1. Основные понятия

После проведения корреляционного анализа, когда выявлено наличие статистически значимых связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию вида зависимостей с использованием методов регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель y и аргументы $x_1, x_2, ..., x_k$, вычисляют оценки параметров уравнения связи и анализируют точность полученного уравнения.

Функция $f(x_1, x_2, ..., x_k)$, описывающая зависимость условного среднего значения результативного признака y от заданных значений аргументов, называется yравнением регрессии.

Термин "регрессия" (лат. - "regression" - отступление, возврат к чему-либо) введен английским психологом и антропологом Φ . Гальтоном и связан с одним из его первых примеров, в котором Φ . Гальтон, обрабатывая статистические данные, связанные с вопросом о наследственности роста, нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа "регрессией к среднему состоянию".

Термин "регрессия" широко используется в статистической литературе, хотя во многих случаях, он недостаточно точно характеризует статистическую зависимость.

Для точного описания уравнения регрессии необходимо знать условный закон распределения результативного показателя y. В статистической практике такую информацию получить обычно не удается, поэтому ограничиваются поиском подходящих аппроксимаций для функции $f(x_1, x_2, ..., x_k)$, основанных на предварительном содержательном анализе явления или на исходных статистических данных.

В рамках отдельных модельных допущений о типе распределения вектора показателей $(y, x_1, x_2, ..., x_k)$ может быть получен общий вид *уравнения регрессии* f(X)=M(y/X), где $X=(x_1, x_2, ..., x_k)^T$. Например, в предложении, что исследуемая совокупность показателей подчиняется (k+1) - мерному нормальному закону распределения с вектором математических ожиданий

$$M = \begin{pmatrix} My \\ MX \end{pmatrix},$$

$$MX = \begin{pmatrix} Mx_1 \\ \cdot \\ \cdot \\ \cdot \\ Mx_k \end{pmatrix}, \qquad \mu_y = My$$

и ковариационной матрицей $\Sigma = \begin{pmatrix} \sigma_{yy} & \Sigma_{yx}^T \\ \Sigma_{yx} & \Sigma_{xx} \end{pmatrix}$,

где
$$\sigma_{yy} = \sigma_y^2 = M(y - My)^2$$
 - дисперсия y ;

$$\sigma_{ij} = M(x_i - Mx_i)(x_j - Mx_j); \quad \sigma_{jj} = \sigma_j^2 = M(x_j - Mx_j)^2$$

 σ_{ij} - ковариация между величинами x_i и x_j , а $\sigma_{jj} = \sigma_j^2$ - дисперсия x_j .

Уравнение регрессии (условное математическое ожидание) имеет вид:

$$M(y/x) = \mu_y + \sum_{yx}^{T} \cdot \sum_{xx}^{-1} (x - Mx).$$

Таким образом, если многомерная случайная величина $(y, x_1, x_2, ..., x_k)$ подчиняется $(\kappa+1)$ -мерному нормальному закону распределения, то уравнение регрессии результативного показателя y по объясняющим переменным $x_1, x_2, ..., x_k$ имеет линейный по x вид.

Однако в статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии f(x), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результативного показателя y при заданных значениях аргументов x. Рассмотрим взаимоотношение между истиной f(x)=M(y/x), модельной \tilde{y} и оценкой \hat{y} регрессии [1, 26]. Пусть результативный показатель y связан с аргументом x соотношением:

$$y = 2x^{1,5} + \varepsilon,$$

где ε - случайная величина, имеющая нормальный закон распределения,

причем $M \varepsilon = 0$ и $D \varepsilon = \sigma^2$. Истинная функция регрессии в этом случае имеет вид:

$$f(x)=M(y/x)=2x^{1,5}$$
.

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением $y_i = 2x_i^{1.5} + \varepsilon_i$ и представленной на рис. 1.

 $Puc.\ 1.$ Взаимное расположение истинной f(x) и теоретической \tilde{y} модели регрессии.

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида: $\tilde{y} = \beta_0 + \beta_1 x$.

С помощью метода наименьших квадратов найдем оценку уравнения регрессии.

Для сравнения на рис.1 приводятся графики истинной функции регрессии $f(x) = 2x^{1.5}$ и теоретической аппроксимирующей функции регрессии $\tilde{y} = \beta_0 + \beta_1 x$. К последней сходится по вероятности оценка уравнения регрессии \hat{y} при неограниченном увеличении объема выборки ($n \to \infty$).

