SONY

6.25-mm (Type 1/2.9) diagonal SPAD ToF Depth Sensor with signal-amplifying pixels

IMX459-AAMV-W

1. Description and Usage

The IMX459-AAMV-W is a 6.25-mm (Type 1/2.9) diagonal Single Photon Avalanche Diode (SPAD) ToF Depth Sensor with signal-amplifying pixels. By arraying the 597 × 168 number of SPADs and summing their outputs, the 3D distance images can be generated from the distance information, and it can be achieved a measurement distance of up to 300 m. The number of SPADs (size of a macro pixel) at the time of ranging operation can be adjusted according to the application. The ranging operation is operated by 1 GHz sampling, and the function of generating a histogram with ToF width of 2024 bin (2024 ns) and grayscale width of 12 bits and it can be detecting echo and peak of the emitted light from the result. Its ambient light elimination function ensures that it does not saturate even under sunlight and can achieve distance measurements with a high dynamic range. Its light emission timing control function is able to compensate for the delay in timing between laser emission and reception. Equipped with echo and peak detection functions, ranging data output modes, digital signal processing, and more, it is optimized to meet the performance and functionality required by LiDAR. Safety Mechanism (SM) functions required for automotive products are supported.

Applications: LiDAR for automotive

2. Features and Functions

- ◆ SPAD signal-amplifying pixels
- ◆ Number of effective SPAD
 - 597 (H) × 168 (V) approx. 100k SPAD
- ◆ CRA: 0 degrees
- ◆ Input frequencies: 16 MHz, 20 MHz, 24 MHz, 30 MHz
- External communication interfaces
 - I²C communication
 - SPI communication
- Output interface
 - MIPI CSI-2 serial output (4 lanes/2 lanes)
- ◆ Readout modes
 - Line mode
 - Array mode
- Output formats
 - Ranging data output mode (RAW12, ToF width: 2024 bins, gray scale width: 12 bits)
 - Echo output mode (RAW12, ToF width: 2024 bins, gray scale width: 12 bits)
 - Histogram output mode (RAW12, ToF width: 2024 bins, gray scale width: 12 bits)
- ◆ Variable pixel size, region of interest (ROI) function
- ◆ Ambient light monitor function
 - Ambient light count width: 22 bits
- ◆ Emission timing control function
- ◆ Histogram generation function
- Echo and peak detection functions
- ◆ AEC-Q100 Grade 2 qualified
- ♦ ESD rank
 - HBM (Grade 2): Classification 2
 - CDM (Grade 2): Classification C4B

Sony Semiconductor Solutions Corporation reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony Semiconductor Solutions Corporation cannot assume responsibility for any problems arising out of the use of these circuits.

1

E23405D3Z

3. Device Structure

◆ SPAD ToF Depth Sensor

♦ Image size: Diagonal 6.25 mm (Type 1/2.9)
 ♦ SPAD unit cell size: 10.08 μm (H) × 10.08 μm (V)

◆ Element size: 3 (H) × 3 (V) SPAD

◆ Number of physical active SPAD*1: 600 (H) × 189 (V) approx. 110k SPAD

◆ Number of effective SPAD: 597 (H) × 168 (V) approx. 100k SPAD

◆ Substrate material: Silicon

4. Absolute Maximum Ratings

Table 4-1 Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remarks
SPAD breakdown voltage power supply	VOP*1	- 26	+ 0.3	V	_
SPAD excess voltage power supply	Vex*2	- 0.3	4.0	V	_
Digital power supply	VDDD*3	- 0.3	1.5	V	
Analog power supply	VDDA*4	- 0.3	4.0	V	_
I/O power supply	VDDIO*5	- 0.3	2.5	V	_

5. Recommended Drive Conditions

Table 5-1 Recommended Drive Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SPAD breakdown voltage power supply	VOP*1	- 24.5	- 20.5	- 17	V	_
SPAD excess voltage power supply	Vex*2	3.15	3.3	3.6	V	_
Digital power supply	VDDD*3	1.05	1.1	1.2	V	_
Analog power supply	VDDA*4	3.15	3.3	3.45	V	_
I/O power supply	VDDIO*5	1.7	1.8	1.9	V	_
Operating temperature	Topr		= - 40 to + 105 = - 40 to + 125		$^{\circ}$	_
Storage temperature	Tstg	Та	= - 40 to + 12	5	$^{\circ}$ C	

^{*1} VOP: VRLD

^{*1} Including non-effective pixels and monitor pixels

^{*2} Vex: VDDHPF

^{*3} VDDD: VDDLSC, VDDLPL1, VDDLPL2, VDDLIF

^{*4} VDDA: VDDHAN

^{*5} VDDIO: VDDMIO, VDDMIF

Use Restriction Notice

This USE RESTRICTION NOTICE ("Notice") shall apply and govern your rights and obligation regarding the usage by you ("Customer") of the products ("Products") set forth in this specification. Sony Semiconductor Solutions Corporation ("SSS") reserves the right to, at any time, modify or update this Notice, at its sole discretion, which will be made available to Customer in a way as SSS deems appropriate, including by way of modifying or updating this specification. Customer shall abide by the latest version of this Notice. If SSS's subsidiary and/or third party distributor has its own use restriction notice for the Products, such use restriction notice will additionally apply between Customer and the subsidiary and/or the third party distributor, as applicable.

Use Restrictions

The Products are intended for incorporation into automotive LiDAR units in accordance with this specification. Usage of the Products for any other purpose is strictly prohibited.

The Products are not fault-tolerant and is not designed, manufactured or certified for use in components of systems intended for the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines, weapons, weapons systems or for any other dangerous application, in which the failure of the Products could lead to death, personal injury, or severe physical or environmental damage.

EXCLUSION OF WARRANTY ON THE PRODUCTS

CUSTOMER ACKNOWLEDGES AND AGREES THAT USE OF THE PRODUCTS AND THE TECHNICAL INFORMATION (DEFINED BELOW) IS AT CUSTOMER'S SOLE RISK AND THAT CUSTOMER ARE RESPONSIBLE FOR USE OF THEM. TO THE EXTENT PERMITTED BY LAW AND UNLESS OTHERWISE SPECIFICAL PERMITTED BY LAW AND UNLESS OTHERWISE SPECIFICAL PERMITTED BY LAW AND UNLESS OTHERWISE SPECIFICAL PROPERTY OF THE PROPERT TO THE EXTENT PERMITTED BY LAW AND UNLESS OTHERWISE SPECIFICALLY SET FORTH IN THIS SPECIFICATION, THE PRODUCTS AND THE TECHNICAL INFORMATION ARE PROVIDED BY SSS AND/OR ITS SUBSIDIARIES TO CUSTOMER "AS IS" AND WITHOUT WARRANTY OF ANY KIND. SSS AND/OR ITS SUBSIDIARIES MAKE OR HAVE MADE NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, AND EXPRESSLY DISCLAIMS ANY REPRESENTATION OR WARRANTY (I) WITH RESPECT TO ACCURACY, RELIABILITY, VALUE, UTILITY OR SAFETY OF THE PRODUCTS AND THE TECHNICAL INFORMATION, OR THE ABILITY OF CUSTOMER TO MAKE USE THEREOF, (II) WITH RESPECT TO ANY IMPLEMENTATION OF THE PRODUCTS AND THE TECHNICAL INFORMATION; (III) WITH RESPECT TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE; OR (IV) THAT THE PRODUCTS AND THE TECHNICAL INFORMATION OR ANY IMPLEMENTATION THEREOF IS OR WILL BE FREE FROM INFRINGEMENT, MISAPPROPRIATION OR VIOLATION OF ANY INTELLECTUAL PROPERTY RIGHT OR ANY OTHER RIGHT OF ANY THIRD PARTY, AND ANY EQUIVALENTS OF ANY OF THE FOREGOING UNDER THE LAWS OF ANY JURISDICTION.

LIMITATION OF LIABILITY

TO THE EXTENT PERMITTED BY LAW, SSS AND/OR ITS SUBSIDIARIES SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY, BREACH OF CONTRACT, NEGLIGENCE, STRICT LIABILITY OR UNDER ANY OTHER LEGAL THEORY RELATED TO THE PRODUCTS AND TECHNICAL INFORMATION, INCLUDING, BUT NOT LIMITED TO, ANY DAMAGES ARISING OUT OF LOSS OF PROFITS, LOSS OF REVENUE, LOSS OF DATA, LOSS OF USE OF THE PRODUCTS OR ANY ASSOCIATED HARDWARE, DOWN TIME AND USER'S TIME, EVEN IF SSS AND/OR ITS SUBSIDIARIES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Design for Safety

Customer acknowledges and agrees that Customer are fully responsible for taking sufficient care to ensure the safe design of Customer's products such as component redundancy, anti-conflagration features, and features to prevent mis-operation in order to avoid accidents resulting in injury or death, fire or other social damage as a result of such failure.

Compliance with Laws

Customer shall comply with all applicable laws, ordinances, rules and regulations in connection with the usage of the Products, including the export control laws or regulations of various countries and shall be fully responsible for obtaining approvals in connection with the export of the Products in accordance with such said laws, ordinances, rules and/or regulations.

No Implied License

The Products specification, reference application circuits and any other technical information shown in this specification and any other information provided to Customer by SSS in relation to the Products (collectively, the "Technical Information") is for Customer's reference purposes only. The availability and providence of the Technical Information shall not be construed as giving any indication that SSS, its subsidiaries and/or its licensors will license any right, including any intellectual property rights in such Technical Information by any implication or otherwise.

Governing Law

This Notice shall be governed by and construed in accordance with the laws of Japan, without reference to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating to this Notice shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the court of first instance.

Other Applicable Terms and Conditions

In addition to this Notice and the terms and conditions set forth in this specification, the terms and conditions set forth in additional documentations, such as delivery specification, which may be made available to Customer in connection with the Products, shall also be applicable to Customer's use of the Products. Customer should review those additional terms and conditions when considering on purchasing and/or using the Products.

