LR elemzések (SLR(1) és LR(1) elemzések)

Fordítóprogramok előadás (A,C,T szakirány)

rogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés

• A lexikális elemző által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az elemző vermébe tesszük.

Emlékeztető: LR(0) elemzés

- A lexikális elemző által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az elemző vermébe tesszük.
- Léptetés: egy új szimbólumot teszünk a bemenetről a verem
- Redukálás: a verem tetején lévő szabály-jobboldalt helyettesítjük a szabály bal oldalán álló nemterminálissal.

rogramok előadás (A.C.T szakirány) LR elemzések (SLR(1) és LR(1) elemz

Emlékeztető: LR(0) elemzés

- A lexikális elemző által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az elemző vermébe tesszük.
- Léptetés: egy új szimbólumot teszünk a bemenetről a verem
- Redukálás: a verem tetején lévő szabály-jobboldalt helyettesítjük a szabály bal oldalán álló nemterminálissal.
- LR(0): az alkalmazandó műveletről előreolvasás nélkül döntünk.
- A háttérben egy véges determinisztikus automata működik:
 - az automata átmeneteit a verem tetejére kerülő szimbólumok határozzák meg
 - ha az automata végállapotba jut, redukálni kell
 - egyéb állapotban pedig léptetni

ok előadás (A.C.T szakirány) LR elemzések (SLR(1) és LR(1) elem

Emlékeztető: LR(0) elemzés

- Az automata állapotai a kanonikus halmazok.
 - "Melyik szabály építésében hol tartunk éppen?"
 - elemei az LR(0)-elemek

Kanonikus halmaz és jelentése

A $\{[S \to a.Ad], [A \to .bA], [A \to .c]\}$ kanonikus halmaz jelentése:

"Az adott állapotban az S
ightarrow aAd, A
ightarrow bA és A
ightarrow c szabályok jobboldalait építhetjük. A S o aAd szabályból az a szimbólumot már elemeztük, az Ad rész még hátra van. A másik két szabály építése most kezdődhet."

Emlékeztető: LR(0) elemzés

• Lezárás (closure) művelet: segítségével adhatók meg az egy kanonikus halmazba tartozó LR(0)-elemek.

 $closure([S \rightarrow a.Ad]) = \{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}$

Emlékeztető: LR(0) elemzés

• Lezárás (closure) művelet: segítségével adhatók meg az egy kanonikus halmazba tartozó LR(0)-elemek.

$$closure([S \rightarrow a.Ad]) = \{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}$$

• Olvasás (read) művelet: megadja, hogy egy kanonikus halmazból egy adott szimbólum olvasásával melyik kanonikus halmazba jutunk. Ezek lesznek az automata átmenetei.

$$read(\{[S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c]\}, b) = \\ = closure([A \rightarrow b.A]) = \\ = \{[A \rightarrow b.A], [A \rightarrow .bA], [A \rightarrow .c]\}$$

Emlékeztető: LR(0) elemzés

$$\mathcal{I}_2 = \{ [S \rightarrow a.Ad], [A \rightarrow .bA], [A \rightarrow .c] \}$$

$$\begin{array}{l} \dots \\ \mathcal{I}_4 = \textit{read}(\mathcal{I}_2, \textit{b}) = \{ [\textit{A} \rightarrow \textit{b.A}], [\textit{A} \rightarrow .\textit{bA}], [\textit{A} \rightarrow .\textit{c}] \} \\ \mathcal{I}_5 = \textit{read}(\mathcal{I}_2, \textit{c}) = \textit{read}(\mathcal{I}_4, \textit{c}) = \{ [\textit{A} \rightarrow \textit{c.}] \} \end{array}$$

Elfogadó állapot: "a hozzá tartozó elemeknek a végén van a pont"

ok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés

allapot	akcio	5	A	a	b	С	d
0	léptetés	1		2			
1	OK						
2	léptetés		3		4	5	
3	léptetés						6
4	léptetés		7		4	5	
5	redukálás $(A o c)$						
6	redukálás ($S \rightarrow aAd$)						
7	redukálás $(A \rightarrow bA)$						

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Konfliktusok

- Az LR(0) tulajdonság biztosította, hogy a táblázat egy cellájába sem kerül két különböző műveletet, azaz a táblázat
- Mi történik, ha nem LR(0) a grammatika?

Konfliktusok

- Az LR(0) tulajdonság biztosította, hogy a táblázat egy cellájába sem kerül két különböző műveletet, azaz a táblázat konfliktusmentes.
- Mi történik, ha nem LR(0) a grammatika?

A helyes zárójelezés

$$S' \rightarrow S$$
 $S \rightarrow \epsilon \mid (S)S$

Konfliktusok

- Az LR(0) tulajdonság biztosította, hogy a táblázat egy cellájába sem kerül két különböző műveletet, azaz a táblázat konfliktusmentes.
- Mi történik, ha nem LR(0) a grammatika?

