Importancia y aplicaciones del análisis numérico

Dr. Stefan Frei Department of Mathematics University College London

Curso compacto, Parte V Universidad Nacional Agraria La Molina Agosto 2-8, 2017

Los tres pilares de la ciéncia moderna

Computación vs experimentos

- Costos de los experimentos
- Experimentos pueden ser peligrosos (por ejemplo dentro del cuerpo humano) o imposibles (por ejemplo escalas muy pequeñas)
- Posibilidad de obtener un "imagen completo" en la simulación
- Estudios de diferentes modelos/parametros y optimización
- Control del error (de discretización) con análisis matemático vs control de errores de medida?
- La simulación solo puede producir lo que está en el modelo, mientras que el experimento no depende del modelo, sino de la realidad

Campos de aplicaciones

- Física, Ingeniería
 - Mecánica de fluidos (Navier-Stokes, combustión, flujo de ríos, turbinas, etc.)
 - Mecánica de solidos (Diseño de nuevas estructuras y productos, Ejemplo: Materiales con fibras, aeronautica)
 - Fuel cells
- Ingenería ambiental, meteorología
 - Simulaciones del clima, tiempo
 - Simulaciones del hielo marino, glaciares
 - Pesca: Cómo imponer restricciones eficientes
- Biología, Medicina
 - Simulaciones cardio-vasculares, procesos de difusión/transportes en células, etc.
 - Sistema imunológico, cancer
 - Problemas inversas (tomografía computarizada, resonancia magnética)
- Economía
- Etc.

Overview

1 Modelación y simulación de la invaginación embrional

2 Simulación del flujo de gases en los sacos alveolares del pulmón

Cortesía

Proyecto de doctorado

Mathematical Models and Numerical Simulation of Mechanochemical Pattern Formation in Biological Tissues

Felix Brinkmann, Universidad de Heidelberg

Asesores/Collaboradores:

- Thomas Richter, Universidad de Magdeburg
- Moritz Mercker, Anna Marciniak-Czochra, Universidad de Heidelberg

Aplicación

• Desarrollo embrional, por ejemplo de drosophila o del ser humano

Figure: Gastrulación de una drosophila

Eric Wieschaus. Patterning and Cell Shape Change in Drosophila Development, http://www.hhmi.org/scientists/eric-f-wieschaus

Complejidad de problemas biológicos

- Alrededor de 100,000,000 proteinas por célula
- Difusión, transporte, interacciones, reacciones
- Muy diferentes propiedades mecánicas

Consecuencias:

- Es imposible considerar todos los efectos
- Es muy dificil elegir los efectos importantes para un modelo

Modelo de Turing

Hace 60 años: Modelo reacción-difusión de Alan Turing, solamente basado en efectos químicos

$$egin{aligned} \partial_t c_1 &= -\lambda_1 \Delta c_1 +
ho_1 (c_1^2/c_2 - c_1) \ \partial_t c_2 &= -\underbrace{\lambda_2 \Delta c_2}_{ ext{Difusión}} + \underbrace{
ho_2 (c_1^2 - c_2)}_{ ext{Reacción}} \end{aligned}$$

Pero:

- No se encontraron sustancías apropriadas que pueden causar los efectos observados
- Nuevos estudios (experimentos) sugieren que existe una dependencia bilateral entre moleculas de señalización (morphogenes) y mecánica (COHEN 2010)

Modelo (simplificado)

Hallar deformaciones u y concentraciones c tal que

$$\epsilon \partial_t^2 u - \Delta u = f \quad \text{in } \Omega(t)$$
$$\partial_t c - D\Delta c - R(c, u) = 0 \quad \text{in } \Omega(t)$$

Condiciones de frontera

$$\partial_n u = \partial_n c = 0$$
 in $\partial \Omega(t)$

- La deformación u no está bien-definido (Ecuación elíptica)
- ullet Solución: Addición de $\epsilon \partial_t^2 u$ (Ecuación hiperbólica) con $\epsilon \ll 1$

Modelo (simplificado)

