

教师姓名	沈炜炜	学生姓名		首课时间		本课时间	·
学习科目	数学	上课年级	高一	教材版本		人教	A 版
课题名称	函数及其性质						
重点难点	函数的单调性						

课前检测

填写下表,写出各函数的定义域、值域、单调性以及奇偶性.

f(x)	定义域	值域	单调性	奇偶性
x				
x^2				
$\log_2 x$				
3^x				
$\frac{1}{x}$				
\sqrt{x}				
$\log_x 2$				

一、函数的概念与表示

定义 一般地,有:

设 A, B 是非空的数集,如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么就称 $f\colon A\mapsto B$ 为从集合 A 到集合 B 的一个函数,记作 $y=f(x), \qquad x\in A.$

其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与x 的值相对应的 y 值叫做函数值,函数值的集合 $\{f(x)|x\in A\}$ 叫做函数的值域,值域是集合 B 的子集.

- 函数是两个数集间的一种对应关系;
- 未指明定义域的情况下, 默认定义域取使得对应关系有意义的所有实数. 具体如下:
 - ① 分式的分母不为 0;
 - ② 偶次根式的被开方数不小于 0;
 - ③ 零次或负次指数次幂的底数不为零;
 - ④ 对数的真数大于 0;
 - ⑤ 指数、对数函数的底数大于 0 且不等于 1;
 - ⑥ 实际问题对自变量的限制.
- 若函数 f(x) 定义域为 D, 且 f(A) 存在,则 $A \in D$.

性化教育新标准

-)
- A. $[0, +\infty)$
- B. $[1, +\infty)$
- C. $(-\infty, 0]$
- D. $(-\infty, 1]$
-)

-)

- 1.4 已知函数 f(2x+1) 的定义域为 $\left(-2,\frac{1}{2}\right)$,则函数 f(x) 的定义域为......()
- A. $\left(-\frac{3}{2}, -\frac{1}{4}\right)$
- B. $\left(-1, \frac{3}{2}\right)$
- C. (-3,2)
- 1.5 下列函数中,其定义域和值域分别与函数 $y = 10^{\lg x}$ 的定义域和值域相同的是.....(
- A. y = x
- B. $y = \lg x$
- C. $y = 2^x$
- D. $y = \frac{1}{\sqrt{x}}$

二、函数的奇偶性

几何定义 一般地,图像关于 y 轴对称的函数称为偶函数,图像关于原点对称的函数称为奇函数.

代数定义 若对于函数 f(x) 定义域内任意一个 x, 都有 f(-x) = f(x), 则函数 f(x) 称为偶函数; 若对于函数 f(x) 定义域内任意一个 x, 都有 f(-x) = -f(x), 则函数 f(x) 称为奇函数; 奇函数与偶函数的定义域关于原点对称

- 奇函数左右对应中会有负号, 偶函数没有负号, 此处的规律可以参考"负负得正"(以下假设奇 性质 偶函数都不恒为 0)
 - ① 奇士奇=奇; 偶士偶=偶; 奇士偶=非奇非偶
 - ② $\hat{\sigma} \times (\div) \hat{\sigma} = \mathbb{R}; \ \mathbb{R} \times (\div) \ \mathbb{R} = \mathbb{R}; \ \hat{\sigma} \times (\div) \ \mathbb{R} = \hat{\sigma}.$
 - ③ 当复合函数的内外两层函数都具有奇偶性时,有偶即偶,两奇为奇.
 - 奇(偶)函数在关于原点对称的两个区间上具有相同(相反)的单调性;
 - 若奇函数 f(x) 在原点有定义,则 f(x) = 0.

