12: Ghosts & Differential Ghosts

Logical Foundations of Cyber-Physical Systems

André Platzer

- Learning Objectives
- Recap: Proofs for Differential Equations
- A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Proving Bouncing Balls with Sneaky Solutions
 - Differential Ghosts of Time
 - Constructing Differential Ghosts
- Differential Ghosts
 - Substitute Ghosts
 - Solvable Ghosts
 - Limit Velocity of an Aerodynamic Ball
- Summary

- Learning Objectives
- 2 Recap: Proofs for Differential Equations
- A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Proving Bouncing Balls with Sneaky Solutions
 - Differential Ghosts of Time
 - Constructing Differential Ghosts
- Differential Ghosts
 - Substitute Ghosts
 - Solvable Ghosts
 - Limit Velocity of an Aerodynamic Ball
- 5 Summary

R Learning Objectives

Ghosts & Differential Ghosts

rigorous reasoning about ODEs extra dimensions for extra invariants invent dark energy intuition for differential invariants states and proofs verify CPS models at scale

none: ghosts are for proofs!

relations of state extra ghost state CPS semantics

Learning Objectives

Ghosts & Differential Ghosts

rigorous reasoning about ODEs extra dimensions for extra invariants invent dark energy intuition for differential invariants states and proofs verify CPS models at scale

mark ghosts in models syntax of models solutions of ODEs

relations of state extra ghost state **CPS** semantics

- Recap: Proofs for Differential Equations
- - Proving Bouncing Balls with Sneaky Solutions
- - Substitute Ghosts

 - Limit Velocity of an Aerodynamic Ball

Differential Invariants for Differential Equations

Differential Weakening

$$\frac{Q \vdash F}{P \vdash [x' = f(x) \& Q]F}$$

$$\frac{Q \vdash [x' := f(x)](F)'}{F \vdash [x' = f(x) \& Q]F}$$

Differential Cut

$$\frac{F \vdash [x' = f(x) \& Q] C F \vdash [x' = f(x) \& Q \land C] F}{F \vdash [x' = f(x) \& Q] F}$$

DW
$$[x' = f(x) \& Q]F \leftrightarrow [x' = f(x) \& Q](Q \rightarrow F)$$

DI
$$[x' = f(x) \& Q]F \leftarrow (Q \rightarrow F \land [x' = f(x) \& Q](F)')$$

DC
$$([x' = f(x) \& Q]F \leftrightarrow [x' = f(x) \& Q \land C]F) \leftarrow [x' = f(x) \& Q]C$$

Differential Invariants for Differential Equations

Differential Weakening

$$\frac{Q \vdash F}{P \vdash [x' = f(x) \& Q]F}$$

Differential Invariant

$$\frac{Q \vdash [x' := f(x)](F)'}{F \vdash [x' = f(x) \& Q]F}$$

Differential Cut

$$\frac{F \vdash [x' = f(x) \& Q] C F \vdash [x' = f(x) \& Q \land C] F}{F \vdash [x' = f(x) \& Q] F}$$

DW
$$[x' = f(x) \& Q]F \leftrightarrow [x' = f(x) \& Q](Q \rightarrow F)$$

DI
$$[x' = f(x) \& Q]F \leftarrow (Q \rightarrow F \land [x' = f(x) \& Q](F)')$$

DC
$$([x' = f(x) \& Q]F \leftrightarrow [x' = f(x) \& Q \land C]F) \leftarrow [x' = f(x) \& Q]C$$

DE
$$[x' = f(x) \& Q]F \leftrightarrow [x' = f(x) \& Q][x' := f(x)]F$$

- A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Proving Bouncing Balls with Sneaky Solutions
 - Differential Ghosts of Time
 - Constructing Differential Ghosts
- - Substitute Ghosts

 - Limit Velocity of an Aerodynamic Ball

iG
$$\frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta}$$
 (y new)

$$\rightarrow R$$
 $\vdash xy - 1 = 0 \rightarrow [x' = x, y' = -y]xy = 1$

iG
$$\frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta}$$
 (y new)

$$\frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{\vdash xy - 1 = 0 \rightarrow [x' = x, y' = -y]xy = 1}$$

$$iG \frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta} (y \text{ new})$$

discrete ghost c remembers function of old state

$$[:=]= \frac{xy - 1 = 0 \vdash [c := xy][x' = x, y' = -y]xy = 1}{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}$$

$$\to R \frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{\vdash xy - 1 = 0 \to [x' = x, y' = -y]xy = 1}$$

$$\text{iG } \frac{\Gamma \vdash [y := e] \rho, \Delta}{\Gamma \vdash \rho, \Delta} \quad (y \text{ new}) \qquad \qquad \rho \leftrightarrow [y := e] \rho \text{ by } [:=] \\ [:=]_{=} \frac{\Gamma, y = e \vdash \rho(y), \Delta}{\Gamma \vdash [x := e] \rho(x), \Delta}$$

$$\frac{\text{MR}}{[:=]_{=}} \frac{xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]xy = 1}{xy - 1 = 0 \vdash [c := xy][x' = x, y' = -y]xy = 1}$$

$$\xrightarrow{\text{IG}} \frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{+xy - 1 = 0 \rightarrow [x' = x, y' = -y]xy = 1}$$

$$\text{iG } \frac{\Gamma \vdash [y := e] \rho, \Delta}{\Gamma \vdash \rho, \Delta} \quad (y \text{ new}) \qquad \qquad \rho \leftrightarrow [y := e] \rho \text{ by } [:=] \\ [:=]_{=} \frac{\Gamma, y = e \vdash \rho(y), \Delta}{\Gamma \vdash [x := e] \rho(x), \Delta} (y \text{ new})$$

$$\frac{xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]c = xy}{xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]xy = 1}$$

$$\stackrel{\text{IS}}{:=]=} xy - 1 = 0 \vdash [c := xy][x' = x, y' = -y]xy = 1$$

$$xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1$$

$$\vdash xy - 1 = 0 \to [x' = x, y' = -y]xy = 1$$

$$\text{iG } \frac{\Gamma \vdash [y := e] \rho, \Delta}{\Gamma \vdash \rho, \Delta} \quad (y \text{ new}) \\ [:=]_{=} \frac{\Gamma, y = e \vdash \rho(y), \Delta}{\Gamma \vdash [x := e] \rho(x), \Delta} (y \text{ new})$$

$$\text{iG } \frac{\Gamma \vdash [y := e] \rho, \Delta}{\Gamma \vdash \rho, \Delta} \quad (y \text{ new}) \\ [:=]_{=} \frac{\Gamma, y = e \vdash \rho(y), \Delta}{\Gamma \vdash [x := e] \rho(x), \Delta} (y \text{ new})$$

$$\text{iG } \frac{\Gamma \vdash [y := e] \rho, \Delta}{\Gamma \vdash \rho, \Delta} \quad (y \text{ new}) \\ [:=]_{=} \frac{\Gamma, y = e \vdash \rho(y), \Delta}{\Gamma \vdash [x := e] \rho(x), \Delta} (y \text{ new})$$

Quantum's Back for a Differential Invariant Proof

$$\mathbb{R} \frac{x}{x \ge 0 \vdash 2gv = -2v(-g)} \\ \stackrel{\text{(i)}}{x \ge 0 \vdash [x' := v][v' := -g]} 2gx' = -2vv' \\ \frac{2gx = 2gH - v^2 \vdash [x'' = -g \& x \ge 0] 2gx = 2gH - v^2}{2gx = 2gH - v^2 \vdash [x'' = -g \& x \ge 0](2gx = 2gH - v^2 \land x \ge 0)} \\ \frac{2gx = 2gH - v^2 \vdash [x'' = -g \& x \ge 0](2gx = 2gH - v^2 \land x \ge 0)}{2gx = 2gH - v^2 \land x \ge 0}$$

No solutions but still a proof.

Simple proof with simple arithmetic.

Independent proofs for independent questions.

Quantum's Back for a Differential Invariant Proof

$$\mathbb{R} \frac{x}{x \ge 0 \vdash 2gv = -2v(-g)} \\ \stackrel{\text{(i)}}{x \ge 0 \vdash [x' := v][v' := -g]} 2gx' = -2vv' \\ \frac{2gx = 2gH - v^2 \vdash [x'' = -g \& x \ge 0] 2gx = 2gH - v^2}{2gx = 2gH - v^2 \vdash [x'' = -g \& x \ge 0](2gx = 2gH - v^2 \land x \ge 0)} \\ \frac{2gx = 2gH - v^2 \vdash [x'' = -g \& x \ge 0](2gx = 2gH - v^2 \land x \ge 0)}{2gx = 2gH - v^2 \land x \ge 0}$$

No solutions but still a proof.

Simple proof with simple arithmetic.

Independent proofs for independent questions.

