• 수학 영역 •

정 답

1	3	2	2	3	3	4	4	5	4
6	(5)	7	1	8	1	9	2	10	2
11	(5)	12	4	13	4	14	1	15	(5)
16	2	17	1	18	4	19	3	20	(5)
21	2	22	4	23	11	24	20	25	8
26	80	27	16	28	45	29	24	30	110

해 설

1. [출제의도] 거듭제곱근 계산하기

 $\sqrt[3]{27} = \sqrt[3]{3^3} = 3$

2. [출제의도] 로그 계산하기

 $\log_4 2 + \log_4 8 = \log_4 (2 \times 8) = \log_4 16 = \log_4 4^2 = 2$

3. [출제의도] 부채꼴의 중심각의 크기 계산하기

부채꼴의 호의 길이를 l, 반지름의 길이를 r, 중심각의 크기를 θ 라 하면, $l=r\theta$ 이므로 $6\pi=8\theta$ 이다. 그러므로 $\theta=\frac{3}{4}\pi$ 이다.

4. [출제의도] 삼각함수의 그래프를 이용하여 삼각함수 가 포함된 방정식 이해하기

 $\sin\frac{\pi}{6} = \frac{1}{2}$ 이므로 $\frac{\pi}{2} \le x \le \pi$ 일 때,

함수 $y=\sin x$ 의 그래프와 직선 $y=\frac{1}{2}$ 이 만나는 점의 x좌표는 $\frac{5}{6}\pi$ 이다. 따라서 방정식 $\sin x=\frac{1}{2}$ 의 해는 $x=\frac{5}{6}\pi$ 이다.

5. [출제의도] 상용로그표 이해하기

수	 2	3	4	
:	:	:		
3.0	 .4800	.4814	. 4829	
3.1	 . 4942	.4955	. 4969	
3.2	 .5079	.5092	.5105	
3.3	 .5211	.5224	.5237	
\sim				

상용로그표에서 $\log 3.24 = 0.5105$ 이므로, $\log 3.24 = \log (3.24 \times 10) = 1 + \log 3.24 = 1.5105$ 이다.

6. [출제의도] 삼각함수 사이의 관계를 이용하여 함숫 값 계산하기

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $\cos \theta = -\frac{4}{5}$ \circ] $\square \not\equiv$

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{16}{25} = \frac{9}{25}$$
 이다.
$$\pi < \theta < \frac{3}{2} \pi$$
이므로 $\sin \theta = -\frac{3}{5}$ 이다.

그러므로
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3}{4}$$
이다.

7. [출제의도] 지수함수의 그래프 이해하기

 $-1 \le x \le 2$ 에서 함수 $f(x) = 2 + \left(\frac{1}{3}\right)^{2x}$ 은 x의 값 이 증가하면 f(x)의 값이 감소하므로 x = -1일 때 최댓값을 갖는다. $f(-1) = 2 + \left(\frac{1}{3}\right)^{-2} = 2 + 9 = 11$ 이 므로 최댓값은 11 이다.

8. [출제의도] 로그함수의 그래프 이해하기

함수 $y = \log_2 x$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 1만큼 평행이동한 그래프를 나타내는 함수는 $y = \log_2(x-a)+1$ 이다.

이 함수의 그래프가 점 (9,3)을 지나므로 $3 = \log_2(9-a) + 1$ 에서 $2 = \log_2(9-a)$ 이다. 따라서 9-a = 4 이고 a = 5 이다.

9. [출제의도] 지수함수의 그래프를 이용해서 로그함수 가 포함된 방정식 이해하기

함수 $y=2^x-1$ 의 그래프의 점근선의 방정식이 y=-1이므로 y축과의 교점의 좌표는 (0,-1)이다. 따라서 함수 $y=\log_2(x+k)$ 의 그래프는 점 (0,-1)을 지난다.

그러므로 $-1 = \log_2 k$ 이고 $k = \frac{1}{2}$ 이다.

10. [출제의도] 삼각함수의 그래프 이해하기

주어진 삼각함수 $y=a\sin bx+c$ $(a>0,\ b>0)$ 의 최댓값이 3, 최솟값이 -1이므로

a+c=3, -a+c=-1에서 a=2. c=1이다.

