#### Regressions- och tidsserieanalys

Föreläsning 8 - Tidsserieanalys. Komponenter. Säsongsrensning med glidande medelvärden

#### Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet











#### Översikt

- Saknade förklarande variabler i regression
- Tidsserier
- Trendskattning parametriska modeller
- Trendskattning glidande medelvärden
- Säsongsrensning med glidande medelvärden
- Komponentsuppdelning av tidsserie.

## Felspecifikation - saknade förklarande variabler

Population:

$$y = \alpha + \beta_1 x_1 + \beta_2 x^2 + \varepsilon$$

Skattad modell korrekt specificerad. Väntevärderiktiga:

$$\mathbb{E}(a) = \alpha$$
,  $\mathbb{E}(b_1) = \beta_1$  och  $\mathbb{E}(b_2) = \beta_2$ 

Skattad modell missar att ta med x<sub>2</sub>

$$y = a + b_1 x_1 + \varepsilon$$

Bias

$$E(b_1) \neq \beta_1$$

- Storleken på biasen beror på korrelationen mellan  $x_1$  och  $x_2$ .
- $\blacksquare$   $x_1$  plockar upp variation i y som egentligen förklaras av  $x_2$ .



#### **Tidsserier**

- Tvärsnittsdata data uppmätta vid en tidpunkt. Regression.
- **Tidsseriedata:** data uppmätta över tid.  $y_t$ , t = 1, 2, ...
- Mäts ofta vid tidpunkter med likstora avstånd (varje månad).
- Tidsserier är speciella:
  - ► Trender säsong
  - **Beroende observationer** över tid. Värdet igår  $y_{t-1}$  kan användas för att prediktera dagens värde  $y_t$ . Autokorrelation.
  - ► Kräver **speciella modeller** som tar hänsyn till beroenden.

Mattias Villani ST

#### **Tidsserier**



## Miljöskadliga partiklar i luften på Hornsgatan



## Airline passenger data



Mattias Villani

ST123G

## Airline passenger data - linjär trend

Linjär trend

$$y = a + b \cdot t$$

Minsta kvadrat

| passengers ~ | 1 + time           |                      |                |                  |                   |                    |
|--------------|--------------------|----------------------|----------------|------------------|-------------------|--------------------|
| Coefficients | :                  |                      |                |                  |                   |                    |
|              | Coef.              | Std. Error           | t              | Pr(> t )         | Lower 95%         | Upper 95%          |
| (Intercept)  | 87.6528<br>2.65718 | 7.71635<br>0.0923325 | 11.36<br>28.78 | <1e-20<br><1e-60 | 72.399<br>2.47466 | 102.907<br>2.83971 |

Mattias Villani

ST1230

## Airline passenger data - linjär trend



$$R^2 = 0.853.$$

Mattias Villani

## Airline passenger data - kvadratisk trend

#### Kvadratisk trend

$$y = a + b_1 \cdot t + b_2 \cdot t^2$$

#### Minsta kvadrat

| passengers ~                    | 1 + time + :                 | (time ^ 2)                        |                      |                            |                                  |                                 |
|---------------------------------|------------------------------|-----------------------------------|----------------------|----------------------------|----------------------------------|---------------------------------|
| Coefficients                    | :                            |                                   |                      |                            |                                  |                                 |
|                                 | Coef.                        | Std. Error                        | t                    | Pr(> t )                   | Lower 95%                        | Upper 95%                       |
| (Intercept)<br>time<br>time ^ 2 | 112.38<br>1.641<br>0.0070082 | 11.3841<br>0.362473<br>0.00242149 | 9.87<br>4.53<br>2.89 | <1e-17<br><1e-04<br>0.0044 | 89.8744<br>0.92441<br>0.00222108 | 134.886<br>2.35758<br>0.0117953 |

