

Michael Schröder

Zentrum für Lehrerbildung, Schul- und Berufsbildungsforschung

Reelle Funktionen

Brückenkurs 2023

Inhaltsverzeichnis

- 1 Reelle Funktionen
- 2 Darstellungsmöglichkeiten
- **3 Wichtige elementare Funktionen**
- 4 Rechnen mit Funktionen
- 5 Eigenschaften von Funktionen

Wiederholung des Funktionsbegriffs

Wiederholung des Funktionsbegriffs

Ist dies eine Funktion?

$$f(x) = \pm x$$

Denken Sie kurz nach!

Wiederholung des Funktionsbegriffs

Ist dies eine Funktion? $f(x) = \pm x$

Der Stelle x=2 werden die Werte y=2 UND y=-2 zugeordnet. Damit kann f keine Funktion sein, da die Zuordnung nicht eindeutig ist.

Woher wissen wir denn, dass x=2 gewählt werden kann?! Was ist, wenn nur x=0 zulässig ist? In diesem Fall ist die Zuordnung eindeutig und f ist eine Funktion.

Definition

Eine Funktion $f: D_f \to M$ ist eine eindeutige Zuordnung, die jedem Element x aus D_f genau ein Element y = f(x) aus M zuordnet.

Gilt $M = \mathbb{R}$, so nennt man die Funktion f reellwertige Funktion.

Gelten $M = \mathbb{R}$ und $D_f \subseteq \mathbb{R}$, so nennt man die Funktion f reelle Funktion.

- Die Menge D_f heißt **Definitionsbereich** der Funktion f.
- Die Menge *M* heißt **Zielmenge/Wertebereich** der Funktion *f* .
- f(x) heißt **Funktionswert** von f an der Stelle x.
- Die Menge $B_f = \{y \in \mathbb{R} : \text{es existiert ein } x \in D_f \text{ mit } y = f(x)\}$ heißt **Bildmenge/Bildbereich** der Funktion f.

Bemerkungen

Anders formuliert:

Eine reelle Funktion $f: D_f \to \mathbb{R}$ ordnet jeder reellen Zahl x aus dem Definitionsbereich D_f eine reelle Zahl y = f(x) aus der Zielmenge zu.

• Die Zielmenge einer Funktion f muss nicht mit dem Bildbereich dieser Funktion übereinstimmen. Es gilt jedoch immer, dass der Bildbereich eine Teilmenge der Zielmenge ist.

Beispiel:
$$f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = x^2$$

Zielmenge: R

Bildbereich: \mathbb{R}_0^+ (Menge der nichtnegativen reellen Zahlen)

Wortlaut

Jeder reellen Zahl wird ihr Doppeltes zugeordnet.

Wertetabelle

x	1	2	3	4
y = f(x)	1	4	9	16

- Analytisch
- Graph

Wertetabelle

x	1	2	3	4
y = f(x)	1	4	9	16

https://www.geogebra.org/m/qxajbuue

Wortlaut

Jeder reellen Zahl wird ihr Doppeltes zugeordnet.

Wertetabelle

x	1	2	3	4
y = f(x)	1	4	9	16

Analytisch

Analytisch

Explizite Darstellung

$$f: [-3; 4] \to \mathbb{R}$$
$$y = f(x) = x^2$$

Implizite Darstellung

$$x^2 + y^2 = 4$$

Parameterdarstellung

Diese wird hier nicht näher ausgeführt

Implizite Darstellung

$$x^2 + y^2 = 4$$

Die Zuordnung $x \mapsto y$ ist nicht eindeutig, d.h. es wird keine Funktion beschrieben.

ABER

$$x^{2} + y^{2} = 4 \qquad |-x^{2}|$$

$$y^{2} = 4 - x^{2} \qquad |\sqrt{}$$

$$y = \pm \sqrt{4 - x^{2}}$$

$$y_1 = \sqrt{4 - x^2}$$

$$y_2 = -\sqrt{4 - x^2}$$

Wortlaut

Jeder reellen Zahl wird ihr Doppeltes zugeordnet.

Wertetabelle

x	1	2	3	4
y = f(x)	1	4	9	16

- Analytisch
- Graph

Graph

Eine Funktion $f: D_f \to \mathbb{R}$ ordnet jeder Zahl $x \in D_f$ genau eine Zahl $f(x) \in \mathbb{R}$ zu. Das Paar (x, f(x)) kann als Punkt in der xy – Ebene gedeutet werden.

