Quantitative text analysis: Describing and Comparing Text

Blake Miller

MY 459: Quantitative Text Analysis

March 9, 2019

Course website: lse-my459.github.io

- 1. Overview and Fundamentals
- 2. Descriptive Statistical Methods for Text Analysis
- 3. Automated Dictionary Methods

8. Similarity and Clustering Methods

- 4. Machine Learning for Texts5. Supervised Scaling Models for Texts
- 6 Reading Week
- 6. Reading Week
- 7. Unsupervised Models for Scaling Texts
- 9. Topic models
- 10. Word embeddings
- 11. Working with Social Media

Overview of text as data methods

Outline

- Describing a single document
 - Lexical diversity
 - Readability
- Comparing documents
 - Similarity metrics: cosine, Euclidean, Jacquard, edit distance
 - ► Clustering methods: k-means clustering, hierarchical clustering

Quantities for describing a document

Length in characters, words, lines, sentences, paragraphs, pages, sections, chapters, etc.

Word (relative) frequency counts or proportions of words

Lexical diversity (At its simplest) involves measuring a type-to-token ratio (TTR) where unique words are types and the total words are tokens

Readability statistics Use a combination of syllables and sentence length to indicate "readability" in terms of complexity

Lexical Diversity

- Basic measure is the TTR: Type-to-Token ratio
- ► Problem: This is very sensitive to overall document length, as shorter texts may exhibit fewer word repetitions
- Another problem: length may relate to the introduction of additional subjects, which will also increase richness

Lexical Diversity: Alternatives to TTRs

```
\frac{\text{total types}}{\text{total tokens}}
```

Guiraud $\frac{\text{total types}}{\sqrt{\text{total tokens}}}$

S Summer's Index: $\frac{\log(\log(\text{total types}))}{\log(\log(\text{total tokens}))}$

MATTR the Moving-Average Type-Token Ratio (Covington and McFall, 2010) calculates TTRs for a moving window of tokens from first to last token. MATTR is the mean of the TTRs of each window.

Vocabulary diversity and corpus length

In natural language text, the rate at which new types appear is very high at first, but diminishes with added tokens

Fig. 1. Chart of vocabulary growth in the tragedies of Racine (chronological order, 500 token intervals).

Vocabulary Diversity Example

- Variations use automated segmentation here approximately 500 words in a corpus of serialized, concatenated weekly addresses by de Gaulle (from Labbé et. al. 2004)
- ▶ While most were written, during the period of December 1965 these were more spontaneous press conferences

Fig. 8. Evolution of vocabulary diversity in General de Gaulle's broadcast speeches (June 1958–April 1969).

Readability

- Use a combination of syllables and sentence length to indicate "readability" in terms of complexity
- Common in educational research, but could also be used to describe textual complexity
- Most use some sort of sample
- No natural scale, so most are calibrated in terms of some interpretable metric

Flesch-Kincaid readability index

► F-K is a modification of the original Flesch Reading Ease Index:

$$206.835 - 1.015 \left(\frac{\mathrm{total\ words}}{\mathrm{total\ sentences}}\right) - 84.6 \left(\frac{\mathrm{total\ syllables}}{\mathrm{total\ words}}\right)$$

Interpretation: 0-30: university level; 60-70: understandable by 13-15 year olds; and 90-100 easily understood by an 11-year old student.

► Flesch-Kincaid rescales to the US educational grade levels (1–12):

$$0.39 \left(\frac{\mathrm{total\ words}}{\mathrm{total\ sentences}}\right) + 11.8 \left(\frac{\mathrm{total\ syllables}}{\mathrm{total\ words}}\right) - 15.59$$

Gunning fog index

- Measures the readability in terms of the years of formal education required for a person to easily understand the text on first reading
- ► Usually taken on a sample of around 100 words, not omitting any sentences or words
- Formula:

$$0.4 \left[\left(\frac{\text{total words}}{\text{total sentences}} \right) + 100 \left(\frac{\text{complex words}}{\text{total words}} \right) \right]$$

where complex words are defined as those having three or more syllables, not including proper nouns (for example, Ljubljana), familiar jargon or compound words, or counting common suffixes such as -es, -ed, or -ing as a syllable

