Zadanie 1. Decydent z awersją do ryzyka narażony jest na szkodę X. W tabeli podane są możliwe wartości x szkody X, prawdopodobieństwa ich wystąpienia oraz wysokości odszkodowań wynikające z trzech zaoferowanych decydentowi kontraktów ubezpieczeniowych.

szkoda x	0	1	2	4
$\Pr(X=x)$	0.5	0.2	0.2	0.1
$I^{(1)}(x)$	0	0.5	1.5	3.5
$I^{(2)}(x)$	0	0	1	3
$I^{(3)}(x)$	0	0.5	1	2

Jeśli wszystkie kontrakty oferowane są po cenach równych odpowiadającym im składkom netto, to decydent wybierze kontrakt:

- (A) $I^{(1)}$
- (B) $I^{(2)}$
- (C) $I^{(3)}$
- (D) zależnie od postaci funkcji użyteczności $I^{(1)}$ lub $I^{(2)}$
- (E) zależnie od postaci funkcji użyteczności $I^{(1)}$ lub $I^{(3)}$

Zadanie 2. Dla pewnego ryzyka ilość szkód na rozkład Poissona z wartością oczekiwaną 0.25, a wartość szkody *Y* ma rozkład podany w tabeli:

У	1	2	3
$\Pr(Y=y)$	0.4	0.4	0.2

Ubezpieczyciel pokrywa szkody w pełni, dopóki łączna ich wartość nie przekroczy limitu odpowiedzialności równego 4 (nadwyżkę łącznej wartości szkód ponad 4 pokrywa ktoś inny). Prawdopodobieństwo, iż łączna wartość wypłaconych odszkodowań wyniesie 4 jest równe:

- (A) $1 1.245e^{-0.25}$
- (B) $1-1.265e^{-0.25}$
- (C) $0.265e^{-0.25}$
- (D) $1 1.285e^{-0.25}$
- (E) $0.285e^{-0.25}$

Zadanie 3. W kolejnych okresach czasu ubezpieczony charakteryzujący się wartością q parametru ryzyka $Q \in (0,1)$ generuje szkody w ilości N_t :

$$Pr(N_t = 1/Q = q) = q = 1 - Pr(N_t = 0/Q = q), \quad t = 1, 2;$$

przy czym:

$$Pr(N_1 = 1 \ i \ N_2 = 1 / Q = q) = Pr(N_1 = 1 / Q = q) \cdot Pr(N_2 = 1 / Q = q).$$

Efekt losowania ubezpieczonego z populacji ubezpieczonych opisuje rozkład:

$$f_{\mathcal{Q}}(x) = \begin{cases} 6 \cdot x \cdot (1-x) & dla & x \in (0,1) \\ 0 & dla & x \notin (0,1) \end{cases}$$
 W efekcie doświadczenia dwuetapowego (wylosowanie ubezpieczonego, następnie

wygenerowanie przez niego szkód w ilości N_1 i potem N_2),

 $COV(N_1, N_2)$ wynosi:

- (A) 0.1
- (B)
- (C) 0.05
- (D) 0
- (E)

Zadanie 4. Dla pewnego ryzyka składka netto za nadwyżkę łącznej szkody X ponad d jest dla wszystkich d należących do zbioru $\left[\frac{1}{2},\ 1\right]$ dana wzorem:

$$E[(X-d)_{+}] = \frac{1}{3} - d + \frac{2}{3} d^{1.5}.$$

Zbiór wszystkich możliwych wartości E(X) to przedział:

- (A) $\left[\frac{1}{3}, \frac{1}{3} + \frac{\sqrt{2}}{6}\right]$
- $(B) \qquad \left[\frac{1}{3}, \quad \frac{1}{3} + \frac{\sqrt{2}}{12}\right]$
- (C) $\left[\frac{1}{3} \frac{\sqrt{2}}{6}, \frac{1}{3} + \frac{\sqrt{2}}{6}\right]$
- (D) $\left[\frac{1}{3} \frac{\sqrt{2}}{12}, \frac{1}{3} + \frac{\sqrt{2}}{6}\right]$
- (E) $\left[\frac{1}{3} \frac{\sqrt{2}}{12}, \frac{1}{3} + \frac{\sqrt{2}}{12}\right]$

 Zadanie 5. Zmienna X_1 ma rozkład wykładniczy o wartości oczekiwanej 1, a niezależna od niej zmienna $\,X_2\,$ ma rozkład dany gęstością:

$$f_2(x) = \begin{cases} 2x & dla & x \in (0,1) \\ 0 & dla & x \notin (0,1) \end{cases}$$

$$\Pr(X_1 + X_2 \le 2) \text{ wynosi:}$$

- $1-2e^{-1}$ (A)
- (B) $1 e^{-1}$
- (C) $1-2e^{-2}$
- (D) $1 e^{-2}$
- żadna z powyższych odpowiedzi nie jest prawidłowa (E)

Zadanie 6. Rozkład wartości pojedynczej szkody X dany jest gęstością:

$$f_X(x) = \begin{cases} \frac{160}{(2+x)^6} & dla & x > 0\\ 0 & dla & x \le 0 \end{cases}$$

Niech $Y = (1+i) \cdot X$, $i \ge 0$ (możemy i interpretować jako stopę inflacji). Niech Z ma rozkład taki, jaki ma nadwyżka szkody X ponad kwotę $d \ge 0$ pod warunkiem, iż szkoda X przekroczy kwotę d. Warunek konieczny i wystarczający, aby rozkłady zmiennych Z oraz Y były identyczne brzmi:

- (A) d = i
- (B) $d = 2 \cdot i$
- (C) $d = (1+i)^2 1$
- (D) $d = \frac{2 \cdot i}{1 + i}$
- (E) d = 0 i równocześnie i = 0