한편, 주어진 그래프에서 삼각함수의 주기가

 $\frac{5}{4}\pi - \frac{1}{4}\pi = \pi$ 이므로 $\frac{2\pi}{b} = \pi$ 이고 b=2이다. 따라서 a+b+c=5이다.

11. [출제의도] 로그의 성질 이해하기

방정식 $8^x = 18$ 에서

 $x = \log_8 18 = \log_{2^3} \! \left(2 \times 3^2 \right) \! = \frac{1}{3} \log_2 \! \left(2 \times 3^2 \right)$

$$=\frac{1}{3} \left(1 + 2 {\log _2}3\right) = \frac{1}{3} + \frac{2}{3} \log _2 3$$

따라서 $k=\frac{2}{2}$ 이다.

12. [출제의도] 지수함수가 포함된 부등식 이해하기

 $2^x = t$ 로 놓으면 t > 0 …… \bigcirc 주어진 부등식은 $t^2 - 10t + 16 \le 0$ 이다.

무어진 부등적은 $t-10t+16 \le 0$ 이다. $(t-2)(t-8) \le 0$ 에서 $2 \le t \le 8$ ····· ①

 \bigcirc , \bigcirc 에 의하여 $2 \le t \le 8$ 이고 $2^x = t$ 이므로

 $2 \le 2^x \le 8$, 즉 $1 \le x \le 3$ 이다. 따라서 모든 자연수 x의 값의 합은 6이다.

13. [출제의도] 로그의 성질을 이용하여 수학 외적 문 제 해결하기

$4.8-1.3=-2.5\log\left(\frac{L}{kL}\right)$ 이므로

 $3.5 = -2.5\log\frac{1}{k}$ 이다. 따라서 $3.5 = 2.5\log k$

이코 $\log k = \frac{7}{5}$ 이므로 $k = 10^{\frac{7}{5}}$ 이다.

14. [출제의도] 지수함수와 로그함수의 역함수 관계 이 해하기

함수 $y=3^x-a$ 의 역함수의 그래프가 두 점 $\left(3,\log_3b\right),\,\left(2b,\log_312\right)$ 를 지나므로

함수 $y=3^x-a$ 의 그래프는 두 점 $\left(\log_3 b,3\right)$, $\left(\log_3 12,2b\right)$ 를 지난다.

따라서 $3 = 3^{\log_3 b} - a$, $2b = 3^{\log_3 12} - a$ 이다.

3=b-a, 2b=12-a에서 a=2이고 b=5이다. 그러므로 a+b=7이다.

15. [출제의도] 삼각함수의 그래프와 직선의 위치 관계 를 찾는 문제 해결하기

 $y = \tan \pi x$ 의 주기는 $\frac{\pi}{\pi} = 1$ 이다.

위의 그림과 같이 $0 \le x \le 2$ 에서 함수 $y = \tan \pi x$ 의 그래프와 직선 $y = -\frac{10}{3}x + n$ 이 서로 다른 세 점에서 만나기 위해서는 직선 $y = -\frac{10}{3}x + n$ 의 x 절편 $\frac{3}{10}n$ 이 2 보다 작거나 같아야 한다. 즉 $\frac{3}{10}n \le 2$ 이므로

 $n \leq \frac{20}{3}$ 이다. 따라서 자연수 n의 최댓값은 6 이다.

16. [출제의도] 로그함수 문제 해결하기

두 양수 a, b에 대하여 $\mathrm{A}(a,\log_2 a)$, $\mathrm{B}(b,\log_2 b)$ 라 하자. 선분 AB 의 중점 $\left(\frac{a+b}{2},\frac{\log_2 a + \log_2 b}{2}\right)$ 가 x

축 위에 있으므로 $\frac{\log_2 a + \log_2 b}{2} = 0$ 이다.

따라서 log₂ab = 0 이고 ab = 1 이다.

선분 AB를 1:2로 외분하는 점

 $\left(\frac{b-2a}{1-2},\, \frac{\log_2 b - 2\log_2 a}{1-2}\right)$ 가 y축 위에 있으므로

 $\frac{b-2a}{1-2}=0$ of $\exists b=2a$ of $\exists b=2a$

따라서
$$a = \frac{\sqrt{2}}{2}$$
, $b = \sqrt{2}$ 이고

$$A\left(\frac{\sqrt{2}}{2}, -\frac{1}{2}\right)$$
, $B\left(\sqrt{2}, \frac{1}{2}\right)$ 이다.

