Lambda School Data Science — Tree Ensembles

Model Interpretation

Objectives

- Partial Dependence Plots
- Shapley Values

Pre-reads

- 1. Kaggle / Dan Becker: Machine Learning Explainability
 - https://www.kaggle.com/dansbecker/partial-plots (https://www.kaggle.com/dansbecker/partial-plots (https://www.kaggle.com/dansbecker/partial-plots (https://www.kaggle.com/dansbecker/partial-plots)
 - https://www.kaggle.com/dansbecker/shap-values (https://www.kaggle.com/dansbecker/shap-values)
- 2. Christoph Molnar: Interpretable Machine Learning
 - https://christophm.github.io/interpretable-ml-book/pdp.html (https://christophm.github.io/interpretable-ml-book/pdp.html)
 - https://christophm.github.io/interpretable-ml-book/shapley.html (https://christophm.github.io/interpretable-ml-book/shapley.html)

Libraries

- PDPbox (https://github.com/SauceCat/PDPbox): pip install pdpbox
- <u>shap (https://github.com/slundberg/shap)</u>: conda install -c conda-forge shap / pip install shap

Types of explanations

Global explanation: all features in relation to each other

- Feature Importances (mean decrease impurity)
- Permutation Importances

• Drop-Column Importances

Global explanation: individual feature in relation to target

• Partial Dependence plots

Individual prediction explanation

Shapley Values

Note that the coefficients from a linear model give you all three types of explanations!

Titanic

```
In [4]: !echo y | conda install -c conda-forge seaborn
       Collecting package metadata (repodata.json): done
       Solving environment: done
       ## Package Plan ##
         environment location: /Library/anaconda3
         added / updated specs:
           - seaborn
       The following packages will be downloaded:
           package
                                                 build
           seaborn-0.9.0
                                                              163 KB conda-forge
                                                Total:
                                                              163 KB
       The following NEW packages will be INSTALLED:
                           conda-forge/noarch::seaborn-0.9.0-py 1
         seaborn
       Proceed ([y]/n)?
       Downloading and Extracting Packages
       seaborn-0.9.0
                             163 KB
                                        100%
       Preparing transaction: done
       Verifying transaction: done
       Executing transaction: done
```

```
In [5]: %matplotlib inline
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.model_selection import cross_val_score
        def load titanic():
            df = sns.load dataset('titanic')
            df['age'] = df['age'].fillna(df['age'].mean())
            df['class'] = df['class'].map({'First': 1, 'Second': 2, 'Third': 3})
            df['female'] = df['sex'] == 'female'
            X = df[['age', 'class', 'fare', 'female']]
            y = df['survived']
            return X, y
        X, y = load titanic()
```

Naive majority class baseline

Name: survived, dtype: float64

```
In [6]: y.value_counts(normalize=True)
Out[6]: 0     0.616162
     1     0.383838
```

Logistic Regression

```
In [9]: g = sns.regplot(x=X['age'], y=y, logistic=True, y_jitter=.05)
g.figure.set_size_inches(11.5, 7.5)
```

/Library/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidime nsional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Gradient Boosting

```
In [10]: gb = GradientBoostingClassifier()
         cross val score(gb, X, y, scoring='accuracy', cv=5, n jobs=-1)
Out[10]: array([0.80446927, 0.82681564, 0.85393258, 0.83146067, 0.84745763])
In [11]: gb.fit(X, y)
         pd.Series(gb.feature importances , X.columns)
Out[11]: age
                   0.131213
         class
                   0.173489
         fare
                   0.199991
                   0.495308
         female
         dtype: float64
                   conda update -n base -c defaults conda
In [20]:
         lecho y
         Collecting package metadata (repodata.json): done
         Solving environment: done
         ## Package Plan ##
           environment location: /Library/anaconda3
           added / updated specs:
             - conda
         The following packages will be downloaded:
                                                     build
             package
```

