

Análisis de Sobrevida

II PARTE

Análisis de Sobrevivencia /Métodos utilizados

Métodos Paramétricos

- ➤ Se utilizan métodos Paramétricos cuando se desea realizar estudios de carácter Predictivo.
- ▶Para poder utilizarlos se requiere del conocimiento de la 'verdadera' distribución subyacente de la variable que se analiza
- ➤Si la distribución asumida es correcta, los métodos paramétricos son más 'precisos' que los No Paramétricos (o Cox)

Métodos Paramétricos. Cuál distribución asumir?

Para la representación de datos de sobrevida se utilizan con más frecuencia:

- **>**Weibull
- **≻**Exponencial

Otros (Statistica):

- **≻**Gompertz
- ➤ Riesgo Lineal
- Antes de utilizar un método de regresión Paramétrico debemos evaluar si la variable analizada se "ajusta" a alguna de las distribuciones arriba indicadas
- Existen *métodos gráficos y formales* de evaluar el ajuste de las distintas distribuciones
- Si la variable se ajusta a alguna de las distribuciones evaluadas entonces es válido utilizar un modelo de regresión paramétrico; de lo contrario debemos utilizar métodos semi-paramétricos (Cox) o No Paramétricos

Diferencias entre distintas distribuciones

Existen diferencias claves entre distintas distribuciones. En Statistica: Distribución Exponencial

Asume que la función de riesgo es constante a través del tiempo.

Distribución Weibull

El riesgo de sufrir el evento aumenta (o disminuye) de manera gradual con el tiempo

Distribución Riesgo Lineal

Asume que la función de riesgo es lineal a través del tiempo.

Distribución Gompertz

El patrón de riesgo es de forma sigmoide(S).

Log Normal

El riesgo de sufrir el evento aumenta al inicio y se reduce al final (o al contrario)

Diferencias entre distintas distribuciones

Ajuste de distribuciones

Datos: lung.sta

▶ Demostración STATISTICA

Comparación gráfica Interpretación de parámetros (log likelihood, valores P)

➤ Demostración Excel.

Construcción de curvas de Sobrevivencia y Riesgo mediante funciones Exponencial y Weibull.

Diferencias entre funciones

Métodos de ajuste de distribuciones en Statistica

En Statistica puede evaluarse el ajuste de 4 distintas distribuciones paramétricas (Exponencial, Lineal, Weibull, Gompertz)

La Bondad de Ajuste puede evaluarse mediante:

1)Métodos gráficos (curvas predichas vs datos observados)

2)Pruebas estadísticas formales (prueba Chi-cuadrado) donde:

*H*_o= el ajuste es adecuado Ha= el ajuste no es adecuado

Ajuste de distribución Exponencial a datos "lung"

El ajuste se realiza mediante 3 variantes del método de Mínimos Cuadrados MC (función minimizada: valores predichos-valores observados) MC no ponderados (weight1)

MC ponderados por (weight2,1/v) v=varianza dentro de intervalos MC ponderados por (weight3,N*H) N=no. de expuestos x intervalo y H=amplitud de intervalo

• Con los métodos de MC ponderados se acepta la hipótesis nula lo que sugiere un ajuste adecuado de la distribución exponencial

Ajuste de distribución Lineal a datos "lung"

	Parameter	rameter Estimates, Model: Linear Hazard (An_Sob1)									
	Note: Wei	e: Weights: 1=1., 2=1./V, 3=N(I)*H(I)									
Estimatn	Lambda	Variance	Std.Err.	Gamma	Variance	Std.Err.	Log-	Chi-Sqr.	df	р	/
Method		Lambda	Lambda		Gamma	Gamma	Likelhd.				
Weight 1	0.006864	0.000002	0.001517	-0.000003	0.000000	0.000004	-181.479	8.806538	9	0.455344	1
Weight 2	0.008029	0.000001	0.000800	-0.000007	0.000000	0.000003	-179.311	4.471394	9	0.877731	
Weight 3	0.008109	0.000001	0.000820	-0.000006	0.000000	0.000003	-179.415	4.679341	9	Q.861304	/