But need to have the right invariant.

$$A \vdash [x'' = -g \& x \ge 0] B(x,v)$$

$$A \equiv 0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0$$

$$B(x,v) \equiv 0 \le x \land x \le H$$

$$x'' = -g \equiv \{x' = v, v' = -g\}$$

Solution:

$$x - v = 0$$

$$A \vdash [x'' = -g \& x \ge 0]B(x,v)$$

$$A \equiv 0$$

$$B(x,v) \equiv 0$$

$$x'' = -g \equiv \{x' = v, v' = -g\}$$

Solution:

$$x(t) = x + vt - \frac{g}{2}t^{2}$$

$$v(t) = v - gt$$

$$A \vdash [x'' = -g \& x \ge 0]B(x,v)$$

$$A \equiv \text{ redacted}$$

$$B(x,v) \equiv \text{ redacted}$$

$$x'' = -g \equiv \{x' = v, v' = -g\}$$

$$x(t) = x + vt - \frac{g}{2}t^{2}$$

$$v(t) = v - gt$$

$$A \vdash [x'' = -g \& x \ge 0]B(x,v)$$

$$A \equiv \text{ redacted}$$

$$B(x,v) \equiv \text{ redacted}$$

$$x'' = -g \equiv \{x' = v, v' = -g\}$$

Solution: How to use a solution without really trying solution axiom [']

$$x(t) = x + vt - \frac{g}{2}t^2$$
 solution of ODE invariant along ODE $\mathcal{N}(t) = v - gt$

Can't just say
$$x(t)$$

$$A \vdash [x'' = -g \& x \ge 0]B(x,v)$$

 $A \equiv \text{redacted}$

$$B(x,v) \equiv \text{redacted}$$

$$x''=-g\equiv\{x'=v,v'=-g\}$$

$$x = x + vt - \frac{g}{2}t^{2}$$

$$v = v - gt$$

$$A \vdash [x'' = -g \& x \ge 0]B(x,v)$$

$$A \equiv \text{ redacted}$$

$$B(x,v) \equiv \text{ redacted}$$

$$x'' = -g \equiv \{x' = v, v' = -g\}$$

$$x = x_0 + v_0 t - \frac{g}{2} t^2$$
 $v = v_0 - gt$ initial velocity v_0 before ODE
$$A \vdash [x'' = -g \& x \ge 0] B(x,v)$$

$$A \equiv \text{ redacted}$$

$$B(x,v) \equiv \text{ redacted}$$

$$x'' = -q \equiv \{x' = v, v' = -q\}$$

$$x = x_0 + v_0 t - \frac{g}{2}t^2$$

 $v = v_0 - gt$ initial velocity v_0 before ODE How?
 $A \vdash [x'' = -g \& x \ge 0]B(x,v)$
 $A \equiv \text{ redacted}$
 $B(x,v) \equiv \text{ redacted}$
 $x'' = -g \equiv \{x' = v, v' = -g\}$

iG

André Platzer (CMU)

 $A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x,v)$

$$\frac{[:=]}{d!} \frac{x \ge 0 \vdash [v' := -g][t' := 1]v' = -t'g}{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]v = v_0 - tg}$$

$$\begin{array}{c|c} & \text{iG} & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x, v) \\ & & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x, v) \\ & & A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x, v) \end{array}$$

$$\frac{\mathbb{R}}{x \ge 0 \vdash -g = -1g}$$

$$\frac{x \ge 0 \vdash [v' := -g][t' := 1]v' = -t'g}{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]v = v_0 - tg}$$

$$\begin{array}{c|c} \text{iG} & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x, v) \\ \hline & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x, v) \\ \hline & A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x, v) \\ \end{array}$$

$$\mathbb{R} \frac{x}{x \ge 0 \vdash -g = -1g} \\ \underset{\text{dl}}{\overset{*}{|z|}} \frac{x \ge 0 \vdash [v' := -g][t' := 1]v' = -t'g}{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]v = v_0 - tg}$$

$$\frac{dC}{dC} \frac{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v)}{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v)}$$

$$\frac{dC}{dC} \frac{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v)}{A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x,v)}$$

$$\mathbb{R} \frac{x}{x \ge 0 \vdash -g = -1g} \\ \underset{\text{dl}}{\overset{*}{|x \ge 0 \vdash |y':=-g|}} \frac{x \ge 0 \vdash [v':=-g][t':=1]v' = -t'g}{A \vdash [v_0:=v][x''=-g,t'=1 \& x \ge 0]v = v_0 - tg}$$

$$\frac{\mathsf{dC}}{\mathsf{iG}} \frac{A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x, v)}{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x, v)}$$

$$\frac{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x, v)}{A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x, v)}$$

$$\begin{array}{c|c} \text{dl} & A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]x = x_0 + v_0 t - \frac{g}{2}t^2 \\ \hline \text{dC} & A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x, v) \\ \hline \text{dC} & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x, v) \\ \hline \text{dC} & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x, v) \\ \hline \text{dC} & A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x, v) \\ \hline \end{array}$$

 $A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2]B(x,v)$

$$A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2]B(x, v)$$

$$\begin{array}{c} [:=] \\ x \geq 0 \land v = v_0 - tg \vdash [x':=v][t':=1]x' = v_0t' - 2\frac{g}{2}tt' \\ \text{dC} \\ \xrightarrow{\text{dC}} \\ \text{iG} \\ \xrightarrow{\text{dC}} \\ \xrightarrow{\text{dC}} \\ A \vdash [x_0:=x][v_0:=v][x''=-g,t'=1 \& x \geq 0 \land v = v_0 - tg]x = x_0 + v_0t - \frac{g}{2}t^2 \trianglerighteq \\ \xrightarrow{\text{dC}} \\ \xrightarrow{\text{$$

$$\begin{array}{c} \text{id} \\ \overline{x \geq 0 \land v = v_0 - tg} \vdash v = v_0 - 2\frac{g}{2}t \\ \text{i=} \\ \underline{x \geq 0 \land v = v_0 - tg} \vdash [x' := v][t' := 1]x' = v_0t' - 2\frac{g}{2}tt' \\ \text{dl} \\ \overline{A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \geq 0 \land v = v_0 - tg]x = x_0 + v_0t - \frac{g}{2}t^2 \triangleright } \\ \text{dC} \\ \overline{A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \geq 0 \land v = v_0 - tg]B(x, v)} \\ \text{iG} \\ \overline{A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \geq 0 \land v = v_0 - tg]B(x, v)} \\ \end{array}$$

 $A \vdash [v_0 := v][x'' = -q, t' = 1 \& x > 0]B(x,v)$

 $A \vdash [x'' = -a, t' = 1 \& x > 0]B(x,y)$

 $A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2]B(x,v)$

dC

iG

$$A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2]B(x,v)$$

$$*$$

$$x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t$$

$$\exists x \ge 0 \land v = v_0 - tg \vdash [x' := v][t' := 1]x' = v_0 t' - 2\frac{g}{2}tt'$$

$$\exists A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]x = x_0 + v_0 t - \frac{g}{2}t^2 \triangleright 0$$

$$\exists A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v)$$

$$\exists A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v)$$

$$\exists A \vdash [x'' = -g, t' = 1 \& x \ge 0]B(x,v)$$

$$\frac{x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2} t^2 \vdash B(x, v) }{A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2} t^2]B(x, v)}$$

$$*$$

$$\frac{id}{x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2} t}$$

$$\frac{|x|}{|x|} \frac{x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2} t}{|x|} \frac{|x|}{|x|} \frac{x \ge 0 \land v = v_0 - tg \vdash [x' := v][t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}{|x|} \frac{|x|}{|x|} \frac{|x|}{|$$

$$x \geq 0 \land v = \underbrace{v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2} t^2 \vdash 2gx = 2gH - v^2 \land x}_{X \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2} t^2 \vdash B(x,v)}$$

$$A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2} t^2]B(x,v)$$

$$* \underbrace{x \geq 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2} t}_{X \geq 0 \land v = v_0 - tg \vdash v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} tt'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'}_{X \geq 0 \land v = v_0 - tg} \underbrace{[t' := 1]x' = v_0 t' - 2\frac{g}{2} t'$$

$$\begin{array}{c} = & \begin{array}{c} = & \begin{array}{c} = & \begin{array}{c} = & \begin{array}{c} & \begin{array}{c} = & \begin{array}{c} = & \begin{array}{c} \\ \wedge \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} x \geq 0, v = v_0 - tg, x = x_0 + v_0 t - \frac{g}{2} \, t^2 \vdash 2gx = 2gH - v^2 \wedge x \geq 0 \\ \hline x \geq 0 \wedge v = v_0 - tg \wedge x = x_0 + v_0 t - \frac{g}{2} \, t^2 \vdash 2gx = 2gH - v^2 \wedge x \geq 0 \\ \hline x \geq 0 \wedge v = v_0 - tg \wedge x = x_0 + v_0 t - \frac{g}{2} \, t^2 \vdash B(x,v) \end{array} \end{array}$$

$$\begin{array}{c} \text{dW} \\ \hline A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \,\&\, x \geq 0 \wedge v = v_0 - tg \wedge x = x_0 + v_0 t - \frac{g}{2} \, t^2]B(x,v) \end{array} \\ \\ \stackrel{\text{id}}{\underset{\text{dC}}{\text{dI}}} \begin{array}{c} \times \\ \hline x \geq 0 \wedge v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2} \, t \\ \hline A \vdash [x_0 := x][v_0 := v][x'' = -g, t' - 2\frac{g}{2} \, tt' \\ \hline A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \,\&\, x \geq 0 \wedge v = v_0 - tg] B(x,v) \end{array} \\ \stackrel{\text{dC}}{\underset{\text{dC}}{\text{dC}}} \begin{array}{c} A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \,\&\, x \geq 0 \wedge v = v_0 - tg] B(x,v) \\ \hline \underset{\text{dC}}{\underset{\text{dC}}{\text{dC}}} \\ A \vdash [v_0 := v][x'' = -g, t' = 1 \,\&\, x \geq 0 \,\&\, b = v_0 - tg] B(x,v) \end{array} \\ \begin{array}{c} A \vdash [v_0 := v][x'' = -g, t' = 1 \,\&\, x \geq 0] B(x,v) \\ \hline A \vdash [x'' = -g, t' = 1 \,\&\, x \geq 0] B(x,v) \end{array} \end{array}$$

