Hopkroft-Karpov algoritam: projektni izvještaj

Mario Borna Mjertan, seminar iz kolegija *Oblikovanje i analiza algoritama* Matematički odsjek, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu ak. godina 2023./2024., nositelj: Matej Mihelčić, doc. dr. sc.

Osnovno o problemu sparivanja

Definicija Sparivanje

Sparivanje u neusmjerenom grafu G=(V,E) je podskup bridova $M\subseteq E$ takav da svaki vrh u V ima najviše jedan s njim incidentan brid u M.

i Definicija Maksimalno sparivanje

Maksimalno sparivanje u grafu je sparivanje maksimalne kardinalnosti. Drugim riječima, to je sparivanje u koje ne možemo dodati više nijedan brid, odnosno bilo koji nadskup njega više nije sparivanje.

(i) Definicija Bipartitan graf

Bipartitan graf je graf G=(V,E) čiji se vrhovi mogu particionirati u dva disjunktna skupa V_1 i V_2 tako da svaki brid iz E spaja vrh iz V_1 s vrhom iz V_2 .

Hoproft-Karpov algoritam daje način pronalaska maksimalnog sparivanja u bipartitnom grafu u $O(\sqrt{V}E)$. Jedan algoritam za pronalaska maksimalnog sparivanja već smo vidjeli u vidu Edmons-Karpova algoritma za pronalaženje maksimalnog toka, što je nešto općenitiji problem, u seminaru kolege Polančeca. Velik broj problema može se modelirati kao način pronalaska maksimalnog sparivanja u bipartitnom grafu - Cormen et al. izdvajaju, recimo, dogovaranje termina za intervjue za posao prema raspoloživosti intervjuera i kandidata. Osnovna ideja algoritma je inkrementalno povećavati veličinu sparivanja.

Napomena. Cormen et al. ne uvjetuju da se u *putu* u grafu ne ponavljaju čvorovi, odnosno definicija puta nije ekvivalentna onoj sa npr. Diskretne matematike. Utoliko naglašavam da je *jednostavan put* put bez ponavljanja čvorova, odnosno, *jednostavan put* je ekvivalentan pojam *putu* s Diskretne matematike. Analogna interpretacija se primjenjuje na pojam *jednostavnih ciklusa*.

(i) Definicija M-alternirajuć put

Neka je M sparivanje u neusmjerenom grafu G=(V,E). M-alternirajuć put je jednostavan put čiji bridovi alterniraju između pripadanja M i $E\backslash M$.

(i) Definicija M-augmentirajuć put

Neka je M sparivanje u neusmjerenom grafu G=(V,E). M-augmentirajuć put je M-alternirajuć put koji počinje i završava u $E \backslash M$.

Napomena. Ovo znači da M-augmentirajuć put sadrži čvor više iz $E\backslash M$ nego iz M, pa mora imati neparno mnogo bridova.

Napomena o notaciji. Za proizvoljne skupove A i B, s $A \triangle B$ označavamo simetričnu razliku $(A \backslash B) \cup (B \backslash A)$, a s $\mathcal{k}(A)$ kardinalnost skupa A.

Dokaz korektnosti

Lema 1

Neka je M sparivanje u proizvoljnom neusmjerenom grafu G=(V,E) i neka je P M-augmentirajuć put. Tad je skup bridova $M'=M\triangle P$ također sparivanje u G i $\mathscr{k}(M')=\mathscr{k}(M)+1$.

Dokaz. Pretpostavimo da P sadrži q bridova tako da ih je $\lceil q/2 \rceil$ sadržano u $E \backslash M$ i $\lfloor q/2 \rfloor$ sadržano u M. Označimo tih q vrhova s $(v_1,v_2),(v_2,v_3),\dots,(v_q,v_{q+1})$. P je M-augmentirajuć $\implies v_1$ i v_{q+1} su nespareni s obzirom na M, ostali vrhovi u P su spareni. Bridovi $(v_1,v_2),(v_3,v_4),\dots(v_q,v_{q+1})$ pripadaju $E \backslash M$, a bridovi $(v_2,v_3),(v_4,v_5),\dots,(v_{q-1},v_q)$ pripadaju M. Primjenom simetrične razlike dobivamo da bridovi $(v_1,v_2),\dots,(v_q,v_{q+1})$ pripadaju M', dok $(v_2,v_3),\dots,(v_{q-1},v_q)$ pripadaju $E \backslash M'$. Svaki vrh v_1,\dots,v_q,v_{q+1} sparen je s obzirom na M' te M' dobiva dodatan brid u odnosu na M. Ostali bridovi i vrhovi u G nisu zahvaćeni promjenom iz M u M'. Slijedi da je M' sparivanje u G i k(M') = k(M) + 1. \square

✓ Korolar 2

Neka je M sparivanje u proizvoljnom neusmjerenom grafu G=(V,E), te neka su za neki $k\in\mathbb{N}$ s $P_i,i=1,\ldots,k$ dani M-augmentirajući putevi u parovima disjunktnih vrhova. Tad je $M'=M\triangle(\cup_{i=1}^k P_i)$ sparivanje u G te $\mathscr{k}(M')=\mathscr{k}(M)+k$.

