PENERAPAN DATA MINING ALGORITMA K-MEANS CLUSTERING PADA POPULASI AYAM PETELUR DI INDONESIA

¹⁾ Elsa Ramadanti, ²⁾ Muhamad Muslih

1,2) Program Studi Sistem Informasi, Fakultas Teknologi Informasi dan Komputer, Universitas Nusa Putra
1,2) Jl. Raya Cibatu Cisaat No.21, Cibolang Kaler, Kec.Cisaat, Kab.Sukabumi – Jawa Barat - Indonesia
E-mail: elsa.ramadanti_si18@nusaputra.ac.id, muhamad.muslih@nusaputra.ac.id

ABSTRAK

Telur ayam merupakan jenis telur yag mudah dijumpai dan digemari banyak orang. Sehingga kebutuhan masyarakat akan telur ayam sangat diperlukan untuk memenuhi kebutuhan sumber protein hewani dan nutrisi hariannya. Penelitian ini menganalisis Penerapan Data Mining Algoritma K-Means Clustering pada Populasi Ayam Petelur di Indonesia. Sumber data populasi ayam ras petelur di Indonesia di peroleh dan dikumpulkan melalui situs web Badan Pusat Statistik Nasional. Data yang digunakan terhitung dari tahun 2016-2020 yang terdiri dari 34 provinsi. Data akan dikelompokkan ke dalam 3 cluster yaitu cluster populasi tinggi, sedang, dan rendah. Pengolahan data dilakukan secara manual di Microsoft Excel dan dibantu tools data mining yaitu Rapidminer dan Orange. Hasil dari pengolahan data tersebut menunjukkan hasil yang sama yaitu 1 provinsi untuk cluster populasi tinggi, 3 provinsi untuk cluster populasi sedang dan 30 provinsi untuk cluster populasi rendah. Tujuan penelitian ini adalah agar pemerintah dan peternak lebih memperhatikan jumlah populasi ayam petelur di Indonesia berdasarkan cluster yang telah dilakukan untuk menjaga keseimbangan jumlah dan kestabilan harga telur di masyarakat.

Kata Kunci: Data Mining, K-Means, Clustering, Populasi, Ayam Ras Petelur

ABSTRACT

Chicken eggs are a type of egg that is easy to find and favored by many people. So that the community's need for chicken eggs is needed to meet the needs of animal protein sources and their daily nutrition. This study analyzes the application of the K-Means Clustering Algorithm Data Mining on the Layering Poultry Population in Indonesia. The source of data on the population of laying hens in Indonesia is obtained and collected through the website of the National Statistics Agency. The data used is from 2016-2020 which consists of 34 provinces. The data will be grouped into 3 clusters, namely high, medium, and low population clusters. Data processing is done manually in Microsoft Excel and assisted by data mining tools, namely Rapidminer and Orange. The results of the data processing show the same results, namely 1 province for the high population cluster, 3 provinces for the medium population cluster and 30 provinces for the low population cluster. The purpose of this study is for the government and breeders to pay more attention to the number of laying hens in Indonesia based on clusters that have been carried out to maintain a balance in the number and stability of egg prices in the community.

Keyword: Data Mining, K-Means, Clustering, Population, Laying Chicken

PENDAHULUAN

pertumbuhan Meningkatnya populasi penduduk disertai dengan masyarakat yang sadar akan pola hidup seimbang sehingga tingkat konsumsi masyarakat terus meningkat di berbagai sektor, terutama di sektor peternakan pada kelompok ayam petelur. Besarnya pertumbuhan penduduk dibandingkan dengan laju pertumbuhan pasokan produk peternakan menyebabkan konsumsi telur ayam meningkat tajam. Saat ini populasi ayam petelur meningkat setiap tahunnya karena tingginya permintaan telur ayam, kebutuhan tersebut belum terpenuhi, sehingga pelaku ekonomi di bidang ayam

petelur perlu meningkatkan produksinya untuk memenuhi kebutuhan pasar[1].

Permintaan telur ayam tergantung pada kebutuhan masyarakat Indonesia akan protein hewani. Dihitung berdasarkan konsumsi per kapita, daya beli tergantung pada struktur pendapatan masyarakat, faktor sosial budaya, dan letak geografis di Indonesia. Dari sisi permintaan telur meningkatkan permintaan telur ayam berdasarkan jumlah kebutuhan perkapita di masyarakat, maka harga telur pun semakin tinggi. Seperti daya beli masyarakat ataupun struktur pendapatan sangat menentukan permintaan konsumen akan telur ayam. Jika struktur pendapatan masyarakat tinggi, maka konsumsi telur ayam relatif tinggi,

begitu pula sebaliknya[2].

