Lineární programování a kombinatorická optimalizace – příklady na 6. cvičení*

24. března 2020

1 Simplexová metoda

Úloha lineárního programování v rovnicovém tvaru je zapsaná jako max $\mathbf{c}^{\top}\mathbf{x}$ za podmínek $A\mathbf{x} = \mathbf{b}$ a $\mathbf{x} \geq \mathbf{0}$, kde $A \in \mathbb{R}^{m \times n}$, $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$ a $\mathbf{b} \in \mathbb{R}^m$. Předpokládejme, že rank(A) = m.

Báze je množinou $B \subseteq \{1, \ldots n\}$ indexů proměnných takovou, že A_B je regulární, kde A_B značí podmatici A indexovanou sloupci z B. Bázickým řešením $\mathbf{x} = (x_1, \ldots, x_n)$ odpovídající bázi B je řešení soustavy $A\mathbf{x} = \mathbf{b}$, pro které platí $x_i = 0$ pro každé $i \notin B$. Přípustná báze je taková, že jí odpovídající bázické řešení \mathbf{x} je přípustné, tedy $\mathbf{x} \geq \mathbf{0}$.

Vzorový řešený příklad:

$$\max 2x_1 + x_2 \\ -x_1 + x_2 \le 1 \\ x_1 \le 3 \\ x_2 \le 2 \\ x_1, x_2 \ge 0$$

Upravíme na rovnicový tvar zavedením nových proměnných $s_1, s_2, s_3 \ge 0$:

$$\max 2x_1 + x_2$$
$$-x_1 + x_2 + s_1 = 1$$
$$x_1 + s_2 = 3$$
$$x_2 + s_3 = 2$$
$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

Začneme v nějakém přípustném bázickém řešení. Zde lze zvolit původní proměnné $x_1 = x_2 = 0$ a $(s_1, s_2, s_3) = \mathbf{b}^{\top} = (1, 3, 2)$. Pak přepíšeme soustavu tak, aby bázické proměnné s_1, s_2, s_3 byly na levé straně:

$$\max 2x_1 + x_2$$

$$s_1 = 1 + x_1 - x_2$$

$$s_2 = 3 - x_1$$

$$s_3 = 2 - x_2$$

Vstoupíme x_1 do báze, protože má nejvyšší koeficient v účelové funkci, a vystoupíme s_2 :

$$\max 6 + x_2 - 2s_3$$

$$s_1 = 4 - x_2 - s_3$$

$$x_1 = 3 - s_3$$

$$s_3 = 2 - x_2$$

Vstoupíme x_2 do báze, protože má nejvyšší koeficient v účelové funkci, a vystoupíme s_3 :

$$\max 8 - 3s_3$$

$$s_1 = 2$$

$$x_1 = 3 - s_3$$

$$x_2 = 2 - s_3$$

Není, co zlepšovat, takže máme optimum pro $x_1=3,\ x_2=2,\ s_1=2$ a $s_2=s_3=0$ s hodnotou účelové funkce 8.

^{*}Informace o cvičení naleznete na http://kam.mff.cuni.cz/~balko/

Obrázek 1: V obrázku uvedené řešení odpovídá posunu z počátku do vrcholu (3,0) a poté do (3,2).

Pseudokód simplexové metody:

- 1. Vstup: Úloha lineárního programování P v rovnicovém tvaru, max $\mathbf{c}^{\top}\mathbf{x}$ za podmínek $A\mathbf{x} = \mathbf{b}$ a $\mathbf{x} \geq \mathbf{0}$, kde $A \in \mathbb{R}^{m \times n}$, $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$ a $\mathbf{b} \in \mathbb{R}^m$. Předpokládáme, že $\mathrm{rank}(A) = m$.
- 2. Nalezni počáteční bázické přípustné řešení: Přenásob soustavu, aby $\mathbf{b} \geq \mathbf{0}$, a vyřeš simplexovou metodou pomocnou úlohu min $x_{n+1} + \cdots + x_{n+m}$ za $\overline{A}\overline{\mathbf{x}} = \mathbf{b}$, $\overline{\mathbf{x}} \geq \mathbf{0}$, kde $\overline{A} = (A \mid I_m) \in \mathbb{R}^{m \times (n+m)}$ a $\overline{\mathbf{x}} = (x_1, \dots, x_{n+m})$. Tato úloha má snadné počáteční řešení $(0, \dots, 0, b_1, \dots, b_m)$. Pokud je optimální hodnota kladná, pak **skonči**, protože neexistuje přípustné řešení pro P. Jinak je optimem $(x_1, \dots, x_n, 0, \dots, 0)$ a pak je (x_1, \dots, x_n) počátečním řešením pro P.
- 3. Spočítej simplexovou tabulku: Pro přípustnou bázi $B\subseteq\{1,\ldots,n\}$ přepiš P na max z pro

$$z = z_0 + \mathbf{r}^{\top} \mathbf{x}_N$$
 za podmínek
$$\mathbf{x}_B = \mathbf{p} + Q \mathbf{x}_N,$$

kde
$$N = \{1, \dots, n\} \setminus B$$
, $\mathbf{p} \in \mathbb{R}^m$, $Q \in \mathbb{R}^{m \times (n-m)}$, $z_0 \in \mathbb{R}$ a $\mathbf{r} \in \mathbb{R}^{n-m}$.

