Solutions des exercices

Chapitre 1 – Introduction au calcul des probabilités

- 1. a) $\Omega = \{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66\} # <math>\Omega = 36$ b) $\Omega = \{\{1,1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{2,2\}, \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{3,3\}, \{3,4\}, \{3,5\}, \{3,6\}, \{4,4\}, \{4,5\}, \{4,6\}, \{5,5\}, \{5,6\}, \{6,6\}\} # <math>\Omega = 21$ c) $\Omega = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} # <math>\Omega = 11$ d) $\Omega = \{\text{oui, non}\} # <math>\Omega = 2$
 - , , ,
- 2. P(somme = 7) = 6/36 = 1/6 $P(somme \ge 10) = 1/6$
- 3. P(point pair) = 5/8
- 4. P(le premier gagne) = 4/7 ; P(le deuxième gagne) = 2/7 ; P(le troisième gagne) = 1/7
- a) P(A ∩ B) = P(obtenir un as rouge) = 2/52 = 1/26
 b) P(B ∩ C) = P(obtenir un coeur) = 13/52 = 1/4
 - c) P(A U C) = P(obtenir un as ou un coeur) = 16/52 = 4/13
 - d) $P(B \cup C) = P(obtenir une carte rouge) = 26/52 = 1/2$
- 6. a) P(aucun des numéros choisis au tirage) = C(36, 6)/C(42,6) = 0.3713...b) P(gagner au rang 5) = C(6,3)*C(36,3)/C(42,6) = 0.027...
- 7. a) surface cible/surface du carré = 400π / 2500 = 0.502...
 - b) surface cercle au centre/surface du carré = 25π / 2500 = 0.0314...
 - c) 0
- 8. $P(A \cup B) = 0.6$, $P(\overline{A}) = 0.7$, $P(\overline{B}) = 0.5$, $P(A \cap \overline{B}) = 0.1$, $P(B \cap \overline{A}) = 0.3$, $P(\overline{A} \cap \overline{B}) = 0.4$, $P(\overline{A} \cup \overline{B}) = 0.8$.
- 9. 17/27 = 0.6296...
- 10. 0.35
- 11. a) 0.8 b) 0.04
- c) 0.048

- 12. a) 25/72 = 0.3472...
 - b) $1 (5/6)^3 = 91/216 = 0.4213$
 - c) 20/36 = 0.5555....
- 13. a) 12/169 = 0.071
- b) $36/13^3 = 0.0164$
- c) 1/2704 = 0.0003698
- 14. $P(A \cup B \cup C) = P((A \cup B) \cup C)$ $= P(A \cup B) + P(C) - P((A \cup B) \cap C)$ $= P(A) + P(B) - P(A \cap B) + P(C) - P((A \cap C) \cup (B \cap C))$ $= P(A) + P(B) - P(A \cap B) + P(C) - P(A \cap C) - P(B \cap C) + P((A \cap C) \cap (B \cap C))$ $= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$
- 15. P(A) = 0.26

$P(A/B) = P(A \cap B) / P(B) = 0.078/0.3 = 0.26 \rightarrow A \text{ et B sont indépendants}$

- 16. a) 3/51 = 0.0588
 - b) 4/52 * 3/51 = 0.0045
 - c) 1 48/52 * 47/51 = 0.1493
- 17. 10/20 * 9/19 * 8/18 = 0.105...
- 18. P(A gagne) = 3/10 = 0.3
 - P(B gagne) = 7/10 * 3/9 = 0.233...
 - P(C gagne) = 7/10 * 6/9 * 3/8 = 0.175...
 - P(D gagne) = 7/10 * 6/9 * 5/8 * 3/7 = 0.125...
- 19. P(A/B) = 3/4 5/6
- P(B/A) = 1/2
- $P(\overline{\mathbf{A}}/\overline{\mathbf{B}}) = 5/8$
- $P(\overline{B}/\overline{A}) =$

- 20. P(A) = 1/2
- P(B) = 1/2
- P(A/B) = 2/3
- P(B/A) = 2/3

21. a) 0.54

- b) 0.08
- c) 0.375
- d) 0.0555...

