Introduction to Survival Analysis

Final Project

Darren Kang Wan Chee - 5003201184

Abima Aunur Rochman - 5003201035

```
Define Packages
```

```
library(KMsurv)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(survival)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v forcats 1.0.0
                       v readr
                                   2.1.4
## v ggplot2 3.4.3 v stringr 1.5.0
## v lubridate 1.9.3 v tibble
                                    3.2.1
              1.0.2
                        v tidyr
## v purrr
                                    1.3.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                    masks stats::lag()
## x dplyr::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
Descriptive Statistics
data('pneumon')
pneumon %>% summarise(across(where(is.numeric), .fns =
                                list(min = min,
                                     median = median,
                                     mean = mean,
```

max = max))) %%

stdev = sd,

pivot_longer(everything(), names_sep='_', names_to=c('variable', '.value'))

q25 = ~quantile(., 0.25), q75 = ~quantile(., 0.75),

```
## # A tibble: 15 x 8
##
      variable
                   min median
                                  mean stdev
                                                q25
                                                       q75
                                                             max
                        <dbl>
##
      <chr>
                 <dbl>
                                 <dbl> <dbl> <dbl> <dbl> <dbl> <
    1 chldage
                   0.5
                           12 9.84
                                       3.62
##
                                                  8
                                                        12
                                                              12
##
    2 hospital
                   0
                             0
                               0.0210 0.144
                                                  0
##
    3 mthage
                  14
                            22 21.6
                                       2.72
                                                 20
                                                        23
                                                              29
##
   4 urban
                   0
                                0.761
                                       0.427
## 5 alcohol
                   0
                                0.665
                                       1.08
                                                               4
                             0
                                                  0
                                                         1
##
    6 smoke
                   0
                             0
                                0.441
                                       0.668
                                                  0
##
   7 region
                                2.65
                                       0.961
                                                  2
                                                         3
                                                               4
                   1
                             3
    8 poverty
                   0
                             1
                                0.922 0.268
                                                  1
                                                         1
                                                               1
                                      0.480
##
    9 bweight
                   0
                                0.360
                                                  0
                                                         1
                                                               1
                             0
                                                         2
                                                               3
## 10 race
                   1
                             1
                               1.61
                                       0.757
                                                  1
## 11 education
                            12 11.4
                                       2.00
                                                 10
                                                        12
                                                              19
                   0
## 12 nsibs
                   0
                             0
                               0.678
                                       0.859
                                                  0
                                                         1
                                                               6
                                                         2
                                                              28
## 13 wmonth
                   0
                             0
                               1.93
                                       3.64
                                                  0
## 14 sfmonth
                   0
                                1.12
                                       1.99
                                                  0
                                                         1
                                                              18
                             0
## 15 agepn
                   0
                            10 7.86
                                       4.46
                                                  3
                                                        12
                                                              12
```

