Chapitre 26

Intégration sur un segment

26	Intégration sur un segment	1
	26.12Image d'une fonction en escalier	2
	26.14Subdivision commune	2
	26.15Structure de l'ensemble des fonctions en escalier	2
	26.17Théorème	2
	26.23Intégrale de deux fonctions en escalier égales presque partout	9
	26.24Positivité ou croissance de l'intégrale	3

26.12 Image d'une fonction en escalier

Propostion 26.12

L'image d'une fonction en escalier est un ensemble fini. En particulier, une fonction en escalier est bornée.

Si $v = {\sigma_0, \dots, \sigma_n}$ est une subdivision associée à f, alors :

$$|Im(f)| \le \underbrace{n}_{\text{valeurs sur chaque intervalle ouvert}} + \underbrace{n+1}_{\text{valeurs de } f(v_i)} = 2n+1$$

26.14 Subdivision commune

Lemme 26.14

Soit f et g deux fonctions en escalier. Il existe une subdivision commune associée à f et g.

Si σ est une subdivision associée à f et τ est une subdivision associée à g :

$$\sigma \cup \tau \le \sigma$$
$$\le \tau$$

Donc $\sigma \cup \tau$ est une subdivision commune associée à f et g.

26.15 Structure de l'ensemble des fonctions en escalier

Théorème 26 15

L'ensemble Esc([a,b]) des fonctions en escalier sur [a,b] est un sous-espace vectoriel de $\mathbb{R}^[a,b]$ (c'est même une sous-algèbre).

PRAS (26.14)

26.17 Théorème

Théorème 26.17

Pour toutes subdivisions σ et τ associées à f, on a :

$$I(f,\sigma) = I(f,\tau)$$

Autrement dit, la quantité $I(f,\sigma)$ est indépendante du choix de la subdivision associée.

Dans un premier temps, on suppose $\tau \subset \sigma$. Notons :

$$\tau = \{\tau_0, \dots, \tau_n\}$$
$$= \{v_{i_0}, \dots, v_{i_n}\}$$

On note f_k la valeur constante de f sur $]\tau_k, \tau_{k+1}[$ et ainsi :

$$I(f,\tau) = \sum_{k=0}^{n-1} (\sigma_{i_{k+1}} - \sigma_{i_k}) f_k$$

$$= \sum_{k=0}^{n-1} \left[\sum_{p=i_k}^{i_{k+1}-1} (\sigma_{p+1} - \sigma_p) \right] f_k$$

$$= \sum_{k=0}^{n-1} \sum_{p=i_k}^{i_{k+1}-1} (\sigma_{p+1} - \sigma_p) f_p$$

$$= \sum_{p=0}^{i_n-1} (\sigma_{p+1} - \sigma_p) f_p$$

$$= I(f,\sigma)$$

Dans le cas général:

$$I(f,\tau) = I(f,\tau \cup \sigma) = I(f,\sigma)$$

${ m Propostion} \ 26.21$

Soit f une fonction en escalier sur [a, b] et soit $c \in]a, b[$, alors f est en escalier sur [a, c] et [c, b] et :

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Soit σ associée à f, $\sigma \cup \{c\}$ est toujours associée à f, alors $\sigma \cup \{c\} \cap [a,c]$ est associée à $f_{[a,c]}$. RAS pour la suite.

26.23 Intégrale de deux fonctions en escalier égales presque partout

Propostion 26.23

Si deux fonctions en escalier ne différent qu'en un nombre fini de points, alors leurs intégrales sont égales.

Dans ce cas, f-g est nulle presque partout et on utilise la linéarité et (26.20).

26.24 Positivité ou croissance de l'intégrale

Propostion 26.24

Soit f et g deux fonctions en escalier sur [a,b] (avec $a \le b$) telles que pour tout $x \in [a,b], f(x) \le g(x)$, alors :

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

En particulier, si f est en escalier sur [a, b] et positive, alors :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

En reprenant la notation du (20.18), pour tout $i, f_i \ge 0$. Donc :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

On obtient la croissance par linéarité.