			f() $f()$		
2.1	设奇函数 $f(x)$ 在 $(0, +$	$-\infty$) 上增函数且 $f(1) = 0$,	则不等式 $\frac{f(x) - f(-x)}{x}$ <	0 的解集为()
A.	$(-1,0)\bigcup(1,+\infty)$	B. $(-\infty, -1) \bigcup (0, 1)$	C. $(-\infty, -1) \bigcup_{n=0}^{\infty} (1, +\infty)$	D. $(-1,0) \bigcup (0,1)$	
2.2	奇函数 $f(x)$ 的定义域	为 R, 若 $f(x+2)$ 为偶函数	数,且 $f(1) = 1$,则 $f(8) +$	$f(9) = \dots \dots \dots ($)
Α.	-2	B1	C. 0	D. 1	
2.3	设函数 $f(x), g(x)$ 的定	义域都为 R, 且 $f(x)$ 是奇	函数, $g(x)$ 是偶函数, 则	下列结论正确的是()
A.	f(x)g(x) 是偶函数	B. $ f(x) g(x)$ 是奇函数	C. f(x) g(x) 是奇函数	D. $ f(x)g(x) $ 是奇函数	
2.4	已知函数 $f(x) = \ln \left(\sqrt{y} \right)$	$\sqrt{1+9x^2} - 3x + 1$, $\mathbb{M} f(1)$	$(g 2) + f\left(\lg \frac{1}{2}\right)$ 等于	()
A.	-1	B. 0	C. 1	D. 2	
2.5	已知函数 $f(x)$ 是定义	【在 R 上的偶函数,且在区	区间 $[0,+\infty)$ 上单调递增,	若实数 a 满足 $f(\log_2 a)$	+
f($\log_{\frac{1}{2}}a) \le 2f(1), \emptyset a \notin$	的取值范围是		()
A.	[1,2]	B. $\left(0,\frac{1}{2}\right]$	C. $\left[\frac{1}{2}, 2\right]$	D. (0, 2]	
2.6	已知函数 $f(x)$ 是定义	在 \mathbb{R} 上的奇函数, $g(x)$ 是第	定义在 $ℝ$ 的偶函数,且 $f(x)$	$f(x) - g(x) = 1 - x^2 - x^3$, §	训
g(x) 的解析式为			()
A.	$1 - x^2$	B. $2 - 2x^2$	C. $x^2 - 1$	D. $2x^2 - 2$	
2.7	若 $f(x) = x \ln(x + \sqrt{a})$	$\overline{+x^2}$) 为偶函数,则 $a=$			

三、函数的单调性

定义 一般地,设函数 f(x) 的定义域为 I:

- 1) 如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 $x_1, x_2, \exists x_1 < x_2$ 时,都有 $f(x_1) < f(x_2)$,那么就说函数 f(x) 在区间 D 上是增函数;
- 2) 如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 $x_1, x_2,$ 当 $x_1 < x_2$ 时,都有 $f(x_1) > f(x_2)$, 那么就说函数 f(x) 在区间 D 上是减函数.

如果函数 f(x) 在区间 D 上是增函数或减函数,那么就说函数 f(x) 在区间 D 具有(严格的)单 调性,区间 D 叫做函数 f(x) 的单调区间.

- 函数的单调性是定义在区间上的,即单调性是函数在某个区间上的性质;
- 单调区间是定义域的子集;
- 单调区间的写法: 尽可能地使用闭区间(不能写成闭区间的三种情形: ∞ 符号旁; 端点不在函数定义 域内;端点处函数增减性发生变化);
- 自变量量和函数值:变化趋势相同时,函数单调增;变化趋势相反时,函数单调减;简记为:同增 异减.

单调递增
$$\Leftrightarrow (x_1 - x_2)[f(x_1) - f(x_2)] > 0 \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$$

单调递减
$$\Leftrightarrow (x_1 - x_2)[f(x_1) - f(x_2)] < 0 \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0$$

判定 函数单调性的判断目前有以下几种常见方法:

- 根据图像判断;
- 根据定义;由定义证明函数 f(x) 在给定区间 D 上单调性的步骤:
 - ① 取值: 任取 $x_1, x_2 \in D$, 且 $x_1 < x_2$;
 - ② 作差或作商: $f(x_1) f(x_2)$ 或 $f(x_1)/f(x_2)$; (当 f(x) 在区间 D 内恒大于 0 或恒小于 0 时才可使用作商法)
 - ③ 变形: 因式分解、配方、通分、根式有理化等等, 化简至能够简单判断正负号的式子;
 - ④ 定号: 判断 $f(x_1) f(x_2)$ 的正负 (或 $f(x_1)/f(x_2)$ 与 1 比大小), 进一步判断 $f(x_1)$ 与 $f(x_2)$ 的 大小值关系;
 - ⑤ 得出结论: $f(x_1) < f(x_2)$ 时函数 f(x) 单调递增; $f(x_1) > f(x_2)$ 时函数 f(x) 单调递减.
- 根据单调性已知的函数,并利用函数单调性的几个结论判断:
 - ① f(x) 与 f(x) + C(C 是常数) 具有相同的单调性;
 - ② k>0 时, kf(x) 与 f(x) 单调性相同; k<0 时, kf(x) 与 f(x) 单调性相反;
 - ③ 在公共定义域内,两增函数相加仍为增函数;减函数相减仍为减函数;
 - ④ 对于复合函数,"同增异减",即:

若 $\mu=g(x)$ 在 [a,b] 上是增 (滅) 函数,函数 $y=f(\mu)$ 在区间 [g(a),g(b)] (或区间 [g(b),g(a)]) 上是增 (滅) 函数,那么复合函数 y=f[g(x)] 在区间 [a,b] 上一定是单调的,且若 $f(\mu)$ 与 g(x) 单调性相同,则复合函数 y=f[g(x)] 单调递增;若 $f(\mu)$ 与 g(x) 单调性相反,则复合函数 y=f[g(x)] 单调递减.

