DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

BALLISTIC MISSILE
DEFENSE ORGANIZATION
7100 Defense Pentagon
Washington, D.C. 20301-7100

GEORGIA TECH GT-VNUC VLSI DESIGN VERIFICATION DOCUMENT

VLSI DEVELOPMENT REPORT REPORT NO. VDR-0142-90-011 JULY 5, 1991

GUIDANCE, NAVIGATION AND CONTROL DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142
Sponsored By
The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Contract Data Requirements List Item A006

Period Covered: Not Applicable

Type Report: As Required

UL13196

20010822 060

DISCLAIMER

<u>DISCLAIMER STATEMENT</u>—The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

DISTRIBUTION CONTROL

- (1) <u>DISTRIBUTION STATEMENT</u> Approved for public release; distribution is unlimited.
- (2) This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227–7013, October 1988.

GEORGIA TECH GT-VNUC VLSI DESIGN VERIFICATION DOCUMENT

JULY 5, 1991

Prem Pahlajrai and Toshiro Kubota

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology Atlanta, Georgia 30332–0540

Eugene L. Sanders

USASDC

Contract Monitor

Cecil O. Alford

Georgia Tech

Project Director

Copyright 1991
Georgia Tech Research Corporation (GTRC)
Centennial Research Building
Atlanta, Georgia 30332

GEORGIA TECH GT-VNUC VLSI DESIGN VERIFICATION DOCUMENT

INTRODUCTION

There are eleven (11) Georgia Tech VLSI designs (see Table 1) in the AHAT Program. Each of these designs has been produced by Georgia Tech using the Genesil Silicon Compiler. Each design has passed the design verification process at Silicon Compiler Systems / Mentor Graphics and each has been fabricated in a bulk CMOS process (fabrication of certain chips was not complete when this document was released). Each of the Georgia Tech designs listed in Table 1 is being delivered to USASDC and to the Harris Corporation for conversion and fabrication in a rad—hard process. The program under which this work is done is AHAT (Advanced Hardened Avionics Technology). This document includes design information for the Georgia Tech non—uniformity compensation chip, GT–VNUC.

Table 1. Georgia Tech Chip Set for AHAT

Design	DV Passed	Tape Delivered	Fabricated	Tested
GT-VFPU/1A	01/17/89	08/03/90	05/19/89	04/04/90
GT-VSNI	01/17/89	05/23/90	04/14/89	04/04/90
GT-VSM8	01/17/89	06/08/90	05/06/89	04/04/90
GT-VCTR	02/08/90	07/12/90	07/13/90	07/27/90
GT-VCLS	01/26/90	07/12/90	07/13/90	07/27/90
GT-VSF	09/12/89	07/19/90	07/13/90	07/27/90
GT-VTHR	12/11/90	02/15/91	03/01/91	03/08/91
GT-VDAG	02/22/91	02/25/91	05/01/91	
GT-VIAG	03/08/91	03/11/91	05/07/91	
GT-VTF				
GT-VNUC		07/05/91		

Table 2. Georgia Tech Documents Sent for AHAT

Document Item	Date Sent
Georgia Tech GT-VFPU VLSI Design Verification Document	05/15/90
Georgia Tech GT-VSNI VLSI Design Verification Document	05/23/90
Georgia Tech GT-VSM8 VLSI Design Verification Document	06/08/90
Georgia Tech GT-VCTR VLSI Design Verification Document	07/12/90
Georgia Tech GT-VCLS VLSI Design Verification Document	07/12/90
Georgia Tech GT-VSF VLSI Design Verification Document	07/19/90
Data Address Generation GT-VDAG Programming Model Document (v.2)	01/03/91
Instruction Address Generation GT-VIAG Programming Model Document (v.1)	01/03/91
GT-EP I/O Interface Specification Note	01/17/91
EP, SNI, SM8 Interconnection Note	01/28/91
Georgia Tech GT-VTHR VLSI Design Verification Document	02/15/91
Georgia Tech GT-VDAG VLSI Design Verification Document	02/25/91
Georgia Tech GT-VIAG VLSI Design Verification Document	03/11/91
GT-FPU: Operating Speed Test Document	04/16/91
Staggered Row Focal Plane Array Analysis Document	05/01/91
GT-EP Pascal Compiler Note, Source Code, and Program Examples	05/06/91
Instruction Address Generation GT-VIAG Programming Model Document (v.2)	06/07/91
Georgia Tech GT-VNUC VLSI Design Verification Document	07/05/91

1.	Design Verification Checklist	1
2.	Functional Description	1
	2.1. Module state_mach	1
	2.1. 1. Sub-module clock_sync	1
	2.1. 2. Sub-module control	1
	2.1. 3. Sub-module cal_out_gen	1
	2.1. 4. Sub-module bad_pixel	2
	2.1. 5. Sub-module subtract	2
	2.1. 6. Sub-module glue	2
	2.2. Module pre_div	2
	2.2. 1. Sub-module reg_file	2
	2.2. 2. Sub-module pix_cal_sub	2
	2.2. 3. Sub-module int_sub	2
	2.2. 4. Sub-module cal_out_sub	2
	2.2. 5. Sub-module mult	3
	2.3. Module divider	3
	2.3. 1. Module divider1	3
	2.3. 2. Module divider2	3
	2.3. 3. Module overflow	3
	2.4. Module pipe	3
	2.4. 1. Sub-module buf_tree	3
	2.4. 2. Sub-module shifter2.4. 3. Sub-module cal_int_n	4
	2.5. Module pixel_out	4
	2.6. Module pix_counter	4
	2.7. Module frame_sync	4
	2.8. Module mem_host_if	4
	2.8. 1. Sub-module mem_ctrl	4
	2.8. 2. Sub-module mem_addr	4
	2.8. 3. Sub-module mem_data	4
	2.8. 4. Sub-module host_ctrl	5
	2.8. 5. Sub-module host_data	5
	2.8. 6. Sub-module strob	5
_		_
3.	Signal Descriptions	5
4.	Final Notes	6
5.	Block Diagrams and Schematics	6
6.	Pin Description	6
7.	Key Parameters	10
8.	PADRING.033	11
Ω		1.5
9.	Power Dissipation	15
10	. Timing Setup Files	18
	10.1. reg_room.040	18

11. Timing Reports	19
11.1. < Clk_in>, GUARANTEED, Max T, Min V	19
11.2. <clk_in>, GUARANTEED, Room T, 5.0 V</clk_in>	27
11.3. <clk_in>, TYPICAL, Max T, Min V</clk_in>	35
Appendix A DV Checklist	43
Appendix B Block Diagrams And Schematics	59

•

·

GT-VNUC: Non-Uniformity Compensation

1. Design Verification Checklist

The DV checklist is attached in Appendix A.

2. Functional Description

The GT-VNUC (call NUC) compensates non-linear responses of a FPA by up to 4 linear segments. First the FPA is exposed to known intensity values (calibration intensities) and the responses from every pixel (calibration responses) are stored in external memories. After the calibration, the NUC reads responses of FPA pixels in scan order and performs the compensation by the following equation,

$$Pixel_out = \frac{(fpa_pixel - O_{cn})(I_{n+1} - I_n)}{O_{cn+1} - O_{cn}} + I_n$$
 [1]

where fpa_pixel is the FPA response, O_{cn} and O_{cn+1} are the calibration response of the current pixel which the fpa_pixel falls between $(O_{cn} < O_{cn+1})$. I_n and I_{n+1} are the calibration intensities corresponding to O_{cn} and O_{Cn+1} respectively.

The following sections describe briefly the function of each module.

2.1. Module state_mach

This module preforms basically four functions: synchronizes the chip with respect to the pixel clock, preforms a binary search to determine which linear segment the current pixel response lies on (ie. find O_{cn} and O_{cn+1}), detects an invalid response during calibration and generates control signals for the rest of the chip to synchronize their operations with respect to the pixel clock.

2.1. 1. Sub-module *clock_sync*

This module synchronizes the pixel clock to the 4X chip clock.

2.1. 2. Sub-module control

This PLA directs the binary search. For more information about how the binary search works, see the GT-VNUC Design Document.

2.1. 3. Sub-module cal_out_gen

This module contains various latches to hold pixel data and memory data. The flow of the data is controlled by the signals coming out from the sub-module *control*.

2.1. 4. Sub-module bad_pixel

While the chip is in the calibration mode, this module examines the incoming pixel data and checks if it is monotonically increasing as the calibration intensity increases. If not, the pixel is marked as 'bad pixel' by forcing the response of the highest calibration intensity to zero and storing zero to the corresponding memory location in the external RAMs. For information about a bad_pixel detection algorithm, see the GT-VNUC Design Document or GT-VNUC User Guide.

2.1. 5. Sub-module *subtract*

A comparator to check if the pixel data is larger than memory data. The result *gte* is one of the signals passed to the *control* to decide the direction of the binary search.

2.1. 6. Sub-module glue

Some outputs from the *control* are delayed one or half cycle here and fed back to the *control*. Then this sub-module together with the *control* forms a state-machine. The output of the counter in the *clock_sync* is decoded to generate *cycle0*, *cycle1*, *cycle2* and *cycle3*. They go all over the chip so that every module is synchronized to the pixel clock. A 3-bit up-counter is used to generate *bank[2:0]* during the calibration. The *bank[2:0]* is generated in the *control* during the compensation. This sub-module also collects various internal signals of the *state_mach* and put them onto the external bus *stm_out[15:0]* through a multiplexer to increase the observability of the *state_mach*.

2.2. Module pre div

This module calculates a numerator and a denominator and gives them to the divider.

$$numerator = (fpa \ pixel - O_{cn}) * (I_{n+1} - I_n)$$
 [2]

$$denominator = O_{cn+1} - O_{cn}$$
 [3]

2.2. 1. Sub-module reg_file

This module consists of the five 16-bit registers and the control circuitry for this register file. The register file holds the calibration intensities and is accessed at *cycle2* by *int_sub* to calculate *delta_int* and at *cycle0* by a module *pipe* to preform the final addition in *pixel_out*.

2.2. 2. Sub-module pix_cal_sub

Calculate pixel diff = fpa pixel $- O_{cn}$

2.2. 3. Sub-module int_sub

Calculate delta int = $I_{n+1} - I_n$

2.2. 4. Sub-module cal_out_sub

Calculate denominator = $O_{cn+1} - O_{cn}$

2.2. 5. Sub-module mult

Calculate numerator = pix diff * delta int

2.3. Module divider

The divider consists of three module: divider1, divider2 and overflow. The divider performs the division of

$$q = \frac{numerator}{denominator} = \frac{(fpa_pixel - O_{cn})(O_{cn+1} - O_{cn})}{(I_{cn+1} - I_{cn})}$$
[4]

The functionalities of each modules are described below.

2.3. 1. Module divider1

This is the first half of the divider pipeline. The reason for the divider being spread into two is that the whole divider was too big to be logic compiled. But the size of the divider is crucial to the size of the whole chip and without logic compiling it, we could not achieve the acceptable chip size. If we spread the divider into two, then each of them could be logic compiled separately and the chip size became acceptable.

A random logic block *probe* consists of two 4—to—1 muxes which collect various internal signals of *divider1* and put them onto the external buses *divider1_out* and *divider1_out2*. These buses can be read by host at anytime through *mem_host_if*, hence increase the observability of *divider1*.

2.3. 2. Module divider2

This is the second half of the divider pipeline.

2.3. 3. Module overflow

This module detects an overflow of the division. Upon the occurrence of the overflow, it generates the signal, div_ovf, to the module pixel_out and the pixel_out sets its output to the maximum intensity value, 0xffff.

2.4. Module pipe

This module delays *cal_int_n* until the result of the division is available. The output is sent to the *pixel_out* to form the final result.

2.4. 1. Sub-module *buf_tree*

This module generates load signals for a sub-module shifter.

2.4. 2. Sub-module shifter

This module consists of shift registers with the width of 3 and the length of 16. The index to the register file is stored here and shifted every pixel clock cycle. The output from the *shifter* is used to access the register file in *pre_div/reg_file* and the output of the register file is send to *cal_int_n*.

2.4. 3. Sub-module cal_int_n

This datapath latches $cal_int_n[15:0]$ from pre_div/reg_file at cycle0 and output it at cycle2 to synchronize with the q[15:0].

2.5. Module pixel_out

This module performs the final addition in [5] to form the compensated output of the FPA response.

$$Pixel_out = q + I_n = \frac{(fpa_pixel - O_{cn})(I_{n+1} - I_n)}{O_{cn+1} - O_{cn}} + I_n$$
 [5]

In case of an overflow in the divider, the result is set to 0xffff. In case of a bad pixel response, the result is set to the previous value of the same row or zero if the pixel is the first element of the row.

2.6. Module pix_counter

The chip sees the FPA as an one-dimensional linear array and this module keeps track of which pixel is currently supplying the input by using 20-bit up-counter. This module also flags data between *End row in* and *Begin row in* as dead pixel data.

2.7. Module frame_sync

This module delays frame sync signals (Beg_frame_in, Beg_row_in, End_frame_in and End_row_in) until the compensated result (Pixel_out) is available so that the NUC outputs Pixel_out together with proper frame sync signals (Beg_frame_out, Beg_row_out, End_frame_out and End_row_out) to the next SP chip.

2.8. Module mem_host_if

This module handles interfaces to the external RAMs and to the host.

2.8. 1. Sub-module *mem_ctrl*

This sub module generates an output enable signal for the external RAMs. During the calibration mode, the chip writes to the external RAMs at cycle2. Thus the output is disabled during the cycle. During the compensation mode, the outputs from the external RAMs are always enabled.

2.8. 2. Sub-module mem_addr

This sub module generates a memory address(Mem_addr) and chip select signals (Cs32k and Cs16k) for the external RAMs. It contains various decoding circuitries to generate those signals.

2.8. 3. Sub-module mem data

This sub module supplies the data to the external RAMs during calibration. Normally the data is coming out from the bad pixel detection circuitry (state_mach/bad_pixel), but the host can also write data

directly to the RAMs. When host_mem_wr_en in control_word is set to 1, the host has the direct control of Mem data[15:0].

2.8. 4. Sub-module host_ctrl

This sub module handles a handshaking between the chip and the host. When a device select signal from the host (Dev_sel[3:0]) matches with Chip_id[3:0] which are hard wired, the NUC pull the Dr low to tell the host that the NUC is ready for accepting a request from the host. Now the host can write/read to the internal registers of the chip. This module also contains the control_word register which have to be configured by the host prior to the regular operations.

2.8. 5. Sub-module *host_data*

All the data from/to the host go through this sub module. Data from the host is latched here at phase A and data to the host is muxed here. Host_addr[4:0] selects which data to be read by the host or which register to be written by the host.

2.8. 6. Sub-module strob

This module generates a write pulse to the external RAMs.

3. Signal Descriptions

Table 3.1 Pin Summary Table

Pin Name	Function	Active State	Type	Timing
Clk in	Chip Clock		Input	Clk
Pixel clk in	SP clock, 4X		Input	Prop
Fpa $\overline{pixel}[15:0]$	Input from FPA	Data	Input	V_{B}
Beg frame in	Precede start of input frame	High	Input	V_{B}
Beg_row_in	Precede start of input row	High	Input	V_{B}
End row in	Precede end of input row	High	Input	V_{B}
End frame_in	Precede end of input frame	High	Input	$V_{\rm B}$
N_reset	Chip reset	Low	Input	V_{B} .
\overline{Chip} $id[3:0]$	Chip identification bits	Data	Input	V_{A}
Dev_sel[3:0]	Device select	Data	Input	V_{A} , V_{B}
Ode _	Output data enable	Low	Input	V_{A, V_B}
Host_addr[4:0]	Host address	Data	Input	V_A , V_B
Host data[15:0]	Host data	Data	Input-Output	V_A, V_B
Dr	Device ready	High	Output	V_A, V_B
Mem data[15:0]	Memory data	Data	Input-Output	V_{B}
$Mem_{addr}[22:0]$	Memory address	Data	Output	S_A
N_mem_we	Memory write enable	Low	Output	V_{B}
N mem oe	Memory output enable	Low	Output	V_{B}

Pixel out[15:0]	Compensated Fpa pixel	Data	Output	S_B
Beg frame out	Precede start of output frame	High	Output	S_{B}
Beg row out	Precede start of output row	High	Output	S_B
End row out	Precede end of output row	High	Output	S_{B}
End frame out	Precede end of output frame	High	Output	$S_{ m B}$
Pixel clk out	Synchronized Pixel_clk_in		Output	S_B
$Cs32\overline{k}[2:\overline{0}]$	Chip select for external rams	Low	Output	S_A
Cs16k[4:0]	Chip select for external rams	Low	Output	S_A

4. Final Notes

The compile build all in DV preparation was done in 2 passes. First 'COMPILE FORCE BUILD_ALL' was issued but the command failed at 'COMPILE LAYOUT: /divider1' due to some internal faults of genesil. Then 'COMPILE BUILD_ALL' was issued to pick up the rest of the commands including the 'COMPILE LAYOUT: /divider1'. This time all the commands were executed successfully.

To restore the database of the GT_VNUC from the DV tape, first read the compressed database by tar xvf/dev/rst8

This creates a file called 'nuc.tar.Z'. Then uncompress it by zcat nuc.tar.Z | tar xvpBf -

5. Block Diagrams and Schematics

All the diagrams and schematics are attached in Appendix B.

