Assignment 3

Foundations of Audio Signal Processing

Caspar Wiswesser, Vitezslav Kula, Prasun Dutta, Arash Astanboos

Exercise 3.1

 \mathbf{a}

$$cos(\alpha) = \frac{1}{2}(2\cos\alpha) = \frac{1}{2}(2\cos\alpha + i\sin\alpha - i\sin\alpha)$$
$$= \frac{1}{2}(\cos\alpha + i\sin\alpha + \cos(-\alpha) + i\sin(-\alpha))$$
$$= \frac{1}{2}(e^{i\alpha} + e^{-i\alpha})$$

b)

$$\sin(\alpha + \beta) = \frac{i\sin(\alpha + \beta)}{i} = \frac{i\sin(\alpha + \beta) + \cos(\alpha + \beta) - \cos(\alpha + \beta)}{i}$$

$$= \frac{e^{\alpha + \beta} - \cos(\alpha + \beta)}{i} = \frac{e^{\alpha}e^{\beta} - \cos(\alpha + \beta)}{i}$$

$$= \frac{1}{i}((\cos \alpha + i\sin \alpha)(\cos \beta + i\sin \beta) - \cos(\alpha + \beta))$$

$$= \frac{1}{i}(\cos \alpha \cos \beta + \cos \alpha i\sin \beta + i\sin \alpha \cos \beta + i^{2}\sin \alpha \sin \beta - \cos(\alpha + \beta))$$

$$= \cos \alpha \sin \beta + \cos \beta \sin \alpha + \frac{1}{i}(\cos \alpha \cos \beta - \sin \alpha \sin \beta - \cos(\alpha + \beta))$$

$$= \cos \alpha \sin \beta + \cos \beta \sin \alpha + \frac{1}{i}(\cos(\alpha + \beta) - \cos(\alpha + \beta))$$

$$= \cos \alpha \sin \beta + \cos \beta \sin \alpha$$

c)

$$\sin(\alpha)^2 + \cos(\alpha)^2 = \sin(\alpha)^2 + i\sin(\alpha)\cos(\alpha) - i\sin(\alpha)\cos(\alpha) + \cos(\alpha)^2$$
$$= (\cos\alpha + i\sin\alpha)(\cos\alpha - i\sin\alpha)$$
$$= e^{i\alpha}e^{-i\alpha} = e^{i\alpha-i\alpha} = e^0 = 1$$

Ex 3.2
a) 2"=1
12-6 C (())
$\Rightarrow 2^{n} = 1 = e^{i2\pi k} = \left[\cos(2\pi k) + i\sin(2\pi k)\right]$
1/N 5 (1) (1) 1/N
$\ni z = 1/n = \left[\cos(2\pi k) + i\sin(2\pi k)\right]^n$
127K \ (27K \)
7 2 = cos (27k) + i'sin (27th) [: Using De Moivre's Thm]
(i) When N=5
th , to 1 Yu for act ill la cieva for k=01224 de s
nth toots of unity for n=5, will be given for K=0,1,2,3,4 as shown
below:
• For K=0:
2 = cos 0 + 1 sin0
$\Rightarrow z_0 = 1 + 0i$

• For
$$K=1$$
:

 $2_1 = \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)$

• For $K=2$:

 $2_1 = \cos\left(\frac{4\pi}{5}\right) + i\sin\left(\frac{4\pi}{5}\right)$

• For $K=3$:

 $2_3 = \cos\left(\frac{6\pi}{5}\right) + i\sin\left(\frac{6\pi}{5}\right)$

• For $K=3$:

 $2_3 = \cos\left(\frac{6\pi}{5}\right) + i\sin\left(\frac{6\pi}{5}\right)$

• For $K=3$:

 $2_3 = \cos\left(\frac{6\pi}{5}\right) + i\sin\left(\frac{6\pi}{5}\right)$

• To maintain Prince pal Argament

• For $K=4$:

 $2_1 = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$

• For $K=4$:

 $2_1 = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$

• For $K=4$:

 $2_1 = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$

• For $K=4$:

 $2_1 = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$

• $2_2 = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$

• $2_3 = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$

• $2_4 = \cos\left(\frac{8\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)$

• $2_5 = \cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)$
• $2_5 = \cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)$
• $2_5 = \cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)$

2 When n=7									
nth toots of anity for n=7	will be a	iven	for	K=0,	1,2,3	,4,5	,6 a	5	
shown bdow:		3	J	,	, ,				
• For K=0°.									
20= cos0+(sin0									
= 20= 1+0i									
• For K=1:									
$z = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$									
= 2≈ 0.623 + 0.782 i									
• For k= 2:									
$\frac{2}{7}$ = cos $\left(\frac{4\pi}{7}\right)$ + isin $\left(\frac{4\pi}{7}\right)$									
7 72 ≈ -0.222+0.975i									
• For K=3:									
$z_3 = \cos\left(\frac{6\pi}{7}\right) + i\sin\left(\frac{6\pi}{7}\right)$									
3 2, ≈ -0.901 + 0.434i									

For
$$k=4$$
:

 2_{4} : $cos\left(\frac{8\pi}{7}\right) + isin\left(\frac{8\pi}{7}\right)$
 $\Rightarrow 2_{4}$: $cos\left(\frac{8\pi}{7}\right) + isin\left(\frac{8\pi}{7} - 2\pi\right)$ [To maintain Principal Algument]

 $\Rightarrow 2_{4} \approx cos\left(\frac{6\pi}{7}\right) - isin\left(\frac{6\pi}{7}\right)$
 $\Rightarrow 2_{4} \approx -0.901 - 0.434i$

For $k=5$:

 $2_{7} \approx cos\left(\frac{10\pi}{7}\right) + isin\left(\frac{10\pi}{7}\right)$
 $\Rightarrow 2_{5} \approx cos\left(\frac{10\pi}{7}\right) + isin\left(\frac{10\pi}{7}\right)$
 $\Rightarrow 2_{5} \approx cos\left(\frac{10\pi}{7} - 2\pi\right) + isin\left(\frac{10\pi}{7} - 2\pi\right)$ [: To maintain Principal Algument]

 $\Rightarrow 2_{5} \approx cos\left(\frac{4\pi}{7}\right) - isin\left(\frac{4\pi}{7}\right)$
 $\Rightarrow 2_{5} \approx -0.222 - 0.575i$

For $k=6$:

 $2_{6} \approx cos\left(\frac{12\pi}{7}\right) + isin\left(\frac{12\pi}{7}\right)$
 $3_{7} \approx cos\left(\frac{12\pi}{7}\right) + isin\left(\frac{12\pi}{7}\right)$
 $3_{7} \approx cos\left(\frac{2\pi}{7}\right) - isin\left(\frac{2\pi}{7}\right)$
 $3_{7} \approx cos\left(\frac{2\pi}{7}\right) - isin\left(\frac{2\pi}{7}\right)$

b) 2 c) To Prove
$$\underset{k \to 0}{\overset{n-1}{\succeq}} q^k = 1 - q^n$$
 $\forall q \in C$, $q \neq 1$

Proof: Let $q^n = 1$
 $\Rightarrow q = (\cos C + i \sin C)^{1/n}$
 $\Rightarrow q = (\cos (2\pi k + C^{\circ}) + i \sin (2\pi k + C^{\circ}))^{\frac{1}{n}} - 0$

1: General Potan Form \exists

where our $k = 0, 1, 2, \dots, n-1$

Osing De Moivre's Theorem on 0 :

 $\Rightarrow q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos 2\pi k + i \sin 2\pi k$
 $\forall q = \cos$

