

Международная олимпиада Phystech.International Физика. Заключительный этап 10 класс

1 Задача

Половину всего пути автомобиль проехал со скоростью $V_0=15~{\rm m/c},$ затем половину оставшегося времени – со скоростью $V_1=18~{\rm m/c},$ остальное – со скоростью $V_2=27~{\rm m/c}.$

Найдите среднюю скорость V автомобиля на всем пути.

2 Задача

Две частицы движутся со скоростями $V_1=15~{\rm m/c}$ и $V_2=20~{\rm m/c}$ по взаимно перпендикулярным прямым к точке пересечения . В момент времени t=0 частицы находятся на расстояниях $d_1=80~{\rm m}$ и $d_2=100~{\rm m}$ от точки O. Найдите наименьшее расстояние d_{min} между частицами.

3 Задача

От бакена, который находится на середине широкой реки, отошли две лодки, A и B. Обе лодки стали двигаться по взаимно перпендикулярным прямым: лодка A — по течению, а лодка B — поперек. Удалившись на одинаковое расстояние от бакена, лодки затем вернулись обратно.

Найдите отношение $\frac{T_B}{T_A}$ времен движения лодок, если скорость каждой лодки относительно воды в n=1,8 раза больше скорости течения реки.

4 Задача

Цветочный горшок упал с подоконника и пролетел мимо окна высотой h=2,2 м за время T=0,25 с.

Найдите расстояние от верхнего края окна до подоконника. Ускорение свободного падения $g=10~{\rm m}/c^2$, сопротивление воздуха пренебрежимо мало. Начальная скорость цветочного горшка нулевая.

5 Задача

Спортсмен прыгает с трамплина высотой H=8м и погружается в воду через T=2с. Горизонтальное перемещение за время полета L=5м.

Считая спортсмена материальной точкой, найдите его конечную скорость V. Ускорение свободного падения $g=10~{\rm m/c^2}$, сопротивление воздуха пренебрежимо мало.

6 Задача

Кольца Сатурна состоят из ледяных глыб, обращающихся вокруг планеты. Внешний радиус колец $r=1,7\cdot 10^5$ км.

Найдите скорость V ледяной глыбы, движущейся по окружности внешнего радиуса. Масса Сатурна $M=5,7\cdot 10^{26}$ кг, гравитационная постоянная $G=6,67\cdot 10^{-11}$ м $^3\cdot$ кг $^{-1}\cdot c^{-2}$.

7 Задача

Снаряд выпущен под углом $\alpha=45^\circ$ к горизонту с начальной скоростью $V_0=100~\rm m/c$. Масса снаряда $M=15~\rm kr$. В высшей точке траектории снаряд разрывается на два осколка, которые одновременно падают на земную поверхность. Масса одного осколка в четыре раза больше массы другого. Массивный осколок возвращается к точке старта.

Найдите энергию E, выделившуюся при взрыве. Земля в тех местах плоская, сопротивление воздуха пренебрежимо мало.

8 Задача

Воздушный пузырек объемом $V_0=80\,\,\mathrm{cm}^3$ образовался у дна озера на глубине $H=25\,\,\mathrm{m}.$

Каким будет объем V шарика у поверхности? Считайте, что температура у дна $t_1=3^{\circ}\mathrm{C}$, у поверхности – $t_2=18^{\circ}\mathrm{C}$. Плотность воды $\rho=1000~\mathrm{kr\cdot m^{-3}}$, атмосферное давление $P_0=1,0\cdot 10^5~\mathrm{\Pi a}$. Ускорение свободного падения $g=10~\mathrm{m/c^2}$.

9 Задача

Гелий в количестве $\nu=2$ моль моль находится при температуре $t_1=27^{\circ}\mathrm{C}$. Далее гелий расширяется, сначала изобарно до удвоения объема, а затем адиабатически до тех пор, пока температура станет равна начальной. Какую суммарную работу A совершил гелий в процессах расширения? Гелий считайте идеальным газом. Универсальная газовая постоянная R=8,31 Дж/(моль · K).

10 Задача

На рис. показана схема потенциометра, позволяющая изменять напряжение U, подаваемое на некоторый прибор с сопротивлением R. Потенциометр длиной l и сопротивлением R_0 находится под напряжением U_0 . Допустим, что $U_0=50$ В, $\frac{R_0}{R}=2$, $\frac{x}{l}=0,45$. Вычислите напряжение , приложенное к прибору.