6. Pin Description

Pin#	Loc.	Signal Name	Abbrev. Name	Pad Type	Strength	Timing
1	B 1					
2	C 1	corner_vss	crnr_vss	VSS CORNER	t	
. 3	D1	Host_data[1]	Hdata_1	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
4	E1	Host_data[2]	Hdata_2	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
5	F1	Host_data[3]	Hdata_3	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
6	G1	Host_data[4]	Hdata_4	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
7	H1	Host_data[5]	Hdata_5	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
8	C2	Host_data[6]	Hdata_6	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
9	D2	Host_data[7]	Hdata_7	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
10	E2	Host_data[8]	Hdata_8	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
11	F2	Host_data[9]	Hdata_9	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
12	G2	Host_data[10]	Hdata_10	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
13	H2	Host_data[11]	Hdata_11	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
14	D3	Ring_vss[0]	Rvss_0	RING VSS		
15	E3	Ring_vdd[0]	Rvdd_0	RING VDD		
16	F3	Host_data[12]	Hdata_12	DATA IO	NORM/DRV2	$V_A/S_{A,B}$

18	H3	Host_data[14]	Hdata_14	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
19	E4	Host_data[15]	Hdata_15	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
20	F4	Beg_frame_in		DATA IN	NORMAL	V_{B}
21	G4	Beg_row_in	Beg_r_in	DATA IN	NORMAL	V_{B}
22	H4	End_row_in	End_r_in	DATA IN	NORMAL	V_{B}
23	H5	End_frame_in		DATA IN	NORMAL	V_{B}
24	J 4	Pixel_clk_in	Pclk_in	DATA IN	NORMAL	PROP
25	K4	core_vdd	core_vdd	CORE VDD		
26	L4	Fpa_pixel[0]	Fpain_0	DATA IN	NORMAL	V_{B}
27	M 4	Fpa_pixel[1]	Fpain_1	DATA IN	NORMAL	V_{B}
28	J3	Fpa_pixel[2]	Fpain_2	DATA IN	NORMAL	V_{B}
29	K3	Fpa_pixel[3]	Fpain_3	DATA IN	NORMAL	V_{B}
30	L3	Fpa_pixel[4]	Fpain_4	DATA IN	NORMAL	V_{B}
31	M3	Fpa_pixel[5]	Fpain_5	DATA IN	NORMAL	V_{B}
32	N3	Fpa_pixel[6]	Fpain_6	DATA IN	NORMAL	V_{B}
33	J2	Fpa_pixel[8]	Fpain_8	DATA IN	NORMAL	V_{B}
34	K2	Fpa_pixel[7]	Fpain_7	DATA IN	NORMAL	V_{B}
35	L2	Ring_vdd[1]	Rvdd_1	RING VDD		
36	M2	Ring_vss[1]	Rvss_1	RING VSS		
37	N2	Fpa_pixel[10]	Fpain_10	DATA IN	NORMAL	V_{B}
38	P2	Fpa_pixel[9]	Fpain_9	DATA IN	NORMAL	V_{B}
39	J1					
40	K1	Fpa_pixel[11]	Fpain_11	DATA IN	NORMAL	V_{B}
41	L1					
42	M 1	•				
43	N1					
44	P1					
45	Q1					
46	M5		•			
47	M6			•		
48	M7	corner_vdd[0]	crnr_vdd	CORNER VDI	D .	
49	Q2					
50	Q3	Fpa_pixel[12]	Fpain_12	DATA IN	NORMAL	V_{B}
51	Q4	Fpa_pixel[13]	Fpain_13	DATA IN	NORMAL	$V_{\rm B}$
52	Q5	Fpa_pixel[14]	Fpain_14	DATA IN	NORMAL	V_B
53	Q6	Fpa_pixel[15]	Fpain_15	DATA IN	NORMAL	V_{B}
54	Q7	Mem_data[0]	Mdata_0	DATA IO	NORM/DRV2	V_B/S_A
55	P3	Mem_data[1]	Mdata_1	DATA IO	NORM/DRV2	V_B/S_A
56	P4	Mem_data[2]	Mdata_2	DATA IO	NORM/DRV2	V_B/S_A
57	P5	Mem_data[3]	Mdata_3	DATA IO	NORM/DRV2	V_B/S_A
58	P6	Mem_data[4]	Mdata_4	DATA IO	NORM/DRV2	V_B/S_A
59	P7	Mem_data[5]	Mdata_5	DATA IO	NORM/DRV2	V_B/S_A
60	N4	Mem_data[6]	Mdata_6	DATA IO	NORM/DRV2	V_B/S_A
61	N5	Mem_data[7]	Mdata_7	DATA IO	NORM/DRV2	V_B/S_A
62	N6	Mem_data[8]	Mdata_8	DATA IO	NORM/DRV2	V_B/S_A
63	N7	Mem_data[9]	Mdata_9	DATA IO	NORM/DRV2	V_B/S_A
64	M 8	Mem_data[10]		DATA IO	NORM/DRV2	V_B/S_A
65	M9	Mem_data[11]		DATA IO	NORM/DRV2	V_B/S_A
66	M10	Ring_vss[2]	Rvss_2	RING VSS		
67	M11	Ring_vdd[2]	Rvdd_2	RING VSS		
68	L8	Mem_data[12]	Mdata_12	DATA IO	NORM/DRV2	V_B/S_A

69	M12					
70	N8	Mem_data[13]		DATA IO 3	NORM/DRV2	V_B/S_A
71	N9	Mem_data[14]	-	DATA IO	NORM/DRV2	V_B/S_A
72	N10	Mem_data[15]		DATA IO	NORM/DRV2	V_B/S_A
73	N11		N_we	DATA OUT	DRVSPEED2	$V_{\rm B}$
74	N12	_	N_oe	DATA OUT	DRVSPEED2	S_A
75	N13		Maddr_0	DATA OUT	DRVSPEED3	S_A
76	P8		Maddr_1	DATA OUT	DRVSPEED3	S_A
77	P9		Rvss_3	RING VSS		_
78	P10	Mem_addr[2]	Maddr_2	DATA OUT	DRVSPEED3	S_A
79	P11		Maddr_3	DATA OUT	DRVSPEED3	S_A
80	P12	-	Rvdd_3	RING VDD		_
81	P13	Mem_addr[5]	Maddr_5	DATA OUT	DRVSPEED3	S_A
82	P14	Mem_addr[4]	Maddr_4	DATA OUT	DRVSPEED3	S_A
83	Q8	Mem_addr[7]	Maddr_7	DATA OUT	DRVSPEED3	S_A
84	Q9	Mem_addr[6]	Maddr_6	DATA OUT	DRVSPEED3	S_A
85	Q10	Ring_vss[4]	Rvss_4	RING VSS		
86	Q11	Mem_addr[8]	Maddr_8	DATA OUT	DRVSPEED3	S_A
87	Q12					
88	Q13	Ring_vdd[4]	Rvdd_4	RING VSS		
89	Q14					
90	Q15					
91	P15					
92	N15					
93	M15					
94	L15	Mem_addr[10]	Maddr_10	DATA OUT	DRVSPEED3	S_A
95	K15	Mem_addr[9]	Maddr_9	DATA OUT	DRVSPEED3	S_A
96	J15	Mem_addr[12]	Maddr_12	DATA OUT	DRVSPEED3	S_A
97	H15	Mem_addr[11]	Maddr_11	DATA OUT	DRVSPEED3	S_A
98	N14	Mem_addr[14]		DATA OUT	DRVSPEED3	S_A
99	M14	Mem_addr[13]	Maddr_13	DATA OUT	DRVSPEED3	S_A
100	L14	Ring_vdd[5]	Rvdd_5	RING VDD		
101	K14	Ring_vss[5]	Rvss_5	RING VSS		
102	J14	Mem_addr[16]		DATA OUT	DRVSPEED3	S_A
103	H14	Mem_addr[15]		DATA OUT	DRVSPEED3	S_A
104	M13	Mem_addr[18]		DATA OUT	DRVSPEED3	S_A
105	L13 ·	Mem_addr[17]		DATA OUT	DRVSPEED3	S_A
106	K13	Mem_addr[19]		DATA OUT	DRVSPEED3	S_A
107	J13	Mem_addr[20]	Maddr_20	DATA OUT	DRVSPEED3	S_A
108	H13	Ring_vss[6]	Rvss_6	RING VSS		
109	L12	Ring_vdd[6]	Rvdd_6	RING VDD		
110	K12	Mem_addr[21]	Maddr_21	DATA OUT	DRVSPEED3	S_A
111	J12	Mem_addr[22]	Maddr_22	DATA OUT	DRVSPEED3	S_A
112	H12	core_vss	core_vss	CORE VSS		
113	H11	Cs16k[0]	Cs16k_0	DATA OUT	DRVSPEED3	S_A
114	G12	Cs16k[1]	Cs16k_1	DATA OUT	DRVSPEED3	S_A
115	F12	Cs16k[2]	Cs16k_2	DATA OUT	DRVSPEED3	S_A
116	E12	Cs16k[3]	Cs16k_3	DATA OUT	DRVSPEED3	S_A
117	D12	Ring_vss[7]	Rvss_7	RING VSS		
118	G13	Ring_vdd[7]	Rvdd_7	RING VDD		
119	F13	Cs16k[4]	Cs16k_4	DATA OUT	DRVSPEED3	S_A

120 121 122 123 124 125 126 127 128 129 130 131	E13 D13 C13 G14 F14 E14 D14 C14 B14 G15 F15 E15	Cs32k[0] Cs32k[1] Cs32k[2] N_reset Pixel_out[0] Ring_vdd[10] Ring_vss[10] Chip_id[0] Chip_id[1] Chip_id[2] Chip_id[3]	Cs32k_0 Cs32k_1 Cs32k_2 N_reset Pout_0 Rvdd_10 Rvss_10 Chip_id0 Chip_id1 Chip_id2 Chip_id3	DATA OUT DATA OUT DATA OUT DATA IN DATA OUT RING VDD RING VSS DATA IN DATA IN DATA IN DATA IN	DRVSPEED3 DRVSPEED3 DRVSPEED3 NORMAL DRVSPEED2 NORMAL NORMAL NORMAL NORMAL	$\begin{array}{c} S_A \\ S_A \\ S_A \\ V_A, V_B \\ S_B \end{array}$
132 133 134	D15 C15 B15	•				
135	A15					
136	D11	corner_vdd[1]	crnr_vdd	CORNER VDI)	
137 138	D10 D9	Pixel_out[1]	Pout_1	DATA OUT	DRVSPEED2	S_B
139	A14	Fixer_out[1]	rout_i	DAIA OUI	DRVSI LLD2	OB
140	A13	Pixel_out[3]	Pout_3	DATA OUT	DRVSPEED2	S_B
141	A12	Pixel_out[2]	Pout_2	DATA OUT	DRVSPEED2	S_B
142	A11	Pixel_out[5]	Pout_5	DATA OUT	DRVSPEED2	S_B
. 143	A10	Pixel_out[4]	Pout_4	DATA OUT	DRVSPEED2	S_{B}
144	A9	Pixel_out[6]	Pout_6	DATA OUT	DRVSPEED2	S_B
145	B13	Pixel_out[7]	Pout_7	DATA OUT	DRVSPEED2	S_B
146	B12	Pixel_out[8]	Pout_8	DATA OUT	DRVSPEED2	S_B
147	B11	Pixel_out[9]	Pout_9	DATA OUT	DRVSPEED2	S_B
148	B10	Pixel_out[10]	Pout_10	DATA OUT	DRVSPEED2	S_B
149	B9	Ring_vss[9]	Rvss_9	RING VSS		
150	C12	Ring_vdd[9]	Rvdd_9	RING VDD	DDWCDEEDA	c
151	C11	Pixel_out[11]	Pout_11	DATA OUT DATA OUT	DRVSPEED2 DRVSPEED2	$S_{ m B}$
152 153	C10 C9	Pixel_out[12] Pixel_out[13]	Pout_12 Pout_13	DATA OUT	DRVSPEED2	S_B
154	D8	Pixel_out[14]	Pout_14	DATA OUT	DRVSPEED2	S _B
155	D3 D7	Pixel_out[15]	Pout_15	DATA OUT	DRVSPEED2	S_{B}
156	D6	clk_pad_vcc	clk_vdd	CLK VDD	DICTOR ELECT	ов
157	D5	clk_pad_vss	clk_vss	CLK VSS		
158	E8	clk_pad_clk	clk	CLK		
159	D4					
160	C 8	Pixel_clk_out	Pclk_out	DATA OUT	DRVSPEED2	S_B
161	C 7	Beg_frame_out		DATA OUT	DRVSPEED2	S_{B}
162	C 6	Beg_row_out	B_r_out	DATA OUT	DRVSPEED2	S_B
163	C5	End_row_out	E_r_out	DATA OUT	DRVSPEED2	S_B
164	C4	End_frame_out		DATA OUT	DRVSPEED2	S_B
165	C3	Dev_sel[0]	Dev_sel0	DATA IN	NORMAL	V_A, V_B
166	B8	Dev_sel[1]	Dev_sel1	DATA IN	NORMAL	V_A, V_B
167	B7	Dev_sel[2]	Dev_sel2	DATA IN	NORMAL	V_A, V_B
168	B6	Dev_sel[3]	Dev_sel3	DATA IN	NORMAL	V_A, V_B
169	B5	Host_addr[4]	Haddr_4	DATA IN	NORMAL	V_A, V_B
170	B4	Host_addr[3]	Haddr_3	DATA IN	NORMAL	V_A, V_B

171	В3	Host_addr[2]	Haddr_2	DATA IN	NORMAL	V_A, V_B
172	B2	Host_addr[1]	Haddr_1	DATA IN	NORMAL	V_A, V_B
173	A8	Ring_vss[8]	Rvss_8	RING VSS		
174	A7	Ring_vdd[8]	Rvdd_8	RING VDD		
175	A6	Host_addr[0]	Haddr_0	DATA IN	NORMAL	V_A, V_B
176	A5	Dr	Dr	DATA IN	DRVSPEED2	S_A,S_B
177	A4	Ode	Ode	DATA IN	NORMAL	V_A, V_B
178	A 3	Host_data[0]	Hdata_0	DATA IO	NORM/DRV2	$V_A/S_{A,B}$
179	A2					
180	A 1					

7. Key Parameters

```
) Key Parameters for Chip /mntb/nuc/nuc/gt_nuc/nuc
) TIME = Thu May 30 14:51:39 1991
) ROUTE_VERSION = 8.00
) HEIGHT = 399.2 MILS
   ( = 10139.6 u )
) WIDTH = 403.2 MILS
   ( = 10241.2 u )
) ROUTED = 1 (0=NO, 1=YES)
) TOTAL WIRE LENGTH = 1324581 MILS
    ( = 33644357. u )
) CORE AREA = 125560.2 SQUARE_MILS
   ( = 81006422.1 u2 )
) PADRING AREA = 35382.1 SQUARE MILS
   ( = 22827117. u2 )
) PAD_AREA = 27829.2 SQUARE_MILS
) ( = 17954286. u2 )
) ROUTE_AREA = 62035.6 SQUARE_MILS
) (=40022889. u2)
) PERCENT_ROUTING_OF_CORE = 49 %
) PERCENT ROUTING OF CHIP = 38 %
) PERCENT_CORE_OF_CHIP = 78 %
) PERCENT_PADRING_OF_CHIP = 21 %
) PERCENT_PAD_OF_PADRING = 78 %
) NETLIST_VERSION = 2.0
) NETLIST_EXISTS = 1 (0=NO,1=YES)
) PHASE_A_TIME = 35.4 NANOSECONDS
) PHASE B TIME = 36.2 NANOSECONDS
) SYMMETRIC TIME = 74.2 NANOSECONDS
) ROUTE_ESTIMATE_LVL = 0
) FLAT_ROUTE = 0 (0=NO,1=YES)
) TECHNOLOGY_NAME = CMOS-1
) PACKAGE SPECIFIED = 1 (0=NO,1=YES)
) PACKAGE NAME = CPGA180f
) FABLINE NAME = HP2 CN10B
) COMPILER_TYPE = GCX
) FLOORPLAN VERSION = 8.0
```

```
) BOND_PAD_CNT = 153
) HEIGHT ESTIMATE = 433.52 MILS
) ( = 11011.40 \text{ u} )
) WIDTH_ESTIMATE = 440.53 MILS
) ( = 11189.46 u )
) FUSED = 1 (0=NO, 1=YES)
) FUSION_REQUIRED = 1 (0=NO,1=YES)
) PINOUT = 1 (0=NO, 1=YES)
) PINOUT_REQUIRED = 1 (0=NO,1=YES)
) PLACED = 1 (0=NO, 1=YES)
) PLACEMENT REQUIRED = 1 (0=NO,1=YES)
) DOWN_BONDS_ALLOWED = 1 (0=NO,1=YES)
) PKG_PIN_COUNT = 180
) PKG_WELL_HEIGHT = 472.00 MILS
) (=11988.80 \text{ u})
) PKG WELL WIDTH = 472.00 MILS
) ( = 11988.80 u )
) AREA = 160957.4 SQUARE MILS
) (=103843282. u2)
) OBJECT TYPE = Chip
) PHYSICAL IMPLEMENTATIONS EXIST = 0 (0=NO,1=YES)
) CHECKPOINTS_EXIST = 0 (0=NO,1=YES)
) CAN_SET_FABLINE = 1 (0=NO,1=YES)
) Key Parameter Listing Complete
```

8. PADRING.033

OUTPUT RINGS REPORT Version 1

```
Noise contribution: (ma/nh) Speed0: 2.50 Speed1: 5.00 Speed2: 8.33 Speed3: 16.66 Limits: Maximum noise level: 100. Unacceptable level: 150
```

Combined power pads do not supply clean power to the core. Their use is discouraged $% \left(1\right) =\left(1\right) +\left(1\right)$

Ring under analysis: VDD

PAD NAME	EDGE	SPEED	DRIVE TYPE	PAD SUPPLY	COMMENT
Pixel_out[15]	SOUTH	2	CMOS	1	OK
Pixel_out[14]	SOUTH	2	CMOS	1	OK
Pixel_out[13]	SOUTH	2	CMOS	1	OK ,
Pixel_out[12]	SOUTH	2	CMOS	1	OK
Pixel_out[11]	SOUTH	2	CMOS	1	OK
Ring_vdd[9]	SOUTH		POWER		
Pixel_out[10]	SOUTH	2	CMOS	1	OK
Pixel_out[9]	SOUTH	2	CMOS	1	OK
Pixel_out[8]	SOUTH	2	CMOS	1	OK
Pixel_out[7]	SOUTH	2	CMOS	1	OK
Pixel_out[6]	SOUTH	2	CMOS	1	OK
Pixel_out[5]	SOUTH	2	CMOS	3	OK
Pixel_out[4]	SOUTH	2	CMOS	3	OK
Pixel_out[3]	SOUTH	2	CMOS	2	OK
Pixel_out[2]	SOUTH	2	CMOS	2	OK
Pixel_out[1] •	SOUTH	2	CMOS	2	OK
corner_vdd[1]	SOUTH		POWER		

Ring vdd[10]	WEST		POWER		
Pixel_out[0]	WEST	2	CMOS	2	OK
Cs32k[2]	WEST	3	CMOS	2	OK
Cs32k[1]	WEST	3	CMOS	3	ОК
Cs32k[0]	WEST	3	CMOS	3	OK
Cs16k[4]	WEST	3	CMOS	1	OK
Ring vdd[7]	WEST	-	POWER	_	
Cs16k[3]	WEST	3	CMOS	1	OK
Cs16k[2]	WEST	3	CMOS	1	OK
Cs16k[1]	WEST	3	CMOS	1	OK
Cs16k[0]	WEST	3	CMOS	1	OK
Mem addr[22]	WEST	3	CMOS	1	OK
Mem addr[21]	WEST	3	CMOS	1	ОК
Ring_vdd[6]	WEST		POWER		,
Mem_addr[20]	WEST	3	CMOS	1	ОК
Mem addr[19]	WEST	3	CMOS	1	ок
Mem addr[18]	WEST	3	CMOS	1	ок
Mem addr[17]	WEST	3	CMOS	1	OK
Mem_addr[16]	WEST	3	CMOS	1	ок
Mem addr[15]	WEST	3	CMOS	1	OK
Ring_vdd[5]	WEST	-	POWER		
Mem addr[14]	WEST	3	CMOS	1	ок
Mem_addr[13]	WEST	3	CMOS	1	ок
Mem addr[12]	WEST	3	CMOS	1	OK
Mem_addr[11]	WEST	3	CMOS	1	OK
Mem addr[10]	WEST	3	CMOS	1	OK
Mem_addr[9]	WEST	3	CMOS	1	OK
		_		_	
Ring_vdd[4]	NORTH		POWER		
Mem_addr[8]	NORTH	3	CMOS	1	OK
Mem_addr[7]	NORTH	3	CMOS	1	OK
Mem_addr[6]	NORTH	3	CMOS	1	OK
Mem_addr[5]	NORTH	3	CMOS	1	OK
Mem_addr[4] .	NORTH	3	CMOS	1	OK
Mem_addr[3]	NORTH	3	CMOS	1	OK
Ring_vdd[3]	NORTH		POWER		
Mem_addr[2]	NORTH	3	CMOS	1	OK
Mem_addr[1]	NORTH	3	CMOS	1	OK
Mem_addr[0]	NORTH	3	CMOS	1	OK
N_oe	NORTH	2	CMOS	1	OK
N_we	NORTH	2	CMOS	1	OK
Mem_data[15]	NORTH	2	CMOS	1	OK
Mem_data[14]	NORTH	2	CMOS	1	OK
Mem_data[13]	NORTH	2	CMOS	1	OK
Mem_data[12]	NORTH	2	CMOS	1	OK
Ring_vdd[2]	NORTH		POWER		077
Mem_data[11]	NORTH	2	CMOS	1	OK
Mem_data[10]	NORTH	2	CMOS	1	OK
Mem_data[9]	NORTH	2	CMOS	1	OK
Mem_data[8]	NORTH	2	CMOS	1	OK
Mem_data[7]	NORTH	2	CMOS	1	OK
Mem_data[6]	NORTH	2	CMOS	1	OK
Mem_data[5]	NORTH	2	CMOS	2	OK
Mem_data[4]	NORTH	2	CMOS	2	OK
Mem_data[3]	NORTH	2	CMOS	2	OK
Mem_data[2]	NORTH	2	CMOS	2	OK
Mem_data[1]	NORTH	2	CMOS	3	OK
Mem_data[0]	NORTH	2	CMOS	3	OK
corner_vdd[0]	NORTH		POWER		
Ring_vdd[1]	EAST		POWER		
Host data[15]	EAST	2	CMOS	3	ок
		_		_	