- 22. a) 5/8 * 4/7 * 3/6 = 0.1786
 - b) 3/8 * 6/10 * 2/7 = 0.06429
 - c) 3/8 * 4/10 * 3/9 = 0.05
 - d) 5/7 = 0.7143
- 23. a) $(5/8)^3 = 0.2441$
 - b) $(3/8)^2 * 6/10 = 0.08437$
 - c) $3/8 * (4/10)^2 = 0.06$
 - d) 5/8 = 0.625
- 24. a) 5/9

- b) 4/9
- c) 5/9

25. a) 0.42

b) 0.74

26. a) 0.89

- b) 0.1
- c) 0.855

27. a) 1/2

- b) 2/9
- c) 13/18
- d) 5/18

- 28. 15/31 = 0.48387...
- 29. 0.05569...
- 30. P(faire 421 avec le dé A) = 2/216
 - P(faire 421 avec le dé B) = 4/216
 - P(faire 421 avec le dé C) = 8/216
 - On en déduit :
- P(A/421) = 1/12 P(B/421) = 1/4
 - P(C/421) = 2/3
- 31. a) 0.05

- b) 0.19...
- c) 0.0065...

- 32. a) 0.01666...
- b) 0.4
- 33. a) 0.3417

34. a) 0.1714

- b) 0.2439b) 0.5149
- c) 0.1667
- d) 0.0294

Chapitre 2 – Variables aléatoires et grandes distributions théoriques

1. a)

X_i	p_i
-6	1/6
-4	1/6
-2	1/6
1	1/6
3	1/6
5	1/6

E[X] = -0.5; $\sigma = 3.8622...$

b)

\mathcal{X}_i	p_i		
–15	13/20		
20	7/20		

E[X] = -2.75 €; σ = 16.69 €

c)

x_i	p_i	
– 5	0.75	
10	0.25	

E[X] = -1.25 ∈; σ = 6.50 ∈

d)

x_i	p_i
0	8/27
1	4/9
2	2/9
3	1/27

E[X] = 1; $\sigma = 0.8164...$

2.

X_i	p_i
0	0.072
1	0.104
2	0.176
3	0.648

E[X] = 2.4; $\sigma = 0.938...$ $P[X \ge 2] = 0.176 + 0.648 = 0.824$

3.

x_i	p_i
2	1/9
2.3	7/18
2.5	7/18
2.7	1/9

E[X] = 2.39 €; σ = 0.17 €

4. a)

χ_i	p_i
0	0.512
1	0.384
2	0.096
3	0.008

- c) E[X] = 0.6; $\sigma = 0.6928...$
- d) Frais de réparation : c'est une autre variable aléatoire Y de valeurs {0, 60, 95, 130} (probabilités identiques à X)

Ë[Y] = 33.20 €

5. a)

x_i	p_i
-1	25/36
2	10/36
5	1/36

- b) E[X] = 0 € ; σ = 1.58 €
 Le jeu est équitable. En jouant 20 fois de suite, l'espérance de gain est toujours 0 €
- c) P[6 avec dé truqué] = 3/8, P[i avec dé truqué] = 1/8 pour i = 1, 2, 3, 4, 5

\mathcal{X}_i	p_i
–1	25/48
2	5/12
5	1/16

Dans ce cas, E[X] = 0.625 € → il doit jouer 80 fois pour espérer gagner 50 €.

6. a) Pour avoir une aire de 1, le sommet est à hauteur 0.1

c)
$$\mu$$
 = 10 et σ = 4.082

7. a)
$$\frac{1}{2} \int_{0}^{\pi} \sin x dx = \frac{1}{2} [-\cos x]_{0}^{\pi} = 1$$

b)
$$F(x) = \frac{1}{2} - \frac{1}{2} \cos x$$

c) par symétrie, E[X] = $\frac{\pi}{2}$

$$\sigma^2 = \frac{1}{2} \int_0^{\pi} x^2 \sin x dx - \frac{\pi^2}{4} = \frac{\pi^2}{4} - 2$$
, d'où $\sigma = 0.6836... = 39.17...$ °

