Содержание

1 Постановка задачи				
2	Интерфейс устройства		2	
3	Опи	исание алгоритмов	2	
	3.1	Деление двух целых чисел в дополнительном коде	2	
		3.1.1. Спожение двух чисел в экспоненциальном формате	4	

Расчетно-пояснительная записка

1 Постановка задачи

Разработать вычислительное устройство, состоящее из двух взаимосвязанных частей — операционного и управляющего автоматов, и выполняющее следующие операции:

- 1. Деление двух целых чисел в дополнительном коде;
- 2. Сложение двух чисел, представленных в экспоненциальном формате.

Операнды представлены в виде 32 двоичных разрядов. Управляющий автомат реализовать по схеме с регулярной адресацией в последовательном варианте.

2 Интерфейс устройства

3 Описание алгоритмов

3.1 Деление двух целых чисел в дополнительном коде

Для деления двух целых чисел представленных в двоичном дополнительном коде реализуем алгоритм деления без восстановления остатка. Данный алгоритм является оптимальным по суммарному времени, так как обработка очередного разряда результа осуществляется за одинтакт.

Введем обозначения операндов, используемых в данной операции (таблица 3.1):

Обозначение	Назначение
A	Делимое в доп. коде
В	Делитель в доп. коде

Таблица 1: Операнды

Опишем алгоритм деления следующим образом:

- 1. Анализируем знак делимого если делимое отрицательное, то все биты регистра частичного остатка устанавливаем в «1», если делимое положительное, то все биты регистра частичного остатка устанавливаем в «0»;
- 2. Сдвигаем остаток влево; на место младшего разряда помещаем старший разряд делимого;
- 3. Анализируем знаки остатка и делителя в случае, если их знаки одинаковые, то выполняем вычитание делителя из остатка (прибавляем противоположное число), полученного на данном этапе. Иначе же прибавляем значение делителя к значению остатка
- 4. Анализируем значение остатка после выполнения арифметических действий заносим в частное инвертированный знак остатка, вычисленного на данном этапе, вместе с этим сдвигая его влево.
- 5. Повторяем пункты 1-4 до тех пор, пока не будут сдвинуты все разряды делимого.

Стоит отметить, что для формирования правильного выходного результата после выполнения вышеперечисленных пунктов необходимо выполнить коррекцию значений частного и остатка в зависимости от знаков операндов. Для каждой комбинации знаков делимого и делителя реализована отдельная операция коррекции. См таблицу 2.

Комбинация	Коррекция
$A \geqslant 0, B > 0$	Коррекция не требуется
$A \geqslant 0, B < 0$	Перевести частное в доп. код
	Результат верен, если остаток = 0. Иначе при-
$A \leqslant 0, B > 0$	бавить к отрицательному частному единицу, пе-
	ревести остаток в доп. код
$A \leqslant 0, B \leqslant 0$	Изменить знак делимого, перевести остаток в
$A \leqslant 0, D \leqslant 0$	доп. код

Таблица 2: Коррекция результата

Приведем пример вычисления частного от деления чисел $(-13_{10}=10011_2)\div 3_{10}=00011_2$. См. таблицу 3.

Частное	Остаток	Делимое	Операция
Тастнос	11111	10011	
	11111	0011x	Сдвиг остатка
	00011		Сложение с делителем
1	00010		Результат сложения — положительный остаток
	00100	011xx	Сдвиг остатка
	11101		Вычитание делителя
1	00001		Результат вычитания — положительный остаток
	00010	11xxx	Сдвиг остатка
	11101		Вычитание делителя
0	11111		Результат вычитания — отрицательный остаток
	11111	1xxxx	Сдвиг остатка
	00011		Сложение с делителем
1	00010		Результат вычитания — положительный остаток
	00101	XXXXX	Сдвиг остатка
	11101		Вычитание делителя
1	00010		Результат вычитания — положительный остаток
	11111		Восстановленный отрицательный остаток

Таблица 3: Пример деления целых чисел в доп. коде

В результате вычислений получим частное $(-5_{10})=11011_2$ и остаток $2_{10}=00010_2$.

Опишем алгоритм работы автомата с помощью блок схемы. Используем сумматор для нахождения текущего значение частичного остатка (ЧО), счетчик для подсчета обработанных разрядов и регистры для хранения и использования разрядов делителя и делимого. Обозначим микрокоманды от m_0 до m_4 . См. рис. ??.

3.1.1 Сложение двух чисел в экспоненциальном формате

,щ,

,щ,,щ,