

FIG. 1a

FIG. 1b

HA2 Underlined aa 774-979 Accession No. L18983

MRRPRPGGLGGSGGLRLLCCLLLSSRPGGCSAVSAHGCLEFDRLCSHLEVICQDGLFGQCCQVGVQARPLLQVTSPVILQRL
QGVLRQLMSQGLSWHDLLTQYVISQEMERIPRLRPPRDRSGLAPKRPGPAGELLLQDIPITGSAPAAQHRLPQPPVGKGG
AGASSSLSPLQAELLPPPLEHILLPPQPHPSLSYEPALLQPYLFHQFGRDGSRVSEGSPGMVSVGPLPKAEAPALFSRTASKGI
FGDHPGHGSYGDLPGPSPQAQLFQDSGLLYLAQELPAPSRAVVPRLPEQGSSRAEDSPEGYEKEGLGDRGEKPASPA VQPDAA
ORLAAVLAGYGVELRQLTPEQLSTLLQLLPKGAGRNPGGVVNVGADIKKTMEGPVEGRDTAELPARTSPMPGHPTASPT
SSEVQQVVPSPVSSEPPKAARPPVTPVLLIEKKSPQQPLGSQOPTVAGQPSARPAAEEYYGYIVTDQKPLSLAAGVKLLEI LAEHVHMSS
GSFINISVVGPAITFRIRHNEQNLSSLADVTQQAGLVKSELEAQQTGLQIIQTVGQOREEAAAVIPQTAHSTS PPMRSVLLTLVALA
GVAGLLVALVALCVRQHARQQDKERLAALGPEGAHGDTTFYQDLLCRQHMAKSLSLNRAEGPPPEPSRVSSVSSQFSDAAQ
ASPPSHSSTPSWCEEPQAQNMDISTGHMILAYMEDHLRNDRRLAKEWQALCA YQAEPNCTATAQGEENNIKKNRHPDFLPYDH
ARIKLKVESSPSRSDDYNASPIEHDPRMPAYIA TOQPLSHTIADEFWQM VWE SGCTIVMLTPLVEDGVKOCDRYWPDEGASLY
HYEVNLYSEHIWCEDFLVRSFYLKVNVOOTOETRTLTOFHFLSWPAEGTPASTRPLLDFRRKVNKCYRGRSSCPIVHCSDGAGR
TGTYLIDMVLNRMAMAKGVKEIDIAATLEHVRDQRPGLYRSKDQFEEFALTAVAEEVNAILKALPQ

FIG. 2a

GAD65 Underlined aa 102-585 Accession No. M774826

MASPGSGFWSEDGSGDSENPGTARAWCQVAQKFTGGIGNKLCALLYGDAEKPAESGGSQPPRAAARKAACACDQKPCS
CSKVDVNYAFLHATDLPACDGERPTIAFLQDVNMULLQYVVKSFDRSTKVIDFHYPNELLQOEYNWELADOPONLEELMHC
OTLTKYAIKTKGHPRYFNQLSSTGLDMVGLAIDWLSTANTNMETYEIAPVFVLLEYVTLLKMREIIGWPGGSGDGFSPGGAIS
NMYAMMIAREKMFPEVKEKGMAAIPRLJIAFTISEHSHFESLKKGAAALGIGTDSVILJKCDERGKMIPLSDLERRIIEAKQKGFPF
LVSATAGTTVYGAFDPLLAVIDICKYKIJWMHVDAAWGGGLLMSRKHKWKLSGVERANSVTWNPHKMMGVPLQSCALLV
REEGLMQNCNQMHASYLFEQQDKHYDLSYDTGDKALQCGRHVDVFKLWLMWRAKGTTGFEAHVDKCLELAEVLYNNIKNR
EGYEMVFDGKPOHTINVCFWYIPPSLRTLEDNEERMSRLSKVAPVIKARMMEYGTMTVSYOPLGDKVNFFRMVISNPAATHQ
DIDFLIEERLGODL

FIG. 2b

Translation Human preproinsitin.
EMBL accession nr. V00565

MALWMRLPLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCCGERGFFYT
PKTRREAEDLQVQGQVELGGGGPAGSLQPLALEGSLQKRGIVEQCCTSICSLYQ
LENYCN

FIG. 2c

~~Human GAD₆₇ nucleotide sequence~~~~M74826 Length: 2457 September 1, 1995 12:22 Type: N Check: 8038 ..~~

