How to calculate Mn, Mw and Mz

from raw molecular weight data for resin PBR0

Calculations

From the presentation: "Moments of Distribution"

1

(1)
$$Mn = \frac{\Sigma N_i M_i}{\Sigma N_i}$$

(2)
$$Mw = \frac{\sum N_i M_i^2}{\sum N_i M_i}$$

(3)
$$Mw = \frac{\sum N_i M_i^3}{\sum N_i M_i^2}$$

This is the data in the excel file
6) Case Fiber Spinning MWD PB Resins

NOTE:
I added a column so, you can see that there are 115 chains of different sizes

5

2

Where:

Ni is the amount of molecules of size Mi

and

Mi is the molecular weight of the ith chain and is represented by Mwi

The number of i chains is the one given to you on a list

•	í chain	Mwi	Weight fraction (Xi) of each Mi for the PBRO resin
	1	4956437	0.04
	2	4630417	0.04
	3	4325840	0.05
	4	4041299	0.06
	5	3775473	0.07
	6	3527133	0.08
	7	3295128	0.10
	8	3078383	0.12
	9	2875896	0.14
	10	2686727	0.16

The number of moles is equal to:

$$Ni = X_i (grs) / Mw_i (grs/mol) = moles$$

(1)
$$Mn = \frac{\sum_{i=1}^{N_i} M_i}{\sum_{i=1}^{N_i} M_i} = \frac{\sum_{i=1}^{N_i} X_i}{\sum_{i=1}^{N_i} M_i}$$

Calculations for Mw and Mz:

$$Mw = \frac{\sum_{i=1}^{N_i} M_i^2}{\sum_{i=1}^{N_i} M_i} = \frac{\sum_{i=1}^{N_i} X_i}{\sum_{i=1}^{N_i} X_i}$$
(2)

$$Mz = \frac{\sum \frac{X_{i}}{M_{i}} M_{i}^{3}}{\sum \frac{X_{i}}{M_{i}} M_{i}^{2}} = \frac{\sum X_{i} M_{i}^{2}}{\sum X_{i} M_{i}}$$
(3)

You have Xi and Mi for each resin, so you can now calculate de average numbers

Steps

- 1. Observe that Column B gives you the molecular weight for each of the 116 chains as reported by Gel Permeation Chromatography (GPC) measurements.
- 2. Observe that column C gives you the grams of each chain and the sum should be 100 grs (if not normalize the data so the sum is 100)
- 3. Go to cell C118 and make sure that the summation of the weights gives you 100
- 4. Do the calculation of Mn on cell C119 using equation 1 from slide 2
- 5. Do the calculation of Mw on cell C120 using equation 2 from slide 3
- 6. Do the calculation of Mz on cell C121 using equation 3 from slide 3