# DAM-E3056N DAM模块

产品使用手册

V6.01.04





# 前言

版权归北京阿尔泰科技发展有限公司所有,未经许可,不得以机械、电子或其它任何方式进行复制。本公司保留对此手册更改的权利,产品后续相关变更时,恕不另行通知。

#### ■ 免责说明

订购产品前,请向厂家或经销商详细了解产品性能是否符合您的需求。

正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前提。本公司对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

#### ■ 安全使用小常识

- 1.在使用产品前,请务必仔细阅读产品使用手册;
- 2.对未准备安装使用的产品,应做好防静电保护工作(最好放置在防静电保护袋中,不要将其取出);
- 3.在拿出产品前,应将手先置于接地金属物体上,以释放身体及手中的静电,并佩戴静电手套和手环,要养成只触及其边缘部分的习惯;
- 4.为避免人体被电击或产品被损坏,在每次对产品进行拔插或重新配置时,须断电;
- 5.在需对产品进行搬动前,务必先拔掉电源;
- 6.对整机产品,需增加/减少板卡时,务必断电;
- 7. 当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉;
- 8.为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等待30秒后再开机。



# 目 录

| 『 1 产品说明                                                                       | 3      |
|--------------------------------------------------------------------------------|--------|
| 1.1 概述         1.2 产品外形图         1.3 产品尺寸图         1.4 主要指标         1.6 外部连接说明 | 3<br>4 |
| 2 配置说明                                                                         | 8      |
| 2.1 代码配置表         2.2 MODBUS 通讯说明         2.3 出厂默认状态         2.4 安装方式          |        |
| 3 软件使用说明                                                                       | 19     |
| 3.1 上电及初始化                                                                     |        |
| 0.4 产品的应用注意事项、保修                                                               | 24     |
| 4.1 注意事项                                                                       |        |



# ■ 1 产品说明

# 1.1 概述

DAM-E3056N 为 8 路单端\4 路差分模拟量输入采集,6 路数字量输出模块,以太网通讯接口,带有标准 Modbus TCP 协议。配备良好的人机交互界面,使用方便,功能丰富。

# 1.2 产品外形图



图 1



# 1.3 产品尺寸图









图 2

# 1.4 主要指标

8路单端\4路差分模拟量输入采集,6路数字量输出模块

| 。     | 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |  |  |  |
|-------|-----------------------------------------|--|--|--|
| 模拟量输入 |                                         |  |  |  |
| 输入通道  | 8 路单端\4 路差分                             |  |  |  |
| 量程    | -5~+5V (默认), -10~+10V, 0~5V, 0~10V      |  |  |  |
| 过压保护  | ±25V                                    |  |  |  |
| 采样频率  | 500sps/总通道;                             |  |  |  |
|       | 4 路差分模式下: 125sps/每通道                    |  |  |  |
|       | 8 路单端模式下: 62.5sps/每通道                   |  |  |  |
| 分辨率   | 16bit                                   |  |  |  |
| 精度    | 0.1%                                    |  |  |  |
| 输入阻抗  | 单端模式: 42KΩ                              |  |  |  |
|       | 差分模式: 31ΚΩ                              |  |  |  |
| 隔离电压  | 2500Vrms                                |  |  |  |
| 数字量输出 |                                         |  |  |  |
| 输出通道  | 6 路集电极开路输出, 30V, 500mA                  |  |  |  |
| 工作模式  | DO 输出                                   |  |  |  |
| 其他    |                                         |  |  |  |



| 通讯接口 | 10/100Mbps 以太网 |
|------|----------------|
| 看门狗  | 双看门狗           |
| 供电电压 | +10V~30VDC     |
| 电源保护 | 电源反向保护         |
| 功耗   | 1W@24VDC       |
| 操作温度 | 0°C~+60°C      |
| 存储温度 | -20°C ∼+80°C   |

