TS226

Codes correcteur d'erreur

Romain Tajan

2 octobre 2019

Premier QCM

Comment jugez-vous ce module?

- Très difficile
- Difficile
 - Moyen
- Simple
- Très simple

REP 3

Soit C un code à 3 répétition encodant des séquences de k=2 bits. Que valent M et n?

- M = 2 et n = 3
- M = 2 et n = 6
- M = 6 et n = 4
- M = 4 et n = 6

REP 3

Soit \mathcal{C} un code à 3 répétition encodant des séquences de k=2 bits. Quelle matrice est une matrice génératrice de \mathcal{C} ?

$$G_1 = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$G_2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$G_4 = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

#QDLE#S#ABC*D#60#

REP 3

Soit $\mathcal C$ un code à 3 répétition encodant des séquences de k=2 bits. On rappelle qu'une matrice génératrice pour $\mathcal C$ est $G=\begin{pmatrix}1&1&1&0&0&0\\0&0&1&1&1\end{pmatrix}$ Quelle matrice est une matrice de parité pour $\mathcal C$?

$$\textbf{A} \quad H_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\textbf{B} \quad H_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

#QDLE#S#A*B#60#

Dernier QCM

Comment avez-vous trouvé ce cours?

- Très difficile
- Oifficile
- Moyen
- Simple
- Très simple

