Projet de recherche M2

Les espaces de Hardy et leurs applications

Soutenu le ? devant :

Auteur : Jules Gagnaire

Directeur de recherche : Karim Kellay

Résumé

Table des matières

1	Fonctions harmoniques	
	1.1 Définitions et premières propriétés	
	1.2 Noyau de Poisson	
	1.3 Le problème de Dirichlet	1
	1.4 Bijection entre les mesures complexes sur \mathbb{T} et certaines fonctions harmoniques	1
	1.5 Théorème de Herglotz-Riesz	1
	1.6 Limite radiale de l'intégrale de Poisson	1
	1.7 Description de certaines fonctions harmoniques	2
	1.8 Limite non tangentielle de l'intégrale de Poisson	2
2	La classe de Nevanlinna	2
	2.1 Les fonctions \log^+ et \log^-	2
	2.2 Définition de la classe de Nevanlinna et description des fonctions sans zéros	2
	2.3 La formule de Jensen et les produits de Blaschke	2
	2.4 Description complète des fonctions de \mathcal{N}	3
3	Les espaces de Hardy	3
	3.1 Fonctions sous harmoniques	3
	3.2 Définition et premières propriétés des espaces de Hardy	3
	3.3 Fonctions intérieurs et extérieurs	4
	3.3.1 Fonctions intérieurs	4
	3.3.2 Fonctions extérieurs	4
	3.4 Facteurs extérieures des fonctions de $H^p(\mathbb{D})$	4
	3.5 L'espace de Hardy $H^2(\mathbb{D})$	4
	3.6 Théorème de factorisation des fonctions de $H^p(\mathbb{D})$	4
4	Sous espace invariant du shift	5
	4.1 Le shift sur ℓ^2	5
	4.2 Le shift sur $H^2(\mathbb{D})$	5
	4.3 Description des sous espaces invariants du shift sur $H^2(\mathbb{D})$	Ę
5	Théorème de Littlewood	5
6	Le théorème de Müntz-Szasz	6
7	Annexe	6
1	7.1 Théorème de Hahn-Banach et conséquence	(
	7.1 Theoreme de Hami-Banach et consequence	6
	7.2 Mesure complexe	(
	1.0 Derivees superious of interious d une mesure a valeurs reches definites sur N	

Notations

- \mathbb{D} est le disque unité ouvert de \mathbb{C} .
- \mathbb{T} est le cercle unité de \mathbb{C} .
- D(a,R) est le disque ouvert de centre a et de rayon R.
- $\Gamma(a,R)$ est le cercle de centre a et de rayon R.
- $\mathcal{H}ol(\mathbb{D})$ est l'ensemble des fonctions holomorphes sur \mathbb{D} .
- $\hat{f}(n)$ est le n-ième coefficient de Fourier de f définie par

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f\left(e^{it}\right) e^{-int} dt.$$

- $S_m(f)\left(e^{it}\right) = \sum_{|n| \le m} \hat{f}(n)e^{int}$ est a somme partielle de la série de Fourier de f. $\operatorname{Fr}(K)$ désigne la frontière de K.
- $-\mathcal{C}(X)$ est l'ensemble des fonctions continues sur X et à valeurs dans \mathbb{C} et $\mathcal{C}^*(X)$ le dual topologique de C(X).
- $\mathcal{C}_+^*(X) := \{ \Lambda \in \mathcal{C}^* \mid \Lambda(f) \ge 0, \ f \in \mathcal{C}(X), \ f \ge 0 \}.$
- m est la mesure de Lebesgue.
- $\mathcal{M}(X)$ l'ensemble des mesures complexes sur un espace mesurable.
- $\mathcal{M}^+(X)$ l'ensemble des mesures positives sur un espace mesurable.
- $C_0(X)$ est l'ensemble des fonctions continues sur X et qui tendent vers 0 à l'infini.
- $H^{\infty}(U)$ l'ensemble des fonctions holomorphes bornées sur U pour la norme infini.
- $\mathcal{L}(X)$ est l'ensemble des applications linéaires continue sur X un \mathbb{C} -espace vectoriel.
- $\sigma(T) := \{\lambda \in \mathbb{C} : (T \lambda Id) \text{ non inversible } \}$ est le spectre de T pour $T \in \mathcal{L}(X)$.
- $\sigma_n(T) := \{\lambda \in \mathbb{C} : (T \lambda Id) \text{ non injective } \}$ est le spectre ponctuel de T pour $T \in \mathcal{L}(X)$.
- Lat(T) est l'ensemble de tous les sous-espaces vectoriels fermés \mathcal{M} invariants par $T \in \mathcal{L}(X)$, c'est-à-dire tels que $T\mathcal{M} \subset \mathcal{M}$.
- $-\ell^{2} := \left\{ (a_{n})_{n \geq 0} : a_{n} \in \mathbb{C}, \sum_{n \geq 0} |a_{n}|^{2} < \infty \right\}.$

1 Fonctions harmoniques

1.1 Définitions et premières propriétés

Définition 1.1. Soit Ω un ouvert de $\mathbb C$ et soit f une fonction $f:\Omega\to\mathbb C$. On dit que f est harmonique sur Ω si f est de classe C^2 sur Ω et si $\Delta f\equiv 0$ sur Ω , où on associe f(x+iy) à F(x,y):=f(x+iy).

Remarque. Pour toute fonction f de classe C^2 sur un ouvert Ω de \mathbb{C} , on a:

$$\Delta f = 4 \frac{\partial^2 f}{\partial z \partial \bar{z}} = 4 \frac{\partial^2 f}{\partial \bar{z} \partial z}$$

avec
$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 et $\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.

Proposition 1.2. Toute fonction holomorphe sur un ouvert Ω est harmonique sur Ω .

Démonstration. Le résultat est une conséquence direct des équations de Cauchy-Riemann.

Remarque. Soit Ω un ouvert de \mathbb{C} . Une fonction $f:\Omega\to\mathbb{C}$ est harmonique si et seulement si Re f et Im f sont harmoniques sur Ω .

Corollaire 1.3. Soit Ω un ouvert de \mathbb{C} . Si une fonction $f:\Omega\to\mathbb{C}$ est holomorphe, alors Re f et Im f sont harmoniques sur Ω .

Théorème 1.4. Soit Ω un ouvert simplement connexe de \mathbb{C} et soit $h:\Omega\to\mathbb{R}$ de classe C^2 . Si h est une fonction harmonique sur Ω alors il existe une fonction f holomorphe sur Ω telle que $\operatorname{Re}(f)=h$. De plus f est unique à une constante additive près.

Démonstration. Commençons par montrer que si on a le théorème alors f est unique à constante additive près. Soit f := h + ik holomorphe sur Ω , où h = Re(f) et k = Im(f). Puisque f est holomorphe on a par les équations de Cauchy-Riemann

$$\frac{\partial h}{\partial x} = \frac{\partial k}{\partial y}, \quad \frac{\partial h}{\partial y} = -\frac{\partial k}{\partial x},$$

et toujours par celle-ci

$$f' = \frac{\partial f}{\partial x}$$

$$= \frac{\partial h}{\partial x} + i \frac{\partial k}{\partial x}$$

$$= \frac{\partial h}{\partial x} - i \frac{\partial h}{\partial y}.$$

Ainsi f est déterminée par h à constante additive près.

Pour la démonstration du théorème nous allons nous inspirer de cette première partie. Soit h une fonctions harmonique sur Ω , posons

$$g = \frac{\partial h}{\partial x} - i \frac{\partial h}{\partial y}.$$

Nous avons que g est holomorphe sur Ω , en effet, puisque h est harmonique sur Ω on a que $\Delta h = 0$ sur Ω , i.e.

$$\frac{\partial^2 h}{\partial x^2} = -\frac{\partial^2 h}{\partial y^2}.$$

De plus h est C^2 sur Ω (car harmonique sur Ω) et donc par le théorème de Schwartz on a :

$$\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial^2 h}{\partial y \partial x}.$$

Ainsi g vérifie le critère de Cauchy-Riemann et donc g est holomorphe sur Ω .

Fixons $z_0 \in \Omega$ et posons pour $z \in \Omega$:

$$f(z) := h(z_o) + \int_{\gamma} g(\omega) d\omega,$$

où γ est une chemin quelconque dans Ω reliant z_0 à z. Puisque Ω est simplement connexe et g holomorphe on par le théorème de Cauchy que f est holomorphe sur Ω , indépendante de γ et f' = g, ainsi f est bien définie. Il ne reste plus qu'à montrer que Re(f) = h. Puisque f' = g, on a

$$f' = \frac{\partial h}{\partial x} - i \frac{\partial h}{\partial y}.$$

Or f est holomorphe, donc en notant $\tilde{h} := \text{Re}(f)$ on a :

$$f' = \frac{\partial \tilde{h}}{\partial x} - i \frac{\partial \tilde{h}}{\partial y}.$$

D'où

$$\frac{\partial}{\partial x} \left(\tilde{h} - h \right) = 0 \quad \text{et} \quad \frac{\partial}{\partial y} \left(\tilde{h} - h \right) = 0,$$

et donc il existe une constante $C \in \mathbb{R}$ telle que

$$\tilde{h} - h = c$$
.

Or

$$f(z_0) = h(z_0) = \text{Re}(f(z_0)) = \tilde{h}(z_0)$$

donc $\tilde{h}(z_0) - h(z_0) = 0$ et donc C = 0. Finalement $\tilde{h} = h$ et donc

$$Re(f) = h.$$

Corollaire 1.5. (caractérisation des fonctions harmoniques) Soit Ω un ouvert de \mathbb{C} et soit $f:\Omega\to\mathbb{R}$ de classe C^2 . Les trois conditions suivantes sont équivalentes :

- 1. f est harmonique sur Ω .
- 2. Pour tout $z_0 \in \Omega$, il existe r > 0 et φ holomorphe sur $D(z_0, r)$ tels que $f = \text{Re}(\varphi)$ sur $D(z_0, r)$.
- 3. Pour tout ouvert simplement connexe \mathcal{U} de Ω , il existe ψ holomorphe sur \mathcal{U} tel que $f = \text{Re}(\psi)$ sur \mathcal{U} .

Proposition 1.6. (Propriété de la moyenne) Soit f une fonction continue sur $\overline{D(a,r)}(a \in \mathbb{C}$ et r > 0), harmonique sur D(a,r) et à valeurs complexes. Alors on a la propriété de la moyenne :

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{it}\right) dt$$

Démonstration. Supposons que f soit harmonique sur $D(a,\rho)$ avec $\rho > r$. Posons $f_1 := \operatorname{Re}(f)$. f_1 est harmonique sur $D(a,\rho)$. Puisque $D(a,\rho)$ est simplement connexe, d'après le théorème 1.4, il existe φ holomorphe sur $D(a,\rho)$ telle que $f_1 = \operatorname{Re}(\varphi)$ sur $D(a,\rho)$. D'après la formule de Cauchy, nous avons :

$$\varphi(a) = \frac{1}{2i\pi} \int_{\Gamma(a,r)} \frac{\varphi(\xi)}{\xi - a} d\xi$$

avec $0 < r < \rho$ et où $\Gamma(a,r)$ est le cercle de centre a et de rayon r. Posons $\xi = a + re^{it}$ pour $t \in [0,2\pi]$. On a :

$$\varphi(a) = \frac{1}{2i\pi} \int_0^{2\pi} \frac{\varphi(a + re^{it})}{re^{it}} ire^{it} dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \varphi(a + re^{it}) dt.$$

Ainsi,

$$f_1(a) = \operatorname{Re}(\varphi(a))$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}(\varphi(a + re^{it})) dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f_1(a + re^{it}) dt$$

De même, en remplaçant f_1 par $f_2 = \text{Im}(f)$ on montre que $\text{Im}(f(a)) = \frac{1}{2\pi} \int_0^{2\pi} \text{Im} \left(f\left(a + re^{it}\right) \right) dt$. On obtient donc

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{it}\right) dt$$

sous l'hypothèse f harmonique sur $D(a, \rho)$ avec $\rho > r$.

Pour le cas général, d'après ce qu'il précède, on a pour tout s < r,

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + se^{it}\right) dt$$

En faisant tendre s vers r et par continuité de f sur $\overline{D(a,r)}$, on obtient :

$$f(a) = \lim_{s \to r^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} f\left(a + se^{it}\right) dt$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f\left(a + re^{it}\right) dt$$

ce qui achève la preuve.

Proposition 1.7. (Principe du maximum) Soient Ω un ouvert connexe et $f: \Omega \to \mathbb{R}$ une fonction harmonique. Si f admet un maximum relatif sur Ω , alors f est constante.

Démonstration. Soit S l'ensemble des maximums relatifs de f sur Ω . Supposons que S est non vide. Soit $a \in S$ et soit D(b,r) un disque ouvert centré en b, de rayon r, contenant a et contenu dans Ω . Nous allons montrer que S est à la fois ouvert et fermé de Ω qui est connexe.

Montrons que \mathcal{S} est ouvert. Puisque $a \in \mathcal{S}$, il existe $\rho > 0$ tel que $\overline{D(a,\rho)} \subset D(b,r)$ et tel que $f(a) \geq f(z)$ pour tout $z \in \overline{D(a,\rho)}$. Par la propriété de la moyenne (proposition 1.6) nous avons :

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{it}\right) dt$$

Remarquons que

$$\frac{1}{\pi r^2} \iint_{\overline{D(a,r)}} f(x+iy) dx dy f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a+re^{it}\right) dt.$$

En effet posons $x + iy = se^{i\theta}$ (ce qui donne $dxdy = sdsd\theta$) et par la continuité de f sur le compact $\overline{D(a,r)}$ (ce qui implique que f est uniformément bornée) on a :

$$\iint_{\overline{D(a,r)}} f(x+iy)dxdy = \int_0^r \int_0^{2\pi} f\left(a+se^{i\theta}\right) s ds d\theta$$

$$= \int_0^r s\left(\int_0^{2\pi} f\left(a+se^{i\theta}\right) d\theta\right) ds$$

$$= \int_0^r s(2\pi f(a)) ds$$

$$= 2\pi f(a) \frac{r^2}{2} = \pi r^2 f(a)$$

Puisque $\pi \rho^2 = \iint_{\overline{D(a,\rho)}} dx dy$, on a :

$$f(a) = \frac{1}{\pi \rho^2} \iint_{\overline{D(a,\rho)}} f(a) dx dy.$$

Ainsi,

$$\iint_{\overline{D(a,\rho)}} (f(a) - f(x+iy)) dx dy = 0$$

 $(x, y) \longmapsto f(a) - f(x + iy)$ est continue et positive sur $\overline{D(a, \rho)}$. Ainsi f(z) = f(a) pour tout $z \in \overline{D(a, \rho)}$. De ce fait $D(a, \rho) \subset \mathcal{S}$ et donc \mathcal{S} est ouvert dans Ω .

Nous allons montrer qu'en fait f(z) = f(a) pour tout $z \in D(b, r)$, autrement dit que f est constante sur tout disque ouvert contenu dans Ω et contenant un maximum local.

D'après l'assertion 2. du corollaire 1.5, il existe une fonction φ holomorphe sur D(b,r) telle que $f=\operatorname{Re}(\varphi)$ sur D(b,r). Nous venons de montrer que nécessairement $\operatorname{Re}(\varphi)$ était constante sur $D(a,\rho)$. Par les équations de Cauchy-Riemann, $\operatorname{Im}(\varphi)$ est également constante sur $D(a,\rho)$. Ainsi par théorème de prolongement analytique φ est constante sur D(b,r). Ainsi f est elle aussi constante sur D(b,r).

Montrons que S est aussi fermé dans Ω . Soit $u \in \Omega \cap \overline{S}$. Soit s > 0 tel que $D(u, s) \subset \Omega$. Comme $u \in \overline{S}$, $D(u, s) \cap S \neq \emptyset$. D'après ce qui précède, on a donc $D(u, s) \subset S$ et donc en particulier, $u \in S$, ce qui prouve que S est fermé dans Ω .

Il ne reste plus qu'à conclure, puisque $\mathcal{S} \neq \emptyset$ est un sous-ensemble à la fois ouvert et fermé de Ω qui est connexe, on obtient $\mathcal{S} = \Omega$. La fonction f est donc localement constante sur Ω . Par hypothèse f (de classe C^2) est continue, f est donc constante sur Ω .

Corollaire 1.8. Soit K un compact non vide de \mathbb{C} et soit f une fonction (à valeurs complexes) continue sur K et harmonique sur K. Alors

$$\sup_{z \in K} |f(z)| = \sup_{z \in Fr(K)} |f(z)|.$$

Démonstration. Puisque une fonction continue sur un compact atteint son sup, il existe $z_0 \in K$ tel que

$$|f(z_0)| \ge |f(z)|$$
 pour tout $z \in K$.

Si $z_0 \in \operatorname{Fr}(K)$, le résultat est immédiat. Supposons que $z_0 \in \overset{\circ}{K}$. Soit $\mathcal U$ la composante connexe de z_0 dans $\overset{\circ}{K}$. Rappelons que les composantes connexes de tout ouvert $\mathcal V$ de $\mathbb C$ sont à la fois ouvertes et fermées dans $\mathcal V$. Nous pouvons supposer que $|f(z_0)| > 0$ (sinon f = 0). Posons

$$g(z) = \frac{|f(z_0)|}{f(z_0)} f(z).$$

Par construction, g est harmonique sur $\overset{\circ}{K}$. On a |g(z)|=|f(z)| pour tout $z\in K$ et $g(z_0)=|f(z_0)|$. Pour $z\in K$, on a :

$$\operatorname{Re}(g(z)) \le |g(z)| = |f(z)| \le |f(z_0)| = g(z_0) = \operatorname{Re}(g(z_0)).$$

D'après la proposition 1.7 (principe du maximum), $\operatorname{Re}(g)$ est constante sur l'ouvert connexe \mathcal{U} car z_0 est un maximum local. Puisque $\operatorname{Re}(g)$ est continue sur $\overline{\mathcal{U}}$ on a $\operatorname{Re}(g)$ est constante sur $\overline{\mathcal{U}}$. Il existe donc $z_1 \in \operatorname{Fr}(\mathcal{U})$ tel que

$$\operatorname{Re}\left(g\left(z_{1}\right)\right) = \operatorname{Re}\left(g\left(z_{0}\right)\right) = g\left(z_{0}\right).$$

On a donc

$$|f(z_1)| \ge \operatorname{Re}(g(z_1)) = g(z_0) = |f(z_0)|.$$

De plus

$$|f(z_0)| \ge |f(z_1)|$$
.

Ainsi, $|f(z_1)| = |f(z_0)|$ et |f| atteint son maximum en z_1 avec $z_1 \in Fr(\mathcal{U})$. Comme \mathcal{U} est une composante connexe de $\overset{\circ}{K}, \mathcal{U}$ est fermé dans $\overset{\circ}{K}$.

On en déduit que nécessairement $z_1 \in \operatorname{Fr}(K)$. En effet si ce n'était pas le cas on aurait $z_1 \in \overset{\circ}{K}$ ce qui implique $z_1 \in \mathcal{U}$ puisque $\overline{\mathcal{U}} \cap \overset{\circ}{K} = \mathcal{U} \cap \overset{\circ}{K}$.

1.2 Noyau de Poisson

Définition 1.9. Pour $r \in [0,1[$ et $t \in \mathbb{R}$, on pose

$$P_r(t) := \sum_{n = -\infty}^{+\infty} r^{|n|} e^{int}$$

Pour $r \in [0, 1]$ fixé, P_r est appelé un noyau de Poisson.

Remarque.

1. Pour $r \in [0, 1]$ fixé, la série

$$\sum_{n=-\infty}^{+\infty} r^{|n|} e^{int}$$

converge normalement, donc uniformément en t. La fonction P_r est continue sur $[0, 2\pi]$.

2. Pour $r \in [0,1[$ fixé, on a (par interversion intégrale série)

$$\frac{1}{2\pi} \int_{0}^{2\pi} P_r(t)dt = 1.$$

Définition 1.10. Nous pourrons parfois être amener à utiliser la notation suivante :

$$P_r(\theta - t) := P(z, e^{it}), \text{ où } z = re^{i\theta} \in \mathbb{T}, \text{ et } t \in \mathbb{R}.$$

Proposition 1.11. Pour $z=re^{i\theta}\in\mathbb{D}$ et pour tout $t\in\mathbb{R},$ on a:

$$P_r(\theta - t) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\theta - t))$$

$$= \operatorname{Re}\left(\frac{e^{it} + z}{e^{it} - z}\right)$$

$$= \frac{1 - |z|^2}{|e^{it} - z|^2}$$

$$= \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2}.$$

Démonstration. La première égalité vient du fait que

$$P_r(\theta - t) = 1 + \sum_{n=1}^{\infty} r^n e^{in(\theta - t)} + \sum_{n=1}^{\infty} r^n e^{-in(\theta - t)}$$
$$= 1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\theta - t))$$

Pour la seconde égalité, remarquons que :

$$\begin{split} \frac{e^{it} + z}{e^{it} - z} &= \frac{e^{it} + re^{i\theta}}{e^{it} - re^{i\theta}} \\ &= \frac{1 + re^{i(\theta - t)}}{1 - re^{i(\theta - t)}} \\ &= \frac{1 - re^{i(\theta - t)}}{1 - re^{i(\theta - t)}} \\ &= 1 + \frac{2re^{i(\theta - t)}}{1 - re^{i(\theta - t)}} \\ &= 1 + 2re^{i(\theta - t)} \sum_{n = 0}^{\infty} r^n e^{in(\theta - t)} \\ &= 1 + 2 \sum_{n = 1}^{\infty} r^n e^{in(\theta - t)}. \end{split}$$

Ainsi

$$Re\left(\frac{e^{it}+z}{e^{it}-z}\right) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\theta-t)) = P_r(\theta-t).$$

Ce qui donne la seconde inégalité à l'aide la première.

La troisième égalité vient en remarquant que :

$$\begin{split} \frac{e^{it} + z}{e^{it} - z} &= \frac{\left(e^{it} + z\right)\left(e^{-it} - \bar{z}\right)}{\left|e^{it} - z\right|^2} \\ &= \frac{1 - |z|^2 + \left(ze^{-it} - \bar{z}e^{it}\right)}{\left|e^{it} - z\right|^2} \end{split}$$

Puisque $ze^{-it} - \bar{z}e^{it}$ est imaginaire pur

$$\begin{split} \operatorname{Re}\left(\frac{e^{it}+z}{e^{it}-z}\right) &= \frac{1-|z|^2}{|e^{it}-z|^2} \quad \text{ce qui donne la troisième égalité} \\ &= \frac{1-r^2}{|e^{it}-z|^2} \\ &= \frac{1-r^2}{|1-ze^{-it}|^2} \\ &= \frac{1-r^2}{\left|1-re^{i(\theta-t)}\right|^2}. \end{split}$$

Or

$$\begin{aligned} \left| 1 - re^{i(\theta - t)} \right|^2 &= |1 - r\cos(\theta - t) - ir\sin(\theta - t)|^2 \\ &= (1 - r\cos(\theta - t))^2 + r^2\sin^2(\theta - t) \\ &= 1 + r^2 - 2r\cos(\theta - t) \end{aligned}$$

ce qui permet d'obtenir la quatrième égalité à l'aide de la seconde.

Remarque. D'après la proposition précédente un noyau de Poisson est une fonction uniformément continue sur $[0, 2\pi]$, 2π -périodique, positive et paire.

Proposition 1.12. Soit $z = re^{i\theta} \in \mathbb{D}$ et pour $t \in \mathbb{R}$, le noyau de Poisson P_r vérifie :

- 1. $P_r(\theta t) > 0$
- 2. $\frac{1}{2\pi} \int_0^{2\pi} P_r(\theta t) dt = 1$ 3. Soit $t_0 \in \mathbb{R}$ et $\delta > 0$, notons $P(z, e^{it}) := P_r(\theta t)$, on a

$$\sup_{\{t \mid |e^{it} - e^{it_0}| \ge \delta\}} P(z, e^{it}) \xrightarrow[z \to e^{it_0}]{} 0$$

Démonstration.

- 1. Ce point est direct en utilisant la troisième écriture du noyau de Poisson dans la proposition 1.11.
- 2. Ce point est direct par interversion série intégrale.
- 3. Si $|z e^{it_0}| < \delta$ alors

$$\sup_{\{t \mid |e^{it} - e^{it_0}| \ge \delta\}} P(z, e^{it}) = \frac{1 - z^2}{|e^{it} - z|^2} \quad \text{par la proposition 1.11}$$

$$= \frac{1 - z^2}{|e^{it} - e^{it_0} + e^{it_0} - z|^2}$$

$$\leq \frac{1 - z^2}{(|e^{it} - e^{it_0}| + |e^{it_0} - z|)^2}$$

$$\leq \frac{1 - z^2}{(\delta + |e^{it_0} - z|)^2}$$

en fasant tendre z vers e^{it_0} on a le résultat puisque $|e^{it_0}| = 1$.

Proposition 1.13. Soit μ une mesure complexe (finie) sur $[-\pi, \pi]$. Pour $z = re^{i\theta}$ avec $0 \le r < 1$ et $\theta \in \mathbb{R}$, on pose :

$$P(\mu)(z) := \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\mu(t)$$

Alors $P(\mu)$ est une fonction harmonique sur \mathbb{D} .

Démonstration. Ecrivons μ sous la forme $\mu = \mu_1 + i\mu_2$ avec μ_1 et μ_2 mesures réelles définies par $\mu_1(A) = \text{Re}(\mu(A))$ et $\mu_2(A) = \text{Im}(\mu(A))$ pour tout borélien A de $[-\pi, \pi]$. Ainsi

$$P(\mu)(z) = P(\mu_1)(z) + iP(\mu_2)(z).$$

Pour montrer que $P(\mu)$ est une fonction harmonique sur $\mathbb D$ il suffit de montrer que si ν est une mesure réelle sur \mathbb{T} alors $P(\nu)$ est une fonction harmonique sur \mathbb{D} . Pour cela remarquons que :

$$\begin{split} P(\nu)(z) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}\left(\frac{e^{it} + z}{e^{it} - z}\right) d\nu(t) \quad \text{d'après la proposition 1.11} \\ &= \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)\right) \\ &= \operatorname{Re}(\varphi(z)) \end{split}$$

où $\varphi(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu \left(e^{it} \right)$. La fonction φ étant holomorphe sur \mathbb{D} (en tant qu'intégrale de la fonction holomorphe $z \longmapsto \frac{e^{it}+z}{e^{it}-z}$ sur \mathbb{D}), ainsi d'après le corollaire 1.3 $P(\nu)$ est harmonique sur \mathbb{D} , ce qui permet de conclure.

П

1.3 Le problème de Dirichlet

Regardons le problème suivant : Etant donnée une fonction f continue sur \mathbb{T} , peut-on trouver une fonction g continue sur le disque fermé unité $\overline{\mathbb{D}}$, harmonique dans \mathbb{D} et telle que $g_{|\mathbb{T}} = f$? Ce problème est appelé problème de Dirichlet.

Le théorème qui suit va permettre de répondre à ce problème.

Théorème 1.14. Soit f une fonction continue sur \mathbb{T} . Alors il existe une unique fonction g continue sur $\overline{\mathbb{D}}$, harmonique dans \mathbb{D} et vérifiant $g_{|\mathbb{T}} = f$.

De plus, pour $z = re^{i\theta} \in \mathbb{D}$, on a

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f\left(e^{it}\right) dt.$$

On notera P(f) la fonction définie par $re^{i\theta} \longmapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f\left(e^{it}\right) dt$.

Remarque. En particulier, si f est harmonique $\mathbb D$ continue sur $\bar{\mathbb D}$ on a pour $z=re^{i\theta}\in\mathbb D$

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f\left(e^{it}\right) dt.$$

Démonstration. Commencons par **l'unicité** de la solution du problème de Dirichlet. Soient g_1 et g_2 deux solutions du problème de Dirichlet. On a que $g_1 - g_2$ est continue sur le compact $\overline{\mathbb{D}}$ et harmonique sur \mathbb{D} aisni d'après le Corollaire de principe du maximum (proposition 1.7) on a :

$$\sup_{z \in \overline{\mathbb{D}}} \{ |g_1(z) - g_2(z)| \} = \sup_{z \in \mathbb{T}} \{ |g_1(z) - g_2(z)| \} = 0$$

puisque $g_1(z) = f(z) = g_2(z)$ sur \mathbb{T} . D'où l'unicité.

Pour l'existence d'une solution au problème de Dirichlet. On a d'après la proposition 1.13, P(f) est harmonique sur \mathbb{D} . Posons

$$\tilde{P}(f)(z) = \left\{ \begin{array}{ll} P(f)(z) & \text{ si } |z| < 1 \\ f(z) & \text{ si } |z| = 1 \end{array} \right.$$

Il reste à démontrer la continuité de $\tilde{P}(f)$ sur $\overline{\mathbb{D}}$. Pour cela nous allons montrer que $\tilde{P}(f)$ est la limite uniforme de fonctions continues sur $\overline{\mathbb{D}}$.

Première étape : Montrons que pour toute fonction f continue sur \mathbb{T} on a :

$$|\tilde{P}(f)(z)| \le ||f||_{\infty} \text{ pour } |z| \le 1.$$
 (*)

Pour $|z| \in \mathbb{D}$, on a :

$$\begin{split} |\tilde{P}(f)(z)| &= |P(f)(z)| \\ &= \left| \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f\left(e^{it}\right) dt \right| \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) \left| f\left(e^{it}\right) \right| dt \\ &\leq \|f\|_{\infty} \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) dt \\ &= \|f\|_{\infty} \end{split}$$

car $s \mapsto P_r(s)$ est 2π périodique et paire, par le changement de variable $s = t - \theta$, on obtient :

$$\int_{0}^{2\pi} P_r(\theta - t)dt = \int_{0}^{2\pi} P_r(s)ds = 2\pi$$

d'après la remarque qui suit la définition d'un noyau de Poisson. Enfin pour |z| = 1, par définition, on a $|\tilde{P}(f)(z)| = |f(z)|$, donc l'inégalité (*) est vérifiée.

