en 🍇

Church-Turing These Een nieuw paradijs

Pieter van Engelen

Radboud Universiteit Nijmegen

03-06-2022@Fontys, Sittard

De tijd

De protagonisten

De situatie

Entscheidungsproblem Berekenbaarheidsmodellen De kracht van berekenbaarheid

De these

Voorbij de these

Echte computers
Hypercomputation
Quantum computing

Radboud Universiteit Nijmegen

De These

Every effectively calculable function is computable

Church (1936), Turing (1937)

Alonzo Church (1903 - 1995) Princeton University, USA

Logicus, wiskundige

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus
- Eerste-orde predicaat-logica is onbeslisbaar

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus
- Eerste-orde predicaat-logica is onbeslisbaar
- Peano-arithmetiek is onbeslisbaar

Alan Turing (1912 - 1954) Cambridge & Manchester

Grondlegger van

- Grondlegger van
 - Informatica

- Grondlegger van
 - Informatica
 - Artificiële intelligentie

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker
- Marathonloper

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker
- Marathonloper
- Homosexueel in een tijd dat het strafbaar was

Stephen Kleene (1909-1994)

??? (1897 - 1954)

Das Entscheidungsproblem

Vind een algoritme waarmee de waarheid van een uitspraak in de eerste orde predikaatlogica vast te stellen is.

(D. Hilbert & W. Ackermann, 1928, Grundzüge der theoretischen Logik)

Eerste orde predikaatlogica (extreem kort door de bocht)

Eerste orde predikaatlogica (extreem kort door de bocht)

Logica met

variabelen

Eerste orde predikaatlogica

(extreem kort door de bocht)

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$

Eerste orde predikaatlogica

(extreem kort door de bocht)

- variabelen
- de gebruikelijke operatoren ∧, ∨, →, ¬, . . .
- predikaten P(x)

Eerste orde predikaatlogica

(extreem kort door de bocht)

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren ∧, ∨, →, ¬, . . .
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren ∧, ∨, →, ¬, . . .
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

$$\forall_{n\in\mathbb{N}}\exists_{m\in\mathbb{N}}[m>n]$$

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

$$\forall_{n\in\mathbb{N}}\exists_{m\in\mathbb{N}}[m>n]$$

$$\forall_{p,q \in \mathbb{Q}} \exists_{r \in \mathbb{Q}} [p < r < q]$$

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀, ∃

$$\forall_{n\in\mathbb{N}}\exists_{m\in\mathbb{N}}[m>n]$$

$$\forall_{p,q \in \mathbb{Q}} \exists_{r \in \mathbb{Q}} [p < r < q]$$

$$\exists_x [P(x) \land \forall_y \forall_{y'} [P(y) \land P(y') \to y = y']]$$

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Algoritme

wat gegeven een uitspraak roept of die uitspraak WAAR of ONWAAR is.

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Algoritme

wat gegeven een uitspraak roept of die uitspraak WAAR of ONWAAR is.

Probleem:

Wat is een algoritme?

Wat is een algoritme??
Reeds informeel bekend in de wiskunde

Wat is een algoritme??
Reeds informeel bekend in de wiskunde

• Grootste-gemene-deler van Euclides

Wat is een algoritme??
Reeds informeel bekend in de wiskunde

- Grootste-gemene-deler van Euclides
- Zeef van Eratosthenes

Wat is een algoritme??
Reeds informeel bekend in de wiskunde

- Grootste-gemene-deler van Euclides
- Zeef van Eratosthenes
- Gauss-eliminatie

Probleem: Nog geen formele definitie van een algoritme.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

• Turing machines

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

- Turing machines
- Recursietheorie

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

- Turing machines
- Recursietheorie
- λ-calculus

De programma's

De programma's

 $x, y, \ldots \in \Lambda$ (Variabelen)

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen) $M,N\in\Lambda\Rightarrow MN\in\Lambda$ (Applicatie)

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)

$$M, N \in \Lambda \Rightarrow MN \in \Lambda$$
 (Applicatie)

$$x, M \in \Lambda \Rightarrow (\lambda x.M) \in \Lambda$$
 (Abstractie)

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

 \bullet $\lambda x.x$

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

- \bullet $\lambda x.x$
- λxy.x

en 🍇

De λ -calculus (*Church 1932*)

