

______PreSee

מדע נתונים יישומים ליזמים

ד"ר גייל גלבוע פרידמן

ד"ר נווה אשכנזי

17NN NTKU

לאחר חלוקה של הלקוחות לתתי קבוצות על פי השאלון הרפואי, <u>האם ניתן לנבא את ה- Overall Score</u> עם ביצוע <u>רק חלק</u> מהבדיקות הרפואיות היקרות?

הסתכלות עסקית

הציון הסופי מחושב על ידי משקולות קבועות שהוחלטו על ידי החברה. אנחנו מציעים (על בסיס המשקולות שנקבעו עד היום) מודל שמאפשר לשערך אותו עם פחות בדיקות.

-> קיצור ה-ONBOARDING של לקוח חדש, וחסכון בכסף.

שלב א':

Data Exploration

Distinct	2	Mean
Distinct (%)	0.1	- Minimun
Missing	0	- Maximum

**נשים לב שההתפלגות למגדר היא אחידה למרות שב-DATA היא לא כך , <u>אנחנו לא מבצעים נרמול</u> (פירסון/גאוסיאני) כדי למנוע הטיות מגדריות בלקוחות של החברה (רוב הלקוחות נכון להיום הם גברים)

Distinct	51	Mean	38.015
Distinct (%)	3.8	Minimun	4
Missing	0	Maximum	82

Distinct	51	Mean	172.48
Distinct (%)	3.8	Minimun	80
Missing	0	Maximum	200

Distinct	86	Mean	74.249
Distinct (%)	6.3	Minimun	0
Missing	0	Maximum	177

Distinct 35 Mean 24.877

Distinct (%) 2.6 Minimun 0

Missing 0 Maximum 125

נשים לב שה BMI מתפלג נורמלית, אך בנוסף לזה הוא פונקציה (לא ליניארית) של משקל וגובה. אנחנו מעוניינים לשמור את הFEATURE הזה כי הרגרסיה <u>הליניארית לא</u> תדע

$$ext{BMI} = rac{ ext{weight}}{ ext{height}^2}$$
 לתמחר את הנוסחה

Distinct	51	Mean	83.320
Distinct (%)	3.8	Minimun	39
Missing	0	Maximum	101

Distinct (%) 5.1

Distinct	7	Mean	97.317
Distinct (%)	3.6	Minimun	36
Missing	0	Maximum	100

Distinct (%) 14.2


```
1 194
```


Distinct (%) 0.1


```
1 194 1165
```


Distinct (%) 0.1


```
1 194 1165
```


Distinct (%) 0.1

Missing 0

13554

Distinct	6	Mean	0.514
Distinct (%)	0.4	Minimun	0
Missing	0	Maximum	1

Distinct	5	Mean	0.545
Distinct (%)	0.4	Minimun	0.2
Missing	0	Maximum	1

Distinct	90	Mean 120.209
Distinct (%)	6.6	Minimun 80
Missing	0	Maximum 193

Distinct	65	Mean 77.578
Distinct (%)	4.8	Minimun 42
Missing	0	Maximum 125

Distinct 44 Mean 90.873

Distinct (%) 3.2 Minimun 48

Missing 0 Maximum 100

ניתן לראות שיש שני גאוסיינים בפונקציית המטרה הנחת עבודה: אחרי חילוק ל-K קבוצות יהיה לנו גאוסיין אחד לכל היותר (בציון הסופי) לכל קבוצה

24.8 ממוצע בדאטה הינו BMI משקל ממוצע 74.2 גובה ממוצע 172.4 טיפול ב-Outliers שנוצרו בגלל מידע חסר בשאלונים

קיום של ערכים בוליאניים (בין 0 ל-1) אילץ אותנו לנרמל את שאר הDATA הרציף בשאלון נרמול ערכים בצורה נכונה עבור קלאסטרינג

נרמול כל הערכים הרצפים להיות בין 0 ל-1 לאחר השלמת המידע

02

MIN-MAX
Normalizaion

03

	gender	age	height_cm	weight_kg	bmi	smoking	heart_disease_hist	heart_disease_family_hist	bp_medication	diabetes	work_stress_level	exercise_level
0	О	0.474358974	0.745762712	0.293785311	0.144	0	0	0	0	0	0.4	0.8
1	1	0.282051282	0.771186441	0.338983051	0.16	1	0	1	0	0	0.4	0.2
2	1	0.435897436	0.762711864	0.367231638	0.176	1	0	0	0	0	0.4	0.8
3	0	0.448717949	0.661016949	0.378531073	0.208	0	0	0	0	0	0.8	0.6
4	1	0.371794872	0.796610169	0.446327684	0.208	0	0	0	0	0	0.4	0.6

שלב ב':

התאמת המודל ים

איך נבצע Clustering?

Community

Detection - Gephi

מתוך השאלון

הרפואי בלבד

מתוך K-Means

השאלון הרפואי בלבד

Gephi

רצינו לבדוק את המודלים שיש ל-Gephi להציע
עבור Community Detection (בין היתר – Community Detection)
(method, Girvan Newman algorithm
NODES 1350) בגלל סיבוכיות קשתות גבוהה מידי (EDGES) נאלצנו
מוביל לסדר גודל של מיליון EDGES) נאלצנו
להתעלם מרוב ה-DATA בכל פעם, מה שמנע
מאיתנו לדעת את ציון המודולריות האמיתי.

ינדי לבדוק את המודל בחרנו 250 Edges (אשר (Edges 31,125) באקראי, הגדרנו גרף מלא (Undirected) הוא המרחק המשקל על כל קשת (Data) הוא המרחק Data.

