Sections: ● <u>Top</u> ● <u>The Data</u> ● <u>Feature Engineering</u> ● <u>Investigating Correlation</u> ● <u>Lag Features</u> ● <u>Splitting</u> ● <u>The Model</u> ● <u>Results with Traditional Split</u> ● <u>Using Cross-Validation</u> ● <u>Making Future Predictions</u>

Evan Marie online: EvanMarie@Proton.me | Linked In | GitHub | <a href="mailto:Hugging Face | Mastadon | Jovian.ai | TikTok | CodeWars | Discord | EvanMarie@##6114

```
from helpers import *
import_all()
from xgboost import XGBRegressor
%matplotlib inline
import seaborn as sns
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import TimeSeriesSplit
```

Sections: ● <u>Top</u> ● <u>The Data</u> ● <u>Feature Engineering</u> ● <u>Investigating Correlation</u> ● <u>Lag Features</u> ● <u>Splitting</u> ● <u>The Model</u> ● <u>Results with Traditional Split</u> ● <u>Using Cross-Validation</u> ● <u>Making Future Predictions</u>

The Data

- This data is an excerpt from a Kaggle maintained and regularly update dataset collection
- The dataset reflects the energy consumption as reported by the National Grid ESO, Great Britain's electricity system operator
- Consumption is recorded twice an hour
- The data covers January 1, 2009 to December 31, 2022

Importing Data

```
data = pd.read_csv('uk_power_consumption.csv', parse_dates = ['settlement_date'])
data = data[['settlement_date', 'tsd', 'is_holiday']]
data.columns = ['datetime', 'consumption', 'holiday']
data = data.set_index('datetime', drop=True)
```

```
head_tail_horz(data, 5, "UK Power Consumption Data", intraday = True)
```

UK Power Consumption Data

he	ad(5)		tail(5)			
	consumption	holiday		consumption	holiday	
datetime			datetime			
2009-01-01 00:00:00	38,704	1	2022-12-31 21:30:00	25,634	0	
2009-01-01 00:30:00	38,964	1	2022-12-31 22:00:00	24,788	0	
2009-01-01 01:00:00	38,651	1	2022-12-31 22:30:00	24,365	0	
2009-01-01 01:30:00	37,775	1	2022-12-31 23:00:00	24,766	0	
2009-01-01 02:00:00	37,298	1	2022-12-31 23:30:00	24,843	0	

```
def timeseries_overview(df, main_col):
    index_col = ['number of records', 'number of columns',
                 'missing values', 'columns', 'start date',
                'end date', 'main column min', 'main column max']
   num_records = df.shape[0]
   num_cols = df.shape[1]
   missing_values = df.isna().sum().sum()
   columns = ', '.join(list(df.columns))
    start_date = min(df.index).strftime('%m/%d/%Y')
   end_date = max(df.index).strftime('%m/%d/%Y')
   main_min = min(df[main_col])
   main_max = max(df[main_col])
   values = [num_records, num_cols, missing_values,
              columns, start_date, end_date, main_min, main_max]
   overview = pd.concat([pd.Series(index_col), pd.Series(values)], axis = 1)
   overview.columns = ['aspects', 'information']
   overview.set_index('aspects')
    styling = {'information': [{'selector': '',
                              'props': [('font-size', '15px'),
                                    ('padding-right', '15px'),
                                    ('padding-left', '35px')]}],
               'aspects': [{'selector': '',
                         'props': [('font-weight', 'bold'),
                                   ('font-size', '15px'),
                                   ('padding-right', '15px'),
                                   ('padding-left', '15px')]}]}
   pretty('Initial DataFrame Overview', fontsize=4)
    return overview.style\
```

```
.hide(axis='index')\
.set_table_styles(styling)\
.format(precision=0, thousands=",")
```

```
timeseries_overview(data, 'consumption')
```

Initial DataFrame Overview

information	aspects
244,676	number of records
2	number of columns
0	missing values
consumption, holiday	columns
01/01/2009	start date
12/31/2022	end date
16,629	main column min
60,147	main column max

Initial Plotting

```
colors = sns.color_palette('husl', 11)
colors
```


Looking at a Single Week of Data

Distribution of Energy Use Values

Sections: \bullet <u>Top</u> \bullet <u>The Data</u> \bullet <u>Feature Engineering</u> \bullet <u>Investigating Correlation</u> \bullet <u>Lag Features</u> \bullet <u>Splitting</u> \bullet <u>The Model</u> \bullet <u>Results with Traditional Split</u> \bullet <u>Using Cross-Validation</u> \bullet <u>Making Future Predictions</u>

Feature Engineering

Time Series DateTime Index Feature Creation

```
def featurize_datetime_index(df, daytime = True):
   df = df.copy()
   df['hour'] = df.index.hour
   df['weekday'] = df.index.dayofweek
   df['weekday_name'] = df.index.strftime('%A')
   df['month'] = df.index.month
   df['month_name'] = df.index.strftime('%B')
   df['quarter'] = df.index.quarter
   df['year'] = df.index.year
   df['week_of_year'] = df.index.isocalendar().week
   df['day_of_year'] = df.index.dayofyear
   if daytime:
        # Add column with category for time of day:
        # midnight, early_morning, late_morning, afternoon, evening, night
        def time_of_day(hour):
            if hour >= 0 and hour < 6:
                return 'midnight'
            elif hour >= 6 and hour < 9:
                return 'early_morning'
```

```
elif hour >= 9 and hour < 12:
    return 'late_morning'
elif hour >= 12 and hour < 15:
    return 'afternoon'
elif hour >= 15 and hour < 18:
    return 'evening'
else:
    return 'night'

df['time_of_day'] = (df['hour'].apply(time_of_day)).astype('category')

df['weekday_name'] = df['weekday_name'].astype('category')
df['month_name'] = df['month_name'].astype('category')</pre>
```

```
df = featurize_datetime_index(data.copy())
```

head_tail_horz(df.sample(10), 5, 'DF with Added Datetime Features (Random Samples)', ir

