

- ■代数系统定义
- ■同类型与同种的代数系统
- ■子代数
- ■积代数



### 代数系统定义与实例

#### 定义

非空集合 S 和 S 上 k 个运算  $f_1, f_2, ..., f_k$  组成的系统称为一个代数系统, 简称代数,记做  $V=\langle S, f_1, f_2, ..., f_k \rangle$ .

S 称为代数系统的载体, S 和运算叫做代数系统的成分. 有的代数系统定义指定了 S 中的特殊元素,称为代数常数, 例如二元运算的单位元. 有时也将代数常数作为系统的成分.

## 实例

<N,+>, <Z,+,·>, <R,+,·>是代数系统, + 和·分别表示普通加法和乘法.  $< M_n(\mathbf{R}), +, \cdot >$  是代数系统, +和·分别表示n 阶 (n≥2) 实矩阵的加法和乘法. <Z<sub>n</sub>,⊕,⊗>是代数系统,Z<sub>n</sub>={0,1,...,n-1}, ⊕ 和  $\otimes$  分别表示模 *n* 的加法和乘法, $\forall x,y \in \mathbb{Z}_n$ ,  $x \oplus y = (x + y) \mod n$ ,  $x \otimes y = (xy) \mod n$ < P(S),  $\cup$ ,  $\cap$ ,  $\sim$  也是代数系统, U和∩为并和交,~为绝对补

### M

### 同类型与同种代数系统

定义(1)如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同, 则称它们是同类型的代数系统.

(2) 如果两个同类型的代数系统规定的运算性质也相同,则称为同种的代数系统.

例1 
$$V_1 = \langle \mathbf{R}, +, \cdot, 0, 1 \rangle$$
,  $V_2 = \langle M_n(\mathbf{R}), +, \cdot, \theta, E \rangle$ ,  $\theta$  为  $n$  阶全  $0$  矩阵, $E$  为  $n$  阶单位矩阵  $V_3 = \langle P(B), \cup, \cap, \varnothing, B \rangle$ 

### м

### 同类型与同种代数系统(续)

| $V_1$                                                                                  | $V_2$                                                                                    | $V_3$                                                                                  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| +可交换,可结合<br>+可交换,可结合<br>+两交换,可结合<br>+满足消去律<br>·满足消去配<br>+对一对一对<br>+对一可分配<br>+与<br>次有吸收 | + 可交换, 可结合<br>・不可交换, 可结合<br>・不可交换, 可结<br>合<br>+ 满足消去律<br>・ 不满足消去律<br>・ オ+可分配<br>+ 対・不可分配 | U可交换,可结合<br>○可交换,可结合<br>○可交换,可结合<br>○不满足消去律<br>○不满足消去律<br>○对□可分配<br>□对□可分配<br>□与○满足吸收律 |
| 律                                                                                      | +与・没有吸收律                                                                                 |                                                                                        |

 $V_1$ ,  $V_2$ ,  $V_3$ 是同类型的代数系统  $V_1$ ,  $V_2$ 是同种的代数系统  $V_1$ ,  $V_2$ 是同种的代数系统  $V_1$ ,  $V_2$ 与 $V_3$ 不是同种的代数系统

### M

### 子代数

定义 设V=<S,  $f_1$ ,  $f_2$ , ...,  $f_k>$  是代数系统,B 是 S 的非空子集,如果 B 对  $f_1$ ,  $f_2$ , ...,  $f_k$  都是封闭的,且 B 和 S 含有相同的代数常数,则称 <B,  $f_1$ ,  $f_2$ , ...,  $f_k>$  是 V 的子代数系统,简称 子代数. 有时将子代数系统简记为 B.

实例 N是<Z,+>和<Z,+,0>的子代数. N-{0}是 <Z,+>的子代数,但不是<Z,+,0>的子代数 说明:

子代数和原代数是同种的代数系统 对于任何代数系统 *V*,其子代数一定存在.



### 关于子代数的术语

最大的子代数 就是V本身.如果V中所有代数常数构成集合 B,且 B对V中所有运算封闭,则 B就构成了V的最小的子代数.最大和最小子代数称为V的平凡的子代数. 若 B 是 S 的真子集,则 B 构成的子代数称为V的真子代数.

例2 设 $V=\langle Z,+,0\rangle$ ,令 $nZ=\{nz\mid z\in Z\}$ ,n 为自然数,则nZ 是V的子代数,当n=1 和0 时,nZ 是V的平凡的子代数,其他的都是V的非平凡的真子代数.