חלוקה ל Clustring לפי השאלון הרפואי:

בחרנו K=5 על בסיס ה-Silhouette Score

Clustering nin's

אדום

נשים BMI נמוך יחסית ללא היסטוריה של מחלות לב, אך לאחוז גבוה קיימת היסטוריה במשפחה אחוז נמוך של מעשנים

נשים BMI נמוך יחסית ללא היסטוריה של מחלות לב, גם במשפחה אינם מעשנים

כתום

סגול

מגדר מעורב מעשנים ללא היסטוריה של מחלות לב (גם לא במשפחה)

Clustering nin's

ירוק גברים נמוך יחסית BMI ללא היסטוריה של מחלות לב, גם במשפחה אינם מעשנים height cm weight_kg 0.50 bmi ecg_test_score 0.25 us_test_score blood_test_score smoking 0.00 heart_disease_hist heart_disease_family_hist bp_medication diabetes work stress level exercise_level bp_systolic bp_diastolic cluster

כחול

גברים BMI נמוך יחסית ללא היסטוריה של מחלות לב, אך לרובם היסטוריה משפחתית אחוז נמוך של מעשנים

קלת ב Overall Score-ה

Linear Regression for each Cluster

Decision Tree for each Cluster

רגרסיה לינארית א

Linear Regression w python

R2-Score after deducting the medical test	הבדיקה שעבורה SCORE-התקבל ה הגדול ביותר לאחר שהפחיתו אותה	R2-Score before deducting the medical test	Clustering
0.731	blood_test_score	0.895	O
0.727	blood_test_score	0.817	1
0.428	blood_test_score	0.358	2
0.512	blood_test_score	0.632	3
0.639	blood_test_score	0.728	4

ביצענו רגרסיה כשבכל פעם התעלמנו באחת מתוצאות הבדיקות (בדיקת דם, א.ק.ג. ואולטרה-סאונד) מצאנו שרמת הדיוק אינה גבוהה ביחס לכמות המידע הנתון לאימון, בחרנו לעבוד

הבדיקה שעבורה התקבל הציון לאחר ללא הפחתת Clustering ה-SCORE הגדול ביותר הפחתת הבדיקה הבדיקה לאחר שהפחיתו אותה 0 0.213 blood_test_score 0.572 0.551 0.551 us_test_score us_test_score 0.347 0.347 ecg_test_score us_test_score 0.166 0.25 ecg_test_score us_test_score 0.5 0.5 ecg_test_score

נוכל לראות כי אחוז הדיוק נמוך יותר מאשר במודל הרגרסיה הלינארית, עצי החלטה בנויים לקסלסיפיקציה, לכן החלטנו לבצע התאמות ב-Overall_score.

עץ החלטה מעודכן א

blood_test_s core	us_test_score	ecg_test_score	ללא הפחתת הבדיקה	Cluster
0.832	0.870	0.862	0.908	O
0.871	0.8974	0.884	0.910	1
0.782	0.913	0.913	0.913	2
0.666	0.916	0.833	0.916	3
0.8	0.9	0.833	0.9	4

חילקנו את הציון הכללי ל-10 טווחים אפשריים מתוך הנחה שציון ה overall score בטווח זה יספיק לחברה מבחינה עסקית*

לכל קלסטר, ניתן לראות את הבדיקה שהשפיעה הכי פחות על הציון הכללי, לאחר ההפחתה שלה

*ניתן לשנות בהתאם לצרכי החברה

0 0-9
1 10-19
2 20-29
3 30-39
4 40-49
5 50-59
6 60-69
7 70-79
8 80-89
9 90-100

מקרא:

תהליך הניבוי

עץ החלטה - Cluster 0

0.9083969465 : התוצאה לפניי הורדת הבדיקה הייתה

לאחר הורדת **בדיקת האולטרסאונד** התקבל: **0.8702290076**

- Cluster 0 לכן נמליץ עבור להוריד את בדיקת האולטסאונד

תהליך הניבוי

עץ החלטה - Cluster 1 - עץ

0.91025641025 התוצאה לפניי:

לאחר הורדת בדיקת האולטרסאונד התקבל:

0.89743589743

- Cluster 1 לכן נמליץ עבור להוריד את בדיקת האולטסאונד

יוםין אין אין

עץ החלטה - Cluster 2

נשים לב כי התוצאה לפניי : 0.91304347826: לאחר הורדת **בדיקת האק"ג** התקבל: 0.91304347826

- Cluster 2 לכן נמליץ עבור להוריד את בדיקת האולטסאונד או להוריד את בדיקת האק"ג

תהליך הניבוי

עץ החלטה - Cluster 3

0.916666666666 : התוצאה לפניי

לאחר הורדת בדיקת האולטרסאונד התקבל:

0.91666666666

- Cluster 3 לכן נמליץ עבור להוריד את בדיקת האולטסאונד

יום אין הניבוי

עץ החלטה - Cluster 4

0.9 : התוצאה לפניי

לאחר הורדת **בדיקת האולטרסאונד** התקבל: **0.9**

- Cluster 4 לכן נמליץ עבור להוריד את בדיקת האולטסאונד

סיכום

של לקוח חדש בחברה Flow

שלב ג'

שלבבי

שלב א'

Overall_score-ניבוי ה בעץ המתאים לקלאסטר

ביצוע 2 בדיקות רפואיות יקרות במקום 3

התאמה לקלאסטר על בסיס שאלון רפואי

ל-DT הרלוונטי (לפי הקלאסטר)

יותם גבי

איתי גולדמן

מיכאל ידידיה

דור שלום

ברק אמזלג