				_	
Host_data[14]	EAST	2	CMOS	3	OK
Host_data[13]	EAST	2	CMOS	3	OK
Host_data[12]	EAST	2	CMOS	3	OK
Ring_vdd[0]	EAST		POWER		
Host_data[11]	EAST	2	CMOS	3	OK
Host_data[10]	EAST	2	CMOS	3	OK
Host_data[9]	EAST	2	CMOS	1	OK
Host data[8]	EAST	2	CMOS	1	OK
Host_data[7]	EAST	2	CMOS	1	OK
Host_data[6]	EAST	2	CMOS	1	OK
Host_data[5]	EAST	2	CMOS	1	OK
Host_data[4]	EAST	2	CMOS	1	OK
Host_data[3]	EAST	2	CMOS	1	OK
Host data[2]	EAST	2	CMOS	1	OK
Host_data[1]	EAST	2	CMOS	1	OK
_					
Host_data[0]	SOUTH	2	CMOS	1	OK
Dr	SOUTH	2	CMOS	1	OK
Ring_vdd[8]	SOUTH		POWER		
End_frame_out	SOUTH	2	CMOS	1	OK
End_row_out	SOUTH	2	CMOS	1	OK
Beg_row_out	SOUTH	2	CMOS	1	OK
Beg_frame_out	SOUTH	2	CMOS	1	OK
Pixel_clk_out	SOUTH	2	CMOS	1	OK

This ring has 3 more VDD pads than it needs Ring under analysis: VSS

PAD NAME	EDGE	SPEED	DRIVE TYPE	PAD SUPPLY	COMMENT		
Pixel out[15]	SOUTH	2	CMOS	1	OK		
Pixel out[14]	SOUTH	2	CMOS	1	OK		
Pixel out[13]	SOUTH	2 .	CMOS	1	OK		
Pixel_out[12]	SOUTH	2	CMOS	1	OK		
Pixel out[11]	SOUTH	2	CMOS	1	OK		
Ring vss[9]	SOUTH		POWER				
Pixel out[10]	SOUTH	2	CMOS	1	OK		
Pixel out[9]	SOUTH	2	CMOS	1	OK		
Pixel out[8]	SOUTH	2	CMOS	1	OK		
Pixel out[7]	SOUTH	2	CMOS	1	OK		
Pixel out[6]	SOUTH	2	CMOS	1	OK		
Pixel out[5]	SOUTH	2	CMOS	2	OK		
Pixel out[4]	SOUTH	2	CMOS	2	OK		
Pixel out[3]	SOUTH	ż	CMOS	1	OK		
Pixel_out[2]	SOUTH	2	CMOS	1	OK		
Pixel out[1]	SOUTH	2	CMOS	1	OK		
Ring_vss[10]	WEST		POWER				
Pixel_out[0]	WEST	2	CMOS	1	OK		
Cs32k[2]	WEST	3	CMOS	1	OK		
Cs32k[1]	WEST	3	CMOS	2	OK		
Cs32k[0]	WEST	3	CMOS	2	OK		
Cs16k[4]	WEST	3	CMOS	1	OK		
Ring_vss[7]	WEST		POWER				
Cs16k[3]	WEST	3	CMOS	1	OK		
Cs16k[2]	WEST	3	CMOS	1	OK		
Cs16k[1]	WEST	3	CMOS	1	OK		
Cs16k[0]	WEST	3	CMOS	1	OK		
Mem_addr[22]	WEST	3	CMOS	1	OK		
Mem addr[21]	WEST	3	CMOS	1	OK		•
Ring vss[6]	WEST		POWER				

Mem_addr[20]	WEST	3	CMOS	1	OK
Mem addr[19]	WEST	3	CMOS	1	OK
Mem addr[18]	WEST	3	CMOS	1	OK
Mem addr[17]	WEST	3	CMOS	1	ОК
Mem_addr[16]	WEST	3	CMOS	1	OK
Mem_addr[15]	WEST	3	CMOS	1	OK
Ring_vss[5]	WEST		POWER		
Mem_addr[14]	WEST	3	CMOS	1	OK
Mem addr[13]	WEST	3	CMOS	1	OK
Mem addr[12]	WEST	3	CMOS	1	OK
_					
Mem_addr[11]	WEST	3	CMOS	1	OK
Mem_addr[10]	WEST	3	CMOS	1	OK
Mem_addr[9]	WEST	3	CMOS	1	OK
Ring_vss[4]	NORTH		POWER		
Mem_addr[8]	NORTH	3	CMOS	1	OK
Mem addr[7]	NORTH	3	CMOS	1	OK
Mem addr[6]	NORTH	3	CMOS	1	OK
Mem_addr[5]	NORTH	3	CMOS	1	OK
Mem_addr[4]	NORTH	3	CMOS	1	OK
Mem_addr[3]	NORTH	3	CMOS	1	OK
Ring_vss[3]	NORTH		POWER		
Mem_addr[2]	NORTH	3	CMOS	1	OK
Mem addr[1]	NORTH	3	CMOS	1	OK
Mem addr[0]	NORTH	3	CMOS	1	OK
_		2	CMOS	1	OK
N_oe	NORTH				
N_we	NORTH	2	CMOS	1	OK
Mem_data[15]	NORTH	2	CMOS	1	OK
Mem_data[14]	NORTH	2	CMOS	1	OK
Mem_data[13]	NORTH	2	CMOS	1	OK
Mem data[12]	NORTH	2	CMOS	1	OK
Ring_vss[2]	NORTH		POWER		
Mem data[11]	NORTH	2	CMOS	1	OK
		2	CMOS	1	oĸ
Mem_data[10]	NORTH				
Mem_data[9]	NORTH	2	CMOS	1	OK
Mem_data[8]	NORTH	2	CMOS	1	OK
Mem_data[7]	NORTH	2	CMOS	1	OK
Mem data[6]	NORTH	2	CMOS	1	OK
Mem data[5]	NORTH	2	CMOS	1	OK
Mem data[4]	NORTH	2	CMOS	1	OK
Mem_data[3]	NORTH	2	CMOS	1	ок
Mem data[2]	NORTH	2	CMOS	1	OK
_ ` '					
Mem_data[1]	NORTH	2	CMOS	2	OK
Mem_data[0]	NORTH	2	CMOS	2	OK
Di[1]	паст		DOMED		
Ring_vss[1]	EAST	_	POWER	_	011
Host_data[15]	EAST	2	CMOS	2	OK
Host_data[14]	EAST	2	CMOS	2	OK
Host_data[13]	EAST	2	CMOS	2	OK
Host data[12]	EAST	2	CMOS	2	OK
Ring_vss[0]	EAST		POWER		
Host_data[11]	EAST	2	CMOS	2	OK
Host_data[11]		2	CMOS	2	OK
	EAST				
Host_data[9]	EAST	2	CMOS	1	OK
Host_data[8]	EAST	2	CMOS	1	OK
Host_data[7]	EAST	2	CMOS	1	OK
<pre>Host_data[6]</pre>	EAST	2	CMOS	2	OK
Host_data[5]	EAST	2	CMOS	2	OK
Host_data[4]	EAST	2	CMOS	2	OK
Host_data[3]	EAST	2	CMOS	2	ок
Host_data[2]	EAST	2	CMOS	2	oĸ
nosc_uaca(2)	TODA	~	C1100	-	OIL

Host_data[1]	EAST	2	CMOS	2	OK
corner_vss	EAST		POWER		
Host_data[0]	SOUTH	2	CMOS	2	OK
Dr	SOUTH	2	CMOS	2	OK
Ring_vss[8]	SOUTH		POWER		
End_frame_out	SOUTH	2	CMOS	2	OK
End_row_out	SOUTH	2	CMOS	2	OK
Beg_row_out	SOUTH	2	CMOS	2	OK
Beg_frame_out	SOUTH	2	CMOS	2	OK
Pixel clk out	SOUTH	2	CMOS	1	OK

This ring has 2 more VSS pads than it needs

9. Power Dissipation

```
) Clock Clk_in [clock=-9999]
) Reading Routing Data . . .
) INFO: longest net delay: 17.0ns
     Nets with delay longer than 10.0ns are recorded in ancilLary file LONG_NET STD
) INFO: Nets loading, driving information can be found in ancillary file TA_NET STD
) Back-annotating route capacitance for block power calculation. . .
) Power for block math/strob: 0.00mW(DC) 0.89mW(AC)
) Power for block math/state_mach/subtract: 0.00mW(DC) 3.40mW(AC)
) Power for block math/state_mach/glue: 0.00mW(DC) 22.85mW(AC)
) W: Node math/state_mach/control/n[2] is not routed
) Power for block math/state_mach/control: 0.00mW(DC) 2.07mW(AC)
) Power for block math/state_mach/clock_sync: 0.00mW(DC) 1.50mW(AC)
) Power for block math/state_mach/cal_out_gen: 0.00mW(DC) 31.08mW(AC)
) W: Node math/state_mach/bad_pixel/sel_pixelin/ADDSUB1_COUT is not routed
) W: Node math/state_mach/bad_pixel/sel_pixelin/PORT7_EXT1[16] is not routed
   Power for block math/state_mach/bad_pixel/sel_pixelin: 0.00mW(DC) 2.42mW(AC)
   Power for block math/state_mach/bad_pixel/control: 4.50mW(DC) 0.58mW(AC)
   Power for block math/pre_div/reg_file/reg_sel: 0.00mW(DC) 1.86mW(AC)
   Power for block math/pre_div/reg_file/reg: 0.00mW(DC) 4.45mW(AC)
   Power for block math/pre_div/pix_cal_sub: 0.00mW(DC) 6.77mW(AC)
   Power for block math/pre_div/mult/mult_out: 0.00mW(DC) 21.84mW(AC)
   Power for block math/pre_div/mult/mult_block/mult1: 0.00mW(DC) 14.58mW(AC)
   Power for block math/pre_div/mult/mult_block/mult0: 0.00mW(DC) 15.13mW(AC)
) Power for block math/pre_div/mult/mult_block/ms_add1: 0.00mW(DC) 3.68mW(AC)
) Power for block math/pre_div/mult/mult_block/ms_add0: 0.00mW(DC) 3.62mW(AC)
) Power for block math/pre_div/mult/mult_block/gate_m1: 0.00mW(DC) 3.44mW(AC)
) Power for block math/pre_div/mult/mult_block/gate_m0: 0.00mW(DC) 3.41mW(AC)
) Power for block math/pre_div/mult_block/final_add: 0.00mW(DC) 6.38mW(AC)
) Power for block math/pre_div/int_sub: 0.00mW(DC) 4.34mW(AC)
) Power for block math/pre_div/cal_out_sub: 0.00mW(DC) 5.45mW(AC)
Power for block math/pixel_out/datapath: 0.00mW(DC) 3.67mW(AC)
) Power for block math/pixel_out/control: 0.00mW(DC) 0.14mW(AC)
) Power for block math/pix_counter: 0.00mW(DC) 16.34mW(AC)
 ) Power for block math/pipe/shifter: 0.00mW(DC) 6.02mW(AC)
 Power for block math/pipe/cal_int_n: 0.00mW(DC) 4.51mW(AC)
 Power for block math/pipe/buf_tree: 0.00mW(DC) 0.56mW(AC)
 ) Power for block math/overflow: 0.00mW(DC) 8.31mW(AC)
 Power for block math/mem_host_if: 0.00mW(DC) 58.97mW(AC)
 ) Power for block math/frame_sync: 0.00mW(DC) 38.82mW(AC)
 ) Power for block math/divider2: 0.00mW(DC) 153.65mW(AC)
 ) Power for block math/divider1: 0.00mW(DC) 190.09mW(AC)
 ) Power for block corner_vss: 0.00mW(DC) 0.00mW(AC)
 ) Power for block corner_vdd: 0.00mW(DC) 0.00mW(AC)
    Power for block corner_test: 0.00mW(DC) 0.12mW(AC)
```

```
) Power for block core vss: 0.00mW(DC) 0.00mW(AC)
) Power for block core vdd: 0.00mW(DC) 0.00mW(AC)
) Power for block clk pad: 0.00mW(DC) 33.88mW(AC)
) Power for block Ring vss: 0.00mW(DC) 0.00mW(AC)
) Power for block Ring vdd: 0.00mW(DC) 0.00mW(AC)
  Power for block Pixel out[9]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel out[8]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel out[7]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[6]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[5]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[4]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[3]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[2]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[1]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[15]: 0.00mW(DC) 4.26mW(AC)
  Power for block Pixel_out[14]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[13]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[12]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[11]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[10]: 0.00mW(DC) 4.26mW(AC)
   Power for block Pixel_out[0]: 0.00mW(DC) 4.26mW(AC)
  Power for block Pixel_clk_out: 0.00mW(DC) 4.50mW(AC)
  Power for block Pixel_clk_in: 0.00mW(DC) 0.22mW(AC)
  Power for block Ode: 0.00mW(DC) 0.54mW(AC)
   Power for block N we: 0.00mW(DC) 4.26mW(AC)
   Power for block N reset: 0.00mW(DC) 0.91mW(AC)
   Power for block N oe: 0.00mW(DC) 4.26mW(AC)
   Power for block Mem_data[9]: 0.00mW(DC) 4.56mW(AC)
   Power for block Mem_data[8]: 0.00mW(DC) 4.63mW(AC)
   Power for block Mem_data[7]: 0.00mW(DC) 4.58mW(AC)
   Power for block Mem_data[6]: 0.00mW(DC) 4.63mW(AC)
   Power for block Mem_data[5]: 0.00mW(DC) 4.60mW(AC)
   Power for block Mem data[4]: 0.00mW(DC) 4.64mW(AC)
   Power for block Mem data[3]: 0.00mW(DC) 4.68mW(AC)
   Power for block Mem data[2]: 0.00mW(DC) 4.67mW(AC)
   Power for block Mem_data[1]: 0.00mW(DC) 4.70mW(AC)
   Power for block Mem_data[15]: 0.00mW(DC) 4.62mW(AC)
   Power for block Mem_data[14]: 0.00mW(DC) 4.58mW(AC)
   Power for block Mem_data[13]: 0.00mW(DC) 4.58mW(AC)
   Power for block Mem data[12]: 0.00mW(DC) 4.59mW(AC)
   Power for block Mem data[11]: 0.00mW(DC) 4.57mW(AC)
   Power for block Mem_data[10]: 0.00mW(DC) 4.57mW(AC)
   Power for block Mem_data[0]: 0.00mW(DC) 4.69mW(AC)
   Power for block Mem_addr[9]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[8]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[7]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[6]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[5]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[4]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[3]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[2]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[22]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[21]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[20]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[1]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[19]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[18]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[17]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem_addr[16]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[15]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[14]: 0.00mW(DC) 4.50mW(AC)
   Power for block Mem addr[13]: 0.00mW(DC) 4.50mW(AC)
```

```
) Power for block Mem_addr[12]: 0.00mW(DC) 4.50mW(AC)
  Power for block Mem_addr[11]: 0.00mW(DC) 4.50mW(AC)
  Power for block Mem addr[10]: 0.00mW(DC) 4.50mW(AC)
) Power for block Mem_addr[0]: 0.00mW(DC) 4.50mW(AC)
) Power for block Host data[9]: 0.00mW(DC) 4.80mW(AC)
  Power for block Host data[8]: 0.00mW(DC) 4.79mW(AC)
  Power for block Host data[7]: 0.00mW(DC) 4.81mW(AC)
   Power for block Host data[6]: 0.00mW(DC) 4.79mW(AC)
   Power for block Host_data[5]: 0.00mW(DC) 4.81mW(AC)
   Power for block Host_data[4]: 0.00mW(DC) 4.81mW(AC)
   Power for block Host data[3]: 0.00mW(DC) 4.84mW(AC)
   Power for block Host data[2]: 0.00mW(DC) 4.84mW(AC)
   Power for block Host data[1]: 0.00mW(DC) 4.86mW(AC)
   Power for block Host_data[15]: 0.00mW(DC) 4.75mW(AC)
   Power for block Host_data[14]: 0.00mW(DC) 4.77mW(AC)
   Power for block Host_data[13]: 0.00mW(DC) 4.75mW(AC)
   Power for block Host_data[12]: 0.00mW(DC) 4.79mW(AC)
   Power for block Host_data[11]: 0.00mW(DC) 4.78mW(AC)
   Power for block Host_data[10]: 0.00mW(DC) 4.79mW(AC)
   Power for block Host_data[0]: 0.00mW(DC) 4.88mW(AC)
   Power for block Host_addr[4]: 0.00mW(DC) 0.51mW(AC)
   Power for block Host_addr[3]: 0.00mW(DC) 0.51mW(AC)
   Power for block Host_addr[2]: 0.00mW(DC) 0.52mW(AC)
   Power for block Host_addr[1]: 0.00mW(DC) 0.52mW(AC)
   Power for block Host_addr[0]: 0.00mW(DC) 0.56mW(AC)
   Power for block Fpa_pixel[9]: 0.00mW(DC) 0.26mW(AC)
   Power for block Fpa pixel[8]: 0.00mW(DC) 0.26mW(AC)
)
   Power for block Fpa pixel[7]: 0.00mW(DC) 0.25mW(AC)
)
   Power for block Fpa pixel[6]: 0.00mW(DC) 0.25mW(AC)
   Power for block Fpa_pixel[5]: 0.00mW(DC) 0.23mW(AC)
   Power for block Fpa_pixel[4]: 0.00mW(DC) 0.23mW(AC)
   Power for block Fpa_pixel[3]: 0.00mW(DC) 0.23mW(AC)
   Power for block Fpa_pixel[2]: 0.00mW(DC) 0.23mW(AC)
   Power for block Fpa_pixel[1]: 0.00mW(DC) 0.22mW(AC)
   Power for block Fpa pixel[15]: 0.00mW(DC) 0.31mW(AC)
   Power for block Fpa pixel[14]: 0.00mW(DC) 0.32mW(AC)
   Power for block Fpa pixel[13]: 0.00mW(DC) 0.33mW(AC)
   Power for block Fpa pixel[12]: 0.00mW(DC) 0.34mW(AC)
   Power for block Fpa_pixel[11]: 0.00mW(DC) 0.29mW(AC)
   Power for block Fpa_pixel[10]: 0.00mW(DC) 0.29mW(AC)
   Power for block Fpa_pixel[0]: 0.00mW(DC) 0.24mW(AC)
   Power for block End_row_out: 0.00mW(DC) 4.26mW(AC)
   Power for block End_row_in: 0.00mW(DC) 0.35mW(AC)
   Power for block End frame out: 0.00mW(DC) 4.26mW(AC)
   Power for block End_frame_in: 0.00mW(DC) 0.20mW(AC)
   Power for block Dr: 0.00mW(DC) 4.20mW(AC)
   Power for block Dev_sel[3]: 0.00mW(DC) 0.52mW(AC)
   Power for block Dev_sel[2]: 0.00mW(DC) 0.51mW(AC)
)
   Power for block Dev_sel[1]: 0.00mW(DC) 0.51mW(AC)
   Power for block Dev sel[0]: 0.00mW(DC) 0.51mW(AC)
   Power for block Cs32k[2]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs32k[1]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs32k[0]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs16k[4]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs16k[3]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs16k[2]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs16k[1]: 0.00mW(DC) 4.50mW(AC)
   Power for block Cs16k[0]: 0.00mW(DC) 4.50mW(AC)
    Power for block Chip_id[3]: 0.00mW(DC) 0.35mW(AC)
   Power for block Chip_id[2]: 0.00mW(DC) 0.34mW(AC)
   Power for block Chip_id[1]: 0.00mW(DC) 0.33mW(AC)
   Power for block Chip id[0]: 0.00mW(DC) 0.33mW(AC)
```

```
Power for block Beg_row_out: 0.00mW(DC) 4.26mW(AC)
Power for block Beg_row_in: 0.00mW(DC) 0.36mW(AC)
Power for block Beg_frame_out: 0.00mW(DC) 4.26mW(AC)
Power for block Beg_frame_in: 0.00mW(DC) 0.47mW(AC)
Total power consumption (5.5V, 0 DegC 50pf/out_pad):
DC: 4.50mW [4.50(core)+0.00(ring)]
AC@10MHz: 1080.85mW [654.19(core)+426.66(ring)]
```

