Set 20: Section 5.5, Statistics and their Distributions

Definition: A statistic is a function of the data.

Let X_1, X_2, \ldots, X_n be n random variables. Examples:

- $\bar{X} = \sum_{i=1}^{n} X_i / n$ is a statistic
- $S^2 = \sum_{i=1}^{n} (X_i \bar{X})^2 / (n-1)$ is a statistic
- $T = X_1 + X_2 + \cdots + X_n$ (the sample sum)
- $X_{max} = max(X_1, X_2, \dots, X_n)$ (the sample maximum)
- $X_{min} = min(X_1, X_2, \dots, X_n)$ (the sample minimum)
- $\tilde{X} = median(X_1, X_2, \dots, X_n)$ (the sample median)

For the observed value of these statistics, we use lower-case letters (e.g. $\bar{x}, t, x_{max}, x_{min}, \tilde{x}$)

Since X's are rv's, statistics are rv's.

The probability distribution of a statistic is called a *sampling distribution*.

Typically, a statistic is a function of a *random sample*, i.e. a sequence of independent, identically distributed (*iid*) random variables, e.g. X_1, X_2, \ldots, X_n .

Example: Obtain the distribution of the statistic Q = X + Y where the joint pmf of X and Y is given in the following table.

	X=1	X=2	X=3
Y=1	0.1	0.1	0.2
Y=2	0.2	0.3	0.1

Example: Suppose two people flip a coin three times. Let X_1, X_2 denote the number of tails flipped by person 1 and 2. Find the sampling distribution of the sample mean.

Since statistics are random variables, they have an expected value and variance.

Example: Find $E(\overline{X})$

Example: Two machines operate independently. The first and second machines make an average of 6 and 3 defective items per hour. Find the sampling distribution of T, the sample total of defective items made by the machines.

We have that $X_1 \sim Poisson(6), X_2 \sim Poisson(3)$. Then $f(x_1, x_2)$ has joint pmf:

$$f(x_1, x_2) = \begin{cases} \frac{6^{x_1} e^{-6}}{x_1!} & \frac{3^{x_2} e^{-3}}{x_2!} & x_1 \ge 0, x_2 \ge 0\\ 0 & \text{otherwise} \end{cases}$$

We wish to find $g(t) = P(T = t) = P(X_1 + X_2 = t)$.

If t < 0, then g(t) = 0.

If $t \ge 0$ then g(t) will equal to the sum of all $f(x_1, x_2)$ where $x_1 + x_2 = t$.

For example, g(3) = P(T = 3) is,

$$f(0,3) + f(1,2) + f(2,1) + f(3,0)$$

$$= \frac{6^0 3^3 e^{-9}}{0!3!} + \frac{6^1 3^2 e^{-9}}{1!2!} + \frac{6^2 3^1 e^{-9}}{2!1!} + \frac{6^3 3^0 e^{-9}}{3!0!} \approx 0.1499$$

In general:

$$g(t) = \sum_{i=0}^{t} f(i, t-i) = \sum_{i=0}^{t} \frac{6^{i}3^{t-i}e^{-9}}{i!(t-i)!}$$

Proposition: Linear combinations of normal rv's are normal.

Corollary: Suppose that X_1, \ldots, X_n is a sample from the $Normal(\mu, \sigma^2)$ distribution. Then $\bar{X} \sim Normal(\mu, \sigma^2/n)$

Example: Determine the distribution of the rv $Y = 2X_1 - X_2 + 3X_3 + 3$ where X_1 , X_2 and X_3 are independent, $X_1 \sim \text{Normal}(4,3)$, $X_2 \sim \text{Normal}(5,7)$ and $X_3 \sim \text{Normal}(6,4)$.

Example: Determine the distribution of the rv $Y = X_1 - X_2$ where $Cov(X_1, X_2) = 6$, $X_1 \sim Normal(5, 10)$ and $X_2 \sim Normal(3, 8)$.

Example: When Z_1 and Z_2 are independent standard normal, then $Y=Z_1+Z_2\sim \mathrm{Normal}(0,2)$.

Problem: Suppose that the waiting time for a bus in the morning is uniformly distributed on [0,8] whereas the waiting time for a bus in the evening is uniformly distributed on [0,10]. Assume that the waiting times are independent.

- (a) If you take a bus each morning and evening for a week, what is the total expected waiting time?
- (b) What is the variance of total waiting time?
- (c) What are the expected value and variance of how much longer you wait in the evening than in the morning on a given day?