Nanopore automata

Ian $\mathrm{Holmes}^{1,2,*}$

- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- 2 Department of Bioengineering, University of California, Berkeley, CA, USA

Contents

1	Abs	stract	2
2	Specification		2
	2.1	Parameterization algorithm	2
	2.2	Reference search algorithm	2
	2.3	Implementation	3
	2.4	Evaluation	3
3	Methods		3
	3.1	Model	3
	3.2	Parameterization	3
		3.2.1 Baum-Welch algorithm	3
	3.3	Search	3
		3.3.1 Prefiltering heuristic	3
		3.3.2 Viterbi algorithm	3
4	Results		4
5	Discussion		4
6	Acknowledgments		5
7	Fig	ure Legends	6

1 Abstract

State machine algorithms for aligning Nanopore read pairs.

2 Specification

2.1 Parameterization algorithm

Given the following inputs

- Reference genome (FASTA)
- Segment-called reads (FAST5/HDF5)

Perform the following steps

• Perform Baum-Welch to fit a rich model

Rich model incorporates segment statistics.

2.2 Reference search algorithm

Given the following inputs

- Segment-called reads (FAST5/HDF5)
- Parameterized rich model

Perform the following steps

- Prefilter read pairs using k-mer threshold heuristics
- Perform Viterbi alignment using intersection of two rich models

- 2.3 Implementation
- 2.4 Evaluation
- 3 Methods
- 3.1 Model
- 3.2 Parameterization
- 3.2.1 Baum-Welch algorithm
- 3.3 Search
- 3.3.1 Prefiltering heuristic

(Omit this step in first implementation?)

- $\bullet\,$ Build database of k-mer frequencies across all reads
- Compute likelihood of each read using a "bag of words" model
- Compute likelihood of each read-pair using a "bag of paired words" model
- Compute posterior probability of a match
- 3.3.2 Viterbi algorithm

- 4 Results
- 5 Discussion

6 Acknowledgments

7 Figure Legends