Tablas Semánticas - Árboles de Refutación

- Método alternativo a tablas de verdad para averiguar satisfacibilidad de fórmulas.
- >Su uso se basa en la estrategia de refutación.
 - √ deducción por refutación

B sí y sólo sí ¬B es contradicción

A \models B sí y sólo sí {A, ¬B} es insatisfacible (A = {A₁, A₂, ..., A_n})

≻Tabla semántica:

Secuencia de fórmulas proposicionales construidas de acuerdo a ciertas reglas, usualmente representada gráficamente como un árbol.

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Árboles de Refutación

≻Dadas A, B fórmulas proposicionales:

Regla 1:Regla 2:Regla 3:Regla 4:
$$\neg \neg A$$
 $A \land B$ $\neg (A \lor B)$ $\neg (A \to B)$ AA A AB $\neg B$ $\neg B$

- Las reglas de tipo **A** son las que tienen una o dos conclusiones en la misma rama.

Una valuación *v* satisface a la premisa sí y sólo sí *v* satisface a **todas** las conclusiones.

- Las reglas de tipo **B** son las que tienen dos conclusiones separadas en distintas ramas.

Una valuación *v* satisface a la premisa si y solo si *v* satisface al menos una de las conclusiones.

Heurística para aplicar reglas:

Aplicar las reglas de tipo A antes que las de tipo B.

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Árboles de Refutación

Lema

Toda fórmula que NO es una variable proposicional o negación de una variable proposicional, es de la forma de la premisa de una (y sólo una) de las reglas.

Estas reglas proveen un método alternativo a las Tablas de Verdad para determinar satisfacibilidad de fórmulas.

Ejemplos:

Usando árboles de refutación, determinar si las siguientes fórmulas son tautologías o no.

1)
$$F1 = (((p \lor q) \to r) \to ((p \to r) \land (q \to r)))$$

2)
$$F2 = ((p \land q) \rightarrow \neg (p \lor \neg q))$$

Definiciones:

- Un **árbol de refutación** de una **fórmula F** se obtiene haciendo un número finito de **aplicaciones inmediatas de las reglas**, partiendo del **árbol** cuyo único nodo es **F**.
- Un árbol de refutación de un conjunto finito C de fórmulas es un árbol de refutación de la conjunción de todas las fórmulas de C.
- Una rama de un árbol de fórmulas se dice cerrada si contiene a la vez una fórmula y su negación.
 En caso contrario, se dice abierta.
- Un árbol se dice cerrado si todas sus ramas son cerradas.

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Árboles de Refutación

- -Un conjunto C de fórmulas se dice **saturado** sí y sólo sí satisface las siguientes condiciones:
- i) Una fórmula y su negación no pueden estar simultáneamente en C.
- ii) Si una fórmula de tipo A está en C, entonces sus dos conclusiones están en C, excepto para la regla 1 que es una sola conclusión.
- iii) Si una fórmula de tipo B está en C, entonces al menos una de sus dos conclusiones están en C.
- Una rama de un árbol de fórmulas se dice saturada si el conjunto formado por las fórmulas de sus nodos es un conjunto saturado.

Observación:

Una rama saturada no puede ser cerrada.

- Un **árbol de refutación** se dice **completo** si cada una de sus ramas es **cerrada o saturada**.

Observación:

Todo árbol de refutación cerrado es un árbol completo.

Lema 1:

Toda fórmula F tiene por lo menos un árbol de refutación completo.

Lema 2:

Si F es una **fórmula satisfacible**, entonces **todo árbol de refutación de F** tiene **al menos una rama abierta**.

Lema 3:

Todo conjunto saturado de fórmulas es satisfacible.

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Árboles de Refutación

Teorema:

Las siguientes propiedades son equivalentes para todo conjunto finito y no vacío $C \subseteq F_m$

- i) C es satisfacible.
- ii) Todo árbol de refutación de C tiene por lo menos una rama abierta.
- iii) Existe un árbol de refutación completo de C con una rama abierta.

Corolario 1:

Las siguientes propiedades son equivalentes para todo conjunto finito y no vacío C \subseteq $F_{\rm m}$

- i) C es insatisfacible.
- ii) C tiene un árbol de refutación cerrado.
- iii) Todo árbol de refutación completo de C es cerrado.

