

Optimisation de fonctions à haut coût

Ulysse Côté Allard, Gabriel Dubé, Richard Khoury, Luc Lamontagne, Benoit Gosselin et François Laviolette.

Time Adaptive dual particle swarm optimization

But

Minimisation globale d'une fonction quelconque.

Tour d'horizon des algos PSO et présentation de celui que nous avons développé.

Particle Swarm Optimization

Méthode d'optimisation basée sur le mouvement des groupes d'oiseaux/poissons.

Proposé par Kennedy en 1995.

Terminologie

Fonction d'évaluation : La fonction à minimiser. Elle prend un vecteur de D dimensions

Position : Point dans l'espace de recherche. C'est l'entrée de la fonction d'évaluation.

Aptitude (fitness) : Résultat de la fonction d'évaluation en un point

Maison: Meilleure position trouvée par une particule (fitness la plus basse)

Particule : Un ensemble comportant la position actuelle, la fitness actuelle, la maison et la meilleure fitness trouvée ainsi qu'une vélocité.

Population : Regroupement de particules

Maison du « rich kid »: Meilleure position trouvée par l'ensemble de la swarm

Exemplar: Une position vers laquelle une créature se dirige.

Particle Swarm Optimization

Générer N particules avec des positions et vélocité aléatoires. Évaluer leur fitness.

À chaque itération: Calculer la nouvelle vélocité:

 $V_{n+1} = c^*V_n + confiance_personnelle*rand()*Maison + confiance_swarm*rand()*Rich_Kid_maison$

c, confiance_personnelle, confiance_swarm: des nombres réels.

Rand() un nombre aléatoire pigé d'une distribution uniforme entre 0 et 1.

Mettre à jour la position de la créature avec la vélocité.

Topologie (Comment les particules communiquent)

Global: Toutes les particules se voient et se parlent.

Local: Une particule ne peut voir que son voisin d'index de droite, de gauche et elle-même dans la population. (Topologie anneau)

Global (-G): Convergence plus rapide. Plus grand risque d'être bloqué dans un minimum local.

Local (-L): Convergence plus lente. Reste moins facilement bloqué dans un minimum local.

En pratique: Impossible de savoir d'avance quelle topologie est meilleure.

W-PSO

Exactement comme le PSO, mais remplace c par W, un réel, qui diminue linéairement avec le temps.

Compromis Exploration/Exploitation.

En pratique: mieux que PSO.

Problèmes avec PSO/w-pso

Utilisation de deux exemplars (maison et maison du « rich kid »)

Deux problèmes:

- 1) Oscillation
- 2) Deux pas en avant, un pas en arrière.

Comprehensive learning particle swarm optimization (CLPSO)

But: enlever les problèmes associés aux deux exemplars.

CLPSO

Nouvelle équation pour la vélocité:

$$V_{n+1} = w^*V_n + confiance*rand()*clpso_exemplar$$

Confiance: Un nombre réel constant

Clpso_exemplar: Un vecteur position.

CLPSO

- -Clpso_exemplar n'est pas très informatif.
- -Pas de topographie locale explicite. L'exemplar fait une émulation d'une topographie locale.

OLPSO

Même idée que CLPSO. Mais la conception de l'exemplar se fait de façon « intelligente » en utilisant l'orthogonal learning (OL).

Considérer la maison (1) de la créature et la maison du « rich kid » (2) de la population.

Trouver pour chaque dimension si la particule se dirige vers (1) ou (2).

Approche exhaustive: Tester toutes les combinaisons ($2^{\Lambda}D$ FE).

L'OL permet d'estimer pour chaque dimension la valeur parmis ces deux positions qui est la plus prometteuse (2D FE).

Avantage: Exemplar beaucoup plus intelligent et meilleure convergence.

Désavantage: Calcul exemplar coûteux.

OLPSO

Avantages: Exemplar beaucoup plus intelligent et meilleure convergence.

Désavantages: Calcul exemplar coûteux. Qualité de la solution finale dépends de la topologie.

Time adaptive dual

particle swarm optimization

(TAD-PSO)

Contribution

TAD-PSO (Contribution)

Idée: Séparer l'exploration et l'exploitation en deux populations (Population Principale (exploration) et Population Auxiliaire (exploitation) respectivement).

Par rapport à OLPSO: N'est plus dépendant à l'hyperparamètre de la topologie (comme CLPSO).

