

利息度量

孟生旺

什么是利息度量?

- 利息: 资金增量
- 利息度量(利率):单位资金、单位时间的资金增量
 - 单位时间? 年、月、日、20天
- 利率的种类: 年利率、月利率、日利率、瞬时利率(利息力)...
- 在现实生活中,利率的常见表现形式?年化利率(年名义利率)
- 各种利息度量(利率)之间的转化关系?

累积函数

- 定义: 时间零点的1元在时间 t 的累积值, 记为 a(t)
- 性质: 描述资金随着时间增长变化的过程。利息度量的基础。
 - a(0) = 1;
 - a(t) 通常是时间的增函数;
 - 当利息是连续产生时,a(t)是时间的连续函数。

$$\mathcal{O}$$

例:假设累积函数为 $a(t) = 1 + t^2$

$$a(t) = 1 + t^2$$

计算 t=0时的500元,在 t=2的累积值。

解:

例: 单利的累积函数

$$a(t) = 1 + it$$

例:复利的积累函数

$$a(t) = (1+i)^t$$

贴现函数

- 定义: 时间 t 的1元在时间零点的现值,记为 $a^{-1}(t)$
- 性质: 与累积函数 a(t) 互为倒数

例: 累积函数为 $a(t)=1+t^2$, 计算: (1) t=3时的500元在 t=0的

价值, (2) t = 3时的500元在 t = 1时的价值。

解:

(1)
$$500 \times (1+3^2)^{-1}$$

(2)
$$500 \times (1+3^2)^{-1} \times (1+1^2)$$

例: 常用的贴现函数

• 单利的贴现函数

$$a^{-1}(t) = (1+it)^{-1}$$

$$a(t) = 1 + it$$

• 复利的贴现函数

$$a^{-1}(t) = (1+i)^{-t}$$

$$a(t) = (1+i)^t$$

注:除非特别申明,今后一概使用复利。

有效利率 (实际利率)

• 期末的利息与期初本金之比

$$i = \frac{$$
期末利息} 期初本金 = $\frac{$ 期末累积值-期初本金 $}{$ 期初本金 $} = \frac{a(t+1)-a(t)}{a(t)}$

注:

- 有效利率用百分比表示,如8%
- 利息在期末支付
- 通常使用的时间单位是年
- 如无特殊说明,利率是指年利率

例: 1000元存入银行,第1年末存款余额为1020元,第2年末存款余额为1050元,求:第一年和第二年的有效利率分别是多少?整个存款期间(2年期间)的有效利率是多少?

$$i_1 = \frac{20}{1000} = 2\%$$
 $i_2 = \frac{30}{1020} = 2.94\%$

$$i = \frac{50}{1000} = 5\%$$

例: 单利的有效利率是递减的

单利的累积函数: a(t) = 1 + it

考虑时间区间 (t, t+1):

$$i_{t} = \frac{a(t+1) - a(t)}{a(t)} = \frac{\left[1 + i(t+1)\right] - \left(1 + it\right)}{1 + it} = \frac{i}{1 + it}$$

例:复利的有效利率是常数

复利的累积函数: $a(t) = (1+i)^t$

考虑时间区间 (t, t+1)

$$i_{t} = \frac{a(t+1) - a(t)}{a(t)} = \frac{(1+i)^{t+1} - (1+i)^{t}}{(1+i)^{t}} = i$$

有效利率的类型

- 有效利率可以定义在任意长度的时间区间:
 - 年有效利率
 - 月有效利率
 - 日有效利率
 - 12天的有效利率
 - _
- 注:通常会年化表示,即表示为年名义利率(年化收益率)

计息时间

约定: 利率表示为年利率, 如 a(t) = 1 + it

投资时间: 2020年1月6日 ~ 2020年5月7日,如何确定时间 t 是多少年?

t = 投资天数 ÷ 每年的天数

时间t的计算惯例

(1) "实际/365"规则(actual/actual):投资天数按两个日期之间的实际天数计算,每年按365天计算。

(2) "实际/360"规则:投资天数按两个日期之间的实际天数计算,每年按 360天计算。称为银行家规则(banker's rule)。

(3) "30/360"规则:每月按30天计算,每年按360天计算。

$$[360(Y_2 - Y_1) + 30(M_2 - M_1) + (D_2 - D_1)]/360$$

例:投资者在2019年6月14日存入基金10000元,2020年2月7日取出,基金按单利计息,年利率为8%,分别根据下列规则计算投资者可以获得的利息金额:

