Intro to Cryptography

Lesson Introduction

- Basics of encryption and cryptanalysis
- Historical/simple schemes
- Types of cryptography and how they are used for security

Encryption/Decryption

- There is a one-to-one mapping
- Provides confidentiality protection

Encryption/Decryption

Other services:

- Integrity checking:no tampering
- Authenticity: verified authorship
- Authentication:not an imposter

Encryption Basics

Ancient crypto:

- Early signs of encryption in Egypt in ~2000 B.C.
- •Letter-based scheme (e.g., Caesar's cipher) ever since

Encryption Basics

- Symmetric ciphers:
 - From ancient time to the presence

- Asymmetric ciphers
 - First by Diffie-Hellman-Merkle in 1976

Encryption Basics

• Hybrid schemes - most protocols now use both:

 Asymmetric ciphers for authentication, key exchange, and digital signatures

• Symmetric ciphers for encryption of data/traffic

Attacks on Encryption

- •Break a cipher:
 - Uncovering plaintext p from ciphertext c, or, alternatively,
 discovering the key

Attacks on Encryption

- Brute-force attack
 - ●E.g., try all possible keys
- Cryptanalysis
 - Analysis of the algorithm and data characteristics
- Implementation attacks
 - E.g., side channel analysis
- Social-engineering attacks

Simple Ciphers

- Caesar's cipher (or, shift cipher):
 - \bullet E.g., A \rightarrow D, B \rightarrow E
 - •That is, shift by an offset *n*:

$$-(letter + n) \mod 26$$

- only 26 possible ways of secret coding
- Monoalphabetic cipher (or, substitution cipher):
 - •generalization, arbitrary mapping of one letter to another
 - \bullet 26!, ~4 × 10²⁶ or ~2⁸⁸
 - Attack with statistical analysis of letter frequencies

Letter Frequency of Ciphers

Letter Frequency of Ciphers

What is plaintext for:

IQ IFCC VQQR FB RDQ VFLLCQ NA RDQ CFJWHWZ HR BNNB HCC HWWHBSQVQBRE HWQ VHLQ

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL ARRANGEMENTS
ARE MADE

• In practice, also consider frequency of letter pairs, triples

Vigenere Cipher

- Plaintext: ATTACKATDAWN
- · Key:

LEMON

Keystream:

LEMONLEMONLE

· Ciphertext:

LXFOPVEFRNHR

What should be Kept Secret?

Kerckhoff's principle:

 A cryptosystem should be secure even if the attacker knows all details about the system, with exception of the secret key

•In practice:

- Only use widely known ciphers that have been crypto analyzed for several years by good cryptographers
 - E.g., established standards

Types of Cryptography

Secret key cryptography:

one key same key for encryption and decryption

Public key cryptography:

- two keys
 - Public for encryption, private for decryption
 - Private for signing and public for verification

Hash Functions

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- Easy to compute H(m)
- Given H(m), no easy way to find m
 - One-way function
- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

Hash Functions for Passwords

Symmetric Encryption

Asymmetric Encryption

 Plaintext: Readable message or data that is fed into the algorithm

- Encryption algorithm: Performs transformations on the plaintext
- Public and private key: Pair of keys, one for encryption, one for decryption
- Ciphertext: Scrambled message produced as output
- Decryption key: Produces the original plaintext

Asymmetric Encryption

Digital Signatures

Digital Signatures

Digital Envelopes

- Protects a message without needing to first arrange for sender and receiver to have the same secret key
- Equates to the same thing as a sealed envelope containing an unsigned letter

Digital Envelopes

Digital Envelopes

Intro to Cryptography

Lesson Summary

- Encryption schemes and attacks on encryption have been around for thousands of years.
- Hash: no key, no encryption
- Secret key cryptography: same key for encryption and decryption
- Public key cryptography: public key for encryption and signature verification and private key for decryption and signins