Isomorphisme de représentations et caractères

Théorème 1. Soient $\rho, \rho': G \to GL(V), GL(V')$ deux représentations complexes de dimension finie d'un groupe fini G. Alors :

$$\rho \cong \rho' \quad \Leftrightarrow \quad \chi_{\rho} = \chi_{\rho'},$$

où χ_{ρ} et $\chi_{\rho'}$ sont les caractères des représentations ρ et ρ' .

Preuve:

Soient $\rho, \rho': G \to GL(V), GL(V')$ deux représentations complexes de dimension finie d'un groupe fini G.

Sens direct:

Supposons que $\rho \cong \rho'$. Il existe alors un isomorphisme d'espaces vectoriels $T: V \to V'$ tel que :

$$T \circ \rho(g) = \rho'(g) \circ T$$
 pour tout $g \in G$.

Cela implique que $\rho(g)$ et $\rho'(g)$ sont semblables, donc ont la même trace :

$$\chi_{\rho}(g) = \operatorname{Tr}(\rho(g)) = \operatorname{Tr}(\rho'(g)) = \chi_{\rho'}(g),$$

pour tout $g \in G$. Ainsi, $\chi_{\rho} = \chi_{\rho'}$.

Sens réciproque :

Supposons que $\chi_{\rho} = \chi_{\rho'}$, par le théorème de Maschke, on peut écrire

$$\rho \cong \bigoplus_{i} n_i \rho_i, \quad \rho' \cong \bigoplus_{i} n'_i \rho_i,$$

où les ρ_i sont des représentations irréductibles non isomorphes deux à deux, et $n_i, n_i' \in \mathbb{N}$ sont les multiplicités.

Le caractère d'une somme directe est la somme des caractères :

$$\chi_{\rho} = \sum_{i} n_{i} \chi_{i}, \quad \chi_{\rho'} = \sum_{i} n'_{i} \chi_{i},$$

où χ_i est le caractère de ρ_i .

Comme $\chi_{\rho} = \chi_{\rho'}$ et que les caractères irréductibles χ_i sont linéairement indépendants dans l'espace des fonctions de classe, on en déduit que :

$$n_i = n'_i$$
 pour tout i .

Ainsi, $\rho \cong \rho'$.

Théorème 2. Le degré d'un caractère irréductible est égal à la dimension de la représentation irréductible dont il est le caractère.

Démonstration. Soit G un groupe fini, et soit $\rho: G \to \mathrm{GL}(V)$ une représentation irréductible complexe de G, où V est un espace vectoriel complexe de dimension finie.

On note $\chi_{\rho}: G \to \mathbb{C}$ le caractère associé à la représentation ρ . Le degré du caractère χ_{ρ} est défini par sa valeur en l'élément neutre du groupe :

$$\chi_{\rho}(1) = \chi_{\rho}(e),$$

où e est l'élément neutre de G.

Par définition du caractère :

$$\chi_{\rho}(g) = \operatorname{Tr}(\rho(g))$$
 pour tout $g \in G$.

En particulier, pour g = e, on a :

$$\chi_{\rho}(e) = \text{Tr}(\rho(e)).$$

Or, comme ρ est une représentation, on a $\rho(e) = \mathrm{Id}_V$, donc :

$$\chi_{\rho}(e) = \operatorname{Tr}(\operatorname{Id}_{V}) = \dim V.$$

Ainsi,

$$\chi_{\rho}(1) = \dim V.$$

Cela montre que le degré du caractère irréductible est égal à la dimension de la représentation irréductible.

Propriété 1. Soit G un groupe. On note

$$\widehat{G} := \operatorname{Hom}(G, \mathbb{C}^{\times})$$

l'ensemble des caractères de G, c'est-à-dire l'ensemble des morphismes de groupes de G dans le groupe multiplicatif des complexes non nuls \mathbb{C}^{\times} . Alors \widehat{G} muni de la multiplication point par point :

$$(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g), \quad \forall g \in G,$$

forme un groupe abélien.

