Einführung

A. Müller

Zahlensysteme und Strukturen

Prof. Dr. Andreas Müller

Intro — Matrizen

 $\mathsf{Matrizen} \\ \mathsf{M}_{m \times n}(\Bbbk)$

Algebra

sisheud

Intro — Matrizen

Algebra

Rechenregeln $A^2 + A + I = 0$

Matrizen $M_{m \times n}(\mathbb{k})$

sishlend

Sunsans Sunsans

Intro — Matrizen

Algebra

Rechenregeln $A^2 + A + I = 0$ Polynome $\chi_A(A) = 0$, $m_A(A) = 0$

Matrizen $M_{m \times n}(\mathbb{k})$

SisylenA

Sentegung-

Intro — Matrizen

Algebra

Rechenregeln $A^2 + A + I = 0$ Polynome $\chi_A(A) = 0$, $m_A(A) = 0$ Projektion: $P^2 = P$

Matrizen $M_{m \times n}(\mathbb{k})$

SishlenA

Seriegung Seriegung

Intro — Matrizen

Algebra

Rechenregeln $A^2 + A + I = 0$ Polynome $\chi_A(A) = 0$, $m_A(A) = 0$

Projektion: $P^2 = P$

 ${\rm nilpotent} \colon\thinspace {\it N}^k = 0$

Matrizen $M_{m \times n}(\mathbb{k})$

sishlend

Sunsons

Algebra

Rechenregeln $A^2 + A + I = 0$ Polynome $\chi_A(A) = 0$, $m_A(A) = 0$

Projektion: $P^2 = P$ nilpotent: $N^k = 0$

Matrizen $M_{m \times n}(\mathbb{k})$

Intro — Matrizen

Algebra

Algebraische Strukturen

Sisylend

Settle gung

Algebra

Rechenregeln $A^2 + A + I = 0$ Polynome $\chi_A(A) = 0$, $m_A(A) = 0$ Projektion: $P^2 = P$

nilpotent: $N^k = 0$

Matrizen $M_{m \times n}(\mathbb{k})$

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit

sisylend

Source No.

Algebra

Rechenregeln $A^2 + A + I = 0$ Polynome $\chi_A(A) = 0$, $m_A(A) = 0$

Projektion: $P^2 = P$ nilpotent: $N^k = 0$

Matrizen $M_{m \times n}(\mathbb{k})$

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

sisklend

Suns Suns

Zerlegung Matrizen $M_{m \times n}(\mathbb{k})$

Intro — Matrizen

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

Eigenbasis: $A = \sum \lambda_k P_k$

Matrizen $M_{m \times n}(\mathbb{k})$

Algebra

Intro — Matrizen

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

Eigenbasis: $A=\sum \lambda_k P_k$ Invariante Räume: $AV\subset V, AV^\perp\subset V^\perp$

Matrizen $M_{m \times n}(\mathbb{k})$

Algebra

Intro — Matrizen

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

Eigenbasis: $A = \sum \lambda_k P_k$ Invariante Räume: $AV \subset V, AV^\perp \subset V^\perp$

Matrizen $M_{m \times n}(\mathbb{k})$

Algebra

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

• Eigenvektoren, -räume

Zerlegung

Eigenbasis: $A = \sum \lambda_k P_k$ Invariante Räume: $AV \subset V, AV^\perp \subset V^\perp$

Matrizen $M_{m \times n}(\mathbb{k})$

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

- Eigenvektoren, -räume
- Projektionen, Drehungen

Zerlegung

Eigenbasis: $A = \sum \lambda_k P_k$ Invariante Räume: $AV \subset V$, $AV^\perp \subset V^\perp$

Matrizen $M_{m \times n}(\mathbb{k})$

Algebra

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis Matrizen $M_{m\times n}(\mathbb{k})$ Algebra

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis Symmetrien Matrizen $M_{m\times n}(\mathbb{k})$ Algebra

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis Symmetrien Skalarprodukt erhalten: SO(n)

 $M_{m \times n}(\mathbb{k})$

Jerlegumb 7

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis Symmetrien Skalarprodukt erhalten: SO(n)Konstant \Rightarrow Ableitung = 0

Matrizen $M_{m \times n}(\mathbb{k})$

Terlegums 1

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis

Symmetrien

Skalarprodukt erhalten: SO(n)

 $\mathsf{Konstant} \Rightarrow \mathsf{Ableitung} = 0$

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Matrizen $M_{m \times n}(\mathbb{k})$

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

1 erlegumb

Analysis

Symmetrien

Skalarprodukt erhalten: SO(n)

 $\mathsf{Konstant} \Rightarrow \mathsf{Ableitung} = 0$

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Matrizen $M_{m \times n}(\mathbb{k})$

Terleguing 1

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis

Symmetrien

Analysis

Symmetrien

Skalarprodukt erhalten: SO(n)

$$\mathsf{Konstant} \Rightarrow \mathsf{Ableitung} = \mathsf{0}$$

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Matrizen $M_{m \times n}(\mathbb{k})$

Terleguing

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis

- Symmetrien
- Matrix-DGL

Analysis

Symmetrien

Skalarprodukt erhalten: SO(n)

