Carga y potencial

Cargas y su comportamiento

Carga Eléctrica

Luigi Galvani

Alessandro Volta

Carga Eléctrica

Cargas en un átomo

Partícula	Masa (kg)	Carga (C)	
Electrón	9.1x 10 ⁻³¹	-1.6x 10 ⁻¹⁹	
Protón	1.67× 10 ⁻²⁷	+1.6× 10 ⁻¹⁹	
Neutrón	1.67× 10 ⁻²⁷	0	

Electricidad

Unidades

Charles-Augustin de Coulomb

Magnitud	Unidad	Símbolo	Equivalencia
capacitancia	Faradio	F	C/V
carga eléctrica	Culombio	С	A s
conductancia	Siemens	S	A //, W-1
densidad de flujo magnético	Tesla	Т	Wb/ m ² , N/(A m)
energía, trabajo, calor	Julio	J	kg m 2 / s 2 , N m
flujo magnético	Weber	Wb	V s
frecuencia	Hertz	Hz	s-1
Intensidad (corriente eléctrica)	Amperio	Α	4p x 10 ⁻⁷ N/ A ²
inductancia	Henrio	Н	Wb / A
potencia	Vatio	W	kg m 2 / s 3 , J/s
Potencial eléctrico, voltaje eléctrico, diferencia de potencial	Voltio	V	W/A,J/C
resistencia	Ohmio	Ω	V/A

Corriente eléctrica

circuitos

Ampère (Amperio) y la corriente

¿Cuál es la unidad de medida de la intensidad de corriente eléctrica?

- a. Voltio (V)
- b. Amperio (A)
- c. Ohm (Ω)
- d. Watt (W)

¿Cuál es la unidad de medida de la intensidad de corriente eléctrica?

- a. Voltio (V)
- b. Amperio (A)
- c. Ohm (Ω)
- d. Watt (W)

- ¿Cuál es la diferencia entre corriente continua y corriente alterna?
- a. La corriente continua cambia de dirección constantemente, mientras que la corriente alterna fluye siempre en la misma dirección.
- b. La corriente continua fluye siempre en la misma dirección, mientras que la corriente alterna cambia de dirección constantemente.
- c. Ambas son iguales
- d. La corriente continua es más peligrosa que la corriente alterna.

- ¿Cuál es la diferencia entre corriente continua y corriente alterna?
- a. La corriente continua cambia de dirección constantemente, mientras que la corriente alterna fluye siempre en la misma dirección.
- b. La corriente continua fluye siempre en la misma dirección, mientras que la corriente alterna cambia de dirección constantemente.
- c. Ambas son iguales
- d. La corriente continua es más peligrosa que la corriente alterna.

Voltaje

Voltaje en una pila

Qué mata, el Voltaje o la corriente?

Ley de Ohm

La corriente (I) de un circuito es directamente proporcional al voltaje (V), e inversamente proporcional a la resistencia (R)

$$V = RI$$

Ley de Ohm

https://youtu.be/BDMc863Rbtc

https://youtu.be/m7HY1Or01S0

Si un circuito tiene una resistencia de 10 ohmios y una corriente de 2 amperios, ¿cuál es el voltaje aplicado?

- a. 5 Voltios.
- b. 20 Voltios.
- c. 12 Voltios.
- d. 8 Voltios.

Si un circuito tiene una resistencia de 10 ohmios y una corriente de 2 amperios, ¿cuál es el voltaje aplicado?

- a. 5 Voltios.
- b. 20 Voltios.
- c. 12 Voltios.
- d. 8 Voltios.

¿Qué sucede con la corriente en un circuito si aumentamos el voltaje, manteniendo la resistencia constante?

- a. Disminuye.
- b. Aumenta.
- c. Permanece igual.
- d. Se invierte.

¿Qué sucede con la corriente en un circuito si aumentamos el voltaje, manteniendo la resistencia constante?

- a. Disminuye.
- b. Aumenta.
- c. Permanece igual.
- d. Se invierte.

- ¿Qué es la resistencia eléctrica?
- a. La capacidad de un material para conducir la electricidad.
- b. La oposición de un material al flujo de corriente eléctrica.
- c. La fuerza que impulsa a los electrones a moverse.
- d. La cantidad de carga eléctrica que fluye por un conductor en un segundo.

- ¿Qué es la resistencia eléctrica?
- a. La capacidad de un material para conducir la electricidad.
- b. La oposición de un material al flujo de corriente eléctrica.
- c. La fuerza que impulsa a los electrones a moverse.
- d. La cantidad de carga eléctrica que fluye por un conductor en un segundo.

¿Cuál es la ley de Ohm?

- a. V = IR.
- b. P = IV.
- c. Q = It
- d. $R = \rho (L/A)$

¿Cuál es la ley de Ohm?

- a. V = IR.
- b. P = IV.
- c. Q = It
- d. $R = \rho (L/A)$

Explique cada respuesta en la pregunta anterior

Faraday y la inducción

¿Campo?

