MAT-266, 2° Semestre 2014 Certamen 2. Noviembre 21, 2014 Tiempo: 90 Minutos

Nombre: _______
Rol: _____
Profesor: Felipe Osorio.

1. Sea $\overline{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$ y $z_{ij} = x_{ij} - \overline{x}_j$, para todo $i = 1, \ldots, n; j = 1, \ldots, k$ y considere $\mathbf{Z} = (z_{ij})$, $\mathbf{\beta} = (\beta_1, \ldots, \beta_k)^{\top}$. En cuyo caso, tenemos el modelo centrado:

$$Y = \alpha \mathbf{1} + Z\beta + \epsilon = (\mathbf{1}, Z) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \epsilon,$$

donde $E(\epsilon) = \mathbf{0}$ y $Cov(\epsilon) = \sigma^2 \mathbf{I}_n$. Muestre que los BLUE de α y β son independientes.

2. Considere las regresiones de Y sobre x para los datos a continuación, especificadas por:

$$\mathcal{M}_1 : \mathcal{E}(Y) = \beta_0 x$$
 y $\mathcal{M}_2 : \mathcal{E}(Y) = \beta_1 x + \beta_2 x^2$.

Obtenga $\hat{\beta}_0$, $\hat{\beta}_1$ y $\hat{\beta}_2$. ¿Cuál de esos modelos es preferido?

3. Considere las rectas de regresión:

$$\mathcal{R}_1: Y_{1i} = \alpha_1 + \beta_1 x_{1i} + \epsilon_{1i}$$
 y
 $\mathcal{R}_2: Y_{2i} = \alpha_2 + \beta_2 x_{2i} + \epsilon_{2i}$,

para $i=1,\ldots,n$, donde los errores $\{\epsilon_{1i}\}$ y $\{\epsilon_{2i}\}$ son variables aleatorias iid con media cero y varianza común σ^2 . Obtenga el estadístico F para probar la hipótesis de que las rectas de regresión \mathcal{R}_1 y \mathcal{R}_2 son paralelas.

4. Sea Y_{ij} , i=1,2,3 y $j=1,\ldots,n$ variables aleatorias independientes normalmente distribuídas con $E(Y_{ij}) = \mu_{ij}$ y $var(Y_{ij}) = \sigma^2$, tales que

$$\mu_{1j} = \alpha, \qquad \mu_{2j} = \alpha + \Delta, \qquad \mu_{3j} = \alpha - \Delta.$$

- a. Determine la matriz de diseño X.
- **b.** Obtenga el estimador mínimos cuadrados de $(\alpha, \Delta)^{\top}$ y var $(\widehat{\Delta})$.
- **c.** Derive el estadístico F para probar la hipótesis $H_0: \Delta = 0$.