DS503/CS585 - Big Data Management Project 3 Report

Xiaoting Cui Brendan Foley Jiaxing Zhang

Problem1 SparkSQL

Step 1: Create Dataset Customers and Transactions.

The Transcations dataset has 5,000,000 records. And its size is 303 MB.

Step 2: SparkSQL query

Screenshor of T2:

	+	+		
TransNumItems	SUM_TOTAL	AVG_TOTAL	MIN_TOTAL	MAX_TOTAL
	2.4236275811278012E8			
3	2.42879970934888E8	600.0710828726944	200.00119	999.99927
8	2.4239013659375542E8	600.5389625261208	200.01111	999.9997
5	2.4256985160077772E8	600.6657461606293	200.00415	999.9999
6	2.4229226289152944E8	599.993222043037	200.0009	999.99884
	2.4219100706314203E8			
1	2.4229041608117822E8	600.1223973179888	200.0002	999.99725
10	2.424227293562678E8	599.6035897559215	200.00061	999.99915
	2.4337927412294644E8			
2	2.420233638854271E8	599.9230682493533	200.00421	999.99817

Screen of T3:

·,···,		
		-
CustID	T3_NUM_TRANS	
		+
21248		
19132	82	
18306	76	
28197	77	
19338		
37246	93	
11888	74	
38986	86	
44423	91	
18130	82	
38672	88	
20512	92	
35004	64	
32812	95	
13610	80	
7711	85	
32275	79	
5925	79	
28135	65	
31039	79	
		+
nly sho	owing top 20 r	OWS

Screenshot of T5:

ransID	custID	TransTotal	TransNumItems	TranDesc
1	19733	910.4241	8	 bVtKn8Ph6pGa002p4
2	23795	937.6122		4j42MwmeLrLp4wy7z
3	49295	867.77313	4	3D83VeOkhCBRflxvC
5	11899	786.89594	2	zhvv44P0awrbQsmCV
7	23463	604.6437	3	fxAKlb4fqm6LCxydN
13	48175	877.5877	8	ClBGZbYlPeauNwnbi
15	42619	801.40063	4	jxAvTXgcslJsvuw5J
16	8065	840.7588	2	V06reGpLyj0QbVDvJ
21	44828	896.8285	1	upyQqlx1YVp0g9iqD
22	40100	935.6953	8	F6wX3IQod5FjevAav
23	48759	876.8	8	2josHauNyMVu61FIc
24	22908	751.8085	8	IB2dXIKbAQyJT2FLC
31	1798	866.952	9	onpzpl7iXPHfukkcB
32	31886	641.0324	6	evGed4NIb0hrKIyt6
34	10297	656.7162	7	19xyjTMM7N9G5l7xP
35	49188	659.2036	6	V4NeEWYPHBKWIff8o
36	33289	828.27814		thBWip8PTlNbWf7RS
38	38967	921.6777		pyOc96MQHmgcp7d0T
42	32542	644.41766		Pz1FQGvXkYK62Jkf0
43	47674	862.99664	8	CWjByZCHM3sGusolu

For the T6 we join the T5 and T3 with the key of CustID. Then conduct a simple SQL query base on the jointable to get the final result.

Screenshot of T6:

CustID	T5_NUM_TRANS T3	_NUM_TRANS
	++	
14227	22	74
44629	26	80
11393	27	82
24051	25	77
45069	27	83
28436	26	79
25870	23	74
23088	15	60
28786	24	77
47806	25	76
34246	21	68
34831	24	76
7066	23	71
31053	21	68
556	16	51
15160	23	72
35237	28	87
2709	23	70
20226	21	70
390	24	76

Screen of T2 output:

Screen of the final output:

Problem 2:

P2.A:

Runing generatedata.java

Our dataset contains a set of 2D points and is about 146M large.

P2.B:

Idea: map each point to (supercellID, (1,0, number of neighbor cells)) and (neighborcellID, (0, 1, 0)). In this function, we find out how many points are in each super cell and its neighbor cells.

In the reduce function, if there is a value in the list of values whoes first position equals to one which means the point in that cell is not 0. In this situation, sum up all the positions except the last one. Otherwise, sum up all the positions.

