Package 'MRS'

December 11, 2023

Title Multi-Resolution Scanning for Cross-Sample Differences

Type Package

Version 1.2.6
Date 2023-12-09
Author Jacopo Soriano and Li Ma
Maintainer Li Ma <li.ma@duke.edu></li.ma@duke.edu>
Description An implementation of the MRS algorithm for comparison across distributions, as described in Jacopo Soriano, Li Ma (2017) <doi:10.1111 rssb.12180="">. The model is based on a nonparametric process taking the form of a Markov model that transitions between a ``null" and an ``alternative" state on a multi-resolution partition tree of the sample space. MRS effectively detects and characterizes a variety of underlying differences. These differences can be visualized using several plotting functions.</doi:10.1111>
License GPL (>= 3)
Imports Rcpp (>= 0.11.0), igraph, methods
Suggests KernSmooth
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-12-11 13:10:12 UTC
R topics documented:
andova
mrs
plot1D
plotTree
print.summary.mrs
summary.mrs
Index 11

2 andova

andova	Multi Resolution Scanning for one-way ANDOVA using the multi-scale Beta-Binomial model

Description

This function executes the Multi Resolution Scanning algorithm to detect differences across the distributions of multiple groups having multiple replicates.

Usage

```
andova(X, G, H, n_groups = length(unique(G)), n_subgroups = NULL,
   Omega = "default", K = 6, init_state = c(0.8, 0.2, 0), beta = 1,
   gamma = 0.07, delta = 0.4, eta = 0, alpha = 0.5,
   nu_vec = 10^(seq(-1, 4)), return_global_null = TRUE, return_tree = TRUE)
```

Arguments

Χ	Matrix of the data. Each row represents an observation.
G	Numeric vector of the group label of each observation. Labels are integers starting from 1.
Н	Numeric vector of the replicate label of each observation. Labels are integers starting from 1.
n_groups	Number of groups.
n_subgroups	Vector indicating the number of replicates for each grop.
Omega	Matrix defining the vertices of the sample space. The "default" option defines a hyperrectangle containing all the data points. Otherwise the user can define a matrix where each row represents a dimension, and the two columns contain the associated lower and upper limit.
K	Depth of the tree. Default is $K = 6$, while the maximum is $K = 14$.
init_state	Initial state of the hidden Markov process. The three states are <i>null</i> , <i>altenrative</i> and <i>prune</i> , respectively.
beta	Spatial clustering parameter of the transition probability matrix. Default is beta = 1.0.
gamma	Parameter of the transition probability matrix. Default is gamma = 0.07.
delta	Parameter of the transition probability matrix. Default is delta = 0.4.
eta	Parameter of the transition probability matrix. Default is eta = 0.0 .
alpha	Pseudo-counts of the Beta random probability assignments.
nu_vec	The support of the discrete uniform prior on nu.
return_global_null	
	Boolean indicating whether to return the marginal posterior probability of the global null.
return_tree	Boolean indicating whether to return the posterior representative tree.

mrs 3

Value

An mrs object.

References

Ma L. and Soriano J. (2018). Analysis of distributional variation through multi-scale Beta-Binomial modeling. *Journal of Computational and Graphical Statistics*. *Vol.* 27, *No.* 3, 529-541.. doi:10.1080/10618600.2017.1402774

Examples

```
set.seed(1)
n = 1000
M = 5
class_1 = sample(M, n, prob= 1:5, replace=TRUE )
class_2 = sample(M, n, prob = 5:1, replace=TRUE )

Y_1 = rnorm(n, mean=class_1, sd = .2)
Y_2 = rnorm(n, mean=class_2, sd = .2)

X = matrix( c(Y_1, Y_2), ncol = 1)
G = c(rep(1,n),rep(2,n))
H = sample(3,2*n, replace = TRUE )

ans = andova(X, G, H)
ans$PostGlobNull
plot1D(ans)
```

mrs

Multi Resolution Scanning

Description

This function executes the Multi Resolution Scanning algorithm to detect differences across multiple distributions.

