Ingegneria Elettronica per l'Automazione e le Telecomunicazioni MATEMATICA 2 A.A. 2021/2022 ESAME 18 Luglio 2022

Nome e Cognome	N. Matricola

Problema	Punti
1	
2	
3	
4	
5	
Totale	

Note: Non si possono utilizzare calcolatori o appunti. Il valore in punti (su 100) di ogni esercizio è indicato sul margine sinistro.

Formule per la trasformata di Laplace

y = f(t)	$Y(p) = \mathcal{L}(y) = F(p)$	
1	$\frac{1}{p}$	Re $p > 0$
e^{at}	$\frac{1}{p-a}$	Re (p+a) > 0
$\sin at$	$\frac{a}{p^2 + a^2}$	$\operatorname{Re} p > \operatorname{Im} a $
$\cos at$	$\frac{p}{p^2 + a^2}$	$\operatorname{Re} p > \operatorname{Im} a $
$\sinh at$	$\frac{a}{p^2 - a^2}$	$\operatorname{Re} p > \operatorname{Re} a $
$\cosh at$	$\frac{p}{p^2 - a^2}$	$\operatorname{Re} p > \operatorname{Re} a $
t^n	$\frac{n!}{p^{n+1}}$	$\operatorname{Re} p > 0, n \ge 0$
te^{at}	$\frac{1}{(p-a)^2}$	Re (p+a) > 0
$e^{-at}(1-at)$	$\frac{p}{(p+a)^2}$	$\mathrm{Re}\;(p+a)>0$
$e^{at}\sin\omega t$	$\frac{\omega}{(p-a)^2 + \omega^2}$	Re $(p-a) > \mathrm{Im}\ \omega $
$e^{at}\cos\omega t$	$\frac{p-a}{(p-a)^2 + \omega^2}$	$\operatorname{Re}(p-a) > \operatorname{Im}\omega $
$t\sin\omega t$	$\frac{2\omega p}{(p^2 + \omega^2)^2}$	$\mathrm{Re}\; p > \mathrm{Im}\; \omega $
$t\cos\omega t$	$\frac{p^2 - \omega^2}{(p^2 + \omega^2)^2}$	${\rm Re}\; p> {\rm Im}\; \omega $
$\frac{\sin \omega t}{t}$	$\arctan \frac{\omega}{p}$	$\mathrm{Re}\; p > \mathrm{Im}\; \omega $
$u(t-a) = \begin{cases} 1, & t > a > 0 \\ 0, & t < a \end{cases}$	$rac{1}{p}e^{-ap}$	Re $p > 0$

Operazioni di trasformazione di Laplace

Operazioni

1. Trasformata di Laplace	$\mathcal{L}\{f(t)\} = F(p)$
2. Trasformata di una derivata	$\mathcal{L}\{f'(t)\} = pF(p) - f(0)$
3. Sostituzione	$\mathcal{L}\{f(t)e^{at}\} = F(p-a)$
4. Traslazione	$\mathcal{L}\{f(t-b)\} = F(p)e^{-bp}$

(8) 1.a (MB 1.13.32, p.32) Trovare la serie di Maclaurin, fino al quarto ordine incluso, della funzione

$$f(x) = \ln(1 + xe^x)$$

- (4) 1.b Discutere del suo intervallo di convergenza.
- (4) 1.c (MB 2.10.19, p. 67) Trovare in forma rettangolare (x+iy) tutti i valore della radice: $\sqrt[3]{i}$

(4) 1.d (MB 2.12.25, p. 71) Trovare la parte reale, la parte immaginaria e il valore assoluto di: $\sin{(x-iy)}$

ANNO ACCADEMICO 2021-2022

(10) 2.a (MB 14.4.7, p. 681) Trovare i primi termini di ciascuna delle serie di Laurent attorno all'origine, cioè una serie per ogni regione anulare tra i punti singolari, della seguente funzione e trovarne il residuo all'origine

$$f(z) = \frac{2-z}{1-z^2}$$

(10) 2.b (MB 14.7.14, p. 699) Calcolare il seguente integrale definito usando il teorema dei residui:

$$\int_{\infty}^{\infty} \frac{\sin x dx}{x^2 + 4x + 5}$$

(MB 6.8.7, p. 307) Per il campo di forza $\mathbf{F} = (y+z)\mathbf{i} - (x+z)\mathbf{j} + (x+y)\mathbf{k}$, trovare il lavoro fatto spostando una particella attorno a ciascuno dei seguenti percorsi chiusi:

(7) **2.a** (a) circonferenza $x^2 + y^2 = 1$ nel piano (x, y), percorsa in verso antiorario;

(7) **2.b** (b) circonferenza $x^2 + z^2 = 1$ nel piano (x, z), percorsa in verso antiorario;

(6) 2.c (c) la curva che parte dall'origine e passa successivamente lungo l'asse x a (1,0,0), parallela all'asse z fino a (1,0,1), parallela al piano (y,z) fino a (1,1,1) e indietro all'origine lungo x=y=z;

(MB 7.8.11(b), pag. 363) La seguente funzione è data su un periodo.

$$f(x) = x^2, \qquad 0 < x < 2\pi;$$

(6) 3.a Disegnarne schematicamente alcuni periodi.

(14) 3.b Svilupparla in una appropriata serie di Fourier.

(10) 4.a (MB, 8.3.9, p. 403) Trovare la soluzione generale della seguente equazione differenziale

$$(1 - x^2)y' = xy + 2x\sqrt{1 - x^2}$$

(10) 4b. (MB, 8.9.35, p. 444) Valutare il seguente integrale definito usando la tabella delle trasformate di Laplace

$$\int_0^\infty te^{-t}\sin 5t dt$$

(MB, 8.10.15) Risolvere il seguente problema di Cauchy

$$y'' + 3y' - 4y = e^{3t}, y(0) = y'(0) = 0$$

(10) 5a. Trovando l'integrale generale e quindi applicando le condizioni iniziali

(10) 5b. Usando l'integrale di convoluzione