A helyes zárójelezés

$$S' \rightarrow S$$

$$S \rightarrow \epsilon \mid (S)S$$

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow (S)$$

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ((S)S) \Rightarrow ((S)) \Rightarrow ($$

rogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elei

Konfliktusok

- Az LR(0) tulajdonság biztosította, hogy a táblázat egy cellájába sem kerül két különböző műveletet, azaz a táblázat konfliktusmentes.
- Mi történik, ha nem LR(0) a grammatika?

A helyes zárójelezés

$$S' \rightarrow S$$

 $S \rightarrow \epsilon \mid (S)S$

$$S' \rightarrow S \rightarrow (S)S \rightarrow (S) \rightarrow ()$$

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ()$$

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ((S)S) \Rightarrow ((S)) \Rightarrow (($$

Az piros részek elolvasása után:

- ullet az első esetben $S
 ightarrow \epsilon$ szerinti redukciót kell végrahajtani,
- a második esetben léptetni kell.

Előreolvasás nélkül nem tudunk dönteni, nem LR(0) grammatika.

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemz

Példa: helyes zárójelezés

Példa grammatika

$$\mathcal{I}_0 = closure([S' \rightarrow .S]) = \{ [S' \rightarrow .S], [S \rightarrow .], [S \rightarrow .(S)S] \}$$

Példa: helyes zárójelezés

Példa grammatika

$$\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .], [S \rightarrow .(S)S]\}$$

$$\mathcal{I}_1 = \textit{read}(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

Példa: helyes zárójelezés

'élda grammatika

 $\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .], [S \rightarrow .(S)S]\}$ $\mathcal{I}_1 = \textit{read}(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$

 $\mathcal{I}_2 = read(\mathcal{I}_0, () = \{ [S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S] \}$

Példa: helyes zárójelezés

Példa grammatika

$$\begin{split} &\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .], [S \rightarrow .]S)\} \\ &\mathcal{I}_1 = \textit{read}(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\} \\ &\mathcal{I}_2 = \textit{read}(\mathcal{I}_0, () = \{[S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S]\} \\ &\mathcal{I}_3 = \textit{read}(\mathcal{I}_2, S) = \{[S \rightarrow (S.)S]\} \end{split}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_2 = read(\mathcal{I}_0, () = \{ [S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S] \}$$

$$T_2 = read(T_2, S) = \{[S \rightarrow (S)S]\}$$

Példa: helyes zárójelezés

$$\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .], [S \rightarrow .], [S \rightarrow .]\}$$

$$\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_{1} = read(\mathcal{I}_{0}, S) = \{[S' \rightarrow S.]\}$$

$$\mathcal{I}_{2} = read(\mathcal{I}_{0}, ()) = \{[S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S]\}$$

$$\mathcal{I}_{3} = read(\mathcal{I}_{2}, S) = \{[S \rightarrow (S.)S]\}$$

$$\mathcal{I}_3 = read(\mathcal{I}_2, S) = \{[S \rightarrow (S.)S]\}$$

$$read(\mathcal{I}_2,() = \{[S \rightarrow (.S)S],[S \rightarrow .],[S \rightarrow .],[S \rightarrow .(S)S]\} = \mathcal{I}_2$$

Példa: helyes zárójelezés

Példa grammatika

$$\begin{split} &\mathcal{I}_0 = closure([S' \to .S]) = \{[S' \to .S], [S \to .], [S \to .(S)S]\} \\ &\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \to S.]\} \\ &\mathcal{I}_2 = read(\mathcal{I}_0, () = \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} \\ &\mathcal{I}_3 = read(\mathcal{I}_2, S) = \{[S \to (S.)S]\} \\ &read(\mathcal{I}_2, () = \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} = \mathcal{I}_2 \\ &\mathcal{I}_4 = read(\mathcal{I}_3,)) = \{[S \to (S).S], [S \to .], [S \to .(S)S]\} \end{split}$$

Példa: helyes zárójelezés

Példa grammatika

$$\begin{split} \mathcal{I}_{0} &= \textit{closure}([S' \to .S]) = \{[S' \to .S], [S \to .], [S \to .(S)S]\} \\ \mathcal{I}_{1} &= \textit{read}(\mathcal{I}_{0}, S) = \{[S' \to S.]\} \\ \mathcal{I}_{2} &= \textit{read}(\mathcal{I}_{0}, ()) = \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} \\ \mathcal{I}_{3} &= \textit{read}(\mathcal{I}_{2}, S) = \{[S \to (S.)S]\} \\ \textit{read}(\mathcal{I}_{2}, ()) &= \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} = \mathcal{I}_{2} \\ \mathcal{I}_{4} &= \textit{read}(\mathcal{I}_{3},)) = \{[S \to (S).S], [S \to .], [S \to .(S)S]\} \\ \mathcal{I}_{5} &= \textit{read}(\mathcal{I}_{4}, S) = \{[S \to (S)S.]\} \end{split}$$

