU 540 27.703 -2.336 9.903 ATOM 1868 CD1 LEU 540 27.703 -2.336 9.903 ATOM 1868 CD2 LEU 540 29.114 0.506 11.985 ATOM 1867 CA LEU 540 29.114 0.506 11.985 ATOM 1867 CB LEU 540 29.114 0.506 6.013 ATOM 1868 CD1 LEU 540 29.114 0.506 6.013 ATOM 1869 CD2 LEU 540 29.114 0.506 6.016 6.014 ATOM 1867 CB LEU 540 29.114 0.506 6.016 6.014 ATOM 1868 CD3 LEU 540 29.114 0.506 6.016 6.016 ATOM 1869 CD2 LEU 540 29.114 0.506 6.016 6.016 ATOM 1869 CD2 LEU 540 29.114 0.506 6.016 6.016 ATOM 1869 CD3 LEU 540 29.114 0.506 6.016	ATOM

5	ATOM	1901	CD1	LEU	544	24.284	0.564	8.478	1.00	32.27
	ATOM	1902	CD2	LEU	544	21.897	-0.029	8.846	1.00	29.02
	MOTA	1903	С	LEU	544	22.148	-2.941	5.640	1.00	38.94
	MOTA	1904	0	LEU	544	20.971	-2.842	5.294	1.00	39.52
	ATOM	1905	N	ASP	545	23.118	-3.338	4.817	1.00	41.05
10	ATOM	1906	CA	ASP	545	22.850	-3.685	3.418	1.00	40.78
	ATOM	1907	CB	ASP	545	24.159	-3.780	2.620	1.00	37.75
	ATOM	1908	CG	ASP	545	23.922	-3.937	1.120	1.00	35.19
	ATOM	1909	OD1	ASP	545	24.881	-4.265	0.380	1.00	33.48
	ATOM	1910	OD2	ASP	545	22.768	-3.734	0.691	1.00	31.33
15	ATOM	1911	С	ASP	545	22.116	-5.015	3.349	1.00	42.87
	ATOM	1912	0	ASP	545	22.681	-6.030	2.929	1.00	44.32
	ATOM	1913	N	ALA	546	20.853	-5.009	3.755	1.00	43.49
	ATOM	1914	CA	ALA	546	20.069	-6.229	3.746	1.00	46.96
	ATOM	1915	СВ	ALA	546	19.213	-6.305	5.006	1.00	47.82
20	ATOM	1916	C	ALA	546	19.193	-6.362	2.508	1.00	49.55
	ATOM	1917	Ö	ALA	546	18.804	-5.368	1.883	1.00	48.75
	ATOM	1918	N	HIS	547	18.895	-7.606	2.152	1.00	50.98
	ATOM	1919	CA	HIS	547	18.042	-7.884	1.006	1.00	53.77
	ATOM	1920	CB	HIS	547	18.431	-9.223	0.369	1.00	52.69
25	ATOM	1921	CG	HIS	547	18.395	-10.382	1.317	1.00	55.05
	ATOM	1922	CD2	HIS	547	17.477	-10.752	2.242	1.00	53.94
	ATOM	1923	ND1	HIS	547	19.395	-11.329	1.371	1.00	56.23
	ATOM	1924	CE1	HIS	547	19.095	-12.232	2.286	1.00	55.36
	ATOM	1925	NE2	HIS	547	17.936	-11.906	2.830	1.00	57.01
30	ATOM	1926	C	HIS	547	16.603	-7.936	1.518	1.00	55.69
30	ATOM	1927	0	HIS	547	16.362	-7.796	2.720	1.00	54.30
	ATOM	1928	N	ARG	548	15.653	-8.139	0.612	1.00	57.00
	ATOM	1929	CA	ARG	548	14.245	-8.212	0.987	1.00	60.65
	ATOM	1930	CB	ARG	548	13.432	-7.171	0.208	1.00	62.69
35	ATOM	1931	CG	ARG	548	14.272	-6.222	-0.637	1.00	67.54
33	ATOM	1932	CD	ARG	548	13.448	-5.061	-1.171	1.00	71.92
