L15 Metabolic Engineering

Instructor: Prof. K. Solomon Ph.D. Assistant Professor Agricultural & Biological Engineering Laboratory for Renewable Resources Engineering

Fall 2018

Recall...

Parts assembled via variety of techniques

Can be delivered via plasmid or genome

Genomes have properties that are critical for function

2

This lecture

- What is metabolism?
- Why metabolic engineering?
- Review Michaelis-Menten Kinetics
- Metabolic Engineering Strategies

What is metabolism?

Metabolism is the network of reactions cells do to:

- Generate energy
- Create building blocks of biomass
- Protect itself from the environment and compete

Metabolism Examples of molecules possible from biology: • Ethanol (yeast in beer/wine) • Lactic acid (*Lactobacillus* in yogurts) • MSG/flavors (*C. glutamicum*) • Penicillin • Heparin (anticoagulant) • Proteins • methane

Microbial metabolism

- Microbes make diverse products
- Products are stereospecific
 ex: L-amino acids only, no D-amino acids
 - acids

• Use renewable feedstocks

Stereospecificity and wealth of chemistry makes microbes attractive platforms for engineering

Metabolic engineering vs traditional synthesis

Heparin Synthesis

Chemical Synthesis

- Up to 55 steps
- Non-stereospecific steps result in unwanted products

Enzymatic Synthesis

- 4 Enzymatic reactions
- Enzymes are stereospecific

Metabolic engineering

Can represent metabolism with:

- · Products formed from metabolic reactions
- · Reactions catalyzed by enzymes encoded by genes

Metabolic engineering

We can define:

- Products/Target Compounds (e.g. E)
- · Substrates (reactants) (e.g. A)
- Side Products (e.g. G)
- Intermediates metabolic nodes between products and substrates (e.g. B, C, D, F)
 Metabolic fluxes (J) defined as flow of metabolite in or out of arbitrary control volume
 - Typically just reaction rate given by Michaelis-Menten kinetics

What is the relationship between J_2 and J_1 ? J₂ and J_{5?}

Metabolic engineering

Goal: Maximize flux towards product

· System is most productive when concentration of intermediates are at steady state

$$\frac{dB}{dt} = \frac{dC}{dt} = \frac{dD}{dt} = \frac{dF}{dt} = 0$$

Why aren't $\frac{dA}{dt}$, $\frac{dE}{dt}$, $\frac{dG}{dt}$ = 0?

Metabolic engineering

Mass balances around branch points at steady state are useful

• Balance of C:

$$\frac{dC}{dt} = Influx - Outflux$$

$$= J_2 - J_3 - J_5 = 0$$

$$J_2 = J_3 + J_5$$

Fluxes given by Michaelis-Menten kinetics

Review: Michaelis-Menten Kinetics

$$E + S \xrightarrow{k_f} ES \xrightarrow{k_{cat}} E + P$$

E = Enzyme

S = Substrate

ES = Enzyme-substrate complex

k_f = Forward rate constant

k_r = Reverse rate constant

k_{cat} = Catalytic rate constant (turnover number) Molecules of S converted to P per second

Review: Michaelis-Menten Kinetics

- V = reaction rate
- [S] = concentration of substrate S
- V_{max} = maximum rate achieved by system At <u>saturating substrate</u> concentration
- K_m = Substrate concentration when rate is ½ Vmax

Review: Michaelis-Menten Kinetics

$$V = k_{cat}[E]_0 \frac{[S]}{K_m + [S]}$$

Reaction order:

 $[S] << K_{\rm m} : {\bf 1^{st} \ order}$ Rate varies linearly with [S]

 $[S] >> K_m : \mathbf{0}^{th} \text{ order}$

 $V\approx k_{cat}[E]_0$

Rate approaches V_{max} V_{max} = All E bound to S

Example 1

 $K_{m,enz1}$ = 0.25 μM $[A] = 0.10 \mu M$

How does one improve production of B?

Example 1 $A^{\frac{J_1}{Enzymle 1}} B \xrightarrow{\frac{J_2}{2}} C \xrightarrow{\frac{3}{3}} D \xrightarrow{\frac{4}{4}} E$ $K_{m,enz1} = 0.25 \ \mu\text{M}$ $[A] = 0.10 \ \mu\text{M}$ $V = V max \frac{[A]}{k_m}$ How does one improve production of B?

Example 2 $A = \frac{J_1}{A \times W} + \frac{J_2}{B} + \frac{J_3}{A \times W} + \frac{J_4}{A \times W} + \frac{$

Optimizing product formation

$$\uparrow A \xrightarrow{\text{Enzymig 1}} B \xrightarrow{J_2} C \xrightarrow{3} D \xrightarrow{4} E$$

$$\downarrow J_5 \xrightarrow{5} J_6$$

How do you optimize product formation (E)?

 $V = k_{cat} [\boldsymbol{E}_1]_0 \frac{[\boldsymbol{A}]}{k_m + [\boldsymbol{A}]}$

1. Push flux from A

[A] < K_m Rate is ~ linear in [A]

Increase [A] to increase rate

- Increase [A]
- Increase [E₁]_T (upregulate enzyme 1)

Optimizing product formation

How do you optimize product formation (E)?

$$\frac{k_{cat2}[E_2]_T[B]}{K_{m2}+[B]} = \frac{k_{cat3}[E_3]_T[C]}{K_{m3}+[C]} + \frac{k_{cat5}[E_5]_T[C]}{K_{m5}+[C]}$$

- 2. Pull flux from branch point (C)
 - Increase [E₃]_T overexpression
 - Decrease [E₅] downregulate or knockout

Optimizing product formation

How do you optimize product formation (E)?

- 4. Introduce feedback to detect presence of key intermediates and control activity accordingly
 - e.g. if D is essential for product but toxic to cell, want to keep [D] as high as is safe

Can also improve production with fermentation optimization

- · Cofactors are used by many reactions
 - E.g. ATP, NADH, NADPH, FADH₂, etc What are the functions of these cofactors?
- Altering production pathways will affect cofactor pools and thus cell health and growth

Ideal situation: Production = Consumption

Energy intensive pathway - Can increase aeration

Pathway needs reduced co-factors - Make process anaerobic

We can also engineer *non-natural* products

Enzymes are promiscuous

- will catalyze the same chemistry for similar molecules.
 - e.g. Alcohol dehydrogenase (ADH) reducing acetylaldehyde to EtOH (C_2) or proponaldehyde to propanol (C_3)
- Given starting substrate and final product, we can identify synthesis pathway (enzymes) required. (Retrobiosynthesis)
- Can use databases to identify candidates to screen

29

Metabolic engineering summary

Regulation of pathways critical to:

- Maximize product formation
- Minimize impact on host processes (e.g. cofactor balance)
- Prevent build-up of toxic intermediates

Achieved by:

- Push/Pull Expression of enzymes at appropriate levels (promoters, RBS, term)
- Feedback Programmable control of expression (biological feedback through inducible/repressible promoters or independent control)
- Homologs Identifying enzymes with sufficient activity
- · Process optimization

31

Metabolic engineering

Engineering host may be required

- To reduce product/intermediate toxicity
- Remove native regulation of enzymes
- Reduce consumption of product

	_	4	4:		_
N	ρ	Y t	TI	m	ρ

• Practical examples: journal club