Convolution for text

A Recurrent Neural Network may be an ideal mechanism for deal with sequential data like text.

But a one dimensional CNN may be an even simpler mechanism.

We briefly introduce the idea as it may deepen our understanding of the particular issues of text.

An n-gram is a sequence of n consecutive tokens that encapsulates a single concept (phrase)

An n-gram can capture

- multi-token concept
 - "New York City" versus ["New", "York", "City"]
- ordering information
 - ["hard", "not", "easy"] versus ["easy", "not", "hard"]

Rather than capturing the entire sequence an n-gram captures spatial locality in a limited window. (kernel width)

The first is statistical

- The joint frequency of consecutive tokens being higher than the frequency assuming independence
- p("New York City") > p("New")p("York")p("City")

The second way: train a Convolutional layer.

lf

- There is a sequence of consecutive tokens
- That creates a synthetic feature
- Useful for prediction
- Training will discover a kernel that creates this feature

This is similar to what we speculated was happening when using CNN's to recognize images.

Using one dimensional convolution with kernel size $n_{\left(l\right)}$

- ullet The convolution creates an $n\text{-}\mathrm{gram}$
- At each location in the sequence

By using multiple kernels in layer l, we can create many n-grams.

The diagram illustrates

- ullet A kernel of size 2 (blue) recognizing the pattern "Machine Learning"
- Being slid over the input sequence
- Producing a high output (red) when the consecutive tokens match the pattern

One dimensional convolution Slide blue kernel over input

Pattern: "Machine Learning"

	ĺ	1		
Machine Learning	Learning is	is easy	easy not	not hard
Learning	IS	easy	not	nar

After constructing n-gram features at layer l

- ullet We get $\mathbf{y}_{(l)}$
- ullet Of the same shape as $y_{(l-1)}$

That is: we transform a sequence of tokens into an equal sequence of n-grams

As with any other CNN, we can apply multiple kernels

• Each matching a different pattern

One dimensional convolution multiple kernels

Machine Learning	is	easy	not	hard
------------------	----	------	-----	------

Machine Learning	Learning	is	easy not	not hard
Learning	IS	easy	HOL	naru

Pattern: "Machine Learning"

,..

Machine Learning is easy not hard

Pattern: "Is easy"

Pattern: "not hard"

Machine	Learning	is	easy	not
Learning	is	easy	not	hard

And we can then apply whatever method we choose

- To transform the variable length sequence
- To a fixed length

Here's an illustration of summarization using Pooling

- Each row is a synthetic feature, at each spatial location
- Pooled to reduce the spatial locations to a single value
- For each feature

Global Pooling 3 features over spatial locations to 3 features over one location

MachineLearningiseasynotLearningiseasynothard

Pattern: "Machine Learning"

Pattern: "Is easy"

Pattern: "not hard"

Machine	Learning	is	easy	not
Learning	is	easv	not	hard
Learning	13	cusy	1100	Haia

Machine	Learning	is	easy	not
Learning	IS	easy	not	hard

Machine Learning is easy not hard

Machine Learning is easy not hard

Machine Learning is easy not hard

Conclusion

Ordering of tokens is important for understanding text.

Convolutional Layers

- By capturing temporally local relationships
- May create features ("n-grams") that are more useful
- Than isolted tokens
- Particularly after Pooling, which looses ordering

```
In [2]: print("Done")
```

Done