## Airline passenger data - kvadratisk trend



$$R^2 = 0.862.$$

Mattias Villani

ST123

## Airline passenger data - exponentiell trend

Exponentiell trend

$$y = a \cdot b^t$$

Skattas med minsta kvadrat genom att logaritmera data

$$\underbrace{\log y}_{\tilde{y}} = \underbrace{\log a}_{\tilde{a}} + \underbrace{\log b \cdot t}_{\tilde{b}}$$

$$\tilde{y} = \tilde{a} + \tilde{b} \cdot t$$

$$\tilde{a} = \log a$$

$$\tilde{b} = \log b$$

| logpassenger        | $s \sim 1 + time$     |                          |                 |          |                       |                       |
|---------------------|-----------------------|--------------------------|-----------------|----------|-----------------------|-----------------------|
| Coefficients        | :                     |                          |                 |          |                       |                       |
|                     | Coef.                 | Std. Error               | t               | Pr(> t ) | Lower 95%             | Upper 95%             |
| (Intercept)<br>time | 2.09055<br>0.00436396 | 0.0101165<br>0.000121052 | 206.65<br>36.05 |          | 2.07055<br>0.00412466 | 2.11055<br>0.00460325 |

- $b = 10^{\tilde{b}} = 10^{0.00436396} \approx 1.010.$

## Airline passenger data - exponentiell trend



 $\mathbb{R}^2 = 0.902$  för logarimerade data. Kan inte jämföras med tidigare modeller!

Mattias Villani

ST1230

## Airline passenger data - exponentiell trend

| cogpassenger | 's ~ 1 + time         |                          |        |          |                       |          |
|--------------|-----------------------|--------------------------|--------|----------|-----------------------|----------|
| Coefficients | :                     |                          |        |          |                       |          |
|              | Coef.                 | Std. Error               | t      | Pr(> t ) | Lower 95%             | Upper 95 |
| (Intercept)  | 2.09055<br>0.00436396 | 0.0101165<br>0.000121052 | 206.65 |          | 2.07055<br>0.00412466 | 2.11055  |

- Approximativt (n=144) 95% konfidensintervall för  $\tilde{b}$  0.00436396  $\pm$  1.96  $\cdot$  0.0001211052 = (0.004126594, 0.00460133)
- Approximativt (n=144) 95% konfidensintervall för b genom att anti-logga gränserna

$$(10^{0.004126594}, 10^{0.00460133}) \approx (1.0095, 1.0107)$$

dvs mellan 0.95% och 1.07% ökning per månad.

■ 1.07% ökning per månad blir  $1.0107^{12} \approx 1.1362$ , dvs ca 13.62% ökning per år.

## Global temperatur - exponentiell trend



 $R^2 = 0.764$  för logarimerade data.

Mattias Villani

ST1230

### Trendskattning genom glidande medelvärden

3-punkts (centrerat) glidande medelvärde med lika vikter:

$$M_t = (y_{t-1} + y_t + y_{t+1})/3$$

3-punkts glidande medelvärde med olika vikter:

$$M_t = w_{-1}y_{t-1} + w_0y_t + w_1y_{t+1}$$

- Notera att vikterna måste summera till 1.
- r-punkts glidande medelvärde

$$M_t = \sum_{s-r}^r w_s y_{t+s}$$

#### Trendskattning genom glidande medelvärden



## Airline passenger data - glidande medelvärden



## Trendskattning - glidande medelvärden - säsong

Kvartalsdata (ex: t = Kvartal3):

$$M_t^{(5)} = \left(\underbrace{y_{t-2}}_{\text{Kv2}} + 2\underbrace{y_{t-1}}_{\text{Kv3}} + 2\underbrace{y_t}_{\text{Kv3}} + 2\underbrace{y_{t+1}}_{\text{Kv4}} + \underbrace{y_{t+2}}_{\text{Kv1}}\right) / 8$$

Månadsdata (ex: t = juni):

$$M_t^{(13)} = \left(\underbrace{y_{t-6}}_{\text{dec}} + 2\underbrace{y_{t-5}}_{\text{jan}} + \dots + 2\underbrace{y_t}_{\text{juni}} + \dots + 2\underbrace{y_{t+5}}_{\text{nov}} + \underbrace{y_{t+6}}_{\text{dec}}\right) / 24$$

