Московский авиационный институт

(национальный исследовательский университет)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Курсовой проект по курсу «Вычислительные системы»

1 семестр

Задание 3.

Тема: «Вещественный тип. Приближённые вычисления. Табулирование функций.»

Студент:	Модин-Глазков Б.А.
Группа:	М8О - 112Б - 22
Преподаватель:	Никулин С.П.
Подпись:	
Оценка:	

Оглавление

- 1. Задание
- 2. Описание алгоритма
- 3. Код программы
- 4. Протокол выполнения
- 5. Вывод

Задание

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n + 1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью epsilon*k, где epsilon — машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное EPS и обеспечивать корректные размеры генерируемой таблицы.

6	$x + \frac{x^3}{3!} + + \frac{x^{2n-1}}{(2n-1)!}$	0.0	1.0	sh x

Описание алгоритма

- Импортируем библиотеку <math.h>
- Заводим перменные double a(начало отрезка) = 0.0, double b(конец отрезка) = 1.0, double epsilon(машинное эпсилон = 1), double x(переменная для работы с точками),double S = 0 (сумма членов ряда Тейлора), double chislo(член ряда Тейлора), int n(кол-во частей при разбитии отрезка), int k = 0(количество слагаемых ряда Тейлора)

- Вычисляем машинное эпсилон
- Ввводим значения для n, k.
- Начинаем проходить циклом for все точки, которые получились при разделении нашего отрезка [a, b] на п равных частей.
- S = 0
- Начинаем цикл подсчета суммы членов ряда Тейлора из 100 элементов
- Считаем chislo(конкретный член ряда Тейлора) и прибавляем 1 к переменной К
- Если модуль нашего члена ряда Тейлора будет > epsilon*k, то увеличиваем S
- Иначе выходим из цикла
- Печатаем строчку таблицы
- Обнуляем k

Код программы

```
#include <stdio.h>
#include <math.h>
long long factorial(long long i)
  if (i==0) return 1;
  else return i*factorial(i-1);
int main() {
    double a = 0.0, b = 1.0, epsilon = 1.0, x, S = 0, chislo; int n,number = 0, k = 0; while (epsilon/2.0 + 1.0 > 1.0) {
        epsilon/=2.0;
printf("Введите количество частей n, на которые разбивается интервал, а также значение k, нужное для определения точности: "); scanf ("%d %d", &n, &k);
    printf("Машинное эпсилон для типа double: epsilon = %.16lf.\n", epsilon);
    printf("----
    printf("| х | Сумма ряда Тейлора | Значение функции | Число итераций |\n");
    while (number < 100) {
            number += 1;
            chislo = powl(x,2*number-1)/factorial(2*number-1);
            if (fabs(chislo) > epsilon*k) {
                S += chislo;
            }
            else {
                break;
number = 0;
    printf("-
    return 0;
```

Протокол выполнения программы.

```
bogdanmodin@mac ~ % cat >r.c
#include <stdio.h>
#include <math.h>
long long factorial(long long i)
  if (i==0) return 1;
  else return i*factorial(i-1);
int main() {
    double a = 0.0, b = 1.0, epsilon = 1.0, x, S = 0, chislo;
    int n, number = 0, k = 0;
    while (epsilon/2.0 + 1.0 > 1.0) epsilon/=2.0;
    printf("Введите количество частей n, на которые разбивается интервал, а также
значение k, нужное для определения точности: "); scanf ("%d %d", &n, &k);
    printf("Машинное эпсилон для типа double: epsilon = %.16lf.\n", epsilon);
    printf("--
                                                                                   -\n");
    printf("I
                                                                  Число итераций |\n");
                      | Сумма ряда Тейлора
                                              Значение функции
    printf("|----|
    for (x = a; x \le b; x = (b - a)/(double)n) {
     S=0;
     while(number<1number += 1;</pre>
            chislo = powl(x,2*number-1)/factorial(2*number-1);
if (fabs(chislo) > epsilon*k) {
                 S += chislo;
            }
            else {
                 break;
            }
        }
             printf("| %1.3lf | %1.16lf | %1.16lf |%10d
                                                                   |\n", x, S, (exp(x)-
(1.0/\exp(x)))/2, number);
        number = 0;
    printf("----
    return 0;
}
^C
bogdanmodin@mac ~ % gcc r.c
bogdanmodin@mac ~ % ./a.out
Введите количество частей п, на которые разбивается интервал, а также значение k, нужное
для определения точности: 10 5
Машинное эпсилон для типа double: epsilon = 0.000000000000000002.
```

