

planetmath.org

Math for the people, by the people.

projective space

Canonical name ProjectiveSpace

Date of creation 2013-03-22 12:03:53 Last modified on 2013-03-22 12:03:53

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 13

Author rmilson (146)
Entry type Definition
Classification msc 14-00
Related topic Projectivity

Related topic Semilinear Transformation
Defines homogeneous coordinates

Defines affine coordinates

Defines projective automorphism

Projective space and homogeneous coordinates. Let \mathbb{K} be a field. Projective space of dimension n over \mathbb{K} , typically denoted by $\mathbb{K}P^n$, is the set of lines passing through the origin in \mathbb{K}^{n+1} . More formally, consider the equivalence relation \sim on the set of non-zero points $\mathbb{K}^{n+1}\setminus\{0\}$ defined by

$$\mathbf{x} \sim \lambda \mathbf{x}, \quad \mathbf{x} \in \mathbb{K}^{n+1} \setminus \{0\}, \quad \lambda \in \mathbb{K} \setminus \{0\}.$$

Projective space is defined to be the set of the corresponding equivalence classes.

Every $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{K}^{n+1} \setminus \{0\}$ determines an element of projective space, namely the line passing through \mathbf{x} . Formally, this line is the equivalence class $[\mathbf{x}]$, or $[x_0 : x_1 : \dots : x_n]$, as it is commonly denoted. The numbers x_0, \dots, x_n are referred to as homogeneous coordinates of the line. Homogeneous coordinates differ from ordinary coordinate systems in that a given element of projective space is labeled by multiple homogeneous "coordinates".

Affine coordinates. Projective space also admits a more conventional type of coordinate system, called affine coordinates. Let $A_0 \subset \mathbb{K}P^n$ be the subset of all elements $p = [x_0 : x_1 : \ldots : x_n] \in \mathbb{K}P^n$ such that $x_0 \neq 0$. We then define the functions

$$X_i: A_0 \to \mathbb{K}^n, \quad i = 1, \dots, n,$$

according to

$$X_i(p) = \frac{x_i}{x_0},$$

where (x_0, x_1, \ldots, x_n) is any element of the equivalence class representing p. This definition makes sense because other elements of the same equivalence class have the form

$$(y_0, y_1, \dots, y_n) = (\lambda x_0, \lambda x_1, \dots, \lambda x_n)$$

for some non-zero $\lambda \in \mathbb{K}$, and hence

$$\frac{y_i}{y_0} = \frac{x_i}{x_0}.$$

The functions X_1, \ldots, X_n are called *affine coordinates* relative to the hyperplane

$$H_0 = \{x_0 = 1\} \subset \mathbb{K}^{n+1}.$$

Geometrically, affine coordinates can be described by saying that the elements of A_0 are lines in \mathbb{K}^{n+1} that are not parallel to H_0 , and that every such line intersects H_0 in one and exactly one point. Conversely points of H_0 are represented by tuples $(1, x_1, \ldots, x_n)$ with $(x_1, \ldots, x_n) \in \mathbb{K}^n$, and each such point uniquely labels a line $[1: x_1: \ldots: x_n]$ in A_0 .

It must be noted that a single system of affine coordinates does not cover all of projective space. However, it is possible to define a system of affine coordinates relative to every hyperplane in \mathbb{K}^{n+1} that does not contain the origin. In particular, we get n+1 different systems of affine coordinates corresponding to the hyperplanes $\{x_i = 1\}, i = 0, 1, \ldots, n$. Every element of projective space is covered by at least one of these n+1 systems of coordinates.

Projective automorphisms. A projective automorphism, also known as a projectivity, is a bijective transformation of projective space that preserves all incidence relations. For $n \geq 2$, every automorphism of $\mathbb{K}P^n$ is engendered by a semilinear invertible transformation of \mathbb{K}^{n+1} . Let $A : \mathbb{K}^{n+1} \to \mathbb{K}^{n+1}$ be an invertible semilinear transformation. The corresponding projectivity $[A] : \mathbb{K}P^n \to \mathbb{K}P^n$ is the transformation

$$[\mathbf{x}] \mapsto [A\mathbf{x}], \quad \mathbf{x} \in \mathbb{K}^{n+1}.$$

For every non-zero $\lambda \in \mathbb{K}$ the transformation λA gives the same projective automorphism as A. For this reason, it is convenient we identify the group of projective automorphisms with the quotient

$$P\Gamma L_{n+1}(\mathbb{K}) = \Gamma L_{n+1}(\mathbb{K})/\mathbb{K}.$$

Here Γ L refers to the group of invertible semi-linear transformations, while the quotienting \mathbb{K} refers to the subgroup of scalar multiplications.

A collineation is a special kind of projective automorphism, one that is engendered by a strictly linear transformation. The group of projective collineations is therefore denoted by $\operatorname{PGL}_{n+1}(\mathbb{K})$ Note that for fields such as \mathbb{R} and \mathbb{C} , the group of projective collineations is also described by the projectivizations $\operatorname{PSL}_{n+1}(\mathbb{R}), \operatorname{PSL}_{n+1}(\mathbb{C})$, of the corresponding unimodular group.

Also note that if a field, such as \mathbb{R} , lacks non-trivial automorphisms, then all semi-linear transformations are linear. For such fields all projective

automorphisms are collineations. Thus,

$$P\Gamma L_{n+1}(\mathbb{R}) = PSL_{n+1}(\mathbb{R}) = SL_{n+1}(\mathbb{R})/\{\pm I_{n+1}\}.$$

By contrast, since \mathbb{C} possesses non-trivial automorphisms, complex conjugation for example, the group of automorphisms of complex projective space is larger than $\mathrm{PSL}_{n+1}(\mathbb{C})$, where the latter denotes the quotient of $\mathrm{SL}_{n+1}(\mathbb{C})$ by the subgroup of scalings by the (n+1)st roots of unity.