Name: Entry No.:

1. [1 marks] Prove the following lemma, which we had used for proving the Compactness theorem (recall that Φ was used to denote the set of propositional logic formulas):

For all $Z \subseteq \Phi$ and all $\beta \in \Phi$, $Z \models \beta$ iff $Z \cup \{\neg \beta\}$ is not satisfiable.

- 2. [1 marks] Show that if $\alpha \wedge \beta$ is consistent, then both α and β are consistent. Recall that α is said to be consistent if $\nvdash \neg \alpha$.
- 3. [1 marks] Consider the CNF formula ϕ shown below. Write a 3-CNF formula ψ such that ψ is satisfiable iff ϕ is satisfiable.

$$\phi = (\neg x_1 \vee \neg x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4 \vee x_1) \wedge (x_1)$$

4. [1 marks] Let $X \subseteq \Phi$ and $\alpha \in \Phi$, where Φ denotes the set of propositional logic formulas. The use of strong completeness $(X \vDash \alpha \quad iff \quad X \vdash \alpha)$ can lead to an alternative, shorter, proof of compactness $(X \vDash \alpha \quad iff \quad there \; exists \quad Y \subseteq_{fin} X, \; Y \vDash \alpha)$. Give that proof.