МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ

по дисциплине «Введение в нереляционные базы данных»
Тема: Сервис хранения экспериментов инструмента pybulletdrones

Студенты гр. 0304	 Докучаев Р.А.
	 Никитин Д.Э.
	 Свечников И.В.
Преподаватель	 Заславский М.М.

Санкт-Петербург

ЗАДАНИЕ

НА КУРСОВУЮ РАБОТУ (КУРСОВОЙ ПРОЕКТ)

Студенты Иванов И.И.
Докучаев Р.А.
Никитин Д.Э.
Свечников И.В.
Группа 0304
Тема проекта: Сервис хранения экспериментов инструмента pybulletdrone
Исходные данные:
Необходимо создать простое веб-приложение для
импорта/хранения/поиска/визуализации результатов экспериментов в
эмуляторе pybulletdrones
Содержание пояснительной записки:
Содержание пояснительной записки: «Содержание»
•
«Содержание»
«Содержание» «Введение»
«Содержание» «Введение» «Сценарии использования»
«Содержание» «Введение» «Сценарии использования» «Модель данных»
«Содержание» «Введение» «Сценарии использования» «Модель данных» «Разработанное приложение»
«Содержание» «Введение» «Сценарии использования» «Модель данных» «Разработанное приложение»
«Содержание» «Введение» «Сценарии использования» «Модель данных» «Разработанное приложение» «Выводы»

Дата выдачи задания: 26.09.2023		
Дата сдачи реферата: 25.12.2023		
Дата защиты реферата: 25.12.2023	3	
Студенты гр. 0304		Докучаев Р.А.
		Никитин Д.Э.
		Свечников И.В.
Преподаватель		Заславский М.М.

АННОТАЦИЯ

В качестве индивидуального домашнего задания была выбрана тема экспериментов инструмента pybulletdrones», хранения предполагает разработку простого веб-приложения, осуществляющего поддержку работы с результатами экспериментов в эмуляторе. Исходный код разработанного найти приложения онжом ПО ссылке: https://github.com/moevm/nosql2h23-drones.

SUMMARY

The topic "Experiment storage service for the pybulletdrones tool" was chosen as an individual homework assignment, which involves the development of a simple web application that supports working with the results of experiments in the emulator. The source code of the developed application can be found at the link: https://github.com/moevm/nosql2h23-drones.

СОДЕРЖАНИЕ

	Введение	6
1.	Сценарии использования	7
1.1.	Макет UI	7
1.2.	Сценарии использования для задач	7
1.2.1.	Добавление/удаление результатов проведённого эксперимента в	7
	БД	
1.2.2.	«Экспорт/импорт» результатов проведённого эксперимента в БД	8
1.2.3.	Просмотр графических результатов проведённого эксперимента	9
1.2.4.	Поиск эксперимента среди проведённых и занесённых в БД	10
1.2.5.	Просмотр таблицы с данными по проведённому эксперименту	10
2.	Модель данных	12
2.1.	Нереляционная модель данных	12
2.2.	Реляционная модель данных	16
2.3.	Сравнение моделей данных	20
3.	Разработанное приложение	22
3.1.	Краткое описание	22
3.2.	Снимки экрана приложения	22
	Заключение	25

ВВЕДЕНИЕ

Цель работы — разработать веб-приложение, которое будет хранить результаты экспериментов в эмуляторе в удобном для пользователя электронном виде с возможностями дополнения новыми данными, удаления утративших актуальность данных, поиска и фильтрации данных.

Также были выработаны следующие качественные требования к решению: необходимо разработать приложение с использованием СУБД — MongoDB, в которой будут храниться данные экспериментов в эмуляторе pybulletdrones, с возможностью локального разворота приложения с помощью docker`a.

1. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

1.1. Макет UI

Рис. 1 – Макет UI

1.2. Сценарии использования

1.2.1. Добавление/удаление результатов проведённого эксперимента в БД

Основной сценарий:

- 1. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
 - 2. Пользователь нажимает на кнопку "добавление"/"удаление"
- 3. Система открывает во всплывающем окне форму для записи эксперимента в таблицу либо список экспериментов с возможностью отметить эксперименты к удалению
- 4. Пользователь заносит данные либо выбирает удаляемые таблицы и нажимает кнопку "сохранить"
- 5. Система выводит на экран веб-страницу с обновленным состоянием таблицы с экспериментами Альтернативный сценарий:

- 6. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
 - 7. Пользователь нажимает на кнопку "добавление"/"удаление"
- 8. Система открывает во всплывающем окне форму для записи эксперимента в таблицу либо список экспериментов с возможностью отметить эксперименты к удалению
- 9. Пользователь заносит данные либо выбирает удаляемые таблицы и нажимает кнопку "отмена", так как ввёл неверные данные или выбрал не ту таблицу для удаления
- 10. Система предлагает пользователю заново ввести данные в открытом окне либо заново выбрать таблицу для удаления
- 11. Пользователь может вернуться на веб-страницу с таблицей экспериментов, нажав кнопку "отмена"

1.2.2. «Экспорт/импорт» результатов проведённого эксперимента в БД

Основной сценарий:

- 1. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
 - 2. Пользователь нажимает на кнопку "экспорт/импорт"
- 3. Система переходит на веб-страницу экспорта/импорта данных эксперимента, на которой можно выбрать формат данных, имя файла с данными (в случае экспорта), выбрать файл с исходными данными среди имеющихся на устройстве пользователя (в случае с импортом)
 - 4. Пользователь нажимает на кнопку "сохранить"/"открыть"
- 5. Система осуществляет экспорт/импорт данных эксперимента с соответствующими параметрами Альтернативный сценарий:
- 6. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
 - 7. Пользователь нажимает на кнопку "экспорт/импорт"

- 8. Система переходит на веб-страницу экспорта/импорта данных эксперимента, на которой можно выбрать формат данных, имя файла с данными (в случае экспорта), выбрать файл с исходными данными среди имеющихся на устройстве пользователя (в случае с импортом) Выбранный формат файла не поддерживается
- 9. Система выводит пользователю соответствующее сообщение об ошибке во всплывающем окне
- 10. Пользователь может либо повторить попытку экпорта в файл другого формата/импорта другого файла с исходными данными
- 11. Пользователь может отменить экспорт/импорт, нажав кнопку "отмена"
- 12. Система возвращает пользователя на веб-страницу с записанными экспериментами

1.2.3. Просмотр графических результатов проведённого эксперимента

Основной сценарий:

- 1. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
- 2. Пользователь выбирает интересующий его эксперимент путём нажатия на специальную кнопку, расположенную в таблице в поле "просмотр"
- 3. Система переходит на веб-страницу с графическим представлением результатов эксперимента
- 4. Пользователь может вернуться на страницу с таблицей всех экспериментов, нажав кнопку "назад"

1.2.4. Поиск эксперимента среди проведённых и занесённых в БД Основной сценарий:

- 1. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
- 2. Пользователь вводит в окне поиска название эксперимента, с результатами которого он хочет ознакомиться
- 3. Система показывает эксперименты с совпадающими названиями Альтернативный сценарий:
- 4. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
- 5. Пользователь вводит в окне поиска название эксперимента, с результатами которого он хочет ознакомиться
- 6. Система не находит экспериментов с введённым названием и возвращает пользователю сообщении об отсутствии совпадений во всплывающем окне

1.2.5. Просмотр таблицы с данными по проведённому эксперименту Основной сценарий:

- 1. Система выводит на экран веб-страницу со списком уже записанных экспериментов в виде таблицы
- 2. Пользователь выбирает эксперимент из списка путём нажатия на его название
- 3. Система переходит на веб-страницу с таблицей дронов, которые приняли участие в эксперименте
- 4. Пользователь имеет возможность добавить/удалить дрон из экспериментов при помощи нажатия соответствующей кнопки. В этом случае система далее будет действовать как в случае с добавлением/удалением данных для эксперимента с той лишь разницей, что начальной страницей будет не список всех экспериментов в виде таблицы, а список дронов в виде таблицы

- 5. Пользователь имеет возможность экспортировать/импортировать данные по конкретному эксперименту при помощи соответствующих кнопок. В этом случае система далее будет действовать как в случае с экспортом/импортом данных для эксперимента с той лишь разницей, что начальной страницей будет не список всех экспериментов в виде таблицы, а список дронов в виде таблицы
- 6. Пользователь может ознакомиться с таблицей изменения положения конкретного дрона, нажав на его название. В этом случае система откроет отдельную веб-страницу, где в виде таблицы будут отражены все изменения положения выбранного дрона в ходе эксперимента. Пользователь также имеет возможность удалять и добавлять записи положения выбранного дрона аналогично редактированию всех записей и списка дронов. Пользователь после выполнения желаемых действий нажимает кнопку назад для возврата на страницу со списком всех дронов для данного эксперимента, система переходит на веб-страницу со списком дронов для выбранного ранее эксперимента
- 7. Пользователь после выполнения желаемых действий нажимает кнопку назад для возврата на страницу со списком всех экспериментов
 - 8. Система переходит на веб-страницу со списком всех экспериментов

