$\overline{\text{Problème 2} - \text{CCP MP 2014}}$

Questions préliminaires

1. a) Soit $s \in \mathcal{S}(E)$. Selon le théorème spectral, le polynôme caractéristique de s est scindé dans $\mathbb{R}[X]$ et il existe une base orthonormée de E constituée de vecteurs propres de s: s est orthodiagonalisable.

Traduction matricielle : si $S \in \mathcal{S}_n(\mathbb{R})$, il existe une matrice P orthogonale et une matrice D diagonale telles que $S = PDP^{-1} = PD^tP$.

b) $\chi_S(X) = X^2 - \text{Tr}(S)X + \det(S) = X^2$, donc $\text{Sp}(S) = \{0\}$. Si S était diagonalisable, elle serait semblable à la matrice nulle, donc elle serait nulle, ce qui est faux.

Ainsi S est symétrique à coefficients complexes sans être diagonalisable.

- **2. a)** Notons $x = \sum_{i=1}^{n} x_i \varepsilon_i$. Alors $s(x) = \sum_{i=1}^{n} \lambda_i x_i \varepsilon_i$. Or la base β est orthonormée, donc $R_s(x) = \sum_{i=1}^{n} \lambda_i x_i^2$.
 - **b)** Supposons que $x \in S(0,1)$. Alors $1 = ||x||^2 = \sum_{i=1}^n x_i^2$.

Ainsi,
$$R_s(x) = \sum_{i=1}^n \lambda_i x_i^2 \le \sum_{i=1}^n \lambda_n x_i^2 = \lambda_n$$
 et $R_s(x) = \sum_{i=1}^n \lambda_i x_i^2 \ge \sum_{i=1}^n \lambda_1 x_i^2 = \lambda_1$.

On a bien montré que, pour tout $x \in S(0,1), R_s(x) \in [\lambda_1, \lambda_n]$

3. a) Supposons que s est symétrique défini positif.

Soit λ une valeur propre de s. Il existe un x non nul tel que $s(x) = \lambda x$.

Ainsi $0 < \langle s(x)|x \rangle = \lambda \|x\|^2$ et $\|x\| > 0$, donc $\lambda > 0$.

Si maintenant s est seulement symétrique positif, on a $0 \le \lambda ||x||^2$ donc $\lambda \ge 0$.

b) $s_{i,j}$ est la *i*-ème coordonnée dans la base B du vecteur $s(e_j)$. Or B est orthonormée (pour le produit scalaire canonique de \mathbb{R}^n) donc $s_{i,j} = \langle e_i | s(e_j) \rangle$.

En particulier, $s_{i,i} = \langle e_i | s(e_i) \rangle$; or e_i est un vecteur unitaire, donc d'après la question 2.b, $s_{i,i} = R_s(e_i) \in [\lambda_1, \lambda_n]$.

Un maximum sur $\mathcal{O}_n(\mathbb{R})$

4. L'application définie sur $\mathcal{M}_n(\mathbb{R})^2$ par $(M,N) \mapsto {}^t MN$ est bilinéaire (facile) donc continue puisque $\mathcal{M}_n(\mathbb{R})$ est de dimension finie.

Par composition, l'application $M \mapsto {}^t MM$ l'est aussi, et il en résulte que l'application $M \mapsto {}^t MM - I_n$ est continue.

- **5.** D'après le cours, les colonnes de A forment une base orthonormée de \mathbb{R}^n , donc pour tout $j \in [1; n]$, $\sum_{i=1}^n a_{i,j}^2 = 1$, ce qui implique $|a_{i,j}| \leq 1$.
- **6.** Si, pour tout $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, on pose $||M||_{\infty} = \max_{(i,j) \in [\![1;n]\!]^2} |m_{i,j}|$, on définit d'après le cours une norme sur $\mathcal{M}_n(\mathbb{R})$, pour laquelle $\mathcal{O}_n(\mathbb{R})$ est bornée d'après la question précédente. En dimension finie, toutes les normes sont équivalentes, donc $\mathcal{O}_n(\mathbb{R})$ est encore bornée quelque soit la norme utilisée sur $\mathcal{M}_n(\mathbb{R})$.

De plus, si l'on note f l'application $M \mapsto {}^t M M - I_n$ de la question 4, alors $\mathcal{O}_n(\mathbb{R}) = f^{-1}(\{0_{n,n}\})$. Or le singleton $\{0_{n,n}\}$ est un fermé et f est continue, donc $\mathcal{O}_n(\mathbb{R})$ est un fermé.

C'est donc bien une partie fermée bornée de $\mathcal{M}_n(\mathbb{R})$ (c'est-à-dire une partie compacte).

