

# Body and mind of a humanoid robot: where technology meets physiology

Giorgio Metta and many contributors

Cognitive Humanoids Laboratory

Dept. of Robotics, Brain and Cognitive Science

Italian Institute of Technology







### Our background

- The main focus of our activities is in the implementation of <u>biologically sound</u> <u>models of cognition</u> in robots of <u>humanoid</u> shape
- This has the two-fold aim of:
  - furthering our understanding of brain functions
  - realizing robot controllers that can learn and adapt from their mistakes



## The kernel of the problem



OR





## Grasping neurons





#### F5 canonical neurons





#### Mirror Neurons

The neuron is activated by "seeing" someone else's hand performing a manipulative action **and** while the monkey is performing the same action



The type of action seen is relevant

From: Fadiga, L., L. Fogassi, V. Gallese, and G. Rizzolatti, *Visuomotor Neurons: ambiguity of the discharge or "motor" Perception?* Internation Journal of Psychophysiology, 2000. **35**: p. 165-177.



#### Data from human grasping





### Bayesian classifier

{*Gi*}: set of gestures **F**: observed features {*Ok*}: set of objects



p(Gi|Ok): priors (affordances) p(F|Gi,Ok): likelihood to observe **F** 

$$p(G_{i} | \mathbf{F}, O_{k}) = p(\mathbf{F} | G_{i}, O_{k}) p(G_{i} | O_{k}) / p(\mathbf{F} | O_{k})$$

$$\hat{G}_{MAP} = \arg \max_{G_{i}} (G_{i} | \mathbf{F}, O_{k})$$

168 sequences per subject10 subjects6 complete sets





### Two types of experiments





Learned by backpropagation ANN



# Role of motor information in action understanding



Understanding mirror neurons: a bio-robotic approach. *G. Metta, G. Sandini, L. Natale, L. Craighero, L. Fadiga*. Interaction Studies. Volume 7 Issue 2. 2006



### Some results

|                     | Exp. I<br>(visual) | Exp. II<br>(visual) | Exp. III<br>(visual) | Exp. IV<br>(motor) |
|---------------------|--------------------|---------------------|----------------------|--------------------|
|                     | Training           |                     |                      |                    |
| # Sequences         | 16                 | 24                  | 64                   | 24                 |
| # of view points    | 1                  | 1                   | 4                    | 1                  |
| Classification rate | 100%               | 100%                | 97%                  | 98%                |
| # Features          | 5                  | 5                   | 5                    | 15                 |
| # Modes             | 5-7                | 5-7                 | 5-7                  | 1-2                |
|                     | Test               |                     |                      |                    |
| # Sequences         | 8                  | 96                  | 32                   | 96                 |
| # of view points    | 1                  | 4                   | 4                    | 4                  |
| Classification rate | 100%               | 30%                 | 80%                  | 97%                |



## Additional neurophysiology

Current Biology 19, 1-5, March 10, 2009 © 2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.01.017

#### Report

#### The Motor Somatotopy of Speech Perception

Alessandro D'Ausilio, 1 Friedemann Pulvermüller, 2 Paola Salmas,3 Ilaria Bufalari,1 Chiara Begliomini,1 and Luciano Fadiga1,3,\*

<sup>1</sup>DSBTA

Genova 16163

Italy

Section of Human Physiology University of Ferrara Ferrara 44100 Italy <sup>2</sup>Cognition and Brain Sciences Unit Medical Research Council Cambridge CB2 7EF UK

<sup>3</sup>IIT, The Italian Institute of Technology

(MTSP) [3], an early precursor of a new zeitgeist, most radically postulated that the articulatory gestures, rather than sounds, are critical for both production and perception of speech (see [4]). On neurobiological grounds, fronto-temporal circuits are thought to play a functional role in production as well as comprehension of speech. The coactivation of motor circuits and the concurrent perception of self-produced speech sounds during articulations might lead to correlated neuronal activity in motor and auditory systems, triggering long-term plastic processes based on Hebbian learning principles [15–17]. The postulate of a critical role of actions in the formation of speech circuits is paralleled in more general actionperception theories emphasizing a critical role of action representations in action-related perceptual processes [18]. However, a majority of researchers are still skeptical toward a general role of motor eyetems in speech perception, admit-



### TMS experiment

- Listening to [b] and [p], labial phonemes
- Listening to [t] and [d], dental phonemes



