10.

Example:
$$A_n = \{x | 0 \le x \le \frac{1}{n}\}$$
 n=1,2,...

Prove that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n = 0$

Proof:

(1) Prove that $A_{n+1} \subset A_n$ for all n

Since
$$A_n = \{x | 0 \le x \le \frac{1}{n}\}$$
 n=1,2,...,

We have $A_{n+1}=\{x|0\leq x\leq \frac{1}{n+1}\}$, since $\frac{1}{n}>\frac{1}{n+1}$, so we have $A_{n+1}\subset A_n$ for all n. The statement has been proved.

(2) Prove that $\bigcap_{n=1}^{\infty} A_n = 0$

When
$$n \to \infty$$
, $\frac{1}{n} \to 0$, $A_n = \left\{ x \middle| 0 \le x \le \frac{1}{n} \right\} \to \left\{ x \middle| 0 \le x \le 0 \right\}$

Since there is only one real number 0 in A_n when $n\to\infty$, according to the definition of intersection, $\bigcap_{n=1}^\infty A_n=0$. The statement has been proved.