Lecture 4: Further solution concepts

Motivations

- We reason about multiplayer games using solution concepts, principles according to which we identify interesting subsets of the outcomes of a game
- Nash equilibrium is the most important solution concept
- There are also a large number of others:
 - Maximin and minmax strategies
 - Minimax regret
 - Removal of dominated strategies
 - Rationalizability
 - Correlated equilibrium
 - Trembling-hand perfect equilibrium

Definition (Maxmin)

The maxmin strategy for player i is $s_i^* = \arg\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$ and the maxmin value for player i is $\max_{s_i} \min_{s_i} u_i(s_i, s_{-i})$

- The *maxmin strategy* of player i in an n-players game is a strategy that maximizes i's worst case payoff, in the situation where all the others players happen to play the strategies which cause the greatest harm to i
- The maxmin strategy is a sensible choice for a conservative agent who wants to maximize his
 expected utility without having to make any assumptions about the other agents
- The $maxmin\ value$ (or security level) of the game for player i is that minimum amount of payoff guaranteed by a $maxmin\ strategy$
- It is strategy that **defends against** other agents (defensive strategy)
- Player i set the mixed strategy \Rightarrow player -i observe this strategy (not an action) and choose their own strategies to minimize i's expected payoff (temporal interpretation)

Definition (Minmax, two-player)

In an two-player game, the *minmax strategy* for player i against player -i is $s_i^* = \arg\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$ and the minmax value is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$

- The minnmax strategy of player i in an two-players game is a strategy that keeps the maximum payoff of -i at a minimum
- The *minmax value* of player -i is that minimum
- It is strategy that attack against other agents (offensive strategy)

In agent i's perspective

$$\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$$

- Agent always maximizes its payoff
- Defensive strategy (if max is first)

$$\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$$

- Agent always maximizes its payoff
- offensive strategy (if min is first)

Definition (Minmax, n-player)

In an n-player game, the minmax strategy for player i against player $j \neq i$ is i-th component of the mixed-strategy profile s_{-j} in the expression $\arg\min_{s_{-j}}\max_{s_j}u_j(s_j,s_{-j})$. As before, the minmax value for player j is $\min_{s_{-j}}\max_{s_j}u_j(s_j,s_{-j})$

- Here, we assume that all the players other than j choose to "gang up" on j
 - They are able to coordinate appropriately when there is more than one strategy profile that would yield the same minimal payoff for j

- An agent's maximum strategy nor his minmax strategy depends on the strategies that the other agents actually choose
- the maximin and minmax strategies give rise to solution concept
- Call $s = (s_1, ..., s_n)$ a maxmin strategy profile of a given game if s_1 is a maxmin strategy for player $1, s_2$ is a maxmin strategy for player 2 and so on.
 - Similar to minmax strategy profile
- In two-player games, a player's minmax value is always equal to his maxmin value

$$\min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i}) = \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$$

For games with more than two players, a weaker condition holds:

$$\min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i}) \ge \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$$

• See that player -i chooses first, allowing player i to best respond to it.

Minimax theorem (von Neumann, 1928)

Theorem (Minmax theorem by von Neumann, 1928)

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

• Minmax theorem states that in a two-player zero-sum game:

maximin value = minmax value = Nash equilibrium value

- Any *maximin* strategy profile is a Nash equilibrium. Furthermore, these are all the Nash equilibria
 - Consequently, all Nash equilibria have the same payoff vector

Minimax theorem (von Neumann, 1928)

Proof:

- Let's assume (s_i', s_{-i}') be an arbitrary Nash equilibrium and denote v_i to be the i's equilibrium payoff
- Denote i's maxmin value as $\overline{v}_i = \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$
- Denote i's minmax value as $\underline{v} = \min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$
- First, we show that $\overline{v}_i = v_i$

$$\checkmark \overline{v_i} \le v_i$$

$$\overline{v_i} = \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) \le \max_{s_i} u_i(s_i, s'_{-i}) < v_i$$

$$\checkmark \overline{v_i} \ge v_i$$

$$v_{-i} = \max_{s_{-i}} u_{-i}(s'_i, s_{-i})$$

$$-v_{-i} = \min_{s_{-i}} -u_{-i}(s'_i, s_{-i})$$

since the game is zero sum, $-v_{-i}=v_i$ and $u_i=-u_{-i}$, thus

$$v_i = \min_{s_{-i}} u_i(s_i', s_{-i})$$

$$\overline{v_i} = \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) \ge \min_{s_{-i}} u_i(s_i', s_{-i}) = v_i$$