Corolario 2:

Las siguientes propiedades son equivalentes para toda fórmula F:

- i) F es tautología
- ii) ¬F tiene un árbol de refutación cerrado.
- iii) Todo árbol de refutación completo de ¬F es cerrado.

Árboles de Refutación

Ejercicios: (del Trabajo Práctico Nº 2)

Usando árboles de refutación, probar las siguientes tautologías:

1.a)
$$\models (A \rightarrow (B \rightarrow A \land B))$$

1.b)
$$\models (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

Usando árboles de refutación, determinar cuáles de las siguientes consecuencias semánticas son válidas:

2.a)
$$\{ A \lor B \} \models A \to B$$

2.c) {A
$$\rightarrow$$
 B, \neg C \rightarrow \neg B } \models (A \rightarrow C)

- >Naturaleza sintáctica, combinatoria
- En general axiomas + reglas de inferencia → teorema
- > Demostración o prueba: secuencia finita de pasos, de aplicaciones de reglas de inferencia.
- >Conexión con el concepto semántico de consecuencia
- >Corrección, completitud, decidibilidad

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Sistemas Deductivos

Demostración de fórmulas:

Demostración de fórmula A es una sucesión finita de fórmulas F₁, F₂,

- ..., F_n, todas válidas, tales que:
- 1) Cada fórmula F_i es un axioma o teorema ya demostrado, o una fórmula obtenida de las anteriores aplicando alguna regla de inferencia.
- 2) La última fórmula de la sucesión F_n es la fórmula A a demostrar.

A es entonces un teorema del sistema

Demostración de deducciones:

- Un argumento o deducción tiene la forma $P_1, P_2, ..., P_n \rightarrow Q$
- Pi son hipótesis y Q es la conclusión

Demostración de la validez de un argumento es una sucesión finita de fórmulas $F_1 = P_1$, $F_2 = P_2$, ..., $F_n = P_n$, F_{n+1} , F_{n+2} , $F_m = Q$, todas válidas, tales que:

- 1) Cada fórmula F_i es una hipótesis, un axioma o teorema ya demostrado, o una fórmula obtenida de las anteriores aplicando alguna regla de inferencia.
- 2) La última fórmula de la sucesión $F_{\rm m}$ = Q es la conclusión del argumento.

Se dice entonces que Q se deduce de P₁, P₂, ..., P_n

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Sistemas Deductivos

- Axiomático: conjunto de axiomas y conjunto de reglas de inferencia

Ejemplo:

Axiomas:

$$|-A \rightarrow (B \rightarrow A)$$

$$\mid - (\neg \mathsf{A} \to \neg \ \mathsf{B}) \to (\mathsf{B} \to \mathsf{A})$$

$$\mid - (\mathsf{A} \to (\mathsf{\ B} \to \mathsf{C})) \to ((\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to \mathsf{C}))$$

Regla de inferencia:

$$A \rightarrow B$$

- Deducción natural (Gentzen): sin axiomas y con varias reglas de inferencia

Reglas de inferencia básicas: Dadas A, B, C ∈ F_m

Introducción conjunción

А В

A ^ B

Introducción disyunción

A A ∨ B Eliminación conjunción

A A B

 $\frac{A \wedge B}{B}$

Eliminación disyunción

 $A \vee B$

A B

... ... C

C

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Sistemas Deductivos

Introducción implicación

...

C $A \rightarrow C$

Eliminación implicación (Modus Ponens)

Α

 $\frac{\mathsf{A} \to \mathsf{C}}{\mathsf{C}}$

Eliminación doble negación

<u>¬¬A</u>

Introducción negación

Α

... B ∧ ¬B

 $\neg A$

- Resolución:
- √única regla de deducción (sin axiomas)
- √fácil implementación
- √ deducción por refutación

B sí y sólo sí ¬B es contradicción

A \models B sí y sólo sí $\{A, \neg B\}$ es insatisfacible $\{A = \{A_1, A_2, ..., A_n\}\}$

√fórmulas en forma normal conjuntiva

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Formas Normales

√ FORMA NORMAL DISYUNTIVA (FND)

