結報評分標準

圖表	數據	發現問題	電路分析	心得+結論	Reference
15%	15%	10%	30%	20%	10%

請假後補交結報的規定

- 1. 請假需依規定提出假單申請,並安排時間補做實驗並將核準過的假單截圖貼於下方,助教才會進行 結報的批改。
- 2. 以請假日計算; 需在一星期內完成補做驗, 二個星期內補交結報(將結報交至 Delay 區)。逾時不進行結報批改。例如: 3/1 請假, 需在 3/8 前完成補做實驗, 3/15 前補交結報。

REPORT

Experiment 1:Common Emitter Amplifier

Vb (V)	Vc (V)	Ve (V)	Vbe (V)	Vce (V)	Ic (A)	Ib (A)	Current gain (A/A)
1.17	4.48	0.55	0.62	3.93	1.18m	6.13u	192.49

Ie 的計算過程

$$V_{P_1} = 8.86 \qquad V_{R_2} = 1.17$$

$$I_b = \frac{V_{P_1}}{P_1} - \frac{V_{P_2}}{P_2} = \frac{8.86}{300k} - \frac{1.17}{50k} = 6.13 \, \mu A.$$

3. Q1-in and Q1-out waveform

f	f _{out,max} (Hz)	vin (V)	vout (V)	Voltage gain (V/V)	Phase difference (out->in) (degree)
	10k	80.32m	756.6m	9.42	171.11

↓ Gain 計算

沿用實驗一所測量到的數據再帶入可得知:

小訊號模型

↓ LTspice 模擬

5.

Vb (V)	Vc (V)	Ve (V)	Vbe (V)	Vce (V)	Ic (A)	Ib (A)	Current gain (A/A)
1.36	3.11	0.7	0.66	2.41	6.93m	37.4u	185.29

Ie 計算過程

$$V_{RS} = 8.67 V$$
 $V_{R6} = 1.36 V$

$$I_b = \frac{8.67}{50k} - \frac{1.36}{10k} = 37.4 \mu A.$$

6. Q2-in and Q2-out waveform

f _{out,max} (Hz)	vin (V) 	vout (V) 753.3m	Voltage gain (V/V) 9.49	(out->in) (degree)
f (11-)	via (V)	+ (\/)	\/altaga gain (\/\/\)	Phase difference

♣ Gain 計算

從 LTspice 模擬所測量到的數據再帶入可得知:

小訊號模型(沿用上個實驗的模型推導結果)

$$\beta_{2} = \frac{6.748 \, m}{33.8591 \, m} \approx 199.34 \quad (current \ gain)$$

$$gm_{1} = \frac{Ic_{2}}{V_{7}} = \frac{6.748}{26} = 0.2595$$

$$V_{R_{2}} = \frac{B_{2}}{gm_{2}} = 768.956 \, \Omega$$

$$V_{out} = -gm_{2} \left(\frac{1}{\left(1 + R_{8} \left(\frac{1}{T_{R_{2}}} + gm_{2}\right)\right)} \right) R_{7} \cdot V_{in}$$

$$AV = \frac{V_{int}}{V_{in}} = -9.5826 \, \#$$

▲ LTspice 模擬

▼各點工作電位

▼Ib、Ic 電流

▼ Q2-in & Q2-out 波型

ዹ 結論

在實驗一中我們透過數個電阻、電容、一個 BJT 組出 CE 放大器並測量其各點的工作點電位。

Experiment 2:Cascade Amplifier (CE + CE)

2

f (U-)	\/ (\/)	V (V)	\/o +ogo goin (\/\/\)	Phase difference
f _{out,max} (Hz)	V _{Q1-in} (V)	V _{Q2-out} (V)	Voltage gain (V/V)	(Q2-out->Q1-in) (degree)
	79.66m	3.932	49.36	3.51
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{Q2-b} (V)	Voltage gain (V/V)	Phase difference
	V _{Q1-in} (V)			(Q2-b->Q1-in) (degree)
10k	79.66m	417m	5.23	175.01
	V (V)	V (V)		Phase difference
	V _{Q1-c} (V)	V _{Q2-out} (V)	Voltage gain (V/V)	(Q2-out->Q1-c) (degree)
	416.6m	3.95	9.48	178.62

