Mathématiques

CHAPITRE 03 La projection δans le plan

Capacités attendues

• Traduire vectoriellement le théorème de Thalès.

Tronc commun scientifique

Rachid El Manssouri

Contenu du chapitre 03

I.	Projection sur une droite1
	1. Projection sur une droite parallèlement à une autre droite
	2. Projection orthogonale sur une broite
II.	Conservation du coefficient de colinéarité
	1. Projection et coefficient de colinéarité
	2. Projection et milieu d'un segment
	3. Projection et somme de deux vecteurs
III.	Théorème de Thalès
	1. Théorème direct de Thalès
	2. Réciproque du théorème de Thalès

I. Projection sur une droite

1. Projection sur une droite parallèlement à une autre droite

Définition 1:

Soient (D) et (Δ) deux droites sécantes.

 \triangleright On appelle **projection** sur (D) parallèlement à (Δ), la relation p qui lie tout point M du plan au point M' du même plan tel que :

M' est le point d'intersection de (D) et la parallèle à (Δ) passant par M.

- \triangleright Le point M' est appelé le **projeté** de M sur (D) parallèlement à (Δ) et on écrit : p(M) = M'.
- $\triangleright p$ est appelé la projection sur (D) parallèlement à (Δ) , et le point M' est appelé l'image de M par p.

Remarques:

- Si $M \in (D)$, alors : p(M) = M, on dit dans ce cas que M est un **point fixe** ou **invariant**.
- Si (Δ') est une droite parallèle à (Δ) et A le point d'intersection de (D) et (Δ') , alors la projection de tout point M de (Δ') sur (D) parallèlement à (Δ) est le point A.

2. Projection orthogonale sur une droite

Définition 2:

Soient (D) et (Δ) deux droites perpendiculaires.

- \triangleright La projection sur (D) parallèlement à (Δ) est appelée la **projection orthogonale** sur (D).
- ➤ Le point M' est appelé le projeté orthogonal de M sur (D).

II. Conservation du coefficient de colinéarité

Dans tout ce paragraphe : (D) et (Δ) sont deux droites sécantes et p est la projection sur (D) parallèlement à (Δ) .

1. Projection et coefficient de colinéarité

Propriété 1:

Soient A, B, C, D quatre points, et A', B', C', D' leurs images par la projection p.

Si : $\overrightarrow{AB} = k \cdot \overrightarrow{CD}$, alors : $\overrightarrow{A'B'} = k \cdot \overrightarrow{C'D'}$.

On dit que la projection conserve le coefficient de colinéarité de deux vecteurs.

Application 1:

Soient ABCD un parallélogramme de centre O, et K le point vérifiant : $\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AC}$.

1. Montrer que : $\overrightarrow{OK} = -\frac{1}{3}\overrightarrow{OA}$.

2. Soient M et N les projetés respectifs de K et O sur (BC) parallélement à (AB).

Montrer que : $\overrightarrow{BM} = \frac{2}{3}\overrightarrow{BC}$ et $\overrightarrow{NM} = -\frac{1}{3}\overrightarrow{NB}$.

2. Projection et milieu d'un segment

Propriété 2:

Soient A, B, I trois points, et A', B', I' leurs images par la projection p.

Si : I est le milieu du segment [AB], alors : I' est le milieu du segment [A'B'].

On dit que la projection conserve le milieu d'un segment.

Application 2:

Soit ABCD un parallélogramme de centre O.

A' et C' sont respectivement les projetés orthogonaux de A et C sur (BD).

B' et D' sont respectivement les projetés orthogonaux de B et D sur (AC).

Montrer que les segments [A'C'] et [B'D'] ont le même milieu.

3. Projection et somme de deux vecteurs

Propriété 3:

Soient A, B, C, D, E, F six points, et A', B', C', D', E', F' leurs images par la projection p.

Si: $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{EF}$, alors: $\overrightarrow{A'B'} + \overrightarrow{C'D'} = \overrightarrow{E'F'}$.

Application 3:

ABC est un triangle.

Soient E, F et D les points définis par : $\overrightarrow{AE} = 2\overrightarrow{AB}$, $\overrightarrow{AF} = 3\overrightarrow{AC}$ et $\overrightarrow{AD} = \overrightarrow{AE} + \overrightarrow{AF}$.

La parallèle à (BC) qui passe par E coupe (AD) en H.

La parallèle à (BC) qui passe par F coupe (AD) en K.

1. Montrer que : $\overrightarrow{AD} = \overrightarrow{AH} + \overrightarrow{AK}$.

2. Soit R le point d'intersection des droites (BC) et (AD).

Montrer que : $\overrightarrow{AR} = \frac{1}{5}\overrightarrow{AD}$.

III. Théorème de Thalès

1. Théorème direct de Thalès

Propriété 4:

Soient (D_1) et (D_2) deux droites sécantes en un point A .

Soient B et M deux points de la droite (D_1) , distincts de A .

Soient C et N deux points de la droite (D_2) , distincts de A.

Si (MN)//(BC), alors : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$.

CHAPITRE 03: La projection dans le plan

Propriété 5:

$$Si: \left\{ \begin{array}{l} \bullet \text{ A, B, M sont des points align\'es} \\ \bullet \text{ A, C, N sont des points align\'es} \text{ ,} \\ \bullet \text{ (MN)//(BC)} \end{array} \right. \quad \text{alors}: \left\{ \begin{array}{l} \overrightarrow{AM} = k. \overrightarrow{AB} \\ \text{et } \overrightarrow{AN} = k. \overrightarrow{AC} \\ \text{et } \overrightarrow{MN} = k. \overrightarrow{BC} \end{array} \right.$$

où k est le même nombre réel dans les trois égalités vectorielles.

Application 4:

Soit ABCD un parallélogramme.

Soit M un point de la demi-droite [DB) en dehors du parallélogramme.

La droite (AM) coupe les droites (BC) et (CD) respectivement en E et F.

Montrer que : $MA^2 = ME \times MF$.

2. Réciproque du théorème de Thalès

Propriété 6 :

Soient (D_1) et (D_2) deux droites sécantes en un point A.

Soient B et M deux points de la droite (D_1) , distincts de A.

Soient C et N deux points de la droite (D_2) , distincts de A.

Si $\frac{AM}{AB} = \frac{AN}{AC}$ et si les points A, B, M et les points A, C, N sont dans le même ordre,

Alors: (MN)//(BC).

Propriété 7:

Soient A, B, C trois points non alignés, M, N deux points et k un nombre réel.

Si :
$$\begin{cases} \bullet \overrightarrow{AM} = k. \overrightarrow{AB} \\ \bullet \overrightarrow{AN} = k. \overrightarrow{AC} \end{cases}$$
, alors : (MN)//(BC)

Application 5:

Soit ABC un triangle.

D est un point de la droite (BC) n'appartenant pas à [BC].

Soit O le point défini par : $\overrightarrow{AO} = \frac{3}{4}\overrightarrow{AD}$.

Soient E le projeté de D sur (AC) parallélement à (OC)

et F le projeté de D sur (AB) parallélement à (OB).

1. Montrer que : $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AE}$ et $\overrightarrow{AB} = \frac{3}{4}\overrightarrow{AF}$.

2. Montrer que : (EF)//(BC).