

Bases de datos

UNIDAD 2

INTRODUCCIÓN AL MODELADO DE DATOS

- Propuesto por Edgar F. Codd, 1970.
- Los datos se organizan mediante tablas relacionadas.
- Una BD relacional es un conjunto de tablas que almacenan datos, relacionadas entre sí.
- Las tablas se organizan en *registros* y *campos*. Por ejemplo, podemos tener una tabla **AUTOR**, con 3 registros (de 5 campos cada uno):

DNI	Nombre	Dirección	Ciudad	Fecha
44345789	Ana Pérez	C/Sol, 17	Sevilla	19/5/1960
40876100	José Ruiz	C/Luna,1	Madrid	1/1/1972
56123009	Luis Gómez	C/Feria,2	Sevilla	5/5/1961

 Registro: cada una de la filas de la tabla. Un registro recoge los datos asociados a un individuo.

(44345789, Ana Pérez, C/Sol, 17, Sevilla, 19/5/1960)

- Campo: cada una de las partes en las que se desglosa los datos de cada registro.
 La tabla AUTOR está formada por cinco campos: DNI, Nombre, Dirección, Ciudad y Fecha.
- Tabla: conjunto de todos los registros junto con su definición de campos.

• Tabla plana: una única tabla recoge todos los datos a almacenar.

Libro	Año	DNI	Nombre	Dirección	Ciudad	Fecha
8088	2003	44345789	Ana Pérez	C/Sol, 17	Sevilla	19/5/1960
9876	1999	44345789	Ana Pérez	C/Sol, 17	Sevilla	19/5/1960
5678	1989	56123009	Luis Gómez	C/Feria,2	Sevilla	5/5/1961
7119	1992	56123009	Luis Gómez	C/Feria,2	Sevilla	5/5/1961

¿Observa algún problema potencial?

Duplicación de datos

¿Solución?

Tablas relacionales: datos organizados en distintas tablas con campos con contenido común.

Tabla **AUTOR** (3 registros de 5 campos):

DNI	Nombre	Dirección	Ciudad	Fecha
44345789	Ana Pérez	C/Sol, 17	Sevilla	19/5/1960
40876100	José Ruiz	C/Luna,1	Madrid	1/1/1972
56123009	Luis Gómez	C/Feria,2	Sevilla	5/5/1961

Tabla **ESCRIBE** (4 registros de 3 campos):

Libro	Autor	Año
8088	44345789	2003
9876	44345789	1999
5678	56123009	1989
7119	56123009	1992

Nota: el campo **Autor** de la tabla **ESCRIBE** y el campo **DNI** de la tabla **AUTOR** permiten enlazar ambas tablas relacionales.

Introducción al diseño de BD

El diseño de bases de datos consta de 3 fases:

- Diseño conceptual
- Diseño lógico
- Diseño físico

Diseño conceptual

Se parte de: especificación de requisitos (descripción de la información que debe recoger la BD y las prestaciones a ofrecer).

Se obtiene: **esquema conceptual** (descripción en lenguaje natural/gráfico de la estructura de la BD, independiente del modelo de datos elegido y del SGBD que se usaría posteriormente para implementarla).

Se emplea para ello un modelo conceptual: lenguaje natural o gráfico que se emplea para describir un esquema conceptual.

Diseño lógico

Se parte de: esquema conceptual.

Se obtiene: **esquema lógico** (descripción de la estructura de la BD basada en el modelo de datos elegido para implementarla).

Ej: descripción gráfica de un conjunto de tablas relacionales.

Se emplea para ello un modelo lógico: lenguaje empleado para describir el esquema lógico. Es independiente del SGBD que se emplearía para implementar la BD, pero sí depende del modelo de datos elegido.

Diseño físico

Se parte de: esquema lógico.

Se obtiene: **esquema físico** (descripción de la implementación de la BD usando un determinado SGBD. Se detallan las estructuras físicas de almacenamiento de datos en el ordenador, los métodos de acceso a dichos datos y el modelo de seguridad del sistema).

Objetivo: determinar estructuras de almacenamiento y estructuras de acceso para que las aplicaciones que accedan a la BD obtengan un buen rendimiento.

Diseño de bases de datos

Emplearemos:

- Como modelo conceptual, el modelo entidad-interrelación
- Como modelo lógico, el modelo relacional
- Como modelo físico, SQL Server Express Edition

Modelo Entidad Relación – MER

Diagrama de Entidad Relación – DER

DER en SQL Server

MER: MODELO ENTIDAD RELACIÓN

Permite realizar el diseño conceptual de una base de datos.

