ISyE524: Introduction to Optimization Problem Set #3

Due: March 17 at 11:59PM

Notes and Deliverables:

• Submit solutions to all problems in the form of a single PDF file of the IJulia notebook to the course dropbox. (If you do not submit as a single PDF you will lose points.)

• Be sure that your answers (including any pictures you include in the notebook) are in the correct order. (If you do not submit the problems in order, you will lose points.)

1 MaxFlow

Consider the network below, in which the label on each arc represents the capacity of the arc.

1-1 Problem Write a linear program formulation to maximize the flow from source s to sink t. Please use a "circulation arc" from t to s in your formulation.

Answer:

1-2 Problem Write the dual of the linear programming formulation from Problem 1-1.

Answer:

$$\begin{aligned} & \min \quad 6\lambda_{s1} + 2\lambda_{s2} + 1\lambda_{12} + 3\lambda_{13} + 7\lambda_{24} + 3\lambda_{32} + 2\lambda_{3t} + 7\lambda_{4t} \\ & \text{s.t.} \quad \pi_t - \pi_s \geq 1 \\ & \pi_s - \pi_1 + \lambda_{s1} \geq 0 \\ & \pi_s - \pi_2 + \lambda_{s2} \geq 0 \\ & \pi_1 - \pi_2 + \lambda_{12} \geq 0 \\ & \pi_1 - \pi_3 + \lambda_{13} \geq 0 \\ & \pi_2 - \pi_4 + \lambda_{24} \geq 0 \\ & \pi_3 - \pi_2 + \lambda_{32} \geq 0 \\ & \pi_3 - \pi_t + \lambda_{3t} \geq 0 \\ & \pi_4 - \pi_t + \lambda_{4t} \geq 0 \\ & \lambda_{s1}, \lambda_{s2}, \lambda_{12}, \lambda_{13}, \lambda_{24}, \lambda_{32}, \lambda_{3t}, \lambda_{4t} \geq 0 \\ & \pi_s, \pi_1, \pi_2, \pi_3, \pi_5, \pi_t \text{ FREE} \end{aligned}$$

1-3 Problem Implement your model from Problem 1-1 in Julia and JuMP to find the maximum flow from s to t in the network.

Prof. Jeff Linderoth

Answer:

```
Julia Code
       # Make the network
1
2
     N = union(Set(Symbol("N" * string(i)) for i in 1:4))
     push!(N, :s)
3
     push!(N, :t)
5
     A = Set([(:s,:N1),(:s,:N2),(:N1,:N2),(:N1,:N3),(:N2,:N4),(:N3,:N2),(:N3,:t),(:N4,:t),(:t,:s)])
6
     c = Dict((i,j) \Rightarrow 0 \text{ for } (i,j) \text{ in } A)
8
     c[:t,:s] = 1.0
     b = Dict(i => 0 for i in N)
10
11
     u = Dict{Tuple, Float32}(
12
          (:s,:N1) => 6,
13
          (:s,:N2) \Rightarrow 2,
14
          (:N1,:N2) \Rightarrow 1,
15
          (:N1,:N3) => 3,
          (:N2,:N4) \Rightarrow 7,
17
          (:N3,:N2) => 3,
18
          (:N3,:t) \Rightarrow 2,
19
          (:N4,:t) \Rightarrow 7,
20
          (:t,:s) \Rightarrow Inf
21
     )
22
23
     # Now we can just do MCNF max flow Model
24
25
     using JuMP, HiGHS
26
     m = Model(HiGHS.Optimizer)
27
     @variable(m, 0 \le x[a in A] \le u[a])
28
     @objective(m, Max, sum(c[a]*x[a] for a in A))
29
     @constraint(m, flow_balance[i in N], sum(x[(i,j)] for j in N if (i,j) in A) - sum(x[(j,i)] for j in N if (j,i)
     #set_silent(m)
31
32
     optimize!(m)
33
34
35
     println("Max Flow is: ", round(objective_value(m),digits=1))
     for a in A
36
          if xsol[a] > 0.01
37
              println("x", a, " = ", round(xsol[a],digits=1))
38
39
          end
40
     end
```

Gives

```
Max Flow is: 6.0

x(:N1, :N2) = 1.0

x(:N1, :N3) = 3.0

x(:N3, :N2) = 1.0
```

```
x(:N4, :t) = 4.0

x(:t, :s) = 6.0

x(:N2, :N4) = 4.0

x(:N3, :t) = 2.0

x(:s, :N2) = 2.0

x(:s, :N1) = 4.0
```

1-4 Problem Use the complementary slackness conditions to find an optimal *dual* solution to your formulation in Problem 1-2. You should note how the optimal dual solution identifies a *minimum cut* in the network.

