Análisis Matemático I,

2º Doble Grado Informática-Matemáticas

Capítulo I: ESTRUCTURA EUCLÍDEA Y TOPOLOGIA DE \mathbb{R}^N

Tema 2: ESPACIOS TOPOLÓGICOS

María D. Acosta

Universidad de Granada

1-10-2020

Interior, adherencia y frontera

Sea (E, d) un espacio métrico y $A \subset E$.

▶ Diremos que *a* es un **punto interior** de *A* si se verifica

$$\exists r > 0 : B(a,r) \subset A$$
.

Notaremos por \mathring{A} al conjunto de todos los puntos interiores de A. El conjunto anterior se llama **interior de** A.

- ▶ Diremos que A es abierto si $\mathring{A} = A$.
- ▶ Diremos que un elemento $x \in E$ está en la **adherencia de** A si

$$\forall \varepsilon > 0 : B(x, \varepsilon) \cap A \neq \emptyset.$$

Notaremos por \overline{A} al conjunto de todos los puntos adherentes de A. El conjunto anterior se llama **adherencia de** A. También se llama **clausura de** A.

▶ Se define la **frontera de** A, que notaremos por Fr(A) como sigue

$$Fr(A) = \overline{A} \cap \overline{E \setminus A}.$$

Las afirmaciones del siguiente resultado son inmediatas.

Proposición

Sea (E, d) un espacio métrico y $A \subset E$.

- 1) Se verifica que $\mathring{A} \subset A \subset \overline{A}$.
- 2) Luego A es abierto si, y sólo si, $A \subset \mathring{A}$.
- 3) $\operatorname{Fr}(A) \subset \overline{A}$.

Definición

Si (E, d) es un espacio métrico y $A \subset E$, diremos que A es **cerrado** si $E \setminus A$ es abierto.

En lo que sigue, si (E,d) es un espacio métrico, denotamos por $\mathcal T$ a la familia de los subconjuntos abiertos de E. El símbolo $\mathcal C$ denotará la familia de los subconjuntos cerrados de E. Es sencillo probar el siguiente resultado.

Proposición

Si $A \subset E$, entonces $A \in \mathcal{C}$ si, y sólo si, $A = \overline{A}$. Equivalentemente, A es cerrado si $\overline{A} \subset A$.

También se deduce a partir de la definición las siguientes propiedades de estabilidad de los conjuntos abiertos. Como consecuencia, se obtienen las propiedades de estabilidad de los conjuntos cerrados.

Proposición

- 1) \varnothing , $E \in \mathcal{T}$.
- 2) Si *I* es un conjunto, $O_i \in \mathcal{T}$ para cada $i \in I$, entonces $\bigcup_{i \in I} O_i \in \mathcal{T}$.
- 3) Si $O_1, O_2 \in \mathcal{T}$ se verifica que $O_1 \cap O_2 \in \mathcal{T}$.
- 4) \varnothing , $E \in \mathcal{C}$.
- 5) Si *I* es un conjunto, $F_i \in \mathcal{C}$ para cada $i \in I$, entonces $\bigcap_{i \in I} F_i \in \mathcal{C}$.
- 6) Si $F_1, F_2 \in \mathcal{C}$ se verifica que $F_1 \cup F_2 \in \mathcal{C}$.

Una familia de subconjuntos de un conjunto que verifica las propiedades 1), 2) y 3) se llama **topología**. Por tanto, \mathcal{T} , la familia de abiertos de un espacio métrico, es una topología en E.

Es fácil comprobar las siguientes afirmaciones.

Propiedades

Sea (E, d) un espacio métrico y $A \subset E$.

- 1. $A \in \mathcal{T} \Leftrightarrow E \backslash A \in \mathcal{C}$.
- 2. $A \in \mathcal{C} \Leftrightarrow E \backslash A \in \mathcal{T}$.
- 3. \overline{A} es el menor cerrado que contiene a A.
- 4. \mathring{A} es el mayor abierto contenido en A.
- 5. Fr(A) es cerrado.
- 6. El interior de $E \setminus A$ es $E \setminus \overline{A}$.
- 7. $\overline{E \backslash A} = E \backslash \mathring{A}$.
- 8. $\operatorname{Fr}(A) = \overline{A} \cap \overline{E \backslash A} = \overline{A} \backslash \mathring{A}$.

Espacios métricos

Punto de acumulación

Sean (E, d) un espacio métrico y $A \subset E$. Se dice que $x \in E$ es un **punto** de acumulación A si

$$B(x,\varepsilon)\cap (A\setminus\{x\})\neq \emptyset, \ \forall \varepsilon>0.$$

Denotaremos por A' al conjunto de los puntos de acumulación de A. Se dice que un punto $a \in A$ es un **punto aislado** de A si no es de acumulación de A, esto es, si existe $\varepsilon > 0$ tal que $B(a, \varepsilon) \cap A = \{a\}$.

