統計学I

早稲田大学政治経済学術院 西郷 浩

本日の目標

- 不均等度の測定
 - -必要性
 - -ローレンツ曲線
 - -ローレンツ曲線の応用
 - -ジニ係数
 - 付録:ジニ係数の数理

(不)均等度の測定の必要性

- 均等性
 - 社会の要求
 - ・ 法の下での平等
 - 一票の格差(不均等)
 - ・ 機会の均等
 - 出発点は同一条件であるべき。
 - 結果の均等との関連
- ・ 均等の測定
 - 不均等である=バラツキが大きい
 - 均等であることに焦点をあてた特別の測定方法がある。

ローレンツ曲線(1)

- ローレンツ曲線作成の手順
 - 1. データを昇順に並べ替える。
 - $x_1, x_2, \dots, x_N \Longrightarrow_{sort} x_{(1)} \le x_{(2)} \le \dots \le x_{(N)}$
 - 2. 個体数・変数それぞれについて、下位からの累積和を計算。
 - 個体数: $n_{(i)} = 1 + 1 + \cdots + 1$
 - \mathfrak{Z} \mathfrak{Z} : $t_{(j)} = x_{(1)} + x_{(2)} + \dots + x_{(j)}$
 - ともに*j*番目までの個体について。

ローレンツ曲線(2)

- 3. 累積和を総和で除して相対化する。
 - 個体数: $F_{(j)} = n_{(j)}/n_{(N)} = j/N$
 - 変数: $T_{(j)} = t_{(j)}/t_{(N)} = \sum_{i=1}^{j} x_{(i)}/\sum_{i=1}^{N} x_i$ - ただし、j = 1, 2, ..., n.
 - $F_{(0)} = 0, T_{(0)} = 0.$
- 4. 以下の要領で2次元平面に線を描く。
 - ・ 点 $(F_{(j-1)},T_{(j-1)})$ と点 $(F_{(j)},T_{(j)})$ を直線で結ぶ。
 - $t \in [-1, 2, ..., n]$
 - 点(0,0)と点(1,1)を直線で結ぶ

ローレンツ曲線(3)

表1:ローレンツ曲線作成のための計算表

昇順	個体	累積和 (累積度数)	相対累積和 (_{累積相対度数)}	変数	累積和	相対累積和
	数	$n_{(j)}$	$F_{(j)}$		$t_{(j)}$	$T_{(j)}$
(0)	0	0	0/ <i>N</i>	0	0	$0/t_{(N)}$
(1)	1	1	1/N	$x_{(1)}$	$x_{(1)}$	$\left t_{(1)}/t_{(N)}\right $
(2)	1	2	2/N	$x_{(2)}$	$x_{(1)} + x_{(2)}$	$t_{(2)}/t_{(N)}$
•	•	•	•	•	•	•
(N)	1	N	N/N	$x_{(N)}$	$\sum_{i=1}^{N} x_{(i)}$	$t_{(N)}/t_{(N)}$
合計	N			$\sum_{i=1}^{N} x_i$		

ローレンツ曲線(4)

- 数值例
 - -ケースA(完全均等)
 - $x_1=2$, $x_2=2$, $x_3=2$, $x_4=2$, $x_5=2$
 - -ケースB(不均等)
 - $x_1=0$, $x_2=2$, $x_3=4$, $x_4=2$, $x_5=2$
 - -ケースC(独占)
 - x_1 =0, x_2 =10, x_3 =0, x_4 =0, x_5 =0

ローレンツ曲線(5)

表2:ケースBについてのローレンツ曲線作成のための計算表

昇順	個体	累積和 (累積度数)	相対累積和 (累積相対度数)	変数	累積和	相対累積和
	数	$n_{(j)}$	$F_{(j)}$		$t_{(j)}$	$T_{(j)}$
(0)	0	0	0/5	0	0	0/10
(1)	1	1	1/5	0	0	0/10
(2)	1	2	2/5	2	2	2/10
(3)	1	3	3/5	2	4	4/10
(4)	1	4	4/5	2	6	6/10
(5)	1	5	5/5	4	10	10/10
合計	5			10		

ローレンツ曲線(6)

- ・線の名称
 - 青い線:ローレンツ曲線
 - -ピンクの点線: 均等線

ローレンツ曲線(7)

ローレンツ曲線(8)

- 数値例からの観察
 - ローレンツ曲線の位置は、均等線よりも下になる。
 - ・変数 x の状態: 均等 ← → ・ 不均等ローレンツ曲線: 上 ← → 下
 - したがって、ローレンツ曲線が下位にある 分布ほど不均等の程度が大きい。
 - 不均等の程度が大きい⇔散らばりが大きい

ローレンツ曲線(9)

- 使い方
 - -異なる集団間の均等度の比較
 - -同一集団内の異なる変数(異なる時点間 を含む)の均等度の比較

ローレンツ曲線の応用(1)

- 都道府県別付加価値額(2016年)
 - -AB農林水産業
 - -E製造業
 - -G情報通信業
 - 都道府県の間の不均等の程度は、どの産業においてもっとも顕著であるか。

ローレンツ曲線の応用(2)

資料:総務省・経済産業省「平成28年経済センサス-活動調査」

不均等度の尺度:ジニ係数(1)

- ジニ係数 GI
 - -2×(ローレンツ曲線と均等線の間の弓型面積)
 - -均等 不均等 $0 \longleftarrow G/ \longrightarrow 1$
 - -所得分布などでは、0.5より大きいと不 均等度が大きいとみなされる。
 - おおよその目安にすぎない。

不均等度の尺度:ジニ係数(2)

資料:総務省・経済産業省「平成28年経済センサス-活動調査」

不均等度の尺度:ジニ係数(3)

