

AIRBNB LISTING ANALYSIS

- DEEPIKA REDDYGARI, SIHANG LIU, PRUDHVI CHEKURI

INTRODUCTION

We scraped and consolidated listings data from various cities in the United States on the Inside Airbnb website, providing a comprehensive analysis of rental properties across different urban centers.

- One of the primary goals of the Inside Airbnb project is to raise awareness about the effects of short-term rentals, particularly on residential communities.
- Through thorough analysis and transparent reporting, the project aims to shed light on the effects of Airbnb listings, including their impact on housing availability, affordability, and neighborhood dynamics.

DATA OVERVIEW

The Inside Airbnb project provides data and advocacy about Airbnb's impact on residential communities.

Total records: 288,000+

76 variables

(id, host_id, host_response_time, host_response_rate, host_acceptance_rate, host_is_superhost, host_identity_verified, neighbourhood_cleansed, latitude, longitude, price,number_of_reviews, number_of_reviews_ltm, number_of_reviews_l30d, instant_bookable, calculated_host_listings_count, City, State, review_scores_rating, reviews_per_month...)

DATA PREPROCESSING

EXPLORATORY DATA ANALYSIS

What features significantly influence the Airbnb listing price?

Does the location have more impact on the listing price?

Listings Heatmap

Graph representing price distribution

Graph representing review score distribution

Neighborhoods with more than 1000 listings

Graph representing the price of costliest neighborhood in each city

Price vs. Categorical Variables

Correlation matrix of numerical variables

Feature Selection

Q3. Can we predict the price of a listing based on its latitude, longitude, and other relevant variables?

Linear Regression

Results for Linear Regression:

Mean Absolute Error for Training data: 96.989

Root Mean Squared Error for Training data: 150.985

Mean Absolute Error for Test data: 96.521

Root Mean Squared Error for Test data: 151.531

Decision tree

Results for DecisionTreeRegressor:

Mean Absolute Error for Training data: 0.745

Root Mean Squared Error for Training data: 9.735

Mean Absolute Error for Test data: 93.341

Root Mean Squared Error for Test data: 166.536

Decision Tree Regressor Tuned

Results for DecisionTreeRegressor:

Mean Absolute Error for Training data: 70.190

Root Mean Squared Error for Training data: 114.868

Mean Absolute Error for Test data: 82.186

Root Mean Squared Error for Test data: 134.973

Random Forest Regressor

Results for RandomForestRegressor:

Experiment: Random Forest Regressor

Mean Absolute Error for Training data: 26.502

Root Mean Squared Error for Training data: 44.907

Mean Absolute Error for Test data: 70.627

Root Mean Squared Error for Test data: 118.827

Random Forest Regressor Tuned

Results for RandomForestRegressor:
Mean Absolute Error for Training data: 68.225
Root Mean Squared Error for Training data: 111.822
Mean Absolute Error for Test data: 76.338

Root Mean Squared Error for Test data: 124.851

XGBRegressor

Results for XGBRegressor:

Mean Absolute Error for Training data: 68.570

Root Mean Squared Error for Training data: 109.174

Mean Absolute Error for Test data: 75.034

Root Mean Squared Error for Test data: 120.527

LightGBM

Experiment: LightGBM

Mean Absolute Error for Training data: 59.545

Root Mean Squared Error for Training data: 94.597

Mean Absolute Error for Test data: 70.797

Root Mean Squared Error for Test data: 115.615

Q4. How can techniques like imputation, outlier detection, hyperparameter tuning improve the performance of the models?

How can outlier removal improves the model?

Hyperparameter Tuning using Optuna

```
def objective(trial, X train, y train, X test, y test):
    param = {
        'objective': 'rmse',
        'random state': 42,
        'n estimators': 1000,
        'booster': 'gbtree',
        'eta': trial.suggest float('eta', 0.01, 0.1),
        'subsample': trial.suggest_float('subsample' 0.1, 1),
        'colsample_bytree': trial.s suggest_int: Any ample_bytree', 0.1, 1),
         'num_parallel_tree': trial.suggest_int('num_parallel_tree', 1, 20),
         'min child weight': trial.suggest int('min child weight', 1, 100),
         'gamma': trial.suggest float('gamma', 0, 50),
        'max depth': trial.suggest_int('max_depth', 1, 10),
        'learning rate': trial.suggest float('learning rate', 0.01, 0.2),
        'tree method': 'gpu hist',
        'verbosity': 0
    model = LGBMRegressor(**param, early stopping rounds=100)
    model.fit(X_train, y_train,eval_set=[(X_test,y_test)])
    preds = model.predict(X test)
    rmse = mean squared error(y test, preds, squared=False)
    return rmse
study = optuna.create_study(direction='minimize')
study.optimize(lambda trial: objective(trial, X_train, y_train, X_test, y_test), n_trials=100, n_jobs = -1, show_progress_bar=True)
```

Final LightGBM Result

Results for LGBMRegressor:

Mean Absolute Error for Training data: 32.589

Root Mean Squared Error for Training data: 44.029 Mean Absolute Error for Test data: 38.233

Root Mean Squared Error for Test data: 51.584

K-Fold Cross Validation Results

Fold1:38.454 Fold2:38.481

Fold3:38.156

Fold4:38.248

Fold 5:38.263

Average MAE: 38.520

Conclusions

- Location (latitude, longitude), # of accommodations, # of beds and bathrooms, city, state, room type are the significant variables identified in EDA.
- Models for predicting the price.
- How can the techniques like outlier detection and model based imputation can improve the performance of the model.

Thank you

Questions?