### CEG 3320 - Digital System Design

Instructor: Travis Doom, Ph.D.

331 Russ Engineering Center

775-5105

travis.doom@wright.edu

http://www.wright.edu/~travis.doom

Lecture slides created by T. Doom for Wright State University's course in Digital System Design. Some slides contain fair use images or material used with permission from textbooks and slides by R. Haggard, F. Vahid, Y. Patt, J. Wakerly, M. Mano, and other sources.



# Module IV: Design, optimization, and complexity

Sequential design optimization
Ad-hoc design
Registers
Register-level devices
Binary Arithmetic & ALUs
ROMs and other PLDs

# Sequential Design Optimization

State minimization
State assignment
Mealy and Moore devices

# Design Example



### State Minimization

- Minimal state table use fewest possible states
  - desirable because it usually means less hardware
- If state table created from a word problem is <u>NOT</u> minimal, then:
  - Identify equivalent states:
    - Two states are equivalent if: both give the same current outputs for all inputs
       and all the next states are the same or equivalent for both states
    - e.g.: Two states are equivalent\_if all future outputs are the same
  - Replace all equivalent states with a single state.
- For small designs, minimization should not be necessary if the designer is careful when creating the state table.
- For larger designs, formal state minimization procedures are sometimes necessary.



|   | X      |   |  |  |  |
|---|--------|---|--|--|--|
| S | 0 1    | Y |  |  |  |
| A | D B    | 0 |  |  |  |
| В | C D    | 1 |  |  |  |
| C | АВ     | 1 |  |  |  |
| D | CD_    | 1 |  |  |  |
|   | S(t+1) | I |  |  |  |



| X                  |       |   |  |  |  |
|--------------------|-------|---|--|--|--|
| S                  | 0 1   | Y |  |  |  |
| A                  | D B   | 0 |  |  |  |
| В                  | C D   | 1 |  |  |  |
| C                  | A B   | 1 |  |  |  |
| D                  | _ C B | 1 |  |  |  |
| $\frac{1}{S(t+1)}$ |       |   |  |  |  |



|            | X |   |   |   |  |  |
|------------|---|---|---|---|--|--|
| S          | 0 | 1 | Y | Z |  |  |
| A          | D | В | 0 | 0 |  |  |
| В          | C | D | 1 | 0 |  |  |
| C          | A | В | 1 | 0 |  |  |
| D          | C | D | 1 | 1 |  |  |
| ${S(t+1)}$ |   |   |   |   |  |  |







**Implication Chart** 

Each cell contains information: e.g. A is equivalent to B iff ((B = C)) and (C = D).

|    |               |               | 2                                      | X            |          |   |               | _        | 1                      | Δ          |
|----|---------------|---------------|----------------------------------------|--------------|----------|---|---------------|----------|------------------------|------------|
|    |               |               | $S \mid 0$                             | 1   5        | 7        |   |               |          | <b>S</b> 0             | 1 Y        |
|    |               |               | A B                                    | C (          | <u></u>  |   |               |          | A B                    | $C \mid 0$ |
|    |               |               | $\begin{array}{c c} B & C \end{array}$ | $\mathbf{D}$ |          |   |               |          | ВС                     | $D \mid 0$ |
| Im | plication     | Chart         | C A                                    | $\mathbf{B}$ |          |   |               |          | C A                    | B 1        |
| D  | B = C         |               | D A                                    | E 1          |          | В | B = C         |          | $D \mid \underline{A}$ | B   1      |
| В  | C = D         |               | $E \mid C$                             | $D \mid 0$   | )        | Z | C = D         |          | S(t-                   | +1)        |
| C  | <b>≠</b>      | <b>≠</b>      | S(t-                                   | +1)          |          | C | ≠             | <b>≠</b> |                        |            |
| D  | <b>≠</b>      | <b>≠</b>      | A = A $B = E$                          |              | <b>→</b> | D | <b>≠</b>      | <b>≠</b> | A = A $B = B$          |            |
| E  | B = C $C = D$ | C = C $D = D$ | <b>≠</b>                               | <b>≠</b>     |          | Е | B = C $C = D$ | =        | <b>≠</b>               | <b>≠</b>   |
|    | A             | В             | С                                      | D            |          |   | A             | В        | C                      | D          |