Se verifica que

$$A' \subset \overline{A}$$

y en un espacio normado se tiene además que

$$\mathring{A} \subset A'$$
.

Ejemplos

- 1) Consideramos $E = \mathbb{R}$, dotado de su topología usual. Entonces todo intervalo abierto es un conjunto abierto y todo intervalo cerrado es un conjunto cerrado.
- 2) En $\mathbb R$ los puntos de acumulación de un intervalo de longitud positiva coincide con su clausura y es el menor intervalo cerrado que contiene al primero. La frontera de un intervalo es el conjunto de sus extremos (los que tenga). Por ejemplo, $\operatorname{Fr}(\mathbb R)=\varnothing$ y $\operatorname{Fr}(\mathbb R^+)=\{0\}$.
- **3)** En particular, si A =]0, 1], entonces

$$\mathring{A} =]0,1[, \ \overline{A} = [0,1], \ A' = [0,1], \ \mathrm{Fr}(A) = \{0,1\}.$$

Ejemplos

- **4)** En un espacio métrico toda bola abierta es un conjunto abierto y toda bola cerrada es un conjunto cerrado.
- **5)** En un espacio normado el interior de una bola es la bola abierta que tiene el mismo centro y el mismo radio. La adherencia de una bola es la bola cerrada con los mismos parámetros (en espacios normados).
- **6)** En \mathbb{R}^2 , dotado de la topolgía usual, consideramos el conjunto A dado por

$$A = \{(x, y) \in \mathbb{R}^2 : x > 0\}.$$

En este caso tenemos que

$$\mathring{A} = A,$$
 $\overline{A} = \{(x, y) \in \mathbb{R}^2 : x \ge 0\},$ $\operatorname{Fr}(A) = \{(0, y) : y \in \mathbb{R}\}$ y $A' = \overline{A}.$

Ejemplos

7) Consideramos \mathbb{R}^3 , dotado de la topología usual y el subconjunto A dado por

$$A = \overline{B}(0,1) \cup \{(3,0,0)\}.$$

Se tiene que

$$\mathring{A} = B(0,1), \qquad \overline{A} = A,$$

$$\operatorname{Fr}(A) = S(0,1) \cup \{(3,0,0)\} \quad \text{y} \quad A' = \overline{B}(0,1),$$

luego el punto $\{(3,0,0)\}$ es un punto aislado de A (el único).

Topología inducida

Definición

Sea (E, d) un espacio métrico y $A \subset E$. La **topología inducida** en A viene dada por

$$\mathcal{T}_A = \{O \cap A : O \in \mathcal{T}\}$$

y coincide con la topología en A asociada a la distancia d_A , que es la restricción de la métrica d a A.

Observación

En caso de que A sea abierto, entonces los abiertos en la topología inducida en A son los abiertos en el total contenidos en A.

Ejemplo

Si $E = \mathbb{R}$ y A =]0,1], entonces el conjunto]1/2,1] es abierto en A, por ser intersección de un intervalo abierto (luego abierto en \mathbb{R}) con A, pero no es abierto en \mathbb{R} .

Normas equivalentes

Definición

Dos normas $\|\cdot\|$ y $\|\cdot\|$ en un mismo espacio vectorial X se dicen **equivalentes** si existen constantes m, M>0 verificando

$$m||x|| \le |||x||| \le M||x||, \ \forall x \in X.$$

Es inmediato probar que la relación binaria anterior que hemos definido entre normas es de equivalencia.

Ejemplos

1) Las tres normas definidas en \mathbb{R}^N son equivalentes, ya que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le N||x||_{\infty}, \quad \forall x \in \mathbb{R}^N.$$

2) Las normas $\| \|_1$ y $\| \|_{\infty}$ no son equivalentes en C[0,1], aunque se verifica $\| f \|_1 \le \| f \|_{\infty}$ para cada elemento f de C[0,1].

Normas equivalentes

El siguiente resultado muestra parte de la utilidad del concepto anterior.

Proposición

Sean $\|\cdot\|$ y $\|\cdot\|$ dos normas en el espacio vectorial X. Entonces ambas normas son equivalentes si, y sólo si, las dos normas generan la misma topología.

