Disclaimer

This document is an exam summary that follows the slides of the *Introduction to Machine Learning* lecture at ETH Zurich. The contribution to this is a short summary that includes the most important concepts, formulas and algorithms. This summary was created during the spring semester 2018 by Yannik Merkli and adapted in 2024 by Nicolas Wehrli. Due to updates to the syllabus content, some material may no longer be relevant for future versions of the lecture. This work is published as CC BY-NC-SA.

@**()**(\$)(9)

I do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any erratas. For the full LATEX source code, consider https://github.com/nwehrli/ymerklieth-summaries.

Basics	Ridge closed form: $\hat{w} = (X^T X + \lambda I)^{-1} X^T y$	Properties of kernel $k(x, y) = \phi(x)^T \phi(y)$	on layer l set its value $v_j = \varphi(\sum_{i \in Layer_{l-1}} w_{j,i} v_i)$
Orth: A: $det(A) \in \{+1, -1\}, AA^T = A^TA = I$	Classification	k must be symmetric: $k(x, y) = k(y, x)$	For each unit j on output layer, set its value
trace(ABC) = trace(BCA) = trace(CAB)	Perceptron $y = sign(f(x)) = sign(w^T x)$	Kernel matrix must be positive semi-definite.	$f_j = \sum_{i \in Layer_{L-1}} w_{j,i} v_i$ resp. $\vec{f} = W^{(L)} v^{(L-1)}$
$trace(A) = \sum \lambda_i(A); \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	Perceptron loss is convex and not differentia-	positive semi-definite matrices	Predict $y_i = f_i$ for reg. $/y_i = sign(f_i)$ for class.
1/4)	ble, but gradient is informative.	$M \in \mathbb{R}^{n \times n}$ is psd $\Leftrightarrow \forall x \in \mathbb{R}^n : x^T M x \ge 0 \Leftrightarrow$	Backpropagation
$A = \sum_{k=1}^{rk(A)} \sigma_{k,k} u_k(v_k)^T, A^{\dagger} = US'V^T; \sigma'_{k,k} = \frac{1}{\sigma_{k,k}}$	$l_P(w; y_i, x_i) = \max\{0, -y_i w^T x_i\}$	all eigenvalues of M are positive: $\lambda_i \ge 0$ k Nearest Neighbor classifier	For each unit j on the output layer L :
Deriv: $\frac{\partial}{\partial x}b^Tx = \frac{\partial}{\partial x}x^Tb = b^T, \frac{\partial}{\partial x} x _2^2 =$	$w^* = \operatorname{argmin}_{w} \sum_{i=1}^{n} l_p(w; y_i, x_i)$	$y = sign(\sum_{i=1}^{n} y_i[x_i \text{ among k nn of } x])$	(7)
$2x^{T}, \frac{\partial}{\partial x} \ x - a\ _{2} = \frac{(x-a)^{T}}{\ x-a\ _{2}}, \frac{\partial}{\partial x} (x^{T}Ax) =$	$\nabla_w l_p(w; y_i, x_i) = (-y_i x_i) 1[y_i w^T x_i < 0]$	Examples of kernels on \mathbb{R}^d	- Compute error signal: $\delta_j^{(L)} = \ell'_j(f_j)$
11 112	Stochastic Gradient Descent (SGD)	Linear kernel: $k(x,y) = x^T y$	- For each unit i on layer $L-1$: $\frac{\partial l}{\partial w^{(L)}} = \delta_j^{(L)} v_i^{(L-1)}$
$x^{T}(A^{T} + A), \frac{\partial}{\partial x}(b^{T}Ax) = A^{T}b, \nabla_{X}(c^{T}Xb) = C^{T}A^{T}b, \nabla_{X}(c^{T}Xb)$	1. Start at an arbitrary $w_0 \in \mathbb{R}^d$	Polynomial kernel: $k(x, y) = (x^T y + 1)^d$	For each unit j on hidden layer $l = \{L-1,,1\}$:
$cb^{T}, \nabla_{X}(c^{T}X^{T}b) = bc^{T}; A _{op} = sup_{ x _{2}=1} Ax _{2}$	2. For $t = 1, 2,$ do: Pick data point $(x', y') \in_{u.a.r.} D$	Gaussian kernel: $k(x,y) = exp(- x-y _2^2/h^2)$	
