SYLLABUS

DATABASE MANAGEMENT SYSTEM

Course	Name of the		L	Т	P	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	DATABASE	k										
IT510	MANAGEMENT					Duration	3	-	-	-	1	-
	SYSTEM	Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

- 1. To understand the basic concepts and the applications of database systems.
- 2. To master the basics of SQL and construct queries using SQL.
- 3. To understand the relational database design principles.
- 4. To become familiar with the basic issues of transaction processing and concurrency control.

Course Outcomes:

- 1. Demonstrate the basic elements of a relational database management system
- 2. Identify the data models for relevant problems.
- 3. Design an entity relationship model, convert entity relationship diagrams into RDBMS and formulate SQL queries.
- 4. Apply normalization for the development of application software.

UNIT 1	
Database System Applications, Purpose of Database Systems, View of Data - Data	
Abstraction, Instances and Schemas, Data Models, Database Languages - DDL, DML,	
Database Architecture, Database Users and Administrators.	
Introduction to Data base design, ER diagrams, Beyond ER Design, Entities, Attributes and	10hrs
Entity sets, Relationships and Relationship sets, Additional features of ER Model,	
Conceptual Design with the ER Model, Conceptual Design for Large enterprises.	
Relational Model: Integrity Constraints over Relations, Enforcing Integrity constraints, Querying relational data.	
UNIT 2	
Relational Query Languages, Relational Operations. Relational Algebra – Selection and	
projection, Set operations, renaming, Joins, Division.Relational calculus – Tuple relational	
Calculus – Domain relational calculus.	10hrs
Overview of the SQL Query Language – Basic Structure of SQL Queries, Set Operations,	
Aggregate Functions – GROUPBY – HAVING, Nested Sub queries, Views, Triggers.	

UNIT 3
Introduction to Schema Refinement - Problems Caused by redundancy, Decompositions -
Problem related to decomposition, Functional Dependencies - Reasoning about FDS,
Normal Forms - FIRST, SECOND, THIRD Normal forms - BCNF - Properties of
Decompositions - Lossless join Decomposition, Dependency preserving Decomposition,
Schema Refinement in Data base Design - Multi valued Dependencies - FOURTH Normal
Form.
UNIT 4

File organization: – File organization – various kinds of indexes. Query Processing – Measures of query cost - Selection operation – Projection operation, - Join operation – set operation and aggregate operation – Relational Query Optimization – Transacting SQL queries – Estimating the cost – Equivalence Rules.

9 hrs

10hrs

Text Books:

- 1. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGrawHill, 3rd Edition, 2003.
- 2. Data base System Concepts, A.Silberschatz, H.F. Korth, S.Sudarshan, McGraw Hill, VI edition, 2006.

Reference Books

- 1. Database Systems, 6th edition, RamezElmasri, Shamkat B. Navathe, Pearson Education, 2013.
- 2. An Introduction to Database systems, C.J. Date, A.Kannan, S.SwamiNadhan, Pearson, Eight Edition.

THEORY OF COMPUTATION

Course Code	Name of the course		L	Т	P		Sche	me o	f Exam	inati	on	
IT520	THEORY OF	Hrs/wee k	3	-	-		Th	S	TW	P	0	TOTAL
	COMPUTATION	Credits	3	-	-	Duration (min)	3	-	-	-	-	-
						Marks	100	25	-	-	-	125

Course Objectives:

The subject aims to provide the students with:

- 1. An ability to understand how efficiently problems can be solved on a model of computation, using an algorithm.
- 2. An understanding of the basic concepts in theoretical computer science, and the formal relationships among machines, languages and grammars.

Course Outcomes:

- 1. Explain the basic concepts of deterministic and non-deterministic finite automata.
- 2. Design a finite automaton to recognize a given regular language.
- 3. Analyse the formal relationships among machines, languages and grammars
- 4. Constructing minimalist automata for recursively enumerable languages

UNIT 1	
Regular Languages and Finite Automata – Basic terminology(Language, Alphabet, String), Regular Languages and Regular Expressions, Deterministic Finite Automata (DFA), Automata to implement union, intersection and complement operations. Nondeterminism and Kleene's Theorem – Nondeterministic Finite Automata (NFA), Nondeterministic Finite Automata with Λ-transitions (ε-NFA), Kleene's Theorem. Regular and Non-Regular Languages – Minimization of Finite Automata, The Pumping Lemma for Regular Languages, Moore and Mealy Machines.	10hrs
UNIT 2	
Context—Free Languages and Push down Automata —Definitions & Examples, Regular Grammars, Derivation Trees and Ambiguity, Simplification of CFGs (Elimination of Null & Unit Productions), Chomsky Normal Form, Greibach Normal Form, The Pumping Lemma for Context—Free Languages. Push Down Automata —Definition, Deterministic Pushdown automaton, A PDA corresponding to a given CFG, A CFG corresponding to a given PDA.	11hrs
UNIT 3	
Turing Machine - Computing a Partial function with a Turing machine, Variations of Turing Machine, Nondeterministic Turing Machine, Church- Turing thesis.	09hrs

UNIT 4	
Recursively Enumerable languages & Unsolvable Problems - Recursively Enumerable and Recursive languages, Unrestricted Grammars , Context-Sensitive Language and Chomsky Hierarchy, The halting problem, Rice's Theorem.	09hrs

Text Books:

- 1. Introduction to languages and the theory of computation By John C. Martin, Tata McGraw Hill.
- 2. Introduction to Automata Theory, Languages and Computation by Hopcraft and Ullman, Narosa Publishing House.
- 3. Theory of Computer Science, Automata Languages & Computations by N.Chandrashekhar and K.L.P. Mishra, PHI publication.

CLOUD COMPUTING

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
IT531	CLOUD	k										
	COMPUTING					Duration	3	-	-	-	1	-
		Credits	3	-	-	(min)						
						Marks	100	25	-	-	-	125

Course Objectives:

- 1. Analyze the components of cloud computing showing how business agility in an organization can be created.
- 2. Evaluate the deployment of web services from cloud architecture.
- 3. Critique the consistency of services deployed from a cloud architecture.
- 4. Compare and contrast the economic benefits delivered by various cloud models based on application requirements, economic constraints and business requirements.

Course Outcomes:

- 1. Explain the principles of Cloud Computing.
- 2. Describe the architecture of Cloud Computing Resources.
- 3. Demonstrate the applications of Cloud Computing for Business.
- 4. Apply the skills and knowledge to incorporate agility in an organization.

UNIT 1	
CLOUD COMPUTING FUNDAMENTAL: Cloud Computing definition, Roots of Cloud Computing, Advantages and disadvantages of Cloud Computing, Features of Cloud Computing, Deployment model: private, public, hybrid, community cloud. Cloud Service models: Infrastructure as a service (IaaS), Platform as a service (PaaS), Software as a service (SaaS). Applications of Clouds.	10hrs
UNIT 2	•
Cloud Architecture and Services: Cloud Computing stack, Virtualization layer: Definition, Types, Benefits, Virtualization models and Implementation techniques. IaaS architecture with Amazon and Google Cloud. PaaS architecture with Amazon and Google Cloud. SaaS architecture. Technologies and the processes required when deploying web services. Cloud Storage NoSQL: Data centre, Design of HBase: What is HBase, HBase Architecture, Components, Data model, Storage Hierarchy, Cross-Datacenter Replication.	10hrs
UNIT 3	1
Cloud Security and Privacy: Overview, Challenges and Risks, Security Architecture, Security Controls, Data Security, Application security, Virtual machine security. Reliability, availability and security of services deployed from the cloud. Performance and scalability of services, tools and technologies used to manage cloud services deployment.	10hrs
UNIT 4	
Analysis of case studies: Amazon Cloud: EC2, Simple Storage Service (S3), Amazon RDS, AWS Cloud Development kit Google Cloud: Compute, Database, Storage, Developers tools, Cloud tools for Eclipse. Hadoop: MapReduce: Paradigm, Programming Model, Applications, Scheduling, Fault-Tolerance, Implementation Overview, Examples.	9 hrs

Text Books:

- 1. Gautam Shroff; Enterprise Cloud Computing Technology Architecture Applications; Cambridge University Press; 1st edition; 2010.
- 2. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010

Reference books

1. Mastering Cloud Computing; Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, McGraw Hill, 1/e/2013

^{*}Students are advised to refer to the resources available in Internet for more information.

SOFTWARE TESTING AND QUALITY ASSURANCE

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	SOFTWARE	k										
IT532	TESTING AND	Credits				Duration	3	-	-	-	-	-
	QUALITY		3	-	-	(min)						
	ASSURANCE					Marks	100	25	-	-	-	125

Course Objectives:

- 1. An understanding of importance of an effective testing strategy.
- 2. Skills to plan and prepare appropriate tests for all phases of software development.
- 3. An Understanding of measures and controls for the quality of testing
- 4. Techniques for early detection of errors and to resolve the same. Learning different technologies to building different real-world applications.

Course Outcomes:

After successful completion of this course the student will be able to:

- 1. Manage, plan and prepare rigorous, formal, visible and repeatable tests that will fully exercise software, in the development of quality systems.
- 2. Apply different testing approaches to all stages of software development
- 3. Prepare test plans, strategy, specifications, procedures and controls to provide a structured approach to testing.
- 4. Apply the techniques and methods covered to testing packages.

UNIT 1	
Basic Concepts and Preliminaries: Role of Testing, Verification and Validation, Failure, Error, fault and Defect, Notion of Software Reliability, Objectives of Testing, What is a Test case? Expected Outcome, Concept of Complete Testing, Central Issue in Testing, testing Activities, Test Levels, White-box and Black-box Testing, Monitoring and Measuring Test Execution, Test Team Organization and Management. Software Quality: 5 views of SW Quality, McCall's Quality Factors and Criteria, ISO 9126 Quality Characteristics, ISO 9000:2000 Software Quality Standard.	08hrs
UNIT 2	
Unit Testing: Concept of Unit Testing, Static & Dynamic Unit Testing, Defect Prevention,	
Mutation Testing, Debugging.	
Control Flow Testing: Basic Idea, Outline, Paths in a Control Flow Graph, Path Selection	
Criteria, Generating Test Input.	
Data Flow Testing: General Idea, Data Flow Anomaly, Overview of Dynamic Data Flow Testing,	11hrs
Data Flow Graph & Terms, Data Flow Testing Criteria, Comparison of Testing Techniques.	
UNIT 3	
Functional Testing: Concepts of Howden, Complexity of applying Functional Testing, Pair wise	
Testing, Equivalence Class Partitioning, Boundary Value Analysis, Decision Tables, Error	
Guessing.	
System Integration Testing: Concept, Different types of Interfaces & Interface Errors,	10hrs
Granularity of System Integration Testing, Techniques, Software Hardware Integration, Test	
Plan for System Integration, Off-the-shelf Component Integration.	

UNIT 4

System Test Design: Test Design Factors, Requirements Identification, Characteristics of Testable Requirements, Test Objective Identification, Modelling a Test Design Process & Results, Test Case Design Effectiveness.

System Test Planning and Automation: Structure of a System Test Plan, Intro & Feature Description, Assumptions, Test Approach, Test Suite Structure, Test Environment, test Execution Strategy, test Effort Estimation, Scheduling & Test Milestones, System test Automation, Evaluation & Selection of Test Automation Tools, Characteristics of Automated Test cases, Structure of an Automated Test case.

10hrs

Text Books:

- 1. Kshirasagar Naik and Priyadarshi Tripathy; Software Testing and Quality Assurance: Theory and Practice; Wiley Publications.2008
- 2. William E. Perry; Effective Methods for Software Testing Third Edition; Wiley Publications. 2006
- 3. Jeff Tian; Software Quality Engineering Testing, Quality Assurance and Quantifiable Improvement; Edition 2006, ISBN: 81-265-0805-1, 2005

Reference Books

1. Louise Tamares; Introducing Software testing; ISBN: 81-7808-678-6, 2008

DIGITAL SIGNAL PROCESSING

Course Code	Name of the course		L	Т	Р		Sche	eme o	f Exami	inatio	on	
Code	course								T			
	DIGITAL SIGNAL	Hrs/wee k	3	-	-		Th	S	TW	Р	0	TOTAL
IT533	PROCESSING	Credits	3	-	_	Duration (min)	3	-	-	-	-	-
						Marks	100	25	-	-	-	125

Course Objectives:

The students will be able to:

- 1. Introduce the concepts and techniques associated with the understanding of signals and systems modeling concept and definitions.
- 2. Familiarize with techniques suitable for analyzing and synthesizing both continuous-time and discrete time systems which provides foundation for more advanced subjects.
- 3. Understand the key theoretical principles underpinning Digital Signal Processing in a design procedure through FIR and IIR filters.

Course Outcomes:

On completion of this course the students will be able to:

- 1. Characterize and analyze the properties of CT and DT signals and systems
- 2. Represent CT and DT systems in the Frequency domain using Fourier analysis tools.
- 3. Apply digital signal processing techniques to design discrete time systems and digital filters
- 4. Illustrate the fundamentals and implementation of DSP techniques with practical examples and real-world applications.