Поскольку мы ошиблись в выборе класса функции регрессии, что, к сожалению, достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки не будут обладать свойством состоятельности, т.е., как бы мы ни увеличивали объем наблюдений, наша выборочная оценка \hat{y} не будет сходиться к истинной функции регрессии f(x).

Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(x) с помощью \hat{y} объяснялась бы только ограниченностью выборки и, следовательно, она могла бы быть сделана сколько угодно малой при $n \to \infty$.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя y(x) и неизвестной функции регрессии f(x)=M(y/x) наиболее часто используют следующие *критерии адекватности*, функции потерь [26].

1. *Метод наименьших квадратов*, согласно которому минимизируется квадрат отклонения наблюдаемых значений результативного показателя y_i (i=1,2,...,n) от модельных значений $\widetilde{y}_i = f(x_i,\beta)$, где $\beta = (\beta_0,\beta_1,...,\beta_k)^T$ - коэффициенты уравнения регрессии, x_i значения вектора аргументов в i-м наблюдении:

$$\sum_{i=1}^{n} (y_i - f(x_i, \beta))^2 \rightarrow \min_{\beta}.$$

Решается задача отыскания оценки $\hat{\beta}$ вектора β . Получаемая регрессия называется среднеквадратической.

2. *Метод наименьших модулей*, согласно которому минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений $\tilde{y}_i = f(x_i, \beta)$, т. е.

$$\sum_{i=1}^{n} \left| y_i - f(x_i, \beta) \right| \to \min_{\beta}.$$

Получаемая регрессия называется среднеабсолютной (медианной).

3. *Метод минимакса* сводится к минимизации максимума модуля отклонения наблюдаемого значения результативного показателя y_i от модельного значения $f(x_i, \beta)$, т. е.

$$\max_{1 \le i \le n} \left| y_i - f(x_i, \beta) \right| \to \min_{\beta}.$$

Получаемая при этом регрессия называется минимаксной.

В практических приложениях часто встречаются задачи, в которых изучается случайная величина y, зависящая от некоторого множества переменных $x_1,x_2,...,x_k$ и неизвестных параметров β_j (j=0,1,2,..., κ). Будем рассматривать (y, $x_1,x_2,...,x_k$) как (k+1)-мерную генеральную совокупность, из которой взята случайная выборка объемов n, где ($y_i,x_{i1},x_{i2},...,x_{ik}$) результат i-го наблюдения i=1,2,...,n. Требуется по результатам наблюдений оценить неизвестные параметры β_j (j=0,1,2,..., κ). Описанная выше задача относится к задачам регрессионного анализа.

Регрессионным анализом называют метод статистического анализа зависимости случайной величины у от переменных x_j ($j=1,2,...,\kappa$), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения x_j .

Часто предполагается, что случайная величина y имеет нормальный закон распределения с условным математическим ожиданием \widetilde{y} , являющимся функцией от аргументов x_j ($j=1,2,...,\kappa$) и постоянной, не зависящей от аргументов дисперсий σ^2 .

Следует помнить, что требование нормальности закона распределения y необходимо лишь для проверки значимости уравнения регрессии и его параметров β_j , а также для интервального оценивания β_j . Для получения точечных оценок β_j (j=0,1,2,..., κ) этого условия не требуется.

В общем виде линейная модель регрессии имеет вид:

$$y = \sum_{j=0}^{k} \beta_{j} \varphi_{j}(x_{1}, x_{2}, ..., x_{k}) + \varepsilon,$$

где φ_j - некоторая функция его переменных $x_1, x_2, ..., x_k$, ε - случайная величина с нулевым математическим ожиданием и дисперсией σ^2 .

В регрессионном анализе под *линейной моделью* подразумевают модель, линейно зависящую от неизвестных параметров β_j .

Простейшей линейной будем называть модель, линейно зависящую как от параметров β_j , так и от переменных x_j .

