SOLUTION

AUTUMN MID-SEMESTER EXAMINATION-2015

DIGITAL ELECTRONIC CIRCUITS

[EC-2009] 1. a) BCD Subtraction: 476.7 -297.8 [1] 0100 0111 0110 . 0111 - 0010 1001 0111 . 1000 0001 1101 1110 . 1111 0110 0110 . 0110 0001 0111 1000 . 1001 b) 101010 [1] Sign-Magnitude Form: -10 1's Compliment Form: -21 2's Compliment Form: -22 c) $U\overline{V} + UW + V\overline{W} = U + V\overline{W}$ [1] L.H.S: $\mathbf{U} \, \overline{\mathbf{V}} + \mathbf{U} \, \mathbf{W} + \mathbf{V} \, \overline{\mathbf{W}}$ $= U(\overline{V} + W) + V\overline{W}$ $= U(\overline{V}.\overline{W}) + V\overline{W}$ $= U + V \overline{W} = R.H.S$ [Since, A+ \overline{A} . B = A + B] d) Advantage of Look-Ahead Carry Adder: Faster, Less Propagation Delay(Ripple Delay) [1] $C_1 = P_0C_0 + G_0$ $C_2 = P_1 P_0 C_0 + P_1 G_0 + G_1$ $C_3 = P_2 P_1 P_0 C_0 + P_2 P_1 G_0 + P_2 G_1 + G_2$

$$C_{1} = P_{0}C_{0} + G_{0}$$

$$C_{2} = P_{1}P_{0}C_{0} + P_{1}G_{0} + G_{1}$$

$$C_{3} = P_{2}P_{1}P_{0}C_{0} + P_{2}P_{1}G_{0} + P_{2}G_{1} + G_{2}$$

$$C_{4} = P_{3}P_{2}P_{1}P_{0}C_{0} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}G_{1} + P_{3}G_{2} + G_{3}$$

e) Half Subtractor using 2 to 4 Active High DECODER

Differnce= $\sum m(1,2) = A \oplus B$ Borrow = $\sum m(1) = \overline{A} B$

[1]

2.
$$F(P,Q,R,S) = \prod M(4,6,8,9,12,13,14) \cdot d(1,3,7)$$
 [POS Form]
= $\sum m(0,2,5,10,11,15) \cdot d(1,3,7)$ [SOP Form] [1]
[SOP Form is for "NAND-NAND" Two-Level Universal gate implementation]

After K-MAP simplification:

$$F(P,Q,R,S) = \overline{P}\overline{Q} + \overline{P}S + \overline{Q}R + RS$$

[NAND-NAND Circuit implementation 2 Marks]

3. a) $F(A,B,C,D) = \overline{A}B + BC + B\overline{D}$ [Ordinary SOP Form]

- MULTIPLEXER will implement Min-terms for the given input variables connected to its SELECT LINES A,B,C will be connected to S2,S1 and S0 respectively and D will be connected to input lines according to the requirement.
- Thus, for implementation using Decoder, Ordinary SOP has to be converted to Standard SOP Form.

 $F(A,B,C,D) = \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + \overline{A}BCD + BC\overline{A}\overline{B} + BC\overline{A}B + BCA\overline{B} + BCAB + B\overline{D}\overline{A}\overline{C} + B\overline{D}\overline{A}\overline{C} + B\overline{D}\overline{A}C$

= m4 + m5 + m6 + m7 + m6 + m7 + m14 + m15 + m4 + m6 + m12 + m14= $\sum m (4.5.6.7.12, 14.15)$ [1]+Table [2] + circuit [1]

	-, -, -,	,,	<u>,, </u>	<u> </u>	Tuble	2] Circuit [1]
S2S1S0	Α	В	С	D	F	
000	0	0	0	0	0	F=0
000	0	0	0	1	0	F=0
001	0	0	1	0	0	E-0
001	0	0	1	1	0	F=0
010	0	1	0	0	1	F=1
010	0	1	0	1	1	r=1
011	0	1	1	0	1	F=1
011	0	1	1	1	1	r=1
100	1	0	0	0	0	F=0
100	1	0	0	1	0	F=0
101	1	0	1	0	0	F=0
101	1	0	1	1	0	r=0
110	1	1	0	0	1	$F=\overline{D}$
110	1	1	0	1	0	$\Gamma = D$
111	1	1	1	0	1	F=1
111	1	1	1	1	1	Γ-1

b)
$$F(A,B) = \overline{A \oplus B}$$

= $\sum m (0,3)$ [1]