1 ACCCGCCCTC GCCGCTCGGC CCCGCGCGTC CCCGCGCGTG CCCTCCTCCC
51 GCCACACGGC ACGCACGGC GCGCAGGGCC AAGCCGAGGC AGCCGCCCGC
101 AGCTCGCACT CGCTGGCGAC CTGCTCCAGT CTCCAAAGCC GATGGCATCT
151 CCGGGCTCTG GCTTTGGTC TTTCGGGTG GAAGATGGCT CTGGGGATTG
201 CGAGAATCCC GGCACAGCGC GAGCCTGGTG CCAAGTGGCT CAGAAGTTCA
251 CGGGCGGCAT CGGAAACAAA CTGTGCGCCC TGCTCTACGG AGACGCCGAG
301 AAGCCGGCGG AGAGCGGCGG GAGCCAACCC CCGCGGGCCG CCGCCCGGAA
351 GGCGCCTGC GCCTGCGACC AGAACGCCCTG CAGCTGCTCC AAAGTGGATG
401 TCAACTACGC GTTTCTCCAT GCAACAGACC TGCTGCCGGC GTGTGATGGA
451 GAAAGGCCA CTTTGGCGTT TCTGCAAGAT GTTATGAACA TTTTACTTCA
501 GTATGTGGTG AAAAGTTTCG ATAGATCAAC CAAAGTGATT GATTCCATT
551 ATCCTAATGA GCTTCTCCAA GAATATAATT GGGATTGGC AGACCAACCA
601 CAAAATTGG AGGAAATTG GATGCATTGC CAAACAACTC TAAAATATGC
651 AATTAAAACA GGGCATCCTA GATACTCAA TCAACTTCT ACTGGTTGG
701 ATATGGTTGG ATTAGCAGCA GACTGGCTGA CATCAACAGC AAATACTAAC
751 ATGTTCACCT ATGAAATTGC TCCAGTATT GTGCTTTGG AATATGTCAC
801 ACTAAAGAAA ATGAGAGAAA TCATTGGCTG GCCAGGGGGC TCTGGCGATG
851 GGATATTTTC TCCCGGTGGC GCCATATCTA ACATGTATGC CATGATGATC
901 GCACGCTTTA AGATGTTCCC AGAAGTCAAG GAGAAAGGAA TGGCTGCTCT
951 TCCCAGGCTC ATTGCCTCA CGTCTGAACA TAGTCATTT TCTCTCAAGA
1001 AGGGAGCTGC AGCCTTAGGG ATTGGAACAG ACAGCGTGAT TCTGATTAAA
1051 TGTGATGAGA GAGGGAAAAT GATTCCATCT GATCTTGAAA GAAGGATTCT
1101 TGAAGCCAAA CAGAAAGGTT TGTTCTTT CCTCGTGAGT GCCACAGCTG
1151 GAACCACCGT GTACGGAGCA TTTGACCCCC TCTTAGCTGT CGCTGACATT
1201 TGCAAAAAGT ATAAGATCTG GATGCATGTG GATGCAGCTT GGGGTGGGGG
1251 ATTACTGATG TCCCGAAAAC ACAAGTGGAA ACTGAGTGGC GTGGAGAGGG

FIG. 3a

Human IA-2 nucleotide sequenceL18983 Length: 3613 November 20, 1997 16:45 Type: N Check: 6409 ..

1 CAGCCCCCTCT GGCAGGCTCC CGCCAGCGTC GCTGCGGCTC CGGCCCGGGAA
51 GCGAGCGCCC GGAGCTCGGA AAGATGCGGC GCCCGCGGCG GCCTGGGGGT
101 CTCGGGGAT CCGGGGGTCT CCGGCTGCTC CTCTGCCTCC TGCTGCTGAG
151 CAGCCGCCCG GGGGGCTGCA GCGCCGTTAG TGCCCACGGC TGTCTATTG
201 ACCGCAGGCT CTGCTCTCAC CTGGAAGTCT GTATTCAAGGA TGGCTTGTTT
251 GGGCAGTGCC AGGTGGAGT GGGGCAGGCC CGGCCCTTT TGCAAGTCAC
301 CTCCCCAGTT CTCCAACGCT TACAAGGTGT GCTCCGACAA CTCATGTCCC
351 AAGGATTGTC CTGGCACGAT GACCTCACCC AGTATGTGAT CTCTCAGGAG
401 ATGGAGCGCA TCCCCAGGCT TCGCCCCCA GAGCCCCGTC CAAGGGACAG
451 GTCTGGCTTG GCACCCAAGA GACCTGGTCC TGCTGGAGAG CTGCTTTAC
501 AGGACATCCC CACTGGCTCC GCCCCTGCTG CCCAGCATCG GCTTCCACAA
551 CCACCAAGTGG GCAAAGGTGG AGCTGGGCC AGCTCCTCTC TGTCCTCT
601 GCAGGCTGAG CTGCTCCCGC CTCTCTTGA GCACCTGCTG CTGCCCCAC
651 AGCCTCCCCA CCCTTCACTG AGTTACGAAC CTGCCTTGCT GCAGCCCTAC
701 CTGTTCCACC AGTTGGCTC CCGTGATGGC TCCAGGGTCT CAGAGGGCTC
751 CCCAGGGATG GTCAGTGTG GCCCCCTGCC CAAGGCTGAA GCCCCTGCC
801 TCTTCAGCAG AACTGCCTCC AAGGGCATAT TTGGGGACCA CCCTGGCCAC
851 TCCTACGGGG ACCTTCCAGG GCCTTCACCT GCCCAGCTTT TTCAAGACTC
901 TGGGCTGCTC TATCTGGCCC AGGAGTTGCC AGCACCCAGC AGGGCCAGGG
951 TGCCAAGGCT GCCAGAGCAA GGGAGCAGCA GCCGGGCAGA GGACTCCCCA
1001 GAGGGCTATG AGAACAGGAAGG ACTAGGGAT CGTGGAGAGA AGCCTGCTTC
1051 CCCAGCTGTG CAGCCAGATG CGGCTCTGCA GAGGCTGGCC GCTGTGCTGG
1101 CGGGCTATGG GGTAGAGCTG CGTCAGCTGA CCCCTGAGCA GCTCTCCACA
1151 CTCCGTACCC TGCTGCAGCT ACTGCCAAG GGTGCAGGAA GAAATCCGGG
1201 AGGGGTTGTA AATGTTGGAG CTGATATCAA GAAAACAATG GAGGGGCCGG
1251 TGGAGGGCAG AGACACAGCA GAGCTTCCAG CCCGCACATC CCCCCATGCCT

