Numerical Approximation of Optimal Convergence for Fractional Elliptic Equations with Additive Noise ¹

Zhaopeng Hao

School of Mathematics, Southeast University

The 8th Academic Symposium on Spectral Methods and Their Applications, Guiyang, China, Aug 7-11, 2023

Nonlocal elliptic equation with additive Gaussian noise

Consider the nonlocal stochastic boundary value problem

$$(-\Delta)^{\alpha/2}_{\Omega}u + \mu u = \mathfrak{N}(x), \quad x \in \Omega = (-1, 1). \tag{1}$$

Here u=0 if $x\in\partial\Omega$ and $\mu\geq0$. The regional Laplacian $(-\Delta)^{\alpha/2}_{\Omega}$ with $\alpha\in(1,2)$

$$(-\Delta)_{\Omega}^{\alpha/2}u(x) = c_{1,\alpha} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{1+\alpha}} dy, \quad c_{1,\alpha} = \frac{2^{\alpha} \Gamma(\frac{\alpha+1}{2})}{\pi^{1/2} |\Gamma(-\alpha/2)|}.$$

- Long range interaction or anomalous diffusion
- Incomplete information, lack of knowledge or uncertainty for the inputs

The connection between nonlocal operators

For the target function u vanishing outside of the domain,

$$(-\Delta)^{\alpha/2}u(x) = (-\Delta)^{\alpha/2}_{\Omega}u(x) + \rho_{\Omega}(x)u(x), \quad x \in \Omega$$
 (2)

where

$$\rho_{\Omega}(x) = c_{1,\alpha} \int_{\Omega^c} \frac{1}{|x - y|^{d + \alpha}} \, dy, \quad (-\Delta)^{\alpha/2} u(x) := c_{1,\alpha} \int_{\mathbb{R}} \frac{u(x) - u(y)}{|x - y|^{1 + \alpha}} \, dy,$$
(3)

Lemma (integration-by-parts formula)

Assume that u,v vanish outside of $\Omega\subseteq\mathbb{R}$ almost everywhere. Then it holds that

$$\begin{split} & \int_{\Omega} v(-\Delta)^{\alpha/2} u(x) \, dx \\ & = \frac{c_{1,\alpha}}{2} \iint_{\Omega \otimes \Omega} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{1+\alpha}} \, dy \, dx + \int_{\Omega} u(x)v(x)\rho_{\Omega}(x) \, dx, \end{split}$$

when all the integrals are well-defined.

Lemma

For the n-th order Jacobi polynomial $P_n^{\alpha/2}(x)$, it holds that

$$(-\Delta)^{\alpha/2} [\omega^{\alpha/2} P_n^{\alpha/2}(x)] = \lambda_n^{\alpha} P_n^{\alpha/2}(x), \tag{4}$$

$$\lambda_n^{\alpha} = \frac{\Gamma(\alpha + n + 1)}{n!} \approx n^{\alpha}.$$
 (5)

The Jacobi polynomials $P_n^{\gamma}(x)$ are mutually orthogonal as

$$\int_{-1}^{1} (1 - x^{2})^{\gamma} P_{m}^{\gamma}(x) P_{n}^{\gamma}(x) dx = h_{n}^{\gamma} \delta_{nm}, \quad \gamma > -1.$$
 (6)

Here δ_{nm} is equal to 1 if n=m and zero otherwise and

$$h_n^{\gamma} = \|P_n^{\gamma}\|_{\omega^{\gamma}}^2 = \frac{2^{2\gamma+1}(\Gamma(n+\gamma+1))^2}{(2n+2\gamma+1)\Gamma(n+2\gamma+1)\Gamma(n+1)}.$$

Fractional elliptic with additive Gaussian noise

For the convenience of the discussion, we focus on the model problem

$$(-\Delta)^{\alpha/2}u + \mu u = \mathfrak{N}(x), \quad x \in I = (-1, 1). \tag{7}$$

