BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

INSTRUCTION DIVISION

FIRST SEMESTER 2016-2017

Course Handout (Part II)

Date: 17/07/2016

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F313

Course Title : Numerical Analysis

Instructor-in-charge : A RAMU

Instructors : A RAMU

1. Scope and Objective of the Course:

Enables one to devise algorithms for the numerical solutions of mathematical problems. Also discusses the error analysis of different algorithms.

2.Text Book: Applied Numerical Analysis by Curtis F. Gerald, Patrich O.

Wheatley Pearson education (7th Edition) 2003.

3. Reference Books: 1. Numerical Analysis, Burden and Faires, 7th ed., Thomson Learning, 2001

3. Elementary numerical Analysis, SD Conte & Carl de Boor 3rd ed., TMH 2006 (Reprint).

4. Course Plan:

Lec.	Learner's Objective Topic to be Covered		Ref. to Text /Ref.
No.			Ch./Sec
1-3	To understand the potential pitfalls of numerical computing	Introduction, Using computer to do numerical analysis, Errors, Sources of errors, Floating point arithmetic, Arithmetic accuracy in computer, Significant digits, Relative error, Propagation of errors, how to avoid loss of significant digits, evaluation of polynomial, Parallel and distributed computing	0.1-0.7
4-9	To find roots of nonlinear equations and understand the relative strengths and Weaknesses of each Computation methods of System of non-linear Equations.	Bisection, secant, false –position, Newton's method, Muller's method, Fixed point iteration method. Order of convergence, multiple roots.	1.1-1.6
10-15	To solve a linear system, using gaussian elimination and iterative methods and compute matrix inverse and understand the relative strengths and weakness of each computational method	The Elimination method, Gaussian Elimination, Other direct methods, Pathology in linear systems-singular matrices, Determinants and matrix inversions, Tridiagonal systems, Thomas algorithm, Norms, condition numbers and errors in computed solutions; Jacobi's method, Gauss Seidel method, SOR method, Newton's methods, fixed-point methods for non-linear systems	2.1-2.6, 1.7
16- 21	What is an interpolating	Existence and Uniqueness of interpolating polynomial, Lagrange polynomials	3.1, 3.2-3.3, 12.10(R1)

			1	
	polynomial and how	Divided differences, Evenly space points,		
	to efficiently evaluate	Error of interpolation, cubic spline, Inverse		
	it	interpolation		
22-	To compute numerical	Derivatives from difference table, Higher	5.1-5.3, 5.6, 14.11-	
28	derivatives and	order derivatives, Extrapolation techniques,	14.12(R1)	
	integration	Newton-Cotes Integration formulas,		
	using discrete data	The Trapeziodal rule- a composite formula,		
	points and know how	Simpsons rule, Other ways to derive		
	to integrate functions	integration formulas, Gaussian Quadrature,		
	Containing singulari-			
	ties			
29-	To compute numerical	The Taylor Series method, Euler and	6.1-6.6	
34	solutions of initial	Modified Euler's method, Runge-kutta		
	value problems	Methods		
		Multistep methods: Milne's method, Adams-		
		moulton method, Predictor – corrector		
		formulas, system of equations and higher		
		order equations,		
35-	To solve boundary	The shooting method, Finite difference	6.7, 16.4(R1)	
37	value problems	method, solution through a set of equations,		
		Derivatives boundary conditions		
38-	Eigen values and	Power method, Inverse Power method &	6.8	
39	eigenvectors of	QR methods of finding eigenvalues and		
	matrices	eigenvectors of matrices		
40-	How to deal irregular	The Rayleigh-Ritz method, The Collocation	9.1-9.2	
42	boundaries using	and Galerkin Methods, Finite Elements for		
	Finite Element	Ordinary-Differential equations		
	Methods			

5. Evaluation Scheme:

Components		Duration	Wt%	Date&Time	Remarks
Test I	60 mts	30		СВ	
Test II	60 mts	30		OB	
Compre Exa	ım	3 hrs	40		СВ

- **6. Problems:** Students are strongly advised to work out all the relevant problems in the text-book and do similar problems from the reference books. It is also recommended that the students should try out the algorithms on computers (Using MATLAB) to get a better understanding of the subject.
- 7. Chamber Consultation Hours: To be announced in the class.
- **8. Make-up:** Make-up for any component of evaluation will be given only in genuine cases of absence.
- 9 Notices: All notices related to this course will be put only on the Mathematics Department Notice Board.

Instructor-In-Charge AAOC C341