Treść zadania, Opracowanie

Program

Dostępna pamięć: 32 MB.

OI, Etap III, dzień drugi, 07.04.2011

Patyczki

Mały Jaś dostał od babci i dziadka prezent na urodziny. Jest nim pudełko pełne patyczków różnej długości i różnych kolorów. Jaś zastanawia się, czy z pewnych trzech patyczków z zestawu da się zbudować trójkąt o wszystkich bokach różnych kolorów. Jasia interesują tylko trójkąty niezdegenerowane, czyli takie o dodatnim polu.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna liczba całkowita k $(3 \le k \le 50)$ — jest to liczba różnych kolorów patyczków. Kolory numerujemy od 1 do k.

W kolejnych k wierszach znajdują się opisy patyczków poszczególnych kolorów. W wierszu o numerze i+1 znajdują się liczby całkowite pooddzielane pojedynczymi odstępami, opisujące patyczki koloru i. Pierwsza z tych liczb, n_i (1 $\leq n_i \leq$ 1 000 000), oznacza liczbe patyczków koloru i. Po niej następuje n_i liczb całkowitych oznaczających długości patyczków. Są to liczby całkowite dodatnie nie większe niż 1 000 000 000. Łączna liczba wszystkich patyczków nie przekracza 1 000 000.

W testach wartych przynajmniej 30% punktów zachodzi dodatkowy warunek: sumaryczna liczba patyczków nie przekracza 250.

Wyjście

Twój program powinien wypisać (w pierwszym i jedynym wierszu standardowego wyjścia):

- albo sześć liczb całkowitych pooddzielanych pojedynczymi odstępami, opisujących sposób zbudowania trójkąta o różnokolorowych bokach w następującym formacie: kolor i długość pierwszego patyczka, kolor i długość drugiego patyczka oraz kolor i długość trzeciego patyczka,
- albo słowo NIE, jeżeli takie trzy patyczki nie istnieją.

Jeżeli istnieje wiele trójek patyczków w różnych kolorach, z których można zbudować trójkąt, Twój program może wypisać dowolną z nich.

Przykład

Dla danych wejściowych:

jednym z poprawnych wyników jest:

3 8 4 12 2 9

4

1 42

2 6 9

3 8 4 8

1 12

186 Patyczki

natomiast dla danych wejściowych:

poprawnym wynikiem jest:

3

1 1

1 2

1 3

Rozwiązanie

Przypadek trzech kolorów

Rozważymy najpierw prostsze zadanie, w którym patyczki są dostępne jedynie w trzech kolorach, tzn. k=3. Oznaczmy te kolory jako czerwony, niebieski i żółty. Przyjmijmy, że trójkąt, którego szukamy, ma najdłuższy bok czerwony, długości c; średni niebieski, długości n; oraz najkrótszy żółty, długości z. Wówczas jedyny warunek potrzebny i wystarczający do jego konstrukcji to n+z>c.

NIE

Załóżmy, że dobraliśmy już patyczek czerwony długości c. Zauważmy, że jako patyczek niebieski możemy bez straty ogólności dobrać najdłuższy patyczek tego koloru, który jest $nie\ dłuższy$ niż c. Istotnie, jeśli dla jakiejś trójki długości c, n, z spełniony jest warunek n+z>c, to jeśli zwiększymy n, będzie on tym bardziej spełniony. Podobnie, wybrawszy już patyczek niebieski długości n, z patyczków żółtych możemy dobrać najdłuższy nie dłuższy niż n.

