	Exar Curs	Tipo de Prova Exame de Época Normal – Proposta de Resolução	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO		Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

Nome: ______ Número: _____

Observações:

A avaliação desta Unidade Curricular, na modalidade de avaliação durante o período de exames, contempla dois elementos com as ponderações: **70% Exame + 30% Trabalho Prático**.

Para a realização desta prova o estudante pode usar um formulário (com até duas páginas A4) manuscrito e criado pelo próprio. No final da prova, **têm de ser entregues** o enunciado, as folhas de resposta e de rascunho, assim como o formulário, todos **devidamente identificados** com o nome e número de estudante.

Bom trabalho

Eliana Costa e Silva, Isabel Cristina Duarte e Glória Carvalho

PARTE 1

RESPONDA À QUESTÃO 1 NESTA FOLHA. NÃO PRECISA DE JUSTIFICAR A SUA RESPOSTA.

- **1.** Considere os conjuntos $X = \{x^2 + 1 : x \in \{0, 1\}\}$ e $Y = \{\emptyset, 0, 1, 2, \{1, 2\}\}$.
- **1.1. [0.6]** Complete os espaços abaixo com ∈ ou ⊆ por forma a obter afirmações verdadeiras.

$$\emptyset \in Y$$

$$\{0,1\} \subseteq Y$$

$$\{1,2\}\subseteq X$$

$$\{1.2\} \in \mathcal{P}(Y)$$

 $X = \{1,2\}$, uma vez que para x = 0 temos $x^2 + 1 = 0^2 + 1 = 1$ e para x = 1 temos $x^2 + 1 = 1^2 + 1 = 2$

1.2. [0.6] Complete os espaços abaixo por forma a obter afirmações verdadeiras.

A função $f: \{0,1\} \to Y$, definida por $f(x) = \{x\} \cap X$ é <u>injetiva</u> (injetiva/não injetiva) e <u>não sobrejetiva</u> (sobrejetiva/não sobrejetiva), portanto é <u>não bijetiva</u> (bijetiva/não bijetiva).

1.3. [0.8] Determine:

$$X \times Y = \{(1,\emptyset), (1,0), (1,1), (1,2), (1,\{1,2\}), (2,\emptyset), (2,0), (2,1), (2,2), (2,\{1,2\})\}$$

$$X^2 = X \times X = \{(1,1), (1,2), (2,1), (2,2)\}$$

 $\mathcal{P}(X) - \mathcal{P}(Y) = \{$ } uma vez que, todos os subconjunto de X também são subconjuntos de Y.

$$\#(X \oplus Y) = 3 \text{ porque } X \oplus Y = (X \cup Y) - (X \cap Y) = Y - X = \{\emptyset, 0, \{1,2\}\}\$$

PARA AS QUESTÕES 2 ATÉ 6, APRESENTE TODAS AS JUSTIFICAÇÕES E CÁLCULOS NA FOLHA DE RESPOSTA.

2. [1.2] Tendo em conta as igualdades apresentadas ao lado, determine:

$$\sum_{i=1}^{76} \left(\frac{3}{5}\right)^{i}$$

$$7 \sum_{i=8}^{45} (i^{3} - i^{2})$$

$$\frac{5}{3} \prod_{i=8}^{101} 2$$

$\sum_{i=0}^{n} ar^{i}, r \neq 0 \text{ (PG)}$	$a \times \frac{1 - r^{n+1}}{1 - r}, r \neq 1$
$\sum_{i=1}^{n} i$ (PA)	$\frac{n(n+1)}{2}$
$\sum_{i=1}^{n} i^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{i=1}^{n} i^3$	$\frac{n^2(n+1)^2}{4}$

Proposta de Resolução:

$$\sum_{i=1}^{76} \left(\frac{3}{5}\right)^{i} = \sum_{i=0}^{75} \left(\frac{3}{5}\right) \left(\frac{3}{5}\right)^{i} = \left(\frac{3}{5}\right) \times \frac{1 - \left(\frac{3}{5}\right)^{75+1}}{1 - \frac{3}{5}} = \frac{3}{5} \times \frac{5}{2} \left(1 - \left(\frac{3}{5}\right)^{76}\right) = \frac{3}{2} \left(1 - \left(\frac{3}{5}\right)^{76}\right)$$

