3.6. ЗАДАНИЕ 1 ПРЕДСТАВЛЕНИЕ ЧИСЕЛ С ФИКСИРОВАННОЙ И ПЛАВАЮЩЕЙ ЗАПЯТОЙ В РАЗЛИЧНЫХ ФОРМАТАХ

- 1. Заданное число A представить в виде двоично-кодированного десятичного числа:
 - а) в упакованном формате (ВСD);
 - б) в неупакованном формате (ASCII).
- 2. Заданное число A и -A представить в форме с фиксированной запятой.
- 3. Заданные числа \boldsymbol{A} и \boldsymbol{B} представить в форме с плавающей запятой в формате $\Phi 1$.
- 4. Заданные числа \boldsymbol{A} и \boldsymbol{B} представить в форме с плавающей запятой в формате $\Phi 2$.
- 5. Заданные числа A и B представить в форме с плавающей запятой в формате $\Phi 3$.
- 6. Найти значения чисел Y и Z по их заданным шестнадцатеричным представлениям R и S в форме с плавающей запятой в формате $\Phi 1$.
- 7. Найти значения чисел V и W по их заданным шестнадцатеричным представлениям R и S в форме с плавающей запятой в формате $\Phi 2$.
- 8. Найти значения чисел T и Q по их заданным шестнадцатеричным представлениям R и S в форме с плавающей запятой в формате $\Phi 3$.

Замечание. При выполнении п.п. 3-5 задания для дробного числа \boldsymbol{B} в целях увеличения точности его представления произвести симметричное округление мантиссы.

Варианты задания приведены в табл. 1 (десятичные числа \boldsymbol{A} и \boldsymbol{B}) и в табл. 2 (шестнадцатеричные числа \boldsymbol{R} и \boldsymbol{S}) Приложения 1.

1. Представление чисел в виде двоично-кодированного десятичного числа

Десятичные числа представляются в ЭВМ в двоично-кодированной форме, при этом каждая десятичная цифра (или буква — для шестнадцатеричной системы) кодируется с помощью четверки двоичных разрядов (двоичной тетрады).

десятичная	двоичная
цифра	тетрада
0	0000
1	0001
2	0010
3	0011
4	0100

десятичная	двоичная
цифра	тетрада
5	0101
6	0110
7	0111
8	1000
9	1001

Десятичные числа представляются в форме с использованием либо упакованного (PACK), либо неупакованной (UNPACK) формата.

В упакованном формате в каждом байте числа кодируются две цифры, в неупакованном – одна.

Для кодирования десятичных цифр используется в основном естественный двоичный код, обычно называемый 8421.

В этом коде:

0 - 0000

1 - 0001

. . .

9 - 1001

Частным случаем неупакованного формата является код ASCII (American Standart Code for Interchange Information), используемый в РС. В этом коде десятичная цифра представляется в младшей тетраде байта, а старшая тетрада принимает стандартное значение 0011.

Упакованный формат обычно называют BCD-форматом (или BCD-числом – Binary Coded Decimal).

В упакованном формате в каждом байте кодируется две десятичные цифры, в неупакованном – одна.

Пример: A=395.

б) В ASCII-формате код цифры помещается в младшую тетраду байта (в младший полубайт). Старшая тетрада байта имеет стандартное значение 0011.

2. Представление чисел с фиксированной запятой

Особенностью представления целых чисел со знаком в форме с фиксированной запятой в ЭВМ является использование прямого кода для положительных чисел и дополнительного кода – для отрицательных чисел.

Пример.
$$A = 250$$
.

2.1. Заданное десятичное число A переводится в двоичную систему счисления:

$$(250)_{10} = (111111010)_2.$$

Полученное двоичное число размещается в формате таким образом, чтобы его младший разряд совпадал с крайним правым (15-ым) разрядом

формата. Старшие разряды формата, включая знаковый (нулевой разряд), заполняются нулями.

