

UNIVERSITE DE LOME

FACULTE DES SCIENCES

DEPARTEMENT DE PHYSIQUE

UE DE PHY 314:

METHODES EXPERIMENTALES RENFORCEES EN PHYSIQUE

TP N°3: LES TRANSISTORS ET LEURS APPLICATIONS

NOM	PRENOMS	N° DE CARTE	GROUPE / BINOME
AMOUZOU	Kodjo	548655	GROUPE 1
ADDI	Amana Essona Kizito	557563	BINOME 1

Lundi, le 29 Juillet 2024

Année Académique: 2023 – 2024

INTRODUCTION

Les transistors sont des composants électroniques fondamentaux qui jouent un rôle crucial dans la conception et le fonctionnement des circuits électroniques modernes. Leur capacité à amplifier et à commuter les signaux électriques en fait des éléments essentiels dans une multitude d'applications, allant des systèmes de communication aux dispositifs informatiques.

I. OBJECTIFS OU BUT

L'objectif général de ce travail pratique est d'explorer les caractéristiques de fonctionnement des transistors NPN et de comprendre leur comportement dans différents contextes d'utilisation. Plus précisément, nous visons à :

Vérifier que l'intensité du courant de collecteur (Ic) est fonction du courant de base (Ib), en maintenant une tension constante au niveau du collecteur. Cette partie permettra de démontrer la relation entre Ib et Ic et de confirmer le rôle de la base dans la modulation du courant de collecteur.

Examiner la dépendance du courant de collecteur (Ic) en fonction de la tension du collecteur (Uc) pour différentes valeurs de courant de base (Ib). Cet exercice aidera à comprendre comment le transistor fonctionne en tant qu'amplificateur et à quel point la tension collecteur-base influence le courant de collecteur.

Étudier l'utilisation d'une photorésistance pour déclencher un transistor, dans le but de contrôler l'allumage ou l'extinction d'une lampe. Cette expérience illustrera comment les transistors peuvent être utilisés dans des circuits de commutation automatique, notamment dans des applications de détection de lumière ou d'obscurité.

QUELQUES DEFINITIONS

Une photorésistance, également appelée LDR (Light Dependent Resistor), est un composant électronique passif dont la résistance électrique varie en fonction de l'intensité de la lumière incidente. Elle est fabriquée à partir de matériaux semiconducteurs qui changent de conductivité lorsqu'ils sont exposés à la lumière. Une photorésistance est un composant électronique sensible à la lumière qui permet de convertir les variations de luminosité en changements de résistance électrique,

rendant possible la détection et le contrôle de l'intensité lumineuse dans divers systèmes électroniques.

La capacitance électrolytique, également appelée capacité d'un condensateur électrolytique, est une mesure de la capacité d'un condensateur à stocker une charge électrique. Un condensateur électrolytique est un type spécifique de condensateur, caractérisé par l'utilisation d'un électrolyte comme l'une de ses plaques conductrices

II. MATERIELS DU TP

- Une plaquette de montage
- Une Résistance 47 k Ω
- Une Résistance réglable 10kΩ
- Une Diode simple 1N4007
- Une Capacitance, 47nF
- Une Capacitance électrolytique, 47μF
- Un Transistor BC337
- Trois Prises de court-circuit
- Huit fils de connexion
- Deux Multimètres
- Un Générateur de tension continue (12V)
- Une Douille de lampe
- Une Lampe à filament
- Une Résistance, 1kΩ
- Une Papier sombre 3cm×cm
- Un Potentiomètre $10k\Omega$
- Une photorésistance LDR 03
- Quatre blocs de connexion

III. MANIPULATION 1

A. BUT

Le but de cette manipulation c'est de vérifier que l'intensité I_C d'un transistor NPN en fonction de I_B de la base lorsque la tension du collecteur est de 5V et ensuite vérifier que I_C est fonction de U_C pour différentes valeurs de I_B .

B. MATERILS

- Une plaquette de montage
- Une Résistance 47 k Ω
- Une Résistance réglable 10kΩ
- Une Diode simple 1N4007
- Une Capacitance, 47nF
- Une Capacitance électrolytique, 47μF
- Un Transistor BC337
- Trois Prises de court-circuit
- Huit fils de connexion
- Deux Multimètres
- Un Générateur de tension continue (12V)

C. MOTHODE EXPERIMENTALE

- Réaliser le montage de la figure 1. S'assurer que les appareils de mesure sont sur les calibres appropriés (50μA pour I_B et 30mA pour I_C) et leurs polarités respectées
- Allumer le générateur et régler la tension à 5V
- Faire varier I_B de 0 à 50μA en maniant le potentiomètre et entrer les résultats dans le tableau 1
- Fixer I_B à 10μA puis faire varier U_C de 1V à 12V et remplir le tableau 2 Revérifier la valeur de I_B après la variation de U_C et le corriger si nécessaire.
- Fixer ensuite I_B à $20\mu A$, $30 \mu A$50 μA puis compléter le tableau 1 puis mesurer I_C comme fonction de U_C
- Éteindre le générateur.

