Homework Chapter 01

Find_root,刘玖阳,应用物理1301,U201310209

Question

 $f(x) = \frac{x^3}{3} - x = 0$

Use Newton downhill iteration, post acceleration and Aitken iteration method to find the roots of the equation

and compare their performances (speed and error)

Used algorithm

1. Newton downhill iteration Newton x1 = guess_root x2 = x1 - f(x1) / diff(x1)root = x1 f error = f(x1)abs(f(x2)) > f_error $_{error} = abs(x2 - x1)$ Yes q = 1END $abs(f(x1)) \le abs(f(x2))$ x2 = x1 - q * f(x1) / diff(x1)x1 = tempk > k max q == 2**-10 kOverflow qOverflow 2. Post acceleration Post_acceleration k = 1x1 = guess_root x2 = f(x1)root = x2 $f_{error} = f(x2) - x2$ abs(x2 - x1) > f_error $x_{error} = x2 - x1$ k = kYes L = diff(x2)x1 = x2x2 = (f(x2) - L * x2)/(1END - L) k += 1 $k > k_max$ Yes kOverflow 3. Aitken iteration Post_acceleration k = 1x1 = guess_root temp1 = f(x1)temp2 = f(temp1)x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 -2 * temp1 + x1) root = x2f error = f(x2) - x2abs(x2 - x1) > f_error $x_{error} = x2 - x1$ k = kL = diff(x2)x1 = x2temp1 = f(x1)END temp2 = f(temp1) x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 -2 * temp1 + x1) k += 1 $k > k_max$ Yes kOverflow

subroutine bolzano(left_number,right_number,root,f_error,x_error,k) double precision,intent(in) :: left_number, right_number double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k

k = 0

endif

Source Code

module find_root

author:

Sequencer

计算物理非线型方程寻根模块(HUST PHY 2013 第一次作业)

newton(guess_root,root,f_error,x_error,k) 牛顿法

picard(guess_root,root,f_error,x_error,k)

bolzano(left_number, right_number, root, f_error, x_error, k)

newton_downhill(guess_root,root,f_error,x_error,k) 牛顿下山法 post_acceleration(guess_root,root,f_error,x_error,k) post加速法 aitken_acceleration(guess_root,root,f_error,x_error,k) aitken加速法

description:

contains:

exception:

contains

k0verflow fDivergence

double precision function f(x)

! define function

double precision :: x

double precision function diff(x)

double precision :: delta,x

double precision temp,x1,x2

write(*,*) "fDivergence"

diff = (f(x+delta)-f(x-delta))/(2d0*delta)

if (f(left_number)*f(right_number).gt.0d0) then

implicit none

implicit none

end function diff

delta = x/100d0

integer k_max

call abort()

 $x1 = left_number$ $x2 = right_number$

 $k_max = 100$

f = x**3/3end function f

MIT协议

do while(abs(f(x1)*f(x2)).gt.f_error**2) temp = (x1+x2)/2if (f(x1)*f(temp).gt.0d0) then x1 = tempelse x2 = tempendif k=k+1if (k.gt.k_max) then write(*,*) "k0verflow" call abort() endif end do if (abs(f(x1)).lt.f_error) then if (abs(f(x2)).lt.f_error) then root = (x1+x2)/2else root = x1endif else root = x2endif ! write(*.*) root f_error = f(root) $x_{error} = abs(x1-x2)$ end subroutine bolzano subroutine picard(guess_root,root,f_error,x_error,k) double precision, intent(in) :: guess_root double precision, intent(out) :: root double precision, intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2 integer k_max $k_max = 100$ k = 1

x1 = guess_root

x1 = x2x2 = f(x2)k=k+1

write(*,*) k

do while(abs(x2-x1).gt.f_error)

if (k.gt.k_max) then

write(*,*) "k0verflow"

x2 = f(x1)

call abort() endif enddo root = x2f_error = f(root) $x_{error} = abs(x2-x1)$ end subroutine picard subroutine newton(guess_root,root,f_error,x_error,k) double precision,intent(in) :: guess_root double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,delta integer k_max $k_max = 100$ x1 =guess_root k = 1do while(abs(f(x1)).gt.f_error) x2 = x1delta = x1/1000x1 = x1 - f(x1)/ diff(x1)k = k + 1if(k.gt.k_max) then write(*,*) "k0verflow" call abort() endif enddo