В шестнадцатеричной системе счисления: (250)10 = (FA)16.

2.2. Для представления отрицательного числа в дополнительном коде производится инвертирование цифровых разрядов прямого кода (получение обратного кода числа) с добавлением единицы в младший разряд. В знаковый разряд числа заносится единица (знак "—").

$$\begin{split} [-A]_{\text{пр}} &= 1.000\ 0000\ 1111\ 1010 - \text{прямой код,} \\ [-A]_{\text{oб}} &= 1.111\ 1111\ 0000\ 0101 - \text{обратный код,} \\ &\qquad \qquad + \qquad \qquad 1 \\ [-A]_{\text{доп}} &= 1.111\ 1111\ 0000\ 0110 - \text{дополнительный код.} \end{split}$$

Для преобразования отрицательных чисел из прямого кода в дополнительный может использоваться следующее правило. Младшие нули прямого кода, включая младшую (крайнюю правую) единицу, сохраняются и в дополнительном коде, а остальные разряды прямого кода заменяются на противоположные (инвертируются) в дополнительном коде. Преобразование применяется только к цифровым разрядам числа, знаковый разряд не меняется. С использованием этого правила:

$$[-A]_{\text{доп}} = 1.111 \ 1111 \ 0000 \ 0110$$
 разряды, изменяемые сохраняемые инвертированием разряды

Полученное представление числа в дополниительном коде записывается в формате:

3. Представление чисел с плавающей запятой в формате $\Phi 1$

Для представления числа в формате с плавающей запятой определяется его мантисса и порядок. В связи с тем, что в формате $\Phi 1$ используется шест-

надцатеричное представление порядка, для этой цели удобнее использовать число, представленное в шестнадцатеричной системе счисления. Для определения мантиссы и порядка производится перемещение запятой в шестнадцатеричном числе влево или вправо таким образом, чтобы она установилась перед старшей значащей цифрой. Полученное дробное число представляет мантиссу числа с плавающей запятой. Модуль порядка определяется количеством шестнадцатеричных цифр, на которое была перенесена запятая. Знак порядка определяется направлением, в котором переносилась запятая. При перенесении запятой влево порядок положителен, вправо — отрицателен.

Такой способ получения мантиссы и порядка дает нормализованное число, у которого старшая цифра мантиссы значащая.

Если в исходном числе запятая находится перед старшей значащей цифрой, то порядок этого числа равен нулю.

По значению порядка определяется характеристика (смещенный порядок) числа путем сложения порядка со смещением (для формата ΦI величина смещения равна 64), после чего двоичные значения знака, характеристики и мантиссы числа записываются в формат.

3.1. Для определения мантиссы и порядка числа \boldsymbol{A} запятая переносится влево на две шестнадцатеричные цифры:

$$A=250$$
 $A = (FA)_{16} = (0, FA)_{16} \times 16^{2}$ мантисса порядок

Характеристика числа A:

$$X_A = P_A + 64 = (66)_{10} = (1000010)_2.$$

Для получения двоичного значения характеристики, соответствующей положительному или нулевому порядку, в ее старший разряд записывается единица (вес этого разряда характеристики равен величине смещения – 64), а в младших разрядах характеристики представляется величина порядка

$$x_A = (1000010).$$
 $64 + 2 = 66$
смещение порядок характеристика

При записи числа в формате $\Phi 1$ шестнадцатеричная мантисса представляется в двоичной системе счисления. Младшие разряды мантиссы заполняются нулями. Представление числа A в формате $\Phi 1$ имеет вид

Старшая тетрада мантиссы нормализованного числа может содержать от одного до трех старших нулей. Например, число

$$(1E8,5)_{16} = (0,1E85)_{16} \times 16^3$$
 представляется в виде

и содержит в старшей тетраде мантиссы три нуля.

3.2. Число $\mathbf{B} = 0,0025$ переводится в шестнадцатеричную систему счисления. При переводе необходимо получить шесть цифр, не считая старших нулей.

