

Models Home (http://Documentation (ht

Log in (https://mo

You are here: Home (https://models.cellml.org) / Exposures (https://models.cellml.org/e) / Bernus, Wilders, Zemlin, Verschelde, Panfilov, 2002 (https://models.cellml.org/e/5) / A computationally efficient electrophysiological model of human ventricular cells

Model Mathematics

Component: environment

Component: membrane

$$\frac{\frac{d}{dj\pi v}}{\frac{dj\pi v}{dj\pi^2}}(V) = \frac{\left(-\left(i_Na+i_Ca+i_to+i_K+i_K1+i_b_Na+i_b_Ca+i_NaCa+i_NaK\right)\right) + \left(\text{rho_}xS\right)^{-1.0}V_x2 + \left(\text{rho_}yS\right)^{-1.0}V_y2}{Cm} \\ \frac{\partial_z^2 \partial_z}{\partial_z^2 \partial_z}(V) = V_x2 \\ \frac{\partial_z^2 \partial_z}{\partial_z^2 \partial_z}(V) = V_y2$$

Component: sodium current

i_Na = g_Na
$$m^{3.0}v^{2.0}(V - E_Na)$$

E_Na = $\frac{RT}{F}\ln\left(\frac{Na_e}{Na_i}\right)$

Component: sodium_current_m_gate

$$\begin{split} \frac{\mathrm{d}}{\mathrm{dtime}} & (m) = \mathrm{alpha_m}(1.0 - m) - \left(\mathrm{beta_m}m\right) \\ \mathrm{alpha_m} &= \frac{0.32 \left(V + 47.13\right)}{1.0 - \left(v \cdot \left(0.1\right) \left(V + 47.13\right)\right)} \\ \mathrm{beta_m} &= 0.08 e^{\frac{V}{11.0}} \end{split}$$

Component: sodium_current_v_gate

$$\begin{array}{l} \frac{d}{d time} \left(v \right) = \frac{v_{infinity} - v}{tau_{,v}} \\ v_{infinity} = 0.5 \left(1.0 - \left(tanh(7.74 + V0.12) \right) \right) \\ tau_{,v} = 0.25 + 2.24 \frac{1.0 - \left(tanh(7.74 + V0.12) \right)}{1.0 - \left(tanh(0.07(v + 92.4)) \right)} \end{array}$$

Component: calcium current

i_Ca = g_Cad_infinityff_Ca(
$$V$$
 - E_Ca)
E_Ca = $\frac{RT}{2.0F} \ln\left(\frac{\text{Ca_e}}{\text{Ca i}}\right)$

Component: calcium_current_d_gate

$$\begin{split} & d_infinity = \frac{alpha_d}{alpha_d+beta_d} \\ & alpha_d = \frac{14.98e^{\left(-0.5\right)\left(\frac{V-22.36}{16.68}\right)^{2.0}}}{16.68\sqrt{2.0\pi}} \\ & beta_d = 0.1471 - \left\{\frac{5.3e^{\left(-0.5\right)\left(\frac{V-6.27}{14.93}\right)^{2.0}}}{14.93\sqrt{2.0\pi}}\right. \end{split}$$

Component: calcium_current_f_gate

$$\frac{d}{dtime} (f) = alpha_f (1.0 - f) - (beta_f f)$$

$$alpha_f = \frac{6.87e \cdot 3}{-(6.1546 - V)}$$

$$beta_f = \frac{0.069e_f (-10)(1/49.825) + 0.011}{1.01+e_f (-0.278)(V+9.825)} + 5.75 e - 4$$

Component: calcium_current_f_Ca_gate

$$f_{Ca} = \frac{1.0}{1.0 + \frac{Ca_{-i}}{1.000}}$$

Component: transient_outward_current

$$\begin{aligned} &\text{i_to} = \text{g_tor_infinityto}(V - \text{E_to}) \\ &\text{E_to} = \frac{RT}{F} \ln \bigg(\frac{0.043 \text{Na_e+K_e}}{0.043 \text{Na_i+K_i}} \bigg) \end{aligned}$$

Component: transient_outward_current_r_gate

$$\begin{split} \text{r_infinity} &= \frac{\text{alpha_r}}{\text{alpha_r} + \text{beta_r}} \\ \text{alpha_r} &= \frac{0.5266e^{(-0.0166)(v-42.2912)}}{1.0 + e^{(-0.0943)(v-42.2912)}} \\ \text{beta_r} &= \frac{5.186e - 5 V + 0.5149e^{(-0.1344)(v-5.0027)}}{1.0 + e^{(-0.1348)(v-5.186e - 5)}} \end{split}$$

Component: transient_outward_current_to_gate

$$\begin{split} \frac{d}{d time} & (to) = alpha_to(1.0-to) - \left(beta_toto\right) \\ alpha_to &= \frac{5.612e-5V+0.0721e^{(-0.173)(V+34.2531)}}{1.0+e^{(-0.1732)(V+34.2531)}} \\ beta_to &= \frac{1.215e-4V+0.0767e^{1.66e-9(V+34.0235)}}{1.0+e^{(-1.064)(V+34.0235)}} \\ tau_to &= \frac{1.215e-4V+0.0767e^{1.60e-9(V+34.0235)}}{palpha_toV+pbeta_toV} \\ to_infinity &= \frac{alpha_to(V-V_shift)}{alpha_to(V-V_shift)+beta_to(V-V_shift)} \end{split}$$

