فم الجبر والإحصاء امتحانات مختارة مرزبء

1-(-)

107 (+)

* ± (=)

1-(-)

	άΔ	لساب	واتاا	لسنر	ارسال	ضالمد
_	_					

0-(3)

14(0)

Ø(=)

V - (4)

1(4)

Lx Lx L(1)

محافظة الغاهرة

إدارة شرق مدينة نصر توجيه الرياضيات

عن الاسئلة الاتية ،	اص
I VIIII VIIII III	**

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

ا إذا كان: ٢٥٠٠٠،٠ = ٢٠٥ × ١٠٠ فإن: م =

1 (-)

..... = "T + "T + "T

4 (-)

مجموعة حل المتباينة: ٣ < س < ٤ في ط هي</p>

{1 . 7} (=) { £ } (...) {r}(1)

3 v =

o √ -(1) ÷ (-)

و احتمال الحدث المؤكد =

-----= "("-)] "-(1)

(ب)

(ب) صفر

Lx Lx L(=)

🚺 أكمل ما يأتي :

..... 3 × 0 - 7/ + 7 =

🔫 المعكوس الجمعى للعدد 🐈 هو

€ إذا كانت: ٢ - س = ٨ فإن: ٦ - س =

عند إلقاء قطعة نقود مرة واحدة فإن احتمال ظهور الصورة =

 $(\frac{70}{7V}-) \times (\frac{7}{6}-)$: $(-\frac{7}{6})^{7} \times (-\frac{7}{7V})^{7}$

(ب) أوجد مجموعة حل المعادلة ١٦ س - ١ = ٥ حيث س ∈ ١

Scanned with CamScanner

الحبير والإحصاء

۲۵ (۱) أوجد قيمة : ٥٠٠ (١) [ع

(-) أوجد مجموعة حل المتباينة : $0 - 0 \leq 0 \leq 0$ حيث $-0 \leq 0$

 $(\frac{1}{7}-)+\frac{7!}{1}+\frac{7!}{1}+\frac{7!}{1}+\frac{7!}{1}$

(ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى.

أوجد احتمال كل من:

1 ظهور عدد زوجي. آ ظهور عدد أكبر من ٤

٣ ظهور العدد ٧

V (2)

MY (2)

أجب عن الأسئلة الأتية :

أكمل العبارات الآتية :	١
------------------------	---

- ١ احتمال الحدث المؤكد يساوى١
- المعكوس الضربي للعدد $\left(\frac{r_{-}}{2}\right)^{\text{out}}$ هو
- $\frac{1}{2}$ إذا كان: $1-^{1}=\frac{1}{6}$ فإن: $\frac{1}{2}=\frac{1}{6}$
- ۵ مجموعة حل المعادلة : -س + ۲ = ۲ في ط هي
- إذا كان: ٢ = -٢ ، -= -٤ فإن: ٢١ + -=

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- ا إذا كان: -س + ٥ = ٨ فإن: ٢ -س =
- Y (1) 0 (-) (ج) ٢
 - آ إذا كان: ۲٫۲ = ۰٫۰۰۰۲۲ فإن: س=
- (ب) -٤ £ (1) 1 (=) 1- (4)
 - ٣ احتمال الحدث المستحيل يساوى
 - (ب) ۲ (i) صفر 1- (-) 1 (4) نصف العدد ۲۰۲ =
 - ١٢ (ب) °7 (1)
 - (ج) ۲٬۲
- 0-(1) (ب) ۷ 0 (=) Yo- (1)

44

Scanned with CamScanner

الامتحانات النهائية

the vide

..... = "-('-")]

7(1)

1 (-)

4 (4)

اوجد مجموعة الحل في ك لكل من:

17 = Y - U- 0 1

1 7 - w + Y ≤ A

- (1) اختصر لأبسط صورة : ٢٠×١٠
- (ب) أوجد ناتج المقدار: ١٢ × ٢٢ ÷ ٢٤ + ٢٢
- (1) I frame lips decore $\left(\frac{\tau}{\tau}\right)^7 \times \sqrt{\frac{3\tau}{4}} \times \left(\frac{\gamma}{\tau}\right)^{n-4}$.
- (ب) صندوق یحتوی علی ٤ كرات بيضاء و ٥ كرات حمراء و ٦ كرات زرقاء متماثلة ، فإذا سحبت كرة واحدة عشوائيًا. ما احتمال أن تكون الكرة المسحوبة :

7 (-)

اً لیست زرقاء ؟ سوداء ؟

HALLE ME CHANNEL STORY

1<(1)

(1) of x .1"

r < 0- (1)

محافظة الإسكندرية

أجب عن الأسئلة الأتية :

المعطاة :	بين الإجابات	من	الصحيحة	لاحابة	اختر ا	\mathbf{r}
		-		~~,	, ,,,,	

$$1 > (+)$$
 $(+) = (+)$ $(+)$

47 (4)

The second second

Scanned with CamScanner

الجبر والإحصاء الجسيد

🚺 أكمل ما يأتي :

$$\frac{70}{10}$$
 (1) اختصر لأبسط صورة: $\left(\frac{7}{\sqrt{7}}\right)^{\text{out}} \times \left(\frac{7}{\sqrt{6}}\right)^{\times} \sqrt{\frac{9}{3}}$

$$(-)$$
 إذا كانت: $-0 = \frac{7}{7}$ ، $0 = \frac{3}{7}$ أوجد قيمة: -0^7 0^7

$$(-)$$
 ضع في أبسط صورة قيمة المقدار : $\frac{Y^{-1} \times Y^{\vee}}{Y_{Y}}$

أحب عن الأسئلة الأتنة ،

			= ۲۰۰۰ × ۰۰۰۰]
(د) س			(۱) س'
04 (3)	تمال ظهور صورة	مرة واحدة فإن احد	آ عند إلقاء قطعة نقود
Υ (.)	$\frac{1}{5}$ (\Rightarrow)	(ب) ۲	$\frac{7}{7}$ (1)
\frac{L}{A} (7)	فإن : س=	V1. x Y, 0 = .	🔭 إذا كان : ٢٥٠٠٠٠
	٤- (ج)		٤ (١)
(د) -۲		. ٤ فإن :	إذا كان:س >
(د) س ((ج) س (-)	(ب) س > ٤	٤- < ٥- (١)
> 0- (3)			٤٠
		s	canned with CamScanner

	مر۲ هو	الذي مساحته ٩ -س١	ه طول ضلع المزبع
Yor 1 (1)		Y- Y (-)	
	جربة عشوائية	ت لكل النواتج المكنة لت	مجموع الاحتمالا
1>(4)	1 < (-)	1 = (-)	(١) = صفر

🚺 أكمل العبارات الآتية :

..... = Y ÷ £ - 7 × Y

آ احتمال الحدث المؤكد يساوى

٣ ١ ، ٢ ، ٢ ، ٢ ، ٥ ، ٨ ، ، ، بنفس التسلسل).

إذا كان احتمال نجاح طالب هو ٧,٠ فإن احتمال رسوبه يساوى

• إذا كان: -س + ٩ = ١١ فإن: قيمة ٧ -س =

 $\Upsilon \circ = 1 + \dots + \Upsilon$: أوجد مجموعة الحل في ك للمعادلة : $\Upsilon \to 0 + 1 = 0$

(-) اختصر لأبسط صورة : $(-\frac{\gamma}{\sqrt{2}})^{\text{nic}} \times (-\frac{\gamma}{6})^{2} \times \sqrt{\frac{\gamma}{2}}$

[1] أوجد مجموعة الحل في ك للمتباينة: ٢ -س + ١٥ < ١٩

(ب) ضع في أبسط صورة قيمة المقدار : ومن عن المقدار عن ا

 $3 = \frac{1}{2}$ أوجد القيمة العددية للمقدار : -0^{7} م 7 ع

(ب) صندوق یحتوی علی ٥ كرات بيضاء ، ٤ كرات سوداء ، ٦ كرات حمراء، سحبت كرة عشوائيًا من a property of the second هذا الصندوق. أوجد الاحتمالات الآتية:

أن تكون الكرة المسحوبة بيضاء.

أن تكون الكرة المسحوبة ليست سوداء.

1 أن تكون الكرة المسحوبة حمراء.

اجب عن الاسللة الاتية ،

- اختر الإجابة الصحيحة من بين الإجابات المعطاة :
- أى القيم التالية تمثل احتمال حدوث حدث ؟ r (-) 1,V(1)

¥ (+)

1. (-)

(ج)

7 (-)

18 (-)

÷ (÷)

1 .- (4)

18 (4)

7- (2)

10 (4)

(د) صفر

., 4- (1)

الديدامير (دياهوات - كراسة) ١ع / ت ١١٩٢ ١١٤

Scanned with CamScanner

الجبير والاحصاة

Y (1)

Y- (-)

.....+ A = T7 + 78 V T

7 (-) 1 س ب ن س ا عس ا ا

Y (1) Y- (-)

نصف العدد (۲) " = (۲) "
 نصف العدد (۲) "
 نصف العدد (۲) "
 ض العدد (۲) "
 ض العدد (۲) " ...
 ض العدد (۲) "
 ض العدد (۲) " ...
 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العدد (۲) " ...

 ض العد

٨ (ب) £ (i)

 $\frac{o-}{r}$ (-) $\frac{r-}{o}$ (1)

🌃 أكمل ما يأتي لتحصل على عبارات صحيحة :

- 1 استاد رياضي له ٥ أبواب مرقمة من ١ إلى ٥ فإن احتمال دخول شخص من الباب رقم ٣ يساوى
 - - ۲ س < ۲ فإن : س ۳</p>
 - الصورة القياسية للعدد ٠,٠٠٠٢٥ هي ٢,٥ × ١٠
 - إذا كان: ٢ -س ٣ = ٧ فإن: -س =

🖬 (1) أوجد مجموعة الحل في ك لكل من:

٢ = ٧ -س ٢ 1 ٢ س + ١١ ≤ ٥

(ب) ثلاثة أعداد فردية متتالية مجموعها ٢٣ أوجد هذه الأعداد.

(1) I error $(\frac{7}{9}) \times \sqrt{\frac{7}{17}} \times \sqrt{\frac{7}{17}} \times (\frac{7}{9})^{-1}$

(ب) إذا كانت: ١ = ٢ ، س= ٢ أوجد قيمة: ١٠ ٢

 $Y = w^{-1} \times w^{-1} \times w^{-1}$ ثم أوجد قيمة الناتج عندما : $w = Y = w^{-1} \times w^{-1} \times w^{-1}$

(ب) في إحدى المباريات إذا كان احتمال فوز فريق = أ واحتمال هزيمته = أ أوجد احتمال تعادله.

امتحانات مختارة من بعض المدارس للسنوات السابقة

فى الجبر والإحصاء

محافظة القاهرة

Man Timory,

(c) P°

أجب عن النسئلة الاتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\{\xi \mid T\}(\Rightarrow) \qquad \{\xi\}(\varphi) \qquad \{T\}(1)$$

$$(-1)^{\frac{1}{2}}$$
 $(-1)^{\frac{1}{2}}$

🚺 أكمل ما يأتي :

$$\frac{1}{O} \left(\frac{\nabla V}{V} \times \frac{\nabla V}{V}\right) = \left(\frac{\nabla V}{V}\right) \times \left(\frac{\nabla V}$$

11 2 - 3 - 3 (A) (A) Carper (1917-5/17) 13/22/12

	اكمل ما ياتى :
بنفس التسلسل) -> ٧-٢-٧د-	1)C.q ,
(= 1	
س حسن الله ف	الله الله الله الله الله الله الله الله
0,-	[۲] إذا كانت: ۷ - ۲ - س = ۲ فإن: -ن =
The state of the s	ا إدا كانت : ٧ - ١ - ٠ - ٠ - ٠ ون ٠ - ١ - ١ - ١ - ١ - ١ - ١ - ١ - ١ - ١
	و احتمال الحدث المستحيل يساوي
= - X 50 X1 =	
とうすべて=(科X(を)000	$(-)$ إذا كانت: $-0 = \frac{7}{7}$ ، $-0 = \frac{1}{7}$ أوجد قيمة: -
1-2- 14=1+2-4-	(۱) أوجد مجموعة الحل في ك: (٢ سُ +٢) + ٥ = ١٣ <u>- ٣</u>
1cx-8c J=n-16-26 /1=	(1) le $+ (7 + w + 7) + 0 = 71$ (1) le $+ 0 + (7 + w + 7) + 0 = 71$ (1) de $+ 0 + (7 + w + 7) + 0 = 77$ (1) de $+ 0 + (7 + w + 7) + 0 = 77$ (1) de $+ 0 + (7 + w + 7) + 0 = 77$ (2) de $+ 0 + (7 + w + 7) + 0 = 77$
ما الدحه العلوى فها احتمال الحصول على :	Allen
ردی اقل من ۱۶ م اس کے مار المار المار ال	1 acc (ees)? = = = = 1 acc i
1 - C 2 - 1 0 - CTIT = 0	
いいっというとうというころ	
اداره الحالجة المالم المالم الحالجة المالم المالم الحالجة المالم الحالجة المالم الحالجة المالم	محافظة القليوبية
M. M. MI	
Originali	اجب عن الاسئلة الاتية ،
17 Jun 19	اجب عن الاستقار الديث .
8)121	اختر الإجابة الصحيحة من بين الإجابات المعطاة :
	= Y × ~1
(u) 2 -15	
The Control of the Co	() ()
	ا معدة واحدة قان احتمال ظهور صور
$\frac{Y}{Y}(z)$	$(+)\frac{1}{2}(+)$
	۳ اِذا کان: ۲۰۰۰،۰۰ فان: سه = ۱۰۰۰ نان: سه = ۱۰۰۰ ا
T-(a)	
Louise the sales and the	(ب) ۲ (او) - غ
	عَ إِذَا كَانَ : س > ٤ فَإِن :
€>0-(3) (E->1	١١١) - ١٠٤ (١١) ١٠٠ ١٠٠ (١١)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE
1274 EP-41 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	The state of the s

.

	*1.		
الامتحانات النهائية			
	م٬ هو سم.	ذی مساحته ۹ س س	الطول ضلع المربع ال
(د) ۹ - س	U-1(+)	(ب) ۲ س۲	(J-101)
	بربة عشوائية	، لكل النواتج المكنة لت	٦ مجموع الاحتمالات
1>(1)	1 < (-)	(1=1)	(۱) = صفر
Mersisty of			أكمل العبارات الآتية :
			= Y + F - 3 + Y
13,10		1 151 3	آ احتمال الحدث المؤك
	(بنقس التسلسل).		
	احتمال رسوبه بساوی	13 . V . a . Alle - l	ا إذا كان احتمال نحا
	س = ۱۷× ا ا ا کا	المان : قيمة ٧ عان :	اذا كان: س + ٩
co2-1-co=		_	ا (1) أوجد مجموعة الحا
17=8-1 N=V	- To = 1+0	ں ق ف للمعادلة : ۲ سر - ۱ _ ۳ رستر	المارية المارية المارية
2 = -e x	5 XI= IV	(√):•.	رب) احتصر دبسط صور
10-19>5-5	19>10+0	ل في ك للمتباينة : ٢ -	🚨 (۱) اوجد مجموعه الح
5246	15 50 50	ة قيمة المقدار : ٥٠٠ × ١٠	(ب) ضع في أبسط صورة
いっているから	- 171		
ددية للمقدار: -رسورع	$\frac{3}{7} = \frac{3}{7}$ أوجد القيمة الع	· + = 00 · T	ا) ادا کان : س
راء. سحبت كرة عشوائيًا كم	کرات سوداء ، ٦ کرات حم		(ب) صندوق يحتوى علم
4-78415		د الاحتمالات الآتية:	هذا الصندوق. أوج
سموية حمراند على الح	و الكرة الم	المسحوية بيضاءهم	١ أن تكون الكرة
-x +x 4 5	-10 11.	المسحوية ليبست سودا	ان تكون الكرة
	10		

البب عن الاسئلة الاتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

ا أى القيم التالية تمثل احتمال حدوث حدث ؟ $\frac{r}{(-1)}$ (-1)

محافظة المنوفية

اداره منوف توحیه الارباضیات

ا إذا كان: س + ٣ = ٥ فإن (1 -- (2) (ب) ۲۰ 18 (4) 7-(4) ۲- (ب) العدد (۲) = ۱۱(۲) عمر العدد 18/(-) آ إذا كانت : 1 = 🔭 / فإن : 1 ' = ············ (د) صفر 🜃 أكمل ما يأتي لتحصل على عبارات صحيحة : استاد ریاضی له ه آبواب مرقعة برن ۱ إلى ه فإن احتمال دخول شخص من الباب رقم ۳ xeu Diron ا مربع طول ضلعه لل سن سم فإن مساحته ح مسال 85,00 P الم إذا كان أ - س < ٣ فإن : س ١٠٠٠ على الم ٢٠٠٠ على الم ٢٠٠٠ على الم ٢٠٠٠ على الم ١٠٠٠ على الم ازدا کان: ۲ - س = ۲ = ۷ فإن: - س = 11-026-6 🗓 (1) أوجد مجموعة الحل في ب لكل من : しょうしいのもいからしょうしょう 1 = 1 × 9 × 5 × 5 = = (1) | timed one (5: (7) × 11 × (7) × (7) × (7) | = 1 × 7 × (1) | (ب) إذا كانت: ١= ﴿ ، ب = ﴿ أوجد قيمة : ١ س = ﴿ أَوجد قيمة : ١ س = ﴿ أَوجد قيمة : ١ س = ﴿ أَنَّ عَلَى اللَّهِ عَلَى اللَّهُ عَلَى اللَّ (i) اختصر لأبسط صورة: سلم من ثم أوجد قيمة الناتج عندما: س = ٢ ي سرك الرسال الم الم الم الم الم الم الم الم الم (ب) في إحدى المباريات إذا كان احتمال فوز فريق = ﴿ واحتمال مزيمته = ﴿ أُوجِدُ احتمالُ تعادله. CN=7-1-4=0001 アドニミナンナノナンナラ 11 14 (11 (9 ce)11) 71

أجب عن الأسئلة الأتية ،

:	التالية	أكمل العبارات	A.
---	---------	---------------	----

إذا كان ثلاثة أمثال عدد هو ٦ فإن ضعف هذا العدد يساوى

$$\frac{\nabla}{\nabla} = \frac{\nabla}{\nabla} = \frac{\nabla}{\nabla} = \frac{\nabla}{\nabla} = \frac{\nabla}{\nabla}$$
 فإن $= \frac{\nabla}{\nabla} = \frac{\nabla}{\nabla} = \frac{\nabla}{\nabla}$

٣ احتمال الحدث المستحيل يساوى

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

ا إذا كان: ٢ ص = ٨ فإن : ٢ ص =

(ب)

س (۲ ص)^۲ =

(ب) ۸ ص (۱) ۲ ص (ج) ٨ ص

إذا كان: ٢ -س + ١ = ٥

(ب) Y (1)

13+10=

(ب) Yo (1)

إذا كان احتمال نجاح طالب هو ٨, ٠ فإن احتمال رسوبه يساوى

(ج) ۱۲

(ج) ع

(1) أوجد مجموعة الحل في ك للمتباينة : ٢ -س + ٨ < ١٦

 $\frac{7}{4} = -\frac{7}{4}$, $\frac{7}{4} = \frac{7}{4}$ فأوجد في أبسط صورة القيمة العددية للمقدار: ٢ - " + (١ + ح)

Scanned with CamScanner

ا) ضع في أبسط صورة قيمة المقدار : ٢٠٠٠ × ٢٠٠٠ على المقدار : ٢٠٠ على المقدار : ٢٠ على المقدار : ٢٠٠ على المقدار : ٢٠٠ على المقدار : ٢٠ على المقدا

(ب) أوجد مجموعة الحل في ك للمعادلة : ٢ -س + ٥ -س + ٢ = ٢٠

(1) in the line of (1) in the line of (1) in (1)

(ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى ، فما احتمال الحصول على :

۱ عدد زوجي ؟ م عدد فردی أقل من ٤ ؟

Y. (2)

27(4)