- (1) "实际/365"规则
- (2) "实际/360" 规则
- (3) "30/360" 规则

2019年6月14日 - 2020年2月7日

(1) 在"实际/365"规则下,实际投资天数为 238,

$$t = 238/365$$

利息金额为:
$$10000 \times 0.08 \times \frac{238}{365} = 521.6$$

2019年6月14日 - 2020年2月7日

(2) 在"实际/360"规则下,实际投资天数为。238,

$$t = 238/360$$

利息金额为:
$$10000 \times 0.08 \times \frac{238}{360} = 528.9$$

2019 年 6 月 14 日 - 2020 年 2 月 7 日

(3) 在"30/360"规则下,投资天数为:

$$360 \times (2020 - 2019) + 30 \times (2 - 6) + (7 - 14) = 233$$

利息金额为:
$$10000 \times 0.08 \times \frac{233}{360} = 517.8$$

应用EXCEL计算(自学MOOC中的视频)

		Α		В	
1	例:投资者在2019年6月14 取出,基金按单利计息,每 投资者可以获得的利息金额	F利率为8%,分	CALL TO THE PROPERTY OF THE PARTY OF THE PAR		
2	(1) "实际/365" 规则			200	
3	(2) "实际/360" 规则	***	****	× (**)	
4	(3) "30/360" 规则				
5			-(-		
6					
7		<i>30</i> 7	- 19 m	3/1/2	
8					
9					
10					
11					

单利和复利的比较

例:时间零点投资100万元,期限2年,单利的年利率为5%,计算第2年末的累积值。

- (1) 一次性投资2年
- (2) 先投资1年,到期后再投资1年。

解:
$$a(t) = 1 + it$$

(2)
$$100 \times (1 + 5\%) = 105$$

 $105 \times (1 + 5\%) = 110.25$

例:时间零点投资100万元,期限2年,复利的年利率为5%,计算第2年末的累积值。

- (1) 一次性投资2年
- (2) 先投资1年,到期后再投资1年。

解:
$$a(t) = (1+i)^t$$

(1)
$$100 \times (1 + 5\%)^2 = 110.25$$

(2)
$$100 \times (1 + 5\%) = 105$$

 $105 \times (1 + 5\%) = 110.25$

单利的缺陷:不满足一致性(分段投资产生更大的累积值)

若
$$t = t_1 + t_2$$
, 则 $a(t_1)a(t_2) > a(t)$

证明:

$$a(t_1)a(t_2) = (1+it_1)(1+it_2)$$

$$= 1+it+i^2t_1t_2$$

$$> (1+it)$$

$$= a(t)$$

复利满足一致性

$$a(t_1)a(t_2) = (1+i)^{t_1}(1+i)^{t_2}$$
$$= (1+i)^{t_1+t_2}$$
$$= a(t)$$

$$a(t_1)a(t_2) = a(t)$$

例:单利的年利率为 i,如果把1年划分为 n 个等间隔的时间段进行投资,年末的累积值是多少?当 $n\to\infty$ 时会怎样?

$$\lim_{n\to\infty} \left(1 + \frac{i}{n}\right)^n = e^i$$

注: 此时 i 是年名义利率,称作利息力(瞬时利率,连续复利),后面详细介绍

单利与复利的比较

- 单利的本金恒定,复利在前期的利息转为后期的本金
- 单利的有效利率逐期递减,复利的有效利率为常数。
- 当 t=0 或 1 时,单利和复利产生相同的累积值: 1+i
- 当 0 < t < 1 时,单利比复利产生更大的积累值: $(1+it) > (1+i)^t$
- 当 t > 1时,复利比单利产生更大的积累值: $(1+it) < (1+i)^t$

单利和复利的累积函数 (i=10%)

复利: 长期坚持的重要性

有效贴现率 (实际贴现率)

有效利率
$$(i) = \frac{期末利息}{期初本金}$$

有效贴现率
$$(d) = \frac{期末利息}{期末累积值}$$

注: 可以在任意时间区间定义有效贴现率

例:如果年有效贴现率为d,则年末的1元在年初的现值为1-d

解:假设年末的1元相当于年初的X,则当年的利息为1-X。

根据有效贴现率的定义:

$$d = \frac{1 - X}{1} \qquad \Longrightarrow \qquad X = 1 - d$$

例:如果任意一个时期的有效贴现率为d,则期末的1元在期初的现值为1-d

在任意时间区间定义有效贴现率

解:假设期末的1元相当于期初的X,则当期的利息为1-X。

由有效贴现率的定义:

$$d = \frac{1 - X}{1}$$

$$X = 1 - d$$

• 例: 年有效贴现率为5%, 计算t=2时的50万元在t=0时的价值。

• 解:

$$50 \times (1 - 5\%) \times (1 - 5\%)$$

有效利率i与有效贴现率d的关系(1)

