Otvoreno računarstvo

9. Osnove sigurnosti

- Osnovi pojmovi
- Osnovni algoritmi
- Složeniji algoritmi i postupci
- Sigurnost u mrežnoj komunikaciji

Protokoli challenge – response (I)

- Dva entiteta u komunikaciji dokaz identiteta?
- Pretpostavimo da oba entiteta dijele tajnu tijekom uspostave komunikacije jedan ili oba entiteta trebaju drugoj strani dokazati da znaju tu dijeljenu tajnu (engl. shared secret)
 - One-way challenge-response samo klijent ili samo poslužitelj dokazuju identitet
 - Two-way challenge-response obje strane u komunikaciji dokazuju identitet
- Tajna može biti par korisničko ime lozinka, simetrični ključ ...
- Prenošenje tajne komunikacijskim kanalom:
 - Korišteno problem presretanja, utjelovljenja druge strane u komunikaciji
 - Nije korišteno znanje tajne nedvosmisleno se dokazuje drugoj strani u komunikaciji korištenjem kriptografskih metoda

Challenge-response u protokolu HTTP

Zahtjev za štićenim resursom

- Poslužitelj odbija zahtjev i pruža upute o traženoj metodi autorizacije (Basic)
- Klijent otvara username-password dijalog korisniku preglednika
- Klijent ponovno šalje zahtjev s uključenim autorizacijskim podacima
 - HTTP protokol bez čuvanja stanja
 - Base64 kodirani niz znakova username:password -> vrlo nesigurno preko HTTP kanala (HTTPS je prihvatljiv)
 - Par username-password je dijeljena tajna između korisnika i poslužitelja

Protokoli *challenge – response* (II)

- Naivna implementacija protokola challenge-response
 - Oba entiteta imaju dijeljenu tajnu simetrični ključ
 - Entitet koji inicira dokazivanje identiteta druge strane u komunikaciji pošalje jednokratni, slučajno generirani podatak (engl. nonce)
 - Entitet koji dokazuje identitet vraća nonce šifriran simetričnim ključem
 - Entitet koji je inicirao dokazivanje uspoređuje primljeni šifrirani nonce sa svojim šifriranim nonce
- U čemu je problem?

Protokoli *challenge – response* (III)

- Uobičajena implementacija protokola challenge-response
 - Oba entiteta imaju dijeljenu tajnu simetrični ključ
 - Entitet koji inicira dokazivanje identiteta druge strane u komunikaciji pošalje jednokratni, slučajno generirani podatak (engl. nonce) <u>šifriran simetričnim ključem</u>
 - Entitet koji dokazuje identitet vraća f(nonce) šifriran simetričnim ključem
 - Entitet koji je inicirao dokazivanje uspoređuje primljeni šifrirani f(nonce) sa svojim šifriranim f(nonce)
- Primjeri funkcija transformacije challenge informacije
 - funkcija sažetka (md5, sha256 ...)
 - KERBEROS: nonce slučajno stvoren broj n, f(nonce) = nonce + 1

Message Authentication Code – MAC (I)

- Pošiljatelj treba poslati poruku primatelju, cjelovitost i integritet poruke moraju biti očuvani tijekom prijenosa
- Primjer 1 gdje je tu problem (②)?:
 - pošiljatelj generira sažetak poruke D = d(P), šalje sažetak D i poruku P primatelju
 - primatelj prima sažetak D' i poruku P', generira D'' = d(P') i provjerava D' == D''

Ranjivo na *Man-in-the-middle* napad

Message Authentication Code – MAC (II)

- Pošiljatelj treba poslati poruku primatelju, cjelovitost i integritet poruke moraju biti očuvani tijekom prijenosa
- I pošiljatelji i primatelj imaju zajedničku tajnu (npr. simetrični ključ)
- Primjer 2 gdje je tu problem (②)?:
 - osoba A generira sažetak poruke D = d(P + tajna), šalje sažetak D i poruku P osobi B
 - osoba B prima sažetak D' i poruku P', generira D'' = d(P' + tajna) i provjerava D' == D''

