I claim:

10

	1.	A method for compressing an input string, comprising the steps of:
		generating a lexicographic normal form from said input string, using only a
5	single pass or	ver said input string; and
		applying a compression scheme to said lexicographic normal form.

- 2. The method of claim 1, wherein said compression scheme is a grammar-based lossless data compression scheme.
- 3. The method of claim 1, wherein said input string is one or more program instructions.
- 4. The method of claim 1, wherein said input string is one or more events in a communications network.
 - 5. The method of claim 1, wherein said generating step further comprises the step of evaluating a set of equivalent words with respect to a noncommutation graph.
- 20 6. The method of claim 1, wherein said generating step further comprises the steps of:

employing a stack corresponding to each vertex $v \in V$, where w is a word over an alphabet V;

processing symbols of w from right to left;

upon seeing a letter u, pushing a u on its stack and a marker pushed on the stacks corresponding to symbols which are adjacent to u in a noncommutation graph G; and

once the entire word has been processed, using said stacks to determine said lexicographic normal form for an interchange class containing the word.

30

25 Savari 3

7.	A method for compressing an input string, comprising the steps of:
	generating a Foata normal form from said input string; and
	applying a compression scheme to said Foata normal form.

- 5 8. The method of claim 7, wherein said compression scheme is a grammar-based lossless data compression scheme.
 - 9. The method of claim 7, wherein said input string is one or more program instructions.
 - 10. The method of claim 7, wherein said input string is one or more events in a communications network.
- 11. The method of claim 7, wherein said generating step further comprises the step of evaluating a set of equivalent words with respect to a noncommutation graph.
 - 12. The method of claim 7, wherein said generating step further comprises the steps of:
- employing a stack corresponding to each vertex $v \in V$, where w is a word over an alphabet V;

processing symbols of w from right to left;

- upon seeing a letter u, pushing a u on its stack and a marker on the stacks corresponding to symbols which are adjacent to u in a noncommutation graph G; and once the entire word has been processed, using said stacks to determine
- 25 said Foata normal form for an interchange class containing the word.
 - 13. A compression system, comprising:

a memory; and

a processor operatively coupled to said memory, said processor configured

30 to:

10

generate a normal form from said input string, using only a single pass over said input string; and

applying a compression scheme to said normal form.

14.	The compression system of claim 13, wherein said compression scheme is	S
a grammar-bas	ed lossless data compression scheme.	

5

- 15. The compression system of claim 13, wherein said input string is one or more program instructions.
- 16. The compression system of claim 13, wherein said input string is one or more events in a communications network.
 - 17. The compression system of claim 13, wherein said normal form is a lexicographic normal form.
- 15 18. The compression system of claim 13, wherein said normal form is a Foata normal form.
- 19. The compression system of claim 13, wherein said wherein said processor is further configured to evaluate a set of equivalent words with respect to a 20 noncommutation graph.
 - 20. The compression system of claim 13, wherein said wherein said processor is further configured to:
- employ a stack corresponding to each vertex $v \in V$, where w is a word over an alphabet V;

process symbols of w from right to left;

upon seeing a letter u, pushing a u on its stack and a marker on the stacks corresponding to symbols which are adjacent to u in the noncommutation graph G; and once the entire word has been processed, using said stacks to determine

30 said normal form for an interchange class containing the word.