Aufgabe 4

Da $A \leq B$ gilt und B rekursiv aufzählbar ist, ist auch A rekursiv aufzählbar.

Damit also A entscheidbar ist, muss noch A rekursiv aufzählbar sein.

Jedoch kann $B \leq \bar{A}$ auch gelten, wenn \bar{A} nicht rekursiv aufzählbar ist (beispielsweise wenn B nicht rekursiv ist):

B nicht rekursiv $\Rightarrow \bar{A}$ nicht rekursiv $\Rightarrow \bar{A}$ nicht rekursiv aufzählbar (da A rekursiv aufzählbar)

Damit ist auch A nicht immer rekursiv.

Aufgabe 5

Zu zeigen: für eine berechenbare Funktion f gilt:

 $x \in H_{\epsilon} \Leftrightarrow f(x) \in L_{111} \text{ und } x \notin H_{\epsilon} \Leftrightarrow f(x) \notin L_{111}$

 $f(x) = \langle M' \rangle$ falls x Gödelnummer $\langle M \rangle$ wobei M' die TM ist die zunächst das ganze Band löscht und dann M ausführt.

 $f(x) = \langle M'' \rangle$ falls x keine Gödelnummer ist, wobei M'' eine TM ist die nur einen Endlosschleife hat und somit nie terminiert.

f ist offensichtlich berechenbar, da das Bestimmen ob ein Eingabewort eine TM ist, das Löschen des Bandes und das Simulieren einer TM alles berechenbar ist.

 $x \in H_{\epsilon}$

 $\Leftrightarrow x$ ist Gödelnummer $\langle M \rangle$ und $\langle M \rangle$ hält auf ϵ

 $\Leftrightarrow \langle M' \rangle$ hält auf jeder Eingabe somit auch die, die auf 111 enden.

 $\Leftrightarrow \langle M' \rangle \in L_{111}$

 $\Leftrightarrow f(x) \in L_{111}$

 $x \notin H_{\epsilon}$

 $\Leftrightarrow x$ ist keine Gödelnummer oder x ist Gödelnummer $\langle M \rangle$ und $\langle M \rangle$ hält nicht auf ϵ $\Leftrightarrow f(x) = \langle M'' \rangle$ oder $f(x) = \langle M' \rangle$ wobei M' auf keiner Eingabe terminiert, somit auch die, die auf 111 enden.

 $\Leftrightarrow f(x)$ terminiert nie.

 $\Leftrightarrow f(x) \not\in L_{111}$

Somit gilt: $H_{\epsilon} \leq L_{111}$

Aufgabe 6

a) Satz von Rice:

$$L_{\mathbb{P}} = \{ \langle M \rangle | L(M) = \mathbb{P} \}$$

$$S = \{ f_M | \forall_{p \in \mathbb{P}} : f_M(p) = 1 \land \forall_{q \notin \mathbb{P}} : f_M(q) = 0 \}$$

 $S \neq R$, da in S nicht die Funktion enthalten ist, die für alle Eingaben 0 ausgibt. $S \neq \emptyset$, da es Algorithmen gibt um zu bestimmen, ob eine bestimmte Zahl x eine Primzahl ist.

Ausserdem macht die Sprache ausschliesslich eine Aussage über die Ausgabe der TM.

Nach dem Satz von Rice ist also $L_{\mathbb{P}} = L(S)$ nicht rekursiv.

b) Sei L_1 das Entscheidungsproblem: Gegeben eine TM M, akzeptiert diese jede Eingabe w? Also:

$$L_1 = \{ \langle M \rangle | L(M) = \Sigma^* \}$$

Mit dem Satz von Rice ist schnell bewiesen, dass dieses Entscheidungsproblem unentscheidbar ist:

 $S \neq R$, da in S nicht die Funktion enthalten ist, die für alle Eingaben 0 ausgibt. $S \neq \emptyset$, da in S die Funktion enthalten ist, die fül alle Eingabe 1 ausgibt.

Da die Sprache ausschliesslich eine Aussage über die Ausgabe der TM macht, $S \neq R$ und $S \neq \emptyset$ gilt, besagt der Satz von Rice dass L_1 nicht entscheidbar ist.

