Матан. Подготвка к экзамену.

q

June 19, 2021

Contents

1	Дат	гы	3
	1.1	Консультация	3
	1.2	Экзамен	3
2	Тем	ны	3
	2.1	Первообразная и неопределенный интеграл (определения).	
		Свойства интеграла. Таблица основных неопределенных	
		интегралов. Формула замены переменной в неопределенном	
		интеграле (с доказательством). Формула интегрирования	
		по частям	3
		2.1.1 Опр. 1	3
		2.1.2 Onp. 2	3
		2.1.3 Основные свойства интеграла	4
		2.1.4 След. 1 (Линейность интеграла)	5
	2.2	Определенный интеграл Римана (определение). Ограниченно	сть
		интегрируемых функций (с доказательством). Верхние и	
		нижние суммы Дарбу (определения). Верхний и нижний	
		интегралы Дарбу (определения). Критерий Дарбу. Интегриру	емость
		непрерывных функций. Интегрируемость монотонных функци	ий. 7
	2.3	Свойства определенного интеграла (сформулировать все,	
		доказать непрерывность интеграла по верхнему пределу).	
		Интегральная теорема о среднем	7
	2.4	Теорема о дифференцировании интеграла по верхнему пределу	V
		(с доказательством). Теорема о существовании первообразной	
		(с доказательством). Формула Ньютона-Лейбница (с доказател	льством)
		Формула замены переменной в определенном интеграле.	,
		Формула интегрирования по частям	7

2.5	Определение несобственных интегралов. Формула Ньютона-		
	Лейбница и формула замены переменной для несобственных		
	интегралов		
2.6	Несобственные интегралы от неотрицательных функций		
	(лемма и признак сравнения). Критерий Коши сходимости		
	интеграла (с доказательством). Абсолютно сходящиеся		
	интегралы (определение и теорема о сходимости абсолютно		
	сходящегося интеграла)		
2.7	Определение числового ряда. Необходимый признак сходимости		
	ряда (с доказательством). Критерий Коши сходимости		
	ряда (с доказательством). Ряды с неотрицательными членами		
	(признак сравнения, интегральный признак Коши, радикальный		
	признак Коши, признак Даламбера)		
2.8	Знакопеременные ряды (признак Лейбница). Абсолютно		
	сходящиеся ряды (определение). Критерий Коши абсолютной		
	сходимости ряда. Условно сходящиеся ряды (определение).		
	Теорема Римана		
2.9	Функциональные последовательности и ряды (определения,		
	в том числе, ограниченная последовательность, сходящаяся		
	последовательность, сходящийся ряд, абсолютно сходящийся		
	ряд). Равномерная сходимость функциональной последовательности		
	и функционального ряда (определение и пример). Критерии		
	Коши равномерной сходимости функциональной последовательности		
	(ряда). Признак Вейерштрасса		
2.10	Свойства равномерно сходящихся рядов (непрерывность		
	суммы (с доказательством), интегрирование, дифференцирование). 7		
2.11	Степенные ряды (определение). Первая теорема Абеля (с		
	доказательством). Радиус и круг (интервал) сходимости		
	степенного ряда (определения). Понятие аналитической		
	функции (определение). Теорема о представлении аналитической		
	функции рядом Тейлора		
2.12	Определение n-мерного арифметического евклидова пространства.		
	Определение n-мерного открытого шара. Предел последовательности		
	в п-мерном пространстве, ограниченное множество в п-		
	мерном пространстве, окрестность бесконечно удалённой		
	точки (определения)		

1 Даты

1.1 Консультация

2021-06-24 Thu

1.2 Экзамен

2021-06-25 Fri

2 Темы

2.1 Первообразная и неопределенный интеграл (определения). Свойства интеграла. Таблица основных неопределенных интегралов. Формула замены переменной в неопределенном интеграле (с доказательством). Формула интегрирования по частям.

2.1.1 Опр. 1.

Функции F называется первообразной функции f на промежутке Δ , если F дифференцируема на Δ и в каждой точке $x \in \Delta$

$$F'(x) = f(x)$$

Очевидно, что первообразная F(x) непрерывна на Δ .

2.1.2 Опр. 2.

