Activity 6: The Heat Equation

<u>Primary Goal</u>: Learn how to code isotropic and anisotropic diffusion. Secondary Goal: Understand how to solve a PDE numerically.

1.) Isotropic Diffusion

Download the Matlab file **heat.m** for the Isotropic Heat Diffusion from our course website. To download a m-file, it is best to right-click on the link and select "Save As...".

The pseudocode for the Forward Euler solution to the Heat Equation is shown in Figure 1. Open the m-file and match up the Matlab code to the pseudocode. Note there is a slight difference in the loop structure since we kept track of time t rather than the iteration number t.

```
Forward Euler Method for solving u_t = K \Delta u with Neumann boundary conditions \frac{\text{Input}}{\text{Initial temperature profile }} f(x,y)
\frac{\text{Output}}{\text{Output}} : \text{Solution } u(x,y) \text{ to the Heat Equation}
\frac{\text{Parameters}}{\text{Parameters}} : \text{ Time step } \Delta t, \text{ Stopping Time } T
\text{Initialize } u^0 = f
\text{for } n \leftarrow 1 \text{ to } T / \Delta t \qquad \text{(Line 16)}
\text{Calculate the finite difference approximations } u^n_{xx} \text{ and } u^n_{yy} \text{ . (Lines 17-18)}
\text{Update } u^{n+1} = u^n + \Delta t \ K \left[ u^n_{xx} + u^n_{yy} \right] \qquad \text{(Line 19)}
```

Figure 1. Pseudocode for numerical solution to the isotropic heat equation. Line numbers in the file heat.m are provided for comparison.

a.) This code is set up to process a grayscale image. For example, try running the code on the cameraman image.

```
A = imread('cameraman.tif');
B = heat (A);
```

b.) To extend isotropic diffusion to color images, we could run the code on each of the 3 RGB channels of A and store the result in the corresponding channel of B.

```
clear B;
A = imread('peppers.png');
for i=1:3; B(:,:,i) = heat(A(:,:,i)); end;
imshow(B);
```

2.) Anisotropic Diffusion

Now we want to look at the harder case when the conductivity K(x, y) is not a constant. The anisotropic Heat Equation is

$$u_t = \nabla \cdot (K \nabla u) = \frac{\partial}{\partial x} (K u_x) + \frac{\partial}{\partial y} (K u_y).$$

The Forward Euler solution will be very similar to #1, except we need to compute the conductivity matrix *K* and slightly different derivatives.

a.) Let's modify the **heat.m** file from #1. First we want to be able to control the edge-stopping parameter a through the command line. Add the value a as an input in the function line.

When we call the function, we will have to specify the value of a.

b.) We will have to calculate the conductivity function K every iteration based on the current image u. Let's use the Perona-Malik exponential edge-stopping function

$$K = e^{-(\|\nabla u\|/a)^2}$$

where

$$\|\nabla u\| = \sqrt{u_x^2 + u_y^2}.$$

As the first step inside the for loop, calculate the forward differences to approximate the first derivatives u_x and u_y :

$$u_x \approx D_x^+ u = u(x+1,y) - u(x,y)$$

 $u_y \approx D_y^+ u = u(x,y+1) - u(x,y)$

Next combine these derivatives to compute the magnitude of the gradient as we did in Activity 5. Finally use the Matlab exponential function \exp to compute the matrix K.

c.) Next we need to replace the second derivative approximations. Rather than calculating u_{xx} directly, we will have to calculate $\frac{\partial}{\partial x}(Ku_x)$ in steps by performing forward then backward differences:

$$\frac{\partial}{\partial x}(Ku_x) \approx D_x^-(KD_x^+u).$$

Using the same u_x that you used to compute K, perform pointwise multiplication to compute the product Ku_x and store it in a matrix P. Then compute a backward difference on P:

$$D_x^- P = P(x, y) - P(x - 1, y).$$

Do a similar procedure to approximate $\frac{\partial}{\partial y}(Ku_y)$.

d.) Finally we need to change the update step:

Update
$$u^{n+1} = u^n + \Delta t \left[\frac{\partial}{\partial x} (K u_x^n) + \frac{\partial}{\partial y} (K u_y^n) \right]$$

e.) Test your code on the grayscale cameraman image with the value a=20.

Try the values a=5 and a=100. What happens to the image?