Flexible model assessment via approximate Calibrated Posterior Predictive p-values

Sally Paganin, joint work with Perry de Valpine

spaganin@hsph.harvard.edu

https://salleuska.github.io/

Paper out soon, with software

Model assessment in theory

Posterior predictive p-values (ppp)

Tool for Bayesian model assessment

$$\mathbf{model} = \underbrace{\mathsf{data\ distribution}}_{p(y|\theta)} + \underbrace{\mathsf{prior\ distribution}}_{\pi(\theta)}$$

- 1. discrepancy measure $D(y, \theta)$ reflects aspects of the data we want the model to capture
- 2. posterior predictive $p(y^*|y) = \int p(y^*|\theta)\pi(\theta|y)d\theta$

$$ppp = \Pr\{D(Y^*, \theta) \ge D(y, \theta)\}\$$

A Hard to interpret!

Calibrated ppp (cppp)

Interpret the ppp as a **statistic** - ppp $(Y) \sim F$ **unknown**

$$\mathsf{cppp} = \mathsf{Pr}\{\mathsf{ppp}(\tilde{Y}) \leq \mathsf{ppp}(y)\} = \mathbb{E}_{\tilde{Y}}\left[\mathbb{I}\left\{\mathsf{ppp}(\tilde{Y}) \leq \mathsf{ppp}\left(y\right)\right\}\right]$$
 can be interpret with respect a Uniform distribution

[Hjort et al. (2006)] - bootstrap-like procedure

- 1. Simulate new data $\tilde{y} \sim g(\tilde{y}|y)$ multiple times $g(\tilde{y}|y)$ calibration density (e.g., prior, posterior predictive,)
- 2. For each new data repeat MCMC estimation & ppp computation

A High computational cost!

- r = number of calibration replicates ($\approx 10^2$)
- m = number of posterior samples ($\approx 10^4$)
- $c = r \times m \ (\approx 10^8)$ naive computational cost

Model assessment in practice

Monte Carlo estimation of ppp

$$\widehat{\mathsf{ppp}}(y) = \frac{1}{m} \sum_{i=1}^m \mathbb{I}\left\{D(y^{*(i)}, \theta^{(i)}) \geq D(y, \theta^{(i)})\right\} = \frac{k}{m}$$

Monte Carlo estimation of cppp

$$\widehat{\mathsf{cppp}}(y) = \frac{1}{r} \sum_{j=1}^r \mathbb{I} \left\{ \widehat{\mathsf{ppp}}(\tilde{y}^{(j)}) \leq \mathsf{ppp}(y) \right\} = \frac{1}{r} \sum_{j=1}^r \mathbb{I} \left\{ \tilde{k}^{(j)} \leq \tilde{m} \mathsf{ppp}(y) \right\}$$

Model assessment: can we do better?

Some considerations

 $\widehat{\mathsf{cppp}}(y)$ is an estimate of the true $\mathsf{cppp}(y)$

- bias: $\tilde{m} \to \infty$, $\widehat{\mathsf{ppp}}(\tilde{y}) \to \mathsf{ppp}(\tilde{y}) \to \mathsf{bias} \to 0$
- ullet variance $=rac{1}{r}igl\langle \, \mathbb{E}_{ ilde{Y}} \, igr| \mathbb{V}_{ ilde{K}| ilde{Y}}$
- 1. average variance of determining $ppp(\tilde{y}) \leq ppp(y)$ small as \tilde{m} increases
- 2. variance across calibration replicates of $Pr(ppp(\tilde{y}) \leq ppp(y))$ as \tilde{m} increases, this is the variance of a Bernoulli(cppp(y))

Question: how to choose \tilde{m} and r?

Results

Good approximation

 \rightarrow bet on r, small \tilde{m}

if \tilde{m} is large enough, RMSE is dominated by variance

- \rightarrow "large enough " \tilde{m} is small compared to usual number of MCMC iterations ($\approx 10^4, 10^5$)
- **Error quantification**: variance estimation With MCMC samples, $\tilde{m} = \text{ESS}$ (Effective Sample Size) hard to estimate with small \tilde{m} (short chains)
- **Plug-in method**: uses original MCMC samples (from the data) to inform on ESS for the short ones
- **Bootstrap method**: uses two levels calibration replicates & MCMC samples

A simple example

2. draw samples $\tilde{k}^{(j)}|ppp(\tilde{y}^{(j)})$

• use $\{\tilde{k}^{(j)}\}_{i=1}$ to calculate cppp(y)• marginally $\tilde{k}^{(j)} \sim \text{BetaBinomial}(\tilde{m}, 2, 4)$ closed form expressions for bias and variance

 $| ilde{k}^{(r)}| - \sim \mathsf{Binom}(ilde{m}, \mathsf{ppp}(ilde{y}^{(r)}))$

References

Gelman, A., Meng, X.L., & Hal, S. (1996). Posterior predictive assessment of model fitness via realized discrepancies

Meng, X.L. (1994). Posterior predictive p-values Hjort, N.L., Dahl, F.A., & Steinbakk, G.H. (2006) Post-processing posterior predictive p-values Robins, J. M., van der Vaart, A., & Ventura, V. (2000). Asymptotic distribution of p values in composite null models