Usage

```
mrs(X, G, n_groups = length(unique(G)), Omega = "default", K = 6,
  init_state = NULL, beta = 1, gamma = 0.3, delta = NULL, eta = 0.3,
  alpha = 0.5, return_global_null = TRUE, return_tree = TRUE,
  min_n_node = 0)
```

Arguments

- X Matrix of the data. Each row represents an observation.
- Numeric vector of the group label of each observation. Labels are integers starting from 1.

4 mrs

n_groups Number of groups. Matrix defining the vertices of the sample space. The "default" option defines Omega a hyperrectangle containing all the data points. Otherwise the user can define a matrix where each row represents a dimension, and the two columns contain the associated lower and upper limits for each dimension. Κ Depth of the tree. Default is K = 6, while the maximum is K = 14. Initial state of the hidden Markov process. The three states are null, alternative init_state and prune, respectively. beta Spatial clustering parameter of the transition probability matrix. Default is beta = 1. gamma Parameter of the transition probability matrix. Default is gamma = 0.3. delta Optional parameter of the transition probability matrix. Default is delta = NULL. eta Parameter of the transition probability matrix. Default is eta = 0.3. alpha Pseudo-counts of the Beta random probability assignments. Default is alpha = return_global_null Boolean indicating whether to return the posterior probability of the global null hypothesis. Boolean indicating whether to return the posterior representative tree. return_tree

Value

An mrs object.

min_n_node

References

Soriano J. and Ma L. (2017). Probabilistic multi-resolution scanning for two-sample differences. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*. doi:10.1111/rssb.12180

Node in the tree is returned if there are more than min_n_node data-points in it.

```
set.seed(1)  n = 20   p = 2   X = matrix(c(runif(p*n/2),rbeta(p*n/2, 1, 4)), nrow=n, byrow=TRUE)   G = c(rep(1,n/2), rep(2,n/2))   ans = mrs(X=X, G=G)
```

plot1D 5

ŊΙ	.ot i	D

Plot regions of the representative tree in 1D

Description

This function visualizes the regions of the representative tree of the output of the mrs function. For each region the posterior probability of difference (PMAP) or the effect size is plotted.

Usage

```
plot1D(ans, type = "prob", group = 1, dim = 1, regions = rep(1,
  length(ans$RepresentativeTree$Levels)), legend = FALSE, main = "default",
  abs = TRUE)
```

Arguments

ans	An mrs object.
type	What is represented at each node. The options are type = c("eff", "prob"). Default is type = "prob".
group	If type = "eff", which group effect size is used. Default is group = 1.
dim	If the data are multivariate, dim is the dimension plotted. Default is $dim = 1$.
regions	Binary vector indicating the regions to plot. The default is to plot all regions.
legend	Color legend for type. Default is legend = FALSE.
main	Overall title for the plot.
abs	If TRUE, plot the absolute value of the effect size. Only used when type = "eff".

References

Soriano J. and Ma L. (2017). Probabilistic multi-resolution scanning for two-sample differences. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*. doi:10.1111/rssb.12180

Ma L. and Soriano J. (2018). Analysis of distributional variation through multi-scale Beta-Binomial modeling. *Journal of Computational and Graphical Statistics*. *Vol.* 27, *No.* 3, 529-541.. doi:10.1080/10618600.2017.1402774

```
set.seed(1)
p = 1
n1 = 200
n2 = 200
mu1 = matrix( c(0,10), nrow = 2, byrow = TRUE)
mu2 = mu1; mu2[2] = mu1[2] + .01
sigma = c(1,.1)

Z1 = sample(2, n1, replace=TRUE, prob=c(0.9, 0.1))
Z2 = sample(2, n2, replace=TRUE, prob=c(0.9, 0.1))
```

plot2D

```
X1 = mu1[Z1] + matrix(rnorm(n1*p), ncol=p)*sigma[Z1]
X2 = mu2[Z2] + matrix(rnorm(n2*p), ncol=p)*sigma[Z1]
X = rbind(X1, X2)
G = c(rep(1, n1), rep(2,n2))
ans = mrs(X, G, K=10)
plot1D(ans, type = "prob")
plot1D(ans, type = "eff")
```

plot2D

Plot regions of the representative tree in 2D

Description

This function visualizes the regions of the representative tree of the output of the mrs function.

