Corso di Laurea: Ingegneria Informatica

Esame di Fisica Generale, Sessione del: 5/6/2025 Cognome: Matricola: Nome: Anno di Corso:

Problema 1

Un punto materiale P di massa m si muove inizialmente su un piano orizzontale liscio con velocità di modulo $v_{P,i}$. Successivamente interagisce con un cuneo C di uguale massa m, inizialmente fermo, libero di muoversi sullo stesso piano orizzontale. Il cuneo ha un profilo piano liscio, inclinato di un angolo α rispetto all'orizzontale.

Si richiede di calcolare:

- 1. la massima altezza h_{max} , rispetto al piano orizzontale, raggiunta dal punto materiale durante l'interazione punto-cuneo;
- 2. le velocità finali $\vec{v}_{P,f}$ del punto materiale e $\vec{v}_{C,f}$ del cuneo quando, dopo l'interazione, i due corpi si muovono indipendentemente;
- 3. il modulo della reazione vincolare N del piano inclinato sul punto materiale durante l'interazione punto-cuneo;
- 4. per quanto tempo il punto materiale e il cuneo rimangono in contatto.

Suggerimento: il moto avviene in assenza di attriti e, quando il punto e il cuneo sono in contatto, \vec{N} è costante.

Problema 2

Una carica puntiforme q > 0 è concentrica ad un guscio sferico di materiale isolante i cui raggi interno ed esterno sono pari a $R_{d,1}$ e $R_{d,2}$, rispettivamente. Il guscio è uniformemente carico e la sua carica complessiva q_d è pari a q. Vi è poi un secondo guscio sferico, di materiale conduttore, anch'esso concentrico alla carica puntiforme, caricato elettricamente con una carica pari a $q_c = 2q$ e di raggio interno ed esterno pari a $R_{c,1} = 2R_{d,2}$ e $R_{c,2} = 3R_{d,2}$, rispettivamente.

Si determinino:

- 1. la densità superficiale di carica $\sigma_{c,i}$ presente sulla superficie interna del conduttore;
- 2. la densità superficiale di carica $\sigma_{c,e}$ presente sulla superficie esterna del conduttore;
- 3. l'espressione funzionale del campo elettrico in tutto lo spazio;
- 4. la minima velocità v_{\min} che deve possedere una particella che si trovi sulla superficie esterna del conduttore affinché questa possa raggiungere una distanza infinita dal sistema, sapendo che la particella ha carica $q_p < 0$ e massa m_p .

Soluzione del problema 1

Premessa: scelte del sistema di riferimento e delle coordinate

Scegliamo come sistema di riferimento il piano cartesiano del laboratorio:

- l'asse x è orizzontale e positivo verso destra;
- l'asse y è verticale e positivo verso l'alto.

Nel laboratorio abbiamo due corpi:

- il punto materiale P di massa m, con coordinate (x(t), y(t));
- il cuneo C di massa m, libero di muoversi sul piano orizzontale, con coordinata X(t) (lungo l'asse x).

Il cuneo ha un piano inclinato di angolo α rispetto all'orizzontale. Quando i due corpi sono in contatto, il punto P scorre senza attrito sul piano inclinato e vale il vincolo geometrico

$$y(t) = [x(t) - X(t)] \tan \alpha \iff x(t) - X(t) = y(t) \cot \alpha.$$
 (V)

All'istante iniziale t = 0:

$$x(0) = 0$$
, $y(0) = 0$, $\dot{x}(0) = v_{P,i}$, $\dot{y}(0) = 0$, $X(0) = 0$, $\dot{X}(0) = 0$.

Dato che il punto P incide sul cuneo con velocità orizzontale iniziale $\dot{x}(0) = v_{P,i}$. Tutte le superfici (punto-cuneo e cuneo-pavimento) sono perfettamente lisce: non ci sono forze di attrito e non ci sono forze esterne orizzontali.

