DISCRETE STRUCTURES SECTION - A TT2

Q1
$$A = \{ 1, 2, 3, 4, 5 \}$$

 $R = \{ (1,1), (1,4), (2,2), (3,4), (3,5), (4,1), (5,2), (5,5) \}$

$$W_0 = Me = 1 \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 1 & 1 \\ 4 & 1 & 0 & 0 & 0 & 0 \\ 5 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

1	w ₃ =	[1000] [0] [00011]	
		01000	
		0 0 0 1 1 0	
		10010	
	A *-	010017	
	W4 =	[10010] [1] [10010]	
		0 1 0 0 0 0	
		10011	
		1 0 0 1 0 1	
		[01001] [0]	
			·
	Ws =	10010 0 01001	
		0 1 0 0 0	
		1 1 0 1 1	
		10010	
		101001111	
	·. MR	= [100]0	
		0 1 0 0 0	
		1 1 0 1 1	
		10010	
		01001]	

 $R^{\infty} = \{ (1,1), (1,4), (2,2), (3,1), (3,2), (3,4), (3,5), (4,1), (4,4), (5,2), (5,5) \}$

82 let R be a binary relation. let 3= {(a,b) | (a,c) \in R and (c,b) er jox some c 3 show that R is an equivalence xelation then s is an equivalence xelation ANS To Prove: Sis replemère Since R is replemive (9,9) ER Va EA. Clearly (9,9) ES Va EA. This proves that S is reflerive To Prove: S is symmetrice $(a,b) \in S \rightarrow \exists m (a,m) \in R, (m,b) \in R.$ Since R is symmetric (M,a) ER, (b, M) ER Therefore by given defination, (b, a) & S
This proves that S is symmetric. 70 Prove: 5 is transitive I (a,b) es and (b,c) es we need to prove that (a,c) es. $(a,b) \in S \rightarrow \exists a (a,d), (d,b) \in R$ R is symmetous → (d,a), (b,d) ∈ R \Rightarrow $(a,b) \in R$, $(b,a) \in R$ $(b,c) \in S \rightarrow \exists e \ (b,e), \ (e,c) \in R$ R is symmetric \Rightarrow (e, b), (c, e) \in R ⇒ (b, c) ∈ R, (c, b) ∈ R Since R is transitive, $(a,c) \in R$, $(c,a) \in R \longrightarrow (1)$ Since R is stellenive, $(c,c) \in \mathbb{R} \longrightarrow (2)$ From (1) and (2) it follows that (a,c) es therefore s is transitive and hence an equivalent relation

FOR EDUCATIONAL USE

(Sundaram)