Особенности настройки глубоких нейросетей

Виктор Китов

v.v.kitov@yandex.ru

DropOut, батч-нормализация - Виктор Китов DropOut

Содержание

- DropOut
- Перенормировка активаций (batch normalization)

DropOut: обучение

- Для каждого минибатча каждый нейрон, кроме выходных и входных отбрасывается с вероятностью (1-p) и оставляется с вероятностью p.
 - независимо для каждого нейрона
- Это уменьшает переобучение, препятствуя со-настройке нейронов
- По сути, мы учим ансамбль прореженных моделей.
- В среднем нейрон получает на вход $\sum_{i} (pw_{i}x_{i} + (1-p)w_{i}0) = \sum_{i} pw_{i}x_{i}.$

DropOut: применение

- Применение модели: оставляются все нейроны.
- Для компенсации изменений, выход каждого нейрона домножается на p.
 - для уменьшения вычислений можно:
 - ullet обучение: выход x_i/p , когда x_i оставлен.
 - прогноз: выход x_i без изменений.

DropOut, батч-нормализация - Виктор Китов
Перенормировка активаций (batch normalization)

Содержание

- DropOut
- 2 Перенормировка активаций (batch normalization)

Перенормировка активаций: мотивация

- SGD $w := w \varepsilon \nabla_w \mathcal{L}(x, y)$ обновляет все веса на всех слоях одновременно.
- Распределение выходов меняется, и поздние слои должны обучатся снова.
- Также вход может сдвинуться в область малых градиентов нелинейности.
- Перенормировка активаций (batch normalization) частично это решает.

BatchNorm: идея

• Нормализуем выходы на промежуточных слоях:

$$\tilde{x}_k = \frac{x_k - \mu_k}{\sigma_k}, \quad \mu_k = \mathbb{E} x_k, \sigma_k = \sqrt{Var(x_k)}$$

- гарантируем $\mathbb{E} \tilde{x}_k = 0$, $\operatorname{Var} \tilde{x}_k = 1$ после обновления весов на предыдущих слоях.
 - обучение быстрее для поздних слоёв

• Обучение:

- проблема: не знаем μ_k, σ_k
 - изменяются динамически с обновлением весов
- решение: оценим по текущему минибатчу (должен быть достаточного размера)

• Применение:

- распределение x_k фиксировано, так что можем оценить μ_k, σ_k по всей обучающей выборке.
- более эффективно: оценки μ_k, σ_k с последовательности последних минибатчей.

BatchNorm: основной алгоритм

$$\tilde{x}_k = \alpha_k \frac{x_k - \mu_k}{\sqrt{\sigma_k^2 + \varepsilon}} + \beta_k, \quad \mu_k = \bar{x}_k, \ \sigma_k = \sqrt{\textit{Var}(x_k)}, \ \varepsilon = 10^{-6}.$$

• Обучение:

- μ_k, σ_k по минибатчу
- α_k, β_k выходное стд. отклонение и среднее.
 - обучаются в процессе настройки сети
- мотивация:
 - можем отменить нормализацию (например в задаче предсказания времени суток по фото)
 - возможность лучше подстроиться под нелинейность (не обнулять вход в половине случаев для ReLU)

• Применение:

- μ_k, σ_k оценены по широкому классу объектов.
- α_k, β_k фиксированы.