Outline

- Describing a single document
 - Lexical diversity
 - Readability
- Comparing documents
 - ► Similarity metrics: cosine, Euclidean, Jacquard, edit distance
 - ► Clustering methods: *k*-means clustering, hierarchical clustering

Comparing documents

- The idea is that (weighted) features form a vector for each document, and that these vectors can be judged using metrics of similarity
- A document's vector for us is simply (for us) the row of the document-feature matrix
- ► The question is: how do we measure distance or similarity between the vector representation of two (or more) different documents?

Characteristics of similarity measures

Let A and B be any two documents in a set and d(A, B) be the distance between A and B.

- 1. $d(x,y) \ge 0$ (the distance between any two points must be non-negative)
- 2. d(A, B) = 0 iff A = B (the distance between two documents must be zero if and only if the two objects are identical)
- 3. d(A, B) = d(B, A) (distance must be symmetric: A to B is the same distance as from B to A)
- 4. $d(A, C) \le d(A, B) + d(B, C)$ (the measure must satisfy the triangle inequality)

Euclidean distance

Between document A and B where j indexes their features, where y_{ij} is the value for feature j of document i

- Euclidean distance is based on the Pythagorean theorem
- Formula

$$\sqrt{\sum_{j=1}^{j} (y_{Aj} - y_{Bj})^2} \tag{1}$$

In vector notation:

$$\|\mathbf{y}_A - \mathbf{y}_B\| \tag{2}$$

► Can be performed for any number of features *J* (where *J* is the number of columns in of the dfm, same as the number of feature types in the corpus)

Cosine similarity

- Cosine distance is based on the size of the angle between the vectors
- Formula

$$\frac{\mathbf{y}_A \cdot \mathbf{y}_B}{\|\mathbf{y}_A\| \|\mathbf{y}_B\|} \tag{3}$$

- ▶ The · operator is the dot product, or $\sum_{j} y_{Aj} y_{Bj}$
- ▶ The $\|\mathbf{y}_A\|$ is the vector norm of the (vector of) features vector \mathbf{y} for document A, such that $\|\mathbf{y}_A\| = \sqrt{\sum_j y_{Aj}^2}$
- Nice property: independent of document length, because it deals only with the angle of the vectors
- Ranges from -1.0 to 1.0 for term frequencies, or 0 to 1.0 for normalized term frequencies (or tf-idf)

Jacquard coefficient

- ► Similar to the Cosine similarity
- ► Formula

$$\frac{\mathbf{y}_A \cdot \mathbf{y}_B}{\|\mathbf{y}_A\| + \|\mathbf{y}_B\| - \mathbf{y}_A \cdot \mathbf{y}_B} \tag{4}$$

▶ Ranges from 0 to 1.0

Edit distances

- ► Edit distance refers to the number of operations required to transform one string into another for strings of equal length
- ► Common edit distance: the Levenshtein distance
- ► Example: the Levenshtein distance between "kitten" and "sitting" is 3
 - ▶ kitten → sitten (substitution of "s" for "k")
 - sitten → sittin (substitution of "i" for "e")
 - Sittin → sitting (insertion of "g" at the end).
- Hamming distance: for two strings of equal length, the Hamming distance is the number of positions at which the corresponding characters are different
- Not common, as at a textual level this is hard to implement and possibly meaningless

Other uses, extensions

- Used extensively in information retrieval
- ➤ Summary measures of how far apart two texts are but be careful exactly how you define "features"
- Some but not many applications in social sciences to measure substantive similarity — scaling models are generally preferred
- Can be used to generalize or represent features in machine learning, by computing similarities between textual (sub)sequences without extracting the features explicitly (as we will do in a second)

Outline

- Describing a single document
 - Lexical diversity
 - Readability
- Comparing documents
 - Similarity metrics: cosine, Euclidean, Jacquard, edit distance
 - ► Clustering methods: *k*-means clustering, hierarchical clustering

