1. Одномерная линейная регрессия

В этой части упражнения используется линейная регрессия с одной переменной для предсказания прибыли, полученной в результате торговли в разных городах. Предположим, что нужно рассмотреть некоторые города для открытия новой торговой точки.

Имеются данные о прибыли, которую можно получить в этих городах, а также численность населения этих городов. Нужно использовать эти данные, чтобы выбрать, какой город использовать следующим.

Справка

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную.

Линейная регрессия — используемая в статистике регрессионная модель с линейной функцией зависимости.

В простейшем случае линейную модель можно представить так:

$$y_i = w_0 + w_1 x_i + \varepsilon_i$$

где w_0 — математическое ожидание зависимой переменной y_i , когда переменная x_i равна нулю; w_1 — ожидаемое изменение зависимой переменной y_i при изменении x_i на единицу. ε_i — случайная ошибка

Файл ex1data1.txt содержит набор данных для нашей задачи.

Первый столбец — численность населения города (в 10 000 чел.), второй столбец — прибыль, которую можно получить в этом городе (в 10 000-кратном размере). Отрицательное значение для прибыли свидетельствует об убыточности торговой точки.

Задание1. Напишите скрипт для загрузки этих данных в Python. Для этого рекомендуется создать текстовый файл с расширением **.py**, в котором вы будете записывать команды скрипта. Файлы скриптов Python должны располагаться в файлах именно с таким расширением.

При написании скрипта полезно бывает вставлять комментарии в код, поясняющие принцип работы скрипта. В Python для обозначения однострочного комментария используются символ #. Например

```
# пример создания матрицы NumPy в Python
a = np.array([[1, 2, 3], [4, 5, 6]])
```

Для загрузки данных из файла используется команда **loadtxt** из библиотеки **numpy**, в которую передаётся имя файла и параметр **delimiter** (разделитель значений в текстовом файле). В данной лабораторной работе в качестве файла с данными будет использоваться обычный текстовый файл с запятыми и переносами строк в качестве разделителей.

Если в качестве файла с данными используется обычный текстовый файл с разделителями, то возвращаемое функцией **loadtxt** значение необходимо присвоить некоторой переменной. Так как в файле хранится матрица значений, используем функцию **matrix** из **numpy**.

```
# в этом случае данные из файла будут сохранены в переменной data.
data = np.matrix(np.loadtxt('ex1data1.txt', delimiter=','))
```

Для того, чтобы загрузить данные из файла, может быть полезным перейти в директорию, содержащую данный файл. Для этого используется функция **chdir** модуля **os**. В качестве параметра передаётся абсолютный или относительный путь к нужной директории:

```
>>> import os
>>> os.chdir('D:')
```

Для проверки текущей рабочей директории используется команда getcwd модуля os:

```
>>> os.getcwd()
'D:\\'
```

Задание2. Нарисуйте данные, загруженные в задании 1 с помощью функции **plot** библиотеки **matplotlib**. Программно подпишите оси. Так как в нашей задаче всего 1 переменная, можно изобразить их в виде точечного графика на плоскости.

Для построения графиков в Python используется мощная библиотека **matplotlib**. Чтобы использовать её в своём скрипте, необходимо подключить её командой

```
import matplotlib.pyplot as plt
```

Для построения простых графиков проще всего использовать функцию **plot**. В качестве параметров ей передаётся либо 1 вектор (массив значений), либо 2, тогда первый будет содержать значения по оси абсцисс, а второй — значения по оси ординат. В качестве третьего параметра можно указать, как именно будет выглядеть график. Третий параметр представляет собой строку из 2 символов. Первый символ отвечает за цвет, например, **r** (red), **g** (green), **b** (blue), **k** (black). Второй символ отвечает за вид графика: - (непрерывная линия), **о** (кружочки), • (точки), * (звёздочки).