Next map function, calculate the relative-density scores for each cell. After that sort them. Sample code:

./spark-submit --class bigdata.Problem2 /home/yifan/hw3.jar /home/yifan/spark/data.txt The result of P2.B is stored in p2b file

P2.C:

Idea: Get the neighbor cells for Top 100 super cells and find their neighbor cells' relative-density scores from above.

Sample code:

./spark-submit --class bigdata.Problem2 /home/yifan/hw3.jar /home/yifan/spark/data.txt The result of P2.C is stored in p2c file


```
(328,CompactBuffer((327,0.8128835), (329,0.7894737), (827,1.8913738), (828,1.3255814),
(829.2.013072)))
(249028, CompactBuffer((249027, 1.3862816), (249029, 1.6382252), (248528, 0.8429752),
(249528,1.0948905), (249529,0.79192543), (248529,0.87763715), (248527,1.2088889),
(249527,0.8679245)))
(249444,CompactBuffer((249443,1.1936508), (249445,1.416149), (248944,0.9752066)
(249944,0.98333335), (249945,0.90909094), (248945,0.9663366), (248943,0.96465695),
(249943.1.009772)))
(249032,CompactBuffer((249031,1.3901639), (249033,1.2387097), (248532,1.1203501),
(249532,0.96014494), (249533,1.0596026), (248533,0.8298755), (248531,0.9294606),
(249531,0.7755776)))
(249492,CompactBuffer((249491,1.8255033), (249493,1.4304636), (248992,0.91935486),
(249492,CompactBuffer((249491,1.8255033), (249493,1.4304636), (248992,0.91935486), (249992,1.0942761), (249993,0.97222227), (248993,1.1652174), (248991,0.848), (249991,0.7291667))) (860,CompactBuffer((859,1.3980583), (861,1.4723927), (360,1.103679), (1360,1.083871), (1361,0.8907217), (361,0.7395498), (359,1.0371517), (1359,0.96202534))) (560,CompactBuffer((559,1.408805), (561,1.4502923), (60,1.2376238), (1060,0.8576998), (1061,1.1911469), (61,0.8235294), (59,0.7886905), (1059,1.0993657))) (249132,CompactBuffer((249131,1.4473684), (249133,1.3126935), (248632,0.9640592), (249632,0.98275864), (249633,0.8957654), (248633,0.7626459), (248631,1.056277), (249631,0.98153934)))
(249631,0.90163934)))
(249631,0.90163934))
(249304,CompactBuffer((249303,1.7808219), (249305,1.1034483), (248804,0.8780488),
(249804,0.99315065), (249805,1.097561), (248805,1.104034), (248803,0.8176353), (249803,0.8928572)))
(956,CompactBuffer((955,1.6356877), (957,1.652459), (456,1.0534592), (1456,0.67351127),
(1457,1.0041152), (457,1.0158731), (455,0.97791797), (1455,0.8847926)))
(249076,CompactBuffer((249075,1.3964497), (249077,1.0), (248576,1.0219561), (249576,1.1245675),
(249577,0.88129497), (248577,0.96666664), (248575,1.0867925), (249575,1.1386139)))
(249252,CompactBuffer((249251,1.7959183), (249253,1.0532916), (248752,1.0678337),
(249752,1.361633), (240753,0.8965517), (248753,0.7389558), (248751,0.80409281)
(249752,1.2361623), (249753,0.8965517), (248753,0.7389558), (248751,0.8049281),
(249751,0.72115386)))
(680, CompactBuffer((679, 1.4384859), (681, 1.2952381), (180, 0.9322034), (1180, 1.0166667),
(1181,0.7984032), (181,1.0), (179,0.89700997), (1179,0.8730159)))
```

Contribution:

Both Brendan and Jiaxing worked on the problem 1 with Scala. And we used different approach to do it. Brendan choose to query directly on the data frame, while Jiaxing mostly create a SQL table structure then query on the table. And both of the two codes worked well.

Xiaoting finished problem 2 in Scala and Java. Write report for problem 2 and review Jiaxing's code for problem2.

The problem 2 codes include two parts of code, the P2B_Jack was did by Jiaxing Zhang with Scala. The other codes was did by Xiaoting including one Scala solution and one Java solution. You just need to copy the code of P2B_Jack to the terminal in order to run it. For the rest codes which finished by Xiaoting Cui, you need to do in the Spark way.