Hallar deformaciones u y concentraciones c tal que

$$\epsilon \partial_t^2 u - \Delta u = f \quad \text{in } \Omega(t)$$
$$\partial_t c - D\Delta c - R(c, u) = 0 \quad \text{in } \Omega(t)$$

Condiciones de frontera

$$\partial_n u = \partial_n c = 0$$
 in $\partial \Omega(t)$

- La deformación u no está bien-definido (Ecuación elíptica)
- Solución: Addición de $\epsilon \partial_t^2 u$ (Ecuación hiperbólica) con $\epsilon \ll 1$

S. Frei | Elementos finitos

8

Modelo (simplificado)

Hallar deformaciones u y concentraciones c tal que

$$\epsilon \partial_t^2 u - \Delta u = f \quad \text{in } \Omega(t)$$
$$\partial_t c - D\Delta c - R(c, u) = 0 \quad \text{in } \Omega(t)$$

Condiciones de frontera

$$\partial_n u = \partial_n c = 0$$
 in $\partial \Omega(t)$

- La deformación u no está bien-definido (Ecuación elíptica)
- ullet Solución: Addición de $\epsilon \partial_t^2 u$ (Ecuación hiperbólica) con $\epsilon \ll 1$

Modelo non-lineal

- Modelo non-lineal de St. Venant-Kirchhoff
- Gradiente de la deformación $\mathbf{F} = \mathbf{I} \nabla \mathbf{u}$
- Tensor deformación Lagrange-Green $\mathbf{E} = 0.5(\mathbf{F}^T\mathbf{F} \mathbf{I})$
- Tensor de tensión $\Sigma = \lambda \operatorname{tr}(\mathbf{E})I + 2\mu \mathbf{E}$

Problema: Hallar deformaciones u y concentraciones c tal que

$$\epsilon \partial_t^2 u - \operatorname{div}(\mathbf{F}(u)\Sigma(u)) = \mathbf{f}$$
 in Ω
 $\partial_t c - \operatorname{div}(D\nabla c) - R(c, u) = 0$ in $\Omega(t)$

Nota: Hasta ahora la concentracion c no tienen influencia a la deformación u. Después F(c,u)

Modelo non-lineal

- Modelo non-lineal de St. Venant-Kirchhoff
- Gradiente de la deformación $\mathbf{F} = \mathbf{I} \nabla \mathbf{u}$
- Tensor deformación Lagrange-Green $\mathbf{E} = 0.5(\mathbf{F}^T\mathbf{F} \mathbf{I})$
- Tensor de tensión $\Sigma = \lambda \operatorname{tr}(\mathbf{E})I + 2\mu \mathbf{E}$

Problema: Hallar deformaciones u y concentraciones c tal que

$$\epsilon \partial_t^2 u - \operatorname{div}(\mathbf{F}(u)\Sigma(u)) = \mathbf{f}$$
 in Ω
 $\partial_t c - \operatorname{div}(D\nabla c) - R(c, u) = 0$ in $\Omega(t)$

Nota: Hasta ahora la concentracion c no tienen influencia a la deformación u. Después F(c,u)

Formulación variacional

Reemplazamos el sistema con $\partial_t^2 u$

$$\epsilon \partial_t^2 u - \operatorname{div} (\mathbf{F}(u)\Sigma(u)) = \mathbf{f}$$

con un sistema de derivadas parciales de orden 1 ($v := \partial_t u$):

$$\partial_t u - v = 0$$
 $\epsilon \partial_t v - \operatorname{div} (\mathbf{F}(u) \Sigma(u)) = \mathbf{f}$