Data Preprocessing & Cleaning

pneumon\$region <- as.factor(pneumon\$region)</pre>

```
str(pneumon)
```

```
## 'data.frame':
                    3470 obs. of 15 variables:
    $ chldage : num
                      12 12 3 2 4 12 7 3 7 12 ...
##
    $ hospital : int
                      0 0 0 0 0 0 0 0 0 0 ...
##
    $ mthage
               : int
                      22 20 24 22 21 20 24 24 26 21 ...
                     1 1 1 1 1 1 1 1 1 1 ...
##
   $ urban
               : int
##
    $ alcohol : int
                      0 1 3 2 1 0 0 3 2 1 ...
                      0 0 0 2 2 0 0 0 2 0 ...
##
    $ smoke
               : int
               : int
##
    $ region
                     1 1 1 1 1 1 1 1 1 1 ...
##
    $ poverty
              : int
                     1 1 1 1 1 1 1 1 1 1 ...
##
    $ bweight : int 1 0 0 0 1 0 0 0 0 ...
    $ race
               : int 1 1 1 1 1 1 1 1 1 1 ...
##
                     10 12 12 9 12 12 12 14 12 12 ...
##
    $ education: int
##
    $ nsibs
               : int 1 1 2 0 0 0 1 0 0 0 ...
##
    $ wmonth
               : int 1 2 1 0 0 0 0 4 1 3 ...
                      1 2 0 0 0 0 0 2 1 2 ...
##
    $ sfmonth : int
               : int 1 12 3 2 4 12 7 3 6 12 ...
    $ agepn
sapply(pneumon, function(x) sum(is.na(x)))
##
     chldage hospital
                          mthage
                                      urban
                                              alcohol
                                                           smoke
                                                                    region
                                                                             poverty
##
           0
                     0
                                0
                                          0
                                                    0
                                                               0
                                                                         0
                                                                                    0
##
                                      nsibs
                                                         sfmonth
     bweight
                  race education
                                               wmonth
                                                                     agepn
##
                     0
                                          0
pneumon$mthage <- as.numeric(pneumon$mthage)</pre>
pneumon$urban <- as.factor(pneumon$urban)</pre>
pneumon$alcohol <- as.factor(pneumon$alcohol)</pre>
pneumon$smoke <- as.factor(pneumon$smoke)</pre>
```

```
pneumon$poverty <- as.factor(pneumon$poverty)</pre>
pneumon$bweight <- as.factor(pneumon$bweight)</pre>
pneumon$race <- as.factor(pneumon$race)</pre>
pneumon$education <- as.numeric(pneumon$education)</pre>
pneumon$nsibs <- as.numeric(pneumon$nsibs)</pre>
pneumon$wmonth <- as.numeric(pneumon$wmonth)</pre>
pneumon$sfmonth <- as.numeric(pneumon$sfmonth)</pre>
pneumon\$smoke \leftarrow factor(pneumon\$smoke, levels = c(0,1,2), labels = c(0,1,1))
# smoke = 0: no, 1:yes
pneumon\alphaalcohol \leftarrow factor(pneumon\alphaalcohol, levels = c(0,1,2,3,4), labels = c(0,1,1,1,1))
\# alcohol = 0: no, 1:yes
pneumon$education_cat <- cut(pneumon$education, breaks = c(0,10,12,20), labels =c("Low_Edu", "Med_Edu",
pneumon$wmonth cat <- cut(pneumon$wmonth, breaks = c(-1,0,30), labels = c("zero month", "morethan zero"
pneumon$sfmonth_cat <- cut(pneumon$sfmonth, breaks = c(-1,0,30), labels = c("zero_month", "morethan_zer
remove_cols <- c('education','wmonth','sfmonth')</pre>
pneumon = subset(pneumon, select = !(names(pneumon) %in% remove_cols))
str(pneumon)
## 'data.frame':
                   3470 obs. of 15 variables:
## $ chldage
                   : num 12 12 3 2 4 12 7 3 7 12 ...
                   : int 00000000000...
## $ hospital
## $ mthage
                   : num 22 20 24 22 21 20 24 24 26 21 ...
## $ urban
                   : Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
## $ alcohol
                   : Factor w/ 2 levels "0", "1": 1 2 2 2 2 1 1 2 2 2 ...
## $ smoke
                   : Factor w/ 2 levels "0", "1": 1 1 1 2 2 1 1 1 2 1 ...
                   : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 1 1 1 1 1 1 ...
## $ region
                 : Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
## $ poverty
## $ bweight
                  : Factor w/ 2 levels "0", "1": 2 1 1 1 2 1 1 1 1 1 ...
                   : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ race
## $ nsibs
                   : num 1 1 2 0 0 0 1 0 0 0 ...
## $ agepn
                  : int 1 12 3 2 4 12 7 3 6 12 ...
## $ education_cat: Factor w/ 3 levels "Low_Edu", "Med_Edu", ..: 1 2 2 1 2 2 3 2 2 ...
## $ wmonth cat : Factor w/ 2 levels "zero month", "morethan zero": 2 2 2 1 1 1 1 2 2 2 ...
## $ sfmonth_cat : Factor w/ 2 levels "zero_month", "morethan_zero": 2 2 1 1 1 1 1 2 2 2 ...
Define Survival Time
y <- Surv(pneumon$agepn, pneumon$hospital)
Plot KM Curve
# child age
kmfit1 <- survfit(y ~ chldage, data = pneumon)</pre>
plot(kmfit1, col = c(unique(pneumon$chldage)),xlab="survival time in months", ylab="survival probabilit
title(main = "KM Curve chldage")
legend("bottomleft", legend = c(unique(pneumon$chldage)), col=c(unique(pneumon$chldage)), pch = 16,
       cex = 0.8, xjust = 1)
```

KM Curve chldage


```
# mthage
kmfit2 <- survfit(y ~ mthage, data = pneumon)
plot(kmfit2, col = c(unique(pneumon$mthage)),xlab="survival time in months", ylab="survival probabiliti
    ylim = c(0.9,1))
title(main = "KM Curve mthage")
legend("bottomleft", legend = c(unique(pneumon$mthage)), col=c(unique(pneumon$mthage)), pch = 16,
    cex = 0.8, xjust = 1)</pre>
```