DF with Added Datetime Features (Random Samples)

head(5)

	consumption	holiday	hour	weekday	weekday_name	month	month_name	quarter	year	week_of_year	d
datetime											
2019- 03-23 18:00:00	37,097	0	18	5	Saturday	3	March	1	2,019	12	
2021- 10-07 21:00:00	30,872	0	21	3	Thursday	10	October	4	2,021	40	
2022- 06-20 08:30:00	30,410	0	8	0	Monday	6	June	2	2,022	25	
2010- 11-15 23:00:00	36,683	0	23	0	Monday	11	November	4	2,010	46	
2016- 11-06 21:00:00	35,070	0	21	6	Sunday	11	November	4	2,016	44	

tail(5)

	consumption	holiday	hour	weekday	weekday_name	month	month_name	quarter	year	week_of_year	d
datetime											
2014- 05-08 14:30:00	39,753	0	14	3	Thursday	5	May	2	2,014	19	
2011- 04-05 12:30:00	43,494	0	12	1	Tuesday	4	April	2	2,011	14	
2011- 12-01 06:00:00	33,868	0	6	3	Thursday	12	December	4	2,011	48	
2012- 04-03 07:30:00	38,705	0	7	1	Tuesday	4	April	2	2,012	14	
2019- 05-04 17:00:00	26,747	0	17	5	Saturday	5	May	2	2,019	18	

df.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 244676 entries, 2009-01-01 00:00:00 to 2022-12-31 23:30:00

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	consumption	244676 non-null	int64
1	holiday	244676 non-null	int64
2	hour	244676 non-null	int64
3	weekday	244676 non-null	int64
4	weekday_name	244676 non-null	category
5	month	244676 non-null	int64
6	month_name	244676 non-null	category
7	quarter	244676 non-null	int64
8	year	244676 non-null	int64
9	week_of_year	244676 non-null	UInt32
10	day_of_year	244676 non-null	int64
11	time_of_day	244676 non-null	category
4+,,,,	aa. UTn+22/1)	ootogom/(2) int	64(0)

dtypes: UInt32(1), category(3), int64(8)

memory usage: 18.7 MB

Sections: ullet Top ullet The Data ullet Feature Engineering ullet Investigating Correlation ullet Lag Features ullet Splitting ullet The Model ullet Results with Traditional Split ullet Using Cross-Validation ullet Making Future Predictions

Visualize Correlation Between Features and Target

```
def boxplot_correlation(df, feature_x, feature_y, order = None, palette = None):
    fig, ax = plt.subplots(figsize = (13, 7), facecolor = '#333333')
    ax.set_facecolor('LightGray')
    sns.boxplot(data = df,
                x = feature_x
                y = feature_y,
                order = order,
                palette = palette)
    x_name = str(df[feature_x].name)
    y_name = str(df[feature_y].name)
    ax.grid()
    plt.xlabel(x_name, color = 'white', fontsize = 15)
    plt.ylabel(y_name, color = 'white', fontsize = 15)
    plt.xticks(color='white'); plt.yticks(color='white');
    plt.title(f'Feature Correlation: {x_name.capitalize()} - {y_name.capitalize()}',
              fontsize = 20, pad = 20, color = 'white');
```


Converting week_of_year to float for model training

```
df['week_of_year'] = df.week_of_year.astype(float)
```

Sections: ullet Top ullet The Data ullet Feature Engineering ullet Investigating Correlation ullet Lag Features ullet Splitting ullet The Model ullet Results with Traditional Split ullet Using Cross-Validation ullet Making Future Predictions

Lag Features

Forecasting Horizon & Lag Features

- Lag Features: telling the model to look back into the past, and use the target value for that many days back as a new feature fed into the model
- · in this case, it is a value from the energy usage column
- we are saving this column as a dict called target_map
- using 364 as the increment, because it is perfectly divisible by 7 and will line up days of the week
- · the forecast horizon cannot extend farther than the shortest lag chosen
- using map() to map the values

```
def year_lags(df, target_column, lag_label_list):
    target_map = df[target_column].to_dict()
    inputs = lag_label_list.copy()
    for tup in inputs:
```

```
df[tup[1]] = (df.index - pd.Timedelta(tup[0])).map(target_map)
return df
```

```
df_lags = df.copy()
df_lags = year_lags(df_lags, 'consumption', lag_label_list)
```

```
missing_values(df_lags[['one_year', 'two_year', 'three_year']])
```

Columns and Missing Values

	column name	missing
0	one_year	18098
1	two_year	35380
2	three_year	52854

Sections: ● <u>Top</u> ● <u>The Data</u> ● <u>Feature Engineering</u> ● <u>Investigating Correlation</u> ● <u>Lag Features</u> ● <u>Splitting</u> ● <u>The Model</u> ● <u>Results with Traditional Split</u> ● <u>Using Cross-Validation</u> ● <u>Making Future Predictions</u>

Splitting the Data

• Because I noticed that I actually got better results training without the lag features added, I will be running each operation on both the data without lag features and with lag features for comparison.

