Doffaming Office Apache Hadoop

TITLE Kafka/ Zookeeper Monitoring Module built for Flamingo Ecosystem

DURATION March 13, 2016 ~ June 8, 2016

CLIENT EXEM PRESENTER ALPHADOOP

CONTENTS

GOAL

PROBLEM

SOLUTION

CONTRIBUTION

SCHEDULE

ROLE & RESPONSIBILITY

CONSTRAINTS

Goal

Problem
Solution
Contrib.
Schedule
Role & Resp.
Constraints

_ WHAT WE WILL DO

Collect Performance Metrics, Visualize it, and Integrate it with Flamingo.

Goal

Problem
Solution
Contrib.
Schedule
Role & Resp.

Constraints

_ WHAT WE WILL DO

Is all system working properly?

Doflamingo

Of Course!

Check this out!

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

WHY WE NEED THIS PROJ

1. Hard to understand Hadoop

Distributed system – not intuitive

Unable to track fluctuant mass traffic

Eyes on only the upper level

- run and hope everything goes well

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

WHY WE NEED THIS PROJ

2. The Missing Link of Flamingo

Currently flamingo is able to monitor:

- Resources
- YARN application
- Map Reduce
- Nodes

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

HOW WE DO IT

Learn from other monitoring tools

Plenty of tools exists in the field – Learn from them and try to build up similar metrics

Build it into flamingo platform

There's flamingo's way of monitoring hadoop system. Add a new task into jobscheduler.

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

_ HOW WE DO IT

AGILE APPROACH

1 SPRINT = 2 WEEKS

TOTAL 5 SPRINTS along the semester

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

REQUIREMENTS

- 1. Built as a part of Flamingo system
- 2. Monitor and Report in Real-time
- 3. Utilize JVM ecosystem
- 4. Visualize the metrics, avoid numbers
- 5. Save metrics into Database
- 6. Special caution on log management

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

KAFKA MODULE

M1

OBJECTIVES

O1: Set up an environment for Flamingo

O2: Define Kafka measurement metrics, visualization forms

O3: Implement API server which provides collected metrics

O4: Implement charts with Sencha

O5: Integrate with Flamingo Ecosystem

O6: Define Zookeeper measurement metric, visualization

O7: Implement a Zookeeper monitoring module on Flamingo

ZOOKEEPER MODULE

M2

____ CDDINIT

SPRINT 3

SPRINT 5

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

TECHNICAL CHALLENGES

Simulate distributed environment

Kafka and zookeeper can only be tested in multiple nodes. Need to mock clustering env.

REQUEST → **EXEM**

Can we have sample environment or at least a tutorial that we can follow to setup distributed system?

Goal Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

_ TECHNICAL CHALLENGES

Selecting the important metrics

New to monitoring job and hadoop so we don't know what are the important metrics

HOW WE WILL SOLVE THE CHALLENGE

Survey other services: what they are monitoring and ordering of metrics which implicitly denotes importance Interview on developers – maybe EXEM engineers?

Goal Problem Solution

Contrib.

Schedule
Role & Resp.
Constraints

_ THE EFFECT OF OUR WORK

The ultimate control tower

Flamingo now monitors not only nodes, but also modules that compose pipeline.

Opening up new possibility

The gathered metrics can be used for further optimization or anomaly detection feature.

Goal

Problem

Solution

Contrib.

Schedule

Role & Resp.

Constraints

_ WHO WILL DO WHAT

TEAM _ ALPHADOOP

SEUNGHYO

KANG the hadoop master

Metric Analysis

JARYONG
LEE the spring master

YOUNGJAE
CHANG the sencha master

Goal
Problem
Solution
Contrib.
Schedule

Role & Resp.

Constraints

_WE ARE RESPONSIBLE FOR:

1. Built as a open source software

Fork and request merge into flamingo License/ Copyrights are same with flamingo

2. Bye-bye after spring semester

A/S are not supported after June 21, 2016

Goal
Problem
Solution
Contrib.
Schedule
Role & Resp.
Constraints

_ WE ONLY HAVE THESE:

LIMITED TIME: 10 WEEKS

No delay accepted – when semester ends, project should be ended

LIMITED DEVELOPERS: 3 PEOPLE

No one will help us

– no money to hire someone!

