

Mikrokontroleri

- Sadrže sve bitne komponente jednog računarskog sistema u jednom čipu (procesor, memoriju, U/I portove, ...)
- I samo ime govori da su namenjeni da upravljaju (uređajima, procesima, ...)
- Zato poseduju dodatne komponente (A/D i D/A konvertore, UART, USB, ...)

Podela prema arhitekturi

 Von Neumann – zajednička memorija za program i podatke, izvršenje u 2 ciklusa (jer se instrukcije i podaci prenose preko iste magistrale) Princeton

 Harvard – odvojene instrukcije i podaci, izvršenje u 1 ciklusu (jer se simultano mogu preuzimati instrukcije i podaci, uz pipeline)

Podela prema skupu instrukcija

- CISC (Complex Instruction Set Computer) smanjuje broj instrukcija po programu, ali povećava broj ciklusa po instrukciji; uglavnom zastupljena kod CPU, mada postoje i MCU sa ovom arhitekturom (npr. 68HC11 familija Motorolinih MCU)
- **RISC** (*Reduced Instruction Set Computer*) smanjuje broj ciklusa (samo 1) po instrukciji, ali povećava program; većina MCU je sa ovom arhitekturom

Prema proizvođaču

- **8051** familija (**Intel**) 8-bit MCU sa RISC Harvard arh. (od 1985.)
- **68HC11** familija (**Motorola**) 8-bit MCU sa CISC Von Noimann arh. (od 1985.)
- AVR familija (Atmel) 8-bit MCU sa RISC Harvard arh.
 (od 1996.)
- **PIC** familija (**Microchip**) 8, 16 i 32-bit MCU sa RISC Harvard arh. (od 1976.)
- ARM Cortex-M familija (Arm Holdings) 32-bit sa Von Neumann, Harvard, ili modifikovanom Harvard arh. (odvojene magistrale za instrukcije i podatke, ali pristupaju jedinstvenom memorijskom prostoru) (od 2004.)

8-bitni PIC mikrokontroleri PIC10, PIC12, PIC16 i PIC18

	Baseline Architecture	Mid-Range Architecture	Enhanced Mid-Range Architecture	PIC18 Architecture
Pin Count	6-40	8-64	8-64	18-100
Interrupts	No	Single interrupt capability	Single interrupt capability with hardware context save	Multiple interrupt capability with hardware context save
Performance	5 MIPS	5 MIPS	8 MIPS	Up to 16 MIPS
Instructions	33, 12-bit	35, 14-bit	49, 14-bit	83, 16-bit
Program Memory	Up to 3 KB	Up to 14 KB	Up to 28 KB	Up to 128 KB
Data Memory	Up to 138 Bytes	Up to 368 Bytes	Up to 1,5 KB	Up to 4 KB
Hardware Stack	2 level	8 level	16 level	32 level
Features	Comparator S-bit ADC Data Memory Internal Oscillator	In addition to Baseline: SPI/I²C™ UART PWMs LCD 10-bit ADC Op Amp	In addition to Mid-Range: Multiple Communication Peripherals Linear Programming Space PWMs with Independent Time Base	In addition to Enhanced Mid-Range: 8x8 Hardware Multiplier CAN CTMU USB Ethernet 12-bit ADC
Highlights	Lowest cost in the smallest form factor	Optimal cost to performance ratio	Cost effective with more performance and memory	High performance, optimized for C programming, advanced peripherals

PIC16F84A

- RISC arhitektura samo 35 instrukcija
- Sve instrukcije se izvršavaju 1 ciklus, sem skokova (2 ciklusa)
- 1K reči flash memorija za smeštanje programa
- 68B data RAM
- 64B data EEPROM
- 10 MHz maksimalna frekvencija
- 14-bitne instrukcije
- 8-bitni podaci
- 15 SFR (*special function registers*)
- 8 dubina hardverskog steka
- 4 izvora prekida (eksterni RB0/INT, prekoračenje TMR0 tajmera, PORTB<7:4> prekid na promenu vrednosti, završen upis podatka u EEPROM)
- 13 U/I pina

PIC16F84A

PIC16F84A funkcija pinova

- OSC1/CLKIN ulaz eksternog takta
- OSC2/CLKOUT izlaz kristalnog oscilatora ili izlazni takt koji je ¼ takta OSC1 (tj. instrukcijski takt)
- MCLR (Master Clear) niska vrednost resetuje komponentu
- RA0-RA3 port A (bidirekcioni U/I port)
- RA4/T0CKI 5. pin porta A ili ulazni takt za TMR0 tajmer/brojač
- **RBO/INT** 0. pin porta B, eksterni prekidni ulaz
- **RB1-RB3** 1.-3. pin porta B
- **RB4-RB5** 4. i 5. pin porta B, prekidni ulaz
- RB6 6. pin porta B, prekidni ulaz, takt pri serijskom programiranju
- RB7 7. pin porta B, prekidni ulaz, podaci pri serijskom programiranju
- V_{ss} uzemljenje
- V_{DD} (pozitivno) napajanje

