Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

Interpretable Machine Learning

Shapley Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

FROM GAME THEORY TO MACHINE LEARNING

- Model prediction depends on feature interactions for a specific observation
- Goal: Decompose prediction into individual feature contributions
- Idea: Treat features as players jointly producing a prediction
- How to fairly assign credit to features?
 Shapley values

FROM GAME THEORY TO MACHINE LEARNING

- Model prediction depends on feature interactions for a specific observation
- Goal: Decompose prediction into individual feature contributions
- **Idea:** Treat features as players jointly producing a prediction
- How to fairly assign credit to features?
 ⇒ Shapley values

Interpretable Machine Learning - 1/9 © Interpretable Machine Learning - 1/9

FROM GAME THEORY TO MACHINE LEARNING

- Game: Predict $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- Players: Features $x_j, j \in \{1, ..., p\}$, cooperate to produce a prediction
- ullet Value function: Defines payout of coalition $\mathcal{S} \subseteq P$ for observation \mathbf{x} by

$$v(S) = \hat{\mathit{f}}_{S}(\mathbf{x}_{S}) - \hat{\mathit{f}}_{\emptyset}, ext{ where }$$

- $\hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}$ is the PD function $\hat{f}_S(\mathbf{x}_S) := \int \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ \sim "Removes" features in -S by marginalizing, keeping \hat{f} fixed
- Mean prediction $\hat{f}_{\emptyset} := \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ is subtracted to ensure $v(\emptyset) = 0$
- **Goal:** Distribute total payout $v(P) = \hat{f}(\mathbf{x}) \hat{f}_{\emptyset}$ fairly among features

FROM GAME THEORY TO MACHINE LEARNING

- Game: Predict $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- **Players:** Features $x_j, j \in \{1, \dots, p\}$, cooperate to produce a prediction
- ullet Value function: Defines payout of coalition $S\subseteq P$ for observation ${\bf x}$ by

$$v(S) = \hat{f}_S(\mathbf{x}_S) - \hat{f}_\emptyset$$
, where

- $\hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}$ is the PD function $\hat{f}_S(\mathbf{x}_S) := \int \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ \rightsquigarrow "Removes" features in -S by marginalizing, keeping \hat{f} fixed
- Mean prediction $\hat{f}_{\emptyset} := \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ is subtracted to ensure $v(\emptyset) = 0$
- Mean prediction $I_{\emptyset} := \mathbb{E}_{\mathbf{x}}(I(\mathbf{x}))$ is subtracted to ensure $V(\emptyset) = 0$ • **Goal:** Distribute total payout $V(P) = \hat{f}(\mathbf{x}) - \hat{f}_{\emptyset}$ fairly among features

Interpretable Machine Learning - 2 / 9 © Interpretable Machine Learning - 2 / 9

FROM GAME THEORY TO MACHINE LEARNING

- Game: Predict $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- **Players:** Features $x_j, j \in \{1, \dots, p\}$, cooperate to produce a prediction
- ullet Value function: Defines payout of coalition $\mathcal{S} \subseteq P$ for observation \mathbf{x} by

$$v(S) = \hat{\mathit{f}}_{S}(\mathbf{x}_{S}) - \hat{\mathit{f}}_{\emptyset}, ext{ where}$$

- $\hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}$ is the PD function $\hat{f}_S(\mathbf{x}_S) := \int \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ \sim "Removes" features in -S by marginalizing, keeping \hat{f} fixed
- Mean prediction $\hat{f}_{\emptyset} := \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ is subtracted to ensure $v(\emptyset) = 0$
- **Goal:** Distribute total payout $v(P) = \hat{f}(\mathbf{x}) \hat{f}_{\emptyset}$ fairly among features
- Marginal contribution of feature *j* joining coalition $S(\hat{t}_{\emptyset} \text{ cancels})$:

$$\Delta(j,S) = v(S \cup \{j\}) - v(S) = \hat{t}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{t}_{S}(\mathbf{x}_{S})$$