ESTG-PR05-Mod013V2 Página1 de10

P.PORTO SI		Tipo de l'Tova	Ano letivo 2021/2022	Data 01-07-2022
	ESCOLA Superior	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

$$7\sum_{i=8}^{45} (i^3 - i^2) = 7\sum_{i=8}^{45} i^3 - 7\sum_{i=8}^{45} i^2 = 7\left(\sum_{i=1}^{45} i^3 - \sum_{i=1}^{7} i^3\right) - 7\left(\sum_{i=1}^{45} i^2 - \sum_{i=1}^{7} i^2\right)$$

$$= 7 \times \frac{45^2 \times (45+1)^2 - 7^2 \times (7+1)^2}{4} - 7 \times \frac{45 \times (45+1) \times (2 \times 45+1) - 7 \times (7+1) \times (2 \times 7+1)}{6}$$

$$= 7 \times \frac{45^2 \times 46^2 - 7^2 \times 8^2}{4} - 7 \times \frac{45 \times 46 \times 91 - 7 \times 8 \times 15}{6} = 7493087 - 218785 = 7274302$$

$$\frac{5}{3} \prod_{i=97}^{101} 2 = \frac{5}{3} \times 2^{101-97+1} = \frac{5}{3} \times 2^5 = \frac{160}{3}$$

3. [1.2] Considere a fórmula de recorrência dada por:

$$\begin{cases} S(1) = 5 \\ S(n) = 3 S(n-1) + 4, \ n \ge 2 \end{cases}$$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada correspondente.

Proposta de Resolução:

Expand

Temos que

$$\begin{split} S(n) &= 3 \, S(n-1) + 4 \\ &= 3 \times (\mathbf{3} \, \mathbf{S}(\mathbf{n} - \mathbf{2}) + \mathbf{4}) + 4 = 3^{\frac{10}{10}} \times S(n-\frac{10}{2}) + 3 \times 4 + 4 \\ &= 3^2 \times (\mathbf{3} \, \mathbf{S}(\mathbf{n} - \mathbf{3}) + \mathbf{4}) + 3 \times 4 + 4 = 3^{\frac{10}{10}} \times S(n-\frac{10}{2}) + 3^2 \times 4 + 3 \times 4 + 4 \\ &= \cdots \\ &= 3^{\frac{10}{10}} \, S(n-\frac{10}{2}) + 3^{k-1} \times 4 + \cdots + 3 \times 4 + 4 = 3^{\frac{10}{10}} \, S(n-\frac{10}{2}) + 4 \times (3^{k-1} + 3^{k-2} + \cdots + 3^0) \\ &= 3^{\frac{10}{10}} \, S(n-\frac{10}{2}) + 4 \times \sum_{i=0}^{\frac{10}{10}-1} 3^i \end{split}$$

Cálculos auxiliares

$$\sum_{i=0}^{k-1} 3^{i} = 1 \times \frac{1 - 3^{(k-1)+1}}{1 - 3} = \frac{1 - 3^{k}}{-2} = \frac{3^{k} - 1}{2}$$

Guess

A fórmula fechada para a fórmula de recorrência será:

$$S(n) = 3^k S(n - k) + 2 \times (3^k - 1)$$

Para n - k = 1, ou seja, k = n - 1 temos

$$S(n) = 3^{n-1} \times S(1) + 2 \times (3^{n-1} - 1) = 3^{n-1} \times 5 + 2 \times (3^{n-1} - 1) = 3^{n-1} \times (5 + 2) - 2 = 7 \times 3^{n-1} - 2$$

<u>Verify – Indução Matemática</u>

<u>Passo base</u>: P(1) verifica-se pois, se aplicarmos a fórmula fechada $S(n) = 7 \times 3^{n-1} - 2$ para n = 1 obtemos S(1) = 5 tal como é dado na fórmula de recorrência. i.e.:

$$S(1) = 7 \times 3^{1-1} - 2 = 5$$

ESTG-PR05-Mod013V2 Página 2 de10

		Tipo de Prova Exame de Época Normal – Proposta de Resolução Ano letivo 2021/20	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