Una fórmula A está en FND si A = V C_i

C_i cláusulas duales

Cada C_i tiene la forma

$$C_i = \bigwedge_{j=1,...m} I_{ij}$$
 literales

Ejemplo:

$$A = (p \rightarrow q) \rightarrow r$$

$$\equiv \neg(\neg p \lor q) \lor r$$

$$\equiv p \land \neg q \lor r$$

√ FORMA NORMAL CONJUNTIVA (FNC)

FORMA NORMAL CONJUNTIVA (FNC)

Una fórmula A está en FNC si $A = \bigwedge_{i=1,...n} C_i$ cláusulas

Cada C_i tiene la forma

$$C_i = V_{ij} I_{ij} I_{ij}$$
 Iiterales

Ejemplo

$$A = (p \rightarrow q) \rightarrow r$$

$$\equiv \neg(\neg p \lor q) \lor r$$

$$\equiv p \land \neg q \lor r$$

$$FNC(A) = (p \lor r) \land (\neg q \lor r)$$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

FORMA CLAUSULAR

A en FNC se puede escribir $cl(A) = \{C_1, C_2, ..., C_n\}$ C_i cláusulas

Cláusula $C = I_1 \lor I_2 \lor ... \lor I_m$ se escribe $C = \{I_1, I_2, ..., I_m\}$

Cláusula unitaria: cláusula con un solo literal C = { I }

Ejemplos: ¬p es cláusula unitaria y q también

$$\mathsf{FNC}(\mathsf{A}) = (\mathsf{p} \vee \mathsf{r}) \wedge (\neg \mathsf{q} \vee \mathsf{r})$$

$$CI(A) = \{C_1, C_2\} = \{p \lor r, \neg q \lor r\}$$
 siendo $C_1 = p \lor r$ y $C_2 = \neg q \lor r$

También se puede escribir

$$C_1 = \{p, r\}$$
 y $C_2 = \{\neg q, r\}$ $p, r, \neg q$ literales $CI(A) = \{\{p, r\}, \{\neg q, r\}\}$

Cláusula satisfacible

$$\label{eq:continuous} \begin{split} \mathbf{C} &= \{\mathbf{I}_1,\,\mathbf{I}_2,\,...,\,\mathbf{I}_m\} \quad \text{es satisfacible por una valuación v sí y sólo sí} \\ &\text{la fórmula } \mathbf{I}_1 \vee \mathbf{I}_2 \vee ... \vee \mathbf{I}_m \text{es satisfacible por v.} \end{split}$$

Es decir $v(I_i) = 1$ para algún $I_i \in C$

Fórmula en FNC satisfacible

A en FNC, A = $\{C_1, C_2, ..., C_n\}$, es satisfacible por una valuación v sí y sólo sí la fórmula $C_1 \wedge C_2 \wedge ... \wedge C_n$ es satisfacible por v

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Fórmula satisfacible

Una fórmula A es satisfacible sí y sólo sí la forma clausular asociada, $cl(A) = \{C_1, C_2, ..., C_n\}$, es satisfacible.

Cláusula vacía

C = { } (conjunto de literales es vacío)

Se denota también con ⊥ y es insatisfacible

Conjunto de cláusulas S

-Si S = Ø entonces S es satisfacible (S conjunto vacío de cláusulas)

-Si S = {{ }} = { \bot } entonces S es insatisfacible (S contiene únicamente la cláusula vacía)

Resolvente

Dada la forma clausular A = $\{p \lor \neg q, q \lor \neg t\}$ Sea v una valuación

v(q) = 0 para que $v(q \lor \neg t) = 1$ debe ser v(t) = 0 (depende de t)

v(q) = 1 para que $v(p \lor \neg q) = 1$ debe ser v(p) = 1 (depende de p)

 $A = \{p \lor \neg q, q \lor \neg t\}$ es satisfacible sí y sólo sí

p v ¬q y q v ¬t son satisfacibles sí y sólo sí

p ó ¬t es satisfacible

Satisfacibilidad de A depende de p v ¬t A se puede reducir a p v ¬t

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Definición de Resolvente

Sean C_1 y C_2 cláusulas. Supongamos que $I \in C_1$ y $I^c \in C_2$

La resolvente de C₁ y C₂ es la cláusula

$$Res(C_1, C_2) = (C_1 - \{1\}) \cup (C_2 - \{1^c\})$$

Ejemplos

 $Res(p \lor \neg q, q \lor \neg t) = p \lor \neg t$

Res($\neg q$, q) = \bot

Cuidado

Res $(p \lor \neg q, q \lor \neg p) = p \lor \neg p$ resolviendo sobre q

Res $(p \lor \neg q, q \lor \neg p) = \neg q \lor q$ resolviendo sobre p

Regla o principio de resolución

Determinación de la resolvente de un par de cláusulas

Dadas C_1 y C_2 cláusulas tales que $I \in C_1$ y $I^c \in C_2$ se denomina resolución a la regla