Figure 1

D. <u>RESULTATS</u>

Tableau 1

$I_{B}(\mu A)$	0	10	20	30	40	50
$I_{C}(mA)$	$0 \pm 0,75$	$4,5 \pm 0,75$	$10 \pm 0,75$	$14,5 \pm 0,75$	$20 \pm 0,75$	$25,1 \pm 0,75$

Tableau 2

$I_{B}(\mu A)$	10	20	30	40	50
U(V)					
0	0 ± 0.75	0 ± 0.75	$0 \pm 0,75$	$0 \pm 0{,}75$	$0 \pm 0,75$
1	$4,0\pm 0,75$	$9,0 \pm 0,75$	$14,1 \pm 0,75$	$18,0\pm 0,75$	$23,0\pm 0,75$
2	$4,1 \pm 0,75$	$9,3 \pm 0,75$	$14,0 \pm 0,75$	$19,0 \pm 0,75$	$24,0 \pm 0,75$
3	$4,2\pm 0,75$	$9,2 \pm 0,75$	$14,5 \pm 0,75$	$19,2 \pm 0,75$	$24,1 \pm 0,75$
4	$4,4\pm 0,75$	$9,2\pm 0,75$	$14,1 \pm 0,75$	$19,5 \pm 0,75$	$25,0 \pm 0,75$
5	$4,5\pm 0,75$	$10 \pm 0,75$	$14,5 \pm 0,75$	$20,0 \pm 0,75$	$25,1 \pm 0,75$
6	$5,0 \pm 0,75$	$10,2 \pm 0,75$	$15,2 \pm 0,75$	$20,3 \pm 0,75$	$25,2 \pm 0,75$
7	$4,6\pm 0,75$	$10,0 \pm 0,75$	$15,2 \pm 0,75$	$20,5 \pm 0,75$	$26,0 \pm 0,75$
8	$4,6 \pm 0,75$	$10,0 \pm 0,75$	$15,3 \pm 0,75$	$21,0 \pm 0,75$	$27,0 \pm 0,75$
9	$4,7 \pm 0,75$	$10,1 \pm 0,75$	$14,5 \pm 0,75$	$21,5 \pm 0,75$	$27,0 \pm 0,75$
10	$4,7 \pm 0,75$	$10,1\pm 0,75$	$14,5 \pm 0,75$	$21,5 \pm 0,75$	$27,2 \pm 0,75$

E. REPONSE AUX QUESTIONAIRES

- 1.) Tracé de la courbe de $I_C = f(I_B)$. Confère papier millimétrée
- 2.) Lorsque I_B croit de 10 μ A, I_C change à la valeur de $(4,5 \pm 0,75)$ mA.
- 3.) Le rapport $\frac{I_C}{I_B} = f$, calculons β

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

$$\Delta I_C = 4.5 mA = 4.5.10^3 \,\mu A \; ; \Delta I_B = 10 \mu A \implies \boxed{\beta = 450}$$

- 4.) Représentation de $I_C(\mu A)$ en fonction de $U_C(V)$
- 5.) Calculons $P_d = U_C \times I_{CE}$ et montrons qu'il est inferieur à

$$P_{dmax} = 300Mw$$

$$P_d = U_C \times I_{CE} = U_C \times \beta I_B = 5 \times 450 \times 3 = 6750 = 6,75 Mw$$

$$P_d = 6,75 Mw$$

$$P_d < P_{dmax}$$

6.) Utilisons la courbe caractéristique pour $I_B = 30\mu A$ et déterminons le changement de ΔI_C lorsque U_C varie de 5V à 10V ($\Delta U_C = 10 - 5 = 5V$) et calculons la résistance de sortie du transistor.

$$R_{sortie} = \frac{\Delta U_{ce}}{\Delta I_C} = \frac{5}{14,5}$$

$$R_{sortie} = 0.34 \text{ ohm}$$

7.) Traçons la droite de charge du transistor et déterminons graphiquement le point de fonctionnement.

$$Q = 15$$

IV. MANIPULATION 2

A. BUT

Le but ultime de cette manipulation est d'examiner le déclanchement d'un transistor par une photorésistance afin d'allumer ou éteindre une Lampe.

