DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Announcements

- Will start grading HW 1 after tonight's deadline
- Will release HW 2 this week
- Midterm exam on Friday Feb 23
- Will release further final project guidance this week.

Outline

- Review of Gradient Descent
- Non-linear regression
 - Polynomial regression
 - Cubic, spline regression
- Regularization
 - Ridge regression
 - Lasso regression
- Classification
 - K Nearest Neighbors (kNN)
 - Bias-Variance tradeoff

How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

Gradient Descent

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

GD Convergence Issues

Adaptive step size

- Start with large step size and reduce over time, adaptively
- Line search method
- Measure how objective decreases

NON-LINEAR REGRESSION

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Polynomial Regression

Polynomial function on single feature

$$-h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_p x^p$$

Polynomial Regression

Polynomial Regression Training

- Simple Linear Regression
- $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_p x^p$
- How to train model?

Piecewise Polynomial

- Divide the space into regions
- Polynomial regression on each region
 - Linear piecewise (degree 1), quadratic piecewise
 (degree 2), cubic piecewise (degree 3)

Piecewise and spline regression

Piecewise polynomial vs Regression spline

1 break at Age = 50

1 knot at Age = 50

Definition: Cubic spline

A cubic spline with knots at x-values ξ_1, \ldots, ξ_K is a continuous piecewise cubic polynomial with continuous derivates and continuous second derivatives at each knot.

Cubic splines

- ullet Turns out, cubic splines are sufficiently flexible to consistently estimate smooth regression functions f
- You can use higher-degree splines, but there's no need to
- To fit a cubic spline, we just need to pick the knots

Additive Models

Multiple Linear Regression Model

$$-y_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

Additive Models

$$-y_i = \theta_0 + f_1(x_1) + \dots + f_d(x_d)$$

- Can instantiate functions f with:
 - Linear functions:
 - Quadratic:
 - Cubic:

Generalization in ML

- Goal is to generalize well on new testing data
- Risk of overfitting to training data

Bias-Variance Tradeoff

- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets
 MSE is proportional to Bias + Variance

REGULARIZATION

Regularization

- A method for automatically controlling the complexity of the trained model
- Goals
 - Reduce model complexity
 - Reduce variance
 - Mitigate the bias-variance tradeoff
- Main techniques
 - Modify loss function to account for regularization term (Ridge, Lasso)
 - Perform feature selection and fit model on subset of features

Ridge regression

Linear regression objective function

$$J(\theta) = \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2 + \lambda \sum_{j=1}^{d} \theta_j^2$$

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Coefficient shrinkage

Predict credit card balance

GD for Ridge Regression

Min Loss

$$J(\theta) = \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2 + \lambda \sum_{j=1}^{d} \theta_j^2$$

GD for Ridge Regression

Min MSE

$$J(\theta) = \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2 + \lambda \sum_{j=1}^{d} \theta_i^2$$

Gradient update: $\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij} - \alpha \lambda \theta_j$$

Regularization

$$\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha \sum_{i=1}^N (h_{\theta}(x_i) - y_i) x_{ij}$$

Lasso Regression

$$J(\theta) = \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$

- L1 norm for regularization
- Results in sparse coefficients
- Small issue: gradients cannot be computed around 0
 - Can use sub-gradient at 0

Lasso Regression

$$J(\theta) = \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$
Squared
Residuals

Regularization

- L1 norm for regularization
- Results in sparse coefficients
- Issue: gradients cannot be computed around 0
- Method of sub-gradient optimization

Alternative Formulations

Ridge

- L2 Regularization
- $-\min_{\theta} \sum_{i=1}^{N} [h_{\theta}(x_i) y_i]^2 \text{ subject to } \sum_{j=1}^{d} |\theta_j|^2 \le \epsilon$

Lasso

L1 regularization

$$-\min_{\theta} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$
 subject to $\sum_{j=1}^{d} |\theta_j| \le \epsilon$

Lasso vs Ridge

- Ridge shrinks all coefficients
- Lasso sets some coefficients at 0 (sparse solution)
 - Perform feature selection

