Project 2 White Paper To Churn or Not to Churn... That is the Question

OPIM 5604 - B12: Predictive Modeling Team 2

This report was developed by Team 2: Meghna Ashok, Luke D'Agostino, Mohit Khanna, Logan Miller, Stuti Viyulie

Table of Contents

Executive Summary	3
Problem Statement	3
Methodology	4
Sample	5
Explore	5
Modify	6
Model	8
Assess	9
Results	10
Conclusions & Recommendations	11
References	13
Appendix	14
Appendix A: Dataset Description	14
Appendix B: Data Partitions	16
Appendix C: Data Exploration	17
Appendix D: Outlier Exploration	22
Appendix E: Model Results - Group 1 (All Variables)	23
Appendix F: Model Results - Group 2 (Subset of Variables)	31
Appendix G: Model Ranking - Assessment	37

Executive Summary

The purpose of this report is to build a predictive model to predict the Target Variable - **Churn-**"**Yes/No**". The chosen dataset was explored for innate trends using various unsupervised learning techniques like Data Visualization, Affinity Analysis etc.18 out of the 20 columns in our data set were of the categorical type. We converted these variable types to continuous variables by using dummy variables in order to make the data ready to feed into particular models. Our dataset had no outliers due to it being heavy in categorical variables. There were 11 missing values in the dataset which we excluded from our analysis. Several pureplay and ensemble models were utilized on the dataset and the best one was selected. We concluded that some of the strongest models we recommend our business partners to use would be the Group 2 significant variables models, specifically the nominal logistic model, with the ensemble model and the neural network model as runner ups.

Based on our analysis we concluded the following:

- Customers with multiple service lines are more likely to churn out
- Senior Citizens are more likely to churn out compared to middle aged customers
- Tenure is the most significant variable based on our logistic regression model; customers are more likely to churn if they have been recently on boarded by the Telco
- Customers are more likely to churn out if they subscribe to a monthly payment plan

Problem Statement

A telecom company has expanded its product offerings to offer more than just traditional ISP and phone services. The company has been offering digital services like smart TV, OTT bundled services along with their phone lines. These services have helped them capture a more young and tech savvy customer demographic. This company believes that these customers have a

higher upselling and cross selling potential. However, the company has recently noticed an increase in their customer churn rate. The company wants to answer the following questions:

- 1. Is there a specific customer type that is churning out?
- 2. For customers that have churned out, are they customers of a specific product?
- 3. Is there a correlation between churned out customers and the number of lines that they are subscribed to?
- 4. If a customer is subscribed to additional security and general services (such as device protection, tech support, etc.) are they less likely to churn out?
- 5. If a customer has dependents on their plan are they less likely to churn?

 We are hoping to answer these questions by building a predictive model based on this classification problem. Through this model we will try to predict the target variable **Churn-"Yes/No"**.

By understanding the different features of the historical customers who have churned out like demographic, product types and additional subscriptions, the company will be able to work towards improving those products and reducing churn rate.

If the company is losing a certain demographic of customer, say the telco is experiencing heavy churn rate among the older generation of customers, the company can better focus on those customers to get them to subscribe back to their plans. Maybe they can come up with new products that better suit their needs. The company could also tweak their existing product portfolio to better suit the needs of this demographic of customers

Methodology

We have undertaken the five-step SEMMA process (Sample, Explore, Modify, Model, and Assess) as our methodology for this project.

Sample

The dataset we have chosen is 'Telcom Customer Churn data' from Kaggle. The dataset was a part of IBM Cognos Analytics 11.1.3. It contains information about a telecommunication company that provided home phone and Internet services to 7043 customers in California. The original data contains 7043 rows (customers) and 21 columns (features). The "Churn" column is our target, which is a categorical variable that indicates whether the customer has churned or not (Yes or No). The columns and their data types can be found in Appendix A [A]. As a part of the Sampling process in SEMMA, we have also partitioned our data into training, validation and test sets, in the ratio of 60:20:20 [B].

Explore

Some of the relevant patterns and correlations we found through visualization are listed below. Please see screenshots for the findings below under Appendix C [C].

- 1. Senior Citizen vs Churn: Out of all customers, 6.8% of customers are senior citizens and have churned, and 476 out of 1142 senior citizens have churned i.e almost 42% of Senior Citizens have churned. Hence, Senior Citizens are more likely to churn than middle aged customers and this is an interesting predictor.
- Partner vs Churn: 17% of customers churned, having no partner. Among customers
 without partners, 33% churned. i.e. Customers without partners are more likely to churn
 as compared to customers with partners.
- 3. Dependent vs Churn: Overall, Customers without dependents churned more than customers with dependents. Among customers without dependents, 31% of them churned. This implies that customers without dependents are more likely to churn compared to customers with dependents.
- 4. Phone service vs Churn: Customers with phone service are more likely to churn as

- compared to customers without phone service.
- **5. Multiple Lines vs Churn:** Customers with multiple lines have a slightly higher churn rate. Only a small percentage of customers don't have a phone service connection.
- 6. Internet Service vs Churn: 44% of total customers have Fiber optic InternetService and 34.4% of the customers have DSL InternetService. Customers who have not taken up the Internet service have a very low possibility of churning. Customers who have taken FiberOptic Internet service are more likely to churn than customers who have taken DSL. This is interesting because DSL connections are slower and more expensive than FiberOptic, but are still less likely to churn.
- Contract vs Churn: Month to Month contract seems to be the most popular among customers, and has the highest chance of churning.
- 8. **Paperlessbilling vs Churn:** Customers who have taken up paperless billing are more likely to churn than customers who have not.
- 9. **Payment method vs Churn**: Electronic check seems to be the most popular payment method among customers, and also has the highest churn rate.
- 10. Services taken up by the customer vs Churn rate: Customers who have taken up all the 4 services- Online security, Online backup, Device protection and Tech support are less likely to churn, compared to customers who have not taken up these services.
- 11. Tenure vs Churn: There is slight differentiation between the variables for certain ranges. Customers having Tenure<15 months are highly likely to Churn, i.e. Newer customers are more likely to churn.</p>

Modify

Dummy Variables

The following columns were converted from categorical variables to dummy variables, with values 1 (Indicating 'Yes'/presence in column) and 0 (Indicating a 'No'). This was done using Indicator columns, to be able to perform math on our categorical variables more easily. Note that we have made new indicator columns one fewer than the number of categories in each column.

