大阪大学大学院情報科学研究科 平成27年度 博士前期課程 解答案

平成 27 年度楠本研究室 B4 一同

1 アルゴリズムとプログラミング

- (1) 整列アルゴリズム
- **(2)**
- (2-1)

基数ソート

(2-2)

O(kn)

10 行目の for 文が k 回実行され、その for 文の中では n 個のデータが参照されるから.

(2-3)

まず 1 の位だけでソートする. その次に r の位だけで ソート, r^2 の位でソート …, のように各位ごとに並べ替 えを行っている.

(2-4)

- 時間計算量: データ同士の比較を伴う整列アルゴリズムでは,一般的に〇(nlogn)時間かかることが知られているが,最大桁数が logn よりも小さい場合には基数ソートの方が時間計算量の観点からすると優れている.
- 空間計算量: データ同士の比較を伴う整列アルゴリズムでは、一般的にデータが格納されている配列内で行われるが、基数ソートでは少なくとも $k \times n$ の2次元配列を用いるので空間計算量の観点からすると劣る.

(3)

- 下線ア: for(b=r-1; b>0; b--)
- 下線イ: 変更する必要はない

2 計算機システムとシステムプログラム

- (1) パイプライン
- (1-1)
 - (a) I
 - (b) ⊐
 - (c) ウ
 - (d) イ
 - (e) カ
- (1-2)
- (1-2-1) $\frac{mn}{f}$
- (1-2-2) $\frac{1}{f}(n+m-1)$
- (1-2-3) f
- **(1-2-4)** ステージ数nを増やすことで、一つのステージ に要する時間が減少するから.
- (1-3)
- (2)
- (2-1)
- **(2-1-1)** 11.6[ns] $2 \times 0.8 + 50 \times 0.2 = 11.6$
- **(2-1-2)** 83.5[%]

キャッシュヒット率をxとおくと、 $4x + 50(1 - \frac{x}{100}) = 11.6$ これを解くと $x \simeq 83.5$

- (2-2)
- (2-2-1)

	1 巡目 (d=1)					2 巡目 (d=2)				
buckets[x][y]	y = 0	y=1	y=2	y=3	y = 4	y = 0	y = 1	y=2	y=3	y=4
x = 0	0	0	0	0	0	1	2	0	0	0
x = 1	21	1	11	0	0	11	12	11	0	0
x=2	12	2	0	0	0	21	2	0	0	0

(1-3-1)	クロックサイクル	0	1	2	3	4	5	6	7	8	9	10	11
	命令 1: MOV R1, (A)	IF	D	OF	EX	S							
	命令 2: MOV R2, (B)		IF	D	OF	EX	S						
	命令 3: ADD R1, R2			\rightarrow	\rightarrow	IF	D	OF	EX	S			
(1-3-2)	クロックサイクル	0	1	2	3	4	5	6	7	8	9	10	11
	命令 1: MOV R1, (A)	IF	D	OF	EX	S							
	命令 2: INC R1		IF	D	\rightarrow	\rightarrow	OF	EX	S				
	命令 3: MOV (B), R1			\rightarrow	IF	D	\rightarrow	\rightarrow	\rightarrow	OF	EX	S	

(2-2-2)

(2-3)

3 離散数学

(1) 情報論理

(1-1)

$$x_{115} = \Delta, x_{214} = \Delta, x_{841} = \Delta$$

(1-2)

 n^6

(1-3)

$$\bigvee_{1 \le k \le 9} x_{11k}$$

(1-4)

$$A(i,j) = \bigvee_{1 \le k \le n^2} x_{ijk}$$

(1-5)

$$A = \bigwedge_{1 \leq i \leq n^2} \bigwedge_{1 \leq j \leq n^2} A(i,j)$$

(1-6)

 $\neg x_{ijk} \lor \neg x_{ilk}$

(1-7)

$$C = \bigwedge_{1 \le i < l \le n^2} \bigwedge_{1 \le j \le n^2} \bigwedge_{1 \le k \le n^2} \neg x_{ijk} \lor \neg x_{ljk}$$

(1-8)

(1-8-1)

 $Assign = x_{131} \land x_{142} \land x_{211} \land x_{222} \land x_{234} \land x_{321} \land x_{332} \land x_{344} \land x_{443}$

(1-8-2)

277 2 分 4 列目について、このマスには $1\sim4$ のどれも入らないことを示す.

$$A(2,4) = x_{241} \lor x_{242} \lor x_{243} \lor x_{244}$$

B について, i=2 かつ j または l が 4 であるものを B' とすると,

 $B' = (\neg x_{211} \lor \neg x_{241}) \land (\neg x_{212} \lor \neg x_{242}) \land (\neg x_{213} \lor \neg x_{243}) \land (\neg x_{214} \lor \neg x_{244}) \land (\neg x_{221} \lor \neg x_{241}) \land (\neg x_{222} \lor \neg x_{242}) \land (\neg x_{223} \lor \neg x_{243}) \land (\neg x_{224} \lor \neg x_{244}) \land (\neg x_{231} \lor \neg x_{241}) \land (\neg x_{232} \lor \neg x_{242}) \land (\neg x_{233} \lor \neg x_{243}) \land (\neg x_{234} \lor \neg x_{244})$

