Machine Learning

Question 1)

General Functions)

Since the first questions seem to involve doing the same process several times over, I implement these general functions below:

```
library(kknn)
plot_regression <- function(f, mdl, train){</pre>
  plot(train$y ~ train$x, main = "y vs x", xlab = "x", ylab = "y")
  curve(f, add = TRUE)
  abline(mdl, col = "blue", lty = 2)
plot_knn <- function(f, train){</pre>
  test <- data.frame(x = sort(train$x))</pre>
  knn_2 <- kknn(y ~ x, train, test, k = 2, kernel = "rectangular")</pre>
  plot(train$y ~ train$x, main = "KNN, k = 2", xlab = "x", ylab = "y")
  lines(test$x, knn_2$fitted.values, col = "red")
  curve(f, add = TRUE)
  knn_12 <- kknn(y ~ x, train, test, k = 12, kernel = "rectangular")</pre>
  plot(train$y ~ train$x, main = "KNN, k = 12", xlab = "x", ylab = "y")
  lines(test$x, knn_12$fitted.values, col = "blue")
  curve(f, add = TRUE)
}
plot_mse <- function(train, test, mdl_tr, p = -1){</pre>
  outMSE <- c()</pre>
  kvec <- 2:15
  for(k in kvec){
    near = kknn(y ~ ., train, test, k = k, kernel = "rectangular")
    MSE = mean((test$y - near$fitted)^2)
    outMSE <- c(outMSE, MSE)</pre>
  #Regression MSE (test)
  y_reg_pred <- predict(mdl_tr, newdata = test)</pre>
  mse_regr <- mean((test$y - y_reg_pred)^2)</pre>
  title = "log(1/k) MSE"
  if(p > -1){title <- paste(title, "Sine Disturbance", p)}</pre>
  plot(outMSE ~ log(1/kvec), main = title)
  abline(a = mse_regr, b = 0, col = "red", lwd = 4)
  imin = which.min(outMSE)
  cat("best k is ",kvec[imin],"\n")
  cat("Regression MSE:", mse_regr)
}
steps_1_5 <- function(f, train, test){</pre>
```

```
mdl_tr <- lm(y ~ x, data = train)
plot_regression(f, mdl_tr, train)
plot_knn(f, train)
plot_mse(train, test, mdl_tr)
}</pre>
```

1: Generating Data)

```
set.seed(98)
f <- function(x){return(1.8*x + 2)}
x_train <- rnorm(100)
y_train <- f(x_train) + rnorm(100)

x_test <- rnorm(10000)
y_test <- f(x_test) + rnorm(10000)

train <- data.frame(x = x_train, y = y_train)
test <- data.frame(x = x_test, y = y_test)</pre>
```

2: Scatterplot and 3) Regression (Train)

```
mdl_tr <- lm(y ~ x, data = train)
plot_regression(f, mdl_tr, train)</pre>
```


4) KNN

plot_knn(f, train)

KNN, k = 2

KNN, k = 12

5) MSE, Performance

```
plot_mse(train, test, mdl_tr)
```

log(1/k) MSE


```
## best k is 8
## Regression MSE: 1.006323
```

The model that performs the best is KNN for k = 8. Linear Regression's out of sample 12 loss was so low that it didn't even show up on the graph, that is, it performed bettr than KNN for all values of k from [2, 15]. Makes sense since the true function is linear.

6) Exponential

a) Generate Data

```
set.seed(5)
f_exp <- function(x){return(exp(x + 1) + 3)}
x_train <- rnorm(100)
y_train <- f_exp(x_train) + rnorm(100)

x_test <- rnorm(10000)
y_test <- f_exp(x_test) + rnorm(10000)

train <- data.frame(x = x_train, y = y_train)
test <- data.frame(x = x_test, y = y_test)</pre>
```

b) the other steps

steps_1_5(f = f_exp, train = train, test = test)

y vs x

KNN, k = 2

KNN, k = 12

log(1/k) MSE


```
## best k is 2
## Regression MSE: 14.77465
```

The best k is k=2. Most likely came from the boundary bias since the function begins to skyrocket at the right tail. But to be honest, it's probably a stupid bug that I missed. The regression MSE doesn't show up on the plot this time because it was too high. Makes sense since the true function is not linear, which linear regression assumes.