Q1-in and Q2-out waveform

Q1-in and Q2-b waveform

Q1-c and Q2-out waveform

棊 Gain 計算

1. Q1-in & Q2-out gain 計算

根據 ppt 的結論我們可以 Cascade 兩個 BJT 並得出 gain:

$$gm_1 = \frac{Ic_3}{V_7} = \frac{6.748}{26} = 0.2595$$
 $V_{\pi_1} = \frac{B_3}{gm_1} = 768.056 \Omega$

2. Q1-in & Q2-b gain 計算

$$V_{\text{out}} = -g_{m_{1}} \left(\frac{1}{(1 + R_{4} (\frac{1}{r_{n}} + g_{m_{1}}))} \right)$$

$$\frac{3k}{3k}$$

$$\frac{3k}{((r_{n_{1}} + (\beta_{2} + 1) R_{8} || R_{3} || R_{5} || R_{6})) V_{\text{in}}}$$

$$AV = \frac{V_{\text{out}}}{V_{\text{in}}} = -5.3 \text{ #}$$

$$g_{m_{1}} = \frac{I_{C}}{V_{T}} = 0.04538 \qquad r_{n_{1}} = \frac{\beta_{1}}{g_{m_{1}}} = 4241.3$$

$$\beta_{2} = \frac{6.748 \text{ m}}{33.8592 \text{ m}} \approx 199.34 \quad (\text{current } g_{\text{ain}})$$

$$g_{m_{1}} = \frac{I_{C_{3}}}{V_{T}} = \frac{6.748}{26} = 0.2595$$

$$V_{n_{2}} = \frac{\beta_{3}}{g_{m_{1}}} = 768.056 \Omega$$

3. Q1-c & Q2-out gain 計算

$$\beta_{2} = \frac{6.748 \, \text{m}}{33.8591 \, \text{m}} \approx 199.34 \quad (\text{current gain})$$

$$g_{M_{1}} = \frac{I_{C_{2}}}{V_{7}} = \frac{6.748}{16} = 0.2595$$

$$V_{R_{1}} = \frac{\beta_{2}}{g_{M_{1}}} = 768.956 \, \Omega$$

$$V_{\text{at}} = -g_{M_{2}} \left(\frac{1}{(1 + R_{8} (\frac{1}{r_{R_{1}}} + g_{M_{2}}))} \right) R_{7} \cdot V_{\text{in}}$$

$$A_{V} = \frac{V_{\text{at}}}{V_{\text{in}}} = 9.5826 \, \#$$

↓ LTspice 模擬

Q1-in & Q2-out 波型

Q1-in & Q2-b 波型

Q1-c & Q2-out 波型

♣ 發現問題

Question 1: 為什麼 Q2-out 的波型會出現被切到的現象?

我推論是因為電容的關係,C5 的電容的值為 1μ ,這電容在電路中會阻抗高頻的部分

可以觀察到當中間電容替換成 1n 時, Q2-out 的波型就沒有在被切到了。

♣ 結論

在實驗二中我們透過串接實驗一的兩組電路 Cascade voltage gain,讓電壓放大倍率控制變得靈活、好控制。

Experiment 3:Common Collector Amplifier

2

Vb (V)	Vc (V)	Ve (V)	Vbe (V)	Vce (V)	Ic (A)	Ib (A)	current gain (A/A)
7.25	9.82	6.66	0.59	3.16	130.5m	2.67m	48.88

3. Q3-in and Q3-out waveform

f _{out,max} (Hz)	vin (V)	vout (V)	Voltagegain (V/V)	Phasedifference (out->in)(degree)
10k	933.3m	923.3m	0.989	1.8

↓ Gain 計算

從 LTspice 模擬所測量到的數據再帶入可得知: 小訊號模型

♣ 問題與討論

Q: Why do we need high power resistor?

