

Illustration 2. Length of a uniform chain is L and coefficient of static friction is μ between the chain and the table top. Calculate the maximum length of the chain which can hang from the table without sliding.

Illustration 3. An insect crawls on the inner surface of hemispherical bowl of radius r. If the coefficient of friction between an insect and bowl is μ and the radius of the bowl is r, find the maximum height to which the insect can crawl up.

$$\frac{1}{\sqrt{1+42}} = \frac{2-h}{2}$$

$$\frac{2}{\sqrt{1+42}} = \frac{2-h}{2}$$

An

3. A block of mass m lying on a rough horizontal plane is acted upon by a horizontal force P and another force Q inclined an at an angle θ to the vertical. The minimum value of coefficient of friction between the block and the surface for which the block will remain in equilibrium is:

$$\frac{P + Q\sin\theta}{mg + Q\cos\theta}$$

(B)
$$\frac{P\cos\theta + Q}{mq - Q\sin\theta}$$

(C)
$$\frac{P + Q\cos\theta}{mq + Q\sin\theta}$$

(D)
$$\frac{P\sin\theta - Q}{mg - Q\cos\theta}$$

$$P + Q Sin 9 \leq M$$

$$W + Q CO S 9$$

2. Starting from rest a body slides down a 45° inclined plane in twice the time it takes to slide down the same distance in the absence of friction. The co-efficient of friction between the body and the inclined plane is:

$$f_2 = \sqrt{\frac{2d}{a'}} \Rightarrow f_2 = \frac{2d}{a'}$$

$$t_2 = 2t,$$

$$t_2^2 = 4t^2$$

$$2t_2^2 = 42t$$

$$a' = 42t$$

$$t_2 = 2t$$
, $a = 4a'$
 $t_2^2 = 4t_1^2$ $g(\sin s) = 4g(\sin s) - 4(\cos s)$
 $2t - 42t$ $f(x) = 4(f(x) - 41)$
 $a' = 4(1-4)$

The person applies horizontal force F on the smaller block as shown in figure. The coefficient of static friction is μ between the blocks and the surface. Find the force exerted by the vertical wall on mass M. What is the value of action-reaction forces between m and M?

2. A body of mass M is kept on a rough horizontal surface (friction cofficient = μ). A person is trying to pull the body by applying a horizontal force but the body is not moving. The force by the surface on A is F where

$$(A) F = Mg$$

(B)
$$F = \mu Mg$$

(C)
$$Mg \le F \le Mg \sqrt{1 + \mu^2}$$
 (D) $Mg \ge F \ge Mg \sqrt{1 - \mu^2} 1$

Fruet =
$$F = \sqrt{N^2 + t_s^2}$$

 $f_{min} = N = MJ$ When $F_{ept} = 0$
 $f_{s} = 0$
 $f_{min} = \sqrt{N^2 + (f_{s})^2}$ $(F_{ert}) = f_{s}$
 $f_{s} = 0$
 $f_{s} = 0$

 $ng \leq F \leq mg\sqrt{1+42}$

5*. In the arrangement shown in the figure, mass of the block B and A is 2m and m respectively. Surface between B and floor is smooth. The block B is connected to the block C by means of a string pulley system. If the whole system is released, then find the minimum value of mass of block C so that A remains stationary w.r.t. B. Coefficient of friction between A and B is μ .

(A) $\frac{m}{...}$

(B)
$$\frac{2m+1}{\mu+1}$$

 $\frac{3m}{\mu-1}$

(D)
$$\frac{6m}{\mu + 1}$$

$$f_{s} = mg \leq MN$$

$$Q_{s} \leq MQ_{s} \qquad Q_{s} = m_{s} \qquad m$$

В

8. What is the maximum value of the force F such that the block shown in the arrangement, does not move: [IIT-JEE 2003]

(A) 20 N

(C) 12 N

- (B) 10 N
- (D) 15 N

$$m = \sqrt{3} \text{ kg}$$

$$\mu = \frac{1}{2\sqrt{3}}$$

$$\frac{1}{1} = \frac{1}{2\sqrt{3}}$$

$$\frac{1}{2} = \frac{1}{2\sqrt{3}}$$

$$\frac{1}{2} = \frac{1}{2\sqrt{3}}$$

Illustration 3.

If the string is pulled down with a force of $120\,\mathrm{N}$ as shown in the figure, then the acceleration of $8\,\mathrm{kg}$ block would be

- (A) 10 m/s^2
- (C) $0 \, \text{m/s}^2$

- (B) 5 m/s^2
- (D) 4 m/s^2

Ans. (B)

Solution

$$(120 - 25 = 0)$$
 $(7 = 60 N)$