Here u=0 if $x\in I^c$. The integral fractional Laplacian $(-\Delta)^{\alpha/2}$ with $\alpha\in(0,2)$.

$$(-\Delta)^{\alpha/2} u(x) = c_{1,\alpha} \int_{\mathbb{R}} \frac{u(x) - u(y)}{|x - y|^{1+\alpha}} \, dy, \quad c_{1,\alpha} = \frac{2^{\alpha} \Gamma(\frac{\alpha+1}{2})}{\pi^{1/2} |\Gamma(-\alpha/2)|}.$$

- \Diamond Elliptic problems with additive noise $\mathfrak{N}(x)$
 - white noise $\dot{W}(x)$, Zhimin Zhang et al 1998, Qiang Du 2002, George Karniadakis et al. 2016
 - ▶ fractional Brownian motion $\dot{B}^H(x)$, Yanzhao Cao, Jialin Hong 2018
 - ▶ $1/f^{\beta}$ noise, Max Gunzburger et al. 2011, 2015

 \diamondsuit In 1D, spectral method for spatial discretization in physical domain: Mao and Shen 2016...

Goal: present a unified framework for numerically solving such equations and analyzing the convergence.

- \diamondsuit Main challenges to compute the fractional Laplacian
 - nonlocal and thus high storage cost
 - weakly singular solutions; boundary singularity, low-order convergence
 - the resulting dense matrix need fast solver
 - ▶ In particular, hyper-singular integral form difficult to evaluate or discretize the fractional Laplacian
- \diamondsuit Approximation of noise
 - stationary and non-stationary noises.
 - white and color noises.
 - regular computation domain

We use spectral methods to discretize both nonlocal operators in physical domain and noises in random space

White noise and colored noise

- In many situations, it is assumed that a stochastic process v(t) satisfies the following properties
 - ▶ 1. The expectation of v(t) is zero for all t, i.e., E[v(t)] = 0.
 - 2. The covariance (two-point correlation) function of v(t) is more or less known. That is,

$$Cov[(v(t), v(s))] = E[(v(t) - E[v(t)])(v(s) - E[v(s)])].$$

- Mhen the covariance function is proportional to the Dirac function $\delta(t-s)$, the process v(t) is called uncorrelated, which is usually referred to as white noise.
- ▶ Otherwise, it is correlated and is referred to as color noise.
- ► The white noise can be intuitively described as a stochastic process, which has independent values at each time instance and has an infinite variance.

Approximation of white noise by spectral expansion

Gaussian process with mean zero and covariance $\delta(x-y)$.

$$\frac{\partial^d}{\partial x_1 \cdots \partial x_d} W = \sum_{|\alpha| < \infty, \ \alpha \in \mathbb{N}^d} e_{\alpha}(x) \xi_{\alpha}.$$

Here $\xi_{\alpha} \sim \mathcal{N}(0,1)$'s are i.i.d and e_{α} s form a complete orthonormal basis.

• Truncation (Wong-Zakai approximation)

$$\frac{\partial^d}{\partial x_1 \cdots \partial x_d} W_n = \sum_{|\alpha| \le n, \ \alpha \in \mathbb{N}^d} e_{\alpha}(x) \xi_{\alpha}.$$

 (special case, using the basis of piecewise constants) piecewise linear approximation (polygonal approximation)

$$W_h(x) = W(x_i) + (W(x_{i+1}) - W(x_i)) \frac{x - x_i}{x_{i+1} - x_i}, \quad x \in [x_i, x_{i+1}).$$

$1/f^{\beta}$ noise

$$\dot{W}^{\beta}(x) = \sum_{k=1}^{\infty} k^{-\frac{\beta}{2}} e_k(x) \xi_k.$$

Here $e_k(x) = \sin(k\pi \frac{x+1}{2}), x \in (-1, 1).$

When $0 \le \beta \le 2$, the noise is called $1/f^{\beta}$ noise.

