TECHNISCHE UNIVERSITÄT MÜNCHEN

Andreas Wörfel Aufgaben Mittwoch FERIENKURS ANALYSIS 2 FÜR PHYSIKER SS 2012

Aufgabe 1 Äquivalente Aussagen für Stetigkeit(**)

Beweisen Sie folgenden Satz: Seien X und Y metrische Räume, $f: X \to Y$ eine Funktion. Dann sind äquivalent:

- (I) f stetig
- (II) $f^{-1}(V)$ offen für jedes $V \subset Y$ offen
- (III) $f^{-1}(A)$ abgeschlossen für jedes $A \subset Y$ abgeschlossen

Gehen Sie praktischerweise folgendermaßen vor:

- a) Zeigen Sie zuerst (I) \Rightarrow (II). Bedenken Sie hierbei, dass eine stetige Abbildung Punkte in einer Umgebung um ein x_0 im Bild in eine Umgebung des Bildpunktes $f(x_0)$ abbildet. (Letztere Aussage brauchen Sie nicht zu zeigen, diese können Sie als gegeben annehmen.)
- b) Zeigen Sie (II) \Rightarrow (I) mit Hilfe des ϵ - δ -Kriteriums: f stetig $\iff \forall \epsilon > 0 \exists \delta > 0 \forall x \in X$ mit $d(x_0, x) < \delta : d(f(x_0), f(x)) < \epsilon$
- c) Zeigen Sie (II) \Rightarrow (III). Hier ist es geschickt, $Y \setminus A$ zu betrachten. Haben Sie dies bewiesen, so folgt (III) \Rightarrow (II) analog dazu. Dies brauchen Sie dann nicht mehr zu zeigen.

Aufgabe 2 Hausdorff-Eigenschaft (*)

Zeigen Sie, dass in einem metrischen Raum (M;d) gilt: je zwei verschiedene Punkte haben disjunkte Umgebungen, d.h. $\forall x, y \in M, x \neq y \exists$ Umgebung U von x, Umgebung V von y mit: $U \cap V = \phi$.

Aufgabe 3 \mathbb{Q} *liegt dicht in* \mathbb{R} (**)

Zeigen Sie, dass der Abschluss von \mathbb{Q} ganz \mathbb{R} ist. Sie tun sich sehr leicht, das zu zeigen, wenn Sie zunächst beweisen, dass \mathbb{Q} dicht in \mathbb{R} liegt. Letzteres können Sie tun, indem Sie zeigen: $x \in \mathbb{R} \iff x \in \partial \mathbb{Q}$

Hinweis: Es genügt "⇒" der letztgenannten Äquivalenz zu zeigen, die Rückrichtung wird nicht benötigt. Dann ist der Rest des Beweises trivial.

Aufgabe 4 Endlich-dimensionale, normierte Vektorräume (* * *)

Zeigen Sie: Jeder endlich-dimensionale, normierte Vektorraum (V, || ||) ist ein Banachraum.

Hinweis: Verwenden Sie die Äquivalenz von Normen sowie den Satz von Bolzano-Weierstraß. Letzterer lautet: Im euklidischen \mathbb{R}^n gilt: 1. Jede beschränkte Folge besitzt eine konvergente Teilfolge. 2. Jede Cauchyfolge konvergiert.

Aufgabe 5 Abschluss und Rand (*)

Zeigen Sie: Sei (M,d) ein metrischer Raum, $A \subset M$. Dann sind der Rand ∂A und der Abschluss \overline{A} abgeschlossen in M.

Aufgabe 6 Kompaktum unter stetiger Abbildung (**)

Zeigen Sie: Eine stetige Abbildung $f: X \to Y$ bildet das Kompaktum $A \subset X$ auf ein Kompaktum (f(A)) ab.

Tipp: Es kann helfen, sich zuerst zu überlegen, was das Kompaktum als solches auszeichnet gegenüber einer beliebigen anderen Menge.

Aufgabe 7 Zusammenhang (* * *)

Zeigen Sie, dass das in der Vorlesung gegebene Beispiel $X = Graph(f(x)) \cup (0, y)$ mit $f:(0, \infty) \to \mathbb{R}, x \longmapsto \sin \frac{1}{x}$ und -1 < y < 1 tatsächlich zusammenhängend aber nicht wegzusammenhängend ist.

Hinweis: Sie dürfen verwenden, dass jedes Intervall in \mathbb{R} sowohl zusammenhängend als auch wegzusammenhängend ist. Außerdem ist das Bild einer (weg)zusammenhängenden Menge unter einer stetigen Abbildung (weg)zusammenhängend.

Aufgabe 8 Mannigfaltigkeiten

Bestimmen Sie, ob die folgenden Teilmengen $M \subset \mathbb{R}^3$ eine Untermannigfaltigkeit des \mathbb{R}^3 darstellen.

a)
$$M = \{(x, y, z) \in \mathbb{R}^3 | xy = 0 = yz\}$$

b)
$$M = \{(x, y, z) \in \mathbb{R}^3 | x^2 y^2 - (z - 1)^3 - 2 = 0 \}$$

c)
$$M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 - (z - 1)^2 - 2 = 0 = x^2 + y^2 + z^3 - 3\}$$

Aufgabe 9 Tangentialraum

Finden Sie für $M=\{(x,y,z)\in\mathbb{R}^3|x^2+y^2-(z-1)^2-2=0=x^2+y^2+z^3-3\}$ den Tangentialraum an den Punkten P=(0,0,0) und $Q=(\sqrt{3/2},\sqrt{3/2},0)$, d.h. es genügt, wenn Sie die Basisvektoren des Tangentialraums bestimmen.