Nome: ______ Número: _____

Passo indutivo $P(k) \Rightarrow P(k+1)$

Hipótese de Indução P(k): $S(k) = 7 \times 3^{k-1} - 2$

Tese P(k+1): $S(k + 1) = 7 \times 3^k - 2$

Temos que,

S(k + 1) = 3 S(k) + 4, pela fórmula de recorrência

 $= 3 \times (7 \times 3^{k-1} - 2) + 4$, assumindo como verdadeira a Hipótese de Indução P(k): $S(k) = 7 \times 3^{k-1} - 2$

 $= 7 \times 3 \times 3^{k-1} - 3 \times 2 + 4 = 7 \times 3^k - 2$, efetuando os cálculos

Portanto,

$$P(k) \Rightarrow P(k+1)$$

Visto que P(1) é verificado e $P(k) \Longrightarrow P(k+1)$, temos por indução matemática que, para todo $n \in IN$

$$S(n) = 7 \times 3^{n-1} - 2$$

4. Considere o conjunto $A = \{1,4,6,7\}$, e as duas relações seguintes definidas em **A**:

$$R = \{(x, y): |x - y| \text{ \'e divis\'ivel por 2} \} \in S = \{(1, 1), (1, 4), (1, 7), (4, 6)\}$$

4.1. [0.4] Represente a relação R graficamente na figura ao lado;

Proposta de resolução:

Seja $R = \{(x, y): |x - y| \text{é divisível por 2} \}$ definida em $A = \{1,4,6,7\}$.

x-y	1	4	6	7
1	<mark> 1-1 =0</mark>	1-4 =3	1-6 =5	1-7 =6
4	4-1 =3	4-4 =0	4-6 =2	4-7 =3
6	6-1 =5	6-4 =2	 6-6 =0	6-7 =1
7	 7-1 =6	7-4 =3	7-6 =1	7-7 =0

Logo,

$$R = \{(1,1), (1,7), (4,4), (4,6), (6,4), (6,6), (7,1), (7,7)\}$$

4.2. [0.8] Indique, justificando, se a relação *R* é de equivalência e em caso afirmativo escreva o seu conjunto quociente;

Proposta de resolução:

Para que uma relação seja de equivalência tem de ser: reflexiva, simétrica e transitiva.

Comecemos por considerar a relação $R = \{(x, y): |x - y| \text{\'e divisível por 2}\}$

- Para qualquer $x \in A = \{1,4,6,7\}$, temos que |x-x| = 0, portanto $(x,x) \in R$. Logo, R é reflexiva.
- Para quaisquer $x, y \in A = \{1,4,6,7\}$, se $(x,y) \in R$ temos que |x-y| é divisível por 2. Mas, |x-y| = |y-x|, donde |y-x| é divisível por 2, e portanto $(y,x) \in R$.

Logo, R é simétrica.

ESTG-PR05-Mod013V2 Página 3 de10

P. PORTO ESCOLA SUPERIOR DE TECNOLOG E GESTÃO		Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
	SUPERIOR	Curso LSIRC+LEI		Hora 10:00
		Unidade Curricular Matemática Discreta		Duração 3,0 horas

• Para quaisquer $x, y, z \in A = \{1,4,6,7\},\$

se $(x, y) \in R$ e $(y, z) \in R$ temos que |x - y| é divisível por 2 e |y - z| é divisível por 2

- Se x = y então |x z| = |y z| é divisível por 2, donde $(x, z) \in R$
- Se z = y então |x z| = |x y| é divisível por 2, donde $(x, z) \in R$
- O caso $x \neq y \neq z$ não ocorre em nenhum dos elementos de R.

Logo, R é transitiva.

Concluímos assim que R é uma relação de equivalência.

```
O conjunto quociente é [A]_R = \{[a]_R : a \in A\} = \{\{1,7\}, \{4,6\}\}, porque [1]_R = \{xR1 : x \in A\} = \{1,7\}, \text{pois } (1,1) \in R \text{ e } (7,1) \in R [7]_R = \{xR7 : x \in A\} = [1]_R [4]_R = \{xR4 : x \in A\} = \{4,6\}, \text{pois } (4,4) \in R \text{ e } (6,4) \in R [6]_R = \{xR6 : x \in A\} = [4]_R
```

4.3. **[1.2]** Calcule:

- > $S^{-1} \cup R =$
- > $S^2 =$
- \triangleright $S \cap R =$

Proposta de resolução:

```
Temos que S^{-1} = \{(1,1), (4,1), (7,1), (6,4)\}. Assim, S^{-1} \cup R = \{(1,1), (4,1), (7,1), (6,4)\} \cup \{(1,1), (1,7), (4,4), (4,6), (6,4), (6,6), (7,1), (7,7)\}
= \{(1,1), (1,7), (4,1), (4,4), (4,6), (6,4), (6,6), (7,1), (7,7)\}
S^2 = \{(1,1), (1,4), (1,7), (1,6)\} \text{ pois}
(1,1) \in S \text{ e } (1,1) \in S \text{ então } (1,1) \in S^2
(1,1) \in S \text{ e } (1,4) \in S \text{ então } (1,4) \in S^2
(1,1) \in S \text{ e } (1,7) \in S \text{ então } (1,7) \in S^2
(1,4) \in S \text{ e } (4,6) \in S \text{ então } (1,6) \in S^2
S \cap R = \{(1,1), (1,4), (1,7), (4,6)\} \cap \{(1,1), (1,7), (4,4), (4,6), (6,4), (6,6), (7,1), (7,7)\}
= \{(1,1), (1,7), (4,6)\}
```

5. Considere o fragmento de código sciente onde são definidas as matrizes de adjacência M1 e M2 de dois grafos com vértices V1={a,b,c,d,e,f} e V2={A,B,C,D}, respetivamente. Com base no *output*, responda às questões seguintes.

```
-> M1=[1 0 0 1 0 1;
                           --> M1^4
 > 1 0 0 0 0 0;
                           ans =
                                                                   ans =
 > 1 1 0 0 0 1:
                                               10.
                                                                     60.
                                                                            18.
                                                                                  54.
                                                                                         24.
                             16.
                                         6.
                                                     8.
                                                           12.
 > 0 0 1 0 1 0;
                              5.
                                    2.
                                         4.
                                               3.
                                                     3.
                                                          5.
                                                                     18.
                                                                            6.
                                                                                  15.
                                                                                         6.
 > 0 0 1 0 0 1;
                             13.
                                    7.
                                         7.
                                               9.
                                                     8.
                                                           11.
                                                                     54.
                                                                            15.
                                                                                  57.
                                                                                         24.
 > 1 1 0 1 1 0];
                                               7.
                                                           7.
                             10.
                                    2.
                                         5.
                                                     5.
                                                                     24.
                                                                            6.
                                                                                  24.
                                                                                         12.
                                                                  --> M2+M2^2+M2^3+M2^4
                             11.
                                    5.
                                         5.
                                               8.
                                                     6.
                                                           9.
--> M2=[1 0 2 1
                              17.
                                               11.
                                                     9.
                                                           11.
                                                                   ans =
 > 0 0 1 0
                                                                     83.
                                                                            24.
                                                                                  78.
                                                                                         35.
 > 2 1 1 0
                                                                     24.
                                                                            8.
                                                                                  23.
                                                                                         8.
    1 0 0 1];
                                                                     78.
                                                                                  79.
                                                                            23.
                                                                                         32.
                                                                     35.
                                                                            8.
                                                                                  32.
                                                                                         19.
```

ESTG-PR05-Mod013V2 Página 4 de10

		Tipo de Prova Exame de Época Normal – Proposta de Resolução	Ano letivo 2021/2022	Data 01-07-2022
	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

Nome: ______Número: _____

5.1. Relativamente ao grafo definido pela matriz M1, indique:

i) [0.6] todos os caminhos de comprimento 4 do segundo para o quinto vértice;

Proposta de resolução:

Por observação da matriz M1⁴, mais concretamente 2.ª linha e 5.ª coluna, temos que existem três caminhos de comprimento 4 do segundo para o quinto vértice;

Os caminhos são: b,a,a,d,e; b,a,a,f,e; b,a,f,d,e

ii) [0.2] o número de caminhos de comprimento 4 do quinto para o quarto vértice;

Proposta de resolução:

Por observação da matriz M1⁴, mais concretamente 5.ª linha e 4.ª coluna, temos que existem oito caminhos de comprimento 4 do quarto para o quinto vértice;

5.2. [0.4] Relativamente ao grafo definido pela matriz M2, indique <u>justificando</u> se se trata de um grafo conexo; <u>Proposta de resolução</u>:

A matriz M2 é simétrica pelo que o seu grafo é não orientado. A matriz de fecho M2+M2^2+M2^3+M2^4 não tem nenhuma entrada nula, pelo que o grafo é conexo.