- $(White noise) \beta = 0$
- ▶ (Pink noise) $\beta = 1$
- ▶ (Brownian noise) $\beta = 2$
- ♦ Truncating the infinite series leads to "good" approximation of the noise.

Colored noises

Figure: Sample paths of different Gaussian $1/f^{\beta}$ processes: Brownian motion, $\beta=2$ (left); Pink noise, $\beta=1$ (middle); White noise, $\beta=0$ (right)

Definition and intrinsic properties of fBm

A fBm of Hurst index $H \in (0,1)$ denoted by $W^H(t)$ (or $B^H(t)$), $t \ge 0$, is a centered continuous Gaussian process, describing the correlated random fluctuations, which satisfies:

$$\begin{split} \mathbb{E}[W^{H}(t)] &= 0; \\ \mathrm{Cov}(s,t) &:= \mathbb{E}[W^{H}(t)W^{H}(s)] = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right). \end{split}$$

- ► self-similarity: $Cov(\alpha t, \alpha s) = \alpha^{2H}Cov(t, s)$ for $\alpha > 0, t, s \ge 0$;
- ► stationary increments: $W^H(t) W^H(s) \sim W^H(t-s)$ for t > s > 0;
- ▶ Hölder continuous property $|W^H(t) W^H(s)| \le M|t s|^{\gamma}$, $\gamma < H$, a.s., where M > 0 is a constant, t, s > 0.

[A. N. Kolmogorov (1940); B. B. Mandelbrot, J. W. Van Ness, SIAM Review (1968)]

A representation of the fBm

$$W^{H} = c_{H} \left(\sum_{k=1}^{\infty} \frac{\sin(\alpha_{k}x)}{\alpha_{k}^{1+H} J_{1-H}(\alpha_{k})} \xi_{k} + \sum_{k=1}^{\infty} \frac{\cos(\beta_{k}x)}{\beta_{k}^{1+H} J_{-H}(\beta_{k})} \zeta_{k} \right), \ x \in [0, 1], \quad (8)$$

- $c_H = \sqrt{2/\pi} \Gamma^{1/2} (1 + 2H) \sin^{1/2} (\pi H)$
- \bullet α_k 's, β_k 's are the positive zeros of the Bessel function J_{-H} and J_{1-H}
- ullet ξ_k 's and ζ_k 's are mutually independent standard Gaussian random variables.

[Dzhaparidze-Zanten'04, Probab. Theory Relat. Fields]

Bessel function

Lemma

For the Bessel function J_{ν} , where $\nu > -1$, we have

$$J_{1+
u}^2(z) + J_{
u}^2(z) \quad pprox \quad \frac{2}{\pi z}, \text{ for large } |z|.$$
 $2
u J_{
u}(x) = x J_{
u+1}(x) + x J_{
u-1}(x).$

Let z_k be the positive zeros of the Bessel function J_{ν} . When k is large, we have

$$z_k = k\pi + \frac{\pi}{2}(\nu - \frac{1}{2}) - \frac{4\nu^2 - 1}{8(k\pi + \frac{\pi}{2}(\nu - \frac{1}{2}))} + O(\frac{1}{k^3}).$$

Lemma

For positive real numbers ν and z, it holds that when z is large enough,

$$|J_{\nu}(z)| \le C_l (\frac{z}{\nu})^l z^{-1/2},$$
 (9)

where C_l is a constant depending on the positive number l.

Simulation of the fBm

Pros and cons of the spectral methods

- (pros) The expansion only depends on the domain and the underlying process but not on the mesh.
 - free parameters
 - often achieve optimal convergence
- (cons) More work, not necessary easy to obtain
 - need to recompute when domain changes
 - pre-simulated sampling points
 - need further discretization, balancing errors to obtain optimal estimates.

