

Apache Spark overview

a unified analytics engine for large-scale data processing

Viet-Trung Tran

School of Information and Communication Technology

Map Reduce: Iterative jobs

• Iterative jobs involve a lot of disk I/O for each repetition

• → Disk I/O is very slow!

I/O landscape

RAM is the new disk

- RAM throughput increasing exponentially
- Disk throughput increasing slowly

Memory-locality key to interactive response times

A unified analytics engine for large-scale data processing

- Better support for
 - Iterative algorithms
 - Interactive data mining
- Fault tolerance, data locality, scalability
- Hide complexites: help users avoid the coding for structure the distributed mechanism.

A unified analytics engine for large-scale data processing

Environments

Data Sources

Memory instead of disk

Spark and Map Reduce differences

	Apache Hadoop MR	Apache Spark
Storage	Disk only	In-memory or on disk
Operations	Map and Reduce	Many transformations and actions, including Map and Reduce
Execution model	Batch	Batch, iterative, streaming
Languages	Java	Scala, Java, Python and R

Apache Spark vs Apache Hadoop

	Hadoop World Record	Spark 100 TB *	Spark 1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400	6592	6080
# Reducers	10,000	29,000	250,000
Rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min
Sort Benchmark Daytona Rules	Yes	Yes	No
Environment	dedicated data center	EC2 (i2.8xlarge)	EC2 (i2.8xlarge)

https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

Interactive shell

```
1. pyspark (java)
Python 2.7.9 (default, Jan 7 2015, 11:49:12)
Type "copyright", "credits" or "license" for more information.
IPython 2.4.0 — An enhanced Interactive Python.
? \rightarrow Introduction and overview of <code>IPython's features.</code> %quickref \rightarrow Quick reference.
              -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
Welcome to
Using Python version 2.7.9 (default, Jan 7 2015 11:49:12)
SparkContext available as sc, HiveContext available as sqlContext.
In [1]:
```

(Scala, Python and Ronly)

Spark execution overview

Resilient Distributed Dataset (RDD)

- RDDs are *fault-tolerant, parallel data structures* that let users explicitly persist *intermediate results in memory*, control their partitioning to optimize data placement, and manipulate them using *a rich set of operators*.
 - RDDs automatically rebuilt on machine failure
- coarse-grained transformations vs. fine-grained updates
 - e.g., map, filter and join) that apply the same operation to many data items at once.

More partitions = more parallelism

RDD creation

- A base RDD can be created 2 ways:
 - Parallelize a collection
 - Read data from an external source (S3, C*, HDFS, etc)

Error, ts, msg1 Warn,	Info, ts, msg8 Warn, ts,	Error, ts, msg3 Info,	Error, ts, msg4 Warn,
ts, msg2	msg2 Info, ts,	ts, msg5	ts, msg9
Error, ts,	msg8	Info, ts,	Error, ts,
msg1		msg5	msg1

logLinesRDD

Parallelize


```
// Parallelize in Scala
val wordsRDD = sc.parallelize(List("fish", "cats", "dogs"))
```

- Take an existing inmemory collection and pass it to SparkContext's parallelize method
- Not generally used outside of prototyping andtesting since it requires entire dataset in memory on one machine


```
# Parallelize in Python
wordsRDD = sc.parallelize(["fish", "cats", "dogs"])
```



```
// Parallelize in Java
JavaRDD<String> wordsRDD = sc.parallelize(Arrays.asList("fish", "cats", "dogs"));
```

Read from text file


```
// Read a local txt file in Scala
val linesRDD = sc.textFile("/path/to/README.md")
```

There are other methods to read data from HDFS, C*, S3, HBase, etc.


```
# Read a local txt file in Python
linesRDD = sc.textFile("/path/to/README.md")
```



```
// Read a local txt file in Java
JavaRDD<String> lines = sc.textFile("/path/to/README.md");
```

Operations on RDD

- Two types of operations: transformations and actions
- Transformations are lazy (not computed immediately)
- Transformations are executed when an action is run
- Persist (cache) distributed data in memory or disk

Driver

Partition >> Task >> Partition

Lineage mechanism

Notes on RDD

- Initial RDD on disks (HDFS, etc)
- Intermediate RDD on RAM
- Fault recovery based on lineage
- RDD operations is distributed

Spark program routine

- Create RDD from external data or create RDD from a collection in driver program
- Lazily transform them into new RDD
- cache() some RDD for reuse
- Perform actions to execute parallel computation and produce results

Transformations (lazy)

map()	<pre>intersection()</pre>	<pre>cartesian()</pre>
flatMap()	<pre>distinct()</pre>	pipe()
filter()	<pre>groupByKey()</pre>	coalesce()
mapPartitions()	reduceByKey()	repartition()
<pre>mapPartitionsWithIndex()</pre>	sortByKey()	<pre>partitionBy()</pre>
sample()	join()	
Sample()	J0111()	• • •
union()	cogroup()	• • •

Actions

```
reduce()
collect()
count()
first()
take()
takeSample()
saveAsSequenceFile()
saveAsObjectFile()

countByKey()
takeSample()
saveToCassandra()
...
```

Some Types of RDDs

- HadoopRDD
- FilteredRDD
- MappedRDD
- PairRDD
- ShuffledRDD
- UnionRDD
- PythonRDD

- DoubleRDD
- JdbcRDD
- JsonRDD
- VertexRDD
- EdgeRDD

- CassandraRDD
 (DataStax)
- GeoRDD (ESRI)
- EsSpark (ElasticSearch)

