Estimation of Average Causal Effects

Thomas Leavitt July 21, 2022

Potential Outcomes Framework

Causality with Potential Outcomes

Definition: Treatment

 Z_i : Indicator of treatment assignment for *unit* i, where i = 1, ..., N

$$Z_i = \left\{ \begin{array}{ll} 1 & \text{if unit } i \text{ receives treatment} \\ 0 & \text{otherwise} \end{array} \right.$$

Causality with Potential Outcomes

Definition: Treatment

 Z_i : Indicator of treatment assignment for unit i, where $i=1,\ldots,N$

$$Z_i = \left\{ \begin{array}{ll} 1 & \text{if unit } i \text{ receives treatment} \\ 0 & \text{otherwise} \end{array} \right.$$

Definition: Potential Outcomes (assuming SUTVA)

 y_{Ti} or y_{Ci} : Fixed value of the outcome for unit i if it were to receive treatment or control

E.g., y_{Ti} : voter turnout of person i if person i were to receive mail encouraging turnout

E.g., y_{Ci} : voter turnout of person i if person i were not to receive mail encouraging turnout

Defining Causal Effects + Observed Outcomes

Causal effect (treatment effect) for unit i
Additive causal effect of the treatment on the outcome for unit i:

$$\tau_i = y_{Ti} - y_{Ci}$$

• Other functions of of individual potential outcomes possible, e.g., $\frac{y_{Ti}}{y_{Ci}}$

Defining Causal Effects + Observed Outcomes

Causal effect (treatment effect) for unit i
Additive causal effect of the treatment on the outcome for unit i:

$$\tau_i = y_{Ti} - y_{Ci}$$

- Other functions of of individual potential outcomes possible, e.g., $rac{y_{Ti}}{y_{Ci}}$
- Fundamental Problem of Causal Inference (Holland 1986):

We can never observe both y_{Ti} and y_{Ci} for the same i

• We can observe only one of the two potential outcomes:

$$Y_i = Z_i y_{Ti} + (1 - Z_i) y_{Ci}$$

• Therefore, τ_i is unobserved for every unit

The average treatment effect

Average treatment effect: An example

Definition: Average Treatment Effect (ATE)

$$au = \frac{1}{N} \sum_{i=1}^{N} (y_{Ti} - y_{Ci})$$

Average treatment effect: An example

Definition: Average Treatment Effect (ATE)

$$\tau = \frac{1}{N} \sum_{i=1}^{N} (y_{Ti} - y_{Ci})$$

■ Example: "Village heads" study (Gerber and Green 2012, Chapter 2):

	Budg	Budget share (%)								
Village	y_C	y_T	au							
1	10	15	5							
2	15	15	0							
3	20	30	10							
4	20	15	-5							
5	10	20	10							
6	15	15	0							
7	15	30	15							
Average	15	20	5							

Randomized experiments

Basic Setup for Randomized Experiment

- Units: $i=1,\ldots,N$
- lacksquare Treatment: $Z_i=0$ or $Z_i=1$ is randomly assigned
- lacksquare Potential outcomes: y_{Ci} and y_{Ti}
- Observed outcome: $Y_i = Z_i y_{Ti} + (1 Z_i) y_{Ci}$

Basic Setup for Randomized Experiment

- Units: $i = 1, \dots, N$
- Treatment: $Z_i = 0$ or $Z_i = 1$ is randomly assigned
- Potential outcomes: y_{Ci} and y_{Ti}
- Observed outcome: $Y_i = Z_i y_{Ti} + (1 Z_i) y_{Ci}$
- Treatment Assignment Mechanism
 - (1) Bernoulli (simple) randomization: Each unit is independently assigned to treatment with probability p
 - (2) Complete randomization: Exactly n_T units are treated and $N-n_T=n_C$ units are untreated
 - (3) In practice, (1) and (2) are equivalent when we fix n_T by conditioning on its observed value
- Under complete or simple (conditioning on observed n_T) randomization

$$\mathrm{E}\left[Z_{i}\right] = \frac{n_{T}}{N}$$

Difference-in-Means estimator

Unbiasedness of Difference-in-Means: Proof

• Difference-in-Means estimator

$$\begin{split} \hat{\tau}\left(\boldsymbol{Z},\boldsymbol{Y}\right) &= n_T^{-1}\boldsymbol{Z}^{\top}\boldsymbol{Y} - n_C^{-1}\left(1-\boldsymbol{Z}\right)^{\top}\boldsymbol{Y} \\ &= \frac{1}{n_T}\sum_{i=1}^{N}Z_iY_i - \frac{1}{n_C}\sum_{i=1}^{N}(1-Z_i)Y_i \end{split}$$