• Example (3 features): Feature contributions for joining order $x_1 \to x_2 \to x_3$ toward total payout $v(P) = \hat{f}(\mathbf{x}) - \hat{f}_{\emptyset}$, each step reflects a marginal contribution

FROM GAME THEORY TO MACHINE LEARNING

- Game: Predict $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- **Players:** Features $x_j, j \in \{1, ..., p\}$, cooperate to produce a prediction
- Value function: Defines payout of coalition $S \subseteq P$ for observation **x** by

$$v(S) = \hat{\mathit{f}}_{S}(\mathbf{x}_{S}) - \hat{\mathit{f}}_{\emptyset}, \text{ where }$$

- $\hat{f}_S : \mathcal{X}_S \mapsto \mathcal{Y}$ is the PD function $\hat{f}_S(\mathbf{x}_S) := \int \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ \rightarrow "Removes" features in -S by marginalizing, keeping \hat{f} fixed
- Mean prediction $\hat{f}_{\emptyset} := \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ is subtracted to ensure $v(\emptyset) = 0$
- **Goal:** Distribute total payout $v(P) = \hat{f}(\mathbf{x}) \hat{f}_{\emptyset}$ fairly among features
- Marginal contribution of feature j joining coalition $S(\hat{f}_{\emptyset} \text{ cancels})$:

$$\Delta(j,S) = v() - v(S) = \hat{f}(\mathbf{x}) - \hat{f}_S(\mathbf{x}_S)$$

• Example (3 features): Feature contributions for joining order $x_1 \to x_2 \to x_3$ toward total payout $v(P) = \hat{f}(\mathbf{x}) - \hat{f}_{\emptyset}$, each step reflects a marginal contribution

Interpretable Machine Learning - 2/9 © Interpretable Machine Learning - 2/9

SHAPLEY VALUE - DEFINITION > Shapley (1953) > Strumbelj et al. (2014)

Order definition: Shapley value $\phi_i(\mathbf{x})$ quantifies contribution of x_i via

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \underbrace{\hat{f}_{\mathcal{S}_j^\tau \cup \{j\}}(\mathbf{x}_{\mathcal{S}_j^\tau \cup \{j\}}) - \hat{f}_{\mathcal{S}_j^\tau}(\mathbf{x}_{\mathcal{S}_j^\tau})}_{\Delta(j,\mathcal{S}_j^\tau) \text{ marginal contribution of feature } j}$$

→ Marginal contributions and Shapley values can be negative

• Exact computation of ϕ_i : Using PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ yields

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{r=1}^{n} \frac{1}{n} \sum_{i=1}^{n} \hat{f}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}, \mathbf{x}_{-\{S_j^{\tau} \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^{\tau}}, \mathbf{x}_{-S_j^{\tau}}^{(i)})$$

 $\leftrightarrow \hat{t}_S$ marginalizes over all features not in S using all observations $i = 1, \dots, n$

 \rightsquigarrow Exact computation requires $|P|! \cdot n$ marginal contribution terms

SHAPLEY VALUE - DEFINITION > SHAPLEY_1953 > STRUMBELJ_2014

Order definition: Shapley value $\phi_i(\mathbf{x})$ quantifies contribution of x_i via

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \underbrace{\hat{f}_{S_j^\tau \cup \{j\}}(\mathbf{x}_{S_j^\tau \cup \{j\}}) - \hat{f}_{S_j^\tau}(\mathbf{x}_{S_j^\tau})}_{\Delta(j,S_j^\tau) \text{ marginal contribution of feature } j}$$

- Interpretation: $\phi_i(\mathbf{x})$ quantifies how much feature x_i contributes to the difference between $\hat{f}(\mathbf{x})$ and the mean prediction \hat{f}_{\emptyset} → Marginal contributions and Shapley values can be negative
- Exact computation of ϕ_i : Using PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ yields

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{SP} \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_j^\tau \cup \{j\}}, \mathbf{x}_{-\{S_j^\tau \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^\tau}, \mathbf{x}_{-S_j^\tau}^{(i)})$$

 $\leftrightarrow \hat{t}_S$ marginalizes over all features not in S using all obs. $i = 1, \dots, n$ \rightsquigarrow Exact computation requires $|P|! \cdot n$ marginal contribution terms