$\mathbf{convex} \iff f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(x) + f(x) + f$	$w_{t+1} = w_t - \eta_t \nabla_w l(w_t; x', y')$	Laplacian kernel: $k(x, y) = exp(- x - y _1/h)$	- Error sig: $\delta_j^{(l)} = \varphi'(z_j^{(l)}) \sum_{i \in Layer_{l+1}} w_{i,j}^{(l+1)} \delta_i^{(l+1)}$
$\lambda f(y); f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle; D^2 f(x) \ge 0$ $\alpha f + \beta g \mathbf{c}.; \max(f, g) \mathbf{c}. \text{ if } f, g \mathbf{c}., \alpha, \beta \ge 0$	Perceptron Alg: SGD with Perceptron loss	Kernel engineering	- For each unit i on layer $l-1$: $\frac{\partial l}{\partial w_{i,i}^{l}} = \delta_{j}^{(l)} v_{i}^{(l-1)}$
$f \circ g = f(g(x))$ c. if f c., g a. $\vee f$ c., non-dec., g c.	Support Vector Machine	$k_1(x,y)+k_2(x,y)$; $k_1(x,y)\cdot k_2(x,y)$; $c\cdot k_1(x,y)$, $c>0$; $f(k_1(x,y))$, where f is a polynomial with posi-	Learning with momentum
	Hinge loss: $l_H(w; x, y) = max\{0, 1 - yw^T x\}$	tive coefficients or the exponential function	a $\leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W \leftarrow W - a$
$p_{\mu,\Sigma}(x) = \frac{1}{\sqrt{(2\pi)^p det(\Sigma)}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$	Goal: Max. a "band" around the separator.	Kernelized linear regression	$u \leftarrow m \cdot u + \eta_t \vee_W \iota(w, y, x), \ w \leftarrow w - u$ Clustering
$\mathbf{X} \sim \mathcal{N}(\mu, \Sigma) \Longrightarrow A\mathbf{X} + b \sim \mathcal{N}(A\mu + b, A\Sigma A^{T})$	$w^* = \operatorname{argmin} \frac{1}{n} \sum_{i=1}^{n} (\max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2)$	Ansatz: $w^* = \sum_i \alpha_i x$	k-mean
Jensen ineq: $g(E[X]) \le E[g(X)]$, g convex	$g_i(w) = \max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2$	Parametric: $w^* = \operatorname{argmin} \sum_i (w^T x_i - y_i)^2 + \lambda w _2^2$	
Regression		$= \operatorname{amin}_{\alpha} \ \alpha^{T} K - y\ _{2}^{2} + \lambda \alpha^{T} K \alpha, \alpha^{*} = (K + \lambda I)^{-1} y$	Loss: $\hat{R}(\mu) = \hat{R}(\mu_1,, \mu_k) = \sum_{i=1}^n \min_{j \in \{1,, k\}} x_i - \mu_j _2^2$
Linear Regression $f(x) = w^T x; X \in \mathbb{R}^{n \times d}$	$\nabla_w g_i(w) = \begin{cases} -y_i x_i + 2\lambda w & \text{, if } y_i w^T x_i < 1\\ 2\lambda w & \text{, if } y_i w^T x_i \ge 1 \end{cases}$	Prediction: $y = w^{*T}x = \sum_{i=1}^{n} \alpha_i^* k(x_i, x)$	$\hat{\mu} = arg\min \hat{R}(\mu)$; non-convex, $\mathcal{O}(NP)$
$L(w) = \ Xw - y\ _{2}^{2}; X^{T}X\hat{w} = X^{T}y$	· · · · · · · · · · · · · · · · · · ·	Inbalance $y = w x = \sum_{i=1}^{n} \alpha_i \kappa(x_i, x_i)$	Algorithm (Lloyd's heuristic):
$d \le n : \hat{w} = (X^T X)^{-1} X^T y \text{ if } rk(X) = d$	Multi-Class Classification	Cost Sensitive Classification	(0)
$n < d : \hat{w} = (X^T X)^{\dagger} X^T y; rk(X) = n \hat{w} _2 \text{ min.}$	Confidence \rightarrow Distance from Decision Bound. $y = \operatorname{amin}_{i \in \{1,.,c\}} f_i(x), f_i(x) = \widetilde{w_i}^T x, \widetilde{w_i} = \frac{w_i}{\ w_i\ _2}$	Replace loss by: $l_{CS}(w; x, y) = c_y l(w; x, y)$	Initialize cluster centers $\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$
$\nabla_w L(w) = 2X^T (Xw - y)$		Metrics (convention: positive = rare)	While still changes in assignments: $(t-1)_{112}$ (t) 1.
