Thm 5.16 $P \subseteq NP \subseteq EXP$.

Proof:

1.
$$P \subseteq NP$$

Let $L \in P$. We shall prove $L \in NP$.

Let p(n) = 0, and let M be a TM that decides L efficiently.

If $x \in L$, then $M(x,\epsilon) = 1$. If $x \not\in L$, then $M(x,\epsilon) = 0$.

2.
$$NP \subseteq EXP$$

Let $L \in NP$. We will prove $L \in EXP$.

Since $L \in NP$, there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M s.t. 1,2 hold.

Construct a TM M' which enumerates all $w \in \{0,1\}^{p(|x|)}$ and check if M(x,w)=1.

If there exists one w s.t. M(x,w)=1, then M accepts x.

The total running time is $2^{p(n)} \cdot poly(n) = 2^{n^{O(1)}} \cdot n^{O(1)} = 2^{n^{O(1)}}$

• $poly(n) = n^{O(1)}$

Nondeterministic TMs

At any point, the machine may proceed according to severl possibilities. The transition function

$$\delta:Q imes\Gamma o P(Q imes\Gamma imes\{L,R,S\})$$

Formally, an NTM $M = (\Sigma, \Gamma, Q, \delta, q_0, q_{accept}, q_{reject})$

M accepts x if there is a computation path that accepts x.

Def 5.17 Say an NTM M runs in time T(n) if for exery input $x \in \{0,1\}^n$, and every sequence of nondeterministic choice, M reaches an end state in T(n) steps.

Def 5.18 Say an NTM M decides L if for every $x \in \{0,1\}^*$, $x \in L \Leftrightarrow M(x) = 1$

Def 5.19 (Binary-choice NTM)

$$M = (Q, \Sigma, \Gamma, \delta_1, \delta_2, q_0, q_{accept}, q_{reject}),$$

where $\delta_1, \delta_2: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$

At each step, M applies δ_1 or δ_2 arbitrarily.

Lem 5.20 Let $L\subseteq\{0,1\}^*$. If L can be decided by an NTM M in time T(n), then L can be decided by a binary-choice NTM in time $O_M(T(n))$.

Proof: At each step, M can have at most $2^{|Q| \times |\Gamma| \times 3}$ choices. This can be simulated in $\log_2 2^{|Q| \times |\Gamma| \times 3} = |Q| \times |\Gamma| \times 3$ steps by a binary-choice NTM.

Def 5.21 Let $T:\mathbb{N}\to\mathbb{N}$. Let NTIME(T(n)) be the set of languages that can be decided by an NTM in time O(T(n)).

Thm 5.22 $NP={\displaystyle \mathop{\cup}_{c>1}}NTIME(n^c)$

Proof:

- 1. $(egin{array}{c} \cup \\ c>1 \end{array} NTIME(n^c)\subseteq NP)$ Let $L\in egin{array}{c} \cup \\ c>1 \end{array} NTIME(n^c)$, we will prove $L\in NP$.
 - Since $L \in NTIME(n^c)$, there exists a binary-choice NTM N that decides L in time $d \cdot n^c$, where d>0 is a constant. Let $p(n)=d \cdot n^c$, and let the certificate $w \in \{0,1\}^{p(n)}$ indicates which transition function to apply. The verifier checks if N accepts x (given the certificate).
- 2. $(NP\subseteq {}_{c>1}^{\ \cup}NTIME(n^c))$ Let $L\in NP.$ We will prove $L\in {}_{c>1}^{\ \cup}NTIME(n^c).$

..... On input x, construct an NTM as follows:

- 1. Nondeterministically guess $w \in \{0,1\}^{p(|x|)}$
- 2. Simulate M on input (x, w). Accept if and only if M accepts (x, w).

It is clear that N runs in polynomial time, and N decides L. Q.E.D.

 $extit{Def 5.23}$ (Karp Reduction) Let $L, K \subseteq \{0,1\}^*$. Say L is Karp-reducible to K, denoted by $L \leq_P K$, if there exists a polynomial-time TM M s.t. for all $x \in \{0,1\}^*$, $x \in L \Leftrightarrow M(x) \in K$.

• $L \leq_P K \Rightarrow \text{If } K \in P$, then $L \in P$. If $L \notin P$, then $K \notin P$.

Lem 5.24 If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$.

• Let $M_3=M_2(M_1(x))$, which also runs in polynomial time. We can check $x\in L_1\Leftrightarrow M_3(x)\in L_3.$

Def 5.25 (NP-Hard) $L\subseteq\{0,1\}^*$ is NP-hard if for all language $K\in NP$, $K\leq_P L$.

Def 5.26 (NP-Complete) L is NP-complete if L is in NP, and L is NP-hard.

• NP-complete = $NP \cap NP$ -hard

Lem 5.27 If L is NP-hard, and $L \in P$, then P = NP.

Lem 5.28 Let $L \in \mathsf{NP ext{-}complete}$. Then $L \in P \Leftrightarrow P = NP$.

Cook-Levin Theorem

• Cook(1971), Levin(1973) proved the first NP-complete problem SAT.

SAT (Boolean Satisfiability Problem)

- $\bullet \;\; \text{Variable:} \; x,y,z,\ldots$ can take TRUE or FALSE.
- ullet Literal: A variable or its negation. eg. $x, \neg x, y, \neg y, \ldots$
- Clause: OR(Disjunction) of one or more literals. eg. $\neg x \lor y, \neg y \lor z, \dots$
- Formula: AND(Conjunction) of one or more clauses.

$$SAT = \{ <\phi > |\phi \; is \; satisfiable \}$$

Thm 5.29 **SAT is NP-complete.**