$$\frac{C_{1}}{(C_{1}^{-}\{\ I\ \})\cup(C_{2}^{}-\{\ I^{c}\})}$$

Teorema

La regla de resolución preserva la satisfacibilidad. Es decir, si una valuación satisface un conjunto de cláusulas, también satisface cualquier resolvente de un par de ellas.

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

1) Dados los siguientes conjuntos de cláusulas, calcule en cada caso todas las resolventes posibles

a) S = {
$$p \lor q$$
, $\neg p \lor r$, $\neg q \lor r$, $\neg r$, $p \lor t$ }

b)
$$S = \{ q, \neg p \lor r, \neg q \lor t, \neg r \lor p \}$$

2) ¿Qué conclusión puede sacar sobre la satisfacibilidad de cada conjunto de cláusulas?

Deducción por Resolución:

Sea S un conjunto de cláusulas y C una cláusula.

Una deducción por resolución de C a partir de S, S \mid - $_R$ C, es una sucesión finita de cláusulas C₁, C₂, ..., C_n tales que

- 1) $C_n = C$
- 2) Para $1 \le i \le n$ se cumple que
 - a) $C_i \in S \acute{o}$
 - b) Existen cláusulas C_i , C_k con j, k < n tal que $Res(C_i, C_k) = C_i$

Refutación de un conjunto de cláusulas:

Sea S un conjunto de cláusulas. Una refutación de S es una deducción por resolución de \(\perp \) a partir de S.

En símbolos S |-R ⊥

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Teorema:

Sea S un conjunto de cláusulas. Entonces S \mid - $_R \perp$ sí y sólo sí S es insatisfacible.

Ejemplo:

Determinar si S = { $p \lor q$, $\neg p \lor r$, $\neg q \lor r$, $\neg r$, $p \lor t$ } es satisfacible o no

- 1) $p \lor q$ 6) Res(1, 2) = $q \lor r$
- 2) $\neg p \lor r$ 7) Res(3, 4) = $\neg q$
- 3) ¬q∨r
- 8) Res(7, 6) = r
- 4) ¬r
- 9) Res(8, 4) = \bot
- 5) p v t

Como S |-R ⊥

S es insatisfacible

En una deducción por resolución:

- una cláusula puede ser utilizada más de una vez
- puede haber cláusulas que no se utilicen
- siempre se usa un conjunto finito de cláusulas

Teorema:

Sea S un conjunto de cláusulas y C una cláusula.

Entonces S $|-_R$ C sí y sólo sí existe un subconjunto finito S $_0$ S $_0$ \subseteq S tal que S $_0$ $|-_R$ C

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Resolución

✓ El método de resolución es completo, correcto y decidible.

Dados $\Gamma \cup \{A\} \subseteq F_m$

Teorema de Completitud:

Si $\Gamma \models A$ entonces $cl(\Gamma \cup \{\neg A\}) \mid \neg_R \bot$

Teorema de Corrección:

Si $cl(\Gamma) \mid_{-R} cl(A)$ entonces $\Gamma \models A$

Decidibilidad:

Existe un algoritmo para decidir si una fórmula es deducible a partir de otras (puede aplicarse Algoritmo de Davis-Putnam)

Corolario:

Corolario:

Sea S un conjunto de cláusulas.