KM Curve mthage


```
# urban
kmfit3 <- survfit(y ~ urban, data = pneumon)
plot(kmfit3, col = c(unique(pneumon$urban)),xlab="survival time in months", ylab="survival probabilitie
    ylim = c(0.9,1))
title(main = "KM Curve Urban")
legend("bottomleft", legend = c(unique(pneumon$urban)), col=c(unique(pneumon$urban)), pch = 16,
    cex = 0.8, xjust = 1)</pre>
```

KM Curve Urban


```
# alchohol
kmfit4 <- survfit(y ~ alcohol, data = pneumon)
plot(kmfit4, col = c(unique(pneumon$alcohol)),xlab="survival time in months", ylab="survival probabilit
    ylim = c(0.9,1))
title(main = "KM Curve Alcohol")
legend("bottomleft", legend = c(unique(pneumon$alcohol)), col=c(unique(pneumon$alcohol)), pch = 16,
    cex = 0.8, xjust = 1)</pre>
```

KM Curve Alcohol


```
# smoke
kmfit5 <- survfit(y ~ smoke, data = pneumon)
plot(kmfit5, col = c(unique(pneumon$smoke)),xlab="survival time in months", ylab="survival probabilitie
    ylim = c(0.9,1))
title(main = "KM Curve Smoke")
legend("bottomleft", legend = c(unique(pneumon$smoke)), col=c(unique(pneumon$smoke)), pch = 16,
        cex = 0.8, xjust = 1)</pre>
```

KM Curve Smoke


```
# region
kmfit6 <- survfit(y ~ region, data = pneumon)
plot(kmfit6, col = c(unique(pneumon$region)),xlab="survival time in months", ylab="survival probabiliti
    ylim = c(0.9,1))
title(main = "KM Curve Region")
legend("bottomleft", legend = c(unique(pneumon$region)), col=c(unique(pneumon$region)), pch = 16,
    cex = 0.8, xjust = 1)</pre>
```

KM Curve Region


```
# poverty
kmfit7 <- survfit(y ~ poverty, data = pneumon)
plot(kmfit7, col = c(unique(pneumon$poverty)),xlab="survival time in months", ylab="survival probabilit
    ylim = c(0.9,1))
title(main = "KM Curve Poverty")
legend("bottomleft", legend = c(unique(pneumon$poverty)), col=c(unique(pneumon$poverty)), pch = 16,
        cex = 0.8, xjust = 1)</pre>
```

KM Curve Poverty


```
# bweight
kmfit8 <- survfit(y ~ bweight, data = pneumon)
plot(kmfit8, col = c(unique(pneumon$bweight)),xlab="survival time in months", ylab="survival probabilit
    ylim = c(0.9,1))
title(main = "KM Curve Bweight")
legend("bottomleft", legend = c(unique(pneumon$bweight)), col=c(unique(pneumon$bweight)), pch = 16,
        cex = 0.8, xjust = 1)</pre>
```

KM Curve Bweight


```
# race
kmfit9 <- survfit(y ~ race, data = pneumon)
plot(kmfit9, col = c(unique(pneumon$race)),xlab="survival time in months", ylab="survival probabilities
    ylim = c(0.9,1))
title(main = "KM Curve Race")
legend("bottomleft", legend = c(unique(pneumon$race)), col=c(unique(pneumon$race)), pch = 16,
    cex = 0.8, xjust = 1)</pre>
```

KM Curve Race


```
# education
kmfit10 <- survfit(y ~ education_cat, data = pneumon)
plot(kmfit10, col = c(unique(pneumon$education_cat)),xlab="survival time in months", ylab="survival pro
    ylim = c(0.9,1))
title(main = "KM Curve Education")
legend("bottomleft", legend = c(unique(pneumon$education_cat)), col=c(unique(pneumon$education_cat)), p
    cex = 0.8, xjust = 1)</pre>
```

KM Curve Education


```
# nsibs
kmfit11 <- survfit(y ~ nsibs, data = pneumon)
plot(kmfit11, col = c(unique(pneumon$nsibs)),xlab="survival time in months", ylab="survival probabiliti
    ylim = c(0.8,1))
title(main = "KM Curve nsibs")
legend("bottomleft", legend = c(unique(pneumon$nsibs)), col=c(unique(pneumon$nsibs)), pch = 16,
        cex = 0.8, xjust = 1)</pre>
```

KM Curve nsibs


```
# wmonth
kmfit12 <- survfit(y ~ wmonth_cat, data = pneumon)
plot(kmfit12, col = c(unique(pneumon$wmonth_cat)),xlab="survival time in months", ylab="survival probab
        ylim = c(0.9,1))
title(main = "KM Curve wmonth")
legend("bottomleft", legend = c(unique(pneumon$wmonth_cat)), col=c(unique(pneumon$wmonth_cat)), pch = 1
        cex = 0.8, xjust = 1)</pre>
```

