Contents

- % Summary:
- % Preprocessing required:
- % Brief Overview of pre-processing:
- % ADDITIONAL processing/files:
- % Reference:
- % Standard figure parameters
- % Flags and initializations
- % Load/Read twin/sibling pair info.
- % Load subject proximity graph:
- % Create Modality combinations (Hard coded for illustration purpose)
- % Example 1: Compact fingerprint generation

- % Example 2: Compact fingerprint analysis: d-prime and -log10 p-value MZ vs DZ plots (Fig 2.)
- % Plot absolute d-prime and p-val for increasing fingerprint length/size
- % Plot -log10 p-value (ttest2): MZ vs DZ for increasing number of eig vecs
- % Example 3: Compact fingerprint comparison plots: MZ, DZ, FS pairs (Fig 3.)

- % Example 4: Rank Reterival Analysis: Mean Average Precision Table (Table 2, partial)
- % Display mean average precision (MAP) values
- % Example 5: Mean Recall@10 values (Supplement material Fig Table 8, partial)

- % Example 6: Mean Recall@k Plots (Supplement material Fig 1.)

- % Example 7: Relative informativeness Table: MZ, DZ, FS (Table 3)
- % Display realtive identification percentages: MZ, DZ, FS tables

% Summary:

- 1. MATLAB demo function
 - generate sample plots reported in paper

% Preprocessing required:

- * REQUIREMENTS:
- report.txt files for each modality (see below)
- twin/sibling pair ids (numeric id's between 1 to number of subjects/images based on the subject ordering/reading list) for example: MZ sub id set and MZ pair id set etc..
- Note: The randomized sample includes pairs of MZ; DZ; Full-Siblings (FS); Maternal Half Siblings (MHS) and Paternal Half Siblings (PHS)

% Brief Overview of pre-processing:

- We assume that Bag-of-features (BoF) have been generated and approximate matching has been performed using the code available at http://www.matthewtoews.com/ THE PRE-PROCESSING involves running:
 - i. featExtract.exe for each image (.nii files): output will be .key files containing 3D SIFT features
 - ii. featMatchMultiple -t 2 -r- -n 20 *.key (for all .key files of a given modality): output will be multiple files including report.txt
- 2. report.txt generated for each modality will act as a input for the following analysis $% \left(1\right) =\left(1\right) \left(1\right)$

```
    We have included sample report files (Random permutation applied on our set)
    Note: cross check the file order read in featMatchMultiple.exe and the sibling/twin pair IDs
```

% ADDITIONAL processing/files:

```
1. feature match visualization requires 3D SIFT feature files (not included here)
2. Significance values (-log10 pvalues) in paper are based on sample size matches using bipartite matching (age-based);
However, sample illustration uses random sample size matching
3. Similarly hemisphere asymmetry analysis and pairwise feature correspondence analysis requires restricted data and thus have been excluded here
```

% Reference:

```
Multi-modal brain fingerprinting: a manifold approximation based framework

Authors:

Kuldeep Kumar (kkumar@livia.etsmtl.ca),
Laurent Chauvin

Matthew Toews (Matthew.Toews@etsmtl.ca)
Olivier Colliot and
Christian Desrosiers (christian.desrosiers@etsmtl.ca)
```

LIVIA, ETS Montreal, Canada January 2018

% Standard figure parameters

```
Line_width = 3;
Marker_size= 14;
leg_FontSize=13;
gca_FontSize = 32;
color_option{1} = 'r' ;
color_option{2} = 'g' ;
color_option{3} = 'b';
color_option{4} = 'c';
color_option{5} = 'm';
color_option{6} = 'y';
color_option{7} = 'k';
marker option{1} = '*';
marker_option{2} = 'o';
marker_option{3} = 'd';
marker_option{4} = 's';
marker_option{5} = 'x';
marker_option{6} = '^';
marker_option{7} = '+';
```

% Flags and initializations

flag to display figure: 1: yes, 0: no

```
flag_display_figure =1;

% labels for sibling types
cell_sibling_type{1} = 'MZ';
cell_sibling_type{2} = 'DZ';
cell_sibling_type{3} = 'FS';
cell_sibling_type{3} = 'FS';
cell_sibling_type{4} = 'MHS';
cell_sibling_type{5} = 'FHS';

% Define the twin/sibling types to be used for analyses
max_sib_type = 3;

% 3: MZ, DZ, FS; 5: MZ, DZ, FS, MHS and FHS also
```

% Load/Read twin/sibling pair info.