# 1.6 外部连接说明

#### 1) 端子定义表

表1

| 端子 | 名称              | 说明                   |
|----|-----------------|----------------------|
| 1  | AINO            | 单端模式通道 0+, 双端模式通道 0+ |
| 2  | AIN1            | 单端模式通道 1+, 双端模式通道 0- |
| 3  | AD. GND         | 单端模式公共-端             |
| 4  | AIN2            | 单端模式通道 2+, 双端模式通道 1+ |
| 5  | AIN3            | 单端模式通道 3+, 双端模式通道 1- |
| 6  | AD. GND         | 单端模式公共-端             |
| 7  | AIN4            | 单端模式通道 4+, 双端模式通道 2+ |
| 8  | AIN5            | 单端模式通道 5+, 双端模式通道 2- |
| 9  | AD. GND         | 单端模式公共-端             |
| 10 | AIN6            | 单端模式通道 6+, 双端模式通道 3+ |
| 11 | AIN7            | 单端模式通道 7+, 双端模式通道 3- |
| 12 | INIT*           | 恢复出厂设置               |
| 13 | +V <sub>S</sub> | 供电电源+                |
| 14 | GND             | 供电电源-                |
| 15 | GND             | DO 输出公共-端            |
| 16 | OUT6            | D06 输出               |
| 17 | OUT5            | D05 输出               |
| 18 | OUT4            | DO4 输出               |
| 19 | GND             | DO 输出公共-端            |
| 20 | OUT3            | DO3 输出               |
| 21 | OUT2            | DO2 输出               |
| 22 | OUT1            | D01 输出               |

#### 2) 模块内部结构框图



3) **电源接线**:电源输入接口如下图所示,输入电源的最大电压为 30V,超过量程范围可能会造成模块电路的永久性损坏。



#### 4) AI 输入连接:



单端电压接法





图 8

#### 5) 集电极开路输出:



注:此 GND 即为模块供电电源的 GND



# ■ 2 配置说明

# 2.1 代码配置表

表 2

| AI 量程    | 代码   |
|----------|------|
| -5~+5V   | 0x08 |
| -10~+10V | 0x09 |
| 0~5V     | 0x0D |
| 0~10V    | 0x0E |

# 2.2 MODBUS 通讯说明

#### 1. 数字量输出的状态

支持的功能码: 01H、05H、0FH 数据起始地址: 00001~00376

表 3

| 地址    | 名称              | 说明            | 属性 |
|-------|-----------------|---------------|----|
| 00001 | 第00路开关量输出状态     | =1 导通; =0 未导通 | 读写 |
| 00002 | 第 01 路开关量输出状态   | =1 导通; =0 未导通 | 读写 |
| 00003 | 第 02 路开关量输出状态   | =1 导通; =0 未导通 | 读写 |
| 00004 | 第 03 路开关量输出状态   | =1 导通; =0 未导通 | 读写 |
| 00005 | 第 04 路开关量输出状态   | =1 导通; =0 未导通 | 读写 |
| 00006 | 第 05 路开关量输出状态   | =1 导通; =0 未导通 | 读写 |
| 保留    |                 |               |    |
| 00033 | 通道 DO0 上电输出值    | =1 导通; =0 未导通 | 读写 |
| 00034 | 通道 DO1 上电输出值    | =1 导通; =0 未导通 | 读写 |
| 00035 | 通道 DO2 上电输出值    | =1 导通; =0 未导通 | 读写 |
| 00036 | 通道 DO3 上电输出值    | =1 导通; =0 未导通 | 读写 |
| 00037 | 通道 DO4 上电输出值    | =1 导通; =0 未导通 | 读写 |
| 00038 | 通道 DO5 上电输出值    | =1 导通; =0 未导通 | 读写 |
| 保留    |                 |               |    |
| 00065 | 第00路开关量输出安全状态   | =1 导通; =0 未导通 | 读写 |
| 00066 | 第 01 路开关量输出安全状态 | =1 导通; =0 未导通 | 读写 |
| 00067 | 第 02 路开关量输出安全状态 | =1 导通; =0 未导通 | 读写 |
| 00068 | 第 03 路开关量输出安全状态 | =1 导通; =0 未导通 | 读写 |
| 00069 | 第 04 路开关量输出安全状态 | =1 导通; =0 未导通 | 读写 |