UNIT 1	
Fundamentals of Signals and Systems: Signals, Systems, Fourier Analysis of Discrete Time Signals, Fourier Analysis of Continuous Time Signals. Z-Transform and ROC.	10hrs
UNIT 2	
Discrete Time Processing of Continuous Time Signals: Introduction Structure of a Digital	
Filter, Frequency Domain Analysis of a Digital Filter, Quantization Errors Fourier Analysis of Discrete Time Signals: Introduction, Discrete Time Fourier Transform	10hrs
(DTFT), Discrete Fourier Transform (DFT), The DFT as an Estimate of the DTFT, DFT for Spectral	
Estimation, DFT for Convolution, DFT/DCT for Compression, The Fast Fourier Transform (FFT)	
UNIT 3	
Digital Filters : Introduction, Ideal Versus Non-ideal Filters, Finite Impulse Response (FIR) Filters, Infinite Impulse Response (IIR) Filters	10hrs

UNIT 4	
Digital Filters Implementation : Introduction Elementary Operations, State Space Realization of Digital Filters, Robust Implementation of Equiripple FIR Filters.	9 hrs
Text Book:	
1. Modern Digital Signal Processing – by Roberto Cristi. Thomson Brooks/Cole (Thomson	Learning

1. Modern Digital Signal Processing – by Roberto Cristi, Thomson Brooks/Cole (Thomson Learning) ISBN 981-243-899-8.

References:

1. Digital Signal Processing, Algorithm and Applications: by Proakis, John G.; Manolakis, Dimitris G., 4th Edition, ISBN: 9780131873742/9788131710005, published by Pearson Education, Inc-2007

INTERNET OF THINGS

Course Code	Name of the course		L	T	P	Scheme of Examination						
	INTERNET OF	Hrs/wee k	3	-	-		Th	S	TW	P	0	TOTAL
IT534	THINGS	Credits	3	-	-	Duration (min)	3	-	-	-	-	-
						Marks	100	25	-	-	-	125

Course Objectives:

- 1. To impart knowledge on IoT general concepts and Architecture.
- 2. To introduce the concept of M2M (machine to machine) with necessary protocols.
- 3. To introduce the Python Scripting Language which is used in many IoT devices.
- 4. To introduce the Raspberry PI platform, that is widely used in IoT applications.

Course Outcomes:

- 1. Understand the concept of IoT and M2M.
- 2. Study applications in various fields.
- 3. Analyse different scenarios for implementation of IoT
- 4. Design and implement IoT applications in different domain.

UNIT 1	
Introduction to IoT, Definition and Characteristics of IoT, Physical Design of IoT-Things in IoT, IoT Protocols, LogicalDesign of IoT- IoT functional Blocks, IoT communication models, IoT Communication APIs, IoT enabled Technologies – Wireless Sensor Networks, Cloud	10hrs
Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Deployment Templates. Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle.	
UNIT 2	
IoT& M2M Machine to Machine, Difference between IoT and M2M, Software defined networks, network function virtualization. Basics of IoT System Management with NETCONF, YANG- NETCONF, YANG, SNMP NETOPEER	9 hrs
UNIT 3	
Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling. Python packages - JSON, XML, HTTP Lib, URL Lib, SMTP Lib.	10hrs
UNIT 4	
IoT Physical Devices and Endpoints - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C). Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.	10hrs

Text Books:

- 1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014
- 2. Matt Richardson & Shawn Wallace, Getting Started with Raspberry Pi, O'Reilly (SPD), 2014, ISBN: 9789350239759
- 3. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017

Reference books

1. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1stEdition, Apress Publications, 2013.

*Students are advised to refer to the resources available in Internet for more information.

COMPUTER GRAPHICS

Course	Name of the		L	Т	Р	Scheme of Examination							
Code	course												
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL	
IT541	COMPUTER	k											
	GRAPHICS	Credits	3	-	_	Duration (min)	3	-	•	-	ı	-	
						Marks	100	25	-	-	-	125	

Course Objectives:

- 1. Introduction to the contemporary terminology and progress in Computer Graphics.
- 2. Introduction to various issues and trends in Computer Graphics.
- 3. An Understanding of 2D and 3D transformations.
- 4. An understanding of the animation techniques.

Course Outcomes:

- 1. Explain the concepts of computer graphics system
- 2. Implement the algorithms for two dimensional transformations.
- 3. Demonstrate the techniques of clipping
- 4. Explain the basics of 3D Graphics and three dimensional transformations.

5. Design a simple animation system.	
UNIT 1	
Overview of graphic systems: Raster scans systems, Random scan systems. Output Primitives. Points and lines, Line drawing algorithms, DDA, Bresenhams line algorithm Circle generating algorithms, Properties of circles, Midpoint circle algorithm, Ellipse generating	
algorithm, Properties of Ellipses, Midpoint ellipse algorithm, Filled area primitives, Scan line polygon Fill algorithm, Inside – outside tests, Scan line fill of curved boundary, Boundary fill algorithm, Flood fill algorithm, Fill area functions.	10hrs
UNIT 2	
Two Dimensional Geometric Transformations: Basic Transformations, Translation, Rotation, Scaling, Composite transformation, Translations, Rotations, Scaling, Other transformations, Reflection, Shear. Two-Dimensional Viewing: The viewing pipeline, Viewing coordinate reference frame, Window to viewport coordinate transformation, 2-D viewing functions, Clipping operations, Point Clipping, Line clipping, Cohen- Sutherland Line Clipping, Polygon Clipping, Sutherland Hodgeman Polygon clipping, Weiler- Atherton Polygon Clipping, Other polygon clipping algorithm. Curve clipping, Text clipping.	10hrs
UNIT 3	
Three Dimensional Concepts: 3- Dimensional display methods, Parallel projections Perspective projection, Depth cueing, Surface rendering, Exploded and cutaway views. Three Dimensional Geometric and Modeling transformations-Translation Rotation, Coordinate	401
Axes, rotations, Scaling, Reflections, Shears. Classification of visible – surface detection algorithms Back – Face detection, Depth buffer method, A – Buffer method, Scan – Line method, Depth Sorting method, BSP- Tree method, Area Sub-division method.	10hrs

	1
UNIT 4	<u></u>
	Т
Color Models and Color Applications- Properties of light ,Standard primaries and the,	
Chromaticity Diagram, XYZ Color model, CIE Chromaticity Diagram, RGB color model, YIQ Color	
Model , CMY Color Model, HSV Color Model, HLS Color Model.	
	9 hrs
	3 1113
Computer Animation: Design of animation sequences, General computer animation functions,	
Raster Animations, Computer animation languages, Motion specification, Direct motion	
specification, Goal directed systems Kinematics and dynamics.	
	.1

Text Book:

Computer Graphics c version by Donald D. Hearn and M. Pauline Baker, published by Dorling Kindersley(India) Pvt.Ltd,licensees of Pearson Education in South Asia ,ISBN 978-81-7758-765-4

References:

- 1. Computer Graphics 2e A Programming Approach Publisher: Tata McGraw-Hill Education India ISBN: 9789339204808, 9789339204808 Indian Edition
- 2. Introduction to Computer Graphics 1st Edition Publisher: McGraw Hill India ISBN: 9780070435360, 0070435367

STATISTICAL MODELS FOR INFORMATION SCIENCE

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	P	0	TOTAL
	STATISTICAL	k										
IT542	MODELS FOR					Duration	3	-	-		-	-
	INFORMATION	Credits	3	-	-	(min)						
	SCIENCE					Marks	100	25	-	-	-	125

Course Objectives:

- 1. To understand different methods of data collection.
- 2. To study behavior of information in terms of its dispersion, skewness etc.
- 3. To understand sampling and non-sampling errors.
- 4. To understand various test and regression analysis.

Course Outcomes:

- 1. Understand Sampling System.
- 2. Evaluate Hypothesis testing for various Conditions.
- 3. Analyze Chi- Square Tests.
- 4. Perform the analysis of Variance.

UNIT 1	
Introduction to Data collection, Experiments and Surveys, Collection of Primary Data — Observation method, Interview method, Collection of data through questionnaire, Collection of data through schedules, Difference between schedules and questionnaire, other methods of data collection, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. Data Preparation: Data Preparation process, Problems in Preparation Process, Missing Values and Outliers, Types of Analysis, Statistics in Research, Measures of Central Tendency: Mean, Median, Mode, Measures of Dispersion, Mean Deviation, Measures of Skewness, Kurtosis and Measures of Relationship.	10hrs
Sampling and Statistical Inference: Parameter and Statistics, Sampling and Non-sampling	
Errors, Types of Non Sampling errors, Sampling Distribution, Degree of Freedom, Standard Error, Central Limit Theorem, Finite Population Correction, Statistical Interference. Hypothesis: Characteristics of Hypothesis, Null and Alternative Hypothesis, Types I and II errors, Level of Significance, Testing the Hypothesis, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Limitations of the Tests of Hypothesis.	10hrs
UNIT 3	
Chi-Square Tests: Test of Difference of more than Two Proportions, Test of Independence of Attributes – Alternative Formula, Yates Correction, Test of Goodness of Fit – Goodness of Fit Test for Normal Distribution, Caution in Using Chi Square Tests.	9 hrs
ANOVA: The ANOVA Technique, The Basic Principle of ANOVA, One Way ANOVA – Analysis of Variance Table, Short-cut Method for one-way ANOVA; Two Way ANOVA – One Observation per cell, Latin-square Design.	

UNIT 4	
Dependent and Independent Variables, Simple Linear Regression Model - Standard Error, Assumptions or Conditions Required, Multiple Linear Regression Model - Standard Error, Assumptions or Conditions Required, Problem of Multicollinearity – Variable Elimination, Principle Components Method.	10hrs
Factor Analysis, Definition: Factor, Factor loadings, Communality, Eigen Values, Rotation, Factor Scores, Total sum of squares, Rotation in Factor Analysis, R-Type and Q-Type Factor Analysis, Merits and Demerits of Factor Analysis.	

Text Books:

- 1. C. R. Kothari, Gaurav Garg; Research Methodology Methods and Techniques; New Age International (P) Limited, Publishers; Third Edition.
- 2. Ghosh B.N., Scientific Methods and Social Research; Sterling Publishers Pvt. Ltd. New Delhi; 1982.

Reference Books

- 1. Freedman P. The Principles of Scientific Research; Pergamon Press, New York, 1960; Second Edition.
- 2. John, Peter W.M.; Statistical Design and Analysis of Experiments; The MacMillan Co. New York, 1971
- 3. Yamane, T.; Statistics: An Introductory Analysis; Harper and Row, New York 1973; Third Edition

ADVANCED COMPUTER ARCHITECTURE

Course Code	Name of the course		L	T	P	Scheme of Examination						
	ADVANCED	Hrs/wee k	3	-	-		Th	S	TW	P	0	TOTAL
IT543	COMPUTER ARCHITECTURE		3	-	-	Duration (min)	3	•	-	-	-	-
		Credits				Marks	100	25	-	-	-	125

Course Objectives:

- 1. To understand concept of parallelism.
- 2. To give students an insight into the various types of processors and their internal architecture.
- 3. To familiarize the students, how modern computer systems work and are built.

Course Outcomes:

- 1. Understand various types of processor along with their internal architecture.
- 2. Learn how modern systems are built.
- 3. Illustrate the concept of parallelism.
- 4. Build/Construct/ Design parallel systems.

UNIT 1	
Solving Problems in Parallel: Utilizing temporal parallelism, Utilizing DataParallelism, Comparison of Temporal and Data Parallel Processing Parallel computer structures, Architectural classification schemes, Parallel processing applications Principles of pipelining: Linear pipeline processor, Non-linear pipeline processors, Instruction	10hrs
and Arithmetic pipeline design, principles of designing pipelined processors.	
UNIT 2	
Structures and Algorithms for Array Processors: Introduction to SIMDComputer	1.01
Organization, Interconnection networks, parallel algorithms for array processors	10hrs
Associative array processing: Associative memory organization.	
UNIT 3	
Multiprocessors Architecture and Programming: Functional structures, Interconnection networks, Cache coherence and solutions, interleaved memory organization, Multiprocessor operating systems, Language features to exploit parallelism, detection of parallelism in programs.	10hrs
UNIT 4	•
Core level parallel processing: Generalized structure of chip multiprocessors(CMP), Muticore processors or CMPs, cache coherence in CMPs, Intel Core I7 architecture. CMPs using interconnection networks: Ring interconnection of processors, Ring bus CMPs General purpose graphics processing unit (GPGPU).	9 hrs

Text Books:

- 1. Hwang and Briggs; Computer architecture and parallel processing; TMH, ISBN:0-07 031556-6
- 2. V. Rajaraman and C. Siva Ram Murthy; Parallel Computers Architecture and Programming; PHI, 2/e
- 3. Kai Hwang; Advanced computer architecture; TMH, ISBN: 0-07-031622-8

GRAPH THEORY

Course	Name of the		L	T	Р	Scheme of Examination							
Code	course												
IT544	GRAPH THEORY	Hrs/wee k	3	-	-		Th	S	TW	P	0	TOTAL	
		Credits	3	-	_	Duration (min)	3	-	-	-	1	-	
						Marks	100	25	ı	-	-	125	

Course Objectives:

- 1. Familiarity with the most fundamental Graph Theory topics and results.
- 2. Exposure to the techniques of proofs and analysis about graphs and graph algorithms.
- 3. Knowledge of algorithms by solving concrete problems.

Course Objectives:

Upon completion of the course, the students should be able to:

- 1. Write precise and accurate mathematical definitions of objects in graph theory.
- 1. Use mathematical definitions to identify and construct examples and to distinguish examples from non-examples
- 2. Use a combination of theoretical knowledge and independent mathematical thinking in creative investigation of questions in graph theory
- 3. Reasons from definitions to construct valid mathematical proofs.