% Load subject proximity graph:

```
max modality combinations= 9;
                                                                               % hard coded for illustration
cell_NxN_data_matrix = cell(max_modality_combinations,1);
% Set of modalities used for illustration
cell_modality{1} = 'FA';
cell_modality{2} = 'T1w 125mm';
cell_modality{3} = 'T2w 125mm';
cell_modality{4} = 'rfMRI';
cell_modality{5} = 'T1w+FA';
cell_modality{6} = 'T1w+rfMRI';
cell_modality{7} = 'FA+rfMRI';
cell_modality{8} = 'T1w+T2w+FA';
cell_modality{9} = 'T1w+T2w+FA+rfMRI';
%DATA: load SAMPLE report files (feature match count) for each modality
 cell_report_filename = { 'SAMPLE_report_FA.mat';
                            'SAMPLE_report_T1w_125mm';
                            'SAMPLE_report_T2w_125mm';
                            'SAMPLE_rfMRI_pairwise_pearson_corr_ICA100';};
% For report.txt files:
% 1. read feature match count files (report.txt)
% 2. Obtain Normalized Jaccard Similarity
cell report files = cell(3,1);
for loop_i=1:(length(cell_report_filename)-1)
                       cell_report_filename{loop_i}]);
    load(['../data/'
    cell_report_files{loop_i,1} = SAMPLE_report_mat ;
    cell_NxN_data_matrix{loop_i} = compute_normalized_jaccard_similarity_matrix(cell_report_files(loop_i,1));
\% read rfMRI NxN_data_matrix
load(['../data/' cell_report_filename{length(cell_report_filename)}]);
cell_NxN_data_matrix{length(cell_report_filename)} = SAMPLE_rfMRI_pairwise_pearson_corr_ICA100 ;
```

% Create Modality combinations (Hard coded for illustration purpose)

```
% 1. T1w + FA
loop_i = 5;
cell NxN data matrix{loop i} = compute normalized jaccard similarity matrix(cell report files(1:2));
% 2. T1w +rfMRI: (linear combination, with combination weights computed using a grid
% search, to optimize MAP values )
loop i = 6;
lambda = 0.2;
cell NxN data matrix{loop i} = lambda*cell NxN data matrix{4}+(1-lambda)*cell NxN data matrix{2};
% 3. FA + rfMRI (linear combination, with combination weights computed using a grid
% search, to optimize MAP values )
loop i = 7;
lambda = 0.4:
cell_NxN_data_matrix{loop_i} = lambda*cell_NxN_data_matrix{4}+(1-lambda)*cell_NxN_data_matrix{2};
% 4. T1w + T2w + FA (1.25mm)
loop i=8;
cell_NxN_data_matrix{loop_i} = compute_normalized_jaccard_similarity_matrix(cell_report_files(1:3));
% 5. T1w + T2w + FA + rfMRI
loop_i = 9;
lambda = 0.2;
cell_NxN_data_matrix{loop_i} = lambda*cell_NxN_data_matrix{4}+(1-lambda)*cell_NxN_data_matrix{8};
```