10. Timing Setup Files

10.1. reg room.040

```
LABEL Jn temp 63.0, 5.0V Power=1.07

TEMP_VOLT 63 5.00

HOLDTIME_MARGIN 2.00

SELECT_EXT_CLOCK Clk_in

BIND math/mem_host_if/calibrate 0 1

BIND N_reset/N_reset 1 1

IGNORE_PATH math/mem_host_if/order[0] math/state_mach/control/order[0]

IGNORE_PATH math/mem_host_if/order[1] math/state_mach/control/order[1]

IGNORE_PATH math/mem_host_if/order[2] math/state_mach/control/order[2]

IGNORE_PATH math/mem_host_if/test_int_sub math/pre_div/int_sub/test_int_sub

IGNORE_PATH math/mem_host_if/test math/pre_div/mult/mult_out/test

IGNORE_PATH math/mem_host_if/test math/pre_div/mult/mult_out/test

IGNORE_PATH math/mem_host_if/calibrate math/state_mach/cal_out_gen/host_pix_sel

IGNORE_PATH math/mem_host_if/calibrate math/state_mach/bad_pixel/sel_pixelin/calibrate

IGNORE_PATH math/mem_host_if/calibrate math/state_mach/glue/calibrate
```

10.2. reg worst.040

```
LABEL Jn temp 113, 4.5V Power=1.07W

TEMP_VOLT 113 4.50

HOLDTIME_MARGIN 2.00

SELECT_EXT_CLOCK Clk_in

BIND N_reset/N_reset 1 1

IGNORE_PATH math/mem_host_if/order[0] math/state_mach/control/order[0]

IGNORE_PATH math/mem_host_if/order[1] math/state_mach/control/order[1]

IGNORE_PATH math/mem_host_if/order[2] math/state_mach/control/order[2]

IGNORE_PATH math/mem_host_if/test_int_sub math/pre_div/int_sub/test_int_sub

IGNORE_PATH math/mem_host_if/test math/pre_div/mult/mult_out/test

IGNORE_PATH math/mem_host_if/host_pix_sel math/state_mach/cal_out_gen/host_pix_sel

IGNORE_PATH math/mem_host_if/calibrate math/state_mach/bad_pixel/sel_pixelin/calibrate

IGNORE_PATH math/mem_host_if/calibrate math/state_mach/glue/calibrate
```

11. Timing Reports

11.1. <Clk_in>, GUARANTEED, Max T, Min V

```
Genesil Version v8.0.3 -- Thu May 30 14:16:54 1991
Chip: /mntb/nuc/nuc/gt_nuc/nuc
                                        Timing Analyzer
CLOCK REPORT MODE
_____
Fabline: HP2_CN10B------Corner: GUARANTEED
   Junction Temperature:113 deg C Voltage:4.50v
   External Clock: Clk in
 Included setup files:
                                                  (Jn temp 113, 4.5V Power=1.07W)
#0 reg_worst
______
----- CLOCK TIMES (minimum)
                                                      Phase 2 High: 57.2 ns
Phase 1 High: 55.1 ns
Cycle (from Ph1): 115.8 ns Cycle (from Ph2): 90.5
Minimum Cycle Time: 115.8 ns Symmetric Cycle Time: 115.8 ns
______
 ______
                                                                                         CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 55.1 ns set by:
    ** Clock delay: 4.4ns (59.5-55.1)
                                                       Cumulative Delay Transition
     math/divider1/(internal) 59.5
                                                                                                   fall
                                                                 58.2
     math/divider1/n[28]
                                                                                                     rise
     <v/mult/mult_out/numerator[28] 58.0</pre>
                                                                                                     rise
     </mult/mult out/numerator[28]'</pre>
                                                                  56.6
                                                                                                     rise
                                                            56.2
54.8
     <th/pre div/mult/mult out/ N23
                                                                                                     fall
     <h/pre_div/mult/mult_out/n[28]
                                                                 54.8
     <block/final add/final sum[20]</pre>
                                                                                                      rise
                                                                 51.6
     <lock/final add/final sum[20]'</pre>
                                                                                                      rise
                                                                 39.2
     </mult_block/final_add/sum0[8]</pre>
                                                                                                      rise
                                                                 39.2
     <lt/mult_block/ms_add0/sum0[8]</pre>
                                                                                                     rise
                                                                 38.3
      <t/mult_block/ms_add0/sum0[8]'
                                                                                                     rise
      <t/mult_block/ms_add0/m0_ms[0]
                                                                 25.9
                                                                                                     fall
     </mult_block/gate_m0/and_ms[0]</pre>
                                                                25.8
                                                                                                     fall
     <mult_block/gate_m0/and_ms[0]'
                                                                 25.3
                                                                                                    fall
                                                           20.4
19.9
17.4
      <mult block/gate_m0/disable_ms
                                                                                                    rise
     math/mem host if/disable ms
                                                                                                    rise
     math/mem_host_if/disable_ms'
math/mem_host_if/_N389
                                                                17.4
                                                                                                    rise
                                                                17.1
                                                                                                    fall
     <f/host_ctrl.ctrlword.out_x[9]
                                                                16.2
     math/mem_host_if/PHASE_A
                                                                11.2
                                                                                                    rise
                                                                10.4
      clk pad/PHASE A
                                                                                                   rise
     Clk_in
                                                                   0.0
                                                                                                     rise
 Minimum Phase 2 high time is 57.2 ns set by:
    ** Clock delay: 5.3ns (62.5-57.2)
                                                         Cumulative Delay Transition
      <_div/mult/mult_out/(internal) 62.5
                                                                                                   fall
                                                                 61.3
      <e_div/mult/mult_out/ld_num_hi</pre>
      <h/mem_host_if/ld_numerator_hi
</mem_host_if/ld_numerator_hi'
</mem_host_if/ld_numerator
                                                                                                     rise
                                                                                                      rise
```

math/mem_host_if/_N385	59.0	fall
math/mem_host_if/_N455	57.7	rise
<pre><host host_data.mux1.sel_1_<="" if="" pre=""></host></pre>	55.4	fall
math/mem_host_if/_N250	41.1	rise
math/mem host_if/host_addr[1]	9.9	fall
Host addr[1]/host_addr	8.3	fall
Host addr[1]/host addr'	4.2	fall
Host addr[1]	0.0	fall

Minimum cycle time (from Ph1) is 115.8 ns set by:

** Clock delay: 10.8ns (126.7-1	 15.8)	
Node	Cumulative Delay	Transition
<td>126.7</td> <td>rise</td>	126.7	rise
<td>125.0</td> <td>rise</td>	125.0	rise
math/divider1/_N1584	123.6	fall
math/divider1/ N206	123.0	rise
math/divider1/ N205	122.0	fall
math/divider1/ N70	121.3	rise
math/divider1/ N1692	106.0	fall
<td>105.4</td> <td>rise</td>	105.4	rise
math/divider1/ N81	104.1	fall
math/divider1/_N80	103.5	rise
math/divider1/ N1677	102.9	fall
math/divider1/ N1339	101.3	rise
math/divider1/ N493	100.5	fall
<td>99.8</td> <td>rise</td>	99.8	rise
math/divider1/ N35	98.5	fall
math/divider1/ N34	97.9	rise
math/divider1/ N1647	97.2	fall
math/divider1/_N404	96.0	rise
math/divider1/ N1632	94.9	fall
math/divider1/ N372	93.7	rise
math/divider1/_N374	92.9	fall
<1/Row16.row16.csx 9.NAND4.OUT	92.1	rise
math/divider1/_N125	88.9	fall
<1/Row16.row16.csx 8.NAND4.OUT	88.1	rise
math/divider1/_N96	87.0	fall
math/divider1/ N95	86.4	rise
math/divider1/ N1585	85.6	fall
math/divider1/ N339	84.4	rise
math/divider1/_N1570	83.2	fall
<1/Row16.row16.csx 5.NAND4.OUT	81.7	rise
math/divider1/ N1555	80.1	fall
<1/Row16.row16.csx 4.NAND4.OUT	78.9	rise
math/divider1/ N1540	77.0	fall
math/divider1/_N1448	76.0	rise
math/divider1/_N1525	74.5	fall
<1/Row16.row16.csx_2.NAND4.OUT	72.7	rise
math/divider1/_N1510	71.0	fall
math/divider1/_N927	70.2	rise
math/divider1/_N1495	68.3	fall
<1/Row16.row16.csx_1.NAND4.OUT	67.4	rise
math/divider1/_N110	64.5	fall
math/divider1/_N1483 ·	64.0	rise
math/divider1/n16[16]	61.9	fall
math/divider1/n16[16]'	57.0	fall
*<6.INTER0.std2.latch_data[16]	53.2	fall
math/divider1/n[16]	50.3	fall
<pre><v mult="" mult_out="" numerator[16]<="" pre=""></v></pre>	50.1	fall
	10 6	£-11

49.6

49.2

</mult/mult_out/numerator[16]'
<th/pre_div/mult/mult_out/_N49</pre>

fall

rise

<h mult="" mult_out="" n[16]<="" pre_div="" th=""><th>46.6</th><th>fall</th></h>	46.6	fall
<_block/final_add/final_sum[8]	46.6	fall
<pre><block final_add="" final_sum[8]'<="" pre=""></block></pre>	45.7	fall
<pre></pre>	33.8	fall
<pre><lt ms_add0="" mult_block="" pre="" sum0[1]<=""></lt></pre>	33.8	fall
<t ms_add0="" mult_block="" sum0[1]'<="" td=""><td>33.4</td><td>fall</td></t>	33.4	fall
<t m0_ms[0]<="" ms_add0="" mult_block="" td=""><td>25.9</td><td>fall</td></t>	25.9	fall
<pre></pre>	25.8	fall
<pre><mult_block and_ms[0]'<="" gate_m0="" pre=""></mult_block></pre>	25.3	fall
<mult_block disable_ms<="" gate_m0="" td=""><td>20.4</td><td>rise</td></mult_block>	20.4	rise
math/mem_host_if/disable_ms	19.9	rise
math/mem_host_if/disable_ms'	17.4	rise
math/mem_host_if/_N389	17.1	fall
<f host_ctrl.ctrlword.out_x[9]<="" td=""><td>16.2</td><td>rise</td></f>	16.2	rise
math/mem_host_if/PHASE_A	11.2	rise
clk_pad/PHASE_A	10.4	rise
Clk_in	0.0	. rise

Minimum cycle time (from Ph2) is 90.5 ns set by:

**	Clock	delay:	12.3ns	(102.8-90.5)
----	-------	--------	--------	--------------

Node	Cumulative	Delay	Transition	
math/pre_div/pix_cal_sub/28	102.8		fall	
<pre>*<e (internal)<="" cal="" div="" pix="" pre="" sub=""></e></pre>	101.0		rise	
math/pre_div/pix_cal_sub/n_ovf	97.0		fall	
<th n_ovf'<="" pix_cal_sub="" pre_div="" td=""><td>96.8</td><td></td><td>fall</td></th>	<td>96.8</td> <td></td> <td>fall</td>	96.8		fall
<pre><v invert_2_iv2[0]<="" pix_cal_sub="" pre=""></v></pre>	74.9		fall	
<pre></pre>	73.9		rise	
<pre><mach cal_out_gen="" cal_out_n[0]<="" pre=""></mach></pre>	73.3		rise	
<ach cal_out_gen="" cal_out_n[0]'<="" td=""><td>70.6</td><td></td><td>rise</td></ach>	70.6		rise	
<h _n95<="" cal_out_gen="" state_mach="" td=""><td>70.1</td><td></td><td>fall</td></h>	70.1		fall	
<h _n64<="" cal_out_gen="" state_mach="" td=""><td>68.7</td><td></td><td>rise</td></h>	68.7		rise	
<state_mach cal_out_gen="" swapbc<="" td=""><td>56.4</td><td></td><td>fall</td></state_mach>	56.4		fall	
math/state_mach/glue/swapBC	55.7		fall	
math/state_mach/glue/swapBC'	54.1		fall	
math/state_mach/glue/_N139	53.7		rise	
<th glue="" state_mach="" swapbc_out<="" td=""><td>52.1</td><td></td><td>fall</td></th>	<td>52.1</td> <td></td> <td>fall</td>	52.1		fall
math/state_mach/control/swapBC	52.0		fall	
<th control="" state_mach="" swapbc'<="" td=""><td>51.6</td><td></td><td>fall</td></th>	<td>51.6</td> <td></td> <td>fall</td>	51.6		fall
math/state_mach/control/_N36	51.2		rise	
math/state_mach/control/_N21	50.5		fall	
math/state_mach/control/_N69	49.1		rise	
math/state_mach/control/_N33	45.7		fall	
math/state_mach/control/_N39	45.0		rise	
math/state_mach/control/_N66	44.6		fall	
math/state_mach/control/_N32	43.8		rise	
math/state_mach/control/gte	43.0		fall	
<th borrow<="" state_mach="" subtract="" td=""><td>42.9</td><td></td><td>fall</td></th>	<td>42.9</td> <td></td> <td>fall</td>	42.9		fall
<h borrow'<="" state_mach="" subtract="" td=""><td>41.5</td><td></td><td>fall</td></h>	41.5		fall	
<pre></pre>	19.3		fall	
<h a[0]<="" cal_out_gen="" state_mach="" td=""><td>19.0</td><td></td><td>fall</td></h>	19.0		fall	
<pre></pre>	18.0		fall	
<pre></pre>	17.6		rise	
<pre></pre>	16.1		fall	
<h cal_out_gen="" latch_a.clock_x<="" td=""><td>13.3</td><td></td><td>rise</td></h>	13.3		rise	
<pre><tate_mach cal_out_gen="" phase_b<="" pre=""></tate_mach></pre>	10.5		rise	
clk_pad/PHASE_B	9.7		rise	
Clk_in	0.0		fall	

Genesil Version v8.0.3 -- Thu May 30 14:16:56 1991

Chip: /mntb/nuc/nuc/gt_nuc/nuc

Timing Analyzer

OUTPUT DELAY MODE

Fabline: HP2_CN10B------Corner: GUARANTEED

Junction Temperature:113 deg C Voltage:4.50v

External Clock: Clk_in Included setup files:

#0 reg_worst

(Jn temp 113, 4.5V Power=1.07W)

					DELAYS (
Output	Ph1(r)	-	Ph2(r)	-	Loadin	g(pt)
	Min	Max	Min	Max		
<pre>Beg_frame_out</pre>	. 24.5	26.6			50.00	PATH
Beg_row_out	24.6	26.7			50.00	PATH
Cs16k[0]			18.7	22.8	50.00	PATH
Cs16k[1]			18.7	22.7	50.00	PATH
Cs16k[2]			18.7	22.7	50.00	PATH
Cs16k[3]			18.7	22.7	50.00	PATH
Cs16k[4]			18.6	22.7	50.00	PATH
Cs32k[0]			18.6	22.7	50.00	PATH
Cs32k[1]			18.6	22.7	50.00	PATH
Cs32k[2]	<u></u>		18.6	22.7	50.00	PATH
Dr	23.4	28.5	23.4	28.5	50.00	PATH
End_frame_out	24.2	26.4			50.00	PATH
End_row_out	24.3	26.5			50.00	PATH
Host_data[0]	24.1	121.3	24.1	111.9	50.00	PATH
Host_data[10]	24.0	120.3	24.0	113.8	50.00	PATH
Host_data[11]	24.0	121.1	24.0	115.5	50.00	PATH
Host_data[12]	24.0	120.2	24.0	112.0	50.00	PATH
Host_data[13]	23.9	119.9	23.9	116.9	50.00	PATH
Host_data[14]	23.9	122.3	23.9	116.8	50.00	PATH
Host_data[15]	23.9	121.5	23.9	113.3	50.00	PATH
Host_data[1]	24.1	120.3	24.1	113.1	50.00	PATH
Host_data[2]	24.1	120.7	24.1	113.8	50.00	PATH
Host_data[3]	24.1	120.2	24.1	112.4	50.00	PATH
Host_data[4]	24.1	122.0	24.1	113.9	50.00	PATH
Host_data[5]	24.1	122.6	24.1	113.1	50.00	PATH
Host_data[6]	24.1	121.4	24.1	113.3	50.00	PATH
Host_data[7]	24.1	123.7	24.1	115.6	50.00	PATH
Host_data[8]	24.1	122.2	24.1	114.0	50.00	PATH
Host_data[9]	24.1	122.1	24.1	112.7	.50.00	PATH
Mem_addr[0]			19.0	23.0	50.00	PATH
Mem_addr[10]			18.9	23.0	50.00	PATH
Mem_addr[11]			18.9	23.0	50.00	PATH
Mem_addr[12]			18.9	23.0	50.00	PATH
Mem_addr[13]			18.9	23.0	50.00	PATH
Mem_addr[14]			18.9	23.0	50.00	PATH
Mem_addr[15]			18.9	22.9	50.00	PATH
Mem_addr[16]			18.9	22.9	50.00	PATH
Mem_addr[17]			18.8	22.9	50.00	PATH
Mem_addr[18]			18.8	22.9	50.00	PATH
Mem_addr[19]			18.8	22.9	50.00	PATH
Mem_addr[1]			19.0	23.0	50.00	PATH
Mem_addr[20]			18.8	22.9	50.00	PATH
Mem_addr[21]			18.8	22.8	50.00	PATH
Mem_addr[22]			18.7	22.8	50.00	PATH
Mem_addr[2]			19.0	23.0	50.00	PATH
Mem_addr[3]			19.0	23.0	50.00	PATH

					50.00	
Mem_addr[4]			19.0	23.0	50.00	PATH
Mem_addr[5]			19.0	23.0	50.00	PATH
Mem_addr[6]			19.0	23.0	50.00	PATH
Mem_addr[7]			19.0	23.0	50.00	PATH
Mem_addr[8]			19.0	23.0	50.00	PATH
Mem_addr[9]			18.9	23.0	50.00	PATH
Mem_data[0]			25.4	27.9	50.00	PATH
Mem_data[10]			24.2	27.3	50.00	PATH
Mem_data[11]			24.6	27.9	50.00	PATH
Mem_data[12]			24.3	27.5	50.00	PATH
Mem_data[13]			24.2	27.2	50.00	PATH
Mem_data[14]			24.1	27.2	50.00	PATH
Mem_data[15]			24.4	27.7	50.00	PATH
Mem_data[1] ~			24.5	27.4	50.00	PATH
Mem_data[2]			24.7	27.5	50.00	PATH
Mem_data[3]			24.5	27.4	50.00	PATH
Mem_data[4]			25.1	27.8	50.00	PATH
Mem_data[5]			24.8	27.6	50.00	PATH
Mem_data[6]			24.8	27.6	50.00	PATH
Mem data[7]			24.6	27.5	50.00	PATH
Mem_data[8]			24.5	27.4	50.00	PATH
Mem_data[9]			24.3	27.3	50.00	PATH
N_mem_oe			22.5	24.7	50.00	PATH
N_mem_we	28.2	28.2	36.1	40.2	50.00	PATH
Pixel_clk_out	19.3	23.4			50.00	PATH
Pixel_out[0]	34.3	68.5	41.1	66.8	50.00	PATH
Pixel_out[10]	33.6	68.0	40.5	66.3	50.00	PATH
Pixel_out[11]	33.2	67.6	40.1	66.0	50.00	PATH
Pixel_out[12]	33.3	67.7	40.1	66.0	50.00	PATH
Pixel_out[13]	33.1	67.5	40.0	65.9	50.00	PATH
Pixel_out[14]	32.8	67.3	39.6	65.6	50.00	PATH
Pixel_out[15]	34.0	68.2	40.9	66.5	50.00	PATH
Pixel_out[1]	35.8	69.9	42.7	68.2	50.00	PATH
Pixel_out[2]	36.6	70.3	43.5	68.7	50.00	PATH
Pixel_out[3]	36.3	70.2	43.2	68.6	50.00	PATH
Pixel_out[4]	36.4	70.3	43.3	68.7	50.00	
Pixel_out[5]	35.4	69.3	42.3	67.7	50.00	PATH
Pixel_out[6]	35.4	69.4	42.3	67.7	50.00	
Pixel_out[7]	34.6	68.7	41.5	67.1	50.00	
Pixel_out[8]	37.1	70.9	44.0	69.2	50.00	
Pixel_out[9]	34.0	68.3	40.9	66.6	50.00	PATH

