# Connect the Dots

Quantitative Isothermal Amplification Machine Learning

## State of the art:

#### HOME BASED COLLECTION-PCR



Pixel by Labcorp COVID-19 Test Home Collection Kit

#### **POC PCR**



Cepheid GeneXpert



For COVID the FDA has provided emergency use authorization to 266 home-based collection and 3 isothermal assays for home based COVID diagnosis.

# Our Project



## Description of Software

- Can this data be utilized in a machine learning model to improve quantifiable range?
  - set out to produce a regression model
    - due to lack of data produced a 3 classification ML CNN
- User supplies an endpoint reaction picture picture
- Three classification CNN predicts input concentration based on High, Medium, and Low input copies
- The image is displayed with along with input copy prediction on interactive website.

## **Data Science Methods**

- Image pre-processing using OpenCV
- Image data read-in to a tensorflow dataset
- sequential model
  - 2D convolution 8 neurons
  - flattening
  - Dense layers 16 neurons
- Optuna used to optimize hyperparameters
  - activation
  - optimizer
- Limited data size
  - 0 batch training
  - 50% validation split
- Visualized with Streamlit

# Summary

## Conclusion on Project

- Model trained on seven images had accuracy of ~40%
- Preliminary website design
- Project structures
- Proof of concept

#### What we learned

- Analyzing user cases
- Using Github for version control
- More practices with python

#### Next step

- Try to model with other methods
- Include time-dependent parameters
- Polish the website design
- More tests for functions

