### Practical Peridynamics - HW 1

Brandon Lampe

August 26, 2015

#### 1 Chapter 1: Excercises 1.1 through 1.6

## 1.1 Show why mass density is undefined on the boudnary of a homogeneous material body.

Density is the ratio of an amount of matter having mass  $(\Delta m)$  to the volume that matter occupies  $(\Delta V)$ . Let P represent the center of mass (centroid) of the volume  $\Delta V$ . When density is defined as  $\lim_{\Delta V \to 0} (\Delta m/\Delta V)$ , this definition is physically limited (in an engineering sense) to a minimium  $\Delta V$  with a characteristic length that is greater than the mean free path of the molecules which compose the homogenous body. Therefore, when P is chosen on the boundary of a homogenous body  $\Delta V$  will encompass a volume that is not a part of that homogenous body. This will then provide a value of  $\rho$  that is not representative of the homogenous body. Therefore,  $\rho$  is only meaningful when  $\Delta V$  is of an order greater than that of the mean free path and greater than the characteristic length of  $\Delta V$  from the boundary.



Figure 1: Point on the boundary of a homogenous body where  $\rho$  is undefined.

## 1.2 Describe and sketch three physical situations in which the traction vector is undefined at a point.

Tractions are typically undefined as a result of the  $\Delta A$  being undefined, the following lists some situations in which this is so and Figure 2 illustrates these:

- A) At a corner: the area which the traction is applied is said to be uniquely described by the unit normal to that area; however, at an edge a unique normal vector does not exist and therefore the traction is not defined.
- B) At a crack front: the force applied by the traction encompasses a very small area, which may result in an unrealistically high magnitude of the traction. Additionally, the assumption of continuity is no longer valid as new faces are formed.
- C) Point of material seperation: again, the force applied by the traction encompasses a very small area, which may result in an unrealistically high magnitude of the traction. Additionally, the assumption of continuity is no longer valid as new faces are formed.



Figure 2: Examples of undefined tracstions.

# 1.3 Describe and sketch three physical situations in which the strain component at a point $\epsilon_{xx}$ is undefined.

Below are situations where strain components are undefined and (at least a partial) reason why (shown in Figure 2):

- A) At a corner:  $\Delta X$  is undefined at the boundary of a body.
- B) At a crack front: the area  $\Delta X$  is discontinuous and therefore not differentiable. This results in a strong formulation of strain being undefined and thus requiring a weak formulation.
- C) Point of material seperation: again, strains are discontinuous and the area  $\Delta X$  is vanishingly small, which result in strain being undefined.

# 1.4 Determine the maximum permitted load for the beam shown in Fig. 1.2 when the maximum shear stress is 15,000 psi.

- a) Work for this problem is shown on the following pages. Calculated solution for the maximum value of P was 90,000 lb.
- b) Results were calculated using Abaqus. Results (in Figure 3) show the maximum allowable shear stress  $(J_2)$  was obtained when the applied load P = 7,250 psi. Maximum stress was observed at the edges near the two reaction forces on the lower boundary of the beam with the following material parameters:
  - Young's modulus =  $30 * 10^6 psi$
  - Poisson's ratio = 0.3



Figure 3: Contours of the maximum shear stress results on the deformed beam.

• c) The problem statement defines the load and reaction to be "concentrated". A concentrated force implies the force will be applied over a negligible area. Because of this, the magnitude of the resulting traction will be infinite (undefined) for any nonzero force vector. Therefore, the permitted load (P) in this situation is zero.

#### 1.5 What is the load at which the glass plate with a hole in it will break?

A solution was obtained from literature where the stress concentration factor (K) at the boundary of the whole was defined as:

$$K = 3.000 - 3.140(d/D) + 3.667(d/D)^2 - 1.527(d/D)^3$$

Where d is the thickness of the plate and D is the height of the plate. This definition of K yielded a value of 2.875 for this problem. Therefore, the load at which the glass plate will break was calculated as:

$$P_{max} = \sigma_{ult} A/K = 10,000 * (6 * 0.25)/2.875 = 5.217 \text{ kip}$$

# 1.6 When the two cracks are each 0.5 inches in length, what is the maximum stress in the plate?

A FEA was not completed for this problem.