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

- $\lambda x.x$
- λxy.x
- $\lambda pqr.pr(qr)$

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

- $\lambda x.x$
- λxy.x
- $\lambda pqr.pr(qr)$

• $(\lambda x.xx)A$

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

- $\lambda x.x$
- λxy.x
- $\lambda pqr.pr(qr)$

- $(\lambda x.xx)A$
- *\lambda x.y*

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

- $\lambda x.x$
- *λxy.x*
- $\lambda pqr.pr(qr)$

- $(\lambda x.xx)A$
- $\lambda x.y$
- $\lambda fx.f(f(f(x))) \equiv \lceil 3 \rceil$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x:=N]$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \rightarrow_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \to_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \rightarrow_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \rightarrow_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \rightarrow_{\beta} (\lambda xy.x)(\lambda x.xx))\lambda x.x \rightarrow_{\beta} \lambda x.xx$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

Voorbeeld

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \to_{\beta} (\lambda xy.x)(\lambda x.xx))\lambda x.x \to_{\beta} \lambda x.xx$$

Nu jij: $(\lambda xyz.zxy)$ ("the force") ("is") ("strong in you")

Initiële functies

Initiële functies

$$\mathcal{O}(x) = 0$$

Initiële functies

$$\mathcal{O}(x) = 0$$

$$\mathcal{O}(x) = 0$$
$$\mathcal{S}(x) = x + 1$$

Nul

Successor

Initiële functies

$$\mathcal{O}(x) = 0$$

$$\mathcal{S}(x) = x + 1$$

$$\mathcal{P}_i^n(x_1,\ldots,x_n)=x_i$$

Nul

Successor

Projectie

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\dots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\dots,g_m(\vec{x}))$ Functie compositie

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\ldots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\ldots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\dots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\dots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

$$f(\vec{x},0) = g(\vec{x})$$

0-geval

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\dots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\dots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

$$f(\vec{x},0) = g(\vec{x}) \qquad \qquad \text{0-geval}$$

$$f(\vec{x},n+1) = h(\vec{x},y,f(\vec{x},y)) \qquad \qquad \text{Recursieve geval}$$

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\ldots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\ldots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

$$f(\vec{x},0) = g(\vec{x}) \qquad \qquad \text{0-geval}$$

$$f(\vec{x},n+1) = h(\vec{x},y,f(\vec{x},y)) \qquad \qquad \text{Recursieve geval}$$

 μ -recursie

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\dots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\dots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

$$f(\vec{x},0) = g(\vec{x}) \qquad \qquad \text{0-geval}$$

$$f(\vec{x},n+1) = h(\vec{x},y,f(\vec{x},y)) \qquad \qquad \text{Recursieve geval}$$

μ -recursie

$$f(\vec{x}) = \mu y [g(\vec{x}, y) = 0]$$
 "De kleinste y zodat $g(\vec{x}, y) = 0$ "

Voorbeelden

Voorbeelden

$$\mathcal{P}(0) = 0$$
$$\mathcal{P}(n+1) = n$$

Recursietheorie (Kleene 1935)

Voorbeelden

$$\mathcal{P}(0) = 0$$
$$\mathcal{P}(n+1) = n$$

$$\min(x, 0) = x$$

$$\min(x, y + 1) = \mathcal{P}(\min(x, y))$$

Recursietheorie (Kleene 1935)

Voorbeelden

$$\mathcal{P}(0) = 0$$
 $\min(x, 0) = x$
 $\mathcal{P}(n+1) = n$ $\min(x, y+1) = \mathcal{P}(\min(x, y))$

$$f(n) = \mu y[2y = n \lor 2y + 1 = n]$$

• Een eindig alfabet s_0, s_1, \ldots, s_n

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m
- Een potentieel oneindige tape voor de symbolen

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m
- Een potentieel oneindige tape voor de symbolen
- De acties: L, R, s_i .

n 🏭

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m
- Een potentieel oneindige tape voor de symbolen
- De acties: L, R, s_i .
- Een eindige lijst van instructies

Voorbeeldinstructies

n 💭

Turing machines (Turing 1936)

Voorbeeldinstructies

 $q_0 0 R q_1$ Wanneer er in toestand q_0 een 0 op de tape staat, zet een stap naar rechts en ga in toestand q_1 .

Voorbeeldinstructies

- $q_0 \mathbf{0} R q_1$ Wanneer er in toestand q_0 een $\mathbf{0}$ op de tape staat, zet een stap naar rechts en ga in toestand q_1 .
- q_4 **10** q_8 Wanneer er in toestand q_4 een **1** op de tape staat, vervang de **0** door een **1** en ga in toestand q_8 .

