Федеральное государственное автономное учебное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Мегафакультет компьютеных технологий и управления Факультет программной инженерии и компьютерной техники

Отчёт по лабораторной работе №6 по дисциплине «Основы профессиональной деятельности»

Вариант 91813

Группа: Р3118

Студент: Кожухин Иван Алексеевич

Преподаватель: Осипов Святослав Владимирович

Санкт-Петербург 2023

Содержание

1	Зад	Задание			
2	Вы	полнение задания	6		
	2.1	Код программы на языке Ассемблера БЭВМ	4		
	2.2	Область представления и допустимых значений	ļ		
	2.3	Методика проверка программы	(
3	Вы	вод	8		

1 Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Текст варианта:

- 1. Основная программа должна уменьшать на 3 содержимое X (ячейки памяти с адресом $04C_{16}$) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=6X+4 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И-НЕ' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

2 Выполнение задания

2.1 Код программы на языке Ассемблера БЭВМ

```
ORG 0x0
v0: WORD $default, 0x180
v1: WORD $default, 0x180
v2: WORD $int2, 0x180
v3: WORD $int3, 0x180
v4: WORD $default, 0x180
v5: WORD $default, 0x180
v6: WORD $default, 0x180
v7: WORD $default, 0x180
default: IRET
disable_redundant_int:
CLA
OUT 0x1
OUT 0x3
OUT OxB
OUT OxE
OUT 0x12
OUT 0x16
OUT Ox1A
OUT 0x1E
RET
enable_necessary_int:
LD #0xA
OUT 0x5
LD #0xB
OUT 0x7
RET
ORG 0x4C
x: WORD 20
x_addr: WORD 0x4C
max: WORD 21
min: WORD -22
not_x: WORD 0
```

```
start:
DΤ
CALL disable_redundant_int
CALL enable_necessary_int
CLA
ΕI
main_loop:
LD x
PUSH
SUB #3
CALL AC_check
PUSH
PUSH
PUSH
PUSH
LD &3
ST &2
LD &4
ST &1
LD x_addr
ST &0
CALL compare_and_set
JUMP main_loop
AC_check:
CMP max
BMI min_check
JUMP correction
min_check:
CMP min
BPL check_passed
correction:
LD max
DEC
check_passed: RET
deref: WORD 0
compare_and_set:
PUSHF
DΤ
LD &2
```

ST deref

LD (deref)

CMP &3

BEQ then

JUMP exit

then:

LD &4

ST (deref)

exit:

POPF

SWAP

ST &3

POP

POP

POP

RET

int2:

PUSH

LD x

NOP

NOT

ST not_x

IN 0x4

AND not_x

CALL AC_check

ST x

NOP

POP

IRET

int3:

PUSH

LD x

NOP

ADD x

ADD x

ASL

ADD #4

NOP

OUT 0x6

POP

IRET

2.2 Область представления и допустимых значений

Один из индикаторов ВУ мы будем использовать как знаковый регистр, остальные - как числовые. Так как на ВУ-3 всего 8 регистров, то область допустимых значений для функции F(X) имеет следующий вид:

$$-2^{7} \le F(X) \le 2^{7} - 1$$
$$-128 \le F(X) \le 127$$

Так как F(X) = 6X + 4, то ОДЗ для X имеет следующий вид:

$$\frac{-128-4}{6} \le X \le \frac{127-4}{6}$$
$$-22 \le X \le 20$$

Таким образом, когда значение X будет выходить за допустимые границы, ему будет присваиваться значение 20.

2.3 Методика проверка программы

Проверка обработки прерываний:

- 1. Загрузить код в БЭВМ, скомпилировать;
- 2. Заменить инструкцию NOP по нужному адресу на HLT;
- 3. Запусить программу в режиме «Работа»;
- 4. Нажать кнопку «Готов» на ВУ-3;
- 5. Дождаться остановки;
- 6. Записать текущее значение Х:
 - і) Запомнить текущее состояние регистра ІР;
 - іі) Ввести в клавишный регистр адрес X (0x4C);
 - ііі) Нажать «Ввод адреса», нажать «Чтение»;
 - iv) Записать значение регистра DR;
 - v) Вернуть регистр IP в ранее зафиксированное состояние;
- 7. Записать результат обработки прерывания (содержимое DR BУ-3);
- 8. Рассчитать ожидаемое значение обработки прерывания;
- 9. Нажать «Продолжение»;
- 10. Ввести на ВУ-2 произвольную комбинацию нулей и единиц;
- 11. Нажать кнопку «Готов» на ВУ-2;
- 12. Дождаться остановки;
- 13. Записать текущее значение Х (см. п. 6);
- 14. Нажать «Продолжение»;
- 15. Записать текущее значение Х (см. п. 6);
- 16. Рассчитать ожидаемое значение обработки прерывания.

Проверка основной программы:

- 1. Загрузить код в БЭВМ, использовав максимальное значение X как исходное, скомпилировать;
- 2. Запусить программу в режиме «Останов»;
- 3. Пройти достаточное число итераций программы, чтобы убедиться в корректности изменения X, а также в правильность коррекции при выходе X за ОДЗ.

Прерывание ВУ-3					
AC	Ожидаемое	DR BY-3			
AC	значение				
0x14 (20)	0x7C (124)	0x7C (124)			
0x2 (2)	0x10 (16)	0x10 (16)			
0xFFED (-19)	0xFF92 (-110)	0xFF92 (-110)			

Прерывание ВУ-2						
AC	DR BY-2	АС после	Сохранённый			
AC		вычислений	результат			
0x5 (5)	0x35A	0x35A (858)	0x14 (20)			
0x5 (5)	0x1	0x0	0x0			
0x5 (5)	0x42	0x42 (66)	0x14 (20)			

Основная программа					
AC	Ожидаемое	Сохранённый			
AC	значение	результат			
0x14 (20)	0x11 (17)	0x11 (17)			
0x0	0xFFFD (-3)	0xFFFD (-3)			
0xFFEA (-22)	0x14 (20)	0x14 (20)			

Рис. 1: Ход проверки

3 Вывод

В ходе выполнения лабораторной работы были изучены: организация программноуправляемого обмена данными в режиме прерывания программы в БЭВМ; команды работы разрешения/запрещения прерываний в БЭВМ; вектора прерывания и преимущества их использования.

Рис. 2: Изображение в стиле «интернет-мэм»