数学分析习题课讲义 —分析十段天元手筋

张毅

by Dr. Yi Zhang
Institute of Mathematical Sciences
Fudan University
Shanghai 200433
P.R.China
zhangyi_ math@fudan.edu.cn

Lecture given at Fudan University, 2006. http://homepage.fudan.edu.cn/~yizhang/teaching/analysis-exercise.pdf

The author holds the copyright of this lecture notes. Any person(s) intending to copy a part or whole of the materials in the notes in a proposed publication must seek copyright release from the author.

Dedicate to Katie

创造的神秘, 有如夜间的黑暗, 是伟大的。

而知识的幻影, 不过如晨间之雾。

Contents

References					
1. Problems on Sets, Sequences and Limits	1				
1.1. Elementary Technique	1				
1.2. Applications of the Stolz theorem	11				
2. Inequality	14				
3. Orders Estimate of Infinitesimal	20				
3.1. Notations and Examples	20				
3.2. Exercises and homework	23				
4. Application of Infinitesimal: Wallis Formula and Stirling Formula	27				
5. Topic on the Gamma functions	30				
5.1. Γ functions	30				
5.2. Exercises	34				
6. Working Technique in function theory	36				
6.1. Iteration technique	36				
6.2. Exercises and Homework	39				
7. Applications of Differential	41				
8. Treasures in Calculus	42				
8.1. Euler's identification $\zeta(2) = 1 + \frac{1}{2^2} \cdots + \frac{1}{n^2} + \cdots \equiv \frac{\pi^2}{6}$	42				
8.2. Irrationality of π , $\log 2$, $\zeta(2)$, $\zeta(3)$.	43				
8.3. The properties of Tchebychev's functions	46				
8.4. Mertens' Theorem and Selberg's Inequality	53				
8.5. An Elementary Proof of The Prime Number Theorem by Selberg and Erdös	58				
8.6. Gauss's Proof of The Fundamental Theorem of Algebra	59				
9. Advanced Techniques in Analysis	60				
9.1. Preliminary Results in Analysis	60				
9.2. Scaling Technique and Schauder Estimate	72				
9.3. Campanato's characterization of L^2 functions to be Hölder continuous	79				
10. Advanced Topics in Analysis	82				
10.1. Topic on Riemann Zeta Function(To be Continuous)	82				
10.2. Elementary on Nevanlinna Theory(To be Continuous)	83				
10.3. Elementary on p-adic Series (To be Continuous)	84				

References

[F]	Γ.M. 菲赫兹	金哥尔茨: 往	微积分学	学教程,	VOL I	., II.	, III.	Higher	Education	Press.
-----	----------	---------	------	------	-------	--------	--------	--------	-----------	--------

[H] G.H. Hardy: A Course of Pure Mathematics (Tenth Edition) Combridge University Press 2002 [HUA] 华罗庚: 数论导引, 科学出版社1979.

J.Jost: Partial Differential Equations (GTM 214), Spinger 2002.

Problems Selection in The William Lowell Putnam Mathematical Competitions. [P]

[P-Y] 潘承洞, 于秀源: 阶的估计.

曾子曰: 大学之道,在明明德, 在亲民,在此于至善。 知止而后定,定而后能静, 静而后能安,安而后能虑, 静而后能安,安而后能虑, 想而后能存。 水有后能得。 物有本末,事有始终, 知所先后,则近道矣。

1. Problems on Sets, Sequences and Limits

1.1. Elementary Technique.

Exercise 1.1. Show that the set of all irrational number of \mathbb{R} is uncountable.

Proof. Sufficient to show that the set of all irrational number in [0,1] is uncountable. Otherwise, the set of real numbers in [0,1] is countable, ie.,

$$[0,1] = \{x_1, x_2, \cdots\}.$$

Cover each x_i , $i = 1, \cdots$ with the corresponding interval

$$I_i := [x_i - \frac{1}{2}(\frac{1}{3})^i, x_i + \frac{1}{2}(\frac{1}{3})^i],$$

Then, there holds

$$[0,1] = \{x_1, x_2, \dots\} \subset \bigcup_{i=1}^{\infty} I_i,$$

and so

$$1 = l([0,1]) \le \sum_{i=1}^{\infty} l(I_i) = \sum_{i=1}^{\infty} l([x_i - \frac{1}{2}(\frac{1}{3})^i, x_i + \frac{1}{2}(\frac{1}{3})^i]) = \sum_{i=1}^{\infty} (\frac{1}{3})^i = \frac{1}{2}.$$

It is a contradiction.

Example 1.2. Let $\alpha, \beta \in \mathbb{R}_+ \setminus \mathbb{Q}$ and $1/\alpha + 1/\beta = 1$. Let

$$A = \{ [n\alpha] : n \in \mathbb{N} \}, \ B = \{ [n\beta] : n \in \mathbb{N} \}$$

be two strictly increasing sequences of positive integers.

Show that

$$A \bigcup B = \mathbb{N}; \quad A \bigcap B = \emptyset.$$

Proof. We have $\alpha > 1, \beta > 1$. W.L.O.G., we assume $\alpha < 2$. Then $1 \in A \cup B$.

1. If $a \cap B \neq \emptyset$, then there exist two integers m, n such that

$$[m\alpha] = [n\beta] = q \in \mathbb{N}.$$

Hence there holds that q < m + n < q + 1. A contradiction.

2. If there is a positive integer $p \in A \cup B$, then there exist two integers m, n such that

$$[m\alpha]$$

Therefore

$$m\alpha , and $n\beta .$$$

Since $1/\alpha + 1/\beta = 1$, we have

$$m + n$$

A contradiction.

Example 1.3. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a bounded function. Assume for any integers m, n there is a relation:

$$f(m+n) + f(m-n) = 2f(m)f(n).$$

To show all such function f.

Hint. a) $f(0) \in \{0, 1\}$, and $f(0) = 0 \Rightarrow f \equiv 0$.

b) Now, we assume f(0) = 1. Then, $f(-n) = f(n) \forall n \in \mathbb{Z}$, and $f(2m) = 2f(m)^2 - 1, \forall m \in \mathbb{Z}$. If there is an integer k such that |f(k)| > 1, then

$$|f(2k)| = |2f(k)^2 - 1| = (f(k)^2 - 1) + f(k)^2 > |f(k)| > 1,$$

and so we have an increasing sequence of integer

$$|f(k)| < |f(2k)| < |f(4k)| < \cdots < |f(2^{l}k)| < \cdots$$

But it contradict that f is a bounded function with all values in \mathbb{Z} . Therefore

$$f(\mathbb{Z}) \subset \{-1, 0, 1\}.$$

c) Let $f(1) = \cos \theta$ with $\theta \in \{\pi, \frac{\pi}{2}, 0\}$. We can show that

$$f(n) = \cos(n\theta), \forall n \in \mathbb{Z}$$

by induction and the formula

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta).$$

Example 1.4. Define the function $G : \mathbb{N} \cup \{0\} \to \mathbb{Z}$ by

$$\left\{ \begin{array}{ll} G(0)=0 & ; \\ G(n)=n-G(G(n-1)), & n\in\mathbb{N}. \end{array} \right.$$

To show that

$$G(n) = [\frac{\sqrt{5} - 1}{2}(n+1)].$$

Proof. 1. Actually, we have

$$1 \le G(n) \le n$$
 and $G(n-1) \le G(n) \, \forall n \ge 1$.

At first G(1) = 1, G(2) = 1. By induction, we assume

$$1 < G(k) < k \text{ and } G(k-1) < G(k) \forall 1 < k < n-1.$$

Then, we have

$$1 \le G(n-1) \le n-1$$
, and so $G(G(n-1)) \le G(n-1) \le n-1$,

$$1 = n - (n - 1) < G(n) = n - G(G(n)) < n - 1 < n,$$

$$G(n) - G(n-1) = 1 - [G(G(n-1)) - G(G(n-2))] \ge 0 \text{ since } 1 \le G(n-2) \le G(n-1) \le n-1.$$

2. By induction, we can show

$$G(n+1) - G(n) = 1$$
 or $0 \forall n$.

3. Define $F(n) = [\alpha(n+1)]$ where $\alpha = \frac{\sqrt{5}-1}{2}$. Define

$$S(n) = F(n) + F(F(n-1)).$$

We are going to show that S(n) = n, and so F(n) = G(n).

Let $K = [n\alpha]$, and so $n\alpha = K + \theta$ with $0 < \theta < 1$. Then

$$F(n) = [(n+1)\alpha] = [K + \alpha + \theta] = K + [\alpha + \theta], \ F(F(n-1)) = F([n\alpha]) = [(K+1)\alpha].$$

Since $\alpha^2 = 1 - \alpha$, we have

$$(K+1)\alpha = \alpha + (n\alpha - \theta)\alpha = \alpha(1-\theta) + n\alpha^{2} = \alpha(1-\theta) + n - K - \theta,$$

$$S(n) = F(n) + F(F(n-1)) = n + [\theta + \alpha] + [\alpha(1-\theta) - \theta].$$

Let $T = \alpha(1 - \theta) - \theta$. Then

$$-1 < -\theta < T < \alpha < 1, \text{ and so } [T] = \left\{ \begin{array}{ll} 0, & T > 0; \\ -1, & T < 0. \end{array} \right.$$

On the other hand, we have

$$T = \alpha - \theta(1 - \theta) = (1 + \alpha)\left(\frac{\alpha}{1 + \alpha} - \theta\right) = (1 + \alpha)(\alpha^2 - \theta) = (1 + \alpha)(1 - (\alpha + \theta)),$$

and so

$$[T] = \begin{cases} 0, & [\alpha + \theta] = 0; \\ -1, & [\alpha + \theta] = 1. \end{cases}$$

Therefore,

$$[\alpha + \theta] + [T] = 0$$
, i.e., $S(n) = n$.

Example 1.5. Let $\{a_n\}$ is strictly increasing sequence of positive integers, i.e., $a_{n+1} > a_n$, and $\forall a_n \in \mathbb{N}$. Define

 $b_n = [a_1, a_2, \cdots, a_n]$ the least common multiple of $a_1, \cdots a_n$.

To show that

$$\sum_{n=1}^{\infty} \frac{1}{b_n} < \infty.$$

Proof. Let

$$d(n) = \#\{p : p \in \mathbb{N} \ p|n\}.$$

Then $d(n) < 2\sqrt{n}$, and so we have

$$n \le d(b_n) < 2\sqrt{b_n}.$$

By the previous exercise, we obtain the result.

Example 1.6. To show

$$\lim_{n \to \infty} \sum_{k=1}^{n} (\sqrt[3]{1 + \frac{k}{n^2}} - 1) = \frac{1}{6}.$$

Proof. Let

$$\alpha_k = \sqrt[3]{1 + \frac{k}{n^2}} - 1.$$

Then $0 < \alpha_k < 1$ and $\alpha_k < \frac{k}{3n^2}$ by

$$1 + \frac{k}{n^2} = (1 + \alpha_k)^3 > 1 + 3\alpha_k.$$

ON the other hand,

$$1 + \frac{k}{n^2} = (1 + \alpha_k)^3 = 1 + 3\alpha_k^2 + 3\alpha_k + \alpha_k^3 \le 1 + 4\alpha_k^2 + 3\alpha_k \le 1 + 4(\frac{k}{3n^2})^2 + 3\alpha_k,$$

and so

$$\sum_{k=1}^{n} \frac{k}{3n^2} \ge \sum_{k=1}^{n} \alpha_k \ge \sum_{k=1}^{n} \frac{-4k^2}{27n^4} + \frac{k}{3n^2}.$$

4

Since

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{6} \text{ and } \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6},$$

we have

$$\lim_{n \to \infty} (\frac{n(n+1)}{6n^2} - \frac{2n(n+1)(2n+1)}{3 \times 27n^4}) \ge \lim_{n \to \infty} \sum_{k=1}^n \alpha_k \ge \lim_{n \to \infty} \frac{n(n+1)}{6n^2}.$$

Remark. Let

$$g(x) = \sum_{i=1}^{n} i(1+x)^{i}.$$

Then,

$$g(x) - (1+x)g(x) = \sum_{i=1}^{n} (1+x)^{i} - n(1+x)^{n+1},$$

and so

$$g(x) = \frac{(1+x) - (1+x)^{n+1}}{x^2} + \frac{n(1+x)^{n+1}}{3x}.$$

Comparing the coefficient of the term x of the polynomial g(x), we have:

$$\sum_{i=1}^{n} i^2 = -C_{n+1}^3 + nC_{n+1}^2 = \frac{n(n+1)(2n+1)}{6}.$$

Example 1.7. Let $\{a_n\}, \{b_n\}$ be two sequence satisfying

(1)

$$(a_n + b_n)b_n \neq 0, \ n = 1, 2, \cdots,$$

(2)

$$\left|\sum_{n=1}^{\infty} \frac{a_n}{b_n}\right| = A < \infty, \ \sum_{n=1}^{\infty} \left(\frac{a_n}{b_n}\right)^2 = B < \infty.$$

Then the sum

$$\sum_{n=1}^{\infty} \frac{a_n}{a_n + b_n} < \infty$$

is convergent.

Proof. By the condition (2), for any $\varepsilon \in \mathbb{R}$ with $0 < \varepsilon < \frac{1}{2}$, there exist an integer N > 0, for any $n, l \geq N$, we have

$$\left|\frac{a_n}{b_n}\right| \le \varepsilon$$
, $\left|\sum_{i=l}^{\infty} \frac{a_i}{b_i}\right| < \varepsilon$, and $\sum_{i=l}^{\infty} (\frac{a_i}{b_i})^2 < \varepsilon$.

and so

$$(1.7.1) \frac{a_n}{a_n + b_n} = \frac{\frac{a_n}{b_n}}{1 + \frac{a_n}{b_n}} = \frac{\frac{a_n}{b_n} (1 - \frac{a_n}{b_n})}{1 - (\frac{a_n}{b_n})^2} = (\frac{a_n}{b_n} - (\frac{a_n}{b_n})^2)(1 + \sum_{k=1}^{\infty} (\frac{a_n}{b_n})^{2k}), \ n \ge N$$

(1.7.2)
$$\delta_n = \sum_{k=1}^{\infty} \left(\frac{a_n}{b_n}\right)^{2k} = \frac{\left(\frac{a_n}{b_n}\right)^2}{1 - \left(\frac{a_n}{b_n}\right)^2} \le 2\left(\frac{a_n}{b_n}\right)^2 \le 2\varepsilon^2 \ (n \ge N),$$

alysis 5

On the other hand, for $l \geq N$ we have

$$|\sum_{n=l}^{\infty} \frac{a_n}{a_n + b_n}| = |\sum_{n=l}^{\infty} \{ (\frac{a_n}{b_n} - (\frac{a_n}{b_n})^2)(1 + \sum_{k=1}^{\infty} (\frac{a_n}{b_n})^{2k}) \} | \le 2\varepsilon + |\sum_{n=l}^{\infty} \{ (\frac{a_n}{b_n} - (\frac{a_n}{b_n})^2) \sum_{k=1}^{\infty} (\frac{a_n}{b_n})^{2k} \} |.$$

But by 1.7.2 and 1.7.3 we have the following

$$|\sum_{n=N}^{\infty} \{ (\frac{a_n}{b_n} - (\frac{a_n}{b_n})^2) \sum_{k=1}^{\infty} (\frac{a_n}{b_n})^{2k} \} | \le |\sum_{n=l}^{\infty} \frac{a_n}{b_n} \delta_n| + |\sum_{n=l}^{\infty} (\frac{a_n}{b_n})^2 \delta_n| \le \sum_{n=l}^{\infty} \frac{|\frac{a_n}{b_n}|^3}{1 - (\frac{a_n}{b_n})^2} + 2\varepsilon^3.$$

$$\sum_{n=l}^{\infty} \frac{|\frac{a_n}{b_n}|^3}{1 - (\frac{a_n}{b_n})^2} \le 2\sum_{n=l}^{\infty} |\frac{a_n}{b_n}|^3 \le 2\varepsilon.$$

At all, we obtain

$$\left|\sum_{n=l}^{\infty} \frac{a_n}{a_n + b_n}\right| < 6\varepsilon, \ l \ge N,$$

and so by Cauchy principal, it is convergent.

Another clever proof by a student. It is sufficient to consider the convergence of

$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_n + b_n} - \frac{a_n}{b_n}\right).$$

We have

$$\sum_{n=1}^{\infty} \left(\frac{a_n}{b_n} - \frac{a_n}{a_n + b_n}\right) = \sum_{n=1}^{\infty} \frac{a_n^2}{(a_n + b_n)b_n} = \sum_{n=1}^{\infty} \left(\frac{a_n}{b_n}\right)^2 \frac{b_n}{a_n + b_n}.$$

Since

$$\left| \frac{a_n}{b_n} \right| \le \frac{1}{2}, \quad (n >> 0),$$

and $b_n \neq 0$, $\forall n \in \mathbb{N}$, we have

$$0 < \frac{b_n}{a_n + b_n} = \frac{1}{1 + \frac{a_n}{b_n}} \le 2, \quad (n >> 0),$$

and so $\frac{b_n}{a_n+b_n}$ has a positive upper bounded uniformly for $\forall n \in \mathbb{N}$. Therefore the sum

$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_n + b_n} - \frac{a_n}{b_n} \right)$$

is convergent.

Example 1.8. Let $\{a_n\}$ be a sequence satisfying

$$a_{n+1}(2-a_n) = 1 \ \forall n \in \mathbb{N}.$$

To shown that

$$\lim_{n\to\infty}a_n$$

exists, and

$$\lim_{n \to \infty} a_n = 1.$$

Hint. Let $b_n = 1 - a_n, n = 1, 2 \cdots$. We have a new sequence $\{b_n\}$ with the relation

$$(1+b_n)(1-b_{n+1})=1$$
, i.e., $b_{n+1}=\frac{b_n}{1+b_n}$.

We find $b_n = 0 \iff b_{n+1} = 0$. If one $b_m = 0$ then $b_n = 0, \forall n \ge m$ and $\lim_{n \to \infty} a_n = 1$. No we assume $b_n \ne 0, n = 1, 2, \cdots$. Then we have

$$\frac{1}{b_{n+1}} - \frac{1}{b_{n+1}} = 1,$$

and so

$$\frac{1}{b_{n+1}} = n + \frac{1}{b_1}$$
, i.e., $b_{n+1} = \frac{b_1}{nb_1 + 1} \to 0 \ (n \to \infty)$.

Example 1.9. Let $\{a_n\}$ be a sequence satisfying

(1)

$$\sum_{n=1}^{\infty} a_n = 1;$$

(2) for all $n \in \mathbb{N}$,

$$0 < a_n \le \sum_{k=n+1}^{\infty} a_k.$$

Then, for any $x \in (0,1)$, there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that

$$\sum_{k=1}^{\infty} a_{n_k} = x.$$

Proof. Define the $n_1, n_2 \cdots$ by induction.

1. Let

$$n_1 = \min\{n \mid a_n < x\}.$$

It is well-defined since by the condition (1) $\lim_{n\to\infty} a_n = 0$. Then by the condition (2) we have

$$0 < a_{n_1 - 1} \le \sum_{k = n_1}^{\infty} a_k,$$

and so

$$\sum_{k=n_1}^{\infty} a_k \ge x.$$

2. If

$$\sum_{k=n}^{\infty} a_k > x$$

then we define

$$n_2 = \min\{n > n_1 \mid a_{n_1} + a_n < x.\}.$$

We must show that

$$a_{n_1} + \sum_{k=n_2}^{\infty} a_k \ge x.$$

7

Otherwise, we have $n_2 > n_1 + 1$ since by step 1, and then by the condition (2) we have

$$a_{n_1} + a_{n_2 - 1} \le a_{n_1} + \sum_{k = n_2}^{\infty} a_k < x.$$

A contradiction to the definition of n_2 .

3. If

$$a_{n_1} + \sum_{k=n_2}^{\infty} a_k > x$$

then we define

$$n_3 = \min\{n > n_1 \mid a_{n_1} + a_{n_2} + a_n < x.\}.$$

and we have

$$a_{n_1} + a_{n_2} + \sum_{k=n_2}^{\infty} a_k \ge x.$$

4. By induction, assume we have n_1, n_2, \dots, n_k with

(1.9.1)
$$\sum_{j=1}^{k-1} a_{n_j} + \sum_{i=n_k}^{\infty} a_i \ge x.$$

If

$$\sum_{i=1}^{k-1} a_{n_j} + \sum_{i=n_k}^{\infty} a_i = x,$$

then the proof will be finished. Otherwise, we define

$$n_{k+1} = \min\{n > n_k \mid \sum_{i=1}^k a_{n_i} + a_n < x\}.$$

Only necessarily to show that

(1.9.2)
$$\sum_{j=1}^{k} a_{n_j} + \sum_{i=n_{k+1}}^{\infty} \ge x.$$

If 1.9.2 is false, then $n_{k+1} > n_k + 1$ since 1.9.1. By the condition (2) there must hold

$$a_{n_1} + a_{n_2} + \dots + a_{n_k} + a_{n_{k+1}-1} \le \sum_{j=1}^k a_{n_j} + \sum_{k=n_{k+1}}^\infty a_k < x.$$

It is a contradiction to the definition of n_{k+1} .

Example 1.10. 1. Let $f(x) = \sqrt{x^2 + c}$. Compute the iteration

$$f^{(n)}(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}.$$

Solute.Let

$$\phi(x) = x^2, g(x) = x + c.$$

Then we have:

$$f = \phi^{-1} \circ g \circ \phi \text{ and } f^{(n)}(x) = \phi^{-1} \circ g^{(n)} \circ \phi,$$

where ϕ^{-1} is the inverse function of ϕ .

$$g^{(n)}(x) = x + nc$$
, and so $f^{(n)}(x) = \sqrt{x^2 + nc}$.

2. Let

$$f(x) = \frac{x}{\sqrt[3]{x^3 + c}}.$$

Compute the iteration

$$f^{(n)}(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}.$$

Solute.Let

$$\phi(x) = x^3, g(x) = \frac{x}{x+c}.$$

Then we have:

$$f = \phi^{-1} \circ g \circ \phi \text{ and } f^{(n)}(x) = \phi^{-1} \circ g^{(n)} \circ \phi,$$

where ϕ^{-1} is the inverse function of ϕ . By induction, we have:

$$g^{(n)}(x) = \frac{x}{(\sum_{i=0}^{n-1} c^i)x + c^n}.$$

Then,

$$f^{(n)}(x) = \frac{x}{\sqrt[3]{(\sum_{i=0}^{n-1} c^i)x^3 + c^n}}$$

Exercise 1.11. a) Let

$$f(x) = x^3 + 6x^2 + 12x + 6.$$

Compute the iteration

$$f^{(n)}(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}.$$

b) Let

$$f(x) = \frac{x+4}{2x-1}.$$

Compute the iteration

$$f^{(n)}(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}.$$

c) Let

$$f(x) = \frac{2x}{1 - x^2}.$$

Compute the iteration

$$f^{(n)}(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}.$$

Exercise 1.12. The sequence $\{a_0, a_1 \cdots, a_n\}$ is defined by

$$a_0 = \frac{1}{2}, a_k = a_{k-1} + \frac{1}{n}a_{k-1}^2.$$

To show that

$$1 - \frac{1}{n} < a_n < 1.$$

Hint. By induction to show for any $1 \le k \le n$, we have

$$\frac{n+1}{2n-k+2} < a_k < \frac{n}{2n-k},$$

and let k = n, we get

$$\frac{n+1}{n+2} < a_n < 1.$$

Exercise 1.13. Let $a-1, a_2, \cdots, a_n$ be a sequence of different positive integers. To show that

$$\sum_{k=1}^{n} \frac{a_k}{k^2} \ge \sum_{k=1}^{n} \frac{1}{k}.$$

Hint. Let $S_k = a_1 + \cdots + a_k$. Then

$$S_k \ge \sum_{i=1}^k i \ge \frac{k(k+1)}{2},$$

and we have:

$$\sum_{k=1}^{n} \frac{a_k}{k^2} = \sum_{k=1}^{n} S_k \left[\frac{1}{k^2} - \frac{1}{(k+1)^2} \right] + \frac{S_n}{n^2} \ge \sum_{k=1}^{n} \frac{k(k+1)}{2} \left[\frac{1}{k^2} - \frac{1}{(k+1)^2} \right] + \frac{n+1}{2n}.$$

Exercise 1.14. Let $a_1 \geq a_2 \geq \cdots, \geq a_n$ and $b_1 \geq b_2 \geq \cdots, \geq b_n$. To show

$$(\sum_{k=1}^{n} a_k)(\sum_{k=1}^{n} b_k) \le n \sum_{k=1}^{n} a_k b_k.$$

Proof. Let

$$D_{\nu} = \nu \sum_{k=1}^{\nu} a_k b_k - (\sum_{k=1}^{\nu} a_k) (\sum_{k=1}^{\nu} b_k).$$

We have $D_1 = 0$ and

$$D_{\nu+1} - D_{\nu} = \sum_{k=1}^{\nu} (a_k - a_{k+1})(b_k - b_{k+1}) \ge 0.$$

Exercise 1.15. 1. To show that

$$\log(n+1) < \sum_{k=1}^{n} \frac{1}{k} < \log n + 1.$$

2. Consider

$$\zeta_N(\alpha) = \sum_{k=1}^N \frac{1}{k^{\alpha}}, \ \alpha \in \mathbb{R}.$$

To show that

$$\lim_{N\to\infty}\zeta_N(\alpha)<\infty,\alpha\in(1,\infty);$$

and

$$\lim_{N \to \infty} \zeta_N(\alpha) = \infty, \alpha \in (0, 1).$$

Exercise 1.16. Show the sum

$$S = C_n^2 x + C_n^5 x^2 + C_n^8 x^3 + \dots + C_n^{n-1} x^{\frac{n}{3}},$$

where n is a positive integer with 3|n.

Hint. Let ω be the primitive root of $y^3 = 1$, i.e., $\omega^2 + \omega + 1 = 0$. Then, we have

$$\omega^{2(k+1)} + \omega^{k+1} + 1 = \begin{cases} 3, & 3|k+1; \\ 0, & \text{others.} \end{cases}$$

Let $a \in {\sqrt[3]{x}, \omega \sqrt[3]{x}, \omega^2 \sqrt[3]{x}}$. Consider the equality

$$a(1+a)^n = \sum_{k=0}^n C_n^k a^{k+1},$$

Let a goes through the three values in the set $a \in \{\sqrt[3]{x}, \omega\sqrt[3]{x}, \omega^2\sqrt[3]{x}\}$, we then sum the three equalities and get

$$S = \frac{\sqrt[3]{x} \sum_{i=0}^{2} \omega^{i} (1 + \sqrt[3]{x} \omega^{i})^{n}}{3}.$$

Exercise 1.17. Let the sequence $\{x_n\}$ satisfy the following condition:

$$\begin{cases} x_1 = 815, & ; \\ x_{n+1} = x^2 - 2, & n \in \mathbb{N}. \end{cases}$$

Show the limit

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_1x_2\cdots x_n}.$$

Hint. We have

$$x_{n+1}^2 - 4 = (x_1^2 - 4)(x_1 \cdots x_n)^2$$

and $x_n > 2^n$ for all $n \in \mathbb{N}$.

