Problem 9

Problem

Diagonals AC and BD of quadrilateral ABCD meet at E. If AE=2,BE= 5, CE = 10, DE = 4, and BC = 15/2, find AB.

Solution

$$\frac{1}{2}\sqrt{171}$$

As shown in the figure, since $BE/AE = CE/DE = 5/2, \triangle AED \sim \triangle BEC$. Therefore, BE/AE = BC/AD, or $\frac{5}{2} = \frac{\frac{15}{2}}{AD}$.

Therefore,
$$BE/AE = BC/AD$$
, or $\frac{5}{2} = \frac{\frac{15}{2}}{AD}$

Thus,
$$AD = 3$$
.

Similarly, $\triangle AEB \sim \triangle DEC$.

Therefore, AE/DE = AB/DC or 1/2 = AB/DC.

Thus, DC = 2(AB).

Also, $\angle LBAC = \angle BDC$. Therefore, quadrilateral ABCD is cyclic. Now, applying Ptolemy's Theorem to cyclic quadrilateral

 $ABCD, \ (AB)(DC) + (AD)(BC) = (AC)(BD).$ Substituting, we find that $AB = \frac{1}{2}\sqrt{171}$.