Gradient Descent 1. Start arbitrary $w_o \in \mathbb{R}$	OvA: $\hat{y}_i = \operatorname{argmax}_{j \in \{1,.,c\}} w_j^I x_i$; C bin. classif	Accuracy= $\frac{\text{\#correct predictions}}{\text{\#all predictions}} = \frac{TP+TN}{TP+TN+FP+FN}$,	$z_i = \underset{j \in \{1, \dots, k\}}{\operatorname{argmin}} \ x_i - \mu_j^{(t-1)}\ _2^2; \ \mu_j^{(t)} = \frac{1}{n_j} \sum_{i:z_i = j} x_i$
2. Do $w_{t+1} = w_t - \eta \nabla L(w_t)$ until $ w^t - w^{t-1} _2 \le \epsilon$	OvO: Train $\frac{c(c-1)}{2}$ bin. classif., one for each pair	$Precision = \frac{\#correct' + 'predictions}{\#all' + 'predictions} = \frac{TP}{TP + FP}$	
GD conv. to \hat{w} if $rk(X^TX) = d$, $\eta < \frac{2}{\lambda_{max}(X^TX)}$	(i,j). Voting \rightarrow class with most positive preditions wins (slower, but no confidence needed)		k-mean++: - Start with random data point as center
$ w^{t+1} - \hat{w} \le I - \eta X^T X _{op} w^t - \hat{w} _2 \le \rho^{t+1} w^0 - \hat{w} _2$		Recall=TPR= $\frac{TP}{TP+FN} = \frac{TP}{n_+}$, FPR= $\frac{FP}{TN+FP} = \frac{FP}{n}$	- Add centers 2 to k randomly, proportionally
The state of the s	Kernels $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}; x_i^T x_j \to k(x_i, x_j)$	F1 score = $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$	to squared distance to closest selected center
$\ \hat{w}\ _2$; $\eta_{opt} = \frac{2}{\lambda_{max} + \lambda_{min}}$; $\rho_{min} = 1 - \eta_{opt} \lambda_{min} = \frac{\kappa - 1}{\kappa + 1}$	Reformulating the perceptron	Multi-class Hinge Loss	for $j = 2$ to k : i_j sampled with prob.
minibatch SGD: $\nabla L_S(w)$ on random $S \subset D$ every iter.; $ S = 1$ SGD; $E_S(\nabla L_S(w)) = \nabla L(w)$	Ansatz: $w = \sum_{j=1}^{n} \alpha_j y_j x_j$	$l_{MC-H}(w^{(1)},,w^{(c)};x,y) =$	$P(i_j = i) = \frac{1}{2} \min_{1 \le l < i} x_i - \mu_l _2^2; \ \mu_j \leftarrow x_{i_j}$
strictly c. \implies stationary point is unique g.	$w^* = \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^n \max[0, -y_i w^T x_i]$	$\max_{j \in \{[1,,c] \setminus y\}} (0, 1 + \max w^{(j)T} x - w^{(y)T} x)$	Dimension Reduction
min.; strongly c. \Longrightarrow unique g. min. exists	$\Leftrightarrow \alpha^* = \min_{\alpha_{1:n}} \sum_{i=1}^{n} \max[0, -\sum_{j=1}^{n} \alpha_j y_i y_j x_i^T x_j]$	Neural Networks	Principal component analysis (PCA)
Errors	Kernelized Perceptron	$F(x) = \sum_{i=1}^{k} w_i^{(2)} \phi(\sum_{j=1}^{m} w_{ij}^{(1)} x_j) = W^{(2)} \phi(W^{(1)} x)$	
exp. estim. err.: $E_X(\ell(f(X), f^*(X)))$; $y = f^*(x) + \varepsilon$ generaliz. err.: $L(f; \mathbb{P}_{X,Y}) = E_{X,Y}(\ell(f(X), Y))$	1. Initialize $\alpha_1 = \dots = \alpha_n = 0$	$F(x) = \phi^{(L)}(W^{(L)}\phi^{(L-1)}(W^{(L-1)}(\phi^{(1)}(W^{(1)}x))))$	Given: $D = \{x_1,, x_n\} \subset \mathbb{R}^d, 1 \le k \le d$ $\sum_{d \times d} = \frac{1}{n} \sum_{i=1}^n x_i x_i^T, \mu = \frac{1}{n} \sum_{i=1}^n x_i = 0 !!$
Expression $L(\hat{f}; \mathbb{P}_{X,Y}) = L_{X,Y}(\mathcal{E}(f)(X), Y)$ $L(\hat{f}; \mathbb{P}_{X,Y}) = E_X((\hat{f}(X) - f^*(X))^2) + \sigma^2(\text{sq. loss})$	2. For $t = 1, 2,$ do	Learning features	$Sol.: (W, z_1,, z_n) = \operatorname{argmin} \sum_{i=1}^n Wz_i - x_i _2^2,$
	Pick data $(x_i, y_i) \in_{u.a.r} D$	Parametr. feat. maps & optimize over params:	where $W \in \mathbb{R}^{d \times k}$ is orthogonal, $W^* = (v_1 v_k)$
		$w^* = \operatorname{argmin}_{w,\theta} \sum_{i=1}^{n} l(y_i; \sum_{j=1}^{m} w_j \phi(x_i, \theta_j))$	where $w \in \mathbb{R}$ is of thogonar, $w = (v_1,, v_k)$ w/ v_i evec. of Σ and evals $\lambda_1 \ge \ge \lambda_d \ge 0$.
