Show all your work to get credit.

Name: Valen Li

Date: September 21, 2025

Problem 1 Prove that $\neg[r \lor (q \land (\neg r \to \neg p))] \equiv \neg r \land (p \lor \neg q)$ by using a series of logical equivalences.

Solution:

• Simplify the implication: $\neg r \rightarrow \neg p \equiv \neg(\neg r) \vee \neg p \equiv r \vee \neg p$. Thus, the expression becomes:

$$\neg [r \lor (q \land (r \lor \neg p))].$$

• Apply De Morgan's Law to the negation of the disjunction:

$$\neg [r \lor (q \land (r \lor \neg p))] = \neg r \land \neg (q \land (r \lor \neg p)).$$

• Apply De Morgan's to the negated conjunction:

$$\neg(q \land (r \lor \neg p)) = \neg q \lor \neg(r \lor \neg p).$$

So the expression is:

$$\neg r \wedge (\neg q \vee \neg (r \vee \neg p)).$$

• Simplify $\neg(r \lor \neg p)$:

$$\neg(r \vee \neg p) = \neg r \wedge \neg(\neg p) = \neg r \wedge p.$$

Thus:

$$\neg r \wedge (\neg q \vee (\neg r \wedge p)).$$

• Distribute $\neg q \lor (\neg r \land p)$:

$$\neg q \vee (\neg r \wedge p) = (\neg q \vee \neg r) \wedge (\neg q \vee p).$$

So the expression becomes:

$$\neg r \wedge (\neg q \vee \neg r) \wedge (\neg q \vee p).$$

• Apply the absorption law:

$$\neg r \wedge (\neg q \vee \neg r) = \neg r.$$

Resulting in:

$$\neg r \land (\neg q \lor p).$$

• Recognize that $\neg q \lor p = p \lor \neg q$ (commutative property), so:

$$\neg r \wedge (p \vee \neg q).$$

This matches the right hand side we were given at the start.

Problem 2 Express the following propositions using quantifiers, then express the negation in English and using quantifiers:

- (a) Some people have no common sense.
- (b) All Swedish movies are boring.
- (c) No one can keep a secret.
- (d) Someone in this class has a bad attitude.

Make sure you indicate the predicate and its domain.

Solution:

- (a) **Proposition:** Some people have no common sense.
 - **Predicate:** C(x) = "x has common sense."
 - Domain: All people.
 - Quantified Form: $\exists x \neg C(x)$.
 - Negation (English): "All people have common sense."
 - Negation (Quantifiers): $\neg(\exists x \neg C(x)) \equiv \forall x C(x)$.
- (b) **Proposition:** All Swedish movies are boring.
 - **Predicate:** B(x) = "x is boring."
 - **Domain:** All Swedish movies.
 - Quantified Form: $\forall x B(x)$.
 - Negation (English): "Some Swedish movies are not boring."
 - Negation (Quantifiers): $\neg(\forall x B(x)) \equiv \exists x \neg B(x)$.
- (c) **Proposition:** No one can keep a secret.
 - **Predicate:** K(x) = "x can keep a secret."
 - **Domain:** All people.
 - Quantified Form: $\forall x \neg K(x)$.
 - Negation (English): "Someone can keep a secret."
 - Negation (Quantifiers): $\neg(\forall x \neg K(x)) \equiv \exists x K(x)$.
- (d) **Proposition:** Someone in this class has a bad attitude.
 - **Predicate:** A(x) = "x has a bad attitude."
 - **Domain:** All people in this class.
 - Quantified Form: $\exists x A(x)$.
 - Negation (English): "No one in this class has a bad attitude."
 - Negation (Quantifiers): $\neg(\exists x A(x)) \equiv \forall x \neg A(x)$.

Problem 3 Let M(x) = "x is a millionaire" and P(x) = "x drives a Porsche". The domain is all people. Translate to English:

- $(a) \ \forall x (M(x) \to P(x))$
- (b) $\exists x (M(x) \to P(x))$
- $(c) \forall x (M(x) \land P(x))$
- (d) $\exists x (M(x) \lor P(x))$

Solution:

- (a) $\forall x(M(x) \to P(x))$: "All millionaires drive a Porsche."
- (b) $\exists x (M(x) \to P(x))$: Since $M(x) \to P(x) \equiv \neg M(x) \lor P(x)$, this translates to: "There exists a person who is either not a millionaire or drives a Porsche."
- (c) $\forall x(M(x) \land P(x))$: "Everyone is both a millionaire and drives a Porsche."
- (d) $\exists x (M(x) \lor P(x))$: "There exists a person who is either a millionaire or drives a Porsche."

Problem 4 Prove that $\cos x$ and $\sin x$ are continuous $\forall x \in \mathbb{R}$.

(I didn't understand how to prove this, so I watched a YouTube video that explained it and I only kinda get it so heres my attempt at the proof)

Solution:

To prove that $\sin x$ is continuous at every point $a \in \mathbb{R}$, we need to show that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x - a| < \delta$, then $|\sin x - \sin a| < \epsilon$.

Start with the trigonometric identity:

$$\sin x - \sin a = 2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right).$$

Taking the absolute value:

$$|\sin x - \sin a| = 2 \left| \cos \left(\frac{x+a}{2} \right) \right| \left| \sin \left(\frac{x-a}{2} \right) \right|.$$

Since $|\cos \theta| \le 1$ for any θ , this simplifies to:

$$|\sin x - \sin a| \le 2 \left| \sin \left(\frac{x - a}{2} \right) \right|.$$

We use the known inequality $|\sin \theta| \le |\theta|$ for all real θ (this can be established geometrically: in the unit circle, the vertical distance $\sin \theta$ is less than or equal to the arc length θ for $\theta \ge 0$, and by symmetry for $\theta < 0$):

$$\left| \sin \left(\frac{x-a}{2} \right) \right| \le \left| \frac{x-a}{2} \right| = \frac{|x-a|}{2}.$$

Substituting back:

$$|\sin x - \sin a| \le 2 \cdot \frac{|x - a|}{2} = |x - a|.$$

To make $|\sin x - \sin a| < \epsilon$, choose $\delta = \epsilon$. Then, if $|x - a| < \delta = \epsilon$, we have $|\sin x - \sin a| \le |x - a| < \epsilon$.

This δ works for any a, so $\sin x$ is continuous everywhere.

Similarly, for $\cos x$ at $a \in \mathbb{R}$:

$$\cos x - \cos a = -2\sin\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right).$$

Taking the absolute value:

$$|\cos x - \cos a| = 2 \left| \sin \left(\frac{x+a}{2} \right) \right| \left| \sin \left(\frac{x-a}{2} \right) \right|.$$

Since $|\sin \theta| \le 1$ for any θ :

$$|\cos x - \cos a| \le 2 \cdot 1 \cdot \left| \sin \left(\frac{x - a}{2} \right) \right| = 2 \left| \sin \left(\frac{x - a}{2} \right) \right|.$$

Again, using $|\sin \theta| \le |\theta|$:

$$2\left|\sin\left(\frac{x-a}{2}\right)\right| \le 2 \cdot \frac{|x-a|}{2} = |x-a|.$$

So:

$$|\cos x - \cos a| \le |x - a|.$$

Choose $\delta = \epsilon$. If $|x - a| < \delta = \epsilon$, then $|\cos x - \cos a| < \epsilon$. This works for any a, so $\cos x$ is continuous everywhere.