Exercise 1.18. If the following is true for all $n \in \mathbb{N}$,

$$[Bn] = [A[An]] + 1,$$

show that

$$B = A^2$$
.

Hint.

$$\lim_{n \to \infty} \frac{[\alpha n]}{n} = \alpha.$$

1.2. Applications of the Stolz theorem.

Theorem (Stolz theorem). Let $\{y_n\}$ is strictly increasing sequence, i.e., $y_{n+1} > y_n$, and $y_n \to \infty$. If

$$\lim_{n \to \infty} \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a, \ a \in [-\infty, +\infty],$$

Then

$$\lim_{n \to \infty} \frac{x_n}{y_n} = a.$$

Example 1.19. Let $\{a_n\}, \{b_n\}$ be two sequences satisfying that

$$b_{n+1} = a_n + 918a_{n+1} \ \forall n \in \mathbb{N}.$$

Then, we have:

$$\lim_{n \to \infty} b_n \text{ exists} \iff \lim_{n \to \infty} a_n \text{ exists.}$$

Proof. We only prove the " \Rightarrow " part. Let $b = \lim_{n \to \infty} b_n$. We define two new sequences

$$\alpha_n = \frac{b}{919} - a_n, \beta_n = \frac{b - b_n}{918}, \ n = 1, 2, \cdots.$$

Let $\lambda = -\frac{1}{918}$ then the sequences $\{\alpha_n\}, \{\beta_n\}$ satisfy

$$\beta_{n+1} + \lambda \alpha_n = \alpha_{n+1}$$
.

By induction, we have

$$\alpha_{n+1} = \sum_{i=1}^{n+1} \beta_i \lambda^{n+1-i} + \lambda^{n+1} \alpha_0 = \frac{\sum_{i=1}^{n+1} \beta_i (\frac{1}{\lambda})^i + \alpha_0}{(\frac{1}{\lambda})^{n+1}},$$

and so

$$|\alpha_{n+1}| \le \frac{\sum_{i=1}^{n+1} |\beta_i| |\frac{1}{\lambda}|^i + |\alpha_1|}{|\frac{1}{\lambda}|^{n+1}}.$$

By the Stolz theorem, we have

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n+1} |\beta_i| |\frac{1}{\lambda}|^i + |\alpha_1|}{|\frac{1}{\lambda}|^n} = \lim_{n \to \infty} \frac{|\beta_{n+1}| |\frac{1}{\lambda}|^{n+1}}{|\frac{1}{\lambda}|^n (|\frac{1}{\lambda}| - 1)} = 0.$$

1.20. Exercises.

1. Let $p_1, p_2, \dots, p_n, \dots$ be positive numbers. If

$$\lim_{n\to\infty} p_n = p \in (0,\infty),$$

then

$$\lim_{n\to\infty}\sqrt[n]{p_1p_2\cdots p_n}=p.$$

2. Let $a_0, a_1, a_2, \dots, a_n, \dots$ be positive numbers. If

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = p < \infty,$$

then

$$\lim_{n \to \infty} \sqrt[n]{a_n} = p.$$

3. To show for any $k \in \mathbb{N}$

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n i^k}{n^{k+1}}=\frac{1}{k+1}.$$

*Proof.*By Stolz theorem, we compute

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n+1} i^k - \sum_{i=1}^n i^k}{(n+1)^{k+1} - n^{k+1}} = \lim_{n \to \infty} \frac{(n+1)^k}{(n+1)^{k+1} - n^{k+1}} = \lim_{n \to \infty} \frac{\frac{(n+1)^k}{n^k}}{\frac{(n+1)^{k+1} - n^{k+1}}{n^k}}.$$

On the other hand,

$$\frac{(n+1)^k}{n^k} = 1 + O(\frac{1}{n}),$$
$$\frac{(n+1)^{k+1} - n^{k+1}}{n^k} = k + 1 + O(\frac{1}{n}).$$

4. To show for any $k \in \mathbb{N}$

$$\lim_{n \to \infty} n(\frac{\sum_{i=1}^{n} i^k}{n^{k+1}} - \frac{1}{k+1}) = \frac{1}{2}.$$

Proof.

$$n\left(\frac{\sum_{i=1}^{n} i^{k}}{n^{k+1}} - \frac{1}{k+1}\right) = \frac{1}{2} = \frac{(k+1)\left(\sum_{i=1}^{n} i^{k}\right) - n^{k+1}}{(k+1)n^{k}}.$$

By Stolz theorem, it is sufficient to compute that

$$\lim_{n \to \infty} \frac{(k+1)(n+1)^k - (n+1)^{k+1} + n^{k+1}}{(k+1)((n+1)^k - n^k)}$$

On the other hand

$$(k+1)(n+1)^k - (n+1)^{k+1} + n^{k+1} = (k+1)\sum_{i=0}^k C_k^i n^i - \sum_{i=0}^k C_{k+1}^i n^i = \sum_{i=0}^{k-1} ((k+1)C_k^i - C_{k+1}^i)n^i$$

So

$$\frac{(k+1)(n+1)^k - (n+1)^{k+1} + n^{k+1}}{(k+1)((n+1)^k - n^k)} = \frac{\frac{1}{2}k(k+1) + O(\frac{1}{n})}{k(k+1) + O(\frac{1}{n})}$$

5. Let $x_1 \in (0,1)$ and $\{x_n\}$ be a sequence with $x_{n+1} = x_n(1-x_n) \forall n \in \mathbb{N}$. Then we have:

$$\lim_{n \to \infty} nx_n = 1.$$

*Proof.*Since $x_2 = x_1(1-x_1) \le (1/2)^2 < 1$, by induction we have $x_n \in (0,1) \forall n \in \mathbb{N}$. On the other hand,

$$\frac{x_{n+1}}{x_n} = 1 - x_n < 1,$$

so $\{x_n\}$ is a strictly decreasing sequence with a finite bound, and then

$$\lim_{n\to\infty} x_n = A \in [0,1).$$

Moveover, by A = A(1 - A), we have A = 0. By Stolz theorem,

$$\lim_{n \to \infty} n x_n = \lim_{n \to \infty} \frac{n}{\frac{1}{x_n}} = \lim_{n \to \infty} \frac{n - (n - 1)}{\frac{1}{x_n} - \frac{1}{x_{n-1}}} = \lim_{n \to \infty} (1 - x_n) = 1.$$

6. let $\{a_k\}$ be a sequence satisfying that

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = A < \infty.$$

Let $\{p_k\}$ be a strictly increasing sequence of positive numbers with $p_k \to +\infty$ $(k \to \infty)$. Show that

$$\lim_{n \to \infty} \frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_n} = 0.$$

Proof. Assume $A_0 = 0$, we have:

$$\frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_n} = \frac{\sum_{k=1}^n p_k (A_k - A_{k-1})}{p_k} = \frac{\sum_{k=1}^{n-1} A_k (p_k - p_{k+1}) + A_n p_n}{p_n}$$

By STolz theorem, we have

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n-1} A_k (p_k - p_{k+1})}{p_n} = \lim_{n \to \infty} \frac{A_n (p_n - p_{n+1})}{p_{n+1} - p_n} = -A$$

2. Inequality

Theorem 2.1 (Hölder Inequality). Let $a_k, b_k \ge 0 (k = 1, \dots, n), q, p > 0$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then, we have

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}.$$

Moreover, the inequality becomes to be an equality if and only if there exists a $t \in \mathbb{R}_+$ such that

$$a_k^p = tb_k^q \ (k = 1, \cdots, n).$$

The proof of the Hölder inequality depends heavily on the following lemma.

Lemma 2.2. Let $A, B \ge 0$. then for any $\alpha \in [0, 1]$, we have:

$$A^{\alpha}B^{1-\alpha} \le \alpha A + (1-\alpha)B,$$

and the inequality becomes to be an equality if and only if A = B.

Proof. W.L.O.G. we assume $A \geq B > 0, \alpha \neq 0$. Then we have

$$(\frac{A}{B})^{\alpha} = \alpha \int_{1}^{\frac{A}{B}} x^{\alpha - 1} dx + 1 < \alpha \int_{1}^{\frac{A}{B}} 1 \cdot dx + 1 = \alpha (\frac{A}{B} - 1) + 1 = \alpha (\frac{A}{B}) + (1 - \alpha).$$

Exercise 2.3 (Young Inequality). Let $A, B \ge 0$ and q, p > 0 with $\frac{1}{p} + \frac{1}{q} = 1$. Then, we have

$$AB < \varepsilon A^p + \varepsilon^{-\frac{q}{p}} B^q \ \forall \varepsilon > 0.$$

Exercise 2.4 (Minkowski Inequality). Let $a_k, b_k \ge 0 (k = 1, \dots, n), p > 1$. Then, we have

$$\left\{\sum_{k=1}^{n} (a_k + b_k)^p\right\}^{\frac{1}{p}} \le \left\{\sum_{k=1}^{n} a_k^p\right\}^{\frac{1}{p}} + \left\{\sum_{k=1}^{n} b_k^p\right\}^{\frac{1}{p}}.$$

Moreover, the inequality becomes to be an equality if and only if there exists a $t \in \mathbb{R}$ such that

$$a_k = tb_k \ (k = 1, \cdots, n).$$

Theorem 2.5 (Arithmetic Mean-Geometry Mean Inequality). Let a_1, \dots, a_n be positive real numbers and a_1, \dots, a_n be positive real numbers with $p_1 + \dots + p_n = 1$. Then we have:

$$G_n = \prod_{i=1}^n a_i^{p_i} \le \sum_{i=1}^n p_i a_i = A_n,$$

moreover the inequality becomes to be an equality if and only if $a_1 = a_2 = \cdots = a_n$.

Proof. W.L.O.G. we assume $a_1 \leq a_2 \leq \cdots \leq a_n$. Then there exists an integer $k \in [1, n-1]$ such that

$$a_k \le G_n \le a_{k+1}$$
.

Consider the following formula

$$\frac{A_n}{G_n} - 1 = \sum_{i=1}^n p_i \left(\frac{a_i - G_n}{G_n}\right) - \sum_{i=1}^n p_i \left(\frac{\log a_i - \log G_n}{G_n}\right) \\
= \sum_{i=1}^k -p_i \left(\frac{G_n - a_i}{G_n} + (\log G_n - -\log a_i)\right) + \sum_{i=k+1}^n p_i \left(\frac{a_i - G_n}{G_n} - (\log a_i - \log G_n)\right) \\
= \sum_{i=1}^k -p_i \int_{a_i}^{G_n} \left(\frac{1}{G_n} - \frac{1}{t}\right) dt + \sum_{i=k+1}^n p_i \int_{G_n}^{a_i} \left(\frac{1}{G_n} - \frac{1}{t}\right) dt \\
= \sum_{i=1}^k +p_i \int_{a_i}^{G_n} \left(\frac{1}{t} - \frac{1}{G_n}\right) + \sum_{i=k+1}^n p_i \int_{G_n}^{a_i} \left(\frac{1}{G_n} - \frac{1}{t}\right) \\
\ge 0.$$

Moreover the inequality becomes to be an equality if and only if

$$a_1 = a_2 = \dots = a_n = G_n.$$

2.6. Exercises.

1. Let $a_k, b_k \ge 0 (k = 1, \dots, n)$, with $\frac{1}{p} + \frac{1}{q} = 1$ with 0 Assume that

 $(a_k^p)_{k=1}^n \neq t(b_k^q)_{k=1}^n, \ \forall t \in \mathbb{R}.$

To show that

$$\sum_{k=1}^{n} a_k b_k > \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}.$$

Hint.We have

$$0 < \frac{1}{\left(\frac{1}{n}\right)} < 1, \ 0 < \frac{1}{\left(-\frac{q}{n}\right)} = 1 - k < 1,$$

and

$$\frac{1}{\left(\frac{1}{n}\right)} + \frac{1}{\left(-\frac{q}{n}\right)} = 1.$$

Then, we use the Hölder inequality to the following

$$\sum_{i=1}^{n} a_i^p = \sum_{i=1}^{n} (a_i b_i)^p b_i^{-p} = \sum_{i=1}^{n} (a_i b_i)^{\frac{1}{1/p}} b_i^{\frac{1}{-q/p}}.$$

2. Let $a_k \ge 0 (k = 1, \dots, n), p > 0$. We define

$$M_p(a) = \left\{ \frac{\sum_{k=1}^n a_k^p}{n} \right\}^{\frac{1}{p}}.$$

To show that for 0 < r < s, we always have

$$M_r(a) < M_s(a)$$

except for $a_1 = a_2 = \cdots = a_n$.

3. To show

$$\sum_{k=1}^{n} \sqrt{\frac{1}{k} \sin(\frac{k\pi}{n})} \le \sqrt{\frac{1 + \log n}{\sin \frac{\pi}{2n}}}.$$

4. To show

$$\sum_{k=1}^{n} \frac{1}{k^2} \sqrt{\arctan \frac{1}{k^2 + k + 1}} \le \sqrt{\frac{\pi}{3}}.$$

Example 2.7 (Hilbert Inequality). Assume $\sum_{n=1}^{\infty} a_n^2 \leq \infty$. Then we have:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m a_n}{m+n} \le \pi \sum_{n=1}^{\infty} a_n^2.$$

Proof. Consider

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{a_m a_n}{m+n} = \sum_{m=1}^{N} \sum_{n=1}^{N} (\frac{m}{n})^{\frac{1}{4}} \frac{a_m}{\sqrt{m+n}} \cdot (\frac{n}{m})^{\frac{1}{4}} \frac{a_n}{\sqrt{m+n}}.$$

Thus, by the Hölder inequa

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{a_m a_n}{m+n} \leq \{\sum_{m=1}^{N} \sum_{n=1}^{N} (\frac{m}{n})^{\frac{1}{2}} \frac{a_m^2}{m+n} \}^{\frac{1}{2}} \cdot \{\sum_{m=1}^{N} \sum_{n=1}^{N} (\frac{n}{m})^{\frac{1}{2}} \frac{a_n^2}{m+n} \}^{\frac{1}{2}} = \sum_{m=1}^{N} \sum_{n=1}^{N} (\frac{m}{n})^{\frac{1}{2}} \frac{a_m^2}{m+n} ,$$

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{a_m a_n}{m+n} \leq \sum_{m=1}^{N} a_m^2 \sum_{n=1}^{N} (\frac{m}{n})^{\frac{1}{2}} \frac{1}{m+n} .$$

On the other hand, we have:

$$(\frac{m}{n})^{\frac{1}{2}} \frac{1}{m+n} = \frac{\frac{1}{m}}{(\frac{n}{m})^{\frac{1}{2}} (1 + \frac{n}{m})} \le \int_{\frac{n-1}{m}}^{\frac{n}{m}} \frac{dx}{(1+x)\sqrt{x}}.$$

$$\sum_{n=1}^{N} (\frac{m}{n})^{\frac{1}{2}} \frac{1}{m+n} \le \sum_{n=1}^{N} \int_{\frac{n-1}{m}}^{\frac{n}{m}} \frac{dx}{(1+x)\sqrt{x}} \le \int_{0}^{\frac{N}{m}} \frac{dx}{(1+x)\sqrt{x}} \le \int_{0}^{\infty} \frac{dx}{(1+x)\sqrt{x}} = \pi.$$

At all, taking limit $n, m \to \infty$, we have

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m a_n}{m+n} \le \sum_{m=1}^{\infty} a_m^2 \pi = \pi \sum_{m=1}^{\infty} a_m^2.$$

Example 2.8 (Hardy Inequality). Let p,q>0 with $\frac{1}{p}+\frac{1}{q}=1$. Assume $\sum_{n=1}^{\infty}a_n^p\leq\infty$ and $\sum_{m=1}^{\infty}b_n^q\leq\infty$ Then we have:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_n b_m}{m+n} \le \frac{\pi}{\sin(\frac{\pi}{p})} (\sum_{n=1}^{\infty} a_n^p)^{\frac{1}{p}} (\sum_{m=1}^{\infty} b_m^q)^{\frac{1}{q}}.$$

Hint. Consider the following arguments.

$$\sum_{m=1}^{N} \sum_{n=1}^{N} \frac{a_m a_n}{m+n} = \sum_{m=1}^{N} \sum_{n=1}^{N} (\frac{m}{n})^{\frac{1}{pq}} \frac{a_m}{\sqrt{m+n}} \cdot (\frac{n}{m})^{\frac{1}{pq}} \frac{a_n}{\sqrt{m+n}}.$$

$$\left(\frac{m}{n}\right)^{\frac{1}{q}} \frac{1}{m+n} = \frac{\frac{1}{m}}{\left(\frac{n}{m}\right)^{\frac{1}{q}} \left(1 + \frac{n}{m}\right)} \le \int_{\frac{n-1}{m}}^{\frac{n}{m}} \frac{dx}{(1+x)x^{\frac{1}{q}}}.$$

Example 2.9 (Hardy-Landan inequality). Let p and a_k , $k = 1, \dots, n$ be positive numbers. To show for $\forall p > 1$, we have:

$$\sum_{k=1}^{n} \left(\frac{a_1 + \dots + a_k}{k}\right)^p < \left(\frac{p}{p-1}\right)^p \sum_{k=1}^{n} a_k^p.$$

Hint. Let

$$A_k = \frac{a_1 + \dots + a_k}{k}.$$

Then, we have:

a)

$$\begin{split} A_k^p - \frac{p}{p-1} A_k^{p-1} a_k &= A_k^p - \frac{p}{p-1} A_k^{p-1} (A_k - A_{k-1}) = A_k^p (1 - \frac{kp}{p-1}) + \frac{(k-1)p}{p-1} A_k^{p-1} A_{k-1} \\ A_k^p - \frac{p}{p-1} A_k^{p-1} a_k &\leq A_k^p (1 - \frac{kp}{p-1}) + \frac{k-1}{p-1} [(p-1) A_k^p + A_{k-1}^p] = \frac{1}{p-1} [(k-1) A_{k-1}^p - k A_k^p]. \end{split}$$

b) Thus, we have

$$\sum_{k=1}^{n} A_k^p - \frac{p}{p-1} A_k^{p-1} a_k < \frac{p}{p-1} \sum_{k=1}^{n} A_k^{p-1} a_k,$$

again use Hölder inequality.

Example 2.10 (Carleman inequality). Let a_k , $k = \in \mathbb{N}$ be positive numbers. If

$$\sum_{k=1}^{\infty} a_k < \infty,$$

then

$$\sum_{k=1}^{\infty} (a_1 a_2 \cdots a_k)^{1/k} \le e \sum_{k=1}^{\infty} a_k.$$

Another proof directly by elementary technique. We only show that

$$\sum_{k=1}^{n} (a_1 a_2 \cdots a_k)^{1/k} \le e \sum_{k=1}^{n} a_k.$$

Let $b_j = j(1 + \frac{1}{j})^j$. Then, we have

$$\frac{b_j}{j} \le e \text{ and } b_1 b_2 \cdots b_k = (k+1)^k,$$

and so

$$(a_1 a_2 \cdots a_k)^{1/k} = \frac{1}{k+1} \sqrt[k]{(a_1 b_1) \cdots (a_k b_k)} \le \frac{\sum_{i=1}^k a_i b_i}{k(k+1)} = \sum_{i=1}^k \left[\frac{1}{k} - \frac{1}{k+1}\right] a_i b_i.$$

Therefore,

$$\sum_{k=1}^{n} (a_1 a_2 \cdots a_k)^{1/k} \le \sum_{k=1}^{n} \sum_{i=1}^{k} \left[\frac{1}{k} - \frac{1}{k+1} \right] a_i b_i = \sum_{i=1}^{n} \sum_{k=i}^{n} \left[\frac{1}{k} - \frac{1}{k+1} \right] a_i b_i = \sum_{i=1}^{n} a_i b_i \sum_{k=i}^{n} \left[\frac{1}{k} - \frac{1}{k+1} \right],$$

and so

$$\sum_{k=1}^{n} (a_1 a_2 \cdots a_k)^{1/k} \le \sum_{i=1}^{n} a_i b_i \left[\frac{1}{i} - \frac{1}{n} \right] \le \sum_{i=1}^{n} a_i b_i \frac{1}{i} = \sum_{i=1}^{n} a_i \frac{b_i}{i} \le e \sum_{i=1}^{n} a_i.$$

2.11. Homework.

1. Let $A_k \geq 0, t_k > 0, \ k = 1, \dots, n$. Denote $T_l = \sum_{k=1}^l t_k$. Show that

$$(\prod_{k=1}^{n} A_k^{t_k})^{\frac{1}{T_n}} \le \frac{1}{T_n} \sum_{k=1}^{n} t_k A_k.$$

Hint. Consider the following argument. Let

$$L_m = \sum_{k=1}^m A_k^{t_k}.$$

Then, we have:

$$(L_m)^{\frac{1}{T_m}} = (A_m^{t_m})^{\frac{1}{T_m}} = (L_{m-1}^{\frac{1}{T_{m-1}}})^{\frac{T_{m-1}}{T_m}} \cdot A_m^{\frac{t_m}{T_m}} \le \frac{T_{m-1}}{T_m} L_{m-1}^{\frac{1}{T_{m-1}}} + \frac{t_m}{T_m} A_m.$$

By induction, we prove the statement.

2. To show the Carleman inequality by using the Hardy-Landan inequality.

*Proof.*By the Hardy-Landan inequality, for all p > 1, we have

$$\sum_{k=1}^{n} (a_1 a_2 \cdots a_k)^{1/k} \le \sum_{k=1}^{n} \left(\frac{a_1^{\frac{1}{p}} + a_2^{\frac{1}{p}} + \cdots + a_k^{\frac{1}{p}}}{k}\right)^p \le \left(\frac{p}{p-1}\right)^p \sum_{k=1}^{n} a_k.$$

Since

$$\lim_{p \to +\infty} \left(\frac{p}{p-1}\right)^p = e,$$

we get

$$\sum_{k=1}^{n} (a_1 a_2 \cdots a_k)^{1/k} \le e \sum_{k=1}^{n} a_k.$$

2.12 (Appendix). Computing the integral

$$\int_0^\infty \frac{dx}{(1+x)x^{\frac{1}{q}}}$$

with residue theory. Since $\frac{1}{q} + \frac{1}{p} = 1$. Then

$$\int_0^\infty \frac{dx}{(1+x)x^{\frac{1}{q}}} = \int_0^\infty \frac{x^{\frac{1}{p}-1}}{1+x} dx.$$

llysis 19

Let $f(z) = \frac{1}{(1+z)}$. f(z) is a holomorphic at $\mathbb{C} - \{0\}$. We have

$$2\pi\sqrt{-1}\operatorname{Res}_{z=-1}(z^{\frac{1}{p}-1}f(z)) = \int_{\varepsilon}^{R} x^{\frac{1}{p}-1}f(x)dx + \int_{R}^{\varepsilon} e^{(\frac{1}{p}-1)2\pi\sqrt{-1}}x^{\frac{1}{p}-1}f(x)dx + \int_{|z|=\varepsilon} z^{\frac{1}{p}-1}f(z)dz - \int_{|z|=R} z^{\frac{1}{p}-1}f(z)dz$$

$$\operatorname{Res}_{z=-1}(z^{\frac{1}{p}-1}f(z)) = e^{(\frac{1}{p}-1)\log z}|_{z=-1}
= e^{(\frac{1}{p}-1)(\log|-1|+\sqrt{-1}\arg(-1))}
= e^{(\frac{1}{p}-1)\pi\sqrt{-1}} = -e^{\frac{1}{p}\pi\sqrt{-1}}$$

On the other hand,

$$|f(z)| \le 1(|z| << 1), |f(z)| \ge \frac{1}{|z|}(|z| >> 1).$$

Therefore, we have

$$|\int_{|z|=\varepsilon} z^{\frac{1}{p}-1} f(z) dz| \leq \varepsilon^{\frac{1}{p}-1} 2\pi\varepsilon \to 0 (\varepsilon \to 0),$$

$$|\int_{|z|=R} z^{\frac{1}{p}-1} f(z) dz| \leq \frac{|R|^{\frac{1}{p}-1}}{R} 2\pi R \to 0 (R \to \infty),$$

$$\int_{\varepsilon}^{R} x^{\frac{1}{p}-1} f(x) dx + \int_{R}^{\varepsilon} e^{(\frac{1}{p}-1)2\pi\sqrt{-1}} x^{\frac{1}{p}-1} f(x) dx = (1 - e^{(\frac{1}{p}-1)2\pi\sqrt{-1}}) \int_{\varepsilon}^{R} x^{\frac{1}{p}-1} f(x) dx$$

At all, we have

$$(1 - e^{(\frac{1}{p} - 1)2\pi\sqrt{-1}}) \int_0^\infty x^{\frac{1}{p} - 1} f(x) dx = -2\pi\sqrt{-1}e^{\frac{1}{p}\pi\sqrt{-1}},$$

and so

$$\int_0^\infty \frac{dx}{(1+x)x^{\frac{1}{q}}} = \frac{-2\pi\sqrt{-1}e^{\frac{1}{p}\pi\sqrt{-1}}}{(1-e^{\frac{2}{p}\pi\sqrt{-1}})} = \frac{2\pi\sqrt{-1}}{e^{\frac{1}{p}\pi\sqrt{-1}} - e^{-\frac{1}{p}\pi\sqrt{-1}}} = \frac{\pi}{\sin\frac{\pi}{p}}.$$

3. Orders Estimate of Infinitesimal

3.1. Notations and Examples.

3.1. Notations.

1. If

$$\lim_{x \to x_o} \frac{f(x)}{g(x)} = 0,$$

we denote f(x) = o(g(x)). It is obvious that o(h) + o(g) = o(|h| + |g|). In particular, let $\{a_n\}$ be a sequence, if

$$\lim_{n\to\infty} a_n = 0$$

we denote $a_n = o(1), n \to \infty$.

2. If

$$\lim_{x \to x_o} \frac{f(x)}{g(x)} = 1,$$

we say f(x) and g(x) is equivalent for $x \to x_0$, and we denote

$$f(x) \sim g(x), \ x \to x_0$$

3. Let g(x) > 0, if there is a constant A > 0, such that

$$|f(x)| \le Ag(x), \ x \in (a,b),$$

then we denote $f(x) = O(g(x)), x \in (a, b).$

4. Here we have some well-know elementary functions: For n even, we denote $n!! = n(n-2)(n-4)\cdots 4\cdot 2$; For n odd, we denote $n!! = n(n-2)(n-4)\cdots 3\cdot 1$.

