الأعداد العقدية

مبرهنة

توجد مجموعة ${\mathbb C}$ تتضمن ${\mathbb R}$ و تحقق:

$$i^2 = -1$$
 يحتوي i و يحقى عنصر غير حقيقي و على عنصر (i

$$(a;b)$$
 \in \mathbb{R}^2 بحيث $a+ib$:کل عنصر من \mathbb{C} يكتب بكيفية و حيدة على الشكل (ii

المجموعة $\mathbb R$ مزودة بعمليتي الجمع و الضرب تمددان نفس العمليتين في $\mathbb R$ و لهما نفس (iii

الخاصيات

$$b = b$$
' e $a = a$ ' $\Leftrightarrow a + ib = a$ ' + ib '

$$(a';b')\in\mathbb{R}^2$$
 و $(a;b)\in\mathbb{R}^2$ خاصیة

 $(a;b) \in \mathbb{R}^2$ ليكن عدد عقدي z = a + ib ليكن عدد

 $\operatorname{Im}(z) = b$ و العدد b يسمى الجزء الحقيقي نكتب $\operatorname{Re}(z) = a$ ، و العدد a يسمى الجزء الحقيقي نكتب

خاصیهٔ
$$(\mathbb{C};+; imes)$$
 جسم تبادلی

1- التمثيل الهندسي لعدد عقد<u>ي</u>

 $.(O; \vec{e}_1; \vec{e}_2)$ منسوب إلى معلم متعامد ممنظم مباشر (P) منسوب

 $\mathsf{M}(\mathsf{z})$ كل نقطة z=a+ib وهذا الأخير يسمى لحق $\mathsf{M}(a;b)\in(P)$ كل نقطة

$$z = aff(M)$$

$$z=a\!f\!f\left(ec{u}
ight)$$
نكتب $ec{u}=\overline{OM}$ نكتب العدد العقدي $z=a+ib$ يسمى أيضا لحق المتجهة

$$B\left(z_{\scriptscriptstyle B}
ight)$$
لحق \overline{AB} هو $Z_{\scriptscriptstyle B}-Z_{\scriptscriptstyle A}$ حيث *

$$\dfrac{z_{B}-z_{A}}{z_{C}-z_{A}}$$
 \in \mathbb{R} تكون النقط المختلفة $\left(z_{B}\right)$ و $\left(z_{C}\right)$ و $\left(z_{C}\right)$ مستقيمية إذا و فقط إذا كان *

التطبيق
$$(P)$$
 هو الازاحة التي متجهتها $M(z) o M'(z+a)$ هو الازاحة التي متجهتها *

$$aff(\vec{u}) = a$$
 حيث \vec{u}

2- المرافق و المعبار

.
$$(a;b) \in \mathbb{R}^2$$
 حيث $z = a + ib$ ليكن عدد عقدي

 $\overline{z} = a - ib$ يسمى مرافق العدد العقدي z = a + ib ونرمز له بـ z = a - ib

$$\left|z\right|=\sqrt{z\overline{z}^{-}}=\sqrt{a^{2}+b^{2}}$$
 يسمى معيار العدد العقدي $z=a+ib$ يسمى معيار العدد العقدي *

$$n\in\mathbb{Z}^*$$
لتكن $lpha\in\mathbb{R}$ و $(z\,;z\,')\in\mathbb{C}^2$

$$z + \overline{z} = 2 \operatorname{Re}(z)$$
 ; $z - \overline{z} = 2 \operatorname{Im}(z)i$ *

$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \qquad z' \neq 0 \qquad \overline{\alpha z} = \alpha . \overline{z} \qquad \overline{z''} = \overline{z''} \qquad \overline{z} . \overline{z'} = \overline{z} . \overline{z'} \qquad \overline{z + z'} = \overline{z} + \overline{z'} *$$

$$m \in \mathbb{N}^*$$

$$\left| \sum_{i=1}^{i=m} z_i \right| \le \sum_{i=1}^{i=m} |z_i| *$$

$$z \in \mathbb{R} \Leftrightarrow \overline{z} = z$$
 *

$$z \in i \mathbb{R} \Leftrightarrow \overline{z} = -z *$$

$$z' \neq 0$$
 $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ $\left| z^n \right| = |z|^n$ $\left| z \cdot z' \right| = |z||z'| *$

$$\|\overrightarrow{AB}\| = AB = |z_B - z_A|$$
*

<u>3- الشكل المثلثي لعدد عقدي والعمدة</u>

 $(O; \vec{e_1}; \vec{e_2})$ المستوى (P) منسوب إلى معلم متعامد ممنظم مباشر

M صورته , وليكن و النقطة M عددا عقديا غير منعدم و النقطة $(a;b)\in\mathbb{R}^2$ حيث z=a+ib ليكن

