TD 5: CHAINE DE MARKOV

Modèles Aléatoires Discrets M1-2019-2020 P.-O. Goffard & Rémy Poudevigne

- 1. Soit X_n et Y_n deux martingales de carré intégrable définies sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$.
 - (a) Montrer que pour tout $m \leq n$, on a $\mathbb{E}[X_m Y_n | \mathcal{F}_m] = X_m Y_m$ p.s., et donc en particulier que $\mathbb{E}\left[X_mX_n|\mathcal{F}_m\right] = X_mX_m \text{ p.s.}$
 - (b) Montrer que pour tout $m < n \le p < q$, on a Cov $(X_n X_m, Y_q Y_p) = 0$.
 - (c) Montrer que pour tout $n \in \mathbb{N}$, on a $\mathbb{E}\left[(X_n X_0)^2\right] = \sum_{k=1}^n \mathbb{E}\left[(X_k X_{k-1})^2\right]$.
- 2. On considère l'espace de probabilité filtré $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ où $\Omega = \mathbb{N}^*, \mathcal{F} = \mathcal{P}(\mathbb{N}^*),$ $\mathbb{P}(\{n\}) = \frac{1}{n} - \frac{1}{n+1}$, $\mathcal{F}_n = \sigma(\{1\}, ..., \{n\}, [n+1, +\infty[)$. On considère la suite de variables aléatoires réelles $X_n = (n+1)\mathbb{I}_{[n+1, +\infty[)}$.
 - Montrer que pour la filtration \mathcal{F}_n , X_n est une martingale positive.
 - Vérifier que $X_n \to 0$ p.s.
 - X_n converge-t-elle dans \mathcal{L}^1 ?
 - (b) Pour tout $k \in \mathbb{N}^*$, quelle est la valeur de $\sup_{n \in \mathbb{N}} X_n(k)$? En déduire $\mathbb{E}\left[\sup_{n \in \mathbb{N}} X_n\right]$
- 3. Soit (Y_n) une suite de variables aléatoires réelles, positives, indépendantes, définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et de même espérance 1. Pour tout $n \in \mathbb{N}$, on poste $\mathcal{F}_n = \sigma(Y_0, ..., Y_n)$ et $X_n = Y_0...Y_n$.
 - (a) Montrer que X_n est une \mathcal{F}_n -martingale et que $\sqrt{X_n}$ est une \mathcal{F}_n -surmartingale.
 - (b) Montrer que le produit infini $\prod_{k=0}^{+\infty} \mathbb{E}\left[\sqrt{Y_k}\right]$ converge dans \mathbb{R}_+ , on note l sa limite.
 - (c) On suppose que l=0. Montrer que $\sqrt{X_n} \to 0$ p.s. La martingale (X_n) est-elle régulière ?
 - (d) On suppose que l > 0. Montrer que $\left(\sqrt{X_n}\right)$ est une suite de Cauchy dans L^2 . En déduire que (X_n) est régulière.
 - (e) Application : Soit P et Q deux probabilités distinctes sur un ensemble dénombrable E et (Z_n) une suite de variables aléatoires indépendantes à valeurs dans E de même loi Q. On suppose que pout tout $x \in E$, on a Q(x) > 0. On pose $X_n = \frac{P(Z_0)}{Q(Z_0)}...\frac{P(Z_n)}{Q(Z_n)}$.

4. On considère une variable aléatoire N à valeurs dans \mathbb{N} , et une suite de variables aléatoires indépendantes et de même loi $(X_k)_{k\geq 1}$, indépendante de N. On pose

$$Y = \sum_{k=1}^{N} X_k \,.$$

- (a) Déterminer $\mathbb{E}[Y|N]$, puis $\mathbb{E}[Y]$.
- (b) Déterminer Var(Y|N), puis Var(Y).
- (c) Montrer que $L_S = G_N \circ L_X$ où L_Z est la transformée de Laplace de la variable aléatoire Z et G_Z est sa fonction génératrice des probabilités.
- 5. Soit X_k des v.a. i.i.d. de loi exponentielle de paramètre θ et $S = \sum_{k=1}^{N} X_k$ avec la convention

S=0 si N=0. On suppose que N suit une loi binomiale négative (ou loi de Pólya) de paramètres r et p avec r entier. C'est-à-dire que pour tout $n \in \mathbb{N}$,

$$\mathbb{P}(N=n) = \frac{\Gamma(r+n)}{n!\Gamma(r)} p^r (1-p)^n.$$

(a) • Soit $\theta, x \in \mathbb{R}_+^*$. On considère la suite I_k définie pour $k \in \mathbb{N}^*$ par :

$$I_k = \int_0^x t^{k-1} \exp(\theta t) dt .$$

Montrer que pour tout $k \in \mathbb{N}^*$, on a :

$$\frac{\theta^k}{(k-1)!}I_k = 1 - \exp(\theta x) \sum_{j=0}^{k-1} \frac{(\theta x)^j}{j!} .$$

- Déterminer la fonction de répartition de $S_n = \sum_{k=1}^n X_k$.
- (b) Déterminer une expression (avec une somme infinie) de la fonction de répartition de S.
- (c) Déterminer la fonction génératrice des probabilités d'une v.a. de loi binomiale négative Neg-Bin(r, p) et celle d'une v.a. de loi binomiale Neg-Bin(r, 1 p). Déterminer la fonction génératrice des moments d'une v.a. de loi exponentielle.
 - En déduire que la composée d'une loi Neg-Bin(r, p) par la loi Exp (θ) a même fonction génératrice des moments que la composée d'une loi Bin(r, 1 p) par la loi Exp $(p\theta)$.
- (d) En déduire une expression simple (avec une somme finie) de la fonction de répartition de S.