1. Altezza massima h_{max}

1.1 Conservazione della quantità di moto orizzontale Poiché non agiscono forze esterne orizzontali, la componente orizzontale della quantità di moto del sistema "P+C" si conserva:

$$m \dot{x}(t) + m \dot{X}(t) = \text{costante} = m v_{P,i}.$$

In particolare,

$$\dot{X}(t) = v_{P,i} - \dot{x}(t). \tag{1}$$

1.2 Conservazione dell'energia meccanica L'energia meccanica totale del sistema è costante (assenza di attriti):

$$E = K_P + K_C + U_P = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) + \frac{1}{2} m \dot{X}^2 + m g y = \text{costante} = \frac{1}{2} m v_{P,i}^2.$$
 (2)

All'istante iniziale $(x=0,y=0,\dot{x}=v_{P,i},\dot{y}=0,\dot{X}=0)$, l'energia vale $\frac{1}{2}\,m\,v_{P,i}^2$.

1.3 Vincolo cinematico e relazione fra \dot{x} e \dot{y} Dal vincolo (V), derivando rispetto a t,

$$\dot{y}(t) = \left[\dot{x}(t) - \dot{X}(t)\right] \tan \alpha. \tag{3}$$

Sostituendo \dot{X} da (1):

$$\dot{y} = \left[\dot{x} - \left(v_{P,i} - \dot{x}\right)\right] \tan \alpha = \left(2\,\dot{x} - v_{P,i}\right) \, \tan \alpha. \tag{4}$$

In particolare, alla massima altezza $y=h_{\max}$ la componente verticale \dot{y} si annulla:

$$\dot{y} = 0 \implies 2\dot{x} - v_{P,i} = 0 \implies \dot{x} = \frac{v_{P,i}}{2}.$$

Poiché al tempo dell'apice $\dot{x} = \dot{X}$ (hanno la stessa velocità orizzontale), ne segue

$$\dot{x}\big|_{y=h_{\text{max}}} = \dot{X}\big|_{y=h_{\text{max}}} = \frac{v_{P,i}}{2}.$$
 (5)

Osservazione Possiamo risolvere questo punto senza ricorrere al vincolo cinematico. Notiamo infatti che, alla massima altezza $y=h_{\max}$ la componente verticale \dot{y} si annulla. Questo significa che non c'è moto relativo tra i due corpi e $\dot{x}=\dot{X}=v_{CM}$ dove v_{CM} è la velocità del centro di massa del sistema. Per la conservazione della quantità di moto (quando $\dot{y}=0$), $v_{CM}=\frac{v_{P,i}}{2}$.

1.4 Energia meccanica per $y = h_{\text{max}}$ Alla massima altezza $y = h_{\text{max}}$, si ha $\dot{y} = 0$ e $\dot{x} = \dot{X} = v_{P,i}/2$. Quindi:

$$K_{P}\Big|_{\substack{\dot{y}=0\\ \dot{x}=v_{P,i}/2}} = \frac{1}{2} m \left(\dot{x}^{2} + \dot{y}^{2} \right) = \frac{1}{2} m \left(\frac{v_{P,i}^{2}}{4} + 0 \right) = \frac{m v_{P,i}^{2}}{8},$$

$$K_{C}\Big|_{\substack{\dot{X}=v_{P,i}/2}} = \frac{1}{2} m \left(\frac{v_{P,i}^{2}}{4} \right) = \frac{m v_{P,i}^{2}}{8},$$

$$U_{P}\Big|_{\substack{y=h_{\text{max}}}} = m g h_{\text{max}}.$$

Sommandoli e uguagliando all'energia iniziale $\frac{1}{2} m v_{P_i}^2$:

$$\frac{m \, v_{P,i}^2}{8} + \frac{m \, v_{P,i}^2}{8} + m \, g \, h_{\text{max}} = \frac{m \, v_{P,i}^2}{4} + m \, g \, h_{\text{max}} = \frac{1}{2} \, m \, v_{P,i}^2.$$