Pour $p \in \mathbb{Z}$, on considère la fonction e_p fonction continue de \mathbb{T} dans lui-même définie par $e_p\left(e^{it}\right) = e^{ipt}$. C'est aussi la fonction $z \longmapsto z^p$ si $p \geq 0$ et $z \longmapsto \bar{z}^{-p}$ si p < 0. La solution au problème de Dirichlet est directe pour les fonctions e_p : il s'agit de la fonction $g(z)=z^p$ sur $\overline{\mathbb{D}}$ si $p \ge 0$ et $g(z) = \bar{z}^{-p}$ si p < 0 (fonctions harmoniques sur \mathbb{D} en tant que fonction holomorphe).

Seconde étape : Montrons que

$$\tilde{P}(e_p) = \begin{cases} z \longmapsto z^p & \text{si } p \ge 0 \\ z \longmapsto \bar{z}^{-p} & \text{si } p < 0 \end{cases}$$

Ceci montrera que $\tilde{P}\left(e_{p}\right)$ est continue sur $\overline{\mathbb{D}}$ pour tout $p\in\mathbb{Z}$. Pour $z=re^{i\theta}\in\mathbb{D}$, par définition, nous avons :

$$\tilde{P}(e_p)(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) e^{ipt} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)} \right) e^{ipt} dt$$

Puisque, pour r fixé, $0 \le r < 1$, la série $\sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)}$ converge normalement (donc uniformément) sur $[0, 2\pi]$, on peut inverser l'intégrale et la série dans l'égalité ci-dessus. Ainsi :

$$\tilde{P}(e_p)(z) = \sum_{n \in \mathbb{Z}} \frac{r^{|n|} e^{in\theta}}{2\pi} \int_0^{2\pi} e^{i(p-n)t} dt$$
$$= r^{|p|} e^{ip\theta}.$$

Car $\int_0^{2\pi} e^{i(p-n)t} dt = 0$ si $p \neq n$ et $\int_0^{2\pi} e^{i(p-n)t} dt = 2\pi$ si p = n. On obtient ainsi, pour tout $z \in \overline{\mathbb{D}}$:

$$\tilde{P}\left(e_{p}\right)=\left\{\begin{array}{ll}z\longmapsto z^{p} & \text{ si }p\geq0\\ z\longmapsto\bar{z}^{-p} & \text{ si }p<0\end{array}\right.$$

Pour conclure la démonstration nous allons utiliser le théorème de Fejér. Soit $p = \sum_{|n| < k} c_n e_n$ un polynôme trigonométrique. Par définition, nous avons:

$$\tilde{P}(p) = \sum_{|n| \le k} c_n \tilde{P}(e_n)$$

Par la deuxième étape, $\tilde{P}(p)$ est continue sur $\overline{\mathbb{D}}$ pour tout polynôme trigonométrique p. D'après le Théorème de Fejér, il existe une suite de polynômes trigonométriques $(p_m)_{m\geq 1}$ telle que

$$\lim_{m \to \infty} ||f - p_m||_{\infty} = 0.$$

Il nous reste à vérifier que $\tilde{P}(f)$ est la limite uniforme de $\tilde{P}(p_m)$. Pour cela, on remarquons par définition que

$$\tilde{P}(f)(z) - \tilde{P}(p_m)(z) = \tilde{P}(f - p_m)(z).$$

De plus, d'après (*) on a

$$\left|\tilde{P}\left(f-p_{m}\right)\left(z\right)\right|\leq\left\|f-p_{m}\right\|_{\infty},$$

et donc

$$\lim_{m \to \infty} \sup_{z \in \overline{\mathbb{D}}} \left| \tilde{P}(f)(z) - \tilde{P}(p_m)(z) \right| \le \lim_{m \to \infty} \left\| f - p_m \right\|_{\infty} = 0$$

Ainsi $\tilde{P}(f)$ est bien continue sur \mathbb{T} en tant que limite uniforme d'une suite de fonctions continues sur T.

On peut également résoudre le problème de Dirichlet pour un disque quelconque de $\mathbb C$:

Corollaire 1.15. Soient $a \in \mathbb{C}$ et R > 0. Pour toute fonction f continue sur $\Gamma(a,R)$ où $\Gamma(a,R) = \{z \in \mathbb{C} : |z-a| = R\}$, il existe une unique fonction g continue sur $\overline{D(a,R)} := \{z \in \mathbb{C} : |z-a| \leq R\}$, harmonique sur $D(a,R) := \{z \in \mathbb{C} : |z-a| < R\}$ et telle que $g_{|\Gamma(a,R)} = f$. De plus, si $z = a + re^{i\theta}$ avec $0 \leq r < R$ et $\theta \in \mathbb{R}$ on a:

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{r/R}(\theta - t) f\left(a + Re^{it}\right) dt$$

Démonstration. Comme dans la démonstration précédente, **l'unicité** de la solution vient du principe du maximum.

Pour démontrer **l'existence** d'une solution g posons $f_1(z) = f(a + Rz)$ pour |z| = 1. Puisque f_1 est continue sur \mathbb{T} , d'après le théorème 1.14, il existe une fonction g_1 harmonique sur \mathbb{D} , continue sur $\overline{\mathbb{D}}$ et telle que la restriction de g_1 à \mathbb{T} coïncide avec f_1 . On pose pour $z \in \overline{D(a,r)}$

$$g(z) = g_1\left(\frac{z-a}{R}\right).$$

Par construction on a que g vérifie les hypothèses du corollaire. Notons également que

$$P_{r/R}(\theta - t) = \frac{1 - \frac{r^2}{R^2}}{1 - 2\frac{r}{R}\cos(\theta - t) + \frac{r^2}{R^2}} = \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - t) + r^2}.$$

On va maintenant donner un théorème qui donne une réciproque partielle du de la propostion 1.6 (propriété de la moyenne).

Théorème 1.16. Soit f une fonction continue sur Ω vérifiant la propriété suivante, pour tout $a \in \Omega$, il existe une suite $(r_n)_{n\geq 1}$ de réels positifs tels que $\overline{D(a,r_n)} \subset \Omega$, $\lim_{n\to\infty} r_n = 0$ et $f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + r_n e^{it}\right) dt$ pour tout $n\geq 1$ (cette propriété est appelée propriété de la moyenne faible). Alors f est harmonique sur Ω .

Démonstration. En considérant séparément Re(f) et Im(f) on peut se limiter au cas où f est à valeurs réelles.

Soit R>0 tel que $\overline{D(a,R)}\subset\Omega$. Puisque f est continue sur le cercle $\Gamma(\underline{a},R)=\{z\in\mathbb{C}:|z-a|=R\}$, d'après le corollaire 1.15, il existe une fonction g réelle, continue sur $\overline{D(a,R)}$, harmonique sur D(a,R) et telle que g et f soient égales sur $\Gamma(a,R)$. La fonction g, étant harmonique sur D(a,R), elle vérifie la propriété de la moyenne sur D(a,R) et donc vérifie aussi la propriété de la moyenne faible sur D(a,R). Ainsi la fonction h:=g-f réelle vérifie la propriété de la moyenne faible $\overline{Sur}(a,R)$ et est identiquement nulle sur $\Gamma(a,R)$. Le but va être de montrer que f0 est nulle sur $\overline{D(a,R)}$ pour en déduire que f1, et puisque f2 est harmonique on aura que f3 est harmonique sur tout voisinage de f3 ce qui conclura la preuve.

Pour cela posons

$$m := \sup_{z \in \overline{D(a,R)}} h(z)$$

et définissons

$$K := \{ \xi \in \overline{D(a,R)} \mid h(\xi) = m \}.$$

Puisque h est continue sur $\overline{D(a,R)}$ (compact), on a que K est un compact non vide de D(a,R). **Par l'absurde** supposons que m>0. Alors $K\subset D(a,R)$. Prenons z_0 dans $\mathrm{Fr}(K)$ pour lequel la fonction $z\longmapsto |z-a|$ continue sur le compact K atteint son maximum. Puisque h vérifie la propriété de la moyenne faible sur D(a,R), il existe une suite $(r_n)_{n\geq 0}$ de réels positifs tels que $\lim_{n\to\infty} r_n=0$, $\overline{D(z_0,r_n)}\subset D(a,R)$ avec

$$m = h(z_0) = \frac{1}{2\pi} \int_0^{2\pi} h(z_0 + r_n e^{it}) dt.$$

On a donc:

$$\frac{1}{2\pi} \int_0^{2\pi} \left(h\left(z_0\right) - h\left(z_0 + r_n e^{it}\right) \right) dt = 0$$

avec $t \mapsto h(z_0) - h(z_0 + r_n e^{it})$ continue, réelle et positive sur $[0, 2\pi]$. Par conséquent $h(z_0) = h(z_0 + r_n e^{it})$ et donc $\Gamma(z_0, r_n) \subset K$, **ce qui est absurde** d'après le choix de z_0 . On obtient ainsi m = 0 (puisque h(z) = 0 pour $z \in \Gamma(a, R)$) et donc $h(z) \le 0$ pour $z \in \overline{D(a, R)}$.

En appliquant un raisonnement analogue à -h on montre que $h(z) \ge 0$ pour $z \in \overline{D(a,R)}$.

Finalement h(z) = 0 pour $z \in \overline{D(a,R)}$. Ce qui conclut la démonstration.

Remarque. Soit f une fonction continue sur un ouvert Ω de \mathbb{C} . Les trois assertions suivantes sont équivalentes :

- 1. La fonction f est harmonique sur Ω .
- 2. La fonction f vérifie la propriété de la moyenne faible sur $\Omega.$
- 3. La fonction f vérifie la propriété de la moyenne sur Ω .

1.4 Bijection entre les mesures complexes sur \mathbb{T} et certaines fonctions harmoniques

Lemme 1.17. Pour $0 \le r < 1$ et $\theta \in \mathbb{R}$, posons

$$\varphi_{r,\theta}\left(e^{it}\right) := P_r(\theta - t).$$

Soit E le sous-espace vectoriel de $\mathcal{C}(\mathbb{T})$ engendré par $\{\varphi_{r,\theta}: 0 \leq r < 1, \theta \in \mathbb{R}\}$. On a que E est dense dans $\mathcal{C}(\mathbb{T})$.

Démonstration. On a que $\varphi_{r,\theta} \in \mathcal{C}(\mathbb{T})$ pour $0 \leq r < 1$ et $\theta \in \mathbb{R}$.

D'après le théorème 7.3 de l'annexe, il suffit de montrer que si $\ell \in E^{\perp}$ alors $\ell = 0$. D'après le théorème de représentation de Riesz pour les mesures (théorème 7.23 de l'annexe) ℓ est définie par une mesure $\mu \in \mathcal{M}(\mathbb{T})$ et $\ell = 0$ si et seulement si $\mu = 0$. Ainsi si on arrive à montrer que $\mu = 0$ on aura bien que $\ell = 0$ et donc E sera dense dans $\mathcal{C}(\mathbb{T})$. On a

$$\int_{0}^{2\pi} \varphi_{r,\theta} \left(e^{it} \right) d\mu(t) = 0$$

de plus

$$\int_{0}^{2\pi} \varphi_{r,\theta} \left(e^{it} \right) d\mu(t) = \int_{0}^{2\pi} P_r(\theta - t) d\mu(t) = P(\mu) \left(re^{i\theta} \right)$$

on a donc $\int_0^{2\pi} \varphi_{r,\theta}\left(e^{it}\right) d\mu(t) = 0$ pour $0 \le r < 1$ et $\theta \in \mathbb{R}$ si et seulement si $P(\mu) = 0$, ce qui implique $0 = \rho(P(\mu)) = \|\mu\|$. Finalement $\ell = 0$ et de ce fait E est dense dans $\mathcal{C}(\mathbb{T})$.

Théorème 1.18. Soit S l'ensemble des fonctions harmoniques f sur $\mathbb D$ telles que

$$\rho(f) := \sup_{0 \le s < 1} \int_0^{2\pi} \left| f\left(se^{i\theta}\right) \right| d\theta < \infty.$$

Alors l'application

$$\begin{array}{ccc} T: \mathcal{M}(\mathbb{T}) & \longrightarrow & S \\ \mu & \longmapsto & P(\mu) \end{array}$$

est une bijection.

De plus,

$$\rho(P(\mu)) = |\mu|(\mathbb{T}) = \|\mu\| \text{ et } \int_{\mathbb{T}} g d\mu = \lim_{s \to 1^{-}} \int_{0}^{2\pi} P(\mu) \left(se^{it}\right) g\left(e^{it}\right) dt$$

14

pour toute fonction $g \in \mathcal{C}(\mathbb{T})$ et toute mesure $\mu \in \mathcal{M}(\mathbb{T})$.

Démonstration. Première étape : Montrons que $P(\mu) \in S$. Puisque μ est une mesure complexe sur $\mathbb T$ d'après la proposition 1.13 $P(\mu)$ est une fonction harmonique dans $\mathbb D$. Il reste à vérifier que $\rho(P(\mu)) < \infty$.

On a:

$$\int_{0}^{2\pi} \left| P(\mu) \left(re^{i\theta} \right) \right| d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \int_{0}^{2\pi} P_r(\theta - t) d\mu(t) \right| d\theta$$

D'après la décomposition polaire (théorème 7.15) on a qu'il existe h mesurable telle que h(t) = 1 pour tout $t \in [0, 2\pi]$ et

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \int_{0}^{2\pi} P_{r}(\theta - t) d\mu(t) \right| d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \int_{0}^{2\pi} P_{r}(\theta - t) h(t) d|\mu|(t) \right| d\theta
\leq \frac{1}{2\pi} \int_{0}^{2\pi} \left(\int_{0}^{2\pi} P_{r}(\theta - t) d|\mu|(t) \right) d\theta$$

Le noyau de Poisson P_r est positif, continu par rapport aux variables t et mesurable. D'après le théorème de Fubini, on a :

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\int_{0}^{2\pi} P_{r}(\theta - t) d|\mu|(t) \right) d\theta = \int_{0}^{2\pi} \left(\frac{1}{2\pi} \int_{0}^{2\pi} P_{r}(\theta - t) d\theta \right) d|\mu|(t)$$

$$= \int_{0}^{2\pi} d|\mu|(t)$$

$$= |\mu|(\mathbb{T})$$

$$= |\mu|$$

On a donc

$$\rho(P(\mu) \le \mu(\mathbb{T}) = \|\mu\| < \infty,$$

et ainsi $P(\mu) \in S$.

Seconde étape : Montrons que $\int_{\mathbb{T}} g d\mu = \lim_{s \to 1^{-}} \int_{0}^{2\pi} P(\mu) \left(se^{it} \right) g \left(e^{it} \right) dt$.

D'après le théorème 1.14, il existe une unique fonction G continue sur $\overline{\mathbb{D}}$, harmonique dans \mathbb{D} avec $G_{|\mathbb{T}} = g$. Montrons que

$$\lim_{s \to 1^-} \|G_s - g\|_{\infty} = 0$$

où $G_s(e^{i\theta}) = G(se^{i\theta}).$

On a que G continue sur le compact $\overline{\mathbb{D}}$ est uniformément continue sur $\overline{\mathbb{D}}$. Ainsi, pour $\varepsilon > 0$, il existe $\eta > 0$ tel que pour tout couple (z_1, z_2) de $\overline{\mathbb{D}}$ vérifiant $|z_1 - z_2| < \eta$ on ait $|G(z_1) - G(z_2)| < \varepsilon$. En particulier, pour tout $\theta \in \mathbb{R}$ et pour $1 > s > 1 - \eta$ on a $|G_s(e^{i\theta}) - g(e^{i\theta})| = |G(se^{i\theta}) - G(e^{i\theta})| < \varepsilon$. Ainsi pour $s > 1 - \eta$ on a

$$||G_s - g||_{\infty} < \varepsilon$$

et donc

$$\lim_{s \to 1^{-}} \|G_s - g\|_{\infty} = 0.$$

On a que

$$G\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t)g\left(e^{it}\right) dt$$

toujours par Fubini, on a:

$$\int_0^{2\pi} g\left(e^{i\theta}\right) d\mu(\theta) = \lim_{s \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} g\left(e^{it}\right) \left(\int_0^{2\pi} P_s(\theta - t) d\mu(t)\right) dt$$
$$= \lim_{s \to 1^-} \int_0^{2\pi} g\left(e^{it}\right) P_\mu\left(se^{it}\right) dt$$

Troisième étape : Montrons que $\rho(P_{\mu}) = \|\mu\|$.

D'après le théorème de représentation de Riesz pour les mesure (théorème 7.23 de l'annexe) on a , $\|\mu\| = \|L_c(\mu)\|$ avec $L_c(\mu)(f) = \int_{\mathbb{T}} f d\mu$ pour toute fonction $f \in \mathcal{C}(\mathbb{T})$. Ainsi

$$\|\mu\| = \sup \left\{ \left| \int_0^{2\pi} g\left(e^{i\theta}\right) d\mu(\theta) \right| : g \in \mathcal{C}(\mathbb{T}), \|g\|_{\infty} \le 1 \right\}$$

D'après l'étape précédente, on a

$$\|\mu\| \le \limsup_{s \to 1^-} \int_0^{2\pi} \left| P(\mu) \left(s e^{it} \right) \right| dt \le \rho(P(\mu)).$$

Finalement, en utilisant la première inégalité on conclu que $\rho(P(\mu)) = ||\mu||$.

Quatrième étape : Montrons que T est une bijection.

Par définition, l'application T est linéaire. D'autre part l'égalité $\rho(P(\mu)) = \|\mu\|$ nous garantit l'injectivité de T. Il nous reste donc à vérifier que toute fonction $f \in S$ est de la forme $f = P(\mu)$ pour une certaine mesure $\mu \in \mathcal{M}(\mathbb{T})$.

Fixons $f \in S$ non identiquement nulle. Pour $0 \le s < 1$, on définit l'application linéaire

$$\begin{array}{ccc} L_s: \mathcal{C}(\mathbb{T}) & \longrightarrow & \mathbb{C} \\ g & \longmapsto & \int_0^{2\pi} g\left(e^{it}\right) f\left(se^{it}\right) dt \end{array}$$

Remarquons que $L_s\left(\varphi_{r,\theta}\right) = \int_0^{2\pi} P_r(\theta - t) f\left(se^{it}\right) dt$, où $\varphi_{r,\theta}\left(e^{it}\right) := P_r(\theta - t)$.

Puisque la fonction $u \longmapsto f(su)$ est continue sur $\overline{\mathbb{D}}$, harmonique dans \mathbb{D} , d'après le théorème 1.14 on a

$$\int_{0}^{2\pi} P_r(\theta - t) f\left(se^{it}\right) dt = 2\pi f\left(sre^{i\theta}\right).$$

On a donc $L_s(\varphi_{r,\theta}) = 2\pi f(sre^{i\theta})$ et par continuité de f sur $\overline{D(0,r)}$ on obtient :

$$\lim_{s \to 1^{-}} L_s \left(\varphi_{r,\theta} \right) = 2\pi f \left(r e^{i\theta} \right).$$

La linéarité de L_s nous garantit que pour tout $g \in E$, $\lim_{s\to 1^-} L_s(g)$ existe. Nous allons ensuite montrer que $\lim_{s\to 1^-} L_s(h)$ existe pour toute fonction $h \in \mathcal{C}(\mathbb{T})$, pour cela nous allons utliser le résultat de densité que nous venons de montrer dans le lemme 1.17. On a

$$||L_s|| = \sup\left\{ \left| \int_0^{2\pi} f\left(se^{it}\right)g\left(e^{it}\right)dt \right| : ||g||_{\infty} \le 1 \right\} \le \int_0^{2\pi} \left| f\left(se^{it}\right) \right| dt \le \rho(f) < \infty \tag{*}$$

Soit $\varepsilon > 0$ et soit $h \in \mathcal{C}(\mathbb{T})$. Puisque E est dense dans $\mathcal{C}(\mathbb{T})$, il existe $g \in E$ telle que

$$||g-h||_{\infty} \le \frac{\varepsilon}{2\rho(f)}.$$

De plus, puisque $L(g) := \lim_{s \to 1^-} L_s(g)$ existe, il existe $\nu > 0$ tel que pour $1 - \nu < s < 1$, on ait $|L_s(g) - L(g)| < \frac{\varepsilon}{4\rho(f)}$. Pour $s, s' \in]1 - \nu, 1[$, par (*), on a par un découpage classique :

$$\begin{aligned} |L_s(h) - L_{s'}(h)| &\leq |L_s(h) - L_s(g)| + |L_s(g) - L(g)| + |L(g) - L_{s'}(g)| + |L_{s'}(g) - L_{s'}(h)| \\ &\leq ||L_s|| \, ||h - g||_{\infty} + \frac{\varepsilon}{4\rho(f)} + \frac{\varepsilon}{4\rho(f)} + ||L_{s'}|| \, ||h - g||_{\infty} \\ &\leq \rho(f) \frac{\varepsilon}{2\rho(f)} + \frac{\varepsilon}{2\rho(f)} + \rho(f) \frac{\varepsilon}{2\rho(f)} \\ &= \varepsilon \left(1 + \frac{1}{2\rho(f)} \right) \end{aligned}$$

Ainsi la suite $(L_s)_{0 \leq s < 1}$ est de Cauchy. Or $\mathbb C$ est complet, de cela on en déduit que l'ensemble des applications linéaires de $\mathcal C(\mathbb T)$ dans $\mathbb C$ est complet. Ainsi $(L_s)_{0 \leq s < 1}$ est convergente. Notons L sa limite qui, d'après (*), vérifie $||L|| \leq \rho(f)$. Puisque $L \in (\mathcal C(\mathbb T))^*$, d'après le théorème de

représentation de Riesz pour les mesures (théorème 7.23 de l'annexe), il existe une mesure complexe $\mu \in \mathcal{M}(\mathbb{T})$ telle que :

$$L(h) = L_c(\mu)(h) = \int_0^{2\pi} h\left(e^{it}\right) d\mu(t), \quad h \in \mathcal{C}(\mathbb{T})$$

Il ne reste plus qu'à vérifier que $P(\mu) = f$. D'après les calculs précédents, nous avons :

$$P(\mu) (re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) d\mu(t)$$
$$= \frac{1}{2\pi} L(\varphi_{r,\theta})$$
$$= \frac{1}{2\pi} \lim_{s \to 1^-} L_s(\varphi_{r,\theta})$$
$$= \frac{1}{2\pi} 2\pi f (re^{i\theta})$$
$$= f (re^{i\theta})$$

Ainsi $P(\mu) = f$ ce qui conclut la démonstration.

Corollaire 1.19. L'application $\mu \mapsto P(\mu)$ est une isométrie bijective de $\mathcal{M}^+(\mathbb{T}) := \{\text{mesure positive finie sur } \mathbb{T} \}$ sur l'ensemble des fonctions harmoniques positives sur \mathbb{D} .

Démonstration. Soit $\mu \in \mathcal{M}^+(\mathbb{T})$. Pour toute fonction $f \in \mathcal{C}(\mathbb{T})$ positive on a

$$\int_{\pi} f d\mu \ge 0.$$

Puisque $P(\mu)$ $\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) d\mu(t)$ avec $t \mapsto P_r(\theta - t)$ continue et positive pour tout $\theta \in \mathbb{R}$, on a donc $P(\mu)$ fonction harmonique positive sur \mathbb{D} .

Réciproquement, si l'on suppose que f est une fonction harmonique positive sur \mathbb{D} , d'après la formule de la moyenne (proposition 1.6), on a

$$\int_0^{2\pi} |f(se^{it})| dt = \int_0^{2\pi} f(se^{it}) dt$$
$$= 2\pi f(0)$$

On a donc $\rho(f) := \sup_{0 \le s < 1} \int_0^{2\pi} \left| f\left(se^{i\theta}\right) \right| d\theta = 2\pi f(0) < \infty$, ce qui prouve que $f \in S$. D'après le théorème précédent, il existe $\mu \in \mathcal{M}(\mathbb{T})$ telle que $f = P(\mu)$. Dans la preuve du théorème précédent, on a vu que pour toute fonction h continue sur \mathbb{T} on a :

$$\int_{0}^{2\pi} h\left(e^{it}\right) d\mu(t) = \lim_{s \to 1^{-}} \int_{0}^{2\pi} h\left(e^{it}\right) f\left(se^{it}\right) dt.$$

Ainsi, si h est une fonction continue positive sur \mathbb{T} on a $\int_0^{2\pi} h\left(e^{it}\right) d\mu(t) \geq 0$. Ceci montre aussi que l'application linéaire

$$\begin{array}{ccc} \ell: \mathcal{C}(\mathbb{T}) & \longrightarrow & \mathbb{C} \\ h & \longmapsto & \frac{1}{2\pi} \int_0^{2\pi} h\left(e^{it}\right) d\mu(t) \end{array}$$

est continue avec $\|\ell\| = f(0)$ et positive. Ainsi $\ell \in \mathcal{C}_+^*(\mathbb{T})$. D'après le théorème de représentation de Riesz pour les mesures (théorème 7.23 de l'annexe), μ est une mesure positive finie.

1.5 Théorème de Herglotz-Riesz

Lemme 1.20. Soient f, g deux fonctions holomorphes sur un ouvert Ω de \mathbb{C} . Si f et g ont même partie réelle alors il existe une constante $c \in \mathbb{R}$ telle que pour tout $z \in \Omega$

$$f(z) = g(z) + ic.$$

Démonstration. Soient f, g deux fonctions holomorphes sur Ω , notons pour $z = x + iy \in \Omega$

$$f(z) = u(x, y) + iv(x, y), \quad g(z) = u(x, y) + iw(x, y).$$

Puisque f et g sont holomorphes, elles vérifient les équations de Cauchy-Riemann :

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

$$\frac{\partial u}{\partial x} = \frac{\partial w}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial w}{\partial x}.$$

Ce qui donne

$$\frac{\partial v}{\partial y} = \frac{\partial w}{\partial y}, \quad \frac{\partial v}{\partial x} = \frac{\partial w}{\partial x}.$$

On en déduit v-w est indépendant des variables x et y, donc il existe une constante $c \in \mathbb{R}$ telle que v-w=c. On obtient le résultat en soustrayant g à f.

Théorème 1.21. (Représentation de Herglotz-Riesz) Soit f une fonction holomorphe sur \mathbb{D} telle que $\text{Re}(f) \geq 0$, alors il existe $\mu \in \mathcal{M}^+(\mathbb{T})$ et $c \in \mathbb{R}$ tels que pour tout $z \in \mathbb{D}$

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + ic.$$

Démonstration. Soit f holomorphe sur $\mathbb D$ telle que $\operatorname{Re}(f) \geq 0$. D'après la proposition 1.3 $\operatorname{Re}(f)$ est harmonique. Posons

$$h := \operatorname{Re}(f)$$

d'après le corollaire 1.19, il existe une mesure μ dans $\mathcal{M}^+(\mathbb{T})$ telle que

$$h(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\mu(t).$$

D'après la proposition 1.11 on a :

$$h(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}\left(\frac{e^{it} + z}{e^{it} - z}\right) d\mu(t),$$

or h est une fonction réelle donc

$$h(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t).$$

Par définition les fonctions f et h ont même partie réelle, donc par le lemme 1.20 on a qu'il existe $\lambda \in \mathbb{R}$ tel que :

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + ic,$$

ce qui conclut la démonstration.

1.6 Limite radiale de l'intégrale de Poisson

Définition 1.22. Soit $\mu \in \mathcal{M}(\mathbb{T})$ à valeurs réelles. L'intégrale de Poisson par rapport à μ est la fonction harmonique sur \mathbb{D} définie par :

$$P(\mu) \left(re^{i\theta} \right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\mu(t),$$

pour $0 \le r < 1$ et $\theta \in \mathbb{R}$.