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$r - < \omega_{(2)}$$
 $r > \omega_{(3)}$ $r > \omega_{(3)}$ $r > \omega_{(4)}$ $r > \omega_{(1)}$ $r > \omega_{(1)}$ $r > \omega_{(1)}$ $r > \omega_{(1)}$ $r > \omega_{(1)}$

$$\lambda_{(2)}$$
 $\lambda_{(2)}$ $\lambda_{$

$$\frac{1}{Y} = (2)$$

$$\frac{1}{Y} (\Rightarrow)$$

$$\frac{1}{Y} (\Rightarrow)$$

$$\frac{1}{Y} (\Rightarrow)$$

$$\frac{1}{Y} (\Rightarrow)$$

📊 أكمل ما يأتي :

عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد أولى يساوى

$$\frac{7}{1}$$
 إذا كان : $\frac{7}{0} = \frac{3}{7}$ فإن : $\frac{7}{0} = \frac{7}{1}$

Scanned with CamScanner

القدار (الح) - (الح) عناتج المقدار (الح) - (الح) المقدار (الح) المق

$$\left(\frac{4-}{\sqrt{3}}\right) \times \frac{19}{100} \times \sqrt{\frac{19}{100}} \times \sqrt{\frac{19}{100}} \times \left(\frac{4-}{\sqrt{3}}\right)$$
 اختصر إلى أبسط صورة : $\left(\frac{4-}{\sqrt{3}}\right)^{\text{out}} \times \sqrt{\frac{19}{100}} \times \left(\frac{4-}{\sqrt{3}}\right)$

(ب) ثلاثة أعداد طبيعية متتالية مجموعها ٦٦ فما هي هذه الأعداد ؟

19 > ١٥ + ١٥ - ٢ - ١٥ (1) أوجد مجموعة الحل في ك للمتباينة : ٢ -س + ١٥ < ١٩

4
 (1) إذا كان: $-\omega = \frac{1}{4}$ ، $\omega = \frac{1}{4}$ فأوجد قيمة المقدار: $(7 - \omega - \omega)^{-4}$

(ب) سُحبت بطاقة واحدة عشوائيًا من ثماني بطاقات متماثلة ومرقمة من ١ إلى ٨ أوجد احتمال أن تكون :

 البطاقة المسحوبة تحمل عددًا أوليًا. البطاقة المسحوبة تحمل عددًا زوجيًا < ٨</p>

الامتحانات النهائية

توجيه الرياضيات

محافظة السويس

Y (=)

(ج) ٢

1. (-)

{\., \} (÷)

manufactured the state of the state of

1(4)

Ø(1)

.,0(4)

7 (4)

(د)س

لتية ، (يسمع باستخدام الألة الحاسبة)	أحب عن الأسئلة الأ
--------------------------------------	--------------------

الإجابات المعطاة :	من بين	الصحيحة	الإجابة	اختر	١

..... = Y × Y []

(ب) ۲۲ YY (1)

مجموعة حل المتباينة : - ب ح ٢ في ط هي

{1}(-)

(ب) صفر

 $\{\cdot\}$ (1)

احتمال الحدث المؤكد يساوى

3 7 × 7 - 3 ÷ 7 =

٧ (٠)

..... = ۲(۲-س-) **ه**

1(1)

£ (i)

(ب) س (ج) س (۱) س

20

110 (4)

Scanned with CamScanner

الجبير والإحصاء

71. (1)

14. (-)

/Yo (=)

🚺 أكمل ما يأتي :

..... = T7 + 7EV

٢ إذا كان: ٢ -س = ٢ فإن: -س =

المعكوس الضربي للعدد النسبي (- ٢٠) هو اذا كان: ٥٠٠٠٠٠٠ = ٥٠٠٠٠٠٠ فإن: قيمة له =

🖬 اختصر لأبسط صورة كلًا مما يأتي :

17 × (7) × × (7) × 17)

10 × 10

🗵 أوجد مجموعة الحل في ك لكل من :

Yo = 1 + - T 1

11>0+0-1

 $\frac{1}{7} = e , \frac{1}{7} = o , \frac{7}{7} = o : \frac{1}{7} : 0 = \frac{1}{7}$

أوجد في أبسط صورة القيمة العددية للمقدار : س" × ص" × ع"

(ب) صندوق به ٥ كرات بيضاء ، ٤ كرات حمراء ، ٦ كرات سوداء. سحبت كرة واحدة عشوائيًا. أوجد احتمال أن تكون الكرة المسحوبة :

ال بيضاء.

🚺 سوداء.

اجب عن الاسلاة الاتية ، (يسمح باستخدام الالة الحاسبة)

ة من بين الإجابات المعطاة :	🚺 اختر الإجابة الصحيحا
-----------------------------	------------------------

..... = + + + 1

.. 17 (-) .. 71 (1)

1.7 (-) T. E (a) آ إذا كان ثلاثة أمثال عدد يساوى ٢٧ فإن 👆 هذا العدد هو

> T (-) 4 (-) 1 (i)

4A (7)

13

Scanned with CamScanner

الامتحانات النهائية

1(3)

..... = "T + "T | "

(ب) ۲

المعكوس الجمعى للعدد النسبى (- ٢) هو

 $\frac{\xi-}{70} (-) \qquad \frac{\xi}{0} (1)$

..... = Y ÷ E - 7 × Y

٤ (ب) ١٠ (١)

₹ (÷)

٦ مجموع الاحتمالات لكل النواتج المكنة لتجربة عشوائية

(ب) = ۱

1>(2) (خ) > ۱

🚺 أكمل ما يأتي :

(1) = صفر

آ إذا كانت درجة الحد الجبرى : ٥ -س مم م هى ٥

آ الصورة القياسية للعدد ٦٨ × ١٠- =

اِذَا كَانَت : - س > ٤ عَلَيْ

فصل دراسی به ۲۱ ولد ، ۱۵ بنت فإذا اختیر أحد التلامیذ عشوائیًا فإن احتمال أن یکون بنتًا =

(1) أوجد قيمة ما يأتى فى أبسط صورة $\sqrt{\frac{1}{3}}$ \times (1)

١٠-(°٧ × ٢-٧) اكتب ناتج ما يلى في أبسط صورة : (١٠-(١٠- ١٠- ١٠-) ...

(ب) حل المعادلة الآتية في ك: (٣ -س + ٢) + ه = ١٢

(1) حل المتباينة الآتية ف ك: ٢ - ٣ - س < -٤

(ب) صندوق يحتوى على ٥ كرات بيضاء و٤ كرات سوداء و٧ كرات حمراء سحبت كرة عشوائيًا من الصندوق اكتب فضاء العينة ثم أوجد احتمال كل من الأحداث الآتية:

 حدث أن تكون الكرة المسحوبة حمراء. آ حدث أن تكون الكرة المسحوبة ليست بيضاء.

أجب عن الاسللة الاتية ،

	7.0/	أكمل ما يأتي :
Ø (÷)	(ب)	(۱)صفر
	ى ھو	٦ المحايد الجمعى في
(ج) ۲ ³	(ب) ٤٢	۱۲(۱)
		= 'TY + TY
(ج) ه	(ب) ۱۰	\(\(\) \(\)
		= '-(., ٢) €
(ج) الرابعة.	(ب) الثالثة.	(1)الثانية.
	ص من الدرجة	٣ الحد الجبرى -س٢
117 (-)	(ب) ۲۰۰۱	'·Y(1)
	=	1 نصف العدد ٢٠٢ :
(ج)ط	Ø (-)	{·}(i)
		١١ ص- ص_ =
	من بين الإجابات المعطاة:	اختر الإجابة الصحيحة
29 022	ווודיבולי ווודיבולי	اجب عن الاسئلة
	(ج)ط (ج) الرابعة. (ج) ه (ج) ۲	عن بين الإجابات المعطاة : (ب) (ب) (ج)ط ۱۰۲(ج) ص من الدرجة

آ الصورة القياسية للعدد ٧٠٠٠ × ٥٠٠٠٠ تساوى

٣ إذا كان: -س + ٢ = ٥ فإن: ٢ -س + ١ =

٤ احتمال الحدث المستحيل يساوى

و إذا كان احتمال نجاح طالب هو ٧,٠ فإن احتمال رسوبه هو

1) احسب قيمة المقدار: ٥×٥-٢

(ب) أوجد مجموعة حل المعادلة الآتية في ن: ٢ س + ١ = ٢٥

اختصر لأبسط صورة: $\left(\frac{-1}{7}\right)^{7} + \sqrt{\frac{75}{15}} - \left(\frac{7}{7}\right)^{9}$ صنر

181

Scanned with CamScanner

الامتحانات النهائية

[1] أوجد مجموعة الحل في ك للمتباينة الآتية : ٢ - ٢ - ٧ حر ٨

(ب) صندوق به ٥ كرات حمراء ، ٢ كرات صفراء ، ٤ كرات بيضاء فإذا كانت جميع الكرات متماثلة وسحبت كرة عشوائيًا من الصندوق أوجد احتمال أن تكون الكرة المسحوبة :

١ صفراء.

1 ليست بيضاء.

A PARCE	
(1)	اداره رمنین توصیه الریاضیات

أجب عن الأسئلة الاتية :

اكمل العبارات التالية: ٢-٧- ٦ -٧- ٦

إذا كان ثلاثة أمثال عدد هو ٦ فإن ضعف هذا العدد يساوى

$$\frac{\xi}{\mathbf{q}} = \frac{\mathbf{q}}{\mathbf{q}} =$$

احتمال الحدث المستحيل يساوى مجرير

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

y = £

٧. (ب)

آ إذا كان: ٢ ص = ٨ فإن: ٣ ص =

(ب) ٤

CITA

٣ (٢ ص) = ------

(1) Y and (1)

ع إذا كان: ٢ -س + ١ = ٥ فإن: -س =

٤ (٠)

(·) (·)

0 13 +1P =

Yo (1)

(4)

إذا كان احتمال نجاح طالب هو ٨, ٠ فإن احتمال رسوبه يساوى

 $\frac{1}{K} (\Rightarrow)$ $\left(\frac{1}{2}\right)$

0 (1)

(1) 17

7 (2)

١٦) أوجد مجموعة الحل في ك للمتباينة : ٢ - س + ٨ < ١٦)

Sar Vari (+) إذا كانت: 1= + , == + , == + == + (+) فأوجد في أبسط صورة القيمة العددية للمقدار : 7 $^{-7}$ + $(^{1}+\infty)^{\circ}$

(子)xのアナノニナーラーラメハナ(リニフナノニカル

الكمل ما يأتى:

عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد أولى يساوى

(ب) سُحبت بطاقة واحدة عشوانيًا من ثماني بطاقات متماثلة ومرقعة من ١ إلى ٨ أوجد احتمال أن تكون :

1 البطاقة المسحوبة تحمل العدد ١٠ مرع

٣ البطاقة المسحوبة تحمل عددًا زوجيًا ح ٨ ٢

محافظة السويس

ا البطاقة المسحوبة تحمل عددًا > صفر مركر مركر البطاقة المسحوبة تحمل عددًا أوليًا. و

محافظة السويس

اداره سوبال الإرجية الرياضيات

wer) in with

أجب عن الاسلاة الاتية ؛ (يسوح باستخدام الآلة الحاسبة)

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

 $T^{r} \times r = \dots$

TY (1)

4 (=)

1(2)

[1] مجموعة حل المتباينة : س < ٢ في ط هي

{·}(1)

{1}(4)

Ø(1)

٣ احتمال الحدث المؤكد يساوى

(ب) صفر

Y (÷)

.,0(2)

1 · = 2 -1 -1 - 1 - 1 - 7 × 7 E

1 (1)

٨(ب)

. 7(2)

(----) a

(ب)س-

			الجـبر و الإحصاء ٦ العدد بـ =
7.10(2)			
7.10(2)	(1.40 (J.)	X.4 - (-)	X1. (1)
		14 -1	أكمل ما يأتى:
120		1:	1 135 + 57 =
Virgine	مال ظهور صورة يساوى 	ود مرة واحدة فإن احد	اً عند إلقاء قطعة نة
3,50		= ٣ فإن : س =	٣ إذا كان: ٣ س:
	مو 2	العدد التسيى (- ٢٠)	٤ المعكوس الضربي
	فإن : قيمة له=	1. x Y, 0 =	ه إذا كان: ٥٠٠٠
	16	لًا مما يأتي :	اختصر لأبسط صورة ك
(0=	CO 3 40 = 10 × 10 [* × 1/1/2	$\left(\frac{\gamma}{\tau}\right)^{cole}\times\left(\frac{\gamma}{\tau}\right)$
0-1125	Ety.	1 = 3	ا <u>لا حج لا ا</u> اوجد مجموعة الحل و
2 7 2 x			
くやっいいつの	11>0+0-4[653	1-co
大大大		デーーの、デー	(۱) إذا كان: س =
115.15. Ch.	قدار: -س × ع ا		0.0
ة واحدة عشوائيًا.	عراء ، ٦ كرات سوداء. سحيت كرة	ت بیضاء ۽ ۽ کرات ح	ب) صندوق به ه کر
The state of the s		تكون الكرة المسحوبة :	POLICE TO THE RESERVE OF THE PERSON OF THE P
	1 meel	7-5	ا بيضاء، 🥱
	ط مديرته التربية والتعليم بدمياط	محافظة دميا	(g) /
The second secon	Custoffense		
	استخدام الآلة الحاسبة)	الاتية: (يسمح با	أجب عن الاسئلة
		من بين الإجابات المعطاة سع	

1(3)

10- (2)

E C - CX C = TY + TT

المعكوس الجمعي للعدد النسبي (- ٢) هو .

To (-)

٤ (ب)

1 (=)

1(2)

مجموع الاحتمالات لكل النواتج الممكنة لتجرية عشوائية

(1) = صفر

1<(=)

1>(1)

🗓 أكمل ما يأتي :

آ الصورة القياسية للعدد ١٠ × ١٠٠ = ١٠٠٠٠٠٠٠٠٠ - ح

-----= (=-) F

اذا كانت: -س > ؛ فإن: س ر ي

ا فصل دراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا = المسل حراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا = المسل حراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا = المسل حراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا = المسل حراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا = المسل حراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا على المسل و المسل دراسي به ٢١ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا على المسل و المسل دراسي به ٢٠ ولد ، ١٥ بنت فإذا اختير أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا على المسل و المسل و

(ب) حل المعادلة الآتية في ك: (٢ - ٢) + ٥ = ١٢ 39321 C=V 734-18=VT 18=V+V=R

اكتب فضاء العينة ثم أوجد احتمال كل من الأحداث الآتية :

ال حدث أن تكون الكرة المسحوية حمراء. لل الحدث أن تكون الكرة المسحوية ليست بيضاء. المحدث أن تكون الكرة المسحوية ليست المحدث أن تكون الكرة المسحوية ليست المحدث أن الكرة المحدث أن تكون الكرة الكرة الكرة الكرة المحدث أن تكون الكرة المحدث أن تكون الكرة الكرة الكرة الكرة المحدث أن تكون الكرة الك

أجب عن النسئلة النتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة :	
١] ص - ص =١	

$$\frac{1}{\sqrt{1+(1+)}} = \frac{1}{\sqrt{1+(1+)}} = \frac{1}{\sqrt{1+($$

+ (2)

10-1210pl

14(2)

📆 أكمل ما يأتي :

را) أوجد مجموعة الحل في إلى المتباينة الآتية : ٢ - ٣ س < ٨ الكانت النصائية الآتية : ٢ - ٣ س < ٨ الكانت جعيع الكرات متماثلة (ب) صندوق به ٥ كرات حمراء ، ٢ كرات صفراء ، ٤ كرات بيضاء فإذا كانت جعيع الكرات متماثلة وسحبت كرة عشوائيًا من الصندوق أوجد احتمال أن تكون الكرة المسحوبة ؛

اً ليست بيضاء. ٢٦ تـ ٢٠

1 micls. 1 = 1 = 1

acien Jin word

Y(1)

VY(2)

Y (a)

1>0-(1)

أجب عن الاسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

١ احتمال الحدث المستحيل يساوى

(ب)صفر

٢ ضعف العدد ٣٠ هو

* (-)

٣ إذا كانت : - س > ٤ فإن : 1 < 0-(-) (۱)-س>-٤

١٤ كانت : -س + ٢ = ٨ فإن: ٣ -س =

10(=) 17(-)

> ¥(1)

T (-) فإن: المسلمة = ...

+ (=)

14(-)

1->-(-)

ازا کان: اس = ۲ ، اس = ۲ - (-) 1(1)

1-(-)

🚺 أكمل ما يأتي :

1 العدد المحايد الجمعي في ك هو

آ إذا كان احتمال نجاح طالب ٨٠، فإن احتمال رسويه

ازا کان: ۲۷۰۰۰۰۰ = ۲۰۰۰ د الم

..... = Y-(Y)

المحلصم (رياضيات - كراسة) ١ع / ت ٢١١٧ ١٩٠

Scanned with CamScanner

الجبير والإحصاء

- (1) | diam, 18 | hand age $(\frac{r}{r})$ | (1) | (1
 - (ب) أوجد مجموعة الحل في ك للمعادلة : ٢ -س + ٥ = ١١
 - (1) leجد في أبسط صورة: ٥٠٠٠ مرد
- (ب) عددان طبيعيان أصغرهما ٢ س وأكبرهما ٥ س فإذا كان الفرق بينهما ٣٠ أوجد العددين.
 - V ≥ T + - T : اوجد مجموعة الحل في ك للمتباينة : Y + T V + T V T .
- (ب) صندوق یحتوی علی ٤ کرات بیضاء ، ٥ کرات حمراء ، ٦ کرات زرقاء فإذا سحبت منه کرة واحدة عشوائيًا. فأوجد احتمال أن تكون الكرة المسحوبة:
 - 1 حمراء، 1 زرقاء. ٣ بيضاء أو زرقاء، 💮 🔰 سوداء.

إدارة منفنوط

أجب عن الاسللة الاتية ،

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		من بين الإجابات المعطاة :	🚺 اختر الإجابة الصحيحة
	F	۸ = ۲ فإن : ۲ س =	🚺 إذا كان: -س +
۲۰ (۵)	(ج)	(ب) ۱۲	1(1)
(5)	ية عشوائية	د لكل النواتج المكنة لتجر	1 مجموع الاحتمالان
1>(1)	\ < (÷)	(ب) =	(۱) = صفر
(2)		> ۲ فإن:	🚩 إذا كان : س >
	(*)س > ۲	(ب) حر < ۲-	(۱) س < ۲
r-<-(1)		***************************************	+ 7 = 17 + 1/
vv / . \	Yo (+)	Y (-)	1(1)
44 (7)			= *-Y
111111111111111111111111111111111111111	\(\frac{1}{\text{A}}\) (+)	↑ (→)	→ (1)
V (~)		۲ مان: س =	🤻 إذا كان: س" =
	\ (→)	Y ± (~)	Y- (1)
√ - (→)			اکمل ما یالی :
			0 + Y0 - 0 × 1 1
			The second secon

0.

Scanned with Carr/Scanner

· الامتحانات النسائية

..... = "T × "T [

🔭 احتمال الحدث المستحيل يساوى

آياس + س ت =

و الصورة القياسية للعدد ∨, ⋅ × ه ⋅ ⋅ ⋅ =

(١) أوجد ف ص- مجموعة حل المتباينة : ٣ < ٣ - ٧ - ٧ < ٧</p>

 $7\frac{1}{\sqrt{1}}$ × $\sqrt{\frac{r-1}{6}}$) × $\sqrt{\frac{r-1}{7}}$) × $\sqrt{\frac{r}{2}}$ $\sqrt{\frac{r}{2}}$) × $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$

۱۱ + س ۲ = ٤ - س - ٥ : محموعة حل المعادلة : ٥ - ٠٠٠ - ٤ = ٢ - س + ۱١

(ب) إذا كانت : $-v = -\frac{1}{4}$ ، $-v = \frac{7}{4}$ فأوجد في أبسط صورة القيمة العددية للمقدار : $-v^7$ ص

🔟 (۱) إذا كان: ۲ه.۰۰۰، ۲ = ۲، ه × ۱۰ فاوجد: قيمة 🗸

(ب) أوجد في أبسط صورة قيمة المقدار : ٢٠٧٠ (ب)

(ج) حقيبة بها عشر بطاقات متماثلة ومرقمة من \ إلى ١٠ سحبت بطاقة واحدة عشوائيًا
 فها احتمال أن تكون البطاقة المسحوبة تحمل عددًا:

ا أوليًا ؟

١ فرديًا ؟

محافظة سوهاج

2	f _
-	ш
1	а.
1. 10	
C	1
- Marie	2.