Answer:

Call the (primal) max flow solution x. Using complementary slackness, we know that

$$\lambda_{ij} = 0 \ \forall (i,j) \in A : x_{ij} \neq u_{ij}.$$

Thus, $\lambda_{s1} = \lambda_{24} = \lambda_{32} = \lambda_{4t} = 0$

Also by complementary slackness,

$$x_{ij} > 0 \Rightarrow \pi_i - \pi_j + \lambda_{ij} = 0 \ \forall (i,j) \in A \setminus \{(t,s)\},\$$

and we also know (since $v = x_{ts} > 0$ that $\pi_t - \pi_s = 1$.) We then have the following nine equations that must hold, where I have eliminated the 4 λ variables that we already know:

$$\pi_t - \pi_s = 1 \tag{1}$$

$$\pi_s - \pi_1 = 0 \tag{2}$$

$$\pi_s - \pi_2 + \lambda_{s2} = 0 \tag{3}$$

$$\pi_1 - \pi_2 + \lambda_{12} = 0 \tag{4}$$

$$\pi_1 - \pi_3 + \lambda_{13} = 0 \tag{5}$$

$$\pi_2 - \pi_4 = 0 \tag{6}$$

$$\pi_3 - \pi_2 = 0 \tag{7}$$

$$\pi_3 - \pi_t + \lambda_{3t} = 0 \tag{8}$$

$$\pi_4 - \pi_t = 0 \tag{9}$$

We have 10 unknowns in these 9 equations, so there is an extra degree of freedom¹, which I will resolve by setting $\pi_s = 0$. Then we can just solve the equations, essentially by inspection. Equation (1) gives $\pi_t = 1$; equation (9) gives $\pi_4 = 1$; equation (6) gives $\pi_2 = 1$; equation (3) gives $\lambda_{s2} = 1$. Equation (1) gives $\pi_1 = 0$, equation (4) gives $\lambda_{12} = 1$. Equation (7) gives $\pi_3 = 1$; equation (5) gives $\lambda_{13} = 1$; and equation (8) gives $\lambda_{3t} = 0$.

¹For a max flow problem, there always will be

This gives the dual solution:

```
\pi_{s} = 0 

\pi_{1} = 0 

\pi_{2} = 1 

\pi_{3} = 1 

\pi_{4} = 1 

\pi_{t} = 1 

\lambda_{s1} = 0 

\lambda_{s2} = 1 

\lambda_{12} = 1 

\lambda_{13} = 1 

\lambda_{24} = 0 

\lambda_{32} = 0 

\lambda_{4t} = 0
```

Note that the cut is given by $(\{s,1\},\{2,3,4,t\})$ and $\pi_s=\pi_1=0$ the π variables for the nodes on the other side of the cut all have value 1. Also note also that the λ variables for arcs that cross the cut are 1 and all other λ are 0. **Duality is soooo cool!**

1-5 Problem Find a cut in the network whose capacity equals the value of the maximum flow. Recall a cut can be specified as a set of nodes S that contains the source node. The capacity of the cut is the sum of the capacity of edges that start in S and end outside of S.

Answer:

Taking the set $S = \{s, 1\}$, the set of arcs that have starting node in S and ending node outside of S is $\{(1,3),(1,2),(s,2)\}$. Adding up the capacities of the arcs in that set, we see that the capacity of the cut is 6.

2 Lasso

In this problem, we will investigate different approaches for performing polynomial regression on the data in the file lasso_data.csv. You can read and plot the data with the following Julia code.

```
Julia Code

using PyPlot, CSV, DataFrames

data = CSV.read("lasso-data.csv", DataFrame)

x = data[:,1]

y = data[:,2]

cla()
figure(figsize=(8,4))
```

```
plot(x,y,"r.", markersize=10)
grid("True")
# Only need this line if using vscode?
display(gcf())
```

2-1 Problem Create a Julia/JuMP model to solve a convex optimization problem that finds the best polynomial fit for a polynomial of degree 6. Print the value of the error (total squared residuals) as well as the values of the coefficients in the polynomial.

