Calculs élémentaires

Exercice 1

Entrez dans la danse

Calculez

$$\begin{pmatrix} i & 0 & 2+2i \\ 4 & 1 & -2i \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} -2 & 2-i \\ 2 & -i \\ i/2 & 0 \end{pmatrix}.$$

Exercice 2

Cayley-Hamilton en dimension 2

Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$. Etablir que

$$M^2 - (a+d)M + (ad - bc)\mathbb{I}_2 = \mathbb{O}_2.$$

Exercice 3 A hue et à dia

Soient $n \in \mathbb{N}^*$, $U = (1)_{1 \le i,j \le n}$ et $A \in \mathcal{M}_n(\mathbb{R})$. On note $\sigma(A)$ la somme des coefficients de A. Exprimer UAU en fonction de $\sigma(A)$ et de U.

Exercice 4

Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que

$$AB = \mathbb{I}_n + A + A^2.$$

Montrer que AB = BA.

Exercice 5

On considère dans $\mathcal{M}_n(\mathbb{R})$ les matrices A et B définies par $\mathbf{A}=(a_{i,j})_{1\leqslant i,j\leqslant n}$, $\mathbf{B}=(b_{i,j})_{1\leqslant i,j\leqslant n}$ et

$$a_{i,j} = i + j, \ b_{i,j} = i - j.$$

Calculer le terme général des matrices C = A - B et D = AB.

Exercice 6

Montrer que l'ensemble G des matrices $M(x) = \begin{pmatrix} 1 & 0 & 0 \\ -x^2 & 1 & x \\ -2x & 0 & 1 \end{pmatrix}$ où $x \in \mathbb{R}$ est un sousgroupe de $GL_3(\mathbb{R})$ isomorphe à $(\mathbb{R}, +)$.

Exercice 7 ★★

Matrices stochastiques

On dit qu'une matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ est *stochastique* si elle est à coefficients positifs et si la somme des éléments de chaque colonne vaut 1. Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,q}(\mathbb{R})$ deux matrices stochastiques. Montrer que AB est stochastique.

Puissances

Exercice 8 ★ Puissances

Calculer les puissances des matrices A, B, C et D suivantes :

$$\mathbf{1.} \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right);$$

3.
$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$
;

$$2. \left(\begin{array}{c} a & b \\ 0 & a \end{array}\right);$$

$$4. \left(\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array}\right).$$

Exercice 9 ★

Suites récurrentes couplées

Soient $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ les trois suites de nombres réels définies par $u_0, v_0, w_0 \in \mathbb{R}$ et $\forall n \geq 0$,

$$\begin{cases} u_{n+1} = v_n + w_n \\ v_{n+1} = u_n + w_n \\ w_{n+1} = u_n + v_n \end{cases}$$

Déterminer les expressions des termes généraux de (u_n) , (v_n) et (w_n) en fonction de n, u_0 , v_0 et w_0 .

Avec polynôme annulateur

Soit A une matrice de $\mathcal{M}_p(\mathbb{R})$ telle que

$$A^3 - A^2 - 4A + 4\mathbb{I}_p = 0_p.$$

Etablir que, pour tout entier naturel n, A^n appartient à $\text{vect}(\mathbb{I}_p, A, A^2)$ et exprimer A^n en fonction de \mathbb{I}_p , A et A^2 .

Exercice 11 Petits calculs

On considère les deux matrices

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- **1.** Calculer A^2 , B^2 et B^3 . En déduire A^n et B^n pour tout entier $n \ge 1$.
- 2. Calculer AB, AB², BA et B²A.

Exercice 12 ★

Un calcul de puissances

Soient a et b, deux nombres complexes. Calculer les puissances de la matrice

$$\mathbf{M} = \left(\begin{array}{ccc} a+b & 0 & a \\ 0 & b & 0 \\ a & 0 & a+b \end{array} \right).$$

Exercice 13 Mines-Ponts MP

Soit $A \in GL_n(\mathbb{R})$ telle que $A + A^{-1} = I_n$. Déterminer $A^k + A^{-k}$ pour tout $k \in \mathbb{N}$.

Exercice 14

Soit E l'ensemble des matrices de la forme $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$ avec $a,b,c \in \mathbb{R}$.

- **1. a.** Montrer que E est un \mathbb{R} -espace vectoriel. Donner sa dimension ainsi qu'une base.
 - **b.** Montrer que E est un anneau. Est-il commutatif?
 - **c.** On note G l'ensemble des matrices de E telles que a > 0 et b > 0. Montrer que G est un groupe.
- **2.** Soit $A \in E$. Calculer A^p pour tout $p \in \mathbb{N}$. On pourra distinguer les cas $a \neq b$ et a = b.
- 3. On pose $B_n = \sum_{p=0}^n \frac{A^p}{p!}$. Montrer que la suite (B_n) et préciser sa limite B. (On dit qu'une suite de matrices converge si les suites des coefficients convergent; dans ce cas, la limite est la matrice constituée des limites des coefficients).
- **4.** On note f l'application de E dans E qui à la matrice A associe la matrice B définie dans la question précédente. f est-elle linéaire ? injective ? surjective ? Préciser son image.

