Unit-4: Number Conversion

Number System and Code

Digital system process binary digits 0 and 1

Base 10 is important for everyday business

Base 2 is important for processing of digital circuit

Base 8 and Base 16 provide convenient shortened representation for multibit number in a digital system

Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10		8	1000
1001	9	11	_	9	1001
1010	10	12	_	A	1010
1011	11	13		В	1011
1100	12	14		C	1100
1101	13	15	_	D	1101
1110	14	16		E	1110
1111	15	17		F	1111

Number conversion

Methods or techniques used to convert numbers from one base to another

Decimal to Other

Step 1 – Divide the decimal number to be converted by the value of the other base.

Step 2 – Get the remainder from Step 1 as (least significant digit) of new base number

Step 3 – Divide the quotient of the previous divide by the new base.

Step 4 – Record the remainder from Step 3 as the next digit

Repeat Steps 3 and 4, getting remainders until the quotient becomes zero

The last remainder thus obtained will be the Most Significant bit(MSB) of the new base number.


```
(10)10 = (1010)2

Fractional part
0.25x2 = 0.50 \downarrow (0.25)10 = (0.01)2
0.50x2 = 1.00 \downarrow
```

Decimal to Hexadecimal

$$(3509)_{10} = (DB5)_{16}$$

sor	16	3509	5	der
÷	16	219	11	ain
Dia	16	13	13	Rem
		0		-

Quotient

Decimal to Octal $(569)_{10} = (1071)_{8}$

8	569	Remainders	
8	71	1 /	·
8	8	7 [Read in
8	1	0	reverse order
	0	1]

$$0.342_{10} = ?_8$$

 $0.342 \times 8 = 2.736 \ (.2_8)$
 $0.736 \times 8 = 5.888 \ (.25_8)$
 $0.888 \times 8 = 7.104 \ (.257_8)$
 $0.104 \times 8 = 0.832 \ (.2570_8)$
 $0.342_{10} \approx 0.2570_8$ it's an approximation

Other Base System to Decimal System

- **Step 1** Determine positional value of each digit
- **Step 2** Multiply the obtained position values by the digits in the corresponding columns.
- **Step 3** Sum the products calculated in Step 2.

Calculating Decimal Equivalent -

32	16	8	4	2	1	
1	0	0	1	1	1	=32 + 4 +2 +1 = (39)10

Step	Binary Number	Decimal Number
Step 1	111012	$((1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0))_{10}$
Step 2	111012	(16 + 8 + 4 + 0 + 1) ₁₀
Step 3	111012	29 ₁₀

Octal to Decimal

$$(2754)_8 = (2 \times 8^3) + (7 \times 8^2) + (5 \times 8^1) + (4 \times 8^4)$$
$$= 1024 + 448 + 40 + 4$$
$$= 1516_{10}$$

Hexadecimal to Decimal

$$(54.D2)^{16} = (5 \times 16^{1}) + (4 \times 16^{0}) + (13 \times 16^{-1}) + (2 \times 16^{-2})$$
$$= 80 + 4 + 0.8125 + 0.0078125$$
$$= 84.8203125_{10}$$

Binary to Octal

- **Step 1** Divide the binary digits into groups of three (starting from the right).
- **Step 2** Convert each group of three binary digits to one octal digit.

Binary Number - 101012

Calculating Octal Equivalent -

Step	Binary Number	Octal Number
Step 1	101012	010 101
Step 2	101012	28 58
Step 3	101012	258

Octal to Binary

Step 1 – Convert each octal digit to a 3 digit binary number.

Step 2 – Combine all the resulting binary groups (of 3 digits each) into a single binary number

Octal Number - 258

Calculating Binary Equivalent -

Step	Octal Number	Binary Number
Step 1	258	0102 1012
Step 2	258	0101012

Binary to Hexadecimal

- **Step 1** Divide the binary digits into groups of four (starting from the right).
- **Step 2** Convert each group of four binary digits to one hexadecimal symbol.

Binary Number - 101012

Calculating hexadecimal Equivalent -

Step	Binary Number	Hexadecimal Number
Step 1	101012	0001 0101
Step 2	101012	15 ₁₆

Hexadecimal to Binary

- **Step 1** Convert each hexadecimal digit to a 4 digit binary number.
- **Step 2** Combine all the resulting binary groups (4 digits each) into a single binary number.

Hexadecimal Number - 15₁₆

Calculating Binary Equivalent -

Step	Hexadecimal Number	Binary Number
Step 1	15 ₁₆	00012 01012
Step 2	15 ₁₆	000101012

$$8421$$

$$(1101)_2 = 8 + 4 + 1 = (13)_{10}$$

$$(0111)_2 = 7_{10}$$

$$(1010)_2 = (10)_{10} = A_{16}$$

$$(10101)_2$$

Binary Addition

```
0+0=0

0+1=1

1+0=1

1+1=10 (which is 0 carry 1)
```

$$(10010)_2 + (1001)_2 = ?$$

Binary Subtraction

Α	15	В	Subtract	Borrow
0	-	0	0	0
1	-	0	1	0
1	-	1	0	0
0	10.70	1	1	1

borrow

0001110 = 1410

$$(1100)_2 - (1010)_2 = ?$$

Practice Question