

รายงาน

เรื่อง

Program สำหรับการ Train Multilayer Perceptron โดยใช้ Particle Swarm Optimization (PSO) สำหรับการทำ prediction Benzene concentration โดยเป็นการ predict 5 วันล่วงหน้า และ 10 วันล่วงหน้า

โดย

น.ส. ภัทรจาริน ผดุงกิจเจริญ รหัสนักศึกษา 650610851

เสนอ

รศ.คร. ศันสนีย์ เอื้อพันธ์วิริยะกุล

รายงานนี้เป็นส่วนหนึ่งของรายวิชา CPE 261456

Introduction to Computational Intelligence

สาขาวิชาวิศวกรรมหุ่นยนต์และปัญญาประดิษฐ์

ภาคเรียนที่ 1 ปีการศึกษา 2567

มหาวิทยาลัยเชียงใหม่

1.ลักษณะการทำงานของระบบ

1.1 วัตถุประสงค์

จงเขียน program สำหรับการ Train Multilayer Perceptron โดยใช้ Particle Swarm Optimization (PSO) สำหรับการทำ prediction Benzene concentration โดยเป็นการ predict 5 วันล่วงหน้า และ 10 วันล่วงหน้า โดยให้ใช้ attribute เบอร์ 3,6,8,10,11,12,13 และ 14 เป็น input ส่วน desire output เป็น attribute เบอร์ 5

ให้ทำการทดลองกับ AirQualityUCI (Air Quality Data Set จาก UCI Machine learning Repository) โดยที่ data set นี้มีทั้งหมด 9358 sample และมี 14 attribute ดังนี้

- 0 Date (DD/MM/YYYY)
- 1 Time (HH.MM.SS)
- 2 True hourly averaged concentration CO in mg/m³ (reference analyzer)
- 3 PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted)
- 4 True hourly averaged overall Non Metanic HydroCarbons concentration in microg/m^3 (reference analyzer)
- 5 True hourly averaged Benzene concentration in microg/m³ (reference analyzer)
- 6 PT08.S2 (titania) hourly averaged sensor response (nominally NMHC targeted)
- 7 True hourly averaged NOx concentration in ppb (reference analyzer)
- 8 PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally NOx targeted)
- 9 True hourly averaged NO2 concentration in microg/m³ (reference analyzer)
- 10 PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2 targeted)
- 11 PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 targeted)
- 12 Temperature in °C

13 Relative Humidity (%)

14 AH Absolute Humidity

ให้ทำการทดลองโดยใช้ 10% cross validation เพื่อทดสอบ validity ของ network ที่ได้ และให้ทำการเปลี่ยนแปลง จำนวน hidden layer และ nodes

ในการวัด Error ให้ใช้ Mean Absolute Error (MAE)

1.2 ขั้นตอนการทำงาน

1.2.1 การโหลดและการจัดเตรียมข้อมูล

ข้อมูลในโค้คไค้ถูกโหลดจากไฟล์ Excel (AirQualityUCI.xlsx) โดยเลือกเฉพาะคอลัมน์ที่เกี่ยวข้องกับการ ทำนายค่าความเข้มข้นของเบนซีน (Benzene) ได้แก่:

Input: PT08.S1(CO), PT08.S2(NMHC), PT08.S3(NOx), PT08.S4(NO2), PT08.S5(O3), T, RH, AH

Output: C6H6(GT)

หลังจากเลือกคอลัมน์ที่ต้องการ จะทำการลบแถวที่มีค่าหายไป (NaN) จากนั้นกำหนดตัวแปร X สำหรับค่า input และ ตัวแปร y_5 days สำหรับการทำนายค่าล่วงหน้า s วัน โดยการเลื่อนค่าของ y ลง s แถว และลบแถวสุดท้าย s แถวออก เพราะไม่มีข้อมูลการทำนาย

1.2.2 การออกแบบ Multilayer Perceptron (MLP)

โมเคล MLP ถูกสร้างขึ้นโดยมีโครงสร้างคังนี้:

จำนวนชั้นซ่อน (hidden layers): 1 ชั้น # กำหนดโครงสร้างของ hidden layers และจำนวนโหนดตามต้องการ จำนวนโหนด (nodes): 5 โหนดในชั้นซ่อน # กำหนดโครงสร้างของ hidden layers และจำนวนโหนดตามต้องการ ฟังก์ชัน MLP_forward ทำหน้าที่คำนวณผลลัพธ์ของโมเคลผ่านกระบวนการ Forward Propagation โดยใช้ tanh เป็น ฟังก์ชัน Activation

1.2.3 การใช้ Particle Swarm Optimization (PSO)

