Приближённое решение дифференциального уравнения

Отчёт студента 410 группы Михайлина Дмитрия Александровича 9 апреля 2019 г.

1 Постановка задачи

Решить дифференциальное уравнение:

$$\frac{d^2x}{dt^2} + (1 + \alpha x^2)x = \cos(t), \alpha = 0.2, -0.2 \tag{1}$$

Сами зададим начальные условия. Перепишем 1 в виде системы двух дифференциальных уравнений:

$$1 \Leftrightarrow \begin{cases} \frac{dx}{dt} = y\\ \frac{dy}{dt} = \cos(t) - (1 + \alpha x^2)x \end{cases}$$
 (2)

Получается мы свели дифференциальное уравнение второго порядка к системе дифференциальных уравнений. Будем решать эту систему при помощи метода Дормана-Принса 7 порядка.

Введём обозначения:

Пусть s - целое положительное число, называемое числом стадий и $a_{21},\dots a_{s,s-1},b_1,\dots b_s,c_2\dots c_s$ - вещественные коэффициенты. Тогда метод

$$k_{1} = f(x_{0}, y_{0})$$

$$k_{2} = f(x_{0} + c_{2}h, y_{0} + ha_{2,1}k_{1})$$

$$k_{3} = f(x_{0} + c_{3}h, y_{0} + h(a_{3,1}k_{1} + a_{32}k_{2})$$

$$...$$

$$k_{s} = f(x_{0} + c_{s}h, y_{0} + h(a_{s,1}k_{1} + \cdots + a_{s,s-1}k_{s-1}))$$

$$y_{1} = y_{0} + h(b_{1}k_{1} + \cdots + b_{s}k_{s}))$$
(3)

- будет *s*-стадийным явным методом Рунге-Кутта, решения задачи:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} \tag{4}$$

Определение 1. Метод Рунге-Кутты имеет порядок p, если:

$$||y(x_0+h)-y_1|| \le Kh^{p+1},$$

т.е члены для точного решения $y(x_0 + h)$ и для y_i совпадают до члена h^p включительно.

Приведем таблицы Бутчера из книги Хайрер Э., Нерсетт С., Ваннер Г. "Решение обыкновенных дифференциальных уравнений. Нежесткие задачи которыми будем пользоватся:

 c_i находятся в первом столбце, $a_{i,j}$ - располагаются как матрица во всех остальных строках и столбцах, последний столбец соответствует b_s .

Приведем таблицу Бутчера для метода Дормана-Принса 8(7) порядка.

2 Переменный шаг:

Правило Рунге:

Пусть заданы точка (x) и приближение $y^{(1)}(x)$ к y(x) – из обычной задачи Коши, вычисленное через таблицу Бутчера (методом Рунге-Кутта) с шагом 2h. Часто в ходе расчётов целесообразно изменять шаг интегрирования, контролируя величину погрешности метода на шаге. При практической оценке этой величины можно, например, рассуждать следующим образом. Главный член погрешности на шаге интегрирования есть;

$$\frac{\varphi^{(s+1)}(0)h^{s+1}}{(s+1)!}$$

Посчитаем приближение вычисленное в точке (x+h): $y^{(2)}(x)$ через таблицу Бутчера (методом Рунге-Кутта) с шагом h, за две итерации.

В результате двух шагов имеем:

$$y^{(1)} - y(x+2h) \approx \frac{\varphi^{s+1}(0)(2h)^{s+1}}{(s+1)!}$$

Из этих соотношений получаем представление главного члена погрешности на шаге:

$$y^{(1)} - y(x+2h) \approx \frac{y^{(2)} - y^{(1)}}{2^s - 1} \Rightarrow y(x+2h) \approx y^{(1)} + \frac{y^{(1)} - y^{(2)}}{2^s - 1}$$

Далее посчитаем ошибку. $err=\frac{||y^{(1)}-y^{(2)}||}{2^s-1}$, где s - порядок метода. В качестве нормы возьмем $||x||=max|x_i|$. Если ошибка меньше наперед заданного tol то мы принимаем эти два шага. h длину шага пересчитываем по следующей формуле: $h_{new}=h_{old}*min(facmin,max(facmax,fac*(\frac{err}{tol})^{\frac{1}{7}}))$. facmax, facmin, fac - это константы, которые выбираются для того, чтобы h не убывала слишком быстро и не возрастала слишком быстро. Это повышает надежность программы. Такой выбор шага называется **Правилом Рунге**.

Выбор шага в алгоритме Дормана-Принса:

Сначала вычисляем $y^{(1)}$ - приближенное значение в точке x_0+h методом Рунге-Кутта 7 порядка. Потом вычисляем $y^{(2)}$ приближенное значение в точке x_0+h уже методом 8 порядка. Рассматриваем ошибку как $err=||y^{(1)}-y^{(2)}||$. Если err< tol - то шаг принимается. Новый шаг h пересчитывается по формуле $h_{new}=h_{old}*min(facmin,max(facmax,fac*(\frac{err}{tol})^{\frac{1}{7}}))$.

