EE618 (Zele)

CMOS Analog VLSI Design: Homework - 4 (30 - Marks)

Submission Deadline: 30th Sept 2019 11:55 AM

- \bullet All problems are based on Cadence simulations. Use Vdd = 1.8 V
- The submission must contain appropriate plots labelled clearly.
- The submission must contain the theoretical calculations wherever it is applicable.
- Submission must be in *Teamname_Rollnumber_Yourname_Assignment4.pdf* format.
- Submissions after deadline with not be accepted under any circumstances.
- All MOSFET models should be used from SCL 180 nm library.
- MOSFETS in schematics must be annotated with all required parameters. Ex: Width, Length, Fingers, Multipliers.
- Report all values preferably in tabular format wherever it is appropriate.

Question 1

Understanding the flicker and thermal noise of MOSFETs

Figure 1

Consider the following cases:

- Case A for Fig. 1.a): $(W/L) = (2.2\mu m/0.18\mu m) \times 5$ multipliers
- Case B for Fig. 1.a): $(W/L) = (2.2 \mu m/0.36 \mu m) \times 10 \text{ multipliers}$
- Case C for Fig. 1.b): $(W/L) = (2.2\mu m/0.18\mu m) \times 5$ multipliers
- a) For all the above cases, Overlay the plots of the noise current flowing through the transistor in the frequency range of 1Hz to 10GHz. The X-axis (frequency with 100 points/decade) and Y-axis (noise current magnitude in A/\sqrt{Hz}) should be in logarithmic scale. [3 Marks]
- b) Report the approximate corner frequency (f_c). (You may consider the knee region of the curve as f_c) [3 Marks]

	Corner frequency (f_c)
Case A	
Case B	
Case C	

Which of the above cases has the lowest thermal noise and why? Which case would you prefer to design an OTA with low flicker noise and why? [2 Marks]

Question 2

Understanding the noise in amplifiers

A. For the CS amplifier shown in Fig. 2, perform the noise analysis in the frequency range of 1Hz to 10GHz for the following cases:

Figure 2: CS amplifier with PMOS current source load

- Case A: $(W/L)n = (2\mu m/0.18\mu m) \times 4$, $(W/L)p = (2\mu m/0.18\mu m) \times 2$, $V_b = 0.9V$
- Case B: $(W/L)n = (2\mu m/0.18\mu m) \times 2$, $(W/L)p = (2\mu m/0.18\mu m) \times 9$, $V_b = 1.2V$

Note: The inductor is added to provide a DC bias at the output node. Large inductance offers low impedance near DC.

a). Report the noise contributions at 200MHz. [3 Marks]

Spot Noise @ 200 MHz	Case A (in V/\sqrt{Hz})	Case B (in V/\sqrt{Hz})
Total Noise @ output due to Mn		
Total Noise @ output due to Mp		
Input referred noise		

- Which case has the low input referred noise voltage? Justify your answer with appropriate expressions for input referred noise of the CS amplifier shown in Fig. 2. [3 Marks]
- **B.** For the following cascode amplifier, perform the noise analysis in the frequency range of 1Hz to 10GHz and tabulate the following. [4 Marks]

Given,
$$(W/L)_1 = (2\mu m/0.18\mu m) \times 3$$
, $(W/L)_2 = (2\mu m/0.18\mu m) \times 3$

Figure 3: Cascode amplifier

Spot Noise @ 200MHz	Noise (in V/\sqrt{Hz})	% of total
Total Noise @ output due to M1		
Total Noise @ output due to M2		
Total Noise @ output due to R		
Input referred noise		

- What is the effect of noise of M2 on the input referred noise? Justify your answer with the appropriate expressions for the noise of a cascode amplifier. [3 Marks]
- C. Perform the noise analysis for the following differential amplifier in the frequency range of 1Hz to 10GHz.

Figure 4: Differential Amplifier

Note: Apply an input DC Common Mode voltage of 1.1 V without any AC input. Use the following format for tabulation for C.a) and C.b).

Transistor	Type	Noise (in V^2)	% of total
M1	Flicker		
M1	Thermal		
•			
•			
M6	Flicker		
M6	Thermal		
Total Noise			
Input referred noise			

- a) Tabulate the noise summary by measuring the noise values at the output in a single ended manner (i.e. at V_{out+} w.r.t ground) integrated in bandwidth of interest from 10kHz to 10MHz. Report the major contributor to output referred noise in this case? [4 Marks]
- b) Tabulate the noise summary by measuring the noise values at the output in a differential manner (i.e. at V_{out+} V_{out-}) integrated in bandwidth of interest from 10kHz to 10MHz. Report the major contributor to to output referred noise in this case? [4 Marks]
 - What is the contribution of the tail current source to the total output noise? Explain your observation. [1 Mark]

Let's make some noise ©