$$\begin{array}{c} = & \begin{array}{c} & \begin{array}{c} = & \begin{array}{c} = & \\ = & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} x \geq 0, v = v_0 - tg, x = x_0 + v_0 t - \frac{g}{2} \, t^2 + 2gx = 2gH - \left(v_0 - tg\right)^2 \wedge x \geq 0 \\ & \begin{array}{c} x \geq 0, v = v_0 - tg, x = x_0 + v_0 t - \frac{g}{2} \, t^2 + 2gx = 2gH - v^2 \wedge x \geq 0 \\ \hline \\ x \geq 0 \wedge v = v_0 - tg \wedge x = x_0 + v_0 t - \frac{g}{2} \, t^2 + 2gx = 2gH - v^2 \wedge x \geq 0 \\ \hline \\ x \geq 0 \wedge v = v_0 - tg \wedge x = x_0 + v_0 t - \frac{g}{2} \, t^2 + B(x, v) \\ \hline \\ A \vdash \left[x_0 := x\right] \left[v_0 := v\right] \left[x'' = -g, t' = 1 \, \& \, x \geq 0 \wedge v = v_0 - tg \wedge x = x_0 + v_0 t - \frac{g}{2} \, t^2\right] B(x, v) \\ \\ & \stackrel{\text{id}}{=} & \begin{array}{c} \\ x \geq 0 \wedge v = v_0 - tg \wedge v = v_0 - 2\frac{g}{2} \, t \\ \hline \\ \text{dl} \\ \text{dl} \\ \text{dl} \\ \text{dC} \\ & \begin{array}{c} \\ A \vdash \left[x_0 := x\right] \left[v_0 := v\right] \left[x'' = -g, t' - 1 \, \& \, x \geq 0 \wedge v = v_0 - tg\right] B(x, v) \\ \hline \\ \text{dC} \\ \text{dC}$$

$$\begin{array}{c} \text{WL} \\ \hline \text{AR} \\ \hline \\ \text{AR} \\ \hline \\ & x \geq 0 \vdash 2g(x_0 + v_0 t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 & \text{id} \\ \hline \\ & x \geq 0 \vdash 2g(x_0 + v_0 t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \geq 0 \\ \hline \\ \text{WL} \\ \hline \\ & x \geq 0, v = v_0 - tg, x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0 t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \geq 0 \\ \hline \\ & x \geq 0, v = v_0 - tg, x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \geq 0 \\ \hline \\ \text{AL} \\ \hline \\ & x \geq 0, v = v_0 - tg, x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = x_0 + v_0 t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \geq 0 \\ \hline \\ & x \geq 0 \land v = v_0 - tg \land x = v_0 + v_$$

$$\begin{split} &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - v_0^2 + 2v_0tg - t^2g^2 \\ &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ \hline & x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ \hline & x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ \hline & x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ \hline & x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ \hline & x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ \hline & x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ \hline & x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ \hline & x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ \hline & x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ \hline & x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 8(x,v) \\ \hline & dW \hline & x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 8(x,v) \\ \hline & x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ \hline & x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ \hline & x \ge 0 \land v = v_0 - tg \vdash x' = v][t' := 1]x' = v_0t' - 2\frac{g}{2}tt' \\ \hline & dC & A \vdash [x_0 := x][v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v) \\ \hline & dC & A \vdash [v_0 := v][x'' = -g, t' = 1 \& x \ge 0]B(x,v) \\ \hline & dC & A \vdash [v_0$$

$$\begin{split} &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - v_0^2 + \frac{g}{2}v_0^t g - t^2g^2 \\ &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash x' := v][t' := 1]x' = v_0t' - 2\frac{g}{2}tt' \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash x' := v][t' := 1]x' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg][x'' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 \land$$

$$\begin{split} &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - v_0^2 + 2v_0tg - t^2g^2 \\ &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\land x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\lor x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\lor x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash x' := v][t' := 1]x' = v_0t' - 2\frac{g}{2}tt' \quad \text{Not initially true} \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash x' := v][t' := 1]x' = -g, t' = 1 \& x \ge 0 \land v = v_0 - tg]B(x,v) \\ &\vdash x \ge 0 \land v = v_0 \land v = v_0$$

$$\begin{split} &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - v_0^2 + 2v_0tg - t^2g^2 \\ &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\land x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\lor x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\lor x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash x' = v_0t' = 1 \& x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 - tg \mid x = x_0 + v_0t - \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 + tg \mid x = x_0 + v_0t + \frac{g}{2}t^2 \mid x \ge 0 \land v = v_0 + tg \mid x =$$

$$\begin{split} &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - v_0^2 + 2v_0tg - t^2g^2 \\ &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\land x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\downarrow x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\downarrow x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t + \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 + tg \land x = t^2 \vdash x = t^2 \vdash$$

$$\begin{split} &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - v_0^2 + 2v_0tg - t^2g^2 \\ &\vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\vdash x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\land x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \\ &\lor x \ge 0 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\lor x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2g(x_0 + v_0t - \frac{g}{2}t^2) = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - (v_0 - tg)^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0, v = v_0 - tg, x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash 2gx = 2gH - v^2 \land x \ge 0 \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \land x = x_0 + v_0t - \frac{g}{2}t^2 \vdash B(x,v) \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 - 2\frac{g}{2}t \\ &\vdash x \ge 0 \land v = v_0 - tg \vdash v = v_0 + v_0$$

Why does the proof with ghost solutions need t'=1 in the model?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

What could possibly go wrong?

 \times Cannot add t' = 1 to x' = v, t' = 2

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

- \times Cannot add t' = 1 to x' = v, t' = 2
- \times Cannot add t' = 1 to x' = v, v' = t

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

- \times Cannot add t'=1 to x'=v, t'=2
- \times Cannot add t'=1 to x'=v, v'=t
- \checkmark Can add t' = 1 to x' = v, v' = -a

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

- \times Cannot add t'=1 to x'=v, t'=2
- \times Cannot add t'=1 to x'=v, v'=t
- \times Can add t'=1 to x'=v, v'=-g unless e.g. postcondition P reads t

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta} \quad (t \text{ fresh})$$

What could possibly go wrong?

- \times Cannot add t'=1 to x'=v, t'=2
- \times Cannot add t'=1 to x'=v, v'=t
- \times Can add t'=1 to x'=v, v'=-g unless e.g. postcondition P reads t

This is a perfectly harmless proof rule with fresh t.

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta} \quad (t \text{ fresh})$$

What could possibly go wrong?

- \times Cannot add t' = 1 to x' = v, t' = 2
- \times Cannot add t' = 1 to x' = v, v' = t
- \times Can add t' = 1 to x' = v, v' = -g unless e.g. postcondition P reads t

This is a perfectly harmless proof rule with fresh t.

But it's too specific and cannot add any other ODEs.

Differential Ghos

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$$

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta} \quad (t \text{ fresh})$$

Differential Ghost
$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$$

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta} \quad (t \text{ fresh})$$

Get differential ghosts of time by axiom DG, even with clever initial t = 0:

Differential Ghost
$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$$

Example ()

$$|x>0\vdash [x'=-x]x>0$$

Example ()

$$\frac{|x'|}{|x|} \frac{\vdash [x' := -x]x' > 0}{x > 0 \vdash [x' = -x]x > 0}$$

Example ()

$$\begin{array}{c|c}
 & & \vdash -x > 0 \\
 & & \vdash [x' := -x]x' > 0 \\
 & & \downarrow x > 0 \vdash [x' = -x]x > 0
\end{array}$$

Example (Cannot prove like this)

Example (Cannot prove like this)

$$\begin{array}{c} \text{not valid} \\ & \vdash -x > 0 \\ \text{[:=]} \\ \hline & \vdash [x' := -x]x' > 0 \\ \hline & x > 0 \vdash [x' = -x]x > 0 \end{array}$$

Matters get worse over time in this dynamics

Example (Spooky proof)

DG
$$x > 0 \vdash \exists y \left[x' = -x, \frac{y'}{2}\right] x > 0$$
$$x > 0 \vdash \left[x' = -x\right] x > 0$$