ر الأسئلة الأتية :	jc	اب
--------------------	----	----

		ن بين الإجابات المعطاة :	اختر الإجابة الصحيحة مر
	أعداد الأتية هو	مورة القياسية من بين الأ	العدد الذي على الم
11. × . , V ()	^۷ ۱۰×۱۰,۳ (ج)	(ب) ۷. ۸ × ۱۰	^1. × 11 (1)
\frac{1}{4}-(2)	۲ (۴)	₹ (÷)	······ = '-(½) [
		بين ١,٥ ، ٢,٥ هو	٣ العدد الذي ينحصر
0.7 (3)	(ج) ۲۰۶	ه , ٤ (ب)	0.10(1)
ری	حتمال ظهور عدد زوجى يساو	منتظم مرة واحدة فإن ا	عند إلقاء حجر نرد
(د) نصف.	(ج) صفر.	(ب) ربع.	(١) واحد،

Scanned with CamScanner

st.mappg.pc.an			
+			
7. 40 (1)	7. 0 . (-)	· , t (=)	/ ()
شعف العدد ٢٠ =	***********		
34(1)	17 (w)	*t (~)	'£ (1)
مل ما يأتى ۽			
احتمال العدث المزك	بک یساوی		
········· = (0-)			
مجموعة حل المتباينا	بنة ١ ح س < ٢ في .	لا هيلا	
	غرديًا فإن العدد الفرد:		
1. = 11 - 1 7			

- (ب) أوجد في ك مجموعة حل المعادلة : ٣ -س + ٥ = ١١
- $(\frac{\vee}{\Upsilon}) \times (\frac{\vee}{\Upsilon})$: in the distribution of $(\frac{\vee}{\Upsilon}) \times (\frac{\vee}{\Upsilon})$ (ب) أوجد في س مجموعة حل المتباينة : ٢ -س - ٣ ≤ ٧
 - (1) I tranger of the state of $\frac{1}{7} \times \sqrt{\frac{11}{17}} \times (\frac{7}{7})^{al}$
- (ب) سُحبت بطاقة واحدة عشوائيًا من ثماني بطاقات مرقعة من ١ إلى ٨ أوجد احتمال أن تكون البطاقة المسحوبة تحمل:
 - ١ عددًا زوجيًا.

- ا عددًا يقبل القسمة على ٢ ا عددًا أكبر من ٨
- ٣ العدد ٧

أجب عن الاسللة الاتية ،

من بين الإجابات المعطاة :	اختر الإجابة الصحيحة	١
---------------------------	----------------------	---

١ مجموع الاحتمالات لكل النواتج الممكنة لتجربة عشوائية

10

Scanned with CamScanner

الامتحانات النهائية 🚹 أي من الأتي هو الكبر ؟ °1. × ۲, ۲ (-) 1. × ۲, ۲ (1) 11. x r, r (=) 1. x T, T(1) ٣ المعكوس الضربي للعدد ١٦ مو $\frac{r}{\xi} (\Rightarrow) \qquad \frac{r}{\xi} (\Rightarrow) \qquad \frac{\xi-r}{\xi} (\uparrow)$ (4) طول ضلع المربع الذي مساحته ٩ س٠ سم هو سم. Y - 9 (4) س ۲ (1) (ج) ۹ س (ب) ۲ س إذا ألقيت قطعة نقود منتظمة ١٦٠ مرة فإن أقرب عدد متوقع لظهور صورة يساوى 109 (4) 7. (1) ۹٠ (ج) (ب) ۸۸ $\left(\frac{\varepsilon}{\circ}\right) = \frac{1}{2} \operatorname{Re} \left(\frac{\varepsilon}{\circ}\right)$ (د) ٤ (ج) ۲ (ب) ۲ 1(1)

🚺 أكمل ما يأتي :

🕦 نلث العدد ۳ يساوي

🏲 الصورة القياسية للعدد النسبي ٧,٠٠ × ٠,٠٠٠ هي

٥ مجموعة حل المتباينة: ٢ < -س ≤ ٤ في ط هي

المنر (۱) أوجد قيمة ما يأتى في أبسط صورة : $\left(\frac{-\gamma}{\gamma}\right)^{-\gamma} \times \sqrt{\frac{\gamma \xi}{\Lambda \Lambda}} - \left(\frac{\gamma}{\gamma}\right)^{\text{out}}$

(ب) أوجد مجموعة حل المعادلة: ٥ س + ٨ = ١٣ – ٢ س حيث س عدد نسبي.

[1] أوجد في ن مجموعة حل المتباينة : ٩ - ٦ - س < ١٥

 $\frac{7}{4} = 2$, $\frac{7}{4} = \frac{1}{4}$, $\frac{7}{4} = \frac{1}{4}$ أوجد القيمة العددية للمقدار: ٢٠ - ٢ - ٢ ح - ٨ ١ - ح

سحبت بطاقة واحدة عشوائيًا من ثماني بطاقات مرقمة من ١ إلى ٨ اكتب فضاء العينة ثم أوجد احتمال كل من الأحداث الآتية :

1 حدث الحصول على عدد زوجي. آ حدث الحصول على عدد أولى.

٣ حدث الحصول على عدد أكبر من أو يساوى ٦

عدث الحصول على عدد أكبر من ٨

 $\frac{7}{\sqrt{-1}}$

7 (2)

7(4)

1. 18. (2)

(د) - ص (- ۲

أجب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

$$\dots = {}^{Y-}\left(\frac{Y-}{T}\right)$$

$$\frac{\lambda}{\lambda}$$
 (÷) $\frac{\lambda}{\lambda}$ (÷) $\frac{\lambda}{\lambda}$ (1)

$$7 > -4 > -4$$
 (۱) $-4 > -4$ (ب) $-4 > -4$ (ج) $-4 > -4$

$$\frac{\lambda}{\lambda} (\Rightarrow) \qquad \frac{\lambda}{\lambda} (\Rightarrow) \qquad$$

/. AV (¬)

$$\frac{\lambda}{k^{-1}}$$
 (7) $\frac{\lambda}{k}$ (7)

the state of the s

$$\frac{\lambda}{\lambda}$$
 (\Rightarrow)

👔 أكمل ما يأتي :

To-(1)

$$T = \omega$$
 , $\xi = \omega$; إذا كانت : $\omega = \gamma$ ، $\omega = \gamma$

$$(v) \times (v)$$
 أوجد قيمة المقدار : (v)

30

Scanned with CamScanner

الامتحانات النهائية

- $11 = 0 + \infty$ + $0 + \infty$ اوجد مجموعة الحل في ك للمعادلة : $1 + \infty$
- (ب) أوجد مجموعة الحل في ك للمتباينة : ٢ -س ٣ ≤ ٧
 - ۱۳ × ٤ + ٩ : قيمة : ١ + ٤ × ٣
- (ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى
 - ، فما احتمال الحصول على :
 - 1 عدد زوجي ؟

٢ عدد فردى أقل من ٤ ؟

ن أكمل ما يأتي :

- ١ العدد المحايد الجمعي في ن هو ...٩٨١.
- آ إذا كان احتمال نجاح طالب ٨ ، ٠ فإن احتمال رسوبهك. ر....
 - 7 1 3 F =
 - اذا کان: ۱۰×۳,۷=۰,۰۰۰۳۷ فإن: س=

بر و الإحصاء	الج	
--------------	-----	--

 $\frac{1}{2} \times \frac{4}{9} \times \frac{4}{5} \times 1 = \frac{7}{7} \times \frac{11}{17} \times \frac{11}{17} \times \frac{11}{9} \times \frac{4}{5} \times \frac{1}{9} \times \frac{1}{5} \times \frac{1}{9} \times \frac{1}{$

(ب) أوجد مجموعة الحل في ن للمعادلة : ٢ س + ٥ = ١١ ٣ ٢٠ ١١ - ٥ = ٥

" traffic y

 $\sqrt{\frac{70}{100}} = \frac{\sqrt{6} \times \sqrt{6}}{\sqrt{6}} = \frac{\sqrt{6} \times \sqrt{6}}{\sqrt{6}} = \sqrt{6}$

(ب) عددان طبيعيان اصغرهما ٢ س واكبرهما ٥ س فإذا كان الفرق بينهما ٢٠ أوجد العددين. 1 lec - 7),0

570-6

عشوائيًا، فأوجد احتمال أن تكون الكرة المسحوبة :

ا حمراء. هجر الم زرقاء. ٦٠ و علم بيضاء أو زرقاء

محافظة أسبوط

أجنب عن الاسئلة الاتية ،

🚻 أختر الإجابة الصحيحة من بين الإجابات المعطاة :

آ إذا كان : - ٠٠ + ٣ = ٨ فإن : ٣ - ٠٠ =

17 (-) 4(1) 10 (-)

آ مجموع الاحتمالات لكل النواتج المكنة لتجربة عشوائية

(ب) = ١ 1<(=) (١) = صفر

> ٣ إذا كان : - س > ٢ قان :

(ب) س < -۲) T < U- (=) r> -(1)

3 VP + F/ = 7 +

Yo (=) Y (w) (1)3

..... = Y-Y 0

+ (-) $\frac{1}{7}(i)$

۲ = ۱- اذا كان : -س-۱ = ۲

۲ ± (ب) 7-(1)

A(2)

- (2)

YY (1)

1>(2)

r-< (1)

🜃 أكمل ما يأتي : 1 3 × 0 - 07 ÷ 0 =

	الجــيـر و الإحصــاء
	$\cdots = \frac{1}{2}$
٧. (خ) ٤٠.٠	0. (-) (1. 40 (1)
190°	آ] ضعف العدد ٢ ^٢ =
₹ (a) ₹ (a) 1/2 · (C	(1) 7 (1) 71
N O M	آکمل ما یأتی :
ier direct	ا احتمال الحدث المؤكد يساوى
Warty.	1 √(-0) ¹ =07.
: ٢ في ط هي 🗢	 ۳ مجموعة حل المتباينة (۱ حسر)
د الفردي الذي يسبقه هو ٢	
	<u>1 1 1</u>
1 6 2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	(1) اختصر لأبسط صورة : ٢ <u>٠×٢٠</u>
75 6 25 2 2 4 9 3 4	(1) اختصر لأبسط صورة : ٢ <u>٠٪ ٢٠</u> (ب) أوجد في ك مجموعة حل المعادلة
ラー(さ)=(か)=(*)×(*):0	[1] أوجد ناتج ما يأتي في أبسط صور
	(ب) أوجد في ن مجموعة حل المتباينة
1032 (-30:0) - 8 - 11/1/2 × 11/1/2	(1) اختصر لأبسط صورة : ۴ × م
ن ثماني بطاقات مرقعة من ١ إلى ٨	(1) اختصر لابسط صورة : ﴿ ١ × ﴿ ﴿ ٢ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿
لسحوبة تحمل:	أوجد احتمال أن تكون البطاقة الم
اً عددًا يقبل القسمة على ٣٥ - ح ح	ا عددًا زوجيًا ﴿ حَ الْحَ
عددًا أكبر من ٨ ٢٠٠٠	العدد ٧ ك
The state of the s	
Giran Italia	محافظ 🕠 محافظ

أجب عن الأسئلة الاتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

 $(1) = \text{ond}_{(1)}$

آ أى من الأتى هو الأكبر ؟ 11. x Y, Y(1) (ب) ۲.۲ × ۱۰ 1. x r. ru 11. x T. Y (=) ٣ المعكوس الضربي للعدد ﴿ ١٦ هـ هـ £- (1) F= (-) (÷) £ طول ضلع المربع الذي مساحته ٩ س سم عو سم. (v-r)) (ب) ۲ س۲. (ج) ا س J-9(2) 7.(1) (VAD) 9. (=) 109(2) (3)= 17 = 75 1(1) 1(=) 🜃 أكمل ما يأتي : 1 Honi (non) ١ ثلث العدد ٣ يساوى -5-m/18 آ إذا كان : ٧ - ٢ س = ٣ فإن : س = ... ٥ مجموعة حل المتباينة : ٢ < س ≤ ٤ في ط هي ... (٣٠٠) كم $\frac{2q}{N} = \frac{1 - \frac{N}{N}}{N} = \frac{1 - \frac{N}{Q}}{N} \times \frac{2}{N} = \frac{2}{N} \times \frac{2}{N} = \frac{2$ $(4) \stackrel{1}{=} \frac{1}{7} \quad (4) \stackrel{1}{=} \frac{1}{7}$ اكتب فضاء العينة ثم أوجد احتمال كل من الأحداث الآتية : ا حدث الحصول على عدد (ركبتي) عدد الحصول على عدد أولى المراح على المحدث الحصول على عدد أكبر من أو يساوي ٦ كم

ا حدث الحصول على عدد أكبر من ٨ ٩٠٠٠

أجب عن الاسئلة الاتية :

🚺 اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$\underline{A} (v) = \frac{r_{-}(\frac{r_{-}}{r})}{1}$$

$$\frac{4\Lambda}{\sqrt{-1}}$$
 (7) $\frac{\Lambda}{4\Lambda}$ (7)

Orie willy

🚺 أكمل ما يأتي :

$$\boxed{3}\sqrt{(\cdot \cdot)^7 - (f)^7} = \cdots$$

$$Y = \omega$$
 , $E = \omega = 1$ (1) $V = (\frac{Y}{0})^{-1} + (\frac{Y}{0})^{-1} + (\frac{Y}{0})^{-1}$

$$\frac{1}{c} = \frac{\sqrt{c}}{c} = \frac{\sqrt{c}$$

(ب) أوجد مجموعة الحل في ك للمتبايئة : ٢ - س - ٣ ≤ ٧

(1) احسب قيمة: ٩ + ٤ × ٢٠ = ٩ + ٤ × ٩ = ٩ + ٢ × ٩ = ٥ ع

(ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى

، فما احتمال الحصول على :

Chien Jinor!

(د) ۱

(د) ۱

/ IT. (a)

(÷)7,7×./³ (L)7,7×./°

(ج) ۲³

آ اختر الإجابة الصحيحة من بن الإجابات المعطاة:

- $\cdots = ^{7}$
- (ب) ۲
 - أي من الآتي هو الأكبر ؟
- ۱۰ × ۲,۳ (ب) ۲. × ۲,۳ (۱)
 - $X = \frac{1}{2} \times \frac{1}{2} \times$
- - كَ أي مما يأتي بمكن أن بكون احتمالًا لحدث ما ؟
- (۱) − ه۲۰, ۲۰ (ب) ۸۷ ٪ (ج) ه۱,۰۵
 - اذا كان : --س > ٤ فإن :

 - (أ) س > ٤ (ب) س > ٤
- $(-) (-) \qquad (-) 3$
 - 📵 مستطيل طوله ١٢٠ سم وعرضه ٨٠ سم فإن مساحته = م٢ (۱) ۹٦٠٠ (۱)
 - (←) Γ, P (ω) ΓP, .
- 📆 (أ) عددان صحيحان أصغرهما ٢ س وأكبرهما ٥ س ، فإذا كان الفرق بينهما ٢٠ أوجد العددين.
 - (\cdot) أوجد فى أبسط صورة قيمة المقدار : $\frac{\circ^{-2} \times \circ^{\vee}}{r}$
 - (أ) أوجد مجموعة الحل في ك لكل من:
 - $\mathsf{T} = \mathsf{o} + (\mathsf{T} + \mathsf{o} + \mathsf{T})$

- 19 > 10 + 0- 7 [
 - (ب) أوجد قيمة ما يأتى في أبسط صورة : $\left(\frac{1}{\gamma}\right)^{\gamma} + \sqrt{\frac{1\zeta}{1\Lambda}} \left(\frac{\gamma}{\gamma}\right)^{\text{out}}$
 - ٥ (أ) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى.
- ما احتمال الحصول على: ١ عدد أولى زوجى ؟ ١ عدد فردى أقل من ٤ ؟
 - $\frac{7}{4} = -\frac{1}{4}$, $\frac{1}{4} = -\frac{7}{4}$, $\frac{7}{4} = -\frac{7}{4}$ $\left(\frac{\omega}{1}\right)$: فأوجد فى أبسط صورة القيمة العددية للمقدار

امتحانات بعض مدارس المحافظات في الجبر والاحصاء

(1,T)(2)

محافظة القاهرة

أجِب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- $(\Upsilon, 1) (\Rightarrow) \qquad (\Upsilon, 1) (\Rightarrow) \qquad (1, \Upsilon) (\exists)$
- \int أكبر قيمة للعدد $\left(\frac{1}{2}\right)^{-1}$ عندما -1
- (۱) صفر (ب) ۱ · T () Y (=)
 - العدد الثابت في المقدار : ٢ س + ٥ هو
- ۲ (۱) ۲ س (ج) س 0(1)
 - ع نصف العدد ٢^ هو
- ⁷Y·(~). ²Y (1) (د) ۲۴ (ج) ۲^۷
 - ا حتمال وقوع الحدث المؤكد هو
- (۱) صفر (ب) ۱ (ج) ۵٫۰ Y (2)
 - آ مر ل ط = ············
- (ب) ص (i) ط (ج<u>)</u> ص (د) ص٠

آ أكمل ما بأتى:

- $\dots = \xi \div \lambda \Im \times \xi$
- √ إذا كانت : → 0 > ٧ فإن : → 0
- ٣] إذا كان احتمال نجاح طالب ٧٥, ٠ فإن احتمال رسوبه
 - کے اِذا کان : ۱۰۰،۲۷ = ۰٫۰۰۰۶۰ فان : م =
 - النمط) ۲ ، ه ، ۱۰ ، ۱۷ ، (بنفس النمط)

- $\frac{7}{6} \times \frac{7}{5} \sqrt{1} \times \sqrt{\frac{7}{6}} \times \sqrt{\frac{7}{6}}$ وجد في أبسط صورة : (1)
- (ب) أوجد في ص \sim مجموعة حل المتباينة : $\gamma \omega + V \geq 1$ ومثلها على خط الأعداد
 - $\frac{\mathsf{Y}^{\circ} \times \mathsf{Y}^{\circ}}{\mathsf{Q}^{\circ}}$ (أ) أوجد قيمة :
 - $^{\mathsf{T}}$ ب) أوجد ناتج ما ىأتى : ۱۲ imes $^{\mathsf{T}}$ + ۲۲ \div
 - (ج) * عددان طبيعيان متتاليان مجموعهما ١٥ ، أوجد العددين.
 - و (أ) أوجد مجموعة حل المعادلة : ٢ س $^{\circ}$ = $^{\circ}$ حيث س \in $^{\circ}$
- (ب) صندوق به ٥ كرات صفراء ، ٤ كرات حمراء ، ٦ كرات بيضاء ، فإذا كانت جميع الكرات متماثلة وسحبت كرة واحدة عشوائيًا ، أوجد احتمال أن تكون الكرة المسحوبة:
 - ۱ بیضاء. ۲ صفراء. ۳ لېست حمر اء.

