Subjectul D.OPTICĂ

Nr. item	Soluţie/Rezolvare
III.a.	$\varepsilon_1 = \frac{hc}{\lambda}$,
	$\mathcal{E}_1 = \frac{1}{\lambda_1}$
	Rezultat final: $\varepsilon_1 = 6.6 \cdot 10^{-19} J$
b.	$\frac{hc}{\lambda_1} = L + e U_{s1} , \frac{hc}{\lambda_2} = L + e U_{s2} $
	$L = \frac{hc(2\lambda_2 - \lambda_1)}{\lambda_1 \cdot \lambda_2}$
	Rezultat final: $L = 3.3 \cdot 10^{-19} J$
C.	$L = hv_0$
	Rezultat final: $v_0 = 5 \cdot 10^{14} Hz$
d.	$\frac{hc}{\lambda_2} = h v_0 + E c_{\text{max } 2}$
	$Ec_{\max 2} = h(\frac{c}{\lambda_2} - \nu_0)$
	Rezultat final: $Ec_{\text{max }2} = 6.6 \cdot 10^{-19} J$