Dokaz. Korištenjem asocijativnosti simetrične razlike i matematičkom indukcijom iz prethodne leme.

Lema 3

Neka su M i M^* proizvoljna sparivanja u grafu G=(V,E) te neka je G'=(V,E') graf za $E'=M\triangle M^*$. Tad je G' disjunktna unija jednostavnih puteva, jednostavnih ciklusa i/ili izoliranih vrhova. Bridovi u svakom takvom jednostavnom putu ili ciklusu alterniraju između M i M^* . Ako je $\mathcal{k}(M^*)>\mathcal{k}(M)$, tad G' sadrži barem $\mathcal{k}(M^*)-\mathcal{k}(M)$ vrhovno-disjunktnih M-augmentirajućih puteva.

Dokaz. Svaki vrh u G' stupnja je najviše 2, budući da najviše dva brida iz E' mogu biti incidentna s vrhom: najviše jedan iz M i najviše jedan iz M^* .

 \implies Svaka komponenta povezanosti je ili izolirani vrh ili jednostavan put s bridovima koji alterniraju između M i M^* ili jednostavan ciklus parne duljine s bridovima koji alterniraju između M i M^* .

Definicija E' i $\mathcal{L}(M^*) > \mathcal{L}(M) \implies E'$ mora sadržavati $\mathcal{L}(M^*) - \mathcal{L}(M)$ više vrhova iz M^* nego iz M.

Svaki ciklus u G' ima paran broj bridova povučenih alternirajuće iz M i $M^* \implies$ svaki ciklus ima jednako bridova iz M i M^*

 \implies jednostavni putevi u G' su razlog $\mathcal{L}(M^*) - \mathcal{L}(M)$ više bridova iz M

Svaki put koji sadrži različit broj bridova iz M i M^* pripada jednom od dva slučaja:

- 1. počinje i završava s bridovima iz $M \implies$ sadrži jedan rub više iz M
- 2. počinje i završava s bridovima iz $M^* \implies$ sadrži jedan rub više iz M^* E' sadrži $\mathcal{k}(M^*) \mathcal{k}(M)$ više rubova iz M^* (nego iz $M) \implies$ barem je $\mathcal{k}(M^*) \mathcal{k}(M)$ puteva iz slučaja 2, pri čemu je svaki od njih M-augmentirajuć. Budući da svaki vrh ima najviše dva incidentna brida iz E', ti putevi moraju biti vrhovno disjunktni. \square

✓ Korolar 4 (uvjet zaustavljanja)

Sparivanje M u grafu G=(V,E) je maksimalno sparivanje $\iff G$ ne sadržava M-augmentirajuć put.

Dokaz. Obratom po kontrapoziciji u oba smjera.

 $[\Longrightarrow]$

Obrat po kontrapoziciji glasi: G sadržava M-augmentirajuć put $\implies M$ nije maksimalno sparivanje u G.

Tvrdnja slijedi direktno iz Leme 1, definicije M-augmentirajućeg puta i maksimalnog sparivanja. [\Longleftarrow]

Obrat po kontrapoziciji glasi: M nije maksimalno sparivanje $\implies G$ sadržava M-augmentirajuć put.

Neka je M^* maksimalno sparivanje takvo da je $\mathbf{k}(M^*) > \mathbf{k}(M)$. Tad iz Leme 3 direktno slijedi tvrdnja. \square

☐ Hopcroft-Karpov algoritam

- 1. $M = \emptyset$
- 2. ponavljaj
- 3. neka je $\mathcal{P}=P_1,\dots,P_k$ maksimalan skup vrhovno-disjuktnih najkraćih M-augmentirajućih puteva
- 4. $M = M \triangle \cup_{i=1}^k P_i$
- 5. dok vrijedi $P \neq \emptyset$
- 6. vrati *M***

Korolarom 4 smo dokazali korektnost Hopcroft-Karpovog algoritma.

Složenost

Hopkroft-Karp se može implementirati u $O(\sqrt{V}E)$ vremenu. Cormen et. al pokazuju da se petlja ponavlja $O(\sqrt{V})$ puta te predlažu implementaciju kojom je određivanje maksimalnog skupa vrhovno-disjunktnih najkraćih M-augmentirajućih puteva složenosti O(E). Elegantan dokaz se može naći u *Introduction to Algorithms*.

Njihova implementacija se odvija u tri faze: formiranjem usmjerene verzije G_M neusmjerena bipartitna grafa G, zatim stvaranjem usmjerenog acikličkog grafa H iz G_M varijantom BFS-a te konačno pronalaskom maksimalnog skupa vrhovno disjunktnih najkraćih M-augmentirajućih puteva varijatnom DFS-a na transpoziciji H^T od H, pri čemu transpozicijom usmjerena grafa smatraju graf s obrnutim smjerovima svaka pojedinačna brida. Sličan pristup koristi i moja implementacija, a razlika je u tome što formira niz udaljenosti čvora od trenutna sparivanja u BFS-u određujući koji putevi se mogu naći kao najkraći M-augmentirajući te DFS-om pronalazi vrhovno disjunktan najkraći put.