그러므로 선분 AB 의 길이는 $\frac{\sqrt{6}}{2}$ 이다.

17. [출제의도] 삼각함수의 그래프 이해하기

함수 $y=\sin x$ 의 그래프는 직선 $x=\frac{\pi}{2}$ 에 대하여 대칭이므로 함수 $y=\sin x$ 의 그래프와 직선 y=k가 만나는 두 점의 x좌표 lpha , eta에 대하여

$$\frac{\alpha+\beta}{2}\!=\!\frac{\pi}{2}\;,\; \stackrel{<}{\sim}\; \alpha+\beta=\pi\,\mathrm{이므로}\;\;\beta=\pi-\alpha\,\mathrm{이다}.$$

$$\frac{\beta - \alpha}{2} = \frac{(\pi - \alpha) - \alpha}{2} = \frac{\pi}{2} - \alpha \circ | \underline{\underline{\Box}} \underline{\underline{\Box}}$$

$$\sin \frac{\beta - \alpha}{2} = \sin \left(\frac{\pi}{2} - \alpha \right) = \cos \alpha = \frac{5}{7}$$
따라서 $k^2 = \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{5}{7} \right)^2 = \frac{24}{49}$ 이므로 $k = \frac{2\sqrt{6}}{7}$ 이다.

18. [출제의도] 삼각**함수를** 이용하여 부채꼴의 넓이 중 명하기

실각형 OAM 에서
$$\angle$$
 OMA $=\frac{\pi}{2}$, \angle AOM $=\frac{\theta}{2}$ 이므로
$$\overline{\mathrm{MA}} = \boxed{\sin\frac{\theta}{2}}$$

이다. 한편,
$$\angle$$
 OAM $=\frac{\pi}{2}-\frac{\theta}{2}$ 이코 $\overline{\mathrm{MA}}=\overline{\mathrm{MP}}$ 이므로 \angle AMP $=\pi-2 imes\left(\frac{\pi}{2}-\frac{\theta}{2}\right)=\boxed{\theta}$

이다. 같은 방법으로

$$\angle OBM = \frac{\pi}{2} - \frac{\theta}{2}$$
이고 $\overline{MB} = \overline{MQ}$ 이므로

 $\angle {
m BMQ} = \boxed{ heta}$ 이다. 따라서 부채꼴 MPQ의 넓이 S(heta)는

$$S(\theta) = \frac{1}{2} \times \left[\sin \frac{\theta}{2} \right]^2 \times \boxed{\pi - 2\theta}$$
 olth

따라서 (가), (나), (다)에 알맞은 식은 각각 $f(\theta) = \sin\frac{\theta}{2}, \ g(\theta) = \theta \ , \ h(\theta) = \pi - 2\theta \ \ \text{이므로}$ $f\left(\frac{\pi}{3}\right) = \frac{1}{2}, \ g\left(\frac{\pi}{6}\right) = \frac{\pi}{6}, \ h\left(\frac{\pi}{4}\right) = \pi - \frac{\pi}{2} = \frac{\pi}{2}$ 이다. 따라서 $f\left(\frac{\pi}{3}\right) \times g\left(\frac{\pi}{6}\right) = \frac{1}{2} \times \frac{\pi}{6}$ 1

 $\frac{f\left(\frac{\pi}{3}\right) \times g\left(\frac{\pi}{6}\right)}{h\left(\frac{\pi}{4}\right)} = \frac{\frac{1}{2} \times \frac{\pi}{6}}{\frac{\pi}{2}} = \frac{1}{6}$

19. [출제의도] 삼각함수의 정의를 이용하여 삼각함수 의 값 구하는 문제 해결하기

 $\angle APB = \frac{\pi}{2}$ 이므로 $\angle PBA = \frac{\pi}{2} - \theta$ 이코, $\overline{BP} = 2\sin\theta$ 이므로 $\overline{BQ} = 3 - 2\sin\theta$ 이다.

