

Engineering school TELECOM Bretagne Supervisor: Professor Frédéric Guilloud

University Royal Institute of Technology Supervisor: Professor Lars K. Rasmussen Co-Supervisor: Doctor Vishwambhar Rathi

Rate-Distortion Bounds for Sparse-Graph Codes

Author: Grégory Demay

Brest, Master Thesis Presentation, 2010.

Overview

- ① KTH
- Background
- (Lower Bounds)
- Upper Bounds

Overview

- ① KTH
 - The Royal Institute of Technology
 - The Communication Theory Laboratory
- Background
- (Lower Bounds)
- Upper Bounds

KTH

The Royal Institute of Technology

Kungliga Tekniska Högskolan (KTH) in facts

- founded in 1827 in Stockholm:
- Swedish largest university for technical/engineering education;
- 12,000 undergraduate students;
- 1,400 postgraduate;
- 2,800 employees;

Figure 1: KTH main campus Valhallavägen.

KTH

The Communication Theory Laboratory

A Few Facts

- Commun. Theory Lab ← School of Electrical Engineering ← KTH
- founded in 2003;
- 2 full professors;
- 3 professor assistants;
- 20 PhD students

Figure 2: People at Communication Theory Laboratory.

Overview

KTH

- Background
 - Digital Communication System Model
 - Rate-Distortion Theory
 - Linear Block Codes Considered
 - Motivation
 - Main Achievements

Digital Communication System Model

Digital Communication System Model

Digital Communication System Model

Figure 3: Point-to-point communication problem.

• What is the best possible performance?

Digital Communication System Model

Figure 3: Point-to-point communication problem.

• What is the best possible performance? \longrightarrow *Capacity C*.

Digital Communication System Model

Figure 3: Point-to-point communication problem.

- What is the best possible performance? \longrightarrow *Capacity C*.
- How to achieve it?

Digital Communication System Model

Figure 3: Point-to-point communication problem.

- What is the best possible performance? \longrightarrow *Capacity C*.
- How to achieve it? \longrightarrow by coding: source coding / channel coding.

Digital Communication System Model

Figure 3: Point-to-point communication problem.

- What is the best possible performance? \longrightarrow *Capacity C*.
- How to achieve it? \longrightarrow by coding: source coding / channel coding.

Definition - Discrete Memoryless Source

Sequence of i.i.d. RVs $\{S_i\}_{i=1}^{\infty}$ belonging to a finite set S, called the *source alphabet*.

Digital Communication System Model

Binary Symmetric Source (BSS)

BSS
$$\frac{0\left(\frac{1}{2}\right)}{1\left(\frac{1}{2}\right)}$$

•
$$S = \{0, 1\}$$

•
$$\mathbb{P}\{S_i = 0\} = \mathbb{P}\{S_i = 1\} = \frac{1}{2}, i \in \{1, \dots, n\}$$

Digital Communication System Model

Binary Symmetric Source (BSS)

BSS
$$0 \left(\frac{1}{2}\right)$$

•
$$S = \{0, 1\}$$

•
$$\mathbb{P}\{S_i = 0\} = \mathbb{P}\{S_i = 1\} = \frac{1}{2}, i \in \{1, \dots, n\}$$

Binary Erasure Source (BES) [1]

$$BES(\varepsilon) \xrightarrow{0 \left(\frac{1-\varepsilon}{2}\right)} \quad \bullet \quad \mathcal{S} = \{0, 1, \star\}$$

$$\bullet \quad S^n = \{S_1, \cdots, S_n\}, S^n \in \mathcal{S}^n$$

$$\bullet \quad \mathbb{P}\left\{S_i = \star\right\} = \epsilon,$$

$$\mathbb{P}\left\{S_i = 0\right\} = \mathbb{P}\left\{S_i = 1\right\} = \epsilon$$

•
$$S = \{0, 1, \star\}$$

$$\bullet \ S^n = \{S_1, \cdots, S_n\}, S^n \in \mathcal{S}'$$

$$\mathbb{P}\left\{S_i = \star\right\} = \mathbb{P}\left\{S_i = 0\right\} = \mathbb{P}\left\{S_i = 0\right\}$$

$$\mathbb{P}\{S_i = \kappa\} = \epsilon,$$

 $\mathbb{P}\{S_i = 0\} = \mathbb{P}\{S_i = 1\} = \frac{1-\epsilon}{2}, i \in \{1, \dots, n\}$

E. Martinian and J. Yedidia, "Iterative Quantization Using Codes On Graphs," in Proc. 35th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, 2003.

Rate-Distortion Theory

Rate-Distortion Theory

Distortion Measure for the BES

$$d(s^n, \hat{s}^n) = \frac{1}{n} \sum_{i=1}^n d(s_i, \hat{s}_i), \quad \text{with} \quad d(s_i, \hat{s}_i) = \begin{cases} 0, & \text{if } s_i = \star \text{ or } s_i = \hat{s}_i \\ 1, & \text{otherwise.} \end{cases}$$

- Expected distortion $D = \mathbb{E} [d(S^n, g(f(S^n)))]$
- If there any rate-distortion code (f, g) with compression rate R and which achieves an expected distortion D?

Rate-Distortion Theory

$$R_{\varepsilon}^{\text{sh}}(D) = \begin{cases} (1 - \varepsilon) \left[1 - h\left(\frac{D}{1 - \varepsilon}\right) \right], & \text{if } D < \frac{1 - \varepsilon}{2} \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

Figure 4: Shannon ratedistortion function $R_{\varepsilon}^{\rm sh}(D)$ for a BES(ε) with $\varepsilon=0.2$.

Linear Block Codes Considered

Definition - Binary Linear Block Codes

Collection of binary sequences of length n which span a linear subspace of $\{0,1\}^n$.

- C linear block code $\Rightarrow \exists$ generator matrix G;
- \mathcal{C} linear block code $\Rightarrow \exists$ parity-check matrix **H**, generator matrix of \mathcal{C}^{\perp} .

Linear Block Codes Considered

Definition - Binary Linear Block Codes

Collection of binary sequences of length n which span a linear subspace of $\{0,1\}^n$.

- C linear block code $\Rightarrow \exists$ generator matrix G;
- C linear block code $\Rightarrow \exists$ parity-check matrix **H**, generator matrix of C^{\perp} .

2 ensembles of linear block codes considered [1]

- Check Regular Poisson (CRP) LDGM ensemble $\mathfrak{L}_P(d_c, m, n)$;
- Compound LDGM-LDPC ensemble $\mathfrak{C}(d_c, d_v, d'_c, m, n)$.
- [1] M. J. Wainwright and E. Martinian, "Low-density graph codes that are optimal for binning and coding with side information," *IEEE Trans. Inf. Theory*, vol. 55, no. 3, Mar. 2009.

Linear Block Codes Considered

Low-Density Generator Matrix (LDGM) Codes

$$\mathbb{L}\left(\mathbf{G}\right) = \left\{c^{n} \in \left\{0, 1\right\}^{n} : \exists w^{m} \in \mathbb{F}^{m} \text{ s.t. } c^{n} = w^{m}\mathbf{G}\right\}$$
(3)

Linear Block Codes Considered

Low-Density Generator Matrix (LDGM) Codes

$$\mathbb{L}(\mathbf{G}) = \{c^n \in \{0, 1\}^n : \exists w^m \in \mathbb{F}^m \text{ s.t. } c^n = w^m \mathbf{G}\}$$
(3)

The CRP LDGM Ensemble $\mathfrak{L}_P(d_c, m, n)$

Contains every $\mathbb{L}(\mathbf{G})$, where $\mathbf{G} \in \{0,1\}^{m \times n}$ and is generated by the following procedure. Each check node is connected to d_c information bits chosen uniformly at random and with replacement.

