Statistics of extreme weather

Gijs van den Oord Utrecht 7/12/2020

Motivation

- Societal impact: casualties, disease, migration, agitation, protests
- Economic impact: infrastructure damage, productivity loss, crop destruction
- Ecological impact: loss of vegetation and widlife, forest fires, pollution
- Scientific impact: test of weather forecast models, but also climate models

Attribution: was it due to climate change?

- Due to chaotic nature of atmosphere, events independent after ~20 days
- Approach: extreme value theory, i.e. statistics of maxima of random samples
- Applications in climate science, hydrology, insurance, epidemology, engineering

• If the cumulant of $max(X_1,...,X_n)$ converges upon iterative shifting/scaling...

$$P\left(\frac{M_n - b_n}{a_n} \le x\right) \propto G(x), \quad n \to \infty$$

…it converges to the generalized extreme value (GEV) distribution

$$G(x) = \exp\left(-\left[1 + \xi\left(\frac{x - \mu}{\sigma}\right)\right]_{+}^{-1/\xi}\right)$$

• μ : location, σ : scale, ξ : shape

: Frechet

• ξ = : Gumbel • ξ < : Weihull

Generalized extreme value densities

By R D Gill - Created by R D Gill, 4 January 2013, using R script, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=45005894

• Return period: $T_{ret} = \frac{1}{1 - G(x)}$

• Return level:
$$x = G^{-1}(1 - T_{ret}^{-1})$$

$$= \mu - \frac{\sigma}{\xi} \left[1 - \left(-\log(1 - T_{ret}^{-1}) \right)^{-\xi} \right]$$

 Local weather extremes depend on geographic location and seasonal cycle...

...and climate change

- Assume covariate relation with GMT time series:
 - For temperature → location prop. to gmt
 - For precipitation → scale prop. to gmt

Constrained fit gives attribution result

Jan-Dec 3-day ave max temperature De Bilt 1901:2019 (95% CI)

