

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 ПО ДИСЦИПЛИНЕ: ОСНОВЫ ЭЛЕКТРОНИКИ "ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ"

Студент: **Зернов Георгий Павлович**Группа: **ИУ7-34Б**Вариант: **86**Название предприятия: **НУК ИУ МГТУ им. Н. Э. Баумана**Студент _________ **Зернов Г.П.**Преподаватель _______ **Оглоблин Д.И.**

Оглавление

ЦЕЛЬ ПРАКТИКУМА	3
ХОД РАБОТЫ	
Исследуемый диод	
ЭКСПЕРИМЕНТ №1	
Добавление диода в базу данных Multisim	
ЭКСПЕРИМЕНТ 2	
Исследование ВАХ с помощью мультиметров	
ЭКСПЕРИМЕНТ 3	
Исследование BAX с помощью осциллографа и генератора	
ЭКСПЕРИМЕНТ 4	
Исследование выпрямительных свойств диода	12
ЗАКЛЮЧЕНИЕ	1

ЦЕЛЬ ПРАКТИКУМА

Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах Multisim и Mathcad по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов.

ХОД РАБОТЫ

Исследуемый диод

В работе проводится исследование диода D2C139A. Характеристики диода из библиотеки:

```
.model D2C139A D(Is=31.47f Rs=9.494 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=220p M=.5959

+ Vj=.75 Fc=.5 Isr=2.035n Nr=2 Bv=3.928 Ibv=43.84m

* Nbv=60 Ibvl=3m Nbvl=180

+ Tbv1=-1.0m)
```

ЭКСПЕРИМЕНТ №1

Добавление диода в базу данных Multisim

В программе Multisim для добавления компонентов служит менеджер баз данных, находящийся в меню Tools\Database\Database Manager:

Сначала добавим новую группу компонентов (кнопка "Add family"):

После добавления группы, с помощью TOOLS/Component Wizard, начнём добавление элемента. На первом шаге зададим его название и описание:

На втором шаге зададим количество выводов у компонента и то простой он или составной:

На третьем шаге выберем изображение для компонента:

Затем определим параметры контактов:

На пятом шаге из базы данных диодов внесём параметры в Multisim:

На шестом шаге, меняем местами контакты так, чтобы они соответствовали графической схеме.

Последним шагом подтверждаем добавление компонента:

ЭКСПЕРИМЕНТ 2

Исследование ВАХ с помощью мультиметров

Соберём схему, где последовательно включенный в схему мультиметр переведём в режим амперметра, а параллельно – в режим вольтметра:

Запустим симуляцию по постоянному току для прямого включения диода (Simulate -> Analyses -> DC Sweep, Analyses parameters, Output):

Аналогично для обратного включения:

ЭКСПЕРИМЕНТ 3

Исследование ВАХ с помощью осциллографа и генератора

Соберём схему, где частоту генератора установим на 850 герц и амплитуду на 1 вольт:

Настроим осциллограф:

Запустим симуляцию и получим ВАХ диода:

В окне "Grapher View" сформируем текстовый файл с данными в виде совместимым с программой MathCAD. Загрузим в MathCAD данные и рассчитаем параметры модели диода:

$$\begin{array}{c} Ud1 := 0.59807 \\ Id1 := 0.000389179 \end{array} \qquad \begin{array}{c} Ud2 := 0.61607 \\ \hline Id2 := 0.000567663 \end{array} \qquad \begin{array}{c} Ud3 := 0.64807 \\ \hline Id3 := 0.00152329 \end{array} \qquad \begin{array}{c} Ud4 := 0.67707 \\ \hline Id4 := 0.00281193 \end{array} \\ \hline Rb_d := 1 \ Is0 := 0.000001 \qquad \qquad \\ \hline m_w := 2 \qquad Ft := 0.02 \\ \hline Given \\ \hline \\ Ud1 = Id1 \cdot Rb_d + In \left[\begin{array}{c} (Is0 + Id1) \\ \hline Is0 \end{array} \right] \cdot m \cdot Ft \\ \hline \\ Ud2 = Id2 \cdot Rb_d + In \left[\begin{array}{c} (Is0 + Id2) \\ \hline Is0 \end{array} \right] \cdot m \cdot Ft \\ \hline \\ Ud3 = Id3 \cdot Rb_d + In \left[\begin{array}{c} (Is0 + Id3) \\ \hline Is0 \end{array} \right] \cdot m \cdot Ft \\ \hline \\ Ud4 = Id4 \cdot Rb_d + In \left[\begin{array}{c} (Is0 + Id4) \\ \hline Is0 \end{array} \right] \cdot m \cdot Ft \\ \hline \\ Diod_P := Miner(Rb_d, Is0, m, Ft) \\ \hline \\ Diod_P = \begin{pmatrix} 5.832 \\ 2.271 \times 10^{-12} \\ 1.773 \\ 0.018 \\ \end{array} \right) \end{array}$$

Вычисленные данные:

Заметим, что данные достаточно близки к табличным.

ЭКСПЕРИМЕНТ 4

Исследование выпрямительных свойств диода

Соберём схему, где частоту генератора установим на 1000 герц и амплитуду на 10 вольт:

Запустим симуляцию и получим временную развёртку сигнала генератора:

Соберём схему со своим диодом:

Получим осциллограмму прямого включения диода:

Аналогично для обратного включения диода:

Заметим, что выпрямления не произошло, так как диод D2C139A является стабилитроном.

• Пробивное напряжение: 3.928В

• Максимальный ток: 43.84 мА

ЗАКЛЮЧЕНИЕ

Были выполнены все задачи, описанные выше, таким образом были получены и проанализированы характеристики полупроводникового диода. Также была освоена программа Multisim/