EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

06276017

PUBLICATION DATE

30-09-94

APPLICATION DATE

22-03-93

APPLICATION NUMBER

05061805

APPLICANT: NIPPON TELEGR & TELEPH CORP

<NTT>;

INVENTOR: HORIKAWA KOJI;

INT.CL.

H01Q 25/00 H01Q 3/26 H01Q 21/06

TITLE

ANTENNA FEEDING CIRCUIT

ABSTRACT :

PURPOSE: To form multi-beam constitution in which respective antenna beams correspond to plural high frequency signals one to one by using spatial light signal processing technique by preparing plural light sources which output laser lights differing in frequency and performing spatial optical modulating operation and high frequency signal superposing operation corresponding to antenna beam patterns by optical frequency multiplexing.

CONSTITUTION: The respective laser lights of angular frequencies ωL₁-3wL which are outputted by the laser light sources 41₁-41_n are distributed to two paths respectively by optical distributors 56₁-56_n. A spatial optical modulating device 11 inputs respective laser lights of one path, performs spatial modulation and light frequency multiplexing corresponding to an antenna beam pattern, and outputs the result. Further, a laser light modulating device 12 imposes time modulation for superposing corresponding high frequency signals on the laser lights of the other distribution path, performs the frequency multiplexing of the respective modulated signal lights, and outputs the result. The lights of those two paths are multiplexed by an optical multiplexer 59 and guided to a light-electricity converter array 52 through an optical fiber bundle 48 corresponding to respective radiation elements 55 of an array antenna.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-276017

(43)公開日 平成6年(1994)9月30日

(51) Int.Cl.5	識別記号	庁内整理番号	FI	技術表示箇所
H01Q 25/0	0	2109-5 J		
3/2	26 Z	2109-5 J		
. 21/0	6	2109-5 J		

審査請求 未請求 請求項の数2 OL (全 10 頁)

(21)出願番号	特顏平 5-61805	(71)出願人	000004226
			日本電信電話株式会社
(22)出願日	平成5年(1993)3月22日		東京都千代田区内幸町一丁目1番6号
		(72)発明者	小林 理
			東京都千代田区内幸町1丁目1番6号 日
			本電信電話株式会社内
		(72)発明者	堀川 浩二
			東京都千代田区内幸町1丁目1番6号 日
			本電信電話株式会社内
		(74)代理人	弁理士 古谷 史旺
		1	

(54) 【発明の名称】 アンテナ給電回路

(57) 【要約】

【目的】 マルチピームを形成するアンテナ給電回路に 関し、空間的な光信号処理技術を用いて複数の高周波信 号と各アンテナビームが1対1に対応したマルチビーム を形成することを目的とする。

【構成】 異なる周波数のレーザ光を出力する複数のレーザ光源と、各周波数のレーザ光を2経路に分配する光分配器と、一方の各周波数のレーザ光に対して一括してアンテナピームパターンに応じた空間的な変調を行う空間光変調装置と、他方の各周波数のレーザ光に対してそれぞれ対応する高周波信号を重畳する時間的な変調を行い、各変調信号光を光周波数多重化して出力するレーザ光変調装置と、各変調装置で生成された信号光を合波しアレーアンテナの各放射素子対応に出力する光合波器と、各放射素子対応の信号光から各アンテナビームに対応する高周波信号を抽出して各放射素子に供給する光/電気変換器とを備える。

【特許請求の範囲】

【財求項1】 異なる周波数のレーザ光を出力する複数のレーザ光源と、

一方の経路に分配された各周波数のレーザ光に対して、 一括してアンテナビームパターンに応じた空間的な変調 を行う空間光変調装置と、

他方の経路に分配された各周波数のレーザ光に対して、 それぞれ対応する高周波信号を重畳する時間的な変調を 10 行い、各変調信号光を光周波数多重化して出力するレー ザ光変調装置と、

各変調装置で生成された信号光を合液し、アレーアンテナの各放射素子対応に出力する光合液器と、

前記各放射素子対応の信号光をそれぞれ電気信号に変換し、各アンテナビームに対応する高周波信号を抽出して 前記各放射素子に供給する光/電気変換器とを備えたことを特徴とするアンテナ給電回路。

