Announcement

ITIS 6200 / 8200

Project #1 due today

- Assignment #3 release today
 - To be released at 11:59am
 - Due Nov.9 11:59pm

- Project #2 to be released next Thursday
 - To be released at Nov.2 11:59am
 - Due Nov.16 11:59pm

Intro to Networking and ARP

Today: Intro to Networking

- Internet: A global network of computers
- OSI model: A layered model of protocols

What's the Internet?

What's the Internet?

- Network: A set of connected machines that can communicate with each other
 - Machines on the network agree on a protocol, a set of rules for communication
- Internet: A global network of computers
 - The web sends data between browsers and servers using the Internet
 - The Internet can be used for more than the web (e.g. SSH)

Protocols

- A protocol is an agreement on how to communicate that specifies syntax and semantics
 - Syntax: How a communication is specified and structured (format, order of messages)
 - Semantics: What a communication means (actions taken when sending/receiving messages)
- Example: Protocol for asking a question in lecture?
 - 1. The student should raise their hand
 - 2. The student should wait to be called on by the speaker or wait for the speaker to pause
 - 3. The student should speak the question after being called on or after waiting

Layering: The OSI Model

Layering

ITIS 6200 / 8200

- Internet design is partitioned into various layers. Each layer...
 - Has a protocol
 - Relies on services provided by the layer below it
 - Provides services to the layer above it
- Analogous to the structure of an application and the "services" that each layer relies on and provides

Code You Write

Run-Time Library

System Calls

Device Drivers

Voltage Levels/Magnetic Domains

Fully isolated from user programs

ITIS 6200 / 8200

Send to: Bob
I am hungry.

ITIS 6200 / 8200

Bob

ITIS 6200 / 8200

Alice

Send to: Bob

ITIS 6200 / 8200

Alice

Send to: Bob

ITIS 6200 / 8200

Alice

Bob

OSI Model

- OSI model: Open Systems Interconnection model, a layered model of Internet communication
 - Originally divided into 7 layers
 - But layers 5 and 6 aren't used in the real world, so we ignore them
 - And we'll talk about layer 4.5 for encryption later
- Same reliance upon abstraction
 - A layer can be implemented in different ways without affecting other layers
 - A layer's protocol can be substituted with another protocol without affecting other layers

Layer 1: Physical Layer

- Provides: Sending bits from one device to another
 - Encodes bits to send them over a physical link
 - Patterns of voltage levels
 - Photon intensities
 - RF modulation
- Examples
 - Wi-Fi radios (IEEE 802.11)
 - Ethernet voltages (IEEE 802.3)

Layer 1: Physical Layer

- Provides: Sending frames directly from one device to another
 - Relies upon: Sending bits from one device to another
 - Encodes messages into groups of bits called "frames"
- Examples
 - Ethernet frames (IEEE 802.3)

- Local area network (LAN): A set of computers on a shared network that can directly address one another
 - Consists of multiple physical links
- Frames must consist of at least 3 things:
 - Source ("Who is this message coming from?")
 - Destination ("Who is this message going to?")
 - Data ("What does this message say?")

- In reality, computers aren't all connected to the same wire
 - Instead, local networks are a set of point-to-point links
- However, Layer 2 still allows direct addressing between any two devices
 - Enabled by transmitting a frame across multiple physical links until it reaches its destination
 - Provides an abstraction of a "everything is connected to one wire"

Ethernet and MAC Addresses

- Ethernet: A common layer 2 protocol that most endpoint devices use
- **MAC address**: A 6-byte address that identifies a piece of network equipment (e.g. your phone's Wi-Fi controller)
 - Stands for Media Access Control, not message authentication code
 - Typically represented as 6 hex bytes: 13:37:ca:fe:f0:0d
 - The first 3 bytes are assigned to manufacturers (i.e. who made the equipment)
 - This is useful in identifying a device
 - The last 3 bytes are device-specific

ITIS 6200 / 8200

Link layer: "How do I transmit this frame from A to C, making sure that no one else thinks the message is for them?"

Source: A Dest: C "Hello, this is A..."

- 7 Application
- 4 Transport
- (Inter) Network
- 2 Link
- Physical

Next: How do we address every device in existence?