Component: delayed_rectifier_potassium_current

Model Curation

Curation Status

• JSim

• COR

OpenCell

Source

Derived from workspace Bernus, Wilders, Zemlin, Verschelde, Panfilov,

(https://models.cellml.org/workspace/bernus_wilders_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/bernus_zellml.org/workspace/b at changeset 13cbb6e57dfe

(https://models.cellml.org/workspace/bernus wilders ze

Collaboration

To begin collaborating on this work, please use your mercurial client and issue this command:

hg clone https://models.cellml.org/w

Downloads

(https://models.cellml.org/workspace/bernus_wild

(https://models.cellml.org/workspace/bernus_wild

Views Available

(https://models.cellml.org/e/5/bernus_

Documentation

(https://models.cellml.org/e/5/bernus_wilders_zemlin_ve Model Metadata

(https://models.cellml.org/e/5/bernus wilders zemlin ve

Model Curation

(https://models.cellml.org/e/5/bernus wilders zemlin ve

(https://models.cellml.org/e/5/bernus_wilders_zemlin_ve

Generated Code (https://models.cellml.org/e/5/bernus_wilders_zemlin_ve

Cite this model (https://models.cellml.org/e/5/bernus_wilders_zemlin_ve

Source View

(https://models.cellml.org/e/5/bernus_wilders_zemlin_ve

Simulate using OpenCell

(https://models.cellml.org/e/5/bernus_wilders_zemlin_ve

License

This work is licensed under a Creative Commons Attribution 3.0 Unported License

(http://creativecommons.org/licenses/by/3.0/).

Navigation

(https://models.cellml.org/sitemap)

A computationally efficient electrophysiological model of human ventricular cells (https://models.cellml.org/e/5/bernus wilders ze

$$i_{K} = g_{K}X^{2.0}(V - E_{K})$$

$$E_{K} = \frac{RT}{F} \ln\left(\frac{K_{e}}{K_{e}}\right)$$

Component: delayed_rectifier_potassium_current_X_gate

$$\begin{array}{l} \frac{\mathrm{d}}{\mathrm{dinne}}\left(X\right) = \frac{\mathrm{X_infinity-}X}{\tan_{\perp}X} \\ \mathrm{X_infinity} = \frac{1.0 + e^{-0.861 - (10.0620)}}{1.0 + e^{-0.861 - (10.0620)}} \\ \mathrm{tau_X} = 240.0 e^{-\left(\frac{1}{2}5.5 + V\right)^{2}.0}\right) + 182.0\left(1.0 + \tanh\left(0.154 + 0.0116V\right)\right) + \tan_{\perp}X_a \\ \mathrm{tau_X_a} = 40.0\left(1.0 - \left(\tanh\left(160.0 + 2.0V\right)\right)\right) \end{array}$$

Component: inward_rectifier_potassium_current

$$i_K1 = g_K1K1_infinity(V - E_K)$$

Component: inward_rectifier_potassium_current_K1_gate

$$\begin{split} K1_infinity &= \frac{\text{alpha_K1}}{\text{alpha_K1+beta_K1}} \\ alpha_K1 &= \frac{0.1}{1.0+e^{0.06(V-(E_-K+200.0))}} \\ beta_K1 &= \frac{3.0e^{2.0c+I(V+100.04(-E_-K))}+e^{0.1(V-(10.0+E_-K))}}{1.0+e^{(-0.5)(V-E_-K)}} \end{split}$$

Component: calcium_background_current

$$i_b_Ca = g_b_Ca(V - E_Ca)$$

Component: sodium_background_current

$$i_b_Na = g_b_Na(V - E_Na)$$

Component: sodium_potassium_pump

$$\begin{split} &i_NaK = \underbrace{g_NaKf_NaKf_NaK_a}_{1.0} \\ &f_NaK = \underbrace{\frac{1.0+0.1245e^{(-0.0037)/\nu}+0.0365sigmae^{(-0.037)/\nu}}{1.0+\left(\frac{10.0}{Na_{\perp}}\right)^{1.5}} \\ &f_NaK_a = \frac{1.0+\left(\frac{10.0}{Na_{\perp}}\right)^{1.5}}{1.0+\left(\frac{10.0}{Na_{\perp}}\right)^{1.5}} \\ σ = 0.1428 \left(e^{\frac{-0.3}{67.3}} - 1.0\right) \end{split}$$

Component: sodium_calcium_pump

$$\begin{split} \text{i_NaCa} &= \text{g_NaCaf_NaCa} \\ \text{f_NaCa} &= \left(87.5^{3.0} + \text{Na_e}^{3.0}\right)^{-1.0} (1.38 + \text{Ca_e})^{-1.0} \left(1.0 + 0.1 \text{e}^{\left(-0.024\right)V}\right)^{-1.0} \left(\text{Na_i}^{3.0} \text{Ca_e} \text{e}^{0.013V} - \left(\text{Na_e}^{3.0} \text{Ca_i} \text{e}^{\left(-0.024\right)V}\right)\right) \end{split}$$

Component: ionic_concentrations

© 2001-2014 - The CellML Project.

Site Map (https://models.cellml.org/sitemap)

Accessibility (https://models.cellml.org/accessibility-info)

Contact (https://models.cellml.org/about/contact)