- 7. a) D'après la question 1.a, il existe une matrice P orthogonale telle que $S = P\Delta P^{-1} = P\Delta^t P$. Ainsi, $T(A) = \text{Tr}([AP\Delta]P^{-1}) = \text{Tr}(P^{-1}[AP\Delta]) = \text{Tr}(B\Delta)$ en posant $B = P^{-1}AP$. A et P sont toutes deux orthogonales et $\mathcal{O}_n(\mathbb{R})$ est un groupe multiplicatif, donc B est orthogonale.
 - b) Pour tout $(C, D) \in \mathcal{M}_n(\mathbb{R})^2$ et pour tout $\alpha \in \mathbb{R}$, $\text{Tr}((\alpha C + D)S) = \alpha \text{Tr}(CS) + \text{Tr}(DS)$, donc l'application $C \mapsto \text{Tr}(CS)$ est linéaire de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} ,. $\mathcal{M}_n(\mathbb{R})$ étant de dimension finie, c'est une application continue. Puisque $\mathcal{O}_n(\mathbb{R})$ est compact, T admet un maximum sur $\mathcal{O}_n(\mathbb{R})$ (théorème fondamental du cours).
 - c) Avec les notations de la question 7.a, $T(A) = \text{Tr}(B\Delta)$, donc avec les notations habituelles,

$$T(A) = \sum_{i=1}^{n} (B\Delta)_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} B_{i,j} \Delta_{j,i} = \sum_{i=1}^{n} \lambda_{i} B_{i,i}.$$

D'après la question 5, et les λ_i étant positifs, $T(A) \leqslant \sum_{i=1}^n \lambda_i = \text{Tr}(S)$.

Ainsi $t \leq \text{Tr}(S)$. De plus, $\text{Tr}(S) = T(I_n)$ et I_n est une matrice orthogonale, donc t = Tr(S).

Inégalité d'Hadamard

8. L'inégalité demandée est une conséquence directe de l'inégalité aritmético-géométrique, car on sait

que
$$det(S) = \prod_{i=1}^{n} \lambda_i$$
 et $Tr(S) = \sum_{i=1}^{n} \lambda_i$ (puisque, par exemple, S est diagonalisable).

9. On identifier comme d'habitude $\mathcal{M}_{n,1}(\mathbb{R})$ avec \mathbb{R}^n .

Soit $X \in \mathbb{R}^n$. ${}^tXS_{\alpha}X = {}^t(DX)S(DX) \geqslant 0$ car S est symétrique positive. Ceci montre que $S_{\alpha} \in \mathcal{S}_n^+(\mathbb{R})$.

$$\operatorname{Tr}(S_{\alpha}) = \sum_{i=1}^{n} ({}^{t}DSD)_{i,i} = \sum_{i=1}^{n} \sum_{(j,k) \in [\![1:n]\!]^{2}} [{}^{t}D]_{i,j} S_{j,k} D_{k,i}.$$

D étant diagonale d'éléments diagonaux les α_i on obtient $\operatorname{Tr}(S_\alpha) = \sum_{i=1}^n \alpha_i^2 s_{i,i}$.

10. On peut appliquer l'inégalité (*) à la matrice S_{α} car elle est bien dans $\mathcal{S}_{n}^{+}(\mathbb{R})$.

$$\det(S_{\alpha}) = \det(D)^{2} \det(S) = \left(\prod_{i=1}^{n} \alpha_{i,i}\right)^{2} \det(S) \text{ et } \frac{1}{n} \operatorname{Tr}(S_{\alpha}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{s_{i,i}} s_{i,i} = 1,$$

$$\operatorname{donc} \det(S) \leqslant \left(\prod_{i=1}^{n} \frac{1}{\alpha_{i,i}}\right)^{2} = \prod_{i=1}^{n} s_{i,i}.$$

11. Pour tout $X \in \mathbb{R}^n$, ${}^tXS_{\varepsilon}X = {}^tXSX + \varepsilon ||X||^2 \geqslant 0$, donc $S_{\varepsilon} \in \mathcal{S}_n^+(\mathbb{R})$.

De plus d'après la question 3.b, pour tout $i \in [1; n]$, $0 \le \lambda_1 \le s_{i,i}$, donc $s_{i,i} + \varepsilon > 0$, ce qui permet d'appliquer l'inégalité de la question précédente à S_{ε} : pour tout $\varepsilon > 0$, $\det(S_{\varepsilon}) \le \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$.

Les valeurs propres de S_{ε} sont les $\lambda_i + \varepsilon$ donc $\det(S_{\varepsilon}) = \prod_{i=1}^n (\lambda_i + \varepsilon)$.

