МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского"

0.1 Содержание

- Введение
- Основные сведения об узкозонных HgCdTe структурах
- - Постановка задачи
 - Методы исследования
 - Исследуемые образцы
 - Анализ связи минимальной энергии Оже-рекомбинации и температуры прекращения генерации стимулированного излучения
 - Дизайн перспективных структур
- Заключение
- Список литературы

(?, ?, NLOpt)

Проблема создания источников терагерцевого (ТГц) излучения является одной из самых актуальных тем современной прикладной физики. Для многих приложений, связанных со спектроскопией, в качестве источников длинноволнового излучения выгодно использовать компактные полупроводниковые лазеры. Квантовые каскадные лазеры (ККЛ) демонстрируют высокие характеристики в спектральном диапазоне от 1 ТГц до 5ТГц и выше 15 ТГц. Однако, для подавляющего большинства ККЛ используются полупроводники типа A3B5 (GaAs, PbSb или InP), в которых фононное поглощение становится слишком сильным на частотах ниже 15 ТГц. ККЛ на основе GaN подступают к спектральному диапазону 5 - 15 ТГц со стороны низких частот (относительно частот оптических фононов), но их рабочие характеристики требуют значительного улучшения. Межзонные лазеры представляются простой альтернативой ККЛ, но для их создания требуются узкозонные полупроводниковые структуры, в которых, в свою очередь, ожидается высокая эффективность безызлучательной оже-рекомбинации. Спектральный диапазон 5 - 15 ТГц к настоящему моменту частично перекрыт лишь диодными лазерами на основе халькогенидов свинца-олова, которые обеспечивают длины волн излучения вплоть до 46.5 мкм. Фактор, который снижает эффективность оже-рекомбинации в PbSnSe(Te) - симметрия между законами дисперсии носителей в зоне проводимости и в валентной зоне. Можно показать, что для выполнения законов сохранения энергии-импульса, суммарная кинетическая энергия трех частиц, участвующих в процессе рекомбинации, должна быть выше некоторого порогового значения энергии E_{th} , который зависит от энергетического спектра носителей. Для некоторых типов спектров носителей, например, для релятивистских фермионов Дирака, выполнить законы сохранения энергии-импульса в ходе оже-процесса невозможно, т.е. E_{th} бесконечна. Отметим, что симметрия законов дисперсии электронов и дырок реализуется для безмассовых фермионов Дирака в графене, однако вопрос об эффективности оже-рекомбинации в графеновых структурах до сих пор дебатируется, так что предельный случай релятивистского спектра с нулевой запрещенной зоной и линейным законом дисперсии требует отдельного рассмотрения. Что же касается лазеров на основе халькогенидов свинца-олова, их рабочие характеристики ограничены технологией роста: существуют труднопреодолимые проблемы в реализации квантовых ям (КЯ) для твердых растворов PbSnSe(Te) и остаточная концентрация носителей остается на высоком уровне 1017 см^{-3} .

Существуют альтернативные полупроводниковые системы, которые позволяют приблизиться к «графеноподобному» закону дисперсии, но сохранить конечную ширину запрещенной зоны. Как было показано в многочисленных работах, одна из таких систем – гетероструктуры с КЯ на основе Hg(Cd)Te/CdHgTe. В отличие от графена, в структурах на основе HgCdTe (КРТ) с КЯ можно перестраи-

вать ширину запрещенной зоны путем изменения ширины КЯ и содержания Cd в ней. Современная молекулярно-лучевая эпитаксия (МЛЭ) обеспечивает высокое качество эпитаксиальных пленок КРТ не только на подложках CdZnTe, но и на «альтернативных» подложках GaAs. Высокое качество эпитаксиальных структур HgCdTe, выращенных на GaAs подложках, было подтверждено в ходе исследований фотопроводимости (ФП) и фотолюминесценции (ФЛ) в среднем и дальнем инфракрасном диапазонах (= 15-30 мкм). В недавней работе нами было получено стимулированное излучение (СИ) в КРТ структурах с КЯ на длине волны = 19.5 мкм, в то время как ранее лазерная генерация в HgCdTe была продемонстрирована лишь в коротковолновой области среднего инфракрасного диапазона спектра (на длинах волн 2 - 5 мкм). Для структур, рассчитанных на генерацию длинноволнового излучения, требуется рост толстых эпитаксиальных слоев (общей толщиной до 20 мкм) для реализации диэлектрического волновода. Целью работы настоящей работы было исследование длинноволнового СИ из подобных структур и выявление факторов, определяющие наблюдаемые характеристики СИ, и возможных путей подавления безызлучательной рекомбинации в таких структурах. В работе было продемонстрировано, что генерация СИ в таких структурах возможна. Тем не менее, профиль КЯ в волноводных структурах отличается от прямоугольного, что необходимо учитывать при анализе экспериментальных данных. В данной работе для модельного описания мы использовали профиль прямоугольной ямы с отличным от нуля содержанием кадмия, что позволяет хорошо описать зависимость ширины основного перехода от температуры, наблюдаемую в эксперименте.