Difficulties and issues

- The equation (7) is not diagonalizable
 - the integral formulation with Green function is unclear
 - eigenfunctions on bounded domains not explicitly known
- Use the spectral approximation for the integral fractional Laplacian operator. full regularity and convergence analysis (Hao et al 2020) when the RHS is smooth.
- \diamondsuit Need further analysis when RHS is rough noise

A problem is diagonalizable if the leading-order operator and the noise have same eigenfunctions in physical space.

Theorem (Hao et al 2020)

When $\mu>0$ and $g\in H^r$ with $r\geq 0$, then $u\in H^{\min(1/2+\alpha/2-\epsilon,\alpha+r)}$ with $\epsilon>0$ arbitrarily small, i.e., there exists a positive constant c such that $\|u\|_{H^{\min\{1/2+\alpha/2-\epsilon,\alpha+r\}}}\leq c\|g\|_{H^r}.$

Define the operator \mathcal{T} such that $\mathcal{T}g=u$. From Theorem 5,

$$\|\mathcal{T}g\|_{H^{\min\{1/2+\alpha/2-\epsilon,\alpha+r\}}} \le c\|g\|_{H^r}, \quad r \ge -\alpha/2.$$
 (10)

The best smoothness index in non-weighted Sobolev spaces is

$$1/2 + \alpha/2 - \epsilon < 3/2!$$

♦ Introduce the weighted Sobolev spaces

$$B_{\gamma}^{s} = \{u : u = \sum_{n=0}^{\infty} u_{n}^{\gamma} P_{n}^{\gamma}, \text{ where } \sum_{n=0}^{\infty} (u_{n}^{\gamma})^{2} h_{n}^{\gamma} (1 + n^{2})^{s} < \infty\}.$$
 (11)

Theorem

When $\mu > 0$ and $g \in B^r_{\alpha/2}$ with $r \ge -\alpha/2$, then we have $\omega^{-\alpha/2}u \in B^{\min(5\alpha/2+1-\epsilon,\alpha+r)}_{\alpha/2}$ with $\epsilon > 0$ arbitrarily small, i.e., there exists a constant c such that $\|\omega^{-\alpha/2}u\|_{B^{\min(5\alpha/2+1-\epsilon,\alpha+r)}_{\alpha/2}} \le c\|g\|_{B^r_{\alpha/2}}$.

• Spectral methods
$$u_{M,N}=(1-x^2)^{\alpha/2}\sum_{m=0}^N u_{M,N}^m P_m^{\alpha/2}(x)$$

$$((-\Delta)^{\alpha/2}u_{M,N},v_N)+(u_{M,N},v_N)=(\dot{W}_M^H,v_N),\quad\forall v_N\in U_N,$$

where $U_N=(1-x^2)^{lpha/2}\mathbb{P}_N$ and

$$\dot{W}_{M}^{H}(x) = c_{H} \sum_{k=1}^{M} \frac{\cos(\alpha_{k} \frac{x+1}{2})}{\alpha_{k}^{H} J_{1-H}(\alpha_{k})} \xi_{k} + c_{H} \sum_{k=1}^{M} \frac{\sin(\beta_{k} \frac{x+1}{2})}{\beta_{k}^{H} J_{-H}(\beta_{k})} \zeta_{k}.$$

Theorem

Let
$$\alpha \in (0,2]$$
. For $H \in (0,1)$, $M = N$,

$$\mathbb{E}[\|u-u_{M,N}\|_{L^2_{-\alpha/2}}^2] \leq CN^{-2(\alpha+H-1-\epsilon)},$$

and for $H \in (1 - \alpha/2, 1)$, M = N,

$$\mathbb{E}[\|u - u_{M,N}\|_{H^{\alpha/2}}^2] \le CN^{-2(\alpha/2 + H - 1 - \epsilon)}$$

Figure: Convergence orders and errors of the spectral Galerkin method for the equation $(-\Delta)^{\alpha/2}u + u = \dot{W}^H(x)$. The theoretical mean-square convergence order is $\alpha + H - 1 - \epsilon$ in L^2 -norm.

