TD 20 : corrigé de 4 exercices

Exercice 20.8:

D'après le cours, il suffit de montrer que c'est vrai dans $\mathbb{C}[X]$.

 $(X^2 + X + 1)^2 = (X - j)^2(X - \bar{j})^2$, donc il suffit de montrer que j et \bar{j} sont racines de $Q(X) = (X + 1)^{6n+1} - X^{6n+1} - 1$ avec une multiplicité au moins égale à 2. Mais Q(X) est à coefficients réels, donc j est racine de Q de multiplicité au moins 2 si et seulement si c'est vrai pour \bar{j} . Pour terminer l'exercice, il suffit donc de vérifier que Q(j) = Q'(j) = 0:

$$Q(j) = (j+1)^{6n+1} - j^{6n+1} - 1 = (-j^2)^{6n+1} - j - 1 = -j^2 - j - 1 = 0 \text{ et}$$

$$Q'(j) = (6n+1)(j+1)^{6n} - (6n+1)j^{6n} = (6n+1)(-j^2)^{6n} - (6n+1)j^{6n} = 0.$$

Exercice 20.19:

1°) D'après le cours sur les polynômes d'interpolation de Lagrange, il existe un unique polynôme L tel que $\forall k \in \{1, ..., n\}, L(k) = k^{n-1}$ et il est donné par la formule

suivante :
$$L(X) = \sum_{k=1}^{n} k^{n-1} L_k$$
 avec $L_k = \prod_{\substack{i=1 \ i \neq k}}^{n} \frac{X-i}{k-i}$.

De plus, $1, \ldots, n$ sont n racines de $L - X^{n-1}$, donc $L - X^{n-1}$ possède au moins n racines, or $\deg(L - X^{n-1}) \leq n - 1$, donc $L = X^{n-1}$.

2°) On calcule

$$\frac{1}{n+1} \sum_{k=1}^{n} {n+1 \choose k} (-1)^{n-k} k^n = \sum_{k=1}^{n} k^{n-1} k (-1)^{n-k} \frac{(n+1)n(n-1)\cdots(n-k+2)}{k!(n+1)}$$
$$= \sum_{k=1}^{n} k^{n-1} \frac{n\cdots(n-k+2)}{(-1)^{n-k}(k-1)!}.$$

En outre,
$$\prod_{\substack{h=1\\h\neq k}}^{n} (k-h) = \left(\prod_{h=1}^{k-1} (k-h)\right) (-1)^{n-k} \left(\prod_{h=k-1}^{n} (h-k)\right) = (k-1)! (-1)^{n-k} (n-k)!,$$

On cherche donc
$$X$$
 tel que $\prod_{\substack{h=1\\h\neq k}}^{n} (X-h) \frac{1}{(k-1)!(-1)^{n-k}(n-k)!} = \frac{n\cdots(n-k+2)}{(-1)^{n-k}(k-1)!}$,

c'est-à-dire tel que
$$\prod_{\substack{h=1\\h\neq k}}^n (X-h) = n(n-1)\cdots(n-k+2)(n-k)\cdots 2$$
: on voit que

X = n + 1 convient, donc d'après la première question,

$$\frac{1}{n+1} \sum_{k=1}^{n} {n+1 \choose k} (-1)^{n-k} k^n = L(n+1) = (n+1)^{n-1},$$
puis
$$\sum_{k=0}^{n} {n+1 \choose k} (-1)^{n-k} k^n = (n+1)^n.$$

Exercice 20.21:

Supposons que $(X-1)^4|(P+1)$ et $(X+1)^4|(P-1)$: 1 et -1 sont racines de multiplicités au moins 4 de P+1 et P-1 respectivement, donc 1 et -1 sont racines de multiplicités au moins 3 des dérivées de P+1 et P-1, à savoir P'. Ainsi, il existe $C \in \mathbb{R}[X]$ tel que $P'(t) = C(t)(1-t)^3(1+t)^3 = (P-1)'$. Or (P-1)(-1) = 0,

donc
$$P(x) - 1 = \int_{-1}^{x} C(t)(1 - t^2)^3 dt$$
.

