Hyogeun Oh BOAZ Data Analysis Dept. 19th ohg3417@gmail.com

EfficientNet/Det & Advanced Object Detection

2023.02.21

Table of Content

- EfficientNet
- ☐ EfficientDet
- ☐ Cascade R-CNN
- □ Deformable Convolution Networks (DCN)

EfficientNet

- □ 기존 연구의 한계점
 - ConvNet가 더 깊어짐에 따라 높은 정확도를 획득할 수 있음
 - 하지만 실제 real-time 적용에 한계점이 존재하기 때문에 빠르고 작은 모델을 위해 EfficientNet 제안
- ☐ Efficient in Object Detection?
 - Width Scaling
 - Depth Scaling
 - Resolution Scaling
 - Compound Scaling

Accuracy & Efficiency

- **그** Accuracy: 최적의 d, w, r 모색
- ☐ Efficiency: 모델의 최대 memory 및 flops 한계 설정

$$\max_{d,w,r} Accuracy(\mathcal{N}(d,w,r))$$

$$s.t.$$
 $\mathcal{N}(d, w, r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d \cdot \hat{L}_i} \left(X_{\langle r \cdot \hat{H}_i, r \cdot \hat{W}_i, w \cdot \hat{C}_i \rangle} \right)$

 $Memory(\mathcal{N}) \leq target_memory$

 $FLOPS(\mathcal{N}) \leq target_flops$

Observation

□ Observation 1

- \blacksquare 네트워크의 d, w, r 증가에 따라 정확도 향상
- 하지만 일정 수치 이상 증가 시 증가 폭 감소

☐ Observation 2

■ ConvNet 스케일링 과정에서 d, w, r의 최적 균형을 모색해야함

Methodology & Results

☐ Step 1

- Ø = 1 고정
- Small grid search 기반 최적 α, β, γ 모색
- α = 1.2, β = 1.1, γ = 1.15 under constraint of $\alpha^2 \cdot \beta^2 \cdot \gamma^2 \approx 2$

☐ Step 2

- **■** α, β, γ 고정
- Ø를 통한 scale up

Figure 8. Scaling Up EfficientNet-B0 with Different Methods.

EfficientDet

- □ 기존 연구의 한계점
 - 속도를 개선하기 위해 다양한 시도가 이루어졌지만 정확도 저조

Efficient Multi-Scale Feature Fusion

- □ Conventional Multi-Scale Feature Fusion
 - FPN
 - PANet
 - NAS-FPN
- ☐ Proposed Method: BiFPN (Bi-directional Feature Pyramid Network)
 - Resolution를 고려하기 위해 학습 가능한 가중치를 정의한 weighted feature fusion 방법
 - 효율성 향상을 위해 cross-scale connections 방법 이용

Model Scaling

- □ 더 좋은 성능을 위해서는 더 큰 Backbone 모델을 사용하여 Detector의 크기를 키우는 것이 일반적
- □ 최적의 정확도와 효율을 지닌 모델을 개발하기 위해 EfficientNet과 같은 Compound Scaling 제안
 - Backbone: EfficientNet B0 ~ B6
 - BiFPN Network: 네트워크의 width와 depth를 compound 계수에 따라 증가

$$W_{bifpn} = 64 \cdot (1.35^{\circ}), \qquad D_{bifpn} = 3 + \emptyset$$

■ Box/Class Prediction Network: Width는 고정, depth는 식에 따라 증가

$$D_{box} = D_{class} = 3 + [\emptyset/3]$$

■ Input Image Resolution: 식과 같이 선형적 증가

$$R_{input} = 512 + \emptyset \cdot 128$$

Results

□ 기존 모델 대비 동일 조건에서 압도적 성능 보장

Cascade R-CNN

□ 기존 R-CNN

- Pipeline
 - 1. ConvNet: 입력 이미지에 대해 feature map 생성
 - 2. RPN Network: Rol 추출
 - 3. Rol Pooling: Rol를 feature map에 projection 후 최종 head에 입력될 feature map 생성
 - 4. Classification Head & Box Coordinate Head: 해당 Rol에 대해 객체의 종류 분류 및 위치 예측
- Dataset
 - RPN: IoU threshold 기준으로 positive/negative 분류
 - Head Network: Rol threshold 기준으로 positive/negative 분류

Performance

- □ Localization Performance
 - 높은 IoU threshold에서 학습된 model이 더 좋은 결과
- Detection Performance
 - AP의 IoU threshold 증가 시 0.6, 0.7로 학습된 model의 성능 우위
- → 학습되는 IoU에 따라 대응 가능한 IoU box가 다름