Unbiasedness of Difference-in-Means: Proof

• Difference-in-Means estimator

$$\begin{split} \hat{\tau}\left(\boldsymbol{Z},\boldsymbol{Y}\right) &= n_T^{-1}\boldsymbol{Z}^{\top}\boldsymbol{Y} - n_C^{-1}\left(1 - \boldsymbol{Z}\right)^{\top}\boldsymbol{Y} \\ &= \frac{1}{n_T}\sum_{i=1}^{N}Z_iY_i - \frac{1}{n_C}\sum_{i=1}^{N}(1 - Z_i)Y_i \end{split}$$

Unbiased for the ATE under complete randomization

Unbiasedness of Difference-in-Means: Proof

Difference-in-Means estimator

$$\hat{\tau}\left(\boldsymbol{Z},\boldsymbol{Y}\right) = n_T^{-1}\boldsymbol{Z}^{\top}\boldsymbol{Y} - n_C^{-1}\left(\mathbf{1} - \boldsymbol{Z}\right)^{\top}\boldsymbol{Y}$$
$$= \frac{1}{n_T} \sum_{i=1}^{N} Z_i Y_i - \frac{1}{n_C} \sum_{i=1}^{N} (1 - Z_i) Y_i$$

Unbiased for the ATE under complete randomization

$$\begin{split} & \operatorname{E}\left[\hat{\tau}\left(\boldsymbol{Z},\boldsymbol{Y}\right)\right] & = \operatorname{E}\left[\frac{1}{n_{T}}\sum_{i=1}^{N}Z_{i}Y_{i} - \frac{1}{n_{C}}\sum_{i=1}^{N}(1-Z_{i})Y_{i}\right] \\ & = \frac{1}{n_{T}}\sum_{i=1}^{N}\operatorname{E}\left[Z_{i}Y_{i}\right] - \frac{1}{n_{C}}\sum_{i=1}^{N}\operatorname{E}\left[(1-Z_{i})Y_{i}\right] \quad (\because \operatorname{Linearity of E}) \\ & = \frac{1}{n_{T}}\sum_{i=1}^{N}\operatorname{E}\left[Z_{i}y_{Ti}\right] - \frac{1}{n_{C}}\sum_{i=1}^{N}\operatorname{E}\left[(1-Z_{i})y_{Ci}\right] \quad (\because \operatorname{Definition of POs}) \\ & = \frac{1}{n_{T}}\sum_{i=1}^{N}y_{Ti}\operatorname{E}\left[Z_{i}\right] - \frac{1}{n_{C}}\sum_{i=1}^{N}y_{Ci}\operatorname{E}\left[1-Z_{i}\right] \quad (\because \operatorname{POs are fixed}) \\ & = \frac{1}{n_{T}}\sum_{i=1}^{N}y_{Ti}\left(\frac{n_{T}}{N}\right) - \frac{1}{n_{C}}\sum_{i=1}^{N}y_{Ci}\left(\frac{n_{C}}{N}\right) \quad (\because \operatorname{Complete randomization}) \\ & = \frac{1}{N}\sum_{i=1}^{N}y_{Ti} - \frac{1}{N}\sum_{i=1}^{N}y_{Ci} = \frac{1}{N}\sum_{i=1}^{N}\left(y_{Ti} - y_{Ci}\right) = \tau \end{split}$$

	Budget share (%)						
Village	y_C	y_T	au				
1	10	15	5				
2	15	15	0				
3	20	30	10				
4	20	15	-5				
5	10	20	10				
6	15	15	0				
7	15	30	15				
Average	15	20	5				

