Bansilal Ramnath Agarwal Charitable Trust's VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE – 411037. (An Autonomous Institute Affiliated to Savitribai Phule Pune University)

Examination: ESE

Year: 2023-24

Branch: AIDS

Subject: Automata Theory

Subject Code: AI2017

Max. Marks: 100

Total Pages of Question Paper: 02

Day & Date: Friday 24/11/23

Time: 2:30pm TO 5:30pm

Instructions to Candidate

1. All questions are compulsory.

2. Neat diagrams must be drawn wherever necessary.

3. Figures to the right indicate full marks.

Q. N.	CO	BT*			The little			Max marks		
Q. 1.	1	1	a) Define General Finite State Machine(FSM) and explain working of FSM.							
	1	3	Laboratory DCA and NICA with evitable everyles							
	1	2	Clare Charles Charles and the moltable							
Q. 2.	2	4	The state of the s							
			a) Convert following R.E. into NFA with € (a(b)*)+b							
	2	4	b) Write a regular expression for language over input symbol {a,b} which accept 1) Even number of b. 2) All string do not have substring 'ab'							
2	2	5	B) Draw and Convert following NFA to DFA M=({q0,q1,q2,q3},{a,b},δ,q0,{q3}) where q3 is final state and δ function is							
				δ	0	1		1		
		10		-> q0	{q0,q1}	q0				
8				q1	q2	q1				
				q2	q3	q3				
				* q3	Φ	q2				
3.	3		A) Attempt any 2 a) Convert the following grammar to Chomsky Normal form (CNF) S→a Aa B							
		_	A→BaB ε B→aA b		'al and mair	produc	tion from following CFG			
			B→aA b b) Write a grammar without unit production from following CFG S→ A dd A→B d B→S c							

2 3 1 5	Vi	shwak	arma Institute of Technology Issue 01 - Ber No. 00 - Dr. ac.	315-67				
	3	3	c) Write a grammar in reduced form 1.Eliminate useless symbol 2. ε-production from following CFG S→ ABA AD A→aA ε B→bB ε	5				
	3 4		B) Attempt any 2 a) Consider the following grammar. E-> E - E E*E id Derive the string id-id*id using i) Leftmost derivation ii) Rightmost derivation. also draw a derivation tree for both leftmost and rightmost derivation.					
	3	3	b) What is ambiguous grammar? Explain with suitable example.	5				
	3	6	c)Show that the following grammar is ambiguous. A -> AA (A) a	5				
Q. 4.	4	2	a) What is PDA? Explain deterministic and non deterministic PDA.	5				
	4	3	b) Compare FA and PDA by using formal definitions.					
	4	2	c) Explain working of PDA with a neat diagram .	5				
	4	4	d) What is Context Sensitive Grammars? Explain with suitable examples.	5				
Q.5	5	2	Attempt any 3 a) What is a Turing Machine? Give the formal definition of a Turing machine.	5				
	5	5	b) List applications of Turing Machine.	5				
	5	6	c) Explain working of Turing Machine.	5				
	5	6	d) Design a TM for 0 ⁿ 1 ⁿ language	5				
Q.6	6	1	a) Define the Class P and Class NP with their example in detail	5				
1	6	4	b) Justify "Halting Problem of Turing machine is undecidable"	5				
	6	2	c) What is the undecidability problem? Explain	5				

CO Statements:

CO1:Students should be able to design Automata / Regular expression for given computational problems

CO2:Students should be able to correlate given computational model with its Formal Language

CO3:Students should be able to understand Chomsky hierarchy and write grammar for languages

CO4:Students should be able to design PDA / TM for given computational problem

CO5:Students should be able to analyze power of different computational models

CO6:Students should be able to understand complexity classes and un / decidability of problems

*Blooms Taxonomy (BT) Level No:

 ¹ Remembering; 2. Understanding; 3. Applying; 4. Analyzing; 5. Evaluating; 6. Creating