מבוא לחבורות תרגיל מסי 12

$$\cdot arepsilon(\sigma) \coloneqq rac{\prod_{i < j} (i - j)}{\prod_{i < j} (\sigma(i) - \sigma(j))}$$
 נגדיר $\sigma \in S_n$ יהי .1

- $\varepsilon(\sigma) \in \{\pm 1\}$ א.
- σ ב. הראו כי $t \pm 1$ לפי הזוגיות של מספר היפוכי הסדר ב- $\varepsilon(\sigma)$
 - $\varepsilon(\sigma\rho) = \varepsilon(\sigma)\varepsilon(\rho)$, $\sigma, \rho \in S_n$ ג.
 - auד. הוכיחו כי arepsilon(au)=-1 לכל טרנספוזיציה
- $\varepsilon(\sigma) = (-1)^m$ או טרנספוזיציות, אז σ מכפלה של σ מכפלה של
- - $n \ge 2$ לכל (1 2), (1 2 3 ... n) שני האיברים S_n נוצרת ע"י שני האיברים .3
- A_4 -4 הוכיחו כי חבורת הסימטריות של הטראדר הרגולרי איזומורפית.
 - S_4 איזומורפית לתת-חבורה של D_8 איזומורפית לתת-חבורה של .5
- הוכיחו כי חבורת הקווטרניונים $\mathcal{Q}_{_{\! 8}}$ אינה איזומורפית לאף תת-חבורה . $S_{_{\! 4}}$ של
- אז n הוכיחו כי אם G חבורה כלשהי ו- H תת-חבורה מאינדקס G, אז $G:N] \leq n!$ כך ש-H כך המוכלת ב- H כך ש-ורה נורמלית G:N
 - p מספר חזקה מסדר חבורה G מספר חזקה של p מספר הוכיחו כי א. א. הוכיחו כי אם p מספר מספר אז כל תת-חבורה מאינדקס p של p מאינדקס בורה מאינדקס אז כל תת-חבורה מאינדקס
- p^2 יש תת-חבורה נורמלית מסדר ב. הסיקו כי לכל חבורה מסדר p^2
 - . הוכיחו כי כל חבורה מסדר p^2 היא אבלית.

יהי
$$G=GL_2(3)=\{egin{pmatrix} a&b\\c&d \end{pmatrix}:a,b,c,d\in\mathbb{Z}/3\mathbb{Z},\,ad-bc\neq 0\}$$
יהי .9 $H=\{egin{pmatrix} a&b\\c&d \end{pmatrix}\in G:c=0\}$

- S_4 -ל G- חשבו את G:H והוכיחו שקיים הומומורפיזם מ
- 2 מסדר ,G של Z(G) ב. הוכיחו כי גרעין ההומומורפיזם הוא המרכז Z(G) של . $G/Z(G)\cong S_{\scriptscriptstyle A}$ מסדר ב. הסיקו ש-