Enhancing Customer Retention in E-Commerce Through Predictive Analytics Project Summary

Data Features and Preprocessing

Key Features Used:

Category	Features			
Customer Behavior	Tenure, OrderCount, HourSpendOnApp, DaySinceLastOrder			
Satisfaction Indicators	SatisfactionScore, Complain			
Economic Factors	CashbackAmount, CouponUsed, OrderAmountHikeFromLastYear			
Logistics	WarehouseToHome, CityTier			
Technical Engagement	NumberOfDeviceRegistered, NumberOfAddress			

Data Cleaning:

- Converted columns to numeric formats
- Replaced zeros with Nan in CashbackAmount & CouponUsed, filled with missing values (medians for numeric, modes for categorical)
- Standardized features for modeling, removed zero-variance columns

Prediction Models and Evaluation

Target Variable: Binary customer churn (0/1)

Regression Analysis:

Univariate & Multivariate Random Forest Regression (R² ≈ 0.3)

Clustering Analysis:

Clustering Method	Number of Clusters	Evaluation Metrics	Best Performing
Agglomerative Clustering	3	Silhouette Score, PCA Visualization, Churn Rate Differentiation	No
K-Means Clustering	3	Silhouette Score, PCA Visualization, Churn Rate Differentiation	No
Mini-Batch K-Means	3	Silhouette Score, PCA Visualization, Churn Rate Differentiation	No
Mean Shift Clustering	7 (auto determined)	Silhouette Score: 0.299	Yes (Best Performing)

Cluster-Wise Churn Rates

Cluster	Number of Customers	Churn Rate	Remarks
Cluster 2	41	31.71% (High Risk)	High Churn Segment
Cluster 0	5,505	16.89%	Moderate Churn Rate
Clusters 3, 4, 5	50	0%	Perfect Loyalty
Cluster 6	1	100%	Complete Churn

Classification Analysis in a tabular format:

Method	Accuracy	ROC AUC	F1 Score (Churned Class)	Cluster Feature Impact
Logistic Regression	87.99%	0.855	0.518	Minimal Improvement
K-Nearest Neighbors	87.92%	0.889	0.536	No Significant Change
Decision Tree (Best Model)	94.2%	0.901	0.825	Improved Performance
Support Vector Machine	88.81%	0.896	0.531	Minimal Improvement
Naive Bayes	83.78%	0.800	0.526	Decreased Performance
Neural Network (Runner- up)	94.1%	0.971 (Best Discrimination)	0.806	Improved Performance

Evaluation Metrics Considered:

- Accuracy, ROC AUC, F1 Score (for churn class)
- Cross-validation scores, confusion matrices, comparison with and without cluster features

Conclusion & Key Takeaways

- 1. Customer Segmentation: Mean Shift revealed natural churn patterns, outperforming arbitrary cluster
- 2. Classification Effectiveness: Decision Trees balanced accuracy & interpretability, making them ideal for business use.
- 3. Cluster Feature Impact: Improved classification performance, especially for Neural Networks, validating a two-stage approach.
- 4. Business Application:
 - o Target retention efforts on high-risk Cluster 2 (31.7% churn)
 - o Study zero-churn clusters to identify loyalty drivers
 - Implement segment-specific retention strategies
- 5. Methodology Insight: The strong performance of Mean Shift underscores the importance of datadriven clustering over predefined counts.