- Gender: New column created Gender (Female).
- Partner: New column created Partner (Yes).
- **Dependents**: New column created Dependants (Yes).
- Phone Service: New column created Phone Service (Yes).
- Multiple Lines: New columns created: Multiple Lines (No phone service) and Multiple Lines (Yes). When both have the value 0, it indicates Multiple Lines (No).
- Internet Service: New columns created: Internet Service (DSL) and Internet Service (Fiber optic). When both have the value 0, it indicates Internet Service (No).
- Online Security: New columns created: Online Security (Yes) and Online Security (No).
 When both have the value 0, it indicates Online Security (No Internet Service).
- Online Backup: New columns created: Online Backup (Yes) and Online Backup (No). If both have the value 0, it indicates Online Backup (No Internet Service).
- Device Protection: New columns created: Device Protection (Yes) and Device
 Protection (No). When Device Protection (Yes) and Device Protection (No) both have the value 0, it indicates Device Protection (No Internet Service).
- Tech Support: New columns created: Tech Support (Yes) and Tech Support (No). When both have the value 0, it indicates Tech Support (No Internet Service).
- Streaming TV: New columns created: Tech Support (Yes) and Tech Support (No). When both have the value 0, it indicates Tech Support (No Internet Service).
- Streaming Movies: New columns created: Streaming Movies (Yes) and Streaming
 Movies (No). When Streaming Movies(Yes) and Streaming Movies(No) both have the
 value 0, it indicates Streaming Movies (No Internet Service).

- Contract: New columns created: 'Month-to-month' and 'One year'. When
 Month-to-month and One year both have the value 0, it indicates a 'Two year' contract.
- Paperless Billing: New column: Paperlessbilling. 1 indicates Yes, 0 indicates No
- Payment method: New columns created: Bank transfer (automatic), Credit card
 (automatic) and Electronic check. When all three have the value 0, it indicates 'Mailed
 check' is the payment method.

Missing variables

TotalCharges column had 11 missing values. Since the percentage of missing values was very small, we excluded these 11 values as it wouldn't have a significant impact on retained data.

Outliers

The dataset has no outliers for continuous variables [D]. Moreover, the continuous variables are not skewed and hence do not need standardization. We have also chosen not to perform a Principal Component Analysis on our dataset since there is not much complexity in our data. Also, since we have many categorical predictor variables, explainability is of the utmost importance with respect to making business decisions with our results.

Model

The team took a robust approach to exploring the different modeling methods which could be used to forecast future data in this field. The modeling approach was, in essence, to throw everything at the wall and see what sticks. The team ran every applicable model that was taught in the course, meaning that the models used for this project were: logistic regression, decision tree, boosted tree, bootstrap forest, neural network, discriminant analysis, k nearest neighbors, naive bayes, and an averaged ensemble model.

The team used every one of these modeling techniques with every predictor variable in the dataset in order to attempt to predict churn. Some of these predictive models were great,

while others didn't quite meet the mark. Many of the models gave very similar results. In the case of the ensemble model, it was an average of every other model built. The results for the individual models can be found in the appendix [E].

The team also noticed, however, that the initial run of the logistic regression model indicated that about half of the variables were insignificant in predicting the target variable. The team eliminated all of the predictors which were not significant, based on the threshold of a p-value <= 0.05. The results of the new logistic regression were a much better performing model. Due to this, Team 1 decided to rebuild every one of the models, this time only including the predictor variables deemed significant by the logistic regression method. These variables, in order of importance, were: tenure, Month-to-Month, Internet Service (Fiber Optic), Electronic check, Paperlessbilling, Multiple Lines (Yes), Online Security (No), TotalCharges, Phone Service (Yes), Tech Support (No), Dependents (Yes), StreamingMovies (Yes), and SeniorCitizen. Once again, for the ensemble model it was an average of every other model built with just these variables. The results for the individual models can be found in the appendix [F].

Assess

To rank the model's performance we separated the models into two groups. Group 1 included the models with all the variables while Group 2 included the models with only the significant variables. Then the accuracy of the performance was sorted by partition in ascending order. We also checked for overfitting from the training partition to the validation partition. A model was considered overfit if its misclassification rate's growth rate exceeded a 15% threshold from training to validation. Models that were overfit received the lowest ranking overall. This allowed us to better assess the performance of our models and interpret the results to draw conclusions. This spreadsheet can be found in the appendix [G].

Results

As mentioned in the Modeling section of the paper, the team ran the models using two sets of data, one with all of the predictor variables and the other with only those deemed significant by the logistic regression. This effectively created two groups of models to analyze.

