Исследование изменения собственных частот колебаний резервуара при разном уровне заполнения жидкостью с использованием СПО Code_Aster.

Analysis of natural frequencies of reservoir filled with liquid at different levels using the open-source software Code_Aster.

KASHFUTDINOV Bulat bkashfutdinov@ispras.ru

International Conference «ISPRAS Open", Moscow, RAS, 11 December 2020

ISP

Structures and Thermomechanics Analysis for Studies and Research

PRESENTATION DOCUMENTATION TRAINING FORUM DOWNLOAD

Dynamics Acoustics Fluid forces SFSI, SSI...

- 3D simulation of excavation, damage, re-saturation and Darcy flow in a waste storage repository,
- Deformations of a complete core during several irradiation cycles,
- Extension and stop of a crack in a pressure vessel after a thermohydraulic transient,
- · Computation of the leak flow in the containment,
- 3D crack propagation in a rotor,
- Simulation of a complete shaftline ...

Open source software focused on capabilities

Постановка задачи

Цилиндрический резервуар, частично заполненный жидкостью.

H = 0.231 M

 $h = b \cdot H$

R = 0.07725 M

e = 0.0015 M

b = 0; 0.697; 1.0

Свойства жидкости:

Скорость звука: c_F =1500 м/с

Плотность: $\rho_F = 1000 \text{ кг/м}^3$.

Свойства цилиндрической оболочки:

Модуль Юнга: $E = 2,05 \cdot 10^{11} \text{ Па},$

Коэффициент Пуассона: v = 0.3

Плотность: ρ =7800 кг/м³.

Допущения

Жидкость является:

- Идеальной (т.е. без учета вязкости)
- Баротропной, т.е.

$$p = \rho \cdot c^2$$

• Безвихревой, т.е. существует потенциал перемещений ф такой, что

$$p = \rho \cdot \frac{\partial^2 \varphi}{\partial t^2}$$

Конструкция:

Будем считать конструкцию эластичной, т.е. что она остается в области малых деформаций.

Математическое описание

Конструкция

$$Cx_s + \omega^2 \rho_s x_s = 0$$

Жидкость

$$\Delta p + \frac{\omega^2}{c^2} p = 0$$

Свободная поверхность

$$\frac{\partial p}{\partial n} = \rho_f \omega^2 x_f n_i$$

$$p = \rho_f gz$$

Взаимодействие жидкость-конструкция

$$\sigma_{ij}n_i = T_{ij}n_i = -p\delta_{ij}n_i$$

Постановка задачи

$$\begin{bmatrix} K & 0 & 0 \\ 0 & \frac{M_f}{\rho_0 c} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} U \\ p \\ \Phi \end{bmatrix} - \omega^2 \begin{vmatrix} M & 0 & \rho_0 M_{\Sigma} \\ 0 & 0 & \frac{M_{fl}}{c^2} \\ \rho_0 M_{\Sigma}^T & \frac{M_{fl}^T}{c^2} & \rho_0 H \end{vmatrix} \begin{bmatrix} U \\ p \\ \Phi \end{bmatrix} = 0$$

$$M_{\Sigma} = \int_{\Sigma} \Phi u dS$$

- матрица связи жидкости и конструкции

$$M_f = \int_V p^2 dV$$

- матрица взаимодействия жидкости и конструкции

$$M_{fl} = \int_{V} p \cdot \Phi dV$$

- матрица жесткости жидкости

$$H = \int_{Vf} (grad\Phi)^2 dV$$

- матрица масс жидкости

ISP RAS

MESH

Nodes: 27131

Elements: 35910

TRIA3: 189

QUAD4: 10521

PENTA6: 2520

HEXA8: 22680

Без жидкости b=0

		b=0							
i	j	Experiment[1]	А	nalitical [1]	FEM [1]		FEM Code_Aster		
		Частота, Гц	Частота , Гц	Разница по сравнению с экспериментом, %	Частота , Гц	Разница по сравнению с аналитически м решением, %	Частота , Гц	Разница эксп, %	
1	3	616	633	-2.7%	633.6	0.1%	634.0	2.9%	
1	2	708	814	-13.0%	814.6	0.1%	814.7	15.1%	
1	4	945	947	-0.2%	947.6	0.1%	948.4	0.4%	
1	5	1479	1480	-0.1%	1481.1	0.1%	1481.3	0.2%	
2	4	1628	1648	-1.2%	1650.3	0.1%	1648.7	1.3%	
1	1	-	1827	-	1826.6	0.0%	1826.4	-	
2	5	1851	1839	0.7%	1842.1	0.2%	1838.2	-0.7%	
2	3	1969	2029	-3.0%	2029.6	0.0%	2029.3	3.1%	
1	6	2151	2154	-0.1%	2158	0.2%	2155.4	0.2%	

