R wst $Ä^{TM}p$

dr Magdalena Guzowska

11 sierpnia 2018

Dlaczego R

- 1. darmowe środowisko oblicznieowe **open source**
- 2. pracuje na wszystkich platformach Windows, MAC OSX and Linux
- 3. szerokie spektrum analiz statystycznych oraz możliwości graficznego przedstawiania danych
- 4. możliwość wielokrotnej i ujednoliconej analizy danych poprzez stosowanie skryptów
- 5. zrzesza wielu użytkowników (nauka i biznes) prężne fora !!!
- poszerzanie możliwości R dzięki tysiącom dobrze udokumentowanych rozszerzeń - pakietów R (zastosowanie w biologii, ochronie zdrowia, różnych dziedzinach nauki, sektorze finansowym itp.)
- 7. łatwość tworzenia własnych skryptów i pakietów R, służących do rozwiązywania specyficznych problemów

Kilka zastosowań R

- 1. szeroki wachlarz klasycznych testów statystycznych np.:
 - t-test Student'a m.in. do porównywania średnich 2 grup
 - test Wilcoxon'a nieparametryczna alternatywa testu T
 - ANOVA porównanie średnich więcej niż 2 grup
 - ▶ test Chi² porównujący proporcje/ dystrybucje
 - analiza korelacji (ocena relacji pomiędzy zmiennymi)
- tworzenie klasyfikacji grup danych np.:
 - PCA (ang: principal component analysis)
 - klastrowanie
- wiele typów prostych i skomplikowanych wykresów (ogromne możliwości zmian wygladu i zawartości) np.: wykres pudełkowy, histogram, wykres gęstości, wykres punktowy, wykres liniowy, wykres słupkowy, i wiele innych...

CRAN, Bioconductor, GitHub

CRAN - Comprehensive R Archive Network - to źródło dokumentacji oraz pakietów do języka R https://cran.r-project.org/

Bioconductor - Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. https://www.bioconductor.org/

GitHub – hostingowy serwis internetowy przeznaczony dla projektów programistycznych wykorzystujących system kontroli wersji Git. Serwis działa od kwietnia 2008 roku. https://github.com/

Wszystkie te serwisy są źródłem pakietów rozszerzających możliwości R: **CRAN** - pakiety o różnorodnych zastosowaniach, **Bioconductor** - pakiety o zastosowaniach biologicznych, **Github** wersje pakietów w trakcie budowy.

pakiet R - rozszerzenie funkcjonalności R o zbiory danych i specyficzne funkcje - cel:odpowiedź na specyficzne pytania

R w podstawowej wersji - pakiety umożliwiające wykonywanie podstawowych analiz statystycznych i graficznej wizualizacji danych (wykresy) oraz dostarcza podstawowe zestawy danych.

Możliwość pobrania wielu innych pakietów z ww. serwisów

Podczas każdej sesji **niezbędne jest załadowanie odpowiedniego pakietu, aby móc z niego korzystać !!!**

- Funkcja install.packages("NAZWA_PAKIETU") służy do instalacji pakietów z CRAN. Możliwa jest instalacja wielu pakietów jednocześnie: install.packages(c("NAZWA_PAKIETU1", "NAZWA_PAKIETU2"))
- Do instalowania pakietów z Bioconductor'a używa się następującego polecenia: source("https://bioconductor.org/biocLite.R"), biocLite("NAZWA_PAKIETU")
- Do instalacji z GitHub, korzysta się z pakietu "devtools" (Hadley'a Wickham'a) install.packages("devtools"), devtools::install_github("ŚCIEŻKA")

Tworzenie listy zainstalowanych pakietów - installed.packages()

```
head(installed.packages(), \underline{n}=2)
```

```
Package LibPath
       "abind" "C:/Users/Magda/Documents/R/win-library/
abind
acepack "acepack" "C:/Users/Magda/Documents/R/win-library/
       Priority Depends Imports
                                            LinkingTo
            "R (>= 1.5.0)" "methods, utils" NA
abind
       NA
acepack NA
                NA
                            NA
                                              NA
       Enhances License
                                    License_is_FOSS
abind NA "LGPL (>= 2)"
                                    NA
acepack NA "MIT + file LICENSE" NA
       License_restricts_use OS_type MD5sum NeedsCompilat:
                                    NA
abind
       NA
                            NA
                                           "no"
acepack NA
                            NA
                                    NΑ
                                          "ves"
   W RStudio lista zainstalowanych pakietów jest widoczna
   w jednym z paneli
```

