CLAIMS

We claim:

1. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 1-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
(1-1); and

5

10

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

15

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -S-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

20 cy

25

cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl,

 E^2 forms a link of at least 2 carbon atoms between E^1 and E^3 ; and

E³ is selected from the group consisting of -C(O)-, -O-(CO)-, -C(O)-O-, -C(NR³)-,

 $-N(R^4)-$, $-N(R^4)-C(NR^3)-$, $-C(NR^3)-N(R^4)-$, $-C(O)-N(R^4)-$, $-N(R^4)-C(O)-$,

 $-N(R^4)-C(O)-N(R^5)-$, -S-, -S(O)-, $-N(R^4)-S(O)_2-$, -S(O)₂- $N(R^4)-$,

 $-C(O)-N(R^4)-N(R^5)-C(O)-$, $-C(R^4)(R^6)-C(O)-$, $-C(R^7)(R^8)-$; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of -H, -OH, alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member (except -H or, -OH) of such group optionally is substituted; and

R¹ and R² are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

R³ is selected from the group consisting of -H and -OH; and

5

10

15

R⁴ and R⁵ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted; and

R⁶ is selected from the group consisting of -CN and -OH; and

R⁷ is selected from the group consisting of -H, halogen, -OH, alkyl, alkoxy, and alkoxyalkyl, wherein the alkyl, alkoxy, or alkoxyalkyl optionally is substituted; and

R⁸ is selected from the group consisting of -OH and alkoxy, wherein the alkoxy optionally is substituted; and

neither R^1 nor R^2 forms a ring structure with E^2 , E^3 , E^4 , or E^5 ; and neither R^4 nor R^5 forms a ring structure with E^2 , E^4 , or E^5 ; and E^5 is not -H when both E^3 is $-C(R^7)(R^8)$ - and E^4 is a bond.

2. A compound or salt thereof according to claim 1, wherein:

A¹ is selected from the group consisting of -H, C₁-C₈-alkylcarbonyl,

C₁-C₈-alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl-C₁-C₈-alkylcarbonyl,

heterocyclylcarbonyl, heterocyclyl-C₁-C₈-alkylcarbonyl, carbocyclyloxycarbonyl,

carbocyclyl-C₁-C₈-alkoxycarbonyl, N(R⁹)(R¹⁰)-C₁-C₈-alkylcarbonyl,

C₁-C₈-alkyl(thiocarbonyl), C₁-C₈-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),

carbocyclyl-C₁-C₈-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclyl-C₁-C₈-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclyl-C₁-C₈-alkyl(thiocarbonyl), and N(R⁹)(R¹⁰)-C₁-C₈-alkyl(thiocarbonyl); and

E² is selected from the group consisting of C₂-C₂₀-alkyl, cycloalkyl,

C₁-C₁₀-alkylcycloalkyl, cycloalkyl-C₁-C₁₀-alkyl, and C₁-C₁₀-alkylcycloalkyl-C₁-C₁₀-alkyl,

wherein any member of such group optionally is substituted with one or more substituents

independently selected from the group consisting of halogen, C₁-C₆-alkyl, and halo-C₁-C₆-alkyl; and

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, and C_2 - C_{20} -alkenyl, wherein the C_1 - C_{20} -alkyl or C_2 - C_{20} -alkenyl optionally is substituted with one or more substituents independently selected from the group consisting of:

halogen, and

5

10

15

20

25

30

carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halocarbocyclyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl; and

 E^5 is selected from the group consisting of -H, -OH, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halogen-substituted

 $C_1-C_8-alkoxy-C_1-C_8-alkyl,\ halocarbocyclyl,\ halogen-substituted$ $carbocyclyl-C_1-C_8-alkyl,\ C_1-C_8-alkylcarbocyclyl,\ halogen-substituted$ $C_1-C_8-alkylcarbocyclyl,\ hydroxycarbocyclyl,\ and\ heterocyclyl\ ;\ and$ $R^1\ and\ R^2\ are\ independently\ selected\ from\ the\ group\ consisting\ of\ -H,\ C_1-C_8-alkyl,$ and halo-C_1-C_8-alkyl;\ and

R⁴ and R⁵ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein

any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, halogen, -OH, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, and halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl; and

 R^8 is selected from the group consisting of -OH, C_1 - C_8 -alkoxy, and halo- C_1 - C_8 -alkoxy; and

 R^9 and R^{10} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

 R^{11} and R^{12} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^{13} is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^{14} , -N(R^{14})(R^{15}), carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl; and

 R^{14} and R^{15} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is

substituted with one or more halogen; and E^5 is not -H when both E^3 is $-C(R^7)(R^8)$ - and E^4 is a bond.

- 3. A compound or salt thereof according to claim 2, wherein A¹ is -H.
- 4. A compound or salt thereof according to claim 3, wherein:

E² is C₂-C₆-alkyl optionally substituted with one or more halogen; and

E⁴ is selected from the group consisting of a bond, C₁-C₃-alkyl, and C₂-C₃-alkenyl, wherein any member (except the bond) of such group optionally is substituted with one or more substituents independently selected from the group consisting of:

halogen, and

25

30

5

10

15

20

carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halocarbocyclyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl; and

 E^5 is selected from the group consisting of -H, -OH, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, carbocyclyl, and heterocyclyl, wherein:

5

10

25

30

the C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy, or C₁-C₈-alkoxy-C₁-C₈-alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

substituents independently selected from the group consisting of halogen, -OH,
-NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²),
-C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, carbocyclyl, carbocyclyl-C₁-C₆-alkyl,
halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted

C₁-C₆-alkoxy-C₁-C₆-alkyl, halocarbocyclyl, halogen-substituted

20 carbocyclyl-C₁-C₆-alkyl, C₁-C₆-alkylcarbocyclyl, halogen-substituted

C₁-C₆-alkylcarbocyclyl, hydroxycarbocyclyl, and heteroaryl; and
R¹ and R² are independently selected from the group consisting of -H, C₁-C₆-alkyl,
and halo-C₁-C₆-alkyl; and

 R^4 and R^5 are independently selected from the group consisting of -H, C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_6 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, and halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl; and

 R^8 is selected from the group consisting of -OH, C_1 - C_6 -alkoxy, and halo- C_1 - C_6 -alkoxy; and

 R^{11} and R^{12} are independently selected from the group consisting of -H, C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and

heterocyclyl-C₁-C₆-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^{13} is selected from the group consisting of -H, C_1 - C_6 -alkyl, -O- R^{14} , -N(R^{14})(R^{15}), carbocyclyl- C_1 - C_6 -alkyl, and heterocyclyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halogen-substituted carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_6 -alkyl; and

 R^{14} and R^{15} are independently selected from the group consisting of -H, C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_6 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 E^5 is not -H when both E^3 is $-C(R^7)(R^8)$ - and E^4 is a bond.

5. A compound or salt thereof according to claim 4, wherein A² and A³, together with the carbon atom to which they both are attached, form an optionally-substituted heterocyclyl containing either 5 or 6 ring members.

20

15

10

6. A compound or salt thereof according to claim 5, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N
$$E^{1}$$
 E^{2} E^{3} E^{4} E^{5} (6-1) and

5

(6-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, 10 alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 15 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, 20 heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

- 7. A compound or salt thereof according to claim 6, wherein:
- A^4 is selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkylcarbonyl,
- C₁-C₈-alkylcarbonyl-C₁-C₈-alkyl, C₁-C₈-alkylcarbonyl-C₁-C₈-alkylcarbonyl,
- 5 C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkoxycarbonyl- C_1 - C_8 -alkyl,
 - C₁-C₈-alkoxycarbonyl-C₁-C₈-alkylcarbonyl, C₁-C₈-alkylsulfonyl,
 - C₁-C₈-alkyliminocarbonyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy-C₁-C₈-alkyl,
 - C₁-C₈-alkylthio-C₁-C₈-alkyl, C₁-C₈-alkylthio-C₂-C₈-alkenyl,
 - C₁-C₈-alkylsulfoxido-C₁-C₈-alkyl, C₁-C₈-alkylsulfoxido-C₂-C₈-alkenyl,
- 10 C₁-C₈-alkylsulfonyl-C₁-C₈-alkyl, C₁-C₈-alkylsulfonyl-C₂-C₈-alkenyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, carbocyclyl-C₁-C₈-alkoxy-C₁-C₈-alkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocyclylthio-C₁-C₈-alkyl, carbocyclylthio-C₂-C₈-alkenyl,
 - carbocyclylsulfoxido-C₁-C₈-alkyl, carbocyclylsulfoxido-C₂-C₈-alkenyl,
- carbocyclylsulfonyl-C₁-C₈-alkyl, carbocyclylsulfonyl-C₂-C₈-alkenyl, heterocyclyl,
 - $heterocyclyl-C_1-C_8-alkyl,\ heterocyclyl-C_1-C_8-alkoxy-C_1-C_8-alkyl,\ heterocyclylcarbonyl,$
 - heterocyclylthio-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl,
 - heterocyclylsulfonyl-C₁-C₈-alkyl, heterocyclylthio-C₂-C₈-alkenyl,
 - heterocyclylsulfoxido-C2-C8-alkenyl, heterocyclylsulfonyl-C2-C8-alkenyl,
- $20 \qquad \text{heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclyl-} C_1\text{-}C_8\text{-}alkylcarbonyl,}$
 - heterocyclylcarbonyl-C₁-C₈-alkylcarbonyl, heterocyclylsulfonyl,
 - $heterocyclylcarbonyl-C_1-C_8-alkyl,\ N(R^{16})(R^{17})-C_1-C_8-alkylcarbonyl,$
 - N(R¹⁶)(R¹⁷)-carbonyl, N(R¹⁶)(R¹⁷)-carbonyl-C₁-C₈-alkylcarbonyl,
 - $N(R^{16})(R^{17})$ -sulfonyl, $N(R^{16})(R^{17})$ -sulfonyl- C_1 - C_8 -alkyl, $N(R^{16})(R^{17})$ - C_1 - C_8 -alkyl,
- N(R^{16})(R^{17})-carbonyl- C_1 - C_8 -alkyl, and N(R^{16})(R^{17})- C_1 - C_8 -alkylsulfonyl, wherein:
 - any member (except -H) of such group optionally is substituted with one or
 - more substituents independently selected from the group consisting of halogen,
 - -OH, -CN, -C(O)-OH, -SH, -SO₃H, and NO₂; and
 - R¹⁶ and R¹⁷ are independently selected from the group consisting of -H, -OH,
- 30 C_1 - C_8 -alkyl, C_1 - C_8 -alkyl-carbonyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl,

C₂-C₈-alkynyl, C₁-C₈-alkyl-thio-C₁-C₈-alkyl, C₁-C₈-alkyl-sulfoxido-C₁-C₈-alkyl, C₁-C₈-alkyl-sulfonyl-C₁-C₈-alkyl, carbocyclyl-C₁-C₈-alkyl, carbocyclyl-C₁-C₈-alkyl, carbocyclylthio-C₁-C₈-alkyl, carbocyclylsulfoxido-C₁-C₈-alkyl, carbocyclylsulfonyl-C₁-C₈-alkyl, heterocyclyl, heterocyclyl-C₁-C₈-alkyl, heterocyclyl-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl, heterocyclylsulfoxyl-C₁-C₈-alkyl, aminocarbonyl-C₁-C₈-alkyl,

C₁-C₈-alkyloxycarbonylamino-C₁-C₈-alkyl, and amino-C₁-C₈-alkyl, wherein:

any member (except -H or OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -CN, -C(O)-OH, -SH, -SO₃H, and NO₂, and

the nitrogen of the amino- C_1 - C_8 -alkyl optionally is substituted with 1 or 2 substituents independently selected from the group consisting of C_1 - C_8 -alkyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl, and carbocyclyl- C_1 - C_8 -alkyl, and no greater than one of R^{16} or R^{17} is -OH.

15

20

25

30

10

- 8. A compound or salt thereof according to claim 7, wherein A^4 is selected from the group consisting of -H, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylsulfonyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, wherein any member (except -H) of such group optionally is substituted with halogen.
- 9. A compound or salt thereof according to claim 8, wherein A^4 is selected from the group consisting of -H, C_1 - C_4 -alkyl, C_1 - C_2 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl- C_1 - C_3 -alkyl, phenyl, phenyl- C_1 - C_3 -alkyl, C_1 - C_2 -alkylsulfonyl, C_3 - C_4 -alkenyl, C_3 - C_4 -alkynyl, wherein any member (except -H) of such group optionally is substituted with halogen.
- 10. A compound or salt thereof according to claim 9, wherein A⁴ is selected from the group consisting of -H, ethyl, methoxyethyl, cyclopropyl, cyclopropylmethyl, benzyl, methylsulfonyl, C₃-alkenyl, and C₃-alkynyl, wherein any member (except -H) of such group optionally is substituted with halogen.

