Tutoria 4

1. Problema #1

En el circuito de la Figura 1, se observa que las corrientes en los colectores de los transistores Q1 y Q2 son iguales si $V_{BE1} - V_{BE2} = 20mV$. Determine la razón del área transversal de los transistores si el resto de los parámetros del dispositivo son iguales. (Problema 4.6 Razavi)

Figura 1: Circuito del Problema 1

Calcule la tensión V_x en el circuito de la Figura 2 si la corriente de fuga en inversa $I_s=6x10^{-16}A.$ (Razavi 4.9)

Figura 2: Circuito del Problema 2

Considere el circuito mostrado en la figura 3, asumiendo que $\beta=100$ y $I_s=7x10^{-16}A$. Si $R_1=10k\Omega$, determine V_B para que $I_C=1mA$.

Figura 3: Circuito del Problema 3

Calcule el punto de operacion de los circuitos mostrados en la figura 4. Asuma que $\beta=100,~I_s=5x10^{-16}A$ y que $V_A=\infty.$

Figura 4: Circuito del Problema 4

Asuma $I_s=2x10^{-17}A,\,V_A=\infty$ y $\beta=100$ en el circuito de la figura 5. ¿Cual es el máximo valor de R_C si la juntura colector-base debe experimentar una tensión de 200mV para encontrarse en polarización en directa.

Figura 5: Circuito del Problema 5