Es una representación lingüística y gráfica de los objetos que forman parte del mundo real.

Conceptos básicos de este modelo son:

- Entidades
- Interrelaciones
- Atributos
- Claves

MER: ENTIDAD

Entidad es "una persona, lugar, cosa, concepto o suceso, real o abstracto, de interés para la empresa".

Es aquel objeto acerca del cual queremos almacenar información en la base de datos, que es distinguible de los demás.

Una entidad puede ser:

- un objeto con existencia física (por ejemplo, "PERSONA", "LIBRO", "AUTOMÓVIL", "EMPLEADO")
- un objeto con existencia conceptual (por ejemplo, "COMPAÑÍA", "CURSO UNIVERSITARIO", "PRÉSTAMO").

MER: ENTIDAD

Tipo: estructura genérica que es compartida por un conjunto de entidades

Ocurrencia: realizaciones concretas de ese tipo de entidad.

Conjunto: grupo de entidades del mismo tipo

MER: ENTIDAD

Entidad Fuerte: son aquellas que tienen existencia por sí mismas, es decir, no dependen de otra entidad para su existencia.

Ejemplo de representación de entidades

Entidad Débil: son las que dependen de otra entidad para su existencia.

Ejemplo de representación de entidad débil

Describen las propiedades que tiene un tipo de entidad.

Ejemplo de representación de atributos

Otra notación de representación de atributos

Atributos simples o compuestos.

- Los atributos no divisibles se denominan atributos simples o atómicos.
- Los atributos compuestos pueden formar una jerarquía.

Ejemplo de jerarquía en atributo compuesto

Atributos monovaluados o multivaluados.

- Si los atributos tienen un solo valor para una ocurrencia en particular, y reciben el calificativo de **monovaluados.**
- Conjunto de valores para la misma ocurrencia se denomina multivaluados.

Por ejemplo, un empleado puede tener ninguna, 1 o muchas titulaciones.

Ejemplo de representación de atributo multivaluado

Atributos elementales o derivados.

- Un atributo cuyo valor no se puede calcular en base a ningún otro atributo es **Elemental.**
- Un atributo cuyo valor puede ser determinado a partir de valores de otros atributos se dice que es **derivado** o **calculado**.

Ejemplo de representación de atributo derivado

Atributos opcionales u obligatorios.

- Un atributo que no puede tomar valor nulo es obligatorio.
- Un atributo que sí pueda quedar sin determinar (tomar valor nulo), se dice que es opcional.

Ejemplo de representación de atributo opcional

MER: INTERRELACIÓN

Asociación entre dos o más tipos de entidades.

MER: INTERRELACIÓN

Ocurrencias de relación

Son los datos que relacionan la ocurrencia de una entidad con otra de cada una de las entidades restantes que participan en la relación. Por ejemplo, para la relación PERSONA – "Nacida_en" - CIUDAD, una ocurrencia podía ser "Carlos – Nacido en –Córdoba".

Grado

Es el número de tipos de entidades que participan en un tipo de relación. Una relación es binaria o de grado 2 cuando establece correspondencia entre dos entidades.

Recursiva o reflexiva

Asocia una entidad consigo misma.

MER: CLAVE

Una restricción importante que impone el modelo E/R es que cada entidad tiene que tener un atributo o atributos que permita distinguirla dentro del conjunto de entidades.

Superclave: es un conjunto de uno o más atributos que, tomados colectivamente, permiten identificar de forma única a una entidad en el conjunto de entidades.

Clave candidata: superclaves mínimas se llaman claves candidatas. Es posible que existan varias claves candidatas.

Clave primaria: es una clave candidata que es elegida por el diseñador de la base de datos como elemento para identificar las entidades. Las restantes claves candidatas pasan a ser entonces claves alternativas.

Representación de claves primarias

MER: CARDINALIDAD

Cardinalidad de una entidad: número mínimo y máximo de ocurrencias de un tipo de entidad que pueden estar relacionadas con una ocurrencia del otro (u otros) tipo de entidad que participa en la relación.

