ANÁLISIS NUMÉRICO II — Práctico N°3 - 2023 Normas

- 1. Demuestre que para $p \ge 1$ y $x \in \mathbb{R}^n$ vale $\|x\|_{\infty} \le \|x\|_p$ y $\|x\|_p \le n^{1/p} \|x\|_{\infty}$. Concluya que
 - a) $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.
 - b) $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$.
 - c) $\lim_{p\to\infty} ||x||_p = ||x||_{\infty}$.
- 2. Demuestre que $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$.
- 3. Grafique la bola unidad $\mathcal{B} = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\}$ para $||\cdot|| = ||\cdot||_1$, $||\cdot||_2$ y $||\cdot||_{\infty}$.
- 4. a) Dada una norma vectorial $\|\cdot\|$ en \mathbb{R}^n , ¿qué condiciones debe cumplir una matriz $A \in \mathbb{R}^{m \times n}$ con m > n para que la función $\|\cdot\|_A$ definida por $\|x\|_A = \|Ax\|$, $\forall x \in \mathbb{R}^n$ sea una norma vectorial?.
 - b) Para $A \in \mathbb{R}^{n \times n}$ simétrica y definida positiva, se define $||x||_A = \sqrt{x^T A x}$. Demuestre que $||\cdot||_A$ es una norma vectorial en \mathbb{R}^n y que $\sqrt{\lambda_{\min}(A)} ||x||_2 \le ||x||_A \le \sqrt{\lambda_{\max}(A)} ||x||_2$, con $\lambda_{\min}(A)$, $\lambda_{\max}(A)$ el mínimo y máximo autovalor de A. ¿Qué ocurre si A = I?.
- 5. La distancia Euclídea de un punto $x \in \mathbb{R}^n$ al conjunto $C = \{x \in \mathbb{R}^n \mid x_i \leq 0, i = 1, \dots, n\}$ puede definirse como

$$d(x) = \| \max\{0, x\} \|_2,$$

donde el máximo es tomado coordenada a coordenada.

- a) Demuestre que d cumple la desigualdad triangular.
- b) Encuentre una norma $\|\cdot\|$, tal que al cambiar $\|\cdot\|_2$ por $\|\cdot\|$, d no cumpla la desigualdad triangular.
- 6. Sea $\|\cdot\|$ una norma vectorial y sean $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Pruebe que la norma matricial inducida por $\|\cdot\|$ satisface que:
 - a) es efectivamente una norma matricial.
 - b) $||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n$.
 - c) $\exists x \in \mathbb{R}^n, x \neq 0 \text{ tal que } ||Ax|| = ||A|| ||x||.$
 - d) $||AB|| \le ||A|| ||B||$ (submultiplicatividad).
 - e) Si $A \in \mathbb{R}^{n \times n}$ es no singular, entonces $||A|| ||A^{-1}|| \ge 1$.
 - $f) \ \rho(A) \le ||A||, \ \forall \ A \in \mathbb{R}^{n \times n}, \ \text{donde} \ \rho(A) = \max\{|\lambda| \mid \det(A \lambda I) = 0\}.$
- 7. Si $A \in \mathbb{R}^{n \times n}$, entonces $||A||_2 = \max_{||x||_2 = 1} ||Ax||_2 = \max_{||x||_2 = 1, ||y||_2 = 1} y^T A x$.
- 8. Demuestre que $||A||_{\max} = \max_{1 \le i \le m, 1 \le j \le n} |a_{ij}|$ es una norma matricial en $\mathbb{R}^{m \times n}$, pero no es submultiplicativa.
- 9. Si $A \in \mathbb{R}^{m \times n}$, demueste que:
 - a) $||A||_{\text{máx}} \le ||A||_2 \le ||A||_F \le \sqrt{mn} ||A||_{\text{máx}}$.
 - b) $\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{m} ||A||_{\infty}$.
 - c) $\frac{1}{\sqrt{m}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$.

10. Muestre que si $0 \neq s \in \mathbb{R}^n$ y $A \in \mathbb{R}^{n \times n}$, entonces

$$\left\| A \left(I - \frac{ss^T}{s^T s} \right) \right\|_F^2 = \|A\|_F^2 - \frac{\|As\|_2^2}{\|s\|_2^2}.$$

- 11. Pruebe las siguientes afirmaciones:
 - $a) \kappa(A) = \kappa(A^{-1}),$
 - b) $\kappa(AB) \leq \kappa(A)\kappa(B)$, para toda $A, B \in \mathbb{R}^{n \times n}$ y $\|\cdot\|$ submultiplicativa,
 - c) Si A es una matriz ortogonal, entonces $\kappa_2(A) = 1$.
- 12. Considere el sistema

$$\left[\begin{array}{cc} 1000 & 999 \\ 999 & 998 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1999 \\ 1997 \end{array}\right].$$

El vector $\hat{x} = [20.97, -18.99]^T$ es una mala aproximación de la solución. Pruebe que los residuos $r_1(\hat{x})$, $r_2(\hat{x})$ y $r_{\infty}(\hat{x})$ son sin embargo pequeños. Así vemos que en un sistema mal condicionado casi no hay relación entre el tamaño del residuo y la exactitud de la solución.

- 13. Sea $A = \begin{bmatrix} 375 & 374 \\ 752 & 750 \end{bmatrix}$.
 - a) Calcule A^{-1} y $\kappa_{\infty}(A)$.
 - b) Encuentre b, ϑ , x y ζ tales que Ax = b, $A(x + \zeta) = b + \vartheta$, $\frac{\|\vartheta\|_{\infty}}{\|b\|_{\infty}}$ sea pequeño y $\frac{\|\zeta\|_{\infty}}{\|x\|_{\infty}}$ sea grande.
 - c) Encuentre b, ϑ, x y ζ tales que $Ax = b, A(x + \zeta) = b + \vartheta, \frac{\|\zeta\|_{\infty}}{\|x\|_{\infty}}$ sea pequeño y $\frac{\|\vartheta\|_{\infty}}{\|b\|_{\infty}}$ sea grande.
- 14. a) Sea $A(\epsilon) = \begin{bmatrix} 1 & 1 \epsilon \\ 0 & 1 \end{bmatrix}$. Utilice Python para graficar $\det(A(\epsilon))$ y $\kappa_2(A(\epsilon))$ cuando $\epsilon \to 0$
 - b) Sea $A(\epsilon) = \begin{bmatrix} 1/\epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$. Utilice Python para graficar $\det(A(\epsilon))$ y $\kappa_2(A(\epsilon))$ cuando $\epsilon \to 0$.
 - c) Implemente una función que, dado un ϵ como entrada, grafique la esfera unidad con norma 2 en \mathbb{R}^2 y su transformación a través de las matrices de los items anteriores. El gráfico debería mostrar las 3 esferas en la misma figura. Ejecutarla para $\epsilon \in \{0.25, 0.125, 0.0625, 1e-5\}$.