Amendments to the Claims

- (Original) A phosphate derivative of a phenolic hydroxy compound comprising the reaction product of the following steps:
- (a) reacting the phenolic hydroxy compound with an alkyl α : ω dialdehyde or a sugar-like polyhydroxy dialdehyde to form a hemiacetal;
- (b) reducing the terminal aldehyde group on the product from step (a) to a hydroxyl group; and
- (c) phosphorylating the hydroxyl group formed in step (b) to produce a phosphate derivative of the phenolic hydroxy compound.
- (Cancelled)
- (Currently amended) The phosphate derivative of a phenolic hydroxy compound according to claim 1 having the structure of Compound (II)

wherein R^1 , R^2 , R^3 , R^4 and R^5 may <u>are</u> each independently be chesen from H or an alkyl group and R^6 , R^7 and R^8 can are each independently be H or OH.

4. (Currently amended) The phosphate derivative of a phenolic hydroxy compound according to claim 1 wherein the product of step (c) has been is reacted with a complexing agent selected from the group comprising amphotoric surfactants, cationic surfactants, amino acids having nitrogen functional groups and proteins rich in these amino acids consisting of arginine or a substituted amine of the following formula:

 $NR^9R^{10}R^{11}$

wherein R⁹ is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and

- R^{10} and R^{11} are chosen independently from the group comprising H, -CH2(CO)OX, CH2CH(OH)CH2SO3X, -CH2CH(OH)CH2OPO3X2, -CH2CH2COOX, -CH2CH2CH2CH(OH)CH2SO3X or -CH2CH2CH2CH(OH)CH2OPO3X2, wherein X is H, Na, K or alkanolamine provided R^{10} and R^{11} are not both H; and
- wherein when R⁹ is R⁹(CO), wherein R⁹ is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and R¹⁰ is -CH₃ and R¹¹ is -(CH₂CH₂)N(CH₂CH₂(OH))CH₂PO₃H or R¹⁰ and R¹¹ are independently (CH₃)₂N(CH₂CH₃(OH))CH₃(CO)OX, wherein X is H, Na, K or alkanolamine.
- (Currently amended) The phosphate derivative of a phenolic hydroxy compound according to claim 1 wherein the phenolic hydroxy compound is propofol-or-a-derivative of propofol.
- 6. (Currently amended) The phosphate derivative of a phenolic hydroxy compound according to claim 5 wherein the phosphate derivative of propofol has been is reacted with a complexing agent selected from the group comprising ampheteric surfactants, cationic surfactants, amino acids having nitrogen functional groups and proteins rich in those amino acids consisting of arginine or a substituted amine of the following formula:
 NR⁰R¹⁰R¹¹

wherein R⁹ is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and

R¹⁰ and R¹¹ are chosen independently from the group comprising H. -CH₂(CO)OX, -CH₂CH(OH)CH₂SO₃X, -CH₂CH(OH)CH₂OPO₃X₂, -CH₂CH₂COOX, -CH₂CH₂CH(OH)CH₂SO₃X or -CH₂CH₂CH(OH)CH₂OPO₃X₂, wherein X is H. Na. K or alkanolamine provided R¹⁰ and R¹¹ are not both H; and

wherein when R^0 is R^0 (CO), wherein R^0 is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and R^{10} is $-CH_3$ and R^{11} is $-(CH_2CH_2)N(CH_2CH_2(OH))CH_2PO_3H$ or R^{10} and R^{11} are independently $-(CH_2)_2N(CH_2CH_2(OH))CH_2(CO)OX$, wherein X is H, Na, K or alkanolamine.

- (Original) The phosphate derivative of a phenolic hydroxy compound according to claim 6 wherein the complexing agent is arginine.
- 8. (Original) The phosphate derivative of a phenolic hydroxy compound according to

claim 6 wherein the complexing agent is disodium lauryl-imino-dipropionate.