احارة الناهة توجيه الرباضيات

محافظة القاهرة

أجِب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- المعكوس الضربي للعدد $\sqrt{rac{17}{70}}$ هو
- $\frac{c}{s} (a) \qquad \frac{\varepsilon}{s} (a) \qquad \frac{\varepsilon}{s} (a) \qquad \frac{\varepsilon}{s} (b) \qquad$
 - آ إذا كان : ٣ -س = ٦ فإن : -س + ه =
- 10(2)
 - 🍸 إذا كان احتمال نجاح طالب ٨٠,٠ فإن احتمال رسوبه
- (۱) صفر (ب) ۰٫۰۲ (ج) ۲٫۰ (د) ۱
 - كَ أي من الأعداد التالية على الصورة القياسية ؟
- $^{\Lambda}$ 1. \times . , V ($_{\div}$) V 1. \times 1. , V ($_{\div}$) $^{\circ}$ 1. \times 9, V ($_{\dot{}}$) $^{\circ}$ 1. \times 11 ($_{\dot{}}$ 1)
 - إذا كان : ٩ = ٣- ، ب = ٥ فإن : (أو) = $\frac{q}{q} (1) \qquad \frac{q}{q} (2) \qquad \frac{q}{q} (2)$
 - ٦ أي من القيم التالية يمكن أن تكون احتمالًا لحدث ما ؟
 - $(i) \sigma^{*}$, (i) (ι)

- أكمل ما يأتي:
- T احتمال الحدث المؤكد يساوى
 - $\sqrt{r^7 + \lambda^7} = \dots$
- ٣ إذا كان: -- ب > ٣ فإن: س
- عند إلقاء قطعة نقود مرة واحدة فإن احتمال ظهور «صورة» يساوى
 - = ⁷7 × °7 0
 - ا أ أ أوجد مجموعة حل المعادلة : ٢ -س + ٩ = ١٥ حيث \rightarrow \bigcirc
 - $(-1)^{\frac{1}{2}} \exp \frac{1}{2} \exp \frac{1}{2}$
 - ١٩ ≥ ١٥ + ١٠ أوجد مجموعة حل المتباينة التالية حيث س ⊖ ن: ٢ س + ١٥ ≤ ١٩
 - $7\frac{1}{5}$ $\times 7\left(\frac{7}{6}\right) \times \frac{7}{6} \times \frac{7}{$
- (ب) سحبت بطاقة عشوائيًا من بطاقات متماثلة مرقمة من ١ إلى ٧ ، فأوجد احتمال سحب:
 - 🚺 بطاقة تحمل عددًا زوجيًا. آ بطاقة تحمل عددًا فرديًا أقل من ٤
 - ٣ بطاقة تحمل عددًا أكبر من ٧
 - (ج) * عددان أكبرهما ٥ س وأصغرهما ٢ س والفرق بينهما ١٤. أوجد العددين.

محافظة القاهرة

ادارة الناوية الحمراء توجيه الرباضيات

 $\frac{q}{4}$ (2)

أجِب عن الأسئلة الأتية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
 - $\dots = \frac{1}{2} \left(\frac{1}{2} \right)$
- $\frac{70}{9}$ (i) $\frac{4-}{67}$
- (ب) ٤ ۱۰ (i) (ج) ٣ (د) صفر

45

That we will be

22	محلف	()
ظة الجيزة	RICID	

أجب عن الأسئلة الأثية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- ا المعكوس الجمعى للعدد $\left(\frac{\gamma}{T}\right)^{\text{out}}$ هو
- 1 إذا كان احتمال نجاح طالب في الامتحان ٦, ٠ فإن احتمال رسويه =
 - (i) ۲,۰ (ب) ۱. (ج) صفر (د) ۰٫۶ (۱.
 - $\dots = {r \left(\frac{r_-}{r}\right)} \mathbf{r}$
 - $\frac{\lambda}{\lambda}$ (1) $\frac{\lambda}{\lambda}$ (2) $\frac{\lambda}{\lambda}$ (2) $\frac{\lambda}{\lambda}$ (1)
 - ٤ إذا كان : ٥ س = ٥٣ فإن : ٢ س + ١ =
 - $(\cdot, V) (\cdot) \qquad (\cdot) \qquad (\cdot) \qquad (i)$
 - 7 × 7° =
 - (۱) ۲۲ (ج) مرد (ج) ۲۸ (ج) ۲۲ (۱)
 - آ إذا كان: 5.00 الله فإن: 5.00
 - $\Upsilon-(3)$ $\xi-(4)$ Υ (4) Υ

آ أكمل ما بأتي :

- $1 \times 7 \times 7 = 3 \div 7 = 3 \times 7$
- ٢ احتمال الحدث المستحيل =
- المعكوس الضربي للعدد $\left(\frac{\tau}{0}\right)^{7}$ هو
 -≡ 17+9V €
- آ إذا كان: $\frac{4}{\infty} = \frac{4}{7}$ فإن: $\frac{7}{4} = \frac{7}{2}$
- ٢٥ = ٧ + ٠٠٠ ٢ أوجد مجموعة حل المعادلة الآتية في ن : ٢ -٠٠ + ٧ = ٢٥

- آ إذا كانت: ه س = ١٠ فإن: س + ه =
- ۱۰ (۱) ۲ (ب) ه (ب) ۲ (۱)
 - $oldsymbol{\mathfrak{L}}$ اِذا کانت : ۱۰،۰۰۰ و بره imes imes imes imes imes فإن : $oldsymbol{v}$ =
- **7**− (→) **7**− (→) **7** (→) **Y** (↑)
 - $\cdots = ^{\Lambda}Y + ^{\Lambda}Y$
- (ن) ۲^۶ (ج) ۲^۳ (ب) ۲^۶ (۲) ۲^۲
 - ٦ مربع طول ضلعه ه ل سم فإن مساحته = سم٢.

آ أكمل ما يأتي :

- = ToV]
- 🚺 احتمال وقوع الحدث المؤكد =
- إذا كانت: ١ س < صفر فإن: س >
- ان کانت : $\left(\frac{\gamma}{r}\right)^{-1} = \left(\frac{\gamma}{r}\right)^{-1}$ فإن : $-\omega = \frac{1}{2}$
- 0 إذا كان احتمال نجاح طالب في أحد الاختبارات يساوي ٧,٠
- فإن احتمال رسوب هذا الطالب في نفس الاختبار يساوي
 - ا (أ) أوجد مجموعة حل المعادلة: ٢ -س + ٣ = ١٥ حيث -س ∈ ك
 - (ب) اختصر لأبسط صورة : $\left(\frac{\gamma}{\gamma}\right)^{\gamma} \times \sqrt{\frac{3}{p}} \times \left(\frac{\gamma}{\gamma}\right)^{\text{out}}$
 - اً) أوجد مجموعة حل المتباينة : Υ U V المتباينة : Υ U V المتباينة : Υ U V المتباينة : Υ
 - $\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2}}$ أوجد في أبسط صورة قيمة المقدار:
- نا کانت: $-\omega = \frac{1}{r}$ ، $\omega = \frac{\gamma}{\rho}$ فأوجد فى أبسط صورة قيمة: $\gamma \omega' = \omega'$
- (ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى للحجر:
 - اكتب فضاء العينة.
 احسب احتمال الحصول على عدد فردى.

- كا (1) اختصر لأبسط صورة : $\left(\frac{1}{T}\right)^7 + \sqrt{\frac{37}{4\lambda}} \left(\frac{7}{T}\right)^{\text{out}}$
 - (ب) اختصر لأبسط صورة : $\frac{\circ^{-\circ} \times \circ^{\vee}}{\overset{}{\overset{}{}_{}}}$
- ٥ (1) سحبت بطاقة عشوائيًا من ثماني بطاقات مرقمة من ١ إلى ٨ أوجد احتمال الحصول على :
- 🚹 عدد أكبر من أو يساوى ٦ [1] عدد فردي.
 - ٣ عدد يقبل القسمة على ٣-
 - (-) أوجد مجموعة حل المتباينة الآتية في (-) + (-)

 $\frac{-3}{9}$

ً إدارة المرم توجية الرياضيات

محافظة الحيزة

أجِبٍ عَنَ الدُّسَئِلَةِ الأَثَنَةِ : ا أكمل ما بأتى:

- ا حتمال الحدث المؤكد بساوى
 - 135 + 77 =
 - $\cdots \cdots = {}^{\mathsf{Y}_{-}}\left(\frac{\mathsf{Y}}{\mathsf{A}}\right) \mathbb{Y}$
- \dots اِذا کان : ۲۹ میر λ = λ بر کان : λ ازدا کان : λ
 - $\cdots = 7 \cdot 77 \times 5$

اختر الإجابة الصحيحة من بن الإجابات المعطاة:

- المعكوس الجمعى للعدد $\sqrt{\frac{3}{6}}$ هو
 - $\frac{\pi}{4}$ ($\dot{\sim}$)

- آ اِدَا كَانَ: ٥ س = ٢٠ فإن: ٣ س =
- (ب) ۱۰ (د) ٤ (ج) ۱۲
 - \times^{9}
- (د) س-۲ (۱) س^۲ (پ) س^۲ (ج) س°
 - **العدد ۲۰۲** =
 - (ب) ۱^۹۲ (ج) ۲³ ۱۸۲ (۱) (د) ۲°

- ٥ العدد الذي يحقق المتباينة: -س ٢ > ١ هو ...بشيشيشيشي و تشفيد هو ...
 - Y(+)
- آ إذا ألقى حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد زوجى يساوى
 - $(\dot{\varphi}) \frac{1}{7} (\dot{\varphi})$
 - - (v) أوجد قيمة : ۲۲ ÷ $(v o)^{-1}$
 - (ج) * ثلاثة أعداد طبيعية متتالية أصغرها س ومجموعها ١٢ ، أوجد هذه الأعداد.
 - ٤ (أ) أوجد مجموعة الحل للمعادلة: ٢ س ١ = ٥ حيث س ∈ ن
 - (-) ie e a a a $\frac{6^{-3} \times 6^{\vee}}{7}$
 - ٥ (1) أوجد مجموعة حل المتباينة: ٥ -س ٨ ≥ ٧ حيث -س ∈ ن
- (ب) صندوق به ٥ كرات بيضاء ، ٤ سوداء ، ٦ حمراء سحبت كرة واحدة عشوائيًا من الصندوق أوجد احتمال أن تكون الكرة المسحوبة:
 - ۱ سوداء.
 - ۲ کلست بیضاء.

محافظة الإسكندرية

إحارة شرق توجيه الرياضيات - نموذج ([)

أجب عن الأسئلة الآتية :

- ا ختر الإجابة الصحيحة من بين الإجابات المعطاة:
 - ١ احتمال الحدث المؤكد =١
- (ب)صفر \emptyset (\Rightarrow)
- 7 (i) (ب) ؟ ۲ $\frac{\xi-}{Y}$ (\Rightarrow)
 - ٣ ص (ط =
- b(i)d (ب)صي ر (ج)ص_ (د)ص

1-(2)

(2)

/Yo(1)

الدارة غرث

محافظة الاسكندرية

····· = (٣-) + | ٣- | [] TT (2)

- (ب) ٢ (ج) صفر 7-(1)
 - ه المعكوس الضربي للعدد ٥-٢ هو
- $\frac{70}{1}$ (2) $\frac{1}{2} \left(\psi \right)$ (ج) - ۲٥ Yo (1)
 - آ أصغر عدد أولى فردى هو
 - (ج) ۲ (پ) ۲ ١(١) (1)

آ أكمل:

- $7 \times 7 3 \div 7 = \dots$
- آ إذا كان: س + ٢ < ٤ حيث س ∈ ط فأن: س =
- - [ع]ريع العدد ٢٠٤ =
- [٥] فصل دراسي به ٢١ ولدًا ، ١٥ ينتًا فإذا اختبر أحد التلاميذ عشوائيًا فإن احتمال أن يكون بنتًا يساوى

آ (أ) أوجد في ن مجموعة الحل لكل من:

- $1 \leq \omega 1 1 = 1 1 = 1$
 - (ب) اختصر لأبسط صورة : $\left(\frac{1}{7}\right)^{7} + \sqrt{\frac{3\xi}{4\lambda}} \left(\frac{7}{7}\right)^{\text{out}}$

$[(1)^{\mathsf{T}}(1)] = [(0^{\mathsf{T}}(1))^{\mathsf{T}}(1)^{\mathsf{T}}(1)^{\mathsf{T}}(1)^{\mathsf{T}}(1)^{\mathsf{T}}(1)^{\mathsf{T}}(1)^{\mathsf{T}}(1)^{\mathsf{T}}(1)$

- (ت) أوجد مجموعة حل المتباينة الآتية في ص-: $-1 < 7 \rightarrow -1 \leq \delta$ ومثل الحل على خط الأعداد.
 - وجد قيمة المقدار الآتى فى أبسط صورة : $\frac{\sqrt{x} \sqrt{x} + \sqrt{x}}{x}$ آ إذا كانت: $- \omega = \frac{-3}{2}$ ، $\omega = \frac{-3}{2}$ 1 فأوجد في أبسط صورة قيمة : ($-\omega \to 1$
- (ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى. اكتب فضاء العينة لهذه التجربة ثم أوجد احتمال كل من الأحداث الآتية:
- ا ظهور عدد فردی. اظهور عدد أولى زوجي. الظهور عدد أكبر من ٦

أجب عن الأسئلة الآتية :

١ اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- اً أفضل تقدير للعدد النسبي $\frac{1}{r}$ هو
- (۱) ۱۵٪ (ب) ۱۷٪ (ج) ۲۰٪
 - ا كريع العدد ٢٠٤ هو
- (۱) ٤٠ °٤ (١) (ج) ^{۱۹}۶ 1.7(2)
 - $= \mathbf{7} \mathbf{7} + \mathbf{7} \mathbf{7} = \dots$
- (ت) ۲۴ (a) 73 1(2)
- \mathfrak{T} طول ضلع المربع الذي مساحته ٩ \mathfrak{T} سنم هو ...
- (ب) ۲س۲ (ب) س۲ (i) (د) ۹ س
 - = \-T a
 - رب) 1 (ج) ٣ m-(2)
 - آ إذا كان : س > ٤ فإن :
- (۱) - > س (ج) الحراب (د) س < ٤

آ أكمل ما بأتي :

- $(\mathcal{I})^{\vee} (\mathcal{I}^{r} \circ \times \mathcal{I}) = \cdots$
- ا احتمال الحدث المؤكد بساوي
- ٣ إذا كانت : ٢ س = ٦ فان : س =
 - $\dots = {}^{\xi-1} \cdot \times \Upsilon, \Upsilon \vee \boxed{\xi}$

(أ) أوجد مجموعة الحل في ن لكل مما بأتي:

- ۲۵ = ۱ + ۰۰۰ ۲ آ 77 س + 7 ≤ 17
 - (ν) ضع فى أبسط صورة : $\frac{\delta^{-1} \times \delta^{\vee}}{\tau}$

- وجد ما یأتی فی أبسط صورة : $\left(\frac{1}{r}\right)^7 + \sqrt{\frac{37}{18}} + \left(\frac{r}{r}\right)^{-1}$
- - (ح) في المثلث ا ب ح إذا كان: $(1 1)^7 = 17$ سم ، $(- 2)^7 = 10$ سم المثلث ا أوحد: ٢٠ + ب
 - (1) إذا كانت: $-\omega = \frac{7}{7}$, $\omega = \frac{1}{7}$, $\omega = \frac{3}{7}$ أوجد في أنسط صورة : -v' ص ع
 - (ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى فما احتمال الحصول على:

آ عدد فردى أقل من ٤ ؟

 $\frac{2}{\sqrt{3}}$

(ج) ۲

(ج) ^{۲۷}٤

١ عدد أولى روجى ؟

إدارة قها توجيه الزراضيات - مسائى

 $(\iota)^{\frac{\lambda}{3}}$

0(1)

(د) ٤٢٢

Y(2)

(د)≥

محافظة القلبوبية

احب عن الأسئلة الأتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(۱) صفر (ب) ۱

T + T = T + T T

(ت) ع Y(1)

٣ ريع العدد ٢٠٤ هو

(ب) ٤١٩ °£(i) -

ع اندا کان : ۳۰۰۰ = ۲۰۰۰ تکون قیمة : $\mathbf{v} = \mathbf{v}$

(ج) ۱ r-(_) T(1)

'['](1-) '['](1-) o

(ج)≤ >(~) <(i)

٦ احتمال الحدث المؤكد يساوى

 \emptyset (L)F (چ) ۱ (۱)صفر

أكمل العبارات التالية:

- = '-(\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac}{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}
- ا إذا كان احتمال نجاح أحد الطلاب ٧,٠ فإن احتمال رسويه
 - $\dots = 0 \div \xi \cdot 17 \times 7 \boxed{\xi}$
- ٥ عند إلقاء قطعة نقود منتظمة مرة واحدة فإن احتمال ظهور الصورة
 - (i) أوجد مجموعة الحل في ك للمعادلة : $(-\omega \sigma)$
 - (-) ضع فى أبسط صورة المقدار : $\frac{\gamma^{\circ} \times \gamma^{-1}}{\gamma^{-1}}$
 - ر 1) أوجد قيمة ما يأتى فى أبسط صورة : $\left(\frac{-7}{\sqrt{7}}\right)^{\text{out}} \times \left(\frac{7-7}{6}\right)^{7}$
 - (+) أوجد مجموعة حل المتباينة فى (+) نام (+)
 - و (1) ثلاثة أعداد زوجية متتالية مجموعهم ٢٤ ، أوجد الأعداد الثلاثة.
 - (ب) عند إلقاء حجر نرد منتظم مرة واحدة أوجد:
- ١ احتمال الحصول على عدد زوجي. ٢ احتمال التصول على عدد أكبر من ٦

محافظة الشرقية

ادارة ديرب نجم توجيه الرياضيات - صباحى

(د) ۸

0-(1)

(د) -٤

أجب عن الأسئلة الآتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(ب) ۱۰

(ج) ۷

7 Vo7 =

0(1) (ب) ± ه (ج) ۲٥

(ب) ۱

 \mathbf{T} إذا كان: $\mathbf{v} = \mathbf{v}$ بن فإن: $\mathbf{v} = \mathbf{v}$

T (i)

(ب) ۳–

(۱) صفر

٤ احتمال الحدث المستحيل يساوى

(ج) ۱- ($\frac{1}{2}$ (2)

(چ) ٤

10 (2)

(د) ۱۰

 $\frac{3}{1-}$ (7)

7- (4)

	=	۲٠٤	العدد	ه ربع
--	---	-----	-------	-------

(i)
$$Y^{2}$$
 (i) Y^{2} (i) Y^{2}

أكمل ما يأتي بالإجابة الصحيحة :

- 1 عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور العدد ٥ هو
 - آ اذا كان: -س <-٤ فإن: س ٤
 - المعكوس الضربي للعدد (٣) ١ هو
 - ا ۲ ، ۲ ، ۲ ، ۲ ، ۸ ، (بنفس التسلسل)
 - العدد المحايد الجمعي في ك هو
 - وجد قيمة : $\left(\frac{\circ}{\tau}\right)^{2} \times \sqrt{\frac{\Lambda}{\tau \circ}} \times \sqrt{\frac{1}{\tau}}$
 - (ب) أوجد في ن مجموعة حل المتباينة: ٥ -س ٣ ≤ ٧
 - $\frac{\sqrt{Y-Y}\times \sqrt{Y-Y}}{\sqrt{Y-Y}}$ (1) أوجد في أبسط صورة:
 - (ب) أوجد في ك مجموعة حل المعادلة : ٢ -س + ٧ = ١٣

$V - T \times {}^{Y}(Y) + T + T = 0$

- (ت) حقيبة بها عشر بطاقات متماثلة ومرقمة من ١ إلى ١٠ سحبت بطاقة واحدة عشوائيًا. فها احتمال أن تكون البطاقة المسحوبة تمثل عددًا:
 - ٢ يقبل القسمة على ٣ ؟

محافظة المنوفية

رحب عن الأسئلة الاتية :

١ اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- ٦ احتمال الحدث المؤكد
- (ب) = ۱ (1)صفر
- (ج)> ۱
- مجموعة حل المتباينة : $-\omega \le 1$ في ط
- $\emptyset(1)$ $\{ \downarrow \} (\Rightarrow) \quad \{ \cdot, \, \downarrow \} (\downarrow) \qquad \{ \cdot \} (\downarrow)$

1>(7)

١٧ = ٥ + س + ٥ = ١٧ (ب) أوجد قيمة المقدار : ۱۲imes imes imes imes imes

V(i)

°o(i)

(1)

1(1)

آ أكمل ما بأتي :

..... = ^r(^r0) £

..... = \-(0) [0]

1 1/9 + 71 = 7 +

..... = °-7 × °7 [£]

- «مع توضيح خطوات الحل»
 - (ج) * أوجد العدد النسبي الذي إذا أُضيف إلى ثلاثة أمثاله كان الناتج مساويًا ٢٨
 - عند (۱) اختصر لأبسط صورة : $\left(\frac{\gamma}{0}\right)^{\gamma} \times \sqrt{\frac{\gamma}{17}} \times \left(\frac{\gamma}{\gamma}\right)^{\text{out}}$

٣ إذا كان : ٥ -س = ٥ فإن : ٢ -س + ١ =

(ج) ۱۷

(ج) ه^

 $\frac{1}{\sqrt{2}}$

(ج) ۲

(ب) ۸

(پ) ه۲

(ب) –ه

(ب) ۱–

٣ إذا كان: -- س > ٥ فإن: - س

إذا كان احتمال نجاح طالب ٧,٠ فإن احتمال رسويه

ان ا کان: م7..., -0 مان فإن: س =

- Y^- ر (1) إذا كان: $-\omega = \frac{1}{2}$ ، $\omega = \frac{1}{2}$ أوجد القيمة العددية للمقدار: $(-\omega + \omega)^{-1}$
- (ب) صندوق یحتوی علی ٤ كرات حمراء ، ٣ كرات صفراء ، ٦ كرات زرقاء سحبت كرة واحدة عشوائيًا. احسب احتمال أن تكون الكرة المسحوبة:
 - 1 حمراء. 1 ليست صفراء. ٣ خضراء.

