Denial of Sleep Attacks in Wireless Sensor Networks

Micah Thornton Ryan Sligh Bobby Santoski

Computer Science & Engineering, Southern Methodist University, USA, mathornton@smu.edu

CSE 4344: Networks and Distributed Systems
Dallas, Texas
April 26, 2014

Outline of today's talk

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Battery Tests
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Battery Tests
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Brief Intro to Wireless Sensor Networks(WSNs)

- A wireless sensor network(WSN) is a network of Sensor Nodes
- Sensor Nodes send and receive wide varieties of data.
- Sensor Nodes are developed in bulk for mass deployment
- WSNs can be applied to many problems

Usage of Wireless Sensor Neworks

Attacks on WSN power supplies

- Bulk production has robbed WSNs of more robust battery lives
- The nature of WSNs makes them easy targets for Power Consumption Attacks
- A Power Consumption Attack exploits the small battery life of Sensor Nodes by draining the battery
- This attack can have devastating effects on the WSN
- Power Consumption Attacks are performed in multiple ways

Power Consumption attack models

Power Consumption attack models

Problem

- WSNs are vulnerable targets because of their power supply
- Certain WSNs are targeted frequently
- How do we defend against a wide range of Power Consumption Attacks?

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Battery Tests
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Summary

- The first simulation results tested different types of batteries
- The logical conclusion to mitigate risks of Power
 Consumption Attacks is to use more powerful batteries
- The batteries tested were:
 - Lead-Acid Batteries
 - Alkaline Long-Life Batteries
 - Carbon-Zinc Batteries
 - NiMH Batteries
 - NiCad Batteries
 - Lithium Ion Batteries
- With weights varying from 0.1 mg to 1 mg
- And Packet sizes varying from 2 bits to 1 kb

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Battery Tests
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Previous Strategies

- Some risk mitigation strategies have already been adopted for use in WSNs:
 - Predefined Transfer Windows
 - Node Reception Memory
 - Jamming Detection Protocols
 - Low Power Wake-up Radio
 - Defined Maximum Path Length
- Many strategies are developed with specific attacks in mind
- Even our proposed strategies have already been deployed

Proposed Strategies

- Targeted the root problem of all Power Consumption attacks:
 pre-defined battery life
- Installation of solar panels and other similar power regeneration devices.
- Attacks can still be mounted on the network, but would have to fight a endlessly renewing power source
- This addition could be costly, and distributors would need to shrink the size of their network
- But it is up to the distributor to examine there expected net benefit

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Battery Tests
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Future Work

- Model and test additional attack types
- Do a cost benefit analysis of different types of batteries and alternative power sources
- compare cost benefits of other mitigation strategies