(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-208980

(43)公開日 平成7年(1995)8月11日

(51) Int.Cl.*	戲別記号	庁内整理番号	FΙ			;	技術表	示箇所
G01C 3/06	V							
B60R 21/00	С	9434 - 3D						
G 0 2 B 7/34								
			G 0 2 B	7/ 11		С		
			審查請求	未請求	請求項の数5	OL	全	8 頁)
(21) 出題番号	特顯平6-6679		(71)出顧人	夏人 000005234 富士電機株式会社				
(22)出願日	平成6年(1994)1月	126FI			R川崎市川崎区E	日初新日	11 11 11 11 11 11 11 11 11 11 11 11 11	1 号
	1 100 17 (1001) 17	1201	(72)発明者			-1 /2/2/17	чтш	_ ,
					·一 队川崎市川崎区E	H辺新E	日1番	1号
				富士電視	機株式会社内			
			(74)代理人	46 III-L-	山田 稔			

(54) 【発明の名称】 測距装置

(57)【要約】

【目的】 測距装置において、センサの応答時間が遅くならず、平行プリズム内の迷光の抑制を図り、測距精度を向上させること。

【特許請求の範囲】

【請求項1】 距離測定半導体集積回路チップの左右一 対のセンサ部のそれぞれに対し測距対象を結像する左右 一対の結像系と、前記結像系の平行光軸間隔を前記セン サ部の平行光軸間隔に短縮する左右一対の平行プリズム (全反射面の理想交角180°)とを有する測距装置に おいて、

前記平行プリズムは入射側境界面及び射出側境界面に迷 光トラップ用の溝又はスリットを有することを特徴とす る測距装置。

【請求項2】 請求項1に記載の測距装置において、前 記左右の平行プリズムは入射側境界面の内側領域相互を プリズム接続用ガラス板で接着連結されてなり、前記入 射側境界面の前記迷光トラップ用の溝又はスリットは前 記プリズム接続用ガラス板と入射領域に貼り合わせたガ ラス板の間隙であり、前記射出側境界面の前記迷光トラ ップ用の溝又はスリットは非射出領域に貼り合わせた複 数のガラス板の間隙であることを特徴とする測距装置。

【請求項3】 請求項1に記載の測距装置において、前 記入射側境界面の前記迷光トラップ用の溝又はスリット は切込み溝であり、前記射出側境界面の前記迷光トラッ プ用の溝又はスリットは複数の切込み溝であることを特 徴とする測距装置。

【請求項4】 距離測定半導体集積回路チップの左右一 対のセンサ部のそれぞれに対し測距対象を結像する左右 一対の結像系と、前記結像系の平行光軸間隔を前記セン サ部の平行光軸間隔に短縮する左右一対の平行プリズム (全反射面の理想交角180°)とを有する測距装置に おいて、

前記左右の平行プリズムは入射側境界面の内側領域相互 をプリズム接続用ガラス板で接着連結されており、前記 $d = B \cdot f_e / (X_1 + X_2) = B \cdot f_e / X$

但し、 f_e は結像レンズ 1_R 、 1_L とフォトセンサアレ A_{R} , A_{L} までの距離(結像レンズ A_{R} , A_{L} の焦点 距離に等しい)、 X_1 , X_2 はフォトセンサアレイ 2 2 、 2 上の像点位置と物体工が無限遠にあるときの 像点位置との距離で、それらの和X(=X₁+X₂)は フォトセンサアレイ 2_R 、 2_L 上の物体像の相対的ずれ 量(位相量)である。

【0004】このような測距装置は、ユーザー側で製造 されるカメラ等への搭載を容易にするため、ユニット化 ないしモジュール化されており、例えば、図5に示すよ うな自動魚点用測距モジュール(ユニット)として知ら れている。この自動焦点用測距モジュールは、左右一対 の結像レンズ18、1~と、光線に偏角を付与し左右の 平行光軸間隔を短縮するための反射鏡M_R , M_L 及び交 | 角90゜の2枚鏡の反射体6と、チップ5を封止した1 Cパッケージ7とを有するものである。ここで、チップ 5は半導体製造プロセスにより得られるため、量産性及 び低コスト化の下でチップサイズは縮小化する傾向があ

各々の平行プリズムの入射側境界面及び射出側境界面と 入射側全反射面及び射出側全反射面には無反射コーディ ングが施されてなり、前記面以外の面には光吸収物質が **塗布されてなることを特徴とする測距装置。**

【請求項5】 請求項4に記載の測距装置において、前 記平行プリズムの入射側境界面の非入射領域及び前記平 行プリズムの射出側境界面の非射出領域には光吸収物質 が塗布されてなること特徴とする測距装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば車両の追突防止 装置に適用可能な三角測量方式の測距装置(測距モジュ ール)に関し、特に、左右の平行光軸間隔を短縮する左 右一対の平行プリズムに関する。

[0002]

【従来の技術】従来、自動焦点カメラ等に搭載される外 光三角方式の測距装置の原理的構成は、例えば図4に示 すように、物点(物体)Tに臨み視差を作る左右一対の 結像レンズ 1 R 、 1 L を含む結像光学系と、その物体像 を電気信号に変換する左右一対のフォトセンサアレイ2 g , $2_{\rm L}$ 、フォトセンサアレイ $2_{\rm R}$, $2_{\rm L}$ からの信号を ディジタル信号に変換する量子化回路 3 R 、 3 L 及び量 子化回路3歳、3~からのディジタル信号に基づいて距 離信号を算出する論理演算部4がそれぞれ作り込まれた **距離測定半導体集積回路チップ(IC)5とを有してい** る。物体Tの結像(実像)は基準長Bだけ隔てた左右一 対の結像レンズ1。, 1、によりチップ5の主面の左右 一対のフォトセンサアレイ 2_R , 2_L 上に投影される。 物体Tまでの距離は三角測量の原理(相似性)に基づ いて次式で与えられる。

[0003]

$\cdot \cdot \cdot (1)$

り、左右一対のフォトセンサアレイ2R.2Lの間隔は 高々数mmである。一方、測距精度の向上を図るには、 基準長B及び焦点距離f、を長くする必要があるが、カ メラ等への搭載においてはコンパクト化(1~2cm) もまた要請されるため、優れた測距精度を得ることはで きない。ただ、カメラ等においては被写体深度の深い写 真レンズを用いれば距離測定の高精度化はさほど必要と しない。しかし、図5に示す測距モジュールにおいて は、結像レンズ1R、1」を介した光線を偏向させてフ ォトセンサアレイ28,2 上へ導く光導系としての反 射鏡M。, Mi 及び交角90°の反射体6は別体の光学 要素であるため、組立て作業の煩雑さや組立て精度の限 界があった。

【0005】そこで、本発明者は、図6に示すような測 距装置を試作した。この測距装置は、例えば車両前方の 障害物までの距離を測定して追突を回避するための追突 防止装置に用いるものであり、左右一対の結像レンズ1 R 、 1」を介した光線をそれぞれのフォトセンサアレイ

2g . 2 上へ導く左右一対の平行プリズム8g . 8 に を中心線しに関して左右対称状に配置したものである。 この平行プリズム88.8 においては、入射側全反射 面8_{RA}, 8_{LA}と射出側全反射面8_{RB}, 8_{LB}の成す角(理 想交角)は180*(平行)で、入射側境界面8_{RC},8 LCと入射側全反射面8RA、8LAの成す角(理想項角)及 び射出側全反射面 8_{RB} 、 8_{LB}と射出側境界面 8_{RD} 、 8_{LD} の成す角(理想頂角)は45°である。左右一対の結像 レンズ1g 、1L の平行光軸間隔は基準長B(例えば1 Ocm程度)であるが、平行プリズム8_k,8_lを通過 した左右の結像光線はフォトセンサアレイ2g.2Lへ 平行光軸間隔b(例えば数mm程度)として短縮され る。平行プリズム8。、8」の突き合わせ(背合わせ) 側は切除面 8_{RE} , 8_{LE} としてあり、両プリズム 8_{R} , 8 $_{\mathfrak{t}}$ の当りを無くしてフォトセンサアレイ $2_{\mathtt{R}}$, $2_{\mathtt{L}}$ での 平行光軸間隔りをより小さくするようにしていると共 に、切除面8_{RE}、8_{LE}に光吸収物質を塗布して迷光の除 去や光線の相互干渉等の防止を図っている。なお、12 は平行プリズム 8_R 、 8_L の入射側境界面 8_{RC} 、 8_{LC} の 内側領域に接着剤を以て貼り合わせたプリズム接続用ガ ラス板である。

