Title

D. Zack Garza

Tuesday 15^{th} September, 2020

Contents

1 Tuesday, September 15

1.1 Review	
1 Tuesday, September 15	
1.1 Review	
Let $k = \bar{k}$, we're setting up correspondences	
Ring Theory Polynomial functions $k[x_1, \cdots, x_n]$	Geometry/Topology of Affine Varieties Affine space $\mathbb{A}^n/k \coloneqq \{[a_1,\cdots,a_n] \in k^n\}$
Maximal ideals $\langle x_1 - a_1, \cdots, x_n - a_n \rangle$ Radical ideals $I \leq k[x_1, \cdots, x_n]$	Points $[a_1, \dots, a_n] \in \mathbb{A}^n/k$ Affine varieties $X \subset \mathbb{A}^n/k$, vanishing locii of polynomials $\mapsto V(I) := \{ a \mid f(a) = 0 \forall f \in I \}$
$I(X) \coloneqq \left\{ f \mid f _X = 0 \right\}$	$\leftarrow X$
Radical ideals containing $I(X)$, i.e. ideals in $A(X)$ $A(X) mtext{ is a domain}$	closed subsets of X , i.e. affine subvarieties X irreducible
A(X) is not a direct sum Prime ideals in $A(X)$	X connected Irreducible closed subsets of X
Krull dimension n (longest chain of prime ideals)	$\dim X = n$, (longest chain of irreducible closed subsets).

1

Recall that we defined the coordinate ring $A(X) := k[x_1, \cdots, x_n]/I(X)$, which contained no nilpotents.

We had some results about dimension

- 1. $\dim X < \infty$ and $\dim \mathbb{A}^n = n$.
- 2. $\dim Y + \operatorname{codim}_X Y = \dim X$ when $Y \subset X$ is irreducible.
- 3. Only over $\bar{k} = k$, $\operatorname{codim}_X V(f) = 1$.

Example 1.1.

Take $V(x^2 + y^2) \subset \mathbb{A}^2/\mathbb{R}$

Definition 1.0.1 (?).

An affine variety Y of

- dim Y = 1 is a curve,
 dim Y = 2 is a surface,
- $\operatorname{codim}_X Y = 1$ is a hypersurface in X

Question: Is every hypersurface the vanishing locus of a *single* polynomials $f \in A(X)$?

Answer: This is true iff A(X) is a UFD.

Definition 1.0.2 (Codimension in a Ring). $\operatorname{codim}_{R}\mathfrak{p}$ is the length of the longest chain

$$P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = \mathfrak{p}.$$

Recall that f is irreducible if $f = f_1 f_2 \implies f_i \in \mathbb{R}^{\times}$ for one i, and f is prime iff $\langle f \rangle$ is a prime ideal, or equivalently $f \mid ab \implies f \mid a$ or $f \mid b$.

Note that prime implies irreducible, since f divides itself.

Proposition 1.1(?).

Let R be a Noetherian domain, then TFAE

- a. All prime ideals of codimension 1 are principal.
- b. R is a UFD.

Proof.

 $a \implies b$:

Let f be a nonzero non-unit, we'll show it admits a prime factorization. If f is not irreducible, then $f = f_1 f'_1$, both non-units. If f'_1 is not irreducible, we can repeat this, to get a chain

$$\langle f \rangle \subseteq \langle f_1' \rangle \subseteq \langle f_2' \rangle \subseteq \cdots$$

which must terminate.

This yields a factorization $f = \prod f_i$ with f_i irreducible. To show that R is a UFD, it thus suffices to show that the f_i are prime.

Choose a minimal prime ideal containing f. We'll use Krull's Principal Ideal Theorem: if you have a minimal prime ideal \mathfrak{p} containing f, its codimension codim_R \mathfrak{p} is one. By assumption, this implies that $\mathfrak{p} = \langle g \rangle$ is principal. But $g \mid f$ with f irreducible