Pakiety instalowane są w podkatalogu o nazwie library. Funkcja .libPaths() służy do wypisania ścieżki dostępu

```
.libPaths()
[1] "C:/Users/Magda/Documents/R/win-library/3.5"
[2] "C:/Program Files/R/R-3.5.1/library"
```

Uruchomione/ załadowane pakiety podczas danej sesji wypisywane są po użyciu funkcji **search()**

```
search()
```

[7] "package:methods" "Autoloads" "package:base"

Najlepiej używać aktualnych wersji pakietów -> należy je uaktuaniać !!! Służy do tego funkcja: update.packages()

Możliwe jest uaktualnianie tylko wybranych pakietów umieszczając w nawiasie funkcji ich nazwy np.:

update.packages(oldPkgs = c("readr", "ggplot2"))

R i RStudio

- 1. **R** służy do manipulowania danymi, obliczeń i graficznego przedstawiania danych.
- 2. Prosty interface graficzny pozwala na:
 - wprowadzanie i zapisywanie danych, manipulacje i obliczenia
 - stoswanie wszystkich narzedzi dostarczanych przez pakiety
 - dobrze rozwinięty język programowania, stosujący warunki, pętle, funkcje itp.
- 3. **RStudio** wykorzystuje środowisko graficzne komputera w celu ułatwienia współpracy z R i zawiera min.:
 - konsolę do wpisywania kodu
 - okno danych wprowadzonych z zewnątrz i wyników obliczeń R
 - okno do podglądu wprowadzonych i uzyskanych danych oraz okno podglądu wykresów
 - inne okna w formie zakładek np.: pakiety, historia, pomoc

R i RStudio - porównanie

- RStudio ma więcej możliwości i zastosowań. Pozwala na bezpośrednią interakcję z kodem R
- Standardowy interface R i RStudio równie dobrze radzą sobie z podglądem danych, ale nie dają możliwości ich prostej edycji (kopiowanie/wklejanie, ręczne wpisywanie)
- RStudio sprawdza się lepiej w projektach, w których trzeba bezpośrednio ingerować w kod i podczas pracy ze złożonymi danymi

RStudio ustawienia i możliwości

- 1. Program darmowy !!!
- 2. Możliwość dostosowania wyglądu i widocznych paneli [Opcje]
- 3. Łatwość instalacji pakietów, wyszukiwania pomocy, wyszukiwania dokumentów na komputerze
- 4. Możliwość pracy bez zewnętrznego edytora
- 5. Podgląd wszystkich wykonanych podczas sesji wykresów
- Podgląd wprowadzonych danych w formie podobnej do arkusza Excel lub klasycznej tabeli
- 7. Liczne, funkcjonalne dodatki m.in. Markdown i Git
- 8. Developer Tools narzędzia do tworzenia i sprawdzania własnych funkcji i pakietów

Pomoc dotycząca funkcji R

Aby przeczytać więcej o danej funkcji używa się komendy **help()** np.: dla funkcji *mean* **help(mean)**, lub **?mean**

Aby zapoznać się z przykładami zastosowań funkcji używa się komendy **example(NAZWA FUNKCJI)** np.: **example(mean)**

Funkcja **apropos()** zwraca listę obiektów zawierających sekwencję liter, której szukamy. Jest to przydatne, kiedy nie znamy nazwy funkcji np.:

```
apropos("med")
```

```
[1] "elNamed" "elNamed<-" "median" "me [5] "medpolish" "runmed"
```

Pomoc dotycząca funkcji R

Inną funkcja do wyszukiwania pomocy jest **help.search()** (lub **??**), która zwraca on-line listę funkcji zawierającą wyszukiwany termin, z krótkim opisem

```
help.search("mean")
starting httpd help server ... done
```

