AI2611 CheatSheet

Haoyu Zhen

2022年6月20日

Preface

Introduction

- My Machine Learning Lecture Notes (更丰富的版本,适合学习这门课): Self-Learning/CS229/MyNotes/ML.pdf
- LaTeX code of the CheatSheet is available at: SJTU-Course-Stack/AI2611/CheatSheet
- CheatSheet 为 2022 版 (非常少较草率, 当然有部分超纲, 不适合用于学习)。

Ackonwledgement

- CS229, Stanford University. (Foundation, Kernel Method, GMM)
- CS231n, Stanford University. (Deep Learning)
- CS189, UC Berkeley. (Random Forest)
- Understanding Machine Learning, Cambridge University. (Linear Regression, KNN, SVM, K-means, PCA)
- AI2611, Shanghai Jiao Tong University. (中文部分, Spectral, Dimensionality Reduction)

§ Foundation

监督学习、无监督学习(聚类、降维)独立同分布;最小化范化误差

Metric	Formula	Interpretation
准确率 (Accuracy)	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
査准率 (Precision)	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are
通过率、查全率 (Recall Sensitivity)	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
假阳率 (FPR)	$\frac{\text{FP}}{\text{TN} + \text{FP}}$	
F1 score	$\frac{2\text{TP}}{$ 样例总数 + TP - TN	Hybrid metric useful for unbalanced classes
F_{β} score	$\frac{(1 + \beta^2) \times \text{Pre} \times \text{Rec}}{\beta^2 \times \text{Pre} + \text{Rec}}$	Precision and Recall

在不同的阈值下可以得到不同的 TPR 和 FPR 值,将它们在图中绘制出来,并 依次连接起来就得到了 ROC 曲线,阈值取值越多,ROC 曲线越平滑。AUC: ROC 曲线下的面积

模型选择: 留出法 (hold-out, 保持数据分布的一致性,多次重复划分取平均值)、 交叉验证法 (留一法, 10-fold, 更接近期望评估的模型, 但计算量巨大; 测试集 只包含一个数据, 无法分层采样, 测试误差率区别较大;)、自助法 (bootstrap, 有放回采样, 训练集中数据存在重复,适合小规模数据集)

误差-方差分解

 $E(f; D) = bias^2 + variance + error^2$

$$= (\bar{f}(x) - y)^{2} + \mathbb{E}_{D}[f(x; D) - \bar{f}(x)] + \mathbb{E}_{D}[(y_{D} - y)^{2}]$$

§ Linear Regression

Loss function: $\mathcal{L}_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\boldsymbol{x}) - \boldsymbol{y})^2$. Solve $A\boldsymbol{w} = \boldsymbol{b}$ where $A \stackrel{def}{=} \sum \boldsymbol{x}_i \boldsymbol{x}_i^T = XX^T$ and $\boldsymbol{b} \stackrel{def}{=} \sum y_i \boldsymbol{x}_i = X^T \boldsymbol{y}$.

Theorem 1 $\omega = (X^T X)^{-1} X^T y$. 优点: single-shot 算法, 易于实现; 缺点: 伪逆计算量大没可能导致数值不稳定(奇异矩阵)。

Theorem 2 Eigenvalue decomposition: $A = VD^+V^T$ where D is a diagnonal matrix and V is an orthonormal matrix. Define D^+ to be the diagonal matrix: $D^+_{i,i} = 0$ if $D_{i,i} = 0$ otherwise $D^+_{i,i} = 1/D_{i,i}$. Then, $A\hat{\boldsymbol{w}} = \boldsymbol{b}$ where $\hat{\boldsymbol{w}} = VD^+V^T\boldsymbol{b}$.

Remark 1 Gradient Descent. 优点: 收敛快,易于实现; 缺点: 批量更新,可伸缩性问题。

概率解释: $y|x;\theta \sim \mathcal{N}(0,\sigma)$. Loss function 为最大似然的结果,分类器为 E[y|x]。

Ridge (岭) Regression

 $R_{
m egularization}(w)=\lambda\|w\|^2$ and $m{w}=(2\lambda mI+A)^{-1}$. λ 适当 增大可以減少方差,但会提高误差。

Lasso ($\mathbf{x}\mathbf{\hat{z}}$) Regression $R(w) = \lambda ||w||_1^2$. SPARSE

§ KNN 超参数: k 和 $d(x_1,x_2)$. 计算量大, The "Curse of Dimensionality", $m \geq \left(4c\sqrt{d}/\varepsilon\right)^{d+1}$. 低维度 + 边界非线性 + 密度高时使 用.