8 KB

cpu 0

py-xgboost-mutex-2.0

astor-0.8.0	py37_0	45	KB
c-ares-1.15.0	h1de35cc_1001	83	KB
clang_osx-64-4.0.1	h1ce6c1d_16	140	KB
clangxx_osx-64-4.0.1	h22b1bf0_16	140	KB
conda-4.7.10	py37_0	3.0	MB
conda-package-handling-1.3.1	l1 py37_	_0 20	60 KB
dill-0.3.0	py37_0	116	KB
glue-core-0.14.2	py37_0	1.4	MB
libprotobuf-3.8.0	hd9629dc_0	4.4	MB
markdown-3.1.1	py37_0	113	KB
mock-3.0.5	py37_0	47	KB
<pre>mpl-scatter-density-0.6</pre>	py_0	647	KB
plotly-4.0.0	py_0	3.8	MB
protobuf-3.8.0	py37h0a44026_0	678	KB
python-graphviz-0.10.1	py_0	22	KB
tabulate-0.8.3	py37_0	38	KB
		14.9	MB

The following packages will be REMOVED:

pbr-5.1.3-py_0

The following packages will be UPDATED:

```
0.7.1-py37 0 --> 0.8.0-py37 0
astor
                                         1.15.0-hlde35cc 1 --> 1.15.0-hlde35cc 1001
c-ares
                                         4.0.1-hlce6cld 11 --> 4.0.1-hlce6cld 16
clang osx-64
                                         4.0.1-h22b1bf0 11 --> 4.0.1-h22b1bf0 16
clangxx osx-64
                                              0.2.9-py37 0 --> 0.3.0-py37 0
dill
                                             0.14.1-py37 0 --> 0.14.2-py37 0
glue-core
                                          3.7.1-hd9629dc 0 --> 3.8.0-hd9629dc 0
libprotobuf
                                                3.1-py37 0 --> 3.1.1-py37 0
markdown
                                              2.0.0-py37 0 --> 3.0.5-py37 0
mock
                                                  0.5-py 0 --> 0.6-py 0
mpl-scatter-densi~
                                                3.7.0-py 0 \longrightarrow 4.0.0-py 0
plotly
                                      3.7.1-py37h0a44026 0 --> 3.8.0-py37h0a44026 0
protobuf
```

The following packages will be SUPERSEDED by a higher-priority channel:

```
Downloading and Extracting Packages
```

```
dill-0.3.0
                       116 KB
                                                                            100%
protobuf-3.8.0
                       678 KB
                                                                            100%
python-graphviz-0.10
                       22 KB
                                                                            100%
conda-4.7.10
                       3.0 MB
                                                                            100%
astor-0.8.0
                       45 KB
                                                                            100%
markdown-3.1.1
                       113 KB
                                                                            100%
libprotobuf-3.8.0
                       4.4 MB
                                                                            100%
tabulate-0.8.3
                       38 KB
                                                                            100%
clang osx-64-4.0.1
                       140 KB
                                                                            100%
conda-package-handli
                       260 KB
                                                                            100%
plotly-4.0.0
                       3.8 MB
                                                                            100%
clangxx osx-64-4.0.1
                       140 KB
                                                                            100%
mpl-scatter-density-
                       647 KB
                                                                            100%
c-ares-1.15.0
                       83 KB
                                                                            100%
glue-core-0.14.2
                                                                            100%
                       1.4 MB
mock-3.0.5
                       47 KB
                                                                            100%
py-xgboost-mutex-2.
                       8 KB
                                                                            100%
Preparing transaction: done
Verifying transaction: done
```

```
In [21]: from pdpbox.pdp import pdp_isolate, pdp_plot
```

Executing transaction: done

feature= 'age'

PDP for feature "age"

Number of unique grid points: 9

age

From PDPbox documentation (https://pdpbox.readthedocs.io/en/latest/):