Automotive-0.0.2

7. Contents

1.	Description and Usage	1
2.	Features and Functions	1
3.	Device Structure	
4.	Absolute Maximum Ratings	2
5.	Recommended Drive Conditions	2
6.	Use Restriction Notice	
7.	Contents	
8. 9.	Optical Center SPAD Configuration	
9. 10.	SPAD Configuration	
11.	Pin Configuration	
12.	Pin Description	
13.	Electrical Characteristics	
13.1.		
13.2.		
	2.1. Master Clock (INCK)	
	2.2. Reference Clock (REFCK)	
_	2.2. Reference Clock (RFCK)	13
_	.2.3. System Reset (XCLR)	12
13.	.2.4. Get Ambient Light Timing Signal (PST_TRG)	14
13.	.2.5. Effective Pixel Area Select Signal / Emission Trigger Input Signal (SEL/TRG_I)	15
13.	.2.6. Emission Trigger Feedback Signal (TRG_FB0/1)	16
13.	.2.7. Emission Trigger Output Signal (TRG O0/1)	16
13.	.2.8. Frame Synchronization Signal / Slot Synchronization Signal (F SYNC/ S SYNC)	
_	2.9. IC Available Signal/Communication Period Notification (READY/COMREADY)	
_	2.10. External Reset Request Signal (XERROR).	10
		10
	2.11. Serial Communication.	15
13.3 (Current Consumption	21
14. 15.	Input/Output Equivalent Circuits	23
15. 16.	Characteristics Example of Spectral Sensitivity Characteristics	24
10. 17.	Setting Registers Using Serial Communication	2
17.1.		27
17.1.		
		∠
	.2.1. Slave Address 28	•
17.3.	Description of Register Setting (SPI Communication)	28
18.	Output Interface Description	29
	Description	29
18.2.		30
18.3.		
18.4.		
18.5.	CSI-2 Output Format.	32
19.	Operating Modes	33
19.1.	Description	33
19.2.	Data output Format	
	.2.1. Ranging Mode 34	
	.2.2. Echo Mode 35	
	2.3. Histogram Mode 36 Example of Peripheral Circuits	2.7
20. 21.	Power-On/Off	
21.1.		
21.2.		
22.	Special Note on DCR White Pixel Standards	
22.1.	*	
23.	Marking	
23.1.	6	
23.2.		
24. 25	Notes on Handling	
25. 26.	Package Outline	
26. 27.	Open Source Software License	
<u>~</u> / •	100-151011 1115001 3	

8. Optical Center

Fig. 8-1 shows Optical Center (Top View). In the figure, the A1.pin is located at the bottom right.

*1 The chip center and package center match.
(The pixel center and package center is unmatch.)

9. SPAD Configuration

Fig. 9-1 shows SPAD Configuration. In the figure, the A1.pin is located at the bottom right.

Fig. 9-1 SPAD Configuration

SONY

10. Block Diagram

Fig. 10-1 shows Block Diagram.

Fig. 10-1 Block Diagram

11. Pin Configuration

Fig. 11-1 shows Pin Configuration (Top View). In the figure, the Index mark of A1.pin is located at the bottom right.

* The N.C. pin marked (CGND) can be connected to GND. N.C. pins not listed here must be left OPEN.

Fig. 11-1 Pin Configuration (Top View)

