Section 1.7 – Direction Fields; Existence and Uniqueness

A first-order autonomous equation is an equation of the form

$$x' = f(x)$$

$$\frac{dy}{dx} = f(x, y)$$

Definition

The value f(x, y) where the function f assigns to the point represent the slope of a line (line segment) call a lineal element.

Example: Given
$$\frac{dy}{dx} = 0.2xy$$
 and consider the point (2, 3)

The slope of the lineal element is
$$\frac{dy}{dx} = 0.2xy = 0.2(2)(3) = 1.2$$
 (positive sign)

The Direction Fields

What we draw a lineal element at each point (x, y) with slope f(x, y) then the collection of these lineal elements is called a *direction field* or a *slope field* of the differential equation $\frac{dy}{dx} = f(x, y)$.

Example

Sketch the direction field for the following differential equation. Sketch the set of integral curves for this differential equation, how the solutions behave as $t \to \infty$ and if this behavior depends on the value of y(0) describe this dependency

$$y' = (y^2 - y - 2)(1 - y)^2$$

Solution

$$y' = 0 \implies (y^2 - y - 2)(1 - y)^2 = 0$$

 $y = \pm 1, 2$ Slope of the tangent lines

This divided into 4 regions.

For
$$y < -1$$
, assume $y = -2 \implies y' = (4^2 + 2 - 2)(1 + 2)^2 = 36 > 0$ (\nearrow)

y = -1, the slopes will flatten out while staying positive

For
$$-1 < y < 1$$
, assume $y = 0 \implies y' = (-2)(1)^2 = -2 < 0$

Therefore, tangent lines in this region will have negative slopes and apparently not very steep.

$$y = .9 \implies y' = -.0209$$

$$y = -.9 \implies y' = -1.0469$$
 (Steeper)

For 1 < y < 2, assume $y = 1.5 \implies y' = (1.5^2 - 1.5 - 2)(-.5)^2 = -0.3125 < 0 () Not to steep$

For y > 2, assume $y = 3 \implies y' = (4)(-2)^2 = 16 > 0$ (\nearrow)

Start out fairly flat neary = 2, then will get fairly steep.

The questions of existence and uniqueness

- > When can we be sure that a solution exists?
- > How many different solutions are there

Existence of Solutions

The fundamental questions in a course on differential equations are:

- > Does the given initial-value problem (*IVP*) have a solution? Do solutions to the problem exists?
- > If a solution does exist, is it unique? Is there exactly one solution to the problem or is there more than one solution?

Example

Consider the initial value problem: $tx' = x + 3t^2$ with x(0) = 1

Solution

$$x' = \frac{1}{t}x + 3t$$

$$x' = \frac{1}{t}x + 3t \qquad t \neq 0$$

There is *no solution* to the given initial value

$$u(t) = e^{-\int \frac{1}{t} dt}$$
$$= e^{-\ln t}$$
$$= \frac{1}{t}$$

$$\left[\frac{x}{t}\right]' = 3$$

$$\frac{x}{t} = \int 3dt$$

$$= 3t + C$$

$$x(t) = 3t^2 + Ct$$

Theorem: Existence of Solutions

Suppose the function f(t,x) is defined and continuous on the rectangle \mathbf{R} in the tx-plane. Then given any point $(t_0, x_0) \in \mathbf{R}$, the initial value problem

$$x' = f(t, x)$$
 and $x(t_0) = x_0$

has a solution x(t) defined in an interval containing x_0 . Furthermore, the solution will be defined at least until the solution curve $t \to (t, x(t))$ leaves the rectangle R.

Interval of Existence of a Solution

Example

Consider the initial value problem $x' = 1 + x^2$ with x(0) = 0. Find the solution and its interval of existence.

Solution

The right-hand side is $f(t,x) = 1 + x^2$ which is continuous on the entire tx-plane.

The solution to the initial value problem is:

$$\frac{dx}{dt} = 1 + x^{2}$$

$$\frac{dx}{1 + x^{2}} = dt$$

$$\int \frac{dx}{1 + x^{2}} = \int dt$$

$$\tan^{-1} x = t$$

$$x(t) = \tan t$$

x(t) is discontinuous at $t = \pm \frac{\pi}{2}$. Hence the solution to the initial value problem is defined only for

$$-\frac{\pi}{2} < t < \frac{\pi}{2} .$$

The interval: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Theorem: Existence of a Unique Solution