Basic observations

The weak formulation is to find $u \in H_0^{\alpha/2}$, for any $g \in H^{-\alpha/2}$, such that

$$a(u,v) := ((-\Delta)^{\alpha/2}u,v) + \mu(u,v) = (g,v), \quad \forall v \in H_0^{\alpha/2},$$
 (12)

Lemma (e.g. in [?])

For any $v \in H_0^{\alpha/2}$ with $1 < \alpha \le 2$, it holds that

$$\|\omega^{-\alpha/2}v\|_{\mathcal{B}^{\alpha/2}_{\alpha/2}} \approx ((-\Delta)^{\alpha/2}v, v) \approx |v|_{H^{\alpha/2}}^{2}. \tag{13}$$

• Regularity of $1/f^{\beta}$ noise

$$\mathbb{E}\left[\left\|\dot{W}^{\beta}\right\|_{H^{t}}^{2}\right] \simeq \sum_{k=1}^{\infty} k^{2t-\beta} < \infty, \quad \text{when } t < \frac{\beta}{2} - \frac{1}{2}. \tag{14}$$

In standard Sobolev spaces H^t are known:

- white noise, $\beta = 0$, and $t < -\frac{1}{2}$,
- **•** pink noise (flicker noise), $\beta = 1$, and t < 0,
- ▶ Brownian noise, $\beta = 2$, $t < \frac{1}{2}$.

For deterministic problems.

Theorem ([?])

Suppose that u and u_N satisfy the problems (15) and (12), respectively. Suppose that $g \in B^r_{\alpha/2}$ with $r \ge -\alpha/2$ and $\epsilon > 0$ arbitrarily small, we have the following error estimates:

$$\|u-u_N\|_{L^2_{-\alpha/2}} + N^{-\alpha/2} \|u-u_N\|_{H^{\alpha/2}} \leq C N^{-\min\{\alpha+r,5\alpha/2+1-\epsilon\}} \|g\|_{\mathcal{B}^r_{\alpha/2}}.$$

Let $u_N = \mathcal{T}_N g$ and u_N is the solution to (12). Then

$$\|\mathcal{T}g - \mathcal{T}_N g\|_{L^2_{-\alpha/2}} + N^{-\alpha/2} \|\mathcal{T}g - \mathcal{T}_N g\|_{H^{\alpha/2}} \quad \leq \quad C N^{-\min\{\alpha + r, 5\alpha/2 + 1 - \epsilon\}} \|g\|_{B^r_{\alpha/2}}.$$

- Can be readily applied to the noise when the noise is not so rough.
- Not good for $\alpha=2$ while H=1/2 (white noise) as the white noise belongs to $H^{-1/2-}$. Need further work

• Recall that the weak formulation is to find $u \in H_0^{\alpha/2}$, for any $g \in H^{-\alpha/2}$, such that

$$\mathsf{a}(u,v) := ((-\Delta)^{\alpha/2}u,v) + \mu(u,v) = (g,v), \quad \forall v \in H_0^{\alpha/2}.$$

• Ultra-weak formulation of the original problem, that is, to find $u \in L^2_{-\alpha/2}$ such that, for any $g \in B^{-\alpha}_{\alpha/2}$,

$$b(u,v):=(u,(-\Delta)^{\alpha/2}(v\omega^{\alpha/2}))+\mu(u,v)_{\omega^{\alpha/2}}=(g,v)_{\omega^{\alpha/2}},\quad\forall v\in B_{\alpha/2}^{\alpha}.$$

Theorem

When $\mu \geq 0$ and $g \in B_{\alpha/2}^{-\alpha}$, there exists an unique solution $u \in L_{-\alpha/2}^2$ such that

$$||u||_{L^{2}_{-\alpha/2}} \le c||g||_{B^{-\alpha}_{\alpha/2}}.$$
 (15)