| 00070 | 第 05 路开关量输出安全状态 | =1 导通; =0 未导通  | 读写 |
|-------|-----------------|----------------|----|
| 保留    |                 |                |    |
| 00257 | 复位通道0历史最大值      | =1 复位; =0 不动作  | 只写 |
| 00258 | 复位通道1历史最大值      | =1 复位; =0 不动作  | 只写 |
| 00259 | 复位通道2历史最大值      | =1 复位; =0 不动作  | 只写 |
| 00260 | 复位通道3历史最大值      | =1 复位; =0 不动作  | 只写 |
| 00261 | 复位通道 4 历史最大值    | =1 复位; =0 不动作  | 只写 |
| 00262 | 复位通道 5 历史最大值    | =1 复位; =0 不动作  | 只写 |
| 00263 | 复位通道6历史最大值      | =1 复位; =0 不动作  | 只写 |
| 00264 | 复位通道7历史最大值      | =1 复位; =0 不动作  | 只写 |
| 保留    |                 |                |    |
| 00273 | 复位平均值历史最大值      | =1 复位; =0 不动作  | 只写 |
| 00274 | 复位平均值历史最小值      | =1 复位; =0 不动作  | 只写 |
| 保留    |                 |                |    |
| 00289 | 复位通道0历史最小值      | =1 复位; =0 不动作  | 只写 |
| 00290 | 复位通道1历史最小值      | =1 复位; =0 不动作  | 只写 |
| 00291 | 复位通道2历史最小值      | =1 复位; =0 不动作  | 只写 |
| 00292 | 复位通道 3 历史最小值    | =1 复位; =0 不动作  | 只写 |
| 00293 | 复位通道 4 历史最小值    | =1 复位; =0 不动作  | 只写 |
| 00294 | 复位通道 5 历史最小值    | =1 复位; =0 不动作  | 只写 |
| 00295 | 复位通道6历史最小值      | =1 复位; =0 不动作  | 只写 |
| 00296 | 复位通道7历史最小值      | =1 复位; =0 不动作  | 只写 |
| 保留    |                 |                |    |
| 00321 | 通道0上限报警状态       | =1 报警; =0 不报警; | 读写 |
| 00322 | 通道1上限报警状态       | =1 报警; =0 不报警; | 读写 |
| 00323 | 通道2上限报警状态       | =1 报警; =0 不报警; | 读写 |
| 00324 | 通道3上限报警状态       | =1 报警; =0 不报警; | 读写 |
| 00325 | 通道 4 上限报警状态     | =1 报警; =0 不报警; | 读写 |
| 00326 | 通道 5 上限报警状态     | =1 报警; =0 不报警; | 读写 |
| 00327 | 通道 6 上限报警状态     | =1 报警; =0 不报警; | 读写 |
| 00328 | 通道7上限报警状态       | =1 报警; =0 不报警; | 读写 |
| 保留    |                 |                |    |
| 00337 | 平均值上限报警状态       | =1 报警; =0 不报警  | 读写 |
| 00338 | 平均值下限报警状态       | =1 报警; =0 不报警  | 读写 |
| 保留    |                 |                |    |
| 00353 | 通道 0 下限报警状态     | =1 报警; =0 不报警; | 读写 |
| 00354 | 通道1下限报警状态       | =1 报警; =0 不报警; | 读写 |
| 00355 | 通道2下限报警状态       | =1 报警; =0 不报警; | 读写 |
| 00356 | 通道3下限报警状态       | =1 报警; =0 不报警; | 读写 |