【0006】そして、このような形状の平行プリズム8 $_R$, 8_L は、図7に示すような切除面9 a のある平行四辺形柱のプリズム母材9の側面(対向平行面)を最初に研磨した後、いわゆる金太郎飴を作ると同様の方法で、母材9の柱軸方向に等間隔毎に切断して製造される。このプリズム母材9からの切り出しによる製造方法によれば、プリズム単体での研磨工程を排除できるので、工数の削減による低コスト化を図ることができ、また左右一対の平行プリズム8 $_R$, 8_L における平面平行度の精度を相等しくできる。

[0007]

【発明が解決しようとする課題】しかしながら、図6に 示す測距装置においては、次のような問題点がある。即 ち、結像レンズ 1_R , 1_L から平行プリズム 8_R , 8_L の入射側境界面8_{RC}、8_{LC}の入射領域に対して入射する 光線のうち結像するための通常の光路以外を経る光線 (迷光)が存在するため、この迷光が平行プリズム 8。, 8、内で反射又は全反射によりフォトセンサアレ A_{R} , A_{L} 上に照射される。例えば、図8(a)に示 すように、平行プリズム8₁の入射側境界面8_{1c}の入射 領域(入射瞳領域)Sのうち光軸 Lを交差し頂角45° を成す稜線部分a側に入射する迷光Xは、入射側全反射 面8LAの稜線部分a側で反射するため、その迷光の反射 光は入射側境界面 8_{LC} の入射領域 Sに戻りここで全反射 した後、射出側全反射面8ょ。で反射して射出瞳領域工を 透過しフォトセンサアレイ 2_L 上に照射される。また、 図8(b)に示すように、平行プリズム8』の入射側境 界面8Lcの入射領域Sのうち光軸1を迷光×とは逆に交 差し稜線部分aとは反対側に入射する迷光Yは、入射側

全反射面 8_{LA} の稜線部分d側で反射するため、その迷光の反射光は射出側境界面 8_{LB} の稜線部分d側で全反射した後、射出側全反射面 8_{LB} で反射して射出瞳領域Tを透過しフォトセンサアレイ 2_L 上に照射される。迷光X、Yがフォトセンサアレイ 2_L 上に照射されると、フォトセンサアレイ 2_L 上に正規の結像以外の像が写ったり、重なって写ったりするため、測定誤差が大きくなり、測距精度が悪くなる。迷光の入射量を抑制するために、結像レンズの前にアパーチャーを置く方法が考えられるが、Fナンバーが劣化し、レンズが暗くなるので、結像照度が低下してフォトセンサアレイの応答時間が遅くなる。

【0008】そこで、上記問題点に鑑み、本発明の課題は、センサの応答時間が遅くならず、迷光の抑制を図り測距精度を向上できる測距装置を実現することにある。 【0009】

【課題を解決するための手段】上記課題を解決するため に、本発明の講じた手段は、平行プリズムの面に迷光除 去のための迷光トラップ手段を設けたものである。即 ち、本発明の第1の手段は、距離測定半導体集積回路チ ップの左右一対のセンサ部のそれぞれに対し測距対象を 結像する左右一対の結像系と、上記結像系の平行光軸間 隔を上記センサ部の平行光軸間隔に短縮する左右一対の 平行プリズム(全反射面の理想交角180°)とを有す る測距装置において、上記平行プリズムが入射側境界面 及び射出側境界面に迷光トラップ用の溝又はスリットを 有することを特徴とする。かかる測距装置において、左 右の平行プリズムは入射側境界面の内側領域相互をプリ ズム接続用ガラス板で接着連結されてなり、上記入射側 境界面の上記迷光トラップ用の溝又はスリットは上記プ リズム接続用ガラス板と入射領域に貼り合わせたガラス 板の間隙であり、上記射出側境界面の上記迷光トラップ 用の溝又はスリットは非射出領域に貼り合わせた複数の ガラス板の間隙であることを特徴とする。また上記測距 装置において、上記入射側境界面の前記迷光トラップ用 の溝又はスリットは切込み溝であり、上記射出側境界面 の前記迷光トラップ用の溝又はスリットは複数の切込み 溝であることを特徴とする。

【0010】本発明の第2の手段は、距離測定半導体集積回路チップの左右一対のセンサ部のそれぞれに対し測距対象を結像する左右一対の結像系と、上記結像系の平行光軸間隔を上記センサ部の平行光軸間隔に短縮する左右一対の平行プリズム(全反射面の理想交角180°)とを有する測距装置において、左右の平行プリズムは入射側境界面の内側領域相互をプリズム接続用ガラス板で接着連結されてなり、各々の平行プリズムの入射側境界面及び射出側境界面と入射側全反射面及び射出側全反射面には無反射コーディングが施されてなり、上記面以外の面には光吸収物質が塗布されてなることを特徴とする。かかる測距装置において、上記平行プリズムの入射

側境界面の非入射領域及び上記平行プリズムの射出側境 界面の非射出領域には光吸収物質が塗布されてなること 特徴とする。

[0011]

【作用】第1の手段によれば、平行プリズム内の迷光のうち入射側境界面及び射出側境界面に当たる光線は迷光トラップ用の溝又はスリットに捕捉され、平行プリズム内から除去される。このため、センサ部に照射される迷光が減少するので、高精度の測距精度を得ることができる。アパーチャー等を用いていないので応答速度が遅くなることはない。入射側境界面及び射出側境界面の迷光トラップ用の溝又はスリットはプリズム接続用ガラス板と入射領域に貼り合わせたガラス板の間隙や非射出領域に貼り合わせた複数のガラス板の間隙で構成することができるが、ガラス板の貼り合わせに代えて厚み付けをした平行プリズムに切込み溝を形成しても良い。かかる場合には、部品点数を削減することができると共に、接着剤の塗布や屈折率の合わせ込み等の手間が不要になり、低コトス化を図ることができる。

【0012】第2の手段によれば、平行プリズム内の迷光が入射側境界面又は射出側境界面に当たると、反射してプリズム内に閉じ込められず、そのままプリズム側へ射出する。また入射側全反射面及び射出側全反射面で正規の角度以外の角度で入射する迷光もそのままプリズム外へ射出する。従って、センサ部に照射される迷光の量が減少するので、やはり高精度の測距精度を得ることができる。また、入射側境界面,射出側境界面,入射側全反射面及び射出側全反射面以外の面(側面)に光吸収物質が塗布されているので、外来光の遮光が達成され、プリズム内の迷光を低減できる。更に、平行プリズムの入射側境界面の非入射領域及び射出側境界面の非射出領域に光吸収物質が塗布されている場合には、遮光及び迷光除去を同時に実現できる。

[0013]

【実施例】次に、本発明の実施例を添付図面に基づいて 説明する。

【0014】〔実施例1〕図1(a)は本発明の実施例1に係る測距装置を示す構成図で、図1(b)は同測距装置の平行プリズムにおける迷光の光路を示す説明図である。

【0015】この測距装置20は例えば追突防止装置に用いるものであり、左右一対の結像レンズ 1_R 、 1_L を介した光線をそれぞれのフォトセンサアレイ 2_R 、 2_L 上へ導く左右一対の平行プリズム 8_R 、 8_L を中心線L に関して背合わせ状態で左右対称状に配置したものである。この平行プリズム 8_R 、 8_L においては、入射側全反射面 8_{RA} 、 8_{LA} と射出側全反射面 8_{RB} 、 8_{LB} の成す角(理想交角)は 180° (平行)で、入射側境界面