 $\lambda - \mathsf{definieerbaar} \overset{(\mathsf{Turing}\ 1937)}{\Longrightarrow} \mathsf{Turing}\ \mathsf{berekenbaar}$

 $\lambda - {\sf definieerbaar} \overset{({\sf Turing } \ 1937)}{\Longrightarrow} {\sf Turing } {\sf berekenbaar}$

Turing berekenbaar $\stackrel{\text{(Turing 1937)}}{\Longrightarrow} \mu$ — recursief

 $\lambda - \mathsf{definieerbaar} \overset{(\mathsf{Turing}\ 1937)}{\Longrightarrow} \mathsf{Turing}\ \mathsf{berekenbaar}$

Turing berekenbaar $\stackrel{\text{(Turing 1937)}}{\Longrightarrow} \mu$ – recursief

 μ - recursief $\stackrel{(Kleene \ 1936)}{\Longrightarrow} \lambda$ - definieerbaar

De uitspraken:

• Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\sqcap} n^{\dashv} = {\lceil} m^{\rceil}$

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\sqcap} n^{\dashv} = {\lceil} m^{\rceil}$
- Er bestaat een μ -recursieve functie ϕ zdd $f(n) = m \Leftrightarrow \phi(n) = m$

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\Gamma}n^{\gamma} = {^{\Gamma}}m^{\gamma}$
- Er bestaat een μ -recursieve functie ϕ zdd $f(n) = m \Leftrightarrow \phi(n) = m$
- Er bestaat een T.M. zdd
 f(n) = m ⇔ T.M._f geeft bij invoer ¬¬¬ uitvoer ¬¬¬

De uitspraken:

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\Gamma}n^{\gamma} = {^{\Gamma}}m^{\gamma}$
- Er bestaat een μ -recursieve functie ϕ zdd $f(n) = m \Leftrightarrow \phi(n) = m$
- Er bestaat een T.M. zdd $f(n) = m \Leftrightarrow \mathsf{T.M.}_f$ geeft bij invoer $\lceil n \rceil$ uitvoer $\lceil m \rceil$

zijn synoniem met elkaar.

lets met oneindigheid

Probleem:

lets met oneindigheid

Probleem:

$$\lambda$$
-calculus $(\lambda x.xx)(\lambda x.xx)$

lets met oneindigheid

Probleem:

$$\lambda$$
-calculus $(\lambda x.xx)(\lambda x.xx)$
Recursietheorie $f(n) = \mu y[y < 0]$

lets met oneindigheid

Probleem:

$$\begin{array}{ll} \lambda\text{-calculus} & (\lambda x.xx)(\lambda x.xx) \\ \text{Recursietheorie} & f(n) = \mu y[y < 0] \\ \text{Turing machine} & \{q_0\mathbf{0}\mathbf{0}q_1, q_1\mathbf{0}\mathbf{0}q_0\} \end{array}$$

lets met oneindigheid

Probleem:

lets met oneindigheid

Probleem:

Een algoritme kan eindeloos lang doorgaan, zonder een 'antwoord' te geven.

Oplossing:

Schrijf een algoritme wat van een gegeven algoritme P bepaalt of deze bij gegeven invoer n een antwoord geeft.

lets met oneindigheid

Probleem:

Een algoritme kan eindeloos lang doorgaan, zonder een 'antwoord' te geven.

Oplossing:

Schrijf een algoritme wat van een gegeven algoritme P bepaalt of deze bij gegeven invoer n een antwoord geeft.

Computer says no...

Theorem (Halting Problem)

Er bestaat geen algoritme wat bepaalt of een gegeven algoritme P stopt bij gegeven invoer n.

Theorem (Halting Problem)

Er bestaat geen algoritme wat bepaalt of een gegeven algoritme P stopt bij gegeven invoer n.

Proof.

Stel dat er een algoritme H bestaat (*), wat aan de voorwaarden voldoet.

Theorem (Halting Problem)

Er bestaat geen algoritme wat bepaalt of een gegeven algoritme P stopt bij gegeven invoer n.

Proof.

Stel dat er een algoritme H bestaat (*), wat aan de voorwaarden voldoet. Maak een nieuw algoritme H^\prime op de volgende manier:

$$H'(n) = \begin{cases} \uparrow & \text{als } H(P, n) = 1\\ 1 & \text{als } H(P, n) \uparrow \end{cases}$$

Theorem (Halting Problem)

Er bestaat geen algoritme wat bepaalt of een gegeven algoritme P stopt bij gegeven invoer n.

Proof.

Stel dat er een algoritme H bestaat (*), wat aan de voorwaarden voldoet. Maak een nieuw algoritme H^\prime op de volgende manier:

$$H'(n) = \begin{cases} \uparrow & \text{als } H(P, n) = 1\\ 1 & \text{als } H(P, n) \uparrow \end{cases}$$

Beschouw nu H(H'(n)). Wanneer H oneindig draait, is H' gedefinieerd, maar dan zou H juist niet oneindig moeten draaien. Tegenspraak.