Oscilator

- Oscilator je srce MCU; njegovi otkucaji predstavljaju sistemski takt koji pokreće čitav uređaj
- Ovaj modul može da se pobuđuje iz različitih izvora, čime se utiče na performanse i potrošnju
- PIC16F84A može da radi u jednom od 4 oscilatorska režima (u skladu sa stanjem konfiguracionih bitova FOSC1 i FOSC0):
 - LP Low-Power Crystal mod (32 kHz do 200kHz)
 - XT Medium Gain Crystal ili Ceramic Resonator Oscillator mod (100kHz do 4 MHz)
 - HS High Gain Crystal ili Ceramic Resonator mod (4 MHz do 20 MHz)
 - RC External Resistor-Capacitor mod (200kHz do 4MHz)
- Sistemski takt označava se sa F_{OSC} i uvek je 4x viši od instrukcijskog takta (F_{OSC}/4); da bi se ostvarilo izvršenje jedne mašinske instrukcije u jednom taktu (sem grananja i skoka, koje zahtevaju 2 takta).

Eksterni RC oscilator

 $5 \ k\Omega \leq Rext \leq 100 \ k\Omega$ Cext > 20pF

Izračunavanje frekvencije

•
$$T_{OSC} = (R_{EXT} * C_{EXT}) * In[V_{DD}/(V_{DD}-V_{IH})]$$

- $F_{OSC} = 1/T$
- InstructionClock = $F_{OSC}/4$

Primer:

$$-V_{DD} = 5V$$

$$- V_{IH} = 0.9 * Vdd = 4.5V$$

$$-R_{EXT} = 10K\Omega$$

$$-C_{EXT} = 22pF$$

 T_{OSC} = 506ns, F_{OSC} = 1.976MHz, InstructionClock = 494kHz

HS, XT i LP konfiguracija oscilatora

Izbor kondenzatora za kristalne oscilatore

Mode	Freq	OSC1/C1	OSC2/C2
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 33 pF	15 - 33 pF
XT	100 kHz	100 - 150 pF	100 - 150 pF
	2 MHz	15 - 33 pF	15 - 33 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	4 MHz	15 - 33 pF	15 - 33 pF
	20 MHz	15 - 33 pF	15 - 33 pF

Izbor kondenzatora za keramičke rezonatore

Mode	Freq	OSC1/C1	OSC2/C2
XT	455 kHz	47 - 100 pF	47 - 100 pF
	2.0 MHz	15 - 33 pF	15 - 33 pF
	4.0 MHz	15 - 33 pF	15 - 33 pF
HS	8.0 MHz	15 - 33 pF	15 - 33 pF
	10.0 MHz	15 - 33 pF	15 - 33 pF

Oscilatori i rezonatori

Configuration Word (2007h)

CP	CP	CP	CP	CP	CP	CP	CP	CP	CP	PWRTE	WDTE	F0SC1 F0SC0
bit13	•		,							•		bit0

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator

10 = HS oscillator

01 = XT oscillator

00 = LP oscillator

Stabilizacija oscilatora

PIC16F84A tipovi reset-a

- Resetovanje pri dovođenju napajanja, POR (Power-On Reset)
- Resetovanje tokom regularnog rada, dovođenjem logičke "0" na pin MCLR
- Resetovanje za vreme SLEEP režima, dovođenjem logičke "0" na pin MCLR
- Resetovanje na prekoračenje sigurnosnog brojača (WDT) tokom regularnog rada
- Resetovanje na prekoračenje sigurnosnog brojača (WDT) tokom SLEEP režima (Wake-up)
- Brown-out Reset (BOR)
- Parity Error Reset (PER)

Power On Reset (POR)

- Kada se uključi PIC MCU, on interno izvršava neke definisane hardverske operacije, kojima se priprema za normalan rad.
- To obuhvata pokretanje oscilatora i stabilizaciju napajanja.
- POR drži MCU u resetovanom stanju dok se te operacije ne završe.
- Time se sprečava pokretanje softvera dok se ne dostigne minimalni napon napajanja i stabilna frekvencija.
- POR može držati MCU u resetovanom stanju duže, ako se zna da je sredina takva da unosi dosta šuma.
- To omogućuje Power-up Timer (PWRT).
- PWRT obezbeđuje fiksno kašnjenje od 72ms nakon uključivanja.

Configuration Word (2007h)

CP CP CP CP CP CP CP CP CP PWRTE WDTE F0SC1 F0SC0
bit13
bit 3

PWRTE: Power-up Timer Enable bit
1 = Power-up Timer is disabled
0 = Power-up Timer is enabled

Power On Reset (POR)

- POR impuls se generiše na samom čipu, kada se detektuje porast V_{DD} (u opsegu 1.2V 1.7V).
- Treba povezati MCLR pin na V_{DD} (direktno ili preko otpornika), pri čemu treba obezbediti minimalnu brzinu porasta V_{DD} , da bi tako jednostavna konfiguracija funkcionisala (> 0.05V/ms).
- 1.2V + 72ms * 0.05V/ms = 4.8V
- POR kolo ne izaziva interni reset kada V_{DD} opada.
- Drugi tajmer koji obezbeđuje potrebno kašnjenje je *Oscillator Start-up Timer* (**OST**).
- OST period iznosi 1024 T_{osc} (T_{osc} = OSC1 period) i aktivira se nakon PWRT.
- OST se poziva samo za LP, XT i HS modove i samo za POR i Wakeup (povratak iz SLEEP režima).
- Ako PWRT i OST nisu dovoljni, neophodna je dodatna eksterna elektronika da produži vreme za koje MCU ostaje u resetovanom stanju.