Zadanie 7. W modelu łącznego ryzyka (*collective risk model*) rozkład ilości szkód N jest rozkładem geometrycznym, a rozkład wartości pojedynczej szkody Y określony jest na zbiorze $\{1,2,3,...\}$. Znamy częściowo rozkład łącznej wartości szkód S:

k	0	1	2	3	4	5
$\Pr(S=k)$	$\frac{3}{4}$	$\frac{3}{40}$	$\frac{3}{400}$	$\frac{3}{4000}$	$\frac{4503}{40000}$	9003 400000

Pr(Y = 5) wynosi:

- (A) 0.00
- (B) 0.10
- (C) 0.20
- (D) podane informacje są sprzeczne
- (E) podane informacje są niewystarczające do udzielenia jednoznacznej odpowiedzi

Zadanie 8. Obserwujemy realizacje x_{it} łącznej wartości szkód X_{it} *i*-tego ubezpieczonego w *t*-tym roku dla i = 1, 2, ..., N, t = 1, 2, ..., T; N > 2, T > 2; nie znamy natomiast wartości następujących parametrów:

$$\mu(\Theta_{i}) = E(X_{it} / \Theta_{i}),$$

$$\sigma^{2}(\Theta_{i}) = VAR(X_{it} / \Theta_{i}),$$

$$\mu = E(\mu(\Theta_{i})),$$

$$s^{2} = E(\sigma^{2}(\Theta_{i})),$$

$$a = VAR(\mu(\Theta_{i}));$$

wiemy natomiast, że jeśli $i \neq j$ lub $t \neq s$ to $COV(X_{it}, X_{js} / \Theta_i, \Theta_j) = 0$.

Niech
$$\overline{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}$$
, $\overline{X} = \frac{1}{N} \sum_{i=1}^N \overline{X}_i$.

Mamy dwa estymatory parametru a:

$$\hat{a}_{1} = \frac{1}{NT-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(X_{it} - \overline{X} \right)^{2} - \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(X_{it} - \overline{X}_{i} \right)^{2},$$

oraz:

$$\hat{a}_2 = \max\{\hat{a}_1, 0\}.$$

Niech
$$MSE(\hat{a}_i) = E[(\hat{a}_i - a)^2].$$

Wybierz zdanie prawdziwe:

- (A) oba estymatory są nieobciążone, $VAR(\hat{a}_1) < VAR(\hat{a}_2)$
- (B) oba estymatory są nieobciążone, $VAR(\hat{a}_1) > VAR(\hat{a}_2)$

(C)
$$E(\hat{a}_1) < E(\hat{a}_2)$$
, $VAR(\hat{a}_1) < VAR(\hat{a}_2)$

(D)
$$VAR(\hat{a}_2) < VAR(\hat{a}_1) < MSE(\hat{a}_2)$$
,

(E)
$$VAR(\hat{a}_2) < MSE(\hat{a}_2) < VAR(\hat{a}_1)$$

Zadanie 9. Niech X oznacza ryzyko (zmienną losową o własności $\Pr(X \ge 0) = 1$), a $\Pi(\cdot)$ niech oznacza formułę kalkulacji składki (przyporządkowującą każdemu ryzyku liczbę nieujemną lub $+\infty$).

Oto trzy własności formuł kalkulacji składki, często uznawane za pożądane:

- 1. addytywność: $\Pi(X+Y) = \Pi(X) + \Pi(Y)$ dla każdej pary X, Y ryzyk niezależnych,
- 2. translatywność: $\Pi(X+c) = \Pi(X) + c$ dla każdego ryzyka X i stałej c > 0,
- 3. iteratywność: $\Pi(X) = \Pi(\Pi(X/\Theta))$ dla ryzyka X zależnego od czynnika losowego Θ .

Która z poniższych pięciu formuł kalkulacji składki spełnia wszystkie trzy wyżej wymienione własności?

(A)
$$\Pi(X) = (1 + \alpha)E(X)$$
 $\alpha > 0$

(B)
$$\Pi(X) = E(X) + \alpha \cdot VAR(X) \quad \alpha > 0$$

(C)
$$\Pi(X) = E(X) + \alpha \cdot \sqrt{VAR(X)}$$
 $\alpha > 0$

(D)
$$\Pi(X) = \frac{1}{\alpha} \ln(E(e^{\alpha \cdot X}))$$
 $\alpha > 0$

(E)
$$\Pi(X) = \delta \cdot E(X) + (1 - \delta)r_{0.1}, \quad \delta \in (0,1), \quad r_{0.1} = \inf\{r: \Pr(X > r) \le 0.1\}$$

Zadanie 10. W modelu nadwyżki ubezpieczyciela z czasem dyskretnym nadwyżka początkowa wynosi 2, składka należna za rok wynosi 1, a rozkład łącznej wartości szkód za n-ty rok W_n dany jest dla każdego n wzorem:

$$\Pr(W_n = k) = p \cdot q^k$$
, $k = 0, 1, 2, \dots$, gdzie $p = 1 - q > q > 0$; W_1, W_2, \dots są ponadto niezależne.

Prawdopodobieństwo ruiny wynosi:

- (A) 1
- (B) $\left(\frac{q}{p}\right)^2$
- (C) $\left(\frac{q}{p}\right)^3$
- (D) $\left(\frac{q}{p}\right)^4$
- (E) $\left(\frac{q}{p}\right)^5$

Egzamin dla Aktuariuszy z 5 kwietnia 1997 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko :	KLUCZ ODPOWIEDZI	
Pesel		

Zadanie nr	Odpowiedź	Punktacja*
1	A	
2	В	
3	С	
4	D	
5	С	
6	В	
7	A	
8	Е	
9	D	
10	D	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.