ChIP-seq & Motif Finding

Quantitative Biology 2022 10/7/22

Transcription Regulation

- What are some ways that transcription is regulated?
- Transcription factor binding
- Histone modification
- DNA methylation
- Chromatin folding
- Histone positioning

Strategies for assaying regulatory signals

 Antibody-based targeting of specific protein or chemical modification

Detection of chromatin accessibility

Immunoprecipitation (IP) based assays

- Fragment DNA
- Bind target with antibodies
- Immunoprecipitate bound fragments
- Sequence purified fragments
- Map fragments to genome
- Find significant regions of enrichment

ChIP-seq

Advantages

- Assaying a known target, highly specific
- Easy to perform
- Can be used to detect chemical modifications
 - histone modifications
 - DNA methylation

- Needs a good antibody to exist
- Can only assay a single target per experiment
- Broad signal
- Requires input (although many people do not use one)

Accessibility-based assays

- MNase-seq
 - Indirect assay of chromatin accessibility and nucleosome positioning
- DNAse-seq
 - Direct assay of chromatin accessibility
- FAIRE-seq (formaldehyde-assisted isolation of regulatory elements)
 - Maps open chromatin
- ATAC-seq (assay for transposase-accessible chromatin)
 - Maps open chromatin, transcription factor binding, and nucleosome occupancy

MNase-seq

Advantages

- Assays nucleosome positioning
- Can infer TF binding

- Difficult to perform
- Requires a large number of cells (1-10M)
- Requires a large number of sequenced reads (150-200M)

DNase-seq

Advantages

- Easier to perform
- General TF binding detection
- Requires fewer sequenced reads (20-50M)

- Requires a large number of cells (1-10M)
- Cutting bias can give false signal

FAIRE-seq

Advantages

- Very easy to perform
- Requires fewer sequenced reads (20-50M)

- Requires a large number of cells (100K-10M)
- Has a low signal to noise ratio
- Is sensitive to the fixation efficiency

ATAC-seq

Advantages

- Easier to perform
- Requires few cells (500-50K)
- Maps open chromatin, TF binding, and nucleosome occupancy

- Requires many sequenced reads (60-100M)
- Has issues with mitochondrial DNA contamination

ATAC-seq data

- Transcription factor shape-specific peaks
- Strand-specific orientation of peak shape
- Local restriction of nucleosome positioning
- Narrow footprint allows direct inference of binding sequence

ChIP-seq data

- Broader peaks (10s-100s bp wide)
- TF vs. histone modification peaks

Park, P. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10, 669-680 (2009).

• Why does ChIP-seq need controls?

https://www.activemotif.com/catalog/830/rna-free-transcription-profiling-services

Buenrostro, J., Giresi, P., Zaba, L. *et al.* Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat Methods* 10, 1213–1218 (2013).

Using ChIP-seq to see relationships

MACS (model-based analysis of ChIP-seq)

• In order to analyze ChIP-seq data, it's crucial to identify significant peaks

- MACS accomplishes this in a 2-part process
 - Model the sequenced fragment size and shift reads accordingly (single-end only)
 - 2. With a sliding window, estimate the probability of the level of enrichment within each window

MACS - fragment size modeling

https://www.rasalsi.com/courses/next-generation-sequencing/new-developments-in-ngs-data-analysis-chip-seq/

MACS - finding peak significance

- What should we expect if there is no biological signal (i.e. the control)?
 - Reads randomly spread through the genome
- What probability distribution would you expect the read density to conform to?
 - Poisson, of course!
- Can we compare the treatment and control samples if they have different sequencing depth?
 - No, not without up- or downsampling to equalize them
- Do you think the chances of finding reads are equal across the whole genome? Why or why not?
 - No. Differential accessibility, repeat elements

MACS - finding peak significance

Why do we need to consider multiple lambdas?