44

(1) [1

إَدَارَةَ غَرَبُ طَنْطَاً توجيه الرياضيات - صباحى (ب)

محافظة الغربية

أدب عن الأسئلة الاتية :

١ اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- $\Gamma = \Gamma \times \Upsilon \times \Upsilon = \Gamma$
- (پ) ۱۳ (ج) ۲۰ Y1(1)
- ٦ اذا كان احتمال نحاح طالب ٨٥٪ فإن احتمال رسويه
- (۱) ۸۵٪ (ب) ۱۰۰٪ (ج) ۸۰٪ /Yo(1)
 - ٣ إذا كان : س > ٤ فإن : س
- $\xi = (\Rightarrow) \qquad \qquad \xi > (\downarrow) \qquad \qquad \xi < (1)$ (د)> ٤
 - ٤] إذا كان : ﴿ وَ عَلَى اللَّهِ عَلَى اللَّهِ اللَّهُ اللَّهِ اللَّهُ اللَّلْمُ اللَّهُ اللَّا اللَّاللَّا الللَّا اللَّهُ الللَّا اللَّا اللَّهُ الللَّهُ اللَّهُ اللَّا الللَّا ا
- 7-(1) (ب) –ه (ج) ه
 - ه ربع العدد ٤ ^٢ هو
- ۱۹ این ۱۹ ای
 - $\overline{\Gamma} \left(\frac{\gamma}{\gamma} \right)^{-1} = \cdots$
- $\frac{1}{\lambda\lambda}(7)$ $\frac{\Lambda}{VV}$ (\Rightarrow) $\frac{VV}{\Lambda}$ (\Rightarrow) $\frac{\Lambda}{VV}$ (1)

آ أكمل ما بأتي :

- اذا كان عمر رجل بعد ٦ سنوات هو س فإن عمره الآن هو سنة.
 - $-1\sqrt{17} + P = 3 + \dots$
 - $\cdots = \frac{7}{7-m}$
 - كالحتمال الحدث المستحيل بساوي
 - $\sim 1. \times 7.0 = 0.00$ فإن: $\omega = 1.00$

$\gamma = 0 - 0$ (1) أوجد مجموعة حل المعادلة الآتية في $\gamma = 0$

- (ب) اختصر لأبسط صورة : $\sqrt{\frac{29}{5}} \times (\frac{7}{V})^{\text{out}} \times (\frac{V}{V})^{-1}$
- - $\frac{1-\sqrt{x}}{\sqrt{x}}$ (ب) أوجد قيمة:

$$\frac{7}{7} = \frac{1}{7} \quad \text{if } \frac{1}{7} = \frac{1}{7} \quad \text{if } \frac{1}{7} = \frac{1}{7}$$

أوجد القيمة العددية للمقدار: ٤ س ص ع $^{\prime}$ ع الم

- (ب) صندوق يحتوى على ٤ كرات بيضاء ، ٥ حمراء ، ٦ زرقاء. فإذا سحبت منه كرة واحدة عشوائدًا. احسب احتمال أن تكون الكرة المسحوبة:
 - ١ حمراء. آ يىضاء أو حمراء.

محافظة الدقهلية

إدارة السنبلاوين توجيه الرياضيات - المدارش الصباحية

أجب عَنْ الدَّسْئِلَةِ الدِّيَّةِ: ﴿ (يسوح بِاستخدامِ الدَّلَةُ الحاسبةُ)

- ١ احتر الإجابة الصحيحة من بين الإجابات المعطاة:
- $7 \cdot \cdot (1) \qquad \qquad 1 \cdot \cdot (2) \qquad \qquad 1 \cdot \cdot \cdot (2)$
 - - آ إذا كان : ٣ -س + ٢ = ٥ فإن : ٦ -س + ٤ =
 - ١(١) (ب) ۸ (ج) ۲ 1. (2)
 - ٣] إذا كان احتمال نجاح طالب هو ٨٠٪ فإن احتمال رسويه
 - (i) $\frac{1}{6}$ (c) $\frac{1}{6}$
 - ع نصف العدد ٢٠٠ هو
 - \·\ (i) (ب) ۲° (L) Y (ج) ۲۰

محافظة السويس

أجِبَ عَنَ النَّسَئِلَةُ الْاَتِيةِ : ﴿ (يسمِح باستخدامِ النَّاةُ الحاسبةُ)

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- $T \times Y = \dots$
- (ب) ۲۲ (ج) ۲ 1 (2)
 - آ مجموعة حل المتباينة : -س < ٢ في ط هي</p>
- $\{\cdot\}$ (i) (ب) {۱} (خ) {۱،۰} \emptyset (2)
 - ٣ احتمال الحدث المؤكد يساوى
- **(1)** (پ) صفر (ج) ۲ ٠,٥ (٤)

 - - - E (1) -(ب) ۸ (ج) ۱۰ (د) ۲
 - = ^r(^r-_{\sigma}) [0]
- (۱) س- (ب) س- ۱ (ج) س (c)
 - $\frac{1}{2}$ العدد $\frac{1}{2}$ =
- // (1) (ب) ۲۰٪ /10 (2) (ج) ۲۵٪

آ أكمل ما بأتى:

- 1 137 + 77 =
- آعند القاء قطعة نقود مرة واحدة فإن احتمال ظهور صورة يساوى
 - ٣ إذا كان: ٣ -س = ٣ فإن: -س =
 - المعكوس الضربي للعدد النسبي $\left(-\frac{1}{Y}\right)$ هو

اختصر لأبسط صورة كلًا مها بأتى:

ه اذا كان: - س < ٣ فإن:

(c)~(c) T-> (二) T> (一) T< (1)

(ب) ٤-٤ $\frac{1}{2}(z)$ $\frac{1}{2}(\div)$ ٤ (١)

آ أكمل:

[۱] أصغر عدد مكون من ٤ أرقام يمكن تكوينه من الأرقام ٢ ، ٢ ، ٠ ، ٧

 $\frac{1}{\sqrt{1-r^2}} = 1 - \frac{1}{\sqrt{r^2}}$

٣ المعكوس الضربي للعدد ٧٩٤٫٠ هو

ع الصورة القياسية للعدد: ١٢٠ × ١٢٠ =

٥ احتمال وقوع أي حدث لا يقل عن ولا يزيد عن

 $[\Upsilon \times \Upsilon - \Upsilon + \Lambda \times \Upsilon] + \Upsilon$ (ب) أوجد قيمة : ه

اختصر لأبسط صورة: $\left(\frac{1}{r}\right)^{\gamma} + \left(\frac{r}{r} \times \frac{r}{r}\right)^{-1} \times \sqrt{\frac{1}{1}}$

(ب) أوجد مجموعة الحل في ك للمتباينة : ٦ -س + $Y \ge 0 + T$ -س

 $\frac{1}{7} = \frac{1}{7} = \frac{1}{7}$ ثم أوجد قيمة الناتج عندما: $\frac{1}{7} = \frac{1}{7} = \frac{1}{7}$

(ب)سحبت بطاقة عشوائيًا من ١٢ بطاقة مرقمة من ١ إلى ١٢ اكتب فضاء العينة ثم احسب احتمال الأحداث الآتية :

1 حدث الحصول على عدد مربع كامل.

آحدث الحصول على عدد أكبر من ٩

٣ حدث الحصول على عدد يقبل القسمة على ٤

٤ أوجد مجموعة الحل في ك لكل من:

و (أ) إذا كان :
$$-\omega = \frac{-7}{7}$$
 ، $\omega = \frac{1}{7}$ ، $\omega = \frac{-3}{7}$ أوجد فى أبسط صورة القيمة العددية للمقدار : $-\omega^7 \times \omega^7 \times \omega^7$

- (ب) صندوق به ٥ كرات بيضاء ، ٤ كرات حمراء ، ٦ كرات سوداء. سحبت كرة واحدة عشوائيًا. أوجد احتمال أن تكون الكرة المسحوبة:
 - ۲ سوداء.

۱]بیضاء.

ادارة فوه توحيه الرياضيات

محافظة كفر الشيخ

أحب عن الأسئلة الآتية :

١ اختر الإجابة الصحيحة من بن الإجابات المعطاة:

- ازا کانت : 5.000 نانت : 5.000 نانت : 5.000 نانت : 5.000 نانت : 5.000
 - (ج) –ع
- (ب) ه ٤(١)

 - آ إذا كان : ه ص = ه ١ فإن : ٧ ص =
 - (۱) ۲۷ (ب) ۲۷ (ج) ۲۰ (۱
- ٣ عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد أولى يساوى
 - (د) 🥱

(د)٥

0-(1)

(د)٣

 $\frac{1}{2}(\dot{\varphi}) \qquad \frac{1}{2}(\dot{\varphi}) \qquad \frac{1}{2}(\dot{\varphi})$

(ج) ۲^{۲۲}

- - - عَ تَلَثَ العدد ٣°١ =

 - 127 (-) °T(1)
- ه إذا كانت : س = ه . . فإن : س^{-۱} =
- Y-(1) (ب) ۲ (ج) −٥ 0(1)
 - $[7]3 + 3 \times 3 \div 3 + 7^7 = \dots$
- 17(-) (ج) ۱٦ ٤(١) (د)٨

أكمل كلًا مما بأتي:

- -= {·} b [
- التسلسل) ۱۳،۸،۰،۲،۲،۱۳
 - ٤ مجموعة حل المتباينة : -س < ١ في ط هي
- ه إذا كان احتمال نجاح طالب ه٤٪ فإن احتمال رسوبه
 - $9 = 8 + \infty$ أوجد مجموعة الحل في ك للمعادلة : 9 1 + 3 = 9
 - (ν) اختصر لأبسط صورة : $\left(\frac{\tau}{0}\right)^7 \times \sqrt{\frac{\tau_0}{4}} \times \left(\frac{\tau}{0}\right)^{-\frac{1}{4}}$
- (ج) * عددان طبيعيان الفرق بينهما ٧ ومجموعهما ٢٣ ، فما هما العددان ؟
 - ١٥ < ١٠) أوجد مجموعة الحل في ك للمتباينة : ١ ٧ س > ١٥
- $\Upsilon=-\frac{\sqrt{1-2}}{1-2}$ ثم أوجد قيمة الناتج عندما: $-\omega=\gamma$

7 نا إذا كان: 1 ا 1 ، 2 ، فأوجد القيمة العددية للمقدار: 7 ،

- (ب) صندوق يحتوى على ٦ كرات حمراء ، ه كرات زرقاء ، ٤ كرات بيضاء ، جميع الكرات متمائلة ، سحبت كرة واحدة عشوائيًا ، احسب احتمال أن تكون الكرة المسحوبة:
 - 1 حمراء.

محافظة البحيرة

إدارة الدلنجات توجيه الرياضيات - نموذج (ب)

أجب عن الأسئلة الأتية :

١ أكمل ما يأتي :

- 1 إذا كان احتمال رسوب طالب ١٥٪ فإن احتمال نجاحه
- آ إذا كان عمر رجل الآن س سنة فإن عمره منذ ٤ سنوات هو سنة.
 - المعكوس الجمعي للعدد $\left(rac{-1}{2}
 ight)^{ ext{odd}}$ هو
 - \mathfrak{L} إذا كان : \mathfrak{L} ، \mathfrak{L} و \mathfrak{L} فإن : \mathfrak{L}
 - T' + T' + T' = T

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- $\cdots = \xi \div \lambda + \gamma \gamma$
- (ب) ۱٤ 0(1)
- - (ج) ٣ (ب) –٤
 - $\frac{70}{5}$ (ψ) $\frac{0}{7}$ \pm (\dagger)

.... = "-(Y) [E]

 $\frac{\circ}{\varsigma}$ (\Rightarrow)

(ج) ۸

(د) ۱۱

(د) ۳–

(د) ۲,٥

 $\frac{\sqrt{}}{1}$ (7)

(د) ۲۰

- $\frac{1}{\Lambda}$ (a) Λ (b) Λ (c) Λ
- آ إذا كان : ٢ س = ٦ فإن : ٥ س =
 - ۱۰ (ج) ۳۰ (ب) ۱۰ (۱)
- مجموعة حل المتباينة : -0 < 7 في ط هي
- $\{1, 1, 1, \dots\} (1) \quad \{1, 1, 1\} \quad (2) \quad (2) \quad (3) \quad (4) \quad (5) \quad (7) \quad (7)$
 - ٢ (1) أوجد مجموعة الحل في ن:
 - 11>1-0-1
 - (ب) أوجد قيمة : ۱۲ × 7 + ۲۲ + 7
 - ك (أ) اختصر لأبسط صورة :
 - $1 \left(\frac{\gamma}{\tau}\right)^{7} + \sqrt{\frac{\gamma_{0}}{\Lambda}} \left(\frac{\gamma}{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$
- (ب) زاویتان متتامتان قیاساهما ۲ س° ، س° ۱۵° أوجد قیاس کل منهما بالدرجات.
 - و (1) إذا كان: $-u = \frac{-1}{7}$ ، $cong = \frac{7}{7}$ أوجد قيمة: $\left(\frac{cong}{7}\right)^{-1}$
 - (ت) عند إلقاء حجر نرد منتظم مرة واحدة وملاحظة السطح العلوي.
 - أوجد احتمال ظهور: ١ عدد أولى.
 - ۲ العدد ٥
- ٣ عدد مربع كامل.

محافظة الغيوم

أحب عن الأسئلة الأتية :

١ أكمل ما بأتي:

- المعكوس الضربي للعدد $\left(\frac{\tau}{2}\right)^{-1}$ هو
- (بنفس التسلسل) ۱۳،۸،۰،۲،۲ (، سیاسل)
 - $7 \times 7 3 = \dots$
 - ك احتمال وقوع الحدث المؤكد بسياوي
 - = "o × 10 o
 - مجموعة خل المعادلة : -u + o = Y في ط هي

اختر الإجابة الصحيحة من بن الإجابات المعطاة:

- راً نصف العدر ٢٠٢ =
- رز) ۲^{۱۹}۲ (غ) ۲^{۱۹}۲ (غ) ۲^{۱۹}۲ (غ) (د) ۶۰
 - 77 + 37 = 7 +
- (ب) ۶ (ب) ۸ (۱) 7-(4)
 - ٣ إذا كانت : س + ٩ = ١١ فإن : ٧ س =
- V(i) (چ) ۱۶ (ب) ۲ 11(2)
- ٤ عند إلقاء قطعة نقود مرة واحدة فإن احتمال ظهور صورة يساوى
 - (ب) ^۲ (ج) 1(1) $\frac{\pi}{1}$ (2)
 - (ج) ۳ (ب) ۲ 1(1) (د) ٤

آ أوجد مجموعة حل كل مما يأتي في ن:

- To = 1 + 0- T 1
- ۲ ۲ س + ۱ > ۷

- اً (أ) أوجد فى أبسط صورة قيمة المقدار: $\frac{Y-Y}{Y_{V,v}}$
- $\left(\begin{array}{c} \left(\begin{array}{c} \gamma \end{array} \right)^{7} \times \sqrt{\frac{71}{\Lambda}} \times \left(\begin{array}{c} \frac{7}{\Gamma} \end{array} \right)^{2} \end{array} \right)$ (ب) اختصر لأبسط صورة :
- نا کانت: $-\omega = 1$ ، $\omega = \frac{1}{2}$ فأوجد في أبسط صورة قيمة المقدار: $-\omega'$ ص ω'
- (ب) صندوق بحتوى على ٤ كرات بيضاء ، ٥ كرات حمراء ، ٦ كرات زرقاء فإذا سحبت كرة واحدة عشوائيًا ، فاحسب احتمال أن تكون الكرة المسحوبة :
 - ۲ خضراء. ۱ حمراء.

(د) ۲

1. (2)

(L) Y

إدارة سمسطا

محافظة بنى سويف

أجب عن الأسئلة الأتدة :

١ اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- آ إذا كانت : س + ٩ = ١١ فإن : ٧ س =
 - (پ) ۹ (ج) ۱۶ V(i).
 - آ احتمال الحدث المؤكد يساوى
 - (أ) صغر (ب) ١ · , ٥ (ج)
 - $T^{\gamma} \times T^{\gamma} = \cdots = T^{\gamma} \times T^{\gamma}$

۲(۱) ۲

- (پ) ۲۲
- (خ) ۲۸؍
- - المعكوس الضريي للعدد (-٣)صفر هو
- ١- (ب) ٣- (ب) ٣ (١) 1(2)
 - $-\frac{1}{2}$ فإن: $-\omega = \frac{1}{2}$ فإن: $-\omega^{-1} = -\omega$
- $\frac{\lambda}{k^-}$ (7) $\frac{7}{7} (\Rightarrow) \qquad \frac{7}{7} (\downarrow) \qquad 1 - (\downarrow)$
- (ت) ۶۰ 17. (2) (ج) ۸ Y. (i)

آ أكمل ما بأتي:

- أ عند إلقاء قطعة نقود مرة واحدة فإن احتمال ظهور صورة يساوى
 - = <u>77-1..</u>
 -= £ × 1 + T T
 - ك ٢,٥ كيلو جرام = حرام.
 - الحد الجبرى ه " من الدرجة
- (1) احسب قيمة ما يأتى في الصورة القياسية : (1, 0, 0, 0) $\div (0, 0, 0)$
 - (ν) اختصر إلى أبسط صورة : $(\frac{\gamma}{\gamma})^{\gamma} \times \sqrt{\frac{\gamma_{1}}{\Lambda_{1}}} \times (\frac{\gamma}{\gamma})^{\min}$
 - و (أ) أوجد مجموعة حل المعادلة في ω : ٢ ω τ = 0
 - (-) أوجد مجموعة حل المتباينة في + + + + + +
 - ر 1) أوجد ناتج: ٥^{٢ × ٥-٥}
- (ب) صندوق يحتوى على ٥ كرات حمراء ، ٣ كرات صفراء ، ٧ كرات بيضاء ، فإذا كانت جميع الكرات متماثلة وسحبت كرة عشوائيًا ، أوجد احتمال أن تكون الكرة المسحوبة:
 - ا يضاء. ِ ٣ خضراء.