Group 1 consisted of all the predictor variables, regardless of their significance value. The sizes of our Training, Validation and Test groups were 4,226, 1,398 and 1,408 respectively. Overfitting was accounted for by comparing the changes in misclassification rates between the Training and Validation groups. With a growth rate of 15% ((Validation Misclassification Rate - Training Misclassification Rate)/Training Misclassification Rate) or more being the identifier of an overfit model, it was found that the Ensemble Model Average, Partition model, Boosted Tree model and Bootstrap Forest model were overfit with growth rates of 16.6%, 17.7%, 31.7% and 97.2% respectively. In regards to the validation group, the best performing model for Group 1 was the Fit Nominal Logistic model with a misclassification rate of 19.6%, overfitting growth rate of only 1.3% and a RASE score of .37. Following close behind, the second best performing model for Group 1 was the Neural Model NTanH(3)NTanH2(3) with a misclassification rate of 20.1%, overfitting growth rate of 3.2% and RASE score of .37. The rest of the rankings went as follows; Neural Model NTanH(3), KNN, Discriminant, Naive Bayes and then the overfit models, Ensemble Model Average, Boosted Tree, Bootstrap Forest and Partition.

Group 2 consisted of only the predictor variables that were deemed significant. The sizes of our Training, Validation and Test groups were 4,226, 1,398 and 1,408 respectively. Overfitting was accounted for in the same manner as for Group 1. The models that were found to be overfit were the Boosted Tree model and the Bootstrap Forest model with growth rates of 22.6% and 65.6% respectively. When looking at the validation group, the best performing model for Group 2 was the Fit Nominal Logistic model with a misclassification rate of 19.6%, overfitting growth rate

of 1.3% and a RASE score of .37. It is interesting to note that there was no change in the measurement results for this model between Group 1 and Group 2. The second best performing model for Group 2 was the Ensemble Model Average with a misclassification rate of 19.7%, overfitting growth rate of 14.1% and RASE score of .37. The rest of the rankings went as follows; Neural Model NTanH(3), Neural Model NTanH(3), Partition, KNN, Naive Bayes, Discriminant and then the overfit models, Boosted Tree and Bootstrap Forest.

With these results, we decided to go with Group 2 where only the significant predictor variables were used. Even though the Nominal Logistic Model performed the same in both groups, Group 2's second best performing model was the Ensemble Model Average whereas in Group 1 this model was overfit. This shows that using Group 2 was a better performer as it also helped the issue of overfitting.

Conclusions & Recommendations

Based on the results from our modeling efforts to predict whether a customer will churn we have concluded that some of the strongest models we recommend our business partners to use the Group 2 significant variables models, specifically the nominal logistic model with the ensemble model and the neural network model as runner ups. These models had the most accuracy with the least amount of overfitting. After interpreting the results from these models we recommend the following for our business partners:

We found that customers with multiple lines are more likely to churn than customers with only one service. More services leads to more opportunities to experience dissatisfaction. In addition, senior citizens were slightly more likely to churn than middle aged customers. Telco should cater enhanced customer service and deals and discounts to combat unpleasurable experiences to prevent customer churn. These customers should be flagged in their customer demographics system because they are more susceptible to churn. Additionally, the company

can promote and offer more Family plans and Group-centric offers since customers with partners or dependents are less likely to churn.

The nominal logistic regression revealed that customer tenure is one of the most important predictors of customer churn, specifically newer customers are more likely to churn. We recommend that Telco recognizes newer customers have more risk of churning and combating urges to depart. For example, this can be achieved by offering better customer service experiences and deals or discounts to keep newer customers engaged longer. Telco's responsiveness to customer dissatisfaction will be crucial in maintaining customer retention. They can offer a discount or a deal to show that they care about their customers and are committed to maintaining their business. Discounts and Incentives can also be offered for DSL internet connections, as customers taking up DSL are less likely to churn as compared to customers taking up FiberOptics. One possible reason for this is that DSL is more widely available than FiberOptics, and is hence more practical for the average customer.

Telco can promote packages/bundle deals consisting of additional services like Online security, Online backup, Device protection and Tech support, at a discount for new customers and existing customers having a phone service or Internet connection, since customers who have taken up all 4 additional facilities are less likely to churn, and will continue with their services. Another recommendation is to push yearlong payment agreements rather than month to month arrangements. Customers that pay month to month have an easier way to cancel services rather than a customer who is contractually obligated and will incur a fee for breaching a contract. Longer term plans combined with better customer service will discourage customers from seeking services from other competitors. In conclusion, we recommend focusing on the "at risk" customer demographics and the characteristics that usually lead to churning to decrease their churn rate in the future.

References

BlastChar. "Telco Customer Churn." *Kaggle*, 23 Feb. 2018, https://www.kaggle.com/blastchar/telco-customer-churn?select=WA_Fn-UseC_-Telco-C ustomer-Churn.csv.

Shmueli, Galit, et al. *Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro*. John Wiley & Sons, Inc., 2017.

Appendix

Appendix A: Dataset Description

Column Name	Data Type	Description
CustomerID	Categorical	Unique ID for each customer
Gender	Categorical	Customer's Gender (Male/Female)
Age	Categorical	Customer's age at the time of sampling (in years)
SeniorCitizen	Categorical	Indicates whether or not the customer is a senior citizen, 65+ (1=Yes, 0=No)
Partner	Categorical	Indicates if the customer is married (Yes/No)
Dependents	Categorical	Indicates if the customer lives with dependents (children, parents, grandparents, etc.) with values (Yes/No)
Tenure	Continuous	Total # of months the customer has been with the Telco company
Phone Service	Categorical	Indicates if the customer subscribes to home phone service (Yes/No)
Multiple Lines	Categorical	Indicates if the customer has subscribed to multiple phone lines (Yes/No) 'No Phone Service' means that this customer doesn't subscribe to phone service (i.e. NA)
Internet Service	Categorical	Indicates if the customer subscribes to internet service w/ the Telco company & the type of service ('DSL'/'Fiber Optic'/No)
Online Security	Categorical	Indicates if the customer subscribes to additional online security service (Yes/No) 'No Internet Service' means that this customer doesn't subscribe to internet service (i.e. NA)
Online Backup	Categorical	Indicates if the customer subscribes to additional online backup service (Yes/No/'No Internet Service')
Device Protection Plan	Categorical	Indicates if the customer subscribes to additional device protection for their internet equipment (Yes/No/'No Internet Service')
Tech Support	Categorical	Indicates if the customer subscribes to additional tech support service with their internet plan (Yes/No/'No Internet Service')
Streaming TV	Categorical	Indicates if the customer uses their internet service to stream television programming (Yes/No/'No Internet Service')

