

Unidade 19 – Conceitos de Mineração de Dados – Parte 2

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP

Bibliografia

Sistemas de Banco de Dados Elmasri / Navathe 6ª edição

Sistema de Banco de Dados Korth, Silberschatz - Sixth Editon

http://education.EMC.com/ismbook

Tipos de Conhecimentos descobertos pela Mineração de Dados

- A mineração de dados enfoca o <u>Conhecimento Indutivo</u>, que descobre <u>novas regras</u> e <u>padrões</u> com base nos <u>dados fornecidos</u>;
- É comum descrever-se o conhecimento descoberto durante a Mineração de Dados por:
 - ✓ Regras de Associação;
 - ✓ Hierarquias de Classificação;
 - ✓ Padrões Sequenciais;
 - ✓ Padrões dentro de séries temporais;
 - ✓ Agrupamento.

Regras de Associação

- É uma das técnicas mais conhecidas de mineração de dados, devido ao problema da Análise da Cesta de Compras.
- Consiste em identificar o relacionamento dos itens mais frequentes em um determinado conjunto de dados, e permite obter resultados do tipo: SE compra leite e pão TAMBÉM compra manteiga.
- Exemplo:
 - ✓ Quando uma compradora compra bolsa, ela provavelmente compra sapatos;
 - ✓ Uma imagem de raio X contendo características a e b provavelmente também exibirá a característica c;

```
Regra 1: SE idade = jovem AND estudante = não ENTÃO compra computadores = não Regra 2: SE idade = jovem AND estudante = sim ENTÃO compra computadores = sim Regra 3: SE idade = média ENTÃO compra computadores = sim Regra 4: SE idade = adulto AND avaliação de crédito = excelente ENTÃO compra computadores = sim Regra 5: SE idade = adulto AND avaliação de crédito = ruim ENTÃO compra computadores = não
```


Regras de Associação

- É uma das técnicas mais conhecidas de mineração de dados, devido ao problema da Análise da Cesta de Compras.
- Consiste em identificar o relacionamento dos itens mais frequentes em um determinado conjunto de dados, e permite obter resultados do tipo: SE compra leite e pão TAMBÉM compra manteiga.
- Exemplo:
 - ✓ Quando uma compradora compra bolsa, ela provavelmente compra sapatos;
 - ✓ Uma imagem de raio X contendo características a e b provavelmente também exibirá a característica c;

```
Regra 1: SE idade = jovem AND estudante = não ENTÃO compra computadores = não
Regra 2: SE idade = jovem AND estudante = sim ENTÃO compra computadores = sim
Regra 3: SE idade = média ENTÃO compra computadores = sim
Regra 4: SE idade = adulto AND avaliação de crédito = excelente ENTÃO compra computadores = sim
Regra 5: SE idade = adulto AND avaliação de crédito = ruim ENTÃO compra computadores = não
```


Regras de Associação Problema da Análise da Cesta de Compras.

- Para ilustrar a técnica de Mineração de Dados Regras de Associação, considere um banco de dados com uma coleção de transações relativas aos dados de cesta de mercado;
- A cesta de mercado corresponde aos conjuntos de itens que um consumidor compra em um supermercado durante uma visita;
- Considere quatro transações em uma amostra aleatória, conforme figura abaixo:

ld_transação	Hora	Itens_comprados
101	6:35	leite, pão, biscoito, suco
792	7:38	leite, suco
1130	8:05	leite, ovos
1735	8:40	pão, biscoito, café

Regras de Associação Problema da Análise da Cesta de Compras.

- @ Uma regra de associação tem a forma $\mathbf{X} => \mathbf{Y}$, onde $\mathbf{X} = \{ x_1, x_2,, x_n \}$ e $\mathbf{Y} = \{ y_1, y_2, ..., y_n \}$ são conjuntos de itens;
- Essa associação indica que, se um cliente compra X, ele também provavelmente comprará Y;
- Em geral, qualquer regra de associação tem a forma LHS => RHS, onde LHS é o conjunto de itens do lado esquerdo (Left Hand Side) e RHS é o conjunto de itens do lado direito (Right Hand Side);
- O conjunto LHS U RHS é chamado itemset, o conjunto dos itens comprados pelos clientes;
- Exemplo: X = { leite } Y = { suco }

ld_transação	Hora	Itens_comprados
101	6:35	leite, pão, biscoito, suco
792	7:38	leite, suco
1130	8:05	leite, ovos
1735	8:40	pão, biscoito, café

Suporte para uma Regra de Associação

- O <u>suporte</u> para uma regra de associação <u>LHS</u> => <u>RHS</u> se refere à frequência de vezes com que um itemset específico ocorre no banco de dados;
- Ou seja, o suporte é o percentual de transações que contêm o itemset considerado;
- Se o <u>suporte</u> for baixo, isso implica que não existe uma evidência forte de que os itens ocorrem juntos, pois ocorrem em apenas uma fração das transações;
- Suporte para uma regra também é conhecido por prevalência da regra;
- Exemplo: a) Suporte de leite => suco é de 50%
 - b) Suporte de pão => suco é de 25%

ld_transação	Hora	Itens_comprados
101	6:35	leite, pão, biscoito, suco
792	7:38	leite, suco
1130	8:05	leite, ovos
1735	8:40	pão, biscoito, café

