ECE504 Midterm Exam

21-Oct-2008

Notes:

- This exam is worth 350 points and is to be completed in 90 minutes.
- Look over all the questions before starting.
- Budget your time to allow enough time to work on each question.
- To receive maximum credit, you must show your reasoning and/or work.
- 1. 80 points total. Given the continuous time system shown in Figure 1, answer the following questions.

$$u(t) \longrightarrow \boxed{\frac{1}{s+3}} \xrightarrow{x_1(t)} \boxed{\frac{1}{s+1}} \xrightarrow{x_2(t)} y(t)$$

Figure 1: A continuous time system.

- (a) 10 pts. Classify this system as
 - i. memoryless, lumped, or distributed
 - ii. causal or noncausal
 - iii. linear or nonlinear
 - iv. time varying or time invariant
- (b) 30 pts. Defining the state as $\mathbf{x}(t) = [x_1(t), x_2(t)]^{\top}$ with $x_1(t)$ and $x_2(t)$ as shown in Figure 1, explicitly write a state-space realization of this system such that

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{B}(t)u(t)
y(t) = \boldsymbol{C}(t)\boldsymbol{x}(t) + \boldsymbol{D}(t)u(t)$$

- (c) 20 pts. Find the transfer function of this system. $\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)}$.
- (d) 20 pts. Find a different state-space realization for this system that has the same transfer function.
- 2. 80 points total. Given a continuous-time state-space description

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} -3 & 0 \\ 1 & -1 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boldsymbol{u}(t)$$

$$\boldsymbol{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}(t)$$

with initial state $\boldsymbol{x}(0) = [1,1]^{\top}$ and input u(t) = 0 for all $t \in \mathbb{R}$, write a general expression for the output y(t).

3. 90 points total. You are given the following input-output description of a discrete time system:

$$y[k] = ky[k-1] + u[k-1].$$

- (a) 10 pts. Classify this system as
 - i. memoryless, lumped, or distributed
 - ii. causal or noncausal
 - iii. linear or nonlinear
 - iv. time varying or time invariant
- (b) 30 pts. Using any reasonable choice for the state x(k), explicitly write a state-space realization of this system such that

$$x[k+1] = A[k]x[k] + B[k]u[k]$$

 $y[k] = C[k]x[k] + D[k]u[k]$

- (c) 50 pts. Find an explicit solution to this system that expresses y[k] for all $k \ge k_0$ in terms of the given initial state $x[k_0]$ and the input u[k] for $k \ge k_0$.
- 4. 100 points total. Given

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right]$$

where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

- (a) 20 pts. For the special case a = 0 and b = 0, compute expressions for $e^{t\mathbf{A}}$ and \mathbf{A}^k .
- (b) 40 pts. For $a \in \mathbb{R}$ and $b \in \mathbb{R}$, compute a general expression for e^{tA} .
- (c) 40 pts. For $a \in \mathbb{R}$ and $b \in \mathbb{R}$, compute a general expression for \boldsymbol{A}^{100} . Hint: The binomial expansion might be useful here. Recall that, given $\boldsymbol{P} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{Q} \in \mathbb{R}^{n \times n}$ such that \boldsymbol{P} and \boldsymbol{Q} commute,

$$(\mathbf{P} + \mathbf{Q})^k = \sum_{m=0}^k \binom{k}{m} \mathbf{P}^m \mathbf{Q}^{k-m}$$
 (1)

where

$$\begin{pmatrix} k \\ m \end{pmatrix} = \frac{k!}{m!(k-m)!}.$$
 (2)

Also recall that 0! = 1.