

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Bookmarks

Unit 4: Discrete random variables > Problem Set 4 > Problem 5 Vertical: Indicator variables

■ Bookmark

- Unit 0: Overview
- Entrance Survey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- ▼ Unit 4: Discrete random variables

Unit overview

Lec. 5: Probability mass functions and expectations

Exercises 5 due Mar 02, 2016 at 23:59 UTC

Problem 5: Indicator variables

(6/6 points)

Consider a sequence of independent tosses of a biased coin at times $k=0,1,2,\ldots,n$. On each toss, the probability of Heads is p, and the probability of Tails is 1-p.

A reward of one unit is given at time k, for $k \in \{1,2,\ldots,n\}$, if the toss at time k resulted in Tails and the toss at time k-1 resulted in Heads. Otherwise, no reward is given at time k.

Let R be the sum of the rewards collected at times $1, 2, \ldots, n$.

We will find $\mathbf{E}[R]$ and $\mathrm{var}(R)$ by carrying out a sequence of steps. Express your answers below in terms of p and/or n using standard notation . Remember to write '*' for all multiplications and to include parentheses where necessary.

We first work towards finding $\mathbf{E}[R]$.

1. Let I_k denote the reward (possibly 0) given at time k, for $k \in \{1,2,\ldots,n\}$. Find $\mathbf{E}[I_k]$.

$$\mathbf{E}[I_k] = ig| (1-p)^*p$$

✓ Answer: p*(1-p)

Lec. 6: Variance; Conditioning on an event; Multiple r.v.'s

Exercises 6 due Mar 02, 2016 at 23:59 UTC

Lec. 7: Conditioning on a random variable; Independence of r.v.'s

Exercises 7 due Mar 02, 2016 at 23:59 UTC

Solved problems

Additional theoretical material

Problem Set 4

Problem Set 4 due Mar 02, 2016 at 23:59 UTC

Unit summary

- Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▶ Unit 7: Bayesian

2. Using the answer to part 1, find $\mathbf{E}[R]$.

The variance calculation is more involved because the random variables I_1, I_2, \ldots, I_n are not independent. We begin by computing the following values.

3. If
$$k \in \{1,2,\ldots,n\}$$
, then

4. If
$$k \in \{1,2,\ldots,n-1\}$$
, then

5. If k>1, $\ell>2$, and $k+\ell \leq n$, then

6. Using the results above, calculate the numerical value of $\mathrm{var}(R)$ assuming that p=3/4, n=10.

inference

- ▶ Exam 2
- Unit 8: Limit theorems and classical statistics
- Unit 9: Bernoulli and Poisson processes
- Unit 10: Markov chains
- Exit Survey
- Final Fxam

Answer:

1. Since $oldsymbol{I_k}$ is a Bernoulli indicator variable and the tosses are independent, we have

$$\mathbf{E}[I_k] = \mathbf{P}(I_k = 1) = \mathbf{P}(ext{Tails at time } k ext{ and Heads at time } k-1) = p(1-p).$$

2. The total reward over all the tosses, R, is the sum of all the I_k 's, for $k=1,2,\ldots,n$. By linearity of expectations, we have

$$\mathbf{E}[R] = \mathbf{E}\left[\sum_{k=1}^n I_k
ight] = \sum_{k=1}^n \mathbf{E}\left[I_k
ight] = np(1-p).$$

- 3. Since I_k can be only 0 or 1, $\mathbf{E}[I_k^2] = \mathbf{E}[I_k] = p(1-p)$.
- 4. I_kI_{k+1} equals 1 if $I_k=1$ and $I_{k+1}=1$, i.e., if a reward was given at time k and at time k+1. Otherwise, I_kI_{k+1} equals 0. But I_k and I_{k+1} cannot both equal 1: $I_k=1$ means that the toss at time k resulted in Tails, while $I_{k+1}=1$ means that the toss at time k resulted in Heads. Hence, it is not possible to obtain a reward at consecutive times k and k+1. Therefore, $\mathbf{E}[I_kI_{k+1}]=0$.
- 5. Part 4 above considered the rewards at two consecutive times. We now consider the rewards at two times that are at least 2 periods apart. Since the reward at time k depends only on the tosses at times k and k-1, the rewards at times that are at

least 2 periods apart depend on different, non-overlapping pairs of coin tosses, and hence I_k and $I_{k+\ell}$ are independent for $\ell \geq 2$. Therefore, $\mathbf{E}[I_kI_{k+\ell}] = \mathbf{E}[I_k]\mathbf{E}[I_{k+\ell}] = p^2(1-p)^2$ for the values of k and ℓ specified in the problem statement for this part.

6. From part 2, we have already calculated $\mathbf{E}[R]$. We now find $\mathbf{E}[R^2]$ and use the identity $\mathbf{var}(R) = \mathbf{E}[R^2] - (\mathbf{E}[R])^2$.

$$\mathbf{E}[R^2] = \mathbf{E}\left[\left(\sum_{k=1}^n I_k
ight)\left(\sum_{m=1}^n I_m
ight)
ight] = \mathbf{E}\left[\sum_{k=1}^n \sum_{m=1}^n I_k I_m
ight] = \sum_{k=1}^n \sum_{m=1}^n \mathbf{E}[I_k I_m]$$

There are n^2 terms in this double summation. We can divide them into three groups:

- 1. There are n terms where k=m. From part 3, we know that $\mathbf{E}[I_kI_m]=p(1-p)$ for this case.
- 2. There are n-1 terms where k=m+1 and another n-1 terms where m=k+1. From part 4, we know that $\mathbf{E}[I_kI_m]=0$ for these cases.
- 3. The remaining $n^2-n-2(n-1)=n^2-3n+2$ terms are those where k and m differ by at least 2. From part 5, we know that $\mathbf{E}[I_kI_m]=p^2(1-p)^2$ for these cases.

Putting these cases together, we have

$$\mathbf{E}[R^2] = n \cdot p(1-p) + 2(n-1) \cdot 0 + (n^2 - 3n + 2) \cdot p^2 (1-p)^2.$$

Therefore,

$$egin{align} ext{var}(R) &= \mathbf{E}[R^2] - (\mathbf{E}[R])^2 \ &= np(1-p) + (n^2-3n+2)p^2(1-p)^2 - n^2p^2(1-p)^2 \ &= np(1-p) - (3n-2)p^2(1-p)^2. \end{split}$$

When p=3/4 and n=10, we have that $\mathrm{var}(R)=57/64=0.890625$.

You have used 1 of 3 submissions

DISCUSSION

Click "Show Discussion" below to see discussions on this problem.

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

