EXERCÍCIOS PROPOSTOS

- 1) Obter os seguintes logaritmos:
 - a) log₂ (32√2)
 - b) $\log_3\left(\frac{1}{27}\right)$
 - c) $\log_{1/5} \sqrt[3]{5}$
- 2) Calcular o logaritmo de 144 na base $2\sqrt{3}$.
- 3) Para que valores de x existe log_x (2 x)?
- 4) Para que valores de a e x existe $\log_a[a(x^2 1)]$?
- 5) Calcular $\log_{92} 1 + \log_{\cos \pi/4} \left(\sin \frac{\pi}{4} \right) + \log_{\pi} \pi^2$.
- 6) Simplificar:
 - a) 3log₃ 5
 - b) 31 + log3 5
- 7) Calcular o valor de log₂(log₂ 16) log₂(log₃ 81).
- 8) Sendo $a^2 + b^2 = 70ab$, calcular $\log_5 \frac{(a+b)^2}{ab}$ em função de $m = \log_5 2$ e $n = \log_5 3$.
- 9) Dado que log a = r, log b = s e log c = t, obter x em função de r, t e s.

$$x = \log \frac{a\sqrt[3]{b^2}}{\sqrt{c}}$$

- 10) Sabendo que log 2 = 0,3010 e log 3 = 0,4771, calcular o valor de log 450.
- 11) Sabendo que log x = log b + 2 log c $\frac{1}{3}$ log a, obter x.
- **12)** Calcular $\log 7.2$, sabendo que $\log 2 = 0.30103$ e $\log 3 = 0.47712$.
- 13) Simplificar $\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \log_5 2$.
- 14) Calcular $\log \left(\frac{1}{a}\right) + \log \left(\frac{1}{b}\right)$, se $\log a + \log b = p$.
- 15) Calcular log 2 e log 3, se log 6 = a e log $\left(\frac{3}{4}\right)$ = b.

Resolver em R:

$$16) \log_3 (x^2 - 5x + 5) = 0$$

17)
$$2 \log x = \log 4 + \log (x + 3)$$

18)
$$\log (x + 2) + 2 = \log (4x^2 - 400)$$

19)
$$\log_2(x-1) - \log_4(x-1) = 1$$

20)
$$(\log_3 x)^2 + 9 = 6 \log_3 x$$

21) Resolver o sistema

$$\begin{cases} \log x + \log y = 1 \\ \log x - 3 \log y = -7 \end{cases}$$

22) Dado o sistema

$$\begin{cases} \log x + \log y = 2 \\ x + y = 35 \end{cases}$$

calcule o valor de $x^2 + y^2$.

Resolver em R:

- 23) $\log_5 x = \log_x 5$
- **24)** $\log_4(\log_3(\log_2 x)) = 0$

25)
$$x + \log (1 + 2^x) = x \cdot \log 5 + \log 6$$

26)
$$(3^x)^x = 9^8$$

27)
$$e^x + e^{-x} = 2$$

28)
$$2^{x+3} + 63 = \frac{8}{2^{x}}$$

- 29) $2^{x+1} 2^{3-x} = 6$
- 30) Resolver o sistema

$$2^x + 3^y = \frac{19}{2}$$

$$2^{x} \cdot 3^{y} = \frac{9}{2}$$

- **31)** Obter o valor de \log_{35} 28, dado que \log_{14} 7 = a e \log_{14} 5 = b.
- 32) Sabendo que log a = 6, log b = 3 e log c = -6, calcular $\log^3 \frac{a^2b^2}{c^3}$
- 33) Calcular log tg 1° + log tg 2° + ... + log tg 89°.
- **34)** Resolver em \mathbb{R} : $2^x + 5 \cdot 2^{-x} 69 \cdot \log_2 \sqrt[8]{2} = 0$.

Resolver em R:

- **35)** $(0, 5)^x > 2$
- 36) $3^{x^2-1} \le 27$
- 37) $9^x 3^x > 6$
- 38) $(0.12)^{x^3} > (0.12)^x$
- **39)** Qual o domínio de f(x) = $\sqrt{2^x (0.5)^x}$
- **40)** $\log_{1/2}(x^2 | 1) \ge \log_{1/2}\left(\frac{1}{2}\right)$
- 41) $\log_{1/2}(x^2 2x) \ge -3$
- **42)** $(\log x)^2 3 \log x + 2 \ge 0$
- 43) $0 < \log_2 (2x 1) < 1$
- 44) $\log_2 (x 5) + \log_2 (x 4) \le 1$

- 45) Resolver em \mathbb{R} : $x \cdot \log_{1/2}(x 1) \leq 0$.
- 46) Resolver em R:

$$ln(x^2 - 4) - ln(x - 4) > ln(2x + 1)$$

- 47) Resolver em R: 31/x < 1/9.
- **48)** Resolver em \mathbb{R} : $(\sqrt[5]{1,1})^{x^2+x+1} < 1$.
- **49)** Resolver em \mathbb{R} : $\log_{1/3} \log_4 (x^2 5) \ge 0$.
- 50) Com uso das tábuas de logaritmos, obter:
 - a) log 2410
 - b) log 241
 - c) log 0,00241
- 51) Com uso das tábuas de logaritmos, obter x tal que:
 - a) $\log x = 0.92942$

d) $\log x = -3.21681$

b) $\log x = 2.92942$

e) $\log x = -2,40231$

c) $\log x = 3.78319$

f) $\log x = 3.59769$

52) Numa tábua de logaritmos decimais foram encontrados os valores seguintes:

×	mantissa de log x
3494	54332
3495	54345

Calcular o valor de log 34,948 por interpolação.

53) Numa tábua de logaritmos decimais foram encontrados os valores seguintes:

×	mantissa de log x
3215	5071810
3216	5073160

Calcular o valor de log 321,58 por interpolação.

- 54) Qual a característica e qual a mantissa de log x num sistema de base 5, dado que x = 25a e log₅ a = 2,35741?
- 55) Mostre que não existem inteiros positivos a e b tais que log 2 = a/b (isto é, log 2 não é um número racional).