## Data

## Representation I

Sabah Sayed



## **Topics**

- 1. Text Data
- 2. ASCII
- 3. Extended ASCII
- 4. UNICODE
- 5. Representing Sound
- 6. Sampling Technique
- 7. MIDI Technique

#### **Text Data**

• Text (Character data) is composed of letters, symbols, and numerals that are not used in arithmetic operations.

- Each character is assigned a unique bit pattern.
- Character data is represented using several types of codes including **EBCDIC**, **ASCII**, **Extended ASCII**, and **Unicode**.

#### **EBCDIC**

- **EBCDIC** (Extended Binary-Coded Decimal Interchange Code)
- is an 8-bit code used only by older mainframe computers.

#### **ASCII Code**

- **ASCII** (American Standard Code for Information Interchange) requires only **seven** bits for each character.
- ASCII is developed by the American National Standards Institute (ANSI) in 1963, and finalized in 1968 as ANSI Standard X3.4.
- The purpose of ASCII was to provide a standard to code various symbols.

# How many characters can ASCII represent?

• **ASCII** provides codes for 128(2<sup>7</sup>) characters, including English letters (uppercase & lowercase), punctuation symbols, and numerals.

```
• From (0000000)_2 (00)_{16}
```

- To  $(11111111)_2$   $(7F)_{16}$
- For example, the **ASCII** code for an uppercase *A* is **1000001**.
- If 8-bits are used, the first bit is always set to 0.

#### **ASCII Table**

#### It only represents the English Alphabet

| Symbol          | ASCII    | Hex | Symbol | ASCII    | Hex | Symbol   | ASCII    | Hex |
|-----------------|----------|-----|--------|----------|-----|----------|----------|-----|
|                 |          |     |        |          |     |          |          |     |
| line feed       | 00001010 | 0A  | >      | 00111110 | 3E  | Λ.       | 01011110 | 5E  |
| carriage return | 00001011 | 0B  | ?      | 00111111 | 3F  | _        | 01011111 | 5F  |
| space           | 00100000 | 20  | @      | 01000000 | 40  | <u>-</u> | 01100000 | 60  |
| Į.              | 00100001 | 21  | А      | 01000001 | 41  | а        | 01100001 | 61  |
| N               | 00100010 | 22  | В      | 01000010 | 42  | b        | 01100010 | 62  |
| #               | 00100011 | 23  | С      | 01000011 | 43  | С        | 01100011 | 63  |
| \$              | 00100100 | 24  | D      | 01000100 | 44  | d        | 01100100 | 64  |
| %               | 00100101 | 25  | E      | 01000101 | 45  | e        | 01100101 | 65  |
| 8₁              | 00100110 | 26  | F      | 01000110 | 46  | f        | 01100110 | 66  |
| r               | 00100111 | 27  | G      | 01000111 | 47  | g        | 01100111 | 67  |
| (               | 00101000 | 28  | H      | 01001000 | 48  | h        | 01101000 | 68  |
| )               | 00101001 | 29  | I      | 01001001 | 49  | i        | 01101001 | 69  |
| *               | 00101010 | 2A  | J      | 01001010 | 4A  | j        | 01101010 | 6A  |
| +               | 00101011 | 2B  | K      | 01001011 | 4B  | k        | 01101011 | 6B  |
| r               | 00101100 | 2C  | L      | 01001100 | 4C  | ı        | 01101100 | 6C  |
|                 | 00101101 | 2D  | M      | 01001101 | 4D  | m        | 01101101 | 6D  |
| /               | 00101110 | 2E  | N      | 01001110 | 4E  | n        | 01101110 | 6E  |
| 0               | 00101111 | 2F  | 0      | 01001111 | 4F  | o        | 01101111 | 6F  |
| 1               | 00110000 | 30  | P      | 01010000 | 50  | р        | 01110000 | 70  |
| 2               | 00110001 | 31  | Q      | 01010001 | 51  | q        | 01110001 | 71  |
| 3               | 00110010 | 32  | R      | 01010010 | 52  | r        | 01110010 | 72  |
| 4               | 00110011 | 33  | S      | 01010011 | 53  | s        | 01110011 | 73  |
| 5               | 00110100 | 34  | Т      | 01010100 | 54  | t        | 01110100 | 74  |
| 6               | 00110101 | 35  | U      | 01010101 | 55  | u        | 01110101 | 75  |
| 7               | 00110110 | 36  | V      | 01010110 | 56  | v        | 01110110 | 76  |
| 8               | 00110111 | 37  | w      | 01010111 | 57  | w        | 01110111 | 77  |
| 9               | 00111000 | 38  | X      | 01011000 | 58  | x        | 01111000 | 78  |
| :               | 00111001 | 39  | Υ      | 01011001 | 59  | У        | 01111001 | 79  |
| ;               | 00111010 | 3A  | Z      | 01011010 | 5A. | Z        | 01111010 | 7A  |
| <               | 00111011 | 3B  | [      | 01011011 | 5B  | {        | 01111011 | 7B  |
| =               | 00111100 | 3C  | Ň      | 01011100 | 5C  |          | 01111100 | 7C  |
|                 | 00111101 | 3D  | ]      | 01011101 | 5D  | }        | 01111101 | 7D  |

