

Structure SLAM with Points, Planes, and Objects

Benchun Zhou, Maximilian Gilles, and Yongqi Meng

Institute for Material Handling and Logistics (IFL), Karlsruhe Institute of Technogy (KIT), Karlsruhe, Germany

Contents

- Background
- Literature Review
- Method
- Experiment
- Conclusion

Background

Research Question: Does the introduction of 3D objects can benefit robot localization?

Visual SLAM with feature points

Visual SLAM with different landmarks

Literature Review

	Sensor	Point	Plane	Object	Data Association
\cite{davison2007monoslam}	RGB	image patch			patch search
\cite{klein2007parallel}	RGB	FAST			patch search
\cite{mur2015orb}	RGB	ORB			descriptor matching
\cite{hsiao2017keyframe}	RGB-D		plane		normal, distance, residual
\cite{zhang2019point}	RGB-D		plane		normal, distance, boundary
\cite{yang2016pop}	RGB	ORB	plane		normal, distance, polygon
\cite{li2021rgb}	RGB-D	ORB	plane		normal, distance
\cite{hosseinzadeh2017sparse}	RGB-D	ORB	plane		normal, distance
\cite{salas2013slam++}	RGB-D			3D model	feature matching
\cite{nicholson2018quadricslam}	RGB			quadric	not mentioned
\cite{liao2020rgb}	RGB-D			quadric	not mentioned
\cite{liao2022so}	RGB-D			quadric	not mentioned
\cite{yang2019cubeslam}	RGB	ORB		cuboid	in-object points
\cite{li2020view}	RGB			cuboid	geometric features
\cite{lin2021topology}	RGB			cuboid	geometric features, graph matching

Point-based SLAM Mur-Artal et al, 2015

Point-plane SLAM Zhang et al, 2019

Point-plane-object SLAM Yang et al, 2019

IFL

Framework

TRACKING

Initial Pose Estimation from last frame or Relocalisation

Track Local Map New KeyFrame Decision

KeyFrame

Point-plane-object SLAM

On the top of ORB SLAM 2, but add planes and objects, in detection, optimization and mapping process MAP
Map
Points
Frames

Map
Planes

Map
Objects

Optimize Essential Graph

Loop Fusion Compute Sim3 Candidates Detection KeyFrame Insertion and Culling

Map Points Creation and Culling

Plane Estimation, Tracking, and Culling

Object detection, Tracking, and Culling

Local BA

LOOP CLOSING

Method: Landmark Detection and Association

association

- Representation
 - Camera pose
 - Features point
 - Plane
 - Object

- $SE(3) = \left\{ \begin{aligned} \mathbf{T} &= \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \in R^{4 \times 4} | \\ \mathbf{R} &\in R^{3 \times 3}, \mathbf{t} \in R^{3} \end{aligned} \right\}$
- $P = (x, y, z, 1)^T \in R^3$
- $\boldsymbol{\pi} = (n_x, n_y, n_z, d)^T \in R^3$
- $\mathbf{0} = (\mathbf{T}_{o}, \mathbf{D})^{T}, \mathbf{T}_{o} \in SE(3), \mathbf{D} \in \mathbb{R}^{3}$

- Association
 - Points points: feature matching

$$P_{asso} = |f(A) - f(B)| < thre_f$$

 $T_c \in SE(3)$

Plane – plane: normal and distance

$$\pi_{asso} = (|n1 - n2| < thre_n \&\& |d1 - d2| < thre_d)$$

Object – object: 3D IoU

$$O_{asso} = \frac{V_{overlap}}{V_1 + V_2 - V_{overlap}} > thre_v$$

association

association

Method: Optimization

Constraints

Camera – points: geometric reprojection error $e(P_{w}, \mathbf{T}_{cw}) = u_{c} - \rho(\mathbf{T}_{cw}^{-1}, P_{w})$