محافظة المنيا

ادارة سمالوط

أحب عن الأسئلة الأثية :

١ أكمل ما بأتي :

- 🚺 احتمال الحدث المستحيل بسياوي
 - 1 1/9 =
- \dots فان: u = 177, AV فان: u = 177, AV
 - 3 7⁻⁷ =
- 💿 إذا كان احتمال نجاح طالب 💍 فإن احتمال رسوبه يساوى

 $\frac{1}{2}(2)$

(د) ه

(د) س

:	المعطاة	الإجابات	بين	من	الصحيحة	الإجابة	ً اختر

 =78-1.	.11

(i) one
$$(-1)$$
 (-1) (-1) (-1)

$$r - < \omega - (1)$$
 $r < \omega - (1)$ $r > \omega - (1)$

٦ ثلث العدد ٣٥٣ هو

$$(1)$$
 γ° (2) γ° (3)

$\left(\begin{array}{c} 1 \end{array} \right)$ اختصر لأبسط صورة : $\left(\begin{array}{c} \frac{\tau}{2} \end{array} \right)^{2} imes \sqrt{\frac{\tau \Gamma}{\Lambda}} imes \left(\begin{array}{c} \frac{\tau}{2} \end{array} \right)^{\min}$

 $\Lambda = \Upsilon + \omega$ ووجد مجموعة حل المعادلة الآتية في $\omega : \Upsilon - \omega + \Upsilon = \Lambda$

ر 1) ضع في أبسط صورة قيمة المقدار : $\frac{\gamma^{-\gamma} \times \gamma^{\gamma}}{\gamma^{2}}$

(ب) أوجد مجموعة الحل للمتباينة الآتية في ن: ٢ - ٠ - ٥ > ٢٥

ن (أ) إذا كانت: $-w = \frac{7}{7}$ ، w = 3 فأوجد قيمة المقدار: w = -1

(ب) إذا سحبت بطاقة عشوائيًا من تسع بطاقات مرقمة من ١ إلى ٩ فأوجد احتمال أن تكون البطاقة المسحوبة تحمل عددًا:

٢ يقبل القسمة على ٣

(ج) * عمر رجل الآن ثلاثة أمثال عمر ابنه وبعد سنتين يصبح مجموع عُمريهما ٥٢ سنة أوجد عُمر كل منهما الآن.

۱۹ محافظة سوهاج

أجب عن الأسئلة الأرتية :

ا ختر الإجابة الصحيحة من بين الإجابات المعطاة:

1 إذا ألقيت قطعة نقود مرة واحدة فإن احتمال ظهور صورة يساوى

$$\frac{1}{7} (\div) \qquad \frac{1}{7} (\div) \qquad \frac{1}{5} (\dagger)$$

المعكوس الجمعى للعدد
$$\left(-rac{1}{Y}
ight)^{
m out}$$
 هو

$$(-1)$$
 (د) $\frac{\gamma}{\gamma}$ (ح) (-1)

$$(i) Y^2 \qquad (i) Y^r \qquad (i) Y^r$$

آ أكمل ما يأتي :

$$\boxed{1} \ \ 7 \times F - 3 \div 7 = \dots$$

	- 11	111 1	-
I MOUNT	μ	امتحانات	_
	J-, ,		

- المنافعة : $\frac{7^{4} \times 7^{7}}{1_{7} \times \frac{7^{4}}{1_{7}}}$ مع توضيح الخطوات.
- (\cdot,\cdot) إذا كانت: $-v = \frac{\gamma}{\gamma}$ ، $cong = \frac{1}{\gamma}$ أوجد قيمة: $-v^{\gamma} = 0$
 - ا أ) أوجد مجموعة حل المعادلة الآتية في ك : ٢ س + ١ = ١١
 - (ب) أوجد مجموعة حل المتباينة الآتية في ن: ٣ س + ١ < ١٢
 - صفر (۱) اختصر لأبسط صورة : $\left(\frac{-7}{7}\right)^7 \times \sqrt{\frac{11}{17}} \times \left(\frac{\circ}{\sqrt{11}}\right)^{\circ -1}$
 - (ب) إذا ألقى حجر نرد منتظم. فأوجد الاحتمالات الآتية:
- الحصول على عدد أكبر من ه
 الحصول على عدد أولى.

(د) ۲۸

إدارة إسنا مدرسة إسنا الإعدادية بنين محافظة الأقصر

أدَّت عن الأسئلة الأثية :

١ اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- آ نصف العدد ^{۱۰}۲ =
- ۱٬۲ (غ) ۹۲ (ب) ۴۲ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲ (۱) ۲۰ «۲
 - + 7° + 7° =
- ۱۰۹ (۵) ۹ (۵) ۹ (۵) ۲۳ (۱) ۹ (۵) ۲۳ (۱) ۱۹ (۵)
 - ٣ إذا كان: ٢ س = ٤ فإن: ٣ س =
- ٩ (١) ٢ (١)
- كَ إذا كان احتمال نجاح طالب في الامتحان ٧,٠ فإن احتمال رسويه
- $(1) \Gamma, \cdot (2) \circ (2) \circ (2) \circ (2)$
 - آإذا كان : - س > ٤ فإن : س
- $\leq (\iota)$ $\geq (\dot{\varphi})$ $\geq (\dot{\varphi})$
 - \mathbb{T} إذا كان: \mathbb{T}^{N} \mathbb{T}^{N} فإن: \mathbb{T}^{N}
- ٤ (١) ٢ (١) ٢ (١)

- آ أكمل ما يأتي:
- · = °-Y × Y 1
- آ إذا كان تلث عدد هو ٦ فإن هذا العدد هو
- عند إلقاء قطعة نقود منتظمة مرة واحدة فإن احتمال ظهور صورة على الوجه العلوى هو
 - ا نفس التسلسل) ، ۹،۶،۹،۶، ۲۵،۹،۶ (بنفس التسلسل)
 -+ € = 9 + 17√0
 - (أ) أوجد مجموعة الحل في ن:

٩ < ٣ + س - ٢] - س - ٢]

- (ب) أوجد قيمة المقدار : ۱۲ imes ۲۲ + ۲۲ + ۲۲ +
 - ا أ) اختصر لأبسط صورة : ٢٠ × ٢٠٠٠ المنتصر
- (ν) اختصر لأبسط صورة : $(\frac{7}{7})^7 \times \sqrt{\frac{17}{14}} \times (\frac{7}{7})^{0.06}$
- (أ) * مستطيل طوله ضعف عرضه ، فإذا كان محيطه ٣٦ سم ، فأوجد كلًا من الطول والعرض.
- (ب) صندوق به مجموعة من الكرات المتماثلة ، ٦ كرات حمراء ، ٤ كرات زرقاء ، ٢ كرة بيضاء ، فإذا سحبت كرة عشوائيًا. أوجد احتمال أن تكون الكرة المسحوبة :
 - <u>آ</u>حمراء. آسوداء.
 - ٣ حمراء أو زرقاء. ٤ ليست زرقاء.

امتحانات بعض مدارس المحافظات في الحير والتصلي

ادارة الوايلي توجيه الرياضيات

محافظة القاهرة

أحب عن الأسئلة الأتية :

واختر الإجابة الصحيحة من بين الإجابات المعطاة:

(١) احتمال الحدث المؤكد =

Ø(2) (ح) ۲ (أ) صفر (ب) ١

(۲) إذا كان : ه س = ۲۰ فإن : ۳ س =

1. (2) (ح) ۱٥ (۱) ٤ (پ) ۲۲

المعكوس الجمعى للعدد $\sqrt{\frac{3}{70}}$ هو

 $\frac{7}{2}$ (\Rightarrow) (د) ک $\frac{\circ}{\tau}$ (-1) $\frac{\tau}{\tau}$ (-1)

 $\cdots = \Upsilon, - \Upsilon \times \Sigma$

17-(2) 17 (=) (ت) ۸۸ **TY**(1)

(ان اکان: س > ص ، ع > صفر فإن: س ع ص ع

(∠)≤ $\leq (\div)$ $> (\cdot)$ < (i)

 $f(x) = \frac{1}{|x|} = \frac{1}{|x|} = \frac{1}{|x|} = \frac{1}{|x|} = \frac{1}{|x|}$

 $\gamma (\Rightarrow) \qquad \frac{1}{L} (\uparrow) \qquad \frac{1}{L} (\downarrow)$ (د) صفر

أكمل ما بأتي :

() عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور العدد ٣ على الوجه العلوى

(Y) اذا کان: ۹۱،۰۰۹ و $(X \times 1)^{N}$ فإن: $(N \times 1)^{N}$

 $(7) \sqrt{(-1)^{7} + (-1)^{7}}$

 $(-\infty + \infty)^{-1} = 1$ نوا کان : $(-\infty + \infty)^{-1} = 1$

هجموعة حل المتباينة : $Y < -v \le 3$ في ط هي

اختر الإجابة الصحيحة من بن الإجابات المعطاة:

 $\gamma^{\gamma} + \gamma^{\gamma} = \gamma^{\gamma} + \gamma^{\gamma}$

(ب) ۲ ٦٢ (١١) (ج) ۲³ (د) ۱

(٢) أي من الآتي هو الأكبر ؟

 $(1)^{7}, 7 \times 7)^{3} \qquad (2)^{7}, 7 \times 7)^{0} \qquad (2)^{7}, 7 \times 7)^{3} \qquad (3)^{7}, 7 \times 7)^{3} \qquad (4)^{7}, 7 \times 7)^{3} \qquad (5)^{7}, 7 \times 7)^{3} \qquad (7)^{7}, 7 \times 7)^{3} \qquad (8)^{7}, 7 \times 7)^{3} \qquad (1)^{7}, 7 \times 7)^{7} \qquad (1)^{7}, 7 \times 7)^{7}$

 $^{\circ}$ طول ضلع المربع الذي مساحته ٩ س سم هو سنم حدث س $^{\circ}$

(۱) ۳ س (د) ۹ س (د) ۹ س (۱)

(٤) أي مما يأتي يمكن أن بكون احتمالًا لحدث ما ؟

/ \nabla \cdot \cd

(٥) إذا كان : - - - > ٤ فإن :

 $\xi > \psi - (1) \qquad \xi - \psi - (2) \qquad \xi < \psi - (1) \qquad \xi - \xi = \xi$

📆 (أ) 🛠 عددان صحيحان أصغرهما ٢ س وأكبرهما ٥ س ، فإذا كان الفرق بينهما ٣٠ أوحد العددين.

(v) أوجد في أبسط صورة قيمة المقدار : $\frac{v_0^2 \times v_0^2}{v_0^2}$

🚺 (أ) أوجد مجموعة الحل في في لكل من:

17 = 0 + (7 + 2 - 7)

19 > 10 + w Y (Y)

 (ν) أوجد قيمة ما يأتى في أبسط صورة : $\left(\frac{1}{V}\right)^{Y} + \sqrt{\frac{7\zeta}{M}} - \left(\frac{\gamma}{V}\right)^{\alpha\dot{\alpha}\dot{\alpha}}$

🚺 (أ) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوي ،

ما احتمال الحصول على: () عدد أولى زوجى ؟ (٢) عدد فردى أقل من ٤ ؟

 $\frac{\gamma}{2} = -\frac{\gamma}{2}$ ، ص $= -\frac{\gamma}{2}$ ، ص

فأوجد في أبسط صورة القيمة العدديه للمقدار : $\left(\frac{\alpha_0}{\gamma}\right)^{-\gamma}$

(د) ۲°

(د) س

1. (3)

- 1\ (أ) أوجد مجموعة الحل في ن للمعادلة : ٢ -س + ه = ١١ -
 - $\left[(+)\right]$ احسب قيمة ما يأتى : $\mathbb{T}+\left[0+\mathbf{T}\left(\lambda+\hat{\mathbf{x}}\right)\right]$
- 1. < 1 + 1 أوجد مجموعة الحل في ف للمتباينة : 1 1 + 1 = 1
- (ب) أوجد قيمة ما يلى في أبسط صورة: $\frac{9^2 \times 9^2}{9^2 \times 9^2}$ حيث $9 \neq 0$
- (أ) إذا كان احتمال نجاح تلميذ في أحد المواد هو ٧٥,٠ فيكون احتمال رسوبه في هذه
- (ب) صندوق به ٥ كرات بيضاء ، ٤ سوداء ، ٦ حمراء سحبت كرة واحدة عشوائيًا من الصندوق. أوجد احتمال أن تكون الكرة المسحوبة:
 - 🕎 ليست بيضاء.

إدارة البساتين ودار السلام توجيه الرياضيات

محافظة القاهرة

أجِب عن الأسئلة الآتية :

🕥 سوداء.

🚺 أكمل ما يأتي :

- 🕦 احتمال أي حدث لا يقل عن ولا يزيد عن
 - $\frac{q}{q} = r (\sqrt{q})$
- - اذا کان: = ٩ فان: ١٠- =

 $\frac{1}{r}$ (φ)

مجموعة حل المتباينة : $7 < -\omega \leq 0$ في ط هي

📆 اختر الإجابة الصحيحة من بن الإجابات المعطاة:

- (1) 7° × 7° =
- ۱۰_٥(۱)
- (ب) ۲۰۰ (ج) ۲°
- (L) FOY
- عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد أولى يساوى
 - F (1)

 - $\frac{1}{1}$ (\Rightarrow)

- نصف العدد $^{7.7}$ =
- (ب) ۲۸۲ 197 (1)

 - (i) س^۳ (نِ) س
 - $\cdots = \overline{\chi} + \chi_{\perp}$
 - ٦ (ت)
- المعكوس الجمعى للعدد $\left(\frac{-7}{0}\right)^7$ هو
- Yo- (1) Yo (≈) $\frac{\xi-}{\gamma_0}(\omega) \qquad \frac{\xi}{\gamma_0}(1)$

(خ) ۲

(ج) س^۹

(چ) ۱٤

- 📲 أوجد مجموعة الحل في ك لكل من:
 - (۱) ۲ س + ه = ۱۳
- $r \geq v v r$
 - ا أ) اختصر لأبسط صورة : $\left(\frac{\circ}{V}\right) imes \sqrt{\frac{\overline{\rho}\overline{2}}{0}} \left(\frac{\gamma}{V}\right)^{\text{out}}$
- (ب) سُحبت بطاقة عشوائيًا من ثماني بطاقات مرقمة من ١ إلى ٨
 - أوجد احتمال كل من الأحداث الآتية:
- 🕥 حدث الحصول على عدد زوجي أكبر من ٤ 🔻 حدث الحصول على عدد أولى.
 - - اختصر لأبسط صورة: $\frac{\sqrt{1} \times \sqrt{1}}{\sqrt{1}}$ حيث $\frac{1}{\sqrt{1}}$ حيث $\frac{1}{\sqrt{1}}$
 - وأوجد القيمة العددية للناتج عندما = ١
 - (v) احسب قيمة : $\frac{\Lambda \times \Lambda^{-1}}{r-1}$

محافظة القاهرة

إدارة شرق مدينة نصر توجيه الرياضيات

أجِب عن الأسئلة الآثية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- (د) -٥ (ج) –ع (ب) ٤

محافظة الحيزة

°9 (1)

(ب) ۳۳ (ج) ۳۵۳

..... + 7° + 7° = °T + °T (₹)

آ مجموعة حل المتباينة : ٣ < -س < ٤ في ط هي

 $\{\xi, \Upsilon\} (\Rightarrow) \qquad \{\xi\} (\downarrow) \qquad \{\Upsilon\} (1)$

 $3\sqrt{\frac{67}{83}} = \dots$

 $\frac{\sqrt{\sqrt{-1}}}{\sqrt{1+\sqrt{1+1}}}$ (ب) 👴 <u>⋄</u>± (⇒)

(المحتمال الحدث المؤكد =

 $\frac{1}{2}$ (†) (چ) ۱ (ب) صفر 1(1)

..... = ²(")

(أ) سع ٤٠×٤٠× (ع) ٢٠×٣٠ (ج) (ب) 🕶

👔 أكمل ما يأتي :

..... = $\Upsilon \div 1\Upsilon - 0 \times \xi$

 Υ أصغر الكسور الآتية : $\frac{1}{7}$ ، $\frac{7}{3}$ ، $\frac{6}{5}$ ، $\frac{9}{17}$ هو

🍸 المعكوس الجمعى للعدد 😽 هو

🖹 إذا كانت : ٢ س = ٨ فإن : ٦ س =

عند إلقاء قطعة نقود مرة واحدة فإن احتمال ظهور الصئورة =

 $\left(\begin{array}{c} 1 \end{array}\right) \stackrel{\wedge}{} \left(\begin{array}{c} \gamma_0 \\ \gamma_V \end{array}\right) \times \left(\begin{array}{c} \gamma_0 \\ \gamma_V \end{array}\right) \times \left(\begin{array}{c} \gamma_0 \\ \gamma_V \end{array}\right)$ وجد قيمة ما يلى في أبسط صورة :

(ب) أوجد مجموعة حل المعادلة: ٢ س - ١ = ٥ حيث س ∈ ن

 $\frac{\sqrt[8]{6} \times \sqrt[8]{6}}{7}$: أوجد قيمة أوجد أ

1 44

(ب) أوجد مجموعة حل المتباينة : $0 - \lambda \le V \le \Delta$ عيث $- \omega \in U$

نا اختصر لأبسط صورة $\begin{pmatrix} \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \end{pmatrix}$

(ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى. أوجد احتمال كل من:

ظهور عدد زوجی.
 ظهور عدد أكبر من ٤
 ظهور العدد ٧

ا أكمل ما يأتي :

(١) احتمال الحدث المستحيل =

 $(7)\sqrt{1-37} = \dots$

 $(7)^{-7} = \cdots$

(على الصورة القياسية) ----٥٨ = ------------

 $\cdots = {}^{\mathsf{Y}}{}^{\mathsf{Y}} - {}_{\mathsf{O}} \div {}_{\mathsf{T}} \bullet$

آخر الإجابة الصحيحة من بين الإجابات المعطاة :

المعكوس الجمعى للعدد $\sqrt{\frac{2}{p}}$ هو

 $\frac{Y}{\pi} - (\Rightarrow)$ $\frac{Y}{\pi} (\downarrow)$ $\frac{\xi}{a} (1)$ $(c) \frac{3}{8}$

😙 محموع الجذرين التربيعيين للعدد ٢٥ هو

(د)صفر (ب). –ه . (ج) 0(1)

(د) ه (چ) ٤ (ب) ۳

٤ ألقى حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد أصغر من ١

 $\frac{1}{\sqrt{2}}$ (\Rightarrow) \emptyset (ب) $\frac{1}{7}$ (i) (د)صفر

العدد الذي بحقق المتباينة : -س - ۲ > ۱ هو

(د) ٤ (ج) ٣ 1(1)

آ ريع العدد ٤٠٠ =

(د) ٤٠٢ (ج) ٤ °£(1) (ب) ۲۰۶

1.(2)

- وجد قيمة : $\frac{(\xi-1)^{\circ} \times (\xi-1)}{(\xi-1)^{\circ} \times (\xi-1)^{\circ}}$
- (ب) أوجد مجموعة حل المتباينة : ٢ س + ١ \geq ٥ في (
- - فما احتمال سحب بطاقة:
- ٣ تحمل عددًا يقبل القسمة على ٣?