nok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) ele

Példa: helyes zárójelezés

$$\mathcal{I}_{0} = closure([S' \to .S]) = \{[S' \to .S], [S \to .], [S \to .(S)S]\}$$

$$\mathcal{I}_{1} = read(\mathcal{I}_{0}, S) = \{[S' \to S.]\}$$

$$\mathcal{I}_{2} = read(\mathcal{I}_{0}, () = \{[S \to (.S)S], [S \to .], [S \to .(S)S]\}$$

$$\mathcal{I}_{3} = read(\mathcal{I}_{2}, S) = \{[S \to (S.)S]\}$$

$$read(\mathcal{I}_{2}, () = \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} = \mathcal{I}_{2}$$

$$\mathcal{I}_{4} = read(\mathcal{I}_{3},)) = \{[S \to (S).S], [S \to .], [S \to .(S)S]\}$$

$$\mathcal{I}_{5} = read(\mathcal{I}_{4}, S) = \{[S \to (S)S.]\}$$

$$read(\mathcal{I}_{4}, () = \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} = \mathcal{I}_{2}$$

ok előadás (A.C.T szakirány) LR elemzések (SLR(1) és LR(1)

Konfliktusok az LR(0) elemző táblázatban

	akció	S	()
0	léptetés / redukálás $(S ightarrow \epsilon)$	1	2	
1	OK			
2	léptetés / redukálás $(S ightarrow \epsilon)$	3	2	
3	léptetés		4	
4	léptetés / redukálás ($S ightarrow \epsilon$)	5	(
5	redukálás $(S o (S)S)$			

Az SLR(1) elemzés alapötlete

- Olvassunk előre egy szimbólumot!
 - léptessünk, ha az automata tud lépni az előreolvasott szimbólummal
 - redukáljunk, ha az előreolvasott szimbólum benne van a szabályhoz tartozó nemterminális FOLLOW₁ halmazában

Az SLR(1) elemzés alapötlete

- Olvassunk előre egy szimbólumot!
 - léptessünk, ha az automata tud lépni az előreolvasott szimbólummal
 - redukáljunk, ha az előreolvasott szimbólum benne van a szabályhoz tartozó nemterminális FOLLOW₁ halmazában

A helyes zárójelezés

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ()$$

$$S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ((S)S) \Rightarrow ((S)) \Rightarrow (($$

$$\mathcal{I}_2 = \{ [S \to (.S)S], [S \to .], [S \to .(S)S] \}$$

Az piros részek elolvasása után \mathcal{I}_2 állapotban van az automata:

- ullet az első esetben $S \to \epsilon$ szerinti redukciót kell végrahajtani, mert $) \in FOLLOW_1(S)$.
- a második esetben léptetni kell, mert $[S \to .(S)S] \in \mathcal{I}_2$.

Az SLR(1) elemzés Az *SLR*(1) elemzés szabályai

• Ha az aktuális állapot i, és az előreolvasás eredménye az a

szimbólum:

 $FOLLOW_1(S) =$ {), # } • ha $[A \to \alpha.a\beta] \in \mathcal{I}_i$ és $read(\mathcal{I}_i, a) = \mathcal{I}_i$, akkor léptetni kell, és átlépni a j állapotba, • ha $[A
ightarrow \alpha.] \in \mathcal{I}_i \ (A \neq S')$ és $a \in FOLLOW_1(A)$, akkor redukálni kell $A
ightarrow \alpha$ szabály szerint, ullet ha $[S' o S] \in \mathcal{I}_i$ és a = #, akkor el kell fogadni a szöveget, # S • minden más esetben hibát kell jelezni. redukálás ($S
ightarrow \epsilon$) redukálás ($S \rightarrow \epsilon$) 0 1 léptetés, 2 • Ha az i állapotban A kerül a verem tetejére: 1 OK 2 redukálás $(S
ightarrow \epsilon)$ 3 ullet ha $read(\mathcal{I}_i, A) = \mathcal{I}_j$, akkor át kell lépni a j állapotba, léptetés, 2 redukálás ($S \rightarrow \epsilon$) 3 léptetés, 4 • egyébként hibát kell jelezni. 4 redukálás ($S \rightarrow \epsilon$) redukálás ($S \rightarrow \epsilon$) léptetés, 2 5 redukálás $(S \rightarrow (S)S)$ redukálás $(S \rightarrow (S)S)$ sek (SLR(1) és LR(1) eler

Az SLR(1) elemzés

 \rightarrow (S)S

5

A helyes zárójelezés SLR(1) elemző táblázata

1

Az SLR(1) elemzés

Példa

	()	#	S
0	léptetés, 2	redukálás $(S ightarrow \epsilon)$	redukálás $(S ightarrow \epsilon)$	1
1			OK	
2	léptetés, 2	redukálás $(S ightarrow \epsilon)$	redukálás $(S ightarrow \epsilon)$	3
3		léptetés, 4		
4	léptetés, 2	redukálás $(S ightarrow \epsilon)$	redukálás ($S ightarrow \epsilon$)	5
5		redukálás $(S o (S)S)$	redukálás $(S o (S)S)$	

OK

SLR(1) grammatika

Definíció: SLR(1) grammatika

Egy kiegészített grammatika SLR(1) grammatika, ha az SLR(1) elemző táblázata konfliktusmentes.