Ridge vs Lasso

 Both methods can be applied to any loss function (regression or classification)

Ridge Lasso

Ridge vs Lasso

- Both methods can be applied to any loss function (regression or classification)
- In both methods, value of regularization parameter λ needs to be adjusted
- Both reduce model complexity

Ridge

- + Differentiable objective
- Gradient descent converges to global optimum
- Shrinks all coefficients

Lasso

- Gradient descent needs to be adapted
- + Results in sparse model
- Can be used for feature selection in large dimensions

Classification

Binary or discrete

Suppose we are given a training set of N observations

$$\{x_1, \dots, x_N\}$$
 and $\{y_1, \dots, y_N\}, x_i \in \mathbb{R}^d, y_i \in \{0, 1\}$

Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

Example 1: Binary classification

Classifying spam email

GOOGLE LOTTERY INTERNATIONAL INTERNATIONAL PROMOTION / PRIZE AWARD . (WE ENCOURAGE GLOBALIZATION) FROM: THE LOTTERY COORDINATOR, GOOGLE B.V. 44 9459 PE. RESULTS FOR CATEGORY "A" DRAWS

Congratulations to you as we bring to your notice, the results of the First Ca inform you that your email address have emerged a winner of One Million (1,0 money of Two Million (2,000,000.00) Euro shared among the 2 winners in this email addresses of individuals and companies from Africa, America, Asia, Au CONGRATULATIONS!

Your fund is now deposited with the paying Bank. In your best interest to avo award strictly from public notice until the process of transferring your claims | NOTE: to file for your claim, please contact the claim department below on e

Content-related features

- Use of certain words
- Word frequencies
- Language
- Sentence

Structural features

- Sender IP address
- IP blacklist
- DNS information
- Email server
- URL links (non-matching)

Example 2: Multi-class classification

Image classification

K Nearest Neighbour (K-NN) Classifier

Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels

e.g.
$$K = 3$$

 applicable to multi-class case

Distance Metrics

Euclidean Distance

$$\sqrt{\left(\sum_{i=1}^k (x_i-y_i)^2\right)}$$

Manhattan Distance

$$\sum_{i=1}^{k} |x_i - y_i|$$

Minkowski Distance

$$\left(\sum_{i=1}^k (|x_i-y_i|)^q\right)^{\frac{1}{q}}$$

kNN

- Algorithm (to classify point x)
 - Find k nearest points to x (according to distance metric)
 - Perform majority voting to predict class of x

kNN

- Algorithm (to classify point x)
 - Find k nearest points to x (according to distance metric)
 - Perform majority voting to predict class of x
- Properties
 - Does not learn any model in training!
 - Instance learner (needs all data at testing time)

K-Nearest-Neighbours for Multi-class Classification

Vote among multiple classes

How to choose k (hyper-parameter)?

K = 3

Training data

Testing data

error = 0.0760

error = 0.1340

How to choose k (hyper-parameter)?

K = 7

error = 0.1320

error = 0.1110

How to choose k (hyper-parameter)?

Bias-Variance Tradeoff for kNN

Bias-Variance Tradeoff for kNN

How Overfitting Affects Prediction

How can we avoid over-fitting without having access to testing data?

Cross Validation

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

Cross Validation

1. k-fold CV

- Split training data into k partitions (folds) of equal size
- Pick the optimal value of hyper-parameter according to error metric averaged over all folds

Cross Validation

2. Leave-one-out CV (LOOCV)

- k=n (validation set only one point)
- Pros: Less bias
- Cons: More expensive to implement, higher variance
- Recommendation: perform k-fold CV with k=5 or k=10

Cross-Validation Takeaways

- General method to estimate performance of ML model at testing and select hyper-parameters
 - Improves model generalization
 - Avoids overfitting to training data
- Techniques for CV: k-fold CV and LOOCV
- Compare to regularization
 - Regularization works when training with GD
 - Cross-validation can be used for hyper-parameter selection
 - The two methods can be combined (Ridge, Lasso)