• Exact computation is infeasible for many features:

For |P| = 10, the number of permutations is $10! \approx 3.6$ million \sim Complexity grows factorially with feature count

ESTIMATION: A PRACTICAL PROBLEM

Exact computation is infeasible for many features:

For |P| = 10, the number of permutations is $10! \approx 3.6$ million \sim Complexity grows factorially with feature count

Interpretable Machine Learning - 4/9

• Exact computation is infeasible for many features:

For |P| = 10, the number of permutations is $10! \approx 3.6$ million

- \leadsto Complexity grows factorially with feature count
- Additional challenge: Estimating marginal predictions (PD functions)

Each permutation τ defines a coalition S_j^{τ} needing its own estimate of $\hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$

 \rightsquigarrow With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly

ESTIMATION: A PRACTICAL PROBLEM

Exact computation is infeasible for many features:

For |P|= 10, the number of permutations is 10! pprox 3.6 million

- → Complexity grows factorially with feature count
- Additional challenge: Estimating marginal predictions (PD funcs) Each permut. τ defines a coal. S_i^{τ} needing its own estimate of $\hat{f}_{S_i^{\tau}}(\mathbf{x}_{S_i^{\tau}})$
- \rightsquigarrow With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly

Interpretable Machine Learning - 4/9 © Interpretable Machine Learning - 4/9

• Exact computation is infeasible for many features:

For |P| = 10, the number of permutations is $10! \approx 3.6$ million

→ Complexity grows factorially with feature count

grows rapidly, making marginalization costly

- Additional challenge: Estimating marginal predictions (PD functions)

 Each permutation τ defines a coalition S_j^{τ} needing its own estimate of $\hat{t}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$ \rightsquigarrow With |P|! permutations and n data points, the number of such estimates
- Solution: Sampling-based approximation Instead of computing $|P|! \cdot n$ terms, we approximate using M random samples of permutations τ and data points

ESTIMATION: A PRACTICAL PROBLEM

Exact computation is infeasible for many features:

For |P|= 10, the number of permutations is 10! pprox 3.6 million

→ Complexity grows factorially with feature count

• Additional challenge: Estimating marginal predictions (PD funcs) Each permut. τ defines a coal. S_i^{τ} needing its own estimate of $\hat{f}_{S_i^{\tau}}(\mathbf{x}_{S_i^{\tau}})$

 \rightsquigarrow With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly

• Solution: Sampling-based approximation Instead of computing $|P|! \cdot n$ terms, we approximate using M random samples of permutations τ and data points

Interpretable Machine Learning - 4/9 © Interpretable Machine Learning - 4/9

Exact computation is infeasible for many features:

For |P| = 10, the number of permutations is $10! \approx 3.6$ million

- → Complexity grows factorially with feature count
- Additional challenge: Estimating marginal predictions (PD functions)

Each permutation τ defines a coalition S_j^{τ} needing its own estimate of $\hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$

- \leadsto With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly
- Solution: Sampling-based approximation Instead of computing $|P|! \cdot n$ terms, we approximate using M random samples of permutations τ and data points
- Tradeoff: Accuracy vs. Efficiency
- Larger *M* improves Shapley approximation
- → Higher cost, but better fidelity to the exact value

ESTIMATION: A PRACTICAL PROBLEM

- Exact computation is infeasible for many features:
 - For |P|= 10, the number of permutations is 10! pprox 3.6 million
 - → Complexity grows factorially with feature count
 - Additional challenge: Estimating marginal predictions (PD funcs) Each permut. τ defines a coal. S_i^{τ} needing its own estimate of $\hat{f}_{S_i^{\tau}}(\mathbf{x}_{S_i^{\tau}})$
 - \rightsquigarrow With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly
 - Solution: Sampling-based approximation Instead of computing $|P|! \cdot n$ terms, we approximate using M random samples of permutations τ and data points
 - Tradeoff: Accuracy vs. Efficiency
 Larger *M* improves Shapley approximation
 - → Higher cost, but better fidelity to the exact value

