Método dos Coeficientes Indeterminados Resolvendo o Modelo RBC

Felipe lachan

FGV EPGE

Macroeconomia II, MD, 12 de agosto de 2025

Motivação: Por que Métodos de Solução?

Problema: Temos um sistema log-linearizado, mas ainda precisamos resolvê-lo. Do nosso modelo RBC log-linearizado:

$$E_t[\hat{C}_{t+1}] - \hat{C}_t = \frac{1}{\sigma} E_t[\hat{r}_{t+1}]$$
 (1)

$$\hat{Y}_t = \hat{z}_t + \alpha \hat{K}_t + (1 - \alpha)\hat{L}_t$$
 (2)

$$s_C \hat{C}_t + s_I \hat{I}_t = \hat{Y}_t \tag{3}$$

$$\hat{\mathcal{K}}_{t+1} = (1 - \delta)\hat{\mathcal{K}}_t + \delta\hat{I}_t \tag{4}$$

$$\hat{z}_{t+1} = \rho \hat{z}_t + \sigma_z \epsilon_{t+1} \tag{5}$$

Queremos: Funções políticas que expressem variáveis endógenas em função dos estados.

2

Método dos Coeficientes Indeterminados

Ideia central: "Guess and Verify"

- Conjecturar forma funcional das políticas ótimas
- Substituir nas condições de equilíbrio
- Igualar coeficientes para determinar parâmetros
- Verificar que a solução satisfaz todas as condições

Vantagens:

- Simples e intuitivo
- Solução em forma fechada (quando funciona)
- Fácil implementação computacional

Limitação: Precisa "adivinhar"a forma correta!

Estrutura do Modelo RBC Log-Linearizado

Variáveis de estado: \hat{K}_t , \hat{z}_t Variáveis de controle: \hat{C}_t , \hat{l}_t , \hat{L}_t Variáveis auxiliares: \hat{Y}_t , \hat{r}_t

Intuição: Toda variável endógena deve depender apenas dos estados:

Variável endógena
$$_t = f(\hat{K}_t, \hat{z}_t)$$

Por que linear? O sistema foi log-linearizado, então esperamos funções políticas lineares nos estados.

Conjectura: Funções Políticas Lineares

Hipótese central: Funções políticas são lineares nos estados.

$$\hat{C}_t = \psi_{C,K} \hat{K}_t + \psi_{C,z} \hat{z}_t \tag{6}$$

$$\hat{l}_t = \psi_{I,K} \hat{K}_t + \psi_{I,z} \hat{z}_t \tag{7}$$

$$\hat{L}_t = \psi_{L,K} \hat{K}_t + \psi_{L,z} \hat{z}_t \tag{8}$$

$$\hat{Y}_t = \psi_{Y,K} \hat{K}_t + \psi_{Y,z} \hat{z}_t \tag{9}$$

Objetivo: Determinar os 8 coeficientes $\psi_{i,j}$.

Nota: \hat{K}_{t+1} será determinado pela acumulação de capital.

Passo 1: Usar a Função de Produção

Da função de produção:

$$\hat{Y}_t = \hat{z}_t + \alpha \hat{K}_t + (1 - \alpha)\hat{L}_t$$

Substituindo nossa conjectura para \hat{L}_t :

$$\hat{Y}_t = \hat{z}_t + \alpha \hat{K}_t + (1 - \alpha)(\psi_{L,K}\hat{K}_t + \psi_{L,z}\hat{z}_t)$$

Reorganizando:

$$\hat{Y}_t = [\alpha + (1 - \alpha)\psi_{L,K}]\hat{K}_t + [1 + (1 - \alpha)\psi_{L,z}]\hat{z}_t$$

Comparando com nossa conjectura $\hat{Y}_t = \psi_{Y,K} \hat{K}_t + \psi_{Y,z} \hat{z}_t$: Equações 1-2:

$$\psi_{Y,K} = \alpha + (1 - \alpha)\psi_{L,K}
\psi_{Y,z} = 1 + (1 - \alpha)\psi_{L,z}$$
(10)