MR
$$xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0$$

 $\exists R, cut$ $x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}]x > 0$
 $x > 0 \vdash [x' = -x]x \not> 0$

differential ghost: dream me up

$$\frac{\mathbb{R} xy^{2} = 1 \vdash x > 0}{\text{MR}} \frac{xy^{2} = 1 \vdash [x' = -x, y' = \frac{y}{2}]xy^{2} = 1}{xy^{2} = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}$$

$$\frac{\exists \mathsf{R,cut}}{\mathsf{DG}} \frac{x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}]x > 0}{x > 0 \vdash [x' = -x]x > 0}$$

$$\frac{\mathbb{R} \overline{xy^2 = 1 \vdash x > 0}}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]xy^2 = 1}$$

$$\frac{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}]x > 0}$$

$$x > 0 \vdash [x' = -x]x > 0$$

$$\frac{*}{Xy^{2}=1 \vdash x>0} \xrightarrow{\text{dl}} \frac{\vdash [x':=-x][y':=\frac{y}{2}]x'y^{2}+x2yy'=0}{xy^{2}=1 \vdash [x'=-x,y'=\frac{y}{2}]xy^{2}=1}$$

$$\frac{Xy^{2}=1 \vdash [x'=-x,y'=\frac{y}{2}]x>0}{xy^{2}=1 \vdash [x'=-x,y'=\frac{y}{2}]x>0}$$

$$\frac{Xy^{2}=1 \vdash [x'=-x,y'=\frac{y}{2}]x>0}{x>0 \vdash \exists y[x'=-x]x>0}$$

$$\begin{array}{c|c}
\mathbb{R} & \vdash -xy^2 + 2xy\frac{y}{2} = 0 \\
 & * & \vdash [x' := -x][y' := \frac{y}{2}]x'y^2 + x2yy' = 0 \\
& \text{MR} & xy^2 = 1 \vdash x > 0 & xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]xy^2 = 1 \\
& \Rightarrow xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0 \\
& \Rightarrow x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}]x > 0 \\
& \Rightarrow x > 0 \vdash [x' = -x]x > 0
\end{array}$$

Example (Spooky proof with counterweight ghost)

$$\mathbb{R} \frac{\frac{x}{ \vdash -xy^2 + 2xy\frac{y}{2} = 0}}{ \vdash [x' := -x][y' := \frac{y}{2}]x'y^2 + x2yy' = 0}$$

$$\mathbb{R} \frac{xy^2 = 1 \vdash x > 0}{ \vdash [x' = -x, y' = \frac{y}{2}]xy^2 = 1}$$

$$\frac{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{ \vdash [x' = -x, y' = \frac{y}{2}]x > 0}$$

$$\mathbb{R} \frac{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{ \vdash [x' = -x]x > 0}$$

$$\frac{x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}]x > 0}{ \vdash [x' = -x]x > 0}$$

Example (Spooky proof with counterweight ghost)

$$\mathbb{R} \frac{ \frac{ }{ \begin{array}{c} + \\ -xy^2 + 2xy\frac{y}{2} = 0 \\ \\ + \\ xy^2 = 1 \\ -xy^2 = 1 \\$$

Differential Ghosts: Proofs in Extra Dimensions

Example (Spooky proof with counterweight ghost)

$$\mathbb{R} \frac{\frac{x}{\vdash -xy^2 + 2xy\frac{y}{2} = 0}}{\frac{x}{\vdash -xy^2 + 2xy\frac{y}{2} = 0}}$$

$$\mathbb{R} \frac{\frac{x}{\vdash -xy^2 + 2xy\frac{y}{2} = 0}}{\frac{\vdash [x' := -x][y' := \frac{y}{2}]x'y^2 + x2yy' = 0}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]xy^2 = 1}}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}$$

$$\mathbb{R}_{\mathsf{R},\mathsf{cut}} \frac{x}{\vdash -xy} = \mathbb{R}_{\mathsf{R},\mathsf{cut}} \frac{x}{\vdash -xy} = \mathbb{R}_{\mathsf{R},\mathsf{c$$

Creative proofs with differential ghosts prove what we otherwise couldn't!

Differential Ghosts: Proofs in Extra Dimensions

Example (Spooky proof with counterweight ghost)

$$\mathbb{R} \frac{\frac{}{\vdash -xy^2 + 2xy\frac{y}{2} = 0}}{\vdash [x' := -x][y' := \frac{y}{2}]x'y^2 + x2yy' = 0}$$

$$\mathbb{R} \frac{\mathbb{R} xy^2 = 1 \vdash x > 0}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]xy^2 = 1}$$

$$\frac{\mathbb{R} xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}$$

$$\mathbb{R} \frac{\mathbb{R} xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}$$

$$\frac{\mathbb{R} xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{x > 0 \vdash [x' = -x]x > 0}$$

Creative proofs with differential ghosts prove what we otherwise couldn't!

Wait, are differential ghosts actually sound?

A Outline

- Learning Objectives
- Recap: Proofs for Differential Equations
- A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Proving Bouncing Balls with Sneaky Solutions
 - Differential Ghosts of Time
 - Constructing Differential Ghosts
- Differential Ghosts
 - Substitute Ghosts
 - Solvable Ghosts
 - Limit Velocity of an Aerodynamic Ball
- 5 Summary

Differential Ghos

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$$

Differential Ghos

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$$

Constructing Differential Ghosts

Differential Ghost

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$$

if new y' = g(x, y) has a global solution $y : [0, \infty) \to \mathbb{R}^n$

Differential Ghost

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P$$

Differential Ghost

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

Differential Ghost

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

P Differential Ghosts

Differential Ghost

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

Differential Auxiliary

dA
$$\frac{\vdash F \leftrightarrow \exists y \ G \ G \vdash [x' = f(x), y' = a(x)y + b(x) \& Q]G}{F \vdash [x' = f(x) \& Q]F}$$

Differential Ghosts

Differential Ghost

$$[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q]P, \Delta}{\Gamma \vdash [x' = f(x) \& Q]P, \Delta}$$

Differential Auxiliary

dA
$$\frac{\vdash F \leftrightarrow \exists y \ G \ G \vdash [x' = f(x), y' = a(x)y + b(x) \& Q]G}{F \vdash [x' = f(x) \& Q]F}$$

$$\frac{\exists y \ G \vdash F}{G \vdash F} \xrightarrow{\exists \mathsf{R}, \mathsf{cut}} \frac{F \vdash \exists y \ G \quad G \vdash [x' = f(x), y' = a(x)y + b(x)]G}{F \vdash \exists y [x' = f(x), y' = a(x)y + b(x)]G}$$

$$\frac{\mathsf{MR}}{F \vdash \exists y [x' = f(x), y' = a(x)y + b(x)]F}$$

$$\mathsf{DG}$$

$$F \vdash [x' = f(x)]F$$

What could possibly go wrong?

$$\frac{x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6}{x=0 \vdash \exists y [x'=1, y'=y^2+1] x \le 6}$$

$$\frac{x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6}{x=0 \vdash [x'=1] x \le 6}$$

What could possibly go wrong?

$$x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash \exists y [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash [x'=1] x \le 6$$

What could possibly go wrong? Explosive ghosts stop the world. Don't!

$$x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash \exists y [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash [x'=1] x \le 6$$

$$x > 0 \vdash [x' = -x]x > 0$$

$$\frac{\mathbb{R} + x > 0 \leftrightarrow \exists y \, xy^2 = 1}{xy^2 = 1} \quad xy^2 = 1 + [x' = -x, y' = \bigcirc]xy^2 = 1$$

$$x > 0 + [x' = -x]x > 0$$

$$\frac{*}{\mathbb{R} \vdash x > 0 \leftrightarrow \exists y \, xy^2 = 1} \stackrel{\text{dl}}{=} xy^2 = 1 \vdash [x' = -x, y' = \bigcirc]xy^2 = 1$$

$$x > 0 \vdash [x' = -x]x > 0$$

Substitute Ghosts

$$\frac{*}{\mathbb{R} \vdash x > 0 \leftrightarrow \exists y \, xy^2 = 1} \frac{\vdash [x' := -x][y' := \bigcirc]x'y^2 + x2yy' = 0}{xy^2 = 1 \vdash [x' = -x, y' = \bigcirc]xy^2 = 1}$$

$$\frac{\text{dA}}{x > 0 \vdash [x' = -x]x > 0}$$

Substitute Ghosts

$$+ \frac{xy^2 + 2xy}{ } = 0$$

$$* \qquad \vdash [x' := -x][y' := -x][x'y^2 + x2yy' = 0$$

$$* \qquad \forall xy^2 = 1 \quad \forall xy^2 = 1 \quad \exists xy^2 = 1 \quad$$

could prove if
$$= \frac{y}{2}$$

$$\vdash -xy^2 + 2xy = 0$$

$$\vdash [x' := -x][y' := -x][x'y^2 + x2yy' = 0$$

$$\vdash [x' := -x][y' := -x][xy^2 = 1$$

$$\vdash [x' = -x, y' = -x][xy^2 = 1$$

$$\vdash [x' = -x, y' = -x][xy^2 = 1$$

$$\vdash [x' = -x, y' = -x][xy^2 = 1$$

could prove if
$$\frac{\frac{y}{2}}{\frac{y}{2}} = \frac{\frac{y}{2}}{\frac{y}{2}}$$

$$\frac{+ -xy^2 + 2xy\frac{y}{2}}{\frac{y}{2}} = 0$$

$$\frac{x}{\frac{y}{2}} + x > 0 \leftrightarrow \exists y \, xy^2 = 1} \stackrel{\text{dl}}{=} xy^2 = 1 + [x' = -x, y' = \frac{y}{2}] xy^2 = 1$$

$$x > 0 \vdash [x' = -x]x > 0$$

This is a recipe for brewing suitable differential ghosts!

