Question 1

Attributes

- eventname
- edate
- starttime
- duration
- URL
- description
- host
- panelistname
- panelistemail
- participantid
- participantname
- participantemail
- participantaddress
- ticketprice

Functional Dependencies

- edate starttime => duration URL description host
- participantid => participantname participantemail participantaddress
- edate starttime panelistname => panelistemail
- edate starttime participantid => ticketprice

Relation checks

Keys

edate starttime partcipantid panelistname

BCNF

Not satisfied, because

 edate starttime => duration URL description host is not trival and edate starttime is not a superkey

3NF

Not satisfied, because

 edate starttime => duration URL description host is not trival, edate starttime is not a superkey, and duration, URL, description, host are not prime arributes

Question 2

Decomposition

Projection of functional dependencies

```
R1(A, B, C, F, G)
F1 = { AFG -> B, ABC -> F }
R2(A, B, C, D, E)
F2 = { AC -> D, AC -> E }
```

Union

```
Fp = F1 union F2 = { AFG -> B, ABC -> F, AC -> D, AC -> E }
F = { AC -> D , AC -> E, BE -> F, AFG -> B }
```

Check

```
• AC -> D is in Fp
```

- AC -> E is in Fp
- BE -> F is not in Fp
 - Compute with respect to Fp: BE+ = { B, E }, F is not compiled
- AFG -> B is in Fp

Fp is not equivalent to F, so this decompostion is not dependency preserving.

Question 3

Table

Note: Changes are bolded

Initial State

REL	Α	В	С	D	E	F	G
R1	a	b	С	d	e1	f1	g1
R2	а	b	С	d2	е	f2	g
R3	аЗ	b	сЗ	d3	е	f	g3
R4	a	b4	c4	d4	е	f4	g

Apply AC -> BD

REL A B C D E F G

_	REL	Α	В	С	D	E	F	G
	R1	a	b	С	d	e1	f1	g1
	R2	a	b	С	d	е	f2	g
	R3	аЗ	b	сЗ	d3	е	f	g3
	R4	a	b4	c4	d4	е	f4	q

Apply BC -> E

REL	Α	В	С	D	Е	F	G
R1	а	b	С	d	е	f1	g1
R2	a	b	С	d	е	f2	g
R3	аЗ	b	сЗ	d3	е	f	g3
R4	a	b4	c4	d4	е	f4	g

Apply BE -> DF

REL	Α	В	С	D	E	F	G
R1	a	b	С	d	е	f1	g1
R2	a	b	С	d	е	f	g
R3	a3	b	сЗ	d	е	f	g3
R4	a	b4	c4	d4	е	f4	g

Relation R2 has no subscript, so this decomposition is lossless.

Question 4

Section a

Keys

ABHFG, ABHFD, ABHFC, ABHFE

Prime Attributes

A, B, C, D, E, F, G, H

3NF

Satisfied, all attributes are in Prime Attributes, so no matter how the right hand side changes, 3NF will always true.

Question 5

Splitting Rules

- AC -> B
- AC -> D
- BC -> B
- BC -> E
- ABC -> E

Remove Trival

- AC -> B
- AC -> D
- BC -> E
- ABC -> E

Removing X -> Y

- AC -> B
 - Cannot remove
 - For F', AC+ = { A, C, D }
 - For F, AC+ = { A, C, B, D, E }
 - Not equivalent
- AC -> D
 - · Cannot remove
 - For F', AC+ = { A, C, B, E }
 - For F, AC+ = { A, C, D, B, E }
 - Not equivalent
- BC -> E
 - Cannot remove
 - For F', BC+ = { B, C }
 - For F, BC+ = {B, C, E}
 - Not equivalent
- ABC -> E
 - Can remove
 - For F', ABC+ = { A, B, C, D, E}
 - For F, ABC+ = { A, B, C, D, E }
 - Equivalent/Same

Replace XZ -> Y with X -> Y

- AC -> B
 - Remove C, we have A -> B for F'

- Cannot replace
 - For F', A+ = { A, B }
 - For F, A+ = { A }
 - Not equivalent
- Remove A, we have C -> B
 - Cannot replace
 - For F', C+ = { C, B }
 - For F, C+ = { C }
 - Not rquivalent
- AC -> D
 - Remove A, we have C -> D for F'
 - Cannot replace
 - For F', C+ = { C, D }
 - For F, C+ = { C }
 - Not equivalent
 - Remove C, we have A -> D for F'
 - Cannot replace
 - For F', A+ = { A, D }
 - For F, A+ = { A }
 - Not equivalent
- BC -> E
 - Remove B, we have C -> E for F'
 - Cannot replace
 - For F', C+ = { C, E }
 - For F, C+ = { C }
 - Not equivalent
 - Remove C, we have B -> E for F'
 - Cannot replace
 - For F', B+ = { B, E }
 - For F, B+ = { B }
 - Not equivalent

_

So we have:

- AC -> B
- AC -> D
- BC -> E

Combining Rule

Already in form of Minimal Basis:

- AC -> B
- AC -> D
- BC -> E

Question 6

Find Violation

Keys

```
oname mid
```

Result

- cname -> df url email
 - violate
- cname mid -> mname
 - violate
- oname -> oposition
 - violate
- oname -> cname
 - violate

BCNF

Pick any violation and start decomposition

```
    oname -> cname
    oname+= { oname, cname, df, url, email, oposition }
    R1(oname, cname, df, url, email, oposition)
    F1 = {cmame -> df url email, oname -> oposition, oname -> cname}
    Keys: oname
    cname -> df url email violates BCNF
    R2(oname, mid, mname)
    F2 = {}
    Keys: oname mid mname
    Satisfied BCNF
```

Decompose on cname -> df url email, with R1(oname, cname, df, url, email, oposition)

```
    cname -> df url email
    cname+ = { cname, df, url, email }
    R11(cname df url email)
    F11 = { cname -> df url email }
    Key: cname
    Satisfied BCNF
    R12(cname, oname, oposition)
    F12 = { oname -> oposition, oname -> cname }
    Key: oname
    Satisified BCNF
```

Result

- cname df url email
- cname, oname, oposition
- oname, mid, mname