0.1.1 Методики измерений

Основным методом исследования образцов в данной работе является измерение фотолюминисценции. Поскольку основной задачей является получение твердотельных лазеров на основе HgCdTe наногетероструктур, работающих в разумном диапазоне температур (77-300K), при котором возможно функционирование лазера с охлаждением жидким азотом, оценка зависимости интенсивности вынужденного или спонтанного излучения в зависимости от температуры и внутренней структуры образцов представляет особый интерес.

Исследуемый образец помещается в вакуумный криостат ARS-Cryotech с гелиевым охлаждением и возможностью нагрева образцов до необходимой температуры в пределах 7-300K. Входное отверстие как правило закрывается ZnSe окном, что позволяло заводить внутрь накачку во всем требуемом диапазоне $600~nm-15~\mu m$. На выходе же стояло окно из KRS-5, которое прозрачно в диапазоне $600~nm-50~\mu m$.

Структуры облучались лазерами с длинами волн !!!... с мощностями !!!... соответственно. При этом лазеры были импульсными или искуственно модулировались механическим способом.

При этом использовался фурье спектрометр Bruker Vertex V80, в режиме пошагового сканирования. Этот режим позволяет передвигать зеркало спектрометра дискретно, что позволяет более точно его позиционировать тем самым повышая эффективное разрешение и снижая коэффициент сигнал/шум. Кроме того в силу устройства установки зеркало может колебаться некоторое время после установки размывая картину, воизбежание этого съём сигнала происходил через некоторое время после позиционирования.

В качестве приемника использовался болометр производства IRLabs с высокой чувствительностью в диапазоне !!!... . Также некоторые измерения были произведены при помощи полупроводникового детектора на основе МСТ (также производства IRLabs), позволяющего улавливать излучение в диапазоне . . . $-16\mu m$.

Воизбежание паразитной засветки детекторов излучением накачки (интенсивность которого на много порядков превышало излучение как исследуемого спонтанного, так и вынужденного излучения образцов) использовался набор интерференционных и !!!... фильтров, позволяющий эффективно ослаблять излучение в неинтересующем нас диапазоне.

Для снижения влияния ЭМ наводок, а также для эффективного усиления использовались усилители напряжения Standford SR560, включающие в себя регулируемые частотные фильтры 6db, 12db. Правильная настройка таких фильтров позволяет существенно повысить соотношение сигнал/шум, а также полностью нейтрализовать гармоники 50 Hz, которые являются основной компонентой наведённого шума.

В случае импульсного режима накачки использовался синхродетектор Standford SR850, его использование позволяет существенно снизить время измерения за счет отсутствия необходимости программного усреднения результатов измерения встроенного АЦП. Кроме того

Основным ПО при обработке спектров являлся Opus 7.0. В частности это позволяет записывать временно-разрещённые спектры, а также в существенной мере отфильтровать шумы посредством правильной рбработки интерферограммы.

Иной важной техникой является

измерение фотопроводимости . Эта техника позволяет с высокой степенью точности определять ширину запрещённой зоны в сплошных полупроводниках, а также уровни размерного квантования в случае гетероструктур с квантовыми ямами. Это требуется для оценки содержания кадмия в барьерах и внутреннем пространстве квантовых ям, а также для проверки точности выполнения гетероструктуры в поперечном плоскости образца направлении.

Фурье спектрометр в данном случае работает в режиме непрерывного сканирования, а образец охлаждается иммерсивно. Для таких ихмерений важно исключить влияние спектра поглощения хладагента на результирующий спектр, для этого минимизируется расстояние от образца до фильтров, после которого в погружном устройстве следует вакуум.

Также требуется отметить, что в таком режиме измерений в силу конструктивных причин невозможно использовать вакуумированный крисотат с возможностью плавной регулировки температуры, ввиду этого доступно всего лишь три варианта измерений: при комнатной температуре 300 K, при температуре кипения жидкого азота 77K и при температуре кипения жидкого гелия 8K. В данной технике измерений мы можем рассматривать образец, как своего рода приемник сигнала.