Dane wbudowane

data() wypisuje wszystkie dostępne dane dostarczone przez R data(mtcars) - umożliwia korzystanie z danych o nazwie umieszczonej w nawiasie

head(mtcars, 6)

mpg	cyl	disp	hp	drat	wt	qsec	vs	am
21.0	6	160	110	3.90	2.620	16.46	0	1
21.0	6	160	110	3.90	2.875	17.02	0	1
22.8	4	108	93	3.85	2.320	18.61	1	1
21.4	6	258	110	3.08	3.215	19.44	1	0
18.7	8	360	175	3.15	3.440	17.02	0	0
18.1	6	225	105	2.76	3.460	20.22	1	0
	21.0 21.0 22.8 21.4 18.7	21.0 6 21.0 6 22.8 4 21.4 6 18.7 8	21.0 6 160 21.0 6 160 22.8 4 108 21.4 6 258 18.7 8 360	21.0 6 160 110 21.0 6 160 110 22.8 4 108 93 21.4 6 258 110 18.7 8 360 175	21.0 6 160 110 3.90 21.0 6 160 110 3.90 22.8 4 108 93 3.85 21.4 6 258 110 3.08 18.7 8 360 175 3.15	21.0 6 160 110 3.90 2.620 21.0 6 160 110 3.90 2.875 22.8 4 108 93 3.85 2.320 21.4 6 258 110 3.08 3.215 18.7 8 360 175 3.15 3.440	21.0 6 160 110 3.90 2.620 16.46 21.0 6 160 110 3.90 2.875 17.02 22.8 4 108 93 3.85 2.320 18.61 21.4 6 258 110 3.08 3.215 19.44 18.7 8 360 175 3.15 3.440 17.02	21.0 6 160 110 3.90 2.875 17.02 0 22.8 4 108 93 3.85 2.320 18.61 1 21.4 6 258 110 3.08 3.215 19.44 1 18.7 8 360 175 3.15 3.440 17.02 0

Dane wbudowane "mtcars"

summary(mtcars)

mpg Min. :10.40

am

1g+ Nii •0 0000

:0.0000

Min.

Median	:19.20	Median	:6.000	Median	:196.3	Median	:12
Mean	:20.09	Mean	:6.188	Mean	:230.7	Mean	:14
3rd Qu.	:22.80	3rd Qu.	:8.000	3rd Qu.	:326.0	3rd Qu.	:18
Max.	:33.90	Max.	:8.000	Max.	:472.0	Max.	:33
drat		V	rt	qs	vs		
Min.	:2.760	Min.	:1.513	Min.	:14.50	Min.	:0
1st Qu.	:3.080	1st Qu.	:2.581	1st Qu.	:16.89	1st Qu.	.:0
Median	:3.695	Median	:3.325	Median	:17.71	Median	:0
Mean	:3.597	Mean	:3.217	Mean	:17.85	Mean	:0
3rd Qu.	:3.920	3rd Qu.	:3.610	3rd Qu.	:18.90	3rd Qu.	.:1
Max.	:4.930	Max.	:5.424	Max.	:22.90	Max.	:1

:4.000

disp

carb

1g+ Nii •2 000

:1.000

Min.

Min. : 71.1 Min.

hp

1st Qu.: 9

cyl

1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8

gear

Min. :3.000

1g+ Nii ·3 000

Min.

Dane wbudowane "mtcars"

Najczęściej używane wbudowane dane R

- 1. **iris** zestaw danych pomiarów w centymetrach zróżnicowania długości i szerokości płatków 50 kwiatów irysów z 3 różnych gatunków *Iris setosa, I. versicolor* i *I. virginica*.
- ToothGrowth zestaw danych przedstawiających wpływ podawania wit. C na wzrost zębów 60 świnek morskich. Każde zwierzę otrzymywało jedną z trzech dawek witaminy C (0.5, 1, lub 2 mg/dzień) jednym z dwóch źródeł - pochodzące z soku pomarańczowego (OC) lub kwasu askorbinowego (VC).
- PlantGrowth wyniki eksperymentu mającego na celu porównanie plonów (suchej masy) uprawianych na dwa różne sposoby.
- 4. **USArrests** statystyki dotyczące brutalnych przestępstw w USA z podziałem na stany.

Instalacja niezbędnego podczas zajęć oprogramowania

Na zajęciach korzystać będziemy z: R i dodatkowych pakietów R, RStudio, Notepad++ (opcjonalnie), Git (opcjonalnie)

- 1. Dostęp do internetu możliwe jest pobieranie i instalowanie oprogramowania na bieżąco.
- Kolejność instalacji R, RStudio, pakiety (zgodnie z aktualnym zapotrzebowaniem - na początek konieczne będzie zainstalowanie "knitr")
- Brak dostępu do internetu przygotowana wersja instalacyjna zawiera aktualną wersję R, RStudio oraz niezbędnych pakietów. Dodatkowo zawiera też Notpad++ i Git (do jego wykorzystywania niezbędne jest połączenie z internetem)