Universität Potsdam Institut für Physik und Astronomie Abgabe Mo15 Uhr/Do10 Uhr am 9./12. November 2020 WS2020/21: Übung 01 Vorlesung: Feldmeier Übung: Albrecht/Schwarz¹

Übungsaufgaben zur Elektrodynamik²

20 Punkte

<u>1.</u> Gradient

5 Punkte

Gegeben seien die Funktionen $W(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}$ und $\Phi_n(\vec{r}) = -\frac{c}{r^n}$ mit der imaginären Einheit i, der Länge des Ortsvektors $r = |\vec{r}|$, einem festen Vektor $\vec{k} \in \mathbb{R}^3$ und $n \in \mathbb{Z}$. Man berechne die Gradientenfelder der o.g. Funktionen. (2P) Skizzieren Sie die Gradientenfelder grad W, grad Φ_{-1} und grad Φ_1 jeweils für z = 0. (3P)

<u>2.</u> Ableitung in Kugelkoordinaten

5 Punkte

Gegeben sind die Vektorfelder $\vec{E}_r(\vec{r}) = \hat{r}$ und $\vec{E}_{\varphi}(\vec{r}) = \hat{\varphi}$. Berechnen Sie von jedem der beiden Felder sowohl die Ableitung in r- wie in φ -Richtung.

<u>3.</u> Divergenz

5 Punkte

Berechnen Sie die Divergenz von \hat{r}/r^2 in Kugelkoordinaten.

<u>4.</u> Elliptische/hyperbolische Koordinaten

5 Punkte

In der Relativitätstheorie gibt es hyperbolische Koordinaten. Definieren Sie sinnvoll elliptische/hyperbolische Koordinaten der Ebene (siehe Wiki) und berechnen Sie grad und div für diese.

¹Fred.Albrecht@uni-potsdam.de, udo.schwarz@uni-potsdam.de

²Aufgaben: https://udohschwarz.github.io/Lehre/lehrangebot/2020WSEDynamik/2020WSEDynamik.html, Punkteliste: http://theosolid.physik.uni-potsdam.de/tpphp/index.php?tpii/ws2021