Traditional Train-Test Split

- · training data will the first 75% of the data
- test data will be everything the last 25% of the data

```
split_point = round(len(df) * .75)
```

```
train_data = df[: split_point]
test_data = df[split_point :]
train_data = pd.get_dummies(data=train_data, columns = ['time_of_day'])
test_data = pd.get_dummies(data=test_data, columns = ['time_of_day'])
```

```
train_data_lags = df_lags[: split_point]
test_data_lags = df_lags[split_point :]
train_data_lags = pd.get_dummies(data=train_data_lags, columns = ['time_of_day'])
test_data_lags = pd.get_dummies(data=test_data_lags, columns = ['time_of_day'])
```

Checking the point at which the training and testing divide

```
d(train_data.tail(1))
d(test_data.head(1))
        consumption holiday hour weekday weekday_name month month_name quarter year week_of_year da
datetime
  2019-
  07-06
              27249
                            12
                                        5
                                               Saturday
                                                            7
                                                                      July
                                                                                3 2019
                                                                                                 27
12:00:00
        consumption holiday hour weekday weekday_name month month_name quarter year week_of_year day
datetime
  2019-
  07-06
              27055
                              12
                                        5
                                               Saturday
                                                            7
                                                                      July
                                                                                3 2019
                                                                                                 27
12:30:00
```

Visualizing the Traditional Train-Test Split

```
fig, ax = plt.subplots(figsize = (13, 7), facecolor = '#333333')
ax.set_facecolor('#4444444')
train_data.plot(ax = ax, label = 'Training Data', color = 'cyan');
test_data.plot(ax = ax, label = 'Testing Data', color = 'deeppink');
ax.grid()
ax.axvline('2019-07-06', color = 'yellow', ls = '--', linewidth = 3)
plt.xlabel('years', color = 'white', fontsize = 15)
plt.ylabel('energy usage', color = 'white', fontsize = 15)
plt.xticks(color='white'); plt.yticks(color='white');
plt.title('Train-Test Split', fontsize = 20, pad = 20, color = 'white');
plt.legend().remove()
```


Defining Features & Targets

Defining Training & Testing Data with Features

```
train_in = train_data[features]
train_out = train_data[target]
test_in = test_data[features]
test_out = test_data[target]
```

```
train_in_lags = train_data_lags[features_lags]
train_out_lags = train_data_lags[target]
test_in_lags = test_data_lags[features_lags]
test_out_lags = test_data_lags[target]
```

Sections: ullet Top ullet The Data ullet Removing Outliers ullet Feature Engineering ullet Investigating Correlation ullet Lag Features ullet Splitting ullet The Model ullet Results with Traditional Split ullet Using Cross-Validation ullet Making Future Predictions

The XGBoost Regressor Model

Creating the Model (without lags)

Fitting the Model (without lags)

```
[0] validation_0-rmse:35068.46435
                                    validation_1-rmse:29587.12720
[25]
       validation_0-rmse:26018.01179
                                        validation_1-rmse:21235.48885
[50]
       validation_0-rmse:19337.02538
                                        validation_1-rmse:15148.51055
[75]
       validation_0-rmse:14411.06888
                                        validation_1-rmse:10692.43309
[100]
       validation_0-rmse:10787.75506
                                        validation_1-rmse:7519.52345
       validation_0-rmse:8131.03112
[125]
                                        validation_1-rmse:5323.82623
[150]
       validation_0-rmse:6192.47195
                                        validation_1-rmse:3833.85620
[175]
       validation_0-rmse:4791.75784
                                        validation_1-rmse:2961.30137
[200]
       validation_0-rmse:3789.02170
                                        validation_1-rmse:2547.03297
[225]
       validation_0-rmse:3086.91956
                                        validation_1-rmse:2420.27304
[250]
       validation_0-rmse:2602.61653
                                        validation_1-rmse:2429.93979
[257]
       validation_0-rmse:2496.84033
                                        validation_1-rmse:2442.06684
```

```
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=23, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.012, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=1200, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. XGBRegressor

```
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=23, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.012, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=1200, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)
```

Fitting the Model (with lags)

```
[0] validation_0-rmse:35067.37778
                                    validation_1-rmse:29621.32089
[25]
       validation_0-rmse:25992.89494
                                        validation_1-rmse:21982.27167
[50]
       validation_0-rmse:19296.64994
                                        validation_1-rmse:16362.81470
[75]
       validation_0-rmse:14362.19803
                                        validation_1-rmse:12236.19017
[100]
       validation_0-rmse:10732.97496
                                        validation_1-rmse:9220.63188
[125]
       validation_0-rmse:8075.19740
                                        validation_1-rmse:7039.05742
[150]
       validation_0-rmse:6141.15746
                                        validation_1-rmse:5477.98424
[175]
       validation_0-rmse:4744.45133
                                        validation_1-rmse:4392.53113
       validation_0-rmse:3752.23105
                                        validation_1-rmse:3673.74192
[200]
[225]
       validation_0-rmse:3063.21492
                                        validation_1-rmse:3212.91990
       validation_0-rmse:2594.90743
                                        validation_1-rmse:2925.86404
[250]
[275]
       validation_0-rmse:2282.94267
                                        validation_1-rmse:2750.60546
[300]
       validation_0-rmse:2073.32089
                                        validation_1-rmse:2662.13021
[325]
       validation_0-rmse:1937.22774
                                        validation_1-rmse:2611.90552
       validation_0-rmse:1836.60203
                                        validation_1-rmse:2585.33120
[350]
       validation_0-rmse:1762.79711
[375]
                                        validation_1-rmse:2569.20642
[400]
       validation_0-rmse:1706.81078
                                        validation_1-rmse:2561.84587
[425]
       validation_0-rmse:1670.78904
                                        validation_1-rmse:2555.93349
[450]
       validation_0-rmse:1644.08868
                                        validation_1-rmse:2551.10259
       validation_0-rmse:1621.20190
                                        validation_1-rmse:2548.89837
[475]
[500]
       validation_0-rmse:1604.13354
                                        validation_1-rmse:2547.76779
```