- (Currently amended) The phosphate derivative of a phenolic hydroxy compound according to claim 1 wherein the alkyl α:ω dialdehyde or a <u>the</u> sugar-like polyhydroxy dialdehyde is selected from the group consisting of gluteraldehyde, trihydroxy pentandial, glyoxyal and mixtures thereof.
- (Currently amended) The phosphate derivative of a phenolic hydroxy compound of claim 1 wherein the phenolic hydroxy compound is selected from the group consisting of adrenaline, analogsics, and mixtures thereof.
- 11. (Original) A method for preparing a phosphate derivative of a phenolic hydroxy compound comprising the steps of:
- (a) reacting the phenolic hydroxy compound with an alkyl α : ω dialdehyde or a sugar-like polyhydroxy dialdehyde to form a hemiacetal;
- (b) reducing the terminal aldehyde group on the product from step (a) to a hydroxyl group; and
- (c) phosphorylating the hydroxyl group formed in step (b) to produce a phosphate derivative of the phenolic hydroxy compound.
- 12. (Currently amended) The method according to claim 11 further comprising step (d) reacting the product of step (c) with a complexing agent selected from the group emprising amphoteric surfactants, cationic surfactants, amino acids having nitrogen functional groups and proteins rich in these amino acids consisting of arginine or a substituted amine of the following formula:

NR9R10R11

wherein R^o is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and

R¹⁰ and R¹¹ are chosen independently from the group comprising H, -CH₂(CO)OX, -CH₂CH(OH)CH₂SO₃X, -CH₂CH(OH)CH₂OPO₃X₂, -CH₂CH₂COOX, -CH₂CH₂CH(OH)CH₂SO₃X or -CH₂CH₂CH(OH)CH₂OPO₃X₂, wherein X is H, Na, K or alkanolamine provided R¹⁰ and R¹¹ are not both H; and

wherein when R⁹ is R⁹(CO), wherein R⁹ is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and R¹⁰ is -CH₃ and R¹¹ is -(CH₂CH₂)N(CH₂CH₂(OH))CH₂PO₃H or R¹⁰ and R¹¹ are independently - (CH₂)₂N(CH₂CH₂(OH))CH₂(CO)OX, wherein X is H, Na, K or alkanolamine.

- (Currently amended) The method according to claim 11 wherein the phenolic hydroxy compound is propofol-or a derivative of propofol.
- 14. (Currently amended) The method according to claim 13 comprising the further step of reacting the phosphate derivative of propofol with a complexing agent selected from the group comprising amphotoric surfactants, cationic surfactants, amine acids having nitrogen functional groups and proteins rich in these amine acids consisting of arginine or a substituted amine of the following formula:

$NR^9R^{10}R^{11}$

wherein R⁹ is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and

R¹⁰ and R¹¹ are chosen independently from the group comprising H. -CH₂(CO)OX, -CH₂CH(OH)CH₂SO₃X, -CH₂CH(OH)CH₂OPO₃X₂, -CH₂CH₂COOX, -CH₂CH₂CH(OH)CH₂SO₃X or -CH₂CH₂CH(OH)CH₂OPO₃X₂, wherein X is H. Na. K or alkanolamine provided R¹⁰ and R¹¹ are not both H; and

wherein when R⁹ is R⁹(CO), wherein R⁹ is chosen from the group consisting of straight or branched chain mixed alkyl radicals from C6 to C22 and carbonyl derivatives thereof, and R¹⁰ is -CH₃ and R¹¹ is -(CH₂CH₂)N(CH₂CH₂(OH))CH₂PO₃H or R¹⁰ and R¹¹ are independently - (CH₂)_N(CH₂CH₃(OH))CH₂(CO)OX, wherein X is H, Na, K or alkanolamine.

- 15. (Original) The method according to claim 14 wherein the complexing agent is arginine.
- 16. (Original) The method according to claim 14 wherein the complexing agent is disodium lauryl-imino-dipropionate.
- 17. (Currently amended) The method according to claim 11 wherein the alkyl α:ω dialdehyde or a the sugar-like polyhydroxy dialdehyde is selected from the group consisting of gluteraldehyde, trihydroxy pentandial, glyoxyal, and mixtures thereof.