'ro' – график в виде красных кружочков

'b-' – график в виде непрерывной синей линии

'b.' – график в виде чёрных точек

Важно помнить, что если в функцию **plot** передаются данные по оси абсцисс и по оси ординат, то размер этих данных должен быть одинаковым, то есть, например, это должны быть вектора одинаковой длины.

Чтобы подписать оси и график, используются функции **xlabel**, **ylabel** и **title** соответственно. В качестве параметров все функции принимают строку. Для рисования сетки используется функция **grid**.

Пример построения точечного графика. Значения будут отмечены синими точками:

```
import matplotlib.pyplot as plt

from matplotlib import rc
font = {'family': 'Verdana', 'weight': 'normal'}
rc('font', **font)

plt.plot(X, y, 'b.')
```

```
plt.title('Зависимость прибыльности от численности')
plt.xlabel('Численность')
plt.ylabel('Прибыльность')
plt.grid()
plt.show()
```

Обратите внимание на строки 2-4. Этот код необходим для того, чтобы на графике корректно отображались русские символы.

Вот как должен выглядеть итоговый график:

Рисунок 1 График зависимости прибыльности от численности города

Чтобы нарисовать такой график, вам потребуется выбрать значения из данных, которые вы загрузили из текстового файла в предыдущем задании. Первый столбец данных, отвечающий за численность города, необходимо сохранить в переменной \mathbf{X} , второй столбец, отвечающий за прибыль, в переменной \mathbf{y} .

В библиотеке NumPy присутствуют богатые возможности по выбору строк, столбцов и отдельных элементов из матриц:

```
>>> a = np.matrix([[1, 2], [3, 4], [5, 6]])
>>> a[0, 0] # выбрать первый элемент в матрице
1
```

Если в качестве одного из индексов указано двоеточие (:), значит подходят элементы с любым индексом. Так можно выбирать из матрицы целые строки или столбцы:

```
a[:, 1] # выбираем второй столбец (индекс строки – любой, индекс столбца – второй. Индексы начинаются с нуля)
a[2,:] # выбираем третью строку (индекс строки – третья, индекс столбца – любой)
```

Более того, в качестве индекса можно использовать массивы:

```
а[[0, 2], :] # берём из матрицы а первую и третью строки
```

Так же можно выбирать диапазоны значений:

```
а[0:2, 3:6] # из матрицы а будет выбрана подматрица с 1 по 3 строку и с 4 по 7 столбец
```

Используя полученные знания, выберите первый столбец из данных файла в переменную \mathbf{X} , а второй столбец в переменную \mathbf{y} .

Функция стоимости (ошибка регрессии)

Для проведения градиентного спуска (алгоритма определения оптимальных коэффициентов, описывающих линию регрессии) нужно определить функцию стоимости (оценки), в качестве неё будем использовать квадратичную ошибку, формула 1:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \tag{1}$$

где гипотеза $h_{\theta}(x)$ получена из линейной модели, формула 2:

$$h_{\theta}(x) = \theta^T x = \theta_0 + \theta_1 x_1 \tag{2}$$

Формулу выше можно переписать следующим образом (формула 3):

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 \tag{3}$$

Где x_0 вводят искусственно, и этот параметр всегда равен единице. Этот приём используют для того, чтобы можно было вычислить значение гипотезы $h_{\theta}(x)$ в векторной форме (через перемножение векторов). Этот приём называется векторизацией вычислений и даёт помимо уменьшения кода по вычислению $h_{\theta}(x)$ ещё и значительное увеличение быстродействия расчётов, так как во многих языках программирования (и в библиотеке NumPy в том числе) векторные и матричные операции хорошо оптимизированы и выполняются быстрее, чем написанные вручную циклы.

Для понимания процедуры векторизации рассмотрим пример. Допустим, требуется вычислить значение гипотезы $h_{\theta}(x)$ для коэффициентов θ 1 и 2 и для значения x равного 3. По формуле 2 вычислим значение $h_{\theta}(x)$:1+2*3=7.