MER

MER: EJERCICIO DE DATOS

MER

Una Compañía está organizada en Departamentos. Cada Departamento tiene un nombre y número único y un cierto empleado que lo dirige, y nos interesa la fecha en que dicho empleado comenzó a dirigir el Departamento. Un Departamento puede estar distribuido en varios lugares. Todo Empleado está asignado a un departamento. Cada Departamento controla cierto número de Proyectos, cada uno de los cuales tiene un nombre y número únicos y se efectúa en un solo lugar. Un Empleado puede trabajar en varios Proyectos, que no necesariamente están controlados por el mismo Departamento.

Nos interesa el número de horas por semana que un empleado trabaja en el proyecto.

Realice el diagrama Entidad-Relación que modele el problema mencionado anteriormente.

MER: Entidades

- Empleado
- Departamento
- Proyecto

MER

MER: EJERCICIO DE DATOS

Dada la guía de trabajos prácticos Número 1:

- 1. Identificar Entidades.
- 2. Realizar el MER correspondiente a cada uno.

Modelo Relacional -> DER

- Desarrollado E. F. Codd en los años setenta
- elemento principal: RELACIÓN
 - En MER una relación es una asociación o correspondencia entre entidades (interrelación).
 - En el DER, cada relación se representa mediante una tabla bidimensional

"El esquema de una base de datos relacional es un conjunto de relaciones que cumplen unas determinadas propiedades."

Terminología del modelo relacional

- Tupla o registro. Es cada una de las filas de la tabla.
- Atributo o campo. Es cada una de las columnas de la tabla. Todos los registros o tuplas tienen igual número de atributos o campos.
- Grado. Es el número de atributos de la tabla. (cantidad de columnas)
- ODominio de un atributo. Es el conjunto de valores que puede tomar dicho atributo.
- •Clave candidata. Conjunto mínimo de atributos que identifican de forma unívoca cada tupla de una relación.
- Oclave principal o primaria. Clave candidata elegida para identificar las tuplas de una relación.
- Clave foránea o externa. Conjunto de atributos en una relación que es una clave primaria en otra (o incluso en la misma).

Reglas de integridad

- ODe entidad: PK no valores nulos
- ODe clave: la PK es única para cada tupla, Pueden existir PK compuestas
- OReferencial: la FK debe existir en la tabla que corresponde a la PK

DER

Entidades: Tablas

Relaciones

Claves Primarias

Claves Foráneas

Cardinalidad

Λ	Λ		D			D
1 V	/	L	$ \ $	 \cup	ш	

Entidad	Fuerte	Tabla
	Débil	Tabla (con FK)
Atributo	Simple	Columna - campo
	Compuesto	Columna atributo simple
	Multivaluados	Tabla
	Derivados	No almacenar (inconsistencias)
Clave primaria		Clave primaria
Interrelaciones	N:M	Tabla Intermedia
	1:N	Propagación de claves o Tabla Intermedia
	1:1	Tabla o propagación de clave (pocos casos)
Especialización/Gener alización		No hay definición: varias Tablas, varias relaciones

NORMALIZACIÓN DE BASE DE DATOS

El proceso de normalización de **bases de datos** consiste en designar y aplicar una serie de reglas a las relaciones obtenidas tras el paso del **modelo entidad relación** al **diagrama entidad relación**.

Las bases de datos relacionales se normalizan para:

- Evitar la redundancia de los datos.
- Disminuir problemas de actualización de los datos en las tablas.
- Proteger la integridad de los datos.
- Producir un diseño que sea una buena representación del mundo real

4 ETAPAS DE NORMALIZACIÓN

NORMALIZACIÓN DE BASE DE DATOS

2.2.1.1 Primera forma normal

Nro_GI	fecha	nom_recepcionista	cod_art	cant_art	nom_art
GI/000010	01/06/2010	Marcos Gonzales	AR410	12	pantalón
GI/000011	02/06/2010	José Julon	AR411	36	polos
GI/000012	03/06/2010	Samuel Jiménez	AR412	24	Medias
GI/000013	04/06/2010	Manuel Pérez	AR413	36	polos

2.2.1.2 Segunda forma normal

Guia_remis	ion		Articulo		
Nro_GI	fecha	nom_recepcionista	cod_art	cant_art	nom_art
GI/000010	01/06/2010	Marcos Gonzales	AR410	12	pantalón
GI/000011	02/06/2010	José Julon	AR411	36	polos
GI/000012	03/06/2010	Samuel Jiménez	AR412	24	Medias
GI/000013	04/06/2010	Manuel Pérez	AR413	36	polos