Az SIR(1) elemzés

- elnevezés: "Simple LR"
- jobb, mint az LR(0)
- ullet a valódi programnyelvek nyelvtanai általában nem SLR(1)nyelvtanok

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Probléma az SLR(1) elemzéssel

Példa grammatika

 $S' \rightarrow S$

Egy program $S \rightarrow U \mid E$ az egy *utasítás* vagy egy értékadás.

 $U \rightarrow a$

Egy utasítás az egy azonosító szimbólum.

 $E \rightarrow V = V$

Egy értékadás *változó legyen egyenlő változó* alakú. Egy változó az egy *azonosító* szimbólum.

Probléma az SLR(1) elemzéssel

Példa grammatika

 $S' \rightarrow S$

Egy program

 $S \rightarrow U \mid E$

az egy utasítás vagy egy értékadás.

 $U \rightarrow a$ $E \rightarrow V = V$

Egy utasítás az egy azonosító szimbólum.

Egy értékadás *változó legyen egyenlő változó* alakú. Egy változó az egy *azonosító* szimbólum.

$$\mathcal{I}_0 = \{ [S' \to .S], [S \to .U], [S \to .E], [U \to .a], \\ [E \to .V = V], [V \to .a] \}$$

 $\mathcal{I}_4 = read(\mathcal{I}_0, a) = \{[U \rightarrow a.], [V \rightarrow a.]\}$

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

ok előadás (A.C.T szakirány) LR elemzések (SLR(1) és LR(1) eler

Probléma az SLR(1) elemzéssel

Példa grammatika

$$S' \rightarrow S$$

 $S \rightarrow U \mid E$

az egy utasítás vagy egy értékadás.

 $U \rightarrow a$ $E \rightarrow V = V$ Egy utasítás az egy azonosító szimbólum

Egy értékadás *változó legyen egyenlő változó* alakú. Egy változó az egy *azonosító* szimbólum.

$$\mathcal{I}_0 = \{ [S' \rightarrow .S], [S \rightarrow .U], [S \rightarrow .E], [U \rightarrow .a], \\ [E \rightarrow .V = V], [V \rightarrow .a] \}$$

$$\mathcal{I}_4 = \textit{read}(\mathcal{I}_0, \textit{a}) = \{[\textit{U} \rightarrow \textit{a}.], [\textit{V} \rightarrow \textit{a}.]\}$$

$$FOLLOW_1(U) = \{\#\}$$
 és $FOLLOW_1(V) = \{=,\#\}$ Redukálás / redukálás konfliktus!

Probléma az SLR(1) elemzéssel

$$\mathcal{I}_4 = read(\mathcal{I}_0, a) = \{[U \rightarrow a.], [V \rightarrow a.]\}$$

$$FOLLOW_1(U) = \{\#\} \text{ és } FOLLOW_1(V) = \{=,\#\}$$

Redukálás / redukálás konfliktus!

Probléma az SI R(1) elemzéssel

Probléma az SLR(1) elemzéssel

Probléma az SLR(1) elemzéssel

$\mathcal{I}_4 = read(\mathcal{I}_0, a) = \{[U \rightarrow a.], [V \rightarrow a.]\}$

 $FOLLOW_1(U) = \{\#\} \text{ és } FOLLOW_1(V) = \{=,\#\}$ Redukálás / redukálás konfliktus!

Az a# szövegből az a elolvasása után az SLR(1) elemző nem tud dönteni a U
ightarrow a és V
ightarrow a szerinti redukciók között, mert a következő szimbólum (#) benne van az U és a V FOLLO W_1 halmazában is.

 $\mathcal{I}_4 = read(\mathcal{I}_0, a) = \{ [U \rightarrow a.], [V \rightarrow a.] \}$

 $FOLLOW_1(U) = \{\#\} \text{ és } FOLLOW_1(V) = \{=,\#\}$ Redukálás / redukálás konfliktus!

Az a# szövegből az a elolvasása után az SLR(1) elemző nem tud dönteni a U
ightarrow a és V
ightarrow a szerinti redukciók között, mert a következő szimbólum (#) benne van az U és a V FOLLO W_1 halmazában is.

Pedig a szöveg elején a V-t csak az = szimbólum követheti...