generaliz. err.; g. err. + const = exp. estim err.	If $\hat{y} \neq y_i$ set $\alpha_i^{(t)} = \alpha_i^{(t-1)} + \eta_t \text{else:} \alpha_i^{(t)} = \alpha_i^{(t-1)}$	One possibility: $\phi(x,\theta) = \varphi(\theta^T x) = \varphi(z)$	Projections $z_1,,z_n \in \mathbb{R}^k$ are given by
k-fold CV: $\uparrow k \implies \hat{f}_{M_i,\mathcal{D}'} \approx \hat{f}_{M_i,\mathcal{D}_{use}}, CV_k(M_i) \approx 1$	Predict new point x: $\hat{y} = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x))$	Activation functions Sigmaid: $o(z) = \frac{1}{1}$ $o(z) = (1 \cdot o(z)) \cdot o(z)$	$z_i = W^T x_i$ where $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^T$,
$L(\hat{f}_{M_i,\mathcal{D}_{\text{use}}};\mathbb{P}_{X,Y});$ extreme: LOOCV	Perceptron and SVM	Sigmoid: $\varphi(z) = \frac{1}{1 + exp(-z)}$; $\varphi'(z) = (1 - \varphi(z)) \cdot \varphi(z)$	Kernel PCA
Bias-Variance Tradeoff $\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}},x):=(E_{\mathcal{D}}(\hat{f}_{\mathcal{D}}(x))-f^{*}(x))^{2}$	Perceptron: $\min_{\alpha} \sum_{i=1}^{n} \max\{0, -y_i \alpha^T k_i\}$	Tanh _[-1,1] : $\varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$	For general $k \ge 1$, the Kernel PC are given by
	SVM: $k_i = [y_1 k(x_i, x_1),, y_n k(x_i, x_n)]$:	ReLu: $\varphi(z) = max(z, 0)$	$\alpha^{(1)},,\alpha^{(k)} \in \mathbb{R}^n$, where $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}}v_i$ is obtained
$\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}) := E_{X}(\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}, X)); \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) := E_{X}(\operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}, X)); F_{X}(H(\hat{f}_{\mathcal{D}}, X)) = \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) := \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}, X) = \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}, X)$	$\min \sum_{i=1}^{n} \max\{0, 1 - y_i \alpha^T k_i\} + \lambda \alpha^T D_y K D_y \alpha$	Forward propagation	from: $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, $\lambda_1 \ge \ge \lambda_d \ge 0$
$E_X(\operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}(X))); E_{\mathcal{D}}(L(\hat{f}_{\mathcal{D}}; \mathbb{P}_{X,Y})) = \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) +$	u	For each unit j on input layer, set value $v_j = x_j$	P. E. C. C. Branch and C.