2.2.1.3 Tercera forma normal

Guia_interna		Recepcionista		
Nro_GI	fecha	cod_recepcionista	nom_recepcionista	cant_art
GI/000010	01/06/2010	R0001	Marcos Gonzales	12
GI/000011	02/06/2010	R0002	José Julon	36
GI/000012	03/06/2010	R0003	Samuel Jiménez	24
GI/000013	04/06/2010	R0004	Manuel Pérez	36

Articulo		
cod_art	nom_art	
AR410	pantalón	Secretary Secretary
AR411	polos	
AR412	Medias	
AR413	polos	000000000000000000000000000000000000000

NORMALIZACIÓN: 1 FORMA(1FN)

Todos los atributos son atómicos. (simples e indivisibles).

La tabla contiene una clave primaria única. (La clave primaria no contiene atributos nulos.)

No debe existir variación en el número de columnas.

Debe Existir una independencia del orden tanto de las filas como de las columnas, es decir, si los datos cambian de orden no deben cambiar sus significados

Una tabla no puede tener múltiples valores en cada columna.

Esta forma normal elimina los valores repetidos dentro de una Base de Datos.

2.2.1.1 Primera forma normal

Nro_GI	fecha	nom_recepcionista	cod_art	cant_art	nom_art
GI/000010	01/06/2010	Marcos Gonzales	AR410	12	pantalón
GI/000011	02/06/2010	José Julon	AR411	36	polos
GI/000012	03/06/2010	Samuel Jiménez	AR412	24	Medias
GI/000013	04/06/2010	Manuel Pérez	AR413	36	polos

NORMALIZACIÓN: 2 FORMA(2FN)

Una relación está en 2FN si está en 1FN y si los atributos que no forman parte de ninguna clave dependen de forma completa de la clave principal.

Es decir que no existen dependencias parciales. (Todos los atributos que no son clave principal deben depender únicamente de la clave principal). DEPENDENCIA FUNCIONAL

2.2.1.2 Segunda forma normal

Guia_remis	ion		Articulo		
Nro_GI	fecha	nom_recepcionista	cod_art	cant_art	nom_art
GI/000010	01/06/2010	Marcos Gonzales	AR410	12	pantalón
GI/000011	02/06/2010	José Julon	AR411	36	polos
GI/000012	03/06/2010	Samuel Jiménez	AR412	24	Medias
GI/000013	04/06/2010	Manuel Pérez	AR413	36	polos

NORMALIZACIÓN: 3 FORMA(3FN)

La 3NF fue definida originalmente por **E.F.Codd** en 1971. La definición de Codd indica que una tabla está en 3NF **si y solo si** las tres condiciones siguientes se cumplen:

La tabla está en la (2NF).

Ningún atributo no-primario de la tabla es dependiente transitivamente de una clave primaria.

Es una relación que no incluye ningún atributo clave.

Guia_interr	18	Recepcionista		
Nro_GI	fecha	cod_recepcionista	nom_recepcionista	cant_art
GI/000010	01/06/2010	R0001	Marcos Gonzales	12
GI/000011	02/06/2010	R0002	José Julon	36
GI/000012	03/06/2010	R0003	Samuel Jiménez	24
GI/000013	04/06/2010	R0004	Manuel Pérez	36

Articulo		
cod_art	nom_art	
AR410	pantalón	
AR411	polos	
AR412	Medias	

NORMALIZACIÓN: 4 FORMA(4FN)

Una relación está en 4FN si está en BCFN y no contiene dependencias multivalor

CURSO_PROFESOR_TEXTO

Curso	<u>Profesor</u>	<u>Texto</u>
Química	Moreno	Físico Química
Química	Moreno	Química Orgánica
Química	Mora	Físico Química
Química	Mora	Química Orgánica
Matemáticas	Merino	Análisis Vectorial
Matemáticas	Merino	Álgebra
Matemáticas	Merino	Trigonometría

Esta relación especifica que: el curso impartido puede ser dictado por varios profesores utilizando varios textos". Existen dos DMV:

NORMALIZACIÓN: 4 FORMA(4FN)

La redundancia de datos causada por la DMV, se puede eliminar siguiendo <u>uno</u> de los siguientes métodos:

 Crear una nueva relación para cada atributo DMV.