Proposition 1.23. Soit $\mu \in \mathcal{M}(\mathbb{T})$ à valeurs réelles. Pour $0 \leq r < 1$ et $\theta \in \mathbb{R}$ on a :

$$\limsup_{r\to 1^-} P(\mu)\left(re^{i\theta}\right) \leq \bar{D}(\mu)(\theta) := \limsup_{s\to 0} \frac{\mu(]\theta-s, \theta+s[)}{2s}.$$

Démonstration. Soit $\delta \in]0,\pi[$. Nous allons découper l'intégrale en deux parties et travailler séparément sur chacune. On a :

$$P(\mu)\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_{\pi \ge |\theta - t| \ge \delta} P_r(\theta - t) d\mu(t) + \frac{1}{2\pi} \int_{|\theta - t| < \delta} P_r(\theta - t) d\mu(t).$$

Pour le premier membre : D'après la proposition 1.11, on a

$$P_r(\theta - t) = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2}.$$

Si $\pi \ge |\theta - t| \ge \delta$ on obtient $P_r(\theta - t) \le \frac{1 - r^2}{1 - 2r\cos\delta + r^2} = P_r(\delta)$ et donc

$$\left| \frac{1}{2\pi} \int_{\pi \ge |\theta - t| \ge \delta} P_r(\theta - t) d\mu(t) \right| \le \frac{P_r(\delta)}{2\pi} \int_{\pi \ge |\theta - t| \ge \delta} d|\mu|(t) \le \frac{P_r(\delta)}{2\pi} \|\mu\|.$$

Puisque $\delta \in]0, \pi[$, on remarque que :

$$\lim_{r \to 1^{-}} P_r(\delta) = \lim_{r \to 1^{-}} \frac{1 - r^2}{1 - 2r \cos \delta + r^2} = 0.$$

Pour le second membre :

Nous allons estimer

$$\frac{1}{2\pi} \int_{|\theta-t|<\delta} P_r(\theta-t) d\mu(t) = \frac{1}{2\pi} \int_{\theta+\delta}^{\theta-\delta} P_r(\theta-t) d\mu(t).$$

Considérons le domaine Δ de \mathbb{C} défini par $\Delta = \{(s,t) \in \mathbb{R}^2 \mid \theta - s < t < \theta + s, \ 0 < s < \delta\}.$

FIGURE 1 – Domaine d'intégration

Calculons $I = \iint_{\Delta} P'_r(s) ds d\mu(t)$. Puisque la fonction P'_r est continue, bornée et comme on l'intègre sur un intervalle borné, par le théorème de Fubini, on a d'une part :

$$I = \int_0^\delta \left(\int_{\theta-s}^{\theta+s} d\mu(t) \right) P_r'(s) ds = \int_0^\delta \mu(]\theta - s, \theta + s[) P_r'(s) ds.$$

D'autre part :

$$I = \int_{\theta - \delta}^{\theta + \delta} \left(\int_{|\theta - t|}^{\delta} P_r'(s) ds \right) d\mu(t) = \int_{\theta - \delta}^{\theta + \delta} \left(P_r(\delta) - P_r(|\theta - t|) \right) d\mu(t)$$
$$= \int_{\theta - \delta}^{\theta + \delta} \left(P_r(\delta) - P_r(\theta - t) \right) d\mu(t)$$

D'où

$$\int_{\theta-\delta}^{\theta+\delta} \left(P_r(\delta) - P_r(\theta-t) \right) d\mu(t) = \int_0^\delta \mu(]\theta - s, \theta + s[)P_r'(s)ds,$$

et puisque P_r est une fonction pair on a

$$\int_{\theta-\delta}^{\theta+\delta} P_r(\theta-t)d\mu(t) = \int_{\theta-\delta}^{\theta+\delta} P_r(\delta)d\mu(t) + \int_0^{\delta} \mu(]\theta - s, \theta + s[) (-P'_r(s)) ds$$
$$= P_r(\delta)\mu(]\theta - \delta, \theta + \delta[) + \int_0^{\delta} \mu(]\theta - s, \theta + s[) (-P'_r(s)) ds.$$

Remarquons que $-P'_r(s) \ge 0$ pour $s \in [0, \delta]$ puisque P_r est décroissante sur $[0, \delta]$ car $\delta \in]0, \pi[$. Soit $A > \bar{D}(\mu)(\theta)$. Si δ est assez petit, par le théorème 7.29 on a :

$$\forall s \in]0, \delta], \mu(]\theta - s, \theta + s[) < 2sA.$$

Ce qui donne

$$\int_{\theta-\delta}^{\theta+\delta} P_r(\theta-t)d\mu(t) \le 2A\delta P_r(\delta) + \int_0^{\delta} 2As \left(-P_r'(s)\right) ds$$
$$= 2A\left(\delta P_r(\delta) + \int_0^{\delta} -sP_r'(s)ds\right)$$

Par intégration par partie on a

$$\delta P_r(\delta) + \int_0^{\delta} -sP_r'(s)ds = \delta P_r(\delta) + [-sP_r(s)]_0^{\delta} + \int_0^{\delta} P_r(s)ds$$
$$= \int_0^{\delta} P_r(s)ds$$
$$\leq \int_0^{\pi} P_r(s)ds = \pi$$

D'où, pour δ assez petit, comme $\int_{|\theta-t|<\delta} P_r(\theta-t) d\mu(t) \leq 2\pi A$, on obtient :

$$\forall A > \bar{D}(\mu)(\theta), \quad P(\mu)\left(re^{i\theta}\right) \le A + P_r(\delta)\frac{\|\mu\|}{2\pi}$$

Puisque $\lim_{r\to 1^-} P_r(\delta) = 0$,

$$\lim \sup_{r \to 1^{-}} P(\mu) \left(re^{i\theta} \right) \le \bar{D}(\mu).$$

Théorème 1.24. (Limite radiale de l'intégrale de Poisson) Soit $\mu \in \mathcal{M}(\mathbb{T})$. Pour presque tout $t \in \mathbb{R}$ (par rapport à la mesure de Lebesgue) alors

$$\lim_{r \to 1^{-}} P(\mu) \left(re^{it} \right)$$

existe.

De plus si on pose $\varphi\left(e^{it}\right):=\lim_{r\to 1^-}P(\mu)\left(re^{it}\right)$, alors $\varphi\in L^1(\mathbb{T})$ et φ est la dérivée de Radon-Nikodym de μ par rapport à la mesure de Lebesgue. Autrement dit, si l'on pose $\nu(E):=\mu(E)-\int_E \varphi\left(e^{it}\right)dt$ pour tout borélien E de \mathbb{T} , alors $\nu\perp m$.

Démonstration. Dans un premier temps supposons que μ est à valeurs réelles.

Puisque

$$-P(-\mu) = -P(\mu)$$

$$-\limsup_{r \to 1^{-}} -P(\mu) \left(re^{it}\right) = -\liminf_{r \to 1^{-}} P(\mu) \left(re^{it}\right)$$

 $- \bar{D}(-\mu) = -\underline{D}(\mu)$

par la proposition 1.23 appliqué à $-\mu$, on a :

$$\underline{D}(\mu)(\theta) \leq \liminf_{r \to 1^{-}} P(\mu) \left(re^{it} \right) \leq \limsup_{r \to 1^{-}} P(\mu) \left(re^{it} \right) \leq \bar{D}(\mu)(\theta).$$

Or, d'après le théorème 7.29,

$$\underline{D}(\mu)(\theta) = \overline{D}(\mu)(\theta) = D(\mu)(\theta)$$
 m-presque partout

et de plus $D(\mu)$ coïncide avec la dérivée de Radon-Nikodym de μ par rapport à la mesure de Lebesgue. On en déduit le théorème dans ce cas particulier.

Maintenant, si μ est une mesure complexe, on écrit $\mu = \mu_1 + i\mu_2$ avec μ_1 et μ_2 mesures à valeurs réelles. Comme $D(\mu_1)$ et $D(\mu_2)$ existent m-presque partout et puisque $D(\mu) = D(\mu_1) + iD(\mu_2)$, $D(\mu)$ est bien défini m-presque partout. Or $P(\mu) = P(\mu_1) + iP(\mu_2)$, ainsi l'assertion du théorème reste vraie si μ est une mesure complexe.

1.7 Description de certaines fonctions harmoniques

En combinant le corollaire 1.19 et le théorème 1.24 on a

Corollaire 1.25. Soit F une fonction harmonique positive sur \mathbb{D} . Alors

$$F^*\left(e^{it}\right) := \lim_{r \to 1^-} F\left(re^{it}\right)$$

existe m-presque partout et $F^* \in L^1(\mathbb{T})$.

De plus il existe une mesure positive finie ν sur \mathbb{T} telle que $\nu \perp m$ et $F = P(F^*) + P(\nu)$ avec $\lim_{r \to 1^-} P(\nu) \left(re^{it} \right) = 0$ pour presque tout $t \in \mathbb{R}$ (par rapport à la mesure de Lebesgue).

De manière plus générale avec le théorème 1.18 et 1.24 on a :

Corollaire 1.26. Soit F une fonction harmonique sur \mathbb{D} telle que $\sup_{0 \le s < 1} \int_0^{2\pi} |f(se^{i\theta})| d\theta < \infty$. Alors

$$F^*\left(e^{it}\right) := \lim_{r \to 1^-} F\left(re^{it}\right)$$

existe m-presque partout et $F^* \in L^1(\mathbb{T})$.

De plus il existe une mesure finie ν sur \mathbb{T} telle que $\nu \perp m$ et $F = P(F^*) + P(\nu)$ avec $\lim_{r \to 1^-} P(\nu) \left(re^{it} \right) = 0$ pour presque tout $t \in \mathbb{R}$ (par rapport à la mesure de Lebesgue).

1.8 Limite non tangentielle de l'intégrale de Poisson

Définition 1.27. Soit h(z) une fonction à valeurs complexes définie sur \mathbb{D} , et soit $e^{i\tau}$ un point fixe de \mathbb{T} .

On dit que $\lim_{z \to a} h(z) = A$ non tangentiellement si, pour tout secteur triangulaire ouvert S

dans D de sommet $e^{i\tau}$, on a $h(z) \to A$ lorsque $z \to e^{i\tau}$ à l'intérieur de S.

On dit que $\lim_{z \to e^{it}} h(z) = f\left(e^{it}\right)$ non tangentiellement p.s. s'il existe un borélien $N \subseteq \mathbb{T}$ de mesure de Lebesgue nul tel que

$$\lim_{z \to e^{it}} h(z) = f\left(e^{it}\right)$$

non tangentiellement pour tout $e^{it} \in \mathbb{T} \backslash N$.

Figure 2 – Exemple d'un secteur triangulaire

Théorème 1.28. (Fatou) Soit $\mu \in \mathcal{M}^+(\mathbb{T})$, notons

$$d\mu = fdm + d\mu_s$$

la décomposition de Lebesgue de μ par rapport à m la mesure de Lebesgue. Notons pour $z \in \mathbb{T}$

$$h(z) = \frac{1}{2\pi} \int_{\mathbb{T}} P(z, e^{it}) d\mu(e^{it}).$$

Alors

$$\lim_{z\to e^{it}}h(z)=f(e^{it})$$
 non tangentiellement p.s. .

Démonstration. Soit $\alpha(t) := \mu\left(\left\{e^{i\theta} \mid \theta \in [0, t[\right]\right)$ la fonction de répartition de μ , on a que

$$\begin{split} \alpha'(t) &= \lim_{s \to 0} \frac{\alpha(t+s) - \alpha(s)}{s} \\ &= \lim_{s \to 0} \frac{\mu\left(\left\{e^{i\theta} \mid \theta \in [s, t+s[\right\}\right)}{s} \\ &= f\left(e^{it}\right) \text{ pour presque tout } t \text{ d'après la proposition 7.28.} \end{split}$$

Ainsi pour prouver le résultat, il suffit de montrer que

$$\lim_{z\to 1} h(z) = \alpha'(t)$$
 non tangentiellement p.s. .

Sans perte de généralité, supposons que t=0 et $\alpha(0)=0$. Par définition on a

$$\alpha'(0) = \lim_{t \to 0} \frac{\alpha(t)}{t}$$

et nous devons montrer que

$$h(z) \to \alpha'(0)$$

de manière non tangentielle lorsque $z \to 1$.

Fixons un secteur dans le disque unité avec sommet en 1 :

$$S = \{z := x + iy \mid |y| < K(1 - x), c < x < 1\}$$

où K>0 et 0< c<1 mais c doit être assez proche de 1 dans un sens que nous préciserons plus tard.

Soit $\varepsilon > 0$. Nous allons montrer qu'il existe $\delta > 0$ tel que l'inégalité

$$|h(z) - \alpha'(0)| < \varepsilon$$

soit satisfaite pour tout $z \in S$ et $|z-1| < \delta$. Puisque pour toute f continue sur le cercle $\mathbb T$ on a

$$\int_{\mathbb{T}} f d\mu = \int_{-\pi}^{\pi} f(e^{it}) d\alpha(t),$$

on a alors

$$\begin{split} 2\pi h(z) - 2\pi \alpha'(0) &= \int_{-\pi}^{\pi} P\left(z, e^{it}\right) d\left(\alpha(t) - \alpha'(0)t\right) \\ &= \left[P\left(z, e^{it}\right) \left(\alpha(t) - \alpha'(0)t\right)\right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \left(\alpha(t) - \alpha'(0)t\right) \frac{\partial}{\partial t} P\left(z, e^{it}\right) dt \\ &= P\left(z, -1\right) \left(\alpha(\pi) - \alpha(-\pi) - 2\pi\alpha'(0)\right) - \int_{-\pi}^{\pi} \left(\alpha(t) - \alpha'(0)t\right) \frac{\partial}{\partial t} P\left(z, e^{it}\right) dt \\ &= \frac{1 - |z|^2}{|1 + z|^2} \left(\alpha(\pi) - \alpha(-\pi) - 2\pi\alpha'(0)\right) - \int_{-\pi}^{\pi} \left(\alpha(t) - \alpha'(0)t\right) \frac{\partial}{\partial t} P\left(z, e^{it}\right) dt. \end{split}$$

Prenons un $\eta \in]0,\pi[$ tel que $\left|\frac{\alpha(t)}{t}-\alpha'(0)\right|<\varepsilon/M,$ où $M:=3(2\pi+16K),$ on découpe alors l'intégrale de sorte à ce qu'on ait :

$$2\pi h(z) - 2\pi \alpha'(0) = \frac{1 - |z|^2}{|1 + z|^2} (\alpha(\pi) - \alpha(-\pi) - 2\pi \alpha'(0)) - \int_{|t| \le \eta} (\alpha(t) - \alpha'(0)t) \frac{\partial}{\partial t} P(z, e^{it}) dt$$
$$- \int_{\eta < |t| \le \pi} (\alpha(t) - \alpha'(0)t) \frac{\partial}{\partial t} P(z, e^{it}) dt$$
$$:= I_1(z) + I_2(z) + I_3(z).$$

Il est clair que $I_1(z)$ tend vers 0 lorsque $z \to 1$. Ainsi prenons $\delta_1 > 0$ tel que pour $z \in S, |z-1| < \delta_1$:

$$|I_1(z)| < \frac{\varepsilon}{3}.$$

Pour $I_3(z)$, remarquons qu'avec la proposition 1.11 nous avons

$$\frac{\partial}{\partial t}P\left(z,e^{it}\right) = \operatorname{Re}\frac{-2ize^{it}}{\left(e^{it}-z\right)^2}.$$

Or,

$$\frac{-2ize^{it}}{(e^{it} - z)^2} = \frac{-2ize^{it}(e^{-it} - \bar{z})^2}{|e^{it} - z|^4}$$
$$= \frac{-2ize^{-it} - 2ize^{it}\bar{z}^2 + 4i|z|}{|e^{it} - z|^4}$$

Ainsi en faisant $z \to 1$ on a

$$\frac{-2ize^{it}}{(e^{it}-z)^2} = \frac{-2ie^{-it}-2ie^{it}+4i}{|e^{it}-1|^4}.$$

La quantité au dénominateur est bien finie puisque $\eta < |t| \le \pi$. Puis en prenant la partie réelle on a

$$\operatorname{Re}\left(\frac{-2ize^{it}}{\left(e^{it}-z\right)^2}\right) = 0,$$

d'où $\frac{\partial}{\partial t}P\left(z,e^{it}\right)$ tend vers 0 uniformément pour $\eta<|t|\leq\pi$ lorsque $z\to 1$, et donc $I_3(z)$ tend vers 0 lorsque $z\to 1$. Prenons alors $\delta_3>0$ tel que pour $z\in S,\ |z-1|<\delta_1$:

$$|I_3(z)| < \frac{\varepsilon}{3}.$$

Il reste à estimer $I_2(z)$. Remarquons que précédemment nous avons utiliser des limites "classiques", c'est pour ce terme que nous auront besoin de la limite tangentielle. Soit $z=re^{i\theta}\in S$, on a

$$|I_{2}(z)| = \left| \int_{-\eta}^{\eta} \left[\frac{\alpha(t)}{t} - \alpha'(0) \right] t \frac{\partial}{\partial t} P\left(z, e^{it}\right) dt \right|$$

$$\leq \frac{\varepsilon}{M} \int_{-\eta}^{\eta} \left| t \frac{\partial}{\partial t} P\left(z, e^{it}\right) \right| dt.$$

D'après la proposition 1.11 on a

$$P(z, e^{it}) = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2},$$

donc

$$\frac{\partial}{\partial t} P\left(z, e^{it}\right) = \frac{\left(1 - r^2\right) 2r \sin(t - \theta)}{\left(1 - 2r \cos(\theta - t) + r^2\right)^2}$$

Ainsi

$$|I_2(z)| \le \frac{\varepsilon}{M} \int_{-\eta}^{\eta} \left| \frac{t(1-r^2) 2r \sin(t-\theta)}{(1-2r \cos(\theta-t)+r^2)^2} \right| dt.$$

Par un changement de variable affine on a

$$|I_2(z)| \le \frac{\varepsilon}{M} \int_{-(\eta+\theta)}^{\eta-\theta} \left| (t+\theta) \frac{(1-r^2) 2r \sin(t)}{(1-2r\cos(t)+r^2)^2} \right| dt.$$

Pour c assez proche de 1 on peut supposer que le nouvel intervalle d'intégration est $[-\pi,\pi]$ pas compris

$$|I_{2}(z)| \leq \frac{\varepsilon}{M} \int_{-\pi}^{\pi} \left| (t+\theta) \frac{(1-r^{2}) 2r \sin(t)}{(1-2r \cos(t)+r^{2})^{2}} \right| dt$$

$$\leq \frac{\varepsilon}{M} \int_{-\pi}^{\pi} \left| t \frac{\partial}{\partial t} P\left(r, e^{it}\right) \right| dt + \frac{\varepsilon}{M} |\theta| \int_{-\pi}^{\pi} \left| \frac{\partial}{\partial t} P\left(r, e^{it}\right) \right| dt$$

D'une part,

$$\int_{-\pi}^{\pi} \left| t \frac{\partial}{\partial t} P\left(r, e^{it}\right) \right| dt = -\int_{-\pi}^{\pi} t \frac{\partial}{\partial t} P\left(r, e^{it}\right) dt \text{ pas compris...} < 2\pi$$

D'autre part, par parité de $t \mapsto \frac{\partial}{\partial t} P\left(r, e^{it}\right)$ on a

$$\begin{aligned} |\theta| \int_{-\pi}^{\pi} \left| \frac{\partial}{\partial t} P\left(r, e^{it}\right) \right| dt &= -2|\theta| \int_{0}^{\pi} \frac{\partial}{\partial t} P\left(r, e^{it}\right) dt \\ &= -2|\theta| \left[P\left(r, e^{it}\right) \right]_{0}^{\pi} \\ &= \frac{8r|\theta|}{1 - r^{2}} \\ &\leq \frac{8r|\theta|}{1 - r}. \end{aligned}$$

Pour $z = re^{i\theta} \in S$, on a $K(1 - r\cos\theta) > |r\sin\theta|$ donc

$$K(1-r) + Kr(1-\cos\theta) > r|\sin\theta|$$

ainsi

$$\begin{split} K(1-r) &> r|\sin\theta| - Kr(1-\cos\theta) \\ &= r|\theta| \left(\frac{\sin\theta}{\theta} - K\frac{1-\cos\theta}{\theta^2}|\theta|\right). \end{split}$$

Les fonctions $\theta \mapsto \frac{\sin \theta}{\theta}$ et $\theta \mapsto K \frac{1-\cos \theta}{\theta^2} |\theta|$ peuvent-être prolongé par continuité en 0 respectivement par 1 et 0. Ainsi prenons $\delta_2 > 0$ tel que $z \in S, |z-1| < \delta_2$:

$$\frac{\sin\theta}{\theta} - K \frac{1 - \cos\theta}{\theta^2} |\theta| - 1 < \frac{1}{2},$$

donc

$$\frac{\sin\theta}{\theta} - K \frac{1-\cos\theta}{\theta^2} |\theta| > \frac{1}{2}.$$

Ainsi pour un tel z on obtient

$$K(1-r) > \frac{r|\theta|}{2}$$

d'où

$$16K > \frac{8r|\theta|}{1-r}.$$

En reprenant nos estimations on obtient :

$$|I_2(z)| < \frac{\varepsilon}{M}(2\pi + 16K) = \frac{\varepsilon}{3}$$

Finalement, en posant $\delta = \min(\delta_1, \delta_2, \delta_3)$, on a

$$|2\pi h(z) - 2\pi\alpha'(0)| \le |I_1(z)| + |I_2(z)| + |I_3(z)| < \varepsilon$$

pour tout $z \in S$ tel que $|z-1| < \delta$, ce qui conclut la démonstration.

2 La classe de Nevanlinna

2.1 Les fonctions log⁺ et log⁻

Rappelons un résultat important d'analyse complexe :

Théorème 2.1. Pour tout ouvert non vide Ω de \mathbb{C} , les assertions suivantes sont équivalentes.

- 1. Ω est homéomorphe à \mathbb{D} .
- 2. Ω est simplement connexe.
- 3. Pour toute fonction holomorphe sur Ω et pour tout lacet γ dans Ω : $\int_{\gamma} f(z)dz = 0$.
- 4. Toute fonction holomorphe sur Ω possède une primitive (holomorphe) dans Ω .
- 5. Toute fonction holomorphe f sur Ω ne s'annulant pas sur Ω possède une détermination holomorphe de $\log f$, i.e., il existe g holomorphe sur Ω vérifiant $f = e^g$.

Définition 2.2. La fonction \log^+ est la fonction continue définie sur $]0, +\infty[$ par

$$\log^+(s) = \begin{cases} \log s & \text{si} \quad s \ge 1\\ 0 & \text{si} \quad 0 < s < 1 \end{cases}$$

Autrement dit, $\log^+(s) = \sup(\log s, 0)$.

La fonction log⁻est la fonction continue définie sur $]0, +\infty[$ par

$$\log^{-}(s) = \begin{cases} 0 & \text{si} \quad s \ge 1\\ -\log s & \text{si} \quad 0 < s < 1 \end{cases}$$

Autrement dit, $\log^{-}(s) = \sup(-\log s, 0)$.

Remarque. On a $\log(s) = \log^{+}(s) - \log^{-}(s)$ et $|\log(s)| = \log^{+}(s) + \log^{-}(s)$.

2.2 Définition de la classe de Nevanlinna et description des fonctions sans zéros

Définition 2.3. La classe de Nevanlinna $\mathcal N$ est définie par :

$$\mathcal{N} := \left\{ f \in \mathcal{H}ol(\mathbb{D}) \mid \sup_{0 \le r < 1} \int_{-\pi}^{\pi} \log^{+} \left| f\left(re^{it}\right) \right| dt < \infty \right\}.$$

Remarque. Les fonctions de \mathcal{N} étant holomorphes, ce sont des fonctions harmoniques sur \mathbb{D} à valeurs complexes.

Dans un premier temps considérons les fonctions de \mathcal{N} qui ne s'annulent pas sur \mathbb{D} . Le but de cette partie va être de caractériser de telles fonctions.

Théorème 2.4. Soit $f \in \mathcal{N}$ ne s'annulant pas sur \mathbb{D} . Alors il existe $\lambda \in \mathbb{R}$ et une mesure (finie) réelle μ sur \mathbb{T} vérifiant :

$$f(z) = e^{i\lambda} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)}$$

et

$$\log |f| = P(\mu) \text{ sur } \mathbb{D}.$$

Démonstration. Puisque \mathbb{D} est simplement connexe et que f ne s'annule pas sur \mathbb{D} , d'après le théorème 2.1 il existe $g \in \mathcal{H}ol(\mathbb{D})$ vérifiant $f = e^g$ et ainsi $\log |f| = \operatorname{Re}(g)$. Donc $\log |f|$ est harmonique (en tant que partie réelle d'une fonction holomorphe). D'après la formule de la moyenne (proposition 1.6), pour $0 \le r < 1$, on a

$$\int_{-\pi}^{\pi} \log \left| f\left(re^{it}\right) \right| dt = 2\pi \log |f(0)|.$$

Par définition de \mathcal{N} , on a

$$\sup_{0 \le r \le 1} \int_{-\pi}^{\pi} \log^{+} \left| f\left(re^{it}\right) \right| dt < \infty$$

et comme

$$\int_{-\pi}^{\pi} \log^{-} \left| f\left(re^{it}\right) \right| dt = \int_{-\pi}^{\pi} \log^{+} \left| f\left(re^{it}\right) \right| dt - \int_{-\pi}^{\pi} \log \left| f\left(re^{it}\right) \right| dt$$

on obtient:

$$\sup_{0 \le r < 1} \int_{-\pi}^{\pi} \log^{-} \left| f\left(re^{it}\right) \right| dt < \infty.$$

De plus $|\log(s)| = \log^{+}(s) + \log^{-}(s)$, on a :

$$\sup_{0 \le r < 1} \int_{-\pi}^{\pi} |\log|f\left(re^{it}\right)||dt < \infty$$

D'après le théorème 1.18, il existe une mesure $\mu \in \mathcal{M}(\mathbb{T})$ telle que $\log |f| = P(\mu)$ sur \mathbb{D} . Comme $\log |f|$ est réelle, on en déduit que μ est réelle. On a donc

$$\begin{split} \operatorname{Re}(g(z)) &= \log |f(z)| \\ &= P(\mu) \, (z) \quad \text{ en \'ecrivant } z = r e^{i\theta} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\mu(t) \\ &= \operatorname{Re} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) \right) \quad \text{ par la propisition 1.11.} \end{split}$$

On a donc par le lemme 1.20 qu'il existe $\lambda \in \mathbb{R}$ tel que

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + i\lambda,$$

ce qui implique

$$f(z) = e^{i\lambda} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)}$$

où μ est une mesure réelle et $\lambda \in \mathbb{R}$.

Corollaire 2.5. Soit $f \in \mathcal{N}$ ne s'annulant pas sur \mathbb{D} . Alors il existe $\lambda \in \mathbb{R}$ et une mesure (finie) réelle μ sur \mathbb{T} dont les variations positives et négatives μ^+ et μ^- vérifient :

$$f(z) = e^{i\lambda} \frac{\exp\left(\frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu^{-}(t)\right)}{\exp\left(\frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu^{+}(t)\right)}.$$

En particulier f est le quotient de deux fonctions holomorphes bornées sur \mathbb{D} .

Démonstration. D'après le théorème précédent 2.4 on a

$$f(z) = e^{i\lambda} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)}$$

d'après la décomposition de Jordan (théorème 7.10 de l'annexe) et d'après la décomposition de Hahn (théorème 7.17 de l'annexe), $\mu = \mu^+ - \mu^-$ avec μ^+ et μ^- mesures positives telles que $\mu^+ \perp \mu^-$. Finalement on obtient :

$$f(z) = e^{i\lambda} \frac{\exp\left(\frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu^{-}(t)\right)}{\exp\left(\frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu^{+}(t)\right)}$$

Remarquons que si ν est une mesure positive, on a :

$$\left| e^{\frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it}+z}{e^{it}-z} d\nu(t)} \right| = e^{Re\left(\frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it}+z}{e^{it}-z} d\nu(t)\right)} = e^{-P_{\nu}(z)} \le 1,$$

car si $\nu \geq 0, -P_{\nu}(z) \leq 0$. La fonction $f \in \mathcal{N}$ est donc bien le quotient de deux fonctions holomorphes bornées sur \mathbb{D} .

Lemme 2.6. Soit $f \in H^{\infty}(\mathbb{D})$ alors , $f^*\left(e^{it}\right) := \lim_{r \to 1^-} f\left(re^{it}\right)$ existe pour presque tout $t \in \mathbb{R}$ (par rapport à la mesure de Lebesgue) et appartient à $L^{\infty}(\mathbb{T})$.

Démonstration. Soit $f \in H^{\infty}(\mathbb{D})$. On a

$$\sup_{0\leq r<1}\int_{-\pi}^{\pi}\left|f\left(re^{it}\right)\right|dt\leq 2\pi\|f\|_{\infty}\text{ où }\|f\|_{\infty}:=\sup_{|z|<1}|f(z)|.$$

De plus, puisque f est holomorphe sur $\mathbb D$ elle est harmonique sur $\mathbb D$. D'après le corollaire 1.26,

$$f^*\left(e^{it}\right) := \lim_{r \to 1^-} f\left(re^{it}\right)$$

existe m-presque partout et $f^* \in L^1(\mathbb{T})$. De plus $|f^*(e^{it})| \leq ||f||_{\infty}$ m-presque partout. Ainsi on obtient $f^* \in L^{\infty}(\mathbb{T})$.

Théorème 2.7. Soit $f \in \mathcal{N}$ ne s'annulant pas sur \mathbb{D} . Alors, $f^*\left(e^{it}\right) := \lim_{r \to 1^-} f\left(re^{it}\right)$ existe pour presque tout $t \in \mathbb{R}$ et de plus $\log |f^*| \in L^1(\mathbb{T})$. De plus il existe une mesure réelle $\mu \perp m$ et $\lambda \in \mathbb{R}$ vérifiant :

$$f(z) = e^{i\lambda} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| dt} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)}.$$

Démonstration. D'après le corollaire 2.5, il existe $g, h \in H^{\infty}(\mathbb{D})$ avec $g(z) \neq 0$ et $h(z) \neq 0$ pour tout $z \in \mathbb{D}, ||g||_{\infty} \leq 1, ||h||_{\infty} \leq 1$ et $f = \frac{g}{h}$. Ainsi

$$\sup_{0\leq r<1}\int_{-\pi}^{\pi}\left|g\left(re^{it}\right)\right|dt\leq 2\pi\text{ et }\sup_{0\leq r<1}\int_{-\pi}^{\pi}\left|h\left(re^{it}\right)\right|dt\leq 2\pi.$$

D'après le lemme 2.6,

$$g^*\left(e^{it}\right) = \lim_{r \to 1^-} g\left(re^{it}\right) \text{ et } h^*\left(e^{it}\right) = \lim_{r \to 1^-} h\left(re^{it}\right)$$

existent pour presque tout $t \in [0, 2\pi]$ (par rapport à la mesure de Lebesgue). Puisque $\mathbb D$ est simplement connexe et h ne s'annule pas sur $\mathbb D$ d'après le théorème 2.1 il existe une fonction $\ell \in \mathcal Hol(\mathbb D)$ telle que $h = e^{\ell}$. Puisque $||h||_{\infty} \le 1$, la fonction $\operatorname{Re}(\ell) = \log |h|$ est une fonction

harmonique négative sur \mathbb{D} . En considérant la fonction $-\log |h|$ (qui est harmonique positive sur \mathbb{D}) on a d'après le corollaire 1.25,

$$\varphi\left(e^{it}\right) := \lim_{r \to 1^{-}} \log\left|h\left(re^{it}\right)\right|$$

existe pour presque tout $t \in [0, 2\pi]$ (par rapport à la mesure de Lebesgue). Il existe donc un borélien A de $[0, 2\pi]$ de mesure de Lebesgue nulle tel que pour tout $t \in [0, 2\pi] \setminus A$, on est simultanément :

$$\left\{ \begin{array}{ll} \lim_{r \to 1^{-}} \log \left| h\left(re^{it}\right) \right| &= \varphi\left(e^{it}\right) & \text{existe} \\ \lim_{r \to 1^{-}} h\left(re^{it}\right) &= h^{*}\left(e^{it}\right) & \text{existe} \end{array} \right.$$

Par conséquent, pour $t \in [0, 2\pi] \setminus A$, on a $\left| h^* \left(e^{it} \right) \right| \neq 0$. Si B est un borélien de mesure de Lebesgue nulle telle que $g^* \left(e^{it} \right) = \lim_{r \to 1^-} g \left(r e^{it} \right)$ existe pour tout $t \in [0, 2\pi] \setminus B$, on a donc :

$$f^*\left(e^{it}\right) := \lim_{r \to 1^-} f\left(re^{it}\right) \text{ existe pour tout } t \in [0, 2\pi] \setminus (A \cup B) \text{ et } f^*\left(e^{it}\right) = \frac{g^*\left(e^{it}\right)}{h^*\left(e^{it}\right)}.$$

D'après le théorème 2.4 f est de la forme

$$f(z) = e^{i\lambda}e^{\frac{1}{2\pi}} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)$$

avec μ mesure réelle de $\mathcal{M}(\mathbb{T})$ telle que $\log |f| = P(\mu)$ sur \mathbb{D} . D'après le théorème 1.24, $d\mu(t) = \varphi\left(e^{it}\right)dt + d\nu(t)$ avec $\nu \perp m$ et $\varphi\left(e^{it}\right) = \lim_{r \to 1^{-}} \log \left|f\left(re^{it}\right)\right|$ pour presque tout t (par rapport à la mesure de Lebesgue) avec $\varphi \in L^{1}(\mathbb{T})$. Or nous venons de voir que, pour presque tout t,

$$\varphi\left(e^{it}\right) = \log\left|f^*\left(e^{it}\right)\right|.$$

On obtient donc $\log |f^*| \in L^1(\mathbb{T})$ et

$$f(z) = e^{i\lambda} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \left| f^*(e^{it}) \right| dt} \times e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)}$$

avec ν mesure réelle, $\nu \perp m.$

2.3 La formule de Jensen et les produits de Blaschke

Lemme 2.8. Soit Ω un ouvert de \mathbb{C} et soit $f \in \mathcal{H}ol(\Omega)$ ne s'annulant pas sur Ω alors $\log |f|$ est harmonique.

