

Assignment Sheet Nr. 1

Exercise 1

1.1)

Since at equilibrium, there is no net flux of ions $(J_A = 0)$. Thus, we set the Nernst-Planck equation to zero:

$$0 = -D_{\mathcal{A}} \left(\frac{\mathrm{d}[\mathcal{A}]}{\mathrm{d}x} + \frac{z_{\mathcal{A}}F}{RT} [\mathcal{A}] \frac{\mathrm{d}V}{\mathrm{d}x} \right) \tag{1}$$

Dividing both sides by $-D_A$ gives:

$$\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}x} = -\frac{z_{\mathbf{A}}F}{RT}[\mathbf{A}]\frac{\mathrm{d}V}{\mathrm{d}x} \tag{2}$$

Rearranging the equation to separate variables:

$$\frac{1}{[\mathbf{A}]} \frac{\mathbf{d}[\mathbf{A}]}{\mathbf{d}x} = -\frac{z_{\mathbf{A}}F}{RT} \frac{\mathbf{d}V}{\mathbf{d}x} \tag{3}$$

Now integrating both sides with respect to x across the membrane, from the inside (x=0)to the outside (x = membrane thickness):

$$\int_{[A]_{in}}^{[A]_{out}} \frac{1}{[A]} d[A] = -\frac{z_A F}{RT} \int_{V_{in}}^{V_{out}} dV$$
 (4)

The left integral with respect to [A] is:

$$\int_{[A]_{in}}^{[A]_{out}} \frac{1}{[A]} d[A] = \ln \left(\frac{[A]_{out}}{[A]_{in}} \right)$$
 (5)

The right integral with respect to V is:

$$\int_{V_{\rm in}}^{V_{\rm out}} \mathrm{d}V = \underline{V_{\rm out} - V_{\rm in}} = E_m \tag{6}$$

where E_m is the membrane potential difference. $\bigvee_{in} - \bigvee_{out} = E_m$

Thus, we have:

$$\ln\left(\frac{[A]_{\text{out}}}{[A]_{\text{in}}}\right) = \frac{\sqrt{z_A F}}{RT} E_m \tag{7}$$

Now multiplying both sides by $-\frac{RT}{z_AF}$ to isolate E_m , we get:

$$E_m = \frac{RT}{z_{\rm A}F} \ln \left(\frac{[{\rm A}]_{\rm out}}{[{\rm A}]_{\rm in}} \right) \tag{8}$$

which is the Nernst equation:

$$E_m = \frac{RT}{z_{\rm A}F} \log \left(\frac{[{\rm A}]_{\rm out}}{[{\rm A}]_{\rm in}} \right) \tag{2}$$

1.2)

In the case where the membrane is selectively permeable only to one type of monovalent anion A^- , with permeability P_A , and all other permeabilities are zero, the GHK equation simplifies as follows:

- For cations C_i^+ , the permeability terms $P_{C_i^+}$ are zero, so their contributions vanish.
- For anions A_i^- , only the permeability P_A for A^- survives.

Thus, the GHK equation becomes:

$$E_m = \frac{RT}{F} \log \left(\frac{P_{\mathbf{A}}[\mathbf{A}^-]_{\mathrm{in}}}{P_{\mathbf{A}}[\mathbf{A}^-]_{\mathrm{out}}} \right)$$

Since the permeability $P_{\rm A}$ is the same on both sides of the membrane, it cancels out. Therefore, the equation simplifies to:

$$E_m = \frac{RT}{F} \log \left(\frac{[A^-]_{\text{in}}}{[A^-]_{\text{out}}} \right)$$

Since the Nernst equation for an ion X, whether a cation or anion, is typically written as:

$$E_m = \frac{RT}{zF} \log \left(\frac{[X]_{\text{out}}}{[X]_{\text{in}}} \right)$$

where z is the valency of the ion.

Since, for a monovalent anion A^- , the valency z = -1. Therefore, we modify the equation as follows:

$$E_m = -\frac{RT}{F} \log \left(\frac{[\mathbf{A}^-]_{\text{out}}}{[\mathbf{A}^-]_{\text{in}}} \right)$$

Exercise 2

2.1)

Since the total current across the membrane, I_{total} , is the sum of the currents carried by each ion:

$$I_{\rm total} = I_{\rm K^+} + I_{\rm Na^+}.$$

And since each ionic current I_{ion} can be expressed according to Ohm's law as:

$$I_{\text{ion}} = g_{\text{ion}}(E_m - E_{\text{ion}}),$$

where:

- g_{ion} is the conductance of the ion,
- \bullet $E_{\rm ion}$ is the reversal potential of the ion, and
- E_m is the membrane potential.

