CS61C Guerilla Section: MIPS

Q1: Hex to MIPS (Sp07 Final #1)

a) Complete the table below, using proper register names (\$s0, \$t0, etc.) for instructions. If there are any memory addresses represent them in hex.

Address	32-bit Binary Instruction	Type (R, I, J)	MIPS Instruction w/args
0xAFFFFF8	0000 0001 0000 1000 0100 0000 0010 0110		
0xAFFFFFC	0001 0100 0000 1000 1111 1111 1111 1110		
0xB0000000	0000 1000 0000 0000 0000 0000 0000 0001		
0xB0000004			ori \$v0, \$0, 0x61C
0xB0000008			jr \$ra

b) Complete the code below, using at most two TAL MIPS instructions, so	
that the function returns false if \$a0 contains an R-type instruction and tru	ıe
otherwise.	

NotRType:	

SID:		

Q2: MIPS Sleuth (Fa15 MT1, #5)

mystery, a mysterious MIPS function outlined below, is written without proper calling conventions. mystery calls a correctly written function, random, that takes an integer i as its only argument, and returns a random integer in the range [0, i - 1] inclusive.

1	mystery:	addiu \$sp \$sp
2		
3		
4		
5		
6		
7		addu \$s0 \$0 \$0
8		move \$s1 \$a0
9		move \$s2 \$a1
10	loop:	srl \$t0 \$s0 2
11	·	beq \$t0 \$s2 exit
12		subu \$a0 \$s2 \$t0
13		jal random
14		sll \$v0 \$v0 2
15		addu \$v0 \$v0 \$s0
16		addu \$t0 \$s1 \$s0
17		addu \$t1 \$s1 \$v0
18		lw \$t2 0(\$t0)
19		lw \$t3 0(\$t1)
20		sw \$t2 0(\$t1)
21		sw \$t3 0(\$t0)
22		addiu \$s0 \$s0 4
23		j loop
24	exit:	
25		
26		
27		
28		
29		
30		

- 1) Fill in the prologue and the epilogue of this MIPS function. Assume that **random** follows proper calling conventions, and that it may make its own function calls. You may not need all of the lines.
- 2) What operation does this function perform on an integer array? Assume that both the integer array and the length of the array are passed into the function.
- 3) Would this function work as expected if a string was passed into the function instead? Write down the line numbers of all lines of MIPS code that must be changed (if any at all), so that the function works correctly on strings. Do not write down any extraneous line numbers.

Q3: Solve this MIPStery in C! (Sp14 MT1, #5)

mipstery:			
_sw \$ra, 0(\$ _sw \$s0, 4(\$ _sw \$s1, 8(\$	sp,16 sp) sp) sp) \$sp)	# Store onto the	stack if needed
addiu \$s0, \$ addiu \$s1, \$ addiu \$s2, \$	a0, 0	# We'll store th	e count in \$s0
loop:	-0.0		
addiu \$a0, \$	-		
	s1) ero, done		
jal isCharIn			
•	s0, \$v0		
-	\$s1, 1		
j loop			
done:			
_addiu \$v0,	\$s0, 0	# Load from the	stack if needed
_lw \$ra, 0(\$	sp)		
	sp)		
	sp)		
_lw \$s2, 12(\$sp)		
addiu \$sp, \$ jr \$ra	sp,16		
	Str function returns	ery, into a C function using 1 if the string (\$a0) con	-
mipstery(,) {
int count = 0;			
return count;			
}			

SID:		
OID.		

Q4: beargit redux (Fa15 MT1, #4)

From project 1, you may remember the function is_commit_msg_ok() that you needed to implement in C. Here is a simpler rendition where commit messages are deemed okay *if and only if* those null-terminated commit messages exactly match go_bears. Using the **fewest number of empty lines possible**, finish writing the code below. You are only allowed to use the registers already provided **and** registers \$10-3, and \$50-s2 (but you will not need all of them). Assume these registers are initialized to 0 before the call to ISCOMMITOK.

Note: int i is declared before the for loop. If you need to use it, you can use \$sp, \$ra, \$gp, \$fp. const char* go bears = "THIS IS BEAR TERRITORY!"; int is_commit_msg_ok(const char* msg, const char* go_bears) { for (int i = 0; msg[i] && go_bears[i]; i++) { if (go bears[i] != msg[i]) return 0; if (!msg[i] && !go bears[i]) return 1; return 0; } **ISCOMMITOK:** (\$a0) \$t0 (\$a1) \$t1 COND: and addiu \$a0 \$a0 1 addiu \$a1 \$a1 1 \$t2 \$t0 \$t1 EXIT: 90 li \$v0 1 FAILED: li \$v0 0 END:

Q5: I'll be free from MIPS after this midterm...