Key steps

Step 1.

$$b(u,v):=(u,(-\Delta)^{\alpha/2}(v\omega^{\alpha/2}))+\mu(u,v)_{\omega^{\alpha/2}}=(g,v)_{\omega^{\alpha/2}},\quad\forall v\in B_{\alpha/2}^{\alpha}.$$

$$b(u, v) \leq (1 + \mu) \|u\|_{L^2_{-\alpha/2}} \|v\|_{B^{\alpha}_{\alpha/2}}.$$

• Step 2

$$b(\phi, \mathbf{v}) = (\phi, (-\Delta)^{\alpha/2} (\omega^{\alpha/2} \mathbf{v})) + \mu(\phi, \mathbf{v})_{\omega^{\alpha/2}} = \tilde{\mathbf{a}}(\mathbf{v}, \phi) = \|\phi\|_{L^{2}_{-\alpha/2}}^{2}.$$

where $v \in B^{\alpha}_{\alpha/2}$ (existence and stability follows from previous regularity) satisfies

$$\tilde{\mathbf{a}}(\mathbf{v},\phi) := ((-\Delta)^{\alpha/2}(\mathbf{v}\omega^{\alpha/2}),\phi) + \mu(\mathbf{v}\omega^{\alpha/2}),\phi), \forall \phi \in L^2_{-\alpha/2}.$$

ullet (From previous regularity) There exists an unique $v\in B^lpha_{lpha/2}$ such that

$$\tilde{\mathbf{a}}(\mathbf{v}, \mathbf{w}) = (\omega^{-\alpha/2} \phi, \mathbf{w}) = (\phi, \mathbf{w})_{-\alpha/2}, \quad \forall \mathbf{w} \in L^2_{-\alpha/2}, \tag{16}$$

where $\|v\|_{B^{\alpha}_{\alpha/2}} \le c \|\omega^{-\alpha/2}\phi\|_{L^{2}_{\alpha/2}} = c \|\phi\|_{L^{2}_{-\alpha/2}}$.

$$\sup_{0 \neq v \in B_{\alpha/2}^{\alpha}} \frac{b(\phi, v)}{\|v\|_{B_{\alpha/2}^{\alpha}}} = \sup_{0 \neq v \in B_{\alpha/2}^{\alpha}} \frac{\|\phi\|_{L_{-\alpha/2}^{2}}^{2}}{\|v\|_{B_{\alpha/2}^{\alpha}}} \ge \frac{1}{c} \|\phi\|_{L_{-\alpha/2}^{2}}, \quad \forall \, 0 \neq \phi \in L_{-\alpha/2}^{2}.$$
 (17)

• Step 3. For $v \in B^{\alpha}_{\alpha/2}$, take $\omega^{-\alpha/2}\phi = (-\Delta)^{\alpha/2}(\omega^{\alpha/2}v) + \mu(\omega^{\alpha/2}v)$. Then the following transposed inf-sup condition holds,

$$\sup_{0\neq\phi\in L^2_{\alpha/2}}b(\phi,v)>0,\quad\forall\,0\neq v\in B^\alpha_{\alpha/2}.\tag{18}$$

Theorem

With $\mu \geq 0$, if $g \in B^r_{\alpha/2}$ with $r \geq -\alpha$, then for any $\epsilon > 0$, we have the following stability estimate

$$\|\omega^{-\alpha/2}u\|_{B_{\alpha/2}^{\min\{\alpha+r,5\alpha/2+1-\epsilon\}}} \le c\|g\|_{B_{\alpha/2}^r}.$$
 (19)