【請求項2】 異なる周波数のレーザ光を出力する第一 の複数のレーザ光源と、

前記第一の複数のレーザ光源から出力される各周波数の レーザ光とそれぞれコヒーレントの関係を有するレーザ 光を出力する第二の複数のレーザ光源と、

前記第一の複数のレーザ光源から出力される各周波数のレーザ光に対して、一括してアンテナピームバターンに 応じた空間的な変闘を行う空間光変調装置と、

前記第二の複数のレーザ光源から出力される各周波数の レーザ光に対して、それぞれ対応する高周波信号を重畳 する時間的な変調を行い、各変調信号光を光周波数多重 化して出力するレーザ光変調装置と、

各変調装置で生成された信号光を合液し、アレーアンテナの各放射素子対応に出力する光合液器と、

前記各放射案子対応の信号光をそれぞれ電気信号に変換し、各アンテナビームに対応する高周波信号を抽出して 前記各放射素子に供給する光/電気変換器とを備えたことを特徴とするアンテナ給電回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、空間的な光信号処理技術を用いてアンテナビームパターンを形成するアレーア 40ンテナの給電回路において、同技術を用いてアレーアンテナをマルチビームアンテナとして機能させるアンテナ 給電回路に関する。

[0002]

し、それから求まる振幅および位相を有する高周波信号 を各放射素子に給電すればそのアンテナビームパターン を実現することができる。

【0003】アレーアンテナの給電回路は、各放射案子に与える高周波信号の振幅および位相を設定する回路であり、その設定に応じたアンテナビームパターンが形成されることからアンテナビーム形成回路とも言われている。その構成法については各種提案されているが、近年提案されているアレーアンテナの給電回路には、空間的な光信号処理技術を用いたものがある(L.P. Anderson, F. Boldissar, D. C. D. Chang, "Phased array antenna be amforming using optical processor", proc. of AIAA'92, pp. 1279-1288, Washinton D. C., March 1992)。これは、レンズその他の光学系を用いてアンテナビームパターンに対応する高周波信号の振幅および位相を設定するものである。

【0004】すなわち、レンズはフーリエ変換機能を有するので、アンテナビームバターンに対応するマスクパターンを用意してレンズを通すことにより、マスクパターンに対応するフーリエ変換像を得ることができる。このフーリエ変換像に応じた振幅および位相を有する高周波信号を各放射素子に与えれば、マスクバターンに対応するアンテナビームバターンを実現することができる。このような原理に基づくアンテナ給電回路について、以下「空間光信号処理型アンテナビーム形成回路」という。

【0005】図4は、空間光信号処理型アンテナビーム 形成回路の構成例を示すプロック図である。なお、ここ に示す構成はマッハツェンダー干渉計を応用したもので ある。

【0006】図において、レーザ光源41から出力されたレーザ光は、ピンホールマスク421からコリメートレンズ431を通って平行光となり、ハーフミラー441によって2経路に分配され、それぞれアンテナビームパターンに応じた空間的な変調と、伝送すべき高周波信号を重畳する時間的な変調に供される。

【0007】ハーフミラー44」で分配された一方のレーザ光は、ハーフミラー44」で反射して反射型空間光変調器45に投影される。反射型空間光変調器45には、実現したいアンテナビームパターンの形状が描かれている。投影されたレーザ光の振幅は、それに応じて空間的に変調されて反射される。変調されたレーザ光は、フーリエ変換レンズ46,ハーフミラー44。を介してレンズアレー47に入射し、複数の光伝送路(光ファイバ束)48に導かれる。このとき、フーリエ変換レンズ46の前焦点面に反射型空間光変調器45が配置され、後焦点面にレンズアレー47が配置され、反射型空間光変調器45に描かれたアンテナビームパターンのフーリエ変換像がレンズアレー47の位置(フーリエ変換面)に得られる。

--92-

30

【0008】ハーフミラー441で分配された他方のレーザ光は、コリメートレンズ432を介して集束されて 光周波数シフタ49に人力される。光周波数シフタ49は、高周波信号入力端子50から入力される高周波信号 の周波数だけ入力光の周波数をシフトして出力する機能を有する。光周波数シフタ49から出力された信号光は、ピンホールマスク422からコリメートレンズ43。を通って平行光に戻され、ミラー51で反射してハーフミラー44。に照射される。

