Lógica para Computação

Consequência e Equivalência da Lógica Proposicional

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

- Introdução
- 2 Consequência Lógica
- Sequivalência Lógica
- Propriedades
- 5 Definição de Conectivos

Tópicos

- Introdução
- 2 Consequência Lógica
- Equivalência Lógica
- Propriedades
- Definição de Conectivos

- Quando podemos dizer que uma fórmula é consequência lógica de um conjunto de fórmulas?
- Exemplo:
 - Premissa 1: "Se o trem chega tarde e não tem táxis na estação então João está atrasado para a reunião."
 - Premissa 2: "João não está atrasado para a reunião."
 - Premissa 3: "O trem chega tarde."
 - Conclusão: "Tem táxi na estação."

- Quando podemos dizer que uma fórmula é consequência lógica de um conjunto de fórmulas?
- Exemplo:
 - Premissa 1: "Se o trem chega tarde e não tem táxis na estação então João está atrasado para a reunião."
 - Premissa 2: "João não está atrasado para a reunião."
 - Premissa 3: "O trem chega tarde."
 - Conclusão: "Tem táxi na estação."

Seja v uma valoração tal que v(t)=T, $v(\neg a)=T$, $v((t \land \neg e) \to a)=T$. Logo, v(a)=F pois $v(\neg a)=T$. Dessa forma, $v(t \land \neg e)=F$ pois $v((t \land \neg e) \to a)=T$ e v(a)=F.

Portanto, $v(\neg e) = F$ pois $v(t \land \neg e) = F$ e v(t) = T.

Logo, v(e) = T.

- Quando todas as fórmulas do conjunto são verdadeiras então a fórmula tem que ser verdadeira
- Temos várias possibilidades de deixar as fórmulas do conjunto verdadeiras

- Quando todas as fórmulas do conjunto são verdadeiras então a fórmula tem que ser verdadeira
- Temos várias possibilidades de deixar as fórmulas do conjunto verdadeiras
- Depende de todas as valorações que definem a semântica do conjunto e da fórmula

Tópicos

- Introdução
- 2 Consequência Lógica
- 3 Equivalência Lógica
- Propriedades
- Definição de Conectivos

Consequência Lógica

Definição

Seja Γ um conjunto de fórmulas e ψ uma fórmula. ψ é consequência lógica de Γ quando para toda valoração v, se $v(\phi) = T$ para todo $\phi \in \Gamma$ então $v(\psi) = T$. Representamos por $\Gamma \models \psi$.

Consequência Lógica

Definição

Seja Γ um conjunto de fórmulas e ψ uma fórmula. ψ é consequência lógica de Γ quando para toda valoração v, se $v(\phi) = T$ para todo $\phi \in \Gamma$ então $v(\psi) = T$. Representamos por $\Gamma \models \psi$.

- Quando uma fórmula ψ não é consequência lógica de um conjunto de fórmulas Γ representamos por $\Gamma \not\models \psi$
- Escrevemos $\phi_1,...,\phi_k \models \psi$ no lugar de $\{\phi_1,...,\phi_k\} \models \psi$ para facilitar

ullet Mostre que $p o q,
eg q \models
eg p$

• Mostre que $p \rightarrow q, \neg q \models \neg p$

Seja v uma valoração qualquer. Suponha que v(p o q) = T e $v(\neg q) = T$.

Logo, v(q) = F pois $v(\neg q) = T$.

Dessa forma, v(p) = F pois $v(p \rightarrow q) = T$.

Portanto, $v(\neg p) = T$.

Dessa maneira, $p \to q, \neg q \models \neg p$.

- Premissa 1: "Se a cidade tem muitos carros, então a cidade é poluída."
- Premissa 2: "A cidade não tem muitos carros."
- Conclusão: "A cidade não é poluída."

• Mostre que $c \rightarrow p, \neg c \not\models \neg p$

Seja v_1 uma valoração tal que $v_1(p) = T$ e $v_1(c) = F$. Temos que $v_1(c \to p) = T$, $v_1(\neg c) = T$ e $v_1(\neg p) = F$. Logo, $c \to p, \neg c \not\models \neg p$.