Usage

```
plot2D(ans, type = "prob", data.points = "all", background = "none",
  group = 1, dim = c(1, 2),
  levels = sort(unique(ans$RepresentativeTree$Levels)), regions = rep(1,
  length(ans$RepresentativeTree$Levels)), legend = FALSE, main = "default",
  abs = TRUE)
```

Arguments

ans	An mrs object.
type	Different options on how to visualize the rectangular regions. The options are type = c("eff", "prob", "empty", "none"). Default is type = "prob".
data.points	Different options on how to plot the data points. The options are data.points = c("all", "differential", "none"). Default is data.points = "all".
background	Different options on the background. The options are background = $c("smeared", "none")$.
group	If type = "eff", which group effect size is used. Default is group = 1.
dim	If the data are multivariate, dim are the two dimensions plotted. Default is dim $= c(1,2)$.
levels	Vector with the level of the regions to plot. The default is to plot regions at all levels.
regions	Binary vector indicating the regions to plot. The default is to plot all regions.
legend	Color legend for type. Default is legend = FALSE.
main	Overall title for the legend.
abs	If TRUE, plot the absolute value of the effect size. Only used when type = "eff".

plotTree 7

References

Soriano J. and Ma L. (2017). Probabilistic multi-resolution scanning for two-sample differences. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*. doi:10.1111/rssb.12180

Ma L. and Soriano J. (2018). Analysis of distributional variation through multi-scale Beta-Binomial modeling. *Journal of Computational and Graphical Statistics*. *Vol.* 27, *No.* 3, 529-541.. doi:10.1080/10618600.2017.1402774

Examples

```
set.seed(1)
p = 2
n1 = 200
n2 = 200
mu1 = matrix(c(9,9,0,4,-2,-10,3,6,6,-10), nrow = 5, byrow=TRUE)
mu2 = mu1; mu2[2,] = mu1[2,] + 1
Z1 = sample(5, n1, replace=TRUE)
Z2 = sample(5, n2, replace=TRUE)
X1 = mu1[Z1,] + matrix(rnorm(n1*p), ncol=p)
X2 = mu2[Z2,] + matrix(rnorm(n2*p), ncol=p)
X = rbind(X1, X2)
colnames(X) = c(1,2)
G = c(rep(1, n1), rep(2,n2))
ans = mrs(X, G, K=8)
plot2D(ans, type = "prob", legend = TRUE)
plot2D(ans, type="empty", data.points = "differential",
background = "none")
plot2D(ans, type="none", data.points = "differential",
 background = "smeared", levels = 4)
```

plotTree

Plot nodes of the representative tree

Description

This function visualizes the representative tree of the output of the mrs function. For each node of the representative tree, the posterior probability of difference (PMAP) or the effect size is plotted. Each node in the tree is associated to a region of the sample space. All non-terminal nodes have two children nodes obtained by partiting the parent region with a dyadic cut along a given direction. The numbers under the vertices represent the cutting direction.

Usage

```
plotTree(ans, type = "prob", group = 1, legend = FALSE, main = "",
  node.size = 5, abs = TRUE)
```

8 plotTree

Arguments

ans	A mrs object.
type	What is represented at each node. The options are type = $c("eff", "prob")$.
group	If type = "eff", which group effect size is used.
legend	Color legend for type. Default is legend = FALSE.
main	Main title. Default is main = "".
node.size	Size of the nodes. Default is node.size = 5.
abs	If TRUE, plot the absolute value of the effect size. Only used when type = "eff".

Note

The package **igraph** is required.