- 11. A compound or salt thereof according to claim 10, wherein A⁴ is selected from the group consisting of -H, ethyl, methoxyethyl, cyclopropyl, cyclopropylmethyl, and benzyl, wherein any member (except -H) of such group optionally is substituted with halogen.
- 12. A compound or salt thereof according to claim 7, wherein the salt comprises an acid selected from the group consisting of HCl and CF₃COOH.
- 13. A compound or salt thereof according to claim 7, wherein E^3 is $-N(R^4)-C(NR^3)-$.
 - 14. A compound or salt thereof according to claim 13, wherein the compound corresponds in structure to a formula selected from the group consisting of:

15

5

- 15. A compound or salt thereof according to claim 7, wherein E³ is -C(O)-.
- 16. A compound or salt thereof according to claim 15, wherein E⁵ is carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

25

17. A compound or salt thereof according to claim 16, wherein E⁵ is anyl optionally substituted with one or more substituents independently selected from the group consisting

of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

- 18. A compound or salt thereof according to claim 17, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy,
- 10 C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, haloaryl, halogen-substituted aryl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.
- 15 19. A compound or salt thereof according to claim 18, wherein the compound corresponds in structure to a formula selected from the group consisting of:

20. A compound or salt thereof according to claim 17, wherein E⁵ is phenyl which is:

substituted with one or more substituents independently selected from the group consisting of aryl, haloaryl, aryl-C₁-C₆-alkyl, and halogen-substituted aryl-C₁-C₆-alkyl; and

optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

21. A compound or salt thereof according to claim 20, wherein the compound corresponds in structure to a formula selected from the group consisting of:

10

15

22. A compound or salt thereof according to claim 17, wherein E^5 is naphthalenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C_1 -C₆-alkoxy- C_1 -C₆-alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C_1 -C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

23. A compound or salt thereof according to claim 22, wherein the compound corresponds in structure to a formula selected from the group consisting of:

24. A compound or salt thereof according to claim 16, wherein E⁵ is C₅-C₆-cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

25. A compound or salt thereof according to claim 24, wherein the compound corresponds in structure to the following formula:

5

10

26. A compound or salt thereof according to claim 15, wherein E^5 is selected from the group consisting of -H, -OH, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

the C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -alkoxy, or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and, -CN.

27. A compound or salt thereof according to claim 26, wherein the compound corresponds in structure to a formula selected from the group consisting of:

15

28. A compound or salt thereof according to claim 26, wherein the compound corresponds in structure to a formula selected from the group consisting of:

HOHN
$$\stackrel{\circ}{\longrightarrow}$$
 and $\stackrel{\circ}{\longrightarrow}$ (28-2).

- 5 29. A compound or salt thereof according to claim 15, wherein E⁵ is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 30. A compound or salt thereof according to claim 29, wherein the compound corresponds in structure to the following formula:

31. A compound or salt thereof according to claim 29, wherein E⁵ is selected from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, tetrahydrothiophenyl, pyrrolyl, isopyrrolyl, pyrrolinyl,

pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, oxazolidinyl, isoxazolidinyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl, oxatriazolyl, 5 dioxazolyl, oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, dihydropyranyl, pyridinyl, piperidinyl, diazinyl, piperazinyl, triazinyl, oxazinyl, isoxazinyl, oxathiazinyl, oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl, diazepinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, 10 quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, tetrahydroisoquinolinyl, carbazolyl, xanthenyl, and acridinyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, haloaryl, haloaryl, halogen-substituted C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

32. A compound or salt thereof according to claim 31, wherein E⁵ is thiophenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

30

33. A compound or salt thereof according to claim 32, wherein the compound corresponds in structure to a formula selected from the group consisting of:

5 34. A compound or salt thereof according to claim 7, wherein E³ is -S-.

10

35. A compound or salt thereof according to claim 34, wherein E^5 is selected from the group consisting of -H, -OH, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, and C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, wherein:

the C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy, or C₁-C₈-alkoxy-C₁-C₈-alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.

36. A compound or salt thereof according to claim 35, wherein the compound corresponds in structure to the following formula:

37. A compound or salt thereof according to claim 34, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group

consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy,

C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl,

aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted

C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl,

halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

38. A compound or salt thereof according to claim 37, wherein the compound corresponds in structure to a formula selected from the group consisting of:

39. A compound or salt thereof according to claim 34, wherein E^5 is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C_1 -C₆-alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C_1 -C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C_1 -C₆-alkylaryl, hydroxyaryl, and heteroaryl.

5

30

40. A compound or salt thereof according to claim 39, wherein E⁵ is selected from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, 10 thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, oxazolidinyl, isoxazolidinyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl, oxatriazolyl, 15 dioxazolyl, oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, dihydropyranyl, pyridinyl, piperidinyl, diazinyl, piperazinyl, triazinyl, oxazinyl, isoxazinyl, oxathiazinyl, oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl, diazepinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, 20 indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, tetrahydroisoquinolinyl, 25 carbazolyl, xanthenyl, and acridinyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, haloaryl,

halogen-substituted aryl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.

- 41. A compound or salt thereof according to claim 40, wherein E⁵ is pyrimidinyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 42. A compound or salt thereof according to claim 41, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 43. A compound or salt thereof according to claim 39, wherein E⁵ is 2-fused-ring heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 44. A compound or salt thereof according to claim 43, wherein E⁵ is selected from the group consisting of indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzopyranyl,

25

benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzimidazolyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, haloaryl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

5

10

45. A compound or salt thereof according to claim 44, wherein E⁵ is selected from the group consisting of benzoxazolyl and benzothiazolyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

46. A compound or salt thereof according to claim 45, wherein the compound corresponds in structure to a formula selected from the group consisting of:

47. A compound or salt thereof according to claim 45, wherein the compound corresponds in structure to the following formula:

48. A compound or salt thereof according to claim 45, wherein the compound corresponds in structure to the following formula:

HOHN
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$

- 49. A compound or salt thereof according to claim 7, wherein E³ is -N(R⁴)-C(O)-.
- 50. A compound or salt thereof according to claim 49, wherein E⁵ is carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

5

51. A compound or salt thereof according to claim 50, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

52. A compound or salt thereof according to claim 51, wherein the compound corresponds in structure to a formula selected from the group consisting of:

53. A compound or salt thereof according to claim 51, wherein the compound corresponds in structure to a formula selected from the group consisting of:

54. A compound or salt thereof according to claim 51, wherein the compound corresponds in structure to the following formula:

55. A compound or salt thereof according to claim 51, wherein the compound corresponds in structure to the following formula:

56. A compound or salt thereof according to claim 50, wherein E⁵ is naphthalenyl optionally substituted with one or more substituents independently selected from the group

consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy,

C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl,

aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted

C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl,

halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

57. A compound or salt thereof according to claim 56, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 58. A compound or salt thereof according to claim 50, wherein E^5 is cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkyl, haloaryl, halogen-substituted aryl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.
- 59. A compound or salt thereof according to claim 58, wherein the compound corresponds in structure to a formula selected from the group consisting of:

60. A compound or salt thereof according to claim 58, wherein the compound corresponds in structure to the following formula:

15

20

5

61. A compound or salt thereof according to claim 58, wherein E^5 is C_5 - C_6 -cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkyl, haloaryl, halogen-substituted aryl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylaryl,

halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.

62. A compound or salt thereof according to claim 61, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
- 64. A compound or salt thereof according to claim 63, wherein E⁵ is selected from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, isopyrrolyl, pyrrolinyl, 15 pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, oxazolidinyl, isoxazolidinyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl, oxatriazolyl, 20 dioxazolyl, oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, dihydropyranyl, pyridinyl, piperidinyl, diazinyl, piperazinyl, triazinyl, oxazinyl, isoxazinyl, oxathiazinyl, oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl, diazepinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, 25 quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl,

benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, tetrahydroisoquinolinyl, carbazolyl, xanthenyl, and acridinyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.

10

15

5

65. A compound or salt thereof according to claim 64, wherein E^5 is selected from the group consisting of pyridinyl, pyrrolyl, isopyrrolyl, oxazolyl, isoxazole, thiazolyl, furanyl, morpholinyl, tetrazolyl, imidazolyl, thienyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkyl, haloaryl, halogen-substituted aryl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.

20

66. A compound or salt thereof according to claim 65, wherein the compound corresponds in structure to a formula selected from the group consisting of:

HONN
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$

67. A compound or salt thereof according to claim 65, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 68. A compound or salt thereof according to claim 63, wherein E⁵ is 2-fused-ring heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
- 69. A compound or salt thereof according to claim 68, wherein E⁵ is selected from the group consisting of indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzimidazolyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, haloaryl, halogen-substituted aryl- C_1 - C_6 -alkyl, hydroxyaryl, and heteroaryl.

5

70. A compound or salt thereof according to claim 69, wherein E⁵ is selected from the group consisting of benzazinyl, benzofuranyl, tetrahydroisoquinolinyl, indolyl,
10 benzoxazolyl, benzothienyl, and benzothiazolyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted
15 C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted

71. A compound or salt thereof according to claim 70, wherein the compound corresponds in structure to a formula selected from the group consisting of:

72. A compound or salt thereof according to claim 70, wherein the compound corresponds in structure to a formula selected from the group consisting of:

73. A compound or salt thereof according to claim 49, wherein E⁵ is selected from the group consisting of -OH, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, or

C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein any member (except -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.

5 74. A compound or salt thereof according to claim 73, wherein the compound corresponds in structure to a formula selected from the group consisting of:

75. A compound or salt thereof according to claim 7, wherein E³ is -C(O)-N(R⁴)-.

76. A compound or salt thereof according to claim 75, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

77. A compound or salt thereof according to claim 76, wherein the compound corresponds in structure to a formula selected from the group consisting of:

78. A compound or salt thereof according to claim 76, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 79. A compound or salt thereof according to claim 75, wherein E⁵ is naphthalenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 80. A compound or salt thereof according to claim 79, wherein the compound corresponds in structure to the following formula:

15

- 81. A compound or salt thereof according to claim 75, wherein E⁵ is selected from the group consisting of -OH, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, or C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein any member (except -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.
- 82. A compound or salt thereof according to claim 81, wherein the compound corresponds in structure to the following formula:

5

10

15

83. A compound or salt thereof according to claim 7, wherein E^3 is $-N(R^4)-C(O)-N(R^5)-$.

84. A compound or salt thereof according to claim 83, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, 20 aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

85. A compound or salt thereof according to claim 84, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 86. A compound or salt thereof according to claim 7, wherein E^3 is $-S(O)_2-N(R^4)-$.
- 87. A compound or salt thereof according to claim 86, wherein the compound corresponds in structure to the following formula:

10

15

5

88. A compound or salt thereof according to claim 86, wherein E^5 is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

89. A compound or salt thereof according to claim 88, wherein the compound corresponds in structure to a formula selected from the group consisting of:

90. A compound or salt thereof according to claim 86, wherein E⁵ is selected from the group consisting of -H, -OH, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, or C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein any member (except -H or -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.

91. A compound or salt thereof according to claim 90, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 92. A compound or salt thereof according to claim 7, wherein E³ is -N(R⁴)-S(O)₂-.
- 93. A compound or salt thereof according to claim 92, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

5

94. A compound or salt thereof according to claim 93, wherein the compound corresponds in structure to a formula selected from the group consisting of:

95. A compound or salt thereof according to claim 93, wherein the compound corresponds in structure to the following formula:

5

- 96. A compound or salt thereof according to claim 7, wherein E^3 is $-C(O)-N(R^4)-N(R^5)-C(O)-$.
- 97. A compound or salt thereof according to claim 96, wherein E⁵ is phenyl

 10 optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy,

 C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted

 C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 98. A compound or salt thereof according to claim 97, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 99. A compound or salt thereof according to claim 7, wherein E^3 is $-C(R^4)(R^6)-C(O)$.
- optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 101. A compound or salt thereof according to claim 100, wherein the compound corresponds in structure to a formula selected from the group consisting of:

15 102. A compound or salt thereof according to claim 100, wherein the compound corresponds in structure to the following formula:

103. A compound or salt thereof according to claim 100, wherein the compound corresponds in structure to the following formula:

5

- 104. A compound or salt thereof according to claim 7, wherein E³ is -O-C(O)-.
- 105. A compound or salt thereof according to claim 104, wherein E⁵ is heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

15

106. A compound or salt thereof according to claim 105, wherein E^5 is 2-fused-ring heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkyl, halogen-substituted aryl- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.

25

20

107. A compound or salt thereof according to claim 106, wherein E⁵ is selected from the group consisting of indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzadiazinyl,

benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, and tetrahydroisoquinolinyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, haloaryl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

5

10

- 108. A compound or salt thereof according to claim 107, wherein E⁵ is tetrahydroisoquinolinyl optionally substituted with one or more substituents

 15 independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
 - 109. A compound or salt thereof according to claim 108, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 110. A compound or salt thereof according to claim 7, wherein E^3 is $-N(R^4)$ -.
- 111. A compound or salt thereof according to claim 110, wherein E⁵ is

 5 heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy,

 C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl,

 aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted

 C₁-C₆-alkoxy-C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl,

 halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.
- 112. A compound or salt thereof according to claim 111, wherein E⁵ is
 2-fused-ring heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN,
 15 C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

20

25

113. A compound or salt thereof according to claim 112, wherein E⁵ is selected from the group consisting of indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl,

isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, and tetrahydroisoquinolinyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , aryl, aryl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, haloaryl, halogen-substituted C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, halogen-substituted C_1 - C_6 -alkylaryl, hydroxyaryl, and heteroaryl.