- Provides: Sending packets from any device to any other device
 - Relies upon: Sending frames directly from one device to another
 - Encodes messages into groups of bits called "packets"
 - Bridges multiple LANs to provide global addressing
- Examples
 - Internet Protocol (IP)

- Recall the ideal layer 2 model: All devices can directly address all other devices
 - This would not scale to the size of the Internet!
- Instead, allow packets to be routed across different devices to reach the destination
 - Each hop is allowed to use its own physical and link layers!
- Basic model:
 - Is the destination of the packet directly connected to my LAN?
 - Pass it off to Layer 2
 - Otherwise, route the packet closer to the destination

ITIS 6200 / 8200

28

- Packets must consist of at least 3 things:
 - Source ("Who is this message coming from?")
 - Destination ("Who is this message going to?")
 - Data ("What does this message say?")
 - Similar to frames (layer 2)
- Packets may be fragmented into smaller packets
 - Different links might support different maximum packet sizes
 - Up to the recipient to reassemble fragments into the original packet
 - In IPv4, any node may fragment a packet if it is too large to route
 - In IPv6, the sender must fragment the packet themselves
- Each router forwards a given packet to the next hop
- Packets are not guaranteed to take a given route
 - Two packets with the same source and destination may take different routes

Internet Protocol (IP)

- Internet Protocol (IP): The universal layer-3 protocol that all devices use to transmit data over the Internet
- IP address: An address that identifies a device on the Internet
 - o IPv4 is 32 bits, typically written as 4 decimal octets, e.g. **35.163.72.93**
 - IPv6 is 128 bits, typically written as 8 groups of 2 hex bytes: 2607:f140:8801::1:23
 - If digits or groups are missing, fill with 0's, so 2607:f140:8801:0000:0000:0000:0001:0023
 - Globally unique from any single perspective
 - For now, you can think of them as just being globally unique
 - IP addresses help nodes make decisions on where to forward the packet

Reliability

- Reliability ensures that packets are received correctly or, if random errors occur, not at all
 - This is implemented with a checksum
 - However, there is no cryptographic MAC, so there are no guarantees if an attacker modifies packets
- IP is unreliable and only provides a best effort delivery service, which means:
 - Packets may be lost ("dropped")
 - Packets may be corrupted
 - Packets may be delivered out of order
- It is up to higher level protocols to ensure that the connection is reliable

Layer 4: Transport Layer

- Provides: Transportation of variable-length data from any point to any other point
 - Relies upon: Sending packets from any device to any other device
 - Builds abstractions that are useful to applications on top of layer 3 packets
- Useful abstractions
 - o **Reliability**: Transmit data reliably, in order
 - Ports: Provide multiple "addresses" per real IP address
- Examples
 - o **TCP**: Provides reliability and ports
 - UDP: Provides ports, but no reliability

Layer 4: Transport Layer

Layer 7: Application Layer

- Provides: Applications and services to users!
 - Relies upon: Transportation of variable-length data from any point to any other point
- Every online application is Layer 7
 - Web browsing
 - Online video games
 - Messaging services
 - Video calls (Zoom)

Layers of Abstraction and Headers

- As you move to lower layers, you wrap additional headers around the message
- As you move to higher layers, you peel off headers around the message
- When sending a message we go from the highest to the lowest layer
- When receiving a message we go from the lowest to highest layer

ITIS 6200 / 8200

GET / HTTP/1.1 HTTP HTTP TCP TCP IΡ IΡ Ethernet Ethernet Wires Wires

ITIS 6200 / 8200

HTTP

TCP

IΡ

Wires

ITIS 6200 / 8200

IP

Ethernet

Wires

HTTP

TCP

IΡ

Ethernet

Wires

ITIS 6200 / 8200

HTTP

TCP

IΡ

Ethernet

Wires

From: Port 1234 To: Port 80

GET / HTTP/1.1

TCP

HTTP

IΡ

Ethernet

Wires

Summary: Intro to Networking

ITIS 6200 / 8200

- Internet: A global network of computers
 - Protocols: Agreed-upon systems of communication
- OSI model: A layered model of protocols
 - Layer 1: Communication of bits
 - Layer 2: Local frame delivery
 - Ethernet: The most common Layer 2 protocol
 - MAC addresses: 6-byte addressing system used by Ethernet
 - Layer 3: Global packet delivery
 - IP: The universal Layer 3 protocol
 - IP addresses: 4-byte (or 16-byte) addressing system used by IP
 - Layer 4: Transport of data
 - Layer 7: Applications and services

Application

Transport

(Inter) Network

Link

Physical