#### ■ (P<sup>®</sup>ART Technology

|       |                |                | 1  |
|-------|----------------|----------------|----|
| 00357 | 通道4下限报警状态      | =1 报警; =0 不报警; | 读写 |
| 00358 | 通道 5 下限报警状态    | =1 报警; =0 不报警; | 读写 |
| 00359 | 通道6下限报警状态      | =1 报警; =0 不报警; | 读写 |
| 00360 | 通道7下限报警状态      | =1 报警; =0 不报警; | 读写 |
| 保留    |                |                |    |
| 00369 | 通道0参与平均值计算使能   | 1= 使能; =0 不使能  | 读写 |
| 00370 | 通道1参与平均值计算使能   | 1= 使能; =0 不使能  | 读写 |
| 00371 | 通道2参与平均值计算使能   | 1= 使能; =0 不使能  | 读写 |
| 00372 | 通道3参与平均值计算使能   | 1= 使能; =0 不使能  | 读写 |
| 00373 | 通道 4 参与平均值计算使能 | 1= 使能; =0 不使能  | 读写 |
| 00374 | 通道5参与平均值计算使能   | 1= 使能; =0 不使能  | 读写 |
| 00375 | 通道 6 参与平均值计算使能 | 1= 使能; =0 不使能  | 读写 |
| 00376 | 通道7参与平均值计算使能   | 1= 使能; =0 不使能  | 读写 |
| 保留    |                |                |    |

# 2. 保持寄存器

支持的功能码: 03H、06H、10H 数据起始地址: 40256~41059

数据说明: 读取的是十六位整数或无符合整数

表 4

| 地址    | 描述           | 说明                     | 属性 |
|-------|--------------|------------------------|----|
| 40257 | 通道 AIO 量程选择  |                        | 读写 |
| 40258 | 通道 AI1 量程选择  | $0x08 : -5V \sim +5V;$ | 读写 |
| 40259 | 通道 AI2 量程选择  | $0x09:-10V\sim+10V;$   | 读写 |
| 40260 | 通道 AI3 量程选择  | 0x0D:0~5V; (双端模式没      | 读写 |
| 40261 | 通道 AI4 量程选择  | 有这个量程)                 | 读写 |
| 40262 | 通道 AI5 量程选择  | 0x0E:0~10V(双端模式没       | 读写 |
| 40263 | 通道 AI6 量程选择  | 有这个量程)                 | 读写 |
| 40264 | 通道 AI7 量程选择  |                        | 读写 |
| 保留    |              |                        |    |
| 40289 | 平均值上限报警值     |                        | 读写 |
| 40290 | 通道0上限报警值设置   |                        | 读写 |
| 40291 | 通道1上限报警值设置   |                        | 读写 |
| 40292 | 通道2上限报警值设置   |                        | 读写 |
| 40293 | 通道3上限报警值设置   |                        | 读写 |
| 40294 | 通道 4 上限报警值设置 |                        | 读写 |
| 40295 | 通道 5 上限报警值设置 |                        | 读写 |
| 40296 | 通道6上限报警值设置   |                        | 读写 |
| 40297 | 通道7上限报警值设置   |                        | 读写 |

| 保留    |                |                  |    |
|-------|----------------|------------------|----|
| 40306 | 平均值下限报警值设置     |                  | 读写 |
| 40307 | 通道0下限报警值设置     |                  | 读写 |
| 40308 | 通道1下限报警值设置     |                  | 读写 |
| 40309 | 通道2下限报警值设置     |                  | 读写 |
| 40310 | 通道3下限报警值设置     |                  | 读写 |
| 40311 | 通道4下限报警值设置     |                  | 读写 |
| 40312 | 通道5下限报警值设置     |                  | 读写 |
| 40313 | 通道6下限报警值设置     |                  | 读写 |
| 40314 | 通道7下限报警值设置     |                  | 读写 |
| 保留    |                |                  |    |
| 40353 | 平均值上限报警模式设置    | =0: 不报警;         | 读写 |
| 40354 | 通道0上限报警模式设置    | =1: 锁存报警;        | 读写 |
| 40355 | 通道1上限报警模式设置    | =2: 实时报警         | 读写 |
| 40356 | 通道2上限报警模式设置    |                  | 读写 |
| 40357 | 通道3上限报警模式设置    |                  | 读写 |
| 40358 | 通道 4 上限报警模式设置  |                  | 读写 |
| 40359 | 通道 5 上限报警模式设置  |                  | 读写 |
| 40360 | 通道 6 上限报警模式设置  |                  | 读写 |
| 40361 | 通道7上限报警模式设置    |                  | 读写 |
| 保留    |                |                  |    |
| 40370 | 平均值下限报警模式设置    | =0: 不报警;         | 读写 |
| 40371 | 通道0下限报警模式设置    | =1: 锁存报警;        | 读写 |
| 40372 | 通道1下限报警模式设置    | =2: 实时报警         | 读写 |
| 40373 | 通道2下限报警模式设置    |                  | 读写 |
| 40374 | 通道3下限报警模式设置    |                  | 读写 |
| 40375 | 通道4下限报警模式设置    |                  | 读写 |
| 40376 | 通道 5 下限报警模式设置  |                  | 读写 |
| 40377 | 通道6下限报警模式设置    |                  | 读写 |
| 40378 | 通道7下限报警模式设置    |                  | 读写 |
| 保留    |                |                  |    |
| 40387 | 平均值上限报警通道号绑定   | 0 代表不绑定任何通道,1~6  | 读写 |
| 40388 | 通道0上限报警通道号绑定   | 分别对应绑定 DI0~DI5 通 | 读写 |
| 40389 | 通道1上限报警通道号绑定   | 道<br>            | 读写 |
| 40390 | 通道2上限报警通道号绑定   |                  | 读写 |
| 40391 | 通道3上限报警通道号绑定   |                  | 读写 |
| 40392 | 通道 4 上限报警通道号绑定 |                  | 读写 |
| 40393 | 通道 5 上限报警通道号绑定 |                  | 读写 |
| 40394 | 通道 6 上限报警通道号绑定 |                  | 读写 |