Time-out sekvenca pri uključivanju kada MCLR nije vezan na V_{DD}

Time-out sekvenca pri uključivanju kada MCLR nije vezan na V_{DD} (duže aktivan MCLR)

Time-out sekvenca pri uključivanju kada je MCLR vezan na V_{DD} (brzi porast V_{DD})

Time-out sekvenca pri uključivanju kada je MCLR vezan na V_{DD} (spor porast V_{DD})

Spoljašnje reset-kolo (za spororastući V_{DD})

- Spoljašnje reset-kolo koristi se samo kada V_{DD} raste vrlo sporo (sporije od 0.05 V/ms).
- Dioda pomaže da se kondenzator brzo isprazni pri isključivanju napajanja.
- R < $40k\Omega$ obezbeđuje da pad napona na R ne prelazi 0.2V (maksimalna struja curenja na MCLR je 5μ A). Veći pad napona degradira V_{IH} nivo na MCLR.
- R1 = 100Ω (do $1 k\Omega$) limitira struju koja utiče u MCLR iz kondenzatora u slučaju elektrostatičkog pražnjenja (ESD) ili električnog preopterećenja (EOS)
- Kondenzator C prilagoditi vremenu trajanja reseta.

Brown-out Reset (BOR)

- Omogućuje da MCU bude u resetovanom stanju kada V_{DD} padne ispod brown-out praga.
- Preporuka je da se uključi Power-up Timer (PWRT), kako bi se uključilo dodatno kašnjenje pri povratku iz BOR.
- Kod novih (unapređenih) MCU, BOR ima 4 režima (uvek uključen, isključen u SLEEP modu, upravljan softverski i uvek isključen), koji se podešavaju bitovima u konfiguracionoj reči.
- Ne postoje kod PIC16F84A

Reset na pad napona (Brown-out Reset)

Spoljašnja kola za Brown-out zaštitu

Reset se aktivira kada je:

$$V_{DD} < Vz + 0.7V$$

gde je Vz Zenerov napon (napon kada Zener dioda provede struju od katode ka anodi) Jeftinije, ali manje precizno rešenje. Reset se aktivira (tj. tranzistor Q1 prestaje da provodi struju) kada je:

$$V_{DD} < 0.7V * (R1+R2)/R1$$

Format instrukcije

Byte-oriented file register operations

13	8	7	6		0
OPCODE		d		f (FILE #)	

d = 0 for destination Wd = 1 for destination ff = 7-bit file register address

Bit-oriented file register operations

13		10 9	7	6		0
	OPCODE	b	(BIT #)		f (FILE #)	

b = 3-bit bit addressf = 7-bit file register address

Literal and control operations

General

13		8	7		0
	OPCODE			k (literal)	

k = 8-bit immediate value

CALL and GOTO instructions only

13	11	10		0
OPCO	DE		k (literal)	

k = 11-bit immediate value

Instrukcioni takt

- Svaki ciklus izvršenja instrukcije (T_{CY}) se sastoji od 4 Q ciklusa (Q1-Q4)
- Q ciklus odgovara osnovnom taktu oscilatora (T_{osc})
- Q1 dekodiranje instrukcije (ili NOP)
- Q2 čitanje podataka (ili NOP)
- Q3 obrada podataka
- Q4 upis rezultata (ili NOP)

Instrukcioni ciklus

Aritmetčkio-logička jedinica

Aritmetičke operacije

- ADD sabiranje
- SUB oduzimanje

Logičke operacije

- AND logičko I
- OR logičko ILI
- XOR logičko eksl. ILI
- COM komplement

Ostale operacije

- RL rotacija ulevo
- RR rotacija udesno
- INC inkrementiranje
- DEC dekrmentiranje
- SWAP zamena polubajtova
- Postavljanje, brisanje i testiranje pojedinačnih bittova

Organizacija memorije

- Postoje dva bloka memorije
 - Programska memorija
 - Memorija sa podacima
- Svaki blok ima svoju magistralu (Harvard arhitektura)
- Memorija sa podacima deli se na
 - RAM opšte namene
 - Registre specijalnih funkcija (SFR)
 - EEPROM (indirektno mapirana u memoriju podataka 64B)

