		31A05R6
ollol	Assignment - 3	19131A05R6
	Computer Organisation and Architechture	CSE-4
1)	Represent the following decimal numbers in both solutions and two complement using 16 lits. 16 (a) +512 (b) -29	- pam Inpu pranid
Ans	Binary value of 29 - 0000 0000 0001 1101	in 16 bits
	Lign Magnitude: +512 = 0 000 0010 0000 0000 (MSB is kept of the state	o lecause of "+" sign) nged to 1 because o "-" sign). not fossible because
	-29 = 1111 1111 1110 0011 (Since negative number of	we find the given number
٤)	Represent the following two complement values a) 1101011 b) 0101101	in decimal
Ams	Because this streets with a leftmost 1, it is a Because this streets with a leftmost 1, it is a wind the subject of the respective numerous after the streets and attitude of the subject of the surgice	lue is -21.

	(2) 19131A05R6
3)	Calculate (72530 - 13250) using tens complement southmetic. Assume
	. sitematica transformas sout sof exacts at valinia salure
Ans	Given 72530-13250
	$f_{1}t M = 72530 , N = 13250 $
	We have $M-N = [M + (-N)]$ 86750
	72530
	+ 86750 -> two complement of 13250
	J 59280
	Discard coory digit: - 100000
	Result is 59280
	·. 72530 - 13250 = 59280
4)	Assume numbers are represented in 8 lit two complement number
.,	representation. Show the calculation of the following.
	a) $6+13$ b) $-6+13$ c) $6-13$ d) $-6-13$.
	a in those including their ian lite and
Ans	Procedure: Add the was runners incoming the gion but harition
	discard any carry (left most list position) of the sign but position
	a) +6 00000110 b) -6 11111010 -> 2's complement
	413 00001101 +13 00001101
	+19 00010011 +7 00000111
	d) - 6 11111010 22's complement c) + 6 00000110 -13 11110011 → 2's complement.
	-13 11110011
	-19 11101101
	alient induding the induding the induding
	note: The operation performed is always addition, including the sign
	lits. Any covery out of the sign lit position is disconded, and
	megative results are attempted in 2's complement form.

1	<u>(4)</u>	19131A05R6
given $x = 0101$ ($x = 5$ and $y = -6$)	and $y = 1010$ Compute the h	in two complement notation (i.e.

lyinen x = 5 = 0101y = -6 = 1010 using Booth Algorithm.

6)

Ams

Anitial Values	M	Α	Q	9-1	Cycle
Gritial	0101	0000	1010	01/	11.
Shift	0101	0000	0101	0	First eycle
A← A-M	0101	1011	0101	0	second cycle
Shift	0101	1101	1010	1	Many in white
A ← A+M	0101	0010	1010	1-	H0 A
Shift.	0101	0 001	0101	0,0	Third cycle
A← A-M	0101	1100	0101	0	Fourth Lycle
Shift	0101	1110	0010		3000000 15-1000

AQ > gives the product value of the multiplicand and multiplier

Multiplier in Q = 1010 (i.e. 6) Multiplicand in M = 0101 (i.e. 5)

AQ = 1110 0010

since MSB is 1, it is a negative number in its 2's complement form.

So the number AQ = 0011101 Hipping its lits. 0011110 (Atual value is 30)

:. Product is -30.

(5) 19131AO5R6

7) Use the Booth Algorithm to multiply 23 (multiplicand) by 29 (multipliex) where each number is represented using 6 bits.

Ans

given multiplicand 23 - 010111 multiplier 29 - 011101

Initial Values	M	Α	9	9-1	Cycle
Anitial	010111	000000	011101	0	-
A + A-M	010111	101001	011101	0	M:-I
Shift	010111	110100	101110	1	Tirat
$A \leftarrow A + M$	010111	001011	101110	1	
Shift	010111	000101	110111	0	Locand
$A \leftarrow A - M$	010111	101110	110111	0	
Shift	010111	110111	011011	1	Third
Shift	010111	1110111	101101	1	Tourth
Shift	010111	111101	110110		Fifth
$A \leftarrow A + M$	010111	010100	110110	1	V
Shift	010111	001010	011011	0	Sixth
-					i

AQ - gives the product of the multiplicand and multiplier

AQ \rightarrow 001010 011011

Since MSB is 0, it is a positive number.