	ATOM	1933	NE	ARG	548	13.702	-3.826	-0.432	1.00	76.95
	ATOM	1934	CZ	ARG	548	14.864	-3.178	-0.429	1.00	79.04
	ATOM	1935	NH1	ARG	548	15.891	-3.644	-1.128	1.00	80.66
40	ATOM	1936	NH2	ARG	548	15.001	-2.063	0.278	1.00	80.39
	ATOM	1937	C	ARG	548	13.695	-9.608	0.711	1.00	61.65
	ATOM	1938	0	ARG	548	12.500	-9.781	0.466	1.00	62.05
	ATOM	1939	N	LEU	549	14.576	-10.603	0.756	1.00	62.39
	ATOM	1940	CA	LEU	549		-11.985	0.507	1.00	64.02
45	ATOM	1941	CB	LEU	549	15.433		0.195	1.00	62.14
	ATOM	1942	CG	LEU	549	16.461		-0.753	1.00	60.76
	ATOM	1943	CD1	LEU	549		-13.074	-0.878	1.00	57.77
	ATOM	1944	CD2	LEU	549		-11.972	-2.108	1.00	58.38
	ATOM	1945	CD2	LEU	549	13.431	-12.574	1.702	1.00	66.65
50	ATOM	1946	0	LEU	549		-13.600	1.577	1.00	67.15
50	ATOM	1947	N	HIS	550	13.541		2.856	1.00	67.72
	ATOM	1947	CA	HIS	550 550		-11.320	4.065	1.00	69.93
	ATOM	1948	CB	HIS	550 550	13.753	-12.378	5.298	1.00	70.76
			CG					5.306	1.00	
55	ATOM	1950	CD2	HIS	550 550		-13.054			71.50
55	ATOM	1951		HIS	550 550		-13.821	4.341	1.00	71.63
	ATOM	1952	ND1	HIS	550		-13.172	6.411	1.00	71.98
	ATOM	1953	CE1	HIS	550 550		-13.972	6.126	1.00	72.04
	ATOM	1954	NE2	HIS	550 550		-14.379	4.876	1.00	71.39
60	ATOM	1955	C	HIS	550		-11.603	4.275	1.00	71.15
60	ATOM	1956	O	HIS	550		-11.684	5.340	1.00	70.66
	ATOM	1957	N	ALA	551 551		-10.851	3.258	1.00	72.22
	ATOM	1958	CA	ALA	551	9.919	-10.057	3.338	1.00	73.58

5	HETATM	2017	01	нон	26	13.181	22.222	9.699	1.00	37.03
,	HETATM	2018	01	НОН	27	19.399	-6.090	12.808	1.00	44.86
	HETATM	2019	01	НОН	28	37.895	13.599	31.395	1.00	47.26
	HETATM	2020	01	НОН	29	11.570	6.212	7.962	1.00	51.10
	HETATM	2021	01	НОН	30	20.172	-2.568	23.445	1.00	51.70
10	HETATM	2022	01	НОН	31	36.402	-5.369	23.729	1.00	58.20
	HETATM	2023	01	НОН	32	25.127	13.802	19.187	1.00	35.29
	HETATM	2023	01	нон	33	23.127	4.937	38.538	1.00	33.77
	HETATM	2025	01	НОН	34	20.550	0.421	21.276	1.00	29.12
	HETATM	2026	01	НОН	35	39.599	13.954	27.312	1.00	44.08
15	HETATM	2027	01	НОН	36	26.445	13.863	21.285	1.00	34.97
13	HETATM	2027	01	нон	37	13.759	5.079	9.108	1.00	38.54
	HETATM	2029	01	НОН	38	14.150	24.731	34.529	1.00	49.72
	HETATM	2029	01	НОН	39	21.060	13.886	-6.319	1.00	59.79
	HETATM	2030	01	НОН	40	32.215	6.217	8.726	1.00	60.22