```
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=23, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.012, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None,
```

min_child_weight=None, missing=nan, monotone_constraints=None,

max_delta_step=None, max_depth=None, max_leaves=None,

n_estimators=1200, n_jobs=None, num_parallel_tree=None,

validation_0-rmse:1587.04879

predictor=None, random_state=None, ...)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. XGBRegressor

validation_1-rmse:2549.01441

```
XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=23, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.012, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=1200, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)
```

Feature Importance (without lags)

[525]

Feature Importance (no lags)		Feature Importance (with lags)		
importance			importance	
hour	0.3328	hour	0.3328	
week_of_year	0.2212	week_of_year	0.2212	
day_of_year	0.1193	day_of_year	0.1193	
weekday	0.1191	weekday	0.1191	
year	0.1179	year	0.1179	
month	0.0498	month	0.0498	
time_of_day_afternoon	0.0147	time_of_day_afternoon	0.0147	
time_of_day_evening	0.0127	time_of_day_evening	0.0127	
time_of_day_late_morning	0.0125	time_of_day_late_morning	0.0125	

Plotting Feature Importance

Results with Traditional Train-Test Split

• Because there is no benefit to having the lag data added, for the remainder of the project, I will be working with only the data without lags added.

Predicting with Test Data

```
test_data['prediction'] = xgb_regressor.predict(test_in)
```

Merging Predictions into Original DF

Plotting Predictions vs Original Data

```
plt.figure(facecolor = '#333333');
ax = df['consumption'].plot(figsize = (13, 7), color = 'cyan');
ax.set_facecolor('#444444');
df['prediction'].plot(ax = ax, style = '.', color = 'deeppink');
plt.legend();
ax.grid()
plt.xlabel('years', color = 'white', fontsize = 15)
plt.ylabel('energy usage', color = 'white', fontsize = 15)
plt.xticks(color='white', size = 13); plt.yticks(color='white', size = 13);
plt.title('Train-Test Split', fontsize = 20, pad = 20, color = 'white');
plt.legend().remove()
ax.set_title('Actual Data vs Predicted', color = 'white', size = 20, pad = 20);
```


Predictions vs Targets: One Week Excerpt

Prediction Accuracy

```
def get_accuracy(df, pred_col, actual_col):
    from sklearn.metrics import mean_squared_error
    df = df.copy()
    df['abs_acc'] = (1 - (abs(df[actual_col] -
                                   df[pred_col]) / df[actual_col])) * 100
    range_diff = np.max(df[actual_col]) - np.min(df[actual_col])
    df['rel_acc'] = (1 - (abs(df[actual_col] -
                                   df[pred_col]) / range_diff)) * 100
    range_std = np.std(df[actual_col])
    df['sharpe'] = (abs(df[actual_col] -
                                   df[pred_col]) / range_std)
    rmse = np.sqrt(mean_squared_error(df[actual_col],
                                        df[pred_col]))
    results = pd.Series([f"{rmse:,.2f}",
                         f"{df['abs_acc'].mean():.2f}%",
                         f"{df['rel_acc'].mean():.2f}%",
                         f"{df['sharpe'].mean():.2f}"],
                        index = ['Average RMSE',
                                  'Average Absolute Accuracy',
                                  'Average Relative Accuracy',
```

```
pred_actual = df.loc[df.prediction.notna()]
```

Overall Metrics for Accuracy and Model Performance

	Resulting Metrics
Average RMSE	2,414.50
Average Absolute Accuracy	93.58%
Average Relative Accuracy	91.91%
Average Sharpe Ratio	0.33

Predictions vs Actual Targets

		head(5)			
	consumption	prediction	abs_acc	rel_acc	sharpe
datetime					
2019-07-06	27,055	24,169.05	88.06	87.51	0.51
2019-07-06	26,790	24,147.77	89.06	88.56	0.47
2019-07-06	26,434	24,147.77	90.53	90.10	0.40
2019-07-06	26,204	24,147.77	91.48	91.10	0.36
2019-07-06	25,862	24,147.77	92.90	92.58	0.30
		tail(5)			
	consumption	tail(5) prediction	abs_acc	rel_acc	sharpe
datetime	consumption		abs_acc	rel_acc	sharpe
datetime 2022-12-31	consumption		abs_acc 79.59	rel_acc 71.56	sharpe
	•	prediction			·
2022-12-31	25,634	prediction 32,205.60	79.59	71.56	1.16
2022-12-31	25,634 24,788	32,205.60 29,192.30	79.59 84.91	71.56 80.94	1.16 0.78

Plotting the Sharpe Ratio

```
plt.figure(figsize = (13, 7), facecolor = '#333333')
ax = plt.axes()
pred_actual.sharpe.plot(kind="hist",
                        bins=100,
                        color = 'cyan',
                        edgecolor = 'white',
                        ax = ax)
ax.set_facecolor('#444444')
plt.legend();
ax.grid()
plt.xlabel('sharpe ratio', color = 'white', fontsize = 15)
plt.ylabel('count', color = 'white', fontsize = 15)
plt.tick_params(labelcolor = 'white', which = 'both')
plt.title('Overall Distribution of Sharpe Ratio Metrics',
          fontsize = 20, pad = 20, color = 'white');
plt.legend().remove()
```


Daily Error - Investigating the Days with the Highest and Lowest Error

