Le test de Friedman (1937)

Mise en situation

Dans la comparaison de s=2 traitements,

- la formation de blocs élimine une partie de la variabilité entre les sujets;
- on utilise le test des rangs signés de Wilcoxon.

Que faire quand on a s traitements?

Québec, 2008

Blocs complets équilibrés

Si on a $s \geq 3$ traitements, il est naturel de former des blocs de s individus. Par exemple :

10 polis à ongle \rightarrow 10 doigts

4 médicaments → la même personne à

4 moments différents

Il est essentiel de randomiser les traitements au sein de chacun des n blocs.

Assignation des rangs

On classe les observations de 1 à s au sein de chaque bloc. Sous

 H_0 : absence de différences entre les traitements,

toutes les configurations possibles de rangs sont équiprobables au sein d'une même bloc :

$$\frac{1}{\underline{s!}} \times \dots \times \frac{1}{\underline{s!}} = \left(\frac{1}{\underline{s!}}\right)^n.$$
n fois

Contre-hypothèse

Les tests considérés ici sont de type "omnibus" :

- ils ne fixent pas une contre-hypothèse particulière;
- ils sont conçus pour détecter une différence dans le niveau de la variable réponse.

On exclut que la différence se manifeste en terme de dispersion, par exemple.

Friedman vs Kruskall-Wallis

Dans le test de Kruskal-Wallis chaque reçoit un sore appartenant à l'ensemble $\{1,\ldots,N\}$ avec $N=\sum n_i=ns$.

Pour le test de Friedman, l'ensemble des scores possibles est

Sous H_0 , toutes les configurations de scores telles que $\{1, 2, ..., n\}$ se retrouvent dans chaque bloc sont équiprobables.

Notation

Soit

 $R_{ij} = \text{rang du traitement } i \text{ dans le bloc } j$

et

$$\bar{R}_{i\bullet} = \frac{1}{n} \left(R_{i1} + \dots + R_{in} \right).$$

Soit aussi

$$\bar{R}_{\bullet \bullet} = \frac{1}{ns} \sum_{i=1}^{s} \sum_{j=1}^{n} R_{ij} = \frac{s+1}{2}.$$

Test de Friedman (1937)

À l'instar du test de Kruskal-Wallis, l'idée est de calculer la dispersion entre les $\bar{R}_{i\bullet}$ autour de (s+1)/2:

$$Q = \frac{12n}{s(s+1)} \sum_{i=1}^{s} \left(\bar{R}_{i\bullet} - \frac{s+1}{2} \right)^{2} ,$$

où la constante est telle qu'asymptotiquement,

$$Q \approx \chi_{(s-1)}^2.$$

Valeurs critiques

Pour les cas où

- le nombre n de blocs est petit;
- le nombre s de traitements aussi.

Formule équivalente

On vérifie sans difficulté que

$$Q = \frac{12n}{s(s+1)} \sum_{i=1}^{s} \left(\bar{R}_{i\bullet} - \frac{s+1}{2} \right)^{2}$$
$$= \frac{12}{ns(s+1)} \sum_{i=1}^{s} R_{i\bullet}^{2} - 3n(s+1).$$

Milton Friedman

Milton Friedman (1912–2006) Surtout connu pour ses politiques monétaristes

Exemple 1

Les effets de s=3 tranquilisants sont mesurés sur n=4 patients :

Traitement		Suj	Total		
\overline{A}	3	2	3	3	11
B	2	3	1	1	7
C	1	1	2	2	6

Exemple 1 (rangs)

On trouve

$$R_{11} = 3$$
, $R_{12} = 2$, $R_{13} = 3$, $R_{14} = 3$,

$$R_{21} = 2$$
, $R_{22} = 3$, $R_{23} = 1$, $R_{24} = 1$,

$$R_{31} = 1$$
, $R_{32} = 1$, $R_{33} = 2$, $R_{34} = 2$.

et

$$R_{1\bullet} = 11, \quad R_{2\bullet} = 7, \quad R_{3\bullet} = 6.$$

Exemple 1 (calculs)

Dans cet exemple, on a s=3, n=4 et

$$Q = \frac{12}{4 \times 3 \times 4} (121 + 49 + 36) - 3 \times 4 \times 4 = 3.5.$$

La valeur critique au seuil 5% est 6.5. Ce test ne permet pas de rejeter H_0 .

$$\mathbf{Cas}\ s=2$$

Il y a alors deux rangs par bloc: 1, 2.