Теперь выполним то же самое, но с векторизацией вычислений. Опишем коэффициенты θ в виде векторастолбца:

$$\theta = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Значение x можно тоже записать в виде вектора-столбца. Для того, чтобы можно было применять векторизацию вычислений, к x добавим значение $x_0 = 1$. Тогда вектор x будет выглядеть так:

$$x = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Тогда значение гипотезы $h_{ heta}(x)$ может быть вычислено по формуле 2 в векторной форме:

$$h_{\theta}(x) = \theta^{T} x = \begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1 \cdot 1 + 2 \cdot 3 = 7$$

Как видим, в векторной форме мы получили тот же результат, что и при поэлементном перемножении. Важно помнить, что для векторизации вычислений необходимо добавлять единичное значение $x_0 = 1$.

В библиотеке NumPy для транспонирования матрицы или вектора используется метод **transpose()** (или краткий вариант записи функции: **T**):

Следует добавить ещё одно важное замечание. Мы считали значение гипотезы для отдельного значения x, которое представляло собой вектор-столбец. Но в нашей задаче существует целый набор значений x. И к этому столбцу значений нужно присоединить в начале столбец единиц по размеру совпадающий с размером x. Это можно сделать с помощью следующего кода Python:

```
m = X.shape[0] # количество элементов в X (количество городов)
X_ones = np.c_[np.ones((m, 1)), X] # добавляем единичный столбец к X
theta = np.matrix('[1; 2]') # коэффициенты theta представляют собой вектор-столбец из 2
элементов
# альтернативные способы создания вектора-столбца theta:
# theta = np.matrix([1, 2]).reshape(2, 1)
# theta = np.matrix([[1], [2]])
# theta = np.matrix([[1], [2]])
# theta = np.matrix([1, 2]).transpose()
h_x = X_ones * theta # так можно вычислить значение гипотезы для всех городов сразу (подумайте почему и поэкспериментируйте с этим кодом в консоли Python).
```

Обратите внимание на 3 строку приведённого выше кода. Элементы вектора **theta** задаются в виде строки в одинарных кавычках. Такая запись позволяет создавать матрицы, используя более компактный синтаксис языка MatLab.

Задание 3. Реализуете функцию **computeCost** для вычисления $J(\theta)$ для заданных коэффициентов θ_j и входных данных X и y.

Проверьте её работу, инициализировав θ_i нулевыми значениями.

Объявление функции Python начинается с ключевого слова **def**. Далее идёт имя функции и в скобках список её параметров. После закрывающей скобки ставится двоеточие.

Вот как должен выглядеть прототип создаваемой вами функции для вычисления ошибки:

```
def compute_cost(X, y, theta):
    # здесь будет размещаться ваш код вычисления ошибки cost
    return cost
```

Функция принимает 3 параметра:

X — матрица, содержащая **m** строк и **2** столбца. **m** соответствует числу примеров (городов, для которых известна прибыль). Первый столбец в **X** состоит из единиц. Второй столбец соответствует численности каждого города. Единичный столбец в данном случае необходим для того, чтобы можно было использовать векторизацию вычислений.

у – прибыльность каждого города. у представляет собой вектор-столбец, состоящую из **m** элементов (по числу городов, для которых известна прибыль). у содержит значения прибыли в каждом городе.

theta – вектор-столбец коэффициентов θ . Всего в **theta** 2 элемента, которые полностью определяют форму регрессионной прямой. Первый отвечает за смещение прямой относительно начала координат, а второй за наклон прямой (по сути, второй коэффициент **theta** – это тангенс угла наклона прямой к оси абсцисс).