```
'props': [('color', 'red'),
                                     ('font-weight', 'bold'),
                                     ('padding-right', '15px'),
                                     ('padding-left', '15px')]}],
               'date': [{'selector': 'td',
                          'props': [('color', 'blue'),
                                    ('font-weight', 'bold'),
                                    ('padding-right', '15px'),
                                    ('padding-left', '15px')]}],
               'prediction': [{'selector': 'td',
                          'props': [('padding-right', '25px'),
                                    ('padding-left', '15px')]}]}
if ascending == True:
    pretty(f'Daily error for the {num_examples} days with the lowest error:',
           fontsize = 4)
else:
    pretty(f'Daily error for the {num_examples} days with the highest error:',
           fontsize = 4)
return results[['date',
                'error',
                pred_col,
                actual_col]].head(num_examples).style.hide(axis='index')\
                     .set_table_styles(error_style)\
                    .format(precision=3, thousands=",")
```

```
get_daily_error(pred_actual, 'consumption', 'prediction', 10)
```

Daily error for the 10 days with the highest error:

date	error	prediction	consumption
Monday, Jan 03, 2022	12,227.672	38,637.672	26,410
Sunday, Dec 25, 2022	11,386.129	34,748.129	23,362
Monday, May 25, 2020	11,337.658	29,313.658	17,976
Monday, May 25, 2020	11,248.658	29,313.658	18,065
Monday, Jan 03, 2022	11,133.672	38,637.672	27,504
Sunday, Dec 25, 2022	11,090.129	34,748.129	23,658
Monday, May 25, 2020	10,898.234	29,617.234	18,719
Sunday, Dec 25, 2022	10,891.258	34,945.258	24,054
Monday, Apr 13, 2020	10,769.680	30,451.680	19,682
Monday, Apr 13, 2020	10,671.783	30,159.783	19,488

Daily error for the 10 days with the lowest error:

date	error	prediction	consumption
Monday, Oct 14, 2019	0.107	25,882.107	25,882
Saturday, Dec 14, 2019	0.250	26,106.250	26,106
Wednesday, Oct 13, 2021	0.395	32,784.605	32,785
Tuesday, Feb 09, 2021	0.395	40,235.605	40,236
Tuesday, Nov 26, 2019	0.443	26,390.443	26,390
Friday, Aug 27, 2021	0.479	28,798.521	28,799
Saturday, Oct 30, 2021	0.508	23,858.508	23,858
Thursday, Dec 02, 2021	0.557	31,655.443	31,656
Sunday, Jun 27, 2021	0.600	20,580.600	20,580
Monday, Mar 14, 2022	0.686	24,652.314	24,653

Sections: ● <u>Top</u> ● <u>The Data</u> ● <u>Feature Engineering</u> ● <u>Investigating Correlation</u> ● <u>Lag Features</u> ● <u>Splitting</u> ● <u>The Model</u> ● <u>Results with Traditional Split</u> ● <u>Using Cross-Validation</u> ● <u>Making Future Predictions</u>

Training the Model Using Cross Validation

What is Cross Validation?

- using sklearn TimeSeriesSplit()
- test size is 1 year of hourly records
- a gap of 24 puts a 1 day gap between the end of a training set and beginning of a test set
- · must be sure time series data is sorted so that the time series split will work

This creates a time series split generator object

- · this object will be applied across the data
- it will loop over the data for as many splits as are passed

```
time_series_split
```

TimeSeriesSplit(gap=24, max_train_size=None, n_splits=5, test_size=8760)

Visualizing the TimeSeriesSplit() process

• for each fold, the model goes back and tests the testing data in 1 year increments, independently from the rest of the testing data

this is a very good approach when the dataset has a large number of records

```
for train_index, validation_index in time_series_split.split(df):
    break
pretty(train_index, 'Indices of training data:')
pretty(validation_index, 'Indices of validation data:'); sp()
```

Indices of training data:

```
[012...200849 200850 200851]
```

Indices of validation data:

[200876 200877 200878 ... 209633 209634 209635]

```
fig, axs = plt.subplots(5, 1, figsize = (13, 10),
                       sharex = True, facecolor = "#222222")
split = 0
for train_index, validation_index in time_series_split.split(df):
    training = df.iloc[train_index]
    validation = df.iloc[validation_index]
    ax = axs[split]
    ax.set_facecolor('#444444')
    ax.set_title(f'Training & Testing splot for split no. {split}',
                 fontsize = 15, color = 'white')
    ax.tick_params(color = 'white', labelcolor = 'white')
    training['consumption'].plot(ax = ax,
                            label = 'Training Set',
                            color = 'cyan')
    validation['consumption'].plot(ax = ax,
                            label = 'Validation Set',
                              color = 'deeppink')
    axs[split].axvline(validation.index.min(),
                      color = 'white', ls = "--", linewidth = 3)
    axs[0].legend(fontsize=13, facecolor = '#2222222', labelcolor = 'white')
    split += 1
plt.suptitle('5 Different Folds of Cross Validation', color = 'white', fontsize = 24)
plt.tight_layout()
```


Training with Cross Validation

this will repeat the steps above in order to now train with cross validation and the TimeSeriesSplit() method