18. - 22. (Cancelled)

- 23. (Currently amended) A <u>prodrug comprising a phosphate derivative of a phenolic hydroxy compound according to claim 3 any one of claims 1 to 8 when used as a prodrug.</u>
- 24. (Currently amended) An <u>anaesthetic comprising a phosphate derivative of a phenolic</u> hydroxy compound according to claim 3 any one of claims 1 to 8 when used as an anaesthetic.
- (Currently amended) A method for improving the bioavailability of a phenolic hydroxy compound comprising the following steps:
- (a) reacting the phenolic hydroxy compound with an alkyl $\alpha:\omega$ dialdehyde or a sugar-like polyhydroxy dialdehyde to form a hemiacetal;
- (b) reducing the terminal aldehyde group on the product from step (a) to a hydroxyl group; and
- (c) phosphorylating the hydroxyl group formed in step (b) to produce a phosphate derivative of the phenolic hydroxy compound, having the structure of Compound (II)

wherein R^1 , R^2 , R^3 , R^4 and R^5 are each independently H or an alkyl group and R^6 , R^7 and R^8 are each independently H or OH.

- 26. (New) The phosphate derivative of a phenolic hydroxy compound according to claim 3 wherein Compound (II) is 2-(2,6-diisopropylphenoxy)-tetrahydropyran-6-yl, dihydrogen phosphate, or 2-(2,6-diisopropylphenoxy)-3,4,5-trihydroxy tetrahydropyran-6-yl, dihydrogen phosphate.
- 27. (New) The phosphate derivative of a phenolic hydroxy compound according to claim 4 wherein the Compound (II) complex is arginine 2-(2,6-diisopropylphenoxy)-3,4,5-

trihydroxytetrahydropyran-6-yl dihydrogen phosphate complex, arginine 2-(2.6-diisopropylphenoxy)-tetrahydropyran-6-yl dihydrogen phosphate complex, or disodium lauryl-imino-dipropionate-2-(2.6-diisopropylphenoxy)-tetrahydropyran-6-yl dihydrogen phosphate complex.

28. (New) The method according to claim 11 comprising the following reaction:

$$R^{8}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{1}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{7}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5$$

wherein R^1 , R^2 , R^3 , R^4 and R^5 are each independently H or an alkyl group; R^6 , R^7 and R^8 are

each independently H or OH; and n and m are each independently in the range of 0 to 8.

- (New) The method according to claim 28 wherein Compound (II) is 2-(2,6-diisopropylphenoxy)-tetrahydropyran-6-yl, dihydrogen phosphate, or 2-(2,6-diisopropylphenoxy)-3,4,5-trihydroxy tetrahydropyran-6-yl, dihydrogen phosphate.
- 30. (New) The phosphate derivative of a phenolic hydroxy compound according to claim 15 wherein the Compound (II) complex is arginine 2-(2,6-diisopropylphenoxy)-3,4,5-trihydroxy tetrahydropyran-6-yl dihydrogen phosphate complex, arginine 2-(2,6-diisopropylphenoxy)-2-hydroxy ethylphosphate complex, arginine 2-(2,6-diisopropylphenoxy)-3,4,5-trihydroxytetrahydropyran-6-yl dihydrogen phosphate complex, arginine 2-(2,6-diisopropylphenoxy)-2-hydroxy ethylphosphate complex, or arginine 2-(2,6-diisopropylphenoxy)-tetrahydropyran-6-yl dihydrogen phosphate complex.
- 31. (New) The phosphate derivative of a phenolic hydroxy compound according to claim 16 wherein the Compound (II) complex is arginine 2-(2,6-diisopropylphenoxy)-3,4,5-trihydroxytetrahydropyran-6-yl dihydrogen phosphate complex, arginine 2-(2,6-diisopropylphenoxy)-tetrahydropyran-6-yl dihydrogen phosphate complex, or disodium lauryl-imino-dipropionate-2-(2,6-diisopropylphenoxy)-tetrahydropyran-6-yl dihydrogen phosphate complex.
- 32. (New) The method according to claim 11 wherein the phenolic hydroxy compound is selected from the group consisting of adrenaline, analgesics, and mixtures thereof.