Answer:

I made the following simple function to do a polynomial fit of data of degree up to d by solving a convex optimization problem:

```
— Julia Code —
     # ORDINARY LEAST SQUARES (via convex opt)
2
     using JuMP, HiGHS
3
     function doPolyRegression(x,y,d)
4
5
         n = size(x,1)
6
7
         A = zeros(n,d+1)
         for j = 1:d+1
8
9
              A[:,j] = x.^{(j-1)}
10
         end
11
         m = Model(HiGHS.Optimizer)
12
13
         @variable(m, u[1:d+1])
14
         @objective(m, Min, sum((y - A*u).^2))
15
         set_silent(m)
16
17
         optimize!(m)
         stat = termination_status(m)
18
         if stat == MOI.OPTIMAL
19
              sqr_error = objective_value(m)
20
              uopt = value.(u)
21
         else
22
              sqr_error = -1
23
24
         end
         return (sqr_error, uopt)
25
26
```

The when I run the following code:

```
Julia Code

using Printf
(error, u6) = doPolyRegression(x,y,6)

@printf "Squared error: %.2f\n" error
for i=1:7
```

I get the following output

```
Squared error: 1607.36

u[0] = 3.3758

u[1] = -8.5391

u[2] = -1.8470

u[3] = 43.8246

u[4] = -8.4936

u[5] = -41.3058

u[6] = -2.2494
```

2-2 Problem Create a Julia/JuMP model to solve a convex optimization problem that finds the best polynomial fit for a polynomial of degree 18. Print the value of the error (total squared residuals) as well as the values of the coefficients in the polynomial.

Answer:

I can do the same thing, just running the function for d=18

```
using Printf
(error, u18) = doPolyRegression(x,y,18)

@printf "Squared error: %.2f\n" error
for i=1:19
    @printf "u[%d] = %.4f\n" i-1 u18[i]
end
```

To get the answer:

```
Squared error: 522.04

u[0] = 3.9262

u[1] = 33.1807

u[2] = -106.4354

u[3] = -713.8220

u[4] = 3070.0824

u[5] = 1765.1252

u[6] = -31645.3899

u[7] = 15385.7545

u[8] = 160082.7720

u[9] = -93663.2301

u[10] = -455072.3298

u[11] = 214416.9507

u[12] = 761697.1161
```

```
u[13] = -248444.3284

u[14] = -743839.7748

u[15] = 145411.2431

u[16] = 391567.6814

u[17] = -34190.5728

u[18] = -85766.6310
```

Note that the coefficients are pretty big, we may wish to consider adding a $\|\cdot\|_2^2$ regularizer.

2-3 Problem Make a plot that shows the data as well as the best fit to the data for polynomials of degree d=6 and d=18 that you created in Problems 2-1 and 2-2

Answer:

Running this code:

```
_____ Julia Code _
     cla()
     N = 100
2
     xfine = range(x[1], x[end], length=N)
     d1 = 6
4
5
     Afine_6 = zeros(N, d1+1)
     for j = 1:d1+1
6
         Afine_6[:,j] = xfine.^(j-1)
7
8
     end
     yhat_6 = Afine_6*u6
9
10
     d2 = 18
11
     Afine_18 = zeros(N, d2+1)
     for j = 1:d2+1
13
14
         Afine_18[:,j] = xfine.^(j-1)
15
     end
     yhat_18 = Afine_18*u18
16
17
     plot(x,y,".")
18
    plot(xfine,yhat_6,"-")
     plot(xfine,yhat_18,"-")
20
     title(string("polynomial fit using d=6 and d=18 ordinary least squares"))
21
     xlabel("x"); ylabel("y");
22
23
     # Only need this for vscode
24
     display(gcf())
25
```

Here is my figure:

2-4 **Problem** Our model is too complicated because it has too many parameters. One way to simplify our model is to look for a sparse model (where many of the parameters are zero). Solve the d=18 problem once more, but this time use the Lasso (L_1 regularization). Start with a small λ and progressively make λ larger until you obtain a model with at most K=6 coefficients whose absolute value is positive. Print the resulting (squared) error. And plot the resulting fit.

Warning: Prof. Linderoth had some trouble (likely a bug) in using HiGHS for this one. You could use the Gurobi solver (but need to follow instructions for getting it installed in your environment), or the solver "Ipopt", which is a general nonlinear optimization solver.

