Prise de moles du 6/04/2021

Cours: preuve du théoreme 2

Théorèn	ne 2									
te fonctio	n continue s	sur un inte	rvalle I ad	met des	primitive	es.				
Démonst	tration RO	C								
			Démonstration ROC		Démonstration <i>ROC</i>	Démonstration <i>ROC</i>	 Démonstration ROC	Démonstration <i>ROC</i>	Démonstration <i>ROC</i>	Démonstration <i>ROC</i>

Coverdion du n°64 p. 342.

64 Soit f la fonction définie sur I =]-1; $+\infty[$ par :

$$f(x) = \frac{2x^2 + x}{x + 1}.$$

- 1. Démontrer que, pour tout réel x de l: $f(x) = 2x 1 + \frac{1}{x+1}$.
- **2.** Calculer $\int_0^1 f(x) dx$.

https://capytale2.ac-paris.fr		Olent	-
code: d798-11639	=>	acces par l'ENT dans l'orglet Ressources Nume	10000
		Kessources ruma	rago

Caracitet du cours	: culcul d'intègrale
0	J
Courige en ligne:	
3	

https://frederic-junier.org/TS2021/Cours/Corrige-Cours-CalculIntegralPartie2-2021-Web.pdf mot de passe: parterminale

Cours: propriétes de l'intègrale

napriètes 1,2,3 du cours

Ei-dessous un extrait du manuel Indice

COURS

3. Propriétés et intégration par parties

Propriétés de l'intégrale

A noter Illustration de la relation de Chasles dans le cas où f est positive et c élément de [a;b].

Démonstration des propriétés 3 et Voir page 338 PROPRIÉTÉS Soit f et g deux fonctions continues sur un intervalle I.

a,b et c sont trois réels de I et k est une constante réelle.

(1)
$$\int_{a}^{a} f(x) dx = 0$$
. (2) $\int_{a}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

(3) Linéarité:

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \text{ et } \int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

(4) Relation de Chasles: $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx.$

(5) Positivité : Si pour tout x de [a;b], $f(x) \ge 0$ alors $\int_a^b f(x) dx \ge 0$.

(6) Comparaison: Si pour tout x de [a;b], $f(x) \ge g(x)$ alors $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Exercice sur la relation de Charles

nº 36 n. 341 du manuel

36 Soit f une fonction continue sur \mathbb{R} .

On donne $\int_{-5}^{1} f(x) dx = 8$ et $\int_{1}^{3} f(x) dx = 2$.

Calculer $\int_{-5}^{3} f(x) dx$.

Enercice sur la propriété de linéarité

mo37 n.341

37 Soit f et g deux fonctions continues sur $\mathbb R$ et telles que $\int_{-1}^{3} f(x) dx = 2$ et $\int_{-1}^{3} g(x) dx = -5$.

Calculer: **a.** $\int_{-1}^{3} 7f(x) dx$ **b.** $\int_{-1}^{3} (f(x) + g(x)) dx$

b.
$$\int_{-1}^{3} (f(x) + g(x)) dx$$

c.
$$\int_{-1}^{3} (2f(x) - 3g(x)) dx$$

Everuire our la propriété de linéarité.

mofu h. 343

70 Soit
$$I = \int_0^1 \frac{e^x}{e^x + 1} dx$$
 et $J = \int_0^1 \frac{1}{e^x + 1} dx$.

- 1. Calculer I et I + J.
- 2. En déduire la valeur de J.

	Exerce sur la relation de Ghasles:
mo 7	M.343
	En utilisant la relation de Chasles, calculer : $\int_{-3}^{5} x dx$.
	√ −3' '

Capacité 8 Application des propriétés de l'intégrale

Soient f et g deux fonctions continues sur [1;5], on donne :

$$I = \int_{1}^{2} f(x) dx = -3$$
 $J = \int_{5}^{2} f(x) dx = 2$ $K = \int_{1}^{5} g(x) dx = 12$

Calculer
$$L = \int_{1}^{5} f(x) dx$$
, $M = \int_{1}^{5} (f(x) + g(x)) dx$ puis $N = \int_{1}^{5} (2f(x) - 3g(x)) dx$

Enercice de synthèse

Fishe d'exercices

https://frederic-junier.org/TS2020/Cours/TS-Exos-Integration2020-Fiche1-Web.pdf

Exercice 1

Cloches de Pâques

On considère la fonction f définie sur l'intervalle [1;2] par $f(x)=\frac{4}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^2}{2}}+\frac{1-\ln x}{(x-\ln x)^2}$. f est dérivable et donc continue sur [1;2] comme somme de fonctions dérivables sur [1;2]. On munit le plan d'un repère orthonormal $\left(0,\overrightarrow{t},\overrightarrow{j}\right)$.

- 1. La fonction $g: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ est dérivable donc continue sur \mathbb{R} et on donne ci-dessous des valeurs approchées à 0,001 près :
 - de l'aire du domaine \mathcal{D}_1 délimité par les droites d'équations x=-1, x=1, y=0 et par la courbe d'équation $y=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$;
 - de l'aire du domaine \mathcal{D}_2 délimité par les droites d'équations x = -1, x = 2, y = 0 et par la courbe d'équation $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$.

En déduire une valeur approchée à 0,002 près (les erreurs s'ajoutent) de l'intégrale :

$$\int_{1}^{2} g(x) dx = \int_{1}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

- **2.** On considère la fonction H définie et dérivable sur [1; 2] par $H(x) = \frac{\ln x}{x \ln x}$.
 - **a.** Démontrer que H est une primitive de la fonction $h: x \mapsto \frac{1 \ln x}{(x \ln x)^2}$ sur l'intervalle [1; 2].
 - **b.** En déduire la valeur exacte de l'intégrale $\int_1^2 h(x) dx = \int_1^2 \frac{1 \ln x}{(x \ln x)^2} dx$.
- 3. Déterminer une valeur approchée à 0,002 près de l'intégrale $\int_1^2 f(x) dx$.