$\tau_{1}^{#2} + \alpha$	$\tau_{1}^{#1} + \alpha$	$\sigma_{1^{-}}^{\#2} \dagger^{\alpha}$	$\sigma_{1^{-}}^{*1} \dagger^{lpha}$	$\tau_{1+}^{#1} + \alpha \beta$	$\sigma_{1+}^{*2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$		$\sigma_{1^{+}lphaeta}^{\#1}$
0	0	0	0	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\sigma_{1^+ lpha eta}^{\# 2}$
0	0	0	0	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$ au_{1}^{\#1}{}_{lphaeta}$
0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^- ~lpha}^{\# 1}$
0	0	0	0	0	0	0	$\sigma_{1^{-}\alpha}^{\#2}$
0	0	0	0	0	0	0	$ au_{1^{-}\alpha}^{\#1}$
0	0	0	0	0	0	0	$\tau_{1^-\alpha}^{\#2}$

Added source term: $\int f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$	$\frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_\lambda^{\theta} - 4r_3\partial^\beta\omega_\lambda^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\prime} - \frac{1}{2}r_3\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial^\lambda\omega^{\theta\kappa}_{\kappa} +$	$\frac{1}{3}t_2 \omega_{\theta'\kappa} \partial^{\kappa} f'^{\theta} + \frac{2}{3}t_2 \omega_{\theta\kappa'} \partial^{\kappa} f'^{\theta} - \frac{1}{6}t_2 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda\alpha} - \frac{1}{6}t_2 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} +$	$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_2\ \omega_{,\theta\kappa}\partial^{\kappa}f^{,\theta} - \frac{2}{3}t_2\ \omega_{,\kappa\theta}\partial^{\kappa}f^{,\theta} - \frac{1}{2}t_2\omega_{,\kappa\theta}\partial^{\kappa}f^{,\theta} + \frac{1}{2}t_$	$r_3 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} -$	$r_5 \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ -\frac{1}{2}} r_3 \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_\kappa \omega^{\kappa \lambda \theta}_{\ -r_5} \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_\kappa \omega^{\kappa \lambda \theta}_{\ +}$	$\frac{1}{2}r_3\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \theta}\partial_\kappa\omega^{\theta\kappa\lambda} - r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \theta}\partial_\kappa\omega^{\theta\kappa\lambda} - \frac{1}{2}r_3\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} +$	$\frac{2}{3}t_2\;\omega_{_{K}\lambda}^{_{K}\lambda}\;\omega_{_{K}\lambda}^{^{\lambda}}+\frac{1}{3}t_2\;\omega_{_{K}\lambda}^{\lambda}\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Lagrangian density

Total #:	$\tau_{2+}^{\#1}\alpha\beta == 0$	$\sigma_2^{\#1\alpha\beta\chi} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\tau_1^{\#1\alpha} == 0$	$\tau_1^{\#2\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	$\frac{\tau_{0+}^{\#1} == 0}{}$	$\sigma_{0+}^{\#1} == 0$	SO(3) irreps	Source constraints
25	5	5	3	3	3	ω	1	1	1	#	

$f_{1^{-}}^{#2} \dagger^{\alpha}$	$f_{1^{-}}^{#1} +^{\alpha}$	$\omega_{1^{-}}^{#2} +^{\alpha}$	$\omega_{1^{-}}^{\sharp_{1}}\dagger^{lpha}$	$\frac{c^{*1}}{1^{+}} + \alpha \beta$	$J_{1+}^{#2} + \alpha \beta$	$y_{1+}^{#1} + \alpha \beta$	
0	0	0	0	$-\frac{1}{3}i\sqrt{2}kt_2$	$\frac{\sqrt{2} t_2}{3}$	$\frac{*1}{1^{+}} + \alpha^{\beta} k^{2} (2r_{3} + r_{5}) + \frac{2t_{2}}{3}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	$-\frac{1}{3} \bar{l} k t_2$	<u>t2</u> 3	$\frac{\sqrt{2} t_2}{3}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	$\frac{k^2t_2}{3}$	<u>ī kt2</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	$f_{1}^{\#1}{}_{lphaeta}$
0	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0	0	0	$\omega_{1^-lpha}^{*1}$
0	0	0	0	0	0	0	$\omega_{1^-\alpha}^{\#2}$
0	0	0	0	0	0	0	$\omega_{1^-\alpha}^{\#2} f_{1^-\alpha}^{\#1} f_{1^-\alpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#2}$

	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\sharp 1}$ †	0	0	0	0
$ au_{0}^{\#1} +$	0	0	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{t_2}$

$\omega_{0^{+}}^{\#1} f_{0^{+}}^{\#1} f_{0^{+}}^{\#2} \omega_{0^{-}}^{\#1}$							
$\omega_{0^+}^{\#1}\dagger$	0	0	0	0			
$f_{0^{+}}^{#1}\dagger$	0	0	0	0			
$f_{0}^{#2}$ †	0	0	0	0			
$\omega_{0}^{\#1}$ †	0	0	0	t_2			

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}\dagger^{lphaeta\chi}$	0	0	0

	$\sigma_{2}^{\#1}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{#1} \dagger^{lphaeta\chi}$	0	0	0

Quadratic pole $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$ Pole residue: Polarisations: 2

Unitarity conditions $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)