Die Menge aller dieser Punkte, also die Menge $\{(x, f(x)) : x \in D_f\}$ heißt **Graph** der Funktion f.

Potenzfunktion

Betragsfunktion

Exponential- und Logarithmusfunktion

Trigonometrische Funktionen

Potenzfunktion

Funktionsvorschrift: $f(x) = x^p$ mit festem p

 $p \in \mathbb{N}$:

$$p = 0$$
: $f(x) = x^0 = 1$ konstante Funktion (Vorsicht: 0^0 wird hier zu 1)

$$p = 1$$
: $f(x) = x^1 = x$ lineare Funktion

$$p = 2$$
: $f(x) = x^2$ quadratische Funktion

$$p = 3: f(x) = x^3$$
 kubische Funktion

Ist p > 2 gerade, so ähnelt der Graphenverlauf dem der quadratischen Funktion.

Ist p > 3 ungerade, so ähnelt der Graphenverlauf dem der kubischen Funktion.

Potenzfunktion

Funktionsvorschrift: $f(x) = x^p$ mit festem p

$$p \in \mathbb{Z} \backslash \mathbb{N}$$
: $0 \notin D_f$

$$p = -1 : f(x) = x^{-1} = \frac{1}{x}$$

$$p = -2 : f(x) = x^{-2} = \frac{1}{x^2}$$

Ist p < -1 ungerade, so ähnelt der Graphenverlauf dem der Potenzfunktion mit p = -1.

Ist p < -2 gerade, so ähnelt der Graphenverlauf dem der Potenzfunktion mit p = -2.

Potenzfunktion

Funktionsvorschrift: $f(x) = x^p$ mit festem p

$$p \in \mathbb{R} \setminus \mathbb{Z}$$
: $x > 0$ für beliebiges p $(x = 0 \text{ für } p > 0 \text{ möglich})$

$$p = 0,5:$$
 $f(x) = x^{0,5} = x^{\frac{1}{2}} = \sqrt{x}$

$$p = \frac{2}{3}$$
: $f(x) = x^{\frac{2}{3}} = \sqrt[3]{x^2}$

$$p = -0,25$$
: $f(x) = x^{-0,25} = \frac{1}{x^{0,25}} = \frac{1}{\frac{1}{x^4}} = \frac{1}{\sqrt[4]{x}}$

Potenzfunktion

Betragsfunktion

Exponential- und Logarithmusfunktion

Trigonometrische Funktionen

Betragsfunktion

Funktionsvorschrift:
$$f(x) = |x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Abschnittsweise definierte Funktion

Potenzfunktion

Betragsfunktion

Exponential- und Logarithmusfunktion

Trigonometrische Funktionen

Exponentialfunktion

Logarithmusfunktion

Funktionsvorschrift:

$$f(x) = a^x \text{ mit } a > 0, a \neq 1, a \text{ fest}$$
Basis

Funktionsvorschrift:

$$f(x) = \log_a(x) \text{ mit } a > 0, a \text{ fest}$$
Basis Numerus

Potenzfunktion

Betragsfunktion

Exponential- und Logarithmusfunktion

Trigonometrische Funktionen

Funktionsvorschriften: $f(x) = \sin(x)$ bzw. $f(x) = \cos(x)$

$$f(x) = |x - 3|$$

Wie sieht der zugehörige Graph aus?

https://www.geogebra.org/m/sfeg8had

Verschiebung einer Funktion

Es seien g eine reelle Funktion und $a, b \in \mathbb{R}$ Konstanten. Dann geht der Graph der Funktion f mit

- y = f(x) = g(x) + a aus dem Graphen von g durch **Verschiebung in** y **Richtung** um den Wert a hervor,
- y = f(x) = g(x b) aus dem Graphen von g durch **Verschiebung in** x **Richtung** um den Wert b hervor.