Passo 2: Usar a Restrição de Recursos

Da restrição de recursos:

$$s_C \hat{C}_t + s_I \hat{I}_t = \hat{Y}_t$$

Substituindo nossas conjecturas:

$$s_{C}(\psi_{C,K}\hat{K}_{t} + \psi_{C,z}\hat{z}_{t}) + s_{I}(\psi_{I,K}\hat{K}_{t} + \psi_{I,z}\hat{z}_{t})$$

$$(12)$$

$$=\psi_{Y,K}\hat{K}_t + \psi_{Y,z}\hat{z}_t \tag{13}$$

Igualando coeficientes:

Equações 3-4:

$$s_C \psi_{C,K} + s_I \psi_{I,K} = \psi_{Y,K} \tag{14}$$

$$s_C \psi_{C,z} + s_I \psi_{I,z} = \psi_{Y,z} \tag{15}$$

Passo 3: Derivar a Condição Trabalho-Lazer

Condição intratemporal: Da otimização da família,

$$\frac{u_L(C_t, 1 - L_t)}{u_C(C_t, 1 - L_t)} = (1 - \alpha)z_t K_t^{\alpha} L_t^{-\alpha}$$

Para utilidade com trabalho aditivo: $u(C, L) = \log C - \chi \frac{L^{1+\zeta}}{1+\zeta}$

$$\frac{\chi L_t^{\zeta}}{C_t^{-1}} = (1 - \alpha) z_t K_t^{\alpha} L_t^{-\alpha}$$

Log-linearizando em torno do estado estacionário:

$$\zeta \hat{L}_t + \hat{C}_t = \hat{z}_t + \alpha \hat{K}_t - \alpha \hat{L}_t$$

Simplificando:

$$(\zeta + \alpha)\hat{L}_t + \hat{C}_t = \hat{z}_t + \alpha\hat{K}_t$$

Passo 4: Condição Trabalho-Lazer com Conjecturas

Da condição trabalho-lazer:

$$(\zeta + \alpha)\hat{L}_t + \hat{C}_t = \hat{z}_t + \alpha\hat{K}_t$$

Substituindo nossas conjecturas:

$$(\zeta + \alpha)(\psi_{L,K}\hat{K}_t + \psi_{L,z}\hat{z}_t) + (\psi_{C,K}\hat{K}_t + \psi_{C,z}\hat{z}_t)$$

$$= \alpha\hat{K}_t + \hat{z}_t$$
(16)

$$=\alpha\hat{K}_t+\hat{z}_t$$

Igualando coeficientes:

Equações 5-6:

$$(\zeta + \alpha)\psi_{L,K} + \psi_{C,K} = \alpha$$
 (18)

$$(\zeta + \alpha)\psi_{L,z} + \psi_{C,z} = 1$$

Passo 5: Acumulação de Capital

Da acumulação de capital:

$$\hat{K}_{t+1} = (1 - \delta)\hat{K}_t + \delta\hat{I}_t$$

Substituindo nossa conjectura para \hat{l}_t :

$$\hat{K}_{t+1} = (1 - \delta)\hat{K}_t + \delta(\psi_{I,K}\hat{K}_t + \psi_{I,z}\hat{z}_t)$$

Reorganizando:

$$\hat{K}_{t+1} = [(1 - \delta) + \delta \psi_{I,K}] \hat{K}_t + \delta \psi_{I,z} \hat{z}_t$$

Esta é a lei de movimento do capital que usaremos na Equação de Euler.