Exercice 15 Navale

Soient $a \in \mathbb{R}^*$ et $M = \begin{pmatrix} 0 & a & a^2 \\ \frac{1}{a} & 0 & a \\ \frac{1}{a^2} & \frac{1}{a} & 0 \end{pmatrix}$. Calculer de deux façons M^n pour tout $n \in \mathbb{N}$.

Inverses

Exercice 16 ★★

Matrices à diagonale dominante

Soient $n \ge 1$ et $A \in \mathcal{M}_n(\mathbb{C})$ telle que

$$\forall i \in [[1, n]], |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$$

Montrer que A est inversible.

Exercice 17 ★

Matrices unipotentes

Soit \mathfrak{U}_n le sous-ensemble de $T_n^+(\mathbb{K})$ constitué des matrices dont tous les coefficients diagonaux valent 1. Prouver que \mathfrak{U}_n est un sous-groupe de $\mathrm{GL}_n(\mathbb{K})$.

Exercice 18

Montrer que A =
$$\begin{pmatrix} 0 & -1 & 1 & 1 \\ -9 & 2 & 1 & 2 \\ 1 & -1 & 1 & 0 \\ -3 & 0 & 1 & 1 \end{pmatrix}$$
 est inversible et déterminer son inverse.

Exercice 19

Soit A_n la matrice carrée de taille n suivante :

$$A_n = \begin{pmatrix} 0 & 1 & \dots & 1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \dots & -1 & 0 \end{pmatrix}$$

Montrer que A_n est inversible si et seulement si n est pair et calculer son inverse dans ce cas.

Exercice 20

Soient $n \in \mathbb{N}^*$ et $A_n = (\min(i, j))_{1 \le i, j \le n}$. Montrer que A_n est inversible et calculer son inverse.

Exercice 21 ★

Dire si les matrices suivantes sont inversibles ou non. Le cas échéant, calculer leur inverse ou sinon, donner une base de leur image et une base de leur novau.

1.
$$A_1 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix};$$
 5. $A_5 = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 0 \end{pmatrix};$

5.
$$A_5 = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

2.
$$A_2 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 2 & -2 \end{pmatrix}$$
 6. $A_6 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$;

6.
$$A_6 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

3.
$$A_3 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & -2 \end{pmatrix};$$
 7. $A_7 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix};$

7.
$$A_7 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix};$$

4.
$$A_4 = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 0 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
 8. $A_8 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 5 & 3 & 1 \end{pmatrix}$.

$$\mathbf{8.} \ \mathbf{A}_8 = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 5 & 3 & 1 \end{array}\right)$$

Exercice 22 ★

Taille XXL

Soit $n \ge 1$. Prouver l'inversibilité et calculer l'inverse des matrices suivantes,

$$\mathbf{1.} \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}; \qquad \qquad \mathbf{2.} \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix}.$$

$$2. \left(\begin{array}{cccc} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{array} \right)$$

Exercice 23 ★

Le point de vue élémentaire

Soient $n \ge 1$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $I_n + A$ soit inversible. On pose alors $B = (\mathbb{I}_n - A)(\mathbb{I}_n + A)^{-1}$.

- 1. Montrer que B = $(\mathbb{I}_n + A)^{-1}(\mathbb{I}_n A)$.
- **2.** Prouver que $\mathbb{I}_n + \mathbf{B}$ est inversible.

Exercice 24 ★★

Utilisation d'identités remarquables

Soient $n \ge 1$ et

$$\mathbf{M} = \left(\begin{array}{cccc} 1 & 1 & \dots & 1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 \end{array} \right)$$

- 1. Prouver l'inversibilité et inverser M par la méthode du pivot de Gauss.
- 2. On pose

$$J = \left(\begin{array}{ccccc} 0 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & 0 \end{array} \right)$$

- **a.** Calculer les puissances de J.
- **b.** Exprimer M en fonction de J.
- c. En déduire que M est inversible et retrouver l'expression de son inverse.

Exercice 25

Pivot party

En utilisant l'algorithme du pivot, vérifier que les matrices suivantes sont inversibles et calculer leur inverse.

1.
$$\begin{pmatrix} 1 & 3 & 4 \\ 2 & -1 & 5 \\ 4 & -2 & -1 \end{pmatrix}$$
;

$$3. \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix};$$

$$\mathbf{2.} \left(\begin{array}{rrr} 2 & -1 & 10 \\ 1 & -1 & 6 \\ -1 & -4 & 5 \end{array} \right);$$

$$\mathbf{4.} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 3 \\ 1 & 1 & 1 & -1 \\ 1 & 0 & -2 & 5 \end{pmatrix}.$$

Exercice 26

Soit

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}.$$

- 1. Calculer $A^3 A$.
- 2. En déduire que A est inversible puis déterminer A^{-1} .

