Sprawozdanie laboratorium 2

Maciej Urbaniak

Abstract

Poznanie możliwości sieci konwolucyjnej (CNN) w zadaniu klasyfikacji informacji obrazowej w bibliotece Tensorflow. Celem ćwiczenia jest rozwiązanie problemu klasyfikacji obrazów ze zbioru CIFAR-10 dataset. W zadaniu należało zrealizować podaną strukturę sieci.

1 Model podstawowy

Parametry i struktura modelu podstawowego zostały dobrane zgodnie z wytycznymi zadania. Wykorzystano poniższe hiperparametry:

Epoki	5				
Regularyzacja	L2				
AdamOptimizer	learning rate:0.005				
Zbiór trenujący	30000				
Wielkość batchy	1000				

Rysunek 1: Celność dla modelu podstawowego.

Rysunek 2: Wykres kosztu dla modelu podstawowego.

Rysunek 3: Model podstawowy tensorboard.

Poniżej przedstawiono najlepszy wynik (w 30 epokach) dla powyższych hiperparametrów wraz z macierzą pomyłek:

Epoch: 30 cost=1.80 Accuracy: 0.683

Γ52	3	10	2	6	3	4	6	12	57	
3	78	1	2	1	0	0	0	1	3	
8	0	60	5	5	10	8	1	3	0	
2	3	9	41	7	25	7	6	2	1	
6	1	4	7	53	7	4	8	0	0	
0	1	5	15	4	53	3	5	0	0	
0	0	8	2	3	10	87	1	1	0	
0	0	3	5	3	3	0	86	2	0	
5	4	1	1	0	0	1	0	94	0	
1	13	1	3	0	0	3	2	7	79	

2 Zbadać wpływ zastosowanej metody poolling

Poolling powoduje zmniejszenie obrazka przez wybór największych wartości aby zmniejszyć przeuczenie modelu. Zbyt duży rozmiar macierzy zmniejszającej wymiary spowodował znaczny spadek celności predykcji, co możemy zobaczyć na rysunku poniżej.

Zwiększenie rozmiaru kernela z 3x3 do 5x5 spowodowało spadek celności o 5 punktów procentowych:

Rysunek 4: Celność dla modelu z zmienionym poolling'em na 5x5.

Zmiana strides na 1 przy zachowaniu rozmiaru 3x3: "kernel dead"

3 Zbadać wpływ wielkości filtra

Wielkość filtra reprezentuje rozmiary rozpatrywanych cech dla badanych obrazków, które w badanym przypadku są małe (32x32 piksele). Dlatego też dobór mniejszego filtra pozytywnie wpłynął na celność klasyfikacji w przeciwieństwie do powiększania go, co widać na rysunkach poniżej:

Rysunek 5: Celność dla modelu z filtrem 3x3.

Rysunek 6: Celność dla modelu z filtrem 8x8.

4 Poprawa modelu

W celu poprawy modelu zastosowano zmianę wielkości filtru na 3x3 oraz dodanie 3 warstw batch_normalization.

Ostateczne hiperparametry:

Epoki	100
Regularyzacja	L2
AdamOptimizer	learning rate: 0.005
Zbiór trenujący	50000
Zbiór testujący	10000
Wielkość batchy	1000

Rysunek 7: Celność dla modelu końcowego.

Rysunek 8: Koszt dla modelu końcowego.