### **Subdivision Surfaces**



# Interactive Computer Graphics Eric Shaffer



### Geometric Modeling

Sometimes need more than polygon meshes

Smooth surfaces

Traditional geometric modeling used NURBS

Non uniform rational B-Spline











#### Problems with NURBS

A single NURBS patch is either a topological

disk, a tube or a torus

 Must use many NURBS patches to model complex geometry



 When deforming a surface made of NURBS patches, cracks arise at the seams



#### **Subdivision surfaces**

- Beyond shipbuilding: we want guaranteed continuity, without having to build everything out of rectangular patches.
  - Applications include CAD/CAM, 3D printing, museums and scanning, medicine, movies...

• The solution: subdivision surfaces.



Geri's Game, by Pixar (1997)

#### Example: Geri's Game (Pixar 1997)

- Subdivision used for
  - Geri's hands and head
  - Clothing
  - Tie and shoes







### **Example: Geri's Game (Pixar)**

Woody's hand (NURBS) Geri's hand (subdivision)





### Example: Geri's Game (Pixar)

Sharp and semi-sharp features





#### Subdivision surfaces and the movies



- Pixar first demonstrated subdivision surfaces in 1997 with Geri's Game
  - Up until then they'd done everything in NURBS (Toy Story, A Bug's Life.)
  - From 1999 onwards everything they did was with subdivision surfaces (Toy Story 2, Monsters Inc, Finding Nemo...)









#### **Subdivision Surfaces**

- Instead of ticking a parameter *t* along a parametric curve (or the parameters *u,v* over a parametric grid), subdivision surfaces repeatedly refine from a coarse set of *control points*.
- Each step of refinement adds new faces and vertices.
- The process converges to a smooth *limit surface*.





### Subdivision Surfaces – History

- de Rahm described a 2D (curve) subdivision scheme in 1947;
   rediscovered in 1974 by Chaikin
- Concept extended to 3D (surface) schemes by two separate groups during 1978:
  - Doo and Sabin found a biquadratic surface
  - Catmull and Clark found a bicubic surface
- Subsequent work in the 1980s (Loop, 1987; Dyn [Butterfly subdivision], 1990) led to tools suitable for CAD/CAM and animation



#### **Useful Terms**

- A scheme which describes a 1D curve (even if that curve is travelling in 3D space, or higher) is called *univariate*, referring to the fact that the limit curve can be approximated by a polynomial in one variable (t).
- A scheme which describes a 2D surface is called *bivariate*, the limit surface can be approximated by a *u,v* parameterization.
- A scheme which retains and passes through its original control points is called an *interpolating* scheme.
- A scheme which moves away from its original control points, converging to a limit curve or surface nearby, is called an approximating scheme.



Control surface for Geri's head



#### Subdivision

"Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements"



### Subdivision



#### **Subdivision Surfaces**

- Generalization of spline curves / surfaces
  - Arbitrary control meshes
  - Successive refinement (subdivision)
  - Converges to smooth limit surface
  - Connection between splines and meshes



#### **Subdivision Surfaces**

- Generalization of spline curves / surfaces
  - Arbitrary control meshes
  - Successive refinement (subdivision)
  - Converges to smooth limit surface
  - Connection between splines and meshes





### **Subdivision Curves**

Given a control polygon...



...find a smooth curve related to that polygon.



### **Subdivision Curve Types**

- Approximating
- Interpolating







Splitting step: split each edge in two



Averaging step: relocate each (original) vertex according to some (simple) rule...



Start over ...



...splitting...



...averaging...



...and so on...



If the rule is designed carefully...



... the control polygons will converge to a smooth limit curve!



### **Corner Cutting**

- Subdivision rule:
  - Insert two new vertices at ¼ and ¾ of each edge
  - Remove the old vertices
  - Connect the new vertices
  - In the limit, generates a curve called a quadratic B-Spline





### **B-Spline Curves**

• Piecewise polynomial of degree *n* 



0.00



























































#### **B-Spline Curves**

- Quadratic B-Spline (Chaikin)
  - Odd coefficients (¼, ¾)
  - Even coefficients (¾ , ¼)



- Cubic B-Spline (Catmull-Clark)
  - Odd coefficients (4/8, 4/8)
  - Even coefficients (1/8, 6/8, 1/8)



#### **B-Spline Curves**

Subdivision rules for control polygon

$$\mathbf{d}^0 \to \mathbf{d}^1 = S\mathbf{d}^0 \to \dots \to \mathbf{d}^j = S\mathbf{d}^{j-1} = S^j\mathbf{d}^0$$