```
if lags:
   df = year_lags(df, target_column, lag_label_list)
   features = list(df.columns)
else:
   features = list(df.columns)
features.remove('weekday_name')
features.remove('month_name')
features.remove('time_of_day')
features.remove(target)
# ..... Correcting Datatypes for Model ..... #
df['week_of_year'] = df.week_of_year.astype(float)
# ..... Setting Up Cross-Validation ..... #
split = 1
prediction_log = []
target_log = []
rmse_log = []
df = df.sort_index()
time_series_split = TimeSeriesSplit(n_splits = splits,
                              test_size = test_size,
                              gap = gap)
# ..... Running Cross-Validation Training ..... #
for train_index, validation_index in time_series_split.split(df):
   pretty(f'Training split: {split} of {splits}')
   training = df.iloc[train_index]
   validation = df.iloc[validation_index]
   train_in = training[features]
   train_out = training[target]
   test_in = validation[features]
   test_out = validation[target]
   model = XGBRegressor(base_score = base_score,
                          booster = booster,
                          n_{estimators} = n_{estimators}
                          early_stopping_rounds = early_stopping_rounds,
                          objective = objective,
                          max_depth = max_depth,
                          learning_rate = learning_rate)
   model.fit(train_in, train_out,
            eval_set = [(train_in, train_out),
                         (test_in, test_out)],
```

```
verbose = verbose)
    targets = list(test_out)
    target_log += targets
   prediction = model.predict(test_in)
    prediction_log += list(prediction)
    rmse = np.sqrt(mean_squared_error(test_out, prediction))
    rmse_log.append((f'split {split}', rmse))
    split += 1
# ..... Compiling Training & Testing Results ..... #
results = pd.DataFrame(pd.concat([pd.Series(prediction_log),
                                 pd.Series(target_log)],
                                axis = 1))
results.columns = ['prediction', 'actual']
pred_actual = get_accuracy(results, 'actual', 'prediction')
print('')
head_tail_horz(pred_actual[['actual', 'prediction', 'abs_acc',
                        'rel_acc', 'sharpe']], 5, 'Predictions vs Actual Targets')
return pred_actual, rmse_log
```

Cross-Validation Results without Lag Features

Training split: 1 of 16

```
[0] validation_0-rmse:36927.43252 validation_1-rmse:34875.18364
[500]
       validation_0-rmse:2056.87214
                                        validation_1-rmse:2423.05766
                                        validation_1-rmse:2181.13980
[1000] validation_0-rmse:1676.66795
[1199] validation_0-rmse:1616.77561
                                        validation_1-rmse:2155.05839
Training split: 2 of 16
[0] validation_0-rmse:36775.76007 validation_1-rmse:32375.93347
[265]
       validation_0-rmse:3149.83870
                                        validation_1-rmse:3050.08925
Training split: 3 of 16
[0] validation_0-rmse:36479.99831 validation_1-rmse:33557.74521
[298]
       validation_0-rmse:2863.89178
                                        validation_1-rmse:2735.91368
```

