Übersicht – Übung 3

Wiederholung / Hausaufgabe Netzwerktopologien

Sequenznummern

Sliding Window

HDLC

Wiederholung / Hausaufgabe: Liniennetz

• Gegeben ist ein Liniennetz mit *n* Knoten:

- Jeder Knoten sendet pro Zeiteinheit zufällig ein Paket an einen der anderen n−1 Knoten.
- Gesucht ist der mittlere Hop-Count der Pakete pro Zeiteinheit.

Wiederholung / Hausaufgabe: Liniennetz

- Generelles Vorgehen:
 - Mittleren Hop-Count pro Knoten bestimmen (heterogene Topologie, jeweils n−1 Knoten einbeziehen)
 - Über alle n Knoten mitteln

Wiederholung / Hausaufgabe: Liniennetz

• Summe der ersten n natürlichen Zahlen (Gauß'sche Summenformel):

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Summe der ersten n Quadratzahlen:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Wiederholung / Hausaufgabe: Liniennetz

• Linke Summe:
$$\sum_{l=1}^{k} l = \frac{k \cdot (k+1)}{2}$$

• Rechte Summe:
$$\sum_{r=1}^{n-k-1} r = \frac{(n-k)\cdot(n-k-1)}{2}$$

• Im Mittel für Knoten k:

$$\frac{k \cdot (k+1) + (n-k) \cdot (n-k-1)}{2 \cdot (n-1)}$$

n>1

Ben Lorenz <lorenzb@tu-freiberg.de>
Jonas Treumer <treumer@tu-freiberg.de>

Die Ressourcenuniversität. Seit 1765.

Wiederholung / Hausaufgabe: Liniennetz

Im Mittel für alle Knoten:

$$\underbrace{\frac{1}{n} \cdot \frac{1}{2 \cdot (n-1)}}_{C} \cdot \sum_{k=0}^{n-1} (k \cdot (k+1) + (n-k) \cdot (n-k-1))$$

• Trennen der Summe:

$$2c\sum_{k=0}^{n-1} (k^2 + (1-n)\cdot k) + c\sum_{k=0}^{n-1} (n^2 - n)$$

$$\Leftrightarrow 2c\sum_{k=0}^{n-1}k^2 + 2c(1-n)\sum_{k=0}^{n-1}k + \frac{n}{2}$$

Wiederholung / Hausaufgabe: Liniennetz

• Damit folgt:

$$\Leftrightarrow \frac{2n-1}{6} + \frac{1-n}{2} + \frac{n}{2} = \frac{n+1}{3}$$

Interpretation?

Sequenznummern

- Send-And-Wait-Szenario: [1]
 - Synonyme: Stop-And-Wait, Idle-RQ
 - Beteiligt: Sender S, Empfänger R
 - S sendet Rahmen mit Nutzlast (I-Frames) an R.
 - R bestätigt jeden I-Frame mit einem ACK-Frame.
 - S wartet auf den ACK-Frame und sendet erst nach Erhalt den nächsten I-Frame.

Sequenznummern

Aufgabe 3.1)

Skizzieren Sie die folgenden Szenarien und schlagen Sie Konzepte zum Umgang mit Fehlersituationen vor:

- Erfolgreiche Übertragung und Bestätigung eines I-Frames
- Verlust eines I-Frames
- Umkippen von Bits in einem I-Frame
- Verlust eines ACKs
- Duplizierung eines I-Frames oder ACKs
- Umkippen von Bits in einem ACK

Sequenznummern

• Erfolgreiche Übertragung und Bestätigung eines I-Frames:

Sequenznummern

Verlust eines I-Frames:

Sequenznummern

Umkippen von Bits in einem I-Frame:

Sequenznummern

Verlust eines ACKs:

Sequenznummern

Verlust eines ACKs:

Sequenznummern

Duplizierung eines I-Frames:

Sequenznummern

Duplizierung eines ACKs:

Sequenznummern

Duplizierung eines ACKs:

Sequenznummern

Umkippen von Bits in einem ACK:

- Ab jetzt: S wartet nicht mehr auf jedes ACK.
- Aufgabe 3.2)
 - Erläutern Sie die zwei grundlegenden Strategien zur erneuten Übertragung verlorener I-Frames:
 - Go-Back-N
 - Selective Repeat

Sliding Window

Go-Back-N:

Sliding Window

Go-Back-N:

Sliding Window

Selective Repeat:

Sliding Window

Selective Repeat:

Sliding Window

Definieren Sie den Begriff der Fenstergröße (engl. Window size).

"Die Fenstergröße bezeichnet die Menge an Daten, die der Sender unbestätigt abschicken darf, bevor er ein ACK erhält."

- "Datenmenge": hier die Anzahl der Frames (aber z. B. nicht bei TCP).
- "Sliding Window":

Sliding Window

• Definieren Sie den Begriff der Fenstergröße (engl. Window size).

"Die Fenstergröße bezeichnet die Menge an Daten, die der Sender unbestätigt abschicken darf, bevor er ein ACK erhält."

- "Datenmenge": hier die Anzahl der Frames (aber z. B. nicht bei TCP).
- "Sliding Window":

Sliding Window

• Definieren Sie den Begriff der Fenstergröße (engl. Window size).

"Die Fenstergröße bezeichnet die Menge an Daten, die der Sender unbestätigt abschicken darf, bevor er ein ACK erhält."

- "Datenmenge": hier die Anzahl der Frames (aber z. B. nicht bei TCP).
- "Sliding Window":

Sliding Window

• Definieren Sie den Begriff der Fenstergröße (engl. Window size).

"Die Fenstergröße bezeichnet die Menge an Daten, die der Sender unbestätigt abschicken darf, bevor er ein ACK erhält."

- "Datenmenge": hier die Anzahl der Frames (aber z. B. nicht bei TCP).
- "Sliding Window":

Sliding Window

• Definieren Sie den Begriff der Fenstergröße (engl. Window size).

"Die Fenstergröße bezeichnet die Menge an Daten, die der Sender unbestätigt abschicken darf, bevor er ein ACK erhält."

- "Datenmenge": hier die Anzahl der Frames (aber z. B. nicht bei TCP).
- "Sliding Window":

Sliding Window

- Und der Empfänger?
 - Für Go-Back-N: Ein Zeiger reicht aus

Für Selective-Repeat: Ein Fenster für alle gültigen Frames

- Protokolldesign: Bitfeld für die Sequenznummer
- Beschränkt, z. B. n Bits \rightarrow 2ⁿ unterschiedliche Sequenznummern
- Wie hängt die Wahl der Fenstergröße mit dem Wertebereich für die Sequenznummer zusammen? Berücksichtigen Sie, ob Go-Back-N oder Selective Repeat zum Einsatz kommt.
- Tipp: Worst-Case-Szenario konstruieren!

- Protokolldesign: Bitfeld für die Sequenznummer
- Beschränkt, z. B. n Bits \rightarrow 2ⁿ unterschiedliche Sequenznummern
- Wie hängt die Wahl der Fenstergröße mit dem Wertebereich für die Sequenznummer zusammen? Berücksichtigen Sie, ob Go-Back-N oder Selective Repeat zum Einsatz kommt.
- Tipp: Worst-Case-Szenario konstruieren!

- Protokolldesign: Bitfeld für die Sequenznummer
- Beschränkt, z. B. n Bits $\rightarrow 2^n$ unterschiedliche Sequenznummern
- Wie hängt die Wahl der Fenstergröße mit dem Wertebereich für die Sequenznummer zusammen? Berücksichtigen Sie, ob Go-Back-N oder Selective Repeat zum Einsatz kommt.
- Tipp: Worst-Case-Szenario konstruieren!

- Protokolldesign: Bitfeld für die Sequenznummer
- Beschränkt, z. B. n Bits $\rightarrow 2^n$ unterschiedliche Sequenznummern
- Wie hängt die Wahl der Fenstergröße mit dem Wertebereich für die Sequenznummer zusammen? Berücksichtigen Sie, ob Go-Back-N oder Selective Repeat zum Einsatz kommt.
- Tipp: Worst-Case-Szenario konstruieren!

Sliding Window

- Fazit: Für Fenstergröße F gilt:
 - Go-Back-N: Mindestens F + 1 unterschiedl. Sequenznummern
 - Selective Repeat: Mindestens 2F unterschiedl.
 Sequenznummern
- Zur Wiederholung zuhause:

Skizzieren Sie das Sende- und das Empfangsfenster für ein Übertragungsszenario mit Selective Repeat und einer Fenstergröße von 4.

- Weitere Aspekte des Sliding-Window-Konzepts:
 - Erläutern Sie die Begriffe der Fluss- und Verstopfungskontrolle.
 Stellen Sie den Zusammenhang zur Fenstergröße her.
- Flusskontrolle (engl. flow control): Ende-zu-Ende!
 - Abhängig von der Puffergröße und Verarbeitungsgeschwindigkeit des Empfängers
- Verstopfungskontrolle (engl. congestion control): Zwischenstationen!
 - Abhängig vom Durchsatz (!) des gesamten Netzwerkes und dessen derzeitiger Auslastung
- → Window-Size als Funktion von beiden Größen dynamisch aushandeln!

HDLC

- Aufgabe 3.3)
 - Wofür steht die Abkürzung HDLC? Ordnen Sie das Protokoll in das OSI-Schichtenmodell ein.
- High-Level Data Link Control

- Aufgabe 3.3)
 - Wofür steht die Abkürzung HDLC? Ordnen Sie das Protokoll in das OSI-Schichtenmodell ein.
- High-Level Data Link Control
- Schicht 2 / Sicherungsschicht / Data Link Layer
 - Framing: Aufteilen der Daten in Frames
 - Fehlererkennung: FCS
 - Sequenzierung
 - Flusskontrolle
 - Zugriff auf das Medium
 - Allgemein formuliert: Zuverlässige Übertragung

- High-Level Data Link Control
- Schicht 2 / Sicherungsschicht / Data Link Layer
- ISO 13239
- Verbindungsorientiert oder verbindungslos
- Punkt-zu-Punkt (oder Punkt-zu-Multipunkt)
- Anwendungen:
 - X.25 (LAPB)
 - ISDN (LAPD)
 - PPP

HDLC

• HDLC-Frame:

Flag	Address	Control	Payload	FCS	Flag
8 bit	≥ 8 bit	8 / 16 bit	?	16 / 32 bit	8 bit

- Erläutern Sie die Begriffe Simplex, Halbduplex und Vollduplex. Nennen Sie Beispiele für jede Kategorie.
- HDLC spezifiziert drei Übertragungsmodi:
 - Normal Response Mode (NRM) per Halbduplex
 - Asynchronous Response Mode (ARM) per Vollduplex
 - Asynchronous Balanced Mode (ABM) per Vollduplex

- Frame-Typen, am Control-Feld unterscheidbar:
 - I-Frame: Datenübertragung, *Piggyback*-Bestätigung

0	1	2	3	4	5	6	7
0		enz-Nui (Sender)		P/F- Bit		enz-Nur mpfänge	

- Frame-Typen, am Control-Feld unterscheidbar:
 - S-Frame: ACK / NAK / Flusskontrolle

0	1	2	3	4	5	6	7	
1	0	Funktionsbits		P/F- Bit	Sequenz-Numme (Empfänger)			
		0	0	Receive	Ready (RR)			
		1	0	Receive No	t Ready (RNR)		
		0	1	Reje	ct (REJ)			
		1	1	Selective F	Reject (SREJ)			

- Frame-Typen, am Control-Feld unterscheidbar:
 - U-Frame: Steuerungsinformationen

0	1	2	2	3		4	5	6	7	
1	1	Fu	nktior	nktionsbits P/F- Bit		Funktionsbits				
0	0		0	0	1		Set no	rmal response (SNRM)	e mode	
1	1		0	0	0			et asynchrono onse mode (S		
1	1		1	0	0		Set asynchronous balanced mode (SABN			

HDLC

• Beispiel:

- Bit-Stuffing:
 - Welche Vorteile bietet das Einrahmen eines HDLC-Frames mit Flags im Gegensatz zu einem Längenfeld?
 - Flag (0x7E bzw. 01111110) darf nirgendwo sonst im Rahmen auftreten
 - Nach FCS-Berechnung, direkt vor der Übergabe an Schicht 1: Bit-Stuffing
 - Nach fünf aufeinanderfolgenden Einsen eine Null einfügen
 - Empfänger: Null nach fünf Einsen transparent entfernen, erst danach FCS berechnen

HDLC

- Bit-Stuffing:
 - Beispiel: ASCII-Texte
 - 0x7E: ~ (Tilde)
 - Und sonst?
 - Stellen Sie das Payload-Feld eines HDLC-Frames "on the wire" dar, der folgende Nachricht enthält:

Ermäßigung? Nö!

- → ISO-8859-1 (Latin-1)
- → niederwertigstes Bit (LSB) immer zuerst

Scan- code	AS hex		Zeichen	Scan- code	AS hex	CII dez	Zch.	Scan- code	AS hex	CII Z	Zch.	Scan- code	ASCII Zch.
	00	0	NUL ^@		20	32	SP		40	64	@	0D	60 96 .
	01	1	SOH ^A	02	21	33	ļ	1E	41	65	Α	1E	61 97 a
	02	2	STX ^B	03	22	34	"	30	42	66	В	30	62 98 b
	03	3	ETX ^C	29	23	35	#	2E	43	67	С	2E	63 99 c
	04	4	EOT ^D	05	24	36	\$	20	44	68	D	20	64 100 d
	05	5	ENQ ^E	06	25	37	%	12	45	69	Ε	12	65 101 e
	06	6	ACK ^F	07	26	38	&	21	46	70	F	21	66 102 f
	07	7	BEL ^G	0D	27	39	'	22	47	71	G	22	67 103 g
0E	08	8	BS ^H	09	28	40	(23	48	72	Н	23	68 104 h
0F	09	9	TAB ^I	0A	29	41)	17	49	73	I	17	69 105 i
	0A	10	LF ^J	1B	2A	42	*	24	4A	74	J	24	6A 106 j
	0B	11	VT ^K	1B	2B	43	+	25	4B	75	K	25	6B 107 k
	0C	12	FF ^L	33	2C	44	,	26	4C	76	L	26	6C 108 I
1C	0D	13	CR ^M	35	2D	45	-	32	4D	77	M	32	6D 109 m
	0E	14	SO ^N	34	2E	46		31	4E	78	Ν	31	6E 110 n
	0F	15	SI ^O	08	2F	47	/	18	4F	79	O	18	6F 111 o
	10	16	DLE ^P	0B	30	48	0	19	50	80	Р	19	70 112 p
	11	17	DC1 ^Q	02	31	49	1	10	51	81	Q	10	71 113 q
	12	18	DC2 ^R	03	32	50	2	13	52	82	R	13	72 114 r
	13		DC3 ^S	04	33	51	3	1F	53	83	S	1F	73 115 s
	14	20	DC4 ^T	05	34	52	4	14	54	84	Τ	14	74 116 t
	15	21	NAK ^U	06	35	53	5	16	55	85	U	16	75 117 u
	16	22	SYN ^V	07	36	54	6	2F	56	86	V	2F	76 118 v
	17	23	ETB ^W	08	37	55	7	11	57	87	W	11	77 119 w
	18	24	CAN ^X	09	38	56	8	2D	58	88	Χ	2D	78 120 x
	19	25	EM ^Y	0A	39	57	9	2C	59	89	Υ	2C	79 121 y
	1A	26	SUB ^Z	34	3A	58	:	15	5A	90	Z	15	7A 122 z
01	1 B	27	Esc ^[33	3B	59	,		5B	91	[7B 123 {
	1C	28	FS ^\	2B	3C	60	<		5C	92	\		7C 124
	1D	29	GS ^]	0B	3D	61	=		5D	93]		7D 125 }
	1E	30	RS ^^	2B	3E	62	>	29	5E	94	٨		7E 126 ~
	1F	31	US ^_	0C	3F	63	?	35	5F	95	_	53	7F 127 DEL

Latin-1(\ddot{a}) = **E4**

Latin-1(\mathbf{B}) = **DF**

Latin-1(**ö**) = **F6**

HDLC

10100010 01001110 10110110 00100111 E r m ä 11111011 10010110 11100110 10101110

ß i g u

01110110 11100110 11111100 00000100

n g ?

01110010 01101111 10000100

N ö!

10100010	01001110	10110110	00100111
11011101	11001011	01110011	01010111
00111011	01110011	01111101	00000001
00011100	10011011	111 <mark>0</mark> 0000	100