Object Detection Writup report

Contents

Overview	1
Set Up	1
Create new config	2
Training	2
Evaluation	2
Exprting	2
Inferenceing	2
Dataset	2
Training	3
Random_image_scale	8
RGB to gray and scale	10
Change softmax	12

Overview

Object Detection is the key component of self-driving car systems. We do nothing if we did not understand what the object that around the car is, especially sign, persons, road...

The brower crash random because the limits of the VM memory size.

Set Up

It look like that the task is simple. It hides a lot of details using The Tensorflow Object Detection API. I have train the model many times because of the limit space of /home/workspace.

- View the Web brower in TruboVNC (the brower often crash).
- Write shell command in Web base vscode

In Exploratory Data Analysis.ipynb section, I just plots the images in Tfrecord.

Create new config

python edit_config.py --train_dir /home/workspace/data/train/ --eval_dir /home
/workspace/data/val/ --batch_size 2 --checkpoint /home/workspace/experiments/p
retrained_model/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/checkpoint/ckpt-0 --1
abel_map /home/workspace/experiments/label_map.pbtxt

Training

python experiments/model_main_tf2.py --model_dir=/home/backups/experiments/ref
erence/ --pipeline_config_path=experiments/reference/pipeline_new.config

I have to move the mode dir to /home/backups because of the limits space of /home/workspace

Evaluation

python experiments/model_main_tf2.py --model_dir=/home/backups/experiments
/reference/ --pipeline_config_path=experiments/reference/pipeline_new.config -checkpoint_dir=experiments/reference/

Exprting

python experiments/exporter_main_v2.py --input_type image_tensor --pipeline_co
nfig_path experiments/reference/pipeline_new.config --trained_checkpoint_dir e
xperiments/reference/ --output_directory experiments/reference/exported/

Inferenceing

python inference_video.py --labelmap_path label_map.pbtxt --model_path experim ents/reference/exported/saved_model --tf_record_path data/test/segment-1220038 3401366682847_2552_140_2572_140_with_camera_labels.tfrecord --config_path experiments/reference/pipeline_new.config --output_path animation.gif

Dataset

I have loaded 60000 images in this training dataset.

- 1035407 vehicles in the datasets
- 290753 pedestrains
- 7481 cyclists

{1: 1035407, 2: 290753, 4: 7481}

Below is the mean pixel value Distribution

Training

I have trained many times of this model with differents num_steps and differents paramers.

The GPU remains 4 Hours

```
batch_size: 2
data_augmentation_options {
 random_horizontal_flip {
}
}
data_augmentation_options {
 random_rgb_to_gray {
  probability: 0.2
 }
}
data_augmentation_options {
 random_adjust_contrast {
  min_delta: 0.2
  max_delta: 1.0
 }
data_augmentation_options {
 random_adjust_brightness {
  max_delta: 0.2
}
}
data_augmentation_options {
 random_image_scale {
  min_scale_ratio: 0.8
  max_scale_ratio: 2.2
 }
data_augmentation_options {
 random_crop_image {
```


learning_rate

learning_rate tag: learning_rate 0.04 0.03 0.02 0.01 0 400 800 1.2k 1.6k 2k 2.4k

2500 num_steps

4500 num_steps

It look like that the Detection is very well.

Random_image_scale


```
Accumulating evaluation results...
DONE (t=0.38s).

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.007

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.005

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=10 ] = 0.002

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.033

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.108

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.108

INFO:tensorflow:Eval metrics at step 7000
DONE (t=0.38s).
INFO:tensorflow:Eval metrics at step 7000
I1107 08:12:56.186412 140648646125312 model_lib_v2.py:988] Eval metrics at step 7000
INFO:tensorflow:
                                    + DetectionBoxes_Precision/mAP: 0.001689
I1107 08:12:56.193719 140648646125312 model_lib_v2.py:991] + DetectionBoxes_Precision/mAP: 0.001689
INFO:tensorflow: + DetectionBoxes_Precision/mAP@.50IOU: 0.006965
I1107 08:12:56.195389 140648646125312 model_lib_v2.py:991] + DetectionBoxes_Precision/mAP@.5010U: 0.006
965
                                      + DetectionBoxes_Precision/mAP@.75IOU: 0.000484
INFO:tensorflow:
I1107 08:12:56.197005 140648646125312 model_lib_v2.py:991] + DetectionBoxes_Precision/mAP@.7510U: 0.000
484
0613
INFO:tensorflow: + DetectionBoxes_Precision/mAP (medium): 0.039422
```

The initial decline of the curve is relatively random. After 7000 steps, the Average Precision still the same low.

RGB to gray and scale

Add RGB to gray

Change softmax

Loss/localization_loss tag: Loss/localization_loss

Loss/normalized_total_loss tag: Loss/normalized_total_loss

Loss/regularization_loss tag: Loss/regularization_loss

Loss/total_loss tag: Loss/total_loss

Loss 5 ^ Loss/classification_loss tag: Loss/classification_loss Loss/localization_loss tag: Loss/localization_loss 1.6 1.2 0.8 0.8 0.4 0.6 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k Loss/regularization_loss tag: Loss/regularization_loss Loss/normalized_total_loss tag: Loss/normalized_total_loss 25 20 20 15 15 10 10 5 5 0 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k [] **■** □ Loss/total_loss tag: Loss/total_loss 20 15 10 5 0 0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k

It just a blue dot in this image, If we run once of the evaluation process. I changed the checkpoint_path in the checkpoint file.

I have tried many times with differents data_augmentation_options and differents steps, But the AP is still low. I think that the main reason is too little data.