 \blacktriangleright As a result, $v_i = \overline{v_i}$

Minimax theorem example

• Player 1's maxmin value :

$$\bar{u}_1 = \max_{s_1} \min_{s_2} u_1(s_1, s_2)$$

$$= \max_{p} \min_{q} \{ pq - p(1-p) - (1-p)q + (1-p)(1-q) \}$$

Player 1's minmax value :

$$\underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

= $\min_{q} \max_{p} \{ pq - p(1-p) - (1-p)q + (1-p)(1-q) \}$

Minimax theorem example

• Player 1's maxmin value :
$$\bar{u}_1 = \max_{\substack{s_1 \ s_2}} \min_{\substack{s_2 \ pq - p(1-p) - (1-p)q + (1-p)(1-q)}}$$

- For any p set by player 1, player 2 tries to chooses q deterministically to minimize u_1
 - When player 2 plays Heads (q = 1): $u_1(p, H) = 2p 1$
 - When player 2 plays Tails a(q=0): $u_1(p,T)=1-2p$
- $\min_{q}\{pq-p(1-p)-(1-p)q+(1-p)(1-q)\}=\min\{2p-1,1-2p\}$ Selecting among the two possible alternatives
- Thus, $\bar{u}_1 = \max_{p} \min\{2p 1, 1 2p\} = 0$

• Player 1's maxmin strategy:

$$\bar{s}_1 = \underset{s_1}{\operatorname{argmax}} \min_{s_2} u_1(s_1, s_2) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

Player 1's maxmin value:

$$\bar{u}_1 = \max_{s_1} \min_{s_2} u_1(s_1, s_2) = 0$$

Minimax theorem example

• Player 1's minmax value :
$$\underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$
 $= \min_{q} \max_{s_2} \{pq - p(1-p) - (1-p)q + (1-p)(1-q)\}$

- For any q set by player 2, player 1 tries to chooses p deterministically to maximize u_1
 - When player 1 plays Heads (p = 1): $u_1(H, q) = 2q 1$
 - When player 1 plays Tails (p=0): $u_1(T,q)=1-2q$
- $\max_{p} \{pq p(1-p) (1-p)q + (1-p)(1-q)\} = \max\{2q 1, 1 2q\}$
- Thus, $\underline{u}_1 = \min_{q} \max\{2q 1, 1 2q\} = 0$

• Player 2's minmax strategy:

$$\underline{s}_2 = \underset{s_2}{\operatorname{argmin}} \max_{s_1} u_1(s_1, s_2) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

Player 1's minmax value:

$$\underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2) = 0$$

Minimax theorem graphical representation

- Nash equilibria in zero-sum games can be viewed graphically as a "saddle" in a highdimensional space
- At a saddle point, any deviation of the agent lowers his utility and increases the utility of the other agent.

Minimax theorem graphical representation

T, T

Player 1's

head (H)

Prob p

H, H

Player 2's head (H)Prob q

 At a saddle point, any deviation of the agent lowers his utility and increases the utility of the other agent.

player 1's expected utility

-0.5

0.25

player 1's

Pr(heads)

0.75

0.5

player 2's Pr(heads)

0.25

We argued agents might play maxmin strategies to achieve good payoffs in the worst case

- Player 1's maximin strategy is to play B:
 - If player 1 play T , then player 2 will chose R to minimize player 1's payoff: $u_1=1-\epsilon$
 - If player 1 play B, then player 2 will chose R to minimize player 1's payoff: $u_1=1$
 - Thus, maximin strategy for player 1 is to play B, giving him a payoff of 1

- However, the other agent is not believed to be malicious, but is instead unpredictable
- In this case, agents might care about minimizing their worst-case losses, rather than maximizing their worst case payoffs
- Player 1's Minmax regret strategy is to play *T*:
 - If player 2 were to play R, then it would not matter very much how player 1 plays \checkmark The most he could lose by playing the wrong way would be ϵ
 - If player 2 were to play L, then player 1's action would be very significant
 - ✓ If player makes wrong choice, his utility would be decreased by 98
 - Thus, given that player can maximize your regret, player 1 might choose to play *T* in order to minimize his worst-case loss

Definition (Regret)

