Министерство науки и высшего образования РФ Национальный исследовательский университет ИТМО

Факультет Программной инженерии и компьютерных технологий

По дисциплине: Системы искусственного интеллекта

Лабораторная работа №4.

«Study of the neural network» Вариант 3

Выполнил: Ву Минь Хиеу

Группа: Р33201

Санкт-Петербург 2022 год.

I. Описание задания

There are 2 parts of work in files named Lab1-Part1 and Lab1-Part2 respectively. Both parts represent work with collections of training and test data.

Part 1 represent recognition of basic math functions with illustrations of neural net vision of the functions for training.

Part 2 represent recognition of simple images for making following work.

Data usage represented at https://keras.io/datasets/ and depends on variant.

Var	Part1 func	Part2 data	Hyperparameters
3	Absolute($Sin(x)$)	Handwritten	Regularization L2, output layer
	X: -6.3 6.3	digits	activation type.
	Y: 0 1.2		

There are represented such hyperparameters as:

- Layer count;
- Neurons count per layer (actually it's not hyperparameter but structure parameter);
- Learn rate;
- Regularization L1 and L2;
- Output layer activation type;
- Layer activation type;
- Loss function type;
- Epoch count.
- 1. By changing these hyperparameters try to reach max accuracy value(at least 0.95) for Part2 model with fixed epoch count 20;
- 2. Change 1st hyperparameter's value from min to max with minimal step depends on your variant;
 - 3. Show impact on result using graphs;

- 4. Describe impact of each hyperparameter on accuracy;
- 5. Set hyperparameter value back to one which produced max accuracy;
- 6. Repeat 2-5 steps for second hyperparameter.

Make a report including:

- Each hyperparameter description and its impact on accuracy;
- Hyperparameters' values which were used to reach accuracy value 0.95;
- Graphs for these hyperparameters' values;

II. Выполнение

1. Часть 1

a. Hyperparameters

Граф для этих параметров:

b. Изменеие L2

+) L2=-0.1

+) L2=0

+) L2=0.0005

+) L2=0.001

+) L2=0.005

+) L2=0.01

+) L2=0.05

+) L2=0.1

с. Изменеие Output layer activation function

+) Softmax

+) ReLU

+) Tanh

+) Linear

Нейронная сеть с лучшим гиперпараметром:

Результат:

2. Часть 2

+) Output layer activation: **Softmax**

+) Output layer activation: **ReLU**

+) Output layer activation: Tanh

+) Output layer activation: **Sigmoid**

+) Output layer activation: Linear

Лучшие гиперпараметры для точности более 0.95:

и результат:

<u>Комментарий</u>: Поскольку MNIST — это проблема классификации, использование функции softmax для вывода дает наилучшие результаты. Кроме того, увеличение лямбда для регуляризации L2 может привести к тому, что модель получит много штрафов на тренировочном наборе.

III. Вывод

При выпольнению лабораторной работы я потратил много времени на настройку гиперпараметров модели с максимально возможной точностью. На самом деле это было не так просто, так как комбинаций много, поэтому выбор одного требовал внимания.