Assignment Submission Sheet

Term: 321221 Submission Date: 02-11-2021

Assignment Number: 04

Course Code: ECE290 Section: E1901 Group: A

Registration Number: 11904463 Student Name: Mohit Rawat Roll No: 09

1. Concept Learned

I have learn about how to make 4 bit up counter using verilog and how to make testbench and give clock in circuit.

2. Key Observations & Insights

Key observation is the output waveform was that it start from 0000 and count up to 1111 and again starting from 0000.

3. Application Areas

Application of counter is in many digital machine like washing machine, micro owner, program counter in computer.

4. A verilog Program to implement 4 bit synchronous Up counter using D- Flip Flop.

200 F1791 A verilog program to implement 4-bit synchronous up counter using 0 FF. State diagram: 0001 1100 1100 101 0011 5110) 000 Excitation table of DFlip Flop:-0 On+ 1 0

Excitation table of 4-bit up country using

	Aresent State				Next State				Fringet.			
	83	85		Oo_	0,40	129.1	0,(44)	80+1	D3.	Ba	0,	00
0	0	O	0	0	0	0	0	1	0	0	0	1
1	0	0	O	1	0	0	١	0	0	0	1	0
2	O	0	1	0	G	0	1	1	0	0	1	١
3	O	0	1	1	0	- 1	0	0	0	1	0	0
4	0	1	0	0	0	1	0	1	0	1	0	١
S	O	1	0	1	0	1	1	0	0	1	1	0
6	O	1	1	0	9	1	1	1	0	111	1	1
7	0	- (1	1	(0	. 0	0	1	1	0	6
8)	0	6	0		0	0	1	1	0	0	1
2	1	0	0	١	1	0	1	0	1	0	1.1	0
10	1	0	1	0	Ţ	6	1	1	1	0	1	(
11	U	0	1	1	1	1	0	0	1	1	0	0
12	1	1	6	0	- 1	1	0	- (1	1	0	(
13	1	1	0	+	1	1	1	0	1	1	1	0
14	1	1	1	0	1		1	1	1	1	1	1
15	1	1	1	1	0	4	0	D	0	0	0	0

Verilog Code

```
timescale lns / lps
    module D_Flip_Flop(Q, Q_bar, D, clk, reset);
     input clk, reset, D;
    output reg Q;
    output Q_bar;
 5
    assign Q bar = ~Q;
     always @(posedge clk)
8
    begin
    if (reset)
9
10
       0<=1'b0:
     else
11
12
       Q \le D;
13
     end
14
     endmodule
15
     // 4 bit up Counter
16
     module UP_Counter_4_bit(clk,reset, Q0, Q1, Q2, Q3);
17
     input clk, reset;
18
     output Q0, Q1, Q2, Q3;
19
     wire Q0 b, Q1 b, Q2 b, Q3 b;
20
21
     wire dl, d2, d3, w1, w2;
22
23
    xor x1(d1, Q0, Q1);
24
     and(w1, Q0, Q1);
25
    xor x2(d2,Q2, w1);
     and(w2, Q0, Q1, Q2);
26
27
     xor x3(d3,Q3, w2);
28
29
    D_Flip_Flop D1(Q0, Q0_bar, Q0_bar, clk, reset);
D_Flip_Flop_D2(O1. O1_bar. d1. clk. reset);
30
31
```

```
12
        Q \le D;
13
14
     endmodule
15
    // 4 bit up Counter
16
    module UP_Counter_4_bit(clk,reset, Q0, Q1, Q2, Q3);
    input clk, reset;
17
18
     output Q0, Q1, Q2, Q3;
19
     wire Q0 b, Q1 b, Q2 b, Q3 b;
20
21
    wire dl, d2, d3, w1, w2;
22
    xor x1(d1, Q0, Q1);
23
24
    and(w1, Q0, Q1);
25
     xor x2(d2,Q2, w1);
26
    and(w2, Q0, Q1, Q2);
27
     xor x3(d3,Q3, w2);
28
29
30
    D_Flip_Flop D1(Q0, Q0_bar, Q0_bar, clk, reset);
    D_Flip_Flop D2(Q1, Q1_bar, d1, c1k, reset);
D_Flip_Flop D3(Q2, Q2_bar, d2, c1k, reset);
31
32
33
     D Flip Flop D4(Q3, Q3 bar, d3, clk, reset);
34
     //D_Flip_Flop Dl(Q0, Q0_bar, Q0_bar, clk, reset);
35
36
    //D_Flip_Flop D2(Q1, Q1_bar, (Q0^Q1), clk, reset);
    //D_Flip_Flop_D3(Q2, Q2_bar, (Q2^(Q1&Q0)), clk, reset);
//D_Flip_Flop_D4(Q3, Q3_bar, Q3^(Q0&Q1&Q2), clk, reset);
37
38
39
40
     endmodule
41
```

```
`timescale lns / lps
 2
    module Clock v;
 3
        reg clk, reset;
        wire Q0, Q1, Q2, Q3;
 4
        // Instantiate the Unit Under Test (UUT)
 5
        UP_Counter_4_bit uut (
 6
 7
           .clk(clk),
 8
           .reset (reset),
 9
           .Q0(Q0),
           .Q1(Q1),
10
11
           .Q2(Q2),
12
           .Q3(Q3)
13
        );
14
        initial begin
15
16
           clk = 0;
           forever #1 clk = ~clk;
17
18
           end
19
           initial begin
           reset = 1;
20
21
           #5 reset = 1'b0;
22
           end
23
24
    endmodule
25
26
```

Schematic Diagram

END