Übungsblatt 13

Pascal Diller, Timo Rieke

July 10, 2025

Aufgabe 1

(i)

$$f(x) = x^{\frac{1}{2}} = e^{\frac{\ln(x)}{x}}$$
 Sei $g(x) = \frac{\ln(x)}{x}$, dann ist $f(x) = e^{g(x)}$
$$f'(x) = e^{g(x)} \cdot g'(x)$$

$$g'(x) = \frac{\frac{1}{x} \cdot x - \ln(x) \cdot 1}{x^2} = \frac{1 - \ln(x)}{x^2}$$
 Da $e^{g(x)} > 0$ gilt:
$$f'(x) = 0 \Leftrightarrow g'(x) = 0 \Leftrightarrow 1 - \ln(x) = 0 \Leftrightarrow \ln(x) = 1 \Leftrightarrow x = e$$

Es existiert genau eine kritische Stelle an $x_0 = e$.

(ii)

Untersuchen des Vorzeichens von f'

Für $x \in (0,e): \ln(x) < 1 \implies g'(x) > 0 \implies f'(x) > 0 \to \text{ streng monoton wachsend}$ Für $x \in (e,\infty): \ln(x) > 1 \implies g'(x) < 0 \implies f'(x) < 0 \to \text{ streng monoton fallend}$

Aufgabe 2

(i)

$$f'(x) = \frac{(2x)(x+1) - (x^2+1)(1)}{(x+1)^2} = \frac{x^2 + 2x - 1}{(x+1)^2}.$$

f'(x) = 0 setzen:

$$x^2 + 2x - 1 = 0$$

Die Lösungen sind $x = -1 \pm \sqrt{2}$. Nur $x_0 = \sqrt{2} - 1$ liegt im Intervall (0, 2).

$$f''(x) = \frac{4}{(x+1)^3}.$$

Einsetzen:

$$f''(\sqrt{2}-1) = \frac{4}{(\sqrt{2}-1+1)^3} = \frac{4}{(\sqrt{2})^3} = \sqrt{2} > 0.$$

Daher liegt bei $x_0 = \sqrt{2} - 1$ ein lokales Minimum vor. Der Extremwert ist $f(\sqrt{2} - 1) = 2\sqrt{2} - 2.$

(ii)

Lokales Minimum:

$$f(\sqrt{2} - 1) = 2\sqrt{2} - 2 \approx 0.828$$

Randpunkt x = 0:

$$f(0) = 1$$

Randpunkt x = 2:

$$f(2) = \frac{5}{3} \approx 1.667$$

Daraus folgt:

Das globale Minimum ist

$$m = 2\sqrt{2} - 2$$

Das globale Maximum ist

$$M = \frac{5}{3}$$

(iii)

Das Vorzeichen von $f'(x) = \frac{x^2 + 2x - 1}{(x+1)^2}$ hängt nur vom Zähler $x^2 + 2x - 1$ ab. Dessen Nullstelle im Intervall ist $x_0 = \sqrt{2} - 1$.

Für $x \in [0, \sqrt{2} - 1)$ ist f'(x) < 0, somit ist die Funktion auf $[0, \sqrt{2} - 1]$ streng monoton fallend.

Für $x \in (\sqrt{2} - 1, 2]$ ist f'(x) > 0, somit ist die Funktion auf $[\sqrt{2} - 1, 2]$ streng monoton wachsend.

Aufgabe 3

(i)

Wenn $x \to \pi$, geht der Term $(\pi - x)$ gegen 0. Gleichzeitig geht $\tan(\frac{\pi}{2})$ gegen $\tan(\frac{\pi}{2}),$ was gegen unendlich strebt. Also: $0\cdot\infty$ Da $\tan(\alpha)=\frac{1}{\cot\alpha}:$

Da
$$tan(\alpha) = \frac{1}{\cot \alpha}$$
:

$$(\pi - x)\tan(\frac{x}{2} = \frac{\pi - x}{\cot(\frac{x}{2})}$$

Bei diesem Bruch streben sowohl nenner, als auch Zaehler gegen 0.

$$\frac{d}{dx}(\pi - x) = -1$$

$$\frac{d}{dx}(\cot(\frac{x}{2})) = -\csc^2(\frac{x}{2}) \cdot \frac{1}{2} = -\frac{1}{2\sin^2(\frac{x}{2})}$$

$$\lim_{x \to \pi} \frac{-1}{-\frac{1}{2}\csc^2(\frac{x}{2})} = \lim_{x \to \pi} 2\sin^2(\frac{x}{2})$$

$$\pi \text{ einsetzen: } 2\sin^2(\frac{\pi}{2}) = 2(1)^2 = 2$$

Der Grenzwert ist 2.