Streaming Movies	Categorical	Indicates if the customer uses their internet service to stream movies (Yes/No/'No Internet Service')	
Contract	Categorical	Indicates the customer's current contract type ('Month-to-Month'/'One Year'/'Two Year')	
Paperless Billing	Categorical	Indicates if the customer has chosen paperless billing (Yes/No)	
Payment Method	Categorical	Indicates the mode which the customer uses to pay their bills ('Electronic Check'/'Mailed Check'/'Bank Transfer (automatic)'/'Credit Card (automatic)')	
Monthly Charge	Continuous	The customer's current monthly charge for all their services	
Total Charges	Continuous	The customer's total amassed charges	
Churn	Categorical	Indicates whether or not the customer has churned (Yes/No) This is the target variable	

Appendix B: Data Partitions

Appendix C: Data Exploration

[1] **Senior Citizens** are more likely to churn than middle aged customers.

[2] Customers **without partners** are more likely to churn as compared to customers with partners.

[3] Customers **without dependents** are more likely to churn compared to customers with dependents.

[4] Customers **with phone service** are more likely to churn as compared to customers without phone service. Only a small percentage of customers don't have phone service.

[5] Customers with **Multiple lines** have a slightly higher churn rate, compared to customers with 1 service.

[6] Customers who have taken **FiberOptic Internet service** are more likely to churn than customers who have taken DSL. Customers who have not taken up the Internet service have a very low possibility of churning.

[7] **Month to Month** contract seems to be the most popular among customers, and has the highest chance of churning.

[8] Customers who have taken up **Paperless billing** are more likely to churn than customers who have not.

[9] **Electronic check** seems to be the most popular payment method among customers, and also has the highest churn rate.

[10] Customers who have taken up all the **4 services- Online security, Online backup, Device**protection and Tech support are less likely to churn, compared to customers who have not taken up these services.

[11] Newer customers (**Tenure**<15 months) are more likely to churn.

Appendix D: Outlier Exploration

Column	10% Quantile	90% Quantile	Low Threshold		Number of Outliers	
tenure	2	69	-199	270	0	
MonthlyCharges	20.05	102.65	-227.75	350.45	0	
TotalCharges	84.53	5978.86	-17598	23661.9	0	

Appendix E: Model Results - Group 1 (All Variables)

Logistic Regression

Fit Details				
Measure	Training	Validation	Test	Definition
Entropy RSquare	0.2928	0.2782	0.2382	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.4189	0.4024	0.3515	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)
Mean -Log p	0.4084	0.4207	0.4415	∑ -Log(ρ[j])/n
RASE	0.3637	0.3707	0.3774	$\sqrt{\sum(y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.2653	0.2715	0.2759	Σ y[j]-ρ[j] /n
Misclassification Rate	0.1936	0.1960	0.2038	∑ (ρ[j]≠ρMax)/n
N	4226	1398	1408	n

nfusio	n Mat	rix							
Tra	aining		Vali	dation			-	Гest	
Actual	Predic		Actual	Predic Cou			Actual	Predic Cou	
Churn	Yes	No	Churn	Yes	No		Churn	Yes	No
Yes	620	497	Yes	203	174		Yes	200	175
No	321 2	2788	No	100	921		No	112	921
	Pred	icted		Pred	icted			Pred	icted
Actual	Ra	te	Actual	Ra	ate		Actual	Ra	ite
Churn	Yes	No	Churn	Yes	No	,	Churn	Yes	No
Yes	0.555	0.445	Yes	0.538	0.462	2	Yes	0.533	0.467
No	0.103	0.897	No	0.098	0.902		No	0.108	0.892

Decision Tree

Training Validation **Test Definition** Measure Entropy RSquare 0.2969 0.4238 Generalized RSquare Mean -Log p 0.4061 $0.4459 \quad 0.4476 \quad \sum -\log(\rho[j])/n$ RASE 0.3638 0.3830 0.3812 $\sqrt{\sum(y[j]-\rho[j])^2/n}$ Mean Abs Dev 0.2652 $0.2806 \quad 0.2766 \quad \sum |y[j] - \rho[j]|/n$ Misclassification Rate 0.1933 0.2275 0.2159 $\sum (\rho[j] \neq \rho Max)/n$ Ν 4226 1398 1408 n △ Confusion Matrix Training Validation Test **Predicted** Predicted Predicted Actual Count Actual Count Actual Count Churn No Yes Churn No Yes Churn No Yes 899 134 No 2780 329 No 881 140 No 199 170 205 Yes 488 629 Yes 178 Yes Predicted Predicted **Predicted** Rate Actual Rate Actual Rate Actual Churn No Yes Churn No Yes Churn No Yes No 0.894 0.106 No 0.863 0.137 No 0.870 0.130 Yes 0.437 0.563 Yes 0.472 0.528 Yes 0.453 0.547