### 积代数

定义 设 
$$V_1 = \langle S_1, o \rangle$$
和  $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 o 和 \* 是二元运算.  $V_1$ 与  $V_2$ 的 积代数 是  $V = \langle S_1 \rangle \langle S_2, \cdot \rangle$ ,  $\forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in S_1 \rangle \langle S_2, \cdot \rangle$ ,  $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle = \langle x_1, x_2, y_1 \rangle \langle S_2, \cdot \rangle$ ,  $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle = \langle x_1, x_2, y_1 \rangle \langle S_2, \cdot \rangle$ ,  $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle = \langle x_1, x_2, y_1 \rangle \langle S_2, \cdot \rangle$ ,  $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in Z \rangle \langle S_1 \rangle \langle S_2, \cdot \rangle$ ,  $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in Z \rangle \langle S_1 \rangle \langle S_2 \rangle \langle S_2 \rangle \langle S_1 \rangle \langle S_2 \rangle \langle S_2 \rangle \langle S_1 \rangle \langle S_2 \rangle \langle$ 

#### M

### 积代数的性质

- 设  $V_1 = \langle S_1, o \rangle$ 和  $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 o 和 \*是二元运算.  $V_1$ 与  $V_2$ 的积代数是  $V = \langle S_1 \times S_2, * \rangle$ 
  - (1) 若 o 和 \* 运算是可交换的,那么·运算也是可交换的
  - (2) 若 o 和 \* 运算是可结合的,那么·运算也是可结合的
  - (3) 若 o 和 \* 运算是幂等的,那么·运算也是幂等的
  - (4) 若 o 和 \* 运算分别具有单位元  $e_1$  和  $e_2$ ,那么·运算也具有单位元< $e_1$ , $e_2$ >
  - (5) 若 o 和 \* 运算分别具有零元  $\theta_1$  和  $\theta_2$ ,那么·运算也具有零元<  $\theta_1$ ,  $\theta_2$ >
  - (6) 若x 关于 o 的逆元为  $x^{-1}$ , y 关于 \* 的逆元为  $y^{-1}$ ,那 么 $\langle x,y \rangle$ 关于·运算也具有逆元 $\langle x^{-1},y^{-1} \rangle$

### 同态映射的定义

定义 设  $V_1 = \langle S_1, \circ \rangle$ 和  $V_2 = \langle S_2, * \rangle$ 是代数系统,其中  $\circ$  和 \*是二元运算.  $f: S_1 \rightarrow S_2$ ,且 $\forall x, y \in S_1$ , $f(x \circ y) = f(x) * f(y)$ ,则称  $f \rightarrow V_1$ 到  $V_2$ 的同态映射,简称同态.



#### w

### 更广泛的同态映射定义

定义 设  $V_1 = \langle S_1, \circ, \cdot \rangle$ 和  $V_2 = \langle S_2, *, \diamond \rangle$ 是代数系统,其中  $\circ$ 和 \*是二元运算.  $f: S_1 \rightarrow S_2$ ,且  $\forall x, y \in S_1$   $f(x \circ y) = f(x) * f(y)$ ,  $f(x \cdot y) = f(x) \diamond f(y)$  则称  $f \rightarrow V_1$ 到  $V_2$  的同态映射,简称同态.

设  $V_1 = \langle S_1, \circ, \cdot, \Delta \rangle$ 和  $V_2 = \langle S_2, *, \diamond, \nabla \rangle$ 是代数系统,其中。和 \* 是二元运算.  $\Delta$  和  $\nabla$ 是一元运算, f:  $S_1 \rightarrow S_2$ ,且  $\forall x, y \in S_1$   $f(x \circ y) = f(x) * f(y)$ ,  $f(x \cdot y) = f(x) \diamond f(y)$ ,  $f(\Delta x) = \nabla f(x)$  则称  $f \rightarrow V_1$ 到  $V_2$ ,的同态映射,简称同态.

#### м

### 例题

例1 V=<R\*,·>,判断下面的哪些函数是V的自同态?

(1) 
$$f(x)=|x|$$
 (2)  $f(x)=2x$  (3)  $f(x)=x^2$ 

(4) 
$$f(x)=1/x$$
 (5)  $f(x)=-x$  (6)  $f(x)=x+1$ 

解 (2),(5),(6) 不是自同态.

(1) 是同态, 
$$f(x\cdot y) = |x\cdot y| = |x|\cdot |y| = f(x)\cdot f(y)$$

(3) 是同态, 
$$f(xy) = (xy)^2 = x^2 \cdot y^2 = f(x) \cdot f(y)$$

(4) 是同态, 
$$f(x\cdot y) = 1/(x\cdot y) = 1/x \cdot 1/y = f(x) \cdot f(y)$$



### 特殊同态映射的分类

同态映射如果是单射,则称为单同态: 如果是满射,则称为满同态,这时称  $V_2$ 是  $V_1$ 的同态像,记作  $V_1 \sim V_2$ ; 如果是双射,则称为 同构,也称代数系统 1/1 同构于 $V_2$ ,记作  $V_1 \cong V_2$ . 对于代数系统 V,它到自身的同态称为自同态. 类似地可以定义单自同态、满自同态和自同构.