Answer:

Here is my code:

```
# Now do the lasso model
2
     d = 18
     n = length(x)
3
4
     A = zeros(n,d+1)
5
     for j = 1:d+1
6
7
         A[:,j] = x.^(j-1)
8
     end
9
     using JuMP, Ipopt, Printf
10
11
     m = Model(Ipopt.Optimizer)
     set_silent(m)
12
13
14
     D = 1:d+1
15
     @variable(m, w[1:d+1])
16
     @variable(m, t[1:d+1] >= 0)
17
```

```
18
     for i=1:d+1
19
20
          @constraint(m, t[i] >= w[i])
          @constraint(m, t[i] >= -w[i])
21
22
23
     @expression(m, LS, sum((y - A*w).^2))
24
     @expression(m, L1, sum(t))
25
26
27
     # We'll start with a small lambda, and increase it by 0.25, until we get 6 or fewer elements
     for \lambda in 0.0:0.25:10
28
29
          Objective(m, Min, LS + \lambda*L1)
30
          optimize!(m);
          wopt = value.(w)
31
32
          nnz = 0
33
          for i in 1:length(wopt)
34
              if abs(wopt[i]) > 1.0e-5
35
36
                   nnz += 1
37
              end
          end
38
39
          Oprintf "Lambda: %.2f, Error: %.2f, NNZ: %d\n" \lambda
                                                                     objective_value(m) nnz
40
          if nnz <= 6
              break
42
43
          end
44
     end
45
46
     wopt = value.(w)
47
```

Which produced the following:

```
_{-} Julia Answer _{	extstyle -}
Lambda: 0.00, Error: 522.04, NNZ: 19
Lambda: 0.25, Error: 1187.56, NNZ: 9
Lambda: 0.50, Error: 1254.41, NNZ: 8
Lambda: 0.75, Error: 1317.96, NNZ: 8
Lambda: 1.00, Error: 1378.24, NNZ: 9
Lambda: 1.25, Error: 1435.21, NNZ: 8
Lambda: 1.50, Error: 1488.92, NNZ: 8
Lambda: 1.75, Error: 1539.34, NNZ: 8
Lambda: 2.00, Error: 1586.49, NNZ: 8
Lambda: 2.25, Error: 1630.36, NNZ: 8
Lambda: 2.50, Error: 1670.95, NNZ: 8
Lambda: 2.75, Error: 1708.26, NNZ: 8
Lambda: 3.00, Error: 1742.30, NNZ: 8
Lambda: 3.25, Error: 1773.07, NNZ: 8
Lambda: 3.50, Error: 1800.56, NNZ: 8
Lambda: 3.75, Error: 1824.78, NNZ: 9
Lambda: 4.00, Error: 1845.73, NNZ: 8
Lambda: 4.25, Error: 1863.40, NNZ: 8
```

Problem Set #3

```
Lambda: 4.50, Error: 1877.80, NNZ: 8
Lambda: 4.75, Error: 1888.93, NNZ: 8
Lambda: 5.00, Error: 1897.55, NNZ: 7
Lambda: 5.25, Error: 1905.15, NNZ: 6
```

Here is my figure:

3 Beam Me Up

In treating a cancerous tumor with radiotherapy, physicians want to bombard the tumor with radiation while avoiding the surrounding normal tissue as much as possible. They must therefore select which of a number of possible radiation beams to use, and figure the "weight" (actually the exposure time) to allot for each beam.

Abstractly, in a mathematical model of this decision problem, we are given a set of "beams" B, and a set of regions R, where $R = N \cup T$, where N is the set of normal regions, and T is the set of cancerous (tumor) regions.

If the weight/exposure of beam $b \in B$ is x_b (a continuous decision variable), then beam $b \in B$ delivers an amount of radiation of $a_{br}x_b$ to region $r \in R$. The total amount of radiation delivered to a particular region $r \in R$ is obtained by adding the contributions of each beam:

$$\sum_{b \in B} a_{br} x_b.$$

The maximum weight that can be applied for any beam $b \in B$ is W_b . Ideally, each tumor region $r \in T$ should receive as large a dose as possible, while each non-tumor region $r \in N$ should receive a dose of at most p_r .

The *tumor score* of any tumor region is the amount of radiation received:

$$\tau_r := \sum_{b \in B} a_{br} x_b \quad \forall r \in T.$$

The *tissue damage* of any normal region is the total amount delivered to that region over the prescribed amount

$$\Delta_r := \max \left(\sum_{b \in B} a_{br} x_b - p_r, 0 \right) \quad \forall r \in N$$

Doctors would like to simultaneously maximize $\sum_{r \in T} \tau_r$ while minimizing $\sum_{r \in N} \Delta_r$.

