Econometrics and Economic Data

Ani Katchova

Outline

- Define econometrics, economic models, and econometric models
- Types of economic data (cross-sectional, time series, pooled cross sections and panel data)
- Causation versus correlation/relationships in econometrics

Economic models

- Econometric analysis
 - Start with economic model
 - Estimate an econometric model
- Economic models
 - Analyze micro- or macro-variables
 - Estimate relationships between economic variables
 - Examples: demand and supply models, asset pricing models

Econometrics - definition and goals

- Econometrics definition
 - Econometrics use statistical methods to analyze economic data
- Econometric models statistical models used in economics. They specify the relationship between variables.
- Use econometric models to:
 - Estimate relationships between economic variables
 - Test economic hypotheses and theories
 - Evaluate effectiveness of a new policy
 - Forecast economic variables

Example of economic model

Economic model describing wage determinants for workers

$$wage = f(education, experience, training)$$

More generally,

$$y = f(x_1, x_2, x_3)$$

f is an unknown function relating the variables.

Example of econometric model

Econometric model describing wage determinants for workers

 $wage = \beta_0 + \beta_1 education + \beta_2 experience + \beta_3 training + u$ The functional form is specified (multiple regression model)

More generally,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

y is the dependent variable

 x_1, x_2, x_3 are independent variables,

 β_0 , β_1 , β_2 , β_3 are coefficients to be estimated

u is an error term representing unobservable factors affecting y

Goals of econometric model

$$wage = \beta_0 + \beta_1 education + \beta_2 experience + \beta_3 training + u$$

We can use this econometric model to test hypotheses

- What is the effect of education on wage represented by β_1 ?
- Is β_1 significantly different from zero? What is the magnitude of β_1 ?

Types of economic data

- Econometric models use economic data
- Types of economic data
 - Cross-sectional data
 - Time series data
 - Pooled cross sections
 - Panel/longitudinal data
- Which econometric models we apply depends on the type of data used

Cross-sectional data

- Data for people, households, businesses, countries, cities, etc.
- Data are at a given point of time/during a given period no time dimension
- Typically denote the individual by i
- Widely used in microeconomics

Example: cross-sectional data on wages

Wage y _i Hourly				Female x _{4i}		lwage	expersq (experience
wage	Educ x _{1i}	Exper x _{2i}	Tenure x _{3i}	Female=1	Married x _{5i}	(log wage)	squared)
3.1	11	2	0	1	0	1.131402	4
3.24	12	22	2	1	1	1.175573	484
3	11	2	0	0	0	1.098612	4
6	8	44	28	0	1	1.791759	1936
5.3	12	7	2	0	1	1.667707	49
8.75	16	9	8	0	1	2.169054	81
11.25	18	15	7	0	0	2.420368	225
5	12	5	3	1	0	1.609438	25

Note i, y_i , x_{1i} , etc. Every observation/row is for person i.

Time series data

- Data can be macroeconomic, financial, etc.
- Examples: stock and bond prices, GDP, growth rates
- Observations are over time
- The time dimension can be annual, monthly, daily, etc.
- Time series may have trend (e.g. rising values over time), seasonality (e.g. higher values in a given month), and cycles (e.g. every 3-5 years).
- Observations may be serially correlated (errors are correlated from one period to the next).

Time series data on minimum wages

Year		Avgmin y _t Avg min wage	_ ·	Prgnp x _{2t}	Prunemp x _{3t} Umemployme nt rate
	1950	0.198	0.201	878.7	15.4
	1951	0.209	0.207	925	16
	1952	0.225	0.226	1015.9	14.8
	1953	0.311	0.231	1081.3	14.5
	1954	0.313	0.224	1104.4	15.3
	1955	0.369	0.236	1138.5	13.2
	1956	0.447	0.245	1185.1	13.3
	1957	0.488	0.244	1221.8	12.8

Note t, y_t , x_{1t} , etc. Every observation/row is at time t.

Pooled cross sections

- Example: house prices in two periods but not the same houses are sold.
- Two or more cross sections
- Cross sections are drawn independently of each other
- Used to estimate effect of new policy, for example effect of new tax on house prices

Pooled cross-sectional data on house prices

Year t	Price y _t	Rooms x _{1t}	Baths x _{2t}	lprice	y81
1978	60000	7	1	11.0021	. 0
1978	40000	6	2	10.59663	0
1978	34000	6	1	10.43412	. 0
1978	63900	5	1	11.06507	0
1981	49000	6	1	10.79958	1
1981	52000	5	1	10.859	1
1981	68000	6	2	11.12726	1
1981	54000	6	1	10.89674	. 1

Note t, y_t , x_{1t} , etc. Every observation is at time t. Before and after period.

Panel data or longitudinal data

- Example: employment data across individuals and over time
- Same cross-sectional units over time
- Have both cross-sectional *i* and time series *t* dimensions

Panel data on wages

Person id	Year		lwage	Exper	Educ	Hours
i	t		y _{it}	X _{1it}	x _{2it}	x _{3it}
:	13	1980	1.19754	1	1	4 2672
:	13	1981	1.85306	5	2 14	4 2320
:	13	1982	1.344462		3 14	4 2940
:	17	1980	1.675962	. 4	1 13	3 2484
:	17	1981	1.518398		5 13	3 2804
:	17	1982	1.559191	. 6	5 13	3 2530
í	18	1980	1.515963	. 4	1 12	2 2332
:	18	1981	1.735379	ָ	5 12	2 2116
3	18	1982	1.631744	. 6	5 12	2 2500

Note i, t, y_{it} , x_{1it} , etc. Every observation is for unit i at time t.

Causation versus correlation

- Causation: An additional year of education <u>causes</u> wages to increase by a given amount, all else equal.
- Correlation: An additional year of education is <u>associated with</u> higher wages.
- For most economic studies, a causation cannot be determined. It is only correlation.

Example on causation vs correlation

- Causal effect of fertilizer on crop yield
 - Will crop yield increase signficantly if fertilizer is applied?
 - Implicit assumption: all other factors that influence crop yield such as quality of land are held fixed

Experiment

- Choose several plots of land; randomly assign different amounts of fertilizer to the different plots and compare crop yield
- Valid experiment because fertilizer that is applied is not related to other factors influencing crop yields

Observational study

- Plots that have different levels of fertilizer and different yields. If there is a positive correlation (plots with more fertilizer have more yields), does that mean that applying more fertilizer will result in a higher yield?
- Hint: this is a correlation, but not causation.

Example of causation vs correlation

Effect of education on wages

- If a person at random is given another year of education by how much will his/her wage increase?
- Implicit assumption: all other factors that influence wages such as experience and ability are held fixed

Experiment

- Choose some people at random and assign them to get more education not feasible.
- Problem without random assignment: amount of education is related to other factors that influence wages (such as intelligence)

Observational study

• Data on people with wages and education. Interpretation: people with higher education have higher wages (correlation). Interpretation is not: if a person gets additional education, he/she will get higher wages (causation).

Econometrics and economic data — review questions

- 1. Define econometrics, economic model, and econometric model. What are some goals of econometric analysis?
- 2. What are the main types of economic data in econometrics? Give examples for each type of economic data.
- 3. Which data/models have *i* or *t* dimension? How many dependent and independent variables do econometric models have?
- 4. Does a regression imply that there is a causal relationship or correlation between the dependent and independent variables? Give examples.