10

15

5

114. A compound or salt thereof according to claim 113, wherein E⁵ is selected from the group consisting of benzoxazolyl, benzothiazolyl, and benzimidazolyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, halogen-substituted C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

20

115. A compound or salt thereof according to claim 114, wherein the compound corresponds in structure to a formula selected from the group consisting of:

116. A compound or salt thereof according to claim 7, wherein E³ is -C(NR³)-.

optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R¹¹)(R¹²), -C(O)(R¹³), -S-R¹¹, -S(O)₂-R¹¹, aryl, aryl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, haloaryl, halogen-substituted aryl-C₁-C₆-alkyl, C₁-C₆-alkylaryl, hydroxyaryl, and heteroaryl.

5

118. A compound or salt thereof according to claim 117, wherein the compound corresponds in structure to the following formula:

- 119. A compound or salt thereof according to claim 7, wherein E^3 is $-C(R^7)(R^8)$ -.
 - 120. A compound or salt thereof according to claim 119, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₁-C₆-alkoxy,
- $C_1-C_6-alkoxy-C_1-C_6-alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S-R^{11}, -S(O)_2-R^{11}, aryl, \\ aryl-C_1-C_6-alkyl, halo-C_1-C_6-alkyl, halo-C_1-C_6-alkoxy, halogen-substituted \\ C_1-C_6-alkoxy-C_1-C_6-alkyl, haloaryl, halogen-substituted aryl-C_1-C_6-alkyl, C_1-C_6-alkylaryl, halogen-substituted C_1-C_6-alkylaryl, hydroxyaryl, and heteroaryl.$

121. A compound or salt thereof according to claim 120, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 122. A compound or salt thereof, wherein:
- 5 the compound corresponds in structure to Formula 122-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
(122-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl,

- heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl,
 aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),
 carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),
 heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),
 carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member
 (except -H) of such group optionally is substituted; and
 - A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² forms a link of at least 2 carbon atoms between E¹ and E³; and

E³ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein the carbocyclyl or heterocyclyl has 5 or 6 ring members and optionally is substituted; and

 E^4 is selected from the group consisting of a bond, alkyl, alkenyl, -O-, and, - $N(R^3)$ -, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein the carbocyclyl or heterocyclyl optionally is substituted; and

R¹ and R² are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

R³ is selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E³, E⁴, or E⁵.

123. A compound or salt thereof according to claim 122, wherein:

 $A^{l} \ is \ selected \ from \ the \ group \ consisting \ of \ -H, \ C_{1}-C_{8}-alkylcarbonyl,$ $C_{1}-C_{8}-alkoxycarbonyl, \ carbocyclylcarbonyl, \ carbocyclyl-C_{1}-C_{8}-alkylcarbonyl,$

heterocyclylcarbonyl, heterocyclyl-C₁-C₈-alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl-C₁-C₈-alkoxycarbonyl, N(R⁴)(R⁵)-C₁-C₈-alkylcarbonyl, C₁-C₈-alkyl(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl-C₁-C₈-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl-C₁-C₈-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

25 carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^4)(R^5)$ - C_1 - C_8 -alkyl(thiocarbonyl); and

 E^2 is selected from the group consisting of C_2 - C_{20} -alkyl, cycloalkyl, C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and

30 halo- C_1 - C_6 -alkyl; and

5

10

15

E³ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein the carbocyclyl or heterocyclyl:

has 5 or 6 ring members, and

5

10

20

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, wherein:

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio, halo- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkylthio, and halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl; and

E⁴ is selected from the group consisting of a bond, -O-, -N(R³)-, C₁-C₂₀-alkyl, and C₂-C₂₀-alkenyl, wherein the C₁-C₂₀-alkyl or C₂-C₂₀-alkenyl optionally is substituted with one or more substituents independently selected from the group consisting of:

halogen, and

carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halocarbocyclyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted C_1 - C_8 -alkyl; and

E⁵ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein 25 the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, halo-C₁-C₈-alkyl, halo-C₁-C₈-alkoxy, halogen-substituted C₁-C₈-alkoxy-C₁-C₈-alkyl, 30 halocarbocyclyl, and halogen-substituted carbocyclyl-C₁-C₈-alkyl; and R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

 $\mbox{$R^3$}$ is selected from the group consisting of -H, $\mbox{$C_1$-$C_8$-alkyl,}$ and halo- $\mbox{$C_1$-$C_8$-alkyl;}$ and

 R^4 and R^5 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

5

10

15

20

30

 R^6 and R^7 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, heterocyclyl- C_1 - C_8 -alkyl, halocarbocyclyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, haloheterocyclyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl; and

 R^8 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^9 , -N(R^9)(R^{10}), carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl; and

 R^9 and R^{10} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, heterocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halocarbocyclyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, haloheterocyclyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl.

- 124. A compound or salt thereof according to claim 123, wherein A¹ is -H.
- 125. A compound or salt thereof according to claim 124, wherein:
 E² is C₂-C₆-alkyl optionally substituted with one or more halogen; and
 E³ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein
 25 the carbocyclyl or heterocyclyl:

has 5 or 6 ring members, and optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₆-alkyl, wherein:

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkylthio; and

 E^4 is selected from the group consisting of a bond, -O-, -N(R³)-, C₁-C₃-alkyl, and C₂-C₃-alkenyl, wherein the C₁-C₃-alkyl or C₂-C₃-alkenyl optionally is substituted with one or more substituents independently selected from the group consisting of:

10 halogen, and

5

15

20

25

30

carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halocarbocyclyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl; and

 E^5 is selected from the group consisting of carbocyclyl and heterocyclyl, wherein the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, $-N(R^6)(R^7)$, - $-C(O)(R^8)$, - $-S_1$ - $-S_2$ - $-S_3$ - $-S_4$ - $-S_3$ - $-S_4$ - $-S_4$ -alkoxy, halogen-substituted C_1 - $-C_6$ -alkyl, halo- $-C_1$ - $-C_6$ -alkoxy, halogen-substituted $-C_1$ - $-C_6$ -alkyl, and halogen-substituted carbocyclyl- $-C_1$ - $-C_6$ -alkyl; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

 R^3 is selected from the group consisting of -H, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

R⁶ and R⁷ are independently selected from the group consisting of -H, C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₆-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^8 is selected from the group consisting of -H, C_1 - C_6 -alkyl, -O- R^9 , -N(R^9)(R^{10}), carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halogen-substituted carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_6 -alkyl; and

R⁹ and R¹⁰ are independently selected from the group consisting of -H,

5 C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, heterocyclyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halocarbocyclyl, halogen-substituted carbocyclyl-C₁-C₆-alkyl, haloheterocyclyl, and halogen-substituted heterocyclyl-C₁-C₆-alkyl.

126. A compound or salt thereof according to claim 125, wherein A² and A³,
 10 together with the carbon atom to which they both are attached, form an optionally-substituted heterocyclyl containing either 5 or 6 ring members.

127. A compound or salt thereof according to claim 126, wherein:
the compound corresponds in structure to a formula selected from the group
consisting of:

HO N
$$E^1 - E^2 - E^3 - E^4 - E^5$$
(127-1) and

20 (127-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkynyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonyl, alk

alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkenyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, aminocarbonyl, aminocarbonyl, aminocarbonyl, aminocarbonyl, aminocarbonyl, aminocarbonylalkyl, aminoalkyl, am

128. A compound or salt thereof according to claim 127, wherein:
 A⁴ is selected from the group consisting of -H, C₁-C₈-alkyl, C₁-C₈-alkylcarbonyl,
 C₁-C₈-alkylcarbonyl-C₁-C₈-alkylcarbonyl-C₁-C₈-alkylcarbonyl,
 C₁-C₈-alkoxycarbonyl, C₁-C₈-alkoxycarbonyl-C₁-C₈-alkyl,
 C₁-C₈-alkoxycarbonyl-C₁-C₈-alkylcarbonyl, C₁-C₈-alkylsulfonyl,
 C₁-C₈-alkyliminocarbonyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy-C₁-C₈-alkyl,
 C₁-C₈-alkylthio-C₁-C₈-alkyl, C₁-C₈-alkylthio-C₂-C₈-alkenyl,
 C₁-C₈-alkylsulfoxido-C₁-C₈-alkyl, C₁-C₈-alkylsulfoxido-C₂-C₈-alkenyl,

carbocyclyl-C₁-C₈-alkyl, carbocyclyl-C₁-C₈-alkoxy-C₁-C₈-alkyl, carbocyclylcarbonyl,

carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl,

carbocyclylthio-C₁-C₈-alkyl, carbocyclylthio-C₂-C₈-alkenyl,

carbocyclylsulfoxido-C₁-C₈-alkyl, carbocyclylsulfoxido-C₂-C₈-alkenyl,

carbocyclylsulfonyl-C₁-C₈-alkyl, carbocyclylsulfonyl-C₂-C₈-alkenyl, heterocyclyl,

heterocyclyl-C₁-C₈-alkyl, heterocyclyl-C₁-C₈-alkoxy-C₁-C₈-alkyl, heterocyclylcarbonyl,

C₁-C₈-alkylsulfonyl-C₁-C₈-alkyl, C₁-C₈-alkylsulfonyl-C₂-C₈-alkenyl, carbocyclyl,

30 heterocyclylthio-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl, heterocyclylsulfonyl-C₁-C₈-alkyl, heterocyclylthio-C₂-C₈-alkenyl,

heterocyclylsulfoxido-C2-C8-alkenyl, heterocyclylsulfonyl-C2-C8-alkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclyl-C₁-C₈-alkylcarbonyl, heterocyclylcarbonyl-C₁-C₈-alkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonyl-C₁-C₈-alkyl, N(R¹¹)(R¹²)-C₁-C₈-alkylcarbonyl, N(R¹¹)(R¹²)-carbonyl, N(R¹¹)(R¹²)-carbonyl-C₁-C₈-alkylcarbonyl, 5 $N(R^{11})(R^{12})$ -sulfonyl, $N(R^{11})(R^{12})$ -sulfonyl- C_1 - C_8 -alkyl, $N(R^{11})(R^{12})$ - C_1 - C_8 -alkyl, N(R¹¹)(R¹²)-carbonyl-C₁-C₈-alkyl, and N(R¹¹)(R¹²)-C₁-C₈-alkylsulfonyl, wherein: any member (except -H) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, 10 -OH, -CN, -C(O)-OH, -SH, -SO₃H, and NO₂; and R¹¹ and R¹² are independently selected from the group consisting of -H, -OH, C_1 - C_8 -alkyl, C_1 - C_8 -alkyl-carbonyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkyl, C_1 - C_8 -alkyl-thio- C_1 - C_8 -alkyl, C_1 - C_8 -alkyl-sulfoxido- C_1 - C_8 -alkyl, C₁-C₈-alkyl-sulfonyl-C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, 15 carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, carbocyclylthio- C_1 - C_8 -alkyl, carbocyclylsulfoxido-C₁-C₈-alkyl, carbocyclylsulfonyl-C₁-C₈-alkyl, heterocyclyl, heterocyclyl-C₁-C₈-alkyl, heterocyclyl-C₁-C₈-alkoxy-C₁-C₈-alkyl, heterocyclylcarbonyl, heterocyclylthio-C₁-C₈-alkyl, heterocyclylsulfoxido-C₁-C₈-alkyl, heterocyclylsulfonyl-C₁-C₈-alkyl, aminocarbonyl-C₁-C₈-alkyl, 20 C_1 - C_8 -alkyloxycarbonylamino- C_1 - C_8 -alkyl, and amino- C_1 - C_8 -alkyl, wherein: any member (except -H or -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -CN, -C(O)-OH, -SH, -SO₃H, and NO₂, and the nitrogen of the amino-C₁-C₈-alkyl optionally is substituted with 1 or 2 25 substituents independently selected from the group consisting of C₁-C₈-alkyl,

129. A compound or salt thereof according to claim 128, wherein A⁴ is selected 30 from the group consisting of -H, C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl,

C₁-C₈-alkylcarbonyl, carbocyclyl, and carbocyclyl-C₁-C₈-alkyl, and

no greater than one of R¹¹ or R¹² is -OH.

carbocyclyl-C₁-C₆-alkyl, C₁-C₆-alkylsulfonyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, wherein any member (except -H) of such group optionally is substituted with halogen.

