UNIVERSITY OF TENNESSEE DEPARTMENT OF MATHEMATICS

MATH 447 - Homework 5

Robert D. French

September 30, 2014

SECTION 3.1

PROBLEM 10

Prove that if $\lim(x_n) = 0$ and if x > 0, then there exists a natural number M such that $x_n > 0$ for all $n \ge M$.

PROOF. By the definition of limit, for each positive ϵ such an $M(\epsilon)$ can be found. Thus, take ϵ to be smaller than x, so that $x_n \in V_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$ whenever $n \ge M$. Since $\epsilon < x$, $x - \epsilon \in \mathbb{P}$ so $x_n > 0$.

PROBLEM 14

Let $b \in \mathbb{R}$ satisfy 0 < b < 1. Show that $\lim(nb^n) = 0$.

PROOF. We know that $n^{1/n} > 1 \ \forall n \in \mathbb{N}$. This implies that $n^{1/n} = 1 + k_n$ for some $k_n > 0$, so that we have $bn^{1/n} = b + bk_n$. Thus, $nb^n = (b + bk_n)^n$.

By the Binomial Theorem we know that

$$nb^{n} = (b + bk_{n})^{n} = b^{n} + nb^{n-1}bk_{n} + \frac{1}{2}n(n-1)b^{n-2}b^{2}k_{n}^{2} + \cdots$$

which tells us that $nb^n \ge b^n + \frac{1}{2}n(n-1)b^nk_n^2$. Factoring out b^n and subtracting 1 yields

$$(n-1) \ge \frac{1}{2}n(n-1)k_n^2$$

so that we have $\frac{2}{n} \ge k_n^2$.

PROBLEM 17

HINT

If $n \ge 3$, then $0 < 2^n / n! \le 2(\frac{2}{3})^{n-2}$.

PROOF. Let n = 3, then $\frac{2^3}{3!} = \frac{8}{6} \le 2(\frac{2}{3}) = \frac{4}{3} = \frac{8}{6}$. Thus, we have established a basis for induction.

Now assume that $0 < \frac{2^{n-1}}{(n-1)!} \le 2\left(\frac{2}{3}\right)^{n-3}$. Multiplying by 2 yields $0 < \frac{2^n}{(n-1)!} \le 2\left(\frac{2^{n-2}}{3^{n-3}}\right)$. Since $n \ge 3$, we have $0 < \frac{1}{n} \le \frac{1}{3}$ so that

$$0 < \frac{2^n}{(n-1)!} \cdot \frac{1}{n} = \frac{2^n}{n!} \le 2 \cdot \left(\frac{2^{n-2}}{3^{n-3}}\right) \cdot \frac{1}{3} = 2\left(\frac{2}{3}\right)^{n-2}$$

whence $0 < \frac{2^n}{n!} \le 2\left(\frac{2}{3}\right)^{n-2}$. Therefore the hypothesis holds by the Principal of Mathematical Inducation.

MAIN PROBLEM

Show that $\lim_{n \to \infty} (2^n/n!) = 0$.

PROOF. We know that $0 < \frac{2^n}{n!} \le 2\left(\frac{2}{3}\right)^{n-2}$ when $n \ge 3$, so if we can show that $2\left(\frac{2}{3}\right)^{n-2} \to 0$, then $\frac{2^n}{n!} \to 0$ by the Squeeze Theorem.

Take b=2/3 and n=m-2, then by Exercise 3.1.14 we know $nb^n\to 0$. Since $2\le m-2$ $\forall m>3$, we have that $0<2(\frac{2}{3})^{m-2}\le (m-2)b^{m-2}$ so that $2\left(\frac{2}{3}\right)^{m-2}\to 0$. Thus, by the Squeeze Theorem, $2^n/n!\to 0$.

PROBLEM 18

If $\lim(x_n) = x > 0$, show that there exists a natural number K such that if $n \ge K$, then $\frac{1}{2}x < x_n < 2x$.

PROOF. Pick $\epsilon < \frac{1}{2}x$, then by the definition of limit $\exists K$ such that $x_n \in V_{\epsilon}(x) \forall n \geq K$. Since $V_{\epsilon}(x) = (x - x/2, x + x/2) = (x/2, 3x/2)$, we know $V_{\epsilon}(x) \subseteq (x/2, 2x)$, demonstrating that such a K exists. \blacksquare

SECTION 3.2

Problem 7

If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_nb_n) = 0$. Explain why Thm 3.2.3 cannot be used.

PROOF. PROBLEM 9 Let $y_n := \sqrt{n+1} - \sqrt{n}$ for $n \in \mathbb{N}$. Show that $(\sqrt{n}y_n)$ converges. Find the limit. PROOF. PROBLEM 11 Part A Find $\lim ((3\sqrt{n})^{1/2n})$ PROOF. Part B Find $(\sqrt{n^2 + 5n} - n)$ PROOF. PROBLEM 12 If 0 < a < b, determine $\left(\frac{a^{n+1} + b^{n+1}}{a^n + b^n}\right)$. PROOF. PROBLEM 13 If a > 0, b > 0, show that $\lim (\sqrt{(n+a)(n+b)} - n) = (a+b)/2$. PROOF. PROBLEM 14 PART A Use the Squeeze Theorem to find $\lim(n^{1/n^2})$.

PART B

PROOF.

Use the Squeeze Theorem to find $\lim((n!)^{1/n^2})$.

PROOF.

PROBLEM 15

Show that if $z_n := (a^n + b^n)^{1/n}$ where 0 < a < b, then $\lim(z_n) = b$.

PROOF.

PROBLEM 23

Show that if (x_n) and (y_n) are convergent sequences, then the sequences (u_n) and (v_n) defined by $u_n := \max\{x_n, y_n\}$ and $v_n := \min\{x_n, y_n\}$ are also convergent.

PROOF.

PROBLEM 24

Show that if (x_n) , (y_n) , (z_n) are convergent sequences, then the sequence (w_n) defined by $w_n := \min\{x_n, y_n, z_n\}$ is also convergent.

PROOF.