گزارش آزمایش سوم روژین تقی زادگان 401105775 رادین شاه دایی 401106096 باربد شهرآبادی 401106125

هدف آزمایش:

هدف از انجام این آزمایش طراحی یک پالس جنریتور با استفاده از تراشه 555 و همچنین بررسی تاثیر گیت های NOT و تعدادشان بر میزان تاخیر انتشار پالس در آن ها میباشد

قطعات مورد نیاز:

برد بورد

پتانسيومتر

خازن

مقاو مت

تراشه 555

گیت های نات (inverter 7404)

شرح آزمایش:

الف) مطابق شکل زیر مدار را میبندیم.

باید موجی با ویژگی های زیر ایجاد کنیم:

 $TL = 1\mu s$

 $TH = 9\mu s$

با توجه به استفاده از خازن 1 نانوفارادی، باید طبق فرمول های زیر، مقدار مقاومت های مورد نیاز را محاسبه نماییم:

 $TL = \ln(2) . R1. C => 10^{-6} = 0.69. 10^{-9} . R1 => R1 \sim 1.5 K\Omega$

 $TH = \ln(2) . Req. C => 9 * 10^{-6} = 0.69. 10^{-9}. Req => Req \sim 13 K\Omega$

هنگام انجام آزمایش با توجه به موجود نبودن مقاومت $K\Omega$ ، از مقاومت $K\Omega$ ، از مقاومت $K\Omega$ استفاده شد که باعث افزایش جزئی در $K\Omega$ شد.

موج ایجاد شده به شکل زیر شد:

ب) ولتاژ خازن را طبق شکل زیر اندازه گیری کردیم و همانطور که مشاهده میشود ولتاژ آن در محدوده 1.3 تا 2.3 ولتی قرار دارد در نتیجه در محدود trigger, threshold قرار میگیرد.

ج) مطابق شکل زیر پتانسیومتر را با مقاومت دیگر بصورت سری میبندیم:

طبق فرمول محاسبه شده در بخش الف)، این تغییر روی TL تاثیری نخواهد داشت. با تغییر دادن مقدار پتانسیومتر، میتوانیم کم و زیاد شدن TH را طبق شکل های زیر مشاهده کنیم:

د) با توجه به موج خواسته شده، TL دو برابر TH میباشد پس کافیست که پتانسیومتر از مدار حذف و مقاومت دیگر با مقاومتی $K\Omega$ $K\Omega$ جایگزین شود. همچنین باید موج را از یک معکوس کننده عبور دهیم. شکل زیر مدار بسته شده برای این کار را نشان میدهد:

موج ایجاد شده به شکل زیر میباشد:

ه) برای محاسبه تاخیر از فرمول های زیر استفاده میکنیم:

$$V(t) = V0 * e^{\frac{-t}{\tau}}, \tau = RC = 3 * 10^{-6} => t \sim 10ns$$

این مقدار برابر تاخیر برای رسیدن از 0 به 1 میباشد

$$V(t) = V0\left(1 - e^{\frac{-t}{\tau}}\right) => t \sim 15ns$$

این مقدار برابر تاخیر برای رسیدن از 1 به 0 میباشد.

مدار نهایی به شکل زیر میباشد:

شکل زیر تاخیر ایجاد شده را نشان میدهد:

