Proof

Kuan-Hao Chao

July 25, 2022

1 Factorial Algorithm / Exponential Algorithm Proof

Let a directed graph with N nodes, E edges, and Σ edge labels.

For the exponential algorithm, let S_E be the **set** of all $\langle I, O, L \rangle$ triples (3-tuple) that exponential algorithm is going to enumerate. $|S_E| = 2^{2(N+E)\cdot E\cdot log(\Sigma)}$. (In this case, since the enumeration guarantees no repeat, I can confirm S_E is a set with the size $|S_E| = 2^{2(N+E)\cdot E\cdot log(\Sigma)}$)

For the factorial (permutation) algorithm, the brute force approach is to try N! orderings without skipping any repeat cases.

Let S_{F_O} be the **set** of all node permutation orderings, and $S_{F_{IOL}}$ be the **set** of all $\langle I, O, L \rangle$ triples (3-tuple) yielded by each ordering in S_{F_O} . Let the function $f_{mapping}: S_{F_O} \to S_{F_{IOL}}$.

If there is no any pair of triples in $S_{F_{IOL}}$ that are the same, then $|S_{F_{IOL}}| = N!$. In this case, $f_{mapping}$ is an injective surjective function (bijective, one-to-one), and it is the worst case scenario for the factorial algorithm since all triples (encodings) in $|S_{F_{IOL}}|$ have to be checked in order to confirm if a graph is a wheeler graph.

If there is any two node orderings yielding the same triple, then $|S_{F_{IOL}}| < N!$. In this case, $f_{mapping}$ is a non-injective surjective function. For an unoptimized factorial algorithm without skipping any cases, it still takes N! times to recognize a wheeler graph; however, we can carefully implement our algorithm and make the number of checking less than N!.

Therefore, $|S_{F_{IOL}}| \leq N!$

To compare the exponential algorithm to my factorial algorithm, I take the worst case of my factorial algorithm. Here, I want to show that even the worst case of my exponential algorithm ($|S_{F_{IOL}}| = N!$) is smaller than all encoding enumerations in the exponential algorithm ($|S_E| = 2^{2(N+E)\cdot E\cdot log(\Sigma)}$).

Proof.
$$S_{F_{IOL}} \subset S_E$$

$$\forall x \in S_{F_{IOL}}, x = \langle I_x, O_x, L_x \rangle$$

$$\therefore |I_x| = N + E, |O_x| = N + E, \text{ and } |L_x| = E \cdot log(\Sigma)$$

$$\therefore x \in S_E$$

$$\Rightarrow S_{F_{IOL}} \subseteq S_E$$
To further prove $S_{F_{IOL}}$ is a proper subset,
take $y \in S_E$ and $y = \langle I, O, L \rangle$ with
$$I = 000..000 \ (|I| = E + N),$$

$$O = 000..000 \ (|O| = E + N), \text{ and}$$

$$L = 000..000 \ (|L| = E \cdot log(\Sigma))$$

$$\therefore y \notin S_{F_{IOL}}$$

$$\Rightarrow S_{F_{IOL}} \subset S_E$$

(Therefore, my claim is that my factorial algorithm is faster!!!)