d) 1/2

8. a)
$$\int_{0}^{\infty} \frac{1}{4} e^{-x/4} dx = 1$$

b)
$$\int_{0}^{\infty} \frac{1}{4} x e^{-x/4} dx = 4$$

c)
$$P[X \ge 2] = \int_{2}^{\infty} \frac{1}{4} e^{-x/4} dx = 0.6065...$$

d)
$$P[X \le 6] = \int_{0.5}^{6} \frac{1}{4} e^{-x/4} dx = 0.7768...$$

e)
$$P[X \ge 4 \mid X \ge 2] = \frac{P[X \ge 4]}{P[X \ge 2]} = 0.6065...$$

9.
$$1 - (0.48)^5 = 0.9745...$$

10. a)
$$(0.6)^5 = 0.07776$$

b)
$$5*0.4*(0.6)^4 = 0.2592$$

b)
$$5*0.4*(0.6)^4 = 0.2592$$
 c) $1 - (0.6)^5 = 0.92224$

12. 0.9884...

13.
$$1 - (5/6)^n > 0.1 \rightarrow n \ge 13$$

b)
$$10*(9/37)*(28/37)^9 = 0.198$$

d)
$$1 - (28/37)^n > 0.9 \rightarrow n = 9$$

15. a)
$$(1/32)^{10}$$
 b) $1 - (31/32)^{n} > 0.6 \rightarrow n \ge 29$ c) $1/32$

16.
$$0.5^{20} * (C_{20}^9 + C_{20}^{10} + C_{20}^{11}) = 0.4966$$

- 17. a) $X = \text{nombre de } \ll \text{ faces } \gg \sim B(100, 0.5)$; E[X] = 50; $\sigma = 5$
 - b) $X = \text{nombre d'as} \sim B(30, 1/6)$; E[X] = 5; $\sigma = 2.041...$
 - c) X = nombre de réponses correctes ~ B(50, 1/2) ; E[X] = 25 ; σ = 3.535...
- 18. $X \equiv$ nombre de puits trouvés ~ B(12, 0.2)

P[de ne pas être en faillite] = $P[X \ge 3] = 1 - P[X=0] - P[X=1] - P[X=2] = 0.44165...$

19. a) X ≡ nombre de réponses correctes ~ B(10, 0.2)

$$P[X \ge 7] = \sum_{k=7}^{10} C_{10}^{k} 0.2^{k} 0.8^{10-k} = 0.001577$$

b) X ≡ nombre de réponses correctes ~ B(10, 0.5)

$$P[X \ge 7] = \sum_{k=7}^{10} C_{10}^{k} 0.5^{k} 0.5^{10-k} = 0.333$$

20. $X \equiv$ nombre de tirs atteignant la cible ~ B(10, 0.2)

$$P[couler | a cible] = P[X \ge 4] = 1 - P[X=0] - P[X=1] - P[X=2] - P[X=3] = 0.12$$

- 21. a) Population grande \rightarrow X ~ B(5, 0.6)
 - b) $\mu = 3$; $\sigma = 1.095...$
 - c) P[X = 3] = 0.3456
 - d) $P[X \ge 3] = 0.6826$
- 22. $X \equiv$ nombre de garçons dans une famille de 4 enfants ~ B(4, 0.5)
 - a) Nombre espéré de familles ayant au moins un garçon : 500 * P[X ≥ 1] ≈ 469
 - b) Nombre espéré de familles ayant 1 ou 2 filles : 500 * P[$2 \le X \le 3$] $\cong 313$
- 23. $X \equiv$ nombre de pièces en bon état ~ B(20, 0.95)

$$P[X > 17] = \sum_{k=18}^{20} C_{20}^{k} 0.95^{k} 0.05^{20-k} = 0.9246...$$

$$E[X] = 19 ; \sigma = 0.9746...$$

24. a) valeurs possibles : tout entier positif ou nul → distribution de Poisson

b) m = 9 d'où
$$P[X < 5] = \sum_{k=0}^{4} e^{-9} \frac{9^k}{k!} = 0.0549...; \sigma = 3$$

c) le nombre X de mauvaises journées sur une semaine est une B(5, 0.0549)

$$P[X \ge 3] = \sum_{k=3}^{5} C_5^k 0.0549^k 0.945^{5-k} = 0.001526...$$

- 25. Elles se croisent au point d'abscisse 10 (point d'inflexion)
- 26. Oui car la N(5,1) étant plus resserrée, son sommet est plus haut que celui de la N(5, 2) au profil plus étalé
- 27. a) P[Z < 1.34] = 0.9099
 - b) P[0.57 < Z < 1.63] = 0.2327
 - c) P[-0.68 < Z < 1.04] = 0.6026