Beispiele:

(1) Sei $g(x) = x^2$. Möchte man den Graphen dieser Funktion um 3 nach oben (in y – Richtung) verschieben, so lautet die Funktionsgleichung zu diesem neuen Graphen

$$f(x) = g(x) + 3 = x^2 + 3$$

Verschiebung einer Funktion

Es seien g eine reelle Funktion und $a,b \in \mathbb{R}$ Konstanten. Dann ge

- y = f(x) = g(x) + a aus dem Graphen von g durch **Verschie** Wert a hervor,
- y = f(x) = g(x b) aus dem Graphen von g durch **Verschie**l Wert b hervor.

Beispiele:

(1) Sei $g(x) = x^2$. Möchte man den Graphen dieser Funktion um 3 nach oben (in y – Richtung) verschieben, so lautet die Funktionsgleichung zu diesem neuen Graphen

$$f(x) = g(x) + 3 = x^2 + 3$$

Verschiebung einer Funktion

Es seien g eine reelle Funktion und $a, b \in \mathbb{R}$ Konstanten. Dann geht der Graph der Funktion f mit

- y = f(x) = g(x) + a aus dem Graphen von g durch **Verschiebung in** y **Richtung** um den Wert a hervor,
- y = f(x) = g(x b) aus dem Graphen von g durch **Verschiebung in** x **Richtung** um den Wert b hervor.

Beispiele:

Seien g(x) = |x| und f(x) = |x - 3|. Offensichtlich gilt f(x) = g(x - 3). Demnach müsste der Graph der Funktion f durch eine Verschiebung des Graphen von g um 3 in x – Richtung (nach rechts) hervorgehen.

Verschiebung einer Funktion

Es seien g eine reelle Funktion und $a, b \in \mathbb{R}$ Ko

- y = f(x) = g(x) + a aus dem Graphen von `Wert a hervor,
- y = f(x) = g(x b) aus dem Graphen von Wert b hervor.

Beispiele:

Seien g(x) = |x| und f(x) = |x - 3|. Offensichtlich gilt f(x) = g(x - 3). Demnach müsste der Graph der Funktion f durch eine Verschiebung des Graphen von g um 3 in x – Richtung (nach rechts) hervorgehen.

Streckung/Stauchung einer Funktion

Es seien g eine reelle Funktion und $a, b \in \mathbb{R}^+(a, b > 0)$ Konstanten. Dann geht der Graph der Funktion f mit

- $y = f(x) = a \cdot g(x)$ aus dem Graphen von g durch **Streckung in** y **Richtung** um den Faktor a hervor,
- $y = f(x) = g(b \cdot x)$ aus dem Graphen von g durch **Streckung in** x **Richtung** um den Wert $\frac{1}{b}$ hervor.

Nullstellen

Verhalten im Unendlichen

Unstetigkeitsstellen (allg. Stetigkeit)

und weitere

Nullstellen

Eine Zahl $x_0 \in D_f$ heißt **Nullstelle** einer Funktion $f: D_f \to \mathbb{R}$, wenn $f(x_0) = 0$ gilt.

Beispiele:

(1)
$$y = f(x) = m \cdot x + n$$
 Nullstellenansatz: $0 = m \cdot x_0 + n$ Nullstelle: $x_0 = -\frac{n}{m}$

(2)
$$y = f(x) = \frac{x^2 - 2x + 1}{x - 1}$$
 Nullstellenansatz: $0 = \frac{x_0^2 - 2x_0 + 1}{x_0 - 1}$

Zähler und Nenner getrennt betrachten:

Zähler: $0 = x_0^2 - 2x_0 + 1$ liefert $x_0 = 1 \notin D_f$, da x = 1 Nullstelle des Nenners ist.

Die Funktion *f* besitzt demnach keine Nullstelle.

Monotonie

Seien eine Funktion $f: D_f \to \mathbb{R}$ und ein Intervall $I \subseteq D_f$ gegeben.