В целях повышения точности представления числа рекомендуется получить еще одну (дополнительную) цифру, по значению которой производится симметричное округление этого числа.

$$\mathbf{B} = (0.0025)_{10} = (0.00A3D70A3)_{16}.$$

Дополнительная цифра числа, равная $(3)_{16} = (0011)_2$, содержит в старшем двоичном разряде ноль и поэтому не изменяет значения предыдущей цифры, равной $(A)_{16}$, при округлении числа.

При наличии старшей единицы в двоичном представлении дополнительной цифры, что соответствует значению, большему или равному $(8)_{16}$, при симметричном округлении предыдущая младшая цифра числа увеличивается на единицу.

Для определения мантиссы и порядка числа \mathbf{B} запятая в его шестнадцатеричном представлении переносится вправо на две цифры, что определяет порядок числа, равный (-2):

$$\mathbf{B} = (0.00 \text{A}3 \text{D}70 \text{A})_{16} = (0.43 \text{D}70 \text{A})_{16} \times 16^{-2}.$$

Характеристика числа В:

$$X_B = P_B + 64 = -2 + 64 = 62 = (0111110)_2.$$

Для получения двоичного значения характеристики, соответствующей отрицательному порядку, можно использовать следующее правило: в стар-

ший разряд характеристики записывается ноль, а в шести ее младших разрядах представляется дополнительный код порядка (дополнение до 64)

000010 – прямой код порядка,

111110 – дополнительный код порядка,

0111110 – характеристика.

Представление числа \boldsymbol{B} в формате $\Phi 1$ имеет вид

4. Представление чисел с плавающей запятой в формате $\Phi 2$

Для представления чисел в форме с плавающей запятой в формате $\Phi 2$ используется их двоичная запись, так как в этом формате основание порядка S=2. Для определения мантиссы и порядка запятая переносится влево или вправо в двоичном числе до установления перед старшей единицей. Модуль порядка определяется количеством двоичных цифр (разрядов), на которое переносится запятая.

Характеристика (смещенный порядок) определяется путем сложения порядка со смещением, величина которого в формате $\Phi 2$ равна 128 (в отличие от формата $\Phi 1$ в формате $\Phi 2$ под характеристику отводится 8 двоичных разрядов формата).

При записи числа необходимо учитывать, что во формате $\Phi 2$ используются **только** нормализованные числа и, так как нормализация осуществляется с точностью до двоичной цифры, старший разряд мантиссы всегда равен единице, в связи с чем он в разрядной сетке не представляется (так называемый скрытый разряд). Кроме того, в формате $\Phi 2$ принята нумерация разрядов в сетке справа налево (от младшего разряда к старшему).

4.1. Определение мантиссы и порядка числа А:

$$A = (250)_{10} = (FA)_{16} = (111111010)_2 = (0, 11111101)_2 \times 2^{\$}$$
.

Характеристика числа A:

$$X_A = P_A + 128 = 136 = (10001000)_2.$$
 $128 + 8 = 136$
смещение порядок характеристик

4.2. Для определения мантиссы и порядка числа \mathbf{B} запятая в его двоичном представлении переносится вправо на 8 двоичных разрядов, что определяет порядок числа, равный (-8).

Характеристика числа B:

$$X_B = P_B + 128 = 120 = (01111000)_2.$$

Представление числа \boldsymbol{B} в формате $\Phi 2$ имеет вид

Для данного примера дробное число B представлено в форматах $\Phi 1$ и $\Phi 2$ с одинаковой точностью. Это объясняется наличием единицы в старшем разряде мантиссы формата $\Phi 1$. Если же в старших разрядах мантиссы содержится хотя бы один ноль, то точность представления числа в формате $\Phi 2$ будет больше за счет использования большего числа значащих цифр в мантиссе.