Therefore, for two ions, K⁺ and Na⁺, we have:

$$I_{K^+} = g_{K^+}(E_m - E_{K^+}),$$

$$I_{\text{Na}^+} = g_{\text{Na}^+}(E_m - E_{\text{Na}^+}).$$

Now, given that at steady state (when E_m is stable), there is no net current across the membrane, so $I_{\text{total}} = 0$. Thus,

$$I_{\rm K^+} + I_{\rm Na^+} = 0.$$

Substituting the expressions for I_{K^+} and I_{Na^+} :

$$g_{K^+}(E_m - E_{K^+}) + g_{Na^+}(E_m - E_{Na^+}) = 0.$$

Expanding and grouping terms involving E_m gives:

$$g_{K^{+}}E_{m} - g_{K^{+}}E_{K^{+}} + g_{Na^{+}}E_{m} - g_{Na^{+}}E_{Na^{+}} = 0.$$

Combining terms with E_m on the left side:

$$E_m(g_{K^+} + g_{Na^+}) = g_{K^+}E_{K^+} + g_{Na^+}E_{Na^+}.$$

Solving for E_m , we get:

$$E_m = \frac{g_{K^+} E_{K^+} + g_{Na^+} E_{Na^+}}{g_{K^+} + g_{Na^+}}.$$

2.2)

Given the membrane equation,

$$I_e(t) = C_m \frac{\mathrm{d}V}{\mathrm{d}t} + \frac{V - E_m}{R_m},$$

where:

- $I_e(t)$ is the input current,
- C_m is the membrane capacitance,
- R_m is the membrane resistance,
- E_m is the resting membrane potential.

and given that the current $I_e(t)$ is:

$$I_e(t) = \begin{cases} 0 & t \le t_0, \\ I_0 & t > t_0. \end{cases}$$

For $t \le t_0$

i.e., before t_0 , there is no applied current, and the membrane potential is at rest: $V(t) = E_m$.

For $t > t_0$

when $I_e(t) = I_0$, the equation becomes:

$$C_m \frac{\mathrm{d}V}{\mathrm{d}t} + \frac{V}{R_m} = \frac{E_m}{R_m} + I_0.$$

If the current I_0 were applied indefinitely, V(t) would eventually reach a constant value V_{∞} such that $\frac{\mathrm{d}V}{\mathrm{d}t}=0$. Setting $\frac{\mathrm{d}V}{\mathrm{d}t}=0$, we find:

$$\frac{V_{\infty}}{R_m} = \frac{E_m}{R_m} + I_0.$$

Solving for V_{∞} :

$$V_{\infty} = E_m + I_0 R_m$$
.

Now rewruiting the equation in terms of V_{∞} :

$$C_m \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{V_\infty - V}{R_m}.$$

Dividing by C_m :

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{1}{R_m C_m} (V - V_\infty).$$

Since membrane time constant τ_m is defined as:

$$\tau_m = R_m C_m.$$

Therefore, the differential equation equation becomes:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{1}{\tau_m}(V - V_\infty).$$

which has a general solution:

$$V(t) = V_{\infty} + (V(t_0) - V_{\infty})e^{-\frac{(t-t_0)}{\tau_m}}.$$

Given that $V(t_0) = E_m$, by substituting $V(t_0) = E_m$ and $V_{\infty} = E_m + I_0 R_m$ we obtain:

$$V(t) = E_m + I_0 R_m \left(1 - e^{-\frac{(t-t_0)}{\tau_m}} \right)$$
 for $t > t_0$.

2.3)

Because the network is time-invariant, the solution to the input current $I_e(t)$ can be obtained by applying the previous result in a piecewise fashion.

For
$$t < 0$$

Before the current is applied (i.e., when t < 0), there is no external current ($I_e(t) = 0$). The membrane potential is just the resting potential:

$$V(t) = E_m$$
 for $t < 0$.

For
$$0 \le t \le t_e$$

Here, the current $I_e(t) = I_0$ is applied. We can use the previous result, but we need to adjust it for the fact that the current starts at t = 0 (i.e., $t_0 = 0$) and lasts for a finite duration t_e . The membrane potential starts to change from the resting potential at t = 0, and the response follows:

$$V(t) = E_m + I_0 R_m \left(1 - e^{-\frac{t}{\tau_m}} \right)$$
 for $0 \le t \le t_e$.

For $t > t_e$

After $t = t_e$, the external current is turned off $(I_e(t) = 0 \text{ for } t > t_e)$. The membrane potential will start to decay from the value it reached at $t = t_e$ according to the time constant τ_m , and will eventually return to the resting potential E_m .

At $t = t_e$, the membrane potential is:

$$V(t_e) = E_m + I_0 R_m \left(1 - e^{-\frac{t_e}{\tau_m}} \right).$$

And the potential will decay from this value according to the equation for a decaying exponential response, starting at $t = t_e$:

$$V(t) = V(t_e) \cdot e^{-\frac{(t-t_e)}{\tau_m}} + E_m.$$

Substituting the expression for $V(t_e)$, we get:

$$V(t) = \left[E_m + I_0 R_m \left(1 - e^{-\frac{t_e}{\tau_m}} \right) \right] e^{-\frac{(t - t_e)}{\tau_m}} + E_m \text{ for } t > t_e.$$

Therefore, the complete response for V(t) to the input current $I_e(t)$ is:

$$V(t) = \begin{cases} E_m & t < 0, \\ E_m + I_0 R_m \left(1 - e^{-\frac{t}{\tau_m}} \right) & 0 \le t \le t_e, \\ \left[E_m + I_0 R_m \left(1 - e^{-\frac{t_e}{\tau_m}} \right) \right] e^{-\frac{(t - t_e)}{\tau_m}} + E_m & t > t_e. \end{cases}$$

Note: The $+E_m$ term ensures that as $t \to \infty$, V(t) asymptotically approaches E_m . Without this term, the potential would decay toward zero, which wouldn't match the behavior

of a real membrane that stabil applied.	lizes at the resting pot	ential E_m when no external current is
	End of Solutions	