ECE408/CS483/CSE408

Applied Parallel Programming

Lecture 12: Convolutional Neural Networks

Course Reminders

 Lecture for Tuesday Oct 3 will be a pre-recorded video lecture. No need to come to class!

Lab 4 is due on Friday

Midterm 1 is on Tuesday, October 10th

- Project Milestone 1: Baseline CPU implementation is due Friday October 13th
 - Project details will be provided by end of this week

Deep Learning in Computer Vision

2012 Large Scale Image Recognition Challenge

U of Toronto team used GPUs and trained on 1.2M images in their 2012 winning entry.

LeNet-5:CNN for hand-written digit recognition

Anatomy of a Convolution Layer

Input

• A inputs each $N_1 \times N_2$

Convolution Layer

• B convolution "feature maps" each $K_1 \times K_2$

Output (total of B)

• A × B outputs each $(N_1 - K_1+1) \times (N_2 - K_2+1)$

Notion of a Channel in Input Layer

Pooling (Subsampling)

- Subsampling layer
 - Sometimes with bias and non-linearity built in
- Common types
 - max, average, L² norm, weighted average
- Helps make representation invariant to size scaling and small translations in the input

Forward Propagation

C channels per image

H×W pixels per channel

Output Size $H_{out} = H - K + 1$ $W_{out} = W - K + 1$

Convolution Output Y

B images
M features per image $H_{out} \times W_{out}$ values per feature

Outputs Typically Truncate Input

Compute only this part of Y.

1	2	3	2	1
2	3	4	3	2
3	4	5	4	3
2	3	4	3	2
1	2	3	2	1

1	4	9	8	5
4	9	16	15	12
9	16	25	24	21
8	15	24	21	16
5	12	21	16	5

Example of the Forward Path of a Convolution Layer

Sequential Code: Forward Convolutional Layer

```
void convLayer_forward(int B, int M, int C, int H, int W, int K, float* X, float* W, float* Y) {
 int H_{out} = H - K + 1;
                                           // calculate H_out, W_out
 int W_{out} = W - K + 1;
 for (int b = 0; b < B; ++b)
                                        // for each image
   for(int m = 0; m < M; m++) // for each output feature map</pre>
     for(int h = 0; h < H_out; h++) // for each output value (two loops)</pre>
       for(int w = 0; w < W_out; w++) {
         Y[b, m, h, w] = 0.0f;
                              // initialize sum to 0
         for(int c = 0; c < C; c++) // sum over all input channels</pre>
           for(int p = 0; p < K; p++) // KxK filter
             for(int q = 0; q < K; q++)
              Y[b, m, h, w] += X[b, c, h + p, w + q] * W[m, c, p, q];
```

Image *b* in batch

A Small Convolution Layer Example

X[b,0,_, _]

X[b,2,_, _]

1	2	0	1
1	1	ന	2
0	2	2	0
2	1	0	3

	1	1	1
W[0,0,_, _	3	2	2
	0	1	2

0

3

3

4		
1	0	
3	2	
2	0	
2	0	

	'		J
	1	1	0
W[0,2,_, _]	2	0	1
		$\overline{}$	4

W[0,1,_, _]

Y[b,0,_, _]

	1	1	0
W[0,2,_, _]	2	0	1
	1	2	1

A Small Convolution Layer Example c = 0

3

1	2	3
1	1	0
3	0	1

3+13+2

X[b,2,_,	
Λ[U,Ζ,_,	_

X[b,1,_, _]

1	2	1	0
0	1	3	2
3	3	2	0
1	3	2	0

	1	1	0
W[0,2,_, _]	2	0	1
	1	2	1

A Small Convolution Layer Example c = 1

1	2	0	1
1	1	ന	2
0	2	2	0
2	1	0	ന

1	1	1	
2	2	3	V
2	1	0	

X[b,1,_, _]

0	2	1	0
0	ന	2	1
1	1	0	2
2	1	O	3

	1	2	3
	1	1	0
	3	0	1
Ľ			

X[b,2,_, _]