Theorem

Let $\alpha \in (0,2]$. For $H \in (0,1)$, M = N,

$$\mathbb{E}[\|u-u_{M,N}\|_{L^{2}_{-\alpha/2}}^{2}] \leq CN^{-2(\alpha+H-1-\epsilon)},$$

and for $H \in (1 - \alpha/2, 1)$, M = N,

$$\mathbb{E}[\|u-u_{M,N}\|_{H^{\alpha/2}}^2] \leq CN^{-2(\alpha/2+H-1-\epsilon)}.$$

$$\dot{W}^{\beta}(x) = \sum_{k=1}^{\infty} k^{-\frac{\beta}{2}} e_k(x) \xi_k.$$
 (20)

where $\{e_k(x)\}$ can be any orthonormal basis in $L^2(I)$ and ξ_k 's are i.i.d. standard normal.

Lemma

For any small number $\epsilon>0$ and the truncation

$$\dot{W}_{M}^{\beta}(x) = \sum_{k=1}^{M} k^{-\frac{\beta}{2}} e_{k}(x) \xi_{k},$$

$$\begin{split} \mathbb{E}[\|\dot{\mathcal{W}}_{M}^{\beta}\|_{\mathcal{B}_{\alpha/2}^{\frac{\beta-1}{2}-\epsilon}}^{2}] &< & \infty, \\ \mathbb{E}[\|\dot{\mathcal{W}}_{M}^{\beta}\|_{\mathcal{B}_{\alpha/2}^{\delta}}^{2}] &\leq & \mathit{CM}^{2s-\beta+1+2\epsilon}, \quad s \geq \frac{\beta-1}{2}. \end{split}$$

Key steps in the proof

$$\dot{W}^{\beta}(x) = \sum_{k=1}^{\infty} k^{-\beta/2} e_k(x) \xi_k = \sum_{n=0}^{\infty} a_n^{\alpha/2}(\beta) P_n^{\alpha/2}(x),$$

$$a_n^{\alpha/2}(\beta) = \frac{1}{h_n^{\alpha/2}} \int_{-1}^{1} \dot{W}^{\beta}(x) (1 - x^2)^{\alpha/2} P_n^{\alpha/2}(x) dx = \sum_{k=1}^{\infty} k^{-\beta/2} a_{n,k}^{\alpha/2} \xi_k.$$

$$a_{n,k}^{\alpha/2} = \frac{1}{h_n^{\alpha/2}} \int_{-1}^{1} e_k(x) (1 - x^2)^{\alpha/2} P_n^{\alpha/2}(x) dx$$

$$\left| a_{n,k}^{\alpha/2} \right| \le C n^{\alpha/2 + 1 - l} k^{l - \alpha/2 - 1}.$$

Theorem

When $\beta \geq 1 - 2\alpha$ and $2s > \beta - 1$,

$$\mathbb{E}[\|u - u_{M,N}\|_{L^{2}_{-\alpha/2}}^{2}] \le C\epsilon_{0}^{-1}N^{-(2\alpha+2s)}M^{2s-\beta+1-2\epsilon} + CN^{-2(\alpha+\frac{\beta-1}{2}-\epsilon)}.$$
 (21)

Moreover, if $\beta > 1 - \alpha$, we have the following error estimates:

$$\mathbb{E}[\|u - u_{M,N}\|_{L^{2}_{-\alpha/2}}^{2}] \le C\epsilon_{0}^{-1}M^{-2(\alpha + \frac{\beta-1}{2} - \epsilon_{0})} + CN^{-2(\alpha + \frac{\beta-1}{2} - \epsilon)}, \quad (22)$$

$$\mathbb{E}[\|u - u_{M,N}\|_{H^{\alpha/2}}^2] \le C\epsilon_0^{-1} M^{-2(\frac{\alpha}{2} + \frac{\beta - 1}{2} - \epsilon_0)} + CN^{-2(\frac{\alpha}{2} + \frac{\beta - 1}{2} - \epsilon)}. \quad (23)$$

