Procesamiento de Lenguaje Natural

Traducción automática y búsqueda

Dra. Helena Gómez Adorno

helena.gomez@iimas.unam.mx

Dra. Gemma Bel

gbele@iingen.unam.mx

Correo del curso:

pln.cienciadedatos@gmail.com

Asistente:

Luis Ramon Casillas

Contenido

Traducción automática

"hola" → "bonjour"

Búsqueda de documentos

"¿Cuál es tu política

"Puedo obtener" de devoluciones?"

un reembolso?"

¿Puedo recuperar mi dinero?

Contenido

- Transformación de vectores
- K-vecinos mas cercanos
- Tablas Hash
- Dividir espacio de vectores en regiones
- Hash sensible a la localidad
- Vecinos mas cercanos aproximados

Francés
$$\begin{cases} [3, 2, 7] \\ ... \\ [9, 33, 12] \end{cases}$$

Transformación de vectores

```
R = np.array([[2,0],
              [0, -2]
x = np.array([[1,1]])
np.dot(x,R)
array([[2,-2]])
```

Alineación de vectores de palabras

 $XR \approx Y$

Alineación de vectores de palabras

```
XR \approx Y
```

Alineación de vectores de palabras

 $XR \approx Y$

Subconjunto del vocabulario total

$$Loss = \parallel \mathbf{XR} - \mathbf{Y} \parallel_F$$

initialize R

$$Loss = ||\mathbf{XR} - \mathbf{Y}||_F$$

initialize R

in a loop:

$$Loss = ||\mathbf{XR} - \mathbf{Y}||_F$$

initialize R

in a loop:

$$Loss = \parallel \mathbf{XR} - \mathbf{Y} \parallel_F$$

$$g = \frac{d}{dR} Loss$$
 gradient

initialize R

in a loop:

$$Loss = \parallel \mathbf{XR} - \mathbf{Y} \parallel_F$$

$$g = \frac{d}{dR} Loss \qquad \text{gradient}$$

$$R = R - \alpha g \qquad \text{update}$$

Norma Frobenius

$$\| \mathbf{X}\mathbf{R} - \mathbf{Y} \|_{F}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\| \mathbf{A}_{F} \| = \sqrt{2^{2} + 2^{2} + 2^{2} + 2^{2}}$$

Norma Frobenius

$$\| \mathbf{X}\mathbf{R} - \mathbf{Y} \|_{F}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\| \mathbf{A}_{F} \| = \sqrt{2^{2} + 2^{2} + 2^{2} + 2^{2}}$$

$$\| \mathbf{A}_{F} \| = 4$$

$$\| \mathbf{A} \|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}$$

Norma Frobenius al cuadrado

$$\|\mathbf{X}\mathbf{R} - \mathbf{Y}\|_F^2$$

$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\|\mathbf{A}\|_F^2 = \left(\sqrt{2^2 + 2^2 + 2^2 + 2^2}\right)^2$$

$$\|\mathbf{A}\|_F^2 = 16$$

Gradiente

$$Loss = \|\mathbf{X}\mathbf{R} - \mathbf{Y}\|_F^2$$

$$g = \frac{d}{dR}Loss = \frac{2}{m} \left(\mathbf{X}^T (\mathbf{X}\mathbf{R} - \mathbf{Y}) \right)$$

Encontrar la traducción

Friend

Bangalore

Location

Los Angeles

Tablas hash

Función hash (vector)= → valor hash

Función hash (vector)= → valor hash

Valor hash= vector % número de cubetas

Creación de tabla hash básica

```
def basic_hash_table(value_1,n_buckets):
   def hash_function(value_1,n_buckets):
      return int(value) % n buckets
   hash_table = {i:[] for i in range(n_buckets)}
   for value in value 1:
      hash value = hash function(value, n buckets)
      hash_table[hash_value].append(value)
   return hash table
```

Función hash

Función hash por ubicación?

