

Learning with Sparse Latent Structure

Vlad Niculae

Instituto de Telecomunicações

Work with: André Martins, Claire Cardie, Mathieu Blondel

Structured Inference

Structured Inference

Structured Inference

Latent Structured Inference

input

output

positive

neutral

negative

record scratch

freeze frame

 c_1

c₂

• •

CN

$$\frac{\partial \mathbf{y}}{\partial \mathbf{w}} = \hat{\mathbf{y}}$$

Argmax vs. Softmax

 $\frac{\partial \mathbf{p}}{\partial \boldsymbol{\theta}} = \operatorname{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^{\mathsf{T}}$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = 1 \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = 1 \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = 1 \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = 1 \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$$

$$\triangle = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \geq \boldsymbol{0}, \, \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$$

$$\max_{j} \theta_{j} = \max_{p \in \Delta} p^{\top} \theta$$

$$\max_{j} \theta_{j} = \max_{p \in \Delta} p^{\top} \theta$$

$$\max_{j} \theta_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

$$\max_{j} \theta_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

Variational Form of Argmax

$$\max_{j} \theta_{j} = \max_{p \in \Delta} \mathbf{p}^{\top} \boldsymbol{\theta}$$

Fundamental Thm. Lin. Prog. (Dantzig et al, 55)

Variational Form of Argmax

$$\max_{j} \theta_{j} = \max_{p \in \Delta} p^{\top} \theta$$

Fundamental Thm. Lin. Prog. (Dantzig et al, 55)

Variational Form of Argmax

$$\max_{j} \theta_{j} = \max_{p \in \Delta} p^{\top} \theta$$

Fundamental Thm. Lin. Prog. (Dantzig et al, 55)

$$\max_{\Omega}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

$$\max_{\Omega}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

• argmax: $\Omega(\mathbf{p}) = 0$

$$\max_{\Omega}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{j} p_{j} \log p_{j}$

$$\max_{\Omega}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{j} p_{j} \log p_{j}$
- sparsemax: $\Omega(p) = 1/2 ||p||_2^2$

(Martins & Astudillo, 16)

softmax

sparsemax

fusedmax?!

$$\max_{\Omega}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{j} p_{j} \log p_{j}$
- sparsemax: $\Omega(p) = 1/2 ||p||_2^2$

$$\max_{\Omega}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = \sum_{i} p_{i} \log p_{i}$
- sparsemax: $\Omega(p) = 1/2 ||p||_2^2$

fusedmax: $\Omega(\mathbf{p}) = 1/2 ||\mathbf{p}||_2^2 + \sum_j |p_j - p_{j-1}|$ oscarmax: $\Omega(\mathbf{p}) = 1/2 ||\mathbf{p}||_2^2 + \sum_{i,j} \max(p_i, p_j)$

finally

is essentially a (very high-dimensional) argmax

is essentially a (very high-dimensional) argmax

is essentially a (very high-dimensional) argmax

Factorization Into Parts

 $\boldsymbol{\theta} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$

Factorization Into Parts

$$\boldsymbol{\theta} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

	∗→aog	1	U	U		.1
	on→dog	0	1	1		.2
	wheels→dog	0	0	0		1
	∗→on	0	1	1		.3
4 =	dog→on	1	0	0	 η=	.8
	wheels→on	0	0	0		.1
	∗→wheels	0	0	0		3
	dog→wheels	0	1	0		.2
	on→wheels	1	0	1		1

Factorization Into Parts

$$\boldsymbol{\theta} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

∗→dog	1	0	0		.1
on→dog	0	1	1		.2
wheels→dog	0	0	0		1
∗→on	0	1	1		.3
A = dog→on	1	0	0	 η=	.8
wheels→on	0	0	0		.1
 ∗→wheels	0	0	0		3
dog→wheels	0	1	0		.2
on→wheels	1	0	1		−.1