Démonstration. f = u + iv où u et v sont des fonctions à valeurs réelles qui ne s'annulent pas simultanément. On pose $g := \log |f| = \log \left(u^2 + v^2\right)^{\frac{1}{2}} = \frac{1}{2} \log \left(u^2 + v^2\right)$. Calculons $\Delta(g) := \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$. On a

$$\frac{\partial g}{\partial x} = \frac{1}{2} \frac{1}{u^2 + v^2} \left(2u \frac{\partial u}{\partial x} + 2v \frac{\partial v}{\partial x} \right) = \left(u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} \right) \frac{1}{u^2 + v^2}$$

et donc:

$$\frac{\partial^2 g}{\partial x^2} = \frac{\left(\left(\frac{\partial u}{\partial x}\right)^2 + u\frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial v}{\partial x}\right)^2 + v\frac{\partial^2 v}{\partial x^2}\right)\left(u^2 + v^2\right)}{\left(u^2 + v^2\right)^2} - \frac{\left(2u\frac{\partial u}{\partial x} + 2v\frac{\partial v}{\partial x}\right)\left(u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x}\right)}{\left(u^2 + v^2\right)^2}$$

$$= -\frac{u^2\left(\frac{\partial u}{\partial x}\right)^2 + v^2\left(\frac{\partial v}{\partial x}\right)^2 + 4uv\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}}{\left(u^2 + v^2\right)^2} + \frac{u^3\frac{\partial^2 u}{\partial x^2} + u^2\left(\frac{\partial v}{\partial x}\right)^2 + u^2v\frac{\partial^2 v}{\partial x^2} + v^2\left(\frac{\partial u}{\partial x}\right)^2 + uv^2\frac{\partial^2 u}{\partial x^2} + v^3\frac{\partial^2 v}{\partial x^2}}{\left(u^2 + v^2\right)^2}$$

$$= \frac{\left(\frac{\partial u}{\partial x}\right)^2\left(v^2 - u^2\right) + \left(\frac{\partial v}{\partial x}\right)^2\left(u^2 - v^2\right) + \frac{\partial^2 u}{\partial x^2}\left(u^3 + uv^2\right) + \frac{\partial^2 v}{\partial x^2}\left(v^3 + vu^2\right) - 4uv\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}}{\left(u^2 + v^2\right)^2}}$$

$$= \frac{\left(v^2 - u^2\right)\left(\left(\frac{\partial u}{\partial x}\right)^2 - \left(\frac{\partial v}{\partial x}\right)^2\right) + \frac{\partial^2 u}{\partial x^2}\left(u^3 + uv^2\right) + \frac{\partial^2 v}{\partial x^2}\left(v^3 + vu^2\right) - 4uv\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}}{\left(u^2 + v^2\right)^2}}{\left(u^2 + v^2\right)^2}.$$

L'expression de $\frac{\partial^2 g}{\partial y^2}$ s'obtient en remplaçant x par y, ce qui donne

$$\frac{\partial^2 g}{\partial y^2} = \frac{\left(v^2 - u^2\right) \left(\left(\frac{\partial u}{\partial y}\right)^2 - \left(\frac{\partial v}{\partial y}\right)^2\right) + \frac{\partial^2 u}{\partial y^2} \left(u^3 + uv^2\right) + \frac{\partial^2 v}{\partial y^2} \left(v^3 + vu^2\right) - 4uv\frac{\partial u}{\partial y}\frac{\partial v}{\partial y}}{\left(u^2 + v^2\right)^2}.$$

Donc

$$\Delta(g) = \frac{\left(v^2 - u^2\right) \left(\left(\frac{\partial u}{\partial x}\right)^2 - \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - \left(\frac{\partial v}{\partial y}\right)^2\right)}{\left(u^2 + v^2\right)^2} + \frac{\left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2}\right) \left(u^3 + uv^2\right) + \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2}\right) \left(v^3 + vu^2\right) - 4uv\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y}\right)}{\left(u^2 + v^2\right)^2}.$$

Puisque u et v sont harmoniques en tant que partie réelle et imaginaire d'une fonction holomorphe, on a $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$. On a donc :

$$\Delta(g) = \frac{\left(v^2 - u^2\right) \left(\left(\frac{\partial u}{\partial x}\right)^2 - \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - \left(\frac{\partial v}{\partial y}\right)^2\right) - 4uv\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y}\right)}{\left(u^2 + v^2\right)^2}$$

Puisque f est holomorphe, d'après les équations de Cauchy-Riemann, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. On vérifie ainsi que $\Delta(g) = 0$ et donc $\log |f|$ est harmonique.

Lemme 2.9. Soit $\alpha \in \mathbb{C}^*$, alors

$$I_{\alpha}(R) := \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| Re^{i\theta} - \alpha \right| d\theta = \begin{cases} \log |\alpha| \text{ si } R \in]0, |\alpha| \\ \log R \text{ si } R > |\alpha| \end{cases} ,$$

et $R \mapsto I_{\alpha}(R)$ est continue sur $]0, +\infty[$.

Démonstration. Dans un premier temps traitons le cas $R > |\alpha|$. Remarquons que $z \mapsto R - \alpha z$ est holomorphe sur $\mathbb D$ et n'a pas de 0 sur $\mathbb D$ (car $R > |\alpha|$) et $\mathbb D$ est simplement connexe. Ainsi d'après le lemme 2.8 on a

$$z \mapsto \log |R - \alpha z|$$
 est harmonique sur \mathbb{D} .

D'après la propriété de la moyenne (proposition 1.6) on a :

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left| R - \alpha e^{i\theta} \right| d\theta = \log |R| = \log R.$$

Or,

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} \log \left| R - \alpha e^{i\theta} \right| d\theta &= \frac{1}{2\pi} \int_0^{2\pi} \log \left| R - \alpha e^{-i\theta} \right| d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} \log \left| e^{i\theta} \right| \left| R - \alpha e^{-i\theta} \right| d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} \log \left| R e^{i\theta} - \alpha \right| d\theta. \end{split}$$

Finalement,

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left| Re^{i\theta} - \alpha \right| d\theta = \log R.$$

Maintenant considérons le cas $R \in]0, \alpha[.\ z \mapsto z - \alpha$ est holomorphe sans 0 dans $\mathbb{C}\setminus\{\alpha\}$, ainsi d'après le lemme 2.8 on a que

$$z \mapsto \log |z - \alpha|$$
 est harmonique sur $\mathbb{C} \setminus \{\alpha\}$.

Ainsi d'après la propriété de la moyenne (proposition 1.6) on a

$$I_{\alpha}(R) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| Re^{i\theta} - \alpha \right| d\theta = \log |\alpha|.$$

Enfin pour traiter le cas $R = |\alpha|$, nous allons montrer que I_{α} est bien convergente si $R = |\alpha|$ et que la fonction I_{α} est continue en cette valeur. Notons $\alpha := |\alpha| e^{i\theta_0}$, nous avons pour $\theta \in [0, 2\pi[$

$$|\log |Re^{i\theta} - \alpha|| = |\log |R(e^{i\theta} - e^{i\theta_0})|| = |\log |\alpha| + \log |e^{i(\theta - \theta_0)} - 1||.$$

En faisant un développement limité de l'exponentielle puis du logarithme, on a que $\log |e^{i(\theta-\theta_0)}-1||$ est équivalent à $|\log |\theta-\theta_0||$, lorsque θ est proche de θ_0 . Or $\theta\mapsto |\log |\theta-\theta_0||$ est intégrable au voisinage de θ_0 , ainsi l'intégrale

$$\int_0^{2\pi} |\log|Re^{i\theta} - \alpha||d\theta|$$

est convergente et la fonction $R \mapsto I_{\alpha}(R)$ est bien définie pour $R = |\alpha|$, et donc pour tout $R \in]0, +\infty[$.

Étudions la continuité de I_{α} en $|\alpha|$, prenons K un compact de $]0, +\infty[$. Si $|\alpha| \in K$ alors il exsite $M \in \mathbb{R}$ tel que $|\log |\alpha|| \leq M$. Pour $\alpha := |\alpha|e^{i\theta_0}$ et pour $\theta \in [0, 2\pi[$ on a

$$\begin{split} |\log|Re^{i\theta} - \alpha|| &= |\log|R\left(e^{i\theta} - e^{i\theta_0}\right)|| \\ &= |\log|\alpha| + \log|e^{i(\theta - \theta_0)} - 1|| \\ &\leq |\log|\alpha| + |\log|e^{i(\theta - \theta_0)} - 1|| \\ &\leq M + |\log|e^{i(\theta - \theta_0)} - 1||. \end{split}$$

Or $\theta \mapsto M + |\log|e^{i(\theta-\theta_0)} - 1||$ est intégrable sur $[0, 2\pi[$ d'après ce qu'il précède et indépendante de $|\alpha|$. De plus $\alpha \mapsto |\log|Re^{i\theta} - \alpha||$ est continue donc par théorème de continuité sous l'intégrale I_{α} est continue en $|\alpha|$. On en déduit que

$$I_{\alpha}(|\alpha|) = \log |\alpha|,$$

ce qui conclut la preuve.

Théorème 2.10. (Formule de Jensen) Soit f une fonction holomorphe au voisinage du disque fermé $\bar{D}(a, R)$. Notons $\alpha_1, \ldots, \alpha_p$ ses zéros dans ce disque et supposons que $f(a) \neq 0$. Alors,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left(\left| f\left(a + Re^{i\theta}\right) \right| \right) d\theta = \log(|f(a)|) + \sum_{j=1}^{p} \log \left(\frac{R}{|\alpha_j - a|} \right).$$

Démonstration. On peut supposer a = 0. Posons $r_j = |\alpha_j|$. Puisque $R \ge |\alpha_j|$ (car les α_j sont les racines de f dans $\bar{D}(a, R)$) et que 0 n'est pas racine de f d'après le lemme 2.9 on a :

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left| Re^{i\theta} - \alpha_j \right| d\theta = \log R. \tag{*}$$

La fonction $f/\prod_{1\leq j\leq p}(z-\alpha_j)$ étant holomorphe et sans zéros au voisinage de $\bar{D}(0,R)$, on peut d'après le théorème 2.1, l'écrire

$$f = e^g$$

avec g holomorphe au voisinage de $\bar{D}(0,R)$. On a en particulier

$$\log|f(z)| = \sum_{j=1}^{p} \log|z - \alpha_j| + \operatorname{Re} g(z), \quad \log|f(0)| = \sum_{j=1}^{p} \log r_j + \operatorname{Re} g(0)$$
 (**)

de plus par (*) on a

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left(\left| f\left(a + Re^{i\theta} \right) \right| \right) d\theta &= \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} g\left(\operatorname{Re}^{i\theta} \right) d\theta + \sum_{j=1}^{p} \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| Re^{i\theta} - \alpha_{j} \right| d\theta. \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} g\left(\operatorname{Re}^{i\theta} \right) d\theta + p \log R. \end{split}$$

Puisque Re(g) est harmonique (en tant que partie réelle d'une fonction holomorphe), par la propriété de la moyenne (proposition 1.6) on a

$$\frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} g\left(\operatorname{Re}^{i\theta}\right) d\theta = \operatorname{Re}(g(0))$$

D'où

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left(\left| f\left(a + Re^{i\theta} \right) \right| \right) d\theta = \operatorname{Re}(g(0)) + p \log R$$

Finalement en utilisant (**) on a

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left(\left| f \left(a + Re^{i\theta} \right) \right| \right) d\theta = \log |f(0)| + \sum_{i=1}^{p} \log \frac{R}{r_{j}}$$

ce qui prouve le résultat.

Corollaire 2.11. Si f est une fonction holomorphe sur le disque ouvert D(0,R) avec $f(0) \neq 0$ alors $r \longmapsto \int_{-\pi}^{\pi} \log \left| f\left(re^{it}\right) \right| dt$ est fonction croissante de r avec $0 \leq r < R$.

En particulier $\log |f(0)| \le \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{it})| dt$ pour $0 \le r < R$.

Démonstration. D'après la formule de Jensen (théorème 2.10,) pour $0 \le r < R$ on a :

$$\log|f(0)| + \sum_{n=1}^{N} \log \frac{r}{|\alpha_n|} = \frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| d\theta$$

32

avec $\log \frac{r}{|\alpha_n|} \ge 0$. Lorsque r augmente, $\sum_{n=1}^N \log \frac{r}{|\alpha_n|}$ augmente aussi.

Corollaire 2.12. Si $f \in \mathcal{N}$ non identiquement nulle, a une suite infinie de zéros $(\alpha_n)_{n \geq 1}$ répétés selon leur multiplicité, alors $\sum_{n \geq 1} 1 - |\alpha_n| < \infty$.

Démonstration. En remplaçant f par $g: z \longmapsto \frac{f(z)}{z^k}$ si 0 est un zéro de f de multiplicité k, on peut supposer que $f(0) \neq 0$ (ce qui permettra d'utiliser la formule de Jensen (théorème 2.10) . Pour cela il faut vérifier que $g \in \mathcal{N}$.

Par construction, nous avons $g \in \mathcal{H}ol(\mathbb{D})$. Il reste à vérifier que

$$J := \sup_{0 \le r < 1} \int_{-\pi}^{\pi} \log^{+} \left| g\left(re^{it}\right) \right| dt = \sup_{0 \le r < 1} \int_{-\pi}^{\pi} \log^{+} \left| \frac{f\left(re^{it}\right)}{r^{k}e^{ikt}} \right| dt < \infty.$$

Pour $0 < \varepsilon < 1$ on a :

$$J = \max \left(\sup_{0 \le r \le \varepsilon} \int_{-\pi}^{\pi} \log^{+} \left| \frac{f\left(re^{it}\right)}{r^{k}e^{ikt}} \right| dt, \sup_{\varepsilon \le r < 1} \int_{-\pi}^{\pi} \log^{+} \left| \frac{f\left(re^{it}\right)}{r^{k}e^{ikt}} \right| dt \right).$$

Puisque $\log^+(ab) \le \log^+ a + \log^+ b$ et comme $\frac{1}{r^k} \le \frac{1}{\varepsilon^k}$ pour $r \ge \varepsilon$, on obtient :

$$\sup_{\varepsilon \leq r < 1} \int_{-\pi}^{\pi} \log^{+} \left| \frac{f\left(re^{it}\right)}{r^{k}e^{ikt}} \right| dt \leq \sup_{\varepsilon \leq r < 1} \left(\int_{-\pi}^{\pi} \log \frac{1}{\varepsilon^{k}} dt + \int_{-\pi}^{\pi} \log^{+} \left| f\left(re^{it}\right) \right| dt \right) < \infty,$$

car $f \in \mathcal{N}$. La fonction $z \longmapsto \frac{f(z)}{z^k}$ continue sur le compact $\overline{D(0,\varepsilon)}$ est uniformément majorée par une constante M et de ce fait $\sup_{0 \le r \le \varepsilon} \int_{-\pi}^{\pi} \log^+ \left| \frac{f(re^{it})}{r^k e^{ikt}} \right| dt < \infty$. On a ainsi vérifié que $g \in \mathcal{N}$ et l'on peut donc supposer que $f(0) \ne 0$.

Soit $(\alpha_n)_{n\geq 1}$ la suite (infinie) des zéros de f répétés selon leur multiplicité. Fixons $p\in\mathbb{N}^*$ et considérons $r\in]0,1[$ tel que $r\geq \max_{n\leq p}|\alpha_n|$. D'après la formule de Jensen (théorème 2.10), on a :

$$\log|f(0)| + \sum_{n=1}^{p} \log \frac{r}{|\alpha_n|} \le \frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{it})| dt$$
$$\le \frac{1}{2\pi} \int_0^{2\pi} \log^+|f(re^{it})| dt$$
$$< M_0 < \infty$$

car $f \in \mathcal{N}$. L'entier p étant fixé, on peut faire tendre r vers 1⁻et on a :

$$\log |f(0)| + \sum_{n=1}^{p} \log \frac{1}{|\alpha_n|} \le M_0$$

et donc $\sum_{n=1}^p \log \frac{1}{|\alpha_n|} \le M_0 - \log |f(0)|$ pour tout entier $p \ge 1$. La série $\sum_{n \ge 1} \log \frac{1}{|\alpha_n|}$ étant à termes positifs, elle est donc convergente, donc $\log \frac{1}{|\alpha_n|} \to 0$ ainsi $|\alpha_n| \to 1$, on a aussi $\frac{1}{|\alpha_n|} \to 1$ et donc $\log \frac{1}{|\alpha_n|} \sim \frac{1}{|\alpha_n|} - 1 \sim 1 - |\alpha_n|$ quand $n \to \infty$. Ainsi on en déduit que

$$\sum_{n>1} 1 - |\alpha_n| < \infty.$$

Théorème 2.13. Soit $(\alpha_n)_{n\geq 1}$ une suite de complexes non nuls tels que $|\alpha_n| < 1, n \geq 1$ et telle que $\sum_{n\geq 1} 1 - |\alpha_n| < \infty$. Alors le produit infini

$$\prod_{n>1} \frac{|\alpha_n|}{\alpha_n} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z}$$

converge uniformément sur tout compact de \mathbb{D} vers une fonction $B \in H^{\infty}(\mathbb{D})$ dont les zéros sont exactement les nombres α_n répétés selon leur multiplicité.

Enfin $B^*\left(e^{it}\right):=\lim_{r\to 1^-}B\left(re^{it}\right)$ existe m-presque partout et est de module 1 m -presque partout avec

$$\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log \left| B\left(re^{it}\right) \right| dt = 0$$

Démonstration. Posons $f_n(z):=\frac{|\alpha_n|}{\alpha_n}\frac{\alpha_n-z}{1-\overline{\alpha_n}z}$ et remarquons que

$$1 - f_n(z) = \frac{\alpha_n \left(1 - \overline{\alpha_n}z\right)}{\alpha_n \left(1 - \overline{\alpha_n}z\right)} - \frac{|\alpha_n| (\alpha_n - z)}{\alpha_n \left(1 - \overline{\alpha_n}z\right)}$$

$$= \frac{\alpha_n - |\alpha_n|^2 z - |\alpha_n| \alpha_n + |\alpha_n| z}{\alpha_n \left(1 - \overline{\alpha_n}z\right)}$$

$$= \frac{\left(1 - |\alpha_n|\right) (\alpha_n + |\alpha_n| z)}{\alpha_n \left(1 - \overline{\alpha_n}z\right)}$$

$$= \frac{\left(1 - |\alpha_n|\right) \left(1 + \frac{|\alpha_n|}{\alpha_n}z\right)}{\left(1 - \overline{\alpha_n}z\right)}.$$

On en déduit que pour $|z| \le r < 1$

$$|1 - f_n(z)| \le \frac{2(1 - |\alpha_n|)}{|1 - \overline{\alpha_n}z|}$$

$$\le \frac{2(1 - |\alpha_n|)}{1 - |z|}$$

$$\le \frac{2(1 - |\alpha_n|)}{1 - r}.$$

Ainsi $\sum_{n\geq 1} |1-f_n(z)|$ converge uniformément sur $\overline{D(0,r)}$ pour r<1 si $\sum_{n\geq 1} 1-|\alpha_n|<\infty$ et donc $B(z)=\prod_{n\geq 1} f_n(z)$ définit bien une fonction holomorphe sur $\mathbb D$ dont la suite des zéros est la suite $(\alpha_n)_{n\geq 1}$.

De plus, pour |z| = 1, on a

$$|f_n(z)| = \left| \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \right| = \frac{|\alpha_n - z|}{|\overline{z} - \overline{\alpha_n}|} = 1.$$

D'après le principe du maximum appliqué à la fonction $z \longmapsto f_n(z)$ holomorphe sur \mathbb{D} et continue sur $\overline{\mathbb{D}}$, on a

$$|f_n(z)| < 1$$

pour $z \in \mathbb{D}$. Ainsi

pour $z \in \mathbb{D}$ et donc $B \in H^{\infty}(\mathbb{D})$. D'après le lemme 2.6,

$$B^*\left(e^{it}\right) := \lim_{r \to 1^-} B\left(re^{it}\right)$$
 existe *m*-presque partout.

Montrons à présent que $\lim_{r\to 1^-} \int_{-\pi}^{\pi} \log |B(re^{it})| dt = 0$. D'après le corollaire 2.11, $r \mapsto \int_{-\pi}^{\pi} \log |B(re^{it})| dt$ est une fonction croissante de r avec $0 \le r < 1$. Puisque

$$\int_{-\pi}^{\pi} \log |B(re^{it})| dt \le 0,$$

 $\ell := \lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log |B(re^{it})| dt$ existe et $\ell \leq 0$. Posons

$$R_p(z) = \prod_{n=p+1}^{\infty} \frac{|\alpha_n|}{\alpha_n} \frac{z - \alpha_n}{1 - \overline{\alpha_n}z}$$

et

$$B_p(z) := \frac{B(z)}{R_p(z)} = \prod_{n=1}^p \frac{|\alpha_n|}{\alpha_n} \frac{z - \alpha_n}{1 - \overline{\alpha_n} z}.$$

La fonction B_p est holomorphe sur $D\left(0, \frac{1}{r_p}\right)$ avec $r_p = \max_{n \leq p} |\alpha_n|$. Remarquons que $|B_p(z)| = 1$ si |z| = 1. On en déduit

$$\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log \left| B_p \left(re^{it} \right) \right| dt = 0$$

car la fonction $z \longmapsto \log |B_p(z)|$ est continue pour $r_p < |z| < \frac{1}{r_p}$ et nulle sur \mathbb{T} . On obtient alors :

$$\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log \left| B\left(re^{it}\right) \right| dt = \lim_{r \to 1^{-}} \left(\int_{-\pi}^{\pi} \log \left| B_{p}\left(re^{it}\right) \right| dt + \int_{-\pi}^{\pi} \log \left| R_{p}\left(re^{it}\right) \right| dt \right)$$

$$= \lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log \left| R_{p}\left(re^{it}\right) \right| dt$$

pour tout $p \ge 1$. D'après le Corollaire 2.11,

$$\int_{-\pi}^{\pi} \log \left| R_p \left(r e^{it} \right) \right| dt \ge 2\pi \log \left| R_p(0) \right|.$$

Ainsi pour $p \ge 1$, ℓ vérifie

$$\ell \ge 2\pi \log |R_p(0)| = 2\pi \log \left(\prod_{n \ge p+1} |\alpha_n| \right)$$

Puisque par hypothèse $\sum_{n\geq 1} (1-|\alpha_n|) < \infty$, le produit infini $\prod_{n\geq 1} |\alpha_n|$ converge et donc on a

 $\lim_{p\to\infty}\prod_{n\geq n}|\alpha_n|=1.$ Finalement $\ell\geq 0$ et donc $\ell=0$ car ℓ est négatif.

Il reste à vérifier que $\left|B^*\left(e^{it}\right)\right|=1$ m-presque partout. D'après le lemme de Fatou, si $r_n\to 1^-$, on a :

$$\limsup_{n \to +\infty} \int_{-\pi}^{\pi} \log |B(r_n e^{it})| dt \le \int_{-\pi}^{\pi} \limsup_{n \to +\infty} \log |B(r_n e^{it})| dt$$

et donc

$$0 = \ell \le \int_{-\pi}^{\pi} \log \left| B^* \left(e^{it} \right) \right| dt.$$

D'autre part, puisque $\left|B^*\left(e^{it}\right)\right| \leq 1$ m-presque partout, on a $\log\left|B^*\left(e^{it}\right)\right| \leq 0$ m-presque partout. Finalement on en déduit que $\log\left|B^*\left(e^{it}\right)\right| = 0$ m-presque partout et donc $\left|B^*\left(e^{it}\right)\right| = 1$ m-presque partout.

Définition 2.14. On appelle produit de Blaschke un produit de la forme

$$B(z) = e^{i\lambda} z^k \prod_n \frac{|\alpha_n|}{\alpha_n} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z},$$

où $\lambda \in \mathbb{R}$, k entier naturel et $(\alpha_n)_n$ suite vide, finie ou infinie de points de $\mathbb{D}\setminus\{0\}$ tels que $\sum_n 1 - |\alpha_n| < \infty$ lorsque $(\alpha_n)_n$ est infinie. Par convention $\prod_n \frac{|\alpha|}{\alpha} \frac{\alpha_n - z}{1 - \overline{\alpha_n z}} = 1$ si $(\alpha_n)_n$ est une suite vide. Si $(\alpha_n)_n$ est vide ou finie (resp. infinie) on dit que le produit de Blaschke est fini (resp. infini).

Remarque. les produits de Blaschke sont des fonctions de $H^{\infty}(\mathbb{D})$ tels que $B^*(e^{it}) := \lim_{r \to \infty} B(re^{it})$ existe m-presque partout et est de module 1, d'après le théorème 2.13. De plus on a

$$\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} \log \left| B\left(re^{it}\right) \right| dt = 0$$

2.4 Description complète des fonctions de ${\mathcal N}$

Théorème 2.15. Soit $f \in \mathcal{N}$ non identiquement nulle. Soit B le produit de Blaschke associé à la suite des zéros de f, i.e.

$$B(z) = z^k \prod_{n \ge 1} \frac{|\alpha_n|}{\alpha_n} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z}$$

si 0 est un zéro d'ordre k de f et avec $(\alpha_n)_{n\geq 1}$ suite des zéros non nuls de f répétés selon leur multiplicité. Alors $\frac{f}{B}\in\mathcal{N},\ f^*\left(e^{it}\right):=\lim_{r\to 1^-}f\left(re^{it}\right)$ existe m-presque partout et $\log|f^*|\in L^1(\mathbb{T})$.

Enfin il existe une mesure ν_f réelle (finie) sur \mathbb{T} , $\nu_f \perp m$ et un réel λ tels que pour tout $z \in \mathbb{D}$ on ait :

$$f(z) = e^{i\lambda} B(z) e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| dt} \times e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu_f(t)}$$

Démonstration. Vérifions que $g := \frac{f}{B} \in \mathcal{N}$. Par construction, g est une fonction holomorphe dans \mathbb{D} (qui ne s'annule pas). Il reste à montrer que $\sup_{0 \le r < 1} \int_{-\pi}^{\pi} \log^{+} \left| \frac{f(re^{it})}{B(re^{it})} \right| dt < \infty$. Puisque $\log^{+}(ab) \le \log^{+}(a) + \log^{+}(b)$ et $|B(re^{it})| < 1$ si r < 1 on a :

$$\int_{-\pi}^{\pi} \log^{+} \left| \frac{f(re^{it})}{B(re^{it})} \right| dt \leq \int_{-\pi}^{\pi} \log^{+} |f(re^{it})| dt + \int_{-\pi}^{\pi} \log^{+} \left| \frac{1}{B(re^{it})} \right| dt$$

$$= \int_{-\pi}^{\pi} \log^{+} |f(re^{it})| dt + \int_{-\pi}^{\pi} \log \left| \frac{1}{B(re^{it})} \right| dt$$

$$= \int_{-\pi}^{\pi} \log^{+} |f(re^{it})| dt - \int_{-\pi}^{\pi} \log |B(re^{it})| dt.$$

Or $\lim_{r\to 1^-} \int_{-\pi}^{\pi} \log \left| B\left(re^{it}\right) \right| dt = 0$ et $\sup_{0\leq r<1} \int_{-\pi}^{\pi} \log^+ \left| f\left(re^{it}\right) \right| dt < \infty$ et $f\in\mathcal{N}$, on a donc $\sup_{0\leq r<1} \int_{-\pi}^{\pi} \log^+ \left| \frac{f(re^{it})}{B(re^{it})} \right| dt < \infty$, ce qui prouve que $\frac{f}{B}\in\mathcal{N}$.

g est une fonction de $\dot{\mathcal{N}}$ qui ne s'annule pas, d'après le théorème 2.13,

$$g^{*}\left(e^{it}\right):=\lim_{t\to 0^{+}}g\left(re^{it}\right)$$
existe m -presque partout

avec $\log |g^*| \in L^1(\mathbb{T})$. D'autre part, d'après la remarque qui suit la définition des produits de Blaschke,

$$B^*\left(e^{it}\right) := \lim_{r \to 1^-} B\left(re^{it}\right)$$
 existe *m*-presque partout et est de module1.

