Ringkasan Materi **UJIAN NASIONAL**

Disertai Rumus Lengkap Per Bab Sesuai SKL

Kimia SMA

Distributed by: Pak Anang

Di unduh dari : Bukupaket.com

BAB 1 MATERI

MENENTUKAN KADAR ZAT DALAM CAMPURAN

1. PROSENTASE MASSA

% massa =
$$\frac{\text{massa komponen}}{\text{massa campuran}} x 100 \%$$

2. PROSENTASE VOLUME

% volume =
$$\frac{\text{volume komponen}}{\text{volume campuran}} \times 100 \%$$

3. BAGIAN PER SEJUTA / bpj (Part Per Million / ppm) MASSA

bpj massa =
$$\frac{\text{massa komponen}}{\text{massa campuran}} \times 10^6$$

4. BAGIAN PER SEJUTA / bpj (Part Per Million / ppm) VOLUME

bpj volume =
$$\frac{\text{volume komponen}}{\text{volume campuran}} \times 10^6$$

PERUBAHAN MATERI

1. PERUBAHAN FISIKA

► Tidak terjadi perubahan permanen pada susunan zat dan jenis zat, yang berubah hanya sifat fisiknya saja.

2. PERUBAHAN KIMIA

- ► Terjadi perubahan sifat : ada endapan, suhu berubah, ada gelembung gas, warna berubah.
- ► Terjadi perubahan susunan zat.
- ► Terbentuk zat baru dengan sifat yang sama sekali berbeda dengan sifat zat asalnya (perubahan sifat permanen).

BAB 2 ATOM dan STRUKTUR ATOM

JENIS ATOM

► Atom Netral = Atom yang tidak bermuatan listrik

```
proton = nomor atom
elektron = nomor atom
netron = massa atom – nomor atom
```

► Kation = Atom bermuatan positif

```
proton = nomor atom
elektron = nomor atom – muatan
netron = massa atom – nomor atom
```

► Anion = Atom bermuatan negatif

```
proton = nomor atom
elektron = nomor atom + muatan
netron = massa atom – nomor atom
```

BILANGAN KUANTUM

s = sharp

Bilangan yang menentukan letak keberadaan elektron suatu atom.

a. Bilangan kuantum utama (n)

menyatakan nomor kulit tempat terdapatnya elektron, jenisnya : K(n = 1), L(n = 2), M(n = 3), N(n = 4), dst.

b. Bilangan kuantum azimuth (ℓ)

nilai $\ell = 0$

menyatakan sub kulit tempat terdapatnya elektron, jenisnya:

d = diffuse

nilai ℓ = 2

```
p = principal
                 nilai ℓ = 1
                                f = fundamental
                                                          nilai \ell = 3
    Untuk n = 1
                             \ell = 0 (sharp)
    Untuk n = 2
                          \rightarrow \ell = 0 (sharp)
                                \ell = 1 (principal)
    Untuk n = 3
                          \rightarrow \ell = 0 (sharp)
                                \ell = 1 (principal)
                                \ell = 2 (diffuse)
    Untuk n = 4
                          \rightarrow \ell = 0 (sharp)
                                \ell = 1 (principal)
                                \ell = 2 (diffuse)
                                \ell = 3 (fundamental)
```

c. Bilangan kuantum magnetik (m)

menyatakan orbital tempat terdapatnya elektron, jenisnya:

Suatu orbital dapat digambarkan sebagai berikut :

d. Bilangan kuantum spin (s)

menyatakan arah elektron dalam orbital.

Jenisnya: + ½ dan – ½ untuk setiap orbital (setiap harga m)

MENENTUKAN LETAK ELEKTRON

Untuk menentukan letak elektron maka perlu mengikuti aturan-aturan tertentu yang sudah ditetapkan.

Aturan Aufbau : Elektron-elektron mengisi orbital dari tingkat energi terendah baru tingkat energi yang lebih tinggi

Aturan Hund : Elektron-elektron tidak membentuk pasangan elektron sebelum masingmasing orbital terisi sebuah elektron

Larangan Pauli : Tidak diperbolehkan di dalam atom terdapat elektron yang mempunyai keempat bilangan kuantum yang sama

Diagram di bawah ini adalah cara untuk mempermudah menentukan tingkat energi orbital dari yang terendah ke yang lebih tinggi yaitu :

BAB 3 SISTEM PERIODIK UNSUR

Golongan Utama (Golongan A)

Golongan Utama	Elektron Valensi	Nama Golongan
IA	ns ¹	Alkali
IIA	ns ²	Alkali Tanah
IIIA	ns² np¹	Boron
IVA	ns² np²	Karbon
VA	ns² np³	Nitrogen
VIA	ns² np⁴	Oksigen / Kalkogen
VIIA	ns² np⁵	Halogen
VIIIA	ns² np ⁶	Gas Mulia

Golongan Transisi (Golongan B)

Golongan Transisi	Elektron Valensi
IB	(n-1)d ¹⁰ ns ¹
IIB	(n-1)d ¹⁰ ns ²
IIIB	(n-1)d ¹ ns ²
IVB	(n-1)d ² ns ²
VB	(n-1)d ³ ns ²
VIB	(n-1)d ⁵ ns ¹
VIIB	(n-1)d ⁵ ns ²
VIIIB	(n-1)d ⁶ ns ²
VIIIB	(n-1)d ⁷ ns ²
VIIIB	(n-1)d ⁸ ns ²

SIFAT PERIODIK UNSUR

Sifat unsur yang meliputi:

- ▶ Jari-jari atom
- ► Jari-jari kation
- ► Kebasaan
- ► Kelogaman
- ► Keelektropositifan
- ► Kereaktifan positif

Mempunyai kecenderungan seperti yang digambarkan di bawah ini :

Semakin ke bawah cenderung semakin besar. Semakin ke kanan cenderung semakin kecil.

Sedangkan sifat unsur yang meliputi:

- ► Potensial ionisasi (energi ionisasi)
- ► Afinitas elektron
- ▶ Keasaman
- ► Kenon-logaman
- ► Keelektronegatifan (maksimal di golongan VIIA)
- ► Kereaktifan negatif
- Keasaman oksi

Halaman &

$\label{thm:mempunyai} \ \ \text{Mempunyai kecenderungan seperti yang digambarkan di bawah ini:}$
Semakin ke bawah cenderung semakin kecil. Semakin ke kanan cenderung semakin besar.

BAB 4 IKATAN dan SENYAWA KIMIA

1. IKATAN ION (IKATAN ELEKTROVALEN / HETEROPOLAR)

- ▶ Ikatan atom unsur logam (atom elektropositif) dengan atom unsur non logam (atom elektronegatif).
- ▶ Unsur logam melepas elektron dan memberikan elektronnya pada unsur non logam.

2. IKATAN KOVALEN (HOMOPOLAR)

- ▶ Ikatan atom unsur non logam dengan atom unsur non logam.
- ▶ Pemakaian bersama elektron dari kedua unsur tersebut.

3. IKATAN KOVALEN KOORDINATIF(DATIV)

- lkatan atom unsur non logam dengan atom unsur non logam.
- ▶ Pemakaian bersama elektron dari salah satu unsur.

4. IKATAN VAN DER WAALS

a. Gaya dispersi (gaya London)

- ➤ Terjadi gaya tarik menarik antara molekul-molekul non polar yg terkena aliran elektron (dipol sesaat) dengan molekul non polar disebelahnya yang terpengaruh (dipol terimbas) yang berdekatan.
- ► Gaya tarik antar molekulnya relatif lemah.

b. Gaya Tarik dipol

- ► Gaya tarik antara molekul-molekul kutub positif dengan kutub negatif.
- Gaya tarik antar molekulnya lebih kuat dari gaya tarik antara molekul dipol sesaat dipol terimbas.

5. IKATAN HIDROGEN

- ► Terjadi antara atom H dari suatu molekul dengan atom F atau atom O atau atom N pada molekul lain.
- ► Ada perbedaan suhu tinggi dan sangat polar di antara molekul-molekulnya.

6. IKATAN LOGAM

- ► Ikatan ion logam dengan ion logam dengan bantuan kumpulan elektron sebagai pengikat atom-atom positif logam.
- ► Ikatannya membentuk kristal logam.

BENTUK GEOMETRI MOLEKUL

Berbagai kemungkinan bentuk molekul:

Jumlah pasangan elektron atom pusat	Pasangan elektron terikat	Pasangan elektron bebas	Bentuk molekul	Contoh
4	4	0	Tetrahedron	CH₄
4	3	1	Segitiga piramid	NH ₃
4	2	2	Planar V	H ₂ O
5	5	0	Segitiga bipiramid	PCI₅
5	4	1	Bidang empat	SF ₄
5	3	2	Planar T	IF ₃
5	2	3	Linear	XeF ₂
6	6	0	Oktahedron	SF ₆
6	5	1	Segiempat piramid	IF ₅
6	4	2	Segiempat planar	XeF ₄

HIBRIDISASI

Proses pembentukan orbital karena adanya gabungan (peleburan) dua atau lebih orbital atom dalam suatu satuan atom.

Berbagai kemungkinan hibridisasi dan bentuk geometri orbital hibridanya sebagai berikut :

Orbital hibrida	Jumlah ikatan	Bentuk geometrik
sp	2	Linear
sp ²	3	Segitiga datar samasisi
sp ³	4	Tetrahedron
sp ² d	4	Persegi datar
sp ³ d	5	Segitiga Bipiramidal
sp ³ d ²	6	Oktahedron

SIFAT SENYAWA ION dan SENYAWA KOVALEN

Sifat	Senyawa Ion	Senyawa Kovalen
Titik didih & titik leleh	Relatif tinggi	Relatif rendah
Volatilitas	Tidak menguap	Mudah menguap
Kelarutan dalam air	Umumnya larut	Tidak larut
Kelarutan dalam senyawa organik	Tidak larut	Larut
Daya hantar listrik (padat)	Tidak menghantar	menghantar
Daya hantar listrik (lelehan)	menghantar	menghantar
Daya hantar listrik (larutan)	menghantar	sebagian menghantar

BAB 5 STOIKIOMETRI

MASSA ATOM RELATIF

Ar unsur A =
$$\frac{\text{massa satu atom unsur A}}{\frac{1}{12}\text{massa satu atom}}$$

Menentukan massa atom relatif dari isotop-isotop di alam

Di alam suatu unsur bisa di dapatkan dalam 2 jenis atau bahkan lebih isotop, oleh karena itu kita dapat menentukan massa atom relatifnya dengan rumus: Untuk 2 jenis isotop:

Ar X =
$$\frac{\% \text{ kelimpahan X1. Ar X1 + } \% \text{ kelimpahan X2 . Ar X2}}{100\%}$$

Untuk 3 jenis isotop:

Ar X =
$$\frac{\% \text{ kelimpahan X1. Ar X1 + \% kelimpahan X2 . Ar X2 + \% kelimpahan X3 . Ar X3}}{100\%}$$

MASSA MOLEKUL RELATIF

Mr senyawa AB =
$$\frac{\text{massa satu molekul senyawa AB}}{\frac{1}{12}\text{massa satu atom}}$$

Menentukan mol sebagai perbandingan massa zat dengan Ar atau perbandingan massa zat dengan Mr.

$$Mol = \frac{massa}{Ar} atau Mol = \frac{massa}{Mr}$$

1. Rumus Empiris

Adalah rumus kimia yang menyatakan perbandingan paling sederhana secara numerik antara atom-atom penyusun molekul suatu zat.

mol A: mol B: mol C

2. Rumus Molekul

Adalah rumus kimia yang menyatakan jumlah sesungguhnya atom-atom dalam suatu susunan molekul.