Theorem (Halting Problem)

Er bestaat geen algoritme wat bepaalt of een gegeven algoritme P stopt bij gegeven invoer n.

Proof.

Stel dat er een algoritme H bestaat (*), wat aan de voorwaarden voldoet. Maak een nieuw algoritme H' op de volgende manier:

$$H'(n) = \begin{cases} \uparrow & \text{als } H(P, n) = 1\\ 1 & \text{als } H(P, n) \uparrow \end{cases}$$

Beschouw nu H(H'(n)). Wanneer H oneindig draait, is H' gedefinieerd, maar dan zou H juist niet oneindig moeten draaien. Tegenspraak. We geven de aanname (*) de schuld.

Entscheidungsproblem

Feit: Er zijn overaftelbaar veel onoplosbare problemen

n 🍀

Entscheidungsproblem

Feit: Er zijn overaftelbaar veel onoplosbare problemen

Nog zo een: Het is *niet* beslisbaar om van een gegeven programma P te zeggen of het uitvoer x geeft.

en 🍀

Entscheidungsproblem

Feit: Er zijn overaftelbaar veel onoplosbare problemen

Nog zo een: Het is *niet* beslisbaar om van een gegeven programma P te zeggen of het uitvoer x geeft.

Gevolg: Het Entscheidungsproblem is niet oplosbaar.

Universaliteits principe

Beslisbaar probleem $P \Longrightarrow \mathsf{T}.\mathsf{M}$ voor probleem P

Beslisbaar probleem $P \Longrightarrow \mathsf{T}.\mathsf{M}$ voor probleem P

The ugly: Erg veel T.M.'s

Beslisbaar probleem $P \Longrightarrow T.M$ voor probleem P

The ugly: Erg veel T.M.'s Gezocht:

n 🎘

Universaliteits principe

Beslisbaar probleem $P \Longrightarrow T.M$ voor probleem P

The ugly:Erg veel T.M.'s

Gezocht:

One TM to rule them all

One TM to rule them all

Hoe?

One TM to rule them all

Hoe?

Proof.

Bereken een beschrijvend getal e per T.M M (een soort Gödelcodering van T.M.'s)

One TM to rule them all

Hoe?

Proof.

Bereken een beschrijvend getal e per T.M M

(een soort Gödelcodering van T.M.'s)

Maak een T.M. U, die een programma e en een invoer vraagt.

One TM to rule them all

Hoe?

Proof.

Bereken een beschrijvend getal e per T.M M

(een soort Gödelcodering van T.M.'s)

 $\label{eq:maken} \mbox{Maak een T.M. U, die een programma e en een invoer vraagt.}$

Nu geeft U(e, n) het antwoord p op de tape precies wanneer M antwoord p geeft bij invoer n.

One TM to rule them all

Hoe?

Proof.

Bereken een beschrijvend getal e per T.M M (een soort Gödelcodering van T.M.'s)

Maak een T.M. U, die een programma e en een invoer vraagt. Nu geeft U(e,n) het antwoord p op de tape precies wanneer M antwoord p geeft bij invoer n.

Machine U noemen we een *Universele Turingmachine*.

One TM to rule them all

Hoe?

Proof.

Bereken een beschrijvend getal e per T.M M (een soort Gödelcodering van T.M.'s)

Maak een T.M. U, die een programma e en een invoer vraagt. Nu geeft U(e,n) het antwoord p op de tape precies wanneer M antwoord p geeft bij invoer n.

Machine U noemen we een ${\it Universele\ Turing machine}.$ In effect een ${\it Interpreter}.$

Terugblik

• Formele definitie van een algoritme

- Formele definitie van een algoritme
- Berekenbaarheid

- Formele definitie van een algoritme
- Berekenbaarheid
- Best veel onberekenbare problemen

- Formele definitie van een algoritme
- Berekenbaarheid
- Best veel onberekenbare problemen
- Reële getallen op een computer, foggeddaboudid.

- Formele definitie van een algoritme
- Berekenbaarheid
- Best veel onberekenbare problemen
- Reële getallen op een computer, foggeddaboudid.
- De droom van Hilbert in scherven

- Formele definitie van een algoritme
- Berekenbaarheid
- Best veel onberekenbare problemen
- Reële getallen op een computer, foggeddaboudid.
- De droom van Hilbert in scherven
- One machine to rule them all

Terugblik

- Formele definitie van een algoritme
- Berekenbaarheid
- Best veel onberekenbare problemen
- Reële getallen op een computer, foggeddaboudid.
- De droom van Hilbert in scherven
- One machine to rule them all

Op naar de These!