3 Гармонический осциллятор

Рассмотрим работу алгоритмов RK-6, RK-7, RK-8 с выбором шага по правилу Рунге и алгоритма DP-8(7) на гармоническом осцилляторе.

$$x'' + \omega^2 x = 0 \tag{5}$$

Перепишем это дифференциальное уравнение в следующем виде:

$$\begin{cases} x' = y \\ y' = -\omega^2 x \end{cases}$$
 (6)

В следующих таблицах приводятся результаты работы алгоритмов на $[0, 10\pi], [0, 100\pi], [0, 1000\pi], [0, 10000\pi].$

Графики гармонического осциллятора $[0, 10\pi]$

Таблица 1: $[0, 10\pi]$.

Алг.:	Погр в 10π	Макс. погр.	Мин. шаг	Макс. шаг	Сред. шаг	Кол-во шагов
RK-6	6.16094e-08	6.16094e-08	0.0294031	0.124017	0.118662	265
RK-7	1.01278e-08	1.53735e-08	0.1	0.429062	0.387965	81
RK-8	4.3534e-09	6.37778e-09	0.0416447	0.593831	0.499327	63
DP-7	4.13717e-10	6.5382e-10	0.1	0.43188	0.402768	78

Таблица 2: $[0, 100\pi]$.

Алг.:	Погр в 100π	Макс. погр.	Мин. шаг	Макс. шаг	Сред. шаг	Кол-во шагов
RK-6	6.19492e-07	6.19492e-07	0.1	0.124017	0.119879	2621
RK-7	1.00721e-07	1.63357e-07	0.0392214	0.429062	0.409646	767
RK-8	1.61544e-08	6.87135e-08	0.1	0.593831	0.566994	555
DP-7	2.65332e-09	4.47656e-09	0.1	0.433579	0.433579	753

Таблица 3: $[0, 1000\pi]$.

Алг.:	Погр в 1000π	Макс. погр.	Мин. шаг	Макс. шаг	Сред. шаг	Кол-во шагов
RK-6	6.19848e-06	6.20021e-06	0.1	0.124017	0.119933	26195
RK-7	7.86173e-07	1.63662e-06	0.1	0.429062	0.413014	7607
RK-8	2.67748e-07	6.99391e-07	0.1	0.593831	0.572827	5485
DP-7	2.67163e-08	4.30018e-08	0.1	0.433578	0.418991	7498

Таблица 4: $[0, 10000\pi]$.

Алг.:	Погр в 10000π	Макс. погр.	Мин. шаг	Макс. шаг	Сред. шаг	Кол-во шагов
RK-6	6.20938e-05	6.21198e-05	0.1	0.124017	0.119938	261935
RK-7	6.45327e-06	1.64321e-05	0.1	0.429062	0.413257	76021
RK-8	3.48813e-06	7.04343e-06	0.1	0.593831	0.573486	54781
DP-7	2.65863e-07	4.29382e-07	0.1	0.433595	0.419142	74953

RK-6 [0, 10	$\pi]$
rk-6.png	
RK-7 [0, 10	$\pi]$
rk-7.png	

Таким образом, DP-7 ,несмотря на меньший порядок точности основного метода чем у RK-8 в итоге показывает большую точность, из-за лучшего выбора шага. Если сравнить DP-7 и RK-7, то DP-7 при меньшем количестве узлов показывает гораздо лучшую точность. Далее везде используем DP-7 .

4 Поиск периода

Сначала ищем такое минимальное t, что y(x(t)) = 0. Пусть это будет t_0 . Далее идем по фазовому портрету и ищем место, где y(x(t)) меняет знак. Ищем корень методом хорд. Хотим найти такое T, что:

$$\begin{cases} x(t_0) = x(t_0 + T), \\ y(t_0) = y(t_0 + T) \end{cases}$$

Такое минимальное Т и принимаем за ответ.

Период осциллятора

$$\begin{cases} x' = y \\ y' = -x \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

 $T \approx 6.28319 \approx 2\pi$

Osc

$$\begin{cases} x' = y \\ y' = -4x \\ x(0) = 0 \\ y(0) = 2 \end{cases}$$

 $T \approx 3.14159 \approx \pi$

5 Графики задачи и период

$$\begin{cases} x' = y \\ y' = -(1+0.2x^2)x + \cos(t) \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

solve_plus.png		[0, 10]	
	solve_plus.png		

sovle_plus_100.png	[0, 100]	

 $T \approx 4677.78$

$$\begin{cases} x' = y \\ y' = -(1 - 0.2x^2)x + \cos(t) \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

Решение не периодическое.

$$\begin{cases} x' = y \\ y' = -(1 - 0.2x^2)x + \cos(t) \\ x(0) = 0 \\ y(0) = -1 \end{cases}$$

Решение не периодическое.