Function symbol j(y) can play the rôle of a substitute ghost

Function symbol j(y) can be substituted uniformly

could prove if
$$j(y) = \frac{y}{2}$$

$$\vdash -xy^2 + 2xyj(y) = 0$$

$$* \vdash [x' := -x][y' := j(y)]x'y^2 + x2yy' = 0$$

$$\stackrel{\mathbb{R}}{\vdash} x > 0 \leftrightarrow \exists y \, xy^2 = 1 \quad \forall xy^2 = 1 \vdash [x' = -x, y' = j(y)]xy^2 = 1$$

$$x > 0 \vdash [x' = -x]x > 0$$

Function symbol j(y) needs to be instantiated linearly in y

- 1 DG introduces time t, DC cuts solution in, that DI proves and
- 2 DW exports to postcondition
- inverse DC removes evolution domain constraints
- inverse DG removes original ODE
- **5** DS solves remaining ODE for time $[x'=c()]P \leftrightarrow \forall t \ge 0 [x := x+c()t]P$

$$\begin{array}{|c|c|c|} \hline R \\ \hline F \vdash \forall s \geq 0 \, (x_0 + \frac{a}{2} s^2 + v_0 s \geq 0) \\ \hline (i =) \hline F \vdash [\forall s \geq 0 \, [t := 0 + 1 s] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [t' = 1] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [t' = 1] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [t' = a, t' = 1] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [x' = v, v' = a, t' = 1] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at \land x = x_0 + \frac{a}{2} t^2 + v_0 t] x_0 + \frac{a}{2} t^2 + v_0 t \geq 0 \\ \hline C \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at \land x = x_0 + \frac{a}{2} t^2 + v_0 t] (x = x_0 + \frac{a}{2} t^2 + v_0 t \rightarrow x \geq 0) \\ \hline C \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at \land x = x_0 + \frac{a}{2} t^2 + v_0 t] x \geq 0 \\ \hline C \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at] x \geq 0 \\ \hline C \vdash [x' = v, v' = a, t' = 1] x$$

$$^{\rm dl} \; \overline{\phi \vdash [x' = v, v' = a, t' = 1] v = v_0 + at}$$

$$^{\text{dl}} \ \overline{\phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at] x = x_0 + \frac{a}{2}t^2 + v_0t}$$

$$\frac{dl}{\phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at] x = x_0 + \frac{a}{2}t^2 + v_0t}$$

dl
$$\phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at]x = x_0 + \frac{a}{2}t^2 + v_0t$$

$$\mathbb{R} \frac{\stackrel{*}{\vdash} a = a \cdot 1}{\vdash b = a \cdot 1} = \frac{1}{|a|} \frac{|a|}{|a|} \frac$$

$$\frac{d}{\phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at] x = x_0 + \frac{a}{2}t^2 + v_0t}$$

$$\mathbb{R} \frac{\stackrel{*}{\vdash} a = a \cdot 1}{\vdash b = a \cdot 1}$$

$$\stackrel{[:=]}{\vdash} \frac{\vdash [v' := a][t' := 1]v' = at'}{\phi \vdash [x' = v, v' = a, t' = 1]v = v_0 + at}$$

$$\begin{array}{c|c} \hline \vdash v = v_0 + at \to [x' := v][t' := 1]x' = att' + v_0t' \\ \hline \phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at]x = x_0 + \frac{a}{2}t^2 + v_0t \\ \end{array}$$

$$\mathbb{R} \frac{\stackrel{*}{\vdash} a = a \cdot 1}{\vdash a = a \cdot 1} \\ \stackrel{[:=]}{\vdash} \frac{\vdash [v' := a][t' := 1]v' = at'}{\phi \vdash [x' = v, v' = a, t' = 1]v = v_0 + at}$$

$$\mathbb{R} \frac{\stackrel{*}{\overline{\vdash} a = a \cdot 1}}{\stackrel{[:=]}{\vdash} |v' := a|[t' := 1]v' = at'} \frac{\vdash}{\phi \vdash [x' = v, v' = a, t' = 1]v = v_0 + at}$$

$$\mathbb{R} \xrightarrow{\vdash v = v_0 + at \to v = at \cdot 1 + v_0 \cdot 1} \\ \stackrel{[:=]}{\vdash v = v_0 + at \to [x' := v][t' := 1]x' = att' + v_0t'} \\ \xrightarrow{\text{dl}} \frac{\vdash v = v_0 + at \to [x' := v][t' := 1]x' = att' + v_0t'}{\phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at]x = x_0 + \frac{a}{2}t^2 + v_0t}$$

$$\mathbb{R} \frac{\stackrel{*}{\vdash} a = a \cdot 1}{\stackrel{[:=]}{\vdash} \frac{\vdash [v' := a][t' := 1]v' = at'}{\phi \vdash [x' = v, v' = a, t' = 1]v = v_0 + at}}$$

$$\mathbb{R} \frac{ }{ \begin{array}{c} + \\ \hline \vdash v = v_0 + at \to v = at \cdot 1 + v_0 \cdot 1 \\ \hline \\ \vdash v = v_0 + at \to [x' := v][t' := 1]x' = att' + v_0t' \\ \hline \\ \phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at]x = x_0 + \frac{a}{2}t^2 + v_0t \\ \hline \end{array} }$$

But ϕ needs $v = v_0 \land x = x_0$ initially for dI

$$\mathbb{R} \frac{\stackrel{*}{\overline{\vdash} a = a \cdot 1}}{\stackrel{[:=]}{\vdash} |v' := a|[t' := 1]v' = at'} \frac{\vdash}{\phi \vdash [x' = v, v' = a, t' = 1]v = v_0 + at}$$

$$\mathbb{R} \xrightarrow{\vdash v = v_0 + at \to v = at \cdot 1 + v_0 \cdot 1} \\ \stackrel{[:=]}{\vdash} \frac{\vdash v = v_0 + at \to [x' := v][t' := 1]x' = att' + v_0t'}{\phi \vdash [x' = v, v' = a, t' = 1 \& v = v_0 + at]x = x_0 + \frac{a}{2}t^2 + v_0t}$$

But ϕ needs $v = v_0 \land x = x_0$ initially for dI Discrete ghosts to the rescue: $[x_0 := x][v_0 := v] \dots$ who can remember initial value on demand.

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0$$
 $\rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0]$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0$$
 $\rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0]$

$$v' = 0$$
 iff $-g + rv^2 = 0$

Proposition (Aerodynamic velocity limits)

$$g>0 \land r>0$$
 $\rightarrow [x'=v, v'=-g+rv^2 \& x\geq 0 \land v\leq 0]$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

dA
$$\sqrt{y} > -\sqrt{g/r} \vdash [x' = v, v' = -g + rv^2] v > -\sqrt{g/r}$$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

$$\stackrel{\text{dl}}{=} \frac{\int_{y^2(v+\sqrt{g/r})=1}^{y^2(v+\sqrt{g/r})=1} - [x'=v,v'=-g+rv^2,y'=j(x,v,y)]}{v^2(v+\sqrt{g/r})=1} } |y^2(v+\sqrt{g/r})=1 }$$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

$$\begin{array}{c} \text{[i=]} \\ & \vdash [x':=v][v':=-g+rv^2][y':=j(x,v,y) \\ & \frac{1}{y^2(v+\sqrt{g/r})=1} \vdash [x'=v,v'=-g+rv^2,y'=j(x,v,y) \\ & \vdash [x'=v,v'=-g+rv^2,y'=j(x,v,y)] \\ & \vdash [x'=v,v'=-g+rv^2]v > -\sqrt{g/r} \\ \end{array}$$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

$$\frac{ \vdash -ry^2(v^2 - g/r) + y^2(-g + rv^2) = 0}{ \vdash 2y(-\frac{r}{2}(v - \sqrt{\frac{g}{r}})y)(v + \sqrt{\frac{g}{r}}) + y^2(-g + rv^2) = 0} \\ \vdash [x' := v][v' := -g + rv^2][y' := -\frac{r}{2}(v - \sqrt{\frac{g}{r}})y]2yy'(v + \sqrt{\frac{g}{r}}) + y^2v' = 0} \\ \stackrel{\text{dl}}{\underset{\text{dA}}{}} \frac{v^2(v + \sqrt{\frac{g}{r}}) = 1}{v > -\sqrt{\frac{g}{r}}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac{g}{r}} \vdash [x' = v, v' = -g + rv^2]v > -\sqrt{\frac{g}{r}} \\ \downarrow v > -\sqrt{\frac$$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

$$\begin{array}{c} * \\ \hline & \vdash -ry^2(v^2 - g/r) + y^2(-g + rv^2) = 0 \\ \hline & \vdash 2y(-\frac{r}{2}(v - \sqrt{g/r})y)(v + \sqrt{g/r}) + y^2(-g + rv^2) = 0 \\ \hline & \vdash [x' := v][v' := -g + rv^2][y' := -\frac{r}{2}(v - \sqrt{g/r})y]2yy'(v + \sqrt{g/r}) + y^2v' = 0 \\ \hline \text{dl} & \frac{y^2(v + \sqrt{g/r}) = 1}{v > -\sqrt{g/r}} \vdash [x' = v, v' = -g + rv^2]v' = -\frac{r}{2}(v - \sqrt{g/r})y]y^2(v + \sqrt{g/r}) = 1 \\ \hline \text{dl} & v > -\sqrt{g/r} \vdash [x' = v, v' = -g + rv^2]v' > -\sqrt{g/r} \\ \hline \end{array}$$