$\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}) + \sigma^{2}$	Prediction: $y = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x))$	For each layer $l = 1 : L - 1$: For each unit j	Point <i>x</i> projected as $z \in \mathbb{R}^k$: $z_i = \sum_{j=1}^n \alpha_j^{(i)} k(x, x_j)$

Autoencoders $f_1: \mathbb{R}^d o \mathbb{R}^k$, $f_2: \mathbb{R}^k o \mathbb{R}^d$	Bayesian decision theory	Gaussian Naive Bayes classifier	$= \operatorname{argmax}_{z} P(z \theta^{(t-1)}) P(x_{i} z, \theta^{(t-1)}) =$
Try to learn identity function: $x \approx f(x; \theta)$	- Conditional distribution over labels $P(y x)$	Indep. feat. giv. Y: $P(X_1,, X_n Y) = \prod_{i=1}^d P(X_i Y)$	$= \operatorname{argmax}_{z} w_{z}^{(t-1)} \mathcal{N}(x_{i} \mu_{z}^{(t-1)}, \Sigma_{z}^{(t-1)})$
) (1) 1 / / / / / / / / / / / / / / / / / /	- Set of actions A - Cost function $C: Y \times A \to \mathbb{R}$ Pick action that minimizes the expected cost:	MLE for class prior: $\hat{P}(Y = y) = \hat{p}_v = \frac{\text{Count}(Y = y)}{n}$	M: Compute the MLE as for the Gaussian B.
d input, d output units, 1 layer w/ $k < d$ units $W^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} x_i - W^{(2)} \varphi(W^{(1)} x^{(i)}) _2^2$	$a^* = \operatorname{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) x] = \sum_{v} P(y x)C(y, a)$	MLE for feature distr.: $\hat{P}(x_i y_i) = \mathcal{N}(x_i; \hat{\mu}_{v,i}, \sigma_{v,i}^2)$	class.: $\theta^{(t)} = \operatorname{argmax}_{\theta} P(D^{(t)} \theta)$
$\varphi(z) = z : NNA = PCA, w^{(1)} = PCA(x) = w^{(2)^{T}}$	$\mathbb{E}_{v}[C(y,+) x] = P(- x)C(-,+);$	$\hat{\mu}_{y,i} = \frac{1}{\text{Count}(Y=y)} \sum_{j:y_j=y} x_{j,i}$	Special case: fix $w_z = \frac{1}{k}$, spher. cov. $\Sigma_z = \sigma^2 \mathbb{I}$
$\varphi(z) = z : NNA = PCA, w^{(+)} = PCA(x) = w^{(+)}$ Probability Modeling	$\mathbb{E}_{v}[C(y,-) x] = P(+ x)C(+,-);$	2 1	→ k-means: E: $z_i^{(t)} = \operatorname{argmin}_z x_i - \mu_z^{(t-1)} _2^2$
Assumption: Data set is generated iid	$\mathbb{E}_{y}[C(y,D) x] = P(+ x)C_{d+} + P(- x)C_{d-}$	$\sigma_{y,i}^2 = \frac{1}{\text{Count}(Y=y)} \sum_{j:y_j=y} (x_{j,i} - \hat{\mu}_{y,i})^2$	M: $\mu_j^{(t)} = \frac{1}{n_i} \sum_{i:z^{(t)} = i} x_i$
Find $h: X \to Y$ that minimizes pred. error	Optimal decision for logistic regression	Prediction given new point x: $\hat{p}(x/y) = \hat{p}(x/y) \prod_{i=1}^{d} \hat{p}(x/y)$	
$R(h) = \int P(x, y)l(y; h(x))\partial x \partial y = \mathbb{E}_{x, y}[l(y; h(x))]$	$a^* = \operatorname{argmin}_{y} \hat{P}(y x) = \operatorname{sign}(w^T x)$	$y = \operatorname{argmax}_{y'} \hat{P}(y' x) = \operatorname{argmax}_{y'} \hat{P}(y') \prod_{i=1}^{d} \hat{P}(x_i y_i)$	Forting Provide to 1 to 1 to 1 to 1 (t)
$h^*(x) = \mathbb{E}[Y X = x] \text{ for } R(h) = \mathbb{E}_{x,y}[(y - h(x))^2]$	Doubtful logistic regression	Categorical Naive Bayes Classifier Count(Y=v)	E-step: For each i and j calculate $\gamma_j^{(r)}(x_i)$