Genesil Version v8.0.3 -- Thu May 30 14:19:37 1991

Chip: /mntb/nuc/nuc/gt_nuc/nuc

Timing Analyzer

SETUP AND HOLD MODE

Fabline: HP2_CN10B------Corner: GUARANTEED Junction Temperature:113 deg C Voltage:4.50v

External Clock: Clk_in
Included setup files:

#0 reg_worst (Jn temp 113, 4.5V Power=1.07W)

_____ _____INPUT SETUP AND HOLD TIMES (ns) Hold Time Setup Time Input Ph1(f) Ph2(f) Ph1(f) Ph2(f)
--- 6.6 --- -2.2 PATH Beg_frame_in Beg_row_in 3.7 ----0.7 PATH ----4.5 48.8 ---PATH Chip_id[0] ---___ 48.9 -3.8 PATH Chip_id[1] -3.5 ------48.1 PATH Chip_id[2] -------5.1 Chip id[3] 49.5 PATH ---51.9 -8.0 ---PATH Dev sel[0] -7.1 PATH 52.6 ---___ Dev sel[1] -7.1 ---51.5 PATH ---Dev sel[2] -8.4 ---52.5 PATH ---____ Dev sel[3] 1.7 PATH End frame in ---1.3 --- -0.6 ___ PATH 3.6 End row in ---___ 0.8 2.1 PATH Fpa pixel[0] --- 0.8 2.1 PATH Fpa_pixel[10] --- 2.1 PATH
--- 0.5 PATH
--- 0.4 PATH
--- 0.4 PATH
--- 0.7 PATH
--- 2.4 PATH
--- 2.2 PATH
--- 1.8 PATH
--- 1.7 PATH
--- 1.8 PATH
--- 1.5 PATH
--- 1.5 PATH
--- 1.5 PATH
--- 1.3 PATH 2.1 ---0.9 ---PATH Fpa_pixel[11] ---2.6 Fpa_pixel[12] ---2.8 Fpa_pixel[13] ---2.8 Fpa pixel[14] 2.4 ---Fpa pixel[15] 0.6 ---Fpa pixel[1] ---0.7 Fpa_pixel[2] --- ' 1.1 Fpa pixel[3] Fpa pixel[4] ---1.3 ---Fpa_pixel[5] 1.1 ---Fpa_pixel[6] 1.5 1.5 ___ Fpa_pixel[7] 1.3 PATH ----5.5 ----4.6 -20.8 -4.7 -19.2 -4.5 -10.9 -4.6 -8.1 ------1.8 Fpa pixel[8] PATH 1.7 Fpa pixel[9] ---PATH 23.4 ---Host_addr[0] 47.6 PATH 58.4 Host_addr[1] 42.9 45.6 33.7 29.1 27.6 23.0 PATH Host_addr[2] PATH Host_addr[3] 27.6 Host_addr[4] PATH ---Host_data[0] 31.9 ---PATH 17.1 ___ -6.3 PATH Host_data[10] ___ -5.9 ---PATH Host data[11] 16.7 PATH -6.1 Host data[12] 16.4 -------5.2 PATH ---___ 16.1 Host data[13] -5.7 ___ PATH ---Host_data[14] 16.5 -5.2 PATH ___ ---Host_data[15] 16.0 31.4 -7.8 PATH ___ ---Host_data[1] 22.5 PATH ___ -7.4 ---Host_data[2] 18.4 ___ -7.5 ---PATH Host_data[3] 17.7 ___ -6.6 ---PATH Host data[4] ----6.8 17.7 ---PATH Host data[5] -6.2 ---17.5 PATH Host data[6]

Host_data[7]	17.5		-6.6		PATH
Host_data[8]	17.4		-6.3		PATH
Host_data[9]	17.1		-6.4		PATH
Mem_data[0]	·	5.6		-0.2	PATH
Mem_data[10]		3.4		2.1	PATH
Mem_data[11]		3.5		2.0	PATH
Mem_data[12]		4.0		1.5	PATH
Mem_data[13]	-	3.8		1.7	PATH
Mem_data[14]		3.8		1.7	PATH
Mem_data[15]		4.4		1.1	PATH
Mem_data[1]		5.8		-0.4	PATH
Mem_data[2]		5.4		0.1	PATH
Mem_data[3]		5.6		-0.1	PATH
Mem_data[4]		4.9		0.6	PATH
Mem_data[5]		4.2		1.3	PATH
Mem_data[6]		4.6		0.8	PATH
Mem_data[7]		3.6		1.9	PATH
Mem_data[8]		4.6		0.9	PATH
Mem_data[9]		3.4		2.1	PATH
N_reset	14.6	17.8	-9.6	-11.1	PATH
Ode	45.2		-1.6		PATH
Pixel clk in		-5.6		7.8	PATH

Genesil Version v8.0.3 Thu May 30 14:19:41 1991 Chip: /mntb/nuc/gt_nuc/nuc Timing Analyzer

VIOLATION MODE
Fabline: HP2_CN10BCorner: GUARANTEED Junction Temperature:113 deg C Voltage:4.50v
External Clock: Clk_in
Included setup files:
#0 reg_worst (Jn temp 113, 4.5V Power=1.07W)
NO VIOLATIONS
Hold time check margin: 2.0ns

11.2. <Clk in>, GUARANTEED, Room T, 5.0 V

```
Genesil Version v8.0.3 -- Thu May 30 14:20:05 1991
Chip: /mntb/nuc/nuc/gt_nuc/nuc
                  Timing Analyzer
***********************
CLOCK REPORT MODE
_____
Fabline: HP2 CN10B------Corner: GUARANTEED
                               Voltage:5.00v
 Junction Temperature:63 deg C
 External Clock: Clk_in
Included setup files:
                      (Jn temp 63.0, 5.0V Power=1.07)
 #0 reg room
______
                                           CLOCK TIMES (minimum)
             44.6 ns
                              Phase 2 High: 46.1 ns
Phase 1 High:
           -----
Cycle (from Ph1): 93.5 ns Cycle (from Ph2): 73.1
Minimum Cycle Time: 93.5 ns Symmetric Cycle Time: 93.5
----- CLOCK WORST CASE PATHS
Minimum Phase 1 high time is 44.6 ns set by:
  ** Clock delay: 3.5ns (48.1-44.6)
                           Cumulative Delay
                                            Transition
                               48.1
  math/divider1/(internal)
                                               fall
  math/divider1/n[28]
                                47.1
                                                rise
  <v/mult/mult_out/numerator[28]</pre>
                              46.9
                                                rise
                            45.8
45.5
  </mult/mult_out/numerator[28]'</pre>
                                                rise
                                               fall
  <th/pre_div/mult/mult_out/_N23
                              44.4
                                               rise
  <h/pre_div/mult/mult_out/n[28]
  <block/final_add/final_sum[20]</pre>
                              44.3
                                               rise
  <lock/final add/final sum[20]'</pre>
                              41.8
                                               rise
  </mult block/final add/sum0[8]</pre>
                              31.7
                                               rise
  <lt/mult block/ms add0/sum0[8]</pre>
                               31.7
                                               rise
  <t/mult block/ms add0/sum0[8]'
                               31.0
  <t/mult block/ms add0/m0 ms[0]
                              20.9
                                                fall
  </mult block/gate m0/and ms[0]</pre>
                              20.8
                                                fall
  <mult_block/gate_m0/and_ms[0]' 20.4</pre>
                                               fall
                            16.4
  <mult block/gate m0/disable ms
                                               rise
                            16.0
  math/mem host if/disable ms
                                                rise
  math/mem_host_if/disable_ms'
                              14.0
                                                rise
                                             fall
                              13.8
  math/mem_host_if/_N389
  <f/host_ctrl.ctrlword.out_x[9]
                                                rise
                              13.0
                               8.9
  math/mem_host_if/PHASE_A
                                                rise
                                8.3
  clk_pad/PHASE_A
                                                rise
                                0.0
                                                rise
  Clk_in
Minimum Phase 2 high time is 46.1 ns set by:
  ** Clock delay: 4.3ns (50.4-46.1)
                            Cumulative Delay
                                              Transition
  <_div/mult/mult_out/(internal)
                              50.4
                                                fall
  <e_div/mult/mult_out/ld_num_hi
                              49.4
                                                rise
                            49.2
  <h/mem host if/ld numerator hi
                                               rise
                            47.8
  </mem host if/ld numerator hi'
                                                rise
  math/mem host if/ N385
                              47.5
                                                fall
  math/mem_host_if/_N455
                               46.4
                                                rise
   <host_if/host_data.mux1.SEL_1_</pre>
                            44.6
                                                fall
  math/mem host if/_N250
                                32.7
```

math/mem host if/host addr[1]	7.9	. fall
Host addr[1]/host addr	6.6	fall
Host_addr[1]/host_addr'	3.3	fall
Host addr[1]	0.0	fall

Minimum cycle time (from Ph1) is 93.5 ns set by:

** Clock delay: 8.7ns (102.2-93)			
Node	Cumulative Delay		
<pre></pre>	102.2	rise	
<pre></pre>	100.8	rise	
math/divider1/_N1584	99.7	fall	
math/divider1/_N206	99.2	rise	
math/divider1/_N205	98.4	fall	
math/divider1/_N70	97.9	rise	
math/divider1/_N1692	85.6	fall	
<pre></pre>	85.2	. rise	
math/divider1/_N81	84.2	fall	
math/divider1/_N80	83.7	rise	
math/divider1/_N1677	83.2	fall	
math/divider1/_N1339	81.8	rise	
math/divider1/_N493	81.2	fall	
<pre></pre>	80.6	rise	
math/divider1/_N35	79.6	fall	
math/divider1/_N34	79.1	rise	
math/divider1/_N1647	78.5	fall	
math/divider1/_N404	77.5	rise	
math/divider1/_N1632	76.7	fall	
math/divider1/_N372	75.6	rise	
math/divider1/ N374	75.0	fall	
<1/Row16.row16.csx 9.NAND4.OUT	74.4	rise	
math/divider1/ N125	71.8	fall	
<1/Row16.row16.csx 8.NAND4.OUT	71.2	rise	
math/divider1/ N96	70.2	fall	
math/divider1/_N95	69.7	rise	
math/divider1/ N1585	69.1	fall	
math/divider1/_N339	68.1	rise	
math/divider1/ N1570	67.2	fall	
<1/Row16.row16.csx 5.NAND4.OUT	66.0	rise	
math/divider1/_N1555	64.7	fall	
<1/Row16.row16.csx 4.NAND4.OUT		rise	
math/divider1/ N1540	62.2	fall	
math/divider1/ N1448	61.3	rise	
math/divider1/ N1525	60.1	fall	
<1/rayle.row16.csx 2.NAND4.OUT		rise	
math/divider1/ N1510	57.3	fall	
math/divider1/ N927	56.6	rise	
math/divider1/_N1495	55.1	fall	
<1/Row16.row16.csx 1.NAND4.OUT		rise	
math/divider1/ N110	52.1	fall	
math/divider1/ N1483	51.6	rise	
math/divider1/n16[16]	50.0	fall	
math/divider1/n16[16]'	46.0	fall	
*<6.INTER0.std2.latch data[16]	43.0	fall	
–	40.7	fall	
math/dividerl/n[16]	40.7	fall	
<pre><v mult="" mult_out="" numerator[16]<="" pre=""></v></pre>	40.5	fall	
<pre></pre>			
<pre><th <="" _n49="" mult="" mult_out="" pre="" pre_div=""></th></pre>			rise
<pre><h mult="" mult_out="" n[16]<="" pre="" pre_div=""></h></pre>		fall	
<_block/final_add/final_sum[8]	37.7	fall	
<pre><block final_add="" final_sum[8]'<="" pre=""></block></pre>	37.0	fall	
<pre></pre>	27.3	fall	

fall
fall
fall
fall
rise
rise
rise
fall
rise
rise
rise
rise
E

Minimum cycle time (from Ph2) is 73.1 ns set by:

** Clock delay: 9.8ns (82.9-73.1)

Clock delay. Stone (cers /or.	-,		
Node	Cumulative Delay	Transition	
.math/pre_div/pix_cal_sub/28	82.9	fall	
<pre>*<e_div (internal)<="" pix_cal_sub="" pre=""></e_div></pre>	81.5	rise	
math/pre_div/pix_cal_sub/n_ovf	78.3	fall	
<th n_ovf'<="" pix_cal_sub="" pre_div="" td=""><td>78.1</td><td>fall</td></th>	<td>78.1</td> <td>fall</td>	78.1	fall
<pre><v invert_2_iv2[0]<="" pix_cal_sub="" pre=""></v></pre>	60.3	fall	
<pre></pre>	59.5	rise	
<pre><mach cal_out_gen="" cal_out_n[0]<="" pre=""></mach></pre>	59.0	rise	
<ach cal_out_gen="" cal_out_n[0]'<="" td=""><td>56.8</td><td>rise</td></ach>	56.8	rise	
<h _n95<="" cal_out_gen="" state_mach="" td=""><td>56.5</td><td>fall</td></h>	56.5	fall	
<h _n64<="" cal_out_gen="" state_mach="" td=""><td>55.3</td><td>rise</td></h>	55.3	rise	
<pre><state_mach cal_out_gen="" pre="" swapbc<=""></state_mach></pre>	45.5	fall	
math/state_mach/glue/swapBC	44.9	fall	
math/state_mach/glue/swapBC'	43.7	fall	
math/state_mach/glue/_N139	43.3	rise	
<th glue="" state_mach="" swapbc_out<="" td=""><td>42.1</td><td>fall</td></th>	<td>42.1</td> <td>fall</td>	42.1	fall
math/state_mach/control/swapBC	42.0	fall	
<th control="" state_mach="" swapbc'<="" td=""><td>41.6</td><td>fall</td></th>	<td>41.6</td> <td>fall</td>	41.6	fall
math/state_mach/control/_N36	41.3	rise	
<pre>math/state_mach/control/_N21</pre>	40.8	fall	
math/state_mach/control/_N69	39.6	rise	
math/state_mach/control/_N33	36.9	fall	
<pre>math/state_mach/control/_N39</pre>	36.3	rise	
<pre>math/state_mach/control/_N66</pre>	36.0	fall	
math/state_mach/control/_N32	35.3	rise	
math/state_mach/control/gte	34.7	fall	
<th borrow<="" state_mach="" subtract="" td=""><td>34.6</td><td>fall</td></th>	<td>34.6</td> <td>fall</td>	34.6	fall
<h borrow'<="" state_mach="" subtract="" td=""><td>33.5</td><td>fall</td></h>	33.5	fall	
<pre></pre>	15.5	fall	
<h a[0]<="" cal_out_gen="" state_mach="" td=""><td>15.3</td><td>fall</td></h>	15.3	fall	
<pre></pre>	14.5	fall	
<pre></pre>	14.1	rise	
<pre></pre>	12.9	fall	
<h cal_out_gen="" latch_a.clock_x<="" td=""><td>10.7 .</td><td>rise</td></h>	10.7 .	rise	
<pre><tate_mach cal_out_gen="" phase_b<="" pre=""></tate_mach></pre>	8.4	rise	
clk_pad/PHASE_B	7.8	rise	
Clk_in	0.0	fall	

Genesil Version v8.0.3 -- Thu May 30 14:20:07 1991

Chip: /mntb/nuc/nuc/gt_nuc/nuc

Timing Analyzer

OUTPUT DELAY MODE

Fabline: HP2_CN10B-------Corner: GUARANTEED Junction Temperature:63 deg C Voltage:5.00v

External Clock: Clk_in Included setup files:

#0 reg_room (Jn temp 63.0, 5.0V Power=1.07)

_____ ------OUTPUT DELAYS (ns) Ph2(r) Delay Ph1(r) Delay Loading(pf) Output Min Max Min Max Beg frame out 19.6 21.4 ------50.00 PATH 21.4 ------50.00 PATH Beg row out 19.7 18.3 18.3 18.3 18.3 18.2 50.00 15.0 PATH Cs16k[0] ------------15.0 50.00 Cs16k[1] 50.00 ---_---15.0 Cs16k[2] 50.00 Cs16k[3] ---___ 14.9 PATH 50.00 ___ 14.9 Cs16k[4] ---PATH 14.9 50.00 ---___ Cs32k[0] PATH 14.9 18.2 14.9 18.2 ------50.00 PATH Cs32k[1] 50.00 PATH ---___ Cs32k[2] 22.8 18.7 22.8 50.00 18.7 PATH ---50.00 21.2 ---PATH End_frame_out 19.4 ---___ 50.00 19.5 21.3 PATH End_row_out Host data[0] 19.3 97.7 19.3 90.1 50.00 PATH 19.2 96.9 19.2 91.3 50.00 Host data[10] PATH 19.2 97.5 19.2 92.7 50.00 Host data[11] 19.1 96.8 19.1 90.1 Host data[12] 50.00 19.1 96.6 19.1 93.8 50.00 PATH Host data[13] 50.00 Host data[14] 19.1 98.5 19.1 93.8 PATH 50.00 PATH 19.1 97.8 19.1 91.2 Host_data[15] 19.3 96.9 19.3 90.9 50.00 PATH Host_data[1] 19.3 97.2 19.3 91.3 50.00 PATH Host_data[2]
 96.8
 19.3
 90.2
 50.00

 98.3
 19.3
 91.6
 50.00

 98.7
 19.3
 91.1
 50.00

 97.8
 19.2
 91.1
 50.00

 99.6
 19.2
 93.0
 50.00

 98.4
 19.2
 91.7
 50.00

 98.4
 19.2
 90.8
 50.00

 -- 15.2
 18.5
 50.00

 -- 15.2
 18.5
 50.00

 -- 15.2
 18.5
 50.00

 -- 15.1
 18.5
 50.00

 -- 15.1
 18.4
 50.00

 -- 15.1
 18.4
 50.00

 -- 15.1
 18.4
 50.00

 -- 15.1
 18.4
 50.00
 96.8 19.3 90.2 50.00 PATH Host_data[3] 19.3 19.3 PATH Host_data[4] 19.3 PATH Host_data[5] 19.2 Host_data[6] PATH 19.2 Host_data[7] PATH 19.2 Host_data[8] PATH 19.2 PATH Host_data[9] PATH Mem addr[0] Mem addr[10] ---PATH Mem addr[11] ---PATH Mem addr[12] ---PATH Mem addr[13] ---PATH ---Mem addr[14] PATH Mem_addr[15] ---PATH ---Mem_addr[16] PATH --- 15.1 18.4 ___ 50.00 PATH Mem_addr[17] --- 15.1 18.4 Mem addr[18] ---50.00 PATH --- 15.1 18.4 Mem addr[19] ---50.00 PATH --- 15.2 18.5 Mem addr[1] ---50.00 PATH Mem addr[20] --- 15.1 18.4 ---50.00 PATH --- 15.0 18.3 50.00 PATH Mem addr[21] ---Mem addr[22] ------ 15.0 18.3 50.00 PATH ------ 15.2 18.5 50.00 PATH Mem addr[2] --- 15.2 18.5 50.00 PATH Mem addr[3] ---