محافظة الحيزة

- - ٤ إذا كان: -س = ٩ ، ص = ٧

 $= (ص - \bar{\psi}) = 1$ فإن القيمة العددية للمقدار :

- (i) 79 (c) (c) (c)
- إذا كان: ۱ + ٤ > صفر فإن: ۱ >
- (أ) صفر (ب) ٤

- - (ب) حل المعادلة: ٥ س ١ = ١٩ في ص
- ان کان: $\mathbf{r} = \frac{\mathbf{r}}{\mathbf{r}}$ ، $\mathbf{r} = \frac{-3}{\mathbf{r}}$ فأوجد قيمة: $|\mathbf{r}| \div \mathbf{r}'$
 - (ب) مجموعة بطاقات مرقمة من ١ إلى ١٠ سحبت بطاقة عشوائيًا
- 🕦 تحمل عددًا زوجيًا ؟

(2)

أجِب عن الأسئلة الأتية :

🐧 أكمل ما ىأتى :

- (١ احتمال الحدث المستحيل يساوى
- إذا كان: ٣ ص = ٥١ فإن: ٧ ص =
 - = ,, ₹ 7 \ (٣)
 - $\cdots = \frac{1}{\sqrt{\frac{L}{c}}} \left(\frac{L}{c} \right) \sqrt{c}$

اختر الإجابة الصحيحة من بين الآجابات المعطاة:

- $\underbrace{777 0^{3}}_{797 7} = \dots$

- (د) -۱ (ج)

- ٣ عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد زوجي يساوي
 - (د) **صفر.** (ج) ربع. (ب) نصف،
 - (٤) مربع مساحته ٤٩ س سم فإن طول ضلع المربع يساوىسم.
 - (د) ۱٤ س (چ) ۷ (۱) ۷ س^۲ (ب) ۷ س
 - (a) $\sqrt{37 + 77} = \dots$
 - ٠٠ (ج) (پ) ۲۰

 - $(i) \left(\frac{1}{3}\right)^{\text{out}} + \frac{1}{2} = \dots$
 - (L) \frac{7}{4} $\frac{\circ}{\circ}$ (\Rightarrow) (ب) ۲۵ ° (i)
 - ن (ز) ضع المقدار : $\left(\frac{1}{Y}\right)^{Y} \times \left(\frac{-1}{Y}\right)^{Y}$ في أبسط صورة.
- (ب) سُمحبت بطاقة عشوائيًا من بطاقات مرقمة من ١ إلى ١٠ ما احتمال أن تكون البطاقة تحمل عددًا فرديًا ؟
 - $\frac{\gamma_0}{2} \sqrt{\frac{\gamma_0}{2}} \times \frac{\gamma(\frac{\gamma_0}{2})}{1} \times \frac{\gamma(\frac{\gamma_0}{2})^{-1/2}}{1}$ وجد قيمة ما يلى في أبسط صورة : $(\frac{\gamma_0}{2})^{-1/2} \times \sqrt{\frac{\gamma_0}{2}}$
 - (ں) أوجد قيمة : ۲۶ ÷ (ا)
 - و أوجد مجموعة الحل في ك لكل مما يأتي:
 - 10 = 0 + 0 Y (1)
 - (۲) ٣ س ۱ ≤ ه

ادارة المنتزه محافظة البسكندرية

Y0

أحب عن الأسئلة الأتبة :

🥻 اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- المعكوس الضربي للعدد $\sqrt{\frac{9}{17}}$ هو
- $\frac{\gamma}{\zeta} \left(\Rightarrow \right) \qquad \frac{\zeta}{\zeta} \left(\varphi \right) \qquad \frac{\xi}{\zeta} \left(\uparrow \right)$
- 🍸 إذا كان احتمال نجاح تلميذ في أحد الامتحانات ٨٥ . فإن احتمال رسوبه = ·····
 - (د) ۳۰,۰ ٠, ٢٠ (ب) ٠, ٢٥ (ب) ٠,١٥ (١)

{\··}(2)

10(1)

/18. (2)

إدارة غزب توحيه الرباضيات

٧ محافظة الإسكندرية

أحب عن الأسئلة الأتية :

:	المعطاة	الإجابات	ن بين	الصحيحة م	الإجابة	اختر	
---	---------	----------	-------	-----------	---------	------	--

	1137	المديف	c .ã.	11.7-	$I(\Lambda)$
هوِه	, مرست	، بعسدات	وسوح	حس	$\cdot \cup$

$$\emptyset$$
 (ع) ا (-1) (ع) ا (-1)

$$\{1\}(1) \qquad \{7\}(2) \qquad \{\cdot\}(1) \qquad \emptyset(1)$$

(چ) ۱۳

$$\{ \setminus \} (\Rightarrow) \qquad \{ \cdot \} (\circ) \qquad \emptyset (1)$$

$$(-)^{(1-)}(1)$$

👔 أكمل ما يأتي :

- - إذا كان: ٣ س ≥ ٩ فإن: س ≥
 - (٣) احتمال وقوع الحدث المستحيل هو
- ٤) إذا كان: ٢-٠٠ = -٢ فإن: ٣ س
 - (o) الحد الحدى ٢ س من الدرجة

فإن: √س = سانن	۳ إذا كان : - س = ۹
----------------	---------------------

$$\cdot, \cdot \Upsilon(\iota)$$
 $\cdot, \cdot \cdot \Upsilon(\iota)$ $\cdot, \cdot \cdot \Upsilon(\iota)$

$$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$$

أكمل ما يأتي :

مجموعة حل المتباينة :
$$7 < -\omega \le 3$$
 في ط هي

🚮 (أ) أوجد مجموعة الحل في ن للآتي :

$$\binom{\gamma}{q} \div \binom{\gamma}{q} \times \binom{\gamma}{r} \times \binom{\gamma}{r}$$
 أوجد قيمة ما يلى في أبسط صورة:

و أ) أوجد مجموعة الحل في
$$\upsilon$$
: ٢ $-\upsilon$ – ١ ≥ 0

$$(\nu)$$
 اختصر لأبسط صورة: $\frac{0}{1}$

(أ) أوجد في أبسط صورة قيمة المقدار: م ٢٥ ص ص

44

- ٤ ضعف العدر ١٠٢ هو
- (خ) ۲۰۲ (خ) ۲۰۲ (خ) ۲۰۲ (۵) ۲۰۲ (۵) ۲۰۲ (۵)
- (2) (ع) (3) (ع) (4) (ع) (4) (ع) (4) (ع) (4) (ع) (4) (ع) (5) (ع) (5)
- Y (1)
 - $\vdots \qquad \qquad = \binom{r}{r} \mathfrak{F}(r).$
- (i) 3^r (c) 3^r

أكمل ما يأتي :

- ($\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$) ($\frac{1}{1}$)
 - إذا كان: ٢ س = ٦ فإن: س =
- - (٤) احتمال الحدث المستحيل يساوى
- في تجربة إلقاء قطعة نقود معدنية منتظمة مرة واحدة فإن احتمال ظهور صورة يساوى
 - ور آ) أوجد قيمة ما يأتى فى أبسط صورة : $\left(\frac{1}{\gamma}\right)^{2} + \sqrt{\frac{3\Gamma}{1\Lambda}} \left(\frac{\gamma}{\gamma}\right)^{\alpha n i_{\chi}}$

 - $V \leq T + 1$ أوجد مجموعة الحل في ك للمتباينة : Y = V + T + 1
 - $\frac{\circ \times \circ \circ}{\circ}$: أوجد فى أبسط صورة قيمة المقدار أ
 - $\left(\frac{\Upsilon_0-}{\Upsilon_V}\right) \times \left(\frac{\Upsilon_-}{0}\right)$ وجد قيمة ما يلى في أبسط صورة: $\left(\frac{\Upsilon_0}{0}\right)$
- (ب) حقيبة بها ١٢ بطاقة متماثلة مرقمة من ١ إلى ١٢ سحبت بطاقة عشوائيًا من هذه المطاقات.

اكتب فضاء العينة ثم أوجد احتمال كل من الأحداث الآتية:

- () ا هو حدث ظهور عددًا أوليًا على البطاقة المسحوية.
- (٢) هو حدث ظهور عددًا يقبل القسمة على ٣ على البطاقة المسحوية.

- (-) أوجد مجموعة حل المتباينة الآتية في $0: Y \omega A \ge 0$
 - ر أ) أوجد في ω مجموعة حل المتباينة : $1 < -\omega 7 \le 7$
- (ب) سُحبت بطاقة عشوائيًا من تسع بطاقات متماثلة ومرقمة من ١: ٩ أوجد احتمال أن تحمل البطاقة المسحوبة:
 - () عددًا أوليًا () عددًا يقبل القسمة على ٣
 - $\frac{\gamma-}{\gamma}=\infty$, $\frac{\gamma}{\xi}=\cdots$, $\frac{1}{\gamma}=1$: $\frac{1}{\zeta}$

فأوجد القيمة العددية لكل من:

- (2 1 2 C) T
- (ب) كيس يحتوى على ٦ كرات حمراء ، ١٠ كرات خضراء ، ٤ كرات بيضاء. سحبت كرة واحدة عشوائيًا.

أوجد احتمال أن تكون الكرة المسحوبة:

الست حمراء. المخضراء.

إدارة قليوب الفترة المسائية

محافظة القليوبية

أجب عن الأسئلة الأتية :

- 🦥 اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- مجموعة حل المعادلة: $-\omega + \tau = \tau$ في ط هي
- $\{ \gamma \}_{(2)}$ $\{ \gamma \}_{(2)}$ $\{ \gamma \}_{(2)}$ $\{ \gamma \}_{(2)}$ \emptyset (†
 - $\cdots = \frac{11}{4} \sqrt{\zeta}$
- $\frac{r}{\xi} \pm (3) \qquad \frac{\xi}{r} \ (4) \qquad \frac{r}{\xi} (4) \qquad \frac{r}{\xi} \ (1) \qquad \cdots \qquad \cdots \qquad \vdots$ $\frac{r}{\xi} \pm (3) \qquad \frac{r}{\xi} + (4) \qquad \frac{r}{\xi} = (4) \qquad \frac{r}{\xi} + (4) \qquad \frac{r}{\xi} = (4) \qquad \cdots \qquad \cdots \qquad \vdots$
- $\epsilon > 0$ $\epsilon > 0$ $\epsilon > 0$ $\epsilon > 0$ $\epsilon < 0$ $\epsilon < 0$

- ا أ) أوجد مجموعة حل المعادلة الآتية في w: T w + P = 0
 - (-) أوجد قيمة المقدار : $(\frac{\sqrt{3} \times \sqrt{-7}}{\sqrt{1-7}})^{-7}$
- اً) أوجد مجموعة حل المتباينة الآتية في v: Y v + v = 1
 - (ν) اختصر لأبسط صورة : $\left(\frac{\gamma}{V}\right)^{-\frac{1}{4}} \times \left(\frac{\gamma}{0}\right)^{\frac{1}{4}} \times \sqrt{\frac{1}{3}}$
 - $T + T = T 0 \times T = 0$
- (ب) سحبت بطاقة عشوائيًا من بطاقات متماثلة ومرقمة من ١ إلى ٧ أوجد احتمال سحب :
 - (١) بطاقة تحمل عددًا زوجيًا.
 - (٢) بطاقة تحمل عددًا فرديًا أقل من ٤
 - (٣) تحمل عددًا أكبر من ٧

W1)

إدارةً شبين الكوم توجيه الرياضيات

محافظة المنوفية

أجب عن الأسئلة الأتية :

- 🔝 اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- 🕥 أي عدد مما يأتي ينحصر بين ١,٥،٢،٥؟
- (ب) ٤ , ٥ 0, 7 (2) (ج) ۱۰ (م
 - مجموعة حل المتباينة : -٥ -٠ حسفر ، في ٥ هي
- \emptyset (7) (ج) صح (ب) **ن** ـ ا ر i) ف_ع
 - $\cdots = \overline{\Upsilon(1-)-\Upsilon(1-)}$
- . (2) [(چ) (۱) ع (۱)
 - (3) إذا كان : $-u^{-1} = \frac{1}{\sqrt{2}}$ فإن : $-u = \frac{1}{\sqrt{2}}$
- $\frac{1}{\sqrt{1-1}}(\tau)$ (۱) ۲ (پ)

محافظة الشرقية

أجب عن الأسئلة الأتبة :

أكمل ما يأتي :

- (١) احتمال الحدث المؤكد =
- $(7)\sqrt{(r)^{7}+(\Lambda)^{7}}=r+\dots$
- ٤ عند إلقاء قطعة نقود مرة واحدة فإن احتمال ظهور الصورة =
 - $\left(\frac{\pi}{4}\right) = 4 \left(\frac{\pi}{4}\right)$

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- المعكوس الضربى للعدد $\sqrt{\frac{77}{70}}$ =
- $\frac{\xi}{\delta} \left(\div \right) \qquad \frac{\delta -}{\delta} \left(\div \right) \qquad \frac{\xi -}{\delta} \left(\div \right)$ (c) §
- (۱) ۲ (۱) (چ) ۱۰ (د)٧
 - ٣ إذا كان احتمال نجاح طالب ٨, ٠ فإن احتمال رسويه
- (1) (2) (3) (4) (4)
 - ٤ أي مما يأتي يمكن أن يكون احتمال لحدث ما ؟
- (۱) ۲۰,۳۰ (ب) د (ι) (چ) ۲٫۱
 - العدد الذي في الصورة القياسية من بين الأعداد الآتية هو
- 1
 - \mathfrak{T} إذا كان: $\mathfrak{I} = -7$ ، $\mathfrak{T} = -6$ فإن: $(\frac{\mathfrak{I}}{2})^{\mathsf{T}} = -6$
 - $(-1)^{\frac{q}{q}} (1) \qquad (-1)^{\frac{q}{q}} \qquad (-1)^{\frac{q}{q}}$

إدارة زفتى توجيه الرياضيات

محافظة الغربية

11

أجب عن الأسئلة الآتية :

:	يأتي	ما	أكمل	
٠	ڃي	~	,	1000

	· — Y	· · · · · · · · · · · · · · · · · · ·	
=		ν	(۱) اذا کان :
	- (103	-	. (10 10) (1)
	۰۰۰۰ مص	ص، ۲	ں ، ب
	0 '		

$$\{$$
 مجموعة حل المتباينة : $7 < -\omega \le 3$ في ط هي $\{$

🌃 اختر الإجابة الصحيحة من بين الإجابات المعطاة :

 $\cdots = \frac{1}{\xi}$

$$\frac{1}{2} \cdot (2) \qquad \frac{2}{6} \cdot (2) \qquad \frac{2}{6} \cdot (1)$$

 \mathfrak{D} الصورة القياسية للعدد \mathfrak{T} ٥ = \mathfrak{T} ٧, ه \mathfrak{T}

$$r - 1 \cdot (1)$$
 (2) (3) (4)

..... = \(\bar{127}\) (0)

	فإن : س=	$^{\sim}$ $1. \times 7.77 =$	() إذا كان : ۲۳۷
Y-(2)	(چ) ۲	(ب) ٤	٤-(i)
	•	= ١٠٣	7.7.4
1.9(2)	. "" (=)	۳۰۳ (پ)	١٠٣ (١)

🕜 أكمل ما يأتى :

المربع الذي طول ضلعه
$$\frac{\mathsf{U}}{\mathsf{Y}}$$
 سم ، تكون مساحته = سم. سم.

$$\cdots = V \times T + 11 - \bigcirc$$

$$\left[\left(1-\frac{1}{2}\right)-\left(1+\frac{1}{2}\right)\right]$$
 ۲ : موضعًا خطوات الحل أوجد قيمة عند أو الحال أوجد أي الحال أي الع

$$V \geq T + \omega + 0 = V$$

اختصر لأبسط صورة :
$$\left(\frac{r^{-\circ} \times r^{\gamma}}{r^{-\prime}}\right)^{-\gamma}$$

$$\left(\begin{array}{c} \frac{3}{4} \times \left(\frac{1}{4} \right) \end{array} \right) \times \left(\frac{3}{4} \times \frac{3}{4} \right)$$
 وجد قيمة ما يلى في أبسط صورة (ب

و أ) في تجربة إلقاء حجر نرد منتظم مرة واحدة ، المطلوب:

اً أوجد احتمال حدث الحصول على عدد يحقق المتباينة :
$$7 < -\infty < 3$$

$$(\cdot, \cdot)$$
 اكتب الناتج على الصورة القياسية : (\cdot, \cdot, \cdot) (\cdot, \cdot) اكتب الناتج على الصورة القياسية (\cdot

(ج) - ۱۰

Y. (1)

- ٢٠ = ٤ + س ١٠ أوجد في مجموعة حل المعادلة : ٨ س + ٤ = ٢٠
 - (v) ضع فى أبسط صورة قيمة المقدار : $\frac{v^{-2} \times v^{-2}}{v}$
 - 4 (أ) أوجد قيمة المقدار : ۱۲ × 7 + ۲۲ + 7
- (ب) أوجد في ن مجموعة حل المتباينة: ٢ -س + ١٥ > ١٩
 - ا ختصر لأبسط صورة : $\frac{1}{7}$ \times $\sqrt{\frac{11}{7}}$ \times $\left(\frac{7}{7}\right)^{\text{out}}$
- (ب) إذا ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى:
 - (١) اكتب فضاء العينة.
 - 💙 أوجد احتمال ظهور عدد أقل من أو بساوي ٥
 - ٣ أوجد احتمال ظهور عدد زوجي.

إدارة ميت غمر توجيه الرياضيات - الفترة الصباحية

محافظة الدقهلية

أجب عن الأسئلة الأثية :

🚺 أكمل العبارات الآتية:

- فإن: س > ۱٦ < ۱ - ۱٦ < ١
 ١٦ < ١ - ١٦
 - $\cdots\cdots\cdots\cdots\cdots = \overline{q-1}$
 - ۳-(۱-ر-) (۳)
 - ٤ احتمال الحدث المستحيل =
 - ۱ العدد (۲): هو (۲) ...

آ اختر الإجابة الصحيحة من بن الإجابات المعطاة:

- ن ن ن $\mathbf{v} = \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}$ فإن $\mathbf{v} = \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}$
- (د) –٤ (ج) ٤. (ب) ۳– **r**(i)
 - $(Y)^{\lambda} + (Y)^{\gamma} + P V = \cdots$
- (ب) ۳ (د) ٥ ـ (ج) ٤ Y(1)

- (۳) إذا كان: ٣ س + ١ = ٥ فإن: ٦ س + ٢ =
- (ب) ۲,٥ (ب) ۱۰ (۱) (د) ۲۰
 - (3) إذا كان: $\omega = \frac{1}{2}$ فإن: $\omega^{-7} = \cdots$
- $\frac{1}{4}(a)$ $\frac{1}{4}(a)$ $\frac{1}{4}(a)$
- (٥) سحبت كرة واحدة عشوائيًا من بين خمس كرات حمراء فإن احتمال أن تكون الكرة المنحوبة حمراء =
 - (۱) ۲,۲ (ب) ۰٫۰ (ج)
 - العكوس الجمعى للغدد $(-7)^7 = \dots$
 - $\frac{1}{2}$ (2) $\frac{1}{\Lambda}$ (\Rightarrow) Λ - (ψ) A(1)
 - $19 \ge 0 + \omega 1$ أوجد مجموعة الحل في ω للمتباينة : ٢ $\omega + 0 = 19$
 - (-) اختصر لأبسط صورة : $\frac{-v^{-7} \times -v^{\frac{1}{2}}}{v^{-7} \times v^{-\frac{1}{2}}}$ ثم احسب قيمة الناتج : عندما -v = 0
 - V-=V- أوجد مجموعة الحل في U للمعادلة : V-=V-
 - (ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى:
 - 🕈 عدد فردی. أوجد احتمال الحصول على: 🕥 عدد أولى روجي.
 - و (أ) أوجد ناتج : $\sqrt{\frac{9}{17}} \cdot 1 \left(\frac{7}{7}\right)^{-1}$
 - (ب) احسب قیمة : $\left(\frac{q \times q}{q \circ q}\right)^{-1}$

محافظة دمياط

توحيه الرباضيات

أحب عن الأسئلة الآتية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- () الصورة القياسية للعدد ٧ مليون هي ٧ ×
- $(\iota) \cdot l^T$ (ب) ۱۰ (ج) ۱۰ (ج) ۱۰ (م) ۱۰ (۲۱۰ (۱)

A
A

 -777-	(F) VOY

- ۲ (ب) ۲ (() 3 (چ) ۳
- ٣ عند إلقاء قطعة نقود مرة واحدة ، فإن احتمال ظهور صورة هو
- (د) ٥٠,٠ (چ) (ت) ۱۰۰
 - مجموعة حل المعادلة: $-\omega + \Upsilon = \Upsilon$ في ط هي
 - \emptyset (2) { o } (-) { \ - } (-) {\}(i)
- الحد الجبرى ٤ ص من الدرجة
- (ج) الثَّالثة. (۱) الأولى.(ب) الثانية. (د) الرابعة.
 - (د) ٤
 - ۲ (ب) ۲ (۱) ۲ (ج) ٣

أكمل ما يأتي لتحصل على عبارة صحيحة:

- 🕥 مجموعة كل النواتج المكنة للتجرية العشوائية تسمى ...
 - (بنفس التسلسل) ١٦،٩،٤، ١٢، ١٠
 - $\bullet \qquad \bullet \qquad \cdots = \xi \div \Lambda \circ \times \Upsilon (\Upsilon)$
 - (3) اذا کان : $-u^{-1} = 3$ فان : $-u = \dots$
- (العدد المحايد الجمعي في مجموعة الأعداد النسبية هو
 - ا ختصر لأبسط صورة : $\frac{V}{2} \times \sqrt{\frac{11}{9}} + 1$
 - (\cdot,\cdot) اختصر لأبسط صورة : $\frac{(-7)^{\circ} \times 7^{3}}{(-7)^{\circ} \times 7(7-)}$
 - $\frac{\nabla}{2} = \frac{1}{2}$ ، ص = $\frac{1}{2}$ ، ص = $\frac{\nabla}{2}$ فأوجد في أبسط صورة : القيمة العدديّة للمقدار : $\left(\frac{-\infty}{-}\right)^{-7}$
 - (ب) أوجد في ω مجموعة حل المتباينة : $\gamma \omega 1 > 0$
- الطار () أوجد قيمة المقدار : $1 \times 1^{2} 1$ (1 + 1) مع توضيح خطوات الحل.

(ب) صندوق به ٥ كرات حمراء ، ٣ كرات صفراء ، ٧ كرات بيضاء فإذا كانت الكرات متماثلة وسحبت كرة واحدة من هذا الصندوق عشوائيًا. `

أوحد احتمال أن تكون الكرة المسحوبة:

🕈 لست حمزاء. 🕦 بيضاء.

 $\xi > \sqrt{-}(s)$

*V

محافظة البحيرة 12

إدارة المحمودية توجيه الرياضيات - قطاع (۱)

أحب عن الأسئلة الأتية: (بسمة باستخدام الآلة الحاسبة)

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

- (<u>)</u> إذا كان: -- س > ٤ فإن:
- $\xi > \psi + (\Rightarrow) \qquad \xi < \psi + (\Rightarrow) \qquad \xi < \psi + (\Rightarrow)$
 - 🗘 أي من الآتي بمكن أن يكون احتمال لحدث ما ؟
- % 18. (2) (چ) ۱٫۰٥ ۰ ,۳۰−(۱) ،۳۰−(۱)
- (۳) إذا كان: ١٩ = ٥٠٠٠ ، ب= ٥-٠٠٠ فإن: ١٩ × = --------
- (۱) ۲۰ س (پ) ۲۰ ۲۰ (د) صفر ً . (ج) ا
 - (٤) العدد ٩٧٠,٠ هو عدد
- (۱) نسيى. (ب) صحيح موجب. (ج) صحيح سالب. (د) طبيعى.

 - (د) ۳. (ج) ۳-(ب) ٤
- $\frac{170}{37} (-)$ $\frac{1}{\sqrt{5}}$ – (2) (÷) 77 170 (1)

🚹 أكمل ما يأتي :

- (احتمال وقوع الحدث المؤكد يساوى
 - $\cdots \cdots 1 \cdot = \overline{12 1 \cdot \cdot \cdot } (\Upsilon)$
- (uièm) $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ \mathcal{P}

۲ (د) ۲

- (غَ) ه'' = (في أسبط صورة)
- $[(1 {}^{1}Y) (1 {}^{1}Y)]$ و أ) اختصر لأبسط صورة موضعًا خطوات الحل : ه $[(Y {}^{1}Y) (Y Y)]$
 - (\mathbf{r}) أوجد قيمة ما يلى في أبسط صورة : $\left(\frac{\mathbf{r}}{o}\right) \div \left(\frac{\mathbf{r}}{o}\right)^{\circ} \times \frac{\mathbf{r}}{o}$
 - آ) إذا كان: $-\omega = \frac{1}{\gamma}$ ، $\omega = \frac{\gamma}{3}$ أوجد في أبسط صورة: $\left(\frac{\omega}{\gamma}\right)^{-\gamma}$
 - (ب) أوجد في 0 مجموعة حل المتباينة: $1 0 1 \le 1 0 + 1$
 - (أ) أوجد مجموعة حل المعادلة: -س + ١٧ = ١٣ حدث -س ∈ ط
 - (ب) ألقى حجر نرد منتظم مرة واحدة.

اكتب فضاء العينة ثم احسب احتمال الأحداث الآتية:

 Υ ظهور عدد أولى ≤ 6 🕥 ظهور عدد يقبل القسمة على ٧

(2)

1(2)

 $(\iota) \cdot \frac{I}{I}$

17(2)

إدارة شرق الغيوم توجيه الرياضيات

(ج) ۲

محافظة الفيوم

أحب عن الأسئلة الأثية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
 - $\cdots = \frac{1}{2} + \frac{1}{2}$
- (٢) احتمال الحدث المؤكد =
- $\frac{7}{V}$ (\Rightarrow) (ب) ۲,۳ (۱) صفر
 - - ····· = ^{۲-}7 (7)
- (ب) ٢ $\frac{1}{4}$ (\Rightarrow) 9(1)
 - (3) $\sqrt{r} = \dots$
- ٤ ± (ج) (ب) –ع ٤(١)

- (0) العنصر المحايد الجمعي هو
 - (پ) ۱ (1)صفر
- (د) –۲ (ج) ۲ (ب) - ١ 1(1)

(ج) -۱

- آ أكمل ما يأتي :
- (١) عند القاء حجر نرد مرة واحدة فإن احتمال ظهور عدد زوجي =
 - (٢) المعكوس الجمعي للعدد (٣-) هو
 - اذا كان: ٢ س = ٦ فإن: ٥ س =
 - $\cdots = 7 \div 7 7 \times 0 + 2$
 - 💿 الصورة القياسية للعدد ٦٥٠٠ هي
 - ۲-۲×۲-۲ (۱) اختصر: ۲-۲×۲-۲
 - $\frac{1}{r} \times \frac{\overline{4}}{5} \sqrt{x} \times \sqrt{\frac{r}{r}}$ (ب) أوجد قيمة :
 - 🛐 (أ) أوجد مجموعة الحل في ك :
 - $1 + \omega + 0 = Y < Y \omega + 0 = V$
 - (ب) اختصر لأبسط صورة: $\left(\frac{v^3 \times v^3}{v}\right)^7$

ثم أوجد القيمة العددية للمقدار : عند -0 = -1

- (1) أوجد قيمة : $7 \times (8 1) \div (1 7)$
- (ب) صندوق یحتوی علی ه کرات حمراء ، ٤ کرات صفراء ، ٣ کرات سوداء. سحت كرة عشوائيًا من الصندوق.

أوحد احتمال كل من:

- (١) حدث أن تكون الكرة المسحوبة حمراء.
- (٢) حدث أن تكون الكرة المسحوبة صفراء أو سوداء.

ادارة المنيا مدرسة عيون النبيشى الإعدادية

محافظة المنيا

أجب عن النسئلة النتية: (يسمح باستحام الآلة الحاسبة)

🚺 اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- $\bigcirc 7 \times 7 3 \div 7 = \cdots$
- $\Lambda(\iota) \qquad \qquad \Lambda(\iota) \qquad \qquad \Lambda$
 - 🍸 احتمال الحدث المستحيل =
- (۱) ۱ (۱) صفر (ج) ۱ (۱)
 - ٣ ص ل ط =٣
- (-1) مل (-1) مل (-1)
 - (ع ه حصفر = (حیث ح≠ صفر)
- (i) ه (ب) صفر (ج) ۱ (د) ۱-(
- ⑥ العدد الذي في الصورة القياسية من بين الأعداد الآتية هو
- $^{\Lambda}$ 1. \times . $^{\Lambda}$ 2. \times . $^{\Lambda}$ 3. \times . $^{\Lambda}$ 3. \times . $^{\Lambda}$ 4. \times . $^{\Lambda}$ 4. \times . $^{\Lambda}$ 5. \times . $^{\Lambda}$ 6. \times . $^{\Lambda}$ 6. \times . $^{\Lambda}$ 8. \times . $^{\Lambda}$ 9. \times . $^{\Lambda}$
 - $\frac{\mathsf{Y}(\overset{\circ}{\mathcal{V}})}{\mathsf{V}} = \dots \quad \text{cut} \quad \mathsf{V} \neq \text{cut}$

آ أكمل ما يأتي :

- 🕥 عند إلقاء حجر نرد منتظم فإن احتمال ظهور عدد زوجى يساوى
 - $\cdots\cdots = \sqrt[N-1]{r} \times \sqrt[N-1]{r} \times \sqrt[N-1]{r}$
 - 😙 ۲ ، ۷ ، ۱۲ ، ۱۷ ، (بنفس التسلسل)
 - (٤) إذا كان: ه س = ٥٥ فإن: ٣ س ١ =
 - نصف العدد $\left(\frac{\circ}{\tau}\right)$ يساوى \odot

 (ν) أوجد قيمة : $\left(-\frac{\gamma}{r}\right)^{\gamma} + \sqrt{\frac{\gamma}{N}} - \left(\frac{\gamma}{r}\right)^{\alpha-i\alpha}$

- (أ) أوجد مجموعة حل المتبايئة الآتية في ن: ٤ · · · · V > ١
- $\left[(1 {}^{1}\xi) (1 + {}^{1}\alpha) \right] \times Y$ باستخدام ترتیب العملیات الریاضیة أوجد قیمة : $Y \times Y = (1 + {}^{1}\alpha)$
 - $\Lambda = \Upsilon + U \Upsilon$ فوجد مجموعة حل المعادلة الآتية في $\Omega = \Upsilon + U \Upsilon$
- (ب) صندوق به ٤ كرات بيضاء ، ٥ كرات حمراء ، ٦ كرات زرقاء سحبت واحدة عشوائيًا .
 - احسب احتمال: () أن تكون الكرة المسحوبة حمراء.
 - ﴿ أَن تكون الكرة المسحوبة ليست بيضاء.

محافظة أسيوط

أجب عن الأسئلة الآتية :

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

- () أي من الآتي هو الأصغر ؟
- $^{7}1. \times ., 712$ (a) $^{9}1. \times 71, 2$ (b) $^{2}1. \times 7, 12$ (c) $^{2}1. \times 712$ (d)
- (Y) إذا كان: $Y' = \frac{Y}{Y}$ فإن: $Y = \frac{Y}{Y}$
 - $\frac{1}{r}(a) \qquad \frac{r}{r} = (2) \qquad \frac{r}{r}(a) \qquad \frac{r}{r} = (1)$
 - ٣ أي من الآتي يمكن أن يكون احتمال وقوع أحد الأحداث ؟
 - 7, 17(1) $(-7)^{7}$ $(-1)^{7}$ $(-1)^{7}$
 - ٤ إذا كان : --س > ٤ فإن :
 - $\xi > \omega (1)$ $\xi > \omega (2)$ $\xi < \omega (1)$

إدارة قنا توجيه الرياضيات

محافظة قنا

. .

أجب عن الأسئلة الاتدة ،

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

🕥 مجموع الاحتمالات لكل النواتج المكنة لتجربة عشوائية يكون

- 1 > (1) = cut(4) > (1) > (1)
 - 🌱 أي من الأتى هو الأكبر ؟

$$(1)^{7},7 \times 1^{3}$$
 $(1)^{7},7 \times 1^{3}$ $(2)^{7},7 \times 1^{3}$ $(2)^{7},7 \times 1^{3}$

- المعكوس الضربي للعدد $\sqrt{rac{9}{17}}$ هوoxdot
- $\frac{\xi}{r}(\Delta) \qquad \frac{\tau}{\xi}(\Delta) \qquad \frac{\tau}{r}(\Delta) \qquad \frac{\xi}{r}(\Delta) \qquad \frac{\xi$
 - ٤ طول ضلع المربع الذي مساحته ٩ سن سم هو سم.
- (۱) ٢ ١٠ (١) ٢ ١٠ (١) ١ ١٠ (١)
- (© إذا ألقيت قطعة نقود منتظمة ١٦٠ مرة فإن أقرب عدد متوقع لظهور صورة
- ١٥٩(ع) ٩٠(ج) ٧٨(ب) ٦٠(١)
 - $\frac{\xi}{2} = \frac{1}{2} \times \frac{1}{2}$
 - (د) ۲ (ب) ۲ (۱)۱

آ أكمل ما بأتي:

- 🛈 تلث العدد ۳ يساوي
- (۲) إذا كان: ۷ ۲ س = ۳ فإن: س =
- T الصورة القياسية للعدد النسبي ٧,٠٠٠ × ٠٠٠٥,٠ هي
- ا ۲،۲،۲،۲،۸، التسلسل ، ، بنفس التسلسل)
 - محموعة حل المتباينة : $Y < -\omega \le 3$ في ط هي

المعكوس الضربي للعدد $\sqrt{\frac{p}{17}}$ هو

$$\frac{\xi-}{r}(\iota) \qquad \frac{r}{\xi}(\dot{\varphi}) \qquad \frac{r-}{\xi}(\dot{\varphi}) \qquad \frac{\xi}{r}(\dot{\varphi})$$

🚹 أكمل ما يأتي :

$$\boxed{1}\sqrt{1-r^{\gamma}}=\cdots$$

$$\cdots\cdots\cdots=\vee\div \vee 1-\xi\times \nabla$$

$$\Upsilon$$
اِذا کان : \cdots = Υ × ۲ اس فإن : ψ

٤ إذا كان احتمال نجاح تلميذ في أحد الامتحانات = ٨٠,٠٠

$$\cdots = \frac{r}{r-r} \bigcirc$$

اً وجد قيمة ما يلى في أبسط صورة: $\frac{\gamma^{\circ} \times \gamma^{2}}{\gamma^{1}}$

(ب) إذا كان:
$$-\omega = -\frac{\pi}{7}$$
، $\omega = -\frac{3}{7}$ أوجد فى أبسط صورة القيمة العددية للمقدار: $(-\omega \div \omega)^{-7}$

أوجد مجموعة الحل في ك لكل من:

$$\Upsilon = 0 + (\Upsilon + \omega + \Upsilon)$$

$$\sqrt{\frac{1}{2}}\sqrt{\times}\sqrt{\frac{(\frac{7}{2})}{0}} \times \sqrt{\frac{(\frac{7}{2})}{0}}$$
 خراً) ضع في أبسط صورة قيمة المقدار:

- (ب) ألقى حجر نرد منتظم مرة واحدة واوحظ العدد الظاهر على الوجه العلوى فما احتمال:
- (الحصول على عدد أولى زوجي ؟ (عدد فردى أقل من ٤ ؟

$$\frac{1}{r} (2) \qquad \frac{1}{r} (2) \qquad \frac{1}{r} (2) \qquad \frac{1}{r} (3) \qquad \frac{1}{r} (4) \qquad$$

👔 أكمل ما يأتي :

- = | 7 | + | 7- | (1)
- (٢) احتمال الحدث المستحبل بسياوي
- (بنفس التسلسل) ۸،٥،۲ (۳)
 - - $\cdots = \mathsf{Y} \times \mathsf{Y} + \mathsf{o} \bigcirc$

$$\Upsilon = \omega$$
 ، $\varepsilon = 0$ ، $\varepsilon = 0$ ، $\varepsilon = 0$) $\varepsilon = 0$ $\varepsilon = 0$. $\varepsilon = 0$

- $\frac{(\vee)}{(\vee)}$ أوجد قيمة المقدار:
- $1 = 0 + \omega + 0$ أوجد مجموعة الحل في ω للمعادلة : $\pi \omega + 0$
- $V \ge T U V \ge 1$ وجد مجموعة الحل في ك للمتباينة:

$^{\mathsf{Y}}$ (ز) احسب قیمة : ۹ + ۶ \times

- (ب) ألقى حجر نرد منتظم مرة واحدة ولوحظ العدد الظاهر على الوجه العلوى ، فها احتمال الحصول على:
 - عدد فردی أقل من ٤ (۱) عدد زوجي.

محافظة مطروح

أجِب عن الأسئلة الأتية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- عند إلقاء حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد زوجى يساوى .

إدارة مطزوح

توجيه الرياضيات

 $\frac{1}{T}(4) \qquad \frac{6}{T}(4) \qquad \frac{1}{T}(4)$

- ار أ) أوجد قيمة ما يأتى في أبسط صورة : $\left(\frac{-\gamma}{\gamma}\right)^{-\gamma} \times \sqrt{\frac{37}{V}} \left(\frac{\gamma}{\gamma}\right)^{\cot V}$
- (ب) أوجد مجموعة حل المعادلة : ٥ س + $\Lambda = 17 7 س حدث س عدد نسيي.$
 - - $\frac{r}{\zeta} = \infty$ ، $\gamma = \frac{1}{\zeta}$ ، $\gamma = 0$) إذا كانت : $\gamma = 0$

أوجد القيمة العددية للمقدار: $7^7 \rightarrow 7 + 7 \leftarrow - 1$

- محبت بطاقة واحدة عشوائيًا من ثماني بطاقات مرقمة من ١ إلى ٨ اكتب فضاء العينة ثم أوجد احتمال كل من الأحداث الآتية:
- حدث الحصول على عدد زوجي.
 کدث الحصول على عدد أولى.
 - حدث الحصول على عدد أكبر من أو يساوى ٦ $oldsymbol{\mathfrak{P}}$
 - ٤ حدث الحصول على عدد أكبر من ٨

إدارة أسوان

محافظة أسوان مدرسة الجمهورية الإعدادية المشتركة

أحب عن الأسئلة الأتية :

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
 - $\cdots = \frac{1}{2} \left(\frac{\frac{\pi}{2}}{\frac{1}{2}} \right)$
- $\frac{7}{4}$ (\(\dagger\) $\frac{7}{4}$ (\(\dagger\) $\frac{7}{4}$ $\frac{\lambda}{\lambda-1}(\tau)$
- 🍞 اِذَا كَانَ : سِ < ٣ ﴿ فَإِنْ :
- $T > \omega (\Rightarrow) \qquad T < \omega (1)$ (د) س < -٣
 - \mathfrak{P} اذا کان : ه $7.70 0.77 \times 10^{4}$ فإن : $3.70 0.77 \times 10^{4}$
 - (د) ۳ $\xi - (-1) \qquad \qquad (-1) \qquad \qquad \xi = (-1)$
 - ٤ أي مما يأتي يمكن أن يكون احتمالًا لحدث ما ؟
 - / 18. (2) (ج) ه٠,١ (۱) – ۳۵ (پ) ۸۷ /
 - الحد الحيري ٣ ٣ ص من الدرجة
 - (ب) ٤ 7(2)

Y مجموعة حل المتباينة: س < Y في ط هي

$$\mathcal{O}(a) \qquad \{ \setminus (\cdot, \cdot) \} (a) \qquad \{ \setminus (\cdot) \} (a) \qquad \{ \cdot (\cdot) \} (a) \qquad$$

$$VV(a)$$
 $V(b)$ $V(b)$

$$/\!\!/ 170 (a)$$
 $1, 00 (a)$ $/\!\!/ AV (a)$ $0.70 - (1)$

المعكوس الضربى للعدد
$$\sqrt{\frac{9}{11}} = \dots$$

$$\frac{\xi}{\Upsilon} (1) \qquad \frac{\Upsilon}{\xi} (2) \qquad \frac{\Upsilon}{\xi} (2)$$

$$\begin{array}{ccc}
& & & & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

🕜 أكمل ما يأتي :

مجموعة الحل في ف للمعادلة :
$$T - v + V = 0$$
 هي

مجموعة حل المتباينة :
$$Y \rightarrow 0 \ge Y$$
 حيث $\rightarrow 0 \in A$ هي

📆 أوجد مجموعة الحل في ن لكل من:

$$0 = 1 - \omega + V$$

[23] ألقى حجر نرد منتظم مرة واحدة فقط ولوحظ العدد الظاهر على الوجه العلوى. أوجد احتمال:

فأوجد القيمة العددية للمقدار:
$$\frac{7}{5}$$
 ، $\frac{7}{7}$ فأوجد القيمة العددية للمقدار: $\frac{7}{7}$) أوجد مجموعة الحل في ω للمتبابنة: $\gamma - 1 \le \gamma - \omega + \gamma$

مراجعة سريعة لأهم النظربات والنتائج والقواعد فى الهندسة والقياس. • مفاهيم ومهارات أساسية تراكمية.

> نماذج امتحانات الكتاب المدرسى (عدد ٢ نموذج). امتحانات مدارس المحافظات (عدد ٢٠ امتحانًا).