La formulación variacional correspondiente es $Hallar\ u \in \mathcal{U}, v \in \mathcal{V}, c \in \mathcal{C}\ tal\ que$

$$(\partial_{t}u - v, \psi)_{\Omega} = 0 \qquad \forall \psi \in \mathcal{V}$$

$$(\epsilon \partial_{t}v, \phi)_{\Omega} + (\mathbf{F}(u)\Sigma(u), \nabla \phi)_{\Omega} = (\mathbf{f}, \phi)_{\Omega} \, \forall \phi \in \mathcal{U}$$

$$(\partial_{t}c, \xi)_{\Omega} - (D\nabla c, \nabla \xi)_{\Omega} - (R(c, u), \xi)_{\Omega} = 0 \qquad \forall \xi \in \mathcal{C}$$

$$= H^{1}(\Omega)^{3}, \mathcal{V} = L^{2}(\Omega)^{3}, \mathcal{C} = H^{1}(\Omega).$$

Formulación variacional

Reemplazamos el sistema con $\partial_t^2 u$

$$\epsilon \partial_t^2 u - \operatorname{div} (\mathbf{F}(u)\Sigma(u)) = \mathbf{f}$$

con un sistema de derivadas parciales de orden 1 ($v := \partial_t u$):

$$\partial_t u - v = 0$$
 $\epsilon \partial_t v - \operatorname{div} (\mathbf{F}(u) \Sigma(u)) = \mathbf{f}$

La formulación variacional correspondiente es Hallar $u \in \mathcal{U}, v \in \mathcal{V}, c \in \mathcal{C}$ tal que

$$\begin{split} \left(\partial_t u - v, \psi\right)_\Omega &= 0 \qquad \forall \psi \in \mathcal{V}, \\ \left(\epsilon \partial_t v, \phi\right)_\Omega + \left(\mathbf{F}(u)\boldsymbol{\Sigma}(u), \nabla \phi\right)_\Omega &= (\mathbf{f}, \phi)_\Omega \, \forall \phi \in \mathcal{U}, \\ \left(\partial_t c, \xi\right)_\Omega - \left(D\nabla c, \nabla \xi\right)_\Omega - \left(R(c, u), \xi\right)_\Omega &= 0 \qquad \forall \xi \in \mathcal{C} \end{split}$$

donde $\mathcal{U}=H^1(\Omega)^3, \mathcal{V}=L^2(\Omega)^3, \mathcal{C}=H^1(\Omega).$

Discretización temporal

Discretización temporal:

$$[0, T] = I_1 \cup \cdots \cup I_M, \text{ donde } I_j = [t_j, t_{j+1}]$$

Método de Euler implícito:

- Valores iniciales u^0, v^0, c^0
- Para m = 1, ..., M: Hallar $u^m \in \mathcal{U}, v^m \in \mathcal{V}, c^m \in \mathcal{C}$ tal que

$$\begin{split} \left(k^{-1}(u^m-u^{m-1})-v^m,\psi\right)_{\Omega} &= 0 \qquad \forall \psi \in \mathcal{V}, \\ \left(\frac{\epsilon}{k}(v^m-v^{m-1}),\phi\right)_{\Omega} &+ (\mathbf{F}(u^m)\boldsymbol{\Sigma}(u^m),\nabla\phi)_{\Omega} = (\mathbf{f},\phi)_{\Omega}\,\forall \phi \in \mathcal{U}, \\ \left(k^{-1}(c^m-c^{m-1}),\xi\right)_{\Omega} &- (D\nabla c^m,\nabla\xi)_{\Omega} - (R(c^m,u^m),\xi)_{\Omega} = 0 \qquad \forall \xi \in \mathcal{C} \end{split}$$

Discretización

- Método de Galerkin: Espacio finito $(\mathcal{U}_h \times \mathcal{V}_h \times \mathcal{C}_h) \subset (\mathcal{U} \times \mathcal{V} \times \mathcal{C})$
- ullet Triangulación del dominio en quadriláteros $T\in\mathcal{T}_h$

• Discretización con elementos finitos Q2:

$$\mathcal{U}_h = \mathcal{V}_h = \mathcal{C}_h = \left\{ v \in \mathcal{C}(\Omega) \,\middle|\, v_{\mid \mathcal{T}} \circ \phi_{\mathcal{T}}^{-1} \in \mathcal{Q}_2(\hat{\mathcal{T}}) \,\forall \mathcal{T} \in \mathcal{T}_h
ight\}$$

• Hallar $u_h^m \in \mathcal{U}_h, v_h^m \in \mathcal{V}_h, c_h^m \in \mathcal{C}_h$ tal que

Procesos de crecimiento

Cómo influyen las sustancias químicas a la mécanica?