2. Двухмерная линейная модель регрессии

Пусть на основании анализа исследуемого явления предполагается, что в "среднем" у линейно зависит от x, т.е. имеет место уравнение регрессии.

$$\widetilde{\mathbf{y}} = M(\mathbf{y}/\mathbf{x}) = \beta_0 + \beta_1 \mathbf{x} \,, \tag{1}$$

где M(y/x) - условное математическое ожидание случайной величины у при заданном x. Объясняющая переменная x рассматривается как не случайная величина;

 β_0 и β_1 - неизвестные параметры генеральной совокупности, которые подлежат оценке по результатам выборочных наблюдений. С этой целью из двухмерной генеральной совокупности (x, y) взята выборка объемом n, где (x_i, y_i) результат i-го наблюдения (i=1,2,...,n).

В этом случае линейная регрессионная модель имеет вид:

$$y_i = \beta_0 + \beta_1 x_{i1} + \varepsilon_1 \quad , \tag{2}$$

где ε_i - взаимно независимые случайные величины с нулевым математическим ожиданием и дисперсией σ^2 , т.е. $M\varepsilon_i$ =0; $D\varepsilon_i$ = $M\varepsilon_i^2$ = σ^2 для всех i=1,2,...,n и

$$M(^{\mathcal{E}_i^{\ \mathcal{E}_j}}) = \left\{ egin{array}{ll} \sigma^2 & \text{при } i=j - \text{условие гомоскедастичности,} \\ & & \text{постоянства остаточной дисперсии.} \\ & & & \\ 0 & \text{при } i \neq j - \text{условие взаимной некоррелировансти} \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right.$$

Наша задача – по выборке найти оценки параметров регрессионной модели.

2.1. Оценивание параметров регрессии

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров β_0 и β_1 следует брать такие значения выборочных характеристик b_0 и b_1 , которые минимизируют сумму квадратов отклонений значений результативного признака y_i от условного математического ожидания \tilde{y}_i , т.е.

$$Q = \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_i x_i)^2 = \sum_{i=1}^{n} \varepsilon_i^2.$$
 (3)

Так как Q дифференцируема по β_0 и β_1 , то для отыскания минимума функции (3) найдем частные производные по β_0 и β_1 :

$$\begin{cases}
\frac{\partial Q}{\partial \beta_0} = -2\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1) \\
\frac{\partial Q}{\partial \beta_1} = -2\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) x_i
\end{cases}$$
(4)

Приравняв производные нулю и подставив в (4) вместо β_0 и β_1 их оценки b_0 и b_1 , получим:

$$\begin{cases} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0 \\ \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) x_i = 0 \end{cases}$$
 или
$$\begin{cases} b_0 n + b_1 \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \\ b_0 \sum_{i=1}^{n} x_i + b_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i \end{cases}$$
 (5)

Данная система уравнений называется системой нормальных уравнений.

Решая систему (5) относительно b_0 и b_1 , получим

$$b_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i}^{2})^{2}}; b_{0} = \frac{1}{n} \sum_{i=1}^{n} y_{i} - b_{1} \frac{1}{n} \sum_{i=1}^{n} x_{i}}$$

$$(6)$$

Перейдя к средним, будем иметь

$$b_{1} = \frac{\overline{xy} - \overline{xy}}{\overline{x^{2}} - (\overline{x})^{2}}; \quad b_{0} = \overline{y} - b_{1}\overline{x}$$
 (6')

Таким образом, имеем оценку уравнения регрессии:

$$\hat{\mathbf{y}} = b_0 + b_1 \mathbf{x} \,. \tag{7}$$

Докажем, что в случае нормального закона распределения случайной величины ε_i , а отсюда и y_i , согласно (2), оценки метода наименьших квадратов и максимального правдоподобия совпадают.

Пусть из двумерной генеральной совокупности (x,y) взята независимая выборка (x_i, y_i) , где i=1,2,...,n, объемом n.

Будем рассматривать y_i как независимые нормальные случайные величины с математическим ожиданием $\widetilde{y}_i = M(y_i/x_i)$, являющимся функцией от x_i согласно (1), и постоянной дисперсией σ^2 .