An agent i's regret for playing an action a_i if the other agents adopt action profile a_{-i} is defined as

$$\left[\max_{a_i'\in A_i}u_i(a_i',a_{-i})\right]-u_i(a_i,a_{-i})$$

- In words, this is the amount that i loses by playing a_i , rather than playing his best response to a_{-i} . Of course, i does not know that actions the other players will take.
- But, we can consider those actions that would give him the highest regret for playing a_i

Definition (Regret)

An agent i's regret for playing an action a_i if the other agents adopt action profile a_{-i} is defined as

$$\left[\max_{a_i'\in A_i}u_i(a_i',a_{-i})\right]-u_i(a_i,a_{-i})$$

- In words, this is the amount that i loses by playing a_i , rather than playing his best response to a_{-i} . Of course, i does not know that actions the other players will take.
- But, we can consider those actions that would give him the highest regret for playing a_i

Definition (Max Regret)

An agent i's regret for playing an action a_i if the other agents adopt action profile a_{-i} is defined as

$$\max_{a_{-i} \in A_{-i}} \left(\left[\max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, a_{-i}) \right] - u_{i}(a_{i}, a_{-i}) \right)$$

This is the amount that i loses by playing a_i rather than playing his best response to a_{-i} , if the other agents chose the a_{-i} that makes this loss as large as possible

Definition (Regret)

An agent i's regret for playing an action a_i if the other agents adopt action profile a_{-i} is defined as

$$\left[\max_{a_{i}' \in A_{i}} u_{i}(a_{i}', a_{-i})\right] - u_{i}(a_{i}, a_{-i})$$

- In words, this is the amount that i loses by playing a_i , rather than playing his best response to a_{-i} . Of course, i does not know that actions the other players will take.
- But, we can consider those actions that would give him the highest regret for playing a_i

Definition (Max Regret)

An agent i's regret for playing an action a_i if the other agents adopt action profile a_{-i} is defined as

$$\max_{a_{-i} \in A_{-i}} \left(\left[\max_{a'_{i} \in A_{i}} u_{i}(a'_{i}, a_{-i}) \right] - u_{i}(a_{i}, a_{-i}) \right)$$

This is the amount that i loses by playing a_i rather than playing his best response to a_{-i} , if the other agents chose the a_{-i} that makes this loss as large as possible

Definition (Minmax Regret)

Minmax regret actions for agent i are defined as

$$\underset{a_i \in A_i}{\operatorname{argmin}} \left[\underset{a_{-i} \in A_{-i}}{\operatorname{max}} \left(\left[\underset{a_i' \in A_i}{\operatorname{max}} u_i(a_i', a_{-i}) \right] - u_i(a_i, a_{-i}) \right) \right]$$

Minmax regret actions are one that yields the smallest maximum regret

Definition (Domination)

Let s_i and s_i' be two strategies of player i, and S_{-i} the set of all strategy profiles of the remaining players. Then,

- 1. s_i strictly dominates s_i' if for all $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$
- 2. s_i weekly dominates s_i' if for all $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and for at least one $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$
- 3. s_i very weekly dominates s_i' if for all $s_{-i} \in S_{-i}$, it is the case that $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$
- Domination is comparison between two strategies s_i and s_i' given others $s_{-i} \in S_{-i}$

Definition (Pareto domination)

Strategy profile s Pareto dominates strategy profile s' if for all $i \in N$, $u_i(s) \ge u_i(s')$, and there exists some $j \in N$ for which $u_i(s) > u_i(s')$.

Definition (Dominant strategy)

A strategy is strictly (resp., weekly; very weakly) dominant for an agent if it strictly (weakly; very weakly) dominates any other strategy for that agent.

- A strategy profile $(s_1, ..., s_n)$ in which every s_i is dominant for player i (whether strictly, weakly, or very weakly) is a Nash equilibrium.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium
 - An equilibrium in strictly dominant strategies must be unique.

Definition (Dominated strategy)

A strategy s_i is strictly (weakly; very weakly) dominated for an agent i if some other strategy s_i' strictly (weakly; very weakly) dominates s_i

 Note that it is easy to check if a strategy is dominated because we need to find any strategy that dominate it

	L	С	R
U	3, 1	0, 1	0,0
M	1, 1	1, 1	5,0
D	0, 1	4, 1	0,0

• R is dominated by L

	L	С	R
U	3, 1	0, 1	0,0
M	1, 1	1, 1	5,0
D	0, 1	4, 1	0,0

• R is dominated by L

	L	C
U	3, 1	0, 1
M	1,1	1, 1
D	0, 1	4, 1

• M is dominated by the mixed strategy that selects U and D with equal probability

• No other strategies are dominated.