- "Se José toma vinho e o vinho está ruim, José fica com ressaca"
- "Se José fica com ressaca, ele vai para casa"
- "José se encontra com Maria ou vai para casa mas não ambos"
- Mostre que podemos concluir que "Se José toma vinho e o vinho está ruim, então não se encontra com Maria".
- Mostrar que $(v \land r) \rightarrow m, m \rightarrow c, (e \lor c) \land \neg (e \land c) \models (v \land r) \rightarrow \neg e$

- "Se José toma vinho e o vinho está ruim, José fica com ressaca"
- "Se José fica com ressaca, ele vai para casa"
- "José se encontra com Maria ou vai para casa mas não ambos"
- Mostre que podemos concluir que "Se José toma vinho e o vinho está ruim, então ele perde o encontro com Maria".
- Mostrar que $(v \land r) \rightarrow m, m \rightarrow c, (e \lor c) \land \neg (e \land c) \models (v \land r) \rightarrow \neg e$

```
Suponha que existe valoração v tal que v((v \land r) \rightarrow m) = T, v(m \rightarrow c) = T, v((e \lor c) \land \neg (e \land c)) = T e v((v \land r) \rightarrow \neg e) = F. Pela definição de valoração do \rightarrow temos que v(v \land r) = T e v(\neg e) = F. Pela definição de valoração do \neg temos que v(e) = T. Por v(v \land r) = T e pela definição do \rightarrow temos que v(m) = T. Por v(m) = T e pela definição do \rightarrow temos que v(c) = T. Como v(c) = T e v(e) = T, temos que v((e \lor c) \land \neg (e \land c)) = F. Absurdo pois v((e \lor c) \land \neg (e \land c)) = T e v((e \lor c) \land \neg (e \land c)) = F! Logo, (v \land r) \rightarrow m, m \rightarrow c, (e \lor c) \land \neg (e \land c) \models (v \land r) \rightarrow \neg e.
```

Consequência Lógica

• Será que existe uma forma de automatizar a verificação de $\Gamma \models \psi$?

Consequência Lógica

- Será que existe uma forma de automatizar a verificação de $\Gamma \models \psi$?
- Podemos usar tabelas verdade!
- Se todas as linhas em que **todas** as fórmulas de Γ são verdadeiras temos que ψ também é verdadeira então $\Gamma \models \psi$

ullet Verifique se $p o q,
eg p \models
eg q$

р	q	(p ightarrow q) T	$\neg p$	$\neg q$
Т	Т	Τ	F	F
Т	F	F	F	Т
F		Т	Т	F
F	F	Т	Т	Т

• Verifique se $p \rightarrow q, \neg p \models \neg q$

• Logo, $p \rightarrow q, \neg p \not\models \neg q$.

Caminho Seguro

- Imagine uma ambiente consistindo de células ligadas
- Algumas células possuem armadilhas como buracos
- Você inicia em uma das células
- Uma das células possui a saída

1,4	2,4	3,4	4,4	
1,3	2,3	3,3	4,3	
1,2	2,2	3,2	4,2	
1,1	2,1	3,1	4,1	

Caminho Seguro

- O ambiente é um grid 4x4 de células
- Você começa na célula com rótulo 1,1
- A célula 1,1 não possui buraco
- Células adjacentes não diagonalmente são ligadas
- Você morre se entrar em uma sala com buraco
- Você sente uma brisa nas células ligadas às células com buraco
- Em cada célula é possível ver as passagens para as outras células

- Vamos usar consequência lógica $\Gamma \models \psi$ para concluir que células não possuem buracos
- O conjunto Γ contém todas as informações que são verdadeiras
- ullet A conclusão ψ representa se uma célula está livre de buraco

- Vamos usar consequência lógica $\Gamma \models \psi$ para concluir que células não possuem buracos
- O conjunto Γ contém todas as informações que são verdadeiras
- ullet A conclusão ψ representa se uma célula está livre de buraco
- Atômicas:
 - p_{ij} para $i \in \{1, ..., 4\}$ e $j \in \{1, ..., 4\}$: a sala i,j tem buraco
 - b_{ij} para $i \in \{1, ..., 4\}$ e $j \in \{1, ..., 4\}$: a sala i,j tem vento