- **6.** Relativamente ao grafo apresentado ao lado:
- **6.1.** [0.6] indique a ordem, a dimensão, o conjunto dos vértices e das arestas;

Ordem: 5

Dimensão: 9

Conjunto das arestas: {(A,E), (B,A),(B,D),(B,C),(B,E),(C,B),(C,D),(D,A),(E,A)}

Conjunto dos Vértices: {A,B,C,D,E}

6.2. [1.0] determine a matriz de adjacências e determine o grau de cada vértice.

Proposta de resolução:

6.3. [0.4] averigue, <u>justificando</u>, se se trata de um grafo euleriano ou semi-euleriano, e, se possível, determine um circuito ou caminho de Euler, recorrendo ao Algoritmo de Fleury.

Proposta de resolução:

Um multigrafo orientado admite um circuito de Euler se e sé se for conexo e se cada vértice tem o mesmo grau de entrada e saída. Como no grafo em estudo os graus de entrada e saída de cada vértice não coincidem, concluímos que o grafo não admite um circuito de Euler. Logo, o grafo não é euleriano.

Por outro lado, um multigrafo orientado admite um caminho euleriano, mas não tem um circuito de Euler, se e só se for conexo e todos os vértices têm o mesmo grau de entrada e saída, exceto dois vértices que têm graus de entrada e de saída que diferem de 1, sendo que um dos vértices tem um grau de entrada a mais do que o grau de saída e o outro vértice tem um grau de saída a mais do que o grau de entrada. Como no grafo em estudo todos os vértices têm graus de entrada e saídas diferentes, não admite um caminho de Euler. Podemos então concluir que o grafo também não é semi-euleriano.

ESTG-PR05-Mod013V2 Página 5 de10

		Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

D^{Λ}	D	TE	2
P^{μ}	۱К	ᇉ	_

7 .	[0.5] Considere o fragmento de código scilia onde são definidas as matrizes de adjacência M1 e M2 de dois grafo
de	vértices {a,b,c,d,e,f} e {A,B,C,D}, respetivamente. Com base no output, podemos afirmar que:

os dois grafos são de Hamilton
x apenas o grafo de vértices {a,b,c,d,e,f} é de Hamilton
nenhum dos grafos é de Hamilton
apenas o grafo de vértices {A B C D} é de Hamilton

>	M2	2=	[1	1	0	0;	
>	1	1	1	2;			
>	0	1	0	0;			
>	0	2	0	1]	;		
							_

8. Com base no fragmento de código scienta ao lado, podemos afirmar que:

```
8.1. [0.5] mdc(294, 525) é:
```

```
3 7 x 21 nenhuma das anteriores
```

8.2. [0.5] existe o inverso de 525 modulo:

```
x22 126 294 nenhuma das anteriores
```

```
--> factor(22), factor(126), factor(294), factor(525)
ans =
    2. 11.
ans =
    2. 3. 3. 7.
ans =
    2. 3. 7. 7.
ans =
    3. 5. 5. 7.
```

10. Considere a rede constituída por cinco páginas *web* A, B, C, D e E com os *links* mostrados na imagem ao lado.

10.1. [0.5] Considere que, em cada passo, escolhemos de forma aleatória um *link* da página web onde estamos. A matriz de transição (definida no science) do processo Markov subjacente é:

> T^6*[1 0 0 0 0]'	> T^6*[0 1 0 0 0]'	> T^6*[0 0 0 0 1]'
ans =	ans =	ans =
0.2916667	0.3935185	0.4027778
0.0277778	0.0601852	0.0694444
0.1423611	0.1111111	0.0833333
0.2291667	0.1956019	0.2152778
0.3090278	0.2395833	0.2291667

10.2. [0.5] Considere os cálculos apresentados no fragmento de código selado, sendo T a matriz de transição definida na alínea anterior.

