Quản trị dữ liệu

Chương 5: Hệ thống phục hồi (Recovery System)

Nội dung

- Phân lớp hư hỏng
- Cấu trúc lưu trữ
- Phục hồi dựa trên sổ ghi lộ trình
 - Sự cập nhật có trì hoãn
 - Sự cập nhật tức thời
 - Điểm kiểm soát
- Phục hồi dành cho các giao dịch song song

Phân lớp hư hỏng

- Các loại hư hỏng:
 - Giao dich:
 - Lỗi luận lý: dữ liệu đầu vào, tràn giá trị,...
 - Lỗi hệ thống: deadlock, cạnh tranh,...
 - Hệ thống: hệ điều hành, RAM,...
 - Đĩa
- Phục hồi: Xác định loại hư hỏng ⇒ đánh giá sự ảnh hưởng đến dữ liệu ⇒ đề xuất giải pháp đảm bảo tính bền vững và nguyên tử ⇒ giải thuật phục hồi lỗi
- Giải thuật phục hồi: bao gồm
 - Các hoạt động trong quá trình các giao dịch thực hiện
 - Các hoạt động sau khi lỗi phát sinh

Cấu trúc lưu trữ

- Các loại lưu trữ:
 - Lưu trữ bị phai (bay hơi)
 - Lưu trữ không phai (không bay hơi)
 - Lưu trữ bền: thông tin *không bao giờ* bị mất (!??)
- ◆ Thực hiện lưu trữ bền
- Phương pháp truy cập dữ liệu:

Phục hồi dựa trên Sổ ghi lộ trình (log)

- Dùng sổ ghi lộ trình ghi nhận lại các thay đổi trên CSDL
- ♦ Một thao tác cập nhật ⇒ một log record
- Các loại log record:

Loại Log Record	Ý nghĩa
<t<sub>i, Start></t<sub>	GD T _i đã khởi động.
$$	GD T _i thay đổi giá trị của X từ V ₁ thành V ₂
<t<sub>i, commit></t<sub>	GD T _i đã bàn giao.
<t<sub>1, abort></t<sub>	GD T _i đã hủy bỏ.

- Sổ ghi lộ trình ghi vào các thiết bị "bền"
- Có 2 giải thuật phục hồi dựa trên Sổ ghi lộ trình

Sự cập nhật có trì hoãn

- Dùng khi các GD được thực hiện tuần tự
- Tất cả các thao tác cập nhật CSDL sẽ bị trì hoãn
- Sự thực thi của các giao dịch tiến hành như sau:
 - Trước khi T_i khởi động: <T_i, Start>
 - Trước khi T_i Write(X): $\langle T_i, X, V_2 \rangle$
 - Khi T_i bàn giao một phần: <T_i, commit>

Phục hồi:

 $\forall T_i$: $< T_i$, start> và $< T_i$, commit> có trong số ghi lộ trình \Rightarrow **redo(T_i)**

redo(T_i): cập nhật giá trị mới cho tất cả các hạng mục dữ liệu được cập nhật bởi T_i

Sự cập nhật có trì hoãn

Ví dụ:

T ₁	T ₂
R(A)	R(C)
A=A-50	C=C-100
W(A)	W(C)
R(B)	
B=B+50	
W(B)	

A = 1000, B = 2000, C = 700

Sự cập nhật tức thời

- Các thao tác thay đổi gtrị các hạng mục CSDL sẽ thể hiện ngay lên CSDL
- Sự thực thi các GD được tiến hành như sau:
 - Trước khi T_i khởi động, <**T_i**, **Start**>
 - Trước khi T_i Write(X), <**T**_i, **X**, **V**₁, **V**₂>
 - Khi T_i hoàn thành, **<T**_i, commit>
- Phục hồi:
 - ∀ T_i: <T_i, start> và <T_i, commit> có trong sổ ghi lộ trình
 ⇒ redo(T_i)
 - \forall T_i: <T_i, start> có trong sổ ghi lộ trình nhưng không có <T_i, commit> \Rightarrow **undo(T_i)**
 - Thực hiện sự phục hồi từ dưới lên

Sự cập nhật tức thời

Ví dụ:

T ₁	T ₂
R(A)	R(C)
A=A-50	C=C-100
W(A)	W(C)
R(B)	
B=B+50	
W(B)	