- Vamos usar consequência lógica $\Gamma \models \psi$ para concluir que células não possuem buracos
- O conjunto Γ contém todas as informações que são verdadeiras
- ullet A conclusão ψ representa se uma célula está livre de buraco
- Atômicas:
 - p_{ij} para $i \in \{1,...,4\}$ e $j \in \{1,...,4\}$: a sala i,j tem buraco
 - b_{ij} para $i \in \{1,...,4\}$ e $j \in \{1,...,4\}$: a sala i,j tem vento
- A célula 1,1 não possui buraco: ¬p₁₁
- Uma célula tem vento se e somente se alguma célula vizinha tem buraco: $b_{11} \leftrightarrow (p_{12} \lor p_{21})$

- $\Gamma = \{ \neg p_{11}, b_{11} \rightarrow (p_{12} \lor p_{21}), (p_{12} \lor p_{21}) \rightarrow b_{11}, b_{21} \rightarrow (p_{11} \lor p_{22} \lor p_{31}), (p_{11} \lor p_{22} \lor p_{31}) \rightarrow b_{21}, ... \}$
- A célula 1,1 não possui vento
- $\neg b_{11}$ pode ser adicionado em Γ

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK			,-
1,1 A	2,1	3,1	4,1
OK	ок		

- $\Gamma = \{ \neg p_{11}, b_{11} \rightarrow (p_{12} \lor p_{21}), (p_{12} \lor p_{21}) \rightarrow b_{11}, b_{21} \rightarrow (p_{11} \lor p_{22} \lor p_{31}), (p_{11} \lor p_{22} \lor p_{31}) \rightarrow b_{21}, ... \}$
- A célula 1,1 não possui vento
- $\neg b_{11}$ pode ser adicionado em Γ
- $\Gamma \models \neg p_{21}$?
- $\Gamma \models \neg p_{12}$?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,3	2,3	3,3	4,0
1,2	2,2	3,2	4,2
OK			
1,1	2,1	3,1	4,1
A			
ok	ок		
OK.	OK		

- $\Gamma = \{ \neg p_{11}, b_{11} \rightarrow (p_{12} \lor p_{21}), (p_{12} \lor p_{21}) \rightarrow b_{11}, b_{21} \rightarrow (p_{11} \lor p_{22} \lor p_{31}), (p_{11} \lor p_{22} \lor p_{31}) \rightarrow b_{21}, ... \}$
- A célula 1,1 não possui vento
- $\neg b_{11}$ pode ser adicionado em Γ
- $\Gamma \models \neg p_{21}$?
- $\Gamma \models \neg p_{12}$?
- Você vai para a célula 2,1

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ок			
1,1 A	2,1	3,1	4,1
1			
OK	OK		

- Você sente vento na sala 2,1
- Podemos adicionar v₂₁ em Γ

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
	Ι.		
ок			
1,1	2,1 A	3,1 P?	4,1
l v	В		
ок	OK		
	- 514		

- Você sente vento na sala 2,1
- Podemos adicionar v₂₁ em Γ
- $\Gamma \models \neg p_{22}$?
- $\Gamma \models \neg p_{31}$?
- $\Gamma \models p_{31}$?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1	2,1 A	3,1 P?	4,1
v	В		
OK	OK		

- Você sente vento na sala 2,1
- Podemos adicionar v₂₁ em Γ
- $\Gamma \models \neg p_{22}$?
- $\Gamma \models \neg p_{31}$?
- $\Gamma \models p_{31}$?
- Você vai para a 1,2

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1	2,1 A	3,1 P?	4,1
l v	B		
ок	OK		
U.K	JK		

- Você não sente vento na sala 1,2
- Podemos adicionar $\neg v_{12}$ em Γ

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,0	2,0	٥,٥	4,0
OK			
1,2A	2,2	3,2	4,2
ок	ок		
1,1	2,1 B	3,1 P!	4,1
v	v		
OK	OK		

- Você não sente vento na sala 1,2
- Podemos adicionar $\neg v_{12}$ em Γ
- $\Gamma \models \neg p_{22}$?
- $\Gamma \models \neg p_{31}$?
- $\Gamma \models p_{31}$?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
ок			
1,2A	2,2	3,2	4,2
ок	ok		
1,1	2,1 B	3,1 P!	4,1
v	v		
OK	OK		

Tópicos

- Introdução
- Consequência Lógica
- Sequivalência Lógica
- Propriedades
- Definição de Conectivos

• Quando uma fórmula é equivalente a outra?