Démonstration. 1. Fermeture. Soient $\chi_1, \chi_2 \in \widehat{G}$, c'est-à-dire deux morphismes de groupes $G \to \mathbb{C}^{\times}$. On définit :

$$(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g), \quad \forall g \in G.$$

Pour montrer que $\chi_1 \cdot \chi_2 \in \widehat{G}$, vérifions que c'est un morphisme :

$$(\chi_1 \cdot \chi_2)(gh) = \chi_1(gh)\chi_2(gh) = \chi_1(g)\chi_1(h) \cdot \chi_2(g)\chi_2(h) = (\chi_1(g)\chi_2(g))(\chi_1(h)\chi_2(h)) = (\chi_1 \cdot \chi_2)(gh)$$

2. Associativité. La multiplication dans \mathbb{C}^{\times} étant associative, on a pour $\chi_1, \chi_2, \chi_3 \in \widehat{G}$:

$$((\chi_1 \cdot \chi_2) \cdot \chi_3)(g) = (\chi_1(g) \cdot \chi_2(g)) \cdot \chi_3(g) = \chi_1(g) \cdot (\chi_2(g) \cdot \chi_3(g)) = (\chi_1 \cdot (\chi_2 \cdot \chi_3))(g).$$

3. Élément neutre. L'application constante $\mathbf{1}_G: G \to \mathbb{C}^{\times}$ définie par $\mathbf{1}_G(g) = 1$ pour tout $g \in G$ est un morphisme de groupes (trivialement). Elle vérifie :

$$(\chi \cdot \mathbf{1}_G)(g) = \chi(g) \cdot 1 = \chi(g), \quad \forall \chi \in \widehat{G}, \ \forall g \in G.$$

4. Inverses. Pour $\chi \in \widehat{G}$, définissons $\chi^{-1}: G \to \mathbb{C}^{\times}$ par $\chi^{-1}(g) = \chi(g)^{-1}$. On a :

$$\chi^{-1}(gh) = (\chi(gh))^{-1} = (\chi(g)\chi(h))^{-1} = \chi(h)^{-1}\chi(g)^{-1} = \chi^{-1}(g)\chi^{-1}(h),$$

(car \mathbb{C}^{\times} est abélien). Donc $\chi^{-1} \in \widehat{G}$ et :

$$(\chi \cdot \chi^{-1})(g) = \chi(g) \cdot \chi(g)^{-1} = 1 = \mathbf{1}_G(g).$$

5. Commutativité. Pour $\chi_1, \chi_2 \in \widehat{G}$, et $g \in G$, on a :

$$(\chi_1 \cdot \chi_2)(g) = \chi_1(g)\chi_2(g) = \chi_2(g)\chi_1(g) = (\chi_2 \cdot \chi_1)(g).$$

Ainsi, \widehat{G} est un groupe abélien pour la multiplication point par point.

Théorème 3. Soient E et F deux espaces vectoriels sur un corps \mathbb{K} . Alors il existe un isomorphisme canonique :

$$E \otimes F \cong F \otimes E$$
.

Démonstration. Nous construisons un isomorphisme linéaire entre $E \otimes F$ et $F \otimes E$, sans choisir de bases.

Étape 1 : Définition d'une application bilinéaire.

Considérons l'application :

$$\beta: E \times F \to F \otimes E, \quad (e, f) \mapsto f \otimes e.$$

Elle est bilinéaire car la multiplication tensorielle est linéaire en chaque variable. Par la propriété universelle du produit tensoriel, cette application induit un unique morphisme linéaire :

$$T: E \otimes F \to F \otimes E$$
, défini par $T(e \otimes f) = f \otimes e$.

Étape 2 : Construction de l'inverse.

De façon symétrique, on définit :

$$\gamma: F \times E \to E \otimes F, \quad (f, e) \mapsto e \otimes f,$$

qui est également bilinéaire, et induit un morphisme linéaire :

$$S: F \otimes E \to E \otimes F$$
, défini par $S(f \otimes e) = e \otimes f$.

Étape 3 : Vérification que T et S sont inverses.