$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \ (x \in \mathbb{R}), \text{ and } \cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \ (x \in \mathbb{R}),$$

b)

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} \ (|x| < 1),$$

c)

$$\log(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} \ (|x| < 1),$$

d

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \begin{pmatrix} \alpha \\ k \end{pmatrix} x^{k} (|x| < 1),$$

e)
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ (x \in \mathbb{R}).$$

$$\arctan x = \sum_{k=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \ (x \in \mathbb{R}).$$

g)
$$\arcsin x = x + \frac{1}{3} \frac{1}{2!} x^3 + \frac{1}{5} \frac{3!!}{4!!} x^5 + \dots + \frac{1}{2n+1} \frac{(2n-1)!!}{(2n)!!} x^{2n+1} + \dots \quad (x \in \mathbb{R}).$$

Theorem. In the neighborhood of x_0 , if $f^{(n)}(x)$ exists and $|f^{(n)}(x_0)| \leq M$ then

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + O(|x - x_0|^n).$$

For examples, we have: a) $\sin x = x - \frac{x^3}{3!} + O(|x|^5)$ $(x \in \mathbb{R})$, and $\cos x = 1 - \frac{x^2}{2} + O(|x|^4)$ $(x \in \mathbb{R})$,

b) $\log(1+x) = x - \frac{x^2}{2} + O(|x|^3) \ (|x| < 1),$ c) $(1+x)^{\alpha} = 1 + \alpha x + O(x^2) \ \forall \alpha \in \mathbb{R}, \ (|x| < 1),$ d) $e^x = 1 + x + \sum_{k=1}^n \frac{x^k}{k!} + O(|x|^{n+1}) \ (x \in \mathbb{R}),$ e) $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + O(x^7)(x \in \mathbb{R}),$ f) $\arcsin x = x + \frac{1}{3} \frac{1}{2!} x^3 + \frac{1}{5} \frac{3!!}{4!!} x^5 + O(x^7) \ (x \in \mathbb{R}).$

Example 3.2. Let $\varepsilon > 0$ and A be any two constants. Then for any $\alpha > 0$ we have :

1.
$$x^A = o((1+\alpha)^{\varepsilon x}), x \to \infty;$$

2.
$$\log x^A = o(x^{\varepsilon}), \ x \to \infty;$$

3. $(f(x))^A = o(e^{\varepsilon f(x)})$ for any increasing function f(x) with

$$\lim_{x \to \infty} f(x) = \infty.$$

Proof. Let n = [x] be the integer part of x and m = [A] + 1. If $x \to \infty$ then $n \to \infty$. We have:

$$(1+\alpha)^x \ge (1+\alpha)^n \ge C_n^{m+1} \alpha^{m+1} \ge \frac{\alpha^{m+1}}{(m+1)!} \cdot (\frac{n}{2})^{m+1},$$

if $n \ge 2m + 1$. Thus, if $x \to \infty$, we have

$$\frac{(1+\alpha)^x}{x^A} \ge \frac{\alpha^{m+1}}{2^{m+1}(m+1)!} \frac{n^{m+1}}{(1+n)^m}.$$

Let $x = \varepsilon y$, we get (1).

Let $\alpha = e - 1$, $x = \varepsilon \log y$, we get (2).

(3) is obvious.

Example 3.3. Let $\{a_n\}, \{b_n\}$ be two sequences with $a_n = o(b_n)$ $n \to \infty$ and $b_n > 0$. If $\sum_{n=1}^{\infty} b_n = \infty$, then we have:

$$\sum_{n=1}^{N} a_n = o(\sum_{n=1}^{N} b_n), N \to \infty.$$

Proof. For any $\varepsilon > 0$ there exists M > 0 such that for any n > M we always have $|a_n| < \varepsilon b_n$. Thus, for any N > M, we have:

$$|\sum_{n=1}^{N} a_n| \le |\sum_{n=1}^{M} a_n| + \varepsilon \sum_{n=M+1}^{N} b_n \le \sum_{n=1}^{M} |a_n| + \varepsilon \sum_{n=M+1}^{N} b_n.$$

Since $\sum_{n=1}^{\infty} b_n = \infty$, there exists $N_0 > M$ such that if $N > N_0$

$$\varepsilon \sum_{n=1}^{N} b_n > \sum_{n=1}^{M} |a_n|.$$

So

$$|\sum_{n=1}^{N} a_n| \le 2\varepsilon \sum_{n=1}^{N} b_n.$$

Example 3.4. Let $\{a_k\}$ be a sequences with $a_k > 0$ and $\sum_{k=1}^{\infty} a_k = L < \infty$, if

$$\sum_{k=n}^{\infty} a_n = O(a_n),$$

then we have:

$$\sum_{k=1}^{n} \frac{1}{a_k} = O(\frac{1}{a_n}).$$

Proof. Let

$$A_n = \sum_{k=n}^{\infty} a_n,$$

then $a_n = A_n - A_{n+1} < A_n$ and $A_n = O(a_n)$. Thus, there exists a finite constant A > 1 such that $A_n \le Aa_n$. We therefore have:

$$\frac{A_n}{A_n - A_{n+1}} \le A,$$

$$A_{n+1} \le \frac{A-1}{A} A_n \le \dots \le (\frac{A-1}{A})^{l+1} A_{n-l}.$$

Thus,

$$\sum_{k=1}^{n} \frac{1}{a_k} \le \frac{A_n}{a_n} \sum_{k=1}^{n} \frac{A}{A_k} \le \frac{A}{a_n} \sum_{k=1}^{n} \frac{A_n}{A_k} \le \frac{A}{a_n} \sum_{l=0}^{n-1} (\frac{A-1}{A})^l < \frac{A}{a_n} \sum_{l=0}^{\infty} (\frac{A-1}{A})^l = \frac{A^2}{a_n}.$$

Example 3.5 (Stolz theorem). Let $\{y_n\}$ is strictly increasing sequence, i.e., $y_{n+1} > y_n$, and $y_n \to \infty$. If

$$\lim_{n \to \infty} \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a, \ a \in [-\infty, +\infty],$$

Then

$$\lim_{n \to \infty} \frac{x_n}{y_n} = a.$$

Proof. In case of $a=+\infty$, there is a $N\in\mathbb{N}$ such that $x_{n+1}-x_n>y_{n+1}-y_n$ for $\forall n>N$ and $x_n\to+\infty$, and

$$\lim_{n \to \infty} \frac{y_n - y_{n+1}}{x_n - x_{n+1}} = 0.$$

In case of $a = -\infty$, let $t_n = -x_n$. Thus these two cases are reduced to the case finite constant a.

Now we assume that a is a finite constant. Then we have

$$x_k - x_{k-1} = a(y_k - y_{k-1}) + o(y_k - y_{k-1}),$$

sum with k, we get

$$\sum_{k=2}^{n} (x_k - x_{k-1}) = \sum_{k=2}^{n} a(y_k - y_{k-1}) + \sum_{k=2}^{n} o(y_k - y_{k-1}).$$

Since $y_{n+1} > y_n \forall n \in \mathbb{N}$ and $y_n \to \infty$ we have

$$\sum_{k=2}^{n} o(y_k - y_{k-1}) = o(\sum_{k=2}^{n} y_k - y_{k-1}) = o(y_n - y_1) = o(y_n).$$

Thus,

$$x_n - x_1 = a(y_n - y_1) + o(y_n).$$

3.2. Exercises and homework.

3.6. Exercises.

1. To show

$$\lim_{n \to \infty} \frac{n(\sqrt[n]{n} - 1)}{\log n} = 1.$$

Proof.

$$\sqrt[n]{n} = \exp(\frac{\log n}{n}) = 1 + \frac{\log n}{n} + O(\frac{\log^2 n}{n^2}),$$
$$n(\sqrt[n]{n} - 1) = \log n + O(\frac{\log^2 n}{n}).$$

Another proof given by a student. Let $t = \sqrt[n]{n} - 1$. Then

$$t \to 0^+ (n \to \infty) \text{ and } n = (1+t)^n,$$

and so

$$\frac{n(\sqrt[n]{n-1})}{\log n} = \frac{nt}{n\log(1+t)} = \frac{t}{\log(1+t)} = \frac{1}{\log(1+\frac{1}{1/t})^{1/t}} \sim \log e = 1 \ (n \to \infty).$$

2. To prove for x > 0,

$$\lim_{n \to \infty} n^2(\sqrt[n]{x} - \sqrt[n+1]{x}) = \log x.$$

Proof.

$$n^{2}(\sqrt[n]{x} - \sqrt[n+1]{x}) = n^{2}x^{1/n}(1 - x^{-1/(n(n+1))}) = n^{2}x^{1/n}(1 - \exp(\frac{-\log x}{n(n+1)})).$$
$$\exp(\frac{-\log x}{n(n+1)}) = 1 - \frac{\log x}{n(n+1)} + O(\frac{1}{n^{4}}),$$

so we have:

$$n^2(\sqrt[n]{x} - \sqrt[n+1]{x}) = n^2 x^{1/n} (\frac{\log x}{n(n+1)} + O(\frac{1}{n^4})) = x^{1/n} \log x + O(\frac{1}{n^2}).$$

3. To prove

$$\lim_{n \to \infty} \cos^n(\frac{x}{\sqrt{n}}) = e^{-\frac{x^2}{2}}.$$

Proof.

$$(\cos(\frac{x}{\sqrt{n}}))^n = (1 - \frac{x^2}{2n} + O(\frac{1}{n^2}))^n = \exp(n\log(1 - \frac{x^2}{2n} + O(\frac{1}{n^2}))),$$

Since

$$\log(1-\frac{x^2}{2n}+O(\frac{1}{n^2}))=-\frac{x^2}{2n}+O(\frac{1}{n^2}),$$

we have:

$$(\cos(\frac{x}{\sqrt{n}}))^n = e^{-\frac{x^2}{2}}(1 + O(\frac{1}{n})).$$

Another proof given by a student.

$$(\cos(\frac{x}{\sqrt{n}}))^n = (1 - \sin^2(\frac{x}{\sqrt{n}}))^{\frac{n}{2}} \sim ((1 - \frac{x^2}{n})^{\frac{-n}{x^2}})^{-\frac{x^2}{2}} \sim e^{-\frac{x^2}{2}}, (n \to \infty).$$

4. To prove for $0 < \alpha < 2$, we have

$$\lim_{x \to \infty} \sqrt{x + \sqrt{x + \sqrt{x^{\alpha}}}} - \sqrt{x} = \frac{1}{2}.$$

Proof.

$$\sqrt{x+\sqrt{x+\sqrt{x^{\alpha}}}} = \sqrt{x}(1+\sqrt{\frac{1}{x}+x^{\frac{\alpha}{2}-2}})^{1/2} = \sqrt{x}(1+\frac{1}{2\sqrt{x}}\sqrt{1+x^{\frac{\alpha}{2}-1}}) + O(\frac{1}{\sqrt{x}}),$$

thus

$$\sqrt{x + \sqrt{x + \sqrt{x^{\alpha}}}} - \sqrt{x} = \frac{1}{2} \left(1 + \frac{1}{2} x^{\frac{\alpha}{2} - 1} + O(x^{\alpha - 2})\right) + O(\frac{1}{\sqrt{x}}).$$

5. To show

$$\lim_{x \to 0} \left(\frac{x}{\tan x}\right)^{\frac{1}{x^2}} = e^{\frac{1}{3}}.$$

Proof.

$$\frac{x}{\tan x} = \frac{x \cos x}{\sin x} = x \frac{1 - \frac{x^2}{2} + O(x^4)}{x - \frac{x^3}{6} + O(x^5)} = (1 - \frac{x^2}{2} + O(x^4))(1 + \frac{x^2}{6} + O(x^4)) = 1 - \frac{x^2}{3} + O(x^4),$$

$$(\frac{x}{\tan x})^{\frac{1}{x^2}} = \exp(\frac{\log 1 - \frac{x^2}{3} + O(x^4)}{x^2}) = \exp(\frac{\frac{x^2}{3} + O(x^4)}{x^2}) = e^{\frac{1}{3} + O(x^2)}.$$

3.7. Homework.

1. Euler constant. To show that

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log n = \gamma < \infty.$$

Proof.Let

$$a_n = \sum_{k=1}^{n-1} \frac{1}{k} - \log n,$$

$$b_n = \sum_{k=1}^{n} \frac{1}{k} - \log n.$$

Then $b_n - a_n = \frac{1}{n}$ and

$$a_{n+1} - a_n = \frac{1}{n} - (\log(n+1) - \log n) = \int_n^{n+1} (\frac{1}{n} - \frac{1}{t}) dt > 0,$$

$$b_{n+1} - b_n = \frac{1}{n+1} - (\log(n+1) - \log n) = \int_n^{n+1} (\frac{1}{n+1} - \frac{1}{t}) dt < 0.$$

Thus

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \gamma < \infty.$$

2. In the textbook, e is defined as

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
.

Show that

$$e = \sum_{k=0}^{\infty} \frac{1}{k!}.$$

Proof.Let

$$a_n = \sum_{k=0}^{n} \frac{1}{k!},$$

 $b_n = (1 + \frac{1}{n})^n.$

 $_{
m then}$

$$b_n = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots + (1 - \frac{n-1}{n}) \le a_n$$

On the other hand, given any $k \in \mathbb{N}$, for n > k we have

$$b_n > 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{k!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots + (1 - \frac{k}{n}).$$

Thus,

$$e \ge \lim_{n \to \infty} 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \dots + \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \dots (1 - \frac{k}{n}) = a_k.$$

Therefore,

$$b_k \le a_k \le e, \ \forall k \in \mathbb{N}, \ \text{and so} \ \lim_{k \to \infty} a_k = e.$$

3. To show that for $\alpha \in (1, \infty)$

$$\sum_{k=n}^{\infty} \frac{1}{k^{\alpha}} = O(\frac{1}{n^{\alpha-1}}),$$

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} = C + O(\frac{1}{n^{\alpha-1}}),$$

where C is a constant.

Proof.Since

$$\int_{k}^{k+1} \frac{dx}{x^{\alpha}} < \frac{1}{k^{\alpha}} < \int_{k-1}^{k} \frac{dx}{x^{\alpha}},$$

So

$$\sum_{k=n}^{\infty} \frac{1}{k^{\alpha}} < \int_{n-1}^{\infty} \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha} \int_{n-1}^{\infty} dx^{1-\alpha} = O(\frac{1}{n^{\alpha-1}}).$$

4. Application of Infinitesimal: Wallis Formula and Stirling Formula

4.1. (Wallis Formula).

1. Let $n \in \mathbb{N}$. If n is even, we denote

$$n!! = n(n-2)(n-4)\cdots 4\cdot 2.$$

If n is odd, we denote

$$n!! = n(n-2)(n-4)\cdots 3\cdot 1.$$

Show the integral

$$J_m = \int_0^{\frac{\pi}{2}} \sin^m x dx = \begin{cases} \frac{\pi}{2} \frac{(m-1)!!}{m!!} & m \text{ is even }; \\ \frac{(m-1)!!}{m!!}, & m \text{ is odd.} \end{cases}$$

*Proof.*By partial integral, we have

$$J_{m} = -\int_{0}^{\frac{\pi}{2}} \sin^{m-1} x \cos x dx$$

$$= \sin^{m-1} x \cos x \Big|_{0}^{\frac{\pi}{2}} - (m-1) \int_{0}^{\frac{\pi}{2}} \sin^{m-2} x \cos^{2} x dx$$

$$= (m-1) J_{m-2} - (m-1) J_{m},$$

and so,

$$J_m = \frac{m-1}{m} J_{m-1}.$$

2. To show the Wallis Formula

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2.$$

Proof.From

$$\int_0^{\frac{\pi}{2}} \sin^{2n+1} x dx \le \int_0^{\frac{\pi}{2}} \sin^{2n} x dx \int_0^{\frac{\pi}{2}} \sin^{2n-1} x dx,$$

we have

$$\frac{(2n)!!}{(2n+1)!!} \le \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} \le \frac{(2n-2)!!}{(2n-1)!!}$$

$$(4.1.1) \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 \le \frac{\pi}{2} \le \frac{1}{2n} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2$$

But by the above inequality, we have

$$\frac{1}{2n} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 - \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 = \frac{1}{2n(2n+1)} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 \le \frac{\pi}{4n} \to 0 \ (n \to \infty).$$

Therefore,

$$\lim_{n \to \infty} \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 = \lim_{n \to \infty} \frac{1}{2n} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 = \frac{\pi}{2}.$$

4.2. (Stirling Formula).

1. To show

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O(\frac{1}{n}),$$

where γ is the EuLer constant.

*Proof.*Since

$$\log(1 + \frac{1}{k}) = \frac{1}{k} + C_k$$

where $C_k = O(\frac{1}{k^2})$, we have

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} \log(1 + \frac{1}{k}) + \sum_{k=1}^{n} C_k = \sum_{k=1}^{n} \log(1 + \frac{1}{k}) + \sum_{k=1}^{\infty} C_k - \sum_{k=n+1}^{\infty} C_k = \log n + \gamma + O(\frac{1}{n}).$$

2. To show that

(4.2.1)
$$\log n! = n \log n - n + \frac{1}{2} \log n + C + O(\frac{1}{n}),$$

where C is a constant, i.e.,

$$n! \sim Ae^{-n}n^{n+\frac{1}{2}}.$$

Proof.

$$\log n! = \log n \sum_{k=1}^{n-1} = \log n + \int_1^n \log t dt - \sum_{k=1}^{n-1} \int_k^{k+1} \log \frac{t}{k} dt = (n+1) \log n - n + 1 - \sum_{k=1}^{n-1} \int_0^1 \log \frac{t+k}{k} dt$$

$$\log n! = (n+1)\log n - n + 1 - \sum_{k=1}^{n-1} \int_0^1 \log(1+\frac{t}{k})dt = (n+1)\log n - n + 1 - \sum_{k=1}^{n-1} \int_0^1 (\frac{t}{k} + O(\frac{t^2}{k^2}))dt$$

$$\log n! = (n+1)\log n - n + 1 - \frac{1}{2}(\sum_{k=1}^{n-1}(\frac{1}{k} + O(\frac{1}{k^2})))$$

Since

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O(\frac{1}{n}),$$

where γ is the Euler constant, we have:

$$\log n! = n \log n - n + \frac{1}{2} \log n + C + O(\frac{1}{n}),$$

i.e.,

$$n! = Ae^{-n}n^{n+\frac{1}{2}}(1 + O(\frac{1}{n})).$$

3. To show

$$\frac{1}{n+\frac{1}{2}} < \log(1+\frac{1}{n}) < \frac{1}{2}(\frac{1}{n+1} + \frac{1}{n}).$$

Proof. The right inequality is clear by the picture of area and the convex of picture of

$$y = f(x) = 1/x$$
.

The left inequality is equivalent to the following inequality:

$$(n + \frac{1}{2})\log(1 + \frac{1}{n}) - 1 > 0.$$

If n=1, it is obvious. If $n\geq 2$, we consider the following formula:

$$\log(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} \ (|x| < 1).$$

Thus, for $n \gg 0$ we have

$$(n+\frac{1}{2})\log(1+\frac{1}{n})-1=(n+\frac{1}{2})(\frac{1}{n}-\frac{1}{2n^2}+\frac{1}{3n^3}+O(\frac{1}{n^4}))-1=\frac{1}{12n^2}+O(\frac{1}{n^3})>0.$$

The equality is true for all n, but we only need the inequality for $n \gg 0$ to prove the Stirling formula.

4. Use the above inequality to give another proof of the following formula:

$$n! \sim Ae^{-n}n^{n+\frac{1}{2}} \ (n \to \infty).$$

Proof.Let

$$a_n = \frac{n!}{e^{-n}n^{n+\frac{1}{2}}}.$$

Then we have:

$$\log \frac{a_n}{a_{n+1}} = (n + \frac{1}{2})\log(1 + \frac{1}{n}) - 1.$$

From the the above inequality, we have

$$0 < \log \frac{a_n}{a_{n+1}} < \frac{1}{4} (\frac{1}{n} - \frac{1}{n+1}),$$

thus $\{a_n\}$ is a strictly decreasing sequence and $\{b_n\}$ is a strictly decreasing sequence where $b_n = a_n e^{-\frac{1}{4n}}$. Moreover,

$$0 < a_n - b_n = a_n(1 - e^{-\frac{1}{4n}}) \le a_1(1 - e^{-\frac{1}{4n}}) \to 0 \ (n \to \infty).$$

Therefore, there exists a finite constant A such that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = A.$$

5. Use the Wallis Formula to show that the constant A is exact $\sqrt{2\pi}$.

*Proof.*Let $n \in \mathbb{N}$. If n is even, we denote

$$n!! = n(n-2)(n-4)\cdots 4\cdot 2.$$

If n is odd, we denote

$$n!! = n(n-2)(n-4)\cdots 3\cdot 1.$$

The Wallis Formula says that

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2.$$

Thus

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{1}{2n+1} \left\{ \frac{[(2n)!!]^2}{(2n)!} \right\}^2 = \lim_{n \to \infty} \frac{1}{2n+1} \left\{ \frac{(2^n n!)^2}{(2n)!} \right\}^2 = \lim_{n \to \infty} \frac{1}{2n+1} \left\{ \frac{2^{2n} (n!)^2}{(2n)!} \right\}^2.$$

on the other hand, we have

$$n! \sim Ae^{-n}n^{n+\frac{1}{2}}$$
 and $(2n)! \sim Ae^{-2n}(2n)^{2n+\frac{1}{2}}$ $(n \to \infty)$

Thus

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{1}{2n+1} \left\{ \frac{2^{2n} A^2 n^{2n+1} e^{-2n}}{A(2n)^{2n+1/2} e^{-2n}} \right\}^2 = \lim_{n \to \infty} \frac{1}{2n+1} \left(\sqrt{\frac{n}{2}} A \right)^2 = \frac{A^2}{4}.$$

At all, we obtain

$$A = \sqrt{2\pi}$$

and so

(4.2.2)
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right)$$

5. Topic on the Gamma functions

5.1. Γ functions.

5.1. Definition and basic properties. Refer to the textbook. The Gamma function is defined by

(5.1.1)
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \ x > 0.$$

The Gamma function has the following properties:

1. $\Gamma(x) \in C^{\infty}((0,\infty))$, moreover

$$\Gamma^{(n)}(x) = \int_0^\infty e^{-t} t^{z-1} (\log t)^n dt.$$

2.

$$\Gamma(x+1) = x\Gamma(x)$$
.

so that

$$\lim_{x \to 0+} \Gamma(s) = +\infty$$

and for any $n \in \mathbb{N}$,

$$\Gamma(n) = n!$$

3. For any $\alpha, \beta > 0$,

(5.1.2)
$$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \int_0^\infty \frac{t^{\beta-1}}{(1+t)^{\alpha+\beta}} dt = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy.$$

so that

(5.1.3)
$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}, \ 0 < x < 1$$

and

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

*Proof.*Put y = xt in the formula 5.1.1, there is

$$\begin{split} \Gamma(\alpha)\Gamma(\beta) &= \int_0^\infty x^{\alpha-1}e^{-x}dx \int_0^\infty y^{\beta-1}e^{-y}dy \\ &= \int_0^\infty x^{\alpha-1}e^{-x}dx \int_0^\infty x^\beta t^{\beta-1}e^{-xt}dt \\ &= \int_0^\infty x^{\alpha+\beta-1}e^{-x}dx \int_0^\infty t^{\beta-1}e^{-xt}dt \\ &= \int_0^\infty t^{\beta-1}dt \int_0^\infty x^{\alpha+\beta-1}e^{-x(1+t)}dx. \end{split}$$

Put back y = x(1+t) in the above formula, there holds

$$\Gamma(\alpha)\Gamma(\beta) = \int_0^\infty t^{\beta-1}dt \int_0^\infty x^{\alpha+\beta-1}e^{-x(1+t)}dx$$
$$= \int_0^\infty t^{\beta-1}dt \int_0^\infty \frac{y^{\alpha+\beta-1}e^{-y}}{(1+t)^{\alpha+\beta}}dy$$
$$= \Gamma(\alpha+\beta)\int_0^\infty \frac{t^{\beta-1}}{(1+t)^{\alpha+\beta}}dt.$$

Put $t = \tan^2 \theta$, we obtain

$$\int_0^\infty \frac{t^{\beta-1}}{(1+t)^{\alpha+\beta}} dt = 2 \int_0^{\frac{\pi}{2}} (\sin \theta)^{2\beta-1} (\cos \theta)^{2\alpha-1} d\theta = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy.$$

4. Legendre formula

(5.1.4)
$$2^{2x-1}\Gamma(x)\Gamma(x+\frac{1}{2}) = \Gamma(\frac{1}{2})\Gamma(2x).$$

*Proof.*Put $\alpha = \beta = x$ into the formula 5.1.2, there holds

$$\frac{(\Gamma(x))^2}{\Gamma(2x)} = \int_0^1 y^{x-1} (1-y)^{x-1} dy = 2 \int_0^{1/2} y^{x-1} (1-y)^{x-1} dy.$$

Let $y = (1 - \sqrt{t})/2$, we the obtain

$$\begin{split} 2\int_0^{1/2}y^{x-1}(1-y)^{x-1}dy &= \frac{1}{2}\int_0^1(\frac{1-t}{4})^{x-1}t^{\frac{1}{2}}dt \\ &= 2^{1-2x}\int_0^1(1-t)^{x-1}t^{\frac{1}{2}}dt \\ &= 2^{1-2x}\frac{\Gamma(x)\Gamma(\frac{1}{2})}{\Gamma(x+\frac{1}{2})}. \end{split}$$

Lemma 5.2. Let a be any constant, then there holds

(5.2.1)
$$\frac{\Gamma(x)}{\Gamma(x+a)} = x^{-a} + O(x^{-a-1}).$$

Proof. If a < 1 then there is a $k \in \mathbb{N}$ with a + k > 1, and so

$$\frac{\Gamma(x)}{\Gamma(x+a)} = \frac{\Gamma(x)}{\Gamma(x+a+k)} \prod_{i=1}^{k} (x+a+i).$$

Thus we reduce the question to the case a > 1. Now we suppose that a > 1. From 5.1.2, there is

$$\frac{\Gamma(x)\Gamma(a)}{\Gamma(x+a)} = \int_0^1 y^{x-1} (1-y)^{a-1} dy = \int_0^\infty (1-e^{-t})^{a-1} e^{-xt} dt = I_1 + I_2.$$

$$I_{1} = \int_{0}^{\frac{1}{\sqrt{x}}} (1 - e^{-t})^{a-1} e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} (t + O(t^{2}))^{a-1} e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} (t)^{a-1} (1 + O(t)) e^{-xt} dt$$

$$= \int_{0}^{\frac{1}{\sqrt{x}}} (t)^{a-1} e^{-xt} dt + O(\int_{0}^{\frac{1}{\sqrt{x}}} (t)^{a} e^{-xt} dt)$$

$$= x^{-a} \int_{0}^{\sqrt{x}} (t)^{a-1} e^{-t} dt + O(x^{-a-1}) \int_{0}^{\sqrt{x}} (t)^{a-1} e^{-t} dt)$$

$$= x^{-a} \Gamma(a) + O(x^{-a-1}).$$

$$I_2 = \int_{\frac{1}{\sqrt{x}}}^{\infty} (1 - e^{-t})^{a-1} e^{-xt} dt$$
$$= O(\int_{\frac{1}{\sqrt{x}}}^{\infty} e^{-xt} dt)$$
$$= O(x^{-a-1})$$

At all, we obtain

$$\frac{\Gamma(x)\Gamma(a)}{\Gamma(x+a)} = x^{-a}\Gamma(a) + O(x^{-a-1}),$$

i.e.,

$$\frac{\Gamma(x)}{\Gamma(x+a)} = x^{-a} + O(x^{-a-1}).$$

Theorem 5.3 (Stirling's Formula).