- Quando uma fórmula é equivalente a outra?
- Depende das valorações que definem a semântica das duas fórmulas
- $p \rightarrow q$ e $\neg q \rightarrow \neg p$ são equivalentes?

Equivalência Lógica

Definição

 ψ é equivalente logicamente a ϕ se para toda valoração v, $v(\phi) = v(\psi)$. Representamos por $\phi \equiv \psi$.

 \bullet Quando duas fórmulas não são equivalentes usamos a notação $\phi\not\equiv\psi$

• Mostre que $\neg(p \land q) \equiv \neg p \lor \neg q$

• Mostre que $\neg(p \land q) \equiv \neg p \lor \neg q$

Prova

Suponha que existe uma valoração v tal que $v(\neg(p \land q)) = T$. $v(\neg(p \land q)) = T$ se e somente se $v((p \land q)) = F$. $v((p \land q)) = F$ se e somente se v(p) = F ou v(q) = F. v(p) = F ou v(q) = F se e somente se $v(\neg p) = T$ ou $v(\neg q) = T$. $v(\neg p) = T$ ou $v(\neg q) = T$ se e somente se $v(\neg p \lor \neg q)$.

• Mostre que $\neg(p \lor q) \not\equiv \neg p \lor \neg q$

• Mostre que $\neg(p \lor q) \not\equiv \neg p \lor \neg q$

Seja v uma valoração tal que v(p) = F e v(q) = T. Temos que $v(\neg(p \lor q)) = F$ mas $v(\neg p \lor \neg q) = T$. Logo, temos uma valoração v tal que $v(\neg(p \lor q)) \neq v(\neg p \lor \neg q)$. Portanto, $\neg(p \lor q) \not\equiv \neg p \lor \neg q$.

- Podemos usar tabelas verdade para verificar se duas fórmulas são equivalentes
- Basta verificar se em todas as linhas os valores verdade das duas fórmulas são iguais

ullet Vamos verificar se $p o q \equiv \neg p o \neg q$

р	q	p o q	$\neg p o \neg q$
Т	Т	Τ	Т
Т	F	F	T
F	Т	Т	F
F	F	Т	T

• Vamos verificar se $p \rightarrow q \equiv \neg p \rightarrow \neg q$

• Logo, $p \to q \not\equiv \neg p \to \neg q$.

Equivalências Importantes

$$\neg \neg p \equiv p$$

•
$$p \rightarrow q \equiv \neg p \lor q$$

•
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

•
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

•
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

•
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Substituição

Podemos usar equivalências para obter outras equivalências:

Exemplo

Temos que $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

Logo, $(p \rightarrow q) \land \neg p \equiv (\neg q \rightarrow \neg p) \land \neg p$.

Exemplo

$$\neg(p \rightarrow q) \land \neg \neg p \equiv \neg(p \rightarrow q) \land p \text{ pois } \neg \neg p \equiv p.$$

$$\neg(p \to q) \land p \equiv \neg(\neg p \lor q) \land p \text{ pois } p \to q \equiv \neg p \lor q.$$

$$\neg(\neg p \lor q) \land p \equiv (\neg \neg p \land \neg q) \land p \text{ pois } \neg(\neg p \lor q) \equiv \neg \neg p \land \neg q.$$

$$(\neg \neg p \wedge \neg q) \wedge p \equiv (p \wedge \neg q) \wedge p.$$

Tópicos

- Introdução
- Consequência Lógica
- 3 Equivalência Lógica
- Propriedades
- Definição de Conectivos

Consequência Lógica e Validade

Definição

Seja ϕ uma fórmula da Lógica Proposicional. ϕ é válida se e somente se $\models \phi$.

Consequência Lógica e Validade

Definição

Seja ϕ uma fórmula da Lógica Proposicional. ϕ é válida se e somente se $\models \phi$.