Digitalni potpis (I)

- Pošiljatelj generira sažetak poruke S
- Pošiljatelj šifrira sažetak ključem Pk (privatni ključ pošiljatelja)
 - ključ (Pk) ostaje u posjedu pošiljatelja
- Pošiljatelj dodaje šifrirani sažetak na poruku

- Primatelj ključem Jk (Javni ključ pošiljatelja) dešifrira sažetak S
 - ovjera (autentičnost)
 - neporicljivost
- Primatelj generira sažetak primljene poruke S'
 - ako je S = S', primljena poruka je istovjetna originalu
 - očuvanost (integritet)

Digitalni potpis (II)

Digitalna omotnica (I)

- Pošiljatelj šifrira poruku simetričnim algoritmom ključem K
 - ključ K je generiran slučajno od strane pošiljatelja
 - Brzina
- Pošiljatelj šifrira ključ K asimetričnim algoritmom
 - javnim ključem Jk primatelja (Pk je kod vlasnika ključa primatelja)
 - nema problema distribucije ključeva
- Primatelj svojim ključem Pk dešifrira simetrični ključ K
- Primatelj simetričnim ključem K dešifrira poruku
 - tajnost

Digitalna omotnica (II)

Pitanje: Je li ovo ispravno???

Sjednice

- Niz transakcija korištenjem sigurnog komunikacijskog kanala
 - Pretpostavka je da oba entiteta u komunikaciji imaju javni ključ drugog entiteta
 - Šifriranje poruka prosljeđivanih kroz kanal jednokratnim simetričnim sjedničkim ključem (engl. session key)
 - Sprječava napade temeljene na prikupljanju veće količine podataka šifrirane istim ključem
 - Efikasnije kodiranje podataka od asimetričnih algoritama
 - Problem inicijalnog dogovora o sjedničkom ključu između dva entiteta u komunikaciji
 - Faze sjednice:
 - Faza dogovora o sjedničkom ključu
 - Faza komunikacije kriptirane sjedničkim ključem
 - Dva osnovna načina dogovora o sjedničkom ključu
 - Jedan entitet generira sjednički ključ i prosljeđuje ga drugom entitetu (key exchange protocol)
 - Entiteti zajednički stvaraju sjednički ključ (key agreement protocol)

Razmjena sjedničkog ključa

- Protokol razmjene sjedničkog ključa (engl. key exchange protocol)
 - Entitet (najčešće inicijator sjednice) generira slučajni sjednički ključ ili broj kao podlogu za generiranje ključa na strani oba entiteta
 - Kvaliteta generatora slučajnih brojeva od iznimne važnosti
 - Ključ se šifrira javnim ključem primatelja i šalje drugom entitetu
 - Primatelj dešifrira sjednički ključ svojim tajnim ključem
 - Sva daljnja komunikacija se šifrira/dešifrira sjedničkim ključem
 - Po završteku sjednice ključ se uništava

Protokol dogovora o ključu

- Obje strane sudjeluju u dogovoru o sjedničkom ključu
 - Sjednički ključ se stvara iz dijeljenih podataka dvaju entiteta i slučajno generiranih podataka
 - Diffie-Helman key exchange
 - Prenošenje parametara neštićenim kanalom nije sigurnosni rizik (ali identitet sugovornika je!)
 - Zasniva se na problemu teškog računanja diskretnog logaritma
 - Sjednički ključ se nikada ne prenosi komunikacijskim kanalom

Forward secrecy

- Sva komunikacija između osobe A i B je snimljena i pohranjena
- U slučaju "proboja" privatnog ključa osobe B:
 - Ako je sjednički ključ bio prenošen u fazi dogovora o ključu (key exchange protokoli) sve snimljene sjednice se mogu naknadno dešifrirati
 - Ako sjednički ključ nije bio prenošen u fazi dogovora o ključu (key agreement protokoli) nema kompromitacije prošle komunikacije!
- Forward secrecy povijest šifrirane komunikacije ostaje nedostupna napadaču