Motif Finding

Transcription factor target binding sequence

- How might we go about finding the sequence preference of a DNA-binding protein?
 - Collect many DNA fragments that we know the protein likely binds to and look for a common sequence
- Can a DNA-binding protein only bind to a single sequence?
 - No, the binding sequence is degenerate, or flexible. More so at some positions than others
- How can we find an enriched sequence if it's not the same every time?
 - Motif-finding algorithms like Meme

The Position Weight Matrix (PWM)

	Α	С	Т	G
Position 1	0.0000	1.0000	0.0000	0.0000
Position 2	0.0149	0.9851	0.0000	0.0000
Position 3	0.5223	0.4776	0.0000	0.0000
Position 4	0.0000	1.0000	0.0000	0.0000
Position 5	0.4029	0.0000	0.1642	0.4328
Position 6	0.0000	1.0000	0.0000	0.0000
Position 7	0.0000	1.0000	0.0000	0.0000

Meme - Multiple Expectation Maximization Enumerator

Meme uses two rounds of expectation maximization to first determine a good starting PWM and then to learn the best weights for the matrix

But what is expectation maximization?

Problem:

Given a set of observations X, some latent variable Z, and unknown parameters Θ along with a likelihood function, find the optimal values of Θ

Expectation Maximization

Problem:

Given a set of observations X, some latent variable Z, and unknown parameters θ along with a likelihood function, find the optimal values of θ

$$L(oldsymbol{ heta}; \mathbf{X}) = p(\mathbf{X} \mid oldsymbol{ heta}) = \int p(\mathbf{X}, \mathbf{Z} \mid oldsymbol{ heta}) \, d\mathbf{Z} = \int p(\mathbf{X} \mid \mathbf{Z}, oldsymbol{ heta}) p(\mathbf{Z} \mid oldsymbol{ heta}) \, d\mathbf{Z}$$

Because we don't know Z, we can represent it as a probability distribution across potential value. Thus, we can get the maximum likelihood estimator (MLE) of θ by finding the marginal likelihood of the data

Unfortunately, this is rarely doable as Z is unknown as is its distribution

Expectation Maximization

Solution:

Break the problem into two parts and iterate between them

- 1. Find the distribution of Z
- 2. Find the MLE of θ

Expectation step:

Define $Q(\theta \mid \theta^{(t)})$ as the expected value of the log likelihood function, where $\theta^{(t)}$ is the estimate of parameters at the current step.

This is the weighted average of the log likelihood across Z's distribution.

$$Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(t)}) = \mathbf{E}_{\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}}[\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z})]$$

This is value we are estimating in this step, the distribution of Z values

Expectation Maximization

Solution:

Break the problem into two parts and iterate between them

- 1. Find the distribution of Z
- 2. Find the MLE of θ

Maximization step:

Find the value of θ that maximizes the log likelihood function. This uses the maximum likelihood estimator (MLE) of θ .

$$Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(t)}) = \mathrm{E}_{\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{(t)}} [\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z})]$$

$$oldsymbol{ heta}^{(t+1)} = rg\max_{oldsymbol{ heta}} Q(oldsymbol{ heta} \mid oldsymbol{ heta}^{(t)})$$

This is our MLE function to get an updated estimate of θ , $\theta^{(t+1)}$

In the motif-finding problem the values correspond to the following:

X = The set of sequences corresponding to ChIP-seq peaks

Z = The starting position of the motif in each sequence

 θ = The position weight matrix of our motif

Some assumptions:

- Each sequence contains exactly one occurrence of the motif
- The length of the motif is specified and fixed
- The probability of each base appearing in a given position is equal

Starting conditions - randomly assign values to the PWM for motif of width k

Step 1: Expectation

For each sequence, find the probability of each k-mer in the sequence using the PWM and then scale values to sum to 1.

