1) Exploratory analysis

1) Data type of columns in a table:

CUSTOMERS TABLE:

GEOLOCATION TABLE:

ORDERITEMS TABLE:

â	· ×	⊕ *Untitled • ×	■ orders ▼	× ☐ order_	items - X
⊞	orde	_items	Q QUERY *	+2SHARE	СОРУ
	SCHEMA	DETAILS	PREVIEW	LINEAGE	
	∓ Filt	t er Enter property na	ame or value		
		Field name	Type	Mode	Collatio
		order_id	STRING	NULLABL	.E
		order_item_id	INTEGER	NULLABL	.E
		product_id	STRING	NULLABL	.E
		seller_id	STRING	NULLABL	.E
		shipping_limit_date	TIMESTAM	P NULLABL	.E
		price	FLOAT	NULLABL	.E
		freight_value	FLOAT	NULLABL	.E

ORDER REVIEWS TABLE:

î → X		×	reviews - ×
■ order_reviews	Q QUERY -	+2SHARE	СОРУ
SCHEMA DETAILS	PREVIEW	LINEAGE	
〒 Filter Enter property r	name or value		
Field name	Туре	Mo	ode (
review_id	STRIN	IG NU	ILLABLE
order_id	STRIN	IG NU	ILLABLE
review_score	INTEG	SER NU	ILLABLE
review_comment_t	itle STRIN	IG NU	ILLABLE
review_creation_da	ite TIMES	STAMP NU	ILLABLE
review_answer_tim	estamp TIMES	STAMP NU	ILLABLE

ORDERS:

â ⋅ X	⊕ *Untitled → X ■ orders	▼ X 🖼 order_	reviews - X
⊞ order	S Q QUERY ▼ +2S	SHARE CO	PY 🛨 SN/
SCHEMA	DETAILS PREVIEW	LINEAGE	
∓ Filte	er Enter property name or value		
	Field name	Туре	Mode
	order_id	STRING	NULLABLE
	customer_id	STRING	NULLABLE
	order_status	STRING	NULLABLE
	order_purchase_timestamp	TIMESTAMP	NULLABLE
	order_approved_at	TIMESTAMP	NULLABLE
	order_delivered_carrier_date	TIMESTAMP	NULLABLE
	order_delivered_customer_date	TIMESTAMP	NULLABLE
	order_estimated_delivery_date	TIMESTAMP	NULLABLE

PAYMENTS TABLE:

PRODUCTS TABLE:

SELLERS TABLE:

2)Time period for which the data is given:

SQL:

 $\begin{tabular}{ll} select & min(order_purchase_timestamp) & as & start_period,max(order_purchase_timestamp) & as & end_period,from `Target_SQL.orders` \\ \end{tabular}$

Query results JOB INFORMATION RESULTS JSON EXECUTION DET. Row start_period end_period 1 2016-09-04 21:15:19 UTC 2018-10-17 17:30:18 UTC

3) Cities and States of customers ordered during the given period:

SQL: SELECT distinct c.customer_city, c.customer_state FROM `Target_SQL.customers` c JOIN `Target_SQL.orders` o on c.customer_id = o.customer_id

Analysis:

Around 4310 cities and states are listed for the given period in Brazil.

2)In-depth Exploration:

1)Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Month-wise:

SQL:

```
SELECT FORMAT_DATETIME("%B", DATETIME(order_purchase_timestamp)) as month_year, COUNT(
*) AS total_orders
FROM `Target_SQL.orders`
GROUP BY month_year
ORDER BY 2 desc;
```


August has the highest no of sales and September being the lowest.

Could increase sales in other months by analyzing the factor that contributes to increase in sales in August.

MONTH-YEAR-wise:-

SQL:

```
SELECT FORMAT_DATETIME("%B %Y", DATETIME(order_purchase_timestamp)) as month_year, COU
NT(*) AS total_orders
 FROM `Target_SQL.orders`
 GROUP BY month_year
 ORDER BY month_year;
  Query results
   JOB INFORMATION
                        JSON
              total_orders //
2404
   2 April 2018
   3 August 2017
   4 August 2018
   7 February 2017
                          6728
   8 February 2018
      July 2017
   12 July 2018
                          6292
      June 2017
   16 March 2018
17 May 2017
                          3700
   18 May 2018
```

Tableau results:

Analysis:

We could clearly see that trend on e-commerce in Brazil is steadily increasing from June 2017 till November 2017 reaching its peak during November 2017 with 7544 orders and there is slight decrease in trend till August 2018 .

Although sales are poor after August 2018 which is same as during September 2016.

