

Agenda

- ☐ What Is Data Preprocessing?
- ☐ Data Preprocessing Importance
- ☐ Data Preprocessing Steps
 - Data Quality Assessment
 - Data cleaning
 - Data integration
 - Data reduction
 - Data transformation

What Is Data Preprocessing?

- ☐ The process of transforming raw data into an understandable format.
- ☐ Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.

The Machine Learning Process

From "Introduction to Microsoft Azure" by David Chappell

Data Preprocessing Importance

- Applying data mining algorithms on this noisy data would not give quality results as they would fail to identify patterns effectively.
- ☐ Quality decisions must be based on quality data. Data

 Preprocessing is important to get this quality data, without which it would just be a Garbage In, Garbage Out scenario.

Source: Garbage in/out scenario

Source: Data preprocessing

- 1. Data Quality Assessment
- ☐ The completeness with **no missing** attribute values
- ☐ Accuracy and reliability in terms of information

- 1. Data Quality Assessment
- ☐ Consistency in all features
 - Mismatched data types

id	monthly_income	currency	country	
1	20000	Thai baht	Thailand	
2	860	United States Dollar	United States	

id	monthly_income	currency	country
1	20000	Thai baht	Thailand
2	30100	Thai baht	United States

Convert to a single currency

- 1. Data Quality Assessment
- ☐ Consistency in all features
 - Mixed data values

Source 1

id	firstname	lastname	gender
1	John	Leno	man

Source 2

id	firstname	lastname	gender	
1	Matt	Json	male	

Convert gender to male

- 1. Data Quality Assessment
- Maintain data validity
 - Data outliers
- ☐ It does **not** contain any **redundancy**

- 2. Data cleaning
- Missing data
 - <u>Ignore</u> the tuples
 - <u>Filling</u> in the values manually, predicting the missing values

predicting the missing values (examples)

- mean
- regression method

Source: Regression

2. Data cleaning

- ☐ **Noisy** data
 - Binning

Regression

- 2. Data cleaning
- Noisy data
 - Clustering

Training Course: Intermediate Data Engineering

- 2. Data cleaning
- Removing outliers
 - Clustering

3. Data integration

Schema integration and object matching

- 3. Data integration
- ☐ Removing **redundant** attributes from all data sources
- ☐ Detection and resolution of data value **conflicts**

- 4. Data reduction
- ☐ Attribute selection, also known as feature selection

The feature selection methods

- Filter method
- Wrapper method
- Embedded method

Filter method

- Based on attributes of the feature.
- Performance does not depend on model used.
- Effective in computation time and robust to overfitting.
- ☐ This method should be used for preliminary screening.
- ☐ Advantage: Filter methods are much faster compared to wrapper methods.
- ☐ **Disadvantage**: Usually <u>not</u> the **best performance** in terms of reducing features.

Source: Filter method

Wrapper method

- ☐ Performance **depends on model selected** and data underlying.
- Usually can suggests the optimal feature subset.
- ☐ Typically very computationally expensive.
- Advantage: Possibly *best performance* in terms of feature elimination.
- ☐ Disadvantage: Terribly slow when it comes to large datasets.

Source: Wrapper method

Embedded method

- ☐ Combine the advantages of both previous methods.
- A learning algorithm takes advantage of its own variable selection process and performs feature selection and classification simultaneously.
- ☐ Generally less computationally expensive than Wrapper methods.

Source: Embedded method

Application of feature selection metaheuristics [edit]

This is a survey of the application of feature selection metaheuristics lately used in the literature. This survey was realized by J. Hammon in her 2013 thesis. [47]