Here ϵ and ϵ_0 can be any positive numbers. Here ϵ and ϵ_0 can be any positive numbers. Taking M=N, we obtain the optimal convergence order of the spectral method is

$$\alpha + \frac{\beta - 1}{2} - \epsilon.$$

Numerical results: $\beta = 0$

Table: Strong convergence order for $\beta=0$ (white noise): $\alpha-\frac{1}{2}.$

α	1.2		1.4		1.8		2	
16	3.97e-04		1.75e-04		2.97e-05		1.16e-05	
32	2.58e-04	0.62	1.02e-04	0.77	1.34e-05	1.15	4.30e-06	1.43
64	1.64e-04	0.65	5.90e-05	0.79	6.15e-06	1.13	1.57e-06	1.46
128	1.02e-04	0.69	3.35e-05	0.82	2.84e-06	1.11	5.62e-07	1.48
256	6.04e-05	0.75	1.83e-05	0.87	1.31e-06	1.12	2.00e-07	1.49
		0.7		0.9		1.3		1.5

Taking M = N leads to the order of $\alpha + \frac{\beta - 1}{2}$.

Numerical results: $\beta = 1$

Table: Strong convergence order for $\beta=1$ (pink noise): α .

α	1.0		1.1		1.9		2	
8	9.53e-02		7.31e-02		6.79e-03		5.01e-03	
16	5.28e-02	0.85	3.81e-02	0.94	2.07e-03	1.71	1.42e-03	1.82
32	2.81e-02	0.91	1.90e-02	1.00	6.00e-04	1.78	3.76e-04	1.91
64	1.47e-02	0.94	9.37e-03	1.02	1.74e-04	1.79	9.80e-05	1.94
128	7.54e-03	0.96	4.54e-03	1.04	5.06e-05	1.78	2.50e-05	1.97
256	3.81e-03	0.98	2.17e-03	1.07	1.51e-05	1.74	6.31e-06	1.99
		1.0		1.1		1.9		2

Taking M = N leads to the order of $\alpha + \frac{\beta - 1}{2}$ –.

Numerical results: $\beta = 2$

Table: Strong convergence order for $\beta = 2$ (Brownian noise): $\alpha + 1/2$.

α	1.0		1.1		1.9		2	
8	2.83e-02		2.16e-02		2.05e-03		1.52e-03	
16	1.16e-02	1.29	8.28e-03	1.39	4.58e-04	2.16	3.17e-04	2.26
32	4.42e-03	1.39	2.96e-03	1.48	9.50e-05	2.27	6.05e-05	2.39
64	1.65e-03	1.42	1.04e-03	1.51	1.94e-05	2.29	1.13e-05	2.43
128	6.04e-04	1.45	3.58e-04	1.54	3.96e-06	2.29	2.04e-06	2.46
256	2.19e-04	1.46	1.22e-04	1.55	8.25e-07	2.26	3.65e-07	2.48
		1.5		1.6		2.4		2.5

Taking M = N leads to the order of $\alpha + \frac{\beta - 1}{2}$ –.

Summary

- \bullet Spectral methods for simulation of noises: fractional Brownian motion and $1/f^\beta$ noise.
- Elliptic with additive fractional Gaussian noise: spectral methods lead to optimal convergence
- The convergence analysis framework can be readily extended to other nonlocal problems such as mixed diffusion, nonsymmetrical operators

To do

- Multiplicative noise;
- Weak convergence in moments and in probability
- Extension to general domains

Partially relevant references on spectral methods

- ▶ Zhaopeng Hao, Zhongqiang Zhang, SINUM, 2020
- ▶ Zhaopeng Hao, Zhangqiang Zhang, SIAM/ASA UQ, 2021
- ► **Zhaopeng Hao**, Huiyuan Li, Zhimin Zhang, Zhongqiang Zhang, Math. Comput. 2021,
- ▶ **Zhaopeng Hao**, Zhangqiang Zhang, ANM, 2021
- **Zhaopeng Hao**, Calcolo, 2023

Thanks for your attention!