Mem_addr[4]			15.2	18.5	50.00	PATH
Mem_addr[5]			15.2	18.5	50.00	PATH
Mem_addr[6]			15.2	18.5	50.00	PATH
Mem addr[7]			15.2	18.5	50.00	PATH
Mem addr[8]			15.2	18.5	50.00	PATH
Mem addr[9]			15.2	18.5	50.00	PATH
Mem data[0]			20.4	22.4	50.00	PATH
Mem data[10]			19.4	21.9	50.00	PATH
Mem data[11]			19.8	22.3	50.00	PATH
Mem data[12]			19.5	22.0	50.00	PATH
Mem data[13]			19.5	21.8	50.00	PATH
Mem data[14]			19.4	21.8	50.00	PATH
Mem_data[15]			19.6	22.2	50.00	PATH
Mem data[1]			19.7	22.0	50.00	PATH
Mem data[2]			19.9	22.1	50.00	PATH
Mem data[3]			19.7	22.0	50.00	PATH
Mem data[4]	· 		20.2	22.2	50.00	PATH
Mem data[5]			19.9	22.1	50.00	PATH
Mem data[6]			19.9	22.1	50.00	PATH
Mem data[7]			19.8	22.1	50.00	PATH
Mem data[8]			19.6	21.9	50.00	PATH
Mem data[9]			19.5	21.9	50.00	PATH
N mem oe			18.0	19.8	50.00	PATH
N_mem_we	22.7	22.7	29.0	32.3	50.00	PATH
Pixel_clk_out	15.5	18.8			50.00	PATH
Pixel out[0]	27.5	55.1	33.0	53.8	50.00	PATH
Pixel_out[10]	27.0	54.7	32.5	53.4	50.00	PATH
Pixel_out[11]	. 26.7	54.5	32.2	53.2	50.00	PATH
Pixel_out[12]	26.7	54.5	32.2	53.2	50.00	PATH
Pixel_out[13]	26.6	54.4	32.1	53.1	50.00	PATH
Pixel_out[14]	26.3	54.2	31.8	52.9	50.00	PATH
Pixel_out[15]	27.3	54.9	32.8	53.6	50.00	PATH
Pixel_out[1]	. 28.8	56.3	34.3	55.0	50.00	PATH
Pixel_out[2]	29.4	56.6	34.9	55.3	50.00	PATH
Pixel_out[3]	29.1	56.5	34.6	55.2	50.00	PATH
Pixel_out[4]	29.2	56.6	34.7	55.3	50.00	PATH
Pixel_out[5]	28.4	55.8	33.9	54.5	50.00	PATH
Pixel_out[6]	28.4	55.8	34.0	54.5	50.00	PATH
Pixel_out[7]	27.8	55.3	33.3	54.0	50.00	PATH
Pixel_out[8]	29.8	57.1	35.3	55.8	50.00	PATH
Pixel_out[9]	27.3	55.0	32.8	53.7	50.00	PATH

****************** Genesil Version v8.0.3 -- Thu May 30 14:22:27 1991

Chip: /mntb/nuc/nuc/gt_nuc/nuc

Timing Analyzer ***************

SETUP AND HOLD MODE

_____ Fabline: HP2 CN10B------Corner: GUARANTEED

Junction Temperature:63 deg C Voltage:5.00v

External Clock: Clk in Included setup files:

#0 reg_room

(Jn temp 63.0, 5.0V Power=1.07)

______ _____INPUT SETUP AND HOLD TIMES (ns) Hold Time Setup Time Input Ph1(f) Ph2(f) Ph1(f) Ph2(f) 5.4 ---3.0 ------ -3.7 --- -3.1 --- -1.8 PATH Beg frame in ----0.6 PATH ---Beg row in ---PATH 39.1 Chip id[0] ---PATH 39.3 -3.1 Chip id[1] -2.9 ___ PATH 38.6 Chip id[2] ----4.2 ---PATH 39.7 Chip_id[3] -6.4 ---PATH 41.6 Dev sel[0] ___ 42.2 ----5.7 PATH Dev sel[1] ---PATH 41.3 ----5.8 Dev_sel[2] 42.1 ___ PATH -6.8 Dev_sel[3] 1.1 ---1.3 PATH End frame in ---End_row_in .---3.0 -0.6 PATH ---1.7 ---0.7 PATH Fpa_pixel[0] ---1.7 0.7 PATH ---Fpa_pixel[10] 1.6 ___ PATH ---0.8 Fpa_pixel[11] 0.4 ___ Fpa pixel[12] ---2.1 PATH 0.3 ___ ___ 2.3 PATH Fpa pixel[13] ---0.3 ---PATH Fpa pixel[14] 2.3 ---0.6 ---2.0 PATH Fpa_pixel[15] ___ 0.5 ---1.9 PATH Fpa pixel[1] ---1.7 ---0.6 PATH Fpa pixel[2] ---1.4 PATH ---1.0 Fpa_pixel[3] ---1.1 ---1.3 PATH Fpa pixel[4] ___ PATH Fpa pixel[5] ___ 1.0 1.4 PATH ---1.2 . ___ 1.2 Fpa pixel[6] ---1.2 PATH Fpa pixel[7] ___ 1.2 38.1 47.0 -3.7 -17.1 34.3 36.6 -3.8 -15 ° 26.9 23.3 -2 22.0 18 " ---1.0 PATH 1.5 Fpa pixel[8] ___ PATH Fpa pixel[9] PATH Host addr[0] PATH Host addr[1] PATH Host_addr[2] PATH Host_addr[3] PATH Host_addr[4] 25.5 -6.8 PATH Host_data[0] 13.7 ___ -5.0 PATH Host_data[10] 13.5 ----4.8 ___ PATH Host_data[11] 13.2 PATH Host_data[12] ----4.9 ----4.2 PATH 12.9 ------Host_data[13] -4.6 ___ PATH 13.3 ---Host_data[14] -4.2 Host_data[15] ------PATH 12.8 -6.3 25.2 ___ ___ PATH Host_data[1] 18.1 ___ -5.9 ---PATH Host_data[2] 14.8 ----6.0 ---Host data[3] PATH 14.2 ----5.3 ---PATH Host_data[4] 14.2 ----5.4 ---PATH Host_data[5] ___ -5.0 ___ 14.1 PATH Host_data[6]

Host_data[7]	14.0		-5.3		PATH
Host data[8]	14.0		-5.0		PATH
Host_data[9]	13.7		-5.1		PATH
Mem_data[0]		4.6		-0.2	PATH
Mem data[10]		2.8		1.6	PATH
Mem_data[11]		2.8		1.6	PATH
Mem_data[12]		3.2		1.2	PATH
Mem_data[13]		3.1		1.3	PATH
Mem data[14]		3.1		1.3	PATH
Mem_data[15]		3.6		0.8	PATH
Mem data[1]		4.7		-0.3	PATH
Mem_data[2]		4.3		0.1	PATH
Mem_data[3]		4.5		-0.1	PATH
Mem_data[4]		3.9		0.4	PATH
Mem_data[5]		3.4		1.0	PATH
Mem_data[6]		3.8		0.6	PATH
Mem_data[7]		3.0		1.4	PATH
Mem_data[8]		3.7		0.7	PATH
Mem_data[9]	~	2.8		1.7	PATH
N_reset	11.7	14.3	-7.7	-8.9	PATH
Ode	36.3		-1.4		PATH
Pixel clk in		-4.4		6.2	PATH

Genesil Version v8.0.3 Thu May 30 14:22:30 1991
Chip: /mntb/nuc/nuc/gt_nuc/nuc
Timing Analyzer

VIOLATION MODE
Fabline: HP2_CN10BCorner: GUARANTEED
Junction Temperature:63 deg C Voltage:5.00v
External Clock: Clk_in
Included setup files:
#0 reg_room (Jn temp 63.0, 5.0V Power=1.07)
NO VIOLATIONS
Hold time check margin: 2.0ns

11.3. <Clk in>, TYPICAL, Max T, Min V

Genesil Version v8.0.3 -- Thu May 30 14:23:58 1991 Chip: /mntb/nuc/nuc/gt_nuc/nuc Timing Analyzer ************************ CLOCK REPORT MODE _____ Fabline: HP2_CN10B------Corner: TYPICAL Junction Temperature: 113 deg C Voltage:4.50v External Clock: Clk in Included setup files: #0 reg_worst (Jn temp 113, 4.5V Power=1.07W) _____ ______ CLOCK TIMES (minimum) Phase 1 High: 35.4 ns Phase 2 High: 36.2 ns Cycle (from Ph1): 74.2 ns Cycle (from Ph2): 57.2 ns -----Minimum Cycle Time: 74.2 ns Symmetric Cycle Time: 74.2 ns _____ ______ ______ CLOCK WORST CASE PATHS Minimum Phase 1 high time is 35.4 ns set by: ** Clock delay: 2.5ns (37.9-35.4) Node Cumulative Delay Transition 37.9 math/divider1/(internal) rise math/divider1/n[28] 36.3 fall <v/mult/mult_out/numerator[28] 36.3
</mult/mult_out/numerator[28]' 35.9
<th/pre_div/mult/mult_out/_N23 35.7
<h/pre_div/mult/mult_out/_[28] 33.9
<block/final_add/final_sum[20] 33.9
<lock/final_add/final_sum[20]' 33.2</pre> fall fall rise fall fall fall 24.8 </mult block/final add/sum0[8]</pre> rise 24.8 24.2 15.9 15.9 15.5 <lt/mult_block/ms_add0/sum0[8]</pre> rise <t/mult_block/ms_add0/sum0[8]' rise fall <t/mult block/ms add0/m0 ms[0] </mult_block/gate_m0/and_ms[0]</pre> fall <mult_block/gate_m0/and_ms[0]'</pre> fall <mult_block/gate_m0/disable_ms rise math/mem host if/disable ms 12.3 risė math/mem_host_if/disable_ms' 10.9 rise math/mem_host_if/_N389 10.7 fall <f/host ctrl.ctrlword.out x[9] 10.1 rise math/mem host if/PHASE A 6.7 rise clk pad/PHASE A 6.7 rise Clk_in 0.0 rise Minimum Phase 2 high time is 36.2 ns set by: ** Clock delay: 3.0ns (39.2-36.2) Node Cumulative Delay Transition math/pix_counter/(internal) 39.2 rise 37.6 <h/pix_counter/wr_pix_count_hi fall <h/mem_host_if/wr_pix_count_hi 37.6
</mem_host_if/wr_pix_count_hi 37.2
math/mem_host_if/_N270 36.9 fall fall math/mem_host_if/_N270 36.9
math/mem_host_if/_N455 35.8
<host_if/host_data.mux1.SEL_1 35.1 rise fall

13.9

math/mem_host_if/_N250

rise

fall

<pre>math/mem_host_if/host_addr[1]</pre>	5.3	rise
Host_addr[1]/host_addr	5.3	rise
Host_addr[1]/host_addr'	2.4	rise
Host_addr[1]	. 0.0	rise

nimum cycle time (from Ph1) is	74.2 ns set by:		
** Clock delay: 6.7ns (80.9-74.2	2)		
Node	Cumulative Delay	Transition	
<pre></pre>	80.9	rise	
<pre></pre>	79.9	rise	
math/divider1/_N1584	78.9	fall	
math/divider1/_N206	78.6	rise	
math/divider1/_N205	77.9	fall	
math/divider1/_N70	77.5	rise	
math/divider1/ N1692	67.9	fall	
<td>67.5</td> <td>rise</td>	67.5	rise	
math/divider1/ N81	66.7	fall	
math/divider1/ N80	66.3	rise	
math/divider1/ N1677	65.9	fall	
math/divider1/_N1339	64.8	rise	
math/divider1/ N493	64.4	fall	
<pre></pre>	63.9	rise	
math/divider1/ N35	63.0	fall	
math/divider1/ N34	62.7	rise	
math/divider1/ N1647	62.2	fall	
math/divider1/ N404	61.4	rise	
math/divider1/_N1632	60.7	fall	
math/divider1/ N372	59.9	rise	
math/divider1/ N374	59.4	fall	
<1/Row16.row16.csx 9.NAND4.OUT	58.9	rise	
math/divider1/ N125	56.8	fall	
<1/Row16.row16.csx_8.NAND4.OUT	56.3	rise	
math/divider1/ N96	55.6	fall	
math/divider1/_N95	55.2	rise	
math/divider1/ N1585	54.7	fall	
math/divider1/ N339	53.9	rise	
math/divider1/_N1570	53.1	fall	
<1/Row16.row16.csx_5.NAND4.OUT	52.2	rise	
math/divider1/ N1555	51.1	fall	
<1/Row16.row16.csx 4.NAND4.OUT	50.3	rise	
math/divider1/ N1540	49.1	fall	
math/divider1/ N1448	48.5	rise	
math/divider1/ N1525	47.4	fall	
<1/Row16.row16.csx_2.NAND4.OUT	46.3	rise	
math/dividerl/ N1510	45.2	fall	
math/divider1/ N927	44.7	rise	
math/divider1/_N1495	43.4	fall	
<1/Row16.row16.csx 1.NAND4.OUT	42.8	rise	
math/divider1/_N110	41.0	fall	
math/divider1/ N1483	40.6	rise	
math/divider1/n16[16]	39.3	fall	
math/divider1/n16[16]'	36.3	fall	
*<6.INTERO.std2.latch_data[16]	33.8	fall	
math/divider1/n[16]	31.9	fall	
<pre><v mult="" numerator[16]<="" out="" pre=""></v></pre>	31.9	fall	
<pre></pre>	31.6	fall	
<pre><th _n49<="" mult="" mult_out="" pre="" pre_div=""></th></pre>			rise
<h mult="" mult_out="" n[16]<="" pre_div="" td=""><td>29.6</td><td>fall</td></h>	29.6	fall	
<_block/final_add/final_sum[8]	29.6	fall	
<pre><block final_add="" final_sum[8]'<="" pre=""></block></pre>	29.1	fall	
<pre></pre>	21.0	fall	
-, June (1)			

```
21.0
20.8
15.9
15.9
15.5
                                                         fall
<lt/mult_block/ms_add0/sum0[1]</pre>
<t/mult_block/ms_add0/sum0[1]'
                                                         fall
<t/mult_block/ms_add0/m0_ms[0]
                                                          fall
</mult_block/gate_m0/and_ms[0]</pre>
                                     15.9
                                                         fall
                                                          fall
<mult block/gate_m0/and_ms[0]'</pre>
                                                         rise
<mult block/gate_m0/disable_ms
                                     12.3
                                                         rise
math/mem host_if/disable_ms
                                   10.9
math/mem host if/disable_ms'
                                                         rise
math/mem_host_if/_N389
                                     10.7
                                                          fall
<f/host_ctrl.ctrlword.out_x[9]
                                     10.1
                                                          rise
                                     6.7
                                                          rise
math/mem_host_if/PHASE_A
                                      6.7
                                                          rise
clk_pad/PHASE_A
                                      0.0
                                                          rise
Clk_in
```

Minimum cycle time (from Ph2) is 57.2 ns set by:

** Clock delay: 7.5ns (64.7-57.2)

Node	Cumulative	Delay Transition	
math/pre div/pix cal sub/28		fall	
* <e (intern<="" cal="" div="" pix="" sub="" td=""><td></td><td>rise</td></e>		rise	
math/pre div/pix cal sub/n	•	fall	
<pre><th n_c<="" pix_cal_sub="" pre="" pre_div=""></th></pre>		-	fall
<pre><v 2="" cal="" invert="" iv2<="" pix="" pre="" sub=""></v></pre>		fall	
<pre></pre> <pre></pre>		rise	
<pre><mach cal_out_gen="" cal_out_r<="" pre=""></mach></pre>		rise	
<ach cal="" gen="" n<="" out="" td=""><td>• -</td><td>rise</td></ach>	• -	rise	
<h <="" cal="" gen="" mach="" out="" state="" td=""><td>· -</td><td>fall</td></h>	· -	fall	
<pre><h _<="" cal_out_gen="" mach="" pre="" state=""></h></pre>		rise	
<pre><state cal_out_gen="" mach="" pre="" swa<=""></state></pre>	-	fall	
math/state mach/glue/swapBG	•	fall	
math/state mach/glue/swapBG		fall	
math/state_mach/glue/_N139	33.9	rise	
<pre><th glue="" mach="" pre="" state="" swapbc<=""></th></pre>			fall
math/state mach/control/swa	-	fall	
<pre><th control="" mach="" pre="" state="" sway<=""></th></pre>		-	fall
math/state mach/control/ N		rise	
math/state_mach/control/_N		fall	
math/state_mach/control/_N		rise	
math/state mach/control/ N		fall	
math/state mach/control/ N		rise	
math/state mach/control/ N		fall	
math/state mach/control/ N		rise	
math/state mach/control/gt		. fall	
<th bo<="" state_mach="" subtract="" td=""><td></td><td>fall</td></th>	<td></td> <td>fall</td>		fall
<h bor<="" mach="" state="" subtract="" td=""><td></td><td>fall</td></h>		fall	
<td>A[0] 11.9</td> <td>fall</td>	A[0] 11.9	fall	
<h <="" cal_out_gen="" mach="" state="" td=""><td>a[0] 11.9</td><td>fall</td></h>	a[0] 11.9	fall	
<td>[0]' 11.3</td> <td>fall</td>	[0]' 11.3	fall	
<td>N191 11.0</td> <td>rise</td>	N191 11.0	rise	
<td>x[0] 10.0</td> <td>fall</td>	x[0] 10.0	fall	
<h a.clo<="" cal="" gen="" latch="" out="" td=""><td>ck x 8.1</td><td>rise</td></h>	ck x 8.1	rise	
<pre><tate_mach cal_out_gen="" pha<="" pre=""></tate_mach></pre>	SE_B 6.3	rise	
clk_pad/PHASE_B	6.3	rise	
Clk_in	0.0	fall	

Genesil Version v8.0.3 -- Thu May 30 14:24:00 1991

Chip: /mntb/nuc/nuc/gt_nuc/nuc

Timing Analyzer

OUTPUT DELAY MODE

Fabline: HP2_CN10B------Corner: TYPICAL
Junction Temperature:113 deg C Voltage:4.50v

External Clock: Clk_in
Included setup files:

#0 reg_worst

(Jn temp 113, 4.5V Power=1.07W)

				OUTPUT	DELAYS (n	ıs)
Output	Ph1(r)	Delay	Ph2(r)	Delay	Loading	(pf)
•	Min	Max	Min	Max		
Beg frame out	16.8	18.8			50.00	PATH
Beg row out	16.9	18.8			50.00	PATH
Cs16k[0]			13.4	16.6	50.00	PATH
Cs16k[1]			13.4	16.6	50.00	PATH
Cs16k[2]			13.4	16.6	50.00	PATH
Cs16k[3]			13.4	16.6	50.00	PATH
Cs16k[4]			13.4	16.6	50.00	PATH
Cs32k[0]			13.4	16.6	50.00	PATH
Cs32k[1]			13.4	16.6	50.00	PATH
Cs32k[2]	~		13.4	16.6	50.00	PATH
Dr .	15.9	18.4	15.9	18.4	50.00	PATH
End_frame_out	16.6	18.7			50.00	PATH
End_row_out	16.7	18.8			50.00	PATH
Host_data[0]	13.7	77.8	13.7	71.9	50.00	PATH
Host_data[10]	13.7	77.7	13.7	72.7	50.00	PATH
Host_data[11]	13.7	78.2	13.7	73.6	50.00	PATH
Host_data[12]	13.7	77.8	13.7	72.2	50.00	PATH
Host_data[13]	13.7	77.2	13.7	74.4	50.00	PATH
Host_data[14]	13.7	79.2	13.7	74.5	50.00	PATH
Host_data[15]	13.7	78.6	13.7	73.0	50.00	PATH
Host_data[1]	13.7	77.4	13.7	72.3	50.00	PATH
Host_data[2]	13.7	77.7	13.7	72.4	50.00	PATH
Host_data[3]	13.7	77.2	13.7	71.8	50.00	PATH
Host_data[4]	13.7	78.6	13.7	73.0	50.00	PATH
Host_data[5]	13.7	78.4	13.7	72.2	50.00	PATH
Host_data[6]	13.7	78.3	13.7	72.7	50.00	PATH
Host_data[7]	13.7	79.8	13.7	74.2	50.00	PATH
Host_data[8]	13.7	78.8	13.7	73.2	50.00	PATH
Host_data[9]	13.7	78.3	13.7	72.1	50.00	PATH
Mem_addr[0]			13.4	16.6	50.00	PATH
Mem_addr[10]			13.4	16.6	50.00	PATH
Mem_addr[11]			13.4	16.6	50.00	PATH
Mem_addr[12]			13.4	16.6	50.00	PATH
Mem_addr[13]			13.4	16.6	50.00	PATH
Mem_addr[14]			13.4	16.6	50.00	PATH
Mem_addr[15]			13.4	16.6	50.00	PATH
Mem_addr[16]			13.4	16.6	50.00	PATH
Mem_addr[17]			13.4	16.6	50.00	PATH
Mem_addr[18]			13.4	16.6	50.00	PATH
Mem_addr[19]			13.4	16.6	50.00	PATH
Mem_addr[1]			13.4	16.6	50.00	PATH
Mem_addr[20]			13.4	16.6	50.00	PATH
Mem_addr(21)			13.4	16.6	50.00	PATH
Mem_addr[22]			13.4	16.6	50.00	PATH
Mem_addr[2]			13.4	16.6	50.00	PATH
Mem_addr[3]			13.4	16.6	50.00	PATH