Boosted Tree

■ Overall Statistics Training Validation **Test Definition** Measure Entropy RSquare 0.4041 Generalized RSquare 0.5445 0.3801 0.3240 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) Mean -Log p 0.3441 $0.4313 \quad 0.4538 \quad \Sigma - \text{Log}(\rho[j])/n$ **RASE** 0.3307 $0.3730 \quad 0.3807 \quad \sqrt{\sum(y[j]-\rho[j])^2/n}$ Mean Abs Dev $0.2708 \quad 0.2755 \quad \sum |y[j] - \rho[j]|/n$ 0.2393 Misclassification Rate 0.1564 0.2060 0.2088 ∑ (ρ[j]≠ρMax)/n 4226 1398 1408 n △ Confusion Matrix Training Validation Test Predicted Predicted Predicted Actual Count Actual Count Actual Count No Yes Churn No Yes Churn No Yes Churn 2913 196 920 101 No 930 103 No No Yes 465 652 Yes 187 190 Yes 191 184 Predicted Predicted Predicted Actual Rate Actual Rate Actual Rate Churn No Yes Churn Yes Churn No Yes No No 0.937 0.063 0.901 0.099 0.900 0.100 No No 0.416 0.584 Yes 0.496 0.504 Yes 0.509 0.491 Yes

Bootstrap Forest

△ Overall Statistics

Measure	Training	Validation	Test Definition	
Entropy RSquare	0.5182	0.2547	0.2155 1-Loglike(model)/Loglike(0)	
Generalized RSquare	0.6575	0.3732	0.3221 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2	2/n))
Mean -Log p	0.2783	0.4345	0.4547 ∑ -Log(ρ[j])/n	
RASE	0.2896	0.3758	0.3815 √ ∑(y[j]-ρ[j])²/n	
Mean Abs Dev	0.2097	0.2739	0.2777 ∑ y[j]-ρ[j] /n	
Misclassification Rate	0.1060	0.2117	0.2145 ∑ (ρ[j]≠ρMax)/n	
N	4226	1398	1408 n	

△ Confusion Matrix

Tr	OIL	1 III	_
	an		и.

	Predicted				
Actual	Cou	ınt			
Churn	No	Yes			
No	3002	107			
Yes	341	776			

	Predicted			
Actual	Ra	te		
Churn	No	Yes		
No	0.966	0.034		
Yes	0.305	0.695		

Validation

Actual	Predicted Count				
Churn	No	Yes			
No	913	108			
Yes	188	189			

	Predicted				
Actual	Rate				
Churn	No	Yes			
No	0.894	0.106			
Yes	0.499	0.501			

Test

	Predicted				
Actual	Cou	ınt			
Churn	No	Yes			
No	919	114			
Yes	188	187			

	Predicted				
Actual	Rate				
Churn	No	Yes			
No	0.890	0.110			
Yes	0.501	0.499			

Neural Network

Discriminant Analysis

Number Percent Entropy Count Misclassified Misclassified RSquare -2LogLikelihood Source Training 4226 979 23.1661 0.14287 4183.84 Validation 0.12671 1398 24.5351 343 25.9233 0.07707 Test 1408 365

Training					
Predicted					
Actual Count					
Churn	No	Yes			
No	2380	729			
Yes	250	867			

	Predicted				
Actual	Rate				
Churn	No	Yes			
No	0.766	0.234			
Yes	0.224	0.776			

Validation					
Predicted					
Actual Count					
Churn	No	Yes			
No	773	248			
Yes	95	282			

	Predicted				
Actual	Rate				
Churn	No	Yes			
No	0.757	0.243			
Yes	0.252	0.748			

Test					
Predicted					
Actual Count					
Churn	No	Yes			
No	773	260			
Yes	105	270			

	Predicted				
Actual	Rate				
Churn	No	Yes			
No	0.748	0.252			
Yes	0.280	0.720			

K Nearest Neighbors

rainir	ng						⊿ Vali	dation				⊿ Test	t			
			Misclassifica	tion						Misclassification					Misclassification	
K C	ount	RSquare	1	Rate	Misclassi	fications	K	Count	RSquare	Rate	Misclassifications	K	Count	RSquare	Rate	Misclassifications
1	4226	-0.0648	0.20	6881		1136	1	1398	-0.083	0.27897	390	1	1408	-0.1666	0.30682	432
2	4226	0.0117	0.2	7615		1167	2	1398	0.01703	0.28112	393	2	1408	-0.0427	0.28622	403
3	4226	0.0621	0.24	4397		1031	3	1398	0.06507	0.24249	339	3	1408	-0.0057	0.27273	38-
4	4226	0.11993	0.2	5130		1062	4	1398	0.09101	0.25107	351	4	1408	0.04919	0.26918	37
5	4226	0.14114	0.2	3095		976	5	1398	0.13248	0.23820	333	5	1408	0.08018	0.26349	37
6	4226	0.16861	0.2	2551		953	6	1398	0.15855	0.23605	330	6	1408	0.10451	0.25568	36
7	4226	0.18124	0.2	2456		949	7	1398	0.17575	0.22604	316 *	7	1408	0.11064	0.24645	34
8	4226	0.19585	0.2	1912		926	8	1398	0.19607	0.23677	331	8	1408	0.12799	0.24574	34
9	4226	0.20391	0.2	1936		927	9	1398	0.20717	0.23176	324	9	1408	0.1358	0.24077	33
0	4226	0.21232	0.2	1888		925 *	10	1398	0.20967	0.23391	327	10	1408	0.14355	0.23793	33
Trai	ning		⊿ Valida	tion		⊿ Test										
	Pr	edicted		Drod			Predict	od								
Actu	ıal (Count	Actual		icted unt	Actual	Count									
Actu			Actual Churn	Co		Actual Churn		t								
	n N	Count		Co No	unt		Count No Y	t								
Chur	n N	Count Io Yes	Churn	No 880	unt Yes	Churn	Count No Y 865 1	t ′es								
Chur No Yes	n N	Count lo Yes 72 437 12 605	Churn No Yes	No 880 175	ves 141 202 dicted	Churn No Yes	No Y 865 1 179 1	t /es 68 96								
No Yes	n N 267 5 P	Count lo Yes 72 437 12 605 redicted Rate	Churn No Yes	No 880 175 Pre	Yes 141 202 dicted	Churn No Yes	No Y 865 1 179 1 Predic	t /es 68 96								
Chur No Yes	n N 267 5* P n	Count lo Yes 72 437 12 605	Churn No Yes Actual Churn	No 880 175 Pre F No	Yes 141 202 dicted	Churn No Yes	No Y 865 1 179 1	t /es 68 96 :ted ce Yes								