		_			_
	dog-hond	1	0	0	
	dog-op	0	1	1	
	dog-wielen	0	0	0	
	on-hond	0	0	0	
A =	on-op	1	 0	0	
	on-wielen	0	1	1	
wheels-hond		0	1	0	
wheels-op		0	0	0	
wheels—wielen		1	0	1	

			2
	ŀ	-	
=			8
			•
	-	_	3
		_	

• **argmax** arg max $p^T \theta$

• **argmax** $\operatorname{arg\,max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta}$

$$\mathsf{MAP} \underset{\boldsymbol{\mu} \in \mathcal{M}}{\mathsf{arg} \, \mathsf{max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta}$$

argmax $\operatorname{arg\,max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta}$

MAP $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\text{arg max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta}$

e.g. dependency parsing → max. spanning tree matching → the Hungarian algorithm

- **argmax** $\operatorname{arg\,max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta}$
- softmax $\arg \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} + \mathsf{H}(\boldsymbol{p})$

- **argmax** $\operatorname{arg\,max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta}$
- softmax $\arg \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} + \mathsf{H}(\boldsymbol{p})$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta}$$

marginals $\arg \max_{\mu \in \mathcal{M}} \mu^{\top} \eta + \widetilde{H}(\mu)$

- **argmax** $\operatorname{arg\,max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta}$
- softmax $\arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} + H(\boldsymbol{p})$ $\boldsymbol{p} \in \Delta$

MAP $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta}$

marginals $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{marginals}} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{\mathsf{H}}(\boldsymbol{\mu})$

e.g. dependency parsing → the Matrix-Tree theorem matching → #P-complete! (Valiant, 79)

- argmax $\operatorname{arg\,max} p^{\mathsf{T}} \theta$
- softmax $\arg \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} + \mathsf{H}(\boldsymbol{p})$
- sparsemax $\arg \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta} 1/2 ||\boldsymbol{p}||^2$

MAP
$$\arg \max \mu^{\mathsf{T}} \eta$$
 $\mu \in \mathcal{M}$

marginals $\arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \mathbf{\Pi} + \widetilde{H}(\boldsymbol{\mu})$

- **argmax** arg max $p^T \theta$ $p \in \Delta$
- softmax arg max $p^T \theta$ + H(p) $p \in \Delta$

$$p \in \Delta$$

• sparsemax arg max $p^T \theta$ - $1/2 ||p||^2$

 $p \in \Delta$

$$\mathbf{MAP}$$
 arg max $\mathbf{\mu}^{\mathsf{T}} \mathbf{\eta}$
 $\mathbf{\mu} \in \mathcal{M}$

marginals $\arg \max \mu^{\top} \eta + \widetilde{H}(\mu)$ $\mu \in \mathcal{M}$

SparseMAP arg max $\mu^T \eta - 1/2 ||\mu||^2 \bullet$ $\mu \in \mathcal{M}$

SparseMAP Inference Solution

$$\mu^* = \underset{\mu \in \mathcal{M}}{\text{arg max}} \mu^T \eta - \frac{1}{2} \|\mu\|^2$$

$$= \underset{0}{0} = .6 \underset{0}{0} + .4 \underset{0}{0}$$

 $= \mathbf{A} \mathbf{p}^*$ with very sparse $\mathbf{p}^* \in \Delta^N$

$$\mu^* = \operatorname{arg\,max} \mu^{\mathsf{T}} \eta - 1/2 \|\mu\|^2$$

 $\mu \in \mathcal{M}$

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$

$$\mu^* = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\text{arg max}} \mu^{\mathsf{T}} \boldsymbol{\eta} - \frac{1}{2} \|\boldsymbol{\mu}\|^2$$

Greedy Conditional Gradient (Frank-Wolfe) algorithms

ightharpoonup select a new corner of \mathcal{M}

$$\mu^* = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\text{arg max}} \mu^{\mathsf{T}} \boldsymbol{\eta} - 1/2 ||\boldsymbol{\mu}||^2$$