3.1 设 $f(x)$, $q(x)$ 都是单调函数,有如下	、川.	个品期	•
----------------------------------	-----	-----	---

①若 f(x) 单调递增, g(x) 单调递增, 则 f(x) - g(x) 单调递增;

②若 f(x) 单调递增, g(x) 单调递减, 则 f(x) - g(x) 单调递增;

③若 f(x) 单调递减, g(x) 单调递增, 则 f(x) - g(x) 单调递减;

④若 f(x) 单调递减, g(x) 单调递减, 则 f(x) - g(x) 单调递减;

其中,正确的命题是.....(

A. ①③

B. 114

C ②3

D 24

3.2 函数 $y = -\sqrt{1-4x^2}$ 的单调递减区间是......(

A. $\left(-\infty,\frac{1}{2}\right]$

B. $\left[\frac{1}{2}, +\infty\right)$

 $C. \left[-\frac{1}{2}, 0 \right]$

D. $\left[0, \frac{1}{2}\right]$

A. $f(\pi) > f(-3) > f(-2)$

B. $f(\pi) > f(-2) > f(-3)$

C. $f(\pi) < f(-3) < f(-2)$

D. $f(\pi) < f(-2) < f(-3)$

)

(台江)83310089

3.4 (福州局级中学 16-17 局一)	期中考,11)定义在 №	上的偶函数 $f(x)$, 当	$f(x \in [1,2] \text{ iff}, f(x)$	f(x) = 0 且 $f(x)$ 增
函数,给出下列四个结论:				
(1) $f(x)$ 在 $[-2,-1]$ 上单调设	递增; (2)		f(x) < 0;	
(3) $f(-x)$ 在 $[-2,-1]$ 上单调	周递减; (4)	f(x) 在 $[-2,-1]$ 上.	单调递减.	
其中正确的结论是				()
A. (1)(3) B.	(2)(4)	C. $(2)(3)$	D. $(3)(4)$	
3.5【2016 师大附中 18】(本小	、题满分 12 分) 已知	函数 $f(x)$ 为 \mathbb{R} 上的	J 偶函数. $x \leq 0$ 日	$f(x) = 4^{-x} -$
$a \cdot 2^{-x}, (a > 0)$				
(I) 求函数 $f(x)$ 在 $(0,+\infty)$ 上	上的解析式; (II) 求函	数 $f(x)$ 在 $[0,+\infty)$ 上	上的最小值.	

- 3.6 (福州市格致中学 2016-2017 高一上期中考试数学学科试卷 22) 已知二次函数 $f(x) = ax^2 + bx + 3$ 是偶函数,且过点 (-1,4), g(x) = x + 4 .
- (I) 求 f(x) 的解析式;
- (II) 求函数 $F(x) = f(2^x) + g(2^{x+1})$ 的值域;
- (III) 若 $f(x) \ge g(mx+m)$ 对 $x \in [2,6]$ 恒成立,求实数 m 的取值范围.

