Ecuaciones Diferenciales de 1er orden

Coordinación de Ecuaciones Diferenciales y Métodos Numéricos, DMCC

- Ecuación diferencial de primer orden.
- Teorema de existencia y unicidad de soluciones.

DMCC, Facultad de Ciencia, USACH

Ecuación diferencial de primer orden

En esta unidad estudiaremos la ecuación diferencial de primer orden:

$$y' = f(x, y), \tag{1}$$

con $f:\Omega\subset\mathbb{R}^2 o\mathbb{R}$ una función dada.

Una solución de (1) es una función $\phi:I\to\mathbb{R}$, donde $I\subset\mathbb{R}$ es el intervalo de definición de la EDO, satisfaciendo:

- ϕ es derivable para todo $x \in I$,
- $(x, \phi(x)) \in \Omega$,

Interpretación gráfica de la solución

Para cada punto (x, y) en el plano tenemos el número real f(x, y), que representa la pendiente en ese punto. Así a todo punto del plano le asignado un segmento de línea recta con pendiente f(x, y), obteniendo un campo de direcciones.

Ejemplo 1: La figura muestra el campo de direcciones de y'(x) = 2y.

Interpretación gráfica de la solución

En este sentido, buscar la solución ϕ a (1) equivale a buscar una curva plana $y=\phi(x)$, tal que para cada punto (x,y) de la curva, la pendiente de la recta tangente a la curva en dicho punto sea precisamente el valor f(x,y) del campo.

Ejemplo 2: La solución general de y'(x) = 2y es $y(x) = Ce^{2x}$, donde C es una constante. Notar que se obtienen una familia de funciones que dependen de C.

Para mayor información sobre resolver una EDO de primer orden de forma gráfica, ver: *Video Isoclinas*

Problema de valor inicial (PVI)

En el ejemplo anterior, si bien la ecuación diferencial tiene más de una solución, el gráfico sugiere que por cada punto (x_0, y_0) de \mathbb{R}^2 pasa una, y sólo una, de estas curvas. Determinar la solución de una EDO que pasa por cierto punto dado es lo que se conoce como el problema de valor inicial (PVI):

Encontrar v tal que

$$\begin{cases} y' = f(x, y) & \forall x \in I \\ y(x_0) = y_0, \end{cases}$$
 (2)

donde I es un intervalo, $x_0 \in I$ e $y_0 \in \mathbb{R}$. La igualdad $y(x_0) = y_0$ se conoce como condición inicial o de borde según la variable x se interprete como tiempo o espacio.

Ejemplo 3: Encontrar la solución del PVI:

$$\begin{cases}
y' = 2y & \forall x \in \mathbb{R} \\
y(1) = 2,
\end{cases} (3)$$

La solución general es $y = Ce^{2x}$, para encontrar la solución del PVI, debemos resolver

$$2 = y(1) = Ce^2 \implies C = 2e^{-2}.$$

Luego la solución del PVI es $y(x) = 2e^{2(x-1)}$.

Teorema de existencia y unicidad de soluciones

Teorema: Sea D un conjunto abierto del plano XY y $f:D\to\mathbb{R}$ una función continua. Suponga además que f tiene derivada parcial con respecto a y en todo punto de D y que $\partial f/\partial y$ es continua sobre D. Sea (x_0,y_0) un punto de D. Entonces la ecuación diferencial dy/dx=f(x,y) tiene una y solo una solución ϕ definida en un intervalo abierto I alrededor de x_0 que verifica $\phi(x_0)=y_0$.

Ejemplo 4: En el PVI siguiente

$$\begin{cases} y' = y^2 \\ y(0) = 1, \end{cases} \tag{4}$$

la función $f(x,y)=y^2$ y $\partial f/\partial y=2y$ son continuas en el plano XY, en particular en el rectángulo $D=\{(x,y)\in\mathbb{R}^2:x\in(-2,2),\ y\in(0,2)\}$. Como el punto (0,1) se encuentra en el interior de D, el Teorema garantiza una solución única del PVI, en algún intervalo abierto I que contiene a $x_0=0$.

$$y=\frac{1}{1-x}.$$

Notar que la solución es discontinua en x=1, luego el intervalo I puede no coincidir con el rectángulo D.

Ejemplo 5: En el PVI siguiente

$$\begin{cases} y' = -2\sqrt{y} \\ y(0) = 0, \end{cases}$$
 (5)

la función f(x,y) es continua para todo $y \ge 0$, pero $\partial f/\partial y = 1/\sqrt{y}$ es discontinua cuando y = 0, y en consecuencia en el punto (0,0). Por esto, es posible que existan dos soluciones diferentes

$$y_1=x^2, \qquad y_2=0$$

cada una de las cuales satisface la condición inicial y(0) = 0.