Programska memorija, stek i registri File Address File Address PC<12:0> Indirect addr. (1) Indirect addr. (1) 00h 80h 13 CALL, RETURN 01h TMR0 OPTION 81h RETFIE, RETLW 02h PCL PCL 82h Stack Level 1 03h **STATUS STATUS** 83h 04h **FSR FSR** 84h Stack Level 8 **PORTA TRISA** 85h 05h **PORTB** 06h **TRISB** 86h Reset Vector 0000h 07h 87h 08h **EEDATA** EECON1 88h Peripheral Interrupt Vector 0004h EECON2(1) 09h **EEADR** 89h **PCLATH** 0Ah **PCLATH** 8Ah 0Bh INTCON INTCON 8Bh User Memory Space 0Ch 8Ch 68 Mapped (accesses) in Bank 0 General Purpose registers (SRAM) 4Fh CFh 3FFh STACK 50h D0h Push1 Push9 ■ Top of STACK Push2 Push10 Push3 Push4 Push5 Push6 Push7 7Fh FFh 1FFFh Push8 Bank 0 Bank 1

Programska memorija

- $8k \times 14b$ organizacija, ali PIC16F84A "vidi" samo $1k \times 14b$ (0000h-03FFh)
- Adrese preko 1k se "premotavaju" (npr. 20h, 420h, 820h itd. pristupiće istoj lokaciji 20h)
- Lokacije 0000h i 0004h imaju posebnu namenu (reset i prekid)
- Reset postavlja programski brojač (PC) na adresu 0h (Reset Vector Address)
- Kada se potvrdi prekid, PC se postavlja na 04h (Interrupt Vector Address)
- Kalibracione informacije postoje samo kod nekih čipova i njih proizvođač upisuje na kraju programske memorije (implemetira se kao RETLW instrukcija sa vrednošću koja odgovara kalibracionoj informaciji)

Programski brojač

- Programski brojač (*Program Counter* PC) definiše adresu instrukcije koju treba pribaviti radi izvršenja i dužine je 13b
- Niži bajt se naziva PCL registar i on se može i čitati i upisivati
- Viši bajt se naziva PCH registar, sadrži PC[12:8] bitove i ne može se direktno čitati ili upisivati
- Ažuriranje PCH registra ide preko PCLATH registra (Program Counter Latch High)
- Memorija je kod PIC MCU srednje klase podeljena na stranice od po 2K (16F84A ima samo 1K); prelazak fizičke granice vrši premotavanje (stranice se menjaju pomoću PCLATH)

ile Addre	SS	F	ile Addres
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	_		87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch			8Ch

Instrukcija sa PCL kao odredište

GOTO instrukcija

CALL instrukcija

RETURN, RETFIE ili RETLW instrukcija

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note3)
Bank 0											
00h	INDF	Uses co	ntents of F	SR to addre	ess data memor	y (not a phy					
01h	TMR0	8-bit rea	l-time clock	/counter			xxxx xxxx	uuuu uuuu			
02h	PCL	Low ord	er 8 bits of	of the Program Counter (PC)						0000 0000	0000 0000
03h	STATUS (2)	IRP	RP1	RP0	то	PD	0001 1xxx	000q quuu			
04h	FSR	Indirect	data memo	ry address	ddress pointer 0						uuuu uuuu
05h	PORTA	_	_	_	RA4/T0CKI	RA4/T0CKI RA3 RA2 RA1 RA0					u uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	XXXX XXXX	uuuu uuuu			
07h		Unimple	mented loc	ation, read	as '0'						
08h	EEDATA	EEPROI	M data regi	ster			xxxx xxxx	uuuu uuuu			
09h	EEADR	EEPROI	M address	register			xxxx xxxx	uuuu uuuu			
0Ah	PCLATH	_	_	_	Write buffer for	r upper 5 bit	s of the PC	(1)		0 0000	0 0000
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	0000 000x	0000 000u			
Bank 1								,			
80h	INDF	Uses co	ntents of F	SR to addre	ess data memor	y (not a phy:					
81h	OPTION_ REG	RBPU	INTEDG	T0CS	TOSE PSA PS2 PS1 PS0					1111 1111	1111 1111
82h	PCL	Low ord	er 8 bits of	Program C	ounter (PC)	unter (PC)					0000 0000
83h	STATUS (2)	IRP	RP1	RP0	TO PD Z DC C					0001 1xxx	000q quuu
84h	FSR	Indirect	data memo	ry address	pointer 0		xxxx xxxx	uuuu uuuu			
85h	TRISA	_	_	_	PORTA data direction register					1 1111	1 1111
86h	TRISB	PORTB	data directi	on register						1111 1111	1111 1111
87h		Unimple	mented loc	ation, read	d as '0'						
88h	EECON1	_	_	- EEIF WRERR WREN WR RD					RD	0 x000	0 q000
89h	EECON2	EEPROM control register 2 (not a physical register)									
0Ah	PCLATH	_	_	_	Write buffer for	upper 5 bit	s of the PC	(1)		0 0000	0 0000
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

Direktno i indirektno adresiranje

Indirektno adresiranje

- INDF registar (00h) nije fizički registar.
- Adresiranjem ovog registra se zapravo adresira ono na šta ukazuje FSR registar (04h).
- FSR je pokazivač; njegov sadržaj ukazuje na lokaciju sa podatkom.
- Kada se podaci upisuju ili čitaju iz INDF registra, oni se zapravo upisuju ili čitaju iz registra na koji ukazuje FSR (+ najviši bit STATUS registra – IRP).
- Na primer:
 - Na lokaciji 05 je upisano 10h
 - Na lokaciji 06 je upisano 0Ah
 - Učitati vrednost 05 u FSR registar
 - Čitanje INDF registra će zapravo vratiti 10h
 - Inkrementiranjem, vrednost u FSR postaje 06
 - Čitanjem INDF registra dobija je 0Ah

