Estruturas de Dados II (DEIN0083) 2018.1 Curso de Ciência da Computação 1^a avaliação

Prof. João Dallyson Sousa de Almeida			Data : 24/09/201								
Aluno:	Matrícula:	Т	Т	П	Т	Т	T		\top	Т	1

Regras durante a prova:

- É vetada: a consulta a material de apoio, conversa com colega e a utilização de dispositivos eletrônicos. A não observância de algum dos itens acima acarretará a anulação da prova.
- I. (2.0pt) Sobre a análise assintótica indique se cada afirmativa é verdadeira ou falsa e justifique sua resposta:

a)
$$2^{3n} \in O(2^n)$$
 b) $n \in \Theta(log n)$ c) $6n^3 \in \Theta(n^2)$ d) $200n + 7 \in \Omega(n^2)$

II. (1.0pt) Apresente a análise assintoticamente para as recorrências a seguir:

Teorema 4.1 (Teorema mestre)

Sejam $a \ge 1$ e b > 1 constantes, sejaf(n) uma função e seja T(n) definida sobre os inteiros não negativos pela recorrência

$$T(n) = aT(n/b) + f(n) ,$$

onde interpretamos n/b com o significado de $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. Então, T(n) pode ser limitado assintoticamente como a seguir.

- 1. Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$.
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para todo n suficientemente grande, então $T(n) = \Theta(f(n))$.

a)
$$T(n) = 4T(n/2) + n^5$$
 b) $T(n) = 4T(n/2) + 7n^2 + 2n + 1$

int i, j, k, count=0;

- IV. (2.0pt) Ilustre a operação do Counting Sort no lista [6, 0, 2, 2, 4, 1] Explique sua solução e apresente o vetor após cada iteração dos métodos de ordenação.
- V. (2.0pt) Escreva uma versão estável do algoritmo de ordenação HeapSort.
- VI. (2.0pt) Utilize o algoritmos de ordenação QuickSort (pivô direita) e InsertSort para ordenar o vetor [9, 2, 3, 8, 1, 7]. Apresente a solução da ordenação usando cada algoritmo mostrando a iteração passo a passo (ilustrando o vetor em cada iteração).