ฟังก์ชัน PSO_optimize ทำหน้าที่ปรับค่า weights ของ MLP โดยใช้ PSO ซึ่งมีการกำหนดให้เริ่มต้นด้วยจำนวน อนุภาค (particles) 10 อนุภาค และจำนวนรอบการทำซ้ำสูงสุด (max_iter) 20 รอบ PSO นี้ทำการอัปเดตตำแหน่ง (position) และความเร็ว (velocity) ของแต่ละอนุภาคในแต่ละรอบการทำซ้ำเพื่อหาค่า weights ที่ดีที่สุดตามค่า Mean Absolute Error (MAE)

1.2.4 การใช้ Cross-Validation

ใช้ Cross-Validation แบบ 10% เพื่อตรวจสอบความสามารถของโมเคล โคยแบ่งข้อมูลเป็น 10 fold และ ประเมินค่า MAE ในแต่ละ fold จากนั้นทำการคำนวณค่า MAE เฉลี่ยสำหรับการพยากรณ์ล่วงหน้า 5 วันและ 10 วัน

2. Simulation ของระบบ ผลการทดลอง และวิเคราะห์

2.1 การตั้งค่าการทดลอง และผลการทดลอง

Mean Error for 5-day prediction: 16.743041842589946 Mean Error for 10-day prediction: 16.822933193691387

layers = [8, 20, 10, 5, 1] : 3 hidden layers และมีจำนวน nodes ที่แตกต่างกันในแต่ละชั้น

Mean Error for 5-day prediction: 16.740647211983855 Mean Error for 10-day prediction: 17.37856994772832

จากการทดลองจะเห็นได้ว่าค่า MAE เฉลี่ยที่ได้มีความแตกต่างกันตามโครงสร้างของโมเดล โดยโครงสร้างที่มีจำนวน hidden layers มากกว่าอาจมีผลลัพธ์ที่ดีกว่าในบางกรณี แต่ก็มีความเสี่ยงที่จะเกิด overfitting ได้เช่นกัน

2.2 การวิเคราะห์ผลการทดลอง

ค่า MAE เฉลี่ยที่ลดลงอาจแสดงถึงประสิทธิภาพที่สูงขึ้นของโมเดลในการทำนายค่าความเข้มข้นของเบนซีน แต่ควรพิจารณาด้วยว่าโครงสร้างโมเดลที่ซับซ้อนมากขึ้นจะใช้เวลาคำนวณมากขึ้นเช่นกัน ดังนั้น การเลือกโครงสร้าง ของ hidden layers ควรพิจารณาจากความสมดุลระหว่างความแม่นยำและความเร็วในการคำนวณ

สำหรับการทำนายล่วงหน้า 10 วัน ค่า MAE เฉลี่ยที่เพิ่มขึ้นอาจแสดงถึงความท้าทายที่เพิ่มขึ้นในการทำนายค่า ล่วงหน้าไกลขึ้น เนื่องจากมีความไม่แน่นอนในข้อมูลที่สูงขึ้น

2.3 สรุปผลการทดลอง

โมเดล Multilayer Perceptron (MLP) ที่ได้รับการปรับค่า weights ผ่าน Particle Swarm Optimization (PSO) นั้นสามารถใช้ทำนายค่าความเข้มข้นของเบนซีนล่วงหน้าได้อย่างมีประสิทธิภาพในระดับหนึ่ง โดยโครงสร้างที่ เหมาะสมของโมเดลจะขึ้นอยู่กับช่วงเวลาที่ต้องการทำนาย (5 วันหรือ 10 วัน)

3.โปรแกรม

GITHUB: https://github.com/Pattharajrin/261456_CI_Assignment4_Y3-1.git

```
import pandas as pd
 3 import matplotlib.pyplot as plt
   file_path = 'AirQualityUCI.xlsx'
 7 data = pd.read_excel(file_path)
10 selected_columns = ['PT08.S1(CO)', 'PT08.S2(NMHC)', 'PT08.S3(NOx)', 'PT08.S4(NO2)', 'PT08.S5(O3)', 'T', 'RH', 'AH', 'C6H6(GT)']
11 df_selected = data[selected_columns]
    # จัดการค่าที่ขาดหายไป (NaNs) โดยการลบแถวที่มีค่าว่าง
14 df_selected = df_selected.dropna()
17 X = df_selected[['PT08.S1(CO)', 'PT08.S2(NMHC)', 'PT08.S3(NOx)', 'PT08.S4(NO2)', 'PT08.S5(O3)', 'T', 'RH', 'AH']].values
18 y_5days = df_selected['C6H6(GT)'].values
21 y_5days = np.roll(y_5days, -5)
23 # ลบแถวสุดท้าย 5 แถวออก เนื่องจากไม่มีข้อมูลทำนาย
25  y_5days = y_5days[:-5]
28 y_10days = np.roll(y_5days, -5)
31 y_10days = y_10days[:-5]
32 X_10days = X[:-5]
35 def MLP_forward(X, weights, layers):
        input_layer = X
        for layer_weights in weights:
            input_layer = np.dot(input_layer, layer_weights) # คำนวณผลลัพธ์ของแต่ละ layer
            input_layer = np.tanh(input_layer) # ใช้ tanh เป็นฟังก์ชัน Activation
        return input_layer
```

```
def PSO_optimize(X_train, y_train, layers, num_particles=10, max_iter=20):
         num_inputs = X_train.shape[1]
         swarm = []
         for _ in range(num_particles):
             particle = {
                  'position': [np.random.randn(num_inputs, layers[0])] + \
                               [np.random.randn(layers[i], \ layers[i+1]) \ for \ i \ in \ range(len(layers) - 1)],
                  'best_position': None, # ตำแหน่งที่ดีที่สุดที่ particle นี้เคยเจอ
'best_error': float('inf'), # ตำ error ที่น่อยที่สุดที่ particle นี้เคยเจอ
             swarm.append(particle)
         global_best_position = None
         global_best_error = float('inf')
         for iteration in range(max_iter):
              for particle in swarm:
                 predictions = MLP forward(X train, particle['position'], layers)
                 error = mean_absolute_error(y_train, predictions) # คำนวณ MAE
                  if error < particle['best_error']:</pre>
                      particle['best_position'] = particle['position']
                  # อัปเดต global best position ถ้า error ของ particle นี้ดีกว่าค่า global best
                  if error < global_best_error:</pre>
                      global_best_error = error
                      global_best_position = particle['position']
             for particle in swarm:
                  for i in range(len(particle['position'])):
                      inertia = 0.5 * particle['velocity'][i] # โมเมนตัมเพื่อรักษาทิศทางการเคลื่อนที่เดิม
cognitive = 1.5 * np.random.rand() * (particle['best_position'][i] - particle['position'][i]) # การเรียนรู้จากดำแหน่งที่ดีที่สุดของดัวเอง
                      social = 1.5 * np.random.rand() * (global_best_position[i] - particle['position'][i]) # การเรียนรู้จากด่านหน่งที่ดีที่สุดของกลุ่ม
                      particle['velocity'][i] = inertia + cognitive + social # อัปเดด velocity particle['position'][i] += particle['velocity'][i] # อัปเดดด่าแหน่ง
             print(f"Iteration {iteration + 1}/{max_iter}, Best Error: {global_best_error}")
         return global_best_position # return ค่า weights ที่ดีที่สุดที่หาได้
53 def mean_absolute_error(y_true, y_pred):
```

```
2 def cross_validate(X, y, layers, num_folds=10, title="Cross-Validation MAE"):
        fold_size = len(X) // num_folds
        errors = []
        best_weights = None
        lowest_error = float('inf')
        for i in range(num_folds):
           start_test = i * fold_size
            end_test = start_test + fold_size
           X_test = X[start_test:end_test]
           y_test = y[start_test:end_test]
            X_train = np.concatenate((X[:start_test], X[end_test:]), axis=0)
            y_train = np.concatenate((y[:start_test], y[end_test:]), axis=0)
            current_weights = PSO_optimize(X_train, y_train, layers)
           predictions = MLP_forward(X_test, current_weights, layers)
            error = mean_absolute_error(y_test, predictions)
            errors.append(error)
            if error < lowest_error:</pre>
               lowest_error = error
                best_weights = current_weights
            print(f"Fold {i + 1}/{num_folds}, MAE: {error}")
        mean_error = np.mean(errors) # คำนวณค่า MAE เฉลี่ย
        plt.figure(figsize=(8, 6))
        plt.plot(range(1, num_folds + 1), errors, marker='o', label='MAE per fold')
        plt.axhline(y=mean_error, color='r', linestyle='--', label=f'Average MAE: {mean_error:.2f}')
        plt.xlabel('Fold')
        plt.ylabel('MAE')
        plt.legend()
        plt.grid() # เพิ่มเส้นกริดให้กราฟ
       plt.show()
       return mean error, best weights # return ค่า MAE เฉลี่ยและ weights ที่ดีที่สุด
   layers = [8, 5, 1] # กำหนดโครงสร้างของ hidden layers และจำนวนโหนดตามต้องการ
   mean_error_5days, best_weights_5days = cross_validate(X, y_5days, layers, title="5-Day Prediction Cross-Validation MAE")
   mean_error_10days, best_weights_10days = cross_validate(X_10days, y_10days, layers, title="10-Day Prediction Cross-Validation MAE")
56 print(f"Mean Error for 5-day prediction: {mean_error_5days}")
57 print(f"Mean Error for 10-day prediction: {mean_error_10days}")
```