Applied Machine Learning

Imbalanced Data: Problem and Diagnostics

Learning goals

- Know what an imbalanced data set is
- Understand disadvantage of accuracy on imbalanced data
- Learn evaluation metrics suitable for imbalanced data

Introduction to Imbalanced Data

IMBALANCED DATA SETS

- Class imbalance: Ratio of classes is significantly different.
- Consequence: Undesirable predictive behavior for smaller class.
- Example: Sampling from two Gaussian distributions

IMBALANCED DATA SETS: EXAMPLES

Domain	Task	Majority Class	Minor Class
Medicine	Predict tumor pathology	Benign	Malignant
Information retrieval	Find relevant items	Irrelevant items	Relevant items
Tracking criminals	Detect fraud emails	Non-fraud emails	Fraud emails
Weather prediction	Predict extreme weather	Normal weather	Tornado, hurricane

- Often, the minority class is the more important class.
- Imbalanced data can be a source of bias related to concept of fairness.

ISSUES WITH EVALUATING CLASSIFIERS

- Ideal case: correctly classify as many instances as possible
 ⇒ High accuracy, preferably 100%.
- In practice, we often obtain on imbalanced data sets: good performance on the majority class(es), a poor performance on the minority class(es).
- Reason: the classifier is biased towards the majority class(es), as predicting the majority class pays off in terms of accuracy.
- Focusing only on accuracy can lead to bad performance on minority class.
- Example:
 - Assume that only 0.5% of the patients have a disease,
 - Always predicting "no disease" leads to accuracy of 99.5%

ISSUES WITH EVALUATING CLASSIFIERS

In each scenario, we have 10.000 obs in the negative class. Number of obs in positive class varies between 10.000, 1.000, 100, and 50. Train classifiers with 10-fold stratified cv. Evaluate via aggregated predictions on test set.

POSSIBLE SOLUTIONS

- Ideal performance metric: the learning is *properly* biased towards the minority class(es).
- Imbalance-aware performance metrics:
 - G-score
 - Balanced accuracy
 - Matthews Correlation Coefficient
 - Weighted macro F₁ score

POSSIBLE SOLUTIONS

Approach	Main idea	Remark Special knowledge about classifiers is needed		
Algorithm-level	Bias classifiers towards minority			
Data-level	Rebalance classes by resampling	No modification of classifiers is needed		
Cost-sensitive Learning	Introduce different costs for misclassi- fication when learning	Between algorithm- and data- level approaches		
Ensemble-based	Ensemble learning plus one of three techniques above	-		

Performance Measures for Imbalanced Data

RECAP: PERFORMANCE MEASURES FOR BINARY CLASSIFICATION

- We encourage readers to first go through → "Chapter 04.08 in I2ML" n.d.
- In binary classification ($\mathcal{Y} = \{-1, +1\}$):

$$ho_{F_1} = 2 \cdot \frac{
ho_{PPV} \cdot
ho_{TPR}}{
ho_{PPV} +
ho_{TPR}}$$

- Note that ρ_{F_1} does not account for TN.
- Does ρ_{F1} suffer from data imbalance like accuracy does?

F₁ SCORE IN BINARY CLASSIFICATION

 F_1 is the **harmonic mean** of ρ_{PPV} & ρ_{TPR} . \rightarrow Property of harmonic mean: tends more towards the **lower** of two combined values.

- A model with $\rho_{TPR} = 0$ or $\rho_{PPV} = 0$ has $\rho_{F_1} = 0$.
- Always predicting "negative": $\rho_{TPR} = \rho_{F_1} = 0$
- Always predicting "positive": $\rho_{TPR} = 1 \Rightarrow \rho_{F_1} = 2 \cdot \rho_{PPV}/(\rho_{PPV} + 1) = 2 \cdot n_+/(n_+ + n)$, \rightarrow small when $n_+(=TP+FN=TP)$ is small.
- Hence, F₁ score is more robust to data imbalance than accuracy.

F_{β} IN BINARY CLASSIFICATION

- F_1 puts equal weights to $\frac{1}{\rho_{PPV}}$ & $\frac{1}{\rho_{TPR}}$ because $F_1 = \frac{2}{\frac{1}{\rho_{PPV}} + \frac{1}{\rho_{TPR}}}$.
- F_{β} puts β^2 times of weight to $\frac{1}{\rho_{TPR}}$:

$$F_{\beta} = \frac{1}{\frac{\beta^2}{1+\beta^2} \cdot \frac{1}{\rho_{TPR}} + \frac{1}{1+\beta^2} \cdot \frac{1}{\rho_{PPV}}}$$
$$= (1+\beta^2) \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

- $\beta \gg 1 \rightsquigarrow F_{\beta} \approx \rho_{TPR}$;
- $\beta \ll 1 \rightsquigarrow F_{\beta} \approx \rho_{PPV}$.

G SCORE AND G MEAN

G score uses geometric mean:

$$\rho_{G} = \sqrt{\rho_{PPV} \cdot \rho_{TPR}}$$

- Geometric mean tends more towards the lower of the two combined values.
- Geometric mean is larger than harmonic mean.

• Closely related is the G mean:

$$\rho_{\rm Gm} = \sqrt{\rho_{\rm TNR} \cdot \rho_{\rm TPR}}.$$

It also considers TN.

