Lab 10:

Characterization of the MOSFET

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Lab Date: November 7, 2019

Lab Report Due Date: November 12, 2019

Simulations

(1) NMOS using 2N7000G

Figure 1: Schematic for NMOS using 2N7000G ▲

Figure 2: Simulation of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

Figure 3: Excel plot of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

while V2 = 5V, where Id = (5-Vd)/1000

Figure 4: Excel plot of NMOS characterization of derivative of Id' vs. Vgs ▲

Threshold Voltage Vt = 2.23V

Transconductance parameter = (0.023218-0)/(2.5-2.23) = 0.086

(2) NMOS using CD4007N

Figure 5: Schematic for NMOS using CD4007N (β =102mA/V2, V_{TN}=2.0V) \blacktriangle

Figure 6: Simulation of NMOS characterization circuit using DC sweep of V1 from 0 to 2.5V,

 $\textbf{Figure 7:} \ Excel \ plot \ of \ NMOS \ characterization \ circuit \ using \ DC \ sweep \ of \ V1 \ from \ 0 \ to \ 2.5V,$

while
$$V2 = 5V$$
, where $Id = (5-Vd)/1000 \blacktriangle$

Figure 8-1: Excel plot of NMOS characterization of derivative of Id' vs. Vgs ▲

Figure 8-2: Excel plot of NMOS characterization of derivative of Id' vs. Vgs Decimated ▲

Threshold Voltage Vt = 1.5V

 $\label{eq:transconductance parameter} Transconductance\ parameter = 0.001 A/V^2$

(3) PMOS using CD4007P

Figure 9: Schematic for PMOS using CD4007P (β =102mA/V2, V_{TN}=2.0V) \blacktriangle

Figure 10: Simulation of PMOS characterization circuit using DC sweep of V1 from -2.5 to 0V,

Figure 11: Excel plot of PMOS characterization circuit using DC sweep of V1 from -2.5 to 0V,

while V2 = -5V, where $Id = (Vd+5)/1000 \triangle$

Figure 12-1: Excel plot of PMOS characterization of derivative of Id' vs. Vsg ▲

Figure 12-2: Excel plot of PMOS characterization of derivative of Id' vs. Vsg Decimated ▲

Threshold Voltage Vt = 1.5V

Transconductance parameter = $0.001A/V^2$

Measurements

(1) NMOS using 2N7000G

Figure 13: Plot of I_D vs. $V_{GS} \triangle$

Figure 14: Plot of decimated I_D vs. decimated $V_{GS} \triangle$

Figure 15: Plot of decimated $\frac{dI_D}{dV_{GS}}$ vs. decimated $V_{GS} \triangle$ $\beta = 0.023 \text{ A/V}^2, V_t = 1.84 \text{V}$

(2) NMOS using CD4007N

Figure 16: Plot of I_D vs. $V_{GS} \blacktriangle$

Figure 17: Plot of decimated I_D vs. decimated $V_{GS} \triangle$

Figure 18: Plot of decimated $\frac{dI_D}{dV_{GS}}$ vs. decimated V_{GS} \blacktriangle $\beta = 0.0012 \text{ A/V}^2$, V_t = 1.4V

(3) PMOS using CD4007P

Figure 19: Plot of I_D vs. $V_{SG} \triangle$

Figure 20: Plot of decimated I_D vs. decimated $V_{SG} \blacktriangle$

Figure 21: Plot of decimated $\frac{dI_D}{dV_{SG}}$ vs. decimated $V_{SG} \triangleq \beta = 0.0018 \text{ A/V}^2$, $V_t = 1.5 \text{V}$

Table

	Simulation		Measurement	
	$\beta (A/V^2)$	Vt (V)	$\beta (A/V^2)$	Vt (V)
2N7000G	0.086	2.23	0.023	1.84
CD4007N	0.001	1.5	0.0012	1.4
CD4007P	0.001	1.5	0.0018	1.5

Comment

In the prelab simulation, I used $\beta=0.001A/V^2$ and Vt=1.5V. For both CD4007N and CD4007P, the simulation and measurement values are similar. For 2N7000G, the simulation value and measurement value are kind of different. This might due to the real-world component has others factors that affect the output values.