 $\mathsf{Konstant} \Rightarrow \mathsf{Ableitung} = 0$

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Matrizen $M_{m \times n}(\mathbb{k})$

Terleguing

Intro — Matrizen

Algebra

- Algebraische Strukturen
- Polynome, Teilbarkeit
- Minimalpolynom

Zerlegung

- Eigenvektoren, -räume
- Projektionen, Drehungen
- Invariante Unterräume

Analysis

- Symmetrien
- Matrix-DGL
- Matrix-Potenzreihen

Natürliche Zahlen

Zählen

Mit den natürlichen Zahlen zählt man:

```
\mathbb{N} = \left\{ egin{align*} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{array} 
ight. 
ight.
```

Natürliche Zahlen: Peano

Zählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Zählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

$${\color{red} 0} \ 0 \in \mathbb{N}$$

Natürliche Zahlen: Peano

Zählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$

Zählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} & \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ & \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Zählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} & \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ & \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge $\mathbb N$ mit einer zweistelligen Verknüpfung a+b

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} & \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ & \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge $\mathbb N$ mit einer zweistelligen Verknüpfung a+b

1 Assoziativ: $a, b, c \in M$

$$(a+b)+c=a+(b+c)$$

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge $\mathbb N$ mit einer zweistelligen Verknüpfung a+b

1 Assoziativ: $a, b, c \in M$

$$(a+b)+c=a+(b+c)$$

2 Neutrales Element: $0 \in M$

$$0 + a = a + 0$$

Zählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $4 n, m \in \mathbb{N} \wedge n' = m' \Rightarrow n = m$
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge M mit einer zweistelligen Verknüpfung a * b

1 Assoziativ: $a, b, c \in M$

$$(a*b)*c = a*(b*c)$$

2 Neutrales Element: $e \in M$

$$e*a=a*e$$

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge M mit einer zweistelligen Verknüpfung a * b

1 Assoziativ: $a, b, c \in M$

$$(a*b)*c = a*(b*c)$$

2 Neutrales Element: $e \in M$

$$e*a=a*e$$

Axiom 5 = Vollständige Induktion

$$X = \{n \in \mathbb{N} \mid P(n) \text{ ist wahr}\}$$

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $4 n, m \in \mathbb{N} \wedge n' = m' \Rightarrow n = m$
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge M mit einer zweistelligen Verknüpfung a * b

1 Assoziativ: $a, b, c \in M$

$$(a*b)*c = a*(b*c)$$

2 Neutrales Element: $e \in M$

$$e * a = a * e$$

Axiom 5 = Vollständige Induktion

$$X = \{n \in \mathbb{N} \mid P(n) \text{ ist wahr}\}$$

1 Verankerung: $0 \in X$

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{aligned} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}} \mathsf{chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{aligned} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $4 n, m \in \mathbb{N} \wedge n' = m' \Rightarrow n = m$
- $5 X \subset \mathbb{N} \land 0 \in X \land \forall n \in X (n' \in X) \Rightarrow \mathbb{N} = X$

Natürliche Zahlen: Peano

Monoid

Menge M mit einer zweistelligen Verknüpfung a * b

1 Assoziativ: $a, b, c \in M$

$$(a*b)*c = a*(b*c)$$

2 Neutrales Element: $e \in M$

$$e * a = a * e$$

Axiom 5 = Vollständige Induktion

$$X = \{n \in \mathbb{N} \mid P(n) \text{ ist wahr}\}$$

- **1** Verankerung: $0 \in X$
- 2 Induktionsannahme: $n \in X$

7ählen

Mit den natürlichen Zahlen zählt man:

$$\mathbb{N} = \left\{ \begin{matrix} \ddot{\mathsf{A}} \mathsf{quivalenzklassen} \ \mathsf{von} \ \mathsf{gleich} \\ \mathsf{m\"{a}chtigen} \ \mathsf{endlichen} \ \mathsf{Mengen} \end{matrix} \right\}$$

Peano-Axiome

- $\mathbf{0} \in \mathbb{N}$
- 2 $n \in \mathbb{N} \Rightarrow \mathsf{Nachfolger} \ n' \in \mathbb{N}$
- 3 0 ist nicht Nachfolger
- $4 n, m \in \mathbb{N} \wedge n' = m' \Rightarrow n = m$

Natürliche Zahlen: Peano

Monoid

Menge M mit einer zweistelligen Verknüpfung a * b

1 Assoziativ: $a, b, c \in M$

$$(a*b)*c = a*(b*c)$$

2 Neutrales Element: $e \in M$

$$e * a = a * e$$

Axiom 5 = Vollständige Induktion

 $X = \{n \in \mathbb{N} \mid P(n) \text{ ist wahr}\}$

- **1** Verankerung: $0 \in X$
- 2 Induktionsannahme: $n \in X$
- 3 Induktionsschritt: $n' \in X$

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b$$

eine Lösung in $\ensuremath{\mathbb{N}}$

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a > b

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

 $\mathsf{Ganze}\ \mathsf{Zahlen} = \mathsf{Paare}$

Idee: b-a=(b,a)