UNIT 1	
Graph Preliminaries: Definitions, incidence, adjacency and degree of a vertex. Types of graphs:	
Complete graph, bipartite graphs, complement graphs, self-Complementary graph and Regular	
graphs.	10hrs
Isomorphism, Sub graphs, matrix representations, degree, operations on graphs, degree	
sequences.	
Connected graphs: Walks, Trails, Paths, Circuits, Connected graphs, distance, cut-vertices, cut-	
edges, blocks, connectivity, weighted graphs, Disconnected Graphs, Components.	
UNIT 2	,
Blocks and Trees: Cut points, bridges and blocks. Block graphs and Cut point graphs.	
Definitions of trees, Properties, and Examples, Routed Trees, Trees and Sorting, Weighted	
Trees and Prefix Codes.	10hrs
Planarity: Combinatorial graph, planar graphs, Kuratowski's two graphs, different	
representations of a graph, Euler's polyhedral formula, detection on planarity, outer planar	
graphs, and other characterizations of planar graphs. Geometrical dual. Genus, thickness and	
crossing numbers.	
UNIT 3	
Matrix Representation and Diagraphs: Incidence matrix, adjacency matrix, sub matrices,	
circuit matrix, fundamental circuit matrix, and rank. Cut set matrix, path matrix, and relation	
between them. Types of Digraphs and Binary Relations. Directed Paths and Connectedness.	09hrs
Trees with directed Edges – Fundamental Circuits in Digraph – Matrices A, B, and C of	
Diagraphs – Adjacency Matrix of a Diagraph – Tournaments.	

UNIT 4	
Coloring: Vertex coloring and edge coloring. Chromatic Number, Chromatic Polynomial, matching, coverings. The four-Color Problem, maximal independent set, point	
independence number. Optimization: Dijkstra's Shortest Path Algorithm, Minimal Spanning Trees – The algorithms	10hrs
of Kruskal's and Prim, Transport Networks –Max-flow, Min-cut Theorem, Matching Theory.	
Text Books:	

- 1. NarsinghDeo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003.
- 2. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", Addison Wesley, 1994.

Reference:

1. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.

ETHICS AND ENTREPRENEURSHIP											
Course Code	HM00	9	Credits	3							
Scheme of	L	Т	Р	TOTAL							
Instruction Hours/ Week	3	0	0	40hrs/sem							
Scheme of	IA	TW	TM	Р	0						
Examination TOTAL = 75 marks	25	0	100	0	0						

Course Objectives:

The course aims to provide the student with:

- 1. Acquaint to standard concepts of ethics that they wilfind useful in their professionallife.
- 2. An understanding of the various concepts in Ethics.
- 3. Familiarization to the basic principles ofentrepreneurship.
- 4. Acquaint to standard concepts of entrepreneurship that they will find useful in their profession or during the process of starting their ownenterprise.

Course Outcomes:

After completion of the course the student will be able to:

CO1	Appreciate and assimilate ethics and interpersonal behaviour. Also to
	understand the use of ethical theories.
CO2	Understand code of ethics in various fields, safety responsibility and rights as
	an engineer.
CO3	Understand the concept of entrepreneurship and demonstrate the skills for
	project identification, development and implementation.
CO4	Understand the basics of financing a project. From the options of choosing the
	project and source of finance, to finding ways of sustaining the project.

UNIT -1	
What is Ethics? Ethics and Rights, Ethics and Responsibility, Why Study Ethics, Attributes of an ethical personality, CaseStudy	10hrs
Work Ethics, Integrity, Honesty	
Engineering Ethics – History, Engineering Ethics Professional Roles to be played by an engineer, Functions of an Engineer, Self-Interest, Customs and Religion, Profession al	
Ethics, Types of Inquiry, Engineering and Ethics, Kohlberg's Theory	
Theories of Ethics – Moral issues, Moral dilemmas, Theories, Uses of Ethical	
Theories, Factors influencing Ethical Behaviour	
UNIT -2	
Code of Ethics	
Safety Responsibility and Rights: Responsibility of Engineers, Risk-Benefit Analysis, Ethical issues in Cost-benefit Analysis, Ethics and Risk Management, Reducing Risk.,	
Conflict of Interest, Occupational Crime, Intellectual property	
Environmental Ethics – Introduction, Affecting Environment, Engineers as Managers, Role	2
of Engineers, IEEE code of Ethics	
Rights of Engineers – Professional Rights, Employees Rights Whistle - blowing	
UNIT -3	
Definition and clarification of concept of entrepreneurship: Qualities and skills required	
for entrepreneurship, Functions of an entrepreneur, Importance of entrepreneur in	10hrs
economicdevelopment.	
Theories of Entrepreneurship: Economic theory, Sociological theory, Psychological	
theory. Types of entrepreneurs: Based on type of business, Based on use of technology,	
Based on motivation, Based on stages of development, Based on motive, Based on capital ownership, Danhof's classification.	
Project identification: External environment analysis, Meaning and characteristics of a	
project, Classification of projects, Project life-cycle, Sources and screening of projectideas.	
Project formulation: Meaning and significance, Feasibility analysis, Techno- economic	
analysis, Input analysis, Financial analysis, Social cost benefit analysis. Project feasibility.	
Pre-feasibility study: Project feasibility report - Meaning, Importance and Contents.	
UNIT -4	
Project financing and institutional finance: Classification of capital – Fixed capital -	10 hrs
Meaning, Factors governing fixed capital requirements, Working capital – Meaning and	
concepts, Types, Factors determining working capital requirements. Sources of finance –	
Share capital, Debenture capital, Lease finance and term loans from commercial banks.	
Financial aspects: Break even analysis, Income statement, Balance sheet, Fund flow	
statement, Ratio analysis – Liquidity, leverage and profitability ratios. Capital budgeting –	
Need, Importance, Process, methods of project evaluation: Payback period, Net Present	
	1

ValueIndex.

	TEXTBOOKS									
1	A. Alavudeen, R. Kalil Rahman, M. Jayakumaran; Professional Ethics and HumanValues,									
	Firewall Media, 2008.									
2	Jayshree Suresh, B. Raghavan; Professional Ethics: Values and Ethics of Profession, S. Chand									
	Co. Ltd (2005)									
3	C.B.Gupta and N.P.Srinivasan; Entrepreneurship; Sultan Chand and Sons, 4/e, 1997									
4	Prassanna Chandra; Fundamentals of Financial Management; Tata McGraw Hill3/e.; 2001.									

	REFERENCES
1	Charles B. Fleddermann; Engineering Ethics, Pearson; 4 edition (August 2011)
2	C.B. Gupta and S.S. Khanka; Entrepreneurship and Small Business Management; Sultan Chand and Sons; 1997,2/e.
3	Richard M. Lynch, Robert W. Williamson; Accounting for Management, Planningand Control; Third Edition, Tata McGraw-Hill, New Delhi.

DATABASE APPLICATION LAB

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	-	-	4		Th	S	TW	Р	0	TOTAL
	DATABASE	k										
IT550	APPLICATION					Duration	-	-	-	-	-	-
	LAB		-	-	2	(min)						
		Credits				Marks	-	-	25	50	-	75

*Experiment List for Database Management System

- 1. To study Data Definition language Statements and Data Manipulation Statements.
- 2. To Study:

SELECT command with different clauses GROUP functions (avg, count, max, min, Sum) and various type of SET OPERATORS (Union, Intersect, Minus).

- 3. To Study of Various types of JOINS.
- 4. Mini Project: Develop database application using front-end tool and back-end DBMS.

*Experiment list of Chosen elective 1

Experiment List for Cloud Computing

- 1. To demonstrate practically all the services of the Cloud.
- 2. To develop & deploy our own application on Cloud.
- 3. To install and configure HORTONWORKS SANDBOX HADOOP by using Oracle Virtual Box on Windows Operating System.
- 4. Create an application (Ex: Word Count) using Hadoop Map/Reduce.

Experiment List for Software Testing and Quality Assurance

- 1. Study and use of any one Software Testing Tools.
- 2. Conducting a Test Suite for a Website.
- 3. Software Requirement Specification of Mini project from IT510 Course.
- 4. Testing of project from IT510 Course.

Experiment List for Digital Signal Processing

- 1. To find DFT/DTFT of given DT signal.
- 2. Implementation of LP/HP FIR filter for a given sequence.

3.	Implementation of LP/HP IIR filter for a given sequence.
4.	Implementation of Linear and circular convolution of two given sequences using DFT and IDFT.
Experi	ment List for Internet of Things
1.	Python program using functions.
2.	Exercise on working principle of Raspberry Pi.
3.	Experiment on connectivity of Raspberry Pi with existing system components.
4.	Programming Raspberry Pi with Python.

^{*}Note: Experiment list can be modified by the respective subject Faculty

MODELLING & COMPUTING LAB

Course	Name of the		L	Т	P	Scheme of Examination						
Code	course											
		Hrs/wee	-	-	4		Th	S	TW	Р	0	TOTAL
	MODELLING &	k										
	COMPUTING LAB					Duration	-	-	-	-	-	-
IT560			-	-	2	(min)						
		Credits				Marks	-	-	25	50	-	75

*Experiment List for Theory of Computation

- 1. Regular Languages & Regular Expressions.
- 2. To implement a Deterministic Finite Automata (DFA).
- 3. To implement a Non-deterministic Finite Automata (NFA).
- 4. To implement a Mealy/Moore Machine.
- 5. To implement Push-down automata.
- 6. To implement a Turing machine.
- 7. A Study on Context-free & Context-sensitive languages and grammars.

*Experiment list of Chosen elective 2

Experiment List for Computer Graphics

- 1. To implement Digital Differential Analyzer (DDA) using MFC.
- 2. To implement Midpoint Circle Drawing Algorithm using MFC.
- 3. To implement 2d geometric transformation.
- 4. To implement Clipping algorithm.
- 5. To implement Animation using MFC Application.

Case Studies for Statistical Models for Information Science

- 1. Case Study: Data Preparation
- 2. Case Study: Latin Square Design
- 3. Case Study: ANOVA
- 4. Case Study: Factor Analysis

Experiment list / Case Studies for Graph Theory

- 1. Case Study: Connected Graphs cut vertex, cut edge, cut set of a graph, vertex connectivity
- 2. Case Study: Graph Coloring

3. To implementSpanning trees.
4. To implement Dijkstra's Shortest Path Algorithm/Kruskal's Algorithm/Prim's Algorithm.
Case Studies for Advanced Computer Architecture
Case Study: Pipelined Processors
2. Case Study: Associative Cache Design
3. Case Study: CPU Design
4. Case Study: Directly Mapped Design

^{*}Note: Experiment list can be modified by the respective subject Faculty

PRINCIPLES OF COMPILERS

Course Code	Name of the course		L	Т	P	Scheme of Examination						
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	PRINCIPLES OF	k										
IT610	COMPILERS					Duration	3	-	-	-	-	-
		Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

- 1. To introduce essential theory, algorithms, and tools used in compiler construction.
- 2. To study the design of lexical, syntax, and semantic analysis of source files.
- 3. To study the construction of syntax trees, and symbol tables.
- 4. To understand code generation and optimization techniques.

Course Outcomes:

- 1. Explain how compilers translate source code to machine executable.
- 2. Understand tools to automate compiler construction such as LEX and YACC
- 3. Describe the process of parsing and simple code optimizations.
- 4. Apply the concepts to design, implement, and test a compiler for a simple language.

UNIT 1	
A language processing system, an overview of Assemblers, Macro processors, Linkers, Loaders, Debugger, Text editor, Compiler, Interpreter.	
Introduction to Language Translator, Phases of compilation, Bootstrapping and Porting, Compiler writing tools.	08 hrs
The role of a lexical analyser. Design of lexical analyzer. Implementation of lexical analyzer.	
A Language for specifying lexical analyzer. Study of the features and applications of LEX/FLEX tool	
UNIT -2	
Overview of Context free grammar. Derivations and Parse trees, Ambiguity, Left recursion, Left	
factoring.	12hrs
Top down parsing: Recursive descent parsing and Predictive parsers.	
Bottom up parsing: Shift-reduce parsers. Operator precedence parsers, LR parsers.	
Study of YACC Tool: Programming with YACC. Combining YACC and FLEX.	
UNIT 3	
Intermediate Code Generation: Intermediate Language, Declarations, Assignment statements, Boolean expressions, Case statement, Procedure call.	09 hrs
Run Time environments: Source language issues, Storage organization, Storage allocation strategies.	
Symbol tables: The content of a symbol table, Data structures for Symbol Table.	
Error detection and recovery: Lexical phase errors, Syntactic phase errors, Semantic errors.	

	т
UNIT 4	
Code generation: Issues in the design of a code Generator, Basic blocks and flow graphs, Nextuse information, A simple Code generator, The DAG representation of Basic blocks, Peephole Optimization, Generating code from DAGS. Code optimization: The principle sources of optimization, Optimization of basic blocks, Machine dependent optimization, Register allocation optimization.	10 hrs
Text Books:	
1. Aho and Ulman; Principles of Compiler Design; Publisher: Narosa publishing House, ISBN: 81-	

- 1. Aho and Ulman; Principles of Compiler Design; Publisher: Narosa publishing House, ISBN: 81-85015-61-9, Second Edition, 2002.
- 2. Aho, Ulman and Sethi; Compilers, Principles, techniques and tools; Publisher:Pearson Education Inc, 1986,2006 ISBN: 0-201-10088-6.

Reference Books:

- 1. Vinu V. Das ; Compiler design with FLEX and YACC; PHI publication, 2007 ISBN: 978-81-203-3251- α
- 2. Louden; Compiler Construction, Principles and Practice; Galgotia Publication, ISBN:0-534-93972-4,Second Edition,1998.

WEB TECHNOLOGY

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	WEB	k										
IT620	TECHNOLOGY					Duration	3	-	-	-	-	-
		Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Outcomes:

- 1. Explain web application architecture, technologies, frameworks and e-commerce concept
- 2. Analyse and Evaluate the various technologies used in creating web applications
- 3. Apply the knowledge of web technologies to create simple applications
- 4. Create dynamic and interactive web applications that meet specific requirements by combining multiple web technologies

Course objectives:

The subject aims to provide the student with:

- 1. Introduction to the technologies behind today's web-based applications.
- 2. An Understanding of building real web applications.
- 3. An understanding of the basic design principles of the web model of computing.
- 4. Learning different technologies to building different real world applications.