 $\begin{array}{c} \text{Each cell contains information: e.g. A is equivalent to B iff ((B=C) and (C=D)).} \\ \text{Dr. Doom, Computer Science \& Engineering} \\ \end{array}$ 



| X                   |   |   |   |  |  |
|---------------------|---|---|---|--|--|
| S                   | 0 | 1 | Y |  |  |
| A                   | A | В | 1 |  |  |
| В                   | A | C | 0 |  |  |
| C                   | A | В | 0 |  |  |
| $\overline{S(t+1)}$ |   |   |   |  |  |



|                     | 2 | X |   |  |  |
|---------------------|---|---|---|--|--|
| S                   | 0 | 1 | Y |  |  |
| A                   | A | D | 0 |  |  |
| В                   | В | D | 0 |  |  |
| C                   | C | Е | 0 |  |  |
| D                   | F | G | 1 |  |  |
| E                   | G | F | 1 |  |  |
| F                   | D | В | 1 |  |  |
| G                   | D | C | 1 |  |  |
| $\overline{S(t+1)}$ |   |   |   |  |  |



### Mealy machines

- Mealy machine: a finite-state machine whose output is determined by a combination of both its current state AND its current input
  - George Mealy (1955)
- Moore machine: a finite-state machine whose output is determined by ONLY its current state
  - Edward Moore (1956)

Mealy and Moore machines solve similar but different problems. That
is, the timing behavior of the two types of devices are not identical

### State Assignment

- <u>Example 2</u>: Given 5 states: A, B, C, D, E and minimum # of bits (3), How many possible state assignments are there?
  - Assume that the initial state is 'A'
  - Assume that we will use the assignment 000 for the initial state

### Minimal Risk/Cost State Assignments

- If extra unused state codes exist (number of available states 2<sup>n</sup> > s ), then two choices are possible:
- Minimal Risk = most reliable but most expensive
  - Assume it is possible to enter unused state by noise, weird inputs, etc.
  - So include all unused states as present states, but all corresponding next states go to "initial" or "idle"
- Minimal Cost = somewhat risky but least expensive
  - Assume unused states NEVER entered accidentally.
  - So the next state and outputs of all unused states = "don't care" to reduce next state and output logic
- Achieving both minimal risk and minimal cost is often possible!

### Example: State Assignment Strategies

| Alter                | native A   | ssignment   | ts          |            |            | /          | 4B         |            |          |
|----------------------|------------|-------------|-------------|------------|------------|------------|------------|------------|----------|
| $Q_3Q_0$             | $Q_4Q_0$   | $Q_2Q_1Q_0$ | $Q_2Q_1Q_0$ | S          | 00         | 01         | 11         | 10         | Z        |
| 0000                 | 00001      | 000         | 000         | INIT       | A0         | A0         | A1         | A1         | 0        |
| 0001                 | 00010      | 000         | 001         | <b>A</b> 0 | ОКО        | OK0        | <b>A</b> 1 | <b>A</b> 1 | 0        |
| 0010                 | 00100      | 010         | 010         | <b>A</b> 1 | <b>A</b> 0 | <b>A</b> 0 | OK1        | OK1        | 0        |
| 0100                 | 01000      | 100         | 011         | OK0        | OK0        | OK0        | OK1        | <b>A</b> 1 | 1        |
| 1000                 | 10000      | 101         | 100         | OK1        | A0         | OK0        | OK1        | OK1        | 1        |
| Almost<br>One<br>Hot | One<br>Hot | Decompose   | d Simplest  | t          |            |            | S*         |            | <u> </u> |

#### Example decomposition:

- Initial State = all 0's for easy RESET
- Make Q2 follow Z?
- Use simple assignment for remaining state variables
- Make CERTAIN each assignment is used only once!

THUS, simpler next state and output logic!