KM Curve wmonth


```
# sfmonth
kmfit13 <- survfit(y ~ sfmonth_cat, data = pneumon)
plot(kmfit13, col = c(unique(pneumon$sfmonth_cat)),xlab="survival time in months", ylab="survival probate
    ylim = c(0.9,1))
title(main = "KM Curve sfmonth")
legend("bottomleft", legend = c(unique(pneumon$sfmonth_cat)), col=c(unique(pneumon$sfmonth_cat)), pch =
    cex = 0.8, xjust = 1)</pre>
```

KM Curve sfmonth

Log Rank Test

 $H_0 = The survival curves between groups are identical$

 H_1 = The survival curves between groups are not identical

```
# chldage
LR1 <- survdiff(y ~ pneumon$chldage)
LR1$pvalue</pre>
```

[1] 1.882157e-259

```
if (LR1$pvalue < 0.05){
  cat('Reject H0')
}else{
  cat('Fail to Reject H0')
}</pre>
```

Reject HO

```
# mthage
LR2 <- survdiff(y ~ pneumon$mthage)
LR2$pvalue</pre>
```

[1] 0.4226795

```
if (LR2$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject H0')
}
## Fail to Reject HO
# urban
LR3 <- survdiff(y ~ pneumon$urban)</pre>
LR3$pvalue
## [1] 0.0624522
if (LR3$pvalue < 0.05){</pre>
  cat('Reject HO')
  cat('Fail to Reject HO')
## Fail to Reject HO
# alcohol
LR4 <- survdiff(y ~ pneumon$alcohol)</pre>
LR4$pvalue
## [1] 0.938363
if (LR4$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject HO')
## Fail to Reject HO
# smoke
LR5 <- survdiff(y ~ pneumon$smoke)</pre>
LR5$pvalue
## [1] 0.0004448992
if (LR5$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject HO')
```

Reject HO

```
# region
LR6 <- survdiff(y ~ pneumon$region)</pre>
LR6$pvalue
## [1] 0.1393504
if (LR6$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject H0')
## Fail to Reject HO
# poverty
LR7 <- survdiff(y ~ pneumon$poverty)</pre>
LR7$pvalue
## [1] 0.4695795
if (LR7$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject H0')
## Fail to Reject HO
# bweight
LR8 <- survdiff(y ~ pneumon$bweight)</pre>
LR8$pvalue
## [1] 0.01635119
if (LR8$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject HO')
## Reject HO
# race
LR9 <- survdiff(y ~ pneumon$race)</pre>
LR9$pvalue
## [1] 0.671782
```

```
if (LR9$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject H0')
}
## Fail to Reject HO
# education
LR10 <- survdiff(y ~ pneumon$education_cat)</pre>
LR10$pvalue
## [1] 0.001892423
if (LR10$pvalue < 0.05){</pre>
  cat('Reject HO')
  cat('Fail to Reject HO')
## Reject HO
LR11 <- survdiff(y ~ pneumon$nsibs)</pre>
LR11$pvalue
## [1] 0.00711593
if (LR11$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject HO')
## Reject HO
# wmonth
LR12 <- survdiff(y ~ pneumon$wmonth_cat)</pre>
LR12$pvalue
## [1] 0.0002569817
if (LR12$pvalue < 0.05){</pre>
  cat('Reject H0')
}else{
  cat('Fail to Reject HO')
```

