Physics 89 (Mathematical Methods) Problem Set #2 Due by 6pm, February 3, 2023

1 Various functions

Express each of the following in rectangular (x + iy) form:

(a)
$$\cosh(\pi i/4)$$
, (b) $\sinh(\frac{i\pi}{2} + \ln 2)$, (c) $\cos(\pi + i \ln 2)$, (d) i^i , (e) $\log i$, (f) $i^{2/3}$

For parts (d), (e) and (f), there are more than one solution if you treat the functions $\log z$ and $z^{2/3}$ as multivalued. Any one will suffice.

2 Driven Damped Harmonic Oscillator

A mass M is connected to a spring K and is driven by an oscillating force $F(t) = f \sin \omega t$. There is a friction force proportional to the velocity v of the mass and given by $-\gamma v$ (where γ is a constant). Find a solution x(t) to Newton's equation

$$M\ddot{x} = f\sin\omega t - Kx - \gamma\dot{x}$$

by following these steps:

- (a) Replace F(t) with the complex $\tilde{F} = fe^{i\omega t}$.
- (b) Look for a complex solution of the form $x(t) = ze^{i\omega t}$, where z is a complex constant. Substitute this into Newton's equation to get an equation for z.
- (c) Express the solution for z in terms of the constants M, K, f, γ , and ω .
- (d) Calculate the imaginary part of x(t) to get the physical solution.

To be sure, in your solution you don't need to write anything for part (a).

3 Integrals using complex numbers

Evaluate $\int e^{(a+ib)x} dx$ and take real and imaginary parts to show that:

(a)
$$\int e^{ax} \cos bx dx = \frac{e^{ax} (a \cos bx + b \sin bx)}{a^2 + b^2}, \qquad \int e^{ax} \sin bx dx = \frac{e^{ax} (a \sin bx - b \cos bx)}{a^2 + b^2}.$$

(Problems 2.11.17 and 2.11.18 of [Boas].)

4 Taylor series for analytic functions

Define the two functions f(x) and g(x) by

$$f(x) = \frac{1}{x^2 + 6x + 5}, \qquad g(x) = \frac{1}{x^2 + 4x + 5}.$$

The two Taylor series

$$f(x) = \frac{1}{x^2 + 6x + 5} = \frac{1}{5} - \frac{6}{25}x + \frac{31}{125}x^3 + \cdots$$
$$g(x) = \frac{1}{x^2 + 4x + 5} = \frac{1}{5} - \frac{4}{25}x + \frac{11}{125}x^3 + \cdots$$

turn out to have different segments of convergence. The series for g(x) converges for $|x| < \sqrt{5}$ and doesn't converge for $|x| > \sqrt{5}$, while the series for f(x) converges for |x| < 1 and doesn't converge for |x| > 1.

Can you explain this fact using complex numbers?

[You don't have to explain what happens at $x = \pm 1$ for f(x) and $x = \pm \sqrt{5}$ for g(x).]

References

[1] Mary L. Boas, "Mathematical Methods in the Physical Sciences," 3^{rd} Edition, John Wiley & Sons, 2006.