Assignment 3 Part 2

CS4172 Machine Learning Lab

Name: Abhiroop Mukherjee

Enrolment Number: 510519109

Task 4

Download the Forest Cover Type dataset (https://www.kaggle.com/uciml/forest-cover-type-dataset) and pre-process the dummy variables to create training, test, and development set. Reduce the train data size if the system unable to process the whole dataset.

```
In []: import pandas as pd
    _FILE_PATH = './../ML_DRIVE/Assign_3/covtype/covtype.csv'
    cov_df = pd.read_csv(_FILE_PATH)
    cov_df
```

Out[]:		Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrology	Horizontal_Distance_To_Roadways	Hillshade_9am	Hillshade_Noo
	0	2596	51	3	258	0	510	221	23
	1	2590	56	2	212	-6	390	220	23
	2	2804	139	9	268	65	3180	234	23
	3	2785	155	18	242	118	3090	238	23
	4	2595	45	2	153	-1	391	220	23
	•••							•••	
	581007	2396	153	20	85	17	108	240	23
	581008	2391	152	19	67	12	95	240	23
	581009	2386	159	17	60	7	90	236	24
	581010	2384	170	15	60	5	90	230	24
	581011	2383	165	13	60	4	67	231	24

581012 rows × 55 columns

In []: from sklearn.preprocessing import StandardScaler

def standardize(df: "pd.DataFrame", col name: "str") -> "pd.DataFrame":

```
cov_df.columns
Out[ ]: Index(['Elevation', 'Aspect', 'Slope', 'Horizontal Distance To Hydrology',
                'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways',
               'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm',
               'Horizontal Distance To Fire Points', 'Wilderness Area1',
                'Wilderness Area2', 'Wilderness Area3', 'Wilderness Area4',
                'Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5',
                'Soil_Type6', 'Soil_Type7', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10',
                'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14',
                'Soil Type15', 'Soil Type16', 'Soil Type17', 'Soil Type18',
               'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22',
               'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26',
                'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30',
               'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34',
               'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38',
               'Soil_Type39', 'Soil_Type40', 'Cover_Type'],
              dtype='object')
```

Out[]:		Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrology	Horizontal_Distance_To_Roadways	Hillshade_9am	Hillshad
	0	-1.297805	-0.935157	-1.482820	-0.053767	-0.796273	-1.180146	0.330743	0
	1	-1.319235	-0.890480	-1.616363	-0.270188	-0.899197	-1.257106	0.293388	0
	2	-0.554907	-0.148836	-0.681563	-0.006719	0.318742	0.532212	0.816364	0
	3	-0.622768	-0.005869	0.520322	-0.129044	1.227908	0.474492	0.965786	0
	4	-1.301377	-0.988770	-1.616363	-0.547771	-0.813427	-1.256464	0.293388	0
	•••	•••							
	581007	-2.012130	-0.023740	0.787408	-0.867697	-0.504653	-1.437962	1.040496	0
	581008	-2.029988	-0.032675	0.653865	-0.952383	-0.590424	-1.446299	1.040496	0
	581009	-2.047847	0.029873	0.386780	-0.985317	-0.676194	-1.449506	0.891075	0
	581010	-2.054990	0.128163	0.119694	-0.985317	-0.710502	-1.449506	0.666942	1
	581011	-2.058562	0.083486	-0.147392	-0.985317	-0.727656	-1.464256	0.704298	1

581012 rows × 55 columns

cov_df

scaler = StandardScaler()

```
In [ ]: cov_df[['Cover_Type']].value_counts()
```

```
Out[]: Cover_Type
                       283301
        1
                      211840
        3
                       35754
        7
                       20510
                       17367
        6
        5
                        9493
                        2747
        dtype: int64
In [ ]: # NOTE: class imbalance is present but removing it will
        # remove the data that cover_type 2 is the most common data in world
        cov_df = cov_df.sample(frac=0.1)
        X = cov_df.drop('Cover_Type', axis=1)
        y = cov_df[['Cover_Type']]
In [ ]: y.value_counts()
Out[]: Cover_Type
                      28425
        1
                      21189
        3
                       3522
                       2110
        6
                       1672
        5
                        911
                        272
        dtype: int64
In [ ]: # 80% as train
        # 10% as validation
        # 10% as train
        from sklearn.model_selection import train_test_split
        X_train, _X_rest, y_train, _y_rest = train_test_split(X, y, train_size=0.8)
        X_val, X_test, y_val, y_test = train_test_split(_X_rest, _y_rest, train_size=0.5)
```