Confiança para uma Regra de Associação

A confiança para uma regra de associação LHS => RHS é definida por:

Suporte (LHS U RHS) / Suporte (LHS)

- Pode-se pensar na confiança como sendo a probabilidade de que os itens no RHS sejam comprados, dado que os itens no LSH foram comprados;
- Outro termo para confiança de regra de associação é força da regra;
- Exemplos:
 - a) confiança de leite => suco = 2/3 (67%), significando que, das três transações em que ocorre leite, duas contêm suco;
 - b) confiança de **pão** => **suco** = **1/2** (**50%**), significando que, das **duas** transações em que ocorre pão, **uma** contém suco.

ld_transação	Hora	Itens_comprados
101	6:35	leite, pão, biscoito, suco
792	7:38	leite, suco
1130	8:05	leite, ovos
1735	8:40	pão, biscoito, café

Qual a relação entre Suporte e Confiança?

Relação entre Suporte e Confiança

- Suporte e confiança necessariamente não andam lado a lado;
- O objetivo da mineração de regras de associação, então, é gerar todas as regras possíveis que excedam alguns patamares mínimos de <u>Suporte</u> e <u>Confiança</u> especificados pelo usuário;
- Existem alguns algoritmos para a geração de regras de associação, destacando-se o Algoritmo de Apriori (IBM, Agrawal Ramakrishnan Srikant, 1993).

Suporte e Confiança Mínimos

- <u>Suporte</u> Mínimo: É a frequência mínimo que um item deve ter para que seja considerado frequente; (<u>Minimum Support</u>)
- <u>Confiança</u> Mínima: É a confiança mínima que um item precisa ter para que seja considerado confiável. (<u>Minimum Confidence</u>)

Regras Fortes (Strong Rules)

São aquelas que atingem o mínimo de suporte e o mínimo de confiança;

Algoritmo de Apriori

- Implementado em diversas ferramentas de <u>Data Mining</u> (mineração de dados), como o Weka;
- O algoritmo recebe como argumento um conjunto de transações T, o valor percentual S como o <u>Suporte</u> e um valor percentual C para a <u>confiança</u>.
- O algoritmo gera um conjunto de regras no formato A => B [Suporte, confiança], onde o conjunto A é chamado de antecedente da regra e o conjunto B é chamado de consequente.
- Cada regra gerada deve ser seu <u>Suporte</u> e sua <u>confiança maior ou igual</u> ao <u>Suporte</u> e <u>Confiança mínimo</u> passado para o algoritmo, respectivamente;
- Necessita de várias interações com o Banco de Dados, mas é relativamente fácil de ser implementado.

WEKA

Disponível em https://sourceforge.net/directory/os:windows/?q=weka

- WEKA é um produto da Universidade de Waikato (Nova Zelândia) 1997;
- GNU General Public License (GPL);
- ⊕ Escrito na linguagem Java™;
- Contém uma GUI para interagir com arquivos de dados e produzir resultados visuais.

Algoritmo de Apriori

- O algoritmo APRIORI é dividido em duas partes;
- O algoritmo recebe como argumento um conjunto de transações T, o valor percentual S como o <u>Suporte</u> e um valor percentual C para a <u>Confiança</u>;
- Na primeira parte são selecionados todos os subconjuntos de T que podem ser utilizados em alguma regra, ou seja, que contenham o <u>Suporte</u> acima do Suporte mínimo S;
- A segunda parte do algoritmo faz a geração das regras a partir dos subconjuntos gerados na primeira parte, sendo que estas regras devem ter uma confiança maior que a **Confiança** mínima **C**.

Algoritmo de Apriori

Algoritmo de Apriori Exemplo - Motivação

- Descobrir o comportamento dos consumidores em um mercado;
- Organizar as prateleiras de modo a deixar os produtos relacionados mais próximos e assim, maximizar as vendas.

Exemplo

Banco de Dados		
Itens de Compra	ID	
Leite, Pão, Bolacha, Suco	1	
Leite, Suco	2	
Leite, Ovos	3	
Pão, Bolacha, Café	4	

Suporte Mínimo	
50%	

Confiança Mínima	
75%	

Algoritmo de Apriori – Primeira Etapa

Banco de Dados		
Itens de Compra	ID	
Leite, Pão, Bolacha, Suco	1	
Leite, Suco	2	
Leite, Ovos	3	
Pão, Bolacha, Café	4	

Suporte Mínimo	
50%	

Confiança Mínima
75%

Algoritmo de Apriori – Primeira Etapa

Banco de Dados		
Itens de Compra	ID	
Leite, Pão, Bolacha, Suco	1	
Leite, Suco	2	
Leite, Ovos	3	
Pão, Bolacha, Café	4	