Da cui

$$m g h_{\text{max}} = \frac{1}{2} m v_{P,i}^2 - \frac{m v_{P,i}^2}{4} = \frac{m v_{P,i}^2}{4} \implies h_{\text{max}} = \frac{v_{P,i}^2}{4 g}.$$

$$h_{\text{max}} = \frac{v_{P,i}^2}{4 g}.$$

2. Velocità finali (quando P torna su y = 0)

Quando P ritorna sul piano orizzontale (y = 0), $\dot{y} = 0$ e i corpi si muovono entrambi in orizzontale. Valgono:

• Conservazione della quantità di moto tra istante iniziale $(\dot{x} = v_{P,i}, \dot{X} = 0)$ e istante finale $(\dot{x} = \dot{x}_f, \dot{X} = \dot{X}_f)$:

$$m v_{P,i} = m \dot{x}_f + m \dot{X}_f \implies \dot{X}_f = v_{P,i} - \dot{x}_f. \tag{6}$$

• Conservazione dell'energia meccanica (ora entrambi si trovano a y = 0, quindi solo cinetica):

$$\frac{1}{2} m v_{P,i}^2 = \frac{1}{2} m \dot{x}_f^2 + \frac{1}{2} m \dot{X}_f^2.$$
 (7)

Da (6) e (7) otteniamo

$$\begin{cases} v_{P,i} = \dot{x}_f + \dot{X}_f, \\ v_{P,i}^2 = \dot{x}_f^2 + \dot{X}_f^2. \end{cases} \implies \dot{x}_f = 0, \quad \dot{X}_f = v_{P,i}.$$
$$\vec{v}_{P,f} = (0, 0), \qquad \vec{v}_{C,f} = \vec{v}_{P,i}.$$

Osservazione Per risolvere questo punto non è necessario esplicitare il vincolo cinematico, dato che siamo interessati ai due stati (iniziale e finale) nei quali i corpi si muovono indipendentemente. Tra i due stati si conservano l'energia cinetica e la quantità di moto del sistema, pertanto il caso può essere trattato come un urto elastico unidimensionale tra due masse uguali con bersaglio inizialmente fermo.

3. Modulo della reazione normale N

3.1 Equazioni del moto di P Le forze agenti sul punto materiale P sono:

$$\vec{P} = -mg\hat{\jmath}, \qquad \vec{N} = N\left(-\sin\alpha\hat{\imath} + \cos\alpha\hat{\jmath}\right).$$

Le equazioni di Newton per le componenti di P, in direzione $x \in y$, sono:

$$\begin{cases}
m \ddot{x} = -N \sin \alpha, \\
m \ddot{y} = N \cos \alpha - m g.
\end{cases}$$
(8)

3.2 Vincoli cinematici per \ddot{x} **e** \ddot{y} Usando le relazioni (1) e (3) e derivando rispetto al tempo, abbiamo

$$\dot{X} = v_{P,i} - \dot{x}, \qquad \ddot{X} = -\ddot{x},$$

$$\dot{y} = (2\dot{x} - v_{P,i}) \tan \alpha, \qquad \ddot{y} = 2\ddot{x} \tan \alpha.$$

Poiché l'energia meccanica è costante, dE/dt=0. Derivando rispetto al tempo l'equazione (2), sostituendo le espressioni di \ddot{y} e \ddot{X} e semplificando, si ricava

$$\ddot{x} = -g \, \frac{\sin \alpha \, \cos \alpha}{1 + \sin^2 \alpha}.\tag{9}$$

3.3 Componente orizzontale di Newton e N Dalla prima equazione di (8):

$$m \ddot{x} = -N \sin \alpha \implies N \sin \alpha = -m \ddot{x}.$$

Sostituendo \ddot{x} da (9):

$$N \sin \alpha = -m\left(-g \frac{\sin \alpha \cos \alpha}{1 + \sin^2 \alpha}\right) = m g \frac{\sin \alpha \cos \alpha}{1 + \sin^2 \alpha}.$$