UNIT 1						
ONIT 1	44.11					
Introduction to Web: Web Architecture, Web Applications, Web servers, Web Browsers, Overview of HTTP HTML: Elements, Attributes, Tags, Forms, Frames, Tables, Overview and features of HTML5	11 Hrs					
Cascading Style Sheets: Need for CSS, basic syntax and structure of CSS, using CSS, background images, colors and properties, manipulating texts, using fonts, borders and boxes, margins, padding lists, positioning using CSS, Overview and features of CSS3. XML: Introduction to XML, uses of XML, XML key components, DTD and Schemas, Transforming XML using XSL and XSL						
UNIT -2						
JavaScript: Introduction to client side scripting, documents, forms, statements, comments, variables, operators, conditional statements, loops, events, objects, functions.						
jQuery: Introduction, Syntax, jQuery Selector, jQuery Events, jQuery effects, jQuery and HTML						
UNIT 3						
AJAX: JavaScript for AJAX, Asynchronous data transfer with XML Http Request, Implementing AJAX Frameworks	10 Hrs					
PHP: Variables and Constants, Controlling Program Flow, Functions, Arrays, Files,						

Diı	rectories, Forms and Database, Exploring Cookies, Sessions, and PHP Security							
	UNIT 4							
Web Applications in ASP.Net: Developing a web application, Application Structure and State, Web Forms: Standard Controls, Navigation Controls: TreeView, Menu and SiteMapPath, Validation Controls, Working with Database Controls: GridView, DataList, DetailsView, FormView, ListView, Repeater, DataPager, SqlDataSource								
Те	xt Books:							
	Web Technologies: HTML, Javascript, PHP, Java, JSP, ASP.NET, XML and AJAX, Black Book; Publisher: Dreamtech Press(2015); ISBN: 978-81-7722-997-4 Duckett; JavaScript and JQuery: Interactive Front-End Web Development. Publisher: Wiley (2014); ISBN-13: 978-1118531648							
	<u>ference Books:</u> Paul Deitel, Harvey Deitel, Abbey Deitel; Internet and World wide Web. How to program; Fifth Edition; Publisher: Pearson Education India (2018); ISBN: 978-9352868599							
	Achyut Godbole, Atul Kahate; Web Technologies: TCP/IP, Web/ Java Programming, and Cloud Computing, Third Edition; Publisher: McGraw Hill (2013)							
5.	Mridula Parihar, et. al. – ASP .NET Bible; Publisher: John Wiley & Sons (2002); ISBN: 978-							

NATURAL LANGUAGE PROCESSING

Course Code	Name of the course		L	Т	Р	Scheme of Examination						
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	NATURAL	k										
IT631	LANGUAGE					Duration	3	-	-	1	-	-
	PROCESSING	Credits	3	-	-	(min)						
						Marks	10	2	-	-	•	125
							0	5				

Course Objectives:

The subject aims to provide the students with:

- 1. To understand the basics of Natural Language processing.
- 2. To develop an understanding of various techniques used in Natural Language Processing
- 3. Analyse the various application areas for NLP.
- 4. Implement NLP

Course Outcomes:

- 1. Understand the fundamentals and complexities of NLP
- 2. Explore the core techniques of NLP
- 3. Analyze the domains in which NLP can be applied effectively and efficiently
- 4. Develop and implement NLP Systems
- 5.

UNIT -1	
Regular Expression, Finite State Automata, Formal Languages, Non Deterministic FSAs, Relating Deterministic and Non-Deterministic Automata, Regular Languages and FSAs,	09 hrs
Morphology, Finite State Morphological Parsing, Finite State Transducers, Sequential Transducers and Determinism, The Combination of an FST, Lexicon and Rules, Lexicon-Free FSTs, The Porter Stemmer, Word and Sentence Tokenization, Detection and Correction of Spelling Error, Minimum Edit Distance.	
Simple (Unsmoothed) N-grams, Training and Test Sets, N-gram Sensitivity to the Training Corpus.	
UNIT -2	
Markov Models, Hidden Markov Models, Three Fundamental Questions for HMMs, HMMs – Implementation Properties and Variants.	10 hrs
Part of Speech Tagging, The Probabilistic Model, The Viterbi Algorithm, Applying HMMs to POS Tagging, The Effect of Initialization on HMM Training. Transformations, The Learning Algorithm.	

UNIT 3	
Probabilistic Context Free Grammar, Finding the most likely Parse for a sentence, Training a PCFG, Problems with Inside-Outside Algorithm.	10 hrs
Probabilistic Parsing, Parsing for Disambiguation, Treebanks, Weakening the independence assumptions of PCFGs, Tree probabilities and derivational probabilities.	
Clustering, Single-Link and Complete-Link Clustering, Group-Average Agglomerative Clustering, Top-Down Clustering, K-means, EM Algorithm.	
Information Retrieval, The Probability Ranking Principal (PRP), Vector Space Model, The Poisson Distribution, The K-Mixture, Inverse Document Frequency, Latent Semantic Indexing.	
UNIT 4	
The Representation of Meaning: Computational Desiderata for Representations, Canonical Form, Inference and Variables, First Order Logic, Lambda Notation, The Semantics of First Order Logic.	
Information Extraction: Named Entity Recognition, NER – Sequence Labeling, Practical NER Architectures, Relation Detection and Classification.	10 hrs
Supervised Learning Approach to Relation Analysis, Temporal and Event Processing, Temporal Expression Recognition, Temporal Normalization.	
Machine Translation, Typology, Lexical Divergence, Classical MT and the Vauquois Triangle, Direct Translation, Transfer, The Interlingua Idea: Using Meaning, Statistical MT, Using Human Raters, Automatic Evaluation: BLEU	
Question Answering and Summarization, Information Retrieval, Evaluation of Information Retrieval System, Homonymy, Polysemy and Synonymy, Summarization	
Text Books:	
1. Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition by Daniel Jurafsky and James H. Martin, Second Edition, Pearson. ISBN-13: 978-0131873216	
2. Foundation of Statistical Natural Language Processing, Christopher D. Manning and Hinrich Schutze ISBN-0-262-13360-1	
Reference Books: 1. Steven Bird, Ewan Klein and Edward Loper Natural Language Processing with Python, O'Reilly Media; 1 edition, 2009.	
2. Natural Language Understanding 2nd Edition Allen J ,Benjamin Cummings, 1995.	

ARTIFICIAL INTELLIGENCE AND FUZZY LOGIC

Course Code	Name of the course		L	Т	P	Scheme of Examination						
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	ARTIFICIAL	k										
IT632	INTELLIGENCE					Duration	3	_	-	_	_	-
	AND FUZZY	Credits	3	-	_	(min)						
	LOGIC					Marks	10	2	-	-	-	125
							0	5				

Course Objective

- 1. To introduce students for problem solving in Artificial Intelligence.
- 2. To familiarize students with the methods and tools required for problem solving.
- 3. To equip students with a strong foundation to take up advanced courses in Machine Learning.

Course Outcomes

Upon completion of this course, students will be able to:

- 1. Explain the basic concepts of Artificial intelligence.
- 2. Demonstrate the use of appropriate algorithms for solving real world problems
- 3. Construct effective learning models
- 4. Apply the knowledge of reasoning for planning and decision making

UNIT 1	
INTRODUCTION TO ALL AND KNOWLEDGE REPRESENTATION	
Introduction – What is AI, Foundations	10 hrs
Solving problems by searching – Introduction, Uninformed Search – BFS, DFS, ID-DFS, Informed	
Search – Greedy BFS, A*, IDA*, Heuristic Functions, Local Search algorithm – Hill Climbing	
Adversarial Search – Optimal decisions in games, Alpha-Beta pruning	
Constraint Satisfaction Problems: Defining and formalism of problems	
Knowledge representation using First Order Logic, Unification, Resolution	
UNIT -2	
PLANNING AND PROBABILISTIC REASONING	
Defining Classical Planning Problems using PDDL	10hrs
Forward and Backward State Space Search, Partial Order Planning	
Acting under uncertainty, Basic Probability Notations	
Fully Joint Distribution, Independence	
Baye's Rule and its uses, Reasoning using Bayesian Networks	
UNIT 3	
INDUCTIVE LEARNING	
Learning Agent, Forms of Learning	401
Learning Decision Trees	10hrs
Artificial Neural Networks - Structure, Perceptron, Multilayer Perceptron - feed forward and back	
propagation approaches.	
Introduction to Deep Neural Networks- ConvolutionalNeural Network, Recurrent Neural	
Networks – structure, working	

	UNIT 4								
Fuzzy Mem Optii	FUZZY LOGIC Fuzzy sets-: Fuzzy relation, Fuzzification, Defuzzification, Fuzzy rules. Membership function: Knowledge base-Decision making logic Optimizations of membership function using neural networks Applications of fuzzy logic control systems								
Text E	Books:								
1.	Stuart Russel and Peter Norvig "AI – A Modern Approach", 3 RD Edition, Pearson Education 2016, ISBN 978-93-325-4351-5.								
2.	Charu C. Aggarwal "Neural Networks and Deep Learning: A Textbook", Springer 2019.								
3.	3. Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004.								
	Reference Books								
	1. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill-								

- 2008.
- 2. John yen, Reza langari, "Fuzzy logic: intelligence control & information", Pearson publication eighth edition-2003 ISBN: 978-81-317-0534-6.

DISTRIBUTED SYSTEMS

Course	Name of the		L	T	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	DISTRIBUTED	k										
IT633	SYSTEMS					Duration	3	-	-	-	-	-
		Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

The subject aims to provide the student with:

- 1. Understand the major technical challenges in distributed systems design and implementation.
- 2. To present the principles underlying the functioning of distributed systems
- 3. Expose students to past and current research issues in the field of distributed systems
- 4. Provide experience in the implementation of typical algorithms used in distributed systems

Course Outcomes:

- 1. Explain what a distributed system is, why you would design a system as a distributed system and what the desired properties of such systems are.
- 2. List the principles underlying the functioning of distributed systems, describe the problems and challenges associated with these principles, and evaluate the effectiveness and shortcomings of their solutions
- 3. Recognize how the principles are applied in contemporary distributed systems, explain how they affect the software design.
- 4. Identify features and design decisions that may cause problems.

UNIT 1	
Introduction to Distributed System. Goals: making resources accessible, distribution transparency, openness, scalability. Types of Distributed Systems: Distributed Computing Systems, Distributed Information systems, Distributed Pervasive systems Architectures. System Architectures: Centralized Architectures, Decentralized Architectures, Hybrid Architectures	10hrs
Communication Fundamentals: Layered protocols, Types of Communication	
Remote Procedure Call: Basic RPC Operation, Parameter Passing, Asynchronous RPC.	
UNIT -2	
Processes. Threads: Introduction to Threads, Threads in Distributed Systems. Virtualization: Role of Virtualization in Distributed Systems. Clients: Client-side software for Distribution Transparency. Servers: General Design Issues, Server Clusters. Code Migration: Approaches to Code Migration Synchronization. Clock Synchronization: Physical Clocks. Logical Clocks: Lamport's Logical Clocks, Vector Clocks. Mutual Exclusion: Centralized Algorithm, Decentralized Algorithm, Distributed Algorithm, Token Ring Algorithm. Election Algorithms: Traditional Election Algorithms.	09 hrs

UNIT 3	
Introduction to Consistency and Replication. Introduction: Reasons for Replication,	
Replication as Scaling Techniques. Data-Centric Consistency Models: Continuous Consistency.	
Client-Centric Consistency Models: Eventual Consistency, Monotonic Reads, Monotonic Writes,	10hrs
Read Your Writes, Write Follow Reads. Replica Management: Replica-Server Placement.	
Introduction To Fault Tolerance. Introduction: Basic Concepts, Failure Models, Failure Masking by Redundancy. Process Resilience: Design Issues, Failure Masking and Replication. Reliable Client-Server Communication: Point-to-Point Communication, RPC Semantics in the Presence of Failures. Reliable Group Communication: Basic Reliable-Multicasting Schemes.	
UNIT 4	
Distributed Object-Based Systems. Architectures: Distributed Objects. Processes: Object Servers. Communication: Binding a client to an Object, Static versus Dynamic Remote Method Invocations, Parameter Passing. Synchronization Distributed File Systems. Architectures: Client-Server Architectures, Cluster-Based Distributed File Systems, Symmetric Architectures. Processes. Communication: RPCs in NFS, The RPC2 Subsystem. Synchronization: Semantics of File Sharing	10hrs
 Distributed Systems: Principles and Paradigms by Andrew S. Tanenbaum and Maarten Van Steen; Second Edition, ISBN - 978-81-203-3498-4, published by Prentice Hall of India, Private Limited publication 2007 Distributed Systems: Concept and Design by George Coulouris, Jean Dollimore & Tim Kindberg; Pearson (LPE); 4th Edition; ISBN 978-81-317-1840-7, published by Pearson publication 2009 	
Reference Book: 1. Distributed Operating System and Algorithm Analysis by Randay Chow and Theodore John son; Pearson; First Edition; ISBN 978-02-014-9838-7, published by Pearson	

publication 1997

QUEUING THEORY AND MODELLING

Course Code	Name of the course		L	Т	Р		Sch	eme	of Exar	nina	tion	
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	QUEUING	k										
IT634	THEORY AND					Duration	3	-	-	-	1	-
	MODELLING	Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

- 1. To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering
- 2. To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- 3. To understand the basic concepts of random processes which are widely used in IT fields.
- 4. To understand the concept of queueing models and apply in engineering.
- 5. To understand the significance of advanced queueing models.
- 6. To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.