C について, j=4 かつ i または l が 2 であるものを C' とすると,

 $C' = (\neg x_{141} \lor \neg x_{241}) \land (\neg x_{142} \lor \neg x_{242}) \land (\neg x_{143} \lor \neg x_{243}) \land (\neg x_{144} \lor \neg x_{244}) \land (\neg x_{241} \lor \neg x_{341}) \land (\neg x_{241}$

 $\neg x_{441}) \wedge (\neg x_{242} \vee \neg x_{342}) \wedge (\neg x_{242} \vee \neg x_{442}) \wedge (\neg x_{243} \vee \neg x_{343}) \wedge (\neg x_{243} \vee \neg x_{443}) \wedge (\neg x_{244} \vee \neg x_{344}) \wedge (\neg x_{244} \vee \neg x_{444})$

B' の ¬ x_{211} ∨ ¬ x_{241} と Assign の x_{211} から ¬ x_{241} を得る. B' の ¬ x_{222} ∨ ¬ x_{242} と Assign の x_{222} から ¬ x_{242} を得る. C' の ¬ x_{243} ∨ ¬ x_{443} と Assign の x_{443} から ¬ x_{243} を得る. B' の ¬ x_{234} ∨ ¬ x_{244} と Assign の x_{234} から ¬ x_{244} を得る.

これらと A(2,4) から空節が導出できるので, $A \wedge B \wedge C \wedge D \wedge Assign$ は充足不能である.

(2) 集合とグラフ

(2-1)

$$R_3 = \{(1,1), (2,2), (3,3)\}$$

(2-2)

略

(2-3)

略

(2-4)

略

4 計算理論

(1) 有限オートマトン

(1-1)

1(00+11)*0

(1-2)

111110

(1-3)

 $\{b, c, f, i, j\}$

(状態 i の ε-閉包とは, i そのものと i から ε-動作のみで到達できる状態全ての集合をいう)

(1-4)

 M_1 から ε -動作を除いて、状態名を整理した非決定性有限オートマトンの状態遷移図が図 1 のようになる. なお、状態 g を死状態として加えている.

図 1: 非決定性有限オートマトンの状態遷移図

この図を元にしてサブセット構成法を用いた過程が表 1である.

	0	1
a(A)	g	b
b(B)	ch	e
ch(C)	d	g
d(D)	ch	е
e(E)	g	f
f(F)	ch	e
g(G)	g	g
	b(B) ch(C) d(D) e(E) f(F)	a(A) g b(B) ch ch(C) d d(D) ch e(E) g f(F) ch

表 1: サブセット構成法を用いた過程

この表が決定性有限オートマトン M_2 の各状態となるので、状態名を整理して状態遷移図に直した解答が図 2 となる.

(1-5)

 M_2 の同値な状態をまとめると $\{A,E\}\{B,D,F\}\{C\}\{G\}$ となるので,これを元に最小

図 2: M2 の状態遷移図

化した決定性有限オートマトン M_3 の状態遷移図は図 3 となる.

図 3: M3 の状態遷移図

(2) 文脈自由言語の閉包性

(2-1)

 $G_4 = (V_4, T_4, P_4, S_4)$ $V_4 = V_1 \cup V_2 \cup \{S_4\}$, ただし $S_4 \notin (V_1 \cup V_2)$ $T_4 = T_1 \cup T_2$ $P_4 = \{S_4 \rightarrow S_1 S_2\} \cup P_1 \cup P_2$

(2-2)

 G_4 の構文木は図 4 のようになり、 G_4 によって生成される任意の語 w は $w=x_1x_2$ と書くことができる。 また図 4 の下部より、 x_1 は S_1 から導出されているの で $x_1 \in L(G_1)$, x_2 は S_2 から導出されているので $x_2 \in L(G_2)$ となる.

よって, (2-1) の定義より $w = x_1x_2$ は L_4 に属する.

図 4: G4 の構文木

(2-3)

 L_4 に属する任意の語 w は,(2-1) の定義より $w=w_1w_2(w_1\in L(G_1),w_2\in L(G_2))$ と書くことができる。 $w_1\in L(G_1)$ より w_1 は S_1 から導出され, $w_2\in L(G_2)$ より w_2 は S_2 から導出される.

これらと $S_4 \rightarrow S_1 S_2$ を組み合わせることで、図 5 のような構文木が得られる.

この構文木は G_4 の構文木である図4と同じ構造となっているので、 $w=w_1w_2$ は G_4 により生成される.

図 5: L4 から得られる構文木

5 ネットワーク

割愛

6 電子回路と論理設計

(1) 1ビット比較器

(1-1)

x_i	y_i	c_i	c_{i+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

(1-2)

 $c_{i+1} = c_i x_i \vee c_i \overline{y_i} \vee x_i \overline{y_i}$

(1-3)

(2) 順序回路

(2-1)

現状態	次状態
(0,0,0)	(0,0,1)
(0,0,1)	(0,1,0)
(0,1,0)	(0,1,1)
(0,1,1)	(1,0,0)
(1,0,0)	(0,0,0)

(2-2)

$$D_2 = Q_1 Q_0$$

$$D_1 = \overline{Q_1} Q_0 \lor Q_1 \overline{Q_0}$$

$$D_0 = \overline{Q_2} \overline{Q_0}$$

(2-3)

時刻	(Q_2, Q_1, Q_0)
Т	(1, 1, 0)
T+1	(0, 1, 0)
T+2	(0, 1, 1)
T+3	(1,0,0)

(3) CMOS 回路

 $(\overline{a} \vee \overline{b}) \wedge (\overline{c} \vee \overline{d})$