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

$$(b,a) = \mathbb{N} \times \mathbb{N}$$

Aquivalenzrelation

$$(b,a)\sim (d,c)$$

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

$$(b,a) = \mathbb{N} \times \mathbb{N}$$

2 Äquivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow "b-a=c-d"$$

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

$$(b,a) = \mathbb{N} \times \mathbb{N}$$

2 Äquivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow b+d=c+a$$

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

$$(b,a) = \mathbb{N} \times \mathbb{N}$$

2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

$$(b,a) = \mathbb{N} \times \mathbb{N}$$

Aquivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, z = Paare (u, v) mit "gleicher Differenz"

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- $(b,a) = \mathbb{N} \times \mathbb{N}$
- 2 Äquivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Nicht für alle $a, b \in \mathbb{N}$ hat die Gleichung $a + x = b \implies x = b - a$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- $(b,a)=\mathbb{N}\times\mathbb{N}$
- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Ganze Zahlen: Gruppe

Gruppe

 $\mathsf{Halbgruppe} \ \mathbb{Z} \ \mathsf{mit} \ \mathsf{inversem} \ \mathsf{Element}$

$$a \in \mathbb{Z} < 12 - > G \Rightarrow -a \in \mathbb{Z} \text{ mit } a + (-a)$$

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \quad \Rightarrow \quad x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- $(b,a)=\mathbb{N}\times\mathbb{N}$
- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Ganze Zahlen: Gruppe

Gruppe

Halbgruppe G mit inversem Element

$$a \in <12->G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1}=e \\ a^{-1}a=e \end{cases}$$

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \implies x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{ alle Differenzen in } \mathbb{Z}$

Ganze Zahlen: Gruppe

Gruppe

Halbgruppe G mit inversem Element

$$a \in \langle 12-\rangle G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1} = G \\ a^{-1}a = G \end{cases}$$

Abelsche Gruppe

Verknüpfung ist kommutativ:

$$a+b=b+a$$

A. Müller

Subtrahieren

Nicht für alle $a, b \in \mathbb{N}$ hat die Gleichung $a + x = b \implies x = b - a$

eine Lösung in
$$\mathbb{N}$$
, nämlich wenn $a > b$

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- $(b,a)=\mathbb{N}\times\mathbb{N}$
- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Ganze Zahlen: Gruppe

Gruppe

Halbgruppe G mit inversem Element

$$a \in \langle 12-\rangle G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1} = G \\ a^{-1}a = G \end{cases}$$

Abelsche Gruppe

Verknüpfung ist kommutativ:

$$a + b = b + a$$

Beispiele

Nicht für alle $a, b \in \mathbb{N}$ hat die Gleichung $a + x = b \implies x = b - a$

eine Lösung in
$$\mathbb{N}$$
, nämlich wenn $a>b$

Ganze Zahlen = Paare

Idee: b - a = (b, a)

$$(b,a)=\mathbb{N}\times\mathbb{N}$$

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Ganze Zahlen: Gruppe

Gruppe

Halbgruppe G mit inversem Element

$$a \in \langle 12-\rangle G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1} = G \\ a^{-1}a = G \end{cases}$$

Abelsche Gruppe

Verknüpfung ist kommutativ:

$$a + b = b + a$$

Beispiele

Brüche reelle Zahlen

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \quad \Rightarrow \quad x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Ganze Zahlen: Gruppe

Gruppe

Halbgruppe G mit inversem Element

$$a \in \langle 12-\rangle G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1} = G \\ a^{-1}a = G \end{cases}$$

Abelsche Gruppe

Verknüpfung ist kommutativ:

$$a + b = b + a$$

Beispiele

- Brüche reelle Zahlen
- invertierbare Matrizen: $GL_n(\mathbb{R})$

A. Müller

Subtrahieren

Nicht für alle $a,b\in\mathbb{N}$ hat die Gleichung

$$a + x = b \quad \Rightarrow \quad x = b - a$$

eine Lösung in \mathbb{N} , nämlich wenn a>b

Ganze Zahlen = Paare

Idee: b - a = (b, a)

- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z}=\mathbb{N}\times\mathbb{N}/\sim$ $z\in\mathbb{Z},\ z=\ \mathsf{Paare}\ (u,v)\ \mathsf{mit}$ "gleicher Differenz" \Rightarrow alle Differenzen in \mathbb{Z}

Ganze Zahlen: Gruppe

Gruppe

Halbgruppe G mit inversem Element

$$a \in \langle 12-\rangle G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1} = G \\ a^{-1}a = G \end{cases}$$

Abelsche Gruppe

Verknüpfung ist kommutativ:

$$a + b = b + a$$

Beispiele

- Brüche reelle Zahlen
- invertierbare Matrizen: $GL_n(\mathbb{R})$
- Drehmatrizen: SO(n)

Subtrahieren

Nicht für alle $a, b \in \mathbb{N}$ hat die Gleichung $a + x = b \implies x = b - a$

$$a + x = b$$
 \Rightarrow $x = b - a$
eine Lösung in \mathbb{N} , nämlich wenn $a > b$

Ganze Zahlen = Paare Idee: b - a = (b, a)