Task 5

Apply multi-class classification in SVM using Forest Cover Type dataset.

```
In [ ]: # https://scikit-learn.org/stable/modules/svm.html#svm
```

```
# chose LinearSVC cause no mention of kernel to be used
        # and LinearSVC is the fastest
        # https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
        from sklearn.svm import LinearSVC
        from sklearn.metrics import accuracy score, f1 score
        model = LinearSVC(max iter=1000000).fit(X train, y train.iloc[:, 0])
        y predict = model.predict(X val)
        _accuracy = accuracy_score(y_val, _y_predict)
        # 'weighted' cause it also takes imbalance of classes into account
        f1 = f1 score(y val, y predict, average='weighted')
        print(f"default accuracy = {_accuracy}")
        print(f"default f1 = { f1}")
        default accuracy = 0.7189328743545611
        default f1 = 0.7027670149054814
In [ ]: # hyper parameter tuning
        def svm train(
            X train: "pd.DataFrame",
            X_val: "pd.DataFrame",
            y train: "pd.DataFrame",
            y val: "pd.DataFrame",
            tol=1e-4,
            C=1.0
        ) -> "LinearSVC":
            Wrapper Function for sklearn.svm.LinearSVC
            See: https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
            model = LinearSVC(
                tol=tol,
                C=C,
                max iter=1000000
            ).fit(X train, y train.iloc[:, 0])
            y predict = model.predict(X val)
            accuracy = accuracy score(y val, y predict)
            f1 = f1 score(y val, y predict, average='weighted')
            return [tol, C, accuracy, f1]
```

```
In [ ]: # Test 1: tolerance test
        result = []
        _tolerances = [1e-5, 3.3333e-5, 6.6666e-5, 1e-4,
                      3.333e-4, 6.666e-4, 1e-3]
        for tol in _tolerances:
            result.append(svm train(X train, X val, y train, y val, tol=tol))
        _df = pd.DataFrame(
            data= result,
            columns=["Tolerance", "C", "Accuracy", "f1"]
        print(_df)
        # also sort by ascending Tolerance as less tolerance means
        # less training time
        best_tol = _df.sort_values(
            ['f1', 'Accuracy', 'Tolerance'], ascending=False
        ).iloc[0, :]['Tolerance']
        print(f"best tolerance = {best_tol}")
           Tolerance
                       C Accuracy
                                          f1
        0 0.000010 1.0 0.718933 0.702767
        1 0.000033 1.0 0.718933 0.702767
           0.000067 1.0 0.718933 0.702767
           0.000100 1.0 0.718933 0.702767
           0.000333 1.0 0.718933 0.702767
        5 0.000667 1.0 0.718933 0.702767
        6 0.001000 1.0 0.718933 0.702767
        best tolerance = 0.001
In [ ]: # Test 2: C values
        result = []
        c values = [0.3333, 0.6666, 1, 3.3333, 6.6666, 10]
        for c in c values:
            _result.append(svm_train(X_train, X_val, y_train, y_val,
                                    tol=best_tol, C=c))
        df = pd.DataFrame(
            data= result,
            columns=["Tolerance", "C", "Accuracy", "f1"]
        print(_df)
```

```
# also sort by ascending C as for same result, smallest C
        # means biggest 1/C which means stronger regularization
        best C = df.sort values(
            ['f1', 'Accuracy', 'C'], ascending=[False, False, True]
        ).iloc[0, :]['C']
        print(f"best tolerance = {best C}")
           Tolerance
                            C Accuracy
                                              f1
        0
               0.001
                      0.3333 0.718417 0.702008
        1
                       0.6666 0.719105 0.702915
               0.001
        2
               0.001
                      1.0000 0.718933 0.702767
                      3.3333 0.718761 0.702662
               0.001
                      6.6666 0.718933 0.703002
               0.001
               0.001 10.0000 0.718933 0.703002
        best tolerance = 6.6666
In [ ]: # End Result after using validation dataset for all hyper-parameters
        model = LinearSVC(
                tol=best_tol,
                C=best C,
                max iter=1000000
            ).fit(X_train, y_train.iloc[:, 0])
        y predict = model.predict(X test)
        accuracy = accuracy_score(y_test, y_predict)
        f1 = f1 score(y test, y predict, average='weighted')
        print(f"Test Accuracy: {accuracy}")
        print(f"Test F1: {f1}")
```