Proposition (Aerodynamic velocity limits)

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$

$$v'=0$$
 iff $-g+rv^2=0$ iff $v=\pm\sqrt{\frac{g}{r}}$

→ Outline

- Learning Objectives
- 2 Recap: Proofs for Differential Equations
- A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Proving Bouncing Balls with Sneaky Solutions
 - Differential Ghosts of Time
 - Constructing Differential Ghosts
- Differential Ghosts
 - Substitute Ghosts
 - Solvable Ghosts
 - Limit Velocity of an Aerodynamic Ball
- Summary

Differential Cut

Differential Invariant

Differential Cut

Differential Invariant

Differential Cut

Differential Invariant

Differential Cut

Differential Invariant

Differential Cut

Differential Cut

Differential Invariant

Differential Cut

Differential Invariant

Differential Cut

Differential Invariant

Differential Cut

Differential Invariant

$$\frac{Q \vdash [x' := f(x)](P)'}{P \vdash [x' = f(x) \& Q]P}$$

Differential Cut

$$\frac{P \vdash [x' = f(x) \& Q] C P \vdash [x' = f(x) \& Q \land C] P}{P \vdash [x' = f(x) \& Q] P}$$

Differential Ghost

$$\frac{P \leftrightarrow \exists y \, G \quad G \vdash [x' = f(x), y' = g(x, y) \& Q]G}{P \vdash [x' = f(x) \& Q]P}$$

if new y' = g(x, y) has long enough solution

- Appendix
 - Axiomatic Ghosts
 - Arithmetic Ghosts
 - Nondeterministic Assignments & Ghosts of Choice
 - Differential-Algebraic Ghosts

Air Traffic Control

Air Traffic Control

Verification?

looks correct

Verification?

looks correct NO!

Air Traffic Control

Verification?

looks correct NO!

Example ("Solving" differential equations)

$$\begin{aligned} x_1(t) &= \frac{1}{\omega\varpi} \left(x_1\omega\varpi\cos t\omega - v_2\omega\cos t\omega\sin\vartheta + v_2\omega\cos t\omega\cos t\varpi\sin\vartheta - v_1\varpi\sin t\omega \right. \\ &+ x_2\omega\varpi\sin t\omega - v_2\omega\cos\vartheta\cos t\varpi\sin t\omega - v_2\omega\sqrt{1-\sin\vartheta^2}\sin t\omega \\ &+ v_2\omega\cos\vartheta\cos t\omega\sin t\varpi + v_2\omega\sin\vartheta\sin t\omega\sin t\varpi \right) \dots \end{aligned}$$

Example ("Solving" differential equations)

$$\forall t \geq 0 \qquad \frac{1}{\omega \varpi} \left(x_1 \omega \varpi \cos t \omega - v_2 \omega \cos t \omega \sin \vartheta + v_2 \omega \cos t \omega \cos t \varpi \sin \vartheta - v_1 \varpi \sin t \omega \right. \\ + x_2 \omega \varpi \sin t \omega - v_2 \omega \cos \vartheta \cos t \varpi \sin t \omega - v_2 \omega \sqrt{1 - \sin \vartheta^2} \sin t \omega \\ + v_2 \omega \cos \vartheta \cos t \omega \sin t \varpi + v_2 \omega \sin \vartheta \sin t \omega \sin t \varpi \right) \dots$$

```
\forall R ts2
   ( 0 <= ts2 & ts2 <= t2 0
    -> ( (om 1)^-1
              * (omb 1)^-1
              * ( om 1 * omb 1 * x1 * cos(om 1 * ts2)
                 + \text{ om } 1 * \text{ v2} * \text{ cos}(\text{om } 1 * \text{ ts2}) * (1 + -1 * (\text{cos}(u))^2)^(1 / 2)
                 + -1 * omb 1 * v1 * sin(om 1 * ts2)
                 + om 1 * omb 1 * x2 * sin(om 1 * ts2)
                 + \text{ om } 1 * \text{ v2} * \text{ cos}(u) * \text{ sin}(\text{om } 1 * \text{ ts2})
                 + -1 * om 1 * v2 * cos(omb 1 * ts2) * cos(u) * sin(om 1 * ts2)
                 + om 1 * v2 * cos(om 1 * ts2) * cos(u) * sin(omb 1 * ts2)
                 + om 1 * v2 * cos(om 1 * ts2) * cos(omb 1 * ts2) * sin(u)
                 + om 1 * v2 * sin(om 1 * ts2) * sin(omb 1 * ts2) * sin(u)))
         ^2
        + ( (om 1)^-1
              * (omb 1)^-1
              * ( -1 * omb 1 * v1 * cos(om 1 * ts2)
                 + om 1 * omb 1 * x2 * cos(om 1 * ts2)
                 + \text{ omb } 1 * v1 * (\cos(\text{om } 1 * ts2))^2
                 + om 1 * v2 * cos(om 1 * ts2) * cos(u)
                 + -1 * om 1 * v2 * cos(om 1 * ts2) * cos(omb 1 * ts2) * cos(u)
                 + -1 * om 1 * omb 1 * x1 * sin(om 1 * ts2)
                 + -1
                  * om 1
                   * 172
                   * (1 + -1 * (\cos(u))^2)^(1 / 2)
                  * sin(om 1 * ts2)
                 + omb 1 * v1 * (sin(om 1 * ts2))^2
                 + -1 * om 1 * v2 * cos(u) * sin(om 1 * ts2) * sin(omb 1 * ts2)
                 + -1 * om 1 * v2 * cos(omb 1 * ts2) * sin(om 1 * ts2) * sin(u)
                 + om 1 * v2 * cos(om 1 * ts2) * sin(omb 1 * ts2) * sin(u)))
         ^2
       >= (p)^2,
t2 0 >= 0.
x1^2 + x2^2 >= (p)^2
==>
```

```
\forall R t7.
  (t7 >= 0
     ( (om 3)^-1
           * ( om 3
                * ( (om_1)^-1
                   * (omb 1)^-1
                   * ( om 1 * omb 1 * x1 * cos(om 1 * t2 0)
                      + om 1
                        * v2
                        * cos(om 1 * t2 0)
                        * (1 + -1 * (\cos(u))^2)^(1 / 2)
                      + -1 * omb 1 * v1 * sin(om 1 * t2 0)
                      + om 1 * omb 1 * x2 * sin(om 1 * t2 0)
                      + om 1 * v2 * cos(u) * sin(om 1 * t2 0)
                      + -1
                        * om 1
                       * v2
                       * cos(omb 1 * t2 0)
                       * cos(u)
                        * sin(om 1 * t2 0)
                      + om 1
                       * v2
                        * cos(om 1 * t2 0)
                       * cos(u)
                        * sin(omb 1 * t2 0)
                      + om 1
                        * v2
                        * cos(om 1 * t2 0)
                        * cos(omb 1 * t2 0)
                        * sin(u)
                      + om 1
                        * v2
                        * sin(om 1 * t2 0)
                        * sin(omb 1 * t2 0)
                        * sin(u)))
```

```
* cos(om 3 * t5)
+ v2
 * cos(om 3 * t5)
  * (1
    + -1
        * (\cos(-1 * om 1 * t2 0 + omb 1 * t2 0 + u + Pi / 4))^2)
  ^(1 / 2)
+ -1 * v1 * sin(om 3 * t5)
+ om 3
  * ( (om 1) ^-1
    * (omb 1)^-1
     * ( -1 * omb 1 * v1 * cos(om 1 * t2 0)
       + om 1 * omb 1 * x2 * cos(om 1 * t2 0)
       + omb 1 * v1 * (cos(om 1 * t2 0))^2
       + om 1 * v2 * cos(om 1 * t2 0) * cos(u)
       + -1
        * om 1
        * v2
        * cos(om 1 * t2 0)
        * cos(omb_1 * t2_0)
         * cos(u)
       + -1 * om 1 * omb 1 * x1 * sin(om 1 * t2 0)
        + -1
         * om 1
         * v2
         * (1 + -1 * (\cos(u))^2)^(1 / 2)
         * sin(om 1 * t2 0)
       + omb 1 * v1 * (sin(om 1 * t2 0))^2
       + -1
         * om 1
         * v2
         * cos(u)
         * sin(om 1 * t2 0)
         * sin(omb 1 * t2 0)
```

```
+ -1
                 * om 1
                 * v2
                 * cos(omb 1 * t2 0)
                 * sin(om 1 * t2 0)
                 * sin(11)
               + om 1
                * v2
                 * cos(om 1 * t2 0)
                 * sin(omb 1 * t2 0)
                 * sin(u)))
         * sin(om 3 * t5)
       + v2
         * cos(-1 * om 1 * t2 0 + omb 1 * t2 0 + u + Pi / 4)
         * sin(om 3 * t5)
       + v2
         * (cos(om 3 * t5))^2
         * sin(-1 * om 1 * t2 0 + omb 1 * t2 0 + u + Pi / 4)
       + v2
         * (sin(om 3 * t5))^2
         * sin(-1 * om 1 * t2 0 + omb 1 * t2 0 + u + Pi / 4)))
^2
+ ( (om 3)^-1
     * ( -1 * v1 * cos(om 3 * t5)
       + om 3
         * ( (om 1) ^-1
            * (omb 1)^-1
             * ( -1 * omb 1 * v1 * cos(om 1 * t2 0)
               + om 1 * omb 1 * x2 * cos(om 1 * t2 0)
               + omb 1 * v1 * (cos(om 1 * t2 0))^2
               + om 1 * v2 * cos(om 1 * t2 0) * cos(u)
               + -1
                 * om 1
                 * v2
                 * cos(om 1 * t2 0)
                 * cos(omb 1 * t2 0)
```

```
+ -1 * om 1 * omb 1 * x1 * sin(om 1 * t2 0)
       + -1
          * om 1
          * v2
         * (1 + -1 * (\cos(u))^2)^(1 / 2)
          * sin(om 1 * t2 0)
       + omb 1 * v1 * (sin(om 1 * t2 0))^2
       + -1
          * om 1
         * v2
         * cos(u)
         * sin(om 1 * t2 0)
          * sin(omb 1 * t2 0)
       + -1
          * om 1
         * v2
         * cos(omb 1 * t2 0)
         * sin(om 1 * t2 0)
          * sin(u)
       + om 1
         * v2
          * cos(om 1 * t2 0)
          * sin(omb 1 * t2 0)
          * sin(u)))
 * cos(om 3 * t5)
+ v1 * (cos(om 3 * t5))^2
+ v2
 * cos(om 3 * t5)
  * cos(-1 * om 1 * t2 0 + omb 1 * t2 0 + u + Pi / 4)
+ -1
  * 172
 * (cos(om 3 * t5))^2
 * cos(-1 * om 1 * t2 0 + omb 1 * t2 0 + u + Pi / 4)
```

```
+ -1
 * om 3
  * ( (om 1) ^-1
     * (omb 1)^-1
     * ( om_1 * omb_1 * x1 * cos(om 1 * t2 0)
        + om 1
          * v2
          * cos(om 1 * t2 0)
         * (1 + -1 * (\cos(u))^2)^(1 / 2)
        + -1 * omb 1 * v1 * sin(om 1 * t2 0)
        + om 1 * omb_1 * x2 * sin(om_1 * t2_0)
        + om 1 * v2 * cos(u) * sin(om 1 * t2 0)
        + -1
          * om 1
          * v2
         * cos(omb 1 * t2 0)
          * cos(u)
          * sin(om_1 * t2_0)
        + om 1
          * v2
          * cos(om 1 * t2 0)
          * cos(u)
          * sin(omb 1 * t2 0)
        + om 1
          * v2
          * cos(om 1 * t2 0)
          * cos(omb 1 * t2 0)
          * sin(u)
        + om 1
          * v2
          * sin(om_1 * t2_0)
          * sin(omb 1 * t2 0)
          * sin(u)))
  * sin(om 3 * t5)
```

