Measurement of the branching fraction of $\eta_c \to K^+ K^- \pi^0$ and $\eta_c \to 2(\pi^+ \pi^- \pi^0)$

Ma Xuning ¹ Wang Zhiyong² Yu Chunxu ¹

¹Nankai Univ.

 $^{2}IHEP$

November 3, 2015

Overview

- f 1 Measurement of multiplicity of the inclusive decays of η_c
- 2 Motivation, Methods and Data Sets
- Selections
- 4 the Inclusive Mode
- Measurement of Branching Fractions
- Summary

Part I: Multiplicity

Fit data @ 4260 MeV simultaneously

Fit MC @ 4260 MeV simultaneously

Multiplicity @ 4.23, 4.26, 4.36, 4.42 GeV

Sum of the 4 energy points

Part II: Measurement of the Branching Fractions

Motivation

- The experimental measurement on the M1 transition processes can be used to test QCD and other theoretical models. And the branching fractions of the η_c decays are essential for the M1 transition measurement.
- \bullet However the current measured precision for the $\eta_{\it c}$ decays is not high.
- The awfully large uncertainty from $Br(J/\psi \to \gamma \eta_c)$ is hard to avoid, though we have the most sizable J/ψ sample in the world. The statistics if not large if we use the $\psi\prime \to \gamma\eta_c$ process. In addition, the interference problem should be considered with both J/ψ and $\psi\prime$ data samples.
- Up to now, we have collected a large XYZ data sample around 4.26 GeV. And the process $e^+e^- \to \gamma h_c$, $h_c \to \gamma \eta_c$ has been observed. In principle, the signal can be extracted by recoil mass (RM) of $\gamma \pi^+ \pi^-$ by limiting $RM(\pi^+ \pi^-)$ in the h_c mass region.

Methods [Take $\eta_c \to K^+ K^- \pi^0$ as example]

Methods to measure the branching fraction

- ullet We measure the branching fraction of $\eta_c o K^+ K^- \pi^0$ via the decays
 - $e^+e^- o \pi^+\pi^-h_c, h_c o \gamma\eta_c, \eta_c o K^+K^-\pi^0$ (exclusive mode)
 - ullet $e^+e^-
 ightarrow \pi^+\pi^-h_c, h_c
 ightarrow \gamma\eta_c, \eta_c
 ightarrow X (inclusive mode)$
- The Branching fraction is

$$Br(\eta_c \to K^+K^-\pi^0) = \frac{N_{signal}^{exclusive}}{N_{signal}^{inclusive}} \bullet \frac{\epsilon^{inclusive}}{\epsilon^{exclusive}} \bullet \frac{1}{Br(\pi^0 \to \gamma\gamma)}.$$

• And via this method we can also cancel parts of the system errors.

Data Sets and Monto Carlo Samples

BOSS version

6.6.4.p01

Data Sets

We currently used the XYZ data at the energy points of

4.23 GeV, 4.26 GeV, 4.36 GeV, 4.42 GeV

Monto Carlo Samples

200K Monto Carlo Samples are generated for each decay mode at each of the four energy points which are

4.23 GeV, 4.26 GeV, 4.36 GeV and 4.42 GeV.

Event Selections

Good Charged tracks selections

- ullet $V_{xy} < 1$ cm, $|V_z| < 10$ cm (except for the two tracks from \mathcal{K}_S^0)
- $|\cos \theta < 0.93|$

Good photon selections

- $E_{\gamma} > 25 MeV$ for $|\cos \theta| < 0.8$
- $E_{\gamma} > 50 MeV$ for $0.86 < |\cos \theta| < 0.92$
- $0 \le TDC \le 14$ (in unit of 50ns)
- $N_{good} \ge 2$, $1 \le N_{\gamma} \le 20$ [for the inclusive mode];
- $N_{good}=4$, $3 \leq N_{\gamma} \leq$ 20 [for $\eta_c \to K^+K^-\pi^0$];
- $N_{good}=6$, $5 \leq N_{\gamma} \leq$ 20 [for $\eta_c \rightarrow 2(\pi^+\pi^-\pi^0)$].
- $N_{good}=$ 4 , $1\leq N_{\gamma}\leq$ 20 [for $\eta_c
 ightarrow par{p}].$

Event Selections

π^0 Reconstruction

- $0.12 \, GeV < M_{\gamma\gamma} < 0.15 \, GeV$;
- 1-C Kinematic Fit

preliminary $\gamma \pi^+ \pi^-$ list

- $3.46 < m_{\pi^+\pi^-}^{recoil} < 3.59 \, GeV \left(h_c \text{ mass region} \right)$
- $2.5 < m_{\pi^+\pi^-\gamma}^{recoil} < 3.4 \, GeV$ (η_c mass region)

for the exclusive modes

- $N_{\pi^0} \geq 1$ [for $\eta_c \to K^+ K^- \pi^0$]
- $N_{\pi^0} \ge 2$ [for $\eta_c \to 2(\pi^+\pi^-\pi^0)$]
- Combination with the minimum

$$\chi^2 = \chi^2_{4C} + \sum_{i=1}^{N} \chi^2_{PID}(i) + \sum_{i=1}^{2} \chi^2_{\pi^0}(i)$$

is kept

the Optimized Selections

We choose the same range of $M_{\pi^+\pi^-}^{recoil}$ for both inclusive and exclusive processes.[$3.515 < M_{\pi^+\pi^-}^{recoil} < 3.535$ ($M_{h_c} \pm 3\sigma$)], and use the sideband method to analyze the background shape of the inclusive mode