#### **Extended ASCII**

- Extended ASCII is a superset of ASCII that uses eight bits to represent each character.
- For example, Extended ASCII represents the uppercase letter *A* as **01000001**.
- Using eight bits instead of seven bits allows Extended ASCII to provide codes for **256** characters.
- Uses the undefined space from 128-255 in ASCII, mapping it to various characters.

#### **Extended ASCII Table**

Extended ASCII character set.

```
01011100z 01111010 U 10011000 H 10110110 L 11010100 2
00100000 > 00111110 \
                     01011101 € 01111011 Ö 10011001 n 10110111 F 11010101 € 11110011
00100001 ? 00111111 1
00100010 @ 01000000
                     01011110 | 01111100 |
                                           100110103 10111000 m 11010110 c 11110100
00100011 A 01000001
                     01011111 > 01111101 ¢
                                           10011011 | 10111001 | 11010111 J
00100100 B 01000010 N
                     01100000 01111110 £
                                           10011100 1 10111010 + 11011000 +
                                          10011101 1 10111011
00100101 C 01000011 a 01100001 a 01111111 ¥
                                                                 11011001 2 11110111
00100110 D 01000100 b 01100010 C 10000000 R 10011110 10111100
                                                               r 11011010 º 11111000
00100111 E 01000101 c 01100011 ii 10000001 f 10011111 ii 10111101
                                                                          111111001
00101000 F 01000110 d 01100100 10000010 a 10100000 10111110
                                                                           111111010
00101001 G 01000111 e 01100101 a 10000011 f 10100001 7 10111111 I
                                                                11011101 J 11111011
00101010 H 01001000 £
                     01100110ä 10000100 á
                                           10100010 11000000
                                                                           111111100
00101011 I 01001001 gr
                     01100111 1 10000101 1
                                           10100011 11000001
                                                                           11111101
00101100 J 01001010 h 01101000 8 10000110 ñ
                                           10100100 T 11000010 🗷 11100000 🗉
                                                                           11111110
00101101 K 01001011 i 01101001c 10000111 ñ 10100101 l 11000011 B 11100001
                                                                            11111111
                                           10100110 - 11000100 1 11100010
00101110 L 01001100 i 01101010 2 10001000 9
00101111 M 01001101 k 01101011 1 10001001 1 10100111 1 11000101 I 11100011
00110000 N 01001110 1 01101100 10001010 2 10101000 1 11000110 ∑ 11100100
00110001 0 01001111 m 01101101 i 10001011 -
                                          10101001 II 11000111 o 11100101
00110010 P 01010000 n 01101110 1 10001100
                                           10101010 L 11001000 L 11100110
00110011 @ 01010001 0 01101111 1 10001101 2 10101011 1 11001001 1 11100111
00110100 R 01010010 p 01110000 a 10001110 ¼ 10101100 4 11001010 2 11101000
00110101 S 01010011 a 01110001  10001111 i
                                           10101101 7 11001011 B 11101001
00110110 T 01010100 P 01110010 10010000
                                         001101111 \cup 010101011 = 01110011 = 10010001 > 10101111 = 11001101 = 111010111
                                           10110000 # 11001110 @ 11101100
00111000 U 01010110 t 01110100 E 10010010
                                           10110001 1 11001111 1 11101101
00111001 W 01010111 u 011101016 10010011
00111010 X 01011000 V 01110110  10010100
                                           10110010 110101000 111101110
00111011 Y 01011001 W 01110111 1 10010101
                                           10110011 = 11010001 1 11101111
00111100 Z 01011010 x 01111000 û 10010110
                                           10110100 \pi 11010010 = 111110000
                                           10110101 4 11010011 2 11110001
00111101 [ 01011011 y 01111001 ii 10010111 |
```

#### "Hello." in ASCII



- Use the ASCII table to write the ASCII code for the following:
  - Computer
  - 5=10/2

## Why Numerals?

- Why does ASCII and Extended ASCII represent numerals?
  - Numerals that will not be used for calculations are better represented as text.
  - For example phone numbers are numerals but will not be used for any mathematical operations.
  - Such numerals are usually in the middle of text,
     such as an address ("5 Ahmed Zewail St.").