d)
$$P[Z > -0.5] = 0.6915$$

28. a)
$$P[56 < X < 83] = P[-0.56 < Z < 0.52] = 0.4108$$

b) P[X > 89] = P[Z > 0.76] = 0.2236

c)
$$P[40 < X < 67] = P[-1.2 < Z < -0.12] = 0.3371$$

d)
$$P[X = 82] = 0$$

29. $P[X \le 50000] = 0.1587$

30. a)
$$P[X > 110] = P[Z > 1.25] = 0.1056$$

c) on cherche z tel que $F(z) = 2/3 \rightarrow z = 0.43$

Les valeurs délimitant les intervalles sont 90 ± z*16, c'est-à-dire 83.12 km/h et 96.88 km/h

31.
$$P[X \le 120] = 0.9772 \rightarrow 97.72\%$$

 $P[X \le d] = 0.9$ d'où d = 109.2min. Donc, la durée de l'épreuve devrait être de l'ordre de 109 minutes pour que 90% des étudiants puissent la terminer.

32. Mise en équation : P[X
$$\leq$$
 1.75] = 0.58 et P[X \leq 1.8] = 0.96 \rightarrow μ = 1.743m et σ = 0.032m

33. a)
$$X \sim N(1233, 50)$$

34. a)
$$X \sim N(9.44, 2)$$

35.
$$X \sim B(400, 0.5)$$
. On approxime avec une N(200, 10)

$$P[180 \le X_B \le 220] = P[179.5 \le X_N \le 220.5] = P[-2.05 \le Z \le 2.05] = 0.9596$$

36. X ~ B(20000, 1/3). On approxime avec une N(6666.66..., 66.66...)

a)
$$P[6600 \le X \le 6800] \sim P[6599.5 \le X_N \le 6800.5] = P[-1.01 \le Z \le 2.01] = 0.8216$$

b) P[X > 6750] ~ P[
$$X_N \ge 6750,5$$
] = P[Z ≥ 1.26] = 0.1038

37. X ~ B(100, 18/37).

- a) $\mu = 48.648...$ et $\sigma = 4.998...$
- b) On approxime avec une N(48.65, 4.998). P[49.5 \leq X \leq 60.5] = P[0.17 \leq Z \leq 2.37] = 0.4236

38. a)
$$X \sim B(400, 0.1)$$

- b) $\mu = 40 \text{ et } \sigma = 6$
- c) On approxime avec une N(40, 6). $P[X_B > 30] = P[X_N \ge 30.5] = P[Z \ge -1.58] = 0.9429$

39. a) X ~B(1000, 0.004);
$$\mu$$
 = 4 et σ = 1.995...

b)
$$P[X_B > 5] = P[X_N > 5.5] = P[Z > 0.75] = 0.2266$$

Chapitre 3 – Distributions à deux dimensions

1.

Χ	Υ	100	150	200	p _{i.}
20		0.09	0.3	0.36	0.75
30		0.03	0.1	0.12	0.25
$p_{.j}$		0.12	0.4	0.48	1

$$E[X] = 168, E[Y] = 22.5$$

P[X = 20 et Y \ge 150] = 0.36

2. E[X] = 10.8, E[Y] = 11.7, $\sigma_X = 4.2261$, $\sigma_Y = 4.4057$, $\sigma_{XY} = 14.39$, r = 0.77

Equation de la droite de régression : y = 0.8x + 3

11 en math : cote la plus probable en physique 11.8

3. a) Distribution de X : P[X = -5] = 1/3, P[X = 0] = 1/3, P[X = 3] = 1/3Distribution de Y : P[Y = -5] = 1/3, P[Y = 0] = 2/9, P[Y = 1] = 1/9, P[Y = 3] = 2/9, P[Y = 5] = 1/9

b)
$$E[X] = -2/3$$
, $E[Y] = -1/3$

c)
$$\sigma_X = 3.3$$
, $\sigma_Y = 3.62$

d)