Image et noyau

Exercice 27

Les applications suivantes sont clairement linéaires. Déterminer leur noyau et leur image et écrire dans chaque cas la matrice M correspondante rapportée aux bases canoniques.

1.
$$f: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (x, y, 0)$$
:

2.
$$g: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x, y) \mapsto (x - y, x + y, x + 2y)$;

3.
$$h: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x - 3y + 2z$$
;

4.
$$\theta: \mathbb{R}^3[X] \to \mathbb{R}^3[X], P \mapsto P'.$$

Une matrice de projection

Soit

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

considérée comme matrice d'un endomorphisme f de \mathbb{R}^3 dans la base canonique. En déterminer l'image et le noyau. Montrer qu'il s'agit d'un projecteur.

Exercice 29

Déterminer des bases du noyau et de l'image de
$$A = \begin{pmatrix} -11 & 7 & 0 & 3 \\ 0 & 1 & 11 & 2 \\ 1 & 0 & 7 & 1 \end{pmatrix}$$
. Donnes

aussi des systèmes d'équations cartésiennes (avec un nombre minimum d'équations) de $\operatorname{Ker} A$ et $\operatorname{Im} A$.

Exercice 30 Sans calculs

Soit A =
$$\begin{pmatrix} 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. Déterminer sans calculs des bases de Ker A et

Im A.

Rang

Exercice 31 ★

Avec paramètre

Discuter le rang de

$$\mathbf{A} = \left(\begin{array}{cccc} 2 & 1 & 1 & 3 \\ 1 & 0 & -1 & 0 \\ a & 2 & 1 & 1 \\ 4 & 3 & 2 & 4 \end{array} \right).$$

Exercice 32

Matrices de rang 1

Soit M une matrice carrée de taille $n \ge 2$ à coefficients réels de rang 1.

- 1. Montrer qu'il existe deux vecteurs colonnes U et V tels que $M = UV^{T}$.
- 2. Exprimer les puissances entières de M en fonction de M et de tr(M).
- **3.** A quelle condition une matrice de rang 1 est-elle une matrice de projection?
- **4.** Quelles sont les matrices de rang 1 qui sont nilpotentes?

Exercice 33

Soit A une matrice réelle. Montrer que $\operatorname{rg} A = \operatorname{rg} A^{\mathsf{T}} A = \operatorname{rg} AA^{\mathsf{T}}$.

Exercice 34

On considère une application f de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} , non constamment égale à 0 ou 1, telle que :

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2, f(AB) = f(A)f(B)$$

- **1.** Montrer que pour toute matrice inversible A de $\mathcal{M}_n(\mathbb{R})$, f(A) est non nul.
- **2.** Soit A une matrice de rang r, strictement inférieur à n.
 - **a.** Montrer l'existence de r+1 matrices, notées $A_1, A_2, ..., A_{r+1}$, toutes équivalentes à A et telles que le produit $A_1A_2...A_{r+1}$ soit nul.
 - **b.** En déduire que f(A) = 0.
- **3.** Que peut-on en conclure pour l'application f? Donner un exemple d'une telle application.

Exercice 35

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose qu'il existe $\lambda \in \mathbb{K}$ et $U \in \mathcal{M}_{n,1}(\mathbb{K})$ non nul tel que $AU = \lambda U$. Montrer qu'il existe $V \in \mathcal{M}_{n,1}(\mathbb{K})$ non nul tel que $A^TV = \lambda V$.

Montrer qu'une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est de rang r si et seulement si il existe deux familles libres (X_1, \dots, X_r) et (Y_1, \dots, Y_r) de vecteurs colonnes de $\mathcal{M}_{n,1}(\mathbb{K})$ telles que $M = X_1 Y_1^{\mathsf{T}} + \dots + X_r Y_r^{\mathsf{T}}$.

Changement de base

Exercice 37

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathcal{B}=(e_1,e_2,e_3)$ une base de E. On considère les matrices

$$A = \begin{pmatrix} 4 & -2 & -2 \\ 1 & 0 & -1 \\ 3 & -2 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est A.

- **1.** Montrer qu'il existe une base $\mathcal{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de E telle que la matrice de f dans \mathcal{C} soit D.
- **2.** Déterminer une matrice P de $GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$. Calculer P^{-1} .
- **3.** Calculer A^n pour tout $n \in \mathbb{N}$.
- **4.** En déduire le terme général des suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par :

$$\begin{cases} x_0 = 1 \\ y_0 = 0 \\ z_0 = 0 \end{cases} \text{ et } \forall n \in \mathbb{N} \begin{cases} x_{n+1} = 4x_n - 2(y_n + z_n) \\ y_{n+1} = x_n - z_n \\ z_{n+1} = 3x_n - 2y_n - z_n \end{cases}$$

Exercice 38 Passage obligé

Soient $E = \mathbb{R}^2$, u = (1, 1), v = (1, -1) et $\mathcal{B} = (u, v)$.