$$i = \frac{d}{1 - d}$$

年末的1元在年初的现值为: 1-d

根据利率的定义:

$$i = \frac{d}{1 - d}$$

有效利率i与有效贴现率d的关系(2)

$$d = \frac{i}{1+i}$$

根据贴现率的定义:

$$d = \frac{i}{1+i}$$

有效利率i与有效贴现率d的关系(3)

$$v = 1/(1+i) = 1-d$$

$$d = \frac{i}{1+i} = 1 - \frac{1}{1+i} = 1 - \frac{1}{1+i}$$

解释:

$$1 - a$$

$$v = 1/(1+i)$$

有效利率i与有效贴现率d的关系(4)

$$d = iv$$

证明:
$$d = \frac{i}{1+i} = i \cdot \frac{1}{1+i} = i \cdot v$$

解释: i 和 d 都表示时刻零点投资1元所获得的收益。

$$\frac{i}{0}$$
 $\frac{d}{1}$ $\frac{d}{0}$ $\frac{1}{1}$

注: 年末的i相当于年初的d。

有效利率i与有效贴现率d的关系(5)

$$i-d=id$$

证明:

$$d = \frac{i}{1+i} = i \cdot v = i \cdot (1-d) = i-id$$

解释: i-d=id

本金	累积值	利息		
1	1+i	i i		
1 - d	1	d d		
本金差额: d		利息差额: i-d		

解释:本金有d元差额,导致的利息差额是id。

有效利率i与有效贴现率d的关系(6)

$$i = \frac{1}{n} \iff d = \frac{1}{n+1}$$

证明:
$$d = \frac{i}{1+i} = \frac{1/n}{1+1/n} = \frac{1}{n+1}$$

例:
$$i = 5\% = \frac{1}{20}$$

$$d = \frac{1}{21}$$

累积函数与贴现函数的不同表示方式

累积函数:
$$a(t) = (1+i)^t = (1-d)^{-t}$$

贴现函数:
$$a^{-1}(t) = (1+i)^{-t} = v^t = (1-d)^t$$

有效利率 i 和有效贴现率d 的极限关系

如果有效利率趋于无穷?

$$d = \frac{i}{1+i}$$

例:投资者将20000元存入银行,

在最初4年,按年利率i计息;

在随后4年,按i-0.02计息;

在第8年末,余额为22081.10元。

若账户的年利率为i+0.01,则账户在第10年末的余额为多少? (按复利计算)

$$20000(1+i)^4 (1+(i-0.02))^4 = 22081.10$$

$$i = 2.25\%$$

$$20000(1+(2.25\%+0.01))^{10}=27537.89$$

例:面值为100元的一年期债券的价格为95元。一年期储蓄存款的利率为

5.25%。投资者有100万元需要投资,应该选择存款还是购买债券?

解:

- 比较贴现率:
 - 债券的贴现率 d=5%
 - 储蓄的贴现率 d = i/(1+i) = 4.988%
- 比较利率:
 - 债券的利率 $d = 5\% = \frac{1}{20} \Rightarrow i = \frac{1}{19} = 5.26\%$
 - 储蓄的利率为 5.25%

练习: 当前时刻投资750将在25年末增加到2097.75元。

如果在10年末,15年末和25年末分别投资5000元,计算这些投资的现值之和。

$$750(1+i)^{25} = 2097.75 \implies i = 4.2\%$$

$$5000(1+i)^{-10} + 5000(1+i)^{-15} + 5000(1+i)^{-25} = 7798.63$$

练习

已知年有效利率为5%,问:

- (1) 100万元贷款在年末的利息是多少?
- (2) 如果在贷款起始日收取利息,应该收取多少利息?
- (3) 有效贴现率是多少?
- (4) 写出累积函数和贴现函数。
- (5)分别用有效利率和有效贴现率计算,5年末的100万元在时间零点的现值。

年名义利率

- 有效利率: 期末利息与期初本金之比。(任意时间区间)
- 年有效利率: 年末利息与年初本金之比。(一年)
- 年名义利率:将任意时间区间上的有效利率年化表示。(年化利率,年化收益率)
 - 例: 每个季度的有效利率为1.5%,则年名义利率为6%
 - 例: 月有效利率为1%,则年名义利率为12%
 - 例: 3年期的有效利率为15%,则年名义利率为5%

• 例:考虑下述两笔贷款

(1) 贷款100万, 年利率为12%, 年末支付利息12万。

12%是年有效利率

(2) 贷款100万, 年利率为12%, 每月末支付一次利息, 每次支付1万元。

12%是年名义利率

例:理财产品的期限是一个月,到期可获得0.5%的收益率(月有效利率)。

表述:理财产品的期限是一个月,年化收益率是6%。

含义: 6%是年名义利率

年名义利率 = 区间上的有效利率 × 一年包含的区间数

年名义利率的表述方式

季度的有效利率为3%,通常表述为年名义利率:

- 年利率为12%, 每年结转4次利息
- 年利率为12%, 每年复利4次
- 年利率为12%, 每季度结转一次利息
- 年利率为12%, 每季度复利一次

年名义利率的符号表示

i^(m) 表示年名义利率

m 表示每年包含的区间数,即每年复利的次数

例: $i^{(4)} = 8\%$ 表示 每年复利4次,每季度的有效利率为2%

例: $i^{(1/5)} = 10\%$ 表示 每5年复利1次,5年期的有效利率为50%

例:银行三个月期限的存款年利率为1.6%,存1000元满3个月可得多少利息?

(注:银行存款利率是年化利率)

解: $i^{(4)} = 1.6\%$

三个月的有效利率为 1.6%÷4=0.4%

存1000元满3个月可得利息: 1000 × 0.4% = 4元

例:银行5年期定期存款的年利率为6%,存1000元满5年可得多少利息?

(注:银行存款利率是年化利率)

M:
$$m = 1/5$$
, $i^{(1/5)} = 6\%$

5年期的有效利率为: 6% ÷ (1/5) = 30%

存 1000 元满 5 年可得利息: 1000 × 30% = 300元

年名义利率与任意区间上有效利率的转化关系:

年名义利率
$$i^{(m)} = \frac{1}{m}$$
年区间上的有效利率× m

$$\frac{1}{m}$$
年区间上的有效利率 =
$$\frac{年名义利率i^{(m)}}{m}$$

• 例: 理财产品的期限是100天,期初投资20万元到期可以获得21万元。该理财产品的年化收益率是多少?

解:

- 投资区间的有效收益率 = 1/20
- m = 365/100 = 3.65
- 年化收益率 = m × 投资区间的有效收益率 = 3.65/20 = 18.25%

年名义利率 $i^{(m)}$ 与年有效利率i的关系:

考虑时间零点的1元在年末的累积值:
$$1+i=\left(1+\frac{i^{(m)}}{m}\right)^m$$

年名义利率 $i^{(m)}$ 与年有效利率i的关系:

$$1+i = \left(1 + \frac{i^{(m)}}{m}\right)^m$$

$$(1+i)^{\frac{1}{m}} = 1+\frac{1}{m}i^{(m)}$$

$$\frac{1}{m}$$
年的复利累积

$$\frac{1}{m}$$
年的单利累积

年名义利率:在1/m年的时间区间上,与复利利率等价的单利利率

例:投资100万元,年利率为12%。在下述条件下计算1个月末的累积值:

- (1) 假设上述利率是年有效利率
- (2) 假设上述利率是年名义利率,每年复利12次

(1)
$$100 \times (1+0.12)^{\frac{1}{12}} = 100.95$$

$$(2) \ 100 \times \left(1 + \frac{0.12}{12}\right) = 101$$

例: 下述哪个利率对投资者更加有利?

- · 年利率为5%, 每半年复利一次
- · 年利率为4.95%, 每天复利一次(每年按365天计算)

$$1+i = \left(1+\frac{0.05}{2}\right)^2 = 1.0506 \implies i = 5.06\%$$

$$1+i = \left(1 + \frac{0.0495}{365}\right)^{365} = 1.0507 \quad \Rightarrow \quad i = 5.07\%$$

例: 给定年名义利率为10%, 当复利次数增加时, 年有效利率如何变化?

复利次数(m)	年有效利率(i)		
	10.00%		
2	10.25%		
4	10.38%		
12	10.47%		
52 (每周)	10.51%		
365(每天)	10.52%		

$$1+i = \left(1 + \frac{10\%}{m}\right)^m$$

问题:给定年名义利率 δ ,若复利次数m为无穷大,年有效利率是多少?

$$1+i = \left(1 + \frac{i^{(m)}}{m}\right)^m$$

$$1+i=\lim_{m\to\infty}\left(1+\frac{\delta}{m}\right)^m=\mathrm{e}^{\delta} \qquad \qquad i=\mathrm{e}^{\delta}-1$$

例: 年名义利率为6%,每8个月复利一次。写出累积函数的表达式,在t = 0时投

资200万元, 计算在t = 2.5时的累积值。

解: $i^{(m)} = 6\%$, 每年复利m = 12/8 = 1.5次,所以

$$1+i = \left(1 + \frac{i^{(m)}}{m}\right)^m$$

$$1+i = \left(1 + \frac{0.06}{1.5}\right)^{1.5}$$

$$a(t) = (1+i)^t = \left(1+\frac{0.06}{1.5}\right)^{1.5t} = 1.04^{1.5t}$$

$$200 \times a(t) = 200 \times 1.04^{1.5t} = 200 \times 1.04^{1.5 \times 2.5} = 231.69$$

例: 投资者A在时间零点存入 X,年利率为i,每半年复利一次. 投资者B在时间零点存入 2X ,按单利计息,年利率为i. 他们在第8年的后6个月赚取的利息相等. 计算 i.