8_{RC}, 8_{LC}と入射側全反射面 8_{RA}, 8_{LA}の成す角(理想頂角)及び射出側全反射面 8_{RB}, 8_{LB}と射出側境界面 8

RD、 8_{LD} の成す角(理想頂角)は 45° である。左右一対の結像レンズ 1_R 、 1_L の平行光軸間隔は基準長B(例えば10 c m程度)であるが、平行プリズム 8_R 、 8_L を通過した左右の結像光線はフォトセンサアレイ 2_R 、 2_L へ平行光軸間隔b(例えば数mm程度)として短縮される。平行プリズム 8_R 、 8_L の突き合わせ(背合わせ)側は切除面 8_{RE} 、 8_{LE} としてあり、両プリズム 8_R 、 8_L の当りを無くしてフォトセンサアレイ 2_R 、 2_L での平行光軸間隔 b をより小さくするようにしている。

【0016】平行プリズム $8_{ exttt{R}}$, $8_{ exttt{L}}$ はその入射側境界 面8кс、8ксの内側に透明接着剤で貼り合わせたプリズ ム接続用ガラス板12によって相互連結されている。こ のプリズム接続用ガラス板12及び透明接着剤の屈折率 は平行プリズム8。、8」の屈折率に等しい。平行プリ ズム8_R , 8_L の入射側境界面8_{RC} , 8_{LC}の入射領域S にはプリズム接続用ガラス板12の端部とで隙間G。、 G_L をおいて厚み付け用の薄いガラス板 10_R , 10_L が透明接着剤を以て貼り合わされている。なお、隙間G R、GLの代わりに、プリズム接続用ガラス板12とガ ラス板 10_R , 10_L を相隣接して貼り合わせて形成し た突き合わせ面(スリット)であっても良い。また、本 例では薄いガラス板 10_R , 10_L は平行プリズム 8 , 8 の幅寸法に合わせた直径を有する円板として あるが、矩形のガラス板でも良い。ここで、ガラス板1 0。、10、及び透明接着剤の屈折率は平行プリズム8 R . 8 の屈折率に等しくしてある。

【0017】また、平行プリズム 8_R (8_L)の射出側境界面 8_{RD} (8_{LD})上で入射全反射面 8_{RA} (8_{LA})との稜線部分dの側(非射出領域)には2枚の厚み付け用の薄いガラス板 11_{R1} , 11_{R2} (11_{L1} , 11_{L2})が透明接着剤を以て相隣接して貼り合わされており、外側のガラス板 11_{R1} (11_{L1})と内側のガラス板 11_{R2} (11_{L2})との境界には突き合わせ面 g_R (g_L)が形成されていると共に、内側のガラス板 11_{R2} (11_{L2})の内側には射出領域下が画成されている。ここで、ガラス板 11_{R1} , 11_{R2} (11_{L1} , 11_{L2})及び透明接着剤の屈折率は平行プリズム 8_R , 8_L の屈折率に等しくしてある。

 プリズム8」の入射側境界面8_{LC}の入射領域Sのうち光 軸1を交差し稜線部分a側に入射する迷光X』は、入射 側全反射面8LAの稜線部分a側で反射し、その反射光は 入射側境界面8_{LC}の入射領域Sに戻るが、ガラス板10 』が存在するためそのまま進行し、迷光X」はガラス板 10」の表面で全反射した後隙間G」の界面に向かい又 は直接的に隙間G』の界面に向かってこの隙間G』の界 面を射出して平行プリズム81 外に散逸する。このた め、ガラス板10」とプリズム接続用ガラス板12で形 成される隙間G」は迷光トラップギャップに相当してお り、ガラス板10」は迷光を隙間G」へ導く迷光誘引部 に相当している。なお、入射領域Sのうち迷光X』の入 射点よりも内側に入射する迷光X2, X3, は、入射側全反 射面8LAの稜線部分a側で反射し、入射側境界面8LCに 向かうが、このような迷光X_{2、}X_{3、}は図6に示す場合と 同様に、プリズム接続用ガラス板12内に入射した後そ の表面で全反射して平行プリズム81外に散逸する.こ のようにプリズム接続用ガラス板12は迷光の導出部と しても機能している。

【0019】他方、図1(b)に示すように、平行プリ ズム8」の入射側境界面8_{LC}の入射領域Sのうち光軸! を迷光X」~X。とは逆に交差し稜線部分aとは反対側 に入射する迷光Y1. Y2 は、入射側全反射面8LAの稜線 部分d側で反射するが、ガラス板1111が存在するため そのまま進行し、迷光 Y_1 , はガラス板 11_{11} の表面で全 反射した後突き合わせ面g」に向かい、迷光Y2 は直接 的に突き合わせ面g」に向かってこの突き合わせ面g」 で迷光 Y_1, Y_2 が捕捉される。なお、ガラス板 11_{12} の 端面も迷光トラップ面となる。ここで、ガラス板1141 は迷光誘引部に相当しているが、ガラス板11i2が無い 場合即ち一枚のガラス板11x1の場合は、迷光Y1、Y2 の射出側全反射面 8 μ の入射角が 45・以外の角になり 全反射量を低減する意義だけにある。しかし、これでは 不十分であるので、ガラス板1112の表面で全反射した 迷光を効果的に除去するため、もう一枚のガラス板11 12を用い、迷光トラップギャップとしての突き合わせ面 g」を形成してある。ガラス板11ょの表面で全反射す る迷光は射出側全反射面8LBに向かい、ここで全反射し て射出領域Tに現れ出ることがあるが、その割合を少な くするには、突き合わせ面g」を射出領域下以外の非射 出領域において複数箇所に形成する。つまり、射出側全 反射面8₁₈の射出領域T以外の非射出領域において複数 のガラス板を隣接させて貼り合わせる。

【0020】このように、本例では、アパーチャーを設 けずに、射出領域Tに現れ出る迷光の量を低減させるこ とができるため、光量不足がなく測距装置の応答時間を 遅くせずに、測距精度の向上を図るとができる。

【0021】〔実施例2〕図2(a)は本発明の実施例 2に係る測距装置を示す構成図で、図2(b)は同測距 装置の平行プリズムにおける迷光の光路を示す説明図で

ある.

【0022】この測距装置30も、実施例1に係る測距 装置20と同様に、左右一対の結像レンズ1k,1Lを 介した光線をそれぞれのフォトセンサアレイ 2_R 、 2_L 上へ導く左右一対の平行プリズム13。,13」を中心 線しに関して背合わせ状態で左右対称状に配置したもの であるが、平行プリズム13。、13」の形状が異な る。平行プリズム13。,13。においては、入射側全 反射面8_{RA}, 8_{LA}と射出側全反射面8_{RB}, 8_{LB}の成す角 (理想交角)は180°(平行)で、入射側境界面 8_{RC} , 8_{LC} , と入射側全反射面 8_{RA} , 8_{LA} の成す角 (理想項角)及び射出側全反射面 8 RB 、 8 LB と射出側境 界面8_{RD}′, 8_{LD}′の成す角(理想頂角)は45°であ る。入射側境界面8_{RC}′、8_{LC}′は実施例1の入射側境 界面8_{RC}、8_{LC}よりも所定の厚さだけ厚み付けされた位 置にあり、また射出側境界面8_{RD}′, 8_{LD}′も実施例1 の射出側境界面8_{RD}、8_{LD}よりも所定の厚さだけ厚み付 けされた位置にある。即ち、実施例1に係る平行プリズ $\Delta 8_R$ 、 8_L と板ガラス 10_R 、 10_L 、 11_{R1} 11 R2. 11L1, 11L2 とを一体化したものと同じであ り、部品点数の削減は勿論のこと、接着剤の塗布及びそ の屈折率の合わせ込み等の手間が不要となる。そして入 射側境界面8RC′、8LC′においては入射領域Sを限定 すると共に、入射側境界面8_{RC}、8_{LC}までの深さの迷光 トラップとしての切込み溝148、141が形成されて おり、また射出側境界面 8_{RD} ′(8_{LD} ′)においては射 出領域Tを限定すると共に、射出側境界面8RD.8LDま での深さの迷光トラップの内側の切込み溝1582,15 1.2と迷光トラップの外側の切込み溝1581、1511が形 成されている。このような形状の平行プリズム13k, 13』においても、図2(b)に示すように、迷光X』 は切込み溝14」によって除去されると共に、迷光 Y_1 、 Y_2 は切込み溝 15_{11} によって除去される。 【0023】〔実施例3〕図3は本発明の実施例3に係

