Public Key Encryption from trapdoor permutations

This slide is made based the online course of Cryptography by Dan Boneh

Public key encryption

Bob: generates (PK, SK) and gives PK to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Public key encryption

<u>**Def**</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes m∈M and outputs c ∈C
- D(sk,c): det. alg. that takes c∈C and outputs m∈M or ⊥

Consistency: $\forall (pk, sk)$ output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

Security: eavesdropping

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: $\mathbb{E} = (G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A:

$$Adv_{SS}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1] < negligible$$

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)

For public key encryption:

- One-time security ⇒ many-time security (CPA)
 (follows from the fact that attacker can encrypt by himself)
- Public key encryption must be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

Caroline

(pub-key) Chosen Ciphertext Security: definition

 $\mathbb{E} = (G,E,D)$ public-key enc. over (M,C). For b=0,1 define EXP(b):

Dan Boneh

Chosen ciphertext security: definition

<u>Def</u>: E is CCA secure (a.k.a IND-CCA) if for all efficient A:

$$Adv_{CCA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is negligible.

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides **authenticated encryption** [chosen plaintext security & ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker can create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

This and next module:

constructing CCA secure pub-key systems

End of Segment

Public Key Encryption from trapdoor permutations

Constructions

Goal: construct chosen-ciphertext secure public-key encryption

Trapdoor functions (TDF)

<u>**Def**</u>: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F⁻¹)

- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk,\cdot)$: det. alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk,\cdot)$: defines a function $Y \to X$ that inverts $F(pk,\cdot)$

More precisely: $\forall (pk, sk)$ output by G

$$\forall x \in X$$
: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(G, F, F^{-1}) is secure if $F(pk, \cdot)$ is a "one-way" function: can be evaluated, but cannot be inverted without sk

<u>Def</u>: (G, F, F⁻¹) is a secure TDF if for all efficient A:

$$Adv_{OW}[A,F] = Pr[x = x'] < negligible$$

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

E(pk, m): $x \stackrel{R}{\leftarrow} X$, $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$, $c \leftarrow E_s(k, m)$ output (y, c)

```
\frac{D(sk, (y,c))}{x \leftarrow F^{-1}(sk, y),}
k \leftarrow H(x), \quad m \leftarrow D_s(k, c)
output m
```

In pictures:
$$E_s(H(x), m)$$
 header body

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \longrightarrow K$ is a "random oracle" then (G,E,D) is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

```
E(pk, m):

output c \leftarrow F(pk, m)
```

```
\frac{D(sk, c)}{\text{output } F^{-1}(sk, c)}
```

Problems:

- Deterministic: cannot be semantically secure !!
- Many attacks exist (next segment)

Next step: construct a TDF

End of Segment

Public Key Encryption from trapdoor permutations

The RSA trapdoor permutation

Review: trapdoor permutations

Three algorithms: (G, F, F⁻¹)

- G: outputs pk, sk. pk defines a function $F(pk, \cdot): X \to X$
- F(pk, x): evaluates the function at x
- F⁻¹(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function $F(pk, \cdot)$ is one-way without the trapdoor sk

Review: arithmetic mod composites

Let
$$N = p \cdot q$$
 where p,q are prime
$$Z_N = \{0,1,2,...,N-1\} \quad ; \quad (Z_N)^* = \{\text{invertible elements in } Z_N \}$$

Facts:
$$x \in Z_N$$
 is invertible \iff $gcd(x,N) = 1$

- Number of elements in $(Z_N)^*$ is $\varphi(N) = (p-1)(q-1) = N-p-q+1$

Euler's thm:
$$\forall x \in (Z_N)^* : x^{\phi(N)} = 1$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes $p,q \approx 1024$ bits. Set **N=pq**. choose integers **e**, **d** s.t. **e**·**d** = **1** (mod ϕ (**N**)) output pk = (N, e), sk = (N, d)

F(pk, x):
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 ; RSA(x) = x^e (in \mathbb{Z}_N)

$$F^{-1}(sk, y) = y^{d};$$
 $y^{d} = RSA(x)^{d} = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^{k} \cdot x = x$

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

$$Pr[A(N,e,y) = y^{1/e}] < negligible$$

where $p,q \leftarrow R - bit primes$, $N \leftarrow pq$, $y \leftarrow R - Z_N^*$

Review: RSA pub-key encryption (ISO std)

(E_s, D_s): symmetric enc. scheme providing auth. encryption.