R = Readable bit

- n = Value at POR

STATUS registar (03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-	-X				
IRP	RP1	RP0	TO	PD	Z	DC	DC C					
bit 7	•						k	oit 0				
bit 7-6	Unimplemented: N	Maintain as 'o'			File Addre	ess	F	ile Address				
bit 5	RP0: Register Banl	k Select bits (use	ed for direct addr	essina)	00h	Indirect addr. ⁽¹⁾	Indirect addr.(1)	80h				
	01 = Bank 1 (80h -	•		g/	01h	TMR0	OPTION_REG	81h				
	00 = Bank 0 (00h -	,			02h	PCL	PCL	82h				
bit 4	TO: Time-out bit	,			03h	STATUS	STATUS	83h				
DIL 4	1 = After power-up	CT DWDT inetru	otion or CIEED i	netruction	04h	FSR	FSR	84h				
	0 = A WDT time-or		CHOIT, OF SLEEP I	ristruction	05h	PORTA	TRISA	85h				
1:10					06h	PORTB	TRISB	86h				
bit 3	PD: Power-down b				07h	_	_	87h				
	1 = After power-up	•			08h	EEDATA	EECON1	88h				
	0 = By execution of	of the SLEEP inst	ruction		09h	EEADR	EECON2 ⁽¹⁾	89h				
bit 2	Z : Zero bit				0Ah	PCLATH	PCLATH	8Ah				
	1 = The result of a	n arithmetic or lo	gic operation is	zero	0Bh	INTCON	INTCON	8Bh				
	0 = The result of a	n arithmetic or lo	gic operation is	not zero	0Ch			8Ch				
bit 1	DC : Digit carry/borr is reversed)	ow bit (ADDWF, A	DDLW,SUBLW,S	UBWF instruction	s) (for borrow, the	e polarity						
	1 = A carry-out fro 0 = No carry-out fr											
bit 0	C: Carry/borrow bit reversed)	t (ADDWF, ADDLW	, SUBLW, SUBWE	instructions) (for borrow, the p	oolarity is						
	1 = A carry-out fro 0 = No carry-out fr	•										
	Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.											
	Legend:											

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

OPTION registar (81h)

R/W-1	R/W-1	1 R/W	/-1	R/W-1	R/W-1	R/W-1		R/W-1	R/W-	1
RBPU	INTED	G TOO	cs	T0SE	PSA	PS2		PS1	PS0	
bit 7	-	,	•				•		b	it 0
bit 7		ORTB Pull-up								
		B pull-ups a				File	e Addre	ess	=	ile Address
	0 = PORT	B pull-ups a	re enabled	d by individu	al port latch val	ues	00h	Indirect addr. ⁽¹⁾	Indirect addr.(1)	80h
bit 6	INTEDG: I	nterrupt Edg	e Select b	it			01h	TMR0	OPTION_REG	81h
	1 = Interri	upt on rising	edae of Ri	B0/INT nin			02h	PCL	PCL	82h
		upt on falling	•				03h	STATUS	STATUS	83h
h:4 F			•	•			04h	FSR	FSR	84h
bit 5		R0 Clock So					05h	PORTA	TRISA	85h
		ition on RA4/	•				06h	PORTB	TRISB	86h
	0 = Interna	al instruction	cycle clod	ck (CLKOUT)		07h	_	_	87h
bit 4	TOSE: TM	R0 Source E	dge Selec	t bit			08h	EEDATA	EECON1	88h
			•		A4/T0CKI pin		09h	EEADR	EECON2 ⁽¹⁾	89h
		_			A4/T0CKI pin		0Ah	PCLATH	PCLATH	8Ah
			_	nsidon on ix	A-7 TOOKI PIII		0Bh	INTCON	INTCON	8Bh
bit 3	PSA: Pres	caler Assign	ment bit				0Ch			8Ch
	1 = Presc	aler is assigr	ed to the	WDT						
	0 = Presc	aler is assigr	ed to the	Timer0 mod	lule					
bit 2-0	PS2:PS0:	Prescaler Ra	ate Select	bits						
	Bit Value	TMR0 Rate	WDT Ra	te						
	000 001 010 011 100 101	1:2 1:4 1:8 1:16 1:32 1:64 1:128	1:1 1:2 1:4 1:8 1:16 1:32	_						

Prekidi

- PIC16F84A ima 4 izvora prekida
 - Eksterni prekid na pinu RBO/INT (okida se ivicom; prednjom (option_REG / INTEDG = 1) ili zadnjom (INTEDG = 0); može probuditi PIC iz SLEEP režima, ako je INTE fleg setovan pre "uspavljivanja")
 - Prekoračenje tajmera TMR0 (prelazak FFh→00h)
 - Promena na portu B (pinovi RB7-RB4)
 - Završen upis u EEPROM
- INTerrupt CONtrol (INTCON) registar omogućuje pojedinačne prekide (ili sve zajedno) i beleži pojedinačne zahteve za prekidom u odgovarajućim bitovima (flegovi)