La réciproque étant claire, P est tel que $(X-1)^4|(P+1)$ et $(X+1)^4|(P-1)$ si et seulement si il existe $C \in \mathbb{R}[X]$ tel que $P(x) = 1 + \int_{-1}^{x} C(t)(1-t^2)^3 dt$

et
$$0 = P(1) + 1 = 2 + \int_{-1}^{1} C(t)(1 - t^2)^3 dt$$
.

On a deg(P) = deg(C) + 7, donc P est minimal lorsque C est minimal. La solution consiste donc à prendre C constant tel que $C \int_{-1}^{1} (1-t^2)^3 dt = -2$.

On calcule
$$\int_0^1 (1-t^2)^3 dt = \int_0^1 (1-3t^2+3t^4-t^6) dt = 1 - \frac{3}{3} + \frac{3}{5} - \frac{1}{7} = \frac{21-5}{35} = \frac{16}{35}$$
, donc $C = -\frac{35}{16}$ puis $P = 1 - \frac{35}{16} \int_{-1}^x (1-3t^2+3t^4-t^6) dt$.

$$P = 1 - \frac{35}{16} \left[t - t^3 + \frac{3}{5} t^5 - \frac{1}{7} t^7 \right]_{-1}^{x} = 1 - \frac{35}{16} \left(x - x^3 + \frac{3}{5} x^5 - \frac{1}{7} x^7 + \frac{3}{5} - \frac{1}{7} \right).$$
Finelement, $P = \frac{35}{16} \left(x^7 - \frac{3}{5} x^5 + x^3 - x \right)$

Finalement, $P = \frac{35}{16} \left(\frac{x^7}{7} - \frac{3}{5} x^5 + x^3 - x \right).$

Exercice 20.31:

Soit $P \in \mathbb{C}[X]$ tel que $P(\mathbb{U}) \subset \mathbb{U}$. Alors $P \neq 0$,

donc P est de la forme $P(X) = \sum_{k=0}^{n} a_k X^k$, avec $n \in \mathbb{N}$ et $a_n \neq 0$.

Soit
$$z \in \mathbb{U}$$
. Alors $\overline{z} = \frac{1}{z}$, donc $\overline{P(z)} = \sum_{k=0}^{n} \overline{a_k} z^{-k} = \frac{1}{z^n} \sum_{k=0}^{n} \overline{a_{n-k}} z^k$, or $P(z) \in \mathbb{U}$, donc

$$P(z)\overline{P(z)} = 1$$
. Ainsi, $z^n = \left(\sum_{k=0}^n a_k z^k\right) \left(\sum_{k=0}^n \overline{a_{n-k}} z^k\right)$.

On en déduit que le polynôme $X^n - \left(\sum_{k=0}^n a_k X^k\right) \left(\sum_{k=0}^n \overline{a_{n-k}} X^k\right)$ admet une infinité de racines, donc il est identiquement nul.

Or, en convenant que $a_k = 0$ pour k > n,

$$\left(\sum_{k=0}^{n} a_k X^k\right) \left(\sum_{k=0}^{n} \overline{a_{n-k}} X^k\right) = \sum_{i=0}^{2n} \left(\sum_{h+k=i}^{n} a_h \overline{a_{n-k}}\right) X^i = \sum_{i=0}^{2n} \left(\sum_{h=0}^{i} a_h \overline{a_{n+h-i}}\right) X^i.$$

Ainsi, pour tout
$$i \in \{0, ..., n-1\}$$
, (E_i) : $\sum_{h=0}^{i} a_h \overline{a_{n+h-i}} = 0$.

Par récurrence forte, on en déduit alors que, pour tout $i \in \{0, \ldots, n-1\}$, $a_i = 0$. En effet, pour i = 0 (si $n \ge 1$), (E_0) s'écrit $a_0\overline{a_n} = 0$, or $a_n \ne 0$, donc $a_0 = 0$. Pour $0 < i \le n-1$, supposons que, pour tout $h \in \{0, \ldots, i-1\}$, $a_h = 0$. Alors (E_i) devient $0 = a_i\overline{a_n} = 0$, donc $a_i = 0$.

Ainsi, $P(X) = a_n X^n$. De plus $a_n = P(1) \in \mathbb{U}$.

Réciproquement, si P est de la forme αX^n avec $\alpha \in \mathbb{U}$ et $n \in \mathbb{N}$, il est évident que $P(\mathbb{U}) \subset \mathbb{U}$.