EE263 Autumn 2015 S. Boyd and S. Lall

Least-squares data fitting

Least-squares data fitting

we are given:

- ▶ functions $f_1, \ldots, f_n : S \to \mathbb{R}$, called *regressors* or *basis functions*
- ▶ data or measurements (s_i,g_i) , $i=1,\ldots,m$, where $s_i\in S$ and (usually) $m\gg n$

problem: find coefficients $x_1, \ldots, x_n \in \mathbb{R}$ so that

$$x_1 f_1(s_i) + \dots + x_n f_n(s_i) \approx g_i, \quad i = 1, \dots, m$$

i.e., find linear combination of functions that fits data

least-squares fit: choose \boldsymbol{x} to minimize total square fitting error:

$$\sum_{i=1}^{m} (x_1 f_1(s_i) + \dots + x_n f_n(s_i) - g_i)^2$$

Least-squares data fitting

- ▶ total square fitting error is $||Ax g||^2$, where $A_{ij} = f_j(s_i)$
- ▶ hence, least-squares fit is given by

$$x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}g$$

(assuming A is skinny, full rank)

▶ corresponding function is

$$f_{\text{lsfit}}(s) = x_1 f_1(s) + \dots + x_n f_n(s)$$

- applications:
 - interpolation, extrapolation, smoothing of data
 - developing simple, approximate model of data

Least-squares polynomial fitting

problem: fit polynomial of degree < n,

$$p(t) = a_0 + a_1 t + \dots + a_{n-1} t^{n-1},$$

to data (t_i, y_i) , $i = 1, \ldots, m$

- **b** basis functions are $f_j(t) = t^{j-1}$, j = 1, ..., n
- ightharpoonup matrix A has form $A_{ij} = t_i^{j-1}$

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ & \vdots & & & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{n-1} \end{bmatrix}$$

(called a Vandermonde matrix)

Vandermonde matrices

assuming $t_k \neq t_l$ for $k \neq l$ and $m \geq n$, A is full rank:

- ▶ suppose Aa = 0
- corresponding polynomial $p(t) = a_0 + \cdots + a_{n-1}t^{n-1}$ vanishes at m points t_1, \ldots, t_m
- \blacktriangleright by fundamental theorem of algebra p can have no more than n-1 zeros, so p is identically zero, and a=0
- ▶ columns of A are independent, i.e., A full rank

Example

- $\qquad \qquad \mathbf{fit} \ g(t) = 4t/(1+10t^2) \ \mathrm{with \ polynomial}$
- ightharpoonup m=100 points between t=0 & t=1
- \blacktriangleright fits for degrees 1, 2, 3, 4 have RMS errors .135, .076, .025, .005, respectively

Growing sets of regressors

consider family of least-squares problems

for $p = 1, \ldots, n$

 $(a_1, \ldots, a_p \text{ are called } regressors)$

- lacktriangle approximate y by linear combination of a_1,\ldots,a_p
- ightharpoonup project y onto $span\{a_1,\ldots,a_p\}$
- ightharpoonup regress y on a_1, \ldots, a_p
- ▶ as p increases, get better fit, so optimal residual decreases

Growing sets of regressors

solution for each $p \leq n$ is given by

$$x_{ls}^{(p)} = (A_p^{\mathsf{T}} A_p)^{-1} A_p^{\mathsf{T}} y = R_p^{-1} Q_p^{\mathsf{T}} y$$

where

- $lackbox{} A_p = [a_1 \cdots a_p] \in \mathbb{R}^{m imes p}$ is the first p columns of A
- $lackbox{ } A_p = Q_p R_p$ is the QR factorization of A_p
- $lackbox{} R_p \in \mathbb{R}^{p imes p}$ is the leading p imes p submatrix of R
- $igwedge Q_p = [q_1 \cdots q_p]$ is the first p columns of Q

Norm of optimal residual versus p

plot of optimal residual versus p shows how well y can be matched by linear combination of a_1, \ldots, a_p , as function of p

Least-squares system identification

we measure input u(t) and output y(t) for $t=0,\dots,N$ of unknown system

system identification problem: find reasonable model for system based on measured I/O data $u,\ y$

example with scalar $u,\,y$ (vector $u,\,y$ readily handled): fit I/O data with moving-average (MA) model with n delays

$$\hat{y}(t) = h_0 u(t) + h_1 u(t-1) + \dots + h_n u(t-n)$$

where $h_0, \ldots, h_n \in \mathbb{R}$

System identification

we can write model or predicted output as

$$\begin{bmatrix} \hat{y}(n) \\ \hat{y}(n+1) \\ \vdots \\ \hat{y}(N) \end{bmatrix} = \begin{bmatrix} u(n) & u(n-1) & \cdots & u(0) \\ u(n+1) & u(n) & \cdots & u(1) \\ \vdots & \vdots & & \vdots \\ u(N) & u(N-1) & \cdots & u(N-n) \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_n \end{bmatrix}$$

model prediction error is

$$e = (y(n) - \hat{y}(n), \dots, y(N) - \hat{y}(N))$$

least-squares identification: choose model (i.e., h) that minimizes norm of model prediction error $\|e\|$

 \dots a least-squares problem (with variables h)

Example

data used to fit model

Example

for n=7 we obtain MA model with

$$(h_0, \ldots, h_7) = (.024, .282, .418, .354, .243, .487, .208, .441)$$

with relative prediction error ||e||/||y|| = 0.37

y(t) actual output, $\hat{y}(t)$ predicted from model

Model order selection

question: how large should n be?

- obviously the larger n, the smaller the prediction error on the data used to form the model
- suggests using largest possible model order for smallest prediction error

Model order selection

difficulty: for n too large the *predictive ability* of the model on *other I/O data* (from the same system) becomes worse

Out of sample validation

- evaluate model predictive performance on another I/O data set not used to develop model model validation data set
- check prediction error of models (developed using modeling data) on validation data
- ightharpoonup plot suggests n=10 is a good choice

Validation

for n=50 the actual and predicted outputs on system identification and model validation data are:

- ightharpoonup y(t) actual output, $\hat{y}(t)$ predicted from model
- \blacktriangleright loss of predictive ability when n too large called *model overfit* or *overmodeling*