A Neural Network-Based Proposal for Optimizing Battery Life and Autonomous Task Management in Nanosatellites

Carlos Padilla enigmak9@protonmail.com

ICN, UNAM

April 11, 2024

LINX

Table of Contents

LINX

Energy Efficiency Requirements

Reinforcement Learning

DQN

Project Execution Model

Definitions PEM

Status and vectors

Expected vector output

Bellman's equation

Explanation of the Bellman equation

Implementations

Architecture

Energy Efficiency Requirements

The network must ensure that the battery's state of charge (SoC) remains above 20%, avoiding long periods below 30% to ensure the satellite's longevity and effectiveness.

Reinforcement Learning

Reinforcement learning is an area of machine learning inspired by behavioral psychology, which focuses on determining what actions a software agent should choose in a given environment to maximize some notion of cumulative reward or prize.

DQN

Our model will be a feedforward neural network that takes the difference between the current and previous screen patches. It has two outputs, representing Q(s, left) and Q(s, right) (where s is the network input). Effectively, the network tries to predict the expected return of performing each action given the current input. Reinforcement Learning (DQN) Tutorial

▶ Back to TOC

Project Execution Model

$$\mathsf{M}_{j}\left(\left[I,t_{j}^{\prime},\Delta t_{j},P_{j}^{R},P_{j}^{D}\right],\left[W_{I}^{R},W_{I}^{D}\right]\right)$$

► Back to TOC

Definitions PEM

Where:

- ▶ / Time when distribution that takes over the initial time
- \triangleright P_i^R Priority of execution
- \triangleright P_i^D Priority of data download
- \blacktriangleright $[W_i^R, W_i^D]$ Intrinsic properties

Status and Vectors

Status information:

$$E(t_i); \quad \frac{dE}{dt}; \quad \frac{d^2E^-}{dt^2}$$

$$W(t_i); \quad \frac{dW^-}{dt}; \quad \frac{d^2W^-}{dt^2}$$

Data vector for project:

$$D = (d_1, d_2, \dots, d_J)$$
 amount of data of task j

Execution status vector:

$$S = (s_1, s_2, \dots, s_J)$$
 / $s_j = \begin{cases} 0 & \text{if } j \text{ not executed} \\ 1 & \text{if } j \text{ is executed} \end{cases}$

Expected vector output

```
 \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & \cdots \\ \hline t1 & 0 & 0 & 1 & 0 & 0 & \cdots \\ t2 & 1 & 0 & 0 & 0 & 0 & \cdots \\ t3 & 0 & 1 & 0 & 0 & 0 & \cdots \\ t4 & 0 & 0 & 0 & 0 & 1 & \cdots \\ t5 & 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}
```


Bellman's equation

$$V(s) = \max_{a} \left\{ R(s, a) + \gamma V(s') \right\} \tag{1}$$

▶ Back to TOC

Explanation of the Bellman Equation

The Bellman equation is defined as:

$$V(s) = \max_{a} \left\{ R(s, a) + \gamma V(s') \right\}$$
 (2)

Where:

- V(s) is the value of state s. It represents the maximum expected return when the agent is in state s.
- max_a denotes that we are selecting the action a that maximizes the following value.
- R(s, a) is the immediate reward received for taking action a in state s.
- $ightharpoonup \gamma$ is the discount factor, balancing the importance of immediate rewards versus future rewards. It ranges from 0 to 1.
- V(s') is the value of the subsequent state s', representing the expected return from that new state.

Implementations

Retask priorities
Red 002
Red Plus 001
Google Colab Link
Red 003
Potencia
Nuestra interpretación para resolver el problema
SoC Cycles prediction

Architecture