Prova

 $\models \phi$ sse

Para toda valoração v, se $v(\gamma)=T$ para todo $\gamma\in\emptyset$ então $v(\psi)=T$ sse Para toda valoração v, $v(\psi)=T$ sse

 ϕ é uma fórmula válida.

- Já mostramos que $p \rightarrow q, \neg q \models \neg p$
- Será que $p \rightarrow q \models \neg q \rightarrow \neg p$?

Teorema

Seja Γ um conjunto de fórmulas e ϕ e ψ fórmulas. Temos que

$$\Gamma \cup \{\phi\} \models \psi$$
 se e somente se $\Gamma \models \phi \rightarrow \psi$

Teorema

Seja Γ um conjunto de fórmulas e ϕ e ψ fórmulas. Temos que

$$\Gamma \cup \{\phi\} \models \psi$$
 se e somente se $\Gamma \models \phi \rightarrow \psi$

Prova

 \Rightarrow Seja Γ um conjunto de fórmulas, ϕ e ψ fórmulas. Suponha que $\Gamma \cup \{\phi\} \models \psi$ (*).

Seja v_1 uma valoração qualquer. Suponha que $v_1(\gamma) = T$, para todo $\gamma \in \Gamma$. Temos dois casos:

- 1) $v_1(\phi) = F$. Logo, $v_1(\phi \to \psi) = T$.
- 2) $v_1(\phi) = T$. Por (*) e que $v_1(\phi) = T$ temos que $v_1(\psi) = T$. Logo, $v_1(\phi \to \psi) = T$.

Portanto, $v(\phi \rightarrow \psi) = T$.

Dessa forma, para toda valoração v, se $v(\gamma) = T$, para todo $\gamma \in \Gamma$, então $v(\phi \to \psi) = T$. Logo, $\Gamma \models \phi \to \psi$.

Teorema da Dedução

Seja Γ um conjunto de fórmulas e ϕ e ψ fórmulas. Temos que

$$\Gamma \cup \{\phi\} \models \psi$$
 se e somente se $\Gamma \models \phi \rightarrow \psi$

Prova

 \Leftarrow Seja Γ um conjunto de fórmulas, ϕ e ψ fórmulas. Suponha que Γ $\models \phi \to \psi$.

Seja v_1 uma valoração qualquer tal que $v_1(\gamma) = T$, para todo $\gamma \in \Gamma$ e $v_1(\phi) = T$.

Temos que $v_1(\psi) = T$ pois temos que $v_1(\phi \to \psi) = T$ e $v_1(\phi) = T$. Portanto, para toda valoração v, se $v(\gamma) = T$, para todo $\gamma \in \Gamma$ e $v(\phi) = T$, então $v(\psi) = T$.

Logo, $\Gamma \cup \{\phi\} \models \psi$.

- Para verificar se $p \to q, q \models p$ podemos usar o Teorema e verificar se $p \to q \models q \to p$
- Para verificar se $p \to q \models q \to p$ basta verificar $\models (p \to q) \to (q \to p)$

- Já mostramos que $p \rightarrow q \models \neg q \rightarrow \neg p$.
- O que podemos dizer da fórmula $(p \to q) \land \neg (\neg q \to \neg p)$?

Teorema

 $\{\phi_1,...,\phi_k\}\models\psi$ se e somente se $\phi_1\wedge...\wedge\phi_k\wedge\neg\psi$ não é satisfatível

Teorema

 $\{\phi_1,...,\phi_k\} \models \psi$ se e somente se $\phi_1 \wedge ... \wedge \phi_k \wedge \neg \psi$ não é satisfatível

Prova

 \Rightarrow Suponha que $\{\phi_1,...,\phi_k\} \models \psi$

Logo, para toda v, se $v(\phi_i) = T$ para $i \in \{1, ..., k\}$ então $v(\psi) = T$ (*)

Suponha que $\phi_1 \wedge ... \wedge \phi_k \wedge \neg \psi$ é satisfatível.

Portanto, existe v_1 tal que $v_1(phi_i) = T$ para $i \in \{1, ..., k\}$ e $v_1(\psi) = F$.

Mas por (*), $v_1(\psi) = T$. Absurdo!