Тогда $f(y_i) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(y_i-\widetilde{y}_i)^2}{2\sigma^2}}$, где $\widetilde{y}_i = \beta_0 + \beta_1 x_i$, и функция правдоподобия примет вид с учетом независимости наблюдения:

$$\begin{split} L &= P(y_1, x_1; y_2, x_2; ...; y_n, x_n; \beta_0, \beta_1; \sigma^2) = \\ &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(y_i - \tilde{y}_i)^2}{2\sigma^2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \sigma^{-n} e^{-\frac{\sum_{i=1}^n (y_i - \tilde{y}_i)^2}{2\sigma^2}}. \end{split}$$

Согласно методу наибольшего правдоподобия в качестве оценок параметров β_0 , β_1 и σ^2 возьмем значения $b_0.b_1$ и s^2 , максимизирующие функцию правдоподобия L. При заданных $x_1, x_2, ..., x_n$ и постоянном σ^2 функция правдоподобия L достигнет максимума, когда показатель степени при e будет минимальным, т.е. при условии минимума функции $Q = \sum\limits_{i=1}^n (y_i - \widetilde{y}_i)^2 = \sum\limits_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$, что совпадает с условием (3) нахождения оценок b_0, b_1 по методу наименьших квадратов. Таким образом, оценки b_0, b_1 обладают свойствами оценок наибольшего правдоподобия.

Однако функция правдоподобия L зависит также и от параметра σ . Из условия $\frac{\partial L}{\partial \sigma} = 0$ найдем оценку s^2 наибольшего правдоподобия параметра σ^2 :

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - b_{0} - b_{1} x_{i})^{2}.$$
 (8)

Несмещенная оценка параметра σ^2 равна:

$$\hat{s}^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2 . \tag{9}$$

Исследуем свойства оценок b_0 и b_1 .

2.2. Определение интервальной оценки для β_0

Будем рассматривать модель регрессионного анализа вида:

$$y_i = \beta_0 + \beta_1 x_i' + \varepsilon_i$$
 или $y_i = \beta_0 + \beta_1 (x_i - \overline{x}) + \varepsilon_i$ (10)

где $x_i' = (x_i - \bar{x})$ - центрированные величины, удовлетворяющие условию

$$\sum_{i=1}^n (x_i - \overline{x}) = 0.$$

Тогда оценки b_0 и b_1 метода наименьших квадратов согласно (6) равны:

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \qquad b_0 = \frac{1}{n} \sum_{i=1}^{n} y_i.$$
 (11)

Тогда, с учетом (11), будем иметь
$$b_0 = \beta_0 + \frac{1}{n} \sum_{i=1}^n \varepsilon_i.$$
 (12)

Величина b_0 есть линейная функция нормальных случайных величин ε_i . Следовательно, она также имеет нормальный закон распределения с математическим ожиданием:

$$Mb_0 = M(\beta_0 + \frac{1}{n} \sum_{i=1}^n \varepsilon_i) = \beta_0 + \frac{1}{n} \sum_{i=1}^n M\varepsilon_i = \beta_0,$$
(13)

так как по условию $M\varepsilon_i = 0$. Дисперсия оценки b_0 равна :

$$Db_0 = D(\beta_0 + \frac{1}{n} \sum_{i=1}^n \varepsilon_i) = D(\frac{1}{n} \sum_{i=1}^n \varepsilon_i) = \frac{1}{n^2} \sum_{i=1}^n D\varepsilon_i = \frac{\sigma^2}{n}.$$

$$\tag{14}$$

Здесь учитывалось, что ε_i взаимно независимые случайные величины с дисперсией $D\varepsilon_i=\sigma^2$ для всех i=1,2,...,n. Подставляя вместо σ^2 несмещенную оценку \hat{s}^2 , получим оценку дисперсии $\hat{s}_{b_0}^2$, для b_0 , $\hat{s}_{b_0}^2=\frac{\hat{s}^2}{n}$.

Таким образом, b_0 есть случайная величина, имеющая нормальный закон распределения $b_0 \in N(\beta_0; \frac{\sigma}{\sqrt{n}})$.

Отсюда следует, что величина
$$z = \frac{b_0 - \beta_0}{\sigma} \sqrt{n} \in N(0,1)$$
 (15)

имеет нормированный нормальный закон распределения.

С другой стороны, статистика

$$u^{2} = \frac{ns^{2}}{\sigma^{2}} \in \chi^{2} (v = n - 2)$$
 (16)

имеет χ^2 -распределение с $\nu = n-2$ степенями свободы, так как уравнение регрессии определяется двумя параметрами b_0 и b_1 , которые подлежат оцениванию.