Interpretable Machine Learning - 4/9

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

• Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations

APPROXIMATION ALGORITHM > STRUMBELJ_2014

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

• Input: x obs. of interest, j feat. of interest, \hat{t} model, \mathcal{D} data, M iterations

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:

APPROXIMATION ALGORITHM > STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices

APPROXIMATION ALGORITHM • STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M **do**:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ

APPROXIMATION ALGORITHM • STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M **do**:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

• Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations

- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)

APPROXIMATION ALGORITHM • STRUMBELJ_2014

- Input: **x** obs. of interest, *j* feat. of interest, \hat{t} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

• Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations

- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from **x** and $\mathbf{z}^{(m)}$:

APPROXIMATION ALGORITHM • STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M **do**:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid obs. by combining values from **x** and $\mathbf{z}^{(m)}$:

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - **3** Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

APPROXIMATION ALGORITHM > STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid obs. by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

$$\bullet \ \mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

$$\rightsquigarrow \text{includes } \mathbf{x}_{S_{\tau^{-1}}\{j\}} \text{ (features in } S_m \cup \{j\} \text{ from } \mathbf{x}), \text{ rest from } \mathbf{z}_{\tau^{(m)}}^{(m)}$$

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from **x** and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, z_j^{(m)}, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(n)}}^{(n)})$$

 \leadsto includes \mathbf{x}_{S_m} (features in S_m excl. x_i from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

APPROXIMATION ALGORITHM > STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid obs. by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(p)}}^{(m)})$$
 \leadsto includes $\mathbf{x}_{S_{\sigma^{-1}}\{i\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, z_j^{(m)}, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$
 \Rightarrow includes \mathbf{x}_{S_m} (features in S_m excl. x_i from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

• Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations

- For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

 $\bullet \ \mathbf{x}_{-i}^{(m)} = (X_{\tau^{(1)}}, \dots, X_{\tau^{(|S_m|)}}, Z_i^{(m)}, Z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, Z_{\tau^{(n)}}^{(m)})$ \rightarrow includes \mathbf{x}_{S_m} (features in S_m excl. x_i from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

Interpretable Machine Learning - 5 / 9

6 Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) - \hat{f}(\mathbf{x}_{-i}^{(m)})$

APPROXIMATION ALGORITHM • STRUMBELJ_2014

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid obs. by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(p)}}^{(p)})$$

 \leadsto includes $\mathbf{x}_{S_{m+1}\{i\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, z_j^{(m)}, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(n)}}^{(m)})$$
 \rightsquigarrow includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

Interpretable Machine Learning - 5 /

• Compute marginal contribution
$$\Delta(j, S_m) = \hat{f}(\mathbf{x}_{\perp i}^{(m)}) - \hat{f}(\mathbf{x}_{\perp i}^{(m)})$$

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- $\bullet \ \mathbf{x}_{-i}^{(m)} = (X_{\tau^{(1)}}, \dots, X_{\tau^{(|S_m|)}}, Z_i^{(m)}, Z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, Z_{\tau^{(n)}}^{(m)})$ \rightarrow includes \mathbf{x}_{S_m} (features in S_m excl. x_i from \mathbf{x}), rest from $\mathbf{z}^{(m)}$
- **6** Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$
- 2 Compute Shapley value $\phi_i = \frac{1}{M} \sum_{m=1}^{M} \Delta(i, S_m)$

APPROXIMATION ALGORITHM • STRUMBELJ_2014

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid obs. by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$
 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, z_j^{(m)}, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(n)}}^{(m)})$$
 \rightsquigarrow includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}_{-j}^{(m)}$

- Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$
- ② Compute Shapley value $\phi_i = \frac{1}{M} \sum_{m=1}^{M} \Delta(j, S_m)$

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, z_j^{(m)}, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{-i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$
- 2 Compute Shapley value $\phi_i = \frac{1}{M} \sum_{m=1}^{M} \Delta(i, S_m)$
- Over M iterations, the PD functions $\hat{f}_{S_m}(\mathbf{x}_{S_m})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ are approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}(\mathbf{x}_{+j}^{(m)})$, where features not in the coalition (to be marginalized) are imputed with values from the random data points $\mathbf{z}_{-j}^{(m)}$