- ightharpoonup select a new corner of \mathcal{M}
- ▶ update the (sparse) coefficients of **p**

$$\mu^* = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\text{arg max}} \mu^{\mathsf{T}} \boldsymbol{\eta} - \frac{1}{2} \|\boldsymbol{\mu}\|^2$$

- ightharpoonup select a new corner of \mathcal{M}
- update the (sparse) coefficients of p
 - ► Update rules: vanilla, away-step, pairwise

$$\mu^* = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\text{arg max}} \mu^{\mathsf{T}} \boldsymbol{\eta} - \frac{1}{2} \|\boldsymbol{\mu}\|^2$$

- \triangleright select a new corner of M
- ▶ update the (sparse) coefficients of p
 - ► Update rules: vanilla, away-step, pairwise
 - Quadratic objective:Active Set (Min-Norm Point)

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$

Greedy Conditional Gradient

(Frank-Wolfe)

Active Set achieves

- - select a new corne finite & linear convergence!
- update the (sparse
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: **Active Set** (Min-Norm Point)

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$

Greedy Conditional Gradient (Frank-Wolfe) algorithms

Backward pass

- \triangleright select a new corner of M
- ▶ update the (sparse) coefficients of **p**
 - ► Update rules: vanilla, away-step, pairwise
 - Quadratic objective:Active Set (Min-Norm Point)

 $\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{n}}$ is sparse

$$\mu^* = \arg \max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$

Greedy Conditional Gradient (Frank-Wolfe) algorithms

- \triangleright select a new corner of \mathcal{M}
- ▶ update the (sparse) coefficients of p
 - ► Update rules: vanilla, away-step, pairwise
 - Quadratic objective:Active Set (Min-Norm Point)

Backward pass

$$\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}$$
 is sparse computing $\left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}\right)^{\mathsf{T}} \boldsymbol{d} \boldsymbol{y}$ takes $O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^{\star}))$

$$\mu^* = \arg\max_{\mu \in \mathcal{M}} \mu^\top \eta - 1/2 \|\mu\|^2$$

Greedy Con (Frank-We

Completely modular: just add MAP pass

- select a new corner of \mathcal{M}
- ▶ update the (sparse) coefficients of p
 - ► Update rules: vanilla, away-step, pairwise
 - Quadratic objective: **Active Set** (Min-Norm Point)

 $\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{n}}$ is sparse

computing $\left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{n}}\right)^{\mathsf{T}} \boldsymbol{d} \boldsymbol{y}$ takes $O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^*))$

Structured Attention & Graphical Models

Structured Attention & Graphical Models

NLI premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

output

entails

contradicts

neutral

(Model: ESIM)

NLI premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

output

(Model: ESIM)

NLI premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

output

(Model: ESIM)

NLI premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

(Proposed model: global matching)

output

entails

contradicts

neutral

the computation graph

Dynamically inferring

(Tai & al, 15)

The bears eat the pretty ones

(Tai & al, 15)

The bears the eat pretty ones

Latent Dependency TreeLSTM

(Niculae, Martins, Cardie, 18)

input x

output

У

Latent Dependency TreeLSTM

(Niculae, Martins, Cardie, 18)

$$p(y|x) = \sum_{h \in \mathcal{H}} p(y \mid h, x) p(h \mid x)$$

input

X

output

y

$$p(y | x) = \sum_{x} p(y | h, x) p(h | x)$$

 $h \in \mathcal{H}$

$$p(y \mid x) = \sum p_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$$

 $h \in \mathcal{H}$

$$p(y \mid x) = \sum_{h \in \mathcal{H}} p_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$$

Exponentially large sum!

