材料强度学Ⅱ

断裂及韧化

张 帆

材料科学与工程学院

地 址: <u>东川路800号,材料D楼313B</u>

电话: 13501621296

E-mail: mtsmmc@sjtu.edu.cn

扫一扫上面的二维码图案, 加我微信

1 绪论

100 Scientific Puzzles of the 21st Century

1999年中国118位科学家提出

- 1、对深层物质结构的探索
- 2、协调相对论和量子论的困难
- 3、引力波探测
- 4、质子自旋"危机"及其实验探索
- 5、力学的世纪难题——湍流
- 6、金属微粒中的量子尺寸效应和超导电性
- 7、高温超导电性

●重要性

- 8、固体的破坏
- 9、宇宙结构的形成与星系的起源
- 10、太阳中微子之谜
- 11、活动星核的能源和演化
- 12、星际分子云和恒星的形成
- 13、宇宙常数问题
- 14、太阳活动的起源
- 15、磁元的争辩
- 16,

●复杂性

断裂研究的重要性

大型工程结构的断裂实例

断裂研究的复杂性

1.1 断裂类型

工程学角度 (宏观) 材料学角度 (微观)

分类方法	断裂名称	
按断前变形量	脆性断裂	
	Brittle fracture	
	延(韧)性断裂	
	Ductile fracture	
按断裂面取向	正断	
	Orthogonal fracture	
	切断	
	Shear fracture	
按裂纹扩展路径	穿晶断裂	
	Transgranular fracture	
	沿晶断裂	ļ
	Intergranular fracture	
按断裂机制	解理断裂	
	Cleavage fracture	
		-
	微孔聚合断裂	
	Microvoid conleggence fronture	l

断裂示意图 断裂特征 断裂前无明显塑性变形, 断口 光亮呈结晶状。 断裂前有明显塑性变形, 断口 灰暗呈纤维状。

宏观断面垂直于最大正应力。 宏观断面平行于最大切应力。

裂纹沿晶粒边界扩展。

裂纹在晶粒内部扩展。

属脆性穿晶断裂, 断裂面沿解

沿晶界微孔聚合导致沿晶韧性 断裂: 晶粒内微孔聚合导致穿晶韧性

断裂。

理面分离。

在单晶体中, 断裂面沿滑移面 分离: 在多晶体和高纯金属中,断裂

由缩颈引起。

1.2 断裂强度

比塑性功

完整晶体:

脆性固体(玻璃、陶瓷): $\sigma_{Griffith} = 1$

$$\sigma_{Griffith} = \sqrt{\frac{2E\gamma_s}{\pi a_1}} \approx \sqrt{\frac{E\gamma_s}{a_1}}$$
 微裂纹尺寸

延性固体(金属):
$$\sigma_{Orowan} = \sqrt{\frac{E2(\gamma_s + \gamma_p)}{\pi a_1}} \approx \sqrt{\frac{2E\gamma_p}{\pi a_1}} \approx \sqrt{\frac{E\gamma_p}{a_1}}$$

带裂纹固体:

$$\sigma_c = \frac{1}{Y} \frac{K_{IC}}{\sqrt{\pi a_2}}$$
 断裂韧度 宏观裂纹尺寸

裂纹形状因子

1.3 韧性

韧性: 材料在变形和断裂的过程中所消耗的能量(功)

- 光滑试样
 - 一静力韧度(a)

$$a = \frac{S_k + \sigma_{0.2}}{2} \cdot e_f$$

● 缺口试样

一冲击韧度 (a_K) $a_K = \frac{A_K}{F_M}$

$$a_K = \frac{A_K}{F_N}$$

$$A_K = G(h - h')$$

- 一韧-脆转变温度(T_C)
- 一缺口敏感度(NSR)

$$q_e = \frac{\sigma_{bN}}{\sigma_b}$$

一断裂韧度(K_{IC} 、 G_{IC} 、 J_{IC} 、 δ_C)

1.4 断裂历程、断裂试验、断裂性能参数

1→5: 光滑试样 σ_b S_k

2→5: 缺口试样 σ_{bN} NSR a_K T_C

3→5: 裂纹试样 K_C G_C J_C δ_C

断裂历程示意图

2→5: 缺口疲劳

2→3:疲劳裂纹萌生寿命

3→5:疲劳裂纹扩展寿命

 N_i N_p $N_{total} = N_i + N_p$

3→4: 裂纹扩展

疲劳裂纹扩展速率 $\frac{da}{dN} = C(\Delta K)^n$ ΔK_{th} C n

SCC裂纹扩展速率 $\frac{da}{dt} = C_1$ K_{ISCC} C_1

1.5 断裂的影响因素-外因

● 受力状态

- □ 光滑试样、缺口试样(多向应力)
- □ 厚试样、薄试样(平面应力、平面应变,应变约束)
- □ 加载方式(应力状态软性系数α)
- □ 循环加载 (损伤累积、疲劳)

● 温度

- □ 高温(回火脆性、蠕变)
- □ 低温(冷脆)

● 加载速度

- □ 低速加载 (蠕变断裂)
- □ 高速加载 (绝热剪切断裂、剥落破裂)

● 环境介质

- □ 轻微电化学腐蚀介质 (SCC、HIC)
- □ 液体金属(LMIC)
- □ 其它介质(原子氧、中子、高能粒子辐照)

1.5 断裂的影响因素-内因

● 原子结构

- □ 电子排布
- □ 化学键(共价键、离子键、金属键、分子键)

● 晶体结构

- □ 滑移系、滑移特征
- □ 晶格阻力
- □ 晶体对称性
- □ 非晶体

● 组织结构

- □ 晶粒尺寸
- □ 晶界、相界
- □ 有序、无序
- □ 第二相(性质、大小、数量、分布、界面结合)
- □ 定向组织(织构、纤维化、层状)
- □ 缺陷(裂纹、气孔)

1.6 断裂科学

1.7 关于本课程-教学内容

● 断裂力学

一**断裂力学:**线弹性、弹塑性、黏弹性、动态断裂力学

—损伤力学

● 断裂物理

一断裂机制:解理断裂、孔聚断裂、韧/脆判据、沿晶断裂

一**断裂进阶**: 裂纹尖端过程区、裂纹的位错模拟、分形与断裂

● 工程材料的断裂及韧化

- 一韧化原理
- **一工程材料的韧化:** 金属材料、陶瓷材料、复合材料

1.7 关于本课程-参考书目

- [1] 张 帆,<u>讲义</u>(PDF); <u>课件</u>(PDF)
- [2] T.L. Anderson, <u>Fracture Mechanics</u> (PDF)
- [3] 范天佑,<u>断裂理论基础</u>,科学出版社, 2003
- [4] 郦正能等,应用断裂力学,北京航空航天大学出版社,2012
- [5] 哈宽富,<u>断裂物理基础</u>,科学出版社,2000
- [6] 肖纪美,金属的韧性与韧化,上海科学技术出版社,1980

1.7 关于本课程-考核方式