Например, шестнадцатеричная мантисса $(0,1A90BC7)_{16}$ будет представлена в формате $\Phi 1$ в виде

а в формате $\Phi 2$ - в виде

В данном случае в формате $\Phi 2$ в представлении мантиссы используется на три разряда больше, чем в $\Phi 1$. Кроме того, за счет дополнительного разряда мантиссы, равного единице, производится добавление единицы к младшему разряду, в результате чего получается представление числа с избытком, в то время как в формате $\Phi 1$ оно представлено с недостатком.

5. Представление чисел с плавающей запятой в формате $\Phi 3$

Представление чисел в формате $\Phi 3$ во многом аналогично их представлению в формате $\Phi 2$. Основными отличиями являются:

- 1) величина смещения равна 127 (в формате $\Phi 2 128$);
- 2) старшая единица мантиссы нормализованного числа является единицей целой части мантиссы, т.е. запятая в мантиссе фиксируется после старшей единицы (в формате $\Phi 2$ запятая в мантиссе фиксируется перед старшей единицей).
 - 5.1. Определение мантиссы и порядка числа А:

$$A = (250)_{10} = (FA)_{16} = (111111010)_2 = (1,111101)_2 \times 2^7$$
.

Смещенный порядок числа А:

$$X_A = P_A + 127 = 134 = (10000110)_2.$$

Число A представляется в формате $\Phi 3$ в виде

Следует отметить, что:

- а) в отличие от представления чисел в форматах $\Phi 1$ и $\Phi 2$ в $\Phi 3$ не принято называть смещенный порядок характеристикой;
- б) по аналогии с представлением чисел в формате $\Phi 2$ в $\Phi 3$ используется скрытый разряд (единица целой части мантиссы в формате не представляется);
- в) представление числа в формате $\Phi 3$ отличается от представления в $\Phi 2$ только значением смещенного порядка (его величина уменьшается на 2).
 - 5.2. Определение мантиссы и порядка числа В:

Смещенный порядок числа В:

$$X_B = P_B + 127 = 118 = (01110110)_2.$$

Для чисел с отрицательным порядком значение смещенного порядка может быть получено по следующему правилу: старший разряд смещенного порядка равен нулю, а в остальных разрядах представляется обратный код порядка:

0001001 – прямой код порядка,

1110110 – обратный код порядка,

01110110 - смещенный порядок.

Представление числа B в формате $\Phi 3$ имеет вид

6. Определение значения числа с плавающей запятой по его представлению в формате $\Phi 1$

$$R = C318FC00$$
. $S = 3E600000$.

6.1. Для определения значения числа Y производится наложение его шестнадцатеричного представления R на разрядную сетку формата $\Phi 1$:

Из этого представления видно, что число Y — отрицательное (в знаковом разряде числа — единица).

Определим порядок числа Y по его характеристике:

$$P_Y = X_Y - 64 = 3$$
.

Представим число Y с помощью мантиссы и порядка:

$$Y = -(0.18FC)_{16} \times 16^3$$
.

Получили представление числа Y в нормальной (полулогарифмической) форме. Для приведения числа Y к естественной форме необходимо перенести запятую в мантиссе на количество шестнадцатеричных цифр, равное модулю порядка, вправо — при положительном или влево — при отрицательном порядке. В данном случае запятая переносится вправо:

$$Y = -(18F,C)_{16}$$
.

Переведем число Y из шестнадцатеричной в десятичную систему счисления с использованием весов разрядов:

$$Y = -(1 \times 16^2 + 8 \times 16^1 + 15 \times 16^0 + 12 \times 16^{-1}) =$$

= $-(256 + 128 + 15 + 0.75) = -399.75$.

6.2. Для определения значения числа Z производится наложение его шестнадцатеричного представления S на разрядную сетку:

Порядок числа Z:

$$P_Z = X_Z - 64 = 62 - 64 = -2$$
.