Elektronički potpis

- Elektronički potpis
 - Skup podataka u elektroničkom obliku koji su pridruženi ili su logički povezani s drugim podacima u elektroničkom obliku i koji služe za identifikaciju potpisnika i vjerodostojnosti potpisanoga elektroničkog dokumenta
- HR zakon o elektroničkom potpisu, 2002.
- Našom terminologijom
 - ovjera (identifikacija potpisnika)
 - očuvanost (vjerodostojnost)

Zakonodavstvo

Napredan elektronički potpis

- Elektronički potpis koji pouzdano jamči identitet potpisnika i koji
 - je povezan isključivo s potpisnikom
 - nedvojbeno identificira potpisnika
 - nastaje korištenjem sredstava kojima potpisnik može samostalno upravljati i koja su isključivo pod nadzorom potpisnika
 - sadržava izravnu povezanost s podacima na koje se odnosi i to na način koji nedvojbeno omogućava uvid u bilo koju izmjenu izvornih podataka
- neporicljivost (povezan isključivo s potpisnikom)
- ovjera (identificira potpisnika)
- očuvanost (vjerodostojnost)

Izvedba elektroničkog potpisa (I)

Potpis dijeljenim (simetričnim) ključem

- potreba za središnjim autoritetom koji ovjerava naš potpis simetričnim ključem
- komunikacija sa središnjim autoritetom zaštićena je simetričnom kriptografijom
- autoritet označava vrijeme primitka poruka
 - zaštita od napada ponavljanjem poruka

Problem:

- ključevi za komunikaciju sa središnjim autoritetom
 - moraju biti tajni
 - velika količina tajnih informacija koja se čuva u središnjem autoritetu i kod svakog sugovornika
- središnji autoritet može čitati sve poruke
- središnji autoritet ovjerava svaku poruku

Izvedba elektroničkog potpisa (II)

- Potpis javnim (asimetričnim) ključem
 - poruku potpisujemo našim tajnim ključem
 - sugovornik provjerava potpis našim javnim ključem
 - nužno da su operacije šifriranja (potpisa) i dešifriranja (provjere) međusobno inverzne
- Nema potrebe za središnjim autoritetom koji ovjerava svaku poruku
- Problem: kako vjerovati da je javni ključ sugovornika baš njegov?
 - središnji autoritet jamči ispravnost ključa
 - potvrda o valjanosti ključa = certifikat

Certifikati

 Zakon: certifikat je potvrda u elektroničkom obliku koja povezuje podatke za verificiranje elektroničkog potpisa s nekom osobom i potvrđuje identitet te osobe

Certifikat

- potvrda o vezi između identiteta i javnog ključa
- javan
 - norma za certifikate ITU X.509 v3
- sadrži
 - identifikaciju izdavatelja i subjekta
 - oznaku algoritma potpisa i javni ključ
 - razdoblje važenja
 - potpis

Izdavatelj certifikata

- Davatelj usluga certificiranja
 - pravna ili fizička osobu koja izdaje certifikate ili daje druge usluge povezane s elektroničkim potpisima
- CA *Certificate Authority*
 - izdaje certifikate
 - moguće ostvarenje hijerarhije CA
 - lanac povjerenja, staza certificiranja
 - stablo certifikata od korijenskog CA do našeg certifikata
 - ne postoji jedinstvena hijerarhija
 - Internet niz CA
 - GTE CyberTrust Global Root
 - CyberTrust Educational CA
 - ahyco.fer.hr

C=HR/S=Zagreb/L=Zagreb/O=FER/OU=ZPR/CN=ahyco.fer.hr

Povlačenje certifikata

- Certifikat potvrđuje vezu između javnog ključa i osobe
 - javni ključ nećemo izgubiti, ne može biti ukraden
 - što ako izgubimo privatni ključ ili je ukraden?

- Certifikat sadrži razdoblje valjanosti
 - što kad to razdoblje istekne?