Da cui

$$N = m g \, \frac{\cos \alpha}{1 + \sin^2 \alpha}.$$

$$N = m g \, \frac{\cos \alpha}{1 + \sin^2 \alpha}.$$

4. Durata dell'interazione $t_{\rm int}$

Durante il contatto, \ddot{x} è costante e vale (da (9))

$$\ddot{x} = -g \, \frac{\sin \alpha \, \cos \alpha}{1 + \sin^2 \alpha}.$$

All'istante iniziale t = 0: $\dot{x}(0) = v_{P,i}$. All'istante finale $t = t_{\text{int}}$: $\dot{x}(t_{\text{int}}) = 0$. Integrando $\ddot{x} = \text{const}$:

$$\dot{x}(t) = v_{P,i} + \ddot{x} t = v_{P,i} - g \frac{\sin \alpha \cos \alpha}{1 + \sin^2 \alpha} t.$$

Ponendo $\dot{x}(t_{\rm int}) = 0$:

$$0 = v_{P,i} - g \frac{\sin \alpha \cos \alpha}{1 + \sin^2 \alpha} t_{\text{int}} \implies t_{\text{int}} = v_{P,i} \frac{1 + \sin^2 \alpha}{g \sin \alpha \cos \alpha}.$$

$$t_{\text{int}} = \frac{v_{P,i} \left(1 + \sin^2 \alpha \right)}{g \sin \alpha \cos \alpha}.$$

5

Soluzione del problema 2

Premessa: sistema di riferimento e coordinate

Consideriamo il sistema di riferimento in cui il centro delle sfere coincide con l'origine. Denotiamo:

- q = carica puntiforme, posizionata in r = 0, con q > 0.
- Guscio sferico dielettrico (isolante), con raggio interno $R_{d,1}$ e raggio esterno $R_{d,2}$, uniformemente carico, carica totale $q_d = q$.
- Guscio sferico *conduttore*, con raggio interno $R_{c,1} = 2 R_{d,2}$ e raggio esterno $R_{c,2} = 3 R_{d,2}$, caricato con carica totale $q_c = 2 q$.

Tutti i gusci sono concentrici (stesso centro r = 0).

1. Densità superficiale di carica $\sigma_{c,i}$ sulla superficie interna del conduttore

- 1.1 Necessità del campo nullo all'interno del conduttore Nel materiale conduttore il campo elettrico interno deve essere zero. Quindi, entro una superficie Gaussiana sferica di raggio $R_{c,1} < r < R_{c,2}$ (superficie interna al conduttore), concentrica alla carica puntiforme, la carica racchiusa deve essere nulla. Le cariche racchiuse per $R_{c,1} < r < R_{c,2}$ sono:
 - la carica puntiforme q in r=0,
 - la carica distribuita sul guscio dielettrico (che, essendo uniformemente carico con carica totale q, contribuisce integralmente se $r > R_{d,2}$; in particolare, per $r = R_{c,1} = 2R_{d,2}$ siamo già al di fuori di tutto il guscio dielettrico), quindi $q_d = q$,
 - la carica distribuita sulla superficie interna al conduttore.

Totale carica interna a $R_{c,1} < r < R_{c,2}$:

$$Q_{\text{int}} = q + q_d + Q_{c,i} = q + q + Q_{c,i} = 0.$$

Di conseguenza:

$$Q_{c,i} = -2q.$$

La densità superficiale di carica su quella superficie è

$$\sigma_{c,i} = \frac{Q_{c,i}}{4\pi R_{c,1}^2} = \frac{-2 q}{4\pi (2 R_{d,2})^2} = \frac{-2 q}{16\pi R_{d,2}^2} = -\frac{q}{8\pi R_{d,2}^2}.$$

