Part2.

AI의 시작부터 챗GPT의 원리까지

: 입문자를 위한 딥러닝

1교시:일단도전하는나의첫 딥러닝

1교시: 일단 도전하는 나의 첫 딥러닝

 01

 딥러닝 실행을 위해 필요한 세 가지

02 딥러닝 개괄하기

03 가장 훌륭한 예측선

04 인공지능의 시작을 알린 퍼셉트론

05 퍼셉트론의 과제

딥러닝 실행을 위해 필요한 세 가지

데이터

컴퓨터

프로그램

데이터 田

컴퓨터 모름

프로그램 🙈

프로그램 🚨

https://github.com/taehojo/fastcampus_ai

딥러닝 개괄하기

인공지능의 구성

그런데 사실상

그런데 사실상

폐암 수술 환자의 1년 후 생존율 예측하기

data.csv

종양의 유형, 폐활량, 호흡 곤란 여부, 고통 정도, 기침, 흡연, 천식 여부 등

<u>기존 환자 데이터</u>를 이용해, <u>새로운 환자</u>의 폐수술 후 <u>생사를 예측</u>하는 프로그램을 짜봐!

<u>기존 환자 데이터</u>를 이용해, <u>새로운 환자</u>의 폐수술 후 <u>생사를 예측</u>하는 프로그램을 짜봐!

<u>기존 환자 데이터</u>를 이용해, <u>새로운 환자</u>의 폐수술 후 <u>생사를 예측</u>하는 프로그램을 짜봐!

머신러닝/딥러닝의 학습: 깨끗한 좌표 평면에 기존 환자들을 하나씩 배치하는 과정

환자들의 분포를 그래프 위에 펼쳐 놓고

이 분포도 위에 생존과 사망 여부를 구분짓는 경계(규칙)를 그려넣음.

이를 잘 저장해 놓았다가 새로운 환자가 오면 분포도의 어디쯤 위치하는지를 파악

→ 최적의 패턴을 찾기 위해 경계선을 긋는 작업

가장 훌륭한 예측선

머신러닝 → 경계선 긋기

→ 적절한 a(기울기, weight)와 b(절편, bias)찾기

공부한 시간	2시간	4시간	6시간	8시간	
성적	81점	93점	91점	97점	

공부한 시간과 중간고사 성적 데이터

대강의 기울기 vs 최적의 기울기

기울기를 너무 작게 잡았을 때

기울기를 너무 크게 잡았을 때

기울기가 적절할 때

머신 러닝이 경계(규칙)를 찾는 방법

- 1. 선을 긋는다
- 2. 고친다

경사 하강법 (Gradient Decent)

평균 제곱 오차

오차 = 실제값 - 예측값

공부한 시간(x)	2	4	6	8
성적(실제 값, y)	81	93	91	97
예측 값	82	88	94	100
오차	1	- 5	3	3

평균 제곱 오차 (MSE)
$$= \frac{1}{n} \sum (y_i - \hat{y}_i)^2$$
 $= 44/4 = 11$

경사하강법

최소 오차 지점을 찾는 방법

- 1. "이차 함수 그래프" 상에서 최소점 찾기
- 2. 기울기가 "0"인 지점 찾기

순간 기울기가 0인 점이 곧 우리가 찾는 최솟값

다중 선형회귀

공부한 시간(x₁)	2	4	6	8
과외 수업 횟수(x2)	0	4	2	3
성적(y)	81	93	91	97

$$y = a_1 x_1 + a_2 x_2 + b$$

참 거짓 판단하기

로지스틱 회귀

공부한 시간	2	4	6	8	10	12	14
합격 여부	불합격	불합격	불합격	합격	합격	합격	합격

시그모이드 함수

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$e = 2.71828...$$

시그모이드 함수

$$y = \frac{1}{1 + e^{-(ax+b)}}$$

손실 함수 (Loss function)

$$y = ax + b$$

$$y = \frac{1}{1 + e^{-(ax+b)}}$$

교차 엔트로피 손실 함수 (Cross-Entropy Loss Function)

용어 정리

- 활성화 함수 (Activation function): 출력을 결정하는 함수
 - ✓ Ex. 일차 함수, 시그모이드 함수
- 손실 함수(Loss function): 예측값과 실제값 사이의 차이를 측정하는 함수
 - ✓ Ex. 이차 함수와 교차 엔트로피 함수
- 최적화 알고리즘 (Optimizer): 가중치를 조정하여 손실 함수를 최소화하는 알고리즘
 - ✓ Ex. 경사하강법 → 아담(Adam)

인공지능의 시작을 알린 퍼셉트론

한눈에 정리

1943

맥컬럭 - 윌터피츠

"온오프 기능이 있는 신경을 그물 망 형태로 연결하면 사람의 뇌처럼 동작할 수 있다!!"

1957

로젠블랫

여기에 학습을 더하면? → 퍼셉트론

잠깐만요

1960

여기에 경사하강법을 얹으면? → Adaline

끝까지 해보자

(인공지능의 겨울)

오차 역전파, 활성화 함수, **GPU**..

쓸만한걸 발전시키자

서포트 벡터 머신 로지스틱 회귀

XOR 문제 해결을 위해 필요했던 두가지 방법

