0.1 Analysis

The model of the problem has been clearly stated in the problem document, so the key point is to transform the model into a matrix available in MATLAB. Define the variable vector as follows:

$$x = \begin{bmatrix} q_{ac,1} & q_{ac,2} & \cdots & q_{ac,2160} & T_{b,2} & T_{b,3} & \cdots & T_{b,2160} \end{bmatrix}$$

Considering the unit of Φ_k is \in /kWh and the unit of $q_{ac,k}$ is kW, so ΔT in $\sum_{k=1}^N \Phi_k q_{ac,k}$ should be $\Delta t = 1(h)$. There are two ways for finding the corresponding matrices H and C in the standard form of quadratic optimization problem.

1. Measure 1: from equation to matrices

$$\sum_{k=1}^{N} \Phi_{k} q_{ac,k} \Delta t + (0.1 + E_{2}/10)(T_{B,k} - T_{ref})^{2} = \sum_{k=1}^{N} \Phi_{k} q_{ac,k} + \sum_{k=1}^{N} 1.4(T_{k}^{2} + T_{ref}^{2} - 2T_{r}T_{k})$$

$$= \sum_{k=1}^{N} \Phi_{k} q_{ac,k} - 2.8T_{r}T_{k} + \sum_{k=1}^{N} 1.4T_{ref}^{2} + \sum_{k=1}^{N} 1.4T_{k}^{2}$$

$$= \sum_{k=1}^{N} 1.4T_{ref}^{2} + C^{T}x + \frac{1}{2}x^{T}Hx$$
(1)

so,

$$C = \underbrace{\begin{bmatrix} \Phi_{1} & \cdots & \Phi_{2160} \\ N \end{bmatrix}}^{N} \underbrace{\begin{bmatrix} -2.8T_{ref} & \cdots & -2.8T_{ref} \end{bmatrix}^{T}}_{N-1}$$

$$H = \begin{bmatrix} N & N-1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & 2.8 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 2.8 \end{bmatrix}}_{N-1}$$

$$N = \begin{bmatrix} N & N-1 \\ N & N-1 \\ N & N-1 \end{bmatrix}$$

2. Measure 2: directly from matrices operation

$$\sum_{k=1}^{N} \Phi_{k} q_{ac,k} \Delta t + (0.1 + E_{2}/10)(T_{B,k} - T_{ref})^{2} = \sum_{k=1}^{N} \Phi_{k} q_{ac,k} + \sum_{k=1}^{N} 1.4(T_{k}^{2} + T_{ref}^{2} - 2T_{r}T_{k})$$

$$= (\sum_{k=1}^{N} \Phi_{k} q_{ac,k}) - 1.4(Ax - T_{mref})^{T} (Ax - T_{mref})$$

$$= (\sum_{k=1}^{N} \Phi_{k} q_{ac,k}) - 1.4x^{T} A^{T} Ax - 1.4T_{mref}^{T} T_{mref} + 2.8T_{mref}^{T} Ax$$

$$= -2.8T_{mref}^{T} T_{mref} + \Phi x + 2.8T_{mref}^{T} Ax - 1.4xA^{T} Ax$$
(3)

where:

$$\Phi = \underbrace{\begin{bmatrix} \Phi_{1} & \cdots & \Phi_{2160} \\ N \end{bmatrix}}_{N} \underbrace{\begin{bmatrix} 0 & \cdots & \cdots & 0 \\ N-1 \end{bmatrix}}_{N-1}$$

$$A = \begin{bmatrix}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\hline
0 & \cdots & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 1
\end{bmatrix}}_{N-1}$$

$$A = \begin{bmatrix}
N & N-1 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 1
\end{bmatrix}_{N-1}$$

so,

$$C = \Phi + 2T_{mref}^{T} = \underbrace{\begin{bmatrix} \Phi_{1} & \cdots & \Phi_{2160} \\ N & & & \\ \end{bmatrix}}_{N} \underbrace{\begin{bmatrix} N & N-1 \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \hline 0 & \cdots$$

For constraints $A_{eq}x = b_{eq}$, the matrices are shown

$$A_{eq} = \begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

$$N-1 \qquad 1 \qquad N-1$$

$$b_{eq} = \begin{bmatrix} (a_1 q_{solar,1} + a_2 q_{oc,1} t - a_2 q_{vent,1} + a_3 T_{amb,1}) \Delta t + T_{b,1} \\ \vdots \\ (a_1 q_{solar,N} + a_2 q_{oc,N} - a_2 q_{vent,N} + a_3 T_{amb,N}) \Delta t \end{bmatrix}$$

$$(6)$$

0.2 Model

The model has been clearly explained in the problem document, and the model is explained by using matrices here. Because $1.4T_{ref}^2$ is a constant in this problem, it was ignored in the standard form, it will be added after optimization with MATLAB.

0.3 Solution

Based on equations, the corresponding parameters in MATLAB function quadprog are shown as follows:

$$H = \begin{bmatrix} N & N-1 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & 2.8 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 2.8 \end{bmatrix}$$

$$N - 1$$

$$f = \underbrace{\begin{bmatrix} \Phi_1 & \cdots & \Phi_{2160} & -2.8T_{ref} & \cdots & -2.8T_{ref} \end{bmatrix}^T}_{N-1}$$

$$A_{eq} = \begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a \end{bmatrix}$$

$$\begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

$$N - 1$$

$$\begin{bmatrix} a_1 q_{solar,1} + a_2 q_{occ,1} t - a_2 q_{vent,1} + a_3 T_{amb,1}) \Delta t + T_{b,1} \\ \vdots & \vdots & \vdots & \vdots \\ (a_1 q_{solar,N} + a_2 q_{occ,N} - a_2 q_{vent,N} + a_3 T_{amb,N}) \Delta t \end{bmatrix}$$

$$b_{eq} = \begin{bmatrix} (a_1 q_{solar,N} + a_2 q_{occ,N} - a_2 q_{vent,N} + a_3 T_{amb,N}) \Delta t \\ \vdots & \vdots & \ddots & \vdots \\ (a_1 q_{solar,N} + a_2 q_{occ,N} - a_2 q_{vent,N} + a_3 T_{amb,N}) \Delta t \end{bmatrix}$$

$$b(i) = \begin{cases} 0 & \text{i=1,...,N} \\ 15 & \text{i} > 2160 \text{ and } q_{occ,(i-2160)} > 0 \\ -\text{inf} & (others) \end{cases}$$

$$ub(i) = \begin{cases} q_{ac,max} & \text{i=1,...,N} \\ 28 & \text{i} > 2160 \text{ and } q_{occ,(i-2160)} > 0 \\ \text{inf} & (others) \end{cases}$$

Finally, the quadprog got the optimal answer, which obtained the minimal cost of €20533.

0.4 Answer

1. The optimal cost for air-conditioning along the horizon of N(2160) steps is €20533.