A: XA: $X\left(1+\frac{i}{2}\right)^{15}$ B: 2X

第8年的后6个月赚取的利息相等:

$$X\left(1+\frac{i}{2}\right)^{15}\cdot\frac{i}{2} = 2X\cdot\frac{i}{2} \qquad \Rightarrow \quad i = 9.46\%$$

练习:银行储蓄业务的年利率(都是年名义利率)如下,计算:

- (1) 年有效利率;
- (2) 存款100元,满一年时的利息。

存款利率(%)						
3个月	6个月	1年	2年	3年	5年	
<i>m</i> = 4	<i>m</i> = 2	m = 1	m = 1/2	m = 1/3	m = 1/5	
1.80	2.25	2.52	3.06	3.69	4.14	

$$1+i = \left(1 + \frac{i^{(m)}}{m}\right)^m$$

参考答案:

存款利率: 年名义利率和年有效利率的比较

	存款利率						
	3个月	6个月	1年	2年	3年	5年	
年名义利率	1.80	2. 25	2.52	3. 06	3. 69	4. 14	
年有效利率	1. 812	2. 263	2.52	3. 015	3. 562	3. 834	

- 小于1年时,年有效利率大于年名义利率
- 超过1年时,年有效利率小于年名义利率

年名义贴现率

有效贴现率: 期末的利息与期末累积值之比(任意时间区间)

年有效贴现率: 年末的利息与年末累积值之比(一年)

年名义贴现率:将任意区间上的有效贴现率年化表示

年名义贴现率 = 任意区间上的有效贴现率 \times 一年包含的区间数例:

- 月有效贴现率为1% = 年名义贴现率为12%, 每年贴现12次
- 2年期的有效贴现率为8% = 年名义贴现率为4%, 每2年贴现1次

名义贴现率的符号表示

 $d^{(m)}$: 每 1/m 年的有效贴现率为

$$\frac{d^{(m)}}{m}$$

年名义贴现率 = 区间的有效贴现率 × 一年包含的区间数

 $d^{(m)}$

$$\frac{d^{(m)}}{m}$$

m

年名义贴现率与年有效贴现率的关系

每
$$\frac{1}{m}$$
 年的有效贴现率为 $\frac{d^{(m)}}{m}$

$$1 - d = \left(1 - \frac{d^{(m)}}{m}\right)^m$$

$$\left(1 - \frac{d^{(m)}}{m}\right)^m \qquad \qquad \left(1 - \frac{d^{(m)}}{m}\right)^2 \qquad \left(1 - \frac{d^{(m)}}{m}\right)$$

• 名义贴现率与有效贴现率的关系:

$$1 - d = \left(1 - \frac{d^{(m)}}{m}\right)^m$$

$$(1-d)^{\frac{1}{m}} = 1 - \frac{1}{m}d^{(m)}$$

年名义贴现率:在1/m年的时间区间内,与年有效贴现率d等价的单贴现率。

• 例: 年名义贴现率为6%, 每半年贴现1次。第6年末到期的1000, 在时间零点的

现值是多少?

• 解:

$$d^{(2)} = 6\%$$

$$1 - d = \left(1 - \frac{d^{(m)}}{m}\right)^m = \left(1 - \frac{6\%}{2}\right)^2$$

$$1000(1-d)^{6} = 1000 \left[1 - \frac{6\%}{2} \right]^{2\times6} = 1000 \times (1-3\%)^{12} = 693.84$$

例: 给定年名义贴现率10%, 当贴现次数的增加时, 年有效贴现率如何变化?

贴现次数(m)	年有效贴现率(d)
1(每年)	10.00%
2(每半年)	9.75%
4(每季)	9.63%
12(每月)	9.55%
52(每周)	9.53%
365(每天)	9.52%
	9.52%

$$1 - d = \left(1 - \frac{d^{(m)}}{m}\right)^m$$

名义利率与名义贴现率的关系(1)

$$\frac{d^{(m)}}{m} = \frac{\frac{i^{(m)}}{m}}{1 + \frac{i^{(m)}}{m}}$$

$$\frac{i^{(m)}}{m} = \frac{\frac{d^{(m)}}{m}}{1 - \frac{d^{(m)}}{m}}$$

$$1 - \frac{d^{(m)}}{m} \qquad \blacksquare - - - - - -$$

名义利率与名义贴现率的关系(2)

$$i - d = i \times d$$

$$\frac{i^{(m)}}{m} - \frac{d^{(m)}}{m} = \frac{i^{(m)}}{m} \times \frac{d^{(m)}}{m}$$

