Filterd Sp Cpx

$$\left\{ K_r = (V_r, \Sigma_r) \right\}_{r > 0} \quad \text{and} \quad \left\{ f_{v_i s} \colon V_r \longrightarrow V_s \text{ simplicial map} \right\}_{r \leq s}$$
 Such that if $r \leq t \leq s$ then

$$V_r \xrightarrow{f_{rs}} V_t \xrightarrow{f_{ts}} V_s$$

Commit es.

FFSC is a finite one.

Eg: Vietoris-rips. Let (X, J) be a finite metric space.

Ut
$$VR(X,r) = (V_r, \Sigma_r)$$
 where $V_r = X$, $\Sigma_r = \{\sigma \in X : \frac{d(X,y) \leq r}{\forall X,y \in \sigma}\}$

$$VR(X) = \{VR(X,r)\}_{r>0}, \{f_{rs} = id_x\}_{r \leq s}$$

VR(X) is a FFSC because d takes finitely many values so, r, ,..., r,

ک	a	ط	c	٩	e
9	O	3/2	2	Js	
Ь		O	1/2	55/2	513/2
C	4		0	1	Js
9	,	`		0	2
e					0

$$\bigcirc, \frac{1}{2}, \frac{1}{3}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{5}$$

$$VR(X, 0) =$$

$$\forall R(X,I) = I$$

$$\sqrt{R}(X,\frac{\sqrt{5}}{2}) =$$

$$VR(X,\frac{3}{2}) =$$

$$\sqrt{R(X_1, \frac{\sqrt{13}}{2})} = \sqrt{1}$$

$$\sqrt{R(\chi, 2)} = \sqrt{\frac{1}{2}}$$

$$\sqrt{R(X_1, z^2)^{0000}}$$
 = $(|X|-1)-d$ Simplex.

How to quantify topological features? Homology.

$$K = \{K_r\}_{>0}$$
 is $PH_k(IK) := \{H_k(K_r)\}_{r>0}$

Notice: Yres, we have an induced map

$$H_{k}(f_{rs}): H_{k}(K_{r}) \longrightarrow H_{k}(K_{s})$$