StreamApprox

Approximate Stream Analytics in Apache Flink

Do Le Quoc, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer, Volker Hilt, Thorsten Strufe

Modern online services

Modern online services

Approximate Computing

Many applications:

Approximate output is good enough!

The trend of data is more important than the precise numbers

E.g.: Google Trends --- Big Data vs Machine Learning (Sep/2012 – Sep/2017)

Approximate Computing

Idea: To achieve low latency, compute over a sub-set of data items instead of the entire data-set

Approximate computing

State-of-the-art systems

StreamApprox: Design goals

Transparent

Targets existing applications w/ minor code changes

Practical

Supports adaptive execution based on query budget

Efficient

Employs online sampling techniques

Outline

- Motivation
- Design
- Evaluation

StreamApprox: Overview

Query budget:

- Latency/throughput guarantees
- Desired computing resources for query processing
- Desired accuracy

Key idea: Sampling

Simple random sampling (SRS):

Stratified sampling (STS):

Key idea: Sampling

Reservoir sampling (RS):

Spark-based Sampling

Spark-based Stratified Sampling (Spark-based STS)

Create strata using groupByKey()

Apply SRS to each stratum S_i

Synchronize between worker nodes to select a sample of size k

These steps are very expensive

StreamApprox: Core idea

Online Adaptive Stratified Reservoir Sampling (OASRS)

need any synchronization

between workers

StreamApprox: Core idea

Worker 1 OASRS Weight = 2 Weight = 1.5 Weight = 1

Size of reservoir = 4

Implementation

Implementation

Flink-based StreamApprox

Outline

- Motivation
- Design
- Evaluation

Experimental setup

Evaluation questions

- Throughput vs sample size
- Throughput vs accuracy

See the paper for more results!

Testbed

- Cluster: 17 nodes
- Datasets:
 - Synthesis: Gaussian distribution, Poisson distribution datasets
 - CAIDA Network traffic traces; NYC Taxi ride records

Throughput

Spark-based StreamApprox: ~2X higher throughput over Spark-based STS Flink-based StreamApprox: 1.3X higher throughput over Spark-based StreamApprox With sampling fraction < 60%

Throughput vs Accuracy

Spark-based StreamApprox: ~1.32X higher throughput over Spark-based STS Flink-based StreamApprox: 1.62X higher throughput over Spark-based StreamApprox With the same accuracy loss

Conclusion

StreamApprox: Approximate computing for stream analytics

Transparent Supports applications w/ minor code changes

Practical Adaptive execution based on query budget

Efficient Online stratified sampling technique

Thank you!

Details: StreamApprox [Middleware'17]

https://streamapprox.github.io