EXERCISES FOR INTRODUCTION TO MATHEMATICAL QUANTUM ERROR CORRECTION

DHEERAN E. WIGGINS

1. Monday

Exercise 1.1 (Complex Arithmetic). Simplify the following expressions in C:

- (i) $i^3 + i^2 + i + 1$
- (ii) (-3+2i)(6-8i)
- (iii) (9i)(-i)

Exercise 1.2 (Pauli Matrix Multiplication). Let $I, X, Y, Z \in M_2(\mathbb{C})$ be defined by

$$I:=\begin{pmatrix}1&0\\0&1\end{pmatrix},\;X:=\begin{pmatrix}0&1\\1&0\end{pmatrix},\;Y:=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\;Z:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.$$

- (i) Compute the matrix products I^2 , IX, IY, and IZ. What can you guess is true about multiplying matrices in $M_2(\mathbb{C})$ by I, in general?
- (ii) Compute the matrix products XY and YX. Simplify both products into the form cZ, where $c \in \mathbb{C}$. Is c different in each case?

The matrix I is called the identity. The other three matrices X, Y, Z are called the *Pauli matrices*. Together, these generate the *Pauli group*, a multiplicative group of order 16.

Exercise 1.3 (Recalling Definitions).

- (i) Let A, B be sets. What is an *injective* function $f: A \rightarrow B$? What is a *surjective* function $f: A \rightarrow B$? What do we call a function $f: A \xrightarrow{\sim} B$ which is *both* injective and surjective?
- (ii) Write the definition of a *group* (G, \cdot) . What is the general difference between just a set and a group?¹
- (iii) What is the difference between a group and an abelian group?
- (iv) Let $S \subseteq G$ be a subset of a group. Write the definition of the *normalizer* $\mathcal{N}_G(S)$ and *centralizer* $C_G(S)$ of S in G.

University of Illinois Urbana-Champaign, Illinois, 61801 Email address: dheeran2@illinois.edu

Date: January 13, 2025.

¹You can be informal about this.