12. Pin Description

Table 12-1 List of Pins

No. I/O / joigital No. / joigital No. / joigital No. No. No. No. No. No. Leave OPEN or connect to GND	12-	Pin		Analog		
2	No.	No.	I/O		Symbol	Pin Description
3		A1	_	_	N.C.	Leave OPEN or connect to GND
4 A4 Output Digital DMOMAN MIPI CSI-2 data lane 1 5 A5 Output Digital DMOMB MIPI CSI-2 data lane 2 7 A7 Output Digital DMOMD MIPI CSI-2 data lane 2 8 A8 Power Digital VDDLSC 1.1 V power supply 9 A9 Power Digital VDDLSC 1.1 V power supply 10 A10 Power Digital VDDLSC 1.1 V power supply 11 A11 Power Digital VDDLSC 1.1 V power supply 12 A12 Input Digital VDDLSC 1.1 V power supply 14 A14 — N.C. Reference clock input 15 B1 Power Digital VDDLSC 1.1 V power supply 16 B2 Power Digital VDDLSC 1.1 V power supply 17 B3 Output Digital VDDLSC 1.1 V power supply 18 B4 Output	2	A2	Power	Digital	VDDLSC	1.1 V power supply
5 A5 Output Digital DMCMM MIPI CSI-2 data lane 2 7 A7 Output Digital DMOMD MIPI CSI-2 data lane 4 8 A8 Power Digital VDDLSC 1.1 V power supply 9 A9 Power Digital VDDLSC 1.1 V power supply 10 A10 Power Digital VDDLSC 1.1 V power supply 11 A11 Power Digital VDDLSC 1.1 V power supply 12 A12 Input Digital VDDLSC 1.1 V power supply 13 A13 Input Digital NC. Leave OPEN roconcel to GND 14 A14 — N.C. Leave OPEN roconcel to GND 15 B1 Power Digital VDDLSC 1.1 V power supply 16 B2 Power Digital VDDLSC 1.1 V power supply 17 B3 Output Digital DMOPC MIPI CSI-2 data lane 3 19 B5 </td <td>3</td> <td>A3</td> <td>Output</td> <td>Digital</td> <td>DMOMC</td> <td>MIPI CSI-2 data lane 3</td>	3	A3	Output	Digital	DMOMC	MIPI CSI-2 data lane 3
6 A6 Output Digital DMOMB MIPI CSI-2 data lane 2 7 A7 Output Digital DMOMD MIPI CSI-2 data lane 4 8 A8 Power Digital VDDLSC 1.1 V power supply 10 A10 Power Digital VDDLSC 1.1 V power supply 11 A11 Power Digital VDDLSC 1.1 V power supply 12 A12 Input Digital VDDLSC 1.1 V power supply 14 A14 Power Digital NCK Master clock input 14 A14 Power Digital NCC Leave OPEN or connect to GND 15 B1 Power Digital VDDLSC 1.1 V power supply 16 B2 Power Digital VDDLSC 1.1 V power supply 17 B3 Output Digital VDDLSC 1.1 V power supply 18 B4 Output Digital DMOPD MIPI CSI-2 data lane 2	4	A4	Output	Digital	DMOMA	MIPI CSI-2 data lane 1
7	5	A5	Output	Digital	DMCKM	MIPI CSI-2 clock lane
8	6	A6	Output	Digital	DMOMB	MIPI CSI-2 data lane 2
9	7	A7	Output	Digital	DMOMD	MIPI CSI-2 data lane 4
10	8	A8	Power	Digital	VDDLSC	1.1 V power supply
11	9	A9	Power	Digital	VDDLSC	1.1 V power supply
12	10	A10	Power	Digital	VDDLSC	1.1 V power supply
13	11	A11	Power	Digital	VDDMIO	1.8 V power supply
14	12	A12	Input	Digital	INCK	Master clock input
15	13	A13	Input	Digital	REFCK	Reference clock input
16	14	A14	_	_	N.C.	Leave OPEN or connect to GND
17 83 Output Digital DMOPC MIPI CSI-2 data lane 3 18 84 Output Digital DMOPA MIPI CSI-2 data lane 1 19 85 Output Digital DMCKP MIPI CSI-2 data lane 2 20 86 Output Digital DMOPD MIPI CSI-2 data lane 2 21 87 Output Digital VDDLSC 1,1 V power supply 22 88 Power Digital VDDLSC 1,1 V power supply 23 89 Power Digital VDDLSC 1,1 V power supply 24 810 Power Digital VDDLSC 1,1 V power supply 25 811 Input Digital VSSLSC 1,1 V GND 26 812 Input Digital VSSLSC 1,1 V GND 27 813 GND Digital VSSLSC 1,1 V GND 29 C1 Power Digital VSSLSC 1,1 V GND 30 C2	15	B1	Power	Digital	VDDLSC	1.1 V power supply
18	16	B2	Power	Digital	VDDLSC	1.1 V power supply
19	17	В3	Output	Digital	DMOPC	MIPI CSI-2 data lane 3
December 2	18	B4	Output	Digital	DMOPA	MIPI CSI-2 data lane 1
21	19	B5	Output	Digital	DMCKP	MIPI CSI-2 clock lane
22 B8 Power Digital VDDLSC 1,1 V power supply 23 B9 Power Digital VDDLSC 1,1 V power supply 24 B10 Power Digital VDDLSC 1,1 V power supply 25 B11 Input Digital VSLSC 1,1 V GND 26 B12 Input Digital VSLSC 1,1 V GND 27 B13 GND Digital VSSLSC 1,1 V GND 28 B14 Power Digital VSSLSC 1,1 V power supply 29 C1 Power Digital VDLSC 1,1 V power supply 30 C2 GND Digital VDLSC 1,1 V power supply 31 C3 Power Digital VDLPLC 1,1 V power supply 32 C4 Power Digital VSSLSC 1,1 V GND 34 C6 GND Digital VSSLSC 1,1 V GND 35 C7 GND Digital<	20	B6	Output	Digital	DMOPB	MIPI CSI-2 data lane 2
23 B9 Power Digital VDDLSC 1.1 V power supply 24 B10 Power Digital VDDLSC 1.1 V power supply 25 B11 Input Digital YCLR System Reset (Active Low) 26 B12 Input Digital POREN Power supply monitor circuit enable input 27 B13 GND Digital VSSLSC 1.1 V GND 28 B14 Power Digital VSSLSC 1.1 V power supply 29 C1 Power Digital VSSLSC 1.1 V GND 31 C3 Power Digital VSSLSC 1.1 V GND 31 C3 Power Digital VSSLSC 1.1 V GND 32 C4 Power Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND	21	В7	Output	Digital	DMOPD	MIPI CSI-2 data lane 4
24 B10 Power Digital VDDLSC 1,1 v power supply 25 B11 Input Digital XCLR System Reset (Active Low) 26 B12 Input Digital POREN Power supply monitor circuit enable input 27 B13 GND Digital VSLSC 1.1 V GND 28 B14 Power Digital VDDLSC 1.1 V power supply 29 C1 Power Digital VDLSC 1.1 V GND 30 C2 GND Digital VSSLSC 1.1 V GND 31 C3 Power Digital VDLPL1 1.1 V power supply 32 C4 Power Digital VSSLSC 1.1 V GND 33 C5 GND Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND D	22	В8	Power	Digital	VDDLSC	1.1 V power supply
25 B11 Input Digital XCLR System Reset (Active Low) 26 B12 Input Digital POREN Power supply monitor circuit enable input 27 B13 GND Digital VSSLSC 1.1 V GND 28 B14 Power Digital VSDLSC 1.1 V power supply 29 C1 Power Digital VSDLSC 1.1 V GND 31 C3 Power Digital VSDLSC 1.1 V GND 31 C3 Power Digital VDLPL1 1.1 V power supply 32 C4 Power Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital<	23	В9	Power	Digital	VDDLSC	1.1 V power supply
26 B12 Input Digital POREN Power supply monitor circuit enable input 27 B13 GND Digital VSSLSC 1.1 V GND 28 B14 Power Digital VDDLSC 1.1 V power supply 29 C1 Power Digital VSSLSC 1.1 V GND 30 C2 GND Digital VSSLSC 1.1 V GND 31 C3 Power Digital VDDLIFL 1.1 V GND 32 C4 Power Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC<	24	B10	Power	Digital	VDDLSC	1.1 V power supply
27 B13 GND Digital VSSLSC 1.1 V GND 28 B14 Power Digital VDDLSC 1.1 V power supply 29 C1 Power Digital VDDLSC 1.1 V power supply 30 C2 GND Digital VSSLSC 1.1 V GND 31 C3 Power Digital VDDLPL1 1.8 V power supply 32 C4 Power Digital VSDLSC 1.1 V GND 33 C5 GND Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC 1.1 V GND 42 C14 Input Digital VSSLSC	25	B11	Input	Digital	XCLR	System Reset (Active Low)
28 B14 Power Digital VDDLSC 1.1 V power supply 29 C1 Power Digital VDDLSC 1.1 V power supply 30 C2 GND Digital VSSLSC 1.1 V GND 31 C3 Power Digital VDDLPL1 1.1 V power supply 32 C4 Power Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC 1.1 V GND 42 C14 Input Digital VSSLSC 1.1 V GND 45 D3 Power Digital VSSLSC	26	B12	Input	Digital	POREN	Power supply monitor circuit enable input
29 C1 Power Digital VDDLSC 1.1 V power supply 30 C2 GND Digital VSSLSC 1.1 V GND 31 C3 Power Digital VDDLPL1 1.8 V power supply 32 C4 Power Digital VDLPL1 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC 1.1 V GND 42 C14 Input Digital VSSLSC 1.1 V GND 44 D2 GND Digital VSSLSC 1.1 V GN	27	B13			VSSLSC	1.1 V GND
30 C2 GND Digital VSSLSC 1.1 V GND 31 C3 Power Digital VDDMIF 1.8 V power supply 32 C4 Power Digital VDDLPL1 1.1 V GND 33 C5 GND Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSLPL 1.1 V GND 40 C12 Power Digital VSLSC 1.1 V GND 42 C14 Input Digital VSLSC 1.1 V GND 44 D2 GND Digital VSLSC 1.1 V GND </td <td>28</td> <td>B14</td> <td>Power</td> <td>Digital</td> <td>VDDLSC</td> <td>1.1 V power supply</td>	28	B14	Power	Digital	VDDLSC	1.1 V power supply
31 C3 Power Digital VDDMIF 1.8 V power supply 32 C4 Power Digital VDDLPL1 1.1 V power supply 33 C5 GND Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC 1.1 V power supply 41 C13 GND Digital VSSLSC 1.1 V gnD 42 C14 Input Digital VSSLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V gnD 45 D3 Power Digital VDDLIF	29	C1	Power	Digital	VDDLSC	1.1 V power supply
32 C4 Power Digital VDDLPL1 1.1 V power supply 33 C5 GND Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC 1.1 V GND 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital VSDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V power supply 45 D3 Power Digital VDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC	30	C2	GND	Digital	VSSLSC	1.1 V GND
32 C4 Power Digital VDDLPL1 1.1 V power supply 33 C5 GND Digital VSSLSC 1.1 V GND 34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 40 C12 Power Digital VSSLSC 1.1 V GND 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital VSDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V power supply 45 D3 Power Digital VDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC	31	C3	Power	Digital	VDDMIF	1.8 V power supply
34 C6 GND Digital VSSLSC 1.1 V GND 35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLPL 1.1 V GND 40 C12 Power Digital VDLPL2 1.1 V GND 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital VDLSC 1.1 V power supply 43 D1 Power Digital VSSLSC 1.1 V GND 44 D2 GND Digital VSSLSC 1.1 V power supply 45 D3 Power Digital VDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC 1	32	C4	Power	Digital	VDDLPL1	
35 C7 GND Digital VSSLSC 1.1 V GND 36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLPL 1.1 V GND 40 C12 Power Digital VDLPL2 1.1 V GND 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital TRG_FB1 Emission trigger feedback input 1 43 D1 Power Digital VDDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC<	33	C5	GND	Digital	VSSLSC	1.1 V GND
36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLPL 1.1 V GND 40 C12 Power Digital VDLPL2 1.1 V GND 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital TRG_FB1 Emission trigger feedback input 1 43 D1 Power Digital VDDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC 1.1 V GND 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC<	34	C6	GND	Digital	VSSLSC	1.1 V GND
36 C8 GND Digital VSSLSC 1.1 V GND 37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLPL 1.1 V GND 40 C12 Power Digital VDLPL2 1.1 V GND 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital TRG_FB1 Emission trigger feedback input 1 43 D1 Power Digital VDDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC 1.1 V GND 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC<		C7 4	GND		VSSLSC	1.1 V GND
37 C9 GND Digital VSSLSC 1.1 V GND 38 C10 GND Digital VSSLSC 1.1 V GND 39 C11 GND Digital VSSLPL 1.1 V GND 40 C12 Power Digital VDDLPL2 1.1 V power supply 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital TRG_FB1 Emission trigger feedback input 1 43 D1 Power Digital VDDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VSSLSC 1.1 V GND 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital <	36	C8		_		
38C10GNDDigitalVSSLSC1.1 V GND39C11GNDDigitalVSSLPL1.1 V GND40C12PowerDigitalVDDLPL21.1 V power supply41C13GNDDigitalVSSLSC1.1 V GND42C14InputDigitalTRG_FB1Emission trigger feedback input 143D1PowerDigitalVDDLSC1.1 V power supply44D2GNDDigitalVSSLSC1.1 V GND45D3PowerDigitalVDDLIF1.1 V power supply46D4PowerDigitalVDDLIF1.1 V power supply47D5GNDDigitalVSSLSC1.1 V GND48D6GNDDigitalVSSLSC1.1 V GND49D7GNDDigitalVSSLSC1.1 V GND	37		_			
39 C11 GND Digital VSSLPL 1.1 V GND 40 C12 Power Digital VDDLPL2 1.1 V power supply 41 C13 GND Digital VSSLSC 1.1 V GND 42 C14 Input Digital TRG_FB1 Emission trigger feedback input 1 43 D1 Power Digital VDDLSC 1.1 V GND 44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VDDLIF 1.1 V power supply 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND	38	C10				1.1 V GND
40C12PowerDigitalVDDLPL21.1 V power supply41C13GNDDigitalVSSLSC1.1 V GND42C14InputDigitalTRG_FB1Emission trigger feedback input 143D1PowerDigitalVDDLSC1.1 V power supply44D2GNDDigitalVSSLSC1.1 V GND45D3PowerDigitalVDDLIF1.1 V power supply46D4PowerDigitalVDDLIF1.1 V power supply47D5GNDDigitalVSSLSC1.1 V GND48D6GNDDigitalVSSLSC1.1 V GND49D7GNDDigitalVSSLSC1.1 V GND	39					
41C13GNDDigitalVSSLSC1.1 V GND42C14InputDigitalTRG_FB1Emission trigger feedback input 143D1PowerDigitalVDDLSC1.1 V power supply44D2GNDDigitalVSSLSC1.1 V GND45D3PowerDigitalVDDLIF1.1 V power supply46D4PowerDigitalVDDLIF1.1 V power supply47D5GNDDigitalVSSLSC1.1 V GND48D6GNDDigitalVSSLSC1.1 V GND49D7GNDDigitalVSSLSC1.1 V GND	40					1.1 V power supply
42C14InputDigitalTRG_FB1Emission trigger feedback input 143D1PowerDigitalVDDLSC1.1 V power supply44D2GNDDigitalVSSLSC1.1 V GND45D3PowerDigitalVDDLIF1.1 V power supply46D4PowerDigitalVDDLIF1.1 V power supply47D5GNDDigitalVSSLSC1.1 V GND48D6GNDDigitalVSSLSC1.1 V GND49D7GNDDigitalVSSLSC1.1 V GND	41	C13		_		
43 D1 Power Digital VDDLSC 1.1 V power supply 44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VDDLIF 1.1 V power supply 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND	42			_	TRG_FB1	Emission trigger feedback input 1
44 D2 GND Digital VSSLSC 1.1 V GND 45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VDDLIF 1.1 V power supply 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND	43			_		
45 D3 Power Digital VDDLIF 1.1 V power supply 46 D4 Power Digital VDDLIF 1.1 V power supply 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND	44	D2	GND	_	VSSLSC	1.1 V GND
46 D4 Power Digital VDDLIF 1.1 V power supply 47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND	45	D3				1.1 V power supply
47 D5 GND Digital VSSLSC 1.1 V GND 48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND		D4				
48 D6 GND Digital VSSLSC 1.1 V GND 49 D7 GND Digital VSSLSC 1.1 V GND	47	D5				
49 D7 GND Digital VSSLSC 1.1 V GND						
	49					
TOO TOO TOURD TOUGHER TOOSESSO TILI VIGNO	50	D8	GND	Digital	VSSLSC	1.1 V GND

