# Bases de datos dinámicas en redes MLP

#### La base de datos

bd\_ent=





Función de transferencia Primer orden (A,b,c diferentes de cero)

| X   | у    |
|-----|------|
| 0   | 0    |
| 0.4 | 0    |
| 0.6 | 0.12 |
| 0.8 | 0.17 |
| 1.0 | 0,25 |
| 0.5 | 0.38 |
| 0.6 | 0.45 |
| 0.7 | 0,61 |
| 0.8 | 0.68 |

Tiempo de muestreo (0.1 segundos)

¿Dimensiones de la base de Datos original ?

| t   | X   | У    |
|-----|-----|------|
| 0   | 0   | 0    |
| 0.1 | 0.4 | 0    |
| 0.2 | 0.6 | 0.12 |
| 0.3 | 0.8 | 0.17 |
| 0.4 | 1.0 | 0,25 |
| 0.5 | 0.5 | 0.38 |
| 0.6 | 0.6 | 0.45 |
| 0.7 | 0.7 | 0,61 |
| 0.8 | 0.8 | 0.68 |

### Estructura de MLP para bases dinámicas

De acuerdo con Proakis & Manolakis (1996), los sistemas dinámicos reales poseen la estructura que se muestra en la Figura 1, y pueden ser modelados usando la siguiente expresión:

$$y_{p}(k) = f(y_{p}(k-1), y_{p}(k-2), ..., y_{p}(k-n), u(k-1), u(k-2), ..., u(k-n))$$
(1)

donde  $y_p$  es la salida del sistema a estimar,  $y_p(k-1), ..., y_p(k-n)$  son las salidas retardadas del sistema y u(k), ..., u(k-n) son las entradas al sistema presente y retardadas, respectivamente.



Figura 1. Sistema dinámico.

Se tiene entonces que el sistema depende exclusivamente de las entradas y salidas en instantes anteriores. De acuerdo a las características del sistema, se cuenta con un modelo general para la identificación haciendo uso de las redes neuronales artificiales (Bose & Liang, 1996), el cual se muestra en la Figura 2. La red neuronal recibe las entradas del sistema, realiza su estimación, y entonces el algoritmo de aprendizaje toma la salida real del sistema y la salida de la red neuronal para determinar el error y ajustar adecuadamente los parámetros de la red neuronal.



Figura 2. Modelo general de identificación de sistemas con redes neuronales artificiales (RNA).

$$y_{p}(k) = f(y_{p}(k-1), y_{p}(k-2), ..., y_{p}(k-n), u(k-1), u(k-2), ..., u(k-n))$$
(1)

¿De acuerdo a la fórmula anterior, como debemos organizar los datos de nuestra base tomada del sistema?

¿De que depende la elección del número de retardos en la señal?



$$y_p(k) = f(y_p(k-1), y_p(k-2), ..., y_p(k-n), u(k-1), u(k-2), ..., u(k-n))$$
(1)



| Uk-1 | Uk-2 | Yk-1 | Yk-2 | Yk   |
|------|------|------|------|------|
| 0.4  | 0    | 0    | 0    | 0.12 |
| 0.6  | 0.4  | 0.12 | 0    | 0.17 |
| 0.8  | 0.6  | 0.17 | 0.12 | 0.25 |
| 1.0  | 0.8  | 0,25 | 0.17 | 0.38 |
| 0.5  | 1.0  | 0.38 | 0,25 | 0.45 |
| 0.6  | 0.5  | 0.45 | 0.38 | 0,61 |
| 0.7  | 0.6  | 0,61 | 0.45 | 0.68 |

| Uk-1 | Uk-2 | Yk-1 | Yk-2 |                   | Yk   |
|------|------|------|------|-------------------|------|
| 0.4  | 0    | 0    | 0    | $\longrightarrow$ | 0.12 |
| 0.6  | 0.4  | 0.12 | 0    | ——→               | 0.17 |
| 0.8  | 0.6  | 0.17 | 0.12 | Red neuronal      | 0.25 |
| 1.0  | 0.8  | 0,25 | 0.17 | > MLP             | 0.38 |
| 0.5  | 1.0  | 0.38 | 0,25 |                   | 0.45 |
| 0.6  | 0.5  | 0.45 | 0.38 |                   | 0,61 |
| 0.7  | 0.6  | 0,61 | 0.45 |                   | 0.68 |
|      |      |      |      |                   | 0.08 |

#### #2. Propuesta de normalización

```
(x – xmin)
Xnueva= ------
(xmax-xmin)
```

Este cálculo se hace por variable, es decir para normalizar los datos se escoge el máximo y el minimo por variables (xmin, xmax) y se aplica a cada valor del vector correspondiente.

## Normalizar la base de datos....

| X   | У    |
|-----|------|
| 0   | 0    |
| 0.4 | 0    |
| 0.6 | 0.12 |
| 0.8 | 0.17 |
| 1.5 | 0,25 |
| 0.5 | 0.38 |
| 0.6 | 0.45 |
| 0.7 | 0,61 |
| 0.8 | 0.68 |

| X   | У    |
|-----|------|
| 0   | 0    |
| 0.4 | 0    |
| 0.6 | 0.12 |
| 0.8 | 0.17 |
| 1.5 | 0,25 |
| 0.5 | 0.38 |
| 0.6 | 0.45 |
| 0.7 | 0,61 |
| 0.8 | 0.68 |
| 1.3 | 0.2  |

| xnuevo                                | ynuevo                 |
|---------------------------------------|------------------------|
| (0- <b>0)/</b><br>( <b>1.5-0)=0</b>   | 0                      |
| 0.4- <b>0)/</b><br>( <b>1.5-0)=</b>   | 0                      |
| 0.6- <b>0)/</b><br>( <b>1.5-0)=</b>   | 0.12                   |
| 0.8- <b>0)/</b><br>( <b>1.5-0)=</b>   | 0.17                   |
| (1.5- <b>0)/</b><br>( <b>1.5-0)=1</b> | 0,25                   |
| 0.5- <b>0)/</b><br>( <b>1.5-0)=</b>   | (0.38-0)/(0.68-<br>0)= |
| 0.6                                   | 0.45                   |
| 0.7                                   | 0,61                   |
| 0.8                                   | 0.68                   |
| 1.3                                   | 0.2                    |
|                                       |                        |

Nuevo dato =



Tratamiento ante una nueva entrada.

$$y_{p}(k) = f(y_{p}(k-1), y_{p}(k-2), ..., y_{p}(k-n), u(k-1), u(k-2), ..., u(k-n))$$
(1)



| Uk-1 | Uk-2    | Yk-1  | Yk-2  | Yk    |
|------|---------|-------|-------|-------|
| 0    | 0       | 0 _   | 0     | 0.001 |
| 0    | 0       | 0.001 | 0     | 0.002 |
| 0    | <u></u> | 0.002 | 0.001 | 0.05  |
|      |         |       |       |       |
|      |         |       |       |       |
|      |         |       |       |       |
|      |         |       |       |       |