A = 1000, B = 2000, C = 700

```
<T<sub>1</sub>, start>
<T<sub>1</sub>, A, 1000, 950>
<T<sub>1</sub>, B, 2000, 2050>
<T<sub>1</sub>, commit>
<T<sub>2</sub>, start>
<T<sub>2</sub>, C, 700, 600>
<T<sub>2</sub>, commit>
```

- ◆ Redo(T_i): đặt giá trị mới cho các hạng mục CSDL
- ♦ Undo(T_i): đặt giá trị cũ cho các hạng mục CSDL

Điểm kiểm soát (Checkpoint)

- Dùng để cải thiện hiệu năng của quá trình khôi phục
- Muốn đặt điểm kiểm soát:
 - 1. Ghi log record vào thiết bị lưu trữ
 - 2. Cập nhật các khối đệm đã cập nhật lên CSDL
 - 3. Thêm **<checkpoint>** vào số ghi lộ trình
- Phục hồi:
 - Từ điểm checkpoint cuối cùng, dò ngược lên tìm
 Ti, start> gần nhất.
 - 2. Gọi **T** là tập các GD gồm **T**_i và các GD diễn ra sau **T**_i
 - \forall T_K ∈ T: <T_K, commit> không có trong SGLT
 - Nếu Cập nhật tức thời: ⇒ undo(T_K)
 - Nếu Cập nhật trì hoãn: \Rightarrow bỏ qua T_K (không undo)
 - \forall T_K ∈ T: <T_K, commit> có trong SGLT \Rightarrow **redo(T_K)**

Điểm kiểm soát

♦ Ví dụ:

Phục hồi cho các giao dịch song song

- Dùng sổ ghi lộ trình với sự cập nhật tức thời
- Checkpoint: <checkpoint L> với L là tập các GD đang hoạt động tại thời điểm đặt checkpoint
- Phục hồi:
 - 1. Tạo hai danh sách redo-list và undo-list:
 - a. Redo-list = \emptyset ; undo-list = \emptyset
 - b. Dò ngược SGLT đến khi gặp mẫu tin **<checkpoint L>** đầu tiên:
 - Nếu thấy <T_i, commit>:
 ⇒ thêm T_i vào redo-list
 - Nếu thấy <T_i, start> và T_i ∉ redo-list:
 ⇒ thêm T_i vào undo-list
 - c. $\forall T_i \in L$ nhưng $T_i \notin redo-list$ và undo-list thêm T_i vào undo-list

Phục hồi cho các giao dịch song song

2. Tiến trình phục hồi:

- a. Dò ngược số ghi đến khi tìm thấy <T_i, start> cho tất cả các T_i trong undo-list, tiến hành undo đối với mỗi record-log thuộc undo-list
- b. Định vị **<checkpoint L>** cuối cùng
- c. Dò xuôi sổ ghi lịch trình cho đến cuối sổ ghi, thực hiện redo với mỗi record-log thuộc giao dịch T_i nằm trong redo-list

8/29/20 5.13

Phục hồi cho các giao dịch song song

Cho một số ghi lịch trình sau:

- a. Hãy xác định L1, L2.
- b. Xác định giá trị của A E trên đĩa sau khi sự cố và trước khi phục hồi
- c. Xác định giá trị của A E trên đĩa sau khi phục hồi.

Giải:

```
<T2, start>
<T1, A, 10, 30>
<T1, B, 15, 35>
<T2, C, 110, 160>
<checkpoint L1>
<T1, commit>
<T2, D, 210, 260>
<T3, start>
<T3, E, 1010, 1510>
<checkpoint L2>
<T2, commit>
```

~~~ crash ~~~

<T1, start>

### **Example**

### Given the following log file:

- a. Identify L1, L2.
- b. Identify value of A E on the DB after the crash and before the recovery
- c. Identify value of A E on the DB after the recovery.

#### Sol.:

```
<T1, start>
<T2, start>
<T1, A, 10, 30>
<T1, B, 15, 35>
<T2, C, 110, 160>
<checkpoint L1>
<T1, commit>
<T2, D, 210, 260>
<T3. start>
<T3, E, 1010, 1510>
<checkpoint L2>
<T2, commit>
```

~~~ crash ~~~

