0. 写在前面

1 本课程总体结构

章节		教学内容
第一章 引言 (刘均, 2)		概念与研究背景;主要任务;挑战与研究方向;相关资源
第二章: 自然语言的 统计特性(刘均,1)		Zipf定律、Heaps定律、Benford 定律。
	词袋模型 (刘均, 3)	语言模型;词袋模型(BoW);TF-IDF。 NLU任务:情感分析、文本聚类。
第三章:	概率语言模型 (李辰, 6)	概率语言模型; n-gram 模型; 最大似然估计; 平滑技术。 NLU任务: 分词、语义关系抽取。
语言模型	主题模型 (刘均, 6)	生成模型; 主题模型的图表示; LSA、PLSA、LDA; NMF等。 NLU任务: 话题检测、推荐。
	神经网络语言模型 (李辰, 6)	分布式表示; C&W、CBOW、Skip-Gram、Glove等。 NLU任务: 对话、实体消歧。
	概述 (李辰, 1)	面临的挑战;发展历程;方法类别及特点;MT评估。
第四章: 机器翻译	统计机器翻译 (李辰, 3)	统计MT; Noisy Channel模型; IBM模型。
	神经网络机器 译 与大语言模 (刘均, 4)	RNN与LSTM简介: Encoder-Decoder框架: Attention模型:

- 这门课由于由两门老师授课,个人感觉结构比较混乱
- 由于时间紧任务重经费无,所以笔记还是按PPT内容和以上结构展开,即使有很多不合理的地方

2 考试有关事项

1. 关于语言模型的预备知识

1.1. 语言模型概念

1 含义: 自然语言在不同语言单位上的数学模型→实现自然语言的可计算性

2 类型概览

模型	含义
词袋语言模型	用文中词汇表示文本
概率语言模型	根据给定词汇序列来预测下一个词汇的概念
主题语言模型	利用非监督方法获得文档中隐含的主题
神经网络语言模型	利用神经网络学习词汇/句子/字符

1.2. 语言模型的评价指标

1 召回率与精确度

1. 真假性&阴阳性:

实际\预测	\mathbf{C}_1	$\neg \mathbf{C}_1$
\mathbf{C}_1	True Positives(TP)真阳性	False Negatives(FN)假阴性
$ eg \mathbf{C}_1$	False Positives(FP)假阳性	True Negatives(TN)真阴性

2. 召回率与精确率

- 。 $Recall = \frac{TP}{TP + FN}$: 表示真实阳性中/被预测为阳性的比率
- 。 $Precision = \frac{TP}{TP + FP}$: 表示被预测为阳性中/真实阳性的比率,一词多义会使之降低

。 F1-score
$$=2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$
: 二者的调和平均

3. 一词多义&一义多词

- \circ 一词多义 \rightarrow 多义间不相关的含义被认为相关 \rightarrow 假阳性增加 \rightarrow Precision降低
- \circ 一义多词→多词间相同的含义被认为是不同 \to 假阴性增加 \to Recall降低

2 困惑度

1. 含义: 反应不确定性,即困惑度越低→模型预测下一个元素时选择更少→预测越准确

2. 公式: Perplexit=
$$2^{\text{Cross-Entropy}} = \exp\left(-\frac{1}{N}\sum_{i=1}^{N}\ln P\left(w_i|w_1^{i-1}\right)\right)$$

 $P\left(w_i|w_1^{i-1}\right)$ 是谟型给定前序 w_1^{i-1} 条件下,预测词 w_i 的概率

1.3. 自然语言的统计特性

1.3.1. Zipf定律

1 Zipf定律

1. 内容:令出现频率第r高的词汇出现频率为f(r),则有 $f(r)=\frac{\mathrm{Const}}{r^s}$ 其中 $s{\approx}1$

2. 含义:对于词频分布,最常见词的分布极为普遍+大多数词出现频率极低

3. 解释:

解释模型	含义
米勒猴实验	胡乱生成的带有字母+空格的序列,词频和排名也符合幂律关系
最小努力原则	通过词频差异最小化交流的成本
优先连接机制	网络结构中,新节点倾向于连接度数更大的点,与Zipf类似

2 Zipf定律的实验

1. 符合程度: $f(r) = \frac{\mathrm{Const}}{r^s} \to \log f(r) = \log C - s \log r$ 故可通过检测后者线性程度

2. 实验结论: 幂律分布很常见+排名靠中间的术语会更符合

3 Zipf定律与索引

0. 倒排索引: 用于快速全文检索的数据结构, 示例如下

。 文档

1 | Doc1: fat cat rat rat

2 Doc2: fat cat

3 Doc3: fat

。 构建的倒排索引

1 | fat: Doc1 Doc2 Doc3

cat: Doc1 Doc2

rat: Doc1

1. 词频太高/太低的词都不适合索引, 会导致返回太多/太少的文档, 适中的才最有价值

2. 基于Zipf定律,去处高频Stopword能优化倒排索引时空开销,如下为倒排索引的一个实例

1.3.2. Heaps定律

1 Heaps定律

1. 内容:词汇表大小V与文本词数n满足 $V=Kn^{\beta}$

2. 参数: $10 \le K \le 100 \le 0.4 \le \beta \le 0.6$, 当 $K = 44 \le \beta = 0.49$ 最匹配

2 用途: 预测随文本增长词汇表&倒排索引大小的变化

1.3.1. Benford定律(第一数字法则)

1 Benford定律

1. 背景:在许多社会现象中,数据首位数往往分布不均(为1概率最大 $\xrightarrow{\text{依次递减}}$ 为9概率最小)

2. 定律:令数据集中d作为首字母的概率 $P(d)=\lg\left(1+\frac{1}{d}\right)$,d>9及非十进制时依旧适用

2 对Benford定律的一些思考

1. 适用: 跨数量级变化的数据集, 如财务数据和自然现象

2. 应用: 检测数据造假、异常值、验证财务报告真实性

3. 成因:还不具备完全的可解释性,大概是因为数据在对数尺的分布

2. 词袋语言模型

2.1. BoW模型

▲基本步骤:以句I love machine learning以及Machine learning is fun为例

步骤	示例
分词	I \ love \ machine \ learning \ Machine \ learning \ is \ fun
词汇表	$V=[{ m I, love, machine, lerning, is, fun}]$
向量化	第一句变为 $A_1 = [1,1,1,1,0,0]$ 第二局变为 $A_2 = [0,0,1,1,1,1]$

2特点

1. 原理上: 完全忽略了语法/词序, 默认词与词间的概率分布独立

2. 效果上:

。 优点: 实现极其简单, 但高效且应用广泛

○ 缺点:无法区分&一义多词,如同义词替换后的两文档相似度低于实际值

2.2. TF-IDF模型

1 TF-IDF值

1. 计算:

$$\text{TF-IDF}(t,d) = \text{TF}(t,d) \times \text{IDF}(t) \rightarrow \begin{cases} \exists \# \text{TF}(t,d) = \frac{\exists t \text{在文档}d \text{出现次数}}{\texttt{文档}d \text{总词数}} \\ \\ \text{逆文档频IDF}(t) = \log \frac{\texttt{文档} \text{总数}}{\text{DF}(t)(\text{包含}t\text{的文档数}) + 1} \end{cases}$$

2. 含义: TF-IDF(t,d)越高,代表词t对文档d越重要

2 TF-IDF值改进:原始词频值往往不是所需的

1. 对原始词频TF(t,d)的改进

词频类 型	公式	意义
对数	$1 + \log(\mathrm{TF}(t,d))$	压缩较高词频,减少其对相关性影响的夸 大
增强	$0.5 + \frac{0.5 {\times} \mathrm{TF}(t,d)}{\max_{\mathrm{t}} \mathrm{TF}(t,d)}$	映射词频到 $0.5 { ightarrow} 1$,防止高频词权重过大
布尔	$\begin{cases} 1 \text{ if } \mathrm{TF}(t,d) > 0 \\ 0 \text{ otherwise} \end{cases}$	不关注具体的词频值,仅表示是否出现
平均对 数	$\frac{1 + \log \left(\mathrm{TF}(t,d) \right)}{1 + \log \left(\mathrm{ave}_{t \in d}, \left(\mathrm{TF}(t,d) \right) \right)}$	使词频高的词与低的词之间的差距不会过大

