Sistemi 1

Vaje 2020/2021

Asistenta pri Sistemi 1

Domen Šoberl

Slovenska izvedba

HICUP Lab domen.soberl@famnit.upr.si

Raziskovalno področje: Umetna inteligenca Strojno učenje

Elham Motamedi

Angleška izvedba

HICUP Lab elham.motamedi@famnit.upr.si

Raziskovalno področje: Priporočilni sistemi Modeliranje uporabnikov

Pravila

- Izpit lahko opravlja le, kdor je uspešno zaključil vse obveznosti na vajah.
- Opravljene vaje zapadejo z novim šolskim letom.

Obveznosti:

- Tedenske domače naloge. Študent lahko izpusti največ 3 oddaje.
- Projektno delo (ocenjeno vsaj 50%, predstavlja 30 % končne ocene)

Izpit:

- Dva kolokvija (minimalno 50 % vsak) ali
- končni izpit (minimalno 50 %)

Izvajanje vaj

Izvajanje ZOOM:

- Izberete poljubni termin
- Vaje lahko obiščete 2x
- Konzultacije po želji:
 - Nerazumevanje snovi
 - Domače naloge
 - Pomoč pri projektu
 - Zagovori

Izvajanje na FAMNIT

- Vaje se izvajajo 3x ali 4x
- Skupine po 15 študentov
- Držite se svoje skupine
- Pridete le, če ste zdravi
- Strogi higienski ukrepi

Namen predmeta Sistemi 1

Naučiti se, kako delujejo računalniki.

Do tega znanja lahko pridemo na dva načina:

- Študij računalniške arhitekture (predavanja)
- Programiranje v zbirnem/strojnem jeziku (vaje)

Za razliko od višjih programskih jezikov (C/C++, Java, Python, ...) programiranje v strojnem jeziku ni možno brez natančnega poznavanja arhitekture procesorja in delovanja perifernih naprav.

Kako štejemo?

Ljudje - desetiško

Programer - šestnajstiško

Računalnik - dvojiško

Dvojiški številski sistem

Z eno dvojiško števko (bit) lahko predstavimo dve vrednosti:

0 - FALSE 1 - TRUE

Za predstavitev števil potrebujemo več bitov:

				_			ziog (ai	igi. <i>byte</i>)	
94 =	0	1	0	1	1	1	1	0	
	128	64	32	16	8	4	2	1	-

Tlag (and buta)

8-bitno število: 0 – 255 (ali -128 – 127)

16-bitno število: 0 – 65535 (ali -32.768 – 32.767)

32-bitno število: 0 – 4,294,967,295 (ali -2,147,483,648 – 2,147,483,647)

Šestnajstiški številski sistem

»Uglašen« z dvojiškim sistemom, vendar lažje berljiv.

Števke: 0123456789ABCDEF

Pretvarjanje

Pretvorite iz desetiškega v šestnajstiški številski sistem:

$$50000 = 0xC350$$

Pretvorite iz šestnajstiškega v desetiški številski sistem:

$$0xDEAD = 57005$$

Negativna števila

Obračanje predznaka

Zgled

16-bitna spremenljivka x hrani vrednost 0x9C40.

- Katero desetiško vrednost hrani, če je x definirana kot nepredznačeno celo število (unsigned int)?
 40000
- Katero desetiško vrednost hrani, če je x definirana kot predznačeno celo število (int)?
 -25536

Necela števila

1. Fiksna vejica

- Enostavno razumevanje in uporaba.
- Aritmetika je enaka kot za cela števila (procesor jih obravnava kot cela števila).
- Omejitev: nefleksibilna natančnost.

2. Plavajoča vejica

- Standard IEEE 754
- Enojna natančnost (32-bit, float)
- Dvojna natančnost (64-bit, double)
- o Kompleksni algoritmi, ki jih ne bomo uporabljali na vajah.
- Pojavijo se lahko v teoretičnem delu na izpitu.

Fiksna vejica

Fiksna vejica v desetiškem sistemu

22058	220,58
+ 19111	+ 191,11
41169	411,69

Premikanje vejice pomeni množenje/deljenje števila z 10 Fiksna vejica v dvojiškem sistemu

01110110	01110,110
+ 00101011	+ 00101,011
10100001	10100,001

Premikanje vejice pomeni množenje/deljenje števila z 2

- Vejica je »fiktivna« in ni podana kot del števila.
- Procesor »misli«, da operira s celim številom.
- Informacija o vejici je potrebna, ko število izpisujemo na zaslon.

Domača naloga

Procesor je izvedel sledečo operacijo seštevanja:

```
0x01A0
+ 0xC410
-----
0xC5B0
```

Katera desetiška števila je procesor seštel in kakšen je rezultat seštevanja, če se je programer odločil, da gre pri tem za predznačena 16-bitna števila, kjer spodnji štirje biti predstavljajo neceli del števila?

Rešitev

Predstavitev izračuna v dvojiški obliki:

Pretvorba števila <u>0000 0001 1010 0000</u>:

$$256 + 128 + 32 = 416$$

 $416 / 2^4 = 26.0$

Pretvorba števila 1100 0100 0001 0000:

Eniški komplement: 0011 1011 1110 1111
Dvojiški komplement: 0011 1011 1111 0000
- (16 + 32 + 64 + 128 + 256 + 512 + 2048 + 4096 + 8192) = -15344
-15344 / 2^4 = -959.0

Pretvorba števila 1100 0101 1011 0000:

Eniški komplement: 0011 1010 0100 1111 Dvojiški komplement: 0011 1010 0101 0000 - $(16 + 64 + 512 + 2048 + 4096 + 8192) = -14928 -14928 / <math>2^4 = -933.0$

Odgovor:

$$26.0 + (-959.0) = -933.0$$