A probabilidade, de começando na página B, seis passos depois não estar nem na página A nem na página C é aproximadamente:

ESTG-PR05-Mod013V2 Página 6 de10

		Tipo de Prova Exame de Época Normal – Proposta de Resolução	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta	Duração 3,0 horas	

Nome: ______Número: _____

- 11. Considere o grafo ponderado apresentado ao lado.
- **11.1. [1.2]** Use o algoritmo de *Dijkstra* para encontrar o caminho de menor custo entre **a** e **g**.

Observação: Apresente a sua resolução na tabela abaixo.

Proposta de resolução:

O caminho de menor custo é *a,d,e,i,g* 0

0 custo é 2+3+1+2=8

t. v_d	Mc)	Α	$v_i, \dots, v_d, v_j \in L(v_j)$	X e <i>X</i> _d	R: Caminhos mínimos
0	a	{b,d}	$a,b \rightarrow L(b)=1$ $a,d \rightarrow L(d)=2$	{b,d} {1,2}	a,b a,d
b	a,b	{c}	$a,b,c \rightarrow L(c)=1+2=3$	{d,c} {2,3}	a,d a,b,c
2 d	a,d	{e}	a,d,e → L(e)=2+3=5	{c,e} {3,5}	a,b,c a,d,e
3 с	a,b,c	{f,h}	a,b,c,f \rightarrow L(f)=3+4=7 a,b,c,h \rightarrow L(h)=3+1=4	{h,e,f} {4,5,7}	a,b,c,h a,d,e a,b,c,f
h	a,b,c,h	ı {j}	a,b,c,h,j → L(j)=4+3=7	{e,f,j} {5,7,7}	a,d,e a,b,c,f a,b,c,h,j
е	a,d,e	{i}	a,d,e,i → L(i)=5+1=6	{i,f,j} {6,7,7}	a,d,e,i a,b,c,f a,b,c,h,j
i	a,d,e,i	{g}	a,d,e,i,g \rightarrow L(g)=6+2=8	{f,j,g} {7,7,8}	a,b,c,f a,b,c,h,j a,d,e,i,g
' f	a,b,c,t	f {j,g}	a,b,c,f,g \rightarrow L(g)=7+2=9	{,j,g} {7,8}	a,b,c,h,j a,d,e,i,g

11.2. [1.2] Usando o Algoritmo de *Kruskal*, determine uma árvore geradora de custo mínimo do grafo, e indique o seu comprimento.

Observação: Apresente a sua resolução na tabela abaixo.

Proposta de resolução:

$$(a,b) \rightarrow 1$$
 $(e,i) \rightarrow 1$ $(a,d) \rightarrow 2$ $(f,g) \rightarrow 2$ $(d,e) \rightarrow 3$ $(c,b) \rightarrow 1$ $(f,j) \rightarrow 1$ $(b,c) \rightarrow 2$ $(i,g) \rightarrow 2$ $(h,j) \rightarrow 3$ $\rightarrow 4$

 $T=\{(a,b),(c,h)(e,i)(f,j)(a,d),(b,c),(f,g),(i,g),(d,e)\}$ Custo =15

lt	(vi,vj)	Si	Sj	Т	S1	S2	S3	54	S5	S6	S 7	S8	59	S10	Nr
					a	b	С	d	е	f	g	h	i	j	
1	(a, b)	S1	S2	(a, b)	a, b	С	d	е	f	g	h	i	j		1
2	(c, h)	S2	S7	(c, h)	a ,b	c, h	d	е	f	g	i	j			2
3	(e, i)	S4	S7	(e, i)	a, b	c, h	d	e, i	f	g	j				3
4	(f, j)	S5	S7	(f, j)	a, b	c ,h	d	e, i	f, j	g					4
5	(a, d)	S1	S 3	(a, d)	a, b, d	c, h	e, i	f, j	g						5
6	(b, c)	S1	S2	(b, c)	a, b, c, d, h	e, i	f, j	g							6
7	(f, g)	S3	S4	(f, g)	a, b, c, d, h	e, i	f, g, j								7
8	(i, g)	S2	S 3	(i, g)	a, b, c, d, h	e, i, f, g, j									8
9	(d, e)	S1	S2	(d, e)	a, b, c, d, e, f, g, h, i, j										9

ESTG-PR05-Mod013V2 Página 7 de10

		Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

PARA AS QUESTÕES SEGUINTES, APRESENTE TODAS AS JUSTIFICAÇÕES E CÁLCULOS NA FOLHA DE RESPOSTA.