Se acepta la hipótesis nula en todos los casos, lo que sugiere un ajuste adecuado de la Dist. Lineal

Ajuste de distribución Gompertz a datos "lung"

Parameter Estimates, Model: Gompertz (An_Sob1)

Note: Weights: 1=1., 2=1./\(\sigma\), 3=N(I)*H(I)

	14010. 4401	ginto, i i.,	2 1.74,0	19(0) 11(0)								
Estimatn	Lambda	Variance	Std.Err.	Gamma	Variance	Std.Err.	Covarnce	Log-	Chi-Sqr.	df	p	
Method		Lambda	Lambda		Gamma	Gamma	Gam-Lamd	Likelhd.	·	,		
Weight 1	-5.00540	0.081038	0.284672	-0.000609	0.000001	0.000907	-0.000215	-181.947	9.741993	ø	0.371808	
Weight 2	-4.80412	0.011903	0.109101	-0.000837	0.000000	0.000545	-0.000039	-179.690	5.228871	9	0.813905	
Weight 3	-4.79974	0.012536	0.111965	-0.001076	0.000000	0.000586	-0.000043	-179.336	4.519551	9	0.874008	/

Se acepta la hipótesis nula en todos los casos

Ajuste de distribución Weibull a datos "lung"

Parameter Estimates, Model: Weibull (An_Sob1) Note: Weights: 1=1., 2=1./V, 3=N(I)*H(I)

Estimatn	Lambda	Variance	Std.Err.	Gamma	Variance	Std.Err.	Covarnce	Log-	Chi-Sqr.	df	р
Method		Lambda	Lambda		Gamma	Gamma	Gam-Lamd	Likelhd.			
Weight 1	0.026865	0.001571	0.039637	0.760920	0.055710	0.236029	-0.009326	-179.625	5.099080	9	0.825574
Weight 2	0.019013	0.000118	0.010859	0.828762	0.009964	0.099822	-0.001073	-179.665	5.179097	9	0.818411
Weight 3	0.024813	0.000227	0.015072	0.778243	0.011108	0.105396	-0.001573	-179.586	5.020039	9	0.83254

Se acepta la hipótesis nula en todos los casos

Métodos Paramétricos de Regresión Múltiple

Se utilizan cuando se desea "Modelar" el riesgo de ocurrencia de un evento (variable dependiente) en función de una serie de variables predictivas (covariables/variables independientes).

Ej Cáncer de Pulmón h(t)=Riesgo de muerte h(t)= Constante + Tratamiento+Tumor+ residual

- La ventaja de este tipo de modelos es que nos permiten evaluar la relación entre el evento y el (los) factores de exposición (ej tratamiento) 'controlando' por el posible efecto simultáneo de otras covariables.
- En Análisis de Sobrevida existen diversos métodos paramétricos para realizar regresión múltiple. La diferencia entre métodos consiste en el supuesto que se realiza sobre la distribución subyacente (Exponencial, Weibull, Log Normal, Normal)

Ajuste de modelos de Regresión Múltiple

Datos: Lung.sta

Modelo: Evento= Const. + Tratamiento + TipoTumor + resid.

>STATISTICA:

Métodos disponibles (Exponencial vs LogNormal vs Normal) Selección de método (Interpretación de gráficos)

≻EXCEL:

Interpretación de parámetros Beta.

Cálculo de Lambda desde constante y escala.

Cálculo de RR desde Betas.

