MTHE 477/877 - Winter 2022

Homework Assignment 2

due Tuesday, Feb. 15

- 1. (Shannon-Fano code) Let $\mathcal{X}=\{1,2,\ldots,m\}$ for $m\geq 2$ and assume the pmf p of an \mathcal{X} -valued random variable X satisfies $p(1)\geq p(2)\geq \cdots \geq p(m)>0$. Define $\hat{F}(j)=\sum_{i=1}^{j-1}p(i)$ for $j=1,\ldots,m$ (here $\hat{F}(1)=0$). Let l(j) be the unique positive integer such that $2^{-l(j)}\leq p(j)<2^{-l(j)+1}$ and let the codeword C(j) be the binary expansion of $\hat{F}(j)$ truncated to l(j) bits (the binary expansion is made unique as in class). Prove that
 - (b) $l(j) = [-\log p(j)]$, so the expected code length satisfies $L(C) \le H(X) + 1$;
 - (a) C is a prefix code.
- 2. (Shannon-Fano-Elias and Arithmetic coding)
 - (a) Consider a stationary Markov chain on the source alphabet $\mathcal{X} = \{0, 1\}$ with transition matrix

$$\begin{bmatrix} 1/3 & 2/3 \\ 2/3 & 1/3 \end{bmatrix}.$$

Find the tag $\bar{T}(x^n)$ of the source sequence $x^n=100110$ in the Shannon-Fano-Elias (SFE) code of length n=6 for this source.

- (b) Consider an i.i.d. source over the source alphabet $\mathcal{X} = \{a,b,c\}$ with pmf given by p(a) = 0.2, p(b) = 0.3, and p(c) = 0.5. Assume \mathcal{X} has the standard ordering a < b < c and consider the SFE code with block length n = 5. Use the decoding procedure on p. 24 of the slides to find the source sequence $x_1x_2x_3x_4x_5$ corresponding to the codeword 00001110000
- (c) Write a MATLAB program for part (a). The input is the binary source sequence x^n and the transition matrix and initial distribution of the Markov chain; the output is the binary code sequence $C(x^n)$ generated *sequentially* according to the procedure on pp. 25–28 of the slides.
- 3. (a) Let \mathcal{X} be a finite source alphabet, let $n \geq 1$, and let $C: \mathcal{X}^n \to \{0,1\}^*$ be an arbitrary binary lossless prefix code with codeword lengths $l(x^n)$. Prove that there exists a pmf q on \mathcal{X}^n such that the Shannon-Fano code corresponding to the "coding distribution" q has codeword lengths $l_q(x^n)$ that satisfy the bound

$$\frac{1}{n}E[l_q(X^n)] \le \frac{1}{n}E[l(X^n)] + \frac{1}{n}$$

for any distribution p of the source $X^n = (X_1, \dots, X_n) \sim p(x^n)$.

(b) Suppose \mathcal{X} is a finite source alphabet and let \mathcal{P} be a class of distributions for source sequences $X_1, X_2, X_3, \ldots, X_n, \ldots$ with alphabet \mathcal{X} . Prove that there exists a sequence $\{C_n\}$ of prefix codes $C_n: \mathcal{X}^n \to \{0,1\}^*$ which is *universal* with respect to \mathcal{P} (see the definition on slide 43) if and only if there exists a sequence of probability distributions $\{q_n\}$ (i.e., q_n is a pmf on \mathcal{X}^n for each $n \geq 1$) such that for any $p \in \mathcal{P}$,

$$\lim_{n \to \infty} \frac{1}{n} D(p \| q_n) = 0$$

(here
$$D(p||q_n) = \sum_{x^n \in \mathcal{X}^n} p(x^n) \log \frac{p(x^n)}{q_n(x^n)}$$
).

4. (Finite mixtures) Consider a finite source family \mathcal{P} that contains M source distributions: $\mathcal{P} = \{p_1, p_2, \dots, p_M\}$. Thus if X_1, X_2, \dots is distributed according to p_i , then for any n and $x^n \in \mathcal{X}^n$ we have $P(X^n = x^n) = p_i(x^n)$. Fix $\alpha_i \in (0,1)$, $i = 1, \dots, M$ such that $\sum_{i=1}^M \alpha_i = 1$ and define the mixture coding distribution p by

$$p(x^n) = \sum_{i=1}^{M} \alpha_i p_i(x^n)$$
 for all $x^n \in \mathcal{X}^n$, $n = 1, 2, \dots$

If C_n is the Shannon-Fano code for $p(x^n)$, show that the code sequence $\{C_n\}$ is universal with respect to \mathcal{P} .

- 5. For the binary source alphabet $\mathcal{X} = \{0, 1\}$, consider the constant 1 sequence $x^n = 111111111\dots 1$ of length n.
 - (a) Give the LZ78 parsing of this sequence.
 - (b) Let $l(x^n)$ denote the LZ78 codeword length for x^n . Prove that $\lim_{n\to\infty}\frac{1}{n}l(x^n)=0$.