% Example 1: Compact fingerprint generation

% Example 2: Compact fingerprint analysis: d-prime and -log10 p-value MZ vs DZ plots (Fig 2.)

```
\% compute d-prime and -log10 p-value for pairwise fingerprint distance: MZ vs DZ
 array_num_spect_component = (5:5:500)';
 array_modality_set = [ 1; 2; 5;];
                                                                                                                                                       \% FA, T1w and T1w + FA (all at 1.25mm resolution)
  num_sibtype_comparisons = (max_sib_type*(max_sib_type-1))/2;
                                                                                                                                                       \% 1. MZ vs DZ, 2: MZ vs FS, 3: DZ vs FS
 \verb|cell_d_prime = cell(length(array_num_spect_component), num_sibtype\_comparisons, length(array_modality_set)); \\
 cell_pval_ttest2 = cell(length(array_num_spect_component),num_sibtype_comparisons,length(array_modality_set));
 cell_pval_ranksum = cell(length(array_num_spect_component),num_sibtype_comparisons,length(array_modality_set));
for loop_i=1:length(array_modality_set)
        % compact fingerprint generation
        NxN_data_matrix = cell_NxN_data_matrix{array_modality_set(loop_i),1};
        temp_cell_compact_fingerprint = compute_compact_fingerprint_size_impact(NxN_data_matrix,array_num_spect_component);
        for loop num spect = 1:length(array num spect component)
              % compute Euclidean Distance between fingerprint pairs for MZ, DZ, FS
              mat_compact_fingerprint = temp_cell_compact_fingerprint{loop_num_spect,1};
              cell_pairwise_distance = cell(max_sib_type,1);
              for loop_sib_type=1:max_sib_type
                      sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
                      pair id set = SAMPLE cell subID and sibpairID{loop sib type,2};
                      [cell\_pairwise\_distance\{loop\_sib\_type,1\}] = compute\_pairwise\_fingerprint\_distance\_sibling\_pairs(sub\_id\_set,pair\_id\_set,mat\_compact\_fingerprint);
             \% compute d-prime and pval for MZ vs DZ, MZ vs FS, and DZ vs FS
              temp_count_loop_comparison =1;
              for loop_sib_type_1 = 1:(max_sib_type-1)
                      array_pairwise_distance_1 = cell_pairwise_distance{loop_sib_type_1,1} ;
                      for loop_sib_type_2 = (loop_sib_type_1 + 1):max_sib_type
                              array_pairwise_distance_2 = cell_pairwise_distance{loop_sib_type_2,1} ;
                              cell\_d\_prime\{loop\_num\_spect,temp\_count\_loop\_comparison,loop\_i\} = compute\_d\_prime(array\_pairwise\_distance\_1,array\_pairwise\_distance\_1);
                              [cell\_pval\_ttest2\{loop\_num\_spect,temp\_count\_loop\_comparison,loop\_i\}, cell\_pval\_ranksum\{loop\_num\_spect,1,loop\_i\}] = compute\_pval\_ttest2\_ranksum(array\_praction) = compute\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pval\_ttest2\_ranksum(array\_pva
                              temp_count_loop_comparison = temp_count_loop_comparison + 1;
                      end
              end
       end
```

% Plot absolute d-prime and p-val for increasing fingerprint length/size

Absolute d-prime: MZ vs DZ

% Plot -log10 p-value (ttest2): MZ vs DZ for increasing number of eig vecs

% Example 3: Compact fingerprint comparison plots: MZ, DZ, FS pairs (Fig 3.)

```
array_modality_set = [ 1; 2; 5;];
                                                                            % FA, T1w and T1w + FA
num_spect_component = 150;
                                                                            % number of eigen vectors in fingerprint
cell pairwise distance = cell(max sib type,length(array modality set));
for loop_i=1:length(array_modality_set)
    % compact fingerprint generation
   NxN_data_matrix = cell_NxN_data_matrix{array_modality_set(loop_i),1};
    mat_compact_fingerprint = compute_compact_fingerprint(NxN_data_matrix,num_spect_component);
    for loop_sib_type=1:max_sib_type
        sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
        pair_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
        [cell_pairwise_distance{loop_sib_type,loop_i}] = compute_pairwise_fingerprint_distance_sibling_pairs(sub_id_set,pair_id_set,mat_compact_fingerprint);
    % get data for MZ, DZ, FS for a given modality
    cell_data = cell_pairwise_distance(:,loop_i);
    save_plot_name = [];
    modality = cell_modality(array_modality_set(loop_i));
    %count density histogram
    \verb|plot_compact_fingerprint_analysis_count density_histogram(cell_data,modality,save_plot_name)|; \\
    %Plot probability normalized curves (gamma histogram fitting)
    plot_compact_fingerprint_analysis_probability_normalized_curves(cell_data,modality,save_plot_name);
```