(5.3.1)
$$\Gamma(x) = x^{x-\frac{1}{2}}e^{-x}\sqrt{2\pi}(1+O(\frac{1}{x})), \ x>0.$$

In particular, if $x = n \in \mathbb{N}$, there is the Stirling formula:

$$n! = \sqrt{2\pi n} (\frac{n}{e})^n (1 + O(\frac{1}{n})).$$

Proof. The formula 9.16.3 says:

$$\log \Gamma(n) = n \log n - n + \frac{1}{2} \log n + C + O(\frac{1}{n}),$$

where C is a constant. Let x = n + a where $n \in \mathbb{N}$ and 0 < a < 1. The formula 5.2.1 says that

$$\log \Gamma(x) = \log \Gamma(n+a) = \log \Gamma(n) + a \log n + O(\frac{1}{n}).$$

The formula 9.16.3 says:

$$\log \Gamma(n) = n \log n - n + \frac{1}{2} \log n + C + O(\frac{1}{n}),$$

where C is a constant, thus we obtain

$$\begin{split} \log \Gamma(x) &= (n - \frac{1}{2}) \log n - n + C + a \log n + O(\frac{1}{n}) \\ &= (x - a - \frac{1}{2}) \log(x - a) n - x + a + C + a \log(x - a) + O(\frac{1}{x}) \\ &= (x - \frac{1}{2}) \log x - x + C + O(\frac{1}{x}) \end{split}$$

On the other hand, the Legendre formula says

$$(2x-1)\log 2 + \log \Gamma(x) + \log \Gamma(x+\frac{1}{2}) = \log \Gamma(\frac{1}{2}) + \log \Gamma(2x).$$

We then have

$$(5.3.2) (2x - \frac{1}{2}) \log 2x - 2x + C + \log \Gamma(\frac{1}{2}) + O(\frac{1}{x}) = (2x - 1) \log 2 + (x - \frac{1}{2}) \log x + x \log(x + \frac{1}{2}) - 2x - \frac{1}{2} + 2C + O(\frac{1}{x})$$

Therefore,

$$C = \log \sqrt{2\pi}.$$

Theorem 5.4 (Euler Product Formula).

(5.4.1)
$$\Gamma(s) = \frac{1}{s} \prod_{n=1}^{\infty} (1 + \frac{1}{n})^s (1 + \frac{s}{n})^{-1}, \ s > 0$$

Proof. 1. First, we show that

(5.4.2)
$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = \lim_{n \to \infty} \int_0^n t^{s-1} (1 - \frac{t}{n})^n dt$$

Let

$$\int_0^n t^{s-1} (1 - \frac{t}{n})^n dt = \int_0^{n^{\frac{1}{3}}} t^{s-1} (1 - \frac{t}{n})^n dt + \int_{n^{\frac{1}{3}}}^n t^{s-1} (1 - \frac{t}{n})^n dt = I_1 + I_2.$$

$$I_{1} = \int_{0}^{n^{\frac{1}{3}}} t^{s-1} (1 - \frac{t}{n})^{n} dt$$

$$= \int_{0}^{n^{\frac{1}{3}}} t^{s-1} e^{n \log n (1 - \frac{t}{n})} dt$$

$$= \int_{0}^{n^{\frac{1}{3}}} t^{s-1} e^{-t + o(n^{\frac{1}{3}})} dt$$

$$= \int_{0}^{n^{\frac{1}{3}}} t^{s-1} e^{-t} dt + O(n^{\frac{1}{3}})$$

$$= \Gamma(s) + O(n^{\frac{1}{3}}).$$

$$I_{2} = \int_{n^{\frac{1}{3}}}^{n} t^{s-1} (1 - \frac{t}{n})^{n} dt = I_{1} + I_{2}.$$

$$= O(\int_{n^{\frac{1}{3}}}^{n} t^{s-1} (1 - \frac{n^{\frac{1}{3}}}{n})^{n} dt)$$

$$= O(\frac{n^{s}}{s} e^{-n^{\frac{1}{3}}}).$$

2. We then show that

(5.4.3)
$$\int_0^n t^{s-1} (1 - \frac{t}{n})^n dt = \frac{(1 + \frac{s}{n})^{-1}}{s} \prod_{k=1}^{n-1} (1 + \frac{1}{k})^s (1 + \frac{s}{k})^{-1}.$$

$$\int_0^n t^{s-1} (1 - \frac{t}{n})^n dt = n^s \int_0^1 (1 - t)^n t^{s-1} dt = \frac{n^s}{s} \int_0^1 (1 - t)^n dt^s = n^s \frac{n}{s} \int_0^1 (1 - t)^{n-1} t^s dt.$$

By induction, we obtain:

$$\int_0^n t^{s-1} (1 - \frac{t}{n})^n dt = n^s \frac{n(n-1)\cdots 1}{s(s+1)\cdots(s+n-1)} \int_0^1 t^{s+n-1} dt = n^s \frac{n(n-1)\cdots 1}{s(s+1)\cdots(s+n)},$$

$$\int_0^n t^{s-1} (1 - \frac{t}{n})^n dt = \frac{(1 + \frac{s}{n})^{-1}}{s} \prod_{k=1}^{n-1} (1 + \frac{1}{k})^s (1 + \frac{s}{k})^{-1}.$$

To be Continuous

5.2. Exercises.

Exercise 5.5. To show that for $n = 1, 2, 3, \dots$, there holds

$$(xe^{2(x-n)})^n = O(e^{(x^2+x)}), x > 0$$

Proof. Consider the function

$$f_n(x) = xe^{2(x-n)})^n - e^{(x^2+x)}.$$

Then

$$f_n'(x) = e^{2n(x-n)-x^2-x}(nx^{n-1} + x^n(-2x+2n-1)),$$

and $f'_n(n) = 0, f_n(x)$ gets the maximal value at x = n,

$$f_n(n) = e^{n \log n - n^2 - n} = O(1).$$

Exercise 5.6. For any $\delta > 0$, to show that

$$\log x = o(x^{\delta}).$$

Exercise 5.7. Define

$$\operatorname{Li} x = \lim_{\eta \to 0} \left(\int_0^{1-\eta} + \int_{1-\eta}^x \right) \frac{dt}{\log t}.$$

$$\operatorname{Li} x \sim \frac{x}{\log x}.$$

To show that

Exercise 5.8. To show that

$$\int_0^1 (\log \frac{1}{t})^n dt = n!.$$

Exercise 5.9. Denote γ be the Euler constant. For any x > 0, show that

$$\sum_{n \in \mathbb{N}, n \le x} \frac{1}{n} = \log x + \gamma + O(\frac{1}{x}).$$

Exercise 5.10. To show that

$$-\Gamma'(1) = \lim_{n \to \infty} \left(\int_0^1 \frac{1 - y^n}{1 - y} dy - \log n \right) = \lim_{n \to \infty} \left\{ \sum_{i=1}^n \frac{1}{i} - \log n \right\} = \gamma.$$

6. Working Technique in function theory

6.1. Iteration technique.

Example 6.1 (De Giorgi-Nash iteration). Let $\varphi(t)$ be a nonnegative function decreasing on $[k_0, \infty]$. Assume that φ satisfies

(6.1.1)
$$\varphi(h) \le \left(\frac{M}{h-k}\right)^{\alpha} [\varphi(k)]^{\beta}, \ \forall h > k \ge k_0,$$

where $M, \alpha > 0, \beta > 1$. Then

$$\varphi(k_0 + d) = 0$$

where

$$d = M[\varphi(k_0)]^{\frac{\beta-1}{\alpha}} 2^{\frac{\beta}{\beta-1}}.$$

Proof. Define sequence $\{k_n\}$ by the following rule

$$k_n = k_0 + d - \frac{d}{2^n}, \ n = 0, 1, 2, \cdots$$

Then $\{\varphi(k_n)\}\$ is a decreasing sequence. From the rule 6.2.1, we have

$$\varphi(k_{n+1}) \le \frac{M^{\alpha} 2^{(n+1)\alpha}}{d^{\alpha}} [\varphi(k_n)]^{\beta}, n = 0, 1, 2, \cdots.$$

If we can show that

(6.1.2)
$$\varphi(k_n) \le \frac{\varphi(k_0)}{r^n} \text{ for some } r > 1, \ n = 0, 1, 2, \cdots,$$

where r is under-determined. Then, we have

$$0 \le \varphi(k_0 + d) \le \varphi(k_n) \le \frac{\varphi(k_0)}{r^n}, \ n = 0, 1, 2, \cdots.$$

Take the limit, we then obtain the result.

Now, we choose the number r an prove the inequality 6.1.2 by using induction : if the inequality is true for n, then, we have

$$\varphi(k_{n+1}) \le \frac{M^{\alpha} 2^{(n+1)\alpha}}{d^{\alpha}} [\varphi(k_n)]^{\beta} \le \frac{\varphi(k_0)}{r^{n+1}} \frac{M^{\alpha} 2^{(n+1)\alpha}}{d^{\alpha} r^{n(\beta-1)-1}} [\varphi(k_0)]^{\beta-1}.$$

Choose $r \geq 2^{\alpha/(\beta-1)}$, we have

$$\frac{M^{\alpha}2^{(n+1)\alpha}}{d^{\alpha}r^{n(\beta-1)-1}} [\varphi(k_0)]^{\beta-1} \le \frac{M^{\alpha}2^{\alpha\beta/(\beta-1)}}{d^{\alpha}} [\varphi(k_0)]^{\beta-1} \le 1.$$

Example 6.2. Let $\varphi(t)$ be a nonnegative function increasing on $[0, R_0]$. Assume that for some $\theta, \eta \in [0, 1)$ and $\gamma \in (0, 1], K \geq 0$, φ satisfies

(6.2.1)
$$\varphi(\theta R) \le \eta \varphi(R) + KR^{\gamma}, \ R \in (0, R_0].$$

Then, we have

(6.2.2)
$$\varphi(R) \le C(\frac{R}{R_0})^{\alpha} [\varphi(R_0) + KR_0^{\gamma}], \ R \in (0, R_0],$$

where $\alpha = \alpha(\theta, \eta, \gamma) \in (0, \gamma)$ and $C = C(\theta, \eta, \gamma) > 0$ are constant.

Proof. Assume that $\theta^{-\alpha}\eta > 1$. Let $\widetilde{R}_i = \theta^i \widetilde{R}_0$, $i = 0, 1, 2, \cdots$. From 6.2.1, we have $\varphi(\widetilde{R}_{i+1}) < \eta^{\varphi}(\widetilde{R}_i) + K\widetilde{R}_i^{\gamma}$,

and by iteration, we have

$$\varphi(\widetilde{R}_{i}) \leq \eta^{i} \varphi(\widetilde{R}_{0}) + \sum_{m=0}^{i-1} K \eta^{m} \widetilde{R}_{i-m-1}^{\gamma},
\leq \eta^{i} \varphi(\widetilde{R}_{0}) + K \widetilde{R}_{0}^{\gamma} \theta^{\gamma(i-1)} \sum_{m=0}^{i-1} (\theta^{-\gamma} \eta)^{m}
= \eta^{i} \varphi(\widetilde{R}_{0}) + K \widetilde{R}_{0}^{\gamma} \theta^{\gamma(i-1)} \frac{(\theta^{-\gamma} \eta)^{i} - 1}{\theta^{-\gamma} \eta - 1}
\leq \eta^{i} \varphi(\widetilde{R}_{0}) + K \widetilde{R}_{0}^{\gamma} \theta^{\gamma(i-1)} \frac{(\theta^{-\gamma} \eta)^{i}}{\theta^{-\gamma} \eta - 1}
= \eta^{i} [\varphi(\widetilde{R}_{0}) + C_{1} K \widetilde{R}_{0}^{\gamma}],$$

where

$$C_1 = \frac{\theta^{-\gamma}}{\theta^{-\gamma}\eta - 1}.$$

Since

$$i = \frac{\log(\frac{\tilde{R}_i}{\tilde{R}_0})}{\log \theta},$$

let $\alpha = \log \eta / \log \theta \in (o, \gamma)$, we have

$$\varphi(\widetilde{R}_i) \leq (\frac{\widetilde{R}_i}{\widetilde{R}_0})^{\alpha} [\varphi(\widetilde{R}_0) + C_1 K \widetilde{R}_0^{\gamma}], \ i = 0, 1, 2 \cdots .,$$

When $\widetilde{R}_0 \in (\theta R_0, R_0]$, let $C_2 = \max(C_1, 1)$, we have

$$\varphi(\widetilde{R}_i) \leq \frac{C_1}{\theta^{\alpha}} (\frac{\widetilde{R}_i}{R_0})^{\alpha} [\varphi(R_0) + KR_0^{\gamma}], \ i = 0, 1, 2 \cdots,$$

On the other hand, for any $R \in [0, R_0]$, there are $i \in \mathbb{N}$, $\widetilde{R}_0 \in (\theta R_0, R_0]$ such that $R = \widetilde{R}_i$. Let $C = \frac{C_1}{\theta^{\alpha}}$, we then have the inequality 6.2.2.

Example 6.3. Let $0 \le T_0 < T_1$, $\varphi(t)$ be a nonnegative bounded function on $[T_0, T_1]$. Assume that for some t, s with $0 \le T_0 \le t < s \le T_1$, φ satisfies

(6.3.1)
$$\varphi(t) \le \theta \varphi(s) + \frac{A}{(s-t)^{\alpha}} + B,$$

where θ, A, B, α are non-negative constant and $\theta < 1$. Then, we have

(6.3.2)
$$\varphi(\rho) \le C(\frac{A}{(R-\rho)^{\alpha}} + B), \ \forall T_0 \le \rho < R \le T_1,$$

where $C = C(\alpha, \theta) > 0$ is a constant.

Proof. Let $T_0 \leq \rho < R \leq T_1$. Define

$$t_0 = \rho$$
, $t_{i+1} = t_i + (1 - \tau)\tau^i(R - \rho)$ $(i = 0, 1, 2, \cdots)$,

L

where $\tau \in (0,1)$ is under-determined. By the relation 6.3.2, we have

$$\varphi(t_i) \le \theta \varphi(t_{i+1}) + \frac{A}{((1-\tau)\tau^i(R-\rho))^\alpha} + B, \ i = 0, 1, \cdots.$$

by induction, for any $k \geq 1$ we have

$$\phi(t_0) \le \theta^k \varphi(t_k) + (\frac{A}{(1-\tau)^{\alpha}(R-\rho)^{\alpha}} + B) \sum_{i=0}^{k-1} (\theta \tau^{-\alpha})^i.$$

Choose τ with $\theta \tau^{-\alpha} < 1$, and let $k \to \infty$, we then obtain the inequality 6.3.2.

Example 6.4. Let $0 \le T_0 < T_1$, $\varphi(t)$ be a nonnegative function increasing on $[0, R_0]$. Assume that for some constants β , α with $0 < \beta < \alpha$, φ satisfies

(6.4.1)
$$\varphi(\rho) \le C(\frac{\rho}{R})^{\alpha} [\varphi(R) + BR^{\beta}], \ 0 < \rho < R \le R_0.$$

where C is a constant. Then, we have

(6.4.2)
$$\varphi(\rho) \le C(\frac{\rho}{R})^{\beta} [\varphi(R) + BR^{\beta}], \ 0 < \rho < R \le R_0,$$

where $C = C(A, \alpha, \beta) > 0$ is a constant.

Proof. Let $\nu = \frac{1}{2}(\alpha + \beta)$. Choose $\tau \in (0,1)$ such that $A\tau^{\alpha-\nu} < 1$. Then, we have

$$\varphi(\tau R) \leq A \tau^{\alpha} \varphi(R) + B R^{\beta} = A \tau^{\alpha - \nu} \tau^{\nu} \varphi(R) + B R^{\beta} \leq \tau^{\nu} \varphi(R) + B R^{\beta},$$

and

$$\varphi(\tau^{k+1}R) = \tau^{(k+1)\nu}\varphi(R) + B(\tau^{k\nu} + \tau^{(k-1)\nu+\beta} + \dots + \tau^{k\beta})R^{\beta}
= \tau^{(k+1)\nu}\varphi(R) + B\tau^{k\beta}(\tau^{k(\nu-\beta)} + \tau^{(k-1)(\nu-\beta)} + \dots + 1)R^{\beta}
= \tau^{(k+1)\nu}\varphi(R) + B\frac{\tau^{k\beta}(1 - \tau^{(k+1)(\nu-\beta)}}{1 - \tau^{(\nu-\beta)}}R^{\beta}
\leq C_1\tau^{k\beta}[\varphi(R) + BR^{\beta}],$$

Where $C_1 \geq 1$ is a constant independent on k. Thus,

(6.4.3)
$$\varphi(\tau^{k+1}R) \le C_1 \tau^{(k-1)\beta} [\varphi(R) + BR^{\beta}], \ k \ge 0.$$

for any ρ with $0 < \rho < R \le R_0$, we choose any positive integer k such that

$$\tau^{k+1}R < \rho \le \tau^k R,$$

then we have

$$\varphi(\rho) \leq \varphi(\tau^{k}R) \leq C_{1}\tau^{(k-1)\beta}[\varphi(R) + BR^{\beta}]$$

$$\leq C_{1}\tau^{-2\beta}(\frac{\rho}{R})^{\beta}[\varphi(R) + BR^{\beta}]$$

$$= C(\frac{\rho}{R})^{\beta}[\varphi(R) + BR^{\beta}],$$

where $C = C_1 \tau^{-2\beta}$.

6.2. Exercises and Homework.

Exercise 6.5. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. define

$$f^{(n)}(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}.$$

Assume that there exist $a, C \in \mathbb{R}$ with C > o such that for all $n \in \mathbb{N}$,

$$|f^{(n)}(a)| < C.$$

Then, the function f has a fixed point, i.e., $\exists x_0 \in \mathbb{R}, f(x_0) = x_0$.

Proof. Let g(x) = f(x) - x. We can assume

$$g(x) > 0, \forall x \in \mathbb{R} \text{ or } g(x) > 0, \forall x \in \mathbb{R}.$$

Otherwise, by the Cauchy mean value theorem we will have ar least a zero point of g.

a) If

$$g(x) > 0, \forall x \in \mathbb{R}$$

we will get a bounded increasing $\{x_n\}$ defined by

$$x_0 = a, \ x_{n+1} = f(x_n), \ n = 1, 2 \cdots$$

Since $A = \lim_{n \to \infty} x_n$ exists, by f is continuous we then have

$$A = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(A).$$

b) If

$$g(x) < 0, \forall x \in \mathbb{R}$$

we will get a bounded decreasing $\{y_n\}$ defined by

$$y_0 = a$$
, $y_{n+1} = f(y_n)$, $n = 1, 2 \cdots$.

Similarly, $B = \lim_{n \to \infty} y_n$ exists and is a fixed point of f.

Exercise 6.6. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

$$f(2x^2-1)=2xf(x), \forall x \in \mathbb{R}.$$

To show that

$$f(x) \equiv 0, \forall x \in [-1, 1].$$

Proof. We have $f(x) = -f(-x), \forall x \neq 0$. By the continuity of f, f(0) = -f(0), and so f(0) = 0. Now, for any θ , we have

$$f(\cos 2\theta) = 2\cos\theta f(\cos\theta),$$

and so

$$f(\cos \theta) = 0 \iff f(\cos 2\theta) = 0.$$

Again the continuity of f, for any θ , we have

$$\frac{f(\cos 2\theta)}{\sin 2\theta} = \frac{f(\cos \theta)}{\sin \theta}.$$

On the other hand,

$$f(-\cos 2\theta) = f(2\sin^2 \theta - 1) = 2\sin \theta f(\sin \theta),$$

then

$$\cos \theta f(\cos \theta) = \sin \theta f(\sin \theta),$$

and so

$$\frac{f(\sin \theta)}{\cos \theta} = \frac{f(\cos \theta)}{\sin \theta}.$$

Therefore, for any $t = \sin \xi \in [-1, 1]$, we have

$$\frac{f(\sin \xi)}{\cos \xi} = \frac{f(\sin \frac{\xi}{2})}{\cos \frac{\xi}{2}} = \dots = \frac{f(\sin \frac{\xi}{2^n})}{\cos \frac{\xi}{2^n}} \to \frac{f(0)}{1} = 0 \ (n \to \infty).$$

Exercise 6.7. Let f(x), g(x) be functions defined on $(a, +\infty)$. Suppose that f(x), g(x) satisfy the following conditions:

a) f(x), g(x) are bounded on any finite interval (a, b);

b)

$$q(x+1) > q(x), \ \forall x \in (a, +\infty);$$

c)

$$\lim_{x \to +\infty} g(x) = +\infty.$$

If

$$\lim_{x \to +\infty} \frac{f(x+1) - f(x)}{g(x+1) - g(x)} = l,$$

where $l \in [-\infty, +\infty]$. Then, we have

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = l.$$

Hint. Refer to the proof of the Stolz theorem.

Exercise 6.8. (1) Show that the set of all irrational number of \mathbb{R} is uncountable.

(2) Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$f(\mathbb{Q}) \subset \mathbb{R} \setminus \mathbb{Q}$$
, and $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$.

To show that f is not a continuous function, and show an example.

7. Applications of Differential

Example 7.1 (Liouville). Suppose $\alpha \in \mathbb{R}$ is an algebraic integer of degree d > 0, i.e, α is a root of a polynomial with integer coefficients

$$f(x) = a_0 x^d + a_1 x^{d-1} + \dots + a_d, \ \forall a_i \in \mathbb{Z},$$

which is irreducible in $\mathbb{Q}[x]$. Then there exists a constant $c = C(\alpha) > 0$ such that for each pair of integers (p,q), there holds

$$|\alpha - \frac{p}{q}| \ge \frac{c}{|q|^d}.$$

Proof. For a given pair (p,q), if $|\alpha - \frac{p}{q}| > 1$ then let c = 1. Thus, We suppose $|\alpha - \frac{p}{q}| \le 1$. We have:

$$f(\frac{p}{q}) = f(\frac{p}{q}) - f(\alpha) = f'(\zeta)(\frac{p}{q} - \alpha)$$
, for some $\zeta \in [-|\alpha| - 1, |\alpha| + 1]$.

Let M be the maximal value of |f'(x)| on $[|\alpha|-1, |\alpha|+1]$, and let c=1/M. Since $f(\frac{p}{q}) \neq 0$ for any national number $\frac{p}{q}$ (we omit the proof here), so

$$|\frac{p}{q} - \alpha| \ge \frac{|f'(\zeta)||_q^p - \alpha|}{M} = c|f(\frac{p}{q})| = c \frac{|\sum_{i=0}^d a_i p^{d-i} q^i|}{|q|^d} \ge c \cdot \frac{1}{|q|^d}.$$

Exercise 7.2. For any $n \in \mathbb{N}$, define

$$P_n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!},$$

and denote $F_n = P_{n+1}(x)P_n(x)$. To show that $F_n(x)$ has a unique root in \mathbb{R} .

Hint. Sufficiently to prove that if n is even then $P_n(x)$ has no root in \mathbb{R} , and if n is odd then $P_n(x)$ has a unique root in \mathbb{R} .

To be continuous.....

8. Treasures in Calculus

8.1. Euler's identification $\zeta(2) = 1 + \frac{1}{2^2} \cdots + \frac{1}{n^2} + \cdots \equiv \frac{\pi^2}{6}$. At first, there holds

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dx dy = \int_{0}^{1} \int_{0}^{1} \sum_{i \ge 0} x^{i} y^{i} dx dy$$

$$= \sum_{i \ge 0} \int_{0}^{1} \int_{0}^{1} x^{i} y^{i} dx dy$$

$$= \sum_{i \ge 0} \int_{0}^{1} x^{i} dx \int_{0}^{1} y^{i} dy$$

$$= \sum_{i \ge 0} \frac{1}{(i + 1)^{2}}$$

$$= \zeta(2).$$

On the other hand, replacing x^2 with X and y^2 with Y, there holds

$$\int_{0}^{1} \int_{0}^{1} \left(\frac{1}{1-xy} - \frac{1}{1+xy}\right) dx dy = \int_{0}^{1} \int_{0}^{1} \left(\frac{2xy}{1-x^{2}y^{2}}\right) dx dy$$
$$= \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-XY} dX dY$$
$$= \frac{\zeta(2)}{2}$$

and let $x = \sin \theta / \cos \phi$, $y = \sin \phi / \cos \theta$, we obtain

$$\int_{0}^{1} \int_{0}^{1} \left(\frac{1}{1-xy} + \frac{1}{1+xy}\right) dx dy = 2 \int_{0}^{1} \int_{0}^{1} \left(\frac{1}{1-x^{2}y^{2}}\right) dx dy$$

$$= 2 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{\pi}{2}-\theta} \frac{1}{1-\left(\frac{\sin\theta}{\cos\phi}\right)^{2} \left(\frac{\sin\phi}{\cos\theta}\right)^{2}} (1-\tan^{2}\theta \tan^{2}\phi) d\phi$$

$$= \frac{\pi^{2}}{4}$$

Therefore, we obtain

$$\begin{aligned} 2\zeta(2) &=& \int_0^1 \int_0^1 (\frac{1}{1-xy} - \frac{1}{1+xy}) dx dy + int_0^1 \int_0^1 (\frac{1}{1-xy} + \frac{1}{1+xy}) dx dy \\ &=& \frac{\zeta(2)}{2} + \frac{\pi^2}{4}, \end{aligned}$$

and so

(8.0.1)
$$\zeta(2) = 1 + \frac{1}{2^2} \dots + \frac{1}{n^2} + \dots \equiv \frac{\pi^2}{6}$$

8.2. Irrationality of π , $\log 2$, $\zeta(2)$, $\zeta(3)$.

8.1. Legendre polynomial

1. For any $n \in \mathbb{N}$, the Legendre polynomial is define by

(8.1.1)
$$P_n(x) = \frac{1}{n!} \frac{d^n}{dx^n} (x^n (1-x)^n).$$

It is obvious all coefficients of P_n are integers, i.e.,

$$P_n = \sum_{j=0}^n p_{n,j} x^j, \ \forall p_{n,j} \in \mathbb{Z}.$$

For examples, $P_0(x) = 0$, $P_1(x) = 1 - 2x$, $P_2(x) = 2 - 12x - 12x^2$.