.
$$\widehat{\left(\vec{e_1}, \overrightarrow{OM} \, \right)}$$
 للزاوية

 $\operatorname{arg} z \equiv \alpha$ [2 π] العدد α يسمى عمدة للعدد العقدي z و نكتب

lpha عددا عقدیا غیر منعدم و r عددا حقیقیا موجبا قطعا و -* لیکن z=a+ib حیث -*

$$|z| = r = \sqrt{a^2 + b^2}$$
 عددا حقیقیا نضع

$$\arg z \equiv \alpha$$
 $\left[2\pi\right]$ ذن $\cos \alpha = \frac{a}{r}$; $\sin \alpha = \frac{b}{r}$ حیث $z = r(\cos \alpha + i \sin \alpha)$ ومنه

z=[r,lpha] تسمى الشكل المثلثي للعدد العقدي $z=r(\coslpha+i\sinlpha)$ الكتابة

<u>خاصىات</u>

$$\frac{z}{z'} = \left[\frac{r}{r'}, \alpha - \alpha'\right]$$
 و $zz' = \left[rr', \alpha + \alpha'\right]$ + فاف $z' = \left[r', \alpha'\right]$ و $z = \left[r, \alpha\right]$ -*
 $-z = \left[r, \alpha + \pi\right]$ و $\overline{z} = \left[r, -\alpha\right]$ + $\frac{1}{z} = \left[\frac{1}{r}; -\alpha\right]$ $z'' = \left[r''; n\alpha\right]$ +

$$orall lpha \in \mathbb{R}$$
 $orall n \in \mathbb{Z}^*$ $\left(\cos lpha + i \sin lpha
ight)^n = \cos n lpha + i \sin n lpha$ صيغة موافر

$$\operatorname{arg}\left(z_{B}-z_{A}\right)=\overline{\left(\overrightarrow{e_{1}};\overrightarrow{AB}\right)}$$
 [2 π] فان $D\left(z_{D}\right)\neq C\left(z_{C}\right)$ و $A\left(z_{A}\right)\neq B\left(z_{B}\right)$ إذا كان

$$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) \equiv \overline{\left(\overline{AB}; \overline{AC}\right)} \qquad [2\pi] \qquad \mathbf{g}$$

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2} \qquad \sin \alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2i} \qquad z = [r, \alpha] = re^{i\alpha}$$

الجذور النونية a = [r, lpha] الجذور النونية a = [r, lpha] هي

$$k \in \{0;1;2,\ldots,n-1\}$$
 $z_k = \left[\sqrt[n]{r}; \frac{\alpha}{n} + \frac{2k\pi}{n}\right]$

$$k \in \left\{0;1;2;....;n-1\right\}$$
 $z_k = \left[1;\frac{2k\,\pi}{n}\right]$ هي 1 هي الجذور النونية للوحدة أي الجذور النونية لـ 1

<u>6- المعادلات من الدرجة الثانية</u> لتكن a و b و a أعدادا عقدية بحيث a غير منعدم .

$$z_2=rac{-b-d}{2a}$$
 ; $z_1=rac{-b+d}{2a}$ هما $\mathbb C$ عيث $az^2+bz+c=0$ المعادلة

. $b^2 - 4ac$ مربع للميز

 $rac{\Delta B}{2}$ ليكن z_B و z_B عددين غير منعدمين صورتهما على التوالي

 $\frac{OM}{OA} = \frac{BM}{IA} = OB$ حيث $M(z_A \times z_B)$ النقطة $M(z_A \times z_B)$ تحقق المثلث

خاصية

كل دوران مركزه Ω ذات اللحق ω و قياس زاويته heta هو التطبيق في المستوى العقدي الذي يربط كل نقطة

$$z$$
' = $ze^{i heta}+\omegaig(1-e^{i heta}ig)$ حيث $M'ig(z'ig)$ بنقطة $Mig(z)$

خاصية

|a|=1 ; $a \neq 1$ ليكن $a \neq 1$ عددين عقدبن بحيث

التطبيق z'=az+b في المستوى الذي يربط كل نقطة $M\left(z\right)$ بنقطة $M\left(z\right)$ حيث C=az+b هو الدوران الذي مركزه $\Omega\left(\frac{b}{1-a}\right)$

