LECTURE 17

Example 19.1. Suppose that a parameter Θ , takes on values $\theta_1 = 1$, $\theta_2 = 10$, and $\theta_3 = 20$. The distribution of X is discrete and depends on Θ as shown in the following table:

$$\begin{pmatrix} \theta_1 & \theta_2 & \theta_3 \\ x_1 & 0.1 & 0.2 & 0.4 \\ x_2 & 0.1 & 0.2 & 0.2 \\ x_3 & 0.2 & 0.2 & 0.2 \\ x_4 & 0.6 & 0.4 & 0.2 \end{pmatrix}$$

Assume a prior distribution of Θ is

$$p(\theta_1) = 0.5,$$
 $p(\theta_2) = 0.25,$ $p(\theta_3) = 0.25$

- a) Suppose that x_2 is observed. What is the posterior distribution of Θ ?
- b) What is the Bayes estimate under squared error loss in this case?
- c) What is the Bayes estimate for the loss function $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|$?

Solution. Using Bayes formula we get:

$$P(\theta/x_2) = \frac{P(\theta) \cdot P(x_2/\theta)}{P(x_2)}.$$

Prior distribution for Θ is the following:

Therefore, we can find the posterior distribution for parameter θ :

$$P(\theta_i/x_2) = \frac{P(\theta_i \cap x_2)}{P(x_2)}, \quad i = 1, 2, 3,$$

and using the Total probability formula we obtain:

$$P(x_2) = 0.1 \cdot 0.5 + 0.2 \cdot 0.25 + 0.2 \cdot 0.25 = 0.15$$
$$P(\theta_1/x_2) = \frac{0.5 \cdot 0.1}{0.15} = \frac{5}{15} = \frac{1}{3},$$
$$102$$

$$P(\theta_2/x_2) = \frac{0.2 \cdot 0.25}{0.15} = \frac{5}{15} = \frac{1}{3},$$

and

$$P(\theta_3/x_2) = \frac{0.25 \cdot 0.2}{0.15} = \frac{5}{15} = \frac{1}{3},$$

Posterior distribution for parameter θ is

$$\Theta: 1 10 20$$

$$P(\Theta/x_2): 1/3 1/3 1/3$$

b) Bayes estimator is posterior expectation:

$$\frac{31}{3} = 10.(3) \approx 10.3333.$$

c) Bayes estimator is the posterior median, that is 10.

Corollary 19.1. If $\eta_1, \eta_2, ..., \eta_n$ are independent and Γ random variables with $(\alpha_1, 1)$ and $(\alpha_2, 1), ..., (\alpha_n, 1)$ then $\eta_1 + \eta_2 + ..., \eta_n$ is Γ distribution with $\left(\sum_{i=1}^n \alpha_i, 1\right)$ parameters, that is, density function of the sum $\sum_{i=1}^n \eta_i$ has the following form:

$$f_{\eta_1 + \eta_2 + \dots + \eta_n}(x) = \frac{1}{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_n)} x^{\alpha_1 + \alpha_2 + \dots + \alpha_n - 1} e^{-x}, \quad \text{for} \quad x > 0,$$

and 0 for $x \leq 0$.

Lemma 19.2. The χ^2 -distribution has the additive property that if η_1 and η_2 are independent χ^2 random variables with n_1 and n_2 degrees of freedom, respectively, then $\eta_1 + \eta_2$ is χ^2 with $n_1 + n_2$ degrees of freedom, that is, density function of the sum $\eta_1 + \eta_2$ has the following form:

$$f_{\eta_1+\eta_2}(x) = \frac{1}{2^{(n_1+n_2)/2} \Gamma\left(\frac{n_1+n_2}{2}\right)} x^{\frac{n_1+n_2}{2}-1} e^{-x/2}, \quad \text{for} \quad x > 0,$$

and 0 for $x \leq 0$.

For large values of α_j , distribution (19.3) is concentrated far from the borders of the simplex, which corresponds to more or less uniform discrete distributions of vector p. On the other hand, for small values α_j , the Dirichlet distribution is concentrated near the borders of the simplex, which corresponds to extremely non-uniform distributions of p, which are some large p_j and the rest are small. In particular, if all α_j equal to some small value α , then, from symmetry, all p_j will have the same mathematical expectation 1/n, but probability that at least one of p_j will be much greater than the average; for which j or which value p_j will be great - only a matter of chance.

It is difficult to use directly formula (19.3), because the linear dependence of the components p_j . It has long been known that it is much more convenient to describe the Dirichlet distribution in terms of independent gamma quantities.

Let $Y_1, Y_2, ..., Y_n$ be independent, positive random variables, and Y_j have the following density function:

$$g_{\alpha}(y) = \frac{y^{\alpha - 1}e^{-y}}{\Gamma(\alpha)}, \quad y > 0, \tag{19.4}$$

where $\alpha = \alpha_j$. Suppose that $Y = Y_1 + Y_2 + ... + Y_n$. It is not difficult to verify that a vector p with components

$$p_j = \frac{Y_j}{V} \tag{19.5}$$

has distribution $D(\alpha_1, \alpha_2, ..., \alpha_n)$ and does not depend on Y. The proof consists in a direct calculation using the change of variables carried out using the function acting from \mathbb{R}^n to \mathbb{R}^n and given by the formula

$$(Y_1, Y_2, ..., Y_n) \mapsto (Y, p_1, p_2, ..., p_{n-1}).$$

As a consequence of this calculation, we obtain that the random variable Y also has a distribution (19.4) with the parameter

$$\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_n.$$

Proof. From probability theory we know the following statement.