2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

SQL:

select

```
SUM(CASE WHEN EXTRACT(time from order_purchase_timestamp) BETWEEN '00:00:00' and '06:0 0:00' THEN 1 ELSE 0 END) as dawn,
SUM(CASE WHEN EXTRACT(time from order_purchase_timestamp) BETWEEN '07:00:00' and '12:0 0:00' THEN 1 ELSE 0 END) as Morning,
```

```
SUM(CASE WHEN EXTRACT(time from order_purchase_timestamp) BETWEEN '13:00:00' and '18:0 0:00' THEN 1 ELSE 0 END) as Afternoon,
SUM(CASE WHEN EXTRACT(time from order_purchase_timestamp) BETWEEN '19:00:00' and '23:0 0:00' THEN 1 ELSE 0 END) as Night,
FROM `Target_SQL.orders`
```

Query results

JOB INFORMATION		JOB INFORMATION RESULTS		EXECUTION DETAI	
Row	dawn	Morning	Afternoon	Night	
1	4740	21738	32370	24209	

Analysis:

Brazilian customers are ordering more during afternoon than any other part of the day.

So, citizens are purchasing after office hours in afternoon and Night.

3) Evolution of E-commerce orders in the Brazil region:

1)Get month on month orders by states:

```
select c.customer_state,extract(month from o.order_purchase_timestamp) as month,
extract(year from o.order_purchase_timestamp) as year,count(o.order_id) as total_order
s
from
`Target_SQL.orders` o join `Target_SQL.customers`c
on o.customer_id = c.customer_id
group by c.customer_state,year,month
order by year,month;
```

Quer	Query results			▲ SAVE RESULTS ▼		
JOB IN	IFORMATION RESULTS	S	JSON	EXECUTION DET	TAILS EXEC	
Row	customer_state	le	month //	year	total_orders	
1	RR		9	2016	1	
2	RS		9	2016	1	
3	SP		9	2016	2	
4	SP		10	2016	113	
5	RS		10	2016	24	
6	RJ		10	2016	56	
7	MT		10	2016	3	
8	GO		10	2016	9	
9	MG		10	2016	40	
10	CE		10	2016	8	
11	SC		10	2016	11	
12	AL		10	2016	2	
13	ВА		10	2016	4	
14	PE		10	2016	7	
15	ES		10	2016	4	
16	MA		10	2016	4	

Above results shows that order counts are maximum in SP state in brazil among all other states.

All the other state should adapt strategies used in SP.

Orders are increasing during mid-months May, June, July in all state and Target should ensure supply of products.

2) Distribution of customers across the states in Brazil:

SQL:

```
select customer_state,count(distinct customer_id) as no_of_customers
from `Target_SQL.customers`
group by customer_state
order by no_of_customers desc
```

Query results

JOB IN	IFORMATION	RESULTS	JSON
Row	customer_state	6	no_of_customer
1	SP		41746
2	RJ		12852
3	MG		11635
4	RS		5466
5	PR		5045
6	SC		3637
7	BA		3380
8	DF		2140
9	ES		2033
10	GO		2020
11	PE		1652
12	CE		1336
13	PA		975
14	MT		907
15	MA		747
16	MS		715

State SP has maximum no of customers followed by RJ,MG etc and Target should adapt strategies to improve and attract customers in other states as well by taking SP state into consideration.

4) Impact on Economy:

1)Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)- You can use "payment value" column in payments table

```
select round(((sum(b.cost_orders2018) - sum(a.cost_of_orders2017)) /sum(a.cost_of_orde
rs2017)* 100),2) as percentage_increase from(
(select sum(p.payment_value) as cost_of_orders2017,extract(month from o.order_purchase
_timestamp) as month,extract(year from o.order_purchase_timestamp) as year
from
`Target_SQL.payments` p join `Target_SQL.orders` o
on p.order_id = o.order_id
group by 2,3
having month between 1 and 8 and year = 2017
order by month) a
inner join
(select sum(p.payment_value) as cost_orders2018,extract(month from o.order_purchase_ti
mestamp) as month, extract(year from o.order_purchase_timestamp) as year
`Target_SQL.payments` p join `Target_SQL.orders` o
on p.order_id = o.order_id
group by 2,3
having month between 1 and 8 and year = 2018
order by month)b
on a.month = b.month);
```

Query results

There is increase of 36.9 % in cost of orders from 2017 to 2018 in months between JAN and AUG.

2)Mean & Sum of price and freight value by customer state

```
select c.customer_state,
round(sum(oi.price),2) as sum_price,
round(avg(oi.price),2) as mean_price,
round(sum(oi.freight_value),2) as sum_fght_value,
round(avg(oi.freight_value),2) as avg_fght_value
from
`Target_SQL.orders` o join `Target_SQL.order_items` oi
on o.order_id = oi.order_id
join `Target_SQL.customers` c
on o.customer_id = c.customer_id
group by 1
order by 1
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH
Row	customer_state	6	sum_price	mean_price	sum_fght_value	avg_fght_value
1	AC		15982.95	173.73	3686.75	40.07
2	AL		80314.81	180.89	15914.59	35.84
3	AM		22356.84	135.5	5478.89	33.21
4	AP		13474.3	164.32	2788.5	34.01
5	BA		511349.99	134.6	100156.68	26.36
6	CE		227254.71	153.76	48351.59	32.71
7	DF		302603.94	125.77	50625.5	21.04
8	ES		275037.31	121.91	49764.6	22.06
9	GO		294591.95	126.27	53114.98	22.77
10	MA		119648.22	145.2	31523.77	38.26
11	MG		1585308.03	120.75	270853.46	20.63
12	MS		116812.64	142.63	19144.03	23.37
13	MT		156453.53	148.3	29715.43	28.17
14	PA		178947.81	165.69	38699.3	35.83
15	PB		115268.08	191.48	25719.73	42.72
16	PE		262788.03	145.51	59449.66	32.92
17	PI		86914.08	160.36	21218.2	39.15
18	PR		683083.76	119.0	117851.68	20.53
19	RJ		1824092.67	125.12	305589.31	20.96

Average price of orders in PB is the highest with 191.4 and lowest in SP state.

Average freight value is lowest in SP and highest in RR.

Sum of price and freight value is highest in SP state.

This implies that cost of orders and shipment are less in SP state and so people are ordering more order items and other states must follow this strategy.

5. Analysis on sales, freight and delivery time:

- 1)Calculate days between purchasing, delivering and estimated delivery:
- 2) Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

```
diff_estimated_delivery = order_estimated_delivery_date-
order delivered customer date
```

```
select order_id, order_purchase_timestamp, nullif(date_diff(order_delivered_customer_dat
e, order_purchase_timestamp, day),0) as time_to_delivery,
nullif(date_diff(order_estimated_delivery_date, order_delivered_customer_date, day),0) a
s diff_estimated_delivery
from
`Target_SQL.orders`
order by order_id, order_purchase_timestamp
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION	DETAILS	EXE	CUTION GRAPH
Row	order_id		order_purcha	se_timestamp	time_to_	delivery	diff_estimated
1	00010242fe8c5a	6d1ba2dd792	2017-09-13 0	8:59:02 UTC		7	8
2	00018f77f2f032	0c557190d7a1	2017-04-26 1	0:53:06 UTC		16	2
3	000229ec39822	4ef6ca0657da	2018-01-14 1	4:33:31 UTC		7	13
4	00024acbcdf0a6	idaa1e931b03	2018-08-08 1	0:00:35 UTC		6	5
5	00042b26cf59d7	7ce69dfabb4e	2017-02-04 1	3:57:51 UTC		25	15
6	00048cc3ae777	c65dbb7d2a06	2017-05-15 2	1:42:34 UTC		6	14
7	00054e8431b9d	7675808bcb8	2017-12-10 1	1:53:48 UTC		8	16
8	000576fe393198	347cbb9d288c	2018-07-04 1	2:08:27 UTC		5	15
9	0005a1a1728c9	d785b8e2b08	2018-03-19 1	8:40:33 UTC		9	nuli
10	0005f50442cb95	53dcd1d21e1f	2018-07-02 1	3:59:39 UTC		2	18
11	00061f2a7bc09d	da83e415a52d	2018-03-24 2	2:16:10 UTC		4	10
12	00063b381e240	6b52ad42947	2018-07-27 1	7:21:27 UTC		10	nuli
13	0006ec9db01a6	4e59a68b2c34	2018-07-24 1	7:04:17 UTC		6	21
14	0008288aa423d	2a3f00fcb17c	2018-02-13 2	2:10:21 UTC		12	7
10	0000700011464		0010 00 140	0.40.00.1170		-	-

It is found that states RO,MS,TO,DF are taking very less days to deliver orders than other states .So, it can be said those states have higher chances of purchases .ES ,RJ,SE,PA states takes too long to deliver and their difference in actual delivery date and estimated delivery date is very high in negative.

So, they need to set up more warehouses in places where most orders comes from and avoid the delay in time of delivery.

3) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
select c.customer_state, round(avg(date_diff(o.order_delivered_customer_date, o.order_p
urchase_timestamp, day)),2) as time_to_delivery,
round(avg(date_diff(o.order_estimated_delivery_date,o.order_delivered_customer_date,da
y)),2) as diff_estimated_delivery, round(avg(oi.freight_value),2) as mean_avg_freight_v
alue
from
`Target_SQL.orders` o join `Target_SQL.order_items` oi
on o.order_id = oi.order_id
join `Target_SQL.customers` c
on o.customer_id = c.customer_id
group by 1
```

Row	customer_state	time_to_delivery	diff_estimated_c	mean_avg_freigh
1	MT	17.51	13.64	28.17
2	MA	21.2	9.11	38.26
3	AL	23.99	7.98	35.84
4	SP	8.26	10.27	15.15
5	MG	11.52	12.4	20.63
6	PE	17.79	12.55	32.92
7	RJ	14.69	11.14	20.96
8	DF	12.5	11.27	21.04
9	RS	14.71	13.2	21.74
10	SE	20.98	9.17	36.65
11	PR	11.48	12.53	20.53
12	PA	23.3	13.37	35.83
12	RΛ	10 77	10 12	26.26

Analysis:

RR state takes more average time to deliver which means there is high chances that target could lose customers and it also has high freight value .so it needs to change its carrier company.

AC state takes more average difference in estimated delivery time which means it delivers products way before than estimated time.

It is also observed that SP state delivers products in very less time than other states, so more customers.

4)

a)Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5:

Highest average freight value:

```
select c.customer_state,round(avg(oi.freight_value),2) as mean_avg_freight_value
from
`Target_SQL.orders` o join `Target_SQL.order_items` oi
on o.order_id = oi.order_id
join `Target_SQL.customers` c
on o.customer_id = c.customer_id
group by 1
order by 2 desc
limit 5
```

Row	customer_state	1	mean_avg_freig
1	RR		42.98
2	PB		42.72
3	RO		41.07
4	AC		40.07
5	PI		39.15

Lowest average freight value:

```
select c.customer_state,round(avg(oi.freight_value),2) as mean_avg_freight_value
from
`Target_SQL.orders` o join `Target_SQL.order_items` oi
on o.order_id = oi.order_id
join `Target_SQL.customers` c
on o.customer_id = c.customer_id
group by 1
order by 2 asc
limit 5
 Row customer_state
                             mean_avg_freig
   1 SP
                                 15.15
                                 20.53
   2 PR
    3 MG
                                 20.63
      RJ
                                 20.96
```

21.04

Analysis:

5 DF

RR state takes more time to deliver so needs to change its carrier company or it will lose its customers.

On contrary, SP takes very less time to deliver.

b) Top 5 states with highest/lowest average time to delivery:

highest avg:

lowest avg:

23.3

Query results

JOB IN	IFORMATION	RESULTS	JSON
Row	customer_state	10	time_to_delivery
1	SP		8.26
2	PR		11.48
3	MG		11.52
4	DF		12.5
5	SC		14.52

Analysis:

As said before RR takes more time and SP takes very less time to deliver.

C) Top 5 states where delivery is really fast/ not so fast compared to estimated date

Row	customer_state	diff_estimated_
1	AC	20.01
2	RO	19.08
3	AM	18.98
4	AP	17.44
5	RR	17.43

Query results

limit 5

JOB INFORMATION		RESULTS	JSON	
Row	customer_state	6	diff_estimated_c	
1	AL		7.98	
2	MA		9.11	
3	SE		9.17	
4	ES		9.77	
5	BA		10.12	

AC has happy customers since average diff in estimated date is high so very fast delivery where as AL has low average diff in estimated delivery so more time to deliver.

6. Payment type analysis:

1) Month over Month count of orders for different payment types:

```
SELECT distinct p.payment_type,extract(month from o.order_purchase_timestamp) as month
,count(o.order_purchase_timestamp) as count_orders
FROM
`Target_SQL.orders` o JOIN `Target_SQL.payments` p
on o.order_id = p.order_id
group by 1,2
order by 1,2
```

Query results						
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET		
Row /	payment_type	h	month	count_orders		
1	UPI		1	1715		
2	UPI		2	1723		
3	UPI		3	1942		
4	UPI		4	1783		
5	UPI		5	2035		
6	UPI		6	1807		
7	UPI		7	2074		
8	UPI		8	2077		
9	UPI		9	903		
10	UPI		10	1056		
11	UPI		11	1509		
12	UPI		12	1160		
13	credit_card		1	6103		
14	credit_card		2	6609		
15	credit_card		3	7707		
16	credit_card		4	7301		
17	aradit aard		E	0350		

Credit card is in top of other payment methods followed by UPI, Voucher, debit_card.

It is found that no of purchases is topped in the month of August and is increasing from first half of year and is decreasing from September for every payment methods.

2) Count of orders based on the no. of payment installments:

```
SELECT p.payment_installments,count(o.order_purchase_timestamp) as count_orders
FROM
`Target_SQL.orders` o JOIN `Target_SQL.payments` p
on o.order_id = p.order_id
group by 1
order by 1,2
```

Query results

JOB IN	IFORMATION	RESULTS
Row	payment_installr	count_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16
15	14	15
16	15	74

Analysis:

With increase in no of payment installments, count of orders is decreasing and becomes stable after 23 rd installment. So, people in Brazil are settling payments for order in 2^{nd} installment and after that no of orders is drastically reduced.