IEEE 802.15.1 (Bluetooth)

Sachin Gajjar sachin.gajjar@nirmauni.ac.in

Reading Material

- DATA COMMUNICATIONS AND NETWORKING, Fourth Edition by Behrouz A. Forouzan, Tata McGraw-Hill
 - Chapter 14 Wireless LANs
- Computer Networks by Andrew Tanenbaum
 - Chapter 4, Topic 4.6
- https://www.bluetooth.com/

Introduction

- Wireless PAN standard to connect electronic devices of with different functions
- An ad hoc network, network is formed without infrastructure
- Devices, find each other and form a network
- PAN can be connected to Internet if one of the device has this capability

Bluetooth History

- Originally started as a project by Ericsson
- Ericsson wanted to connect devices to mobile phone without cables
- Named after Harald Blaatand, king of Denmark (940-981) who united Denmark and Norway
- Blaatand in Danish translates to Blue-tooth in English
- Defined by IEEE 802.15.1 standard

Architecture

- Bluetooth defines two types of networks:
- 1. Piconet
- 2. Scatternet

Piconets

- Can have up to eight stations, one is called primary; rest are called secondaries
- Secondary stations synchronize their clocks and frequency hopping sequence with the primary
- A piconet can have only one primary station
- Communication between primary and secondary can be one-to-one or one-to-many
- Primary Master
- Secondary Slave

Piconets

- An additional 8th secondary can be in parked state
- Secondary in parked state is synchronized with primary, but cannot take part in communication until it is moved from parked state
- Only eight stations can be active in a piconet
- Activating a station from parked state means that an active station must go to parked state

Scatternet

- Piconets can be combined to form a Scatternet
- Secondary station in one piconet can be primary in another piconet
- Receives messages from primary in first piconet (acts as secondary) and, delivers to secondary in second piconet (acts as a primary)
- A station can be a member of two piconets
- Primary Master
- Secondary Slave

Bluetooth Layers

Host Controller Interface (HCI)

Physical Radio Layer

- Roughly equivalent to physical layer of TCP/IP
- Bluetooth devices are low-power and have a range of 10 m to 400 m

Major Bluetooth Versions

	BLUETOOTH V2.1	BLUETOOTH 4.0 (LE)	BLUETOOTH 5 (LE)
Range	Up to 100 m	Up to 100 m	Up to 400 m
Max range (free field)	Around 100 m (outdoors)	Around 100 m (outdoors)	Around 1,000m (outdoors)
Frequency	2.402 – 2.481 GHz	2.402 – 2.481 GHz	2.402 - 2.481 GHz
Topologies	Point-to-point	Point-to-point, mesh network	Point-to-point, mesh network

Band

 Bluetooth uses a 2.4-GHz ISM band divided into 79 channels of 1 MHz each

FHSS (frequency-hopping spread spectrum)

- Uses FHSS in physical layer to avoid interference from other devices/other networks
- Hops carrier frequency 1600 times per second,
 i.e. each device changes its modulation frequency 1600 times per second
- Pseudo-random hopping sequence dictated by primary
- Device uses a frequency for only 625 μs (1/1600 s) before it hops to another frequency; dwell time is 625 μs

Modulation

- To transform bits to a signal, Bluetooth uses GFSK (FSK with Gaussian bandwidth filtering)
- GFSK has a carrier frequency
- Bit 1 is represented by a frequency deviation above carrier
- Bit 0 is represented by a frequency deviation below the carrier
- Frequencies, in megahertz, are defined according to following formula for each channel:

 For example, first channel uses carrier frequency 2402 MHz (2.402 GHz), and the second channel uses carrier frequency 2403 MHz (2.403 GHz)

Baseband Layer

- Equivalent to MAC sublayer in LANs
- Frequency hop selection, connection creation, MAC
- The access method is TDMA
- The primary and secondary communicate with each other using time slots
- The length of a time slot is same as dwell time, $625~\mu s$

TDD-TDMA

- Uses a form of TDMA that is called TDD-TDMA (time division duplex TDMA)
- TDD-TDMA is a kind of half-duplex communication
- Secondary and primary send and receive data, but not at the same time
- Communication for each direction uses different slots
- Similar to walkie-talkies using different carrier frequencies

Single-Secondary Communication

- If the piconet has only one secondary, the TDMA operation is very simple
- The time is divided into slots of 625 μ s
- The primary uses even numbered slots (0, 2, 4, ...)
- the secondary uses odd-numbered slots (1, 3, 5, ...)
- TDD-TDMA allows the primary and the secondary to communicate in half-duplex mode
- In slot 0, primary sends, and secondary receives
- In slot 1, secondary sends, and primary receives
- The cycle is repeated

Single-Secondary Communication

The primary uses even numbered slots (0, 2, 4, ...); the secondary uses odd-numbered slots (1, 3, 5, ...)