12. [1.0] Determine, recorrendo ao Algoritmo de Euclides, os inteiros s e t (coeficientes de Bézout) tais que $mdc(32,105) = 105 \times s + 32 \times t$, e se possível, indique o inverso de 32 mod 105. Proposta de resolução:

Temos que:

$$105 = 32 \times 3 + 3$$

 $32 = 9 \times 3 + 5$
 $9 = 5 \times 1 + 4$
 $5 = 4 \times 1 + 1$
 $4 = 1 \times 4 + 0$

Portanto.

$$mdc(105,32) = mdc(32,9) = mdc(9,5) = mdc(5,4) = 1$$

Como mdc(105,32)=1 então existe o inverso de 32 mod 105.

Vamos determinar os coeficientes de Bézout

```
 \begin{aligned} \operatorname{mdc}(105,32) &= 1 = 5 - \frac{4}{4} \times 1 \\ &= 5 - (9 - 5 \times 1) = 5 - 9 + 5 = 2 \times 5 - 1 \times 9 \\ &= 2 \times (32 - 9 \times 3) - 1 \times 9 = 2 \times 32 - 6 \times 9 - 1 \times 9 = 2 \times 32 - 7 \times 5 \\ &= 2 \times 32 - 7 \times (105 - 32 \times 3) = 2 \times 32 - 7 \times 105 + 21 \times 32 = -7 \times 105 + 23 \times 32 \end{aligned}
```

Logo,

os coeficientes de Bézout são s=-7, t=23 e, portanto, 23 é o inverso de 32 mod 105.

13. [0.6] Resolva, se possível, a congruência $7x \equiv 2 \mod 12$, <u>sabendo que</u> **7** é inverso de **7** modulo **12**. Proposta de resolução:

```
7x \equiv 2 \mod 12 \Leftrightarrow 7 \times 7x \equiv 7 \times 2 \mod 12 \Leftrightarrow 1 \times x \equiv 14 \mod 12 \Leftrightarrow x \equiv 2 \mod 12 Então, x = 2 + 12k, k \in \mathbb{Z}.
```

14. [1.0] Escreva a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (6x_n + 2) \mod 13$, com raíz $x_0 = 1$. Proposta de resolução:

```
x_0 = 1

x_1 = (6 \times 1 + 2) \mod 13 = 8 \mod 13 = 8

x_2 = (6 \times 8 + 2) \mod 13 = 50 \mod 13 = 11

x_3 = (6 \times 11 + 2) \mod 13 = 68 \mod 13 = 3

x_4 = (6 \times 3 + 2) \mod 13 = 20 \mod 13 = 7

x_5 = (6 \times 7 + 2) \mod 13 = 44 \mod 13 = 5

x_6 = (6 \times 5 + 2) \mod 13 = 32 \mod 13 = 6

x_7 = (6 \times 6 + 2) \mod 13 = 38 \mod 13 = 12

x_8 = (6 \times 12 + 2) \mod 13 = 74 \mod 13 = 9

x_9 = (6 \times 9 + 2) \mod 13 = 56 \mod 13 = 4

x_{10} = (6 \times 4 + 2) \mod 13 = 26 \mod 13 = 0

x_{11} = (6 \times 0 + 2) \mod 13 = 2 \mod 13 = 2

x_{12} = (6 \times 2 + 2) \mod 13 = 14 \mod 13 = 1
```

Logo, a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (6x_n + 2) \mod 13$, com raíz $x_0 = 1$ é: 1, 8, 11, 3, 7, 5, 6, 12, 9, 4, 0, 2, 1, ...

ESTG-PR05-Mod013V2 Página 8 de10

		Tipo de Prova Exame de Época Normal – Proposta de Resolução	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI	Hora 10:00	
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta	Duração 3,0 horas	

Nome: ______ Número: _____

15. Considere a função de encriptação $f(n) = (8n + 1) \mod 29$ e ainda as correspondências seguintes:

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	T	U	٧	W	Х	Υ	Z		#	@
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

15.1. [0.4] Mostre que a função de desencriptação é definida por $f^{-1}(n) = (11n + 18) \mod 29$.