Predicción de curvas de riesgo para grupos específicos

≻EGRET

Planteo de Análisis de Sobrev. En EGRET (KM-PL) Modelos de Reg. De Sobrevivencia En EGRET (Exponencial, Weibull)

➤ Ventajas/Desventajas EGRET vs STATISTICA

Ajuste de modelos de Regresión Múltiple/Statistica

Especificación de la distribución asumida (Con base en evaluación previa de ajuste de distribuciones o conocimiento biológico del patrón de ocurrencia del evento

Especificación de variables:

- **OJO! Las variables Independientes en STATISTICA son asumidas como continuas (No es adecuado en este caso)
- La opción de agrupación se utiliza solo compara la eficiencia de un modelo estratificado por grupos contra un análisis conjunto

Modelos de Regresión Múltiple Paramétrica/Statistica/Exponencial/Datos Lung

	Dependent Censoring v Chi² = 23.6	ar.: censori		Sob1) € 1						
N=137	Beta	Beta Standard t-value Error								
treatment	-0.089510	0.176802	-0.50627	H						
cell	-0.437499	0.089528	-4.88671	H						
Constant	5.590892									

Evalúa significancia del modelo propuesto

H0: El modelo no es adecuado Ha: El modelo es adecuado

Conclusión. Adecuado

		J					
	Parameter (Parameter Correlations (An_S					
	treatment	treatment cell Cor					
Variable							
treatment	1.0000000	-0.016903	-0.847152				
cell	-0.016903	1.000000	-0.434149				
Constant	-0.847152	-0.434149	1.000000				

Correlaciones entre parámetros del modelo (para evaluar colinearidad)

Estimados de constante y coeficientes para las variables incluidas en el modelo (observar magnitud de errores estándares, se buscan valor t>2)

Gráficos para evaluar distribución asumida

Se desea dispersión sobre la línea Conc. Ajuste no adecuado

Se desea dispersión aleatoria Conc. Ajuste no adecuado

Se desea dispersión sobre la línea Conc. Ajuste no adecuado

300

350

400

450

500

550

600

Modelos de Regresión Múltiple Paramétrica/Excel/Exponencial/Datos Lung

Se muestra como se obtienen los estimados de riesgo para distintos "t" con base en los coeficientes obtenidos para la función exponencial

Modelos de Regresión Múltiple Paramétrica/Excel/Weibull/Datos Lung

			_					ncer de P		
		Veibull								
							Códigos			
	` .	(a) a=1	(Br+	Rx +	Brl		Tratamien			
-1h(i	$t) = \lambda L$	$(\lambda t)^{\rho-1}\epsilon$	2\MMT	~2^2 ⁺	\n\n\		1	estándar		
	7 - 7	()					2	quimiotera	pia	
							Tipo de Tu	mor (tipo de	célula)	
Resultado:	s Egret:	В	BR				. 0	escamosa	-	
Btrat		0.0762	1.08				1	pequeñas		
Btumer		0.4360	1.55				2	adenoma		
Constante		5.5366					3	grandes		
Escala		1.0812								
Lambda		0.0060								
s/	(tratam)	/	1	1		1 2	2	2	2	
2 2	(tumor)	0	1	2		7 0	1	2	ز.	
	RR	1	1.54651	2.39169	3.6337	7 /	1.54651	2.39169	3.69877	
	t	h(t)	h(t)	h(t)	h(t) h(t)	h(t)	h(t)	h(t	
	0	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	
	50	0.00632	0.00977	0.01511	0.0233		0.01054	0.01630	0.0252	
	100	0.00668	0.01033	0.01598	0.0247		0.01115	0.01725	0.02667	
	150	0.00691	0.01068	0.01652	0.0255	0.00745	0.01152	0.01782	0.02750	
	200								:82	
	250	0.03500	Efecto tipo	o célula		0.01000	fecto tratami	ento	873	
	300	0.03000				0.00900			2910	
	350	0.02500	,			0.00800			953	
	400	0.02000	:			0.00600			98	
	450	<u></u> 별 0.01500	·			물 0.00500 0.00400			039	
	500	0.01000	1			0.00300				
		0.00500	ĭ		—— II	0.00200				

