TRIGONOMETRY TOMO VIII

ADVISORY

Del gráfico, determine el signo de $\cot \alpha$ y $\sec \beta$

Recuerda:

Resolución:

Como α ∈ IIIC

$$cot\alpha = (+)$$

Como $\beta \in IIC$

$$sec\beta = (-)$$

Del gráfico, determine el signo de:

$$M = \frac{\cos\theta}{\tan\alpha} y N = \frac{\csc\alpha}{\sec\theta}$$

Resolución:

∈ IVC

$$M = \frac{\cos \theta}{\tan \alpha} = \frac{(+)}{(-)} = (-)$$

∈ IIC

∈ IIC

$$N = \frac{\csc\alpha}{\sec\theta} = \frac{(+)}{(+)} = (+)$$

$$\in IVC$$

Recuerda:

Determine el signo de P, Q y R.

$$P = csc83^{\circ}.sec265^{\circ}$$

$$Q = \frac{\text{sen}140^{\circ}.\text{tan}100^{\circ}}{\text{cos}305^{\circ}}$$

R = sen290°.cot108°.cos316°

Recuerda:

Resolución:

P = csc83°.sec 265° = (+) (-) = (-)

(IC) (IIIC) iMuy bien!

IIC IIC

Q=
$$\frac{\text{sen140}^{\circ}. \text{tan100}^{\circ}}{\cos 305^{\circ}} = \frac{(+)(-)}{(+)} = (-)$$

IVC

R = sen290°.cot108°.cos316°=
$$(-)(-)(+)=(+)$$
(IVC) (IVC)

Determine el valor numérico de:

$$E = (37sec360^{\circ} + 28csc270^{\circ})^{2}$$

Recuerda:

R.T	0°;360°	90°	180°	270 °
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

Resolución:

$$E = (37 \sec 360^{\circ} + 28 \csc 270^{\circ})^{2}$$

$$E = (37(1) + 28(-1))^2$$

$$E = (37 - 28)^2$$

$$E = (9)^2$$

Natalia ha heredado un terreno de forma rectangular, tal como muestra la figura. Calcule el área de dicho terreno

Resolución:

12*m*

Recuerda:

R.T	0°; 360°	90°	180°	270°
SEN	0	1	0	-1
COS	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

Piden:

$$A_{-} = BxH = (12m)x(10m)$$

$$A_{-} = 120m^2$$

Del gráfico, calcule cotα

$$2\cos 360^{\circ} - 2\sec 180^{\circ}$$

$$C.O = 4$$

$$C.A = 3$$

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

Resolución:

$$\cot \alpha = \frac{\mathbf{C.} A}{\mathbf{C.} O}$$

*
$$3 \text{sen} 90^{\circ} + \cos 270^{\circ} = 3(1) + 0 = 3$$

*
$$2\cos 360^{\circ} - 2\sec 180^{\circ} = 2(1) - 2(-1) = 4$$

$$\cot \alpha = \frac{3}{4}$$

$$\cot \alpha = \frac{3}{4}$$

Indique cuáles de los siguientes ángulos son coterminales.

- l. 650° y -430°
- II. 480° y -250°
- III. 350° y 10°

Recuerda:

 α y β son ángulos coterminales, entonces: α - β =360° n; n \in \mathbb{Z}

Resolución:

 650° - (-430°) = 1080°(si es múltiplo de 360°)

II 480° - (-250°)=730° (no es múltiplo de 360°)

III $350^{\circ} - 10^{\circ} = 340^{\circ}$ (no es múltiplo de 360°)

Del gráfico

Efectúe

$$E = 4\sqrt{2}sen\theta + 11cot\theta$$

Resolución:

$$E = 4\sqrt{2}sen\theta + 11cot\theta$$

$$sen\theta = sen45^{\circ}$$

$$\cot\theta = \cot 45^{\circ}$$

Reemplazamos:

$$E = 4\sqrt{2} sen 45^{\circ} + 11 cot 45^{\circ}$$

$$E = 4\sqrt{2} \cdot \frac{1}{\sqrt{2}} + 11(1)$$

$$E = 4 + 11$$

Del gráfico

Reduzca

$$M = \frac{23csc\beta}{csc\alpha} + \frac{7sec\alpha}{sec\beta}$$

Resolución:

$$M = \frac{23csc\beta}{csc\alpha} + \frac{7sec\alpha}{sec\beta}$$

Recuerda:

$$csc\alpha = csc\beta$$

$$sec\alpha = sec\beta$$

(0) Reemplazamos

$$M = \frac{23csc\beta}{csc\beta} + \frac{7sec\alpha}{sec\alpha}$$

$$M = 23(1) + 7(1)$$

iMuy bien!

$$M = 30$$

Rodrigo es un niño al que le gusta cuidar su salud, diariamente sale a correr 30 min alrededor del parque que esta cerca a su casa (el parque tiene forma rectangular, ver figura).

Si α y 60° son ángulos coterminales, ¿cuál es el área de dicho parque?

Resolución

Por propiedad de ángulos coterminales $RT(\alpha)$ = $RT(60^\circ)$

Entonces:

36cos60°

36(1/2)

18m

Reemplazar:

$$S = (18 \text{ m})(25 \text{ m})$$

25
$$\sqrt{3}$$
. $\frac{1}{\sqrt{3}}$ 25 m

El área del parque es 450 m^2