Filter Summary Report: TIA,simple,Z5

Generated by MacAnalog-Symbolix

December 18, 2024

Contents

1 Examined $H(z)$ for TIA simple Z5: $\frac{Z_5g_m-1}{2g_m}$	2
$_{ m 2\ HP}$	2
3 BP	2
$4~{ m LP}$	2
5 BS	2
6 GE 6.1 GE-1 $Z(s) = \left(\infty, \ \infty, \ \infty, \ \infty, \ \frac{L_5R_5s}{C_5L_5R_5s^2 + L_5s + R_5}, \ \infty\right)$	2 2 2
7 AP	9
8 INVALID-NUMER	č
9 INVALID-WZ	3
10 INVALID-ORDER $10.1 \text{ INVALID-ORDER-1 } Z(s) = (\infty, \infty, \infty, \infty, R_5, \infty) $ $10.2 \text{ INVALID-ORDER-2 } Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right) $ $10.3 \text{ INVALID-ORDER-3 } Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s+1}, \infty\right) $ $10.4 \text{ INVALID-ORDER-4 } Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right) $ $10.5 \text{ INVALID-ORDER-5 } Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right) $ $10.6 \text{ INVALID-ORDER-6 } Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right) $ $10.7 \text{ INVALID-ORDER-7 } Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right) $ $10.8 \text{ INVALID-ORDER-8 } Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right) $	3 3 3 3 3 3
10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \infty, \infty, \infty, \frac{1}{C_5L_5s^2+1} + n_5, \infty\right)$	

- 1 Examined H(z) for TIA simple Z5: $\frac{Z_5g_m-1}{2g_m}$
- 2 HP
- 3 BP
- 4 LP
- 5 BS
- 6 **GE**
- **6.1** GE-1 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 R_5 s}{C_5 L_5 R_5 s^2 + L_5 s + R_5}, \infty\right)$

Parameters:

Q:
$$C_5 R_5 \sqrt{\frac{1}{C_5 L_5}}$$

wo: $\sqrt{\frac{1}{C_5 L_5}}$
bandwidth: $\frac{1}{C_5 R_5}$
K-LP: $-\frac{1}{2g_m}$
K-HP: $-\frac{1}{2g_m}$
K-BP: $\frac{R_5 g_m - 1}{2g_m}$
Qz: $-\frac{C_5 R_5 \sqrt{\frac{1}{C_5 L_5}}}{R_5 g_m - 1}$
Wz: $\sqrt{\frac{1}{C_5 L_5}}$

6.2 GE-2
$$Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5(C_5L_5s^2+1)}{C_5L_5s^2+C_5R_5s+1}, \infty\right)$$

Parameters:

$$Q: \frac{L_5\sqrt{\frac{1}{C_5L_5}}}{R_5}$$
wo: $\sqrt{\frac{1}{C_5L_5}}$
bandwidth: $\frac{R_5}{L_5}$
K-LP: $\frac{R_5g_m-1}{2g_m}$
K-HP: $\frac{R_5g_m-1}{2g_m}$
K-BP: $-\frac{1}{2g_m}$
Qz: $\frac{L_5\sqrt{\frac{1}{C_5L_5}}(-R_5g_m+1)}{R_5}$
Wz: $\sqrt{\frac{1}{C_5L_5}}$

$$H(z) = \frac{Z_5 g_m - 1}{2g_m}$$

$$H(s) = \frac{-C_5 L_5 R_5 s^2 - R_5 + s \left(L_5 R_5 g_m - L_5\right)}{2C_5 L_5 R_5 g_m s^2 + 2L_5 g_m s + 2R_5 g_m}$$

$$H(s) = \frac{-C_5 R_5 s + R_5 g_m + s^2 \left(C_5 L_5 R_5 g_m - C_5 L_5 \right) - 1}{2C_5 L_5 g_m s^2 + 2C_5 R_5 g_m s + 2g_m}$$

- 7 AP
- 8 INVALID-NUMER
- 9 INVALID-WZ
- 10 INVALID-ORDER
- 10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, \infty, \infty, \infty, R_5, \infty)$

 $H(s) = \frac{R_5 g_m - 1}{2g_m}$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{1}{C_5 s}, \infty\right)$

 $H(s) = \frac{-C_5 s + g_m}{2C_5 g_m s}$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{R_5}{C_5 R_5 s + 1}, \infty\right)$

 $H(s) = \frac{-C_5 R_5 s + R_5 g_m - 1}{2C_5 R_5 q_m s + 2q_m}$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, \infty, \infty, R_5 + \frac{1}{C_5 s}, \infty\right)$

 $H(s) = \frac{g_m + s (C_5 R_5 g_m - C_5)}{2C_5 q_m s}$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + \frac{1}{C_5 s}, \infty\right)$

 $H(s) = \frac{C_5 L_5 g_m s^2 - C_5 s + g_m}{2C_5 q_m s}$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1}, \infty\right)$

 $H(s) = \frac{-C_5 L_5 s^2 + L_5 g_m s - 1}{2C_5 L_5 g_m s^2 + 2g_m}$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, \infty, \infty, L_5 s + R_5 + \frac{1}{C_5 s}, \infty\right)$

 $H(s) = \frac{C_5 L_5 g_m s^2 + g_m + s \left(C_5 R_5 g_m - C_5\right)}{2C_5 q_m s}$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \infty, \infty, \frac{L_5 s}{C_5 L_5 s^2 + 1} + R_5, \infty\right)$

 $H(s) = \frac{L_5 g_m s + R_5 g_m + s^2 (C_5 L_5 R_5 g_m - C_5 L_5) - 1}{2C_5 L_5 g_m s^2 + 2g_m}$

11 PolynomialError