- - pequeñas

- - - grandes

Tiempo (d)

—— estándar

Se muestra como se obtienen los estimados de riesgo para distintos "t" con base en los coeficientes obtenidos para la función Weibull (de Egret) www.medvet.una.ac.cr/posgrado

Modelos de Regresión Múltiple Paramétrica/Statistica/Normal/Datos Lung

Dependent Variable: dayssurv (An Sob1) $Chi^2 = 13.5845 df = 2 p = .00112$ Beta Standard I-value N=137 Error -17.3201 26.70854 -0.64848 treatment -49.0929 13.05768 -3.75970 cell 232.3488 47.93237 4.84743 Constant 9.61286 16.01465 Sigma 153,9465

Modelo Altamente significativo

	Parameter (Correlations	Parameter Correlations (An_Sob1)							
	treatment	cell	Constant	Sigma						
Variable										
treatment	1.000000	0.062038	-0.862848	0.003703						
cell	0.062038	1.000000	-0.474690	-0.003408						
Constant	-0.862848	-0.474690	1.000000	0.008904						
Sigma	0.003762	-0.003408	0.008904	1.000000						

Correlaciones entre parámetros del modelo

Estimados de constante y coeficientes para las variables incluidas en el modelo (ojo: altos errores estándares)

Se desea dispersión aleatoria Conc. Ajuste no adecuado

Se desea dispersión aleatoria Conc. Ajuste no adecuado

Se desea dispersión sobre la línea Conc. Ajuste no adecuado

Modelos de Regresión Múltiple Paramétrica/Statistica/LogNormal/Datos Lung

		Dependent	Variable: dayssurv (Anj				
	Г	Censoring V	ng var.: censoring 3.4066 df = 2 p = .00123				
Chi = 13.4066 dt = 2 p = .00							
N=137			Error				
treatm	ent	0.124458	0.226400	0.54973			
cell		-0.406992	0.110778	-3.67395			
Consta	nt	4.598249	0.406407	11.31439			
Sigma		1.308529	0.082187	15.92132			
		4					

Estimados de constante y coeficientes para las variables incluidas en el modelo (ojo: altos errores estándares)

Evalúa significancia del modelo propuesto HO: El modelo no es adecuado

Ha: El modelo es adecuado

Conc. Adecuado

Parameter (Correlations	(An_Sob1)	
treatment	cell	Constant	Sigma
			-
1.000000	0.062989	-0.862763	0.003742
0.062989	1.000000	-0.475713	-0.003747
-0.862763	-0.475713	1.000000	0.008823
0.003742	-0.003747	0.008823	1.000000
	1.000000 0.062989 -0.862763	treatment cell	1.0000001 0.062989 -0.862763 0.062989 1.000000 -0.475713 -0.862763 -0.475713 1.000000

Correlaciones entre parámetros del modelo

Esta distribución ajusta significativamente mejor los datos!!

Se desea dispersión aleatoria Conc. Ajuste adecuado

Se desea dispersión aleatoria Conc. Ajuste adecuado

Se desea dispersión sobre la línea Conc. Ajuste adecuado

At every failure time: Para generar curva KM Life table : Tabla de vida, Especificar ancho de

Modelos de Regresión Múltiple Paramétrica/Egret/Exponencial/Datos Lung Asumiendo variables como continuas (SIN FACTORIZAR!!)

