시계열 분석 기반 용해물 품질 예측 AI 모델 개발

1 2 3 4

공모배경

- 1) 문제 사항
- 2) 분석 목표

데이터 분석

- 1) 데이터 정의
- 2) 데이터 전처리

분석 모델

- 1) 이상 탐지 모델
- 2) 머신 러닝 모델
- 3) 순환 신경망 모델

결과

- 1) 분석 결과
- 2) 개선 방향
- 3) 기대 효과

[공모 배경]

- >> 용해공정은 원재료의 전처리를 수행하는 첫 번째 단계이니 본 공정의 품질이 후공정 및 완제품의 품질에 미치는 영향이 큼
- 》 용해 품질에 영향을 미치는 많은 요인들이 존재하며, 현장 작업자는 경험과 노하우에 의존하여 대처할 수 밖에 없음
- >>> 설비 또는 현장상황으로 인해 중간에 내용물을 확인하는 것이 불가능하여 용해상태를 확인 불가, 후공정까지 진행되야 품질 확인이 가능한 경우도 있음
- >> 생산단계가 상당히 많이 진행되기까지 품질이 보장되지 못함

[분석 목표]

- >>> 공정 중 실시간으로 변화하는 설비 운영값(온도, 교반 속도, 내용량)과 주요 품질검사항목의 결과값을 모델링
- >> 생산 중에도 생산품질 예측 및 공정 제어 간 필요 요소 분석

(a) partial suspension (80%<=RSD)

(b) complete suspension (20%<=RSD<=80%)

(c) homogeneous suspension (20%<=RSD)

 공모 배경
 데이터 분석
 분석 모델
 결과 및 시사점

>> 식품 가공(분말요 크림 제조) 중 용해물 혼합 과정의 설비 및 품질 데이터

>> 수집 주기: 약 6초

수집 기간 : 2020년 3월 4일 ~ 2020년 4월 30일(약 2개월)

	변수 조건	내용
	용해 온도	가공 과정의 용해물을 용해 하기 위한 온도(범위: 0 ~ 80°C)
	교반 속도	가공 과정의 용해물을 섞기 위한 모터의 속도
독립 변수	내용량	용해물 혼합 과정의 용해물 양
	수분 함유량	용해물 혼합 과정의 수분 정도, 일종의 범주형 변수로 구성
종속 변수	불량 여부	가공후식품에 대한 '양품/불량' 여부 데이터 기간 중 29일 (3월 17일 ~ 4월 14일)에서 불량 발생

버스며	데이터 저워기	수정 예시		
변수명 	데이터 전처리	수정 전	수정후	
날짜 시간	- 6초 주기로 수집된 데이터로, 날짜 시간 정보 초 단위 입력	2020-03-04 00:00	2020-03-04 00:00:06	
용해 온도, 교반 속도	- 생략된 소수점 표시를 위해 10으로 나눔	489	48.9	
내용량	- 데이터 분포 파악 시 9000 이상은 이상치로 판단 → 보간법 대체 처리 - 2차 전처리 이후 최종 전처리 진행	10900	8500(주변 값 보간)	

[그림] 내용량 분포 세부 확인 (9000 초과 보간법 적용 후)

[가정 1] 용해 온도 및 교반 속도의 주기는 1분을 기준으로 증가 및 반복

2020-03-05(정상일자)

[가정 2] 품질이 불량일 때, 온도&교반 속도가 증가 후 감소할 때 순간적으로 "정상"에서 "불량"으로 변하는 현상

2020-03-17(불량일자)

[그림] 불량일 때 분포 파악

데이터 분석

분석 모델

결과 및 시사점

[가정 3] 용해 탱크 <u>내용량 최대치 : 680</u> , <u>원재료 투입 ~ 토출 주기 추정</u>

(그림) 용해탱크 내용량 기준 토출 사이클 시각화

- >>> 용해 탱크의 내용량은 지그재그 패턴을 보임
 [용해 탱크 내용량의 최대는 680, 패턴에 벗어난 값들은 센서 데이터 이상치 가정]
- 》 '용해 탱크 투입&배출 원리'를 통해서 **내용량 투입 ~ 토출 기간인 "투입 주기" 추론**[최대치 680기준, 투입 및 토출 반복하는 주기 가정]
- >> '내용량의 투입 및 토출 되는 기간'을 별도로 **'투입 주기' 파생변수 생성**