四、课后作业

4.1 如果 $f(x)$ 是定	义在 R 上的奇函数,那么下	列函数甲一定是偶函数旳是)
A. $x + f(x)$	B. $xf(x)$	C. $x^2 + f(x)$	D. $x^2 f(x)$	
4.2 已知函数 $g(x)$ =	= f(x) - x 是偶函数,且 $f(x)$	$f(-3) = 4$, \emptyset $f(-3) = \dots$	()
A4	B2	C. 0	D. 4	
4.3 设函数 $f(x), g(x)$	(x) 的定义域都为 (x) 月 (x)	是奇函数, $g(x)$ 是偶函数,	则下列结论正确的是()
A. $f(x) + g(x) $ 是	偶函数	B. $f(x) - g(x) $ 是奇函	ó数	
C. $ f(x) + g(x)$ 是	偶函数	D. $ f(x) - g(x)$ 是奇函	函数	
4.4 (福州格致中学	16-17 高一期中考,10) 若 f($x) = -x^2 + 2ax - g(x) = \frac{a}{x}$	$\frac{a}{1-1}$ 在区间 [1,2] 上都是减函数	敜,
)
		C. (0,1)		
4.5 设函数 $f(x) = 1$	$g\frac{2+x}{2-x}$,则 $f\left(\frac{x}{2}\right)+f\left(\frac{2}{x}\right)$ 的	定义域为	()
A. $(-4,0) \bigcup (0,4)$	B. $(-4, -1) \bigcup (1, 4)$	C. $(-2, -1) \bigcup (1, 2)$	D. $(-4, -2) \bigcup (2, 4)$	
4.6 (2009 四川卷文	理 12) 已知函数 $f(x)$ 是定り	义在实数集 ℝ 上的不恒为零的	偶函数,且对任意实数 x 都	有
xf(x+1) = (1+x)	$f(x)$,则 $f\left(\frac{5}{2}\right)$ 的值是		()
A. 0	B. $\frac{1}{2}$	C. 1	D. $\frac{5}{2}$	
4.7 若函数 $f(x) = 1$	$n(e^{3x}+1) + ax$ 为偶函数,「	U =		
4.8 若 f(x) 是定义	在 R 上的奇函数,当 $x \le 0$	时, $f(x) = 2x^2 - x$, 则 $f(1)$	=	
4.9 设函数 $f(x)$ 在	$(-\infty, +\infty)$ 内有定义,下列	函数:		
	$ 2 y = xf(x^2); $			
3 y = -f(-x)	① $y = f(x) - f(-x)$.			
中必为奇函数的有	(要求填写正	确答案的序号)		
4.10【2016 福州三中	□ 17】(本小题满分 12 分) [己知函数 $f(x) = \log_3 9x \cdot \log_3$	$x + 2, x \in [\frac{1}{9}, 3].$	

(2) 若不等式 f(x) - 2m + 1 > 0 恒成立, 求实数 m 的取值范围.

(1) 求 f(x) 最小值和最大值;

4.11 (福州八中 2015—2016 高一上学期期中考试 23) 设 f(x) 是定义在 $\mathbb R$ 上的奇函数,且对任意 $a,b\in\mathbb R$, 当 $a+b\neq 0$ 时,都有 $\frac{f(a)+f(b)}{a+b}>0$

- (1) 若 a > b, 试比较 f(a) 与 f(b) 的大小关系;
- (2) 若 $f(9^x 2 \cdot 3^x) + f(2 \cdot 9^x k) > 0$ 对任意 $x \in [0, \infty)$ 恒成立,求实数 k 的取值范围.

- 4.12 (福州市屏东中学 2016-2017 高一上期中 22) 已知函数 $f(x) = 2^x 2^{-2}$,定义域为 \mathbb{R} ;函数 $g(x) = 2^{x+1} 2^{2x}$,定义域为 [-1,1].
- (1) 判断函数 f(x) 的奇偶性,不用证明;
- (2) 求函数 g(x) 的最值;
- (3) 若不等式 $f(g(x)) \le f(-3am + m^2 + 1)$ 对 $x \in [-1, 1], a \in [-2, 2]$ 上恒成立,求 m 的取值范围.

五、参考答案

1.1 A

1.2 C

 $1.3~\mathrm{B}$

1.4 C

1.5 D

2.1 D

2.2 D

2.3 C

2.4 D

2.5 C

2.6 C

2.7 1

3.1 C

3.2 C

3.3 A

3.4 C

3.5 (I) $x \in (0, +\infty)$ B, $f(x) = f(-x) = 4^x - a \cdot 2^x$;

 $(\mathrm{II})a\geq 2\ \mathrm{Bf}\,,\ f(x)_{\mathrm{min}}=f(\frac{a}{2})=-\frac{a^2}{4}\,;$

0 < a < 2 时, $f(x)_{\min} = f(0) = 1 - a$.

3.6 (I) $f(x) = ax^2 + 3$; (II) $(7, +\infty)$; (III) $m \le 1$.

4.1 B

4.2 B

4.3 C

4.4 D

4.5 B

4.6 A

 $4.7 - \frac{3}{2}$

4.8 -3

4.9 (2)(4)

4.10 (1) $f_{\min}(x) = f(\frac{1}{3}) = 1$, $f_{\max}(x) = f(3) = 5$

(2) $m \in (-\infty, 1)$.

4.11 (1)f(a) > f(b); (2)k < 1.

4.12 (1) 增函数;

(2) $g(t)_{\text{max}} = g(1) = 1$; $g(t)_{\text{min}} = g(2) = 0$;

(3) $m \in (-\infty, -6) \cup [6, +\infty) \cup \{0\}.$