Collège El Alaa		Prof : Ben Alaya Aymen	
Année scolaire 2015-16		Devoir de synthèse N°1	
12/2015	Classe :1 ^{ère} sec	Mathématiques	Durée : 1h30 mn

Exercice 1: (3 points)

Répondre par vrai ou faux

1°)
$$\sqrt{2^{2016}} = 2^{1008}$$

2°) La mesure de l'angle BMC égale 30°

3°) Si
$$I = [3;5]$$
 et $J = [4;6]$ alors $I \cup J = [3;6]$ et $I \cap J = [3;4]$

Exercice 2: (5 points)

Soit
$$A = (3x-2)^2 + (x+1)^3$$
; $B = 3x^2 - x + (3x-1)^2$; $C = 64x^3 - 125$ et $D = \frac{(a^2b^{-1})^{-2} \times (b^{-1})^2}{(a^{-3})^{-1} \times (ab^{-2})^2}$

avec a et b deux entiers naturels non nuls.

- 1°) Développer A.
- 2°) Factoriser B et C.
- **3°)** Montrer que $D = \frac{b^4}{a^9}$

Exercice 3: (6 points)

- **1°)** Soit *x* un angle aigu tel que $\cos x = \frac{2}{3}$. Calculer $\sin x$ puis $\tan(x)$.
- 2°) Simplifier les expressions suivants :

$$A = \cos(12^{\circ}) + \sin^2(13^{\circ}) - \sin(78^{\circ}) + \sin^2(77^{\circ})$$
; $B = 3\tan(30^{\circ}) - 2\cos(45^{\circ}) - 2\sin(30^{\circ})$

- **3°)** Soit x un angle aigu. Montrer que : $1-\cos^2(x) \times \tan^2(x) = \cos^2(x)$.
- **4°)** ABC un triangle tels que : $AB = \sqrt{3}$; AC = 2 et BC = 1
- a) Montrer que le triangle ABC est rectangle en B.
- b) Calculer $\sin(ACB)$ et $\cos(ACB)$. En déduire la mesure de l'angle ACB .
- c) Soit H le projeté orthogonal de B sur (AC). Calculer BH et CH.

Exercice 4: (6 points)

ABCD un trapèze tel que (AB)//(DC).

- **1°)** Placer un point E de BD distinct de leur milieu.
- **2°)** a) Construire la droite parallèle à (AB) passant par E qui coupe AD en M.
- b) Construire la droite parallèle à (BC) passant par E qui coupe [CD] en N.
- c) Montrer que $\frac{ME}{AB} = \frac{DM}{DA} = \frac{DE}{DB}$ et $\frac{NE}{BC} = \frac{DN}{DC} = \frac{DE}{DB}$.
- c) En déduire que $\frac{DN}{DC} = \frac{DM}{DA}$ et que (MN) / /(AC).
- **3°)** On désigne par **P** le périmètre de triangle ABC et par **P**' le périmètre de triangle MEN On suppose que $BE = \frac{1}{3}BD$
- a) Montrer que $DE = \frac{2}{3}DB$.
- b) Montrer que $\frac{ME}{AB} = \frac{EN}{BC} = \frac{MN}{AC} = \frac{2}{3}$. En déduire que $\frac{\mathcal{P}}{\mathcal{P}'} = \frac{2}{3}$.