This is just one branch to prove for aircraft ...

$$v_1' = v_2' =$$

$$v'_1 = (v\cos\vartheta)'$$

$$v'_2 = (v\sin\vartheta)'$$

$$v'_1 = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta'$$

$$v'_2 = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta'$$

$$\begin{aligned} v_1' &= (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega \\ v_2' &= (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega \end{aligned}$$

$$v'_1 = (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega v_2$$

$$v'_2 = (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega v_1$$

$$\begin{aligned} v_1' &= (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega v_2 \\ v_2' &= (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega v_1 \end{aligned}$$

$$\begin{aligned} v_1' &= (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega v_2 \\ v_2' &= (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega v_1 \\ v &= \|(v_1, v_2)\| = \sqrt{v_1^2 + v_2^2} \end{aligned}$$

$$\begin{aligned} v_1' &= (v\cos\vartheta)' = v'\cos\vartheta + v(-\sin\vartheta)\vartheta' = -(v\sin\vartheta)\omega = -\omega v_2 \\ v_2' &= (v\sin\vartheta)' = v'\sin\vartheta + v(\cos\vartheta)\vartheta' = (v\cos\vartheta)\omega = \omega v_1 \\ v &= \|(v_1, v_2)\| = \sqrt{v_1^2 + v_2^2} \end{aligned}$$

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

Wait, what about ...

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N} \text{ times, not } e^{\pi}$

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

3
$$e^n \stackrel{\text{def}}{=} e \cdot \dots \cdot e n \in \mathbb{N}$$
 times, not e^{π}

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

3
$$e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e n \in \mathbb{N}$$
 times, not e^{π}

$$\bullet$$
 $e/k \stackrel{\text{def}}{=}$ depends

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

③
$$e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e n \in \mathbb{N}$$
 times, not e^{π}

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

3
$$e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e n \in \mathbb{N}$$
 times, not e^{π}

Syntax
$$e := x \mid x' \mid f(e) \mid e+k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

3
$$e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e n \in \mathbb{N}$$
 times, not e^{π}

Syntax
$$e := x \mid x' \mid f(e) \mid e+k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\mathsf{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\mathsf{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

$$x := 2 + \frac{b}{c} + e$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\mathsf{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

•
$$e/k \stackrel{\text{def}}{=} depends$$
 $q = \frac{b}{c} \stackrel{\text{def}}{=} qc = b \text{ where } c \neq 0$
 $q := \frac{b}{c} \longrightarrow q := *; ?qc = b \land c \neq 0$

$$x := 2 + \frac{b}{c} + e \implies q := *; ?qc = b$$
 ; $x := 2 + q + e$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\mathsf{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

③
$$e/k \stackrel{\text{def}}{=} depends$$
 $q = \frac{b}{c} \stackrel{\text{def}}{=} qc = b \text{ where } c \neq 0$ $q := \frac{b}{c} \longrightarrow q := *; ?qc = b \land c \neq 0$

$$x := 2 + \frac{b}{c} + e \longrightarrow q := *; ?qc = b \land c \neq 0; x := 2 + q + e$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

1
$$e/k \stackrel{\text{def}}{=} depends$$
 $q = \frac{b}{c} \stackrel{\text{def}}{=} qc = b \text{ where } c \neq 0$ $q := \frac{b}{c} \longrightarrow q := *; ?qc = b \land c \neq 0$

$$x := 2 + \frac{b}{c} + e \quad \rightsquigarrow \quad \mathbf{q} := *; ?\mathbf{q}c = b \land c \neq 0; x := 2 + \mathbf{q} + e$$

$$x := a + \sqrt{4y}$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\mathsf{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

③
$$e/k \stackrel{\text{def}}{=} depends$$
 $q = \frac{b}{c} \stackrel{\text{def}}{=} qc = b \text{ where } c \neq 0$ $q := \frac{b}{c} \longrightarrow q := *; ?qc = b \land c \neq 0$

$$x := 2 + \frac{b}{c} + e \quad \leadsto \quad q := *; ?qc = b \land c \neq 0; x := 2 + q + e$$

$$x := a + \sqrt{4y} \quad \leadsto \quad q := *; ?q^2 = 4y; x := a + q$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$\bullet$$
 $e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}

$$x:=2+\frac{b}{c}+e \quad \rightsquigarrow \quad q:=*; ?qc=b \land c \neq 0; x:=2+q+e$$

$$x := a + \sqrt{4y} \quad \leadsto \quad q := *; ?q^2 = 4y \land 4y \ge 0; x := a + q$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

- $-e \stackrel{\text{def}}{=} 0 e$
- \bullet $e^n \stackrel{\mathsf{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$ times, not e^{π}
- arithmetic ghost: auxiliary for the model ere c
 eq 0

$$q := \frac{b}{c} \longrightarrow q := *; ?qc = b \land c \neq 0$$

$$x := 2 + \frac{b}{c} + e \quad \Rightarrow \quad q := *; ?qc = b \land c \neq 0; x := 2 + q + e$$

$$x := a + \sqrt{4y} \quad \leadsto \quad q := *; ?q^2 = 4y \land 4y \ge 0; x := a + q$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\bullet e - k \stackrel{\text{def}}{=} e + (-1) \cdot k$$

$$-e \stackrel{\mathsf{def}}{=} 0 - e$$

$$e^n \stackrel{\text{def}}{=} e \cdot \ldots \cdot e \ n \in \mathbb{N}$$
 times. not e^{π}

nondeterministic assignment q := * not in syntax

$$q:=\frac{b}{c} \quad \rightsquigarrow \quad q:=*; ?qc=b \land c \neq 0$$

$$x := 2 + \frac{b}{c} + e \implies q := *; ?qc = b \land c \neq 0; x := 2 + q + e$$

$$x := a + \sqrt{4y} \quad \leadsto \quad q := *; ?q^2 = 4y \land 4y \ge 0; x := a + q$$

