

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/41

Paper 4 (Extended)

October/November 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

A copy of the Periodic Table is printed on page 20.

Electronic calculators may be used.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 An athlete of mass 75.0 kg runs a 100 m race in a time of 10.5 s.

The 100 m race is run on a straight track.

(a) Calculate the average velocity of the athlete.

Show your working.

(b) The graph in Fig. 1.1 shows the variation of speed of the athlete during the race.

Fig. 1.1

Calculate the deceleration of the athlete in the section ${\bf BC}$. Show your working and give the unit.

deceleration = unit [3]

(c) The 100 m race is run on a straight track. A 400 m race is one lap of a circular track.

Explain why it is ${f not}$ correct to use the term ${\it average velocity}$ when describing the 400 m race.

[Total: 7]

2 A student investigates the reaction between ammonia gas, NH₃, and hydrogen chloride gas, HC1. She sets up the apparatus shown in Fig. 2.1.

Fig. 2.1

Particles of NH_3 and particles of HCl spread through the glass tube. They meet at position $\bf X$ and react to form ammonium chloride, NH_4Cl .

(a)		ne the process by which the particles of a gas spread out.	[4]
(b)		Calculate the relative molecular mass of NH_3 and of $HC1$.	נין
		[A _r : H, 1; N, 14; C <i>l</i> , 35.5]	
		NH ₃	
		HC1	[1]
	(ii)	Write a balanced symbol equation for the reaction between ammonia gas hydrogen chloride gas. Include state symbols.	and
			[2]
(c)		plain why ammonium chloride forms closer to the $\mathrm{HC}l$ end of the glass tube than to $_3$ end.	the
			[1]

[Total: 5]

3 Fig. 3.1 shows part of a domestic water heating system.

Fig. 3.1

(a)	(i)	Explain why the heating element is at the bottom of the hot water tank.
		[3]
	(ii)	A lot of thermal energy is lost from the hot water tank.
		Suggest how this energy loss can be reduced.
		[1]
(b)	The	hot water tank is made from copper.
	Сор	per is a good conductor of thermal energy.
	Ехр	lain, by referring to electrons, why copper is a good thermal conductor.
		[2]

[Total: 6]

4 A chemist assesses the purity of three solid compounds, **A**, **B** and **C**, using their melting points.

Table 4.1 shows the results.

Table 4.1

		compound	
	A	В	С
melting point/°C	131–139	35	35

(a)	Explain why the data suggests that compound A is not pure.
	[1]
(b)	The chemist adds compound ${\bf B}$ to compound ${\bf C}$. The mixture melts between 28–32 °C.
	The chemist has not made a mistake.
	Explain why the melting point of the mixture is not 35 °C.
	[2]
(c)	Explain why chromatography is not a suitable method to use to assess the purity of the three solid compounds.
	[1]
	[Total: 4

5 Table 5.1 shows information about some organic compounds.

Table 5.1

compound	molecular formula	structure
methane	CH ₄	H H—C—H H
ethane	C ₂ H ₆	H H
propane	C ₃ H ₈	H H H
butane	C ₄ H ₁₀	H H H H H—C—C—C—C—H H H H H

The compounds are members of a homologous series.

(a)	(i)	State what is meant by the term <i>homologous series</i> .	
			[2]
	(ii)	Name the homologous series to which the compounds in Table 5.1 belong.	
			[1]
	(iii)	Explain how the information in Table 5.1 shows these compounds are saturated.	
			[1]

(b)	Org	anic compounds can be cracked into smaller molecules.	
	(i)	State two conditions needed for cracking.	
		1	
		2	[2]
	(ii)	Complete the equation to show the products of cracking $\mathrm{C_2H_6}$.	

 $C_2H_6 \rightarrow C_2H_4 + \dots$ [1]

[Total: 7]

6 Fig. 6.1 shows a circuit diagram.

Fig. 6.1

The power supply has a fixed e.m.f. of 4.0 V.

