Kevin Brosnan

University of Limerick

13th October, 2015

Interested in understanding the entire distribution of the data

What does this actually tell us?

Quantile Regression helps to complete the picture

For each given quantile of interest, the quantile coefficients are estimated by the objective function

$$\hat{eta} = \mathop{\mathsf{argmin}}_{eta \in \Re^{
ho}} \sum
ho_{ au} (y_i - x'eta)$$

where ρ_{τ} is a check function

Estimating the quantiles independently of one another results in **Crossing** Quantiles - shown in the next slide

8 / 16

Crossing Quantiles - this shouldn't be happening!

9 / 16

Crossing Quantiles - this shouldn't be happening!

Crossing Quantiles - this shouldn't be happening!

The objective function defined in my proposed solution is exactly the same as was previous but with additional constraints as follows:

$$\hat{eta} = \operatorname*{argmin}_{eta \in \Re^p} \sum
ho_ au(y_i - x'eta)$$

$$\text{subject to} \left\{ \begin{array}{ll} -\hat{\beta}_{(\tau_i)} \geq -\hat{\beta}_{(\tau_{i+1})} + \epsilon, & \text{if } 0 < \tau < 0.5, \\ \text{no constraints}, & \text{if } \tau = 0.5, \\ \hat{\beta}_{(\tau_i)} \geq \hat{\beta}_{(\tau_{i-1})} + \epsilon, & \text{if } 0.5 < \tau < 1 \end{array} \right.$$

This removes the issue of Crossing Quantiles

Existing R Implementation

Non-Crossing Quantiles - Proposed Solution

Existing R Implementation

Non-Crossing Quantiles - Proposed Solution

13 / 16

Existing R Implementation

Non-Crossing Quantiles - Proposed Solution

Advantages

- Removes issue of crossing quantiles
- The quantile profiles are consistent throughout the data
- Computational effort is similar to that of existing methods
- Easy to implement

Advantages

- Removes issue of crossing quantiles
- The quantile profiles are consistent throughout the data
- Computational effort is similar to that of existing methods
- Easy to implement

Disadvantages

- Have not tested on simulated data
- Have not tested on large data sets

Thanks for listening!