- 1. Justifier que \mathcal{B} est une base de E.
- 2. Donner les matrices de passage entre $\mathcal B$ et la base canonique $\mathcal B_0$ de E.

Exercice 39

Changements de base

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$(x, y, z) \longmapsto (2x - y, y - z, -z + 2x).$$

- **1.** Calculer la matrice M de f dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 .
- **2.** Prouver que la famille \mathcal{B}' définie par

$$f_1 = e_2 - e_3$$
, $f_2 = -e_1 + e_3$, $f_3 = e_1 + e_2$

est une base de \mathbb{R}^3 .

- **3.** Calculer la matrice $P = mat(\mathcal{B} \to \mathcal{B}')$ et son inverse.
- **4.** Calculer la matrice M' de f dans la base \mathcal{B}' de \mathbb{R}^3 .
- **5.** Quel est le lien entre M, M' et P?

Exercice 40

On note f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique vaut

$$\mathbf{M} = \left(\begin{array}{rrrr} 1 & 2 & 7 & 4 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 0 & 3 & 2 \end{array} \right).$$

- **1.** Déterminer Im(f), Ker(f) et $\text{Im}(f) \cap \text{Ker}(f)$.
- **2.** Soit la famille $\mathcal{F} = (f_1, f_2, f_3, f_4)$ de vecteurs de \mathbb{R}^4 définie par

$$f_1 = (1, 0, 0, 0), f_2 = (1, 1, -1, 1), f_3 = (3, 2, 0, -1)$$

et $f_4 = (7, 4, -4, 5)$. Vérifier que \mathcal{F} est une base de \mathbb{R}^4 .

3. Déterminer la matrice de f dans la base \mathcal{F} .

Représentation des applications linéaires

Exercice 41

Soient $E = \mathbb{R}_2[X]$ et $A = a + bX + cX^2$ un élément de E. On définit l'application f par :

$$\forall P \in E, f(P) = (AP)''$$

- 1. Montrer que f est un endomorphisme de E.
- 2. Donner la matrice M de f dans la base canonique de E.
- **3.** Déterminer une condition sur A pour que f soit bijective.
- **4.** On pose $A = X^2 + 1$. Déterminer M^{-1} et M^n pour tout $n \in \mathbb{N}$ dans ce cas.

Exercice 42

Soit $f : P \in \mathbb{R}_3[X] \mapsto P(X+2) + P(X) - 2P(X+1)$.

- **1.** Montrer que P est un endomorphisme de $\mathbb{R}_3[X]$.
- **2.** Déterminer la matrice de f dans la base canonique de $\mathbb{R}_3[X]$. En déduire $\ker f$ et $\operatorname{Im} f$.
- 3. Déterminer une base de $\mathbb{R}_3[X]$ dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Exercice 43

Soient A, B $\in \mathcal{M}_n(\mathbb{R})$ et $f: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{X} & \longmapsto & \mathrm{X} + \mathrm{tr}(\mathrm{AX})\mathrm{B} \end{array} \right.$

- **1.** Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Déterminer des conditions nécessaires et suffisantes sur A et B pour que f soit une symétrie.
- 3. Déterminer la base et la direction de f dans ce cas.

Exercice 44

Soit f un endomorphisme d'un espace vectoriel E de dimension $n \in \mathbb{N}^*$. Montrer que $\operatorname{Im} f = \operatorname{Ker} f$ si et seulement si n est pair et il existe une base de E dans laquelle la matrice de f est $\left(\begin{array}{c|c} O_p & I_p \\ \hline O_n & O_p \end{array}\right)$ avec n=2p.

Exercice 45 ★

Polynom's Corner

Soient $n \in \mathbb{N}$, $E_n = \mathbb{R}_n[X]$ et T_n l'application définie sur E_n par

$$T_n(P) = (nX + 1)P + (1 - X^2)P'.$$

- **1.** Prouver que $T_n \in \mathcal{L}(E_n)$.
- **2.** Ecrire la matrice $M_n = \text{mat}_{\mathcal{B}_n}(T_n)$ de T_n dans la base canonique de E_n .
- **3.** Dans le cas où n = 3, déterminer des bases de Ker (T_n) et de Im (T_n) .

Exercice 46 ★

Le commutant d'une matrice

Soient

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

et φ_{Λ} l'application de $\mathcal{M}_2(\mathbb{R})$ dans $\mathcal{M}_2(\mathbb{R})$ définie par

$$\varphi_A: M \longmapsto AM - MA$$
.

- **1.** Prouver que φ_A est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer le noyau et l'image de φ_A .
- **3.** En déduire que le commutant de A, ie l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ qui commutent avec A, est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ dont on donnera une base.

Espaces de polynômes

Soient $E = \mathbb{R}_2[X]$ et f l'application défine sur l'espace E par f(P) = P + P'.