2. 对文档频率 $\mathrm{DF}(t)$ 的改进: N是文档总数

文档频率 $\mathrm{DF}(t)$	公式	意义
逆文档频率 $\mathrm{IDF}(t)$	即 $\log \frac{N}{\mathrm{DF}(t)}$ 者 $\log \frac{N}{\mathrm{DF}(t)+1}$	衡量词在文档集合中的稀 有性
概率文档频率 $ProbDF(t)$	$\max\left\{0,\log\frac{N-\mathrm{DF}(t)}{\mathrm{DF}(t)}\right\}$	通过概率角度评估词的稀 有性

$$\mathbf{TF\text{-}IDF} = \begin{bmatrix} \text{TF-IDF}(t_1, d_1) & \text{TF-IDF}(t_1, d_2) & \cdots & \text{TF-IDF}(t_1, d_n) \\ \text{TF-IDF}(t_2, d_1) & \text{TF-IDF}(t_2, d_2) & \cdots & \text{TF-IDF}(t_2, d_n) \\ \vdots & \vdots & \ddots & \vdots \\ \text{TF-IDF}(t_m, d_1) & \text{TF-IDF}(t_m, d_2) & \cdots & \text{TF-IDF}(t_m, d_n) \end{bmatrix}$$

归一类 型	公式	意义
余弦归	$\mathbf{TF ext{-}IDF} imesrac{1}{\sqrt{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}[ext{TF ext{-}IDF}(t_i,d_j)]^2}}$	用于计算文档间的余弦相似度
基准归	$\mathbf{TF}\text{-}\mathbf{IDF} \times \frac{1}{mn}$	消除文档集合大小对权重的 影响
字长归	$\mathbf{TF}\text{-}\mathbf{IDF} imes rac{1}{\left(\mathrm{CharLen} ight)^{lpha}}$	适用于不同长度的文档,且 $\alpha {<} 1$

3基于TF-IDF的余弦相似度

1. TF-IDF值: 对于文档 d_1 和 d_2 , 词汇表长为m

$$\circ \ \mathbf{TF\text{-}IDF} = \begin{bmatrix} \mathrm{TF\text{-}IDF}(t_1,d_1) & \mathrm{TF\text{-}IDF}(t_1,d_2) \\ \mathrm{TF\text{-}IDF}(t_2,d_1) & \mathrm{TF\text{-}IDF}(t_2,d_2) \\ \vdots & \vdots \\ \mathrm{TF\text{-}IDF}(t_m,d_1) & \mathrm{TF\text{-}IDF}(t_m,d_2) \end{bmatrix} \xrightarrow{\text{$\mathbb{R}^{\frac{1}{2}}\mathbb{H}-\mathbb{H}$}} \begin{bmatrix} \mathrm{tf\text{-}idf}(t_1,d_1) & \mathrm{tf\text{-}idf}(t_1,d_2) \\ \mathrm{tf\text{-}idf}(t_2,d_1) & \mathrm{tf\text{-}idf}(t_2,d_2) \\ \vdots & \vdots \\ \mathrm{tf\text{-}idf}(t_m,d_1) & \mathrm{tf\text{-}idf}(t_m,d_2) \end{bmatrix}$$

2. 两文档余弦值:

。 归一化表示:
$$\operatorname{sim}(d_1,d_2) = \sum_{j=1}^m \operatorname{tf-idf}(t_j,d_1) \cdot \operatorname{tf-idf}(t_j,d_2)$$