Prediction: $\hat{y} = \hat{\mathbb{E}}[Y X=x] = \int \hat{P}(y X=x)y \partial y$	Est. cond. distr.: $\hat{P}(y x) = Ber(y; \sigma(\hat{w}^T x))$	MLE class prior: $\hat{P}(Y = y) = p_y = \frac{Count(Y = y)}{n}$	$\gamma_j^t(x_i) = P(Z_i = j x_i, \theta_t) = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} =$
Maximum Likelihood Estimation (MLE)	Action set: $A = \{+1, -1, D\}$; Cost function:	MLE for feature distr.: $\hat{P}(X_i = c Y = y) = \theta_{c y}^{(i)}$	$=\frac{w_jP(x \Sigma_j,\mu_j)}{\Sigma_lw_lP(x \Sigma_l,\mu_l)}=\frac{w_j\mathcal{N}(x;\Sigma_j,\mu_j)}{\Sigma_lw_l\mathcal{N}(x;\Sigma_l,\mu_l)}$
	$C(y,a) = \begin{cases} [y \neq a] & \text{if } a \in \{+1,-1\} \\ c & \text{if } a = D \end{cases}$	$\theta_{c y}^{(i)} = \frac{Count(X_i=c,Y=y)}{Count(Y=y)}$, Pred: $y = amax_{y'} \hat{P}(y' x)$	$Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{y_{1:n}} [\log P(x_{1:n}, y_{1:n} \theta) x_{1:n}, \theta^{(t-1)}]$
$\theta^* = \underset{\theta}{\operatorname{amax}} \hat{P}(y_{1:n} x_{1:n},\theta) \stackrel{\text{iid}}{=} \underset{\theta}{\operatorname{amax}} \prod_{i=1}^n \hat{P}(y_i x_i,\theta)$	$\rightarrow a^* = y \text{ if } \hat{P}(y x) \ge 1 - c$, D otherwise Linear regression	Discr fnc: $f(x) = log \frac{P(y=1 x)}{P(y=-1 x)}; p(x) = \frac{1}{1 + exp(-f(x))}$	$= \mathbb{E}_{y_{1:n}}[\log \prod_{i=1}^{n} P(x_i, y_i \theta) x_{1:n}, \theta^{(t-1)}] =$
= $\min_{\theta} - \sum_{i=1}^{n} log \hat{P}(y_i x_i, \theta)$ Ex: $y_i \sim \mathcal{N}(w^T x_i, \sigma^2) : w^* = \min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)$	Est. cond. distr.: $\hat{P}(y x, w) = \mathcal{N}(y; w^T x, \sigma^2)$	Gaussian Bayes Classifier	$= \sum_{i=1}^{n} \mathbb{E}_{y_i}[\log P(x_{1:n}, y_i; \theta) x_i, \theta^{(t-1)}] =$
Bias/Variance/Noise Bias/Variance/Noise	$A = \mathbb{R}; C(y, a) = (y - a)^2$	MLE for class prior: $\hat{P}(Y = y) = \hat{p}_y = \frac{\text{Count}(Y = y)}{n}$	$\sum_{i=1}^{n} \sum_{j=1}^{k} P(y_i = j x_i, \theta^{(t-1)}) \log(P(x_i, y_i = j; \theta))$
Prediction error = $Bias^2 + Variance + Noise$	$\to a^* = \mathbb{E}_{y}[y x] = \int \hat{P}(y x)\partial y = \hat{w}^T x$	MLE for feature distr.: $\hat{P}(x y) = \mathcal{N}(x; \hat{\mu}_y, \hat{\Sigma}_y)$	$= \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{j}^{t}(x_{i}) \log(P(y_{i} = j)P(x_{i} y_{i} = j; \theta))$
Maximum a posteriori estimate (MAP)	Asymmetric cost for regression	$\hat{\boldsymbol{\mu}}_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{i:y_{i}=y} \boldsymbol{x_{i}} \in \mathbb{R}^{d}$	If constraint $\sum_{j=1}^{m} P(y_i = j; \theta) = 1$ (m: #labels):
Introduce bias by expressing assumption through a Bayesian prior $w_i \sim \mathcal{N}(0, \beta^2)$	Est. cond. distr.: $\hat{P}(y x) = \mathcal{N}(\hat{y}; \hat{w}^T x, \sigma^2)$	$\hat{\Sigma}_y = \frac{1}{\text{Count}(Y=y)} \sum_{i:y_i=y} (x_i - \hat{\mu}_y) (x_i - \hat{\mu}_y)^T \in \mathbb{R}^{d \times d}$	$\to \mathcal{L}(\theta, \lambda) = Q(\theta; \theta^{(t-1)}) + \lambda(\sum_{i=1}^{m} P(y_i = j) - 1)$