Пусть функция f(x) задана на промежутке Δ . Совокупность всех ее первообразных на этом промежутке называется *неопределенным интегралом от функции* f и обозначается

$$\int f(x) dx \tag{2}$$

Если F(x) — какая-либо первообразная функции f(x) на /Delta, то пишут

$$\int_{-C(3)} f(x) dx = F(x)$$

C — произвольная постоянная.

2.1.3 Основные свойства интеграла

1. Если функция F(x) дифференцируема на Δ , то

$$\int d F(x) = F(x)$$

$$+C или \int F'(x) dx = F(x)$$

$$+C(4)$$

2. Пусть функция f(x) имеет первообразную на Δ . Тогда для любого $x \in \Delta$ имеет место равенство:

$$d\int f(x) = f(x)$$

3. Если функции f_1 , f_2 имеют первообразные на Δ , то функция f_1+f_2 имеет первообразную на Δ , причем:

$$\int (f_1(x) + f_2(x))$$

$$\int (f_2(x) + f_2(x))$$

4. Если функция f(x) имеет первообразную на $\Delta, k \in$, то функция $\mathit{kf}(x)$ также имеет на Δ первообразную, и при $k \neq 0$:

$$\int k \qquad f(x)$$

$$dx = \{k \qquad F(x)$$

$$dx = \{k$$
 F(x)

$$+C$$
}, $k\int$ f(x)

$$dx = k\{ +C\}$$

Т.к. C – произвольная постоянная и $k \neq 0$, то множества $\{kF(x) +$ C} и $k/\{/F(x) + C\}$ совпадают.

2.1.4 След. 1 (Линейность интеграла)

Если f1 и f2 имеют первообразные на $\,\,,\,1\,\,,\,2\,\,\,\mathrm{R}\,\,,\,\,2\,\,1\,+\,\,2\,\,2>0,$ то функция 1f1 + 2f2 имеет первообразную на , причем Z (1f1(x) + 2f2(x))dx = 1 Z $f1(x)dx + 2 \ Z \ f2(x)dx$. (7) Доказательство вытекает из свойств 3 о и 4 о .

- 2.2 Определенный интеграл Римана (определение). Ограниченность интегрируемых функций (с доказательством). Верхние и нижние суммы Дарбу (определения). Верхний и нижний интегралы Дарбу (определения). Критерий Дарбу. Интегрируемость непрерывных функций. Интегрируемость монотонных функций.
- 2.3 Свойства определенного интеграла (сформулировать все, доказать непрерывность интеграла по верхнему пределу). Интегральная теорема о среднем.
- 2.4 Теорема о дифференцировании интеграла по верхнему пределу (с доказательством). Теорема о существовании первообразной (с доказательством). Формула Ньютона-Лейбница (с доказательством). Формула замены переменной в определенном интеграле. Формула интегрирования по частям.
- 2.5 Определение несобственных интегралов. Формула Ньютона-Лейбница и формула замены переменной для несобственных интегралов.
- 2.6 Несобственные интегралы от неотрицательных функций (лемма и признак сравнения). Критерий Коши сходимости интеграла (с доказательством). Абсолютно сходящиеся интегралы (определение и теорема о сходимости абсолютно сходящегося интеграла).
- 2.7 Определение числового ряда. Необходимый признак сходимости ряда (с доказательством). Критерий Коши сходимости ряда (с доказательством). Ряды с неотрицательными членами (признак сравнения, интегральный признак Коши, радикальный признак Коши, признак Даламбера).
- 2.8 Знакопеременные ряды (признак Лейбница). Абсолютно сходящиеся ряды (определение). Критерий Коши абсолютной сходимости ряда. Условно сходящиеся ряды (определение). Теорема Римана.
- 2.9 Функциональные последовательности и ряды (определения, в том числе, ограниченная последовательность, сходящаяся последовательность, сходящийся ряд, абсолютно сходящийся ряд). Равномерная сходимость функциональной последовательности и функционального ряда (определение и пример). Критерии Коши равномерной сходимости функциональной последовательности (ряда). Признак Вейерштрасса.
- 2.10 Свойства равномерно сходящихся рядов (непрерывность суммы (с доказательством), интегрирование, дифференцирование).
- 2.11 Степенные ряды (определение). Первая теорема Абеля (с доказательством). Радиус и круг (интервал) сходимости