References

Soriano J. and Ma L. (2017). Probabilistic multi-resolution scanning for two-sample differences. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*. doi:10.1111/rssb.12180

Ma L. and Soriano J. (2018). Analysis of distributional variation through multi-scale Beta-Binomial modeling. *Journal of Computational and Graphical Statistics. Vol. 27, No. 3, 529-541.*. doi:10.1080/10618600.2017.1402774

```
set.seed(1)
p = 2
n1 = 200
n2 = 200
mu1 = matrix( c(9,9,0,4,-2,-10,3,6,6,-10), nrow = 5, byrow=TRUE)
mu2 = mu1; mu2[2,] = mu1[2,] + 1

Z1 = sample(5, n1, replace=TRUE)
Z2 = sample(5, n2, replace=TRUE)
X1 = mu1[Z1,] + matrix(rnorm(n1*p), ncol=p)
X2 = mu2[Z2,] + matrix(rnorm(n2*p), ncol=p)
X = rbind(X1, X2)
colnames(X) = c(1,2)
G = c(rep(1, n1), rep(2,n2))
ans = mrs(X, G, K=8)
plotTree(ans, type = "prob", legend = TRUE)
```

print.summary.mrs 9

print.summary.mrs

Print summary of a mrs object

Description

This function print the summary the output of the mrs function. It provides the marginal prior and posterior of the null and the top regions of the representative tree.

Usage

```
## S3 method for class 'summary.mrs'
print(x, ...)
```

Arguments

x A summary.mrs object

.. Additional print parameters.

References

Soriano J. and Ma L. (2017). Probabilistic multi-resolution scanning for two-sample differences. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*. doi:10.1111/rssb.12180

Ma L. and Soriano J. (2018). Analysis of distributional variation through multi-scale Beta-Binomial modeling. *Journal of Computational and Graphical Statistics*. *Vol.* 27, *No.* 3, 529-541.. doi:10.1080/10618600.2017.1402774

Examples

```
set.seed(1)
n = 100
p = 2
X = matrix(c(runif(p*n/2),rbeta(p*n/2, 1, 4)), nrow=n, byrow=TRUE)
G = c(rep(1,n/2), rep(2,n/2))
x = mrs(X=X, G=G)
fit = summary(x, rho = 0.95, abs_eff = 1)
print(fit)
```

summary.mrs

Summary of a mrs object

Description

This function summarizes the output of the mrs function. It provides the marginal prior and posterior null and the top regions of the representative tree.

10 summary.mrs

Usage

```
## S3 method for class 'mrs'
summary(object, rho = 0.5, abs_eff = 0, sort_by = "eff",
...)
```

Arguments

object	A mrs object
rho	Threshold for the posterior alternative probability. All regions with posterior alternative probability larger than rho are reported. Default is $rho = 0.5$.
abs_eff	Threshold for the effect size. All regions with effect size larger than abs_eff in absolute value are reported. Default is abs_eff = 0.
sort_by	Define in which order the regions are reported. The options are sort_by = c("eff", "prob") and the default is sort_by = "eff".
	Additional summary parameters.

Value

A list with information about the top regions.

References

Soriano J. and Ma L. (2017). Probabilistic multi-resolution scanning for two-sample differences. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*. doi:10.1111/rssb.12180 Ma L. and Soriano J. (2018). Analysis of distributional variation through multi-scale Beta-Binomial modeling. *Journal of Computational and Graphical Statistics*. *Vol. 27*, *No. 3*, 529-541.. doi:10.1080/10618600.2017.1402774

```
set.seed(1)
n = 100
p = 2
X = matrix(c(runif(p*n/2),rbeta(p*n/2, 1, 4)), nrow=n, byrow=TRUE)
G = c(rep(1,n/2), rep(2,n/2))
object = mrs(X=X, G=G)
fit = summary(object, rho = 0.5, abs_eff = 0.1)
```

Index

```
andova, 2
mrs, 3, 5-7, 9
plot1D, 5
plot2D, 6
plotTree, 7
print.summary.mrs, 9
summary.mrs, 9
```