【0009】この2経路の光はハーフミラー44。で合 10 被され、ともにレンズアレー47から複数の光伝送路48を介して、光/電気変換器アレー(〇/E)52に導かれる。光/電気変換器アレー52の出力には、この2経路の光のピート信号が得られる。このピート信号は、高周波信号入力端子50から入力された高周波信号と同じ周波数を有し、かつアンテナビームパターンに対応した振幅および位相情報を有する。

【0010】光/電気変換器アレー52から高周波伝送路53に出力されるビート信号は、それぞれ高周波増幅器モジュール54で増幅され、各放射索子55から放射 20される。各放射索子55に供給される高周波信号には、アンテナビームバターンに対応した振幅および位相情報が含まれているので、反射型空間光変調器45に描かれた図形と相似なアンテナビームバターンが形成される。

【0011】通常、アレーアンテナで任意のアンテナビームパターンを形成するには、放射素子数に対応した数の増幅器(または減衰器)および位相器が必要となる。上述の空間光信号処理型アンテナビーム形成回路では、これらの素子に対応する機能を反射型空間光変調器45とフーリエ変換レンズ46によって実現しており、構成30素子数の大幅な低減が図られている。

【0012】図5は、空間光信号処理型アンテナビーム形成回路の原理構成を示すプロック図であり、図4に示す各部を機能ごとに集約したものである。図において、レーザ光源41,複数の光伝送路48,高周被信号入力端子50,光/電気変換器アレー(O/E)52,高周被伝送路53,高周被増幅器モジュール54,放射素子55はそのまま対応する。

【0013】光分配器56は、レーザ光源41から出力されるレーザ光を2経路に分配するハーフミラー44、40に対応する。空間光変調装置57は、レーザ光に対してアンテナビームパターンに応じた空間的な変調を行う反射型空間光変調器45,フーリエ変換レンズ46およびその前後焦点面までの空間伝送路に対応し、さらにレンズアレー47の機能も含む。レーザ光変調装置58は、レーザ光に伝送すべき高周波信号を重畳する光周波数シフタ49に対応する。両変調信号光を合成する光合成器59は、フーリエ変換レンズ46とレンズアレー47との間に配置されるハーフミラー44。に対応する。また、各部を結合する光伝送路601~604は、図4では50

コリメートレンズその他を用いて形成される空間光伝送 路に対応する。

【0014】ところで、空間光変調装置57とレーザ光変調装置58に入力されるレーザ光は、互いにコヒーレントであれば、図4,図5に示すように必ずしも同一光源からとる必要はない。なお、ここに示すコヒーレントは時間的にコヒーレントであることを意味し、別光源を用いても容易に実現することができる。この原理に基づく空間光信号処理型アンテナビーム形成回路の構成は、文献(小西、中條、藤瀬、「光制御アレーアンテナの励振分布と放射特性」、電子情報通信学会技術報告A-P90

[0015]

【発明が解決しようとする課題】図4および図5に示す空間光信号処理型アンテナビーム形成回路は、シングルビームのためのものである。

-102, RCS90-32, 1990) に説明されている。

【0016】一方、アレーアンテナをマルチピームアン テナとして使用する場合には、給電回路において各アン テナビームに伝送すべき高周波信号を対応付けるが、そ れは電気的に処理される構成になっていた。

【0017】本発明は、空間的な光信号処理技術を用いてアンテナビームパターンを形成する技術を用いて、複数の高周被信号と各アンテナビームが1対1に対応したマルチビームを形成することができるアンテナ給電回路を提供することを目的とする。

[0018]

【課題を解決するための手段】 請求項1に記載の発明は、異なる周波数のレーザ光を出力する複数のレーザ光派と、各周波数のレーザ光をそれぞれ2経路に分配する光分配器と、一方の経路に分配された各周波数のレーザ光で対して、一括してアンテナビームパターンに応じた空間的な変調を行う空間光変調装置と、他方の経路に分配された各周波数のレーザ光に対して、それぞれ対応する高周波信号を重量する時間的な変調を行い、各変調信号光を光周波数多重化して出力するレーザ光変調装置と、各変調装置で生成された信号光を合波し、アレーアンテナの各放射素子対応に出力する光合波器と、各放射素子対応の信号光をそれぞれ電気信号に変換し、各アンテナビームに対応する高周波信号を抽出して各放射素子に供給する光/電気変換器とを備える。