Χ	Υ	- 5	0	1	3	5
– 5		1/9	1/9	0	1/9	0
0		1/9	0	1/9	1/9	0
3		1/9	1/9	0	0	1/9

e)
$$\sigma_{XY}$$
 = 8/9, r = 0.0744

Chapitre 4 - Inférence statistique

1. a)
$$\overline{X} \sim N(236, 8)$$

b) P[
$$\overline{X} \le 220$$
] = 0.0228

c)
$$P[X \le 220] = 0.3707$$

2.
$$\overline{X} \sim N(72, 1.6)$$

P[
$$\overline{X} > 74$$
] = 0.1056

3. a)
$$\mu_{\overline{x}} = 144 \in$$
; $\sigma_{\overline{x}} = 7.23 \in (\sigma = 17.72 \in)$
b) P[$\overline{X} > 160$] = 0.0136

4.
$$\overline{X} \sim N(3600, 75)$$

P[3500 < \overline{X} < 3700] = 0.8164

5. Si n = 36,
$$\overline{X}$$
 ~ N(200, 2.5). On cherche z tel que P[200 – z*2.5, 200 + z*2.5] = 0.9544 ; z = 2 d'où l'intervalle cherché est [195, 205]

Pour n = 49, on trouve [195.71, 204.29]

Pour n = 64, on trouve [196.25, 203.75]

- 6. a) estimation de $\mu = \overline{x} = 36.25$
 - b) s = 3.57
 - c) la distribution de \overline{X} est une Student à 23 d.l., avec $\mu_{\overline{x}}$ = 36.25 et $\sigma_{\overline{x}}$ = 0.744 t = 2.807 ; IC = [34.16, 38.33]
- 7. a) estimation du QI moyen = \bar{x} = 126.09
 - b) s = 7.543
 - c) $\overline{X} \sim N(126.09, 1.35)$; IC = [123.435, 128.745]

$$8. n = 10$$

$$t = 1.833$$

IC = [5.54, 6.94]

$$9. n = 50$$

$$\bar{x} = 326$$

$$s' = 48$$

$$\sigma_{\bar{x}}$$
 = 6.79

$$z = 1.64$$

$$IC = [314.8, 337.2]$$

$$\bar{x} = 1.65$$
m

$$s = 0.2m$$

$$\sigma_{\bar{x}} = 0.0459 \text{m}$$
 t = 2.093

11. a) $z * 120 / \sqrt{n} = 40$ avec $z = 2.58 \rightarrow n = 60$ b) z * 120/ \sqrt{n} = 60 avec z = 1.96 \rightarrow n = 16

12. H₀: μ = 8500 € (test bilatéral)

x = 9315 € n = 36

σ = 2600 €

σ_x = 433.33 €

z = 1.96

IC = [8465, 10164] → l'hypothèse est acceptée

13. H_0 : μ = 14 mm (test bilatéral)

 \bar{x} = 14.13 mm σ = 0.15 mm $\sigma_{\bar{x}}$ = 0.061237 mm n = 6

z = 2.58

IC = [13.97, 14.29] → l'hypothèse est acceptée

14. H_0 : μ < 17 I (test unilatéral)

n = 36

 $\bar{x} = 15 I$

s' = 4.0567 I $\sigma_{\bar{x}}$ = 0.676 I

z = 1.28

IC =] - ∞, 15.865] → l'hypothèse est acceptée (ou autrement dit, l'hypothèse de départ, à savoir que μ = 17 l, est rejetée)

15. H_0 : μ < 2000 kg (test unilatéral)

n = 25

 \bar{x} = 1980 kg s' = 112.27 kg $\sigma_{\bar{x}}$ = 22.45 kg

t = 1.711

IC =] - ∞, 2018.41] → l'hypothèse est rejetée (autrement dit, il est possible que la vraie moyenne

soit égale à 2000 kg)

17. H_0 : μ < 75 cl (test unilatéral)

n = 10 $\bar{x} = 74.2 cl$

s' = 0.84 cl $\sigma_{\bar{x}}$ = 0.26 cl

t = 1.833

IC = $]-\infty$, 74.67] \rightarrow l'hypothèse est rejetée (il est donc possible que la vraie moyenne μ soit égale à 75 cl)