2. The following is an important property of Legendre polynomials:

(8.1.2)
$$\int_0^1 P_n(x)f(x)dx = (-1)^n \int_0^1 \frac{1}{n!} x^n (1-x)^n \frac{d^n f(x)}{dx^n} dx.$$

- 3. A technique to show a number ξ is irrational by using Legendre polynomials.
 - Suppose there is a family of integrals such that $(j \in \mathbb{N})$

$$\int_0^1 x^j f(x) = R_j + S_j \xi,$$

where $R_i, S_i \in \mathbb{Q}$ and f(x) is an under-determined function.

• Assume ξ is rational, then

$$\int_0^1 P_n(x)f(x) = \frac{A_n}{B_n} \text{ with } A_n, B_n \in \mathbb{Z}, \forall n \in \mathbb{N}.$$

• On the other hand, if $A_n \neq 0 n >> 0$ and

$$|B_n(-1)^n \int_0^1 \frac{1}{n!} x^n (1-x)^n \frac{d^n f(x)}{dx^n} dx| \longrightarrow 0 \ (n \to \infty)$$

then there is a confliction:

$$1 \le |A_n| \longrightarrow 0 \ (n \to \infty),$$

and so ξ is irrational.

8.2. π is irrational.

1. It is obvious for any $j \in \mathbb{N}$,

$$\int_0^1 x^j \sin(\pi x) dx = h(\frac{1}{\pi}),$$

where h(x) is a polynomial in $\mathbb{Z}[x]$ with degree at most j.

2. Thus, if $\pi = a/b$ is rational then for any Legendre polynomial $P_n(x)$, there holds

$$\int_0^1 P_n(x) \sin(\pi x) dx = \frac{A_n}{a^n} \text{ with } A_n \mathbb{Z}.$$

3. On the other hand, by stirling formula, there is

$$|A_n| = |a^n \int_0^1 P_n(x) \sin(\pi x) dx|$$

$$= |a^n \int_0^1 \frac{1}{n!} x^n (1-x)^n \frac{d^n}{dx^n} (\sin(\pi x)) dx|$$

$$= |a^n \int_0^1 \frac{1}{n!} x^n (1-x)^n \pi^n dx|$$

$$\leq |\frac{1}{n!} (\frac{a\pi}{4})^n| \longrightarrow 0 (n \to \infty).$$

8.3. log 2 is irrational. In this case, we choose f(x) = 1/(1+x).

1. Since $x^j = x^{j-1}(x+1) - x^{j-2}(x+1) + \cdots \mp (x+1) \pm 1$ for $j \in \mathbb{N}$, it is obvious that

$$\int_0^1 \frac{x^j}{1+x} dx = \frac{1}{j} - \frac{1}{j-1} + \dots \mp 1 \pm \log 2 = C_j \pm \log 2,$$

where $C_i \in \mathbb{Q}$.

2. Thus, if $\log 2 = a/b$ is rational then for any Legendre polynomial $P_n(x)$, there holds

$$\int_0^1 P_n(x) \frac{1}{x+1} dx = \frac{A_n}{bd_n} \text{ with } A_n \mathbb{Z},$$

and $d_n = LCM(1, 2, \dots, n)$.

3. On the other hand,

$$|A_n| = |bd_n \int_0^1 P_n(x) \frac{1}{(1+x)} dx|$$

$$= |bd_n \int_0^1 \frac{1}{n!} x^n (1-x)^n \left[\frac{d^n}{dx^n} \frac{1}{x+1} \right] dx|$$

$$= |bd_n \int_0^1 \left(\frac{x(1-x)}{1+x} \right)^n \frac{1}{1+x} dx|.$$

Since

$$\max_{x \in [0,1]} \left(\frac{x(1-x)}{1+x} \right) = 3 - 2\sqrt{2},$$

and $d_n \leq 3^n$,

$$|A_n| \le |b|(3(3-2\sqrt{2}))^n \longrightarrow 0.$$

8.4. $\zeta(2)$ is irrational. In this case, we choose $f(x) = \int_0^1 \frac{(1-y)^n}{1-xy} dy$

1. Consider the integral family $(j \in \mathbb{N})$

$$\int_0^1 x^j \left[\int_0^1 \frac{(1-y)^n}{1-xy} dy \right] dx = \sum_{r,s \in \mathbb{N}} p_{j;r,s} \int_0^1 \int_0^1 \frac{x^r y^s}{1-xy} dy dx, p_{j;r,s} \in \mathbb{Z},$$

By Eucliean's division method, for any pair $(r, s) \in \mathbb{N}^2$, we have:

$$\int_{0}^{1} \int_{0}^{1} \frac{x^{r} y^{s}}{1 - xy} dy dx = \sum_{p,q \in \mathbb{N}} A_{r,s;p,q} \int_{0}^{1} \int_{0}^{1} x^{p} y^{q} dy dx + \sum_{p \in \mathbb{N}} B_{r,s;p} \int_{0}^{1} \int_{0}^{1} \frac{x^{p}}{1 - xy} dy dx + \sum_{q \in \mathbb{N}} C_{r,s;q} \int_{0}^{1} \int_{0}^{1} \frac{y^{q}}{1 - xy} dy dx + D_{r,s} \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dy dx.$$

Therefore, we obtain

$$\int_0^1 \int_0^1 \frac{x^r y^s}{1 - xy} dy dx = \begin{cases} \frac{k_{r,s}}{d_{n+1}^2}, & r \neq s \\ \zeta(2) - \sum_{i=1}^r \frac{1}{i^2}, & r = s, \end{cases}$$

where each $k_{r,s}$ is an integer and $d_n = LCM(1, \dots, n)$.

2. Suppose $\zeta(2) = a/b$ is rational, then or any Legendre polynomial $P_n(x)$,

$$\left| \int_{0}^{1} P_{n}(x) f(x) dx \right| = \frac{|A_{n}|}{b d_{n+1}^{2}}, A_{n} \in \mathbb{Z}.$$

3. On the other hand,

$$|A_n| = |bd_{n+1}^2 \int_0^1 P_n(x)f(x)dx|$$

$$= |bd_{n+1}^2 \int_0^1 \frac{1}{n!} x^n (1-x)^n \left[\frac{d^n}{dx^n} f(x)\right] dx|$$

$$= |bd_{n+1}^2 \int_0^1 \int_0^1 (\frac{x(1-x)y(1-y)}{1+xy})^n \frac{1}{1-xy} dy dx|.$$

Since

$$d_{n+1} \le 3^{n+1}$$
,

and

$$\max_{(x,y)\in[0,1]\times[0,1]} \left(\frac{x(1-x)y(1-y)}{1-xy}\right) = 3 - 2\sqrt{2} = \left(\frac{-1+\sqrt{5}}{2}\right)^5,$$

then

$$|A_n| \le |9b\xi(2)|(9(\frac{-1+\sqrt{5}}{2})^5)^n \longrightarrow 0,$$

since

$$9(\frac{-1+\sqrt{5}}{2})^5 = \frac{45\sqrt{5}-99}{2} < 1.$$

Exercise 8.5. To show that

$$\zeta(3) = \sum_{i=1}^{\infty} \frac{1}{i^3}$$

is irrational.

Hint. Consider the function

$$f(x) = \int_0^1 \frac{P_n(y)}{1 - xy} \log xy dy,$$

and the family of integrals $(j \in \mathbb{N})$

$$\int_0^1 x^j f(x) dx.$$

Show that if $\zeta(3) = a/b$ is rational then

$$|\int_0^1 P_n(x)f(x)| = \frac{|A_n|}{|bd_{n+1}^3|}.$$

8.3. The properties of Tchebychev's functions. Denote \mathbb{P} be the set of all prime numbers.

8.6. Tchebychev's functions

1. Define

$$\pi(x) = \sum_{p \in \mathbb{P}, p \le x} 1,$$

and

$$\theta(x) = \sum_{p \in \mathbb{P}, p \le x} \log p, \ x > 0.$$

Example. For any $n \in \mathbb{N}$, there holds

(8.6.1)
$$\sum_{p \le n, p \in \mathbb{P}} \left[\frac{n}{p} \right] \log p = n \log n + O(n).$$

Proof. At first,

$$n! = \prod_{p \le n, p \in \mathbb{P}} p^{\alpha_p},$$

where

$$\alpha_p = \sum_{i=1}^{\infty} \left[\frac{n}{p^i}\right].$$

Then, we obtain

$$\log n! = \sum_{p \le n, p \in \mathbb{P}} \alpha_p \log p = \sum_{p \le n, p \in \mathbb{P}} \left[\frac{n}{p}\right] \log p + \sum_{p \le n, p \in \mathbb{P}} \sum_{i=2}^{\infty} \left[\frac{n}{p^i}\right] \log p.$$

But

$$\begin{split} \sum_{p \leq n, p \in \mathbb{P}} \sum_{i=2}^{\infty} [\frac{n}{p^i}] \log p & \leq & n \sum_{p \leq n, p \in \mathbb{P}} \sum_{i=2}^{\infty} \frac{1}{p^i} \log p \\ & \leq & n \sum_{p \leq n, p \in \mathbb{P}} \frac{\log p}{p^2} \cdot \frac{p}{p-1} \\ & \leq & n \sum_{k=2}^{\infty} \frac{\log k}{k^2} \cdot \frac{k}{k-1} \\ & \leq & 2n \sum_{k=2}^{\infty} \frac{\log k}{k^2} \\ & = & O(n). \end{split}$$

On the other hand, the Stirling formula says that

$$\log n! = n \log n + O(n).$$

Comparing the above two formula, we obtain 8.6.1.

Theorem. Let $x \geq 2$, there is important relations between the functions $\theta(x)$ and $\pi(x)$:

(8.6.2)
$$\theta(x) = \pi(x) \log x - \int_{2}^{x} \frac{\pi(t)}{t} dt$$

(8.6.3)
$$\pi(x) = \frac{\theta(x)}{\log x} + \int_{2}^{x} \frac{\theta(t)}{t(\log t)^{2}} dt$$

The proof is dependent of the following lemma heavily:

Lemma (Abel identity). Let $a(n): \mathbb{N} \to \mathbb{C}$ be a arithmetic function, its sum function is

$$A(x) = \sum_{n \le x} a(n), \ x \ge 1.$$

Let f(t) is a differential function on [y,x] where $y \in [1,x]$. Then, there holds

(8.6.4)
$$\sum_{y < n \le x} a(n)f(n) = A(x)f(x) - A(y)f(y) - \int_{y}^{x} A(t)f'(t)dt$$

*Proof.*We leave it as an exercise.

2. Define **Mangoldt** function on \mathbb{N}

$$\Lambda(n) = \begin{cases} \log p, & n = p^m, m \in \mathbb{N} \text{ for some } p \in \mathbb{P}; \\ 0, & \text{others.} \end{cases}$$

Define

$$\psi(x) = \sum_{n \in \mathbb{N}, n \le x} \Lambda(n), \ x > 0.$$

Example. There holds $\psi(x) \sim \theta(x)$, moreover

(8.6.5)
$$\psi(x) = \theta(x) + O(\sqrt{x}\log x), (x \to \infty).$$

*Proof.*It is obvious that there holds

(8.6.6)
$$\psi(x) = \theta(x) + \sum_{i=2}^{\infty} \theta(x^{\frac{1}{i}}).$$

We note

$$0 \le \theta(x^{\frac{1}{i}}) \le x^{\frac{1}{i}} \log(x^{\frac{1}{i}}),$$

if $i \geq 2$; and

$$\theta(x^{\frac{1}{i}}) = 0$$

if $i > \left[\frac{\log x}{\log 2}\right] = M$. Thus

$$\theta(x) \le \psi(x) \le \theta(x) + \sum_{i=2}^{M} \theta(x^{\frac{1}{i}}) \le \theta(x) + \sum_{i=2}^{M} x^{\frac{1}{i}} \log(x^{\frac{1}{i}}) \le \theta(x) + Mx^{\frac{1}{2}} \log(x^{\frac{1}{2}}).$$

3. Moreover, we have

(8.6.7)
$$\overline{\lim}_{x \to \infty} \frac{\pi(x)}{x(\log x)^{-1}} = \overline{\lim}_{x \to \infty} \frac{\theta(x)}{x} = \overline{\lim}_{x \to \infty} \frac{\psi(x)}{x}.$$

*Proof.*i. At first, from 8.6.6we obtain

$$\psi(x) = \sum_{p \in \mathbb{P}, p \le x} \left[\frac{\log x}{\log p} \right] \log p,$$

and so

$$\theta(x) \le \psi(x) \le \sum_{p \in \mathbb{P}, p \le x} \frac{\log x}{\log p} \log p = \pi(x) \log x$$

Thus, we obtain

$$\overline{\lim_{x\to\infty}}\frac{\theta(x)}{x} \leq \overline{\lim_{x\to\infty}}\frac{\psi(x)}{x} = \overline{\lim_{x\to\infty}}\frac{\pi(x)}{x(\log x)^{-1}}.$$

ii. On the other hand, for any α with $0 < \alpha < 1$, and x > 1, there holds

$$\theta(x) \ge \sum_{p \in \mathbb{P}, x^{\alpha}$$

Thus

$$\overline{\lim_{x \to \infty}} \frac{\theta(x)}{x} \ge \alpha \overline{\lim_{x \to \infty}} \frac{\pi(x)}{x(\log x)^{-1}}.$$

Since it holds for any $0 < \alpha < 1$, there is

$$\overline{\lim_{x \to \infty}} \frac{\theta(x)}{x} \ge \overline{\lim_{x \to \infty}} \frac{\pi(x)}{x(\log x)^{-1}}.$$

Similarly, we obtain

(8.6.8)
$$\underline{\lim}_{x \to \infty} \frac{\pi(x)}{x(\log x)^{-1}} = \underline{\lim}_{x \to \infty} \frac{\theta(x)}{x} = \underline{\lim}_{x \to \infty} \frac{\psi(x)}{x}.$$

Corollary. There holds

(8.6.9)
$$\pi(x) \sim \frac{\theta(x)}{\log x} \sim \frac{\psi(x)}{\log x}, \ (x \to \infty).$$

4. Define **Möblius** function $\mu : \mathbb{N} \to \{=1,0,1\}$ by

$$\mu(n) = \begin{cases} 1, & n = 1; \\ (-1)^r, & n = q_1 q_2 \cdots q_r, q_1 < q_2 < \cdots < q_r; \\ 0, & \text{others.} \end{cases}$$

Thus, if $(n_1, n_2) = 1$, then $\mu(n_1 n_2) = \mu(n_1)\mu(n_2)$, and for any $n \in \mathbb{N}$, there holds

(8.6.10)
$$\sum_{k|n} \mu(k) = \left[\frac{1}{n}\right].$$

Example. For any $x \geq 1$, there holds

$$|\sum_{d \le x} \frac{\mu(d)}{d}| \le 1.$$

Proof.

$$1 = \sum_{n \le x} \left[\frac{1}{n} \right] = \sum_{n \le x} \sum_{d \mid n} \mu(d) = \sum_{d \mid x: d \le 1, l \le 1} \mu(d) = \sum_{d \le x} \mu(d) \sum_{1 \le l \le x/d} 1 = \sum_{d \le x} \mu(d) \left[\frac{x}{d} \right],$$

thus we obtain

$$x \sum_{d < x} \frac{\mu(d)}{d} = 1 - \sum_{d < x} \mu(d) \{ \frac{x}{d} \}.$$

Since

$$\sum_{2 \le d \le x} \mu(d) \left\{ \frac{x}{d} \right\} < \sum_{2 \le d \le x} 1 \le [x] - 1 = x - \{x\} - 1,$$

we have

$$|1 - \sum_{d \leq x} \mu(d)\{\frac{x}{d}\}| = |1 - \{x\} - \sum_{2 \leq d \leq x} \mu(d)\{\frac{x}{d}\}| \leq x.$$

Lemma (Möbius Transform). Let f(n), g(n) be arithmetic functions, i.e., from \mathbb{N} to \mathbb{C} . Then the follow two formulas are equivalent:

(8.6.12)
$$g(n) = \sum_{d|n} f(d);$$

(8.6.13)
$$f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d}).$$

Corollary. For any $n \in \mathbb{N}$, there holds

$$\sum_{d|n} \Lambda(d) = \log n.$$

*Proof.*Let $n = q_1^{\alpha_1} q_2^{\alpha_2} \cdots q_r^{\alpha_r}$. Then, by induction on the number r, there is

$$\sum_{d|n} \Lambda(d) = \sum_{\lambda_1=0}^{\alpha_1} \sum_{\lambda_2=0}^{\alpha_2} \cdots \sum_{\lambda_r=0}^{\alpha_r} \Lambda(q_1^{\lambda_1} q_2^{\lambda_2} \cdots q_r^{\lambda_r})$$

$$= \sum_{\lambda_1=1}^{\alpha_1} \sum_{\lambda_2=0}^{\alpha_2} \cdots \sum_{\lambda_r=0}^{\alpha_r} \Lambda(q_1^{\lambda_1} q_2^{\lambda_2} \cdots q_r^{\lambda_r}) + \sum_{\lambda_2=0}^{\alpha_2} \cdots \sum_{\lambda_r=0}^{\alpha_r} \Lambda(q_1^{\lambda_1} q_2^{\lambda_2} \cdots q_r^{\lambda_r})$$

$$= \sum_{\lambda_1=1}^{\alpha_1} \Lambda(q_1^{\lambda_1}) + \sum_{d|q_2^{\alpha_2} \cdots q_r^{\alpha_r}} \Lambda(d)$$

$$= \alpha_1 \log q_1 + \log q_2^{\alpha_2} \cdots q_r^{\alpha_r}$$

$$= \log n.$$

Example. [Tchebychev's identity]

$$(8.6.14) \qquad \sum_{n \le x} \psi(\frac{x}{n}) = \log[x]!.$$

Proof.

$$\log([x]!) = \sum_{p \in \mathbb{P}, p \le [x]} (\sum_{i=1}^{\infty} [\frac{[x]}{p^i}]) \log p = \sum_{p \in \mathbb{P}, p \le [x]} (\sum_{i=1}^{\infty} [\frac{x}{p^i}]) \log p$$

$$= \sum_{p \in \mathbb{P}, p \le [x]} \sum_{i=1}^{\infty} \Lambda(p^i) [\frac{x}{p^i}] = \sum_{p \in \mathbb{P}, p^i \le [x]} \Lambda(p^i) [\frac{x}{p^i}]$$

$$= \sum_{d \le x} \Lambda(d) [\frac{x}{d}] = \sum_{d \le x} \psi(\frac{x}{d}).$$

By the exercise 8.6.16, we obtain

Corollary.

(8.6.15)
$$\sum_{n \le x} \psi(\frac{x}{n}) = x \log x - x + O(\log x), \ x \ge 1.$$

Example (Tchebychev's inequality). For $x \geq 2$, there holds

$$(8.6.16) (\frac{\log 2}{4})x \le \psi(x) \le (4\log 2)x.$$

*Proof.*Let $n \in \mathbb{N}$. we obtain

$$\log(2n)! - 2\log n! = \sum_{k \le 2n} \psi(\frac{2n}{k}) - 2\sum_{k \le n} \psi(\frac{n}{k})$$
$$= \sum_{k \le 2n} \psi(\frac{2n}{k}) - 2\sum_{k \le n} \psi(\frac{2n}{2k})$$
$$= \sum_{k \le 2n} (-1)^{k-1} \psi(\frac{2n}{k}),$$

then

(8.6.17)
$$\psi(2n) - \psi(n) \le \log \frac{(2n)!}{(n!)^2} \le \psi(2n).$$

It is obvious that

$$2^n \le \frac{(2n)!}{(n!)^2} \le 4^n, n \ge 2,$$

thus

$$\psi(2n) \ge n \log 2, \ \psi(2n) - \psi(n) \le 2n \log 2.$$

Then, for $x \geq 2$, there is $m \in \mathbb{N}$ with $2^{m-1} \leq x \leq 2^m$ we obtain

$$\psi(x) \ge \psi(2[\frac{x}{2}]) \ge [\frac{x}{2}] \log 2 > (\frac{\log 2}{4})x,$$

and

$$\psi(x) \le \psi(2^m) = \sum_{i=0}^{m-1} \psi(2^{i+1}) - \psi(2^i) \le (\sum_{i=0}^{m-1} 2^{i+1}) \log 2 < 2^{m+1} \log 2 < (4 \log 2)x.$$

Exercise 8.7. 1. To show that for any $n \in \mathbb{N}$, there holds

$$\log n \sum_{d|n} \mu(d) = 0,$$

and so

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d} = -\sum_{d|n} \mu(d) \log d,$$

i.e., The Möbius transform of $-\mu(n) \log n$ is $\Lambda(n)$. Therefore, there is

(8.7.1)
$$-\mu(n)\log n = \sum_{d|n} \Lambda(\frac{n}{d}), \ n \in N.$$

2. Generalized Möbius Transform Let F(x), G(x) be two functions defined over $x \ge 1$. Then the follow two formulas are equivalent:

(8.7.2)
$$G(x) = \sum_{x \in \mathbb{R}} F(\frac{x}{n});$$

(8.7.3)
$$F(x) = \sum_{n \le x} \mu(n)G(\frac{x}{n}).$$

3. To show the Tchebychev's identity 4

$$\sum_{n \le x} \psi(\frac{x}{n}) = \log[x]!.$$

by the generalized Möbius transform 8.7.2.

4. To show that for any $x \geq 1$, there holds

(8.7.4)
$$\log[x]! = x \log x - x + O(\log(x)).$$

Proof. Using

$$\int_{1}^{x} \log t dt = x \log x - x + 1,$$

we obtain

$$\log[x]! = \sum_{n \le [x]-1} \log n + \log x$$

$$\le \sum_{n \le [x]-1} \int_{n}^{n+1} \log t dt + \log x$$

$$\le \int_{1}^{x} \log t dt + \log x$$

$$= x \log x - x + 1 + \log x,$$

and

$$\log[x]! = \sum_{2 \le n \le [x]} \log n$$

$$\ge \sum_{2 \le n \le [x]} \int_{n-1}^{n} \log t dt$$

$$= \int_{1}^{x} \log t dt - \int_{[x]}^{x} \log t dt$$

$$\ge \int_{1}^{x} \log t dt - \log x$$

$$= x \log x - x + 1 - \log x,$$

5. To show that

$$\theta(x) = O(x), \ x \ge 1.$$

Proof.At first, by 8.6.1 we have

$$\sum_{p \le n, p \in \mathbb{P}} \left[\frac{n}{p} \right] \log p = n \log n + O(n),$$

thus

$$\sum_{p \in \mathbb{P}, p < 2n} \left[\frac{2n}{p} \right] \log p - 2 \left[\frac{n}{p} \right] \log p = O(n).$$

52

Since

$$\left[\frac{2n}{p}\right] - 2\left[\frac{n}{p}\right] = \begin{cases} 1, & n$$

there is

$$\theta(2n) - \theta(n) = \sum_{n$$

and so

$$\begin{array}{rcl} \theta(2x) - \theta(x) & = & \theta([2x]) - \theta([x]) \\ & = & \theta([2x]) - \theta(2[x]) + \theta(2[x]) - \theta([x]) \\ & = & O(\log[2x]) + O([x]) \\ & = & O([x]). \end{array}$$

Define $k(x) = [\log x/\log 2] + 1$, then for $x \ge 1$, we obtain

$$\theta(x) = \sum_{i=1^{k(x)}} \left(\theta(\frac{x}{2^{i-1}}) - \theta(\frac{x}{2^i})\right) = O(1) \sum_{i=1}^{\infty} \frac{x}{2^i} = O(x).$$

8.4. Mertens' Theorem and Selberg's Inequality.

8.8. Mertens' Theorems

1. By 8.7.2, the generalized möbius transform of $\psi(x)$ is

(8.8.1)
$$T(x) = \sum_{n \le x} \psi(\frac{x}{n}) = \sum_{m,n \in \mathbb{N}, mn \le x} \Lambda(m) = \sum_{m \le x} \Lambda(m) \left[\frac{x}{m}\right].$$

2. For $x \ge 1$, there holds

(8.8.2)
$$\sum_{n \le x} \frac{\Lambda(n)}{n} = \log x + O(1).$$

*Proof.*By 8.8.1, we obtain

$$\sum_{m \le x} \Lambda(m) \left[\frac{x}{m}\right] = T(x) = x \log x + O(x),$$

and so the Tchebychev inequality say

$$0 \le \sum_{n \le x} \Lambda(n) \left(\frac{x}{n} - \left[\frac{x}{n}\right]\right) \le \sum_{n \le x} \Lambda(n) = \psi(x) < 4x.$$

3. Also, we have

(8.8.3)
$$\sum_{p \le x, p \in \mathbb{P}} \frac{\log p}{n} = \log x + O(1), \ x \ge 1.$$

Proof. At first, we have

$$\sum_{n \le x} \frac{\Lambda(n)}{n} - \sum_{p \le x, p \in \mathbb{P}} \frac{\log p}{p}$$

$$= \sum_{m \ge 2} \sum_{p \in \mathbb{P}, p \le x^{1/m}} \frac{\log p}{p^m}$$

$$< \sum_{p \in \mathbb{P}} \log p \left(\sum_{i=2}^{\infty} \frac{1}{p^i}\right)$$

$$= \sum_{p \in \mathbb{P}} \frac{\log p}{p(p-1)}$$

$$< \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)} = O(1).$$

Then, by 8.8.3 we obtain the 8.8.3.

4.

Lemma. Let $\{\lambda_n\}$ be an increasing sequence with $\lambda_n \to \infty (n \to \infty)$ and $\{a_n\}$ be any sequence. Let b(x) be a function on \mathbb{R} such that it is continuous on any finite interval $[\lambda_1, \xi]$. Then, there holds

(8.8.4)
$$\sum_{\lambda_1 \le \lambda_n \le x} a_n b(\lambda_n) = S(x)b(x) - \int_{\lambda_1}^x S(x)b'(x)dt,$$

where

$$S(x) = \sum_{\lambda_1 < \lambda_n < x} a_n.$$

Proof.

$$S(x)b(x) - \sum_{\lambda_1 \le \lambda_n \le x} a_n b(\lambda_n)$$

$$= \sum_{\lambda_1 \le \lambda_n \le x} a_n (b(x) - b(\lambda_n))$$

$$= \sum_{\lambda_1 \le \lambda_n \le x} \int_{\lambda_n}^x a_n b'(t) dt$$

$$= \int_{\lambda_1}^x (\sum_{\lambda_1 \le \lambda_n \le t} a_n) b'(t) dt$$

$$= -\int_{\lambda_1}^x S(x) b'(x) dt.$$

Theorem. For $x \geq 2$, there is

(8.8.5)
$$\sum_{p \in \mathbb{P}} \frac{1}{p} = \log \log x + A_1 + O(\frac{1}{\log x}), \ x \le 2$$

where A_1 is a constant.