Passo 6: Preparação da Equação de Euler

Da Equação de Euler:

$$E_t[\hat{C}_{t+1}] - \hat{C}_t = \frac{1}{\sigma} E_t[\hat{r}_{t+1}]$$

 $E_{t}[\hat{C}_{t+1}] = E_{t}[\psi_{C} \kappa \hat{K}_{t+1} + \psi_{C} z\hat{z}_{t+1}]$

Para o consumo:

$$= \psi_{C,K} \mathcal{E}_t[\hat{K}_{t+1}] + \psi_{C,z} \mathcal{E}_t[\hat{z}_{t+1}]$$
$$= \psi_{C,K} \mathcal{E}_t[\hat{K}_{t+1}] + \psi_{C,z} \rho \hat{z}_t$$

Para a taxa de juros: Da condição das firmas,

$$\hat{r}_t = \hat{z}_t + (\alpha - 1)\hat{K}_t + (1 - \alpha)\hat{L}_t$$

Então:

$$E_t[\hat{r}_{t+1}] = E_t[\hat{z}_{t+1}] + (\alpha - 1)E_t[\hat{K}_{t+1}] + (1 - \alpha)E_t[\hat{L}_{t+1}]$$

(20)

(21)

(22)

Passo 7: Resolver a Equação de Euler

Substituindo $E_t[\hat{K}_{t+1}]$, $E_t[\hat{L}_{t+1}]$ e $E_t[\hat{z}_{t+1}] = \rho \hat{z}_t$ e igualando coeficientes: Equação 7 (coeficiente de \hat{K}_t):

$$\psi_{C,K}[(1-\delta)+\delta\psi_{I,K}-1] \tag{23}$$

$$=\frac{1}{\sigma}[(\alpha-1)+(1-\alpha)\psi_{L,K}][(1-\delta)+\delta\psi_{I,K}]$$
 (24)

Equação 8 (coeficiente de \hat{z}_t):

$$\psi_{C,K}\delta\psi_{I,z} + \psi_{C,z}(\rho - 1) \tag{25}$$

$$=rac{1}{\sigma}
ho+rac{1}{\sigma}[(lpha-1)+(1-lpha)\psi_{L,{\mathcal K}}]\delta\psi_{I,z}+rac{1}{\sigma}(1-lpha)\psi_{L,z}
ho$$

(26)

Sistema Completo: 8 Equações, 8 Incógnitas

Incógnitas: $\psi_{C,K}, \psi_{C,z}, \psi_{I,K}, \psi_{I,z}, \psi_{L,K}, \psi_{L,z}, \psi_{Y,K}, \psi_{Y,z}$ Equações 1-2 (Função de produção):

produção):
$$\psi_{Y,K} = lpha + (1-lpha)\psi_{L,K}$$

$$s_C \psi_{C,K} + s_I \psi_{I,K} = \psi_{Y,K}$$

 $\psi_{Yz} = 1 + (1 - \alpha)\psi_{Iz}$

$$s_C \psi_{C,z} + s_I \psi_{I,z} = \psi_{Y,z}$$

$$(\zeta + \alpha)\psi_{L,K} + \psi_{C,K} = \alpha$$

$$\kappa = \alpha$$

$$\kappa = \alpha$$

$$(\zeta + \alpha)\psi_{L,K} + \psi_{C,K} = \alpha$$

 $(\zeta + \alpha)\psi_{L,Z} + \psi_{C,Z} = 1$

$$K = c$$

$$\kappa = \alpha$$

$$\kappa = \alpha$$

$$\kappa = \alpha$$

(27)

(28)

(29)

(30)

(31)

(32)

Sistema Completo (Continuação)

Equações 7-8 (Equação de Euler):

Definindo $\Lambda \equiv (1 - \delta) + \delta \psi_{LK}$ e $r_K \equiv (\alpha - 1) + (1 - \alpha)\psi_{LK}$:

$$\psi_{C,K}(\Lambda - 1) = \frac{1}{\sigma} r_K \Lambda$$

$$\psi_{C,K} \delta \psi_{I,z} + \psi_{C,z}(\rho - 1) = \frac{1}{\sigma} r_K \delta \psi_{I,z} + \frac{1}{\sigma} (1 - \alpha) \psi_{L,z} \rho$$
(33)

$$\psi_{C,K}\delta\psi_{I,z} + \psi_{C,z}(\rho - 1) = \frac{1}{\sigma}r_K\delta\psi_{I,z} + \frac{1}{\sigma}(1 - \alpha)\psi_{L,z}\rho$$
(34)

Observação:

- ζ é a elasticidade do trabalho (parâmetro de preferência)
- $s_C = \frac{\bar{C}}{V}$, $s_I = \frac{\bar{I}}{V}$ são as participações no estado estacionário
- Sistema é não-linear nas incógnitas (equações 7-8)

Estratégia de Solução do Sistema Não-Linear

Característica principal: Sistema é **não-linear** devido às equações 7-8 (Euler) Estratégia de solução:

- **Substituição sequencial**: Das equações 1-6 (lineares), expressar 6 coeficientes em função de $\psi_{L,K}$ e $\psi_{L,z}$
- 2 Sistema reduzido: Substituir nas equações 7-8 para obter sistema 2×2 em $(\psi_{L,K}, \psi_{L,z})$
- Solução numérica: Resolver sistema não-linear resultante
- Back-substitution: Calcular os demais coeficientes

Interpretação econômica:

- Equações 1-4: Relações contábeis (produção, recursos)
- Equações 5-6: Otimização estática (trabalho-lazer)
- Equações 7-8: Otimização dinâmica (consumo intertemporal)

Sistema Reduzido: Expressões Intermediárias

Das equações lineares (1-6), podemos expressar:

Das equações 5-6:

$$\psi_{C,K} = \alpha - (\zeta + \alpha)\psi_{L,K} \tag{35}$$

$$\psi_{C,z} = 1 - (\zeta + \alpha)\psi_{L,z} \tag{36}$$

Das equações 1-4:

$$\psi_{Y,K} = \alpha + (1 - \alpha)\psi_{L,K} \tag{37}$$

$$\psi_{I,K} = \frac{\psi_{Y,K} - s_C \psi_{C,K}}{s_I} \tag{38}$$

$$\psi_{I,z} = \frac{[1 + (1 - \alpha)\psi_{L,z}] - s_C \psi_{C,z}}{s_I}$$
(39)

Sistema final: Substituir nas equações de Euler (7-8) para obter 2 equações não-lineares em $(\psi_{L,K},\psi_{L,z})$.

Caso Especial: Utilidade Log e $\delta=1$

Para utilidade logarítmica no consumo ($\sigma=1$) e depreciação completa ($\delta=1$): Sistema se simplifica drasticamente:

- Com $\zeta = 0$ (trabalho perfeitamente elástico): $\psi_{L,K} = \psi_{L,z} = 0$
- Taxa de poupança constante: $s_I = \alpha \beta$
- Consumo e investimento movem-se proporcionalmente

Solução analítica:

$$egin{aligned} \psi_{\mathcal{C},\mathcal{K}} &= \psi_{\mathcal{I},\mathcal{K}} = lpha \ \psi_{\mathcal{C},z} &= \psi_{\mathcal{I},z} = 1 \ \psi_{\mathcal{I},\mathcal{K}} &= \psi_{\mathcal{I},z} = 0 \end{aligned}$$

$$\psi_{Y,K} = \alpha, \quad \psi_{Y,z} = 1$$

Verificação:
$$K_{t+1} = \alpha(K_t + z_t)$$
 e $C_t/Y_t = 1 - \alpha\beta$ constante. Intuição: Este caso oferece excelente ponto de partida para chute inicial!

(40)

(41)

Implementação Numérica: Estrutura do Código

Estratégia computacional:

- 1. Função objetivo: Criar função que recebe $(\psi_{L,K},\psi_{L,z})$ e retorna resíduos das equações de Euler.
- 2. Coeficientes intermediários: Das equações 5-6, calcular:

$$\psi_{C,K} = \alpha - (\zeta + \alpha)\psi_{L,K}, \quad \psi_{C,z} = 1 - (\zeta + \alpha)\psi_{L,z}$$

- 3. Coeficientes restantes: Das equações 1-4, calcular $\psi_{Y,K}, \psi_{Y,z}, \psi_{I,K}, \psi_{I,z}$.
- 4. Resíduos de Euler: Calcular F(1) e F(2) das equações 7-8.
- 5. Solução numérica: Usar solver de sistema não-linear (fsolve, Newton-Raphson, etc.).