Значение числа \mathbf{Z} :

$$\mathbf{Z} = (0,6)_{16} \times 16^{-2} = (0,006)_{16} = 6/16^3 = 6/2^{12} = 3/2^{11} =$$

= $(3/2) \times (1/2^{10}) = (3/2) \times (1/1024) \approx 1,5 \times 10^{-3}$.

При переводе дробных чисел из двоичной системы счисления в десятичную можно считать: $2^{10} \approx 10^3$.

7. Определение значения числа с плавающей запятой по его представлению в формате $\Phi 2$

7.1. Представление числа V в формате $\Phi 2$ имеет вид

Порядок числа V:

$$P_V = X_V - 128 = 134 - 128 = 6.$$

Значение числа V в нормальной форме:

$$V = -(0, 10011000111111)_2 \times 2^6$$
. скрытый мантисса порядон разряд

При определении двоичного значения мантиссы производится восстановление ее скрытого старшего разряда, равного 1.

Для приведения числа V к естественной форме запятая в его мантиссе переносятся вправо на 6 двоичных разрядов:

$$V = -(100110,001111111)_2.$$

Перевод числа V из двоичной системы в десятичную:

- а) целая часть: $(100110)_2 = 2^5 + 2^2 + 2^1 = 32 + 4 + 2 = 38;$
- б) дробная часть: первый способ перевода:

$$(0,001111111)_2 = 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-8} =$$

= $1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 = 63/256 \approx 0,246$;

второй способ перевода:

$$(0,001111111)_2 = (1111111)_2 \times 2^{-8} = 63 \times (1/256) \approx 0,246;$$

третий способ перевода:

$$(0,00111111)_2 = (0,01)_2 - (0,00000001)_2 = 1/4 - 1/256 \approx$$

 $\approx 0,25 - 0,004 = 0,246.$

Значение числа V:

$$V$$
 ≈ −38,246.

7.2. Представление числа W в формате:

Порядок числа W:

$$P_W = X_W - 128 = 124 - 128 = -4.$$

Число W в нормальной форме:

$$W = (0.111)_2 \times 2^{-4}$$
.

Число W в естественной форме получается переносом запятой в мантиссе влево на четыре двоичных разряда:

$$W = (0.0000111)_2$$
.

Значение числа W:

$$W = (0.0000111)_2 = (111)_2 \times 2^{-7} = 7 / 128 \approx 0.0547.$$

8. Определение значения числа с плавающей запятой по его представлению в формате $\Phi 3$

8.1. Представление числа T в формате $\Phi 3$ имеет тот же вид, что и для числа V в формате $\Phi 2$ (п.7.1).

Порядок числа T:

$$P_T = X_T - 127 = 134 - 127 = 7.$$

Значение числа T в двоичной системе счисления:

$$T = -\underbrace{(1,00110001111111)_2}_{\text{скрытый мантисса}} \times 2^{7}$$
.

Перевод числа T из двоичной системы счисления в десятичную: целая часть:

$$(10011000)_2 = 2^7 + 2^4 + 2^3 = 128 + 16 + 8 = 152.$$
дробная часть:

$$(0,1111111)_2 = 1 - (0,000001)_2 = 1 - 1 / 64 \approx 0,984.$$

Значение числа T:

$$T \approx -152,984$$
.

По сравнению со значением числа V, имеющего то же самое представление в формате $\Phi 2$, число T в формате $\Phi 3$ в четыре раза больше за счет

большего на единицу значения порядка и за счет использования целой единицы в мантиссе.

8.2. Представление числа ${\bf \it Q}$ в формате ${\bf \it \Phi \it 3}$ имеет тот же вид, что и для числа в ${\bf \it \Phi \it 2}$ (п.7.2.).

Порядок числа Q:

$$P_Q = X_Q - 127 = 124 - 127 = -3.$$

Значение числа Q:

$$Q = (1,11)_2 \times 2^{-3} = (0,00111)_2 = (111)_2 \times 2^{-5} = 7 / 32 \approx 0,219.$$