1	2	1	0
0	1	3	2
3	3	2	0
1	3	2	0

	1	1	0
W[0,2,_,_	2	0	1
	1	2	1

A Small Convolution Layer Example

1	2	0	1
1	1	ന	2
0	2	2	0
2	1	0	3

1	1	1
2	2	3
2	1	0

W[0,0,_,_]

X[b,1,_, _]

0	2	1	0
0	ന	2	1
1	1	0	2
2	1	0	3

31+			
	3	2	1
W[0,1,_	0	1	1
	1	0	3
-			

X[b,2,_, _]

1	2	1	0
0	1	3	2
3	3	2	0
1	3	2	0

0	1	1	
1	0	2	W[0,2,_, _]
1	2	1	

Parallelism in a Convolution Layer

Feature maps can be calculated in parallel

- Usually a small number, not sufficient to fully utilize a GPU
- We'll need to handle tree reduction for features using channels (we'll learn this later)

All output feature map pixels can be calculated in parallel

- All rows can be done in parallel
- All pixels in each row can be done in parallel
- Large number but diminishes as we go into deeper layers

Different layers may demand different strategies.

Subsampling/Pooling by Scale N

Convolution Output Y

B images
M features per image
H_{out}×W_{out} values per feature

Average over N×N blocks, then calculate sigmoid

Output Size

 $H_{S(N)} = floor (H_{out} / N)$ $W_{S(N)} = floor (W_{out} / N)$

Subsampling/Pooling Output S B images M features per image $H_{S(N)} \times W_{S(N)}$ values per feature

Sequential Code: Forward Pooling Layer

```
void poolingLayer_forward(int B, int M, int H_out, int W_out, int N, float* Y, float* S)
 for (int b = 0; b < B; ++b) // for each image
   for (int m = 0; m < M; ++m) // for each output feature map</pre>
     for (int x = 0; x < H_out/N; ++x) // for each output value (two loops)
       for (int y = 0; y < W_out/N; ++y) {
         float acc = 0.0f
                                            // initialize sum to 0
         for (int p = 0; p < N; ++p) // loop over NxN block of Y (two loops)
            for (int q = 0; q < N; ++q)
               acc += Y[b, m, N*x + p, N*y + q];
                                               // calculate average over block
         acc /= N * N;
         S[b, m, x, y] = sigmoid(acc + bias[m]) // bias, non-linearity
```

Kernel Implementation of Subsampling Layer

- Straightforward mapping from grid to subsampled output feature map pixels
- in GPU kernel,
 - need to manipulate index mapping
 - for accessing the output feature map pixels
 - of the previous convolution layer.
- Often merged into the previous convolution layer to save memory bandwidth

Design of a Basic Kernel

- Each block computes
 - a tile of output pixels for one feature
 - TILE_WIDTH pixels in each dimension
- Grid's X dimension maps to M output feature maps.
- Grid's Y dimension maps to the tiles in each output feature map.
- (Grid's Z dimension is used for images in batch, which we omit from slides.)

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

A Small Example

Assume

- M = 4 (4 output feature maps),
- thus 4 blocks in the X dimension, and
- $W_{out} = H_{out} = 8$ (8x8 output features).

If TILE WIDTH = 4,

we also need 4 blocks in the Y dimension:

- for each output feature,
- top two blocks in each column calculates the top row of tiles, and
- bottom two calculate the bottom row.

Overall CUDA Approach

Consider an output feature map:

- width is W_out, and
- height is H_out.
- Assume these are multiples of TILE_WIDTH.

0	1	2	2 3	
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

Let **W_size** be the number of blocks needed in X dim (5 above). Let **H_size** be the number of blocks needed in Y dim (4 above).