- 4. Vrať případné optimum: Pokud $\mathbf{r} \leq \mathbf{0}$, tak **skonči** a vrať optimum s bázickými proměnnými $\mathbf{x}_B = \mathbf{p}$ a nebázickými proměnnými $\mathbf{x}_N = \mathbf{0}$.
- 5. Vyber proměnnou vstupující do báze: Podle zvoleného pivotovacího pravidla vyber vstupující proměnnou x_t z proměnných x_j s $j \in N$ a $r_j > 0$. Protože není $\mathbf{r} \leq \mathbf{0}$, tak vstupující proměnná x_t vždy existuje. Volbou x_t chceme zvýšit hodnotu účelové funkce.
- 6. Vyber proměnnou vystupující z báze: Uvaž řádky i simplexové tabulky, ve kterých se x_t objevuje, a vyber z nich vystupující proměnnou x_s tak, aby $\frac{-p_s}{Q_{s,t}} = \min_{i \in B: Q_{i,t} < 0} \frac{-p_i}{Q_{i,t}}$. Speciálně tedy musí platit $Q_{s,t} < 0$. Tato volba x_s zajišťuje, že nové bázické řešení je přípustné. Pokud vystupující proměnná neexistuje (t-tý sloupec Q je nezáporný), pak **skonči**, protože
 - úloha P je neomezená. Je-li na výběr více vystupujících proměnných, tak vyber podle pivotovacího pravidla, či libovolně, pokud pravidlo ani tak vystupující proměnnou nespecifikuje.
- 7. Aktualizuj simplexovou tabulku a iteruj: Zvol $(B \setminus \{s\}) \cup \{t\}$ jako novou bázi a přepiš simplexovou tabulku tak, aby odpovídala této nové bázi. Pokračuj krokem 4.

V kroce 5 se může stát, že nově vybraná vstupující proměnná nevylepší hodnotu účelové funkce a pak říkáme, že řešení je degenerované. To například nastává, pokud je v předešlém kroce na výběr více vystupujících proměnných. U degenerovaných řešení může dojít k zacyklení simplexové metody, kdy se nevylepšuje hodnota účelové funkce a algoritmus se nikdy nezastaví. Zacyklení se dá zabránit volbou vhodného pivotovacího pravidla.

Příklady pivotovacích pravidel pro výběr vstupující proměnné x_t a vystupující x_s :

- 1. Dantzigovo pravidlo: Vyber $t \in N$ s maximálním r_t a zvol x_s libovolně z možných proměnných.
- 2. Blandovo pravidlo: Vyber nejmenší možné $t \in N$ a pro něj nejmenší možné $s \in B$. Brání zacyklení, ale je pomalé.

Existuje spousta dalších pivotovacích pravidel (lexikografické, náhodné a další).

Příklad 1. Převeď te následující soustavu nerovnic do rovnicového tvaru:

$$x_1 + x_2 \le 3$$

$$x_2 + x_3 \le 12$$

$$x_1 + 3x_2 - x_4 \ge -7$$

$$x_1, x_2, x_3 \in \mathbb{R}$$

$$x_4 \ge 0$$

Nalezněte také nějaké bázické přípustné řešení pro zadaný rovnicový tvar.

Mějme libovolný lineární program s m lineárními nerovnicemi či rovnicemi a n proměnnými. Kolik proměnných nám vždy stačí v rovnicovém tvaru této úlohy?

 $\check{R}e\check{s}en\acute{i}$. Proměnné x_1,x_2,x_3 je třeba převést na dvojice nezáporných proměnných x_i^+,x_i^- , protože mohou nabývat libovolných reálných hodnot. Také je poté nutné převést nerovnosti na rovnosti zavedením nových nezáporných proměnných $s_1,s_2,s_3\geq 0$. Celkem tedy dostáváme soustavu

$$x_1^+ - x_1^- + x_2^+ - x_2^- + s_1 = 3$$

$$x_2^+ - x_2^- + x_3^+ - x_3^- + s_2 = 12$$

$$x_1^+ - x_1^- + 3x_2^+ - 3x_2^- - x_4 - s_3 = -7$$

$$x_1^+, x_2^+, x_3^+, x_1^-, x_2^-, x_3^-, x_4, s_1, s_2, s_3 \ge 0$$

Počáteční přípustné bázické řešení je například $s_1 = 3, s_2 = 12, s_3 = 7.$

Na převod do rovnicového tvaru stačí 2n+m proměnných, dvě za každou původní při případném převodu reálných proměnných na nezáporné a m proměnných pro převod nerovností na rovnosti.