idea 1

idea 2

idea 3

idea 2

idea 3

idea 2

idea 3

Structured Latent Variable Models

Structured Latent Variable Models

$$p(y \mid x) = .7 \qquad + .3 \qquad + 0 \rightarrow + ...$$

$$p(y \mid x) = .7 p_{\phi}(y \mid x) + .3 p_{\phi}(y \mid x)$$

$$p(y \mid x) = .7$$
 $p_{\phi}(y \mid x) + .3$ $p_{\phi}(y \mid x) + .3$

• is not a tree itself:
$$p(y \mid x) \neq p_{\phi}(y \mid \bullet)!$$

85%			
84%			
83%			
82%			
81%			
80 %		 	

Left-to-right: regular LSTM

Flat: bag-of-words-like

CoreNLP: off-line parser

80%			
000/			
81%			
82%			
83%			
84%			
85%			

Flat

CoreNLP

Latent

Sentiment classification (SST)

					,	
accuracy (binary)	85%					
	84%					
	83%					
	82%					
	81%					
	80%	LTF	 Flat	CoreNLP	Latent	

Sentiment classification (SST)

Natural Language Inference (SNLI)

Sentence pair classification
$$(P, H)$$

$$p(y \mid P, H) = \sum_{h_P \in \mathcal{H}(P)} \sum_{h_H \in \mathcal{H}(H)} p_{\phi}(y \mid h_P, h_H) p_{\pi}(h_P \mid P) p_{\pi}(h_H \mid H)$$

Reverse dictionary lookup

given word description, predict word embedding (Hill et al, 17) instead of $p(y \mid x)$, we model $\mathbb{E}_{p_{\pi}} \mathbf{g}(x) = \sum_{h \in \mathcal{H}} \mathbf{g}(x; h) p_{\pi}(h \mid x)$

Syntax vs. Composition Order

Syntax vs. Composition Order

Syntax vs. Composition Order

Conclusions

Differentiable & sparse structured inference

Generic, extensible algorithms

Interpretable structured attention

Dynamically-inferred computation graphs

Catch us at EMNI P:

BlackboxNLP, Thursday 11:00 & EMNLP, Friday 15:36 (3B)

Extra slides

Some icons by Dave Gandy and Freepik via flaticon.com.

police certies stingliosely

Structured Output Prediction

$$L_{A}(\boldsymbol{\eta}, \bar{\boldsymbol{\mu}}) = \max_{\boldsymbol{\mu} \in \mathcal{M}} \{ \boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{\mu} - 1/2 || \boldsymbol{\mu} ||^{2} \} - \boldsymbol{\eta}^{\mathsf{T}} \bar{\boldsymbol{\mu}} + 1/2 || \bar{\boldsymbol{\mu}} ||^{2}$$

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. [Blondel, Martins, Niculae '18]

Structured Output Prediction

SparseMAP
$$L_{\mathbf{A}}(\boldsymbol{\eta}, \bar{\boldsymbol{\mu}}) = \max_{\boldsymbol{\mu} \in \mathcal{M}} \{ \boldsymbol{\eta}^{\top} \boldsymbol{\mu} - 1/2 \|\boldsymbol{\mu}\|^2 \}$$
$$- \boldsymbol{\eta}^{\top} \bar{\boldsymbol{\mu}} + 1/2 \|\bar{\boldsymbol{\mu}}\|^2$$
$$\text{cost-SparseMAP} \quad L_{\mathbf{A}}^{\rho}(\boldsymbol{\eta}, \bar{\boldsymbol{\mu}}) = \max_{\boldsymbol{\mu} \in \mathcal{M}} \{ \boldsymbol{\eta}^{\top} \boldsymbol{\mu} - 1/2 \|\boldsymbol{\mu}\|^2 + \rho(\boldsymbol{\mu}, \bar{\boldsymbol{\mu}}) \}$$
$$- \boldsymbol{\eta}^{\top} \bar{\boldsymbol{\mu}} + 1/2 \|\bar{\boldsymbol{\mu}}\|^2$$

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. [Blondel, Martins, Niculae '18]

Unlabeled Accuracy (UAS)
Universal Dependencies dataset

Sparse Structured Output Prediction

As models train, inference gets sparser!

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

