11.2

Zeigen Sie dass ein Homomorphismus $\phi:A\to B$ injektiv ist gdw. $\ker(\phi)=\{0_A\}$ " \Longrightarrow ": Annahme: ϕ ist injektiv \Longrightarrow $\phi(x_1)=\phi(x_2)$ \Longrightarrow $x_1=x_2$ sei $x_2=0_A:\phi(x_1)=\phi(0_A)$ \Longrightarrow $x_1=0_A$ \Longrightarrow $\ker(\phi)=\{0_A\}$ " \Leftarrow ": Annahme: $\ker(\phi)=\{0_A\}$

- Sei $\phi(x_1) = \phi(x_2)$ für $x_1, x_2 \in A$
- Da ϕ Homomorphismus: $\phi(x_1) \phi(x_2) = \phi(x_1 x_2)$
- Aus $\phi(x_1) = \phi(x_2)$ folgt: $\phi(x_1 x_2) = 0_B$
- $x_1 x_2 \in \ker(\phi) \Longrightarrow \ker(\phi) = \{0_A\}$ $\Longrightarrow x_1 - x_2 = 0_A \Longrightarrow x_1 = x_2$