

Single N-Channel Enhancement Mode MOSFET

Feature

- 40V/190A $R_{DS(ON)} = 1.4m\Omega(typ.) @VGS = 10V$
- 100% Avalanche Tested
- Reliable and Rugged
- Halogen- Free Devices Available

Pin Description

PDFN8L(5x6)

Applications

- Load Switch
- Lithium battery protect board

in a lafe was tion

Ordering and Marking Information

Package Code C2: PDFN8L(5x6)

Date Code XYMXXXXXX

Note: HUAYI lead-free products contain molding compounds/die attach materials and 100% matte tin plate Termi-Nation finish; which are fully compliant with RoHS. HUAYI lead-free products meet or exceed the lead-Free requirements of IPC/JEDEC J-STD-020 for MSL classification at lead-free peak reflow temperature. HUAYI defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

HUAYI reserves the right to make changes, corrections, enhancements, modifications, and improvements to this pr-oduct and/or to this document at any time without notice.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit			
Common Ratings (Tc=25℃ Unless Otherwise Noted)						
VDSS	Drain-Source Voltage		40	V		
Vgss	Gate-Source Voltage		±20	V		
TJ	Junction Temperature Range		-55 to 175	$^{\circ}$		
Тѕтс	Storage Temperature Range		-55 to 175	$^{\circ}$		
ls	Source Current-Continuous(Body Diode) Tc=25°C		190	Α		
Mounted on I	Mounted on Large Heat Sink					
І рм	Pulsed Drain Current *	Tc=25℃	720	А		
1	Continuos Paris Consul	Tc=25℃	190	Α		
lσ	Continuous Drain Current	Tc=100°C	135	А		
-	Marina Barra Biarinatian	Tc=25℃	130	W		
Po	Maximum Power Dissipation Tc=100℃		65	W		
R _θ Jc	Thermal Resistance, Junction-to-Case		1.15	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient **		45	°C/W		
Eas	SinglePulsed-Avalanche Energy *** L=0.1mH		393	mJ		

Note: * Repetitive rating; pulse width limited by max.junction temperature.
** Surface mounted on FR-4 board.

Electrical Characteristics(Tc =25°C Unless Otherwise Noted)

Cumbal	Donomotor	Toot Conditions	HYG025N04NA1			Unit	
Symbol	Parameter	Test Conditions	Min	Тур.	Max		
Static Cha	Static Characteristics						
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V,I _{DS} =250μA	40	-	_	V	
Ipss	Drain-to-Source Leakage Current	V _{DS} =40V,V _{GS} =0V	-	-	1	μA	
IDSS	Brain-to-Source Leakage Current	TJ=125℃	-	-	50	μA	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{DS}=250\mu A$	2	3	4	V	
Igss	Gate-Source Leakage Current	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
RDS(ON)	Drain-Source On-State Resistance	V _{GS} =10V,I _{DS} =60A	-	1.4	1.8	mΩ	
Diode Cha	Diode Characteristics						
V _{SD} *	Diode Forward Voltage	Isb=60A,Vgs=0V	-	0.8	1.2	V	
trr	Reverse Recovery Time	120 A dl/dt-100 A/vo	-	25.1	-	ns	
Qrr	Reverse Recovery Charge	- Isb=20A,dIsb/dt=100A/μs	-	17.6	-	nC	

Limited by TJmax , starting TJ=25 $^{\circ}$ C, L = 0.1mH, Rg =25 Ω ., Vgs =10V.