This is the probability distribution of Z for that sequence

Step 2: Maximization

For each sequence, sum to the occurrences of bases in each position of each k-mer, weighted by that sequence's Z. Convert counts into probabilities for each position in the PWM

Step 1: Expectation

Current PWM

Α	С	G	Т
0.7	0.1	0.1	0.1
0.1	0.6	0.2	0.1
0.2	0.1	0.2	0.5
0.5	0.1	0.1	0.3

Current sequence

Α	С	G	G	Т	Α	G	Т
---	---	---	---	---	---	---	---

Step 1: Expectation

Α	0.7	0.1	0.2	0.5				
С	0.1	0.6	0.1	0.1				
G	0.1	0.2	0.2	0.1				
Т	0.1	0.1	0.5	0.3				
	Α	С	G	G	Т	А	G	Т

Step 1: Expectation

Α	0.7	0.1	0.2	0.5			
С	0.1	0.6	0.1	0.1			
G	0.1	0.2	0.2	0.1			
Т	0.1	0.1	0.5	0.3			
Α	С	G	G	Т	А	G	Т

Step 1: Expectation

	Α	0.7	0.1	0.2	0.5		
	С	0.1	0.6	0.1	0.1		
	G	0.1	0.2	0.2	0.1		
	Т	0.1	0.1	0.5	0.3		
\	С	G	G	Т	А	G	Т

Step 1: Expectation

		Α	0.7	0.1	0.2	0.5	
		С	0.1	0.6	0.1	0.1	
		G	0.1	0.2	0.2	0.1	
		Т	0.1	0.1	0.5	0.3	
А	С	G	G	Т	А	G	Т

Step 1: Expectation

			Α	0.7	0.1	0.2	0.5
			С	0.1	0.6	0.1	0.1
			G	0.1	0.2	0.2	0.1
			Т	0.1	0.1	0.5	0.3
А	С	G	G	Т	Α	G	Т
0.35	0.1	0.15	0.1	0.3			
					-		

Step 2: Maximization

A	С	G	G	Т	Α	G	Т	
---	---	---	---	---	---	---	---	--

Uninitialized PWM

Α	0.0	0.0	0.0	0.0
С	0.0	0.0	0.0	0.0
G	0.0	0.0	0.0	0.0
Т	0.0	0.0	0.0	0.0

Ζ

0.35
0.1
0.15
0.1
0.3

Step 2: Maximization

	А	С	G	G	Т	А	G	Т
	А	С	G	G	0.35			
Α	0.35	0.0	0.0	0.0	0.1			
С	0.0	0.35	0.0	0.0	0.15			
G	0.0	0.0	0.35	0.35	0.1			
Т	0.0	0.0	0.0	0.0	0.3			

Step 2: Maximization

А	С	G	G	Т	А	G	Т
					0.35		
	С	G	G	Т	0.1		
А	0.35	0.0	0.0	0.0	0.15		
С	0.1	0.35	0.0	0.0	0.1		
G	0.0	0.1	0.45	0.35	0.3		
Т	0.0	0.0	0.0	0.1			

Step 2: Maximization

Α

Step 2: Maximization

Α

С

G

G

Τ

Step 2: Maximization

					0.35
					0.1
					0.15
					0.1
	Т	Α	G	Т	0.3
Α	0.35	0.3	0.1	0.15	
С	0.1	0.35	0.15	0.0	
G	0.25	0.25	0.75	0.45	
Т	0.3	0.1	0.0	0.4	

Α

G

Step 2: Maximization

A C G G T A G T

Our updated PWM

Α	0.35	0.3	0.1	0.15
С	0.1	0.35	0.15	0.0
G	0.25	0.25	0.75	0.45
Т	0.3	0.1	0.0	0.4

0.35
0.1
0.15
0.1
0.3

MEME

Meme uses two sets of EM, one to initialize the PWM, and one to find the starting points and PWM.

Phase 1:

- 1. Using each possible k-mer in the sequences as the initial PWM, find the Z distributions
- 2. Calculate the weighted sum of log likelihoods given the PWM and Z for each k-mer
- Select the k-mer with the highest weighted log likelihood

Phase 2:

1. Perform the standard motif EM to optimize the PWM