Xin CHEN

1 Cyclotron Rd, Berkeley, CA 94720 chenxin0210@berkeley.edu

EDUCATION

Graduate

Materials Science and Engineering, University of California, Berkeley

Sept 2019 - 2024 (expected)

- o Ph.D. in Computational Material Science; GPA: 3.82/4.00
- o Graduate Student Research Assistant at Lawrence Berkeley National Lab
- o Research: Data analytics, computer vision and machine learning in photovoltaic (PV) module degradation

Graduate Certificate in Applied Data Science, University of California, Berkeley

Undergraduate

Materials Science and Engineering, Shanghai Jiao Tong University (SJTU) Sept 2015 - Jun 2019

o B.S. (Honor) in Computational Material Science; GPA: 90/100; Rank: 2/114

Research: Atomic-scale simulation of lithium-ion batteries

Department of Materials, University of Oxford

July 2018 - Sep 2018

o Student researcher in Department of Materials

o Research: Fabrication of solid-state electrolytes

University of California, Berkeley

July 2017 - Aug 2017

Summer School; GPA: 4.0/4.0

PUBLICATIONS & CONFERENCES

- X. Chen, T. Karin, C. Libby, M. Deceglie, P. Hacke, T. Silverman, A. Jain "Automatic Crack Segmentation in Electroluminescence Images of Solar Modules and Maximum Inactive Area Prediction", *IEEE Journal of Photovoltaics* [Invited paper, Under review]
- X. Chen, T. Karin, A. Jain "Automated Defect Identification in Electroluminescence Images of Solar Modules", Solar Energy 242 (2022): 20-29.
- T. Mousavi, X. Chen, C. Doerrer, B. Jagger, S. C. Speller, C. R. M. Grovenor. "Fabrication of Li_{1+ x}Al_xGe_{2-x}(PO₄)₃ thin films by sputtering for solid electrolytes." *Solid State Ionics* 354 (2020): 115397.
- o Z. Xu, X. Chen, R. Chen, X. Li, H. Zhu. "Anion charge and lattice volume dependent lithium-ion migration in compounds with fcc anion sublattices." *npj Computational Materials* 6, no. 1 (2020): 1-8.
- Z. Xu, X. Chen, K. Liu, R. Chen, X. Zeng, H. Zhu. "Influence of anion charge on Li-ion diffusion in a new solid-state electrolyte, Li3LaI6." *Chemistry of Materials* 31, no. 18 (2019): 7425-7433.
- o X. Chen, PV-VISION: https://github.com/hackingmaterials/pv-vision
- X. Chen, T. Karin, A. Jain "Automated Defect Identification in Electroluminescence Images of Solar Modules",
 World Congress on Artificial Intelligence in Materials & Manufacturing (AIM 2022)
- X. Chen, A. Jain, et al. "Automatic Crack Segmentation in Electroluminescence Images of Solar Modules and Maximum Inactive Area Prediction", 49th IEEE Photovoltaic Specialists Conference (49th PVSC)
- X. Chen, A. Jain, et al. "PVPRO: a software tool and analysis method to extract degradation mechanisms from production data", NREL Photovoltaic Reliability Workshop (PVRW 2022)

RESEARCH & PROJECTS

Data Analytics and Computer Vision in Photovoltaics (PV) Module degradation Sep 2019 - Current Advisor: Anubhav Jain, Staff Scientist at Lawrence Berkeley National Laboratory

PV-Vision: an open-source computer vision package of analyzing electroluminescence (EL) images

- o Combined computer vision algorithms (e.g., Hough Transform, Harris Corner Detection, etc.) to do automatic perspective transform of distorted PV module EL images
- Designed algorithms to segment single cell images from PV module images, with accuracy over 90%
- o Integrated with deep learning model inference
- Published the package at PyPI

Automatic defect identification pipeline for PV modules

- o Developed semantic segmentation model (UNet) to pre-process of field EL images with IoU of 99%
- Developed classification models (ResNet18, ResNet50, ResNet152) to do multi-class classification of defective solar cells with average F1 score of 0.87
- o Fine-tuned object detection model (YOLO) to track defective cells on PV module
- o Applied this automatic pipeline to large-scale field EL image dataset (2.4 million cells) and found an abnormal growth of one defect (striation defect)
- o Oral presentation at World Congress on Artificial Intelligence in Materials & Manufacturing (AIM 2022)
- o Paper published at Journal of Solar Energy

Automatic crack segmentation of PV modules and worst-case degradation area prediction

- Fine-tuned semantic segmentation CNN model (UNet) with pretrained VGG16 backbone to extract cracks on solar cells, with F1 score of 0.88
- Designed algorithms of predicting the worst-case degradation area, with Pearson correlation coefficient of 0.987
- o **Oral presentation** at 49th IEEE Photovoltaic Specialists Conference (PVSC 49)
- o Paper invited to publish on IEEE Journal of Photovoltaics

Automatic time-series IV parameters extraction and degradation analysis of large-scale PV systems

- o Maintaining and developing PV degradation analysis software PVPRO
- o Data mining of large-scale PV systems (over 2 million rows) and extract hidden time series IV parameters
- o **Oral presentation** at NREL Photovoltaic Reliability Workshop (PVRW 2022)
- o Paper being drafted

SKILLS

- o Programming language: Python / JAVA / C++ / MATLAB / SQL
- o Programming package: Pytorch / Scikit-learn / OpenCV / Scikit-image / Pandas / Matplotlib / Seaborn / Numpy

AWARDS/HONORS/SCHOLARSHIPS

0	Rong Chang Science and Technology Innovation Scholarship (top 0.2%)	Oct 2018
0	Honorable Mention in Mathematical Contest in Modeling (the USA)	Apr 2018
0	2 nd Prize of the Undergraduate Mathematical Contest in Modeling (China)	Nov 2017

LEADERSHIP AND ACTIVITIES

Director of Media Center at Student Union, SJTU

May 2016 - Feb 2018

- o Designed posters, activity videos, school uniform and mascot, etc.
- Rewarded with Excellent Department and Excellent Director in 2017

Vice Director of Sunlight Project Volunteer Club, SJTU

March 2017 - Sept 2017

o Organized voluntary activities to help children with autism