

Ŋ,

ŞŞ

<u>Página inicial</u>

Cursos

<u>QXD0116 - ÁLGEBRA LINEAR - 01A - 2025.1</u>

<u>Frequência</u>

(16/06/2025) - Base de um Espaço Vetorial III

Iniciado em	sexta, 27 jun 2025, 01:53
Estado	Finalizada
Concluída em	sexta, 27 jun 2025, 01:54
Tempo empregado	1 minuto 36 segundos
Notas	2,00/2,00
Avaliar	10,00 de um máximo de 10,00(100%)

Seja $\mathbb{B}_1=\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ a base canônica de \mathbb{R}^3 e $\mathbb{B}_2=\{\mathbf{u}_1,\mathbf{u}_2,,\mathbf{u}_3\}$ uma nova base, onde $\mathbf{u}_1=\begin{bmatrix}1\\0\\0\end{bmatrix}$, $\mathbf{u}_2=\begin{bmatrix}1\\1\\0\end{bmatrix}$ e $\mathbf{u}_3=\begin{bmatrix}1\\1\\1\end{bmatrix}$. Se um vetor \mathbf{v} tem coordenadas $\mathbf{v}_{\mathbb{B}_1}=\begin{bmatrix}4\\3\\2\end{bmatrix}$ na base canônica, quais são

as coordenadas de ${\bf v}$ na base \mathbb{B}_2 .

Escolha uma opção:

$$oldsymbol{\circ}$$
 a. $\mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}$

$$lackbox{0}$$
 b. $\mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 1 \ 1 \ 2 \end{bmatrix}$

$$egin{aligned} oldsymbol{\circ} & \mathsf{c.}\,\mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 4 \ 3 \ 2 \end{bmatrix} \ oldsymbol{\circ} & \mathsf{d.}\,\mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 1 \ 2 \ 2 \end{bmatrix} \end{aligned}$$

$$igcup_{\mathbb{B}_2} = egin{bmatrix} 1 \ 2 \ 2 \end{bmatrix}$$

$$igcup \ ext{e.} \ \mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 2 \ 1 \ 1 \end{bmatrix}$$

Sua resposta está correta.

As respostas corretas são: $\mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$

,
$$\mathbf{v}_{\mathbb{B}_2} = egin{bmatrix} 1 \ 2 \ 2 \end{bmatrix}$$

Histórico de respostas

Passo	Hora	Ação
1	27/06/2025 01:53	Iniciada
2	27/06/2025 01:54	Salvou: [\mathbf{v}_{\mathbb{B}_2}=\left[\begin{matrix} 1 \\ 1 \\ 2 \end{matrix}\right]]
3	27/06/2025 01:54	Tentativa finalizada

 \bigcirc

Dadas as bases $\mathbb{B}_1=\{\mathbf{u}_1,\mathbf{u}_2\}$ e $\mathbb{B}_2=\{\mathbf{v}_1,\mathbf{v}_2\}$ de \mathbb{R}^2 , onde $\mathbf{u}_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mathbf{u}_2=\begin{bmatrix}3\\4\end{bmatrix}$, $\mathbf{v}_1=\begin{bmatrix}1\\0\end{bmatrix}$ e $\mathbf{v}_2=\begin{bmatrix}0\\1\end{bmatrix}$ (base canônica). Se a matriz de mudança de base de \mathbb{B}_1 para \mathbb{B}_2 é $\mathbf{P}_{\mathbb{B}_2\leftarrow\mathbb{B}_1}$, qual é a matriz de mudança de base de \mathbb{B}_2 para \mathbb{B}_1 , ou seja, $\mathbf{P}_{\mathbb{B}_2\leftarrow\mathbb{B}_1}$?

Escolha uma opção:

$$lackbox{0.}{}$$
 a. $\mathbf{A}=\begin{bmatrix} -2 & rac{3}{2} \\ 1 & -rac{1}{2} \end{bmatrix}$

$$igcup$$
 b. ${f A}=\left[egin{array}{ccc} -2 & 1 \ rac{3}{2} & -rac{1}{2} \end{array}
ight]$

$$igcup_{}$$
 c. $\mathbf{A}=\left[egin{array}{cc}4 & -3\ -2 & 1\end{array}
ight]$

od.
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$igcolon$$
 e. $\mathbf{A}=egin{bmatrix}1&2\3&4\end{bmatrix}$

Sua resposta está correta.

A resposta correta é:
$$\mathbf{A} = egin{bmatrix} -2 & rac{3}{2} \\ 1 & -rac{1}{2} \end{bmatrix}$$

Histórico de respostas

Passo	Hora	Ação	Estado	P
1	27/06/2025 01:53	Iniciada	Ainda não respondida	
2	27/06/2025 01:53	Salvou: [\mathbf{A}=\left[\begin{matrix} -2 & \frac{3}{2} \\ 1 & -\frac{1} {2} \end{matrix}\right]]	Resposta salva	
3	27/06/2025 01:54	Tentativa finalizada	Correto	1,(

 $\vec{\mathcal{U}}$

 $\hat{\omega}$

(~)

 \bigcirc

₹<u>}</u>

Em um espaço vetorial $\mathbb {V}$ de dimensão 3, considere duas bases $\mathbb {B}_1$ e

 \mathbb{B}_2 . Se um vetor \mathbf{w} tem coordenadas $\mathbf{w}_{\mathbb{B}_1}=egin{bmatrix} 5 \ -2 \ 1 \end{bmatrix}$ na base \mathbb{B}_1 , e a matriz de mudança de base de \mathbb{B}_1 para \mathbb{B}_2 é $\mathbf{A}=egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix}$.

Quais são as coordenadas de ${f w}$ na base ${\Bbb B}_2$?

Escolha uma opção:

$$lacksquare$$
 a. $\mathbf{w}_{\mathbb{B}_2} = egin{bmatrix} 1 \ -2 \ 4 \end{bmatrix}$

$$igcup_{\mathbb{B}_2} = egin{bmatrix} -2 \ 1 \ 5 \end{bmatrix}$$

$$egin{array}{c} \circ \ \mathsf{c}.\, \mathbf{w}_{\mathbb{B}_2} = \left[egin{array}{c} 5 \ -2 \ 1 \end{array}
ight] \end{array}$$

$$oldsymbol{\circ}$$
 d. $\mathbf{w}_{\mathbb{B}_2} = \left[egin{array}{c} 5 \ 1 \ -2 \end{array}
ight]$

$$egin{array}{c} oldsymbol{\circ} \ \mathsf{e}.\, \mathbf{w}_{\mathbb{B}_2} = \left[egin{array}{c} 1 \ 5 \ -2 \end{array}
ight] \end{array}$$

Sua resposta está correta.

A resposta correta é:
$$\mathbf{w}_{\mathbb{B}_2} = egin{bmatrix} 1 \ -2 \ 4 \end{bmatrix}$$

Histórico de respostas

Passo	Hora	Ação
1	27/06/2025 01:53	Iniciada
2	27/06/2025 01:54	Salvou: [\mathbf{w}_{\mathbb{B}_2}=\left[\begin{matrix} 1 \\ -2 \\ 4 \end{matrix}\right]]
3	27/06/2025 01:54	Tentativa finalizada

©2020 - Universidade Federal do Ceará - Campus Quixadá.

Todos os direitos reservados.

Av. José de Freitas Queiroz, 5003

Cedro - Quixadá - Ceará CEP: 63902-580

Secretaria do Campus: (88) 3411-9422