Ввиду технической сложности для присоединения контактов иными способами в экспериментах использовалась простая пайка с индиевым припоем (выбор обусловлен схожим с образцами коэффициентом линейного температурного расширения, что позволяет обеспечить надежный контакт с поверхностью полупроводника при любой температуре).

В качестве эталонного источника излучения в данном типк измерений использовался т.н. глобар - источник излучения среднего инфракрасного излучения, имеюющий спектр, близкий к спектру абсолютно чёрного тела. Такая спектральная характеристика позволяет проводить точную нормировку сигнала с учетом сравнения ее с заведомой известной аппаратной функцией прибора.

Кроме вышеперечисленного оборудования использовался также токовый усилитель Standford SR570, который также способен выдавать ток смещения. В силу специфики образцов мы можем считать их сопротивление линейным, посему полученный в результате измерений, сигнал не нуждается в дополнительной обработке.

0.1.2 Рассчет минимальной энергии Оже-процесса

Одной из основных задач является увеличение времени жизни носителей заряда, для как можно большей эффективности процесса излучательной рекомбинации. Всвязи с этим важно иметь возможность оценить минимальную энергию, носителей, при которой возможен Оже-процесс.

Можно рассмотреть влияние Оже-рекомбинации на функцию распределения, как наличие трехчастичного интеграла столкновений, который, как известно имеет вид:

$$\operatorname{St}_{i}[f_{i}, f_{j}](\vec{k}_{i}^{(2)}) = \int d^{3}\vec{k}_{i}^{(1)} \int d^{3}\vec{k}_{i}^{(2)} \int d^{3}\vec{k}_{j} \left\{ -\omega(\vec{k}_{i}^{(1)}, \vec{k}_{i}^{(2)}, \vec{k}_{j} \to \vec{k}_{i}^{(2)}) f_{i}(\vec{k}_{i}^{(1)}) f_{i}(\vec{k}_{i}^{(2)}) \right\} f_{i}(\vec{k}_{i}^{(2)}) + \omega(\vec{k}_{i}^{(1)}, \vec{k}_{i}^{(2)}, \vec{k}_{j} \to \vec{k}_{i}^{(2)}) f_{i}(\vec{k}_{i}^{(1)}) f_{i}(\vec{k}_{i}^{(2)}) f_{j}(\vec{k}_{j}) (1 - f_{i}(\vec{k}_{i}^{(2)})); \right\};$$

$$(1)$$

Здесь i,j - два сорта квазичастиц. Необходимо отметить наличие связи частот перехода:

$$\omega(\vec{k}_{i}^{(1)}, \, \vec{k}_{i}^{(2)}, \, \vec{k}_{j} \to \vec{k}_{i}^{(2)}) \propto \delta_{3}(\vec{k}_{i}^{(1)} + \vec{k}_{i}^{(2)} + \vec{k}_{j} - \vec{k}_{i}^{(2)}) \cdot \delta\left(\varepsilon_{i}(\vec{k}_{i}^{(1)}) + \varepsilon_{i}(\vec{k}_{i}^{(2)}) + \varepsilon_{j}(\vec{k}_{j}) - \varepsilon_{i}(\vec{k}_{i}^{(2)})\right)$$
(2)

Очевидно, что в общем виде эта задача сложна по нескольким причинам:

- амплитуда такого рассеяния может быть найдена как с помощью диаграмной техники Келдыша [ссылка на статью], так и с помощью метода последовательных приближений [ссылка], однако в обоих случаях имеется сильное расхождение теории и эксперимента [ссылка];
- Подобные рассчеты весьма вычислительно сложны и не могут быть использованы в поиске оптимального дизайна структуры.

Однако есть и куда более простой способ - отыскание порога Оже-процесса. С учетом наличия возможности рассчета дисперсионного соотношения [ссылка на статью Жолудева/Алешкина] и наличия законов сохранения в таких процессах задача может быть сведена к оптимизации некой характеристической функции.