Mem_addr[4]			13.4	16.6	50.00	PATH
Mem_addr[5]			13.4	16.6	50.00	PATH
<pre>Mem_addr[6]</pre>			13.4	16.6	50.00	PATH
Mem_addr[7]			13.4	16.6	50.00	PATH
Mem_addr[8]			13.4	16.6	50.00	PATH
Mem_addr[9]			13.4	16.6	50.00	PATH
Mem_data[0]			17.1	19.4	50.00	PATH
Mem_data[10]			16.6	19.2	50.00	PATH
Mem_data[11]			16.8	19.5	50.00	PATH
Mem_data[12]			16.7	19.3	50.00	PATH
Mem_data[13]			16.6	19.2	50.00	PATH
Mem data[14]			16.6	19.1	50.00	PATH
Mem data[15]			16.7	19.4	50.00	PATH
Mem data[1].			16.8	19.2	50.00	PATH
Mem_data[2]			16.8	19.3	50.00	PATH
Mem_data[3]			16.8	19.3	50.00	PATH
Mem_data[4]			17.0	19.4	50.00	PATH
Mem data[5]			16.9	19.3	50.00	PATH
Mem_data[6]			16.9	19.3	50.00	PATH
Mem data[7]			16.8	19.3	50.00	PATH
Mem data[8]			16.7	19.2	50.00	PATH
Mem data[9]			16.6	19.2	50.00	PATH
N mem oe			15.5	17.6	50.00	PATH
N mem we	19.0	19.0	24.8	27.5	50.00	PATH
Pixel clk out	13.9	17.0	-		50.00	PATH
Pixel out[0]	22.2	44.4	24.0	43.8	50.00	PATH
Pixel out[10]	21.9	44.2	23.7	43.6	50.00	PATH
Pixel out[11]	21.7	44.1	23.5	43.5	50.00	PATH
Pixel out[12]	21.8	44.1	23.6	43.5	50.00	PATH
Pixel out[13]	21.7	44.1	23.5	43.5	50.00	PATH
Pixel out[14]	21.5	43.9	23.3	43.3	50.00	PATH
Pixel out[15]	22.2	44.5	24.0	43.9	50.00	PATH
Pixel out[1]	22.7	44.8	24.5	44.2	50.00	PATH
Pixel out[2]	23.3	45.2	25.1	44.6	50.00	PATH
Pixel out[3]	22.9	45.0	24.7	44.4	50.00	PATH
Pixel out[4]	22.9	45.0	24.7	44.4	50.00	PATH
Pixel out[5]	22.8	44.9	24.6	44.3	50.00	PATH
Pixel_out[6]	22.8	44.9	24.6	44.3	50.00	PATH
Pixel_out[7]	22.4	44.6	24.2	44.0	50.00	PATH
Pixel_out[8]	23.3	45.2	25.1	44.7	50.00	PATH
Pixel_out[9]	22.1	44.4	23.9	43.8	50.00	PATH
_						

Chip: /mntb/nuc/nuc/gt_nuc/nuc

Timing Analyzer

SETUP AND HOLD MODE

Fabline: HP2_CN10B-------Corner: TYPICAL
Junction Temperature:113 deg C Voltage:4.50v

External Clock: Clk_in
Included setup files:

#0 reg_worst (Jn temp 113, 4.5V Power=1.07W)

_____INPUT SETUP AND HOLD TIMES (ns) Hold Time Setup Time Ph1(f) Ph2(f) Ph1(f) Ph2(f)
--- 4.5 --- -1.7
--- 2.7 --- -0.7
30.2 --- -3.1 --30.1 --- -2.6 ---PATH Beg frame in PATH Beg row in PATH Chip id[0] 30.1 ----2.6 ___ PATH Chip_id[1] -2.4 ___ ---PATH Chip_id[2] 29.7 ----3.4 Chip_id[3] 30.6 ___ PATH 31.4 -4.7 ---PATH Dev_sel[0] ---31.9 31.2 PATH -4.0 ___ ---Dev_sel[1] ---PATH --- . -4.0 Dev sel[2] 31.7 ___ ---PATH -4.9 Dev sel[3] PATH 0.7 1.3 ---End frame in ---2.6 --- -0.7 ---PATH End_row_in ---1.0 . PATH ___ 1.0 Fpa_pixel[0] --- 0.9 --- 1.0 --- 1.0 PATH Fpa_pixel[10] 1.0 ___ PATH Fpa_pixel[11] --- 1.9 0.1 ---PATH Fpa_pixel[12] --- 2.0 --- -0.0 PATH Fpa pixel[13] --- -0.0 PATH --- 2.0 Fpa pixel[14] --- 1.8 --- 0.9 --- 0.2 PATH Fpa_pixel[15] --- 0.2 --- 1.1 --- 0.8 --- 0.7 --- 0.8 --- 0.6 --- 0.6 --- 0.6 Fpa_pixel[1] PATH --- 0.9 PATH Fpa_pixel[2] PATH .--- 1.2 --- 1.3 Fpa pixel[3] PATH Fpa pixel[4] PATH ___ Fpa_pixel[5] 1.2 PATH Fpa_pixel[6] ---1.4 PATH ---' 1.4 Fpa_pixel[7] 0.4 PATH -1.6 ---Fpa pixel[8] 0.5 PATH 1.5 ---Fpa pixel[9] ----2.7 -2.4 -12.7 -2.4 -11.5 -2.4 -6.4 -2.4 -4.6 -3.9 ----3.1 ---13.3 --28.7 36.8
25.6 28.3
19.8 18.0
16.0 13.0
15.2 --9.8 ---PATH Host_addr[0] Host_addr[1] Host_addr[2] PATH Host_addr[3] PATH Host addr[4] PATH Host_data[0] PATH Host data[10] -3.0 PATH ---Host data[11] -3.0 9.5 ------PATH Host data[12] -2.7 9.4 ___ PATH ---Host_data[13] 9.6 ___ -2.9 ___ PATH Host_data[14] 9.3 PATH ___ -2.7 ___ Host data[15] PATH 14.7 ___ -3.7 ---Host_data[1] 12.8 PATH ----3.5 ___ Host_data[2] 10.3 PATH ----3.6 Host data[3] 10.1 ----3.2 PATH Host_data[4] 10.0 Host data[5] ----3.3 ___ PATH 10.1 ----3.1 ---PATH Host data[6]

Host_data[7]	10.0		-3.2		PATH
Host data[8]	10.0		-3.1		PATH
Host_data[9]	9.8		-3.1		PATH
Mem_data[0]		3.7		-0.1	PATH
Mem data[10]		2.6		1.1	PATH
Mem_data[11]		2.6		1.1	PATH
Mem_data[12]		2.8		0.8	PATH
Mem_data[13]		2.7		0.9	PATH
Mem data[14]		2.7		1.0	PATH
Mem data[15]	'	3.1		0.6	PATH
Mem data[1]		3.8		-0.2	PATH
Mem data[2]		3.6		0.1	PATH
Mem data[3]		3.7		0.0	PATH
Mem data[4]		3.3		0.3	, PATH
Mem data[5]		2.9		0.7	PATH
Mem_data[6]		3.2		0.4	PATH
_ Mem data[7]		2.7		1.0	PATH
Mem data[8]		3.2		0.4	PATH
Mem data[9]		2.5		1.1	PATH
N reset	6.9	8.9	-5.0	-4.4	PATH
Ode	27.0		-0.5		PATH
Pixel clk in		-3.2		4.7	PATH

*******	*****	*****	******	********
Genesil V Chip: /mntb/nuc/nuc/gt_n	ersion v8.0.3 uc/nuc	Thu May	30 14:26:23	3 1991
	Timing Analy	zer		
******	*****	*****	******	******
VIOLATION MODE				
Fabline: HP2 CN10B		Corner:	TYPICAL	
Junction Temperature:1 External Clock: Clk_in	-	Voltage:	4.50v	
Included setup files:				
#0 reg_worst	(Jn temp	113, 4.5V	Power=1.07W)	
			- NC	O VIOLATIONS

Hold time check margin: 2.0ns

Appendix A DV Checklist

DV CHECKLIST

1. DV CONTROL NUMBER:	
2. CUSTOMER INFORMATION	
Customer Name : Georgia Tech / CERL	Chip Name : <u>GT-VNUC</u>
Address: 400 Tenth Street	FAX: (404) 894–3120
CRB Room 377	
Atlanta, GA 30332-0540	
Project Manager: Dr. C. O. Alford	Phone: (404) 894–2505
Design Engineer: Toshiro Kubota	Phone: (404) 894–2506
	Phone:
Test Engineer: Joseph I. Chamdani	Phone: (404) 894–2527
3. SERVICES INFORMATION	•
xx Design Verification Service only. PO #	
Prototype Service and Design Verification. PC	O#
1.8% Maintenance	
SCS Test Foundry Test	Customer Test
When DV is complete, send verified physical databa	se tape to
Customer \underline{Y} N Silicon Vendor	<u>Y</u> N
4. DV CONTACT: Wallace Wai Phone	e: (408) 371–2900

5.	REGRESSION
	5.1. GENESIL Version: 8.0.3 5.2. Name of Session Log from recompile: rebuild.LOG 5.3. Include DV regression.CMD: DV regression.001 (simulation and timing) 5.4. Size of database (MB): 242 Guess Density: 6250 1600 TK50 Tar xx wbak Apollo Cartridge (compressed) Sun Cartridge xx
6.	FUNCTIONAL INFORMATION (check when included)
	6.1. Number of Transistors : 6.2. Key Parameters : Testing 6.3. DV pin description : Testing 6.4. Block Diagram : Testing 6.5. Functional Description : Testing 6.6. Timing Diagrams at Pins : Testing 6.7. Annotated Views : Testing 6.8. Chip Text Specification on tape : Xx Density: 6250 1600 TK50 Apollo Cartridge Sun Cartridge Sun Cartridge
7.	PHYSICAL INFORMATION
	7.1. Fabline Name: HP2 CN10B Customer–Specific: Y N Fabline GENECAL Directory on tape: Y N Fabline GENESIL Directory on tape: Y N Fabline Calibration Status: Production: xx Beta: Alpha: NOTE: If not a production fabline, then approval from SCS is required.
	7.2. Plots: (check when included or indicate filename) Chip Route (D size): _xx Bonding Diagram (B size): _xx Route Filename: _route d.031 Bonding Filename: _bond b.031
	7.3. Die Size : Reported Die Size : 403.2 x 399.2 square-mils Maximum Acceptable Die Size (+/- 2%) : 432 x 432 square-mils Minimum Acceptable Die Size (+/- 2%) : 272 x 272 square-mils
	7.4. GENESIL Package Name : <u>CPGA180f</u> Spec included? <u>Y</u> N Cavity/Well Size : <u>472</u> mils by <u>472</u> mils Non–GENESIL Supplied Package? <u>Y</u> N Vendor Name/Part # : <u>KYOCERA KD–84143A</u> Text Spec included on tape? <u>Y</u> N Foundry Approval? <u>Y</u> N
	7.5. External Block: <u>none</u>
	7.6. LRAM: Y N LROM: Y N LPLA: Y N LogicCompiler Blocks: Y N
	7.7. Test Pad (PM Pad) is included? Y N (Required for PS)

	7.8.	Power Pad : VCC: Core 1 VSS: Core 1 Ring 11 Ring 11
		NP protection for nwell pad? \underline{Y} N
		TTL output pads or N Protection for inputs? Y \underline{N} If yes, have you received silicon vendor approval? Y N
		Error in PADRING.033 (PADRING.DRC)? Y N Hardcopy attached? Y N
		ESD requirements Approved by SCS? Y N
3.	ELI	ECTRICAL INFORMATION
	8.2.	Chip Frequency Specified in netlist: 10 MHz Target frequency: 6.67MHz Power Dissipation: GENESIL = 1.07 W at 10 MHz Spec = W at MHz Operating Voltage: from 4.5 Volts to 5.5 Volts
€.	SIM	IULATION
	9.1.	Number of Clocking Regimes : _1_ Clock Pad Name DIV/NO DIV Ext Clock Name Int PHASE A/PHASE B Name 1clk pad
	9.2.	Simulation Setup Files: Name: _none / default Listings attached: Description:
		Affected Tests:
	9.3.	Test Vector Set: Total No. of Vectors: <u>37667</u>
		NOTE: Test vectors written one phase per vector have a maximum test frequency on the IMS Tester of 10 MHz. Test vectors written one cycle per vector have a maximum test frequency on the IMS Tester of 20 MHz.
		1. Name: <u>cal int n tr.083</u> No of vectors: <u>575</u> Description: <u>tests register files in pre_div</u>
		Portions of Chip Tested :pre_div/reg_file
		Pass with GFL model? <u>yes</u> Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N Pass Fight Test? yes

2.	Name: <u>cal out tr.083</u> No of vectors: <u>102</u>	
	Description: <u>tests an adder in pre_div/cal_out_sub</u>	
	Portions of Chip Tested : <u>pre div/cal out sub</u>	
	<u>-</u>	
	Pass with GFL model? ves	
	Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N	
	Pass Fight Test? <u>yes</u>	
3.	Name: <u>cal out2 tr.083</u> No of vectors: <u>102</u>	
	Description: _tests an adder in pre_div/cal_out_sub	
	Portions of Chip Tested : <u>pre_div/cal_out_sub</u>	
	•	-
	Pass with GFL model? <u>yes</u>	
	Pass with GSL model? <u>yes</u> Use for PS testing? $\underline{\underline{Y}}$ N	
	Pass Fight Test? <u>yes</u>	
4.	Name: <u>calibration tr.083</u> No of vectors: <u>504</u>	
	Description: <u>tests the calibration mode with a short address format</u>	
	Portions of Chip Tested : all	
	Pass with GFL model? <u>yes</u>	
	Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N	
	Pass Fight Test? <u>yes</u>	
5.	Name: calibration2 tr.083 No of vectors: 504	
	Description: <u>tests the calibration mode with a long address format</u>	
	Portions of Chip Tested :all	_
,	Pass with GFL model?yes	
	Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N Pass Fight Test? <u>yes</u>	
6.	Name: div tr.083 No of vectors: 892 Description: tests the divider	
	Portions of Chip Tested : <u>divider</u>	
	Pass with GFL model? yes	
	Pass with GSL model? <u>yes</u> Use for PS testing? <u>Y</u> N Pass Fight Test? <u>yes</u>	
~		
7.	Name: <u>div2 tr.083</u> No of vectors: <u>732</u> Description: <u>tests the divider using its scan out feature</u>	
	•	
	Portions of Chip Tested : _divider	

	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
8.	Name: <u>div3.083</u>			rs: <u>2820</u>
	Description: tests the di	vider using i	ts scan out feature	
	Portions of Chip Tested:	divider		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes _yes	Use for PS testing?	Y N
9.	Name : <u>div4.083</u>			
	Description: tests the di	vider using i	ts scan out feature	
	Portions of Chip Tested :	divider		
	Totalono of omp 100000.			
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	ves	Use for PS testing?	Y N
10	.Name : <u>div5.083</u>		No of vector	ors: <u>2820</u>
			ts scan out feature	
	Portions of Chin Tested :	divider		
	rotuons of emp rested.	ulvidei		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	ves	Use for PS testing?	_
11	.Name: div6.083			ors: <u>2820</u>
	Description: <u>tests the d</u>	ivider using	is scan out leature	•
	Portions of Chip Tested:	<u>divider</u>		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
	· ·	•		
12	2.Name: ext add tr.083			of vectors: 206
	Description: tests the a	dder followir	ig the multiplier in pre	_atv/muit
	Portions of Chip Tested:	_pre_div/m	ult	
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes _yes	Use for PS testing?	_
13	3.Name: ext add cin tr			No of vectors : <u>206</u>
	Description: tests the a	<u>ader tollowi</u>	ng the multiplier in <i>pre</i>	_aiv/muit

Portions of Chip Tested : <u>pre_div/mult</u>
Pass with GFL model?ves Use for PS testing?Y N Pass Fight Test?ves Use for PS testing?Y N
4. Name: extern_ram1_tr.083 No of vectors: _746 Description: _tests the overall functionality (calibration and compensation) of the first order linear
pproximation in conjunction with external RAMs
Portions of Chip Tested: all
Pass with GFL model? <a href="https://www.new.new.new.new.new.new.new.new.new.</td></tr><tr><td>5.Name: extern ram2 tr.083 No of vectors: 874 Description: tests the overall functionality (calibration and compensation) of the second order inear approximation in conjunction with external RAMs</td></tr><tr><td>Portions of Chip Tested : all</td></tr><tr><td>Fortions of Chip Tested.</td></tr><tr><td>Pass with GFL model? <u>yes</u> Pass with GSL model? <u>yes</u> Pass Fight Test? <u>yes</u> Use for PS testing? <u>Y</u> N</td></tr><tr><td>16. Name: extern_ram3_tr.083</td></tr><tr><td>Description: <u>tests the overall functionality (calibration and compensation) of the third order linear approximation in conjunction with external RAMs</u></td></tr><tr><td>Portions of Chip Tested : all</td></tr><tr><td>Pass with GFL model? <a href=" https:="" td="" www.new.new.new.new.new.new.new.new.new.<="">
17. Name: <u>extern_ram4_tr.083</u> No of vectors: <u>1130</u>
Description: tests the overall functionality (calibration and compensation) of the forth order linea approximation in conjunction with external RAMs.
Portions of Chip Tested : _all
Pass with GFL model? yes Pass with GSL model? yes Use for PS testing? Y N Pass Fight Test? yes
18. Name: extern ram1b tr.083 No of vectors: 834
Description: <u>tests the overall functionality (calibration and compensation) of the first order linea approximation in conjunction with external RAMs. Bad pixels and dead pixels are included.</u>
approximation in conjunction with chemical to this, but provident deta processing the increased.

Portions of Chip Tested:	all		
Pass with GSL model?	yes yes yes	Use for PS testing?	<u>Y</u> N
	verall function	onality (calibration an	d compensation) of the second order
<u>imear approximation in conjui</u>	ichon withe	xternai RAMS. Bau pix	xels and dead pixels are included.
Portions of Chip Tested:	all		
Pass with GSL model?	_yes _yes _yes	Use for PS testing?	Y N
20. Name: extern ram3b tr.6 Description: tests the overapproximation in conjunction	rall function	ality (calibration and c	to of vectors: 1154 compensation) of the third order linear
<u>approximation in conjunction</u>	WILLEXICINA	IKANIS. Dau pikcis an	· ·
Portions of Chip Tested:	all		
Pass with GSL model?	yes yes yes	Use for PS testing?	Y N
	erall function	ality (calibration and c	to of vectors: 1314 compensation) of the forth order linear id dead pixels are included.
Portions of Chip Tested:	all		
Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes _yes	Use for PS testing?	Y N
22. Name: extern ram1c tr.0	083	N	No of vectors: 994
Description: <u>tests the overapproximation in conjunction</u>			compensation) of the first order linear and dead pixels are included.
Portions of Chip Tested:	all		
Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
23.Name: extern ram2c tr.			No of vectors: <u>1154</u>
•			nd compensation) of the second order
linear approximation in conju	<u>nction with e</u>	xternal RAMs. Bad pix	xels and dead pixels are included.

