Step-1

If A is $n \times m$ matrix, and x is $m \times 1$ matrix, then Ax is $n \times 1$ matrix

Also, A is $n \times m$ matrix says A^T is $m \times n$

Consequently, $A^T A$ is $m \times m$

$$A^{T}$$
 is $m \times n$, $A \times a$ is $n \times 1$ implies $A^{T}(A \times x)$ is $m \times 1$

So the null spaces of A and $A^T A$ are sets of vectors of different lengths if $m \neq n$

So, A is a square matrix.

Step-2

Now, A is square matrix of order n, if y is null space of A

Now
$$(A^T A)y = A^T (Ay) = A^T 0 = 0$$

So the null space of A is a subset of A is a subset of the null space of $A^T A$

But if x is in the null space of $A^T A$

We get
$$(A^T A)x = A^T (Ax)$$

$$=A^{T}0$$

=0

Applying x^{T} on both sides, we get $x^{T} [A^{T} (Ax)] = x^{T} 0$

= 0 …… (1)

Step-3

On the other hand, $x^T [A^T (Ax)] = (x^T A^T) (Ax)$

$$= (Ax)^{T} (Ax) \hat{a} \in \dot{a} \in \dot{a} \in (2)$$

In view of (1) and (2), we get A^x must have length 0

That is,
$$(A^T A)x = A^T (Ax)$$

=0

This implies $A^{x} = 0$

So the null space of $A^T A$ is also a subspace of the null space of A

Hence for a square matrix A, the null spaces of $A^{T}A$ and A are one and the same.