Multiple-Secondary Communication

- More than one secondary in the piconet
- Primary uses even-numbered slots, but a secondary sends in next odd-numbered slot if the packet in the previous slot was addressed to it
- All secondaries listen on even-numbered slots, but only one secondary sends in any oddnumbered slot
- Thus it is a poll/select operation with reservations

Multiple-Secondary Communication

All secondaries listen on even-numbered slots, but only one secondary (who is polled by primary) sends in any odd-numbered slot

- As in the figure.
 - 1. In slot 0, the primary sends a frame to secondary 1.
 - 2. In slot 1, only secondary 1 sends a frame to the primary because the previous frame was addressed to secondary 1; other secondaries are silent
 - 3. In slot 2, the primary sends a frame to secondary 2
 - 4. In slot 3, only secondary 2 sends a frame to the primary because the previous frame was addressed to secondary 2; other secondaries are silent
 - 5. The cycle continues
- This access method is similar to a poll/select operation with reservations
- When the primary selects a secondary, it also polls it
- Next time slot is reserved for the polled station to send its frame
- If the polled secondary has no frame to send, the channel is silent

Physical Links

- Two types of links can be created between a primary and a secondary:
- 1. Synchronous Connection Oriented (SCO) links
- 2. Asynchronous Connectionless (ACL) links

Synchronous Connection Oriented (SCO) links

- Used when avoiding latency (delay in data delivery) is more important than integrity (error-free delivery) eg. audio
- A physical link is created between the primary and a secondary by reserving specific slots at regular intervals
- The basic unit of connection is two slots, one for each direction
- If a packet is damaged, it is never retransmitted
- A secondary can create up to three SCO links with the primary, sending digitized audio (PCM) at 64 kbps in each link

Asynchronous Connectionless (ACL) links

- Used when data integrity is more important than avoiding latency eg. file transfer
- if a payload encapsulated in the frame is corrupted, it is retransmitted
- ACL can use one, three, or five slots and can achieve a maximum data rate of 721 kbps

Each transmission slot in Bluetooth is 625 μ s long. A voice data of type HV3 takes one slot every 3.75 ms (625 μ s x 6, i.e. takes every 6th slot) for transmission and consists of 30 bytes of data with no error correction. Calculate the time taken to transmit 300 bytes of voice data over this configuration

Data: Time

30 bytes: 3.75 ms

300 bytes : ?

300 Byte transmission will take = $3.75ms \times 300/30 = 37.5 ms$

Logical Link Control and Adaptation Protocol (L2CAP)

- Roughly equivalent to the LLC sublayer in LANs
- It is used for data exchange on an ACL link
- SCO channels do not use L2CAP why waste time?
- Does multiplexing, framing, segmentation and reassembly, quality of service (QoS), group management

Multiplexing

- At sender site, it accepts data from one of the upper-layer protocols, frames them, and delivers them to the baseband layer
- At receiver site, it accepts a frame from the baseband layer, extracts data, and delivers them to appropriate protocol layer
- Creates a virtual channel

Segmentation and Reassembly

- Maximum size of the payload field in the baseband layer is 2774 bits or 343 bytes
- This includes 4 bytes to define the packet and packet length
- Therefore, size of packet that can arrive from an upper layer can only be 339 bytes (343-4)
- However, application layers sometimes need to send a data packet that can be up to 65,535 bytes (Internet packet)
- L2CAP divides these large packets into segments and adds extra information to define location of segments in original packet
- The L2CAP segments the packet at the source and reassembles them at the destination

Quality of Service (QoS)

- Bluetooth allows the stations to define a quality-of-service level
- QoS parameters are: peak bandwidth, latency, delay variation when link is established between two devices
- If no quality-of-service level is defined,
 Bluetooth defaults to best-effort service; it will do its best under the circumstances

Group Management

- allow devices to create a type of logical addressing between themselves
- similar to multicasting
- two or three secondary devices can be part of a multicast group to receive data from primary

- Power management
- Modes of operation
- Active mode
 - Bluetooth device actively participates in piconet
 - Active slaves are polled by master for transmission

- Sniff mode
 - –Low power mode
 - Listening activity of slave is reduced
 - Master sends commands to slave to enter sniff mode & gives sniff interval
 - Slave listens for transmission at these fixed intervals

- Hold mode
 - –Slave temporarily does not supportACL packets in channel
 - –SCO links (real time transmission) still be supported