Host Code for a Basic Kernel

(Assuming W_out and H_out are multiples of TILE_WIDTH.)

```
#define TILE_WIDTH 16
W_size = W_out/TILE_WIDTH; // number of horizontal tiles per output map
H_size = H_out/TILE_WIDTH; // number of vertical tiles per output map
Y = H_size * W_size; // total number of tiles per map
dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1); // output tile for untiled code
dim3 gridDim(M, Y, 1);
ConvLayerForward_Kernel<<< gridDim, blockDim >>>(...);
```

Partial Kernel Code for a Convolution Layer

```
_global__ void ConvLayerForward_Basic_Kernel
  (int C, int W_size, int K, float* X, float* W, float* Y)
  int m = blockIdx.x;
  int h = (blockIdx.y / W_size) * TILE_WIDTH + threadIdx.y;
  int w = (blockIdx.y % W_size) * TILE_WIDTH + threadIdx.x;
  float acc = 0.0f;
  for (int c = 0; c < C; c++) { // sum over all input channels
     for (int p = 0; p < K; p++)
                                        // loop over KxK filter
        for (int q = 0; q < K; q++)
           acc += X[c, h + p, w + q] * W[m, c, p, q];
  Y[m, h, w] = acc;
```

Memory Efficiency of Convolution Algorithm

- Assume that we use tiled 2D convolution
- For input elements
 - Each output tile has TILE_WIDTH² elements
 - Each input tile has (TILE_WIDTH+K-1)²
 - The total number of input feature map element accesses was TILE_WIDTH^{2*}K²
 - The reduction factor of the tiled algorithm is K²*TILE_WIDTH²/(TILE_WIDTH+K-1)²
- The convolution filter weight elements are reused within each output tile

Some Observations

Enough parallelism

- if the total number of pixels across all output feature maps is large
- (often the case for CNN layers)

Memory Bandwidth

- We get reuse for the tiled convolution approach
- but, each tile loaded M times (number of output features), so
- not efficient in global memory bandwidth,

Implementing a Convolution Layer with Matrix Multiplication

X unrolled

Input feature maps

Simple Matrix Multiplication

Each product matrix element is an output feature map pixel.

This inner product generates element 0 of output feature map 0.

Convolution Filters

Input feature maps

Tiled Matrix Multiplication 2x2 Example

Each block calculates one output tile – 2 elements from each output map

Each input element is reused 2 times in the shared memory

Convolution Filters

Input feature maps

Tiled Matrix Multiplication 2x4 Example

Each block calculates one output tile – 4 elements from each output map

Each input element is reused 2 times in the shared memory

Convolution Filters

Efficiency Analysis: Total Input Replication

- Replicated input features are shared among output maps
 - There are H_out * W_out output feature map elements
 - Each requires K*K elements from the input feature maps
 - So, the total number of input element after replication is H_out*W_out*K*K times for each input feature map
 - The total number of elements in each original input feature map is (H_out+K-1)* (W*out+K-1)

Analysis of a Small Example

$$H_out = 2$$

W out =
$$2$$

$$K = 2$$

There are 3 input maps (channels)

The total number of input elements in the replicated ("unrolled") input matrix is 3*2*2*2*2

The replicating factor is

$$(3*2*2*2*2)/(3*3*3) = 1.78$$

Properties of the Unrolled Matrix

- Each unrolled column corresponds to an output feature map element
- For an output feature element (h,w), the index for the unrolled column is h*W_out+w (linearized index of the output feature map element)

Properties of the Unrolled Matrix (cont.)

- Each section of the unrolled column corresponds to an input feature map
- Each section of the unrolled column has k*k elements (convolution mask size)
- For an input feature map c, the vertical index of its section in the unrolled column is c*k*k (linearized index of the output feature map element)

To Find the Input Elements

- For output element (h,w), the base index for the upper left corner of the input feature map c is (c, h, w)
- The input element index for multiplication with the convolution mask element (p, q) is (c, h+p, w+q)