Рассмотрим некоторые общие свойства процессаб в котором участвуют две квазичастицы типа i и одна типа j. В таком случае выберем три подзоны для i частиц (двух начальных и конечной), которым соответствуют импульсы $\vec{k}_1,\ \vec{k}_2,\ \vec{k}_f$ и дисперсионные соотношения $\varepsilon_1,\ \varepsilon_2,\ \varepsilon_f$ и одну для частицы типа j, соответствующую $\vec{k}_j,\ \varepsilon_j$ (подразумевается, что $\varepsilon_j \geq 0, \forall \vec{k}_j$). Будем оптимизировать функцию

$$\varkappa = \varepsilon_f(\vec{k}_1 + \vec{k}_2 + \vec{k}_j) - E_q. \tag{3}$$

С учетом условий:

$$\vec{k}_1 + \vec{k}_2 + \vec{k}_j - \vec{k}_f = 0; (4)$$

$$\varepsilon_1(\vec{k}_1) + \varepsilon_2(\vec{k}_2) + \varepsilon_j(\vec{k}_j) - \varepsilon_f(\vec{k}_f) = 0; \tag{5}$$

Подставим закон сохранения импулься сразу и воспользуемся методом неопределённых множителей:

$$L = \varepsilon_f(\vec{k}_1 + \vec{k}_2 + \vec{k}_j) - E_g + \lambda \cdot \left(\varepsilon_1(\vec{k}_1) + \varepsilon_2(\vec{k}_2) + \varepsilon_j(\vec{k}_j) - \varepsilon_f(\vec{k}_1 + \vec{k}_2 + \vec{k}_j)\right); \quad (6)$$

Тогда, дифференциируя, получим важный вывод: для минимальной энергии необходимо соблюдение условия

$$\nabla \varepsilon_1(\vec{k}_1) = \nabla \varepsilon_2(\vec{k}_2) = \nabla \varepsilon_h(\vec{k}_h); \tag{7}$$

Это можно интерперетировать, как необходимость равенства групповых скоростей квазичастиц.

В случае рассмотрения прямозонной ситуации и небольших импульсов имеем $\varepsilon(\vec{k})=\frac{\hbar^2}{2}\widehat{km^{-1}}\vec{k}+\varepsilon_0$. Тогда в силу симметричности тензора обратных масс получим $\nabla \varepsilon=\hbar^2\widehat{m^{-1}}\vec{k}$.

Теперь рассмотрим ситуацию изотропного дисперсионного соотношения $\varepsilon(\left|\vec{k}\right|)$, очевидно в таком случае для минимизации энергии требуется коллинеарность всех импульсов. В таком случае можно достаточно просто численно определить пороговую энергию Оже процесса, что и было сделано.

Для этого входные данные (представленные в виде tab-разделённого файла) считываются и по ним строится интерполяция, в виде сплайна третьего порядка. В дальнейшем производится оптимизация функции с условием:

$$\varkappa = \varepsilon_f(k_1 + k_2 + k_h) - E_q; \tag{8}$$

$$\varepsilon_1(k_1) + \varepsilon_2(k_2) + \varepsilon_h(k_h) - \varepsilon_f(k_1 + k_2 + k_h); \tag{9}$$

Также стоит отметить, что зачастую удобно использовать сплайны Акимы, поскольку они позволяют существенно уменьшить численные дефекты, связанные с осцилляциями сплайна. Это позволяет значит увеличить точность вычислейний, а также убрать ложные участки дисперсионного соотношения, имеющие необходимую радиальную компоненту градиента.

Следует отметит, что ввиду наличия большого количества локальных минимумов функции процесс её оптимизации представляется далеко нетривиальной задачей. В ходе работы были опробованы различные методы глобальной оптимизации - основанные на стохастических процессах (метод роя частиц, метод симуляции холодного отжига), а также методы сокращения исследуемой области. Однако наиболее эффективным является метод разбиения дисперсионного соотношения

на участки, имеющие одинаковый знак первой производной и выбор наборв таких участков, на которых может быть реализована ситуация совпадения групповых скоростей квазичастиц.

В результате такого рассмотрения были получены интересные закономерности в случае гетероструктур, содержащих ямы с большой концентрацией кадмия. В частности было выявлено несколько характерных паттернов.

Можно видеть, что наличие дополнительных максимумов в дисперсионных соотношениях для электронов может значительно снижать порог Оже-процессов, за счет участия в рекомбинации квазичастиц с разными фазовыми, но одинаковыми групповыми скоростями. Это может приводить к существенно более быстрой зависимости интенсивности фотолюминисцентного изулучения от температуры.

Причем в структурах с большим содержанием кадмия в квантовых ямах наблюдается тенденция к образованию подобных побочных максимумов.