Rozumowanie to prowadzi już do algorytmu. Wpierw sortujemy patyczki każdego koloru względem ich długości i ustawiamy je na trzech listach. Następnie mamy 6 możliwości na to, którego koloru patyczek ma być najdłuższy, którego średni, a którego najkrótszy. Sprawdzamy każdą z tych możliwości; dla ustalenia uwagi przyjmijmy tę, którą rozważaliśmy w poprzednich akapitach. Po kolei iterujemy przez patyczki czerwone, poczynając od najkrótszych. Na listach niebieskich oraz żółtych patyczków trzymamy dwa wskaźniki, wskazujące w każdym momencie na najlepsze możliwe dobory patyczków tych kolorów dla rozważanego patyczka czerwonego. Za każdym razem, gdy rozważamy kolejny patyczek czerwony, zwiększamy wskaźniki na pozostałych listach: przesuwamy wskaźnik na liście niebieskiej, by wskazywał na najdłuższy patyczek nie dłuższy niż czerwony, a potem przesuwamy wskaźnik na liście żółtej, by wskazywał na najdłuższy patyczek nie dłuższy niż niebieski. Następnie sprawdzamy, czy z wskazywanej trójki patyczków da się utworzyć trójkąt. Jeśli tak, to go wypisujemy i kończymy działanie algorytmu, w przeciwnym razie sprawdzamy dalej. Rozumowanie z poprzednich akapitów dowodzi, że jeśli istnieje co najmniej jedna trójka tworząca trójkąt, to którąś z nich znajdziemy.

Oznaczmy przez $N=\sum_{i=1}^k n_i$ łączną liczbę patyczków. Pierwsza faza opisanego algorytmu (sortowanie) działa w czasie $O(N\log N)$, zaś druga w czasie O(N), gdyż dla każdej z sześciu kombinacji kolorów wskaźniki przesuwają się po listach jedynie wprzód. Stąd cała procedura ma złożoność $O(N\log N)$. Zauważmy, że bardzo prosto da się ją przerobić na, niestety zbyt wolny, algorytm dla większych wartości k. Po prostu sortujemy każdy z kolorów z osobna, a następnie na k sposobów ustalamy kolor, z którego wybierzemy najdłuższy patyczek, na k-1— z którego wybierzemy średni, oraz na k-2— z którego wybierzemy najkrótszy. Dla każdej możliwości stosujemy znany już nam algorytm rozstrzygający, czy przy takim doborze możemy

zbudować szukany trójkąt. Metoda ma więc złożoność czasową $O(N \log N + k^3 N)$. Jej implementacja znajduje się w plikach pats1.cpp i pats2.pas.

Rozwiązanie wzorcowe

Spróbujemy teraz poprawić algorytm tak, by również w ogólnym przypadku działał w czasie $O(N\log N)$, czyli niezależnie od liczby kolorów. Wyobraźmy sobie, że posortowaliśmy niemalejąco długości wszystkich patyczków naraz, i przy każdym patyczku zapamiętaliśmy, jaki ma kolor. Załóżmy, że istnieje różnokolorowy trójkąt, w którym najdłuższy bok stanowi patyczek P_1 , długości d_1 i koloru k_1 . Niech P_2' , P_3' będą pozostałymi dwoma bokami tego trójkąta, odpowiednio długości d_2' , d_3' ($d_2' \geqslant d_3'$) oraz kolorów k_2' , k_3' . Wówczas wszystkie kolory k_1 , k_2' i k_3' są różne oraz $d_2' + d_3' > d_1$. Niech dalej d_2 będzie długością najdłuższego patyczka P_2 nie dłuższego niż d_1 , koloru innego niż k_1 (powiedzmy k_2). Ponadto, niech d_3 będzie długością najdłuższego patyczka P_3 nie dłuższego niż d_2 , koloru innego niż k_1 oraz k_2 (powiedzmy k_3). Pokażemy, że wówczas patyczki P_1 , P_2 i P_3 również tworzą poprawny trójkąt.

Wystarczy uzasadnić, że $d_2 \geqslant d_2'$ oraz $d_3 \geqslant d_3'$. Pierwsza nierówność jest oczywista, gdyż $k_2' \neq k_1$, więc patyczek P_2' jest brany pod uwagę przy znajdowaniu P_2 . Aby dowieść drugiej, załóżmy najpierw, że $k_2' \neq k_2$. Wówczas przy znajdowaniu P_3 patyczek P_2' jest brany pod uwagę, gdyż jest nie dłuższy niż d_2 oraz innego koloru niż zarówno P_1 , jak i P_2 . Stąd $d_3 \geqslant d_2'$, więc też $d_3 \geqslant d_3'$. Teraz załóżmy, że jednak $k_2' = k_2$. Ale wtedy z kolei patyczek P_3' jest brany pod uwagę przy doborze P_3 , gdyż jest innego koloru niż P_1 oraz P_2 , więc w tym przypadku również $d_3 \geqslant d_3'$.