2. МОДЕЛЬ ДАННЫХ

2.1. Описание нереляционной модели

Рис. 2 – Графическое представление модели

БД содержит 3 коллекции - Experiments, DronesInfo, DronesNote – каждая из которых описана ниже.

- 1. Experiments содержит Experiment
 - о Experiment запись об эсперименте
 - _id уникальный идентификатор записи об эксперименте
 - пате название эксперимента
 - creationDate дата создания записи об эксперименте
 - changedDate дата изменения записи об эксперименте
 - timeAmount длительность эксперимента
 - dronesInfo информация с дронов(данные дронов)
- 2. DronesInfo содержит DroneInfo
 - о DroneInfo информация с дрона
 - id уникальный идентификатор информации с дрона
 - пате название дрона
 - notes записи измерений с дрона
- 3. DronesNote содержит DroneNote
 - о DroneNote единичное измерение с дрона
 - id уникальный идентификатор записи измерения с дрона
 - droneID идентификатор дрона, к которому относится запись
 - time дата записи измерения с дрона
 - роз х позиция дрона по координате х
 - роз у позиция дрона по координате у
 - pos z позиция дрона по координате z
 - vel x скорость дрона по координате x
 - vel_y скорость дрона по координате у
 - vel z скорость дрона по координате z
 - roll угол крена дрона
 - pitch угол тангажа дрона
 - yawl угол рысканья дрона
 - грт0 частота вращения первой лопасти

- rpm1 частота вращения второй лопасти
- rpm2 частота вращения третий лопасти
- грт3 частота вращения четвертой лопасти

Оценка объема

- DroneNote
 - o _id 12b
 - o droneID 12b
 - o time 8b
 - o pos x 8b
 - o pos_y 8b
 - o pos_z 8b
 - o vel x 8b
 - o vel_y 8b
 - o vel z 8b
 - o roll 8b
 - o pitch 8b
 - o yawl 8b
 - o rpm0 8b
 - \circ rpm1 8b
 - \circ rpm2 8b
 - o rpm3 8b
- DroneInfo
 - o _id 12b
 - o name до 32b
 - o notes 12b * notes_amount
- Experiment
 - o _id 12b
 - o name до 64b
 - o creationDate 8b

- o changedDate 8b
- o timeAmount 8b
- o dronesInfo 12b * drones amount

Среднее количество записей измерений с дрона - N Среднее количество дронов в эксперименте - 10 Среднее количество экспериментов - 10

Фактический объем

- V(DroneNote) = _id + droneID + time + pos_x + pos_y + pos_z + vel_x + vel_y + vel_z + roll + pitch + yawl + rpm0 + rpm1 + rpm2 + rpm3 = 12b * 2 + 8b * 14 = 136b
- V_cp(DroneInfo) = _id + name + 12b * notes_amount = 12b + 32b + 12b * notes_amount = 44b + 12b * notes_amount = 44b + 12b * N
- V_cp(Experiment) = _id + name + creationDate + changedDate + timeAmount + 12b * drones_amount = 12b + 64b + 8b * 3 + 12b * drones_amount = 100b + 12b * drones_amount = 100b + 12b * 10 = 220b
- V_факт = количество_экспериментов * (V_cp(Experiment) + количество_дронов * (V_cp(DroneInfo) + количество_записей * V(DroneNote))) = 10 * (220b + 10 * (44b + 12b * N + N * 136b)) = 10 * (660b + 1480N) = 14800N + 6600b

"Чистый" объем

Чистый объём вычислен на основе фактического, но была исключена избыточность данных:

- V(DroneNote) = time + pos_x + pos_y + pos_z + vel_x + vel_y + vel_z + roll + pitch + yawl + rpm0 + rpm1 + rpm2 + rpm3 = 112b
- $V_cp(DroneInfo) = id + 12b * notes_amount = 12b + 12b * N$
- V_cp(Experiment) = _id + 12b * drones_amount = 12b + 12b * drones amount = 12b + 12b * 10 = 132b
- V_чист = количество_экспериментов * (V_cp(Experiment) + количество дронов * (V_cp(DroneInfo) + количество записей *

V(DroneNote))) = 10 * (132b + 10 * (12b + 12b * N + N * 112b)) = 12400N + 2520b

Избыточность модели

Избыточность = Фактический объем / "Чистый" объем Избыточность = (14800N + 6600b) / (12400N + 2520b) = 14800N / 12400N = 1.19

Направление роста модели при увеличении количества объектов каждой сущности

При увеличении количества записей измерений с дрона, дронов в эксперименте, числа экспериментов объем данных возрастает линейно. Если одновременно увеличивать М параметров в N раз, то рост будет вида М * N

2.2. Описание реляционной модели

Рис. 3 – Графическое представление модели

Как и нереляционная модель, реляционная модель содержит три коллекции, каждая их которых описана подробно ниже.

- Experiment запись об эсперименте
 - o id уникальный идентификатор записи об эксперименте
 - о name название эксперимента
 - o creationDate дата создания записи об эксперименте
 - o changedDate дата изменения записи об эксперименте
 - о timeAmount длительность эксперимента
- DroneInfo информация с дрона
 - о id уникальный идентификатор информации с дрона
 - o experimentId внешний ключ для связи с экспериментом
 - о name название дрона
- DroneNote единичное измерение с дрона
 - o id уникальный идентификатор записи измерения с дрона
 - o droneInfoId внешний ключ для связи с информацией с дрона
 - о time дата записи измерения с дрона
 - роз х позиция дрона по координате х
 - o pos y позиция дрона по координате y
 - о pos_z позиция дрона по координате z
 - vel_x: скорость дрона по координате x
 - vel у: скорость дрона по координате у
 - o vel z: скорость дрона по координате z
 - o roll угол крена дрона
 - pitch угол тангажа дрона
 - yawl угол рысканья дрона
 - o rpm0 частота вращения первой лопасти
 - o rpm1 частота вращения второй лопасти
 - o rpm2 частота вращения третий лопасти
 - о грт3 частота вращения четвертой лопасти

Оценка объема

- DroneNote
 - o id 4b
 - o droneInfoId 4b
 - o time 8b
 - \circ pos_x 8b
 - o pos y 8b
 - o pos z 8b
 - o vel x: 8b
 - o vel y: 8b
 - o vel z: 8b
 - o roll 8b
 - o pitch 8b
 - o yawl 8b
 - o rpm0 8b
 - o rpm1 8b
 - o rpm2 8b
 - o rpm3 8b
- DroneInfo
 - o id 4b
 - o experimentId 4b
 - o name до 32b
- Experiment
 - o id 4b
 - o name до 64b
 - o creationDate 8b
 - o changedDate 8b
 - o timeAmount 8b

Среднее количество записей измерений с дрона - N Среднее количество дронов в эксперименте - 10 Среднее количество экспериментов — 10

Фактический объем

- V(DroneNote) = id + droneInfoId + time + pos_x + pos_y + pos_z + vel_x + vel_y + vel_z + roll + pitch + yawl + rpm0 + rpm1 + rpm2 + rpm3 = 4b * 2 + 8b * 14 = 120b
- V(DroneInfo) = id + experimentId + name = 4b * 2 + 32b = 40b
- V(Experiment) = id + name + creationDate + changedDate + timeAmount = 4b
 + 64b + 8b * 3 = 92b
- V_факт = количество_экспериментов * (V(Experiment) + количество_дронов * (V(DroneInfo) + количество_записей * V(DroneNote))) = 10 * (92b + 10 * (40b + N * 120b)) = 10 * (492b + 1200N) = 12000N + 4920b

"Чистый" объем

- V(DroneNote) = time + droneInfoId + pos_x + pos_y + pos_z + vel_x + vel_y + vel_z + roll + pitch + yawl + rpm0 + rpm1 + rpm2 + rpm3 = 4b + 8b * 14 = 116b
- V cp(DroneInfo) = id + experimentId = 8b
- $V_cp(Experiment) = id = 4b$
- V_чист = количество_экспериментов * (V(Experiment) + количество_дронов * (V(DroneInfo) + количество_записей * V(DroneNote))) = 10 * (4b + 10 * (8b + N * 116b)) = 11600N + 840b