§ **贝叶斯** 先验: $\Pr(\omega_j)$, 后验: $\Pr(\omega_j|x)$, Likelihood: $\Pr(x|\omega_j)$ and $\operatorname{Post} = \operatorname{likely} \times \operatorname{Prior}/\operatorname{Pr}(x)$ where ω_j 表示类别, x 表示数据(特征)。

最小化采取 α_i 行动的风险: $R(\alpha_i|x) = \sum_{j=1}^{j=c} \lambda(\alpha_i|\omega_j) \Pr(\omega_j|x)$, 其中 λ 表示在自然状态为 ω_j 的情况下因采取行动 α_i 而产生的损失。If $R(\alpha_1|x) < R(\alpha_2|x)$, then we adopt α_1 (ω_1). Usually,

$$\lambda(\alpha_i,\omega_j) = 1 - \delta_{ij} \quad \text{and} \quad R(\alpha_i|x) = 1 - \Pr(\omega_i|x)$$

参数估计

$$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \mathcal{L}(\theta) = \sum_{k=1}^{n} \log \Pr(x_k | \theta).$$

§ Random Forest

Definition 1 (Entropy)

$$\begin{split} H(Y) &= -\sum_k \Pr(Y=k) \log \Pr(Y=k) \\ H(Y|X_j) &= \Pr\Big(X_j=1\Big) H(Y|X_j=1) \\ &+ \Pr\Big(X_j=0\Big) H(Y|X_j=0) \end{split}$$

Mutual information between X_j and Y.

$$\max I(X_j;Y) \stackrel{\triangle}{=} H(Y) - H(Y|X_j)$$
 Gini impurity/index: $G(Y) = 1 - \sum_k \Pr^2(Y=k)$

Random Forest

 ${\bf Ensemble\ method+randomized+reduce\ correlation}$

- bagging (bootstrap aggregating): sample some data points uniformly with replacement, and use these as the training set.
- feature randomization: sample some number k < d of features as candidates to be considered for this split.

s LDA

Theorem 3 $S_w^{-1}S_bw=\lambda w, w$ 为最大特征值所对应的特征向量。

Remark 2 多类问题最多可以降至 M-1 维.

Calinski-Harabaz index:

$$S_b = \sum_{j=1}^{M} N_j (\mu_j - \mu) (\mu_j - \mu)^T$$

$$S_w = \sum_{j=1}^{M} \sum_{i \in C_j} (x_i - \mu_j) (x_i - \mu_j)^T$$

§ Kernel Method $K(x, z) \triangleq \langle \phi(x), \phi(z) \rangle$

Remark 3 Kernel is a corresponding to the feature map ϕ as a function that maps $\mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$.

Definition 2 (Gaussian kernel)

$$K(x, z) = \exp\left(-\frac{\|x - z\|^2}{2\sigma^2}\right).$$

The gaussian kernel is corresponding to an **infinite** dimensional feature mapping ϕ . Also, ϕ lives in Hilbert space.

8 SVM

$$\underset{(w,b):\|w\|=1}{\operatorname{arg \, max}} \min_{i \in [m]} \left| w^T x^i + b \right| \text{ s.t. } \forall i, y^i \left(w^T x^i + b \right) \ge 1.$$

$$\underset{(w,b):\|w\|=1}{\operatorname{arg \, max}} \min_{i \in [m]} y^i \left(w^T x^i + b \right)$$

$$(1)$$

$$(w_0, b_0) = \underset{(w,b)}{\arg\min} \frac{1}{2} \|w\|^2 \quad \text{s.t. } \forall i, y^i \Big(w^T x^i + b \Big) \ge 1.$$
 Output: $\hat{w} = w_0 / \|w_0\|, \hat{b} = b_0 / \|w_0\|$

Output: $w = w_0 / \|w_0\|, v = v_0 / \|w_0\|$

Support Vector: $g(x) = \pm 1$. $\gamma \sim \frac{1}{\|w\|}$ Soft-SVM and Norm Regularization

$$\frac{\min_{w,b,\xi} \left(\lambda \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_i\right)}{\sum_{i=1}^{m} \xi_i}$$

s.t.
$$\forall i, \ y^i (w^T x^i + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0$$

Output: w, b

Definition 3 (hinge loss)

$$l^{\text{hinge}}((w, b), (x, y)) = \max \{0, 1 - yw^T x + b\}.$$

Now we just need to optimize $\lambda \|w\|^2 + \mathcal{L}^{\text{hinge}}(w,b)$. 松弛变量几何意义: 对越界数据惩罚力度。

§ K-means 收敛: 递减 + 有下界。

前辈 将采样数据从某一分组分类到另一分组,目的是使得损失函数 min $J=\sum_{i=1}^c J_i=\sum_{x\in H_i}\|x-\mu_i\|^2$ 。 \hat{x} 从类别 i 移至 j,更新公式为: $m_j^*=m_j+\frac{\hat{x}-\mu_j}{n_j+1},\ J_j^*=J_j+\frac{n_j}{n_j+1}\|\hat{x}-\mu_j\|^2$ and $J_i^*=J_i-\frac{n_i}{n_i-1}\|\hat{x}-\mu_i\|^2$. Transer \hat{x} to H_k whose $J_k^*-J_l$ is smallest.