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Az LR(1) elemzés alapötlete

• a FOLLOW1 halmaz globális az egész grammatikára

• előfordulhat, hogy egy adott állapotban a FOLLOW₁ halmaznak nem minden eleme követheti a szabályt

Az LR(1) elemzés alapötlete

- a FOLLOW1 halmaz globális az egész grammatikára
- előfordulhat, hogy egy adott állapotban a FOLLOW1 halmaznak nem minden eleme követheti a szabályt
- ullet Vegyük hozzá az LR(0) elemekhez azokat a szimbólumokat, amik követhetik a szabályt az adott állapotban!

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

LR(1) elemek

LR(1) elemek

Definíció: LR(1) elem

Ha A
ightarrow lpha a grammatika egy helyettesítési szabálya, akkor az $lpha=lpha_1lpha_2$ tetszőleges felbontás és a terminális szimbólum (vagy $\emph{a}=\#$) esetén $[\emph{A} \rightarrow \alpha_1.\alpha_2,\emph{a}]$ a grammatika egy LR(1)-eleme.

 $A \rightarrow \alpha_1.\alpha_2$ az LR(1) elem magja, a pedig az előreolvasási szimbóluma.

Definíció: LR(1) elem

Ha A
ightarrow lpha a grammatika egy helyettesítési szabálya, akkor az $lpha=lpha_1lpha_2$ tetszőleges felbontás és a terminális szimbólum (vagy a = #) esetén $[A \rightarrow \alpha_1.\alpha_2, a]$ a grammatika egy LR(1)-eleme.

 $A \rightarrow \alpha_1.\alpha_2$ az LR(1) elem *magja*, a pedig az *előreolvasási* szimbóluma.

ullet $[V
ightarrow a.\,,=]$ jelentése: a V
ightarrow a szabály építését befejeztük és a szabályt az = szimbólum követheti.

A *lezárás* művelet

- Ha $[V \rightarrow .V = V, \#]$ állapotban vagyunk, akkor a $V \rightarrow a$ szabályt kezdhetjük építeni, amit az = szimbólum követhet.
- Tehát az adott kanonikus halmazhoz $[V \rightarrow .a, =]$ is hozzátartozik

Az olvasás művelet

A lezárás művelet

- ullet Ha [V
 ightarrow .V=V,#] állapotban vagyunk, akkor a V
 ightarrow aszabályt kezdhetjük építeni, amit az = szimbólum követhet.
- Tehát az adott kanonikus halmazhoz $[V \rightarrow .a, =]$ is hozzátartozik

Definíció: lezárás (closure)

Ha \mathcal{I} a grammatika egy LR(1) elemhalmaza, akkor $closure(\mathcal{I})$ a legszűkebb olyan halmaz, amely az alábbi tulajdonságokkal rendelkezik:

- $\mathcal{I} \subseteq closure(\mathcal{I})$
- ha $[A \to \alpha.B\gamma,a] \in closure(\mathcal{I})$, és $B \to \beta$ a grammatika egy szabálya, akkor $\forall b \in FIRST_1(\gamma a)$ esetén $[B \rightarrow .\beta, b] \in closure(\mathcal{I})$

k előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Az olvasás művelet

ullet Ha [V
ightarrow .V=V,#] állapotban vagyunk, és V kerül a verem tetejére, akkor $[V \rightarrow V. = V, \#]$ állapotba jutunk.

ullet Ha [V
ightarrow .V=V,#] állapotban vagyunk, és V kerül a verem tetejére, akkor $[V \rightarrow V. = V, \#]$ állapotba jutunk.

Definíció: olvasás (read)

Ha \mathcal{I} a grammatika egy LR(1) elemhalmaza, X pedig terminális vagy nemterminális szimbóluma, akkor $read(\mathcal{I}, X)$ a legszűkebb olyan halmaz, amely az alábbi tulajdonsággal rendelkezik:

• ha $[A \to \alpha.X\beta,a] \in \mathcal{I}$, akkor $closure([A \rightarrow \alpha X.\beta,a]) \subseteq read(\mathcal{I},X).$

rogramok előadás (A.C.T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Az LR(1) elemzés szabályai

LR(1) kanonikus halmazok

Definíció: LR(1) kanonikus halmazok

- $closure([S' \rightarrow .S, \#])$ a grammatika egy kanonikus halmaza.
- $oldsymbol{2}$ Ha $\mathcal I$ a grammatika egy kanonikus elemhalmaza, X egy terminális vagy nemterminális szimbóluma, és $read(\mathcal{I},X)$ nem üres, akkor $read(\mathcal{I}, X)$ is a grammatika egy kanonikus
- 3 Az első két szabállyal az összes kanonikus halmaz előáll.

