Lucrarea nr.4 – Materiale optoelectronice

1. Scopul lucrării.

Scopul acestei lucrări de laborator este cunoașterea unor materiale folosite în optoelectronică, măsurarea caracteristicilor unor dispozitive optoelectronice: diode luminiscente (LED) și fototranzistoare.

2.

Tabel 4-2

Treapta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
U(v)	0	0.42	0.84	1.26	1.68	2.1	2.52	2.94	3.36	3.78	4.2	4.62	5.04	5.46	5.88	6.7

Tabel 4-3

Treapta	1	2	3	4	5	6	7	8
U(V)	0	0.828	1.656	2.484	3.312	4.14	4.968	5.8

3. Tabelul 4-4 și graficul I=f(UD) pentru cele patru diode măsurate.

Tabel 4-4 $R=100\Omega$

Treapta		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Dioda LI	U _x [V]	0	0.42	0.84	0.913	0.986	1.059	1.132	1.205	1.278	1.351	1.424	1.497	1.57	1.643	1.716	1.8
	U _v [mV]	0	0	0	53.846	107.692	161.538	215.384	269.23	323.922	376.922	430.768	484.614	538.46	592.306	646.152	700
	$I_d = U_y / R_1$				0.5384												
	[mA]	0	0	0	6	1.07692	1.61538	2.15384	2.6923	3.23922	3.76922	4.30768	4.84614	5.3846	5.92306	6.46152	7
	$U_d = U_x - U_y$				859.15								1012.38	1031.5	1050.69	1069.84	110
	[mV]	0	420	840	4	878.308	897.462	916.616	935.77	954.078	974.078	993.232	6	4	4	8	0
Dioda	U _x [V]	0	0	0	0	1.36	1.446	1.532	1.618	1.704	1.79	1.876	1.962	2.048	2.134	2.22	2.4
LR	$U_y[mV]$	0	0	0	0	50	100	150	200	250	300	350	400	450	500	550	600
	$I_d=U_y/R_1$																
	[mA]	0	0	0	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
	$U_d = U_x - U_y$																180
	[mV]	0	0	0	0	1310	1346	1382	1418	1454	1490	1526	1562	1598	1634	1670	0
Dioda	U _x [V]	0	0	0	0	1.76	1.836	1.912	1.988	2.064	2.14	2.216	2.292	2.368	2.444	2.52	2.6
LV	U _y [mV]	0	0	0	0	0	52.72	105.44	158.16	210.88	263.6	316.32	369.04	421.76	474.48	527.2	580
	$I_d=U_y/R_1$ [mA]	0	0	0	0	1.76	1.836	1.912	1.988	2.064	2.14	2.216	2.292	2.368	2.444	2.52	2.6
	U _d =U _x -U _v	Ť				21,70	1.000	1.012	1829.8	2.00		2.220	2.232	1946.2		2.52	202
	[mV]	0	0	0	0	1760	1783.28	1806.56	4	1853.12	1876.4	1899.68	1922.96	4	1969.52	1992.8	0
Dioda	U _x	0	0.42	0.84	1.32	1.76	2.12	2.54	2.618	2.696	2.774	2.852	2.93	3.008	3.086	3.164	3.25
LA	U _v	0	0	0	0	0	0	0	53.33	106.66	159.99	213.32	266.65	319.98	373.31	426.64	480
	I _d =U _v /R ₁																
	[mA]	0	0	0	0	0	0	0	0.5333	1.0666	1.5999	2.1332	2.6665	3.1998	3.7331	4.2664	4.8
	U _d =U _x -U _y								2564.6					2688.0			277
	[mV]	0	420	840	1320	1760	2120	2540	7	2589.34	2614.01	2638.68	2663.35	2	2712.69	2737.36	0

4. Tabelul 4-5 și graficul Φ =f(IL).

Tabel 4-5 $R1=100\Omega$ $R2=1.6k\Omega$

Treapta	1	2	3	4	5	6	7	8
U _B [mV]	0	60	150	260	360	470	550	620
U _A [mV]	0	0	30	140	305	560	820	1150
$I_{L1}[mA]=U_B/R_1[mA]$	0	0.6	1.5	2.6	3.6	4.7	5.5	6.2
$I_{F1}[\mu A]=U_A/R_2[uA]$	0	0	18.75	87.5	190.625	350	512.5	718.75
φ ₁ [lx]	0	0	7	40	90	200	300	400
U _A [mV]	0	0	40	120	240	420	640	820
$I_{F2}[\mu A] = U_A/R_2[uA]$	0	0	25	75	150	262.5	400	512.5
φ ₂ [lx]	0	0	15	70	150	260	400	510

Pentru completarea tabelului am folosit caracteristica $\Phi = f(I_c)$ din fig. 4-7.

5. Tabelul 4-6 şi graficul $I_C=f(U_{CE})\Phi=ct$.

Tabel 4-6 $R_2 = 1.6 \,\mathrm{k}\Omega$

Treapta	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ua[V]	0	0.42	0.84	1.26	1.68	2.1	2.52	2.94	3.36	3.78	4.2	4.62	5.04	5.46	5.88	6.7
IL1=0	Uy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
fL1=0	[mV]																
	lc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[uA]																
	Uce																
	[V]	0	0.42	0.84	1.26	1.68	2.1	2.52	2.94	3.36	3.78	4.2	4.62	5.04	5.46	5.88	6.7
IL1=0.9	Uy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
fL1=10	[mV]																
	lc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[uA]																
	Uce	•	0.43	0.04	4.26	4.60	2.4	2.52	2.04	2.26	2.70	4.2	4.63	F 04	F 46	F 00	6.7
	[V]	0	0.42	0.84	1.26	1.68	2.1	2.52	2.94	3.36	3.78	4.2	4.62	5.04	5.46	5.88	6.7
IL1=1.9	Uy	0	0	22							23						24
fL1=40	[mV]																
	lc																
	[uA]	0	0	13.75							14.375						15
	Uce																
11.1-2.0	[V]	0	0.42	0.818							3.757						6.676
IL1=2.9	Uy	0	105		120						120						140
fL1=80	[mV]				120						130						140
	lc []		CE COE		7.5						04.05						07.5
	[uA]	0	65.625		75						81.25						87.5

