Лекция 28 от 19.04.2016

Ортогонализация

Пусть V — векторное пространство над полем F размерности n, и $e = (e_1, \ldots, e_n)$ — его базис. Пусть также $Q \colon V \to F$ — квадратичная форма, $\beta \colon V \times V \to F$ — соответствующая билинейная функция и $B = B(\beta, e)$ — ее матрица.

$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \vdots \\ b_{21} & b_{22} & b_{23} & \vdots \\ b_{31} & b_{32} & b_{33} & \vdots \\ \dots & \dots & \dots & \ddots \end{pmatrix}$$

Рассмотрим B_i — левые верхние $i \times i$ -подматрицы. Например, $B_1 = (b_{11}), B_2 = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ и так далее.

Матрица B_i — это матрица ограничения билинейной функции β на подпространство, натянутое на векторы (e_1, \ldots, e_i) . Назовем верхним угловым минором число $\delta_i = \det(B_i)$. Также будем считать, что $\delta_0 = 1$.

Определение. Базис @ называется ортогональным (по отношению κ β), если $\beta(e_i, e_j) = 0$ для любых $i \neq j$. В ортогональном базисе матрица κ вадратичной формы имеет канонический ε вид.

Теорема (Метод ортогонализации Грама — Шмидта). Предположим, что $\delta_i \neq 0$ для всех i. Тогда существует единственный базис $e' = (e'_1, \dots, e'_n)$ в V такой, что

 $1. \,\, \mathrm{e}' - \mathit{ортогональный}$

2.
$$e'_1 = e_1,$$

 $e'_2 \in e_2 + \langle e'_1 \rangle,$
 $e'_3 \in e_3 + \langle e'_1, e'_2 \rangle,$
...
 $e'_n \in e_n + \langle e'_1, \dots, e'_{n-1} \rangle$

3.
$$Q(e_i') = \frac{\delta_i}{\delta_{i-1}}$$
 для всех i .

Доказательство. Индукция по n. База для n=1 очевидна.

Теперь пусть всё доказано для всех k < n. Докажем для n. По предположению индукции, существует единственный базис $(e'_1, e'_2, \ldots, e'_n)$ с требуемыми свойствами.

Наблюдение: $\langle e_i, \dots, e_n \rangle = \langle e'_i, \dots, e'_n \rangle$.

Ищем e'_n в виде $e'_n = e_n + \lambda_1 e'_1 + \ldots + \lambda_{n-1} e'_{n-1}$. Тогда для всех i:

$$\beta(e'_n, e'_i) = \beta(e_n, e'_i) + \sum_{j=1}^{n-1} \lambda_j \beta(e'_j, e'_i)$$

Чтобы выполнялись требуемые условия, необходимо, чтобы эта сумма равнялась нулю.

Заметим, что последнее слагаемое обращается в нуль при $i \neq j$ по свойству выбранного базиса. Тогда остается только следующее:

$$0 = \beta(e_n, e'_i) + \lambda_i \beta(e'_i, e'_i) = \beta(e_n, e'_i) + \lambda_i Q(e'_i) = \beta(e_n, e'_i) + \lambda_i \underbrace{\frac{\delta_i}{\delta_{i-1}}}_{\neq 0}.$$

Выбирая $\lambda_i = -\frac{\beta(e_n, e_i')}{\beta(e_i', e_i')}$, получаем нужное равенство и однозначность разложения. Таким образом, условия 1 и 2 выполнены.

Проверим условие 3. Пусть C — матрица перехода от \mathfrak{e} к \mathfrak{e}' . Тогда легко понять, что C — верхнетреугольная c единицами на главной диагонали. Значит, матрица $B' = C^T B C$ тоже диагональна. Заметим также, что C_i (та самая верхняя $i \times i$ -подматрица) является матрицей перехода от (e_1, \ldots, e_i) к (e'_1, \ldots, e'_i) . Тогда:

$$B_i' = C_i^T B_i C_i \Rightarrow \det B_i' = 1 \cdot \det(B_i) \cdot 1 = \delta_i.$$

Но поскольку $B'=\begin{pmatrix}Q(e_1')&&0\\&\ddots&\\0&&Q(e_n')\end{pmatrix}$, то $\delta_n=Q(e_1')\cdot\ldots\cdot Q(e_n')$. Отсюда и получаем, что

$$\frac{\delta_n}{\delta_{n-1}} = Q(e'_n).$$

Пример. Пусть $V = \mathbb{R}^2$. Тогда $e_1' = e_1$, а e_2' получается, если спроецировать вектор e_2 на прямую, ортогональную e_1 . Если $V = \mathbb{R}^3$, то e_3' является проекцией на прямую, ортогональную плоскости (e_1', e_2') .

Теорема Якоби и критерий Сильвестра

Рассмотрим следствия данной теоремы для случая, когда $F = \mathbb{R}$.

Теорема (Якоби). Пусть $\delta_i \neq 0$ для всех i. Тогда $\operatorname{rk} Q = n$ и $i_-(Q)$ равен числу перемен знака последовательности $\delta_0, \delta_1, \ldots, \delta_n$ (напомним, что $\delta_0 = 1$).