$$\sigma_{c,i} = -\frac{q}{8\pi R_{d,2}^2}.$$

2. Densità superficiale di carica $\sigma_{c,e}$ sulla superficie esterna del conduttore

La carica totale del conduttore è $q_c = 2q$. Sulla superficie interna abbiamo già $Q_{c,i} = -2q$. Pertanto, la carica rimasta sulla superficie esterna (raggio $R_{c,2}$) è

$$Q_{c,e} = q_c - Q_{c,i} = 2q - (-2q) = 4q.$$

La densità superficiale sulla superficie esterna $r=R_{c,2}=3\,R_{d,2}$ è

$$\sigma_{c,e} = \frac{Q_{c,e}}{4\pi R_{c,2}^2} = \frac{4 q}{4\pi (3 R_{d,2})^2} = \frac{4 q}{36\pi R_{d,2}^2} = \frac{q}{9\pi R_{d,2}^2}.$$

$$\sigma_{c,e} = \frac{q}{9\pi R_{d,2}^2}.$$

3. Espressione funzionale del campo elettrico $\mathbf{E}(r)$ in tutto lo spazio

Usiamo il Teorema di Gauss, considerando diverse superfici sferiche concentriche in funzione della distanza radiale r. Sia ε_0 la costante dielettrica del vuoto. Per simmetria, il campo elettrico è radiale e, dato che le cariche sono positive, uscente rispetto all'origine del riferimento.

(a) $0 < r < R_{d,1}$ (interno al primo guscio) La sola carica racchiusa è q al centro; quindi

$$E(r) = \frac{1}{4\pi\varepsilon_0} \, \frac{q}{r^2}.$$

(b) $R_{d,1} < r < R_{d,2}$ (all'interno del guscio dielettrico uniformemente carico) La carica racchiusa è

$$q + Q_{\text{diel}}(r),$$

dove $Q_{\text{diel}}(r)$ è la porzione di carica del guscio dielettrico contenuta nella sfera di raggio r. Poiché il guscio dielettrico ha densità volumica uniforme

$$\rho_d = \frac{q_d}{\frac{4}{3}\pi \left(R_{d,2}^3 - R_{d,1}^3\right)} = \frac{q}{\frac{4}{3}\pi \left(R_{d,2}^3 - R_{d,1}^3\right)},$$

la carica entro la sfera di raggio r (con $R_{d,1} < r < R_{d,2}$) è

$$Q_{\text{diel}}(r) = \rho_d \operatorname{Vol}(R_{d,1} < r < R) = \frac{q}{\frac{4}{3}\pi \left(R_{d,2}^3 - R_{d,1}^3\right)} \times \frac{4}{3}\pi \left(r^3 - R_{d,1}^3\right) = q \frac{r^3 - R_{d,1}^3}{R_{d,2}^3 - R_{d,1}^3}.$$

Quindi la carica totale racchiusa nella sfera di raggio r è

$$q_{\rm enc}(r) = q + q \frac{r^3 - R_{d,1}^3}{R_{d,2}^3 - R_{d,1}^3} = q \left[1 + \frac{r^3 - R_{d,1}^3}{R_{d,2}^3 - R_{d,1}^3} \right].$$

Ne segue

$$E(r) = \frac{1}{4\pi\varepsilon_0} \frac{q_{\rm enc}(r)}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} q \left[1 + \frac{r^3 - R_{d,1}^3}{R_{d,2}^3 - R_{d,1}^3} \right].$$

(c) $R_{d,2} < r < R_{c,1}$ (esterna al guscio dielettrico, interna alla superficie interna del conduttore)

