МСЦ РАН – филиал ФГУ ФНЦ НИИСИ РАН

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ВЕКТОРИЗАЦИИ ГНЕЗД ЦИКЛОВ С НЕРЕГУЛЯРНЫМ ЧИСЛОМ ИТЕРАЦИЙ

Рыбаков Алексей Анатольевич Шумилин Сергей Сергеевич

INTEL® ADVANCED VECTOR EXTENSIONS 512

IN INTEL® XEON® SCALABLE PROCESSORS

Skylake — Knights Landing — Broadwell Comparative analysis of vector processing functionality

взято с сайта tech.io

Пример применения масок в векторных операциях

(intel) Intrinsics Guide

mm search

Technologies

- ☐ MMX ☐ SSE
- SSE2
- SSE3
- SSSE3
- SSE4.1
- SSE4.2
- □ AVX
- □ AVX2
- □ FMA
- ✓ AVX-512
- □ KNC
 □ SVML
- Other

```
_m512i _mm512_4dpwssd_epi32 (_m512i src, _m512i a0, _m512i a1, _m512i a2, _m512i a3, _m128i * b) vp4dpwssd
 _m512i _mm512_mask_4dpwssd_epi32 (_m512i src, _mmask16 k, _m512i a0, _m512i a1, _m512i a2,
                                                                                                     vp4dpwssd
_m512i a3, _m128i * b)
_m512i _mm512_maskz_4dpwssd_epi32 (_mmask16 k, _m512i src, _m512i a0, _m512i a1, _m512i a2,
                                                                                                     vp4dpwssd
_m512i a3, _m128i * b)
 _m512i _mm512_4dpwssds_epi32 (_m512i src, _m512i a0, _m512i a1, _m512i a2, _m512i a3, _m128i *
                                                                                                    vp4dpwssds
_m512i _mm512_mask_4dpwssds_epi32 (_m512i src, _mmask16 k, _m512i a0, _m512i a1, _m512i a2,
                                                                                                    vp4dpwssds
_m512i a3, _m128i * b)
_m512i _mm512_maskz_4dpwssds_epi32 (_m512i src, _mmask16 k, _m512i a0, _m512i a1, _m512i a2,
                                                                                                    vp4dpwssds
_m512i a3, _m128i * b)
_m512 _mm512_4fmadd_ps (_m512 a, _m512i b0, _m512i b1, _m512i b2, _m512i b3, _m128i * c)
                                                                                                     v4fmaddps
_m512    _mm512_mask_4fmadd_ps (_m512 a, _mmask16 k, _m512i b0, _m512i b1, _m512i b2, _m512i b3,
                                                                                                     v4fmaddps
m128i * c
__m512    _mm512_maskz_4fmadd_ps (_m512 a, _mmask16 k, _m512i b0, _m512i b1, _m512i b2, _m512i b3,
                                                                                                     v4fmaddps
```

Synopsis

```
__m512i _mm512_mask_add_epi32 (__m512i src, __mmask16 k, __m512i a, __m512i b) #include <immintrin.h>
Instruction: vpaddd zmm {k}, zmm, zmm
CPUID Flags: AVX512F for AVX-512, KNCNI for KNC
```

m128i * c)

Description

Add packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).

Operation

SHELLSORT WITH INCREMENTS 8, 4, 2, 1

8-sort:	503	087	512	061	908	170	897	275	653	426	154	509	612	677	765	703
4-sort:	503	087	154	061	612	170	765	275	653	426	512	509	908	677	897	703
2-sort:	503	087	154	061	612	170	512	275	653	426	765	509	908	677	897	703
1-sort:	154	061	503	087	512	170	612	275	653	426	765	509	897	677	908	703
	061	087	154	170	275	426	503	509	512	612	653	677	703	765	897	908

Визуализация сортировки Шелла

Взято с GitHub, польз. heray1990

Последовательность	Формула					
Последовательность Шелла, 1959 г.	$k_1 = \lfloor \frac{N}{2} \rfloor, k_i = \lfloor \frac{k_{i-1}}{2} \rfloor, k_t = 1$					
Последовательность Хиббарда, 1963 г.	$2^i-1\leq N, i\in\mathbb{N}$					
Последовательность Пратта, 1971 г.	$2^i \cdot 3^j \leq \tfrac{N}{2}, i \in \mathbb{N}, j \in \mathbb{N}$					
Последовательность Седжвика, 1986 г.	$k_i = \begin{cases} 9 \cdot 2^i - 9 \cdot 2^{\frac{i}{2}} + 1, k \text{ even} \\ 8 \cdot 2^i - 6 \cdot 2^{\frac{i+1}{2}} + 1, k \text{ odd} \end{cases}$					