Par rapport à CLPSO: Exemplar calculé de façon beaucoup plus intelligente.

Main population

Topologie globale.

Utilise OLPSO, mais l'exemplar est calculé entre la maison et l'exemplar de CLPSO.

Calculer un nouvel exemplar à toutes les N générations sans amélioration.

Favorise l'exploration. Utilise l'information de l'ensemble de la population.

Main population

Calcul exemplar = 2*D.

Explosion du nombre d'évaluations lorsque la population converge.

Désactivation des particules pendant l'optimisation (favoriser l'exploitation).

Auxiliary population

Utilise un algorithme nommé PSO-TVAC.

Comme W-PSO:

 $V_{n+1} = w^*V_n + confiance_personnelle*rand()*Maison + confiance_swarm*rand()*meilleure_maison_swarm*$

Mais confiance_personnelle diminue dans le temps et confiance swarm augmente dans le temps.

Algorithme qui converge extrêmement rapidement (presque pas d'exploration) et est mauvais lorsqu'utilisé seul.

Topologie meta-globale (connexion globale sur sa population et sur la main population)

Benchmarks

	Benchmark Problem	Search Range (R)	Global Opt. x	$f_{ m min}$	Name
	$f_1(\mathbf{x}) = \sum_{i=1}^D \left(\sum_{j=1}^i x_j\right)^2$	$[-10, 10]^D$	$\{0\}^{D}$	0	Schwefel's P1.2 [18]
Unimodal	$f_2(\mathbf{x}) = \sum_{i=1}^{D-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$	$[-10, 10]^D$	$\{1\}^{D}$	0	Rosenbrock [18]*
	$f_3(\mathbf{x}) = \sum_{i=1}^{D} (10^6)^{(i-1)/(D-1)} x_i^2$	$[-100, 100]^D$	$\{0\}^{D}$	0	Elliptic [18]
	$f_4(\mathbf{x}) = \sum_{i=1}^{D} x_i^2$	$[-100, 100]^D$	$\{0\}^{D}$	0	Sphere [28]
	$f_5(\mathbf{x}) = \sum_{i=1}^{D} [x_i^2 - 10\cos(2\pi x_i) + 10]$	$[-5.12, 5.12]^D$	$\{0\}^{D}$	0	Rastrigin [18]
Multimodal	$f_6(\mathbf{x}) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$	$[-32, 32]^D$	$\{0\}^{D}$	0	Ackley [18]
	$f_7(\mathbf{x}) = 418.982887272 \times D - \sum_{i=1}^{D} x_i \sin(\sqrt{ x_i })$	$[-500, 500]^D$	$\{420.96\}^D$	0	Schwefel [18]
	$f_8(\mathbf{x}) = \sum_{i=1}^{D} x_i \sin(x_i) + 0.1x_i $	$[-10, 10]^D$	$\{0\}^D$	0	Alpine [18]
	$f_9(\mathbf{x}) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	$[-600, 600]^D$	$\{0\}^{D}$	0	Griewank [18]
	$f_{10}(\mathbf{x}) = \frac{\pi}{D} \left(10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 [1 + 10 \sin^2(\pi y_{i+1})] + (y_D - 1)^2 \right) + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$	$[-50, 50]^D$	$\{0\}^{D}$	0	Generalized Penalized [18]
	Where $y_i = 1 + \frac{1}{4}(x_i + 1)$, $u(x_i, a, k, m) = \begin{cases} k(x_i - a)^m, x_i > a \\ 0, -a \le x_i \le a \\ k(-x_i - a)^m, x_i < -a \end{cases}$				
	$f_{11}(\mathbf{x}) = 418.982887272 \times D - \sum_{i=1}^{D} z_i$	$[-500, 500]^D$	${420.96}^{D}$	0	Rotated Schwefel [6]
	Where $z_i = \begin{cases} y_i \sin \sqrt{ y_i }, y_i \le 500.0 \\001(y_i - 500)^2, \text{ otherwise} \end{cases}$				
Rotated and Shifted	$\mathbf{y} = \mathbf{y}' + \{420.96\}^D, \ \mathbf{y}' = M(\mathbf{x} - \{420.96\}^D)$ $f_{12}(\mathbf{x}) = \sum_{i=1}^{D-1} \left[100(y_{i+1} - y_i^2)^2 + (y_i - 1)^2\right], \text{ where } \mathbf{y} = M\mathbf{x}$	$[-10, 10]^D$	$\{0\}^{D}$	0	Rotated Rosenbrock [18]
	$f_{13}(\mathbf{x}) = \sum_{i=1}^{D} [y_i^2 - 10\cos(2\pi y_i) + 10], \text{ where } \mathbf{y} = M\mathbf{x}$	$[-5.12, 5.12]^D$	$\{0\}^{D}$	0	Rotated Rastrigin [18]
	$f_{14}(\mathbf{x}) = \sum_{i=1}^{i-1} \left[100(y_{i+1} - y_i^2)^2 + (y_i - 1)^2 \right], \text{ where } \mathbf{y} = \mathbf{x} - \mathbf{c}$	$[-10, 10]^D$	$\{1\}^D + c$	0	Shifted Rosenbrock [29]
	$f_{15}(\mathbf{x}) = \sum_{i=1}^{D} [y_i^2 - 10\cos(2\pi y_i) + 10], \text{ where } \mathbf{y} = \mathbf{x} - \mathbf{c}$	$[-5.12, 5.12]^D$	c	0	Shifted Rastrigin [29]
	$f_{16}(\mathbf{x}) = \sum_{i=1}^{D} [y_i^2 - 10\cos(2\pi y_i) + 10], \text{ where } \mathbf{y} = M(\mathbf{x} - \mathbf{c})$	$[-5.12, 5.12]^D$	с	0	Shifted Rotated Rastrigin [18]

