Aufgabe 1.

Man gebe gebe jeweils die größte Zahl $n \geq 1$ an, so dass die Jordan-Normalform aller $(n \times n)$ -Matrizen durch die folgenden Informationen bis auf Permutation der Jordanblöcke eindeutig bestimmt ist:

- 1. Das charakteristische Polynom $p_A(t)$.
- 2. Das Minimalpolynom $p_A(t)$.
- 3. Die Dimension aller Eigenräume $\dim(\mathbb{C}^n)_{\lambda}(A), \lambda \in \mathbb{C}$.
- 4. Das Minimalpolynom $m_A(t)$ und die Dimension aller Eigenräume $\dim(\mathbb{C}^n)_{\lambda}(A)$.

Aufgabe 2.

Bestimmen Sie die Anzahl der Ähnlichkeitsklassen nilpotenter Matrizen in $M_6(K)$.

Aufgabe 3.

Es seien $A, B \in \mathcal{M}_n(\mathbb{C})$ mit $\dim(\mathbb{C}^n)^{\infty}_{\lambda}(A) \leq 3$ für alle $\lambda \in \mathbb{C}$. Zeigen Sie, dass A und B genau dann ähnlich sind, wenn $p_A = p_B$ und $m_A = m_B$ gelten.

Aufgabe 4.

Bestimmen Sie für jedes $a \in \mathbb{R}$ die Jordan-Normalform und das Minimalpolynom der Matrix

$$A_a := \begin{pmatrix} 2 & a+1 & 0 \\ 0 & 2 & a-2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Aufgabe 5.

Bestimmen Sie für eine Matrix $A \in M_n(\mathbb{C})$ mit den angegebenen Eigenschaften jeweils alle möglichen Jordan-Normalformen bis auf Permutaiton der Jordanblöcke.

- 1. $A \in M_2(\mathbb{C})$ ist nicht diagonalisierbar mit Spur A = 0.
- 2. Es gilt $A^3 = 0$ und alle nicht-trivialen Eigenräume von A sind eindimensional.
- 3. Es gilt $p_A(t) = (t-2)(t+2)^3$ und $(A-2\mathbb{1})(A+2\mathbb{1}) = 0$.
- 4. Es gilt $p_A(t) = t^3 t$.
- 5. Es gilt $p_A(t) = (t^2 5t + 6)^2$, und alle Eigenräume von A sind entweder null- oder eindimensional.
- 6. Es gilt $A^2 = A$ und alle nicht-trivialen Eigenräume von A sind zweidimensional.
- 7. Es gilt $p_A(t) = t^5$ und alle Eigenräume von A sind entweder null- oder zweidimensional.
- 8. Es gilt $p_A(t) = (t+3)^3 t^2$ und A hat keine zweidimensionalen Eigenräume.

- 9. Es gilt $p_A(t) = t^5 2t^4$.
- 10. Es gilt $p_A(t) = (t-3)^4(t-5)^4$ und $(A-31)^2(A-51)^2 = 0$.
- 11. $A \in M_3(\mathbb{C})$ mit Spur $A = \det A = 0$.
- 12. $A \in M_8(\mathbb{C})$ mit $(A-1)(A^5-A^4)=0$, Spur A=2 und rg A=6.
- 13. $A \in M_7(\mathbb{C})$ mit $A^5 = A^4$, Spur A = 2 und $\operatorname{rg} A = \operatorname{rg} A^2 + 1 = 4$.
- 14. $A \in M_6(\mathbb{C})$ mit $m_A(t) = (t-1)^2(t-2)^3$ und dim $V_2(A) = 1$.
- 15. $p_A = (t-1)^2(t-2)(t-7)^2$, Spur A = 6, det A = 4, rg(A-1) = 3.
- 16. $p_A(t) = (t-4)^3(t+3)^2$ und $m_A(t) = (t-4)(t+3)^2$
- 17. $p_A(t) = (t+2)^4(t-1)^2$, $\operatorname{rg}(A+2\mathbb{1}) > \operatorname{rg}(A+2\mathbb{1})^2 = 2$ und $\operatorname{rg}(A-\mathbb{1}) = 5$.
- 18. $A \in M_7(\mathbb{C}) \text{ mit } A^7 2A^5 + A^3 = 0, \text{ rg } A = \text{rg}(A + 1) = 6, \text{ Spur } A = 0.$
- 19. $A \in M_5(\mathbb{C})$ mit $A^3 = 0$ und $\operatorname{rg} A = 3$.

Aufgabe 6.

- 1. Es sei A = D + N mit $D, N \in M_n(\mathbb{C})$ die Jordan-Chevalley-Zerlegung einer Matrix $A \in M_n(\mathbb{R})$. Zeigen Sie, dass bereits $D, N \in M_n(\mathbb{R})$ gilt.
- 2. Über $\mathbb R$ besitzt nicht jede Matrix eine Jordan-Normalform, und somit auch nicht jede Matrix eine Jordan-Chevalley-Zerlegung. Wieso steht dies nicht im Widerspruch zu der obigen Aussage?

Aufgabe 7.

Bestimmen Sie für die folgenden Matrizen jeweils die Jordan-Normalform:

$$A_{1} := \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{pmatrix} \in \mathcal{M}_{3}(\mathbb{R}), \quad A_{2} := \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_{3}(\mathbb{F}_{2}),$$

$$A_{3} := \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{4}(\mathbb{R}), \quad A_{4} := \begin{pmatrix} -6 & 12 & 4 \\ -2 & 2 & 1 \\ -3 & 20 & 6 \end{pmatrix} \in \mathcal{M}_{3}(\mathbb{R}),$$

$$A_{5} := \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \end{pmatrix} \in \mathcal{M}_{4}(\mathbb{F}_{3}).$$

Aufgabe 8.

Es sei V ein K-Vektorraum, und $f,g\colon V\to V$ seien zwei kommutierende Endomorphismen. Zeigen Sie, dass $V_\lambda(f)$ und $V_\lambda^\infty(f)$ invariant unter g sind.