- 2 Äquivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow b+d=c+a$$

Ganze Zahlen: $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$ $z \in \mathbb{Z}$, $z = \text{Paare } (u, v) \text{ mit "gleicher Differenz"} \Rightarrow \text{alle Differenzen in } \mathbb{Z}$

Gruppe

Halbgruppe G mit inversem Element

 $a \in \langle 12-\rangle G \Rightarrow a^{-1} \in G \text{ mit } \begin{cases} aa^{-1} = G \\ a^{-1}a = G \end{cases}$

 $SL_n(\mathbb{R})$

Verknüpfung ist kommutativ:

$$a+b=b+a$$

• invertierbare Matrizen: $GL_n(\mathbb{R})$

- Beispiele
 - Brüche reelle Zahlen
 - Bruche reelle Zahlen
 - Drehmatrizen: SO(n)
 - Matrizen mit Determinante 1:

A. Müller

Brüche

Division

Nicht für alle $a,b\in\mathbb{Z}$ hat die Gleichung

$$ax = b$$

eine Lösung in $\ensuremath{\mathbb{Z}}$

Division

Nicht für alle $a,b\in\mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee:
$$\frac{b}{a} = (b, a)$$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee:
$$\frac{b}{a} = (b, a)$$

$$(b,a) \in \mathbb{Z} \times \mathbb{Z}$$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow "\frac{b}{a} = \frac{d}{c} "$$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow bc = ad$$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow bc=ad$$

⇒ alle Quotienten

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a) \sim (d,c) \Leftrightarrow bc = ad$$

⇒ alle Quotienten

Rationale Zahlen

$$\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}/\sim$$

A. Müller

Brüche

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow bc=ad$$

 \Rightarrow alle Quotienten

Gruppe

 $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ ist eine multiplikative Gruppe:

Rationale Zahlen

$$\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}/\sim$$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow bc=ad$$

 \Rightarrow alle Quotienten

Gruppe

 $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ ist eine multiplikative Gruppe:

1 Neutrales Element: $1 \in \mathbb{Q}^*$

Rationale Zahlen

$$\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}/\sim$$

Division

Nicht für alle $a, b \in \mathbb{Z}$ hat die Gleichung

$$ax = b \Rightarrow x = \frac{b}{a}$$

eine Lösung in \mathbb{Z} , nämlich wenn $b \nmid a$

Brüche Idee: $\frac{b}{a} = (b, a)$

- $(b,a) \in \mathbb{Z} \times \mathbb{Z}$
- Aguivalenzrelation

$$(b,a)\sim (d,c)\Leftrightarrow bc=ad$$

 \Rightarrow alle Quotienten

Gruppe

 $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ ist eine multiplikative Gruppe:

- **1** Neutrales Element: $1 \in \mathbb{Q}^*$
- Inverses Element $q = \frac{b}{a} \in \mathbb{Q} \Rightarrow q^{-1} = \frac{a}{b} \in \mathbb{Q}$

Rationale Zahlen

$$\mathbb{Q} = \mathbb{Z} \times \mathbb{Z} / \sim$$

A. Müller

Ring

Addition und Multiplikation

 $\mathbb Z$ und $\mathbb Q$ haben zwei Verknüpfungen:

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a,b \in R \Rightarrow a \cdot b = ab \in R$$

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a, b \in R \Rightarrow a \cdot b = ab \in R$$

Gilt auch für

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a, b \in R \Rightarrow a \cdot b = ab \in R$$

Gilt auch für

Polynome

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a, b \in R \Rightarrow a \cdot b = ab \in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a, b \in R \Rightarrow a \cdot b = ab \in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

4 Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a,b\in R\Rightarrow a\cdot b=ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

4 Addition

$$a, b \in R \Rightarrow a + b \in R$$

Multiplikation

$$a,b\in R\Rightarrow a\cdot b=ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

Ein Ring ist eine Menge R mit zwei Verknüpfungen + und \cdot :

 $oldsymbol{0}$ R mit + ist eine abelsche Gruppe

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

4 Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a,b\in R \Rightarrow a\cdot b = ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

- $oldsymbol{0}$ R mit + ist eine abelsche Gruppe
- R mit · ist ein Monoid

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

4 Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a,b\in R\Rightarrow a\cdot b=ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

- $oldsymbol{0}$ R mit + ist eine abelsche Gruppe
- R mit · ist ein Monoid
- 3 Verträglichkeit: Distributivgesetz

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a,b\in R \Rightarrow a\cdot b = ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

- $oldsymbol{0}$ R mit + ist eine abelsche Gruppe
- R mit · ist ein Monoid
- **3** Verträglichkeit: Distributivgesetz

$$a(b+c)=ab+bc$$

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

Multiplikation

$$a,b\in R \Rightarrow a\cdot b = ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

- $oldsymbol{0}$ R mit + ist eine abelsche Gruppe
- R mit · ist ein Monoid
- **3** Verträglichkeit: Distributivgesetz

$$a(b+c) = ab + bc$$
$$(a+b)c = ac + bc$$

Ring

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

Multiplikation

$$a,b\in R\Rightarrow a\cdot b=ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