Puisque f = Bg, on obtient

$$f^*\left(e^{it}\right) := \lim_{r \to 1^-} f\left(re^{it}\right) = B^*\left(e^{it}\right)g^*\left(e^{it}\right)$$

définie m-presque partout avec $|f^*| = |g^*| \in L^1(\mathbb{T})$. On conclut ainsi la preuve avec la fin du théorème 2.7.

3 Les espaces de Hardy

3.1 Fonctions sous harmoniques

Définition 3.1. Une fonction $f: \mathbb{D} \to \mathbb{R}$ continue sur \mathbb{D} est dite *sous-harmonique* si pour tout domaine (ouvert connexe) Ω de \mathbb{D} dont la fermeture $\bar{\Omega}$ est inclus dans \mathbb{D} et pour toute fonction U harmonique dans Ω et continue dans $\bar{\Omega}$ vérifiant $f(z) \leq U(z)$ sur la frontière Ω , on a $f(z) \leq U(z)$ pour tout $z \in \Omega$.

Théorème 3.2. Caractérisation des fonctions sous harmoniques à valeurs réelle Soit $f: \mathbb{D} \to \mathbb{R}$ continue sur \mathbb{D} . f est sous-harmonique si et seulement si pour tout $z_0 \in \mathbb{D}$ il existe $\rho_0 > 0$ tel que $D(z_0, \rho_0) \subset \mathbb{D}$ avec de plus

$$f(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt$$
 (3.1)

pour tout $\rho < \rho_0$.

Démonstration. Soit $z_0 \in \mathbb{D}$ et soit $\rho > 0$ tel que $\rho < \rho_0 = 1 - |z_0|$. Comme f est continue sur \mathbb{D} , d'après le corollaire du théorème 1.14, il existe une unique fonction U harmonique sur $D(z_0, \rho)$, continue sur $\overline{D(z_0, \rho)}$ tel que U et f coïncident sur le cercle $\Gamma(z_0, \rho)$. Si f est sous-harmonique on a $f(z_0) \leq U(z_0)$. D'après la propriété de la moyenne, on a

$$U(z_0) = \frac{1}{2\pi} \int_0^{2\pi} U(z_0 + \rho e^{it}) dt.$$

Finalement on obtient:

$$f(z_0) \le U(z_0) = \frac{1}{2\pi} \int_0^{2\pi} U(z_0 + \rho e^{it}) dt = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt$$

ce qui prouve que (3.1) est une condition nécessaire pour que f soit sous-harmonique.

Pour montrer la réciproque raisonnons par contraposé, supposons qu'il existe un domaine Ω avec $\bar{\Omega} \subset \mathbb{D}$, une fonction U harmonique dans Ω , continue sur $\bar{\Omega}$ telle que $f(z) \leq U(z)$ sur $\partial \Omega$ avec $f(z_1) > U(z_1)$ pour un point $z_1 \in \Omega$. Définissons la fonction h par h(z) = f(z) - U(z) sur le compact $\bar{\Omega}$. Puisque h est continue sur le compact $\bar{\Omega}$, h atteint son maximum m > 0 (car $h(z_1) > 0$). Notons $E \neq \emptyset$ l'ensemble des éléments où h atteint son maximum, $E \subset \Omega$ puisque $h(z) \leq 0$ sur $\partial \Omega$. Comme E est fermé (par continuité de h), il existe un point z_0 pour lequel aucune boule ouverte centrée en z_0 ne soit entièrement contenue dans E (sinon $E \neq \emptyset$ serait à la fois ouvert et fermé dans Ω connexe, et donc on aurait $E = \Omega$, ce qui est absurde puisque Ω est un ouvert non vide de $\mathbb C$ tandis que E est un fermé borné non vide de $\mathbb C$). Ainsi prenons $\rho > 0$ tel que $D(z_0, \rho) \subset \Omega$ et tels que le cercle $\Gamma(z_0, \rho)$ ne soit pas entièrement contenu dans E. Par conséquent $h(z) \leq m$ sur $\Gamma(z_0, \rho)$ avec une inégalité stricte sur un ouvert de $\Gamma(z_0, \rho)$ donc sur un arc (de longueur strictement positive). La fonction U harmonique vérifie la propriété de la moyenne, on obtient ainsi

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(z_{0} + \rho e^{it}) dt - U(z_{0}) = \frac{1}{2\pi} \int_{0}^{2\pi} (f(z_{0} + \rho e^{it}) - U(z_{0} + \rho e^{it})) dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} h(z_{0} + \rho e^{it}) dt$$

$$< m$$

$$= h(z_{0}) = f(z_{0}) - U(z_{0}),$$

et donc $\frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt < f(z_0)$, ce qui contredit (3.1) et termine la démonstration.

Proposition 3.3. Soit f une fonction continue à valeurs réelles sous-harmonique sur \mathbb{D} , posons

$$m(r) := \frac{1}{2\pi} \int_0^{2\pi} f\left(re^{it}\right) dt \text{ pour } 0 \le r < 1,$$

alors $r \mapsto m(r)$ est une fonction croissante sur [0,1[.

Démonstration. Soient $0 \le r_1 < r_2 < 1$. Comme f continue sur \mathbb{D} , d'après le corollaire du théorème 1.14, il existe une unique fonction U harmonique sur $D(0, r_2)$, continue sur $\overline{D(0, r_2)}$ tel que U et f coïncident sur le cercle $\Gamma(0, r_2)$. Puisque f est sous-harmonique, on a $f(z) \le U(z)$ pour tout $z \in \overline{D(0, r_2)}$. On a donc par la propriété de la moyenne

$$m(r_1) \le \frac{1}{2\pi} \int_0^{2\pi} U(r_1 e^{it}) dt$$
$$= U(0)$$
$$= \frac{1}{2\pi} \int_0^{2\pi} U(r_2 e^{it}) dt$$
$$= m(r_2).$$

Proposition 3.4.

1. Soit f holomorphe dans \mathbb{D} et soit p > 0. Alors la fonction g définie par $g(z) = |f(z)|^p$ continue sur \mathbb{D} à valeurs réelles est sous-harmonique.

2. Soit u une fonction harmonique dans \mathbb{D} et soit $p \geq 1$. Alors la fonction g définie par $g(z) = |u(z)|^p$ continue sur \mathbb{D} à valeurs réelles est sous-harmonique.

3. Soit f holomorphe dans \mathbb{D} alors $\log^+ |f|$ est une fonction continue à valeurs réelles sous-harmonique sur \mathbb{D} .

Démonstration.

1. D'après le théorème 3.2, il suffit de vérifier (3.1).

Soit $z_0 \in \mathbb{D}$. Si $f(z_0) = 0$, (3.1) est automatique. Supposons que $f(z_0) \neq 0$. D'après le principe des zéros isolés et le théorème 2.1, il existe $\rho_0 > 0$ tel qu'il existe une détermination holomorphe du logarithme sur $D(z_0, \rho_0)$ avec $\overline{D(z_0, \rho_0)} \subset \mathbb{D}$ et ainsi on peut définir $z \mapsto f(z)^p$ comme une fonction holomorphe dans $D(z_0, \rho_0)$. En particulier, pour tout $\rho < \rho_0$, on a :

$$(f(z_0))^p = \frac{1}{2\pi} \int_0^{2\pi} (f(z_0 + \rho e^{it}))^p dt$$

donc

$$|f(z_0)|^p \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})|^p dt.$$

2. u est harmonique dans \mathbb{D} , donc d'après la propriété de la moyenne on a que pour tout $z_0 \in \mathbb{D}$ et pour tout $\rho < \rho_0 = 1 - |z_0|$

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + \rho e^{it}) dt$$

ce qui implique

$$\left|u\left(z_{0}\right)\right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \left|u\left(z_{0} + \rho e^{it}\right)\right| dt.$$

Si p = 1, (3.1) est bien vérifiée et donc |u| est sous-harmonique.

Si p > 1, d'après l'inégalité de Hölder, on a :

$$\int_{0}^{2\pi} \left| u \left(z_{0} + \rho e^{it} \right) \right| dt = \left(\int_{0}^{2\pi} \left| u \left(z_{0} + \rho e^{it} \right) \right|^{p} dt \right)^{1/p} (2\pi)^{1/q}$$

avec $\frac{1}{p} + \frac{1}{q} = 1$. Par conséquent on a :

$$|u(z_0)|^p \le (2\pi)^{1-p+p/q} \frac{1}{2\pi} \int_0^{2\pi} |u(z_0 + \rho e^{it})|^p dt = \frac{1}{2\pi} \int_0^{2\pi} |u(z_0 + \rho e^{it})|^p dt$$

ainsi d'après le théorème 3.2 on a que $|u|^p$ est sous-harmonique.

3. si $z_0 \in \mathbb{D}$ est tel que $|f(z_0)| \le 1$, l'inégalité (3.1) est vérifiée.

Si $z_0 \in \mathbb{D}$ est tel que $|f(z_0)| > 1$, par continuité de |f|, il existe $\rho_0 > 0$ tel que |f(z)| > 1sur $D(z_0, \rho_0) \subset \mathbb{D}$. Ainsi pour tout $\rho < \rho_0, \log^+ |f(z)| = \log |f(z)|$ pour tout $z \in D(z_0, \rho)$. D'après le lemme 2.8 $\log |f|$ est une fonction harmonique sur $D(z_0, \rho_0)$, (3.1) est vérifiée (c'est même une égalité) pour $\rho < \rho_0$.

3.2 Définition et premières propriétés des espaces de Hardy

Pour $f \in \mathcal{H}ol(\mathbb{D})$ on définit les quantités suivantes :

$$-M_0(f,r) := \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{it})| dt$$

$$M_{0}(f,r) := \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{it})|^{p} dt\right)^{1/p}, \text{ si } 0
$$M_{\infty}(f,r) := \sup_{t \in [0,2\pi[} |f(re^{it})|^{p} dt].$$$$

$$- M_{\infty}(f,r) := \sup_{t \in [0,2\pi]} \left| f\left(re^{it}\right) \right|$$

Définition 3.5. Les espaces de Hardy $H^p(\mathbb{D}), 0 , sont définis par$

$$H^p(\mathbb{D}) = \left\{ f \in \mathcal{H}ol(\mathbb{D}) \mid \sup_{0 \le r < 1} M_p(f, r) < \infty \right\}.$$

Proposition 3.6. Soit $f \in \mathcal{H}ol(\mathbb{D})$. Les fonctions $r \longmapsto M_p(f,r)$ (pour $0 \le p \le \infty$) sont des fonctions croissantes sur [0, 1]

Démonstration. Si $f \in \mathcal{H}ol(\mathbb{D})$ alors $|f|^p$ et $\log^+|f|$ sont des fonctions sous-harmoniques sur \mathbb{D} pour $0 d'après la proposition 3.4. D'après la proposition 3.3, <math>r \longmapsto M_p(f,r)$ (pour $0 \le p < \infty$) est une fonction croissante sur [0,1]. Le fait que $r \longmapsto M_{\infty}(f,r)$ est croissante sur [0, 1] est une conséquence du principe du maximum pour les fonctions holomorphes.

On peut alors redéfinir les espaces de Hardy ainsi que la classe de Nevanlinna de la manière suivante:

Corollaire 3.7. Pour 0 nous avons :

$$H^p(\mathbb{D}) = \left\{ f \in \mathcal{H}ol(\mathbb{D}) \mid \lim_{r \to 1^-} M_p(f, r) < \infty \right\}$$

et

$$\mathcal{N} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) \mid \lim_{r \to 1^{-}} M_0(f, r) < \infty \right\}.$$

Si $f \in H^p(\mathbb{D})$ pour $0 nous noterons par <math>||f||_p$ la limite $\lim_{n \to 1^-} M_p(f, r)$.

Théorème 3.8. On a

$$H^{\infty}(\mathbb{D}) \subset H^p(\mathbb{D}) \subset H^s(\mathbb{D}) \subset \mathcal{N}$$

pour $0 < s < p < \infty$.

Démonstration. Si $f \in H^{\infty}(\mathbb{D})$, pour tout $p \in]0, \infty[$ on a $|f(re^{it})|^p \le ||f||_{\infty}^p$ pour $r \in [0,1[$ et $t \in [0,2\pi[$. On en déduit alors $M_p(f,r) \le ||f||_{\infty}$ pour $r \in [0,1[$, ce qui implique $||f||_p \le ||f||_{\infty}$ et donc $H^{\infty}(\mathbb{D}) \subset H^p(\mathbb{D})$ pour tout p > 0.

Pour p > s > 0, d'après l'inégalité de Hölder, pour f mesurable sur le cercle centré en 0 de rayon $r \in]0,1[$, quelconque on a

$$\int_{-\pi}^{\pi} \left| f\left(re^{it}\right) \right|^{s} dt \leq \left(\int_{-\pi}^{\pi} \left| f\left(re^{it}\right) \right|^{p} dt \right)^{s/p} (2\pi)^{1-s/p}$$

et donc $M_s(f,r) \leq M_p(f,r)$. Ainsi $H^p(\mathbb{D}) \subset H^s(\mathbb{D})$ pour p > s > 0.

Enfin, pour tout s>0, puisque $\lim_{x\to\infty}\frac{\log x}{x^s}=0$, il existe A>0 tel que $\frac{\log x}{x^s}\leq A$ pour tout $x\geq 1$. Si f mesurable sur le cercle centré en 0 de rayon $r\in]0,1[$, on a :

$$\int_{-\pi}^{\pi} \log^{+} \left| f\left(re^{it}\right) \right| dt = \int_{t \in [-\pi,\pi]: |f(re^{it})| \ge 1} \log \left| f\left(re^{it}\right) \right| dt \le A \int_{t \in [-\pi,\pi]: |f(re^{it})| \ge 1} \left| f\left(re^{it}\right) \right|^{s} dt.$$

On a donc $AM_s(f,r)^s \geq M_0(f,r)$, ce qui prouve que $H^s(\mathbb{D}) \subset \mathcal{N}$ pour s > 0.

Théorème 3.9. Si $1 \le p \le \infty$, l'espace de Hardy $H^p(\mathbb{D})$ muni de la norme $\|\cdot\|_p$ est un espace de Banach.

Démonstration. Montrons que $\|\cdot\|_p$ une norme, la seule chose à préciser c'est l'inégalité triangulaire. D'après l'inégalité de Minkowski (si $1 \le p < \infty$) ou d'après l'inégalité triangulaire que vérifie le module sur $\mathbb{C}($ si $p = \infty)$, pour toutes fonctions f et g mesurables sur le cercle centré en 0 de rayon $r \in]0,1[$, on a :

$$M_p(f+g,r) \le M_p(f,r) + M_p(g,r)$$
 pour tout $r \in [0,1[$.

Pour toutes les fonctions $f, g \in H^p(\mathbb{D})$ (avec $1 \le p \le \infty$), on a donc $||f + g||_p \le ||f||_p + ||g||_p$. Ainsi $||\cdot||_p$ est bien une norme sur $H^p(\mathbb{D})$.

Montrons la complétude, fixons $p \in [1, \infty]$. Soit $(f_n)_{n\geq 1}$ une suite de Cauchy dans $H^p(\mathbb{D})$. Soient r, R tels que r < R < 1 et prenons $z \in \bar{D}(0, r)$. En appliquant la formule de Cauchy à $f_n - f_m$ sur le cercle Γ_R centré en 0 et de rayon R on obtient

$$|f_n(z) - f_m(z)| = \left| \frac{1}{2i\pi} \int_{\Gamma_R} \frac{f_n(\xi) - f_m(\xi)}{\xi - z} d\xi \right|$$

$$\leq \frac{1}{2\pi} \frac{1}{R - r} \int_{-\pi}^{\pi} R \left| f_n \left(Re^{i\theta} \right) - f_m \left(Re^{i\theta} \right) \right| d\theta$$

Ainsi

$$|f_n(z) - f_m(z)| \le \frac{1}{R - r} M_1 (f_n - f_m, R)$$

L'application $\varphi: x \longmapsto x^p$ est convexe pour $p \ge 1$, d'après l'inégalité de Jensen appliquée à la mesure μ définie par $d\mu(t) = \frac{1}{2\pi} dt$ sur $[-\pi, \pi]$, on obtient :

$$\left(\int_{-\pi}^{\pi} \frac{\left| (f_n - f_m) \left(Re^{it} \right) \right|}{2\pi} dt \right)^p \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| (f_n - f_m) \left(Re^{it} \right) \right|^p dt$$

et donc $M_1(f_n - f_m, R) \leq M_p(f_n - f_m, R)$. D'après la proposition 3.6,

$$M_p(f_n - f_m, R) \le \lim_{R \to 1^-} M_p(f_n - f_m, R) = ||f_n - f_m||_p$$

et donc

$$|f_n(z) - f_m(z)| \le \frac{1}{R-r} ||f_n - f_m||_p$$

La suite $(f_n)_n$ converge donc uniformément sur tout compact de \mathbb{D} vers une fonction f holomorphe sur \mathbb{D} . Comme on a supposé que $(f_n)_n$ était de Cauchy dans $H^p(\mathbb{D})$, pour $\varepsilon > 0$ fixé, il existe $m \geq 1$ tel que pour tout n > m on ait $||f_n - f_m||_p < \varepsilon$. Pour r < 1 on obtient :

$$M_{p}\left(f - f_{m}, r\right) = \lim_{n \to \infty} M_{p}\left(f_{n} - f_{m}, r\right) \le \lim_{n \to \infty} \left\|f_{n} - f_{m}\right\|_{p} \le \varepsilon$$

ce qui donne $\lim_{m\to\infty} \|f-f_m\|_p = 0$. D'autre part, sachant que $\|f\|_p \leq \|f-f_m\|_p + \|f_m\|_p$, il est clair que $||f||_p < \infty$ donc $f \in H^p(\mathbb{D})$. Donc $H^p(\mathbb{D})$ est un espace de Banach.

Théorème 3.10. Soit $p \in]0,\infty]$ et soit f une fonction de $H^p(\mathbb{D})$ non identiquement nulle. Si B est le produit de Blaschke associé à $f(\in \mathcal{N})$ alors $\frac{f}{B} \in H^p(\mathbb{D})$ avec $\left\| \frac{f}{B} \right\|_p = \|f\|_p$.

Démonstration. Soit $(\alpha_n)_{n\geq 1}$ la suite des zéros de f comptés avec multiplicité et soit B_n le produit de Blaschke fini associé aux n premiers zéros de f.

Nous avons vu que B_n est une fonction de $H^{\infty}(\mathbb{D})$ continue sur $\overline{\mathbb{D}}$ avec $|B_n(e^{it})| = 1$ pour $t \in \mathbb{R}$. Comme B_n est continue sur le compact $\overline{\mathbb{D}}$, B_n est uniformément continue sur $\overline{\mathbb{D}}$. Ainsi, si on choisit $\varepsilon \in]0,1[$, il existe $\nu < 1$ tel que pour tous $z_1,z_2 \in \overline{\mathbb{D}}$ vérifiant $|z_1-z_2| < \nu$ on ait

$$|B_n(z_1) - B_n(z_2)| < \varepsilon.$$

En particulier, pour tous $t \in \mathbb{R}$ et $1 - \nu < r < 1$ on a

$$|B_n(re^{it}) - B_n(e^{it})| < \varepsilon.$$

On a $|B_n(e^{it})| = 1$, on obtient $1 - \varepsilon < |B_n(re^{it})| < 1 + \varepsilon$ pour tous $t \in \mathbb{R}$ et $1 - \nu < r < 1$. On en déduit :

$$\left| \frac{1}{1+\varepsilon} \left| f\left(re^{it}\right) \right| < \left| \frac{f\left(re^{it}\right)}{B_n\left(re^{it}\right)} \right| < \frac{1}{1-\varepsilon} \left| f\left(re^{it}\right) \right|$$

pour tous $t \in \mathbb{R}$ et $1 - \nu < r < 1$. Si $p \in]0, \infty]$ et $f \in H^p(\mathbb{D})$ on a ainsi

$$\frac{1}{1+\varepsilon} \|f\|_p < \left\| \frac{f}{B_n} \right\|_p < \frac{1}{1-\varepsilon} \|f\|_p$$

pour tout $\varepsilon \in]0,1[$. Ainsi en posant $g_n := \frac{f}{B_n}$ on a $\|g_n\|_p = \|f\|_p$ avec $p \in]0,\infty[$. Posons $g = \frac{f}{B}$. Par construction $g \in \mathcal{H}ol(\mathbb{D})$. De plus, pour $z \in \mathbb{D}$, $\lim_{n \to \infty} g_n(z) = g(z)$ et $(|g_n(z)|)_{n\geq 1}$ est une suite croissante (par décroissance de $(|B_n|)_{n\geq 1}$). Ainsi d'après le théorème de convergence monotone, pour $p\in]0,\infty[$ et pour $r\in [0,1[$ fixé, on a :

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} \left| g_n \left(r e^{it} \right) \right|^p dt = \int_{-\pi}^{\pi} \lim_{n \to \infty} \left| g_n \left(r e^{it} \right) \right|^p dt = \int_{-\pi}^{\pi} \left| g \left(r e^{it} \right) \right|^p dt$$

ce qui implique $M_p(g,r) = \lim_{n \to \infty} M_p(g_n,r)$. Puisque $r \mapsto M_p(g_n,r)$ est une fonction croissante (proposition 3.6) et que $\lim_{r\to 1^-} M_p\left(g_n,r\right) = \|f\|_p \left(\operatorname{car}\left|B_n\left(e^{it}\right)\right| = 1\right)$, on a

$$\lim_{n \to \infty} M_p\left(g_n, r\right) \le \|f\|_p$$

pour tout $r \in [0, 1]$ et donc

$$||g||_p = \lim_{r \to 1^-} M_p(g, r) \le ||f||_p.$$

Par conséquent $g \in H^p(\mathbb{D})$ avec $||g||_p \leq ||f||_p$.

D'autre part, puisque |B(z)|<1 pour tout $z\in\mathbb{D},$ on en déduit que |g(z)|>|f(z)| pour tout $z\in\mathbb{D}.$ Ainsi on a

$$||g||_p \ge ||f||_p$$
.

Finalement, pour $p \in]0, \infty[$, nous avons $||g||_p = ||f||_p$.

Enfin si $f \in H^{\infty}(\mathbb{D})$, puisque $\sup_{z \in \mathbb{D}} |g_n(z)| = ||g_n||_{\infty} = ||f||_{\infty}$, on a $|g_n(z)| \leq ||f||_{\infty}$ pour tout $z \in \mathbb{D}$ et pour tout entier $n \geq 1$. Pour $z \in \mathbb{D}$ nous avons $g(z) = \lim_{n \to \infty} g_n(z)$, on a

$$||g||_{\infty} := \sup_{z \in \mathbb{D}} |g(z)| \le ||f||_{\infty}.$$

De plus, |g(z)| > |f(z)| pour tout $z \in \mathbb{D}$, on obtient

$$||g||_{\infty} \ge ||f||_{\infty},$$

et donc

$$||g||_{\infty} = ||f||_{\infty}.$$

Théorème 3.11. Soient $0 , <math>f \in H^P(\mathbb{D})$, $f \neq 0$, et B le produit de Blaschke de f. Il existe une fonction sans zéros $h \in H^2(\mathbb{D})$ telle que

$$f = Bh^{\frac{2}{p}}$$

En particulier, toute $f \in H^1$ est un produit

$$f = gh$$

où les deux facteurs appartiennent à $H^2(\mathbb{D})$.

Démonstration. D'après le théorème 3.10 la fonction $f/B \in H^p$, et $||f/B||_p = ||f||_p$. Puisque f/B ne s'annule pas sur \mathbb{D} , et puisque \mathbb{D} est simplement connexe, d'après le théorème 2.1 il existe $\phi \in \mathcal{H}ol(\mathbb{D})$ telle que

$$e^{\phi} = f/B$$
.

Posons $h:=\exp\left(\frac{p\phi}{2}\right)$, ainsi $h\in Hol(\mathbb{D})$ et $|h|^2=|f/B|^p$ de sorte à ce que $h\in H^2(\mathbb{D})$, et

$$f = B.h^{\frac{2}{p}}$$
.

Ainsi $||h||_2^2 = ||f||_p^p$.

Pour obtenir la seconde égalité on écrit $f = Bh^{\frac{2}{p}}$, (p = 1) sous la forme $f = Bh \cdot h$, où g := Bh.

3.3 Fonctions intérieurs et extérieurs

3.3.1 Fonctions intérieurs

Définition 3.12. Une fonction intérieure est une fonction $U \in H^{\infty}(\mathbb{D})$ telle que $\left|U^*\left(e^{it}\right)\right| = 1$ m-presque partout (avec $U^*\left(e^{it}\right) = \lim_{r \to 1^-} U\left(re^{it}\right)$).

Théorème 3.13. Soit $c \in \mathbb{C}$ tel que |c| = 1, soient B un produit de Blaschke, ν une mesure de Borel positive finie sur \mathbb{T} telle que $\nu \perp m$. Pour $z \in \mathbb{D}$ on pose

$$U(z) := cB(z)e^{-\frac{1}{2\pi}\int_{-\pi}^{\pi} \frac{e^{it}+z}{e^{it}-z}d\nu(t)}$$

La fonction U est une fonction intérieure et toute fonction intérieure peut s'obtenir de cette façon.

Démonstration. Supposons que pour $z \in \mathbb{D}$

$$U(z) := cB(z)e^{-\frac{1}{2\pi}\int_{-\pi}^{\pi} \frac{e^{it}+z}{e^{it}-z}d\nu(t)}$$

Par construction $U \in \mathcal{H}ol(\mathbb{D})$. Posons $g = \frac{U}{B}$. Remarquons que $\log |g|$ est l'intégrale de Poisson pour la mesure finie négative $-\nu$. Ainsi $\log |g|$ est une fonction harmonique négative sur \mathbb{D} , donc pour $z \in \mathbb{D}$

$$|g(z)| \leq 1$$
.

Ainsi, g et donc U sont des fonctions de $H^{\infty}(\mathbb{D})$. De plus, $\nu \perp m$ et $\log |g| = -P(\nu)$, d'après le corollaire 1.25, on a

$$\lim_{r\to 1^{-}}\log\left|g\left(re^{it}\right)\right|=\log\left|g^{*}\left(e^{it}\right)\right|=0 \text{ m-presque partout.}$$

On a donc $|g^*(e^{it})| = 1$ m-presque partout. D'après la remarque qui suit la définition des produits de Blaschke, $|B^*(e^{it})| = 1$ m-presque partout, on a donc $|U^*(e^{it})| = 1$ m presque partout et ainsi la fonction U est bien une fonction intérieure.

Réciproquement, soit U une fonction intérieure et soit B le produit de Blaschke associé à la suite de ses zéros comptés avec multiplicité. D'après le théorème 3.10,

$$g := \frac{U}{B} \in H^{\infty}(\mathbb{D}), \ \|g\|_{\infty} = \|U\|_{\infty} = 1$$

et par construction g ne s'annule pas sur \mathbb{D} . D'après le théorème 2.1 il existe $\ell \in \mathcal{H}ol(\mathbb{D})$ vérifiant $\log |g| = Re(\ell)$, ce qui implique que $\log |g|$ est une fonction harmonique sur \mathbb{D} . D'autre part $\log |g|$ est négative puisque $||g||_{\infty} = 1$. On a que $|B^*(e^{it})| = 1$ m-presque partout d'après la remarque qui suit la définition des produits de Blaschke (définition 2.14), on a $|U^*(e^{it})| = 1$ m-presque partout ainsi $|g^*(e^{it})| = 1$ m-presque partout et donc $\log |g^*(e^{it})| = 0$ m-presque partout donc d'après le corollaire 1.25 il existe $\nu \geq 0$, ν finie sur \mathbb{T} et $\nu \perp m$ telle que

$$-P(\nu) = \log|g|$$

Donc $\log |g|$ est la partie réelle de la fonction holomorphe

$$h(z) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)$$

 $\operatorname{car} -P(\nu)(re^{i\theta}) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\nu(t) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}\left(\frac{e^{it} + z}{e^{it} - z}\right) d\nu(t). \text{ On a } g = e^{\ell} \text{ avec } \operatorname{Re}(\ell) = \operatorname{Re}\left(-\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)\right), \text{ donc}$

$$g(z) = ce^{-\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)}$$

avec |c|=1 puisque $-\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{e^{it}+z}{e^{it}-z}d\nu(t)-\ell\in i\mathbb{R}$, ce qui conclut la démonstration.

Définition 3.14. Les fonctions intérieures singulières sont les fonctions intérieures qui ne s'annulent pas sur \mathbb{D} , i.e. les fonctions de la forme

$$S_{\nu}(z) = ce^{-\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)}$$

où |c|=1 et où ν est une mesure de Borel positive finie sur \mathbb{T} telle que $\nu\perp m$.

3.3.2 Fonctions extérieurs

Définition 3.15. Une fonction extérieure est une fonction $Q \in \mathcal{H}ol(\mathbb{D})$ de la forme

$$Q(z) = ce^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \varphi(e^{it}) dt}$$

où |c|=1 et où φ est une fonction positive mesurable telle que $\log \varphi \in L^1(\mathbb{T})$.

Proposition 3.16. Soit Q une fonction extérieure reliée à φ . Alors

- 1. $\log |Q|$ est l'intégrale de Poisson de la mesure absolument continue par rapport à la mesure de Lebesgue dont la dérivée de Radon-Nikodym est $\log \varphi$.
- 2. $\lim_{r\to 1^-} |Q(re^{it})| = \varphi(e^{it})$ m-presque partout.
- 3. Pour $p \in]0, \infty], Q \in H^p(\mathbb{D})$ si et seulement si $\varphi \in L^p(\mathbb{T})$. Dans ce cas $\|Q\|_p = \|\varphi\|_p$.

Démonstration.

