ProteinMAE: masked autoencoder for protein surface self-supervised learning

Mingzhi Yuan, Qin Qiao, Ao Shen, Kexue Fu, Manning Wang, Jiaming Guan, Yingfan Ma

LifeLU reading group

presented by Özdeniz Dolu

17.10.2024

General Outlook

Motivations

- Labeled data is scarce
- Self-supervised methods from NLP, CV
- Pretrain Fine-tune paradigm
- Success of protein surface representation learning (MaSIF, dMaSIF etc.)

Related Work

- MaSIF (Gainza et al. 2020): Geometric deep learning approach to protein surface representation. Uses geodesic convolutions on a surface mesh. Has a large computational overhead.
- **dMaSIF** (Sverrisson et al. 2021): Aims to lower MaSIF's computational costs by replacing mesh with point cloud. Applies "quasigeodesic convolution".

Data Preparation

Starting from 190615 proteins from PDB, data preparation process yields 359255 data points for pretraining. Point sampling process taken from dMaSIF.

Data Preparation

Dimension of each point: 122 (16 x 7 + 10) (Types of 16 nearest atoms + 10 geometric features)

Patch Generation

- Given a point cloud,
 - a. sample g center points (farthest point sampling).
 - b. For each center point sample k' neighbors using KNN.
 - c. We get g patches centered at center points containing k' points where patches are irregular and possibly overlapping.
- Masking ratio *m*: Percentage of patches to be masked. 60% is used for experiments.

Loss (Pretraining stage)

- Encoder takes unmasked patches as input -> Decoder predicts masked patches.
- Chamfer loss.

$$\mathcal{L} = \sum_{i=1}^{mg} \left(\frac{1}{|P_i^{\text{mask}}|} \sum_{x \in P_i^{\text{mask}}} \min_{y \in P_i^{\text{pred}}} ||x - y||_2^2 \right) + \frac{1}{|P_i^{\text{pred}}|} \sum_{x \in P_i^{\text{pred}}} \min_{y \in P_i^{\text{mask}}} ||x - y||_2^2 \right),$$

Architecture of the Encoder

General Outlook

Fine-tuning

1. Binding site identification: Binary classification task. Classify the points on the surface as "interaction" or "non-interaction" sites. Same balanced cross-entropy loss as dMaSIF.

Patch level features > Point level features > Prediction

Fine-tuning

2. Ligand-binding protein pocket classification: Classification task at protein level with multiple classes. Task of estimating the binding preferences of the protein to 7 metabolites. Cross-entropy loss was used.

Fine-tuning

3. Protein–protein interaction prediction: Given two proteins, estimate the probability of their binding. Binary classification task. Balanced metric loss was used.

1. Binding site identification in protein surface Dataset: 2958 training 356 test

Table 1. Performance on binding site identification.

Method	Accuracy ↑	Recall↑	F1 score↑	ROC-AUC↑
MaSIF	0.741	0.864	0.760	0.847
dMaSIF	0.774	0.781	0.763	0.865
Ours (from scratch)	0.765	0.785	0.756	0.843
Ours (contrastive)	0.788	0.772	0.769	0.866
Ours	0.793	0.799	0.782	0.871

2. Ligand-binding protein pocket classification
Dataset: 1459 structures (72%, 8%, 20%) (train, val, test)

Table 2. Performance on ligand-binding pocket classification.

Method	Balanced accuracy	
MaSIF	0.74	
dMaSIF	0.623	
Ours (from scratch)	0.666	
Ours (contrastive)	0.667	
Ours	0.707	

3. Protein–protein interaction prediction Dataset: 4614 training 912 test

Table 3. Performance on protein–protein interaction prediction.

Method	Accuracy ↑	Recall↑	F1 score↑	ROC-AUC↑
MaSIF	_	a—a	_	0.813
dMaSIF	0.795	0.823	0.793	0.862
Ours (from scratch)	0.922	0.990	0.930	0.944
Ours (contrastive)	0.926	0.994	0.933	0.945
Ours	0.927	0.994	0.934	0.948

Pretraining leads to faster convergence on downstream task.

Ablation study on the first task (binding site identification).

Performance by mask ratio on the first task (binding site identification).

Mask ratio (%)	ROC-AUC	
10	0.861	
20	0.857	
30	0.861	
40	0.860	
50	0.866	
60	0.871	
70	0.868	
80	0.860	
90	0.852	
From scratch	0.843	

Computational efficiency (binding site identification).

Table 5. Average running time per protein on binding site identification task of different networks.

	MaSIF	dMaSIF	Ours
Time (s/protein)	187.79	0.21	0.17

Reconstruction of masked patches

Given some amount of labeled data, the effect of pretraining.

Percentage of labeled data	From scratch	Ours
(%)	(ROC-AUC↑)	(ROC-AUC↑)
1	0.592	0.713 (+0.121)
2	0.603	0.747 (+0.144)
5	0.717	0.811 (+0.094)
10	0.780	0.829 (+0.049)
20	0.799	0.844 (+0.045)
30	0.816	0.847 (+0.031)
50	0.830	0.863 (+0.033)
100	0.852	0.871 (+0.019)

Feature distribution in ligand-binding protein classification task

(a) Features trained from scratch

(b) Features fine-tuned

Conclusion

- ProteinMAE provides a framework for self supervised protein surface representation learning.
- Compared to its competitors, it's computationally lighter while having competitive results.
- It does not require complex preprocessing or labeled data.

Thanks for listening