- (a) 1. Draw an arrow between **P** and **S** to show the direction of the conventional current in the circuit.
 - 2. Draw an arrow between **Q** and **R** to show the direction of the movement of electrons in the circuit.

[1]

- (b) On Fig. 6.1, draw a voltmeter to measure the potential difference across the lamp. [2]
- (c) The resistance wire is chosen so that the potential difference across the lamp is 1.5 V. The lamp has a power of 2.5 W.
 - (i) Calculate the current in the lamp.

(ii) Calculate the potential difference across the resistance wire.

(iii) Calculate the resistance of the resistance wire.

resistance =
$$\Omega$$
 [2]

(d)	A different resistance wire 2	k has a diameter of 0.40 mn	n. The resistance of wire \mathbf{X} is 4.5 Ω .

Another wire ${\bf Y}$ of the same length and made from the same material as wire ${\bf X}$ has a diameter of 0.20 mm.

Calculate the resistance of wire Y.

resistance = Ω [2]

[Total: 10]

7	The equation	for the extraction	n of zinc. Zr	i, from its ore, Zn	S, takes place in two stage

(a) Stage one of the extraction of Zn uses oxygen.

The equation for stage one is shown.

$$2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$$

Calculate the mass of ZnO that is produced from 7.0 tonnes of ZnS.

1 tonne = 1000 kg

[A_r: Zn, 65; S, 32; O, 16]

Show your working in the box.

mass of ZnO = tonnes

[3]

(b) Stage two of the extraction of Zn uses carbon.

The equation for stage two is shown.

$$ZnO(s) + C(s) \rightarrow Zn(l) + CO(g)$$

(i) Name the substance that acts as a reducing agent in this reaction.

.....[1]

	(ii)	Carbon monoxide gas, CO, is a pollutant.	
		State one adverse effect of carbon monoxide gas.	
			[1]
((iii)	Carbon monoxide gas is released in the exhaust gases of car engines during combustion of fossil fuels.	the
		Describe how carbon monoxide can be removed from the exhaust gases of car engine	es.
(c)	Zinc	is used for galvanising steel. This helps prevent the corrosion of steel.	[4]
(-)		lain why galvanising steel with zinc helps to prevent the corrosion of steel.	
			[3]
(d)	Mild	I steel is an alloy of iron.	
	Stat	e one benefit of mixing additives with iron to produce an alloy.	
			[1]
		[Total:	

8 Fig. 8.1 shows a ray of light incident on a glass block.

Fig. 8.1

The angle of incidence is 64°.

- (a) On Fig. 8.1, draw the path of the ray of light as it passes through and leaves the block. [2]
- **(b)** The glass block has a refractive index n = 1.48.

Calculate the value of the angle of refraction.

Show your working.

angle of refraction =° [3]

(c) The speed of light in air is 3.0×10^8 m/s.

Calculate the speed of light in the glass block.

speed of light in the glass block = m/s [2]

[Total: 7]

9 Fig. 9.1 shows a simple d.c. motor.

Fig. 9.1

(a)	Exp	lain why the coil of the motor turns when there is a current in it.
		[3]
(b)	(i)	Name the part labelled X .
		[1]
	(ii)	Describe the role of part X in the operation of the motor.
		[2]
		[Total: 6]

10 (a) A student investigates the electrolysis of molten magnesium chloride, $MgCl_2$.

Fig. 10.1 shows the apparatus used by the student.

Fig. 10.1

(i)	Explain why the magnesium chloride must be molten for electrolysis to occur.
(ii)	Predict the products formed at each electrode during the electrolysis of molten magnesium chloride, ${\rm MgC} l_2$.
	positive anode
	negative cathode

(iii)	Magnesium chloride, ${\rm MgC}l_2$, is an ionic compound.	
	Draw the dot-and-cross diagram to represent the ionic bonding in magnesium chloric	de.
	You only need to show the outer electrons.	
		[3]

(b) Magnesium is in Group II of the Periodic Table.