Naive Bayes

△ Fit Details

Measure	Training	Validation	Test	Definition
Entropy RSquare	-0.647	-0.629	-0.903	1-Loglike(model)/Loglike(0)
Generalized RSquare	-1.622	-1.573	-2.695	$(1-(L(0)/L(model))^{(2/n)}/(1-L(0)^{(2/n)})$
Mean -Log p	0.9510	0.9498	1.1031	∑ -Log(ρ[j])/n
RASE	0.4452	0.4536	0.4657	$\sqrt{\sum(y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.2385	0.2458	0.2543	Σ y[j]-ρ[j] /n
Misclassification Rate	0.2343	0.2468	0.2472	∑ (p[j]≠pMax)/n
N	4226	1398	1408	n

△ Confusion Matrix

⊿ Training

	Predicted				
Actual	Cou	ınt			
Churn	No	Yes			
No	2401	708			
Yes	282	835			

	Predicted				
Actual	Rate				
Churn	No	Yes			
No	0.772	0.228			
Yes	0.252	0.748			

⊿ Validation

	Predicted			
Actual	Count			
Churn	No	Yes		
No	782	239		
Yes	106	271		

	Predicted			
Actual	Rate			
Churn	No	Yes		
No	0.766	0.234		
Yes	0.281	0.719		

⊿ Test

	Predicted			
Actual	Count			
Churn	No	Yes		
No	793	240		
Yes	108	267		

	Predicted		
Actual	Rate		
Churn	No	Yes	
No	0.768	0.232	
Yes	0.288	0.712	

Averaged Ensemble Model

■ Model Comparison Validation=Validation

Target Churn missing a predictor for category No

Predictors

Measures of Fit for Churn								
		Entropy	Generalized			Mean	Misclassification	
Creator	.2 .4 .6 .8	RSquare	RSquare	Mean -Log p	RASE	Abs Dev	Rate	N
Boosted Tree		0.2602	0.3801	0.4313	0.3730	0.2708	0.2060	1398
Boosted Tree		0.2602	0.3801	0.4313	0.3730	0.2708	0.2060	1398
Neural Model NTanH(3)		0.2802	0.4048	0.4196	0.3702	0.2709	0.1974	1398
Boosted Tree		0.2602	0.3801	0.4313	0.3730	0.2708	0.2060	1398
Neural Model NTanH(3)		0.2690	0.3910	0.4261	0.3731	0.2724	0.2031	1398
Partition		0.2351	0.3483	0.4459	0.3830	0.2806	0.2275	1398
Fit Nominal Logistic		0.2782	0.4024	0.4207	0.3707	0.2715	0.1960	1398
Bootstrap Forest		0.2524	0.3704	0.4358	0.3761	0.2737	0.2060	1398
K Nearest Neighbors							0.2246	1398
Discriminant		0.1267	0.1995	0.5091	0.4099	0.3156	0.2454	1398
Naive Bayes							0.2468	1398
Model Averaged		0.2754	0.3990	0.4224	0.3713	0.2789	0.2003	1398

Appendix F: Model Results - Group 2 (Subset of Variables)

Logistic Regression

Fit Details				
Measure	Training	Validation	Test	Definition
Entropy RSquare	0.2928	0.2782	0.2382	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.4189	0.4024	0.3515	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.4084	0.4207	0.4415	Σ -Log(ρ[j])/n
RASE	0.3637	0.3707	0.3774	$\sqrt{\sum (y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.2653	0.2715	0.2759	Σ y[j]-ρ[j] /n
Misclassification Rate	0.1936	0.1960	0.2038	∑ (p[j]≠pMax)/n
N	4226	1398	1408	n

Confusion Matrix **Training** Validation Test Predicted Predicted Predicted Actual Count Actual Count Actual Count Churn Yes No Churn Yes No Churn Yes No Yes 620 497 Yes 203 174 Yes 200 175 No 321 2788 No 100 921 No 112 921 Predicted Predicted Predicted Actual Rate Actual Rate Actual Rate Churn Yes No Churn Yes No Churn Yes No Yes 0.555 0.445 Yes 0.538 0.462 Yes 0.533 0.467 No 0.103 0.897 No 0.098 0.902 No 0.108 0.892

Decision Tree

△ Fit Details

Measure	Training	Validation	Test Definition
Entropy RSquare	0.3011	0.2576	0.2238 1-Loglike(model)/Loglike(0)
Generalized RSquare	0.4288	0.3769	0.3330 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.4036	0.4328	0.4499 ∑ -Log(ρ[j])/n
RASE	0.3607	0.3753	0.3840 √ ∑(y[j]-ρ[j])²/n
Mean Abs Dev	0.2607	0.2731	0.2773 ∑ y[j]-ρ[j] /n
Misclassification Rate	0.1872	0.2024	0.2102 ∑ (ρ[j]≠ρMax)/n
N	4226	1398	1408 n