INTCON registar (0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	EEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	
bit 7	•						bit (<u>)</u>
bit 7	GIE: Global In	terrupt Enabl	e bit					
	1 = Enables a	ll unmasked i	nterrupts		File Add	ress	F	ile Addre
	0 = Disables a	all interrupts			00h	Indirect addr.(1)	Indirect addr. ⁽¹⁾	80h
bit 6	EEIE: EE Writ	e Complete Ir	nterrupt Enable	e bit	01h	TMR0	OPTION_REG	81h
	1 = Enables th	ne FF Write C	omplete interr	unts	02h	PCL	PCL	82h
	0 = Disables t		•	•	03h	STATUS	STATUS	83h
L10.5			•	•	04h	FSR	FSR	84h
bit 5	TOIE: TMR0 C		•		05h	PORTA	TRISA	85h
	1 = Enables th		•		06h	PORTB	TRISB	86h
	0 = Disables t	he TMR0 inte	rrupt		07h 08h	EEDATA	EECON1	87h 88h
bit 4	INTE: RB0/IN	T External Inte	errupt Enable	bit	09h	EEADR	EECON2 ⁽¹⁾	89h
	1 = Enables th	ne RB0/INT ex	xternal interru	ot	0Ah	PCLATH	PCLATH	8Ah
	0 = Disables t				0Bh	INTCON	INTCON	8Bh
bit 3	RBIE: RB Por	t Change Inte	rrupt Enable b	pit	0Ch			8Ch
	1 = Enables th 0 = Disables t							
bit 2	TOIF: TMR0 C	verflow Interr	upt Flag bit					
	1 = TMR0 reg 0 = TMR0 reg		•	be cleared in softw	/are)			
bit 1	INTF: RB0/IN	Γ External Inte	errupt Flag bit					
	1 = The RB0/I 0 = The RB0/I		•	ed (must be cleare t occur	ed in software)		
bit 0	RBIF: RB Por	t Change Inte	rrupt Flag bit					
	1 = At least or	ne of the RB7	:RB4 pins cha	nged state (must b	e cleared in s	oftware)		

0 = None of the RB7:RB4 pins have changed state

Šema prekida

Obrada prekida

- Postoji više izvora prekida, ali svi oni rezultuju skokom na adresu 004h
- Zato se mora detektovati izvor prekida (proverom INTCON flegova) i na osnovu toga izabrati ISR
- Kada se odgovori na prekid, GIE se resetuje, da bi se sprečili dalji prekidi, povratna adresa (stanje PC) se stavlja na stek, a u PC se upisuje 004h
- Pre izvršenja ISR moraju se sačuvati sadržaji bitnih registara za dalji tok izvršenja (pre svih W i STATUS)
- Fleg koji označava tekući prekid mora se softverski resetovati u ISR, da se ne bi dobila beskonačna petlja
- Po završetki ISR restaurirati sadržaje zapamćenih registara

Tajmeri i brojači

- Brojač je uređaj koji beleži broj pojavljivanja nekog događaja (obično broji prelaske sa 0 na 1 ili obrnuta na nekom pinu)
- Tajmer meri vremenske intervale (broji unapred) ili odbrojava unazad i definiše kašnjenje (obično broji mašinske cikluse)

Osnovno korišćenje tajmera

Zgodno za merenje kratkih vremenskih intervala (do 256 otkucaja takta, ako se koristi 8-bitni registar), ali je merenje vrlo precizno. U datom primeru može se meriti vreme do 256μs, sa preciznošću od 1μs.

Korišćenje preskalera za produžavanje perioda

Preskaler je elektronski uređaj koji smanjuje frekvenciju deljenjem nekim predefinisanim faktorom. MCU imaju ugrađene preskalere kojima se može programski upravljati.

Produžava se vreme koje se može meriti, ali se smanjuje preciznost. Npr. za N=256, može se meriti period od $65535\mu s$ (~65.5ms), ali sa rezolucijom od $256\mu s$

Korišćenje prekida za povećanje i vremena i preciznosti

Kada tajmer dostigne maksimalnu vrednost, on se resetuje na 0. To je događaj koji se može signalizirati prekidom. U ISR možemo inkrementirati neki drugi registar, koji će nam služiti kao bajt veće težine brojača.

U našem primeru, za N = 1, može se meriti period od 65535 μ s (~65.5ms), ali sa rezolucijom od 1 μ s, do maksimalno 16777216 μ s (~16.77s) sa rezolucijom od 256 μ s, za N = 256.

