CSCI 270 HW2

1.	Arrange these functions under the O notation using only = (equivalent) or \subset (strict
	subset of):

- a) 2^{logn}
- b) 2³ⁿ
- c) $n^{n \log n}$
- d) logn
- e) nlog(n²)
- f) n^{n^2}
- g) log(log(nⁿ))

All logs are base 2. (10 pts)

- 2. Given functions f_1 , f_2 , g_1 , g_2 such that $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. For each of the following statements, decide whether it is true or false and briefly explain why. (12 pts)
 - a) $f_1(n)/f_2(n) = O(g_1(n)/g_2(n))$
 - b) $f_1(n) + f_2(n) = O(max(g_1(n), g_2(n)))$
 - c) $f_1(n)^2 = O(g_1(n)^2)$
 - d) $\log_2(f_1(n)) = O(\log_2(g_1(n)))$
- 3. Given an undirected graph G with n nodes and m edges, design an O(m+n) algorithm to detect whether G contains a cycle. Your algorithm should output a cycle if there is one. (12 pts)
- 4. Solve Kleinberg and Tardos, Chapter 2, Exercise 6. (14 pts)
- 5. What Mathematicians often keep track of a statistic called their Erdős Number, after the great 20th century mathematician. Paul Erdős himself has a number of zero. Anyone who wrote a mathematical paper with him has a number of one, anyone who wrote a paper with someone who wrote a paper with him has a number of two, and so forth and so on. Supposing that we have a database of all mathematical papers ever written along with their authors: (6 pts)
 - a. Explain how to represent this data as a graph.
 - b. Explain how we would compute the Erdős number for a particular researcher.
 - c. Explain how we would determine all researchers with Erdős number at most two.
- 6. Given a DAG, give a linear-time algorithm to determine if there is a simple path that visits all vertices. (8 pts)

Ungraded Problems

1. What is the worst-case performance of the procedure below?

```
c = 0

i = n

while i > 1 do

for j = 1 to i do

c = c + 1

end for

i = floor(i/2)

end while

return c
```

Provide a brief explanation for your answer.