Mengenai permasalahan di atas, peneliti akan menerapkan data mining melalui metode kmeans clustering untuk menganalisis populasi ayam petelur di setiap provinsi di Indonesia. Data mining adalah ekstraksi pola yang menarik dari besarnya jumlah data. Strategi dikatakan menarik jika tidak sepele, implisit, asing, dan bermanfaat. Strategi yang disajikan harus mudah di mengerti, dapat digunakan dalam data yang bisa diperkirakan dengan tahap ketetapan tertentu, baru dan bermanfaat[3]. Sedangkan K-Means Clustering merupakan metode analisis non-hierarchical clustering. yang berusaha membagi objek atau data menjadi beberapa cluster yang telah ditentukan sesuai dengan karakteristik masing-masing cluster[4]. Proses clustering dibagi menjadi 3 cluster untuk mencari provinsi dengan populasi ayam petelur tertinggi, sedang dan terendah. Penelitian ini ditujukan untuk menerapkan algoritma k-means clustering pada data populasi ayam petelur di setiap provinsi Indonesia.

Tinjauan Pustaka

Ada beberapa penelitian terkait yang digunakan sebagai tinjauan pustaka untuk mendukung dalam proses penelitian ini yakni sebagai berikut:

- a. Florida Ivonia Manek, Sutan Faisal, Bayu Priyatna menyatakan dengan menerapkan metode K-Means Clustering dapat pengelompokkan digunakan untuk pelanggan dengan menghasilkan tiga cluster. Hasil Clustering tersebut terdiri dari 12 pelanggan dari cluster rendah, 6 pelanggan dari cluster sedang dan 4 pelanggan dari cluster tinggi. Penelitian ini berhasil menerapkan K-Means Clustering dalam menentukan pelanggan mana yang lebih diprioritaskan sesuai dengan data penjualan tersebut oleh perusahaan ayam itu sendiri[5].
- b. Viya Miralda, Muhammad Zarlis, Eka Irawan dalam penelitiannya menjelaskan penerapan metode K-Means Clustering bisa digunakan untuk mengelompokkan daging ayam buras sebagaimana mestinya. Data untuk penelitiannya diperoleh dari

- www.bps.go.id[6] yaitu data penduduk miskin (2012-2018) dari 34 provinsi di Indonesia. Dari penelitian ini menyatakan 2 cluster diantaranya cluster tinggi berjumlah 8 provinsi dan cluster rendah berjumlah 26 provinsi dengan menggunakan salah satu tools data mining yaitu RapidMiner. Hasil dari penelitian bisa menjadi saran agar pemerintah dapat memberikan perhatian lebih melaksanakan penyuluhan dan penyerahan bantuan pada masyarkarat di setiap provinsi Indonesia berdasarkan cluster yang telah dilakukan[7].
- c. Pada penelitian Suhardi Rustam dalam menerapkan metode K-Means dengan optimasi jumlah kluster ini diperoleh dari data mahasiswa yang sudah mengambil mata kuliah konsentrasi angkatan 2016-2017. Proses pengelompokkan kelas mata kuliah konsentrasi mahasiswa semeter akhir ini dengan menggunakan tools data mining yaitu Orange menghasilkan 5 kluster dengan masing-masing nilai di setiap klusternya berbeda secara berurutan dari kluster 1 sampai kluster 5 sebagai nilai terbaik dari kluster lainnya. Maka dalam penelitian ini membuktikan metode K-Means dengan bantuan tools data mining yaitu aplikasi Orange dapat diterapkan dan berhasil dalam pengolahan data akademik mahasiswa[8].

METODE

Pada penelitian ini peneliti bertujuan untuk mengelompokkan data populasi ayam petelur dari tahun 2016 – 2020 terdiri dari 34 provinsi di Indonesia dengan algoritma K-Means Clustering. Ada beberapa tahapan untuk melakukan proses metode K-Means Clustering yaitu sebagai berikut:

Studi Literatur

Pada tahap ini peneliti mencari landasan teori dan bahan-bahan yang didapatkan dari beberapa sumber yaitu jurnal ilmiah dan bahan referensi yang berhubungan dengan judul dan metode yang digunakan dalam penelitian untuk melengkapi penelitian sehingga memiliki bahan referensi yang baik dan relevan.