- ullet Ha az aktuális állapot i, és az előreolvasás eredménye az aszimbólum:
 - ha $[A o lpha.aeta,b] \in \mathcal{I}_i$ és $read(\mathcal{I}_i,a) = \mathcal{I}_j$, akkor léptetni kell, és átlépni a j állapotba,
 - ha $[A
 ightarrow lpha.,a] \in \mathcal{I}_i$ (A
 eq S'), akkor redukálni kell A
 ightarrow lphaszabály szerint,
 - ha $[S' o S., \#] \in \mathcal{I}_i$ és a = #, akkor el kell fogadni a szöveget,
 - minden más esetben hibát kell jelezni.
- Ha az i állapotban A kerül a verem tetejére:
 - ha $read(\mathcal{I}_i, A) = \mathcal{I}_i$, akkor át kell lépni a j állapotba,
 - egyébként hibát kell jelezni.

Példa grammatika $S' \to S \quad S \to U \mid E \quad U \to a \quad E \to V = V \quad V \to a$ $\mathcal{I}_0 = closure([S' \to .S, \#]) = \\ = \{[S' \to .S, \#], [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ [E \to .V = V, M, [V, V \to .a, =]\}$ $\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \to S, \#]\}$ $\mathcal{I}_2 = read(\mathcal{I}_0, U) = \{[S \to U, \#]\}$ $\mathcal{I}_2 = read(\mathcal{I}_0, U) = \{[S \to U, \#]\}$

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Példa grammatika $S' \rightarrow S \quad S \rightarrow U \mid E \quad U \rightarrow a \quad E \rightarrow V = V \quad V \rightarrow a$ $\mathcal{T}_{0} = closure([S' \rightarrow .S, \#]) = \\ = \{[S' \rightarrow .S, \#], [S \rightarrow .U, \#], [S \rightarrow .E, \#], [U \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, =]\}$ $\mathcal{T}_{1} = read(\mathcal{T}_{0}, S) = \{[S' \rightarrow S, \#], [U \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, =]\}$ $\mathcal{T}_{2} = read(\mathcal{T}_{0}, U) = \{[S \rightarrow U, \#], [S \rightarrow .E, \#], [U \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, =]\}$ $\mathcal{T}_{3} = read(\mathcal{T}_{0}, U) = \{[S \rightarrow U, \#], [S \rightarrow .E, \#], [U \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, =]\}$ $\mathcal{T}_{3} = read(\mathcal{T}_{0}, U) = \{[S \rightarrow U, \#], [V \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, \#], [V \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, \#], [V \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, \#], [V \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], [V \rightarrow .a, \#], [V \rightarrow .a, \#], \\ [E \rightarrow V = V, \#], \\ [E \rightarrow V$

Példa

Példa grammatika

$$S' o S$$
 $S o U \mid E$ $U o a$ $E o V = V$ $V o a$

$$\begin{split} \mathcal{I}_0 &= \textit{closure}([S' \to .S, \#]) = \\ &= \{[S' \to .S, \#], [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ &[E \to .V = V, \#], [V \to .a, =]\} \\ \mathcal{I}_1 &= \textit{read}(\mathcal{I}_0, S) = \{[S' \to S., \#]\} \\ \mathcal{I}_2 &= \textit{read}(\mathcal{I}_0, U) = \{[S \to U., \#]\} \\ \mathcal{I}_3 &= \textit{read}(\mathcal{I}_0, E) = \{[S \to E., \#]\} \\ \mathcal{I}_4 &= \textit{read}(\mathcal{I}_0, a) = \{[U \to a., \#], [V \to a., =]\} \text{ Nincs konfliktusl} \\ \mathcal{I}_5 &= \textit{read}(\mathcal{I}_0, V) = \{[E \to V. = V, \#]\} \end{split}$$

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Példa grammatika

$$S' o S$$
 $S o U \mid E$ $U o a$ $E o V = V$ $V o a$

$$\begin{split} \mathcal{I}_0 &= \textit{closure}([S' \to .S, \#]) = \\ &= \{[S' \to .S, \#], [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ [E \to .V = V, \#], [V \to .a, =]\} \\ \mathcal{I}_1 &= \textit{read}(\mathcal{I}_0, S) = \{[S' \to S, \#]\} \\ \mathcal{I}_2 &= \textit{read}(\mathcal{I}_0, U) = \{[S \to U, \#]\} \\ \mathcal{I}_3 &= \textit{read}(\mathcal{I}_0, E) = \{[S \to E, \#]\} \\ \mathcal{I}_4 &= \textit{read}(\mathcal{I}_0, a) = \{[U \to a, \#], [V \to a,, =]\} \text{ Nincs konfliktus!} \\ \mathcal{I}_5 &= \textit{read}(\mathcal{I}_0, V) = \{[E \to V = V, \#]\} \\ \mathcal{I}_6 &= \textit{read}(\mathcal{I}_5, =) = \{[E \to V = V, \#], [V \to .a, \#]\} \end{split}$$

