1.2 数列的极限

- 1.2.1 数列的定义
- 1.2.2 引入
- 1.2.3 数列的极限
- 1.2.4 收敛数列的性质

I

一、数列的定义

定义:按自然数1,2,3,…编号依次排列的一列数

$$x_1, x_2, \cdots, x_n, \cdots$$
 (1)

称为<u>无穷数列</u>,简称<u>数列</u>.其中的每个数称为数列的<u>项</u>, x_n 称为<u>通项(一般项)</u>.数列(1)记为{ x_n }.

例如 1,-1,1,···,(-1)ⁿ⁺¹,···; {(-1)ⁿ⁻¹}
$$a_n = (-1)^{n-1}$$

$$\sqrt{3}, \sqrt{3} + \sqrt{3}, \dots, \sqrt{3} + \sqrt{3} + \sqrt{\dots + \sqrt{3}}, \dots$$

$$a_{n+1} = \sqrt{3 + a_n}$$

注意:

1. 数列对应着数轴上一个点列.可看作一动点在数轴上依次取 $x_1, x_2, \dots, x_n, \dots$

2.数列是整标函数 $x_n = f(n)$.

定义域是正整数!

二、引入

1、割圆术:

"割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣"

——刘徽

记圆的面积为S

正六边形的面积 A_1

正十二边形的面积 A_2

正 $6 \times 2^{n-1}$ 形的面积 A_n

$$A_1, A_2, A_3, \cdots, A_n, \cdots \Longrightarrow S$$

2、截丈问题:

"一尺之棰,日截其半,万世不竭"

第一天余下的杖长为 $X_1 = \frac{1}{2}$; ——《庄子·天下篇》

第二天余下的杖长为 $X_2 = \frac{1}{2^2}$;

第*n*天余下的杖长为 $X_n = \frac{1}{2^n}$;

$$X_n = \frac{1}{2^n} \neq 0 \longrightarrow 0$$

三、数列的极限

考察数列 $\{1+\frac{(-1)^{n-1}}{n}\}$ 当 $n\to\infty$ 时的变化趋势.

问题: 当 n 无限增大时, x_n是否无限接近于某一确定的数值?如果是,如何确定?

当 n 无限增大时, $x_n = 1 + \frac{(-1)^{n-1}}{n}$ 无限接近于 1.

问题: "无限接近"意味着什么? 距离要多小就有多小! 如何用数学语言刻划它?

$$\left| x_n - 1 \right| = \left| (-1)^{n-1} \frac{1}{n} \right| = \frac{1}{n}$$

$$|x_n - 1| = \left| (-1)^{n-1} \frac{1}{n} \right| = \frac{1}{n}$$
 "无限接近" 距离要多小就有多小

给定 $\frac{1}{100}$,要使 $\frac{1}{n} < \frac{1}{100}$,只要n > 100时,有 $|x_n - 1| < \frac{1}{100}$,

给定 $\frac{1}{1000}$, 只要n > 1008时,有 $|x_n - 1| < \frac{1}{1000}$,

给定 $\frac{3}{10000}$, 只要 n > 3333 时, 有 $|x_n - 1| < \frac{3}{10000}$,

给定 $\varepsilon > 0$, 只要 $n > N = \begin{bmatrix} 1 \\ - \end{bmatrix}$ 时, 有 $|x_n - 1| < \varepsilon$ 成立 不论 ε 多么小 ε , δ 一般表示很小的数

定义 如果对于任意给定的正数 ε (不论它多么小),总存在正数N,使得对于n > N时的一切 x_n ,不等式 $|x_n - a| < \varepsilon$ 都成立,那么就称常数 a 是数列 x_n 的极限,或者称数列 x_n 收敛于a,记为 $\lim x_n = a$, 或 $x_n \to a$ $(n \to \infty)$.

如果数列没有极限,就说数列是发散的.

 $\varepsilon - N$ 定义: $\lim_{n \to \infty} x_n = a \Leftrightarrow$ $\forall \varepsilon > 0, \exists N > 0, \exists n > N$ 时, 恒有 $|x_n - a| < \varepsilon$ 不等式 $|x_n - a| < \varepsilon$ 刻画了 x_n 与 a 的无限接近

- 注1. ε 的任意性: ε 的作用在于衡量 x_n 与a的接近程度, ε 愈小,表明接近得越好,有时可假设 ε <1! 但 ε 一旦给出,就应暂时看作是固定不变的,以便根据它来求N.
- 2.N的相应性 N一般随着 ε 的变小而变大,所以也可写作 $N(\varepsilon)$,用来强调N对 ε 的依赖性. 但N不是由 ε 唯一确定. 对于 $\forall \varepsilon$,找到满足定义要求的 N_0 ,那么任一个大于 N_0 的N也可作为定义要求的N.

$$\lim_{n\to\infty} x_n = a \Leftrightarrow$$

 $\forall \varepsilon > 0, \exists N > 0, \exists n > N$ 时,恒有 $|x_n - a| < \varepsilon$

3. 几何解释:

当n > N时,所有的点 x_n 都落在($a - \varepsilon$, $a + \varepsilon$)内,只有有限个(至多只有N个)落在其外.