1. Puisque

$$|Q(z)| = e^{\operatorname{Re}\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \varphi(e^{it}) dt\right)} = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re}\left(\frac{e^{it} + z}{e^{it} - z}\right) \log \varphi(e^{it})}$$

$$\operatorname{avec} \operatorname{Re} \left(\frac{e^{it} + z}{e^{it} - z} \right) = P_r(\theta - t) \operatorname{pour} z = re^{i\theta}, \operatorname{on a log} \left| Q \left(re^{i\theta} \right) \right| = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) \operatorname{log} \varphi \left(e^{it} \right) dt$$

- 2. D'après 1. et en appliquant le théorème 1.24, on obtient $\lim_{r\to 1^-} \log |Q(re^{it})| = \log \varphi(e^{it}) m$ -presque partout ce qui donne 2.
- 3. Si $p = \infty$, d'après 2. l'assertion 3. est clair.

Supposons $p \in]0, \infty[$ et $Q \in H^p(\mathbb{D})$. Soit $(r_n)_{n \geq 1}$ une suite croissante de réels de]0, 1[tendant vers 1. D'après le lemme de Fatou appliqué à la suite de fonctions mesurables positives (sur \mathbb{T}) $(Q_n)_{n \geq 1}$ définie par $Q_n\left(e^{it}\right) := \left|Q\left(r_ne^{it}\right)\right|^p$, on a :

$$\int_{-\pi}^{\pi} \liminf_{n \to \infty} Q_n\left(e^{it}\right) dt \le \liminf_{n \to \infty} \int_{-\pi}^{\pi} Q_n\left(e^{it}\right) dt$$

ce qui implique (d'après la proposition 3.6) $\|Q^*\|_p \leq \|Q\|_p$. D'après 2., on a donc $\|\varphi\|_p \leq \|Q\|_p$ (*). Par conséquent, si $Q \in H^p(\mathbb{D})$ alors $\varphi \in L^p(\mathbb{T})$.

Réciproquement, supposons que $\varphi \in L^p(\mathbb{T})$. On a

$$\left|Q\left(re^{i\theta}\right)\right|^p = e^{\frac{1}{2\pi}} \int_{-\pi}^{\pi} P_r(\theta - t) \log \varphi^p\left(e^{it}\right) dt$$

D'après l'inégalité de Jensen, appliqué à la fonction convexe $x \mapsto e^x$ et à la mesure positive μ définie par $d\mu(t) = \frac{1}{2\pi} P_r(\theta - t) dt$, on obtient :

$$e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) \log \varphi^p \left(e^{it}\right) dt} \le \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) \varphi^p \left(e^{it}\right) dt.$$

Donc

$$\left|Q\left(re^{i\theta}\right)\right|^p \le \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t)\varphi^p\left(e^{it}\right) dt$$

En intégrant cette inégalité par rapport à la variable θ , sachant que $\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\theta = 1$, on obtient $M_p(Q,r) \leq \|\varphi\|_p$, et donc $\lim_{r \to 1^-} M_p(Q,r) = \|Q\|_p \leq \|\varphi\|_p$ (**).

Il vient de (*) et (**) que si $Q \in H^p(\mathbb{D})$ alors $||Q||_p = ||\varphi||_p$.

3.4 Facteurs extérieures des fonctions de $H^p(\mathbb{D})$

Proposition 3.17. Soit $p \in]0, \infty]$. Supposons que $f \in H^p(\mathbb{D})$ non identiquement nulle. Alors la limite radiale de f, notée f^* , est telle que $\log |f^*| \in L^1(\mathbb{T})$ et $f^* \in L^p(\mathbb{T})$.

Démonstration. Si $f \in H^p(\mathbb{D})$ alors $\log |f^*| \in L^1(\mathbb{T})$. En effet, d'après le théorème 3.8, $H^p(\mathbb{D}) \subset \mathcal{N}$ et d'après le théorème 2.15, si $f \in \mathcal{N}$ alors $f^*(e^{it})$ est définie m-presque partout avec $\log |f^*| \in L^1(\mathbb{T})$.

De plus, pour $p \in]0, \infty[$, d'après le lemme de Fatou,

$$\int_{0}^{2\pi} \liminf_{r \to 1^{-}} \left| f\left(re^{it}\right) \right|^{p} dt \leq \liminf_{r \to 1^{-}} \int_{0}^{2\pi} \left| f\left(re^{it}\right) \right|^{p} dt$$

ce qui donne :

$$\frac{1}{2\pi} \int_0^{2\pi} \left| f^* \left(e^{it} \right) \right|^p dt \le \lim_{r \to 1^-} M_p(f, r)^p = \|f\|_p^p$$

ainsi $f^* \in L^p(\mathbb{T})$ pour $p \in]0, \infty[$.

Pour $p = \infty$, puisque $|f(z)| \le ||f||_{\infty}$ pour $z \in \mathbb{D}$, donc $|f^*(e^{it})| \le ||f||_{\infty}$ m-presque partout. Ainsi, si $f \in H^{\infty}(\mathbb{D})$ on a donc $f^* \in L^{\infty}(\mathbb{T})$.

Corollaire 3.18. Soit $p \in]0, \infty]$. Supposons que $f \in H^p(\mathbb{D})$, f non identiquement nulle. Dans ce cas, la fonction extérieure Q_f définie par

$$Q_f(z) = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| dt}$$

appartient à $H^p(\mathbb{D})$. Q_f est appelé facteur extérieur de f.

Démonstration. Soit $p \in]0, \infty]$. Supposons que $f \in H^p(\mathbb{D})$, f non identiquement nulle. D'après la proposition 3.17, $\log |f^*| \in L^1(\mathbb{T})$. Ainsi Q_f est bien définie comme une fonction extérieure. De plus, toujours d'après la proposition 3.17, $f \in H^p(\mathbb{D})$ implique $f^* \in L^p(\mathbb{T})$, et le troisième point de la proposition 3.16 permet de conclure que $Q_f \in H^p(\mathbb{D})$.

Remarque. Q_f ne dépend que de f^* , c'est à dire des limites radiales de f sur \mathbb{T} .

3.5 L'espace de Hardy $H^2(\mathbb{D})$

Nous allons résumé en un théorème les résultats fondamentaux de l'espace $H^2(\mathbb{D})$.

Théorème 3.19.

1. Une fonction $f \in \mathcal{H}ol(\mathbb{D})$ de la forme $f(z) = \sum_{n \geq 0} a_n z^n$ appartient à $H^2(\mathbb{D})$ si et seulement

si
$$\sum_{n\geq 0} |a_n|^2 < \infty$$
. Dans ce cas $||f||_2 = \left(\sum_{n\geq 0} |a_n|^2\right)^{1/2}$.

2. Si $f \in H^2(\mathbb{D})$, $f^* \in L^2(\mathbb{T})$ et le *n*-ème coefficient de Fourier de f^* est a_n si $n \geq 0$ et 0 si n < 0. De plus

$$\lim_{s \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} \left| f^{*} \left(e^{it} \right) - f \left(s e^{it} \right) \right|^{2} dt = 0$$

et f est l'intégrale de Poisson ainsi que l'intégrale de Cauchy de f^* , i.e. pour tout $z=re^{i\theta}\in\mathbb{D}$, on a :

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f^* \left(e^{it} \right) dt = \frac{1}{2i\pi} \int_{\mathbb{T}} \frac{f^*(\xi)}{\xi - z} d\xi$$

3. L'application

$$\begin{array}{ccc} H^2(\mathbb{D}) & \longrightarrow & H^2(\mathbb{T}) \\ f & \longmapsto & f^* \end{array}$$

est un isomorphisme isométrique où $H^2(\mathbb{T}):=\left\{g\in L^2(\mathbb{T})\mid \hat{g}(n)=0,n<0\right\}$.

4. $H^2(\mathbb{D})$ muni du produit scalaire

$$\langle f, g \rangle_{H^2(\mathbb{D})} = \langle f^*, g^* \rangle_{L^2(\mathbb{T})} := \frac{1}{2\pi} \int_0^{2\pi} f^* \left(e^{it} \right) \overline{g^* \left(e^{it} \right)} dt$$

est un espace de Hilbert.

Démonstration.

1. Soit $f(z) = \sum_{n \geq 0} a_n z^n$ pour $z \in \mathbb{D}$ donc pour $r \in [0, 1[$ et $t \in \mathbb{R}, f(re^{it}) = \sum_{n \geq 0} a_n r^n e^{int}$. Ainsi d'après le théorème de Parseval, on a

$$\frac{1}{2\pi} \int_0^{2\pi} \left| f\left(re^{it}\right) \right|^2 dt = \sum_{n \ge 0} \left| a_n \right|^2 r^{2n}.$$

Par convergence monotone, on a:

$$\lim_{r \to 1^{-}} \sum_{n \ge 0} |a_n|^2 r^{2n} = \sum_{n \ge 0} |a_n|^2.$$

Puisque $||f||_2^2 = \lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} \left| f\left(re^{it}\right) \right|^2 dt$, on obtient que f appartient à $H^2(\mathbb{D})$ si et seulement si $\sum_{n \ge 0} |a_n|^2 < \infty$ et $||f||_2 = \left(\sum_{n \ge 0} |a_n|^2\right)^{1/2}$.

2. Soit $f \in H^2(\mathbb{D})$ d'après la proposition 3.17, $f^* \in L^2(\mathbb{T})$. Soit 0 < s < 1 on définit les fonctions

$$\begin{array}{ccc}
f_s: \mathbb{T} & \longrightarrow & \mathbb{C} \\
e^{it} & \longmapsto & f\left(se^{it}\right) = \sum_{n>0} a_n s^n e^{int}
\end{array}.$$

Puisque $\sum_{n\geq 0} |a_n|^2 < \infty$, il existe une fonction $g\in L^2(\mathbb{T})$ telle que $\hat{g}(n)=a_n$ si $n\geq 0$ et 0 si n<0. Les coefficients de Fourier de $g-f_s$ valent $(1-s^n)\,a_n$ si $n\geq 0$ et 0 si n<0. L'égalité de Parseval donne alors

$$||g - f_s||_2^2 = \sum_{n>0} (1 - s^n)^2 |a_n|^2.$$

Par convergence monotone décroissante,

$$\lim_{s \to 1^{-}} \sum_{n > 0} (1 - s^{n})^{2} |a_{n}|^{2} = 0.$$

On a donc $\lim_{s \to 1^-} \|g - f_s\|_2 = 0$. Pour 0 < s < 1, la fonction f_s définie par $f_s(z) = f(sz)$ est holomorphe dans $D\left(0, \frac{1}{s}\right) \subset \mathbb{D}$. On a donc, pour $z \in \mathbb{D}$,

$$f_s(z) = \frac{1}{2i\pi} \int_{\mathbb{T}} \frac{f_s(\xi)}{\xi - z} d\xi.$$

La fonction f_s est harmonique sur $D\left(0,\frac{1}{s}\right)$ (car holomorphe), d'après le théorème 1.14, on a, pour $z=re^{i\theta}\in\mathbb{D}$,

$$f_s(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f_s\left(e^{it}\right) dt.$$

En utilisant l'inégalité de Schwarz et le fait que $P_r(\theta - t) = \text{Re}\left(\frac{e^{it} + z}{e^{it} - z}\right) \le \left|\frac{e^{it} + z}{e^{it} - z}\right| \le \frac{1 + r}{1 - r}$, on a

$$\left| f_s \left(r e^{i\theta} \right) - \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) g\left(e^{it} \right) dt \right| = \left| \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) \left(f_s \left(e^{it} \right) - g\left(e^{it} \right) \right) dt \right|$$

$$\leq \frac{1+r}{1-r} \left\| f_s - g \right\|_2,$$

et

$$\left| f_s \left(r e^{i\theta} \right) - \frac{1}{2i\pi} \int_{\mathbb{T}} \frac{g(\xi)}{\xi - r e^{i\theta}} d\xi \right| = \left| \frac{1}{2i\pi} \int_{\mathbb{T}} \frac{f_s(\xi) - g(\xi)}{\xi - r e^{i\theta}} d\xi \right|$$

$$\leq \frac{1}{1 - r} \left\| f_s - g \right\|_2$$

Puisque $\lim_{s\to 1^-} \|g - f_s\|_2 = 0$, on a donc d'une part

$$f\left(re^{i\theta}\right) = \lim_{s \to 1^{-}} f_s\left(re^{i\theta}\right)$$
$$= \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t)g\left(e^{it}\right) dt.$$

D'autre part

$$f(re^{i\theta}) = \lim_{s \to 1^{-}} f_s(re^{i\theta})$$
$$= \frac{1}{2i\pi} \int_{\mathbb{T}} \frac{g(\xi)}{\xi - re^{i\theta}} d\xi.$$

En particulier, f est la fonction harmonique définie comme l'intégrale de Poisson de la mesure $\mu \ll m$ (m est la mesure de Lebesgue) définie par $d\mu(t) = g\left(e^{it}\right)dt$ avec $g \in L^1(\mathbb{T})$ puisque $g \in L^2(\mathbb{T})$. On a

$$f^*\left(e^{it}\right) = \lim_{r \to 1^-} f\left(re^{i\theta}\right)$$
$$= \lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t)g\left(e^{it}\right) dt$$

donc d'après le théorème 1.24 on a

$$f^*\left(e^{it}\right) = g\left(e^{it}\right) m$$
-presque partout.

On en déduit que $f^* \in L^2(\mathbb{T})$ et que $\widehat{f^*}(n) = a_n$ si $n \ge 0$ et que $\widehat{f^*}(n) = 0$ si n < 0. Enfin on a :

$$f\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f^*\left(e^{it}\right) dt = \frac{1}{2i\pi} \int_{\mathbb{T}} \frac{f^*(\xi)}{\xi - re^{i\theta}} d\xi$$

3. Puisque $\lim_{s \to 1^{-}} \|f^* - f_s\|_2 = 0$, on a

$$||f||_2 := \lim_{s \to 1^-} ||f_s||_2 = ||f^*||_2.$$

On a $\widehat{f}(n) = 0$ pour tout n < 0, donc l'application

$$\begin{array}{ccc} \Phi: H^2(\mathbb{D}) & \longrightarrow & H^2(\mathbb{T}) \\ f & \longmapsto & f^* \end{array}$$

est bien définie et est une isométrie.

Par définition l'application Φ est linéaire. Et ant isométrique, elle est automatiquement injective.

Enfin pour la surjectivité, si $g \in H^2(\mathbb{T})$, g est de la forme $g\left(e^{it}\right) = \sum_{n\geq 0} a_n e^{int}$ avec

 $||g||_2^2 = \sum_{n\geq 0} |a_n|^2 < \infty$. Alors la fonction f définie sur \mathbb{D} par $f(z) = \sum_{n\geq 0} a_n z^n$ appartient à $H^2(\mathbb{D})$ d'après 1. l'application Φ est donc surjective. Ainsi Φ est bien un isomorphisme isométrique.

4. Par définition,

$$\langle f, f \rangle_{H^2(\mathbb{D})} = \|f^*\|_2^2.$$

Or $||f^*||_2 = ||f||_2$, la norme sur $H^2(\mathbb{D})$ s'obtient du produit scalaire que nous avons défini. De plus $H^2(\mathbb{D})$ est complet d'après le théorème 3.9, ainsi $H^2(\mathbb{D})$ est bien un espace de Hilbert.

Corollaire 3.20. Si $f \in H^1(\mathbb{D})$ alors

$$\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} \left| f^* \left(e^{it} \right) - f \left(r e^{it} \right) \right| dt = 0.$$

Démonstration. Soit B le produit de Blaschke associé à la suite des zéros de f dans \mathbb{D} . D'après le théorème 3.10,

$$g := \frac{f}{B} \in H^1(\mathbb{D}) \text{ avec } ||g||_1 = ||f||_1.$$

Par construction g ne s'annule par sur \mathbb{D} , donc il existe une détermination holomorphe du logarithme de g. On peut ainsi définir la fonction holomorphe $h=g^{1/2}$ sur \mathbb{D} . On a $h^2=g$ et donc

$$f = Bg = (Bh)h$$
 avec $||h||_2^2 = ||g||_1 = ||f||_1$.

Par conséquent on a réussi à écrire f comme le produit de deux fonctions de $H^2(\mathbb{D}), h$ et $\ell := Bh$:

$$f = \ell h$$

nous allons ainsi pouvoir appliquer ce qu'on établi dans le théorème précédent. Pour $r \in]0,1[$, on définit les fonctions sur $\mathbb T$

$$\begin{cases} f_r\left(e^{it}\right) := f\left(re^{it}\right) \\ \ell_r\left(e^{it}\right) := \ell\left(re^{it}\right) \\ h_r\left(e^{it}\right) := h\left(re^{it}\right) \end{cases}$$

De sorte à ce que $f_r = \ell_r h_r$. Puisque $f^* = \ell^* h^*$, on a

$$f^* - f_r = \ell^* (h^* - h_r) + h_r (\ell^* - \ell_r)$$
(*)

 $\ell, h \in H^2(\mathbb{D})$ d'après le théorème 3.19, on a

$$\lim_{r \to 1^{-}} \|h^* - h_r\|_2 = 0, \lim_{r \to 1^{-}} \|\ell^* - \ell_r\|_2 = 0$$

 et

$$\|\ell^*\|_2^2 = \|\ell\|_2^2 = \|f\|_1, \ \|h_r\|_2^2 \le \|h\|_2^2 = \|f\|_1.$$

L'inégalité de Schwarz appliquée aux deux produit du membre de droite de (*) nous donne :

$$||f^* - f_r||_1 \le ||f||_1^{1/2} (||h^* - h_r||_2 + ||\ell^* - \ell_r||_2).$$

D'où $\lim_{r\to 1^-} ||f^* - f_r||_1 = 0.$

Lemme 3.21. Pour tout $f \in H^2(\mathbb{D})$, on a

$$|f(z)| \le \frac{\|f\|_2}{\sqrt{1-|z|^2}},$$

pour tout $z \in \mathbb{D}$.

Démonstration. Soit $f \in H^2(\mathbb{D})$ d'après le théorème 3.19 on peut écrire

$$f = \sum_{n=0}^{\infty} \hat{f}(n)z^n$$

En appliquant l'inégalité de Cauchy-Schwarz à cette f nous obtenons pour $z \in U$,

$$|f(z)| \le \sum_{n=0}^{\infty} |\hat{f}(n)||z|^n \le \left(\sum_{n=0}^{\infty} |\hat{f}(n)|^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} |z|^{2n}\right)^{\frac{1}{2}}$$

en utilisant la définition de la norme dans H^2 et en sommant la série géométrique à droite nous obtenons le résultat.

Corollaire 3.22. La convergence en norme sur $H^2(\mathbb{D})$ implique la convergence uniforme sur tout compact de \mathbb{D} .

Démonstration. Soit (f_n) une suite d'éléments de $H^2(\mathbb{D})$ convergeant en norme vers une $f \in H^2(\mathbb{D})$, i.e.

$$||f_n - f||_2 \underset{n \to +\infty}{\longrightarrow} 0.$$

Pour 0 < R < 1, le lemme 3.21 donne pour $n \in \mathbb{N}$ fixé

$$\sup_{|z| < R} |f_n(z) - f(z)| \le \frac{\|f_n - f\|_2}{\sqrt{1 - R^2}},$$

et donc (f_n) converge vers f uniformément sur le disque fermé $\bar{D}(0,R)$. Puisque R est arbitraire (f_n) converge uniformément f sur tout compact de \mathbb{D} .

3.6 Théorème de factorisation des fonctions de $H^p(\mathbb{D})$

Théorème 3.23. Soit $p \in]0, \infty]$ et soit $f \in H^p(\mathbb{D})$. Alors il existe une fonction intérieure U_f telle que $f = U_f Q_f$ où Q_f est le facteur extérieur de f, i.e. la fonction de $H^p(\mathbb{D})$ définie par :

$$Q_f(z) = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| dt}$$

De plus

$$\log |f(0)| \le \frac{1}{2\pi} \int_0^{2\pi} \log |f^*(e^{it})| dt$$
 (3.2)

avec égalité dans (3.2) si et seulement si U_f est constante, autrement dit, si et seulement si f est extérieure.

Démonstration. Nous allons commencer par traité le cas où p=1. Supposons alors que $f \in H^1(\mathbb{D})$. Soit B est le produit de Blaschke associé aux zéros de f. D'après le théorème 3.10, $g := \frac{f}{B} \in H^1(\mathbb{D})$ avec $\|g\|_1 = \|f\|_1$ et $|f^*| = |g^*|$. Quitte à remplacer g par f, on peut supposer dans la suite que f ne s'annule pas sur \mathbb{D} . Nous avons vu dans le corollaire 3.18 que $Q_f \in H^1(\mathbb{D})$. La seconde assertion de la proposition 3.16 donne

$$\left|Q_{f}^{*}\left(e^{it}\right)\right|=\left|f^{*}\left(e^{it}\right)\right|\neq0$$
 m-presque partout,

donc

$$\left| \frac{f^*}{Q_f^*} \right| = 1 m$$
-presque partout.

Et si nous montrons que $|f(z)| \leq |Q_f(z)|$ pour $z \in \mathbb{D}$ on aura

$$\left| \frac{f}{Q_f} \right| \le 1$$

nous aurons alors montré que $\frac{f}{Q_f}$ est une fonction intérieure, ce qui prouvera qu'il existe une fonction intérieure telle que $f=U_fQ_f$.

Montrons que $|f(z)| \le |Q_f(z)|$ pour $z \in \mathbb{D}$. Dans un premier temps remarquons que $|Q_f|$ est égal à $e^{P(\log|f^*|)}$ où $P(\log|f^*|)$ est l'intégrale de Poisson de $\log|f^*|$ définie par

$$P\left(\log|f^*|\right)\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) \log\left|f^*\left(e^{it}\right)\right| dt.$$

Pour $r \in [0,1[, \theta \in \mathbb{R}) \text{ et } z \in \mathbb{D}, \text{ on a},$

$$|f(z)| \le |Q_f(z)|$$
 si et seulement si $\log |f(z)| \le P(\log |f^*|)(z)$,

ainsi montrons que $\log |f(z)| \le P(\log |f^*|)(z)$ pour $z \in \mathbb{D}$. Pour $|z| \le 1$ et 0 < R < 1 on définit la fonction f_R par $f_R(z) := f(Rz)$. f_R est holomorphe dans $D\left(0,\frac{1}{R}\right)$ et f_R ne s'annule pas. D'après le lemme 2.8 $\log |f_R|$ est harmonique dans $D\left(0,\frac{1}{R}\right)$. D'après le théorème 1.14, pour $z = re^{i\theta} \in \mathbb{D}$, on a

$$\log|f_R(z)| = \frac{1}{2\pi} \int_0^{2\pi} \log|f_R(e^{it})| P_r(\theta - t) dt.$$

Puisque $\log = \log^+ - \log^-$, on a donc :

$$\log|f_R(z)| = \frac{1}{2\pi} \int_0^{2\pi} \log^+ \left| f_R\left(e^{it}\right) \right| P_r(\theta - t) dt - \frac{1}{2\pi} \int_0^{2\pi} \log^- \left| f_R\left(e^{it}\right) \right| P_r(\theta - t) dt$$

D'une part, notons que pour u, v > 0, on a $\left| \log^+ u - \log^+ v \right| \le |u - v|$. Par conséquent on obtient :

$$\left| P\left(\log^{+} |f_{R}| \right) \left(re^{i\theta} \right) - P\left(\log^{+} |f^{*}| \right) \left(re^{i\theta} \right) \right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} P_{r}(\theta - t) \left| \left| f_{R} \left(e^{it} \right) \right| - \left| f^{*} \left(e^{it} \right) \right| \right| dt
\leq \frac{1}{2\pi} \int_{0}^{2\pi} P_{r}(\theta - t) \left| f_{R} \left(e^{it} \right) - f^{*} \left(e^{it} \right) \right| dt
\leq \frac{1 + r}{1 - r} \|f_{R} - f^{*}\|_{1}.$$

D'après le corollaire 3.20, $\lim_{R\to 1^-} \|f_R - f^*\|_1 = 0$. Ainsi,

$$\lim_{R \to 1^{-}} P\left(\log^{+}|f_{R}|\right) \left(re^{i\theta}\right) = P\left(\log^{+}|f^{*}|\right) \left(re^{i\theta}\right). \tag{*}$$

D'autre part on a

$$\frac{1}{2\pi} \int_{0}^{2\pi} P_r(\theta - t) \log^{-} \left| f^* \left(e^{it} \right) \right| dt = \frac{1}{2\pi} \int_{0}^{2\pi} \liminf_{R \to 1^{-}} \log^{-} \left| f_R \left(e^{it} \right) \right| dt$$

ainsi d'après le lemme de Fatou

$$\frac{1}{2\pi} \int_{0}^{2\pi} P_r(\theta - t) \log^{-} \left| f^*\left(e^{it}\right) \right| dt \le \liminf_{R \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} P_r(\theta - t) \log^{-} \left| f_R\left(e^{it}\right) \right| dt$$

c'est à dire

$$P\left(\log^{-}|f^{*}|\right)\left(re^{i\theta}\right) \leq \liminf_{R \to 1^{-}} P\left(\log^{-}|f_{R}|\right)\left(re^{i\theta}\right). \tag{**}$$

De plus

$$\lim_{R \to 1^{-}} P\left(\log |f_{R}|\right) \left(re^{i\theta}\right) = \lim_{R \to 1^{-}} \log \left|f_{R}\left(re^{i\theta}\right)\right| = \log \left|f\left(re^{i\theta}\right)\right|. \tag{***}$$

Or

$$\lim_{R \to 1^{-}} \inf P\left(\log |f_{R}|\right) \left(re^{i\theta}\right) = \lim_{R \to 1^{-}} \inf P\left(\log^{+} |f_{R}|\right) \left(re^{i\theta}\right) - \lim_{R \to 1^{-}} \inf P\left(\log^{-} |f_{R}|\right) \left(re^{i\theta}\right)$$

Enfin en utilisant (*), (**), (***) on obtient :

$$\log \left| f\left(re^{i\theta}\right) \right| \le P\left(\log^{+} \left| f^{*} \right|\right) \left(re^{i\theta}\right) - P\left(\log^{-} \left| f^{*} \right|\right) \left(re^{i\theta}\right) = P\left(\log \left| f^{*} \right|\right) \left(re^{i\theta}\right),$$

qui est l'inégalité voulu, ce qui permet de conclure que $U_f := \frac{f}{Q_f}$ est bien une fonction intérieure si $f \in H^1(\mathbb{D})$.

Puisque $|f(z)| \le |Q_f(z)|$ pour tout $z \in \mathbb{D}$, en particulier, pour z = 0, on obtient l'inégalité (3.2). Remarquons que si f(0) = 0, (3.2) est clairement vérifiée.

Supposons qu'on a l'égalité dans (3.2) alors $|f(0)| = |Q_f(0)|$, or $f(0) = U_f(0)Q_f(0)$, on a donc $U_f(0) = 1$ avec $||U_f||_{\infty} = 1$. D'après le principe du maximum, on a nécessairement $U_f = c$ avec |c| = 1, donc f est extérieur. La réciproque est immédiate. Ceci termine la démonstration dans le cas où p = 1.

Si $p \in]1, \infty]$ il n'y a rien à faire puisque $H^p(\mathbb{D}) \subset H^1(\mathbb{D})$ d'après le théorème 3.8.

Il reste à traiter le cas où $p \in]0,1[$. Prenons $f \in H^p(\mathbb{D})$, soit B le produit de Blaschke associé aux zéros de f. D'après le théorème 3.11 on a qu'il existe $h \in H^2(\mathbb{D})$ telle que

$$f = Bh^{\frac{2}{p}}$$

D'après ce qui précède, on peut écrire $h=U_hQ_h$ avec U_h fonction intérieure sans zéro dans $\mathbb D$ et Q_h extérieure. Or

$$Q_h^{2/p}(z) = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \frac{2}{p} \log \left| h^*(e^{it}) \right| dt} = e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \left| h^*(e^{it})^{2/p} \right| dt}$$

avec $\left|h^*\left(e^{it}\right)^{2/p}\right| = \left|f^*\left(e^{it}\right)\right|$ m-presque partout, $Q_h^{2/p}$ est le facteur extérieur de f. De plus il est clair que $U_f^{2/p}$ est bien une fonction intérieure (singulière). Ainsi, si $f \in H^p(\mathbb{D})$ f se décompose comme le produit d'une fonction intérieure et d'une fonction extérieure.

L'inégalité (3.2) est conséquence de la factorisation que nous venons d'établir. Le cas d'égalité s'obtient de manière analogue à ce qu'il précède.

Définition 3.24. Les fonctions Q_f et U_f sont respectivement appelées facteur extérieure et facteur intérieure de f.

Remarque. Le facteur U_f tient compte des zéros de f dans \mathbb{D} et du comportement de f^* sur \mathbb{T} tandis que le facteur Q_f ne dépend que des valeurs de $|f^*|$ sur \mathbb{T} .

4 Sous espace invariant du shift

4.1 Le shift sur ℓ^2

Définition 4.1. Soit T l'application linéaire de ℓ^2 dans ℓ^2 définie par

$$T\left((a_n)_{n\geq 0}\right):=(a_{n-1})_{n\geq 0}$$
 avec la convention $a_{-1}=0.$

T est appelée shift sur ℓ^2 .

Proposition 4.2. Soit T le shift sur ℓ^2 . T est un opérateur de ℓ^2 isométrique. Par conséquent ||T|| = 1.

De plus $\sigma_n(T) = \emptyset$ et $\sigma(T) = \overline{\mathbb{D}}$.

Démonstration. Soit $a = (a_n)_{n>0} \in \ell^2$, puisque

$$T(a) = (0, a_0, a_1, a_2, \cdots),$$

il est clair que $||T(a)||_2 = ||a||_2$ ce qui prouve bien que T est une isométrie.