*Proof.*Define a sequence $\{\lambda_n\}$ by

$$\lambda_1 = 2, \lambda_n = p_n \in \mathbb{P}(n \ge 2);$$

and define sequence $\{a_n\}$ by

$$a_n = \frac{\log p_n}{\log p_n}, p_n \in \mathbb{P}.$$

From 8.8.3, we obtain

$$S(x) = \sum_{\lambda_1 < \lambda_n < x} a_n = \log x + O(1).$$

Let $b(x) = \frac{1}{\log x}$ and $r(x) = S(x) - \log x$ From 8.8.4, we have

$$\begin{split} \sum_{p \in \mathbb{P}, p \leq x} \frac{1}{p} &= \frac{S(x)}{\log x} + \int_{2}^{x} \frac{S(t)}{t(\log t)^{2}} dt \\ &= \frac{\log x + O(1)}{\log x} + \int_{2}^{x} \frac{\log t + O(1)}{t(\log t)^{2}} dt \\ &= \log \log x + O(\frac{1}{\log x}) + A + O(1) \int_{x}^{\infty} \frac{dt}{t(\log t)^{2}} \\ &= \log \log x + O(\frac{1}{\log x}) + A, \end{split}$$

where

$$A = 1 - \log \log 2 + \int_2^\infty \frac{r(t)dt}{t(\log t)^2}$$

is a constant.

8.9. Selberg's Asymptotic Formula

1.

Lemma 8.10. Let F(x), G(x) be two functions defined over $x \ge 1$ with F(1) = G(1). The the following two relations are equivalent:

(8.10.1)
$$G(x) = \sum_{1 \le n \le x} F(\frac{x}{n})$$

and

(8.10.2)
$$\sum_{1 \le n \le x} \mu(n)G(\frac{x}{n})\log\frac{x}{n} = F(x)\log x + \sum_{1 \le n \le x} F(\frac{x}{n})\Lambda(n)$$

*Proof.*If the relation

$$G(x) = \sum_{1 \le n \le x} F(\frac{x}{n})$$

holds then we obtain

$$\begin{split} \sum_{1 \leq n \leq x} \mu(n) G(\frac{x}{n}) \log \frac{x}{n} &= \sum_{n \leq x} \mu(n) \log \frac{x}{n} \sum_{m \leq x/n} F(\frac{x}{mn}) \\ &= \sum_{k \leq x} F(\frac{x}{k}) \sum_{n|k} \mu(n) \log \frac{x}{n} \\ &= \log x \sum_{n \leq x} F(\frac{x}{n}) \sum_{k|n} \mu(k) - \sum_{n \leq x} F(\frac{x}{n}) \sum_{k|n} \mu(k) \log k \\ &= F(x) \log x + \sum_{1 \leq n \leq x} F(\frac{x}{n}) \Lambda(n). \end{split}$$

Assume the relation

$$\sum_{1 \le n \le x} \mu(n)G(\frac{x}{n})\log\frac{x}{n} = F(x)\log x + \sum_{1 \le n \le x} F(\frac{x}{n})\Lambda(n)$$

holds.Let

$$k(n) = \sum_{1 \le n \le x} \mu(n) G(\frac{x}{n}) \log \frac{x}{n},$$

then by the generalized Möbius transform 8.7.2 we obtain

$$G(x)\log x = \sum_{1 \le n \le x} k(\frac{x}{n}),$$

thus,

$$G(x)\log x = \sum_{1 \le n \le x} \{F(\frac{x}{n})\log \frac{x}{n} + \sum_{1 \le m \le \frac{x}{n}} F(\frac{x}{nm})\Lambda(m)\}$$

$$= \log x \sum_{1 \le n \le x} F(\frac{x}{n}) - \sum_{1 \le n \le x} \{F(\frac{x}{n})\log n + \sum_{1 \le k \le x} F(\frac{x}{k}) \sum_{m|k} \Lambda(m)$$

$$= \log x \sum_{1 \le n \le x} F(\frac{x}{n}) - \sum_{1 \le n \le x} \{F(\frac{x}{n})\log n + \sum_{1 \le k \le x} F(\frac{x}{k})\log k$$

$$= \log x \sum_{1 \le n \le x} F(\frac{x}{n})$$

2. Denote $\psi_1(x) = x - \gamma - 1$, where γ is the Euler constant. Let

$$T(x) = \sum_{n \le x} \psi(\frac{x}{n}), \ T_1(x) = \sum_{n \le x} \psi_1(\frac{x}{n}).$$

Since

$$\sum_{n \in \mathbb{N}} \frac{1}{n} = \log x + \gamma + O(\frac{1}{x}), \quad x \ge 1,$$

Then

$$T_1(x) = \sum_{n \le x} (\frac{x}{n} - \gamma - 1) = x \log x - x + O(1).$$

Moreover, since there is

$$T(x) = [n]! = x \log x - x + O(\log(x)) \ x \ge 1,$$

we obtain

(8.10.3)
$$T(x) - T_1(x) = \sum_{n \le x} \{ \psi(\frac{x}{n}) - \psi_1(\frac{x}{n}) \} = O(\log x),$$

and for any $l \in \mathbb{Z}_{\geq 0}$, we obtain

$$(8.10.4) \sum_{n \le x} \mu(n) \{ T(\frac{x}{n}) - T_1(\frac{x}{n}) \} (\log \frac{x}{n})^l << \sum_{n \le x} (\log \frac{x}{n})^{l+1} << \sum_{n \le x} (\frac{x}{n})^{\frac{1}{2}} << x.$$

Actually we again obtain the Tchebychev inequality while l = 0.

Theorem 1 (Selberg's Inequality).

(8.10.5)
$$(\psi(x) - x) \log x + \sum_{n \le x} \Lambda(n) (\psi(\frac{x}{n}) - \frac{x}{n}) = O(x).$$

*Proof.*Denote

$$F(x) = \psi(x) - \psi_1(x) = \psi(x) - (x - \gamma - 1)$$
, and $G(x) = T(x) - T_1(x)$.

From 8.10.2 and 8.10.4, we obtain

$$(\psi(x) - (x - \gamma - 1)) \log x + \sum_{1 \le n \le x} \Lambda(n) (\frac{x}{n} - \gamma - 1))$$

$$= \sum_{1 \le n \le x} \mu(n) (T(\frac{x}{n}) - T(\frac{x}{n})) \log \frac{x}{n}$$

$$<< \sum_{n \le x} (\log \frac{x}{n})^2 << x.$$

3. Selberg's inequality says that

$$\psi(x)\log x + \sum_{n \le x} \Lambda(n)\psi(\frac{x}{n}) = \log x + \sum_{n \le x} \Lambda(n)\frac{x}{n} + O(x),$$

then withith Merterns' theorem, we immediately obtain

Corollary (Selberg's Asymptotic Formula).

(8.10.6)
$$\psi(x)\log x + \sum_{n \le x} \Lambda(n)\psi(\frac{x}{n}) = 2x\log x + O(x).$$

(8.10.7)
$$\sum_{p \le x, p \in \mathbb{P}} \log^2 p + \sum_{p, q \in \mathbb{P}, pq \le x} \log p \log q = 2x \log x + O(x).$$

Proof.Only 8.10.7 is left to prove. Since

$$\psi(x) = \theta(x) + O(\sqrt{x} \log x), (x \to \infty),$$

the formula 8.10.6 can be formulated into

(8.10.8)
$$\theta(x)\log x + \sum_{p \le x, p \in \mathbb{P}} \theta(\frac{x}{n})\log p = 2x\log x + O(x).$$

On the other hand,

$$\theta(x) - \sum_{p \le x, p \in \mathbb{P}} \log^2 p = \sum_{p \le x, p \in \mathbb{P}} \log p \log \frac{x}{p}$$

$$= \sum_{p \le x, p \in \mathbb{P}} \log p (\sum_{n \le \frac{x}{p}} \frac{1}{n} + O(1))$$

$$= \sum_{n \le x} \frac{1}{n} \sum_{n \le \frac{x}{p}} \log p + O(\theta(x))$$

$$= O(x \sum_{n \le x} \frac{1}{n^2}) + O(x)$$

$$= O(x).$$

8.5. An Elementary Proof of The Prime Number Theorem by Selberg and Erdös.

8.6. Gauss's Proof of The Fundamental Theorem of Algebra.

Theorem. Let

$$f(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_{1}x + a_{0}$$

be a polynomial with $a_i \in \mathbb{C} \ \forall i$. Then, there exists a root $\alpha \in \mathbb{C}$ of f(x), i.e., $f(\alpha) = 0$.

Proof. Let
$$x = re^{\sqrt{-1}\theta} = r(\cos\theta + \sin\theta)$$
. Then $f(re^{\sqrt{-1}\theta}) = P(r,\theta) + \sqrt{-1}Q(r,\theta)$ with $P(r,\theta) = r^n \cos(n\theta) + \cdots$, $Q(r,\theta) = r^n \sin(n\theta) + \cdots$.

We know that

$$F(r,\theta) = (P^2 + Q^2)(r,\theta) = r^{2n} + \cdots$$

is a function of (r,θ) . If there is a pair (r_0,θ_0) satisfying $F(r_0,\theta_0)=0$ then $r_0e^{\sqrt{-1}\theta_0}$ is a root of the polynomial f(x). Suppose that $F(r,\theta)$ has no zero point, we show there must be a confliction: We can define a differentiable function of (r,θ) by $U = \arctan \frac{P}{Q}$ since $F(r,\theta)$ has no zero point. Thus, there is

$$\frac{\partial U}{\partial r} = \frac{1}{P^2 + Q^2} (Q \frac{\partial P}{\partial r} - P \frac{\partial Q}{\partial r}), \ \frac{\partial U}{\partial \theta} = \frac{1}{P^2 + Q^2} (Q \frac{\partial P}{\partial \theta} - P \frac{\partial Q}{\partial \theta}),$$

and so

$$\frac{\partial^2 U}{\partial r \partial \theta} = \frac{H}{P^2 + Q^2},$$

where H is a continuous function of (r, θ)

Denote

$$I_1 = \int_0^R \left(\int_0^{2\pi} \frac{\partial^2 U}{\partial r \partial \theta} d\theta \right) dr$$
, and $I_2 = \int_0^{2\pi} \left(\int_0^R \frac{\partial^2 U}{\partial r \partial \theta} dr \right) d\theta$.

Since $\frac{\partial^2 U}{\partial r \partial \theta}$ is a continuous function of (r, θ) , there holds $I_1 = I_2$.

On the other hand, we have the following calculations

 $I_1 = 0$ is given by

$$\int_0^{2\pi} \frac{\partial^2 U}{\partial r \partial \theta} d\theta = \frac{\partial U}{\partial r} |_0^{2\pi} = 0.$$

ii.

$$\frac{\partial P}{\partial \theta} = -nr^n \sin(n\theta) + \cdots$$
, and $\frac{\partial Q}{\partial \theta} = nr^n \cos(n\theta) + \cdots$,

and so,

$$\begin{split} Q\frac{\partial P}{\partial \theta} - P\frac{\partial Q}{\partial \theta} &= -nr^{2n} + \cdots, \\ \frac{\partial U}{\partial \theta} &= \frac{1}{P^2 + Q^2} (Q\frac{\partial P}{\partial \theta} - P\frac{\partial Q}{\partial}) = \frac{-nr^{2n} + \cdots}{r^{2n} + \cdots}. \end{split}$$

Regarding $Q \frac{\partial P}{\partial \theta} - P \frac{\partial Q}{\partial \theta}$ and $P^2 + Q^2$ as polynomials of r, then all coefficients in both polynomials are bounded function of θ . Therefore

$$\lim_{r \to \infty} \frac{\partial U}{\partial \theta} = -n \text{ (uniformly for all } \theta),$$

$$\int_{0}^{R} \frac{\partial^{2} U}{\partial r \partial \theta} dr = \frac{\partial U}{\partial \theta} \Big|_{0}^{R} \longrightarrow -n \text{ (uniformly for all } \theta),$$

and so

$$\lim_{R \to \infty} I_2 = -2n\pi.$$

 $\lim_{R\to\infty}I_2=-2n\pi.$ It is a confliction to that $I_1=I_2.$ Thus P^2+Q^2 has at least one zero point.

9. Advanced Techniques in Analysis

9.1. Preliminary Results in Analysis.

9.1. Some useful techniques.

1. Unit decomposition. Let $K \subset \mathbb{R}^n$ is a compact set, U_1, \dots, U_N is open covering of K. Then there exist functions $\eta_1 \in C_0^{\infty}(U_1), \dots, \eta_N \in C_0^{\infty}(U_N)$, such that i.

$$0 \le \eta_i(x) \le 1, \forall x \in U_i (i = 1, \dots, N);$$

ii.

$$\sum_{i}^{N} \eta_{i}(x) \equiv 1, \, \forall x \in K.$$

2. **Local** C^k -flattening Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. We call the boundary $\partial \Omega$ is C^k , if for any $x^0 \in \partial \Omega$ there is a neighborhood $U \subset \mathbb{R}^n$ of x^0 and a bijective function $\Psi: U \to B_1(0)$ with $\Psi(x^0) = 0$ such that

i. Ψ, Ψ^{-1} are C^k .

ii.

$$\Psi(U \cap \Omega) = B_1^+(0) = \{ y \in B_1(0) : y_n > 0 \},\$$

iii.

$$\Psi(U \cap \partial\Omega) = \partial B_1^+(0) = \{ y \in B_1(0) : y_n = 0 \}.$$

3. **Lipschitz flattening** An open subset $\Omega \subset \mathbb{R}^n$ is said to be **Lipschitz** if for every the boundary $\partial \Omega$ is C^k , if if for any $x^0 \in \partial \Omega$ there exist a neighborhood $U \subset \mathbb{R}^n$ of x^0 and a bijective function $\Psi_{x^0}: U \to B_1(0)$ with $\Psi(x^0) = 0$ such that

i. Ψ, Ψ^{-1} are Lipschitz.

ii.

$$\Psi(U \cap \Omega) = B_1^+(0) = \{ y \in B_1(0) : y_n > 0 \},\$$

iii.

$$\Psi(U \cap \partial\Omega) = \partial B_1^+(0) = \{ y \in B_1(0) : y_n = 0 \}.$$

Corollary. Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. There exists a continuous linear extension operator

$$E: W^{1,2}(\Omega) \longrightarrow W^{1,2}(\mathbb{R}^n)$$

such that

$$||E(u)||_{W^{1,2}(\mathbb{R}^n)} \le C(\Omega)||u||_{W^{1,2}(\Omega)}, \ \forall u \in W^{1,2}(\Omega).$$

Moreover, it is possible to arrange such an extension E such that

$$\{x \in \mathbb{R}^n : E(u) \neq 0\} \subset \{x \in \mathbb{R}^n : dist(x, \overline{\Omega}) \leq 1\}.$$

9.2. Friedrichs smoothing mollifiers.

- 1. Consider a function $j \in C_0^{\infty}(\mathbb{R}^n)$ having support in $B_1(0) = \{x \in \mathbb{R}^n : |x| < 1\}$ with the properties
 - $\bullet \quad j(x) \ge 0,$
 - $\bullet \quad \int_{B_1(0)} j(x) dx = 1.$

Example. Denote

$$j(x) = \begin{cases} \frac{1}{A} \exp(\frac{1}{|x|^2 - 1}), & |x| < 1; \\ 0, & |x| \ge 1; \end{cases}$$

where

$$A = \int_{B_1(0)} \exp(\frac{1}{|x|^2 - 1}) dx.$$

2. For any $\epsilon > 0$, we define the mollifiers

$$j_{\epsilon}(x) = \frac{1}{\epsilon^n} j(\frac{x}{\epsilon}),$$

then j_{ϵ} has compact support in $B_{\epsilon}(0) = \{x \in \mathbb{R}^n : |x| < \epsilon\}$ with the properties

- $j_{\epsilon}(x) \geq 0$,
- $\int_{B_{\epsilon}(0)} j_{\epsilon}(x) dx = 1.$

Remark. The following are useful remarks:

a) For any $\varepsilon > 0$, there is a δ with $0 < \delta < 1$ such that

$$0 < \int_{\mathbb{R}^n \backslash B_R(0)} j(x) \le \varepsilon, \ \forall \delta \le R < 1,$$

and

$$0 < \int_{\mathbb{R}^n \setminus B_{\epsilon R}(0)} j_{\epsilon}(x) \le \varepsilon, \ \forall \delta \le R < 1.$$

b) If j(x) has additional property j(x) = j(|x|), then we have

$$\frac{n\omega_n}{\epsilon^n} \int_0^{\epsilon} j(\frac{r}{\epsilon}) r^{n-1} dr = 1,$$

where ω_n is the volume of unit ball in \mathbb{R}^n , actually

$$\omega_n = \frac{2\pi^{\frac{n}{2}}}{n\Gamma(\frac{n}{2})}.$$

3. We can use the mollifiers j_{ϵ} to smooth a function $u \in L^1_{loc}(\Omega)(\Omega \subset \mathbb{R}^n)$. Let

$$\Omega_{\epsilon} := \{ x \in \Omega : dist(x, \partial \Omega) > \epsilon \}$$

and for any $x \in \Omega_{\epsilon}$, denote

$$J_{\epsilon}u(x) = (u * j_{\epsilon})(x) := \int_{\Omega} u(y)j_{\epsilon}(x - y)dy,$$

 $J_{\epsilon}u$ is evidently smooth on Ω_{ϵ} . In fact, by virtue of the usual differential under the integral lemma, for any $x \in \Omega_{\epsilon}$,

$$D_x^{\alpha} J_{\epsilon} u(x) = \int_{\Omega} u(y) D_x^{\alpha} j_{\epsilon}(x-y) dy.$$

We then call that $J_{\epsilon}u$ is the **smoothing (mollifying)of** u, and J_{ϵ} the **smoothing operator**, j_{ϵ} the **smoothing (mollifying) kernel**.

Remark. Mollifying kernels were indroduced into PDE theory by K.O.Friedrichs. Therefore, they are often called "**Friedrichs mollifiers**".

Proposition 9.3. Let u be a function on \mathbb{R}^n with

$$\mathrm{Supp} u \subset \Omega \subset \mathbb{R}^n.$$

We will put u(y) = 0 for $y \in \mathbb{R}^n \setminus \Omega$. (We shall always use that convention in the sequel.) Then, we have the following properties:

- a) If $u \in L^1_{loc}(\Omega)$, then $J_{\epsilon}u \in C^{\infty}(\Omega_{\epsilon})$.
- b) If $\operatorname{dist}(\operatorname{Supp} u, \partial \Omega) > \epsilon$, then $J_{\epsilon}u \in C_0^{\infty}(\Omega)$.
- c)

$$J_{\epsilon}u \xrightarrow{a.e.} u \ on \ \Omega,$$

and moreover for all compact sets $K \subset \Omega$,

i. $J_{\epsilon}u \longrightarrow u$ on $K(\text{on }\overline{\Omega} \text{ for } u \in C^0(\overline{\Omega}))$ uniformly if u is continuous.

$$J_{\epsilon}u \xrightarrow{L^1(K)} u.$$

*Proof.*Now let $u \in C^0(\Omega)$. At first, Let

$$\rho = \frac{\operatorname{dist}(K, \partial \Omega)}{2}.$$

Then, for any given $\varepsilon > 0$, there exists δ with $\rho > \delta > 0$ such that

• $B_{\delta}(x) \subset K_{\rho}, \forall x \in K$, where K_{ρ} is a compact set in Ω denoted by

$$K_{\rho} = \{ x \in \Omega \mid \operatorname{dist}(x, K) \leq \rho \};$$

• if $0 < \epsilon < \delta$ then

$$\sup_{z \in B_1(0)} |u(x + \epsilon z) - u(x)| < \varepsilon, \ \forall x \in K,$$

since u is uniformly continuous on the compact set K_{ρ} .

If $\epsilon < \rho$ then

$$J_{\epsilon}u(x) = (u * j_{\epsilon})(x) = \int_{\Omega} u(y) \frac{1}{\epsilon^n} j(\frac{x-y}{\epsilon}) dy = \int_{B_1(0)} j(z) u(x+\epsilon z) dz.$$

Therefore, for all $x \in K$, if $\epsilon < \delta$ then

$$|J_{\epsilon}u(x) - u(x)| \le \int_{B_1(0)} j(z)|u(x + \epsilon z) - u(x)|dz \le \sup_{z \in B_1(0)} |u(x + \epsilon z) - u(x)| \int_{B_1(0)} j(z)dz \le \varepsilon.$$

d) If $u \in L^p(\Omega)$ $(1 \le p < \infty)$, then $J_{\epsilon}u \in L^p(\Omega)$, and

$$\lim_{\epsilon \to 0^+} ||J_{\epsilon}u - u||_{L^p(\Omega)} = 0.$$

Moreover, if $u \in L^{P}_{loc}(\Omega)$ then for all compact sets $K \subset \Omega$, we have

$$J_{\epsilon}u \xrightarrow{L^p(K)} u.$$

Proof. Denote

$$\Omega_{\rho} = \{ x \in \mathbb{R}^n \mid \operatorname{dist}(x, \Omega) \le \rho \}.$$

At first,

$$J_{\epsilon}u(x) = (u * j_{\epsilon})(x) = \int_{\Omega} u(y) \frac{1}{\epsilon^n} j(\frac{x-y}{\epsilon}) dy = \int_{B_{\epsilon}(\Omega)} j(z) u(x+\epsilon z) dz,$$

then for q > 0 with 1/q + 1/q = 1, we obtain

$$|J_{\epsilon}u(x)|^p \le (\int_{B_1(0)} j(z)dz)^{\frac{p}{q}} (\int_{B_1(0)} j(z)|u(x+\epsilon z)|^p dz).$$

If $\epsilon < \rho$, it follows that

(9.3.1)

$$\int_{\Omega} |J_{\epsilon}u(x)|^p dx \leq \int_{\Omega} \int_{B_1(0)} j(z)|u(x+\epsilon z)|^p dz dx = \int_{B_1(0)} j(z)(\int_{\Omega} |u(x+\epsilon z)|^p dx) dz \leq \int_{\Omega_{\rho}} |u(x)|^p dx.$$

For a given $\varepsilon > 0$, we choose $w \in C^0(\Omega_{\rho})$ with

$$||u-w||_{L^p(\Omega_\rho)} < \frac{\varepsilon}{3}.$$

On the other hand, for sufficiently small ϵ ,

$$||w - J_{\epsilon}w||_{L^p(\Omega_{\rho})} < \frac{\varepsilon}{3}.$$

Applying 9.3.1 to u-w, we obtain

$$||J_{\epsilon}u - J_{\epsilon}w||_{L^{p}(\Omega)} \le ||u - w||_{L^{p}(\Omega_{\rho})} < \frac{\epsilon}{3},$$

and hence

$$||J_{\epsilon}u - u||_{L^{p}(\Omega)} \le ||J_{\epsilon}u - J_{\epsilon}w||_{L^{p}(\Omega)} + ||J_{\epsilon}w - w||_{L^{p}(\Omega)} + ||u - w||_{L^{p}(\Omega)} \le \varepsilon.$$

Remark 9.4. In the proof, we did not use the smoothness of the kernel j at all. Thus, some results holds for other kernels, and in particular for

$$\sigma(x) = \begin{cases} \frac{1}{\omega_n}, & |x| \le 1; \\ 0, & |x| \ge 1; \end{cases}$$

The corresponding convolution is

$$u * \sigma_{\epsilon} = \frac{1}{\omega_n \epsilon^n} \int_{\Omega} \sigma(\frac{x - y}{\epsilon}) u(y) dy = \frac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} u(y) dy.$$

We obtain the the following result:

Corollary. If $u \in L^p(\Omega)$ $(1 \le p < \infty)$, then $u * \sigma_{\epsilon} \in L^p(\Omega)$, and

$$\lim_{\epsilon \to 0^+} ||\frac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} u(y) dy - u||_{L^p(\Omega)} = 0.$$

Moreover,

$$\frac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} u(y) dy \xrightarrow{a.e.} u \ on \ \Omega,$$

and for all compact sets $K \subset \Omega$,

i. $\frac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} u(y) dy \longrightarrow u$ on $K(\text{on } \overline{\Omega} \text{ for } u \in C^0(\overline{\Omega}))$ uniformly if u is continuous. ii.

$$\frac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} u(y) dy \xrightarrow{L^{1}(K)} u.$$

9.5. Cut-off functions.

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary, and $\Omega' \subset\subset (i.e, \overline{\Omega'} \subset \Omega)$. Let $d:=\frac{1}{4}dist(\Omega',\partial\Omega,)$ then d>0. Let

$$\Omega'' := \{ x \in \Omega : dist(x, \Omega') < d \},\$$

then $dist(\Omega'', \partial\Omega) = 3d$.

1. Let $\chi_{\Omega''}$ be characteristic function of Ω'' , we consider the smoothing function of $\chi_{\Omega''}$

$$\eta(x) := J_d(\chi_{\Omega''}).$$

Then, we have

- $\eta \in C_0^{\infty}(\Omega)$; and
- •

$$0 \le \eta \le 1$$
 with $\eta(x) \equiv 1$ on Ω' ;

•

$$|\nabla \eta| \le \frac{C(\Omega)}{d},$$

where $C(\Omega)$ is a constant only dependent on Ω . We then call η the **cut-off function**.

2. In application, we always consider the case

$$\Omega = B_R(x^0) := \{ x \in \mathbb{R}^n : |x - x^0| < R \}.$$

Let $0 < \rho < R$ and $\eta(x)$ be the cut-off function related to $B_{\rho}(x^0)$. We have moreover property of $\eta(x)$:

$$|D^k \eta(x)| \le \frac{C}{|R - \rho|^k},$$

$$[D^k \eta]_{\alpha} \le \frac{C}{|R - \rho|^{k+\alpha}},$$

where the constant $C(\Omega)$ absolutely does not depend on R and ρ .

9.6. Applications of smoothing kernels and cut-off functions.

1. Mean-value formula. Let u be a continuous function on a domain $\Omega \subset \mathbb{R}^n$ such that

(9.6.1)
$$u(x) = |\partial B(x,r)|^{-1} \int_{\partial B(x,r)} u(y) dS(y)$$

for any ball $B(x,r) \subset \Omega$. Then, u is a harmonic function.