Falls für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt:

- $f(x_1) \le f(x_2)$, so heißt f monoton wachsend auf dem Intervall I
- $f(x_1) < f(x_2)$, so heißt f streng monoton wachsend auf dem Intervall I
- $f(x_1) \ge f(x_2)$, so heißt f monoton fallend auf dem Intervall I
- $f(x_1) > f(x_2)$, so heißt f streng monoton fallend auf dem Intervall I

Monotonie - Beispiel

$$f: \mathbb{R} \to \mathbb{R}$$

Streng monoton wachsend:

$$I_1 = (-\infty; -2]$$

bzw.
$$-\infty < x \le -2$$

$$I_3 = [3,5;\infty)$$

$$3,5 \le x < \infty$$

Monoton fallend (um x = 1 keine genauere Angabe)

$$I_2 = [-2; 3,5]$$
 bzw. $-2 \le x \le 3,5$

$$-2 \le x \le 3,5$$

Monotonie – Ausblicke (pathologisches Monster)

$$f(x) = \begin{cases} x & , x \in \mathbb{Q} \\ -x & , x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Die Funktion f ist auf ganz \mathbb{R} definiert. Es existiert jedoch kein Intervall $I \subseteq \mathbb{R}$, wo f monoton wachsend oder fallend ist.

Symmetrie

• Eine Funktion $f: D_f \to \mathbb{R}$ heißt **gerade**, falls für jedes $x \in D_f$ gilt: f(x) = f(-x)

Der Graph einer geraden Funktion ist **achsensymmetrisch zur** y – **Achse.**

• Eine Funktion $f: D_f \to \mathbb{R}$ heißt **ungerade**, falls für jedes $x \in D_f$ gilt: f(x) = -f(-x)

Der Graph einer ungeraden Funktion ist Punktsymmetrisch zum Koordinatenursprung.

Symmetrie - Beispiel

Sei eine Funktion $f: D_f \to \mathbb{R}$ gegeben mit $f(x) = x^2$.

Entscheiden Sie für sich, ob diese Funktion symmetrisch ist!

Da
$$f(-x) = (-x)^2 = x^2 = f(x)$$
 gilt,
muss f symmetrisch zur y – Achse und
somit gerade sein.

Symmetrie - Beispiel

Sei eine Funktion $f: D_f \to \mathbb{R}$ gegeben mit $f(x) = x^2$.

Entscheiden Sie für sich, ob diese Funktion symmetrisch ist!

Symmetrie - Beispiel

Sei eine Funktion $f: D_f \to \mathbb{R}$ gegeben mit $f(x) = x^2$.

Entscheiden Sie für sich, ob diese Funktion symmetrisch ist!

 D_f muss beachtet werden! "...falls für jedes $x \in D_f$ gilt..."

Symmetrie - Beispiel

Sei eine Funktion $f: D_f \to \mathbb{R}$ gegeben mit $f(x) = x^2$.

Entscheiden Sie für sich, ob diese Funktion symmetrisch ist!

 D_f muss beachtet werden! "...falls für jedes $x \in D_f$ gilt..."

z.B.:
$$D_f = [-2; 4]$$

Offensichtlich ist f nicht achsensymmetrisch zur y – Achse.

Symmetrie - Allgemeiner

Sei eine Funktion $f : \mathbb{R} \to \mathbb{R}$ gegeben mit $f(x) = (x - 1)^2$.

Die Funktion f ist offensichtlich weder gerade noch ungerade. Es existiert trotzdem eine Symmetrieachse (x = 1).

Man kann die Begriffe gerade und ungerade Funktion verallgemeinern.

Grenzwerte

Wir betrachten

$$\lim_{x \to x_0} f(x)$$

falls wir den Grenzwert **an einer Stelle** x_0 oder

$$\lim_{x\to\pm\infty}f(x)$$

falls wir das **Verhalten im Unendlichen** (∞ oder $-\infty$) untersuchen wollen.

Verhalten im Unendlichen

Beispiele:

(1) Für die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{3x^2 - x}{6x^2 + 7}$ gilt für $x \to \infty$: $\lim_{x \to \infty} f(x) = \frac{1}{2}$

Verhalten im Unendlichen

Beispiele:

(1) Für die Funktion
$$f: \mathbb{R} \to \mathbb{R}$$
 mit $f(x) = \frac{3x^2 - x}{6x^2 + 7}$ gilt für $x \to \infty$: $\lim_{x \to \infty} f(x) = \frac{1}{2}$

Rechnerischer Nachweis: Sei (x_n) eine beliebige Folge mit der Eigenschaft $\lim_{n\to\infty}x_n=\infty$. Dann gilt

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{3x_n^2 - x_n}{6x_n^2 + 7} = \lim_{n \to \infty} \frac{x_n^2 (3 - \frac{1}{x_n})}{x_n^2 (6 + \frac{7}{x_n^2})} = \lim_{n \to \infty} \frac{3 - \frac{1}{x_n}}{6 + \frac{7}{x_n^2}} = \frac{3 + 0}{6 + 0} = \frac{1}{2}.$$

