

Software Resource Disaggregation for HPC with Serverless Computing

Marcin Copik, Alexandru Calotoiu (advisor), Torsten Hoefler (advisor)

Tracking Wasted Money in HPC

Job Characteristics on Large-Scale Systems: Long-Term Analysis, Quantification, and Implications*

Tirthak Patel Northeastern University

Paul Rich, William Allcock Argonne National Laboratory Zhengchun Liu, Raj Kettimuthu Argonne National Laboratory

> Devesh Tiwari Northeastern University

> > SC, 2020

FINAL REPORT WORKLOAD ANALYSIS OF BLUE WATERS (ACI 1650758)

Matthew D. Jones, Joseph P. White, Martins Innus, Robert L. DeLeon, Nikolay Simakov, Jeffrey T. Palmer, Steven M. Gallo, and Thomas R. Furlani (furlani@buffalo.edu), Center for Computational Research, University at Buffalo, SUNY

Michael Showerman, Robert Brunner, Andry Kot, Gregory Bauer, Brett Bode, Jeremy Enos, and William Kramer (wtkramer@illinois.edu), National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana Champaign

arXiv, 2017

Comprehensive Workload Analysis and Modeling of a Petascale Supercomputer

Haihang You¹ and Hao Zhang²

National Institute for Computational Sciences,
 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 Department of Electrical Engineering and Computer Science,
 University of Tennessee, Knoxville, TN 37996, USA
 {hyou,haozhang}@utk.edu

Piz Daint, April 2022.

- XC50 nodes CPU + GPU, 64 GB memory.
- XC40 nodes CPU, 64/128 GB memory.

Query SLURM info every two minutes.

Piz Daint, April 2022.

- XC50 nodes CPU + GPU, 64 GB memory.
- XC40 nodes CPU, 64/128 GB memory.

Query SLURM info every two minutes.

Piz Daint, April 2022.

- XC50 nodes CPU + GPU, 64 GB memory.
- XC40 nodes CPU, 64/128 GB memory.

Query SLURM info every two minutes.

How long do nodes stay idle?

Maximum

80% and 70% of idle node events last less than 10 minutes.

Short-term resource availability requires short-term allocations.

80% and 70% of idle node events last less than 10 minutes.

HPC System Utilization - Memory

HPC System Utilization - Memory

HPC System Utilization - Memory

<u>50</u>

FINAL REPORT WORKLOAD ANALYSIS OF BLUE WATERS (ACI 1650758)

Matthew D. Jones, Joseph P. White, Martins Innus, Robert L. DeLeon, Nikolay Simakov, Jeffrey T. Palmer, Steven M. Gallo, and Thomas R. Furlani (furlani@buffalo.edu), Center for Computational Research, University at Buffalo, SUNY

Michael Showerman, Robert Brunner, Andry Kot, Gregory Bauer, Brett Bode, Jeremy Enos, and William Kramer (wtkramer@illinois.edu), National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana Champaign

arXiv, 2017

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support

Gagandeep Panwar* Virginia Tech Blacksburg, USA gpanwar@vt.edu

> Mai Dahshan Virginia Tech Blacksburg, USA mdahshan@vt.edu

Da Zhang* Virginia Tech Blacksburg, USA daz3@vt.edu

Nathan DeBardeleben Los Alamos National Laboratory Los Alamos, USA ndebard@lanl.gov

> Xun Jian Virginia Tech Blacksburg, USA xunj@vt.edu

Yihan Pang* Virginia Tech Blacksburg, USA pyihan1@vt.edu

Binoy Ravindran Virginia Tech Blacksburg, USA binoy@vt.edu

MICRO, 2019

A Holistic View of Memory Utilization on HPC Systems: Current and Future Trends

Ivy B. Peng* peng8@llnl.gov Lawrence Livermore National Laboratory USA

Kathleen Shoga Shoga1@llnl.gov Lawrence Livermore National Laboratory USA Ian Karlin karlin1@llnl.gov Lawrence Livermore National Laboratory USA

Matthew Legendre legendre1@llnl.gov Lawrence Livermore National Laboratory USA Maya B. Gokhale gokhale2@llnl.gov Lawrence Livermore National Laboratory USA

