1. The initial-value problem

$$y' = 1 + (y/t) + (y/t)^2$$
, $1 \le t \le 2$, $y(1) = 0$ has the exact solution $y(t) = t \tan(\ln t)$.

- a. Use Euler's method with h = 0.1 to approximate the solution, and compare it with the actual values of y.
- b. Use Taylor's method of order 2 with h = 0.1 to approximate the solution, and compare it with the actual values of y.

$$y'=1+\frac{y}{t}+(\frac{y}{t})^{2}, \quad \text{if } 1 \le t \le 2, \quad y(1)=0.$$

$$y(t)=t, \quad tan(lnt)$$

$$\text{Euler's method:} \quad y_{A1}=y_{A}+\lambda f(t_{A},y_{A})$$

$$\Rightarrow t_{0}=1,0, \quad y_{0}=0$$

$$t_{1}=1,1, \quad y_{1}=y_{0}+0,1f(t_{0},y_{0})$$

$$=0+0,1f(t_{0},y_{0}),$$

V. 5. Lance y = t. tan(lnt) $t_0 = 1.0$, $y = 1.0 \times tan(lnt) = 0$ $t_1 = 1.1$, $y = 1.1 \times tan(lnt) = 0.052$ $t_2 = 1.2$, $y = 1.5 \times tan(lnt) = 0.52$

HW5_1.1						
h=	0.1	t0=	0			
ti	yi	精確解	誤差	誤差百分比		
1.0	0.0000	0	0.00000	0.000%		
1.1	0.1000	0.10516	0.00516	4.907%		
1.2	0.2099	0.22124	0.01133	5.119%		
1.3	0.3305	0.34912	0.01865	5.342%		
1.4	0.4624	0.48968	0.02733	5.581%		
1.5	0.6063	0.64388	0.03759	5.838%		
1.6	0.7630	0.81275	0.04971	6.116%		
1.7	0.9335	0.99749	0.06402	6.418%		
1.8	1.1185	1.19944	0.08090	6.745%		
1.9	1.3193	1.42012	0.10082	7.100%		
2.0	1.5369	1.66128	0.12434	7.484%		

随着 Euler 法始长增大, 羰基百分比也避到上刊,

$$= 3t = Taylor method;$$

$$Ji+1 = Ji + \lambda J (2) (ti, yi)$$

$$T(x) = Jiyi, ti) + \frac{\lambda}{2} \cdot \frac{df}{de} (ti, yi)$$

$$\frac{df}{de} = \frac{3f}{3e} + \int \frac{3f}{3y}$$

$$\frac{3f}{3e} = \frac{3}{3e} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{3}{3y} (1 + \frac{1}{2} + \frac{1$$

$$\frac{2f}{3e} = \frac{3}{3e}(1) + \frac{4}{5} + (\frac{4}{5})^{2}J = -\frac{4}{5} - \frac{4}{5}$$

$$\frac{2f}{3y} = \frac{3}{3y}(1) + \frac{4}{5} + (\frac{4}{5})^{2}J = \frac{1}{5} + \frac{4}{5}$$

$$\frac{2f}{3y} = (1) + \frac{4}{5} + (\frac{4}{5})^{2}J = \frac{1}{5} + \frac{4}{5}$$

$$\frac{2f}{3y} = \frac{3f}{3} + \int \frac{3f}{3y} = (-\frac{4}{5} - \frac{2f}{5}) + (1) + \frac{4}{5} + (\frac{4}{5})^{2}J + \frac{4}{5}$$

V.5. $\frac{1}{2} = \frac{1}{2} =$

HW5_1.2						
h=	0.1	t0=	0			
ti	yi	精確解	誤差	誤差百分比		
1.0	0.0000	0	0.00000	0.000%		
1.1	0.1050	0.10516	0.00016	0.152%		
1.2	0.2209	0.22124	0.00032	0.146%		
1.3	0.3486	0.34912	0.00051	0.146%		
1.4	0.4890	0.48968	0.00073	0.149%		
1.5	0.6429	0.64388	0.00099	0.154%		
1.6	0.8114	0.81275	0.00131	0.162%		
1.7	0.9958	0.99749	0.00171	0.171%		
1.8	1.1973	1.19944	0.00219	0.182%		
1.9	1.4173	1.42012	0.00277	0.195%		
2.0	1.6578	1.66128	0.00349	0.210%		

实现了知,泰勒治疆有一定误差, 组姻较於威拉治

談差百分比从3約一個數量級。

2. The system of initial-value problems

$$u_1' = 9u_1 + 24u_2 + 5\cos t - \frac{1}{3}\sin t$$
, $u_1(0) = \frac{4}{3}$,
 $u_2' = -24u_1 - 52u_2 - 9\cos t + \frac{1}{3}\sin t$, $u_2(0) = \frac{2}{3}$,

has the unique solution

$$u_1 = 2e^{-3t} - e^{-39t} + \frac{1}{2}\cos t$$
, $u_2 = -e^{-3t} + 2e^{-39t} - \frac{1}{2}\cos t$.

Try h = 0.05 and h = 0.1 in Runge-Kutta method, and compare their results with the exact value.

$$\begin{aligned}
& \text{Wa, 3H} = \text{Wagt}_{f}(k_{1}x + 2k_{2}x + 2k_{2}x + 2k_{2}x) \\
& \text{k., a} = \text{A. } \text{J. } \text{C. } \text{t.n., W., j., ..., W.n., j.} \\
& = \text{o.} | \times \text{I.} \text{9x}_{f}^{4} + 24x_{f}^{2} + 2605(0) - \frac{1}{2} \cdot 5im(0) \text{J} = 2.5.}
\end{aligned}$$

$$\begin{aligned}
& \text{J. } \text{$$

HW5_2					
h=	0.1	u1(0)=	1.3333333	u2(0)=	0.666667
t0+h/2=	0.05	u1+0.5k1,1=	1.4983333	u2+0.5*k1,2=	0.288333
		u1+0.5k2,1=	1.4602438	u2+0.5*k2,2=	0.36704
-		u1+k3,1=	1.6026157	u2+k3,1=	0.035627
	k1,1	k1,2	k2,1	k2,2	
0	3.3	-7.566666667	2.5382092	-5.992542595	
	k3,1	k3,2	k4,1	k4,2	
- (4)	2.6928235	-6.310399953	2.0220324	4.923712289	
	u1(0.1)=	3.964016276	精確解	1.793062585	
	u2(0.1)=	-5.516044009	精確解	-1.032002453	

	Η	[W5_2			
h=	0.05	u1(0)=	1.3333333	u2(0)=	0.666667
t0+h/2=	0.025	u1+0.5k1,1=	2.1583333	u2+0.5*k1,2=	-1.225
		u1+0.5k2,1=	1.208711	u2+0.5*k2,2=	0.739445
		u1+k3,1=	3.0140929	u2+k3,2=	-3.15579
t0	k1,1	k1,2	k2,1	k2,2	
0	33	-75.66666667	4.984895	2.911144819	
	k3,1	k3,2	k4,1	k4,2	
	33.615191	-76.44907318	-43.63496	82.7906022	
	u1(0.1)=	1.721880259	精確解	1.912058635	3
	u2(0.1)=	-0.499599343	精確解	-0.909076587	

可見 另起小,其误差越水, 斯台魏雄,