,

## Trendskattning - glidande medelvärden - säsong



## Komponentsuppdelning

- En tidsserie kan delas upp i komponenter:
  - ► Trend variation (T)
  - Cyklisk variation (C)
  - **▶ Säsongsvariation** (S)
  - **►** Slumpkomponent (*E*)
- Additiv modell

$$y_t = T_t + C_t + S_t + E_t$$

- Säsongseffekten är visst värde över/under trend, t ex decemberförsäljningen är 200 tkr högre i december.
- Multiplikativ modell

$$y_t = T_t \cdot C_t \cdot S_t \cdot E_t$$

Säsongseffekten är visst procent över/under trend, t ex decemberförsäljningen är 18% högre i december.

## Additiv vs multiplikativ uppdelning





Mattias Villani

ST123G

### Komponentsuppdelning - additiv modell

Additiv model utan cyklisk komponent:

$$y_t = T_t + S_t + E_t$$

- Steg 1: Bedöm modelltypen genom att plotta tidsserien: additiv eller multiplikativ? Vilken trendmodell?
- Steg 2: Skatta trendkomponenten  $\hat{T}_t$ . T ex parametrisk modell eller glidande medelvärde.
- Steg 3: Rensa bort trenden:  $y_t \hat{T}_t \approx S_t + E_t$
- Steg 4: Skatta säsongskomponenten genom att beräkna medelvärden av  $y_t \hat{T}_t$  för varje säsong separat.



## Skattning av säsongskomponenten

Steg 4: Skatta säsongskomponenten. Ex kvartalsdata:

$$\begin{split} \bar{S}_1 &= \frac{\sum_{\text{alla t som \"{a}r kvartal 1}} (y_t - \hat{T}_t)}{\text{antal kvartal 1 observationer}} \\ \bar{S}_2 &= \frac{\sum_{\text{alla t som \"{a}r kvartal 2}} (y_t - \hat{T}_t)}{\text{antal kvartal 2 observationer}} \\ \bar{S}_3 &= \frac{\sum_{\text{alla t som \"{a}r kvartal 3}} (y_t - \hat{T}_t)}{\text{antal kvartal 3 observationer}} \\ \bar{S}_4 &= \frac{\sum_{\text{alla t som \"{a}r kvartal 4}} (y_t - \hat{T}_t)}{\text{antal kvartal 4 observationer}} \end{split}$$

Steg 5: Korrigera säsongen så summan av säsongskomponenterna är noll:

$$S_i^+ = \bar{S}_i - \frac{\bar{S}_1 + \bar{S}_2 + \bar{S}_3 + \bar{S}_4}{4}$$

Mattias Villani

ST123G

## Skattning av säsongskomponenten

- Steg 6: Rensa bort säsongen genom att:
  - ightharpoonup dra av  $S_1^+$  från alla observationer i kvartal 1
  - ightharpoonup dra av  $S_2^+$  från alla observationer i kvartal 2, osv

$$y_t - \hat{T}_t - S_{i_t}^+ \approx E_t$$

där  $i_t$  är säsongen vid tidpunkt t. T ex  $i_7 = 2$  om tidpunkt t = 7 är i kvartal 2.

Multiplikativ modell - Variant 1: logga för göra additiv

$$\log y_t = \log T_t + \log C_t + \log S_t + \log E_t = \tilde{T}_t + \tilde{C}_t + \tilde{S}_t + \tilde{E}_t$$

Multiplikativ modell - Variant 2: uppdelning på orginalskala. Dividera istället för subtrahera för att rensa, ex:

$$\frac{y_t}{\hat{T}_t} \approx S_t \cdot E_t$$



# Airline passenger data - säsongskomponent $S_i^+$



## Airline passenger data - komponentanpassning



# Airline passenger data - säsongskomponent $S_i^+$



## Airline passenger data - komponentanpassning



## Airline passenger data - komponentanpassning