따라서 점 Q의 x좌표는

$$1 + \overline{BQ} \times \cos\left(\frac{\pi}{2} - \theta\right) = 1 + (3 - 2\sin\theta)\sin\theta$$
$$= 1 + 3\sin\theta - 2\sin^2\theta$$
$$= -2\left(\sin\theta - \frac{3}{4}\right)^2 + \frac{17}{8}$$

이므로 $\sin \theta = \frac{3}{4}$ 일 때 최대이다.

그러므로 $\sin^2\theta = \frac{9}{16}$ 이다.

20. [출제의도] 로그함수의 그래프를 이용하여 명제 중 명하기

ㄱ. 곡선 $y = \log_a x$ 와 직선 y = 2가 점 A에서 만나 므로 $\log_a x = 2$ 이고 $x = a^2$ 이다. (참)

L.
$$A(a^2, 2)$$
, $C(a^2, \log_{a+2}a^2)$ 에서

$$1 = \overline{AC} = 2 - \log_{a+2} a^2$$
이므로 $\log_{a+2} a^2 = 1$ 이다.

$$a+2=a^2$$
, $a^2-a-2=0$ 에서 $a=-1$ 또는 $a=2$ 이고

$$a > 1$$
 이므로 $a = 2$ 이다. (참)

$$\vdash$$
 A $(a^2, 2)$, B $((a+2)^2, 2)$, C $(a^2, \log_{a+2} a^2)$,

$$\mathop{\rm D}\nolimits \left((a+2)^2,\, \log_a(a+2)^2\right)$$
에서

 $\log_a(a+2)=t$ 라 하면

$$\begin{split} \frac{S_2}{S_1} &= \frac{\frac{1}{2} \times \overline{\text{AB}} \times \overline{\text{BD}}}{\frac{1}{2} \times \overline{\text{AB}} \times \overline{\text{AC}}} \\ &= \frac{\overline{\text{BD}}}{\overline{\text{AC}}} \\ &= \frac{2 \log_a (a+2) - 2}{2 - 2 \log_{a+2} a} \\ &= \frac{\log_a (a+2) - 1}{1 - \log_{a+2} a} \\ &= \frac{t-1}{1 - \frac{1}{t}} \\ &= \frac{t(t-1)}{t-1} \\ &= t \\ &= \log_a (a+2) \quad (\frac{\text{N}}{1}) \end{split}$$

21. [출제의도] 삼각함수의 그래프를 이용하여 방정식 의 실근의 개수 추측하기

방정식 $\sin^2(4x)-1=0$ 에서 $\sin 4x=1$ 또는 $\sin 4x=-1$ 이다. 따라서 $0< x<\frac{n}{12}\pi$ 에서 한수 $y=\sin 4x$ 의 그래프가 직선 y=1 또는 직선 y=-1 과 만나는 점의 개수가 33 이어야 한다. 한수 $y=\sin 4x$ 의 주기는 $\frac{2\pi}{4}=\frac{\pi}{2}$ 이다.

4 2 $0 < x \le \frac{\pi}{4}$ 에서 함수 $y = \sin 4x$ 의 그래프와 직선 y = 1이 만나는 점의 개수가 1이고, $\frac{\pi}{4} < x \le \frac{\pi}{2}$ 에서 함수 $y = \sin 4x$ 의 그래프와 직선 y = -1이 만나는 점의 개수가 1이므로 $0 < x \le \frac{\pi}{2}$ 에서 함수 $y = \sin 4x$ 의 그래프가 직선 y = 1 또는 직선 y = -1과 만나는 점의 개수가 2

이다. 따라서 $0 < x \le \frac{\pi}{2} \times 16$ 에서 함수 $y = \sin 4x$ 의 그래프가 직선 y = 1 또는 직선 y = -1과 만나는 점의 개수는 $2 \times 16 = 32$ 이다.

그러므로
$$0 < x < \frac{n}{12}\pi$$
에서

방정식 $\sin^2(4x)-1=0$ 의 실근의 개수가 33 이기 위해 $8\pi < x < \frac{n}{12}\pi$ 에서 함수 $y=\sin 4x$ 의 그래프가 두 직선 y=1, y=-1과 만나는 점의 개수가 각각 1, 0이어야 한다.

따라서

$$8\pi + \frac{\pi}{8} < \frac{n}{12}\pi \le 8\pi + \frac{3}{8}\pi$$

이고 $97.5 < n \le 100.5$

이다. 그러므로 구하는 자연수 n의 값은 98, 99, 100이고 합은 297이다.