Par abus de notation, appelons

A =nombre de blocs où le traitement A se classe premier.

Dans les n-A autres cas, il finit second.

Sommes de rangs

On a

$$R_{1\bullet} = A \times 1 + (n - A) \times 2 = 2n - A,$$

$$R_{2\bullet} = (n-A) \times 1 + A \times 2 = n+A$$

et bien sûr

$$\frac{s+1}{2} = \frac{3}{2} \,.$$

"Calcul de Q"

Par suite,

$$Q = \frac{12n}{2 \times 3} \left\{ \left(2 - \frac{A}{n} - \frac{3}{2} \right)^2 + \left(\frac{A}{n} + 1 - \frac{3}{2} \right)^2 \right\}$$

$$= 2n \left\{ \left(\frac{1}{2} - \frac{A}{n} \right)^2 + \left(\frac{A}{n} - \frac{1}{2} \right)^2 \right\}$$

$$= 4n \left(\frac{A}{n} - \frac{1}{2} \right)^2 = \frac{4}{n} \left(A - \frac{n}{2} \right)^2,$$

une fonction de la statistique des signes!

Rappel

Sous H_0 ,

$$A \sim \mathcal{BIN}\left(n, \frac{1}{2}\right)$$
.

Par suite,

$$E(A) = \frac{n}{2}$$
 et $var(A) = \frac{N}{4}$.

Il n'est donc pas étonnant de trouver

$$Q = \left\{ \frac{A - \mathrm{E}(A)}{\sqrt{\mathrm{var}(A)}} \right\}^2 \approx \chi_{(1)}^2.$$

Cas s=2

On sait que le test des signes a une faible efficacité relative asymptotique par rapport au test t pairé. De même le test de Friedman est beaucoup moins puissant que le test F du plan complètement randomisé avec blocs lorsque le nombre de traitements s est faible.

Exemple 2

Huit sujets sous hypnose ont été soumis à quatre émotions.

Leur potentiel épidermique a été mesuré (en millivolts) dans chaque cas.

L'ordre des "traitements" a été randomisé.

Exemple 2 (données)

Émotion	1	2	3	4	5	6	7	8
Peur	23.1	57.6	10.5	23.6	11.9	54.6	21.0	20.3
Joie	22.7	53.2	9.7	19.6	13.8	47.1	13.6	23. 6
Tristesse	22.5	53.7	10.8	21.1	13.7	39.2	13.7	16.3
Calme	22.6	53.1	8.3	21.6	13.3	37.0	14.8	14.8
Peur	4	4	3	4	1	4	4	3
Joie	3	2	2	1	4	3	1	4
Tristesse	1	3	4	2	3	2	2	2
Calme	2	1	1	3	2	1	3	1

Exemple 2 (calculs)

Peur Joie Tristesse Calme

$$R_{1\bullet} = 27$$
 $R_{2\bullet} = 20$ $R_{3\bullet} = 19$ $R_{4\bullet} = 14$

$$Q = \frac{12}{Ns(s+1)} \sum_{i=1}^{4} R_{i\bullet}^2 - 3N(s+1) = 6.45.$$

Notez que la valeur critique exacte au seuil 5% est 7.65 et que

$$P\left(\chi_{(3)}^2 \ge 6.45\right) = 0.09.$$

Code SAS

```
options LS=60 nodate number=off;
data lecture;
input sujet traitement $ y;
cards;
1 peur 23.1
1 joie 22.7
8 calme 14.8
proc sort data=lecture;
by sujet;
proc rank data=lecture out=rang;
var y; by sujet; ranks ry;
run;
proc glm data=rang;
class sujet traitement;
model ry = sujet traitement;
run;
```