Linear Block Codes Considered

Low-Density Parity-Check (LDPC) Codes

$$\mathbf{H} = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 & v_9 & v_{10} \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_5 \\ c_5 \\ c_5 \end{pmatrix}$$

Figure 6: Tanner graph of a (10, 2, 4)- regular LDPC code.

$$\mathbb{M}\left(\mathbf{H}\right) = \left\{ c^{n} \in \mathbb{F}^{n} : c^{n}\mathbf{H}^{T} = 0 \right\}$$
(4)

Linear Block Codes Considered

Compound LDGM-LDPC Codes

Consider $\mathbb{L}(\mathbf{G})$, $\mathbb{M}(\mathbf{H})$, where $\mathbf{G} \in \{0,1\}^{m \times n}$ and $\mathbf{H} \in \{0,1\}^{k \times m}$. Then,

$$\mathbb{C}\left(\mathbf{G},\mathbf{H}\right) = \left\{c^{n} \in \{0,1\}^{n} : \exists w^{m} \in \{0,1\}^{m} \text{ s.t. } c^{n} = w^{m}\mathbf{G} \text{ and } w^{m}\mathbf{H}^{T} = \mathbf{0}\right\}.$$

$$(5)$$

Figure 7: Compound LDGM-LDPC code. Top layer: $\mathbb{L}(G)$; Bottom layer: $\mathbb{M}(H)$.

Linear Block Codes Considered

Compound LDGM-LDPC Codes

Consider $\mathbb{L}(\mathbf{G})$, $\mathbb{M}(\mathbf{H})$, where $\mathbf{G} \in \{0,1\}^{m \times n}$ and $\mathbf{H} \in \{0,1\}^{k \times m}$. Then,

$$\mathbb{C}\left(\mathbf{G},\mathbf{H}\right) = \left\{c^{n} \in \{0,1\}^{n} : \exists w^{m} \in \{0,1\}^{m} \text{ s.t. } c^{n} = w^{m}\mathbf{G} \text{ and } w^{m}\mathbf{H}^{T} = \mathbf{0}\right\}. \tag{5}$$

Figure 7: Compound LDGM-LDPC code. Top layer: $\mathbb{L}(G)$; Bottom layer: $\mathbb{M}(H)$.

The Compound LDGM-LDPC Ensemble $\mathfrak{C}(d_c, d_v, d'_c, m, n)$

Set of $\mathbb{C}(G, H)$ s.t.

- $\mathbf{G} \in \mathfrak{L}_P(d_c, m, n)$
- $\mathbf{H} \in (d_v, d'_c)$ -regular LDPC ensemble

Motivation

Motivation

- success of sparse-graph codes for channel coding source coding?
- Past research mainly focused on BSS case:
 - Performance bounds for ensemble [1] and individual LDGM codes [2];
 - optimality of the compound construction [3].
- BES(ε) is a generalization of a BSS
- Better insight into the behavior of sparse-graph codes
- A. Dimakis, M. J. Wainwright, and K. Ramchandran, "Lower bounds on the rate-distortion function of LDGM Codes," in *Proc. of the IEEE Inf. Theory Workshop*, 2007.
- [2] Shrinivas Kudekar and Rudiger Urbanke, "Lower bounds on the rate-distortion function of individual LDGM Codes," in 5th Int. Symp. Turbo Codes and Related Topics, Lausanne, Switzerland, 2008.
- [3] M. J. Wainwright and E. Martinian, "Low-density graph codes that are optimal for binning and coding with side information," *IEEE Trans. Inf. Theory*, vol. 55, no. 3, Mar. 2009.

Main Achievements

Main Achievements

• DCC (Snowbird, Utah) conference paper [1] Sep. to Feb.

 Presentation of [1] Mar. to Aug.

• ISITA (Taichung, Taiwan) conference paper [2]

- G. Demay, V. Rathi, and L. K. Rasmussen, "Rate Distortion Bounds for Binary Erasure Source Using Sparse Graph Codes," in Proc. of the Data Compression Conference, Snowbird, UT, Mar. 2010.
- G. Demay, V. Rathi, and L. K. Rasmussen, "Optimality of LDGM-LDPC Compound Codes for Lossy Compression of Binary Erasure Source," accepted to the Int. Symp. Inf. Theory and its Applications, Taichung, Taiwan, Oct. 2010.

Main Achievements

Main Achievements

Sep. to Feb. • DCC (Snowbird, Utah) conference paper [1]

 Presentation of [1] Mar. to Aug.

• ISITA (Taichung, Taiwan) conference paper [2]

G. Demay, V. Rathi, and L. K. Rasmussen, "Rate Distortion Bounds for Binary Erasure Source Using Sparse Graph Codes," in *Proc. of the Data Compression Conference*, Snowbird, UT, Mar. 2010.

(Lower Bounds)

G. Demay, V. Rathi, and L. K. Rasmussen, "Optimality of LDGM-LDPC Compound Codes for Lossy Compression of Binary Erasure Source," accepted to the Int. Symp. Inf. Theory and its Applications, Taichung, Taiwan, Oct. 2010.

Results to be presented

- Upper bounds on R(D) for BES(ε) using
 - CRP LDGM Codes
 - Compound LDGM-LDPC Codes
- Optimality of the compound construction for lossy compression of BES

Overview

- 2 Background
- (Lower Bounds)
 - Lossy Compression using LDGM Codes
 - Preliminaries
 - Lower Bound via Counting
 - Lower Bound via Test Channel
 - Counting and Test Channel Methods Are Equivalent
- 4 Upper Bounds

LDGM Codes as Lossy Compressor

Figure 8: LDGM code used for lossy compression n = 6, $R = \frac{2}{3}$, and $L(x) = x^3$.

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

LDGM Codes as Lossy Compressor

Figure 8: LDGM code used for lossy compression n = 6, $R = \frac{2}{3}$, and $L(x) = x^3$.

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Compression/Reconstruction Process

$$\circ$$
 $s^n \in S^n$

LDGM Codes as Lossy Compressor

Figure 8: LDGM code used for lossy compression n = 6, $R = \frac{2}{3}$, and $L(x) = x^3$.

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Compression/Reconstruction Process

(Lower Bounds)

Lossy Compression using LDGM Codes

LDGM Codes as Lossy Compressor

 $n = 6, R = \frac{2}{3}$, and $L(x) = x^3$.

$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$

Compression/Reconstruction Process

•
$$s^n \in \mathcal{S}^n \xrightarrow{f} w^{nR} \in \mathcal{W}^{nR} = \mathbb{F}_2^{nR} \xrightarrow{g} \hat{s}^n \in \hat{\mathcal{S}}^n = \mathbb{F}_2^m$$
, s.t. $\hat{s}^n = w^{nR}\mathbf{G}$

Preliminaries

General Ideas - Partition of the Set of Source Sequences S^n

$$H_E(s^n)$$
 = number of erasures in s^n , $\forall s^n \in \mathcal{S}^n$
 $\mathcal{S}^n_b = \{s^n \in \mathcal{S}^n : H_E(s^n) = b\}$ (6)

(Lower Bounds)

Preliminaries

Preliminaries

General Ideas - Summary

$$\bullet \ \mathcal{B}_b^n(\hat{s}^n, D) = \{s^n \in \mathcal{S}_b^n : \ d(s^n, \hat{s}^n) \le D\}$$

$$\bullet \ \mathcal{C}_b^n(D) = \bigcup_{\hat{s}} \ \mathcal{B}_b^n(\hat{s}^n, D)$$

$$\hat{s}^n \in \hat{S}^n$$

• Consider only $C_{\varepsilon n}^n(D)$ and **upperbound** $|C_{\varepsilon n}^n(D)|$

Preliminaries

Simplifications

Prove the Results for

- Regular generator node degree $L(x) = x^{l}$.
- Limit of infinite block-lengths

Figure 9: Construction of an arbitrarily large code with same R, D, and L(x).