Nun zeigen wir, dass wenn es eine TM M_{comp} gäbe die die gegebene Sprache L_{comp} entscheidet man dann durch Unterprogrammtechnik auch L_1 mit der TM M_1 entscheiden könnte. Da wir gerade gezeigt haben, dass L_1 nicht entscheidbar ist kann L_{comp} also ebenfalls nicht entscheidbar sein.

Dafür definieren wir die TM M_0 welche jedes Wort verwirft.

Die TM M_1 gibt einfach $\langle M_0 \rangle$ und das Eingabewort in die TM M_{comp} ein und übernimmt dann die Ausgabe.

Korrektheit:

$$\overline{L(M_0)} = \{\langle M \rangle | L(M) = \Sigma^* \} = L_1$$

$$x \in L_1$$

$$\Leftrightarrow x \text{ ist G\"{o}delnummer } \langle M \rangle \text{ und } L(M) = L_1$$

$$\Leftrightarrow M_{comp} \text{ akzeptiert mit Eingaben } \langle M \rangle \text{ und } \langle M_0 \rangle$$

$$\Leftrightarrow M_1 \text{ akzeptiert ebenfalls.}$$

$$\Leftrightarrow x \in L(M_1)$$

$$x \notin L_1$$

$$\Leftrightarrow x \text{ ist keine G\"{o}delnummer oder } x \text{ ist G\"{o}delnummer } \langle M \rangle \text{ und } L(M) \neq L_1$$

$$\Leftrightarrow M_{comp} \text{ verwirft die Eingaben } \langle M \rangle \text{ und } \langle M_0 \rangle$$

$$\Leftrightarrow M_1 \text{ verwirft ebenfalls.}$$

$$\Leftrightarrow x \notin L(M_1)$$

Aufgabe 7

rekursiv aufzählbar = ra, rekursiv = r

- a) \Rightarrow " Lra \Rightarrow Es gibt eine TM M, die für alle $x\in L$ hält und akzeptiert.
 - \Rightarrow Konstruiere TM M', die M simuliert:
 - -M akzeptiert $\Rightarrow M'$ akzeptiert
 - -M hält nicht $\Rightarrow M'$ hält nicht
 - Mverwirft \Rightarrow Setze M' in eine Endlosschleife \Rightarrow M' hält nicht
 - $\Rightarrow L(M) = L(M')$
 - \Rightarrow Es gibt also eine partielle berechenbare Funktion f, die von M' (bzw. gleich M) berechnet wird
 - $\Rightarrow \operatorname{Def}(f) = \{x | f(x) \neq \bot\} = L(M') = L(M) = L$
 - " \Leftarrow " f eine partielle berechenbare Funktion mit $L \coloneqq \mathrm{Def}(f) = \{x | f(x) \neq \bot\}$
 - \Rightarrow Es gibt eine TM M, die f berechnet \Rightarrow L(M) = L, da:
 - -M hält auf $x \Leftrightarrow f(x) \neq \perp \Leftrightarrow x \in L$
 - -M hält nicht auf $x \Leftrightarrow f(x) = \perp \Leftrightarrow x \notin L$

Also ist L ra.

Damit ist die Aussage folglich bewiesen.

- b)" \Rightarrow " L rekursiv aufzählbar:
 - 1) Falls $L = \emptyset$ gilt (immer ra)
 - 2) Falls $L \neq \emptyset$:

Es gibt ja $h: \Sigma^* \to \mathbb{N}$.

Zudem hat die ra Sprache Leinen Aufzähler A,der Wörter $w \in L$ aufzählt.

 \Rightarrow Es gibt $g:\mathbb{N}\to L$, die eine Zuordnung von Zahlen zu den Wörter auf dem Ausgabeband von A ist $\Rightarrow f\coloneqq g\circ h$ ist somit eine totale Funktion von Σ^* nach L

- " \Leftarrow " 1) $L = \emptyset \Rightarrow L \text{ r} \Rightarrow L \text{ ra (offensichtlich)}$
 - 2) $f: \Sigma^* \to L$ solche totale Funktion
 - \Rightarrow Sei T eine TM, die f berechnet für $w \in \Sigma^*$
 - \Rightarrow Sei Z ein Aufzähler von Σ^*
 - \Rightarrow Sei T' eine TM, die T und Z benutzt, keine Eingaben nimmt, jedes von Z geschriebene Wort in T füttert.
 - $\Rightarrow T'$ ist ein Aufzähler von L
 - $\Rightarrow L$ ist ra