 $S \mid_{-R} \bot si y sólo si S es insatisfacible$

Método para determinar si una fórmula A es tautología:

- 1) Negar la fórmula.
- 2) Calcular $cl(\neg A)$.
- 3) Usar resolución para determinar si cl(\neg A) \mid - $_{R}$ \perp

Ejemplo: Determinar si \models $(p \rightarrow r) \land (q \rightarrow s) \rightarrow (p \land q \rightarrow r \land s)$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Método para determinar si una deducción semántica es válida:

Dados $\Gamma \cup \{A\} \subseteq F_m$

Para determinar si Γ | A

- 1) Negar la conclusión (A)
- 2) Calcular cl($\Gamma \cup \{\neg A\}$)
- 3) Usar resolución para determinar si cl($\Gamma \cup \{\neg A\}$) $\mid \neg_R \perp$

Si cl($\Gamma \cup \{\neg A\}$) $\mid \neg_R \perp$ entonces $\Gamma \models A$ (deducción semántica es válida)

Si cl($\Gamma \cup \{\neg A\}$) | $\nearrow_R \bot$ entonces $\Gamma \not\models A$ (deducción semántica no es válida)

Ejemplo:

Determinar si $p \rightarrow q \land r, \neg(s \lor t), q \leftrightarrow s \lor t \models \neg p$

Cláusulas de Horn:

- Como máximo un literal positivo
- Pueden ser de la forma:

1)
$$\neg p_1 \lor \neg p_2 \lor ... \lor \neg p_n \lor q \equiv p_1 \land p_2 \land ... \land p_n \rightarrow q$$
 (reglas)

3)
$$\neg p_1 \lor \neg p_2 \lor ... \lor \neg p_n \equiv \neg (p_1 \land p_2 \land ... \land p_n)$$

Ejemplos:

1)
$$\neg p \lor \neg q \lor \neg r \lor s$$

Resolución unitaria: en cada paso interviene una cláusula unitaria

Si S es un conjunto de cláusulas de Horn insatisfacible entonces existe una refutación unitaria de S.

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Algoritmo de Davis-Putnam (sistematiza proceso de resolución):

Sea S conjunto finito de cláusulas y $\{p_1, p_2, ..., p_n\}$ conjunto de variables proposicionales que ocurren en cláusulas de S.

- 1) Sea S₁ = S
- 2) Sea i = 1
- 3) Repetir hasta que i = n + 1 (n nro. var. proposicionales)
- 4) Sea $S_i' = S_i \{C\}$ C es cláusula que tiene I y I^c , I literal
- 5) Elegir una variable p_i y definir el conjunto de cláusulas que contienen p_i $T_i = \{ C \in S_i : p_i \in C \text{ o } \neg p_i \in C \}$
- 6) Calcular el conjunto de resolventes de pares de cláusulas en T_i $R_i = \{ D: existen C_1 \cup \{p_i\}, C_2 \cup \{\neg p_i\} \in T_i \text{ y} \}$

$$D = Res(C_1 \cup \{p_i\}, C_2 \cup \{\neg p_i\})\}$$

- 7) Definir el conjunto $S_{i+1} = (S_i' T_i) \cup R_i$
- 8) Sea i = i + 1
- 9) Volver a 3)

- Como la cantidad de variables en S es finita (n), en n+1 pasos, como máximo, se eliminan todas las variables.
- S_{n+1} es el conjunto final o solución y puede ser sólo uno de los siguientes:

$$S_{n+1} = \{\bot\}$$
 es decir $S \mid \neg_R \bot \Rightarrow S$ es insatisfacible

$$S_{n+1} = \emptyset$$
 es decir $S \not \searrow_R \bot \Rightarrow S$ es satisfacible

Ejemplo:

Dado S = { $\neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r, \neg s \lor p \lor s$ }

Aplicando el ADP determinar si S es satisfacible o no

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Resolución

Ejemplo:

Dado S = { $\neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r, \neg s \lor p \lor s$ }

- 1) $S_1 = S$
- 2) i = 1
- 3) i < n + 1
- 4) $S_1' = S_1 \{ \neg s \lor p \lor s \} = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r \}$
- 5) Elijo p

$$\mathsf{T}_1 = \{ \, \underline{\neg p \lor \neg q \lor r}, \, \underline{p \lor r \lor s}, \, \underline{\neg p \lor q} \, \}$$

$$(2, 3) r \vee s \vee q$$

$$R_1 = \{ \neg q \lor r \lor s, r \lor s \lor q \}$$

7)
$$S_2 = (S_1' - T_1) \cup R_1 = \{ \neg s, r \} \cup \{ \neg q \lor r \lor s, r \lor s \lor q \}$$