4. a) [0.5]

FAN ₁	FAN ₂	FAN ₃	ALARM
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

ALARM=
$$\sum m (0, 1, 2, 4)$$
 [1]
= $\prod M (3, 5, 6, 7)$

• DECODER having ACTIVE LOW outputs will give <u>MAX-TERMS</u>

 Implementation can be done by NAND gates, We need product of MAX-TERMS so each stage NAND gate has to be converted into AND gate so we get 4 stage logic. NAND-NAND-NAND-NAND, which will work like AND-AND ≈ AND i.e Product of MAX-TERMS

b) 1 bit Magnitude Comparator:

_ Explanation: [0.5 MARKS]

Α	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0
Boolea Functio		$\sum_{=\bar{A}B} m(1)$	$\sum_{m \in AB} m (0,3)$ $= \bar{A}\bar{B} + AB$ $= A \odot B$	$\sum_{=A\bar{B}} m(2)$

[0.5 Marks for Correct Expression above table]

[Implementation using Minimum 5 NAND Gates 1 Marks]

5. a) <u>2 bit Priority Encoder</u>; where the given order of the priorities for 4 inputs are D3 > D2 > D1 > D0.

[Table: 0.5]

D3	D2	D1	D0	Α	В	V
0	0	0	0	х	х	0
0	0	0	1	0	0	1
0	0	1	х	0	1	1
0	1	х	х	1	0	1
1	х	х	х	1	1	1

[Each Corect expression A,B & V 1 Mark Each]

$$A = D_3 + D_2$$

Valid:

 $V = D_3 + D_2 + D_1 + D_0$

$$\mathsf{B} = D_3 + \overline{D_2} \ D_1$$

• Draw the logic diagram using basic gates for above simplified expressions. [0.5]

b) Received <u>7-bit Hamming code</u> is '1110100' then find the 4-bit data word. (Even Parity) [1]

P1	P2	D3	P4	D5	D6	D7
1	1	1	0	1	0	0

$$c1 = p1 \oplus D3 \oplus D5 \oplus D7$$

$$c2 = p2 \oplus D3 \oplus D6 \oplus D7$$

$$c4 = p4 \oplus \mathbf{D5} \oplus \mathbf{D6} \oplus \mathbf{D7}$$

C1	C2	C4
1	0	1

- Thus, D5 is in error; so instead of '1' it should be '0' (1 bit is in error)
- Correct 4 bit data word will be: 1000

6. a)

Each Correct Block Answer: 1 Mark each Block]

1st Block:

	Binary	(input)			Gray (output)	
В3	B2	B1	В0	G3	G2	G1	G0
1	0	1	0	1	1	1	1

2nd Block:

Gray	code = Da	ata word	(input)		C	Odd Hamming Code (Output)				
D3	D2	D1	D0	P1	P2	D3	P4	D5	D6	D7
1	1	1	1	0	0	1	0	1	1	1

3rd Block:

Odd Hamming Code = (I7 – I0) Input to Priority							Prio	rities (Out	:put)
Encoder (input)									
P1	P2	D3	P4	D5	D6	D7	P2	P1	P0
0	0	1	0	1	1	1	1	0	1

Note: D3 (data) is connected to I5 of Priority encoder so the Output of Priority Encoder is **101**th Block:

A and B two 2 bit Numbers					oit Magnit parator (O	
A1	A0	B1	В0	A < B	A = B	A > B
0	0	1	0	0	1	0

[0.5]

Control (X) ADDER / SUBTRACTOR	Mode of Operation
1	Adder
0	Subtractor

Solution for DEC [EC-2009] AUTUMN MID-SEMESTER EXAMINATION-2015