The common headache: When using black box machine learning algorithms like random forest and boosting, it is hard to understand the relations between predictors and model outcome. For example, in terms of random forest, all we get is the feature importance. Although we can know which feature is significantly influencing the outcome based on the importance calculation, it really sucks that we don't know in which direction it is influencing. And in most of the real cases, the effect is non-monotonic. We need some powerful tools to help understanding the complex relations between predictors and model prediction.

```
In [18]: !echo y | conda install -c conda-forge pdpbox

Collecting package metadata: done
Solving environment: done

==> WARNING: A newer version of conda exists. <==
    current version: 4.6.14
    latest version: 4.7.10

Please update conda by running

$ conda update -n base -c defaults conda

## Package Plan ##

environment location: /Library/anaconda3

added / updated specs:
    - pdpbox</pre>
```

The following packages will be downloaded:

```
build
package
                                                            conda-forge
                                 anacondar 1
r-mutex-1.0.1
conda-4.7.10
                                      py37 0
                                                    3.0 MB conda-forge
conda-package-handling-1.4.1
                                       py37 0
                                                    261 KB conda-forge
matplotlib-base-3.1.1
                              py37h3a684a6 1
                                                    6.6 MB conda-forge
pdpbox-0.2.0
                                                    55.1 MB conda-forge
                                      Total:
                                                    65.0 MB
```

The following NEW packages will be INSTALLED:

```
conda-package-han~ conda-forge/osx-64::conda-package-handling-1.4.1-py37_0 matplotlib-base conda-forge/osx-64::matplotlib-base-3.1.1-py37h3a684a6_1 pdpbox conda-forge/noarch::pdpbox-0.2.0-py_0
```

The following packages will be UPDATED:

```
_r-mutex pkgs/r/osx-64::_r-mutex-1.0.0-anacond~ --> conda-forge/noarch::_r-mutex-1.0.1-anacondar_1 conda pkgs/main::conda-4.6.14-py37_0 --> conda-forge::conda-4.7.10-py37_0
```

Proceed ([y]/n)?

Downloading and Extracting Packages

Preparing transaction: done Verifying transaction: done Executing transaction: done

Animation by Christoph Molnar (https://twitter.com/ChristophMolnar/status/1066398522608635904), author of *Interpretable Machine Learning* (https://christophm.github.io/interpretable-ml-book/)

Partial dependence plots show how a feature affects predictions of a Machine Learning model on average.

- 1. Define grid along feature
- 2. Model predictions at grid points
- 3. Line per data instance -> ICE (Individual Conditional Expectation) curve
- 4. Average curves to get a PDP (Partial Dependence Plot)

Compare Predictions

```
In [16]: from sklearn.model_selection import cross_val_predict

y_pred_lr = cross_val_predict(lr, X, y, cv=5, n_jobs=-1)
y_pred_gb = cross_val_predict(gb, X, y, cv=5, n_jobs=-1)

preds = pd.DataFrame({'true': y, 'lr': y_pred_lr, 'gb': y_pred_gb})

gb_right = preds['gb'] == preds['true']
lr_wrong = preds['lr'] != preds['true']

len(preds[gb_right & lr_wrong]) / len(preds)
```

Out[16]: 0.08417508417508418

```
In [17]: preds[gb_right & lr_wrong].head()
Out[17]:
             true Ir gb
               0 1
          71
                    0
          74
              1 0 1
          78
              1 0 1
In [18]: data_for_prediction = X.loc[27]
         data for prediction
Out[18]: age
                      19
         class
                       1
         fare
                     263
         female
                   False
         Name: 27, dtype: object
```

Explain individual prediction

https://www.kaggle.com/dansbecker/shap-values (https://www.kaggle.com/dansbecker/shap-values)

```
In [30]: #pip install shap
         !echo y | conda install -c conda-forge shap
         Collecting package metadata (repodata.json): done
         Solving environment: done
         ## Package Plan ##
           environment location: /Library/anaconda3
           added / updated specs:
             - shap
         The following NEW packages will be INSTALLED:
                              conda-forge/osx-64::shap-0.29.3-py37h86efe34_0
           shap
         Proceed ([y]/n)?
         Preparing transaction: done
         Verifying transaction: done
         Executing transaction: done
```