Candidatos		
Frequência	Item	
³ / ₄ = 75%	Leite	
2/4 = 50%	Pão	
2/4 = 50%	Bolacha	
2/4 = 50%	Suco	
1/4 = 25%	Ovos	
1⁄4 = 25%	Café	

Algoritmo de Apriori – Segunda Etapa

Gerar a tabela com itens frequentes (Análise do Suporte)

Candidatos		
Frequência	Item	
³ / ₄ = 75%	Leite	1
2/4 = 50%	Pão	1
2/4 = 50%	Bolacha	1
2/4 = 50%	Suco	3
1/4 = 25%	Ovos	
1/4 = 25%	Café	

Frequentes	
Frequência	Item
³ ⁄ ₄ = 75%	Leite
2/4 = 50%	Pão
2/4 = 50%	Bolacha
2/4 = 50%	Suco

Suporte Mínimo 50%

Algoritmo de Apriori – Terceira Etapa

Gerar a tabela de candidatos a partir da combinação dos itens frequentes e calcular suas respectivas frequências (Suporte);

Frequentes	
Frequência	Item
3/4 = 75%	Leite
2/4 = 50%	Pão
2/4 = 50%	Bolacha
2/4 = 50%	Suco

Banco de Dados	
Itens de Compra	ID
Leite, Pão, Bolacha, Suco	1
Leite, Suco	2
Leite, Ovos	3
Pão, Bolacha, Café	4

Candidatos	
Frequência	Item
1/4 = 25%	Leite,Pão
1/4 = 25%	Leite,Bolacha
2/4 = 50%	Leite,Suco
2/4 = 50%	Pão, Bolacha
1⁄4 = 25%	Pão, Suco
1⁄4 = 25%	Bolacha, Suco

Algoritmo de Apriori – Quarta Etapa

Gerar tabela de grupos de itens frequentes;

Candidatos	
Item	
Leite,Pão	
Leite,Bolacha	
Leite,Suco	
Pão, Bolacha	
Pão, Suco	
Bolacha, Suco	

Frequentes	
Frequência	Item
2/4 = 50%	Leite,Suco
2/4 = 50%	Pão, Bolacha

Suporte Mínimo

50%

Algoritmo de Apriori

QualitSys

Algoritmo de Apriori – Terceira Etapa

 Gerar tabela de candidatos a partir da combinação dos itens frequentes e calcular suas respectivas frequências (suporte);

Frequentes	
Frequência	Item
2/4 = 50%	Leite,Suco
2/4 = 50%	Pão, Bolacha

Candidatos	
Frequência	Item
1/4 = 25%	Leite, Suco e Pão
1/4 = 25%	Leite, Suco e Bolacha
1/4 = 25%	Pão, Bolacha e Leite
1/4 = 25 %	Pão, Bolacha e Suco

Banco de Dados	
Itens de Compra	ID
Leite, Pão, Bolacha, Suco	1
Leite, Suco	2
Leite, Ovos	3
Pão, Bolacha, Café	4

Algoritmo de Apriori - Quarta Etapa

Gerar tabela de grupo de itens frequentes;

Candidatos	
Frequência	Item
1/4 = 25%	Leite, Suco e Pão
1/4 = 25%	Leite, Suco e Bolacha
1/4 = 25%	Pão, Bolacha e Leite
1/4 = 25 %	Pão, Bolacha e Suco

Frequentes	
Frequência	Item

Suporte Mínimo

50%

Algoritmo de Apriori

Algoritmo de Apriori – Quinta Etapa

 A partir do <u>último grupo</u> de itens frequentes, calcular suas respectivas confianças;

Confiança

A => B É o número de tuplas que contem A e B dividido pelo número de tuplas que contém A

Banco de Dados			
Itens de Compra	ID		
Leite, Pão, Bolacha, Suco	1		
Leite, Suco	2		
Leite, Ovos	3		
Pão, Bolacha, Café	4		

Frequentes		
Frequência	Item	
2/4 = 50%	Leite,Suco	
2/4 = 50%	Pão, Bolacha	

Combinações	Suporte	Confiança
Leite => Suco	50%	2/3 = 67%
Suco => Leite	50%	2/2 = 100%
Pão => Bolacha	50%	2/2 = 100%
Bolacha => Pão	50%	2/2 = 100%

Algoritmo de Apriori – Sexta Etapa

• Verificar Regras Fortes;

Regras Fortes

São as regras que atingirem o suporte e a confiança mínimas;

Combinações	Suporte	Confiança
Leite => Suco	50%	2/3 = 67%
Suco => Leite	50%	2/2 = 100%
Pão => Bolacha	50%	2/2 = 100%
Bolacha => Pão	50%	2/2 = 100%

Suporte Mínimo

50%

Confiança Mínima

75%

Algoritmo de Apriori – Sexta Etapa

Combinações	Suporte	Confiança	
Suco => Leite	50%	2/2 = 100%	V
Pão => Bolacha	50%	2/2 = 100%	V
Bolacha => Pão	50%	2/2 = 100%	\checkmark