Stimulus



Stimulation



#### Results





### Motor feature based recognition





#### Data collection





- 9 speakers, 74 (pseudo)words and syllables
- magnetic tracking of tongue, lips and teeth
- ultrasound imaging of tongue
- □ video of face
- ☐ laryngography of vocal folds



### Baseline experiment





### Audio-motor map

- Training the AMM:
  - input space: 200ms. Mel-scale spectrogram (20 filters) of speech (R<sup>380</sup>)
  - output space: point-by-point VIiO, AIiO, VttU,
     AttU over utterance (R<sup>4</sup>)
  - ANN w/ sigmoidal activation function, crossvalidation, regularization, 10 random restart (the best is stored)
- Cross-validation:
  - 1. over all utterances
  - 2. per-speaker



### papa





### Audio-motor map





Velocity

Acceleration



## With reconstructed motor signals





### Increasing noise





### The iCub





### The iCub: quick summary

The **iCub** is the humanoid baby-robot designed as part of the **RobotCub** project

- The iCub is a full humanoid robot sized as a three and half year-old child
- The total height is 104cm
- It has 53 degrees of freedom, including articulated hands to be used for manipulation and gesturing
- The robot will be able to crawl and sit and autonomously transition from crawling to sitting and vice-versa
- The robot is GPL/FDL: software, hardware, drawings, documentation, etc.







#### Sensorization

- Absolute position
  - On most joints, AMS magnetic encoder (12 bits)
- Cameras
  - Pointgrey Dragonfly2 firewire cameras (typical 640x480@30pfs)
- Microphones, speaker
  - Standard condenser electrect miniature microphones
  - Pinnae
- Gyroscopes, linear accelerometers
  - Xsense: Mtx



#### Custom electronics

- Motor control
- C programmable DSP 40 MIPS
- Motorola DSP56F807
- PWM, ADC, Digital I/O, etc.
- 4DC motors (1A max each)
- 2BL motors (6A cont, 20A peak)
- CAN bus interface



80x30mm



58x42mm



#### Input/output:

- PC104 digital I/O card with 4 CAN bus (soon 10), firewire, and audio amplification
- Miniature analog to CAN converter card
- Miniature strain gauge signal conditioning and acquisition card



### Facial expressions

















### Promoting the iCub

- RobotCub Open Call
  - 31 participants, 7 winners will receive a copy of the iCub free of charge
  - UPMC Paris, Imperial London, Inserm Lyon, TU Munich, METU Ankara,
     Pompeu Fabra Barcelona, Urbana-Champaign USA, IST Lisbon, EPFL
     Lausanne
- Further development...
  - EU project ITALK: 4 iCub's have been built
  - EU project ImClever: 3 iCub's will be built
  - EU project RoboSkin: a skin system compatible with iCub
  - EU project CHRIS: safety features for the iCub
- Collaborations
  - University of Karlsruhe: new and longer legs
- Simulator:
  - Open Source simulator based on ODE/Newton and as a model in Webots



#### The skin

#### Principle





Lot of sensing points









Structure of the skin













### Fingertips

- Capacitive pressure sensor with 12 sensitive zones
- 14.5 mm long and 13 mm wide, sized for iCub
- Embedded electronics: twelve 16 bit measurements of capacitance
  - either all 12 taxels independently at 50 Hz or an average of the 12 taxels at about 500 Hz









### Sensor gauging and wiring

Before



 After (gauges glued, 10h curing, pads gluing & wiring)





### 6-axis force/torque sensor





- Semiconductor strain gauges
- On board signal conditioning, sampling, and calibration
- Digital output: CAN bus

Design: Nikos Tsagarakis Electronics: Claudio Lorini









With Peter Ford-Dominey (INSERM, Lyon)



With Auke Ijspeert, Ludovic Righetti, Sarah Degallier (EPFL)



With a lot of students

@ RobotCub summer school 2008



With VisLab (IST Lisbon)





With Auke Ijspeert, Ludovic Righetti, Sarah Degallier (EPFL)



IJCAI – Pasadena, CA 2009 manipulation challenge



With VisLab (IST Lisbon)



RobotCub Summer School 2009 (Alex Maldonado, Federico Ruiz – TUM)



#### Conclusions

- Cognition: (internal) models connected to the motor system
- It might be advantageous to copy this solution in artificial systems
- ...which ultimately require a body to generate sensorimotor patterns autonomously