### State Assignment Strategies

- Simplest Assignment
  - Straight binary, NOT best; purely arbitrary assignment
- One Hot Assignment
  - Redundant encoding, each flip-flop is assigned a state.
  - Uses the same number of bits as there are states (not useful in large designs)
  - Simple to assign; simple next state logic (no state decoding required)
  - Output logic is simple! One OR gate per Moore output!
- Almost One Hot Assignment
  - Almost same as One Hot, but one less state bit
  - Use all 0's to represent a state (usually INIT)
  - Must now decode state 0 if it is needed
- Decomposed Assignment
  - Use "structure" of the state table to simplify next-state/output logic



### State Assignment - Heuristic Guidelines

#### Starting from the highest priority to the lowest:

- Choose initial coded state that's easy to produce at reset: (all 0's or 1's)
  - This simplifies the initialization circuitry, but is not always wise.
- Freely use <u>any</u> of the 2<sup>n</sup> state codes for best assignment
   (i.e., with s states, don't just use the first s integers 0,1,...,s-1)
- Define specific bits or fields that have meaning with respect to input or output variables (decomposed codes)
- Consider using more than minimum number of state variables to allow for decomposed codes
- Minimize number of state variables that change at each transition
  - Prioritized adjacency schemes are often used in the field
- Simplify output logic



### State Machine Design Procedure

Most difficult and creative

- ✓ 1. Build state/output table (or state diagram) from word description
- ✓2. Minimize number of states
- $\checkmark$  3. Choose state variables and assign bit combinations to named states
  - 4. Build transition/output table from state/output table (or state diagram)
  - 5. Choose flip-flop type (D, J-K, etc.)
  - 6. Build excitation table for flip-flop inputs from transition table
  - 7. Derive excitation equations from excitation table
  - 8. Derive output equations from transition/output table
  - 9. Draw logic diagram with excitation logic, output logic, and state memory elements



### Ad hoc design

Combinational ad-hoc design Sequential ad-hoc design

### Iterative Combinational Logic

- Iterative logic array: A device consisting of identical sub-circuits connected together in a chain to perform a larger overall function
- Iterative Comparator : cascaded 1-bit comparators
- 1-bit comparator :

|                |   | <del>'</del> + |     |  |  |
|----------------|---|----------------|-----|--|--|
| Function Table |   |                |     |  |  |
| EQI            | Χ | Υ              | EQO |  |  |
| 0              | Χ | Χ              | 0   |  |  |
| 1              | 0 | 0              | 1   |  |  |
| 1              | 0 | 1              | 0   |  |  |
| 1              | 1 | 0              | 0   |  |  |
| 1              | 1 | 1              | 1   |  |  |







### Circuits: a Multiplexor



### Ad-hoc maximum value selector



### Ad Hoc Design

- Directly translate word description into a circuit
  - Use Flip-Flops to "remember" things
  - Use combinational logic to decode these remembered things
  - Usually simplifies the state assignment process because storage elements remember something meaningful.
- Useful only for small state machines
- May be easier or harder to design
- May require more or less complex hardware
- With an Ad Hoc design, the ease of design and complexity are unknown before the design is attempted
- Larger designs are often decomposed into smaller more easily solved problems and then recombined ad-hoc!
  - e.g.: Control and Data units



### Example Ad Hoc Sequential problem

Design a state machine with inputs A, B and output Z. Z=1 if A and B inputs were EQUAL for the last 2 clock ticks <u>OR</u> if B has been 1 ever since the first condition was true. Else, Z=0.

Solve the two conditions separately, then OR the results:

- a) <u>1st Condition</u> Serial Comparator. Remember last 2 comparison results, then AND together. --> SAMEBOTH output
- b) 2nd Condition Remember if B has been 1 since 1st condition true --> BOK output



### Finite Memory Machine

- Finite Memory Machines (FMMs) are one type of Ad Hoc design
- Outputs are determined by:
  - Current inputs
  - and n previous inputs
  - and m previous outputs
- FMMs are a subclass of Finite State Machines, but FSMs are not necessarily FMMs
  - an FSM may depend on all past inputs (forever)
  - a FMM can only depend on a finite number of past inputs

### Finite Memory Machine



n flip-flops store previous outputs





### Prototype Implementation with MUX





### Computer Arithmetic

Standards all the use of elements for ad-hoc use!

