Exercises 2

1. Let decision problem HAM-CYCLE be defined as

 $HAM-CYCLE = \{\langle G \rangle \mid Graph \ G \text{ has a Hamiltonian cycle} \},$

where a *Hamiltonian cycle* in an undirected graph is a simple cycle that contains each vertex of the graph. Show that if HAM-CYCLE is in \mathcal{P} , then the problem of listing the vertices of a Hamiltonian cycle of a graph in order is polynomial-time solvable.

- 2. Let ϕ be a boolean formula constructed from the boolean input variables x_1, x_2, \ldots, x_k , negations (\neg), ANDs (\land), ORs (\lor), and parentheses. The formula ϕ is a tautology if it evaluates to 1 for every assignment of 0s and 1s to the input variables. Define TAUTOLOGY as the language of boolean formulas that are tautologies. Show that TAUTOLOGY is in co- \mathcal{NP} .
- 3. Prove that $\mathcal{P} \subseteq \text{co-}\mathcal{NP}$.
- 4. Prove that if $\mathcal{NP} \neq \text{co-}\mathcal{NP}$, then $\mathcal{P} \neq \mathcal{NP}$.
- 5. Show that the relation \leq_{P} is a transitive relation on languages. That is, show that, if $L_1 \leq_{\mathrm{P}} L_2$ and $L_2 \leq_{\mathrm{P}} L_3$, then $L_1 \leq_{\mathrm{P}} L_3$.
- 6. Prove that $L \leq_{\mathbf{P}} L^c$ if and only if $L^c \leq_{\mathbf{P}} L$.

Solutions to these exercises are to be handed in at the lecture on 29 January 2019.