MATH324 Crib Sheet

Sam Zhang

1 Properties of Estimators and Statistics

1.1 Biasedness

An estimator $\hat{\theta}$ is biased if $\mathbb{E}(\hat{\theta}) \neq \theta$.

Example: $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is biased if X_i are i.i.d. with mean μ and variance σ^2 .

$$\mathbb{E}(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) = \frac{1}{n} n \mu = \mu \tag{1}$$

The bias is determined by the equation

$$\mathbb{B}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta \tag{2}$$

We can generally find an unbiased estimator from a biased estimator by eliminating the constants surrounding the estimator, such that $\mathbb{E}(\hat{\theta}) \to \theta$.

1.2 Consistency

An estimator $\hat{\theta}_n$ is consistent if $\hat{\theta}$ converges in probability to θ as $n \to \infty$.

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| > \epsilon) = 0 \tag{3}$$

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| \le \epsilon) = 1 \tag{4}$$

This is equivalent to the following:

$$\lim_{n \to \infty} \mathbb{V}(\hat{\theta_n}) = 0 \tag{5}$$

1.3 Asymptotic Normality

An estimator $\hat{\theta}$ is asymptotically normal if $\hat{\theta}$ converges in distribution to a normal distribution as $n \to \infty$.

Example:

 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is asymptotically normal if X_i are independent and identically distributed (i.i.d.) with mean μ and variance σ^2 .

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 (6)

$$\frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1) \tag{7}$$

1.4 Efficiency

An estimator $\hat{\theta}$ is efficient if $\hat{\theta}$ has the smallest variance among all unbiased estimators of θ .

1.4.1 The Rao Blackwell Theorem

Let $\hat{\theta}$ be an unbiased estimator of θ such that $\mathbb{V}(\hat{\theta}) < \infty$. If U is a sufficient statistic for θ , define $\hat{\theta}^* = \mathbb{E}(\hat{\theta}|U)$. Then $\forall \theta$:

$$\mathbb{E}(\hat{\theta}^*) = \theta$$
 and $\mathbb{V}(\hat{\theta}^*) \leq \mathbb{V}(\hat{\theta})$

Remark: The result of the Rao Blackwell Theorem is the *minimum-variance unbiased* estimator of θ . (MVUE)

1.5 Sufficiency

A statistic T is sufficient for θ if T contains all the information about θ . This implies that θ can be uniquely determined from an estimator based on T without any loss of information.

Example:

 $T = \bar{X}$ is sufficient for μ if X_i are i.i.d. with mean μ and variance σ^2 .

2 Hypothesis Testing

- 2.1 The T-test
- 2.1.1 Large-Sample Hypothesis Testing
- 2.1.2 Small-Sample Hypothesis Lemma
- 2.2 The Likelihood Ratio Test
- 2.2.1 The Likelihood Ratio Test for a Single Parameter

The Neyman-Pearson Lemma

- 2.2.2 The Likelihood Ratio Test for Multiple Parameters
- 3 Linear Regression
- 3.1 Parameters of a Linear Model
- 3.2 The Least Squares Estimator
- 3.3 The correlation coefficient
- 3.4 Hypothesis Testing for Linear Regression
- 3.4.1 The T-test
- 3.4.2 The F-test