```
Training split: 4 of 16
[0] validation_0-rmse:36295.33002 validation_1-rmse:32125.01992
[500]
        validation_0-rmse:2137.87922
                                         validation_1-rmse:2715.88639
[1000] validation_0-rmse:1753.45240
                                         validation_1-rmse:2321.19621
[1199] validation_0-rmse:1693.75240
                                         validation_1-rmse:2266.00976
Training split: 5 of 16
[0] validation_0-rmse:36049.16304
                                     validation_1-rmse:32516.82046
       validation_0-rmse:3059.10355
                                         validation_1-rmse:3166.45254
[281]
Training split: 6 of 16
[0] validation_0-rmse:35853.96617
                                     validation_1-rmse:31558.53324
        validation_0-rmse:2192.45384
                                         validation_1-rmse:2735.75052
[500]
[1000] validation_0-rmse:1807.99360
                                         validation_1-rmse:2231.06479
[1199] validation_0-rmse:1746.01944
                                         validation_1-rmse:2185.40512
Training split: 7 of 16
[0] validation_0-rmse:35629.26492
                                     validation_1-rmse:32723.94519
        validation_0-rmse:2209.88738
                                         validation_1-rmse:2666.12457
[500]
        validation_0-rmse:1906.31098
                                         validation_1-rmse:2620.93845
[803]
Training split: 8 of 16
[0] validation_0-rmse:35484.56719
                                     validation_1-rmse:30590.92882
[500]
        validation_0-rmse:2238.18373
                                         validation_1-rmse:2665.97085
[1000] validation_0-rmse:1874.88304
                                         validation_1-rmse:2380.88144
[1199] validation_0-rmse:1815.11051
                                         validation_1-rmse:2338.74912
Training split: 9 of 16
[0] validation_0-rmse:35256.84386
                                     validation_1-rmse:31274.43857
[291]
        validation_0-rmse:3042.73232
                                         validation_1-rmse:3021.40147
Training split: 10 of 16
[0] validation_0-rmse:35080.13209
                                     validation_1-rmse:30334.97187
[500]
        validation_0-rmse:2293.31344
                                         validation_1-rmse:2368.77382
[1000] validation_0-rmse:1929.70739
                                         validation_1-rmse:1904.35239
[1199] validation_0-rmse:1875.09340
                                         validation_1-rmse:1853.25663
Training split: 11 of 16
[0] validation_0-rmse:34879.05495
                                     validation_1-rmse:28467.95624
[214]
       validation_0-rmse:4217.73427
                                         validation_1-rmse:3978.68606
Training split: 12 of 16
```

validation_1-rmse:28969.99048

validation_1-rmse:2452.28254

validation_1-rmse:2354.46986

validation_0-rmse:2030.48465 [828] Training split: 13 of 16

[500]

[0] validation_0-rmse:34628.76251

validation_0-rmse:2316.41624

[0] validation_0-rmse:34410.39062 validation_1-rmse:30310.69798

[407] validation_0-rmse:2547.65380 validation_1-rmse:2682.01408

Training split: 14 of 16

[0] validation_0-rmse:34257.96348 validation_1-rmse:29340.27107

[500] validation_0-rmse:2362.09599 validation_1-rmse:1989.56895

[607] validation_0-rmse:2223.56214 validation_1-rmse:2001.37904

Training split: 15 of 16

[0] validation_0-rmse:34081.45769 validation_1-rmse:30150.75685

[460] validation_0-rmse:2437.94536 validation_1-rmse:2518.15912

Training split: 16 of 16

[0] validation_0-rmse:33944.73814 validation_1-rmse:29491.10969

[382] validation_0-rmse:2668.21192 validation_1-rmse:2609.05645

Overall Metrics for Accuracy and Model Performance

	Resulting Metrics
Average RMSE	2,582.19
Average Absolute Accuracy	93.57%
Average Relative Accuracy	93.70%
Average Sharpe Ratio	0.33

Predictions vs Actual Targets

	head(5)							tail(5)							
	actual	prediction	abs_acc	rel_acc	sharpe			actual	prediction	abs_acc	rel_acc	sharpe			
0	41,297	44,150.49	93.54	90.99	0.46	14	40155	25,634	32,433.49	79.04	78.52	1.11			
1	44,813	44,150.49	98.50	97.91	0.11	14	40156	24,788	29,763.41	83.28	84.29	0.81			
2	46,139	45,633.64	98.89	98.40	0.08	14	40157	24,365	29,763.41	81.86	82.95	0.88			
3	45,716	45,633.64	99.82	99.74	0.01	14	40158	24,766	27,849.91	88.93	90.26	0.50			
4	45,342	45,633.64	99.36	99.08	0.05	14	40159	24,843	27,849.91	89.20	90.50	0.49			

Cross-Validation Results with Lag Features

Training split: 1 of 16 [0] validation_0-rmse:36925.12428 validation_1-rmse:34888.08778 [500] validation_0-rmse:2037.49828 validation_1-rmse:2026.48655 validation_1-rmse:2029.35903 [576] validation_0-rmse:1964.88895 Training split: 2 of 16 [0] validation_0-rmse:36773.31063 validation_1-rmse:32394.96397 [335] validation_0-rmse:2386.18647 validation_1-rmse:1923.99288 Training split: 3 of 16 [0] validation_0-rmse:36477.26414 validation_1-rmse:33584.40726 [444] validation_0-rmse:2104.36729 validation_1-rmse:2129.39891 Training split: 4 of 16 [0] validation_0-rmse:36292.39954 validation_1-rmse:32157.17855 validation_0-rmse:2046.95073 validation_1-rmse:2450.85211 [500] [902] validation_0-rmse:1815.59204 validation_1-rmse:2399.96702 Training split: 5 of 16 [0] validation_0-rmse:36046.01723 validation_1-rmse:32549.80008 [500] validation_0-rmse:2064.69275 validation_1-rmse:2385.32174 [1000] validation_0-rmse:1794.49164 validation_1-rmse:2315.57542 [1194] validation_0-rmse:1740.22213 validation_1-rmse:2305.69089 Training split: 6 of 16 [0] validation_0-rmse:35850.48363 validation_1-rmse:31592.50643 [500] validation_0-rmse:2095.36822 validation_1-rmse:2027.17829 validation_1-rmse:2024.67160 [504] validation_0-rmse:2090.82782 Training split: 7 of 16 [0] validation_0-rmse:35625.58122 validation_1-rmse:32765.45789 [500] validation_0-rmse:2089.91556 validation_1-rmse:2825.18626 [548] validation_0-rmse:2048.50601 validation_1-rmse:2831.43948

Training split: 8 of 16

[0] validation_0-rmse:35480.78265 validation_1-rmse:30627.60853

[412] validation_0-rmse:2209.38032 validation_1-rmse:2202.98109

Training split: 9 of 16

[0] validation_0-rmse:35252.84829 validation_1-rmse:31312.27241

[369] validation_0-rmse:2293.48245 validation_1-rmse:2485.35647

Training split: 10 of 16

[0] validation_0-rmse:35075.91026 validation_1-rmse:30377.44317

[500] validation_0-rmse:2132.74711 validation_1-rmse:1835.06696

[748] validation_0-rmse:1989.27927 validation_1-rmse:1819.15242

Training split: 11 of 16

[0] validation_0-rmse:34874.70089 validation_1-rmse:28512.73610

[261] validation_0-rmse:2895.43167 validation_1-rmse:2931.84616

Training split: 12 of 16

[0] validation_0-rmse:34623.79921 validation_1-rmse:28973.77077

[400] validation_0-rmse:2271.53341 validation_1-rmse:2734.28776

Training split: 13 of 16

[0] validation_0-rmse:34405.31749 validation_1-rmse:30354.22325

[400] validation_0-rmse:2289.59348 validation_1-rmse:3920.04580

Training split: 14 of 16

[0] validation_0-rmse:34252.93483 validation_1-rmse:29339.39192

[495] validation_0-rmse:2193.78422 validation_1-rmse:1936.44759

Training split: 15 of 16

[0] validation_0-rmse:34076.15009 validation_1-rmse:30173.91135

[500] validation_0-rmse:2186.48824 validation_1-rmse:2422.19548

[813] validation_0-rmse:2021.39231 validation_1-rmse:2313.93976

Training split: 16 of 16

[0] validation_0-rmse:33939.52789 validation_1-rmse:29495.56077

[500] validation_0-rmse:2189.84373 validation_1-rmse:2304.33924

[977] validation_0-rmse:1978.42327 validation_1-rmse:2270.01215

Overall Metrics for Accuracy and Model Performance

	Resulting Metrics
Average RMSE	2,411.87
Average Absolute Accuracy	93.83%
Average Relative Accuracy	94.32%
Average Sharpe Ratio	0.29

Predictions vs Actual Targets

	head(5)							tail(5)							
	actual	prediction	abs_acc	rel_acc	sharpe			actual	prediction	abs_acc	rel_acc	sharpe			
0	41,297	43,600.54	94.72	92.88	0.36		140155	25,634	28,081.06	91.29	92.44	0.38			
1	44,813	45,461.97	98.57	98.00	0.10		140156	24,788	26,979.71	91.88	93.23	0.34			
2	46,139	46,121.54	99.96	99.95	0.00		140157	24,365	26,686.66	91.30	92.83	0.36			
3	45,716	45,878.23	99.65	99.50	0.03		140158	24,766	25,165.46	98.41	98.77	0.06			
4	45,342	45,525.46	99.60	99.43	0.03		140159	24,843	24,667.06	99.29	99.46	0.03			

Predicting into the Future

1. Retrain Model with All Training Data