TIMERO

- 8-bitni tajmer/brojač
- Može se čitati i upisivati
- Interni ili eksterni izvor takta

- File Address File Address Indirect addr. (1) Indirect addr.(1) 80h 01h TMR0 OPTION REG 81h 02h PCL PCL 82h STATUS **STATUS** 83h **FSR** 04h **FSR** 84h PORTA 05h TRISA 85h 06h **PORTB** TRISB 86h 07h 87h 08h **EEDATA** EECON1 88h 09h **EEADR** EECON2(1) 89h 0Ah **PCLATH PCLATH** 8Ah 0Bh INTCON INTCON 8Bh 0Ch 8Ch
- 8-bitni preskaler koji se softverski postavlja
- Generiše prekid kod prekoračenja (prelaz FFh→00h)

Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).

2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

Watchdog Timer (WDT)

Watchdog Timer (WDT)

- WDT je interni RC oscilator i potpuno je nezavisan od spoljašnjeg takta
- WDT radi čak i kada se zaustavi spoljašnji takt
- Tokom normalnog režima rada, prekoračenje WDT izaziva RESET uređaja
- Tokom SLEEP režima, prekoračenje WDT izaziva buđenje i nastavak normalnog rada
- Trajno se isključuje postavljanjem WDTE bita (u konfiguracionoj reči) na 0

Configuration Word (2007h)

	CP	PWRTE	WDTE	F0SC1	F0SC0									
--	----	----	----	----	----	----	----	----	----	----	-------	------	-------	-------

bit13

WDT period

- WDT ima nominalni period od **18ms** (varira zavisno od V_{DD} i temperature)
- Ako je potrebno duže vreme, koristi se preskaler sa faktorom deljena do 128 (WDT do 2.3 s), koji se postavlja preko OPTION registra
- **CLRWDT** i **SLEEP** instrukcije brišu WDT
- TO bit se resetuje (postaje aktivan) kada istekne
 WDT

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
1.11.7	•		•	•	•	•	1:10

SLEEP režim

- U ovaj režim ulazi izvršenjem SLEEP instrukcije
- Ako je omogućen, WDT se resetuje ali nastavlja da radi
- Bitovi u STATUS registru PD (Power-down) se resetuje (aktivan) a TO (Time-out) setuje (neaktivan)
- U/I portovi zadržavaju stanje koje su imali
- Izlazak iz ovog režima na jedan od događaja
 - Eksterni reset preko MCLR pina
 - Istek WDT
 - Spoljašnji prekid, promena na portu B ili završen upis u EEPROM
- Pri buđenju, ako je GIE=0, izvršenje se nastavlja od instrukcije iza SLEEP, a ako je GIE=1, skače se na adresu 0004h

Izlazak iz SLEEP režima

Note 1: XT, HS, or LP oscillator mode assumed.

- 2: Tost = 1024Tosc (drawing not to scale). This delay will not be there for RC osc mode.
- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
- 4: CLKOUT is not available in these osc modes, but shown here for timing reference.

EEPROM

- EDATA sadrži podatak koji treba da se upiše ili pročitani podatak
- EEADR sadrži adresu lokacije kojoj se pristupa
- EECON1 sadrži kontrolne bitove
- EECON2 inicijalizuje upis (mada ne postoji kao fizički registar)
- Veličina 64B (adrese: 00h-3Fh)
- Upis je upravljan tajmerom na čipu (vreme varira zavisno od napona napajanja i temperature, za 16F84A tipično T_{DFW} = 4ms, max. T_{DFW} = 8ms)

File Addre	ss	F	ile Address
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	-	_	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch			8Ch

EECON1 registar (88h)

U-0	U-0	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
_	_	_	EEIF	WRERR	WREN	WR	RD
bit 7							bit 0

bit 7-5	Unimplemented: Read as '0'	File Addre	ess	F	ile Addre
bit 4	EEIF: EEPROM Write Operation Interrupt Flag bit	00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
DIL T		01h	TMR0	OPTION_REG	81h
	1 = The write operation completed (must be cleared in software)	02h	PCL	PCL	82h
	0 = The write operation is not complete or has not been started	03h	STATUS	STATUS	83h
bit 3	WRERR: EEPROM Error Flag bit	04h	FSR	FSR	84h
	~	05h	PORTA	TRISA	85h
	1 = A write operation is prematurely terminated	06h	PORTB	TRISB	86h
	(any MCLR Reset or any WDT Reset during normal operation)	07h	_	_	87h
	0 = The write operation completed	08h	EEDATA	EECON1	88h
hit O	WPEN, EEDDOM Write Enable bit	09h	EEADR	EECON2 ⁽¹⁾	89h
bit 2	WREN: EEPROM Write Enable bit	0Ah	PCLATH	PCLATH	8Ah
	1 = Allows write cycles	0Bh	INTCON	INTCON	8Bh
	0 = Inhibits write to the EEPROM	0Ch			8Ch
bit 1	WR: Write Control bit				
	1 = Initiates a write cycle. The bit is cleared by hardware once write	e is co	mplete Th	ne WR bit	

can only be set (not cleared) in software.

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

> 1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in software.