Demostración. Podemos empezar probando que

$$\|\cdot\| \le m \,\|\cdot\| \, \Rightarrow B_{\|\cdot\|}(0,r) \subset B_{\|\cdot\|}(0,mr), \forall r > 0 \Rightarrow \|\cdot\| \le 2m \,\|\cdot\| \, . \tag{1}$$

Usando la definición de abierto y que en un espacio normado se tiene

$$B(a,r) = a + B(0,r), \qquad \forall a \in X, r > 0,$$

puede probarse que la condición (1) equivale a que $\mathcal{T}_{\|\cdot\|} \subset \mathcal{T}_{\|\cdot\|}$. Hemos notado por $\mathcal{T}_{\|\cdot\|}$ y por $B_{\|\cdot\|}(0,r)$ a la topología generada por la norma $\|\cdot\|$ y a la bola abierta de centro 0 y radio r para la norma $\|\cdot\|$, respectivamente.

Topología producto

Definición

Si (E_i, d_i) es un espacio métrico, para cada $1 \le i \le N$, la distancia d en $E = \prod_{i=1}^N E_i$ dada por

$$d((x_1,\cdots,x_N),(y_1,\cdots,y_N)) = \max\{d_i(x_i,y_i): 1 \le i \le N\}$$

genera en E la llamada topología producto.

Es inmediato comprobar que en el espacio métrico producto, el producto de conjuntos abiertos es un abierto.

Dado que la norma euclídea es equivalente a la norma del máximo en \mathbb{R}^N y la distancia producto en \mathbb{R}^N es la asociada a la norma del máximo, el resultado de caracterización de las normas equivalentes nos asegura que la topología usual en \mathbb{R}^N es la topología producto.

Una de las ventajas de las topologías asociadas a distancias es que la convergencia de sucesiones determina la topología. Recordamos ahora el concepto de sucesión convergente de números reales para extender el mismo concepto a espacios métricos.

Si $\{x_n\}$ es una sucesión de números reales, ésta converge si existe un número real x que verifica la siguiente condición:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : n \geq N \Rightarrow |x_n - x| < \varepsilon.$$

Definiciór

Si E es un conjunto no vacío, una **sucesión en** E es una aplicación $f: \mathbb{N} \longrightarrow E$. A la sucesión anterior la notaremos $\{x_n\}$, donde $x_n = f(n)$ para cada natural n.

Ejemplo

 $\{(1/n, n!)\}$ es una sucesión en \mathbb{R}^2 .

Definición

Se dice que una sucesión $\{x_n\}$ de elementos de un espacio métrico (E,d) es **convergente** si existe un elemento $x \in E$ tal que

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} : n \geq N \Rightarrow d(x_n, x) < \varepsilon,$$

equivalentemente, si $\{d(x_n,x)\} \to 0$. Si se verifica la condición anterior, diremos que $\{x_n\}$ converge a x y en tal caso escribiremos $\{x_n\} \to x$. Es fácil comprobar (ejercicio) que el elemento x que verifica la condición de convergencia es único y se llama **límite de la sucesión** $\{x_n\}$. En ese caso escribiremos $x = \text{lím}\{x_n\}$.

A continuación, para un elemento $x \in \mathbb{R}^N$, notaremos por x(k) a la coordenada k-ésima de x.

Proposición

Si $\{x_n\}$ es una sucesión en \mathbb{R}^N , entonces se verifica

$$\{x_n\} \stackrel{\|\cdot\|_2}{\longrightarrow} x \Leftrightarrow \{x_n(k)\} \to x(k), \ \forall k = 1, 2, \cdots, N.$$

Demostración. Nótese que la convergencia de sucesiones coincide para normas equivalentes y que para cada vector de \mathbb{R}^N se tiene

$$|x(k)| \le ||x||_{\infty}, \quad \forall k \le N.$$

Por tanto,

$$|x_n(k)-x(k)| \leq ||x_n-x||_{\infty}, \forall n \in \mathbb{N}, k \leq N.$$

Luego si $\{x_n\} \to x$ se tiene $\{\|x_n - x\|_{\infty}\} \to 0$, por tanto, $\{|x_n(k) - x(k)|\} \to 0$ para cada $k \le N$, esto es, $\{x_n(k)\} \to x(k)$ para cada $k \le N$. \square

Haciendo mínimos cambios en el argumento, puede probarse el siguiente resultado más general:

Proposición

Sea (E_i, d_i) un espacio métrico para cada $1 \le i \le N$ y $E = \prod_{i=1}^N E_i$, dotado de la métrica producto. Si $\{x_n\}$ es una sucesión en E, entonces se verifica

$$\{x_n\} \to x \Leftrightarrow \{x_n(k)\} \to x(k), \ \forall k = 1, 2, \cdots, N.$$