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Példa

Példa grammatika

$$S' \to S$$
 $S \to U \mid E$ $U \to a$ $E \to V = V$ $V \to a$

$$\begin{split} \mathcal{I}_0 &= \textit{closure}([S' \to .S, \#]) = \\ &= \{[S' \to .S, \#], [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ [E \to .V = V, \#], [V \to .a, =]\} \\ \mathcal{I}_1 &= \textit{read}(\mathcal{I}_0, S) = \{[S' \to S., \#]\} \\ \mathcal{I}_2 &= \textit{read}(\mathcal{I}_0, U) = \{[S \to U., \#]\} \\ \mathcal{I}_3 &= \textit{read}(\mathcal{I}_0, E) = \{[S \to E., \#]\} \\ \mathcal{I}_4 &= \textit{read}(\mathcal{I}_0, a) = \{[U \to a., \#], [V \to a., =]\} \text{ Nincs konfliktus!} \\ \mathcal{I}_5 &= \textit{read}(\mathcal{I}_0, V) = \{[E \to V. = V, \#]\} \\ \mathcal{I}_6 &= \textit{read}(\mathcal{I}_5, =) = \{[E \to V = .V, \#], [V \to .a, \#]\} \\ \mathcal{I}_7 &= \textit{read}(\mathcal{I}_6, V) = \{[E \to V = .V., \#]\} \end{split}$$

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Példa

Példa grammatika

$$S' \rightarrow S$$
 $S \rightarrow U \mid E$ $U \rightarrow a$ $E \rightarrow V = V$ $V \rightarrow a$

$$\begin{split} \mathcal{I}_0 &= \textit{closure}([S' \to .S, \#]) = \\ &= \{[S' \to .S, \#], [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ [E \to .V = V, \#], [V \to .a, =]\} \\ \mathcal{I}_1 &= \textit{read}(\mathcal{I}_0, S) = \{[S' \to S, \#]\} \\ \mathcal{I}_2 &= \textit{read}(\mathcal{I}_0, U) = \{[S \to U, \#]\} \\ \mathcal{I}_3 &= \textit{read}(\mathcal{I}_0, E) = \{[S \to E, \#]\} \\ \mathcal{I}_4 &= \textit{read}(\mathcal{I}_0, E) = \{[U \to a, \#], [V \to a, =]\} \\ \mathcal{I}_5 &= \textit{read}(\mathcal{I}_0, V) = \{[E \to V = V, \#]\} \\ \mathcal{I}_6 &= \textit{read}(\mathcal{I}_5, =) = \{[E \to V = V, \#], [V \to .a, \#]\} \\ \mathcal{I}_7 &= \textit{read}(\mathcal{I}_6, V) = \{[E \to V = V, \#]\} \\ \mathcal{I}_8 &= \textit{read}(\mathcal{I}_6, a) = \{[V \to a, \#]\} \end{split}$$

programok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések

Az LR(1) elemzés Példa

Az elemző táblázat kitöltése

$$\mathcal{I}_0 = \{ \underbrace{[S' \to .S, \#]}_{,}, [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ [E \to .V = V, \#], [V \to .a, =] \}$$

 $read(\mathcal{I}_0, S) = \mathcal{I}_1$

	×	=	#	S	U	Е	V
0				1			
1							
2							
3							
4							
5							
6							
7							
8							

Az elemző táblázat kitöltése

$$\mathcal{I}_0 = \{ [S' \to .S, \#], [S \to .U, \#], [S \to .E, \#], [U \to .a, \#], \\ [E \to .V = V, \#], [V \to .a, =] \}$$

 $read(\mathcal{I}_0,U)=\mathcal{I}_2$

	x	=	#	S	U	Е	V
0				1	2		
1							
2							
3							
4							
5							
6							
7							
8							

Az LR(1) elemzés Példa Az elemző táblázat kitöltése

_	$=$ {[$H \rightarrow$	a #	1 [V	$\rightarrow a$	=13

	a	=	#	S	U	E	V
0	léptetés, 4			1	2	3	5
1			OK				
2			redukálás, $S o U$				
3			redukálás, S → E				
4			redukálás, $U ightarrow a$				
5							
6							
7							
8							

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Az LR(1) elemzés Példa Az elemző táblázat kitöltése

$$\mathcal{I}_4 = \{[U \rightarrow a., \#], [V \rightarrow a., =]\}$$

	a	=	#	S	U	E	V
0	léptetés, 4			1	2	3	5
1			OK				
2			redukálás, $S o U$				
3			redukálás, $S o E$				
4		redukálás, $V ightarrow a$	redukálás, $U ightarrow a$				
5							
6							
7							
8							

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

			Az LR(1) elemzés	Példa					
Az	ele	emző tábl	ázat kitöltése						
		$\{[E ightarrow V. = (\mathcal{I}_5, =) = \mathcal{I}_6$	V,#]}						
		a	=	#	S	U	Е	V	
	0	léptetés, 4			1	2	3	5	
	1			OK					

	a	=	#	S	U	Е	V
0	léptetés, 4			1	2	3	5
1			OK				
2			redukálás, $S o U$				
3			redukálás, $S o E$				
4		redukálás, $V ightarrow a$	redukálás, $U ightarrow a$				
5		léptetés, 6					
6							
7							
8							