	$A = \mathbb{R}; C(y, a) = c_1 \max(y - a, 0) + c_2 \max(a - y, 0)$	Fisher's linear discriminant analysis (LDA; c=2)	M-step: Fit clusters to weighted data points:
Bayes: $P(w x, y) = \frac{P(w x)P(y x, w)}{P(y x)} = \frac{P(w)P(y x, w)}{P(y x)}$	$\rightarrow a^* = \hat{w}^T x + \sigma \Phi^{-1}(\frac{c_1}{c_1 + c_2}), \Phi: Gaussian CDF$	Assume: $p = 0.5$; $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$	Genrl: $\theta^{(t)} = \operatorname{argmax}_{\theta} Q(\theta; \theta^{(t-1)}), \gamma_j^t(x_i) fixed!$
assume w indep. of x: $\operatorname{argmax}_{w} P(w x, y) =$ = $\operatorname{argmin}_{w} - log P(w) - log P(y x, w) + const.$	Discriminative vs. Generative Modeling Discriminative models: aim to estimate $P(y x)$	discriminant f.: $f(x) = log \frac{p}{1-p} + \frac{1}{2} [log \frac{ \hat{\Sigma} }{ \hat{\Sigma}_+ }]$	$w_j^{(t)} \leftarrow \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \mu_j^{(t)} \leftarrow \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$
= $\operatorname{argmin}_{W} \lambda w _{2}^{2} + \sum_{i=1}^{n} (y_{i} - w^{T} x_{i})^{2}$, $\lambda = \frac{\sigma^{2}}{\beta^{2}}$	G. m.: aim to estimate joint distribution $P(y,x)$	+ $((x - \hat{\mu}_{-})^T \hat{\Sigma}_{-}^{-1} (x - \hat{\mu}_{-})) - ((x - \hat{\mu}_{+})^T \hat{\Sigma}_{+}^{-1} (x - \hat{\mu}_{+}))]$	$\sum_{i=1}^{n} \gamma_j^{(i)}(x_i)$
$(P \cup P $	Typical approach to generative modeling: - Estimate prior on labels $P(y)$	Predict: $y = sign(f(x)) = sign(w^T x + w_0)$ $w = \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu}); w_0 = \frac{1}{2}(\hat{\mu}^T \hat{\Sigma}^{-1} \hat{\mu} \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$	$\Sigma_{j}^{(t)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})(x_{i} - \mu_{j}^{(t)})^{T}}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})} \{+\nu^{2} \mathbb{I}\}$
P(y x, w) iid Gaussian, prior $P(w)$ Gaussian)	- Estimate cond. distr. $P(x y)$ for each class y	$w - Z = (\mu_{+} - \mu_{-}), w_{0} - \frac{1}{2}(\mu_{-}Z = \mu_{-} - \mu_{+}Z = \mu_{+})$ Outlier Detection	(1)
Logistic regression	- Obtain predictive distr. using Bayes' rule: $P(v)P(x v) = P(x,v) = P(x,v) = P(x,v)$	$P(x) = \sum_{v=1}^{c} P(y)P(x y) = \sum_{v} \hat{p}_{v} \mathcal{N}(x \hat{\mu}_{v}, \hat{\Sigma}_{v}) \le \tau$	SSL w/ GMMs: labeled p.: y_i : $\gamma_j^{(t)}(x_i) = 1[j = y_i]$
Assume iid Bernoulli noise instead of Gauss. $P(y x, w) = Ber(y; \sigma(w^T x)) = \frac{1}{1 + exp(-yw^T x)}$	$P(y x) = \frac{P(y)P(x y)}{P(x)} = \frac{P(x,y)}{P(x)}, P(x) = \sum_{y} P(x,y)$	Latent: Missing Data (Gaussian distr.)	unl. p.: $\gamma_i^{(t)}(x_i) = P(Z = j x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$
$l_{logistic}(w; x_i, y_i) = log(1 + exp(-y_i w^T x_i))$	Example MLE for P(y) Want: $P(Y = 1) = p, P(y = -1) = 1 - p$	Mixture modeling $P(x \theta) = P(x \mu; \Sigma, w)$	Additions: small variance & high bias \rightarrow too