Pengumpulan Data

Data penelitian ini berasal dari data yang dikumpulkan melalui website https://www.bps.go.id[6], diantaranya adalah data sekunder yaitu data populasi ayam petelur di 34 provinsi Indonesia dari tahun 2016-2020.

Pengolahan Data

Pengolahan data ini dilakukan untuk mendapatkan hasil dari pengelompokan data yang ada, dimana data tersebut nantinya akan menjadi 3 cluster, yang meliputi provinsi dengan populasi ayam petelur tertinggi, sedang, dan terendah.

Evaluasi dan Analisis Hasil

Pada tahap ini peneliti menemukan dan menganalisis hasil dari perhitungan k-means clustering baik itu hasil dari perhitungan secara manual maupun dengan menggunakan 2 alat bantu (tools) data mining yaitu dengan RapidMiner dan Orange. Kemudian hasil yang didapat bisa dijadikan masukan bagi peternak dan pemerintah untuk memberikan perhatian lebih pada populasi ayam petelur di berbagai provinsi Indonesia.

HASIL Data Populasi Ayam Petelur di Indonesia

Gambar 1. Populasi Ayam Petelur

Dari data yang sudah ada pada diagram tersebut, langkah awal yang harus dikerjakan adalah mengerjakan perhitungan manual K-Means Clustering terlebih dahulu. Adapun langkah-langkah proses algoritma K-Means Clustering di antaranya yaitu::

- a. Menentukan jumlah cluster untuk digunakan dalam pengelompokkan pada data yang telah tersedia. Cluster yang dibuat ada 3 cluster yaitu cluster populasi tinggi, sedang dan rendah.
- b. Menentukan titik pusat cluster centroid awal (iterasi 1) yang ditentukan secara acak. Titik pusat cluster yang telah ditentukan terlihat pada tabel dibawah ini:

Tabel 1. Titik Pusat Awal Cluster

Centroid 1	Centroid 2	Centroid 3
45880658	23838	1266673
86000243	0	303345
73773529	0	674304
90639492	4908	768134
96543331	5228	818167

c. Menghitung jarak antara data dari titik pusat cluster ke centroid terdekat. Centroid terdekat tersebut dijadikan pusat cluster untuk perhitungan selanjutnya. Adapun rumus persamaannya sebagai berikut :

$$d(P,Q) = \sqrt{\sum_{j=1}^{p} \left(x_j(P) - x_j(Q)\right)^2}$$

Keterangan:

D = jarak

P = data record

Q = data centroid

Tabel 2. Hasil Perhitungan Jarak Terdekat *Cluster* Iterasi 1

No.	C1	C2	C3	Jarak Terdekat	Cluster
1	178002043	2661045,4	3367410,08	2661045,418	Cluster 2
2	124719789	53990895	55577079,2	53990894,88	Cluster 2
3	151775944	27190780	28798568,4	27190780,17	Cluster 2
4	176522250	4552905,3	5031795,56	4552905,348	Cluster 2
5	177827545	1159369,9	2392175,59	1159369,904	Cluster 2
34	179473667	1283780,9	891941,055	891941,0548	Cluster 3

Tabel 3. Hasil Cluster Iterasi 1

Cluster	Provinsi	Hasil		
C1	15	1		
C2	1,2,3,4,5,6,8,10,11,12,13,1 4,16,17,18,19,20,22,23,25, 26,27,33,34	24		
C3	7,9,21,24,28,29,30,31,32	9		

Gambar 2. Clustering Data Iterasi 1

d. Kemudian menghitung ulang centroid ke titik pusat cluster selanjutnya dengan ratarata kelompok data yang ada pada cluster tersebut dengan rumus berikut:

$$C = \frac{\Sigma m}{n}$$

Dimana:

C: centroid data

m : anggota data yang dimiliki oleh centroid tertentu

n : jumlah data yang merupakan anggota centroid tertentu

e. Proses K-Means akan terus berulang (iterasi) hingga pengelompokan data sama dengan pengelompokan data dari iterasi sebelumnya. Sampai proses iterasi terhenti pada iterasi ke 8 untuk hasil akhirnya terlihat pada tabel berikut.

Tabel 4. Hasil Cluster Iterasi 8

Cluster	Provinsi	Hasil
C1	15	1
C2	2,12,13	3
C3	1,3,4,5,6,7,8,9,10,11,14,16,	30
	17,18,19,20,21,22,23,24,25,	
	26,27,28,29,30,31,32,33,34	

Gambar 3. Clustering Data Iterasi 8

Dalam iterasi ke 8, nilai dari titik centroid untuk setiap cluster tidak mengalami perubahan dan perpindahan data dari tiap clusternya.