Test Accuracy: 0.7184649802099466 Test F1: 0.7029568428478489

Task 6

Plot and Analyze the Confusion matrix for the above applied SVM method.

```
In [ ]: from sklearn.metrics import confusion_matrix
   import seaborn as sns
   import matplotlib.pyplot as plt

matrix = confusion_matrix(y_test, y_predict)
   fig = plt.figure(figsize=(10,10))
   sns.heatmap(
```

```
matrix,
  xticklabels=range(1,8),
  yticklabels=range(1,8),
  linewidth=0.5,
  cmap='coolwarm',
  annot=True,
  cbar=True,
  square=True)
plt.title('HeatMap for the model')
plt.ylabel('Actual Value')
plt.xlabel('Predicted Value')
plt.show()
```

HeatMap for the model н - 1.5e+03 6.1e+02 0 45 ∾ - 5.1e+02 2.3e+03 68 28 2.8e+02 0 0 m -Actual Value 20 9 86 ro -62 96 9 -83 1.1e+02 0 0 0 r -2 3 5 7 6 i 4 Predicted Value

- 2000 - 1500 - 1000 - 500

Task 7

Consider only two features and three classes and train Logistic Regression 3-class Classifier (Any three-class) to show the training and test area in a 2-D plane, using matplotlib.

	Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrology	Horizontal_Distance_To_Roadways	Hillshade_9am	Hillshad
16722	-0.262033	-1.104931	-0.681563	0.341435	-0.350267	1.862336	0.218677	-0
166952	0.805883	0.458775	0.386780	1.244756	1.073522	2.308703	-0.192233	1
283277	0.759452	-1.069189	0.253237	2.533869	-1.671130	-0.930668	0.181321	-1
552577	1.173760	0.405162	-0.414477	-0.467789	-0.744810	-0.296390	0.143966	1
63762	0.666589	-0.863673	-0.147392	-0.321941	-0.556116	0.920218	0.666942	-0
•••			•••					
488243	1.063040	0.038808	0.253237	0.477874	0.387359	-0.846012	0.853719	0
481639	-0.344181	-0.881544	0.253237	-0.952383	-0.573270	-1.044183	0.629587	-0
179037	-0.244175	-0.997705	0.253237	0.073262	-1.413819	-1.076891	0.368099	-1
330017	0.363001	-1.104931	-0.147392	0.035624	0.455975	-0.089881	0.143966	-0
476325	0.180848	0.503452	0.787408	0.426122	-0.984967	-0.754942	-0.491076	1

46480 rows × 54 columns

```
In []: # taking first two features

subset_X_train = X_train.iloc[:, 0:2]
subset_y_train = y_train

subset_train = subset_X_train.join(subset_y_train)
subset_train = subset_train[subset_train['Cover_Type'].isin([1,2,3])]
subset_train
```

```
Out[ ]:
                 Elevation
                             Aspect Cover_Type
          16722 -0.262033 -1.104931
                                             2
         166952
                 0.805883 0.458775
                                             2
         283277
                 0.759452 -1.069189
                                             2
                 1.173760 0.405162
         552577
                                             1
          63762
                 0.666589 -0.863673
                                             1
                                             2
         488243
                 1.063040
                           0.038808
         481639 -0.344181 -0.881544
                                             2
         179037 -0.244175 -0.997705
                                             2
         330017
                 0.363001 -1.104931
                                             1
         476325
                0.180848 0.503452
                                             2
        42511 rows × 3 columns
```

```
from sklearn.inspection import DecisionBoundaryDisplay

disp = DecisionBoundaryDisplay.from_estimator(
    model,
    subset_train.iloc[:, 0:2],
    xlabel='Elevation',
    ylabel='Aspect',
    alpha=0.5,
    grid_resolution=5000
)

disp.ax_.scatter(
    subset_train['Elevation'],
    subset_train['Aspect'],
    c=subset_train['Cover_Type'],
    s=1
)
```



```
In []: subset_X_test = X_test.iloc[:, 0:2]
    subset_y_test = y_test

subset_test = subset_X_test.join(subset_y_test)
    subset_test = subset_test[subset_test['Cover_Type'].isin([1,2,3])]

disp = DecisionBoundaryDisplay.from_estimator(
    model,
    subset_test.iloc[:, 0:2],
    xlabel='Elevation',
    ylabel='Aspect',
    alpha=0.5,
    grid_resolution=5000
)

disp.ax_.scatter(
    subset_test['Elevation'],
    subset_test['Aspect'],
```

```
c=subset_test['Cover_Type'],
s=3
)
```

Out[]: <matplotlib.collections.PathCollection at 0x1438b34e740>