											•	
	Uce											
	[V]	0	0.315		1.14				3.23			6.56
IL1=4	Uy	0	155									
fL1=150	[mV]			250					260			300
	lc											
	[uA]	0	96.875	156.25					162.5			187.5
	Uce											
	[V]	0	0.265	0.59					3.1			5.58
IL1=6	Uy	•	100	450	400				F 40			5.60
fL1=290	[mV]	0	180	450	480				540			560
	lc											
	[uA]	0	116.2	281.25	300				337.5			350
	Uce											
	[V]	0	0.234	0.39	0.78				3.24			6.14
IL1=7.2	Uy	0	220	480	700				760			820
fL1=360	[mV]											
	lc											
	[uA]	0	137.5	300	437.5				475			512.5
	Uce											
	[V]	0	0.2	0.36	0.56				3.02			5.88
IL1=8.1	Uy	•	240	460	200	4000			4400			4450
fL1=410	[mV]	0	240	460	800	1000			1100			1150
	lc											
	[uA]	0	150	287.5	500	625			687.5			718.75
	Uce											
	[V]	0	0.18	0.38	0.46	0.68			2.68			5.55

Pentru completarea tabelului, am folosit valorile pentru $\mathbf{I_{L1}}$ și $\mathbf{\Phi_1}$ aflate în tabelul 4-5 si urmatoarele formule : $I_C = U_y/R_2$, $U_{ce} = U_a - U_y$. Pentru reprezentarea grafica am tinut cont de faptul ca sunt suficiente 2 puncte pentru a reprezenta o dreapta, pentru aceasta am efectuat mai putine masuratori.

6 Intribari oi probleme

1. De ce se introduce j'oncluivea pu (portea activa a LEB-ului)
Intr-o colota oforica reolizata dintr-un material plastic
si cum se alege accasta d.p.d.v al indicelui de refroctie?

Ge dereste un indice de refroctie cost mai maro pentru a difuza mai bine lamina ri pentru a pentru a difuza mai bine lamina ri pentru a pentru a difuza moi bine lamina ri motivele pt care proteja sondiumea. Acestea punt pi motivele pt care jonatimea este introdusa intro colota sforica jonatimea este introdusa intro

2. Doca un LED emite lumina cu lungimea de unda 550 um, mundadella de lumina cu lungimea de unda 650 um, mundadella della della care este energia benzi interzioe a materiolalui din care este reolizat LEDal?

3. Doca un LED emite lumina de lungimea de unda 550 nm ai un altul de 600 nm, comparati volonis benzilor interziose conspenzatorone motoriolelor din care sunt reolizate cele 2 LED-uni.

7, = 550 mm = EG, = 2,25 eV (din colental de la 2.)

$$\lambda_2 = 600 \text{ nm} : E_{G_2} = \frac{\beta_1 \cdot c}{\lambda_2} = \frac{6,626.10^{-34} \cdot 3.10^8}{600.10^{-9}} = \frac{\text{m}^2 \cdot \text{kg}}{\text{nu}} \cdot \frac{\text{nu}}{\text{nu}}$$

Concludie:
$$\lambda_1 \langle \lambda_2 \rangle = 1 E_{G_1} \rangle E_{G_2}$$
.

4. Se considera un LED pe GaAs este 1,42 eV. Vociatia acesteia au demperatura ore lec dupa legea, $\frac{dEg}{dT} = -4,5.10 \frac{eV}{K}$. Se se det voriodia lungimii de unda emrise doca demperatura varioda cu 10°C.

$$Eg = 1,42 \text{ eV} = 2,248 \cdot 10^{-19} \text{ J}$$

$$Eg = \frac{9 \cdot c}{2} = 1 \cdot 2 = \frac{4 \cdot c}{Eg} = \frac{19,86 \cdot 10^{-26}}{2,243 \cdot 10^{-19}} = \frac{19,86 \cdot 10^{-19}}{2} = \frac{19,86 \cdot 10^{-19}$$

= 873 um.

5. Exemplificati materiolele remicerductoare cu structura de benzi durecta, rospectiv indirecta.

Directa - GaAs, GaP, APAS Indirecta - Si 6. Ce este electrolumines centà?

Este un fenomen optic à electric ûn care un moderial emite lumina ca raspuns la un curent electric ce muite lumina ca raspuns la un comp electric puternic. Ince prim el son de la un comp electric puternic. Este rezultatul recombinaria radioactive de electroni vi galuri untr-un moterial.

8. Ce sunt diodele rapor lumines cente?

Diodele com combina puterca oi luminozitatea ridicate de la diodele laser cu coeficintul scotut de la o dioda LED obionnità possità numele de diode superluminescente.

- 9. Care sunt cele doux configuration de bosta pertur structurile pertur LED-wei?
 - 1. LED ou emisie de suprofota SLED 2. LED en emisie lateralà - ELED.
- 10. Exemplificati cel putin cinci oplicatii ale LED-wiler:
 - iluminat
 - ofisoje, indicatione LED
 - comoro de suproveglave de monte
 - relipomente medical,
 - Jelecomen zi.