|       | 700000         |                        | 1  |
|-------|----------------|------------------------|----|
| 40395 | 通道7上限报警通道号绑定   |                        | 读写 |
| 保留    |                |                        |    |
| 00404 | 平均值下限报警通道号绑定   | 0 代表不绑定任何通道,1~6        | 读写 |
| 00405 | 通道0下限报警通道号绑定   | 分别对应绑定 DIO~DI5 通       | 读写 |
| 00406 | 通道1下限报警通道号绑定   | 道                      | 读写 |
| 00407 | 通道2下限报警通道号绑定   |                        | 读写 |
| 00408 | 通道3下限报警通道号绑定   |                        | 读写 |
| 00409 | 通道4下限报警通道号绑定   |                        | 读写 |
| 00410 | 通道 5 下限报警通道号绑定 |                        | 读写 |
| 00411 | 通道6下限报警通道号绑定   |                        | 读写 |
| 00412 | 通道7下限报警通道号绑定   |                        | 读写 |
| 保留    |                |                        |    |
| 40513 | 看门狗控制寄存器       | 1=使能,0=不使能;            | 读写 |
| 40514 | 看门狗溢出时间寄存器     | 看门狗超时时间常数,单位 s         | 读写 |
| 保留    |                |                        |    |
| 40516 | UDP 搜索端口号      | 5000~60000 (出厂设置 5001) | 读写 |
| 保留    |                |                        |    |
| 40518 | TCP 连接空闲超时寄存器  | 5~65535 单位 s           | 读写 |
| 40519 | 重新启动模块         | 0x00: 不启动;             | 只写 |
|       |                | 0x01: 重新启动             |    |
| 40520 | 恢复出厂设置         | 0x00: 不恢复              | 只写 |
|       |                | 0x01: 恢复               |    |
| 40521 | 进入校准模式         |                        | 只写 |
| 40522 | 输入方式选择         | =0: 单端; =1 差分          | 读写 |
| 保留    |                |                        |    |
| 41001 | 平均采样值          |                        | 只读 |
| 41002 | 通道0采样值         |                        | 只读 |
| 41003 | 通道1采样值         |                        | 只读 |
| 41004 | 通道2采样值         |                        | 只读 |
| 41005 | 通道3采样值         | ── 码值与量程的对应关<br>── 系见表 | 只读 |
| 41006 | 通道4采样值         | ──                     | 只读 |
| 41007 | 通道5采样值         |                        | 只读 |
| 41008 | 通道6采样值         |                        | 只读 |
| 41009 | 通道7采样值         |                        | 只读 |
| 保留    |                |                        |    |
| 41035 | 平均值历史最大值       | 码值与量程的对应关              | 只读 |
| 41036 | 通道0历史最大值       | 系见表                    | 只读 |
| 41037 | 通道1历史最大值       |                        | 只读 |
| 41038 | 通道2历史最大值       |                        | 只读 |