(RE)x = Massa Molekul Relatif

x = faktor pengali Rumus Empiris

HUKUM-HUKUM DASAR KIMIA

1. Hukum Lavoisier (Kekekalan Massa)

Menyatakan bahwa massa zat sebelum reaksi sama dengan massa zat setelah reaksi.

2. Hukum Proust (Ketetapan Perbandingan)

Menyatakan dalam suatu senyawa perbandingan massa unsur-unsur penyusunnya selalu tetap.

3. Hukum Dalton (Perbandingan Berganda)

Jika unsur A dan unsur B membentuk lebih dari satu macam senyawa, maka untuk massa unsur A yang tetap, massa unsur B dalam senyawanya berbanding sebagai bilangan bulat sederhana.

Halaman 8

HUKUM-HUKUM KIMIA UNTUK GAS

1. Hukum Gay Lussac (Perbandingan Volume)

Volume gas-gas yang bereaksi dengan volume gas-gas hasil reaksi akan berbanding sebagai bilangan (koefisien) bulat sederhana jika diukur pada suhu dan tekanan yang sama.

$$\frac{\text{koefisien gas}_{A}}{\text{koefisien gas}_{B}} = \frac{\text{volume gas}_{A}}{\text{volume gas}_{B}}$$

Hukum Gay Lussac tidak menggunakan konsep mol.

2. Hukum Avogadro

Dalam suatu reaksi kimia, gas-gas dalam volume sama akan mempunyai jumlah molekul yang sama jika diukur pada suhu dan tekanan yang sama.

$$\frac{\text{koefisien gas}_{A}}{\text{koefisien gas}_{B}} = \frac{\text{n gas}_{A}}{\text{n gas}_{B}} = \frac{\text{volume gas}_{A}}{\text{volume gas}_{B}}$$

RUMUS GAS DALAM BERBAGAI KEADAAN

▶ Dalam keadaan standar (Standard Temperature and Pressure) atau (0°C, 1atm):

► Dalam keadaan ruang (25°C, 1atm) berlaku :

► Rumus Gas Ideal

Berlaku untuk gas dalam setiap keadaan :

P = tekanan gas (atm)

V = volume gas (dm³ atau liter)

n = mol gas (mol)

R = tetapan gas (liter.atm/K.mol) = 0.08205T = suhu absolut (Kelvin) = $^{\circ}$ C + 273

Rumus ini biasanya digunakan untuk mencari volume atau tekanan gas pada suhu tertentu di luar keadaan standard atau keadaan ruang.

BAB 6 LAJU REAKSI

LAJU REAKSI

Jadi jika ada suatu persamaan aP + bQ → cPQ, maka; Laju reaksi adalah :

- ▶ berkurangnya konsentrasi P tiap satuan waktu → $V_P = \frac{-\Delta[P]}{\Delta t}$ atau,
- ▶ berkurangnya konsentrasi Q tiap satuan waktu → $V_Q = \frac{-\Delta[Q]}{\Delta t}$ atau,
- ► bertambahnya konsentrasi PQ tiap satuan waktu \rightarrow V_{PQ} = $\frac{+\Delta[PQ]}{\Delta t}$

PERSAMAAN LAJU REAKSI

Persamaan laju reaksi hanya dapat dijelaskan melalui percobaan, tidak bisa hanya dilihat dari koefisien reaksinya.

Adapun persamaan laju reaksi untuk reaksi: aA + bn → cC + dD, adalah : V = k

V = $k[A]^m[B]^n$

V = laju reaksi [B] = konsentrasi zat B k = konstanta laju reaksi m = orde reaksi zat A [A] = konsentrasi zat A n = orde reaksi zat B

Catatan;

Pada reaksi yang berlangsung cepat orde reaksi bukan koefisien masing-masing zat.

FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI

1. Konsentrasi

Bila konsentrasi bertambah maka laju reaksi akan bertambah. Sehingga konsentrasi berbanding lurus dengan laju reaksi.

2. Luas permukaan bidang sentuh

Semakin luas permukaan bidang sentuhnya maka laju reaksi juga semakin bertambah. Luas permukaan bidang sentuh berbanding lurus dengan laju reaksi.

3. Suhu

Suhu juga berbanding lurus dengan laju reaksi karena bila suhu reaksi dinaikkan maka laju reaksi juga semakin besar.

Umumnya setiap kenaikan suhu sebesar 10°C akan memperbesar laju reaksi dua sampai

tiga kali, maka berlaku rumus : $V2 = (2)^{\frac{T2-T1}{10}}. V1$

V1 = Laju mula-mula

V2 = Laju setelah kenaikan suhu

T1 = Suhu mula-mula T2 = Suhu akhir

Catatan : Bila besar laju 3 kali semula maka (2) diganti (3) !
Bila **laju** diganti **waktu** maka (2) menjadi (½)

4. Katalisator

Adalah suatu zat yang akan memperlaju (katalisator positif) atau memperlambat (katalisator negatif=inhibitor)reaksi tetapi zat ini tidak berubah secara tetap. Artinya bila proses reaksi selesai zat ini akan kembali sesuai asalnya.

BAB 7 TERMOKIMIA

 Δ H = H hasil – H pereaksi, dengan H hasil > H pereaksi

Cara penulisan Reaksi Endoterm:

A + B + kalor → AB
 A + B → AB - kalor
 A + B → AB Δ H = positif

 Δ H = H hasil – H pereaksi, dengan H pereaksi > H hasil

Cara penulisan Reaksi Eksoterm:

ENTALPI

Jumlah energi total yang dimiliki oleh suatu sistem, energi ini akan selalu tetap jika tidak ada energi lain yang keluar masuk. Satuan entalpi adalah joule atau kalori → (1 joule = 4,18 kalori).

JENIS-JENIS ENTALPI

1. Entalpi Pembentukan (Hf)

Kalor (energi) yang dibutuhkan atau dilepas pada peristiwa pembentukan 1 mol senyawa dari unsur-unsur pembentuknya.

2. Entalpi Penguraian (Hd)

Kalor (energi) yang dibutuhkan atau dilepas pada peristiwa penguraian 1 mol senyawa menjadi unsur-unsur pembentuknya.

3. Entalpi Pembakaran (Hc)

Kalor (energi) yang dibutuhkan atau dilepas pada peristiwa pembakaran 1 mol senyawa atau 1 mol unsur.

MENGHITUNG ENTALPI

1. Berdasarkan Data Entalpi pembentukan (Hf)

Dengan menggunakan rumus:

$$\Delta H = H_{\text{hasil reaksi}} - H_{\text{pereaksi}}$$

2. Berdasarkan Hukum HESS

Perubahan enthalpi yang terjadi pada suatu reaksi hanya tergantung pada keadaan mulamula dan keadaaan akhir reaksi, jadi tidak tergantung pada proses reaksinya.

Perhatikan:

menjadi:

Menurut Hukum Hess, pada reaksi di atas :

$$\Delta$$
 H reaksi = $-$ A + B $-$ C

3. <u>Berdasarkan Energi Ikatan</u>

Energi ikatan adalah energi yang dibutuhkan untuk memutuskan ikatan antar atom tiap mol suatu zat dalam keadaan gas.

Energi Ikatan Rata-rata

Energi rata-rata yang dibutuhkan untuk memutuskan 1 mol senyawa gas menjadi atomatomnya. Misal molekul air mempunyai 2 ikatan O – H yang sama, untuk memutuskan kedua ikatan ini diperlukan energi sebesar 924 kJ tiap mol, maka 1 ikatan O – H mempunyai energi ikatan rata-rata 462 kJ.

Untuk menentukan besar entalpi jika diketahui energi ikatan rata-rata dapat digunakan rumus: $\Delta H = \Sigma \text{ energi ikatan pemutusan} - \Sigma \text{ energi ikatan pembentukan}$

Adapun data energi ikatan beberapa molekul biasanya disertakan dalam soal.

Energi Atomisasi

Energi yang dibutuhkan untuk memutus molekul kompleks dalam 1 mol senyawa menjadi atom-atom gasnya.

$$\Delta$$
 H atomisasi = Σ energi ikatan

4. Berdasarkan Kalorimetri

Dengan menggunakan rumus

q = m. c.
$$\Delta T$$

q : kalor reaksi

m : massa zat pereaksi c : kalor jenis air

 ΔT : suhu _{akhir} – suhu _{mula-mula}

BAB 8 KESETIMBANGAN KIMIA

TETAPAN KESETIMBANGAN

Adalah perbandingan komposisi hasil reaksi dengan pereaksi pada keadaan setimbang dalam suhu tertentu.

Tetapan kesetimbangan dapat dinyatakan dalam:

- ► Tetapan Kesetimbangan Konsentrasi (Kc)
- ► Tetapan Kesetimbangan Tekanan (Kp)

Misal dalam suatu reaksi kesetimbangan: pA + qB ⇔ rC + sD

Maka di dapatkan tetapan kesetimbangan sebagai berikut:

Tetapan Kesetimbangan Konsentrasi:

$$Kc = \frac{[C]^{r}[D]^{s}}{[A]^{p}[B]^{q}}$$

Tetapan Kesetimbangan Tekanan:

$$Kp = \frac{(P_C)^r (P_D)^s}{(P_A)^p (P_B)^q}$$

HUBUNGAN Kc dan Kp

 Δn = jumlah koefisien kanan – jumlah koefisien kiri

Kc = K1

cAB

TETAPAN KESETIMBANGAN REAKSI YANG BERKAITAN

Misalkan suatu persamaan :

aA

maka :
$$cAB \Leftrightarrow aA + bB \qquad Kc = \frac{1}{K1}$$

$$1/2aA + 1/2bB \Leftrightarrow 1/2cAB \qquad Kc = K1^{1/2}$$

$$2aA + 2bB \Leftrightarrow 2cAB \qquad Kc = K1^{2}$$

$$2cAB \Leftrightarrow 2aA + 2bB \qquad Kc = \frac{1^{2}}{K1^{2}}$$

DERAJAT DISOSIASI

Derajat disosiasi adalah jumlah mol suatu zat yang mengurai di bagi jumlah mol zat sebelum mengalami penguraian.

$$\alpha = \frac{\text{jumlah mol zat terurai}}{\text{jumlah mol zat semula}}$$

PERGESERAN KESETIMBANGAN

Suatu sistem walaupun telah setimbang sistem tersebut akan tetap mempertahankan kesetimbangannya apabila ada faktor-faktor dari luar yang mempengaruhinya.