데이터 분석

분석 모델

[가정 4] 용해 탱크의 내용량의 투입 주기에 대한 별도 전처리 진행 필요

	MELT_WEIGHT	datetime	del_time
2020-03-04 00:44:30	0.0	2020-03-04 00:44:30	0 days 00:03:54
2020-03-04 01:30:48	0.0	2020-03-04 01:30:48	0 days 00:46:18
2020-03-04 02:20:36	0.0	2020-03-04 02:20:36	0 days 00:49:48
2020-03-04 02:20:48	0.0	2020-03-04 02:20:48	0 days 00:00:12
2020-03-04 04:14:00	0.0	2020-03-04 04:14:00	0 days 01:53:12
2020-03-04 05:03:24	0.0	2020-03-04 05:03:24	0 days 00:49:24
2020-03-04 05:53:48	0.0	2020-03-04 05:53:48	0 days 00:50:24
2020-03-04 06:46:12	0.0	2020-03-04 06:46:12	0 days 00:52:24

[그림] 용해탱크 내용량이 0이 되는 주기 (투입주기 파악)

- 》 용해 탱크의 내용량의 **주기를 정확하게 파악의 필요성**이 대두 [용해 탱크 내용량의 **0이 되는 시점**을 기준으로 파악]
- ▶ 투입 주기의 경우 다양하게 나타나는 것을 학인
 [전반적인 주기: 약 50분 정도로 추정]

내용량 특수 경우(1) - 투입주기 짧은 경우

MELT_WEIGHT 주기 찾기

- >> 투입 주기가 짧은 경우를 구체적으로 EDA (투입 과정에서 용해 탱크의 <u>내용량이 0이 되는 시점</u>이 발생)
- >> 이는 계측 오류로 생긴 이상치로 추정

데이터 분석

분석 모델

결과 및 시사점

내용량의 특수 경우(2) - 투입 주기가 긴 경우

(그림) 투입주기가 긴 경우의 내용량 EDA

>> 용해 탱크의 **내용량이 최대치로 유지 후 토출하는 형태**를 가짐

[가정]

- 품질을 체크해 <mark>수분량(ISNP)이 불량 조건으로 추정될 경우</mark>, 혼합시간을 더 길게 가지고 벨브 개방하는 품질 체크 벨브 제어시스템 존재 가정

내용량의 특수 경우(3) 토출 ~ 투입되는 과정에서의 이상치

MELT_WEIGHT 주기 찾기

- >> 원재료가 **토출되고 투입되는 상태**에서 발생되는 이상치
- **》** 예) 22:20 ~ 22:35 사이는 투입 과정에서의 계측 오류로 추정

데이터 전처리(가정)

공모 배경

데이터 분석

분석 모델

결과 및 시사점

내용량의 특수 경우(4) - 투입 ~ 토출 과정에서 주변 흐름과 맞지 않는 이상치

MELT_WEIGHT 주기 찾기

- >> 내용량이 0 이외의 값(작은 값)들이 발생한 경우를 시각화 EDA
- 내용량의 투입 토출 과정에서의 계측 오류 추정

[2차 전처리 요약]

1. 내용량(MELT_WEGIHT) 전처리 (선형 보간 진행)

- (1) 내용량이 680을 초과한 경우
- (2) 내용량이 0 부근에서 값이 튀는 값
- (3) 내용량이 주기에서 연속적이지 않는 값
- 2. 계측 오류 여부, 투입 주기 파생 변수 추가

계측오류, 투입주기 추가

	NUM	MELT_TEMP	MOTORSPEED	MELT_WEIGHT	INSP	Measurement_error	MW_Period_Second	TAG
STD_DT								
2020-03-04 00:00:00		48.9	11.6	631.0	3.19		912	
2020-03-04 00:00:06	1	43.3	7.8	609.0	3.19		912	
2020-03-04 00:00:12		46.4	15.4	608.0	3.19		912	0