- 130. A compound or salt thereof according to claim 129, wherein A⁴ is selected from the group consisting of -H, C₁-C₄-alkyl, C₁-C₂-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyl-C₁-C₃-alkyl, phenyl, phenyl-C₁-C₃-alkyl, C₁-C₂-alkylsulfonyl, C₃-C₄-alkenyl, C₃-C₄-alkynyl, wherein any member (except -H) of such group optionally is substituted with halogen.
- 131. A compound or salt thereof according to claim 130, wherein A⁴ is selected from the group consisting of -H, ethyl, methoxyethyl, cyclopropyl, cyclopropylmethyl, benzyl, methylsulfonyl, C₃-alkenyl, and C₃-alkynyl, wherein any member (except -H) of such group optionally is substituted with halogen.
- 132. A compound or salt thereof according to claim 131, wherein A⁴ is selected from the group consisting of -H, ethyl, methoxyethyl, cyclopropyl, cyclopropylmethyl, and benzyl, wherein any member (except -H) of such group optionally is substituted with halogen.
- 20 133. A compound or salt thereof according to claim 128, wherein the salt comprises an acid selected from the group consisting of HCl and CF₃COOH.
 - 134. A compound or salt thereof according to claim 128, wherein E^2 is C_2 - C_5 -alkyl optionally substituted with one or more halogen.
 - 135. A compound or salt thereof according to claim 134, wherein E^2 is $-(CH_2)_{m^-}$, and m is from 2 to 5.
 - 136. A compound or salt thereof according to claim 135, wherein E⁴ is a bond.

30

25

137. A compound or salt thereof according to claim 128, wherein E³ is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, heterocyclyl-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, and halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein:

5

10

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, and halo-C₁-C₆-alkylthio.

A compound or salt thereof according to claim 137, wherein E³ is selected 138. from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, 15 isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, oxazolidinyl, isoxazolidinyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, 20 oxadiazolyl, oxatriazolyl, dioxazolyl, oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, dihydropyranyl, pyridinyl, piperidinyl, diazinyl, piperazinyl, triazinyl, oxazinyl, isoxazinyl, oxathiazinyl, oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl, diazepinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, 25 benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, tetrahydroisoquinolinyl, carbazolyl, xanthenyl, and acridinyl, wherein 30 any member of such group optionally is substituted (to the extent such

member contains a substitutable hydrogen(s)) with one or more substituents

independently selected from the group consisting of halogen, -OH, keto,

C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl,

carbocyclyl-C₁-C₆-alkyl, heterocyclyl, heterocyclyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl,

halo-C₁-C₆-alkoxy, and halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein:

any such substituent (except halogen, -OH, or keto) optionally is

substituted with one or more substituents independently selected from the

group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy,

C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkyl,

halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, and

halo-C₁-C₆-alkylthio.

- 139. A compound or salt thereof according to claim 137, wherein E³ contains no greater than one heteroatom ring member.
- 15 140. A compound or salt thereof according to claim 139, wherein E³ is selected from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolinyl, pyrrolyl, isopyrrolyl, pyrrolidinyl, pyridinyl, piperidinyl, pyranyl, dihydropyranyl, and tetrahydropyranyl, wherein:

20

25

30

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C₁-C₆-alkyl, C₁-C₆-alkoxy, and C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein: any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

141. A compound or salt thereof according to claim 139, wherein E³ is pyridinyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C6-alkyl, C₁-C6-alkoxy, and C₁-C6-alkoxy-C₁-C6-alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

- 5 142. A compound or salt thereof according to claim 141, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.
 - 143. A compound or salt thereof according to claim 142, wherein the compound corresponds in structure to a formula selected from the group consisting of:

(143-3).

144. A compound or salt thereof according to claim 142, wherein the compound corresponds in structure to the following formula:

5

145. A compound or salt thereof according to claim 139, wherein: E³ is selected from the group consisting of:

(145-17); and

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C₆-alkyl,

C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₆-alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, and halo-C₁-C₆-alkylthio; and R¹⁴ is selected from the group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₆-alkyl, wherein

5

10

20

any member (except halogen or -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkylthio.

15 146. A compound or salt thereof according to claim 145, wherein E³ is furanyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C₁-C₆-alkyl, C₁-C₆-alkoxy, and C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein:

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

147. A compound or salt thereof according to claim 146, wherein the compound corresponds in structure to the following formula:

5

148. A compound or salt thereof according to claim 145, wherein E^3 is thienyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

10

- any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.
- 149. A compound or salt thereof according to claim 148, wherein the compound corresponds in structure to a formula selected from the group consisting of:

HOHN HOHN HOHN
$$F_{3C}$$
 (149-3), and (149-4).

150. A compound or salt thereof according to claim 148, wherein the compound corresponds in structure to the following formula:

5

10

151. A compound or salt thereof according to claim 145, wherein E^3 is pyrrolidinyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

152. A compound or salt thereof according to claim 151, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl,

phenyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halophenyl, and halogen-substituted phenyl- C_1 - C_6 -alkyl.

153. A compound or salt thereof according to claim 152, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 154. A compound or salt thereof according to claim 137, wherein E³ contains no greater and no less than two heteroatom ring members.
- 155. A compound or salt thereof according to claim 154, wherein E³ is selected from the group consisting of pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, dithiolyl, thiazolyl, isothiazolyl, thiazolyl, thiazolyl, isothiazolyl, isothiazolidinyl, isothiazolidinyl, oxathiolyl, oxathiolanyl, oxazolyl, isoxazolyl, oxazolidinyl, pyridinyl, piperazinyl, pyrimidinyl, pyridazinyl, oxazinyl, and morpholinyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

20

156. A compound or salt thereof according to claim 154, wherein: E³ is selected from the group consisting of:

(156-29); and

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl,

5 C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, and halo-C₁-C₆-alkylthio; and R¹⁴ is selected from the group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₆-alkyl, wherein:

any member (except halogen or -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, and halo-C₁-C₆-alkylthio.

157. A compound or salt thereof according to claim 156, wherein E³ is selected from the group consisting of oxazolyl and isoxazolyl, wherein:

the oxazolyl or isoxazolyl is optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

30

5

10

15

159. A compound or salt thereof according to claim 158, wherein the compound corresponds in structure to a formula selected from the group consisting of:

160. A compound or salt thereof according to claim 156, wherein E³ is selected from the group consisting of pyrazolyl and isoimidazolyl, wherein:

5

the pyrazolyl and isoimidazolyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

- 161. A compound or salt thereof according to claim 160, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.
 - 162. A compound or salt thereof according to claim 161, wherein the compound corresponds in structure to a formula selected from the group consisting of:

163. A compound or salt thereof according to claim 156, wherein E³ is selected from the group consisting of thiazolyl and isothiazolyl, wherein:

the thiazolyl and isothiazolyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

10

15

5

- 164. A compound or salt thereof according to claim 163, wherein E^5 is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C_1 -C₆-alkoxy, C_1 -C₆-alkoxy-C₁-C₆-alkyl, -N(R^6)(R^7), -C(O)(R^8), -S- R^6 , -S(O)₂- R^6 , phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C_1 -C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.
- 165. A compound or salt thereof according to claim 164, wherein the compound corresponds in structure to the following formula:

166. A compound or salt thereof according to claim 156, wherein E³ is selected from the group consisting of pyrazolidinyl and imidazolidinyl, wherein:

5

the pyrazolidinyl and imidazolidinyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen,
-OH, keto, C₁-C₆-alkyl, C₁-C₆-alkoxy, and C₁-C₆-alkoxy-C₁-C₆-alkyl, wherein:
any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

- 167. A compound or salt thereof according to claim 166, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.
 - 168. A compound or salt thereof according to claim 167, wherein the compound corresponds in structure to a formula selected from the group consisting of:

169. A compound or salt thereof according to claim 166, wherein E⁵ is C₅-C₆-cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

170. A compound or salt thereof according to claim 169, wherein the compound corresponds in structure to the following formula:

5

171. A compound or salt thereof according to claim 156, wherein E^3 is oxazolidinyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, keto, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:

10

any such substituent (except halogen, -OH, or keto) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

15

172. A compound or salt thereof according to claim 171, wherein E^5 is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R^6)(R^7), -C(O)(R^8), -S- R^6 , -S(O)₂- R^6 , phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

20

173. A compound or salt thereof according to claim 172, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 174. A compound or salt thereof according to claim 137, wherein E³ contains no greater and no less than 3 heteroatoms.
- 5 175. A compound or salt thereof according to claim 174, wherein E³ is selected from the group consisting of oxadiazolyl, thiadiazolyl, and triazolyl, wherein:

the triazolyl optionally is substituted with a substituent selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl,

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen and -OH.

176. A compound or salt thereof according to claim 174, wherein: E³ is selected from the group consisting of:

10

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_6 -alkyl, wherein:

any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkylthio; and

 R^{14} is selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_6 -alkyl, wherein:

5

10

15

any member (except halogen or -OH) of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkylthio.

177. A compound or salt thereof according to claim 176, wherein E³ is oxadiazolyl.

178. A compound or salt thereof according to claim 177, wherein E^5 is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R^6)(R^7), -C(O)(R^8), -S- R^6 , -S(O)₂- R^6 , phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

5

179. A compound or salt thereof according to claim 178, wherein the compound corresponds in structure to a formula selected from the group consisting of:

180. A compound or salt thereof according to claim 178, wherein the compound corresponds in structure to a formula selected from the group consisting of:

181. A compound or salt thereof according to claim 178, wherein the compound corresponds in structure to the following formula:

181-1

5

182. A compound or salt thereof according to claim 178, wherein the compound corresponds in structure to the following formula:

10

15

183. A compound or salt thereof according to claim 177, wherein E^5 is naphthalenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R^6)(R^7), -C(O)(R^8), -S- R^6 , -S(O)₂- R^6 , phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

184. A compound or salt thereof according to claim 183, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 185. A compound or salt thereof according to claim 177, wherein E⁵ is

 5 C₅-C₆-cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.
 - 186. A compound or salt thereof according to claim 185, wherein the compound corresponds in structure to a formula selected from the group consisting of:

15 187. A compound or salt thereof according to claim 177, wherein E⁵ is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy,

halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halophenyl, and halogen-substituted phenyl- C_1 - C_6 -alkyl.

188. A compound or salt thereof according to claim 187, wherein the compound corresponds in structure to a formula selected from the group consisting of:

189. A compound or salt thereof according to claim 187, wherein the compound corresponds in structure to a formula selected from the group consisting of:

10 190. A compound or salt thereof according to claim 137, wherein E³ contains at least 4 heteroatom ring members.

191. A compound or salt thereof according to claim 190, wherein E³ is selected from the group consisting of:

192. A compound or salt thereof according to claim 191, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

10

193. A compound or salt thereof according to claim 192, wherein the compound corresponds in structure to a formula selected from the group consisting of:

194. A compound or salt thereof according to claim 192, wherein the compound corresponds in structure to the following formula:

5

195. A compound or salt thereof according to claim 192, wherein the compound corresponds in structure to the following formula:

10

196. A compound or salt thereof according to claim 191, wherein E⁵ is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.

197. A compound or salt thereof according to claim 196, wherein the compound corresponds in structure to a formula selected from the group consisting of:

198. A compound or salt thereof according to claim 128, wherein E³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, phenyl, naphthalenyl, tetrahydronaphthalenyl, indenyl, isoindenyl, indanyl, bicyclodecanyl, anthracenyl, phenanthrenyl, benzonaphthenyl, fluoreneyl, decalinyl, and norpinanyl, wherein:

- any member of such group optionally is substituted with one or more

 substituents independently selected from the group consisting of halogen, -OH,
 keto, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, carbocyclyl,
 carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₆-alkyl, wherein:
 any such substituent (except halogen, -OH, or keto) optionally is
 substituted with one or more substituents independently selected from the
 group consisting of halogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkoxy,
 C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio, halo-C₁-C₆-alkyl,
 halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, and
 halo-C₁-C₆-alkylthio.
- 20 199. A compound or salt thereof according to claim 198, wherein E³ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, C₁-C6-alkyl, C₁-C6-alkoxy, C₁-C6-alkoxy-C₁-C6-alkyl, carbocyclyl, carbocyclyl-C₁-C6-alkyl, heterocyclyl, and heterocyclyl-C₁-C6-alkyl, wherein: any such substituent (except halogen or -OH) optionally is substituted with one or more substituents independently selected from the group consisting of

halogen, -OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkylthio.

- 5 200. A compound or salt thereof according to claim 199, wherein E⁵ is selected from the group consisting of piperidinyl, piperazinyl, imidazolyl, furanyl, thienyl, pyridinyl, pyrimidyl, benzodioxolyl, benzodioxanyl, benzofuryl, and benzothienyl, wherein
- any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁶)(R⁷), -C(O)(R⁸), -S-R⁶, -S(O)₂-R⁶, phenyl, phenyl-C₁-C₆-alkyl, halo-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, halophenyl, and halogen-substituted phenyl-C₁-C₆-alkyl.
 - 201. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to a formula selected from the group consisting of:

202. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

5

203. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

10

204. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

205. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

5

206. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to a formula selected from the group consisting of:

207. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to a formula selected from the group consisting of:

208. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to a formula selected from the group consisting of:

209. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

210. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

10

5

211. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

15

(211-1).

212. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to the following formula:

5

213. A compound or salt thereof according to claim 200, wherein the compound corresponds in structure to a formula selected from the group consisting of:

214. A compound or salt thereof according to claim 199, wherein E⁵ is selected from the group consisting of phenyl and naphthalenyl, wherein:

the phenyl and naphthalenyl optionally are substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^6)(R^7), -C(O)(R^8), -S- R^6 , -S(O)₂- R^6 , phenyl, phenyl- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halophenyl, and halogen-substituted phenyl- C_1 - C_6 -alkyl.

215. A compound or salt thereof according to claim 214, wherein the compound corresponds in structure to a formula selected from the group consisting of:

216. A compound or salt thereof according to claim 214, wherein the compound corresponds in structure to a formula selected from the group consisting of:

(218-1).

219. A compound or salt thereof according to claim 214, wherein the compound corresponds in structure to the following formula:

10

5

221. A compound or salt thereof according to claim 214, wherein the compound corresponds in structure to the following formula:

10

222. A compound or salt thereof according to claim 214, wherein the compound corresponds in structure to the following formula:

5

10

224. A compound or salt thereof according to claim 214, wherein the compound corresponds in structure to the following formula:

225. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 225-1:

$$A^{1}$$
 A^{1}
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{2}
 E^{4}
 E^{5}
(225-1);

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl,

heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

5

10

15

20

25

30

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of a bond and alkyl, wherein the alkyl optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted; and

E⁶ is selected from the group consisting of -H, halogen, and alkyl, wherein the alkyl optionally is substituted;

E⁷ is selected from the group consisting of -H, alkyl, alkenyl, alkynyl, -S(O)₂-R³, -NO₂, -C(O)-N(R³)(R⁴), -(C)(OR³), carbocyclyl, carbocyclylalkyl, alkoxycarbocyclyl, -CN, -C=N-OH, and -C=NH, wherein the alkyl, alkenyl, alkynyl, carbocyclyl, carbocyclylalkyl, or alkoxycarbocyclyl optionally is substituted; and

 R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

R³ and R⁴ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E⁴, E⁵, E⁶, or E⁷.

226. A compound or salt thereof according to claim 225, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl,

heterocyclylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^5)(R^6)$ - C_1 - C_8 -alkylcarbonyl, C₁- C_8 -alkyl(thiocarbonyl), C₁- C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

 $\label{eq:carbocyclyl-C1-C8-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl-C1-C8-alkoxy(thiocarbonyl), and $N(R^5)(R^6)-C_1-C_8-alkyl(thiocarbonyl)$; and $N(R^5)(R^6)-C_1-C_8-alkyl(thiocarbonyl)$$

 E^2 is selected from the group consisting of C_1 - C_{20} -alkyl, cycloalkyl, C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, and halo- C_1 - C_{20} -alkyl; and

10

15

20

25

E⁵ is selected from the group consisting of C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl, C₁-C₂₀-alkoxy, C₁-C₂₀-alkoxy-C₁-C₂₀-alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, -N(R^7)(R^8), -C(O)(R^9), -S- R^7 , -S(O)₂- R^7 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl; and

 E^6 is selected from the group consisting of -H, halogen, and C_1 - C_6 -alkyl, wherein the C_1 - C_6 -alkyl optionally is substituted with one or more halogen;

E⁷ is selected from the group consisting of -H, C₁-C₈-alkyl, C₁-C₈-alkenyl,

C₁-C₈-alkynyl, -S(O)₂-R³, -NO₂, -C(O)-N(R³)(R⁴), -(C)(OR³), carbocyclyl,

carbocycyl-C₁-C₈-alkyl, C₁-C₈-alkoxycarbocyclyl, -CN, -C=N-OH, and -C=NH, wherein

HO N
$$E^1$$
 E^2 C E^4 E^5

(227-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, 5 alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, 10 carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, 15 heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

20

- 228. A compound or salt thereof according to claim 227, wherein E^5 is phenyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C_1 -C₆-alkoxy, C_1 -C₆-alkoxy-C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, -N(R^7)(R^8), -C(O)(R^9), -S- R^7 , -S(O)₂- R^7 , carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl.
 - 229. A compound or salt thereof according to claim 228, wherein E⁴ is a bond.

the C_1 - C_6 -alkyl, C_1 - C_8 -alkenyl, C_1 - C_8 -alkynyl, carbocyclyl, carbocycyl- C_1 - C_8 -alkyl, or C_1 - C_8 -alkoxycarbocyclyl optionally is substituted with one or more halogen; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

5

10

15

20

25

R³ and R⁴ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^5 and R^6 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

 R^7 and R^8 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^9 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^{10} , -N(R^{10})(R^{11}), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

R¹⁰ and R¹¹ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

227. A compound or salt thereof according to claim 226, wherein:

the compound corresponds in structure to a formula selected from the group consisting of:

HO N
$$E^{1}$$
 E^{2} C E^{4} E^{5} (227-1) and

230. A compound or salt thereof according to claim 229, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 232. A compound or salt thereof according to claim 227, wherein E^5 is selected from the group consisting of C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -alkoxy, and C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, wherein:
- any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.
- 233. A compound or salt thereof according to claim 232, wherein E^5 is C_1 - C_6 -alkyl.
- 234. A compound or salt thereof according to claim 233, wherein the compound corresponds in structure to a formula selected from the group consisting of:

HOHN

$$CH_3$$
 CH_3
 CH_3

235. A compound or salt thereof, wherein:

5

10

the compound corresponds in structure to Formula 235-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
(235-1);

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl,

heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R³)-, -C(O)-N(R³)-, -N(R³)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of a bond, alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member (except for the bond) of such group optionally is substituted; and

E³ is carbonylpyrrollidinyl, wherein the carbonylpyrrollidinyl optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted; and

 R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E³, E⁴, or E⁵.

20

25

30

5

10

15

236. A compound or salt thereof according to claim 235, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^3)(R^4)$ - C_1 - C_8 -alkylcarbonyl, carbocyclyl(thiocarbonyl), C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^3)(R^4)$ - C_1 - C_8 -alkyl(thiocarbonyl); and

wherein any member of such group (except for the bond) optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

E³ is carbonylpyrrollidinyl, wherein the carbonylpyrrollidinyl optionally is substituted with one or more halogen; and

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, halo- C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, and halo- C_2 - C_{20} -alkenyl; and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

15

10

5

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl,

20

30

and halo- C_1 - C_6 -alkyl; and R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and

25 carbocyclyl-C₁-C₈-alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl,

carbocyclyl-C₁-C₈-alkyl, or heterocyclyl-C₁-C₈-alkyl optionally is substituted with one or more halogen; and

R⁸ and R⁹ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

5

10

15

237. A compound or salt thereof according to claim 236, wherein the compound corresponds in structure to Formula 237-1:

$$A^{1} \xrightarrow{O} \underset{H}{\overset{O}{\underset{A^{2}}{\bigvee}}} \underset{A^{3}}{\overset{O}{\underset{E^{1}}{\bigvee}}} \underset{E^{2}}{\overset{O}{\underset{E^{2}}{\bigvee}}} \underset{E^{4} \xrightarrow{E^{5}}}{\overset{O}{\underset{E^{4} \xrightarrow{}}{\bigvee}}} \underbrace{E^{4} \xrightarrow{E^{5}}}$$

$$(237-1).$$

238. A compound or salt thereof according to claim 237, wherein:

the compound corresponds in structure to a formula selected from the group consisting of:

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl,

alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclylsulfonyl,

5

10

15

20

heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

239. A compound or salt thereof according to claim 238, wherein E⁵ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein:

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

240. A compound or salt thereof according to claim 239, wherein E⁵ is carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

- 241. A compound or salt thereof according to claim 240, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted

 5 C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.
 - 242. A compound or salt thereof according to claim 241, wherein E⁴ is a bond.
 - 243. A compound or salt thereof according to claim 242, wherein the compound corresponds in structure to a formula selected from the group consisting of:

10

244. A compound or salt thereof according to claim 240, wherein E⁵ is

15 C₅-C₆-cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl,

halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, $-N(R^5)(R^6)$, $-C(O)(R^7)$, -S- R^5 , $-S(O)_2$ - R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

- 5
- 245. A compound or salt thereof according to claim 244, wherein E⁴ is a bond.
- 246. A compound or salt thereof according to claim 245, wherein the compound corresponds in structure to the following formula:

10

15

247. A compound or salt thereof according to claim 238, wherein E^5 is selected from the group consisting of C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, wherein:

the C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, or C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.

20 248. A compound or salt thereof according to claim 247, wherein E^4 is a bond, and E^5 is C_1 - C_8 -alkyl.

250. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 250-1:

A¹

$$\stackrel{\text{O}}{\underset{\text{H}}{\bigvee}}$$
 $\stackrel{\text{O}}{\underset{\text{N}}{\bigvee}}$
 $\stackrel{\text{O}}{\underset{\text{N}}{\overset{\text{N}}{\underset{\text{N}}{\bigvee}}}$
 $\stackrel{\text{O}}{\underset{\text{N}}{\overset{\text{N}}{\underset{\text{N}}{\overset{\text{N}}{\overset{\text{N}}{\overset{\text{N}}}}}$
 $\stackrel{\text{O}}{\underset{\text{N}}{\overset{\text{N}}}}$
 $\stackrel{\text{O}}{\underset{\text{N}}{\overset{\text{N}}{\overset{\text{N}}}}$
 $\stackrel{\text{N}}{\underset{\text{N}}}$
 $\stackrel{\text{N}}{\underset{\text{N}}$

10

15

20

25

5

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, alkyl, and haloalkyl; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, and cyclohexadienyl, wherein

the alkyl, alkenyl, or alkynyl (a) contains at least 4 carbon atoms, and (b) optionally is substituted with one or more substituents selected from the group consisting of -OH, -NO₂, -CN, and halogen, and

the cycloalkyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, or cyclohexadienyl optionally is substituted; and

 R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R^1 nor R^2 forms a ring structure with E^5 .

251. A compound or salt thereof according to claim 250, wherein:

 $A^1 \text{ is selected from the group consisting of -H, C_1-C_8-alkylcarbonyl,} \\ C_1$-$C_8$-alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl-C_1-C_8-alkylcarbonyl,} \\ \text{heterocyclylcarbonyl, heterocyclyl-C_1-C_8-alkylcarbonyl, carbocyclyloxycarbonyl,} \\ \text{carbocyclyl-C_1-C_8-alkoxycarbonyl, $N(R^3)(R^4)$-C_1-C_8-alkylcarbonyl,} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl),} \\ \text{C_1-C_8-alkyl(thiocarbonyl),} \\ \text{C_1-C_8-alkyl$

carbocyclyl-C₁-C₈-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclyl-C₁-C₈-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^3)(R^4)$ - C_1 - C_8 -alkyl(thiocarbonyl); and E^2 is selected from the group consisting of C_1 - C_{20} -alkyl, cycloalkyl, C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl,

wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and

25 halo-C₁-C₆-alkyl; and

5

15

20

 E^5 is selected from the group consisting of C_4 - C_{20} -alkyl, C_4 - C_{20} -alkenyl, and C_4 - C_{20} -alkynyl, cycloalkyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, and cyclohexadienyl, wherein:

the C₄-C₂₀-alkyl, C₄-C₂₀-alkenyl, or C₄-C₂₀-alkynyl optionally is substituted with one or more substituents independently selected from the group consisting of -OH, -NO₂, -CN, and halogen, and

the cycloalkyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, or cyclohexadienyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₈-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkyl, halogen-substituted C₁-C₈-alkoxy-C₁-C₈-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₈-alkyl, and halogen-substituted carbocyclyl-C₁-C₈-alkyl; and R¹ and R² are independently selected from the group consisting of -H, C₁-C₈-alkyl, and halo-C₁-C₈-alkyl; and

5

10

15

20

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^8 and R^9 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

252. A compound or salt thereof according to claim 251, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N H (252-1) and

HO N H
$$E^1 - E^2 - E^5$$
 A^4

(252-2); and

5

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, 10 alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 15 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, 20 heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

253. A compound or salt thereof according to claim 252, wherein E⁵ is selected from the group consisting of C₄-C₈-alkyl, C₄-C₈-alkenyl, and C₄-C₈-alkynyl, wherein:

the C_4 - C_8 -alkyl, C_4 - C_8 -alkenyl, or C_4 - C_8 -alkynyl optionally is substituted with one or more substituents independently selected from the group consisting of -OH, -NO₂, -CN, and halogen.