Curso	Profesor	Curso	Texto

Curso	<u>Profeso</u> r
Química	Moreno
Química	Mora
Matemáticas	Merino

Curso	<u>Texto</u>
Química	Físico Química
Química	Química Orgánica
Matemática	Análisis Vectorial
Matemática	Algebra
Matemática	Trigonometría

 Reemplazar un atributo DMV con atributos funcionalmente dependientes DF.

$$R3 = (Curso, texto1, texto2, texto3)$$

Curso	Texto1	Texto2	Texto3
Química	Físico química	Química orgánica	
Matemática	Análisis Vectorial	Algebra	Trigonometría

NORMALIZACIÓN: Forma Boyce/Codd

Estudiante	Curso	Asesor
Gomez	Matemática I	Arias
Gomez	Fisica	Flores
Perez	Matemática I	Arias
Perez	Algebra	Sanchez
Ramos	Física	Flores
Ramos	Matemática I	García

Cada Curso, cada Estudiante tiene un solo Asesor (E,C) -> A

Cada Curso tiene varios Asesores, pero cada professor asesora en un solo Curso (E,A) -> C

EstudiantexAsesor

Estudiante	Asesor
Gomez	Arias
Gomez	Flores
Perez	Arias
Perez	Sanchez
Ramos	Flores
Ramos	Garcia

AsesorXCurso

Asesor	Curso
Arias	Matemática I
Flores	Física
Sanchez	Algebra

Regla No. 1 - La Regla de la información

"

Toda la información en un RDBMS está explícitamente representada de una sola manera por valores en una tabla".

Regla No. 2 - La regla del acceso garantizado

"Cada ítem de datos debe ser lógicamente accesible al ejecutar una búsqueda que combine el nombre de la tabla, su clave primaria, y el nombre de la columna".

Regla No. 3 - Tratamiento sistemático de los valores nulos

"La información inaplicable o faltante puede ser representada a través de valores nulos".

Regla No. 4 - La regla de la descripción de la base de datos

"La descripción de la base de datos es almacenada de la misma manera que los datos ordinarios, esto es, en tablas y columnas, y debe ser accesible a los usuarios autorizados".

Regla No. 5 - La regla del sub-lenguaje Integral

"Debe haber al menos un lenguaje que sea integral para soportar la definición de datos, manipulación de datos, definición de vistas, restricciones de integridad, y control de autorizaciones y transacciones".

Regla No. 6 - La regla de la actualización de vistas

"Todas las vistas que son teóricamente actualizables, deben ser actualizables por el sistema mismo".

Regla No. 7 - La regla de insertar y actualizar

"La capacidad de manejar una base de datos con operandos simples aplica no solo para la recuperación o consulta de datos, sino también para la inserción, actualización y borrado de datos".

Regla No. 8 - La regla de independencia física

"El acceso de usuarios a la base de datos a través de terminales o programas de aplicación, debe permanecer consistente lógicamente cuando quiera que haya cambios en los datos almacenados, o sean cambiados los métodos de acceso a los datos".

Regla No. 9 - La regla de independencia lógica

"Los programas de aplicación y las actividades de acceso por terminal deben permanecer lógicamente inalteradas cuando quiera que se hagan cambios (según los permisos asignados) en las tablas de la base de datos".

Regla No. 10 - La regla de la independencia de la integridad

"Todas las restricciones de integridad deben ser definibles en los datos, y almacenables en el catalogo, no en el programa de aplicación".

Regla No. 11 - La regla de la distribución

"El sistema debe poseer un lenguaje de datos que pueda soportar que la base de datos esté distribuida físicamente en distintos lugares sin que esto afecte o altere a los programas de aplicación".

Regla No. 12 - Regla de la no-subversión

"Si el sistema tiene lenguajes de bajo nivel, estos lenguajes de ninguna manera pueden ser usados para violar la integridad de las reglas y restricciones expresadas en un lenguaje de alto nivel (como SQL)".

NORMALIZACION — DER Modelado Entidad-Relación -> DER

NORMALIZACION — DER Modelado Entidad-Relación -> DER

NORMALIZACION — DER Modelado Entidad-Relación -> DER

NORMALIZACIÓN DE BASE DE DATOS

1- <u>PRÉSTAMOS DE LIBROS</u>: La biblioteca del Colegio, necesita generar una base de datos que contemple la siguiente información. Aplicar las reglas de normalización para obtener las tablas que soporten la información requerida. Generar el Diagrama de Relación resultante.

