FlashGNN : An In-SSD Accelerator for GNN Training

Fuping Niu, Jianhui Yue, Jiangqiu Shen..., Huazhong University of Science and Technology HPCA' 24

2024. 08. 14

Presentation by Suhwan Shin sshshin@dankook.ac.kr

Contents

- 1. Introduction
- 2. Background
- 3. Motivation
- 4. Design
 - 1) Architecture
 - 2) Chunk Request Scheduling
 - 3) Node-wise Training
 - 4) Data-driven Subgraph Generation
- 5. Evaluation
- 6. Conclusion

Introduction

- Recently, Graph Neural Network(GNN) have emerged as a powerful tool in various applications
- But, existing GNN training systems have reached their performance limits in large-scale datasets
 - → The main challenges of GNN training are inefficient access to large amounts of data
- Existing SSD-based systems suffer from network bottlenecks and low hardware utilization

Background

- Graph Neural Network (GNN)
 - Machine learning models designed for processing graph-structured data
 - Node: Entities
 - Edge: Relationships between entities
 - Each layer consists of two sequential operations: Aggregation and Combination
 - h_v^k : Feature of node v at layer-k
 - N(v): Set of neighbors of node v
- GraphSage (GNN Model, NIPS' 17)
 - Employs a **Neighbor Sampling** to effectively address the neighborhood explosion

$$a_v^k = Aggregate(\{h_v^{k-1}\} \cup \{h_u^{k-1} | u \in N(v)\})$$

$$h_v^k = Combine(a_v^k)$$

$$a_v^k = Mean(\{h_v^{k-1}\} \cup \{h_u^{k-1} | u \in S(v)\})$$
$$h_v^k = ReLU(W^k a_v^k + b^k)$$

Fig. 1. An example of neighbor sampling

Motivation

Previously, data transfer is slowed down due to PCIe bandwidth, and CPU & GPU utilization is low

Minimize data movement and optimize perf. by performing GNN training directly within the SSD

Problem

- GNN training on large graph datasets
- I/O bottleneck
- Inefficiency in data access

Fig. 3. Ginex runtime breakdown

FlashGNN

- FlashGNN is an accelerator that performs GNN training inside the SSD
 - Solving PCIe bottlenecks and maximizing I/O parallelism
 - Efficiently reuses data from flash memory chunks in the SSD to optimize performance
- The main goal of FlashGNN is to minimize data movement and maximize performance

FlashGNN Architecture

- FlashGNN's architecture shows the components of the system
- Neighbor Sampling
 - Create a subgraph by taking the required edge list
 - Sampling the neighbors of each node
- Message Passing
 - Chunk Request Scheduling
 - Node-wise training
- Aggregator
 - Performs the role of aggregating features of node neighbors (Utilizing multiple SIMD cores)
- Combiner
 - Combine aggregated features using systolic arrays
 - Compute final features

Fig. 4. FlashGNN architecture

Chunk Request Scheduling

- Problem: Sequentially accessing input features by layer
 - → Inefficient because the same memory chunk is accessed repeatedly

Fig. 5. The organization of flash chunks

- Approach: Maximize the use of input features within a chunk by considering data dependencies between all subgraphs
- Effect: Reduce the number of flash memory accesses

Fig. 6. An example of efficient chunk request scheduling

Fig. 7. The comparison of chunk scheduling

- Node-wise Training (NOD)
 - Problem: All nodes in the current layer must be processed before computing nodes in the next layer
 - → Increased memory usage and extensive synchronization required
 - Approach: To starts calculations for each node as soon as the dependent data is ready
 - Effect: Reduce memory usage and increase utilization of computing components
 - Black process: Implemented by multi-thread firmware
 - Red process: Implmented by hardware
 - Q: Why is this process necessary?
 - A: NOD improves the utilization of DRAM bandwidth and increases the utilization of systolic arrays, improving the training throughput for in-SSD accelerators

(b) Datalayout

Fig. 8. Process flow for node-wise training

- Data-driven subgraph generation
 - Problem: Inefficient use of edge lists within chunks
 - → Causes frequent and inefficient access
 - Approach: Maximize the use of edge lists within chunks to pre-generate subgraphs needed for future training batches
 - Effect: Hide latency and reduce the need for frequent chunk access by preparing subgraph creation in advance

