הסתברות לסטטיסטיקאים 52534 תשפ"ה

תרגיל 2

1. נתון המשתנה המקרי X עם פונקציית ההתפלגות המצטברת הבאה (מתרגיל 1 שאלה 1):

$$F_X(x) = \begin{cases} 0 & x < -1 \\ \frac{x}{4} + \frac{1}{2} & -1 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

חשבו את התוחלת והשונות של X.

2. חשבו את התוחלת והשונות של שלושת המשתנים המקריים: V_{-1} Z , Y_{-1} שחישבתם בתרגיל 1 שאלה 2.

3. התפלגות ביתא

באינטרוול [0,1] היא התפלגות רציפה לגמרי בעלת הצפיפות: $lpha,eta \in \mathbb{R}_+$ באינטרוול הפרמטרים מחדש אונטרוול בעלת הצפיפות:

(*)
$$f(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
, $x \in (0, 1)$

$$B(lpha,eta)^X$$
 ($\Gamma=X$) איי, $X\in(0,1)$ כאשר $B(lpha,eta)$ היא פונקציית ביתא $B(lpha,eta)=rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha+eta)}$

 $\Gamma(lpha) = \int_0^\infty t^{lpha-1} e^{-t} dt$: הערה: פונקציית גמא מוגדרת על ידי

- $_{lpha}$,[0,1] הראו כי עבור lpha=eta=1 התפלגות ביתא זהה להתפלגות אחידה בקטע
 - מצאו נוסחאות לשני המומנטים ולשונות של התפלגות ביתא ii.
 - $Y = 1 X \sim B(\beta, \alpha)$ אז $X \sim B(\alpha, \beta)$ הראו כי אם .iii
- 4. הוכיחו כי אם לכל אחד מהמשתנים המקריים X ו-Y יש מומנט שני סופי, אזי גם לסכום Y+X יש מומנט שני

 $(a+b)^2 \le 2a^2 + 2b^2$ **רמז:** הוכיחו והשתמשו באי שוויון

5. התפלגות נורמלית

- $\sigma^2 \in \mathbb{R}_+$ ו $\mu \in \mathbb{R}$ עבור $X{\sim}N(\mu,\sigma^2)$ מצאו את הפונקציה יוצרת מומנטים של התפלגות נורמלית
- הראו כי ההתפלגות הנורמלית יציבה תחת טרנספורמציות לינאריות. כלומר אם X מתפלג נורמלית אז .גם Y = aX + b מתפלג נורמלית