HYG025N04NA1C2

Electrical Characteristics (Cont.) (Tc =25 °C Unless Otherwise Noted)

Symbol	Downwater	Took Conditions	HYG025N04N Min Typ.	NA1	Max Unit	
	Parameter	Test Conditions		Max		
Dynamic	Characteristics					
Rg	Gate Resistance	V _{GS} =0V,V _{DS} =0V,F=1MHz	-	4.5	-	Ω
Ciss	Input Capacitance	V _{GS} =0V,	-	5744	-	
Coss	Output Capacitance	V _{DS} =25V,	-	787	-	pF
Crss	Reverse Transfer Capacitance	Frequency=1.0MHz	-	615	-	
td(ON)	Turn-on Delay Time		-	16.7	-	
Tr	Turn-on Rise Time	V_{DD} =20 V , R_{G} =4 Ω ,	-	137.9	-	
td(OFF)	Turn-off Delay Time	IDS=60A,VGS=10V	-	112.0	-	ns
Tf	Turn-off Fall Time		-	118.8	-	
Gate Charge Characteristics						
Qg	Total Gate Charge (V _{GS} =10V)	\/ -22\/ \/ -10\/	-	122.2	-	
Qgs	Gate-Source Charge	── V _{DS} =32V, V _{GS} =10V, ── I _{DS} =60A	-	23.5	-	nC
Qgd	Gate-Drain Charge	IDS-OUA	-	42.0	-	

Note: *Pulse test, pulse width ≤ 300 us, duty cycle $\leq 2\%$

Typical Operating Characteristics

Figure 1: Power Dissipation

Figure 3: Safe Operation Area

Vps-Drain-Source Voltage(V)

Figure 5: Output Characteristics

Figure 2: Drain Current

Figure 4: Thermal Transient Impedance

Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 6: Drain-Source On Resistance

Typical Operating Characteristics(Cont.)

Figure 7: On-Resistance vs. Temperature

Figure 9: Capacitance Characteristics

Figure 8: Source-Drain Diode Forward

Figure 10: Gate Charge Characteristics

Avalanche Test Circuit

Switching Time Test Circuit

Gate Charge Test Circuit

Device Per Unit

Package Type	Unit	Quantity
PDFN8L(5x6)	Reel	5000

Package Information

PDFN8L(5x6)

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat & Soak Temperature min (T _{smin}) Temperature max (T _{smax}) Time (Tsmin to Tsmax) (t _s)	100 °C 150 °C 60-120 seconds	150 ℃ 200 ℃ 60-120 seconds
Average ramp-up rate (T _{smax} to T _P)	3 °C/second max.	3℃/second max.
Liquidous temperature (T _L) Time at liquidous (t _L)	183 ℃ 60-150 seconds	217 °C 60-150 seconds
Peak package body Temperature (Tp)*	See Classification Temp in table 1	SeeClassification Tempin table 2
Time $(t_P)^{**}$ within 5°C of the specified classification temperature (T_c)	20** seconds	30** seconds
Average ramp-down rate (Tpto Tsmax)	6 °C/second max.	6 °C/second max.
Time 25℃ to peak temperature	6 minutes max.	8 minutes max.

^{*}Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

HYG025N04NA1C2

Table 1.SnPb Eutectic Process – Classification Temperatures (Tc)

Package	Volume mm³	Volume mm³
Thickness	<350	≥350
<2.5 mm	235 ℃	220 ℃
≥2.5 mm	220 ℃	220 ℃

Table 2.Pb-free Process – Classification Temperatures (Tc)

Package	Volume mm³	Volume mm³	Volume mm³
Thickness	<350	350-2000	≥2000
<1.6 mm	260 ℃	260 ℃	260 ℃
1.6 mm – 2.5 mm	260 ℃	250 ℃	245 ℃
≥2.5 mm	250 ℃	245 ℃	245 ℃

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HTRB	JESD-22, A108	168/500/1000 Hrs, Bias @ 150°C
HTGB	JESD-22, A108	168 /500/1000Hrs, V _{gs} 100% @ 150°C
PCT	JESD-22, A102	96 Hrs, 100%RH, 2atm, 121°C
TCT	JESD-22, A104	500 Cycles, -55°C~150°C

Customer Service

Worldwide Sales and Service: sales@hymexa.com Technical Support:Technology@hymexa.com

Huayi Microelectronics Co., Ltd.

No.8928, Shangji Road, Economic and Technological Development Zone, Xi'an, China

TEL: (86-029) 86685706 FAX: (86-029) 86685705 E-mail: sales@hymexa.com Web net: www.hymexa.com