【0019】 請求項2に記載の発明は、光分配器を用いて複数のレーザ光源から出力される各周波数のレーザ光を2経路に分配する代わりに、各周波数のレーザ光がコヒーレントの関係になるようにした2組の複数のレーザ光源を用意し、それぞれ空間光変調装置およびレーザ光変調装置に供給する。この構成は、請求項1に記載のものと同様である。

[0020]

【作用】図1は、請求項1に記載のアンテナ給電回路の) 原理構成を示すプロック図である。

[0021] ここに示す構成は、n個のアンテナビーム (マルチビーム)を形成する一般的なものであり、発振 周波数が異なるn個のレーザ光源と、各アンテナビーム に割り当てるn個の高周波信号が用意されている。

【0022】図において、レーザ光源41: ~41。から出力された角周波数(以下「周波数」という。)ωι、~ωι。の各レーザ光は、光分配器56: ~56。でそれぞれ2経路に分配される。空間光変調装置11は、その一方の各レーザ光を入力してアンテナビームパターンに応じた空間的な変調と光周波数多重化を行って出力する

【0024】この2経路の光は光合成器59で合波され、各放射案子55に対応した複数の光伝送路(光ファイバ束)48を介して、光/電気変換器アレー(O/E)52に導かれる。このとき、光/電気変換器アレー52には周波数が異なる2nの数の信号光が入力される。

【0025】光/電気変換器アレー52は、入出力特性 として2乗特性をもつ光検出器を構成要素として含むの 30で、原理的には入力された2nのすべての信号光について、各周波数の和と差の周波数成分をもつ信号(ビート信号)を出力する。このビート信号には、0アンテナビームバターンに関する空間的な変調を行った光ビーム間の干渉、0高周波信号を重畳した光ビーム間の干渉、0両者の光ビーム間の干渉があり、それぞれi=1, 2, ..., n、j=1, 2, ..., n とすると、

- Φ ωι ±ωι;
- $(\omega_{i} + \omega_{i}) \pm (\omega_{i} + \omega_{i})$
- 3 (wi + wifi) ± wij
- と表すことができる。そのうち、

 $(\omega_{L1} + \omega_{RF1}) - \omega_{L1}$

の組み合わせにおいて、i=j のときの周波数成分をもつ信号、すなわち周波数 ω ϵ ϵ ϵ 1 ($i=1, 2, \cdots, n$) のn 個の高周波信号のみを光/電気変換器アレー 5 2 の出力とする。

【0026】このようにして得られたn個の高周波信号は、高周波伝送路53を介して高周波増幅器モジュール54に入力され、そこで増幅されてそれぞれ対応する放射素子55から放射される。なお、このn個の高周波信

号はアンテナビームパターンの形状に応じた振幅および 位相を有しており、入力された各高周波信号がそれぞれ 対応するアンテナビーム(スポットビーム)に割り当て られることになる。

【0027】ところで、アンテナビームパターンのフーリエ変換像を形成する空間光変調装置11に入力するレーザ光と、高周被信号を重畳するレーザ光変調装置12に入力するレーザ光はコヒーレントでなければならない。以上の構成では、異なる周波数ωιι~ωιιのレーザの光を出力する複数のレーザ光源411~41。を用意し、各周波数のレーザ光を2分配してコヒーレントな2系統のレーザ光を生成している。

【0028】 請求項2に記載のアンテナ給電回路は、図2に示すように、異なる周波数ωι1~ωι。のレーザ光を出力する複数のレーザ光源4111~411。と、同様の複数のレーザ光源4121~412。を用意し、制御回路211~21。 により各周波数のレーザ光同士がコヒーレントになるように発振周波数および位相を制御する。 これにより、1つの光源から分配して得られた2つのレーザの光と同等のものを得ることができる。その他は請求項1に記載のものと同様に機能する。なお、2つのレーザ光源間のコヒーレント制御は、例えば両レーザ光をヘテロダイン検波してその位相誤差を制御する公知の位相同期ループ(PLL)技術を利用することができる。