	L	С	R
U	4, 3	5, 1	6, 2
M	2, 1	8,4	3,6
D	3, 0	9,6	2,8

• Find an equilibrium by yourself

- This process preserves Nash equilibria.
 - strict dominance: all equilibria preserved.
 - weak or very weak dominance: at least one equilibrium preserved.
- Thus, it can be used as a preprocessing step before computing an equilibrium
 - Some games are solvable using this technique.
 - Example: Prisoner's Dilemma!
- What about the order of removal when there are multiple dominated strategies?
 - strict dominance: doesn't matter.
 - weak or very weak dominance: can affect which equilibria are preserved.

	L	С
U	1, 1	2,1
D	1,2	3,1

- Remove the action of the column player first
- Remove the action of the row player first What is the result?

Cournot duopoly

- Two identical firms, players 1 and 2, produce some good
- Firm i produce quantity q_i
- Cost for production is $c_i(q_i) = 10q_i$
- Price is given by $d = 100 (q_1 + q_2)$
- The profit of company 1 is $u_1(q_1,q_2)=(100-q_1-q_2)q_1-10q_1=90q_1-q_1^2-q_1q_2$

What should firm 1 do in order to maximize their profit?

Cournot duopoly

- Two identical firms, players 1 and 2, produce some good
- Firm i produce quantity q_i
- Cost for production is $c_i(q_i) = 10q_i$
- Price is given by $d = 100 (q_1 + q_2)$
- The profit of company 1 is $u_1(q_1, q_2) = (100 q_1 q_2)q_1 10q_1 = 90q_1 q_1^2 q_1q_2$

What should firm 1 do in order to maximize their profit?

As the payoff is concave in q_1 , the maximum is obtained by imposing the derivative of the payoff with respect q_1 for any given value of q_2

$$q_1 = \frac{90 - q_2}{2}$$

- \triangleright That is, for any given q_2 chosen by company 2, company maximize its payoff
- The same applied to company 2

$$q_2 = \frac{90 - q_1}{2}$$

- The profit of company 1 is $u_1(q_1, q_2) = (100 q_1 q_2)q_1 10q_1 = 90q_1 q_1^2 q_1q_2$
- As the payoff is concave in q_1 , the maximum is obtained by imposing the derivative of the payoff with respect q_1 for any given value of q_2

$$q_1 = \frac{90 - q_2}{2}$$

- Company 1 will never choose to produce more than $q_1>45$ because any quantity $q_1>45$ is strictly dominated by $q_1=45$ as follows:
 - $u_1(q_1 = 45, q_2) = (100 45 q_2)45 450 = 2025 45q_2$
 - $u_1(q_1, q_2) = (100 q_1 q_2)q_1 10q_1 = 90q_1 q_1^2 q_1q_2$
 - $u_1(45,q_2)-u_1(q_1,q_2)=2025-q_1(90-q_1)-q_2(45-q_1)>0$ for any $q_1>45$ regardless of q_2
- Due to symmetry, any $q_2 > 45$ is strictly dominated by $q_2 = 45$
- The first round of iterated elimination:
 - A rational produces no more than 45 units, implying that the effective strategy space that survives one round of elimination is $q_i \in [0,45]$ for $i \in \{1,2\}$

- The first round of iterated elimination:
 - $q_2 > 45$ is strictly dominated by $q_2 \le 45$

- The second round of iterated elimination:
 - Because $q_2 \le 45$, the equation $q_1 = \frac{90 q_2}{2}$ implies that company 1 will chose $q_1 \ge 22.5$
 - Symmetric argument applies to $q_2 \ge 22.5$
 - Therefore the second round of elimination implies that the surviving strategy sets are $q_i \in [22.5, 45]$ for $i \in \{1,2\}$

- The third round of iterated elimination:
 - Because $q_2 \ge 22.5$, the equation $q_1 = \frac{90 q_2}{2}$ implies that company 1 will chose $q_1 \le 33.75$
 - Symmetric argument applies to $q_2 \le 33.75$
 - Therefore the second round of elimination implies that the surviving strategy sets are $q_i \in [22.5, 33.75]$ for $i \in \{1,2\}$

Rationalizability

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - •
- Examples
 - is heads rational in matching pennies?
 - is cooperate rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.
- Furthermore, in two-player games, rationalizable
 ⇔ survives iterated removal of strictly dominated strategies.

