Large Language Models

Mohamed Afham

But what are LLMs?

From GPT-2 to GPT-3 and beyond

From GPT-2 to GPT-3 and beyond – Massive Scaling

Diverse Training data with massive parameters is the key!!

From GPT-2 to GPT-3 and beyond – Prompt Engineering

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Pre-LLMs

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

GPT-3 and Beyond

From GPT-2 to GPT-3 and beyond

Google

PaML (540b), **LaMDA** (137b) and others.

BigScience BL M

BLOOM (176b)

OPT-IML (175b), **Galactica** (120b), **BlenderBot3** (175b), **Llama 2** (70b)

PanGu-*α* (200b)

GPT-3 (175b), **GPT-3.5** (?b), **GPT-4** (?b)

Megatron-Turing NLG (530b)

Claude (?b), **Claude 2** (?b)

Exaone (300b)

ERNIE 3.0 Titan (260b)

Jurassic-1 (178b), Jurassic-2 (?b)

LLMs with human feedback

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Parameter Efficient Fine-tuning

Prompt Tuning

LLMs - Applications

Grammarly

BloombergGPT

ChatGPT

Replika

LLMs - Challenges and Ethical Considerations

- Bias
 - Models can perpetuate existing biases in training data.
 - E.g., Gender, Racial and Cultural biases
- Misinformation
 - Risk of generating plausible but false information
 - Challenges in distinguishing between true and false outputs
- Privacy
 - Concerns over data privacy and potential misuse of sensitive information
- Job Displacement
 - Impact on jobs in sectors like content creation, customer service, etc

LLMs – What's Next

Multimodal Models

Scaling Up

Explainable AI

Thank You!

Questions?