Neural Networks in Tensorflow (Assignment 1)

JIANG Fan, fan.jiang@polytechnique.edu

Introduction

For this assignment, we are going to use neural network implemented with Tensorflow to tackle a classification problem. The data set contains 2000 points, splitted to train/test data set with a ratio 6/4. The dimension of X is 294, and the dimension of Y is 6. Since the classes of Y are independent, we have used sigmoid classifier at the output layer. The number of neurons in each layer of my network is 294-64-32-16-6, and the activation functions are all sigmoid functions. The final Hamming loss achieved by the network is around 0.85-0.95 (depending on the random state).

Hyper-parameter Tuning

The best learning rate is 0.005, and the best batch size is 100. The following left table shows the process of finding the best structure, and the following right table shows the process of finding the best learning rate:

Hidden layer structure	Epoche s	Learning rate	Time	Hamming loss	Learning rate	Epoche s	Hidden layer structure	Time	Hamming loss
16	2000	0.005	24s	0.10604	0.0005	4000	64-32-16	95s	0.09771
32-16	2000	0.005	39s	0.10208	0.001	4000	64-32-16	98s	0.10125
64-32-16	2000	0.005	47s	0.08958	0.005	4000	64-32-16	96s	0.08708
128-64-3 2-16	2000	0.005	76s	0.09583	0.01	4000	64-32-16	96s	0.10104
256-128- 64-32-16	2000	0.005	138s	0.09271	0.05	4000	64-32-16	96s	0.11292

This table shows the process of finding the best batch size with training time of 2 minutes.

Batch	time	Hidden	Learning	Hamming	
size	limits	layer	rate	losses	
		structure			
50	2000	64-32-16	0.005	0.09021	
100	2000	64-32-16	0.005	0.08729	
200	2000	64-32-16	0.005	0.09333	
400	2000	64-32-16	0.005	0.09833	
800	2000	64-32-16	0.005	0.09916	

Benchmark Comparison

I have also compared the training time and Hamming loss of my neural network with several benchmarks, including K Nearest Neighbour classifier, Decision Tree, One vs Rest classifier, classifier chain and also the neural network implemented by Scikit-learn.