[картинки с примерами]

0.1.3 Дизайн гетероструктур

Во многом дизайн рассматриваемых гетероструткур обусловлен технологическими особенностями их роста. Все образцы были получены посредством молекулярно - лучевой эпитаксии в ИФП СО РАН. Обязательным условием возможности создания таких структур является буфер между подложкой и участком с квантовыми ямами, обеспечивающий согласование приодов решётки кристалла, а также нивелирующий до некоторой степени разность в коэффициентах термического расширения образцов. Также буферный слой играет роль нижней частью волновода, рассчитанного на длину волны, соответствующую нижнему возбужденному состоянию квантовых ям.

Сам участок с квантовыми ямами растится в автоматическом режиме, что позволяет с высокой точностью выдерживать требуемый профиль прямоугольных квантовых ям, характерная толщина которых составляет 3-10 nm при ошибке порядка 0.1 nm. Однако подобный режим роста не позволяет обеспечивать требуемую точность концентрации, которая может нарушаться ввиду оседания части напыляемого материала на стенках камеры.

Также следует отметить влияение количества квантовых ям на возможный уровень фотолюминисценции. В данном случае мы можем расматривать структуры как лазер с квазидвухуровневой средой. Такое рассмотрение возможно в силу сравнения времён накачки и теплового рассеяния: $\tau_p \gg \tau_\varepsilon$. Как известно в таких средах огромный вклад вносят процессы перепоглощения испускаемых фотонов. При таком подходе видно, что КПД устройства будет снижаться при большом количестве КЯ, что обусловлено увеличением эффективного времени жизни инверсии насселенностей и некоторым количеством потерь за счет паразитных безызлучательных механизмов реклмбинации (Оже и ШРХ). Однако в отдельности каждая квантовая яма имеет крайне низкий уровень поглощения излучения накачки. Из этого видно наличие некоего оптимального числа квантовых ям. В текущих образцах количество КЯ варьируется в диапазон 5-10 штук.

Вторым ключевым элементом конструкции подобных гетероструктур является волновод, который с одной стороны позволяет создать стоячую волну, которая при правильном подборе параметров позволяет локализовать пучности ЭМ поля в точках, имеющих и наибольший квадрат модуля огибающей волновой функции электронов, что позволяет существенно увеличить матричный элемент перехода с нижнего энергетического урованя на первый возбужденный.

Однако в данном случае нас больше всего интересует связь между возникновением побочных максимумов и некоторым количеством кадмия, который оказывается напыленным внутри квантовых ям. Очевидно, что использование более чистых в этом смысле структур может предотвратить возникновение канала ОЖЕ рекомби-

нации типа EEH через них. Однако кроме того методом численной оптимизации параметров подобных структур могут быть получены параметры, при которых порог Оже рекомбинации в теории будет являться бесконечным (в частности можно добиться почти гиперболического закона дисперсии). Однако на текущий момент подобные структуры не могут быть выращены в силу высоких требований к чистоте исполнения и прецизионного выдерживания толщины КЯ. Более того в таких случаях невозможно рассмотрение лишь радиальной составляющей дисперсионного соотношения, поскольку учёт зависимости $\varepsilon(\varphi)$ будет всегда давать более низкий порог Оже-рекомбинации.

Более того, наличие подобных боковых минимумов превращает подобную структуру в квазинепрямозонную, что может радикально снижать возможность излучательной рекомбинации из этих точек k-пространства.

Также в качестве осложняющего обстоятельства нельзя не упомянуть существенное различие концентрации кадмия в квантовых ямах в плоскости структуры, что, с одной стороны, обуславливает возможность изучения образцов с одинаковой структурой, с другой - плохо влияет на воспроизводимость измерений, а также осложняет сравнение полученных результатов с теорией.

Возможно перспективным будет являться создание структур с легированием, что позволит искусственно повысить одного из типов носителей заряда и реализовать ситуацию в которой, вопреки дисперсионному соотношению будет превалировать тот или иной механизм Оже-рекомбинации. Это может быть полезным как с точки зрения фундаментальных исследований, так и с точки зрения простоты оптимизации структур (можно будет заботиться о темпе рекомбинации всего по одному механизму). Более того это может интересно в перспективе с позиции создания быстрых полупроводниковых детектеров, работающих в этой же области электромагнитного спектра (в данном случае оже процессы будут играть уже положительную роль).

Рис. 1: Схема измерения фотолюминисценции

Рис. 2: Геометрия задачи исследования фотолюминисценции

Рис. 3: Принципиальная схема измерения фотопроводимости

Литература