Fig. 9. An example of data-driven subgraph generation

Fig. 10. An example of sampling progress tracking

Progress[N_n]: the number of nodesin SG[N_n] that have been sampled Goal[N_n]: the number of nodes in SG[N_n]

Progress[N_n] = Goal[N_n]: Complete subgraph generation

Evaluation Setup

Fig. 11. Evaluation setup

|N|: Node included in the dataset

|E|: Edge included in the dataset

CSC Size: Size stored in the CSC format of the graph

(Compressed Sparse Column)

Feature Size: Total size of node features included in each dataset

TABLE I FLASHGNN CONFIGURATIONS

Flash Organization	32 channels, 4 chips per channel,		
	4 planes per chip, 2048 blocks per plane,		
	64 pages per block, 4KB page capacity		
Flash Communication	333MT/s transfer rate per channel,		
	35µs read latency, 350µs program latency		
DRAM	2 channels, 4GB per channel,		
	25.6GB/s per channel		
Aggregator	64-way SIMD, 480MHz,		
	64KB input buffer, 16KB output buffer		
Combiner	$128 \times 128 \times 2$ subarrays, 310MHz,		
	64KB weight/input/output buffer		
Scratchpad Memory	32MB eDRAM		
Firmware Processor	4 quad-core OOO CPU, 2GHz, 250mW/core,		
	64KB L1 private cache, 4MB L2 shared cache		

TABLE II
DATASETS USED FOR EVALUATION

Dataset	N	E	CSC Size	Feature Size
Products	2.5M	61.9M	307MB	2.4GB
Papers100M Twitter	111.1M 41.7M	1.6B 1.5B	8.0GB 7.4GB	105.9GB 39.7GB
Friendster	65.6M	3.6B	8.0GB	62.6GB

- Performance (Compare with Ginex)
 - Comparison with FlashGNN for Ginex (Using PCIe 3.0 SSDs and 8GB, 16GB, and 32GB DRAMs and for PCIe 4.0 SSD RAIDO)
 - FlashGNN achieves an average speedup of 7.88x when using PCIe 3.0 SSDs and 8GB DRAMs
 - FlashGNN maintains a speedup of more than 5x when using larger memory and SSD RAID0 configurations
 - FlashGNN's speedup varies across datasets
 - Because the node graphs of Papers100M and Twitter datasets have a power law, which allows Ginex to reduce SSD accesses through caching strategies

Fig. 12. FlashGNN speedup over Ginex

- Power & Area Overheads
 - Achieves energy savings of $192.66 \times$, $60.35 \times$, $64.25 \times$, and $57.14 \times$ (average of $93.60 \times$)
 - Power consumption is mainly for flash and DRAM access
 - SIMD cores and eDRAM consume negligible power

Fig. 13. FlashGNN power consumption breakdown Fig. 14. Hardware power consumption breakdown

- Compare with State-of-the-art (In-Storage Accelerator: SmartSAGE+)
 - C: Chunk request scheduling
 - N: Node-wise training
 - D: Data-driven subgraph generations
 - SH: Data-sharing SmartSAGE
 - NOSH: No data-sharing SmartSAGE (baseline)

(a) Fixing flash page capacity to 4KB, varying DRAM capacities

(b) Fixing DRAM capacity to 2GB, varying flash page capacities

Conclusion

- Existing GNN training systems have not been able to achieve efficient performance
 - The performance limitations of CPU/GPU-based systems
 - The slow data transfer speed of SSDs when processing large-scale graph datasets

- FlashGNN solved the problem by optimizing SSD firmware
 - To overcome PCIe bottlenecks and maximizing the I/O parallelism within SSDs

 FlashGNN achieved up to 23.17 times <u>better performance</u> than the latest SSD-based systems and SmartSAGE+, and also significantly <u>improved energy efficiency</u>

Thank you

Q&A

Background

- Supervised GNN Training
 - Initializing the model with random weights and biases
 - Dividing the training set into batches
 - Processing the features of each node (Aggregate and Combine functions)

Fig. 2. Supervised GNN training process

- After passing through all layers
 - Model generates a predicted label for each node
 - Backpropagates the gradient calculated from the loss function to update the weights and biases
- This process is repeated until the loss function converges
- When training is complete, the node labels of the new graph can be predicted