H: $Z_N \rightarrow K$ where K is key space of (E_s, D_s)

- G(): generate RSA params: pk = (N,e), sk = (N,d)
- E(pk, m): (1) choose random x in Z_N (2) $y \leftarrow RSA(x) = x^e$, $k \leftarrow H(x)$

(3) output
$$(y, E_s(k,m))$$

• **D**(sk, (y, c)): output $D_s(H(RSA^{-1}(y)), c)$

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e) Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$ (in Z_N)
- secret key: (N,d) Decrypt: $c^d \rightarrow m$

Insecure cryptosystem!!

Is not semantically secure and many attacks exist

 \Rightarrow The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA

Suppose k is 64 bits: $k \in \{0,...,2^{64}\}$. Eve sees: $c = k^e$ in Z_N

If
$$\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$$
 where $\mathbf{k_1}$, $\mathbf{k_2} < 2^{34}$ (prob. $\approx 20\%$) then $\mathbf{c/k_1}^e = \mathbf{k_2}^e$ in Z_N

Step 1: build table: $c/1^e$, $c/2^e$, $c/3^e$, ..., $c/2^{34e}$. time: 2^{34}

Step 2: for $k_2 = 0,..., 2^{34}$ test if k_2^e is in table. time: 2^{34}

Output matching (k_1, k_2) . Total attack time: $\approx 2^{40} << 2^{64}$

Dan Boneh

End of Segment

Public Key Encryption from trapdoor permutations

PKCS 1

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used):

Main questions:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

PKCS1 v1.5

PKCS1 mode 2: (encryption)

- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS

Attack on PKCS1 v1.5

(Bleichenbacher 1998)

PKCS1 used in HTTPS:

 \Rightarrow attacker can test if 16 MSBs of plaintext = '02'

Chosen-ciphertext attack: to decrypt a given ciphertext C do:

- Choose $r \in Z_N$. Compute $c' \leftarrow r^e \cdot c = (r \cdot PKCS1(m))^e$
- Send c' to web server and use response

PKCS1 v2.0: OAEP

New preprocessing function: OAEP [BR94]

check pad on decryption. reject CT if invalid.

Thm [FOPS'01]: RSA is a trap-door permutation ⇒ RSA-OAEP is CCA secure when H,G are random oracles

in practice: use SHA-256 for H and G

End of Segment

Public Key Encryption from trapdoor permutations

RSA in practice

RSA With Low public exponent

To speed up RSA encryption use a small e: $c = m^e \pmod{N}$

- Minimum value: **e=3** (gcd(e, $\phi(N)$) = 1)
- Recommended value: e=65537=2¹⁶+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

- ElGamal (next module): approx. same time for both.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	RSA
<u>Cipher key-size</u>	<u>Modulus size</u>
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04]

The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999)

The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97]

A computer error during c^d (mod N) can expose d.

A common defense: check output. 10% slowdown.

An Example Fault Attack on RSA (CRT)

A common implementation of RSA decryption: $x = c^d$ in Z_N

decrypt mod p:
$$x_p = c^d$$
 in Z_p combine to get $x = c^d$ in Z_N decrypt mod q: $x_q = c^d$ in Z_q

Suppose error occurs when computing x_q , but no error in x_p

Then: output is x' where
$$x' = c^d$$
 in Z_p but $x' \neq c^d$ in Z_q

$$\Rightarrow$$
 $(x')^e = c \text{ in } Z_p \text{ but } (x')^e \neq c \text{ in } Z_q \Rightarrow \gcd((x')^e - c, N) = p$

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

OpenSSL RSA key generation (abstract):

```
prng.seed(seed)
p = prng.generate_random_prime()
prng.add_randomness(bits)
q = prng.generate_random_prime()
N = p*q
```

Suppose poor entropy at startup:

- Same p will be generated by multiple devices, but different q
- N_1 , N_2 : RSA keys from different devices \Rightarrow gcd(N_1 , N_2) = p

RSA Key Generation Trouble [Heninger et al./Lenstra et al.]

Experiment: factors 0.4% of public HTTPS keys!!

Lesson:

 Make sure random number generator is properly seeded when generating keys

Further reading

• Why chosen ciphertext security matters, V. Shoup, 1998

Twenty years of attacks on the RSA cryptosystem,
 D. Boneh, Notices of the AMS, 1999

OAEP reconsidered, V. Shoup, Crypto 2001

• Key lengths, A. Lenstra, 2004

End of Segment