る測距装置を示す構成図である。

【0024】この測距装置40は図6に示す測距装置と 略同様な構成を有しており、左右一対の結像レンズ 1 8 、 1 2 を介した光線をそれぞれのフォトセンサアレ 』を中心線しに関して背合わせ状態で左右対称状に配置 したものである。この平行プリズム8。、8」において は、入射側全反射面8RA、8LAと射出側全反射面8RB. 818の成す角(理想交角)は180°(平行)で、入射 側境界面8_{RC}、8_{LC}と入射側全反射面8_{RA}、8_{LA}の成す 角(理想頂角)及び射出側全反射面8m8m8mと射出側 境界面8_{RD}、8_{LD}の成す角(理想頂角)は45°であ る。左右一対の結像レンズ1R , 1L の平行光軸間隔は 基準長B(例えば10cm程度)であるが、平行プリズ ム88,86を通過した左右の結像光線はフォトセンサ アレイ28,20 ヘ平行光軸間隔り(例えば数mm程

度)として短縮される。平行プリズム8k 、8k の突き 合わせ(背合わせ)側は切除面 8_{RE} , 8_{LE} としてあり、 両プリズム81、81の当りを無くしてフォトセンサア レイ28、21での平行光軸間隔りをより小さくするよ うにしている。本例においては、入射側境界面8~c,8 LC及び射出側境界面8RD. 8LDと入射側全反射面8RA, 8LA及び射出側全反射面8RB, 8LBに無反射コーティン グ(単層又は多層コーティング層)を施してある。平行 プリズム88,81内の迷光が入射側境界面886,816 及び射出側境界面8_{RD}、8_{LD}に当たると、その境界面で 射出するようになっている。また入射側全反射面8_{RA}, 814及び射出側全反射面888.81度において入射角45 ・以外の角度で入射する迷光はその面から射出するよう になっている。このため、迷光が平行プリズム88,8 」内に閉じ込められにくい。フォトセンサアレイ 2_R . 21 上には照射される迷光が減少する。更に、本例の平 行プリズム 8_R , 8_L においては、入射側境界面 8_{RC} , 8_{LC} ,射出侧境界面 8_{RD} , 8_{LD} 入射側全反射面 8_{RA} ,8LA、射出側全反射面8RB、8LB以外の側面や入射側境界 面8_{RC}、8_{LC}及び射出側境界面8_{RD}、8_{LD}のうち入射領 域S及び射出領域T以外の面(プリズム接続用ガラス板 12の表面も含む)に光吸収物質(黒色塗料)を塗布す る、このような光吸収物質塗布面を有する平行プリズム 8。, 8, によれば、外乱光が光吸収物質塗布面で遮光 されるため、迷光を減らすことができる。

[0025]

【発明の効果】以上説明したように、本発明は、平行プリズムの面に迷光除去のための迷光トラップ手段を設けたことを特徴とする。従って次の効果を奏するものである。

【0026】 迷光トラップ手段として迷光トラップ 用の溝又はスリットの場合には、平行プリズム内の迷光 のうち入射側境界面及び射出側境界面に当たる光線は迷 光トラップ用の溝又はスリットに捕捉され、平行プリズ ム内から除去される。このため、センサ部に照射される 迷光が減少するので、高精度の測距精度を得ることがで きる。アパーチャー等を用いていないので応答速度が遅 くなることはない。

【0027】 ガラス板を貼り合わせてガラス板相互の隙間を迷光トラップ用の溝又はスリットとすることができるが、ガラス板の貼り合わせに代えて厚み付けをした平行プリズムに切込み溝を形成しても良い。かかる場合には、部品点数を削減することができると共に、接着剤の塗布や屈折率の合わせ込み等の手間が不要になり、低コトス化を図ることができる。

【0028】 迷光トラップ手段として無反射コーティングを施した場合には、平行プリズム内の迷光が入射 側境界面又は射出側境界面に当たると、反射してプリズム内に閉じ込められず、そのままプリズム側へ射出する。また入射側全反射面及び射出側全反射面で正規の角

度以外の角度で入射する迷光もそのままプリズム外へ射出する。従って、センサ部に照射される迷光の量が減少するので、やはり高精度の測距精度を得ることができる。

【0029】 また、入射側境界面、射出側境界面、 入射側全反射面及び射出側全反射面以外の面(側面)に 光吸収物質が塗布されてなるいるので、外来光の遮光が 達成され、プリズム内の迷光を低減できる。

【0030】 更に、平行プリズムの入射側境界面の うち非入射領域及び射出側境界面のうち非射出領域に光 吸収物質が塗布されいる場合には、遮光及び迷光除去を 同時に実現できる。

【図面の簡単な説明】

【図1】(a)は本発明の実施例1に係る測距装置を示す構成図で、(b)は同測距装置の平行プリズムにおける迷光の光路を示す説明図である。

【図2】(a)は本発明の実施例2に係る測距装置を示す構成図で、(b)は同測距装置の平行プリズムにおける迷光の光路を示す説明図である。

【図3】本発明の実施例3に係る測距装置を示す構成図である。

【図4】三角測量方式の測距装置の原理を示す原理図である。

【図5】自動焦点用測距モジュールを示す構成図であっ

【図6】本発明者の試作に係る測距装置を示す構成図である。

【図7】図6に示す測距装置に用いる平行プリズムの母材を示す斜視図である。

【図8】(a),(b)は図6に示す測距装置に用いる平行プリズムの迷光の光路を示す説明図である。

【符号の説明】

20,30,40…測距装置

1_R , 1_L …結像レンズ

 2_R , 2_L …フォトセンサアレイ

5…距離測定半導体集積回路チップ

 8_R , 8_L , 13_R , 13_L …平行プリズム 8_{RA} , 8_{LA} …入射側全反射面

8_{RB},8_{LB}…射出側全反射面

8_{RC}, 8_{LC}, 8_{RC}', 8_{LC}'…入射側境界面

8_{RD}, 8_{LD}, 8_{RD}', 8_{LD}'…射出側境界面

8_{RE}, 8_{LE}…切除面

 $1 O_R$, $1 O_L$, $1 1_{R1}$, $1 1_{R2}$, $1 1_{L1}$, $1 1_{L2}$ …厚み付け用のガラス板

12…プリズム接続用ガラス板

14_R, 14_L, 15_{R1}, 15_{R2}, 15_{L1}, 15_{L2}…迷 光トラップ用の切込み溝

G_R , G_L …迷光トラップ用の隙間

g_R , g_L …迷光トラップ用の突き合わせ面(スリット)

ト)

S…入射領域(入射瞳領域) T…射出領域(射出瞳領域) X₁ ~X₃, Y₁, Y₂ …迷光 L…中心線 1 ···光軸 B···基準長 b···平行光軸間隔。

【図1】

【図2】

【図3】

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

07-208980

(43) Date of publication of application: 11.08.1995

(51)Int.Cl.

G01C 3/06 B60R 21/00 G02B 7/34

(21)Application number : 06-006679

(71)Applicant : FUJI ELECTRIC CO LTD

(22)Date of filing:

26.01.1994

(72)Inventor: HIRATA NOBUO

(54) DISTANCE MEASURING EQUIPMENT

(57)Abstract:

PURPOSE: To avoid delay of response time of a sensor, to suppress stray in parallel prisms and to improve the measuring accuracy.