Optimized Selections [Exclusive Modes]

 \bullet The χ^2_{4C} cut is optimized with the figure of merit(FOM) $\frac{\mathcal{S}}{\sqrt{\mathcal{S}+B}}$

• Table for χ^2_{4C} cut

χ^2_{4C} cut	$\eta_c o K^+ K^- \pi^0$	$\eta_c ightarrow 2(\pi^+\pi^-\pi^0)$	$\eta_c o par p$
4230	25	35	75
4260	15	30	25
4360	25	25	40
4420	20	35	45

$M_{\pi^+\pi^-\gamma}^{resoil}$ results of sideband (the inclusive mode)

The upper ones draw the sideband and signal regions together, while the lower ones draw net events

$M_{\pi^+\pi^-\gamma}^{recoil}$ results of sideband (the inclusive mode)

The upper ones draw the sideband and signal regions together, while the lower ones draw net events

Fit Simultaneously

To fit the distribution of $M^{recoil}_{\pi^+\pi^-\gamma}$, we use the fit function

$$F(m) = \sigma \otimes [\epsilon(m) \times |S(m)|^2 \times E_{\gamma}^3 \times d(E_{\gamma})] + B(m),$$

where

- $d(E_{\gamma}) = \frac{E_0^2}{E_{\gamma}E_0 + (E_{\gamma} E_0)^2}$,
- ullet σo Double-Gaussian or Gaussian shape,
- $S(m) \rightarrow Breit-Wigner$ shapes with common fixed M and σ ,
- $B(m) \rightarrow$
 - Chebyshev Polynomial for the exclusive mode,
 - Events from sideband of h_c for inclusive mode.

Efficiency Curves

We generate large-width signal Monto Carlo samples, and divide the MC truth after selection by the truth before selection to get the efficiency curve.

Resolution and Efficiency

We generated signal Monto Carlo samples, and fit the signal with a Gaussian or double-Gaussian shape.

Category		Gaussian 1		Gaussian 2		Coefficient	F(C-:(0/)
		$M_1(MeV)$	$\sigma_1(MeV)$	$M_2(MeV)$	$\sigma_2(MeV)$	Coefficient	Efficiency(%)
۴-0	4230	12.55	17.41	-	-	-	16.04
1	4260	10.73	15.46	-	-	=	15.04
×	4360	12.64	17.26	-	-	-	18.96
\star	4420	12.13	16.78	-	-	-	18.00
(0:	4230	13.18	20.87	=	-	=	2.95
E	4260	11.04	18.16	-	-	-	2.63
+π	4360	13.87	19.50	-	-	-	3.42
	4420	13.03	18.96	-	-	=	3.10
2(4230	14.46	20.19	-	-	=	35.04
ďα	4260	11.78	17.21	-	-	-	35.46
п	4360	13.35	18.82	-	-	-	40.35
	4420	13.35	19.03	-	-	-	42.00
ě	4230	2.61	11.29	23.61	26.37	6.44614e-01	48.12
Inclusive	4260	1.73	10.79	20.13	23.70	6.04471e-01	44.14
	4360	1.64	10.73	20.54	23.52	6.01291e-01	42.59
	4420	2.45	11.28	22.10	25.76	6.34061e-01	51.15

Simultaneous Fit ($\eta_c o K^+ K^- \pi^0$)

Simultaneous Fit ($\eta_c o 2(\pi^+\pi^-\pi^0)$)

Simultaneous Fit ($\eta_c \to p\bar{p}$)

Sum up

the Branching Fraction of $\eta_c o K^+ K^- \pi^0$

Cat	egory	Number of signal	Branching Fraction(%)	
$K^+K^-\pi^0$	4230	39.8	1.01 ± 0.11	
	4260	28.3		
	4360	31.3		
	4420	43.9		
$2(\pi^+\pi^-\pi^0)$	4230	95.4	13.13 ± 1.54	
	4260	60.7		
	4360	73.2		
	4420	96.9		
ďd	4230	8.9	0.104 ± 0.022	
	4260	6.6		
	4360	7.2		
	4420	10.6		

Summary

We measured the multiplicity of the good charged tracks of the inclusive mode of η_c for the first time;

So far we measured the branching fractions of four η_c decay modes, which are $\eta_c \to K_S^0 K^\pm \pi^\mp$, $\eta_c \to K^+ K^- \pi^0$, $\eta_c \to 2(\pi^+ \pi^- \pi^0)$ and $\eta_c \to p\bar{p}$, and the results are

decay mode	branching fraction(%)	reference value(%) ¹	
$\eta_c ightarrow K^0_S K^\pm \pi^\mp$	2.39 ± 0.20	$2.60 \pm 0.29 \pm 0.34 \pm 0.25$	
$\eta_c ightarrow K^+ K^- \pi^0$	1.01 ± 0.11	$1.04 \pm 0.17 \pm 0.11 \pm 0.10$	
$\eta_c ightarrow 2(\pi^+\pi^-\pi^0)$	13.13 ± 1.54	$17.23 \pm 1.70 \pm 2.29 \pm 1.66$	
$\eta_{c} o par{p}$	0.104 ± 0.022	$0.15 \pm 0.04 \pm 0.02 \pm 0.01$	