De These

Every effectively calculable function is computable Church (1936), Turing (1937) Elke uitrekenbare functie is berekenbaar

• Colossus (1943)

- Colossus (1943)
- ENIAC (1946)

- Colossus (1943)
- ENIAC (1946)
- Automatic Computing Engine (1945)

- Colossus (1943)
- ENIAC (1946)
- Automatic Computing Engine (1945)
- EDVAC, EDSAC (1949)

- Colossus (1943)
- ENIAC (1946)
- Automatic Computing Engine (1945)
- EDVAC, EDSAC (1949)

Belangrijk concept: *Stored Program Computer* (von Neumann, 1945)

• Orakel machines (Turing, 1939)

- Orakel machines (Turing, 1939)
- Infinite state machines (discussie Gödel)

- Orakel machines (Turing, 1939)
- Infinite state machines (discussie Gödel)
- Black hole

- Orakel machines (Turing, 1939)
- Infinite state machines (discussie Gödel)
- Black hole
- Quantum computing

Superpositie

- Superpositie
- Interferentie

- Superpositie
- Interferentie
- Verstrengeling

- Superpositie
- Interferentie
- Verstrengeling

Gevolgen voor:

- Superpositie
- Interferentie
- Verstrengeling

Gevolgen voor:

Cryptografie

- Superpositie
- Interferentie
- Verstrengeling

Gevolgen voor:

- Cryptografie
- Zoek algoritmen

- Superpositie
- Interferentie
- Verstrengeling

Gevolgen voor:

- Cryptografie
- Zoek algoritmen
- Computationele biologie

- Superpositie
- Interferentie
- Verstrengeling

Gevolgen voor:

- Cryptografie
- Zoek algoritmen
- Computationele biologie
- Machine learning?

Church-Turing-Deutsch These

Een universele computer kan elk fysisch proces simuleren Gandy 1980, Deutsch 1985

Church-Turing-Deutsch These

Een universele computer kan elk fysisch proces simuleren Gandy 1980, Deutsch 1985

Stelling

De klasse van *berekenbare functies* is *gelijk* aan de klasse van *quantum-berekenbare* functies.

• Kennis over algoritmen en berekenbaarheid

- Kennis over algoritmen en berekenbaarheid
- Van abstracte logica naar je broekzak

- Kennis over algoritmen en berekenbaarheid
- Van abstracte logica naar je broekzak
- Harde grenzen

- Kennis over algoritmen en berekenbaarheid
- Van abstracte logica naar je broekzak
- Harde grenzen
- Mer à boire

- Kennis over algoritmen en berekenbaarheid
- Van abstracte logica naar je broekzak
- Harde grenzen
- Mer à boire
- ??

The End

Dankjewel voor je aandacht

Contact: mail@pietervanengelen.nl

Tragiek in het paradijs

De protagonisten

Stephen Kleene (1909-1994)

??? (1897 - 1954)

De protagonisten

Stephen Kleene (1909-1994)

Emil Post (1897 - 1954)

1 %

• Logicus en wiskundige

No. To Service to Serv

- Logicus en wiskundige
- Bewijs van volledigheid propositielogica uit *Principia Mathematica* (1919)

- Logicus en wiskundige
- Bewijs van volledigheid propositielogica uit *Principia Mathematica* (1919)
- Vond in 1920 aanwijzingen voor de Onvolledigheidsstellingen van Gödel en onbeslisbaarheidsresultaten van Church en Turing

- Logicus en wiskundige
- Bewijs van volledigheid propositielogica uit *Principia Mathematica* (1919)
- Vond in 1920 aanwijzingen voor de Onvolledigheidsstellingen van Gödel en onbeslisbaarheidsresultaten van Church en Turing
- Bipolaire stoornis

- Logicus en wiskundige
- Bewijs van volledigheid propositielogica uit *Principia Mathematica* (1919)
- Vond in 1920 aanwijzingen voor de Onvolledigheidsstellingen van Gödel en onbeslisbaarheidsresultaten van Church en Turing
- Bipolaire stoornis
- Finite Combinatory Processes (1936)

- Logicus en wiskundige
- Bewijs van volledigheid propositielogica uit *Principia Mathematica* (1919)
- Vond in 1920 aanwijzingen voor de Onvolledigheidsstellingen van Gödel en onbeslisbaarheidsresultaten van Church en Turing
- Bipolaire stoornis
- Finite Combinatory Processes (1936)
- Turing-degree/Post's Theorem (1944)