Input to Unrolled Matrix Mapping

```
Output element (h, w)
                                                                                                        Output
                                                                                                       Features
Mask element (p, q)
Input feature map c
                                                                                                       Convolution
                                                                                                        Filtetrs
// calculate the horizontal matrix index
int w unroll = h * W out + w;
                                                                                                        Input
                                                                                                       Features
// find the beginning of the unrolled
int w base = c * (K*K);
                                                                      1111
                                                                            0 1 1 0
                                                                                                 14 20 15 24
                                                                1001
                                                                      2 1 2 1
                                                                            1220
                                                                                                 12 24 17 26
// calculate the vertical matrix index
                                                                        Convolution
                                                                                                  Output
                                                                         Filtetrs
                                                                                                  Features
int h unroll = w base + p * K + q;
X_{unroll}[b, h_{unroll}, w_{unroll}] = X[b, c, h + p, w + q];
```

Function to generate "unrolled" X

```
void unroll(int B, int C, int H, int W, int K, float* X, float* X_unroll)
                                               // calculate H out, W out
 int H out = H - K + 1;
 int W out = W - K + 1;
 for (int b = 0; b < B; ++b)
                                           // for each image
   for (int c = 0; c < C; ++c) {
                                             // for each input channel
     int w_base = c * (K*K);
                                               // per-channel offset for smallest X_unroll index
                                            // for each element of KxK filter (two loops)
     for (int p = 0; p < K; ++p)
       for (int q = 0; q < K; ++q) {
         for (int h = 0; h < H_out; ++h) // for each thread (each output value, two loops)
           for (int w = 0; w < W_out; ++w) {
             int h_unroll = w_base + p * K + q; // data needed by one thread
             int w_unroll = h * W_out + w;  // smallest index--across threads (output values)
             X_{unroll}[b, h_{unroll}, w_{unroll}] = X[b, c, h + p, w + q]; // copy input pixels
```

Implementation Strategies for a Convolution Layer

Baseline

Tiled 2D convolution implementation, use constant memory for convolution masks

Matrix-Multiplication Baseline

- Input feature map unrolling kernel, constant memory for convolution masks as an optimization
- Tiled matrix multiplication kernel

Matrix-Multiplication with built-in unrolling

- Perform unrolling only when loading a tile for matrix multiplication
- The unrolled matrix is only conceptual
- When loading a tile element of the conceptual unrolled matrix into the shared memory, use the properties in the lecture to load from the input feature map

More advanced Matrix-Multiplication

Use joint register-shared memory tiling

Transformer-based Language Models

Single Layer Computational Flow

GPT-3, as an example

 XW_0^Q

 d_{model}

X

 XW_0^K

Language Models are Few-Shot Learners, Brown et al., OpenAI, July 2020

Model Name	$n_{ m params}$	n_{layers}	d_{model}	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

GPT-3 has 96 Layers, 55B parameters just from Self Attention. 220 Gflop per X vector, per output token.

 d_{head}

 XW_0^V

In GPT-3, each W is 12288x128

matrix, 1.5M parameters, 3MB (@ 16 bit floats), or 6 MFlop per X vector

Project Overview

- Optimize the forward pass of the convolutional layers in a modified LeNet-5 CNN using CUDA. (CNN implemented using Mini-DNN, a C++ framework, with Stride functionality)
- The network will be classifying Fashion MNIST dataset
- Some network parameters to be aware of
 - Input Size: 86x86 pixels, batch of 10k images
 - Input Channels: 1
 - Convolutional kernel size: 7x7
 - Number of kernels: Variable (your code should support this)
 - Stride length: Variable (your code should support this)

https://github.com/zalandoresearch/fashion-mnist

https://stanford.edu/~shervine/teaching/cs-230/cheatsheetconvolutional-neural-networks#layer

Project Timeline

- All milestones are due on Fridays at 8 pm Central Time
- Everyone must individually submit all milestones.
 - No sharing of code is allowed
- Project milestone 1:
 - CPU Convolution with stride, CPU code profiling
- Project milestone 2:
 - Baseline GPU Convolution Kernel with stride
- Project milestone 3:
 - GPU Convolution Kernel Optimizations

Project Release

- Project will be released soon (only PM1 for now)
 - Check the course wiki page for the link to the github repository
 - https://github.com/aschuh703/ECE408/tree/main/Project
- The Readme in the repository contains all the instructions and details to complete the project.
- The github repo will be updated with additional code and instructions for PM2 & PM3