Ainsi, pour tout $\varepsilon > 0$, $\prod_{i=1}^{n} (\lambda_i + \varepsilon) \leqslant \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$ et on conclut en faisant tendre ε vers 0.

Rem : cette méthode pour généraliser l'inégalité de la question 10 est ici bien compliquée : en effet, si S est une matrice symétrique positive telle que l'un des $s_{i,i}$ est nul, alors d'après 3.b. on a $\lambda_1=0$ et l'inégalité cherchée est immédiate.

Application de l'inégalité d'Hadamard : détermination d'un minimum

12. Il est facile de vérifier que B est bien symétrique réelle.

Soit $X \in \mathbb{R}^n \setminus \{0\}$. ${}^tXBX = {}^t(\Omega X)A(\Omega X) > 0$, car $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $\Omega X \in \mathbb{R}^n \setminus \{0\}$ (Ω est orthogonale, donc elle est inversible). Ainsi $B \in \mathcal{S}_n^{++}(\mathbb{R})$.

De plus Ω est orthogonale, donc d'après le cours, $|\det(\Omega)| = 1$. Or, $\det(A) = 1$, donc $\det(B) = \det(\Omega)^2 \det(A) = 1$: on a prouvé que $B \in \mathcal{U}$.

Enfin, $\operatorname{Tr}(AS) = \operatorname{Tr}([A\Omega\Delta]^t\Omega) = \operatorname{Tr}(^t\Omega[A\Omega\Delta]) = \operatorname{Tr}(B\Delta)$.

13. D'après la question précédente, $\{\operatorname{Tr}(AS) \mid A \in \mathcal{U}\} \subset \{\operatorname{Tr}(B\Delta) \mid B \in \mathcal{U}\}.$

Réciproquement, soit $B \in \mathcal{U}$. On pose $A = \Omega B^t \Omega$. En adaptant la démonstration de la question précédente, on montre que $A \in \mathcal{U}$ et que $\text{Tr}(AS) = \text{Tr}(B\Delta)$, donc $\{\text{Tr}(AS) \mid A \in \mathcal{U}\} = \{\text{Tr}(B\Delta) \mid B \in \mathcal{U}\}$.

Prenons $x \in \{\operatorname{Tr}(B\Delta) \mid B \in \mathcal{U}\}$. Il existe $B \in \mathcal{U}$ telle que $x = \operatorname{Tr}(B\Delta) = \sum_{i=1}^{n} \lambda_i B_{i,i}$. Mais $B \in \mathcal{S}_n^{++}(\mathbb{R})$, donc d'après 3.b, pour tout $i \in [1;n]$, $B_{i,i} > 0$. Ainsi x > 0. Ceci prouve que $\{\operatorname{Tr}(B\Delta) \mid B \in \mathcal{U}\}$ est une partie non vide de \mathbb{R} minorée par 0. Elle possède donc une borne inférieure.

14. Par application de l'inégalité arithmético-géométrique, on obtient

$$\frac{1}{n}\operatorname{Tr}(B\Delta) = \frac{1}{n}\sum_{i=1}^{n}\lambda_{i}b_{i,i} \geqslant \left(\prod_{i=1}^{n}\lambda_{i}b_{i,i}\right)^{1/n},$$

ce qui fournit l'inégalité demandée.

15. Soit $B = (b_{i,j}) \in \mathcal{U}$. D'après la question 11, $\prod_{i=1}^n b_{i,i} \geqslant \det(B) = 1$, donc $\left(\prod_{i=1}^n b_{i,i}\right)^{1/n} \geqslant 1$. Ainsi, d'après la question précédente, $\operatorname{Tr}(B\Delta) \geqslant n \left(\prod_{i=1}^n \lambda_i\right)^{1/n} = n(\det(S))^{1/n}$.

16. Ainsi $n(\det(S))^{1/n}$ est un minorant de $\{\operatorname{Tr}(B\Delta) \mid B \in \mathcal{U}\}$, donc $m \ge n(\det(S))^{1/n}$.

Pour tout
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \setminus \{0\}, \ ^t X D X = \sum_{i=1}^n \mu_i x_i^2 > 0, \text{ donc } D \in \mathcal{S}_n^{++}(\mathbb{R}).$$

De plus $\det(D) = \prod_{i=1}^n \mu_i = \frac{\det(S)}{\lambda_1 \cdots \lambda_n} = 1$, donc $D \in \mathcal{U}$. Or $\operatorname{Tr}(D\Delta) = \sum_{i=1}^n \mu_i \lambda_i = n(\det(S))^{1/n}$, donc $m = n(\det(S))^{1/n}$.