Teorema

 $\{\phi_1,...,\phi_k\} \models \psi$ se e somente se $\phi_1 \wedge ... \wedge \phi_k \wedge \neg \psi$ não é satisfatível

Prova

 \Leftarrow Pela contra-positiva, suponha que $\{\phi_1,...,\phi_k\} \not\models \psi$

Logo, existe uma valoração v_1 tal que $v_1(\phi_i) = T$ para $i \in \{1, ..., k\}$ e $v_1(\psi) = F$.

Portanto, $v_1(\phi_1 \wedge ... \wedge \phi_k \wedge \neg \psi) = T$.

Dessa forma, $\phi_1 \wedge ... \wedge \phi_k \wedge \neg \psi$ é satisfatível.

Teorema

 $\{\phi_1,...,\phi_k\} \models \psi$ se e somente se $\phi_1 \wedge ... \wedge \phi_k \wedge \neg \psi$ não é satisfatível

 Podemos usar um algoritmo que checa a satisfatibilidade para testar a consequência lógica

```
1: function CONSCOMSAT(\alpha, \beta)
```

- 2: **if** SATISFATIVEL $(\alpha \land \neg \beta)$ **then**
- 3: **return** False
- 4: return True

Equivalência e Consequência

Teorema

 $\phi \equiv \psi$ se e somente se $\phi \models \psi$ e $\psi \models \phi$

Equivalência e Consequência

Teorema

 $\phi \equiv \psi$ se e somente se $\phi \models \psi$ e $\psi \models \phi$

Prova

 \Rightarrow Suponha que $\phi \equiv \psi$.

Suponha que $\phi \not\models \psi$.

Logo, existe uma valoração v tal que $v(\phi) = T$ e $v(\psi) = F$. Absurdo pois são equivalentes.

Portanto, $\phi \models \psi$.

Análogo para $\psi \models \phi$.

Equivalência e Consequência

Teorema

 $\phi \equiv \psi$ se e somente se $\phi \models \psi$ e $\psi \models \phi$

Prova

 \Leftarrow Suponha que $\phi \models \psi$ e $\psi \models \phi$.

Suponha que existe uma valoração v tal que $v(\phi) \neq v(\psi)$. Temos dois casos:

- 1) $v(\phi) = T$ e $v(\psi) = F$. Absurdo pois $\phi \models \psi$.
- 2) $v(\phi) = F e v(\psi) = T$. Absurdo pois $\psi \models \phi$.

Portanto, para toda valoração v, $v(\phi) = v(\psi)$.

Tópicos

- Introdução
- Consequência Lógica
- 3 Equivalência Lógica
- Propriedades
- Definição de Conectivos

- Definimos fórmulas com os conectivos $\land, \lor, \rightarrow, \neg$
- Apenas os conectivos ∧, ¬ seriam necessários
- Por qual motivo?

- Definimos fórmulas com os conectivos $\land, \lor, \rightarrow, \neg$
- Apenas os conectivos ∧, ¬ seriam necessários
- Por qual motivo?
- Se não temos o ∨ ele deveria ser obtido a partir de ∧, ¬

Teorema

Seja ϕ uma fórmula qualquer. Existe uma fórmula ψ em que só pode ocorrer \wedge e \neg tal que $\phi \equiv \psi$.

• Dizemos que o conjunto de conectivos $\{\land, \neg\}$ é completo

Teorema

Seja ϕ uma fórmula qualquer. Existe uma fórmula ψ em que só pode ocorrer \wedge e \neg tal que $\phi \equiv \psi$.

Prova

Prova por indução em ϕ .

Base: Seja ϕ uma atômica qualquer. Logo, a própria fórmula ϕ é a fórmula equivalente que usa apenas \wedge e \neg .

H.I.: Seja ϕ_1 e ϕ_2 duas fórmulas quaisquer tal que existem ψ_1 e ψ_2 que usam apenas \wedge e \neg e que $\phi_1 \equiv \psi_1$ e $\phi_2 \equiv \psi_2$.

P.I.: Seja $\phi = \neg \phi_1$. Seja uma valoração v qualquer tal que $v(\neg \phi_1) = T$. $v(\neg \phi_1) = T$ se e somente se $v(\phi_1) = F$.

