Machine Learning: Unsupervised Learning - KMeans

Import Python Libraries and Modules

```
# Import Python Libraries: NumPy and Pandas
import pandas as pd
import numpy as np

# Import Libraries & modules for data visualization
from pandas.plotting import scatter_matrix
from matplotlib import pyplot

# Import scikit-Learn module for the algorithm/modeL: K-Means
from sklearn.cluster import KMeans
```

Load data-set (iris.csv)

```
# Specify location of the dataset
filename = 'iris.csv'

# Load the data into a Pandas DataFrame
df = pd.read_csv(filename)
```

Pre-process Dataset (Clean Data)

```
Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
```

```
Species 0
dtype: int64
```

Perform the exploratory data analysis (EDA) on the dataset

```
# to get the dimension of the dataset, no. of rows x no. of columns
print(df.shape)
```

```
(150, 6)
```

```
# to get data types of all variables
print(df.dtypes)
```

```
Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object
```

dtype: object

```
#display first 5 rows
print(df.head(5))
```

```
Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                Species
                                                        0.2 Iris-setosa
0
   1
               5.1
                             3.5
                                           1.4
1
  2
               4.9
                             3.0
                                           1.4
                                                        0.2 Iris-setosa
                             3.2
2
  3
               4.7
                                           1.3
                                                        0.2 Iris-setosa
                                                        0.2 Iris-setosa
                             3.1
3
  4
               4.6
                                           1.5
   5
               5.0
                             3.6
                                           1.4
                                                        0.2 Iris-setosa
```

```
#display summary statistics
print(df.describe())
```

count 150.000000 150.000000 150.000000 150.000000 150.000000 150.000000 150.000000 150.00000 150.00000 150.00000 150.00000 150.00000 150.00000 150.00000 150.00000 150.00000 150.00000 1.1986 1.1986 1.764420 0.7631 1.764420 0.7631 1.000000 1.000000 1.000000 0.1000 1.000000 0.1000 1.000000 0.3000 1.600000 0.3000 1.3000						
mean 75.500000 5.843333 3.054000 3.758667 1.1986 std 43.445368 0.828066 0.433594 1.764420 0.7631 min 1.000000 4.300000 2.000000 1.000000 0.1000 25% 38.250000 5.100000 2.800000 1.600000 0.3000 50% 75.500000 5.800000 3.000000 4.350000 1.3000		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
std 43.445368 0.828066 0.433594 1.764420 0.7631 min 1.000000 4.300000 2.000000 1.000000 0.1000 25% 38.250000 5.100000 2.800000 1.600000 0.3000 50% 75.500000 5.800000 3.000000 4.350000 1.3000	count	150.000000	150.000000	150.000000	150.000000	150.000000
min 1.000000 4.300000 2.000000 1.000000 0.1000 25% 38.250000 5.100000 2.800000 1.600000 0.3000 50% 75.500000 5.800000 3.000000 4.350000 1.3000	mean	75.500000	5.843333	3.054000	3.758667	1.198667
25% 38.250000 5.100000 2.800000 1.600000 0.3000 50% 75.500000 5.800000 3.000000 4.350000 1.3000	std	43.445368	0.828066	0.433594	1.764420	0.763161
50% 75.500000 5.800000 3.000000 4.350000 1.3000	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
75% 112.750000 6.400000 3.300000 5.100000 1.8000	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000
max 150.000000 7.900000 4.400000 6.900000 2.5000	max	150.000000	7.900000	4.400000	6.900000	2.500000

```
#class distribution - how many records in each class
print(df.groupby('Species').size())
```

```
Species
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64
```

Histogram

```
#plot histogram of each numeric variable / attribute in the data set
df.hist(figsize=(12, 8))
pyplot.show()
```


Density Plots

```
# generate density plots of each numeric variable / attribute in the data set
df.plot(kind='density', subplots=True, layout=(3, 3), sharex=False, legend=True,
fontsize=1, figsize=(12, 16))
pyplot.show()
```


Box Plots

```
# generate box plots of each numeric variable / attribute in the data set
df.plot(kind='box', subplots=True, layout=(3,3), sharex=False, figsize=(12,8))
pyplot.show()
```


Scatter Plots

```
# generate scatter plot matrix of each numeric variable / attribute in the data
set
scatter_matrix(df, alpha=0.8, figsize=(15, 15))
pyplot.show()
```


Separate Dataset into Input & Output NumPy arrays

```
# store dataframe values into a numpy array
array = df.values

# separate array into input and output by slicing
# for X(input) [:, 1:5] --> all the rows, columns from 1 - 4 (5 - 1)
# these are the independent variables or predictors
# we will only use this going forward
X = array[:,1:5]

# for Y(input) [:, 5] --> all the rows, column 5
# this is the value we are trying to predict
# we wont use this going forward
Y = array[:,5]
```

Build and Train the Model

```
# Build the model
# set cluster (K) to 3 to start
model = KMeans(n_clusters=3)

# defaults
KMeans(algorithm='auto', copy_x=True, init= 'k-means++', max_iter=300,
n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',
random_state=None, tol=0.0001, verbose=0)

# Use the model to cluster the inputdata
model.fit (X)

centroids = model.cluster_centers_
print(centroids)
```

```
[[5.9016129 2.7483871 4.39354839 1.43387097]
[5.006 3.418 1.464 0.244 ]
[6.85 3.07368421 5.74210526 2.07105263]]
```

```
cluster_labels = model.labels_[::10]
print (cluster_labels)
# this will print 10 records
```

```
[1 1 1 1 1 0 0 0 0 0 2 2 2 2 2]
```

```
cluster_labels = model.labels_
print (cluster_labels)
# this will print all records - shows clustering of values in an unlabeled set
```

```
pyplot.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap= 'rainbow' )
pyplot.show ( )
```



```
# plot the data points with centroids
# plot using first and second variables of the vector
pyplot.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap= 'rainbow')

lines = pyplot.plot(centroids[0,0],centroids[0,1], 'kx', color= 'black')
pyplot.setp (lines, ms=15.0)
pyplot.setp(lines, mew=2.0)

lines = pyplot.plot(centroids[1,0],centroids[1,1], 'kx', color= 'black')
pyplot.setp (lines, ms=15.0)
pyplot.setp(lines, mew=2.0)

lines = pyplot.plot(centroids[2,0],centroids[2,1], 'kx', color= 'black')
pyplot.setp (lines, ms=15.0)
pyplot.setp(lines, mew=2.0)

pyplot.show ()
```


Classify/Predict Model

