RAD/GBS

Each read: will start with the barcode, then the restriction site, then a variable sequence

Issues with cluster identification

Due to low complexity at the beginning of the sequence, Illumina cannot distinguish if a signal comes from one or two clusters

How to minimize the problem

- Use barcodes of different lengths to shift the restriction enzyme cut site
- Add PhiX virus DNA to the RAD libraries to increase the complexity of reads ('spiking')
- Reduce loading concentrations of Illumina plates
- Potentially: filter out bad reads

Quality scores across bases: RAD datasets

RAD1

Quality scores across all bases (Sanger / Illumina 1.9 encoding) This quality drop could be due to air bubbles passing through the flowcell or something else we will see later 1 2 3 4 5 6 7 8 9 12-13 18-19 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-79 86-87 92-93 98-99 Position in read (bp)

RAD2

Per base sequence content

Blobtools kit uses the GC versus AT proportion to identify contamination from bacteria or other organisms

(https://blobtoolkit.genomehubs.org/)

GC distribution over all sequences

Examples of what you do not want to see:

Fastqc: Per sequence GC content