Preliminaries

Lemma I: Average Distortion and $|C_{\varepsilon n}^n(D)|$

$$\lim_{n \to \infty} \frac{1}{n} \log \left(\varepsilon^{\varepsilon n} \left(\frac{1 - \varepsilon}{2} \right)^{n - \varepsilon n} | \mathcal{C}_{\varepsilon n}^{n}(D) | \right) < 0, \tag{9}$$

then

$$\mathbb{E}\left[d(S^{n}, g(f(S^{n})))\right] \ge D(1 + o(1)) \tag{10}$$

> proof → proof Theorem I → proof Theorem II

Lower Bound via Counting

KTH

The Counting Method

Goal: Upper bound $|\mathcal{C}_{\varepsilon n}^n(D)|$

- Pick $\delta \in [0, \frac{1-\varepsilon}{2} D]$ and $\delta n \in \mathbb{N}$
- $\mathcal{B}_{\varepsilon n}^{n}(\hat{s}_{2}^{n}, D) \subset \mathcal{B}_{\varepsilon n}^{n}(\hat{s}_{1}^{n}, D + \delta) \Leftrightarrow d_{H}(\hat{s}_{2}^{n}, \hat{s}_{1}^{n}) \leq \delta n$
- Each small $\mathcal{B}_b^n(\hat{s}_i^n, D)$ is in $A_n(\delta n)$ big $\mathcal{B}_{\varepsilon n}^{n}(\hat{s}_{1}^{n}, D+\delta), i\neq 1$

$$|\mathcal{C}_{\varepsilon n}^{n}(D)| \leq \frac{1}{A_{n}(\delta n)} \left| \bigcup_{\hat{s}^{n} \in \hat{\mathcal{S}}^{n}} \mathcal{B}_{\varepsilon n}^{n} \left(\hat{s}^{n}, D + \delta \right) \right| \tag{11}$$

- Upper bound $|\mathcal{B}_{\varepsilon n}^n(\hat{s}^n, D+\delta)|$
- Lower bound $A_n(\delta n)$

Lower Bound via Counting

Theorem I: Bounds via Counting

Consider lossy compression of a BES(ε) using a LDGM code with

- Blocklength n
- Generator node degree distribution L(x)

$$f(x) = \prod_{i=0}^{d} (1 + x^{i})^{L_{i}}, \quad a(x) = \sum_{i=0}^{d} iL_{i} \frac{x^{i}}{1 + x^{i}},$$
 (12)

$$R(x) = (1 - \varepsilon) \frac{\left(1 - h\left(\frac{x}{1+x}\right)\right)}{1 - \log_2\left(\frac{f(x)}{x^{d(x)}}\right)},\tag{13}$$

$$D(x) = \frac{x(1-\varepsilon)}{1+x} - R(x)a(x). \tag{14}$$

Then, the achievable rate-distortion performance of a LDGM code is lower bounded by the parametric curve $(D(x), R(x)), x \in [0, 1]$.

Lower Bound via Counting

Straight Line Bound

- $n \le nRl$ $R \le \frac{1}{l} \Rightarrow n(1 - Rl)$ nodes with distortion $\frac{1-\varepsilon}{2}$
- L' = L'(1) average generator node degree
- $x\left(\frac{1}{L'}\right)$ unique solution of $R(x) = \frac{1}{L'}$

$$R = \left(D\left(x\left(\frac{1}{L'}\right)\right), \frac{1}{L'}\right)$$

$$\left(\frac{1-\epsilon}{2}, 0\right)$$

$$\forall R \in \left[0, \frac{1}{L'}\right], \ D = \frac{1 - \varepsilon}{2} \left[1 - RL'\left(1 - \frac{2}{1 - \varepsilon}D\left(x\left(\frac{1}{L'}\right)\right)\right)\right] \tag{15}$$

Lower Bound via Counting

Lower Bound via Test Channel

The Test Channel Method

Goal: Upper bound $|C_{\varepsilon n}^n(D)|$

$$\sum_{s^{n} \in \mathcal{S}_{\varepsilon n}^{n}} \mathbb{P}\left\{S^{n} = s^{n}\right\} \geq \sum_{s^{n} \in \mathcal{C}_{\varepsilon n}^{n}(D)} \mathbb{P}\left\{S^{n} = s^{n}\right\}$$

$$\stackrel{?}{=} |\mathcal{C}_{\varepsilon n}^{n}(D)| \, \mathbb{P}\left\{S^{n} = s^{n} \mid s^{n} \in \mathcal{C}_{\varepsilon n}^{n}(D)\right\}$$

• Lower bound $\mathbb{P}\left\{S^n = s^n \mid s^n \in \mathcal{C}^n_{\varepsilon n}(D)\right\}$

Lower Bound via Test Channel

Test Channel

Figure 12: The binary error/erasure channel.

Figure 11: Test channel.

Lower Bound via Test Channel

Theorem II: Bound via Test Channel

Consider lossy compression of a BES(ε) using a LDGM code with

- Blocklength n
- Generator node degree distribution $L(x) = x^{l}$
- Rate R
- Average normalized distortion D.

Then, R is lower bounded by

$$R \geq \sup_{D \leq d \leq \frac{1-\varepsilon}{2}} \frac{(1-\varepsilon)\left(1-\log_2(1-\varepsilon)\right) + (1-D-\varepsilon)\log_2(1-\varepsilon-d) + D\log_2(d)}{1-\log_2\left(1+\left(\frac{d}{1-\varepsilon-d}\right)^l\right)}$$

(16)

◆ Theorem I → proof Theorem II

Computation of (16) in Parametric Form

- $d \leftarrow \frac{d}{1-\varepsilon-d} = x \text{ in (16)}$
- Compute the sup in parametric form
- Identify D(x) and R(x)

Theorem III: The bounds in Theorem I and II are equal

Consider lossy compression of a BES(ε) using a LDGM code with

- Block-length n
- Generator node degree distribution $L(x) = x^{l}$
- Rate R
- Average normalized distortion D.

Then the bounds on R in Theorem I and Theorem II are equal.