• Procesos de crecimiento dependiendio de C_i , modelo: Decomposición multiplicativa del gradiente de deformación **F** (RODRIGUEZ1994):

$$F = F_e F_g(c),$$

con una parte de crecimiento $F_g(c)$ y una parte mecánica F_e .

• **Ejemplo:** Constricción basál k > 0 (o apical k < 0) para una celula biológica con centro (0,0):

$$\mathbf{F}_{g}(c) = \begin{pmatrix} 1 + kcx_1 & kcx_0 \\ 0 & 1 \end{pmatrix}$$

Procesos de crecimiento

Cómo influyen las sustancias químicas a la mécanica?

• Procesos de crecimiento dependiendio de C_i , modelo: Decomposición multiplicativa del gradiente de deformación **F** (RODRIGUEZ1994):

$$F = F_e F_g(c),$$

con una parte de crecimiento $F_g(c)$ y una parte mecánica F_e .

• **Ejemplo:** Constricción basál k > 0 (o apical k < 0) para una celula biológica con centro (0,0):

$$\mathbf{F}_g(\mathbf{c}) = \begin{pmatrix} 1 + k\mathbf{c}x_1 & k\mathbf{c}x_0 \\ 0 & 1 \end{pmatrix}$$

Procesos de crecimiento

Término de reacción

Cómo influy la mecánica a la química?

Saturación modelado por la kinética Michaelis-Menten:

$$R(c, u) = k_2 \frac{\max\{I(u), 0\}}{k_M + \max\{I(u), 0\}} - k_1 c$$

Diferentes posibilidades para modelar I(u) fueron supuesto en la literatura

- Tensión (Nelson et al. 2009), $I(u) = \det(\mathbf{F}\Sigma_e)$
- Gradiente de deformación (BROUZES ET AL. 2004), I(u) = det(F)
- Tensor deformación Lagrange-Green (MAMMOTO ET AL. 2007), I(u) = tr(E)

Investigación numérica 2D (MERCKER, BRINKMANN ET AL. 2016)

Resultado en 3d

 $\mbox{\it lzqierdo}$: Concentración inicial c^0 aleatorio, $\mbox{\it Derecho}$: Región de concentración inicial

- Se obtiene un estado estacional que es independiente de lo estado inicial
- Para los parámetros utilizados obtenemos multiples invaginaciones

Conclusión

- Mecánismo químico-mecánico es capaz de explicar invaginaciones
- Termino de reacción basado en la tensión $R(c,u)=g(\det(\sigma_e))$ parece más apropriado para describir el fenómeno
- Estudios del influencia de **diferentes parametros** (difusión D, parametros mecánicos λ_s , ν_s , modelo de crecimiento)
- Comparaciones con experimentos necesarios para validar el modelo

Overview

Modelación y simulación de la invaginación embrional

2 Simulación del flujo de gases en los sacos alveolares del pulmón

Proyecto

- 2015/16: Proyecto de investicación Dinámica bidimensional del flujo de gases (C2 y CO2) en los sacos alveolares del pulmón humano mediante el método de elementos finitos
- Con Luis J. Caucha (Tumbes, UNT), Dr. Obidio Rubio Mercedes (UNT), Dr. Julio C. Cruz (Piura)

Problema

- Modelo de Weibel: Division del pulmón humano en 23 generaciones
- Región apical: Pulmón es (en una buena aproximación) rígido, tejido cartilaginoso
- Región basal: Entre la generación 17 y 23 se encuentran pequeñas estructuras deformables, los sacos alveolares
- En los sacos alveolares se realiza el **intercambio de gases** con el sistema cardiovascular (O_2, CO_2)

Patología

- Enfisema pulmonal: Acumulación de sustancias cómo tobaco en los alveoli
- Obstrucción parcial o completa de los membranas hacía el sistema cardiovascular
- Expansión o rotura de un saco alveolar

