The tentative list of sample questions for the Topology Qual Exam

Last Updated: 2010

Algebraic Topology

- 1. Let $f: S^n \to S^n$ be a continuous map, and let $\Sigma f: \Sigma S^n = S^{n+1} \to S^{n+1} = \Sigma S^n$ be its suspension. Show that f and Σf have the same Brouwer degree.
- 2. Show that there is no homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^m$ unless n = m.
- 3. Compute the homology groups of $\mathbb{C}P^n$ and show that the homology groups of $\mathbb{R}P^n$ are either 0 or cyclic.
- 4. Find the universal cover of $S^1 \vee S^1$, of $\mathbb{R}P^3 \vee S^1$, and of $S^2 \times S^2$.
- 5. Classify all threefold connected covering spaces of the figure-eight space $S^1 \vee S^1$.
- 6. **a** Show that a subgroup F' of a free group F is free.
 - **b** If F has rank n and F' has finite index d, determine the rank of F'.
- 7. Prove that S^{n-1} is not a retract of B^n . Give an example of a deformation retract that is not a strong deformation retract.
- 8. Which of the following manifolds : \mathbb{R}^2 , \mathbb{R}^3 , $\mathbb{R}^2 \setminus \{\mathbf{0}\}$, S^2 , and the closed disk is the total space of a cover of a torus $S^1 \times S^1$
- 9. State and prove the path lifting property for covering spaces.
- 10. For finite CW complexes, define the Euler characteristic and prove the Euler-Poincare formula.
- 11. Calculate π_1 and H_1 of the Klein Bottle.
- 12. Prove that homotopy is an equivalence relation.

13. Given a short exact sequence of chain complexes

$$0 \to C' \to C \to C'' \to 0$$
.

Define the connecting homomorphism $\Delta: H_n(C'') \to H_{n-1}(C')$ and prove exactness of the resulting long homology sequence.

- 14. If $f:(X,A)\to (Y,B)$ is a map of pairs of spaces such that $f(X)\subseteq B$, then show that $f_*=0:H_n(X,A)\to H_n(Y,B)$ in singular homology.
- 15. Define CW complex and show that $\mathbb{R}P^n$ is a CW complex.
- 16. State the excision axiom and use it to show that $\widetilde{H}_{i+1}(S^{n+1}) \approx \widetilde{H}_i(S^n)$.
- 17. Determine the homology of the torus using the Mayer-Vietoris sequence.
- 18. Let X be a path-connected space and $x_0, x_1 \in X$. Prove that $\pi_1(X, x_0) \approx \pi_1(X, x_1)$.
- 19. Outline the proof that all singular homology groups of a CW complex X with finitely many cells in each dimension are finitely generated.
- 20. Let X be a Hausdorff space and $x \in X$. Define the nth local homology group of X at x to be $H_n(X, X \{x\})$. Prove that this is isomorphic to $H_n(U, U \{x\})$ for any neighborhood U of x. Prove that any homeomorphism of the n-ball E^n maps the boundary sphere S^{n-1} onto itself.
- 21. If $f: S^n \to S^n$ is the antipodal map defined by f(x) = -x, then show that the degree of f is $(-1)^{n+1}$.
- 22. Show that for every integer k, there exists a map $f: S^n \to S^n$ of degree k.
- 23. Compute the Euler characteristic of the two-holed torus.
- 24. Define reduced homology \widetilde{H}_n and show that $\widetilde{H}_n(X) = 0$ if X is a path-connected space.
- 25. State and prove the Five Lemma.
- 26. If A is a retraction, prove that the sequence (part of the long exact cohomology sequence of the pair (X, A)) is split, short exact

$$H^n(X,A) \to H^n(X) \to H^n(A)$$
.

- 27. Prove that $\pi_1(X \times Y) \approx \pi_1(X) \oplus \pi_1(Y)$.
- 28. State the Seifert-van Kampen Theorem and use it to show that $\pi_1(S^n)=0$ for n>1. Why doesn't the argument work for n=1?
- 29. Assuming the existence of singular homology theory, define the chain complex which yields CW homology theory.

- 30. Which of the following spaces are contractible: (i) the solid torus $E^2 \times S^1$, (ii) $I \times I$, (iii) the subspace $E^n \times \{0\} \cup S^{n-1} \times I$ of $E^n \times I$, (iv) $\mathbb{R}^n \{0\}$, (v) the open n-ball (interior of E^n), (vi) the set of all points (x, y.z) in \mathbb{R}^3 such that $z^2 = x^2 + y^2$. Here I = [0, 1].
- 31. Prove that a map $f: S^n \to X$ is homotopic to a constant map if and only if f can be extended to E^{n+1} .
- 32. Use the Meyer-Vietoris sequence to calculate the homology of $X \vee Y$.
- 33. Define a natural homomorphism $\alpha: H^n(X;G) \to \mathsf{Hom}(H_n(X),G)$ and show that it is an epimorphism.
- 34. Let $p: X' \to X$ be a covering map and let $x_0, x_1 \in X'$ and $x \in X$ be points such that $p(x_0) = x = p(x_1)$. Prove that the subgroups $p_*\pi_1(X', x_0)$ and $p_*\pi_1(X', x_1)$ are conjugate in $\pi_1(X, x)$.

Differential Topology

- 1. Deduce the local structure of submersions (or the local structure of immersions, or the implicit function theorem) from the inverse function theorem.
- 2. Let M be an oriented smooth n-manifold, let $U\subset M$ be a coordinate neighborhood, and let ω be a smooth n-form whose support lies in U. Define the integral $\int_M \omega$ and show that your definition is independent of any choice of coordinates used.
- 3. Show that any smooth manifold admits a Riemannian metric.
- 4. Show that a smooth manifold has an orientable cover.
- 5. Let ω be a closed 2-form on $M=S^3\times S^5$ and let $g:S^1\times S^1\to M$ be a smooth map. Prove that $\int_{S^1\times S^1}g^*\omega=0$.
- 6. Deduce the classical divergence theorem or the classical Stokes's theorem from the modern Stokes's theorem.
- 7. Let X be a vector field on a smooth n-manifold M, and suppose that $X_p \neq \mathbf{0}$ for some point $p \in M$. Show that there exist coordinates x^1, \ldots, x^n in a neighborhood U of p such that $X|_U = \frac{\partial}{\partial x^1}$.
- 8. Which one of the following manifolds is a boundary of an oriented manifold: closed 3-ball, open 3-ball, Klein bottle, $S^1 \times S^1 \times S^1$.
- 9. Let $\mathbf{X} = \sin(2\pi x)\cos(2\pi y)\frac{\partial}{\partial x} + 4\frac{\partial}{\partial z}$ and $\mathbf{Y} = \sin(4\pi x)e^{\cos z}\frac{\partial}{\partial y} + 239\frac{\partial}{\partial z}$ be two vector fields on $T^3 = \mathbb{R}^3/\mathbb{Z}^3$. Compute the Lie bracket $[\mathbf{X},\mathbf{Y}]$.
- 10. Give an example of a non-integrable distribution on a manifold.

- 11. Give an example of a vector field whose flow is not defined for all time t.
- 12. Let X and Y be smooth vector fields on a smooth manifold M with flows given by Θ and Ψ respectively. Show that $[X,Y]\equiv 0$ if and only if for each $p\in M$ there is an $\epsilon_p>0$ such that $\Theta_s\circ\Psi_t(p)=\Psi_t\circ\Theta_s(p)$ for all $|s|,|t|<\epsilon_p$.
- 13. Sketch a proof of the tubular neighborhood theorem for submanifolds of a compact manifold M.
- 14. Let M be a compact manifold, $\sigma: S^1 \to M$ be a nontrivial closed curve in M and $\ell > 0$. Explain how to put a Riemannian metric on M so that σ has length ℓ .
- 15. Please discuss the relationship between tangent vectors at a point and differentiation.
- 16. Define the tangent bundle of a manifold and explain its bundle structure.
- 17. Define the differential of a smooth map $F: M \to N$, where M and N are C^{∞} manifolds. If $M = \mathbb{R}^n$, explain how this notion relates to the usual notion of derivative.
- 18. Prove: The set of 2×2 matrices of rank one is a submanifold of $M_{2,2}\mathbb{R}$
- 19. Give examples of conditions under which a vector field is complete.
- 20. Let M and N be C^{∞} manifolds and $F: M \to N$ a C^{∞} map.
 - (a) What does it mean for vector fields X on M and Y on N to be F-related?
 - (b) State and prove a relationship between the flows of F-related vector fields.
 - (c) Show that a vector field X with flow ϕ_t is ϕ_t -invariant.
- 21. Discuss the notions of bracket [X,Y] and Lie derivative L_XY of vector fields X and Y and state how the two notions relate. Prove: If $L_XY=0$, then the flows of X and Y commute.
- 22. Prove: Let V be a vector space and let $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k \in V$. Prove that $\alpha_1 \wedge \cdots \wedge \alpha_k = \beta_1 \wedge \ldots \beta_k$ if and only if the α_i 's and β_j 's span the same subspace of V.
- 23. Define the notion of integration of a compactly supported n-form ω on a C^{∞} oriented manifold M of dimension n, going through the following steps:
 - ullet First assume ω is supported in a positively oriented coordinate neighborhood, and define its integral.
 - Explain why the definition in the previous step is well-defined; i.e., if one chooses another oriented coordinate chart containing the support, then the integrals agree.
 - Define the integral in the general case.
- 24. Suppose ω is an n-form on S^n that is the pull-back of a closed form on \mathbb{R}^{n+1} . What can you say about $\int_{S^n} \omega$?