Verhalten im Unendlichen

Beispiele:

(2) Für die Funktion $f : \mathbb{R} \to \mathbb{R}$ mit $f(x) = \sin(x)$ gilt für $x \to \infty$: $\lim_{x \to \infty} f(x)$ existiert nicht

Verhalten im Unendlichen

Beispiele:

(3) Für die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2 - 1$ gilt für $x \to \infty$: $\lim_{x \to \infty} f(x) = \infty$ (existiert nicht)

Verhalten an einer Stelle - Stetigkeit

Definitionen

Seien f eine reelle Funktion und $x^* \in D_f$.

• Die Funktion f heißt **stetig an der Stelle** x^* , wenn der Grenzwert $\lim_{x \to x^*} f(x)$ existiert und mit dem Funktionswert $f(x^*)$ übereinstimmt.

$$\mathsf{Kurz:} \lim_{x \to x^*} f(x) = f(x^*)$$

- Die Funktion f heißt **stetig** (auf ihrem Definitionsbereich), wenn sie stetig an jeder Stelle $x \in D_f$ ist.
- Die Funktion f heißt **unstetig an der Stelle** x^* , wenn sie an der Stelle x^* nicht stetig ist.

Stetigkeit - Vorstellungsprobleme?

Wahrscheinlich so in der Schule:

"Eine Funktion ist stetig, wenn man den Graphen ohne Absetzen des Stiftes zeichnen kann."

$$f: D_f \to \mathbb{R} \text{ mit } f(x) = \frac{1}{x}$$
. Stetig oder nicht?

Der Stetigkeitsbegriff kann auf die Stelle x = 0 nicht angewendet werden.

Unstetigkeiten

Gemäß der Definition ist eine Funktion genau dann an einer Stelle x^* unstetig, wenn einer der folgenden drei Fälle vorliegt:

- (i) Die rechts- und linksseitigen Grenzwerte existieren und stimmen überein, stimmen aber nicht mit dem Funktionswert $f(x^*)$ überein.
- (ii) Die rechts- und linksseitigen Grenzwerte existieren und stimmen nicht überein.
- (iii) Wenigstens einer der Grenzwert existiert nicht.

Unstetigkeiten

(i) Die rechts- und linksseitigen Grenzwerte existieren und stimmen überein, stimmen aber nicht mit dem Funktionswert $f(x^*)$ überein.

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1, x \neq 2\\ 4, x = 2 \end{cases}$$

$$\lim_{x \to 2} f(x) = 3 \neq 4 = f(2)$$

f ist unstetig an der Stelle x = 2

Unstetigkeiten

(ii) Die rechts- und linksseitigen Grenzwerte existieren und stimmen nicht überein.

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x^2, x \le 2\\ -x + 8, x > 2 \end{cases}$$

$$\lim_{x \to 2-0} f(x) = \lim_{x \to 2-0} x^2 = 4$$

$$\lim_{x \to 2+0} f(x) = \lim_{x \to 2+0} (-x + 8) = 6$$

Da linksseitiger und rechtsseitiger Grenzwert nicht übereinstimmen, ist f unstetig an der Stelle x=2.

Unstetigkeiten

(iii) Wenigstens einer der Grenzwert existiert nicht.

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x^2, x \le 2\\ -\frac{1}{x-2}, x > 2 \end{cases}$$

$$\lim_{x \to 2+0} f(x) = \lim_{x \to 2+0} -\frac{1}{x-2} = -\infty$$

Da der rechtsseitige Grenzwert nicht existiert, ist f unstetig an der Stelle x=2.

Stetigkeit – pathologisches Monster

Sei
$$f:(0;\infty)\to\mathbb{R}$$
 mit $f(x)=\left\{\begin{array}{ccc} 0 & , & \mathbb{R}^+\backslash\mathbb{Q} \\ \frac{1}{q} & , & x=\frac{p}{q} \text{ mit } ggT(p,q)=1 \end{array}\right.$

Die Funktion *f* ist an allen rationalen Stellen unstetig, an allen irrationalen Stellen stetig.

Graph "angedeutet"