La carica racchiusa è quella del punto più quella di tutto il guscio dielettrico:

$$q + q = 2q$$
,

quindi

$$E(r) = \frac{1}{4\pi\varepsilon_0} \, \frac{2\,q}{r^2}.$$

(d) $R_{c,1} < r < R_{c,2}$ (all'interno dello spessore del conduttore) All'interno di un conduttore in equilibrio elettrostatico, il campo è zero:

$$E(r) = 0.$$

(e) $r > R_{c,2}$ (esterna a tutto il sistema) La carica totale racchiusa è

$$q + q + q_c = q + q + 2q = 4q$$

quindi

$$E(r) = \frac{1}{4\pi\varepsilon_0} \, \frac{4\,q}{r^2}.$$

Riassumendo:

$$E(r) = \begin{cases} \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}, & 0 < r < R_{d,1}, \\ \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \left[1 + \frac{r^3 - R_{d,1}^3}{R_{d,2}^3 - R_{d,1}^3} \right], & R_{d,1} < r < R_{d,2}, \\ \frac{1}{4\pi\varepsilon_0} \frac{2q}{r^2}, & R_{d,2} < r < R_{c,1}, \\ 0, & R_{c,1} < r < R_{c,2}, \\ \frac{1}{4\pi\varepsilon_0} \frac{4q}{r^2}, & r > R_{c,2}. \end{cases}$$

- 4. Minima velocità v_{\min} per una particella con $q_p < 0$ e massa m_p sulla superficie esterna del conduttore
- **4.1 Potenziale elettrostatico di riferimento** Poniamo $V(\infty) = 0$. L'energia potenziale di una carica $q_p < 0$ in $r = R_{c,2}$ è

$$U(R_{c,2}) = q_p V(R_{c,2}).$$

Il potenziale scalare V(r) (per $r \geq R_{c,2}$) corrisponde a un campo $E(r) = \frac{1}{4\pi\varepsilon_0} \frac{4q}{r^2}$, dunque

$$V(R_{c,2}) = \int_{r=R_{c,2}}^{\infty} E(r) dr = \int_{R_{c,2}}^{\infty} \frac{1}{4\pi\varepsilon_0} \frac{4 q}{r^2} dr = \frac{4 q}{4\pi\varepsilon_0} \left[\frac{1}{R_{c,2}} \right] = \frac{q}{\pi\varepsilon_0 R_{c,2}}.$$

Quindi

$$U(R_{c,2}) = q_p \frac{q}{\pi \varepsilon_0 R_{c,2}} = \frac{q q_p}{\pi \varepsilon_0 R_{c,2}}.$$

4.2 Conservazione dell'energia meccanica per la particella Per la particella P_p (carica $q_p < 0$, massa m_p) sulla superficie esterna $r = R_{c,2}$, la condizione minima di fuga $(r \to \infty)$ è che l'energia totale iniziale sia non negativa. All'istante iniziale:

$$E_{\text{tot}}(0) = T(0) + U(R_{c,2}) = \frac{1}{2} m_p v_{\min}^2 + \frac{q q_p}{\pi \varepsilon_0 R_{c,2}}.$$

Alla distanza infinita $r \to \infty$, l'energia potenziale si annulla $V(\infty) = 0$ e desideriamo che l'energia cinetica residua sia non negativa (per la fuga). Per il caso limite "energia residua zero", imponiamo

$$\frac{1}{2} m_p v_{\min}^2 + \frac{q \, q_p}{\pi \varepsilon_0 \, R_{c,2}} = 0.$$

Da cui

$$\frac{1}{2} m_p v_{\min}^2 = -\frac{q \, q_p}{\pi \varepsilon_0 \, R_{c,2}}.$$

Poiché $q_p<0$ e q>0,il membro destro è positivo. Quindi

$$v_{\min} = \sqrt{\frac{-2 q q_p}{\pi \varepsilon_0 m_p R_{c,2}}}.$$

Ricordando $R_{c,2} = 3 R_{d,2}$, si può anche scrivere

$$v_{\min} = \sqrt{\frac{-2 q q_p}{\pi \varepsilon_0 m_p (3 R_{d,2})}} = \sqrt{\frac{-2 q q_p}{3 \pi \varepsilon_0 m_p R_{d,2}}}.$$

$$v_{\min} = \sqrt{\frac{-2 q q_p}{3 \pi \varepsilon_0 m_p R_{d,2}}}.$$