我推測之所以會使用高功率電阻的原因,主要是因為此電路中某些電阻需要承受較大的電流。在這樣的條件下,普通功率的電阻可能無法承受電流通過時所產生的熱量(根據公式 $P=I^2R$ 或 P=IV),進而因過熱而損壞。一旦電阻燒毀或進入非正常工作狀態,將會影響整個電路的偏壓設定與放大效果,甚至導致電晶體無法正常運作。

從這次實驗觀察,我們可以發現:

當射極電阻 R_{10} =50 Ω ,流過的電流高達 130.5mA,這使得該電阻的功率消耗明顯增加。若以 I=130.5mA、R=50 Ω 計算,其功率為:

$$P=I^2R=0.1305^2*50\approx0.85W$$

這已經超過一般常見 1/4 W (0.25 W) 電阻的額定功率,因此必須使用高功率電阻才能確保電路穩定且安全地運作。

▲ LTspice 模擬

▼ Q3-in & Q3-out 波型

♣ 結論

在實驗三中,我們接出類似實驗一的電路,但不同的是這次是 CC(common collector) stage,並加上高功率電阻降低電阻燒壞的風險

Experiment 4:Audio application(CE + CE + CC)

2

fL3dB (Hz)	fH3dB (Hz)	Bandwidth (Hz)	Vout,max (V)	fout,max (Hz)
100	270k	269.9k	533.3m	10k

AC SWEEP waveform (node Q3-out)

3.

f /U-)	V (V)	V (V)	Voltagegain	Phasedifference
f _{out,max} (Hz)	V _{Q1-in} (V)	V _{Q3-out} (V)	(V/V)	(Q3-out->Q1-in)(degree)
	81m	1.033	12.75	2.32
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V . (V)	voltagegain	Phasedifference
	V _{Q1-in} (V)	V _{Q3-b} (V)	(V/V)	(Q3-b->Q1-in)(degree)
10k	81m	1.033	12.75	2.28
	\/ (\/\)	V _{Q3-out} (V)	Voltagegain	Phasedifference
	V _{Q2-c} (V)		(V/V)	(Q3-out -> Q2-c)(degree)
	1.025	1.05	1.02	1.52

Q1-in and Q3-out waveform

Q1-in and Q3-b waveform

Q2-c and Q3-out waveform

4. Describe what you heard.

這次實驗的喇叭比起之前實驗所做的更為清晰、大聲,可能是因為放大的影響。相較於上學期的期末專題,這次的聲音聽的更為清楚許多,推測可能是因為這次的BJT都有正確地在工作點位上的關係,因此沒失真的現象發生。

↓ Gain 計算

$$R_{5} = 0. \qquad R_{L} = \infty$$

$$8.33k \qquad || \qquad 20.8k \qquad = 5.948$$

$$A_{V} = \left(\frac{(R_{5}||R_{6})(|(Y_{n_{1}} + (P_{5} + 1)R_{8})}{R_{5} + (R_{5}||R_{6})(|(Y_{n_{1}} + (P_{5} + 1)R_{8})}, A_{V})\right) \times \frac{1}{R_{5} + (R_{5}||R_{6})(|(Y_{n_{1}} + (P_{5} + 1)R_{8})}, A_{V}) \times \frac{1}{R_{7} + (R_{9}||R_{10})(|(Y_{n_{3}} + (P_{3} + 1)R_{11}))} A_{V_{2}}$$

$$\times \frac{(R_{9}||R_{10})(|(Y_{n_{3}} + (P_{3} + 1)R_{11}))}{R_{7} + (R_{9}||R_{10})(|(Y_{n_{3}} + (P_{3} + 1)R_{11}))} A_{V_{2}}$$