- Park mode
 - Low power mode
 - Slave gives Active Member address
 - -Given an 8 bit Parked address
 - Slave remains in synchronization to channel
 - receives message send through broadcast channel (address = all 0s)
 - -To have more than 7 slaves

Host Controller Interface

- Optional interface layer, for accessing Bluetooth hardware capabilities
- Host (gives command to controller)->HCI->Bluetooth controller
- Whenever the higher layers are implemented on the motherboard of a host device, this layer is needed.
- Acts as a Bluetooth device/controller translator for host (eg. PC)
- The specification defines details such as
 - Command packets used by host (eg. PC) to control device/controller
 - Event packets used by device to inform host of changes, and data packets

Middleware Protocol Group

- Applications use application programming interfaces (APIs) or higher level functions provided by middleware protocols
- Applications need not know the transport layer complexities
 - RFCOMM
 - Service Discovery Protocol (SDP)
 - IrDA interoperability protocols
 - Telephony control specification (TCS)
 - Audio

RFCOMM

- RFCOMM layer presents a virtual serial port to applications using the serial interface.
- Application that uses serial interface ->RFCOMM ->Bluetooth lower layers (L2CAP, Link Manager, Baseband, Radio)
- Any application which is using the serial port can work seamlessly on Bluetooth devices.

Service Discovery Protocol (SDP)

- In Bluetooth devices services offered by other devices have to be discovered.
- This is achieved by using service discovery protocol (SDP) of the Bluetooth protocol stack.
- Service discovery makes the device self-configured without manual intervention.

IrDA

- IrDA interoperability protocol is for the existing IrDA applications to work on Bluetooth devices without any changes
- IrDA application -> IrOBEX/IrMC -> Bluetooth controller
- Main protocols set are:
 - IrOBEX (IrDA object exchange) for exchanging objects between two devices
 - IrMC (infrared mobile communications) for synchronization.

Audio

- Audio is given highest priority and is directly carried over baseband at 64 Kbps so that a very good quality of voice is provided.
- Audio is not a layer of protocol stack, but a specific packet format that can be transmitted directly over SCO links of the baseband layer.

Telephony control specification binary (TCS-BIN)

- Telephony control is implemented using the telephony control specification binary (TCS-BIN) protocol.
- TCS defines three major functional areas: call control, group management, connectionless TCS.
- Call control is used to set up calls which can be subsequently used to carry voice and data traffic.
- TCS operates in both point-to-point and point-to-multipoint configurations.

Telephony Control Specification Binary (TCS-BIN)

- Group management enables multiple telephone extensions, call forwarding, and group calls.
- Example, multiple handsets and a single base set.
- When a call comes in to the base set, all the multiple handsets can receive this call.

Bluetooth profiles

- Profiles are developed to promote interoperability among the many implementations of the Bluetooth protocol stack.
- Each profile specification provides a clear and transparent standard to implement a specific user end function.
- Two Bluetooth devices can achieve a common functionality only if both devices support identical profiles.

Interoperability & Profiles

- Represents default solution for a usage model
- Vertical slice through the protocol stack
- Basis for interoperability and logo requirements
- Each Bluetooth device supports one or more profiles

Bluetooth profiles

Name	Description		
Generic access	Procedures for link management		
Service discovery	Protocol for discovering offered services		
Serial port	Replacement for a serial port cable		
Generic object exchange	Defines client-server relationship for object movement		
LAN access	Protocol between a mobile computer and a fixed LAN		
Dial-up networking	Allows a notebook computer to call via a mobile phone		
Fax	Allows a mobile fax machine to talk to a mobile phone		
Cordless telephony	Connects a handset and its local base station		
Intercom	Digital walkie-talkie		
Headset	Intended for hands-free voice communication		
Object push	Provides a way to exchange simple objects		
File transfer	Provides a more general file transfer facility		
Synchronization	Permits a RDA to synchronize with another computer		

Format of three frame types

- Access code (72-bit) contains synchronization bits & identifier of primary to distinguish frame of one piconet from another.
- Header (54-bit) is a repeated 18-bit pattern.
- Each pattern has following subfields:
- 1. Address (3-bit) can define 7 secondaries (1 to 7). If address is zero, it is used for broadcast
- 2. Type: 4-bit type subfield defines type of data coming from upper layers.

- 3. F (1-bit) for flow control. Value 1 indicates device is unable to receive more frames (buffer full)
- 4. A (1-bit) for acknowledgment, BT uses Stopand-Wait ARQ
- 5. S (1-bit) holds sequence number
- 6. HEC (8-bit) header error correction- a checksum to detect errors in each 18-bit header section

- The header has three identical 18-bit sections (54 bits)
- The receiver compares these three sections, bit by bit
- If each of the corresponding bits is the same, the bit is accepted; if not, the majority opinion rules
- This is a form of forward error correction (for the header only)
- This double error control is needed because the nature of the communication, via air, is very noisy
- Note that there is no retransmission in this sublayer
- Payload (0 to 2740 bits) contains data or control information coming from the upper layers

Slot Duration and frame transmissions

- Slot duration: 625 μs
- A frame may be transmitted by device in total 1, 3, or 5 slots

Secondary – even slots Primary- odd slots

- A secondary wants to transmit 450 bytes of information using Classic Bluetooth with basic rate at 1Mbps. How long will it take?
- Packet length: 72b (access code) + 54b (header) + 450*8b (payload-data to be transmitted) = 3,726b
- Data : Time
- 1000000b : 1 (data rate 1Mbps)
- 3726b:?
- It will take 3,726 μs

- Slot size is 625 μs, Slave can get 1, 3, or 5 slots to transmit
- Thus it can get 625 μ s (625x1), 1875 (625x3) μ s, or 3125 (625x5) μ s slot time to transmit
- Our Slave needs 3726 μs to transmit
- Slave cannot fit the data in available 5 slots (i.e. 3125 μs)
- How much data can be send in 5 slots then?
- With 1 Mbps
 - Data : Time
 - 1000000b: 1 s
 - 1b:?
 - $-1/1000000=1 \mu s$
 - 1 bit requires 1 μs to transmit
- 3125b can be transmitted in 3125 μ s
- 3,125b (available)— 72b (access code) 54b (header) = 2,999b (data bits that can be transmitted in 3125 μ s)
- BUT max payload can be of 2740b
- With first transmission of 5 slots slave can transmit 2740b

- Data yet to be transmitted = 450*8b 2740 = 860 b
- 860b (payload) + 72b (access code) + 54b (header) = 986b
- 986b is more than 1 slot (625b) but less than 3 slots (1875b)
- Data that can be put in one slot = 625 b (available) – 72b (access code) – 54b (header)
 = 499 b

- So we have
- First transmission by slave of 5 slots carrying 2,740b data in 3,125 μs
- Master polls and takes 625 μs
- Second transmission by slave of 1 slot carrying 499b data in 625 μs
- Master polls and takes 625 μs
- Third transmission by slave 450*8b (total data to be transmitted)-2740b (data in 1st transmission) -499b (data in 2nd transmission) = 361 b
- 361b (payload) + 72b (access code) + 54b (header) = 487b
- 487b requires 487 μs and can be transmitted in one slot (625 μs)
- Thus total transmission time required = 3125 μ s + 625 μ s + 625 μ s + 625 μ s + 487 μ s = 5487 μ s
- Actual rate: $450*8/5487*10^{-6} = 656 \text{ kbps}$

Bluetooth Versions and Data Rate

Bluetooth Version	Release Date	Max. Data Transfer Rate	Important Innovations
Bluetooth 1.0a	July 1999	732.2 kbit/s	First official version
Bluetooth 1.0b	December 1999	732.2 kbit/s	General improvements
Bluetooth 1.1	February 2001	732.2 kbit/s	Resolved connection and security issues. First marketable product version. Encryption. Supports up to seven connections simultaneously.
Bluetooth 1.2	November 2003	1 Mbit/s	Backwards compatibility with Bluetooth 1.1. Less prone to interference as a result of AFH (Adaptive Frequency Hopping).
Bluetooth 2.0 + EDR	November 2004	2.1 Mbit/s	Enables three times the data transfer rate as a result of EDR (Enhanced Data Rate). Various energy-saving techniques. Adds use of NFC (Near Field Communication) for pairing.

Bluetooth Versions and Data Rate

Bluetooth 2.1 + EDR	August 2007	2.1 Mbit/s	Connects automatically without using a PIN through Secure Simple Pairing.
Bluetooth 3.0 + HS	April 2009	24 Mbit/s	Additional high-speed channel (HS) based on WLAN and UWB (ultra-wide band).
Bluetooth 4.0 LE (or Bluetooth SMART)	December 2009	24 Mbit/s	Low energy (LE) protocol stack for various energy-saving techniques (e.g. GATT profile) for small devices. Improved error correction. 128-bit encryption.
Bluetooth 4.1	December 2013	25 Mbit/s	Small devices no longer require an intermediary. IPv6.
Bluetooth 4.2	December 2014	25 Mbit/s	General improvements
Bluetooth 5	December 2016	50 Mbit/s	Significant increase in range and data transfer rate.
Bluetooth 5.2	January 2020	50 Mbit/s	Feature that allows transmitter to adjust its transmission power by itself or can be requested to change its transmission power by a peer device

Thank You