	Bud	Budget share (%)							
Village	y_C	y_T	au						
1	10	15	5						
2	15	15	0						
3	20	30	10						
4	20	15	-5						
5	10	20	10						
6	15	15	0						
7	15	30	15						
Average	15	20	5						

2 treated and 5 control villages $\Longrightarrow \binom{7}{2} = 21 \text{ assignments}$ $\Omega = \left\{ \begin{bmatrix} 1\\1\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \cdots, \begin{bmatrix} 0\\0\\0\\0\\1\\1 \end{bmatrix} \right\}$

	Bud	Budget share (%)							
Village	y_C	y_T	au						
1	10	15	5						
2	15	15	0						
3	20	30	10						
4	20	15	-5						
5	10	20	10						
6	15	15	0						
7	15	30	15						
Average	15	20	5						

$$2 \text{ treated and } 5 \text{ control villages}$$

$$\Longrightarrow \binom{7}{2} = 21 \text{ assignments}$$

$$\Omega = \left\{ \begin{bmatrix} 1\\1\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \cdots, \begin{bmatrix} 0\\0\\0\\0\\1\\1 \end{bmatrix} \right\}$$

Therefore, there are $\binom{7}{2} = 21$ possible realizations of data:

z_1	y_C	y_T	$ y_1 $	z_2	$\mid y_C$	y_T	y_2	z_{21}	y_C	y_T	$ y_{21} $
1	?	15	15	1	?	15	15	0	10	?	10
1	?	15	15	0	15	?	15	0	15	?	15
0	20	?	20	1	?	30	30	 0	20	?	20
0	20	?	20	0	20	?	20	0	20	?	20
0	10	?	10	0	10	?	10	0	10	?	10
0	15	?	15	0	15	?	15	1	?	15	15
0	15	?	15	0	15	?	15	1	?	30	30

\boldsymbol{z}_1	y_C	y_T	$ y_1 $	z ₂	y_C	y_T	\boldsymbol{y}_2	z_{21}	y_C	y_T	y_{21}
1	?	15	15	1	?	15	15	0	10	?	10
1	?	15	15	0	15	?	15	0	15	?	15
0	20	?	20	1	?	30	30	 0	20	?	20
0	20	?	20	0	20	?	20	0	20	?	20
0	10	?	10	0	10	?	10	0	10	?	10
0	15	?	15	0	15	?	15	1	?	15	15
0	15	?	15	0	15	?	15	1	?	30	30

 \blacksquare Random vectors $m{Z}$ and $m{Y}$ can take on any $(m{z}_1,m{y}_1)\,,\cdots\,,(m{z}_{21},m{y}_{21})$

\boldsymbol{z}_1	y_C	y_T	$ y_1 $	z_2	y_C	y_T	\boldsymbol{y}_2	z_{21}	y_C	y_T	$ y_{21} $
1	?	15	15	1	?	15	15	0	10	?	10
1	?	15	15	0	15	?	15	0	15	?	15
0	20	?	20	1	?	30	30	 0	20	?	20
0	20	?	20	0	20	?	20	0	20	?	20
0	10	?	10	0	10	?	10	0	10	?	10
0	15	?	15	0	15	?	15	1	?	15	15
0	15	?	15	0	15	?	15	1	?	30	30

- lacksquare Random vectors $oldsymbol{Z}$ and $oldsymbol{Y}$ can take on any $(oldsymbol{z}_1,oldsymbol{y}_1)\,,\cdots\,,(oldsymbol{z}_{21},oldsymbol{y}_{21})$
- \bullet Applying Diff-in-Means estimator to all 21 possible realizations of data $\implies 21$ possible outputs of estimator:

$$\hat{\tau}(\boldsymbol{z}_1, \boldsymbol{y}_1) = -1, \, \hat{\tau}(\boldsymbol{z}_2, \boldsymbol{y}_2) = 7.5, \, \cdots, \, \hat{\tau}(\boldsymbol{z}_{21}, \boldsymbol{y}_{21}) = 7.5$$