Отсюда следует, что статистика

$$t = \frac{z}{u}\sqrt{v} = \frac{b_0 - \beta_0}{\sigma}\sqrt{n} \cdot \frac{\sigma}{\sqrt{n \cdot s}}\sqrt{n-2} = \frac{b_0 - \beta_0}{s}\sqrt{n-2} \in St(v = n-2)$$

имеет t-распределение Стьюдента с v = n - 2 степенями свободы.

С помощью статистики t построим с доверительной вероятностью γ интервальную оценку для β_0 из условия:

$$P\left\{-t_{\gamma} \leq \frac{b_0 - \beta_0}{s} \sqrt{n-2} \leq t_{\gamma}\right\} = \gamma.$$

Откуда, решая неравенства относительно β_0 получим

$$\beta_0 \in \left[b_0 \pm t_\gamma \frac{s}{\sqrt{n-2}} \right] \tag{17}$$

или, учитывая, что $\hat{s}_{b_0} = \frac{\hat{s}}{\sqrt{n}} = \frac{s}{\sqrt{n-2}}$, будем иметь: $\beta_0 \in [b_0 \pm t_\gamma \hat{s}_{b_0}]$, где t_γ определяется по таблице распределения Стьюдента (t-распределение) для уровней значимости $\alpha = 1 - \gamma$ и числа степеней свободы $\nu = n-2$. Выражение (17) показывает, что β_0 принадлежит интервалу, границы которого заданы в квадратных скобках.

2.3. Определение интервальной оценки и проверка значимости eta_1

С учетом (10) рассмотрим выражение

$$\sum_{i=1}^{n} (x_{i} - \overline{x}) y_{i} = \sum_{i=1}^{n} (x_{i} - \overline{x}) [\beta_{0} + \beta_{1} (x_{0} - \overline{x}) + \varepsilon_{i}] =$$

$$= \beta_{0} \sum_{i=1}^{n} (x_{i} - \overline{x}) + \beta_{1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (x_{i} - \overline{x}) \varepsilon_{i} =$$

$$= \beta_{1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (x_{i} - \overline{x}) \varepsilon_{i}.$$

При этом учитывалось, что $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$. Решив уравнение относительно β_1 , получим:

$$\beta_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} - \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) \varepsilon_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$$

а с учетом (11) будем иметь:

$$b_1 = \beta_1 + \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})\varepsilon_i}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}.$$
 (18)

Из (18) следует, что b_1 есть линейная функция независимых нормально распределенных случайных величин $\varepsilon_i \in N(0,\sigma)$, где i=1,2,...,n. Следовательно, она также имеет нормальный закон распределения. Определим математическое ожидание и дисперсию b_1 .

Учитывая, что математическое ожидание суммы равно сумме математических ожиданий, что неслучайный множитель $(x_i - \overline{x})$ можно вынести за знак математического ожидания и $M\varepsilon_i = 0$, получим:

$$Mb_{1} = M\beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) M\varepsilon_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \beta_{1}.$$
 (19)

Так как ε_i есть независимые между собой случайные величины с дисперсией $D\varepsilon_i=\sigma^2$, а дисперсия постоянной величины равна нулю, т.е. $D\beta_1=0$, то

$$Db_1 = D\beta_1 + \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 D\varepsilon_i}{\left(\sum_{i=1}^{n} (x_i - \overline{x})^2\right)^2},$$

откуда получим

$$Db_1 = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$
 (20)

Мы доказали, что в b_1 есть случайная величина, имеющая нормальный закон распределения:

$$b_1 \in N \left(\beta_1; \frac{\sigma}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \right).$$

Отсюда следует, что

$$z = \frac{b_1 - \beta_1}{\sigma} \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \in N(0,1).$$
 (21)

Учитывая независимость случайных величин (16) и (21), получим статистику, имеющую t-распределение с v = n - 2 степенями свободы:

$$t = \frac{z}{u}\sqrt{n-2} = \frac{(b_{1} - \beta_{1})\sqrt{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}}{s}\sqrt{\frac{n-2}{n}};$$

$$t = \frac{(b_{1} - \beta_{1})}{\hat{s}}\sqrt{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}} \in St(\nu = n-2),$$
(22)

где
$$\hat{s} = s\sqrt{\frac{n}{n-2}}$$
.

