Nama: Lita Dwi Setianingsih

NIM : 2305110005

Rombel:1

1. Amplifier class A

Rangkaian class A

• Hasil simulasi output class A

• Analisis rangkaian amplifier class A

Pada gamabar osiloskop di atas, rangkaian penguat non-inverting tampaknya beroperasi secara efektif. Sinyal masukan (Vin) yang berbentuk gelombang sinusoidal dengan frekuensi 1 kHz dan amplitudo 1 V, diperkuat menjadi sinyal keluaran (Vout) yang juga berbentuk gelombang sinusoidal dengan frekuensi yang sama, tetapi amplitudonya menjadi 2 V. Hal ini menunjukkan bahwa rangkaian berhasil meningkatkan sinyal masukan dengan faktor 2, sesuai dengan gain teoritis -1 (dengan catatan bahwa pada penguat non-inverting, gain negatif menunjukkan penguatan tanpa inversi sinyal).

Analisis Komponen

1. Operational Amplifier (Op-amp): Op-amp berperan sebagai komponen utama dalam rangkaian ini, memperkuat sinyal masukan. Meskipun model spesifik op-amp tidak disebutkan, namun digunakan op-amp non-inverting standar.

- 2. Resistor (R1 dan R2): Dua resistor membentuk jaringan pembagi tegangan yang menentukan gain penguat. Dengan gain sebesar 2, nilai resistor R1 dan R2 dihitung menjadi masing-masing $10~\text{k}\Omega$.
- 3. Kapasitor (C1 dan C2): Kapasitor berperan dalam memisahkan sinyal DC dan AC. Meskipun nilai kapasitor tidak dijelaskan dalam gambar, namun harus dipilih agar dapat efektif memblokir sinyal DC pada frekuensi yang diinginkan.

1. Amplifier class B

Rangakaian class B

Hasil simulasi output class B

• Analisis hasil rangkaian class B

Rangkaian ini terdiri dari komponen-komponen berikut:

- 1. Operational amplifier (op-amp): Op-amp adalah komponen utama rangkaian. Fungsinya untuk menguatkan sinyal masukan.
- 2. Dua resistor: Kedua resistor membentuk jaringan pembagi tegangan yang mengatur gain dari penguat.
- 3. Kapasitor masukan: Kapasitor masukan memblokir komponen DC dari sinyal masukan dan hanya memungkinkan komponen AC yang melewatinya.
- 4. Kapasitor keluaran: Kapasitor keluaran memblokir offset DC dari sinyal keluaran dan hanya memungkinkan komponen AC yang melewatinya.

Penjelasan

- Sinyal masukan diwakilkan oleh sumber tegangan (Vin) yang terhubung ke input inverting dari op-amp. Nilai Vin tidak disebutkan dalam diagram. Gelombang ini ditandai dengan warna kusing pada osiloskop.
- Sinyal keluaran diwakili oleh sumber tegangan (Vout) yang terhubung ke output dari op-amp. Nilai Vout tergantung pada gain penguat dan nilai sinyal masukan. yang ditampilkan pada osiloskop ditandai dengan gelombang warna biru.
- Nilai resistor yang digunakan dalam simulasi ini adalah 10 k Ω untuk R1 dan 10 k Ω untuk R2.
- Nilai kapasitor yang digunakan dalam simulasi ini adalah 1 μ F untuk C1 dan 1 μ F untuk C2.

Cara kerja:

Ketika sinyal masukan diberikan ke input inverting dari op-amp, op-amp membandingkan sinyal masukan dengan tegangan referensi (biasanya ground) dan menguatkan perbedaannya. Sinyal yang diperkuat kemudian dikeluarkan di output dari op-amp.

Hasil Simulasi:

Hasil simulasi menunjukkan bahwa rangkaian penguat non-inverting bekerja dengan baik dan menguatkan sinyal masukan sesuai harapan. Sinyal keluaran adalah gelombang sinusoida dengan frekuensi yang sama dengan sinyal masukan, tetapi amplitudonya menjadi dua kali.

Kesimpulan:

Hasil simulasi menunjukkan bahwa rangkaian penguat non-inverting berfungsi dengan baik dan menguatkan sinyal masukan sesuai harapan. Gain penguat adalah 2, yang berarti amplitudo sinyal keluaran menjadi dua kali lipat dari amplitudo sinyal masukan.

2. Amplifier class AB

Rangkaian class AB

Hasil simulasi

Analisis hasil rangkaian amplifier class AB

- Op-amp merupakan komponen utama rangkaian dan berfungsi untuk menguatkan sinyal masukan. Ini adalah penguat diferensial dua input dengan gain tinggi.
- Resistor membentuk jaringan pembagi tegangan yang mengatur gain dari penguat
- Fungsi utama kapasitor adalah menghalangi sinyal arus searah (DC) dan memungkinkan hanya sinyal arus bolak-balik (AC) untuk melewatinya. Ini penting karena op-amp didesain khusus untuk memperkuat sinyal AC.

Cara kerja:

Ketika sinyal masukan (Vin) diberikan ke terminal input inverting dari op-amp, op-amp membandingkan sinyal masukan dengan tegangan referensi (biasanya ground) dan menguatkan perbedaannya. Sinyal yang diperkuat kemudian dikeluarkan di terminal output dari op-amp. Gain dari penguat ditentukan oleh nilai resistor R1 dan R2.

Gambar pada osiloskop

Saluran A: Bentuk gelombang ini mewakili sinyal masukan (Vin). Tampaknya ini adalah gelombang sinusoida dengan frekuensi 1 kHz dan amplitudo 1 V.

Saluran B: Bentuk gelombang ini mewakili sinyal keluaran (Vout). Tampaknya ini adalah gelombang sinusoida dengan frekuensi 1 kHz dan amplitudo 2 V.