Outline

- · Sets and Functions
 - Notations
 - · Logic
 - · Graphs and visualisations.
- · Univariate Calculus
 - · Continuity and differentiability
 - · Derivatives and Linear approximations
 - · Applications/Advanced rules
- · Multivariate Calculus
 - · Lines and planes in high dimensional space.
 - · Partial derivatives
 - · Gradients
 - · Linear approximations and Alternate gradient interpretations
 - · Applications/Advanced rules

Derivatives and Linear Approximation

Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a diff function

$$f'(x^*) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f'(x^*) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) - f(x^*)}{x - x^*}$$

$$f(x) := \lim_{x \to x^*} \frac{f(x) -$$

Derivatives and Linear Approximation
$$L_{x^{*}} [f] = f(x^{*}) + f'(x^{*}) (x - x^{*})$$

$$= \int_{x^{*}}^{x} + 2(x - 1)$$

$$= \int_{x^{*}}^{x} + 2(x - 1)$$

$$= \int_{x^{*}}^{x} + 2(x - 1)$$

$$= 1^{2} + 2(x-1)$$

$$= 1 + 2x - 2$$

$$= 2x - 1 \qquad (around x=1)$$

Linear Approximations and Tangent Lines

Derivatives and Linear Approximation

Linear approximation of
$$f(x)$$
: $\sin(x)$ around $x^* = 0$

$$f(x) \text{ if } f(x^*) + f'(x^*) \left(x - x^*\right) \qquad f'(x) = \cos(x)$$

$$f'(x^*) = 1$$

$$= 0 + 1 \left(x - 0\right) \qquad f(x^*) = 0$$

$$= x \qquad \text{around } x = 0$$

$$\sin x \text{ if } x \text{$$

around 2=0

S 1+X

Derivatives and Linear Approximation

In (1+x) around
$$x^*=0$$
 $f(x): \frac{1}{1+2C}$
 $f(x): \frac{1}{1+2C}$
 $f(x): \frac{1}{1+2C}$
 $f(x^*): 1$
 $g(x): \frac{1}{1+2C}$
 $g(x^*): 1$
 $g(x): 1$
 $g(x^*): 1$
 $g(x^$

Outline

- · Sets and Functions
 - Notations
 - · Logic
 - · Graphs and visualisations.
- · Univariate Calculus
 - · Continuity and differentiability
 - · Derivatives and Linear approximations
 - · Applications/Advanced rules
- · Multivariate Calculus
 - · Lines and planes in high dimensional space.
 - · Partial derivatives
 - · Gradients
 - · Linear approximations and Alternate gradient interpretations
 - · Applications/Advanced rules