		-			
Application +	Algorithm +	Approach +	Classifier +	Evaluation Function	Reference +
SNPs	Feature Selection using Feature Similarity	Filter		r ²	Phuong 2005 ^[49]
SNPs	Genetic algorithm	Wrapper	Decision Tree	Classification accuracy (10-fold)	Shah 2004 ^[51]
SNPs	Hill climbing	Filter + Wrapper	Naive Bayesian	Predicted residual sum of squares	Long 2007 ^[52]
SNPs	Simulated annealing		Naive bayesian	Classification accuracy (5-fold)	Ustunkar 2011 ^[53]
Segments parole	Ant colony	Wrapper	Artificial Neural Network	MSE	Al-ani 2005 ^[citation needed]
Marketing	Simulated annealing	Wrapper	Regression	AIC, r ²	Meiri 2006 ^[54]
Economics	Simulated annealing, genetic algorithm	Wrapper	Regression	BIC	Kapetanios 2007 ^[55]
Spectral Mass	Genetic algorithm	Wrapper	Multiple Linear Regression, Partial Least Squares	root-mean-square error of prediction	Broadhurst et al. 1997 ^[56]
Spam	Binary PSO + Mutation	Wrapper	Decision tree	weighted cost	Zhang 2014 ^[25]
Microarray	Tabu search + PSO	Wrapper	Support Vector Machine, K Nearest Neighbors	Euclidean Distance	Chuang 2009 ^[57]
Microarray	PSO + Genetic algorithm	Wrapper	Support Vector Machine	Classification accuracy (10-fold)	Alba 2007 ^[58]
Microarray	Genetic algorithm + Iterated Local Search	Embedded	Support Vector Machine	Classification accuracy (10-fold)	Duval 2009 ^[59]
Microarray	Iterated local search	Wrapper	Regression	Posterior Probability	Hans 2007 ^[60]
Microarray	Genetic algorithm	Wrapper	K Nearest Neighbors	Classification accuracy (Leave-one-out cross-validation)	Jirapech-Umpai 2005 ^[61]
Microarray	Hybrid genetic algorithm	Wrapper	K Nearest Neighbors	Classification accuracy (Leave-one-out cross-validation)	Oh 2004 ^[62]
Microarray	Genetic algorithm	Wrapper	Support Vector Machine	Sensitivity and specificity	Xuan 2011 ^[63]
Microarray	Genetic algorithm	Wrapper	All paired Support Vector Machine	Classification accuracy (Leave-one-out cross-validation)	Peng 2003 ^[64]
Microarray	Genetic algorithm	Embedded	Support Vector Machine	Classification accuracy (10-fold)	Hernandez 2007 ^[65]
Microarray	Genetic algorithm	Hybrid	Support Vector Machine	Classification accuracy (Leave-one-out cross-validation)	Huerta 2006 ^[66]

- 4. Data reduction
- Numerosity reduction: Replaces the original data by smaller form of data representation.
 - Parametric Methods
 - Non-Parametric Methods

Parametric Methods (examples)

☐ Regression

Linear regression: y = ax+b

x and y are random variable

a and b are regression coefficients

- ☐ **Histograms**: The data representation in terms of **frequency**.
- ☐ Clustering: The cluster representation of the data are used to replace the actual data.
- **Sampling**: Allows a large data set to be represented by a much **smaller** random **data sample** (or subset).

- 4. Data reduction
- ☐ **Dimensionality** reduction
 - Feature Selection: Removing the irrelevant or redundant features.
 - Feature Extraction: Reduce the number of features in a dataset by creating new features from the existing ones (and then discarding the original features).

- 5. Data transformation
- □ Aggregation: Combines all of your data together in a uniform format.
- Normalization: Scales your data into a regularized range so that you can compare it more accurately.
 - Min-Max normalization
 - Z-Score normalization
 - Decimal scaling normalization

Min-Max normalization

☐ The linear transformation of the original unstructured data.

$$v' = \frac{v - minF}{maxF - minF} (new_max_F - new_min_F) + new_min_F$$

where is the current value of feature F.

Z-Score normalization

- ☐ It is also called zero-mean normalization.
- ☐ Scale where an average number equals zero and a standard deviation is one.

$$v' = \frac{v - \overline{F}}{\sigma_F}$$

Here is the mean and is the standard deviation of feature F.

Decimal scaling normalization

- ☐ Move the decimal point of values of the attribute.
- This movement of decimal points totally depends on the maximum value among all values in the attribute.

$$v' = \frac{v}{10^j}$$

In this formula, j is the lowest integer while Max(|) < 1.

- 5. Data transformation
- ☐ **Feature selection**: New properties of data are created from existing attributes to help in the data mining process.

- 5. Data transformation
- Discretization
 - The continuous data here is split into intervals.
 - Discretization pools data into smaller intervals.
 - It's somewhat similar to binning, but usually happens after data has been cleaned.

- 5. Data transformation
- Concept hierarchy generation
 - A hierarchy within and between your features that wasn't present in the original data.