Fig. 10.2 shows the elements in Group II of the Periodic Table.

Ī	4	Γ
	Ве	
	beryllium	l
	9	L
	12	Γ
	Mg	
	magnesium	l
	24	L
Ī	20	Γ
	Ca	l
	calcium	l
	40	l
	38	Γ
	Sr	l
	strontium	l
	88	l
	56	Γ
	Ва	
	barium	
	137	
-		-

Fig. 10.2

The reaction between magnesium and hydrochloric acid produces:

- bubbles of hydrogen gas
- a colourless solution of magnesium chloride.

The word equation for this reaction is shown.

magnesium + hydrochloric acid → magnesium chloride + hydrogen

The vigorous reaction between barium and hydrochloric acid produces:

- many bubbles of hydrogen gas
- a colourless solution of barium chloride.

The word equation for this reaction is shown.

barium + hydrochloric acid → barium chloride + hydrogen

(i)	Predict the products of the reaction of beryllium, Be, with hydrochloric acid.
	[1]
ii)	Predict whether beryllium is more or less reactive than magnesium. Give a reason for your answer.
	[1]

[Total: 8]

11 A detector records the activity of a radioactive isotope, Nd-149.

The number of counts detected in one minute is recorded every 0.5 hours.

The results are shown in Table 11.1.

Table 11.1

time/hours	reading on the detector counts/minute
0	62
0.5	54
1.0	47
1.5	40
2.0	36
2.5	31
3.0	27

The average background radiation in the laboratory is 9 counts/minute.

(a)	Explain what is meant by background radiation.	
		 [1]
(b)	Calculate the half-life of Nd-149.	
	Show your working.	

half-life =		hours	[3]
-------------	--	-------	-----

[Total: 4]

12 The reaction between hydrochloric acid and sodium hydroxide solution produces sodium chloride and water. This reaction is exothermic.

The word equation for this exothermic reaction is shown.

hydrochloric acid + sodium hydroxide → sodium chloride + water

(a)	State the pH value for the solution for	med during this reaction.
-----	---	---------------------------

 [1]

(b) State what is meant by the term *acid*, in terms of proton transfer.

F41	1

- (c) On Fig. 12.1:
 - draw the energy level diagram for this exothermic reaction
 - label the reactants and label the products
 - use an arrow to show the energy change.

Fig. 12.1

[3]

[Total: 5]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	Z He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
	=			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	¥	astatine -			
	5			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium -	116	^	livermorium -
	>			7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
	≥			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Su	tin 119	82	Ъ	lead 207	114	Εl	flerovium -
	≡			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	1L	thallium 204			
							1			30	Zu	zinc 65	48	g	cadmium 112	80	Я	mercury 201	112	ű	copernicium -
										29	Cn	copper 64	47	Ag	silver 108	62	Αu	gold 197	111	Rg	roentgenium -
dn										28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Group										27	ပိ	cobalt 59	45	格	rhodium 103	77	٦	iridium 192	109	Ĭ	meitnerium -
		- エ	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium
				,						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	뮵	bohrium
					loc	SS				24	ပ်	chromium 52					≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	Ор	dubnium –
				es	ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	껖	rutherfordium -
							-			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			8	:=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ቷ	francium —

7.1	Ρſ	lutetium	1/5	103	۲	lawrencium	ı
	Υp					_	ı
69	T	thulium	169	101	Md	mendelevium	ı
89	ш	erbium	16/	100	Fm	fermium	ı
29	유	holmium	165	66	Es	einsteinium	1
99	۵	dysprosium	163	86	ರ	californium	ı
99	Tp	terbium	159	26	番	berkelium	ı
64	Вd	gadolinium	15/	96	Cm	curium	I
63	Ē	europium	152	92	Am	americium	I
62	Sm	samarium	150	94	Pu	plutonium	I
61	Pm	promethium	I	93	ď	neptunium	I
09	βN	neodymium	144	92	\supset	uranium	238
59	Ą	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Ч	thorium	232
22	Гa	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).