3-1 **Problem** Write a weighted multi-objective optimization model (a linear program) that shows the tradeoff between the amount of good-dose $(\sum_{r \in T} \tau_r)$ delivered and the amount of damaging dose delivered $(\sum_{r \in N} \Delta_r)$

Hint: You will need to write the problem using linear inequalities. Do not use the \max operator in your constraints. Recall how to model (some) piecewise linear functions using linear inequalities.

Answer:

We define the following decision variables:

- $x_b, b \in B$: the weight of each beam $b \in B$.
- $\tau_r, r \in T$: The overage amount in each tumor region
- $\Delta_r, r \in N$: The overage amount in each normal region

Then for a given tradeoff weighted parameter λ , we wish to maximize the following combination of tumor score minus damage to normal tissue:

$$\max \sum_{r \in T} \tau_r - \lambda \sum_{r \in N} \Delta_r$$
s.t.
$$\sum_{b \in B} a_{br} x_b = \tau_r \quad \forall r \in T$$

$$\sum_{b \in B} a_{br} x_b - p_r \le \Delta_r \quad \forall r \in N$$

$$x_b \le W_b \quad \forall b \in B$$

$$x_b \ge 0 \quad \forall b \in B$$

$$\tau_r \ge 0 \quad \forall r \in T$$

$$\Delta_r > 0 \quad \forall r \in N$$

3-2 Problem Suppose there are a collection of 6 beams, each with a maximum weight/intensity of $W_b = 3 \ \forall b \in B$. There are also 6 regions, regions 1-3 are normal and regions 4-6 are cancerous. The amount of radiation delivered by beam b to region r is given in the matrix below:

	normall	normal2	normal3	tumorl	tumor2	tumor3
beaml	15	7	8	12	12	6
beam2	13	4	12	19	15	14
beam3	9	8	13	13	10	17
beam4	4	12	12	6	18	16
beam5	9	4	11	13	6	14
beam6	8	7	7	10	10	10

All normal regions have a desired upper bound of $p_r := 65 \ \forall r \in N$. Implement your model from Problem 3-1 in JuMP and print out total dose to the tumor region and the total dose to the normal region when your tradeoff parameter is $\lambda = 1$.

Note: Since you are trying to maximize the dose to the tumor and minimize the penalty dose to the normal region, your objective should be something like

 \max Total Tumor Dose – λ Total Overage in Normal Regions

Answer:

Here is my code for the model

```
_ Julia Code .
     using NamedArrays
2
     # Sets
     T = [:T1, :T2, :T3]
3
     N = [:N1, :N2, :N3]
     R = vcat(N,T)
5
6
     B = [Symbol("Beam",i) for i in 1:6]
7
8
9
     #Parameters
     A_array = [15 7 8 12 12 6; 13 4 12 19 15 14; 9 8 13 13 10 17;
10
     4 12 12 6 18 16; 9 4 11 13 6 14; 8 7 7 10 10 10]
     A = NamedArray(A_array, (B,R), ("Beam", "Region"))
12
13
     W = Dict(b \Rightarrow 3 \text{ for } b \text{ in } B)
14
     1 = Dict(r \Rightarrow 95 \text{ for } r \text{ in } T)
15
     p = Dict(r \Rightarrow 65 \text{ for } r \text{ in } N)
16
17
     using JuMP, HiGHS
     m = Model(HiGHS.Optimizer)
19
     set_silent(m)
20
21
22
     @variable(m, x[B] >= 0)
     @variable(m, tau[T] >= 0)
23
     @variable(m, delta[N] >= 0)
24
25
     @constraint(m, [b in B], x[b] \le W[b])
26
27
      @constraint(m, define_tau[r in T], sum(A[b,r]*x[b] for b in B) == tau[r])
      @constraint(m, define_delta[r in N], sum(A[b,r]*x[b] for b in B) - p[r] <= delta[r])
28
```

```
29
     lambda = 1.0
30
31
     @objective(m, Max, sum(tau[r] for r in T) - lambda*sum(delta[r] for r in N))
     optimize!(m)
32
     #println("Objective: ", objective_value(m))
33
    td = sum(value(tau[r]) for r in T)
34
35
    np = sum(value(delta[r]) for r in N)
     println("Total tumor dose: ", round(td, digits=2))
     println("Total normal dose: ", round(np, digits=2))
37
38
```

Which gives:

```
Total tumor dose: 663.0
Total normal dose: 294.0
```

3-3 Problem Plot the Pareto frontier/tradeoff curve:

If you make a vector called tumor_dose and a vector called normal_penalty that contain the tumor dose and normal tissue penalty amounts for different values of tradeoff parameter, then this code will make a pareto plot for you.

```
___ Julia Code -
     using PyPlot
2
     function paretoPlot(x,y)
         figure(figsize=(10,10))
4
         plot( x, y, "b.-", markersize=4 )
5
         xlabel("Tumor Dose")
6
7
         ylabel("Normal Penalty")
         # Only need this in vscode?
8
         display(gcf())
9
10
     end
11
12
    paretoPlot(tumor_dose, normal_penalty)
13
```

Answer:

Using the model above, here is my code to make the ParetoPlot

```
lam_range = range(start=0, stop=20, step=0.1)
tumor_dose = Vector()
normal_penalty = Vector()
```

```
for lambda in collect(lam_range)
 5
            @objective(m, Max, sum(tau[r] for r in T) - lambda*sum(delta[r] for r in N))
 6
 7
            optimize!(m)
            println("Objective: ", objective_value(m))
 8
            td = sum(value(tau[r]) for r in T)
 9
           np = sum(value(delta[r]) for r in N)
10
           push!(tumor_dose, td)
11
           push!(normal_penalty, np)
12
       end
13
14
     using PyPlot
15
16
     function paretoPlot(x,y)
17
         figure(figsize=(10,10))
18
         plot( x, y, "b.-", markersize=10 )
19
         xlabel("Tumor Dose")
20
21
         ylabel("Normal Penalty")
         display(gcf())
22
23
     end
24
25
     paretoPlot(tumor_dose, normal_penalty)
26
```

Which then produces the following Pareto Plot:

4 Nonconvex QP

The following matrix is indefinite:

$$Q = \begin{pmatrix} 0 & 0 & -2 & -4 & 0 & 1 \\ 0 & 1 & -1 & -1 & 3 & -4 \\ -2 & -1 & -1 & -5 & 7 & -4 \\ -4 & -1 & -5 & -3 & 7 & -2 \\ 0 & 3 & 7 & 7 & -1 & -2 \\ 1 & -4 & -4 & -2 & -2 & 0 \end{pmatrix}$$

Consider the following box-constrained quadratic program.

$$\min x^{\mathsf{T}} Q x + c^{\mathsf{T}} x$$

$$\text{s.t.} 0 \le x_j \le 1 \quad \forall j = 1, \dots, 6$$

$$(10)$$

and
$$c^{\mathsf{T}} = [-1, 0, 2, -2, 4, 0]$$

4-1 Problem Use Julia to compute the eigenvalues of Q and print them out. You will need to use the LinearAlgebra package, and then eigen(\mathbb{Q}) returns the eigenvalues and eigenvectors of Q

Answer:

```
_ Julia Code .
         using LinearAlgebra, Printf
2
3
         0 0 -2 -4 0 1;
         0 1 -1 -1 3 -4;
5
         -2 -1 -1 -5 7 -4;
         -4 -1 -5 -3 7 -2;
7
         0 3 7 7 -1 -2;
8
         1 -4 -4 -2 -2 0
9
10
11
         c = [-1, 0, 2, -2, 4, 0]
12
13
         eigs = eigen(Q)
14
         n = length(c)
15
         for i in 1:n
16
              @printf "Eig[%d] = %.4f\n" i eigs.values[i]
17
18
         end
```

Gives

```
Eig[1] = -16.1191
Eig[2] = -3.7566
```

```
Eig[3] = -0.5923

Eig[4] = 2.2331

Eig[5] = 3.8457

Eig[6] = 10.3892
```

4-2 Problem Create a model of (10) in Julia and attempt to solve it using HiGHS. Include the output from the solver.

Answer:

```
_ Julia Code -
         using JuMP, HiGHS
2
         n = size(Q)[1]
3
4
5
         m = Model(HiGHS.Optimizer)
         Ovariable(m, x[1:n] >= 0)
6
7
         @constraint(m, x .<= ones(n))</pre>
         @expression(m, qobj, x'*Q*x)
9
         @expression(m, lobj, c'*x)
10
11
         @objective(m, Min, qobj + lobj)
12
13
         optimize!(m)
```

4-3 Problem Show that if a real symmetric matrix $Q \prec 0$ with minimum eigenvalue $\lambda_1 < 0$, then the matrix obtained by subtracting λ_1 from the diagonal is PSD, i.e. $Q - \lambda_1 I \succeq 0$.