Ein Ring ist eine Menge R mit zwei Verknüpfungen + und \cdot :

- $oldsymbol{0}$ R mit + ist eine abelsche Gruppe
- 2 R mit · ist ein Monoid
- 3 Verträglichkeit: Distributivgesetz

$$a(b+c) = ab + bc$$
$$(a+b)c = ac + bc$$

(Ausmultiplizieren)

Ring/Körper

Addition und Multiplikation

 \mathbb{Z} und \mathbb{Q} haben zwei Verknüpfungen:

Addition

$$a, b \in R \Rightarrow a + b \in R$$

2 Multiplikation

$$a,b\in R \Rightarrow a\cdot b = ab\in R$$

Gilt auch für

- Polynome
- $M_n(\mathbb{R})$
- \mathbb{R}^3 mit Vektorprodukt

Definition

Ein Ring/Körper ist eine Menge R mit zwei Verknüpfungen + und \cdot :

- $oldsymbol{0}$ R mit + ist eine abelsche Gruppe
- 2 R mit · ist ein Monoid/eine Gruppe
- **3** Verträglichkeit: Distributivgesetz

$$a(b+c) = ab + bc$$

 $(a+b)c = ac + bc$

(Ausmultiplizieren)

Schwierigkeiten

Schwierigkeiten

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

• Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

• In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):

$$3 \cdot 5 = 15 \equiv 0 \mod 15$$

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

• In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):

$$3 \cdot 5 = 15 \equiv 0 \mod 15$$

Invertierbarkeit

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

• Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

• In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):

$$3 \cdot 5 = 15 \equiv 0 \mod 15$$

Invertierbarkeit

• $7 \in \mathbb{Z}$, aber $7^{-1} \notin \mathbb{Z}$, $7^{-1} \in \mathbb{Q}$

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

• In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):

$$3 \cdot 5 = 15 \equiv 0 \mod 15$$

Schwierigkeiten

Invertierbarkeit

- $7 \in \mathbb{Z}$, aber $7^{-1} \notin \mathbb{Z}$, $7^{-1} \in \mathbb{Q}$
- A regulär heisst nicht $A^{-1} \in M_n(\mathbb{Z})$

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

• Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

• In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):

$$3 \cdot 5 = 15 \equiv 0 \mod 15$$

Schwierigkeiten

Invertierbarkeit

- $7 \in \mathbb{Z}$, aber $7^{-1} \notin \mathbb{Z}$, $7^{-1} \in \mathbb{Q}$
- A regulär heisst nicht $A^{-1} \in M_n(\mathbb{Z})$

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

• $A \in \mathsf{SL}_n(\mathbb{Z})$ invertierbar in $M_n(\mathbb{Z})$:

$$A = \begin{pmatrix} 5 & 4 \\ 4 & 3 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} -3 & 4 \\ 4 & -5 \end{pmatrix}$$

Nullteiler

Elemente a, b mit $ab = 0 \Rightarrow$ nicht invertierbar

Projektionen

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

• Nilpotente Matrizen

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^3 = 0$$

• In $\mathbb{Z}/15\mathbb{Z}$ (modulo 15):

$$3 \cdot 5 = 15 \equiv 0 \mod 15$$

Schwierigkeiten

Invertierbarkeit

- $7 \in \mathbb{Z}$, aber $7^{-1} \notin \mathbb{Z}$, $7^{-1} \in \mathbb{Q}$
- A regulär heisst nicht $A^{-1} \in M_p(\mathbb{Z})$

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

• $A \in \mathsf{SL}_n(\mathbb{Z})$ invertierbar in $M_n(\mathbb{Z})$:

$$A = \begin{pmatrix} 5 & 4 \\ 4 & 3 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} -3 & 4 \\ 4 & -5 \end{pmatrix}$$

Invertierbarkeit erreichen durch "vergrössern" des Ringes

Vektorraum

Operationen

Addition:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

Skalarmultiplikation:

$$\lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix}$$

Vektorraum

Operationen

Addition:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

Skalarmultiplikation:

$$\lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix}$$

Additive Gruppe

 \mathbb{R}^n ist eine Gruppe bezüglich der Addition mit

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

$$0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \quad -a = -\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} -a_1 \\ \vdots \\ -a_n \end{pmatrix}$$

Vektorraum

Operationen

Addition:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

Skalarmultiplikation:

$$\lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix}$$

Additive Gruppe

 \mathbb{R}^n ist eine Gruppe bezüglich der Addition mit

$$0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad -a = - \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} -a_1 \\ \vdots \\ -a_n \end{pmatrix}$$

Skalarmultiplikation

Distributivgesetz

$$(\lambda + \mu)a = \lambda a + \mu a$$
$$\lambda(a + b) = \lambda a + \lambda b$$