254. A compound or salt thereof according to claim 253, wherein the compound corresponds in structure to a formula selected from the group consisting of:

255. A compound or salt thereof according to claim 253, wherein the compound corresponds in structure to the following formula:

10

256. A compound or salt thereof according to claim 252, wherein E^5 is C_5 - C_6 -cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

5

257. A compound or salt thereof according to claim 256, wherein the compound corresponds in structure to a formula selected from the group consisting of:

258. A compound or salt thereof according to claim 252, wherein E⁵ is selected from the group consisting of cyclopentenyl, cyclopentadienyl, cyclohexenyl, and cyclohexadienyl, wherein:

any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

5

260. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 260-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
(260-1); and

10

15

20

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E³ is carbonylpiperidinyl, wherein the carbonylpiperidinyl optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted; and

 R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E³, E⁴, or E⁵.

10 261. A compound or salt thereof according to claim 260, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^3)(R^4)$ - C_1 - C_8 -alkylcarbonyl,

 $C_1-C_8-alkyl(thiocarbonyl),\ C_1-C_8-alkoxy(thiocarbonyl),\ carbocyclyl(thiocarbonyl),\ carbocyclyl-C_1-C_8-alkyl(thiocarbonyl),\ heterocyclyl-C_1-C_8-alkyl(thiocarbonyl),\ carbocyclyloxy(thiocarbonyl),\ carbocyclyl-C_1-C_8-alkoxy(thiocarbonyl),\ and\ N(R^3)(R^4)-C_1-C_8-alkyl(thiocarbonyl);\ and$

E² is selected from the group consisting of C₁-C₂₀-alkyl, cycloalkyl,

 C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and

halo-C₁-C₆-alkyl; and

5

20

25

30

E³ is carbonylpiperidinyl, wherein the carbonylpiperidinyl optionally is substituted with one or more halogen; and

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, halo- C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, and halo- C_2 - C_{20} -alkenyl; and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

5

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, and carbocyclyl- C_1 - C_8 -alkyl; and

10

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

15

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

20

 R^7 is selected from the group consisting of -H, C_1 - C_6 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

25

 R^8 and R^9 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

262. A compound or salt thereof according to claim 261, wherein the compound corresponds in structure to a formula selected from the group consisting of:

263. A compound or salt thereof according to claim 262, wherein the compound corresponds in structure to a formula selected from the group consisting of:

15

5

(263-4); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, 5 alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 10 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, 15 heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

20

25

264. A compound or salt thereof according to claim 263, wherein E^5 is phenyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C_1 -C₆-alkoxy, halo-C₁-C₆-alkoxy, C_1 -C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C_1 -C₆-alkoxy-C₁-C₆-alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

- 265. A compound or salt thereof according to claim 264, wherein E⁴ is a bond.
- 266. A compound or salt thereof according to claim 265, wherein the compound corresponds in structure to a formula selected from the group consisting of:

267. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 267-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{5}
(267-1); and

10

15

20

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² forms a link of at least 3 carbon atoms between E¹ and E⁵; and

E⁵ is selected from the group consisting of optionally-substituted heterocyclyl, optionally-substituted fused-ring carbocyclyl, and substituted single-ring carbocyclyl; and

R¹ and R² are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E⁵.

10

15

20

25

5

268. A compound or salt thereof according to claim 267, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^3)(R^4)$ - C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^3)(R^4)$ - C_1 - C_8 -alkyl(thiocarbonyl); and E^2 is selected from the group consisting of C_3 - C_{20} -alkyl, cycloalkyl,

C₁-C₁₀-alkyl-cycloalkyl, cycloalkyl-C₁-C₁₀-alkyl, and

 C_1 - C_{10} -alkyl-cycloalkyl- C_1 - C_{10} -alkyl, wherein the any member of such group optionally is substituted with one or more halogen; and

E⁵ is selected from the group consisting of single-ring carbocyclyl, fused-ring carbocyclyl, and heterocyclyl, wherein:

the single-ring carbocyclyl:

is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 ,

carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₈-alkyl, halogen-substituted carbocyclyl-C₁-C₈-alkyl, optionally is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C₅-C₆-cycloalkyl or halo-C₅-C₆-cycloalkyl, and

the heterocyclyl or fused-ring carbocyclyl:

5

10

15

20

25

30

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, and carbocyclyl- C_1 - C_6 -alkyl, optionally is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C_5 - C_6 -cycloalkyl; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

R⁸ and R⁹ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

269. A compound or salt thereof according to claim 268, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

5

10

HO N
$$E^1$$
 E^2 E^2 E^3 E^4 E^4 E^2 E^5 E^4 E^4 E^5

(269-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkyl, alkylsulfoxidoalkyl, alkylsulfoxidoalkyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocyclylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl,

heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonyl, aminosulfonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminoalkyl, aminoalkyl, aminoalkyl, wherein:

any member (except -H) of such group optionally is substituted.

270. A compound or salt thereof according to claim 269, wherein E⁵ is single-ring carbocyclyl, which:

10

5

is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl; and

15

optionally is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C_5 - C_6 -cycloalkyl or halo- C_5 - C_6 -cycloalkyl.

20

25

271. A compound or salt thereof according to claim 270, wherein E^5 is single-ring carbocyclyl substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

272. A compound or salt thereof according to claim 271, wherein E⁵ is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, and phenyl, wherein a member of such group:

5

is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

10

- 273. A compound or salt thereof according to claim 272, wherein E⁵ is phenyl substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted
- halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

20

274. A compound or salt thereof according to claim 273, wherein the compound corresponds in structure to a formula selected from the group consisting of:

275. A compound or salt thereof according to claim 273, wherein the compound corresponds in structure to a formula selected from the group consisting of:

276. A compound or salt thereof according to claim 269, wherein E⁵ is fused-ring carbocyclyl, which:

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl; and

optionally is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl

5

independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C_5 - C_6 -cycloalkyl or halo- C_5 - C_6 -cycloalkyl.

277. A compound or salt thereof according to claim 276, wherein E⁵ is fused-ring carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵,

carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

278. A compound or salt thereof according to claim 277, wherein E⁵ is selected from the group consisting of naphthalenyl, tetrahydronaphthalenyl, indenyl, isoindenyl, indanyl, bicyclodecanyl, anthracenyl, phenanthrene, benzonaphthenyl, fluoreneyl, decalinyl, and norpinanyl, wherein a member of such group:

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

- 279. A compound or salt thereof according to claim 278, wherein E⁵ is naphthalenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.
 - 280. A compound or salt thereof according to claim 279, wherein the compound corresponds in structure to a formula selected from the group consisting of:

281. A compound or salt thereof according to claim 269, wherein E⁵ is heterocyclyl, which:

optionally is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C_5 - C_6 -cycloalkyl or halo- C_5 - C_6 -cycloalkyl; and

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

282. A compound or salt thereof according to claim 281, wherein E⁵ is heterocyclyl, which:

is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C₅-C₆-cycloalkyl or halo-C₅-C₆-cycloalkyl; and

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

283. A compound or salt thereof according to claim 282, wherein E⁵ is selected from the group consisting of dihydrofuranyl, tetrahydrofuranyl, dihydrothiophenyl,

20

5

tetrahydrothiophenyl, pyrrolinyl, pyrrolidinyl, imidazolinyl, imidazolidinyl, pyrazolinyl, pyrazolidinyl, dithiolyl, oxathiolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, oxathiolanyl, pyranyl, dihydropyranyl, piperidinyl, piperazinyl, and morpholinyl, wherein a member of such group:

5

is substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C_5 - C_6 -cycloalkyl or halo- C_5 - C_6 -cycloalkyl; and

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

15

10

284. A compound or salt thereof according to claim 283, wherein the compound corresponds in structure to the following formula:

20

25

285. A compound or salt thereof according to claim 281, wherein E^5 is heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

286. A compound or salt thereof according to claim 285, wherein E⁵ is selected from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, oxazolidinyl, isoxazolidinyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolyl, oxathiazolyl, oxathiazolyl, oxathiazolyl, oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, dihydropyranyl, pyridinyl, piperidinyl, diazinyl, piperazinyl, triazinyl, oxazinyl, isoxazinyl, oxathiazinyl, oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl, and diazepinyl, wherein a member of such group:

5

10

15

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

287. A compound or salt thereof according to claim 286, wherein E⁵ is

20 pyridinyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted

25 carbocyclyl-C₁-C₆-alkyl.

288. A compound or salt thereof according to claim 287, wherein the compound corresponds in structure to a formula selected from the group consisting of:

289. A compound or salt thereof according to claim 286, wherein E⁵ is selected from the group consisting of imidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, and pyrazolidinyl, wherein a member of such group:

10

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

290. A compound or salt thereof according to claim 289, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 291. A compound or salt thereof according to claim 285, wherein E⁵ is

 5 fused-ring heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted

 10 carbocyclyl-C₁-C₆-alkyl.
- 292. A compound or salt thereof according to claim 291, wherein E⁵ is selected from the group consisting of indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl,

benzoxazinyl, benzisoxazinyl, tetrahydroisoquinolinyl, carbazolyl, xanthenyl, and acridinyl, wherein a member of such group:

5

10

15

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

293. A compound or salt thereof according to claim 292, wherein E⁵ is tetrahydroisoquinolinyl, which,

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

294. A compound or salt thereof according to claim 293, wherein the compound corresponds in structure to a formula selected from the group consisting of:

295. A compound or salt thereof according to claim 291, wherein the compound corresponds in structure to a formula selected from the group consisting of:

296. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 296-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{5}
(296-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

R¹ and R² are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² forms a link of at least 4 carbon atoms between E¹ and E⁵; and

E⁵ is selected from the group consisting of -OH and optionally-substituted carbocyclyl; and

neither R^1 nor R^2 forms a ring structure with E^5 .

10

15

297. A compound or salt thereof according to claim 296, wherein:

A¹ is selected from the group consisting of -H, C₁-Cଃ-alkylcarbonyl,

C₁-Cଃ-alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl-C₁-Cଃ-alkylcarbonyl,

heterocyclylcarbonyl, heterocyclyl-C₁-Cଃ-alkylcarbonyl, carbocyclyloxycarbonyl,

carbocyclyl-C₁-Cଃ-alkoxycarbonyl, N(R³)(R⁴)-C₁-Cଃ-alkylcarbonyl,

C₁-Cଃ-alkyl(thiocarbonyl), C₁-Cଃ-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),

carbocyclyl-C₁-Cଃ-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclyl-C₁-Cଃ-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclyl-C₁-Cଃ-alkoxy(thiocarbonyl), and N(R³)(R⁴)-C₁-Cଃ-alkyl(thiocarbonyl); and

5

10

15

20

25

 E^2 is selected from the group consisting of C_4 - C_{20} -alkyl, cycloalkyl, C_1 - C_{10} -alkyl-cycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkyl-cycloalkyl- C_1 - C_{10} -alkyl, wherein the any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

E⁵ is selected from the group consisting of -OH and carbocyclyl, wherein the carbocyclyl:

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and

optionally is substituted with two C_1 - C_8 -alkyl or halo- C_1 - C_8 -alkyl groups on the same atom that form a C_5 - C_6 -cycloalkyl or C_5 - C_6 -halocycloalkyl, and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

R³ and R⁴ are independently selected from the group consisting of -H, C₁-C₈-alkyl, C₁-C₈-alkoxycarbonyl, C₁-C₈-alkylcarbonyl, carbocyclyl-C₁-C₈-alkyl, and carbocyclyl-C₁-C₈-alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

5

10

15

20

 R^8 and R^9 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

298. A compound or salt thereof according to claim 297, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N HO S (298-1) and
$$E^1 - E^2 - E^3$$

$$A^4 \qquad (298-2); \text{ and }$$

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsulfoxidoalkyl, alkylthioalkenyl,

alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocyclylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonyl, aminocarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, amin

- 15 299. A compound or salt thereof according to claim 298, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.
 - 300. A compound or salt thereof according to claim 299, wherein the compound corresponds in structure to a formula selected from the group consisting of:

10

15

20

- 301. A compound or salt thereof according to claim 298, wherein E⁵ is -OH.
- 302. A compound or salt thereof according to claim 301, wherein the compound corresponds in structure to a formula selected from the group consisting of:

303. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 303-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 O
 E^{4}
 E^{5}
(303-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), wherein any member

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

(except -H) of such group optionally is substituted; and

 E^1 is selected from the group consisting of $-S(O)_2$ -, -S(O)-, $-N(R^1)$ -, -C(O)- $N(R^1)$ -, $-N(R^1)$ -C(O)-, and $-C(R^1)(R^2)$ -; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted; and

 R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E⁴, or E⁵

15 304. A compound or salt thereof according to claim 303, wherein:

 $A^1 \ is \ selected \ from \ the \ group \ consisting \ of \ -H, \ C_1-C_8-alkylcarbonyl,$ $C_1-C_8-alkoxycarbonyl, \ carbocyclyl-C_1-C_8-alkylcarbonyl, \ carbocyclyl-C_1-C_8-alkylcarbonyl,$ $heterocyclyl-C_1-C_8-alkoxycarbonyl, \ N(R^3)(R^4)-C_1-C_8-alkylcarbonyl,$ $carbocyclyl-C_1-C_8-alkoxycarbonyl, \ N(R^3)(R^4)-C_1-C_8-alkylcarbonyl,$

 $C_1-C_8-alkyl(thiocarbonyl),\ C_1-C_8-alkoxy(thiocarbonyl),\ carbocyclyl(thiocarbonyl),\ carbocyclyl-C_1-C_8-alkyl(thiocarbonyl),\ heterocyclyl-C_1-C_8-alkyl(thiocarbonyl),\ carbocyclyloxy(thiocarbonyl),\ carbocyclyl-C_1-C_8-alkoxy(thiocarbonyl),\ and\ N(R^3)(R^4)-C_1-C_8-alkyl(thiocarbonyl);\ and$

 E^2 is selected from the group consisting of C_1 - C_{20} -alkyl, cycloalkyl,

25 C₁-C₁₀-alkylcycloalkyl, cycloalkyl-C₁-C₁₀-alkyl, and C₁-C₁₀-alkylcycloalkyl-C₁-C₁₀-alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C₁-C₆-alkyl,

 C_1 - C_6 -halo-alkyl; and

5

10

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, halo- C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, and halo- C_2 - C_{20} -alkenyl; and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₈-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkyl, halogen-substituted C₁-C₈-alkoxy-C₁-C₈-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₈-alkyl, and halogen-substituted carbocyclyl-C₁-C₈-alkyl; and R¹ and R² are independently selected from the group consisting of -H, C₁-C₈-alkyl, and halo-C₁-C₈-alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

 R^5 and R^6 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_6 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^8 and R^9 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

25

5

10

15

305. A compound or salt thereof according to claim 304, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N H (305-1) and

HO N H
$$E^1 - E^2 - O - E^4 - E^5$$

(305-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, 10 alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 15 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, 20 heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

25

306. A compound or salt thereof according to claim 305, wherein E^5 is selected from the group consisting of C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, and C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, wherein:

the C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkoxy, or C₁-C₈-alkoxy-C₁-C₈-alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.