22. [출제의도] 지수 계산하기

$$2^{\frac{1}{2}} \times 8^{\frac{1}{2}} = 2^{\frac{1}{2}} \times (2^3)^{\frac{1}{2}} = 2^{\frac{1}{2}} \times 2^{\frac{3}{2}} = 2^{\frac{1}{2} + \frac{3}{2}} = 4$$

23. [출제의도] 로그함수가 포함된 방정식 이해하기

방정식 $\log_2(x+5)=4$ 에서 $x+5=2^4$ 이다. x=16-5이므로 x=11이다.

24. [출제의도] 삼각함수 사이의 관계를 이용하여 함숫 값 계산하기

 $\sin^2\theta + \cos^2\theta = 1$ 이므로 $\cos^2\theta = 1 - \sin^2\theta$ 를 대입하면 주어진 방정식은

$$2\cos^2\theta - \sin^2\theta = 2(1 - \sin^2\theta) - \sin^2\theta$$

$$=2-3\sin^2\theta=1$$

이다. 따라서 $\sin^2\theta = \frac{1}{3}$ 이므로 $60\sin^2\theta = 20$ 이다.

25. [출제의도] 삼각함수의 그래프 이해하기

함수 $y = k \sin\left(x + \frac{\pi}{2}\right) + 10 = k \cos x + 10$ 의 그래프

가 점
$$\left(\frac{\pi}{3}, 14\right)$$
를 지나므로

 $14 = k\cos\frac{\pi}{3} + 10$ 이고 $14 = \frac{1}{2}k + 10$ 이다.

따라서 $k\!=\!8$ 이다

26. [출제의도] 로그의 성질을 이용하여 식의 값 구하 는 문제 해결하기

조건 (7)에서 $\log_4 a = 2$ 이므로 a = 16이다.

조건 (나)에서

$$\left(\log_a 5\right)\left(\log_5 b\right) = \frac{\log 5}{\log a} \times \frac{\log b}{\log 5} = \frac{\log b}{\log a} = \log_a b$$

이므로 $\log_a b = \frac{3}{2}$ 이다.

따라서
$$b = a^{\frac{3}{2}} = 16^{\frac{3}{2}} = 4^3 = 64$$
 이므로 $a+b=80$ 이다.

27. [출제의도] 지수함수의 그래프를 이용하여 식의 값 구하는 문제 해결하기

양수 a에 대하여 점 A의 x좌표를 -a라 하면 점 B의 x좌표는 5a이다.

따라서 f(-a)=g(5a)이므로

$$\left(\frac{1}{2}\right)^{-a-1} = 4^{5a-1} \circ | \mathcal{L} |.$$

$$2^{a+1} = 2^{10a-2}$$
이므로

$$a+1=10a-2 \circ | \exists a=\frac{1}{3} \circ | \exists b$$
.

점 (5a,k) 를 y=g(x) 에 대입하면 $k=4^{\frac{2}{3}}$ 이고 $k^3=\left(4^{\frac{2}{3}}\right)^3=4^2=16$ 이다.

28. [출제의도] 지수와 로그 문제 해결하기

집합 A의 자연수인 원소는 다음과 같다.

a	1	4	9	16	25	36	49	64	
\sqrt{a}	1	2	3	4	5	6	7	8	

그리고 집합 *B*의 자연수인 원소는 다음과 같다.

	1 1 6	1 6		р 1 с	
b	3	9	27	81	
$\log_{\sqrt{3}}b$	2	4	6	8	

따라서 n(C)=3이므로 $C=\{2,4,6\}$ 이다. $8\not\in C$ 이므로 자연수 k의 범위는 $36\leq k<81$ 이고 k의 개수는 81-36=45이다.

29. [출제의도] 로그함수의 그래프를 이용하여 로그함 수가 포함된 부둥식 문제 해결하기

x의 값이 증가할 때 f(x)의 값은 감소하므로 조건 (T)와 (L)를 만족하기 위해서는 두 교점이 제2사 분면과 제4사분면에 각각 한 개씩 존재해야 한다.

