Policy Gradient on cartpole

Farnaz Adib Yaghmaie

Linkoping University, Sweden farnaz.adib.yaghmaie@liu.se

March 12, 2021

A harbor

Photo credit: @http://rhm.rainbowco.com.cn/

The cartpole

Photo credit: @https://gym.openai.com/

- **States:** 1. position of the cart on the track, 2. angle of the pole with the vertical, 3. cart velocity, and 4. rate of change of the angle.
- **Actions:** +1, -1
- Reward:

$$r_t = egin{cases} 1, & ext{if the pendulum is upright} \ 0, & ext{otherwise} \end{cases}$$

Episode ends when:

- The pole is more than 15 degrees from vertical or
- The cart moves more than 2.4 units from the center or
- The episode lasts for 200 steps.

Solvability Criterion: Getting average sum reward of 195.0 over 100 consecutive trials.

We build a deep network to represent the pdf $\pi_{\theta} = network(s)$

```
network = keras.Sequential([
keras.layers.Dense(30, input_dim=n_s, activation='relu'),
keras.layers.Dense(30, activation='relu'),
keras.layers.Dense(n_a, activation='softmax')])
```

and assign a cross entropy cost function for it

```
network.\,compile \big(\, loss \!=\! 'categorical\_crossentropy\,\, '\, \big)
```

Collect data

■ Observe s and sample $a \sim \pi_{\theta}(s)$

- Apply a and observe r.
- \blacksquare Add s, a, r to the history.

2 Update the parameter θ

- We calculate the reward to go and standardize it.
- We optimize the policy

```
\label{eq:categorical} \begin{split} & target\_actions = tf.keras.utils.to\_categorical(np.array(actions), n\_a) \\ & loss = self.network.train\_on\_batch(states, target\_actions, sample\_weight=rewards\_to\_go) \end{split}
```

Try the following:

- Run Crash_course_on_RL/pg_on_cartpole_notebook.ipynb and verify to get the solution after ~ 1000 episodes.
- Change $0 \le \gamma \le 1$ to see if you can solve the problem faster 'GAMMA': 0.9 in agent_par
- Make sure you understand the code!

How the reward looks like during learning

Figure: Total reward vs. no. of episodes

Email your questions to

farnaz.adib.yaghmaie@liu.se