Lending Club

```
sample submission = pd.read csv('/Users/wel51x/Downloads/ds2-tree-ensembles/sample submission.csv')
def wrangle(X):
   X = X.copy()
   # Drop some columns
   X = X.drop(columns='id') # id is random
   X = X.drop(columns=['member id', 'url', 'desc']) # All null
   X = X.drop(columns='title') # Duplicative of purpose
   X = X.drop(columns='grade') # Duplicative of sub grade
   # Transform sub grade from "A1" - "G5" to 1.1 - 7.5
   def wrangle sub grade(x):
       first digit = ord(x[0]) - 64
       second digit = int(x[1])
       return first digit + second digit/10
   X['sub grade'] = X['sub grade'].apply(wrangle sub grade)
   # Convert percentages from strings to floats
   X['int rate'] = X['int rate'].str.strip('%').astype(float)
   X['revol util'] = X['revol util'].str.strip('%').astype(float)
   # Transform earliest cr line to an integer: how many days it's been open
   X['earliest cr line'] = pd.to datetime(X['earliest cr line'], infer datetime format=True)
   X['earliest cr line'] = pd.Timestamp.today() - X['earliest cr line']
   X['earliest cr line'] = X['earliest cr line'].dt.days
   # Create features for three employee titles: teacher, manager, owner
   X['emp title'] = X['emp title'].str.lower()
   X['emp title teacher'] = X['emp title'].str.contains('teacher', na=False)
   X['emp_title_manager'] = X['emp title'].str.contains('manager', na=False)
   X['emp title owner'] = X['emp title'].str.contains('owner', na=False)
   # Drop categoricals with high cardinality
   X = X.drop(columns=['emp title', 'zip code'])
```

```
# Transform features with many nulls to binary flags
many nulls = ['sec app mths since last major derog',
              'sec app revol util',
              'sec app earliest cr line',
              'sec app mort acc',
              'dti joint',
              'sec app collections 12 mths ex med',
              'sec app chargeoff within 12 mths',
              'sec app num rev accts',
              'sec app open act il',
              'sec app open acc',
              'revol bal joint',
              'annual inc joint',
              'sec app inq last 6mths',
              'mths since last record',
              'mths since recent bc dlq',
              'mths since last major derog',
              'mths since recent revol deling',
              'mths_since last deling',
              'il util',
              'emp length',
              'mths since recent ing',
              'mo sin old il acct',
              'mths since rcnt il',
              'num tl 120dpd 2m',
              'bc_util',
              'percent_bc_gt_75',
              'bc open to_buy',
              'mths since recent bc']
for col in many nulls:
    X[col] = X[col].isnull()
# For features with few nulls, do mean imputation
for col in X:
    if X[col].isnull().sum() > 0:
```

http://localhost:8889/notebooks/Downloads/My_U4S1dot3_Model_Interpretation.ipynb

```
X[col] = X[col].fillna(X[col].mean())

# Return the wrangled dataframe
return X

# Wrangle train and test in the same way
X_train = wrangle(X_train)
X_test = wrangle(X_test)
```

Validation ROC AUC: 0.7226505704278647 CPU times: user 14min 17s, sys: 14.4 s, total: 14min 31s Wall time: 15min 2s

Partial Dependence Plot

```
In [26]: from pdpbox.pdp import pdp_isolate, pdp_plot
    feature='int_rate'
    pdp_isolated = pdp_isolate(model=gb, dataset=X_val,
```

model_features=X_val.columns, feature=feature)
pdp_plot(pdp_isolated, feature);

PDP for feature "int_rate"

Number of unique grid points: 10

Individual predictions

Out[27]:

	y_val	y_pred	y_pred_proba	confidence
734948	0	0	0.120889	0.379111
662775	1	0	0.444685	0.055315
1293995	0	0	0.184529	0.315471
121846	0	0	0.055538	0.444462
1040519	0	0	0.105202	0.394798

```
In [28]: # True positives, with high confidence
           preds[(y_val==1) & (y_pred==1)].sort_values(by='confidence', ascending=False).head()
Out[28]:
                   y_val y_pred_proba confidence
                                              0.278066
            509674
                                    0.778066
           1075507
                                    0.746171
                                              0.246171
                                    0.729384
           1237423
                                              0.229384
            525726
                                    0.725751
                                              0.225751
            411364
                                    0.725219
                                              0.225219
In [30]: X val.shape
Out[30]: (209513, 98)
In [32]: data_for_prediction = X_val.iloc[17575]
           explainer = shap.TreeExplainer(gb)
           shap values = explainer.shap values(data for prediction)
           shap.force plot(explainer.expected value, shap values, data for prediction)
                                                            Out[32]:
                                                               output value
                                                                           base value
                                                                 -1.781
            -2.774
                       -2.574
                                  -2.374
                                            -2.174
                                                                            -1.574
                                                                                       -1.374
                                                                                                  -1.174
                                                                                                            -0.9745
                                                                                                                       -0.7745
                                                                                                                                  -0.5745
                                                                                                                                             -0.3745
                                                       -1.974
          r_bal = 7,394 | total_bal_il = 1.915e+4 | dti = 25.73
                                                                                   home_ownership = 1 | term = 1 | addr_state = 28 | mort_acc = 4 | total_rev_hi_lim = 7
```

sub grade = 2.3

emp length = 1

```
In [33]: # True negatives, with high confidence
preds[(y_val==0) & (y_pred==0)].sort_values(by='confidence', ascending=False).head()
```

Out[33]:

	y_val	y_pred	y_pred_proba	confidence
716929	0	0	0.025035	0.474965
1024450	0	0	0.025919	0.474081
440926	0	0	0.025988	0.474012
626127	0	0	0.026001	0.473999
1129419	0	0	0.026023	0.473977

In [34]: data_for_prediction = X_val.loc[1778]
 shap_values = explainer.shap_values(data_for_prediction)
 shap.force_plot(explainer.expected_value, shap_values, data_for_prediction)

Out[34]:


```
In [35]: # False positives, with high (mistaken) confidence
preds[(y_val==0) & (y_pred==1)].sort_values(by='confidence', ascending=False).head()
```

Out[35]:

	y_val	y_pred	y_pred_proba	confidence
929700	0	1	0.733019	0.233019
1124876	0	1	0.724849	0.224849
1218998	0	1	0.713815	0.213815
14044	0	1	0.708883	0.208883
314029	0	1	0.708107	0.208107

In [36]: data_for_prediction = X_val.loc[33542]
 shap_values = explainer.shap_values(data_for_prediction)
 shap.force_plot(explainer.expected_value, shap_values, data_for_prediction)

Out[36]:

term

int_rate	8.18
installment	377.04
sub_grade	2.1
emp_length	False
home_ownership	3
annual_inc	100000
purpose	2
addr_state	9
dti	5.09
delinq_2yrs	0
earliest_cr_line	7035
<pre>inq_last_6mths</pre>	0
mths_since_last_delinq	False
mths_since_last_record	False
open_acc	7
pub_rec	1
revol_bal	15692
revol_util	61.3
total_acc	18
initial_list_status	2
collections_12_mths_ex_med	0
<pre>mths_since_last_major_derog</pre>	True
application_type	1
annual_inc_joint	True
dti_joint	True
acc_now_delinq	0
tot_coll_amt	0
	• • •
num_rev_accts	11
<pre>num_rev_tl_bal_gt_0</pre>	5
num_sats	7
num_tl_120dpd_2m	False
num_tl_30dpd	0
num_tl_90g_dpd_24m	0
<pre>num_tl_op_past_12m</pre>	0
pct_tl_nvr_dlq	94.4
percent_bc_gt_75	False

<pre>pub_rec_bankruptcies</pre>	0
tax_liens	1
tot_hi_cred_lim	25600
total_bal_ex_mort	15692
total_bc_limit	21900
total_il_high_credit_limit	0
revol_bal_joint	True
sec_app_earliest_cr_line	True
sec_app_inq_last_6mths	True
sec_app_mort_acc	True
sec_app_open_acc	True
sec_app_revol_util	True
sec_app_open_act_il	True
sec_app_num_rev_accts	True
sec_app_chargeoff_within_12_mths	True
sec_app_collections_12_mths_ex_med	True
sec_app_mths_since_last_major_derog	True
disbursement_method	1
emp_title_teacher	False
<pre>emp_title_manager</pre>	True
emp_title_owner	False
Name: 33542, Length: 98, dtype: object	

```
In [38]: # False negatives, with high (mistaken) confidence
preds[(y_val==1) & (y_pred==0)].sort_values(by='confidence', ascending=False).head()
```