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

	Az LR(1) elemzés	Pé
Az elemző tábl	lázat kitöltése	

$$\mathcal{I}_6 = \{ [E \rightarrow V = .V, \#], [V \rightarrow .a, \#] \}$$

$$read(\mathcal{I}_6, V) = \mathcal{I}_7$$

	a	=	#	S	U	E	V
0	léptetés, 4			1	2	3	5
1			OK				
2			redukálás, $S o U$				
3			redukálás, $S o E$				
4		redukálás, $V ightarrow a$	redukálás, $U ightarrow a$				
5		léptetés, 6					
6							7
7							
8							

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Az LR(1) elemzés Példa Az elemző táblázat kitöltése

$$\mathcal{I}_6 = \{ [E \rightarrow V = .V, \#], \textcolor{red}{[V \rightarrow .a, \#]} \}$$

$$\textcolor{red}{read(\mathcal{I}_6, a)} = \mathcal{I}_8$$

	a	=	#	S	U	Е	V
0	léptetés, 4			1	2	3	5
1			OK				
2			redukálás, $S o U$				
3			redukálás, $S o E$				
4		redukálás, $V ightarrow a$	redukálás, $U ightarrow a$				
5		léptetés, 6					
6	léptetés, 8						7
7							
8							

Az elemző táblázat kitöltése

 $\mathcal{I}_7 = \{ [E \rightarrow V = V., \#] \}$

	a	=	#	S	U	Е	V
0	léptetés, 4			1	2	3	5
1			OK				
2			redukálás, $S o U$				
3			redukálás, S → E				
4		redukálás, $V ightarrow a$	redukálás, $U o a$				
5		léptetés, 6					
6	léptetés, 8						7
7			redukálás, $E o V = V$				
8							

Az LR(1) elemző táblázat konfliktusmentessége

Az LR(1) elemző táblázat konfliktusmentessége

Az LR(1) elemző létrehozása véges

Az LR(1) elemző a regad függvények kiszámítása véges

Az LR(1) elemző a kanonikus halmazok száma véges

Az LR(1) elemző a megadott módon véges sok lépésben és teljesen automatikusan létrehozható.

Az LR(1) elemzés Az elemzés helyessége Járható prefix, érvényes LR-elem o járható prefix: a mondatformának olyan prefixei, amelyek legfeljebb a nyél végéig tartanak o ezeket járja be az elemző automata o a maximális járható prefixnek a végén ott a teljes nyél o járható prefix; a mondatformának olyan prefixei, amelyek legfeljebb a nyél végéig tartanak o ezeket járja be az elemző automata o a maximális járható prefixnek a végén ott a teljes nyél járható prefixe érvényes LR-elemek: a járható prefix "lehetséges folytatásai" o melyik szabályok építésében hol tarthatunk egy adott járható prefix elemzése után?

programok előadás (A,C,T szakirány) LR elemzések (SLR(1) és LR(1) elemzések)

Az LR(1) elemzés helyessége Járható prefix, érvényes LR-elem • járható prefix: a mondatformának olyan prefixei, amelyek Az LR(1)-elemzés nagy tétele legfeljebb a nyél végéig tartanak Egy γ járható prefix hatására az elemző automatája a • ezeket járja be az elemző automata kezdőállapotból olyan állapotba kerül, amelyhez tartozó kanonikus • a maximális járható prefixnek a végén ott a teljes nyél halmaz éppen a γ járható prefixre érvényes LR(1) elemeket • járható prefixre érvényes LR-elemek: a járható prefix tartalmazza. "lehetséges folytatásai" • melyik szabályok építésében hol tarthatunk egy adott járható prefix elemzése után? Definíció: Járható prefixre érvényes LR(1)-elem A grammatika egy [A ightarrow lpha.eta,a] LR(1)-eleme érvényes a \gammalpha járható prefixre nézve, ha $S' \Rightarrow^* \gamma Ax \Rightarrow \gamma \alpha \beta x$, és $x \neq \epsilon$ esetén a az x első szimbóluma, $x = \epsilon$ esetén pedig a = #.

Az LR(1) elemzés helyessége

Az LR(1)-elemzés nagy tétele

Egy γ járható prefix hatására az elemző automatája a kezdőállapotból olyan állapotba kerül, amelyhez tartozó kanonikus halmaz éppen a γ járható prefixre érvényes LR(1) elemeket tartalmazza.

- Összefoglalva:
 - az LR(1) elemző automatikusan és véges lépésben generálható a nyelvtan szabályaiból
 - minden LR(1) grammatika elemezéséhez használható
 - az elemző mindig a helyes lépést írja elő a fenti tétel miatt
- Probléma:
 - túl sok állapota van...

Fordítóprogramok előadás (A,C,T szakirány) LR elemzések ($\mathsf{SLR}(1)$ és $\mathsf{LR}(1)$ elemzések)