(ii)

Wenn $x \to \infty$ geht, dann geht der Term $\log(1 + \frac{1}{x})$ gegen $\log(1) = 0$ Somit erhalten wir die unbestimmte Form $\infty \cdot 0$.

$$x\log\left(1+\frac{1}{x}\right)=\frac{\log(1+\frac{1}{x})}{\frac{1}{x}}, \text{ Wenn } x\to\infty, \text{ dann gehen sowohl Nenner als auch Zaehler gegen 0, also } \frac{0}{0}$$

$$\frac{d}{dx}\log(1+\frac{1}{x})=\frac{1}{1+\frac{1}{x}}\cdot(-\frac{1}{x^2})=-\frac{1}{x(x+1)}$$

$$\frac{d}{dx}(\frac{1}{x})=-\frac{1}{x^2}$$

$$\lim_{x\to\infty}\frac{-\frac{1}{x(x+1)}}{-\frac{1}{x^2}}=\lim_{x\to\infty}\frac{x^2}{x(x+1)}=\lim_{x\to\infty}\frac{x^2}{x^2+x}$$

$$\lim_{x\to\infty}\frac{1}{1+\frac{1}{x}}=\frac{1}{1+0}=1$$

Der Grenzwert ist 1.

(iii)

Wenn $x \to 0$ geht, gehen beide Terme gegen ∞ , also haben wir die unbestimmte Form $\infty - \infty$.

$$\frac{1}{x\sin x} - \frac{1}{x^2} = \frac{x - \sin x}{x^2 \sin x}$$

Wenn hier $x \to 0$ geht, gehen sowohl Nenner als auch Zaehler gegen 0, also $\frac{0}{0}$

$$\frac{d}{dx}(x - \sin x) = 1 - \cos x$$

$$\frac{d}{dx}(x^2 - \sin x) = 2x \sin x + x^2 \cos x$$

$$\lim_{x \to 0} \frac{1 - \cos x}{2x \sin x + x^2 \cos x} = \frac{1 - 1}{0 + 0} = \frac{0}{0}$$
$$\frac{d}{dx} (1 - \cos x) = \sin x$$

 $\frac{d}{dx}(2x\sin x + x^2\cos x) = (2\sin x + 2x\cos x) + (2x\cos x - x^2\sin x) = 2\sin x + 4x\cos x - x^2\sin x$

$$\lim_{x \to 0} \frac{\sin x}{2\sin x + 4x\cos x - x^2\sin x} = \frac{0}{0}$$
$$\frac{d}{dx}(\sin x) = \cos x$$

 $\frac{d}{dx}(2\sin x + 4x\cos x - x^2\sin x) = 2\cos x = (4\cos x - 4x\sin x) - (2x\sin x + x^2\cos x) = 6\cos x - 6x\sin x - x^2\cos x$

$$\lim_{x \to 0} \frac{\cos x}{6\cos x - 6x\sin x - x^2\cos x} = \frac{\cos(0)}{6\cos(0) - 0 - 0} = \frac{1}{6}$$

Der Grenzwert ist $\frac{1}{6}$

(iv)

Wenn $x\to 0^-$ geht x gegen 0. Der Term $1-e^x$ geht gegen $1-e^0=0$. Da x<0, ist $e^x<1$, also ist $1-e^x$ eine kleine positive Zahl. Damit geht $\log(1-e^x)$ gegen $-\infty$, also haben wir $0\cdot\infty$

$$xlog(1 - e^x) = \frac{\log(1 - e^x)}{\frac{1}{x}}$$

Wenn $x \to 0^-$, gehen sowohl Nenner als auch Zaehler gegen $-\infty$, also haben wir $\frac{-\infty}{-\infty}$

$$\frac{d}{dx}\log(1-e^x) = \frac{-e^x}{1-e^x}$$

$$\frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}$$

$$\lim_{x \to 0^-} \frac{\frac{-e^x}{1-e^x}}{-\frac{1}{x^2}} = \frac{x^2e^x}{1-e^x} = \frac{0}{0}$$

$$\frac{d}{dx}(x^2e^x) = 2xe^x = x^2e^x$$

$$\frac{d}{dx}(1-e^x) = -e^x$$

$$\lim_{x \to 0^-} = \frac{2xe^x = x^2e^x}{-e^x} = \frac{2(0)e^0 + (0)^2e^0}{-e^0} = \frac{0}{-1} = 0$$

Der Grenzwert ist 0.

Aufgabe 4

Sei

$$g(x) := f(x)e^{-x}$$

Ableitung:

$$g'(x) = f'(x)e^{-x} + f(x)(-e^{-x}) = (f'(x) - f(x))e^{-x}.$$

Nach Voraussetzung ist f'(x) = f(x), also ist f'(x) - f(x) = 0.

$$g'(x) = 0 \cdot e^{-x} = 0.$$

Da die Ableitung von g(x) auf dem Intervall (a,b) null ist, muss g(x) konstant sein. Es gibt also ein $c\in\mathbb{R}$ mit:

$$g(x) = c$$
.

Durch Einsetzen der Definition von g(x) folgt:

$$f(x)e^{-x} = c.$$

Somit ist $f(x) = ce^x$, was zu beweisen war.