Доказательство. Применим процесс ортогонализации. Получим базис (e'_1,\ldots,e'_n) , в котором $Q(y_1,\ldots,y_n)=\frac{\delta_1}{\delta_0}y_1^2+\ldots+\frac{\delta_n}{\delta_{n-1}}y_n^2$, где y_1,\ldots,y_n — координаты некоторого вектора в данном

базисе. Если для некоторого i выполняется, что $\frac{\delta_i}{\delta_{i-1}} < 0$, то значит, $\operatorname{sgn} \delta_i \neq \operatorname{sgn} \delta_{i-1}$. Что и означает, что отрицательный индекс равен количеству перемен знака в последовательности $\delta_0, \delta_1, \dots, \delta_n$.

Что касательно определителя, то условие $\operatorname{rk} Q = n$ равносильно условию $\det B \neq 0$. Но $\det B = \delta_n \neq 0$, а значит, все верно.

Теорема (Критерий Сильвестра). Q > 0 тогда и только тогда, когда $\delta_i > 0$ для всех i.

Доказательство.

[←] Следует из предыдущей теоремы.

 $[\Rightarrow]$ Докажем, что $\delta_i = \det(B_i) > 0$. Действительно, B_i — это матрица ограничения $Q|_{(e_1,\dots,e_i)}$. Оно так же будет строго положительным, следовательно, существует матрица $C_i \in M_n(\mathbb{R})$, $\det(C_i) \neq 0$, такая, что $C_i^T B C_i = E$. Но тогда $\det C_i^T \det B_i \det C_i = \det E = 1$. Следовательно,

$$\det B_i = \frac{1}{(\det C_i)^2} > 0$$
, что и требовалось.

Теорема.
$$Q < 0 \Leftrightarrow \begin{cases} \delta_i < 0, & 2 \nmid i \\ \delta_i > 0, & 2 \mid i \end{cases}$$

Доказательство. Применяя критерий Сильвестра для B(Q, e) = -B(-Q, e), получаем требуемое.

Евклидовы пространства. Основные понятия

Определение. Евклидово пространство — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметрическая билинейная функция (\cdot, \cdot) , которую мы будем называть скалярным произведением.

Пример.

1.
$$\mathbb{R}^n$$
, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $(x,y) = \sum_{i=1}^n x_i y_i$.

2.
$$\mathbb{E} = C[0,1], (f,g) = \int_0^1 f(x)g(x)dx, (f,f) = \int_0^1 f^2(x)dx > 0.$$

Замечание. Важно отметить, что евклидово пространство можно определить только над полем \mathbb{R} .

Определение. Пусть $x \in \mathbb{E}$. Тогда длиной вектора называют величину $|x| = \sqrt{(x,x)}$.

Очевидно, что $|x| \ge 0$, причем |x| = 0 тогда и только тогда, когда x = 0.

Предложение (Неравенство Коши-Буняковского). Пусть $x, y \in \mathbb{E}$. Тогда $|(x,y)| \leq |x||y|$, причём знак равенства возможен тогда и только тогда, когда x и y пропорциональны.

Доказательство.

1. x,y пропорциональны, т.е. $x = \lambda y$ для некоторого λ . Тогда:

$$|(x,y)| = |(x,\lambda x)| = \lambda |(x,x)| = |x|\lambda |x| = |x||y|.$$

2. x,y линейно независимы. Тогда они будут базисом своей линейной оболочки. Тогда матрица B билинейной функции $(\cdot,\cdot)\big|_{\langle x,y\rangle}$ равна:

$$B = \begin{pmatrix} (x,x) & (x,y) \\ (y,x) & (y,y) \end{pmatrix}$$

Так как $\det B > 0$, то $(x,x)(y,y) - (x,y)^2 > 0$. Следовательно:

$$|(x,y)|^2 < |x|^2 |y|^2$$

 $|(x,y)| < |x||y|$

Определение. Углом между векторами x и y называют такой α , что $\cos \alpha = \frac{(x,y)}{|x||y|}$.

Рассмотрим систему векторов (v_1, \ldots, v_k) , где $v_i \in \mathbb{E}$.

П

Определение. Матрица Грама системы v_1, \ldots, v_k это

$$G(v_1, \ldots, v_k) := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

Предложение.

- 1. $\det G(v_1,\ldots,v_k) \geqslant 0$
- 2. $\det G(v_1,\ldots,v_k)=0$ тогда и только тогда, когда v_1,\ldots,v_k линейно зависимы.

Доказательство.

- 1. v_1, \ldots, v_k линейно независимы. Следовательно, матрица $G(v_1, \ldots, v_k)$ является матрицей ограничения (\cdot, \cdot) на $\langle v_1, \ldots, v_k \rangle$, базисом в котором является (v_1, \ldots, v_k) . А значит, $\det G(v_1, \ldots, v_k) > 0$.
- 2. v_1, \ldots, v_k линейно зависимы. Значит, существуют коэффициенты $(\lambda_1, \ldots, \lambda_k) \neq (0, \ldots, 0)$ такие, что $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$. Если обозначить матрицу Грама $G(v_1, \ldots, v_k)$ за G, то тогда

$$\lambda_1 G_{(1)} + \ldots + \lambda_k G_{(k)} =$$

$$= (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_1) + (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_2) + \ldots + (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_k) =$$

$$= 0 + 0 + \ldots + 0$$

To есть строки линейно зависимы и $\det G = 0$.