KhaziyevMA 26012025-092143

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 18 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 166 МГц?

Варианты ОТВЕТА:

1) 45.6 нГн 2) 50.4 нГн 3) 34.8 нГн 4) 66 нГн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 1.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 34 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 13.8 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 8.6 дБ 2) 9.2 дБ 3) 9.8 дБ 4) 10.4 дБ 5) 11 дБ 6) 11.6 дБ 7) 12.2 дБ 8) 12.8 дБ 9) 13.4 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi\Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

- 1) $\{11; -39\}$ 2) $\{11; -39\}$ 3) $\{16; -57\}$ 4) $\{21; -75\}$ 5) $\{26; -93\}$ 6) $\{16; -57\}$ 7) $\{11; -111\}$
- 8) {26; -93} 9) {11; -39}

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 2990 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 12 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 461 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 6490 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2530 МГц до 2580 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

^{1) -88} дБм 2) -91 дБм 3) -94 дБм 4) -97 дБм 5) -100 дБм 6) -103 дБм 7) -106 дБм 8) -109 дБм 9) -112 дБм

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно мгновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 464 МГц, частота ПЧ 25 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 439 MΓ_{II}
- 1367 MΓ_{ΙΙ}
- 3) 25 ΜΓμ
- 4) 928 МГц.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.42841 + 0.34282i, \, s_{31} = -0.34526 + 0.43146i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -34 дБн 2) -36 дБн 3) -38 дБн 4) -40 дБн 5) -42 дБн 6) -44 дБн 7) -46 дБн 8) -48 дБн 9) 0 дБн