Empirijska analiza

Implementacija algoritma testirana je kroz dva parametrizirana testa na nenasumičnim grafovima. Kompilacija i izvršavanje s cmake . && cmake --build . && ./main [t1_vc_max] [t1_iteration_count] [t1_logic] [t2_iteration_count] [t2_logic].

Aparatura za testiranja podržava dvije logike generiranja bridova:

- logika 0, koja za $V=V_1\cup V_2$ daje $E=V_1\times V_2$ (simulira gust graf, što je loš slučaj za ovaj algoritam)
- logika 1, koja daje $\mathbf{k}(E) = \lfloor \sqrt{V}
 floor$ (relativno rijedak graf, što je dobar slučaj za ovaj algoritam)

Test 1 je parametriziran ograničenjem na broj vrhova [t1_vc_max] i logikom generiranja bridova [t1_logic]. Provodi testiranje na grafovima sa $6, 7, 8, ..., t1_vc_max$ vrhova u danoj logici

generiranja (što određuje broj bridova), ponavljajući svaki test [t1_iteration_count] puta. Ovaj test podržava t1_logic: 2 vrijednost za testiranje obje logike.

Test 2 je parametriziran brojem iteracija [t2_iteration_count] i logikom generiranja bridova [t2_logic]. Ne podržava vrijednost t2_logic: 2. Provodi testiranje na grafovima sa 650, 1000, 2500, 5000, 8000 i 10 000 vrhova u danoj logici generiranja.

Neobrađeni rezultati testova su priloženi u repozitoriju. Prema rezultatima iz prethodne točke, lagano dobivamo da u logici 0 (dopustimo si malo neformalnosti i označimo &(V) =: V) očekujemo da vrijeme izvršavanja u najgorem slučaju iznosi $O(V^{\frac{5}{2}})$, odnosno O(V) u logici 1. Na svim grafovima smatrat ćemo da x-os predstavlja broj vrhova grafa, a y-os prosječno vrijeme izvršavanja u naznačenim jedinicama. Također ćemo smatrati da je sve

Procesor na kojem se provodilo testiranje je Apple M1 Pro. Na procesoru se dinamičko upravljanje frekvencijom ne može kontrolirati, a ista ovisno o jezgri i odlukama OS-a može varirati između 600 i 3220 MHz. U repozitoriju je priložen powermetrics -s cpu_power -n 1 ispis. Pretpostavljam da je isto uzrok devijacijama (tj. prekidima u krivuljama prosječnog vremena odnosno činjenici da ih imam dvije ponegdje) koje vidimo na grafovima, budući da algoritamski uzrok tomu nisam našao i da ne vidim nikakva uzorka u prosječnu vremenu između točaka.

Oba grafa prikazuju prosječne vrijednosti za pojedini broj vrhova u logici 0, odnosno 1, respektivno u testu 1 za grafove s 6 do 700 vrhova na 20 iteracija. Iz njih možemo tvrditi da, do na outliere koji mogu biti uzrokovani vanjskim faktorima, u logici 0 doista imamo ogradu $O(V^{5/2})$ (ne nužno blisku), a u logici 1 imamo pravac.

Plotanjem svih vrijednosti u logici 1 na 20 iteracija nam se to i potvrđuje, doduše uz jasno vidljive outliere i varijaciju u brzini izvršavanja.

Analogno u testu 20 provedenom na 2000 iteracija u logici 2 dobivamo ovo za prosječne vrijednosti, što ponovno možemo opravdati s utjecajem operativnog sustava i procesorskog upravljanja energijom.

Provodeći test 2 u logici 1 na 20 iteracija vidimo da se isto poklapa s našim očekivanjem $O(V^{5/2})$

Kad interpoliramo točke u testu 2 polinomom stupnja 3, koeficijent uz x^3 je poprilično malen, pa nam to sugerira da ne trebamo odbaciti ocjenu koju smo dobili teorijski, odnosno da nemamo

razloga vjerovati da $O(V^{5/2})$ nije dobra ograda.

Ako na isti graf dodamo npr. $20000V^2 + l$ imamo još jedan razlog za vjerovati da je ograda $O(V^{5/2})$ u redu:

Literatura

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliffo: Introduction to Algorithms (4th edition), 2022, The MIT Press

- Hopcroft-Karp algorithm, Wikipedia
- Bruno Polančec: <u>Edmonds-Karp algoritam</u>, seminar iz kolegija Oblikovanje i analiza algoritama, 2023./2024.
- Apple M1 Pro benchmarks, Notebookcheck.net i Find Clock Speed on M1 Mac, Apple
 Developer Forums u diskusiji oko linkova

Repozitorij ovog seminara: https://github.com/mbmjertan/oaa-hk