$$S_2 = {\neg s, r, \neg q \lor r \lor s, r \lor s \lor q}$$

4)
$$S_2' = S_2 = \{ \neg s, r, \neg q \lor r \lor s, r \lor s \lor q \}$$

5) Elijo s

$$T_2 = \{ \neg s, \neg q \lor r \lor s, r \lor s \lor q \}$$

6)
$$R_2 = {\neg q \lor r, r \lor q}$$

7)
$$S_3 = (S_2' - T_2) \cup R_2 = \{ r, \neg q \lor r, r \lor q \}$$

4)
$$S_3' = S_3 = \{ r, \neg q \lor r, r \lor q \}$$

5) Elijo r

$$T_3 = \{r, \neg q \lor r, r \lor q \}$$

6)
$$R_2 = \emptyset$$

7)
$$S_4 = (S_3' - T_3) \cup R_3 = \emptyset$$

Para
$$S = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r, \neg s \lor p \lor s \}$$

el resultado de aplicar el ADP es Ø, por lo tanto

$$S \not\vdash_R \bot \Rightarrow S$$
 es satisfacible

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Algoritmo de Davis-Putnam (sistematiza proceso de resolución):

Sea S conjunto finito de cláusulas y $\{p_1, p_2, ..., p_n\}$ conjunto de variables proposicionales que ocurren en cláusulas de S.

- 1) Sea S₁ = S
- 2) Sea i = 1
- 3) Repetir hasta que i = n + 1 (n nro. var. proposicionales)

 $S = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r, \neg s \lor p \lor s \}$

- 1) S₁ = S
- 2) i = 1
- 3) i < n + 1

Algoritmo de Davis-Putnam (sistematiza proceso de resolución):

Sea S conjunto finito de cláusulas y $\{p_1, p_2, ..., p_n\}$ conjunto de variables proposicionales que ocurren en cláusulas de S.

- 1) Sea S₁ = S
- 2) Sea i = 1
- 3) Repetir hasta que i = n + 1 (n nro. var. proposicionales)
- 4) Sea S_i' = S_i {C} C es cláusula que tiene I y Ic, I literal

```
S = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r, \neg s \lor p \lor s \}
```

- 1) $S_1 = S$
- 2) i = 1
- 3) i < n + 1

4)
$$S_4' = S_4 - \{ \neg s \lor p \lor s \} = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r \}$$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

Algoritmo de Davis-Putnam (sistematiza proceso de resolución):

Sea S conjunto finito de cláusulas y $\{p_1, p_2, ..., p_n\}$ conjunto de variables proposicionales que ocurren en cláusulas de S.

- 1) Sea S₁ = S
- 2) Sea i = 1
- 3) Repetir hasta que i = n + 1 (n nro. var. proposicionales)
- 4) Sea $S_i' = S_i \{C\}$ C es cláusula que tiene I y I^c , I literal
- 5) Elegir una variable p_i y definir el conjunto de cláusulas que contienen p_i $T_i = \{ C \in S_i : p_i \in C \text{ o } \neg p_i \in C \}$

4)
$$S_1' = S_1 - \{\neg s \lor p \lor s\} = \{\neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r\}$$

5) Elijo p

$$T_1 = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q \}$$

- 4) Sea $S_i' = S_i \{C\}$ C es cláusula que tiene l y I^c , l literal
- 5) Elegir una variable p_i y definir el conjunto de cláusulas que contienen p_i
 T_i = { C ∈ S_i': p_i ∈ C o ¬p_i ∈ C }
- 6) Calcular el conjunto de resolventes de pares de cláusulas en T_i R_i = { D: existen $C_1 \cup \{p_i\}, \, C_2 \cup \{\neg \ p_i\} \in T_i \, y$

$$\mathsf{D} = \mathsf{Res}(\mathsf{C}_1 \cup \{\mathsf{p_i}\},\,\mathsf{C}_2 \cup \{\neg \;\mathsf{p_i}\})\,\}$$

- 4) $S_1' = S_1 \{\neg s \lor p \lor s\} = \{\neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r\}$
- 5) Elijo p

$$T_1 = \{ \frac{\neg p \lor \neg q \lor r, p \lor r \lor s}{1}, \frac{\neg p \lor q}{3} \}$$