Hasil Implementasi Tools Data Mining

Berikut akan ditampilkan hasil implementasi dari tools data mining yaitu RapidMiner dan Orange, di antaranya terlihat pada tampilan gambar sebagai berikut:

Hasil Implementasi Tools RapidMiner

Gambar 4. Proses Clustering pada RapidMiner

Cluster Model

Cluster 0: 30 items

Cluster 1: 1 items

Cluster 2: 3 items

Total number of items: 34

Gambar 5. Hasil Clustering RapidMiner

Gambar 6. Hasil Akhir Pengelompokan Rapidminer

Hasil Implementasi Tools Orange

Gambar 7. Proses Clustering pada Orange

				Į.	ata Table			
	Provinsi	Cluster	Silhouette	2016	2017	2018	2019	2020
1	ACEH	C1	0.730145	411101	195731	3188727	683594	72812
17	BALI	C1	0.681845	5517652	8952188	8669087	10344362	1101814
16	BANTEN	C1	0.646781	4729025	15205643	12183018	11347388	1208650
7	BENGKULU	C1	0.732297	186497	49458	76051	601952	64116
14	DI YOGYAKARTA	C1	0.719546	3682116	2447247	6235984	3489305	371658
11	DKI JAKARTA	C1	0.730411	0	2169135	1614939	0	
29	GORONTALO	C1	0.732431	369823	321190	345295	212047	22585
5	JAMBI	C1	0.732566	716184	960322	977763	1260470	134257
12	JAWA BARAT	C3	0.684947	15143460	38740176	44857022	26032784	2772843
13	JAWA TENGAH	C3	0.698468	21832857	29654238	32763071	27740622	2954751
15	JAWA TIMUR	C2	0.5	45880658	86000243	73773529	90639492	9654333
20	KALIMANTAN	C1	0.717596	2349681	4111253	4491485	6407392	682474
22	KALIMANTAN	C1	0.709352	6149925	3114253	6040318	4818033	513185
21	KALIMANTAN	C1	0.732235	138323	73327	86660	410351	43707
23	KALIMANTAN	C1	0.731826	842176	568288	480066	1851460	197205
24	KALIMANTAN	C1	0.731778	26641	0	409825	33705	3590
9	KEP. BANGKA B	C1	0.732168	118269	52078	324377	587410	6267
10	KEP. RIAU	C1	0.732297	669565	1294260	216116	776597	82718
8	LAMPUNG	C1	0.706538	5263426	3917254	6330158	7263647	773676
31	MALUKU	C1	0.731544	19270	1146	299	34379	3661
32	MALUKU UTARA	C1	0.731503	23838	0	0	4908	522
18	NUSA TENGGA	C1	0.731854	488863	709774	1142076	1884789	200755
19	NUSA TENGGA	C1	0.732358	201511	191	1059791	510081	54330
34	PAPUA	C1	0.732305	560464	9739	8965	678158	72233
33	PAPUA BARAT	C1	0.731939	68652	25397	1395374	456706	48645
4	RIAU	C1	0.727624	162285	4528173	1956112	678705	7229
30	SULAWESI BAR	C1	0.732123	157745	70463	0	329625	34570
27	SULAWESI SELA	C1	0.638385	12020435	8244114	7859015	10615596	113124
26	SULAWESI TEN	C1	0.731943	1266673	303345	674304	768134	81816
28	SULAWESI TEN	C1	0.732203	294482	0	255796	157223	16746
25	CHI AMECHITA	CI	0.721241	1522200	1106020	707122	1476215	157726

Gambar 8. Data Tabel Hasil *Clustering*Orange

Gambar 9. Hasil Akhir Pengelompokkan Orange

Perbandingan Hasil (Output) dari 3 Jenis Proses Perhitungan K-Means Clustering

Setelah dilakukan perhitungan K-Means Clustering baik secara manual maupun dengan 2 tools data mining tersebut, maka dapat dilihat beberapa perbandingan dari ketiga hasil output yang di dapat, yaitu sebagai berikut:

Tabel 5. Perbandingan Hasil

Vatamanaan	Proses			
Keterangan	Manual	Rapidminer	Orange	
Jumlah Iterasi	8	-	8	
Jumlah Data				
Cluster 1	1	1	30	
Cluster 2	3	3	1	
Cluster 3	30	30	3	
Populasi Tertinggi	Cluster 1	Cluster 1	Cluster 2	
Populasi Sedang	Cluster 2	Cluster 2	Cluster 3	
Populasi Terendah	Cluster 3	Cluster 3	Cluster 1	

