Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма. ЗАДАНИЕ ПО КОМПЛЕКУ ПРЕДМЕТОВ (ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА) РЕШЕНИЕ ВАРИАНТА 3014

начало задачи

В недалеком будущем страна Глобалитра достигла небывалого для себя уровня технического развития и даже построила свой космодром. Но вскоре ровно в зените над космодромом на высоте $H=600\,\mathrm{km}$ стал регулярно пролетать спутник-шпион. Спутник должен быть сбит! Для этого была изготовлена ракета, двигатель которой обеспечивал скорость истечения реактивной струи $u=1500\,\mathrm{m/c}$ и имел расход $\mu=125\,\mathrm{kr}$ топлива в секунду. Полная снаряженная масса ракеты составляла $5\,\mathrm{t}$, из которых $4,7\,\mathrm{t}$ приходилось на топливо.

необходимое отступление

Движение тела под действием приложенных к нему сил описывается простыми по форме уравнениями. Но в некоторых случаях параметры процесса могут изменяться в процессе движения. Это существенно усложняет расчет и часто делает невозможным получение решения в виде явного выражения (формулы). Тем не менее, существуют достаточно простые способы расчета приближенных решений. Для этого достаточно разбить рассматриваемый период времени на большое количество частей малой длительности и считать параметры постоянными в течение каждой из этих частей. Такой подход называется дискретизацией исходной "непрерывной" задачи.

Одним из примеров, требующих применения такого подхода, является реактивное движение. Как хорошо известно, сгорание топлива и истечение продуктов сгорания из сопла приводит к возникновению силы F_T , движущей ракету в сторону, противоположную направлению выброса из сопла. Величина создаваемой силы тяги $F_T = \mu u$. Здесь u — скорость ([м/с]) истечения продуктов сгорания относительно ракеты, μ — интенсивность сгорания топлива, часто также называемая секундным расходом топлива ([кг/с]). В процессе движения масса ракеты постоянно уменьшается по мере сгорания имеющегося запаса топлива. В случае полного выгорания топлива дальнейшее движение ракеты происходит только под действием сил гравитации.

В соответствии с описанным подходом можно считать, что топливо сгорает порциями и происходит это через каждые Δt секунд (эта величина может быть как целой,

так и дробной), а между этими моментами масса ракеты не изменяется. Тогда в течение каждого периода времени Δt движение ракеты можно рассматривать как движение материальной точки с постоянной массой, а в конце этого периода изменять (уменьшать) скачком массу ракеты на массу сгоревшего топлива.

Понятно, что чем меньше будет значение шага дискретизации Δt , тем точнее будет расчет, т.е. тем меньше будет разница между полученным дискретизированным решением и точным решением исходной задачи. В предельном случае (устремляя Δt к нулю) дискретизированные законы движения превратятся по форме записи в дифференциальные уравнения, но это уже совсем другая история. С другой стороны, при малых значениях Δt приходится делать огромное количество вычислений, что может сильно увеличивать время проведения расчета. Поэтому на практике приходится искать "золотую середину". Обычно поступают таким образом. Выбирают некоторое "среднее" значение Δt и проводят расчет до наступления какого-либо интересующего нас события. Затем уменьшают величину Δt вдвое и повторяют расчет до наступления того же события (ясно, что объем вычислений при этом удвоится). После этого сравнивают характеристики движения (скорость, высоту подъема или что-либо еще), полученные в первом и во втором расчетах. Разность между ними и будет характеризовать погрешность (точность) расчета. Если их расхождение невелико (погрешность мала), то результат расчетов считают удовлетворительным. Если же нет, то снова уменьшают Δt вдвое и т.д.

окончание задачи

Ракета с указанными выше параметрами стартует вертикально вверх. Эффекты, связанные с вращением Земли, и сопротивление атмосферы не учитываются.

- 1. Определите, сможет ли данная ракета достичь высоты спутника и сбить его, если радиус зоны поражения ракеты D составляет 150 м.
- 2. Рассчитайте, за какое время до прохождения спутником зенита следует осуществлять запуск.
- 3. Определите, сможет ли данная ракета поразить мишень, высота орбиты которой составляет $H_2 = 1200$ км.
- 4. Рассчитайте время полета ракеты до достижения ею максимально возможной высоты (высоту достаточно определить с точностью до 1 км).