- 1. Prouver que f est un endomorphisme de E.
- **2.** On note \mathcal{B}_0 la base canonique de E. Déterminer la matrice $M = \text{mat}_{\mathcal{B}_0}(f)$.
- **3.** Etablir que f est un automorphisme de E et calculer M^{-1} .
- **4.** En déduire la solution P de $P + P' = X^2 + X + 1$.

Exercice 48

Du p'tit lait

Soit f, un endomorphisme de \mathbb{R}^3 , admettant pour matrice relative à la base canonique la matrice suivante :

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

- 1. Déterminer une base du noyau et de l'image de f.
- 2. Déterminer une base du noyau et de l'image de f^2 .
- **3.** Vérifier que $Ker(f^2)$ et $Im(f^2)$ sont supplémentaires dans \mathbb{R}^3 .

Exercice 49

Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels. Soient f, g et h les applications de $\mathbb{R}[X]$ dans lui-même définies par :

$$f(P(X)) = XP(X), g(P(X)) = P'(X) \text{ et } h(P(X)) = (P(X))^2.$$

- 1. Montrer que les applications f et g sont linéaires, mais que h ne l'est pas.
- **2.** Les applications f et g sont-elles injectives? Surjectives? Déterminer la dimension de leurs noyaux respectifs. Déterminer l'image de f.
- 3. Soit $n \in \mathbb{N}$. On désigne par f_n et g_n les restrictions de f et de g à $\mathbb{R}_n[X]$. Montrer que l'image de g_n est incluse dans $\mathbb{R}_n[X]$ et celle de f_n est incluse dans $\mathbb{R}_{n+1}[X]$.
- **4.** Déterminer la matrice de g_n dans la base $(1, X, ..., X^n)$ de $\mathbb{R}_n[X]$. Déterminer la matrice de f_n relativement aux bases

$$\mathcal{B}_n = (1, X, \dots, X^n)$$
 et $\mathcal{B}_{n+1} = (1, X, \dots, X^{n+1})$.

5. Calculer les dimensions respectives des images de f_n et de g_n .

Exercice 50

Etude d'un endomorphisme

Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$, définie en posant, pour tout $P(X) \in \mathbb{R}_n[X]$,

$$f(P(X)) = P(X+1) + P(X-1) - 2P(X).$$

- **1.** Montrer que f est linéaire et que son image est incluse dans $\mathbb{R}_n[X]$.
- **2.** Dans le cas où n = 3, donner la matrice de f dans la base $(1, X, X^2, X^3)$. Déterminer ensuite, pour une valeur de n quelconque, la matrice de f dans la base $(1, X, ..., X^n)$.
- **3.** Déterminer le noyau et l'image de f pour $n \ge 3$. Calculer leurs dimensions respectives.
- **4.** Soit Q un élément de l'image de f. Montrer (en utilisant en particulier les résultats de la deuxième question) qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que

$$f(P) = Q$$
 et $P(0) = P'(0) = 0$.

Soit L: $\mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$L(x, y, z) = (x + 2y - z, y + z, x + y - 2z).$$

- 1. Ecrire la matrice associée à L dans la base canonique de \mathbb{R}^3 .
- **2.** Trouver une base et déterminer la dimension de chacun des sous-espaces vectoriels suivants :

$$Ker(L)$$
, $Im(L)$, $Ker(L) \cap Im(L)$.

3. Déterminer $L \circ L = L^2$ et $L \circ L \circ L = L^3$ en calculant leurs matrices dans la base canonique. Quelle est la matrice de L^{16} dans la base canonique?

Exercice 52 ★

Un endomorphisme de matrices

Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. On considère l'application φ de $\mathcal{M}_2(\mathbb{R})$ dans $\mathcal{M}_2(\mathbb{R})$ définie par $\varphi(M) = AM$.

- 1. Vérifier que ϕ est linéaire.
- 2. Montrer que φ est un isomorphisme. Donner une expression simple de l'isomorphisme réciproque.
- **3.** Déterminer la matrice de ϕ dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Exercice 53

On considère l'application

$$\phi: \mathbb{R}_3[X] \to \mathbb{R}[X]
P \mapsto P(X+1) + P(X)$$

- **1.** Montrer que ϕ est un endomorphisme de $\mathbb{R}_3[X]$.
- **2.** On note \mathcal{B} la base canonique de $\mathbb{R}_3[X]$. Déterminer la matrice de φ dans la base \mathcal{B} . On notera M cette matrice.
- 3. a. Montrer que M est inversible et calculer M^{-1} .
 - **b.** En déduire que ϕ est un automorphisme de $\mathbb{R}_3[X]$, et donner la matrice de ϕ^{-1} dans la base \mathcal{B} .
- **4.** En déduire que l'équation $P(X+1) + P(X) = 4X^3 2X^2 + X 1$ admet une unique solution $P \in \mathbb{R}_3[X]$, et donner cette solution.