TABLE VI 10 DIMENSIONS

Function		PSO-G	PSO-L	CLPSO	HPSO-TVAC	OLPSO-G	OLPSO-L	TAD-PSO
G.1. 6.11 D.1.0	Mean	9.418e-5	6.806e-3	3.122e-2	4.808e-19	244.837	475.505	6.837e-13
Schwefel's P1.2	SD	1.722e-4	1.003e-2	1.854e-2	1.753e-18	65.929	128.818	3.682e-12
f_1	Rank	3	4	5	1	6	7	2
Rosenbrock	Mean	5.672	7.074	0.564	0.745	46.267	3.213	0.427
	SD	1.977	1.455	0.334	1.163	54.048	12.352	0.472
f_2	Rank	5	6	2	3	7	4	1
Pillanda	Mean	1.289	1.799	4.558e-12	1.991e-21	2.442e-44	2.489e-19	2.639e-56
Elliptic	SD	2.888	2.238	6.158e-12	2.024e-21	9.298e-44	3.877e-19	1.083e-55
f_3	Rank	6	7	5	3	2	4	1
Sphere	Mean	7.838e-5	2.996e-2	4.684e-13	2.261e-23	6.784e-47	1.751e-21	2.946e-58
	SD	2.626e-4	4.768e-2	5.025e-13	2.876e-23	1.751e-21	3.848	1.559e-57
f_4	Rank	6	7	5	3	2	4	1
Postsisis.	Mean	8.592	3.266	4.770e-8	0.332	13.830	0.133	6.633e-2
Rastrigin	SD	3.353	1.283	8.183e-8	0.469	6.183	0.425	0.248
f_5	Rank	6	5	1	4	7	3	2
A alclass	Mean	1.119	0.470	4.006e-7	4.765e-12	9.711e-15	1.533e-9	3.553e-15
Ackley	SD	0.823	0.551	2.541e-7	1.573e-12	3.299e-15	8.286e-10	9.173e-16
f_6	Rank	7	6	5	3	2	4	1
S-bf-1	Mean	1408.290	1293.514	1.901e-11	524.419	502.047	51.323	0.0
Schwefel	SD	263.002	267.523	1.761e-11	154.734	226.545	58.690	0.0
f_7	Rank	7	6	2	5	4	3	1
A1	Mean	4.526e-2	1.010e-2	4.749e-5	6.338e-12	1.130e-14	8.932e-4	1.177e-14
Alpine	SD	4.511e-2	1.895e-2	3.217e-5	2.107e-11	8.935e-15	7.004e-4	6.031e-14
f_8	Rank	7	6	4	3	1	5	2
G :1	Mean	0.166	0.199	2.432e-3	0.105	1.307e-3	0.0	2.710e-3
Griewank	SD	7.453e-2	8.400e-2	3.869e-3	7.437e-2	7.043e-3	0.0	5.631e-3
f_9	Rank	6	7	3	5	2	1	4
Generalized Penalized	Mean	5.654e-32	0.0	0.0	1.912e-30	6.219e-32	0.0	0.0
	SD	2.747e-31	0.0.	0.0	4.080e30	3.021e-31	0.0	0.0
f_{10}	Rank	5	1	1	7	6	1	1
B 161 -61	Mean	379.021	397.082	575.940	1404.767	198.536	178.524	23.030
Rotated Schwefel	SD	442.856	394.378	216.545	454.710	257.727	230.253	53.960
f_{11}	Rank	4	5	6	7	3	2	1
Deteted December 1	Mean	11.030	7.321	4.464	2.953	5.211	17.125	1.671
Rotated Rosenbrock	SD	21.871	1.372	2.901	2.291	2.062	28.674	1.163
f_{12}	Rank	6	5	3	2	4	7	1
Barrel Barrela	Mean	13.929	9.394	6.868	6.136	9.220	7.929	3.756
Rotated Rastrigin	SD	7.175	2.919	1.819	2.073	3.954	1.752	2.145
f_{13}	Rank	7	6	3	2	5	4	1
CL'C 1 D - 1 - 1	Mean	7.382	8.397	0.732	0.825	3.395	2.270	0.435
Shifted Rosenbrock	SD	13.117	4.291	0.784	1.223	2.732	1.949	0.519
f_{14}	Rank	6	7	2	3	5	4	1
	Mean	14.297	6.681	1.546e-8	0.895	1.227	0.0	9.950e-2
Shifted Rastrigin	SD	4.408	2.740	3.399e-8	0.827	0.984	0.0	0.298
f_{15}	Rank	7	6	2	4	5	1	3
and the second	Mean	26.035	15.526	6.924	23.524	11.011	9,493	3,283
Chifted Deteted Dectricin		9.616	5.777	2.102	8.457	6.649	4.392	2.180
Shifted Rotated Rastrigin	SD							
f_{16}	Rank	7	5	2	6	4	3	1
f_{16}	1.0	7	5	_	_	-	_	
f ₁₆ Ave. rank	1.0	7 5.938	5 5.563	3.188	6 3.813 4	4.063	3.563	1.5
f_{16}	1.0	7	5	_	3.813	-	_	