| 41039 | 通道3历史最大值   |           | 只读 |
|-------|------------|-----------|----|
| 41040 | 通道 4 历史最大值 |           | 只读 |
| 41041 | 通道 5 历史最大值 |           | 只读 |
| 41042 | 通道 6 历史最大值 |           | 只读 |
| 41043 | 通道7历史最大值   |           | 只读 |
| 保留    |            |           |    |
| 41051 | 平均值历史最小值   | 码值与量程的对应关 | 只读 |
| 41052 | 通道0历史最小值   | 系见表       | 只读 |
| 41053 | 通道1历史最小值   |           | 只读 |
| 41054 | 通道2历史最小值   |           | 只读 |
| 41055 | 通道3历史最小值   |           | 只读 |
| 41056 | 通道 4 历史最小值 |           | 只读 |
| 41057 | 通道5历史最小值   |           | 只读 |
| 41058 | 通道6历史最小值   |           | 只读 |
| 41059 | 通道7历史最小值   |           | 只读 |

# 3. 输入寄存器

支持的功能码: 04H

数据起始地址: 30257~30426

数据说明: 读取的是十六位整数或无符合整数

表 5

| 地址    | 描述       | 说明               | 属性 |
|-------|----------|------------------|----|
| 30257 | 平均采样值    |                  | 只读 |
| 30258 | 通道0采样值   |                  | 只读 |
| 30259 | 通道1采样值   |                  | 只读 |
| 30260 | 通道2采样值   | 刀体上具织的对点头系列      | 只读 |
| 30261 | 通道3采样值   | 码值与量程的对应关系见<br>表 | 只读 |
| 30262 | 通道4采样值   | 10               | 只读 |
| 30263 | 通道5采样值   |                  | 只读 |
| 30264 | 通道6采样值   |                  | 只读 |
| 30265 | 通道7采样值   |                  | 只读 |
| 保留    |          |                  |    |
| 30401 | 平均值历史最大值 | 码值与量程的对应关        | 只读 |
| 30402 | 通道0历史最大值 | 系见表              | 只读 |
| 30403 | 通道1历史最大值 |                  | 只读 |
| 30404 | 通道2历史最大值 |                  | 只读 |
| 30405 | 通道3历史最大值 |                  | 只读 |
| 30406 | 通道4历史最大值 |                  | 只读 |

#### ■ (p<sup>®</sup>ART Technology

| 30407 | 通道5历史最大值   |           | 只读 |
|-------|------------|-----------|----|
| 30408 | 通道6历史最大值   |           | 只读 |
| 30409 | 通道7历史最大值   |           | 只读 |
| 保留    |            |           |    |
| 30418 | 平均值历史最小值   | 码值与量程的对应关 | 只读 |
| 30419 | 通道0历史最小值   | 系见表       | 只读 |
| 30420 | 通道1历史最小值   |           | 只读 |
| 30421 | 通道2历史最小值   |           | 只读 |
| 30422 | 通道3历史最小值   |           | 只读 |
| 30423 | 通道 4 历史最小值 |           | 只读 |
| 30424 | 通道 5 历史最小值 |           | 只读 |
| 30425 | 通道6历史最小值   |           | 只读 |
| 30426 | 通道7历史最小值   |           | 只读 |

#### 4. 数据寄存器的值与输入模拟量的对应关系(均为线性关系):

表 6

| 模拟量输入量程   | 数据寄存器的数码值(十进制)                          |
|-----------|-----------------------------------------|
| -10V~+10V | 0-65535 (-10V 对应数码值 0, 10V 对应数码值 65535) |
| -5V∼+5V   | 0-65535 (-5V 对应数码值 0, 5V 对应数码值 65535)   |
| 0~10V     | 0-65535 (0V 对应数码值 0, 10V 对应数码值 65535)   |
| 0~5V      | 0-65535 (0V 对应数码值 0,5V 对应数码值 65535)     |