[0029]

【実施例】図3は、請求項1に記載のアンテナ給電回路の実施例構成を示すプロック図である。なお、本実施例の構成は、図1に示す原理構成に対応するものである。また、本実施例では、マルチピームアンテナとして、サービスエリアを3個の円形スポットピームで覆うような場合を想定しているが、3ピーム以上への拡張も可能である。

【0030】図において、レーザ光源411、 ~41 3 から出力された周波数 ω 1、 ω 1、 ω 1、 ω 3 の各レーザ光は、それぞれコリメートレンズ 431、 α 3 で通って平行光となり、ハーフミラー441、 α 4 4、 α 5 によって2経路に分配される。

【0031】ハーフミラー4411~4413で分配された一方の3レーザ光は、マスクパターン31を通過し、フリエ変換レンズ46,ハーフミラー44;を介してレンズアレー47に入射し、光周波数多重化されて複数の光伝送路(光ファイパ東)48に導かれる。マスクパターン31は、各レーザ光とアンテナビーム(スポットビーム)に対応する3個のピンホールを有し、フーリエ変換レンズ46の前焦点面に配置される。その後焦点面にはレンズアレー47が配置され、マスクパターン31に対応するフーリエ変換像がレンズアレー47の位置(フーリエ変換面)に得られる。

5.4に入力され、そこで増幅されてそれぞれ対応する放 【0.0.3.2】ハーフミラー4.411、-4.413で分配された射素子5.5から放射される。なお、この1.00の商周被信 500 他方の3.00 レーザ光は、ミラー5.11で反射し、コリメー

トレンズ4321~4323を介して集東され、それぞれ光 周波数シフタ491~493に入力される。各光周波数シフタ491~493は、それぞれ高周波信号人力端子501~503から入力される高周波信号の周波数だけ入力光の周波数をシフトして出力する機能を有する。光 周波数シフタ491~493から出力された信号光は、 光マルチプレクサ13で光周波数多重化され、コリメートレンズ431、ピンホール422、ミラー512、コリメートレンズ431を介してハーフミラー443に照射される。

【0033】この光周波数多重化された2経路の光はハーフミラー44。で合波され、ともにレンズアレー47から複数の光伝送路48を介して、光/電気変換器アレー(O/E)52に導かれる。光/電気変換器アレー52の出力には、この光周波数多重化された2経路の光のピート信号が得られる。このピート信号は、高周波信号入力端子50。~50。から入力された各高周波信号と同じ周波数を有し、かつアンテナピームバターンのフー*

*リエ変換に対応した振幅および位相情報を有する。光/ 電気変換器アレー52から高周波伝送路53に出力され るビート信号は、それぞれ高周波増幅器モジュール54 で増幅され、各放射素子55から放射される。このと き、入力された各高周波信号はそれぞれマスクパターン 31に対応するアンテナビーム(スポットビーム)に割 り当てられる。

【0034】以下、図1に示す空間光変調装置11に対応するマスクパターン31,フーリエ変換レンズ46お よびレンズアレー47において、アンテナビームパター ンに対応したフーリエ変換像形成過程について説明する。

【0035】レンズアレー47の位置にあるフーリエ変換面における座標系を (f_1, f_2) とすると、各レーザ光源 $41_1 \sim 41_2$ から出力されたレーザ光は、このフーリエ変換面では、

[0036]

【数1】

$$\sum_{k=1}^{n} a_{k}(f_{x}, f_{y}) \cos \{\omega_{k} t + \phi_{a,k} + \phi(f_{x}, f_{y})\} \qquad \cdots (1$$

【0037】となる。ただし、添字kは、k番目のレーザ光源41、から出力されたレーザ光に対応し、nはレーザ光源の数であり、本実施例ではn=3である。 ω_k および ϕ_1 、は、それぞれレーザ光源41、から出力されるレーザ光の周波数および位相である。 $a_1(f_1,f_2)$ および $\phi_1(f_1,f_2)$ は、それぞれレーザ光源41、から出力されるレーザ光が形成するフーリエ変換像の振幅成分および位相成分である。この(1)式は、複数のレーザ光のフーリエ変換が1枚のレンズにより一括してできる※

