

Description

The VSM55N05 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =50V,I_D =55A

 $R_{DS(ON)}$ <12m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

2.3

°C/W

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM55N05-T2	VSM55N05	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

	,			
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	50	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	55	A A A W	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	38.9		
Pulsed Drain Current	I _{DM}	200		
Maximum Power Dissipation	P _D	65		
Derating factor		0.43	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	230	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	°C	

Thermal Characteristic Thermal Resistance, Junction-to-Case (Note 2) ReJC

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics			•	•				
Drain-Source Breakdown Voltage	irce Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250μA		50	-	-	V		
Zero Gate Voltage Drain Current	Gate Voltage Drain Current I _{DSS} V _{DS} =45V,V _{GS} =0		-	-	1	μΑ		
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.9	2.5	V		
Dunin Source On State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	9.6	12.5	m0		
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =15A		12.5	17	mΩ		
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	20	-	-	S		
Dynamic Characteristics (Note4)								
Input Capacitance	C _{lss}		-	1760	-	PF		
Output Capacitance	C _{oss}	V _{DS} =25V,V _{GS} =0V, F=1.0MHz	-	169	-	PF		
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	123	-	PF		
Switching Characteristics (Note 4)			•	•				
Turn-on Delay Time	t _{d(on)}		-	6.1	-	nS		
Turn-on Rise Time	t _r	V_{DD} =25 $V_{,,}R_{L}$ =1 Ω	-	17	-	nS		
Turn-Off Delay Time	$t_{d(off)}$ V_{GS} =10V, R_{G} =3 Ω		-	29	-	nS		
Turn-Off Fall Time	t _f		-	16.5	-	nS		
Total Gate Charge	Q_g	V -25V/1 -20A	-	35.4		nC		
Gate-Source Charge	Q _{gs}	V_{DS} =25V, I_{D} =20A, V_{GS} =10V	-	4.3		nC		
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	10.5		nC		
Drain-Source Diode Characteristics				•				
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V		
Diode Forward Current (Note 2)	Is		-	-	55	Α		
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 20A	-	29	-	nS		
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	26	-	nC		

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}$ C, V_{DD} =20V, V_{G} =10V,L=0.5mH,Rg=25 Ω ,

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance