BACTERIAL GENOMICS MBDP-105

Jenni Hultman & Antti Karkman

LEARNING GOALS

- Foundational skills to work with bacterial genome data
- Familiarity and practice with bioinformatics tools
- Perspective and confidence to apply these skills in your own work
- Empower you to ask and answer the questions you have of your own data

Jenni Hultman 2.2.2024

THIS COURSE

- Hands-on
- Materials available during and after the course
 - Github
- Mix of lectures, tutorials and practice. Schedule might and will change
- Ask questions
- Learn from each other as well as instructors

Jenni Hultman 2.2.2024

GENOMICS

- Area within genetics that focuses in sequencing and analysis of an organism's genome
- Bacterial genomics is a scientific discipline that concerns the genome, encompassing the entire hereditary information, of bacteria.
- First (microbial) genome 1977
 - Bacteriophage \$\phi X174
- Today (27.3.22) 393 904 curated bacterial and archeal genomes available at NCBI

WHY BACTETERIAL GENOMICS?

- Insight into bacterial evolution and diversity beyond single gene or protein
- New application for biotechnology
- New approaches to treatment and control of pathogenic or otherwise harmful bacteria
 - outbreaks of bacterial infections
- Focus of this course in bacterial genomes
 - What is different in fungi and eukaryotes overall?

nature microbiology

ANALYSIS

https://doi.org/10.1038/s41564-022-01079-y

OPEN Populat livestoc

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-021-25462-1

OPEN

Dynamics of the compartmentalized *Streptomyces* chromosome during metabolic differentiation

ılosis

TWO APPROACHES TO BACTERIAL GENOMICS

Assembly-based

- De-novo assemble reads into a genome sequence
- 2. Annotate genome
- 3. Cluster genes and compare between each genome

Variant-based

- Compare read to a reference genome assembly
- 2. Directly compare variants between each genome

COMPLETE GENOME VS DRAFT GENOME

Jenni Hultman 2.2.2024

9

OMICS

- Genomics
- **Transcriptomics**
- **Proteomics**
- **Metabolomics**

10

OMICS

- Genomics
- Transcriptomics
- Proteomics
- Metabolomics

(Tenericutes)

11

HOUSEKEEPING

- Lunch at Sodexo or restaurants close by
- MBDP will provide coffee at 14
- Extension cords

CSC GREETINGS

- You all have CSC account with 1000 billing units
 - But not project where to do more intensive computing
 - You can run out of billing units
 - saldo, should not be negative
- For this course we have a project MBDP_genomics_2024, Jenni has added you
 - Accept rules at mycsc.fi (bell sign)
- Make sure that when you work with real data you have a PI who has a
 project with enough billing units and you are member of that project