РЕШЕНИЕ

I. Формулы.

Начнем с описания реактивного движения ракеты, взлетающей вертикально вверх с поверхности Земли. Эффектами, связанными с вращением Земли пренебрегаем, а также пренебрегаем сопротивлением воздуха. Тогда на движущуюся вертикально ракету будут действовать две силы — сила тяги, направленная вертикально вверх (но действующая только до момента окончания запасов топлива) и силу притяжения Земли, направленную вертикально вниз (и действующую постоянно).

В соответствии с приведенной в предисловии схемой будем считать, что изменения параметров движения (ускорение, скорость, высота, а также масса) происходят только в моменты времени $t_1,\,t_2,\,t_3,\dots$, удаленные на Δt друг от друга. Между этими моментами все параметры неизменны.

Пусть в момент времени t_i нам известны значения полной массы ракеты m_i , ее скорости v_i и достигнутой высоты вертикального подъема s_i . Необходимо найти значения этих же величин m_{i+1} , v_{i+1} , s_{i+1} в момент времени $t_{i+1}=t_i+\Delta t$. Записывая второй закон Ньютона, получаем

$$m_i a_i = \mu u - G \frac{M_3 m_i}{(R_3 + s_i)^2}$$
.

Здесь a_i — ускорение ракеты в момент времени t_i , M_3 и R_3 — масса и радиус Земли, G — гравитационная постоянная. Первое слагаемое в правой части задает силу реактивной тяги, второе — силу притяжения ракеты к Земле. Таким образом, приобретаемое ракетой ускорение будет равно

$$a_i = \frac{\mu u}{m_i} - \frac{GM_3}{(R_3 + s_i)^2}$$
.

Теперь можно найти скорость и высоту $v_{i+1} = v_i + a_i \, \Delta t$, $s_{i+1} = s_i + v_i \, \Delta t$, а также массу, которая уменьшится на величину сгоревшего за время Δt топлива. Поскольку скорость сгорания нам известна и равна μ , получаем $m_{i+1} = m_i - \mu \, \Delta t$.

Объединяя вместе все формулы и исключая из них ускорение, получаем

$$\begin{cases} v_{i+1} = v_i + \frac{\mu u \Delta t}{m_i} - \frac{GM_3 \Delta t}{(R_3 + s_i)^2}, \\ s_{i+1} = s_i + v_i \Delta t, \\ m_{i+1} = m_i - \mu \Delta t. \end{cases}$$
 (1)

Теперь для того, чтобы можно было производить расчет по полученным формулам, достаточно задать начальные значения входящих в них величин. Это будут $v_0=0$, $s_0=0$ и $m_0=M_0$ (стартовая масса ракеты).

Однако ракета имеет ограниченный запас топлива. Поэтому в один из моментов времени будет сожжена его последняя порция. После этого ракета будет двигаться только под действием силы притяжения Земли. Соответственно, в выражении для ускорения останется только второе слагаемое, а масса ракеты перестанет изменяться.

Внося отмеченные коррективы, получаем формулы для расчета движения на втором этапе

$$\begin{cases} v_{i+1} = v_i - \frac{GM_3 \Delta t}{(R_3 + s_i)^2}, \\ s_{i+1} = s_i + v_i \Delta t, \\ m_{i+1} = m_p. \end{cases}$$
 (2)

Таким образом, окончательно получается алгоритм из двух этапов.

Пока топливо есть, т.е. $m_i > m_p$, расчет ведется по формулам (1), после — по формулам (2).

II. Алгоритм.

С точки зрения программной реализации для расчета по формулам (1) или (2) необходимо использовать цикл по целочисленному индексу i. Возникает вопрос о выходе из цикла.

С первым этапом все ясно. Как только очередное значение m_{i+1} становится меньше m_p , расчет следует прекратить и перейти ко второму этапу.

Рассмотрим теперь расчетные формулы второго этапа. Поскольку ускорение на втором этапе всегда отрицательно (т.е. направлено вниз), скорость (направленная изначально вверх) будет постоянно уменьшаться, а затем сменит знак на отрицательный (т.е. изменит направление). Этот момент будет соответствовать наибольшей высоте

подъема. После него высота начнет неуклонно уменьшаться — ракета начнет падать вертикально вниз. Поскольку цель следует сбивать на подъеме, дальнейшее движение ракеты нас не интересует. Значит, условием выхода из второго цикла можно считать появление отрицательной скорости $v_{i+1} < 0$.