Demostración. Basta usar que

$$d_k(x_n(k),x(k)) \leq d(x_n,x), \forall n \in \mathbb{N}, k \leq N$$

y el mismo argumento usado en \mathbb{R}^N . \square

Ejemplos

- **1)** La sucesión $\left\{\left(\frac{1}{n}, n!\right)\right\}$ no converge en \mathbb{R}^2 , ya que $\left\{n!\right\}$ no converge.
- **2)** La sucesión $\left\{\left(\frac{1}{e^n},1+\frac{1}{2^n},\sin(\frac{1}{n})\right\}\to(0,1,0)$, ya que $\left\{\frac{1}{e^n}\right\}\to 0$, $\left\{1+\frac{1}{2^n}\right\}\to 1$ y $\left\{\sin(\frac{1}{n})\right\}\to 0$.

Definición

Sean $\{x_n\}$, $\{y_n\}$ dos sucesiones en E. Diremos que $\{y_n\}$ es una **subsucesión** o **sucesión parcial** de $\{x_n\}$ si existe una aplicación

$$\sigma: \mathbb{N} \longrightarrow \mathbb{N}$$

estrictamente creciente tal que

$$y_n = x_{\sigma(n)}, \forall n \in \mathbb{N}$$
.

Es inmediato comprobar que en un espacio métrico, toda subsucesión de una sucesión convergente también es convergente y ambas tienen el mismo límite.

Caracterización secuencial de la adherencia Sea A un subconjunto de un espacio métrico E y $x \in E$. Entonces

$$x \in \overline{A} \Leftrightarrow \exists$$
 una sucesión $\{a_n\}$ en $A : \{a_n\} \to x$.

Como consecuencia, un subconjunto A de un espacio métrico es cerrado si, y sólo si, A contiene los límites de todas las sucesiones en A que sean convergentes.

Caracterización secuencial de la adherencia

Sea A un subconjunto de un espacio métrico E y $x \in E$. Entonces

$$x \in \overline{A} \Leftrightarrow \exists$$
 una sucesión $\{a_n\}$ en $A : \{a_n\} \to x$.

Como consecuencia, un subconjunto A de un espacio métrico es cerrado si, y sólo si, A contiene los límites de todas las sucesiones en A que sean convergentes.

Demostración.

 \Rightarrow] Si $x \in \overline{A}$ entonces

$$B\left(x,\frac{1}{n}\right)\cap A\neq\emptyset,\ \forall n\in\mathbb{N}.$$

Luego, para cada natural n, existe $a_n \in A$ que verifica $d(a_n, x) < \frac{1}{n}$. Es claro que $\{a_n\}$ es una sucesión en A que converge a x.

Caracterización secuencial de la adherencia

Sea A un subconjunto de un espacio métrico E y $x \in E$. Entonces

$$x \in \overline{A} \Leftrightarrow \exists$$
 una sucesión $\{a_n\}$ en $A : \{a_n\} \to x$.

Como consecuencia, un subconjunto A de un espacio métrico es cerrado si, y sólo si, A contiene los límites de todas las sucesiones en A que sean convergentes.

Demostración.

 \Rightarrow] Si $x \in \overline{A}$ entonces

$$B\left(x,\frac{1}{n}\right)\cap A\neq\emptyset,\ \forall n\in\mathbb{N}.$$

Luego, para cada natural n, existe $a_n \in A$ que verifica $d(a_n, x) < \frac{1}{n}$. Es claro que $\{a_n\}$ es una sucesión en A que converge a x.

 \Leftarrow Supongamos que $\{a_n\}$ es una sucesión en A tal que $\{a_n\} \to x$. Por tanto, para cada $\varepsilon > 0$, existe un natural m tal que

$$n \geq m \Rightarrow a_n \in B(x, \varepsilon)$$
.

En particular $B(x,\varepsilon)\cap A\neq\varnothing$, para todo $\varepsilon>0$, luego $x\in\overline{A}$.

Caracterización secuencial de los puntos de acumulación Sea A un subconjunto de un espacio métrico E y $x \in E$. Entonces

$$x \in A' \Leftrightarrow \exists$$
 una sucesión $\{a_n\}$ en $A: a_n \neq x, \forall n \in \mathbb{N}, \{a_n\} \to x$.

Ejercicio: prueba el resultado anterior.

Como la convergencia de sucesiones determina los cerrados, entonces determina la topología. Por tanto se obtiene el siguiente resultado.

Corolario

Dos $\|\cdot\|$ y $\|\cdot\|$ en un espacio vectorial X son equivalentes si, y sólo si, ambas tienen las mismas sucesiones convergentes (con los mismos límites).