Addition

Subtraction

Twos-complement

Overflow

Devices for Combinational Arithmetic: Adders, ALUs

Combinational/Sequential bit-serial operations

### **Unsigned Binary Integers**

$$Y = "abc" = a.2^2 + b.2^1 + c.2^0$$

(where the digits a, b, c can each take on the values of 0 or 1 only)

$$N = number of bits$$
 Range is:  $0 \le i < 2^N - 1$ 

$$Umin = 0$$

$$Umax = 2^{N} - 1$$

#### **Problem:**

 How do we represent negative numbers?

|   | 3-bits | 5-bits | 8-bits   |
|---|--------|--------|----------|
| 0 | 000    | 00000  | 00000000 |
| 1 | 001    | 00001  | 0000001  |
| 2 | 010    | 00010  | 0000010  |
| 3 | 011    | 00011  | 00000011 |
| 4 | 100    | 00100  | 00000100 |
|   |        |        |          |

### Manipulating Binary numbers - 01

- Binary to Decimal conversion & vice-versa
  - A 4 bit binary number A =  $a_3a_2a_1a_0$  corresponds to:

$$a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0 = a_3 \times 8 + a_2 \times 4 + a_1 \times 2 + a_0 \times 1$$
  
(where  $a_i = 0$  or 1 only)

 A decimal number can be broken down by iteratively determining the highest power of two that "fits" in the number:

e.g. 
$$(13)_{10} =>$$

e.g. 
$$(63)_{10} =>$$

e.g. 
$$(0.75)_{10} =>$$

– A binary number can be broken down by iteratively adding powers of two:

e.g. 
$$(00101100)_2 =>$$

e.g. 
$$(10101100)_2 =>$$



### Binary Arithmetic: Addition

| Carries: | 0000   | 101100 |
|----------|--------|--------|
| Augend:  | 01100  | 10110  |
| Addend:  | +10001 | +10111 |
|          |        |        |
| Sum      | 11101  | 101101 |



### Binary Arithmetic: Subtraction

| 00000     | Borrow     | 0 0 1 1 0 Borrow       |  |
|-----------|------------|------------------------|--|
| 10110     | Minuend    | 1 0 1 1 0 Minuend      |  |
| - 10010   | Subtrahend | - 1 0 0 1 1 Subtrahend |  |
| 0 0 1 0 0 | Difference | 0 0 0 1 1 Difference   |  |

## Binary Arithmetic: Multiplication

|   |   |   | 1 | 0 | 1 | 1 | Multiplicand |
|---|---|---|---|---|---|---|--------------|
| X |   |   |   | 1 | 0 | 1 | Multiplier   |
|   |   |   | 1 | 0 | 1 | 1 |              |
|   |   | 0 | 0 | 0 | 0 |   |              |
|   | 1 | 0 | 1 | 1 |   |   |              |
|   | 1 | 1 | 0 | 1 | 1 | 1 | <br>Product  |



### Signed Magnitude

Leading bit is the <u>sign</u> bit

$$Y = \text{``abc''} = (-1)^a (b.2^1 + c.2^0)$$

Range is: 
$$-2^{N-1} + 1 < i < 2^{N-1} - 1$$

Smin = 
$$-2^{N-1} + 1$$
  
Smax =  $2^{N-1} - 1$ 

#### **Problems:**

- How do we do addition/subtraction?
- We have two numbers for zero (+/-)!

| -4 | 10100 |
|----|-------|
| -3 | 10011 |
| -2 | 10010 |
| -1 | 10001 |
| -0 | 10000 |
| +0 | 00000 |
| +1 | 00001 |
| +2 | 00010 |
| +3 | 00011 |
| +4 | 00100 |