CONSTITUTION: Parallel prisms 8R and 8L are mutually linked with a prism connecting glass plate 12, which is stuck to the inside of incident boundary surfaces 8RC and 8LC. Thin glass plates 10R and 10L are stuck to incident regions S of the incident boundary surfaces 8RC and 8LC with gaps GR and GL being provided with the end parts of the glass plate 12. Two thin glass plates 11R1 and 11R2 (11L1 and 11L2) are stuck on the side of a ridge part (d) with incident total reflection surfaces 8RA (8LA) on outgoing boundary surfaces 8RD (8LD). Thus, a butting surface gR (gL) is formed. The gaps GR and GL and the butting surface gR (gL) constitute the groove or the slit for a stray light trap.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]An image formation system of a right-and-left couple which carries out image formation of the candidate for ranging to each of a sensor part of a right-and-left couple of a range measurement semiconductor integrated circuit chip.

Parallel prism of a right-and-left couple which shortens a parallel-optical-axis interval of said image formation system at a parallel-optical-axis interval of said sensor part (180 degrees of ideal crossing angles of a total reflection surface).

It is the distance measuring equipment provided with the above, and said parallel prism has a slot or a slit for stray light traps at the incidence side interface and the ejection side interface.

[Claim 2]In the distance measuring equipment according to claim 1, it comes to carry out adhesion connection of the parallel prism of said right and left with a glass plate for prism connection in both the inner areas of the incidence side interface, A slot or a slit for said stray light traps of said incidence side interface is a gap of said glass plate for prism connection, and a glass plate pasted together to an incidence area, Distance measuring equipment, wherein a slot or a slit for said stray light traps of said ejection side interface is a gap of two or more glass plates pasted together to a non-ejecting field.

[Claim 3]Distance measuring equipment characterized by a slot or a slit for said stray light traps of said incidence side interface being an infeed slot, and slots or slits for said stray light traps of said ejection side interface being two or more infeed slots in the distance measuring equipment according to claim 1.

[Claim 4]An image formation system of a right-and-left couple which carries out image formation of the candidate for ranging to each of a sensor part of a right-and-left couple of a range measurement semiconductor integrated circuit chip.

Parallel prism of a right-and-left couple which shortens a parallel-optical-axis interval of said image formation system at a parallel-optical-axis interval of said sensor part (180 degrees of ideal crossing angles of a total reflection surface).

Are the distance measuring equipment provided with the above, and adhesion connection of the parallel prism of said right and left is carried out with a glass plate for prism connection in both the inner areas of the incidence side interface, It comes to give nonreflective coding to the incidence side interface of each of said parallel prism and the ejection side interface, the incidence side total reflection surface, and the ejection side total reflection surface, and comes to apply an optical absorption substance to fields other than said field.

[Claim 5]Distance measuring equipment by which it is coming—to apply optical absorption substance to non-incidence area [of the incidence side interface of said parallel prism], and non-ejecting field of ejection side interface of said parallel prism characterized in the distance measuring equipment according to claim 4.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to the parallel prism of a right-and-left couple which shortens a parallel-optical-axis interval on either side especially about the distance measuring equipment (ranging module) of a triangulation method applicable to the rear-end collision arrester of vehicles, for example.

[0002]

[Description of the Prior Art]Conventionally the theoretic composition of the distance measuring equipment of an outdoor daylight triangular method carried in an autofocus camera etc., For example, the image formation optical system containing image formation lens 1_R of the rightand-left couple which faces at the object point (object) T and makes azimuth difference as shown in drawing 4, and 1_L, Photosensor array 2_R of the right-and-left couple which changes the object image into an electrical signal, 2_L , The signal from photosensor array 2_R and 2_L a digital signal -- changing -- a quantization circuit -- three -- __ R __ -- three -- __ L __ -- and -- a quantization circuit -- three -- __ R __ -- three -- __ - from -- a digital signal -- being based -- a distance signal -- computing -- a logical operation section -- four -- respectively -- making -- being crowded -- having had -- range measurement -- a semiconductor integrated circuit chip -- (-- IC --) -- five -- having -- **** . The image formation (real image) of the object T is projected by image formation lens 1_R of the right-and-left couple which separated only the standard length B, and 1 on photosensor array 2 of the right-and-left couple of the principal surface of the chip 5, and 2, . The distance d to the object T is given with a following formula based on the principle (similarity) of triangulation. [0003]

$$d=B-f_e/(X_1+X_2)=B-f_e/X ... (1)$$

 f_e However, the distance to image formation lens 1_R , 1_L , photosensor array 2_R , and 2_L (equal to the focal distance of image formation lens 1_R and 1_L), X_1 and X_2 are distance with an image point position in case the image point position and the object T on photosensor array 2_R and 2_L are in infinite distance, and those sums X (= X_1+X_2) are the amounts of relative gaps of the object image on photosensor array 2_R and 2_L (phase quantity).

[0004]In order to make easy loading to the camera etc. which are manufactured by the user side, such distance measuring equipment does not have unitization and is modularized. For example, it is known as a ranging module for automatic focusing (unit) as shown in drawing 5. This ranging module for automatic focusing has the reflector 6 of image formation lens 1_R of a right-and-left couple, 1_L, reflector M_R for giving the angle of deviation to a beam of light, and shortening a parallel-optical-axis interval on either side, M_L, and the two-sheet mirror of 90 degrees of crossing angles, and IC package 7 which closed the chip 5. Here, since the chip 5 is obtained by a semiconductor manufacturing process, it is tended under mass production nature

and low-cost-izing to carry out reduction of the chip size, and the interval of photosensor array 2_R of a right-and-left couple and 2_L is at most several millimeters. On the other hand, in order to aim at improvement in ranging accuracy, it is necessary to lengthen the standard length B and focal distance f_e but, and since miniaturization (1–2 cm) is also demanded in loading to a camera etc., the outstanding ranging accuracy cannot be obtained. However, if a photographic lens with the deep depth of field is used in a camera etc., highly precise-ization of range measurement is not needed so much. However, in the ranging module shown in drawing 5, Since reflector M_R as ***** which is made to deflect the beam of light through image formation lens 1_R and 1_L , and is led to up to photosensor array 2_R and 2_L , M_L , and the reflector 6 of 90 degrees of crossing angles were the optical elements of a different body, there were complicatedness of assembly work and a limit of assembly accuracy.

[0005] Then, this invention person made distance measuring equipment as shown in <u>drawing 6</u> as an experiment. This distance measuring equipment is used for the rear—end collision arrester for measuring the distance to the obstacle of a vehicle front, for example, and avoiding a rear—end collision.

Parallel prism 8_R of the right-and-left couple which leads the beam of light through image formation lens 1_R of a right-and-left couple and 1_L to up to each photosensor array 2_R and 2_L . and $\mathbf{8}_{\mathsf{L}}$ are arranged in the shape of bilateral symmetry about the center line L. In this parallel prism 8_R and 8_L , The angle (ideal crossing angle) which incidence side total reflection surface 8_{RA}, 8_{LA} and ejection side total reflection surface 8_{RB}, and 8_{LB} accomplish is 180 degrees (parallel), The angle (ideal vertical angle) which the angle (ideal vertical angle) which incidence side interface 8_{RC} , 8_{LC} and incidence side total reflection surface 8_{RA} , and 8_{LA} accomplish and ejection side total reflection surface 8_{RB}, 8_{LB} and ejection side interface 8_{RD}, and 8_{LD} accomplish is 45 degrees. Although the parallel-optical-axis interval of image formation lens 1_R of a right-and-left couple and 1_L is the standard length B (for example, about 10 cm), the image formation beam of light of the right and left which passed parallel prism 8_R and 8_L is shortened to photosensor array 2_R and 2_I as the parallel-optical-axis interval b (for example, about several millimeters). The parallel prism 8_R and 8_L 's comparison (back doubling) side is made into excision side 8_{RE} and 8_{LE} , A hit of both prism 8_R and 8_L is lost, and it is made to make smaller the parallel-optical-axis interval b in photosensor array $2_{\rm R}$ and $2_{\rm L}$, and an optical absorption substance is applied to excision side 8_{RE} and 8_{LE}, and prevention of removal of the stray light, the mutual interference of a beam of light, etc. is aimed at. 12 is the glass plate for prism connection pasted together to the inner area of incidence side interface 8_{RC[of parallel} prism 8_R and 8_L], and 8_{LC} by adhesives.

