MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2022

Set 9

Deadline: Monday 21.03.2022, 23:59

Translations for some relevant terms: Vertex - hjørne; edge - kant; path - vei; cycle - sykel; circuit - krets; adjacency matrix – naboforholdsmatrise.

Exercise 1. Use the following adjacency martices to draw the indicated graph. (Note: the definition of an adjacency matrix can be found at the end of this week's lecture notes)

a. The directed graph associated with:

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b. The undirected graph associated with:

0	1	1	0	1
$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	1 0	0	1	1
1	0	0	0	0
0	1	0	0	1
1	1	0	1	0

Exercise 2. This exercise builds on Lewis, Zax: 16.2. Let $G = (V_G, E_G)$ be the graph depicted in Figure 16.21 on page 171 of the textbook. Recall that an Euler path is a path that uses each edge in the graph exactly once.

- (1) Explain why $G \{\{A, E\}\}\$ must have an Euler path and find one.
- (2) Consider $G X := (V_G, E_G X)$ where $X \subseteq E_G$. Which sets $X = \{e, f\}$ for $e, f \in E_G$ are possible if you require that $G \{e, f\}$ be connected and have an Euler path?
- (3) Which sets $X = \{e, f, g\}$ for edges $e, f, g \in E_G$ are possible if we require $G \{e, f, g\}$ to be connected and have an Euler circuit?

Exercise 3. Lewis, Zax: Exercise 16.7.

Exercise 4. Lewis, Zax: Exercise 16.10.

Exercise 5. Lewis, Zax: Exercise 16.8.

Exercise 6. Lewis, Zax: Exercise 16.9.

Date: March 15, 2022.

1