(4) 从定义中可以看出,若要用定义证明极限存在, 关键在于对

 $\forall \varepsilon > 0$,找出N, 当n > N时, $|x_n - a| < \varepsilon$ 成立。

例 1 证明
$$\lim_{n\to\infty} \left(1+\frac{(-1)^{n-1}}{n}\right)=1.$$

证 因为
$$|x_n - 1| = \left| 1 + \frac{(-1)^{n-1}}{n} - 1 \right| = \frac{1}{n}$$

所以对任给的
$$\varepsilon > 0$$
,要使 $|x_n - 1| < \varepsilon$,只要 $\frac{1}{n} < \varepsilon$,即 $n > \frac{1}{\varepsilon}$,取 $N = [\frac{1}{\varepsilon}]$ 则当 $n > N$ 时,

就有
$$\left| \frac{n + (-1)^{n-1}}{n} - 1 \right| < \varepsilon$$
 即 $\lim_{n \to \infty} \frac{n + (-1)^{n-1}}{n} = 1.$

例2 设 $x_n \equiv C(C$ 为常数),证明 $\lim_{n\to\infty} x_n = C$.

证 任给 $\varepsilon > 0$, 对于一切自然数 n,

$$|x_n-C|=|C-C|=0<\varepsilon成立,$$

所以,
$$\lim_{n\to\infty}x_n=C$$
.

说明: 常数列的极限等于同一常数.

小结:用定义证数列极限存在时,关键是任意给定 $\epsilon > 0$,寻找N,但不必要求最小的N.

例 证明
$$\lim_{n\to\infty}\frac{1}{2^n}=0$$

例 3 证明
$$\lim_{n\to\infty}q^n=0$$
 ($|q|<1$)

证 若
$$q=0$$
, $\lim_{n\to+\infty}q^n=\lim_{n\to+\infty}0=0$;

若
$$0<|q|<1$$
,对于 $\forall \varepsilon>0$,要使 $|x_n-0|=|q|^n<\varepsilon$,

只要
$$n \ln |q| < \ln \varepsilon$$
, 即 $n > \frac{\ln \varepsilon}{\ln |q|}$.

所以对
$$\forall \varepsilon > 0$$
 (不妨设 $\varepsilon < 1$),取 $N = \left\lfloor \frac{\ln \varepsilon}{\ln |q|} \right\rfloor$,

则当n > N时,恒有 $|q^n - 0| < \varepsilon$,

$$\therefore \lim_{n\to\infty}q^n=0.$$

例4 试证:
$$\lim_{n\to +\infty} \frac{n^2-n+2}{3n^2+2n-4} = \frac{1}{3}$$

证
$$\forall \varepsilon > 0$$
 $\left(\mathbb{R}N = ?, \notin n > N$ 时有 $\left| x_n - \frac{1}{3} \right| < \varepsilon \right)$

先考察
$$\left| \frac{n^2 - n + 2}{3n^2 + 2n - 4} - \frac{1}{3} \right| = \left| \frac{5n - 10}{3(3n^2 + 2n - 4)} \right|$$

当 $n \ge 2$ 时,有 $5n-10 \ge 0$ 且 $3n^2+2n-4>0$,则

$$\left| \frac{5n-10}{3(3n^2+2n-4)} \right| = \frac{5n-10}{3(3n^2+2n-4)} < \frac{5n}{9n^2} < \frac{1}{n} \quad \text{àtherefore}$$

例4 试证:
$$\lim_{n\to+\infty}\frac{n^2-n+2}{3n^2+2n-4}=\frac{1}{3}$$

$$\left(\overline{\mathbb{E}}[x_n - a] < \varepsilon, \overline{\mathbb{E}}[x_n] < \varepsilon, \overline{\mathbb{E}}[x_n] > \frac{1}{\varepsilon}$$
即可

$$\therefore \forall \forall \varepsilon > 0, \exists N = \max \left\{ \frac{2}{\varepsilon} \right\}, \Rightarrow n > N$$
时恒有
$$\left| \frac{n^2 - n + 2}{3n^2 + 2n - 4} - \frac{1}{3} \right| < \varepsilon,$$

$$\mathbb{E} \lim_{n \to +\infty} \frac{n^2 - n + 2}{3n^2 + 2n - 4} = \frac{1}{3}$$

注 用定义证明极限存在的步骤(逆证法):

- (1) 考察 $|x_n-a|$;
- (2)适当放大不等式,为方便,有时可限定n大于某一数 N_1 ,解出 $n > N_2$,也可限定 $\varepsilon < 1$
- (3)\Pi $N = max \{N_1, N_2\};$
- (4)按 ε -N语言重新叙述。