Chute inicial: Usar caso especial $(\psi_{L,K}, \psi_{L,z}) = (0,0)$ como ponto de partida.

Valores Típicos de Calibração

Parâmetros padrão RBC:

$$\alpha=0.33$$
 (participação do capital) (44)
 $\beta=0.99$ (fator de desconto trimestral) (45)
 $\sigma=2.0$ (aversão ao risco) (46)
 $\delta=0.025$ (depreciação trimestral) (47)
 $\rho=0.95$ (persistência da produtividade) (48)

 $\zeta = 2.0$ (parâmetro de desutilidade do trabalho)

Participações no estado estacionário:

- $s_C = \frac{\bar{C}}{V} \approx 0.76$ (consumo/produto)
- $s_I = \frac{\bar{I}}{\bar{Y}} \approx 0.24$ (investimento/produto)
- $\bar{L} \approx 0.33$ (fração do tempo trabalhando)

(49)

Intuição Econômica para a Solução Geral

O que esperar dos coeficientes:

Resposta ao capital \hat{K}_t :

- $\psi_{C,K} > 0$: Mais capital \Rightarrow mais consumo (efeito riqueza)
- $\psi_{I,K}$: Pode ser > 0 ou < 0 (substituição intertemporal vs. efeito riqueza)
- $\psi_{L,K}$ < 0: Mais capital \Rightarrow menos trabalho (lazer é bem normal)
- $\psi_{Y,K} > 0$: Mais capital \Rightarrow mais produto

Resposta à produtividade \hat{z}_t :

- $\psi_{C,z} > 0$: Choque positivo \Rightarrow mais consumo
- $\psi_{I,z} > 0$: Choque positivo \Rightarrow mais investimento (tipicamente $> \psi_{C,z}$)
- $\psi_{L,z} > 0$: Choque positivo \Rightarrow mais trabalho (efeito substituição)
- $\psi_{Y,z} > 1$: Choque 1% \Rightarrow produto sobe mais que 1% (trabalho endógeno)

Checklist: Se seus coeficientes violam estes sinais, revise as equações!

Verificação da Solução

Passos essenciais para verificação:

- Substituir de volta: Colocar os coeficientes encontrados nas equações originais
- Verificar identidades: Todas as equações devem ser satisfeitas identicamente
- Ochecar estabilidade: A matriz de transição deve ter eigenvalues apropriados
- Simulação: Gerar trajetórias e verificar se fazem sentido econômico

Para o caso log com $\delta = 1$:

- Equação de Euler: √ Satisfeita
- Restrição de recursos: $\sqrt{s_C + s_I} = 1$
- Função de produção: √ Com trabalho constante
- Acumulação: $\sqrt{\hat{K}_{t+1}} = \alpha(\hat{K}_t + \hat{z}_t)$

Conexão com Outros Métodos

Blanchard-Kahn:

- Coeficientes indeterminados é caso especial para sistemas lineares
- B-K usa decomposição matricial mais geral
- Ambos chegam à mesma solução quando aplicáveis

Uhlig (1999):

- Automatiza o método de coeficientes indeterminados
- "Toolkit"para sistemas lineares estocásticos
- Separa automaticamente variáveis predeterminadas e jump

Perturbação:

- Coeficientes indeterminados = perturbação de 1ª ordem
- Métodos de ordem superior estendem a ideia
- Dynare usa perturbação automatizada

Resumo e Próximos Passos

Conceitos principais:

- Método de coeficientes indeterminados = "guess and verify"
- Conjecturar funções políticas lineares para modelos log-linearizados
- Sistema de equações algébricas para determinar coeficientes
- Verificação essencial da solução

Próximos passos:

- Implementar computacionalmente para calibrações específicas
- Estudar funções de impulso-resposta resultantes
- Comparar com métodos alternativos (Blanchard-Kahn, Uhlig)
- Aplicar a extensões do modelo básico

Leituras recomendadas:

- Uhlig (1999): "A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily"
 - Liungqvist & Sargent: Cap. sobre métodos de solução