CENG 424

Logic For Computer Science

Spring 2022-2023

Assignment 2

Name Surname: Andaç Berkay Seval Student ID: 2235521

Answer for Q1

- 1. F(x): x is a formula, V(x): x is valid, S(x): x is satisfiable, Val(x,y): x computes T for valuation y $\forall x (F(x) \Rightarrow V(x) \Leftrightarrow \forall y (Val(x,y))) \land \forall x (F(x) \Rightarrow S(x) \Leftrightarrow \exists y (Val(x,y)))$
- 2. Y(x): x is young, S(x): x is superhero, M(x): x is a mentor, G(x,y): x guides y, E(x): x is an enemy, T(x,y): x troubles y $\forall x(Y(x) \land S(x) \Rightarrow \exists y(M(y) \land G(y,x)) \lor \exists z(E(z) \land T(z,x)))$
- 3. F(x): x can fly, R(x): x can run, T(x): x can teleport, C(x): x is a creature, G(x): x is Gandalf's unicorn

 $\forall x (F(x) \land R(x) \land T(x) \land C(x) \Rightarrow G(x))$

Answer for Q2

1.

- a A(x): x is an atomic fact, O(x): x is an object, C(x,y): x is combination of y $\forall x (A(x) \Rightarrow \exists y (O(y) \land C(x,y)))$
- b All variables are bound in the formula. All x's are in the scope of $\forall x$ and all y's are in the scope of $\exists y$. (If we look at the parse tree, we can see that there is an upward path from x and y variables to $\forall x$ and $\exists y$)

2.

- a P(x): x is a picture, S(x): x is a possible situation, L(x): x is in logical space, R(x,y): x represents y $\forall x \exists y (P(x) \Rightarrow S(y) \land L(y) \land R(x,y))$
- b All variables are bound in the formula. All x's and y's are in the scope of $\forall x \exists y$. (If we look at the parse tree, we can see that there is an upward path from x and y variables to $\forall x \exists y$)

Answer for Q3

a.

1.	$\forall x \forall y (P(y) \Rightarrow Q(x))$	premise
2.	$\exists y P(y)$	assumption
3.	x_0	
4.	$y_0 P(y_0)$	assumption
5.		$\forall y_e 1 \qquad \qquad $
6.	$ P(y_0) \Rightarrow Q(x_0)$	$\forall x_e 5$
7.	$Q(x_0)$	$\Rightarrow_e 6,4$
8.	$Q(x_0)$	$\exists y_e 2, 4-7$
9.	$\forall x Q(x)$	$\forall x_i 3-8$
10.	$\exists y P(y) \Rightarrow \forall x Q(x)$	$\Rightarrow_i 2-9$

b.

1.	$\exists x \exists y (P(x,y) \lor P(y,x))$	premise
2.	$x_0 \exists y (P(x_0, y) \lor P(y, x_0))$	assumption
3.	$y_0 P(x_0, y_0) \vee P(y_0, x_0)$	assumption
4.	$P(x_0,y_0)$	assumption
5.	$ \mid \mid \mid \exists y P(x_0, y) $	$\exists y_i 4 \qquad \qquad \Big \ \Big \ \Big $
6.	$\exists x \exists y P(x,y)$	$\exists x_i 5$
7.	$P(y_0,x_0)$	assumption
8.	$ \ \ \exists x P(x, y_0) $	$\exists x_i 7 \qquad \qquad \ \ $
9.		$\exists y_i 8$
10.	$\exists x \exists y P(x,y)$	$\vee_e 3, 4 - 6, 7 - 9$
11.	$\exists x \exists y P(x,y)$	$\exists y_e 2, 3-10$
12.	$\exists x \exists y P(x,y)$	$\exists x_e 1, 2-11$

c.

1.	$\forall x (P(x) \vee Q(x))$	premise
2.	$\exists x \neg Q(x)$	premise
3.	$\forall x (R(x) \Rightarrow \neg P(x))$	premise
4.	$x_0 \neg Q(x_0)$	assumption
5.	$R(x_0) \Rightarrow \neg P(x_0)$	$\forall x_e 3$
6.	$P(x_0) \vee Q(x_0)$	$\forall x_e 1$
7.	$P(x_0)$	assumption
8.	$\neg \neg P(x_0)$	$\neg \neg_i$ 7
9.	$\neg R(x_0)$	MT 5,8
10.	$\exists y \neg R(y)$	$\exists y_i 9$
11.	$Q(x_0)$	assumption
12.		\neg_e 11,4
13.	$\neg R(x_0)$	\perp_e 12
14.	$\exists y \neg R(y)$	$\exists y_i 13$
15.	$\exists y \neg R(y)$	\vee_e 6, 7 - 10, 11 - 14
16.	$\exists y \neg R(y)$	$\exists x_e 2, 4-15$