Итогом описанных расчетов будет значение максимально достигнутой высоты взлета ракеты. Если оно меньше высоты пролетающего спутника, то ракета не сможет достичь своей цели. В противном случае необходимо постоянно следить за высотой и прерывать расчет, как только будет достигнута (или превышена) высота орбиты спутника H . Это заставляет добавлять еще одно условие к условиям выхода из циклов: $s_i > H$.

Наконец, не следует забывать об ограниченности мощности используемой вычислительной техники. Если количество повторов цикла будет слишком велико, можно не дождаться окончания расчета. Поэтому к описанным выше "смысловым" условиям обязательно следует добавлять условие на выход при совершении слишком большого числа шагов (например, $i > 10^6$). Разумеется, после выхода из цикла нужно уметь узнавать, что послужило причиной выхода.

III. Выбор параметров расчета.

Наконец, осталось разобраться, как выбирать временнОй шаг Δt . В соответствии с приведенной в предисловии схемой, возьмем произвольный шаг (например, $\Delta t=1,0$), проведем расчет и найдем высоту подъема S_1 . (Это будет либо максимальная высота взлета, либо высота, примерно равная высоте спутника.) Затем уменьшим шаг вдвое и снова найдем максимальную высоту подъема S_2 (т.е. запустим программу с шагом $\Delta t=0,5$). Оба полученные значения — величины неточные. Они не совпадают друг с другом, и ни одна из них не совпадает с точным значением нужной высоты. Но мы считаем, что их отличие от точного значения примерно равно их отличию друг от друга. А поскольку в условии дан радиус поражения D, то именно на такую величину (или меньше) S_1 и S_2 могут отличаться друг от друга.

Таким образом, если величина $|S_1-S_2|$ не превышает D, то расчет следует признать удовлетворительным по точности. Если же нет, то следует снова уменьшить шаг по времени (в нашем примере это будет $\Delta t=0,25$), найти новое уточненное значение высоты S_3 и сравнить $|S_2-S_3|$ с D. При необходимости повторить уменьшение Δt снова и т.д.

IV. Результаты расчетов.

Итак, алгоритм решения задачи разработан, программа написана, пора переходить к числам!

Задаем значения величин (в единицах СИ)

$$\mu = 125$$
, $u = 1500$, $M_0 = 5000$, $m_p = 300$, $H = 600000$, $D = 150$

и начинаем запускать расчетную процедуру (программу) при разных значениях шага по времени Δt . Это можно делать простым перебором.

Для пунктов задания 1, 2.

Ставим одним из условий выхода из цикла достижение заданной высоты H . Для пары расчетов с шагами $\Delta t=0,2$ и $\Delta t=0,1$ получаем расхождение $\left|S_1-S_2\right|\approx 105\,\mathrm{M},$ что меньше D , в то время как для пары шагов $\Delta t=0,4$ и $\Delta t=0,2$ расхождение $\left|S_1-S_2\right|>D$. При этом отслеживаем, что выход из цикла произошел именно по достижению нужной высоты.

Таким образом получаем ответ на первый вопрос – ракета СМОЖЕТ сбить спутник.

Подсчитав количество шагов по времени, которое пришлось сделать во время расчета, и умножив его на Δt получим, что полное время полета ракеты составит 227 с. Это и есть та величина, которую нужно определить во втором пункте задания.

Для пунктов задания 3, 4.

Начнем с поиска максимальной высоты подъема. Для этого убираем из условий выхода проверку высоты полета. Соответственно, выход из второго цикла будет осуществлен при достижении максимальной высоты. В качестве величины D теперь следует использовать более грубое значение D=1000. Подбирая шаг Δt , получаем, что впервые условие $\left|S_1-S_2\right| < D$ выполняется для пары шагов $\Delta t=0,01$ и $\Delta t=0,005$. Ясно, что более точным будет расчет с меньшим значением Δt . Поэтому в качестве ответа выбираем $S_2 \approx 908$ км.

Так как эта величина меньше, чем высота орбиты второго спутника, то его ракета сбить HE CMOЖЕТ.

Умножая шаг $\Delta t = 0,005$ на общее количество выполненных для поиска величины S_2 шагов, получаем время полета 508 с или 8 мин 28 с.