PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-092583

(43) Date of publication of application: 28.03.2003

(51)Int.Cl.

H04L 12/44

(21)Application number: 2001-284296

(71)Applicant: FUJITSU LTD

(22)Date of filing:

19.09.2001

(72)Inventor: NISHIGAKI YUSUKE

SATO MASAYUKI

(54) PASSIVE OPTICAL NETWORK SYSTEM CAPABLE OF EFFECTIVELY UTILIZING COMMUNICATION **BAND**

(57)Abstract:

PROBLEM TO BE SOLVED: To effectively utilize a communication band in a passive optical network system.

SOLUTION: The passive light network system has an optical line terminal 1 for transmitting a plurality of kinds of distribution data with an optical signal, a plurality of optical network terminals 2a to 2c for receiving the distribution data with the optical signal, and a light branching device 3 for distributing the distribution data with the optical signal to the optical network terminals 2a to 2c in the state of the optical signal. Each of the plurality of the optical network terminals transmits the reception request of the distribution data desired to receive among the plurality of the kinds of distribution data transmitted by the optical line terminal 1 to the optical line terminal 1 by designating the kind of the distribution data desired to receive. The optical line terminal 1 transmits the kind of the distribution data designated by a reception request transmitted from the plurality of optical network terminal among the plurality of kinds of distribution data to the plurality of optical network terminals 2a to 2c.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-92583

(P2003-92583A)

(43)公開日 平成15年3月28日(2003.3.28)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H04L 12/44

200

H 0 4 L 12/44

200 5K033

В

審査請求 未請求 請求項の数5 OL (全 20 頁)

(21)出願番号	特願2001-284296(P2001-284296)	(71) 出願人 000005223
		富士通株式会社
(22)出願日	平成13年9月19日(2001.9.19)	神奈川県川崎市中原区上小田中4丁目1番
		1号
	÷	(72)発明者 西垣 祐介
		神奈川県川崎市中原区上小田中4丁目1番
		1号 富士通株式会社内
		(72)発明者 佐藤 雅之
		神奈川県川崎市中原区上小田中4丁目1番
	······································	1号 富士通株式会社内
	*	(74)代理人 100094514
		弁理士 林 恒徳 (外1名)
		Fターム(参考) 5K033 CC01 DA15 DB02 DB22

1,7

(54) 【発明の名称】 通信帯域を有効利用できる受動光ネットワークシステム

(57)【要約】

...

【課題】 受動光ネットワークシステムにおいて,通信 帯域の有効利用を図る。

【解決手段】 受動光ネットワークシステムは、光信号により複数種類の配信データを送信する光ライン端末1と、光信号により配信データを受信する複数の光ネットワーク端末2a~2cと、光ライン端末1から送信される、光信号による配信データを光信号の状態で複数の光ネットワーク端末2a~2cに分配する光分岐装置3とを有する。複数の光ネットワーク端末のそれぞれは、光ライン端末1が送信する複数種類の配信データのうち受信を求める配信データの受信要求を、該受信を求める配信データの種類を指定して光ライン端末1に送信する。光ライン端末1は、複数種類の配信データのうち、複数の光ネットワーク端末から送信された受信要求により指定された種類の配信デーダを複数の光ネットワーク端末2a~2cに送信する。

1,7

【特許請求の範囲】

【請求項1】 光信号により複数種類の配信データを送 信する光ライン端末と、光信号により配信データを受信 する複数の光ネットワーク端末と, 前記光ライン端末か ら送信される、光信号による配信データを光信号の状態 で前記複数の光ネットワーク端末に分配する光分岐装置 とを備えている受動光ネットワークシステムにおいて、 前記複数の光ネットワーク端末のそれぞれは、前記複数 種類の配信データのうち受信を求める配信データの受信 要求を, 該受信を求める配信データの種類を指定して前 10 記光ライン端末に送信する制御情報送信部と、前記光ラ イン端末から送信される1または2以上の種類の配信デ ータの中から, 前記受信を求める配信データを選択して 受信するデータ選択部と、を備え、前記光ライン端末 は、前記複数種類の配信データのうち、送信するように 設定された配信データを光ネットワーク端末に送信する 配信データ送信部と、前記受信要求を受信し、前記受信 要求によって指定された種類の配信データを送信するよ うに前記配信データ送信部を設定する設定部と、を備え ていることを特徴とする受動光ネットワークシステム。 【請求項2】 請求項1において, 前記光ネットワーク 端末の前記制御情報送信部は、受信している配信データ の受信の終了を求める受信終了要求を、該受信の終了を 求める配信データの種類を指定して前記光ライン端末に 送信し、前記光ライン端末の前記設定部は、前記受信終 了要求を受信し, 前記受信終了要求を送信した光ネット ワーク端末以外のいずれの光ネットワーク端末も前記受 信終了要求により指定された種類の配信データを選択し ていない場合には、該指定された種類の配信データにつ いての前記配信データ送信部の設定を解除する,ことを 30 特徴とする受動光ネットワークシステム。

【請求項3】 光信号により複数種類の配信データを送信する光ライン端末と、光信号により配信データを受信する複数の光ネットワーク端末と、前記光ライン端末から送信される、光信号による配信データを光信号の状態で前記複数の光ネットワーク端末に分配する光分岐装置とを備えている受動光ネットワークシステムにおける通信方法において、前記複数の光ネットワーク端末のそれぞれは、前記光ライン端末が送信する前記複数種類の配信データのうち受信を求める配信データの受信要求を、該受信を求める配信データの種類を指定して前記光ライン端末に送信し、前記光ライン端末は、前記複数種類の配信データのうち、前記複数の光ネットワーク端末にら信された前記受信要求により指定された種類の配信データを前記複数の光ネットワーク端末に送信する、ことを特徴とする通信方法。

【請求項4】 受動光ネットワークシステムに設けられ、配信データを複数の光ネットワーク端末に光信号により分配する光ライン端末において、複数種類の配信データのうち、送信するように設定された配信データを光 50

ネットワーク端末に送信する配信データ送信部と,前記複数の光ネットワーク端末の少なくとも1つが前記複数種類の配信データのうち受信を求める配信データの種類を指定して送信した受信要求を受信し,該受信要求によって指定された種類の配信データを送信するように前記配信データ送信部を設定する設定部と,を備えていることを特徴とする光ライン端末。

【請求項5】 受動光ネットワークシステムに設けられ、光ライン端末から光信号により送信される配信データを受信する光ネットワーク端末において、前記光ライン端末が、送信可能な複数種類の配信データのうち、該光ネットワーク端末が受信を求める配信データを選択して送信するように、前記光ライン端末を設定するための受信要求を、該受信を求める配信データの種類を指定して前記光ライン端末に送信する制御情報送信部と、前記光ライン端末から送信される1または2以上の種類の配信データの中から、前記受信を求める配信データを選択して受信するデータ選択部と、を備えていることを特徴とする光ネットワーク端末。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、受動光ネットワークシステムおよび受動光ネットワークシステムにおける 通信方法に関する。また、本発明は、受動光ネットワークシステムにおける光ライン端末および光ネットワーク端末に関する。

[0002]

【従来の技術】データのブロードキャスト、マルチキャスト等を行う通信システムの1つとして、受動(パッシブ)光ネットワーク(PON: Passive Optical Network)がある。図13は、従来のPONシステムの構成を示すブロック図である。このPONシステムは、光ライン端末(OLT: Optical Line Terminal)101、3つの光ネットワーク端末(ONT: Optical Network Termination)102a~102c、光スプリッタ103、および複数の光ファイバリンク104を有する。【0003】OLT101には、サービスノード200

が接続されている。このサービスノード200 が接続されている。このサービスノード200は、データ配信サービスを提供するノードであり、たとえばCATVの番組等のチャネルchl~chnの配信データをOLT101に送信する。

【0004】サービスノード200からOLT101に送信されたチャネル $ch1 \sim chn$ の配信データは、非同期転送モード(ATM: Asynchronous Transfer Mode)によるセル(以下「ATMセル」という。)に格納され、光信号により、光ファイバリンク104 および光スプリッタ103を介してONT102a~102cに送信される。すなわち、チャネル $ch1 \sim chn$ のすべての配信データが光ファイバリンク104を介してONT102a~102cに送信される。

3

【0005】ONT102a~102cには、図示しないテレビ、パソコン等のユーザ端末、下位の他の通信ネットワーク等が接続される。これらのユーザ端末、他の通信ネットワーク等からONT102a~102cには、チャネルの受信要求が与えられる。ONT102a~102cは、チャネルch1~chnのうち、受信要求のあったチャネルのATMセルのみを選択し、他のATMセルを廃棄する。そして、ONT102a~102cは、選択されたATMセルをユーザ端末等に送信する。

【0006】たとえば、ONT102aがチャネルch 1およびch3の受信要求を受けている場合には、チャネルch1~chnのうちチャネルch1およびch3 の配信データを格納したATMセルのみを選択し、これ らのATMセルに格納された配信データをユーザ端末等 に送信する。

[0007]

【発明が解決しようとする課題】このように、従来のPONシステムでは、サービスノード200からOLT101に送信されたチャネルch1~chnのすべての配 20信データが光ファイバリンク104および光スプリッタ103を介してONT102a~102cに送信されていた。

【0008】したがって、いずれのONTも選択しないチャネルの配信データであっても、OLT101から光ファイバリンク104および光スプリッタ103を介してONT102a~102cに送信されていた。このため、光ファイバリンクの通信帯域が無駄に利用されていた。

【0009】そこで、本発明は、PONネットワークシ 30 ステムにおいて、通信帯域の有効利用を図ることを目的とする。

[0010]

【課題を解決するための手段】前記目的を達成するため に、本発明の第1の側面による受動光ネットワークシス テムは、光信号により複数種類の配信データを送信する 光ライン端末と、光信号により配信データを受信する複 数の光ネットワーク端末と、前記光ライン端末から送信 される、光信号による配信データを光信号の状態で前記 複数の光ネットワーク端末に分配する光分岐装置とを備 えている受動光ネットワークシステムにおいて、前記複 数の光ネットワーク端末のそれぞれは、前記複数種類の 配信データのうち受信を求める配信データの受信要求 を、該受信を求める配信データの種類を指定して前記光 ライン端末に送信する制御情報送信部と、前記光ライン 端末から送信される1または2以上の種類の配信データ の中から、前記受信を求める配信データを選択して受信 するデータ選択部と、を備え、前記光ライン端末は、前 記複数種類の配信データのうち、送信するように設定さ れた配信データを光ネットワーク端末に送信する配信デ 50 ータ送信部と,前記受信要求を受信し,前記受信要求に よって指定された種類の配信データを送信するように前 記配信データ送信部を設定する設定部と,を備えている ことを特徴とする。

【0011】本発明の第1の側面による通信方法は、光 信号により複数種類の配信データを送信する光ライン端 末と、光信号により配信データを受信する複数の光ネッ トワーク端末と、前記光ライン端末から送信される、光 信号による配信データを光信号の状態で前記複数の光ネ ットワーク端末に分配する光分岐装置とを備えている受 動光ネットワークシステムにおける通信方法において, 前記複数の光ネットワーク端末のそれぞれは、前記光ラ イン端末が送信する前記複数種類の配信データのうち受 信を求める配信データの受信要求を、該受信を求める配 信データの種類を指定して前記光ライン端末に送信し、 前記光ライン端末は、前記複数種類の配信データのう ち、前記複数の光ネットワーク端末から送信された前記 受信要求により指定された種類の配信データを前記複数 の光ネットワーク端末に送信する、ことを特徴とする。 【0012】本発明の第1の側面によると、光ライン端 末は、光ネットワーク端末から受信要求のあった配信デ

【0012】本発明の第1の側面によると、光ライン端末は、光ネットワーク端末から受信要求のあった配信データを光ネットワーク端末に送信する。したがって、受信要求のない配信データは、光ライン端末から光ネットワーク端末への送信されない。これにより、光ライン端末と光ネットワーク端末との間の通信帯域を有効利用することができる。また、受信要求のあった配信データに大きな通信帯域を割り当てることができるので、受信要求のあった配信データの通信速度を向上させることができる。

【0013】好ましくは、前記光ネットワーク端末の前記制御情報送信部は、受信している配信データの受信の終了を求める受信終了要求を、該受信の終了を求める配信データの種類を指定して前記光ライン端末に送信し、前記光ライン端末の前記設定部は、前記受信終了要求を受信し、前記受信終了要求を送信した光ネットワーク端末以外のいずれの光ネットワーク端末も前記受信終了要求により指定された種類の配信データを選択していない場合には、該指定された種類の配信データについての前記配信データ送信部の設定を解除する。

【0014】これによっても、光ライン端末と光ネットワーク端末との間の通信帯域を有効利用することができ、受信要求のあった配信データの通信速度を向上させることができる。

【0015】本発明の第2の側面による光ライン端末は、受動光ネットワークシステムに設けられ、配信データを複数の光ネットワーク端末に光信号により分配する光ライン端末において、複数種類の配信データのうち、送信するように設定された配信データを光ネットワーク端末に送信する配信データ送信部と、前記複数の光ネットワーク端末の少なくとも1つが前記複数種類の配信デ

一夕のうち受信を求める配信データの種類を指定して送 信した受信要求を受信し, 該受信要求によって指定され た種類の配信データを送信するように前記配信データ送 信部を設定する設定部と,を備えていることを特徴とす

【0016】本発明の第2の側面によっても、前記第1 の側面と同様の作用効果を得ることができる。

【0017】本発明の第3の側面による光ネットワーク 端末は、受動光ネットワークシステムに設けられ、光ラ イン端末から光信号により送信される配信データを受信 10 する光ネットワーク端末において, 前記光ライン端末 が、送信可能な複数種類の配信データのうち、該光ネッ トワーク端末が受信を求める配信データを選択して送信 するように, 前記光ライン端末を設定するための受信要 求を、該受信を求める配信データの種類を指定して前記 光ライン端末に送信する制御情報送信部と、前記光ライ ン端末から送信される1または2以上の種類の配信デー タの中から、前記受信を求める配信データを選択して受 信するデータ選択部と、を備えていることを特徴とす る。

【0018】本発明の第3の側面によっても、前記第1 の側面と同様の作用効果を得ることができる。

[0019]

【発明の実施の形態】1. 第1の実施の形態 図1は,本発明の第1の実施の形態による受動光ネット ワーク(PON)システムの構成を示すブロック図であ る。このPONシステムは、光ライン端末(OLT: Op tical Line Terminal) 1, 光ネットワーク端末 (ON T: Optical Network Termination) 2a~2c, 光ス プリッタ3, および光ファイバリンク4a~4dを有す 30 る。

【0020】ONT2a~2cは、光ネットワークユニ ット (ONU: Optical Network Unit) と呼ばれること もある。これらONT2a~2cのそれぞれには、ユー ザ端末 (テレビ, コンピュータ等), 他の通信ネットワ ーク(たとえばイントラネット)等が1または2以上接 続されている。なお、図1では、一例として3つのON Tを図示しているが、ONTは、それ以外の個数(たと えば2つまたは4つ以上) 設けられてもよい。

【0021】OLT1には、ONT2a~2cに接続さ 40 れたユーザ端末、他の通信ネットワーク等(以下「ユー ザ端末、他の通信ネットワーク等」と単に「ユーザ端 末」という。)にデータ配信サービスを提供するサービ ・スノード5が接続されている。データ配信サービスによ ・り提供される配信データとしては、映像データ(たとえ ばケーブルテレビ放送),音楽データ等のコンテンツが ある。サービスノード5は、図1では1つのみ図示して いるが、複数存在していてもよい。たとえばケーブルテ レビならば、ケーブルテレビの放送局の個数分設けられ ることもある。本実施の形態では、チャネルch1~c 50

hnのn種類(nは2以上の整数)の配信データがサー ビスノード5からOLT1に供給されている。

【0022】図1に示すPONシステムでは、サービス ノード5から供給されるnチャネルの配信データのうち ONT2a~2cにより要求されたチャネルの配信デー タが、OLT1から光ファイバリンク4a~4dおよび 光スプリッタ3を介してONT2a~2cに送信され る。そして、ONT2a~2cに送信された配信データ は、ONT2a~2cからユーザ端末等に配信される。 【0023】以下、PONシステムの各構成要素の詳細 について説明する。

【0024】OLT1は、サービスノード5から送信さ れるチャネルch1~chnのうち、ONT2a~2c により要求されたチャネルを選択し、選択したチャネル の配信データを光ファイバリンク4 d に出力するもので

【0025】図2は、OLT1の詳細な構成を示すブロ ック図である。 OLT1は, スイッチ11, チャネル設 定装置12,およびPONインタフェース装置(以下 「PON-IF装置」という。) 13を備えている。

【0026】スイッチ11は、サービスノード5、チャ ネル設定装置12, およびPON-IF装置13に接続 されている。PON-IF装置13は、一方をスイッチ 11に接続され、他方を光ファイバリンク4dに接続さ れている。スイッチ11とPON-IF装置13との 間、および、スイッチ11とチャネル設定装置12との 間は、電気信号によりデータの送受信が行われる。

【0027】スイッチ11は、サービスノード5から供 給されるチャネルch1~chnの配信データのうち、 チャネル設定装置12により指定されたチャネルの配信 データをATMセルに格納し、PON-IF装置13に 出力する。また、スイッチ11は、ONT2a~2cか らPON-IF装置13を介して送信されてきたATM セルのデータ(後述するチャネル設定要求等)を、AT Mセルのヘッダ部の情報(たとえば仮想チャネル識別 子) に基づいて、チャネル設定装置12に与え、また は、PON-IF装置13を介してONT2a~2cに

【0028】チャネル設定装置12は、ONT2a~2 cから与えられる制御情報であるチャネル設定要求(後 述)およびチャネル設定解除要求(後述)に基づいて, チャネルch1~chnの配信データのうち、要求され たチャネルの配信データがPON-IF装置13に与え られるようにスイッチ11の設定および設定解除を行 う。このチャネル設定装置12の処理の詳細および保持 するデータについては、後に詳述する。

【0029】PON-IF装置13は、スイッチ11と の間で送受信される電気信号と、光ファイバリンク4 d. (およびONT2a~2d) との間で送受信される光信 号との相互変換を行う。

【0030】また、PON-IF装置13は、フレームを終端する機能を有し、スイッチ11から与えられるATMセルを所定のフレームに格納して送信する一方、光ファイバリンク4dから入力されるフレームをATMセルに分解して、フレームに含まれるATMセルをスイッチ11に出力する。所定のフレームとしては、たとえばSTM-1(Synchronous Transport Module Level 1)による155.52Mbpsのフレーム等が用いられる。

【0031】さらに、光ファイバリンク4 d が 1 本により構成され、送信信号と受信信号とが 1 本の光ファイバ 10内を異なる波長の光により送受信される場合に、PONーIF装置13は、受信した光から、送信信号の反射波等を除去し、受信信号のみを抽出する光波長分離機能も有する

【0032】図1に戻って、光スプリッタ3は、OLT 1から光ファイバリンク4dを介して送信されてきた光信号を光ファイバリンク4a~4cに分配(マルチキャストまたはブロードキャスト)するとともに、ONT2 a~2cから光ファイバリンク4a~4cを介してそれぞれ送信されてきた光信号を光ファイバリンク4dに集 20 約するものである。

【0033】光ファイバリンク $4a\sim4$ dは、OLT1から $ONT2a\sim2$ cに向かうもの(下り)と $ONT2a\sim2$ cからOLT1に向かうもの(上り)とが同一の光ファイバ(1本の光ファイバ)により構成されてもよいし、下りと上りとが異なる光ファイバ(2本の光ファイバ)により構成されてよい。

【0034】同様にして、光スプリッタ3も、下り用のものと上り用のものとの2つにより構成されてもよいし、両者が同一の1本の光ファイバにより構成されても 30よい。また、この光スプリッタ3は、ツリー状に複数個設けられてもよい。

【0035】ONT2a~2cは,一方を光ファイバリンク4a~4cにそれぞれ接続されるとともに,他方を1または2以上のユーザ端末に接続されている。

【0036】ONT2a~2cは、OLT1から送信された配信データのうち、自己に接続されたユーザ端末が要求しているチャネルの配信データのみを選択し、選択したチャネルの配信データを、自己に接続されたユーザ端末に出力する。また、ONT2a~2cは、ユーザ端 40末からのデータ(チャネル設定要求等)をOLT1に送信する。

【0037】ONT2a~2cはともに同じ構成を有するので、以下では、ONT2aを代表として、ONTの詳細を説明する。

【0038】図3は、ONT2aの詳細な構成を示すブロック図である。ONT2aは、PONインタフェース装置(PON-IF装置)21、ATM多重/多重分離装置22、ならびに、2つのユーザインタフェース部

(以下「ユーザ | F装置」という。) 23および24を 50 れる。

備えている。ユーザIF装置は、図2では一例として2つのみを図示しているが、ONT2aに接続されるユーザ端末の個数分(すなわち1または2以上)設けることができる。

【0039】PON-IF装置21は、一方を光ファイバリンク4aに接続され、他方をATM多重/多重分離装置22に接続されている。ユーザIF装置23は、一方をATM多重/多重分離装置22に接続され、他方をユーザ端末(「ユーザ端末A」とする。)に接続されている。ユーザIF装置24は、一方をATM多重/多重分離装置22に接続され、他方をユーザ端末(「ユーザ端末B」とする。)に接続されている。

【0040】PON-IF装置21は、図2に示すOLT1のPON-IF装置13と同じ機能を有し、光ファイバリンク4aからの光信号のフレームを電気信号のATMセルに変換して、該電信信号をATM多重/多重分離装置22から与えられる電気信号のATMセルをフレームに格納し、光信号として光ファイバリンク4a(OLT1)に送信する。

【0041】ATM多重/多重分離装置22は、PON-IF装置21から与えられるATMセルを多重分離(すなわちATMセル単位に分割)し、ユーザ端末AおよびBから要求されているチャネルの配信データを格納したATMセルのみを選択する。

【0042】たとえば、チャネルchi、chj、chk、およびchm(i、j、k、mは1~nのいずれかの値)の4チャネルの配信データがOLT1からPONーIF装置21を介してATM多重/多重分離装置22に送信されている場合において、ユーザ端末Aがチャネルchiを要求し、ユーザ端末Bがチャネルchkを要求しているとき、ATM多重/多重分離装置22は、チャネルchiおよびchkの配信データを格納したATMセルのみを選択して、他のチャネルのATMセルを廃棄する。

【0043】そして、ATM多重/多重分離装置22 は、選択されたATMセルを、ユーザIF装置23および24に振り分ける。上記例では、ユーザ端末Aに接続されたユーザIF装置23にチャネルchiのATMセルを与え、ユーザ端末Bに接続されたユーザIF装置24にチャネルchkのATMセルを与える。

【0044】もちろん、端末AおよびBが同じチャネル chiを要求する場合には、ATM多重/多重分離装置 22は、チャネル chiのATMセルのみを選択し、双 方のユーザ I F装置 23および 24に同じチャネル chiのATMセルを与えることとなる。また、1つのユーザ端末が複数のチャネルを要求する場合には、1つのユーザ I F装置 23または 24に対して複数のチャネルの ATMセルがATM多重/多重分離装置 22から与えら

50

【0045】一方、ATM多重/多重分離装置22は、ユーザIF装置23および24からATMセルにより与えられたデータ(チャネル設定要求等)を多重化し、PON-IF装置21に与える。

【0046】このような処理を行うために、ATM多重 /多重分離装置22は、図示を省略するが、ユーザ I F 装置23および24から与えられるATMセルを多重化してPON-I F装置21に出力する多重部、PON-I F装置21から与えられるATMセルを多重分離(すなわちATMセル単位に分割)し、ユーザ端末Aおよび 10 Bから要求されているチャネルの配信データを格納したATMセルのみを選択してユーザ I F装置23または24に出力する多重分離部、ならびにこれらの多重部および多重分離装置を制御する制御部を有する。

【0047】多重部および多重分離部は、高速な処理を行うためにハードウェア回路により構成されていることが好ましい。制御部は、CPUまたはマイクロコンピュータと、これらCPUまたはマイクロコンピュータにより実行されるプログラムとにより構成されてもよいし、ハードディスク回路により構成されていてもよい。また、制御部は、処理に必要なデータ、プログラム等を記憶する記憶装置(半導体メモリ、ハードディスク等)を有する。

【0048】ユーザIF装置23および24は、ATM 多重/多重分離装置22との間で送受信されるATMセルと、ユーザ端末AおよびBとの間で送受信されるデータ形式(フォーマット)との間の相互変換を行う。ユーザ端末AまたはBがATMセルを送受信する端末であるならば、ユーザIF装置23および24は、それぞれ、ユーザ端末AおよびBとの間でATMセルをそのまま入30出力する。また、ユーザ端末AまたはBが、たとえばIPパケットを送受信する端末であるならば、ATMセルをIPパケットに変換する機能を有する。

【0049】次に、このような構成を有するPONシステムにおけるチャネル設定の処理およびチャネル設定解除の処理について説明する。

【0050】図4は、第1の実施の形態によるチャネル設定の処理の流れを示すシーケンス図である。図3に示すONT2aを例として説明する。

【0051】ユーザ端末AまたはB(以下「AまたはB」を「A(B)」と記す。)のユーザが、チャネルch1~chnのうちのあるチャネル(「チャネルchx」とする。)の受信を要求する場合に、この受信要求は、チャネル設定要求として、ユーザ端末A(B)からONT2aに送信される。このチャネル設定要求には、受信を要求するチャネルを示す情報(たとえばチャネル番号等であり、以下「チャネル識別情報」という。)が含まれている。

【0052】ONT2aのユーザIF装置23または2 4(以下「23または24」を「23(24)」と記 す。)が、ユーザ端末A(B)からチャネル設定要求を受信すると(ステップS1)、ユーザIF装置2.3(24)は、このチャネル設定要求をATMセルによりATM多重/多重分離装置22に出力する。このATMセルのヘッダ部の仮想チャネル識別子(VCI:Virtual Channel Identifier)には、このATMセルをOLT1のチャネル設定装置12に送信するための所定の識別子が使用される。また、このATMセルのペイロード部には、チャネル識別情報を含んだチャネル設定要求が格納される。

10

【0053】このATMセルは、ATM多重/多重分離 装置 22 からPON-IF装置 21 を介してOLT1に 送信される(ステップS2)。

【0054】チャネル設定要求を格納したATMセルは、そのヘッダ部のVCIに従って、OLT1のPONーIF装置13およびスイッチ11を介してチャネル設定装置12に与えられる。

【0055】チャネル設定装置12は、チャネル設定要求を受信すると、このチャネル設定要求に含まれるチャ20 ネル識別情報が示すチャネルchxの設定を開始する。すなわち、チャネル設定装置12は、まず、保持されたチャネル設定テーブルにおけるチャネルchxの設定値の論理和演算(OR演算)を行う(ステップS3)。

【0056】図5は、チャネル設定装置12が保持するチャネル設定テーブルの一例を示している。チャネル設定テーブルは、ONT2a~2cが、現在どのチャネルを選択し、ユーザ端末に供給しているかを示すテーブルである。

【0057】このテーブルの縦方向には、 $PONシステムに設けられたONTの一覧が設けられ、横方向には、各ONTがチャネル <math>ch1\sim chn$ のいずれを選択しているかを示す欄が設けられる。各ONTにより選択されているチャネルの欄には論理値"1"が設定され、選択されていないチャネルの欄には論理値"0"が設定される。図5に示す例では、ONT2 a は少なくともチャネル ch1 を、ONT2 b は少なくともチャネル ch2 おび chi を、ONT2 c は少なくともチャネル ch2 を、それぞれ選択している。

【0058】ONT $2a \sim 2c$ の少なくとも1つにより 選択されているチャネルの配信データは、そのチャネルを選択しているONTだけでなく、それ以外のONTにも、送信されている。これは、光スプリッタ 3 が、OLT 1 からの光信号を、3 つの光ファイバリンク 4 $a \sim 4$ c に分配(複製)するからである。たとえば、チャネル c h 1 の配信データがONT 2 a にのみ選択されている 場合であっても、この配信データは、光スプリッタ 3 によって、ONT 2 b および 2 c c にも配信されている。

【0059】論理和演算は、このチャネル設定テーブルのチャネルchxの全論理値の論理和を求めることにより行われる。たとえばチャネルchxがチャネルch1

である場合には、チャネル設定テーブルにおける ch1 の欄の 3 つの論理値 "1", "0" および"0"の論理和が求められ、演算結果は1+0+0=1 となる。また、チャネル chx がチャネル chx である場合には、演算結果は0+1+1=1 となる。チャネル chx の論理和の演算結果は0 となる。

【0060】論理和演算の結果が1であるチャネルは、少なくとも1つのONTによりすでに選択されているチャネルであるので、このチャネルの配信データは、全ONTにすでに送信されていることとなる。一方、論理和 10 演算の結果が0であるチャネルは、いずれのONTにも選択されていないチャネルであるので、このチャネルの配信データはOLT1からONTに送信されていないこととなる。

【0061】図4に戻って、チャネル設定要求があった チャネルchxの論理和演算の結果が0である場合には (ステップS4でNO)、チャネルchxは、ONT2 a~2cのいずれにも送信されていないチャネルという ことになる。したがって、この場合に、チャネル設定装 置12は、チャネルchxの配信データをONT2a~ 20 2cに配信するように、スイッチ11を設定する(ステップS5)。これにより、チャネルchxの配信データ は、サービスノード5から、スイッチ11、PON-I F装置13、光ファイバリンク4d、光スプリッタ3、 および光ファイバリンク4a~4dを介して、ONT2 a~2cに配信される。

【0062】スイッチ11の設定後、チャネル設定装置 12は、チャネル c h x が O N T 2 a により選択された ことを示すために、チャネル設定テーブルにおける O N T 2 a のチャネル c h x の欄に論理値 "1"を設定する 30 (ステップS 6)。以後の論理和演算には、この設定された論理値が使用される。なお、このステップS 6 の処理は、ステップS 5 の前に行われてもよい。

【0063】続いて、チャネル設定装置12は、チャネル設定完了通知をスイッチ11およびPON-IF装置を介してONT2a(および2b、2c)に送信する(ステップS7)。この通知もATMセルに格納される。このATMセルのヘッダ部のVCIには、このATMセルがONT2a(ATM多重/多重分離装置22

(制御部)) に宛てられたものであることを示す所定の 40 識別子が使用される。また、このATMセルのペイロード部には、チャネル設定完了通知が格納される。この通知には、設定を完了したチャネルのチャネル識別情報が含まれてもよい。

【0064】送信されたチャネル設定完了通知は、ON T2aのPON-IF装置21を介してATM多重/多 重分離装置22に受信される。

【0065】ONT2aのATM多重/多重分離装置2 2 (制御部) は、ATMセルのヘッダ部のVCIによ り、チャネル設定完了通知を含むATMセルを識別す る。そして、ATM多重/多重分離装置22は、チャネル設定完了通知を受信することにより、チャネルchxを選択するように自らを設定する。これにより、チャネルchxの配信データの選択(受信)が開始される(ステップS8)。選択されたチャネルchxの配信データは、ユーザIF装置23(24)を介してユーザ端末A(B)に送信される。

【0066】一方、ステップS4において、論理和演算結果が1である場合には(ステップS4でYES)、チャネルchxの配信データは、すでにOLT1からONT2a~2cに送信されていることとなる。すなわち、スイッチ11は、チャネルchxの配信データをONT2a~2c側に送信するように設定されている。したがって、この場合に、チャネル設定装置12は、スイッチ11の設定を行うことなく、ステップS6およびS7の処理を実行する。

【0067】一方,選択しているチャネルの配信データの選択を停止する場合には,以下に示すチャネル設定解除の処理が行われる。

【0068】図6は、第1の実施の形態によるチャネル設定解除の処理の流れを示すシーケンス図である。チャネル設定処理(図4)の場合と同様に、ONT2aを例として説明する。

【0069】ONT2aが、ユーザ端末A(B)から、受信中のチャネルchxの配信データの受信終了要求(すなわちチャネル設定解除要求)を受信すると(ステップS11)、ユーザIF装置23(24)は、このチャネル設定解除要求をATMセルのペイロード部に格納し、ATM多重/多重分離装置22に与える。このATMセルは、ATM多重/多重分離装置22からPONーIF装置21を介してOLT1に送信される(ステップS12)。このチャネル設定解除要求には、解除を要求するチャネル識別情報が含まれている。

【0070】チャネル設定解除要求が格納されたATM セルは、所定のVCIに従って、OLT1のPON-I F装置13およびスイッチ11を介してチャネル設定装置12に与えられる。チャネル設定装置12は、チャネル設定解除要求に含まれるチャネル識別情報が示すチャネルchxについて、チャネル設定テーブル(図5参照)の論理値を"0"に設定する(ステップS14)。【0071】続いて、チャネル設定装置12は、チャネ

【0071】続いて、チャネル設定装置12は、チャネル設定テーブルの論理値を整数とみなして、チャネル chxの設定値を足し算し、その合計値を求める(ステップS15)。たとえば、図5に示す例では、チャネル chx1の合計値は1であり、チャネル chx2の合計値は2となる。

【0072】次に、チャネル設定装置12は、合計値が0であるかどうかを判定する(ステップS16)。合計値が0であるチャネルは、いずれのONTにも選択されていないチャネルである。合計値が0以外であるチャネ

50

ルは、少なくとも1つのONTにより選択されているチャネルである。したがって、合計値が0かどうかを判定することにより、チャネルの設定解除を行うことができるかどうかを判断することができる。

【0073】 チャネル chx の合計値が0 である場合には(ステップS16でYES)、いずれのONTもチャネル chx を選択していないで、チャネル設定装置 12 は、スイッチ11のチャネル chx の設定を解除する(ステップS17)。これにより、チャネル chx の配信データは、スイッチ11からPON-IF装置 13に 10出力されず、その結果、ONT2a~2cに送信されない。

【0074】したがって、いずれのONTによっても要求されないチャネルの配信データは、OLTからONTに送信されない。これにより、OLT1とONT2a~2cとの間の通信帯域を有効利用することができる。

【0075】一方、ステップS16において合計値が0でない場合には(ステップS16でNO)、他のONTがそのチャネル chxを選択していることを意味する。したがって、この場合には、チャネル設定装置12はス 20イッチ11の設定を維持する。

【0076】ステップS17の処理の後,または,ステップS16においてNOの場合には,チャネル設定装置12は,チャネル設定解除完了通知EONT2 a に送信する(ステップES18)。

【0077】チャネル設定解除完了通知の受信後,ONT2aのATM多重/多重分離装置22(制御部)は,チャネルchxの選択を停止する(ステップS13)。なお,このステップS13の処理は,チャネル設定解除要求の送信(ステップS12)後であって,チャネル設 30定解除完了通知の受信前に行われてもよい。

【0078】なお、第1の実施の形態によるチャネル設定の処理およびチャネル設定解除の処理は、ONT2aを例に説明したが、ONT2bおよび2cでも同じ処理が行われる。

【0079】このように、本実施の形態によると、チャネルchl~chnのすべての配信データがOLT1からONT2a~2cに送信されるのではなく、チャネル設定要求(すなわち受信要求)のあったチャネルの配信データのみが送信される。また、チャネル設定解除要求 40があったチャネルの配信データの送信が停止される。したがって、OLT1とONT2a~2cとの間の通信帯域を有効利用することができるとともに、必要な配信データに大きな通信帯域を割り当てることができる。必要な配信データを高速に送信することができる。

【0080】2. 第2の実施の形態

OLT1がチャネルの選択状況を示す情報をONT2a~2cに提供することもできる。

【0081】第2の実施の形態によるPONシステムの 全体構成は、図1に示すものと同じであるので、ここで 50 はその説明を省略する。また、OLT1の構成も図2に示すものと同じであり、 $ONT2a\sim2c$ の構成も図3に示すものと同じであるので、ここではその説明を省略する。

14

【0082】図7は、第2の実施の形態によるチャネル 設定の処理の流れを示すシーケンス図である。図1およ び図3に示すONT2aを例として説明する。

【0083】本実施の形態では、OLT1のチャネル設定装置12が、チャネル選択テーブルを保持し、このチャネル選択テーブルに基づいて、ONT2a~2cにチャネルの選択状況を示す情報(以下「OLTチャネル選択情報」という。)を定期的(たとえば数ミリ秒間隔、数秒間隔等)に送信する(ステップS21)。

【0084】図8は、チャネル設定装置12が保持するチャネル選択テーブルの一例を示している。チャネル選択テーブルは、チャネルch1~chnのそれぞれがいずれのONTにも選択されていない状態(あるONTにより一旦チャネルが選択されても、その後、そのチャネルの選択がすべてのONTから解除された状態を含む。)において、各チャネルを最初に選択したONTを示すテーブルである。

【0085】チャネル選択テーブルにおいて、論理値 "1"が設定されている欄に対応するONTが、その欄に対応するチャネルを最初に選択したONTである。論理値 "1"が設定されているチャネルにおいて、論理値 "0"が設定されている欄に対応するONTは、その欄に対応するチャネルを選択している場合もあるし、選択していない場合もある。論理値がすべて "0"であるチャネルは、いずれのONTにも選択されていないチャネルである。

【OO86】図8に示すテーブルの例は、チャネルch1がいずれのONTにも選択されていない状態において、ONT2aがチャネルch1を最初に選択したことを示している。同様にして、チャネルch2およびchiは、ONT2bが最初に選択したことを示している。チャネルchnは、いずれのONTも選択していないことを示している。

【0087】図9は、OLTチャネル選択情報の一例を示している。OLTチャネル選択情報は、チャネルch $1 \sim c h n$ のそれぞれを最初に選択したONTの識別情報を配列したものである。このOLTチャネル選択情報は、チャネル選択テーブルにおいて論理値"1"が設定されているONTを抽出することにより作成される。ただし、いずれのONTにも選択されていないチャネルの欄(図9ではチャネルchnの欄)には、ONTの識別情報として取り得ない値(たとえばNull値)が格納される。

【0088】このOLTチャネル選択情報は、ATMセルのペイロード部に格納され、ONT2a~2cに送信される。このATMセルのヘッダ部のVCIには、この・

20

ATMセルがONT2a \sim 2cの各ATM多重/多重分離装置22に受信されるための所定の識別子が使用される。

【0089】図7に戻って、ONT2aのATM多重/多重分離装置22 (制御部)は、OLT1から送信されるOLTチャネル選択情報を内部の記憶装置 (半導体メモリ、ハードディスク等)に記憶し、新たなOLTチャネル選択情報が送信されるごとに、新たなチャネル選択情報によって、これまで記憶していたOLTチャネル選択情報を更新する (ステップS22)。

【0090】次に、ONT2aのATM多重/多重分離装置22は、ユーザIF装置23(24)からチャネル設定要求を受信したかどうかを判定する(ステップS23)。チャネル設定要求は、第1の実施の形態と同様に、チャネル識別情報を含んでいる。ATM多重/多重分離装置22がユーザIF装置23(24)からチャネル設定要求を受信していない場合には(ステップS23でNO)、処理はステップS22に戻り、新たなOLTチャネル選択情報が受信されたときは、OLTチャネル選択情報の更新処理が行われる。

【0091】一方、ATM多重/多重分離装置22がユーザIF装置23(24)からチャネル設定要求を受信した場合には(ステップS23でYES)、OLTチャネル選択情報に基づいて、受信されたチャネル設定要求が示すチャネル(チャネルchxとする。)がいずれかのONTにより選択(設定)されているかどうかを判断する(ステップS24)。この判断は、OLTチャネル選択情報におけるチャネルchxの欄がNull値でないかどうかをチェックすることにより行われる。

【0.092】 チャネルchxが、いずれかのONTによ 30 り選択されている場合(すなわちチャネルchxの欄が Null値でない場合)には(ステップS24でYES)、チャネルchxの配信データは、OLT1からONT2a \sim 2cにすでに送信されていることとなる。したがって、この場合に、ATM多重/多重分離装置22は、チャネル設定要求をOLT1に送信することなく、チャネルchxを選択するように自己を設定する。これにより、チャネルchxの配信データの選択が、ATM多重/多重分離装置22により開始される(ステップS28)。

【0093】その後、チャネルchxの配信データは、ATM多重/多重分雕装置 22からチャネル設定要求を送信したユーザ I F 装置 23 (24) に与えられ、ユーザ端末A(B) に送信される。

【0094】なお、たとえば、ユーザ端末Aからチャネルchxのチャネル設定要求がONT2aに与えられ、ONT2a(ATM多重/多重分離装置22)がチャネルchxをすでに選択している状態において、ユーザ端末Bからチャネルchxのチャネル設定要求がONT2aに与えられた場合には、ONT2aのATM多重/多50

重分離装置22は、チャネル設定要求をOLT1の送信することなく、すでに選択しているチャネルchxの配信データをユーザ端末Aに加えてユーザ端末Bに送信する。

. 16

【0095】一方、チャネルchxがいずれのONTにも選択されていない場合(すなわちチャネルchxの欄がNull値である場合)には(ステップS24でNO)、ATM多重/多重分離装置22は、第1の実施の形態と同様にして、チャネルchxの設定要求をOLT1に送信する(ステップS25)。

【0096】OLT1のチャネル設定装置12は、第1の実施の形態のステップS5の処理と同様にして、スイッチ11を設定する(ステップS26)。続いて、チャネル設定装置12は、第1の実施の形態のステップS7の処理と同様にして、チャネル設定完了通知をONT2aに送信する(ステップS27)。なお、チャネル設定装置12は、チャネル選択テーブル(図8参照)の更新を行わない。

【0097】ONT2aのATM多重/多重分離装置22(制御部)は、チャネル設定完了通知の受信後、チャネルchxの配信データを選択するように自己の設定して、チャネルchxの配信データの選択を開始する(ステップS28)。なお、ステップS28の処理は、ステップS25の処理後、ステップS27の処理前に行われてもよい。

【0098】このように第2の実施の形態によると、ONT2a(2b, 2c)がチャネル設定要求を送信すべきかどうかを判断し、チャネル設定が必要な場合にのみチャネル設定要求をOLT1に送信する。したがって、OLT1が論理和演算等のチャネル設定を行うかどうかを判断する必要がなくなり、OLT1の処理負荷が軽減される。

【0099】図10は、第2の実施の形態によるチャネ ル設定解除の処理の流れを示すシーケンス図である。 【0100】ONT2aのATM多重/多重分離装置2 2が、ユーザ端末A(B)から、これまで選択していた チャネル c h x のチャネル設定解除要求を受信すると (ステップS31でYES), チャネル設定解除要求を OLT1に送信する(ステップS32)。このチャネル 設定解除要求は、第1の実施の形態と同じものである。 【0101】OLT1のチャネル設定装置12は、チャ ネルchxのチャネル設定解除要求を受信すると、チャ ネル設定解除要求を送信したONT2aが,チャネルc hxに関して監視対象のONTであるかどうかを判断す る(ステップS33)。チャネルchxに関して監視対 象のONTとは,チャネル選択テーブル(図8参照)に おけるチャネルchxの欄に論理値"1"が設定されて いるONTである。チャネル選択テーブルにおいて,た とえばチャネルchxがチャネルch1である場合に は、ONT2aがチャネルch1に関して監視対象のO

18

NTとなる。

【0102】ONT2aがチャネルchxに関して監視対象のONTである場合に(ステップS34でYES),チャネル設定装置12は,チャネルchxの設定を解除する旨を示すチャネル設定解除情報を,チャネル設定解除要求を送信したONT2a以外のONT(ここではONT2bおよび2c)に送信する(ステップS34)。なお,このチャネル設定解除情報は光スプリッタ3によりONT2aにも送信されるが,ONT2aはこの情報を選択することなく廃棄する。このチャネル設定の情報を選択することなく廃棄する。このチャネルの識別情報(チャネル番号等)が含まれ,また,この情報を格納するATMセルのヘッダ部には,ONT2bおよび2cの各ATM多重/多重分離装置が受信するための所定の識別情報が含まれている。

【0103】ONT2a以外のONT2bおよび2cの各ATM多重/多重分離装置22は、チャネル設定解除情報を受信すると、チャネル設定解除情報に含まれるチャネル識別情報が示すチャネルchxを選択しているかどうかを判断する(ステップS35)。

【0104】ONT2bまたは2cの各ATM多重/多重分離装置22は、自己がチャネルchxを選択している場合には(ステップS35でYES)、チャネル設定解除情報の受信から一定時間T1(たとえば数ミリ秒、数十ミリ秒)内に、チャネルchxのチャネル設定要求(チャネル識別情報を含む。)をOLT1に送信する(ステップS36)。

【0105】一方、自己がチャネルchxを選択していない場合には(ステップS35でNO)、ONT2bまたは2cの各ATM多重/多重分離装置22は、チャネ 30ル設定要求を送信しない。このように監視対象のONTをあらかじめ定めておくことにより、OLT1は、チャネル設定解除要求を受信した場合に、チャネル設定解除情報を常に送信する必要がなくなる。

【0106】OLT1のチャネル設定装置12は、チャネル設定解除情報の送信から一定時間T2(>T1)内に、チャネル設定解除情報により指定したチャネルchxのチャネル設定要求を受信すると(ステップS37でYES)、チャネル設定要求を送信したONT2bまたは2cがチャネルchxに関して監視対象のONTとな40るように、チャネル選択テーブルを更新する(ステップS38)。また、チャネル設定装置12はスイッチ11の設定を維持する。その結果、チャネルchxの配信データの送信は継続される。

・【0107】なお、OLT1のチャネル設定装置12が 複数のONT(たとえばONT2bおよび2c)から同 時に、スイッチS36によるチャネル設定要求を受信し た場合には、チャネル設定装置12にあらかじめ設定さ れたONTの優先順位に従って、優先順位の高いONT が監視対象のONTに決定される。たとえば、ONT2 50 a, 2b, 2cの順に優先順位が定められている場合には, ONT2bが監視対象のONTとされる。

【0108】一方、一定時間T2内にチャネルchxのチャネル設定要求を受信しなかった場合には(ステップS37でNO)、チャネル設定装置12は、ONT2bおよび2cがともにチャネルchxを選択していないものとみなして、スイッチ11のチャネルchxの設定を解除する。これにより、チャネルchxの配信データは、OLT1からONT2a~2cに送信されない。

【0109】スイッチ11の設定解除(ステップS40)の後、ステップS34においてONT2aがチャネルchxについて監視対象のONTでない場合(ステップS34でNO)、または、チャネル選択テーブルの更新(ステップS38)後、スイッチ設定装置12は、チャネル設定解除完了通知をONT2aに送信する(ステップS41)。

【0110】ONT2aのATM多重/多重分離装置22 (制御部)は、チャネル設定解除完了通知の受信後、チャネルchxの選択を停止する(ステップS41)。なお、ステップS41のチャネルの選択の停止処理は、チャネル設定解除要求送信(ステップS32)後であって、チャネル設定完了通知の受信前に行われてもよい。【0111】なお、第2の実施の形態によるチャネル設定の処理およびチャネル設定解除の処理は、ONT2aを例に説明したが、ONT2bおよび2cでも同じ処理が行われる。

【0112】このように第2の実施の形態によっても,チャネル $ch1\sim chn$ のすべての配信データがOLT1からONT2a ~ 2 cに送信されるのではなく,チャネル設定要求(すなわち受信要求)のあったチャネルの配信データのみが送信される。したがって,OLT1とONT2a ~ 2 cとの間の通信帯域を有効利用することができるとともに,必要な配信データに大きな帯域を割り当てることができるので,高速な通信を行うことができる

【0113】3. 第3の実施の形態

第3の実施の形態は、あるONTが新たなチャネルを選択し、または、チャネルの選択を停止する場合に、他のONTからチャネルの選択状況を示す情報を受信するものである。

【0114】第3の実施の形態においても、PONネットワークシステムの全体構成、OLT1の構成、およびONT2a~2cの構成は第1の実施の形態におけるものと同じであるので、ここではその説明を省略する。

【0.1.1.5】図1.1は、第3の実施の形態によるチャネ ル設定の処理の流れを示すシーケンス図である。図3に示すONT2aがチャネルの設定を行う場合を例として説明する。

【0116】ONT2aの多重/多重分離装置22がユーザ端末A(B)からユーザIF装置23(24)を介

てもよい。

してチャネルchxのチャネル設定要求を受信すると(ステップS51でYES),ONT2aの多重/多重分離装置22(制御部)は、チャネルchxの選択を開始する情報(チャネル選択開始情報)を他のONT2bおよび2cに送信する(ステップS52)。

【0117】このチャネル選択開始情報には、送信元であるONT2a、選択を開始するチャネルchxのチャネル識別情報、および選択の開始を示す情報が含まれる。これらの情報はATMセルのペイロード部に格納され、ATMセルのヘッダ部には、ONT2bおよび2c 10がこのチャネル選択開始情報を受信するための所定の識別情報が含まれる。また、このチャネル選択開始情報は、制御情報を送信するATMセルにより光ファイバ4a~4dおよびOLT1を介して送信されてもよいし、光ファイバ4a~4dとは異なる、図示しない他の通信回線を介して送信されてもよい。

【0118】チャネル選択開始情報の送信元のONT2a以外のONT2bおよび2cがチャネル選択開始情報を受信すると、ONT2bおよび2cの各ATM多重/多重分離装置22は、自己が選択しているチャネルの情 20報(以下「ONTチャネル選択情報」という。)を送信元のONT2aに送信する(ステップS53)。このONTチャネル選択情報も光ファイバ4a~4dおよびOLT1を介して送信されてもよいし、図示しない他の通信回線を介して送信されてもよい。

【0119】ONT2aのATM多重/多重分離装置2 2は、ONTチャネル選択情報を受信すると、ONTチャネル選択情報にチャネル chxが含まれているかどうか、すなわち、チャネル chxがすでに設定され、他のONTにより選択されているかどうかを判断する(ステ 30ップS 5 4)。

【0120】チャネルchxがすでに他のONTにより選択されている場合には(ステップS54でYES),そのチャネルchxの配信データは,ONT2aにもOLT1から送信されている。したがって,この場合には,ONT2aのATM多重/多重分離装置22は,自己の設定を変更することによって,チャネルchxの配信データの選択を開始する(ステップS58)。

【0121】一方, チャネルchxが他のONT2bおよび2cにより選択されていない場合(すなわちONT 40チャネル選択情報にチャネルchxが含まれていない場合)には(ステップS54でNO), ONT2aのATM多重/多重分離装置22は、チャネルchxのチャネル設定要求をOLT1に送信する(ステップS55)。

【0122】OLT1のチャネル設定装置12は,このチャネル設定要求に従ってスイッチ11を設定し(スイッチS56),チャネル設定完了通知をONT2aに送信する(ステップS57)。これにより,チャネルchxの配信データがOLT1からONT2a(および2b,2c)に送信される。

【0123】ONT2aのATM多重/多重分離装置22は、OLT1からのチャネル設定完了通知の受信後、チャネルchxの配信データの選択を開始する(ステップS58)。その後、ONT2aのATM多重/多重分離装置22は、チャネルchxの識別情報を含んだチャネル選択完了通知を他のONT2bおよび2cに送信する(ステップS59)。このチャネル選択完了通知も、光ファイバ4a~4dおよびOLT1を介して送信されてもよいし、図示しない他の通信回線を介して送信されてもよいし、図示しない他の通信回線を介して送信され

【0124】このように第3の実施の形態によると、ONT2a(2b, 2c)がチャネル設定要求を送信すべきかどうかを判断し、チャネル設定が必要な場合にのみチャネル設定要求をOLT1に送信する。したがって、OLT1が論理和演算等のチャネル設定を行うかどうかを判断する必要がなくなり、OLT1の処理負荷が軽減される。また、ONTチャネル選択情報を、OLT1ではなくONT間で通知するので、OLT1の処理負荷がさらに軽減される。

【0125】図12は、第3の実施の形態によるチャネル設定解除の処理の流れを示すシーケンス図である。ONT2aがチャネル設定解除を行う場合を例にして説明する。

【0126】ONT2aが、そのユーザ端末A(B)からチャネルchxのチャネル設定解除要求を受信した場合に(ステップS61でYES)、ONT2aのATM多重/多重分離装置22は、チャネル設定解除要求に含まれるチャネルchxを停止する情報(チャネル選択停止情報)を他のONT2bおよび2cに送信する(ステップS62)。

【0127】他のONT2bおよび2cがチャネル選択停止情報を受信すると、これらのONT2bおよび2cのATM多重/多重分離装置22は、それぞれ自己のONTチャネル選択情報をONT2aに送信する(ステップS63)。

【0128】ONT 2a のATM多重/多重分離装置 2 2は,他のONT 2b および 2c から送信されたONT チャネル選択情報に基づいて,チャネル chx が他のONT 2b または 2c により選択されているかどうかを判断する(ステップ S64)。

【0129】チャネルchxが他のONT2bまたは2cの少なくとも一方により選択されている場合には(ステップS64でYES),チャネル設定解除要求をOLT1に送信することなく,自己のチャネルchxの設定を解除して,チャネルchxの配信データの選択を停止する(ステップS68)。

【0130】一方、チャネルchxが他のONT2bおよび2cの双方により選択されていない場合には(ステップS64でNO)、ONT2aのATM多重/多重分50 離装置22は、チャネルchxのチャネル設定解除要求

をOLT1に送信する(ステップS65)。これにより、OLT1のスイッチ設定装置12は、スイッチ11のチャネルchxの設定を解除する。その結果、チャネルchxの配信データは、OLT1からONT2a~2cに送信されなくなる。その後、スイッチ設定装置12は、ONT2aにチャネルchxのチャネル設定解除完了通知を送信する(ステップS67)。

【0131】ONT2aのATM多重/多重分離装置2 2は、チャネル設定解除完了通知の受信後、チャネルc hxの配信データの選択を停止する。停止後、ONT2 10 aは、他のONT2bおよび2cにチャネル選択停止完 了情報を送信する(ステップS69)。

【0132】なお、第3の実施の形態によるチャネル設定の処理およびチャネル設定解除の処理は、ONT2aを例に説明したが、ONT2bおよび2cでも同じ処理が行われる。

【0133】このように第3の実施の形態によっても、チャネル $ch1 \sim chn$ のすべての配信データがOLT 1からONT $2a \sim 2c$ に送信されるのではなく、チャネル設定要求(すなわち受信要求)のあったチャネルの 20配信データのみが送信される。したがって、OLT1とONT $2a \sim 2c$ との間の通信帯域を有効利用することができるとともに、必要な配信データに大きな帯域を割り当てることができるので、高速な通信を行うことができる

【0134】(付記1) 光信号により複数種類の配信 データを送信する光ライン端末と, 光信号により配信デ ータを受信する複数の光ネットワーク端末と,前記光ラ イン端末から送信される、光信号による配信データを光 信号の状態で前記複数の光ネットワーク端末に分配する 30 光分岐装置とを備えている受動光ネットワークシステム において、前記複数の光ネットワーク端末のそれぞれ は、前記複数種類の配信データのうち受信を求める配信 データの受信要求を, 該受信を求める配信データの種類 を指定して前記光ライン端末に送信する制御情報送信部 と, 前記光ライン端末から送信される1または2以上の 種類の配信データの中から、前記受信を求める配信デー タを選択して受信するデータ選択部と, を備え, 前記光 ライン端末は、前記複数種類の配信データのうち、送信 するように設定された配信データを前記複数の光ネット 40 ワーク端末に送信する配信データ送信部と、前記受信要 求を受信し, 前記受信要求によって指定された種類の配 信データを送信するように前記配信データ送信部を設定 する設定部と,を備えていることを特徴とする受動光ネ ットワークシステム。・・

【0135】(付記2) 付記1において,前記光ライン端末の前記設定部は,前記配信データ送信部が,前記受信要求により指定された種類の配信データを送信するようにすでに設定されているかどうかを確認し,設定されていない場合に,前記配信データ送信部を設定する,

ことを特徴とする受動光ネットワークシステム。

【0136】(付記3) 付記1において,前記光ネットワーク端末の前記制御情報送信部は,受信している配信データの受信の終了を求める受信終了要求を,該受信の終了を求める配信データの種類を指定して前記光ライン端末に送信し,前記光ライン端末の前記設定部は,前記受信終了要求を受信し,前記受信終了要求を送信した光ネットワーク端末以外のいずれの光ネットワーク端末も前記受信終了要求により指定された種類の配信データを選択していない場合には,該指定された種類の配信データについての前記配信データ送信部の設定を解除する,ことを特徴とする受動光ネットワークシステム。

【0137】(付記4) 付記1において,前記光ライン端末の前記設定部は,前記複数の光ネットワーク端末のそれぞれが選択している配信データの種類を示す種類選択データを各光ネットワーク端末に通知し,前記光ネットワーク端末の前記制御情報送信部は,受信を求める配信データの種類が,前記通知に含まれていない場合に,前記受信要求を前記光ライン端末に送信する,ことを特徴とする受動光ネットワークシステム。

【0138】(付記5) 付記1において,前記光ネッ トワーク端末の前記制御情報送信部は、受信している配 信データの受信の終了を求める受信終了要求を、該受信 の終了を求める配信データの種類を指定して前記光ライ ン端末に送信し、前記光ライン端末の前記設定部は、前 記受信終了要求を送信した光ネットワーク端末が、該受 信終了要求により指定された種類の配信情報をいずれの 光ネットワーク端末も選択していない状態において最初 に選択した、監視対象となる光ネットワーク端末である 場合には、該指定された種類の配信データの送信停止を 他の光ネットワーク端末に通知し、通知後所定の時間内 に、該種類の配信データの受信要求を他の光ネットワー ク端末から受信しないときは,該種類の配信データにつ いての前記配信データ送信部の設定を解除し、受信した ときは、該種類の配信データについての前記配信データ 送信部の設定を維持し、前記受信要求を送信した光ネッ トワーク端末を新たな監視対象の光ネットワーク端末と する、ことを特徴とする受動光ネットワークシステム。 【0139】(付記6) 付記5において,前記光ライ

【0139】(付記6) 付記5において,前記光ライン端末の前記設定部は,前記所定の時間内に,2以上の光ネットワーク端末から前記受信要求を同時に受信した場合には,あらかじめ設定された優先順位に従って優先順位の高い光ネットワーク端末を新たな監視対象の光ネットワーク端末とする,ことを特徴とする受動光ネットワークシステム。

【0140】(付記7) 付記1において,前記光ネットワーク端末の前記制御情報送信部は,受信を求める配信データの種類を他の光ネットワーク端末に通知し,他の光ネットワーク端末から送信された,該他の光ネットワーク端末が受信している配信データの種類の中に,前

50

24 ータを選択して受信するデータ選択部と, を備えている ことを特徴とする光ネットワーク端末。

記受信を求める配信データの種類がない場合には、前記 受信要求を送信し、かつ、他の光ネットワーク端末から 前記通知を受信した場合には、自己の受信している配信 データの種類を該他の光ネットワーク端末に送信する, ことを特徴とする受動光ネットワークシステム。

【0141】(付記8) 光信号により複数種類の配信 データを送信する光ライン端末と, 光信号により配信デ ータを受信する複数の光ネットワーク端末と, 前記光ラ イン端末から送信される, 光信号による配信データを光 信号の状態で前記複数の光ネットワーク端末に分配する 10 光分岐装置とを備えている受動光ネットワークシステム における通信方法において, 前記複数の光ネットワーク 端末のそれぞれは、前記光ライン端末が送信する前記複 数種類の配信データのうち受信を求める配信データの受 信要求を、該受信を求める配信データの種類を指定して 前記光ライン端末に送信し、前記光ライン端末は、前記 複数種類の配信データのうち、前記複数の光ネットワー ク端末から送信された前記受信要求により指定された種 類の配信データを前記複数の光ネットワーク端末に送信 する,ことを特徴とする通信方法。

【0142】(付記9) 受動光ネットワークシステム に設けられ、配信データを複数の光ネットワーク端末に 光信号により分配する光ライン端末において、複数種類 の配信データのうち、送信するように設定された配信デ ータを光ネットワーク端末に送信する配信データ送信部 と、前記複数の光ネットワーク端末の少なくとも1つが 前記複数種類の配信データのうち受信を求める配信デー タの種類を指定して送信した受信要求を受信し、該受信 要求によって指定された種類の配信データを送信するよ うに前記配信データ送信部を設定する設定部と、を備え 30 ていることを特徴とする光ライン端末。

【0143】(付記10) 光信号により複数種類の配 信データを光分岐装置を介して複数の光ネットワーク端 末に分配する光ライン端末が行う通信方法において、前 記複数の光ネットワーク端末の少なくとも1つが前記複 数種類の配信データのうち受信を求める配信データの種 類を指定して送信した受信要求を受信し、前記複数種類 の配信データのうち、前記受信要求により指定された種 類の配信データを前記複数の光ネットワーク端末に送信 する,ことを特徴とする通信方法。

【0144】 (付記11) 受動光ネットワークシステ ムに設けられ、光ライン端末から光信号により送信され る配信データを受信する光ネットワーク端末において, 、前記光ライン端末が、送信可能な複数種類の配信データ のうち、該光ネットワーク端末が受信を求める配信デー タを選択して送信するように, 前記光ライン端末を設定 するための受信要求を, 該受信を求める配信データの種 類を指定して前記光ライン端末に送信する制御情報送信 部と、前記光ライン端末から送信される1または2以上 の種類の配信データの中から、前記受信を求める配信デ 50

【0145】(付記12) 受動光ネットワークシステ ムに設けられ、光ライン端末から光信号により送信され る配信データを受信する光ネットワーク端末が行う通信 方法において、前記光ライン端末が、送信可能な複数種 類の配信データのうち、該光ネットワーク端末が受信を 求める配信データを選択して送信するように、前記光ラ イン端末を設定するための受信要求を、該受信を求める 配信データの種類を指定して前記光ライン端末に送信 し、前記光ライン端末から送信される1または2以上の 種類の配信データの中から、前記受信を求める配信デー タを選択して受信する,ことを特徴とする通信方法。

[0146]

20

40

【発明の効果】本発明によると、光ライン端末と光ネッ トワーク端末との間の通信帯域を有効利用することがで きる。また,受信要求のあった配信データに大きな通信 帯域を割り当てることができるので、受信要求のあった 配信データの通信速度を向上させることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による受動光ネット ワークシステムの全体構成を示すブロック図である。

【図2】本発明の第1の実施の形態による光ライン端末 の詳細な構成を示すブロック図である。

【図3】本発明の第1の実施の形態による光ネットワー ク端末の詳細な構成を示すブロック図である。

【図4】本発明の第1の実施の形態によるチャネル設定 の処理の流れを示すシーケンス図である。

【図5】チャネル設定テーブルの一例を示す。

【図6】本発明の第1の実施の形態によるチャネル設定 解除の処理の流れを示すシーケンス図である。

【図7】本発明の第2の実施の形態によるチャネル設定 の処理の流れを示すシーケンス図である。

【図8】チャネル選択テーブルの一例を示す。

【図9】OLTチャネル選択情報の一例を示す。

【図10】本発明の第2の実施の形態によるチャネル設 定解除処理の流れを示すシーケンス図である。

【図11】本発明の第3の実施の形態によるチャネル設 定の処理の流れを示すシーケンス図である。

【図12】本発明の第3の実施の形態によるチャネル設 定解除処理の流れを示すシーケンス図である。

【図13】従来の受動光ネットワークシステムの全体構 · 成を示すブロック図である。

【符号の説明】

1 光ライン端末(OLT)

11 スイッチ

12 チャネル設定装置

13,21 PONインタフェース装置 (PON-IF 装置)

2 a ~ 2 c 光ネットワーク端末 (ONT)

22 ATM多重/多重分離装置

- * 4 a ~ 4 d 光ファイバリンク
- 23 ユーザインタフェース装置 (ユーザ I F装置) *

【図1】

【図2】

【図5】

ノイヤル政権ノーブル						
	ch1	ch2	•••	ohl	•••	ohn
ONT28	1	0		0		0
ОМТ2Ь	0	1		1	• • •	0
ONT20	0	1		0		0

【図8】

チャネル選択テーブル

			r		г –	
	ch1	ah2	• • •	ahi	• • •	chn
ONT2a	1	0		0		0
ОМТ2Ь	0	1		1		0
ONT2c	0	0	,	0		0

..:

【図3】

		20	_
ユーザ端末Α ◀	ONT 23 2-ザF 装置 24 24	22 ATM 多量/多量分階装置 PON-IF 装置	olt

[図9]

OLTチャネル選択情報

ch 1	ch2	chi			chin
ONT2a	ОМТ2Ь		ONT2b		Nuti

【図4】

【図13】

【図6】

【図7】

【図10】

【図11】

【図12】