Pour tout $e \in E$, $f \in F$:

$$(S \circ T)(e \otimes f) = S(f \otimes e) = e \otimes f,$$

$$(T \circ S)(f \otimes e) = T(e \otimes f) = f \otimes e.$$

Donc $S \circ T = \mathrm{id}_{E \otimes F}$ et $T \circ S = \mathrm{id}_{F \otimes E}$, ce qui prouve que T est un isomorphisme, avec inverse S.

Conclusion: L'application T est un isomorphisme canonique:

$$E \otimes F \cong F \otimes E$$
.

Théorème 4. Soient E et F deux espaces vectoriels sur un corps \mathbb{K} . Alors le couple $(E \otimes F, \otimes)$, constitué de l'espace tensoriel et de l'application bilinéaire canonique, est unique à isomorphisme près. Autrement dit, si (T, φ) est un autre couple avec $\varphi: E \times F \to T$ bilinéaire vérifiant la même propriété universelle, alors il existe un unique isomorphisme linéaire $u: E \otimes F \to T$ tel que :

$$u(e \otimes f) = \varphi(e, f), \quad \forall (e, f) \in E \times F.$$

Démonstration. Par définition, le couple $(E \otimes F, \otimes)$ vérifie la propriété universelle suivante :

Pour tout espace vectoriel G et toute application bilinéaire $B: E \times F \to G$, il existe un unique morphisme linéaire $\tilde{B}: E \otimes F \to G$ tel que $\tilde{B}(e \otimes f) = B(e, f)$.

Soit maintenant (T, φ) un autre couple vérifiant la même propriété universelle. On applique cette propriété dans deux directions :

1. Application de la propriété universelle de $E \otimes F$ à $B = \varphi$. Il existe un unique morphisme linéaire $u: E \otimes F \to T$ tel que :

$$u(e \otimes f) = \varphi(e, f), \quad \forall (e, f) \in E \times F.$$

2. Application de la propriété universelle de T à $B = \otimes$. Il existe un unique morphisme linéaire $v: T \to E \otimes F$ tel que :

$$v(\varphi(e, f)) = e \otimes f, \quad \forall (e, f) \in E \times F.$$

3. Vérification que u et v sont inverses.

Pour tout $e \otimes f \in E \otimes F$, on a :

$$(v \circ u)(e \otimes f) = v(u(e \otimes f)) = v(\varphi(e, f)) = e \otimes f,$$

donc $v \circ u = \mathrm{id}_{E \otimes F}$.

Pour tout $\varphi(e, f) \in T$, on a :

$$(u \circ v)(\varphi(e, f)) = u(v(\varphi(e, f))) = u(e \otimes f) = \varphi(e, f),$$

donc $u \circ v = \mathrm{id}_T$.

Ainsi, u est un isomorphisme, et il est unique par unicité dans la propriété universelle.

Théorème 5. Toute représentation de degré 1 est irréductible.

preuve

Soit $\rho: G \to \operatorname{GL}(V)$ une représentation linéaire de G de degré 1, c'est-à-dire telle que $\dim V = 1$.

Dans ce cas, $V \cong \mathbb{C}$, et le groupe général linéaire $\mathrm{GL}(V)$ s'identifie à \mathbb{C}^{\times} , le groupe multiplicatif des complexes non nuls. Ainsi, ρ peut être vu comme un morphisme de groupes :

$$\rho: G \to \mathbb{C}^{\times}$$
.

L'action de G sur V est donnée par multiplication scalaire :

$$\rho(g)(v) = \lambda_q v, \quad \text{où } \lambda_q \in \mathbb{C}^{\times} \text{ et } v \in V.$$

Soit $W \subseteq V$ un sous-espace vectoriel stable par ρ , c'est-à-dire tel que $\rho(g)(w) \in W$ pour tout $g \in G$ et tout $w \in W$.

Or, comme dim V=1, les seuls sous-espaces vectoriels de V sont $\{0\}$ et V lui-même.

Donc, les seuls sous-espaces stables par ρ sont triviaux.

Par définition, une représentation est dite irréductible si elle ne possède aucun sous-espace G-stable non trivial. Ainsi, ρ est irréductible.