- CA održava mehanizme provjere valjanosti certifikata
 - provjera potpisa
 - održavanje popisa povučenih certifikata (CRL)

Zakonodavstvo

Potpisnik

 koji izgubi ili mu je otuđeno sredstvo za izradu elektroničkog potpisa te u slučajevima kada mu je onemogućen pristup podacima za izradu elektroničkog potpisa, dužan je o tome odmah obavijestiti davatelja usluga certificiranja

Davatelj usluga certificiranja

• koji je zaprimio obavijest ... provodi uvid u postupak opoziva izdatog certifikata i dalje postupa po utvrđenim pravilima opozivanja izdatih certifikata

Popis povučenih certifikata

- CRL Certificate Revocation List
- Popis povučenih certifikata
 - ne uključuje certifikate kojima je automatski istekla valjanost
- Provjera valjanosti certifikata
 - provjera digitalnih potpisa certifikata
 - provjera razdoblja valjanosti certifikata
 - provjera popisa povučenih certifikata
 - adresa CRL upisana u certifikat
 - certifikat može biti označen kao nekritičan (non-critical)
 - ako pristup popisu (CRL) nije moguć, smatramo da je sigurnost dovoljna
 - npr. nedostupna mrežna veza ...

Značaj CA

- CA
 - ovjerava certifikate
 - održava popise povučenih certifikata
- Kompromitirani CA unosi veliku štetu
 - cijela hijerarhija od tog CA na niže postaje nevažeća
 - sigurna komunikacija s članovima hijerarhije nije moguća
 - uskraćivanje usluge DOS

Norme

Public Key Cryptography Standards (PKCS)

- RSA Security definirao niz normi
 - PKCS #1 RSA Cryptography Standard
 - PKCS #3 Diffie-Hellman Key Agreement Standard
 - PKCS #7 Cryptographic Message Syntax Standard
 - PKCS #8 Private-Key Information Syntax Standard
 - PKCS #10 Certification Request Standard
 - PKCS #11 Cryptographic Token Interface (programsko sučelje)
 - PKCS #12 Personal Information Exchange Syntax Standard

X.509

- ITU-T norme za ostvarenje PKI
- oblik certifikata

Norme

- FIPS Federal Information Processing Standards
 - između ostalog DES i AES
- W3C
 - struktura XML-a s digitalnim potpisom
 - XML DSig, XML AdES

Problem

- XML istog značenja može biti zapisan na više načina
 - razmaci u oznakama elemenata
 - redoslijed atributa, elemenata ...

```
<SignatureValue>C7di9 .... ligw+o=</SignatureValue>
<X509SubjectName>Ivo Ivić #BrojCertifikata</X509SubjectName>
<X509Certificate>
    MIIEazCCA .... iG9w0BA
</X509Certificate>
```

Otvoreno računarstvo

9. Osnove sigurnosti

- Osnovi pojmovi
- Osnovni algoritmi
- Složeniji algoritmi i postupci
- Sigurnost u mrežnoj komunikaciji

Sigurnost na Internetu (I)

- Internet je u načelu nesiguran
 - niz raznih mogućnosti napada, koje se u praksi kombiniraju
- Praćenje mrežnog prometa (čitanje) je izuzetno lako
 - prisluškivanje (eavesdropping, interception)
 - ako podaci nisu kriptirani, kao da stojite na ulici i slušate što drugi govore (ako znate koga treba slušati)
- Lažno predstavljanje korisnika
 - utjelovljivanje korisnika (impersonation)
 - probijanje sigurnosne tehnologije
 - krađa autentikacijskih uređaja/podataka (kartice, tokena, lozinke, identiteta) na razne načine
 - pogađanje lozinki (korisničkih) napad grubom silom i ostali napadi

Sigurnost na Internetu (II)

- Lažno predstavljanje poslužitelja ili klijenta
 - utjelovljivanje usluge ili računala (impersonation)
 - lažno predstavljanje lažiranjem IP (ili MAC) adrese
 - napad "čovjeka u sredini" (man-in-the middle attack, MITM)
 - presretanje originalnih podataka (paketa) i mijenjanje te slanje dalje kao da je originalan
 - pogađanje ključeva ili certifikata
 - napad grubom silom (brute force atack)
 - napad poznatim šifriranim tekstom (chosen-ciphertext attack, CCA)
 - napad poznatim čistim tekstom (chosen-plaintext attack, CPA)

Sigurnost na Internetu (III)

- Lažno predstavljanje usluge ili sjedišta Weba
 - napad lažnim predstavljanjem usluge (phishing)
- Onesposobljavanje usluge preopterećenjem
 - napad generiranjem velike količine prometa ili poziva
 - uskraćivanje usluge (denial-of-service)
- Namjerno odugovlačenje ili ponavljanje poruke ili podataka
 - napad reprodukcijom (replay attack)
- Promjena dijela poruke drugim podacima
 - napad zamjenom dijela poruke (substitution attack)

Sigurnosna zaštita

- Na svaki od ovih sigurnosnih problema se mora adekvatno odgovoriti
- Razine zaštite su onoliko visoke (jake, skupe), koliko je ono što se čuva vrijedno (bitno)
- Zaštite se obično rade na nekoliko razina kako bi se povećala sigurnost
- U načelu se štite:
 - sustavi
 - aplikacije
 - komunikacija

Sigurnost sustava

Zaštita sustava

- onemogućavanje upada u mrežu
 - uporaba vatrozida (firewall)
 - postavljanje demilitariziranih zona (DMZ)
- onemogućavanje stražnjih vrata (backdoor)
 - zaštita i kontrola bežičnih mrežnih (WLAN) konekcija
 - zabrana korištenja modemskih priključaka
 - kontrola uporabe mrežnih (LAN) priključaka
- praćenje neuobičajenih i potencijalno štetnih mrežnih aktivnosti
 - uporaba antivirusnih alata
 - uporaba posebnih sigurnosnih alata

Sigurnost aplikacija Weba

Zaštita aplikacije

- onemogućavanje stražnjih vrata (backdoor)
 - zaštita javnih servisa
 - provjera sigurnosti svih dijelova aplikacije
 - otvaranje sučelja samo prema poznatim klijentima
 - autentikacija svih klijenata
- praćenje neuobičajenih i štetnih aktivnosti
 - zapis svih aktivnosti (log)
- sigurnosna testiranja aplikacije
 - simulacije namjernih napada
 - bolje spriječiti nego liječiti

Sigurnost komunikacije

- Autentikacija korisnika
 - princip ključ-brava dokazivanje identiteta
 - korištenje raznih metoda (lozinke, tokeni, certifikati)

- Autorizacija korisnika za skup akcija
 - provjera da li korisnik ima odgovarajuća prava
- Zaštita poruka od čitanja i mijenjanja
 - kriptiranje poruka
- Zaštita pristupa komunikacijskom kanalu i zaštita od čitanja podataka s komunikacijskog kanala
 - kriptiranje komunikacije na kanalu

Sigurnosne tehnologije aplikacija Weba

- Najčešće sigurnosne tehnologije aplikacija Weba podskup navedenih tehnologija/tehnika/metoda:
 - zaštita komunikacijskog kanala kriptiranjem
 - protokol HTTPS
 - autentikacija korisnika
 - lozinka
 - token
 - certifikat (npr. na pametnim karticama u sklopu PKI sustava)
 - autentikacija klijenta (npr. preglednika)
 - certifikat na strani klijenta
 - autentikacija poslužitelja
 - certifikat na strani poslužitelja

HTTPS

- https je URI shema
 - sintaksa identična http protokolu
 - inicijalna postavka vrata 443 (umjesto 80)

- Enkripcija/autentikacija između HTTP i TCP sloja temeljena na poznatim kriptografskim protokolima
 - SSL (Secure Socket Layer) službeno TLS (Transport Layer Security)
- Korištenje certifikata
 - problematika potpisivanja/vjerovanja certifikatu
- Onemogućava niz napada raznih tipova