▶ proof Theorem III

Overview

- **Upper Bounds**
 - Preliminaries

 - Second Moment Method
 - Upper Bounds on the Rate-Distortion Performance
 - Source Coding Optimality of the Compound LDGM-LDPC Ensemble

Preliminaries

Optimal Encoding

 $\bullet \ \mathcal{C} \in \mathfrak{L}_P (d_c, m, n) \cup \mathfrak{C} (d_c, d_v, d'_c, m, n);$

$$n \text{ bits}$$

$$f: \quad \mathcal{S}^{n} \quad \to \quad \{1, \cdots, N\}$$

$$s^{n} \quad \mapsto \quad \mathcal{I}\left(\underset{c^{n} \in \mathcal{C}}{\arg\min} \left\{d\left(s^{n}, c^{n}\right)\right\}\right),$$

$$g: \begin{cases} \{1, \cdots, N\} & \to & \hat{\mathcal{S}}^n \\ f(s^n) & \mapsto & \mathcal{I}^{-1}(f(s^n)). \end{cases}$$

Preliminaries

Optimal Encoding

 $\bullet \ \mathcal{C} \in \mathfrak{L}_P (d_c, m, n) \cup \mathfrak{C} (d_c, d_v, d'_c, m, n);$

$$f: \quad \mathcal{S}^{n} \quad \to \quad \{1, \cdots, N\}$$

$$s^{n} \quad \mapsto \quad \mathcal{I}\left(\underset{c^{n} \in \mathcal{C}}{\arg\min} \left\{d\left(s^{n}, c^{n}\right)\right\}\right),$$

$$g: \{1, \cdots, N\} \rightarrow \hat{S}^n$$

 $f(s^n) \mapsto \mathcal{I}^{-1}(f(s^n))$

Preliminaries

Preliminaries

Preliminaries

Lemma II: Upper Bound on the Average Distortion [1]

Assume that for a given distortion D and a given ensemble of codes, we have

$$\lim_{n \to \infty} \frac{1}{n} \log_2 \left[\sum_{b=0}^n \binom{n}{b} \varepsilon^b (1 - \varepsilon)^{n-b} \mathbb{P} \left\{ Z \left(\mathcal{C}, S^n \in \mathcal{S}_{\mathcal{B}}^n, D \right) > 0 \right\} \right] \ge 0. \tag{17}$$

Then, $\forall \theta > 0$, there exists a code in the ensemble such that for sufficiently large blocklength n

$$\mathbb{E}\left[d\left(S^{n}, g\left(f(S^{n})\right)\right)\right] < D + \theta. \tag{18}$$

[1] M. J. Wainwright and E. Martinian, "Low-density graph codes that are optimal for binning and coding with side information," IEEE Trans. Inf. Theory, vol. 55, no. 3, Mar. 2009.

Second Moment Method

The Second Moment Method [1]

Goal: Lower bound $\mathbb{P}\left\{Z\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)>0\right\}$

Using Markov's inequality, we have

$$\mathbb{P}\left\{Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) > 0\right\} \geq \frac{\mathbb{E}\left[Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right]^{2}}{\mathbb{E}\left[Z^{2}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right]}$$
(19)

(Lower Bounds)

[1] M. J. Wainwright and E. Martinian, "Low-density graph codes that are optimal for binning and coding with side information," *IEEE Trans. Inf. Theory*, vol. 55, no. 3, Mar. 2009.

Second Moment Method

The Second Moment Method [1]

Goal: Lower bound $\mathbb{P}\left\{Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) > 0\right\}$

Using Markov's inequality, we have

$$\mathbb{P}\left\{Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) > 0\right\} \geq \frac{\mathbb{E}\left[Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right]^{2}}{\mathbb{E}\left[Z^{2}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right]}$$
(19)

- \rightarrow lower bound 1st moment $\mathbb{E}\left[Z\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)\right];$
- \rightarrow upper bound 2^{nd} moment $\mathbb{E}\left[Z^2\left(\mathcal{C},S^n\in\mathcal{S}^n_{\mathcal{B}},D\right)\right]$.
- [1] M. J. Wainwright and E. Martinian, "Low-density graph codes that are optimal for binning and coding with side information," *IEEE Trans. Inf. Theory*, vol. 55, no. 3, Mar. 2009.

Second Moment Method

Lemma III: First Moment for any Linear Block Code

Consider any linear block code with rate R and blocklength n. The 1st moment $\mathbb{E}[Z(C, S^n \in \mathcal{S}_{\mathcal{B}}^n, D)]$ is given by

$$\mathbb{E}\left[Z\left(\mathcal{C},\mathcal{S}^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)\right] \quad = \quad 2^{nR}\mathbb{P}\left\{X_{1}\left(\mathcal{C},\mathcal{S}^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)=1\right\} \tag{20}$$

$$= 2^{nR} \sum_{j=0}^{nD} \binom{n-b}{j} \left(\frac{1}{2}\right)^{n-b}$$
 (21)

• \longrightarrow exponential growth rate of $\mathbb{E}\left[Z\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)\right];$

→ proof

Second Moment Method

The Second Moment Method [1]

Goal: Lower bound $\mathbb{P}\left\{Z\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)>0\right\}$

Using Markov's inequality, we have

$$\mathbb{P}\left\{Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) > 0\right\} \geq \frac{\mathbb{E}\left[Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right]^{2}}{\mathbb{E}\left[Z^{2}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right]}$$
(22)

- \rightarrow lower bound 1st moment $\mathbb{E}\left[Z\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)\right];$
- \rightarrow upper bound 2^{nd} moment $\mathbb{E}\left[Z^2\left(\mathcal{C},S^n\in\mathcal{S}^n_{\mathcal{B}},D\right)\right]$.
- M. J. Wainwright and E. Martinian, "Low-density graph codes that are optimal for binning and coding with side information," *IEEE Trans. Inf. Theory*, vol. 55, no. 3, Mar. 2009.

Second Moment Method

Lemma IV: Second Moment for any Linear Code [1]

For any linear block code, the second moment satisfies the relation

$$\mathbb{E}\left[Z^{2}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right] =$$

$$\mathbb{E}\left[Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right] \times$$

$$\sum_{j=1}^{N} \mathbb{P}\left\{X_{j}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) = 1 \mid X_{1}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) = 1\right\}. \quad (23)$$

[1] E. Martinian and M. J. Wainwright, "Low-density codes achieve the rate-distortion bound," in Proc. of the Data Compression Conference, Snowbird, UT, Mar. 2006.

$$\longrightarrow \textbf{upper bound} \sum_{i=1}^{N} \mathbb{P} \left\{ X_{j}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) = 1 \mid X_{1}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) = 1 \right\}$$

イロトイ団トイミトイミト ミ|= めの()

Upper Bounds on the Rate-Distortion Performance

→ CRP LDGM Ensemble → Compound LDGM-LDPC Ensemble

Lemma V: Distribution of random codewords generated by CRP LDGM codes

Consider the CRP LDGM ensemble $\mathfrak{L}_P(d_c, m, n)$ and

- an information sequence $w^m \in \{0,1\}^m$ of weight $\nu m, \nu \in [0,1]$;
- $\mathbb{L}(\mathbf{G})$, selected uniformly at random in $\mathfrak{L}_{P}(d_{c},m,n)$;
- a random codeword $C^n(\nu)$ generated by w^m **G**.