Course Outcomes:

- 1. Explain the basic concepts in probability and random processes for applications such as random signals two dimensional random variables, linear systems in communication engineering.
- 2. Apply the concepts and principles of queuing models and apply in engineering.
- 3. Implement and analyze the significance of advanced queuing models.
- 4. Design the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.

UNIT 1	
PROBABILITY AND RANDOM VARIABLES	
Probability – Axioms of probability – Conditional probability – Baye's theorem - Discrete and	
continuous random variables – Moments – Moment generating functions – Binomial, Poisson,	09 hrs
Geometric, Uniform, Exponential and Normal distributions.	
UNIT -2	
RANDOM PROCESSES	
Classification – Stationary process – Markov process - Poisson process – Discrete parameter	10 hrs
Markov chain – Chapman Kolmogorov equations – Limiting distributions.	
UNIT 3	
QUEUEING MODELS	
Markovian queues – Birth and death processes – Single and multiple server queueing models –	
Little's formula - Queues with finite waiting rooms – Queues with impatient customers : Balking	10 hrs
and reneging.	
UNIT 4	
ADVANCED QUEUEING MODELS	
Finite source models - M/G/1 queue - Pollaczek Khinchin formula - M/D/1 and M/EK/1 as special	10 hrs

cases – Series queues – Open Jackson networks.

Text Books:

- 1. Gross, D., Shortle, J.F, Thompson, J.M and Harris. C.M., —Fundamentals of Queueing Theory", Wiley Student 4th Edition, 2014.
- 2. Ibe, O.C., —Fundamentals of Applied Probability and Random Processes", Elsevier, 1st Indian Reprint, 2007.
- 3. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.

Reference Books

- 1. Trivedi, K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", 2nd Edition, John Wiley and Sons, 2002.
- 2. Taha H .A., "Operations Research", 9th Edition, Pearson India Education Services, Delhi, 2016.
- 3. Yates, R.D. and Goodman. D. J., "Probability and Stochastic Processes", 2nd Edition, Wiley India Pvt. Ltd., Bangalore, 2012.

JAVA PROGRAMMING

Course Code	Name of the course		L	Т	Р		Sche	eme	of Exar	nina	tion	
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	JAVA	k										
IT641	PROGRAMMING					Duration	3	-	-	-	-	-
		Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

The subject aims to provide the student with:

- 1. An ability to plan, design, execute and document sophisticated object orientated program to handle different computing problems using "Java".
- 2. An understanding of how things work in the web world.
- 3. An understanding of the client-side implementation of web applications.
- 4. An ability to understand the generic principles of object oriented programming using "Java".
- 5. An understanding the use of Event driven Graphics programming in "Java".
- 6. Understands how data is accessed from the file.

Course Outcomes:

- 1. Implement Object Oriented programming concept using basic syntaxes of control Structures, strings and function for developing skills of logic building activity
- 2. Demonstrates how to achieve reusability using inheritance, interfaces and packages and describes faster application development can be achieved
- 3. Demonstrate understanding and use of different exception handling mechanisms and concept of multithreading for robust faster and efficient application development
- 4. Design & develop complex Graphical user interfaces in Java using Swing, Applets, Java Bean, GUIs and event driven programming

UNIT 1	
Introduction to Java Programming Environment, Constants, Variables and Data types, Operators and Expressions, Decision making, Branching and Looping, JOptionPane	10 hrs
Command-Line Arguments, Classes, Objects, Methods Constructors, Java Array, String and Vectors.	
UNIT -2	
Interfaces and Packages, Garbage Collection, Exception Handing, Multithreading, Collections	10hrs
UNIT 3	
GUI: -Applet, AWT, Event Handling Swings	9hrs

JDBC (Java Data Base Connection) –Introduction to JDBC –Databases and Drivers	
UNIT 4	
Networking ,Security in Java,Remote Method Invocation (Distributed Application in Java) , Introduction to struts Framework.	10 hrs
Text Books: 1. E. Balagurusamy; Programming with Java A Primer; Tata McGrawHill Companies 5th edition,2014.	
2. Java: The Complete Reference, Eleventh Edition, 11th Edition, by Herbert Schildt, December 2018, Publisher(s): McGraw-Hill, ISBN: 9781260440249	
Reference books	
 Sachin Malhotra, SaurabhChaudhary; Programing in Java; Oxford University Press, 2010. H. M. Deitel and P. J. Deitel; Advanced Java 2 Platform HOW TO PROGRAM; Prentice Hall 9th edition. 	

OPEN SOURCE SOFTWARE DEVELOPMENT

Course Code	Name of the course		L	Т	P		Sche	eme	of Exar	nina	tion	
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	OPEN SOURCE	k										
IT642	SOFTWARE					Duration	3	-	-	-	-	-
	DEVELOPMENT	Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

The objective of the course is to provide students:

- 1. Basic idea of Open Source Technology & Software Development process so as to understand the role and future of open source software in the industry.
- 2. Impact of legal, economic and social issues for Open Source Software
- 3. Understand the difference between open source software and commercial software.
- 4. Familiarity with Linux operating system.
- 5. Understanding and development of web applications using open source web technologies like Apache, MySql and PHP (LAMP/XAMP)

Course Outcomes:

Upon completion of the course, the students should be able to:

- 1. Explain the development model of OSS, and open-source licensing.
- 2. Demonstrate the installation of Linux by hard disk partitioning and process of working with files, image manipulation tool and Database connectivity.
- 3. Apply the principles of programming and write clear and effective code.
- 4. Develop simple applications with database connectivity

UNIT 1	
Software Development Using Open Source Systems: Overview of Open Source System, Open Source Software Development Models, The FOSS Philosophy, Social and Cultural Impacts. Licensing: Licensing, Intellectual Proprietary Right, Commercial License vs. Open source license. Open Source Licensing, Contract and Copyright Law: Basic principles of copyright law, contract	5hrs
and copyright, open source software licensing, issues with copyrights and patents, warranties.	
UNIT -2	
Open Source Operating System (LINUX): Installation of Linux (Red hat-CentOS): Harddisk Partitioning, Swap space, LVM, and Boot loader. Command Line: Basic File System Management Task, working with files, Piping and Redirection, working with VI editor, use of sed and understanding FHS of Linux.	
Introduction to image manipulation tool: Getting started with the tool, creating and saving a document, page layout and back ground editing. Working with images: image size and resolution, image editing, color modes and adjustments, Zooming & Panning an Image, Rulers, Guides & Grids- Cropping & Straightening an Image, image backgrounds, making selections. Working with tool box: working with pen tool, save and load selection, working with erasers, working with text and brushes, Color manipulations: color modes, Levels, Curves, Seeing Color accurately, Patch tool, Cropping, Reading your palettes, Dust and scratches, Advanced Retouching, smoothing skin	14hrs

UNIT 3	
Introduction to Python Programming Language: Strengths and Weaknesses, IDLE, Dynamic Types,	
Naming Conventions, String Values, String Operations, String Slices, String Operators, Numeric	
Data Types, Conversions, Built in Functions	
Data Collections and Language Component: Introduction, Control Flow and Syntax, Indenting, if	10hrs
Statement, Relational Operators, Logical, Operators, True or False, Bit Wise Operators, while Loop,	
break and continue, for Loop, Lists, Tuples, Sets, Dictionaries, Sorting Dictionaries, Copying	
Collections.	
I/O and Error Handling In Python: Introduction, Data Streams, Creating Your Own Data Streams,	
Access Modes, Writing Data to a File, Reading Data From a File, Additional File Methods, Handling	
IO Exceptions, Working with Directories, Errors, Run Time Errors	
UNIT 4	
O a a Carrow Batalana and Analization	10hrs

Open Source Database and Application:

Tunrs

MySQL: Configuring MySQL Server, working with MySQL Databases, MySQL Tables, MySQL Functions, SQL Commands - INSERT, SELECT, UPDATE, REPLACE, DELETE. Date and Time functions in MySQL.

PHP MySQL ApplicationDevelopment: Connecting MySQL with PHP, to Inserting/Retrieving/Updating/Deleting data withPHP.

Text Books:

- 1. Fadi P. Deek and James A. M. McHugh, "Open Source Technology and Policy", Cambridge University Press.
- 2. Peterson, "The Complete Reference Linux", Tata McGraw HILL 2010 Nicholas Wells, "The complete Guide to LINUX System administration", Cengage Learning
- 3. Mark Lutz, "Learning Python", 4th Edition, O'Reilly Media Inc, 2013

Reference Books

- 1. James Lee and Brent Ware, "Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP", Dorling Kindersley (India) Pvt. Ltd, 2008.
- 2. Julie C Meloni, "PHP, MySQLandApache", Pearson Education. 2009.
- 3. Steve Suehring, Tim Converse and Joyce Park, "PHP6 and MySQL Bible", Wiley-India, New Delhi 2009

COMPUTER FORENSICS AND CYBER SECURITY

Course Code	Name of the course		L	Т	P		Sch	eme	of Exar	nina	tion	
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	COMPUTER	k										
IT643	FORENSICS AND					Duration	3	-	-	-	-	-
	CYBER SECURITY	Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objective:

The subject aims to provide the student with:

- 1. Familiarization with the types and categories of Cyber Crime
- 2. Understand concept and scope of Computer Forensics
- 3. Knowledge and skill required to minimize the occurrence and severity of incidents related to forensics and cyber law.
- 4. An appropriate level of awareness, knowledge and skill required to minimize the occurrence and severity of incidents related to forensics and cyber law.

Course Outcomes:

- 1. Define and explain cyber crime, cyber law and various cyber crimes as per the Information Technology Act 2000.
- 2. Simulate the detailed procedure of computer forensics given a cyber crime scenario.
- 3. Apply knowledge of cyber law and cyber forensic procedure to collect facts and formulate, maintain and use evidence with regards to cyber crime related cases.
- 4. Document and prepare a report of digital evidence suitable to be produced to the court.

UNIT 1	
Use of Computer Forensics in Law Enforcement, Computer Forensics Assistance to Human Resources/Employment Proceedings, Computer Forensics Services, Benefits of Professional Forensics Methodology, Steps taken by Computer Forensics Specialists Types of Computer Forensics Technology: Types of Military Computer Forensic Technology, Types of Law Enforcement — Computer Forensic Technology — Types of Business Computer Forensic Technology Computer Forensics Evidence and Capture Data Recovery Defined — Data Back-up and Recovery — The Role of Back-up in Data Recovery — The Data-Recovery Solution.	10hrs
UNIT -2	
Evidence Collection and Data Seizure Why Collect Evidence?, Collection Options, Obstacles, Types of Evidence, The Rules of Evidence, Volatile Evidence, General Procedure, Collection and Archiving, Methods of Collection, Artifacts, Collection Steps, Controlling Contamination: The Chain of Custody Duplication and Preservation of Digital Evidence: Preserving the Digital Crime Scene.	09hrs

	1
UNIT 3	
Introduction to cyber security	
Building the foundation for Ethical Hacking – Introduction to ethical hacking, Cracking the hacker's	10hr
mindset, Developing your ethical plan. Ethical Hacking in Motion – information gathering, social	
engineering, passwords.	
UNIT 4	
Hacking Network host and cyber security	
Network infrastructure systems- Understanding Network Infrastructure Vulnerabilities, Choosing	
Tools	10hi
Scanning, Poking, and Prodding the Network, Detecting Common Router, Switch, and Firewall	
Weaknesses	
Wireless Networks- Understanding the Implications of Wireless Network Vulnerabilities, Choosing	
Your Tools, Discovering Wireless Networks, Discovering Wireless Network Attacks and Taking	
Countermeasures.	
Text Books:	
4.50 . 5 . 6 . 6	
1. E Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, Pearson	
New Delhi.2004	
2. MarjieT.Britz; "Computer Forensics and Cyber Crime": An Introduction"; 3rd Edition, Prentice Hall; 2013	
Reference Book	
1. Cyber Crime and Information Technology Act, Vikram Singh Jaswal. Regal Publications 2014	

E-COMMERCE

Course Code	Name of the course		L	Т	Р	Scheme of Examination						
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
		k										
IT644	E-COMMERCE					Duration	3	-	-	-	1	-
		Credits	3	-	-	(min)						
						Marks	10	2	-	-	_	125
							0	5				

Course Objectives:

- 1. To develop an understanding of different business models of E Commerce.
- 2. To develop an understanding of Electronic Payment Systems.
- 3. To develop an understanding of Elements of Supply Chain.
- 4. To develop an understanding of Security in E-Commerce.

Course Outcomes:

- 1. Understand the principles of E-business and Role of management.
- 2. Apply various tools and services to the development of small-scale E-commerce application.
- 3. Implement and Analyze the Technologies with emphasis of Internet Technology.
- 4. Create applications in E-commerce for real life scenarios.

