

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	SWTID1721205662
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	D	esci	ripti	on											
40 D	40 D	00 resc1	riptiv	x 26 ve St	ats:	353.000000 1.017408 0.005717 1.005000 1.010000	al	351.000000 0.450142 1.099191 0.000000 0.0000000	bgr 356.00000 148.036517 79.281714 22.00000 99.00000	bu 381.00000 57.425722 50.50000 1.500000 27.000000	383.00000 3.072454 5.741126 0.400000 0.900000	sod 313.00000 137.528754 10.408752 4.500000 135.000000	pot 312.00000 4.627244 3.193904 2.500000 3.800000	hemo 348.00000 12.526437 2.912587 3.100000 10.300000	pcv 329,000000 38,884498 8,990105 9,000000 32,000000
		75%	199.500000 299.250000 399.000000	55.00000 64.500000 90.000000	80.000000 80.000000 180.000000	1.020000 1.020000 1.025000	0.000000 2.000000 5.000000	0.000000 0.000000 5.000000	121.000000 163.000000 490.000000	42.00000 66.00000 391.000000	1.300000 2.800000 76.000000	138.00000 142.00000 163.00000	4.40000 4.90000 47.000000	12.650000 15.000000 17.800000	40.00000 45.00000 54.00000

Outliers and Anomalies	-													
Data Preprocessing Code Screenshots														
	<pre>data=pd.read_csv("chronickidneydisease.csv")</pre>													
	data.head()													
	id age bp sg al su rbc pc pcc ba pcv													
Loading Data	0 0 48.0 80.0 1.020 1.0 0.0 NaN normal notpresent notpresent 44.0													
Loading Data	1 1 7.0 50.0 1.020 4.0 0.0 NaN normal notpresent notpresent 38.0 2 2 62.0 80.0 1.010 2.0 3.0 normal normal notpresent notpresent 31.0													
	3 3 48.0 70.0 1.005 4.0 0.0 normal abnormal present notpresent 32.0													
	4 4 51.0 80.0 1.010 2.0 0.0 normal normal notpresent notpresent 35.0													
	5 rows × 26 columns													
Handling Missing Data	<pre>data["bgr"].mean() data["bgr"]=data["bgr"].fillna(data["bgr"].mean()) data.bgr.head(15) data["bu"].mean()</pre>													
	<pre>data["bu"]=data["bu"].fillna(data["bu"].mean()) data.bu.head(15)</pre>													
	<pre>data["bu"].isnull().sum()</pre>													
	data['sc'].mean()													
	<pre>data["sc"]=data["sc"].fillna(data["sc"].mean())</pre>													
	<pre>data["sc"].isnull().sum()</pre>													
	<pre>data["sod"].mean()</pre>													
	<pre>data["sod"]=data["sod"].fillna(data["sod"].mean())</pre>													
	<pre>data["sod"].isnull().sum()</pre>													
	<pre>data["pot"].mean()</pre>													
	<pre>data["pot"]=data["pot"].fillna(data["pot"].mean())</pre>													

Data Transformation	<pre>data['classification'] = data['classification'].replace({'ckd\t':'ckd'}) data.htn=l1.fit_transform(data.htn) data['htn'].value_counts() data['dm'].value_counts() data['dm'] = data['dm'].replace({'\tno': 'no', '\tyes': 'yes'," yes":"yes"})</pre>
Feature Engineering	Attached the codes in final submission.
Save Processed Data	-