有效利率 - 有效贴现率 = 有效利率 × 有效贴现率

用名义利率和名义贴现率表示的累积函数和贴现函数

$$a(t) = (1+i)^{t} = \left[1 + \frac{i^{(m)}}{m}\right]^{mt}$$

$$1+i = \left(1 + \frac{i^{(m)}}{m}\right)^m$$

$$a^{-1}(t) = (1-d)^t = \left[1 - \frac{d^{(m)}}{m}\right]^{mt}$$

$$1 - d = \left(1 - \frac{d^{(m)}}{m}\right)^m$$

例:假设每月贴现一次的年贴现率为6%,计算与其等价的每季度复利一次的年

利率是多少? (等价的含义: 使用两种利息度量工具计算现值(或累积值), 结果相等)

$$d^{(12)} = 6\%$$

$$i^{(4)} = ?$$

现值:
$$\left[1 + \frac{i^{(4)}}{4} \right]^{-4} = \left[1 - \frac{6\%}{12} \right]^{12}$$

$$i^{(4)} = 6.06\%$$

• 例: 投资者在基金中存入 10 万元,15年后再存入20 万元。在前10年,基金按每年贴现4次的年贴现率 $d^{(4)}$ 计息,之后按每年复利2次的年利率6%计息。30年后,基金的累积值为100万元。计算 $d^{(4)}$.

解:

$$10\left(1 - \frac{d^{(4)}}{4}\right)^{-40} \left(1 + \frac{0.06}{2}\right)^{40} + 20\left(1 + \frac{0.06}{2}\right)^{30} = 100$$

$$\Rightarrow d^{(4)} = 0.0453$$

等价利息度量之间的数值大小关系

利息力 (瞬时利率)

- 年有效利率: 度量资金在一个年度的增长率
- 年名义利率: 度量资金在任意区间上的增长率
 - 年名义利率 = 区间上的有效利率 × 一年包含的区间数
 - 例: 如果月有效利率为0.5%,则年名义利率为6%
- 利息力: 度量资金在无穷小区间(时点)上的瞬时增长率,年化表示

考虑时间区间[t, t+h], 一年包含 $\frac{1}{h}$ 个区间

$$\frac{t}{a(t)} \qquad \frac{t+h}{a(t+h)}$$

时间区间[t, t+h]的有效利率:

$$\frac{a(t+h)-a(t)}{a(t)}$$

年化表示,即年名义利率为:

$$\frac{a(t+h)-a(t)}{h\cdot a(t)}$$

当时间区间无穷小时($h \rightarrow 0$),该区间的年名义利率为:

$$\lim_{h \to 0} \frac{a(t+h) - a(t)}{h \cdot a(t)} = \frac{1}{a(t)} \lim_{h \to 0} \frac{a(t+h) - a(t)}{h} = \frac{a'(t)}{a(t)}$$

定义: 时刻 t 的利息力(瞬时利率)为

$$\delta(t) = \frac{a'(t)}{a(t)}$$

解释: 在无穷小的时间区间上, 单位资金在单位时间(一年)的增长率

例: 单利的利息力递减

单利的累积函数

$$a(t) = 1 + it$$

单利的利息力为

$$\delta(t) = \frac{a'(t)}{a(t)} = \frac{i}{1+it}$$

例:复利的利息力是常数

$$a(t) = (1+i)^t$$
 $a'(t) = (1+i)^t \ln(1+i)$

$$\delta(t) = \frac{a'(t)}{a(t)} = \ln(1+i)$$

- 复利的利息力: $\delta = \ln(1+i)$ $\Leftrightarrow 1+i = e^{\delta}$
- 复利的累积函数: $a(t) = (1+i)^t = e^{\delta t}$

例:复利条件下,利息力是 $m\to\infty$ 的年名义利率

$$\lim_{m\to\infty} i^{(m)} = \lim_{m\to\infty} m \left[\left(1+i\right)^{\frac{1}{m}} - 1 \right]$$

$$=\lim_{x\to 0}\frac{(1+i)^x-1}{x}$$

$$=\lim_{x\to 0} \left[(1+i)^x \ln(1+i) \right]$$

 $(\diamondsuit x = 1/m)$

$$= \ln(1+i)$$

$$\lim_{m\to\infty}i^{(m)}=\delta$$

问题:复利条件下,当 $m \to \infty$ 时,年名义贴现率 $d^{(m)}$ 等于利息力?