Интервальную оценку для β_1 с надежностью γ найдем из условия: $P(-t_\gamma \le t \le t_\gamma) = \gamma$. После преобразования с учетом (22) получим

$$\beta_1 \in \left[b_1 \pm t_{\gamma} \frac{\hat{s}}{\sqrt{\sum_{i=1}^{n} (x_1 - \bar{x})^2}}\right]$$

или

$$\beta_1 \in \left[b_1 \pm t_\gamma \hat{s}_{b_1}\right],\tag{23}$$

где t_{γ} - находят по таблице t-распределения при $\alpha = 1 - \gamma$ и $\nu = n - 2$;

$$\hat{s}_{b_1}^2 = \frac{\hat{s}^2}{\sum\limits_{i=1}^n (x_i - \bar{x})^2}$$
 - несмещенная оценка дисперсии D_{b_1} ;

 \hat{s}_{b_1} - оценка среднего квадратического отклонения величины $b_1.$

С надежностью γ найдем интервальную оценку для σ^2 с помощью статистики (16):

$$\sigma^2 \in \left[\frac{ns^2}{\chi_1^2}; \frac{ns^2}{\chi_2^2}\right],\tag{24}$$

где χ_1^2, χ_2^2 находят по таблице χ^2 -распределения для числа степеней свободы v=n-2 и вероятностей соответственно $\frac{1+\gamma}{2}$ и $\frac{1-\gamma}{2}$.

Установление значимости простейшего линейного уравнения регрессии $\tilde{y} = \beta_0 + \beta_1 x$ сводится к проверке при заданном α нулевой гипотезы о значимости коэффициента регрессии β_1 , т.е. гипотезы H_0 : $\beta_1 = 0$ при альтернативной гипотезе H_1 : $\beta_1 \neq 0$.

С этой целью используется t-критерий и значение статистики критерия

$$t_1 = \frac{b_1}{\hat{S}_{b_1}} \tag{25}$$

сравнивают с критическим значением $t_{\kappa p}(\alpha; \nu = n-2)$, найденным при заданном α и $\nu = n-2$ по таблице t-распределения.

Гипотеза H_0 : $\beta_1=0$ отвергается с вероятностью ошибки α при выполнении неравенства $\left|t_1\right|>t_{\kappa p}$ ($\alpha,\nu=n-2$) и уравнение регрессии считается значимым. В противном случае, т.е. если $\left|t_1\right|\leq t_{\kappa p}$, гипотеза H_0 : $\beta_1=0$ не отвергается и уравнение регрессии считают незначимым и на этом регрессионный анализ заканчивается.

Для значимого уравнения регрессии представляет интерес построение интервальных оценок для коэффициента регрессии β_1 , свободного члена β_0 и самого уравнения \widetilde{y} .

2.4. Определение интервальной оценки для условного математического ожидания

Пусть имеем уравнение регрессии:

$$\tilde{y} = \beta_0 + \beta_1 (x - \bar{x}) \tag{26}$$

и его оценку: $\hat{y} = b_0 + b_1(x - \bar{x})$, где b_0, b_1 - оценки метода наименьших квадратов параметров уравнения β_0, β_1 .

Величина \hat{y} есть линейная функция двух случайных величин b_0 и b_1 , имеющих нормальный закон распределения. Следовательно, \hat{y} также имеет нормальный закон распределения. Параметры этого закона получим, учитывая выражения (12) и (19):

$$M\hat{y} = M[b_0 + b_1(x - \bar{x})] = Mb_0 + (x - \bar{x})Mb_1.$$

Откуда $M\hat{y} = \beta_0 + \beta_1(x - \bar{x}) = \widetilde{y}$. Для определения дисперсии $D\hat{y}$ предварительно докажем независимость величин b_0 и b_1 .

Так как величины b_0 и b_1 имеют нормальный закон распределения, то независимость этих величин следует из их некоррелированности. Следовательно, нам достаточно доказать, что $M(b_0 \cdot \beta_0)(b_1 \cdot \beta_1) = 0$.