On considère l'espace vectoriel $E = \mathcal{A}(\mathbb{R}, \mathbb{R})$ des applications de \mathbb{R} dans \mathbb{R} , et les fonctions g_1, g_2, g_3 et g_4 définies par :

$$\forall x \in \mathbb{R}, \quad g_1(x) = xe^x, \ g_2(x) = xe^{-x}, \ g_3(x) = e^x, \ g_4(x) = e^{-x}.$$

On note $F = \text{vect}(g_1, g_2, g_3, g_4)$.

- 1. **a.** Si a, b, c et d sont quatre réels tels que $\forall x \in \mathbb{R}$, $axe^x + bxe^{-x} + ce^x + de^{-x} = 0$, montrer qu'alors $\lim_{x \to +\infty} (ax + c)e^x = 0$, puis que a = c = 0.
 - **b.** Montrer que (g_1, g_2, g_3, g_4) est une base de F, qu'on notera \mathcal{B}_1 par la suite. Quelle est la dimension de F?
- **2. a.** Vérifier que g'_1 et g'_2 appartiennent à F.
 - **b.** Montrer que (g_1, g_2, g_1', g_2') est aussi une base de F, qu'on notera \mathcal{B}_2 . Donner la matrice de passage de \mathcal{B}_1 à \mathcal{B}_2 .
- 3. Soit φ l'application définie sur F par $\varphi(f) = f'$.
 - a. Montrer que φ est un endomorphisme de F.
 - **b.** Déterminer la matrice M de φ dans la base \mathcal{B}_1 .
 - **c.** En déduire que φ est un automorphisme de F.
 - **d.** Déterminer la matrice N de φ dans la base \mathcal{B}_2 . Cette matrice est-elle inversible?

Exercice 55 *** Centrale MP

Soient H_1 et H_2 deux sous-espaces supplémentaires de $\mathcal{L}(\mathbb{R}^n)$ vérifiant la propriété suivante :

$$\forall (f,g) \in H_1 \times H_2, \ f \circ g + g \circ f = 0$$

- **1.** Justifier qu'il existe $(p_1, p_2) \in H_1 \times H_2$ tel que $p_1 + p_2 = Id$.
- **2.** Montrer que p_1 et p_2 sont des projecteurs.
- 3. Montrer que dim $H_1 \le (n \operatorname{rg} p_2)^2$ et dim $H_2 \le (n \operatorname{rg} p_1)^2$.
- **4.** Quel est le nombre de choix possibles pour le couple (H_1, H_2) ?

Exercice 56 **

Soient p_1, \dots, p_n des projecteurs d'un espace vectoriel E de dimension finie tels que $p_1 + \dots + p_n = \mathrm{Id}_{\mathrm{E}}$.

Montrer que Im $p_1 \oplus \cdots \oplus \operatorname{Im} p_n = \operatorname{E}$.

Exercice 57 ***

Soient $u,v \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Déterminer le rang de l'endomorphisme de $\mathcal{L}(E)$ $\Phi: f \mapsto v \circ f \circ u$.

Exercice 58 ★

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & iz + (1-i)\overline{z} \end{array} \right.$$

- **1.** Montrer que f est un automorphisme du \mathbb{R} -espace vectoriel \mathbb{C} .
- **2.** Montrer qu'il existe une base du \mathbb{R} -espace vectoriel \mathbb{C} dans laquelle la matrice de f est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 3. Construire le point d'affixe f(z) à partir du point d'affixe z.

Exercice 59 ★

On considère le sous-espace vectoriel F de $\mathcal{C}^1(\mathbb{R})$ engendré par la famille $\mathcal{B}=(\sin,\cos,\sin,\cosh)$.

- **1.** Montrer que \mathcal{B} est une base de F.
- **2.** On note D l'opérateur de dérivation. Montrer que F est stable par D. On notera *d* l'endomorphisme de F induit par D.
- **3.** On note M la matrice de d dans la base \mathcal{B} . Calculer M^n pour tout $n \in \mathbb{N}$.
- **4.** Montrer que d est un automorphisme de F. Écrire la matrice de d^{-1} dans la base \mathcal{B} .
- 5. On note f = d Id. Déterminer l'image et le noyau de f.
- **6.** On note g = d + Id. Déterminer l'image et le noyau de $g \circ f$.

Matrices remarquables

Exercice 60 ★

Matrices (anti-)symétriques

Soient $n \ge 1$, $S_n(\mathbb{R})$ le sous-ensemble des matrices carrées symétriques d'ordre n et $\mathcal{A}_n(\mathbb{R})$ le sous-ensemble des matrices carrées antisymétriques d'ordre n.