307. A compound or salt thereof according to claim 306, wherein the compound corresponds in structure to a formula selected from the group consisting of:

10

5

308. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 308-1:

15

- A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),
- heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² comprises at least 3 carbon atoms; and

5

10

15

20

25

30

E⁵ is selected from the group consisting of -H, alkyl, alkenyl, alkynyl, alkoxyalkyl, carbocyclyl, carbocyclylalkoxyalkyl, heterocyclyl, heterocyclylalkyl, and heterocyclylalkoxyalkyl, wherein:

the alkyl, alkenyl, alkynyl, or alkoxyalkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl, carbocyclylalkoxyalkyl, heterocyclyl, heterocyclylalkyl, or heterocyclylalkoxyalkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyalkyl, halogen-substituted alkoxyalkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclylalkyl, and halogen-substituted carbocyclylalkyl; and

R¹ and R² are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

R³ is selected from the group consisting of -H, alkyl, -O-R⁴, -N(R⁴)(R⁵), carbocyclylalkyl, and heterocyclylalkyl, wherein the alkyl, carbocyclylalkyl, or heterocyclylalkyl optionally is substituted with one or more halogen; and

R⁴ and R⁵ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

309. A compound or salt thereof according to claim 308, wherein: A^{1} is selected from the group consisting of -H, C_{1} - C_{8} -alkylcarbonyl, C_{1} - C_{8} -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_{1} - C_{8} -alkylcarbonyl, heterocyclyl- C_{1} - C_{8} -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_{1} - C_{8} -alkoxycarbonyl, $N(R^{6})(R^{7})$ - C_{1} - C_{8} -alkylcarbonyl,

 $\label{eq:c1-C8-alkyl} C_1-C_8-alkyl(thiocarbonyl), C_1-C_8-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl-C_1-C_8-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl-C_1-C_8-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl-C_1-C_8-alkoxy(thiocarbonyl), and N(R^6)(R^7)-C_1-C_8-alkyl(thiocarbonyl); and N(R^6)(R^7)-C_8-alkyl(thiocarbonyl); and N(R^6)(R^7)-C_8-alkyl(thiocar$

5

10

15

20

25

30

 E^2 is selected from the group consisting of C_3 - C_{20} -alkyl, cycloalkyl, C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

 E^5 is selected from the group consisting of -H, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, carbocyclyl- C_1 - C_{10} -alkoxy- C_1 - C_{10} -alkyl, heterocyclyl, heterocyclyl- C_1 - C_{10} -alkyl, and heterocyclyl- C_1 - C_1 0-alkoxy- C_1 - C_1 0-alkyl, wherein:

the C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl, or

 C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl, carbocyclyl- C_1 - C_{10} -alkoxy- C_1 - C_{10} -alkyl, heterocyclyl, heterocyclyl- C_1 - C_{10} -alkyl, or heterocyclyl- C_1 - C_{10} -alkoxy- C_1 - C_{10} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl; and

R¹ and R² are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^3 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^4 , -N(R^4)(R^5), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl,

carbocyclyl-C₁-C₈-alkyl, or heterocyclyl-C₁-C₈-alkyl optionally is substituted with one or more halogen; and

 R^4 and R^5 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^6 and R^7 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl.

10

5

310. A compound or salt thereof according to claim 309, wherein:

the compound corresponds in structure to a formula selected from the group consisting of:

15

20

(310-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl,

carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkyl,

- heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminoalkyl, aminoalkyl, aminoalkyl, wherein:
 - any member (except -H) of such group optionally is substituted.

10

- 311. A compound or salt thereof according to claim 310, wherein E^5 is selected from the group consisting of -H, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, and C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, wherein:
 - the C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, or C₁-C₈-alkoxy-C₁-C₈-alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.
- 312. A compound or salt thereof according to claim 311, wherein the compound corresponds in structure to a formula selected from the group consisting of:

313. A compound or salt thereof according to claim 310, wherein E^5 is selected from the group consisting of carbocyclyl, carbocyclyl- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, heterocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, wherein:

- the carbocyclyl, carbocyclyl-C₁-C₈-alkoxy-C₁-C₈-alkyl, heterocyclyl, heterocyclyl-C₁-C₈-alkyl, or heterocyclyl-C₁-C₈-alkoxy-C₁-C₈-alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.
- 314. A compound or salt thereof according to claim 313, wherein E⁵ is carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

- 315. A compound or salt thereof according to claim 314, wherein E^2 is C_3 - C_5 -alkyl optionally substituted with one or more halogen.
- 316. A compound or salt thereof according to claim 315, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.
 - 317. A compound or salt thereof according to claim 316, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 318. A compound or salt thereof according to claim 315, wherein E⁵ is naphthalenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, 5 C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.
 - 319. A compound or salt thereof according to claim 318, wherein the compound corresponds in structure to the following formula:

10

15

20

320. A compound or salt thereof according to claim 310, wherein E⁵ is selected from the group consisting of heterocyclyl and heterocyclyl-C₁-C₈-alkyl, wherein:

the heterocyclyl and heterocyclyl- C_1 - C_8 -alkyl optionally are substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.

321. A compound or salt thereof according to claim 320, wherein the compound corresponds in structure to a formula selected from the group consisting of:

5 322. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 322-1:

$$A^{1}$$
 A^{2}
 A^{3}
 A^{3

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl,

carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl,

heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl,

aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),

carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member

(except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of:

5

10

15

20

25

30

optionally-substituted alkenyl, and optionally-substituted alkynyl, and optionally-substituted alkoxy, and optionally-substituted alkoxyalkyl, and

single-ring carbocyclyl substituted with one or more substituents independently selected from the group consisting of -OH, -NO₂, -CN, -N(\mathbb{R}^5)(\mathbb{R}^6), -C(O)(\mathbb{R}^7), -S- \mathbb{R}^5 , -S(O)₂- \mathbb{R}^5 , carbocyclyl, halocarbocyclyl, carbocyclylalkyl, halogen-substituted carbocyclylalkyl, heterocyclyl, haloheterocyclyl, heterocyclylalkyl, and halogen-substituted heterocyclylalkyl, and

single-ring carbocyclyl having multiple substitutions, and optionally-substituted fused-ring carbocyclyl, and optionally-substituted heterocyclyl; and

R¹ and R² are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^3 is selected from the group consisting of -H, alkyl, -O- R^4 , -N(R^4)(R^5), carbocyclylalkyl, and heterocyclylalkyl, wherein the alkyl, carbocyclylalkyl, or heterocyclylalkyl optionally is substituted with one or more halogen; and

R⁴ and R⁵ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and an atom in E² optionally is bound to an atom in E⁵ to form a ring.

323. A compound or salt thereof according to claim 322, wherein: A¹ is selected from the group consisting of -H, C₁-C₈-alkylcarbonyl, C₁-C₈-alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl-C₁-C₈-alkylcarbonyl, heterocyclylcarbonyl, heterocyclyl-C₁-C₈-alkylcarbonyl, carbocyclyloxycarbonyl, 5 carbocyclyl-C₁-C₈-alkoxycarbonyl, N(R⁶)(R⁷)-C₁-C₈-alkylcarbonyl, C₁-C₈-alkyl(thiocarbonyl), C₁-C₈-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl-C₁-C₈-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl-C₁-C₈-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^6)(R^7)$ - C_1 - C_8 -alkyl(thiocarbonyl); and 10 E² is selected from the group consisting of C₁-C₂₀-alkyl, cycloalkyl, C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents selected from the group consisting of halogen, C₁-C₆-alkyl, halo-C₁-C₆-alkyl; and E⁴ is selected from the group consisting of a bond, C₁-C₂₀-alkyl, halo-C₁-C₂₀-alkyl, 15 C2-C20-alkenyl, and halo-C2-C20-alkenyl; and E⁵ is selected from the group consisting of C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl, C₁-C₂₀-alkoxy, C₁-C₂₀-alkoxy-C₁-C₂₀-alkyl, heterocyclyl, single-ring carbocyclyl, and fused-ring carbocyclyl, wherein: 20 the C2-C20-alkenyl, C2-C20-alkynyl, C1-C20-alkoxy, or C₁-C₂₀-alkoxy-C₁-C₂₀-alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO2, and -CN, and the heterocyclyl or fused-ring carbocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, 25 -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, $-N(R^5)(R^6)$, $-C(O)(R^7)$, $-S-R^5$, $-S(O)_2-R^5$, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, halogen-substituted carbocyclyl-C₁-C₈-alkyl,

heterocyclyl-C₁-C₈-alkyl, and

heterocyclyl, haloheterocyclyl, heterocyclyl-C₁-C₈-alkyl, and halogen-substituted

the single-ring carbocyclyl is either:

5

10

15

20

25

substituted with one or more substituents independently selected from the group consisting of -OH, -NO₂, -CN, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₈-alkyl, halogen-substituted carbocyclyl-C₁-C₈-alkyl, heterocyclyl, haloheterocyclyl, heterocyclyl-C₁-C₈-alkyl, and halogen-substituted heterocyclyl-C₁-C₈-alkyl, or

substituted with 2 or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^3 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^4 , -N(R^4)(R^5), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^4 and R^5 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

R⁶ and R⁷ are independently selected from the group consisting of -H, C₁-C₈-alkyl, C₁-C₈-alkoxycarbonyl, C₁-C₈-alkylcarbonyl, carbocyclyl-C₁-C₈-alkyl, and carbocyclyl-C₁-C₈-alkoxycarbonyl; and

an atom in E² optionally is bound to an atom in E⁵ to form a ring.

5

324. A compound or salt thereof according to claim 323, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

(324-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, 15 alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 20 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, 25 heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminoalkyl, aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

5

- 325. A compound or salt thereof according to claim 324, wherein an atom of E^2 is bound to an atom of E^5 to form a ring.
- 326. A compound or salt thereof according to claim 325, wherein the compound corresponds in structure to the following formula:

327. A compound or salt thereof according to claim 324, wherein:

15

 E^5 is phenyl substituted with one or more substituents independently selected from the group consisting of -OH, -NO₂, -CN, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, halogen-substituted carbocyclyl-C₁-C₆-alkyl, heterocyclyl, heterocyclyl, heterocyclyl, haloheterocyclyl, heterocyclyl-C₁-C₆-alkyl, and halogen-substituted heterocyclyl-C₁-C₆-alkyl; and

20

E² is not bound to an atom of E⁵ to form a ring.

328. A compound or salt thereof according to claim 327, wherein E⁴ is a bond.

329. A compound or salt thereof according to claim 328, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 330. A compound or salt thereof according to claim 324, wherein:
- E⁵ is phenyl substituted with 2 or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, halogen-substituted carbocyclyl-C₁-C₆-alkyl, heterocyclyl, haloheterocyclyl, heterocyclyl-C₁-C₆-alkyl, and halogen-substituted heterocyclyl-C₁-C₆-alkyl; and

E² is not bound to an atom of E⁵ to form a ring.

