

Compilers

- Construct a parsing table <u>T</u> for CFG <u>G</u>
- For each production $A \rightarrow \alpha$ in G do:
 - − For each terminal $\underline{t} \in First(\underline{\alpha})$ do
 - $T[\underline{A}, \underline{t}] = \alpha$
 - − If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - − If $\varepsilon \in First(\alpha)$ and $S \in Follow(A)$ do
 - $T[A, \S] = \alpha$

$\begin{array}{c} E \rightarrow IX \\ I \rightarrow (E) \mid \underline{int} Y \end{array}$

$$\frac{X \to \pm E \mid \underline{\varepsilon}}{Y \to \pm I \mid \underline{\varepsilon}}$$

S-> Sa 1 b $First(S) = \{b\}$ Follow(S) = {\$, a} - multiply defined!

LL(1) Parsing Tables

If any entry is multiply defined then G is not LL(1)

```
· hot left factored
· left recursive
· ambiguous
· other grammas are not LL(1)
```

Most programming language CFGs are not LL(1)