Anonymous Threshold Signatures

Petar Hlad Colic

Universitat Politècnica de Catalunya

July 2018

- Preliminaries
 - Oblivious Polynomial Evaluation
 - Bilinear Pairings

PKE scheme

A public key encryption scheme $PKE = (KG, \mathcal{E}, \mathcal{D})$ consists of three probabilistic and polynomial time algorithms:

- Key generation KG:
 - Input: Security parameter
 - Output: Pair (sk, pk) of secret and public keys.
- Encription \mathcal{E} :
 - Input: Plaintext m
 - Output: Ciphertext $c = \mathcal{E}_{pk}(m)$
- Decryprtion \mathcal{D} :
 - Input: Ciphertext c
 - Output: Plaintext $m = \mathcal{D}_{sk}(c)$

For any pair (sk, pk) and any plaintext m, it must hold

$$m = \mathcal{D}_{sk}\left(\mathcal{E}_{pk}(m)\right)$$

Homomorphic PKE

Definition 1.1 (Homomorphic PKE).

Let $\mathcal M$ be the set of plaintexts s.t. it is closed under an operation \bullet . Let $\mathcal C$ be the set of ciphertexts s.t. it is closed under an operation \circ . A PKE scheme $(KG,\mathcal E,\mathcal D)$ has the homomorphic property if

$$\mathcal{D}_{sk}ig(\mathcal{E}_{pk}(m_1)\circ\mathcal{E}_{pk}(m_2)ig) \ = \ m_1ullet m_2 \quad orall m_1, m_2\in\mathcal{M}.$$

Remark 1.2.

If we write $\mathcal M$ additively and $\mathcal C$ multiplicativelly, for $a\in\mathbb Z^+$ we have:

$$\mathcal{D}_{\mathsf{sk}}\left(\mathcal{E}_{\mathsf{pk}}(m)^{\mathsf{a}}\right) = \mathsf{a}\cdot\mathsf{m}$$

Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation is a protocol involving a sender who knows a polynomial $P \in \mathbb{F}[x]$ and a receiver who knows a value $\alpha \in \mathbb{F}$. At the end of the protocol, the receiver learns $P(\alpha)$ and the sender learns nothing.

	Sender	Receiver
Input	$P \in \mathbb{F}[x]$	$\alpha \in \mathbb{F}$
Output	-	$P(\alpha)$

Bilinear Pairings

Problem name	Input	Output
Decisional DH (DDH)	$g,g^a,g^b,g^c\in G_1$	TRUE iif $c = ab$
Computational DH (CDH)	$g,g^a,g^b\in G_1$	g ^{ab}
Decisional Co-DH (co-DDH)	$h,h^b\in G_1 \ g_2,g_2^a\in G_2$	TRUE iif $a = b$
Computational Co-DH (co-CDH)	$h \in G_1 \\ g_2, g_2^a \in G_2$	h ^a

Bilinear Pairings

Definition 1.3 (Bilinear map).

Let G_T be an additional group s.t. $|G_1| = |G_2| = |G_T|$. A bilinear map is a map $e: G_1 \times G_2 \to G_T$ s.t.:

• Is bilinear: $\forall u \in G_1$, $\forall v \in G_2$, $\forall a, b \in \mathbb{Z}$,

$$e(u^a, v^b) = e(u, v)^{ab}$$

• Is non-degenerate: $e(g_1, g_2) \neq 1$.