Imperial College London

TUTORIAL: FLOATING POINT NUMBERS

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

C113 Architecture

Lecturer:

Dr. Jana Giceva j.giceva@imperial.ac.uk

Head Teaching Assistant: Izaak Coleman ic711@imperial.ac.uk

Date: March 6, 2018

1 Multiple Choice

Which of the following 8-bit floating point numbers (1 sign, 3 exponent, 4 fraction) represent NaN?

- a) 1 000 1111
- b) 0 111 1111
- c) 0 100 0000
- d) 1 111 0000

Consider a tiny floating-point representation with a sign bit, 2 exponent bits, 2 fractional bits, and otherwise following the conventions of IEEE floating point formats. Which of the following bit patterns corresponds to the numerical value of $+1_{10}$?

- a) 0 00 00
- b) 0 00 01
- c) 0 01 00
- d) 0 01 10
- e) 10100

Assuming that they represent single-precision floating point numbers (with an 8-bit exponent), which of the following has the greatest value?

- a) 0x00000000
- b) 0x0000001
- c) 0x50000000
- d) 0xc0000000

2 Conversion Calculations

- 1. Convert the following decimal numbers to binary.
 - (a) 5.5 = 101.1
 - (b) 8.25 = 1000.01
 - (c) 9.3 = 1001.010011001[1001]
- 2. Convert 0xC0200000 from 32-bit IEEE floating point to decimal number (remember: 1 bit sign, 8 bits exp, 23 bits significand).

Solution:

First convert to binary format:

Which corresponds to:

Sign	Exponent	Significand		
1	1000 0000	0100 0000 0000 0000 0000 000		

The exponent E:

Exponent field is 1000 0000 = 128. Hence, E = 128 - 127 = 1.

The mantissa M:

Significand field is: 01. Adding the hidden bit M = 1.01

Therefore, the number is:

$$(-1)^1 \times 1.01 \times 2^1 = -10.1 = -2.5_{10}$$

3. Convert –31.3 to 32-bit IEEE Floating Point number.

Solution:

First convert to a binary format:

$$-31.3 = -11111.010011001[1001].$$

Next normalize:

1.11110 1001 1001 1001 1001 $\times 2^4$.

Significand field is:

1111 0100 1100 1100 1100 110 (23 bits with 1. omitted).

Exponent field is:

$$4 + 127 = 131 = 1000 0011$$

Number is negative, hence the sign field is:

1

The floating point number is:

Sign	Exponent	Significand				
1	1000 0011	1111 0100 1100 1100 1100 110				

4. Calculate 31.3 + 13.25 using IEEE Single Precision arithmetic. *Solution*:

Number	Number Sign E		Significand			
31.3	0	1000 0011	1111 0100 1100 1100 1100 110			
13.25	0	1000 0010	1010 1000 0000 0000 0000 000			

Significand of Larger Number = 1.1111 0100 1100 1100 1100 110. Significand of Smaller Number = 1.1010 1000 0000 0000 0000 000.

Exponents differ by 1. Therefore shit binary point of smaller number for 1 place.

Significand of Larger Number = 1.1111 0100 1100 1100 1100 1100. Significand of Smaller Number = 0.1101 0100 0000 0000 0000 0000.

Significand of sum = 10.1100 1000 1100 1100 1100 1100

 $Sum = 10.1100 \ 1000 \ 1100 \ 1100 \ 1100 \ 1100 \ \times 2^4$

Which needs to be normalized: 1.0110 0100 0110 0110 0110 $\times 2^5$

Number	Sign	Exponent	Significand
44.55	0	1000 0100	0110 0100 0110 0110 0110 011

3 Tiny Float

Consider a six-bit floating point representation based on the IEEE floating point format, with one sign bit, two exponent bits (k = 2) and three fraction bits (n = 3).

The table shows a few possible six-bit numbers. Fill in the blank table entries using the following directories:

- exp: The value of the exponent field.
- E: The value of the exponent after biasing.
- frac: The value of the fraction.
- M: The value of the significand.
- V: The numeric value represented.

Express the value of V as a fraction of the form x/P with suitably chosen P.

Bits	exp	E	frac	M	V
0 00 000	00	0	000	0.000	0
0 00 000			000	0.000	
0 00 110	00	0	110	0.110	3/4
0 01 110	01	0	110	1.110	7/4
0 10 000	10	1	000	1.000	2
0 10 001	10	1	001	1.001	9/4
0 10 111	10	1	111	1.111	15/4