Algebra über k

Skalarmultiplikation

Multiplikation Halbgruppe

Algebra über k

Skalarmultiplikation

Multiplikation Halbgruppe

Nektorraum

Algebra über \Bbbk

Skalarmultiplikation

Multiplikation Halbgruppe

$$\lambda(a+b) = \lambda a + \lambda b$$
 $(\lambda + \mu)a = \lambda a + \mu a$

Algebra über \Bbbk

Skalarmultiplikation

Multiplikation
Halbgruppe

 $\lambda(a+b) = \lambda a + \lambda b$ $(\lambda + \mu)a = \lambda a + \mu a$

STOO STOO

Algebra über k

Skalarmultiplikation

Multiplikation Halbgruppe

$$\lambda(a+b) = \lambda a + \lambda b$$

$$(\lambda + \mu)a = \lambda a + \mu a$$

$$a(b+c) = ab + ac$$

$$(a+b)c = ac + bc$$

Algebra über k

 $(\lambda a)b = \lambda (ab)$

Skalarmultiplikation

Multiplikation Halbgruppe

$$\lambda(a+b) = \lambda a + \lambda b$$

$$(\lambda + \mu)a = \lambda a + \mu a$$

$$a(b+c) = ab + ac$$

$$(a+b)c = ac + bc$$

Zahlenmenge	Eigenschaften	Struktur
N		
\mathbb{Z}		
\mathbb{Z}		
Q		
\mathbb{R}		
C		

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}		
\mathbb{Z}		
\mathbb{Q}		
\mathbb{R}		
\mathbb{C}		

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}	Addition, neutrales Element 0, inverses	Gruppe
	Element der Addition	
\mathbb{Z}		
Q		
\mathbb{R}		
\mathbb{C}		

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}	Addition, neutrales Element 0, inverses	Gruppe
	Element der Addition	
\mathbb{Z}	zusätzlich: Multiplikation, neutrales	Ring
	Element 1	
Q		
\mathbb{R}		
\mathbb{C}		

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}	Addition, neutrales Element 0, inverses	Gruppe
	Element der Addition	
\mathbb{Z}	zusätzlich: Multiplikation, neutrales	Ring
	Element 1	
Q	Addition und Multiplikation mit Inversen	Körper
\mathbb{R}		
\mathbb{C}		

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}	Addition, neutrales Element 0, inverses	Gruppe
	Element der Addition	
\mathbb{Z}	zusätzlich: Multiplikation, neutrales	Ring
	Element 1	
Q	Addition und Multiplikation mit Inversen	Körper
\mathbb{R}	zusätzlich: Ordnungsrelation,	Körper mit Ord-
	Vollständigkeit	nung
\mathbb{C}		

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}	Addition, neutrales Element 0, inverses	Gruppe
	Element der Addition	
\mathbb{Z}	zusätzlich: Multiplikation, neutrales	Ring
	Element 1	
Q	Addition und Multiplikation mit Inversen	Körper
\mathbb{R}	zusätzlich: Ordnungsrelation,	Körper mit Ord-
	Vollständigkeit	nung
\mathbb{C}	zusätzlich: Alle Wurzeln	algebraisch
		abgeschlossener
		Körper

Zahlensysteme

Zahlenmenge	Eigenschaften	Struktur
N	Addition, neutrales Element 0	Monoid
\mathbb{Z}	Addition, neutrales Element 0, inverses	Gruppe
	Element der Addition	
\mathbb{Z}	zusätzlich: Multiplikation, neutrales	Ring
	Element 1	
Q	Addition und Multiplikation mit Inversen	Körper
\mathbb{R}	zusätzlich: Ordnungsrelation,	Körper mit Ord-
	Vollständigkeit	nung
\mathbb{C}	zusätzlich: Alle Wurzeln	algebraisch
		abgeschlossener
		Körper
H	höhere Dimension, nichtkommutativ	Schiefkörper

Strukturen

• Gruppen: Drehungen, Symmetrien

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie

Ring:

Multiplikation

 $c_n(\mathbb{Z}), L^2(\mathbb{R})$

a(b+c) = ab + ac

(a+b)c = ac + bc $\forall a, b, c \in R$

Ring mit Eins: $1 \cdot a = a \cdot 1 = a \forall a \in R$

 $\mathbb{Z}[X], M_{*}(\mathbb{Z})$

assoziative Verknüpfung: $a(bc) = (ab)c \ \forall a, b, c$ $\mathbb{N} \ \Sigma^*$

Gruppe: neutrales Element e: eg = ge = g $\forall g \in G$ inverses Element g^{-1} : $gg^{-1} = g^{-1}g = e$ $\forall g \in G$

 \mathbb{Z} , $\mathrm{GL}_n(\mathbb{R})$, S_n , A_n abelsche Gruppe: $a+b=b+a \ \forall a,b$ Addition \mathbb{Q}^* , $\mathrm{SO}(2)$, C_n

Algebra:

 $a(\lambda b) = \lambda ab$

 $\forall a,b \in A, \lambda \in \mathbb{R}$

 $c_o(\mathbb{R})$

Algebra mit Eins

 $M_n(\mathbb{R}), C([a,b])$ Körper: $a \in K \setminus \{0\} \Rightarrow \exists a^{-1}$