root = x1

 $f_{error} = f(x1)$

end subroutine newton

 $x_{error} = abs(x2-x1)$

subroutine newton_downhill(guess_root,root,f_error,x_error,k) double precision,intent(in) :: guess_root double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,delta,temp,q integer k_max $k_max = 100$ k = 1x1 = guess_root x2 = x1 - f(x1)/diff(x1)write(*,*) x2,f(x2)do while (abs(f(x2)) .gt. f_error) q = 1temp = x2do while (abs(f(x1)) .le. abs(f(x2)))x2 = x1 - q * f(x1)/diff(x1)q = q/2**if** (q . lt. 2**(-10)) **then** write(*,*) "q0verflow" endif enddo write(*,*) x2,f(x2)x1 = tempk = k + 1if (k .gt. k_max) then write(*,*) "k0verflow" call abort() endif enddo root = x2 $f_{error} = f(x2)$ $x_{error} = abs(x2-x1)$ k = kend subroutine newton_downhill subroutine post_acceleration(guess_root, root, f_error, x_error, k) double precision, intent(in) :: guess_root double precision, intent(out) :: root double precision, intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,L integer k_max $k_max = 100$ k = 1x1 = guess_root x2 = f(x1)write(*,*) x2,f(x2)-x2 do while $(abs(f(x2) - x2) \cdot gt. f_error)$ L = diff(x2)x1 = x2x2 = (f(x2)-L*x2)/(1-L)write(*,*) x2,f(x2)-x2k = k+1

if $(k > k_max)$ **then**

call abort()

endif

 $f_{error} = f(x2) - x2$ $x_{error} = abs(x2-x1)$

end subroutine post_acceleration

integer,intent(out) :: k

write(*,*) x2,f(x2)-x2

temp1 = f(x1)temp2 = f(temp1)

integer k_max $k_max = 100$

x1 = guess_root temp1 = f(x1)temp2 = f(temp1)

x1 = x2

k = k+1

endif

 $f_{error} = f(x2)-x2$ $x_{error} = abs(x2 - x1)$

enddo root = x2

end module

program main

use find_root implicit none

integer :: k1 left_number1 = 0 $right_number1 = 1$ $f_{error1} = 1e-8$ $x_error1 = 1e-8$

end program main

1. Newton downhill iteration

Screenshot

k = 1

enddo root = x2

k = k

write(*,*) k,"k0verflow"

double precision, intent(in) :: guess_root

double precision, intent(out) :: root

double precision :: x1,x2,temp1,temp2

do while $(abs(x2 - x1) \cdot gt. f_error)$

write(*,*) x2,f(x2)-x2

if (k .gt. k_max) then

call abort()

end subroutine aitken_acceleration

guess_root1 = ht_number1

write(*,*) "k0verflow"

subroutine aitken_acceleration(guess_root,root,f_error,x_error,k)

x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1)

x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1)

double precision :: guess_root1,root1,f_error1,x_error1,left_number1,rig

! call bolzano(left_number1, right_number1, root1, f_error1, x_error1, k1)

! call newton_downhill(guess_root1, root1, f_error1, x_error1, k1) call aitken_acceleration(guess_root1, root1, f_error1, x_error1, k1) ! call post_acceleration(guess_root1, root1, f_error1, x_error1, k1)

! write(*,*) "root = ",root1, "f_error =", f_error1, "k=",k1

double precision, intent(inout) :: f_error,x_error

2. Post acceleration

Aitken iteration

The screenshot of 0 and $-\sqrt{3}$ are ignored. while set guess_number = 1 can get the answer x = 0, and guess_number = -2 can get the answer $x = -\sqrt{3}$ **Error analytics**

I use guess root = 2, f_error = 1e-8 to to find the root $x = \sqrt{3}$ Form this image, we can hardly find the newton downhill algorithm. It shows newton downhill is really fast The origin data has upload to Github