APPROXIMATION ALGORITHM • STRUMBELJ_2014

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

- **Input: x** obs. of interest, *j* feat. of interest, \hat{t} model, \mathcal{D} data, M iterations
- For m = 1, ..., M do:
 - Sample random permut. $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid obs. by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \Rightarrow includes $\mathbf{x}_{S_{m-1}\{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, z_j^{(m)}, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \rightsquigarrow includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{\perp i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$
- ② Compute Shapley value $\phi_i = \frac{1}{M} \sum_{m=1}^{M} \Delta(i, S_m)$
- Over M iterations, the PD functions $\hat{f}_{S_m}(\mathbf{x}_{S_m})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ are approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}(\mathbf{x}_{+j}^{(m)})$, where features not in the coalition (to be marginalized) are imputed with vals from random data points $\mathbf{z}_{-j}^{(m)}$

Interpretable Machine Learning - 5 / 9

Interpretable Machine Learning - 5 / 9

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

 $random: z_{windsnet}^{(m)}$

56

Definition

10.66

SHAPLEY VALUE APPROX. - ILLUSTRATION

x with feature values in

 $\mathbf{X}_{S_m \cup \{j\}}$

0000

	Temperature	Humidity	Windspeed	Year
\boldsymbol{x}	10.66	56	11	2012
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$
-				

Interpretable Machine Learning - 6 / 9

Interpretable Machine Learning - 6 / 9

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

Contribution of feature
$$j$$
 to coalition S_m
$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}{}^{(m)}) - \hat{f}(\mathbf{x}_{-j}{}^{(m)}) \right]$$
$$:= \Delta(j, S_m)$$

- $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$ is marginal contribution of feature j to coalition S_m
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

x	Temperature 10.66	Humidity 56	Windspeed 11	Year 2012	Count	
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012	5600	700
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$	4900	700
				<u> </u>	$\stackrel{\checkmark}{\frown}$	$\Delta(j,S_m)$
				${\mathcal J}$	f	marginal contribution

SHAPLEY VALUE APPROX. - ILLUSTRATION

Definition

Contribution of feature
$$j$$
 to coalition S_m
$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

• $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$ is marginal contribution of feature j to coalition S_m

 $:= \Delta(j, S_m)$

• Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

x	Temperature 10.66	Humidity 56	Windspeed 11	Year 2012	Count	
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012	5600	700
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$	4900	700
			,	\widetilde{j}	$\hat{\hat{f}}$	$\Delta(j,S_m)$ marginal

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

$$\hat{\mathbf{x}} = \frac{1}{M} \sum_{i=1}^{M} \left[\hat{\mathbf{f}}(\mathbf{x}_{+j}^{(m)}) - \hat{\mathbf{f}}(\mathbf{x}_{-j}^{(m)}) \right]$$

- Compute marginal contribution of feature *j* towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all *M* marginal contributions of feature *j*
- Shapley value ϕ_i is the payout of feature j, i.e., how much feature *year* contributed to the overall prediction in bicycle counts of a specific observation x

$$m=1$$
 2 M Shapley value $\Delta(j,S_m)$ ϕ_j

SHAPLEY VALUE APPROX. - ILLUSTRATION

Definition

average the contributions of feature *j*

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{j=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

- Compute marginal contribution of feature *j* towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all *M* marginal contributions of feature *j*
- Shapley value ϕ_i is the payout of feature *j*, i.e., how much feature *year* contributed to the overall prediction in bicycle counts of a specific obs. x

$$m=1$$
 2 M Shapley value 0 00 0 0 0 00

REVISITED: AXIOMS FOR FAIR ATTRIBUTIONS

We adapt the classic Shapley axioms to the setting of model predictions:

• Efficiency: Sum of Shapley values adds up to the centered prediction:

$$\sum_{i=1}^{p} \phi_i(\mathbf{x}) = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})]$$