Reject HO

```
# sfmont
LR13 <- survdiff(y ~ pneumon$sfmonth_cat)</pre>
LR13$pvalue
## [1] 1.662848e-05
if (LR13$pvalue < 0.05){</pre>
 cat('Reject H0')
}else{
 cat('Fail to Reject HO')
}
## Reject HO
Checking Proportional Hazard Assumptions
Goodness of Fit
H_0 = Fulfill \ PH \ assumption
H_1 = PH asusmption not fulfilled
model1 <- coxph(y~. -agepn -hospital, data = pneumon)</pre>
summary(model1)
## Call:
## coxph(formula = y ~ . - agepn - hospital, data = pneumon)
##
   n= 3469, number of events= 73
##
     (1 observation deleted due to missingness)
##
##
##
                          coef exp(coef) se(coef)
                                                   z Pr(>|z|)
## chldage
                      ## mthage
                      -0.24543
## urban1
                      -0.29416  0.74516  0.30993  -0.949  0.342567
## alcohol1
                       0.29842
                                1.34772 0.27294
                                               1.093 0.274241
## smoke1
                       0.22358
                                1.25054 0.29803
                                               0.750 0.453148
## region2
                       0.49810
                                1.64560 0.41733
                                               1.194 0.232660
## region3
                       0.12657
                                1.13493 0.42703
                                               0.296 0.766923
## region4
                      ## poverty1
                       -0.08711
                                ## bweight1
                       0.08945
                                1.09357 0.29003
                                               0.308 0.757772
## race2
                       -0.08382
                                0.91959 0.31154 -0.269 0.787880
## race3
                                1.54109 0.38755
                       0.43249
                                               1.116 0.264440
## nsibs
                       0.31667
                                1.37255 0.16188
                                                1.956 0.050440
## education_catMed_Edu
                       0.27346
                                1.31451 0.29781
                                                0.918 0.358486
## education_catHigh_Edu
                       ## wmonth_catmorethan_zero 1.02306
                                               1.661 0.096639 .
                                2.78168 0.61579
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
```

```
## urban1
                              0.7452
                                         1.3420
                                                  0.40592
                                                             1.3679
## alcohol1
                              1.3477
                                         0.7420
                                                  0.78936
                                                             2.3011
## smoke1
                              1.2505
                                         0.7997
                                                  0.69729
                                                             2.2428
## region2
                              1.6456
                                         0.6077
                                                  0.72625
                                                             3.7287
## region3
                              1.1349
                                         0.8811
                                                  0.49145
                                                             2.6210
## region4
                              0.6130
                                         1.6313
                                                  0.23972
                                                             1.5676
## poverty1
                              0.9166
                                         1.0910
                                                  0.38335
                                                             2.1915
## bweight1
                              1.0936
                                         0.9144
                                                  0.61940
                                                             1.9307
## race2
                              0.9196
                                         1.0874
                                                  0.49936
                                                             1.6935
## race3
                              1.5411
                                         0.6489
                                                  0.72101
                                                             3.2939
## nsibs
                              1.3725
                                         0.7286
                                                  0.99939
                                                            1.8850
                                         0.7607
## education_catMed_Edu
                              1.3145
                                                  0.73328
                                                             2.3565
## education_catHigh_Edu
                              1.6465
                                         0.6073
                                                  0.41671
                                                             6.5057
## wmonth_catmorethan_zero
                              2.7817
                                         0.3595
                                                  0.83204
                                                             9.2997
## sfmonth_catmorethan_zero
                              0.2630
                                         3.8029
                                                  0.07045
                                                             0.9815
## Concordance= 0.967 (se = 0.01)
## Likelihood ratio test= 413.5 on 17 df, p=<2e-16
                       = 311.4 on 17 df, p=<2e-16
## Score (logrank) test = 1204 on 17 df,
                                           p=<2e-16
check_ph <- cox.zph(model1, transform = rank)</pre>
check_ph$table
##
                        chisq df
## chldage
                2.352362e-01 1 0.6276682
## mthage
                8.137652e-01 1 0.3670094
## urban
                1.175090e+00 1 0.2783579
                3.251151e-02 1 0.8569096
## alcohol
## smoke
                9.110215e-03 1 0.9239594
## region
                4.371091e-01 3 0.9324743
## poverty
                1.173098e+00 1 0.2787657
                1.236974e-03 1 0.9719437
## bweight
## race
                9.325947e-01 2 0.6273207
## nsibs
               1.159256e+00 1 0.2816198
## education_cat 6.564873e-02 2 0.9677085
## wmonth_cat 1.969511e-06 1 0.9988803
## sfmonth_cat 3.651496e-02 1 0.8484560
## GLOBAL
                5.785092e+00 17 0.9945172
Log Log Plot
minusloglog <- function(p){</pre>
  return(-log(-log(p)))
# child age
win.graph()
plot(kmfit1, fun = minusloglog, col = c(unique(pneumon$chldage)),xlab="survival time in months", ylab="
title(main = "Log Log Plot child age")
```

exp(coef) exp(-coef) lower .95 upper .95

0.52174

0.68108

0.6002

0.8987

1.7871

1.2782

0.5596

0.7824

##

chldage

mthage

Log Log Plot child age

Log Log Plot mthage

Log Log Plot Urban

Log Log Plot Alcohol

Log Log Plot Smoke

Log Log Plot Region

Log Log Plot Poverty

Log Log Plot Bweight

Log Log Plot Race

Log Log Plot Education

Log Log Plot nsibs

Log Log Plot wmonth

Log Log Plot sfmonth