KESIMPULAN

Berdasarkan hasil pengelompokkan populasi ayam petelur di berbagai provinsi Indonesia dengan mengimplementasikan tools Data Mining yaitu RapidMiner dan Orange dengan algoritma K-Means Clustering, maka kesimpulan yang dihasilkan sebagai berikut:

- a. Penerapan algoritma K-Means Clustering untuk pengolahan data populasi ayam petelur di Indonesia dari ketiga jenis perhitungan secara manual dan dengan implementasi tools Rapidminer dan Orange menghasilkan sebuah hasil (output) yang sama.
- b. Dari hasil (output) yang telah diperoleh dari proses penerapan metode k-means clustering, maka hasil dari ketiga perhitungan diatas yaitu 1 provinsi untuk cluster populasi tinggi yaitu Jawa Timur. Untuk cluster populasi sedang ada 3 provinsi di antaranya Sumatera Utara, Jawa Barat dan Jawa Tengah. Sedangkan untuk cluster populasi rendah ada 30 provinsi di antaranya Aceh, Sumatera Barat, Riau, Jambi, Sumatera Selatan, Bengkulu, Lampung, Kep.Bangka Belitung, Kep.Riau, DKI Jakarta, DI Yogyakarta, Banten, Bali, NTB, NTT, Kalimantan Barat, Kalimantan Tengah, Kalimantan Selatan, Kalimantan Timur, Kalimantan Utara, Sulawesi Utara, Sulawesi Tengah, Sulawesi Selatan, Sulawesi Tenggara, Sulawesi Barat, Maluku, Gorontalo,

- Maluku Utara, Papua Barat, Papua.
- c. Hasil dari proses menerapkan data mining denganmenggunakan algoritma k-means clustering pada populasi ayam ras petelur ini dapat dijadikan sebagai saran dan masukan bagi pelaku ekonomi dibidang pemerintah untuk memberikan perhatian lebih pada setiap provinsi berdasarkan cluster untuk menjaga keseimbangan jumlah populasi dengan permintaan dan kestabilan harga telur di setiap provinsi di Indonesia.

DAFTAR PUSTAKA

- [1] Aldi, "Kelayakan Finansial Usaha Peternakan Ayam Ras Petelur," *Pap. Knowl. . Towar. a Media Hist. Doc.*, pp. 12–26, 2018.
- [2] A. A. Hamzah, "Profil Komoditas Telur Ayam Ras," 2020. .
- [3] M. Marsono, D. Saripurna, and M. Zunaidi, "Analisis Data Mining Pada Strategi Penjualan Produk PT Aquasolve Sanaria Dengan Menggunakan Metode K-Means Clustering," *J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD)*, vol. 4, no. 1, p. 127, 2021, doi: 10.53513/jsk.v4i1.60.
- [4] M. G. Sadewo, A. P. Windarto, and D. Hartama, "Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means Clustering," *InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan)*, vol. 2, no. 1, pp. 60–67, 2017, doi: 10.30743/infotekjar.v2i1.164.
- [5] F. I. Manek, S. Faisal, and B. Priyatna, "Penerapan K-Means Clustering untuk Mengelompokkan Pelanggan Berdasarkan Data Penjualan Ayam," *Techno Xplore J. Ilmu Komput. dan Teknol. Inf.*, vol. 3, no. 2, pp. 88–93, 2018, doi: 10.36805/technoxplore.v3i2.820.
- [6] Badan Pusat Statistik, "Badan Pusat Statistik," 2017. https://www.bps.go.id/linkTableDinami s/view/id/960.

- [7] V. Miralda, M. Zarlis, and E. Irawan, "Penerapan Metode K-Means Clustering Untuk Daging Ayam Buras," *Build. Informatics, Technol. Sci.*, vol. 2, no. 2, pp. 91–98, 2020, doi: 10.47065/bits.v2i2.493.
- [8] S. Rustam, "Penerapan Optimasi Jumlah Kluster Pada Kmeans Untuk Pengelompokan Kelas Mata Kuliah Kosentrasi Mahasiswa Semester Akhir," *Simtek J. Sist. Inf. dan Tek. Komput.*, vol. 5, no. 1, pp. 1–5, 2020, doi: 10.51876/simtek.v5i1.64.