Pour déterminer $\sigma_p(T)$, on cherche à résoudre

$$Ta = \lambda a$$

avec $\lambda \in \mathbb{C}$ et $a=(a_n)_{n>0} \in \ell^2, \ a \neq 0$. Puisque $Ta=(0,a_0,a_1,a_2,\cdots)$ on a donc

$$0 = \lambda a_1, \ a_0 = \lambda a_1, \ a_1 = \lambda a_2, \cdots$$

En étudiant séparément le cas $\lambda=0$ et $\lambda\neq 0$, on obtient $a_n=0, n\geq 0$, ce qui implique $\sigma_p(T)=\emptyset$. Ainsi pour tout $\lambda\in\mathbb{C},\ T-\lambda Id$ est injective. De ce fait $\lambda\in\mathbb{C}$ est un élément de $\sigma(T)$ si et seulement si $T-\lambda Id$ est non surjective. Soient $(e_n)_{n\geq 0}$ la base canonique de ℓ^2 . Il est clair que $T-\lambda Id$ est surjectif si et seulement si, pour tout $n\in\mathbb{N},\ e_n\in(T-\lambda Id)\ell^2$. Puisque toute suite appartenant à $T\ell^2$ a comme première coordonnée $0,\ e_0\notin T\ell^2$. ainsi T n'est pas surjectif et donc $0\in\sigma(T)$. Soit $\lambda\neq 0, |\lambda|\leq 1$. Alors $e_0\notin (T-\lambda Id)\ell^2$. En effet, soit $a=(a_n)_{n\geq 0}\in\ell^2$ tel que $(T-\lambda Id)a=e_0$. On a donc

$$-\lambda a_0 = 1, a_0 - \lambda a_1 = 0, a_1 - \lambda a_2 = 0, a_2 - \lambda a_3 = 0, \cdots$$

Ainsi $a_n = -\frac{1}{\lambda^{n+1}}$ pour tout $n \geq 0$ et puisque $|\lambda| \leq 1, \lambda \neq 0$, il est clair que $a \notin \ell^2$. Finalement $\overline{\mathbb{D}} \subset \sigma(T)$. Supposons à présent $|\lambda| > 1$. Nous allons montrer que dans ce cas $T - \lambda Id$ est surjectif. Pour cela, on fixe $n \in \mathbb{N}$ et on cherche $a = (a_n)_{n \geq 0} \in \ell^2$ tel que $(T - \lambda Id)a = e_n$. On a donc

$$-\lambda a_0 = 0, a_0 - \lambda a_1 = 0, \dots, a_{n-2} - \lambda a_{n-1} = 0, a_{n-1} - \lambda a_n = 1, a_n - \lambda a_{n+1} = 0, \dots$$

On a donc

$$\begin{cases} a_k = 0 \text{ pour } 0 \le k \le n - 1\\ a_k = -\frac{1}{\lambda^{k-n+1}} \text{ pour } k \ge n. \end{cases}$$

Or $|\lambda| > 1$ donc la suite a est de carré sommable. Finalement $\sigma(T) = \overline{\mathbb{D}}$.

Prenons $\mathcal{M} = \left\{ (a_n)_{n \geq 0} \in \ell^2 \mid a_0 = 0, a_1 = 0, \cdots, a_{n_0} = 0 \right\}$ pour $n_0 \in \mathbb{N}$ fixé, cet espace est invariant par le shift.

4.2 Le shift sur $H^2(\mathbb{D})$

Lemme 4.3. Soit

$$\varphi: \quad \begin{array}{ccc} \ell^2 & \longrightarrow & H^2(\mathbb{D}) \\ & (a_n)_{n \geq 0} & \longmapsto & \sum_{n > 0} a_n z^n \end{array}$$

Alors φ est un isomorphisme isométrique.

Démonstration. C'est une conséquence direct du théorème 3.19.

Introduisons l'opérateur du shift sur $H^2(\mathbb{D})$.

Lemme 4.4. L'application linéaire continue S de $H^2(\mathbb{D})$ dans lui-même définie par

$$S := \varphi \circ T \circ \varphi^{-1}$$

est l'isométrie de $H^2(\mathbb{D})$ telle que $Sf=\alpha f$ avec $\alpha(z)=z$ pour tout $z\in\mathbb{D}$. De plus $\sigma(S)=\overline{\mathbb{D}}$ et $\sigma_p(S)=\emptyset$.

Démonstration. Soit $f \in H^2(\mathbb{D})$ définie par $f(z) = \sum_{n\geq 0} a_n z^n$ avec $a = (a_n)_{n\geq 0} \in \ell^2$. On a donc $\varphi^{-1}(f) = a$ et $T \circ \varphi^{-1}(f) = (a_{n-1})_{n\geq 0}$ avec $a_{-1} = 0$. Finalement S(f) = g avec

$$g(z) = \sum_{n \ge 0} a_{n-1} z^n$$

$$= \sum_{n \ge 1} a_{n-1} z^n$$

$$= z \sum_{n \ge 1} a_{n-1} z^{n-1}$$

$$= z f(z).$$

On a que $S - \lambda Id = \varphi \circ (T - \lambda Id) \circ \varphi^{-1}$ avec φ et φ^{-1} inversibles, il est clair que $T - \lambda Id$ est inversible si et seulement si $S - \lambda Id$ est inversible. Ainsi en utilisant la proposition 4.2 on a

$$\sigma(S) = \sigma(T) = \overline{\mathbb{D}}.$$

D'autre part, on a

$$(S - \lambda Id)f = 0 \Leftrightarrow \varphi \circ (T - \lambda Id) \circ \varphi^{-1}f = 0 \Leftrightarrow (T - \lambda Id) \circ \varphi^{-1}f = 0,$$

l'injectivité de $T - \lambda Id$ et le fait que φ^{-1} soit injective, nous garantit que $S - \lambda Id$ est injective et donc $\sigma_p(T) = \emptyset$.

Lemme 4.5. $Lat(T) = \{ \varphi^{-1}(\mathcal{M}) \mid \mathcal{M} \in Lat(S) \}.$

Démonstration. φ^{-1} est une application linéaire isométrique, si \mathcal{M} est un sous-espace vectoriel fermé, il en est de même pour $\varphi^{-1}(\mathcal{M})$. De plus, si $\mathcal{M} \in \text{Lat}(S)$, on a $(\varphi \circ T \circ \varphi^{-1})(\mathcal{M}) \subset \mathcal{M}$ et donc $T(\varphi^{-1}(\mathcal{M})) \subset \varphi^{-1}(\mathcal{M})$. Par conséquent nous avons $\{\varphi^{-1}(\mathcal{M}) : \mathcal{M} \in \text{Lat}(S)\} \subset \text{Lat}(T)$.

D'autre part, si $\mathcal{N} \in \text{Lat}(T)$, posons $\mathcal{M} = \varphi(\mathcal{N})$. On remarque que

$$S(\mathcal{M}) = (\varphi \circ T \circ \varphi^{-1}) (\mathcal{M}) = (\varphi \circ T)(\mathcal{N}) \subset \varphi(\mathcal{N}) = \mathcal{M}$$

Par conséquent tout élément $\mathcal{N} \in \text{Lat}(T)$ est de la forme $\varphi^{-1}(\mathcal{M})$ où $\mathcal{M} \in \text{Lat}(S)$. Ainsi nous avons $\text{Lat}(T) = \{\varphi^{-1}(\mathcal{M}) : \mathcal{M} \in \text{Lat}(S)\}$.

4.3 Description des sous espaces invariants du shift sur $H^2(\mathbb{D})$

D'après le lemme 4.5, si nous connaissons Lat(S) alors nous connaîtrons Lat(T). Le but de cette partie est alors de décrire Lat(S).

Lemme 4.6. Soit Φ une fonction intérieure. Alors $\Phi H^2(\mathbb{D}) := \{\Phi f : f \in H^2(\mathbb{D})\}$ est un élément de Lat(S).

Démonstration. $\Phi H^2(\mathbb{D})$ est un sous-espace vectoriel de $H^2(\mathbb{D})$.

Montrons que $\Phi H^2(\mathbb{D})$ est fermé dans $H^2(\mathbb{D})$. Remarquons que $\Phi H^2(\mathbb{D})$ est l'image de $H^2(\mathbb{D})$ par l'opérateur M_{Φ} défini par $M_{\Phi}(f) = \phi f$ pour $f \in H^2(\mathbb{D})$. Puisque

$$\|\Phi f\|_{H^2(\mathbb{D})} = \|\Phi^* f^*\|_{L^2(\mathbb{T})} = \|f^*\|_{L^2(\mathbb{T})} = \|f\|_{H^2(\mathbb{D})}$$

on a que M_{Φ} est une isométrie et donc son image est fermée dans $H^2(\mathbb{D})$ (car $H^2(\mathbb{D})$) est complet et M_{ϕ} est une isométrie donc $M_{\phi}(H^2(\mathbb{D}))$ est complet donc fermé). Ainsi $\Phi H^2(\mathbb{D})$ est bien un sous espace vectoriel fermé dans $H^2(\mathbb{D})$.

Remarquons qu'avec le lemme 4.4 on a

$$S\left(\Phi H^2(\mathbb{D})\right) = \left\{\alpha \Phi f : f \in H^2(\mathbb{D})\right\} \subset \left\{\Phi g : f \in H^2(\mathbb{D})\right\} = \Phi H^2(\mathbb{D})$$

car si $f \in H^2(\mathbb{D})$ alors $\alpha f \in H^2(\mathbb{D})$, en effet

$$\|\alpha f\|_{H^2(\mathbb{D})} = \|\alpha^* f^*\|_{L^2(\mathbb{T})} = \|f^*\|_{L^2(\mathbb{T})} = \|f\|_{H^2(\mathbb{D})}.$$

Finalement $\Phi H^2(\mathbb{D}) := \{\Phi f : f \in H^2(\mathbb{D})\} \in \text{Lat}(S) \text{ lorsque } \Phi \text{ est une fonction intérieure.}$

Le prochain lemme énonce qu'il y a unicité (à constante multiplicative près de module 1) de la "représentation" de tout élément de Lat(S) de la forme $\Phi H^2(\mathbb{D})$ où Φ est une fonction intérieure.

Lemme 4.7. Soient Φ_1 et Φ_2 deux fonctions intérieures telles que $\Phi_1 H^2(\mathbb{D}) = \Phi_2 H^2(\mathbb{D})$. Alors il existe $c \in \mathbb{T}$ tel que $\Phi_1 = c\Phi_2$.

Démonstration. D'après le théorème 3.13, il existe $c_1, c_2 \in \mathbb{T}$, B_1 et B_2 deux produits de Blaschke associés à deux suites $\left(\alpha_n^1\right)_{n\geq 0}$ et $\left(\alpha_n^2\right)_{n\geq 0}$ de \mathbb{D} (vérifiant $\sum_{n\geq 0} 1-\left|\alpha_n^i\right|<\infty$ pour $i\in\{1,2\}$) et deux mesures μ_1,μ_2 positives et singulières par rapport à la mesure de Lebesgue tels que

$$\Phi_i(z) = c_i B_i(z) S_{\mu_i}(z) \text{ avec } S_{\mu_i}(z) = e^{-\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu_i(t)} \text{ pour } i \in \{1, 2\}.$$

Les fonctions intérieures singulières S_{μ_1} et S_{μ_2} ne s'annulent pas sur \mathbb{D} . L'égalité $\Phi_1 H^2(\mathbb{D}) = \Phi_2 H^2(\mathbb{D})$ implique qu'il existe $f_1, f_2 \in H^2(\mathbb{D})$ telles que

$$c_1B_1S_{\mu_1}f_1=c_2B_2S_{\mu_2}$$
 et $c_1B_1S_{\mu_1}=c_2B_2S_{\mu_2}f_2$

En particulier $B_1(z) = 0$ implique $B_2(z) = 0$ et réciproquement. De ce fait B_1 et B_2 ont la même suite de zéros avec même multiplicité ainsi $B_1 = B_2$. On a donc

$$c_1 S_{\mu_1} f_1 = c_2 S_{\mu_2} \text{ et } c_1 S_{\mu_1} = c_2 S_{\mu_2} f_2$$
 (*)

Puisque S_{μ_1} et S_{μ_2} sont des fonctions intérieures, $\left|f_i^*\left(e^{it}\right)\right|=1$ m-presque partout pour $i\in\{1,2\}$. Or $f_i\in H^2(\mathbb{D})$ pour $i\in\{1,2\}$, d'après le théorème 3.19, pour $z=re^{i\theta}\in\mathbb{D}$, on a :

$$f_i\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f_i^*\left(e^{it}\right) dt.$$

Par conséquent $|f_i(z)| \leq 1$ pour $z \in \mathbb{D}$ et $i \in \{1, 2\}$. On déduit de (*) que

$$|S_{\mu_1}(z)| \le |S_{\mu_2}(z)|$$
 et $|S_{\mu_2}(z)| \le |S_{\mu_1}(z)|$

pour $z \in \mathbb{D}$. Ainsi

$$|S_{\mu_1}(z)| = |S_{\mu_2}(z)|$$

pour $z \in \mathbb{D}$. La fonction $\frac{S_{\mu_1}}{S_{\mu_2}}$ étant holomorphe sur l'ouvert simplement connexe \mathbb{D} et ne s'annulant pas, d'après le théorème 2.1, il existe $\ell \in \mathcal{H}ol(\mathbb{D})$ tel que $\frac{S_{\mu_1}}{S_{\mu_2}} = e^{\ell}$ sur \mathbb{D} . En particulier on obtient

$$\operatorname{Re}(l(z)) = \log \left| \frac{S_{\mu_1}(z)}{S_{\mu_2}(z)} \right|$$

Or S_{μ_1} et S_{μ_2} sont des fonctions intérieurs donc de module 1, on en déduit que

$$Re(l(z)) = \log \left| \frac{S_{\mu_1}(z)}{S_{\mu_2}(z)} \right| = 0$$

pour tout $z \in \mathbb{D}$. Ainsi d'après le lemme 1.20 il existe λ tel que

$$\operatorname{Im}\left(\ell\left(z\right)\right)=i\lambda.$$

Ainsi en séparant la partie réelle et imaginaire de ℓ on obtient

$$\frac{S_{\mu_1}(z)}{S_{\mu_2}(z)} = e^{i\lambda}$$

ce qui donne $S_{\mu_1} = e^{i\lambda} S_{\mu_2}$ et donc il existe $c \in \mathbb{T}$ tel que $\Phi_1 = c\Phi_2$.

Théorème 4.8. Soit $p \in]0,\infty]$ prenons $f \in H^p(\mathbb{D})$ non identiquement nulle alors $f^*\left(e^{it}\right) \neq 0$ m-presque partout.

De plus, si $f, g \in H^p(\mathbb{D})$ sont telles que $f^*(e^{it}) = g^*(e^{it})$ sur un sous-ensemble de \mathbb{T} de mesure de Lebesgue strictement positive, nécessairement f = g.

Démonstration. Si $f^*(e^{it}) = 0$ sur un ensemble de mesure positive alors on a $\log |f^*(e^{it})| = -\infty$ ce qui contredit le fait que $\log |f^*| \in L^1(\mathbb{T})$. En appliquant la contraposé de ce qu'on vient de montrer a $f - g \in H^p(\mathbb{D})$ on a le résultat.

Le prochain résultat énonce que tous les éléments de Lat(S) différents de $\{0\}$ sont de la forme $\Phi H^2(\mathbb{D})$ où Φ est une fonction intérieure. Ce qui achèvera la description des sous espaces invariants du shift.

Théorème 4.9. (Beurling [5]) Soit $\mathcal{M} \neq \{0\}$ un élément de Lat (S). Alors il existe une fonction intérieure Φ (unique à une constante de module 1 près) tel que $\mathcal{M} = \Phi H^2(\mathbb{D})$.

Démonstration. L'unicité à une constante de module 1 près résulte du lemme 4.7 Soit $\mathcal{M} \neq \{0\}$ un élément de $\mathrm{Lat}(S)$ et posons

$$p := \inf\{k \ge 0 \mid \exists f \in \mathcal{M} \text{ avec } 0 \text{ qui est zéro d'ordre } k \text{ de } f\}$$

Soit $f \in \mathcal{M}$ de la forme $f(z) = \sum_{n \geq p} c_n z^n$ avec $c_p \neq 0$. Alors $f \notin S(\mathcal{M})$ en effet, par définition de p on a :

$$S(\mathcal{M}) \subset \left\{g \in H^2(\mathbb{D}) \mid 0 \text{ zéro d'ordre au moins } p+1 \text{ de } g\right\},$$

et $f \notin \{g \in H^2(\mathbb{D}) \mid 0 \text{ zéro d'ordre au moins } p+1 \text{ de } g\}$. D'après le lemme 4.4, S est une isométrie (donc bijective sur son image), on a que \mathcal{M} un sous-espace vectoriel fermé de $H^2(\mathbb{D})$ ainsi $S(\mathcal{M})$ est un sous-espace vectoriel fermé de $H^2(\mathbb{D})$. On a donc

$$\mathcal{M} = S(\mathcal{M}) \oplus \left(S(\mathcal{M})^{\perp} \cap \mathcal{M}\right).$$

On sait que $S(\mathcal{M})^{\perp} \cap \mathcal{M} \neq \{0\}$ en effet, d'après ce qu'il précède il existe $f \in \mathcal{M} \setminus S(\mathcal{M})$ donc $\mathcal{M} \neq S(\mathcal{M})$ et donc $S(\mathcal{M})^{\perp} \cap \mathcal{M} \neq \{0\}$. De ce fait prenons $g \in \mathcal{M} \cap S(\mathcal{M})^{\perp}$, g non identiquement nulle, et posons

$$\Phi := \frac{g}{\|q\|_2}.$$

Montrons que Φ est une fonction intérieur. Puisque $\mathcal{M} \in \mathrm{Lat}(S)$ et $\Phi \in \mathcal{M}$, on a

$$S(\Phi) \in S(\mathcal{M}) \subset \mathcal{M}$$

d'où

$$S^2(\Phi) \in S(\mathcal{M}) \subset \mathcal{M}$$

de proche en proche on déduit que pour tout entier $n \ge 1$

$$S^n(\Phi) \in S(\mathcal{M}).$$

Ainsi $\langle \Phi, S^n(\Phi) \rangle = 0$ pour tout $n \geq 1$ puisque par construction $\Phi \in S(\mathcal{M})^{\perp}$. Ainsi nous avons :

$$\frac{1}{2\pi} \int_{0}^{2\pi} \Phi^* \left(e^{it} \right) \overline{e^{int} \Phi^* \left(e^{it} \right)} dt = 0, \ n \ge 1.$$

En passant au conjugué on obtient

$$\frac{1}{2\pi} \int_0^{2\pi} \overline{\Phi^*(e^{it})} e^{int} \Phi^*(e^{it}) dt = 0, \ n \le -1.$$

Ainsi

$$\frac{1}{2\pi}\int_0^{2\pi}\overline{\Phi^*\left(e^{it}\right)}e^{int}\Phi^*\left(e^{it}\right)dt=0, \text{ pour } n\in\mathbb{Z}\backslash\{0\},$$

donc

$$\int_{0}^{2\pi} \left| \Phi^* \left(e^{it} \right) \right|^2 e^{int} dt = 0, n \in \mathbb{Z} \backslash \{0\}.$$

Posons $u\left(e^{it}\right):=\left|\Phi^*\left(e^{it}\right)\right|^2$. Puisque $\Phi\in H^2(\mathbb{D}), \Phi^*\in L^2(\mathbb{T})$ et donc $u\in L^1(\mathbb{T})$ et $\widehat{u}(n)=0$ pour $n\in\mathbb{Z}\setminus\{0\}$ d'après ce qu'il précède. De plus

$$\widehat{u}(0) = \frac{1}{2\pi} \int_0^{2\pi} \left| \varphi^* \left(e^{it} \right) \right|^2 dt = \| \Phi \|_2^2 = 1$$

Remarquons que tous les coefficients de Fourier de f coïncident avec ceux de la fonction constante égale à 1, de plus la transformée de Fourier \mathcal{F} sur $L^1(\mathbb{T})$ est injective et que $u\left(e^{it}\right)=1$ m-presque partout on a donc

$$|\Phi^*(e^{it})| = 1 m - \text{presque partout.}$$

Puisque $\Phi \in H^2(\mathbb{D})$, d'après le l'assertion 2. du théorème 3.19, pour $z=re^{i\theta}\in\mathbb{D}$, on a :

$$\Phi\left(re^{i\theta}\right) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) \Phi^*\left(e^{it}\right) dt$$

En utilisant la proposition 1.12 on a $|\Phi(z)| \le 1$ pour $z \in \mathbb{D}$ et donc $\Phi \in H^{\infty}(\mathbb{D})$. Finalement Φ est une fonction intérieure.

Désormais, montrons que $\mathcal{M} = \Phi H^2(\mathbb{D})$. Commençons par montrer que $\Phi H^2(\mathbb{D}) \subset \mathcal{M}$. Puisque $\Phi \in \mathcal{M}$ et $\mathcal{M} \in \operatorname{Lat}(S)$, on a d'après le lemme 4.4 $S^n(\Phi) = \alpha^n \Phi \in \mathcal{M}$ où $\alpha : z \mapsto z$ pour $z \in \mathbb{D}$ pour tout $n \in \mathbb{N}$. On sait que \mathcal{M} est un sous-espace vectoriel de $H^2(\mathbb{D})$, donc $P(\alpha)\Phi \in \mathcal{M}$ pour tout polynôme $P \in \mathbb{C}[X]$. Soit $f \in H^2(\mathbb{D})$ d'après le théorème 3.19, il existe une suite $(a_n)_{n \geq 0}$ de \mathbb{C} telle que

$$\sum_{n\geq 0} \left|a_n\right|^2 < \infty \text{ et } f(z) = \sum_{n\geq 0} a_n z^n \text{ si } z \in \mathbb{D}.$$

Pour $k \in \mathbb{N}$, posons $P_k(z) = \sum_{n=0}^k a_n z^n$. On a $||f - P_k(\alpha)||_2^2 = \sum_{n > k+1} |a_n|^2$, ce qui implique

 $\lim_{k\to\infty} \|f-P_k(\alpha)\|_2 = 0$ puisque $\sum_{n\geq 0} |a_n|^2 < \infty$. Or Φ est intérieure donc

$$\|\Phi f - \Phi P_k(\alpha)\|_{H^2(\mathbb{D})} = \|\Phi^* (f^* - P_k(\alpha)^*)\|_{L^2(\mathbb{T})} = \|f^* - P_k(\alpha)^*\|_{L^2(\mathbb{T})} = \|f - P_k(\alpha)\|_{H^2(\mathbb{D})}.$$

Par conséquent $\lim_{k\to\infty} \|\Phi f - \Phi P_k(\alpha)\|_2 = 0$ avec $\Phi P_k(\alpha) \in \mathcal{M}$ pour tout entier k. Puisque \mathcal{M} est fermé dans $H^2(\mathbb{D})$, $\Phi f \in \mathcal{M}$ pour tout $f \in H^2(\mathbb{D})$. On a donc montré que $\Phi H^2(\mathbb{D}) \subset \mathcal{M}$.

Montrons que $\mathcal{M} \subset \Phi H^2(\mathbb{D})$, pour cela montrons que $\mathcal{M} \cap H^2(\mathbb{D}) = \{0\}$. Soit $v \in \mathcal{M}$ tel que which are set of the contractions que $V \perp \Phi H^2(\mathbb{D})$. Remarquons que $v \perp \Phi H^2(\mathbb{D})$ implique que $\langle v, \Phi \alpha^n \rangle = 0$ pour tout $n \geq 0$ car toute $f \in H^2(\mathbb{D})$ peut s'écrire pour $z \in \mathbb{D}$, $f(z) = \sum_{n \geq 0} a_n z^n$ où $\sum_{n \geq 0} |a_n|^2 < \infty$. D'autre part, puisque $\Phi \perp S(\mathcal{M})$, on a $\langle \Phi, S^n(v) \rangle = 0$ pour tout $n \geq 1$ d'après ce qu'il précède. Ainsi :

$$\begin{cases} \frac{1}{2\pi} \int_0^{2\pi} v^* \left(e^{it} \right) \overline{\Phi^* \left(e^{it} \right)} e^{-int} dt & n \ge 0 \\ \frac{1}{2\pi} \int_0^{2\pi} v^* \left(e^{it} \right) \overline{\Phi^* \left(e^{it} \right)} e^{int} dt & n \ge 1 \end{cases}$$

Puisque $v \in H^2(\mathbb{D})$ d'après la proposition 3.19 on a que $v^* \in L^2(\mathbb{T}) \subset L^1(\mathbb{T})$. De plus, Φ est intérieure, nous avons donc

$$\left|v^{*}\left(e^{it}\right)\overline{\Phi^{*}\left(e^{it}\right)}\right|=\left|v^{*}\left(e^{it}\right)\right|m-\text{presque partout}.$$

Finalement la fonction $v^*\overline{\Phi^*}$ appartient à $L^1(\mathbb{T})$ et tous ses coefficients de Fourier sont nuls. L'injectivité de la transformée de Fourier \mathcal{F} donne que $v^*\overline{\Phi^*}=0$. Puisque $|\Phi^*(e^{it})|=1$ m-presque partout, on a $v^* = 0$ et par ainsi d'après le théorème 4.8 v = 0.

5 Théorème de Littlewood

Définition 5.1. Soient $b \in H^{\infty}(\mathbb{D})$ et $f \in H^2(\mathbb{D})$, on definit *l'opérateur de multiplication* par b, M_b par

$$M_b f = b f$$
.

Proposition 5.2. Soient $b \in H^{\infty}(\mathbb{D})$ et $f \in H^2(\mathbb{D})$,

- 1. $bf \in H^2(\mathbb{D})$.
- 2. $||bf||_2 \le ||b||_\infty ||f||_2$.
- 3. $||M_b|| \leq ||b||_{\infty}$..

Démonstration.

- 1. Cela vient du fait que $H(\Omega)^{\infty}(\mathbb{D}) \subset H^2(\mathbb{D})$ (théorème 3.8).
- 2. Direct.
- 3. Se déduit directement du point précédent.

Définition 5.3. Soit φ une fonction holomorphe de \mathbb{D} dans \mathbb{D} avec $\varphi(0) = 0$. On définit l'opérateur de composition par

$$\begin{array}{cccc} C_\varphi: & H^2(\mathbb{D}) & \longrightarrow & H^2(\mathbb{D}) \\ & f & \longmapsto & f \circ \varphi \end{array}.$$

Théorème 5.4. (Principe de subordination de Littlewood) Supposons que φ soit une application holomorphe de \mathbb{D} dans \mathbb{D} , telle que $\varphi(0) = 0$. Alors pour tout $f \in H^2(\mathbb{D})$,

$$C_{\varphi}f \in H^2(\mathbb{D}) \text{ et } \|C_{\varphi}f\|_2 \le \|f\|_2.$$

Démonstration. Soit $f \in H^2(\mathbb{D})$, d'après le théorème 3.19 on peut écrire f de la manière suivante

$$f(z) = \sum_{n=0}^{\infty} \widehat{f}^*(n) z^n \text{ pour } z \in \mathbb{D}.$$

Considérons le shift inverse (backward shift) B, défini sur $H^2(\mathbb{D})$ par

$$Bf(z) = \sum_{n=0}^{\infty} \widehat{f^*}(n+1)z^n.$$

Remarquons que pour toute f holomorphe sur $\mathbb D$ on a :

$$f(z) = \widehat{f^*}(0) + zBf(z) \quad (z \in \mathbb{D}), \tag{*}$$

$$\widehat{B^n f^*}(0) = \widehat{f^*}(n) \text{ pour } n \in \mathbb{N}.$$
 (**)

Commençons par supposer que f est un polynôme. On a que $f \circ \varphi$ est borné sur $\mathbb D$ donc $f \circ \varphi \in H^{\infty}(\mathbb D)$ qui est inclus dans H^2 d'après le théorème 3.8.

Pour l'estimation de la norme de $f \circ \varphi$, utilisons (*), on a pour $z \in \mathbb{D}$

$$f(\varphi(z)) = f(0) + \varphi(z)(Bf)(\varphi(z))$$

c'est à dire

$$C_{\varphi}f = \widehat{f^*}(0) + M_{\varphi}C_{\varphi}Bf.$$

L'hypothèse $\varphi(0) = 0$ implique que tous les termes de la série entière de φ ont en facteur commun z, et donc qu'il en est de même pour le second terme de l'égalité précédente, le rendant ainsi orthogonal dans $H^2(\mathbb{D})$ à la fonction constante f(0). Ainsi, nous obtenons :

$$||C_{\varphi}f||_{2}^{2} = |\widehat{f}^{*}(0)|^{2} + ||M_{\varphi}C_{\varphi}Bf||_{2}^{2} \le |\widehat{f}^{*}(0)|^{2} + ||C_{\varphi}Bf||_{2}^{2},$$

où la dernière inégalité découle de l'assertion 3. de la proposition 5.2. Nous substituons ensuite successivement Bf, B^2f, \cdots à f dans l'égalité précédente, ce qui donne en utilisant (**):

$$||C_{\varphi}Bf||_{2}^{2} \leq |\widehat{f^{*}}(0)|^{2} + ||C_{\varphi}B^{2}f||_{2}^{2},$$

$$||C_{\varphi}B^{2}f||_{2}^{2} \leq |\widehat{f^{*}}(1)|^{2} + ||C_{\varphi}B^{3}f||_{2}^{2},$$

$$\vdots$$

$$||C_{\varphi}B^{n}f||_{2}^{2} \leq |\widehat{f^{*}}(n)|^{2} + ||C_{\varphi}B^{n+1}f||_{2}^{2}$$

En regroupant toutes ces inégalités, nous obtenons

$$||C_{\varphi}f||^2 \le \sum_{k=0}^n |\widehat{f^*}(k)|^2 + ||C_{\varphi}B^{n+1}f||^2$$

pour tout entier $n \ge 0$. Rappelons nous que f est un polynôme. Si nous choisissons n comme étant le degré de f, alors $B^{n+1}f = 0$, ce qui réduit la dernière inégalité à

$$||C_{\varphi}f||^{2} \leq \sum_{k=0}^{n} |\widehat{f}^{*}(k)|^{2}$$
$$= ||f||_{2}^{2},$$

Cela montre que C_{φ} est une contraction pour la norme $H^2(\mathbb{D})$ sur l'espace vectoriel des polynômes. Pour conclure, supposons que $f \in H^2$ n'est pas un polynôme. Soit f_n la somme partielle d'ordre n de son développement en série entière. Alors $f_n \to f$ en norme H^2 , donc d'après le corollaire 3.22, (f_n) converge uniformément sur tout compact vers f, d'où $(f_n \circ \varphi)$ converge uniformément sur tout compact vers $f \circ \varphi$. On a que

$$||f_n||_2 \leq ||f||_2$$

et nous venons de montrer que $||f_n \circ \varphi|| \le ||f_n||$. Ainsi, pour tout 0 < r < 1 fixé, nous avons en utilisant la convergence uniforme sur tout compact de $(f_n \circ \varphi)$ et la proposition 3.6

$$M_{2}(f \circ \varphi, r) = \lim_{n \to \infty} M_{2}(f_{n} \circ \varphi, r)$$

$$\leq \lim \sup_{n \to \infty} \|f_{n} \circ \varphi\|_{2}$$

$$\leq \lim \sup_{n \to \infty} \|f_{n}\|_{2}$$

$$\leq \|f\|_{2}.$$

Pour conclure la démonstration, nous faisons tendre r vers 1.