No.	Pin No.	I/O	Analog /Digital	Symbol	Pin Description
51	D9	GND	Digital	VSSLSC	1.1 V GND
52	D10	GND	Digital	VSSLSC	1.1 V GND
53	D11	Power	Analog	VDDHAN	3.3 V power supply
54	D12	Power	Analog	VDDHPF	3.3 V power supply
55	D13	Output	Digital	TRG 01	Emission trigger output 1
56	D14	Input	Digital	TRG FB0	Emission trigger feedback input 0
57	E1	Power	Digital	VDDLSC	1.1 V power supply
58	E2	GND	Digital	VSSLSC	1.1 V GND
59	E3	_	_	N.C.	Leave OPEN
60	E4	GND	Digital	VSSLSC	1.1 V GND
61	E5	GND	Digital	VSSLSC	1.1 V GND
62	E10	GND	Digital	VSSLSC	1.1 V GND
63	E11	GND	Analog	VSSHAN	3.3 V GND
64	E12	Input	Digital	SEL3	Effective pixel area select signal input 3
65	E13	Input	Digital	SEL2	Effective pixel area select signal input 2
66	E14	Output	Digital	TRG O0	Emission trigger output 0
67	F1	Power	Digital	VDDLSC	1.1 V power supply
68	F2	GND	Digital	VSSLSC	1.1 V GND
69	F3	Power	Analog	VDDHPF	3.3 V power supply
70	F4	_	_	N.C.	Leave OPEN
71	F5	GND	Digital	VSSLSC	1.1 V GND
72	F10	GND	Digital	VSSLSC	1.1 V GND
73	F11	I/O	Digital	PST_TRG	Get ambient light timing signal I/O
74	F12	Output	Digital	READY	IC available signal output
75	F13	Input	Digital	SEL1	Effective pixel area select signal input 1
76	F14	I/O	Digital	TRG_I	Emission trigger I/O
77	G1	Power	Digital	VDDLSC	1.1 V power supply
78	G2	GND	Digital	VSSLSC	1.1 V GND
79	G3	_	_	N.C.	Leave OPEN
80	G4	_	_	N.C.	Leave OPEN
81	G5	GND	Digital	VSSLSC	1.1 V GND
82	G10	GND	Digital	VSSLSC	1.1 V GND
83	G11	Power	Analog	VDDHPF	3.3 V power supply
84	G12	Input	Digital	SLASEL1	I ² C slave address select signal 1
85	G13	I/O	Digital	F_SYNC	Frame synchronization signal I/O
86	G14	Input 🥒	Digital	SEL0	Effective pixel area select signal input 0
87	H1	Power	Digital	VDDLSC	1.1 V power supply
88	H2	GND	Digital	VSSLSC	1.1 V GND
89	H3	GND	Digital	VSSLSC	1.1 V GND
90	H4	<u>\</u> -	_	N.C.	Leave OPEN
91	H5	GND	Digital	VSSLSC	1.1 V GND
92	H10	GND	Digital	VSSLSC	1.1 V GND
93	H11	Power	Digital	VDDMIO	1.8 V power supply
94	H12	Input	Digital	SLASEL2	I ² C slave address select signal 2
95	H13	GND	Digital	VSSLSC	1.1 V GND
96	H14	I/O	Digital	S_SYNC	Slot synchronization signal I/O
97	J1	Power	Digital	VDDLSC	1.1 V power supply
98	J2	GND	Digital	VSSLSC	1.1 V GND
99	J3	GND	Digital	VSSLSC	1.1 V GND
100	J4		_	N.C.	Leave OPEN
101	J5	GND	Digital	VSSLSC	1.1 V GND
102	J6	GND	Digital	VSSLSC	1.1 V GND
103	J7	GND	Digital	VSSLSC	1.1 V GND
104	J8	GND	Digital	VSSLSC	1.1 V GND

No.	Pin No.	I/O	Analog /Digital	Symbol	Pin Description
105	J9	GND	Digital	VSSLSC	1.1 V GND
106	J10	GND	Digital	VSSLSC	1.1 V GND
107	J11	Input	Digital	SLASEL0	I ² C slave address select signal 0
108	J12	Input	Digital	CMODE	Communication I/F switching input
109	J13	Output	Digital	XERROR	External reset request signal output
110	J14	Output	Digital	COMREADY	Communication period notification output
111	K1	Power	Digital	VDDLSC	1.1 V power supply
112	K2	Power	Digital	VDDLSC	1.1 V power supply
113	K3	Input	Analog	VRLDMON	VRLD monitor input
114	K4	Power	Digital	VDDMIO	1.8 V power supply
115	K5	Input	Digital	SWCLK	Serial Wire clock input
116	K6	I/O	Digital	SWDIO	Serial Wire data I/O
117	K7	GND	Digital	VSSLSC	1.1 V GND
118	K8	GND	Digital	VSSLSC	1.1 V GND
119	K9	GND	Digital	VSSLSC	1.1 V GND
120	K10	GND	Digital	VSSLSC	1.1 V GND
121	K11	GND	Digital	VSSLSC	1.1 V GND
122	K12	I/O	Digital	SDI	I ² C/SPI communication data I/O
123	K13		_	N.C.	Leave OPEN
124	K14	Input	Digital	TENABLE	Test enable input
125	L1	Power	Digital	VDDLSC	1.1 V power supply
126	L2	Power	Digital	VDDLSC	1.1 V power supply
127	L3	GND	Analog	VSSHAN	3.3 V GND
128	L4		_	N.C.	Leave OPEN
129	L5	_	_	N.C.	Leave OPEN
130	L6	_	_	N.C.	Leave OPEN
131	L7	_	_	N.C.	Leave OPEN
132	L8	_	_	N.C.	Leave OPEN
133	L9	_	_	N.C.	Leave OPEN
134	L10	GND	Digital	VSSLSC	1.1 V GND
135	L11	GND	Digital	VSSLSC	1.1 V GND
136	L12	I/O	Digital	SCK	I ² C/SPI communication clock I/O
137	L13	GND	Digital	VSSLSC	1.1 V GND
138	L14	Power	Digital	VDDLSC	1.1 V power supply
139	M1	_	1	N.C.	Leave OPEN or connect to GND
140	M2	Power /	Digital	VDDLSC	1.1 V power supply
141	М3	Power	Analog	VDDHAN	3.3 V power supply
142	M4	Power	Analog	VDDHPF	3.3 V power supply
143	M5)_\	_	N.C.	Leave OPEN
144	M6	Power	Analog	VRLD	SPAD anode potential
145	M7	Power	Analog	VRLD	SPAD anode potential
146	M8	Power	Analog	VRLD	SPAD anode potential
147	М9			N.C.	Leave OPEN
148	M10	Power	Digital	VDDLSC	1.1 V power supply
149	M11	Power	Digital	VDDLSC	1.1 V power supply
150	M12	Input	Digital	XCE	Serial communication data for SPI communication enable input
151	M13	Output	Digital	SDO	Serial communication data for SPI communication output
152	M14	_	_	N.C.	Leave OPEN or connect to GND

13. Electrical Characteristics

13.1. DC Characteristics

Table 13-1 DC Characteristics

Item	Pin	Symbol	Conditions	Min.	Тур.	Max.	Unit
	INCK, REFCK CMODE SCK, SDI SLASEL0 SLASEL1	VIH	_	0.75 × VDDIO	_	-	V
Digital input voltage	SLASEL2 F_SYNC, S_SYNC PST_TRG TRG_FB0 TRG_FB1 TRG_I SEL0, SEL1 SEL2, SEL3 POREN SWCLK, SWDIO TENABLE XCE	VIL	_	ame		0.25 × VDDIO	٧
	VO. 5	VIH	15	1.35	_	_	V
	XCLR	VIL		_	_	0.27	V
Digital output voltage	XERROR, READY	VOH	_	VDDIO - 0.2	_	_	V
	COMREADY SCK, SDI, SDO	VOL				0.2	٧
Digital output current	F_SYNC, S_SYNC PST_TRG, TRG_I TRG_O0, TRG_O1 SWDIO	IOH	VOH = VDDIO - 0.2	4.0 ^{*1}		_	mA
	SVVDIO	IOL	VOL = 0.2	4.0 ^{*1}	_	_	mA

^{*1} IOH and IOL conform to the drivability setting value. The values in the table are the default settings.

13.2. AC Characteristics

13.2.1. Master Clock (INCK)

Fig. 13-1 INCK Waveform Schematic Diagram

Table 13-2 Input Clock Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
INCK clock frequency	finck	16	20	30	MHz	f _{INCK} = 16,20,24,30 MHz (Intermediate values not allowed)
INCK clock accuracy	_	- 150	_	+ 150	ppm	Accuracy of the quartz crystal resonator of about ±50 ppm is recommended because it affects ranging accuracy.
INCK Low level pulse width	fwLinck	15	_	(ns	Voltage conditions: 0.2 × VDDIO
INCK High level pulse width	fwhinck	15	_		ns	Voltage conditions: 0.8 × VDDIO
INCK clock duty	_	45	50	55	%	Defined by 0.5 × VDDIO
INCK rise time	t _{r_INCK}	_		5	ns	0.2 × VDDIO→0.8 × VDDIO
INCK fall time	t _{f INCK}			5	ns	0.8 × VDDIO→0.2 × VDDIO

13.2.2. Reference Clock (REFCK)

Fig. 13-2 REFCK Waveform Schematic Diagram

Table 13-3 REFCK Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
REFCK clock frequency	frefck	16	f _{INCK}	30	MHz Input same frequency as INCK for	
						REFCK
REFCK Low level pulse	fwlrefck	15	1	1	ns	Voltage conditions: 0.2 × VDDIO

width						
REFCK High level pulse	fwhrefck	15	_	_	ns	Voltage conditions: 0.8 × VDDIO
width						
REFCK clock duty	_	45	50	55	%	Defined by 0.5 × VDDIO
REFCK rise time	t. DEFOK			5	ns	0.2 × VDDIO→0.8 × VDDIO
INEFOR TISE UITIE	ι _{r_REFCK}			5	113	0.2 ·· VDDIO →0.0 ·· VDDIO

13.2.3. System Reset (XCLR)

Fig. 13-3 XCLR Waveform Schematic Diagram

Table 13-4 XCLR Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
XCLR Low level pulse width	twlxclr	1000	_		ns	Voltage conditions: 0.27 V
XCLR rise time	t _{r_XCLR}	_	- (100	ns	0.27 V→1.35 V
XCLR fall time	t _{f_XCLR}	_	-0	100	ns	1.35 V→0.27 V

13.2.4. Get Ambient Light Timing Signal (PST_TRG)

Fig. 13-4 PST_TRG Waveform Schematic Diagram

Table 13-5 PST_TRG Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
PST_TRG High level pulse width	t _{ptrgh}	100	_	_	ns	Voltage conditions: 0.8 ×
						VDDIO
PST_TRG signal rise time	t _{RISE}	_	_	100	ns	0.2 × VDDIO→0.8 × VDDIO
(When PST_TRG signal is output)						
PST_TRG signal fall time	t _{FALL}	_	_	100	ns	0.8 × VDDIO→0.2 × VDDIO
(When PST_TRG signal is output)						

Table 13-6 PST_TRG Output Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
PST_TRG High level pulse width	t _{ptrgh}	16	64	1000	ns	Voltage conditions: 0.8 ×
						VDDIO
PST_TRG signal rise time	t _{RISE}	-	_	1.8	ns	0.2 × VDDIO→0.8 × VDDIO
(When PST_TRG signal is output)						Output load capacitance: 20 pF
PST_TRG signal fall time	t _{FALL}	-	_	1.6	ns	0.8 × VDDIO→0.2 × VDDIO
(When PST_TRG signal is output)						Output load capacitance: 20 pF

13.2.5. Effective Pixel Area Select Signal / Emission Trigger Input Signal (SEL/TRG_I)

Fig. 13-5 SEL0/1/2/3, TRG_I Waveform Schematic Diagram

Table 13-7 SEL and TRG_I Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SEL pulse width	t_{sel}	125	_	_	ns	Voltage conditions: 0.2,
						0.8×VDDIO
Emission trigger input setup time	t _{trgs}	25	_	_	ns	Voltage conditions: 0.2,
						0.8×VDDIO
Emission trigger pulse width	t_{trgh}	100	_	_	ns	Voltage conditions: 0.8 × VDDIO
Emission trigger rise time	t _{RISE}	_	_	100	ns	0.2 × VDDIO→0.8 × VDDIO
(when emission trigger is output)						
Emission trigger fall time	t _{FALL}	-	_	100	ns	0.8 × VDDIO→0.2 × VDDIO
(when emission trigger is output)						