• Always predicting "negative": $\rho_G = \rho_{Gm} = 0 \rightsquigarrow \text{Robust to data imbalance!}$

BALANCED ACCURACY

• Balanced accuracy (BAC) balances ρ_{TNR} and ρ_{TPR} :

$$\rho_{BAC} = \frac{\rho_{TNR} + \rho_{TPR}}{2}$$

- If a classifier attains high accuracy on both classes or the data set is almost balanced, then $\rho_{BAC} \approx \rho_{ACC}$.
- However, if a classifier always predicts "negative" for an imbalanced data set, i.e. $n_+ \ll n_-$, then $\rho_{BAC} \ll \rho_{ACC}$. It also considers TN.

MATTHEWS CORRELATION COEFFICIENT

Recall: Pearson correlation coefficient (PCC):

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

$$\rho_{MCC} = \frac{\textit{TP} \cdot \textit{TN} - \textit{FP} \cdot \textit{FN}}{\sqrt{(\textit{TP} + \textit{FN})(\textit{TP} + \textit{FP})(\textit{TN} + \textit{FN})(\textit{TN} + \textit{FP})}}$$

- In contrast to other metrics:
 - MCC uses all entries of the confusion matrix;
 - MCC has value in [-1, 1].

MATTHEWS CORRELATION COEFFICIENT

$$\rho_{MCC} = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$

- $\rho_{MCC} \approx$ 1 \leadsto nearly zero error \leadsto good classification, i.e., strong correlation between predicted and true classes.
- ullet $ho_{MCC} pprox 0 \leadsto$ no correlation, i.e., not better than random guessing.
- $\rho_{MCC} \approx -1 \rightsquigarrow$ reversed classification, i.e., switch labels.
- Previous measures requires defining positive class. But MCC does not depend on which class is the positive one.

MULTICLASS CLASSIFICATION

	- 1	True Class y			
	İ	1	2		g
Classification	1	n ₁₁	n ₁₂		n _{1 q}
		(True 1's)	(False 1's for 2's)		(False 1's for g's)
	2	n ₂₁	n ₂₂		n_{2q}
ŷ		(False 2's for 1's)	(True 2's)		(False 2's for g's)
	:	:	:		:
	g	n_{g1}	n _{g2}		ngg
		(False g's for 1's)	(False g's for 2's)		(True g's)

- n_{ii} : the number of *i* instances classified as *j*.
- $n_i = \sum_{j=1}^g n_{ji}$ the total number of i instances.
- Class-specific metrics:
 - ullet True positive rate (**Recall**): $ho_{\mathit{TPR}_i} = \frac{n_{ii}}{n_i}$
 - True negative rate $ho_{TNR_i} = rac{\sum_{j
 eq i} n_{jj}}{n n_i}$
 - Positive predictive value (**Precision**) $ho_{PPR_j} = \frac{n_{jj}}{\sum_{i=1}^g n_{ji}}$

MACRO F₁ SCORE

Average over classes to obtain a single value:

$$ho_{\mathit{mMETRIC}} = rac{1}{g} \sum_{i=1}^{g}
ho_{\mathit{METRIC}_i},$$

• With this, one can simply define a **macro** F_1 score:

$$ho_{\textit{mF}_1} = 2 \cdot rac{
ho_{\textit{mPPV}} \cdot
ho_{\textit{mTPR}}}{
ho_{\textit{mPPV}} +
ho_{\textit{mTPR}}}$$

- Problem: each class equally weighted → class sizes are not considered.
- How about applying different weights to the class-specific metrics?

WEIGHTED MACRO F₁ SCORE

- For imbalanced data sets, give **more weights** to **minority** classes.
- $w_1, \ldots, w_g \in [0, 1]$ such that $w_i > w_j$ iff $n_i < n_j$ and $\sum_{i=1}^g w_i = 1$.

$$ho_{\mathit{WMMETRIC}} = rac{1}{g} \sum_{i=1}^g
ho_{\mathit{METRIC}_i} w_i,$$

where $METRIC_i$ is a class-specific metric such as PPV_i , TPR_i of class i.

- Example: $w_i = \frac{n-n_i}{(g-1)n}$ are suitable weights.
- Weighted macro F_1 score:

$$ho_{\mathit{wmF}_1} = 2 \cdot rac{
ho_{\mathit{wmPPV}} \cdot
ho_{\mathit{wmTPR}}}{
ho_{\mathit{wmPPV}} +
ho_{\mathit{wmTPR}}}$$

- This idea gives rise to a weighted macro G score or weighted BAC.
- **Usually**, weighted F_1 score uses $w_i = n_i/n$. However, for imbalanced data sets this would **overweight** majority classes.

OTHER PERFORMANCE MEASURES

- "Micro" versions, e.g., the micro TPR is $\frac{\sum_{i=1}^g TP_i}{\sum_{i=1}^g TP_i + FN_i}$
- MCC can be extended to:

$$\rho_{MCC} = \frac{n \sum_{i=1}^{g} n_{ii} - \sum_{i=1}^{g} \hat{n}_{i} n_{i}}{\sqrt{(n^{2} - \sum_{i=1}^{g} \hat{n}_{i}^{2})(n^{2} - \sum_{i=1}^{g} n_{i}^{2})}},$$

where $\hat{n}_i = \sum_{i=1}^g n_{ij}$ is the total number of instances classified as *i*.

 Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat "predicted" and "true" classes as two discrete random variables.

WHICH PERFORMANCE MEASURE TO USE?

- Since different measures focus on other characteristics → No golden answer to this question.
- Depends on application and importance of characteristics.
- Be careful with comparing the absolute values of the different measures, as these can be on different "scales", e.g., MCC and BAC.
- Area under the ROC curve is also immune against class imbalance.

