Veome Kapil

■ veomekapil@gmail.com — 📞 (313) 482 8646 — 🛅 LinkedIn — 🗘 GitHub — 📵 ORCID — 🏶 veomekapil.com

Education

Johns Hopkins University

Doctor of Philosophy (Ph.D). in Physics Expected: July 2026 Master of Arts (M.A.) in Physics Aug 2023

Princeton University

Princeton, NJ Bachelor of Arts (B.A.) in Physics (GPA: 3.74/4.0) June 2021 Certificate in Applications of Computing June 2021

Skills

- Programming Languages: Python, SQL, C++, Excel, Java, Unity, Mathematica
- Data Science Tools: TensorFlow, Scikit-learn, PyTorch, Pandas, NumPy, SciPy, Matplotlib, Geopandas, Shapely
- Statistics: Bayesian Inference, Model Selection, A/B Testing, Bootstrapping
- Machine Learning: Convolutional Neural Networks (CNNs), Regression Models, Time-domain signal processing, Feature Engineering, Deep Learning

Work Experience

Data Science Internship

Maryland New Directions, Baltimore, MD

Summer Data Science Intern

June 2024 - Sep 2024

Baltimore, MD

- Used ML regression models to predict client reach for non-profit aimed at proving employment opportunities to impoverished Baltimore communities, recommending target areas to achieve a 45% increase in the client base.
- Integrated US Census data with company databases, deploying automated A/B testing and visualization scripts to continuously monitor socio-economic and demographic trends among clients.
- Presented actionable insights to non-technical stakeholders, which resulted in a new program to improve training effectiveness and retention for the most vulnerable clients.

Graduate Teaching Assistant

Johns Hopkins University, Baltimore, MD

Head Teaching Assistant

Aug 2021 - Jun 2023

- Developed active learning modules for the undergraduate physics lab course, substantially increasing student engagement and lab report quality.
- Led weekly training sessions for 25 teaching assistants, improving teaching methodologies and collaboration.

Virtual Reality Research Internship

NeuroEquilibrium Diagnostic Systems, Jaipur, IND

Summer Intern

June 2016 - Aug 2016

- Developed Virtual Reality (VR) applications for rehabilitation of patients with neurological disorders.
- Communicated with a diverse team of neurologists, medical practitioners, and company executives to translate company requirements into practical and effective VR experiences.
- Operated in a self-directed environment, independently managing resources and workflows in the new VR division.

Research Experience

New tidal models for binary stellar simulations

Johns Hopkins University

Lead Author

Jan 2024 - Sept 2024

- Contributed to the open-source COMPAS code (C++) for simulating binary star systems, translating tidal dissipation models into simulation-ready formats.
- Developed data processing workflows to handle large-scale simulation outputs, leveraging statistical methods such as 2-sided KS tests to infer astrophysical trends.

Systematic Bias from Gravitational Waveform Modeling

Johns Hopkins University

Lead Author

Oct 2022 - Apr 2024

- Conducted a statistical study of current gravitational wave model accuracy for future detector applications, using time-domain signal processing and Fisher information matrices to unveil a predicted failure rate of up to 20%.
- Used Bayesian model inference and spline regression to determine a requisite improvement in model accuracy by a factor of 10, outlining specific improvements in a paper published in the peer-reviewed Physical Review D journal.

Lead Author Jan 2022 - Sept 2022

- Determined optimal parameters for a new supernova model using Bayesian inference, performing model selection via KS tests to propose the model most compatible with astronomical observations.
- Statistically compared the new model to older supernova models, estimating 40% fewer predicted observable binary neutron stars. Published findings in the prestigious Monthly Notices of the Royal Astronomical Society journal.

Using Gravitational Lensing to Constrain Dark Sector Interactions

Princeton University

Lead Author

Aug 2021 - May 2021

- Evaluated the SuperBIT telescope's potential in constraining Self Interacting Dark Matter (SIDM) cross-section, show-casing a **30% improvement** in constraining ability over Hubble Space Telescope.
- Collaborated within the interdisciplinary SuperBIT team, regularly communicating findings to diverse technical disciplines.
- Developed open-source code to apply generalized lensing analysis tools to n-body simulations of merging star clusters.

Improving Trajectory Reconstruction of Charged Particles at the LHC

Princeton University

OURSIP Summer Research Intern

June 2020 - Aug 2020

- Applied a Convolutional Neural Network (CNN) to distinguish between single and overlapping particle images from the Compact Muon Solenoid (CMS) detector at the LHC.
- Created 3D and 2D visualizations of overlapping particle trajectories that informed improvements in trajectory reconstruction at the CMS collaboration.

Talks and Presentations

- July 2020 Talk at Princeton University: "Shared Hits in the Compact Muon Solenoid Silicon Pixel Detector"
- May 2021 Thesis Defense at Princeton University: "Analyzing the Gravitational Lensing Performance of SuperBIT to Constrain Dark Matter Self Interactions"
- April 2022 Talk at 1st "With a little help from my friends" Workshop, Johns Hopkins University: "Population Synthesis with COMPAS"
- July 2023 Panelist at Gravitational-Wave Populations: What's Next Conference, University of Milano-Bicocca: "Mind the Systematics. Is Waveform Calibration Impacting the Population?"
- March 2024 Talk at COMPAS Group Meeting, Monash University: "Systematic Bias from Waveform Modeling in Next-Generation GW Detectors"
- April 2024 Talk at OzGrav Group Meeting, Swinburne University of Technology: "Tidal Interactions in Binaries"
- May 2024 Talk at Villar Group Meeting, The Center for Astrophysics Harvard & Smithsonian: "Tidal Interactions in Binaries"
- May 2024 Talk at LIGO Lab Group Meeting, Massachusetts Institute of Technology: "Tidal Interactions in Binaries"
- August 2024 Poster Presentation at XXXII General Assembly 2024, International Astronomical Union Institute: "Calibration of Neutron Star Natal Kick Velocities to Isolated Pulsar Observations"

Honors and Awards

• 2020-2021 – Allen G. Shenstone Prize in Physics, Princeton University