x	Сумма ряда Тейлора	Значение функции	Число	итераций
 0.000	0.0000000000000000	0.0000000000000	 0000	 1
0.100	<pre>i 0.1001667500198440</pre>	0.1001667500198	8441 İ	6
0.200	0.2013360025410935	0.2013360025410	940 j	6
0.300	0.3045202934471426	0.3045202934471	.427	7
0.400	0.4107523258028145	0.4107523258028	3155 İ	7
0.500	0.5210953054937474	0.5210953054937	′474 İ	8
0.600	0.6366535821482409	0.6366535821482	2412	8
0.700	0.7585837018395336	0.7585837018395	336 İ	9
0.800	0.8881059821876229	0.8881059821876	5229 j	9
0.900	1.0265167257081749	1.0265167257081	.751	9
1.000	1.1752011936438014	1.1752011936438	8014 j	10

bogdanmodin@mac \sim % ./a.out Введите количество частей n, на которые разбивается интервал, а также значение k, нужное для определения точности: 20 10 Машинное эпсилон для типа double: epsilon = 0.00000000000002.

-	x	Сумма ряда Тейлора	Значение функции	Число	итераций	
	0.000		!		 _1_	
	0.050	0.0500208359376550		-	5	
	0.100	0.1001667500198440	0.10016675001984	141	6	
	0.150	0.1505631331516127	0.15056313315161	L26	6	
ĺ	0.200	0.2013360025410935	0.20133600254109	940	6	
ĺ	0.250	0.2526123168081683	0.25261231680816	583	7	
j	0.300	0.3045202934471425	0.30452029344714	127 j	7	
i	0.350	0.3571897294372717	0.3571897294372	718	7	
i	0.400	0.4107523258028144	0.41075232580283	L55 İ	7	
i	0.450	0.4653420169341978	0.46534201693419	977 İ	8	
i	0.500	0.5210953054937473	0.52109530549374	173 İ	8	
i	0.550	0.5781516037434542	0.5781516037434	542 İ	8	
i	0.600	0.6366535821482409	0.63665358214824	112 İ		
i	0.650	0.6967475261264388	0.69674752612644	101 İ	8 8	
i	0.700	i 0.7585837018395337	0.75858370183953	336 İ	9	
i	0.750	0.8223167319358300	0.82231673193583	300 i	9	
i	0.800	0.8881059821876232	!	232	9	
i	0.850	0.9561159599886322	0.95611595998863	323 İ	9	
ľ	0.900	1.0265167257081753			9	
l	0.950	1.0994843179306719			9	
	1.000	1.1752011936438014		'	10	

bogdanmodin@mac ~ % ./a.out

Введите количество частей n, на которые разбивается интервал, а также значение k, нужное для определения точности: 20 100

x	Сумма ряда Тейлора	Значение функции Чи	ісло итераций
0.000	0.00000000000000000	0.0000000000000000) 1
0.050	0.0500208359376550	0.0500208359376551	. 5
0.100	0.1001667500198413	0.1001667500198441	
0.150	0.1505631331516127	0.1505631331516126	6
0.200	0.2013360025410935	0.2013360025410940) j 6
0.250	0.2526123168081623	0.2526123168081683	3 j 6
0.300	0.3045202934471425	0.3045202934471427	' 7
0.350	0.3571897294372717	0.3571897294372718	3 7
0.400	0.4107523258028144	0.4107523258028155	5 7
0.450	0.4653420169341928	0.4653420169341977	' 7
0.500	0.5210953054937276	0.5210953054937473	3 7
0.550	0.5781516037434542	0.5781516037434542	
0.600	0.6366535821482409	0.6366535821482412	
0.650	0.6967475261264388	0.6967475261264401	. j 8
0.700	0.7585837018395301	j 0.7585837018395336	
0.750	0.8223167319358198	0.8223167319358300	
0.800	0.8881059821876232	0.8881059821876232	
0.850	0.9561159599886322	0.9561159599886323	; j 9
0.900	1.0265167257081753	1.0265167257081758	
0.950	1.0994843179306719	1.0994843179306728	
1.000	1.1752011936438014	1.1752011936438014	10

bogdanmodin@mac ~ %

Вывод

В ходе выполнения данного задания курсового проекта я научился реализовывать программную версию вычисления значений функции пользуясь рядом Тейлора для этой функции.