① Modular add

$$\alpha ::= \dots \mid x := *$$

1 Modular add

$$\alpha ::= \dots \mid x := *$$

Semantics
$$[x := *] = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

① Modular add

$$\alpha ::= \dots \mid x := *$$

$$\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

Axioms

$$\langle :* \rangle \langle x := * \rangle P \leftrightarrow$$

 $[:*] [x := *] P \leftrightarrow$

① Modular add

$$\alpha ::= \dots \mid x := *$$

$$\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

Axioms

$$\langle :* \rangle \ \langle x := * \rangle P \leftrightarrow \exists x P$$
$$[:*] \ [x := *] P \leftrightarrow \forall x P$$

(1) Modular add

$$\alpha ::= \dots \mid x := *$$

$$\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

Axioms

$$\langle :* \rangle \ \langle x := * \rangle P \leftrightarrow \exists x P$$
$$[:*] \ [x := *] P \leftrightarrow \forall x P$$

(2) Or derived definition

① Modular add

$$\alpha ::= \dots \mid x := *$$

$$\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

$$\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$$
$$[:*] [x := *] P \leftrightarrow \forall x P$$

② Or derived definition

$$x := * \stackrel{\mathsf{def}}{\equiv}$$

(1) Modular add

$$\alpha ::= \dots \mid x := *$$

$$\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

$$\langle :* \rangle \ \langle x := * \rangle P \leftrightarrow \exists x P$$
$$[:*] \ [x := *] P \leftrightarrow \forall x P$$

(2) Or derived definition

$$x := * \stackrel{\mathsf{def}}{\equiv} x' = 1 \cup x' = -1$$

① Modular add

$$\alpha ::= \dots \mid x := *$$

Semantics
$$[x := *] = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

Axioms

$$\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$$
$$[:*] [x := *] P \leftrightarrow \forall x P$$

② Or derived definition

$$x := * \stackrel{\mathsf{def}}{\equiv} x' = 1 \cup x' = -1$$

$$x := * \stackrel{\mathsf{def}}{\equiv}$$

① Modular add

$$\alpha ::= \dots \mid x := *$$

$$\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R}) \}$$

$$\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$$

 $[:*] [x := *] P \leftrightarrow \forall x P$

② Or derived definition

$$x := * \stackrel{\mathsf{def}}{\equiv} x' = 1 \cup x' = -1$$

$$x := * \stackrel{\mathsf{def}}{\equiv} x' = 1; x' = -1$$

 $x := * \stackrel{\mathsf{def}}{\equiv} x' = 1 : x' = -1$

① Modular add

Syntax
$$\alpha ::= ... \mid x := *$$

Semantics $[x := *] = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$
 $\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$
 discrete time?

Continuous time?

 $x := * \Rightarrow \text{def} \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R} \text{ (any } \mathbb{R}) \text{ (any } \mathbb{R})$

Derived

① Modular add

Syntax
$$\alpha := \dots \mid x := *$$

Semantics
$$[x:=*] = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

$$\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$$

$$[:*] [x:=*]P \leftrightarrow \forall x P$$

invisible time! time is relative.

Derived $x := * \stackrel{\text{def}}{\equiv} x' = 1 \cup x' = -1$

Derived $x := * \stackrel{\text{def}}{\equiv} x' = 1; x' = -1$

② Or derived definition

① Modular add

(2) Or derived definition

Syntax
$$\alpha := \dots \mid x := *$$

emantics
$$[x := *] = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$$

$$\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$$

$$[:*] [x:=*]P \leftrightarrow \forall x P$$

invisible time! time is relative.

 $x := * \stackrel{\text{def}}{\equiv} x' = 1 \cup x' = -1$

Derived $x := * \stackrel{\text{def}}{\equiv} x' = 1; x' = -1$

 $x := * \not\equiv x' = 1, t' = 1 \cup x' = -1, t' = 1$ visible time

① Modular add

Syntax
$$\alpha ::= ... \mid x := *$$

Semantics $\llbracket x := * \rrbracket = \{(\omega, v) : v = \omega \text{ except for value of } x \text{ (any } \mathbb{R})\}$
 $\langle :* \rangle \langle x := * \rangle P \leftrightarrow \exists x P$
 $[:*] \llbracket x := * \rrbracket P \leftrightarrow \forall x P$

② Or derived definition

Derived
$$x := * \stackrel{\text{def}}{\equiv} x' = 1 \cup x' = -1$$
Derived $x := * \stackrel{\text{def}}{\equiv} x' = 1; x' = -1$

I'm just a ghost of your imagination. I'm definable.

Syntax
$$e := x | x' | f(e) | e + k | e \cdot k | (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x'=\frac{2x}{c}\&c\neq0\land\frac{x+1}{c}>0\}$$

P Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \rightsquigarrow q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\}$$

Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\} \implies q := *; ?q2x = 1; \{x' = cq \& 2x \neq 0 \land cq > 0\}$$

P Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\} \implies q := *; ?q2x = 1; \{x' = cq \& 2x \neq 0 \land cq > 0\}$$

inverse only of initial x

Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\} \implies q := *; ?q2x = 1; \{x' = cq \& 2x \neq 0 \land cq > 0\}$$

change rate of q:

Pifferential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\} \implies q := *; ?q2x = 1; \{x' = cq \& 2x \neq 0 \land cq > 0\}$$

$$\text{change rate of } q : \quad q' = \left(\frac{1}{2x}\right)' = \frac{-2x'}{4x^2} = \frac{-2\frac{c}{2x}}{4x^2} = -\frac{c}{4x^3}$$

Pifferential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\} \implies q := *; ?q2x = 1; \{x' = cq \& 2x \neq 0 \land cq > 0\}$$

$$\text{change rate of } q : \quad q' = \left(\frac{1}{2x}\right)' = \frac{-2x'}{4x^2} = \frac{-2\frac{c}{2x}}{4x^2} = \frac{c}{4x^3}$$

Pifferential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2x \neq 0 \land \frac{c}{2x} > 0\} \implies q := *; ?q2x = 1; \{x' = cq \& 2x \neq 0 \land cq > 0\}$$

$$\text{change rate of } q : \quad q' = \left(\frac{1}{2x}\right)' = \frac{-2x'}{4x^2} = \frac{-2\frac{c}{2x}}{4x^2} = -\frac{c}{4x^3}$$

$$\implies \{x' = cq, q' = * \& q2x = 1 \land 2x \neq 0 \land cq > 0\}$$

P Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P := e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& 2 \text{ continuously changing nondeterministic value} \quad x \neq 0 \land cq > 0\}$$

$$\text{change rate of } q: \quad q' = \left(\frac{1}{2x}\right)' = \frac{-2x'}{4x^2} = \frac{-2\frac{c}{2x}}{4x^2} = -\frac{c}{4x^3}$$

$$\implies \{x' = cq, q' = * \& q2x = 1 \land 2x \neq 0 \land cq > 0\}$$

P Differential-Algebraic Ghosts

Syntax
$$e := x \mid x' \mid f(e) \mid e + k \mid e \cdot k \mid (e)'$$

Syntax
$$\alpha ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Syntax
$$P ::= e \ge k \mid p(e) \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x Q \mid [\alpha]P \mid \langle \alpha \rangle P$$

$$\{x' = \frac{2x}{c} \& c \neq 0 \land \frac{x+1}{c} > 0\} \implies q := *; ?qc = 1; \{x' = 2xq \& c \neq 0 \land (x+1)q > 0\}$$

$$\{x' = \frac{c}{2x} \& \text{ differential-algebraic ghost: auxiliary for the model} \{x' = \frac{c}{2x} \& \text{ differential-algebraic ghost: auxiliary for the model} \{x' = \frac{c}{2x} \& \text{ differential-algebraic ghost: auxiliary for the model} \{x' = \frac{c}{2x} & \frac{c}{4x^2} = \frac{c}{4x^3} & \frac{c}{4x^2} = \frac{c}{4x^3} & \cdots \\ \{x' = cq, q' = * \& q2x = 1 \land 2x \neq 0 \land cq > 0\}$$

Divisions

- Scrutinize every division or possible singularity.
- Missing requirements in the system.
- **3** Stopping distance $\frac{v^2}{2b}$ from initial velocity v

Don't divide by zero. It's not worth it.

Divide & Conquer Divide & Regret

Divisions

- Scrutinize every division or possible singularity.
- Missing requirements in the system.
- **3** Stopping distance $\frac{v^2}{2b}$ from initial velocity v
- ullet ... needs brakes to work $b \neq 0$ though ...

Don't divide by zero. It's not worth it.

Divide & Conquer Divide & Regret

Logical Foundations of Cyber-Physical Systems.

Springer, Switzerland, 2018.

URL: http://www.springer.com/978-3-319-63587-3,
doi:10.1007/978-3-319-63588-0.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219-265, 2017. doi:10.1007/s10817-016-9385-1.

The structure of differential invariants and differential cut elimination.

Log. Meth. Comput. Sci., 8(4:16):1-38, 2012. doi:10.2168/LMCS-8(4:16)2012.

A differential operator approach to equational differential invariants.

In Lennart Beringer and Amy Felty, editors, *ITP*, volume 7406 of *LNCS*, pages 28–48, Berlin, 2012. Springer. doi:10.1007/978-3-642-32347-8 3.

André Platzer.

Differential-algebraic dynamic logic for differential-algebraic programs.

J. Log. Comput., 20(1):309–352, 2010.

doi:10.1093/logcom/exn070.