20	HETATM	2031	01	НОН	41	35.105	15.704	9.069	1.00	45.15
20			01	НОН	42	11.427	19.451	9.903	1.00	38.56
	HETATM	2033								
	HETATM	2034	01	НОН	43	19.662	23.472	10.333	1.00	47.71
	HETATM	2035	01	HOH	44	9.231	3.690	12.337	1.00	45.98
25	HETATM	2036	01	HOH	45	15.313	-6.036	17.192	1.00	39.07 37.67
23	HETATM	2037	01	НОН	46	15.517	-3.266	17.907	1.00	
	HETATM	2038	01	HOH	47	28.784	-16.713	25.163	1.00	55.44
	HETATM	2039	01	HOH	48	27.868	-10.898	28.271	1.00	31.27
	HETATM	2040	01	HOH	49	6.955	13.568	28.233	1.00	48.83
20	HETATM	2041	01	HOH	50	22.051	-15.030	28.603	1.00	36.91
30	HETATM	2042	01	HOH	51	7.026	31.002	30.284	1.00	46.73
	HETATM	2043	01	HOH	52	-1.489	12.385	15.164	1.00	51.17
	HETATM	2044	01	HOH	53	3.499	6.444	14.452	1.00	50.38
	HETATM	2045	01	HOH	54	18.655	-2.048	25.518	1.00	52.29
25	HETATM	2046	01	НОН	55	28.188	-15.195	38.996	1.00	55.22.
35	HETATM	2047	01	НОН	56	35.275	-10.556	38.061	1.00	57.39
	HETATM	2048	01	НОН	57	37.771	-9.103	34.605	1.00	54.17
	HETATM	2049	01	НОН	58	31.403	-3.039	17.983	1.00	46.80
	HETATM	2050	01	HOH	59	30.455	-6.352	17.005	1.00	47.05
40	HETATM	2051	01	HOH	60	25.985	8.255	0.416	1.00	43.32
40	HETATM	2052	01	HOH	61	35.679	0.749	10.462	1.00	42.99
	HETATM	2053	01	HOH	62	14.741	4.029	33.936	1.00	49.59
	HETATM	2054	01	HOH	63	16.333	2.592	35.952	1.00	45.13
	HETATM	2055	01	HOH	64	23.809	7.186	39.798	1.00	45.36
15	HETATM	2056	01	HOH	65	27.012	-1.948	46.995	1.00	63.39
45	HETATM	2057	01	НОН	66	25.956	-6.422	42.144	1.00	44.94
	HETATM	2058	01	НОН	67	23.510	-8.414	39.036	1.00	39.06
	HETATM	2059	01	HOH	68	41.475	0.971	33.110	1.00	55.50
	HETATM	2060	01	НОН	69	36.519	8.863	38.836	1.00	41.56
50	HETATM	2061	01	НОН	70	30.111	14.823	12.793	1.00	44.58
50	HETATM	2062	01	НОН	71	26.850	-6.092	1.594	1.00	40.15
	HETATM	2063	01	НОН	72	20.448	-3.169	1.055	1.00	42.50
	HETATM	2064	01	НОН	73	33.896	3.047	16.172	1.00	46.39
	HETATM	2065	01	НОН	74	16.884	0.446	26.043	1.00	61.50
<i></i>	HETATM	2066	01	НОН	75 75	18.595	0.296	27.866	1.00	47.33
55	HETATM	2067	01	НОН	76	6.166	21.439	19.124	1.00	47.94
	HETATM	2068	01	HOH	77	18.484	20.060	16.232	1.00	35.52
	HETATM	2069	01	HOH	78	1.985	23.265	29.187	1.00	46.42
	HETATM	2070	01	HOH	79	12.729	30.461	27.530	1.00	62.79
60	END									
60										