Then, $C^n(\nu)$ *is i.i.d. Bernoulli distributed with parameter*

 $\delta(\nu, d_c) \triangleq \frac{1}{2} \left[1 - (1 - 2\nu)^{d_c} \right]. \tag{24}$ 0.5 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Upper Bounds on the Rate-Distortion Performance

$$\mathbb{P}\left\{d\left(S^{n}, C_{j}^{n}\right) \leq D \mid d\left(S^{n}, C_{1}^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\}
\updownarrow ?
\mathbb{P}\left\{d\left(C^{n}(\nu), S^{n}\right) \leq D \mid d\left(C_{1}^{n}, S^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\}
\triangleq \mathcal{Q}(\nu, \beta), \beta = b/n$$

Upper Bounds on the Rate-Distortion Performance

Goal: Upper Bound $\sum_{i=1}^{N} \mathbb{P} \{X_i = 1 \mid X_1 = 1\}$

$$\sum_{i=1}^{N} \mathbb{P}\left\{d\left(S^{n}, C_{j}^{n}\right) \leq D \mid d\left(S^{n}, C_{1}^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\}$$

$$=\sum_{\substack{\nu\in[0,1]:\\\nu m\in\mathbb{N}}}\sum_{j=1}^{|\mathcal{C}(\nu)|}\underbrace{\mathbb{P}\left\{d\left(C^n(\nu),S^n\right)\leq D\mid d\left(C_1^n,S^n\right)\leq D,S^n\in\mathcal{S}_{\mathcal{B}}^n\right\}}_{\triangleq\mathcal{Q}(\nu,\beta),\;\beta=b/n}.$$

Upper Bounds on the Rate-Distortion Performance

Goal: Upper Bound $\sum_{i=1}^{N} \mathbb{P} \{X_i = 1 \mid X_1 = 1\}$

$$\begin{split} &\sum_{j=1}^{N} \mathbb{P}\left\{d\left(S^{n}, C_{j}^{n}\right) \leq D \mid d\left(S^{n}, C_{1}^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\} \\ &= \sum_{j=1}^{|\mathcal{C}(\nu)|} \mathbb{P}\left\{d\left(C^{n}(\nu), S^{n}\right) \leq D \mid d\left(C_{1}^{n}, S^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\} \end{split}$$

$$=\sum_{\stackrel{\nu\in[0,1]:}{\nu m\in\mathbb{N}}}\sum_{j=1}^{\infty}\underbrace{\mathbb{P}\left\{d\left(C^{n}(\nu),S^{n}\right)\leq D\mid d\left(C_{1}^{n},S^{n}\right)\leq D,S^{n}\in\mathcal{S}_{\mathcal{B}}^{n}\right\}}_{\triangleq\mathcal{Q}(\nu,\beta),\;\beta=b/n}.$$

For CRP LDGM codes

$$\sum_{j=1}^{N} \mathbb{P}\left\{X_{j}=1 \mid X_{1}=1\right\} = \sum_{\substack{\nu \in [0,1]:\\ \nu m \in \mathbb{N}}} {m \choose \nu m} \mathcal{Q}\left(\nu,\beta\right).$$

Upper Bounds on the Rate-Distortion Performance

Goal: Upper Bound $\sum_{i=1}^{N} \mathbb{P} \{X_i = 1 \mid X_1 = 1\}$

$$\sum_{j=1}^{N} \mathbb{P}\left\{d\left(S^{n}, C_{j}^{n}\right) \leq D \mid d\left(S^{n}, C_{1}^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\}$$

$$=\sum_{\substack{\nu\in[0,1]:\\\nu m\in\mathbb{N}}}\sum_{j=1}^{n}\underbrace{\mathbb{P}\left\{d\left(C^{n}(\nu),S^{n}\right)\leq D\mid d\left(C_{1}^{n},S^{n}\right)\leq D,S^{n}\in\mathcal{S}_{\mathcal{B}}^{n}\right\}}_{\triangleq\mathcal{Q}(\nu,\beta),\;\beta=b/n}.$$

For CRP LDGM codes

$$\sum_{j=1}^{N} \mathbb{P}\left\{X_{j}=1 \mid X_{1}=1\right\} = \sum_{\substack{\nu \in [0,1]:\\ \nu m \in \mathbb{N}}} {m \choose \nu m} \mathcal{Q}\left(\nu,\beta\right).$$

 \longrightarrow upper bound $Q(\nu, \beta)$ for $\beta = \varepsilon$

Upper Bounds on the Rate-Distortion Performance

Goal: Upper Bound $\sum_{i=1}^{N} \mathbb{P} \{X_i = 1 \mid X_1 = 1\}$

$$\sum_{j=1}^{N} \mathbb{P}\left\{d\left(S^{n}, C_{j}^{n}\right) \leq D \mid d\left(S^{n}, C_{1}^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\}$$

$$= \sum_{j=1}^{|\mathcal{C}(\nu)|} \mathbb{P}\left\{d\left(C^{n}(\nu), S^{n}\right) \leq D \mid d\left(C_{1}^{n}, S^{n}\right) \leq D, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}\right\}$$

$$=\sum_{\substack{\nu\in[0,1]:\\\nu m\in\mathbb{N}}}\sum_{j=1}^{\lfloor\mathcal{C}(\mathcal{F})\rfloor}\underbrace{\mathbb{P}\left\{d\left(C^n(\nu),S^n\right)\leq D\mid d\left(C_1^n,S^n\right)\leq D,S^n\in\mathcal{S}_{\mathcal{B}}^n\right\}}_{\triangleq\mathcal{Q}(\nu,\beta),\;\beta=b/n}.$$

For Compound LDGM-LDPC Codes

$$\sum_{j=1}^{N} \mathbb{P}\left\{X_{j} = 1 \mid X_{1} = 1\right\} = \sum_{\substack{\nu \in [0,1]:\\ \nu m \in \mathbb{N}}} \mathcal{A}_{m}(\nu) \mathcal{Q}\left(\nu,\beta\right),$$

 $A_m(\nu)$ number of codewords of weight νm of the LDPC code.

- \longrightarrow upper bound $\mathcal{Q}(\nu, \beta)$ for $\beta = \varepsilon$
- \longrightarrow upper bound $A_m(\nu)$

Upper Bounds on the Rate-Distortion Performance

Consider lossy compression of a BES(ε) using CRP LDGM codes from $\mathfrak{L}_P(d_c, m, n)$ or compound LDGM-LDPC codes from $\mathfrak{C}(d_c, d_v, d'_c, m, n)$ with

- blocklength n;
- rate R:
- distortion constraint D;
- $\frac{1}{n}\log_2 \mathcal{Q}(\nu,\beta) \leq F(\delta(\nu,d_c),\beta,D) + o(1).$

Theorem IV: Upper Bounds for $\mathfrak{L}_P(d_c, m, n)$

There exists a code in $\mathfrak{L}_P(d_c, m, n)$ which achieves an average distortion at most D, if

$$R \geq \max_{
u \in [0,1]} \frac{R_{\varepsilon}^{sh}\left(D\right) + F\left(\delta\left(
u, d_{c}
ight), arepsilon, D
ight)}{1 - h(
u)}.$$

▶ proof

Theorem V: Upper Bounds for $\mathfrak{C}(d_c, d_v, d'_c, m, n)$

$$\bullet \ \frac{1}{m} \log_2 \mathcal{A}_m(\nu) \leq B(\nu) + o(1)$$

There exists a code in $\mathfrak{C}(d_c, d_v, d_c', m, n)$ which achieves an average distortion at most D, if

$$R \geq \max_{
u \in [0,1]} rac{R_{arepsilon}^{ ext{ iny sh}}\left(D
ight) + F(\delta\left(
u, d_{c}
ight), arepsilon, D
ight)}{1 - rac{B(
u)}{R_{H}}}.$$

Source Coding Optimality of the Compound LDGM-LDPC Ensemble

Figure 13: Rate lower bounds for the CRP LDGM and the compound LDGM-LDPC ensembles.

Source Coding Optimality of the Compound LDGM-LDPC Ensemble

Theorem VI: Source Coding Optimality of the Compound Construction

Consider lossy compression of BES(ε) using the compound construction. Given

- a distortion D, $D \leq \frac{1-\varepsilon}{2}$;
- a desired compression rate R, $R < R_{\varepsilon}^{sh}(D)$,

there exist degrees (d_c, d_v, d'_c) independent of the blocklength, and a compound code $\mathbb{C}(\mathbf{G}, \mathbf{H}) \in \mathfrak{C}(d_c, d_v, d'_c, m, n)$ with rate R which achieves average distortion D.