Menurut Le Chatelier: Apabila dalam suatu sistem setimbang diberi suatu aksi dari luar maka sistem tersebut akan berubah sedemikian rupa supaya aksi dari luar tersebut berpengaruh sangat kecil terhadap sistem.

Hal-hal yang menyebabkan terjadinya pergeseran:

Perubahan sistem akibat aksi dari luar = Pergeseran Kesetimbangan

1. Perubahan konsentrasi

- ► Apabila salah satu konsentrasi zat diperbesar maka kesetimbangan mengalami pergeseran yang berlawanan arah dengan zat tersebut.
- ► Apabila konsentrasi diperkecil maka kesetimbangan akan bergeser ke arahnya.

2. Perubahan tekanan

- ► Apabila tekanan dalam sistem kesetimbangan diperbesar maka kesetimbangan bergeser ke arah zat-zat yang mempunyai koefisien kecil.
- ► Apabila tekanan dalam sistem kesetimbangan tersebut diperkecil maka kesetimbangan bergeser kearah zat-zat yang mempunyai koefisien besar.

3. Perubahan volume

- ► Apabila volume dalam sistem kesetimbangan diperbesar maka kesetimbangan bergeser ke arah zat-zat yang mempunyai koefisien besar.
- ► Apabila volume dalam sistem kesetimbangan tersebut diperkecil maka kesetimbangan bergeser ke arah zat-zat yang mempunyai koefisien kecil.

Catatan: Untuk perubahan tekanan dan volume, jika koefisien zat-zat di kiri (pereaksi) dan kanan (hasil reaksi) sama maka tidak terjadi pergeseran kesetimbangan

4. Perubahan suhu

- ► Apabila suhu reaksi dinaikkan atau diperbesar maka kesetimbangan akan bergeser ke zat-zat yang membutuhkan panas (ENDOTERM)
- ► Sebaliknya jika suhu reaksi diturunkan kesetimbangan akan bergeser ke zat-zat yang melepaskan panas (EKSOTERM)

BAB 9 TEORI ASAM-BASA dan KONSENTRASI LARUTAN

TEORI ASAM-BASA

1. Svante August Arrhenius

- ► Asam = senyawa yang apabila dilarutkan dalam air menghasilkan ion hidrogen (H⁺) atau ion hidronium (H₃O⁺)
- ▶ Basa = senyawa yang apabila dilarutkan dalam air menghasilkan ion hidroksida (OH⁻)

2. Johanes Bronsted dan Thomas Lowry (Bronsted-Lowry)

- Asam = zat yang bertindak sebagai pendonor proton (memberikan proton) pada basa.
- ▶ Basa = zat yang bertindak sebagai akseptor proton (menerima proton) dari asam.

3. Gilbert Newton Lewis

- ► Asam = suatu zat yang bertindak sebagai penerima (akseptor) pasangan elektron.
- ▶ Basa = suatu zat yang bertindak sebagai pemberi (donor) pasangan elektron.

KONSENTRASI LARUTAN

1. MOLALITAS

Menyatakan jumlah mol zat terlarut dalam 1 kg (1000 gram) pelarut.

$$m = \frac{massa_{t}}{Mr_{t}} x \frac{1000}{massa_{p} (gram)}$$

m = Molalitas

 $massa_t = massa zat terlarut$ $massa_n = massa pelarut$

Mr = massa molekul relatif zat terlarut

2. MOLARITAS

Menyatakan jumlah mol zat terlarut dalam 1 liter (1000 mililiter) larutan.

$$M = \frac{\text{massa}_{t}}{Mr_{t}} \times \frac{1000}{\text{volume (mililiter)}}$$

M = Molaritas

massa_t = massa zat terlarut volume = volume larutan

Mr = massa molekul relatif zat terlarut

Pada campuran zat yang sejenis berlaku rumus:

Pada pengenceran suatu zat berlaku rumus:

$$M1. V1 = M2.V2$$

M1 = molaritas zat mula-mula

M2 = molaritas zat setelah pengenceran

V1 = volume zat mula-mula

V2 = volume zat setelah pengenceran

3. FRAKSI MOL

Menyatakan jumlah mol zat terlarut dalam jumlah mol total larutan atau menyatakan jumlah mol pelarut dalam jumlah mol total larutan.

$$Xt = \frac{nt}{nt + np}$$

$$Xp = \frac{np}{nt + np}$$

$$Xt + Xp = 1$$

Xt = fraksi mol zat terlarut

Xp = fraksi mol pelarut

nt = mol zat terlarut

np = mol pelarut

MENGHITUNG pH LARUTAN

Untuk menghitung pH larutan kita gunakan persamaan-persamaan dibawah ini :

Untuk mencari [H⁺] dan [OH⁻] perhatikan uraian dibawah ini !

ASAM KUAT + BASA KUAT

1. Bila keduanya habis, gunakan rumus:

2. Bila Asam Kuat bersisa, gunakan rumus:

3. Bila Basa Kuat bersisa, gunakan rumus:

$$[OH^-]$$
 = Konsentrasi _{Basa Kuat} x Valensi _{Basa}

ASAM KUAT + BASA LEMAH

1. Bila keduanya habis gunakan rumus HIDROLISIS:

$$[H^{+}] = \sqrt{\frac{Kw}{Kb}} \times Konsentrasi KATION Garam$$

2. Bila Asam Kuat bersisa, gunakan rumus:

3. Bila Basa Lemah bersisa, gunakan rumus BUFFER:

$$[OH^-]$$
 = Kb x $\frac{\text{Konsentrasi sisa}_{\text{Basa Lemah}}}{\text{Konsentrasi}_{\text{Garam}}}$

ASAM LEMAH + BASA KUAT

1. Bila keduanya habis gunakan rumus HIDROLISIS:

$$[OH^-] = \sqrt{\frac{Kw}{Ka}} \times Konsentrasi ANION Garam$$

2. Bila Basa Kuat bersisa, gunakan rumus:

3. Bila Asam Lemah bersisa, gunakan rumus BUFFER:

[H+] = Ka x
$$\frac{\text{Konsentrasi sisa}_{Asam Lemah}}{\text{Konsentrasi}_{Garam}}$$

ASAM LEMAH + BASA LEMAH

1. Bila keduanya habis gunakan rumus HIDROLISIS:

$$[H^{+}] = \sqrt{\frac{Kw}{Kb} \times Ka}$$

2. Bila Asam Lemah bersisa, gunakan rumus:

$$[H^{\dagger}] = \sqrt{Ka \times Konsentrasi Asam Lemah}$$

3. Bila Basa Lemah bersisa, gunakan rumus:

$$[OH^-] = \sqrt{Kb \times Konsentrasi Basa Lemah}$$

BAB 10 KELARUTAN dan HASILKALI KELARUTAN

KELARUTAN

Kelarutan (s) adalah banyaknya jumlah mol maksimum zat yang dapat larut dalam suatu larutan yang bervolume 1 liter.

HASILKALI KELARUTAN

Hasilkali kelarutan (Ksp) adalah hasil perkalian konsentrasi ion-ion dalam suatu larutan jenuh zat tersebut. Di mana konsentrasi tersebut dipangkatkan dengan masing-masing koefisiennya.

Ksp HCl =
$$s^2 \rightarrow s = \sqrt{Ksp}$$

s s s

$$H_2SO_4 \rightarrow 2 H^+ + SO_4^{2-}$$

$$H_3PO_4 \rightarrow 3 H^+ + PO_4^{3-}$$
 $Ksp = [3s]^3 s = 27 s^4 \rightarrow s = \sqrt[4]{\frac{Ksp}{27}}$

MEMPERKIRAKAN PENGENDAPAN LARUTAN

Apabila kita membandingkan Hasilkali konsentrasi ion (Q) dengan Hasilkali kelarutan (Ksp) maka kita dapat memperkirakan apakah suatu larutan elektrolit tersebut masih larut, pada kondisi tepat jenuh, atau mengendap, perhatikan catatan berikut;

Jika Q < Ksp → elektrolit belum mengendap / masih melarut Jika Q = Ksp → larutan akan tepat jenuh Jika Q > Ksp → elektrolit mengendap

BAB 11 SIFAT KOLIGATIF LARUTAN

SIFAT KOLIGATIF LARUTAN NON ELEKTROLIT

Contoh larutan non elektrolit:

Glukosa (C₆H₁₂O₆), Sukrosa (C₁₂H₂₂O₁₁), Urea (CO(NH₂)₂), dll

1. Penurunan Tekanan Uap (△P)

$$\Delta P = P^{\circ} - P$$

$$\Delta P = Xt \cdot P^{\circ}$$

$$P = Xp \cdot P^{\circ}$$

 ΔP = Penurunan tekanan uap

P° = Tekanan Uap Jenuh pelarut murni

P = Tekanan Uap Jenuh larutan

Xt = Fraksi mol zat terlarut

Xp = Fraksi mol pelarut

2. Kenaikan Titik Didih (△Tb)

$$\Delta Tb = Tb_{lar} - Tb_{pel}$$

$$\Delta Tb = Kb \cdot m$$

 ΔTb = Kenaikan Titik Didih

Tb_{lar} = Titik Didih larutan

Tb_{pel} = Titik Didih pelarut

Kb = tetapan Titik Didih Molal pelarut

m = Molalitas larutan

3. Penurunan Titik Beku (△Tf)

$$\Delta Tf = Tf_{pel} - Tf_{lar}$$

$$\Delta Tf = Kf . m$$

 ΔTf = Penurunan Titik Beku

 Tf_{pel} = Titik Beku pelarut

Tf_{lar} = Titik Beku İarutan

Kb = tetapan Titik Beku Molal pelarut

m = Molalitas larutan

4. Tekanan Osmotik (π)

$$\pi = M . R . T$$

 π = Tekanan Osmotik

M = Molaritas larutan

R = Tetapan gas = 0.08205

T = Suhu mutlak = ($^{\circ}$ C + 273) K

SIFAT KOLIGATIF LARUTAN ELEKTROLIT

Contoh Larutan elektrolit:

NaCl, H₂SO₄, CH₃COOH, KOH, dll

Untuk larutan elektrolit maka rumus-rumus di atas akan dipengaruhi oleh :

$$i = 1 + (n - 1) \alpha$$

i = Faktor van Hoff

n = Jumlah koefisien hasil penguraian senyawa ion

 α = Derajat ionisasi

α untuk asam kuat atau basa kuat = 1

Perhatikan:

Larutan NaCl diuraikan:

NaCl \rightarrow Na⁺ + Cl⁻ jumlah koefisien 2 maka: i = 1 + (2 – 1) 1 = 2

Larutan Ba(OH)₂ diuraikan:

 $Ba(OH)_2 \rightarrow Ba^{2+} + 2 OH^-$ jumlah koefisien 3 maka: i = 1 + (3 – 1) 1 = 3

Larutan MgSO₄ diuraikan:

 $MgSO_4 \rightarrow Mg^{2+} + SO_4^{2-}$ jumlah koefisien 2 maka: i = 1 + (2 - 1) 1 = 2

1. Penurunan Tekanan Uap (△P)

$$\Delta P = P^{\circ} - P$$

 ΔP = Penurunan tekanan uap

P° = Tekanan Uap Jenuh pelarut murni

P = Tekanan Uap Jenuh larutan

Xt = Fraksi mol zat terlarut Xp = Fraksi mol pelarut nt = Mol zat terlarut np = Mol pelarut

i = faktor van Hoff

2. Kenaikan Titik Didih (△Tb)

$$\Delta Tb = Tb_{lar} - Tb_{pel}$$

$$\Delta Tb = Kb . m . i$$

 Δ Tb = Kenaikan Titik Didih Tb_{lar} = Titik Didih larutan

 Tb_{pel} = Titik Didih pelarut

Kb = tetapan Titik Didih Molal pelarut

m = Molalitas larutani = faktor van Hoff

3. Penurunan Titik Beku (△Tf)

$$\Delta Tf = Tf_{pel} - Tf_{lar}$$

$$\Delta Tf = Kf . m . i$$

 ΔTf = Penurunan Titik Beku

 Tf_{pel} = Titik Beku pelarut

Tf_{lar} = Titik Beku larutan

Kb = tetapan Titik Beku Molal pelarut

m = Molalitas larutan i = faktor van Hoff

4. Tekanan Osmotik (π)

 π = Tekanan Osmotik

M = Molaritas larutan

R = Tetapan gas = 0.08205

T = Suhu mutlak = ($^{\circ}$ C + 273) K

i = faktor van Hoff

BAB 12 SISTEM KOLOID

LARUTAN	KOLOID	SUSPENSI
homogen	heterogen	heterogen
	tampak seperti homogen	
dimensi: < 1 nm	dimensi: 1 nm - 100nm	dimensi: > 100 nm
tersebar merata	cenderung mengendap	membentuk endapan
jika didiamkan:	jika didiamkan:	jika didiamkan: memisah
tidak memisah	tidak memisah	
tidak dapat dilihat dengan	dapat dilihat dengan	dapat dilihatdengan
mikroskop ultra	mikroskop ultra	mikroskop biasa
jika disaring: tidak bisa	jika disaring: bisa	jika disaring: bisa
	(saringan membran)	(saringan biasa)

SIFAT-SIFAT KOLOID

Efek Tyndall

Efek Tyndall adalah peristiwa menghamburnya cahaya, bila cahaya itu dipancarkan melalui sistem koloid.

Gerak Brown

Gerak Brown adalah gerakan dari partikel terdispersi dalam sistem koloid yang terjadi karena adanya tumbukan antar partikel tersebut, gerakan ini sifatnya acak dan tidak berhenti. Gerakan ini hanya dapat diamati dengan mikroskop ultra.

Elektroforesis

Elektroforesis adalah suatu proses pengamatan imigrasi atau berpindahnya partikel-partikel dalam sistem koloid karena pengaruh medan listrik. Sifat ini digunakan untuk menentukan jenis muatan koloid.

Adsorbsi

Adsorbsi adalah proses penyerapan bagian permukaan benda atau ion yang dilakukan sistem koloid sehingga sistem koloid ini mempunyai muatan listrik. Sifat adsorbsi koloid digunakan dalam berbagai proses seperti penjernihan air dan pemutihan gula.

<u>Koagulas</u>

Suatu keadaan di mana partikel-partikel koloid membentuk suatu gumpalan yang lebih besar. Penggumpalan ini karena beberapa faktor antara lain karena penambahan zat kimia atau enzim tertentu.

JENIS-JENIS KOLOID

No	Terdispersi	Pendispersi	Nama	Contoh
1	Cair	Gas	Aerosol Cair	Kabut, awan
2	Padat	Gas	Aerosol Padat	Asap, debu
3	Gas	Cair	Buih	Busa sabun, krim kocok
4	Cair	Cair	Emulsi	Susu, minyak ikan, santan
5	Padat	Cair	Sol	Tinta, cat, sol emas
6	Gas	Padat	Buih Padat	Karet busa, batu apung
7	Cair	Padat	Emulsi Padat	Mutiara, opal
8	Padat	Padat	Sol Padat	Gelas warna, intan

CARA MEMBUAT SISTEM KOLOID

Ada dua metode pembuatan sistem koloid :

BAB 13 REDUKSI OKSIDASI dan ELEKTROKIMIA

KONSEP REDUKSI OKSIDASI

1. Berdasarkan pengikatan atau pelepasan Oksigen

Reaksi Oksidasi = peristiwa pengikatan oksigen oleh suatu unsur atau senyawa, atau bisa dikatakan penambahan kadar oksigen.

Reaksi Reduksi = peristiwa pelepasan oksigen oleh suatu senyawa, atau bisa dikatakan pengurangan kadar oksigen.

OKSIDASI = mengikat Oksigen REDUKSI = melepas Oksigen

2. Berdasarkan pengikatan atau pelepasan Elektron

Reaksi Oksidasi = peristiwa pelepasan elektron oleh suatu unsur atau senyawa. Reaksi Reduksi = peristiwa pengikatan elektron oleh suatu unsur atau senyawa.

OKSIDASI = melepas Elektron REDUKSI = mengikat Elektron

3. Berdasarkan bilangan oksidasi

Reaksi Oksidasi adalah meningkatnya bilangan oksidasi Reaksi Reduksi adalah menurunnya bilangan oksidasi

OKSIDASI = peningkatan Bilangan Oksidasi REDUKSI = penurunan Bilangan Oksidasi

Ada beberapa aturan bilangan oksidasi untuk menyelesaikan persoalan reaksi reduksi oksidasi berdasarkan bilangan oksidasi :

Atom logam mempunyai Bilangan Oksidasi positif sesuai muatannya, misalnya :

Ag⁺ = bilangan oksidasinya +1
Cu⁺ = bilangan oksidasinya +4
Cu²⁺ = bilangan oksidasinya +2
Na⁺ = bilangan oksidasinya +1
Fe²⁺ = bilangan oksidasinya +2
Fe³⁺ = bilangan oksidasinya +3
Pb²⁺ = bilangan oksidasinya +2
Pb⁴⁺ = bilangan oksidasinya +1

- ▶ Bilangan Oksidasi H dalam H₂= 0, dalam senyawa lain mempunyai Bilangan Oksidasi = +1, dalam senyawanya dengan logam (misal: NaH, KH, BaH) atom H mempunyai Bilangan Oksidasi = -1.
- ► Atom O dalam O₂ mempunyai Bilangan Oksidasi = 0, dalam senyawa F₂O mempunyai Bilangan Oksidasi = +2, dalam senyawa peroksida (misal: Na₂O₂, H₂O₂) O mempunyai Bilangan Oksidasi = -1.
- ▶ Unsur bebas (misal :Na, O₂, H₂, Fe, Ca C dll) mempunyai Bilangan Oksidasi = 0
- ▶ F mempunyai Bilangan Oksidasi = -1

- ► Ion yang terdiri dari satu atom mempunyai Bilangan Oksidasi sesuai dengan muatannya, misalnya S²-,Bilangan Oksidasinya = -2.
- ► Jumlah Bilangan Oksidasi total dalam suatu senyawa netral = nol
- ► Jumlah Bilangan Oksidasi total dalam suatu ion = muatan ionnya

MENYETARAKAN REAKSI REDUKSI OKSIDASI

1. METODE BILANGAN OKSIDASI (REAKSI ION)

Langkah-langkahnya sebagai berikut:

- 1. Menentukan unsur yang mengalami perubahan bilangan oksidasi
- 2. Menyetarakan unsur tersebut dengan koefisien yang sesuai
- 3. Menentukan peningkatan bilangan oksidasi dari reduktor dan penu-runan bilangan oksidasi dari oksidator

jumlah perubahan bil-oks = jumlah atom x perubahannya

- 4. Menentukan koefisien yang sesuai untuk menyamakan jumlah perubahan bilangan oksidasi
- 5. Menyetarakan muatan dengan menambahkan H⁺ (suasana asam) atau OH⁻ (suasana basa)
- 6. Menyetarakan atom H dengan menambahkan H₂O

Bila ada persamaan bukan dalam bentuk reaksi ion usahakan ubah ke dalam bentuk reaksi ion.

2. METODE SETENGAH REAKSI (ION ELEKTRON)

Langkah-langkahnya sebagai berikut :

- 1. Tuliskan masing-masing setengah reaksinya.
- 2. Setarakan atom unsur yang mengalami perubahan bilangan oksidasi
- 3. Setarakan oksigen dan kemudian hidrogen dengan ketentuan

Suasana ASAM / NETRAL

- ✓ Tambahkan 1 molekul H₂O untuk setiap kekurangan 1 atom oksigen pada **ruas yang kekurangan oksigen** tersebut
- ✓ Setarakan H dengan menambah ion H⁺ pada ruas yang lain

Suasana BASA

- ✓ Tambahkan 1 molekul H₂O untuk setiap kelebihan 1 atom oksigen pada ruas yang kelebihan oksigen tersebut
- ✓ Setarakan H dengan menambah ion OH⁻ pada ruas yang lain
- 4. Setarakan muatan dengan menambahkan elektron dengan jumlah yang sesuai, bila reaksi oksidasi tambahkan elektron di ruas kanan, bila reaksi reduksi tambahkan elektron di ruas kiri
- 5. Setarakan jumlah elektron kemudian selesaikan persamaan.