 \mathbb{F}_p , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(X)$

Vektorraum: Skalarmultiplikation

 \mathbb{R}^n , \mathbb{C}^n , I^2

 $\lambda(a+b) = \lambda a + \lambda b$

 $(\lambda + \mu)a = \lambda a + \mu a$

 $\forall \lambda, \mu \in \mathbb{R} \ \forall a, b \in V$

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring

assoziative Verknüpfung: $a(bc) = (ab)c \ \forall a, b, c$ Ν Σ* Gruppe: neutrales Element e: eg = ge = g $\forall g \in G$ inverses Element g^{-1} : $gg^{-1} = g^{-1}g = e \ \forall g \in G$ \mathbb{Z} , $GL_n(\mathbb{R})$, S_n , A_n abelsche Gruppe: $a + b = b + a \forall a, b$ Addition O*. SO(2). C. Vektorraum: Skalarmultiplikation Algebra: Ring: $\lambda(a+b) = \lambda a + \lambda b$ Multiplikation $(\lambda + \mu)a = \lambda a + \mu a$ a(b+c) = ab + ac $a(\lambda b) = \lambda ab$ $\forall \lambda, \mu \in \mathbb{R} \ \forall a, b \in V$ $\forall a, b \in A, \lambda \in \mathbb{R}$ (a+b)c = ac + bc $\forall a, b, c \in R$ \mathbb{R}^n , \mathbb{C}^n , I^2 $c_o(\mathbb{R})$ $c_n(\mathbb{Z}), L^2(\mathbb{R})$ Algebra mit Eins Ring mit Eins: $1 \cdot a = a \cdot 1 = a \forall a \in R$ $M_{-}(\mathbb{R}), C([a,b])$ Körper: $a \in K \setminus \{0\} \Rightarrow \exists a^{-1}$ $\mathbb{Z}[X], M_{*}(\mathbb{Z})$ \mathbb{F}_n , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(X)$

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring
- Algebra mit Eins: Vektorraum und Ring mit Eins

assoziative Verknüpfung: $a(bc) = (ab)c \ \forall a, b, c$ N S* Gruppe: neutrales Element e: eg = ge = g $\forall g \in G$ inverses Element g^{-1} : $gg^{-1} = g^{-1}g = e \ \forall g \in G$ \mathbb{Z} , $GL_n(\mathbb{R})$, S_n , A_n abelsche Gruppe: $a + b = b + a \forall a, b$ Addition O*. SO(2). C. Vektorraum: Skalarmultiplikation Algebra: Ring: $\lambda(a+b) = \lambda a + \lambda b$ Multiplikation $(\lambda + \mu)a = \lambda a + \mu a$ a(b+c) = ab + ac $a(\lambda b) = \lambda ab$ $\forall \lambda, \mu \in \mathbb{R} \ \forall a, b \in V$ $\forall a, b \in A, \lambda \in \mathbb{R}$ (a+b)c = ac + bc $\forall a, b, c \in R$ \mathbb{R}^n , \mathbb{C}^n , I^2 $c_o(\mathbb{R})$ $c_n(\mathbb{Z}), L^2(\mathbb{R})$ Algebra mit Eins Ring mit Eins: $1 \cdot a = a \cdot 1 = a \forall a \in R$ $M_{-}(\mathbb{R}), C([a,b])$ Körper: $a \in K \setminus \{0\} \Rightarrow \exists a^{-1}$ $\mathbb{Z}[X], M_{*}(\mathbb{Z})$ \mathbb{F}_n , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(X)$

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring
- Algebra mit Eins: Vektorraum und Ring mit Eins
- Körper

Strukturen

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring
- Algebra mit Eins: Vektorraum und Ring mit Eins
- Körper

Matrizen

Jede beliebige Struktur lässt sich mit Matrizen darstellen:

Strukturen

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring
- Algebra mit Eins: Vektorraum und Ring mit Eins
- Körper

Matrizen

Jede beliebige Struktur lässt sich mit Matrizen darstellen:

Permutationsmatrizen

Strukturen

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring
- Algebra mit Eins: Vektorraum und Ring mit Eins
- Körper

Matrizen

Jede beliebige Struktur lässt sich mit Matrizen darstellen:

- Permutationsmatrizen
- Wahrscheinlichkeitsmatrizen

Strukturen

- Gruppen: Drehungen, Symmetrien
- Vektorraum: Geometrie
- Ring (mit Eins)
- Algebra: Vektorraum und Ring
- Algebra mit Eins: Vektorraum und Ring mit Eins
- Körper

Matrizen

Jede beliebige Struktur lässt sich mit Matrizen darstellen:

- Permutationsmatrizen
- Wahrscheinlichkeitsmatrizen
- Wurzeln

Beispiele

Imaginäre Einheit iGibt es eine Zahl i mit $i^2 = -1$?

Imaginäre Einheit i

Gibt es eine Zahl i mit $i^2 = -1$?

Matrixlösung

Die Matrix

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

erfüllt

$$J^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

 \Rightarrow *J* ist eine Matrixdarstellung von *i* Drehmatrix mit Winkel 90°

Beispiele

Imaginäre Einheit *i*

Gibt es eine Zahl i mit $i^2 = -1$?

Matrixlösung

Die Matrix

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

erfüllt

$$J^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

$$\Rightarrow$$
 J ist eine Matrixdarstellung von i Drehmatrix mit Winkel 90°

Quadratwurzel $\sqrt{2}$

Gibt es eine Zahl $\sqrt{2}$ derart, dass $(\sqrt{2})^2=2$?