Table 13-8 TRG	I Output Characteristics
----------------	--------------------------

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Emission trigger pulse width	t_{trgh}	16	64	1000	ns	Voltage conditions: 0.8 × VDDIO
Emission trigger rise time	t _{RISE}	_	_	1.8	ns	0.2 × VDDIO→0.8 × VDDIO
(when emission trigger is output)						Output load capacitance: 20 pF
Emission trigger fall time	t _{FALL}	_	_	1.6	ns	0.8 × VDDIO→0.2 × VDDIO
(when emission trigger is output)						Output load capacitance: 20 pF

13.2.6. Emission Trigger Feedback Signal (TRG_FB0/1)

Fig. 13-6 TRG_FB0/1 Waveform Schematic Diagram

Table 13-9 TRG_FB0/1 Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Trigger feedback signal pulse width	t _{FB}	4	5		ns	Voltage conditions: 0.8 × VDDIO
Trigger feedback signal rise time	trise	1	_	100	ns	0.2 × VDDIO→0.8 × VDDIO
Trigger feedback signal fall time	t _{FALL}	_	_	100	ns	0.8 × VDDIO→0.2 × VDDIO

13.2.7. Emission Trigger Output Signal (TRG_O0/1)

Fig. 13-7 TRG_O0/1 Waveform Schematic Diagram

Table 13-10 TRG_O0/1 Output Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
TRG_00/1 signal pulse	TRG_O_WIDTH	16	100	1000	ns	The standard value is the default
width						value
TRG_O0/1 signal rise time	t _{RISE}	_	_	1.8	ns	0.2 × VDDIO→0.8 × VDDIO
						Output load capacitance: 20 pF
TRG_00/1 signal fall time	t _{FALL}	_	_	1.7	ns	0.8 × VDDIO→0.2 × VDDIO
						Output load capacitance: 20 pF

13.2.8. Frame Synchronization Signal / Slot Synchronization Signal (F_SYNC/ S_SYNC)

Fig. 13-8 F_SYNC / S_SYNC Waveform Schematic Diagram

Table 13-11 F_SYNC/S_SYNC Input Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
F_SYNC pulse width	t _{fsynh}	8	_	998	ms	_
S_SYNC pulse width	t _{ssynh}	40	_	_	μs	_
F_SYNC/S_SYNC signal Rise time (when synchronization signal is output)	trise	_	_	100	ns	0.2 × VDDIO→0.8 × VDDIO
F_SYNC/S_SYNC signal Fall time (when synchronization signal is output)	tfall	_	_	100	ns	0.8 × VDDIO→0.2 × VDDIO

Table 13-12 F SYNC/S SYNC Output Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
F_SYNC pulse width	t _{fsynh}	1	7.992	998	ms	_
S_SYNC pulse width	t _{ssynh}	40	48	1000	μs	_
F_SYNC/S_SYNC signal	t _{RISE}	_	_	1.8	ns	0.2 × VDDIO→0.8 × VDDIO
Rise time						Output load capacitance: 20
(when synchronization signal is						pF
output)						
F_SYNC/S_SYNC signal	t _{FALL}	_	_	1.6	ns	0.8 × VDDIO→0.2 × VDDIO
Fall time						Output load capacitance: 20
(when synchronization signal is						pF
output)						

SONY

13.2.9. IC Available Signal/Communication Period Notification (READY/COMREADY)

Fig. 13-9 READY / COMREADY Waveform Schematic Diagram

Table 13-13 READY/COMREADY Output Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
READY/COMREADY signal	t _{RISE}	_	_	1.8	ns	0.2 × VDDIO→0.8 × VDDIO
Rise time						Output load capacitance: 20
						pF
READY/COMREADY signal	t _{FALL}	_	_	1.6	ns	0.8 × VDDIO→0.2 × VDDIO
Fall time						Output load capacitance: 20
						pF

13.2.10. External Reset Request Signal (XERROR)

Fig. 13-10 XERROR Waveform Schematic Diagram

Table 13-14 XERROR Output Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
XERROR signal	t _{RISE}	_	_	1.8	ns	0.2 × VDDIO→0.8 × VDDIO
Rise time						Output load capacitance: 20
						pF
XERROR signal	trall	_	_	1.6	ns	0.8 × VDDIO→0.2 × VDDIO
Fall time						Output load capacitance: 20
						pF

13.2.11. Serial Communication

I²C communication

Fig. 13-11 I²C Communication Waveform Schematic Diagram

Table 13-15 I²C Communication Operating Specifications

Itom	Cumbal	Fast	mode	Linit	Remarks	
Item	Symbol	Min.	Max.	Unit	Remarks	
Low level input voltage	V_{IL}	-0.5	0.3 × VDDIO	V	_	
High level input voltage	V _{IH}	0.7 × VDDIO	VDDIO max +0.5	V		
Low level output voltage	V_{OL}	0	0.2 × VDDIO	V	VDDIO < 2 V, Sink 3 mA	
Output fall time	t _{of}		250	ns	Load 10 pF to 400 pF, 0.7 × VDDIO → 0.3 × VDDIO	
Input current	li	-10	10	μΑ	0.1 × VDDIO → 0.9 × VDDIO	
SCL and SDA input capacitance	Ci	_	10	pF	_	

Table 13-16 I²C Communication AC Timing

	_	9				
Item	Symbol		Fast mode		Unit	Remarks
item	Syllibol	Min.	Тур.	Max.	Offic	Remarks
SCL clock frequency	J _s		400		1411-	Only FastMode is
	fscL	_		_	kHz	supported
Hold time (Start condition,	t	0.6	_			
Repeated Start Condition)	t _{HD;STA}	0.6			μs	_
SCL clock Low period	t _{LOW}	1.3	_	_	μs	_
SCL clock High period	t _{HIGH}	0.6	_	_	μs	_
Setup time	4	0.0	_			
(Repeated Start Condition)	tsu;sta	0.6		_	μs	_
Data hold time	t _{HD;DAT}	0	_	0.9	μs	_
Data setup time	t _{SU;DAT}	100	_	_	ns	_
SDA and SCL rise time	tr		_	300	ns	_
SDA and SCL fall time	t _f		_	300	ns	_
Setup time (Stop condition)	tsu;sto	0.6	_	_	μs	_
Bus free time between			_			
Stop condition and Start	t _{BUF}	1.3		_	μs	_
condition						

SPI communication

Fig. 13-12 SPI Communication Waveform Schematic Diagram

Table 13-17 SPI Communication AC Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SCK clock frequency	f _{SCK}	_		f _{INCK} / 2*1	MHz	_
XCE input setup time	t _{suxce}	20	<u>O</u> _	_	ns	Voltage conditions: 0.2,0.8 × VDDIO
XCE input hold time	t _{HDXCE}	20	_	_	ns	Voltage conditions: 0.2,0.8 × VDDIO
XCE High level pulse width	t _{WHXCE}	20	_	_	ns	Voltage conditions: 0.8 × VDDIO
SDI input setup time	t _{suspi}	10	_	_	ns	Voltage conditions: 0.2,0.8 × VDDIO
SDI input hold time	t _{HDSDI}	10	_	_	ns	Voltage conditions: 0.8 × VDDIO
SDO output hold time	t _{DLSDO}	0	-	25	ns	Output load capacitance: 20 pF Voltage conditions: 0.2,0.8 × VDDIO
XCE rise time	t _{r_XCE}	1		100	ns	$0.2 \times VDDIO \rightarrow 0.8 \times VDDIO$
XCE fall time	t _{f_XCE}	-	_	100	ns	0.8 × VDDIO → 0.2 × VDDIO
SCK rise time	t _{r_SCK}			100	ns	0.2 × VDDIO → 0.8 × VDDIO
SCK fall time	t _{f_SCK}		_	100	ns	$0.8 \times VDDIO \rightarrow 0.2 \times VDDIO$
SDI rise time	t _{r_SDI}			100	ns	$0.2 \times VDDIO \rightarrow 0.8 \times VDDIO$
SDI fall time	t _{f_SDI}	_	_	100	ns	0.8 × VDDIO → 0.2 × VDDIO

^{*1} The maximum value varies according to the input INCK frequency.

enlinconly

13.3 Current Consumption

The prerequisites for the average operating current are as follows:

♦ Readout: Line modes

◆ Pixel size: 1 (H) × 4(V) element = 3 (H) × 12 (V) SPAD

Number of horizontal pixels: 192 pixels

F_SYNC cycle: 100 msS_SYNC cycle: 125 μs

Number of slots: 784 timesNumber of TRG I: 20 times

♦ Frame rate: 10 frame/s

◆ SPAD activation rate: 10 MHz

♦ Output data mode: Ranging; Output data rate: 800 Mbps/lane

Number of lanes: 4 lanes
 SPAD On period : 1.000 µs
 LD divisions: 4 divisions

◆ Power supply: Standard VDDD = 1.1 V, VDDA = 3.3 V, VDDIO = 1.8 V, Vex = 3.3 V, VOP = Optimal value

Maximum VDDD = 1.15 V, VDDA = 3.4 V, VDDIO = 1.9 V, Vex = 3.4 V, VOP = Optimal value

lacktriangle Temperature: Standard 85 $^{\circ}$ C, Maximum 125 $^{\circ}$ C

Table 13-18 Current Consumption

	Item	Symbol	Тур.	Max.	Unit
	SPAD breakdown voltage power supply	IVOP_A*1	1.7	6.0	mA
Average operating current	SPAD excess voltage power supply	IVex_A*2	2.7	10.0	mA
(Frame average)	Digital power supply	IVDDD_A*3	320	598	mA
(Frame average)	Analog power supply	IVDDA_A*4	2.6	3.2	mA
	I/O power supply	IVDDIO_A*5	2.8	3.6	mA
	SPAD breakdown voltage power supply	IVOP_P*1	64.7	236	mA
Peak operating	SPAD excess voltage power supply	IVex_P*2	151	672	mA
current	Digital power supply	IVDDD_P*3	1643	3401	mA
	Analog power supply	IVDDA_P*4	2.6	6.4	mA
	I/O power supply	IVDDIO_P*5	2.8	7.2	mA
	SPAD breakdown voltage power supply*7	IVOP_STB*1	0	3.0	mA
Standby operating	SPAD excess voltage power supply	IVex_STB*2	0	0.3	mA
current*6			19	400	mA
	Analog power supply	IVDDA_STB*4	0	0.1	mA
•	I/O power supply	IVDDIO_STB*5	0	0.1	mA

^{*1} VOP: VRLD *2 Vex: VDDHPF

The above current consumption is a reference value. If these prerequisites are to be changed, use the voltage power

^{*3} VDDD: VDDLSC, VDDLPL1, VDDLPL2, VDDLIF

^{*4} VDDA: VDDHAN

^{*5} VDDIO: VDDMIO, VDDMIF

^{*6} XCLR = 0 V *7 VRLD = 0 V

supply with a current consumption not exceeding the maximum value.