※ことを示している。

【0038】次に、それぞれ対応する高周波信号が重量された各レーザ光のフーリエ変換面における様子について説明する。各レーザ光は、各高周波信号の周波数ω RFI , ωRF2 , ωRF5 だけシフトレ、光マルチプレクサ13で光周波数多重化されてフーリエ変換面に到達する。この信号光はフーリエ変換面では、

[0039]

【数2】

$$\sum_{k=1}^{n} b_k \cos \left\{ (\omega_k + \omega_{RFk}) t + \phi_{b,k} \right\} \qquad \cdots (2)$$

【0040】となる。ただし、b は定数であり、φ はレーザ光源41 から出力されるレーザ光に対する光路の位相長である。フーリエ変換面に表れる像は、(1),(2)式に示す2つの信号光を重ね合わせたものとなり、信号光各部の輝度および位相分布が、複数の光伝送路58を介してそのまま光/電気変換器アレー52に到★

★達する。

【0041】光/電気変換器アレー52の各光検出器は 2乗特性をもつので、各入力信号光に対して、

[0042]

【数3】

$$\sum_{k=1}^{n} \left\{ a_{k}(f_{x}, f_{y}) \cos \left\{ \omega_{k} t + \phi_{A, k} + \phi(f_{x}, f_{y}) \right\} + b_{k} \cos \left\{ \left(\omega_{k} + \omega_{RFk} \right) t + \phi_{b, k} \right\} \right\}^{2} \qquad \cdots (3)$$

【0043】を出力する。このうち、2経路の信号光の ☆の信号(ビート信号)として、 周波数ω_k、(ω_k+ω_{kFk})の差に相当する周波数成分☆

$$a_k(f_x, f_y) \cdot b_k \cdot \cos \{\omega_{RPk} t + \psi(f_x, f_y) + (\phi_{A,k} - \phi_{b,k})\}$$

を取り出す。ここで、kは、1, 2, …, n (本実施例では3) である。このn個の信号は、高周波帯域の信号で周波数 $\omega_{1,1}$ を有し、アンテナビームパターンに対応する振幅情報 $a_1(f_1,f_2)$ および位相情報 $\psi(f_1,f_2)$ を有している。

--95--

50

[0045]

【発明の効果】以上説明したように本発明は、周波数の 異なるレーザ光を出力する複数のレーザ光源を用意し、 アンテナビームパターンに対応した空間光変調操作と高 周波信号重畳操作とを光周波数多重化して行うことによ り、従来の空間光信号処理型アンテナビーム形成回路を マルチピーム形成に用いることができる。

【0046】すなわち、本発明によるアンテナ給電回路 では、一つのマッハツェッダ干渉計を光周波数多重化し て利用し、複数の高周波信号と各アンテナピームが1対 1に対応したマルチピームを形成することにより、アレ 10 45 反射型空間光変調器 ーアンテナをマルチピームアンテナとして機能させるこ とができる。

【図面の簡単な説明】

【図1】請求項1に記載のアンテナ給電回路の原理構成 を示すブロック図。

【図2】請求項2に記載のアンテナ給電回路の原理構成 を示すブロック図。

【図3】 請求項1に記載のアンテナ給電回路の実施例構 成を示すプロック図。

【図4】空間光信号処理型アンテナビーム形成回路の構 20 成例を示すプロック図。

【図5】空間光信号処理型アンテナビーム形成回路の原 理構成を示すプロック図。

【符号の説明】

- 11,57 空間光変調装置
- 12,58 レーザ光変調装置

10

- 13 光マルチプレクサ
- 21 制御装置
- 31 マスクパターン
- 41 レーザ光源
- 42 ピンホールマスク
- 43 コリメートレンズ
- 44 ハーフミラー
- - 46 フーリエ変換レンズ
- 47 レンズアレー
- 48 複数の光伝送路
- 49 光周波数シフタ
- 50 高周波信号入力端子
- 51 ミラー
- 52 光/電気変換器 (O/E)
- 53 高周波伝送路
- 5.4 高周波増幅器モジュール
- 55 放射素子
 - 56 光分配器
 - 59 光合波器
 - 60 光伝送路

【図5】

空間光信号処理型アンテナビーム形成回路の原理構成

-96-

-100-