Camera – planes: angle and distance error

Point – planes: orthogonal distance error

Point – objects: orthogonal distance error

Plane – objects: angle and distance error

$$e(P_w, \mathbf{I}_{cw}) = u_c - \rho(\mathbf{I}_{cw}, P_w)$$

$$e(\pi_w, \mathbf{T}_{cw}) = \left\| q(\pi_m) - q(\mathbf{T}_{cw}^{-\top} \pi_w) \right\|$$

$$e(O_w, \mathbf{T}_{cw}) = \sum_{m \in \{1,8\}} z_m - \rho(\mathbf{T}_{cw}^{-1}, O_w)$$

$$e(P,\Pi) = \|\pi P\|$$

$$e(P,O) = \max(|T_o^{-1}P| - \mathbf{d}_m, \mathbf{0})$$

$$e(\Pi, O) = \|\min(q(\pi) - q(\pi_{oi}))\|$$

 ρ (.) is to project 3D points to image

 $q(\pi)$ is the minimum representation of plane

 πP is the orthogonal distance from point to plane

7

Method: Single Frame Object Detection

Mainly RGB information Fast Perform well on cuboid objects

Final Plane and

Method: Single Frame Object Detection

Object selection with constraints

(a) Object-Object Constraints: 3D IoU (front view)

(b) Object-Plane Constraints: angle & distance (top view)

(c) Object-Image Constraints: angle & distance (projected view)

Experiments: Single Frame Object Detection

Experiments: Single Frame Object Detection

SUN RGB-D Dataset

Class name (label_v6)	count	3D IoU (Intersection over Union)	Translation error (m)	Yaw error (rad)	Dimension error (m)
bed	184	0.4979	0.3963	0.1602=9.1°	[0.1527 0.1253 0.1126]
sofa	40	0.3189	0.4352	0.1569=9.0°	[0.1550 0.0968 0.0657]
sofa_chair	77	0.374	0.3244	0.1601=9.1°	[0.0469 0.0654 0.0575]
chair	163	0.3988	0.228	0.1637=9.4°	[0.0512 0.0477 0.0488]
garbage_bin	77	0.3786	0.1633	0.1090=6.2°	[0.0440 0.0391 0.0429]
night_stand	101	0.3559	0.2420	0.1634	[0.0505 0.0419 0.0537]
lamp	75	0.2578	0.2376	0.1371	[0.0368 0.0413 0.0462]
table	25	0.2576	0.5165	0.1804	[0.1227 0.0940 0.0787]

16.03.2023

- Indoor dataset: ICL-NUIM (living room and office)
- Comparison
 - Points only SLAM (ORB SLAM 2)
 - Points + Plane SLAM
 - Points + Object SLAM
 - Points + Plane + Object SLAM (Ours)

13

- Table: Evaluation results of root mean squared error of absolute camera pose error (RMSE-APE) on dataset (cm)
- Figure: Comparison of the estimated trajectories and corresponding ground truth.

Method	Living room kt-0	Living room kt-2	Living room kt-3
Point only SLAM	0.3971	2.5773	2.6434
Point-Plane SLAM	0.4927	2.3053	2.5570
Point-Object SLAM	0.4021	2.0543	2.5520
Point-Plane-Object SLAM	0.9916	1.77044	1.7551

a) Living room kt-0 b) Living room kt-2

c) Living room kt-3

16

- Table: Evaluation results of root mean squared error of absolute camera pose error (RMSE-APE) on dataset (cm)
- Figure: Comparison of the estimated trajectories and corresponding ground truth.

Method	Office kt-0	Office kt-2	Office kt-3
Point only SLAM	12.8362	2.6126	3.9202
Point-Plane SLAM	5.8526	1.4260	2.9024
Point-Object SLAM	6.3235	5.3889	3.1101
Point-Plane-Object SLAM	6.8302	1.7747	3.66788

c) Office kt-3

a) Office kt-0

■ Table: Average runtime of different SLAM components in ICL NUIM living room kt-2 sequence.

	Tasks	Average time (mSec)
Single image preprocess	Plane estimation	109.99
	Object detection	97.386
	Edge detection	18.831
Indoor ICL room dataset	Tracking thread	47.886
	Point only BA	63.240
	Point plane BA	135.55
	Point plane object BA	157.48

Conclusion

- What we have done
 - Proposed a structure SLAM which adds planes and objects to existing ORB-SLAM 2 system realize camera localization
 - Evaluated proposed SLAM method in and office sequences, results showed the introduction of objects can slightly improve localization accuracy