- **1.** Justifier que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$. Préciser leurs dimensions.
- **2.** Montrer que ces deux sous-espaces sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 61 ★

Soit E le sous ensemble de $\mathcal{M}_3(\mathbb{R})$ défini par

$$\mathbf{E} = \left\{ \mathbf{M}(a, b, c) = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ stable pour la multiplication des matrices. Calculer dim(E).
- **2.** Soit M(a, b, c) un élément de E. Déterminer, suivant les valeurs des paramètres a, b et $c \in \mathbb{R}$ son rang.
- **3.** Calculer (lorsque cela est possible) l'inverse $M(a, b, c)^{-1}$ de M(a, b, c).
- **4.** Donner une base de E formée de matrices inversibles et une autre formée de matrices de rang 1.

Exercice 62

Montrer que

$$F = \{M \in \mathcal{M}_2(\mathbb{R}) \mid tr(M) = 0\}$$

est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. Déterminer une base de F et la compléter en une base de $\mathcal{M}_2(\mathbb{R})$.

Exercice 63

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est magique si les sommes des coefficients de M par ligne et par colonne sont constantes. On note \mathcal{M} l'ensemble des matrices magiques et, pour $M \in \mathcal{M}$, s(M) la valeur commune des sommes.

1. Montrer que $\mathcal M$ est une sous-algèbre de $\mathcal M_n(\mathbb K)$ et que $s:\mathcal M\to\mathbb K$ est un morphisme d'algèbres.

Remarque. Il s'agit de montrer que \mathcal{M} est un sous-anneau et un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ et que s est un morphisme d'anneau et une forme linéaire.

- **2.** Montrer que si $M \in \mathcal{M}$ est inversible, alors $M^{-1} \in \mathcal{M}$.
- 3. Montrer que \mathcal{M} est la somme directe du sous-espace vectoriel \mathcal{M}_s des matrices magiques symétriques et du sous-espace vectoriel \mathcal{M}_a des matrices magiques antisymétriques.
- **4.** On note ϕ_M l'endomorphisme de \mathbb{K}^n canoniquement associé à M et on pose

$$\mathcal{H} = \{(x_1, \dots, x_n) \in \mathbb{K}^n, x_1 + \dots + x_n = 0\} \text{ et } \mathcal{K} = \{(x, \dots, x), x \in \mathbb{K}\}.$$

Montrer que $M \in \mathcal{M}$ si et seulement si \mathcal{H} et \mathcal{K} sont stables par ϕ_M .

5. En déduire la dimension de \mathcal{M} .

Exercice 64

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $\Delta_A = \{M \in \mathcal{M}_n(\mathbb{C}) \mid M + M^\top = tr(M)A\}$. On note respectivement $\mathcal{S}_n(\mathbb{C})$ et $\mathcal{A}_n(\mathbb{C})$ les ensembles des matrices symétriques et des matrices antisymétriques de $\mathcal{M}_n(\mathbb{C})$.

- **1.** Montrer que Δ_A est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ contenant $\mathcal{A}_n(\mathbb{C})$.
- **2.** Si tr(A) \neq 2, montrer que $\Delta_A = \mathcal{A}_n(\mathbb{C})$.
- **3.** Déterminer Δ_A dans le cas où $A \notin \mathcal{S}_n(\mathbb{C})$.
- **4.** Déterminer Δ_A dans le cas où tr(A) = 2 et $A \in \mathcal{S}_n(\mathbb{C})$. On pourra remarquer que $\mathcal{M}_n(\mathbb{C})$ est la somme directe de $\mathcal{S}_n(\mathbb{C})$ et $\mathcal{A}_n(\mathbb{C})$.

Exercice 65 Questions en vrac

Pour $z \in \mathbb{C}$, on pose $M(z) = \begin{pmatrix} \operatorname{Re}(z) & -\operatorname{Im}(z) \\ \operatorname{Im}(z) & \operatorname{Re}(z) \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ et } \mathcal{E} = \{M(z), \ z \in \mathbb{C}\}.$

- **1.** Montrer que \mathcal{E} est un \mathbb{R} -espace vectoriel. Quelle est sa dimension?
- 3. Montrer que \mathcal{E} est un anneau commutatif et que M est un isomorphisme d'anneaux.
- **4.** Montrer que \mathcal{E} est un corps.
- 5. Résoudre l'équation $A^4 = I_2$ d'inconnue $A \in \mathcal{E}$.
- **6.** Pour $(a,b) \in \mathbb{Z}^2$, on pose $N(a,b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ et $\mathcal{F} = \{N(a,b), (a,b) \in \mathbb{Z}^2\}$. Montrer que \mathcal{F} est un anneau commutatif. Quels sont ses éléments inversibles?

Exercice 66

Matrices de trace nulle et crochets de Lie

Soit $n \in \mathbb{N}^*$. On pose $\mathcal{N}_n = \{M \in \mathcal{M}_n(\mathbb{K}) \mid \text{tr}(M) = 0\}$. Pour $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, on pose [A, B] = AB - BA. On note $\mathcal{L}_n = \{[A, B], (A, B) \in \mathcal{M}_n(\mathbb{K})^2\}$.