Answer:

We first show that if λ is a eigenvalue of Q, then $\lambda - \alpha$ is an eigenvalue of $Q - \alpha I$. Let λ be an eigenvalue of Q with associated eigenvector v, so $Qv = \lambda v$. Then

$$(Q - \alpha I)v = Qv - \alpha Iv = \lambda v - \alpha v = (\lambda - \alpha)v,$$

so v is an eigenvector of $Q - \alpha I$ with eigenvalue $\lambda - \alpha$.

So, adding a constant to the diagonal of the matrix has the effect of shifting the eigenvalues of the matrix by that constant. Thus, subtracting the most negative eigenvalue of Q, $\lambda_1 < 0$ from the diagonal will ensure that all eigenvalues of $Q - \lambda_1 I$ are ≥ 0 .

Here is second proof. Since Q is a real symmetric matrix, we have that $Q = U\Lambda U^{\mathsf{T}}$, where Λ is a diagonal matrix of eigenvalues $(\lambda_1 \leq \lambda_2, \ldots \leq \lambda_n)$ and $U \in \mathbb{R}^{n \times n}$ is an orthonormal basis of eigenvectors. We can then do a "change of coordinates" $z = U^{\mathsf{T}}x$, so $x = U^{\mathsf{T}}z$, and we have

$$x^{\mathsf{T}}Qx = (z^{\mathsf{T}}U^{-1})(U\Lambda U^{\mathsf{T}})(U^{-\mathsf{T}}z) = z^{\mathsf{T}}\Lambda z = \sum_{i=1}^{n} \lambda_i z_i^2.$$

For a scalar $\alpha \in \mathbb{R}$, we have

$$x^{\mathsf{T}}(\alpha I)x = \alpha(z^{\mathsf{T}}U^{-1})I(U^{-\mathsf{T}}z) = \alpha \sum_{i=1}^{n} z_i^2$$

since $U^{-1}U^{-\mathsf{T}} = I$. Putting these two results together, for the matrix $Q - \lambda_1 I$ we can demonstrate that its quadratic form is always non-negative, since

$$x^{\mathsf{T}}(Q - \lambda_1 I)x = x^{\mathsf{T}}Qx - x^{\mathsf{T}}(\lambda_1 I)x = \sum_{i=1}^n \lambda_i z_i^2 - \sum_{i=1}^n \lambda_1 z_i^2 = \sum_{i=1}^n (\lambda_i - \lambda_1)z_i^2 \ge 0,$$

where the final inequality is true because all terms in the sum are non-negative.

4-4 Problem Subtract the minimum eigenvalue you found in Problem 4-1 from the diagonal of Q, and solve the resulting model in HiGHS. Report the objective value and solution.

Answer:

This code:

```
Julia Code
             using Printf
2
             min_eig = eigs.values[1]
3
             Q2 = Q - min_eig*I
5
             @expression(m, q2obj, x'*Q2*x)
7
              @objective(m, Min, q2obj + lobj)
8
             optimize!(m)
9
10
             xval = value.(x)
11
12
             println("Objective Value: ", round(objective_value(m),digits=4))
13
             for i in 1:length(x)
14
                  @printf "x[%d] = %.4f\n" i xval[i]
15
             end
16
```

Produces:

```
x[2] = 0.0000
x[3] = 0.0000
x[4] = 0.0238
x[5] = 0.1234
x[6] = 0.0160
```

5 Pod Racing Rendezvous

Anakin and Palpatine are cruising the Dune Sea in their pods. Each pod has the following dynamics:

Dynamics of each hovercraft:
$$x_{t+1} = x_t + \frac{1}{3600} v_t$$

$$v_{t+1} = v_t + u_t$$

At time t (in seconds), $x_t \in \mathbb{R}^2$ is the position (in miles), $v_t \in \mathbb{R}^2$ is the velocity (in miles per hour), and $u_t \in \mathbb{R}^2$ is the thrust in normalized units. At t = 1, Anakin has a speed of 20 mph going North, and Palpatine is located half a mile East of Anakin, moving due East at 30 mph. Anakin and Palpatine would like to rendezvous at exactly t = 60 seconds. The location where they meet is up to you.

5-1 Problem Find the sequence of thruster inputs for Anakin (u^A) and Palpatine (u^P) that achieves a rendezvous at t = 60 while minimizing the total energy used by both hovercraft:

$$\text{total energy} = \sum_{t=1}^{60} \left\| u_t^{\text{A}} \right\|^2 + \sum_{t=1}^{60} \left\| u_t^{\text{P}} \right\|^2$$

Implement and solve your model in Julia, print their final (rendezvous) location, assuming Anakin starts at the origin and the minimum total energy required.