# 2.3 MODBUS 通信实例

#### MODBUS TCP 报文组成如下



#### 报文头包含下列域

| 域       | 长度   | 描述                                       |
|---------|------|------------------------------------------|
| 事务单元标识符 | 2字节  | 用于事务处理配对。在响应中,MODBUS 服务器复制请求的事务处理<br>标识符 |
| 协议标识符   | 2 字节 | 用于系统内的多路复用。通过值 0 识别 MODBUS 协议。           |
| 长度      | 2 字节 | 长度域是下一个域的字节数,包括单元标识符和数据域。                |

单元标识符 1字节 串行链路或其它总线上连接的远程从站的识别码

1、04H 功能码

用于读输入寄存器, 读取的是十六位整数或无符号整数

对应的数据操作地址: 30257~30426

举例:

读通道 0~7 的采集值

主机发送: 00 00 00 00 00 06 00 04 01 00 00 08

包头 功能码 寄存器地址 40257 寄存器数量

设备返回: <u>00 00 00 00 13 00</u> <u>04</u> <u>10</u> <u>80 00 80 01 80 00 7F FF 80 00 80 00 80 00</u>

80 00

包头 功能码 字节数量 数据

通道 0 采集值: 80 00 通道 1 采集值: 80 01 通道 2 采集值: 80 00 通道 3 采集值: 7F FF 通道 4 采集值: 80 00 通道 5 采集值: 80 00 通道 6 采集值: 80 00

通道7采集值: 8000

2、03H 功能码

用于读保持寄存器,读取的是十六位整数或无符号整数

对应的数据操作地址: 40257~41060

举例:

读通道 0~7 的量程

主机发送: 00 00 00 00 00 06 00 03 01 00 00 08

包头 功能码 寄存器地址 40257 寄存器数量

设备返回: 00 00 00 00 00 13 00 03 10 00 0D 00

0D 00 0D

包头 功能码 字节数量 数据

通道 0 为 0~5V 量程: 00 0D 通道 1 为 0~5V 量程: 00 0D 通道 2 为 0~5V 量程: 00 0D 通道 3 为 0~5V 量程: 00 0D 通道 4 为 0~5V 量程: 00 0D 通道 5 为 0~5V 量程: 00 0D

通道 6 为 0~5V 量程: 00 0D

远过 0 / 3 0~ 3 V 里住: 00 0L

通道7为0~5V量程:000D

3、06H 功能码

用于写单个保存寄存器

对应的数据操作地址: 40257~40522

# ART Technology

举例:

设置通道 2 的量程为 0~5V

主机发送: <u>00 00 00 00 00 06 00</u> <u>06</u> <u>01 02</u> <u>00 0D</u>

包头 功能码 寄存器地址 40259 数据:设置为 0~5V 量程

 设备返回:
 00 00 00 00 00 00 00 00 00 00 00
 06
 01 02
 00 0D

 包头
 功能码
 寄存器地址 40259
 数据

4、10H 功能码

用于写多个保存寄存器

对应的数据操作地址: 40257~40522

举例:

写 DO0 脉冲输出个数

主机发送: <u>00 00 00 00 00 0B 00</u> <u>10</u> <u>01 00</u> <u>00 02</u> <u>04</u> <u>00 0D 00 0D</u>

包头 功能码 寄存器地址 40257 寄存器个数 字节数 数据:

通道 0、1 设置为

0~5V 量程

设备返回: <u>00 00 00 00 00 06 00</u> <u>10</u> <u>01 00</u> <u>00 02</u>

包头 功能码 寄存器地址 40257 寄存器个数

5、01H 功能码

用于读开关量,读取的是单个比特

对应的数据操作地址: 00001~00376

举例:

读 DO0~5 通道的输出状态

主机发送: 00 00 00 00 00 06 00 01 00 00 00 00 00

包头 功能码 寄存器地址 00001 开关量数量

设备返回: <u>00 00 00 00 00 04 00</u> <u>01</u> <u>01</u> <u>0F</u>

包头 功能码 字节数量 数据

通道 0 为导通状态: 1

通道1为导通状态:1

通道 2 为导通状态: 1

通道3为导通状态:1

通道 4 为断开状态: 0

通道 5 为断开状态: 0

6、05H 功能码

用于写单个开关量

对应的数据操作地址: 00001~00376

举例:

设置 DOO 安全输出状态为导通

主机发送: <u>00 00 00 00 00 06 00</u> <u>05</u> <u>00 40</u> <u>FF 00</u>

包头 功能码 寄存器地址 00065 数据:

设置通道0安全状态为导通



设备返回: <u>00 00 00 00 00 06 00</u> <u>05</u> <u>00 40</u> <u>FF 00</u>

包头 功能码 寄存器地址 00065 数据

7、0fH 功能码

用于写多个开关量

对应的数据操作地址: 00001~00376

举例:

设置 DO0~5 安全输出状态

主机发送: <u>00 00 00 00 00 0B 00</u> <u>0F</u> <u>00 40</u> <u>00 06</u> <u>01</u> <u>0F</u>

包头 功能码 寄存器地址 00065 寄存器个数 字节数 数据:

DO0 导通

DO1 导通

DO2 导通

DO3 导通

DO4 关断

DO5 关断

设备返回: <u>00 00 00 00 00 06 00</u> <u>0F</u> <u>00 40</u> <u>00 06 06</u>

包头 功能码 寄存器地址 00065 寄存器个数

### 2.4 出厂默认状态

密码: 666666

IP 地址:192. 168. 2. 80默认网关:255: 255: 255: 255: 0

 AI 模式:
 单端模式

 AI 量程:
 -5V~+5V

安全输出: 0;

# 2.5 安装方式

DAM-E3056N 系列模块可方便的安装在 DIN 导轨、面板上(如图 11),还可以将它们堆叠在一起(如图 12),方便用户使用。信号连接可以通过使用插入式螺丝端子,便于安装、更改和维护。







### ■ 3 软件使用说明

#### 3.1 上电及初始化

- 1) 连接电源: "+Vs"接电源正, "GND"接地, 模块供电要求: +10V—+30V。
- 2) 连接通讯线: DAM-E3056N 通过转换模块 RJ45 接口同计算机连接。
- 3) 复位: 在断电的情况下,将 INIT\*和 GND 短接,加电至指示灯闪烁停止则完成复位。断开 INIT\*和 GND,此时再上电模块进入正常采样状态。

#### 3.2 连接高级软件

1) 连接号模块后上电,打开 DAM-E3000 高级软件,点击箭头处,出现下面界面,填入 IP 地址,其它的选项默认,点击 "连接设备"按钮。



图 13

2) 出现如下配置界面提示输入密码,若不出现模块信息则需重复以上步骤。默认密码为 666666





图 14

3) 连接上模块后,点击"3056N\_功能设置",出现如下信息界面,点击 "接地方式"下拉箭头, 选择需要设置量程的接地方式,点击"采样量程"下拉箭头,选择好量程后,点击"应用"。





图 15

4) 点击红色箭头位置,查看模块参数。





#### 图 16

5) 如果需要修改模块信息则双击左侧的模块地址信息,出现以下界面,可以更改模块的 IP 等信息。 注意: MAC 地址为全球唯一,请勿随意更改。



图 17

6) 修改 IP 信息后,需要对模块重新上电配置信息才可以配置 IP 信息。可以点击如下窗口的"重启"按钮。待电源指示灯常亮,然后重复连接模块步骤,即可连接上模块。





图 18



### ■ 4 产品的应用注意事项、保修

#### 4.1 注意事项

在公司售出的产品包装中,用户将会找到这本说明书和DAM-E3056N板,同时还有产品质保卡。 产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡同产品一起, 寄回本公司,以便我们能尽快的帮用户解决问题。

在使用DAM-E3056N板时,应注意DAM-E3056N板正面的IC芯片不要用手去摸,防止芯片受到静电的危害。

#### 4.2 保修

DAM-E3056N自出厂之日起,两年内凡用户遵守运输,贮存和使用规则,而质量低于产品标准者公司免费修理。



# 阿尔泰科技

服务热线:400-860-3335

网址: www.art-control.com