(Algebra / Shire) - Folho 1/3 Problema 2 (RMM 2013/5) Dodo um inteiro K>Z, seja a,=1 e, Yn>Z, an o menor $X = 1 + \sum_{i=1}^{n-1} \left[\sqrt[n]{\frac{x}{a_i}} \right].$ Prove que todo primo aporece em a1, 21,... Closim: Fi t.q. a = t => Ipt.q. px | t. Como a e' crescente, vamos supor que, poro certo io, vale ∃i≤io +q. ai=t () ≠p +q. p |t), Yt≤aio. · Bose io = 101 Defina $f(x) = \sum_{j=1}^{10} \left[\sqrt{\frac{x}{a_j}} \right]$ Assim, 0:011 e'o menor x>a; t.q. x = 1 + f(x)Observe que ficaio) = aio, pois o termo [Jaio] = 1. Varmos anoliser g(x)=fi(x+1)-fi(x), pora x=aio; aio+1;...; aio+1. * Fato1: Se $\left[\sqrt{\frac{x_{ij}}{a_{ij}}}\right] - \left[\sqrt{\frac{x}{a_{ij}}}\right] = 1 \Rightarrow (*)$ => [\\ \frac{\x_{+1}}{\oldots} \] - | \(\sum_{\oldots} \frac{\x}{\x} \) \| \display \(\frac{\x}{\x} \) \| \din \x \quad \x \\ \din \x \q \x \\ \din \x \q \x \q \x \q \x \q \x \q \x \q \x Provo: Se (x) => x+1 = aj·tx. S.P.G. aj <0e => t>0 => det.

Mos, sc (+) => x+1 = az·vx. => al= aj·tx -=> Jptg.px | ae. Abe! [] - [] < [x+1 -] + 1 < x+1 - x + 1 < 2. Como e' inteiro... D

Toblems 2 (Algebro/Shine) - Folho 2/3
Pelo joto 1, temos que g(x)=1 ou O.
Foto 2: Sejo xo o primeiro volor t.g. g(x)=0.
=
Prova: gio(x)=1, Y and x <xo.< td=""></xo.<>
$= \int_{a_0}^{a_0} (x+1) = \int_{a_0}^{a_0} (a_0) + (x+1-a_0)$
= $a_{io} + x_{o+1} - a_{io} = x_{+1} = x_{io} + x_{+1}, \forall a_{io} \in x_{e} \times a_{o}$
Mas, $g_{io}(x_0) = 0 \Rightarrow f(x_0+1) = f(x_0) = x_0$
$\Rightarrow (X_0 + 1) = 1 + \int_{\Gamma_0} (X_0 + 1) \Rightarrow$
$= \nabla \alpha_{io+1} = x_{o} + 1. \qquad \square$
Foto 3: Pora todo número ty se \$p t.q pk/ty entag; (+-1)=0
Basta mostror que $\left[\sqrt{\frac{t_i-1}{a_i}}\right] = \left[\sqrt{\frac{t_i-1}{a_i}}\right]$ (=)
C=> VIII não e inteiro (=> tr não e potência Késima E prote, Vp. 0
Foto 4: Paro todo número t, se I pt.q. pr/t, entoe: g(t-1)=1 ou I aio < t' < t / g(t'-1)=0.
Escreva t=a.bx, com b móximo. > Pxta, Yp.
· So a> a io => g(a-1)=0, pelo Foto3. · Se a \(a \) o io, pelo hipotese, a = a => [\(\frac{1}{a_j} \)] - [\(\frac{1}{a_j} \)] = b - (b-1)
Pelo Foto 1, g(+-1) = 0.

oblema 2 (Algebra/Shire) - Folho 3/3 Os jatos 2,3 e 4 implicam que:

(] is in+1 tig. a; = t <=> Ip tig. px/t), \text{\$\psi_{in+1}\$.}

Logo, por indugao: .

(]: t.q. a:= t <=> Ip t.q. px /t), Yt

Considerando t primo, o bala direito sempre e veralade,

logo, I; t.g. ai=p prima, Ap prima.