30 Dimensions

		pao a	nao I	at pao	unao mua	or pao a	ot pao t	THE PAGE
Function		PSO-G	PSO-L	CLPSO	HPSO-TVAC	OLPSO-G	OLPSO-L	TAD-PSO
Schwefel's P1.2	Mean	1.012	2.991	8.123	9.736e-10	3.250e-3	0.823	1.032e-4
f_1	SD	0.353	1.055	1.946	1.662e-9	5.562e-3	0.684	1.841e-4
	Rank	5	6	7	1	3	4	2
Rosenbrock	Mean	53.055	55.865	14.536	6.509	21.610	3.640	0.021
f_2	SD	33.507	23.640	9.79	5.125	30.465	6.420	0.021
	Rank	6	7	4	3	5	2	1
Elliptic	Mean	40.780	126.296	6.671e-12	1.455e-19	1.068e-69	3.175e-33	1.472e-62
f ₃	SD	22.676	46.415	5.046e-12	6.345e-20	2.742e-69	1.093e-32	3.455e-62
	Rank	6	7	5	4	1	3	2
Sphere	Mean	0.920	8.402	2.419e-12	8.328e-21	6.990e-72	1.624e-35	2.128e-63
f ₄	SD	0.641	3.522	1.132e-12	3.396e-21	1.741e-71	5.162e-35	8.885e-63
	Rank	6	7	5	4	1	3	2
Rastrigin	Mean	48.426	19.707	9.471e-5	0.365	3.051	1.895e-15	0.0
	SD	10.620	4.353	1.128e-4	0.748	1.703	1.020e-14	0.0
f5	Rank	7	6	3	4	5	2	1
Ackley	Mean	3.126	1.951	5.050e-7	6.522e-11	5.566e-15	6.869e-15	4.974e-15
•	SD	0.576	0.450	1.345e-7	1.157e-11	1.760e-15	8.862e-16	1.740e-15
f_6	Rank	7	6	5	4	2	3	1
8.1. 6.1	Mean	5631.682	5320.552	2.581e-10	1396.914	435.606	2.583e-4	1.213e-12
Schwefel	SD	652.454	644.091	1.714e-10	258.064	265.949	2.156e-4	1.182e-12
f_7	Rank	7	6	2	5	4	3	1
41.1	Mean	1.742	0.597	6.878e-4	2.784e-10	2.598e-15	7.979e-8	5.727e-12
Alpine	SD	0.832	0.342	2.029e-4	1.597e-10	2.202e-15	2.862e-7	3.083e-11
f_8	Rank	7	6	5	3	1	4	2
	Mean	0.701	1.070	6.816e-9	0.015	4.503e-3	0.0	0.0
Griewank	SD	0.159	0.039	6.545e-9	0.019	0.010	0.0	0.0
f_9	Rank	6	7	3	5	4	1	1
	Mean	3.704e-31	0.0	0.0	5.664e-31	1.215e-32	0.0	0.0
Generalized Penalized	SD	6.389e-31	0.0	0.0	9.110e-31	4.544e-32	0.0	0.0
f_{10}	Rank	6	1	1	7	5	1	1
	Mean	2205.323	3676,135	3208.419	5385,639	688.816	433.874	159.444
Rotated Schwefel	SD	647.201	976.877	384.556	662.571	441.160	486.607	235,615
f_{11}	Rank	4	6	5	7	3	2	1
	Mean	74.403	51.407	44.847	11.653	28.366	22.758	20.067
Rotated Rosenbrock	SD	57.820	18.033	5.630	8.875	10.1663	11.639	3.170
f_{12}	Rank	7	6	5.030	1	4	3	2
	Mean	64.094	51.655	78.979	25.814	38.568	44.740	5.845
Rotated Rastrigin	SD	19.643	12.082	9.006	6.936	8.868	10.239	3.242
f_{13}	Rank	6	5	7	2	3	4	1
	Mean	63,512	101.083	56.093	4.812	11.601	1.462	0.038
Shifted Rosenbrock	SD	61.965	87.208	20.043	11.892	23.620	3.868	0.069
f_{14}	Rank	6	7	5	3	4	2	1
	Mean	100.851	63.089	3,273	0.929	6.832	0.265	0.0
Shifted Rastrigin	SD	21.350	15.242	0.985	1.333	2.447	0.203	0.0
f_{15}	Rank	7	6	4	3	5	2	1
	Mean	166.826	109.473	75.110	119.592	48.486	53,560	6.314
Shifted Rotated Rastrigin	Mean SD	32,494	22.604	7.638	25,990			1.720
f_{16}			22.604 5			11.150 2	12.469	
	Rank	7		4 275	6		3	1 212
Ave. rank		6.250	5.875	4.375	3.875	3.250	2.625	1.313
Final rank		7	6	5	4	3	2	1
Algorithms		PSO-G	PSO-L	CLPSO	HPSO-TVAC	OLPSO-G	OLPSO-L	TAD-PSO