The array mode has a similar current value as the line mode if the activation rate is equivalent to that of the line mode.

Fig. 13-13 Timing Chart Diagram of Current Consumption Conditions

14. Input/Output Equivalent Circuits

Table 14-1 Input/Output Pins Equivalent Circuits

Symbol	Equivalent Circuit	Symbol	Equivalent Circuit
VRLD	VDDHPF	SWCLK XCE	VDDMIO VDDMIO Input VSSLSC
PST_TRG TRG_I TRG_FB0 TRG_FB1 F_SYNC S_SYNC	VDDMIO In/Out VSSLSC	TENABLE CMODE SEL0 SEL1 SEL2 SEL3 SLASEL0 SLASEL1 SLASEL1	VDDMIO VDDMIO Input VSSLSC
SWDIO	VDDMIO VDDMIO In/Out VSSLSC	INCK REFCK	VDDMIO VDDMIO Input VSSLSC
SCK SDI	VDDMIO VSSLSC VSSLSC	VRLDMON	VDDHAN Input VSSHAN
POREN	VDDMIO VDDMIO Input VSSLSC	SDO READY COMREADY XERROR TRG_O0 TRG_O1	VDDMIO out VSSLSC
XCLR	VDDHAN 1MΩ 1mΩ 1mΩ VSSLSC VSSLSC	DMOPA DMOPB DMOPC DMOPD DMOMA DMOMB DMOMC DMOMD DMCKP DMCKM	LP driver 1.2V REG VDDLIF vvDLIF vvDLIF vvslsc VSSLSC

15. Characteristics

Table 15-1 List of Characteristics

Laser wavelength ($\lambda = 905 \text{ nm}$)

	Symb	Conditions			Characteristics				
Item	ol	Power supply	Temperature [$^{\circ}\!$	SPAD/ Element	Min.	Тур.	Max.	Unit	Remarks
Breakdown voltage (*3)	VBD	Typ. ^(*2)	- 40 to 125	Element	- 24.5	(- 22.5)	- 17	V	_
Breakdown voltage Temperature- dependent	VBD /Tj	Typ. ^(*2)	- 40 to 125	Element	_	(- 25) *1	_	mV/°C	
Dark count rate	DCR	Typ. ^(*2)	- 40 to 125	Element	_	(3.5k)	6 M	cps	Average per SPAD
Photon Detection Efficiency	PDE	Typ.(*2)	- 40 to 125	Element	10	(24)	H	%	Average per SPAD
Dead time (Pulse width, Most frequent)	DT	Typ.(*2)	85	Element	_	(9)	11.5	ns	Average per SPAD
Dead time (Pulse width, Accumulation 99%)	DT2	Typ. ^(*2)	85	Element	· 25	(15)	(20)	ns	Average per SPAD
After-pulse probability	APP	Typ.(*2)	- 15	Element	_	_	(5)	%	Average per SPAD
Crosstalk probability between SPAD	XT	Typ. ^(*2)	85	SPAD	_	(0.75)	_	%	_
SPAD output jitter (FWHM)	Jitter	Typ. ^(*2)	85	SPAD	_	(300)	1	ps	_
Inter-element output skew (all pixels)	_	Typ. ^(*2)	- 40 to 125	Element	_	_	1.45	ns	Identical H direction Between p-p
Incident angle characteristics	CRA	90 % s	sensitivity relative λ = 905 nm	to 0°	_	_	20	deg	_

Values in parentheses are for reference only

^{*3} Breakdown voltage (VBD) means the avalanche voltage of SPAD, and is defined as the difference between the bottom level of the cathode and VOP when SPAD reacts, as shown in Fig. 15-1

Quench · Recharge waveform

^{*1} Linear approximation from - 40 °C to 125 °C

^{*2} VDDD = 1.1 V, VDDA = 3.3 V, VDDIO = 1.8 V, Vex = 3.3 V, VOP = Optimal voltage

Fig. 15-1 SPAD quench recharge waveform and readout circuit

Fig. 15-2 Schematic Diagram of SPAD Breakdown Voltage VBD (Diode I-V Characteristics)

Inter-element output skew=td_max - td_min

td_max : Maximum light detection time in 192 pixels td_min : Minimum light detection time in 192 pixels

Fig. 15-3 Inter-element output skew (all pixels) Defined

16. Example of Spectral Sensitivity Characteristics

Fig. 16-1 Example of Spectral Sensitivity Characteristics

17. Setting Registers Using Serial Communication

This sensor can write and read the setting values of the various registers shown in the Register Map by SPI communication and I²C communication. See the Application Note for the addresses, setting values, and communication protocol to be set.

17.1. Selecting the Communication System

The communication system is specified by the CMODE pin. Establish the CMODE pin status before canceling the system reset.

(Do not switch this pin status during operation.) The CMODE pin can also be left open. In this case I^2C communication is selected.

Table 17-1 List of Available Communication Systems

Pin name	Pin No.	Pin processing	Communication system	Remarks
CMODE	J12	Fixed to Low or Open	I ² C communication ⁴	High: VDDIO
CIVIODE	JIZ	Fixed to High	SPI communication	Low: GND

17.2. Description of Register Communication (I²C Communication)

Fig. 17-1 Serial Communication Pin Connections (I²C Communication)

Table 17-2 Description of 17 I²C Communication Pins

Pin name	Pin No.	Remarks
SCL (Shared with SCK)	L12	Serial communication clock input
SDA (Shared with SDI)	K12	Serial communication data I/O
SLASEL2	H12	Slave address selection input
SLASEL1	G12	Slave address selection input
SLASEL0	J11	Slave address selection input

Table 17-3 Supported 17 I²C Communication Modes

Mode	Support	Communication speed
Standard mode	Non-Supported	100 kbps
Fast mode	Supported	400 kbps
Fast mode plus	Non-Supported	1 Mbps

17.2.1. Slave Address

The slave address of the sensor is specified by the SLASEL2, SLASEL1 and SLASEL0 pins. Establish the SLASEL2, SLASEL1 and SLASEL0 pin statuses before canceling the system reset. (Do not switch this pin status during operation.)

Table 17-4 List of Available Slave Addresses

	Pin processino or Open) / H:) High (VDDIO)	Slave address								
SLASEL2	SLASEL1	SLASEL0	HEX	HEX MSB -				LSB			
L	L	L	0x1A	0	0	1	1	0	1	0	1
L	L	Н	0x1B	0	0	1	1	0	1	1	1/1
L	Н	L	0x1C	0	0	1	1	1	0	0	
L	Н	Н	0x1D	0	0	1	1	1	0	1	D/\/
Н	L	L	0x10	0	0	1	0	0	0	0	R/W
Н	L	Н	0x20	0	1	0	0	0	0	0	
Н	Н	L	0x36	0	1	1	0	1	1	0	
Н	Н	Н	0x37	0	1	1	0	1	1	1	

Table 17-5 R/W Transfer Direction

R/W bit	Transfer direction
0	Write (Master → Sensor)
1	Read (Sensor → Master)

17.3. Description of Register Setting (SPI Communication)

Fig. 17-2 Serial Communication Pin Connections (SPI Communication)

Table 17-6 Description of SPI Communication Pins

Pin name	Pin No.	Remarks			
XCE M12		Serial communication enable input			
SCK L12		Serial communication clock input			
SDI K12		Serial communication data input			
SDO M13		Serial communication data output			

When selecting SPI communication clip the SLASEL0/1/2 pin on GND

18. Output Interface

18.1. Description

This section describes the ranging data output modes supported by this sensor.

The following readout modes are supported.

- Line mode max. 21(V) × 576(H) SPAD
- Array mode max. 6(V) × 576(H) SPAD

- For TPX Touch Solutions (Xiamen) Inc Only

18.2. MIPI Transmitter

This section describes the CSI-2 output pins (DMOPA to DMOPD, DMOMA to DMOMD, DMCKP, DMCKM).

Fig. 18-1 Relationship between Pin Name and MIPI Output Lane

The pixel signals are output on the CSI-2 high-speed serial interface. Refer to the following MIPI standards.

- MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.2
- · MIPI Alliance Specification for D-PHY Version 1.2

Fig. 18-2 Universal Lane Module Functions

18.3. Frame Format

Each line of each frame is output in the same manner as the CSI-2 General Frame Format. The settings in each packet header are described below. The MIPI output is output as one frame not in F_SYNC units but in slot units (\$SYNC units).

Table 18-1 DATA Type

Header [5:0]	Name	Description
0x00	Frame Start Code	FS line output
0x01	Frame End Code	FE line output
0x2C	RAW12	RAW12 output (Active area)
0x12	Embedded Data	Embedded line output
0x30	Statistics Data	Statistics line output
0x31	Ambient Data	Ambient line output

18.4. Frame Structure

The figure below shows the frame configuration.

Fig. 18-3 Output Frame Configuration

'1 "N + 1 Frame" means the next slot data.

18.5. CSI-2 Output Format

The output format of this sensor supports the following modes:

- MIPI CSI-2 serial data output 4 Lane, RAW12
- MIPI CSI-2 serial data output 2 Lane, RAW12

The ranging data is output as CSI-2. DMOPA and DMOMA are called the data signals for data lane 1, DMOPB and DMOMB for data lane 2, DMOPC and DMOMC for data lane 3, and DMOPD and DMOMD for data lane 4. In addition, the clock signal is output from DMCKP and DMCKM.

In 2-lane output drive mode, the data is output from data lane 1 and data lane 2.

In 4-lane output drive mode, the data is output from data lane 1, data lane 2, data lane 3 and data lane 4.

An example of RAW12 output is shown below.

Fig. 18-4 Example of RAW12 Output

SONY

19. Operating Modes

19.1. Description

This section describes the ranging data output modes supported by this sensor.

The following operating modes are supported.

- ◆ Ranging mode
- ◆ Echo mode
- ♦ Histogram mode

The minimum slot rates supported in ranging mode are shown below. However, the values noted below are for the MIPI 2 Gbps/lane, 4 lanes use case.