We wish to free a linked list of strings (example below) whose nodes are made up of this struct. Complete the code below; we have started you off with some filled in. You may use fewer lines, but do not add any.

```
// Assume compiler packs tightly
struct node {
        char *string;
        struct node *next;
};

void FreeLL(struct node *ptr) {
        if (ptr == NULL) return;
        else {
            FreeLL(ptr->next);
            free(ptr->string);
            free(ptr);
        }
}
```

FreeLL:beq_	,, NULL_CASE
	jal FreeLL
	lw \$a0 0(\$sp)
	jal free
NULL CASE	 E:jr \$ra

Q6: It's Alive! The code is alive! (Su13 MT1)

Answer the questions below about the following MIPS function. Answer each part separately, assuming each time that mystery() has not been called yet.

mystery: 1 andi \$a0, \$a0, 3 2 \$t0, \$0, 1 ori 3 sll \$t0, \$t0, 6 Lb11: beq \$a0, \$0, Lb12 4 5 sll \$t0, \$t0, 5 addi \$a0, \$a0, -1 6 7 Lb11 j Lb12: la \$s0, Lb13 8 8 lw \$s1, 0(\$s0) add \$s1, \$s1, \$t0 9 \$s1, 0(\$s0) 10 11 Lb13: add \$v0, \$0, \$0 12 jr \$ra

- A. Which instruction (number) gets modified in the above function?
- B. Write an equivalent arithmetic (not logical) C expression to instruction 1. a0 = _____
- C. Which instruction field gets modified when mystery is called with \$a0 = 3?
- D. How many times can mystery(2) be called before the behavior of mystery() changes?
- E. How many times can mystery(0) be called before the behavior of mystery() changes?
- F. A program calls mystery with the following sequence of arguments: 0, 1, 2, 3, 4, 5. What MIPS instruction gets stored in memory?

MIPS Reference Data

1

CORE INSTRUCTI	ON SE				OPCODE
NAME, MNEMO	NIC	FOR- MAT			/ FUNCT (Hex)
Add	add	R	OPERATION (in Verilog) R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned		Ī	R[rt] = R[rs] + SignExtImm	(2)	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]	(2)	0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c _{hex}
Branch On Equal	beq	Ι	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		$0/08_{hex}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		$0/27_{hex}$
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		$0/25_{hex}$
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}
Set Less Than	slt	R	$R[rd] = (R[rs] \le R[rt]) ? 1 : 0$		$0/2a_{hex}$
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{hex}$
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		$0/02_{hex}$
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	38 _{hex}
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	$0/22_{hex}$
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic					
BASIC INSTRUCTI	ON EC	DM A	Te		

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		
J	opcode			address		
	21 26	25				

ARITHMETIC CORE INSTRUCTION SET

			•	/ FMT /FT
		R-		/ FUNCT
NAME, MNEMONI		ΑT	OPERATION	(Hex)
Branch On FP True bo		FI	$if(FPcond)PC=PC+4+BranchAddr\ (4)$	11/8/1/
Branch On FP False bo	c1f F	FΙ	$if(!FPcond)PC \!\!=\!\! PC \!\!+\!\! 4 \!\!+\! BranchAddr(4)$	11/8/0/
		R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned di	ivu I	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \qquad (6)$	0///1b
	ld.s F	R	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	d.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			{F[ft],F[ft+1]}	
FP Compare Single c.:	x.s* F	R	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	x.d* F	R	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double		•	$\{F[ft],F[ft+1]\}\)?1:0$	11/11/ /y
	/ (1		=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
	v.s F	K	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	v.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
FP Multiply Single mu	. 17	R	{F[ft],F[ft+1]}	11/10//2
FP Multiply	II.S F	K	F[fd] = F[fs] * F[ft]	11/10//2
Double mu	1.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
	b.s F	R	{[ft]=F[fs] - F[ft]	11/10//1
FP Subtract			$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} -$	
Double su	b.d F	R	{F[ft],F[ft+1]}	11/11//1
	wc1	Ι	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP			F[rt]=M[R[rs]+SignExtImm]; (2)	
Double	dc1	Ι	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
	fhi I	R	R[rd] = Hi	0 ///10
Move From Lo mi	flo I	R	R[rd] = Lo	0 ///12
Move From Control mi	fc0 I	R	R[rd] = CR[rs]	10 /0//0
		R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
1 2		R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
	ra I	R	R[rd] = R[rt] >>> shamt	0//-3
a 222 at 4		Ι	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP			$M[R[rs]+SignExtImm] = F[rt]; \qquad (2)$	2.1/ / /
Double	dc1	Ι	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcod	le	fmt		f	t		fs	fd	funct	
	31	26	25	21	20	16	15	11	10 6	5	0
FI	opcod	le	fmt		f	t	immediate		•		
	31	26	25	21	20	16	15				0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