Todd Gamblin gamblin2@llnl.gov Lawrence Livermore National Laboratory USA

MEMSYS, 2021

Learning from Five-year Resource-Utilization Data of Titan System

Feiyi Wang*, Sarp Oral[†], Satyabrata Sen [‡] and Neena Imam[§]

Oak Ridge National Laboratory

CLUSTER, 2019

Learning from Five-year Resource-Utilization Data of Titan System

Feiyi Wang*, Sarp Oral[†], Satyabrata Sen [‡] and Neena Imam[§]

Oak Ridge National Laboratory

CLUSTER, 2019

Learning from Five-year Resource-Utilization Data of Titan System

Feiyi Wang*, Sarp Oral[†], Satyabrata Sen [‡] and Neena Imam[§]

Oak Ridge National Laboratory

CLUSTER, 2019

Standard HPC Node

- High performance
- Inflexible architecture

Standard HPC Node

- High performance
- ★ Inflexible architecture

Hardware Disaggregation

- High efficiency
- **S** Cost, performance penalty

Standard HPC Node

- High performance
- Inflexible architecture

Hardware Disaggregation

- High efficiency
- **Cost**, performance penalty

Standard HPC Node

- High performance
- Inflexible architecture

Existing Coupled Hardware Systems

Hardware Disaggregation

- High efficiency
- **Solution** Cost, performance penalty

Software Abstraction for Disaggregation

We propose a software disaggregation approach to share node resources

We propose a software disaggregation approach to share node resources between coarse-grained, long-running, and static batch jobs

We propose a software disaggregation approach to share node resources between

coarse-grained, long-running, and static batch jobs and

fine-grained, short-term, and dynamically allocated serverless functions.

***SPCL

Hardware Abstraction

Hardware Abstraction

Hardware Abstraction

Software Abstraction

Hardware Abstraction

Software Abstraction

Hardware Abstraction

Pay-as-you-go billing

Software Abstraction

Batch jobs

Batch jobs

Batch jobs

Batch jobs + serverless functions

Batch jobs

Batch jobs + serverless functions

Batch jobs

Batch jobs

Batch jobs

Batch jobs

Batch jobs

Evaluation

XC50 nodes - 12 CPU cores, GPU, 64 GB memory.

XC40 nodes - 36 CPU cores, 64/128 GB memory.

Cray Aries interconnect.

36 CPU cores, 377 GB memory. Ethernet with RoCEv2 support.

#1 CPU Sharing

LULESH

64 ranks, 2 nodes 32 out of 36 cores allocated.

NAS

1 – 4 ranksDistributed across nodes.

#1 CPU Sharing

LULESH

64 ranks, 2 nodes 32 out of 36 cores allocated.

NAS

1 – 4 ranksDistributed across nodes.

#1 CPU Sharing

LULESH

64 ranks, 2 nodes 32 out of 36 cores allocated.

NAS

1 – 4 ranksDistributed across nodes.

#2 Serving Remote Memory

LULESH, MILC – 32 ranks, 1 node, 32 out of 36 cores allocated.

#2 Serving Remote Memory

LULESH, MILC – 32 ranks, 1 node, 32 out of 36 cores allocated.

#2 Serving Remote Memory

LULESH, MILC – 32 ranks, 1 node, 32 out of 36 cores allocated.

96

128

#2 Serving Remote Memory

LULESH, MILC – 32 ranks, 1 node, 32 out of 36 cores allocated.

#3 Co-locating GPU and CPU workloads

Co-located GPU application.

LULESH – 27 ranks, 3 nodes, 9 out of 12 cores allocated. **Rodinia** – 1 MPI rank, 1 GPU.

#3 Co-locating GPU and CPU workloads

LULESH – 27 ranks, 3 nodes, 9 out of 12 cores allocated.

Rodinia – 1 MPI rank, 1 GPU.

#3 Co-locating GPU and CPU workloads

LULESH – 27 ranks, 3 nodes, 9 out of 12 cores allocated.

Rodinia – 1 MPI rank, 1 GPU.

twitter.com/spcl_eth

twitter.com/spcl_eth

twitter.com/spcl eth

"the goal of achieving near 100% utilization while supporting a real parallel supercomputing workload is unrealistic"

Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization James Patton Jones¹ and Bill Nitzberg¹ MRJ Technology Solutions NASA Ames Research Center, M/S 258-6 Moffett Field, CA 94035-1000 jjones@nas.nasa.gov

spcl.inf.ethz.ch

1999