Формы колебаний оболочки для случая b=0

[1] Maxuch T., Horacek J., Trnka J., Vesely J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement // J. Sound Vib. 1996. Vol. 193, No. 3. P. 669-690. [2] Бочкарев С.А., Лекомцев С.В., Матвеенко В.П. Численное моделирование пространственных колебаний цилиндрических оболочек, частично заполненных жидкостью. // Вычислительные технологии. Том18, №1, 2013

Полный резервуар b=1

		b=1								
i	j	Experiment [1] FEM [1] FEM [2] FEM Code_Aster								
		Частота, Гц	Частота, Гц	Частота, Гц	Частота, Гц	Разница эксп, %	Разница [1], %	Разница [2], %		
1	3	388	400.6	398.3	387.2	-0.2%	-3.4%	-2.8%		
1	2	421	482.1	477.4	466.4	10.8%	-3.2%	-2.3%		
1	4	628	633.2	629.9	611.9	-2.6%	-3.4%	-2.9%		
1	5	1027	1033	1025.8	1000.3	-2.6%	-3.2%	-2.5%		
2	4	1094	1110.6	1104.1	1071.5	-2.1%	-3.5%	-3.0%		
1	1	-	1038.6	-	1105.8	-	6.5%	-		
2	5	1245	1286.9	1291.5	1244.6	0.0%	-3.3%	-3.6%		
2	3	1299	1304.2	1280.1	1251.0	-3.7%	-4.1%	-2.3%		
1	6	1546	1561.3	1546.6	1504.3	-2.7%	-3.7%	-2.7%		
2	6	1748	1762.6	1737.2	1680.1	-3.9%	-4.7%	-3.3%		

Формы колебаний оболочки для случая b=1

^[1] Maxuch T., Horacek J., Trnka J., Vesely J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement // J. Sound Vib. 1996. Vol. 193, No. 3. P. 669-690. [2] Бочкарев С.А., Лекомцев С.В., Матвеенко В.П. Численное моделирование пространственных колебаний цилиндрических оболочек, частично заполненных жидкостью. // Вычислительные технологии. Том18, №1, 2013

Частично заполненный резервуар b=0,697

					b=0.697			
i	j	Experiment [1]	FEM [1]	FEM [2]	FEM Code_Aster			
		Частота, Гц	Частота, Гц	Частота, Гц	Частота, Гц	Разница эксп, %	Разница [1], %	Разница [2], %
1	3	522	543.1	538	541.4	3.7%	-0.3%	0.6%
1	2	582	672.7	664.5	669.5	15.0%	-0.5%	0.8%
1	4	798	806	799.1	803.1	0.6%	-0.4%	0.5%
1	5	1196	1188.4	1178.8	1181.9	-1.2%	-0.6%	0.3%
2	4	1244	1253.2	1239.2	1250.3	0.5%	-0.2%	0.9%
1	1	-	1407.4	-	1419.6	-	0.9%	1
2	5	1394	1425.3	1535.7	1419.6	1.8%	-0.4%	-7.6%
2	3	1546	1553.8	1412.2	1549.4	0.2%	-0.3%	9.7%
1	6	-	1679.7	1657.3	1665.4	-	-0.9%	0.5%

Формы колебаний оболочки для случая b=0,697

^[1] Maxuch T., Horacek J., Trnka J., Vesely J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement // J. Sound Vib. 1996. Vol. 193, No. 3. P. 669-690. [2] Бочкарев С.А., Лекомцев С.В., Матвеенко В.П. Численное моделирование пространственных колебаний цилиндрических оболочек, частично заполненных жидкостью. // Вычислительные технологии. Том18, №1, 2013

ВЫВОДЫ

Пакет можно использовать в качестве альтернативы коммерческому ПО.

Имеется возможность получать матрицу присоединенных масс.

Полученные результаты показывают точность, достаточную для решения сложных инженерных задач.

Спасибо за внимание

Кашфутдинов Б.Д. bkashfutdinov@ispras.ru