7) Sine

a) Generate Data

```
set.seed(35)
f_sin <- function(x){return(sin(2*x) + 2)}
x_train <- rnorm(100)
y_train <- f_sin(x_train) + rnorm(100)

x_test <- rnorm(10000)
y_test <- f_sin(x_test) + rnorm(10000)

train <- data.frame(x = x_train, y = y_train)
test <- data.frame(x = x_test, y = y_test)</pre>
```

b) The rest

steps_1_5(f = f_sin, train = train, test = test)

y vs x

KNN, k = 2

KNN, k = 12

log(1/k) MSE


```
## best k is 9
## Regression MSE: 1.584797
```

Best k is 9 neighbors. Quite honestly, I expected exponential MSE from the linear regression to perform better than sine, but I guess I either made a typo somewhere / bug.

So forgetting about the bug, Regression does a lot worse in terms of out of sample performance.

8 Disturbing the neighbors)

```
steps_psin <- function(p, train, test){
    p_vec <- 1:p
    x_p_train <- matrix(rnorm(100 * length(p_vec)), ncol = length(p_vec))
    colnames(x_p_train) <- p_vec
    x_p_test <- matrix(rnorm(10000 * length(p_vec)), ncol = length(p_vec))
    colnames(x_p_test) <- p_vec

    train_p <- data.frame(train, noise = x_p_train)
    test_p <- data.frame(test, noise = x_p_test)
    mdl_tr <- lm(y ~ ., data = train_p)
    plot_mse(train_p, test_p, mdl_tr, p)
}

par(mfrow = c(2,2))
for(p in 1:20){ steps_psin(p, train, test) }</pre>
```

best k is 15

Regression MSE: 1.593403

best k is 12

Regression MSE: 1.587342

best k is 8

Regression MSE: 1.626781

log(1/k) MSE Sine Disturbance 1

log(1/k) MSE Sine Disturbance 2

log(1/k) MSE Sine Disturbance 3

log(1/k) MSE Sine Disturbance 4

best k is 9

Regression MSE: 1.592729

best k is 10

Regression MSE: 1.631321

best k is 10

Regression MSE: 1.631525

best k is 15

Regression MSE: 1.623652

outMSE

-2.5 -2.0 -1.5 -1.0 log(1/kvec)

log(1/k) MSE Sine Disturbance 6

log(1/k) MSE Sine Disturbance 7

log(1/k) MSE Sine Disturbance 8

best k is 15

Regression MSE: 1.804985

best k is 15

Regression MSE: 1.709953

best k is 15

Regression MSE: 1.71035

best k is 15

Regression MSE: 1.715966

-2.5 -2.0 -1.5 -1.0

log(1/k) MSE Sine Disturbance 10

log(1/k) MSE Sine Disturbance 11

log(1/k) MSE Sine Disturbance 12

best k is 15

Regression MSE: 1.621578

best k is 15

Regression MSE: 1.670572

best k is 12

Regression MSE: 1.717137

best k is 12

Regression MSE: 1.837632

-2.5 -2.0 -1.5 -1.0 log(1/kvec)

log(1/k) MSE Sine Disturbance 14

log(1/k) MSE Sine Disturbance 15

log(1/k) MSE Sine Disturbance 16

best k is 15

Regression MSE: 1.785456

best k is 15

Regression MSE: 1.856361

best k is 15

Regression MSE: 1.899913

best k is 15

Regression MSE: 2.031901

log(1/k) MSE Sine Disturbance 18

log(1/k) MSE Sine Disturbance 19

log(1/k) MSE Sine Disturbance 20

best k is 15

Regression MSE: 2.076809

Due to random variation, we sometimes see the regression MSE jump around, but for the most part, it's doing better and better against KNN. I hypothesize that we see this because now, meaningless variations in the euclidian distance (to find the nearest neighbors) are throwing off what the "true" neighbors should be.

Bonus 1)

I would expect KNN to perform better relative to regression. Regression won't do any better with more datathe true line isn't linear. With more samples, we would expect our tuning parameter k to have a wider range of values (where it outperforms linear regression), since samples mean more information for our KNN model.