ELEKTROKIMIA

1. SEL GALVANI atau SEL VOLTA

- ► Sel yang digunakan untuk mengubah energi kimia menjadi energi listrik.
- ▶ Dalam sel ini berlangsung reaksi redoks di mana katoda (kutub positif) dan tempat terjadinya reduksi, sedangkan anoda (kutub negatif) dan tempat terjadinya oksidasi.

Notasi penulisan sel volta:

M : Logam yang mengalami oksidasi

M^{A+} : Logam hasil oksidasi dengan kenaikan bil-oks = A

L : Logam hasil reduksi

L^{B+} : Logam yang mengalami reduksi dengan penurunan bil-oks = B

Potensial Elektroda (E)

Potensial listrik yang muncul dari suatu elektroda dan terjadi apabila elektroda ini dalam keadaan setimbang dengan larutan ion-ionnya.

Atau menunjukkan beda potensial antara elektroda logam dengan elektroda hidrogen yang mempunyai potensial elektroda = 0 volt.

Bila diukur pada 25°C, 1 atm:

Potensial elektroda = Potensial elektroda standar (E°)

Adapun urutan potensial elektroda standar reduksi beberapa logam (kecil ke besar) adalah :

Li-K-Ba-Ca-Na-Mg-Al-Mn-Zn-Cr-Fe-Cd-Ni-Co-Sn-Pb-(H)-Cu-Hg-Ag-Pt-Au,

deret Volta

Keterangan:

- ▶ Li sampai Pb mudah mengalami oksidasi, umumnya bersifat reduktor
- ► Cu sampai Au mudah mengalami reduksi, umumnya bersifat oksidator
- ► Logam yang berada di sebelah kiri logam lain, dalam reaksinya akan lebih mudah mengalami oksidasi

Potensial Sel = E°_{sel} dirumuskan sebagai :

Reaksi dikatakan spontan bila nilai E°_{sel} = POSITIF

SEL ELEKTROLISIS

- ► Sel yang digunakan untuk mengubah energi listrik menjadi energi kimia.
- ▶ Dalam sel ini berlangsung reaksi redoks di mana katoda (kutub negatif) dan tempat terjadinya reduksi, sedangkan anoda (kutub positif) dan tempat terjadinya oksidasi.

Elektrolisis Leburan (Lelehan / Cairan)

Apabila suatu lelehan dialiri listrik maka di katoda terjadi reduksi kation dan di anoda terjadi oksidasi anion.

Jika leburan $CaCl_2$ dialiri listrik maka akan terion menjadi Ca^{2+} dan Cl^- dengan reaksi sebagai berikut : $CaCl_2 \rightarrow Ca^{2+} + 2 Cl^-$

Kation akan tereduksi di Katoda, Anion akan teroksidasi di Anoda.

KATODA (Reduksi) : $Ca^{2+} + 2e \rightarrow Ca$ ANODA (Oksidasi) : $2 Cl^- \rightarrow Cl_2 + 2e$

Hasil Akhir: $Ca^{2+} + 2 Cl^{-} \rightarrow Ca + Cl_2$

Elektrolisis Larutan

Bila larutan dialiri arus listrik maka berlaku ketentuan sebagai berikut :

Reaksi di KATODA (elektroda –)

▶ Bila Kation Logam-logam golongan I A, golongan II A, AI, dan Mn, maka yang tereduksi adalah air (H₂O):

$$2 H_2O(1) + 2e \rightarrow H_2(g) + 2 OH^-(aq)$$

► Bila Kation H⁺ maka akan tereduksi:

$$2 H^+ (aq) + 2e \rightarrow H_2(g)$$

▶ Bila Kation Logam lain selain tersebut di atas, maka logam tersebut akan tereduksi:

$$L^{m+}$$
 (aq) + me \rightarrow L(s)

Reaksi di ANODA (elektroda +)

ANODA Inert (tidak reaktif, seperti Pt, Au, C)

▶ Bila Anion sisa asam atau garam oksi seperti SO₄²⁻, NO₃⁻, dll, maka yang teroksidasi adalah air (H₂O):

$$2 H_2O(1) \rightarrow O_2(g) + 4 H^+(aq) + 4e$$

► Bila anion OH⁻ maka akan teroksidasi :

$$4 \text{ OH}^{-}$$
 (aq) \rightarrow O₂ (g) + 2 H₂O (l) + 4e

▶ Bila Anion golongan VII A (Halida)maka akan teroksidasi :

$$2 F^{-}(aq) \rightarrow F_{2}(g) + 2e$$

$$2 Br^{-}(aq) \rightarrow Br_{2}(g) + 2e$$

$$2 Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e$$

$$2 l^{-}(aq) \rightarrow l_{2}(g) + 2e$$

ANODA Tak Inert

► Anoda tersebut akan teroksidasi:

$$L(s) \rightarrow L^{m+} (aq) + me$$

Larutan MgSO₄ dialiri listrik maka akan terion menjadi Mg²⁺ dan SO₄²⁻ dengan reaksi sebagai berikut: MgSO₄ \rightarrow Mg²⁺ + SO₄²⁻

- √ Yang tereduksi di Katoda adalah air karena potensial reduksinya lebih besar dari Mg²+ (ion alkali tanah)
- √ Yang teroksidasi di Anoda adalah air karena elektrodanya inert (C) dan potensial oksidasinya lebih besar dari SO₄²⁻ (sisa garam atau asam oksi)

KATODA (Reduksi) : $2 H_2O + 2e \rightarrow H_2 + 2 OH^-$ ANODA (Oksidasi) : $2 H_2O \rightarrow O_2 + 4 H^+ + 4e$

Menyamakan elektron:

KATODA (Reduksi) : $2 H_2O + 2e \rightarrow H_2 + 2 OH^-$ (x2) ANODA (Oksidasi) : $2 H_2O \rightarrow O_2 + 4 H^+ + 4e$

Hasil Akhir:
$$4 \text{ H}_2\text{O} + 2 \text{ H}_2\text{O} \rightarrow \text{H}_2 + 2 \text{ OH}^- + \text{O}_2 + 4 \text{ H}^+ \\ 6 \text{ H}_2\text{O} \rightarrow 2 \text{ H}_2 + \text{O}_2 + 4 \text{ OH}^- + 4 \text{ H}^+ \\ 4 \text{ H}_2\text{O}$$

HUKUM FARADAY

Hukum Faraday 1:

massa zat yang dibebaskan pada reaksi elektrolisis sebanding dengan jumlah arus listrik dikalikan dengan waktu elektrolisis

Hukum Faraday 2:

massa zat yang dibebaskan pada reaksi elektrolisis sebanding dengan massa ekivalen zat tersebut:

massa ekivalen = me =
$$\frac{\text{massa atom relatif}}{\text{perubahan bil-oks}}$$

Dari hukum Faraday 1 dan Faraday 2 didapatkan rumus:

$$massa = \frac{i \cdot t \cdot me}{96500}$$

i = kuat arus t = waktu

me = massa ekivalen zat

Dari hukum Faraday 2 diperoleh rumus:

$$\frac{m1}{m2} = \frac{me1}{me2}$$

m1 = Massa zat 1 m2 = Massa zat 2

me1 = Massa ekivalen zat 1 me2 = Massa ekivalen zat 2

BAB 14 KIMIA ORGANIK

SENYAWA ORGANIK

Senyawa organik adalah senyawa yang dihasilkan oleh makhluk hidup, senyawa ini berdasarkan strukturnya diklasifikasikan menjadi:

SENYAWA JENUH DAN SENYAWA TIDAK JENUH

1. Senyawa Jenuh

Adalah senyawa organik yang tidak mempunyai ikatan rangkap atau tidak dapat mengikat atom H lagi.

ALKANA

n = jumlah atom karbon (C) 2n + 2 = jumlah atom hidrogen (H) Beberapa senyawa alkana

Atom C	Rumus Molekul	Nama	
1	CH₄	Metana	
2	C ₂ H ₆	Etana	
3	C₃H ₈	Propana	
4	C ₄ H ₁₀	Butana	
5	C ₅ H ₁₂	Pentana	
6	C ₆ H ₁₄	Heksana	
7	C ₇ H ₁₆	Heptana	
8	C ₈ H ₁₈	Oktana	
9	C ₉ H ₂₀	Nonana	
10	C ₁₀ H ₂₂	Dekana	

Kedudukan atom karbon dalam senyawa karbon :

C primer = atom C yang mengikat satu atom C lain → (CH₃)

C sekunder = atom C yang mengikat dua atom C lain \rightarrow (CH₂)

C tersier = atom C yang mengikat tiga atom C lain → (CH)

C kuartener = atom C yang mengikat empat atom C lain → (C)

Gugus Alkil

Gugus yang terbentuk karena salah satu atom hidrogen dalam alkana digantikan oleh unsur atau senyawa lain. Rumus umumnya : C_nH_{2n+1}

Beberapa senyawa alkil

Atom C	Rumus Molekul	Nama
1	CH ₃ -	metil
2	C ₂ H ₅ -	etil
3	C ₃ H ₇ -	propil
4	C ₄ H ₉ -	butil
5	C ₅ H ₁₁ -	amil

PENAMAAN ALKANA MENURUT IUPAC

- 1. Untuk rantai C terpanjang dan tidak bercabang nama alkana sesuai jumlah C tersebut dan diberi awalan n (normal).
- 2. Untuk rantai C terpanjang dan bercabang beri nama alkana sesuai jumlah C terpanjang tersebut, atom C yang tidak terletak pada rantai terpanjang sebagai cabang (alkil).
 - ▶ Beri nomor rantai terpanjang dan atom C yang mengikat alkil di nomor terkecil.
 - ► Apabila dari kiri dan dari kanan atom C-nya mengikat alkil di nomor yang sama utamakan atom C yang mengikat lebih dari satu alkil terlebih dahulu.
 - ▶ Alkil tidak sejenis ditulis namanya sesuai urutan abjad, sedang yang sejenis dikumpulkan dan beri awalan sesuai jumlah alkil tersebut; di- untuk 2, tri- untuk 3 dan tetra- untuk 4.

2. Senyawa Tidak Jenuh

Adalah senyawa organik yang mempunyai ikatan rangkap sehingga pada reaksi adisi ikatan itu dapat berubah menjadi ikatan tunggal dan mengikat atom H.

