MAE0217 - Estatística Descritiva

10. semestre de 2018 - Lista 2

 Os dados apresentados na tabela abaixo referem-se a instantes nos quais o centro de controle operacional de estradas rodoviárias recebeu chamados solicitando algum tipo de auxílio em duas estradas, num determinado dia.

Estrada 1	12:07:00 AM	12:58:00 AM	01:24:00 AM	01:35:00 AM	02:05:00 AM
	03:14:00 AM	03:25:00 AM	03:46:00 AM	05:44:00 AM	05:56:00 AM
	06:36:00 AM	07:26:00 AM	07:48:00 AM	09:13:00 AM	12:05:00 PM
	12:48:00 PM	01:21:00 PM	02:22:00 PM	05:30:00 PM	06:00:00 PM
	07:53:00 PM	09:15:00 PM	09:49:00 PM	09:59:00 PM	10:53:00 PM
	11:27:00 PM	11:49:00 PM	11:57:00 PM		
Estrada 2	12:03:00 AM	01:18:00 AM	04:35:00 AM	06:13:00 AM	06:59:00 AM
	08:03:00 AM	10:07:00 AM	12:24:00 PM	01:45:00 PM	02:07:00 PM
	03:23:00 PM	06:34:00 PM	07:19:00 PM	09:44:00 PM	10:27:00 PM
	10:52:00 PM	11:19:00 PM	11:29:00 PM	11:44:00 PM	

- (a) Construa um histograma para a distribuição de frequências de chamados em cada uma das estradas.
- (b) Calcule os intervalos de tempo entre as sucessivas chamadas e descreva-os, para cada uma das estradas, utilizando medidas resumo gráficos do tipo *boxplot*. Existe alguma relação entre o tipo de estrada e o intervalo de tempo entre as chamadas?
- (c) Por intermédio de um gráfico QQ, verifique se a distribuição da variável intervalo de tempo entre as chamadas em cada estrada é compatível com um modelo normal. Faça o mesmo para um modelo exponencial. Compare as distribuições de frequências correspondentes às duas estradas.
- 2. Sejam x_i e y_i , i = 1, 2, ..., n valores observados das variáveis X e Y, respectivamente. Suponha que $y_i = a + bx_i$, em que a e b são constantes conhecidas.
 - (a) Encontre a relação entre as médias, as variâncias e os desvios padrão de *X* e de *Y*. (Você deve trabalhar com as expressões que definem essas medidas resumo).

- (b) Uma amostra das temperaturas de um forno industrial em 80 dias consecutivos gerou uma média igual a 800°F e um desvio padrão igual a 9°F. Utilize a relação encontrada no item anterior para expressar a média e o desvio padrão em °C.
- 3. Medidas da velocidade do vento (em km/h) tomadas em um aeroporto durante os primeiros quinze dias de um mês no ano passado são: 22,2; 61,1; 13,0; 27,8; 22,2; 7,4; 7,4; 7,4; 20,4; 20,4; 20,4; 11,1; 13,0; 7,4; 14,8. Observe o valor atípico presente nesses dados, que na realidade ocorreu devido a uma forte tempestade no segundo dia aferição. Sem uso do computador,
 - (a) calcule todas medidas de posição e dispersão discutidas em classe;
 - (b) construa gráficos ramo-e-folhas e boxplot para esses dados.
- 4. Este exercício é inspirado em uma análise estatística realizada no Centro de Estatística Aplicada (CEA) do IME/USP. Para resolvê-lo, você precisa baixar o arquivo MAE217_2018-reacao.xls. O principal objetivo do estudo é avaliar o efeito do treinamento de certo tipo de movimento, a ser realizado pela mão dominante dos participantes (mão direita ou esquerda - ambidestros foram descartados). Os 20 participantes, sem prévio treino com relação ao movimento, foram submetidos a certo estímulo e seu tempo de resposta foi anotado (em ms). A fim de obter valores basais (fase préprática), inicialmente cada participante repetiu o procedimento 5 vezes. Após um certo período de tempo pré-fixado, o participante voltou e entrou em fase de prática, quando pode repetir o movimento por 8 vezes. Nessa fase, ele recebia informações luminosas cujo objetivo era melhorar o seu reflexo. Após um novo período de tempo pré-fixado, o participante voltou e realizou mais 5 repetições do movimento, sem o auxílio luminoso (fase pós-prática). O arquivo apresenta as seguintes informações:

Coluna	Rótulo	Conteúdo	
1	Id	Identificação do participante	
2	Sexo	M-masculino / F-Feminino	
3	Idade	Idade (anos)	
4	Mão Dom.	Mão dominante – D:direita / E:esquerda	
5 - 9	Bloco1-5	Tempos de reação (ms) na fase pré-prática	
10 - 17	Bloco1-8	Tempos de reação (ms) na fase de prática	
18 – 22	Bloco1-5	Tempos de reação (ms) na fase pós-prática	

Note que antes de iniciar as análises, você precisará editar o arquivo para eliminar linhas e/ou colunas redundantes.

Usando o computador,

- (a) construa gráficos do tipo *box-plot* (um ao lado do outro) para cada uma das 3 fases. O que pode ser dito?
- (b) Repita o item anterior para cada sexo. Existem diferenças nos padrões observados, para cada sexo?
- (c) Repita o item anterior para cada mão dominante. O que pode ser dito?
- (d) Utilizando os coeficientes de assimetria (Bowley e amostral) e curtose, verifique como se comportam as medidas feitas no Bloco 5 da fase pós-prática. Você consideraria o modelo Normal adequado para esses dados?
- (e) Responda à pergunta do item anterior analisando agora um gráfico QQ para o modelo Normal.