THE ALGEBRAIC WEAK FACTORISATION SYSTEM OF TWISTED COREFLECTIONS & DELTA LENSES

arXiv:2401.17250

BRYCE CLARKE

Tallinn University of Technology, Estonia bryceclarke.github.io

International Category Theory conference University of Santiago de Compostela, Spain, 28 June 2024 algebraic weak factorisation systems

GENERALISE

orthogonal factorisation systems

IDEA: Replace property with structure

delta lenses

GENERALISE

split opfibrations

IDEA: Drop requirement of opcartesianess

2011: Delta lenses introduced in comp. sci.

2013: Characterised as algebras for a semi-monad

TODAY:

left class	right class
split coreflection	split opfibration
twisted coreflection	delta lens

A delta lens is a functor equipped with a lifting operation

$$\begin{array}{ccc}
A & a & \xrightarrow{\varphi(a,u)} a' \\
f \downarrow & & \\
B & fa & \xrightarrow{u} b
\end{array}$$

that satisfies the following axioms:

(L1)
$$f \varphi(a, u) = u$$

(L2)
$$\Psi(a,1_{fa}) = 1_a$$

(L3)
$$\Psi(a,v \cdot u) = \Psi(a',v) \cdot \Psi(a,u)$$

A split opfibration is a delta lens such that: (L4) Each Y(a,u) is operatesian. Let ILens denote the double category of categories, functors, & delta lenses.

A cell with boundary

$$A \xrightarrow{\mu} C$$

$$(f, \phi) \downarrow \qquad \qquad \downarrow (g, \psi)$$

$$B \xrightarrow{\mu} D$$

exists if kf = gh and $h\Psi(a,u) = \Upsilon(ha,ku)$.

$$SOpf \longrightarrow Lens \longrightarrow Sq(Cat)$$

A (IL, IR)-lifting operation is a family

which satisfies certain horizontal and vertical compatibilities.

THE DOUBLE CATEGORY IRLP(J)

04

Define a double category IRLP(J) whose:

- · objects & hor. morphisms are from C
- · vertical morphisms are pairs (f, φ) where

· cells $(f, \Psi) \rightarrow (g, \Psi)$ are given by:

- ·Dually, we can define LLP(J).
- · Given a (IL, IR)-lifting operation we obtain canonical double functors:

$$L\longrightarrow LLP(R)$$
 $R\longrightarrow RLP(L)$

COFIBRANT GENERATION BY A SMALL DOUBLE CATEGORY

05

Let Ilens be the double category whose:

- · objects are the posets 1, 2, and 3
- · horizontal morphisms are monotone maps
- · vertical morphisms are generated by

·cells are generated by

Lens
$$\cong RLP(J_{lens})$$

ALGEBRAIC WEAK FACTORISATION SYSTEMS

An algebraic weak factorisation system on C is an (IL, IR)-lifting operation 4 on

such that the following axioms hold:

(i) the induced double functors are iso

$$\mathbb{L} \longrightarrow \mathbb{L} LP(\mathbb{R}) \qquad \mathbb{R} \longrightarrow \mathbb{R} LP(\mathbb{L})$$

(ii) each f in C admits a factorisation

$$\bullet \xrightarrow{\text{U}_1g} \bullet \xrightarrow{\text{V}_1h} \bullet$$

which is U1-couniversal and V1-universal.

Theorem (Bourke-Garner): If C is locally presentable & J -> Sq(C) is a small double category, then there exists an A.W.F.S. on C with cospan:

 $ILLP(IRLP(JT)) \longrightarrow \$_{q}(C) \longleftarrow IRLP(JT)$

Corollary: There exists an A.W.F.S. on Cat whose right class is ILens.

What is the left class ILLP(ILens)?

TWISTED COREFLECTIONS

07

A twisted coreflection is a split coreflection

$$B \xrightarrow{A \atop \downarrow \xi} B \qquad qf = 1_A \qquad \epsilon \cdot f = 1_f q \cdot \epsilon = 1_q$$

such that if $q(u:x\rightarrow y) \neq 1$, there exists a unique morphism $\bar{u}:x\rightarrow fqx$ such that:

(i)
$$\bar{u} \circ \varepsilon_x = 1_{f_{qx}}$$
 (ii) $\varepsilon_y \circ f_{qu} \circ \bar{u} = u$

Let TwCoref denote the double category of categories, functors, & twisted coreflections. A cell with boundary

$$\begin{array}{ccc}
A & \xrightarrow{h} & C \\
(f \mapsto q, \epsilon) \downarrow & & \downarrow (g \mapsto p, \mathfrak{F}) \\
B & \xrightarrow{k} & D
\end{array}$$

exists if kf = gh, hq = pk, and $k \cdot \epsilon = 3 \cdot k$.

$$T_{\omega}Coref \longrightarrow S_{q}(Cat)$$

LIFTING TWISTED COREFLECTIONS AGAINST DELTA LENSES

08

$$qx \xrightarrow{qu} qy$$

TWISTED COREFLECTION (f-19, E)

where the category X has:

- · same objects as B;
- · morphisms $u:x \rightarrow y$ in B such that qu = 1.

DELTA LENS (9,4)

where the category Y has:

- · same objects as C;
- · morphisms are the chosen lifts 4(a,u).

- Construct unique h: Ao → Y by the universal property of discrete categories and identity-on-objects functors.
- 2. Construct unique l: X → Y by the universal property of the comprehensive factorisation system on Cat.
- 3. Construct unique $j: B \longrightarrow C$ by the universal property of the pushout.

- · For a functor $f:A \rightarrow B$
 - the cofree twisted coreflection is $Lf: A \rightarrow Ef$
 - -the free delta lens is Rf: Ef → B
- · There is a comonad L and a monad R on Cat² whose (co)algebras are twisted coreflections and delta lenses.

L-Coalg
$$\cong TwCoref$$

R-Alg $\cong Lens$

Theorem: There is an A.W.F.S. on Cat

Tw Coref \longrightarrow \$q(Cat) \longleftarrow Lens

of twisted coreflections & delta lenses.

- (i) $TwCoref \cong LLP(Lens) \cong L-Coalg$ $Lens \cong RLP(TwCoref) \cong RLP(J_{lens}) \cong R-Alg$
- cofree twisted free delta len

- · Can we generalise lifting operations by replacing Sq(C) with some ID?
- What is the relationship with
 (co)reflective factorisation systems?

