Convex Optimization: Homework 2

Martín Prado

August 28, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1.

Calculate the minimum over \mathbb{R}^2_{++} of the function $f(x,y) = \frac{1}{xy} + x + y$.

Exercise 1.

Minimizing a quadratic-over-linear fractional function. Consider the proble

Exercise 1.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \leq ||x||^2$ for every $x \in \mathbb{R}^n$. Show that f is Fréchet differentiable in 0.

Solution: By hypothesis, $f(\vec{0}) = 0$

$$\lim_{\|x\| \to 0} \frac{f(x) - f(\vec{0})}{\|x\|} \le \lim_{\|x\| \to 0} \frac{\|x\|^2}{\|x\|}$$
$$= 0.$$

Thus, the linear function $\ell(x) = 0$ is the Fréchet derivative of f at 0.

Exercise 1.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \leq ||x||^2$ for every $x \in \mathbb{R}^n$. Show that f is Fréchet differentiable in 0.

Solution: By hypothesis, $f(\vec{0}) = 0$

$$\lim_{\|x\| \to 0} \frac{f(x) - f(\vec{0})}{\|x\|} \le \lim_{\|x\| \to 0} \frac{\|x\|^2}{\|x\|}$$
$$= 0.$$

Thus, the linear function $\ell(x) = 0$ is the Fréchet derivative of f at 0.

Exercise 1.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \leq ||x||^2$ for every $x \in \mathbb{R}^n$. Show that f is Fréchet differentiable in 0.

Solution: By hypothesis, $f(\vec{0}) = 0$

$$\lim_{\|x\| \to 0} \frac{f(x) - f(\vec{0})}{\|x\|} \le \lim_{\|x\| \to 0} \frac{\|x\|^2}{\|x\|}$$
$$= 0.$$

Thus, the linear function $\ell(x) = 0$ is the Fréchet derivative of f at 0.