После того, как в функции **compute_cost** вы реализуете вычисление гипотезы $\mathbf{h}_{\mathbf{x}}$ для всех городов \mathbf{X} в векторной форме, необходимо будет вычислить значение стоимости $J(\theta)$ по формуле 1. Для этого из каждого значения $\mathbf{h}_{\mathbf{x}}$ нужно будет вычесть соответствующее значение \mathbf{y} , разности возвести в квадрат, просуммировать и поделить на удвоенное число примеров (городов). Например, возведение в квадрат разностей двух векторов может выглядеть так:

```
np.power(h_x - y, 2)
```

Для суммирования элементов в векторе используется функция **sum** из библиотеки **NumPy**. Для определения количества примеров в матрице **X** используйте свойство **shape**.

Используя данную справочную информацию, реализуйте функцию **compute_cost**, которая будет вычислять ошибку между реальными **д** и предсказанными с помощью гипотезы $\mathbf{h}_{\mathbf{x}}$ значениями по формуле 1.

Для проверки правильности реализованной вами функции вызовите её с параметрами **X_ones** (это столбец **X**, содержащий значения численности городов, к которому добавлен единичный столбец), **y** (прибыльность каждого города) и коэффициентами **theta** = [1, 2]

Если функция реализована правильно, вы должны получить значение 75.203.

Градиентный спуск

Необходимо подобрать такой набор коэффициентов θ_j , чтобы значение $J(\theta)$ было минимальным. Один из способов сделать это - использование алгоритма градиентного спуска. Каждая итерация алгоритма обновляет параметры модели, формула 4:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)} \tag{4}$$

где α — скорость обучения (0 < α < 1).

С каждым шагом градиентного спуска коэффициенты θ_j приближаются к оптимальным значениям, которые позволят обеспечить наименьшую стоимость $J(\theta)$.

При выполнении градиентного спуска нужно контролировать сходимость путем вычисления общей стоимости.

Далее необходимо реализовать функцию градиентного спуска gradient_descent.

Помните, что стоимость $J(\theta)$ параметризуется вектором θ , а не X и y. То есть, мы минимизируем значение $J(\theta)$, изменяя значения вектора θ , не изменяя X или y. Хороший способ проверить, что градиентный спуск работает правильно, это посмотреть на значение $J(\theta)$ и убедиться, что оно уменьшается с каждым шагом, Значение $J(\theta)$ никогда не должны расти, и должны сходиться к постоянному значению к концу алгоритма.

В нормальном случае значения $I(\theta)$ сходятся как показано на рисунке:

Рисунок 2 Снижение уровня ошибки с каждой итерацией

В общем виде алгоритм градиентного спуска выглядит так:

- 1. инициализировать $\theta = (0, 1, ... 1)$
- 2. вычислить значение $h_{\theta}(x)$ для всех входов
- 3. вычислить значение функции стоимости $J(\theta)$
- 4. если значение функции стоимости $J(\theta)$ изменилось меньше нужного порога, то градиентный спуск завершен, перейти на п. 7, иначе перейти на следующий пункт
- 5. изменить значения θ по формуле 3.
- 6. перейти на п. 2
- 7. конец работы

Для того чтобы избежать зацикливания, нужно сделать ограничение на максимальное количество итераций. Если $J(\theta)$ растёт, то нужно подобрать другую скорость обучения α и попробовать другие начальные θ . Чем больше α , тем быстрее происходит сходимость, но можно пропустить оптимальную точку.

Задание 4. Реализуйте описанную выше функцию градиентного спуска **gradient_descent**. Входные параметры — *X, Y,* скорость обучения α (Например, α = 0.01), количество итераций. Не забудьте добавить к X единичный столбец (θ_0 — свободный коэффициент).