- .. Product value is 667.
- .. Product of 010111 and 011101 is 001010 011011

	© 19131A	05R6
8)	Show how the following floating point additions are	performed
	(where significands are truncated to 4 decimal digits). I	how the
	results in normalised form:	
MR	a) $5.566 * 10^2 + 7.777 * 10^2$	
	$=(5.566 + 7.777) * 10^{2}$	
	$= 13.343 * 10^{2}$	X res
	103	. `
	= 1.3343 * 10 = 1.3343 * 10 ³ (tourcated to 4 decimal digital	
	b) 3.344 * 10 + 8.877 * 10-2	47 .
	$= 3.344 * 10^{1} + 0.008877 * 10^{1}$	
	= (3.344 +0.008877) * 10'	
	- 3 35 2877 * 10	
	= 3.3528 * 10' (tourcated to 4 decimal digits)	
- 1		
9)	Show how the following floating point subtractions are (where significands are truncated to y decimal digits). &	how the
9)	(where significands are truncated to 4 decimal augus). &	how the
9) Ans	(where significands are truncalled to 4 decimal algus). A results in normalised form. a) 7.744 * 10 ⁻³ - 6.666 * 10 ⁻³	how the
9) Ans	(where significands are truncalled to 4 decimal augus). A results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ = $(7.744 - 6.666) * 10^{-3}$	how the
9) Ans	(where significands are truncalled to 4 decimal aligns). A results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ = $(7.744 - 6.666) * 10^{-3}$ = $1.078 * 10^{-3}$.	how the
9) Ans	(where significands are truncalled to 4 decimal augus). A results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ = $(7.744 - 6.666) * 10^{-3}$ = $1.078 * 10^{-3}$. = $1.078 * 10^{-3}$. (truncated to 4 decimal digits)	how the
9) Ams	(where significands are truncalled to 4 decimal aligns). A results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ = $(7.744 - 6.666) * 10^{-3}$ = $1.078 * 10^{-3}$.	how the
9) Ams	(where significands are truncalled to 4 decimal augus). A results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ = $(7.744 - 6.666) * 10^{-3}$ = $1.078 * 10^{-3}$. = $1.078 * 10^{-3}$. (truncated to 4 decimal digits)	how the
9) Ans	(where significands are truncoled to 4 decimal origins). As results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ $= (7.744 - 6.666) * 10^{-3}$ $= 1.078 * 10^{-3}.$ $= 1.0780 * 10^{-3} (truncoted to 4 decimal digits)$ b) $8.844 * 10^{-3} - 2.233 * 10^{-1}$ $= 0.08844 * 10^{-1} - 2.233 * 10^{-1}$ $= 0.08844 * 10^{-1} - 2.233 * 10^{-1}$	how the
9) Ans	(where significands are truncolled to 4 decimal aligns). A results in normalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ $= (7.744 - 6.666) * 10^{-3}$ $= 1.078 * 10^{-3}.$ $= 1.0780 * 10^{-3} (truncated to 4 decimal digits)$ b) $8.844 * 10^{-3} - 2.233 * 10^{-1}$ $= 0.08844 * 10^{-1} - 2.233 * 10^{-1}$ $= (0.08844 - 2.233) * 10^{-1}$ $= -2.224156 * 10^{-1}$	
9) Ams	(where significands are truncaled to 4 decimal augus). As results in narmalised form. a) $7.744 * 10^{-3} - 6.666 * 10^{-3}$ = $(7.744 - 6.666) * 10^{-3}$ = $1.078 * 10^{-3}$. = $1.078 * 10^{-3}$ (bruncated to 4 decimal digits) b) $8.844 * 10^{-3} - 2.233 * 10^{-1}$ = $0.08844 * 10^{-1} - 2.233 * 10^{-1}$	

Steps involved:

gribnoqueros attic besilation are initialised with corresponding problem (Q = A) and Q = A, broking Q = A, Q = A,

Sure has A mort betweether if M redesigner of the sorter of the structure of the structure

Step 4: Then the most significant bit of A is shecked and if it is 0 the LSB of Q is set to be 1 else it is 1, the LSB of Q is set to be 1 else it is 1, the LSB of Q is set to 0 and value of A is negistered in value of A before the subtraction with M.