3	Given: $D = \{(x_1, y_1),, (x_n, y_n)\}$	1)Model each cluster j as prob. distr. $P(x \theta_j)$	simple model CARLET $n+2p-f$
$\nabla_{w} l(w) = \frac{(-y_{i}x_{i})}{1 + exp(+y_{i}w^{T}x_{i})} = P(Y = -y x, w)(-y_{i}x_{i})$	$P(D p) = \prod_{i=1}^{n} p^{1[y_i=+1]} (1-p)^{1[y_i=-1]}$	2)data iid, lklh.: $P(D \theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j P(x_i \theta_j)$	CNN filter output size: $L = \frac{n+2p-f}{s} + 1$
Example: MLE for logistic regression	$= p^{n_+} (1-p)^{n}$, where $n_+ = \#$ of $y = +1$	3) θ should minimize neg log-likelihood:	
$\underset{\text{argmin}_{w}}{\operatorname{argmax}_{w}} P(y_{1:n} w, x_{1:n})$ $= \underset{\text{argmin}_{w}}{\operatorname{argmin}_{w}} - \sum_{i=1}^{n} log P(y_{i} w, x_{i})$	$\frac{\partial}{\partial p} log P(D p) = n_{+} \frac{1}{p} - n_{-} \frac{1}{1-p} \stackrel{!}{=} 0 \Rightarrow p = \frac{n_{+}}{n_{+} + n_{-}}$	$\theta^* = \underset{\theta}{\min} L(D; \theta) = \underset{\theta}{\min} - \sum_i log \sum_j w_j P(x_i \theta_j)$	
$= \underset{n}{\operatorname{argmin}}_{\mathbf{w}} \sum_{i=1}^{n} log(1 + exp(-y_i \mathbf{w}^T x_i))$	Example MLE for $P=(x y)$	Ex: $P(x \theta) = \sum_{i} w_{i} \mathcal{N}(x; \mu_{i}, \sum_{i}), P(z_{i} = j) = w_{j}$	
$\hat{R}(w) = \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i)) \text{ (neg log l. f.)}$	Assume: $P(X = x_i y) = \mathcal{N}(x_i; \mu_{i,y}, \sigma_{i,y}^2)$	$\Sigma w_i = 1$, $P(z, x) = w_z \mathcal{N}(x \mu_z, \Sigma_z)$	
Logistic regression and regularization	Given: $D_{x_i y} = \{x, \text{ s.t. } x_{j,i} = x, y_i = y\}$	Gaussian-Mixture Bayes classifiers Estimate class prior $P(y)$; Est. cond. distr. for	
$\min \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \lambda(\ w\ _1 or \ w\ _2^2)$	Thus MLE yields: $\hat{\mu}_{i,y} = \frac{1}{n_v} \sum_{x \in D_{x; v}} x;$	each class: $P(x y) = \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$	
SGD for logistic regression	$\hat{\sigma}_{i,y}^{2} = \frac{1}{n_{v}} \sum_{x \in D_{x_{i} y}} (x - \hat{\mu}_{i,y})^{2}$		
Update $w \leftarrow w + \eta_t yx \hat{P}(Y = -y w,x)$	$\begin{array}{ccc} c_{i,y} & c_{i,y} & c_{i,y} & c_{i,y} \\ \hline \textbf{Deriving decision rule} \end{array}$	$P(y x) = \frac{1}{P(x)}p(y)\sum_{j=1}^{k_{y}} w_{j}^{(y)} \mathcal{N}(x; \mu_{j}^{(y)}, \Sigma_{j}^{(y)})$	
L2 regularized logistic regression:	P(y x) = $\frac{1}{Z}P(y)P(x y)$, $Z = \sum_{v} P(y)P(x y)$	Hard-EM algorithm	
Update $w \leftarrow w(1 - 2\lambda \eta_t) + \eta_t y x \hat{P}(Y = -y w,x)$	· · · · · · · · · · · · · · · · · · ·	Initialize parameters $\theta^{(0)}$	
Multiclass Logistic Regression	$y = \operatorname{argmax}_{y'} P(y' x) = \operatorname{argmax}_{y'} P(y') \prod_{i=1}^{d} P(x_i y)$		
$P(Y = i x, w_1,, w_c) = exp(w_i^T x) / \sum_{j=1}^{c} exp(w_j^T x)$	$= \operatorname{argmax}_{y'} log P(y') + \sum_{i=1}^{d} log P(x_i y')$	E: $z_i^{(t)} = \operatorname{argmax}_z P(z x_i, \theta^{(t-1)}) =$	