Summary

Background

Deep cuts
Thoughts
Realization
Silver-lining

SAY HELLO TO MONITORING

Seeing is believing

Software is intangible; so, where can we find it?

Bigdata: the buzz needs money

Hadoop is a money-eater:

10+ nodes, consulting, (expensive) engineers

Summary

Background

Deep cuts
Thoughts
Realization
Silver-lining

SAY HELLO TO MONITORING

Summary

Background

Deep cuts
Thoughts
Realization
Silver-lining

SAY HELLO TO MONITORING

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

TECHNICAL DETAILS

[A] WHAT IS KAFKA?

A high-throughput distributed messaging system

BENEFITS

Scalable

High-throughput

Distributable

Low response time

Save on data disk

USED IN

LinkedIn

Twitter

Netflix

Tumblr

Foursquare

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

_TECHNICAL DETAILS

[A] WHAT IS KAFKA?

Kafka consists of producer, broker, and consumer, managed by **Zookeeper**

Producers send system messages to brokers

Brokers process them distributively

Consumers store the messages to their disks

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

TECHNICAL DETAILS

[A] WHAT IS KAFKA?

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

_TECHNICAL DETAILS

[A] WHY KAFKA?

Store the messages in the DISK, not in the cache.

Consumers can rewind back to old data and re-consume them since they are in the disk for a certain period of time.

PULL model, not push model

consumer pull messages from broker without exceeding their limit; no drop occurs unlike producer-push model

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

_TECHNICAL DETAILS

[B] WHAT IS ZOOKEEPER?

Handles various errors in distributed systems.

Four Features

Using name service to separate loads.

Using distributed lock to handle synchronization error

Error detection and recovery

Configuration management

Summary Background

Deep cuts

Thoughts Realization Silver-lining

TECHNICAL DETAILS

[B] WHAT IS ZOOKEEPER?

http://bcho.tistory.com/1016

Summary

Background

Deep cuts

Thoughts

Realization
Silver-lining

PATENT RESEARCH

METHOD AND SYSTEM FOR MONITORING PERFORMANCE OF APPLICATIONS IN A DISTRIBUTED ENVIRONMENT

KR 0772999 B1

IBM Assignee

Summary Background

Deep cuts

Thoughts

Realization
Silver-lining

PATENT RESEARCH

APPARATUS AND METHOD FOR MANAGING DATA STREAM DISTRIBUTED PARALLEL PROCESSING SERVICE

KR 2013-0095910 A

ETRI Assignee

Summary
Background
Deep cuts

Thoughts

Realization
Silver-lining

PATENT RESEARCH

APPARATUS AND METHOD FOR ANALYZING BOTTLENECKS IN DATA DISTRIBUTED PROCESSING SYSTEM

KR 2015-0050689 A

SAMSUNG ELECTRONICS SEOUL NATIONAL UNIV.