例5 证明数列 $x_n = (-1)^{n+1}$ 是发散的。

证 假设 $\lim_{n\to\infty} x_n = a$,由定义,对于 $\varepsilon = \frac{1}{2}$, $\exists N$,使得当n > N时,有 $|x_n - a| < \frac{1}{2}$ 成立,即当n > N时, $x_n \in (a - \frac{1}{2}, a + \frac{1}{2})$,区间长度为1,

而 x_n 无休止地反复取 1,-1两个数,不 可 能同时位于长度为1的区间内,矛盾。

注: $\{x_n\}$ 是有界的,但却发散。

四. 收敛数列的性质

定理1.2.1 (唯一性)收敛数列的极限必唯一。

证 (反证法) 设
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} x_n = b$, 且 $a < b$,

现取 $\varepsilon_0 = \frac{b-a}{2}$,由数列极限的定义知

$$\exists N_1 > 0$$
, 当 $n > N_1$ 时, 有 $|x_n - a| < \frac{b-a}{2} \Rightarrow x_n < a + \frac{b-a}{2}$

$$\exists N_2 > 0$$
, 当 $n > N_2$ 时,有 $|x_n - b| < \frac{b - a}{2} \Rightarrow x_n > b - \frac{b - a}{2}$

有
$$\frac{a+b}{2}$$
< x_n < $\frac{a+b}{2}$,矛盾

三角不等式:
$$|a|-|b| \le |a\pm b| \le |a|+|b|$$

数列 $\{x_n\}$ 必有界: $\exists M > 0$,对 $\forall n$,有 $|x_n| \leq M$

定理1.2.2 (有界性) 收敛数列 $\{x_n\}$ 必有界。

$$\therefore \forall n, |x_n| \leq M = \max\{|x_1|, |x_2|, \cdots |x_N|, 1+|a|\}$$

注 (1) 收敛必有界,但有界不一定收敛,例如 {(-1)ⁿ};

(2) 无界数列一定发散(无极限)。

收敛数列的有限四则运算法则:

设
$$\lim_{n\to\infty} x_n = A$$
, $\lim_{n\to\infty} y_n = B$, 则

$$(1)\lim_{n\to\infty}(x_n\pm y_n)=A\pm B=\lim_{n\to\infty}x_n\pm\lim_{n\to\infty}y_n$$

保号性: (1)若 $\lim_{n\to\infty} x_n = A$, 且 A > 0 ,则 $\exists N > 0$,

当n > N时 $x_n > 0$;

(2) 若 $\lim_{n\to\infty} x_n = A$,且A < 0, $\exists N > 0$,当n > N时 $x_n < 0$.

保序性: 设 $x_n \le y_n (\exists N_0 > 0, n > N_0)$

且 $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, 则 $A \le B$.

子数列的概念

定义 在数列 $\{x_n\}$ 中任意抽取无限多项并保持 这些项在原数列 $\{x_n\}$ 中的先后次序,这样得到 的一个数列称为原数列 $\{x_n\}$ 的子数列(或子列)。 $X_1, X_2, \cdots, X_{n_1}, \cdots, X_{n_2}, \cdots, X_{n_3}, \cdots, X_{n_k}, \cdots$ $X_{n_1}, X_{n_2}, \cdots, X_{n_k}, \cdots$

注意 (1)在子数列 $\left\{x_{n_k}\right\}$ 中,一般项 $\left\{x_{n_k}\right\}$ 中,一般项 $\left\{x_{n_k}\right\}$,

而 x_{n_k} 在原数列 $\{x_n\}$ 中却是第 n_k 项. 显然, $n_k \ge k$ 。

(2) $\{x_{2k}\}$, $\{x_{2k+1}\}$ 是常见的子数列。

定理1.2.4 收敛数列的任一子数列也收敛,且极限相同。

证 设数列 $\{x_{n_k}\}$ 是数列 $\{x_n\}$ 的任一子数列,

- $: \lim_{n\to\infty} x_n = a, (要证 \lim_{k\to\infty} x_{n_k} = a, 注意 k 是变量)$
- ∴ $\forall \varepsilon > 0, \exists N > 0, \exists n > N$ 时, 恒有 $|x_n a| < \varepsilon$

取 K = N, 则当 k > K 时, $n_k > n_K = n_N \ge N$

恒有 $\left| x_{n_k} - a \right| < \varepsilon$ ∴ $\lim_{k \to \infty} x_{n_k} = a$ 证毕

定理1.2.4 收敛数列的任一子数列也收敛,且极限相同。

注 此定理可用来判别数列发散。只要找到{x_n} 的一子列发散 或两子列不收敛到同一极限, 则原数列发散。

$$\lim_{n\to\infty} x_n = A \iff \lim_{n\to\infty} x_{2n} = A = \lim_{n\to\infty} x_{2n-1}$$