% Example 4: Rank Reterival Analysis: Mean Average Precision Table (Table 2, partial)

[%]

[%] compute rank reterival measures for each sibling type and a given modality/combination

^{1.} Mean Avg Precision and

^{% 2.} mean recall@10

```
%
           Additional outputs include detailed measures:
%
                     3. average precision array
%
                      4. recall@k (k=1 to num_sub -1)
%
                      5. precision@k (k=1 to num_sub -1)
%
\% Note: We can either use i) the subject proximity graphs directly or
\% ii) compute pairwise Euclidean distance for compact fingerprints
flag_option_map = 1;
                                                                           % 1: subject proximity graphs 0: distance
array_modality_set = (1:9)';
num_spect_component = 150;
                                                                           % number of eigen vectors in fingerprint
cell_compact_fingerprint = cell(length(array_modality_set),1);
mat_mean_avg_precision = zeros(length(array_modality_set), max_sib_type);
mat_mean_recall_at_10 = zeros(length(array_modality_set), max_sib_type);
% additional detailed measures
cell_array_avg_precision = cell(length(array_modality_set), max_sib_type);
cell_mat_recall_at_k = cell(length(array_modality_set), max_sib_type);
cell_mat_precision_at_k = cell(length(array_modality_set), max_sib_type);
for loop_i=1:length(array_modality_set)
        if(flag_option_map==1)
            % subject proximity graphs: Normalized Jaccard Similarity measures
            NxN_data_matrix = cell_NxN_data_matrix{array_modality_set(loop_i),1};
            flag_distance_or_similarity = 1;
                                                                           %: 0-distance: 1-similarity
        else
            % compact fingerprint generation
            NxN_data_matrix = compute_compact_fingerprint(cell_NxN_data_matrix{array_modality_set(loop_i),1},num_spect_component);
            flag_distance_or_similarity = 0;
                                                                           %: 0-distance; 1-similarity
        knn_value = size(NxN_data_matrix,2)-1;
                                                                           % consider all subjects except self
        [nearest\_neighbor\_matrix] = compute\_nearest\_neighbor\_matrix(NxN\_data\_matrix,knn\_value,flag\_distance\_or\_similarity); \\
        for loop_sib_type=1:max_sib_type
           sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
           pair_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
           [mat_mean_avg_precision(loop_i,loop_sib_type),mat_mean_recall_at_10(loop_i,loop_sib_type),cell_array_avg_precision{loop_i,loop_sib_type},cell_mat_recall_
```

% Display mean average precision (MAP) values

```
data_matrix = round(mat_mean_avg_precision,3);
cell_column = cell_sibling_type(1:max_sib_type);
cell_row_label = cell_modality;
display_table_values(data_matrix, cell_column, cell_row_label);
```

sTable =

	MZ DZ		FS	
FA	0.964	0.219	0.16	
T1w 125mm	0.831	0.136	0.121	
T2w 125mm	0.879	0.173	0.132	
rfMRI	0.968	0.352	0.205	
T1w+FA	0.977	0.279	0.21	
T1w+rfMRI	0.984	0.352	0.229	
FA+rfMRI	0.99	0.439	0.276	
T1w+T2w+FA	0.991	0.354	0.247	
T1w+T2w+FA+rfMRI	0.997	0.546	0.371	

