Descriptive Analysis

```
In [24]:
         import pandas as pd
In [33]: import pandas as pd
         df = pd.read csv(r"C:\Users\un\Desktop\Case Study\Data set2.csv")
         print(df)
                    date
                           price
                                  production
                                               exchange rate
                                                               fuel price \
         0
                1/1/2000
                           26.94
                                     1781.200
                                                      73.150
                                                                     13.2
         1
                2/1/2000
                           25.00
                                     1781.200
                                                      73.475
                                                                     16.2
         2
                3/1/2000
                           23.09
                                     1781.200
                                                      73.750
                                                                     16.2
         3
                4/1/2000
                           22.13
                                     1781.200
                                                      74.300
                                                                     16.2
         4
                5/1/2000
                           21.71
                                     1077.600
                                                      74.735
                                                                     16.2
                                                                      . . .
         271
                8/1/2022 239.24
                                     1461.675
                                                     357.880
                                                                    430.0
         272
                9/1/2022 228.44
                                     1461.675
                                                     365.500
                                                                    430.0
         273
              10/1/2022 224.78
                                     1931.200
                                                     363.000
                                                                    430.0
         274
              11/1/2022 222.28
                                     1931.200
                                                     368.500
                                                                    430.0
         275 12/1/2022 218.20
                                                                    420.0
                                     1931.200
                                                     367.500
              Poduction Cost (Rs/Hr) Tax rate
         0
                              12,500
                                           15%
         1
                              13,200
                                           15%
         2
                              14,000
                                           15%
         3
                              11,500
                                           15%
         4
                              12,000
                                           15%
                                  . . .
                                           . . .
         271
                              45,000
                                           15%
                              46,500
         272
                                           15%
         273
                              48,000
                                           15%
                                           15%
         274
                              49,500
         275
                              51,000
                                           15%
          [276 rows x 7 columns]
In [36]:
         #Import libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
In [37]:
         #Ignore warnings
         import warnings
         warnings.filterwarnings('ignore')
```

#Exploratory data analysis

```
In [39]: df.shape #View dimensions of dataset
```

Out[39]: (276, 7)

In [40]: df.head() #Preview the dataset

Out[40]:

	date	price	production	exchange_rate	fuel_price	Poduction Cost (Rs/Hr)	Tax rate
0	1/1/2000	26.94	1781.2	73.150	13.2	12,500	15%
1	2/1/2000	25.00	1781.2	73.475	16.2	13,200	15%
2	3/1/2000	23.09	1781.2	73.750	16.2	14,000	15%
3	4/1/2000	22.13	1781.2	74.300	16.2	11,500	15%
4	5/1/2000	21.71	1077.6	74.735	16.2	12,000	15%

In [41]: df.info() #View summary of dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 276 entries, 0 to 275
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	date	276 non-null	object
1	price	276 non-null	float64
2	production	276 non-null	float64
3	exchange_rate	276 non-null	float64
4	fuel_price	276 non-null	float64
5	Poduction Cost (Rs/Hr)	276 non-null	object
6	Tax rate	276 non-null	object

dtypes: float64(4), object(3)

memory usage: 15.2+ KB

In [42]: #Check for missing values df.isnull().sum()

dtype: int64

Out[43]:

	price	production	exchange_rate	fuel_price
count	276.000000	276.000000	276.000000	276.000000
mean	68.467842	1925.655851	134.871667	88.548913
std	41.680099	625.223689	53.498613	68.945093
min	20.610000	909.320000	73.150000	13.200000
25%	33.495000	1473.830000	102.578750	50.000000
50%	63.075000	1898.000000	114.750000	84.000000
75%	88.627500	2384.000000	152.047500	104.000000
max	250.070000	3196.750000	368.500000	460.000000

In [44]: #Summary statistics of character columns
 df.describe(include=['object'])

Out[44]:

	date	Poduction Cost (Rs/Hr)	Tax rate
count	276	276	276
unique	276	176	4
top	1/1/2000	22,500	15%
freq	1	6	210

In [45]: #Summary statistics of all the columns
 df.describe(include='all')

Out[45]:

_	date	price	production	exchange_rate	fuel_price	Poduction Cost (Rs/Hr)	Tax rate
count	276	276.000000	276.000000	276.000000	276.000000	276	276
unique	276	NaN	NaN	NaN	NaN	176	4
top	1/1/2000	NaN	NaN	NaN	NaN	22,500	15%
freq	1	NaN	NaN	NaN	NaN	6	210
mean	NaN	68.467842	1925.655851	134.871667	88.548913	NaN	NaN
std	NaN	41.680099	625.223689	53.498613	68.945093	NaN	NaN
min	NaN	20.610000	909.320000	73.150000	13.200000	NaN	NaN
25%	NaN	33.495000	1473.830000	102.578750	50.000000	NaN	NaN
50%	NaN	63.075000	1898.000000	114.750000	84.000000	NaN	NaN
75%	NaN	88.627500	2384.000000	152.047500	104.000000	NaN	NaN
max	NaN	250.070000	3196.750000	368.500000	460.000000	NaN	NaN

```
In [46]:
          #Mean
          mean = df['price'].mean()
          print(mean)
          68.46784210934781
In [47]:
          #Median
          median = df['price'].median()
          print(median)
          63.075
In [48]:
          #Mode
          mode = df['price'].mode()
          print(mode)
               38.37
          0
               63.58
          1
          2
               66.37
               98.00
          Name: price, dtype: float64
In [49]:
          #Plot the distribution
          data = df['price']
          sns.distplot(data, bins=10, hist=True, kde=True, label = 'price')
Out[49]: <AxesSubplot:xlabel='price', ylabel='Density'>
             0.014
             0.012
             0.010
           Density
             0.008
             0.006
             0.004
             0.002
             0.000
                                                 200
                             50
                                   100
                                          150
                                                        250
                                                               300
                                        price
In [50]:
          #Minimum value
          df['price'].min()
Out[50]: 20.61
         #Maximum value
In [52]:
          df['price'].max()
Out[52]: 250.07
```

```
In [53]:
         #Range
         df['price'].max() - df['price'].min()
Out[53]: 229.4599999999998
In [54]:
         #Variance
         df['price'].var()
Out[54]: 1737.2306822566084
In [55]: #Standard deviation
         df['price'].std()
Out[55]: 41.68009935516719
In [56]: #Median (Q2 or 50th percentile)
         Q2 = df['price'].quantile(0.5)
         Q2
Out[56]: 63.075
In [57]: #Q3 or 75th percentile
         Q3 = df['price'].quantile(0.75)
         Q3
Out[57]: 88.6275
In [58]: #Q1 or 25th percentile
         Q1 = df['price'].quantile(0.25)
         Q1
Out[58]: 33.4950000000000005
In [59]:
         #Interquartile Range
         IQR = Q3 - Q1
         IQR
Out[59]: 55.13249999999999
```

In []:

```
In [60]: plt.boxplot(df['price'])

250
200
150
100
50
100
11

In [61]: #Skewness
df['price'].skew()

Out[61]: 1.9223021275259535

In [62]: #Kurtosis
df['price'].kurt()

Out[62]: 5.337302994401137
```