CACHE ARCHITECTURE

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ Announcement
 - Homework 3 will be released on Oct. 31st

- □ This lecture
 - Cache addressing and lookup
 - Cache optimizations
 - Techniques to improve miss rate
 - Replacement policies
 - Write policies

Recall: Cache Addressing

 Instead of specifying cache address we specify main memory address

Direct-Mapped Lookup

- Byte offset: to select the requested byte
- Tag: to maintain the address
- Valid flag (v):whether content ismeaningful
- Data and tag are always accessed

□ Find the size of tag, index, and offset bits for an 8MB, direct-mapped L3 cache with 64B cache blocks. Assume that the processor can address up to 4GB of main memory.

- Find the size of tag, index, and offset bits for an 8MB, direct-mapped L3 cache with 64B cache blocks. Assume that the processor can address up to 4GB of main memory.
- \square 4GB = 2^{32} B \rightarrow address bits = 32
- \square 64B = 26 B \rightarrow byte offset bits = 6
- \square 8MB/64B = $2^{17} \rightarrow$ index bits = 17
- \Box tag bits = 32 6 17 = 9

□ Find the size of tag, index, and offset bits for an 8MB, direct-mapped L3 cache with 64B cache blocks. Assume that the processor can address up to 4GB of main memory.

- Find the size of tag, index, and offset bits for an 8MB, direct-mapped L3 cache with 64B cache blocks. Assume that the processor can address up to 4GB of main memory.
- \square 4GB = 2^{32} B \rightarrow address bits = 32
- \square 64B = 26 B \rightarrow byte offset bits = 6
- \square 8MB/64B = $2^{17} \rightarrow$ index bits = 17
- \Box tag bits = 32 6 17 = 9

$$AMAT = t_h + r_m t_p$$

- □ Reduce hit time (t_h)
- \square Improve hit rate (1 r_m)
- □ Reduce miss penalty (t_p)

$$AMAT = t_h + r_m t_p$$

- □ Reduce hit time (t_h)
 - Memory technology, critical access path
- \square Improve hit rate (1 r_m)
- □ Reduce miss penalty (t_p)

$$AMAT = t_h + r_m t_p$$

- \square Reduce hit time (t_h)
 - Memory technology, critical access path
- \square Improve hit rate (1 r_m)
 - Size, associativity, placement/replacement policies
- □ Reduce miss penalty (t_p)

$$AMAT = t_h + r_m t_p$$

- □ Reduce hit time (t_h)
 - Memory technology, critical access path
- \square Improve hit rate (1 r_m)
 - Size, associativity, placement/replacement policies
- Reduce miss penalty (t_p)
 - Multi level caches, data prefetching

Set Associative Caches

- Improve cache hit rate by allowing a memory location to be placed in more than one cache block
 - N-way set associative cache
 - Fully associative
- For fixed capacity, higher associativity typically leads to higher hit rates
 - more places to simultaneously map cache lines
 - 8-way SA close to FA in practice

```
for (i=0; i<10000; i++) {
    a++;
    b++;
}
```


Set Associative Caches

- Improve cache hit rate by allowing a memory location to be placed in more than one cache block
 - N-way set associative cache
 - Fully associative
- For fixed capacity, higher associativity typically leads to higher hit rates
 - more places to simultaneously map cache lines
 - 8-way SA close to FA in practice

n-Way Set Associative Lookup

- Index into cache sets
- Multiple tag comparisons
- □ Multiple data reads
- Special cases
 - Direct mapped
 - Single block sets
 - Fully associative
 - Single set cache

□ Find the size of tag, index, and offset bits for an 4MB, 4-way set associative cache with 32B cache blocks. Assume that the processor can address up to 4GB of main memory.

- Find the size of tag, index, and offset bits for an 4MB, 4-way set associative cache with 32B cache blocks. Assume that the processor can address up to 4GB of main memory.
- \square 4GB = 2^{32} B \rightarrow address bits = 32
- □ 32B = 2⁵ B \rightarrow byte offset bits = 5
- $\Box 4MB/(4x32B) = 2^{15} \rightarrow index bits = 15$
- \Box tag bits = 32 5 15 = 12

- Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest

- □ Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest

1. Cold (compulsory)

- Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest
- 1. Cold (compulsory)
- □ Cold start: first access to block
- ☐ How to improve
 - large blocks
 - prefetching

- Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest
- 1. Cold (compulsory)

2. Capacity

- □ Cold start: first access to block
- ☐ How to improve
 - large blocks
 - prefetching

- Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest
- 1. Cold (compulsory)
- □ Cold start: first access to block
- ☐ How to improve
 - large blocks
 - prefetching

- 2. Capacity
- Cache is smaller than the program data
- ☐ How to improve
 - large cache

- Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest
- 1. Cold (compulsory)

2. Capacity

3. Conflict

- Cold start: first access to block
- ☐ How to improve
 - large blocks
 - prefetching

- ☐ Cache is smaller than the program data
- ☐ How to improve
 - large cache

- Start by measuring miss rate with an ideal cache
 - 1. ideal is fully associative and infinite capacity
 - 2. then reduce capacity to size of interest
 - 3. then reduce associativity to degree of interest
- 1. Cold (compulsory)
- □ Cold start: first access to block
- ☐ How to improve
 - large blocks
 - prefetching

- 2. Capacity
- ☐ Cache is smaller than the program data
- ☐ How to improve
 - large cache

- 3. Conflict
- Set size is smaller than mapped mem. locations
- ☐ How to improve
 - large cache
 - more assoc.

Miss Rates: Example Problem

□ 100,000 loads and stores are generated; L1 cache has 3,000 misses; L2 cache has 1,500 misses. What are various miss rates?

Miss Rates: Example Problem

□ 100,000 loads and stores are generated; L1 cache has 3,000 misses; L2 cache has 1,500 misses. What are various miss rates?

- □ L1 miss rates
 - Local/global: 3,000/100,000 = 3%
- L2 miss rates
 - \square Local: 1,500/3,000 = 50%
 - □ Global: 1,500/100,000 = 1.5%