Hands-on with RDDs

DataFrame

- A primary abstraction in Spark 2.0
 - Immutable once constructed
 - Track lineage information to efficiently re-compute lost data
 - Enable operations on collection of elements in parallel
- To construct DataFrame
 - By parallelizing existing Python collections (lists)
 - By transforming an existing Spark or pandas DataFrame
 - From files in HDFS or other storage system

Using DataFrame

- >>> data = [('Alice', 1), ('Bob', 2), ('Bob', 2)]
- >>> df1 = sqlContext.createDataFrame(data, ['name', 'age'])
- [Row(name=u'Alice', age=1), Row=(name=u'Bob', age=2), Row=(name=u'Bob', age=2)]

Transformations

- Create new DataFrame from an existing one
- Use lazy evaluation
 - Nothing executes
 - Spark saves recipe for transformation source

Transformation	Description
select(*cols)	Selects columns from this DataFrame
drop(<i>col</i>)	Returns a new Dataframe that drops the specific column
filter(func)	Returns a new DataFrame formed by selecting those rows of the source on which <i>func</i> returns true
where(func)	Where is an alias for filter
distinct()	Returns a new DataFrame that contains the distinct rows of the source DataFrame
sort(*cols, **kw)	Returns a new DataFrame sorted by the specified columns and in the sort order specified by $k w$

Using Transformations

- >>> data = [('Alice', 1), ('Bob', 2), ('Bob', 2)]
- >>> df1 = sqlContext.createDataFrame(data, ['name', 'age'])
- >>> df2 = df1.distinct()
- [Row(name=u'Alice', age=1), Row=(name=u'Bob', age=2)]
- >>> df3 = df2.sort("age", asceding=False)
- [Row=(name=u'Bob', age=2), Row(name=u'Alice', age=1)]

Actions

- Cause Spark to execute recipe to transform source
- Mechanisms for getting results out of Spark

Action	Description
show(<i>n</i> , <i>truncate</i>)	Prints the first n rows of this DataFrame
take(n)	Returns the first n rows as a list of Row
collect()	Returns all the records as a list of Row (*)
count()	Returns the number of rows in this DataFrame
describe(*cols)	Exploratory Data Analysis function that computes statistics (count, mean, stddev, min, max) for numeric columns

Using Actions

```
• >>> data = [('Alice', 1), ('Bob', 2)]
• >>> df = sqlContext.createDataFrame(data, ['name', 'age'])
• >>> df.collect()
[Row(name=u'Alice', age=1), Row=(name=u'Bob', age=2)]
• >>> df.count()
• 2
• >>> df.show()
• +----+
• | name | age |
• +----+
• |Alice| 1|
• |Bob | 2|
• +----+
```

Caching

- >>> linesDF = sqlContext.read.text('...')
- >>> linesDF.cache()
- >>> commentsDF = linesDF.filter(isComment)
- >>> print linesDF.count(), commentsDF.count()
- >>> commentsDF.cache()

Spark Programming Routine (Dataframe)

- Create DataFrames from external data or createDataFrame from a collection in driver program
- Lazily transform them into new DataFrames
- cache() some DataFrames for reuse
- Perform actions to execute parallel computation and produce results

Machine Learning Library (MLlib)

- 2 packages
 - spark.mllib
 - spark.ml
- ML algorithms
 - Common learning algorithms such as classification, regression, clustering and collaborative filtering
- Featurization
 - Feature extraction, transformations, dimensionality reduction and selection
- Utilities
 - Linear algebra, statistics, data handling, ...

ML: Transformer

- A Transformer is a class which can transform a DataFrame into another DataFrame
- A Transformer implements transform()
- Examples
 - HashisngTF
 - LogisticRegressionModel
 - Binarizer

ML: Estimator

- An Estimator is a class which can take a DataFrame and return a Transformer
- An Estimator implements fit()
- Examples
 - LogisticRegression
 - StandardScaler
 - Pipeline

ML: Pipeline

 A Pipeline is an estimator that specified as a sequence of stages and each stage can be either estimators or transformers.

ML: PipelineModel

• After a Pipeline.fit() runs, it produces a PipelineModel. This PipelineModel is used at test time.

Architecture

- A master-worker type architecture
 - A driver or master node
 - Worker nodes

• The master send works to the workers and either instructs them to pull data from memory or from hard disk (or from another source like S3 or HDSF)

Architecture(2)

- A Spark program first creates a SparkContext object
 - SparkContext tells Spark how and where to access a cluster
 - The master parameter for a SparkContext determines which type and size of cluster to use

Master parameter	Description
local	Run Spark locally with one worker thread (no parallelism)
local[K]	Run Spark locally with K worker threads (ideal set to number of cores)
spark://HOST:PORT	Connect to a Spark standalone cluster
mesos://HOST:PORT	Connect to a Mesos cluster
yarn	Connect to a YARN cluster

Lifetime of a job in Spark

RDD Objects Task Scheduler Worker **DAG Scheduler** Cluster Threads manager Block manager rdd1.join(rdd2) Launch tasks via Master **Execute tasks** DAG the into Split .groupBy(...) stages of tasks .filter(...) Retry failed and strag-Store and serve blocks gler tasks Submit each stage and its tasks as ready **Build the operator DAG**

Narrow vs. Wide Dependencies

- Two types of transformations
 - Narrow transformation—doesn't require the data to be shuffled across the partitions. for example, Map, filter etc..
 - wide transformation—requires the data to be shuffled for example, reduceByKey etc..

Spark transformations & stages

 The narrow transformations will be grouped (pipe-lined) together into a single stage

Summary

- Hadoop: Scalable and economical data storage and processing
- Spark: a unified analytics engine for large-scale data processing

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Thank you for your attention! Q&A