

X	Y	Z
m	20	T
m	10	F
0	30	T
\overline{n}	30	T
0	20	T

Table 1: Legal instance of schema S for question 2.1

(a)	Which of the following dependencies are <i>violated</i> by the instances of S in Table 1?					
	i. [2 points] ∇ Yes	\square No : $X \to Y$ is violated.				
		\square No : $Z \to X$ is violated.				
		∇ No : $Y \to Z$ is violated.				
	iv. [2 points] □ Yes	\bigvee No : $XY \to Z$ is violated.				
	v. [2 points] Yes	□ No : $YZ → X$ is violated. $□$ No : $XZ → Y$ is violated.				
	vi. [2 points]	\square No : $XZ \rightarrow Y$ is violated.				
(b)	(b) [3 points] By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S? Why?					
	□ Yes No No	系的一个空侧不能推断出关系模式的函数该较				

Question 2: Functional Dependencies II For the next set of questions consider the relational the set of functional dependencies FD:	
$Q \; o \; U$	(1)
$U \rightarrow V$	(2)
$PQ \rightarrow W$	VST (3)
SU o T	R (4)
$VT \rightarrow R$	W (5)
$R \rightarrow W$	(6)
(a) [8 points] Which of the following is a minim if none, mark accordingly, and give your <i>own</i> . i. The given FDs (Eq 1-6), is a minimum co ii. $\{Q \to U, U \to V, PQ \to S, SU \to T, SU \in \{Q \to U, U \to V, PQ \to S, SU \to T, PQ \in \{Q \to U, U \to V, PQ \to S, SU \to T, V\}$	answer. ver already. $V \to R, VT \to R, VT \to W, R \to W$ $Q \to W, VT \to R, PQ \to T, R \to W$
v. $\{Q \to U, U \to V, PQ \to S, SU \to T, SU$ vi. none of the above - the cover is	$Y \to R, VT \to R, PQ \to T, R \to W$
 (b) Yes/No: Which of the following functional dependencies (Eq. (1)-(6))? i. [3 points] □ Yes □ No: Q→V ii. [3 points] □ Yes □ No: QU → R iii. [3 points] □ Yes □ No: SQ → T iv. [3 points] □ Yes □ No: SQ → W v. [3 points] □ Yes □ No: PQ → R vi. [3 points] □ Yes □ No: VT → Q (c) [3 points] □ True or False: The attribute closure □ True □ False 	e $\{Q\}^+$ is $\{Q,U,V\}$.
(d) [3 points] True or False: The attribute closure □ True □ False	$\{PQ\}^+ \text{ is } \{P,Q,W,S,T\}.$

Question 3: Decompositions.....[20 points]

For this set of questions, consider the relation with attributes, $\mathcal{X} = \{A, B, C, D, E, F\}$, Let the following functional dependencies FD be defined over the relation \mathcal{X} :

$$A \to B$$
$$B \to CD$$
$$E \to F$$

- (a) [2 points] Provide the attribute closure of $\{AB\}$. $\{AB\}^{\dagger} = \{A, B, C, D\}$ (b) Consider the decomposition AB, BCD, EF. Mark 'True' or 'False':
- - i. [3 points] □ True □ False: It is lossless
 - ii. [3 points] \to True □ False: It is dependency-preserving
- (c) Consider the decomposition AB, BCDF, EF. Mark 'True' or 'False':
 - False: It is lossless i. [3 points] □ True
- (d) Consider the decomposition ABCEF, EBD. Mark 'True' or 'False':
 - i. [3 points] True \Box False: It is lossless
 - ii. [3 points] ✓ True □ False : It is dependency-preserving

Question 4: Normal Forms	
$PQ \rightarrow R$ (7)	
$PQ \rightarrow S$ (8)	
$R \rightarrow P$ (9)	
$S \rightarrow Q$ (10)	,
(a) [6 points] List all the candidate key(s) for \mathcal{E} . $\{P, Q\} \} \{R, S\} $. s \
(b) [2 points] Is the relation \mathcal{E} in BCNF? \square Yes \bigvee No	
(c) From the list below, select all applicable choices to justify whether $\mathcal E$ is (or is not) in BCNF.	
Note : when we refer to the <i>main requirement</i> for BCNF, we mean: <i>every determinant is a super key</i> .	
i. [1 point] True False: All FD's satisfy the main requirement.	
ii. [1 point] \square True \checkmark False: FD (7) violates the main requirement.	
iii. [1 point] □ True ☑ False: FD (8) violates the main requirement.	
iv. [1 point] True	
v. [1 point] True	
(d) [2 points] Is the relation \mathcal{E} in 3NF? \checkmark Yes \Box No	
(e) From the list below, select all applicable choices to justify whether \mathcal{E} is (or is not) in 3NF.	
Note: when we refer to the <i>secondary requirement</i> for 3NF, we mean: <i>for every FD</i> $X \to A$, A is part of a candidate key.	
i. [1 point] True False : All FD's satisfy the secondary requirement.	
ii. [1 point] \square True \checkmark False: FD (7) violates the secondary requirement.	
iii. [1 point] □ True ☑ False: FD (8) violates the secondary requirement.	
iv. [1 point] \square True ∇ False: FD (9) violates the secondary requirement.	
v. [1 point] \square True \bigvee False: FD (10) violates the secondary requirement.	
(f) [5 points] Give a 3NF decomposition of \mathcal{E} that is lossless, dependency preserving, and has as few tables as possible. $\left\{ \begin{array}{c} P \otimes P \end{array} \right\}$	
(g) [8 points] Give a BCNF decomposition of \mathcal{E} that is lossless, and has as few tables as	
possible. $\{R, p\}$ $\{S, Q\}$ $\{S, R\}$	