図6:ローレンツ曲線の下側の面積の計算

不均等度の尺度:ジニ係数(4)

- 産業別の*GI*
 - 第1次産業: 0.40; 第2次産業: 0.50;

第3次産業:0.83

- 補足
 - GI は以下のようにも計算できる。

$$GI = \frac{1}{2\bar{x}} \left(\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} |x_i - x_j| \right)$$
 個体の変数間の差の絶対値の平均値

GI の数理(1)

$$y_{(i)} \equiv \frac{x_{(i)}}{\sum_{i=1}^{N} x_{(i)}} = \frac{x_{(i)}}{\sum_{i=1}^{N} x_{i}} = \frac{x_{(i)}}{N \bar{x}}$$

$$\geq \text{Total},$$

$$a_{(j)} = j/N$$

$$b_{(j)} = \sum_{i=1}^{j} x_{(i)} / \sum_{i=1}^{N} x_{i} = \sum_{i=1}^{j} y_{(i)}$$

GIの数理(1)

・以下の通り変数を定義する。

$$-y_{(j)} = \frac{x_{(j)}}{\sum_{i=1}^{N} x_{(i)}} = \frac{x_{(j)}}{N\bar{x}} \ (j = 1, 2, ..., N)$$

これを使って以下を得る。

$$-F_{(i)} = j/N$$

$$-T_{(j)} = \sum_{i=1}^{j} x_{(i)} / \sum_{i=1}^{N} x_i = \sum_{i=1}^{j} y_{(i)}$$

・以下の通り定義する。

$$-y_{(0)}=0$$

GIの数理(2)

• ローレンツ曲線の下側の面積をUとする。

$$-U = \frac{1}{2} \sum_{j=1}^{N} (T_{(j)} + T_{(j-1)}) (F_{(j)} - F_{(j-1)})$$

$$= \frac{1}{2N} \sum_{j=1}^{N} (T_{(j)} + T_{(j-1)})$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\sum_{j=1}^{i} y_{(i)} + \sum_{i=0}^{j-1} y_{(i)})$$

GIの数理(3)

$$= \frac{1}{2N} \sum_{j=1}^{N} \left(2 \sum_{i=1}^{j} y_{(i)} - y_{(j)} \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{j} y_{(i)} - \frac{1}{2N} \sum_{i=1}^{N} y_{(j)}$$

GIの数理(4)

$$\sum_{j=1}^{N} \sum_{i=1}^{j} y_{(i)}$$

$$= y_{(1)}$$

$$+ y_{(1)} + y_{(2)}$$

$$+ y_{(1)} + y_{(2)} + y_{(3)}$$

$$+ \cdots$$

$$+ y_{(1)} + y_{(2)} + y_{(3)} + \cdots + y_{(N)}$$

$$= N y_{(1)} + (N-1)y_{(2)} + \cdots + 2y_{(N-1)} + y_{(N)}$$

$$= \sum_{j=1}^{N} (N-j+1)y_{(j)}$$

GIの数理(5)

$$U = \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{j} y_{(i)} - \frac{1}{2N} \sum_{j=1}^{N} y_{(j)}$$

$$= \frac{1}{N} \sum_{j=1}^{N} (N - j + 1) y_{(j)} - \frac{1}{2N} \sum_{j=1}^{N} y_{(j)}$$

$$= \frac{1}{N} \sum_{j=1}^{N} \left(N + \frac{1}{2} - j \right) y_{(j)}$$

GIの数理(6)

$$GI = 1 - 2U$$

$$= 1 - \frac{2}{N} \sum_{j=1}^{N} \left(N + \frac{1}{2} - j \right) y_{(j)}$$

$$= 1 - \frac{2}{N} \sum_{j=1}^{N} \left(N + \frac{1}{2} - j \right) \frac{x_{(j)}}{N \overline{x}}$$

$$= \frac{1}{N \overline{x}} \left\{ N \overline{x} - \sum_{j=1}^{N} \frac{2N + 1 - 2j}{N} x_{(j)} \right\}$$

GIの数理(7)

$$= \frac{1}{N \overline{x}} \left\{ \sum_{j=1}^{N} x_{(j)} - \sum_{j=1}^{N} \left(\frac{2N+1-2j}{N} \right) x_{(j)} \right\}$$

$$= \frac{1}{N \overline{x}} \sum_{j=1}^{N} \left\{ 1 - \left(\frac{2N+1-2j}{N} \right) \right\} x_{(j)}$$

$$= \frac{1}{N \overline{x}} \sum_{j=1}^{N} \frac{2j-N-1}{N} x_{(j)}$$

$$= \frac{1}{N^2 \overline{x}} \sum_{j=1}^{N} (2j-N-1) x_{(j)}$$

GIの数理(8)

GI の数理(9)

$$= 0 - (x_{(1)} - x_{(2)}) - (x_{(1)} - x_{(3)}) - \dots - (x_{(1)} - x_{(N)}) + (x_{(2)} - x_{(1)}) + 0 - (x_{(2)} - x_{(3)}) - \dots - (x_{(2)} - x_{(N)}) + \dots + (x_{(N)} - x_{(1)}) + (x_{(N)} - x_{(2)}) + (x_{(N)} - x_{(3)}) + \dots + 0 = 2(1 - N)x_{(1)} + 2(3 - N)x_{(2)} + 2(5 - N)x_{(i)} + \dots + 2(N - 1)x_{(N)} = 2\sum_{j=1}^{N} (2j - N - 1)x_{(j)}$$

GIの数理(10)

したがって、
$$GI = \frac{1}{2N^2 \bar{x}} \sum_{i=1}^{N} \sum_{j=1}^{N} |x_i - x_j|$$

$$= \frac{1}{2\bar{x}} \left(\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} |x_i - x_j| \right)$$