[0006]And after such parallel prism 8_R of shape and 8_L first grind the side (opposite parallel surface) of the prism base material 9 of a parallelogram pillar with the excision side 9a as shown in drawing 7, when what is called a Kintaro candy is made, they are the same method, and are cut and manufactured for every regular intervals in the direction of a columella of the base material 9. the accuracy of flat-surface parallelism [in / since the polishing process in a prism simple substance can be eliminated according to the manufacturing method by logging from this prism base material 9, low cost-ization by reduction of a man day can be attained, and / parallel prism 8_R of a right-and-left couple, and 8_L] — a phase — it can do equally.

[0007]

[Problem(s) to be Solved by the Invention] However, there are the following problems in the distance measuring equipment shown in drawing 6. Namely, since the beam of light (stray light) which passes except an optical path usual [for carrying out image formation among the beams of light which enter to the incidence area of incidence side interface 8_{RC/of image formation lens 1_R.}

parallel prism 8/ from 1, / R' and 8L/ and 8LC] exists, This stray light is irradiated by reflection or total internal reflection on photosensor array $\mathbf{2_R}$ and $\mathbf{2_L}$ within parallel prism $\mathbf{8_R}$ and $\mathbf{8_I}$. For example, the stray light X which enters into the ridgeline part a side which crosses the optic axis I among the incidence areas S of incidence side interface 8_{LC} of parallel prism 8_L (entrance pupil field), and constitutes 45 degrees of vertical angles as shown in drawing 8 (a), Since it reflects by the ridgeline part a side of incidence side total reflection surface 8_{LA}, after the catoptric light of the stray light returning to the incidence area S of incidence side interface 8_{LC} and carrying out total internal reflection here, it reflects by ejection side total reflection surface 8_{LB}, and it penetrates the exit pupil field T, and is irradiated on photosensor array 2, . As shown in drawing 8 (b), the stray light Y which crosses conversely [the stray light X] and enters into an opposite hand with the ridgeline part a the optic axis I among the incidence areas S of incidence side interface 8_{LC} of parallel prism 8_L. Since it reflects by the ridgeline part d side of incidence side total reflection surface 8_{LA}, after carrying out total internal reflection of the catoptric light of the stray light by the ridgeline part d side of ejection side interface 8_{LD}, it reflects by ejection side total reflection surface 8_{LB}, and it penetrates the exit pupil field T, and is irradiated on photosensor array 2₁. Since images other than regular image formation are reflected, or it will lap and will be reflected on photosensor array 2_L if the stray lights X and Y are irradiated on photosensor array 2_L, an error of measurement becomes large and ranging accuracy worsens. In order to control the amount of incidence of the stray light, how to place an aperture in front of an image formation lens can be considered, but since the f number deteriorates and a lens becomes dark, image formation illumination falls and the response time of a photosensor array becomes late.

[0008] Then, in view of the above-mentioned problem, SUBJECT of this invention has the response time of a sensor in realizing distance measuring equipment which does not become late, but aims at control of the stray light, and can improve ranging accuracy.

[0009]

[Means for Solving the Problem]In order to solve an aforementioned problem, a means which this invention provided forms a stray light trap means for stray light removal in a field of parallel prism. Namely, an image formation system of a right-and-left couple to which the 1st means of this invention carries out image formation of the candidate for ranging to each of a sensor part of a right-and-left couple of a range measurement semiconductor integrated circuit chip, In distance measuring equipment which has the parallel prism (180 degrees of ideal crossing angles of a total reflection surface) of a right-and-left couple which shortens a parallel-optical-axis interval of the above-mentioned image formation system at a parallel-optical-axis interval of the above-mentioned sensor part, the above-mentioned parallel prism has a slot or a slit for stray light traps at the incidence side interface and the ejection side interface. In this distance measuring equipment, it comes to carry out adhesion connection of the parallel prism on either side with a glass plate for prism connection in both the inner areas of the incidence side interface. It is characterized by a slot or a slit for the above-mentioned stray light traps of the above-mentioned incidence side interface being a gap of the above-mentioned glass plate for prism connection, and a glass plate pasted together to an incidence area, and a slot or a slit for the above-mentioned stray light traps of the above-mentioned ejection side interface being a gap of two or more glass plates pasted together to a non-ejecting field. In the above-mentioned distance measuring equipment, a slot or a slit for said stray light traps of the above-mentioned incidence side interface is an infeed slot, and a slot or a slit for said stray light traps of the above-mentioned ejection side interface is characterized by being two or more infeed slots. [0010]An image formation system of a right-and-left couple to which the 2nd means of this invention carries out image formation of the candidate for ranging to each of a sensor part of a right-and-left couple of a range measurement semiconductor integrated circuit chip, In distance measuring equipment which has the parallel prism (180 degrees of ideal crossing angles of a total

reflection surface) of a right-and-left couple which shortens a parallel-optical-axis interval of the above-mentioned image formation system at a parallel-optical-axis interval of the above-mentioned sensor part, It comes to carry out adhesion connection of the parallel prism on either side with a glass plate for prism connection in both the inner areas of the incidence side interface, It comes to give nonreflective coding to the incidence side interface of each parallel prism and the ejection side interface, the incidence side total reflection surface, and the ejection side total reflection surface, and comes to apply an optical absorption substance to fields other than the above-mentioned field. In this distance measuring equipment, it is considered as the coming-to apply optical absorption substance to non-incidence area [of the incidence side interface of the above-mentioned parallel prism], and non-ejecting field of ejection side interface of above-mentioned parallel prism feature.

[0011]

[Function] According to the 1st means, the beam of light which strikes upon the incidence side interface and the ejection side interface among the stray lights in parallel prism is caught by the slot or slit for stray light traps, and is removed from the inside of parallel prism. For this reason, since the stray light irradiated by the sensor part decreases, highly precise ranging accuracy can be obtained. Since the aperture etc. are not used, speed of response does not become slow. Although the slot or slit for stray light traps of the incidence side interface and the ejection side interface can be constituted from a gap of two or more glass plates pasted together to the gap and the non-ejecting field of the glass plate for prism connection, and the glass plate pasted together to the incidence area, it may cut deeply through the parallel prism which replaced with the lamination of a glass plate and carried out thickness attachment, and a slot may be formed. In this case, part mark are reducible, and time and effort, such as spreading of adhesives and a double lump of a refractive index, becomes unnecessary, and low KOTOSU-ization can be attained.

[0012]According to the 2nd means, if the stray light in parallel prism shines upon the incidence side interface or the ejection side interface, it will reflect, and will not be shut up in prism but will eject to the prism side as it is. The stray light which enters angles other than a regular angle in the incidence side total reflection surface and the ejection side total reflection surface is also ejected out of prism as it is. Therefore, since the quantity of the stray light irradiated by the sensor part decreases, highly precise ranging accuracy can be obtained too. Since the optical absorption substance is applied to fields (side) other than the incidence side interface, the ejection side interface, the incidence side total reflection surface, and the ejection side total reflection surface, protection from light of extraneous light is attained and the stray light in prism can be reduced. When the optical absorption substance is applied to the non-incidence area of the incidence side interface of parallel prism, and the non-ejecting field of the ejection side interface, protection from light and stray light removal can be realized simultaneously. [0013]

[Example]Next, the example of this invention is described based on an accompanying drawing. [0014][Example 1] Drawing 1 (a) is a lineblock diagram showing the distance measuring equipment concerning Example 1 of this invention, and drawing 1 (b) is an explanatory view showing the optical path of the stray light in the parallel prism of the distance measuring equipment.