$$d^{(m)} = m \left[1 - (1 - d)^{\frac{1}{m}} \right]$$

$$\lim_{m\to\infty}d^{(m)}=\delta$$

$$\lim_{m \to \infty} d^{(m)} = \lim_{m \to \infty} m \left[1 - (1 - d)^{\frac{1}{m}} \right] \xrightarrow{\qquad \Leftrightarrow x = 1/m \qquad} \lim_{x \to 0} \frac{1 - (1 - d)^x}{x}$$

$$= -\ln(1-d) = -\ln e^{-\delta} = \delta$$

• 复利条件下, 利息力的等价概念:

- 连续收益率
- 对数收益率
- 例:对数收益率具有可加性
 - 资产价格: 100, 110, 121
 - 每天的对数收益率:
 - j1 = $\ln(110/100)$, j2 = $\ln(121/110)$
 - 连续两天的对数收益率:
 - j12 = j1 + j2 = In(121/100)

贴现力

• 在 t 时的贴现力为

$$\delta^*(t) = -\frac{\left\lfloor a^{-1}(t) \right\rfloor}{a^{-1}(t)}$$

$$\delta^*(t) = -\frac{\left[a^{-1}(t)\right]'}{a^{-1}(t)} = \frac{a^{-2}(t)}{a^{-1}(t)} \cdot a'(t) = \frac{a'(t)}{a(t)} = \delta(t)$$

• 利息力 = 贴现力

用利息力表示的累积函数

$$\delta(s) = \frac{a'(s)}{a(s)} = \left[\ln a(s)\right]'$$

两边积分:

左边 =
$$\int_0^t \delta(s) \mathrm{d}s$$

右边 =
$$\int_0^t [\ln a(s)]' ds$$
 = $\left[\ln a(s)\right]_0^t$ = $\ln a(t) - \ln a(0)$ = $\ln a(t)$

$$\ln a(t) = \int_0^t \delta(s) \mathrm{d}s$$

$$a(t) = e^{\int_0^t \delta(s) \, \mathrm{d}s}$$

例:已知利息力 $\delta(t) = 0.01t$,计算 t=2 时的100 在 t=1 时的价值

$$V = 100 \frac{a(1)}{a(2)}$$

$$a(t) = e^{\int_0^t \delta(s) \, \mathrm{d}s}$$

$$\frac{a(1)}{a(2)} = e^{\int_0^1 0.01s \, ds - \int_0^2 0.01s \, ds} = e^{-\int_1^2 0.01s \, ds} = 0.9851$$

例: 假设利息力如下:

$$\delta(t) = \begin{cases} 0.02t & \text{if } 0 \le t \le 3\\ 0.05 & \text{if } t > 3 \end{cases}$$

计算前4年(即0~4年期间)的年有效利率。

参考答案:

$$a(4) = e^{\int_0^4 \delta(t) dt},$$

$$\int_{0}^{4} \delta(t) dt = \int_{0}^{3} 0.02t dt + \int_{3}^{4} 0.05 dt = 0.14$$

$$\Rightarrow a(4) = e^{0.14}$$

$$e^{0.14} = (1+i)^4$$

$$\Rightarrow i = 3.56\%$$

例: 账户A按照每年复利两次的年名义利率10% 计息。账户B按照单利 i 计息。在第5年末,即 t=5 时,两个账户的利息力相等。计算 i。

$$S(t) = \frac{a'(t)}{a(t)} = \left(\ln a(t)\right)'$$

思路:通过累积函数a(t)求解利息力 $\delta(t)$ 。

参考答案:

对于账户A:
$$a(t) = \left(1 + \frac{0.1}{2}\right)^{2t} = (1.05)^{2t}$$

$$\delta(t) = (\ln a(t))' = (2t \cdot \ln(1.05))' = 2\ln(1.05)$$

对于账户B:
$$a(t) = 1 + it$$

$$\delta(t) = \frac{\iota}{1 + it}$$

$$\frac{i}{1+5i} = 2\ln(1.05) \Rightarrow i = 0.1905$$

利率概念辨析

- 实际利率与名义利率(考虑任意一个时期):
 - 在经济学中,实际利率扣除了通胀率;名义利率包含通胀率。
 - 用i表示名义利率,r表示实际利率, π 表示通胀率,则

$$1 + i = (1 + r)(1 + \pi)$$

• 近似: $i \approx r + \pi$

名义利率 = 32%

1.32元

1元/个

1.2元/个

$$1 + 32\% = (1 + 10\%)(1 + 20\%)$$

1个

实际利率 = 10%

1.1个

- 利率和贴现率: 在计算现值时, 利率有时被误称为贴现率。
- 计算现值可以用利率、贴现率、利息力:

$$a^{-1}(t) = (1+i)^{-t} = (1-d)^t = e^{-\delta t} = e^{-\int_0^t \delta(s) ds}$$