△ Confusion Matrix

110	711	ηır	ш
		••••	. –

Actual	Predicted tual Count				
Churn		Yes			
No	2785	324			
Yes	467	650			

Actual	Predicted Rate		
Churn	No	Yes	
No	0.896	0.104	
Yes	0.418	0.582	

Validation

	Predicted			
Actual	Count			
Churn	No	Yes		
No	905	116		
Yes	167	210		

	Predicted			
Actual	Rate			
Churn	No	Yes		
No	0.886	0.114		
Yes	0.443	0.557		

Test

Actual	Predi Cou	
Churn	No	Yes
No	903	130
Yes	166	209

	Predicted						
Actual	Rate						
Churn	No	Yes					
No	0.874	0.126					
Yes	0.443	0.557					

Boosted Tree

Measure	Training	Validation	Test Definition
Entropy RSquare	0.3769	0.2738	0.2319 1-Loglike(model)/Loglike(0)
Generalized RSquare	0.5153	0.3971	0.3434 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.3598	0.4233	0.4452 ∑ -Log(ρ[j])/n
RASE	0.3391	0.3711	0.3800 √ ∑(y[j]-ρ[j])²/n
Mean Abs Dev	0.2452	0.2707	0.2755 ∑ y[j]-ρ[j] /n
Misclassification Rate	0.1656	0.2031	0.2053 ∑ (ρ[j]≠ρMax)/n
N	4226	1398	1408 n

△ Confusion Matrix

Training

Actual	Predi	
Churn		Yes
No	2899	210
Yes	490	627

Actual	Predicted Rate					
Churn	No	Yes				
No	0.932	0.068				
Yes	0.439	0.561				

Validation					
Predicted					
Actual	Count				
Churn	No	Yes			
No	928	93			
Yes	191	186			

	Predi	cted					
Actual	Rate						
Churn	No	Yes					
No	0.909	0.091					
Yes	0.507	0.493					

Test

Actual	Predicted Count					
Churn	No	Yes				
No	926	107				
Yes	182	193				

	Predicted					
Actual	Rate					
Churn	No	Yes				
No	0.896	0.104				
Yes	0.485	0.515				

Bootstrap Forest

Neural Network

Neural Network (2 layers)

Discriminant Analysis

K Nearest Neighbors

Naive Bayes

Averaged Ensemble Model

■ Model Comparison Validation=Validation

Target Churn missing a predictor for category No

Predictors

Measures of Fit for Churn	Measures of Fit for Churn									
Creator	.2 .4 .6 .8	Entropy RSquare	Generalized RSquare	Mean -Log p	RASE	Mean Abs Dev	Misclassification Rate	N		
Boosted Tree		0.2602	0.3801	0.4313	0.3730	0.2708	0.2060	1398		
Boosted Tree		0.2602	0.3801	0.4313	0.3730	0.2708	0.2060	1398		
Neural Model NTanH(3)		0.2802	0.4048	0.4196	0.3702	0.2709	0.1974	1398		
Boosted Tree		0.2738	0.3971	0.4233	0.3711	0.2707	0.2031	1398		
Neural Model NTanH(3)		0.2720	0.3948	0.4244	0.3718	0.2709	0.2003	1398		
Neural Model NTanH(3)NTanH2(3)		0.2724	0.3952	0.4242	0.3721	0.2735	0.1974	1398		
Partition		-0.000	-0.000	0.583	0.4438	0.3914	0.2697	1398		
Bootstrap Forest		0.2591	0.3787	0.4319	0.3762	0.2709	0.2089	1398		
Discriminant		0.1308	0.2055	0.5067	0.4097	0.3197	0.2439	1398		
Naive Bayes							0.2339	1398		
K Nearest Neighbors							0.2167	1398		
Model Averaged		0.2707	0.3931	0.4252	0.3702	0.2921	0.1974	1398		

Appendix G: Model Ranking - Assessment

Group 1 - All Variables

	Training (N = 4226)									
Rank	Model Name	Misclassification Rate	Total Accuracy	Accuracy of the "1"	True Positives	True Negatives	False Positives	False Negatives	RASE	Overfitting
1	Bootstrap Forest	10.55%	89.45%	88.97%	766	3014	95	351	0.29	
2	Boosted Tree	15.64%	84.36%	76.89%	652	2913	196	465	0.331	
3	Ensemble Model Average	17.18%	82.82%	69.93%	686	2814	295	431	0.343	
4	Neural Model NTanH(3)	18.86%	81.14%	66.10%	657	2772	337	460	0.363	
5	Partition	19.33%	80.67%	65.66%	629	2780	329	488	0.364	
6	Fit Nominal Logistic	19.36%	80.64%	65.89%	620	2788	321	497	0.364	
7	NTanH(3)NTanH2(3)	19.47%	80.53%	65.34%	626	2777	332	491	0.362	
8	K Nearest Neighbors	22.46%	77.54%	58.06%	605	2672	437	512		
9	Discriminant	23.17%	76.83%	54.32%	867	2380	729	250	0.403	
10	Naïve Bayes	23.43%	76.57%	54.12%	835	2401	708	282		

