NUMERICAL TECHNIQUES

Tutorial 1: Errors

QUESTION 1:

Compute the absolute and relative error in approximations of p by p^* in the cases

i.
$$p = e, p^* = 2.718,$$

ii.
$$p = 7^{\pi}$$
, $p^* = 450$,

i.
$$p = e$$
, $p^* = 2.718$,
iii. $p = 9!$, $p^* = \sqrt{18\pi} (9/e)^9$

QUESTION 2:

Suppose p^* must approximate p with relative error at most 10^{-3} . Find the largest interval in which p^* must lie for the following values.

i.
$$p = -0.5$$

i.
$$p = -0.5$$
, ii. $p = 451$.

QUESTION 3:

Write the following numbers in floating point form, use a 6 significant digit mantissa along with rounding.

iii.
$$\pi$$

iv.
$$-\sqrt{3}/3^3$$

$$v. 1/e^7$$

QUESTION 4:

Use four significant figure arithmetic with rounding to find the most accurate approximations possible for the roots of the quadratic.

$$\frac{1}{3}x^2 + \frac{123}{4}x + \frac{1}{6} = 0.$$

QUESTION 5:

Given the function

$$f(x) = 1.01e^{4x} - 4.62e^{3x} - 3.11e^{2x} + 12.2e^x - 1.99$$

using 3 significant figure arithmetic with rounding, the assumption $e^{1.53} = 4.62$ and the fact that $e^{nx} = (e^x)^n$.

(i) Evaluate f(1.53) directly from the function.

- (ii) Rewrite the function in nested form and recalculate f(1.53).
- (iii) Give the relative errors for the solutions from parts 1 and 2 when compared to the true three figure result f(1.53) = -7.61.

QUESTION 6:

The two-by-two linear system

$$\begin{array}{rcl} ax & + & by & = & e, \\ cx & + & dy & = & f, \end{array}$$

where a, b, c, d, e, f are given, can be solved for x and y as follows

Set
$$m = \frac{c}{a}$$
, provided $a \neq 0$;
 $d_1 = d - mb$;
 $f_1 = f - me$;
 $y = \frac{f_1}{d_1}$;
 $x = \frac{e - by}{a}$.

Use this procedure and four significant figure arithmetic with rounding to solve the following linear systems.

(i)
$$1.130x - 6.990y = 14.20,$$

$$8.110x + 12.20y = -0.1370.$$

(ii)
$$1.013x - 6.990y = 14.22, \\
-18.11x + 112.2y = -0.1376,$$

QUESTION 7:

Repeat the above question using four significant figure arithmetic with chopping.