→ proof

Conclusion

- ① KTH
- Background
- (Lower Bounds)
- 4 Upper Bounds

Conclusion

Key Points

- Lossy compression of a ternary source, the BES
- Derived upper bounds on R(D) for the BES using
 - the CRP LDGM ensemble
 - the compound LDGM-LDPC ensemble
- Proved the source coding optimality of the compound LDGM-LDPC construction for lossy compression of a BES

Background (Lower Bounds) Conclusion

Conclusion

Key Points

- Lossy compression of a ternary source, the BES
- Derived upper bounds on R(D) for the BES using
 - the CRP LDGM ensemble
 - the compound LDGM-LDPC ensemble
- Proved the source coding optimality of the compound LDGM-LDPC construction for lossy compression of a BES

Added Value of this Internship

- 2 conference papers + 1 presentation in the U.S.A.;
- tremendous international experience;
- discover new knowledge;
- advanced technical knowledge;
- continue doing research after my master of engineering \longrightarrow PhD

Thank you! & Questions?

Overview

- Proof of Lemma I
- Proof of Theorem I
- Proof of Theorem II
- Proof of Theorem III
- Proof of Lemma III
- Proof of Lemma V
- Proof of Lemma VI
- Proof of Theorem IV
- Proof of Theorem VI

Proof of Lemma I

↓ Lemma I

Key Steps (1/2)

•
$$|\mathcal{S}_b^n| = {m \choose b} 2^{m-b}$$
 and $\forall s \in \mathcal{S}_b^n$, $d(s, g(f(s))) \ge \begin{cases} 0, & \text{if } s \in \mathcal{C}_b^n(D), \\ mD, & \text{if } s \notin \mathcal{C}_b^n(D). \end{cases}$
 $\delta(m) = \sqrt{m} (\log m)^{1/3}$

Proof of Lemma I

← Lemma I

Key Steps (1/2)

•
$$|\mathcal{S}_b^n| = {m \choose b} 2^{m-b}$$
 and $\forall s \in \mathcal{S}_b^n$, $d(s, g(f(s))) \ge \begin{cases} 0, & \text{if } s \in \mathcal{C}_b^n(D), \\ mD, & \text{if } s \notin \mathcal{C}_b^n(D). \end{cases}$

$$\delta(m) = \sqrt{m} (\log m)^{1/3}$$

$$\bullet \ \frac{1}{m} \mathbb{E} \left[d(S, g \left(f(S) \right)) \right]$$

$$= \frac{1}{m} \sum_{b=0}^{m} \mathbb{P} \left\{ S \in \mathcal{S}_{b}^{n} \right\} \mathbb{E} \left[d(S, g(f(S))) | S \in \mathcal{S}_{b}^{n} \right]$$

$$\geq \frac{1}{m} \sum_{b=\epsilon m-\delta(m)}^{\epsilon m+\delta(m)} \mathbb{P} \left\{ S \in \mathcal{S}_{b}^{n} \right\} \sum_{s \in \mathcal{S}_{b}^{n}} \mathbb{P} \left\{ S = s | S \in \mathcal{S}_{b}^{n} \right\} d(s, g(f(s)))$$

Key Steps (2/2)

$$\bullet \ \frac{1}{m} \mathbb{E} \left[d(S, g \left(f(S) \right)) \right]$$

$$\geq \frac{1}{m} \sum_{b=\epsilon m-\delta(m)}^{\epsilon m+\delta(m)} \binom{m}{b} \epsilon^b (1-\epsilon)^{m-b} \sum_{s \in S_b^n \setminus \mathcal{C}_b^n(D)} \frac{Dm}{\binom{m}{b} 2^{m-b}}$$

$$\geq D \underbrace{\sum_{b=\epsilon m-\delta(m)}^{\epsilon m+\delta(m)} \binom{m}{b} \epsilon^b (1-\epsilon)^{m-b}}_{A=1+o(1)}$$

$$-D \sum_{b=\epsilon m-\delta(m)}^{\epsilon m+\delta(m)} \epsilon^b \left(\frac{1-\epsilon}{2}\right)^{m-b} |\mathcal{C}_b^n(D)| .$$

◆ Theorem I

Key Steps (1/2): Upper Bound on $|C_{\varepsilon n}^n(D)|$

• $w \in \mathbb{N}$ s.t. $Dm + w \le m \frac{(1-\varepsilon)}{2}$ and $A_m(w) = \left| \left\{ \hat{S} \in \hat{S} : W_H(\hat{S}) \le w \right\} \right|$ saddle point eq \Rightarrow coef $\left(f(x)^{mR}, x^w \right) \le \frac{f(x_\omega)^{mR}}{x_\omega^w} \le A_m(w),$ $x_\omega > 0$, unique solution to $a(x) = \omega$, and $\omega = w/mR$.

$$|\mathcal{C}^n_{\varepsilon n}(D)| = \left|\bigcup_{\hat{s} \in \hat{\mathcal{S}}} \mathcal{B}_{\epsilon m}(\hat{s}, D)\right| \leq \frac{1}{A_m(w)} \sum_{\hat{s} \in \hat{\mathcal{S}}} \left|\mathcal{B}_{\epsilon m}\left(\hat{s}, D + \frac{w}{m}\right)\right|$$

$$\left|\mathcal{B}_{\epsilon m}\left(\hat{s}, D + \frac{w}{m}\right)\right| = \binom{m}{\epsilon m} \sum_{i=0}^{Dm+w} \binom{m-\epsilon m}{m-\epsilon m-i} \leq 2^{mh(\epsilon)} 2^{(m-\epsilon m)h\left(\frac{Dm+w}{m(1-\epsilon)}\right)+o(m-\epsilon m)}$$

Proof of Theorem I

Key Steps (2/2)

$$|\mathcal{C}^n_{\varepsilon n}(D)| \leq 2^{m} \left[-R \log_2 \frac{f(x_\omega)}{a(x_\omega)} + R + h(\epsilon) + (1-\epsilon)h\left(\frac{D + Ra(x_\omega)}{1-\epsilon}\right) + \right] + o(m - \epsilon m)$$

↓ Lemma I

$$\begin{split} &\lim_{m \to \infty} \left[\frac{1}{m} \log_2 \left(\varepsilon^{m\varepsilon} \left(\frac{1-\varepsilon}{2} \right)^{m(1-\varepsilon)} | \mathcal{C}^n_{\varepsilon n}(D)| \right) \right] \leq g(D,R), \\ g(D,R) &= \inf_{\substack{D+a(x)R \leq \frac{1-\varepsilon}{2} \\ x \geq 0}} \underbrace{-R \log_2 \frac{f(x)}{x^{a(x)}} + R + (1-\varepsilon) \left(h \left(\frac{D+Ra(x)}{1-\varepsilon} \right) - 1 \right)}_{h_1(x)} \end{split}$$

Condition
$$g(D, R) = 0 \Rightarrow \frac{D + Ra(x)}{1 - \varepsilon} = \frac{x}{1 + x}$$
.