- 1. a. Montrer que \mathcal{N}_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ et déterminer sa dimension.
 - **b.** Montrer que $\mathcal{L}_n \subset \mathcal{N}_n$.
- **2. a.** Montrer que toute matrice de $\mathcal{M}_n(\mathbb{K})$ semblable à une matrice de $\mathcal{M}_n(\mathbb{K})$ de diagonale nulle appartient à \mathcal{N}_n .
 - **b.** Montrer que toute matrice de \mathcal{N}_n est semblable à une matrice de $\mathcal{M}_n(\mathbb{K})$ de diagonale nulle.
 - **c.** En déduire que $\mathcal{N}_n \subset \mathcal{L}_n$.

Exercice 67

Matrices symplectiques

Soit $n \in \mathbb{N}^*$. On pose $J = \begin{pmatrix} 0 & I_n \\ \hline -I_n & 0 \end{pmatrix}$. On dit qu'une matrice $M \in \mathcal{M}_{2n}(\mathbb{K})$ est symplectique si $M^T J M = J$. Montrer que l'ensemble des matrices symplectiques de $\mathcal{M}_{2n}(\mathbb{K})$

plectique si $M^T J M = J$. Montrer que l'ensemble des matrices symplectiques de $\mathcal{M}_{2n}(\mathbb{K})$ est un sous-groupe de $GL_{2n}(\mathbb{K})$.

Exercice 68

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ telle que f(AB) = f(BA) pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

Montrer que f est proportionnelle à la trace.

Equations d'inconnue matricielle

Exercice 69

Soient A et B $\in \mathcal{M}_n(\mathbb{R})$ telles que

$$\forall X \in \mathcal{M}_n(\mathbb{R}), tr(AX) = tr(BX).$$

Montrer que A = B.

Exercice 70

On considère l'équation

$$X^2 + X = A \tag{E}$$

d'inconnue $X\in\mathcal{M}_2(\mathbb{R})$ avec $A=\begin{pmatrix}1&1\\1&1\end{pmatrix}\in\mathcal{M}_2(\mathbb{R}).$

- 1. Déterminer une base de Im A et Ker A.
- 2. Montrer que A n'est pas inversible.
- **3.** Soit X vérifiant (E). Montrer que X ou $X + I_2$ n'est pas inversible.
- **4.** On suppose X non inversible.
 - **a.** Montrer que Im $A \subset Im X$ et $Ker X \subset Ker A$.
 - **b.** Montrer que $\operatorname{Im} A = \operatorname{Im} X$ et $\operatorname{Ker} A = \operatorname{Ker} X$.
 - **c.** En déduire qu'il existe $x \in \mathbb{R}^*$ tel que X = xA. Quelles sont les seules valeurs possibles de x? Quelles sont les matrices X correspondantes?
- 5. On suppose $X+I_2$ non inversible. En posant $Y=-(X+I_2)$, se ramener au cas précédent.
- **6.** En déduire toutes les solutions de (E).

Exercice 71

On veut résoudre le système d'équations d'inconnues dans $\mathcal{M}_2(\mathbb{R})$: $\begin{cases}
XY = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\
YX = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\end{cases}$ Résoudre les systèmes $\begin{cases}
2x & -y & +4z & =-4 \\
3x & +2y & -3z & =17 \\
5x & -3y & +8z & =-10
\end{cases}$ $\begin{cases}
x & -y & +2z & =1 \\
3x & +2y & -3z & =2 \\
-x & +6y & -11z & =-3
\end{cases}$ $\begin{cases}
2x & +y & -5z & =3 \\
-x & -y & +2z & =1
\end{cases}$

- rg Y = 1.
- 2. Que peut-on en déduire sur la forme de X et Y?
- 3. Résoudre le système.

Exercice 72

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Résoudre l'équation X + tr(X)A = 0 d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.

Systèmes linéaires

Exercice 73

Résoudre selon les valeurs des paramètres $a, b, c \in \mathbb{R}$.

$$\begin{cases} x + 2y - z = a \\ -2x - 3y + 3z = b \\ x + y - 2z = c \end{cases}$$

Exercice 74 ★

$$\begin{cases} 2x - y + 4z = -4 \\ 3x + 2y - 3z = 17 \\ 5x - 3y + 8z = -10 \end{cases} \begin{cases} x - y + 2z = 1 \\ 3x + 2y - 3z = 2 \\ -x + 6y - 11z = -3 \end{cases}$$

$$\begin{cases} 2y - z = -2 \\ x + y + z = 2 \\ -2x + 4y - 5z = -10. \end{cases} \begin{cases} 2x + y - 5z = 3 \\ 3x + 2y - 3z = 0 \\ x + y - 7z = 2 \\ 2x - 3y + 8z = 5. \end{cases}$$

Exercice 75 ★★

Résoudre le système

(S):
$$\begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$ et de paramètre $m \in \mathbb{R}$.