Assignee

Summary

Background

Deep cuts

Thoughts

Realization
Silver-lining

PATENT RESEARCH

CLUSTER PERFORMANCE MONITORING

US 9043332 B2

Splunk Assignee

Summary
Background
Deep cuts

Thoughts

Realization
Silver-lining

PATENT RESEARCH

CENTRALIZED CONFIGURATION AND MONITORING OF A DISTRIBUTED COMPUTING CLUSTER

US 9172608 B2

Cloudera Assignee

Summary
Background
Deep cuts
Thoughts
Realization
Silver-lining

COMMERCIAL PRODUCT

METRIC ANALYSIS

	Α	В	С	D	E	F	G	н
1	Category		Metrics	Questions	MBean name	Suggested Alert	Chart	
2	Running	1	Kafka Process	Is the right binary daemon process running?		Suggested Alert	맞추어야 하는 조건	
3	System	2	Memory Usage	Kafka should run entirely on RAM. JVM heap size shou	ldn't be bigger than	None	맞추어야 하는 조건	
4		3	Swap Usage	Watch for swap usage, as it will degrade performance of	n Kafka and lead to	When used swap is >	맞추어야 하는 조건	
5		4	Network Bandwidth	Kafka servers can incur a high network usage. Keep an	eye on this, espec	None	그래프	1
6		5	Disk Usage	Make sure you always have free space for new data, te	mporary files, snap	When disk is > 85% u	? 그래프	10
7		6	Disk IO	Kafka partitions are stored asynchronously as a sequen	tial write ahead log	None	? 그래프	10
8		7	UnderReplicatedPartitions	아직 복제가 완료되지 못한 파티션의 개수 Number of under-i	kafka.server:type=	When UnderReplicate	존재하면 알림?	
9		8	OfflinePartitionsCount	리더가 없는 파티션의 개수 Number of partitions without an	kafka.controller:typ	When OfflinePartitions	존재하면 알림?	
10		9	ActiveControllerCount	잘 작동하는 controller 브로커(?)의 개수 Number of active of	kafka.controller:typ	When ActiveControlle	존재하면 알림?	
11	Kafka	10	MessagesInPerSec	초당 들어오는 메세지 수 Incoming messages per second.	kafka.server:type=	None	그래프	2
12		11	BytesInPerSec / BytesOutPerSec	들어오고 나가는 바이트 수 Incoming/outgoing bytes per se	kafka.server:type=	None	그래프	2
13		12	RequestsPerSec	초당 요청 수 Number of requests per second.	kafka.network:type	None	그래프	2
14		13	TotalTimeMs	메세지 하나를 처리하는 데 걸리는 시간 Total time it takes to	kafka.network:type	None	그래프	3
15		14	UncleanLeaderElectionsPerSec	리더가 빠르게 선출되지 않는 선거의 개수 Number of dispute	kafka.controller:typ	When UncleanLeader	존재하면 알림?	
16		15	LogFlushRateAndTimeMs	로그 플러쉬가 일어난 속도/시간 Asynchronous disk log flus	kafka.log:type=Log	None	그래프	4
17		16	PartitionCount	전체 파티션의 개수 Number of partitions on your system.	kafka.server:type=	When PartitionCount !	이상하면 알림?	
18		17	ISR shrink/expansion rate	브로커가 죽어서 복제본의 숫자가 줄거나 늘었을 때 When a b	kafka.server:type=	IsrShrinksPerSec Isr	이상하면 알림?	
19		18	NetworkProcessorAvgldlePercent	네트워크 활동이 없는 시간의 비율 The average fraction of t	kafka.server:type=	When NetworkProces	이상하면 알림?	
20		19	RequestHandlerAvgIdlePercent	리퀘스트가 들어오지 않는 시간의 비율 The average fraction	kafka.server:type=	When RequestHandle	이상하면 알림?	
21		20	Heap Memory Usage	자바에 동적 할당된 메모리 (주키퍼) Memory allocated dyna	mically by the Java	None	그래프 위쓰 쓰레쉬홀드	5
22	Consumer	21	MaxLag	큐에 쌓인 메세지 개수 Number of messages by which the	kafka.consumer:ty	When MaxLag > 50.	그래프 위쓰 쓰레쉬홀드	6
23		22	MinFetchRate	컨슈머가 브로커에게 보내는 요청의 속도의 최소 Minimum rat	kafka.consumer:ty	When MinFetchRate <	그래프 위쓰 쓰레쉬홀드	7
24		23	MessagesPerSec	초당 소비되는 메세지 Messages consumed per second.	kafka.consumer:ty	None	그래프	8
25		24	BytesPerSec	초당 소비되는 바이트 Bytes consumed per second.	kafka.consumer:ty	None	그래프	8
26		25	KafkaCommitsPerSec	컨슈머가 카프카에게 오프셋을 보내는 속도 Rate at which co	kafka.consumer:ty	None	그래프	9
27		26	OwnedPartitionsCount	이 컨슈머가 갖고 있는 파티션 수 Number of partitions owne	kafka.consumer:ty	When OwnedPartition	이상하면 알림?	