Учитывая выражения (12) и (18) и, что x_i есть неслучайная величина, получим:

$$M(b_0 - \beta_0)(b_1 - \beta_1) = M(\frac{1}{n} \sum_{i=1}^n \varepsilon_i)(\frac{\sum_{j=1}^n (x_j - \overline{x})\varepsilon_j}{\sum_{i=1}^n (x_i - \overline{x})^2}) =$$

$$= \frac{1}{n[\sum_{j=1}^n (x_i - \overline{x})^2]} \sum_{i=1}^n M\varepsilon_i \sum_{j=1}^n (x_j - \overline{x})\varepsilon_j.$$

Так как ε_i (i= 1, 2, ...,n) по условию есть независимые случайные величины с $M\varepsilon_i$ =0, то $M\varepsilon_i\varepsilon_j$ = 0 при $i\neq j$, где i,j=1,2,...,n. Следовательно,

$$M\varepsilon_i \sum_{i=1}^n (x_i - \bar{x})\varepsilon_j = (x_i - \bar{x})M\varepsilon_i^2 = (x_i - \bar{x})\sigma^2$$
,

где $M\varepsilon_i^2 = \sigma^2$. Учитывая, что $\sum_{i=1}^n (x_i - \overline{x}) = 0$, после подстановки окончательно получим:

$$M(b_0 - \beta_0)(b_1 - \beta_1) = \frac{1}{n \sum_{i=1}^{n} (x_1 - \overline{x})^2} \sigma^2 \sum_{i=1}^{n} (x_i - \overline{x}) = 0.$$

Этот результат получен для центрированных величин $(x_i - \bar{x})$, для которых выполняется условие $\sum\limits_{i=1}^n (x_i - \bar{x}) = 0$. В этом случае b_0 и b_1 независимые случайные величины. Тогда

согласно выражению (26) дисперсия величины \hat{y} равна сумме дисперсий слагаемых, т.е.: $D\hat{y} = Db_0 + (x - \bar{x})^2 Db_1.$

получим:

$$D\hat{y} = \frac{\sigma^2}{n} \left(1 + n \frac{(x - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right).$$

Таким образом

$$\hat{y} \in N \left(\tilde{y}; \frac{\sigma}{\sqrt{n}} \sqrt{1 + n \frac{(x - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}} \right). \tag{27}$$

Тогда нормированный нормальный закон распределения имеет величина:

$$z = \frac{\hat{y} - \tilde{y}}{\frac{\sigma}{\sqrt{n}} \sqrt{1 + n \frac{(x - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}}} \in N(0,1).$$
(28)

получим выборочную характеристику:

$$t = \frac{\hat{y} - \tilde{y}}{\hat{s} \sqrt{1 + n \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}} \sqrt{n - 2} \in St(\nu = n - 2),$$
(29)

которая имеет распределение Стьюдента (t-распределение) с v = n - 2 степенями свободы.

Тогда с надежностью γ доверительный интервал для \widetilde{y} при заданном $x=x_0$ равен:

$$\tilde{y}_{x_0} \in \left[(b_0 + b_1 x_0) \pm t_{y} \hat{s} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}} \right], \tag{30}$$

где t_{γ} определяется по таблице распределения Стьюдента для уровня значимости $\alpha = 1 - \gamma$ и числа степеней свободы $\nu = n - 2$.

Интервальная оценка для прогнозного значения y в точке x_{n+1} определяется как:

$$y_{n+1} \in \left[(b_0 + b_1 x_{n+1}) \pm t_{\gamma} \hat{s} \sqrt{\frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2} + 1} \right]$$
(31)

Из (31) следует, что y прогнозного значения y_{n+1} дисперсия на \hat{s}^2 больше, чем y величины \hat{y} на величину дисперсии. Согласно (30) по мере удаления x_0 от среднего значения (\bar{x}) ширина доверительного интервала увеличивается, а точность оценки \tilde{y} снижается. Доверительный интервал имеет наименьшую величину, когда $x_0 = \bar{x}$. Расположение доверительного интервала для \tilde{y} , при заданной γ , иллюстрирует рис. 2.