*Proof.*Let j(x) be the smoothing kernel having the additional property j(x) = j(|x|), then we have

$$\frac{n\omega_n}{\epsilon^n} \int_0^{\epsilon} j(\frac{r}{\epsilon}) r^{n-1} dr = 1,$$

Let $j_{\epsilon}(x) := \frac{1}{\epsilon^n} j(\frac{x}{\epsilon}), \forall \epsilon > 0$. For any sufficient small $\epsilon > 0$, denote

$$\Omega_{\epsilon} := \{ x \in \Omega : dist(x, \partial \Omega) > \epsilon \}$$

and then for any $x \in \Omega_{\epsilon}$, denote

$$J_{\epsilon}u(x) = (u * j_{\epsilon})(x) := \int_{\Omega} u(y)j_{\epsilon}(x-y)dy.$$

Then $J_{\epsilon}u(x) \in C^{\infty}(\Omega_{\epsilon})$, and on Ω_{ϵ} , we have

$$J_{\epsilon}u(x) = \frac{1}{\epsilon^{n}} \int_{\mathbb{R}^{n}} u(y)j_{\epsilon}(x-y)dy$$

$$= \frac{1}{\epsilon^{n}} \int_{\mathbb{R}^{n}} j(\frac{x-y}{\epsilon})u(y)dy$$

$$= \frac{1}{\epsilon^{n}} \int_{0}^{\epsilon} j(\frac{r}{\epsilon}) \int_{\partial B(x,r)} u(y)dS(y)dr$$

$$= \frac{1}{\epsilon^{n}} \int_{0}^{\epsilon} j(\frac{r}{\epsilon})|\partial B(x,r)|u(x)dr$$

$$= u(x) \frac{n\omega_{n}}{\epsilon^{n}} \int_{0}^{\epsilon} j(\frac{r}{\epsilon})r^{n-1}dr = u(x).$$

Hence $u \in C^{\infty}(\Omega)$. On the other hand, for any $x \in \Omega$, denote

$$\phi(r) := |\partial B(0,1)|^{-1} \int_{\partial B(0,1)} u(x+rz) dS(z).$$

Then

$$\phi(r) = |\partial B(x,r)|^{-1} \int_{\partial B(x,r)} u(y) dS(y) \equiv u(x),$$

and so

$$0 \equiv \frac{\partial \phi(r)}{\partial r}$$

$$= |\partial B(0,1)|^{-1} \int_{\partial B(0,1)} Du(x+rz) \cdot z dS(z)$$

$$= |\partial B(x,r)|^{-1} \int_{\partial B(x,r)} Du(y) \cdot \frac{y-x}{r} dS(y)$$

$$= |\partial B(x,r)|^{-1} \int_{\partial B(x,r)} \frac{\partial u(y)}{\partial \mathbf{n}} dS(y)$$

$$= \frac{r}{n} |B(x,r)|^{-1} \int_{B(x,r)} \Delta u(y) dy.$$

Since u is smooth, let $r \to 0$, we then obtain

$$\Delta u(x) = 0, \ \forall x \in \Omega.$$

Remark. A continuous function on Ω is harmonic if and only if u satisfies 9.6.1.

2. Let u be a harmonic function on a domain $\Omega \subset \mathbb{R}^n$ and $\widetilde{\Omega} \subset \subset \Omega$, $d = dist(\widetilde{\Omega}, \partial\Omega)$. Then $u \in C^{\infty}(\Omega)$ and there holds for every multi-index α

$$\sup_{\widetilde{\Omega}} |D^{\alpha}u| \le C(\alpha, d)||u||_{L^{1}(\Omega)}.$$

*Proof.*Let $j_d(x)$ be the mollifier smooth function related to Ω having additional property $j_d(x) = j_d(|x|)$. Then, for every fixed $y \in \widetilde{\Omega}$, we have

$$u(y) = \int_{\mathbb{R}^n} j_d(x - y)u(x)dx,$$

and hence

$$|D_y^{\alpha}u(y)| \leq \int_{B_d(y)} |D_y^{\alpha}j_d(x-y)| |u(x)| dx \leq \sup_{\widetilde{\Omega}} |D^{\alpha}j_d(x)| \int_{\Omega} |u(x)| dx.$$

Since

$$|D^{\alpha}j_d(x)| = C_{n,\alpha}d^{-\alpha},$$

we complete the proof.

3. Weyl Lemma.

Definition. Let $u \in W^{1,2}(\Omega)$, where Ω is an open set in \mathbb{R}^n , we say that u is **weakly harmonic** on Ω if

$$\int_{\Omega} Du \cdot D\phi = 0, \ \forall \phi \in C_0^{\infty}(\Omega).$$

Theorem 9.7 (Weyl Lemma). Suppose that $u \in W^{1,2}(\Omega)$ is weakly harmonic. Then the L^2 class of u has a C^{∞} representative which is harmonic.

*Proof.*For any $\epsilon > 0$, let $j_{\epsilon}(x)$ be the mollifier smooth function. then $J_{\epsilon}u$ is the smoothing of u defined on

$$\Omega_{\epsilon} := \{ x \in \Omega : dist(x, \partial \Omega) > \epsilon \},\$$

and $\Omega_{\epsilon} \subset\subset \Omega$.

i. Since

$$\Delta_x j_{\epsilon}(x-y) = (-1)^2 \Delta_y j_{\epsilon}(x-y) = \Delta_y j_{\epsilon}(x-y),$$

for any $x \in \Omega_{\epsilon}$, we have

$$\Delta_x J_{\epsilon} u(x) = \int_{\Omega} u(y) \Delta_x j_{\epsilon}(x - y) dy$$

$$= \int_{\Omega} u(y) \Delta_y j_{\epsilon}(x - y) dy$$

$$= -\sum_{i=1}^n \int_{\Omega} D_{y_i} u(y) D_{y_i} [j_{\epsilon}(x - y)] dy$$

$$= 0,$$

i.e., $J_{\epsilon}u$ is C^{∞} and harmonic on Ω_{ϵ} .

ii. For any $K \subset\subset \Omega$, we can find a ϵ_0 such that if $0 < \epsilon < \epsilon_0$, then $\overline{K} \subset \Omega_{\epsilon}$. Let $d = dist(K, \partial\Omega)$. We have for any $x \in K$, any $0 < \epsilon_1, \epsilon_2 < \epsilon_0$

$$|D_x^{\alpha}(J_{\epsilon_1}u(x)-J_{\epsilon_2}u(x))| \leq C_{n,\alpha}d^{-\alpha}\int_{\Omega}|J_{\epsilon_1}u(y)-J_{\epsilon_2}u(y)|dy = C_{n,\alpha}d^{-\alpha}||J_{\epsilon_1}u-J_{\epsilon_2}u||_{L^1(\Omega)}.$$

Denote

$$\widetilde{u} = \lim_{\epsilon \to 0^+} J_{\epsilon} u,$$

then by Arzela-Ascoli lemma \widetilde{u} is in $C^{\infty}(\Omega)$ and is harmonic.

4. Application.

Lemma 9.8 (Rellich Compactness Lemma). Suppose that Ω is a bounded Lipschitz domain in \mathbb{R}^n and u_k is a sequence of $W^{1,2}(\Omega)$ with $\sup_k ||u_k||_{W^{1,2}(\Omega)} < \infty$. Then there is a subsequence u_{k_i} and $u \in W^{1,2}(\Omega)$ such that i.

$$u_{k_i} \xrightarrow{weakly} u \text{ in } W^{1,2}(\Omega);$$

ii.

$$u_{k_i} \xrightarrow{strongly} u \text{ in } L^2(\Omega);$$

(The same in fact is true for $L^p(\Omega)$ with $p < 2^* := \frac{2n}{n-2}$)

iii.

$$\int_{\Omega} |Du|^2 \le \lim_{i \to \infty} \inf \int_{\Omega} |Du_{k_i}|^2$$

Theorem 9.9 (Poincaré inequality). Suppose that Ω is a bounded and connected Lipschitz domain in \mathbb{R}^n . Then there exists a constant C_{Ω} dependent only on the domain Ω such that for every $u \in W^{1,2}(\Omega)$ there holds

(9.9.1)
$$\int_{\Omega} |u - \lambda|^2 \le C_{\Omega} \int_{\Omega} |Du|^2,$$

where $\lambda = |\Omega|^{-1} \int_{\Omega} u$.

*Proof.*a) Suppose the assertion is false: Then for each $k \in \mathbb{N}$, there exist function $u_k \in W^{1,2}(\Omega)$ such that 9.9.1 fails for $C_{\Omega} = k$:

$$\int_{\Omega} |Du_k|^2 \le \frac{1}{k} \int_{\Omega} |u_k - \lambda_k|^2 \equiv \frac{1}{k} \inf_{\lambda \in \mathbb{R}} \int_{\Omega} |u_k - \lambda|^2,$$

where $\lambda_k = |\Omega|^{-1} \int_{\Omega} u_k$. Define

$$v_k := \frac{u_k - \lambda_k}{||u_k - \lambda_k||_{L^2(\Omega)}},$$

we find

$$||v_k||_{L^2(\Omega)} = 1 \text{ and } ||Dv_k|| \le \frac{1}{\sqrt{k}},$$

and hence v_k is a bounded sequence in $W^{1,2}(\Omega)$.

b) By Rellich Compactness Lemma, there exists $v \in W^{1,2}(\Omega)$ and a subsequence v_{k_i} of v_k such that

$$v_{k_i} \xrightarrow{strongly} v \text{ in } L^2(\Omega),$$

and so

$$\int_{\Omega} v = 0;$$

$$v_{k_i} \xrightarrow{weakly} v \text{ in } W^{1,2}(\Omega),$$

and so

$$Dv_{k_i} \xrightarrow{weakly} Dv \text{ in } L^2(\Omega);$$

•

$$\int_{\Omega} |Dv|^2 \le \lim_{i \to \infty} \inf \int_{\Omega} |Dv_{k_i}|^2$$

and so

$$\int_{\Omega} |Dv|^2 \le \lim_{i \to \infty} \inf \frac{1}{\sqrt{k}} = 0.$$

c) Hence Dv = 0 a.e on Ω . Since Ω is connected and

$$D(J_{\epsilon}v) = J_{\epsilon}(Dv) = 0,$$

 $J_{\epsilon}v$ is a constant on any connected component $\widetilde{\Omega} \subset \Omega$. Hence v = 0 a.e. on Ω by $\int_{\Omega} v = 0$, but it contradicts to that $||v||_{L^{2}(\Omega)} = 1$.

Remark. By using the special case for $\Omega = B_1(0)$ and by changing scale $x \mapsto Rx$, the Poincaré inequality is: For any $u \in W^{1,2}(B_R(x_0))$,

(9.9.2)
$$R^{-n} \int_{B_{R}(x_{0})} |u - \lambda|^{2} \le CR^{2-n} \int_{B_{R}(x_{0})} |Du|^{2},$$

where $\lambda = |B_R(x_0)|^{-1} \int_{B_R(x_0)} u$ and C is a constant depending only on n.

9.10. More properties on harmonic functions. Let u be a harmonic function on an open set $\Omega \subset \mathbb{R}^n$.

1. Harnark inequality.

Proposition. Let $B_R(x) \subset \Omega$ be a ball. For any ball $B_r(x) \subset B_R(x)$, there holds

(9.10.1)
$$\sup_{y \in B_r(x)} u(y) \le \left(\frac{R+r}{R-r}\right)^n \inf_{y \in B_r(x)} u(y).$$

Moreover, for any connected compact subset V subset Ω , we have

$$\sup_{y \in V} u(y) \le C \inf_{y \in V} u(y),$$

where the constant C depends only on n and $dist(V, \partial\Omega)$.

 \mathbf{p}

2.

Proposition. For any ball $B_r(x) \subset \Omega$ and any multi-index α with $k = |\alpha|$, there holds

$$(9.10.3) |D^{\alpha}u(x)| \le \frac{C_k}{r^{n+k}} \int_{B_r(x)} |u(y)| dy,$$

where

$$C_0 = \frac{1}{\omega_n}, \ C_k = \frac{(n+k)^{n+k}(n+1)^k}{\omega_n(n+1)^{n+1}} \ (k=1,2,\cdots).$$

*Proof.*At first, we have

$$|u_{x_i}(x)| \le \frac{n+1}{\omega_n r^{n+1}} \int_{B_r(x)} |u(y)| dy.$$

Since $D^{\alpha}u$ is still a harmonic function, we have

$$|D^{\alpha}u(x)| \le \frac{n+1}{\omega_n(tr)^{n+1}} \int_{B_{tr}(x)} |D^{\beta}u(y)| dy,$$

where β is a multi-index with $|\beta| = k - 1$ such that there is $i \in \{1, 2, \dots, n\}$ with $D^{\alpha}u = (D^{\beta}u)_{x_i}$. Since $y \in B_{tr}(x)$ implies that $B_{(1-t)r}(y) \subset B_r(x) \subset$, by induction on k there holds

$$|D^{\beta}u(y)| \le \frac{C_{k-1}}{((1-t)r)^{n+k-1}} \int_{B_{(1-t)r}(y)} |u(z)| dz \le \frac{C_{k-1}}{((1-t)r)^{n+k-1}} \int_{B_{r}(x)} |u(z)| dz,$$

Hence

$$|D^{\alpha}u(x)| \leq \frac{n+1}{\omega_n(tr)^{n+1}}\omega_n(tr)^n \max_{y \in B_{tr}(x)} |D^{\beta}u(y)| \leq \frac{(n+1)C_{k-1}}{r^{n+k}t(1-k)^{n+k-1}} \int_{B_r(x)} |u(z)| dz.$$

Denote

$$C_k := \max_{t \in [0,1]} \frac{(n+1)C_{k-1}}{t(1-k)^{n+k-1}},$$

then

$$C_k = \frac{(n+1)C_{k-1}(n+k)^{n+k}}{(n+k-1)^{n+k-1}} = \frac{(n+k)^{n+k}(n+1)^k}{\omega_n(n+1)^{n+1}}.$$

3. As a corollary, by Harnark inequality, we have:

Corollary. Let u be a harmonic function on the total \mathbb{R}^n . Suppose u has upper bound (or lower bound), then u is a constant.

4.

Proposition. A u harmonic function on Ω is an analytic function.

*Proof.*Fix any point $x_0 \in \Omega$, we only need to check the convergent radios of the following the Taylor series of u at x_0 . First the Taylor-Maclaurin formula says

$$u(x) = \sum_{k=0}^{N-1} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_0)}{\alpha!} (x - x_0)^{\alpha} + R_N(x),$$

where

$$R_N(x) = \sum_{k=N}^{\infty} \sum_{|\alpha|=k} \frac{D^{\alpha} u(x_0)}{\alpha!} (x - x_0)^{\alpha} = \sum_{|\alpha|=N} \frac{D^{\alpha} u(x_0 + \xi(x - x_0))}{\alpha!} (x - x_0)^{\alpha}, \xi \in (0, 1).$$

Let $r = \frac{1}{4} dist(x_0, \partial \Omega)$, and denote

$$A = \frac{1}{\omega_n(n+1)^{n+1}r^n} \int_{B_{2r}(x_0)} |u(y)| dy.$$

Then, for any $x \in B_{2r}(x_0)$ (so that $B_r(x) \subset B_{2r}(x_0) \subset \Omega$), the formula 9.10.3 says that for N >> o,

$$|R_{N}(x)| \leq \sum_{|\alpha|=N} \frac{|D^{\alpha}u(x_{0} + \xi(x - x_{0}))|}{\alpha!} |x - x_{0}|^{\alpha}$$

$$\leq A \sum_{|\alpha|=N} \frac{1}{\alpha!} (n + N)^{n+N} \left[\frac{(n+1)|x - x_{0}|}{r} \right]^{N}$$

$$= 2^{n} e^{n} A \left(\sum_{|\alpha|=N} \right) \left(\frac{N!}{\alpha!} \right) e^{N} N^{n-1/2} \left[\frac{(n+1)|x - x_{0}|}{r} \right]^{N}$$

$$\leq 2^{n} e^{n} A \left[\frac{en(n+1)|x - x_{0}|}{r} \right]^{N} N^{n-1/2}.$$

Here we use the combination formula

$$\sum_{|\alpha|=N} \frac{1}{\alpha!} = n^N,$$

and the Stirling formula (refer to the formula 4.2.2):

$$\lim_{N \to \infty} \frac{N^{N+1/2}}{N!e^N} = \frac{1}{\sqrt{2\pi}} < 1,$$

and so if N >> 0

$$(n+N)^{n+N} = (1+n/N)^N (N+n)^n N^N \le e^n (2N)^n N^N \le 2^n e^n N! e^N N^{n-1/2}.$$

Hence if

$$x \in B_{\frac{r}{2n(n+1)e}}(x_0)$$

then

$$|R_N(x)| \le 2^n e^n A \frac{N^{n-1/2}}{2^N},$$

and so

$$|R_N(x)| \xrightarrow{uniformly} 0 \ (N \to \infty).$$

5. The following harmonic approximation (or "blow up") lemma will be of fundamental importance.

Proposition (Harmonic Approximation Lemma). Let $f \in W^{1,2}(B_1(0))$. If for each $\varepsilon > 0$ there is $\delta = \delta(n, \varepsilon) > 0$ such that f satisfies

$$\int_{B_1(0)} |Df|^2 < 1,$$

and

ii.

$$\left| \int_{B_1(0)} Df \cdot D\varphi \right| < \delta \sup_{B_1(0)} |D\varphi|, \ \forall \varphi \in \mathbb{C}_0^{\infty}(B_1(0)).$$

Then there is a harmonic function u on $B_1(0)$ such that $\int_{B_1(0)} |Du|^2 < 1$, and

$$\int_{B_1(0)} |u - f|^2 \le \varepsilon^2.$$

*Proof.*If this fails for some ε , then there is a sequence $\{f_k\} \subset W^{1,2}(B_1(0))$ with

- $\int_{B_1(0)} |Df_k|^2 < 1$,
- $|\int_{B_1(0)}^{\infty} Df_k \cdot D\varphi| < \frac{1}{k} \sup_{B_1(0)} |D\varphi|, \ \forall \varphi \in \mathbb{C}_0^{\infty}(B_1(0)),$ and such that

$$\int_{B_1(0)} |u - f_k|^2 > \varepsilon^2,$$

for every harmonic u on $B_1(0)$ with $\int_{B_1(0)} |Du|^2 < 1$.

Notice that since the same holds with $\tilde{f}_k = f_k - \lambda_k$ for any choice of constants λ_k , we can assume without loss of generality that $\int_{B_1(0)} f_k = 0$ for each k. But then by the Poincaré inequality (c.f.9.9.1) we conclude

$$\sup_{k \to \infty} \lim_{h \to \infty} \int_{B_1(0)} (|f_k|^2 + |Df_k|^2) < \infty,$$

and hence by the Rellich Compactness Theorem we have a subsequence $f_{k'}$ and an $f \in W^{1,2}(B_1(0))$ such that

$$f_{k'} \xrightarrow{strongly} f \text{ in } L^2(B_1(0)); \text{ and } Df_{k'} \xrightarrow{weakly} Df \text{ in } L^2(B_1(0)).$$

But we then conclude

$$\int_{B_1(0)} Df \cdot D\varphi = 0 \ \forall \varphi \in \mathbb{C}_0^{\infty}(B_1(0)),$$

so that f is a weakly harmonic function on $B_1(0)$, and the Weyl's lemma guarantees that f is a smooth harmonic function on $B_1(0)$. Moreover, since by Lebsegue lemma, we have

$$\int_{B_1(0)} |Df|^2 \le \inf \lim_{k'} |Df_{k'}|^2 \le 1,$$

hence that $f_{k'} \xrightarrow{strongly} f$ in $L^2(B_1(0))$ contradicts to the relation 9.10.4.

- 9.2. Scaling Technique and Schauder Estimate.
- **9.11.** Notions. Let $\Omega \subset \mathbb{R}^n$ be an open domain and $\alpha \in (0,1]$. Let u be a function defined on Ω .
- 1. u is said to be **Hölder continuous with exponent** α on Ω if there is a constant C such that

$$(9.11.1) |u(x) - u(y)| \le C|x - y|^{\alpha}, \ \forall x, y \in \Omega$$

2. Let u be a Hölder continuous function with exponent α on Ω . The **Hölder coefficient** of u is defined by

$$[u]_{\alpha;\Omega} := \sup_{x \neq y, x, y \in \Omega} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$

we define the set of all bounded Hölder continuous functions with exponent α on Ω by

$$C^{0,\alpha}(\overline{\Omega}) = \{u | u \text{ is a function defined on } \Omega \text{ with } [u]_{\alpha;\Omega} < \infty\}.$$

We call u Lipschitz continuous if u is a Hölder continuous function with exponent 1.

Remark. $[\cdot]_{\alpha;\Omega}$ is only a semi-norm in the space $C^{0,\alpha}(\overline{\Omega})$. It is not a norm since it is zero for any constant function. But by the Arzela-Ascoli theorem, the space $C^{0,\alpha}(\overline{\Omega})$ becames a Banach space in the norm

$$|u|_{0,\alpha:\Omega} := |u|_{0:\Omega} + [u]_{\alpha:\Omega}.$$

where $|u|_{0;\Omega} = ||u||_{L^{\infty}(\Omega)}$.

- 3. u is called **locally Hölder continuous with exponent** α on Ω if it is Hölder continuous on each $\Omega' \subset\subset \Omega$, i.e., $u \in C^{0,\alpha}(\overline{\Omega'})$, where $\Omega' \subset\subset \Omega$ means the closure of Ω' in Ω is a compact set of Ω . We denote the space of all locally Hölder continuous functions with exponent α on Ω be $C^{0,\alpha}(\Omega)$.
- 4. Scaling. Let $u \in C^{0,\alpha}(\overline{\Omega})$. For any R > 0, we define the scaled function

$$\widetilde{u}(x) = R^{-\alpha}u(Rx) \ x \in \widetilde{\Omega}$$

where the domain $\widetilde{\Omega} \subset \mathbb{R}^n$ is defined by

$$\widetilde{\Omega} := \{ R^{-1}y \mid y \in \Omega \}.$$

Then, $\widetilde{u} \in C^{0,\alpha}(\overline{\widetilde{\Omega}})$, and

$$[u]_{\alpha;\Omega} = [\widetilde{u}]_{\alpha:\widetilde{\Omega}}.$$

5. Oscillation. For any real function $u:\Omega\to\mathbb{R}$. The oscillation is defined as

$$\operatorname{osc}_{\Omega} u := \sup_{x \in \Omega} u(x) - \inf_{x \in \Omega} u(x).$$

Corollary 9.12. Let $u: B_R(x_0) \to \mathbb{R}$ be a real value function. If for every $y \in B_{R/2}(x_0)$, and every $\rho \leq \frac{R}{2}$, $\operatorname{osc}_{B_{R/2}}(x_0) = 0$ and there is a fixed $\theta \in (0,1)$ such that

$$(9.12.1) osc_{B_{\theta\rho}(y)}u < \frac{1}{2}osc_{B_{\rho}(y)}u,$$

then $u \in C^{0,\alpha}(\overline{B}_{R/2}(x_0))$ with $\alpha = -\frac{\log 2}{\log \theta}$, and moreover

$$[u]_{\alpha;B_{R/2}(x_0)} \le C_{\theta} R^{-\alpha} \operatorname{osc}_{B_R(x_0)} u.$$

Proof. By induction we get from 9.12.1 that for every $y \in B_{R/2}(x_0)$, and every $\rho \leq \frac{R}{2}$, the following estimates

(9.12.2)
$$\operatorname{osc}_{B_{\theta^k \rho}(y)} u < \frac{1}{2^k} \operatorname{osc}_{B_{\rho}(y)} u, \ k = 1, 2. \cdots$$

are valid. Let $x, y \in B_{R/2}(x_0)$.

a) If $r := |x - y| \ge \frac{R}{2}$, then we have

$$|u(x) - u(y)| \le (\frac{2|x - y|}{R})^{\alpha} \operatorname{osc}_{B_R(x_0)} u,$$

and so

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le 2^{\alpha} R^{-\alpha} \operatorname{osc}_{B_R(x_0)} u.$$

b) If $r := |x - y| \le \frac{R}{2}$, we can choose an integer k with

$$\theta^{k+1} \le \frac{2r}{R} < \theta^k.$$

Using 9.12.2 with $\rho = R/2$, we have

$$|u(x) - u(y)| \leq \operatorname{osc}_{B_{\theta^k \frac{R}{2}}} u \leq 2^{-k} \operatorname{osc}_{B_{\frac{R}{2}}(y)} u \leq 2^{-k} \operatorname{osc}_{B_R(x_0)} u,$$

and so

$$|u(x) - u(y)| \le \theta^{k\alpha} \operatorname{osc}_{B_R(x_0)} u \le \theta^{-\alpha} \left(\frac{2|x - y|}{R}\right)^{\alpha} \operatorname{osc}_{B_R(x_0)} u.$$

Since $\theta^{\alpha} = \frac{1}{2}$, we have

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le 2^{\alpha + 1} R^{-\alpha} \operatorname{osc}_{B_R(x_0)} u.$$

Let $C_{\theta} = 2^{\alpha+1}$. The claim is then established.

9.13. Notions.

Let $\Omega \subset \mathbb{R}^n$ be an open domain and $\alpha \in (0,1]$.. Let $\beta = (\beta_1, \dots, \beta_n)$ be the multiple index with β_1, \dots, β_n non-negative integers.

Denote $|\beta| := \beta_1 + \cdots + \beta_n$.

Let u be a function defined on Ω .

1. If $u \in C^k(\overline{\Omega})$, denote

$$D^{\beta}u = \frac{\partial^{|\beta|u}}{\partial^{\beta_1}x_1\cdots\partial^{\beta_n}x_n}.$$

The space $C^k(\overline{\Omega})$ is a Banach Space with the norm defined by

$$|u|_{k;\Omega} = \sum_{|\beta| \le k} \sup_{\Omega} |D^{\beta}u|.$$

2. Recall

$$C^{0,\alpha}(\overline{\Omega})=\{u|\ u\ \text{is a function defined on}\ \Omega\ \text{with}\ [u]_{\beta;\Omega}<\infty\},$$

and it is a Banach space with the norm

$$|u|_{0,\alpha:\Omega} := |u|_{0:\Omega} + [u]_{\alpha:\Omega}.$$

We define

 $C^{k,\alpha}(\overline{\Omega}) = \{u | u \text{ is a function defined on } \Omega \text{ with } D^{\beta}u \in C^{0,\alpha}(\overline{\Omega}) \text{ for any mult-index } \beta \text{ with } |\beta| \leq k.\}$ The space $C^{k,\alpha}(\overline{\Omega})$ will be a Banach space if it is denoted the following two norms:

$$|u|_{k,\alpha;\Omega} = \sum_{|\beta| \le k} |D^{\beta}u|_{\alpha;\Omega},$$

and

$$|u|_{k,0;\Omega} = |u|_{k;\Omega} = \sum_{|\beta| < k} |D^{\beta}u|_{0;\Omega}.$$

Remark. The following two are not norms but semi-norms:

$$[u]_{k,\alpha;\Omega} = \sum_{|\beta|=k} [D^{\beta}u]_{\alpha;\Omega},$$

and

$$[u]_{k,0;\Omega} = [u]_{k;\Omega} = \sum_{|\beta|=k} |D^{\beta}u|_{0;\Omega}.$$

Lemma 9.14. Let u be a harmonic function over \mathbb{R}^n . If there are constants C, q > 0 such that

$$|u|_{0;B_R} \le CR^q \ \forall R \ge 1.$$

Then u is a polynomial.

