CS101-Quiz4-Review

CS101-Quiz4-Review

Key Points

- 1. Quick Sort
- 2. Master Theorem

Key Points

- 1. Divide-and-Conquer
- 2. Good average case
- 3. In-place
- 4. NOT stable

```
1 QuickSort(A, p, r)
2 	 if p < r
     q = Partition(A, p, r)
     QuickSort(A, p, q - 1)
     QuickSort(A, q + 1, r)
7 Partition(A, p, r)
   x = A[r]
   i = p - 1
  for j = p to r - 1
    if A[j] \leq x
  i = i + 1
       swap(A[i], A[j])
   swap(A[i + 1], A[j])
   return i + 1
```

Time complexity Analysis

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

Time complexity Analysis — Best case

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

In the best case, we (magically) choose the median as the pivot in $\Theta(1)$ time.

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

We can easily see that:

$$T(n) = \Theta(n \log n)$$

Time complexity Analysis — Worst case

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

In the worst case, we keep partitioning n elements into n-1 and 0.

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n)$$

We can easily see that:

$$T(n) = \Theta(n^2)$$

Time complexity Analysis — Average case

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

$$T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + cn$$

Time complexity Analysis — Average case

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

Assume we have a "bad" partition strategy, generating 9-to-1 split.

$$T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + cn$$

$$T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + cn$$

Time complexity Analysis — Average case

Time complexity Analysis — Average case

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

Assume we have a "bad" partition strategy, generating 9-to-1 split.

$$T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + cn$$

We still have a rather good overall time complexity:

$$\Theta(n \log n)$$

Time complexity Analysis — Average case

Best Case	Average Case	Worst Case
$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$

- 1. Partitioning produces a mix of "good" and "bad" splits. (randomly distributed)
- 2. We assume "good" splits are optimal, and "bad" are worst-case scenarios.

3. Most of cases (actually about $80\,\%$), a partition is more balanced than 9-to-1.

Space complexity Analysis

Best Case	Average Case	Worst Case
$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(n)$

Remember function call stack!

Possible optimization

Based on choosing a better pivot

- 1. Random sampling for pivot
- 2. Median-of-three

Random sampling for pivot

- 1. For arrays generated with iid random variables, it makes NO difference.
- 2. However, it is unacceptable to sort a nearly-sorted array in $\Theta(n^2)$ time.
- 3. Make the algorithm less vulnerable to attack. (Link)

Median-of-three

Gives a better possibility of choosing a pivot "closer" to the median.

Median-of-three

- We name a pivot "good" if the pivot is located in the 25th ~ 75th percentile of the array.
- What is the possibility for us to get a "good" pivot with median-of-three?

CS101-Quiz4-Review

Key Points

- 1. Quick Sort
- 2. Master Theorem

Definition

Given constants $a \ge 1$, b > 1, function f(n), asymptotically positive function T(n):

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- 1. If for a constant $\epsilon > 0$, $f(n) = O\left(n^{\log_b a \epsilon}\right)$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If for a constant e > 0, $f(n) = \Omega\left(n^{\log_b a + e}\right)$; for a constant e < 1 and sufficiently large e, $af\left(\frac{n}{b}\right) \le cf(n)$, then $T(n) = \Theta\left(f(n)\right)$.

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$		

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$O(n \log n)$	Merge Sort

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$O(n \log n)$	Merge Sort
$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$		

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$O(n \log n)$	Merge Sort
$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$	$\Theta\left(n^{\log_2 7}\right)$	Strassen

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$O(n \log n)$	Merge Sort
$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$	$\Theta\left(n^{\log_2 7}\right)$	Strassen
$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$		

$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$O(n \log n)$	Merge Sort
$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$	$\Theta\left(n^{\log_2 7}\right)$	Strassen
$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	_	Not applicable

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$	

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1	
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$	$\forall \epsilon > 0, \frac{f(n)}{n^{\log_b a}} = \frac{\frac{n}{\log n}}{n^{\log_2 2}} = \frac{1}{\log n} < n^{\epsilon}$	

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$	Non-polynomial difference
$T(n) = 2T\left(\frac{n}{2}\right) + n\cos n$	

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$	Non-polynomial difference
$T(n) = 2T\left(\frac{n}{2}\right) + n\cos n$	No regularity, not positive

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$	Non-polynomial difference
$T(n) = 2T\left(\frac{n}{2}\right) + n\cos n$	No regularity, not positive
$T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$	

$T(n) = 0.5T\left(\frac{n}{2}\right) + O(1)$	0.5 < 1
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$	Non-polynomial difference
$T(n) = 2T\left(\frac{n}{2}\right) + n\cos n$	No regularity, not positive
$T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$	Not constant

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^d)$$

$$T(n) = \begin{cases} \Theta(n^d) & d > \log_b a \\ \Theta(n^d \log n) & d = \log_b a \\ \Theta(n^{\log_b a}) & d < \log_b a \end{cases}$$

I think we should remember it.