\boldsymbol{z}_1	y_C	y_T	$ y_1 $	_ z	2 1	IC	y_T	y_2	\boldsymbol{z}_{21}	y_C	y_T	y_{21}
1	?	15	15	1	?		15	15	0	10	?	10
1	?	15	15	0	1	5	?	15	0	15	?	15
0	20	?	20	1	?		30	30	 0	20	?	20
0	20	?	20	0	2	0	?	20	0	20	?	20
0	10	?	10	0	1	0	?	10	0	10	?	10
0	15	?	15	0	1	5	?	15	1	?	15	15
0	15	?	15	0	1	5	?	15	1	?	30	30

- lacksquare Random vectors $oldsymbol{Z}$ and $oldsymbol{Y}$ can take on any $(oldsymbol{z}_1,oldsymbol{y}_1)\,,\cdots\,,(oldsymbol{z}_{21},oldsymbol{y}_{21})$
- \bullet Applying Diff-in-Means estimator to all 21 possible realizations of data $\implies 21$ possible outputs of estimator:

$$\hat{\tau}(\boldsymbol{z}_1, \boldsymbol{y}_1) = -1, \, \hat{\tau}(\boldsymbol{z}_2, \boldsymbol{y}_2) = 7.5, \, \cdots, \, \hat{\tau}(\boldsymbol{z}_{21}, \boldsymbol{y}_{21}) = 7.5$$

• Expected value of Diff-in-Means estimator:

$$\mathrm{E}\left[\hat{\tau}\left(\boldsymbol{Z},\boldsymbol{Y}\right)\right] = \hat{\tau}\left(\boldsymbol{z}_{1},\boldsymbol{y}_{1}\right)\mathrm{Pr}\left(\boldsymbol{Z}=\boldsymbol{z}_{1}\right) + \ldots + \hat{\tau}\left(\boldsymbol{z}_{21},\boldsymbol{y}_{21}\right)\mathrm{Pr}\left(\boldsymbol{Z}=\boldsymbol{z}_{21}\right)$$

\boldsymbol{z}_1	y_C	y_T	$ y_1 $	z_2	y_C	y_T	y_2	z_{21}	y_C	y_T	$ y_{21} $
1	?	15	15	1	?	15	15	0	10	?	10
1	?	15	15	0	15	?	15	0	15	?	15
0	20	?	20	1	?	30	30	 0	20	?	20
0	20	?	20	0	20	?	20	0	20	?	20
0	10	?	10	0	10	?	10	0	10	?	10
0	15	?	15	0	15	?	15	1	?	15	15
0	15	?	15	0	15	?	15	1	?	30	30

- ullet Random vectors $m{Z}$ and $m{Y}$ can take on any $(m{z}_1, m{y}_1), \cdots, (m{z}_{21}, m{y}_{21})$
- \bullet Applying Diff-in-Means estimator to all 21 possible realizations of data $\implies 21$ possible outputs of estimator:

$$\hat{\tau}(z_1, y_1) = -1, \, \hat{\tau}(z_2, y_2) = 7.5, \, \cdots, \, \hat{\tau}(z_{21}, y_{21}) = 7.5$$

• Expected value of Diff-in-Means estimator:

$$\mathrm{E}\left[\hat{\tau}\left(\boldsymbol{Z},\boldsymbol{Y}\right)\right] = \hat{\tau}\left(\boldsymbol{z}_{1},\boldsymbol{y}_{1}\right)\mathrm{Pr}\left(\boldsymbol{Z}=\boldsymbol{z}_{1}\right) + \ldots + \hat{\tau}\left(\boldsymbol{z}_{21},\boldsymbol{y}_{21}\right)\mathrm{Pr}\left(\boldsymbol{Z}=\boldsymbol{z}_{21}\right)$$

So, in "village heads" example

$$E[\hat{\tau}(\boldsymbol{Z},\boldsymbol{Y})] = (-1)(1/21) + (7.5)(1/21) + \dots + (7.5)(1/21) = 5$$

Diff-in-Means estimator under complete random assignment

 $\textbf{Figure 1:} \ \, \mathsf{Difference-in-Means} \ \, \mathsf{estimator} \ \, \mathsf{in} \ \, \mathsf{``Village} \ \, \mathsf{heads''} \ \, \mathsf{example}$

Next steps

- What happens when the size of our experiment grows large?
- Consistency of Difference-in-Means estimator for ATE
- Asymptotic validity of hypothesis tests about ATE