UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Cibles des médicaments

Pr JM Senard

- Médicaments n'interagissant pas avec une cible moléculaire cellulaire
 - Exemple 1: Les agents modifiant le pH (↑): neutralisation

Bicarbonate de sodium

$$HCI + NaHCO_3 \rightarrow NaCI + H_2O + CO_2$$

- Médicaments n'interagissant pas avec une cible moléculaire cellulaire
 - Exemple 2: Les laxatifs osmotiques

Les « polyéthylène glycols (PEG) »

3000 principes actifs ≈ 5700 spécialités, 13000 présentations

3000 principes actifs ≈ 5700 spécialités, 13000 présentations

3000 principes actifs ≈ 5700 spécialités, 12000 présentations

Certains médicaments peuvent agir à la fois sur les 2 types de cibles

a. Les principes: Interaction du Principe Actif (PA) avec sa cible

Principe de la clef dans une serrure « intelligente »

- Complémentarité conformationnelle
 - 1 cible existe sous plusieurs conformations en fonction de l'environnement cellulaire;
 - Microdomaines membranaires: « zones rafts » riches en cholestérol
 - Partenaires protéiques associés...

a. Les principes: Interaction du Principe Actif (PA) avec sa cible

- Complémentarité conformationnelle

 1 cible discrimine les espèces chirales des médicaments qui sont des mélanges racémiques (stéréoisomère actif et inactif)

a. Les principes: Interaction du Principe Actif (PA) avec sa cible

- Complémentarité électrostatique/Etablissement de liaisons
 - 1. Faibles énergies (les plus fréquentes): réversibles
 - Forces de van der Waals, liaisons H ou ioniques
 - · 2. Covalentes (rares): irréversibles!
 - Ex: Aspirine sur Cyclo-Oxygénase (COX)

a. Les principes: Interaction du Principe Actif (PA) avec sa cible

- Notion de pharmacophore
 - Un pharmacophore est la partie pharmacologiquement (atomes, groupements fonctionnelle active d'une molécule:
 - représentation géométrique idéalisée
 - Modélisation 3D
 - Utilisée pour la synthèse de nouvelles molécules (chimique ou assistée par ordinateur)

Région hydrophobe Charge - Charge +

Ex: Aspirine sur Cyclo-Oxygénase

a. Les principes: spécificité

- « Un médicament spécifique n'interagit qu'avec une seule cible »
- Caractéristique rarement (voire jamais) vérifiée
 - > 1 cible majoritaire (« on target »): Une propriété principale
 - > X cibles annexes (« off target »): Plusieurs propriétés latérales
- Exemple: Tramadol
 - · Agoniste Récepteur Mu opiacé (MOR): traitement de la douleur
 - Effets latéraux:
 - inhibiteur de la recapture da sérotonine: nausées, vomissements

- > Antagoniste 5HT2C: effets psychiatriques
- > Antagoniste muscariniques (M1 & M3): xérostomie

- a. Les principes: sélectivité
 - « Un médicament n'interagit qu'avec un seul des différents sous-types d'une cible »
 - Dépend de l'affinité relative du médicament
 - Notion RELATIVE: la sélectivité disparaît à fortes doses !!!!
 - Ex: inhibiteurs sélectifs/non sélectifs des cyclo-oxygénases (COX)

a. Les principes: sélectivité

« Un médicament n'interagit qu'avec un seul des différents sous-types d'une cible »

- Dépend de l'affinité relative du médicament
- Notion RELATIVE: la sélectivité disparaît à fortes doses !!!!
- Ex: inhibiteurs sélectifs/non sélectifs des cyclo-oxygénases (COX)

b. Caractéristiques pharmacologiques: la loi d'action de masse

$$M + C \stackrel{k_1}{\longleftarrow} MC$$

Molécule/médicament: M Cible spécifique : C

A l'équilibre...

Enzymes

Constante de Michaelis (Км)

$$K_M = [E] \times [S] / [ES]$$

 $K_M = K_{-1} / K_1$

Concentration de substrat permettant 50% de la vitesse max de réaction

Récepteurs

Constante de dissociation (KD)

$$K_D = [M] \times [C] / [MC]$$

 $K_D = K_{-1} / K_1$

Concentration en ligand permettant d'occuper 50% des récepteurs

b. Caractéristiques pharmacologiques: saturabilité/affinité

b. Caractéristiques pharmacologiques: site orthostérique et allostérique

c. Cibles spécifiques membranaires

c. Cibles spécifiques membranaires: cibles variées

1 Médiateur endogène peut posséder plusieurs cibles

Sérotonine	5HT1,2,4,5,6,7	5HT3
Acétylcholine	Muscariniques: M1-M5	Nicotiniques

c. Cibles spécifiques intracellulaires

3. Les cibles inconnues (ou mal connues)

· Cible en partie inconnue (Paracétamol)

- Cibles mal connues: antiépileptiques
 - Inhibition de canaux ioniques neuronaux
 - Renforcement tonus inhibiteur GABAergique
 - Suppression tonus excitateur glutamatergique...
- Cible(s) connue(s) mais ne rendant pas compte des effets
 - Antidépresseurs (Inhibiteurs de la recapture des amines biogènes)
 - Imipramine
 - Fluoxétine (Prozac®)
 - Sibutramine (Sibutral®, retiré)