B. MATERIELS

- Une plaquette de montage
- Un Transistor BC337
- Quatre fils de connexion
- Un Multimètres
- Un Générateur de tension continue (12V)
- Une Douille de lampe
- Une Lampe à filament
- Une Résistance, $1k\Omega$
- Une Papier sombre 3cm×cm
- Un Potentiomètre 10kΩ
- Une photorésistance LDR 03
- Quatre blocs de connexion

C. METHODE EXPERIMENTALE

- Réaliser le circuit de la figure 2. Couvrir la photorésistance avec du papier sombre. Choisir le calibre 3V pour les mesures de la tension
- Appliquer une tension de 5V aux bornes du générateur
- Appeler l'enseignant pour vérifier et allumer le générateur
- Tourner le bouton du potentiomètre d'abord vers la droite puis vers la gauche dès que le filament de la lampe rougit
- Mesurer la tension U_{st} et la noter dans le tableau
- Enlever puis replacer plusieurs fois le papier café et observer le comportement de la lampe. Noter les observations dans le tableau
- Mesurer la tension U_{st} lorsque la photorésistance est complètement éclairée puis noter les observations dans le tableau
- Éteindre le générateur puis permuter la position du potentiomètre et de la photorésistance
- Laisser la photorésistance couverte et le bouton du potentiomètre tourné vers la droite
- Allumer le générateur, tourner le bouton du potentiomètre vers la gauche, jusqu'à ce que la lampe commence à s'allumer
- Mesurer la tension de conducteur U_{st} et compléter le tableau

- Utiliser la papier sombre pour couvrir ou non la photorésistance plusieurs fois. Observer la lampe à filament puis noter les observations. A partir de la photorésistance non couverte, mesurer la tension et compléter le tableau
- Enfin éteindre le générateur

Figure 2

D. OBSERVATION ET RESULTATS DES MESURES

La photorésistance	La photorésistance	La tension $U_{ST}(V)$	La lampe
est en	est		

Position (1) partie	Couverte	$0,33 \pm 0,075$	Éteinte
sup du diviseur de tension	Éclairée	$2,16 \pm 0,075$	Allumer
Position (2) partie		$1,0 \pm 0,25$	Allumer
inf. Du diviseur de	Éclairée	$1,1 \pm 0,25$	Éteinte
tension			

E. REPONSE AUX QUESTIONAIRES

1.) Si le potentiomètre est positionné à la partie supérieur (1) du diviseur de tension, cela influence la répartition des tensions :

Photorésistance Éclairée

Quand la lumière atteint la photorésistance, sa résistance R_{LDR} diminue.

- La tension U_{st} diminue car une plus grande partie de la tension est prise par le potentiomètre, selon la formule :

$$U_{st} = \frac{R_{LDR}}{R_{LDR} \times R_{pot}} \times V_{cc}$$

Où V_{cc} est la tension d'alimentation.

- Si \pmb{U}_{st} devient inférieur à $V_{BE}=0.6$, le transistor passe en mode coupure. Interrupteur fermé
- Quand il n'y a pas de lumière, la résistance R_{LDR} augmente.
- La tension $\boldsymbol{U_{st}}$ augmente car moins de tension est prise par $\boldsymbol{R_{pot}}$
- si U_{st} devient supérieur à $V_{BE}=0$, 6 le transistor entre en mode saturation. Interrupteur ouvert
- 2.) Si le potentiomètre est positionné à la partie inférieure (2) du diviseur de tension, cela influence la répartition des tensions :

Lorsque R_{pot} est réglé à une faible valeur (bas de gamme), la résistance totale $R_{total} = R_{LDR} + R_{pot}$ est dominée par la résistance de la photorésistance, rendant U_{st} plus sensible aux changements de R_{LDR} .

Effet sur le Transistor:

- État Éclairé : R_{LDR} diminue, U_{st} augmente. Si $U_{st} > V_{BE}$, le transistor est saturé et agit comme un interrupteur fermé.
- État Obscurci : R_{LDR} augmente, U_{st} diminue. Si $U_{st} < V_{BE}$ le transistor est en coupure et agit comme un interrupteur ouvert.

3.) L'intérêt pratique du circuit :

Allumage Automatique: Lorsqu'il fait sombre, la photorésistance augmente en résistance, ce qui active le transistor et allume la lampe. Inversement, lorsque la lumière ambiante augmente, la lampe s'éteint automatiquement. Cela est utile pour les lampadaires, les systèmes d'éclairage de jardin, ou les dispositifs de sécurité.

CONCLUSION

En conclusion, ce TP a offert une compréhension approfondie des transistors NPN et de leurs applications essentielles. Nous avons non seulement renforcé nos compétences en électronique mais aussi gagné des perspectives sur comment les transistors peuvent transformer des idées théoriques en solutions pratiques dans le monde réel. Nous avons observé que le courant de collecteur Ic dépend fortement du courant de base Ib à une tension de collecteur constante. L'expérimentation a également montré que Ic varie avec la tension de collecteur Uc pour différentes valeurs de Ib. Les transistors continuent d'être un pilier de l'innovation électronique, offrant des possibilités infinies pour développer des technologies avancées et des systèmes automatisés. Par conséquent, la maîtrise de ces composants est fondamentale pour toute personne s'intéressant à l'électronique moderne et à ses applications futures.