(그림) 최종 데이터프레임

1

이상 탐지 모델

- >> 데이터 불균형
 정상 비율 ≫ 불량 비율
- 비지도 학습을 활용한 이상 탐지

2

머신러닝 모델

- >> Auto ML 용해물 품질 예측 모델 개발
- **>> Mixing 주기(1분) 기준** 예측 진행

3

순환 신경망 모델

- >> 시계열 딥러닝 모델(LSTM)
- 용해물 품질 예측 과정에서 특징점을 잘 학습하기 위한 모델(CNN-LSTM)

결과 및 시사점

>> 다양한 실험을 통한 최적 결과 도출

- >>> 데이터 '불량 여부' 불균형 : 정상(OK) 78.8% vs 불량(NO) 21.2%
- >>> 불량의 비율이 적고 이를 이상치로 추정하여 분석 진행, 대표적 2가지 이상 탐지 모델 활용

[Isolation Forest] iForest Anomaly Potential Anomaly Normal Instance

- Tree 기반 비지도 학습 이상치 탐지 모델
- Train 데이터에 Model 학습하여 Tree 기준을 생성 후, Tree에 벗어나는
 값을 이상치로 판단

[Elliptic Envelope]

Outlier detection via Elliptic Envelope

- 데이터의 정규 분포 활용해, 데이터 분포를 타원으로 그린 후 벗어난 경우를 이 상치로 판단하는 비지도 학습 모델
- LGBM 모델을 활용해 아래와 같은 추가 방법 진행
 [1] Elliptic Envelop Model 이상치 라벨 생성 후, LGBM 학습 진행
 [2] Elliptic Envelop Model과 LGBM 예측 값에 대한 OR 앙상블 진행

공모 배경 데이터 분석

분석 모델

[이상탐지 모델 결과]

	Accuracy	F1 score	Precision	Recall
Isolation Forest	49.13%	19.72%	17.78%	22.15%
Elliptic envelope	53.03%	29.82%	25.77%	35.37%
Elliptic envelope + LGBM	53.03%	29.82%	25.77%	35.37%
OR Ensemble	50.86%	29.64%	24.87%	36.69%

(그림 Isolation Forest Model를 U-map과 T-sne 활용한 시각화

- >> 이상 탐지 모델의 성능(F1)이 매우 낮음
- >> 이상치 탐지 모델을 시각화 해본 결과 이상치로 존재하는 값들은 존재하나, 실제 NG값과는 거리가 먼 것을 확인함

[결론]

비지도 학습을 활용한 이상치 탐지 모델은 데이터는 불균형으로 이상치를 보이나, 데이터의 분포와 특징이 이상치를 이루고 있지 않아 성능이 낮음

>> 데이터 측정 주기: 6초

과 교반 주기: 1분

>> 교반 주기 기준 이상치 탐지 실험 진행

>> 파생변수(내용량 계측 오류 여부, 투입 주기) 추가 여부 성능 향상 확인 진행

- **>> 내용량의 계측 오류를 확인**할 수 있음
- >> 보간법 전처리 적합여부 판단을 위한 비교 진행

>> '정상'과 '불량' 데이터 불균형

>>> 모델의 데이터 불균형 해결 기법(SMOTE) 활용 시 성능 비교

공모 배경 데이터 분석

분석 모델

결과 및 시사점

- >>> 머신러닝 모델을 활용한 품질 예측 모델 개발 가능성 및 품질 예측에 주요 Feature 확인
- >>> 교반 주기 1분 기반 기존 6초 주기 데이터 → 1분 주기 데이터 변경 분석 진행
- [1] 1분 내에서 각 6초 단위의 측정 정보를 Column 값으로 변경
- [2] 품질 이상 여부는 1분 내에서 한 번의 "NG"이 발생할 경우 NG로 추정하여 전처리

	STD_DT	MELT_TEMP	MOTORSPEED	MELT_WEIGHT	INSP	Measurement_error	MW_Period_Second	TAG
NUM								
0	2020-03-04 00:00:00	48.9	11.6	631.0	3.19	0	912	0
1	2020-03-04 00:00:06	43.3	7.8	609.0	3.19	0	912	0
2	2020-03-04 00:00:12	46.4	15.4	608.0	3.19	0	912	0
3	2020-03-04 00:00:18	37.9	21.2	606.0	3.19	0	912	0
4	2020-03-04 00:00:24	79.8	173.6	604.0	3.21	0	912	0