Последовательности шагов, используемые в сортировке Шелла

```
void shell_sort(float *m, int n, int *ks, int k_ind)
02
03
        int i, j, k;
04
05
        for (k = ks[k_ind]; k > 0; k = ks[--k_ind])
06
07
             for (i = k; i < n; i++)
08
09
                 float t = m[i];
10
                 for (j = i; j >= k; j -= k)
11
12
13
                     if (t < m[j - k])</pre>
14
                         m[j] = m[j - k];
16
17
                     else
18
19
                         break;
20
21
23
                 m[j] = t;
24
25
26 }
```

```
Каноничная реализация сортировки Шелла
```

```
(k = ks[k_ind]; k >= 16; k = ks[--k_ind])
   for (i = k; i + 15 < n; i += 16)
      call shell sort k_i_w(m, n,
  if (i + 1 < n)
      call shell sort k i w(m, n, k, i,
   else if (i < n)
      call shell sort k i(m, n, k, i)
for (; k > 1; k = ks[--k ind])
  for (i = k; i + (k - 1) < n; i + k) // w = k
      call shell sort k i w(m.
  |if|(i + 1 < n)
      call shell sort k i w(m, n, k, i, n - i
   else if (i < n)
      call shell sort k i(m, n, k, i)
  k = 1
   for (i = 1; i < n; i++)
      call shell_sort_k_i(m, n, 1, i)
```

Декомпозиция сортировки Шелла для выделения **векторизуемых участков кода**

HIG

MED

NO VECT

Схема перевода **тела внутреннего цикла** сортировки Шелла в **предикатную форму**


```
01 void shell sort k i w(float *m, int n, int k, int i, int w)
02
        int j = i;
03
          _mmask16 ini_mask = ((unsigned int)0xFFFF) >> (16 - w);
04
          mmask16 mask = ini_mask;
05
          m512i ind_j = mm512_add_epi32(mm512_set1_epi32(i),
06
                                          ind straight);
07
        __m512 t, q;
98
09
        t = _mm512_mask_load_ps(t, mask, &m[j]);
10
11
        do
12
13
            mask = mask & mm512 mask cmp epi32 mask(mask, ind j, ind k,
14
15
                                                       MM CMPINT GE);
            q = _mm512_mask_load_ps(q, mask, &m[j - k]);
16
            mask = mask & _mm512_mask_cmp_ps_mask(mask, t, q,
17
18
                                                   MM CMPINT LT);
            _mm512_mask_store_ps(&m[j], mask, q);
19
            ind_j = _mm512_mask_sub_epi32(ind_j, mask, ind_j, ind_k);
20
            i -= k:
21
22
        while (mask != 0x0);
23
24
25
        _mm512_mask_i32scatter_ps(m, ini_mask, ind_j, t, _MM_SCALE_4);
26
```

Векторизованный вариант ядра сортировки Шелла

_mm512_add_epi32

_mm512_mask_i32scatter_ps

_mm512_set1_epi32

_mm512_mask_sub_epi32

_mm512_mask_cmp_epi32_mask

_mm512_mask_load_ps

Интринсики, используемые в коде векторизации

_mm512_mask_i32scatter_ps

Формулы для расчета числа итераций

$$T = \sum_{k \in ks} \sum_{i=k}^{n-1} I(k,i) \qquad T_v = \sum_{k \in ks} \left(\sum_{g=0}^{G(k)-1} \lim_{\substack{k+w(k)(g+1)-1 \\ m = k+w(k)g}} I(k,i) \right) + \max_{\substack{i=k+w(k)G(k) \\ w(k)}} I(k,i) \right)$$
 где $w(k) = \min(k,16), G(k) = \lfloor \frac{n-k}{w(k)} \rfloor$

16 эл.

Хвостовая часть

Сравнение **теоретического ускорения** векторизованной версии сортировки Шелла для различных последовательностей шагов

Сравнение **экспериментального ускорения** векторизованной версии сортировки Шелла для различных последовательностей шагов

Гистограмма распределения **количества итераций** внутреннего цикла при сортировке с последовательностью **Шелла при k = 4**

Гистограмма распределения **количества итераций** внутреннего цикла при сортировке с последовательностью **Шелла при k = 15**

Гистограмма распределения **количества итераций** внутреннего цикла при сортировке с последовательностью Хиббарда **при k = 3**

Гистограмма распределения **количества итераций** внутреннего цикла при сортировке с последовательностью Хиббарда **при k = 15**

Выводы

- Для гнезд циклов с нерегулярным числом итераций теоретическое и экспериментальное ускорение далеко от идеальной верхней границы
- Эффективность векторизации стремиться к асимптотическому значению
- Необходимость оценки характера исполнения дискретных задач в каждом отдельном случае

СПАСИБО ЗА ВНИМАНИЕ

shumilin@jscc.ru noisd@yandex.ru

+7(905)502-73-66