The idea of "clusters"

- Essentially: groups of items such that inside a cluster they are very similar to each other, but very different from those outside the cluster
- "unsupervised classification": cluster is not to relate features to classes or latent traits, but rather to estimate membership of distinct groups
- groups are given labels through post-estimation interpretation of their elements
- typically used when we do not and never will know the "true" class labels
- issues:
 - how many clusters?
 - which features to include?
 - how to compute distance is arbitrary

k-means clustering

- Essence: assign each item to one of k clusters, where the goal is to minimised within-cluster difference and maximize between-cluster differences
- Uses random starting positions and iterates until stable
- k-means clustering treats feature values as coordinates in a multi-dimensional space
- Advantages
 - simplicity
 - highly flexible
 - efficient
- Disadvantages
 - no fixed rules for determining k
 - uses an element of randomness for starting values

algorithm details

- 1. Choose starting values
 - ▶ assign random positions to *k* starting values that will serve as the "cluster centres", known as "centroids"; or,
 - assign each feature randomly to one of k classes
- 2. assign each item to the class of the centroid that is "closest"
 - Euclidean distance is most common
 - any others may also be used (Manhattan, Minkowski, Mahalanobis, etc.)
 - (assumes feature vectors are normalized within document)
- 3. update: recompute the cluster centroids as the mean value of the points assigned to that cluster
- 4. repeat reassignment of points and updating centroids
- 5. repeat 2–4 until some stopping condition is satisfied
 - e.g. when no items are reclassified following update of centroids

k-means clustering illustrated

choosing the appropriate number of clusters

- very often based on prior information about the number of categories sought
 - for example, you need to cluster people in a class into a fixed number of (like-minded) tutorial groups
- ▶ a (rough!) guideline: set $k = \sqrt{N/2}$ where N is the number of items to be classified
 - ▶ usually too big: setting *k* to large values will improve within-cluster similarity, but risks *overfitting*
- "elbow plots": fit multiple clusters with different k values, and choose k beyond which are diminishing gains

Other clustering methods: hierarchical clustering

- agglomerative: works from the bottom up to create clusters
- ▶ like k-means, usually involves projection: reducing the features through either selection or projection to a lower-dimensional representation
 - 1. SVD methods, such PCA on a normalised feature matrix
 - 2. usually simple threshold-based truncation is used (keep all but 100 highest frequency or tf-idf terms)
- Can be done at the document level, but also at the feature level (creating clusters of features)

hierarchical clustering algorithm

- 1. start by considering each item as its own cluster, for n clusters
- 2. calculate the N(N-1)/2 pairwise distances between each of the n clusters, store in a matrix D_0
- 3. find smallest (off-diagonal) distance in D_0 , and merge the items corresponding to the i,j indexes in D_0 into a new "cluster"
- 4. recalculate distance matrix D_1 with new cluster(s). Options for determining the location of a cluster include:
 - centroids (mean)
 - most dissimilar objects
 - Ward's measure(s) based on minimising variance
- 5. repeat 3-4 until a stopping condition is reached
 - i.e. all items have been merged into a single cluster
- 6. to plot the *dendrograms*, need decisions on ordering, since there are $2^{(N-1)}$ possible orderings

Dendrogram: Presidential State of the Union addresses

Dendrogram: Presidential State of the Union addresses

pros and cons of hierarchical clustering

advantages

- deterministic, unlike k-means
- ▶ no need to decide on k in advance (although can specify as a stopping condition)
- allows hierarchical relations to be examined (usually through dendrograms)

disadvantages

- more complex to compute: quadratic in complexity: $O(n^2)$
 - whereas k-means has complexity that is O(n)
- the decision about where to create branches and in what order can be somewhat arbitrary, determined by method of declaring the "distance" to already formed clusters
- for words, tends to identify collocations as base-level clusters (e.g. "saddam" and "hussein")

Dendrogram: Presidential State of the Union addresses

