Hochschule RheinMain Prof. Dr. Steffen Reith Jan Reinhard

8. Übungsblatt

- 1. Sei $G = (\Sigma, N, P, S)$ eine Grammatik in Chomsky Normalform. Zeigen Sie: Wenn $w \in L(G)$, dann $S \vdash w$ mit t = 2|w| 1 (w kann aus dem Startsymbol S in genau 2|w| 1 Schritten erzeugt werden).
- 2. Gegeben sei die Grammatik $G=(\{(,),\vee,\wedge,\neg,x\},\{F\},F,P)$, wobei $P=\{F\to (F\wedge F),F\to (F\vee F),F\to \neg F,F\to x\}$. Konstruieren Sie eine äquivalente Grammatik G' in Chomsky Normalform indem Sie die drei Schritte aus der Vorlesung durchführen.
- 3. i) Benutzen Sie die beiden kontextfreien Sprachen $L_2 =_{\text{def}} \{a^m b^n c^n \mid m, n \geq 0\}$ und $L_3 =_{\text{def}} \{a^n b^n c^m \mid m, n \geq 0\}$ um zu zeigen, dass die kontextfreien Sprachen nicht unter Schnitt abgeschlossen sind. Hinweis: Zeigen Sie zunächst, dass L_1 und L_2 kontextfrei sind. Verwenden Sie weiterhin, dass die Sprache $\{a^n b^n c^n \mid n \geq 0\}$ nicht kontextfrei ist.
 - ii) Benutzen Sie Abschnitt i) um zu zeigen, dass die Klasse der kontextfreien Sprachen \mathbf{L}_2 nicht unter Komplement abgeschlossen ist.

(Hinweis: Verwenden Sie bekanntes Gesetz aus der Mengenlehre)

Besprechung in den Übungen am 21.6.2021.