Bank Loan Default Prediction

Problem Statement

Bank loans is one of the major source revenues for banks. The interest charged to the loan applicants is what drives the daily operation of banks. However, bank loans are often associated with risks such as borrowers defaulting on their loans. Banks have collected past data on loan borrowers which include detailed information of each borrower, and they would like to develop a machine learning model to predict if a new borrower is likely to default on their loans or not.

```
Data columns (total 34 columns):
    Column
                               Non-Null Count
                                               Dtype
    ID
                               148670 non-null int64
                               148670 non-null int64
     vear
     loan limit
                               145326 non-null
                                               object
    Gender
                               148670 non-null object
                                               object
     approv in adv
                               147762 non-null
    loan type
                               148670 non-null object
    loan purpose
                               148536 non-null object
    Credit Worthiness
                               148670 non-null object
    open credit
                               148670 non-null object
    business or commercial
                               148670 non-null object
 10 loan amount
                               148670 non-null int64
 11 rate of interest
                               112231 non-null float64
 12 Interest rate spread
                               112031 non-null float64
 13 Upfront charges
                               109028 non-null float64
 14 term
                               148629 non-null float64
 15 Neg ammortization
                               148549 non-null object
                               148670 non-null object
 16 interest only
 17 lump sum payment
                               148670 non-null object
 18 property value
                               133572 non-null float64
 19 construction type
                               148670 non-null object
 20 occupancy type
                               148670 non-null object
 21 Secured by
                               148670 non-null object
 22 total units
                               148670 non-null object
 23 income
                               139520 non-null float64
 24 credit type
                               148670 non-null object
 25 Credit Score
                               148670 non-null int64
 26 co-applicant credit type
                               148670 non-null object
                               148470 non-null object
 28 submission_of_application 148470 non-null object
 29 LTV
                               133572 non-null float64
 30 Region
                               148670 non-null object
 31 Security Type
                               148670 non-null object
 32 Status
                               148670 non-null int64
 33 dtir1
                               124549 non-null float64
dtypes: float64(8), int64(5), object(21)
```

Data Understanding

- 148,670 rows
- 34 columns (33 features + 1 target variable)
- Status is the target variable (0 or 1)
- 1 for defaulting applicants and 0 for nondefaulting applicants

```
loan_limit, 3344, 2.2%
approv_in_adv, 908, 0.6%
loan_purpose, 134, 0.1%
rate_of_interest, 36439, 24.5%
Interest_rate_spread, 36639, 24.6%
Upfront_charges, 39642, 26.7%
term, 41, 0.0%
Neg_ammortization, 121, 0.1%
property_value, 15098, 10.2%
income, 9150, 6.2%
age, 200, 0.1%
submission_of_application, 200, 0.1%
LTV, 15098, 10.2%
dtir1, 24121, 16.2%
```

Data Understanding

- Some columns contain missing values.
- There are not duplicated records in this data.

- The Status target column is imbalanced.
- Requires imbalanced data handling.

- Loan amount is heavily right skewed. Majority of the applicants applied a loan amount between \$0 and \$796,500.
- It does not appear to be a determining factor of loan defaults.

- The debt-to-income ratio is about symmetrical. 50% of the applicants have a ratio of between 31 to 45.
- It appears that applicants with higher debt-to-income ratio have a higher tendency to default on their loans.

- The credit score has a relatively uniform distribution from 500 to 900.
- Credit scores do not appear to determine whether a loan applicant would default.

•Applicants charged with higher interest rate are more likely to default on their loans.

 Applicants charged with higher initial loan charges are more likely to not default on their loans.

- Majority of the applicants are of ages 45-54.
- Looking at the applicants of ages 35-44 and 45-54, there is a lower proportion of defaulting applicants.

 All applicants with EQUI credit type default on their loans and there is also a higher number of defaulting applicants who use EQUI compared to other credit types.

Imputing missing values

BEFORE IMPUTING

loan_limit, 3344, 2.2% approv_in_adv, 908, 0.6% loan_purpose, 134, 0.1% rate_of_interest, 36439, 24.5% Interest_rate_spread, 36639, 24.6% Upfront_charges, 39642, 26.7% term, 41, 0.0% Neg_ammortization, 121, 0.1% property_value, 15098, 10.2% income, 9150, 6.2% age, 200, 0.1% submission_of_application, 200, 0.1% LTV, 15098, 10.2% dtir1, 24121, 16.2%

AFTER IMPUTING

loan_limit	False
Gender	False
approv_in_adv	False
loan_type	False
loan_purpose	False
Credit_Worthiness	False
open_credit	False
business_or_commercial	False
loan_amount	False
rate_of_interest	False
Interest_rate_spread	False
Upfront_charges	False
term	False
Neg_ammortization	False
interest_only	False
lump_sum_payment	False
property_value	False
construction_type	False
occupancy_type	False
Secured_by	False
total_units	False
income	False
credit_type	False
Credit_Score	False
co-applicant_credit_type	False
age	False
submission_of_application	False
LTV	False
Region	False
Security_Type	False
dtir1	False