Step 5: The value of count n is decremented

Step 6: If the value of n becomes 0 we get out of the loop else we repeat from step 2.

Step 7: Finally, the register of contain the quotient and A containes remainder.

Example:

Dividend = 11

Divisor = 3

-				. 37 ·
n	1M1 - 1	A	9	Operation
4	00011	00000	1011	Gritial
	00011	00001	0113	Shift left A,Q
	00011	11110	90113	A = A - M
	00011	00001	0110	$Q_0 = 0$ and restore A
3	00011	00010	110;	Shift left A, 9
9 .u.	11000	11111	1103	A = A-M
A se ;	00011	0 001 D	1100	Qo = 0 and restore
				A
1	1			

Let us consider a full adder. We have the inputs A, B and Cin the use consider the addition of these thouse variables in every possible case.

-	A	В	Cin	Suni	lavy	Condition
	0	0	0	0	0	2
	0	0	1	1	0	no lasouy.
-	0	1	0	1	0	betweeneg
And in case of the last	0	1	1	011	-81 5.	Carry Propagated
	1	0	0	11. 1 h	0	freezo or
	1	0	1	0	1	Carry Propagated
	1	1	0	0	1	
	1	1.	1111	, 11 404	111	Carry generated

On analyzing the above truth table, we see that the carry is I when.

1) Either the value of A or B is one, as well as Cin is 1, or

2) Both A and B have the value 1.

Now there are 2 new voriables Carry Generate (G;) and Carry Propagate (Pi)

Case 1: We see that the output carry is propagated, when we give an input carry. We will refer to this with P; so the motheratical expression of P;

Abord nature between si process that an author source is severally and B, and B, and high everally as at been source as process for the subject of the subject in the subject of the subje

(11)

Now, for a full adder

Lum = A;⊕ B;⊕ Cin

Carry = Cin(A, BBi) + AiBi = AiBi + Bicin+Aicin

buch.

Now the above equations in texms of carry forehagate (Pi) and carry generate (Gii)

Sum = Pi & Cin

Carry = Gi + Pi. Cin

logic circuit of sum and coory is given below.

The early surflux of 4 lit cover look shead adder at each stage.

 $C_1 = G_0 + P_0 C_{in}$ $C_2 = G_1 + P_1 C_1 = G_1 + P_1 G_0 + P_1 P_0 C_{in}$ $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_{in}$

Cy = $G_{13}+P_{3}C_{3}=G_{13}+P_{3}G_{12}+P_{3}P_{2}G_{1}+P_{3}P_{2}P_{1}G_{0}+P_{3}P_{2}P_{1}P_{0}C_{1}n$ Thus the above Boolean equations we can observe that

Cy does not have to wait for C_{3} and C_{2} to propagate but actually C_{4} is propagated at the same time as C_{3} and C_{2} .

They all depend only on the initial correy C_{11} . So

the disadvantage of the riphle correy adder is overcomed.

In the carry look ahead adder's logical circuit, there are 3 blacks "P and G yenerator", "Carry look ahead" and "adder black."

Enput Augend and Addend is forovided to the P and G generator block whose output is connected with CLA and the adder block.

So the process continues with initial casery only being depended to get all the remaining coveries C_1, C_2 C_3 and C_4 .

so, giving A,B, C_{in} are as infants we get C_{1},C_{2},C_{3} and C_{4} as the range outputs.

I do not not for a new charges the section of the section of

that allowers of at from a segretar at a set low with it.

in the second of the second of

is now to a within with with the telephone and

of many and or all of the later was

101-101