Idealmente queremos que las palabras (números) cercanas queden en la misma cubeta. Solución: Hashing sensible a la localidad (locality sensitive)

Locality sensitive hashing

Locality sensitive hashing

Locality sensitive hashing

Nótese los signos

Visualizando un producto punto

Visualizando un producto punto

Visualizando un producto punto

El signo indica dirección

```
def side_of_plane(P,v):
    dotproduct = np.dot(P,v.T)
    sign_of_dot_product = np.sign(dotproduct)
    sign_of_dot_product_scalar= np.asscalar(sign_of_dot_product)
    return sign_of_dot_product_scalar
```

Múltiples planos

Múltiples planos → Productos puntos → Valores Hash

$$\mathbf{P}_1 \mathbf{v}^T = 3, sign_1 = +1, h_1 = 1$$

$$\mathbf{P}_1 \mathbf{v}^T = 3, sign_1 = +1, h_1 = 1$$

$$\mathbf{P}_2\mathbf{v}^T = 5, sign_2 = +1, h_2 = 1$$

$$\mathbf{P}_1 \mathbf{v}^T = 3, sign_1 = +1, h_1 = 1$$

$$\mathbf{P}_2 \mathbf{v}^T = 5, sign_2 = +1, h_2 = 1$$

$$\mathbf{P}_3 \mathbf{v}^T = -2, sign_3 = -1, h_3 = 0$$

$$\mathbf{P}_1 \mathbf{v}^T = 3, sign_1 = +1, h_1 = 1$$

$$\mathbf{P}_2 \mathbf{v}^T = 5, sign_2 = +1, h_2 = 1$$

$$\mathbf{P}_3 \mathbf{v}^T = -2, sign_3 = -1, h_3 = 0$$

$$hash = 2^{0} \times h_{1} + 2^{1} \times h_{2} + 2^{2} \times h_{3}$$
$$= 1 \times 1 + 2 \times 1 + 4 \times 0$$

$$sign_i \ge 0, \rightarrow h_i = 1$$

 $sign_i < 0, \rightarrow h_i = 0$

$$hash = \sum_{i}^{H} 2^{i} \times h_{i}$$

```
def hash_multiple_plane(P_1,v):
   hash value = 0
   for i, P in enumerate(P_1):
      sign = side of plane(P,v)
      hash i = 1 if sign >=0 else 0
      hash value += 2**i * hash i
   return hash value
```

Planos aleatorios

Supongamos que estamos tratando de encontrar el vecino más cercano para el vector rojo (punto).

La primera vez, el plano nos da los puntos verdes

Luego, volvemos a ejecutar el lado del plano con otro plano aleatorio y el algoritmo me da los puntos azules

La tercera vez, obtuvimos los puntos naranjas

Si seguimos realizando este proceso, es muy probable que obtengamos todos los vecinos cercanos

Vecinos cercanos aproximados

Hacer un conjunto de planos aleatorios

```
num_dimensions = 2 #300 in assignment
num_planes = 3 #10 in assignment
random_planes_matrix = np.random.normal(
                       size=(num_planes,
                             num_dimensions))
array([[ 1.76405235  0.40015721]
       [ 0.97873798  2.2408932 ]
       [ 1.86755799 -0.97727788]])
v = np.array([[2,2]])
```

Hacer un conjunto de planos aleatorios

```
num dimensions = 2 #300 in assignment
num planes = 3 #10 in assignment
random planes matrix = np.random.normal(
                       size=(num_planes,
                             num_dimensions))
array([[ 1.76405235  0.40015721]
       [ 0.97873798  2.2408932 ]
       [ 1.86755799 -0.97727788]])
v = np.array([[2,2]])
```

Representación de documentos

I love learning! [?,?,?]I [1,0,1]love [-1,0,1]learning [1,0,1]

Representación de documentos

I love learning!	[?, ?, ?]
I	[1, 0, 1]
love	[-1, 0, 1]
learning	+ [1, 0, 1]
I love learning!	[1, 0, 3]