Modelos de Regresión Múltiple Paramétrica/Egret/Exponencial/Datos Lung Asumiendo variables como Nominales (FACTORIZANDO, + correcto)

< 0.001

Significancia del factor Tipo Tumor (todas las clases conjuntas) Aparece para var con + de 2 clases

34.3640

155 Intercepto (Sobrevida para individuos en clases base Treat =0, cell=0)

Modelos de Regresión Múltiple Paramétrica/Egret/Weibull/Datos Lung Asumiendo variables como Nominales (+ correcto)

Weibull Regression Model for Survival Data

C:\Program Files\Egret\Samples\Egret\Lung.cyl Data file name

Model (T,C) ~ %GM + treatment + cell + %SCL

Failure Times (T) dayssurv Censoring (C) censoring Repetition Count None

Analysis Type Fit using Modified Newton Raphson algorithm

Value

1.0269

Basic Information

Number of terms 4 Total Number of Observations 137 Rejected as Invalid Number of valid Observations 137

Model Fit Results

Summary Statistics

%SCL

Deviance	172.7629	131				
Likelihood ratio test	32897.2383	6	< 0.001			
Parameter Estimates					95	% C.I.
Terms	Coefficient	Std.Error	p-value	Rate Ratio	Lower	Upper
%GM	5.0382	0.2351	< 0.001	154.1971	97.2615	244.4618
treatment ='2'	0.1699	0.1988	0.3928	1.1852	0.8027	1.7500
cell ='1'	0.3281	0.2838	0.2476	1.3883	0.7960	2.4214
cell ='2'	-0.8379	0.2543	< 0.001	0.4326	0.2628	0.7121
cell ='3'	-0.9078	0.2897	0.0017	0.4034	0.2286	0.7118

0.0708

DF

p-value

Termwise Wald Test				
Term	Wald Stat.	DF	p-value	
cell	32.5545	3	< 0.001	

Resultados asumiendo variables nominales y Weibull Son muy similares al anterior

- · 0.10!
- Los RR reportados están "al revés" (ver siguiente)

Aclaración! Interpretación de Betas en EGRET y STATISTICA/ Regresión Paramétrica

Los coeficientes BETA que proporcionan EGRET y STATISTICA para modelos de regresión paramétrica (Exponencial y Weibull) están en la escala logarítmica negativa. Por lo tanto, para obtener el RR correcto se debe calcular:

exp^(-1 * B egret)

OJO! El RATE RATIO suministrado actualmente en EGRET para regresiones paramétricas (Exponencial y Weibull) está EQUIVOCADO!!

Summary Statistics					f ask		
	Value	DF	p-value		<i>exp</i> (-1*c	соет	
Deviance	172.9135	132					
Likelihood ratio test	31858.2617	5	< 0.001		_		
Parameter Estimates				*Incorrecto	*Corregido	95% C.I.	
Terms	Coefficient	Std.Error	p-value	Rate Ratio	Rate Ratio	Lower	Upper
%GM	5.044	0.229	< 0.001	155.039		99.029	242.728
treatment ='2'	0.170	0.194	0.380	1.186	0.843	0.811	1.735
cell ='1'	0.336	0.276	0.224	1.399	0.715	0.815	2.403
cell ='2'	-0.833	0.247	< 0.001	0.435	2.300	0.268	0.706
cell ='3'	-0.907	0.282	0.001	0.404	2.476	0.232	0.702
					[-	
Termwise Wald Test							
Term	Wald Stat.	DF	p-value				
cell	34.364	3	< 0.001				
Total analysis time 00:00:01							

STATISTICA VS. EGRET EN REGRESION PARAMETRICA

>STATISTICA:

- +Mejores pruebas de ajuste (gráficos)
- -No incluye Weibull entre opciones para regresión múltiple!
- -- Asume todas las variables como continuas!

≻FGRFT

- -Solo Weibull y Exponencial
- ++Permite categorizar (factorizar) variables nominales
- +Proporciona directamente RR y pruebas estadísticas (..pero ojo con el RR de modelos paramétricos)

Práctica

Rats.sta

Evaluar ajuste de distribuciones

Heart.sta

Evaluar ajuste de modelos de regresión en Statistica

Conc.csv

Evaluar ajuste de modelos de regresión en EGRET

Tranferir coeficientes a Excel y ajustar curvas de riesgo para grupos específicos