### Two's Complement

#### Transformation

 To transform a into -a, invert all bits in a and add 1 to the result

Range is: 
$$-2^{N-1} < i < 2^{N-1} - 1$$
  
 $Tmin = -2^{N-1}$   
 $Tmax = 2^{N-1} - 1$ 

### **Advantages:**

- Operations need not check the sign
- Only one representation for zero
- Efficient use of all the bits
- m + 2's complement  $n \leftrightarrow m + (2^n n)$

$$\leftrightarrow$$
 m - n + 2<sup>n</sup> (ignored carry)  $\leftrightarrow$  m - n

| -16 | 10000 |
|-----|-------|
| ••• | •••   |
| -3  | 11101 |
| -2  | 11110 |
| -1  | 11111 |
| 0   | 00000 |
| +1  | 00001 |
| +2  | 00010 |
| +3  | 00011 |
| ••• | •••   |
| +15 | 01111 |

## Binary Integer number lines/rings





### Manipulating Binary numbers - 10

#### SIGN EXTENTION

– In the 2's complement representation, leading zeros <u>do not</u> affect the value of a positive binary number, and leading ones <u>do not</u> affect the value of a negative number. So:

$$01101 = 00001101 = 13$$
 and  $11011 = 11111011 = -5$ 

| 00001101                                          | x0D        |
|---------------------------------------------------|------------|
| <u>11111011</u>                                   | <u>xFB</u> |
| $\overline{00001000} => 8 \text{ (as expected!)}$ | x08        |



### Manipulating Binary numbers - 11

#### OVERFLOW

- If we add the two (2's complement) 4 bit numbers representing 7 and 5 we get :

```
0111 => +7

0101 => +5

1100 => -4 (in 4 bit 2's comp.)
```

- We get -4, not +12 as we would expect !!
- We have overflowed the range of 4 bit 2's comp. (-8 to +7), so the result is invalid.
- Note that if we add 16 to this result we get back 16 4 = 12
  - this is like "stepping up" to 5 bit 2's complement representation
- In general, if the sum of two positive numbers produces a negative result, or vice versa, an overflow has occurred, and the result is invalid in that representation.
- The sign extension rules help us detect overflow. If the ignored bit is appropriate for sign extension, then no information is lost.



### Binary Arithmetic: Subtraction

| Carries: Augend: | 0000<br>01100 | 101100<br>10110 |
|------------------|---------------|-----------------|
| Addend:          | +10001        | +10111          |
|                  |               |                 |
| Sum              | 11101         | 101101          |

- two-'s complement subtraction:
  - Ignore carry/overflow
  - m n  $\leftrightarrow$  m n + 2<sup>n</sup> (ignored carry)  $\leftrightarrow$  m + (2<sup>n</sup> n)  $\leftrightarrow$  m + 2's complement n
  - The easiest way to add 2<sup>n</sup>?
    - Flipping all the bits is the same as adding 2<sup>n</sup>-1 (the one's complement)
    - So then we add one



### Circuits: an adder



Half-Adder

- Two data inputs
- One data output
- One carry output
- Full-Adder
  - Two data inputs
  - One Carry input
  - One data output
  - One Carry Output
- Optional Status Outputs
  - V: Overflow
  - C: Carry
  - N: Negative
  - Z: Zero



### MSI Arithmetic Logic Units (ALU)





### Keeping track of state

- Suppose we perform an addition (A + B) on our ALU.
- Where can we "put" the result?



## 4-bit (Quad) Register





### Register with Parallel Load Enable



## Computation + storage





### Bit serial operations





## Shifting

- Moving moves data "sideways" left/right
  - Shift Left (or Shift Down) is towards MSB





Shift Right (or Shift Up) is towards LSB

⇒ Often used to rearrange bits or Multiply/Divide by 2

### **Combinational Barrel Shifter**



# Bi-directional Universal Shift Registers Quad Bi-directional Universal (4-bit) PIPO





#### **Universal SR Schematic** RIGHT (11)CLK \_ 74x194 /CLR \_\_\_(1) S1 S0 LEFT 、 LIN \_ **OH** 00 (12)D QD Q LD CLK SR 01 **CLR** 10 00 (15)QA D 11 CLK RIN -**CLR**

Doom

**Digital Systems Design** 

Wright State University, College of Engineering

Dr. Doom, Computer Science & Engineering

## **Shift Register Applications**

