My paper title

My name

The date

Let $\mathbb{B} = \{ \lozenge, \blacklozenge \}$ where $\lozenge \neq \blacklozenge$. Let T_{14} be a set and $C_{a_1} : \mathbb{B} \to T_{14}$ and $C_{b_1} : T_{14} \times \mathbb{B} \to T_{14}$ functions such that all of the following conditions are met:

- C_{a_1} and C_{b_1} are injective,
- for every x_{21} , x_{22} and x_1 , we have $C_{a_1}(x_1) \neq C_{b_1}(x_{21}, x_{22})$,
- T_{14} is covered by C_{a_1} and C_{b_1} (i.e., $image(C_{a_1}) \cup image(C_{b_1}) = T_{14}$)¹.

Then we proceed to define a function over this set.

Definition 1. Let $f_{\beta}: T_{14} \times \mathbb{N} \to \mathbb{N}$ be the recursive function determined by the following equations (for any a, b and c):

$$f_{\beta}(C_{a_1}(a), b) = b \tag{1}$$

$$f_{\beta}(C_{b_1}(a,b),c) = f_{\beta}(a,Suc(c)) \tag{2}$$

1 The Lemmas

We begin by proving some necessary lemmas.

Lemma 1. For every $n \in T_{14}$, $p \in T_{14}$ and $q \in \mathbb{N}$

$$f_{\beta}(n, Suc(f_{\beta}(p,q))) = f_{\beta}(n, f_{\beta}(p, Suc(q)))$$

Proof. We proceed by induction on p.

For the **base of induction** we need to prove the following statement:

$$\forall x \in \mathbb{B}. \ \forall o \in T_{14}. \ \forall r \in \mathbb{N}. \ f_{\beta}(o, Suc(f_{\beta}(C_{a_1}(x), r))) = f_{\beta}(o, f_{\beta}(C_{a_1}(x), Suc(r)))$$

This follows trivially from our definitions.

For the **step of induction** we need to show that for every $r \in T_{14}$, $x_2 \in \mathbb{B}$, $o \in T_{14}$ and $s \in \mathbb{N}$, the inductive hypothesis (IH₁) entails the inductive goal (IG₁).

$$\forall t \in T_{14}. \ \forall u \in \mathbb{N}. \ f_{\beta}(t, Suc(f_{\beta}(r, u))) = f_{\beta}(t, f_{\beta}(r, Suc(u)))$$
 (IH₁)

$$f_{\beta}(o, Suc(f_{\beta}(C_{b_1}(r, x_2), s))) = f_{\beta}(o, f_{\beta}(C_{b_1}(r, x_2), Suc(s)))$$
 (IG₁)

¹This fact allows us to prove theorems about all the elements of T_{14} by induction over the structure given by C_{a_1} and C_{b_1} .

We show this with the following chain of equalities:

$$f_{\beta}(o, Suc(f_{\beta}(C_{b_1}(r, x_2), s))) = f_{\beta}(o, Suc(f_{\beta}(r, Suc(s))))$$
 by (2)

$$= f_{\beta}(o, f_{\beta}(r, Suc(Suc(s))))$$
 by (IH₁)

$$= f_{\beta}(o, f_{\beta}(C_{b_1}(r, x_2), Suc(s)))$$
 by (2)

Thus we conclude the proof of this lemma.

2 The Theorem

In this section we prove the main result of this article.

Theorem. For every $a \in T_{14}$, $b \in T_{14}$ and $c \in \mathbb{N}$

$$f_{\beta}(a, f_{\beta}(b, c)) = f_{\beta}(b, f_{\beta}(a, c))$$

Proof. We proceed by induction on a.

For the **base of induction** we need to prove the following statement:

$$\forall x \in \mathbb{B}. \ \forall d \in T_{14}. \ \forall e \in \mathbb{N}. \ f_{\beta}(C_{a_1}(x), f_{\beta}(d, e)) = f_{\beta}(d, f_{\beta}(C_{a_1}(x), e))$$

This follows trivially from our definitions.

For the **step of induction** we need to show that for every $d \in T_{14}$, $x_2 \in \mathbb{B}$, $e \in T_{14}$ and $f \in \mathbb{N}$, the inductive hypothesis (IH₂) entails the inductive goal (IG₂).

$$\forall g \in T_{14}. \ \forall h \in \mathbb{N}. \ f_{\beta}(d, f_{\beta}(g, h)) = f_{\beta}(g, f_{\beta}(d, h)) \tag{IH}_2)$$

$$f_{\beta}(C_{b_1}(d, x_2), f_{\beta}(e, f)) = f_{\beta}(e, f_{\beta}(C_{b_1}(d, x_2), f))$$
 (IG₂)

We show this with the following chain of equalities:

$$f_{\beta}(C_{b_1}(d, x_2), f_{\beta}(e, f)) = f_{\beta}(d, Suc(f_{\beta}(e, f)))$$
 by (2)

$$= f_{\beta}(d, f_{\beta}(e, Suc(f)))$$
 by Lemma 1

$$= f_{\beta}(e, f_{\beta}(d, Suc(f)))$$
 by (IH₂)

$$= f_{\beta}(e, f_{\beta}(C_{b_1}(d, x_2), f))$$
 by (2)

Thus we conclude the proof of this theorem.