100 Dimensions

Function		PSO-G	PSO-L	CLPSO	HPSO-TVAC	OLPSO-G	OLPSO-L	TAD-PSO
Schwefel's P1.2	Mean	118.532	62.458	1051.594	0.157	244.837	475.505	91.964
f_1	SD	21.095	13.763	86.545	0.097	65.929	128.818	31.589
	Rank	4	2	7	1	5	6	3
Rosenbrock	Mean	633.846	756.390	191.807	113.688	46.267	3.213	0.166
f_2	SD	137.158	108.231	52.727	38.956	54.048	12.352	0.174
	Rank	6	7	5	4	3	2	1
Elliptic	Mean	976.225	2036.556	6.251e-7	8.849e-17	2.442e-44	2.489e-19	4.282e-37
f_3	SD	229.203	296.693	1.561e-7	2.916e-17	9.298e-44	3.877e-19	1.245e-36
	Rank	6	7	5	4	1	3	2
Sphere	Mean	78.290	330.663	2.335e-7	2.413e-17	6.784e-47	1.751e-21	1.861e-38
f_4	SD	19.391	49.578	5.860e-8	8.693e-18	1.715e-46	3.848e-21	4.676e-38
	Rank	6	7	5	4	12.020	3	0.0
Rastrigin	Mean	224.640	126.230	142.416	11.542	13.830	0.133	0.0
f_5	SD	33.143	15.243	9.993	8.081	6.183	0.425	1
	Rank Mean	7.248	5 4.633	6 1.002e-4	3 1.976e-9	9.711e-15	2 1.533e-9	_
Ackley	Mean SD	0.668	4.633 0.240	1.002e-4 9.679e-6	1.976e-9 4.340e-10	9.711e-15 3.299e-15	1.533e-9 8.286e-10	6.241e-14 1.013e-13
f_6	Rank	7	6	5	4.5406-10	1	3	2
	Mean	23174.825	22936.395	771.640	4267.070	502.047	51.323	9.944e-12
Schwefel	SD	1827.283	1380.293	377.452	598.737	226.545	58.690	6.366e-12
f_7	Rank	7	6	4	5	3	2	1
	Mean	24.499	9.075	0.085	3.620e-8	1.130e-14	8.931e-4	1.064e-4
Alpine	SD	4.563	2.548	0.025	2.985e-8	8.935e-15	7.004e-4	6.641e-5
f_8	Rank	7	6	5	2	1	4	3
	Mean	1.821	3.955	4.495e-7	0.011	0.001	0.0	0.0
Griewank	SD	0.173	0.489	2.541e-7	0.013	0.007	0.0	0.0
f_9	Rank	6	7	3	5	4	1	1
Generalized Penalized	Mean	0.996	5.597e-32	0.0	5.387e-31	6.219e-32	0.0	0.0
f_{10}	SD	2.540	3.014e-31	0.0	7.072e-31	3.021e-31	0.0	0.0
J10	Rank	7	4	1	6	5	1	1
Rotated Schwefel	Mean	2205.323	3676.135	18563.120	19887.658	1040.930	339.398	575.033
f_{11}	SD	647.201	976.877	616.851	3073.267	769.272	318.779	627.482
	Rank	4	5	6	7	3	1	2