Pour prouver que C_{φ} est borné même lorsque φ ne fixe pas l'origine, nous allons utiliser une transformation conforme pour déplacer les points de \mathbb{D} là où nous le souhaitons. Pour tout point $p \in \mathbb{D}$, notons α_p la transformation homographique suivante

$$\alpha_p(z) = \frac{p-z}{1-\bar{p}z},$$

On peut vérifier que cette application envoie $\mathbb D$ sur lui-même, que $\alpha_p(p)=0$ et que $\alpha_p^{-1}=\alpha_p$. Posons $p:=\varphi(0)$. Alors la fonction holomorphe $\psi=\alpha_p\circ\varphi$ envoie $\mathbb D$ dans lui-même et $\psi(0)=\alpha_{\varphi(0)}\left(\varphi(0)\right)=0$. Puisque $\alpha_p^{-1}=\alpha_p$, nous avons $\varphi=\alpha_p\circ\psi$, ce qui se traduit par l'équation

$$C_{\varphi} = C_{\psi} C_{\alpha_p}.$$

Lemme 5.5. Pour $p \in \mathbb{D}$, l'opérateur C_{α_p} est borné sur $H^2(\mathbb{D})$. De plus,

$$\left\|C_{\alpha_p}\right\|_2 \le \left(\frac{1+|p|}{1-|p|}\right)^{\frac{1}{2}}.$$

Démonstration. Supposons d'abord que f soit holomorphe dans un voisinage de $\bar{\mathbb{D}}$, disons dans D(0,R) pour un certain R>1. On peut alors effectuer une interversion limite intégrale dans l'expression de $\|.\|_2$ de f:

$$||f||_{2}^{2} = \lim_{r \to 1^{-}} M_{2}(f, r)$$

$$= \lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{2} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(e^{i\theta})|^{2} d\theta$$

Enfin remarquons que

$$\begin{aligned} \|f \circ \alpha_p\|^2 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(\alpha_p\left(e^{i\theta}\right)\right) \right|^2 d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(e^{it}\right) \right|^2 \left| \alpha_p'\left(e^{it}\right) \right| dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(e^{it}\right) \right|^2 \frac{1 - |p|^2}{|1 - \bar{p}e^{it}|^2} dt \\ &\leq \frac{1 - |p|^2}{(1 - |p|)^2} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(e^{it}\right) \right|^2 dt \right) \\ &= \frac{1 + |p|}{1 - |p|} \|f\|^2. \end{aligned}$$

Ainsi, l'inégalité souhaitée est valable pour toutes les fonctions holomorphes dans D(0, R); en particulier, elle est vraie pour les polynômes, ainsi pour généraliser le résultat sur $H^2(\mathbb{D})$, il suffit de répéter l'argument que nous avons utilisé pour terminer la démonstration du théorème de subordination de Littlewood (théorème 5.4).

Théorème 5.6. (Littlewood) Supposons que φ soit une application holomorphe de \mathbb{D} dans \mathbb{D} . Alors, l'opérateur de composition C_{φ} est un opérateur borné sur $H^2(\mathbb{D})$, et

$$\|C_{\varphi}\|_{2} \le \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}.$$

Démonstration. Comme mentionné précédemment, nous avons

$$C_{\varphi} = C_{\psi} C_{\alpha_p},$$

où $p = \varphi(0)$ et ψ fixe l'origine. Le lemme 5.5 et le principe de subordination de Littlewood (théorème 5.4) montrent que les deux opérateurs à droite sont bornés sur $H^2(\mathbb{D})$, donc C_{φ} est le produit d'opérateurs bornés sur $H^2(\mathbb{D})$, et est donc lui-même borné. De plus,

$$\|C_{\varphi}\|_{2} \leq \|C_{\psi}\|_{2} \|C_{\alpha_{p}}\|_{2} \leq \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}$$

où la dernière inégalité découle du lemme 5.5 et du fait que C_{ψ} est une contraction (théorème 5.4).

6 Le théorème de Müntz-Szasz

Dans toutes cette partie I = [0, 1], pour $\lambda \in \mathbb{R}$ nous noterons (grossièrement) t^{λ} l'application $t \in I \mapsto t^{\lambda}$.

D'après le théorème de Weierstrass

$$\operatorname{vect}\left\{1, t, t^2, t^3, \ldots\right\}$$

est dense dans C(I). Cela emmène à se poser la question, pour quels $0 < \lambda_1 < \lambda_2 < \lambda_3 < \dots$ réels, l'ensemble

$$\operatorname{vect}\left\{1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, \ldots\right\}$$

est dense dans C(I)? Le théorème suivant apporte une réponse à cette question.

Théorème 6.1. (Müntz-Szasz) Soient $0 < \lambda_1 < \lambda_2 < \dots$ et posons

$$X := \overline{\operatorname{vect}_{C(I)}} \left\{ 1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, \dots \right\}.$$

1. Si
$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$$
, on a $X = C(I)$.

2. Si
$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$$
, alors $X \neq C(I)$ (X ne contient pas la fonction t^{λ} où $\lambda \neq \lambda_n, n \in \mathbb{N}$).

Avant de voir la preuve de ce théorème, énonçons un lemme.

Lemme 6.2. Soient $0 < \lambda_1 < \lambda_2 \cdots$ des réels. Si $\Sigma \frac{1}{\lambda_n} = \infty$ et si μ est une mesure de Borel complexe sur I telle que

$$\int_I t^{\lambda_n} d\mu(t) = 0, \ n \in \mathbb{N}^*$$

alors

$$\int_I t^k d\mu(t) = 0, \; n \in \mathbb{N}^*.$$

Démonstration. Par hypothèse remarquons que la nullité en 0 des fonctions à intégrer dans nos deux intégrales nous permet de supposer que μ est portée par]0,1].

Commençons par poser pour $z \in \mathbb{C}$ tel que $\operatorname{Re} z \geq 0$

$$f(z) = \int_{I} t^{z} d\mu(t).$$

Par définition de f et par hypothèse on a pour tout $n \in \mathbb{N}^*$

$$f(\lambda_n) = 0.$$

De plus, f est holomorphe sur $\{z \in \mathbb{C} \mid \operatorname{Re} z \geq 0\}$, en effet :

- Pour tout $z \in \{z \in \mathbb{C} \mid \operatorname{Re} z \ge 0\}, t \mapsto t^z$ est mesurable.
- Pour tout $t \in]0,1]$ (car μ porté par [0,1]) on a pour tout $z \in \{z \in \mathbb{C} \mid \operatorname{Re} z \geq 0\}$,

$$|t^z| = \left| e^{\operatorname{Re}(z)\log(t)} \right| \le 1$$

car Re $z \ge 0$ et $\log t \le 0$.

Ainsi par théorème d'holomorphie sous le signe intégrale f est holomorphe sur $\{z \in \mathbb{C} \mid \operatorname{Re} z \geq 0\}$. Définissons pour $z \in \mathbb{D}$

$$g(z) = f\left(\frac{1+z}{1-z}\right)$$

La fonction $g \in H^{\infty}(\mathbb{D})$ et

$$g\left(\alpha_n\right) = 0,$$

où $\alpha_n = \frac{\lambda_n - 1}{\lambda_n + 1}$ pour tout $n \in \mathbb{N}^*$. Nous allons à présent montrer que g = 0 ce qui à fortiori montrera que f = 0 et ainsi le lemme sera démontré. Pour cela montrons que $\sum_{n \geq 1} 1 - |\alpha_n| = \infty$. Rappelons nous que $(\lambda_n)_{n \geq 1}$ est une

— Supposons qu'il existe un rang $N \in \mathbb{N}^*$ tel que pour tout $n \geq N$ on ait $\lambda_n \geq 1$. A partir de ce rang N on a

$$1 - |\alpha_n| = \frac{\lambda_n + 1 - \lambda_n - 1}{\lambda_n + 1} = \frac{2}{\lambda_n + 1}.$$

Or toujours à partir de ce rang N on a $\lambda_n + 1 \leq 2\lambda_n$, donc $\frac{1}{\lambda_n + 1} \geq \frac{1}{2\lambda_n}$, i.e.

$$\frac{2}{\lambda_n + 1} \ge \frac{1}{\lambda_n}.$$

Or $\sum_{n\geq N} \frac{1}{\lambda_n}$ diverge (car $\sum_{n\geq 1} \frac{1}{\lambda_n}$), donc $\sum_{n\geq N} 1 - |\alpha_n|$ diverge ainsi

$$\sum_{n\geq 1} 1 - |\alpha_n| = \infty.$$

— Supposons que pour tout $n \in \mathbb{N}^*$, on ait $\lambda_n < 1$. On a

$$1 - |\alpha_n| = \frac{\lambda_n + 1 - 1 + \lambda_n}{\lambda_n + 1} = \frac{2\lambda_n}{\lambda_n + 1}.$$

Or $2 > \lambda_n + 1$, donc $\frac{1}{\lambda_n} > \frac{\lambda_n + 1}{2\lambda_n}$ et donc

$$\lambda_n < \frac{2\lambda_n}{\lambda_n + 1} = 1 - |\alpha_n|.$$

Or, $(\lambda_n)_{n\geq 1}$ est croissante majorée et strictement positive donc converge vers une limite non nulle, donc $\sum_{n\geq 1} \lambda_n = \infty$ ainsi,

$$\sum_{n>1} 1 - |\alpha_n| = \infty.$$

Finalement la contraposé du corollaire 2.12 et la théorème 3.8 donnent que g=0, donc f=0 et ainsi pour tout $k \in \mathbb{N}^*$,

$$f(k) = 0$$

ce qui conclut la preuve de ce lemme.

Démonstration. Remarquons que d'après le théorème 7.2 de l'annexe, une fonction $\varphi \in C(I)$ n'appartient pas à X si et seulement s'il existe une forme linéaire continue sur C(I), ne s'annulant pas en φ , mais nulle sur tout X.

D'après le théorème de représentation de Riesz (théorème 7.23), toute forme linéaire continue sur C(I) s'obtient par intégration par rapport à une mesure de Borel complexe sur I. Ainsi le lemme et la première remarque 6.2 établissent que pour tout $k \geq 1$, t^k appartient à X et donc, puisque $1 \in X$ tous les polynômes appartiennent à X. Le théorème de Weierstrass permet alors de conclure X = C(I). Ce qui démontre 1.

Pour montrer 2. le but va être de construire une mesure de Borel complexe μ telle que pour $z \in \mathbb{C}$

$$f(z) = \int_{I} t^{z} d\mu(t)$$

est une fonction holomorphe sur $\{z \in \mathbb{C} \mid \operatorname{Re} z > -1\}$ et telle que f égale à 0 en $0, \lambda_1, \lambda_2, \ldots$ Remarquons qu'ici on prend $\operatorname{Re} z > -1$ mais on aurait pu prendre $\operatorname{Re} z$ strictement supérieur à n'importe quel réel négatif, ce qui aurait changer l'expression de la f que nous allons définir mais pas l'esprit de la preuve. Si on arrive à construire une telle μ alors la première remarque et le théorème de représentation de Riesz (théorème 7.23) donnerons que pour tout $\lambda \neq \lambda_i$, $i \in \mathbb{N}^*$, $t^{\lambda} \notin X$. Commençons par poser pour $z \in \{z \in \mathbb{C} \mid \operatorname{Re} z > -1\},\$

$$f(z) := \frac{z}{(2+z)^3} \prod_{n=1}^{\infty} \frac{\lambda_n - z}{2 + \lambda_n + z}.$$

Ce produit est bien convergent. En effet, on a

$$1 - \frac{\lambda_n - z}{2 + \lambda_n + z} = \frac{2z + 2}{2 + \lambda_n + z}.$$

Soit K un compact ne contenant aucun des points $-\lambda_n - 2$, on a

$$\left| \frac{2z+2}{2+\lambda_n+z} \right| \le \left| \frac{2\sup_K(z)+2}{2+\lambda_n+\operatorname{Re} z} \right|$$

$$\le \left| \frac{2\sup_K(z)+2}{1+\lambda_n} \right|$$

$$\le \left| \frac{2\sup_K(z)+2}{\lambda_n} \right|,$$

or $\sum_{n\geq 1} \frac{1}{\lambda_n}$ converge donc $\sum_{n\geq 1} 1 - \frac{\lambda_n - z}{2 + \lambda_n + z}$ converge uniformément sur tout compact ne contenant

aucun des points $-\lambda_n - 2$, donc le produit $\prod_{n=1}^{\infty} \frac{\lambda_n - z}{2 + \lambda_n + z}$ converge uniformément sur tout compact ne contenant aucun des points $-\lambda_n - 2$. La fonction f est donc méromorphe sur le plan complexe, ayant ses pôles en -2 et $-\lambda_n - 2$ et ses zéros en $0, \lambda_1, \lambda_2, \dots$ De plus, chaque facteur du produit

infini est en module inférieur à 1 pour $z\in\mathbb{C}$ tel que $\operatorname{Re}z>-1.$ En effet :

$$-\operatorname{Re}(z) < 1$$

donc

$$-4\operatorname{Re}(z)(\lambda_n+1)<\lambda_n+1,$$

d'où

$$-2\operatorname{Re}(z)\lambda_n < 4 + 4\lambda_n + 4\operatorname{Re}(z) + 2\operatorname{Re}(z)\lambda_n$$

en ajoutant λ_n^2 et $\text{Re}(z)^2$ de chaque coté de l'inégalité on obtient

$$(\lambda_n - \operatorname{Re}(z))^2 < (2 + \lambda_n + \operatorname{Re}(z))^2,$$

enfin en ajoutant $\text{Im}(z)^2$ de chaque coté on a

$$\left|\lambda_n - z\right|^2 < \left|2 + \lambda_n + z\right|^2,$$

d'où

$$\frac{|\lambda_n - z|}{|2 + \lambda_n + z|} < 1.$$

Donc $|f(z)| \le 1$ pour Re $z \ge -1$. Le facteur $(2+z)^3$ est assurera que la restriction de f à la droite $\operatorname{Re} z = -1$ appartient à L^1 . Fixons z tel que $\operatorname{Re} z > -1$, et écrivons la formule de Cauchy relative à f(z) sur le chemin γ suivant :

FIGURE 3 – Demi-cercle de centre -1 et de rayon R

Où R > 1 + |z|. On a donc

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(\xi)}{z - \xi} d\xi,$$

d'où

$$f(z) = \frac{-1}{2\pi} \int_{-1+iR}^{-1+iR} \frac{f(-1+is)}{-1+is-z} ds - \frac{1}{2\pi} \int_{-1+iR}^{-1+iR} \frac{f(e^{is})}{e^{is}-z} s e^{is} ds$$

le second terme tend vers 0 lorsque R tend vers plus l'infini, en effet : a taper donc

$$f(z) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(-1+is)}{-1+is-z} ds.$$

Remarquons que $\frac{1}{1+z-is} = \int_0^1 t^{z-is} dt$, donc

$$f(z) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} f(-1+is) \int_{0}^{1} t^{z-is} dt ds.$$

Or par Fubini pour les fonctions mesurables positives on a

$$\begin{split} \int_{-\infty}^{\infty} |f(-1+is)| \int_{0}^{1} \left| t^{z-is} \right| dt ds &= \int_{-\infty}^{\infty} |f(-1+is)| \int_{0}^{1} \left| t^{\operatorname{Re}(z)} \right| dt ds \\ &= \int_{-\infty}^{\infty} |f(-1+is)| ds \int_{0}^{1} \left| t^{\operatorname{Re}(z)} \right| dt \\ &< \infty \end{split}$$

car on a construit f de sorte à ce qu'elle soit intégrable et que Re(z) > -1. Ainsi par Fubini on a

$$f(z) = \int_0^1 t^z \frac{1}{2\pi} \int_{-\infty}^{\infty} f(-1 + is)e^{-is \log t} ds dt.$$

Posons g(s) = f(-1 + is), on a

$$f(z) = \int_0^1 t^z \hat{g}(\log t) dt.$$

Posons $d\mu(t) = \hat{g}(\log t)dt$, on a donc bien f de la forme

$$f(z) = \int_I t^z d\mu(t)$$

telle que f vaut 0 en $0, \lambda_1, \lambda_2, \dots$ Ce qui conclut la preuve de 2.

7 Annexe

7.1 Théorème de Hahn-Banach et conséquence

Théorème 7.1. Si M est un sous-espace d'un espace vectoriel normé X et si f est une forme linéaire bornée sur M, alors f peut alors être prolongée en une forme linéaire bornée F sur X, de sorte que ||F|| = ||f||.

Théorème 7.2. Soit M un sous-espace vectoriel d'un espace vectoriel normé X, et soit $x_0 \in X$. x_0 appartient à la fermeture de M si et seulement s'il n'existe pas de forme linéaire bornée f sur X telle que f(x) = 0 pour tout $x \in M$ tandis que $f(x_0) \neq 0$.

Théorème 7.3. Soit X un espace vectoriel normé et soit X^* son dual topologique. Pour $M \subset X$, on pose $M^{\perp} := \{\ell \in X^* : M \subset \ker \ell\}$. Soit E un sous-espace vectoriel de X. Les assertions suivantes sont équivalentes :

- 1. E est dense dans X.
- 2. $E^{\perp} = \{0\}.$

7.2 Mesure complexe

Pour les démonstrations des différents résultats voir [2]. Soit (X, \mathcal{M}) un espace mesurable.

Définition 7.4. Une mesure complexe est une application $\mu : \mathcal{M} \to \mathbb{C}$ vérifiant : pour tout $E \in \mathcal{M}$ et toute partition dénombrable $(E_i)_{i>1}$ de E, on a

$$\mu(E) = \sum_{i>1} \mu(E_i).$$

Remarque. La convergence de la série fait partie des hypothèses!

Définition 7.5. Soit μ une mesure complexe on associe sa variation totale $|\mu|$ définie par :

$$|\mu|(E) = \sup \left\{ \sum_{i \geq 1} |\mu(E_i)| : (E_i)_{i \geq 1} \text{ partition dénombrable de } E \right\}$$

pour tout $E \in \mathcal{M}$.

Remarque. Si μ est une mesure positive finie (i.e. $\mu(X) < \infty$) alors $|\mu| = \mu$.

Théorème 7.6. La variation totale d'une mesure complexe $|\mu|$ sur \mathcal{M} est une mesure positive sur \mathcal{M} .

Théorème 7.7. Toute mesure complexe sur X vérifie

$$|\mu|(X) < \infty$$

Théorème 7.8. Soit X un espace topologique séparé localement compact, alors $(\mathcal{M}(X), ||.||)$ où $||\mu|| := |\mu|(X)$ est un espace de Banach.

Définition 7.9. Soit μ une mesure réelle sur \mathcal{M} . On définit $|\mu|$ comme ci-dessus, puis on définit aussi

$$\mu^+ = \frac{1}{2}(|\mu| + \mu), \quad \mu^- = \frac{1}{2}(|\mu| - \mu).$$

Remarque. μ^+ et μ^- sont toutes les deux des mesures positives sur \mathcal{M} et elles sont bornées grâce au théorème précédent.

Proposition 7.10. (Décomposition de Jordan) Avec les mêmes notations que la définition précédente, on a

$$\mu = \mu^+ - \mu^-, \quad |\mu| = \mu^+ + \mu^-.$$

Les mesures μ^+ et μ^- sont appelées respectivement les variations positive et négative de μ . La représentation de μ comme différence de deux mesures positives μ^+ et μ^- s'appelle la décomposition de Jordan de μ .

Remarque. Rappelons qu'une mesure complexe a son image dans le plan complexe, tandis qu'une mesure positive peut inclure $+\infty$ comme mesure d'un ensemble, on ne peut donc pas considérer les mesures positives comme un cas particulier des mesures complexes.

Définition 7.11. Soit μ une mesure positive sur \mathcal{M} et soit λ une mesure arbitraire sur \mathcal{M} , λ pouvant être positive ou complexe.

Si $\lambda(E)=0$ pour tout $E\in M$ tel que $\mu(E)=0$, nous disons que λ est absolument continue par rapport à μ , et écrivons

$$\lambda \ll \mu$$
.

Définition 7.12. S'il existe un ensemble $A \in \mathcal{M}$ tel que $\lambda(E) = \lambda(A \cap E)$ pour tout $E \in \mathcal{M}$, on dit que λ est portée par A.

Ceci équivaut à l'hypothèse $\lambda(E) = 0$ pour tout E tel que $E \cap A = \emptyset$.

Définition 7.13. Soient λ_1 et λ_2 deux mesures sur \mathcal{M} et supposons qu'il existe deux ensembles disjoints A et B tels que λ_1 soit portée par A et λ_2 soit portée par B. On dit que λ_1 et λ_2 sont mutuellement singulières, et on écrit

$$\lambda_1 \perp \lambda_2$$
.

Théorème 7.14. (Decomposition de Lebesgue-Radon-Nikodym) Soit μ une mesure positive σ -finie sur (\mathcal{M}, X) , et soit λ une mesure complexe sur \mathcal{M} .

1. Il existe un unique couple de mesures complexes λ_a et λ_s sur \mathcal{M} telles que

$$\lambda = \lambda_a + \lambda_s, \quad \lambda_a \ll \mu, \quad \lambda_s \perp \mu.$$

Si λ est positive et finie, λ_a et λ_s le sont aussi et $\lambda_a \perp \lambda_s$.

2. Il existe un unique élément $h \in L^1(\mu)$ tel que pour tout $E \in M$

$$\lambda_a(E) = \int_E h d\mu$$

Le couple (λ_a, λ_s) est appelé décomposition de Lebesgue de λ relative à μ . h est appelé la dérivée de Radon-Nikodym de λ_a par rapport à μ .

Théorème 7.15. (Décomposition polaire) Soit μ une mesure complexe sur \mathcal{M} . Il existe une fonction mesurable h telle que |h(x)| = 1 pour tout $x \in X$ et

$$d\mu = hd|\mu|$$
.

Cette écriture est appelée décomposition polaire de μ .

Théorème 7.16. Soit μ une mesure positive sur m et $g \in L^1(\mu)$. Posons pour $E \in M$

$$\lambda(E) = \int_{E} g d\mu.$$

On a

$$|\lambda|(E) = \int_{E} |g| d\mu.$$

Théorème 7.17. (**Décomposition de Hahn**) Soit μ une mesure réelle sur (\mathcal{M}, X) . Il existe deux ensembles A et B de \mathcal{M} tels que $A \cup B = X$, $A \cap B = \emptyset$ et tels que les variations positive et négative μ^+ et μ^- de μ vérifient pour $E \in \mathcal{M}$

$$\mu^{+}(E) = \mu(A \cap E),$$

$$\mu^{-}(E) = -\mu(B \cap E)$$

ce qui implique que $\mu^+ \perp \mu^-$.

En d'autres termes, X est la réunion de deux sous-ensembles mesurables disjoints qui sont tels que "A porte toute la masse positive de μ " et "B porte toute la masse négative de μ ". Le couple (A,B) est appelé la décomposition de Hahn de X induite par μ .

Définition 7.18. Soit μ une mesure positive sur (\mathcal{M}, X) on dit que :

— μ est extérieurement régulière si pour tout $E \in \mathcal{M}$

$$\mu(E) = \inf \{ \mu(V) \mid E \subset V, V \text{ ouvert} \}$$

— μ est intérieurement régulière si pour tout $E \in \mathcal{M}$

$$\mu(E) = \sup \{ \mu(K) \mid K \subset E, K \text{ compact} \}$$

— μ est régulière si elle est à la fois extérieurement et intérieurement régulière.

Théorème 7.19. (Théorème de représentation de Riesz) Soit X un espace séparé localement compact. Toute forme linéaire bornée Φ sur $C_0(X)$ est représentée par une unique mesure de Borel, complexe et régulière μ , i.e. pour tout $f \in C_0(X)$ on a

$$\Phi(f) = \int_X f d\mu$$

De plus, la norme de Φ est la variation totale de μ ,

$$\|\Phi\| = |\mu|(X) = |\mu|$$

Définition 7.20. On dit qu'un sous ensemble E d'un espace topologique est σ -compact s'il peut s'écrire comme réunion dénombrable de sous ensemble compact.

Théorème 7.21. Soit X un espace topologique, séparé, localement compact sur lequel tout ouvert est σ -compact. Soit λ une mesure de Borel positive. Si pour tout K compact de X on a $\lambda(K) < \infty$ alors λ est régulière.

Corollaire 7.22. Toute mesure de Borel complexe sur un espace topologique, séparé, compact est régulière.

Reformulons le théorème de Riesz dans le cadre qui nous intéresse :

Théorème 7.23. (Théorème de représentation de Riesz) Soit X un espace topologique séparé compact. Alors les applications

$$L_c: \mathcal{M}(X) \longrightarrow \mathcal{C}^*(X), \qquad L_c: \mathcal{M}^+(X) \longrightarrow \mathcal{C}^*_+(X)$$

 $\mu \longmapsto L_c(\mu) \qquad \qquad \mu \longmapsto L_+(\mu)$

sont des isométries bijéctives. Où

$$L_c(\mu)(f) = \int_X f d\mu, \qquad L_+(\mu)(f) = \int_X f d\mu.$$

7.3 Dérivées supérieurs et inférieurs d'une mesure à valeurs réelles définies sur $\mathbb R$

Pour les démonstrations des différents résultats voir [1]. Notons m la mesure de Lebesgue.

Définition 7.24. Pour $x \in \mathbb{R}$ et s > 0, on pose $I_{x,s} =]x - s, x + s[$. Soit μ une mesure à valeurs réelles et définie sur \mathbb{R} .

On appelle dérivée supérieure de μ en x la quantité

$$\bar{D}(\mu)(x) := \limsup_{s \to 0} \frac{\mu(I_{x,s})}{2s}.$$

On appelle dérivée inférieure de μ en x la quantité

$$\underline{D}(\mu)(x) := \liminf_{s \to 0} \frac{\mu(I_{x,s})}{2s}.$$

Proposition 7.25. Si $\mu \in \mathcal{M}(\mathbb{R})$ est positive alors $\bar{D}(\mu)$ et $\underline{D}(\mu)$ sont des fonctions boréliennes.

Proposition 7.26. Soit μ une mesure de Borel positive sur \mathbb{R} non nécessairement finie mais telle que $\mu(K) < \infty$ pour tout compact K de \mathbb{R} et soit A un borélien tel que $\mu(A) = 0$. Alors il existe un borélien $B \subset A$ tel que m(B) = 0 avec $\bar{D}(\mu)(x) = 0$ pour tout $x \in A \setminus B$.

Proposition 7.27. Si $\mu \in \mathcal{M}(\mathbb{R})$ est telle que $\mu \perp m$ alors

$$D(\mu)(x) := \lim_{s \to 0} \frac{\mu(I_{x,s})}{2s}$$

existe et est nul *m*-presque partout.

Proposition 7.28. Si $\mu \in \mathcal{M}(\mathbb{R})$ est telle que $\mu \ll m$ alors

$$D(\mu)(x) := \lim_{s \to 0} \frac{\mu(I_{x,s})}{2s}$$

existe et coïncide avec f(x) m-presque partout où f est la fonction de $L^1(\mathbb{R})$ telle que $\mu(E) = \int_E f(x) dx$ (théorème de Radon-Nikodym) pour tout borélien E de \mathbb{R} .

En combinant ces deux propositions avec la décomposition de Lebesgue-Radon-Nikodym (thèorème 7.14), nous obtenons :

Théorème 7.29. Soit $\mu \in \mathcal{M}(\mathbb{R})$. Alors il existe un unique couple de mesures (μ_a, μ_s) avec et $\mu_a \ll m$ et $\mu_s \perp m$ telles que $\mu = \mu_a + \mu_s$ et il existe une unique fonction $f \in L^1(\mathbb{R})$ vérifiant :

$$\left\{\begin{array}{l} \mu_s(E) = \int_E f(x) dx \text{ pour tout bor\'elien } E \text{ de } \mathbb{R} \\ D(\mu)(x) := \lim_{s \to 0} \frac{\mu(]x - s, x + s[)}{2s} = f(x) \text{ m-presque partout.} \end{array}\right.$$

Autrement dit, si $\mu \in \mathcal{M}(\mathbb{R})$, alors $D(\mu)(x) \in L^1(\mathbb{R})$ et si on pose $\mu_a(E) := \mu(E) - \int_E D(\mu)(x) dx$ pour tout borélien E de \mathbb{R} alors $\mu_s \perp m$.

Références

- [1] Isabelle CHALENDAR ANALYSE FONCTIONNELLE : Fonctions Harmoniques, Classe de Nevanlinna, Espaces de Hardy, et une introduction aux opérateurs de Toeplitz et de Hankel.
- [2] Walter RUDIN Analyse réelle et complexe.
- [3] Marvin ROSENBLUM, James ROVNYAK Topics in Hardy classes and univalent functions.
- [4] Thomas RANSFORD Potential theory in the complex plane.
- [5] Arne Beurling On two problems concerning linear transformations in Hilbert space.
- [6] Joel Shapiro Composition Operators and Classical Function Theory.