21

Problema

- Modelo de Weibel: Division del pulmón humano en 23 generaciones
- Región apical: Pulmón es (en una buena aproximación) rígido, tejido cartilaginoso
- Región basal: Entre la generación 17 y 23 se encuentran pequeñas estructuras deformables, los sacos alveolares
- En los sacos alveolares se realiza el intercambio de gases con el sistema cardiovascular (O₂, CO₂)

Patología

- Enfisema pulmonal: Acumulación de sustancias cómo tobaco en los alveoli
- Obstrucción parcial o completa de los membranas hacía el sistema cardiovascular
- Expansión o rotura de un saco alveolar

Modelo

Primer paso: Entender el sistema y diseñar un modelo apropiado

 Modelo para el flujo de la mezcla de gases: Ecuaciones incompresibles de Navier-Stokes

$$\begin{split} \rho\partial_t v + \rho(v\cdot\nabla)v - \rho\nu\Delta v + \nabla p &= 0 \quad \text{in } \Omega(t) \\ \text{div } v &= 0 \quad \text{in } \Omega(t), \\ v &= v^{\text{dom}} \quad \text{on } \Gamma_{bl} \cup \Gamma_w, \\ \rho\nu\partial_n v - \rho n &= 0 \quad \quad \text{on } \Gamma_{io}. \end{split}$$

donde $v: \Omega \to \mathbb{R}^d$ es la velocidad, $p: \Omega \to \mathbb{R}$ la presión.

Modelo para la concentración de gases c (por ejemplo O2, CO2):
 Ecuación convección-difusión

$$\partial_t c + v \cdot \nabla c - D\Delta c = 0$$
 in $\Omega(t)$.

Condiciones de frontera

Γ_{bl} y Γ_w

$$D\partial_n c - \alpha(c_b - c) = 0$$
 on Γ_{bl} , $\partial_n c = 0$ en Γ_w .

\(\tau_{io}\): Condicion varia dependiendo de la dirección del flujo v
 (expiración/insporación)

$$c = c_{\text{ext}}$$
 if $v \cdot n > 0$, $\partial_n c = 0$ if $v \cdot n < 0$ on Γ_{io} .

Elementos finitos: Condiciones de Dirichlet → Modificación del espacio,
 Condiciones de Neumann → Modificación de la forma variacional

Condiciones de frontera

Γ_{bl} y Γ_w

$$D\partial_n c - \alpha(c_b - c) = 0$$
 on Γ_{bl} , $\partial_n c = 0$ en Γ_w .

\(\tau_{io}\): Condicion varia dependiendo de la dirección del flujo v
 (expiración/insporación)

$$c = c_{\text{ext}}$$
 if $v \cdot n > 0$, $\partial_n c = 0$ if $v \cdot n < 0$ on Γ_{io} .

Elementos finitos: Condiciones de Dirichlet → Modificación del espacio,
 Condiciones de Neumann → Modificación de la forma variacional

Método de Nitsche

Solución: Método de Nitsche (NITSCHE 1970): Incorporación de las condiciones de Dirichlet (**debilmente**) en la formulación variacional

$$\partial_n c + \gamma \mathcal{H}(v \cdot n)(c_{\text{ext}} - c) = 0$$
 en Γ_{io} ,

donde $\gamma \to \infty$ es un parametro de penalización y ${\mathcal H}$ la función Heaviside

$$\mathcal{H}(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Integración por partes

$$\begin{split} (\partial_t c + v \cdot \nabla c, \psi) + (D \nabla c, \nabla \psi) \\ + (\gamma \mathcal{H}(v \cdot n)(c_{\mathsf{ext}} - c), \psi)_{\Gamma_{io}} = 0 \quad \forall \psi \in \mathcal{X}. \end{split}$$

