Algebra 2R, lista 3.

Zadanie domowe : dowolne 3 zadania z listy, bez minusów. Podpunkt liczy się jako oddzielne zadanie. Z każdego zadania ≤ 1 podpunkt. Zadań oznaczonych minusem nie deklarujemy.

- 1. Niech K będzie ciałem, zaś L=K(X) to ciało funkcji wymiernych zmiennej X nad K.
 - a)
– Udowodnić, że rozszerzenie $L\supset K$ jest przestępne.
 - b) Niech $M=L[\sqrt{X}]$ będzie algebraicznym rozszerzeniem ciała L o element $Y=\sqrt{X}$ taki, że w ciele $M,\ Y^2-X=0.$ Udowodnić, że M i L są izomorficzne nad K.
- 2. Niech K będzie ciałem.
 - a) Niech $g \in K(X) \setminus K$. Udowodnić, że X jest algebraiczne nad ciałem K(g). W szczególności $[K(X):K(g)]<\infty$. Jaki jest stopień tego rozszerzenia?
 - b) Dla g jak w (a) udowodnić, że K(g) jest izomorficzne z K(X), nad K.
- 3. Niech v_1, \ldots, v_n będą wierzchołkami n-kąta foremnego wpisanego w okrąg na płaszczyźnie \mathbb{R}^2 o równaniu $x^2 + y^2 = 1$. Jaki jest wymiar nad \mathbb{Q} układu wektorów v_1, \ldots, v_n ?
- 4. Załóżmy, że $K \supset F(p)$ jest skończonym rozszerzeniem ciała F(p), charakterystyki p. Załóżmy, że $a \in K$ jest pierwiastkiem pierwotnym stopnia m z jedynki. Niech n będzie najmniejszą liczbą naturalną > 0 taką, że $m \mid p^n 1$.
 - (a) Udowodnić, że n to stopień a nad F(p).
 - (b) Udowodnić, że $n \mid \varphi(m)$. Podać przykład, gdzie $n < \varphi(m)$.
- 5. (a) Udowodnić, że wielomian $j(F_m(X))$ nie musi być nierozkładalny nad ciałem F(p). $(j:\mathbb{Z}\to\mathbb{Z}_p$ ilorazowe, wsk: skorzystać z poprzedniego zadania)
 - (b) Udowodnić, że jeśli $k, l \in \mathbb{N}^+$ są względnie pierwsze, to $k \mid l^{\varphi(k)} 1$. (wsk: rozważyć pierścień \mathbb{Z}_k)
- 6. Znaleźć wielomiany minimalne nad $\mathbb Q$ dla następujących liczb:

(a)
$$\sqrt{2} + \sqrt{3}$$
, (b) $1 + \sqrt{5} - \sqrt{3}$, (c) $1 + \sqrt[3]{17}$.

7. Udowodnić (korzystając z lematu Liouville'a), że liczba

$$\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$$

jest przestępna. (liczby rzeczywiste, których przestępność wynika z lematu Liouville'a, nazywamy liczbami Liouville'a)

8. Załóżmy, że $M \supset K$ jest rozszerzeniem algebraicznym ciał oraz L_1, L_2 są ciałami pośrednimi (tzn: $K \subset L_1, L_2 \subset M$). $L_1[L_2] = L_2[L_1]$ oznacza jak zwykle podpierścień ciała M generowany przez $L_1 \cup L_2$. Udowodnić, że

1

- (a) $L_1[L_2]$ jest podciałem ciała ${\cal M}$ (oznaczamy je przez $L_1L_2),$
- (b) $[L_1L_2:K] \leq [L_1:K] \cdot [L_2:K]$ (c)* Czy jeśli $L_1 \cap L_2 = K$, to w (b) zachodzi równość?