Symulacja sieci antycypacyjnych

Michał Krzyszczuk, grupa 3a-środa 8:00

Instancja I

Zadana jest jedna macierz kosztów, sprzężenia antycypacyjne występują od pierwszego wierzchołka, do wierzchołków 5,6. Instancje wejściowe znajdują się w dodatku. Otrzymano jedno rozwiązanie przedstawione na rysunku poniżej.

Rysunek 1. Znalezione rozwiązanie, otrzymane bez sprzężeń.

Koszt znalezionego rozwiązania K = 14+2+6+7+23=52

Rysunek 2 Rozwiązanie optymalne, z uwzględnieniem sprzężeń.

Koszt znalezionego rozwiązania K =52

Instancja II

Zadana jest jedna macierz kosztów, sprzężenia antycypacyjne występują od drugiego wierzchołka, do wierzchołków 3,4,5,6,7,8 oraz od czwartego wierzchołka do 6 i 7. Instancje wejściowe znajdują się w dodatku. Otrzymano jedno rozwiązanie przedstawione na rysunku poniżej.

Rysunek 1 Rozwiązanie optymalne, stosując kryterium lokalne.

Koszt rozwiązania K = 1+2+21+15=49

Rysunek 2. Rozwiązanie optymalne z uwzględnieniem sprzężeń.

Instancja III

Dane wejściowe znajdują się w dodatku

Rysunek 2 Kryterium pierwsze, rozwiązanie optymalne uzyskane obiema metodami.

Rysunek 3 Kryterium 2, rozwiązanie 1

Rysunek 4 Kryterium 2, rozwiązanie optymalne uzyskane metodą lokalnie najlepszej ścieżki oraz ze sprzężeniami.

Instancja IV

Kryterium 1

Najkrotsza sciezka dla funkcji kosztu 1, bez sprzężeń K=7

Najkrotsza sciezka dla funkcji kosztu 1 K=6

Dla pierwszego kryterium funkcja z uwzględnieniem sprzężeń antycypacyjnych znalazła alternatywną ścieżkę- o mniejszym koszcie co funkcja wybierająca w każdej iteracji ścieżkę o lokalnie najmniejszym koszcie.

Kryterium 2

Najkrotsza sciezka dla funkcji kosztu 2, bez sprzężeń K=6

Najkrotsza sciezka dla funkcji kosztu 2 K=6

Poniżej przedstawione zostaną wszystkie możliwe ścieżki dojścia, z wierzchołka 1 do 7. Są one takie same dla obu grafów, jednak determinują one różne koszty przejścia. Dla porządku G1 to graf z krawędziami o Koszcie funkcji kosztu numer 1, natomiast G2 to graf z krawędziami o Koszcie funkcji kosztu numer 2.

Rysunek 5 Możliwe Przejścia z wierzchołka 1 do 7 dla grafu G1

Rysunek 6 Możliwe ścieżki przejścia dla gafu G2

Porównanie otrzymanych ścieżek oraz kosztów przez nie generowanych znajduje się w tabeli.

ścieżka	F(p) dla K1	F(p) dla K2
[1,2,4,5,7]	9	6
[1,2,3,6,7]	6	6
[1,2,3,5,7]	6	7
[1,2,4,6,7]	7	6

Wnioski

- W ramach optymalizacji jednokryterialnej nie można użyć pojęcia "rozwiązanie niezdominowane" ponieważ jest to sprzeczne z jego definicją
- Zwiększenie ilości kryteriów oceny przejść implikuje większą ilość rozwiązań niezdominowanych
- Napisanie programu, który umożliwia znalezienie wszystkich rozwiązań z uwzględnieniem sprzężeń antycypacyjnych okazało się zadaniem trudnym do rozwiązania, tak by było ono skalowalne, uniwersalne i zawsze poprawne.
- Zaimplementowana funkcja do znajdowania wszystkich połączeń między w grafie, między dwoma wierzchołkami czasami zwraca jedną ścieżkę więcej, nie udało się jednak wyjaśnić tego zjawiska.