Jiaheng Wang

Laboratory for Foundations of Computer Science,
Informatics Forum, University of Edinburgh, Scotland, EH8 9AB, UK
Email: pw384@hotmail.com (Personal) / jiaheng.wang@ed.ac.uk (Term time)
Homepage: https://pw384.github.io/

Education

Ph.D. student
 Advisor: Heng Guo
 B.Sc. summa cum laude in Computer Science (Turing Class)
 University of Edinburgh, 2020 - ?
 Peking University, 2016 - 2020

Visiting (for research purpose)

Queen Mary, University of London
 Advisor: Mark Jerrum
 Shanghai University of Finance and Economics
 Advisor: Pinyan Lu
 University of Edinburgh
 Advisor: Heng Guo
 Institute of Computing Technology, Chinese Academy of Sciences
 Advisor: Xiaoming Sun

Honours and Awards

Informatics Global PhD Scholarship (3.5 years)
 Turing Class Scholarship
 May 4th Scholarship
 Merit Student Award
 Award for Academic Excellents
 University of Edinburgh, 2020
 Peking University, 2019
 Peking University, 2018
 Peking University, 2018
 Peking University, 2017

Research Interests

- · Algorithms and complexity of approximate counting.
- Extremal combinatorics.

Research Articles

[7] Inapproximability of counting independent sets in linear hypergraphs.

Guoliang Qiu and Jiaheng Wang.

preprint

arXiv: 2212.03072

[6] Towards derandomising Markov chain Monte Carlo.

Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang and Yitong Yin.

submitted

arXiv: 2211.03487

[5] A simple polynomial-time approximation algorithm for the total variation distance between two product distributions.

Weiming Feng, Heng Guo, Mark Jerrum and **Jiaheng Wang**. 6th SIAM Symposium on Simplicity in Algorithms (SOSA 2023)

arXiv: 2208.00740

Last update: 23/01/2023

[4] Swendsen-Wang dynamics for the ferromagnetic Ising model with external fields.

Weiming Feng, Heng Guo and Jiaheng Wang.

submitted

arXiv: 2205.01985

[3] Improved bounds for randomly colouring simple hypergraphs.

Weiming Feng, Heng Guo and Jiaheng Wang.

26th International Conference on Randomization and Computation (RANDOM 2022).

arXiv: 2202.05554

[2] Inapproximability of counting hypergraph colourings.

Andreas Galanis, Heng Guo and Jiaheng Wang.

ACM Transactions on Computation Theory, to appear

arXiv: 2107.05486

[1] On the degree of Boolean functions as polynomials over \mathbb{Z}_m .

Xiaoming Sun, Yuan Sun, **Jiaheng Wang**, Kewen Wu, Zhiyu Xia and Yufan Zheng. 47th International Colloquium on Automata, Languages and Programming (ICALP 2020).

arXiv: 1910.12458

Teaching

• At University of Edinburgh:

- INFR08026 Introduction to Algorithms and Data Structures Teaching Assistant/Tutor, 2022/23

- INFR11201 Randomized Algorithms Tutor, 2022 Autumn

- INFR08026 Introduction to Algorithms and Data Structures Teaching Assistant/Tutor, 2021/22

• At Peking University:

– 04834010 Randomized Algorithms
 Teaching Assistant, 2020 Spring

– 04833440 Introduction to the Theory of Computation
 Teaching Assistant, 2020 Spring

- 04833040/04832363 Introduction to Computer Systems Teaching Assistant/Tutor, 2019 Fall

- 04833440 Introduction to the Theory of Computation Teaching Assistant, 2019 Spring

- 04833040/04832363 Introduction to Computer Systems Teaching Assistant/Tutor, 2018 Fall

Services and Activities

- Conference reviewer: ICALP'21, SODA'21
- Student organizer of SAGT'18 (organizing volunteers, getting involved in press, etc.)

Talks

- A Simple Polynomial-Time Approximation Algorithm for Total Variation Distances Between Product Distributions
 - SOSA 2023, Florence, Italy
- Improved Bounds for Randomly Colouring Simple Hypergraphs
 - APPROX/RANDOM 2022, Champaign, IL, United States (virtual conference)
 - Highlights of Algorithms, LSE & QMUL, London, United Kingdom
- Inapproximability of Counting Hypergraph Colourings
 - CS Peer Talk, Peking University, Beijing, China (virtual)
 - Highlights of Algorithms, LSE & QMUL, London, United Kingdom
- On the Degree of Boolean Functions as Polynomials over $\mathbb{Z}_m.$
 - ICALP 2020, Saarbrücken, Germany (virtual conference)