Table 19-1 List of Operating Modes (Ranging Mode)

Number of pixels	One Pixel configuration (H × V SPAD)	SPAD on period	TDC	Up Sample	Ranging possible distance	Ranging resolution	Minimum slot rate	Remarks
192 pixels	3 × N	1.000 µs	1 (1)	× 1,	150 m	45	50 µs	Output data needs to be reduced
96 pixels	6 × N	2.024 µs	1 GHz	× 2coarse	303 m	15 cm	50 μs	
48 pixels	12 × N	2.024 µs			303 m		50 μs	
192 pixels	3 × N	2.000 µs	0.5.011-	× 1,	300 m	20	50 µs	Output data needs to be reduced
96 pixels	6 × N	2.024 µs	0.5 GHz	× 2coarse	303 m	30 cm	50 μs	
48 pixels	12 × N	2.024 µs			303 m		50 μs	

Prerequisites: Ranging mode, MIPI 2 Gbps/lane, 4 lanes N = 1 to 21

19.2. Data output Format

The detailed output formats and data in ranging mode, echo mode and histogram mode are described below.

19.2.1. Ranging Mode

^{*}Pixel packing can be selected from 1/4/8/12/16.

Fig. 19-1 Output Format (Ranging Mode)

Table 19-2 Detailed Ranging Mode Data

Pixel No.	Pixel information	Echo No.	Output data	Bit accuracy	Bit assignment	Number of bits	On/Off register name
			Pixel No.	U12	[11:0]	12	G_OUTPUT_HEAD_0
			Echo detection threshold	U12	[11:0]	12	
			Echo judgment threshold 1	U12	[11:0]	12	G_OUTPUT_HEAD_1
	Common information		Echo judgment threshold 2	U12	[11:0]	12	
			Bn	U8	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_2
		-	SUM_Bi	U12	[11:0]	12	
			REF maximum signal strength	U8	{4"b0, [7:0]}	12	G_OUTPUT_HEAD_3
			REF maximum position	U12	[11:0]	12	
			Long-distance maximum signal strength	U8	{4"b0, [7:0]}	12	G_OUTPUT_HEAD_4
			MAX_Bi	U\$	{4"b0, [7:0]}	12	
			Peak signal strength	U12	[11:0]	12	G_OUTPUT_RANGE_PEAK
			Peak position	U12	[11:0]	12	
			Half width start position (integer)	U12	[11:0]	12	
			Half width start position (decimal)	U4	{8"b0, [3:0]}	12	
			Half width end position (integer)	U12	[11:0]	12	G_OUTPUT_RANGE_HALF
			Half width end position (decimal)	U4	{8"b0, [3:0]}	12	
	Individual information	1	Echo start position	U12	[11:0]	12	G_OUTPUT_RANGE_ECHO
			Echo end position	U12	[11:0]	12	
0			Valley minimum signal strength	U12	[11:0]	12	G_OUTPUT_RANGE_OTHER
U			Long-distance peak position	U12	[11:0]	12	
			Peak minimum signal strength	U12	[11:0]	12	
			Various flags [11:8] Echo number [7:6]Reserved [5] Peak value detected multiple times, [4] Last split peak, [3] First split peak, [2] End position error, [1] Start position error, [0] Echo valid	U12	[11:0]	12	G_OUTPUT_RANGE_FLAG
			• • •				
		10	Peak signal strength	U12	[11:0]	12	
			• • •				
< C			Various flags [11:8] Echo number [7:6]Reserved [5] Peak value detected multiple times, [4] Last split peak, [3] First split peak, [2] End position error, [1] Start position error, [0] Echo valid	U12	[11:0]	12	
	CRC	-	CDC (when a shed a shed) to the desired of the shed	U16	{4'b0,CRC[7:0]}	12	-
			CRC (when packed, only the last pixel of a line is output)		{4"b0,CRC[15:8]}	12	-
1							
2			• • •				

N=48,96,192

*Can set the number of echoes per pixel with G_OUTPUT_NUM_ECHO

Detailed ranging mode data

19.2.2. Echo Mode

*Pixel packing can be selected from 1/4/8/12/16.

Fig. 19-2 Output Format (Echo Mode)

Table 19-3 Detailed Echo Mode Data

Pixel No.	Pixel information	Echo No.	Output data	Bit accuracy	Bit assignment	Number of bits	On/Off register name
	Common information		Pixel No.	U12	[11:0]	12	G_OUTPUT_HEAD_0
			Echo detection threshold	U12	[11:0]	12	
			Echo judgment threshold 1	U12	[11:0]	12	G_OUTPUT_HEAD_1
			Echo judgment threshold 2	U12	[11:0]	12	
			Bn	U12	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_2
		-	SUM_Bi	U12	[11:0]	12	
			REF maximum signal strength	U12	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_3
			REF maximum position	U12	[11:0]	12	
			Long-distance maximum signal strength	U12	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_4
			MAX_Bi	U8	{4'b0, [7:0]}	12	
			Echo start position	U12	[11:0]	12	
			Echo end position	U12	[11:0]	12	
			Echo (start+0)	U12	[11:0]	12	
	Individual information	1	Echo (start+1)	U12	[11:0]	12	
0							
			Echo (end-1)	U12	[11:0]	12	
			Ech <mark>o</mark> (end-0)	U12	[11:0]	12	
			√				
		10	Echo start position	U12	[11:0]	12	
			Echo end position	U12	[11:0]	12	
			Echo (start+0)	U12	[11:0]	12	
			Echo (start+1)	U12	[11:0]	12	
			Echo (end-1)	U12	[11:0]	12	
			Echo (end-0)	U12	[11:0]	12	
	CRC	-	CRC (when packed, only the last pixel of a line is output)	U16	{4'b0,CRC[7:0]}	12	-
					{4'b0,CRC[15:8]}	12	-
1	₹						
2							
(, /).							
N-1	_						

N=48,96,192

When G_OUTPUT_NUMBIN_MODE = 0, the number of output echoes per pixel can be set in G_OUTPUT_NUM_ECHO

Detailed echo mode data

19.2.3. Histogram Mode

^{*}Pixel packing can be selected from 1/4/8/12/16

Fig. 19-3 Output Format (Histogram Mode)

Table 19-4 Detailed Histogram Mode Data

Pixel No.	Pixel information	Echo No.	Output data	Bit accuracy	Bit assignment	Number of bits	On/Off register name
	Common information		Pixel No.	U12	[11:0]	12	G_OUTPUT_HEAD_0
			Echo detection threshold	U12	[11:0]	12	
			Echo judgment threshold 1	U12	[11:0]	12	G_OUTPUT_HEAD_1
		-	Echo judgment threshold 2	U12	[11:0]	12	
			Bn	U12	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_2
			SUM_Bi	U12	[11:0]	12	
			REF maximum signal strength	U12	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_3
			REF maximum position	U12	[11:0]	12	
			Long-distance maximum signal strength	U12	{4'b0, [7:0]}	12	G_OUTPUT_HEAD_4
			MAX_Bi	U8	{4'b0, [7:0]}	12	
			Histogram start position	U12	[11:0]	12	C OLITBUT THET TIMEDIEO
			Histogram end position	U12	[11:0]	12	G_OUTPUT_HIST_TIMEINFO
			Histogram (start+0)	U12	[11:0]	12	
			Histogram (start+1)	U12	[11:0]	12	
0							
U	Individual information						
			S				
)				
		_					
			• • •				
			• • •				
						12	
			Histogram (end-1)	U12	[11:0]	12	
			Histogram (end-0)	U12	[11:0]	12	
	CRC	-	CDC(-1 lo l - lo do l - a lo lo l' - lo c')	THE	{4'b0,CRC[7:0]}	12	-
	CRC	-	CRC (when packed, only the last pixel of a line is output)	U16	{4'b0,CRC[15:8]}	12	-
1							
2							
N-1	_						_
				-	-		

N=48,96,192 *Set output bin with B_STRM_HIST_TIME_START/B_STRM_HIST_TIME_END

Detailed histogram mode data

SONY

20. Example of Peripheral Circuits

Fig. 20-1 Example of Peripheral Circuits

The power supply smoothing capacitors of 1.0 μ F or more connected to the same power supply in the figure,the number of capacitors can be reduced on the assumption that the total capacity value of the capacitors does not decrease.(For example, when bundling the 4.7 μ F capacitors for two pins, 4.7 μ F × 2 = 9.4 μ F, so select a larger value such as 10 μ F, etc.).

Capacitors below $0.1~\mu\text{F}$ in the figure are required to remove high frequency noise, so it is not recommended to reduce or combine them.

A large number of capacitors are mounted, so the recommended size is 0603. However, when selecting the ceramic capacitors to be used, select the components and sizes in consideration of the relationship between the actually applied DC voltages and the actual capacitance values.

Sony gement of the Arabical Solutions Wilders Williams Willia Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third-party and other SONY

21. Power-On/Off

21.1. Power-on/off Sequence

The VDDD, VDDA, VDDIO and Vex power supply On/Off sequences order do not matter. the slew rate restriction described below should be observed with regards to the rise from 0 V to the supply voltages (0 % to 100 %) during power-on. There are restrictions on the order of VOP On/Off sequences.

Refer to the Application Note for sequence details. The potential difference between Vex and VOP during Vex startup should be the SPAD breakdown voltage or less. (*1).

Fig. 21-1 Power-On/Off Sequences

21.2. Slew Rate during Power-On

Fig. 21-2 Slew Rate

Table 21-1 Slew Rate

Ī	Item	Symbol	Power supply	Min.	Тур.	Max.	Unit	Remarks
			VDDD	1	1	25	mV/μs	
Slew rate	01	SR	VDDA	_		25	mV/μs	
	iew rate		VDDIO	_	_	25	mV/μs	-
			Vex	_	-	25	mV/μs	_

22. Special Note on DCR White Pixel Standards

22.1. Description

After shipment inspection, pixels of the SPAD ToF Depth Sensor may be damaged by radiation effects such as cosmic rays, resulting in dark count rate (DCR) white pixel in images (hereinafter referred to as "DCR white pixel occurrences").

Under the current state of science and technology, it is impossible to prevent such phenomena from occurring by means of the SPAD ToF Depth Sensor alone.

When using a SPAD ToF Depth Sensor, we recommend that you consider measures to deal with DCR white pixel occurrences, such as setting quality assurance standards for DCR white pixel.

If, within three (3) months after delivery to your company (but only before installation into your product), characteristics of DCR in a SPAD ToF Depth Sensor delivered to your company by Sony Semiconductor Solutions Corporation. or its distributors (collectively, "the Seller") exceeds DCR white pixel standard (Refer to table15-1), the Seller will replace the SPAD ToF Depth Sensor free of charge. Please note that we are unable to extend this support to products that have undergone processing after delivery to your company, products that have been incorporated into your company's products, products that have been shipped from your company to a third party in any form, or products delivered from the Seller to your company more than three months prior.

Except for this offer of free replacement by the Seller, Sony Semiconductor Solutions Corporation. and its distributors assume no responsibility for any DCR white pixel occurrences. Except for this offer of free replacement, any problems arising from DCR white pixel occurrences shall be resolved at your responsibility and expense.