# 同态映射的实例

例2 设V=<Z,+>, $\forall a\in$ Z,令

$$f_a: \mathbb{Z} \to \mathbb{Z}, f_a(x) = ax$$

那么 $f_a$ 是V的自同态.

因为 $\forall x,y \in \mathbb{Z}$ ,有

$$f_a(x+y) = a(x+y) = ax+ay = f_a(x)+f_a(y)$$

当 a = 0 时称  $f_0$ 为零同态;

当 $a=\pm 1$ 时,称 $f_a$ 为自同构;

除此之外其他的 $f_a$ 都是单自同态.

#### ne.

### 同态映射的实例(续)

例3 设
$$V_1$$
=< $Q$ ,+>,  $V_2$ =< $Q$ \*,->, 其中 $Q$ \*=  $Q$ -{ $0$ },令  $f: Q \rightarrow Q$ \*,  $f(x)$ = $e^x$ 

那么 $f \in V_1$ 到 $V_2$ 的同态映射,因为 $\forall x, y \in Q$ 有

$$f(x+y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y).$$

不难看出f是单同态.

### 同态映射的实例 (续)

例4 
$$V_1 = \langle Z, + \rangle$$
,  $V_2 = \langle Z_n, \oplus \rangle$ ,  $Z_n = \{0,1, \dots, n-1\}$ ,  $\oplus$  是模  $n$  加. 令
$$f: Z \to Z_n, f(x) = (x) \mod n$$
则  $f \not\in V_1$ 到  $V_2$  的满同态.  $\forall x, y \in Z$ 有
$$f(x+y) = (x+y) \mod n$$

$$= (x) \mod n \oplus (y) \mod n$$

$$= f(x) \oplus f(y)$$

## 同态映射的实例 (续)

例5 设  $V=\langle Z_n, \oplus \rangle$ ,可以证明恰有 n 个G 的自同态,  $f_n: \mathbf{Z}_n \rightarrow \mathbf{Z}_n$  $f_n(x) = (px) \mod n, p = 0,1,...,n-1$ 例如 n=6, 那么 f。为零同态;  $f_1$ 与 $f_2$ 为同构;  $f_3$ 与 $f_4$ 的同态像是{0,2,4}; f, 的同态像是{0,3}.



### 同态映射保持运算的算律

设 $V_1,V_2$ 是代数系统. o,\*是 $V_1$ 上的二元运算,o',\*'是 $V_2$ 上对应的二元运算,如果 $f: V_1 \rightarrow V_2$ 是满同态,那么

- (1)若o运算是可交换的(可结合、幂等的),则o'运 算也是可交换的(可结合、幂等的).
- (2) 若o运算对\*运算是可分配的,则o'运算对\*'运算也是可分配的;若o和\*运算是可吸收的,则 o'和\*'运算也是可吸收的。



### 同态映射保持运算的特异元素

- (3) 若e为o 运算的单位元,则 f(e)为o2运算的单位元.
- (4) 若  $\theta$ 为。运算的零元,则  $f(\theta)$  为。'运算的零元.
- (5) 设  $u \in V_1$ ,若  $u^{-1}$  是 u 关于o运算的逆元,则  $f(u^{-1})$  是 f(u)关于o'运算的逆元。



### 同态映射的性质

#### 说明:

上述性质仅在满同态时成立,如果不是满同态,那么相关性质在同态像中成立.

同态映射不一定能保持消去律成立.

例如  $f: \mathbb{Z} \to \mathbb{Z}_n$  是  $V_1 = \langle \mathbb{Z}, \cdot \rangle$  到  $V_2 = \langle \mathbb{Z}_n, \otimes \rangle$ 的同态,  $f(x) = (x) \mod n$ ,  $V_1$  中满足消去律,但是当 n 为合数时,  $V_2$  中不满足消去律.

#### .

### 例题

例6 设 $V_1$ =<Q,+>, $V_2$ =<Q\*,·>,其中 Q 为有理数集合,Q\*=Q-{0},+和·分别表示普通加法和乘法.

证明不存在 1/2 到 1/1 的同构.

证 假设 f是  $V_2$ 到  $V_1$  的同构,那么有f:  $V_2 \rightarrow V_1$ , f(1)=0. 于是有

$$f(-1)+f(-1)=f((-1)(-1))=f(1)=0$$

从而 f(-1)=0,又有 f(1)=0,这与 f 的单射性矛盾.