If there is intelligent life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash equilibrium.

Roger Myerson

- Consider again Battle of the Sexes.
 - The values of each player under mixed Nash equilibrium is 2/3

Player 2
$$\begin{array}{c|c}
p & 1-p \\
TF & LA
\end{array}$$
Player 1
$$\begin{array}{c|c}
q \\
TF \\
1-q \\
LA
\end{array}$$
0, 0
$$\begin{array}{c|c}
1, 2
\end{array}$$

$$u_{1}(TF) = u_{1}(LA)$$

$$2 \times p + 0 \times (1 - p) = 0 \times p + 1 \times (1 - p)$$

$$u_{2}(TF) = u_{2}(LAL)$$

$$1 \times q + 0 \times (1 - q) = 0 \times q + 2 \times (1 - q)$$

$$q = \frac{2}{3}$$

$$u_2(TF) = u_2(LAL)$$

$$1 \times q + 0 \times (1 - q) = 0 \times q + 2 \times (1 - q)$$

$$q = \frac{2}{3}$$

- The mixed Nash equilibrium is $s^* = (s_1^*, s_2^*) = \left\{ \left(\frac{2}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{2}{3}\right) \right\}$
- The expected payoff under s^* are $u_1^* = \frac{2}{3} = u_2^*$

Can we do better?

- Consider again Battle of the Sexes.
 - The values of each player under mixed Nash equilibrium is 2/3

	Player 2	
	p	1 - p
	TF	LA
q TF	2, 1	0, 0
Player 1 $1-q$ LA	0, 0	1, 2

- We could use the same idea to achieve the fair outcome in battle of the sexes.
 - Intuitively, the best outcome seems a 50-50 split between (TF, TF) and (LA, LA).

$$u_1^{CE} = \frac{1}{2}(2+1) = \frac{3}{2} > u_1^{NE} = \frac{2}{3}$$
$$u_2^{CE} = \frac{1}{2}(2+1) = \frac{3}{2} > u_2^{NE} = \frac{2}{3}$$

We show that no player has an incentive to deviate from the "recommendation" of the coin.

Another classic example: traffic game

	Go	Wait
Go	-100, -100	10, 0
Wait	0, 10	-10, -10

- What is the natural solution here?
 - A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- Benefits:
 - the negative payoff outcomes are completely avoided
 - fairness is achieved
 - the sum of social welfare exceeds that of mixed Nash equilibrium

More complex example

- There are two pure strategy Nash equilibria: (U, L) and (D, R).
- This implies that there is a unique mixed strategy equilibrium with expected payoff (5/2,5/2).
- Suppose the players find a mediator who chooses $x \in \{1, 2, 3\}$ with equal probability 1/3. She then sends the following messages:
 - If x = 1, player 1 plays U, player 2 plays L.
 - If x = 2, player 1 plays D, player 2 plays L. \rightarrow Actions are correlated
 - If x = 3, player 1 plays D, player 2 plays R.
- Our first example presumed that everyone perfectly observes the random event; not required.
- More generally, some random variable with a commonly known distribution, and a private signal to each player about the outcome.
 - signal doesn't determine the outcome or others' signals; however, correlated:
 - ✓ Actions for agents are jointly determined by a drawn random variable

ļ	L	R
U	5, 1	0, 0
D	4, 4	1, 5

- If x = 1, player 1 plays U, player 2 plays L.
- If x = 2, player 1 plays D, player 2 plays L.
- If x = 3, player 1 plays D, player 2 plays R.
- We show that no player has an incentive to deviate from the "recommendation" of the mediator:
 - If player 1 gets the recommendation U, he believes player 2 will play L, so his best response is to play U.
 - If player 1 gets the recommendation D, he believes player 2 will play L, R with equal probability, so playing D is a best response.
 - If player 2 gets the recommendation L, he believes player 1 will play U, D with equal probability, so playing L is a best response.
 - If player 2 gets the recommendation R, he believes player 1 will play D, so his best response is to play R.
- Thus the players will follow the mediator's recommendations.
- With the mediator, the expected payoffs are (10/3, 10/3), strictly higher than what the players could get by randomizing between Nash equilibria.