Функция gradient_descent должна иметь следующий вид:

```
def gradient_descent(X, y, alpha, iterations):
    # определение m - количество городов в матрице X (матрица X должна содержать единичный столбец). Используйте свойство X.shape для определения m и n.
    # определение n - количество столбцов в матрице X (в нашей задаче n = 2)
    # создать вектор-столбец theta и инициализировать его первый элемент нулем, а остальные элементы единицами. Количество элементов в theta равно n.
    # создать вектор-столбец J_theta, размер которого равен количеству итераций, заполненный нулями # запустить цикл по итерациям: for i in range(iterations):
    # вычислить значение ошибки J_theta[i] для текущих значений theta
    # модифицировать коэффициенты theta по формуле 4 (не забудьте про использование временной переменной temp_theta)
```

самое время они и используются при вычислении гипотезы $h_{\theta}(x)$. Чтобы избежать этой ошибочной ситуации, исходные коэффициенты **theta** копируют во временную переменную **temp_theta**, которая будет меняться на каждой итерации цикла по формуле 4. Исходные коэффициенты **theta** при этом не изменяются. После того, как все коэффициенты **temp_theta** модифицированы, их значения присваивают исходным коэффициентам **theta**.

Запустите написанную функцию gradient_descent, передав в неё параметры X_ones, y, alpha=0.02 и количество итераций 500 и проверьте, какие значения theta возвращает функция. Если всё реализовано верно, должны получиться значения около -3.277, 1.131.

С помощью функции **plot** нарисуйте график уменьшения ошибки **J_theta** с увеличением итераций. Программно подпишите график и оси. График должен выглядеть примерно как на рисунке выше.

Задание 5. Сделайте предсказание для двух неизвестных ранее городов, используя полученные выше коэффициенты θ_i .

Задание 6. Добавьте к изображению из задания 2 полученную линию регрессии (для рисования на существующем графике дважды вызывайте функцию **plot**). Для рисования линии регрессии используйте следующий код:

```
x = np.arange(min(X), max(X))
plt.plot(x, theta[1]*x + theta[0], 'g--')
```

Не забудьте программно подписать график и оси и отобразить сетку.

Вот как должен выглядеть итоговый график:

Рисунок 3 Итоговый график зависимости прибыли от числа жителей

2. Многомерная линейная регрессия

В этой части, вы реализуете линейную регрессию с несколькими переменными для прогнозирования цены дома. Предположим, вы продаете свой дом, и вы хотите знать, какая у него рыночная цена. Один из способов сделать это — сначала собрать информацию о последних проданных домах и построить модель цен.

Файл **ex1data2.txt** содержит обучающий набор цен на жилье. Первый столбец — площадь в футах, второй столбец — количество комнат, и третий столбец цена дома.

Обратите внимание, что размеры дома в абсолютных значениях на несколько порядков больше, чем количество комнат. Нормализация может ускорить градиентный спуск.

Задание 7. Загрузите входные данные. Для каждого входного столбца проведите нормализацию: вычислите среднее значение и вычтите его из набора данных. Посчитайте стандартное отклонение и разделите на него

каждый элемент. Не забудьте сохранять полученные средние значения и стандартные отклонения. Они понадобятся чтобы восстановить модель.

Задание 8. Постройте модель многомерной линейной регрессии. Сделайте прогноз для двух неизвестных ранее квартир. Можно использовать ваши предыдущие реализации функций **compute_cost** и **gradient descent**, если они работают с произвольной размерностью. Иначе сделайте их универсальными.

3. Метод наименьших квадратов

Согласно методу наименьших квадратов искомые коэффициенты θ_i могут быть найдены из формулы 4:

$$\theta = (X^T X)^{-1} X^T \vec{v}$$

Используемая формула не требует каких-либо нормализаций данных и многократных итераций. Однако в некоторых случаях решение не может быть получено, так как X^TX может оказаться необратимой (вырожденной) матрицей (это может получиться если входные столбцы линейно зависимы).

Задание 9. Постройте модель многомерной линейной регрессии с использованием МНК. Сделайте прогноз для двух неизвестных ранее квартир.

При реализации не забудьте добавить к **X** первый единичный столбец. Для транспонирования матрицы используйте её метод **transpose()** (или краткий вариант: **T**). Для вычисления обратной матрицы используйте функцию **np.linalg.pinv** библиотеки **NumPy**.

Задание 10. Сравните модели, полученные методом МНК и методом градиентного спуска.