Dowiedziony fakt pozwala już wykonać stosowną modyfikację poprzedniego algorytmu. Jako potencjalne najdłuższe boki trójkąta rozważamy kolejne patyczki P_1 na posortowanej liście długości. Obserwacja z poprzedniego akapitu pozwala dla takiego P_1 sprawdzać tylko jedną parę patyczków jako dwa pozostałe boki: P_2 , najdłuższy nie dłuższy od P_1 innego koloru niż P_1 ; oraz P_3 , najdłuższy nie dłuższy od P_2 , innego koloru niż P_1 i P_2 . Po każdym kroku algorytmu pamiętamy takie trzy patyczki P_1 , P_2 , P_3 (lub informację, że danego patyczka nie ma). Powiedzmy, że rozważamy kolejny patyczek P. Wówczas aktualizujemy zapamiętane patyczki w następujący sposób:

- \bullet jeśli Pjest koloru innego niż P_1 i $P_2,$ to $P_3:=P_2,\,P_2:=P_1,\,P_1:=P;$
- jeśli P jest tego samego koloru co P_2 , to $P_2 := P_1$, $P_1 := P$;
- jeśli P jest tego samego koloru co P_1 , to $P_1 := P$.

Oznacza to, że po wstępnym sortowaniu o złożoności czasowej $O(N \log N)$ możemy już w czasie liniowym sprawdzić, czy z którejś takiej trójki patyczków P_1 , P_2 , P_3 możemy skonstruować trójkąt, co jest równoważne istnieniu jakiejkolwiek trójki spełniającej warunki zadania.

Implementacje tego rozwiązania można znaleźć w plikach pat2.cpp oraz pat3.pas.

188 Patyczki

Testy

Rozwiązania zawodników były sprawdzane z użyciem 13 zestawów składających się jednego, dwóch lub trzech testów.

Nazwa	k	N	Opis		
pat1.in	3	15	test losowy, odpowiedź pozytywna		
pat2.in	3	50	test losowy, odpowiedź pozytywna		
pat 3.in	4	150	test losowy, odpowiedź pozytywna		
pat4a.in	5	250	test losowy, odpowiedź pozytywna		
pat4b.in	4	180	test strukturalny, odpowiedź negatywna		
pat5a.in	5	485	test strukturalny, odpowiedź negatywna		
pat5b.in	7	32 344	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat6a.in	5	1 370	test strukturalny, odpowiedź negatywna		
pat6b.in	7	42695	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat 7a.in	5	6881	test strukturalny, odpowiedź negatywna		
pat7b.in	6	103077	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat8a.in	11	25738	test strukturalny, odpowiedź negatywna		
pat8b.in	9	155756	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat8c.in	10	101 702	test strukturalny, odpowiedź negatywna		
pat9a.in	14	68 830	test strukturalny, odpowiedź negatywna		
pat9b.in	9	263487	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat9c.in	11	153583	test strukturalny, odpowiedź negatywna		
pat10a.in	28	500 000	test losowy, odpowiedź pozytywna		
pat10b.in	9	323145	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat10c.in	9	236090	test strukturalny, odpowiedź negatywna		
pat11a.in	35	500 000	test losowy, odpowiedź pozytywna		
pat11b.in	11	357247	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat11c.in	12	305 079	test strukturalny, odpowiedź negatywna		
pat12a.in	45	10^{6}	test losowy, odpowiedź pozytywna		
pat12b.in	10	406820	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat12c.in	9	441 183	test strukturalny, odpowiedź negatywna		
pat13a.in	50	10^{6}	test losowy, odpowiedź pozytywna		
pat13b.in	15	474711	test strukturalny, jednoznaczna odpowiedź pozytywna		
pat13c.in	12	531 982	test strukturalny, odpowiedź negatywna		

XXIII Międzynarodowa Olimpiada Informatyczna,

Pattaya, Tajlandia 2011