Избыточность модели

Избыточность = Фактический объем / "Чистый" объем Избыточность = $(12000\mathrm{N} + 4920\mathrm{b}) \, / \, (11600\mathrm{N} + 840\mathrm{b}) = 12000\mathrm{N} \, / \, 11600\mathrm{N} = 1.03$

Направление роста модели при увеличении количества объектов каждой сущности

При увеличении количества записей измерений с дрона, дронов в эксперименте, числа экспериментов объем данных возрастает линейно Если одновременно увеличивать М параметров на N раз, то рост будет вида М * N

2.3. Сравнение моделей

Удельный объем информации

 V_{ϕ} акт_нерел = 14800N + 6600b V_факт_рел = 12000N + 4920b V_факт_рел / V_факт_нерел = 0.81 Видно, что объем информации при прочих равных условиях в реляционной модели меньше на 19% Также избыточность модели нереляционной модели больше - 1.19 > 1.03.

Запросы по отдельным юзкейсам

Нереляционная модель:

- Добавление результатов проведённого эксперимента в БД 3 + update * N_дронов
- Удаление результатов проведённого эксперимента в БД 5
- Поиск эксперимента среди проведённых и занесённых в БД 1
- Просмотр таблицы с данными по проведённому эксперименту 3
 Реляционная модель:
- Добавление результатов проведённого эксперимента в БД 5
- Удаление результатов проведённого эксперимента в БД 5
- Поиск эксперимента среди проведённых и занесённых в БД 1
- Просмотр таблицы с данными по проведённому эксперименту 3

Количество задействованных коллекций

Нереляционная модель - 3:

- Experiments
- DronesInfo
- DronesNote

Реляционная модель - 3:

- Experiment
- DroneInfo
- DroneNote

Вывод по итогам сравнения

Реляционная модель превосходит нереляционную по объему информации. По запросам они одинаковы, кроме запроса на добавление, т.к. требуется дополнительно узнать id добавленных строк в реляционной модели.

3. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

3.1. Краткое описание

Разработанное приложение имеет клиент-серверную архитектуру и использует REST-подход.

Приложение написано на языке программирования JavaScript. Клиентская часть реализована при помощи HTML и CSS, серверная часть – при помощи фреймворка express, данные хранятся в коллекциях в MongoDB.

Приложение разворачивается при помощи платформы докер, используя три отдельных виртуальных контейнера для клиентской части приложения, серверной части приложения и базы данных.

3.2. Снимки экрана приложения

O 🗅 localhost:3001/experime	nts				120% 公
•	name=name, creationDate=cr Искать Импорт Экспор				
Эксперимент	Дата создания	Дата изменения	Просмотр	Количество ▼ дронов	Длительность У эксперимента
123	2023-12-24T23:06:53.732Z	2023-12-24T23:06:53.732Z	EYE	2	0 s
123	2023-12-25T19:06:26.908Z	2023-12-25T19:06:26.908Z	EYE	0	0 s

Рис. 4 – Страница со списком всех экспериментов

Рис. 5 – Страница с добавлением нового эксперимента

Рис. 6 – Страница «Импорт данных»

Рис. 7 - Страница со списком всех дронов для эксперимента

Рис. 8 – Страница с добавлением нового дрона в эксперимент

Рис. 9 - Страница с данными для дрона в выбранном эксперименте

Рис. 10 - Страница с добавлением данных дрона в эксперимент

ЗАКЛЮЧЕНИЕ

работы ИДЗ было разработано В ходе над веб-приложение, осуществляющее хранение данных об экспериментах, проведённых в эмуляторе pybulletdrones. Была следующая реализована функциональность: импорт/экспорт данных, сортировка и фильтрация данных, визуальное представление и просмотр статистики данных. Также были освоены и применены основные принципы работы с docker'ом и MongoDB.

В качестве недостатков полученного решения можно отметить примитивный дизайн, а также недостаточно широкий функционал (отсутствие возможности посмотреть графики движения дронов в эмуляторе).

В перспективе развития прежде всего следует доработать внешний вид приложения, а также расширить функционал: реализовать хранение данных с возможностью удаленного доступа, реализовать графическое представление движения дрона в эксперименте.