Pela **H.I.**, $v(\phi_1) = F$ se e somente se $v(\psi_1) = F$ e ψ_1 só usa \wedge e \neg . $v(\psi_1) = F$ se e somente se $v(\neg \psi_1) = T$. Ou seja, $\neg \phi_1 \equiv \neg \psi_1$ e $\neg \psi_1$ só usa \wedge e \neg .

Teorema

Seja ϕ uma fórmula qualquer. Existe uma fórmula ψ em que só pode ocorrer \wedge e \neg tal que $\phi \equiv \psi$.

Prova

P.I.: Seja $\phi = \phi_1 \wedge \phi_2$. Seja uma valoração v qualquer tal que $v(\phi_1 \wedge \phi_2) = T$. $v(\phi_1 \wedge \phi_2) = T$ se e somente se $v(\phi_1) = T$ e $v(\phi_2) = T$. Pela **H.I.**, $v(\phi_1) = T$ e $v(\phi_2) = T$ se e somente se $v(\psi_1) = T$ e $v(\psi_2) = T$ em que ψ_1 e ψ_2 só usam \wedge e \neg . $v(\psi_1) = T$ e $v(\psi_2) = T$ se e somente se $v(\psi_1 \wedge \psi_2) = T$. Ou seja,

 $\phi_1 \wedge \phi_2 \equiv \psi_1 \wedge \psi_2$ em que $\psi_1 \wedge \psi_2$ só usa \wedge e \neg .

Teorema

Seja ϕ uma fórmula qualquer. Existe uma fórmula ψ em que só pode ocorrer \wedge e \neg tal que $\phi \equiv \psi$.

Prova

P.I.: Seja $\phi = \phi_1 \lor \phi_2$. Seja uma valoração v qualquer tal que $v(\phi_1 \lor \phi_2) = F$.

 $v(\phi_1 \lor \phi_2) = F$ se e somente se $v(\phi_1) = F$ e $v(\phi_2) = F$.

Pela **H.I.**, $v(\phi_1) = F$ e $v(\phi_2) = F$ se e somente se $v(\psi_1) = F$ e

 $v(\psi_2) = F$ em que ψ_1 e ψ_2 só usam \wedge e \neg .

 $v(\psi_1) = F$ e $v(\psi_2) = F$ se e somente se $v(\neg(\neg\psi_1 \land \neg\psi_2)) = F$. Ou seja, $\phi_1 \lor \phi_2 \equiv \neg(\neg\psi_1 \land \neg\psi_2)$ em que $\neg(\neg\psi_1 \land \neg\psi_2)$ só usa \land e \neg .

Teorema

Seja ϕ uma fórmula qualquer. Existe uma fórmula ψ em que só pode ocorrer \wedge e \neg tal que $\phi \equiv \psi$.

Prova

P.I.: Seja $\phi = \phi_1 \rightarrow \phi_2$. Seja uma valoração v qualquer tal que $v(\phi_1 \rightarrow \phi_2) = F$. $v(\phi_1 \rightarrow \phi_2) = F$ se e somente se $v(\phi_1) = T$ e $v(\phi_2) = F$. Pela **H.I.**, $v(\phi_1) = T$ e $v(\phi_2) = F$ se e somente se $v(\psi_1) = T$ e $v(\psi_2) = F$ em que ψ_1 e ψ_2 só usam \wedge e \neg . $v(\psi_1) = T$ e $v(\psi_2) = F$ se e somente se $v(\neg(\psi_1 \land \neg \psi_2)) = F$. Ou seja, $\phi_1 \rightarrow \phi_2 \equiv \neg(\psi_1 \land \neg \psi_2)$ em que $\neg(\psi_1 \land \neg \psi_2)$ só usa \wedge e \neg .

- Também é possível definir novos conectivos a partir dos existentes
- Vamos definir um conectivo ternário representado por ⊗
- $\nu(\circledast(\phi_1,\phi_2,\phi_3))=T$ se e somente se pelo menos dois são verdadeiros
- Como seria a tabela verdade deste conectivo?
- Que fórmula é equivalente a $\circledast(\phi_1, \phi_2, \phi_3)$?