UNIT 1	
Introduction to Electronic Commerce: Defining E-Commerce, Components and Features of E-Commerce, Forces Fueling E-Commerce, Electronic Commerce Industry Framework, The Information Superhighway, Multimedia Content and Network Publishing, Messaging and Information Distribution, Common Business Services Infrastructure, Other Key Support Layers, Traditional Commerce versus E-Commerce, Advantages and limitation of E-Commerce, Benefits to Organization and Society, Drivers of E-Commerce, Categories of E-Commerce, E-Business, E-Business versus E-Commerce, E-Business advantages. Planning and Launching of Online Business: Business Models, Advantages of Bricks and Clicks business model, Superiority of bricks and clicks over pure online model, Difference between brick and mortar and pure online business model, Launching online business, Life cycle approach for launching an online business, One to One Enterprise.	10hrs
UNIT -2	
Electronic Payment System: Traditional payment systems, Internet based payment system, Essential requirements of E-Payment System, Credit cards, Debit cards, Smart cards, EFT, Electronic or Digital Cash, E-Cheques, E Wallet, Consumer, Legal, and Business Issues. Payment Gateways: Payment gateway process, Advantages and Disadvantages of Payment Gateway, Secure Electronic Transaction Protocol. Electronic Commerce and Banking: Changing Dynamics in the Banking Industry, Open versus Closed Models, Management Issues in Online Banking, Differentiating Products and Services, Managing Financial Supply Chains, Pricing Issues in Online Banking, Marketing Issues.	10hrs

10hrs
09 hr
1
_

TECHNICAL ENGLISH & REPORT WRITING

Course Code	Name of the course		L	Т	Р	Scheme of Examination						
	TECHNICAL	Hrs/wee k	3	-	-		Th	S	TW	Р	0	TOTAL
HM002	ENGLISH & REPORT		3	-	-	Duration (min)	3	-	-	-	-	-
	WRITING	Credits				Marks	100	25	_	-	-	125

Course Objectives:

The Students will be able to:

- 1. Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.
- 2. Develop their speaking skills to make technical presentations, participate in group discussions.
- 3. To help them develop their reading skills by familiarizing them with different types of reading strategies.
- 4. To equip with writing skills needed for academic as well as workplace contexts.
- 5. Foster their ability to write convincing job applications and effective reports.

Course Outcomes:

- 1. Communicate effectively in different situations by using specific, technical vocabulary.
- 2. Write letters and reports effectively in formal and business situations.
- 3. Speak convincingly, express their opinions clearly, initiate a discussion, negotiate and argue using appropriate communicative strategies.
- 4. Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- 5. Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- 6. Face the challenges in the interviews at global level.

UNIT 1	
LISTENING SKILLS: Listening process and practice- exposure to recorded and structured talks, problems in comprehension and retention, note taking practice, listening tests, importance of listening in the corporate world, organization- spatial organization, chronological organization, order of increasing and decreasing importance, styles of communication, accuracy, brevity, clarity, objectivity, impersonal language, professional speaking ability, listening process, hearing and listening, types of listening- superficial, appreciative, focused, evaluative, attentive, empathetic. Barriers to listening- physical, psychological, linguistic, cultural. Speech decoding, oral discourse analysis, effective listening strategies, listening in conversational interaction, listening to structured talks, pre-listening analysis, predicting, links between different parts of the speech, team listening, listening to a telephone conversation, viewing model interviews (face-to-face, telephonic and video conferencing) listening to situation based dialogues, identifying the characteristics of a good listener.	10hrs

UNIT 2

SPEAKING SKILLS: The speech process, message, audience, speech style, feedback, conversation and oral skills, fluency and self-expression, body language phonetics and spoken English, speaking techniques, word stress, correct stress patterns, voice quality, correct tone, types of tones, barriers to speaking, building self-confidence and fluency, Job interview, interview process, characteristics, of the job interview, pre-interview preparation techniques, interview questions and answers, positive image projection techniques. Group discussion- characteristics, subject knowledge, oral and leadership skills, team management, strategies, and individual contribution. Presentation skills-planning, preparation, organization, delivery.

10hrs

Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read) Conversation skills with a sense of stress, intonation, pronunciation and meaning –seeking information – expressing feelings (affection, anger, regret, etc.) Speaking – Role play practice in telephone skills – listening and responding, -asking questions -note taking – passing on messages, role play and mock interview for grasping interview skills.

UNIT 3

READING SKILLS: Introduction to different kinds of reading material: technical and non-technical the reading process, purpose, different kinds of texts, reference material, scientific and technical texts, active and passive reading, reading strategies-vocabulary skills, eye reading and visual perception,, prediction techniques, scanning skills, distinguishing facts and opinions, drawing inferences and conclusions, comprehension of technical material- scientific and technical texts, instructions and technical manuals, graphic information. Note making- tool for study skills, topicalising, organization and sequencing. Making notes from books, or any form of written materials. Summarizing and paraphrasing. Reading a short story or an article from newspaper, Critical reading, Extensive reading activity (reading stories / novels) Speed reading – reading passages with time limit Reading the job advertisements and the profile of the company concerned.

09hrs

UNIT 4

REFERENCING & WRITING SKILLS: Methods of referencing, book references, user guides, references for reports, journal references, magazines and newspapers, unpublished sources, internet references, explaining and elucidating. Writing skills- Effective writing-vocabulary expansion- Effective sentence structure, brevity and clarity in writing- cohesion and coherence in writing, emphasis. Paragraph writing. Letter writing skills - form and structure, style and tone. Inquiry letters, Instruction letters, complaint letters, Routine business letters, Sales letters. Reports, Resumes and Job Applications: Introduction to report writing- Types of reports, information and analytical reports, oral and written reports, formal and non-formal reports, printed forms, letter and memo format, manuscript format, proposals, technical articles, journal articles and conference papers, review and research articles. E-mails, Business Memos, Employment Communication- resume design, resume style. Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one's friends / relatives) Writing minutes of meeting – format and practice in the preparation of minutes – Writing summary after reading articles from journals – Format for journal, articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) Writing strategies.

10hrs

Text Books:

- 1. Technical Communication- Principles & Practice by Meenakshi Raman and Sangeeta Sharma, Oxford.
- 2. Technical writing- B.N. Basu, PHI learning.
- 3. Professional Communication Skills- Alok Jain, Pravin S.R. Bhatia, A.M. Sheikh. S Chand.
- 4. Basic Communication Skills for technology- Andrea J Rutherford, Pearson.

WEB DEVELOPMENT LAB

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	-	-	4		Th	S	TW	Р	0	TOTAL
	WEB	k										
IT650	DEVELOPMENT					Duration	-	-	-	-	-	-
	LAB					(min)						
		Credits	-	-	2	Marks	-	-	25	5	-	75
										0		

*Experiment List for Web Technology	
1.Create a web application which will incorporate HTML5, CSS3 and Javascript	
2. Write programs to demonstrate use of XML for maintaining and displaying (XSLT)	
information.	
3.Create a three-tier web application using PHP, AJAX and Database.	
4.Create a three-tier web application using ASP .Net and Database.	
+	
*Experiment list of Chosen elective 4	
Experiment List for Java Programming	
1. Programs using constructor and destructor.	
2. Creation of classes and use of different types of functions.	
3. Programs on interfaces/packages/Files	
4. Programs using JDBC/ Swings/ AWT	
Experiment List for Open Source Software application	
1. Designing a banner/ Brochure using the functionalities of an open source image	
manipulation tool	
2. Implementing a python program using various constructs and dictionaries	
3. Implementing a program using I/O operations and Error handling	
4. Implementing PHP database connectivity	
Experiment List for Computer Forensic and Cyber Security	
1.To perform evidence collection and data seizure with documentation on a dummy	
crime site.	
2.To perform case study on ethical hacking.	
3.To Study the concept or remote PC control and perform remote login using	
ANYDESK application.	
4.To list and study the vulnerabilities of accessing data sensitive internet applications	
using mobile smart phones and suggest the countermeasures.	
Experiment List for E-Commerce	
Study of different type/ category of Websites	
2. Designing a website with a payment gateway	
3. Configuring Firewalls	
4. Case study.	

^{*}Note: Experiment list can be modified by the respective subject Faculty

SOFTWARE APPLICATIONS LAB

Course Code	Name of the course		L	Т	Р	Scheme of Examination						
		Hrs/wee	-	_	4		Th	S	TW	Р	0	TOTAL
	SOFTWARE	k										
IT660	APPLICATIONS					Duration	-	-	-	-	-	-
	LAB					(min)						
		Credits	-	-	2	Marks	-	-	25	5	ı	75
										0		

*Experiment List for Principles of Compilers	
1. A LEX program to find if the input is integer, real number or word	
2. A program to obtain First and Follow for a user specified grammar.	
3. A program to convert NFA to DFA.	
4. A YACC program to parse an expression for a given grammar	
+	
*Experiment list of Chosen elective 3	
Experiment List for Electives: Natural Language Processing	
1. Implementing Depth first Search and breadth first Search	
2. Implement a model that uses linear Interpolation	
3. Implement a simple decision tree	
4. Implement a simple text classification technique.	
Experiment List for Artificial Intelligence and Fuzzy Logic	
1.Implementing algorithms based on informed search strategies.	
2. Implementing Game playing algorithm using adversarial search.	
3. Implement a pattern detection using Convolution Neural Network	
4. Implement a decision support system using Fuzzy operators.	
Experiment List for Distributed Systems	
1.Program to implement Single Client Single Server Chat Application	
2.Program to implement Multiple Clients Single Server Chat Application	
3.Program to implement Remote Method Invocation Application	
4.Program to implement Berkeley's Algorithm/Lamport timestamp for clock	
synchronization	
Experiment List for Queuing Theory and Modelling	
1. Simulation of Single Server Queuing System using Matlab	
2.Simulation of Two- Server Queuing System using Matlab	
3.Testing Random Number Generators	
4.Practical implementation of Queuing models using C/C++	
*Note: Experiment list can be modified by the respective subject Faculty	

^{*}Note: Experiment list can be modified by the respective subject Faculty

IMAGE PROCESSING

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	IMAGE	k										
IT710	PROCESSING					Duratio	3	-	-	-	-	-
		Credits	3	-	-	n (min)						
						Marks	100	25	-	-	-	125

Course Objectives:

- 1. To focus on imparting knowledge about the conceptual and practical aspects of Image Processing.
- 2. To analyse the basic principles and signal processing aspect in Image Processing.
- 3. To understand the behaviour of colour image processing and its usage.
- 4. To carry out different operations in Image Processing.

Course Outcomes:

- 1. Describe the concepts, models and analysis in Image Processing and its usage in different fields of application.
- 2. Apply the principle Image Processing Techniques like image enhancement, morphological operations, and segmentation, image representation and description, object recognition
- 3. Analyse different filtering operations over an image.
- 4. Implement different Image Processing algorithms.

UNIT 1	
Introduction to Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System.	
Light and the Electromagnetic Spectrum, Image Sensing and Acquisition. Basic concepts in sampling and quantization, representing digital image. Some Basic Relationships between Pixels – neighbors of a pixel, adjacency, connectivity, regions, boundaries, distance measure.	10 hrs
Basics of intensity transformation and spatial filtering. Some Basic Intensity Transformation Functions – Image negatives, log transformation, power law transformations, piecewise – linear transformation functions. Histogram Processing Histogram Equalization. Smoothening spatial filtering – Smoothening linear filter.	
UNIT 2	
Filtering in the frequency domain: Sampling and the Fourier transform of sampled function, sampling theorem, aliasing. Properties of 2D discrete Fourier transform — relationship between spatial and frequency intervals, translation and rotation, periodicity, symmetry properties, fourier spectrum and phase angle, 2D convolution theorem. Image smoothening using frequency domain filters — ideal low pass filters, Butterworth lowpass filters, Gaussian lowpass filters. Image sharpening using frequency domain filters — ideal high pass filter, Butterworth highpass filter, Gaussian high pass filter.	10hrs

	T
UNIT 3	
Color Fundamentals, Color Models – the RGB color models, the CMY and CMYK color models, the HSI color models. Basics of Full-Color Image Processing, color edge detection.	
Morphological Image Processing: Erosion and Dilation – erosion, dilation, duality. Opening and Closing, The Hit-or-Miss Transformation. Some Basic Morphological Transformation. Some Basic Morphological Algorithms – boundary extraction, hole filling, thinning, thickening.	10hrs
Image segmentation: point, line and edge detection – detection of isolated points, line detection. Thresholding – foundation and Basic Global thresholding. Region based segmentation – region growing, region splitting and merging.	
UNIT 4	
Representation and Description: Representation – Boundary following, chain codes, Boundary Descriptors – simple discriptors, shape numbers, Fourier descriptors. Regional descriptors - Some Simple Descriptors, topological descriptors. Object Recognition: Patterns and Pattern Classes. Recognition Based on Decision-Theoretic Methods - Matching, Optimum Statistical Classifiers. Structural Methods - Matching Shape Numbers, String Matching.	09 hrs
Text Books:	
 R.C. Gonzalez, R.E. Woods; Digital Image Processing; Pearson Prentice Hall; 2009; Third Edition. A.K. Jain; Fundamentals of Digital Image Processing; PHI; 	
Reference Books	
 Milan Sonka, Vaclav Hlavac, Roger Boyle; Image Processing, Analysis and Machine Vision; 	
2. W.K. Pralt; Digital Image Processing; McGraw Hill;	

DATA ANALYTICS

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	T	Р	0	TOTAL
	DATA ANALYTICS	k							W			
IT721						Duration	3	-	-	-	-	-
		Credits	3	_	-	(min)						
						Marks	100	25	-	-	-	125

Course Objectives:

The subject aims to provide the student with ability to:

- 1. Understand the basic concepts and Techniques of Big Data Analytics.
- 2. Understand the entire life cycle of data analytics including dimensionality reduction.
- 3. Learn the association rules, classification and prediction methods and the clustering techniques.
- 4. Learn anomaly detection schemes
- 5. Understand Advanced Analytical Theory and Methods including Map-Reduce.

Course Outcomes:

- 1. Explain big data analytics fundamentals, mechanisms and data analytics lifecycle Text Analysis and MapReduce techniques.
- 2. Illustrate the application of data mining techniques.
- 3. Demonstrate understanding and application of outlier detection techniques.
- 4. Demonstrate dimensionality reduction techniques and basic skills in R.