Answer for Q4

- a. Consider $F = \{s\}$ where s is nullery and $P = \{P, Q\}$ where P is unary and Q is binary. A model M of (F, P):
- 1. $A = \{a, b, c\}$
- 2. $s^M = a$
- 3. $P^M = \{a, b\}$
- 4. $Q^M = \{(a,b), (b,c)\}$

Therefore, for the model M, if we choose a for x and b for y, $(P(a) \land Q(a,b)) \Rightarrow (P(b) \land b \neq a)$ evaluates T. Thus, ϕ is satisfiable.

- b. Consider $F = \{e\}$ where e is nullery and $P = \{P\}$ where P is unary. A model M of (F, P):
- 1. $A = \{a, b\}$
- 2. $e^M = b$
- 3. $P^M = \{a\}$

Therefore, for the model M, if we choose a for x and b for y, $(P(a) \Rightarrow P(b)) \land (P(b) \Rightarrow P(a))$ evaluates F. Thus, ϕ is not valid.

c. Let's convert formula to words: For all x, for all z, for at least one y, (x < y) and if (z < y), then (x < z). $M \models \phi$ does not hold since we can find some numbers x, y, z such that (x < y) and (z < y) evaluate T, but (x < z) evaluates F. Let's choose 5 for x, 6 for y and 4 for z. Then, $P(5,6) \land (P(4,6) \Rightarrow P(5,4))$ evaluates F. Thus, $M \models \phi$ does not hold.

Answer for Q5

```
1.
         \forall x(LOVES(Jane, x) \Rightarrow TRAVELER(x))
                                                                              premise
 2.
         \forall x (PERSON(x) \land \neg EARN(x) \Rightarrow \neg TRAVEL(x))
                                                                               premise
 3.
         DOCTOR(Jim)
                                                                               premise
 4.
         \forall x (DOCTOR(x) \Rightarrow PERSON(x))
                                                                               premise
         \forall x (DOCTOR(x) \land \neg WORK(x) \Rightarrow \neg EARN(x))
 5.
                                                                               premise
         \forall x (\neg TRAVEL(x) \Rightarrow \neg TRAVELER(x))
 6.
                                                                              premise
 7.
          DOCTOR(Jim) \Rightarrow PERSON(Jim)
                                                                               \forall x_e \quad 4
 8.
          DOCTOR(Jim) \land \neg WORK(Jim) \Rightarrow \neg EARN(Jim)
                                                                              \forall x_e \quad 5
 9.
          PERSON(Jim) \land \neg EARN(Jim) \Rightarrow \neg TRAVEL(Jim)
                                                                               \forall x_e \quad 2
10.
          \neg TRAVEL(Jim) \Rightarrow \neg TRAVELER(Jim)
                                                                              \forall x_e \quad 6
          LOVES(Jane, Jim) \Rightarrow TRAVELER(Jim)
11.
                                                                              \forall x_e
                                                                                    1
12.
          \neg WORK(Jim)
                                                                               assumption
13.
          DOCTOR(Jim) \land \neg WORK(Jim)
                                                                               \wedge_i 3, 12
14.
          \neg EARN(Jim)
                                                                                      8,13
                                                                               \Rightarrow_e
15.
          PERSON(Jim)
                                                                                      7, 3
16.
          PERSON(Jim) \land \neg EARN(Jim)
                                                                               \wedge_i 15, 14
17.
          \neg TRAVEL(Jim)
                                                                                      9,16
18.
          \neg TRAVELER(Jim)
                                                                                      10, 17
         \overline{LOVES(Jane, Jim)}
19.
                                                                               assumption
         TRAVELER(Jim)
20.
                                                                                     11, 19
                                                                               \Rightarrow_e
21.
                                                                                    20, 18
          \perp
22.
          \neg LOVES(Jane, Jim)
                                                                               \neg_i 19 – 21
23.
         \neg WORK(Jim) \Rightarrow \neg LOVES(Jane, Jim)
                                                                                     12 - 22
                                                                               \Rightarrow_i
```