→ All predictive contribution is fully distributed among features

• Symmetry: Identical contributors receive equal value:

$$\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_{S \cup \{k\}}(\mathbf{x}_{S \cup \{k\}}) \ \forall S \subseteq P \setminus \{j, k\} \Rightarrow \phi_j = \phi_k$$

→ Interaction effects are shared equitably

• **Dummy (Null Player)**: Irrelevant features receive zero attribution:

$$\hat{f}_{S\cup\{i\}}(\mathbf{x}_{S\cup\{i\}}) = \hat{f}_{S}(\mathbf{x}_{S}) \ \forall S \subseteq P \Rightarrow \phi_{i} = 0$$

 Shapley value is zero for unused features (e.g., trees or LASSO) • Additivity: Attributions are additive across models:

$$\phi_i(v_1 + v_2) = \phi_i(v_1) + \phi_i(v_2)$$

→ Enables combining Shapley values for model ensembles

REVISITED: AXIOMS FOR FAIR ATTRIBUTIONS

We adapt the classic Shapley axioms to the setting of model predictions:

• **Efficiency**: Sum of Shapley values adds up to the centered prediction:

$$\sum_{i=1}^{p} \phi_i(\mathbf{x}) = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})]$$

→ All predictive contribution is fully distributed among features

• **Symmetry**: Identical contributors receive equal value:

$$\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{x}) \ \forall S \subseteq P \setminus \{j, k\} \Rightarrow \phi_i = \phi_k$$

→ Interaction effects are shared equitably

• **Dummy (Null Player)**: Irrelevant features receive zero attribution:

$$\hat{f}(\mathbf{x}) = \hat{f}_S(\mathbf{x}_S) \ \forall S \subseteq P \Rightarrow \phi_i = 0$$

Shapley value is zero for unused features (e.g., trees or LASSO)

• Additivity: Attributions are additive across models:

$$\phi_i(v_1 + v_2) = \phi_i(v_1) + \phi_i(v_2)$$

→ Enables combining Shapley values for model ensembles

BIKE SHARING DATASET

- Shapley decomposition for a single prediction in bike sharing dataset
- Model prediction: $\hat{f}(\mathbf{x}^{(200)}) = 4434.86$ vs. dataset average: $\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})] = 4507.67$
- Total feature attribution: $\sum_i \phi_i = -72.81$ → Explain downward shift from mean prediction
- Temperature (with value 28.5°C) is the strongest positive contributor: +400
- Features yr = 2011 and days_since_2011 = 199 strongly reduce prediction → Model captures lower bike demand in 2011 compared to 2012

BIKE SHARING DATASET

- Shapley decomposition for a single prediction in bike sharing dataset
- Model pred.: $\hat{f}(\mathbf{x}^{(200)}) = 4434.86$ vs. dataset avg.: $\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})] = 4507.67$
- Total feature attribution: $\sum_i \phi_i = -72.81$ → Explain downward shift from mean prediction
- Temperature (with value 28.5°C) strongest positive contributor: +400
- yr = 2011 and days_since_2011 = 199 strongly reduce prediction → Model captures lower bike demand in 2011 compared to 2012

ADVANTAGES AND DISADVANTAGES

Advantages:

- Strong theoretical foundation from cooperative game theory
- Fair attribution: Prediction is additively distributed across features → Easy to interpret for users
- Contrastive explanations: Quantify each feature's role in deviating from the average prediction

Disadvantages:

- Computational cost: Exact computation scales factorially with feature count
 → Without sampling, all 2^p coalitions (or p! permutations) must be evaluated
- Issue with correlated features: Shapley values may evaluate the model on feature combinations that do not occur in the real data

ADVANTAGES AND DISADVANTAGES

Advantages:

- Strong theoretical foundation from cooperative game theory
- Contrastive explanations: Quantify each feature's role in deviating from the average prediction

Disadvantages:

- Comput. cost: Exact computation scales factorially with feature count
 → Without sampling, all 2^p coalitions (or p! permuts) must be evaluated
- Issue with correlated features: Shapley values may evaluate the model on feature combinations that do not occur in the real data

