Metropolis-Hastings

For k = 1, 2, ...

- Sample x' from a wrong $Q(x^k \to x')$
- Accept proposal x' with probability $A(x^k \to x')$
- Otherwise stay at x^k

$$x^{k+1} = x^k$$

$$T(x\to x') = Q(x\to x')A(x\to x') \quad \text{for all } x\neq x'$$

$$T(x\to x) = Q(x\to x)A(x\to x)$$

$$+\sum_{x'\neq x}Q(x\to x')(1-A(x\to x'))$$
 How to choose A: $\pi(x')=\sum \pi(x)T(x\to x')$