- 6) $(1, 2) \neg q \lor r \lor s$ $(2, 3) r \lor s \lor q$
 - $R_1 = \{ \neg q \lor r \lor s, r \lor s \lor q \}$

ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

- 4) Sea $S_i' = S_i \{C\}$ C es cláusula que tiene I y I^c, I literal
- 5) Elegir una variable p_i y definir el conjunto de cláusulas que contienen p_i $T_i = \{ C \in S_i : p_i \in C \text{ o } \neg p_i \in C \}$
- 6) Calcular el conjunto de resolventes de pares de cláusulas en T_i R_i = { D: existen $C_1 \cup \{p_i\}, C_2 \cup \{\neg p_i\} \in T_i$ y

$$D = Res(C_1 \cup \{p_i\}, C_2 \cup \{\neg p_i\})\}$$

- 7) Definir el conjunto $S_{i+1} = (S_i' T_i) \cup R_i$
- 4) $S_1' = S_1 \{\neg s \lor p \lor s\} = \{\neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r\}$
- 5) Elijo r

$$T_1 = \{ \neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q \}$$

- 6) $R_1 = \{ \neg q \lor r \lor s, r \lor s \lor q \}$
- 7) $S_2 = (S_1' T_1) \cup R_1 = \{\neg s, r\} \cup \{\neg q \lor r \lor s, r \lor s \lor q\}$ $S_2 = \{\neg s, r, \neg q \lor r \lor s, r \lor s \lor q\}$

Algoritmo de Davis-Putnam (sistematiza proceso de resolución):

Sea S conjunto finito de cláusulas y $\{p_1, p_2, ..., p_n\}$ conjunto de variables proposicionales que ocurren en cláusulas de S.

- 1) Sea S₁ = S
- 2) Sea i = 1
- 3) Repetir hasta que i = n + 1 (n nro. var. proposicionales)
- 4) Sea $S_i' = S_i \{C\}$ C es cláusula que tiene l y I^c , I literal
- 5) Elegir una variable p_i y definir el conjunto de cláusulas que contienen p_i $T_i = \{ C \in S_i : p_i \in C \text{ o } \neg p_i \in C \}$
- 6) Calcular el conjunto de resolventes de pares de cláusulas en T_i R_i = { D: existen $C_1 \cup \{p_i\}, C_2 \cup \{\neg\ p_i\} \in T_i \ y$

$$D = Res(C_1 \cup \{p_i\}, C_2 \cup \{\neg p_i\}) \}$$

- 7) Definir el conjunto $S_{i+1} = (S_i' T_i) \cup R_i$
- 8) Sea i = i + 1
- 9) Volver a 3)

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Resolución

- 4) $S_2' = S_2 = \{ \neg s, r, \neg q \lor r \lor s, r \lor s \lor q \}$
- 5) Eliio s

$$T_2 = \{ \neg s, \neg q \lor r \lor s, r \lor s \lor q \}$$

- 6) $R_2 = \{ \neg q \lor r, r \lor q \}$
- 7) $S_3 = (S_2' T_2) \cup R_2 = \{ r, \neg q \lor r, r \lor q \}$
- 4) $S_3' = S_3 = \{ r, \neg q \lor r, r \lor q \}$
- 5) Elijo r

$$T_3 = \{r, \neg q \lor r, r \lor q \}$$

- 6) $R_2 = \emptyset$
- 7) $S_4 = (S_3' T_3) \cup R_3 = \emptyset$

- Como la cantidad de variables en S es finita (n), en n+1 pasos, como máximo, se eliminan todas las variables.
- $\mathbf{S}_{\text{n+1}}$ es el conjunto final o solución y puede ser sólo uno de los siguientes:

$$S_{n+1} = \{\bot\}$$
 es decir $S \mid -_R \bot \Rightarrow S$ es insatisfacible

$$S_{n+1} = \emptyset$$
 es decir $S \not \searrow_R \bot \Rightarrow S$ es satisfacible

Dado S = { $\neg p \lor \neg q \lor r, p \lor r \lor s, \neg p \lor q, \neg s, r, \neg s \lor p \lor s$ } Como el resultado de aplicar el ADP es \emptyset

$$S \not\vdash_R \bot \Rightarrow S$$
 es satisfacible