[Reference] Number of DCR white pixel occurrences per year

Below is the data on the projected annual number of DCR white pixel occurrences in buildings 124 m above sea level in Kumamoto Prefecture, Japan.

We recommend that you consider setting quality assurance standards that correspond to the annual number DCR white pixel occurrences.

This data is an estimated number of occurrences calculated according to the structure and electrical characteristics of each device based on past field tests. This data is provided for your reference only and does not constitute part of the SPAD ToF Depth Sensor specification.

Annual occurrence of DCR white pixel: 1.35 (Tj = 85 °C, element units)

Note 1: Indicates the number of DCR white pixel occurrences per year of inactivity.

Note 2: The annual number of DCR white pixel occurrences varies depending on the environment of the SPAD ToF Depth Sensor storage location (altitude, geomagnetic latitude, structure of the building, etc.) and the time of year (influence of solar activity). In addition, statistical errors must be considered.

This data should therefore be understood as an example of experimental data at a specific time and in a specific environment.

Note 3: This data must not be misinterpreted as a guarantee of the upper limit on the number of DCR white pixel occurrences per year.

SONY IMX459-AAMV-W

23. Marking

23.1. Alignment mark

Fig. 23-1 shows Alignment mark.

Fig. 23-1 Alignment mark

total 6 markers are placed, 2 on the top and 2 on the bottom and 1 on the left and right with respect to the center of pixel. The top and bottom positions of the markers are placed one above and one below the 150SPAD positions from both the left and right sides in the horizontal direction (597 SPAD).

The left and right positions of the markers are placed one above and one below the 84SPAD positions from both the top and bottom sides in the vertical direction (168 SPAD).

SONY IMX459-AAMV-W

23.2. Mark on the back of the chip

Fig. 23-2 shows Mark on the back of the chip (Bottom View). In the figure, the A1.pin is located at the top left.

DRAWING No. AM-C459AAMV (2D)

Fig. 23-2 Mark on the back of the chip (Bottom View)

Refer to "8. Optical Center" for the positional relationship between the PKG center and the pixel center.

24. Notes on Handling

1. Static charge prevention

Image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

- (1) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes.
- (2) Use a wrist strap when handling directly.
- (3) Install grounded conductive mats on the floor and working table to prevent the generation of static electricity.
- (4) Ionized air is recommended for discharge when handling image sensors.
- (5) For the shipment of mounted boards, use boxes treated for the prevention of static charges.

2. Protection from dust and dirt

Image sensors are packed and delivered with care taken to protect the element glass surfaces from harmful dust and dirt. Clean glass surfaces with the following operations as required before use.

- (1) Perform all lens assembly and other work in a clean environment (class 1000 or less).
- (2) Do not touch the glass surface with hand and make any object contact with it. If dust or other is stuck to a glass surface, blow it off with an air blower. (For dust stuck through static electricity, ionized air is recommended.)
- (3) Clean with a cotton swab with ethyl alcohol if grease stained. Be careful not to scratch the glass.
- (4) Keep in a dedicated case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- (5) When a protective tape is applied before shipping, remove the tape applied for electrostatic protection just before use. Do not reuse the tape.

3. Installing (attaching)

- (1) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package.

 Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
- (2) The adhesive may cause the marking on the rear surface to disappear.
- (3) If metal, etc., clash or rub against the package surface, the package may chip or fragment and generate dust.
- (4) Acrylate anaerobic adhesives are generally used to attach this product. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives to hold the product in place until the adhesive completely hardens. (Reference)
- (5) Note that the sensor may be damaged when using ultraviolet ray and infrared laser for mounting it.

4. Reflow soldering conditions

The following items should be observed for reflow soldering.

(1) Recommended temperature profile for reflow soldering (*In conformance with J-STD-020E)

Profile Feature	Profile		
Preheat Temperature Min.	150°C		
Preheat Temperature Max.	200°C		
Preheat Time from 150 to 200°C	60-120 seconds		
Ramp-up rate 217 to 250°C	3°C / second max.		
Liquidus temperature	217°C		
Time maintained above 217°C	60-150 seconds		
Peak package body temperature	250°C		
Time within 5°C of the peak temperature	<30 seconds		
Ramp-down rate 250 to 217°C	6°C / second max.		
Time 25°C to peak temperature	8 minutes max.		

(2) Reflow conditions

- (a) Make sure the temperature of the upper surface of the seal glass resin adhesive portion of the package does not exceed 250 °C.
- (b) Perform the reflow soldering maximum three times.
- (c) Finish reflow soldering within 168 h after unsealing the degassed packing. Store the products under the condition of temperature of 30 °C or less and humidity of 60 % RH or less after unsealing the package.
- (d) If more than 168 h have elapsed since the degassed packing was unsealed, perform once at 125 °C for 24 h. Perform baking within one month.
- (e) Note that condensation on glass or discoloration on resin interfaces may occur if the actual temperature and time exceed the conditions mentioned above.

(3) Others

- (a) Carry out evaluation for the solder joint reliability in your company.
- (b) After the reflow, the paste residue of protective tape may remain around the seal glass. (The paste residue of protective tape should be ignored except remarkable one.)
- (c) Note that X-ray inspection may damage characteristics of the sensor.

5. Others

- (1) Do not expose to strong light (sun rays) for long periods.
- (2) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or use in such conditions.
- (3) This product is precision optical parts, so care should be taken not to apply excessive mechanical shocks or force.
- (4) Note that imaging characteristics of the sensor may be affected when approaching strong electromagnetic wave or magnetic field during operation.

SONY IMX459-AAMV-W

25. Package Outline

Fig. 25-1 shows Package Outline.

In the package diagram (Top View) on the left, A1.pin is located at the bottom left. In the package diagram (Bottom View) on the right, A1.pin is located at the bottom right.

Fig. 25-1 Package Outline

Refer to "8. Optical Center" for the positional relationship between the PKG center and the pixel center.

26. Open Source Software License

Copyright (c) 2009 - 2013 ARM LIMITED

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

*

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*ARMTM is the registered trademark of ARM Limited in the EU and other countries.

27. Revision History

Date	Revision	Chapter	Description
2020/5/1	0.001	-	Initial version
2020/6/18	0.003	11	Pin Configuration described
		12	VSSLPL1 removed from examples in 12. Pin Description Modes after
			merging VSSLPL1 -> VSSLSC
		19	VSSLPL1 removed from examples in 19. Operating Modes after merging
		.0	VSSLPL1 -> VSSLSC
		23	Package Outline updated
2020/11/26	0.004	8	8. Optical Center updated
		9	SPAD Configuration updated
		10	10. Block Diagram Update
		13.2	13.2.4 to 7 Low Active waveforms added (PST_TRG, SEL/TRG_I,
		10.2	TRG FB, TRG O)
			13.2.8 to 11 Newly added (F_SYNC/S_SYNC, COMREADY/READY,
			XERROR, STOUT0/1)
		13.3	13.3. Current Consumption Update
		15.5	15. Characteristics updated
		16	16. Example of Spectral Sensitivity Characteristics added
		22	
		23	22. Special Note on DCR Defect Standards added
2021/12/22	0.005	23	Package Outline updated
2021/12/22	0.005	1	Title Renamed SPAD depth sensor to SPAD ToF Depth Sensor
		1	1. Description and Usage
		2	Renamed SPAD depth sensor to SPAD ToF Depth Sensor
		3	3. Device Structure
		10.1	Renamed SPAD depth sensor to SPAD ToF Depth Sensor
		13.1	DC Characteristics XCLR is changed
		13.2.1 to	Changed chapters 13.1.1 13.1.12. from chapter 13.2.1 chapter 13.2.12.
		13.2.12	
		13.3	Current consumption is updated
		15	Definition of VBD is added
		40.4	Table15-1 List of Characteristics is updated
		18.1	Array mode max 21V→6V
		19.1	Table 19-1 Minimum slot rate is changed
		22.1.	22.1. Description Renamed SPAD depth sensor to SPAD ToF Depth Sensor
		23.1	Alignment mark is added
		24	Notes on Handing is updated
0000/7/0		25	25. Package Outline updated
2022/7/8	0.006	1	Description and Usage is updated.
		4	Absolute Maximum Ratings is updated (-24.5V to -26.0V)
		5	Recommended device conditions VDDD 1.0V to 1.05V
		6	Description updated
		8	8. Optical Center updated
		12	12. Pin Description is updated
		13.2.2	REFCK clock frequency is corrected.
		13.2.3	XCLR Threshold level is updated
•			Tr/Tf Max value is changed (5ns to 100ns)
		13.2.12	Table 13-17 I ² C Communication AC Timing is updated
		13.3	Current consumption is updated
		15	Table 15-1 List of Characteristics is updated
			Fig. 15-1 SPAD quench recharge waveform and readout circuit is updated
1		17.2	Table 17-6 Description of SPI Communication Pins is updated
1		19.1	Table 19-1 List of Operating Modes (Ranging Mode) is updated
		19.2.1	Fig. 19-1 Output Format (Ranging Mode) is updated
			Fig. 19-1 Output Format (Ranging Mode) is updated Fig. 19-2 Output Format (Echo Mode) is updated
		19.2.1	

		T	
		22	22. Special Note on DCR Defect Standards is updated
		23.1	Fig. 23-1 Alignment mark is updated
		23.2	Fig. 23-2 Mark on the back of the chip (Bottom View) is updated
		25	Fig. 25-1 Package Outline is updated
2023/04/28	1.0.0	13.3	Array mode description is added
		15	Table 15 1 List of Characteristics is updated
		15	Fig15-3 Inter-element output skew (all pixels) added
		18.5	Fig18-4 is updated
		19.1	Table 19-1 x2 fine row deletion
0000/00/47	101	22.1	22.Special Note on DCR white pixel Standards is updated
2023/08/17	1.0.1	7	Chapter and Page number is updated
		11	Table 11-1 Pin Position is updated
		12	Table 12-1 List of Pins is updated
		13.2.11	SPAD Test Monitor Output (STOUT0/STOUT1) Chapter is deleted
		14	Table 14-1 Input/Output Pins Equivalent Circuits is updated
		20	Fig. 20-1 is updated
		-	Page number updated
			Chapter number updated
			Fig number updated
222211122		_	Table number updated
2023/11/29	1.0.2	8	Fig. 11 1 Pin Configuration (Top View) is updated
		36	Fig. 19 2 Output Format (Echo Mode) is updated
		37	Fig. 19 3 Output Format (Histogram Mode) is updated
		46	Fig. 25 1 Package Outline is updated
		Ch Sc	Julions
, pt	<0,	<i>,</i>	
ForTex			