Summary
Background
Deep cuts
Thoughts
Realization

Silver-lining

COMMERCIAL PRODUCT

SPM KAFKA - CONSUMER LAG

Summary
Background
Deep cuts
Thoughts
Realization
Silver-lining

COMMERCIAL PRODUCT

NETFLIX EXHIBITOR FOR ZOOKEEPER

log cleanup task

Summary

Background

Deep cuts

Thoughts

Realization

Silver-lining

DIFFERENCES

Summary
Background
Deep cuts
Thoughts
Realization
Silver-lining

OUR DRAWINGS OF FUTURE

Established Programs

Finished product for sale

Difficult to modify or fool freely

Take a long time to supplement new functionality

Hard to come up with creative one

Flamingo

Open source

Easy to be fooled by developers

Developer-driven modules;

can freely build creative tools

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

QUESTION

PHASE #1

What is a monitoring?

PHASE #2

Why do we monitor?

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

TWO NEEDS

To ensure the normal operation of the system

To find out
the cause of
abnormal
behavior

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

TWO USERS

USER #1

Administrator

Engineer

Overview

Users

Problems
Solutions
Novelty
Scenario
Schedule

USERS

USER #1

Administrator

- A. Hope everything stays normal
- B. Determine whether to put more resources or not
- C. Usually maintains a volume of system
- D. Focus on real-time data

USER #2

Engineer

- A. Fix the problem
- B. Find out the cause of the problem by traveling the past data
- C. Deeper understanding on whole system
- D. Focus on specific events

Overview Users

Problems

Solutions
Novelty
Scenario
Schedule

DIFFERENT REQUIREMENTS

USER #1

Administrator

- A. Visualize constantly changing statistics of sys.
- B. At a glance view of metrics
- C. Real-time update without user intervention

USER #2

Engineer

- A. Visualize abrupt events
- B. Can travel back to the past to find the cause of event
- C. Detailed analysis on changing variables during specific timeframe

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

EXTERNAL INTERFACE

FUNC #1

Overview

A. Dashboard

B. Configuration

FUNC #2

Timeline

A. Event Timeline

B. Timemachine

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

FUNC#1 Overview

Heap memory usage

Message Condition

Response time

Minimum Fetch rate

Message Consumed

Max Lag

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

FUNC#1 Overview

Overview
Users
Problems

Solutions

Novelty
Scenario
Schedule

Overview
Users
Problems
Solutions
Novelty

Scenario Schedule

WHAT'S NEW?

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

WHAT'S NEW?

Clear division of monitoring task Further implication to BM

Overview

Users

Problems

Solutions

Novelty

Scenario

Schedule

USER SCENARIO

Progress

Architecture

SPRINT#4

US#1: As a developer, I can easily plug-in MBean for visualization

- Build General MBean Client Factory (Youngjae Chang)
- Find appropriate D3 chart design for charts (Jaryong Lee)
- Study websocket structure (Seunghyo Kang)
- Design Database schema for saving metric history (Youngjae Chang)
- → Define API interface for data communication & update (Jaryong Lee)
- Design websocket communication structure (Seunghyo Kang)

US#2 : As a user, I can monitor Kafka Ecosystem

- → Plug-In Kafka MBeans into Interfaces (Youngjae Chang)
- → Place charts to fit designated Kafka monitoring module (Jaryong Lee)

Progress

Architecture

NEW ARCHITECTURE

Function	Flamingo	Our Stack
Collect	QuartzJob	JMXTrans
Store	MYSQL	Graphite (RRD Database)
Update	Ajax Query	Websocket
Draw	Sencha	D3.js

Progress Architecture

Obstacles

WEB SOCKET

Implanting client function to Sencha

Where should we put web socket function?

D3 charts are dynamically constructed.

How can we pass D3 instance as callback function's arguments?

Sending only deltas v.s. whole data stream

Progress Architecture

Obstacles

VISUALIZATION

Bubble timeline chart is too slow!

The cost of calculating changing shape is too high. Surveying alternative options:

Progress
Architecture
Obstacles

_ VISUALIZATION

Timescale synchronization among timeline and multiple charts

Charts are drawn using nv-d3, we do not have transparent control over charts interactions. We have to implement custom interaction functions

Progress
Architecture
Obstacles

METRIC MONITORING

Topic-specific metrics vs. Node-specific metrics

Kafka can be view as two features: topics and nodes

JMX is basically Node-specific though Kafka 0.9

also provides topic-specific lag information

Researching more on the topic-lag and its visualization