#	Column	Non-Null Count	Dtype
0	loan limit	104069 non-null	int64
1	approv in adv	104069 non-null	int64
2	Credit Worthiness	104069 non-null	int64
3	open_credit	104069 non-null	int64
4	business or commercial	104069 non-null	int64
5	loan_amount	104069 non-null	int64
6	rate_of_interest	104069 non-null	float64
7	Interest_rate_spread	104069 non-null	float64
8	Upfront_charges	104069 non-null	float64
9	term	104069 non-null	float64
10	Neg_ammortization	104069 non-null	int64
11	interest_only	104069 non-null	int64
12	lump_sum_payment	104069 non-null	int64
13	property_value	104069 non-null	float64
14	construction_type	104069 non-null	int64
15	Secured_by	104069 non-null	int64
16	income	104069 non-null	float64
17	Credit_Score	104069 non-null	int64
18	co-applicant_credit_type	104069 non-null	int64
19	submission_of_application	104069 non-null	int64
20	LTV	104069 non-null	float64
21	Security_Type	104069 non-null	int64
22	dtir1	104069 non-null	float64
23	Gender_Joint	104069 non-null	float64
24	Gender_Male	104069 non-null	float64
25	Gender_Sex Not Available	104069 non-null	float64
26	loan_type_type2	104069 non-null	float64
27	loan_type_type3	104069 non-null	float64
28	loan_purpose_p2	104069 non-null	
29	loan_purpose_p3	104069 non-null	float64
30	loan_purpose_p4	104069 non-null	float64
31	occupancy_type_pr	104069 non-null	float64
32	occupancy_type_sr	104069 non-null	float64
33	total_units_2U	104069 non-null	float64
34	total_units_3U	104069 non-null	float64
35	total_units_4U	104069 non-null	float64
36	credit_type_CRIF	104069 non-null	float64
37	credit_type_EQUI	104069 non-null	float64
38	credit_type_EXP	104069 non-null	float64
39	age_35-44	104069 non-null	
40	age_45-54	104069 non-null	float64
41	age_55-64	104069 non-null	float64
42	age_65-74	104069 non-null	float64

Feature Encoding

 Convert non-integer categorical columns to integer type by performing label encoding and one hot encoding.

Outlier Handling

Outlier Handling

Feature Scaling

BEFORE STANDARDIZING

AFTER STANDARDIZING

	year	loan_amount	rate_of_interest	Interest_rate_spread	Upfront_charges
count	148670.0	1.486700e+05	112231.000000	112031.000000	109028.000000
mean	2019.0	3.311177e+05	4.045476	0.441656	3224.996127
std	0.0	1.839093e+05	0.561391	0.513043	3251.121510
min	2019.0	1.650000e+04	0.000000	-3.638000	0.000000
25%	2019.0	1.965000e+05	3.625000	0.076000	581.490000

	loan_limit	approv_in_adv	Credit_Worthiness	open_credit	loan_amount	rate_of_interest	Interest_rate_spread	Upfront_charges
count	5.608500e+04	5.608500e+04	5.608500e+04	5.608500e+04	5.608500e+04	5.608500e+04	5.608500e+04	5.608500e+04
mean	3.243273e-17	-7.664765e-18	1.393594e-18	5.447684e-18	-1.469608e-17	-3.234658e-15	-1.508882e-16	1.266903e-17
std	1.000009e+00	1.000009e+00	1.000009e+00	1.000009e+00	1.000009e+00	1.000009e+00	1.000009e+00	1.000009e+00

Feature Selection

Dropped features:

- 1. "business_or_commercial"
- 2. "property_value"
- 3. "term"
- 4. "construction_type"
- 5. "Secured_by"
- 6. "Security_type"
- 7. "loan_type_type2"

 Select features using VIF (variance inflation factor). Features with high VIF imply strong multicollinearity between them and are dropped.

Modelling

Model	Recall (Train)	Recall (Test)	F1 score (Train)	F1 score (Test)	ROC AUC score (Train)	ROC AUC score (Test)
Logistic Regression	0.726	0.650	0.791	0.665	0.808	0.775
Tuned Logistic Regression	0.726	0.650	0.791	0.665	0.808	0.775
K-nearest neighbors	0.986	0.849	0.927	0.716	0.923	0.840
Random Forest	1.000	1.000	1.000	0.999	1.000	0.999
Tuned Random Forest	1.000	1.000	1.000	1.000	1.000	1.000
LGBM	1.000	1.000	1.000	0.999	1.000	0.999
Tuned LGBM	1.000	1.000	1.000	1.000	1.000	1.000

The dataset is split into 70% training data and 30% testing data before data preprocessing to ensure no testing data leakage.

In the end, we select K-nearest neighbors as our model as it does not appear to be overfitting unlike random forest and LGBM. It also performs better (higher recall) than logistic regressions which appears to be underfitting.

Feature Importance

Recommendations

- Focus more on applicants with a lower debt-to-income ratio as they are more likely to repay their loans (not default).
- Lower the interest rate for loan borrowers as higher interest rates tend to make applicants to default more.
- Focus more on the two age groups 35-44 and 45-54 years old as they comprise majority of the total applicants and have lower proportion of defaulting applicants.
- Avoid approving loans for applicants using credit type of EQUI.
- Increase upfront charges so that only people who can really afford to repay their loans are approved to borrow from the bank. These people are more likely to successfully repay their loans.