0 = Does not initiate an EEPROM read

Pristup EEPROM-u

· Čitanje

- Upisati adresu u EEADR
- Postaviti RD bit u EECON1
- Pročitati EEDATA (već u prvoj sledećoj instrukciji)

Upis

- Upisati adresu u EEADR
- Upisati podatak u EEDATA
- Zabraniti prekide (zbog sekvence "otključavanja")
- Postaviti WREN bit u EECON1 (omogućiti upis)
- Upisati 55h, pa AAh u EECON2, sukcesivno, da bi se "otključao" upis (ovim se sprečava slučajan upis)
- Postaviti WR bit u EECON1 (inicirati upis) odmah nakon sekvence "otključavanja"
- Omogućiti prekide
- Završetak upisa se signalizira prekidom, tj. postavljanjem bita
 EEIF (EE Write Complete Interrupt Flag)
- Dobra programerska praksa nalaže da se nakon upisa proveri da li je upisana vrednost korektna

Zaštita od lažnog upisa

- Da bi se sprečio "lažni" upis podataka u EEPROM zbog variranja i naglih skokova napona ili lošeg rada softvera, koriste se brojni mehanizmi:
 - Pri uključivanju briše se WREN bit
 - Tokom trajanja Power-up tajmera (72ms) ne može se izvršiti upis u EEPROM
 - WREN mora biti postavljen pre početka sekvence otključavanja
 - Sekvenca "oktljučavanja" mora da prethodi upisu svakog bajta (upis 55h u EECON2, UPIS AAh u EECON2, postavljanje WR u EECON1)

U/I registri

- PIC16F84A ima dva U/I porta (A i B)
- Port A
 - 5-bitni
 - Smer pinova se određuje registrom TRISA (1-ulazni smer, 0-izlazni smer)
 - Vrednost se čita/upisuje preko registra **PORTA**

Port B

- 8-bitni
- Smer pinova se određuje registrom TRISB (1-ulazni smer, 0-izlazni smer)
- Vrednost se čita/upisuje preko registra **PORTB**

File Addre	ss	F	ile Address
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	1	1	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch			8Ch

Registri vezani za port A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
05h	PORTA	_	_	_	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
85h	TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	1 1111

Registri vezani za port B

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	uuuu uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
0Bh,8Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

Port B dodatne funkcije

- Svaki pin porta B ima slabi interni pull-up
- Za sve pinove se pull-up uključuje jednim bitom (RBPU) u OPTION registru
- Pull-up se automatski isključuje kada se pin prebaci u izlazni mod
- Pull-up se onemogućuje pri power-on resetu
- Prekidi su omogućeni samo ako su pinovi (RB7:RB4) u ulaznom modu
- Stanje ulaznih pinova (iz opsega RB7:RB4) se poredi sa prethodno "lečovanom" vrednošću, razlike se vode na logičko ILI kolo koje generiše RB Port Change Interrupt i postavlja fleg RBIF (u INTCON registru)
- Prekid može da probudi uređaj iz SLEEP režima
- Prekid se poništava čitanjem sa porta B ili brisanjem RBIF flega
- Prekid u slučaju promene na portu B, uz softersko upravljiv pullup na 4 pina omogućuje jednostavan interfejs prema tastaturi i mogućnost "buđenja" na pritisak tastera

Problem postavljanja U/I pinova

- Treba biti obazriv sa postavljanjem i brisanjem pojedinih bitova porta, ako se istovremeno neki pinovi koriste kao ulazni, a neki kao izlazni
- Instrukcije za postavljanje/brisanje jednog bita (BCF, BSF)
 zapravo prvo preuzimaju kompletan sadržaj porta (kopiraju
 u registar), zatim menjaju dati bit, pa vraćaju kompletan
 registar na port (read-modify-write)
- To može potpuno izbrisati (ulazne) bitove koji su u međuvremenu postavljeni (na osnovu ulaznog signala)

Problem sukcesivnih operacija

- Upis na port se dešava u poslednjoj fazi ciklusa instrukcije (Q4), dok se čitanje sa porta obavlja u prvoj (Q1)
- Šta se dešava ako čitanje sledi odmah iza upisa?
- Mora se dozvoliti da se napon stabilizuje, inače se može očitati prethodna vrednost
- Zbog spoljašnje kapacitivnosti, pogotovu na višim frekvencijama, javlja se dodatno kašnjenje
- Zato se u takvim situacijama preporučuje razdvajanje ovih instrukcija jednom (ili više) NOP naredbom, ili nekom drugom naredbom koja ne pristupa datom portu

Literatura

 PICmicro™ Mid-Range MCU Family Reference Manual, DS33023A, 1997, http://ww1.microchip.com/downlo-ads/en/devicedoc/33023a.pdf

 PIC16F84A Data Sheet, 18-pin Enhanced FLASH/EEPROM 8-bit Microcontroller, 35007b, 2001, https://ww1.microchip.com/downloads/en/devicedoc/35007b.pdf

Literatura

 Nebojša Matić, Dragan Andrić, PIC mikrokontroleri, Agencija APC, 2000.

 Milan Verle, PIC mikrokontroleri, Mikroknjiga, 2007, ISBN: 978-86-84417-14-7

Literatura

 8-Bit Microcontroller Summary, <u>https://microchipdeveloper.com/8bit:summary</u>

 External RC Oscillator, <u>https://microchipdeveloper.com/8bit:extrc</u>