	_all		
Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	Y N
24.Name: extern ram3c tr.	083		o of vectors: 1314
Description: <u>tests the overapproximation in conjunction</u>			compensation) of the third order
•		_	
Portions of Chip Tested:	all		
Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes _yes	Use for PS testing?	<u>Y</u> N
25.Name: extern ram4c tr.	.083	N	To of vectors: 1474
Description: tests the over	erall function	onality (calibration and c	compensation) of the forth ord
approximation in conjunction			
Portions of Chip Tested:	all		
•	•		
Pass with GFL model?	_yes		
Pass with GSL model?	_yes_	Use for PS testing?	<u>Y</u> N
Pass with GSL model? Pass Fight Test?		Use for PS testing?	<u>Y</u> N
	_yes	_	<u>Y</u> N ectors : <u>310</u>
Pass Fight Test?	_yes _yes	No of v	_
Pass Fight Test? 26.Name:fadd_tr.083 Description:tests the fire	yes yes nal adder ir	No of v	_
Pass Fight Test? 26.Name: <u>fadd_tr.083</u>	yes yes nal adder ir	No of v	_
Pass Fight Test? 26.Name: <u>fadd_tr.083</u> Description: <u>tests the fine tests the </u>	_yes _yes nal adder ir _pre_div/r	No of v	_
Pass Fight Test? 26.Name:fadd_tr.083 Description:tests the fire	yes yes nal adder ir	No of v	_
Pass Fight Test? 26.Name:fadd_tr.083 Description:tests the fighter Portions of Chip Tested: Pass with GFL model?	_yes _yes _nal adder in _pre_div/n _yes	No of vonter the pre_div/mult nult	ectors : <u>310</u>
Pass Fight Test? 26.Name:faddtr.083 Description:tests the fight Portions of Chip Tested: Pass with GFL model? Pass with GSL model?	yes _yes _nal adder in prediv/r yes _yes _yes	No of von the pre_div/mult nult Use for PS testing?	ectors : <u>310</u>
Pass Fight Test? 26.Name:faddtr.083 Description:tests the fine Portions of Chip Tested: Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes _yes _nal adder ir prediv/r yes _yes _yes _yes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N
Pass Fight Test? 26.Name:faddtr.083 Description:tests the fight Portions of Chip Tested: Pass with GFL model? Pass with GSL model? Pass Fight Test? 27.Name:frame_shift_tr.0	yes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N
Pass Fight Test? 26. Name:faddtr.083 Description:tests the fight Portions of Chip Tested: Pass with GFL model? Pass with GSL model? Pass Fight Test? 27. Name:frame_shift_tr.0 Description:tests the fr	yes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N
Pass Fight Test? 26.Name:faddtr.083	yesyes nal adder ir prediv/r yesyesyesyes yes yesyes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N
Pass Fight Test? 26. Name:faddtr.083 Description:tests the fight Portions of Chip Tested: Pass with GFL model? Pass with GSL model? Pass Fight Test? 27. Name:frame_shift_tr.0 Description:tests the fr	yesyesyesyesyessyessyessyessyessyesyesyesyesyessyesyessyesyes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N
Pass Fight Test? 26. Name:faddtr.083 Description:tests the fire Portions of Chip Tested: Pass with GFL model? Pass Fight Test? 27. Name:frame_shift_tr.0 Description:tests the fire Portions of Chip Tested: Pass with GFL model?	yesyes nal adder ir prediv/r yesyesyesyes _yesyes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N No of vectors: 740
Pass Fight Test? 26. Name:faddtr.083 Description:tests the fire Portions of Chip Tested: Pass with GFL model? Pass Fight Test? 27. Name:frame_shift_tr.0 Description:tests the fire Portions of Chip Tested: Pass with GFL model? Pass with GFL model? Pass with GFL model?	yes	No of von the pre_div/mult nult Use for PS testing?	<u>Y</u> N No of vectors: 740

.

	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
29.	Name: host mem wr2 Description: tests the ca	tr.083 pability of th	ne host to write/read da	No of vectors: 184 ta to/from the external RAM.
	Portions of Chip Tested:	memory-to	o-host interface	
	Pass with GFL model? Pass with GSL model? Pass Fight Test?		Use for PS testing?	<u>Y</u> N
30	.Name: int_sub_tr.083		No o	f vectors : <u>102</u>
	Description: tests the ac	lder in <i>pre_d</i>	<u>liv/int_sub</u>	
	Portions of Chip Tested:	_pre_div/in	t_sub	
	Pass with GFL model? Pass with GSL model? Pass Fight Test?		Use for PS testing?	Y N
31	.Name: <u>mult_tr.083</u> Description: <u>tests the m</u>	ultiplier in p		ectors : <u>2438</u>
	Portions of Chip Tested:			
	Pass with GFL model? Pass with GSL model? Pass Fight Test?		Use for PS testing?	<u>Y</u> N
32	2.Name: mathnew tr.083	}	No o	of vectors: 332
				sation with bad pixels and dead pixels
	Portions of Chip Tested:	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
33	3. Name: <u>new tr.083</u> Description: <u>tests the fu</u>	nctionality o		ectors: 360 sation with bad pixels and dead pixels
	Portions of Chip Tested	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes	Use for PS testing?	<u>Y</u> N
34	4.Name: <u>new clk tr.083</u> Description: <u>tests the fu</u>	nctionality o		of vectors: <u>360</u> nsation with bad pixels and dead pixels
	Portions of Chip Tested	: <u>all</u>		4-14

	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
35	.Name: <u>nuc tr.083</u> Description: <u>tests the fun</u>			ectors: 330 sation with bad pixels and dead pixels
	Portions of Chip Tested:	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	Y N
36	.Name: order1 tr.083			ectors: <u>358</u> sation with bad pixels and dead pixels
	Portions of Chip Tested:	-		,
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes	Use for PS testing?	<u>Y</u> N
37	.Name: order2 tr.083 Description: tests the fur			ectors: <u>358</u> sation with bad pixels and dead pixels
	Portions of Chip Tested:	all		
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	_yes _yes _yes	Use for PS testing?	Y N
38	.Name: order3 tr.083		No of ve	
	-	•	-	sation with bad pixels and dead pixels
	Portions of Chip Tested: Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	
	.Name: <u>overflow tr.083</u> Description: tests the over aximum intensity value.	erflow detecti		f vectors: 406 f the final result (Pixel out) is set to the
		overflow a	nd pixel_out	
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing?	<u>Y</u> N
40).Name: pix cal tr.083			ectors : <u>114</u>
	Description: tests the a			
	Portions of Chin Tested:	nre divinir	cal sub	

	Pass with GSL model? Pass Fight Test?	_yes _yes	Use for PS testing	g?	<u>Y</u> N	
	41.Name: pix counter tr.0 Description: tests the 1	83 6bit and 4bit	up counter in pix_		o of vectors : <u>464</u> ter.	
	Portions of Chip Tested :	pix_counter	<u>r</u>			
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing	g?	<u>Y</u> N	
	42.Name : <u>trans1 tr.083</u>				ectors: 968	
	Description: <u>tests the c</u>	ompensation	mode with data fro	om tr	ne transputer model.	
	Portions of Chip Tested	: all				
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testing	g?	<u>Y</u> N	
	43.Name : <u>trans2 tr.083</u> Description : <u>tests the c</u>					·
	Portions of Chip Tested	: <u>all</u>			•	
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testin	g?	Y N	
	44. Name: underflow tr.08? Description: tests the uncalibration sample intensity	nderflow dete	ection and check if t		f vectors: <u>238</u> nal result (<i>Pixel_out</i>) is set to the l	<u>east</u>
	Portions of Chip Tested	: <u>all</u>				
	Pass with GFL model? Pass with GSL model? Pass Fight Test?	yes yes yes	Use for PS testin	g?	Y N	
9.5.	IMS Grouping within limita Tester clock frequency = Signals that must be glitch	6.67 MHz	(Required for PS	only	· ·	
	Signal Name	<u>-</u>	Į.	glitcł	GSL with n detection re on?	
	1. <u>N mem we</u> 2			$\overline{\mathbf{Y}}$	N N N	
	3. 4.			Y	N	
	5.			Y	N	

10. TIMING ANALYSIS

	: from <u>0 0</u> : from <u>4.5</u> = 25 + (theta JA	C (min) to V (min) to $Power) = _$	70 0 5.5 63 deg	C (max) V (max) grees C	113 degrees C
10.2. Reports (Include the following (required for PS)* guaranteed corner 5.0V room junc temp	(requi guara min o	ired for PS)* nteed corner perating V unction temp	1	typical comer min operating ' max junction te	
Setup/Hold : <u>x</u> Output Delay : <u>x</u>	x Outp	up/Hold : <u>x</u> it Delay : <u>x</u>	X	Cycle Setup/Hold Output Delay Violation	:xx :xx :xx
Name: reg worst.04 Temperature: 113 deg Description: worst ca Name: reg room.04 Temperature: 63 degr Description: nominal 10.4. Critical Boundary Conditation List critical paths here	o ees C condition, room	n junction tem	Voltag	te: 4.50 V rature, minimur Listings te: 5.00 V	s attached : <u>yes</u>
Attach additional page Clock Name:	s if needed. Clk in				
	report	limit (+/-5%	%)	report	limit (+/-5%)
1. Phase 1 High	<u>55.1 ns</u>				
2. Phase 2 High	57.2 ns				<u> </u>
3. Symmetric Cycle	115.8 ns	<u>150.0 ns</u>			
4. Minimum Cycle	115.8 ns	150.0 ns	<u> </u>		-
Outputs					
_	Name		load (pF)	delay	limit
1. <u>Mem_addr[22:0]</u>	Tanic	5	10au (pr) 10.00	23.0 ns	27 ns
2. <u>Cs16k[4:0]</u>			60.00	22.8 ns	27 ns
2. <u>Cs10k[4.0]</u> 3. <u>Cs32k[2:0]</u>			60.00	22.7 ns	27 ns
J. <u>CSJZN[Z.U]</u>			0.00	<u> </u>	<u> </u>

6 7		
Inputs		
Signal Name	setup	hold
	report / limit	report / limit
1. Mem data[15:0]	5.8nsec /8.0nsec	
2.		
3.		
4.		
5	/	
6.		
7		
8		
9.		1
<i></i>		

11. DC CHARACTERISTICS

METER	S DESCRIPTION	CONDITIONS 0 to 70	CONDITIONS -55 to +125	MIN	MAX
DATA P	PAD INPUT ONLY				
VIH	Input High Voltage			2.0V	
VIL	Input Low Voltage				0.8V
IIL	Input Leakage	VSS <vin<vdd< td=""><td>VSS<vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<></td></vin<vdd<>	VSS <vin<vdd< td=""><td>-10uA</td><td>10uA</td></vin<vdd<>	-10uA	10uA
CIN	Input Capacitance				6.0pf
DATA F	AD OUTPUT ONLY				
VOH	Output High Voltage	VDD= 4.5V	VDD= 4.5V	2.4V	
		IOH=-2.2	IOH=-2mA		
VOL	Output Low Voltage	VDD= 4.5V	VDD= 4.5V		0.4V
107	Output Lookaga	IOL= 6mA VSS <vout<vdd< td=""><td>IOL= 5mA VSS<vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<></td></vout<vdd<>	IOL= 5mA VSS <vout<vdd< td=""><td>-10uA</td><td>10uA</td></vout<vdd<>	-10uA	10uA
IOZ	Output Leakage current(high Z)	A22< A0ff(ADD	A22< A001< ADD	-IOUA	IOUA
COUT	Output Capacitance				7.0pf
DATA I	PAD INPUT/OUTPUT				
VOH	Output High Voltage	VDD= 4.5V	VDD= 4.5V	2.4V	
				2.4 V	
		IOH=-2.2	IOH=–2mA	2.4 V	0.4V
VOL	Output Low Voltage	IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V	2.4 V	0.4V
	Output Low Voltage	IOH=-2.2	IOH=–2mA	2.4 V	0.4V
VOL		IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V		0.4V 0.8V
VOL VIH	Output Low Voltage Input High Voltage Input Low Voltage Output leakage	IOH=-2.2 VDD= 4.5V	IOH=-2mA VDD= 4.5V		
VOL VIH VIL IOZ	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z)	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOL VIH VIL	Output Low Voltage Input High Voltage Input Low Voltage Output leakage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V
VOL VIH VIL IOZ	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA
VOL VIH VIL IOZ CIO CLOCH VIH	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V	0.8V 10uA 7.0pf
VOL VIH VIL IOZ CIO CLOCK VIH VIL	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan C PAD Input High Voltage Input Low Voltage	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA VSS<vout<vdd< td=""><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<></td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA VSS <vout<vdd< td=""><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	2.0V -10uA	0.8V 10uA 7.0pf
VOL VIH VIL IOZ CIO CLOCH VIH	Output Low Voltage Input High Voltage Input Low Voltage Output leakage current (high Z) Input/Output Capacitan	IOH=-2.2 VDD= 4.5V IOL= 6mA VSS <vout<vdd< td=""><td>IOH=-2mA VDD= 4.5V IOL= 5mA</td><td>2.0V -10uA</td><td>0.8V 10uA 7.0pf</td></vout<vdd<>	IOH=-2mA VDD= 4.5V IOL= 5mA	2.0V -10uA	0.8V 10uA 7.0pf

NOTE: All parameters at a supply voltage of VDD = 5V (+/-10%).

12. CUSTOMER COMMENTS

Pre-Verification Comments

COMPILE FORCE BUILD ALL always fails at compile—layout of some logic—compiled blocks or some ndp adders. We believe it is due to some internal faults of genesil since the remaining commands including the one just failed can be done successfully by COMPILE BUILD ALL following immidiately after the COMPILE FORCE BUILD ALL has failed. The session log from recompile (rebuild.LOG) contains this two step processes. In the first COMPILE BUILD ALL, COMPILE:LAYOUT at divider1 failed, but in the second COMPILE BUILD ALL, the remaining commands including COMPILE:LAYOUT at divider1 ran successfully.

13. CUSTOMER APPROVAL

The undersigned understands that if any design changes are initiated by the Customer subsequent to this sign-off, the Customer is liable for any charges imposed by Silicon Compiler Systems as agreed to in either the Design Verification Terms & Conditions or the Prototype Services Terms & Conditions. In addition, such changes require the DV process to be started from the beginning, which results in extended DV schedules.

Customer Approva	l :	Date <u>3 / 31 / 91</u>
Titl	e : Research Assistant	
4. SCS APPROVAL Pre-Verification Co	mments	
ASSESSMENT NO.	· · · · · · · · · · · · · · · · · · ·	
SCS Approval:	Regional Field Application Consultant	Date//
SCS Approval :	Technical Support Team Leader	Date//

Appendix B Block Diagrams And Schematics

Dos: d:\jackson\prem\block\prediv.drw
Gen: <chip>/

Dos: d:\jackson\prem\dblock\ividerl.drw Gen: <chip>/

math/pix_counter

Dos: d:\jackson\prem\block\pixcount.drw Gen: <ahip>/

math/pipe

Dos: d:\jackson\prem\block\pipe.drw Gen: cchip>/

math/frame_sync

de Mandeson Spresse Salesta Crommegenes, dere Gen: «chip»/

math/pixel_out

Dos: d:\jackson\prem\block\pixelout.drw Gen: <chip>/

math/mem_host_if

Dos: d:\jackson\prem\block\memhost.drw Gen< <=Me>>

math/strob

Dos: d:\jackson\prem\block\statema.d Gen: <chip>/

Dos: d'jackson/prem/clocksync.drw
Gen: <chip>/math/state-mach/clock-sync

Dos: d: \jackson\prem\aubtract.drw Gen: <chip>/math/state-mach <chip>/math/state-mach/subtrac

math/state-mach/control

Dos: d:\jackson\prem\control.drw
Gos: chipo/math/state-mach/centrol

math/state-mach/bad-pixel

Dos: d:\jackson\prem\glue2.drw
Gen: <chip>/math/state_mach/glue

state_mach/glue

nuc/math/pre-div

Dos: d:\jackson\prem\prediv.drw Gen: <chip>/math/pre-div

Dos: dt.)ackeon/prem/regfile.drw
Gen: <chip>/math/prediv
<chip>/math/prediv/reg-file

pre-div/pix-cal-sub

Dos: d:\jackson\prem\pixcal.drw Gen:<chip>/math/pre-div <chip>/math/pre-div/pixcal-sub

pre-div/int-sub

Dos: d:\jackson\prem\inteub.drw
Gen: <chip>/math/pre-div

pre-div/cal-out-sub

Dos: d:\jackson\prem\calout.drw
Gen: <chip>/math/pre-div
<chip>/math/pre-div/cal-out-sub

pre-div/mult/mult-block

pre-div/mult/mult-out

Dos: d:\jackson\prem\mult.drw
Gen: crhim/math/ms.div/mult/mult.block

math/divider1/row16

Dos: d:\jackson\prem\row16.drw Gen: <chip>/math/divider/row16

Dos: d:\jackson\prem\rown0-15.drw
Gen: <chip>/math/divider/Row[15.0]

 $\frac{\text{divider1}}{\text{divider2}} / \frac{\text{RowN/rowN}}{\text{divider2}}$

Dos: d:\jackson\prem\rown.drw
Gen: <chip>/math/divider/Row[16..0/row[16..0]

 $\frac{\text{divider1}}{\text{divider2}} / \frac{\text{RowN/rowN/csx-M}}{\text{(N=0..16, M=0..15)}}$

Dos: d:\jackson\prem\csx.drw
Gen: <chip>/math/divider/Row[16..0]/row[16..0]/csx-[15..0]

math/overflow

overflow/l1d-32

Dos: d:\jackson\prem\l1d32.drw
Gen: <chip>/divider/overflow/1d-32

overflow/l1d-16

Dos: d:\jackson\prem\l1d16.drw
Gen: <chip>/divider/overflow/l1d-16

(8-bit leading one detector)

Das: d. ylanizous yaran Wibbod.drv

Jans: < th igo irms the thir vide reversitorum (2 d-20/12 d-6 (s. d.))

chi revisant heli vide reversitorum (1 d-10/10 d-2 s.)

overflow/ovf-gen

▶ ld-div[0]▶ ld-div[1]

divider1/probe

Dos: d: \jackson\prem\ Gen: <chip>/

nuc/math/pix_counter (page 1 of 2)

Dos: d:\gtnuc\pix2.drw Gen: <drip>/pix_counter

nuc/math/pixcounter (page 2 of 2)

Dos: d:\jackson\prem\pixcoun2.drw
Gen: <ehip>/muc/math/pixcounter

nuc/math/pipe

Dos: d:\jackson\prem\pipe.drw
Gen: <chips>/nuc/math/pipe

pipe/cal_int_n

math/frame-sync (page 2 of 2)

Dos: d:\jackson\prem\frame2.drw Gen: <chip>/math/frame-sync

nuc/math/pixel-out

Dos: d:\jackson\prem\memhost1.drw Gen: <chip>/rath/mem_host_if

math/mem-host-if

(page 2 of 2)

Dos: d:\jackson\prem\memhost2.drw Gen: <chip>/muth/mem_host_if

math/mem-host-if/mem-addr

math/mem-host-if-/mem-ctrl

Dos: d:\jackson\prem\memctrl.drw
Gen: <chip>/math/mem-host-if/mem-ctrl

math/mem-host-if/mem-data

Doe: d:\jackson\prem\memdata.drw Jen: <chip>/math/mem-host-i0mem-data

 $\color{red} \textbf{math/mem-host-if/host-data} \\ \color{red} \color{blue} \color{blue} \color{blue} \color{blue} \textbf{(page 1 of 2)} \color{blue} \color{blu$

Dos: d:\jackson\prem\hosdstal.drw Gen: <chip>/math/mem-host-if/host-data

math/mem-host-if/host-data (page 2 of 2)

Dos: d:\jackson\prem\hosdata2.drw Gen: <chip>/math/mem-host-if/host-dat

Dos: d:\jackson\prem\hostctrl.drw Gen: <chip>/math/mem-host-if/host-ctrl

Dos: d:\jackson\prem\hostctr2.drw
Gen: <chip>/math/mem-host-if/host-ctrl

math/strob

Des: d:\jackson\prem\row16.drw Gen: <chip>/math/divider/row16

Dos: d:\jackson\prem\row16.drw
Gen: <chip>/math/divider/row16

Dos: d:\jackson\prem\row16.drw
Gen: <chip>/math/divider/row16