	Validation (N = 1398)									
Rank	Model Name	Misclassification Rate	Total Accuracy	Accuracy of the "1"	True Positives	True Negatives	False Positives	False Negatives	RASE	Overfitting
1	Fit Nominal Logistic	19.60%	80.40%	67.00%	203	921	100	174	0.371	
2	NTanH(3)NTanH2(3)	20.10%	79.90%	64.91%	209	908	113	168	0.37	
3	Neural Model NTanH(3)	20.46%	79.54%	64.26%	205	907	114	172	0.37	
4	K Nearest Neighbors	22.60%	77.40%	58.89%	202	880	141	175		
5	Discriminant	24.54%	75.46%	53.21%	282	773	248	95	0.41	
6	Naïve Bayes	24.68%	75.32%	53.14%	271	782	239	106		
- 7	Ensemble Model Average	20.03%	79.97%	64.92%	211	907	114	166	0.371	□verfit
8	Boosted Tree	20.60%	79.40%	65.29%	190	920	101	187	0.373	Overfit
9	Bootstrap Forest	20.82%	79.18%	64.43%	192	915	106	185	0.375	□verfit
10	Partition	22.75%	77.25%	58.70%	199	881	140	178	0.383	Overfit

Test (N = 1408)										
		Misclassification		Accuracy of		True	False	False		
Rank	Model Name	Rate	Total Accuracy	the "1"	True Positives	Negatives	Positives	Negatives	RASE	Overfitting
1	Neural Model NTanH(3)	20.31%	79.69%	63.05%	215	907	126	160	0.377	
2	Fit Nominal Logistic	20.38%	79.62%	64.10%	200	921	112	175	0.377	
3	NTanH(3)NTanH2(3)	20.88%	79.12%	62.54%	202	912	121	173	0.376	
4	K Nearest Neighbors	24.64%	75.36%	53.85%	196	865	168	179		
5	Naïve Bayes	24.72%	75.28%	52.66%	267	793	240	108		
6	Discriminant	25.92%	74.08%	50.94%	270	773	260	105	0.42	
- 7	Ensemble Model Average	19.96%	80.04%	64.33%	211	916	117	164	0.378	Overfit
8	Bootstrap Forest	20.67%	79.33%	64.09%	191	926	107	184	0.381	□verfit
9	Boosted Tree	20.88%	79.12%	64.11%	184	930	103	191	0.381	Overfit
10	Partition	21.59%	78.41%	60.47%	205	899	134	170	0.381	□verfit

Group 2 - Significant Variables

	Training (N = 4226)										
Rank	Model Name	Misclassification Rate	Total Accuracy	Accuracy of the "1"	True Positives	True Negatives	False Positives	False Negatives	RASE	Overfitting	
1	Bootstrap Forest	12.92%	87.08%	82.38%	720	2995	154	397	0.305		
2	Boosted Tree	16.56%	83.44%	74.91%	627	2899	210	490	0.331		
3	Ensemble Model Average	17.30%	82.70%	71.69%	638	2857	252	479	0.347		
4	Partition	18.72%	81.28%	66.74%	650	2785	324	467	0.361		
5	Neural Model NTanH(3)	19.24%	80.76%	66.49%	613	2800	309	504	0.363		
6	Fit Nominal Logistic	19.36%	80.64%	65.89%	620	2788	321	497	0.364		
7	NTanH(3)NTanH2(3)	19.85%	80.15%	64.82%	608	2779	330	509	0.364		
8	K Nearest Neighbors	21.49%	78.51%	61.27%	568	2750	359	549			
9	Naïve Bayes	22.65%	77.35%	55.43%	816	2453	656	301			
10	Discriminant	23.83%	76.17%	53.40%	865	2354	755	252			

	Validation (N = 1398)										
Rank	Model Name	Misclassification Rate	Total Accuracy	Accuracy of the "1"	True Positives	True Negatives	False Positives	False Negatives	RASE	Overfitting	
1	Fit Nominal Logistic	19.60%	80.40%	67.00%	203	921	100	174	0.371		
2	Ensemble Model Average	19.74%	80.26%	67.60%	194	928	93	183	0.37		
3	Neural Model NTanH(3)	19.81%	80.19%	66.45%	202	919	102	175	0.37		
4	NTanH(3)NTanH2(3)	19.81%	80.19%	66.45%	202	919	102	175			
5	Partition	20.24%	79.76%	64.42%	210	905	116	167	0.375		
6	K Nearest Neighbors	21.82%	78.18%	60.71%	204	889	132	173			
7	Naïve Bayes	23.39%	76.61%	55.17%	267	804	217	110	**		
8	Discriminant	24.39%	75.61%	53.40%	283	774	247	94	0.41		
9	Boosted Tree	20.31%	79.69%	66.67%	186	928	93	191	0.373	□verfit	
10	Bootstrap Forest	21.39%	78.61%	63.36%	185	914	107	192	0.376	□verfit	

Test (N = 1408)										
		Misclassification		Accuracy of		True	False	False		
Rank	Model Name	Rate	Total Accuracy	the "1"	True Positives	Negatives	Positives	Negatives	RASE	Overfitting
1	Ensemble Model Average	19.89%	80.11%	65.89%	197	931	102	178	0.377	
2	Fit Nominal Logistic	20.38%	79.62%	64.10%	200	921	112	175	0.377	
3	Neural Model NTanH(3)	20.74%	79.26%	63.34%	197	919	114	178	0.378	
4	NTanH(3)NTanH2(3)	20.95%	79.05%	62.74%	197	916	117	178		
5	Partition	21.02%	78.98%	61.65%	209	903	130	166		
6	K Nearest Neighbors	22.44%	77.56%	58.70%	199	893	140	176	**	
7	Naïve Bayes	24.22%	75.78%	53.54%	257	810	223	118	××	
8	Discriminant	25.64%	74.36%	51.32%	273	774	259	102	0.419	
9	Boosted Tree	20.53%	79.47%	64.33%	193	926	107	182	0.381	□verfit
10	Bootstrap Forest	20.74%	79.26%	63.43%	196	920	113	179	0.273	□verfit