Announcements

- Happy Chaper Day!!
- Still working on the tests, sorry
- Homework 7 is due on Monday!
- Physics Club on Thursday at 4:30pm
 - Nobody showed last week, so there goes my faith in you being able to solve the world's problems...
 - This week it gets easier. Solving mazes using a computer. Brought to you by me.
 - http://jrembold.github.io/code_challenge
- No class on Friday!

On Monday we saw that, for the case of the electret, despite there being no free charges present, $\vec{\bf E} \neq 0$ and thus $\vec{\bf D} \neq 0$. Since $\nabla \cdot \vec{\bf D} = \rho_{free}$, this implies that $\nabla \times \vec{\bf D} \neq 0$. Where is there a non-zero value of the curl of $\vec{\bf D}$ in this problem?

- A. In the center of the cylinder
- B. At the top surface
- C. At the bottom surface
- D. Just outside the cylinder

On Monday we saw that, for the case of the electret, despite there being no free charges present, $\vec{\bf E} \neq 0$ and thus $\vec{\bf D} \neq 0$. Since $\nabla \cdot \vec{\bf D} = \rho_{free}$, this implies that $\nabla \times \vec{\bf D} \neq 0$. Where is there a non-zero value of the curl of $\vec{\bf D}$ in this problem?

- A. In the center of the cylinder
- B. At the top surface
- C. At the bottom surface
- D. Just outside the cylinder

Which equation would you head to first?

$$\mathbf{A}. \ \vec{\mathbf{D}} = \epsilon_0 \vec{\mathbf{E}} + \vec{\mathbf{P}}$$

B.
$$\oint \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}} = Q_{free}$$

C.
$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q}{\epsilon_0}$$

D. More than one of these would work

A very large (basically infinite) capacitor has charge Q. A neutral dielectric is inserted into the gap (and it will of course then polarize). We want to find $\vec{\mathbf{D}}$ everywhere.

Which equation would you head to first?

$$\mathbf{A}. \ \vec{\mathbf{D}} = \epsilon_0 \vec{\mathbf{E}} + \vec{\mathbf{P}}$$

B.
$$\oint \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}} = Q_{free}$$

C.
$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = rac{Q}{\epsilon_0}$$

D. More than one of these would work

A large capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find $\vec{\mathbf{D}}$ in the dielectric. For the Gaussian cube shown, what is $Q_{free,enclosed}$?

- A. $\sigma \ell^2$
- B. $-\sigma_b \ell^2$
- C. $(\sigma \sigma_b)\ell^2$ D. $(\sigma + \sigma_b)\ell^2$

A large capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find $\vec{\mathbf{D}}$ in the dielectric. For the Gaussian cube shown, what is $Q_{free,enclosed}$?

A.
$$\sigma \ell^2$$

B.
$$-\sigma_b \ell^2$$

C.
$$(\sigma - \sigma_b)\ell^2$$

C.
$$(\sigma - \sigma_b)\ell^2$$

D. $(\sigma + \sigma_b)\ell^2$

A large capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find $\vec{\mathbf{D}}$ in the dielectric. Is $\vec{\mathbf{D}}$ zero inside the metal?

- A. It must be zero in there.
- B. It depends.
- C. It is definitely *not* zero in there.

A large capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find $\vec{\mathbf{D}}$ in the dielectric. Is $\vec{\mathbf{D}}$ zero inside the metal?

- A. It must be zero in there.
- B. It depends.
- C. It is definitely *not* zero in there.

A large capacitor has charge Q. A neutral linear dielectric with dielectric constant ϵ_r is inserted into the gap.

What is the electric field inside the dielectric?

A.
$$E = \frac{\sigma}{\epsilon_0 \epsilon_r}$$

B.
$$E = \frac{\sigma}{2\epsilon_0 \epsilon_r}$$

C.
$$E = \frac{\sigma \epsilon_r}{2\epsilon_0}$$

D.
$$E = \frac{2\sigma\epsilon_r}{\epsilon_0}$$

What is the electric field inside the dielectric?

A.
$$E = \frac{\sigma}{\epsilon_0 \epsilon_r}$$

B.
$$E = \frac{\sigma}{2\epsilon_0 \epsilon_r}$$

C.
$$E = \frac{\sigma \epsilon_r}{2\epsilon_0}$$

D.
$$E = \frac{2\sigma\epsilon_r}{\epsilon_0}$$