利息度量

孟生旺

利息度量

- 累积函数、贴现函数
- 有效利率、有效贴现率
- 年名义利率、年名义贴现率
- 利息力 (瞬时利率)

累积函数: 时间零点的1元在时间 t 的价值,记为 a(t)

复利:
$$a(t) = (1+i)^t$$

单利:
$$a(t)=1+it$$

贴现函数: 时间 t 的1元在时间零点的价值,记为 $a^{-1}(t)$

在任意时间区间上可以定义有效利率和有效贴现率:

$$d = \frac{i}{1+i} \qquad \qquad i = \frac{d}{1-d}$$

注:通常情况下,i和d分别表示1个年度的有效利率和有效贴现率。

复利条件下的累积函数和贴现函数:

累积函数:
$$a(t) = (1+i)^t = (1-d)^{-t}$$

贴现函数:
$$a^{-1}(t) = (1+i)^{-t} = (1-d)^{t}$$

将任意时间区间上定义有效利率年化表示,就是年名义利率:

注: 如果年名义利率为 $\boldsymbol{i}^{(m)}$,则 [0, 1/m] 区间上的有效利率为 $j = \frac{\boldsymbol{i}^{(m)}}{m}$

年初的
$$1$$
元在年末的价值: $(1+i) = \left(1 + \frac{i^{(m)}}{m}\right)^m$

将任意时间区间上定义有效贴现率年化表示,就是年名义贴现率:

注: 如果年名义贴现率为 $d^{(m)}$,则 [0,1/m] 区间上的有效贴现率为 $k=\frac{d^{(m)}}{m}$

年末的
$$1$$
元在年初的价值: $(1-d) = \left(1 - \frac{d^{(m)}}{m}\right)^m$

在无穷小区间上定义有效利率,并将其年化表示,就是利息力(瞬时利率):

区间
$$[t, t+h]$$
上定义有效利率: $a(t+h)-a(t)$ $a(t)$

年化表示为年名义利率:
$$\frac{a(t+h)-a(t)}{a(t)} \times \frac{1}{h}$$

利息力: 无穷小区间上的年名义利率
$$\delta(t) = \lim_{h \to 0} \frac{a(t+h) - a(t)}{a(t)} \times \frac{1}{h} = \frac{a'(t)}{a(t)}$$

用利息力表示累积函数:
$$a(t) = e^{\int_0^t \delta(s) ds}$$

复利的利息力: $\delta = \ln(1+i)$

复利的累积函数: $a(t) = e^{\delta t}$

累积函数:

$$a(t)\!=\!(1+i)^{t}=\!\left(\!1\!+rac{i^{(m)}}{m}\!
ight)^{mt}\!=\!\mathrm{e}^{\delta t}=\!\mathrm{e}^{\int_{0}^{t}\!\delta(s)\,\mathrm{d}s}$$

贴现函数:

$$a^{-1}(t)\!=\!(1\!-\!d)^{\,t} \,=\!\!\left(\!1\!-\!rac{d^{(m)}}{m}\!
ight)^{mt} \,=\!\mathrm{e}^{-\delta t} \quad =\!\mathrm{e}^{-\int_0^t\!\delta(s)\,\mathrm{d}s}$$

• 练习:银行在当前时刻借出10000元,3年后再借出X,在10年末收回75000元。银行在前5年按照年有效利率6%收取利息,以后按照利息力1/(t+1)收取利息。计算X。

参考答案:

$$[10,000(1.06)^5 + X(1.06)^2]e^{\int_5^{10} \frac{1}{t+1}dt} = 75,000$$

$$(13,382.26+1.1236X)\frac{11}{6}=75,000$$

$$1.1236X = 27,526.83$$

$$X = 24,498.78$$

• 练习: 李先生在银行账户中存入1000, 按每年复利2次的年名义利率6%计息。戴小姐同时在银行账户中存入1000, 按每月复利一次的年名义利率3%计息。每个账户只能在各自的利息结转周期末支付当期的利息。计算经过多少个月以后,李先生的账户价值将至少是戴小姐账户价值的2倍。

参考答案:

假设需要n年,则

$$1000(1.03)^{2n} = 2(1000)(1.0025)^{12n}$$

$$2n\ln 1.03 + \ln 1000 = 12n\ln 1.0025 + \ln 2000$$

$$0.029155n = 0.69315$$

$$n = 23.775$$

即285.3个月。

因为李先生的账户每6个月支付一次利息,故下次利息支付时间应该是288个月末。