PS8: Complex Numbers

Thursday, April 22, 2021 4:07 PM

PS8-Compl ex Numbers

Problem Set 8: Complex Numbers

Goal: Become familiar with math operations using complex numbers; see how complex numbers can be used to show the frequency response of an RC circuit.

Note: This PSet will be much easier if you have already watched the lectures on complex numbers.

Deliverable: This worksheet and two plots.

Part I: Basic Operations with complex numbers

For the following, take $z_1 = 1 + j$ and $z_2 = -3 + 4j$.

1. Convert z_1 and z_2 to polar and exponential notation (find r, θ).

- 3. Compute $z_1 + z_2$. Show $z_1 + z_2$. graphically on a plot in the complex plane from 2.
- 4. Compute z_1 z_2 . Show z_1 z_2 . graphically on a plot in the complex plan from 2.

4. Compute z_1 - z_2 . Snow z_2 - z_2 . Snow z_1 - z_2 . Snow z_2 - z_2 . Snow z_2 - z_2

Total Pages: 4

Part II: Plotting complex numbers

Complex numbers using **polar notation** are super useful for illustrating how a circuit responds to time-varying signals.

The **polar coordinates** (above grid of red & blue) make use of a special property of the **exponential function** when it operates on $j (= \sqrt{-1})$. You may have seen this function notated (equivalently) as:

$$e^{j\theta}$$
, exp $(j\theta)$, or $e^{i\theta}$

where θ represents an angle in radians (Recall that π radians = 180°).

The amazing property of $e^{j\theta}$ is known as Euler's formula (section 6.3 in your book):

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

If θ varies with a frequency, ω , $\theta = \omega \cdot t$, what would $e^{j\omega t}$ look like in time?

Problem set 8 Page 2 Total Pages: 4

Recall from Figure 6.3 that if we represent our cosine voltage input to a low-pass filter with polar notation,

$$V_{in}(t) = \pmb{V}_{in} \cdot e^{j\omega t}$$

And $\emph{\textbf{V}}_{in}$ represents a complex number.

And remember that because the R and C are in series, the time varying current passing through both will be the same, we get,

$$\frac{V_{in}(t) - V_{out}(t)}{R} = C \frac{dV_{out}(t)}{dt}$$

and, rearranged a bit,

$$\mathbf{V}_{in} \cdot e^{j\omega t} - \mathbf{V}_{out} \cdot e^{j\omega t} = RCj\omega \mathbf{V}_{out} \cdot e^{j\omega t}.$$

Or

solving for $\frac{v_{out}}{v_{in}}$,

Let's let RC=1 second and $z_3 = \frac{1}{1+j\omega}$ And $z_4 = \frac{j\omega}{1+j\omega}$ Convert z_3 and z_4 to r, θ notation. Zero ($\sqrt{0.5}$), $\sqrt{4}$ $\sqrt{7}$

Plot the magnitude of r of z_3 and z_4 as a function of ω on a log-log scale. Let ω^* vary from 10^{-3} to 10^3 . Plot θ in degrees for z_3 and z_4 as a function of ω on a semilog scale. Let ω vary from 10^{-3} to 10^3 .

*In Matlab, you can use the command: y= logspace(-3,3) to generate a logarithmically-spaced vector, y, that spans 10⁻³ to 10³.

Knowing that z_3 and z_4 represent the $\frac{V_{out}}{V_{in}}$ of low- and high-pass filters, what do you expect the graphs to look like?

Problem set 8 Page 3