- The preceding examples lead us to the notions of correlated strategies and "correlated equilibrium".
- Let $\Delta(S)$ denote the set of probability measures over the set S. Let R be a random variable taking values in $S = \prod_{i=1}^{n} S_i$ distributed according to π .
 - An instantiation of R is a pure strategy profile and the i th component of the instantiation will be called the recommendation to player i.
 - Given such a recommendation, player i can use conditional probability to form a posteriori beliefs about the recommendations given to the other players.
 - $S_1 = \{A, B\}, S_2 = \{C, D\}, S_3 = \{E, F\}$
 - $S = \{(A, C, E), (A, C, F), (A, D, E), (A, D, F), (B, C, E), (B, C, F), (B, D, E), (B, D, F)\}$
 - $\Delta(S)$ is a set of probability mass function (PMF) over S
 - $\pi \in \Delta(S)$ is a PMF over S
 - $R \sim \pi(S)$ is a random variable distributed according to π

Definition (Correlated equilibrium)

A correlated equilibrium of finite game is a joint probability distribution $\pi \in \Delta(S)$ such that if R is random variable distributed according to π then

$$\sum_{s_{-i} \in S_{-i}} \text{Prob}(R = s | R_i = s_i) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in S_{-i}} \text{Prob}(R = s | R_i = s_i) u_i(t_i, s_{-i})$$

For all players i, all $s_i \in S_i$ such that $\operatorname{Prob}(R_i = s_i) > 0$, and all $t_i \in S_i$

- A distribution π is defined to be a correlated equilibrium if no player can ever expect to unilaterally gain by deviating from his recommendation, assuming the other players play according to their recommendations.
 - s_i is a recommendation by R drawn from $\pi \in \Delta(S)$
 - t_i is a deviation from this recommendation

Proposition

A joint probability distribution $\pi \in \Delta(S)$ is a correlated equilibrium of a finite game if and only if

$$\sum_{s_{-i} \in \mathbb{S}_{-i}} \pi(s) u_i(s_i, s_{-i}) \geq \sum_{s_{-i} \in \mathbb{S}_{-i}} \pi(s) u_i(t_i, s_{-i})$$

For all players i, all $s_i \in S_i$, $t_i \in S_i$ such that $s_i \neq t_i$

Proof:

$$Prob(R = s | R_i = s_i) = \frac{\pi(s_i, s_{-i})}{\pi(s_i)} = \frac{\pi(s)}{\sum_{t_{-i} \in S_{-i}} \pi(s_i, t_{-i})}$$

$$\sum_{s_{-i} \in S_{-i}} \text{Prob}(R = s | R_i = s_i) u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in S_{-i}} \text{Prob}(R = s | R_i = s_i) u_i(t_i, s_{-i})$$

$$\sum_{s_{-i} \in S_{-i}} \frac{\pi(s)}{\sum_{t_{-i} \in S_{-i}} \pi(s_i, t_{-i})} u_i(s_i, s_{-i}) \ge \sum_{s_{-i} \in S_{-i}} \frac{\pi(s)}{\sum_{t_{-i} \in S_{-i}} \pi(s_i, t_{-i})} u_i(t_i, s_{-i})$$

 The denominator does not depend on the variable of summation so it can be factored out of the sum and cancelled

Theorem (Correlated equilibrium)

For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ

- Not every correlated equilibrium is equivalent to a Nash equilibrium, (e.g., Battle of Sex game)
 - Correlated equilibrium is a strictly weaker notion than Nash

 Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium

Trembling-hand perfect equilibrium

Definition (Trembling-hand perfect equilibrium)

A mixed strategy profile is a (trembling-hand) perfect equilibrium of a normal-form game G if there exists a sequence $s^0, s^1, ...$ of fully mixed strategy profiles such that $\lim_{n \to \infty} s^n = s$, and such that for each s^k in the sequence and each player i, the strategy s_i is a best response to the strategies s^k_{-i} .

- Rationalizability is a weaker concept than Nash equilibrium, but perfection is a stronger one
- Perfect equilibria are relevant to one aspect of multiagent learning
- It requires that the equilibrium be robust against slight errors
- One's action out to be the best response not only against the opponent's equilibrium strategies, but also against small perturbation of those.

ϵ — Nash equilibrium

Players might not care about changing their strategies to a best response when the amount
of utility that they could gain by doing so is very small.

Definition (ϵ — Nash equilibrium)

Fix $\epsilon > 0$. A strategy profile $s^* = (s_1^*, ..., s_n^*)$ is an ϵ -Nash equilibrium if, for all agents i and for all strategies $s_i \neq s_i^*$, $u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*) - \epsilon$

A game with interesting ϵ — Nash equilibrium