Sortie SAS

The SAS System

The GLM Procedure

Class Level Information

Classified by Variable regime

Class Levels Values

sujet 8 1 2 3 4 5 6 7 8

traitement 4 calme joie peur tristess

Number of observations 32

Sortie SAS (suite)

The SAS System

The GLM Procedure

Dependent Variable: ry Rank for Variable: y

Sum of

Source	DF	Squares	Mean Square	F Value
Model	10	10.75000000	1.07500000	0.77
Error	21	29.25000000	1.39285714	
Corrected Total	31	40.00000000		

R-Square Coeff Var Root MSE ry Mean 0.268750 47.20775 1.180194 2.500000

Sortie SAS (suite)

The SAS System

The GLM Procedure

Rank for Variable: w

Dependent Variable: rv

Dependen	t vari	able. Ty	nalik 101 Vallabi	.e. y
Source	DF	Type I SS	Mean Square	F Value
sujet	7	0.00000000	0.00000000	0.00
traitement	3	10.75000000	3.58333333	2.57
Source	DF	Type III SS	Mean Square	F Value
sujet	7	0.00000000	0.00000000	0.00
traitement	3	10.75000000	3.58333333	2.57

Remarque

La statistique F calculée par SAS est

$$F = \frac{(N-1)Q}{N(s-1)-Q} \approx \mathcal{F}[s-1, (N-1)(s-1)].$$

Puisque F = 2.57, on trouve

$$Q = \frac{N(s-1)F}{N-1+F} = \frac{24 \times 2.57}{7+2.57} = 6.45,$$

ce qui correspond bien à un seuil de 9%.

Traitement des égalités

En cas d'égalités au sein du bloc j, on emploie

$$R_{1j}^*,\ldots,R_{sj}^*$$

et alors

$$Q^* = \frac{\frac{12N}{s(s+1)} \sum_{i=1}^{s} (\bar{R}_{i\bullet}^* - \frac{s+1}{2})^2}{1 - \frac{1}{Ns(s^2 - 1)} \sum_{j=1}^{N} \sum_{i=1}^{\ell_j} (d_{ij}^3 - d_{ij})} \approx \chi_{s-1}^2,$$

approximation fort valable dès que $sN \geq 30$.

Exemple 3

On a montré brièvement 18 titres à 15 sujets.

Les livres étaient répartis en trois groupes égaux cotés (au hasard)

A, B, C.

Un peu plus tard, on a demandé aux sujets s'il se rappelaient des titres.

Exemple 3 (titres oubliés)

Titre	1	2	3	4	5	6	7	8	9	10
A	3	5	3	2	1	1	2	3	1	1
B	3	1	0	4	0	4	2	1	4	5
C	4	3	3	5	1	3	3	5	1	4

Titre	11	12	13	14	15
A	3	2	0	1	1
B	3	1	3	1	3
C	4	3	2	2	0

Exemple 3 (rangs)

Titre	1	2	3	4	5	6	7	8	9	10
\overline{A}	1.5	3	2.5	1	2.5	1	1.5	2	1.5	1
B	1.5	1	1	2	1	3	1.5	1	3	3
C	3	2	2.5	3	2.5	2	3	3	1.5	2

Titre	11	12	13	14	15
A	1.5	2	1	1.5	2
B	1.5	1	3	1.5	3
C	3	3	2	3	1

Exemple 3 (calculs)

Numérateur de $Q^* = 4.433$

Dénominateur =
$$1 - \frac{1}{15 \times 3 \times (9-1)} (7 \times 6) = 0.883$$
.

$$P(Q^* \ge 5.021) \approx P\left(\chi_{(2)}^2 \ge 5.021\right) = 0.082.$$