

Applied Cryptography CPEG 472/672 Lecture 6B

Instructor: Nektarios Tsoutsos

The SHA family of hash functions

- SHA=secure hash algorithm
 - NIST standard, worldwide standard
 - Use by non-military agencies in US
 - Replaced MD5 ('92-'05)
- SHA1 (160 bits)
 - M-D hash function with D-M compression
 - Based on special block cipher
 - 512-bit block size, compress: H=E(M,H)+H
 Addition of 32-bit values instead of XORs
 - Replaced NSA's SHA-0 that had a flaw

SHA1 internals

```
SHA1-compress(H, M):
   (a0,b0,c0,d0,e0) = H
   (a,b,c,d,e)=SHA1-BS(a0,b0,c0,d0,e0,M)
   return (a+a0, b+b0, c+c0, d+d0, e+e0)
```

- Operates on arrays of 32-bit integers
 - Initial value of H (i.e., H0) is constant
 - Output 5 x 32-bit values = 160 bits

SHA1 internals

```
SHA1-BS(a,b,c,d,e,M):
  W = expand(M)
  for i = 0 to 79:
    new=(a<<<5)+f(i,b,c,d)+e+K[i]+W[i]
    (a,b,c,d,e)=(new,a,b>>>2,c,d)
  return (a,b,c,d,e)
```

- K[i] values are predefined constants

SHA1 internals

- ⊙ expand() creates an array 320 bytes

 - Input: 512 message block (16x32-bits)

 - W[16]-W[79]=XOR of previous W and ROTL
- f() is a sequence of bitwise operations
 - Depends on the round
 - XORs

SHA-1 is now broken

- 2005: weaknesses found on SHA-1
 - Can find a collision in 2^63 operations
 - ⊙ Theoretical value is 2^80
- Shattered attack
 - https://shattered.io
 - Collision on two PDF documents
 - Cannot guarantee integrity any more
- Should use SHA-2, BLAKE2 or SHA-3

SHA-2

- Designed by the NSA, a NIST standard
 - Family of four hash functions
 - Hash output lengths: 224, 256, 384, 512
- ⊙ SHA-256
 - Longer hashes => better security levels
 - 256-bit chaining values
 - Eight 32-bit values

 - More complicated expand() and compress()

Other members of SHA-2 family

- SHA-224
 - Same as SHA-256
 - Take first 224 bits of the final chaining value
- ⊙ SHA-512
 - Similar to SHA-256
 - Different rotation offsets
 - Use 64 bit values instead of 32-bits
 - Ingests 1024-bit message blocks
- SHA-384
 - ⊙ Truncate SHA-512 to 384 bits

SHA-3

NIST competition

 Need to have a hash standard different from SHA-1 (broken) and SHA-2 (not yet broken)

Requirements

- Candidates should not be like SHA1, SHA2
- At least as secure/fast as SHA-2
- At least as capable as SHA-2

BLAKE, Grostl, JH, Keccak, Skein

Keccak (SHA-3)

- Sponge construction

Keccak (SHA-3)

- SHA-3 can ingest blocks of different sizes
 1152, 1088, 832, 576 bits
- Hash value bit size is:
- Uses a single core algorithm
 - SHA-2 uses two: one for 256, one for 512
- Supports extendable output functions
 - Part of the standard

BLAKE2

- SHA-3 is not faster than SHA-2
 - Need for secure fast hash
- - At least as secure as SHA-3
 - Faster than previous standard (incl. MD5)
 - Can hash large amounts of data
 - Supports parallelism
 - M-D based, D-M compress (ChaCha-based)
- Variants
 - BLAKE2b, BLAKE2s, BLAKE2bp, BLAKE2sp

Length Extension Attack

- Can generate hash of longer message
 - This can be very bad in some cases
- Mitigation
 - How can we prevent that?

Fooling Proof of Storage Protocols

- Proof of Storage Protocols
 - Cloud server proves to client that user files are indeed stored on the server
 - Server may have incentive to delete them to save storage
- How to prove the files are still there?
 - Client picks random C
 - Server returns Hash(M||C)
- What is the problem?

Hands-on exercises

- Length extension attack on SHA1
- SHA-3 examples
- BLAKE2 examples

Reading for next lecture

- Aumasson: Chapter 7
 - We will have a short quiz
- Midterm: Thu April 9th, 2:00-3:15pm
 - All material during first 6 weeks
 - ⊙ Chapters 1-6
 - o Lectures 1A-6B