$$\times A_{V_{3}} = 50.879 \times 0.996 \times 0.41 = 20.77$$

$$X_{5} = \frac{6.748 \text{ m}}{33.8591 \text{ m}} \approx 199.34 \quad P_{3} = \frac{123.3625 \text{ m}}{838.596 \text{ m}} \approx 147.11$$

$$g_{M_{1}} = \frac{1}{V_{7}} = \frac{6.748}{26} = 0.2595 \quad g_{M_{3}} = \frac{1}{V_{7}} = 4.744 \text{ S}$$

$$Y_{R_{3}} = \frac{P_{3}}{g_{M_{3}}} = 768.056 \quad \Omega \qquad Y_{R_{3}} = \frac{P_{3}}{g_{M_{3}}} = 31 \quad \Omega$$

♣ 問題與討論

Q: Why do we add a CC (emitter follower) stage at the end (CE+CE+CC)?

CC stage 的 voltage gain 是 1(無放大的作用),那為什麼我們需要 CC stage 作為最後的輸出?我推測它的作用就像是 opamp 那單元所學到的 voltage buffer 一樣,是為了阻抗的匹配。

- 1. 對於輸出阻抗, CC stage 透過降低輸出阻抗以提高與高阻抗附載的匹配性。
- 2. 因為之後要用在揚聲器上面,所以 CC stage 能用來滿足高阻抗的需求。

LTspice 模擬

Q1-in and Q3-b waveform

ዹ 結論

在實驗四中我們透過串接實驗二、實驗三的電路達成 CE+CE+CC stage 的合併,然後再透過 串接電路作為播放音樂等等用途

♣ 心得

在電子實驗正式開始前,我就隱約有種不祥的預感。這次實驗的結報中需要量測的欄位比以往多上許多,光是看到這些項目就讓我感到壓力倍增,內心也隨之緊繃起來。不過,實際進行後卻出乎意料地順利,實驗一到三幾乎是一接完電路、調整好儀器,數據就能準確地呈現出來,完全沒有遇到什麼明顯的困難。

然而,到了實驗四卻開始出現狀況。當我們需要測量 Q2-C 與 Q3-out 的波形與電壓時,原本預期會像前面幾個實驗一樣順利取得正確數據,結果實際量測出來的數值卻高達 10V,與理論值相差了十倍以上。初步推測可能是 BJT 未正常導通所致,但當時無論怎麼檢查線路與元件,都找不到明確的原因,這個疑問一直困擾著我,直到禮拜三再次進行實驗。

禮拜三一早進到實驗室,我一邊整理先前實驗一的經驗與步驟,一邊重新接線(包括函數產生器、電源與示波器等)。即使仍有些許困惑,但我還是決定針對上次做完後就沒再動過的電路進行測量。沒想到,這次竟然一次就成功取得了正確的數據!由此推斷,問題應該出在禮拜一當天電路持續運作一段時間後,可能因溫度升高導致元件特性偏移或訊號失真,才造成當時的異常結果。這次的經驗提醒了我在實驗過程中除了注意電路設計與量測之外,也要留意環境因素如溫度對元件行為的影響,以免陷入無助的境地...

♣ 引用

1. 2N2222 data sheet

 $\frac{https://www.mouser.tw/ProductDetail/STMicroelectronics/2N2222?qs=Mh4MMBQMpV141}{uwXlHtQSQ%3D%3D\&srsltid=AfmBOoqNdJ86x4ejVr8i-CINn0irO1RllZkPOWIjz1KllxxU2G0m}{HG9W}$

2. BJT

https://zh.wikipedia.org/zh-tw/%E5%8F%8C%E6%9E%81%E6%80%A7%E6%99%B6%E4%BD%93%E7%AE%A1

3. 電容的阻抗

https://zh.wikipedia.org/zh-tw/%E9%98%BB%E6%8A%97

4. Power resistor

https://en.wikipedia.org/wiki/Resistor