[0015]This distance measuring equipment 20 is what is used for example, for a rear-end collision arrester, Parallel prism 8_R of the right-and-left couple which leads the beam of light through image formation lens 1_R of a right-and-left couple and 1_L to up to each photosensor array 2_R and 2_L , and 8_L are arranged in the shape of bilateral symmetry in the state of back doubling about the center line L. In this parallel prism 8_R and 8_L , The angle (ideal crossing angle) which incidence side total reflection surface 8_{RA} , 8_{LA} and ejection side total reflection surface 8_{RB} , and 8_{LB} accomplish is 180 degrees (parallel), The angle (ideal vertical angle) which the angle (ideal vertical angle) which incidence side interface 8_{RC} , 8_{LC} and incidence side total reflection surface 8_{RB} , and 8_{LA} accomplish and ejection side total reflection surface 8_{RB} , 8_{LB} and ejection

of image formation lens 1_R of a right-and-left couple and 1_I is the standard length B (for example, about 10 cm), the image formation beam of light of the right and left which passed parallel prism 8_R and 8_L is shortened to photosensor array 2_R and 2_L as the parallel-optical-axis interval b (for example, about several millimeters). The parallel prism $8_{
m R}$ and $8_{
m L}$'s comparison (back doubling) side is made into excision side $8_{\rm RE}$ and $8_{\rm LE}$, loses a hit of both prism $8_{\rm R}$ and $8_{\rm L}$, and is made to make smaller the parallel-optical-axis interval b in photosensor array 2_R and 2_L . [0016]Parallel prism $8_{
m R}$ and $8_{
m L}$ are linked by the glass plate 12 for prism connection pasted together with transparent adhesives inside the incidence side interface $8_{
m RC}$ and $8_{
m LC}$. The refractive index of this glass plate 12 for prism connection and transparent adhesives is equal to the refractive index of parallel prism 8_R and 8_L . Crevice G_R and G_L are set in the incidence area S of incidence side interface $8_{RC[\ of\ parallel\ prism\ 8_R\ and\ 8_l\]}$, and 8_{LC} at the end of the glass plate 12 for prism connection, and thin glass plate 10_R for thickness attachment and 10_L are stuck on it by transparent adhesives. It may be the abutting surface (slit) which adjoined each other, and pasted together and formed the glass plate 12 for prism connection, glass plate 10_R , and 10_L instead of crevice G_R and G_L . Although thin glass plate 10_R and 10_L are made into the disk which has the diameter doubled with the width dimension of parallel prism 8_R and 8_L in this example, a rectangular glass plate may be used. Here, the refractive index of glass plate 10_R, 10_L , and transparent adhesives is made equal to the refractive index of parallel prism 8_R and 8_L . [0017].Parallel prism 8_R. Thin glass plate 11_{R1 for thickness attachment of two sheets and 11_{R2} (11_{L1,}} 11, 2) adjoin the ridgeline part d side (non-ejecting field) with incidence total reflection surface 8_{RA} (8_{LA}) by transparent adhesives on ejection side interface 8_{RD} (8_{LD}) of (8_{L}). It is stuck, and abutting-surface $g_R(g_L)$ is formed in the boundary of outside glass plate $11_{R1}(11_{L1})$ and inside glass plate 11_{R2} (11_{L2}), and. The ejection field T is formed inside inside glass plate 11_{R2} (11_{L2}). Here, the refractive index of glass plate 11_{R1.} 11_{R2} (11_{L1.} 11_{L2}), and transparent adhesives is made equal to the refractive index of parallel prism 8_R and 8_I . [0018] Thus, in parallel prism $8_{\rm R}$ linked by the glass plate 12 for prism connection, and $8_{\rm I}$, On the incidence area S of incidence side interface 8_{RC} and 8_{LC} , provide crevice G_R and G_L , and paste together thin glass plate $10_{\rm R}$ and $10_{\rm L}$, and. The following operations are demonstrated in the distance measuring equipment 20 which pastes together glass plate 11_{R1 and} 11_{R2} (11_{L1,} 11_{L2}) by abutting-surface $g_R(g_L)$ on the non-ejecting field of ejection side interface $8_{RD}(8_{ID})$. Since both the stray lights function equally in parallel prism 8_R and 8_L , only parallel prism 8_L is explained. Namely, stray light X₁ which crosses the optic axis I among the incidence areas S of incidence side interface 8_{LC} of parallel prism $8_{[from\ image\ formation\ lens\ 1_{i}\]\ L'}$ and enters into the ridgeline part a side as shown in drawing 1 (b), Although it reflects by the ridgeline part a side of incidence side total reflection surface 8_{LA} and the catoptric light returns to the incidence area S of incidence side interface 8_{LC}, Since glass plate 10_L exists, it goes on as it is, and after carrying out total internal reflection of the stray light X₁ on the surface of glass plate 10₁, it ejects the interface of this crevice $\mathbf{G}_{\!\!\!\perp}$ toward the interface of crevice $\mathbf{G}_{\!\!\!\perp}$ at the other side or a target directly to the interface of crevice G_L , and dissipates out of parallel prism θ_L . For this reason, glass plate 10_L and crevice G_L formed with the glass plate 12 for prism connection are equivalent to the stray light trap gap, and glass plate 10 is equivalent to the stray light

side interface 8_{RD}, and 8_{LD} accomplish is 45 degrees. Although the parallel-optical-axis interval

invitation part which leads the stray light to crevice G_L . Although the stray light $X_{2 \text{ which enters}}$ inside the probe index of stray light $X_{1 \text{ among the incidence areas S}}$, $X_{3, \text{ and}}$ are reflected by the ridgeline part a side of incidence side total reflection surface 8_{LA} and it goes to incidence side interface 8_{LC} , Like the case where it is shown in drawing 6, after such the stray light $X_{2, X_{3, \text{ and}}}$ enter in the glass plate 12 for prism connection, total internal reflection of them is carried out on the surface, and they dissipate out of parallel prism 8_L . Thus, the glass plate 12 for prism connection is functioning also as a derivation part of the stray light.

[0019] As shown in drawing 1 (b), on the other hand, the stray light Y_{1} and Y_{2} which cross contrary to stray light $X_1 - X_3$, and enter into an opposite hand with the ridgeline part a the optic axis I among the incidence areas S of incidence side interface 8_{LC} of parallel prism 8_L, Although it reflects by the ridgeline part d side of incidence side total reflection surface 8_{LA}, Since glass plate 11_{L1} exists, go on as it is, and after carrying out total internal reflection of the stray light Y_{1 and the} on the surface of glass plate 11_{L1}, they go to abutting-surface g_L, As for stray light Y2, the stray light Y1 and Y2 are directly caught by this abutting-surface gt toward abutting-surface g_L . The end face of glass plate 11_{L2} also turns into a stray light trap side. Here, although glass plate 11_{L1} is equivalent to the stray light invitation part, when there is no glass plate 11_{L2} (i.e., when it is glass plate of one sheet 11_{L1}), the incidence angle of ejection side total reflection surface 8_{LB} of the stray light Y_{1 and} Y₂ turns into angles other than 45 degree, and is only in the meaning which reduces the amount of total internal reflection. However, since this is insufficient, in order to remove effectively the stray light which carried out total internal reflection on the surface of glass plate 11_{L2}, abutting-surface g_L as a stray light trap gap is formed using glass plate of one more sheet 11_{L2}. Although total internal reflection may be carried out here and it may appear and come out to the ejection field T toward ejection side total reflection surface 8_{LB}, the stray light which carries out total internal reflection on the surface of glass plate 11_{L2} forms abutting-surface g_L in two or more places in non-ejecting fields other than the ejection field T, in order to lessen the rate. That is, two or more glass plates are made to adjoin in non-ejecting fields other than the ejection field T of ejection side total reflection surface 8_{LB}, and it pastes together.

[0020] Thus, in this example, since the quantity of the stray light which appears and comes out to the ejection field T can be reduced without providing an aperture, if improvement in ranging accuracy is aimed at, it can **, without there being no deficiency of light quantity and making response time of distance measuring equipment late.

[0021] [Example 2] Drawing 2 (a) is a lineblock diagram showing the distance measuring equipment concerning Example 2 of this invention, and drawing 2 (b) is an explanatory view showing the optical path of the stray light in the parallel prism of the distance measuring equipment.