ALKENA

Alkena adalah senyawa organik yang bersifat tak jenuh mempunyai ikatan rangkap dua, dan mempunyai rumus umum: C_nH_{2n}

n = jumlah atom karbon (C) 2n = jumlah atom hidrogen (H)

Beberapa senyawa alkena

Atom C	Rumus Molekul	Nama
1	-	_
2	C ₂ H ₄	Etena
3	C ₃ H ₆	Propena
4	C ₄ H ₈	Butena
5	C ₅ H ₁₀	Pentena
6	C ₆ H ₁₂	Heksena
7	C ₇ H ₁₄	Heptena
8	C ₈ H ₁₆	Oktena
9	C ₉ H ₁₈	Nonena
10	C ₁₀ H ₂₀	Dekena

PENAMAAN ALKENA MENURUT IUPAC

- 1. Rantai terpanjang mengandung ikatan rangkap dan ikatan rangkap di nomor terkecil dan diberi nomor sesuai letak ikatan rangkapnya.
- 2. Untuk menentukan cabang-cabang aturannya seperti pada alkana.

ALKUNA

n = jumlah atom karbon (C)2n-2 = jumlah atom hidrogen (H)

Beberapa senyawa alkuna

Atom C	Rumus Molekul	Nama
1		
2	C_2H_2	Etuna
3	C₃H₄	Propuna
4	C ₄ H ₆	Butuna
5	C₅H ₈	Pentuna
6	C ₆ H ₁₀	Heksuna
7	C ₇ H ₁₂	Heptuna
8	C ₈ H ₁₄	Oktuna
9	C ₉ H ₁₆	Nonuna
10	C ₁₀ H ₁₈	Dekuna

PENAMAAN ALKUNA MENURUT IUPAC

- 1. Rantai terpanjang mengandung ikatan rangkap dan ikatan rangkap di nomor terkecil dan diberi nomor, sama seperti pada alkena.
- 2. Untuk menentukan cabang-cabang aturannya seperti pada alkana dan alkena, jelasnya perhatikan contoh berikut:

ALKADIENA

Alkadiena adalah senyawa organik yang bersifat tak jenuh mempunyai 2 buah ikatan rangkap dua.

Halaman 30

ISOMER

Isomer adalah senyawa-senyawa dengan rumus molekul sama tetapi rumus struktur atau konfigurasinya.

1. Isomer Kerangka

Rumus molekul dan gugus fungsi sama, tetapi rantai induk berbeda

$$\begin{array}{c} \mathsf{C} \\ \mathsf{C} - \mathsf{C} - \mathsf{C} - \mathsf{C} - \mathsf{C} & \mathsf{dengan} & \mathsf{C} - \mathsf{C} - \mathsf{C} - \mathsf{C} \end{array}$$

2. Isomer Posisi

Rumus molekul dan gugus fungsi sama, tetapi posisi gugus fungsinya berbeda

3. Isomer Fungsional (Isomer gugus fungsi)

Rumus molekul sama tetapi gugus fungsionalnya berbeda, senyawa-senyawa yang berisomer fungsional:

- ✓ Alkanol (Alkohol) dengan Alkoksi Alkana (Eter)
- ✓ Alkanal (Aldehid) dengan Alkanon (Keton)
- ✓ Asam Alkanoat (Asam Karboksilat) dengan Alkil Alkanoat (Ester)

Contoh:

$$CH_3-CH_2-CH_2-OH$$
 berisomer fungsi dengan $CH_3-O-CH_2-CH_3$
propanol metoksi etana

$$CH_3-CH_2-CHO$$
 berisomer fungsi dengan $CH_3-CO-CH_3$
propanal propanon

$$CH_3-CH_2-COOH$$
 juga berisomer fungsi dengan $H-COO-C_2H_5$
asam propanoat etil metanoat

4. Isomer Geometris

Rumus molekul sama, rumus struktur sama, tetapi berbeda susunan ruang atomnya dalam molekul yang dibentuknya

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

5. Isomer Optis

Isomer yang terjadi terutama pada atom C asimetris (atom C terikat pada 4 gugus berbeda)

$$H$$
 \downarrow_{x}
 $CH_{3}-C^{*}-CH_{2}-CH_{2}-CH_{3}$
 OH

1- pentanol

 $C^* = C$ asimetris mengikat CH_3 , H, OH, dan C_3H_7

GUGUS FUNGSIONAL

Gugus fungsi adalah gugus pengganti yang dapat menentukan sifat senyawa karbon.

Homolog		Rumus	Gugus
IUPAC	Trivial	Kullius	Fungsi
Alkanol	Alkohol	R - OH	— OH
Alkil Alkanoat	Eter	R - OR'	-0-
Alkanal	Aldehid	R — CHO	— CHO
Alkanon	Keton	R — COR'	— CO —
Asam	Asam	R — COOH	— СООН
Alkanoat	Karboksilat		
Alkil Alkanoat	Ester	R — COOR'	— COO —

1. ALKANOL

Nama Trivial (umum): Alkohol

 $\begin{array}{l} {\sf Rumus} \ : {\sf R} \longrightarrow {\sf OH} \\ {\sf Gugus} \ {\sf Fungsi} \ : \longrightarrow {\sf OH} \end{array}$

Penamaan Alkanol menurut IUPAC

- 1. Rantai utama adalah rantai terpanjang yang mengandung gugus OH.
- 2. Gugus OH harus di nomor terkecil.

$$CH_3-CH_2-CH_2-CH_2-CH_2$$
OH

Halaman 32

2. ALKOKSI ALKANA

Nama Trivial (umum): Eter

Rumus: R - OR'Gugus Fungsi: — O —

Penamaan Alkoksi Alkana menurut IUPAC

- 1. Jika gugus alkil berbeda maka yang C-nya kecil sebagai alkoksi
- 2. Gugus alkoksi di nomor terkecil

gugus metoksi di nomor 3 bukan di nomor 4

3. ALKANAL

Nama Trivial (umum): Aldehida

 $\mathsf{Rumus}\,:\mathsf{R}-\mathsf{COH}$ Gugus Fungsi: — COH

Penamaan Alkanal menurut IUPAC

Gugus CHO selalu dihitung sebagai nomor 1

$$\begin{array}{ccc} CH_3-CH_2-CH_2-C-H & & \textbf{butanal} \\ & O & & \end{array}$$

$$\begin{array}{ccc} CH_3-CH_2-CH_2-C-H & & \textbf{butanal} \\ & O & & \\ & CH_3 & & \\ CH_3-CH-CH_2-C-H & & \textbf{3-metilbutanal} \\ & O & & \\ \end{array}$$

$$CH_3$$
 CH_3
 $C - CH_2 - C - H$
3,3-dimetilpentanal

4. ALKANON

Nama Trivial (umum): Keton

Rumus: R — COR' Gugus Fungsi: — CO —

Penamaan Alkanon menurut IUPAC

- 1. Rantai terpanjang dengan gugus karbonil CO adalah rantai utama
- 2. Gugus CO harus di nomor terkecil

$$\begin{matrix} & & & O \\ & || & \\ CH_3-CH_2-CH_2-C-CH_3 \end{matrix}$$

2-pentanon

$$CH_3-CH-CH_2-C-CH_3 \\ C_2H_5 \\ CH_3-CH-C-CH_2-CH_3 \\ CH_3-CH-C-CH_2-CH_3 \\ C_2H_5 \\ 4-metil-3-heksanon \\ C_2H_5$$

5. ASAM ALKANOAT

Nama Trivial (umum): Asam Karboksilat

Rumus: R — COOH Gugus Fungsi: — COOH

Penamaan Asam Alkanoat menurut IUPAC

Gugus COOH selalu sebagai nomor satu

$$\begin{array}{cccc} CH_3-CH_2-CH_2-C-OH & & \textbf{asam butanoat} \\ & & & & \\ & & & O \\ & & & C_2H_5 & O \\ & & & | & | \\ & & & CH_3-CH-CH_2-C-OH & & \textbf{asam 3-metil pentanoat} \end{array}$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH_2} - \mathsf{C} - \mathsf{OH} \\ \mathsf{I} \\ \mathsf{C_3} \mathsf{H} \end{array} \quad \text{asam 3,3-dimetilheksanoat}$$

6. ALKIL ALKANOAT

Nama Trivial (umum): Ester

Rumus: R - COOR'Gugus Fungsi: — COO —

Penamaan Alkil Alkanoat menurut IUPAC

Gugus alkilnya selalu berikatan dengan O

GUGUS FUNGSI LAIN

AMINA

Nama Trivial (umum): Amina

Rumus: $R - NH_2$

Penamaan Amina menurut IUPAC dan Trivial Amina Primer

CH₃—CH₂—CH₂—CH₂—NH₂ 1-amino-butana / butil amina

$$CH_3-CH_2-CH-CH_2-CH_3$$
 3-amino-pentana / sekunder amil amina NH_2

Amina Sekunder

Amina Tersier

SENYAWA SIKLIK

BENZENA

Benzena adalah suatu senyawa organik aromatis, yang mempunyai 6 atom karbon dan 3 ikatan rangkap yang berselang-seling (berkonjugasi) dan siklik (seperti lingkaran).

Strukturnya:

Simbol :

Reaksi Benzena

1. Adisi

Ciri reaksi adisi adalah adanya perubahan ikatan rangkap menjadi ikatan tunggal. Adisi dilakukan oleh H₂ atau Cl₂ pada suhu dan tekanan tinggi.

2. Sustitusi

Ciri reaksi substitusi tidak ada perubahan ikatan rangkap menjadi ikatan tunggal atau sebaliknya. Sustitusi benzena di bedakan menjadi:

Monosubstitusi

Penggantian satu atom hidrogen pada benzena dengan atom atau senyawa gugus yang lain. Rumus umum monosubstitusi : C_6H_5A

	Struktur	Nama
1.	○ CH ₃	Toluena
2.	ОН	Fenol
3.	CH O	Benzaldehida
4.	CO O O	Asam Benzoat
5.	○NH ₂	Anilin
6.	CH CH ²	Stirena

Disubstitusi

Penggantian dua atom hidrogen pada benzena dengan atom atau senyawa gugus yang lain. Ada tiga macam disubstitusi:

Halaman 36

NAFTALENA

Naftalena adalah suatu senyawa organik aromatis, yang mempunyai 10 atom karbon dan 5 ikatan rangkap yang berselang-seling (berkonjugasi) dan double siklik (seperti 2 lingkaran).

ANTRASIN

Antrasin atau antrasena adalah suatu senyawa organik aromatis, yang mempunyai 14 atom karbon .

ASPEK BIOKIMIA

Biokimia adalah cabang ilmu kimia untuk mempelajari peristiwa kimia (reaksi kimia) yang terjadi dalam tubuh makhluk (organisme) hidup.

