2. ZÁRTHELYI

2019. május 14.

Programtervező informatikus Bsc szak

Név ______Neptun kód ______Gyak.vez. neve _____

Pontszám _____

- 1. Tetszőleges $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrixra $\|\mathbf{A}\|_m := n \cdot \max_{i,j=1}^n |a_{ij}|$.
 - a) Igazoljuk, hogy $\|\mathbf{A}\|_m$ mátrixnorma.
 - b) Bizonyítsuk, hogy a 2-es vektornormához illeszkedik.

(6 pont)

- 2. Számítsuk ki az $\mathbf{A}=\begin{bmatrix}2&1&0\\1&2&0\\0&0&2\end{bmatrix}$ mátrix kondíciószámát az 1-es, 2-es és a ∞ mátrixnormában! (10 pont)
- 3. Az $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \cdot \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Jacobi-iterációt!
 - a) Bizonyítsuk a konvergenciát!
 - b) Írjuk fel a hibabecslését!
 - c) Hány lépést kell tennünk a 10^{-3} pontosság eléréséhez, ha $\mathbf{x}_0 = \mathbf{0}$? (10 pont)
- 4. Az $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \cdot \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Gauss–Seidel-iterációt!
 - a) Bizonyítsuk a konvergenciát!
 - b) Számítsuk ki \mathbf{x}_1 -et a koordinátás alakjában, ha $\mathbf{x}_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T!$ (6 pont)
- 5. Az $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \cdot \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Richardson-iterációt!
 - a) Pontosan mely p paraméter értékekre konvergens?
 - b) Mi az optimális paraméter és mennyi ekkor a kontrakciós együttható? (8 pont)
- 6. Készítsük el a következő mátrix $J = \{(1,2),(2,3)\}$ pozícióhalmazra illeszkedő részleges LU-felbontását!

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 2 \\ -2 & 4 & 4 \\ 2 & 4 & 3 \end{bmatrix}$$

- a) Határozzuk meg az L, U és Q mátrixokat!
- b) Írjuk fel az ILU-algoritmus vektoros alakját a kapott L, U, Q mátrixokkal!

(Az átmenetmátrixot nem kell kiszámolni.)

(10 pont)