ECE 214 — Exam 2

Estimated time for completion: ≤ 1.25 hour 25 April 2017

Rules of the Exam

- Rule 1: The examination period begins at 9:30am on Tuesday 25 April 2017 and ends at 10:45am on Tuesday 25 April 2017.
- Rule 2: The exam is 15% of your grade.
- Rule 3: There are a total of 15 answers. All answers are worth 1 point unless otherwise indicated. Circle the most correct answer.
- Rule 4: The exam is closed book and closed notes. You may use your ECE 214 Laboratory Notebook, a ruler, and a calculator.
- Rule 5: Have fun!

Answer Key

Problem 1: Filter

Consider the filter shown below: High Pass $f_c = \frac{1}{2\pi (8 \times 10^3)(19.9 \times 10^{-9})} = 1 \text{KHZ}$

1. $V_{IN} = 10\cos(20,000\pi t)$ and $V_{OUT} = A\cos(40,000\pi t)$. What is the value of A?

(a)
$$0 \text{ V}$$

(b) 0.5 V
(c) 1 V

$$A = 0 \quad \text{(There are no frequency components)}$$

$$a + w = 40,0007$$

- (d) 2 V
- (e) 3.2 V
- (f) 5 V
- (g) 7 V
- (h) 10 V
- (i) none of the above

2. $V_{IN} = 10\cos(40,000\pi t)$ and $V_{OUT} = A\cos(40,000\pi t)$. What is the value of A?

(a)
$$0 \text{ V}$$
 $f = \frac{W}{2\pi} = 20 \text{ kHz}$ (In the Passband)

- (c) 1 V
- (d) 2 V
- (e) 3.2 V
- (f) 5 V
- (g) 7 V
- (h) 10 V
 - (i) none of the above

- 3. $V_{IN} = 10\cos(2,000\pi t)$ and $V_{OUT} = A\cos(2,000\pi t)$. What is the value of A?
 - (a) 0 V
- f= = 1KHZ (at the cutoff freg)
- (b) 0.5 V (c) 1 V
- (d) 2 V
- A= (-3d13) × 10 => = -3d8
- (e) 3.2 V
- (f) 5 V
- (g))7 V
- 20 log (=) = -3 => = 10 = 10 = 0.7

A= 7V

- (i) none of the above
- 4. $V_{IN} = 10\cos(200\pi t)$ and $V_{OUT} = A\cos(200\pi t)$. What is the value of A?
 - (a) 0 V
- f= = 2 100 Hz (one decade below cutoff freg)
 - (b) 0.5 V
 - (c)1 V
- A = -20dB
- (d) 2 V
- (e) 3.2 V
- auly(完)=-20=> lg完=-1=> => => =0.1
- (f) 5 V
- (g) 7 V

A= IV

- (h) 10 V
- (i) none of the above
- 5. $V_{IN} = 10\cos(2,000,000\pi t)$ and $V_{OUT} = A\cos(2,000,000\pi t)$. What is the value of A?
 - (a) 0 V
- f= = 10 Hz & Twice the cutoff freg
- (b) 0.5 V
- (c) 1 V (d) 2 V
- A= 10 x (-20 decide) (log(2))
- (e) 3.2 V
- (f) 5 V
- = 10x (- 6 dB)
- (g) 7 V
- (h) 10 V
- (i) none of the above

Problem 2: Consider the circuit shown below:

1. What is the Thévenin Equivalent Voltage with respect to terminals A and B? (2 points)

VTh = 28 V

2. What is the Thévenin Equivalent Resistance with respect to terminals A and B? (2 points)

VT1 + V12-20 - 3 2 0

- (a) 6.3 V
- (b) 10 V
- (c) 12.6 V
- (d) 14 V
- (e) 18 V
- (g) None of the above

- (a) 1 Ω
- (b) 4 Ω
- ((c) 5 Ω
- (d) 6Ω
- (e) 12Ω
- (f) 15Ω

(g) None of the above

3. A resistor that dissipates 32 W of power is placed between terminals A and B. What is the value of this resistor?

- (b) 1Ω or 12.5Ω
- (c) 2 Ω
- (d) Ω or 12.5Ω
- (e) 37 Ω
- (f) 37 Ω or 12.5 Ω
- (g) None of the above

Power =
$$\left(\frac{28}{5+1}\right)^2 R = 32$$

$$(28)^2 R = 32(5+R)^2$$

Problem 3: In the series RLC circuit shown below, the switch has been in position 'A' for a very long time and moves to position 'B' at t=0.

- 1. What is $V_C(0^+)$?
 - (a) 0 V
 - (b) 1.1 V
 - (c) 1.7 V
 - (d) 2.0 V
 - (e) 4.91 V
 - (f) 6.91 V
 - (g) None of the above
- 2. What is $V_L(0^+)$?
 - (a) 0 V
 - (b) 1.1 V
 - (c) 1.7 V
 - (d) 2.0 V
 - (e) 4.91 V
 - (f) 6.91 V
 - (g) None of the above

$$\begin{array}{c}
X = 0 \\
VR = 0 \\
VL = 0
\end{array}$$

$$\begin{array}{c}
t = 0^{+} & Vc = 2V \\
V = 0
\end{array}$$

- 3. What is $V_R(0^+)$?
 - (a) 0 V
 - (b) 1.1 V
 - (c) 1.7 V
 - (d) 2.0 V
 - (e) 4.91 V
 - (f) 6.91 V
 - (g) None of the above
- 4. What is $V_R(\infty)$?
 - (a) 0 V
 - (b) 1.1 V
 - (c) 1.7 V
 - (d) 2.0 V
 - (e) 4.91 V
 - (f) 6.91 V
 - (g) None of the above
- 5. What is $V_R(40\mu)$?
 - (a) 0 V
 - (b) 1.1 V
 - (c) 1.7 V
 - (d) 2.0 V
 - (e) 4.91 V
 - (f) 6.91 V
 - (g) None of the above

$$\frac{di(t)}{dt} = \frac{\sqrt{L(01)}}{L} = \frac{4.91 \times 10^3}{L} = B_1 W_1$$

Extra Credit:

1.	What is the part number of the transistor used in Lab #9?
	(a) IRFD113
	(b) IRFD400

- (c) IRFD100
- (d) 2N7801
- (e) 2N7000
- (f))2N7001
 - (g) None of the above
- 2. What is the part number of the inductor used in Lab #6?
 - (a) 32102C
 - (b) L1000
 - (c) L1mltd
 - (d) h1298d
 - (e) 21C098
 - (f) 420d2
 - (g) None of the above