따라서

-8 < f(0) < 8, f(-8) > 0, f(8) < 0

(i) -8 < f(0) < 8

 $f(0) = 2\log_{1}(-7+k) + 2$ 이므로

 $-8 < 2\log_{\frac{1}{2}}(-7+k) + 2 < 8$ 에서

 $\frac{57}{8} < k < 39$ 이다.

(ii) f(-8) > 0

 $f(-8) = 2\log_{\frac{1}{2}}(-15+k) + 2$ 이므로

 $2\log_{\frac{1}{2}}(-15+k)+2>0$ 에서

k < 17 이다.

(iii) f(8) < 0

 $f(8) = 2\log_{\frac{1}{2}}(1+k) + 2$ 이므로

 $2\log_{\frac{1}{2}}(1+k)+2<0 에서$

k > 1이다.

(i), (ii), (iii)에 의해 $\frac{57}{8} < k < 17$ 이다.

따라서 k의 최댓값 M=16, 최솟값 m=8이므로 M+m=24이다

30. [출제의도] 삼각함수의 그래프를 이용해서 삼각함 수 추측하기

 $\pi < a < 2\pi$ 라 하면 함수 $y = \sin x - \frac{1}{2}$ 의 그래프에서 $\pi < x < a$ 일 때 $\sin x - \frac{1}{2} < -\frac{1}{2}$ 이므로

 $\left|\sin x - \frac{1}{2}\right| > \frac{1}{2}$ 이다. 따라서 조건 (가)를 만족시 키지 않는다

따라서 0 < a ≤ π 이다. ······ ①

(i) k>0인 경우

 $a \leq x \leq 2\pi$ 에서 함수 $y = k \sin x - \frac{1}{2}$ 은 $x = \frac{3}{2}\pi$ 일

때 최솟값 $k\sin\frac{3}{2}\pi - \frac{1}{2} = -k - \frac{1}{2}$ 을 갖는다.

따라서 함수 |f(x)|의 최댓값은 $k+\frac{1}{2}$ 이고,

 $k + \frac{1}{2} > \frac{1}{2}$ 이므로 조건 (가)를 만족시키지 않는다.

(ii) $k\!=\!0$ 인 경우

함수
$$f(x) = \begin{cases} \sin x - \frac{1}{2} & (0 \le x < a) \\ -\frac{1}{2} & (a \le x \le 2\pi) \end{cases}$$
이고

방정식 f(x)=0의 실근의 개수는 2 이하이므로 조건 (나)를 만족시키지 않는다.

(iii) k < 0인 경우

0 < a < π 이면 sin a > 0 이므로

따라서 $|f(a)| > \frac{1}{2}$ 이고 조건 (가)를 만족시키지 않

으므로 \bigcirc 에 의해 $a=\pi$ 이다.

조건 (나)에 의해 방정식 f(x)=0의 서로 다른 실근의 개수가 3이므로 $f(\frac{3}{2}\pi)=0$ 이다.

즉 $k \times (-1) - \frac{1}{2} = 0$ 이므로 $k = -\frac{1}{2}$ 이다.

따라서 구하는 함수 f(x)는

$$f(x) = \begin{cases} \sin x - \frac{1}{2} & (0 \le x < \pi) \\ -\frac{1}{2} \sin x - \frac{1}{2} & (\pi \le x \le 2\pi) \end{cases}$$

이다

함수 $y=\mid f(x)\mid$ 의 그래프와 직선 $y=\frac{1}{4}$ 이 만나는 점의 x좌표를 작은 수부터 크기순으로 $\alpha_1,\;\alpha_2,\;\alpha_3,$ $\alpha_4,\;\alpha_5,\;\alpha_6$ 이라고 하자.

 $\frac{\alpha_1 + \alpha_4}{2} = \frac{\pi}{2}, \quad \frac{\alpha_2 + \alpha_3}{2} = \frac{\pi}{2}, \quad \frac{\alpha_5 + \alpha_6}{2} = \frac{3\pi}{2} \circ] \stackrel{\square}{=} \stackrel{\square}{=} S$ $S = \alpha_5 + \alpha_5 + \alpha_5 + \alpha_5 + \alpha_5 + \alpha_5 = \pi + \pi + 3\pi = 5\pi$

 $20\left(\frac{a+S}{\pi}+k\right) = 20\left(\frac{\pi+5\pi}{\pi} - \frac{1}{2}\right) = 20 \times \frac{11}{2} = 110$