ResQTools

Wearable Computing Project Tobias Fischer, Stefan Penzinger

HAGENBERG | LINZ | STEYR | WELS

Bergetabelle OÖLFV

	FEUE SCHU	RWEH	IR	ROLLWIDERSTAND in kN												
t	а	b	С	d	е	f	g		а	Fah						
1	0,4	1,5	2	2,5	10	20	30		b	Fah						
2	0,8	3,0	4	5	20	40	60		C	Fah						
4	1,6	6,0	8	10	40	80	120		d	Fah						
6	2,4	8,5	12	15	60	120	180		е	Fah						
8	3,2	11,5	16	20	80	160	240		f	Fah						
10	4,0	14,0	20	25	100	200	300		g	Fah						
12	4,8	17,1	24	30	120	240	360			Roll						
14	5,6	20	28	35	140	280	420									
16	6,4	23	32	40	160	320	480			Fah						
18	7,2	26	36	45	180	360	540									
20	8,0	29	40	50	200	400	600			Unt						
22	8,8	32	44	55	220	440	660									
24	9,6	35	48	60	240	480	720			Stei						
26	10,4	37	52	65	260	520	780									
28	11,2	40	56	70	280	560	840									
30	12	43	60	75	300	600	900			Roll						
32	13	46	64	80	320	640	960		l							
34	14	49	68	85	340	680	1020		l	Stei						
36	15	52	72	90	360	720	1080		ı							

DE LANDES

	(Acker) chlamm mm
Boden e im So Schla Schlar zeug	(Acker) chlamm mm mm 0,003
Boden e im So Schla Schlar zeug	(Acker) chlamm mm mm 0,003
e im So Schla Schlar zeug =	chlamm mm mm 0,003
Schlar Schlar zeug =	mm mm 0,003
Schlar zeug =	mm 0,003
zeug =	0,003
=	
=	t
=	
=	
=	kN
=	+kN
=	kN
	=

Aufrichtekraft = halbes Fahrzeuggewicht

_																							
FEUERWEHR STEIGUNGSWIDERST													RSTA	ND ir	ı kN								
	t	2°	4°	6°	8°	10°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°	38°	40°	42°	
	1	0,3	0,7	1,0	1,4	1,7	2,1	2,4	2,8	3,1	3,4	3,7	4,1	4,4	4,7	5,0	5,3	5,6	5,9	6,2	6,4	6,7	
	2	0,6	1,4	2,0	2,8	3,4	4,2	4,8	5,6	6,2	6,8	7,4	8,2	8,8	9,4	10	10,6	11,2	11,8	12,4	12,8	13,4	
	4	1,2	2,8	4,0	5,6	6,8	8,4	9,6	11,2	12,4	13,2	14,8	16,4	17,6	18,8	20	21,2	22,4	23,6	24,8	25,6	26,8	
	6	1,8	4,2	6,0	8,4	10,2	12,6	14,4	16,8	18,6	20,4	22,2	24,6	26,4	28,2	30	31,8	33,6	35,4	37,2	38,4	40,2	
	8	2,4	5,6	8,0	11,2	13,6	16,8	19,2	22,4	24,8	27,2	29,6	32,8	35,2	37,6	40	42,4	44,8	47,2	49,6	51,2	53,6	
	10	3,0	7,0	10,0	13,0	17,0	21,0	24,0	28,0	31,0	34,0	37,0	41,0	44,0	47,0	50	53,0	56,0	59,0	62,0	64,0	67,0	
	12	3,6	8,4	12,0	15,8	20,4	25,2	28,8	33,6	37,2	40,8	44,4	49,2	52,8	56,4	60	63,6	67,2	70,8	74,4	76,8	80,4	
	14	4,2	9,8	14,0	18,6	23,8	29,4	33,6	39,2	43,4	47,6	51,8	57,4	61,6	65,8	70	74,2	78,4	82,6	86,8	89,6	93,8	
	16	4,8	11,2	16,0	21,4	27,2	33,6	38,4	44,8	49,6	54,4	59,2	65,6	70,4	75,2	80	84,8	89,6	94,4	99,2	102	107	
II ,	18	6,0	12,0	18,0	24,0	30,0	36,0	42,0	48,0	54,0	60,0	66,0	72,0	78,0	84,0	90	96,0	102	108	114	120	126	
	20	6,6	13,2	19,2	26,4	33,0	39,6	46,2	52,8	59,4	66,0	72,0	79,2	85,8	92,4	99	106	112	119	125	132	139	1
60°	22	7,2	14,4	21,6	28,8	36,0	43,2	50,4	57,6	64,8	72,0	79,2	86,4	93,6	101	108	114	122	130	137	144	151	6
	24	8,0	16,0	24,0	32,0	40,0	48,0	56,0	64,0	72,0	80,0	88,0	96,0	104	112	120	128	136	144	152	160	168	
	26	8,7	17,2	25,8	34,4	43,0	51,6	60,2	68,8	77,4	86,0	94,6	103	112	120	129	138	146	155	163	172	181	
1 /	28	9,4	18,8	28,2	37,6	47,0	56,4	65,8	75,2	84,6	94,0	103	113	122	132	141	150	160	169	179	188	197	
	30	10,0	20,0	30,0	40,0	50,0	60,0	70,0	80,0	90,0	100	110	120	130	140	150	160	170	180	190	200	210	ì
50°	32	10,6	21,2	31,8	42,4	53,0	63,6	74,2	84,8	95,4	106	117	127	138	148	159	170	180	190	201	212	223	5
	34	11,2	22,4	33,6	44,8	56,0	67,2	78,4	89,6	101	112	123	134	146	157	168	179	190	202	213	224	235	
	36	12,0	24,0	36,0	48,0	60,0	72,0	84,0	93,0	108	120	132	144	156	168	180	192	204	216	228	240	252	
	38	12,6	25,2	37,8	50,4	63,0	75,6	88,2	100	113	126	139	151	164	176	189	202	214	227	239	252	265	
	40	13,2	26,4	39,6	52,8	66,0	79,2	92,4	106	119	132	145	158	172	185	198	211	224	238	251	260	277	
1/	40°			/ 30	0		/ 20°		/ 1	0°	0°		10	• \		20° \		30	0° /			40°	
Haftreibung (Reifen auf Asphalt):										ı													
		J ('				,																	