Rotated Rosenbrock	Mean	662.811	803.915	97.184	81.361	122.521	169.373	131.502
f_{12}	SD	147.654	150.490	2.142	45.348	26.917	47.979	52.283
	Rank	6	7	2	1	3	5	4
Rotated Rastrigin	Mean	237.936	307.793	430.041	71.754	104.504	155.127	11.174
f_{13}	SD	43.782	47.917	22.097	13.534	21.374	28.639	3.118
	Rank Mean	5 633.873	6 3512.113	7 248.419	2 107.850	3 35.497	7.813	1 1.196
Shifted Rosenbrock	Mean SD	343.957	3512.113 1159.389	248.419 64.070	107.850 47.962	54.836	20.464	1.196
f_{14}	Rank	343.95 <i>1</i> 6	1159.389 7	5	47.962	34.830	20.464	1.226
	Mean	741.799	521.107	180.615	29.116	37.444	1.459	0.531
Shifted Rastrigin	SD	102.652	44.060	12.429	25.712	8.778	0.986	0.551
f_{15}	Rank	7	6	5	3	4	2	1
	Mean	795.473	731.826	468.640	304.366	160.613	179.744	16.541
Shifted Rotated Rastrigin	SD	127.527	71.654	25.879	49.098	27.785	33.770	4.211
f_{16}	Rank	7	6	5	4	2	3	1
Ave. rank		6.125	5.875	4.750	3.688	2.875	2.750	1.688
Final rank		7	6	5	4	3	2	1
Algorithms		PSO-G	PSO-L	CLPSO	HPSO-TVAC	OLPSO-G	OLPSO-L	TAD-PSO

Test statistique

Friedman -> Post Hoc (Holm).

Changement de dimensions -> Change benchmark.

AVERAGE RANKING FROM FRIEDMAN'S TEST AND HOLM NULL HYPOTHESIS TESTING

		PSO-	PSO-	CLPSO	HPSO-	OLPSO-	OLPSO-	TAD-
		G	L	CLFSO	TVAC	G	L	PSO
10D&	Rank	6.187	5.927	4.240	3.583	3.292	3.135	1.635
30D&								
100D	h	1	1	1	1	1	1	-
10D	Rank	6.188	5.906	3.469	3.813	3.688	3.344	1.594
	h	1	1	1	1	1	1	-
30D	h Rank	6.188	5.938	4.375	3.875	3.188	3.031	1.406
30D		6.188 1	5.938 1	4.375 1	3.875 1	3.188 1	3.031 1	- 1.406 -
		6.188 1 6.133	5.938 1 5.933	1 4.375 1 4.867	3.875 1 3.133	3.188 1 3.000	3.031 1 2.967	1.406 - 1.967
30D 100D	Rank h	1	1	1	1	1	1	-

Giant Squid Swarm Optimization

Optimisation de fonctions à haut coûts (Work in progress)

Fonctions à haut coûts

Une fonction qui nécessite beaucoup de ressources à évaluer (temps, argent, éthique).