Příklad 2. Vyřešte pomocí simplexové metody následující úlohu lineárního programování:

$$\max 3x_1 + 4x_2$$

$$x_1 + x_2 \le 4$$

$$2x_1 + x_2 \le 5$$

$$x_1, x_2 \ge 0$$

 $\check{R}e\check{s}eni$. Převedeme na rovnicový tvar pomocí dvou nových proměnných $s_1, s_2 \geq 0$.

$$\max 3x_1 + 4x_2$$

$$s_1 = 4 - x_1 - x_2$$

$$s_2 = 5 - 2x_1 - x_2$$

Vstoupíme třeba y, protože má větší koeficient v účelové funkci, vystoupíme s_1 .

$$\max 16 - x_1 - 4s_1$$
$$x_2 = 4 - x_1 - s_1$$
$$s_2 = 1 - x_1 + s_1$$

Dále učelová funkce vylepšit nejde, optimum je tedy pro $x_1 = 0$ a $x_2 = 4$ s hodnotou účelové funkce 16.

Příklad 3. Mějme zadanou následující úlohu lineárního programování

$$\max x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5$$

$$x_1 - x_5 + x_6 = 20$$

$$x_1 + x_3 + x_7 = 30$$

$$x_1 + x_2 + x_4 + x_8 = 10$$

$$x_2 - x_3 - x_4 + x_5 + x_9 = 1$$

$$x_1, x_2, \dots, x_9 \ge 0$$

a počáteční bázické řešení (0,0,0,0,0,20,30,10,1). Proveď te jeden krok simplexové metody, který maximalizuje přírůstek v účelové funkci.

 $\check{R}e\check{s}en\acute{i}$. Z tvaru bázického řešení víme, že proměnné x_6, x_7, x_8, x_9 jsou v bázi (jsou nenulové) a tedy momentální tvar simplexové tabulky vypadá následovně:

$$\max x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5$$

$$x_6 = 20 - x_1 + x_5$$

$$x_7 = 30 - x_1 - x_3$$

$$x_8 = 10 - x_1 - x_2 - x_4$$

$$x_9 = 1 - x_2 + x_3 + x_4 - x_5$$

Do báze můžeme přidat libovolnou proměnnou: x_1 za x_6 , x_7 , či x_8 , x_2 za x_9 či za x_8 , x_3 za x_7 , x_4 za x_8 , x_5 za x_9 . Vybereme si například x_3 za x_7 , protože ta maximalizuje růst účelové funkce (dostaneme přírůstek $3 \cdot 30 = 90$). Tím dostaneme novou simplexovou tabulku

$$\max 90 - 2x_1 + 2x_2 + 4x_4 + 5x_5 - 3x_7$$

$$x_6 = 20 - x_1 + x_5$$

$$x_3 = 30 - x_1 - x_7$$

$$x_8 = 10 - x_1 - x_2 - x_4$$

$$x_9 = 31 - x_1 - x_2 + x_4 - x_5 - x_7$$

Obecně nemusíme maximalizovat přírůstek účelové funkce a záleží na tom, jaké pivotovací pravidlo si vybereme. $\hfill\Box$

Příklad 4. Vyřešte pomocí simplexové metody následující úlohu lineárního programování:

$$\max 2x_1 - x_2 + 2x_3$$

$$2x_1 + x_2 \le 10$$

$$x_1 + 2x_2 - 2x_3 \le 20$$

$$x_2 + 2x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0$$

 $\check{R}e\check{s}en\acute{i}$. Zavedeme nové nezáporné proměnné $s_1.s_2,s_3\geq 0$ a přepíšeme úlohu do rovnicového tvaru. Poté vytvoříme simplexovou tabulku pro přípustné bazické řešení s bází odpovídající novým proměnným.

$$\max 2x_1 - x_2 + 2x_3$$

$$s_1 = 10 - 2x_1 - x_2$$

$$s_2 = 20 - x_1 - 2x_2 + 2x_3$$

$$s_3 = 5 - x_2 - 2x_3$$

Do báze vstupuje x_1 a vystupuje s_1 .

$$\max 10 - 2x_2 + 2x_3 - s_1$$

$$x_1 = 5 - 0.5x_2 - 0.5s_1$$

$$s_2 = 15 - 1.5x_2 + 2x_3 + 0.5s_1$$

$$s_3 = 5 - x_2 - 2x_3$$

Do báze vstupuje x_3 a vystupuje s_3 .

$$\max 15 - 3x_2 - s_1 - s_3$$

$$x_1 = 5 - 0.5x_2 - 0.5s_1$$

$$s_2 = 20 - 2.5x_2 + 0.5s_1 - s_3$$

$$x_3 = 2.5 - 0.5x_2 - 0.5s_3$$

Poté nelze účelovou funkci vylepšit a tedy máme optimální řešení s $x_1=5,\ x_2=0,\ x_3=2.5,\ s_1=s_2=s_3=0$ a hodnotou účelové funkce 15.