0.3 - 0.4

rutschig

~2-3t Geländewagen LKW 4 Achsen Quelle: BMLV

100 400 760 1140

800 1200

LKW 2 Achsen

LKW 3 Achsen

Version 3

Quelle: BMLV

0.5 - 0.7

trocken

nass 0.4 - 0.5

OBERÓSTERREICH

Standfestigkeit RLF >

Zugkraft

Version 3

15 54 76 95 380

16 57 80

~1,7t Van/Kleinbus/SUV

~1,5t PKW

Verwendungszweck

- Aufzuwendende Kraft berechnen (e.g. Auto wegziehen)
 - Seilwinde, Greifzug, etc.
 - Material muss Kräfte aushalten
 - Eventuell Flaschenzug notwendig

Problem

- Aufwendiges Ablesen von Kräftetabelle
- Fehlende Mittel zur Steigungsmessung
- Fehlentscheidungen in Stresssituationen

Lösung

- Messung der Steigung über Beschleunigungssensor
 - Setestet für Android
- Einfache Eingabe notwendiger Parameter
 - > Fahrzeugtyp bestimmt Masse
 - > Untergrund
- Rollwiderstand
- Steigungswiderstand
- Gesamtwiderstand
- Kotlin Multiplatform Mobile
 - Compose Multiplatform

Rollwiderstand

```
F_R = c_R * F_N
```

- C_R ... Rollwiderstandskoeffizienten
- F_N ... Gewicht in kN

```
SOLID( rollingResidenceCoefficient: 1.0 / 25.0, title: "Asphalt, Beton"),

GRASS( rollingResidenceCoefficient: 1.0 / 7.0, title: "Gras, Wiese"),

GRAVELY( rollingResidenceCoefficient: 1.0 / 5.0, title: "Schotter"),

LOOSE( rollingResidenceCoefficient: 1.0 / 4.0, title: "Lockerer Boden, Sand"),

MUD_OVER_AXLE( rollingResidenceCoefficient: 1.0, title: "Über Achse im Schlamm"),

MUD_OVER_TYRE( rollingResidenceCoefficient: 2.0, title: "Über Räder im Schlamm"),

MUD_UP_TO_BODY( rollingResidenceCoefficient: 3.0, title: "Bis Aufbau im Schlamm"),

RAIL( rollingResidenceCoefficient: 0.003, title: "Schiene");
```

Steigungswiderstand

 $F_S = F_N * sin(\alpha)$

- F_N ... Gewicht in kN
- α ... Steigung in rad

FeuerwehrApp

- Datenbank für Organisationen der Feuerwehr
- Über Kennzeicheneingabe können Informationen über Fahrzeug herausgefunden werden
 - Antrieb, Marke, Name, Höchstzulässige Masse, Erstzulassung, FIN, Variante / Karosserieaufbau
- Feuerwehrapp in Berge- und Gefahrsituationen nicht ausreichend, da die einzig relvevante Information der **Antrieb** ist
 - > Keine Anzeige der Rettungskarte → für die Sicherheit der Einsatzbeteiligten notwendig
 - Marke, Name, Variante und Erstzulassung sind hilfreich um diese zu suchen

EuroRescue App

- App für das Anzeigen und Downloaden von Rettungskarten
 - Primär für Ersthelfer
 - Suche über Marke, Modell, Variante,
 Antrieb und Baujahre
- Problem
 - Manuelle Suche
 - Genaue Bestimmung von Modell und Variante nicht mehr möglich (Beschädigungen)
 - Genaue Bestimmung von Antrieb (ist es ein Diesel oder doch Hybrid?) und Baujahr nicht möglich

Motivation

- Das Suchen der Rettungskarten benötigt somit zu viel Zeit durch das Verwenden mehrerer Komponenten und manuellem Suchen
 - Nicht sinnvoll im Einsatzfall!
- Einheitliche Anwendung soll geschaffen werden
 - > Nutzt beide Systeme um Rettungskarte mittels Eingabe der Kennzeichen anzuzeigen.

Ablauf

Fuzzy Search

- Keine direkte Suche möglich
 - > Modell, Marke, etc. ist nicht immer gleich
- Vorfilterung mit Erstzulassung
- Fuzzy Search
 - Token Set Ratio (Am besten wenn sich Wörter überschneiden und zusätzliche Details in den Strings)
 - > Partial Ratio (Am besten wenn ein Substring in einen längeren String enthalten ist)

ResQTools

Wearable Computing Project Tobias Fischer, Stefan Penzinger

HAGENBERG | LINZ | STEYR | WELS