The Choice of k

- The Elbow Method: Calculate the Within Cluster Sum of Squared Errors for different values of k, and choose the k for which WSS becomes first starts to diminish.
- The Silhouette value: $a(i) = \frac{1}{|C_I|-1} \sum_{j \in C_I, j \neq i} d(i,j)$, $b(i) = \min_{J \neq I} \frac{1}{|C_J|} \sum_{j \in C_J} d(i,j)$ and $s(i) = \frac{b-a}{\max[a,b]}$. 敏点: 样本数据发生很小的扰动,那么样本的分类结果容易发生明显的改变。

Linkage-Based Clustering Algorithms aka Agglomerative Clustering which is trivial. Stopping criteria: numbers of clusters 或 current distance.

- \S **GMM** $x|z \sim \mathcal{N}(\nu, \Sigma)$ where $z \sim \mathrm{Mul}(\phi)$ is the latent variable
- E-step: Evaluate the **posterior** Pr: $Q_i(z^i) = P(z^i|x^i;\theta)$.
- M-step: Use the posterior Pr Qi(zⁱ) as cluster specific weights on data points xⁱ to separately re-estimate each cluster model:

$$\theta_i = \arg\max_{\theta} \sum_i \int_{z^i} Q_i(z^i) \log \left(\frac{P(x^i, z^i; \theta)}{Q_i(z^i)} \right) \mathrm{d}z^i$$

Likelihood:

$$\mathcal{L}(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log \sum_{z^{i}=1}^{k} \Pr(x^{i}|z^{i}; \mu, \Sigma) \Pr(z^{i}|\phi)$$

§ Spectral 对数据有很好的表征,非凸数据;但是拓展性不好。 Similarity: $W_{ij} = s(x_i, x_j) = \exp\left(-\left\|x_i - x_j\right\|^2 / 2\sigma^2\right)$ Graph Constructin: ε -neighborhood, fully connected and KNN.

Definition 4 Some useful definations:

Bethictor 4 Some useful definations:
$$d_i = \sum_{j \in V} W_{ij}$$

$$\operatorname{cut}(A, B) = \sum_{i \in A, j \in B} W_{ij}$$

$$\operatorname{cut}(A_1, A_2, \cdots, A_k) = \frac{1}{2} \sum_{i=1}^k \operatorname{cut}(A_i, \bar{A_i})$$
 RatioCut $(A_1, A_2, \cdots, A_k) = \frac{1}{2} \sum_{i=1}^k \operatorname{cut}(A_i, \bar{A_i})/|A_i|$ Ncut $(A_1, A_2, \cdots, A_k) = \frac{1}{2} \sum_{i=1}^k \operatorname{cut}(A_i, \bar{A_i})/\operatorname{vol}(A_i)$ Degree of the subgraph A: vol $(A) = d_A = \sum_{i,j \in A} W_{ij}$ Laplacian: $L = D - W$ where $W = \operatorname{diag}_i \left(\sum_{(i,j) \in E} W_{ij} \right)$

Theorem 4

$$\begin{aligned} & \operatorname{cut}(A,\bar{A}) = \boldsymbol{x}^T L \boldsymbol{x} \text{ and } \operatorname{cut}(A_1,\cdots,A_k) = \operatorname{trace}(\boldsymbol{X}^T L \boldsymbol{X}) \\ & \operatorname{Proof: LHS} = \sum_{i \in A} d_i - \sum_{i,j \in A} W_{ij}. \end{aligned}$$

Theorem 5 Relaxation: $x \in \{0,1\}^{|V|} \to \mathbb{R}^{|V|}$. min cut $(A, \bar{A}) \iff \min x^T L x = (x^T L x)/(x^T x) \iff x$ 为 L 的最小非零特征值所对应的特征向量 (Rayleigh quotient Theorem)。

Definition 5 Normalized Spectral Clustering:

- 对拉普拉斯矩阵进行标准化操作: $L \leftarrow D^{-0.5} L D^{-0.5}$
- 计算标准化操作后拉普拉斯矩阵最小的 k_1 个特征值对应的特征向量 F
- 将 F 组成的矩阵按行标准化,组成 $n \times k_1$ 的特征矩阵 P。
- 对 P 中的每一行作为一个 k₁ 维的样本,用聚类方法进行聚类。

§ \mathbf{PCA} Compressing matrix $W \in \mathbb{R}^{n,d}$ and recovering matrix $U \in \mathbb{R}^{d,n}$: $\arg\min_{W,U} \sum_{i=1}^n \|x_i - UWx_i\|^2$

Lemma 1 Let (U, W) be a solution of Equation above. Then $U^TU = I$ and $W = U^T$. (The columns of U are orthonormal.)

