R15

Code No: 123BN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, April/May - 2023 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 hours Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART - A

(25 Marks)

- Write negation for the statements "If laptop is not working properly then Dr. Kumar 1.a) can't take the class". [2]
 - b) Consider the statements:

Statement1: if 2+2=4 then Sun rises in the east

Statement 2: $2+2 \neq 4$ or Sun rises in the east

- Is the statement1 and statement2 are logically equivalent? Justify your answer. [3]
- c) Let $R = \{(1,2),(2,3),(3,2),(2,1)\}$ on set $X = \{1,2,3\}$. Find transitive closure of R. [2]
- Represent the relation $R = \{(1,1),(2,2),(3,3),(2,3),(3,1),(1,3)\}$ on the set $X = \{1,2,3\}$ in d) matrix form and graph form [3]
- How many can 10-similar coins fall, heads when they tossed simultaneously? e) [2]
- How many 3-digit even numbers are possible with digits 1,3,5,6,7,8? f) [3]
- Develop the generating function for the sequence 1,1,1,1,2,2,2,3,3,4. [2] g)
- Find the co-efficient of X^{14} in $(1 + X + X^2 + X^3)^{10}$. h) [3]
- Define planar graph. Is **K**_{2,3} planar graph? i)

[2]

A connected planar graph contains 5 vertices and 5 edges. How many regions will be j) there? [3]

PART - B

(50 Marks)

- Construct truth table for the propositional function $(P \rightarrow \sim Q) \land (Q \lor R)$ and verify 2.a) whether it is tautology, contradiction or contingency
 - Using Automatic Theorem proving show that \sim (P \vee Q) is logically equivalent to b) \sim P \wedge \sim Q.

OR

- 3. Verify that the following statements are consistent or not, using the rules of inference.
 - Statement 1: If Jack misses many classes through illness, then he fails high school
 - Statement 2: If Jack fails high school, then he is uneducated
 - Statement 3: If Jack reads a lot of books, then he is not uneducated
 - Statement 4: Jack misses many classes through illness and reads a lot of books. [10]

- 4.a) Let $A = \{1,2,3\}$, Let P(A) represents power set of A. Draw the Hasse diagram for the Poset (P(A), subset or equal to).
 - b) Consider the sets $A = \{1,2,3,4\}$, $B = \{3,4,5,6,7\}$, $C = \{6,7,8,9\}$ Find AUBUC, $(A \cap B) - (B \cap C)$, A - (BUC), AXB (where X is Cartesian product). [5+5]
- 5.a) Consider the relation $R=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$ on set $X=\{2,3,4\}$. What are the properties that are satisfied by the relation R. Justify your answer.
 - b) Consider the set $X = \{2,3,6,8,12\}$, a relation **R** is defined as $R = \{(a,b) \mid a \text{ divides b}, \text{ for a,b belongs to } X\}$. Is **R** a partial ordered relation or not? Justify your answer. Represent **R** in Graph and matrix form. [5+5]
- 6.a) Find the number of integral solutions to $x_1+x_2+x_3+x_4=50$, where $x_1 \ge -4$, $x_2 \ge 7$, $x_3 \ge -14$, $x_4 > 10$.
 - b) Enumerate 3- combinations and 3-permutations of {1.a, 3.b, 2.c,1.d}. [5+5]
- 7. Suppose that the license plates of a certain state require 3 English letters followed by 4 digits.
 - a) How many different plates can be manufactured if repetition of letters and digits are allowed?
 - b) How many plates are possible if only the letters can be repeated?
 - c) How many are possible if only the digits can be repeated? [10]
- 8. Solve the following In homogenous recurrence relation: $a_n 9 \ a_{n-1} + 20 \ a_{n-2} = 2^n$, for $n \ge 2$ and $a_0 = -3$ and $a_1 = -10$ [10]
- 9. Solve the following linear recurrence relation: $a_n 3 a_{n-1} 4 a_{n-2} = n-2$ for $n \ge 2$, $a_0 = 1$ and $a_1 = 1$.
- 10. What is Chromatic number? Apply an algorithm to find Chromatic number of the following graph. [10]

11. Apply Krushkal's algorithm and Prim's algorithm to obtain minimal spanning tree and also find minimal cost. [10]