% Example 5: Mean Recall@10 values (Supplement material Fig Table 8, partial)

```
% Display mean recall @ 10 values
data_matrix = round(mat_mean_recall_at_10,3);
cell_column = cell_sibling_type(1:max_sib_type);
cell_row_label = cell_modality;
display_table_values(data_matrix, cell_column, cell_row_label);
```

```
0.992 0.421
0.903 0.317
                                   0.307
FΔ
T1w 125mm
                                    0.22
                   0.954 0.349
0.975 0.524
T2w 125mm
                                    0.249
rfMRT
                                    0.369
T1w+FA
                   0.996
                           0.508
                                    0.372
T1w+rfMRI
                   0.996
                           0.635
                                    0.438
FA+rfMRI
                   0.996
                           0.69
                                    0.47
T1w+T2w+FA
                   1
                           0.579
                                    0.429
T1w+T2w+FA+rfMRI
                           0.817
                                    0.603
```

% Example 6: Mean Recall@k Plots (Supplement material Fig 1.)

```
% number of nearest neighbors or k value
temp_knn_value =50;
% get mean recall@k for k=1,2.....,temp_knn_value
array modality set = [ 1; 2; 4; 5; 9;];
                                                                              % see cell modality for index reference
mat_mean_recall_at_k = zeros(length(array_modality_set),temp_knn_value,max_sib_type);
% compute mean recall@k values using recal@k matrix
for loop_i=1:length(array_modality_set)
    for loop_sib_type =1:max_sib_type
        temp_mat = cell_mat_recall_at_k{array_modality_set(loop_i),loop_sib_type}(:,1:50);
        \label{loop_i} \verb|mat_mean_recall_at_k(loop_i,:,loop_sib_type)| = mean(temp_mat); \\
    end
end
%plot for each twin/sibling type
for loop_sib_type =1:max_sib_type
    data_mat = mat_mean_recall_at_k(:,:,loop_sib_type);
    x_{array} = (1:50)';
    figure_title = ['mean recall@k plot: ', cell_sibling_type{loop_sib_type}];
    cell_label{1} = 'k';
    cell_label{2} = 'mean recall@k';
    leg_location = 'southeast';
cell_legend = {'FA'; 'T1w'; 'rfMRI'; 'T1w+FA'; 'All MRI';};
    save_plot_name = [];
                                                                                  % assign filename to save it else empty
    plot_mean_recall_at_k(data_mat,x_array,figure_title,cell_legend,leg_location,cell_label,save_plot_name);
```


% Example 7: Relative informativeness Table: MZ, DZ, FS (Table 3)

```
% Compute relative informativeness
relative_identification_knn_value = 10;
                                                                            % number of nearest neighbors for realtive identification
                                                                            % identification considered success within these many neighbors only
cell_compare_modality1_vs_modality2 = { 'T1w vs T2w';
                                          'T1w vs FA':
                                          'T1w vs rfMRI':
                                          'FA vs rfMRI':
                                          'T1w vs T1w+T2w+FA+rfMRI':
                                          'T2w vs T1w+T2w+FA+rfMRI';
                                         'FA vs T1w+T2w+FA+rfMRI';
                                         'rfMRI vs T1w+T2w+FA+rfMRI';
% hard code the modalities to be compared
% indices are based on cell_modality
array_modality1_index = [ 2; 2; 2; 1; 2; 3; 1; 4; ];
array_modality2_index = [ 3; 1; 4; 4; 9; 9; 9; 9; ];
mat_relative_identification_percent = zeros(length(array_modality1_index),4,max_sib_type);
for loop_i=1:length(array_modality1_index)
            % subject proximity graphs: Normalized Jaccard Similarity measures
            NxN_data_matrix_1 = cell_NxN_data_matrix{array_modality1_index(loop_i),1};
            NxN_data_matrix_2 = cell_NxN_data_matrix{array_modality2_index(loop_i),1};
            flag_distance_or_similarity = 1;
                                                                            %: 0-distance; 1-similarity
            % compact fingerprint generation
            NxN_data_matrix_1 = compute_compact_fingerprint(cell_NxN_data_matrix{array_modality1_index(loop_i),1},num_spect_component);
            NxN_data_matrix_2 = compute_compact_fingerprint(cell_NxN_data_matrix{array_modality2_index(loop_i),1},num_spect_component);
            flag_distance_or_similarity = 0;
                                                                            %: 0-distance; 1-similarity
     nearest_neighbor_matrix_mod1= compute_nearest_neighbor_matrix(NxN_data_matrix_1,relative_identification_knn_value,flag_distance_or_similarity);
    nearest\_neighbor\_matrix\_mod2 = compute\_nearest\_neighbor\_matrix(NxN\_data\_matrix\_2, relative\_identification\_knn\_value, flag\_distance\_or\_similarity);
    for loop_sib=1:max_sib_type
            sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib,1};
            pair_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib,2};
            [mat_relative_identification_percent(loop_i,1:4,loop_sib)] = compute_relative_identification_percentage(sub_id_set,pair_id_set,nearest_neighbor_matrix_m
    end
end
```