Algorithmes d'optimisation normaux mal adaptés (e.g. descente de gradient, Algorithmes évolutionnaires, PSO).

Alternative: Grid Search, Random Search, « Expert » Guessing

Random Search

Bayésien Optimisation

State of the art

Processus Gaussien

Fonctions à haut coûts (State of the art)

Optimisation bayésienne (e.g. Spearmint, SigOpt)

Avec un peu de chance...

Giant Squid Swarm Optimization (Notre Algorithme)

Philosophie

Comme la fonction est inconnue. On utilise un régresseur pour l'approximer (Processus Gaussien).

Processus Gaussien:

On traite la fonction comme une fonction aléatoire et on y appose un aprioris. (Prior Gaussien).

On évalue un point. On update l'aprioris qui devient un postériore de la fonction. On utilise la distribution à postériori pour créer une fonction d'acquisition qui permet d'évaluer le prochain point.

Avantage: Mesure d'incertitude sur les prédictions, calcul de gradient facile.

Désavantage: Hypothèses forte. Mesure d'incertitude « weird »

Optimisation bayésienne

- 1. Représenter la fonction inconnue par un processus Gaussien.
- 2. Fonction de fitness (e.g. Expected Improvement, Upper Confidence Bound, Improvement Probabilty)
- 3. Descente de gradient pour trouver le minimum.
- 4. Évaluation du point
- 5. Ré-entraînement du GP
- 6. Retour #3 jusqu'à nombre max itérations.

SigOpt

Une librairie pour l'optimisation bayésien comme Spearmint.

Compare favorablement à Spearmint. Entre autre, meilleur sur la fonction de Branin (nous y viendrons).

(A stratified analysis of Bayesian Optimization Methods. Dwancker et al.)

Résultats avant présentation algorithmes.

15 $\times 2$ $\propto 1$

Branin-Hoo

$$f_{\text{Branin01}}(\mathbf{x}) = \left(-1.275 \frac{x_1^2}{\pi^2} + 5 \frac{x_1}{\pi} + x_2 - 6\right)^2 + \left(10 - \frac{5}{4\pi}\right) \cos(x_1) + 10$$

2 dimensions

3 Minimum globaux =
$$0.397887$$

Fonction Branin

Itérations

$$f(\mathbf{x}) = 418.9829d - \sum_{i=1}^{d} x_i \sin(\sqrt{|x_i|})$$

Schwefel

X entre -500 et 500, minimisation, D-dimensions 1 Minimum global = 0.0

Giant Squid Swarm

Pseudo-Code

- 1. Initialisation: Générer N positions aléatoires. K-means avec K = 2. Évaluer les centres trouver.
- 2. Déterminer exploration/exploitation. Construire le régresseur approprié avec tout les points réellement évalué.
- 3. Initialiser TAD-PSO pour trouver le minimum de la régression.
- 4. Évalué le minimum trouvé par TAD-PSO et l'évalué avec la fonction à haut coût.
- 5. Retour à #2 jusqu'au nombre max d'itérations atteint.

Nerf de la guerre

Exploitation

But: Trouver un point à évaluer qui permettra au régresseur de mieux évaluer la function

Exploration

But: Trouver une nouvelle position sur la fonction à haut coût qui soit meilleur que celle trouvé jusqu'à maintenant

Exploitation

Observation. Le régresseur est à son plus fiable proche des points déjà évalués.

ldée: Créer N TAD-PSO initialisé autour des meilleurs points trouvé et de X autres points aléatoirement choisit.

De plus, restreindre l'aire de recherche pour avoir une certaine assurance du point qu'on évaluera avec la fonction à haut coût.

Exploitation (work in progress++)

Calcul aire de recherche:

- Fixe une variance maximal.
- Trouver le point réellement évalué le plus proche de notre point de départ (qui est lui aussi un point réellement évalué).
- 3. Tracer un segment L entre les deux points.
- 4. Utiliser le régresseur pour calculer la variance à la moitié entre les deux points.
- 5. Si variance < variance maximal: éloigner le point
 - Sinon: rapprocher le point.

Exploration

Aire de recherche: L'aire complete de la function à optimiser.

Augmenter le nombre d'évaluations sur la fonction d'approximation.

Utiliser un régresseur beaucoup plus « smooth » (changer noyau/algorithme régression).

Questions?