10111111	~!VIE, 140!VII	JEII, GOE, OALL GOITTE	111011
NAME	NUMBER	USE	PRESERVEDACROSS
INAIVIE	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

MIPS

OPCODES.	BASE CONVERSION.	ASCII SYMBOLS

		_		
	,	4	г	۹
1	ı	.*	,	ľ
1	۱	•		ı

		E CONVER	SI	ON, A						
	(1) MIPS	. ,			Deci-		ASCII	Deci-	Hexa-	ASCI
opcode	funct	funct	Bi	nary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)			mai	mal	acter	IIIai	mal	acter
(1)	sll	add.f	00	0000	0	0	NUL	64	40	(a)
. ,		$\mathrm{sub}.f$	00	0001	1	1	SOH	65	41	$\stackrel{\smile}{A}$
j	srl	$\mathtt{mul.} f$	00	0010	2	2	STX	66	42	В
jal	sra	div.f		0011	3	3	ETX	67	43	C
beq	sllv	sgrt.f	00	0100	4	4	EOT	68	44	D
bne		abs.f		0101	5	5	ENQ	69	45	Е
blez	srlv	mov.f	00	0110	6	6	ACK	70	46	F
bgtz	srav	neg.f		0111	7	7	BEL	71	47	G
addi	jr	negy		1000	8	8	BS	72	48	H
addiu	jalr			1001	9	9	HT	73	49	I
slti	movz			1010	10	a	LF	74	4a	j
sltiu	movn			1011	11	b	VT	75	4b	K
andi	syscall	round.w.f		1100	12	c	FF	76	4c	L
ori	break	trunc.w.f		1101	13	d	CR	77	4d	M
xori	Dieak	ceil.w.f		1110	14	e	SO	78	4e	N
				1111	15	f	SI	79	4f	O
lui	sync	floor.w.f			16			80	50	P
(2)	mfhi			0000		10 11	DLE DC1	81		
(2)	mthi	ſ		0001	17		DC1		51	Q
	mflo	movz.f		0010	18	12	DC2	82	52	R
	mtlo	movn.f		0011	19	13	DC3	83	53	S
				0100	20	14	DC4			T
				0101	21	15	NAK	85	55	U
				0110	22	16	SYN	86	56	V
				0111	23	17	ETB	87	57	W
	mult			1000	24	18	CAN	88	58	X
	multu			1001	25	19	EM	89	59	Y
	div			1010	26	1a	SUB	90	5a	Z
	divu			1011	27	1b	ESC	91	5b	[
				1100	28	1c	FS	92	5c	/
			01	1101	29	1d	GS	93	5d]
			01	1110	30	1e	RS	94	5e	^
			01	1111	31	1f	US	95	5f	_
lb	add	cvt.s.f	10	0000	32	20	Space	96	60	
lh	addu	$\operatorname{cvt.d} f$	10	0001	33	21	!	97	61	a
lwl	sub		10	0010	34	22	"	98	62	b
lw	subu		10	0011	35	23	#	99	63	c
lbu	and	cvt.w.f	10	0100	36	24	\$	100	64	d
lhu	or	,	10	0101	37	25	%	101	65	e
lwr	xor		10	0110	38	26	&	102	66	f
	nor			0111	39	27	,	103	67	g
sb				1000	40	28	(104	68	h
sh				1001	41	29)	105	69	i
swl	slt			1010	42	2a	*	106	6a	j
SW	sltu			1011	43	2b	+	107	6b	k
- "	2204			1100	44	2c		108	6c	1
				1101	45	2d	,	109	6d	m
swr				1110	46	2e		110	6e	n
cache				1111	47	2f	,	111	6f	0
11	tge	c.f.f		0000	48	30	0	1112	70	р
lwc1	tgeu	c.un.f		0000	49	31	1	113	71	
lwc1	tgeu tlt			0001	50	32	2	113	72	q r
	レエレ	c.eq.f				33	3	1114	73	S
	+ 1 + 11	a 1100 t	11	0011				1113		
pref	tltu	c.ueq.f		0011	51			116		
pref	tltu	c.olt.f	11	0100	52	34	4	116	74	t
pref ldc1	teq	c.olt.f c.ult.f	11 11	0100 0101	52 53	34 35	4 5	117	74 75	t u
pref		c.olt.f c.ult.f c.ole.f	11 11 11	0100 0101 0110	52 53 54	34 35 36	4 5 6	117 118	74 75 76	t u v
pref 1dc1 1dc2	teq	c.olt f c.ult f c.ole f c.ule f	11 11 11 11	0100 0101 0110 0111	52 53 54 55	34 35 36 37	4 5 6 7	117 118 119	74 75 76 77	t u v w
pref ldc1 ldc2	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f	11 11 11 11	0100 0101 0110 0111 1000	52 53 54 55 56	34 35 36 37 38	4 5 6 7 8	117 118 119 120	74 75 76 77 78	t u v w
pref ldc1 ldc2 sc swc1	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f c.ngle.f	11 11 11 11 11	0100 0101 0110 0111 1000 1001	52 53 54 55 56 57	34 35 36 37 38 39	4 5 6 7 8 9	117 118 119 120 121	74 75 76 77 78 79	t u v w x y
pref ldc1 ldc2	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f c.ngle.f c.seq.f	11 11 11 11 11 11	0100 0101 0110 0111 1000 1001 1010	52 53 54 55 56 57 58	34 35 36 37 38 39 3a	4 5 6 7 8	117 118 119 120 121 122	74 75 76 77 78 79 7a	t u v w x y z
pref ldc1 ldc2 sc swc1	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f c.ngle.f c.seq.f c.ngl.f	11 11 11 11 11 11 11	0100 0101 0110 0111 1000 1001 1010 1011	52 53 54 55 56 57 58 59	34 35 36 37 38 39 3a 3b	4 5 6 7 8 9 :	117 118 119 120 121 122 123	74 75 76 77 78 79 7a 7b	t u v w x y
pref ldc1 ldc2 sc swc1 swc2	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f c.ngle.f c.seq.f c.ngl.f	11 11 11 11 11 11 11 11	0100 0101 0110 0111 1000 1001 1010 1011 1100	52 53 54 55 56 57 58 59	34 35 36 37 38 39 3a 3b 3c	4 5 6 7 8 9 :	117 118 119 120 121 122 123 124	74 75 76 77 78 79 7a 7b 7c	t u v w x y z {
pref ldc1 ldc2 sc swc1 swc2 sdc1	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f c.ngle.f c.ngl.f c.nge.f	11 11 11 11 11 11 11 11	0100 0101 0110 0111 1000 1001 1010 1011 1100 1101	52 53 54 55 56 57 58 59 60 61	34 35 36 37 38 39 3a 3b 3c 3d	4 5 6 7 8 9 :	117 118 119 120 121 122 123 124 125	74 75 76 77 78 79 7a 7b 7c 7d	t u v w x x y z {
pref ldc1 ldc2 sc swc1 swc2	teq	c.olt.f c.ult.f c.ole.f c.ule.f c.sf.f c.ngle.f c.seq.f c.ngl.f	11 11 11 11 11 11 11 11 11	0100 0101 0110 0111 1000 1001 1010 1011 1100	52 53 54 55 56 57 58 59	34 35 36 37 38 39 3a 3b 3c	4 5 6 7 8 9 :	117 118 119 120 121 122 123 124	74 75 76 77 78 79 7a 7b 7c	t u v w x y z {