◆ Theorem II

Key Steps (1/3)

$$\bullet$$
 $A_m(w) = \left|\left\{\hat{S} \in \hat{\mathcal{S}}: W_H(\hat{S}) = w\right\}\right|$ and

$$\frac{Rc^l}{1+c^l} < \frac{1}{l} \Rightarrow \sum_{w=0}^m A_m(w)c^w \ge \frac{1}{m} \left(1+c^l\right)^{mR},$$

where
$$c = \frac{d}{1-\varepsilon-d}$$
 and $D \leq d \leq \frac{1-\varepsilon}{2}$

0

$$\binom{m}{\varepsilon m} \varepsilon^{\varepsilon m} (1 - \varepsilon)^{m - \varepsilon m} = \sum_{s \in \mathcal{S}_{\varepsilon n}^n} \mathbb{P} \left\{ S = s \right\} \ge \sum_{s \in \mathcal{C}_{\varepsilon n}^n(D)} \mathbb{P} \left\{ S = s \right\}.$$

$$s \in \mathcal{C}^n_{\varepsilon n}(D) \Rightarrow \exists \hat{s} \in \hat{\mathcal{S}}: d(s, \hat{s}) \leq Dm$$

Proof of Theorem II

Key Steps (2/3): Lower Bound on $\mathbb{P} \{S = s\}$

$$\mathbb{P}\left\{S=s\right\} = \sum_{w=0}^{m} \sum_{\hat{s}' \in \hat{\mathcal{S}}: d(\hat{s}', \hat{s})=w} \mathbb{P}\left\{S=s, \hat{S}=\hat{s}'\right\}, \\
= 2^{-mR} \varepsilon^{\varepsilon m} (1-\varepsilon-d)^{m-\varepsilon m} \sum_{w=0}^{m} \sum_{\hat{s}' \in \hat{\mathcal{S}}: d(\hat{s}', \hat{s})=w} c^{d(s, \hat{s}')}, \\
\geq 2^{-mR} \varepsilon^{\varepsilon m} (1-\varepsilon-d)^{m-\varepsilon m} \sum_{w=0}^{m} \sum_{\hat{s}' \in \hat{\mathcal{S}}: d(\hat{s}', \hat{s})=w} c^{d(s, \hat{s})+d(\hat{s}, \hat{s}')}, \\
\geq 2^{-mR} e^{\varepsilon m} (1-\varepsilon-d)^{m-\varepsilon m} \sum_{w=0}^{m} A_m(w) c^{Dm+w}, \\
\geq \frac{1}{m} 2^{-mR} \left(1+c^l\right)^{mR} \varepsilon^{\varepsilon m} (1-\varepsilon-d)^{m(1-D)-\varepsilon m} d^{Dm}.$$

Key Steps (3/3): Lower Bound on $|\mathcal{C}_{\varepsilon n}^n(D)|$

$$|\mathcal{C}^n_{\varepsilon n}(D)| \leq m 2^{mR} (1+c^l)^{-mR} (1-\varepsilon-d)^{-m(1-D)} (1-\varepsilon)^m d^{-Dm} \binom{m}{\varepsilon m} \left(\frac{1-\varepsilon-d}{1-\varepsilon}\right)^{\varepsilon m}.$$

↓Lemma I

$$R - R\log_2(1+c^l) + (1-\varepsilon)(-1 + \log_2(1-\varepsilon)) - (1-D-\varepsilon)\log_2(1-\varepsilon-d) - D\log_2(d) < 0,$$

then the distortion is at least D.

• Prove
$$\frac{Rc^l}{1+c^l} < \frac{1}{l}$$

◆ Theorem III

Key Steps

◆ Theorem II

$$v(x) = \frac{\left(1 - \varepsilon\right)\left(1 - \log_2(1 - \varepsilon)\right) + \left(1 - D - \varepsilon\right)\log_2\left(\frac{1 - \varepsilon}{1 + x}\right) + D\log_2\left(\frac{\left(1 - \varepsilon\right)x}{1 + x}\right)}{1 - \log_2\left(1 + x'\right)},$$

$$x = \frac{d}{1 - \varepsilon - d}.$$

$$\frac{dv(x)}{dx} = 0 \Leftrightarrow D = (1 - \varepsilon) \frac{x}{1 + x} - a(x)(1 - \varepsilon) \frac{\frac{x}{1 + x} \log_2(x) + 1 - \log_2(1 + x)}{1 - \log_2\left(\frac{f(x)}{x^{a(x)}}\right)},$$

where

$$f(x) = 1 + x^{l}, a(x) = \frac{lx^{l}}{1 + x^{l}}.$$

Proof of Lemma III

◆ Lemma III

Key Steps

• symmetry of the code construction \Rightarrow

$$\mathbb{E}\left(Z\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right) = \sum_{i=1}^{N} \mathbb{E}\left(X_{i}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right)\right)$$
$$= 2^{nR} \mathbb{P}\left\{X_{1}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) = 1\right\}$$

$$\bullet \ \mathbb{P}\left\{X_{1}\left(\mathcal{C}, S^{n} \in \mathcal{S}_{\mathcal{B}}^{n}, D\right) = 1\right\} = \sum_{j=0}^{nD} \binom{n-b}{j} \frac{1}{2^{n-b}}$$

$$\max_{j \in \{0,1,\cdots,nD\}} \binom{n-b}{j} = \left\{ \begin{array}{l} \binom{n-b}{nD}, & \text{if } nD \leq \frac{n-b}{2}, \\ \binom{n-b}{nD}, & \text{otherwise.} \end{array} \right.$$

Proof of Lemma V

← Lemma V

Key Steps

• for a code bit $C_i(\nu)$, let $V_j(i)$ be an indicator variable, which is equal to one iff the j^{th} edge starting from $C_i(\nu)$ ends up to an information bit being equal to one,

$$C_i(\nu) = V_1(i) \oplus V_2(i) \oplus \cdots \oplus V_{d_c}(i).$$

$$\bullet \ \mathbb{P}\left\{V_{j}(i)=1\right\}=\nu,$$

$$\mathbb{P}\left\{C_i(\nu)=1\right\} = \sum_{\substack{k=0,\\k \text{ odd}}}^{d_c} \binom{d_c}{k} \nu^k (1-\nu)^{d_c-k},$$

$$\mathbb{P}\left\{C_{i}(\nu)=0\right\} = \sum_{\substack{k=0, \\ k=0}}^{d_{c}} \binom{d_{c}}{k} \nu^{k} (1-\nu)^{d_{c}-k}.$$

•
$$\mathbb{P}\left\{C_i(\nu)=1\right\}=\frac{1}{2}\left[1-(\mathbb{P}\left\{C_i(\nu)=0\right\}-\mathbb{P}\left\{C_i(\nu)=1\right\})\right]$$

• expand
$$((1 - \nu) - \nu)^{d_c}$$
.

Proof of Lemma VI

← Lemma VI

Upper Bound on the Exponential Growth Rate of Q

Let $\beta < 1 - 2D$. For a randomly chosen code from $\mathfrak{L}_P(d_c, m, n)$ or $\mathfrak{C}(d_c, d_v, d_c', m, n)$, the exponential growth rate of \mathcal{Q} is upper bounded as

$$\frac{1}{n}\log_2 \mathcal{Q}(\nu,\beta) \le F\left(\delta(\nu,d_c),\beta,D\right) + o(1),\tag{25}$$

where

$$F\left(\delta(\nu, d_c), \beta, D\right) = \inf_{\lambda < 0} \max_{\tau \in [0, D]} \left\{ (1 - \beta) \left[h\left(\frac{\tau}{1 - \beta}\right) - h\left(\frac{D}{1 - \beta}\right) \right] + \tau \log_2 \left(f_1(\gamma, \lambda) \right) + (1 - \beta - \tau) \log_2 \left(f_1(1 - \gamma, \lambda) \right) - \frac{\lambda D}{\log 2} \right\},$$

with $f_1(\gamma, \lambda) \triangleq (1 - \gamma)e^{\lambda} + \gamma$.