~~PREPROINSULIN~~~~Exon sequences, i.e. sequences to be used in the patent are underlined and represent exon sequences.~~~~V00565 Length: 4992 December 18, 1997 17:50 Type: N Check: 9721 ..~~

1 CTCGAGGGGC CTAGACATTG CCCTCCAGAG AGAGCACCCA ACACCCTCCA
 51 GGCTTGACCG GCCAGGGTGT CCCCTTCCTA CCTTGGAGAG AGCAGCCCCA
 101 GGGCATCCTG CAGGGGGTGC TGGGACACCA GCTGGCCTTC AAGGTCTCTG
 151 CCTCCCTCCA GCCACCCCAC TACACGCTGC TGGGATCCTG GATCTCAGCT
 201 CCCTGGCCGA CAACACTGGC AAACCTCTAC TCATCCACGA AGGCCCTCCT
 251 GGGCATGGTG GTCTTCCCA GCCTGGCAGT CTGTTCTCA CACACCTTGT
 301 TAGTGCCAG CCCCTGAGGT TGCAGCTGGG GGTGTCTCTG AAGGGCTGTG
 351 AGCCCCCAGG AAGCCCTGGG GAAGTGCCTG CCTTGCCTCC CCCCCGGCCCT
 401 GCCAGCGCCT GGCTCTGCCCTCCTACAC ACTCCTCTCA AGGAGGCACC CATGTCCCTCT CCAGCTGCCG
 451 CTCCCTACAC ACTCCTCTCA AGGAGGCACC CATGTCCCTCT CCAGCTGCCG
 501 GGCCTCAGAG CACTGTGGCG TCCTGGGGCA GCCACCGCAT GTCTGCTGT
 551 GGCATGGCTC AGGGTGGAAA GGGCGGAAGG GAGGGGTCT GCAGATAAGCT
 601 GGTGCCCACT ACCAAACCCG CTCGGGGCAG GAGAGCCAAA GGCTGGGTGT
 651 GTGCAGAGCG GCCCCGAGAG GTTCCGAGGC TGAGGCCAGG GTGGGACATA
 701 GGGATGCGAG GGGCCGGGGC ACAGGATACT CCAACCTGCC TGCCCCCATG
 751 GTCTCATCCT CCTGCTTCTG GGACCTCCTG ATCCTGCCCT TGTTGCTAAG
 801 AGGCAGGTAA GGGGCTGCAG GCAGCAGGGC TCGGAGCCCA TGCCCCCTCA
 851 CCATGGGTCA GGCTGGACCT CCAGGTGCCT GTTCTGGGGA GCTGGGAGGG
 901 CCGGAGGGGT GTACCCCAGG GGCTCAGCCC AGATGACACT ATGGGGGTGA
 951 TGGTGTCAAG GGACCTGGCC AGGAGAGGGG AGATGGGCTC CCAGAAGAGG
 1001 AGTGGGGGCT GAGAGGGTGC CTGGGGGGCC AGGACGGAGC TGGGCCAGTG
 1051 CACAGCTTCC CACACCTGCC CACCCCCAGA GTCTGCCGC CACCCCCAGA
 1101 TCACACGGAA GATGAGGTCC GAGTGGCCTG CTGAGGACTT GCTGCTTGT
 1151 CCCAGGTCCC CAGGTCACTGC CCTCCTTCTG CCACCCCTGGG GAGCTGAGGG
 1201 CCTCAGCTGG GGCTGCTGTCTAAGGCAGG GTGGGAACTA GGCAGCCAGC
 1251 AGGGAGGGGA CCCCTCCCTC ACTCCCACTC TCCCACCCCC ACCACCTTGG
 1301 CCCATCCATG CGGGCATCTT GGGCCATCCG GGACTGGGGA CAGGGGTCT
 1351 GGGGACAGGG GTCCGGGGAC AGGGTCCTGG GGACAGGGGT GTGGGGACAG

FIG. 3f