UNIT 1	
Introduction to Big Data Analytics: Big Data Overview, State of the Practice in Analytics, Key Roles for the New Big Data Ecosystem, Examples of Big Data Analytics Data Analytics Lifecycle, Data Analytics Lifecycle Overview, Phase 1: Discovery, Phase 2: Data Preparation, Phase 3: Model Planning, Phase 4: Model Building, Phase 5: Communicate Results, Phase 6: Operationalize, Case Study: Global Innovation Network and Analysis (GINA) Dimensionality Reduction: Eigenvalues and Eigenvectors of Symmetric Matrices, Principal-Component Analysis, CUR Decomposition Review of Basic Data Analytic Methods Using R, Introduction to R, Exploratory Data Analysis, Statistical Methods for Evaluation	10 hrs
UNIT 2	
Introduction to Classification & Prediction: Classification by Decision tree induction, Bayesian Classification, k-Nearest Neighbor Classifier, Classification by Back propagation, Introduction to Prediction Concept. Introduction to Cluster Analysis. Types of data in cluster analysis, Clustering Methods, Partitioning Methods, Hierarchical Methods, Density Methods.	10hrs

UNIT 3	
Data Mining Association Rules. Association Rule Mining. Mining Single Dimensional Boolean Association Rules from Transactional Databases.	10hrs
Advanced Analytical Theory and Methods: Regression, Linear Regression, Logistic Regression, Reasons to Choose and Cautions, Additional Regression Models	
Data Mining Anomaly Detection: Variants of Anomaly/Outlier Detection Problems, Applications. Types of anomaly detection schemes: Graphical & Statistical-based, Distance-based, and Model-based.	
UNIT 4	
Advanced Analytical Theory and Methods: Text Analysis, Text Analysis Steps, a Text Analysis Example, Collecting Raw Text, Representing Text, Term Frequency—Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments, Gaining Insights	09 hrs
Advanced Analytics—Technology and Tools: MapReduce and Hadoop. Analytics for Unstructured Data, the Hadoop Ecosystem, NoSQL.	
Text Books:	
 1.Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting DataEMC Education Services (Editor) ISBN: 978-1-118-87613-8 March 2015. 2.Data mining - Concepts and Techniques -Jiawei Han and Micheline Kamber, Morgan Kuaffman publisher, ISBN: 1-55860-489-8, 3rd Edition 2012. 	
Reference Books	
 Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, Vipin Kumar, ISBN:813176463X 	
 Mining of Massive Datasets, 3rd Edition, Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, ISBN: 9781108476348 (Chapter 11 - Dimensionality Reduction) 	

WIRELESS SENSOR NETWORKS

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL
	WIRELESS	k										
IT722	SENSOR					Duration	3	-	-	-	-	-
	NETWORKS	Credits	3	-	-	(min)						
						Marks	10	2	-	-	-	125
							0	5				

Course Objectives:

- 1. An introduction to wireless sensor network architectures, hardware and applications.
- 2. An understanding of protocol stack used in wireless sensor networks.
- 3. An understanding of different strategies used for routing, synchronization, localization etc.

Course Outcomes:

- 1. Explain all the components ,subsystems, time synchronization, localization and power management strategies used in WSN.
- 2. Evaluate the trade-off associated with WSN for a given application.
- 3. Analyse the security challenges and applications of WSN.
- 4. Select appropriate protocols and strategies for use in WSN for a given application.

UNIT 1	
Introduction: Sensor Mote Platforms, WSN Architecture and	
Protocol Stack.	
WSN Applications: Military Applications, Environmental Applications, Health	
Applications, Home Applications, Industrial Applications,	
5	11 hrs
Factors Influencing WSN Design: Hardware Constraints Fault Tolerance	
Scalability Production Costs WSN Topology, Transmission Media, Power Consumption,	
Physical Layer: Physical Layer Technologies, Overview of RF Wireless	
Communication, Channel Coding (Error Control Coding), Modulation, Wireless	
Channel Effects, PHY Layer Standards	
UNIT 2	
Medium Access Control: Challenges for MAC , CSMA Mechanism, Contention-	9 hrs
Based Medium Access, Reservation-Based Medium Access,	
Hybrid Medium Access.	
Network Layer: Challenges for Routing, Data-centric and Flat- Architecture	
Protocols, Hierarchical Protocols, Geographical Routing Protocols	
UNIT 3	
Transport Layer: Challenges for Transport Layer, Reliable Multi- Segment	9 hrs
Transport(RMST)Protocol, Pump Slowly ,Fetch Quickly (PSFQ) Protocol, Congestion	
Detection and Avoidance (CODA) Protocol , Event-to-Sink Reliable Transport	
(ESRT) Protocol, GARUDA	
ApplicationLayer: SourceCoding(DataCompression), Query Processing, Network	

Management		
	UNIT 4	
Protocol, Tin	ronization: Challenges for Time Synchronization , Network Time ning-Sync Protocol for Sensor Networks(TPSN), Reference-Broadcast ion (RBS), Adaptive Clock Synchronization (ACS)	10hrs
	Challenges in Localization, Ranging Techniques, Range-Based rotocols, Range-Free Localization Protocols.	
Text Books:	, 0	
John ${\tt W}$	Akyildiz and Mehmet Can Vuran "Wireless Sensor Networks", Viley&SonsLtd. ISBN 978-0-470-03601-3(H/B), 2010. hram Swami,et.Al., Wireless Sensor Networks Signal Processing and Junications Perspectives", JohnWiley&SonsLtd.ISBN978-0- 470-03557-	
Refere	ence Books	
	WaltenegusW.Dargie; Christian Poellabauer; Fundamentals of Wireless Sensor Networks: Theory and Practice; Wiley-Blackwell FengZhao, Leonidas J. Guibas,; Wireless Sensor Networks:	
	AnInformation Processing Approach; Morgan Kaufmann, Kazem Sohraby, Daniel Minoliand Taieb Znati; Wireless Sensor Networks: Techog y, Protocols, and Applications; Wiley-Blackwell	

GENETIC ALGORITHMS

Course	Name of the		L	Т	Р	Scheme of Examination						
Code	course											
		Hrs/wee	3	-	-		Th	S	Т	Р	0	TOTAL
	GENETIC	k							W			
IT723	ALGORITHMS					Duration	3	-	-	-	-	-
		Credits	3	-	-	(min)						
						Marks	100	25	-	-	-	125

Course Objective:

The subject aims to provide the student with:

- 1. Understand the fundamentals of Genetic Algorithms and how they can be applied in search based optimization problems.
- 2. Identify problems where Genetic Algorithms can be applied.
- 3. Apply the Advanced concepts of Genetic Algorithms in problem solving
- 4. Computer implementation of Genetic Algorithms

Course Outcomes:

- 1. Understanding the fundamentals of Genetic Algorithms.
- 2. Explore the different techniques and operators for Genetic Algorithms.
- 3. Analyse the suitability of applying Genetic Algorithms for various problems
- 4. Develop and Implement Genetic Algorithms for real life problems.

UNIT 1	
Introduction to Genetic Algorithms: Robustness of Traditional Optimization and Search Methods, Goals of Optimization, Difference between Genetic Algorithms and Traditional Methods, Simple Genetic Algorithm and its operators, Example using Genetic Algorithm, Similarity Templates. Mathematical Foundations: Fundamental theorem, Schema Processing, Two- armed and Karmed bandit problem, Building block hypothesis, Minimal deceptive Problem, Similarity templates as hyper planes.	10hrs
UNIT 2	
Computer Implementation of Genetic Algorithms: Data structures, Reproduction, Crossover and Mutation, Mapping objective functions to fitness form, Fitness scaling. Applications Of Genetic Algorithms: De Jong and Function optimization, Structural optimization via genetic algorithm, Medical image registration with genetic algorithms, Iterated prisoner's dilemma problem.	10hrs
UNIT 3	
Advanced Operators And Techniques In Genetic Algorithm Search: Dominance, Diploidy and Abeyance, Inversion and other Re-ordering Operators, Other Micro operators, Niche and Specialization, Multi objective optimization. Knowledge based techniques, Genetic Algorithms and Parallel processors, Genetic Based machine learning, Classifier systems.	10hrs
UNIT 4	
Industrial Application Of Genetic Algorithms: Data Mining using genetic Algorithms,	9hrs

Approaches to search in data mining. Genetic Algorithm Specifics.	
Text Books:	
1. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,	
Pearson Education, 6th Edition ISBN81-7808-130-X	
2. Charles L Karr and L. Michael Freeman, Industrial applications of Genetic Algorithms, CRC	
Press, Washington DC, 1999 ISBN:0-8493-9801-0	
Reference Books:	
1. Intelligent agent's adaptive control: Industrial applications- L.C.Jain and C.W. deSilva	
2. Handbook of Genetic Algorithms -Davis, Lawrence, ISBN:0-442-00173-8.	
3. An Introduction to Genetic Algorithms-Melanie Mitchell, ISBN:81-203-1358-5	

OBJECT ORIENTED MODELLING USING UML

Course Code	Name of the course		L	Т	Р	Scheme of Examination						
Couc	OBJECT	Hrs/wee k	3	-	-		Th	S	TW	Р	0	TOTAL
IT724	ORIENTED MODELLING	Credits	3	-	-	Duration (min)	3	-	-	-	-	-
	USING UML					Marks	10 0	2 5	-	-	-	125

Course Objectives:

- 1. Design software applications using Object oriented Concepts.
- 2. Express software designs with UML diagrams
- 3. Identify various scenarios based on software requirements.
- 4. Understand importance of software quality and testing

Course Outcomes:

- 1. Explain the basic concepts of Object Oriented modelling
- 2. Demonstrate the use of UML diagrams to understand requirements.
- 3. Design UML diagrams for various Scenarios.
- 4. Map designs to quality code

UNIT 1	1
Overview of Object Oriented Systems Development: Concept of Object Oriented	i
Software, Importance of Object Oriented Software, Object Oriented Future, Object	i
Oriented Systems Development Methodology, Overview of Unified Approach.	i
Object Basics: An Object Oriented Philosophy, Objects, Object Behavior, Object	9 hrs
Oriented Properties, Association and Aggregation.	i
Object Oriented Systems Development Life Cycle: The Process of Software	İ
Development, Developing Good Quality Software.	l
UNIT 2	i
Introduction to UML (Unified modelling language), Static and dynamic Models.	·
Object Oriented Analysis: Use case diagrams, Identifying Use-Cases: Complexity in	İ
Object Oriented Analysis. UML Object diagram , Class diagrams: Approaches for	İ
Identifying Classes, Class Responsibility Collaboration, Identifying Relationships,	İ
Attributes, and Methods, Associations, Inheritance Relationships, A Part of	İ
Relationship, Aggregation.	10 hrs
UNIT 3	
UML Behavioural diagrams: State diagrams, Activity diagrams, Sequence diagrams	
and Interaction diagrams. Introduction to package and deployment diagrams.	10 hrs
Introduction to UML tool.	
UNIT 4	
Software Quality Assurance: Quality Assurance Tests, Software Testing	
Techniques(Introduction to Black box/White box testing), Testing Strategies, Impact	10 hrs
recliniques(introduction to black box) write box testing, resting strategies, impact i	

patterns: Creational factory method, Structural Bridge.	
Text Books:	
1. Ali Bahrami – Object Oriented Systems Development – McGraw Hill	
International Edition – 1999	
2. Craig Larman, Applying UML and Patterns: An Introduction to Object-	
Oriented Analysis and Design and Iterative Development, Third Edition,	
Pearson Education, 2005.	
Reference Book	
1. Martin Fowler, —UML Distilled: A Brief Guide to the Standard Object	
Modeling Language , Third edition, Addison Wesley, 2003.	

ADVANCE COMPUTING LAB

Course Code	Name of the course		L	Т	P	Scheme of Examination								
		Hrs/wee	-	-	4		Th	S	TW	Р	0	TOTAL		
	ADVANCE	k												
IT730	COMPUTING LAB					Duration	-	-	-	-	-	-		
						(min)								
		Credits	-	-	2	Marks	-	-	25	5	-	75		
										0				

*Experir	ment List for Image Processing	
1.		
2.	Convert a colored image to a grayscale image	
3.	Histogram of an image	
4.	Image sharpening	
	+	
	*Experiment list of Chosen elective 5	
Experim	ent List for Data Analytics	
1.	Frequent Pattern Mining	
2.	Classification using Decision Trees	
3.	Classification using K-nearest neighbor	
4.	Clustering using K-means	
Experim	ent List for Wireless Sensor Networks	
1.	Introduction of Wireless sensor network applications and its simulation	
2.	Study of hardware for wireless sensor node [Arduino/raspberry pi]	
3.	Study of operating system for wireless sensor node [tinyOS etc.]	
4.	Performance evaluation of Contention-free MAC protocols [Matlab/NS2]	
Experim	ent List for Genetic Algorithms	
1.	Case study on traditional and genetic algorithm approach	
2.	Program to implement cross over and mutation operation	
3.	Program to map an objective function to fitness form	
4.	Program to find minimum of a function using genetic algorithm	
Experim	ent List for Object Oriented Modelling using UML	
1.	Designing Use case and Class diagrams using UML	
2.	Designing State and Activity diagrams using UML	
3.	Designing Sequence diagrams using UML	
4.	Designing test cases.	
*NIa+a. E	evneriment list can be modified by the respective subject Faculty	

^{*}Note: Experiment list can be modified by the respective subject Faculty

CRYPTOGRAPHY AND NETWORK SECURITY

Course Code	Name of the course		L	Т	P	Scheme of Examination							
	CRYPTOGRAPHY	Hrs/wee k	3	-	-		Th	S	TW	Р	0	TOTAL	
IT810	AND NETWORK SECURITY	Credits	3	-	-	Duration (min)	3	-	-	-	-	-	
						Marks	10 0	2 5	-	-	-	125	

Course Objectives:

- 1. To introduce essential theory, algorithms, and tools used in cryptography
- 2. To study of different cryptography algorithms and perform cryptanalysis
- 3. To study the Concepts of different network security issues
- 4. To understand how to secure their network and message passed in the network.