Key Steps (1/2)

• let T be a RV s.t. $T = w_H(S^n)$, knowing that $S^n \in \mathcal{S}_{\mathcal{B}}^n$

$$\mathbb{P}\left\{T=t\right\} = \frac{\binom{n-b}{t}}{\sum_{i=0}^{nD} \binom{n-b}{i}}.$$

• let Y be a RV s.t. $Y = d(S^n, C^n(\nu))$, when $S^n \in \mathcal{S}^n_{\mathcal{B}}$

$$Y = \begin{cases} \sum_{j=1}^{T} U_j + \sum_{j=1}^{n-b-T} V_j, & \text{if } 1 \le T \le nD \\ \sum_{j=1}^{n-b-T} V_j, & \text{if } T = 0, \end{cases}$$

where $U_i \sim \text{Ber}(1 - \delta)$, $V_i \sim \text{Ber}(\delta)$

Proof of Lemma VI

Key Steps (1/2)

Chernoff bound

$$\frac{1}{n}\log_{2}\mathbb{P}\left\{Y\leq nD\right\}\leq\inf_{\lambda<0}\left(\frac{1}{n}\log_{2}\mathbb{M}_{Y}\left(\lambda\right)-\frac{\lambda D}{\log2}\right),$$

- calculate $\mathbb{M}_{Y}(\lambda)$
- calculate $\frac{1}{n} \log_2 \mathbb{M}_Y(\lambda)$ and use Stirling's formula.

Proof of Theorem IV

◆ Theorem IV

Key Steps

Markov's inequality+ Lemma IV

$$\begin{array}{l} \frac{1}{n}\log_{2}\left(\mathbb{P}\left\{Z\left(\mathcal{C},\mathcal{S}^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)>0\right\}\right)\geq\frac{1}{n}\log_{2}E\left[Z\left(\mathcal{C},\mathcal{S}^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)\right]-\\ \frac{1}{n}\log_{2}\left(1+\sum_{j\neq1}\mathbb{P}\left\{X_{j}\left(\mathcal{C},\mathcal{S}^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)=1\mid X_{1}\left(\mathcal{C},\mathcal{S}^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)=1\right\}\right) \end{array}$$

■ Lemma VI

$$\begin{split} &\frac{1}{n}\log_{2}\left(1+\sum_{j\neq1}\mathbb{P}\left\{X_{j}\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)=1\mid X_{1}\left(\mathcal{C},S^{n}\in\mathcal{S}_{\mathcal{B}}^{n},D\right)=1\right\}\right)\\ &=\frac{1}{n}\log_{2}\left(\sum_{\substack{\nu\in[0,1]:\\\nu m\in\mathbb{N}}}\binom{m}{\nu m}\mathcal{Q}\left(\nu,\beta\right)\right)\\ &\leq\max_{\nu\in[0,1]}\left\{Rh(\nu)+F\left(\delta(\nu,d_{c}),\beta,D\right)\right\} \end{split}$$

• typical value $\beta = \varepsilon$, and RHS non-negative+ • Lemma II

Proof of Theorem VI

◆ Theorem VI

Key Steps (1/3)

- $\frac{R_{\varepsilon}^{\text{sh}}(D) + F(\delta(\nu, d_c), \varepsilon, D)}{1 \frac{B(\nu)}{R_H}}$ is strictly decreasing in ν and is equal to $R_{\varepsilon}^{\text{sh}}(D)$ when $\nu = 0$
- need to prove degrees independent of the blocklength are sufficient

$$\frac{1}{n}\log_{2}\mathbb{P}\left\{Z\left(\mathcal{C},S^{n}\in\mathcal{S}^{n},D\right)>0\right\}\geq0\Leftrightarrow\Delta\geq\max_{\nu\in\left[0,1\right]}\left\{K(\nu,d_{c})\right\},$$

where
$$\Delta \triangleq R - R_{\varepsilon}^{\text{sh}}(D)$$
 and $K(\nu, d_c) \triangleq \frac{R}{R_H}B(\nu, d_v, d_c') + F(\delta(\nu, d_c), \varepsilon, D)$.

- $\exists \mu_2 > 0$, independent of d_c , such that $\forall \nu \in \left[\frac{1}{2} \mu_2, \frac{1}{2}\right], K(\nu, d_c) \leq \Delta.$

Key Steps (2/3)

- 1) $\exists \mu_1 > 0$, independent of d_c , such that $\forall \nu \in [0, \mu_1], K(\nu, d_c) \leq \Delta$.
 - **Lemma VII** last property $\Rightarrow \exists \mu_1$ independent of the LDGM part s.t. $B(\nu) \leq 0$ for all $\nu \in [0, \mu_1]$
 - $F(\delta(\nu, d_c), \varepsilon, D) \leq 0, \forall \nu$
- 2) $\exists \mu_2 > 0$, independent of d_c , such that $\forall \nu \in \left[\frac{1}{2} \mu_2, \frac{1}{2}\right], K(\nu, d_c) \leq \Delta$
 - $K(\nu, d_c) \leq K(\nu, 4), \forall d_c \geq 4$
 - $\exists \mu_2$, s.t. $\forall \nu \in \left[\frac{1}{2} \mu_2, \frac{1}{2}\right], \frac{\partial^2}{\partial \nu^2} K(\nu, d_c) < 0$
 - Taylor expansion of $K(\nu, d_c)$ around $\nu = \frac{1}{2}$

$$\forall \nu \in \left[\frac{1}{2} - \mu_2, \frac{1}{2}\right], \exists \tilde{\nu} \in [\nu, 1/2] \text{ s.t.}$$

$$K(\nu,4) = \Delta + \frac{1}{2} \left(\tilde{\nu} - \frac{1}{2} \right)^2 \left. \frac{\partial^2}{\partial \nu^2} K(\nu,d_c) \right|_{\nu = \frac{1}{2}} \leq \Delta.$$

Proofs Proof of Theorem VI

Key Steps (3/3)

- 3) $\exists d_c^* < \infty$ such that $\forall \nu \in [\mu_1, 1/2 \mu_2], K(\nu, d_c^*) \leq \Delta$
 - Lemma VII $\exists \sigma(\mu_2), B(\nu) \leq R_H [1 \sigma(\mu_2)]$ for all $\nu \leq \frac{1}{2} \mu_2$
 - $\lim_{d_c \to \infty} F(\delta(\mu_1, d_c), \varepsilon, D) = -R_{\varepsilon}^{\text{sh}}(D)$
 - $F(\gamma, \varepsilon, D)$ is a decreasing function in $\gamma, \forall \mu_3 > 0, \exists d_c^* < \infty$ s.t. $F(\delta(\mu_1, d_c^*), \varepsilon, D) \leq -R_\varepsilon^{\text{sb}}(D) + \mu_3$
 - Combining the results

$$K(\nu, d_c^*) = \frac{R}{R_H} B(\nu) + F(\delta(\nu, d_c^*), \varepsilon, D)$$

$$\leq R [1 - \sigma(\mu_2)] - R_{\varepsilon}^{\text{sh}}(D) + \mu_3$$

$$= \Delta + (\mu_3 - R\sigma(\mu_2))$$

• choose μ_3 s.t. $\mu_3 \leq R\sigma(\mu_2)$.