Propositional logic basic inference rules

Negation Elimination (~E)	Conditional Elimination (→E)
~~A A	$\mathcal{A} ightarrow \mathcal{B}, \mathcal{A} \mid \mathcal{B}$
<u>Example</u>	Example
1. ~~P 2. P 1~E	1. P → Q 2. P 3. Q 1,2 →E
Conjunction Introduction (&I)	Conjunction Elimination (&E)
$\begin{matrix} \mathcal{A}, \ \mathcal{B} \ \ \mathcal{A} \& \mathcal{B} \\ \mathcal{A}, \ \mathcal{B} \ \ \mathcal{B} \& \mathcal{A} \end{matrix}$	A&B A A&B B
Example	Example
1. P 2. Q 3. P & Q 1,2 &I	1. P & Q 2. Q 1 & E
Disjunction Introduction (vI)	Disjunction Elimination (vE)
A AνΒ A ΒνΑ	$A \lor B$, $A \to C$, $B \to C \mid C$ Example
1. P 2. P v Q 1,2 vi	1. P v Q 2. P → R 3. Q → R
2. F V 04 1,2 VI	4. R 1,2,3 vE
Biconditional Elimination (↔E)	Biconditional Introduction (↔I)
·	, ,
Biconditional Elimination (\leftrightarrow E) $\mathcal{A} \leftrightarrow \mathcal{B} \mathcal{A} \rightarrow \mathcal{B}$	Biconditional Introduction $(\leftrightarrow I)$ $\mathcal{A} \to \mathcal{B}, \mathcal{B} \to \mathcal{A} \mid \mathcal{A} \leftrightarrow \mathcal{B}$

Important propositional logic equivalences

De Morgan's Rules (DM)	Transposition (TRANS) $\mathcal{A} \to \mathcal{B} \ \ \ \ \ \ \sim \mathcal{B} \to \sim \mathcal{A}$
Material Implication (MI) A → B ~A ∨ B	Negation Conditional (\sim \rightarrow) $\sim (\mathcal{A} \rightarrow \mathcal{B}) \mid \mid \mid \mathcal{A} \& \sim \mathcal{B}$
Commutation (COM) A v B - - B v A A & B - - B & A	Double Negation (DN) A ート ~~A
Association (ASS) A & (B & C) (A & B) & C A ∨ (B ∨ C) (A ∨ B) ∨ C	Distribution (DIST) A & (B ∨ C) (A & B) ∨ (A & C) A ∨ (B & C) (A ∨ B) & (A ∨ C)

Important propositional logic derived rules

Hypothetical Syllogism (HS)	Modus Tolens (MT)
$\mathcal{A} \! o \! \mathcal{B}$, $\mathcal{B} \! o \mathcal{C} \mid \mathcal{A} \! o \! \mathcal{C}$	$\mathcal{A} ightarrow \mathcal{B}, \ extcolor{} \sim \mathcal{B} \ \mid \sim \mathcal{A}$
Example	<u>Example</u>
1. $P \rightarrow Q$ 2. $Q \rightarrow R$ 3. $P \rightarrow R$ 1,2 HS	1. P → Q 2. ~Q 3. ~P 1,2 MT
Disjunctive Syllogism (DS)	Contradiction (CON)
$A \lor B, \sim A \mid B$ $A \lor B, \sim B \mid A$	A , $\sim A \mid B$
Example	Example
1. P v Q 2. ~P 3. Q 1,2 DS	1. P 2. ~P 2. Q 1,2 CON
2. ~P	2. ~P
2. ~P 3. Q 1,2 DS	2. ~P 2. Q 1,2 CON
2. ~P 3. Q 1,2 DS Repeat (RE)	2. ~P 2. Q 1,2 CON Constructive Dilemma (CD)

Theorem Introduction (TI) Any substitution instance of a theorem you have explicitly derived may be introduced at any time.

Summary of refutation tree rules.

