Lecture 5-Sequential Circuit Analysis Examples

FNA

Flip-Flop Characteristic Tables

JK Flip-Flop

J	K	Q(t + 1)	
O	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D	FI	ip	-F	lo	p
---	----	----	----	----	---

T Flip-Flop

D	Q(t + 1)		
0	0	Reset	(
1	1	Set	

<i>T</i>	Q(t + 1)	
0 1	Q(t) $Q'(t)$	No change Complement

Ex 1 x -Clk**—** B D> Clk**-** B' Clock

$$D_A = Ax + Bx$$

 $D_B = A'x$
 $Y = (B + A)x'$

D Flip-Flop

D	Q(t + 1)	
0	0	Reset
1	1	Set

	resent State Input			ext ate	Output	
A	В	X	A	В	y	
O	0	0	0	0	0	
O	O	1	O	1	O	
0	1	0	O	O	1	
0	1	1	1	1	O	
1	O	O	O	O	1	
1	O	1	1	O	O	
1	1	0	0	O	1	
1	1	1	1	0	O	

Second Form of the State Table

Pre	Present		lext	Stat	e	Out	put
	ate	x =	= 0	x =	= 1	x = 0	x = 1
A	В	A	В	A	В	y	y
0	O	0	0	0	1	0	0
O	1	0	0	1	1	1	O
1	O	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Ex 2

$$J_A = Bx'$$
 $K_A = Bx$
 $J_B = x$ $K_B = (A \oplus x)'$

JK Flip-Flop

J	K	Q(t + 1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

State Table for Sequential Circuit with JK Flip-Flops

	sent ate	Input		ext ate	27	Flip-F Inpu		
A	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	O	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	O	0	1
1	0	0	1	1	0	O	1	1
1	0	1	1	0	0	O	0	O
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

State Table for Sequential Circuit with T Flip-Flops

Present State		Input	Ne Sta		Output
A	В	X	A	В	y
0	0	O	0	0	0
0	0	1	0	1	0
0	1	O	0	1	0
0	1	1	1	0	0
1	0	O	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	O	0	1

Ex 4

Implement a D-flip flop using a JN-flip flop where JN is defined as follows:

J	N	Q(t+1)
0	0	0
0	1	Q(t)
1	0	Q'(t)
1	1	1

Q(t)	Q(t+1)	J	N
0	0	0	X
0	1	1	X
1	0	X	0
1	1	X	1