Senyawa kimia yang termasuk biokimia adalah senyawa-senyawa yang mengandung atau tersusun oleh unsur-unsur seperti : karbon (C), Hidrogen (H), Oksigen (O), Nitrogen (N) Belerang (S) Fosfor (P), dan beberapa unsur lain dalam jumlah yang kecil.

Nutrisi yang diperlukan dalam tubuh

	ittisi yang dipendaan dalam tubun					
	Nutrisi	Fungsi	Sumber			
1.	Karbohidrat	Sumber energi,	Nasi, kentang, gandum, umbi- umbian			
2.	Lemak	Sumber energi	Mentega, margarine, minyak			
3.	Protein	Pertumbuhan dan perbaikan jaringan, pengontrol reaksi kimia dalam tubuh	Daging, ikan, telur, kacang- kacangan, tahu, tempe, susu			
4.	Garam mineral	Beraneka peran khusus	Daging, sayuran			
5.	Vitamin	Pembentukan organ, meningkatkan daya tahan tubuh, memaksimalkan fungsi panca indera	Buah-buahan, sayuran			
6.	air	Pelarut, penghantar, reaksi hidrolisis	Air minum			

Senyawa-senyawa biokimia meliputi:

1. KARBOHIDRAT

Rumus umum: Cn(H₂O)m

Karbohidrat	Komposisi	Terdapat dalam
Monosakarida		
Glukosa	$C_6H_{12}O_6$	Buah-buahan
Fruktosa	$C_6H_{12}O_6$	Buah-buahan, Madu
Galaktosa	C ₆ H ₁₂ O ₆	Tidak ditemukan secara alami
Disakarida		
Maltosa	Glukosa + Glukosa	Kecambah biji-bijian
Sukrosa	Glukosa + Fruktosa	Gula tebu, gula bit
Laktosa	Glukosa + Galaktosa	Susu
Polisakarida		
Glikogen	Polimer Glukosa	Simpanan energi hewan
Pati Kanji	Polimer Glukosa	Simpanan energi tumbuhan
Selulosa	Polimer Glukosa	Serat tumbuhan

MONOSAKARIDA

Berdasarkan jumlah atom C dibagi menjadi:

Jumlah C	Nama	Rumus	Contoh
2	Diosa	$C_2(H_2O)_2$	Monohidroksiasetaldehida
3	Triosa	$C_3(H_2O)_3$	Dihiroksiketon
			Gliseraldehida
4	Tetrosa	C ₄ (H ₂ O) ₄	Trihidroksibutanal
			Trihidroksibutanon
5	Pentosa	C ₅ (H ₂ O) ₅	Ribulosa
			Deoksiribosa
			Ribosa
			Milosa
6	Heksosa	$C_6(H_2O)_6$	Glukosa
			Manosa
			Galaktosa
			Fruktosa

Berdasarkan gugus fungsinya:

Aldosa: monosakarida yang mempunyai gugus fungsi aldehid (alkanal) Ketosa: monosakarida yang mempunyai gugus fungsi keton (alkanon)

DISAKARIDA

Disakarida dibentuk oleh 2 mol monosakarida heksosa:

Contoh: Glukosa + Fruktosa → Sukrosa + air

Rumusnya : $C_6H_{12}O_6 + C_6H_{12}O_6 \rightarrow C_{12}H_{22}O_{11} + H_2O$

Disakarida yang terbentuk tergantung jenis heksosa yang direaksikan

Reaksi pada Disakarida:

Disakarida	dalam air	Reduksi : Fehling, Tollens, Benedict	Optik-aktif
Maltosa	larut	positif	dekstro
Sukrosa	larut	negatif	dekstro
Laktosa	koloid	positif	dekstro

Maltosa

Hidrolisis 1 mol maltosa akan membentuk 2 mol glukosa.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

Maltosa Glukosa Glukosa

Maltosa mempunyai gugus aldehid bebas sehingga dapat bereaksi dengan reagen Fehling, Tollens, dan Benedict dan disebut gula pereduksi.

Sukrosa

Hidrolisis 1 mol sukrosa akan membentuk 1 mol glukosa dan 1 mol fruktosa.

$$C_{12}H_{22}O_{11}$$
 + H_2O \rightarrow $C_6H_{12}O_6$ + $C_6H_{12}O_6$ **Sukrosa Glukosa Fruktosa**

Reaksi hidrolisis berlangsung dalam suasana asam dengan bantuan ini sering disebut sebagai proses inversi dan hasilnya adalah gula invert

Laktosa

Hidrolisis 1 mol laktosa akan membentuk 1 mol glukosa dan 1 mol galaktosa.

$$C_{12}H_{22}O_{11}$$
 + H_2O \rightarrow $C_6H_{12}O_6$ + $C_6H_{12}O_6$
Laktosa Glukosa Galaktosa

Seperti halnya maltosa, laktosa mempunyai gugus aldehid bebas sehingga dapat bereaksi dengan reagen Fehling, Tollens, dan Benedict dan disebut gula pereduksi.

POLISAKARIDA

Terbentuk dari polimerisasi senyawa-senyawa monosakarida, dengan rumus umum:

$$(C_6H_{10}O_5)_n$$

Reaksi pada Polisakarida:

Polisakarida	dalam air	Reduksi : Fehling, Tollens, Benedict	Tes Iodium
Amilum	koloid	negatif	biru
Glikogen	koloid	positif	violet
Selulosa	koloid	negatif	putih

Berdasarkan daya reduksi terhadap pereaksi Fehling, Tollens, atau Benedict

Gula terbuka : karbohidrat yang mereduksi reagen Fehling, Tollens, atau Benedict.

Gula tertutup: karbohidrat yang tidak mereduksi reagen Fehling, Tollens, atau Benedict.

2. ASAM AMINO

Asam amino adalah monomer dari protein, yaitu asam karboksilat yang mempunyai gugus amina (NH₂) pada atom C ke-2, rumus umumnya:

Asam 2 amino asetat (glisin)
$$\begin{array}{ccc} H - CH - COOH \\ | & \\ NH_2 \end{array}$$

Asam 2 amino propionat (alanin)
$$CH_3 - CH - COOH$$
 $|$ NH_2

JENIS ASAM AMINO

Asam amino essensial (tidak dapat disintesis tubuh)

Contoh: isoleusin, fenilalanin, metionin, lisin, valin, treonin, triptofan, histidin

Asam amino non essensial (dapat disintesis tubuh)

Contoh: glisin, alanin, serin, sistein, ornitin, asam aspartat, tirosin, sistin, arginin, asam

glutamat, norleusin

3. PROTEIN

Senyawa organik yang terdiri dari unsur-unsur C, H, O, N, S, P dan mempunyai massa molekul relatif besar (makromolekul).

PENGGOLONGAN PROTEIN

Berdasar Ikatan Peptida

- 1. Protein Dipeptida → jumlah monomernya = 2 dan ikatan peptida = 1
- 2. Protein Tripeptida → jumlah monomernya = 3 dan ikatan peptida = 2
- 3. Protein Polipeptida → jumlah monomernya > 3 dan ikatan peptida >2

Berdasar hasil hidrolisis

- 1. Protein Sederhana
 - → hasil hidrolisisnya hanya membentuk asam α amino
- 2. Protein Majemuk
 - → hasil hidrolisisnya membentuk asam α amino dan senyawa lain selain asam α amino

Berdasar Fungsi

ט	ciuasai i uliga) l	
No	Protein	Fungsi	Contoh
1	Struktur	Proteksi, penyangga,	Kulit, tulang, gigi, rambut,bulu, kuku, otot,
		pergerakan	kepompong, dll
2	Enzim	Katalisator biologis	Semua jenis enzim dalam tubuh
3	Hormon	Pengaturan fungsi tubuh	insulin
4	Transport	Pergerakan senyawa antar dan	hemoglobin
		atau intra sel	
5	Pertahanan	Mempertahankan diri	antibodi
6	Racun	Penyerangan	Bisa Ular dan bisa laba-laba
7	Kontraktil	sistem kontraksi otot	aktin, miosin

REAKSI IDENTIFIKASI PROTEIN

No	Pereaksi	Reaksi	Warna
1	Biuret	Protein + NaOH + CuSO ₄	Merah atau ungu
2	Xantoprotein	Protein + HNO₃	kuning
3	Millon	Protein + Millon	merah

Catatan Millon = larutan merkuro dalam asam nitrat

4. LIPIDA

Senyawa organik yang berfungsi sebagai makanan tubuh.

TIGA GOLONGAN LIPIDA TERPENTING

1. LEMAK: dari asam lemak + gliserol

Lemak Jenuh (padat)

- ✓ Terbentuk dari asam lemak jenuh dan gliserol
- ✓ Berbentuk padat pada suhu kamar
- ✓ Banyak terdapat pada hewan

Lemak tak jenuh (minyak)

- ✓ Terbentuk dari asam lemak tak jenuh dan gliserol
- ✓ Berbentuk cair pada suhu kamar
- √ Banyak terdapat pada tumbuhan
- 2. FOSFOLIPID: dari asam lemak + asam fosfat + gliserol
- 3. STEROID: merupakan Siklo hidrokarbon

5. ASAM NUKLEAT

DNA = Deoxyribo Nucleic Acid (Asam Deoksiribo Nukleat)

Basa yang terdapat dalam DNA : Adenin, Guanin, Sitosin, Thimin

RNA = Ribo Nucleic Acid (Asam Ribo Nukleat)

Basa yang terdapat dalam RNA: Adenin, Guanin, Sitosin, Urasil

POLIMER

Polimer adalah suatu senyawa besar yang terbentuk dari kumpulan monomer-monomer, atau unit-unit satuan yang lebih kecil.

Contoh: polisakarida (karbohidrat), protein, asam nukleat (telah dibahas pada sub bab sebelumnya), dan sebagai contoh lain adalah plastik, karet, fiber dan lain sebagainya.

REAKSI PEMBENTUKAN POLIMER

1. Kondensasi

Monomer-monomer berkaitan dengan melepas molekul air dan metanol yang merupakan molekul-molekul kecil.

Polimerisasi kondensasi terjadi pada monomer yang mempunyai gugus fungsi pada ujungujungnya.

Contoh: pembentukan nilon dan dakron

2. Adisi

Monomer-monomer yang berkaitan mempunyai ikatan rangkap. Terjadi berdasarkan reaksi adisi yaitu pemutusan ikatan rangkap menjadi ikatan tunggal. Polimerisasi adisi umumnya bergantung pada bantuan katalis.