	Unnamed: 0	MELT_TEMP_00	MOTORSPEED_00	MELT_WEIGHT_00	INSP_00
STD_DT					
2020-03- 04 00:00:00	0	48.9	11.6	631.0	3.19
2020-03- 04 00:01:00	1	50.7	12.8	598.0	3.19
2020-03- 04 00:02:00	2	47.4	13.5	581.0	3.19
2020-03- 04 00:03:00	3	43.7	12.9	567.0	3.19
2020-03- 04 00:04:00	4	45.0	14.5	552.0	3.19

Measurement_error_54	MW_Period_Second_54	TAG
0.0	912.0	0
0.0	912.0	0
0.0	912.0	0
0.0	912.0	0
0.0	912.0	0

[그림] 기존 데이터

[그림] 머신러닝을 활용한 1분 주기 예측 데이터(변경)

공모 배경 데이터 분석

분석 모델

결과 및 시사점

[Pycaret]

- >> Auto ML Library, 다양한 모델에 대해 '전처리, 모델 생성 및 튜닝' 등의 작업을 쉽게 수행 및 개발
- >>> Pycaret classification, Regression 분석 진행
- 성능 지표 기준 상위 3개의 (단일) Model를 선정
- 선정 Model를 'Tunning/ Bagging / Boosting / Blending' 로 학습 및 성능 확인
- 가장 좋은 성능을 보인 3개의 Model를 최종 선정하여 앙상블 진행

[실험 방식]

- [1] Pycaret 생성된 모델과 별도의 Cat-boost 성능 비교 진행
 - >> Pycaret의 성능 신뢰 여부를 확인하기 위해서 진행
- [2] 주기(6초/1분)에 따른 성능 비교
 - >> 교반주기 1분과 데이터 측정 6초 주기 결과 비교
- [3] 파생변수 여부, 학습 종류에 따른 성능 비교
 - >> 내용량 계측 오류 여부, 투입 주기 파생변수 생성에 따른 성능 향상 여부 확인, Classification/Regression 학습 방법에 따른 성능 향상여부 확인

[머신러닝 모델 결과]

모델 내용		Pycaret(최종	앙상블 모델)	Catboost(성능 비교)		
		Accuracy	F1 score	Accuracy	F1 score	
	Classification	29.48%	38.29%	28.26%	38.96%	
1분	Regression	30.47%	11.23%	28.58%	1.97%	
주기	Classification + 파생 변수 추가	37.24%	36.41%	33.12%	41.97%	
	Regression + 파생 변수 추가	36.85%	37.94%	35.40%	38.61%	

[1분 주기]

- >>> 학습(검증) 데이터의 경우 F1 score는 75~78%의 성능을 보였지만, 테스트 데이터의 성능은 45% 미만의 저조한, 과적합 결과
- >> 성능이 낮은 이유를 다음과 같이 판단
 - [1] 시계열 주기 정보를 Column으로 주는 것으로는 시계열 데이터 특성 반영 어려움
 - [2] 품질 주기 단위를 교반 주기(1분)로 맞추는 과정에서 발생하는 정보 손실

[머신러닝 모델 결과: 6초 단위]

		모델 내 용		Pycaret(최종	앙상블 모델)	Catboost(성능 비교)	
주기	회귀/ 분류	파생변수 여부	시계열 정보 (lag)	Accuracy	F1 score	Accuracy	F1 score
	Classification	기본(x)	없음	69.08%	80.80%	69.64%	80.23%
 기존	Regression	기본(x)	없음	72.32%	80.42%	66.92%	79.12%
^{기년} 주기	Classification	파생 변수(o)	없음	69.56%	81.18%	69.37%	81.04%
(6초	Regression	파생 변수(o)	없음	69.43%	81.09%	69.20%	80.93%
단위)	Classification	파생 변수(o)	1분	69.24%	80.95%	68.98%	80.75%
	Classification	파생 변수(o)	1 ~ 5분 전체	69.36%	20.04%	68.98%	20.20%

[6초 주기]

- >> F1 score가 80% 높은 수치를 보이나, 정확도는 상대적으로 낮은 것을 확인할 수 있음
- 》 시계열적 요소를 반영하기 위해 Lag 정보(이전 시간의 정보)를 제공하였으나 성능 개선이 되지 않음

공모 배경

>>> 머신 러닝 모델이 시계열적 요소를 반영을 잘하지 못한다고 판단

공모 배경 데이터 분석

분석 모델

결과 및 시사점

- >>> 머신러닝 모델의 성능이 좋지 않아, **시계열적 요소를 고려하기 위해 순환 신경망 모델**을 사용
- >> LSTM, CNN-LSTM 활용

[LSTM]

>> 기존 RNN 장기 의존성 단점을 보완하고, **장/단기 기억** 가능한 신경망

[CNN LSTM]

- >>> LSTM의 경우 시간의 맥락 파악의 초점이 되어, 특징을 잘 파악하지 못하는 한계
- >> 이미지 형태를 추출하는 CNN과 시퀸스의 시간적 맥락을 파악하는 LSTM 결합하여, 데이터의 시간적 특성 + 특징점까지 잘 파악한다는 장점

[실험 내용]

[1] 조건별 성능실험

가. 시계열 자체 주기: 6초, 1분

나. 파생변수 추가 유무, 내용량 전처리 적용 여부

다. SMOTE 적용 여부: 데이터가 불균형한 점을 해소하기 위한 방안으로 적용 실험

[2] CNN-LSTM, LSTM 성능 비교

가. LSTM의 경우 머신러닝 모델과 성능 차이가 크지 않아 추가적으로 CNN-LSTM 적용

나. Widow Size 조정: Model이 학습하는 과정에서 시계열 정보(Window size)를 분 단위로 1 ~ 10분 실험 진행

[3] 최적의 CNN LSTM 기반 SHAP 활용 "용해물 품질 이상 탐지(진단) 영향성" 분석 진행

[그림] CNN LSTM 구조 시각화

[실험 내용 1. 성능 실험]

- >> LSTM의 모델 활용하여 다양한 조건 적용
 - [1] 시계열 주기 : 6초, 1분
 - [2] 파생변수(계측오류, 투입주기) 추가 여부, 내용량 전처리 적용여부
 - [3] 데이터 불균형 해소하기 위한 SMOTE 적용 여부
- >>> CNN LSTM의 경우 파생변수 추가/전처리 적용/ Window size =20(2분)으로 진행

		Accuracy	F1 score	Precision	Recall
Base(기본 변수)	LSTM	71.87%	83.24%	93.13%	75.25%
	LSTM	76.36%	86.41%	92.45%	80.63%
파생 변수 &	LSTM (주기: 1분)	41.84%	31.31%	33.34%	29.51%
내용량 전처리	LSTM(SMOTE)	41.75%	32.90%	34.08%	31.79%
	CNN-LSTM	81.18%	89.56%	92.30%	86.89%

[실험 내용 2. CNN LSTM 모델 최적의 Window size]

- >> CNN LSTM 모델에서 용해물 품질 예측 과정에서의 최적의 Window size를 찾기 위한 실험
- 》 기본 정보: 파생변수 추가 및 내용량 전처리(보간법) / SMOTE 미적용 / 주기는 원본 주기(6초) 진행

	Accuracy	F1 score	Precision	Recall
1분(window = 10)	77.20%	86.94%	92.90%	81.69%
2분(window = 20)	81.18%	89.56%	92.30%	86.89%
3분(window = 30)	69.69%	81.88%	92.02%	73.75%
4분(window = 40)	71.36%	82.98%	92.58%	75.19%
5분(window = 50)	90.35%	94.94%	92.80%	97.15%
6분(window = 60)	76.49%	86.75%	92.50%	80.54%
10분(window = 100)	72.96%	84.20%	92.03%	77.59%

>> Window size의 크기가 50일 경우 전체 성능이 가장 좋음

(Window size를 10의 단위, 1분으로 한 것은 앞선 데이터 분석 과정에서 교반 주기가 1분이라는 점을 착안)