Proof. At first, it is well known that

$$\frac{|\partial B_R|}{|B_R|} = \frac{n}{R}.$$

Denote ω_n be the volume of B_1 .

For any $x \in \mathbb{R}^n$, any harmonic function u, we have

$$u(x) = \frac{1}{\rho^n \omega_n} \int_{B_{\theta}} u(x+y) dy, \forall \rho > 0.$$

and

$$u(x) = \frac{1}{\rho^{n-1}n\omega_n} \int_{\partial B_\rho} u(x+y)dS(y), \forall \rho > 0.$$

Since $D_i u$ is still a harmonic function on \mathbb{R}^n , we have

$$D_{i}u(x) = \frac{1}{R^{n}\omega_{n}} \int_{B_{R}} D_{i}u(x+y)dy$$

$$= \frac{1}{R^{n}\omega_{n}} \int_{\partial B_{R}} u(x+y)\cos(\overrightarrow{n},y)dS(y)$$

$$= \frac{1}{R\omega_{n}} \int_{|w|=1} u(x+Rw)w^{i}dw,$$

where $\sum_{i=1}^{n} (w^{i})^{2} = 1$. By induction, we have

$$D_{i_1}D_{i_2}\cdots D_{i_k}u(x)) = \frac{1}{R\omega_n} \int_{|w_1|=1} D_{i_2}\cdots D_{i_k}u(x+Rw_1)w_1^{i_1}dw_1$$

$$= \frac{1}{R^k\omega_n^k} \int_{|w_1|=1} dw_1\cdots \int_{w_k=1} u(x+Rw_1+\cdots Rw_k)w_1^{i_1}\cdots w_1^{i_k}dw_k,$$

and so for all $x \in \mathbb{R}^n, k \geq 1$, we have

$$|D_{i_1}D_{i_2}\cdots D_{i_k}u(x)| \leq \frac{C}{R^k\omega_n^k}(|x|+kR)^q(n\omega_n)^k.$$

Fix R_0 such that $|x| \leq R_0$, Let $R \geq R_0$, if k > q we then have

$$|D_{i_1}D_{i_2}\cdots D_{i_k}u(x)| \le \frac{Cn^k}{R^{k-q}}(\frac{R_0}{R}+k)^q \to 0(R\to\infty).$$

Therefore, $D^k u(x) \equiv 0 \ \forall x \in B_{R_0}$ if k > q, and then u has to be a polynomial of degree less than q+1.

Corollary 9.15. Let $u \in C^2(\overline{\mathbb{R}^n_+})$ with u(x',0) = 0, and u is a harmonic function over \mathbb{R}^n_+ . If there are constants C, q > 0 such that

$$|u|_{0;B_R\cap\mathbb{R}^n_+} \le CR^q \ \forall R \ge 1.$$

Then u is a polynomial.

Proof. Define

$$\widetilde{u}(x', x_n) = \begin{cases} u(x', x_n), & x_n \ge 0; \\ -u(x', -x_n), & x_n < 0. \end{cases}$$

Then, $\widetilde{u} \in C^0(\mathbb{R}^n)$ and

$$D_{ij}^2 \widetilde{u} \in C^0(\mathbb{R}^n), \ i+j \le 2n-1.$$

On the other hand, we have

$$\begin{cases} \Delta \widetilde{u} = 0, & x_n > 0; \\ \Delta \widetilde{u} = -\Delta u(x' - x_n) = 0, & x_n < 0. \end{cases}$$

Thus, we have

$$\widetilde{u}_{x_n x_n}(x', +0) = u_{x_n x_n}(x', +0) = -\sum_{i=1}^{n-1} u_{x_i x_i}(x', 0),$$

$$\widetilde{u}_{x_n x_n}(x', -0) = \sum_{i=1}^{n-1} u_{x_i x_i}(x', 0) = \widetilde{u}_{x_n x_n}(x', +0);$$

and so $\widetilde{u} \in C^2(\mathbb{R}^n)$ and it is harmonic on \mathbb{R}^n . Since

$$|\widetilde{u}|_{0,B_R} = |u|_{0;B_R \cap \mathbb{R}^n_+} \le CR^q \ \forall R \ge 1,$$

by the above lemma \widetilde{u} is a polynomial, and then so is u.

Theorem 9.16. Let $\alpha \in (0,1)$. Then there is a constant $C = C(n,\alpha)$ such that for any $u \in C^{2,\alpha}(\mathbb{R}^n)$, we have

$$(9.16.1) [u]_{2,\alpha} \le C[\Delta u]_{\alpha}.$$

Proof. 1. Assume the estimate 9.16.1 is not true for all $u \in C^{2,\alpha}(\mathbb{R}^n)$, then we have a series u_k , k = $1, 2, \cdots$, such that

$$1 = [u_k]_{2,\alpha} > k[\Delta u_k]_{\alpha}, \ k = 1, 2, \cdots,$$

i.e., we have

$$[\Delta u_k]_{\alpha} < \frac{1}{k}, \ k = 1, 2, \cdots.$$

2. By the definition, we have

$$[u]_{2,\alpha} = \sum_{|\beta|=2} [D^{\beta}u]_{\alpha} = \sum_{|\beta|=2} \sup_{x \in \mathbb{R}^n, e \in S^{n-1}, h > 0} \frac{|D^{\beta}u_k(x+he) - D^{\beta}u_k(x)|}{h^{\alpha}},$$

it implies that for any $k \in \mathbb{N}$, We can choose $x_k \in \mathbb{R}^n, h_k > 0$ and $\beta^*(|\beta| = 2), e^* \in S^{n-1}$ with β^*, e^* independent of k, satisfying

$$\frac{|D^{\beta^*} u_k(x_k + h_k e^*) - D^{\beta^*} u_k(x_k)|}{h_k^{\alpha}} \ge \frac{1}{2n^3}.$$

(actually, we can choose $e^* = \mathbf{e}_{i_k}$ such that $i_k \neq \gamma, \delta$ where $|\beta^*| = \beta_{\gamma}^* + \beta_{\delta}^*$.) 3. Using scaling technique: Let $x = x_k + h_k y$ and denote $v_k(y) = h_k^{-\alpha - 2} u_k(x_k + h_k y)$. Then, we have

$$D_y^2 v_k(y) == h_k^{-\alpha} D_x^2 u_k(x_k + h_k y),$$

and so we have: for $\forall k \in \mathbb{N}$, there is

(9.16.3)

$$[v_k]_{2,\alpha} = \sum_{|\beta|=2} [D^{\beta} v_k]_{\alpha} = \sum_{|\beta|=2} \sup_{y,y' \in \mathbb{R}^n} \frac{|D^{\beta} u_k(x_k + h_k y) - D^{\beta} u_k(x_k + h_k y')|}{h^{\alpha} |y - y'|^{\alpha}} = \sum_{|\beta|=2} [D^{\beta} u_k]_{\alpha} = [u_k]_{2,\alpha} = 1;$$

$$[\Delta v_k]_{\alpha} = [\Delta u_k]_{\alpha} \le \frac{1}{k}, \ \forall k \in \mathbb{N};$$

$$(9.16.5) |D^{\beta^*} v_k(e^*) - D^{\beta^*} v_k(0)| \ge \frac{1}{2n^3}, \ \forall k \in \mathbb{N}.$$

4. Denote

$$\widetilde{v}_k(y) = v_k(y) - v_k(0) - \sum_{1 \le i \le n} D_{y_i} v_k(0) y_i - \frac{1}{2} \sum_{1 \le i, j \le n} D_{y_i y_j} v_k(0) y_i y_j.$$

Then, we have

(9.16.6)
$$\widetilde{v}_k(0) = 0, \ D\widetilde{v}_k(0) = 0, \ D^2\widetilde{v}_k(0) = 0, \ \forall k \in \mathbb{N};$$

$$[\Delta \widetilde{v}_k]_{\alpha} \le \frac{1}{k}, \ \forall k \in \mathbb{N};$$

$$(9.16.8) |D^{2}\widetilde{v}_{k}(y)| \leq |\widetilde{v}_{k}|_{2,\alpha}|y|^{\alpha} = |y|^{\alpha}, |D\widetilde{v}_{k}(y)| \leq |y|^{\alpha+1}, |\widetilde{v}_{k}(y)| \leq |y|^{\alpha+2}, \forall k \in \mathbb{N};$$

$$(9.16.9) |D^{\beta^*} \widetilde{v}_k(e^*)| \ge \frac{1}{2n^3}, \ \forall k \in \mathbb{N}.$$

Then, we obtain that for $\forall R > 0, \forall k \in \mathbb{N}, \ \tilde{v}_k$ are bounded uniformly and is equai-continuous on $\overline{B_R}$, and so on $\overline{B_R}$ with any R>0, we have

$$\widetilde{v}_k \Longrightarrow v^* \in C^2(\overline{B_R}), v^* \in C^{2,\alpha}(\overline{B_R});$$

and

$$[v^*]_{\alpha;B_R} \le 2, \Delta v_k \Longrightarrow \Delta v^*$$

5. From 9.16.7, we have $[\Delta v^*]_{\alpha} \equiv 0$, and so Δv^* is a constant.Moreove, by 9.16.8 and let $y \to 0$, we have $\Delta v^* \equiv 0$, i.e., v^* is a harmonic function. Using the formula 9.16.8 and the above lemma 9.14, v^* is polynomial of degree at least 4. Thus, by 9.16.7, $D^2v^*(0) = 0$ and so

$$D^{\beta^*}v^*(te^*) = a_it^i + \dots + a_1t$$
, with $i \le 2$ and $a_i \ne 0$.

i. If $i \geq 1$, we have a contradiction from

$$\frac{|D^{\beta^*}v^*(te^*)|}{t^{\alpha}} \le [v^*]_{2,\alpha} \le 2 \ (\forall t > 0).$$

ii. If i=0, then $D^{\beta^*}v^*(te^*)\equiv 0$. But, by the formula 9.16.9 we have

$$|D^{\beta^*}v^*(e^*)| \ge \frac{1}{2n^3}.$$

It is a contradiction.

Theorem 9.17. Let $\alpha \in (0,1)$. Then there is a constant $C = C(n,\alpha)$ such that for any $u \in C^{2,\alpha}(\overline{\mathbb{R}}^n_+)$ with $u|_{\partial \overline{\mathbb{R}}^n_+} = 0$, we have

$$[u]_{2,\alpha;\mathbb{R}^n_+} \le C[\Delta u]_{\alpha;\mathbb{R}^n_+}.$$

Proof. 1. Assume the estimate 9.17.1 is not true for all $u \in C^{2,\alpha}(\overline{\mathbb{R}}^n_+)$, then we have a series u_k , $k = 1, 2, \cdots$, such that

$$1 = [u_k]_{2,\alpha;\mathbb{R}^n_{\perp}} \ge k[\Delta u_k]_{\alpha;\mathbb{R}^n_{\perp}}, \ k = 1, 2, \cdots,$$

i.e., we have

$$[\Delta u_k]_{\alpha;\mathbb{R}^n_+} < \frac{1}{k}, \ k = 1, 2, \cdots.$$

By the definition, we have

$$[u]_{2,\alpha;\mathbb{R}^n_+} = \sum_{|\beta|=2} [D^{\beta}u]_{\alpha;\mathbb{R}^n_+} = \sum_{|\beta|=2} \sup_{x\in\mathbb{R}^n_+, e\in S^{n-1}, h>0} \frac{|D^{\beta}u_k(x+he) - D^{\beta}u_k(x)|}{h^{\alpha}},$$

it implies that for any $k \in \mathbb{N}$, Similarly as in the proof of the theorem 9.16,we can choose $x_k \in \mathbb{R}^n_+, h_k > 0$ and $\beta^*(|\beta| = 2), e^* \in S^{n-1}$ with β^*, e^* independent of k, satisfying

$$\frac{|D^{\beta^*} u_k(x_k + h_k e^*) - D^{\beta^*} u_k(x_k)|}{h_k^{\alpha}} \ge \frac{1}{2n^3}.$$

- 2. Using scaling technique: Let $t_k = x_{k,n}h_k^{-1}$ where $x_k = (x_{k,1}, \dots, x_{k,n})$. We consider the following two cases:
 - a) In case of $t_k \to +\infty$ $(h_k \to +0)$. Denote $x = x_k + yh_k$, then $y = h_k^{-1}x x_kh_k^{-1}$ and $y_n > -t_k$ with $t_k \to -\infty$. Denote $v_k(y) = h_k^{-\alpha-2}u_k(x_k + h_ky)$. Then,

$$D_y^2 v_k(y) == h_k^{-\alpha} D_x^2 u_k(x_k + h_k y),$$

also, we have: for $\forall k \in \mathbb{N}$,

(9.17.3)

$$[v_k]_{2,\alpha} = \sum_{|\beta|=2} [D^{\beta} v_k]_{\alpha} = \sum_{|\beta|=2} \sup_{y,y' \in \mathbb{R}^n} \frac{|D^{\beta} u_k(x_k + h_k y) - D^{\beta} u_k(x_k + h_k y')|}{h^{\alpha} |y - y'|^{\alpha}} = \sum_{|\beta|=2} [D^{\beta} u_k]_{\alpha} = [u_k]_{2,\alpha} = 1,$$

and so

$$[\Delta v_k]_{\alpha} = [\Delta u_k]_{\alpha} \le \frac{1}{k}, \ \forall k \in \mathbb{N},$$

$$(9.17.5) |D^{\beta^*} v_k(e^*) - D^{\beta^*} v_k(0)| \ge \frac{1}{2n^3}, \ \forall k \in \mathbb{N}.$$

Similar as in the proof of the theorem 9.16, we get a harmonic function $v^*(y)$ defined on whole \mathbb{R}^n with

$$[v^*]_{2,\alpha} \le 2, \ |v^*(y)| \le |y|^{2+\alpha}, y \in \mathbb{R}^n \text{ and } |D^{\beta^*}v^*(e^*) - D^{\beta^*}v^*(0)| \ge \frac{1}{2n^3}.$$

We then have a contradiction.

b) In case of $t_k \to t^* < +\infty$ $(h_k \to +0)$. Writing $x_k = (x'_k, x_{k;n})$, we denote $v_k(y) = h_k^{-\alpha-2} u_k((x'_k, 0) + h_k y)$. Then,

$$|v_k(y)|_{y_n=0} = 0, [v_k]_{2,\alpha} = 1, [\Delta v_k]_{\alpha} \le \frac{1}{k}, \forall k \in \mathbb{N}.$$

and

$$|D^{\beta^*}v_k((0,t_k)+e^*)-D^{\beta^*}v_k(0,t_k)| \ge \frac{1}{2n^3}.$$

Denote

$$\widetilde{v}_k(y) = v_k(y) - v_k(0) - \sum_{1 \le i \le n} D_{y_i} v_k(0) y_i - \frac{1}{2} \sum_{1 \le i, j \le n} D_{y_i y_j} v_k(0) y_i y_j.$$

Then, we have

(9.17.6)
$$\widetilde{v}_k(0) = 0, \ D\widetilde{v}_k(0) = 0, \ D^2\widetilde{v}_k(0) = 0, \ \forall k \in \mathbb{N};$$

$$(9.17.7) [\Delta \widetilde{v}_k]_{\alpha} \le \frac{1}{k}, \ \forall k \in \mathbb{N};$$

$$(9.17.8) |D^{2}\widetilde{v}_{k}(y)| \leq [\widetilde{v}_{k}]_{2,\alpha}|y|^{\alpha} = |y|^{\alpha}, \ |D\widetilde{v}_{k}(y)| \leq |y|^{\alpha+1}, \ |\widetilde{v}_{k}(y)| \leq |y|^{\alpha+2}, \ \forall k \in \mathbb{N};$$

$$(9.17.9) |D^{\beta^*} \widetilde{v}_k((0, t_k) + e^*) - D^{\beta^*} \widetilde{v}_k((0, t_k))| \ge \frac{1}{2n^3}, \ \forall k \in \mathbb{N}.$$

Similar as in the proof of the theorem 9.16, we obtain $v^* \in C^{2,\alpha}(\overline{\mathbb{R}}^n_+)$ satisfying

$$(9.17.10) \quad [v^*]_{2,\alpha;\overline{\mathbb{R}}^n_+} \le 2, \ |v^*(y)| \le |y|^{2+\alpha}, \forall y \in \overline{\mathbb{R}}^n_+ \text{ and } |D^{\beta^*}v^*((0,t^*)+e^*) - D^{\beta^*}v^*(0,t^*)| \ge \frac{1}{2n^3},$$

(9.17.11)
$$\begin{cases} \Delta v^* = 0, \text{ in } \overline{\mathbb{R}}_+^n \\ v^*|_{\partial \overline{\mathbb{R}}_+^n} = 0. \end{cases}$$

Thus, from 9.17.10,9.17.11 and the corollary 9.15, v^* is a polynomial on $\overline{\mathbb{R}}^n_+$. Then it contradicts to that

$$|D^{\beta^*}v^*((0,t^*)+e^*)-D^{\beta^*}v^*(0,t^*)| \ge \frac{1}{2n^3}.$$

9.3. Campanato's characterization of L^2 functions to be Hölder continuous.

Theorem 9.18 (Campanato Lemma). Suppose $u \in L^2(B_{2R}(x_0)), \alpha \in (0,1], \beta > 0$ are constants, and

(9.18.1)
$$\inf_{\lambda \in \mathbb{R}} \rho^{-n} \int_{B_{\rho}(y)} |u - \lambda|^2 \le \beta^2 \left(\frac{\rho}{R}\right)^{2\alpha}$$

for every ball $B_{\rho}(y)$ such that $y \in B_R(x_0)$ and $\rho \leq R$. Then there is a Hölder continuous representation \tilde{u} for the L^2 -class of u with

$$|\widetilde{u}(x) - \widetilde{u}(y)| \le C_{n,\alpha}\beta(\frac{|x-y|}{R})^{\alpha}. \ \forall x, y \in B_R(x_0),$$

where $C_{n,\alpha}$ depends only on n and α .

Remark. Actually,

$$\inf_{\lambda \in \mathbb{R}} \int_{B_{\rho}(y)} |u - \lambda|^2 = \int_{B_{\rho}(y)} |u - \lambda_{y,\rho}|^2,$$

where

$$\lambda_{y,\rho} = \frac{1}{\omega_n \rho^n} \int_{B_{\rho}(y)} u.$$

Proof. a) First by the inequality 9.18.1, we note that

$$\left(\frac{\rho}{2}\right)^{-n} \int_{B_{\rho/2}(y)} |u - \lambda_{y,\rho}|^2 \le 2^n \rho^{-n} \int_{B_{\rho}(y)} |u - \lambda_{y,\rho}|^2 \le 2^n \beta^2 \left(\frac{\rho}{R}\right)^{2\alpha},$$

where

$$\lambda_{y,\rho} = \frac{1}{\omega_n \rho^n} \int_{B_{\rho}(y)} u.$$

On the other hand, we have

$$\left(\frac{\rho}{2}\right)^{-n} \int_{B_{\rho/2}(y)} |u - \lambda_{y,\rho/2}|^2 = \inf_{\lambda \in \mathbb{R}} \left(\frac{\rho}{2}\right)^{-n} \int_{B_{\rho/2}(y)} |u - \lambda|^2 \le \left(\frac{\rho}{2}\right)^{-n} \int_{B_{\rho/2}(y)} |u - \lambda_{y,\rho}|^2 \le 2^n \beta^2 \left(\frac{\rho}{R}\right)^{2\alpha}.$$

Since

$$|\lambda_{u,\rho} - \lambda_{u,\rho/2}|^2 \le 2(|u - \lambda_{u,\rho}|^2 + |u - \lambda_{u,\rho/2}|^2)$$

we conclude that

$$|\lambda_{y,\rho/2} - \lambda_{y,\rho}| \le 2^N \omega_n^{-\frac{1}{2}} \beta(\frac{\rho}{R})^{\alpha}$$

provided that $\rho < R$ and $y \in B_R(x_0)$, where ω_n is the volume of the unit ball in \mathbb{R}^n .

b) For any $\nu = 0, 1, 2, \cdots$, we can choose $\rho = 2^{-\nu}R$ and obtain

$$(9.18.2) |\lambda_{y,2^{-\nu-1}\rho} - \lambda_{y,2^{-\nu}\rho}| \le 2^N \omega_n^{-\frac{1}{2}} \beta 2^{-\nu\alpha}.$$

Denote

$$s_k = \sum_{\nu=0}^k (\lambda_{y,2^{-\nu-1}\rho} - \lambda_{y,2^{-\nu}\rho}).$$

We find

$$\sum_{\nu=0}^{\infty} |\lambda_{y,2^{-\nu-1}\rho} - \lambda_{y,2^{-\nu}\rho}| < \infty,$$

hence $\lim_{k\to\infty} s_k$ exists and so does $\lim_{k\to\infty} \lambda_{y,2^{-\nu}\rho}$:

$$\lambda_y := \lim_{k \to \infty} \lambda_{y,2^{-\nu}\rho} = \lim_{k \to \infty} s_k + \lambda_{y,\rho} < \infty.$$

Moreover, denote $\widetilde{u} := \lambda_{u}$, using the Lebesgue Lemma, we have

$$\widetilde{u}(y) = u(y)$$
, a.e. on $B_{2R}(x_0)$,

and

$$|\lambda_{y,2^{-\nu}\rho} - \widetilde{u}y| \le \sum_{j=\nu}^{\infty} |\lambda_{y,2^{-j-1}\rho} - \lambda_{y,2^{-j}\rho}| \le C\beta 2^{-\nu\alpha},$$

where the constant $C = C(n, \alpha)$.

c) Using

$$|u - \widetilde{u}(y)|^2 \le 2(|u - \lambda_{y,2^{-\nu}\rho}|^2 + |\widetilde{u}(y) - \lambda_{y,2^{-\nu}\rho}|^2),$$

we obtain

$$\rho^{-n} \int_{B_{\rho}(y)} |u - \widetilde{u}(y)|^2 dx \le C\beta^2 (\frac{\rho}{R})^{2\alpha}, \forall \rho = 2^{-\nu} R \ \nu = 0, 1, 2, \cdots.$$

On the other hand for any $\rho \in (0, R/2]$ there is an integer $\nu_0 \le 1$ such that $2^{-nu-1}R < \rho \le 2^{-\nu}R$. Replacing $2^{n+2\alpha}C$ with C, we conclude that

(9.18.3)
$$\rho^{-n} \int_{B_{\alpha}(y)} |u - \widetilde{u}(y)|^2 dx \le C\beta^2 (\frac{\rho}{R})^{2\alpha}, \forall \rho \in (0, R/2]$$

d) Now take any pair $y, z \in B_R(x_0)$ with $|y - z| \le R/4$ and let $\rho = |y - z|$. Since

$$B_{\rho/2}(\frac{y+z}{2}) \subset B_{\rho}(y) \cap B_{\rho}(z),$$

and

$$|\widetilde{u}(y) - \widetilde{u}(z)|^2 \le 2(|u - \widetilde{u}(y)|^2 + |u - \widetilde{u}(z)|^2),$$

the inequality 9.18.3 gives

$$|\widetilde{u}(y) - \widetilde{u}(z)|^{2} \leq |B_{\rho/2}(\frac{y+z}{2})|^{-1} \int_{B_{\rho/2}(\frac{y+z}{2})} 2(|u - \widetilde{u}(y)|^{2} + |u - \widetilde{u}(z)|^{2}) dx$$

$$\leq 2C\rho^{-n} \int_{B_{\rho}(y)} |u - \widetilde{u}(y)|^{2} dx + 2C\rho^{-n} \int_{B_{\rho}(z)} |u - \widetilde{u}()|^{2} dx$$

$$\leq 4C\beta^{2} (\frac{\rho}{R})^{2\alpha}.$$

Hence,

$$(9.18.4) |\widetilde{u}(y) - \widetilde{u}(z)| \le 2C\beta(\frac{\rho}{R})^{\alpha} = 2^{1+\alpha}C\beta(\frac{|y-z|}{R})^{\alpha}, \ \forall y, z \in B_R(x_0) \text{ with } |y-z| \le R/4.$$

e) If $y, z \in B_R(x_0)$, we can pick points $z_1 = y, \dots, z_8 = z$ on the segment jointing y, z such that $|z_i - z_{i+1}| \le R/4$. Applying 9.18.4, we obtain

$$|\widetilde{u}(y) - \widetilde{u}(z)| \le C(n, \alpha)\beta \frac{|y - z|^{\alpha}}{R^{\alpha}}, \ \forall y, z \in B_R(x_0).$$

We complete the proof.

Theorem 9.19 (Morrey's Lemma). Let $B_R(x_0) \subset \mathbb{R}^n$ be an open ball. Suppose $u \in W^{1,2}(B_R(x_0)), \alpha \in (0,1], \beta > 0$ are constants, and

$$\rho^{2-n} \int_{B_1 Rho(y)} |Du|^2 dx \le \beta^2 (\frac{\rho}{R})^{2\alpha}, \ \forall y \in B_R(x_0), \ \rho \in (0, \frac{R}{2}].$$

Then $u \in C^{0,\alpha}(\overline{B}_R(x_0))$ (there is a Hölder continuous representation for the L^2 -class of u), and in fact

$$|u(x) - u(y)| \le C\beta(\frac{|x - y|}{R})^{\alpha}, \forall x, y \in B_R(x_0),$$

where C depends only on n.

Proof. The Poincaré inequality (c.f. the remark 9.9.2) gives

$$\int_{B_{\rho}(y)} |u - \lambda_{y,\rho}|^2 dx \le C \rho^{2-n} \int_{B_{\rho}(y)} |Du|^2 dx \le \beta^2 (\frac{\rho}{R})^{2\alpha},$$

for each $y \in B_{\frac{R}{2}}(x_0)$ and each $\rho \in (0, \frac{R}{2}]$, where

$$\lambda_{y,\rho} = \frac{1}{\omega_n \rho^n} \int_{B_{\rho}(y)} u.$$

Using the Campanato Lemma (c.f. the theorem 9.18.1), we then have the required result.

10. Advanced Topics in Analysis

10.1. Topic on Riemann Zeta Function(To be Continuous). To be Continuous

10.2. Elementary on Nevanlinna Theory(To be Continuous). To be Continuous

10.3. Elementary on p-adic Series(To be Continuous). To be Continuous