MA080G Cryptography Assignment Block 1

Viktor Rosvall

April 25, 2019

Question 2

- a. Explain the operation of the RSA public-key cryptosystem.
- b. Illustrate your explanation by using the primes p=13 and q=17 and secret decryption key d=103 to
 - (i) decrypt the ciphertext z = 2;
 - (ii) compute the public encryption key e corresponding to d;
 - (iii) encrypt the plaintext m=2
- c. Discuss the security of the RSA public-key cryptosystem.

Answer 2

a.

- b. (i)
 - (ii)
 - (iii)

c.

Question 3

- a. Let $p \geq 2$ be a prime. Define what it means for an integer a to be a primitive element modulo p.
- b. Find a primitive element modulo 23 and prove that it is a primitive element.

Answer 3

a.

b.

Question 4

c. Let a and n be positive integers and let $n \geq 2$. Prove that if $\gcd(a,n) = 1$ then

$$a^{\Phi(n)} \equiv 1 \pmod{n}$$
.

d. Discuss whether the theorem from part (c) can be used as a primality test.

Answer 4

c.

d.

Question 6

For positive integers $p \geq 2$, Wilson's Theorem states that

$$p$$
 is a prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

- a. Prove Wilson's Theorem.
- b. Discuss whether Wilson's Theorem is suitable as a primality test for finding primes to use with RSA.