Рис.2. Расположение доверительных границ в случае линейной регрессии

2.5. Модель регрессии в случае двумерной нормальной генеральной совокупности

Рассмотрим генеральную совокупность с двумя признаками x и y, совместное распределение которых задано плотностью двумерного нормального закона

$$f(x,y) = \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1-\rho^2}} \exp\{Q_2(x,y)\},$$
 (32)

где
$$Q_2(x,y) = \frac{1}{2\sqrt{1-\rho^2}} \left[\left(\frac{x-\mu_x}{\sigma_x} \right)^2 - 2\rho \frac{x-\mu_x}{\sigma_x} \cdot \frac{y-\mu_y}{\sigma_y} + \left(\frac{y-\mu_y}{\sigma_y} \right)^2 \right],$$
 определяемого пятью

параметрами: двумя математическими ожиданиями $M_x = \mu_x$ и $M_y = \mu_y$;

двумя дисперсиями $Dx = \sigma_x^2$ и $Dy = \sigma_y^2$; коэффициентом корреляции

$$M[\frac{x-\mu_x}{\sigma_x}\cdot\frac{y-\mu_y}{\sigma_y}]=
ho,$$
 где $ho^2
eq 1.$

Имея эти параметры, можно получить линейные уравнения регрессии, показывающие изменение условных математических ожиданий одной величины в зависимости от изменения значений соответствующих случайных аргументов:

$$My/x - My = \beta_{yx}(x - Mx)$$
 - линейная регрессия y по x ;

$$Mx/y-Mx=\beta_{xy}(y-My)$$
 - линейная регрессия x по y ;

$$\beta_{yx} = \rho \frac{\sigma_y}{\sigma_x}$$
 - коэффициент регрессии y на x ;

$$\beta_{xy} = \rho \frac{\sigma_x}{\sigma_y}$$
 - коэффициент регрессии x на y .

Из этих выражений следует, что знаки при коэффициентах регрессии и корреляции все-гда совпадают и $\beta_{xy}\cdot\beta_{yx}=\rho^2$.

Kвадрат коэффициента корреляции ρ^2 называют коэффициентом детерминации. В рассматриваемой модели он показывает долю дисперсии одной случайной величины, обусловленную вариацией другой.

Коэффициент регрессии β_{yx} показывает, на сколько единиц своего измерения в среднем увеличится (при β >0) или уменьшится (при β <0) величина у, т.е. (My/x), если х увеличить на единицу своего измерения.

Задача двумерного регрессионного анализа состоит, прежде всего, в оценке пяти параметров, определяющих генеральную совокупность.

В качестве точечных оценок неизвестных начальных моментов первого и второго порядка генеральной совокупности берутся соответствующие выборочные моменты.

Точечные же оценки других параметров получают как функции от начальных моментов. Таким образом, будем иметь: \bar{x} - оценка для μ_x , \bar{y} - оценка для μ_y , \bar{x}^2 - оценка для $M(x^2)$, \bar{y}^2 - оценка для $M(y^2)$, \bar{x} - оценка для M(xy). Откуда:

$$s_{\mathcal{X}}^2 = \overline{x}^2 - (\overline{x})^2$$
 - оценка для $\sigma_{\mathcal{X}}^2$, $s_{\mathcal{Y}}^2 = \overline{y}^2 - (\overline{y})^2$ - оценка для $\sigma_{\mathcal{Y}}^2$,

$$r = \frac{xy - \overline{x} \cdot \overline{y}}{s_x s_y}$$
 - оценка для ρ .

Оценки генеральных коэффициентов регрессии β_{yx} и β_{xy} получаются соответственно по

формулам:

$$b_{yx} = r \frac{s_y}{s_x}, \qquad b_{xy} = r \frac{s_x}{s_y}, \tag{33}$$

откуда оценки уравнений регрессии имеют вид:

$$\overline{y/x} - \overline{y} = b_{yx}(x - \overline{x}), \qquad \overline{x/y} - \overline{x} = b_{xy}(y - \overline{y}).$$
 (34)

При этом $\overline{y/x}$ и $\overline{x/y}$ - являются оценками условных математических ожиданий My/x и Mx/y генеральной совокупности.

Следует отметить, что вышеприведенные точечные оценки являются состоятельными, а \bar{x} и \bar{y} несмещенными и эффективными. Кроме того, распределение выборочных средних $(\bar{x}\,,\bar{y}\,)$ не зависит от распределения (s_x^2,s_y^2,r) .

На примере двумерного распределения мы показали, что в случае многомерного (*k*-мерного) нормального закона распределения легко прослеживается связь между переменными, характеризирующими тесноту и вид связи в моделях корреляционного и линейного регрессионного анализа.