By the fact the

$$\|x - UU^T x\|^2 = \|x\|^2 - \operatorname{trace}(U^T x x^T U)$$

We could rewrite the Equation as follows:

$$\underset{U \in \mathbb{R}^{d,n}: U^TU = I}{\arg\max} \operatorname{trace} \left[U^T \left(\sum_{i=1}^m x_i x_i^T \right) U \right]$$

Theorem 6 Let x_1, \dots, x_m be arbitrary vectors in \mathbb{R}^d , let $A = \sum_{i=1}^m x_i x_i^T$, and let $u1, \dots, u_n$ be n eigenvectors of the matrix A corresponding to the largest n eigenvalues of A. Then, the solution to the PCA optimization problem given in Equation is to set U to be the matrix whose columns are u_1, \dots, u_n and to set $W = U^T$. (More Intuition: MathOverFlow)

Proof 1 Let VDV^T be the spectral decomposition of A (suppose that $D_{1,1} \geq \cdots \geq D_{d,d}$) and let $B = V^TU$. We have

$$\operatorname{trace}(U^T A U) = \operatorname{trace}(B^T D B) = \sum_{j=1}^d D_{j,j} \sum_{i=1}^n B_{j,i}^2$$

$$\leq \max_{\pmb{\beta} \in [0,1]^d: \|\pmb{\beta}\| \leq n} \sum_{j=1}^d D_{j,j} \beta_j = \sum_{j=1}^n D_{j,j}$$

Nota Bene: $B^TB = I$ which entails $\sum_{j=1}^d \sum_{i=1}^n B_{j,i}^2 = n$

§ Dimensionality Reduction

PCA 拟合了训练数据的长轴短轴,使得映射后得到的低维度向量分布散射最大 MDS 找到映射方向使得在低维空间中高维度样本间距离不变

可使得在做维至則甲局维度样本則距离,
$$\min \sum_{i < j} \left(\left\| \hat{x}_i - \hat{x}_j \right\| - d_{ij}
ight)^2$$

ISOMAP Geodesic 距离 $(d_{ij} \leftarrow \text{shortest path})$ 能反映该数据的真正低维流形结构,保留数据集的本征几何特征。

Locally Linear Embedding 从局部的线性结构关系,恢复全局的非线性流形。假设: $\hat{x}_i = \sum_i W_{ij} x_i$ and $\sum_i W_{ij} = 1$.

$$\min \sum_i \left\| x_i - \sum_j W_{ij} x_j \right\|^2 \text{s.t.} W_{ij} = 0 \text{ if } X_j \in \mathcal{N}(X_i)$$

ISOMAP VS LLE 都保留了邻接的几何结构: 都没有显式的映射函数, 故 使用比较麻烦: LLE 需要更多的训练数据; ISOMAP 计算效率高, 实用性更高 § **Deep Learning** Trivial.

CNN

$$N = \frac{W - F + 2P}{S} + 1.$$

RNN

$$h_{t+1} = \text{Tanh}(W_h h_t + W_x x_{t+1}).$$

Attention

$$y = \text{SoftMax}\left(\frac{QK^T}{\sqrt{D}}\right)V.$$

Weight Initialization

$$w \leftarrow \sqrt{2/n} \times \text{Rand}\mathcal{N}(0,1)$$

Activate Function

$$\operatorname{Sigmoid}(z) = \frac{1}{1 + \exp(-z)} \quad \text{and} \quad \operatorname{Tanh}(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Batch Normalization (BP for BN is challenging)
Update:

$$\mu = \alpha \mu + (1 - \alpha)\hat{\mu}$$
 and $\sigma^2 = \alpha \sigma^2 + (1 - \alpha)\hat{\sigma}^2$.
Forward and Eval:

$$x_i \leftarrow \gamma \frac{x_i - \mu}{\sqrt{\sigma^2 + \varepsilon}} + \beta$$

Momentum

$$v \leftarrow \mu v - \alpha \mathrm{d}x$$
 and $x \leftarrow x + v$

Adam

$$\begin{aligned} m &\leftarrow \beta_1 m + (1 - \beta_1) \mathrm{d}x \quad \text{and} \quad m_t \leftarrow \ m \big/ (1 - \beta_1^t) \\ v &\leftarrow \beta_2 v + (1 - \beta_2) \mathrm{d}x^2 \quad \text{and} \quad v_t \leftarrow \ v \big/ (1 - \beta_2^t) \\ x &\leftarrow x - \frac{\alpha m_t}{\sqrt{v_t + \varepsilon}} \end{aligned}$$