Biconnected components

Topological Sort

- Topological sort of a DAG (Directed Acyclic Graph):
 - Linear ordering of all vertices in a DAG G such that vertex u comes before vertex v if there is an edge $(u, v) \in G$
 - This property is important for a class of scheduling problems

Example – Topological Sorting

- There can be several orderings of the vertices that fulfill the topological sorting condition:
 - u, v, w, y, x, z
 - W, Z, U, V, Y, X
 - W, U, V, Y, X, Z
 - **–** ...

Topological Sorting

- Algorithm principle:
 - 1. Call DFS to compute finishing time v.f for every vertex
 - 2. As every vertex is finished (BLACK) insert it onto the front of a linked list
 - 3. Return the list as the linear ordering of vertices

Time: O(V+E)

Using DFS for Topological Sorting

Strongly Connected Components

 A strongly connected component of a directed graph G=(V,E) is a maximal set of vertices C such that for every pair of vertices u and v in C, both vertices u and v are reachable from each other.

KOSARAJU ALGORITHM

Strongly Connected Components of a Digraph

Strongly connected:

A directed graph is strongly connected if and only if, for each pair of vertices v and w, there is a path from v to w.

Strongly connected component:

Strongly connected components – Example – The Component Graph

The Component Graph results by collapsing each strong component into a single vertex

Strongly connected components

- Strongly connected components of a directed graph G
- Algorithm principle:
 - 1. Call DFS(G) to compute finishing times u.f for every vertex u
 - 2. Compute **Graph Transpose (GT)**
 - 3. Call DFS(GT), but in the main loop of DFS, consider the vertices in order of decreasing u.f as computed in step 1
 - 4. Output the vertices of each DFS-tree formed in step 3 as the vertices of a strongly connected component. (Note: When there is no reachability, we make a manual transition. Each manual transition tell us that a new component is starting.)

Step1: call DFS(G), compute u.f for all u. Say I start with 'c'

Step1: call DFS(G), compute u.f for all u. Say I start with 'c'

Step2: compute GT (Reverse directions of the edges

Node	а	b	С	d	е	f	g	h
u.f	14	16	10	9	15	4	7	6

Step3: call DFS(GT), consider vertices in order of decreasing u.f

Step3: call DFS(GT), consider vertices in order of decreasing u.f

(Highest u.f=16. Start DFS(GT) from b. We can go only to b,a,e. Then manual transition to next highest u.f id made i.e. 10. Hence, one component (a,b,e) is obtained.

Strongly connected components - Example Step3: call DFS(GT), consider vertices in order of decreasing u.f

Node	а	b	С	d	е	f	g	h
u.f	14	16	10	9	15	4	7	6

Step3: call DFS(GT), consider vertices in order of decreasing u.f

Step3: call DFS(GT), consider vertices in order of decreasing u.f

Node	а	b	С	d	е	f	g ₀	h
u.f	14	16	10	9	15	4	7	6