• Mask of size *n* yields *C*<sup>*n*-1</sup> curve



## Interpolating (4-point Scheme)

- Keep old vertices
- Generate new vertices by fitting cubic curve to old vertices
- C1 continuous limit curve















#### Making the jump to 3D: Doo-Sabin

• *Doo-Sabin* takes Chaikin to 3D:

• 
$$P = (9/16)A + (3/16)B + (3/16)C + (1/16)D$$

- This replaces every old vertex with four new vertices.
- The limit surface is biquadratic, C1 continuous everywhere.  $\overline{16}$





#### **Doo-Sabin in action**



(1) 54 faces



(3) 702 faces

#### **Subdivision Surfaces**

- No regular structure as for curves
  - Arbitrary number of edge-neighbors
  - Different subdivision rules for each valence





#### **Subdivision Rules**

How the connectivity changes



- How the geometry changes
  - Old points
  - New points



#### Subdivision Zoo

Classification of subdivision schemes

| Primal | Faces are split into sub-faces            |
|--------|-------------------------------------------|
| Dual   | Vertices are split into multiple vertices |

| Approximating | Control points are not interpolated |
|---------------|-------------------------------------|
| Interpolating | Control points are interpolated     |



#### **Subdivision Zoo**

Classification of subdivision schemes





#### Subdivision Zoo

Classification of subdivision schemes

|               | Primal    |               | Dual                 |
|---------------|-----------|---------------|----------------------|
|               | Triangles | Rectangles    | Duai                 |
| Approximating | Loop      | Catmull-Clark | Doo-Sabin<br>Midedge |
| Interpolating | Butterfly | Kobbelt       |                      |



#### Catmull-Clark Subdivision

- Generalization of bi-cubic B-Splines
- Primal, approximation subdivision scheme
- Applied to polygonal meshes
- Generates *G*<sup>2</sup> continuous limit surfaces:
  - C¹ for the set of finite extraordinary points
    - Vertices with valence ≠ 4
  - C<sup>2</sup> continuous everywhere else





#### **Catmull-Clark Subdivision**



$$\mathbf{V}_2 = \frac{1}{n} \times \sum_{j=1}^n \mathbf{d}_j$$

$$\mathbf{E}_i = \frac{1}{4} (\mathbf{d}_1 + \mathbf{d}_{2i} + \mathbf{V}_i + \mathbf{V}_{i+1})$$

$$\mathbf{d}_{1}' = \frac{(n-3)}{n}\mathbf{d}_{1} + \frac{2}{n}\mathbf{R} + \frac{1}{n}\mathbf{S}$$

$$\mathbf{R} = \frac{1}{m}\sum_{i=1}^{m}\mathbf{E}_{i} \quad \mathbf{S} = \frac{1}{m}\sum_{i=1}^{m}\mathbf{V}_{i}$$

#### Catmull Clark Subdivision

*NOTE:* valence = number of neighboring vertices

First subdivision generates quad mesh

Some vertices extraordinary (valence  $\neq 4$ )

#### **Rules**

Face vertex = average of face's vertices

Edge vertex = average of edge's two vertices & adjacent face's two vertices

New vertex position =  $(1/\text{valence}) \times \text{sum of...}$ 

- Average of neighboring face points
- 2 x average of neighboring edge points
- (valence 3) x original vertex position Boundary edge points set to edge midpoints Boundary vertices stay put



# Catmull-Clark Subdivision







#### **Catmull-Clark in action**



#### Catmull-Clark

- Catmull-Clark is a bivariate approximating scheme
  - Limit surface is bicubic, C2-continuous.





### Schemes for simplicial (triangular) meshes



#### Creases

• Extensions exist for most schemes to support *creases*, vertices and edges flagged for partial or hybrid subdivision.









## Comparison



#### Comparison

- Subdividing a cube
  - Loop result is assymetric, because cube was triangulated first
  - Both Loop and Catmull-Clark are better then Butterfly ( $C^2$  vs.  $C^1$ )
  - Interpolation vs. smoothness



### Comparison

- Subdividing a tetrahedron
  - Same insights
  - Severe shrinking for approximating schemes





#### So Who Wins?

- Loop and Catmull-Clark best when interpolation is not required
- Loop best for triangular meshes
- Catmull-Clark best for quad meshes
  - Don't triangulate and then use Catmull-Clark



triangulation