% Display realtive identification percentages: MZ, DZ, FS tables

```
cell_relative_comparison_order = { 'Both'; 'Mod1'; 'Mod2'; 'None'; };
cell_column = cell_relative_comparison_order;
cell_row_label = cell_compare_modality1_vs_modality2 ;

for loop_sib=1:max_sib_type
    % display for each twin/sibling type
    disp(['Relative Identification percentage for : ' cell_sibling_type{loop_sib}]);
    data_matrix =round(mat_relative_identification_percent(:,:,loop_sib),2);
    display_table_values(data_matrix, cell_column, cell_row_label);
end
```

Relative Identification percentage for : MZ

sTable =

	Both	Mod1	Mod2	None
T1w vs T2w	85.71	4.62	9.66	0
T1w vs FA	90.34	0	8.82	0.84
T1w vs rfMRI	88.24	2.1	9.24	0.42
FA vs rfMRI	96.64	2.52	0.84	0
T1w vs T1w+T2w+FA+rfMRI	90.34	0	9.66	0
T2w vs T1w+T2w+FA+rfMRI	95.38	0	4.62	0
FA vs T1w+T2w+FA+rfMRI	99.16	0	0.84	0
rfMRI vs T1w+T2w+FA+rfMRI	97.48	0	2.52	0

Relative Identification percentage for : $\ensuremath{\mathsf{DZ}}$

sTable =

	Both	Modi	Mod2	None
T1w vs T2w	15.87	15.87	19.05	49.21
T1w vs FA	15.87	15.87	26.19	42.06
T1w vs rfMRI	18.25	13.49	34.13	34.13
FA vs rfMRI	26.19	15.87	26.19	31.75
T1w vs T1w+T2w+FA+rfMRI	28.57	3.17	53.17	15.08
T2w vs T1w+T2w+FA+rfMRI	33.33	1.59	48.41	16.67
FA vs T1w+T2w+FA+rfMRI	39.68	2.38	42.06	15.87
rfMRI vs T1w+T2w+FA+rfMRI	49.21	3.17	32.54	15.08

Relative Identification percentage for : FS

sTable =

	Both	Mod1	Mod2	None
T1w vs T2w	10.26	11.72	14.65	63.37
T1w vs FA	10.62	11.36	20.05	57.97
T1w vs rfMRI	9.52	12.45	27.38	50.64
FA vs rfMRI	12.91	17.77	23.99	45.33
T1w vs T1w+T2w+FA+rfMRI	18.96	3.02	41.3	36.72
T2w vs T1w+T2w+FA+rfMRI	21.98	2.93	38.28	36.81
FA vs T1w+T2w+FA+rfMRI	25.64	5.04	34.62	34.71
rfMRI vs T1w+T2w+FA+rfMRI	34.89	2.01	25.37	37.73

Published with MATLAB® R2015b