Let R be a rectangular region in the *xy*-plane defined by $a \le x \le b$, $c \le y \le d$ that contains the point $\left(x_0, y_0\right)$ in its interior. If $f\left(x, y\right)$ and $\frac{\partial f}{\partial y}$ are continuous on R, then there exists some interval $I_0: \left(x_0 - h, x_0 + h\right), \ h > 0$, contained in [a, b], and a unique function y(x), defined on I_0 that is a solution of the initial-value problem (*IVP*)

Mathematics & Theorems

Any theorem is a logical statement which has hypotheses (when it's true) and conclusions (true)

The Hypotheses of the Uniqueness of Solutions Theorem

- 1. The equation is in normal form y' = f(t, y)
- 2. The right-hand side f(t, y) and its derivative $\frac{\partial f}{\partial y}$ are both continuous in the rectangle **R**.
- 3. The initial point (t_0, y_0) is in the rectangle **R**.

For the uniqueness theorem the conclusions are as follows:

- 1- There is one and only one solution to the initial value problem.
- 2- The solution exists until the solution curve $t \to (t, y(t))$ leaves the rectangle **R**.

Example

Consider the initial value problem $tx' = x + 3t^2$. Is there a solution to this equation with initial condition x(1) = 2? If so, is the solution unique?

Solution

$$x' = \frac{x}{t} + 3t$$

The right-hand side: $f(t,x) = \frac{x}{t} + 3t$ is continuous except where t = 0.

We can take R to be any rectangle which contains the point (1, 2) to avoid t = 0, we can choose

$$\frac{1}{2} < t < 2$$
 and $0 < x < 4$

Then f is continuous everywhere in $\mathbf{R} \Rightarrow$ hypotheses of the existence theorem are satisfied.

Since $\frac{\partial f}{\partial x} = \frac{1}{t}$ is also continuous in **R**.

There is only one solution.

It is important to determine and prove a theorem concerning the existence and uniqueness of solutions of an O.D.E.

• Are the $x_{1,2} = \frac{1 \pm \sqrt{1 - 4\mu}}{2}$ solutions to $P_+ = \frac{1 + \sqrt{1 - 4\mu}}{2}$ exist? $P_- = \frac{1 - \sqrt{1 - 4\mu}}{2}$

 \Rightarrow Solutions exist for the system.

• *Uniqueness*: Assume $\mu > \frac{1}{4}$ is another solution. We want to prove $f_{\mu}(x)$ is actually $f_{\mu}(x)$ i.e.

$$\mu > \frac{1}{4} \qquad f_{\mu}(x)$$

$$\mu > \frac{1}{4}$$
 f'_{μ}

So that, $\frac{d}{dx} \left[f_{\mu}(x) \right] = 2x + \mu$, then multiply both sides by $f'_{\mu}(P_{+}) = 1 + \sqrt{1 - 4\mu}$ to obtain:

$$f'_{\mu}(P_{-}) = 1 - \sqrt{1 - 4\mu}$$

Exercises Section 1.7 - Direction Fields; Existence and Uniqueness of Solutions

Which of the initial value problems are guaranteed a unique solution

1.
$$y' = 4 + y^2$$
, $y(0) = 1$

2.
$$y' = \sqrt{y}, y(4) = 0$$

3.
$$y' = t \tan^{-1} y$$
, $y(0) = 2$

4.
$$\omega' = \omega \sin \omega + s$$
, $\omega(0) = -1$

5.
$$x' = \frac{t}{x+1}, x(0) = 0$$

6.
$$y' = \frac{1}{x}y + 2$$
, $y(0) = 1$

7.
$$y' = e^t y - y^3$$
, $y(0) = 0$

8.
$$y' = ty^2 - \frac{1}{3y+t}$$
, $y(0) = 1$

9.
$$y' = xy$$
, $y(0) = 1$

10.
$$y' = -\frac{t^2}{1 - v^2}, \quad y(-1) = \frac{1}{2}$$

11.
$$y' = \frac{y}{\sin t}, \quad y(\frac{\pi}{2}) = 1$$

12.
$$y' = \sqrt{1 - y^2}$$
, $y(0) = 1$

- 13. Show that y(t) = 0 and $y(t) = t^3$ are both solutions of the initial value problem $y' = 3y^{2/3}$, where y(0) = 0. Explain why this fact doesn't contradict Theorem
- 14. Use a numerical solver to sketch the solution of the given initial value problem

$$\frac{dy}{dt} = \frac{t}{v+1} , \qquad y(2) = 0$$

- a) Where does your solver experience difficulty? why? Use the image of your solution to estimate the interval of existence.
- b) Find an explicit solution; then use your formula to determine the interval of existence. How does it compare with the approximation found in part (a).