Contoh: pembentukan polietilen dan poliisoprena

PENGGOLONGAN POLIMER

1. Berdasar jenis monomer

Homopolimer: terbentuk dari satu jenis monomer,

Contoh: polietilen (etena = C_2H_4), PVC (vinil klorida = C_2H_3Cl),

Teflon (tetrafluoretilen = C_2F_4), dll.

Kopolimer: terbentuk dari lebih satu jenis monomer,

Contoh: Nilon (asam adipat dan heksametilendiamin)

Dakron (etilen glikol dan asam tereftalat)

Kevlar / serat plastik tahan peluru (fenilenandiamina dan asam tereftalat)

2. Berdasar asalnnya

Polimer Alami: terdapat di alam

Contoh: proten, amilum, selulosa, karet, asam nukleat.

Polimer Sintetis: dibuat di pabrik **Contoh:** PVC, teflon, polietilena

3. Berdasar ketahan terhadap panas

Termoset: jika dipanaskan akan mengeras, dan tidak dapat dibentuk ulang.

Contoh: bakelit

Termoplas: jika dipanaskan akan meliat (plastis) sehingga dapat dibentuk ulang.

Contoh: PVC, polipropilen, dll

BAB 15 KIMIA UNSUR

1. Reaksi antar Halogen

Terjadi jika halogen yang bernomor atom lebih besar dalam larutan/berbentuk ion, istilahnya "reaksi pendesakan antar halogen".

	F ⁻	Cl ⁻	Br ⁻	I -
F ₂	_	✓	✓	✓
Cl ₂	_	_	✓	✓
Br ₂	_	_	_	✓
l ₂	_	_	_	_

Keterangan : ✓ terjadi reaksi, — tidak terjadi reaksi

2. Reaksi Gas Mulia

Walaupun sukar bereaksi namun beberapa pakar kimia dapat mereaksikan unsur gas mulia di laboratorium:

Senyawa yang pertama dibuat XePtF₆

Adapun senyawa lainnya:

Reaksi	Senyawa	Bil-Oks
Xe + F ₂	RnF₄	+2
Rn + 2 F ₂	XeF₄	+4
Xe + 3 F ₂	XeF ₆	+4
XeF ₆ + H ₂ O	XeOF ₄ + 2 HF	+6
XeF ₆ + 2 H ₂ O	$XeO_2F_2 + 4 HF$	+6
XeF ₆ + 3 H ₂ O	XeO ₃ + 6 HF	+6
XeO₃ + NaOH	NaHXeO₄	+8
4 NaHXeO ₄ + 8 NaOH	$Na_4XeO_6 + Xe + 6H_2O$	+8
Kr + F ₂	KrF ₂	+2
Kr + 2 F ₂	KrF_4	+4
Rn + F ₂	RnF_2	+2
Xe + 2 F ₂	XeF ₂	+6

SENYAWA KOMPLEKS

Aturan penamaan senyawa kompleks menurut IUPAC :

- 1. Kation selalu disebutkan terlebih dahulu daripada anion.
- 2. Nama ligan disebutkan secara berurut sesuai abjad.

Ligan adalah gugus molekul netral, ion atau atom yang terikat pada suatu atom logam melalui ikatan koordinasi.

Daftar ligan sesuai abjad.

Amin	=	NH_3	(bermuatan 0)
Akuo	=	H_2O	(bermuatan 0)
Bromo	=	Br ⁻	(bermuatan -1)
Hidrokso	=	OH ⁻	(bermuatan -1)
lodo	=	I ⁻	(bermuatan -1)
Kloro	=	CI ⁻	(bermuatan -1)
Nitrito	=	NO_2^-	(bermuatan -1)
Oksalato	=	$C_2O_4^{2-}$	(bermuatan -2)
Siano	=	CN ⁻	(bermuatan -1)
Tiosianato)=	SCN ⁻	(bermuatan –1)
Tiosulfato	=	$S_2O_3^{2-}$	(bermuatan -2)

- 3. Bila ligan lebih dari satu maka dinyatakan dengan awalan di- untuk 2, tri- untuk 3, tetra- untuk 4, penta- untuk lima dan seterusnya.
- 4. Nama ion kompleks bermuatan positif nama unsur logamnya menggunakan bahasa Indonesia dan diikuti bilangan oksidasi logam tersebut dengan angka romawi dalam tanda kurung. Sedangkan untuk ion kompleks bermuatan negatif nama unsur logamnya dalam bahasa Latin di akhiri —at dan diikuti bilangan oksidasi logam tersebut dengan angka romawi dalam tanda kurung.

Unsur	Nama	Kation	Anion
Al	aluminium	aluminium	aluminat
Ag	perak	perak	argentat
Cr	krom	krom	kromat
Со	kobal	kobal	kobaltat
Cu	tembaga	tembaga	kuprat
Ni	nikel	nikel	nikelat
Zn	seng	seng	zinkat
Fe	besi	besi	ferrat
Mn	mangan	mangan	manganat
Pb	timbal	timbal	plumbat
Au	emas	emas	aurat
Sn	timah	timah	stannat

BAB 16 KIMIA LINGKUNGAN

Komposisi udara bersih secara alami:

Zat	Rumus	%	bpj
Nitrogen	N_2	78	780000
Oksigen	O_2	21	210000
Argon	Ar	0,93	9300
Karbondioksida	CO_2	0,0315	315
Karbonmonoksida	CO	0,002	20
Neon	Ne	0,0018	18
Helium	He	0,0005	5
Kripton	Kr	0,0001	1
Hidrogen	Н	0,00005	0,5
Belerangdioksida	SO_2	0,00001	0,1
Oksida Nitrogen	NO , NO_2	0,000005	0,05
Ozon	O_3	0,000001	0,01

 $+ 1bpj = 10^{-4} \%$

Apabila zat-zat di atas melebihi angka-angka tersebut berarti telah terjadi pencemaran udara

ZAT ADITIF MAKANAN

1. Penguat rasa atau penyedap rasa

Mononatrium glutamat (Monosodium glutamate = MSG) atau disebut vetsin.

$$\begin{array}{c} O \\ \parallel \\ Na-O-C-CH_2-CH_2-C-COOH \\ \mid \\ NH_2 \end{array}$$

2. Pewarna

L. I CWallia			
Nama	Warna	Jenis	Pewarna untuk
Klorofil	Hijau	alami	selai, agar-agar
Karamel	Coklat-Hitam	alami	produk kalengan
Anato	Jingga	alami	minyak,keju
Beta-Karoten	Kuning	alami	keju
eritrosin	merah	sintetis	saus, produk kalengan

3. Pemanis

Nama	Jenis	Pemanis untuk	
Sakarin	sintetis	Permen	
Siklamat	sintetis	Minuman ringan	
Sorbitol	sintetis	Selai, agar-agar	
Xilitol	sintetis	Permen karet	
Maltitol	sintetis	Permen karet	

4. Pembuat rasa dan aroma

IUPAC	trivial	Aroma dan rasa
Etil etanoat	Etil asetat	apel
Etil butanoat	Etil butirat	nanas
Oktil etanoat	Oktil asetat	jeruk
Butil metanoat	Butil format	raspberri
Etil metanoat	Etil format	rum
Amil butanoat	Amil butirat	pisang

5. Pengawet

Nama	Pengawet untuk	
Asam propanoat	Roti, keju	
Asam benzoat	Saos, kecap minuman ringan (botolan)	
Natrium nitrat	daging olahan, keju olahan	
Natrium nitrit	daging kalengan , ikan kalengan	

6. Antioksidan

Membantu mencegah oksidasi pada makanan, contoh:

Nama Kegunaan	
Asam askorbat	Daging kalengan, Ikan kalengan, buah kalengan
BHA (butilhidroksianol)	lemak dan minyak
BHT (butilhidroktoluen)	margarin dan mentega

PUPUK

Unsur yang dibutuhkan oleh tanaman:

	Unsur	Senyawa/ion	Kegunaan	
1	karbon	CO ₂	Menyusun karbohidrat, protein , lemak serta klorofil	
2	hidrogen	H ₂ O	Menyusun karbohidrat, protein , lemak serta klorofil	
3	oksigen	CO ₂ dan H ₂ O	Menyusun karbohidrat, protein , lemak serta klorofil	
4	nitrogen	NO ₃ ⁻ dan NH ₄ ⁺	Sintesis protein, merangsang pertumbuhan vegetatif	
5	fosfor	HPO ₄ 2- dan	Memacu pertumbuhan akar, memepercepat	
		$H_2PO_4^-$	pembentukan bunga dan mempercepat buah atu biji	
			matang	
6	kalium	$K^{^{+}}$	Memperlancar proses fotosintesis, membentuk	
			protein, pengerasan batang, meningkatkan daya	
			tahan tanaman dari hama	
7	kalsium	Ca ²⁺	Mengeraskan batang dan membentuk biji	
8	magnesium	Mg ²⁺	Membentuk klorofil	
9	belerang	SO ₄ ²⁻	Menyusun protein dan membantu membentuk	
			klorofil	

1. Jenis-jenis pupuk organik:

	Nama	Asal
1	Kompos	Sampah-sampah organik yang sudah mengalami pembusukan dicampur beberapa unsur sesuai keperluan.
2	Humus	Dari dedaunan umumnya dari jenis leguminose atau polong-polongan.
3	Kandang	Dari kotoran hewan ternak seperti, ayam, kuda, sapi, dan kambing

2. Jenis-jenis pupuk anorganik:

► Pupuk Kalium : ZK 90, ZK96, KCl

► Pupuk Nitrogen : ZA, Urea, Amonium nitrat

▶ Pupuk Fosfor : Superfosfat tunggal (ES), Superfosfat ganda

(DS), TSP

► Pupuk majemuk

Mengandung unsur hara utama N-P-K dengan komposisi tertentu, tergantung jenis tanaman yang membutuhkan.

PESTISIDA

1. Jenis-jenis pestisida:

	. Demis-jems pestisida.			
	nama	digunakan untuk memberantas	contoh	
1.	bakterisida	bakteri atau virus	tetramycin	
2.	fungisida	jamur	carbendazim	
3.	herbisida	gulma		
4.	insektisida	serangga	basudin	
5.	nematisida	cacing (nematoda)		
6.	rodentisida	pengerat (tikus)	warangan	

2. Bahan Kimia dalam pestisida:

kelompok	fungsi	contoh
arsen	pengendali jamur dan rayap pada kayu	As ₂ O ₅
antibeku	pembeku darah hama tikus	wartarin
karbamat	umumnya untuk meracuni serangga	karbaril
organoklor	membasmi hama tanaman termasuk serangga	DDT, aldrin, dieldrin
organofosfat	membasmi serangga	diaziton