Beispiele

Imaginäre Einheit i Gibt es eine 7ahl i mit $i^2 = -1$?

Matrixlösung

Die Matrix

$$J = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$

erfüllt

$$J^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

 \Rightarrow J ist eine Matrixdarstellung von i Drehmatrix mit Winkel 90°

Quadratwurzel $\sqrt{2}$ Gibt es eine Zahl $\sqrt{2}$ derart, dass

Matrixlösung

Die Matrix

 $(\sqrt{2})^2 = 2?$

$$W = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$

erfüllt

$$W^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I$$

 $\Rightarrow W$ ist eine Matrixdarstellung von $\sqrt{2}$

Dreiecksmatrizen

Dreiecksmatrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Dreiecksmatrizen

Dreiecksmatrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix}$$

$$U = egin{pmatrix} 1 & * & * & \dots & * \ 0 & 1 & * & \dots & * \ 0 & 0 & 1 & \dots & * \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Nilpotente Matrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix} \qquad N = \begin{pmatrix} 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ 0 & 0 & 0 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Dreiecksmatrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix}$$

$$U = egin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \quad \Rightarrow N^n = 0$$

Nilpotente Matrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix} \qquad N = \begin{pmatrix} 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ 0 & 0 & 0 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

$$> N^n = 0$$

Dreiecksmatrizen

Dreiecksmatrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix} \qquad N = \begin{pmatrix} 0 & * \\ 0 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \Rightarrow N^n = 0$$

$$N = \begin{pmatrix} 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ 0 & 0 & 0 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

$$> N^n = 0$$

$$R = egin{pmatrix} * & * & * & \cdots & * \ 0 & * & * & \cdots & * \ 0 & 0 & * & \cdots & * \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & * \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & dots \ \end{pmatrix} \quad J_{\lambda} = egin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \ 0 & \lambda & 1 & \cdots & 0 \ 0 & 0 & \lambda & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & \lambda & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & \lambda \ \end{pmatrix}$$

Dreiecksmatrizen

Dreiecksmatrix

$$R = \begin{pmatrix} * & * & * & \dots & * \\ 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & * \end{pmatrix} \qquad N = \begin{pmatrix} 0 & * \\ 0 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \Rightarrow N^n = 0$$

$$N = \begin{pmatrix} 0 & * & * & \dots & * \\ 0 & 0 & * & \dots & * \\ 0 & 0 & 0 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

$$\Rightarrow N^n = 0$$

$$R = \begin{pmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & * \end{pmatrix} \qquad N = \begin{pmatrix} 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ 0 & 0 & 0 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \qquad J_{\lambda} = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}$$

$$\Rightarrow J_{\lambda} - \lambda I$$
 ist nilpotent

Matrix-Algebra

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$\lambda \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix}$$

Matrix-Algebra

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$\lambda \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix}$$

Diagonalmatrizen

Einheitsmatrix

$$I = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}$$

Neutrales Element der Matrixmultiplikation:

$$AI = IA = A$$

Diagonalmatrizen

Einheitsmatrix

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Neutrales Element der Matrixmultiplikation:

$$AI = IA = A$$

Diagonalmatrix

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$\operatorname{utrales Element der}$$

Diagonalmatrizen

Einheitsmatrix

$$I = egin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Neutrales Element der Matrixmultiplikation:

$$AI = IA = A$$

Diagonalmatrix

$$\mathsf{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n) = egin{pmatrix} \lambda_1 & 0 & \ldots & 0 \ 0 & \lambda_2 & \ldots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \ldots & \lambda_n \end{pmatrix}$$

Hadamard-Algebra

Die Algebra der Diagonalmatrizen ist die Hadamard-Algebra (siehe später)

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Algebra

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Algebra

• $M_{mn}(\mathbb{k})$ ist eine Algebra mit \odot als Produkt

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Algebra

- $M_{mn}(\mathbb{k})$ ist eine Algebra mit \odot als Produkt
- Neutrales Element U: Matrix aus lauter Einsen

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Algebra

- $M_{mn}(\mathbb{k})$ ist eine Algebra mit \odot als Produkt
- Neutrales Element U: Matrix aus lauter Einsen
- Anwendung: Wahrscheinlichkeitsmatrizen

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Algebra

- $M_{mn}(\mathbb{k})$ ist eine Algebra mit \odot als Produkt
- Neutrales Element U: Matrix aus lauter Einsen
- Anwendung: Wahrscheinlichkeitsmatrizen

Nicht so interessant

Die Hadamard-Algebra ist kommutativ

Hadamard-Algebra

Alternatives Produkt: Hadamard-Produkt

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \odot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Algebra

- $M_{mn}(\mathbb{k})$ ist eine Algebra mit \odot als Produkt
- Neutrales Element U: Matrix aus lauter Einsen
- Anwendung: Wahrscheinlichkeitsmatrizen

Nicht so interessant

Die Hadamard-Algebra ist kommutativ ⇒ kann "keine" interessanten algebraischen Relationen darstellen