Machine Learning Using Tensorflow

Week2:

Basis of Deep Learning (1)

Shu-Ting Pi, PhD UC Davis

Tensorflow Playground

TF playground is particular useful to give you some hints to fine tune the parameters of your network.

linear neural network

hidden layer 1 hidden layer 2

$$h1 = x1 \times w1 + x2 \times w2 + x3 \times w3$$

- Only works for linear separable data
- multilayer structure is meaningless!

Nonlinear neural network

hidden layer 1 hidden layer 2

Biases: sensitivity of the node Activation function: nonlinearlize the inputs

Activation functions

How to nonlinearize? Think about human neural network!

Neural nodes become "active" after the input if higher than a threshold and become "numb" if input is too high (sigmoid & tanh).

Why multilayer?

It is proven that single layer NN can not solve "XOR" problem!

Don't dig into the math, let's prove it using tensorflow playground!

Cross Entropy

Loss functions

Optimizer

How does tensorflow work?

Construct computation graph

- tf. Variable
- tf.constant
- tf.placeholder
- tf.layers.dense
- tf.train.GradientDescentOptimizer

Make tensors flow

- tf.global_variables_initializer()
- -tf.Session()
- tf.Session.run(, feed_dict={})

Let's do it!

Steps

- generate raw data, say y=x^p+x0
- Define

