

ULN2001

三路达林顿晶体管阵列

描述

ULN2001是单片集成高耐压、大电流达林顿管阵列,电路内部包含三个独立的达林顿管驱动单路。电路内部设计有续流二极管,可用于驱动继电器、步进电机等电感性负载。单个达林顿管集电极可输出 500mA 电流。将达林顿管并联可实现更高的输出电流能力。该电路可广泛应用于继电器驱动、照明驱动、显示屏驱动(LED)、步进电机驱动和逻辑缓冲器。

ULN2001的每一路达林顿管串联一个 2.7K 的基极电阻,在 5V 的工作电压下可直接与 TTL/CMOS 电路连接,可直接处理原先需要标准逻辑缓冲器来处理的数据。

引脚排列

特点

- 1、500mA集电极输出电流(单路);
- 2、耐高压(50V);
- 3、输入兼容 TTL/CMOS 逻辑信号;
- 4、广泛应用于继电器驱动;

典型应用

- 1、继电器驱动;
- 2、指示灯驱动;
- 3、显示屏驱动。

订购信息

型号	封装	类型	温度范围		
ULN2001	SOP8	Pb-Free	-40°C ~ +85°C		

电路原理图(单路)

逻辑图

引脚定义

引脚编号	引脚名称	引脚功能描述
1	3B	3通道输入管脚
2	2B	2 通道输入管脚
3	1B	1通道输入管脚
4	E	接地
5	COM	钳位二极管公共端
6	1C	1 通道输出管脚
7	2C	2 通道输出管脚
8	3C	3 通道输出管脚

绝对最大额定值

(T_A=25℃, 除另有规定外)

参数	符号	值	单位
集电极-发射极电压(7~10脚)	V _{CE}	-0.5~50	V
COM 端电压 (6 脚)	V_{COM}	50	V
输入电压(1~4 脚)	V _I	-0.5~30	V
集电极峰值电流	I _{CP}	500	mA/ch
输出钳位二极管正向峰值电流	l _{OK}	500	mA
总发射极最大峰值电流	I _{ET}	-1.5	Α
最高工作结温(2)	TJ	150	$^{\circ}$ C
焊接温度		260	°C,10s
储存温度范围	T _{stg}	-60 ~ +150	°C
功耗 ⁽¹⁾⁽²⁾	P_{D}		W

- 注:1、最大功耗可按照下述关系计算 $P_D = (T_j T_A)/\theta_{JA}$
 - 2、T_j(max)为 150℃, T_A表示电路工作的环境温度;
 - 3、在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

推荐工作条件

(T_A=25℃, 除另有规定外)

参数	符号	条件		最小值	最大值	单位
集电极-发射极电压	V _{CE}			0	50	V
		TPW=25ms	Duty=10%	0	233	
输出电流 	I _{OUT}	T _A =85°C T _J =120°C	Duty=50%	0	70	mA/ch
控制信号输入电压	V _{IN}			0	24	V
输入电压 (输出开启)	V _{IN(ON)}		I _{out} =400mA h _{FE} =800		24	V
输入电压(输出关断)	V _{IN(OFF)}				0.7	V
钳位二极管反向电压	V_R				50	V
钳位二极管正向峰值电流	I _F				350	mA
工作温度范围	T _A			-40	+85	$^{\circ}$
功耗	P_D	T _A = 85°C				W

注: 在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

电参数特性表

(T_A=25℃, 除另有规定外)

	参数	测试图	测试条件			最小	典型	最大	单位	
					I _C =200mA		1.9	2.4		
V _{I(ON)}	导通状态输入电压	图 4	V _{CE} =2V		I _C =250mA		2.0	2.7	V	
					I _C =300mA		2.1	3		
			V _I =2.4V I _C =30mA			0.78				
		图 5	V _I =2.4V I _C =60mA			0.82				
$V_{CE(SAT)}$	集电极-发射极饱和压降		V _I =2.4V	I _C =120	0mA		0.9		V	
			V _I =2.4V	$V_I=2.4V$ $I_C=240mA$			1.1			
			V _I =2.4V	$I_{c} = 350$	0mA		1.25			
V_{F}	钳位二极管正向压降	图 8		I _F =35	0mA		1.4	1.6	V	
1	 集电极关断漏电流	图 1	V_{CE} =50V I_{I} =0			-	50	μΑ		
I _{CEX}	来电极 <u>人</u> 的确电机	图 2	V _{CE} =50V	T _A =	85°C V _I =0V		-	100	μΑ	
			V _{IN} =12\	V			4			
I _I	输入电流	图 4	V _{IN} =6V V _{IN} =4.5V		I _C =60mA		1.7		mA	
"							1.1			
			V _{IN} =2.4	′ _{IN} =2.4V		0.3	0.35			
I _R	钳位二极管反向电流	图 7	V _R =50V			-	100	μΑ		
C _{IN}	输入电容					15		рF		
t _{PLH}	传输延迟 低-高	图 9	VL=	12V	RL=45Ω		0.15	1	μs	
t _{PHL}	传输延迟 高-低	图 9	VL=	12V	RL=45Ω		0.15	1	μs	

参数测试原理图

图1 I_{CEX}测试电路

图3 I_{I (off)}测试电路

图5 H_{FE},V_{CE(sat)}测试电路

图2 I_{CEX}测试电路

图 4 1,测试电路

图7 I_R测试电路

达林顿驱动电路系列 ULN2001

图 9 传输延时波形图

备注:图9中电容负载为示波器探头寄生电容

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

深圳市兰科半导体科技有限公司

Rev 1.2