Formulación variacional

Hallar
$$v \in v^{dom} + \mathcal{V}, p \in \mathcal{L}, c \in \mathcal{X}$$
 tal que
$$(\rho \partial_t v + \rho(v \cdot \nabla)v, \phi) + (\sigma, \nabla \phi) = 0 \quad \forall \phi \in \mathcal{V},$$

$$(\operatorname{div} v, \xi) = 0 \quad \forall \xi \in \mathcal{L},$$

$$(\partial_t c + v \cdot \nabla c, \psi) + (D\nabla c, \nabla \psi) - (\alpha(c_b - \hat{c}), \hat{\psi})_{\hat{\Gamma}_{bl}}$$

$$+ (\gamma \mathcal{H}(v \cdot n)(c_{\text{ext}} - c), \psi)_{\Gamma_{lo}} = 0 \quad \forall \psi \in \mathcal{X}.$$

Los espacios son

$$\mathcal{V} = H_0^1(\Omega(t); \partial \Omega \setminus \Gamma_{io}), \qquad \mathcal{L} = L_0^2(\Omega(t)), \qquad \mathcal{X} = H^1(\Omega(t)).$$

Transformación ALE

Cómo tratar el movimiento del dominio?

- Dominio de referencia $\hat{\Omega} = \Omega(0)$
- ullet Mapa ALE $\mathcal{T}:\hat{\Omega}
 ightarrow\Omega(t)$ (Arbitrary Lagrangian Eulerian coordinates)

- Definimos funciones $\hat{v}(\hat{x},t) := v(T(\hat{x},t))$ en $\hat{\Omega}$, etc.
- Transformación de integrales por el teorema de transformación

Formulación ALE

ALE formulación variacional:

$$\begin{split} \textit{Hallar } \hat{v} \in \hat{v}^{\textit{dom}} + \hat{\mathcal{V}}, \hat{p} \in \hat{\mathcal{L}}, \hat{c} \in \hat{\mathcal{X}} \; \textit{tal que} \\ & \rho(\hat{J}(\partial_t \hat{v} + \hat{\nabla} \hat{v} \hat{F}^{-1}(\hat{v} - \partial_t \hat{T}), \hat{\phi})_{\hat{\Omega}} + (\hat{J} \hat{\sigma} \hat{F}^{-T}, \hat{\nabla} \hat{\phi})_{\hat{\Omega}} = 0 \quad \forall \hat{\phi} \in \hat{\mathcal{V}}, \\ & (\hat{\mathrm{div}}(\hat{J} \hat{F}^{-1} \hat{v}), \hat{\xi})_{\hat{\Omega}} = 0 \quad \forall \hat{\xi} \in \hat{\mathcal{L}}, \\ & (\hat{J}(\partial_t \hat{c} + (\hat{v} - \partial_t \hat{T})^T \hat{F}^{-T} \hat{\nabla} \hat{c}, \hat{\phi})_{\hat{\Omega}} + (D\hat{J} \hat{F}^{-T} \hat{\nabla} \hat{c}, \hat{F}^{-T} \hat{\nabla} \hat{\psi})_{\hat{\Omega}} \\ & + (\gamma \mathcal{H}(\hat{v} \cdot \hat{n})(c_{\text{ext}} - \hat{c}), \hat{\psi})_{\Gamma_{in}} = 0 \quad \forall \hat{\psi} \in \hat{\mathcal{X}}. \end{split}$$

Si la transformación $\mathcal T$ es un difeomorfismo de clase $\mathcal C^1$, las ecuaciones son equivalentes

Discretización

- Discretización temporal con el método implícito de Euler
- Discretización con elementos finitos "equal-order" Q1
- Estabilización LPS

Velocidad horizontal

Concentración de CO₂

Concentración c

- Concentración en la sangre más alta que en el pulmón
- Difusión rápida $D = 17 mm^2/s$
- Concentración en el saco alveolar es más alta durante expiración

Conclusión

- Método ALE para incluir el movimiento del dominio
- Método de Nitsche para incorporar el cambio de condiciones de frontera
- Diseño de un modelo y estudio de parámetros
- Primer paso hacia el estudio de patologías: Enfisema pulmonal
- Sistema muy similar: Difusión/transporte de contaminantes en ríos