#### Unicode

- Unicode is designed to represent the world commonly used languages.
- uses **sixteen** bits and provides codes for 65,000 characters.
- For compatibility, the first 128 Unicode are the same as the ASCII.
- It is a real bonus for representing the alphabets of multiple languages.
- Example: Unicode represents the letter → as 0000 0110 0010 1111 or (062F)<sub>16</sub> in hexadecimal.
- Unicode is a family of encoding methods (UTF-8, UTF-16, etc.)

| Arabic Unicode |      |      |      |      |      |              |             |      | 0600-06FF Arabic ▼ |          |          |      |      |      |      |  |
|----------------|------|------|------|------|------|--------------|-------------|------|--------------------|----------|----------|------|------|------|------|--|
|                | ·    | ے    |      | _~   | ~    | <b>\</b> \\\ | <b>\</b> {* | ؈    | <b>%</b> .         | <b>/</b> | <u> </u> | •    | ,    | ے    | SO.  |  |
| 0600           | 0601 | 0602 | 0603 | 0604 | 0605 | 0606         | 0607        | 0608 | 0609               | 060A     | 060B     | 060C | 060D | 060E | 060F |  |
| ۵              | *    | ಶ    | زهر  | -    | ٦    | <u> 11</u>   | j           | ,    | ,                  |          | •        |      |      | ۵    | ?    |  |
| 0610           | 0611 | 0612 | 0613 | 0614 | 0615 | 0616         | 0617        | 0618 | 0619               | 061A     | 061B     | 061C | 061D | 061E | 061F |  |
| ؠ              | ¢    | Ĩ    | Í    | ؤ    | ļ    | ئ            | ١           | ب    | ö                  | ت        | ث        | ح    | ۲    | خ    | 7    |  |
| 0620           | 0621 | 0622 | 0623 | 0624 | 0625 | 0626         | 0627        | 0628 | 0629               | 062A     | 062B     | 062C | 062D | 062E | 062F |  |
| 2              | J    | j    | m    | ů    | ص    | ض            | ط           | ظ    | ع                  | غ        | ػ        | ؼ    | ؽ    | ؿ    | ؿ    |  |
| 0630           | 0631 | 0632 | 0633 | 0634 | 0635 | 0636         | 0637        | 0638 | 0639               | 063A     | 063B     | 063C | 063D | 063E | 063F |  |
| -              | ف    | ق    | أى   | J    | م    | ن            | ٥           | و    | ی                  | ي        | s        | d    | s    | ,    | 3    |  |
| 0640           | 0641 | 0642 | 0643 | 0644 | 0645 | 0646         | 0647        | 0648 | 0649               | 064A     | 064B     | 064C | 064D | 064E | 064F |  |

#### Exercise

- Create a text file in notepad
- Write the word "hello"
- Save the file once as ANSI (ASCII) and another as Unicode.
- Using any hexa editor (<a href="https://hexed.it/">https://hexed.it/</a> ) open the file and check the content of both.

#### What happens when I type?

- When you type the letter A, the hardware logic built into the keyboard automatically translates that character into the ASCII code 65.
- Which is then sent to the computer.
- Similarly, when the computer sends the ASCII code 65 to output devices, the output hardware instead draw letter "A" on your screen or your computer.

## What happens when I type?

Screen



**Keyboard** 



**Memory RAM** 



**Central Processing** 

Unit

## Representing Sound

- Sampling techniques
  - Used for high quality recordings
  - Records actual audio
- MIDI
  - Used in music synthesizers
  - Records "musical score"

## Sampling Technique

• The most generic method of encoding audio information is to sample the amplitude of the sound wave at regular intervals.





## Sampling Technique

• Digitize and then assign a binary representation





## Sampling Technique

- This technique is used for voice calls with sampling rate of 8000 samples per second.
- This is not sufficient for high-fidelity music recordings.
- To obtain the quality sound reproduction obtained by today's musical CDs, a sample rate of 44,100 samples per second is used.
- The data obtained from each sample are represented in 16 bits (32 bits for stereo recordings).

### **MIDI** Technique

- An alternative encoding system known as Musical Instrument Digital Interface is widely used in:
  - the music synthesizers
  - for video game sound
  - for sound effects accompanying websites.
- MIDI encodes what instrument is to play which note for what duration of time.
- MIDI files avoid the large storage requirements of the sampling technique.
- You can encode that a clarinet is playing the note D for two seconds in three bytes rather than more than two million bits when sampled at a rate of 44,100 samples per second.
- **Disadvantages** of MIDI files that it might sound different when performed on different synthesizers.