Course Outcomes:

- 1. Describe different cryptographic techniques.
- 2. Implement different algorithm for encryption
- 3. Illustrate how network security is achieved
- 4. Perform cryptanalysis of different algorithm.

UNIT 1	
Need of Information Security, Security Trends, Security Services, Security Mechanism, Security Attacks, The OSI Security Architecture, Model for Network Security.	
Symmetric Cipher Model- Substitution Techniques : Caesar Cipher, Mono-alphabetic Cipher, Poly-	10 hrs
alphabetic Cipher, Playfair Cipher, Hill Cipher.	
Problems with Symmetric Cipher Algorithms, Transposition Techniques, Steganography	
UNIT 2	
Block Ciphers Principles, Fiestel Structure, Confidentiality Using Symmetric Ciphers: Placement of	
Encryption Function,	
Traffic Confidentiality, Key Distribution. Principles of Public Key Cryptosystems, RSA (Rivest–	10 hrs
Shamir–Adleman) Algorithm.	
Key Management, DiffieHellman Key Exchange.	
UNIT 3	
Message Authentication and Hash Functions: Authentication Requirements, Authentication	
Functions.	10 hrs
Message Authentication Codes. Hash Algorithms: MD5 Message Digest Algorithm, Digital	
Signatures and Digital Signature Standard.	
Authentication Applications: Kerberos, X.509 Authentication Service: Certificates, Obtaining a	
User's Certificate, Revocation of Certificates, Authentication Procedures.	

UNIT 4	
Malicious Software: Viruses and Related Threats. Electronic Mail Security: Pretty Good Privacy: Services, Cryptographic Keys and Key Rings, Secure Electronic Transaction: SET overview, SET Participants, Dual Signature, Payment Processing. Firewall Design Principles	09 hrs
Text Books:	
1.William Stallings; Cryptography And Network Security Prentice HallOf India, ISBN:81-203-3018-8	
;4thEdition	
2.Behrouz A. Forouzan; Cryptography And Network Security; Tata McGraw Hill; ISBN-13:978-0-07-	
066046-5	
Reference Book	
1. Atul Kahate;Cryptography And Network Security;Tata McGraw Hill;ISBN-13:978-0-07-	
064823-	

COMPUTER VISION

Course Code	Name of the course		L	Т	Р	Scheme of Examination							
	COMPUTER	Hrs/wee k	3	-	-		Th	S	TW	Р	0	TOTAL	
IT821	VISION	Credits	3	-	-	Duration (min)	3	-	-	-	-	-	
						Marks	10 0	2 5	-	-	-	125	

Course Objectives:

- 1. To learn the fundamental theories and techniques of computer vision.
- 2. To apply computer vision and image processing techniques to solve real world problem.
- 3. To explore and contribute to research and further developments in the field of computer vision.

Course Outcomes:

- Identify basic concepts, terminology and methods in the field of computer vision.
- 2. Describe basic methods of computer vision related to representation, edge detection and recognition.
- 3. Choose appropriate methods for image pre-processing and image segmentation.
- 4. Understand the geometric relationships between 2D images and the 3D world.

UNIT 1	
Overview of Digital Image Processing: Fundamental Steps in Digital Image Processing,	
Digital image Properties Components of an Image Processing System. Basic concepts in	
sampling and quantization, representing digital image. Histogram Processing. Image	09 hrs
Segmentation.	
Introduction to Computer Vision: What is Computer Vision, Low-level vision, Mid-level	
vision, High-level vision, Overview of Diverse Computer Vision Applications: Document	
Image Analysis, Biometrics, object recognition	
UNIT 2	
Image Preprocessing: Zero -crossings of the second derivative, scale in image	
processing, Canny edge detection, parametric edge models, Edges in multi-spectral images,	
Adaptive neighbourhood preprocessing.	
Segmentation: Border detection as graph searching, Border detection as dynamic	10hrs
programming.	
UNIT 3	
Shape representation and description: Region identification, Contour-based shape	
representation and description-chain codes, simple geometric border representation,	
Fourier transforms of boundaries.	10hrs
Object recognition: knowledge representation, Statistical pattern recognition-Classification	
principles.	
UNIT 4	
Image Understanding: Image understanding control strategies-Parallel and serial	
processing control, Hierarchical control, Bottom-up control strategies	
3D Vision, geometry and radiometry: 3D vision tasks, Marr's theory, Basics of projective	10hrs
geometry, The single perspective camera	
Use of 3D vision	
<u>Text Books:</u>	
1.Image processing, Analysis, and Machine Vision by Milan Sonka , Vaclav Hlavac, Boyle	
Roger,4th edition,CENGAGE learning, ISBN: 9781133593690	
2.Computer Vision: A Modern Approach by David a.Forsyth , Jean Ponce, Second edition,	
Pearson Education Limited, ISBN: 9780273764144	

MOBILE COMPUTING

Course Code	Name of the course		L	Т	Р	Scheme of Examination							
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL	
	MOBILE	k											
IT822	COMPUTING					Duration	3	-	-	-	-	-	
		Credits	3	-	-	(min)							
						Marks	10	2	-	-	-	125	
							0	5					

Course Objectives:

- 1. To understand the basic concepts and principles in mobile computing.
- 2. To be acquainted of the major layers of the mobile protocol stack.
- 3. To learn the basics of the major telecommunication systems GSM and DECT.
- 4. To understand the basic concepts of the various classes of satellites.
- 5. To be exposed to the concepts of Bluetooth and Wireless LAN
- 6. To understand the use of mobile in commercial world

Course Outcomes:

- 1. Describe the basic concepts and techniques of mobile computing with their application.
- 2. Apply the concepts and principles of the Mobile Computing Techniques to solve real problems.
- 3. Implement and analyze Mobile scenarios and mobile networks and its applications.
- 4. Analyzing and tackling social communication problems.

UNIT 1	
Introduction: Applications, Simplified Reference model. Wireless Transmission: Frequencies for Radio Transmission, Signals, Antenna, Signal Propagation, Multiplexing, Modulation, Spread spectrum, Cellular systems.	09 hrs
UNIT 2	
Medium Access Control: Motivation for a specialized MAC, SDMA, FDMA. TDMA, CDMA, Comparison of S/T/F/CDMA. Telecommunication System: GSM , DECT.	09 hrs
UNIT 3	•
Mobile Network Layer: Mobile IP, Dynamic Host Configuration Protocol, Mobile adhoc networks. Mobile Transport Layer: Traditional TCP, Classical TCP improvements, TCP over 2.5/3G wireless networks, Performance Enhancing Proxies.	10 hrs
UNIT 4	•
Satellite Systems: History, Applications, Basics, Routing, Localization, Handover. Wireless LAN: Bluetooth. Support for Mobility: Wireless Application Protocol (version 1.x). Mobile platforms and applications: Mobile Device Operating Systems – Special Constrains & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – MCommerce – Structure – Pros & Cons – Mobile Payment System – Security Issues.	11 hrs

TextBooks:

- 1. Mobile Communications by Jochen Schiller, Second Edition, Pearson Education, ISBN: 978-81-317-2426-2.
- 2. Fundamentals of Mobile Computing by Prasant Kumar Pattnaik, Rajib Mall, Second Edition, PHI Learning Private Limited, ISBN: 978-81-203-5181-3.

Reference Books

- 1. Wireless Communication Networks and Systems by William Stallings, Copy Beard, Global Edition, Pearson Education, ISBN-13: 978-1-292-10871-1.
- 2. Mobile Computing Handbook by Mohammad Ilyas, ImadMahgoub, First Edition, CRC Press, Auerbach Publications, ISBN: 0-8493-1971-4.
- 3. AdHoc Mobile Wireless Networks by C.K. Toh, Pearson Education, Second Edition, ISBN-13: 978-0130078179

ADVANCED DATA STRUCTURES

Course Code	Name of the course		L	Т	P	Scheme of Examination								
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL		
	ADVANCED	k												
IT823	DATA					Duration	3	-	-	-	-	-		
	STRUCTURES	Credits	3	-	-	(min)								
						Marks	10	2	-	-	-	125		
							0	5						

Course Objectives:

- 1. To highlight the need for advanced data structures.
- 2. To familiarize students with the properties of different advanced data structures.
- 3. To enable students to implement the operations supported by advanced data structures.
- 4. To help students analyze and use appropriate data structures in algorithms.

Course Outcomes:

After completing this course, the students will be able to:

- 1. Describe the need for using advanced data structures like dynamic hash tables, heaps, trees and tries.
- 2. Explain the properties and operations of the data structures studied.
- 3. Apply the data structures studied appropriately.
- 4. Analyze the performance of advanced data structures in algorithms.

UNIT 1	
Linked List ADT, Circular List ADT, doubly linked list ADT, Applications of linked list: Polynomial Representation, Sparse Matrix Representation, stack, queue. Heterogenous Lists.	10hrs
UNIT 2	
Dynamic Hashing- Motivation, Extendible hashing, Linear hashing; Bloom Filters; Leftist Trees – Height-based, Weight-based; Binomial Heaps and Cost Amortization, Fibonacci Heaps and need for Cascading-cut, Pairing Heaps.	10hrs
UNIT 3	
Symmetric Min-max Heaps; Interval Heaps; Optimal Binary Search Trees; AVL Trees; Red-Black Trees; 2-3 tree,2-3-4 tree.Splay Trees.	10hrs
UNIT 4	
M-way search trees; B Trees; B+ Trees; Digital Search Trees; Binary Tries; Patricia Tries; Multiway Tries.	09hrs

Text Books:

- 1. "Fundamentals of Data Structures in C++" by Horowitz, Sartaj Sahni, Rajasekharan Galgotia, ISBN: 9788175152571
- 2. "Introduction to Algorithms" by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, PHI, ISBN: 81-203-1353-4.
- 3. "Data Structures & Algorithms in Java" by Goodrich , Tomassia's , WSE 6th edition 2014

Reference Books

- 1. "Data Structures and Algorithm Analysis in C++", Mark Allen Weiss,2009, 3rd edition, Pearson Education
- 2. "Fundamentals of Algorithms", G. Brassard and Bratley, Prentice. Hall 1996.
- 3. "Computer Algorithms: Introduction to design and Analysis", Sara Baase, Allen Van Gelder, , Addison Wesley, 2000.

SOCIAL NETWORKING

Course Code	Name of the course		L	Т	Р	Scheme of Examination							
		Hrs/wee	3	-	-		Th	S	TW	Р	0	TOTAL	
	SOCIAL	k											
IT824	NETWORKING					Duration	3	-	-	-	-	-	
		Credits	3	-	-	(min)							
						Marks	10	2	-	-	-	125	
							0	5					

Course Objectives:

- 1. To understand the concept of social networking and its emerging trends
- 2. To understand the need for web mining in a social network
- 3. To understand the structure of social networking and how diffusion of data takes place
- 4. To get acquainted with the privacy issues of social networking

Course Outcomes:

- 1. Explain the idea of social networking and its emerging trends
- 2. Analyze and web mine a social network
- 3. Describe the structure and how diffusion of data takes place in a social network
- 4. Identify the privacy issues related to social networking

UNIT 1	_
Introduction: Data Mining and web mining	10hrs
Web Community and Social Network Analysis: Characteristics of Web data, Web community,	
Social networking	
An overview on Social networking-Design , Issues , Emerging Trends and Security: Challenging	
aspects in social networking, Static and dynamic social network model, Factors that affect the	
design of social networks, Security prospective in social networks. Ontology and their role in	
the Semantic Web: Ontology-based knowledge Representation -Ontology languages for the	
Semantic Web	
UNIT 2	
Extraction and Mining Communities in Web Social Networks	
Extracting evolution of Web Community from a Series of Web Archive – Detecting	
communities in social networks – Definition of community – Evaluating communities –	10hrs
Methods for community detection and mining – Applications of community mining algorithms	
 Tools for detecting communities social network infrastructures and communities – 	
Decentralized online social networks – Multi-Relational characterization of dynamic social	
network communities	
UNIT 3	
Visualization and Applications of Social Networks	
Graph theory – Centrality – Clustering – Node-Edge Diagrams – Matrix representation –	
Visualizing online social networks, Visualizing social networks with matrix-based	
representations – Matrix and Node-Link Diagrams – Hybrid representations – Applications –	
Cover networks – Community welfare – Collaboration networks – Co-Citation networks.	10hrs

UNIT 4	
Privacy and Anonymization in Social Networks: Privacy in social networks, Privacy in published social network data, Private information in published social network data, Background-Knowledge attacks, GASNA-Greedy Algorithm For Social Network Anonymization	09hrs
Text Books:	
 Social Networking: Mining, Visualization, and Security by Mrutyunjaya Panda, Satchidanandan Dehuri, Gi-Nam Wang Peter Mika, Social Networks and the Semantic Web, First Edition, Springer 2007. <u>Reference Books</u> Borko Furht, Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010. 	
 Social Network Analytics: Computational Research Methods and Techniques By Nilanjan Dey, Samarjeet Borah, Rosalina Babo, Amira S. Ashour Web Mining and Social Networking: Techniques and Applications By Guandong Xu, Yanchun Zhang, Lin Li, First Edition, Springer, 2011. Borko Furht, Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010. 	