Darstellung ganzer Zahlen

hν

Dr. Günter Kolousek

Zahlen

- ganze Zahlen
 - vorzeichenlos
 - vorzeichenbehaftet
 - ▶ mit designiertem VZ-Bit
 - ► Einerkomplement
 - Zweierkomplement
- ► Kommazahlen
 - Festkommazahlen
 - Gleitkommazahlen

Vorzeichenlose Zahlen

Beispiel mit einer Wortbreite n = 4:

0000	0
0001	1
1111	15

Damit ergibt sich bei einer Wortbreite n ein Wertebereich im Intervall $[0,2^n-1]$.

Vorzeichenbehaftete Zahlen

- Darstellung mit designiertem VZ-Bit
- ► Darstellung im Einerkomplement
- Darstellung im Zweierkomplement

designiertes VZ-Bit

0000 0001	+0 +1
 0111 1000 1001	+7 -0 -1
 1111	-7

Damit ergibt sich ein Wertebereich im Intervall $[-2^{n-1}+1, 2^{n-1}-1]$ Nachteile?

designiertes VZ-Bit

0000 0001	+0 +1
 0111 1000 1001	+7 -0 -1
 1111	-7

Damit ergibt sich ein Wertebereich im Intervall $[-2^{n-1}+1, 2^{n-1}-1]$

Nachteile:

- VZ-Bit muss immer beachtet werden (beim Rechnen)
- 0 kommt zweimal vor

Einerkomplement

- ► (B-1)-Komplement bedeutet Erweiterung auf Bⁿ 1
- ▶ B = 2, (2-1)-Komplement ist (1)-Komplement

```
► Beispiel: B=10, z = 123
  d.h. n=3, B^n - 1 = 10^3 - 1 = 999
   999
   123
   876
► Beispiel: B=2, z=1010
   2^4 - 1 = 1111
   1111
   1010
   0101
```

Einerkomplement – 2

Damit ergit sich ein Wertebereich im Intervall von $[-2^{n-1}+1,2^{n-1}-1]$

Subtraktion mit EK

$$-4 + 3 = -1$$

$$1011$$

$$0011$$

$$----$$

$$1110 = -1$$

▶ aber wenn 0 "durchschritten" wird: -4 + 6 = 2

Nachteile?

Subtraktion mit EK

$$-4 + 3 = -1$$

$$1011$$

$$0011$$

$$----$$

$$1110 = -1$$

▶ aber wenn 0 "durchschritten" wird: -4 + 6 = 2

Nachteile:

- 0 kommt zweimal vor
- Sonderbehandlung bei "Durchschreiten" der 0

Zweierkomplement

- B-Komplement bedeutet Erweiterung auf Bⁿ
- damit ist: B-Komplement = (B-1)-Komplement + 1
- Beispiel: B=10, z=123
 d.h. n=3, Bⁿ=10³=1000
 1000
 123

877

Berechnung über Neunerkomplement:

```
999
123
---
876
1
---
877
```

Zweierkomplement - 2

```
    Beispiel: B=2, z=1010
    d.h. n=4, B<sup>n</sup> = 2<sup>4</sup> = 10000
    10000
    1010
    ----
    00110
```

Berechnung über Einerkomplement:

Zweierkomplement - 3

0000	0
0001	1
0111	7
1000	-8
1001	-7
1111	-1

Wertebereich: $[-2^{n-1}, 2^{n-1} - 1]$

Beispiele:

Wortbreite	min	max
8	-128	127
16	-32768	32767
32	-2'147'483'648	2'147'483'647
64	-9'223'372'036'854'775'808	-9'223'372'036'854'775'807

Subtraktion mit ZK

```
-4 + 3 = -1
0100
1011
   1
1100 = -4
1100
0011
1111 = -1
```

Subtraktion mit ZK - 2

```
Wenn 0 "durchschritten" wird:
```

```
-4 + 6 = 2
1100
0110
----
```

10010

Überlauf wird **nicht** beachtet \rightarrow 0010₂ = 2₁₀

Vorteile?

Subtraktion mit ZK - 2

Wenn 0 "durchschritten" wird:

```
-4+6=2
1100
0110
----
```

Überlauf wird **nicht** beachtet \rightarrow 0010₂ = 2₁₀

Vorteile:

10010

- keine doppelte 0en!
- keine Sonderbehandlung notwendig!