[0022] This distance measuring equipment 30 as well as the distance measuring equipment 20 concerning Example 1, Although parallel prism 13_R of the right-and-left couple which leads the beam of light through image formation lens 1_R of a right-and-left couple and 1_L to up to each photosensor array 2_R and 2_L , and 13_L are arranged in the shape of bilateral symmetry in the state of back doubling about the center line L, The shape of parallel prism 13_R and 13_L differs. In parallel prism 13_R and 13_L , The angle (ideal crossing angle) which incidence side total reflection surface 8_{RA} , 8_{LA} and ejection side total reflection surface 8_{RB} , and 8_{LB} accomplish is 180 degrees (parallel), The angle (ideal vertical angle) which angle [which incidence side interface 8_{RC} , 8_{LC} , incidence side total reflection surface 8_{RA} , and 8_{LA} accomplish] (ideal vertical angle) and ejection side total reflection surface 8_{RB} , 8_{LA} and ejection side interface 8_{RD} , and 8_{LB} accomplish] (ideal vertical angle)

accomplish is 45 degrees. Incidence side interface 8_{RC}' and 8_{LC}' have only predetermined thickness in the position by which thickness attachment was carried out rather than incidence side interface 8_{RC} of Example 1, and 8_{LC}, Ejection side interface 8_{RD}' and 8_{LD}' also have only predetermined thickness in the position by which thickness attachment was carried out rather than ejection side interface 8_{RD} of Example 1, and 8_{LD}. Namely, it is the same as what unified parallel prism 8_R concerning Example 1, 8_L , and sheet glass 10_R , 10_L , 11_{R1} , 11_{R2} , 11_{L1} and 11_{L2} , and not to mention reduction of part mark, Time and effort, such as spreading of adhesives and a double lump of the refractive index, becomes unnecessary. And in incidence side interface 8_{RC}' and 8_{LC}', limit the incidence area S, and. Incidence side interface 8_{RC}, infeed slot 14_R as a stray light trap of the depth to 8_{I C}, and 14_I are formed, limit the ejection field T in ejection side interface 8_{RD}' (8_{LD}'), and. Infeed slot 15_{R2} inside the stray light trap of the depth to ejection side interface 8_{RD} and 8_{LD} , 15_{L2} , infeed slot 15_{R1} of the outside of a stray light trap, and 15_{L1} are formed. Also in such parallel prism 13_R of shape, and 13_L , as shown in drawing 2 (b), stray light X_1 is removed by infeed slot 14_L , and the stray light Y_{1} and Y_{2} are removed by infeed slot 15_{L1} . [0023][Example 3] Drawing 3 is a lineblock diagram showing the distance measuring equipment concerning Example 3 of this invention. [0024] This distance measuring equipment 40 has the same composition as distance measuring equipment and abbreviation shown in drawing 6, Parallel prism 8_R of the right-and-left couple

which leads the beam of light through image formation lens 1_R of a right-and-left couple and 1_L to up to each photosensor array 2_R and 2_L , and 8_L are arranged in the shape of bilateral symmetry in the state of back doubling about the center line L. In this parallel prism $8_{
m R}$ and $8_{
m I}$, The angle (ideal crossing angle) which incidence side total reflection surface 8_{RA}, 8_{LA} and ejection side total reflection surface 8_{RB} , and 8_{LB} accomplish is 180 degrees (parallel), The angle (ideal vertical angle) which the angle (ideal vertical angle) which incidence side interface 8_{RC}, 8_{LC} and incidence side total reflection surface 8_{RA}, and 8_{LA} accomplish and ejection side total reflection surface 8_{RR}, 8_{IR} and ejection side interface 8_{RD}, and 8_{ID} accomplish is 45 degrees. Although the parallel-optical-axis interval of image formation lens 1_R of a right-and-left couple and 1, is the standard length B (for example, about 10 cm), the image formation beam of light of the right and left which passed parallel prism 8_R and 8_L is shortened to photosensor array 2_R and 2_L as the parallel-optical-axis interval b (for example, about several millimeters). The parallel prism 8_R and 8_L's comparison (back doubling) side is made into excision side 8_{RE} and 8_{LE}, loses a hit of both prism 8_R and 8_L, and is made to make smaller the parallel-optical-axis interval b in photosensor array 2_R and 2_L . In this example, nonreflective coating (a monolayer or a multilayer coating tip layer) has been performed to incidence side interface 8_{RC}, 8_{LC} and ejection side interface 8_{RD}, 8_{LD} and incidence side total reflection surface 8_{RA}, 8_{LA} and ejection side total reflection surface 8_{RB} , and 8_{LB} . If the stray light in parallel prism 8_R and 8_L shines upon incidence side interface 8_{RC} , 8_{LC} and ejection side interface 8_{RD} , and 8_{LD} , it will eject in the interface. The stray light which enters angles other than 45 degrees of incidence angles in incidence side total reflection surface 8_{RA}, 8_{LA} and ejection side total reflection surface 8_{RB}, and 8_{LB} is ejected from the field. For this reason, the stray light is hard to be shut up in parallel prism 8_R and 8_L. The stray light irradiated decreases on photosensor array 2_R and 2_L. In parallel prism 8_R of this example, and 8_L, The sides other than incidence side interface 8_{RC}, 8_{LC}, ejection side interface 8_{RD} , 8_{LD} incidence side total reflection surface 8_{RA} , 8_{LA} , ejection side total reflection surface 8_{RB}, and 8_{LB}, incidence side interface 8_{RC}, 8_{LC}, and ejection side

http://www4.ipdl.inpit.go.jp/cgi-bin/tran_web_cgi_ejje?atw_u=http%3A%2F%2Fww... 2010/01/18

interface 8_{RD} , An optical absorption substance (black paint) is applied to fields (the surface of the glass plate 12 for prism connection is also included) other than the incidence area S and the ejection field T among 8_{LD} . According to parallel prism 8_R which has such an optical absorption substance spreading side, and 8_L , since disturbance light is shaded in respect of optical absorption substance spreading, the stray light can be reduced. [0025]

[Effect of the Invention] As explained above, this invention formed the stray light trap means for stray light removal in the field of parallel prism. Therefore, the following effect is done so. [0026]** As a stray light trap means, in the case of the slot for stray light traps, or a slit, the beam of light which strikes upon the incidence side interface and the ejection side interface among the stray lights in parallel prism is caught by the slot or slit for stray light traps, and is removed from the inside of parallel prism. For this reason, since the stray light irradiated by the sensor part decreases, highly precise ranging accuracy can be obtained. Since the aperture etc. are not used, speed of response does not become slow.

[0027]** Although a glass plate can be pasted together and the crevice between glass plates can be used as the slot for stray light traps, or a slit, it may cut deeply through the parallel prism which replaced with the lamination of a glass plate and carried out thickness attachment, and a slot may be formed. In this case, part mark are reducible, and time and effort, such as spreading of adhesives and a double lump of a refractive index, becomes unnecessary, and low KOTOSU-ization can be attained.

[0028]** If the stray light in parallel prism shines upon the incidence side interface or the ejection side interface when nonreflective coating is performed as a stray light trap means, it will reflect, and will not be shut up in prism but will eject to the prism side as it is. The stray light which enters angles other than a regular angle in the incidence side total reflection surface and the ejection side total reflection surface is also ejected out of prism as it is. Therefore, since the quantity of the stray light irradiated by the sensor part decreases, highly precise ranging accuracy can be obtained too.

[0029]** it comes to apply an optical absorption substance to fields (side) other than the incidence side interface, the ejection side interface, the incidence side total reflection surface, and the ejection side total reflection surface again — since it is, protection from light of extraneous light is attained and the stray light in prism can be reduced.

[0030]** When an optical absorption substance is applied to a non-ejecting field and it is in it among a non-incidence area and the ejection side interface among the incidence side interfaces of parallel prism further, protection from light and stray light removal can be realized simultaneously.

[Translation done.]