Analysis - PMA 17 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

October 18, 2021

Overview

Funtions of Several Variables
The Contraction Principle
The Inverse Function Theorem
The Implicit Function Theorem
The Rank Theorem
Exercises

The Contraction Principle

Definition (9.22)

Let X be a metric space, with metric d. If φ maps X into X and if there is a number c < 1 such that

$$d(\varphi(x), \varphi(y)) \le cd(x, y)$$

for all $x, y \in X$, then φ is said to be a *contraction* of X into X.

Theorem (9.23)

If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only one $x \in X$ such that $\varphi(x) = x$.

The Inverse Function Theorem

Theorem (9.24)

Suppose $\mathbf f$ is a $\mathscr C'$ -mapping of an open set $E\subset\mathbb R^n$ into $\mathbb R^n$, $\mathbf f'(\mathbf a)$ is invertible for some $\mathbf a\in E$, and $\mathbf b=\mathbf f(\mathbf a)$. Then

- (a) there exist open sets U and V in \mathbb{R}^n such that $\mathbf{a} \in U$, $\mathbf{b} \in V$, \mathbf{f} is one-to-one on U, and $\mathbf{f}(U) = V$;
- (b) if g is the inverse of f, defined in V by

$$g(f(x)) = x,$$

then $\mathbf{g} \in \mathscr{C}'(V)$.

The Inverse Function Theorem

Theorem (9.25)

If f is a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n and if $f'(\mathbf{x})$ is invertible for every $\mathbf{x} \in E$, then f(W) is an open subset of \mathbb{R}^n for every open set $W \subset E$. In other words, \mathbf{f} is an open mapping of E into \mathbb{R}^n .

Notation(9.26)

▶ If $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $\mathbf{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$, let us write (\mathbf{x}, \mathbf{y}) for the point

$$(x_1,\cdots,x_n,y_1,\cdots,y_m)\in\mathbb{R}^{n+m}.$$

lacktriangle Every $A\in L(\mathbb{R}^{n+m},\mathbb{R}^n)$ can be split into two linear transformations A_x and A_y by

$$A_x \mathbf{h} = A(\mathbf{h}, \mathbf{0}), \quad A_y \mathbf{k} = A(\mathbf{0}, \mathbf{k})$$

for $\mathbf{h} \in \mathbb{R}^n$, $\mathbf{k} \in \mathbb{R}^m$. Then $A_x \in L(\mathbb{R}^n)$, $A_y \in L(\mathbb{R}^m, \mathbb{R}^n)$, and

$$A(\mathbf{h}, \mathbf{k}) = A_x \mathbf{h} + A_y \mathbf{k}.$$

Theorem (9.27)

If $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and if A_x is invertible, then there corresponds to every $\mathbf{k} \in \mathbb{R}^m$ a unique $\mathbf{h} \in \mathbb{R}^n$ such that $A(\mathbf{h}, \mathbf{k}) = \mathbf{0}$.

Theorem (9.28)

Let f be a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^{n+m}$ into \mathbb{R}^n , such that $f(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ for some point $(\mathbf{a}, \mathbf{b}) \in E$. Put $A = f'(\mathbf{a}, \mathbf{b})$ and assume that A_x is invertible.

Then there exist open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^m$, with $(\mathbf{a}, \mathbf{b}) \in U$ and $\mathbf{b} \in W$, having the following property: To every $\mathbf{y} \in W$ corresponds a unique \mathbf{x} such that

$$(\mathbf{x}, \mathbf{y}) \in U$$
 and $\mathbf{f}(\mathbf{x}, \mathbf{y}) = 0$.

If this x is defined to be g(y), then g is a \mathscr{C}' -mapping of W into \mathbb{R}^n , g(b) = a,

$$f(g(y), y) = 0 \quad y \in W,$$

and

$$\mathbf{g}'(\mathbf{b}) = -(A_x)^{-1} A_y.$$

Example (9.29)

Take n=2, m=3, and $\mathbf{f}=(f_1,f_2)$ given by

$$f_1(x_1, x_2, y_1, y_2, y_3) = 2e^{x_1} + x_2y_1 - 4y_2 + 3$$

$$f_2(x_1, x_2, y_1, y_2, y_3) = x_2 \cos x_1 - 6x_1 + 2y_1 - y_3.$$

If a = (0, 1) and b = (3, 2, 7), then f(a, b) = 0.

$$[A] = \begin{bmatrix} 2 & 3 & 1 & -4 & 0 \\ -6 & 1 & 2 & 0 & -1 \end{bmatrix} \implies [A_x] = \begin{bmatrix} 2 & 3 \\ -6 & 1 \end{bmatrix}, [A_y] = \begin{bmatrix} 1 & -4 & 0 \\ 2 & 0 & -1 \end{bmatrix}$$

and

$$[(A_x)^{-1}] = \frac{1}{20} \begin{bmatrix} 1 & -3 \\ 6 & 2 \end{bmatrix}$$

gives

$$[\mathbf{g}'(3,2,7)] = -\frac{1}{20} \begin{bmatrix} 1 & -3 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} 1 & -4 & 0 \\ 2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{5} & -\frac{3}{20} \\ -\frac{1}{2} & \frac{6}{5} & \frac{1}{10} \end{bmatrix}$$

The Rank Theorem

Definition (9.30)

Suppose X and Y are vector spaces, and $A \in L(X,Y)$.

- ▶ The *null space* of A, $\mathcal{N}(A) = \{\mathbf{x} \in X : A\mathbf{x} = \mathbf{0}\}.$
- ▶ The range of A, $\mathcal{R}(A) = \{A\mathbf{x} : \mathbf{x} \in X\}$.
- ▶ The *rank* of A is defined to be the dimension of $\mathcal{R}(A)$.

The Rank Theorem

Projections(9.31)

Let X be a vector space. An operator $P \in L(X)$ is said to be a projection in X if $P^2 = P$.

(a) If P is a projection in X, then every $\mathbf{x} \in X$ has a unique representation of the form

$$\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$$

where $\mathbf{x}_1 \in \mathcal{R}(P)$, $\mathbf{x}_2 \in \mathcal{N}(P)$.

(b) If X is a finite-dimensional vector space and if X_1 is a vector space in X, then there is a projection P in X with $\mathcal{R}(P) = X_1$.

The Rank Theorem

Theorem (9.32)

Suppose m, n, r are nonnegative integers, $m \ge r$, $n \ge r$, \mathbf{F} is a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and $\mathbf{F}'(\mathbf{x})$ has rank r for every $\mathbf{x} \in E$.

Fix $\mathbf{a} \in E$, put $A = \mathbf{F}'(\mathbf{a})$, let Y_1 be the range of A, and let P be a projection in \mathbb{R}^m whose range is Y_1 . Let Y_2 be the null space of P.

Then there are open sets U and V in \mathbb{R}^n , with $\mathbf{a} \in U \subset E$, and there is a 1-1 \mathscr{C}' -mapping H of V onto U such that

$$\mathbf{F}(\mathbf{H}(\mathbf{x})) = A\mathbf{x} + \varphi(A\mathbf{x})$$

where φ is a \mathscr{C}' -mapping of the open set $A(V) \subset Y_1$ into Y_2 .

Ex 9.17

Let $\mathbf{f} = (f_1, f_2)$ be the mapping of \mathbb{R}^2 into \mathbb{R}^2 given by

$$f_1(x, y) = e^x \cos y, \quad f_2(x, y) = e^x \sin y.$$

- (a) What is the range of f?
- (b) Show that the Jacobian of f is not zero at any point of \mathbb{R}^2 . Thus every point of \mathbb{R}^2 has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to-one on \mathbb{R}^2 .
- (c) Put $\mathbf{a} = (0, \pi/3)$, $\mathbf{b} = f(\mathbf{a})$, let \mathbf{g} be the continuous inverse of \mathbf{f} , defined in a neighborhood of \mathbf{b} , such that $\mathbf{g}(\mathbf{b}) = \mathbf{a}$. Find an explicit formula for \mathbf{g} , compute $\mathbf{f}'(\mathbf{a})$ and $\mathbf{g}'(\mathbf{b})$, and verify the $\mathbf{g}'(\mathbf{b}) = \{\mathbf{f}'(\mathbf{g}(\mathbf{b}))\}^{-1}$.

Exercises

Ex 9.19

Show that the system of equations

$$3x + y - z + u2 = 0$$
$$x - y + 2z + u = 0$$
$$2x + 2y - 3z + 2u = 0$$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

Ex 9.21

Define f in \mathbb{R}^2 by

$$f(x,y) = 2x^3 - 3x^2 + 2y^3 + 3y^2.$$

- (a) Find the four points in \mathbb{R}^2 at which the gradient of f is zero. Show that f has exactly one local maximum and one local minimum in \mathbb{R}^2 .
- (b) Let S be the set of all $(x,y) \in \mathbb{R}^2$ at which f(x,y) = 0. Find those points of S have no neighborhoods in which the equation f(x,y) = 0 can be solved for y in terms of x.

Ex 9.23

Define f in \mathbb{R}^3 by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2.$$

Show that f(0,1,-1)=0 and $(D_1f)(0,1,-1)\neq 0$, and that there exists therefore differential function g in some neighborhood of (1,-1) in \mathbb{R}^2 , such that g(1,-1)=0 and

$$f(g(y_1, y_2), y_1, y_2) = 0.$$

Find $(D_1g)(1,-1)$ and $(D_2g)(1,-1)$.

Exercises

Ex 9.24

For $(x, y) \neq (0, 0)$, define $\mathbf{f} = (f_1, f_2)$ by

$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \quad f_2(x,y) = \frac{xy}{x^2 + y^2}.$$

Compute the rank of f'(x, y), and find the range of f.

Ex 9.25

Suppose $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, let r be the rank of A.

- (a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in \mathbb{R}^n whose null space is $\mathcal{N}(A)$ and whose range is $\mathcal{R}(S)$.
- (b) Use (a) to show that

$$\dim \mathcal{N}(A) + \dim \mathcal{R}(A) = n.$$

The End