1

0.1 Constructing the Real Numbers

0.1.1 Upper Bounds

Now, we seen in the previous section that \mathbb{Q} has "gaps". $x^2 = 2$ has no solution in \mathbb{Q} .

We need to fill in these gaps somehow while not knowing where the gaps and holes are.

Definition (Upper Bound):

Let $E \subset S$ ordered. If there exists $\beta \in S$ such that for all $x \in E$, $x \leq \beta$, then β is an **upper bound (u.b.)** for E. We say E is bounded above.

A lower bound can be defined similarly with "greater than or equal to."

Example:

Consider the set $A = \{x \mid x^2 < 2\}$. 2 is an u.b. for A. $\frac{2}{3}$ is also an u.b. for A.

Definition (Least Upper Bound):

If there exists an $\alpha \in S$ such that:

- 1. α is an upper bound of E
- 2. If $\gamma < \alpha$, then γ is not an upper bound of E.

Then α is called a **least upper bound (lub)** of E or the **suprenum** of E. Write $\alpha = \sup E$.

Example:

Let $S = \mathbb{Q}$.

1.
$$E = \left\{ \frac{1}{2}, 1, 2 \right\} \left[\sup E = 2 \right]$$

2.
$$E = \{x \in \mathbb{Q} \mid x < 0\} \ \boxed{\sup E = 0}$$

3.
$$E = \mathbb{Q} \left[\sup E \text{ does not exist} \right]$$

4.
$$E = A$$
 (as defined above) sup E does not exist

Definition (Least Upper Bound Property):

A set S has the **least upper bound property** if every nonempty subset of S that has an upper bound has a least upper bound.

0.1.2 Dedekind Cuts

Definition (Dedekind Cut):

A **Dedekind cut** α is a subset of \mathbb{Q} such that:

1.
$$\alpha \neq \emptyset$$
, \mathbb{Q}

- 2. If $p \in \alpha$, $q \in \mathbb{Q}$ and q < p, then $q \in \alpha$. (Closed downward)
- 3. If $p \in \alpha$, then p < r for some $r \in \alpha$. (No largest number)

Example:

$$\alpha = \{x \in \mathbb{Q} \mid x < 0\}$$
 is a cut.

Proof. Step 1: $\alpha \neq 0, \mathbb{Q} \checkmark$

Step 2: Let $p \in \alpha$, $q \in \mathbb{Q}$. Assume q < p. By the transitivity property of order, q < 0. Thus, $p \in \alpha$.

Step 3: Let
$$p \in \alpha$$
 and $r \in \alpha$ such that $r = \frac{q}{2}$. Since $q < 0, q < \frac{q}{2}$. Thus $q < r$. \checkmark

Example:

 $\gamma = \{r \mid r \leq 2\}$ is not a cut. This set does have a largest element, 2.

 $Definition \ ({\rm Rational \ Numbers}):$

Let
$$\mathbb{R} = \{ \alpha \mid \alpha \text{ is a cut } \}.$$

We also define the following:

- $\alpha < \beta$ to mean $\alpha \subsetneq \beta$. This is an order.
- $\alpha + \beta = \{r + s \mid r \in \alpha \text{ and } s \in \beta\}$. (This means \mathbb{R} is a field.)
- $\alpha \cdot \beta$
 - 1. For positive cuts $\{\alpha \mid \alpha > 0^*\} = \mathbb{R}_+$: If $\alpha, \beta \in \mathbb{R}_+$, let $\alpha \cdot \beta = \{p \mid p < rs \text{ for some } r \in \alpha, s \in \beta, r, s > 0\}$.
 - 2. For cases with negative cuts, $\alpha \cdot \beta = \begin{cases} (-\alpha)(-\beta) & \text{if } \alpha < 0^*, \ \beta < 0^* \\ -[(-\alpha)\beta] & \text{if } \alpha < 0^*, \ \beta > 0^* \\ -[\alpha(-\beta)] & \text{if } \alpha > 0^*, \ \beta < 0^* \end{cases}$ where the products are the same as defined for postive cuts.

Theorem 1. \mathbb{R} is an ordered field with the least upper bound property. \mathbb{R} contains \mathbb{Q} as a subfield.

Proofs of the Properties of \mathbb{R}

Proof. (Show there is order on \mathbb{R} .) Let α, β, γ be cuts.

Step 1: (Trichotomy)

It is clear that at most one of the following can be true: $\alpha < \beta$, $\alpha = \beta$, $\beta < \alpha$. For example, if $\alpha < \beta$, then $\alpha \subsetneq \beta$ and by the definition of a proper subset, $\alpha \neq \beta$ and β is not a proper subset of α .

Suppose the first two statements are false. Then α is not a subset of β . By definition of a (proper) subset, there exists $a \in \alpha$ such that $a \notin \beta$. If $q \in \beta$, then q < p since $p \notin \beta$. Since cuts are closed downward, $q \in \alpha$ so $\beta \subsetneq \alpha$. Thus $\beta < \alpha$.

Assume $\alpha < \beta$ and $\beta < \gamma$. By definition of <, $\alpha \subsetneq \beta$ and $\beta \subsetneq \gamma$. By definition of a proper subset, $\alpha \subsetneq \gamma$ and we conclude $\alpha < \gamma$.

We have shown the cuts demonstrate order.

Proof. (A1: Show addition is closed) Let α, β be cuts and $\gamma = \alpha + \beta$.

Step 1: (Show that $\gamma \neq \emptyset$, Q.)

It should be clear that γ cannot be the empty set. Since $\alpha, \beta \neq \mathbb{Q}$, there exists $a' \notin \alpha, b' \notin \beta$. Consider $a \in \alpha$ and $b \in \beta$. Now a < a' and b < b'. Thus a + b < a' + b'. Therefore $a' + b' \notin \gamma$. We conclude $\gamma \neq \emptyset, \mathbb{Q}$.

Step 2: (Show γ is closed downward.)

Let $p \in \gamma, q \in \mathbb{Q}$. Assume q < p. Since $p \in \gamma$, there exists $r \in \alpha$ and $s \in \beta$ such that p = r + s so q < r + s. This means q - s < r. Since α is closed downward, $q - s \in \alpha$. Then q = q - s + s where $q - s \in \alpha$ and $s \in \beta$ as desired.

Step 3: (Show γ has no largest number.)

Let $t \in \gamma$. Then there exists $u \in \alpha$ and $v \in \beta$ such that t = u + v. Since both cuts α, β have no largest number, there exists $x \in \alpha$ where u < x and $y \in \beta$ where v < y. Thus $x + y \in \gamma$ and t < x + y.

We have shown γ meets the definition of a cut.

A2 and A3 follows since addition in \mathbb{Q} is commutative and associative.

Proof. (**A4:** Show $0^* = \{q \in \mathbb{Q} \mid q < 0\}$ is the additive identity for \mathbb{R} . In other words, show $\alpha + 0^* = \alpha$.)

Step 1: (Show $\alpha + 0^* \subset \alpha$.)

Let $a \in \alpha$ and $b \in 0^*$. Since b < 0, a + b < a. Thus $a + b \in \alpha$ (since α is closed downward). We conclude $\alpha + 0^* \subset \alpha$.

Step 2: (Show $\alpha \subset \alpha + 0^*$.)

Let $x, y \in \alpha$ and $z \in 0^*$. We can pick x, y such that y > x. Then $x - y \in 0^*$ and similar to before $x = y + (x - y) \in \alpha + 0^*$. We conclude $\alpha \subset \alpha + 0^*$.

We conclude $\alpha + 0^* = \alpha$.

Proof. (A5: Show) \Box