```
df = data.copy()
```

```
def future_predicting_model(df, target_column,
                         lags = False,
                         lag_label_list = None,
                         base_score = 0.5,
                         booster = 'gbtree',
                         n_{estimators} = 500,
                         early_stopping_rounds = 50,
                         objective = 'reg:squarederror',
                         max_depth = 3,
                         learning_rate = 0.012,
                         verbose = 250):
   from sklearn.metrics import mean_squared_error
   from sklearn.model_selection import TimeSeriesSplit
    # ..... Establishing Features & Targets ..... #
   df = featurize_datetime_index(df)
   target = target_column
    # ..... Lag Features & Feature Cleanup ..... #
   if lags:
       df = year_lags(df, target_column, lag_label_list)
       features = list(df.columns)
       features.remove('weekday_name')
       features.remove('month_name')
       features.remove('time_of_day')
       features.remove(target)
   else:
       features = list(df.columns)
       features.remove('weekday_name')
       features.remove('month_name')
       features.remove('time_of_day')
       features.remove(target)
    # ..... Correcting Datatypes for Model ..... #
   df['week_of_year'] = df.week_of_year.astype(float)
    input_data = df[features]
```

```
[0] validation_0-rmse:33789.62223
[250] validation_0-rmse:3052.85375
[499] validation_0-rmse:2203.62563
```

2. Create an empty dataframe for the date range to predict

- · Starting from the end of the input data
- · Predicting almost 1 year into the future
- Frequency will be 1 hour, just like the input data frequency

```
df.index.max()
Timestamp('2022-12-31 23:30:00')

prediction_range = pd.date_range('2023-01-01', '2024-01-01', freq = '1h')

see(prediction_range[0:6], "First rows of prediction df")
```

First rows of prediction df

		U
2	023-01-01 00:00:00	2023-01-01 00:00:00
2	023-01-01 01:00:00	2023-01-01 01:00:00
2	023-01-01 02:00:00	2023-01-01 02:00:00
2	023-01-01 03:00:00	2023-01-01 03:00:00
2	023-01-01 04:00:00	2023-01-01 04:00:00

```
future_predictions_df = pd.DataFrame(index = prediction_range)
future_predictions_df['in_future'] = True
orig = df.copy()
orig['in_future'] = False
orig_plus_future = pd.concat([orig, future_predictions_df])
```

3. Combining the Past Data with Future

- Adding the datetime and lag features
- Pulling out just the records that need predictions, future_predictions
- · Removing from features the columns the model cannot or should not work with

```
features = list(orig_plus_future.columns)
features.remove('weekday_name')
features.remove('month_name')
features.remove('time_of_day')
features.remove('consumption')
features.remove('in_future')
```

```
future_predictions = orig_plus_future.query('in_future').copy()
head_tail_horz(future_predictions, 5, 'DF for Future Predictions')
```

DF for Future Predictions

head(5)

	consumption	holiday	in_future	hour	weekday	weekday_name	month	month_name	quarter	year	week_of_
2023- 01-01	nan	nan	True	0	6	Sunday	1	January	1	2,023	
2023- 01-01	nan	nan	True	1	6	Sunday	1	January	1	2,023	
2023- 01-01	nan	nan	True	2	6	Sunday	1	January	1	2,023	
2023- 01-01	nan	nan	True	3	6	Sunday	1	January	1	2,023	
2023- 01-01	nan	nan	True	4	6	Sunday	1	January	1	2,023	

tail(5)

	consumption	holiday	in_future	hour	weekday	weekday_name	month	month_name	quarter	year	week_of_
2023- 12-31	nan	nan	True	20	6	Sunday	12	December	4	2,023	
2023- 12-31	nan	nan	True	21	6	Sunday	12	December	4	2,023	
2023- 12-31	nan	nan	True	22	6	Sunday	12	December	4	2,023	
2023- 12-31	nan	nan	True	23	6	Sunday	12	December	4	2,023	
2024- 01-01	nan	nan	True	0	0	Monday	1	January	1	2,024	

```
future_predictions = future_predictions[features]
future_predictions['week_of_year'] = future_predictions['week_of_year'].astype(float)
```

```
future_predictions['predictions'] = trained_model.predict(future_predictions[features])
```

4. Plotting the Prediction Results