Methodology

□ Faster R-CNN

- I: Input image
- conv: Backbone network
- H0: Result of RPN
- H1: Result of pooling
- C0: Classification result (Background vs. Object)
- C1: Object prediction result
- ☐ Iterative Bbox at Inference
 - B1: Result of Head
 - B2: B1을 다시 projection한 Rol로부터 head를 통과한 결과
 - Inference 단계에서 head로 예측된 Bbox를 다시 Rol proejcetion
 - RPN에 비해 더 정확한 박스로부터 head를 통과할 수 있지만 큰 성능 향상 X

C1 B1 B0 C1 B1 C2 B2 C3 B3 I conv I local C3 B3 (a) Faster R-CNN (b) Iterative BBox at inference (c)

- □ Integral Loss
 - IoU threshold가 다른 classifier 학습
 - Loss: Classifer들의 loss 합
 - Inference: Classifier들의 confidence 평균
 - 동일한 RPN 결과를 사용하여 성능 향상 X
- ☐ Cascade R-CNN
 - 여러 개의 Rol head 학습
 - 각 head의 IoU threshold를 다르게 설정
 - 최종 결과: C3, B3

Results

- □ Bbox Pooling 반복 수행 시 성능 향상 (Iterative)
- □ loU Threshold가 다른 Classifier가 반복될 시 성능 향상 (Integral)
- □ IoU Threshold가 다른 Rol Head를 Cascade로 쌓을 시 성능 향상 (Cascade)

	AP	AP_{50}	AP ₆	o A	AP ₇₀	AP	80	AP ₉₀
FPN+ baseline	34.9	57.0	51.9) .	43.6	29	.7	7.1
Iterative BBox	35.4	57.2	52.1		44.2	30.	.4	8.1
Integral Loss	35.4	57.3	52.5	5	44.4	29	.9	6.9
Cascade R-CNN	38.9	57.8	53.4	, ,	46.9	35.	.8	15.8
•	backbone		AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
YOLOv2 [29]	DarkNet-19		21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [25]	ResNet-101		31.2	50.4	33.3	10.2	34.5	49.8
RetinaNet [24]	ResNet-101		39.1	59.1	42.3	21.8	42.7	50.2
Faster R-CNN+++ [18]*	ResNet-101		34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [23]	ResNet-101		36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN w FPN+ (ours)	ResNet-101		38.8	61.1	41.9	21.3	41.8	49.8
Faster R-CNN by G-RMI [19]	Inception-ResNet-v2		34.7	55.5	36.7	13.5	38.1	52.0
Deformable R-FCN [5]*	Aligned-Inception-ResNet		37.5	58.0	40.8	19.4	40.1	52.5
Mask R-CNN [16]	ResNet-101		38.2	60.3	41.7	20.1	41.1	50.2
AttractioNet [11]*	VGG16+Wide ResNet		35.7	53.4	39.3	15.6	38.0	52.7
Cascade R-CNN	ResNet-101		42.8	62.1	46.3	23.7	45.5	55.2

Deformable Convolution Networks (DCN)

- □ Convolution Neural Network (CNN)의 한계점
 - 일정 패턴을 지니기 때문에 geometric transformations에 한계 존재
 - 기존 해결 방법
 - Geometric augmentation
 - Geometric invariant feature engineering
- Deformable Convolution
 - 기존의 고정된 사이즈인 정사각형 convolution을 벗어나는 연산

(a) 기존의 convolution 연산 (b) 랜덤 오프셋 추가 (c) 4 방향 확장 오프셋 추가 (d) 45도 회전 오프셋 추가

Architecture & Results

Figure 2: Illustration of 3×3 deformable convolution.

(a) standard convolution

(b) deformable convolution

usage of deformable	DeepLab		class-aware RPN		Faster l	R-CNN	R-FCN	
convolution (# layers)	mIoU@V (%)	mIoU@C (%)	mAP@0.5 (%)	mAP@0.7 (%)	mAP@0.5 (%)	mAP@0.7 (%)	mAP@0.5 (%)	mAP@0.7 (%)
none (0, baseline)	69.7	70.4	68.0	44.9	78.1	62.1	80.0	61.8
res5c (1)	73.9	73.5	73.5	54.4	78.6	63.8	80.6	63.0
res5b,c (2)	74.8	74.4	74.3	56.3	78.5	63.3	81.0	63.8
res5a,b,c (3, default)	75.2	75.2	74.5	57.2	78.6	63.3	81.4	64.7
res5 & res4b22,b21,b20 (6)	74.8	75.1	74.6	57.7	78.7	64.0	81.5	65.4

Thank you