Answer:

Here is my Julia Code.

```
_ Julia Code
             using JuMP, HiGHS
2
             st = 60 # stop time point
3
             m = Model(HiGHS.Optimizer)
5
             # set_optimizer_attribute(m, "OutputFlag", 0)
7
             @variable(m, A_x[1:2, 1:st]) # position of Anakin
8
             @variable(m, A_v[1:2, 1:st]) # velocity
9
             @variable(m, A_u[1:2, 1:st]) # thrust
10
11
             @variable(m, P_x[1:2, 1:st]) # position of Palpatine
12
13
             @variable(m, P_v[1:2, 1:st]) # velocity
             @variable(m, P_u[1:2, 1:st]) # thrust
14
15
16
             # initial
```

```
@constraint(m, A_x[:, 1] :== [0, 0])
                                                     # let's put A at the origin
17
             @constraint(m, P_x[:, 1] .== [0.5, 0]) # B is half a mile east of A
18
19
             @constraint(m, A_v[:, 1] .== [0, 20]) # A is moving North at 20 mph
             @constraint(m, P_v[:, 1] .== [30, 0]) # B is moving East at 30 mph
20
21
22
             # Dynamics
             for i = 2:st
23
                 @constraint(m, A_x[:, i] .== A_x[:, i-1] + A_v[:, i-1]/3600)
                 Qconstraint(m, P_x[:, i] .== P_x[:, i-1] + P_v[:, i-1]/3600)
25
                 @constraint(m, A_v[:, i] .== A_v[:, i-1] + A_u[:, i-1])
26
                 @constraint(m, P_v[:, i] .== P_v[:, i-1] + P_u[:, i-1])
27
28
             end
29
             # meet at the given time.
30
             @constraint(m, A_x[:, st] .== P_x[:, st])
31
32
             Objective(m, Min, sum(A_u.^2) + sum(P_u.^2))
33
34
35
             optimize!(m)
36
             println("The minimum energy is ", round(objective_value(m),digits=4))
37
38
             rv = value.(A_x[:,st])
39
             println("Rendezvous at (", round(rv[1],digits=3), ", ", round(rv[2],digits=3), ")")
40
```

This produces the following output:

```
The minimum energy is 105.9307
Rendezvous at (0.496, 0.164)
```

5-2 Problem Plot the trajectories of each hovercraft to verify that they do indeed rendezvous.

Answer:

Here is some code to plot the trajectories

```
Julia Code
    using PyPlot
    cla()
2
    plot(value.(A_x[1,:]), value.(A_x[2,:]),"b.-", label = "Anakin")
3
    plot(value.(P_x[1,:]), value.(P_x[2,:]),"r.-", label = "Palpatine")
    xlabel("East-West (miles)")
5
    ylabel("North-South (miles)")
7
    legend(loc = "upper left")
8
    grid()
    axis("equal")
9
    title("Minimum-energy rendezvous");
    display(gcf())
11
```

Problem Set #3

Which gives the following plot:

5-3 **Problem** In addition to arriving at the same place at the same time, Anakin and Palpatine should also make sure that their velocities are both zero when they rendezvous — otherwise, they might crash! Solve the rendezvous problem again with these additional constraints on the final velocities. Again, print the final (rendezvous) location and the minimum total energy required.

Answer:

Just need to make sure their velocities are 0 at the stop time:

```
Julia Code

@constraint(m, A_v[:, st] .== [0 0])

@constraint(m, P_v[:, st] .== [0 0])

optimize!(m)

println("The minimum energy is ", round(objective_value(m),digits=4))

rv = value.(A_x[:,st])

println("Rendezvous at (", round(rv[1],digits=3), ", ", round(rv[2],digits=3), ")")
```

Which gives the following output

```
Julia Answer

The minimum energy is 245.5874

Rendezvous at (0.375, 0.083)
```

5-4 Problem Plot the trajectories of each hovercraft in this instance

Answer:

```
Julia Code
         cla()
        plot(value.(A_x[1,:]), value.(A_x[2,:]),"b.-", label = "Anakin")
2
         plot(value.(P_x[1,:]), value.(P_x[2,:]),"r.-", label = "Palpatine")
3
        xlabel("East-West (miles)")
        ylabel("North-South (miles)")
5
        legend(loc = "upper left")
6
         grid()
7
        axis("equal")
8
        title("Minimum-energy rendezvous with zero final velocity");
9
         display(gcf())
10
```

which gives the following plot

Minimum-energy rendezvous with zero final velocity