Proposta de resolução:

Como mdc(8, 29) = 1 os números 8 e 29 são primos entre si, portanto é possível calcular o inverso de 8 módulo 29.

Pelo algoritmo da divisão temos que

$$29 = 3 \times 8 + 5$$
, $8 = 5 \times 1 + 3$, $5 = 3 \times 1 + 2$ e $3 = 2 \times 1 + 1$

Donde,

$$1 = 3 - 1 \times 2 = 3 - 1 \times (5 - 3 \times 1) = 2 \times 3 - 1 \times 5 = 2 \times (8 - 5 \times 1) - 5 = 2 \times 8 - 3 \times 5$$
$$= 2 \times 8 - (8 - 5)53 = -3 \times 8 + 5 \times 5 = -3 \times 8 + 5 \times (29 - 8 \times 3) = -18 \times 8 + 5 \times 29$$

Portanto, -18 é um inverso de 8 módulo 29. Como -18+29=11 temos que x=11 é o inverso de 8 módulo 29.

$$f(n) = (8n + 1) \mod 29 \iff c = (8n + 1) \mod 29 \iff c + 28 = (8n + 1 + 28) \mod 29$$

 $\iff c + 28 = 8n \mod 29 \iff 8n = (c + 28) \mod 29 \iff 11 \times 8 = 11 \times (c + 28) \mod 29$
 $\iff 11 \times 8 = (11c + 308) \mod 29 \iff n = (11c + 18) \mod 29$

Logo, a função de desencriptação é definida por

$$f^{-1}(n) = (11n + 18) \mod 29$$

15.2. [0.8] Desencripte a mensagem "@ECC_".

Proposta de resolução:

As letras da mensagem a encriptar correspondem às posições @ \rightarrow 28, E \rightarrow 4, C \rightarrow 2 e $_{-}$ \rightarrow 26.

Aplicando a função de desencriptação temos:

$$f^{-1}(28) = (11 \times 28 + 18) \mod 29 = 326 \mod 29 = 7 \to H$$

 $f^{-1}(4) = (11 \times 4 + 18) \mod 29 = 62 \mod 29 = 4 \to E$
 $f^{-1}(2) = (11 \times 2 + 18) \mod 29 = 40 \mod 29 = 11 \to L$
 $f^{-1}(26) = (11 \times 26 + 18) \mod 29 = 304 \mod 29 = 14 \to 0$

Logo, a mensagem encriptada é "HELLO".

ESTG-PR05-Mod013V2 Página 9 de10

P.PORTO		Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3 O horas

16. [0.8] Considere o sistema RSA com

a=13 e $m=43\times59=2537$. Sendo b=937 a chave privada, desencripte a mensagem "1590".

Use os outputs do sci**llaba** que considerar necessários.

Proposta de resolução:

 $v(1590) = 1590^{937} \mod(2537) = 1203$

Como 12 \rightarrow M e 03 \rightarrow D, a mensagem original é "MD".

Observação:

Dos outputs apresentados seria usado apenas o indicado a azul.

> pmodulo(1408,2537)	> x=13;
ans =	> x_new=1;
1408.	> for k=1:1408,
> pmodulo(1408^13,2537)	<pre>> x_new=pmodulo(x*x_new,2537);</pre>
ans =	> end
0.	> x new
	x_new =
	271.
> x=1048;	> x=1590;
> x new=1;	> x new=1;
> for k=1:13,	> for k=1:2537,
>	> x new=pmodulo(x*x new,937);
<pre>x_new=pmodulo(x*x_new,2537);</pre>	> end
> end	> x_new
> x_new	x_new =
x_new =	664.
1673.	
> x=1590;	> x=1590;
> x_new=1;	> x_new=1;
> for k=1:13,	> for k=1:937,
<pre>> x_new=pmodulo(x*x_new,2537);</pre>	<pre>> x_new=pmodulo(x*x_new,2537);</pre>
> end	> end
> x_new	> x_new
x_new =	x_new =
1332.	1203.

ESTG-PR05-Mod013V2 Página 10 de10