DeepSeek-R1 Paper Review

Enhancing LLM Reasoning through Reinforcement Learning

JEEON BAE SSAFY 13th

February 25, 2025

Outline

- 1. Introduction
- 2. Key Contributions
- 3. Methodology
- 4. Experimental Results
- 5. Discussion & Conclusion

Introduction

- **Background:** Recent studies have focused on enhancing LLM reasoning abilities using reinforcement learning.
- Core Idea:
 - DeepSeek-R1-Zero: Developed using pure RL without supervised fine-tuning.
 - **DeepSeek-R1:** Combines a small amount of cold-start data with multi-stage RL and SFT to improve readability and performance.
- Evaluation: Achieves competitive results on benchmarks such as AIME 2024, MATH-500, Codeforces, etc.

Key Contributions

- Pure RL-based Reasoning: Demonstrates that LLM reasoning can be enhanced solely through reinforcement learning.
- Utilization of Cold-Start Data: Improves initial stability and readability by leveraging high-quality cold-start examples.
- Multi-Stage Learning Pipeline: Alternates between RL and SFT to maximize the overall performance of the model.
- **Distillation Technique:** Transfers effective reasoning patterns from large models to smaller ones.

DeepSeek-R1-Zero: Pure RL Approach

- **RL Algorithm:** Utilizes Group Relative Policy Optimization (GRPO) to update the model without a critic.
- **Reward Modeling:** A description of the reward modeling process.
 - Accuracy Reward: Encourages the model to output answers in a specific format for rule-based evaluation.
 - Format Reward: Ensures that the chain-of-thought (CoT) is delimited, for example, by enclosing it within [THINK] and [/THINK] tags.
- **Self-Evolution:** The model naturally develops reflective and diverse problem-solving strategies during training.
- Weakness: Reduced readability & language mixing hindered practical use.

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead estimating the baseline from group scores, significantly reducing training resources.

Chain-of-Thought

Standard Prompting

Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Training Curve

 $\label{eq:figure 3} \ | \ The average \ response \ length \ of \ DeepSeek-R1-Zero \ on \ the \ training \ set \ during \ the \ RL \ process. \ DeepSeek-R1-Zero \ naturally \ learns \ to \ solve \ reasoning \ tasks \ with \ more \ thinking \ time.$

DeepSeek-R1: Cold-Start and Multi-Stage Learning

- Cold-Start Data: Thousands of detailed CoT examples are used to fine-tune the base model before RL.
- Integration of RL and SFT:
 - An initial RL phase explores improved reasoning patterns.
 - Rejection sampling and subsequent SFT further refine the model.
- **Objective:** Achieve higher performance and better readability compared to pure RL methods.

Distillation: Transferring Reasoning to Smaller Models

- **Goal:** Transfer effective reasoning patterns from DeepSeek-R1 to compact, dense models.
- Target Models: Models such as the Qwen2.5 and Llama series are distilled.
- **Results:** Distilled models (e.g., 14B, 32B, 70B) achieve superior performance on reasoning benchmarks.

Distillation

Train a smaller student model from a larger teacher model

Distillation

Performance Comparison Chart of Distilled Models

	AIME 2024 pass@1	AIME 2024 cons@64	MATH- 500 pass@1	GPQA Diamond pass@1	LiveCodeBench pass@1	CodeForces rating
GPT-4o-0513	9.3	13.4	74.6	49.9	32.9	759.0
Claude-3.5-Sonnet-1022	16.0	26.7	78.3	65.0	38.9	717.0
o1-mini	63.6	80.0	90.0	60.0	53.8	1820.0
QwQ-32B	44.0	60.0	90.6	54.5	41.9	1316.0
DeepSeek-R1-Distill-Qwen-1.5B	28.9	52.7	83.9	33.8	16.9	954.0
DeepSeek-R1-Distill-Qwen-7B	55.5	83.3	92.8	49.1	37.6	1189.0
DeepSeek-R1-Distill-Qwen-14B	69.7	80.0	93.9	59.1	53.1	1481.0
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	1691.0
DeepSeek-R1-Distill-Llama-8B	50.4	80.0	89.1	49.0	39.6	1205.0
DeepSeek-R1-Distill-Llama-70B	70.0	86.7	94.5	65.2	57.5	1633.0

Experimental Evaluation

- Benchmarks: Evaluated on AIME 2024, MATH-500, Codeforces, MMLU, etc.
- Key Outcomes:
 - AIME 2024: DeepSeek-R1 achieves a Pass@1 score of approximately 79.8%.
 - MATH-500: Pass@1 score of 97.3%.
 - Coding: Codeforces rating around 2029.
- Comparisons: Shows competitive performance against models such as OpenAl o1-1217.

Performance

 $Figure\ 1\ |\ Benchmark\ performance\ of\ DeepSeek-R1.$

Discussion

• Strengths:

- Pure RL can effectively enhance LLM reasoning capabilities.
- Distillation enables smaller models to achieve high reasoning performance.

• Limitations:

- DeepSeek-R1-Zero suffers from readability and language-mixing issues.
- High computational cost in the RL phase; limited improvements in some domains (e.g., software engineering).

• Future Work:

- Broaden problem-solving abilities.
- Address language-mixing issues and improve prompt engineering.
- Enhance RL efficiency for software engineering tasks.

Conclusion

- The DeepSeek-R1 series demonstrates a breakthrough in enhancing LLM reasoning via reinforcement learning.
- The combination of cold-start data with a multi-stage learning pipeline is key to improved performance and readability.
- Distillation techniques enable high reasoning performance even in compact models.
- Future research should explore broader applications and further efficiency improvements.

Q & A

References

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, arXiv:2501.12948v1.

Shao et al., Group Relative Policy Optimization, 2024.

The End