>> SHAP을 활용하여 해당 예측 모델을 분석함

- >> 용해물 품질 이상 탐지 과정에서 가장 중요한 요소는 '교반 속도와 용해물 온도"이다.
- >> 이는 용해물 공정 과정에 직접적인 영향을 주기 때문이라 추정
- >> 이외에도 추가적인 파생변수 일부도 영향을 미치는 것을 확인

(그림) SHAP Feature Importance 시각화

- 각 변수별로 해당 값에 어떻게 영향을 미치는지를 파악 할 수 있음
- 붉은색은 양의 방향으로, 푸른색은 음의 방향으로 영향을 미침
- >> 해당 그래프는 하나의 결과값에 대해 변수들이 어떻게 영향을 미쳤는지 나타냄
- >> MELT_WEIGHT는 음의 방향으로 나머지는 양의 방향으로 영향을 미침

(그림) 데이터 객체 시각화

 공모 배경
 데이터 분석
 분석 모델

결과 및 시사점

- >> 각 독립 변수별로 전체 예측 값에 영향력 정도를 시각화한 결과
- >> MOTERSPEED가 양의 영향력을 강하게 미치고 있음을 알 수 있음
- >> 해당 분석들을 통해 공정 최적화와 같은 다양한 분석에 사용 가능
- 용해물 품질 공정 이외에도 다른 제조 데이터에서도 본 분석을 동일하게 활용하여서각 독립 변수별로 영향력 확인 및 활용 가능

[결론]

- >>> 앞선 CNN-LSTM SHAP 시각화를 통해서 모터의 교반 속도와 용해물의 용해 온도가 매우 중요한 영향임을 확인
- >> 이를 통해서 용해물 품질 예측 과정에서 교반 속도와 용해 온도의 특이점이 발생할 경우 사전 경보를 통해서 품질 유지 방향으로 발전 가능
- >> 교반 속도와 용해 온도에 따른 조건부 모델 생성을 통한 고도화 가능

분석모델의 특징

모델이 가벼움

짧은 training, inference 시간

간단한 전처리

적은 계산량 비용

실시간 예측 가능

하드웨어적으로 가벼움 (학습, 예측 둘다 하드웨어 성능 중요 X)

각 피쳐들의 결과값에 미치는 영향성 파악 가능

타업종 적용가능성

업종별 공정 최적화

[개선방향]

- 교반 탱크의 용해물 품질 예측을 위해 CNN_LSTM 모델을 활용하였고 어떤 Feature가 큰 영향력을 가지는지는 파악하였으나 품질이상을 발생시키는 주요 원인 인자와 범주를 파악하기에는 한계가 있음
- >>> 선행연구에 따르면 solid-liquid mixing system의 교반 속도를 예측하기 위해 고체 원료 투입량, 탱크 직경, 밀도, 임펠러 직경, 블레이드 수 등을 고려하는 것을 알 수 있음
- >>> 본 연구의 개선사항으로서 <u>유체역학 거동을 유추해볼 수 있는 밀도, 부피 등을 고</u> <u>려한 레이놀즈 수 등을 넣으면 정확도</u>가 높아질 것으로 기대
- >>> 또는, 공정설비 내부 온도 등도 용해물이 반응하는데 영향을 미칠 것으로 판단되어 주변 기상정보 활용도 고려됨

결과 및 시사점

공모 배경 데이터 분석

분석 모델

결과 및 시사점

기술적 효과

- 현장작업자의 경험과 노하우 등 암묵지에 의존하여 대처
 - → 품질예측 모델을 기반 제품 품질 향상
- 용해물을 생산하는 중소제조기업 뿐만 아니라 교반 탱크 제작중소기업에도 품질 보증 할 수 있는 제어시스템을 개발할 수 있을 것으로 기대

경제적 효과

- 경제적 여건이 되지 않은 중소제조기업의 연구개발비용 개선
- 용해물의 품질을 향상시켜 매출증대
- 식품, 제약, 화장품, 석유공업, 발효 공업, 섬 유공업, 고무공업, 수처리 공업 등의 다양한 활용처가 존재
 - → 중소제조기업 경제적 파급효과 큼

환경적 효과

- 품질증대로 인해 불량품의 비율이 줄어들어 폐기물을 줄일 수 있을 것으로 기대
- 물품생산을 위해 소비되는 전력 감소 → 탄소저감에도 기여

감사합니다