Normalización de Tablas: Tabla Sin Normalizar

CodLibro	Titulo	Autor	Editorial	NombreLector	FechaDev
1001	Variable compleja	Murray Spiegel	McGraw Hill	Pérez Gómez, Juan	15/04/2005
1004	Visual Basic 5	E. Petroustsos	Anaya	Ríos Terán, Ana	17/04/2005
1005	Estadística	Murray Spiegel	McGraw Hill	Roca, René	16/04/2005
1006	Oracle University	Nancy Greenberg y Priya Nathan	Oracle Corp.	García Roque, Luis	20/04/2005
1007	Clipper 5.01	Ramalho	McGraw Hill	Pérez Gómez, Juan	18/04/2005

Normalización de Tablas: Normalización F1

CodLibro	Titulo	Autor	Editorial	Paterno	Materno	Nombres	FechaDev
1001	Variable compleja	Murray Spiegel	McGraw Hill	Pérez	Gómez	Juan	15/04/2005
1004	Visual Basic 5	E. Petroustsos	Anaya	Ríos	Terán	Ana	17/04/2005
1005	Estadística	Murray Spiegel	McGraw Hill	Roca		René	16/04/2005
1006	Oracle University	Nancy Greenberg	Oracle Corp.	García	Roque	Luis	20/04/2005
1006	Oracle University	Priya Nathan	Oracle Corp.	García	Roque	Luis	20/04/2005
1007	Clipper 5.01	Ramalho	McGraw Hill	Pérez	Gómez	Juan	18/04/2005

Normalización de Tablas: Normalización F2

CodLibro	Titulo	Autor	Editorial
1001	Variable compleja	Murray Spiegel	McGraw Hill
1004	Visual Basic 5	E. Petroustsos	Anaya
1005	Estadística	Murray Spiegel	McGraw Hill
1006	Oracle University	Nancy Greenberg	Oracle Corp.
1006	Oracle University	Priya Nathan	Oracle Corp.
1007	Clipper 5.01	Ramalho	McGraw Hill

CodLibro	CodLector	FechaDev
1001	501	15/04/2005
1001	301	13/04/2003
1004	502	17/04/2005
1005	503	16/04/2005
1006	504	20/04/2005
1007	501	18/04/2005

CodLector	Paterno	Materno	Nombres
501	Pérez	Gómez	Juan
502	Ríos	Terán	Ana
503	Roca		René
504	García	Roque	Luis

Normalización de Tablas: Normalización F3

CodLibro	Titulo	CodAutor	CodEditorial
1001	Variable compleja	801	901
1004	Visual Basic 5	802	902
1005	Estadística	803	903
1006	Oracle University	804	901
1006	Oracle University	803	902
1007	Clipper 5.01	806	903

CodLibro	CodLector	FechaDev
1001	501	15/04/2005
1004	502	17/04/2005
1005	503	16/04/2005
1006	504	20/04/2005
1007	501	18/04/2005

CodLibro	CodAutor
1001	801
1004	802
1005	803
1006	804
1006	803
1007	806

CodAutor	Autor	
801	Murray Spiegel	
802	E. Petroustsos	
803	Nancy Greenberg	
804	Priya Nathan	
806	Ramalho	

CodLector	Paterno	Materno	Nombres
501	Pérez	Gómez	Juan
502	Ríos	Terán	Ana
503	Roca		René
504	García	Roque	Luis

Normalización de Tablas: Normalización BoyceCodd

CodLibro	Titulo	CodEditorial
1001	Variable compleja	901
1004	Visual Basic 5	902
1005	Estadística	903
1006	Oracle University	901
1007	Clipper 5.01	903

CodLibro	CodLector	FechaDev	
1001	501	15/04/2005	
2002	301	13/01/2003	
1004	502	17/04/2005	
1005	F02	16/04/2005	
1005	503	16/04/2005	
1006	504	20/04/2005	
1007	501	18/04/2005	
1007	501	18/04/2005	

CodLibro	CodAutor
1001	801
1004	802
1005	803
1006	804
1006	803
1007	806

CodAutor	Autor	
801	Murray Spiegel	
802	E. Petroustsos	
803	Nancy Greenberg	
804	Priya Nathan	
806	Ramalho	

CodLector	Paterno	Materno	Nombres
501	Pérez	Gómez	Juan
502	Ríos	Terán	Ana
503	Roca		René
504	García	Roque	Luis