Out[38]:

	y_val	y_pred	y_pred_proba	confidence
923003	1	0	0.028394	0.471606
374806	1	0	0.029279	0.470721
415599	1	0	0.031176	0.468824
1117287	1	0	0.031621	0.468379
1049990	1	0	0.031804	0.468196

In [40]: data_for_prediction = X_val.iloc[30492]
 shap_values = explainer.shap_values(data_for_prediction)
 shap.force_plot(explainer.expected_value, shap_values, data_for_prediction)

Out[40]:


```
In [41]: # Most uncertain predictions (least confidence)
           preds.sort values(by='confidence', ascending=True).head()
Out[41]:
                    y_val y_pred y_pred_proba confidence
                                               0.000004
            1224267
                                     0.499996
            1041474
                                     0.499991
                                                0.000009
            1115932
                       0
                                     0.499979
                                                0.000021
            926988
                                     0.499973
                                                0.000027
            1032678
                       0
                              0
                                     0.499969
                                                0.000031
In [43]:
           data for prediction = X val.iloc[33095]
           shap values = explainer.shap values(data for prediction)
           shap.force plot(explainer.expected value, shap values,
                              data for prediction)
                                                                                                             Out[43]:
                                                                                                                output value
                                                                             base value
                                                                                                                  -0.28 -0.07446
           074
                       -3.574
                                     -3.074
                                                   -2.574
                                                                 -2.074
                                                                               -1.574
                                                                                            -1.074
                                                                                                          -0.5745
                                                                                                                                      0.4255
                                                                                                                                                    0.92
                 acc_open_past_24mths = 6 | max_bal_bc = 1,569 | all_util = 77 | total_bc_limit = 2,500 | dti = 30.66
                                                                                                   sub grade = 5.5
                                                                                                                      term = 1 | home ownership = 1 | mort acc =
```


installment	631.03
sub grade	5.5
emp_length	False
home_ownership	1
annual_inc	42000
purpose	2
addr_state	32
dti	30.66
delinq_2yrs	1
earliest_cr_line	6152
inq_last_6mths	C
mths_since_last_delinq	False
mths_since_last_record	True
open_acc	11
pub_rec	C
revol_bal	5187
revol_util	66.5
total_acc	21
initial_list_status	2
collections_12_mths_ex_med	0
<pre>mths_since_last_major_derog</pre>	False
application_type	1
annual_inc_joint	True
dti_joint	True
acc_now_delinq	0
tot_coll_amt	C
	• • •
num_rev_accts	10
<pre>num_rev_tl_bal_gt_0</pre>	5
num_sats	11
num_tl_120dpd_2m	False
num_tl_30dpd	0
num_tl_90g_dpd_24m	0
num_tl_op_past_12m	3
pct_tl_nvr_dlq	76.2
percent_bc_gt_75	False
<pre>pub_rec_bankruptcies</pre>	C

tax_liens	0
tot_hi_cred_lim	164158
total_bal_ex_mort	39247
total_bc_limit	2500
total_il_high_credit_limit	43257
revol_bal_joint	True
sec_app_earliest_cr_line	True
sec_app_inq_last_6mths	True
sec_app_mort_acc	True
sec_app_open_acc	True
sec_app_revol_util	True
sec_app_open_act_il	True
sec_app_num_rev_accts	True
sec_app_chargeoff_within_12_mths	True
sec_app_collections_12_mths_ex_med	True
<pre>sec_app_mths_since_last_major_derog</pre>	True
disbursement_method	1
emp_title_teacher	False
emp_title_manager	False
emp_title_owner	False
Name: 329957, Length: 98, dtype: object	

In [0]: