LOM3212 - Fenômenos de Transporte A

Transport Phenomena A

Créditos-aula: 4Créditos-trabalho: 0Carga horária: 60 h

• Departamento: Engenharia de Materiais

Objetivos

Apresentar noções de mecânica dos fluidos, mediante estudo dos meios fluidos quando estáticos ou em movimento. Capacitar o aluno a modelar e resolver problemas de interesse em mecânica dos fluidos, com escolha adequada de hipóteses e aplicação de ferramentas correspondentes de solução.

Docente(s) Responsável(eis)

• 519033 - Carlos Yujiro Shigue

Programa resumido

Fundamentos de mecânica dos fluidos. Introdução à estática dos fluidos. Formulação integral e diferencial das equações de transporte de massa, energia e quantidade de movimento. Análise dimensional e semelhança. Escoamento incompressível de fluidos ideais e viscosos, regime laminar e turbulento. Equação de Navier-Stokes. Teoria da camada limite.

Programa

Introdução: conceito de fluido; propriedades e conceito de contínuo; modelagem de processos de transferência; métodos de análise; dimensões e unidades. Revisão de estática de fluidos: equação básica da hidrostática, variação de pressão em um fluido estático; princípios de Stevin, de Pascal e de Arquimedes. Formulação integral das equações de transporte: teorema de transporte de Reynolds; aplicação para os princípios de conservação de massa, quantidade de movimento e energia; equação de Bernoulli. Formulação diferencial das equações de transporte: descrição do escoamento; forma diferencial: dos princípios de conservação de massa, quantidade de movimento e energia; formulação adimensional, análise dimensional e semelhança. Grupos adimensionais: número de Reynolds e número de Grashoff. Escoamento incompressível interno: equações de Euler; lei de Newton para a viscosidade, tensões de cisalhamento; equação de Navier-Stokes; regimes de escoamento: escoamento laminar e turbulento. Cálculo de perda de carga (distribuída e localizada), coeficiente de atrito. Escoamento incompressível externo: introdução à camada limite; escoamento ao redor de corpos, força da arraste.

Avaliação

- Método: Aulas expositivas, seminários e exercícios comentados.
- Critério: Média aritmética de duas provas sendo a primeira com peso 1 e a segunda com peso 2.
- Norma de recuperação: Aplicação de uma prova escrita dentro do prazo regimental antes do início do próximo semestre letivo. A nota da segunda
 avaliação será a média aritmética entre a nota da prova de recuperação e a nota final da primeira avaliação

Bibliografia

BIRD,R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Fenômenos de Transporte. LTC Editora, 2004. FOX, R. W., McDONALD, A. T. Introdução à Mecânica dos Fluidos. LTC Editora, 2001. SISSOM, L. E., PITTS, D. R. Fenômenos de Transporte. Ed. Guanabara, 1988.

Requisitos

- LOB1019: Física II (Requisito)
- LOM3257: Mecânica Clássica (Requisito)

Ver no Jupiter Salvar em pdf Salvar em docx

© 2020 . Contact: luizeleno@usp.br. Powered by Jekyll and Github pages. Original theme under Creative Commons Attribution