 $^{(1) \}text{ opcode}(31:26) == 0$

IEEE 754 FLOATING-POINT STANDARD

(4) IEEE 754 Symbols

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

Exponent	Fraction	Object
0	0	± 0
0	≠0	± Denorm
1 to MAX - 1	anything	± Fl. Pt. Num.
MAX	0	±⊗
MAX	≠0	NaN
S.P. $MAX = 2$	255, D.P. N	IAX = 2047

IEEE Single Precision and Double Precision Formats:

	S	Exponent	Fraction	
•	31	30 23	22	0
	S	Exponent	Fraction	
	63	62	52 51	0

DATA ALIGNMENT

Double Word								
	Wo	rd	W	ord				
Halfword		Half	word	Hal	fword	Halfword		
Byte Byte Byte Byte		Byte	Byte	Byte	Byte			
0	1	2	3	4	5	6	7	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 EF HON CONTROL REGISTERS. CAUSE AND STATUS										
В			Interrupt			Ex	ception			
D			Mask	ı			Code			
31		15		8		6		2		
			Pending	1			U		Е	Ι
			Interrupt				M		L	Е
		15		8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
4	Aull	(load or instruction fetch)	10	KI	Exception
5	AdES	Address Error Exception	on 11	CpU	Coprocessor
J	Auls	(store)	11	СрС	Unimplemented
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
O	IBE	Instruction Fetch	12	Ov	Exception
7	DBE	Bus Error on	13	Tr	Trap
,	DBE	Load or Store	13	11	пар
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

		- (,		,	
	SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
	10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki
	10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
	10 ⁹	Giga-	G	230	Gibi-	Gi
	10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
	10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
	10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei
ш	10^{21}	Zetta-	Z	270	Zebi-	Zi
	10 ²⁴	Yotta-	Y	280	Yobi-	Yi

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Compu

⁽²⁾ opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f$ = s (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f$ = d (double)