Lemma 19.3. If η_1 and η_2 are 2 independent random variables with $f_1(x)$ and $f_2(x)$ density functions. The density function of the variable $\frac{\eta_1}{\eta_2}$ has the following form:

$$f_{\eta_1/\eta_2}(x) = \int_0^{+\infty} y f_2(y) f_1(xy) \, dy - \int_{-\infty}^0 y f_2(y) f_1(xy) \, dy.$$

Exercise 19.1. Calculate the density function of variable $\frac{\eta_1}{\eta_2}$, if both η_1 and η_2 are standard normal random variables.

Since $f_2(y) = 0$ if $y \le 0$, in our case we have

$$f_{\eta_1/\eta_2}(x) = \int_0^{+\infty} y f_2(y) f_1(xy) \, dy =$$

$$= \frac{1}{\Gamma\left(\sum_{j=1}^n \alpha_j\right)} \frac{1}{\Gamma(\alpha_i)} \int_0^{+\infty} y \cdot y^{\sum \alpha_j - 1} e^{-y} (xy)^{\alpha_i - 1} e^{-xy} dy =$$

$$= \frac{x^{\alpha_i - 1}}{\Gamma\left(\sum_{j=1}^n \alpha_j\right)} \frac{1}{\Gamma(\alpha_i)} \int_0^{+\infty} y^{\sum \alpha_j + \alpha_i - 1} e^{-y(1+x)} \, dy =$$

Make the change of variable $y(1+x) = t \ dy = \frac{dt}{1+x}$, we obtain

$$\frac{x^{\alpha_i}}{\Gamma\left(\sum_{j=1}^n \alpha_j\right) \Gamma(\alpha_i) (1+x)^{\sum \alpha_j + \alpha_i}} \int_0^{+\infty} t^{\sum \alpha_j + \alpha_i - 1} e^{-t} dt =$$

$$= \frac{x^{\alpha_i - 1}}{(1 + x)^{\sum \alpha_j + \alpha_i}} \frac{\Gamma\left(\sum_{j=1}^n \alpha_j + \alpha_i\right)}{\Gamma\left(\sum_{j=1}^n \alpha_j\right) \Gamma(\alpha_i)}.$$

It is the Beta distribution $B\left(\alpha_i, \sum_{j=1}^n \alpha_j + \alpha_i\right)$.

Another way to prove this is to use the Laplace transform:

$$\int_0^\infty g_\alpha(y)e^{-\theta y}\,dy = \frac{1}{(1+\theta)^\alpha}, \quad \theta > -1,$$
(19.6)

which also shows that Gamma distribution $G(\alpha)$ defined by formula (19.4) is infinitely divisible and has a Levi-Khinchin representation

$$\frac{1}{(1+\theta)^{\alpha}} = \exp\{-\alpha \int_0^\infty (1-e^{-\theta z})z^{-1}e^{-z} dz\}.$$
 (19.7)

Representation (19.7) corresponds to a subordinator, known as the Moran gamma process. This process is given by the parameters

$$\beta = 0, \quad \gamma(dz) = z^{-1} e^{-z} dz.$$
 (19.8)

In this case, the increment $\varphi(t) - \varphi(s)$ has a distribution G(t-s). Note, that

$$\gamma(0,\infty) = \int_0^\infty z^{-1} e^{-z} dz = \infty,$$

and therefore the jumps of the process φ are everywhere dense.

For $\alpha_1, \alpha_2, ..., \alpha_n > 0$ we set

$$t_0 = 0, \quad t_j = \alpha_1 + \alpha_2 + \dots + \alpha_j, \quad 1 \le j \le n.$$
 (19.9)

Then random variable $Y_j = \varphi(t_j) - \varphi(t_{j-1})$ has a distribution $G(\alpha_j)$, and all random variables Y_j are independent. Since

$$Y = Y_1 + Y_2 + \dots + Y_n = \varphi(t_n),$$

we see that formula (19.1) in which

$$p_j = \frac{\varphi(t_j) - \varphi(t_{j-1})}{\varphi(t_n)} \tag{10}$$

sets a random vector from Δ_n with distribution $D(\alpha_1, \alpha_2, ..., \alpha_n)$.

The Poisson- Dirichlet distribution (continuation).

Just as the multinomial distribution is a multivariate extension of the binomial distribution, the Dirichlet distribution is a multivariate generalization of the beta distribution. If X is a k-dimensional vector and $X \sim \text{Dirichlet } (\alpha_1, \alpha_2, ..., \alpha_k)$, then:

$$f(X) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} x_1^{\alpha_1 - 1} \cdots x_k^{\alpha_k - 1}.$$

Just as the beta distribution is a conjugate prior for the binomial distribution, the Dirichlet is a conjugate prior for the multinomial distribution. We can see this result

clearly, if we combine a Dirichlet distribution as a prior with a multinomial distribution likelihood:

$$f(p_1...p_k|X) \propto f(X|p_1...p_k)f(p_1...p_k) \propto Multinomial(X|p_1...p_k)Dirichlet(p_1...p_k|\alpha_1...\alpha_k)$$

$$\propto Dirichlet(p_1...p_k|\alpha_1 + x_1, \alpha_2 + x_2, ..., \alpha_k + x_k) \propto p_1^{\alpha_1 + x_1 - 1} \cdot p_2^{\alpha_2 + x_2 - 1} \cdots p_k^{\alpha_k + x_k - 1}.$$

Notice how here, as we discussed at the beginning of the section, the vector X in the original specification of the Dirichlet pdf has been changed to a vector p. In this specification, p is the random variable in the Dirichlet distribution, whereas $\alpha_1...\alpha_k$ are the parameters representing prior counts of outcomes in each of the k possible outcome categories. Also observe how the resulting Dirichlet posterior distribution looks just like the resulting beta posterior distribution, only with more possible outcomes.