20

- 331. A compound or salt thereof according to claim 330, wherein E⁴ is methyl.
- 332. A compound or salt thereof according to claim 331, wherein the compound corresponds in structure to a formula selected from the group consisting of:

HOHEN
$$CH_{j}$$
 and CGH_{j} $CGH_{$

333. A compound or salt thereof according to claim 324, wherein E⁵ is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl,

 C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, halogen-substituted carbocyclyl- C_1 - C_6 -alkyl, heterocyclyl, haloheterocyclyl, heterocyclyl- C_1 - C_6 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_6 -alkyl.

334. A compound or salt thereof according to claim 333, wherein the compound corresponds in structure to a formula selected from the group consisting of:

335. A compound or salt thereof, wherein:

10

15

20

25

the compound corresponds in structure to Formula 335-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
(335-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of $-S(O)_2$ -, -S(O)-, $-N(R^1)$ -, -C(O)- $N(R^1)$ -, $-N(R^1)$ -C(O)-, and $-C(R^1)(R^2)$ -; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted; and

R¹ and R² are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E⁴, or E⁵

336. A compound or salt thereof according to claim 335, wherein:

A¹ is selected from the group consisting of -H, C₁-Cଃ-alkylcarbonyl,

C₁-Cଃ-alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl-C₁-Cଃ-alkylcarbonyl,

heterocyclylcarbonyl, heterocyclyl-C₁-Cଃ-alkylcarbonyl, carbocyclyloxycarbonyl,

carbocyclyl-C₁-Cଃ-alkoxycarbonyl, N(R³)(R⁴)-C₁-Cଃ-alkylcarbonyl,

C₁-Cଃ-alkyl(thiocarbonyl), C₁-Cଃ-alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),

carbocyclyl-C₁-Cଃ-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclyl-C₁-Cଃ-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl),

carbocyclyl-C₁-Cଃ-alkoxy(thiocarbonyl), and N(R³)(R⁴)-C₁-Cଃ-alkyl(thiocarbonyl); and

E² is selected from the group consisting of C₁-C₂₀-alkyl, cycloalkyl,

5

10

15

20

25

 C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents selected from the group consisting of halogen, C_1 - C_6 -alkyl, and halo- C_1 - C_6 -alkyl; and

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, halo- C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, and halo- C_2 - C_{20} -alkenyl; and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₈-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₈-alkyl, and halogen-substituted carbocyclyl-C₁-C₈-alkyl; and R¹ and R² are independently selected from the group consisting of -H, C₁-C₈-alkyl, and halo-C₁-C₈-alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₆-alkyl, carbocyclyl, carbocyclyl-C₁-C₆-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_6 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^8 and R^9 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

15

10

5

337. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 337-1:

$$A^{1}$$
 A^{2}
 A^{3}
 O
 E^{2}
 O
 E^{4}
 E^{5}
(337-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of alkyl and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of -H, alkyl, alkenyl, alkynyl, alkoxy, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted.

338. A compound or salt thereof according to claim 337, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^1)(R^2)$ - C_1 - C_8 -alkylcarbonyl,

- 15 C_1 - C_8 -alkyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^1)(R^2)$ - C_1 - C_8 -alkyl(thiocarbonyl); and E^2 is selected from the group consisting of C_1 - C_2 0-alkyl, cycloalkyl,
- C₁-C₁₀-alkylcycloalkyl, cycloalkyl-C₁-C₁₀-alkyl, and C₁-C₁₀-alkylcycloalkyl-C₁-C₁₀-alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C₁-C₆-alkyl, and halo-C₁-C₆-alkyl; and

 E^4 is selected from the group consisting of $C_1\text{-}C_{20}\text{-}alkyl$, halo- $C_1\text{-}C_{20}\text{-}alkyl$,

25 C₂-C₂₀-alkenyl, and halo-C₂-C₂₀-alkenyl; and

5

10

30

 E^5 is selected from the group consisting of -H, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, carbocyclyl, and heterocyclyl, wherein:

the C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl, or C₁-C₂₀-alkoxy optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₈-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₈-alkyl, and halogen-substituted carbocyclyl-C₁-C₈-alkyl; and R¹ and R² are independently selected from the group consisting of -H, C₁-C₈-alkyl, C₁-C₈-alkoxycarbonyl, C₁-C₈-alkylcarbonyl, carbocyclyl-C₁-C₈-alkyl, and carbocyclyl-C₁-C₈-alkoxycarbonyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^5 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^6 , -N(R^6)(R^7), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^6 and R^7 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

20

5

10

15

339. A compound or salt thereof according to claim 338, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

(339-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, 5 alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 10 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, 15 heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

20

340. A compound or salt thereof according to claim 339, wherein E^5 is selected from the group consisting of -H, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, and C_1 - C_8 -alkoxy, wherein:

25

the C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, or C_1 - C_8 -alkoxy optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN.

341. A compound or salt thereof according to claim 340, wherein the compound corresponds in structure to the following formula:

5

10

- 342. A compound or salt thereof according to claim 339, wherein E^5 is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl.
- 343. A compound or salt thereof according to claim 342, wherein the compound corresponds in structure to a formula selected from the group consisting of:

15

344. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 344-1:

$$A^{1}$$
 A^{2}
 A^{3}
 A^{3

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl,

aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² contains less than 5 carbon atoms; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted.

15

20

25

5

10

345. A compound or salt thereof according to claim 344, wherein:

 A^{1} is selected from the group consisting of -H, C_{1} - C_{8} -alkylcarbonyl, C_{1} - C_{8} -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_{1} - C_{8} -alkylcarbonyl, heterocyclylcarbonyl, heterocyclyl- C_{1} - C_{8} -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_{1} - C_{8} -alkoxycarbonyl, $N(R^{1})(R^{2})$ - C_{1} - C_{8} -alkylcarbonyl, carbocyclyl(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_{1} - C_{8} -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl- C_{1} - C_{8} -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_{1} - C_{8} -alkyl(thiocarbonyl), and $N(R^{1})(R^{2})$ - C_{1} - C_{8} -alkyl(thiocarbonyl); and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_2\text{-}C_{20}\text{-}alkynyl$, or

 C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, C_1 - C_8 -alkylcarbocyclyloxy, and halogen-substituted C_1 - C_8 -alkylcarbocyclyloxy; and

5

10

15

20

25

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^5 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^6 , -N(R^6)(R^7), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^6 and R^7 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

346. A compound or salt thereof according to claim 345, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N
$$E^2$$
 $S(O)_2$ E^5

(346-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, 5 alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsulfoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, 10 carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, 15 heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

20

25

347. A compound or salt thereof according to claim 346, wherein E^5 is C_5 - C_6 -cycloalkyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted

carbocyclyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbocyclyloxy, and halogen-substituted C_1 - C_6 -alkylcarbocyclyloxy.

348. A compound or salt thereof according to claim 347, wherein the compound corresponds in structure to a formula selected from the group consisting of:

- 349. A compound or salt thereof according to claim 346, wherein E⁵ is phenyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, 10 halo-C₁-C₆-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C₁-C₆-alkoxy-C₁-C₆-alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, halogen-substituted carbocyclyl-C₁-C₆-alkyl, C₁-C₆-alkylcarbocyclyloxy, and halogen-substituted C₁-C₆-alkylcarbocyclyloxy.
- 15 350. A compound or salt thereof according to claim 349, wherein the compound corresponds in structure to a formula selected from the group consisting of:

A compound or salt thereof according to claim 346, wherein E⁵ is selected 351. from the group consisting of furanyl, tetrahydropyranyl, dihydrofuranyl, tetrahydrofuranyl, thiophenyl, dihydrothiophenyl, tetrahydrothiophenyl, pyrrolyl, 5 isopyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, isoimidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, triazolyl, tetrazolyl, dithiolyl, oxathiolyl, oxazolyl, isoxazolyl, oxazolidinyl, isoxazolidinyl, thiazolyl, isothiazolyl, thiazolinyl, isothiazolinyl, thiazolidinyl, isothiazolidinyl, thiodiazolyl, oxathiazolyl, oxadiazolyl, oxatriazolyl, dioxazolyl, oxathiazolyl, oxathiolyl, oxathiolanyl, pyranyl, 10 dihydropyranyl, pyridinyl, piperidinyl, diazinyl, piperazinyl, triazinyl, oxazinyl, isoxazinyl, oxathiazinyl, oxadiazinyl, morpholinyl, azepinyl, oxepinyl, thiepinyl, diazepinyl, indolizinyl, pyrindinyl, pyranopyrrolyl, 4H-quinolizinyl, purinyl, naphthyridinyl, pyridopyridinyl, pteridinyl, indolyl, isoindolyl, indoleninyl, isoindazolyl, benzazinyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzodiazinyl, benzopyranyl, benzothiopyranyl, benzoxazolyl, indoxazinyl, anthranilyl, benzodioxolyl, benzodioxanyl, 15 benzoxadiazolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, benzothiazolyl, benzothiadiazolyl, benzimidazolyl, benzotriazolyl, benzoxazinyl, benzisoxazinyl, tetrahydroisoquinolinyl, carbazolyl, xanthenyl, and acridinyl, wherein a member of such group:

20

25

optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, halogen-substituted carbocyclyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbocyclyloxy, and halogen-substituted C_1 - C_6 -alkylcarbocyclyloxy.

- 352. A compound or salt thereof according to claim 351, wherein E⁵ is selected from the group consisting of piperidinyl, morpholinyl, and tetrahydroisoquinolinyl, wherein a member of such group:
- optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, halogen-substituted carbocyclyl- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbocyclyloxy, and halogen-substituted C_1 - C_6 -alkylcarbocyclyloxy.
 - 353. A compound or salt thereof according to claim 352, wherein the compound corresponds in structure to a formula selected from the group consisting of:

5

354. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 354-1:

5

10

15

20

25

$$A^{1}$$
 A^{2}
 A^{3}
 A^{3

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, saturated carbocyclyl, partially saturated carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted.

355. A compound or salt thereof according to claim 354, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^1)(R^2)$ - C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^1)(R^2)$ - C_1 - C_8 -alkyl(thiocarbonyl); and E^2 is selected from the group consisting of C_1 - C_{20} -alkyl, cycloalkyl,

 C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl; and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, saturated carbocyclyl, partially saturated carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

15

10

5

the saturated carbocyclyl, partially saturated carbocyclyl, or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, C_1 - C_8 -alkylcarbocyclyloxy, and halogen-substituted C_1 - C_8 -alkylcarbocyclyloxy; and

20

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

25

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

30

 R^5 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^6 , -N(R^6)(R^7), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl,

carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

 R^6 and R^7 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

356. A compound or salt thereof according to claim 355, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

5

10

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl,
alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl,
alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl,
alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl,
alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl,
carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl,
carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl,
carbocyclylsulfoxidoalkyl, carbocyclylsulfonylalkyl, carbocyclylthioalkenyl,
heterocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclylthioalkyl,
heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfonyl,
heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl,
heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl,

heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

5

10

- 357. A compound or salt thereof according to claim 356, wherein E^5 is heterocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C_1 -C₆-alkoxy, halo-C₁-C₆-alkoxy, C_1 -C₆-alkoxy-C₁-C₆-alkyl, halogen-substituted C_1 -C₆-alkoxy-C₁-C₆-alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, halogen-substituted carbocyclyl-C₁-C₆-alkyl, C_1 -C₆-alkylcarbocyclyloxy, and halogen-substituted C_1 -C₆-alkylcarbocyclyloxy.
- 358. A compound or salt thereof according to claim 357, wherein the compound corresponds in structure to a formula selected from the group consisting of:

359. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 359-1:

$$A^{1}$$
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 N
 $S(O)_{2}$
 E^{4}
 E^{5}
(359-1); and

5

10

15

20

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, carbocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkoxyalkyl, carbocyclyl, and heterocyclyl, wherein any member of such group optionally is substituted; and

R¹ and R² are independently selected from the group consisting of -H and alkyl,

wherein the alkyl optionally is substituted; and

neither R¹ nor R² forms a ring structure with E², E⁴, or E⁵.

360. A compound or salt thereof according to claim 359, wherein:

A¹ is selected from the group consisting of -H, C₁-C₈-alkylcarbonyl,

- 10 C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^3)(R^4)$ - C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),
- heterocyclyl-C₁-C₈-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl-C₁-C₈-alkoxy(thiocarbonyl), and N(R³)(R⁴)-C₁-C₈-alkyl(thiocarbonyl); and E² is selected from the group consisting of C₁-C₂₀-alkyl, cycloalkyl, C₁-C₁₀-alkylcycloalkyl, cycloalkyl-C₁-C₁₀-alkyl, and C₁-C₁₀-alkylcycloalkyl-C₁-C₁₀-alkyl, wherein any member of such group optionally is substituted with one or more halogen;

20 and

25

30

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, halo- C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, and halo- C_2 - C_{20} -alkenyl; and

 E^5 is selected from the group consisting of C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl, carbocyclyl, and heterocyclyl, wherein:

the C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl, C_1 - C_{20} -alkoxy, or C_1 - C_{20} -alkoxy- C_1 - C_{20} -alkyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, and -CN, and

the carbocyclyl or heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH,

-NO₂, -CN, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_6 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

R⁸ and R⁹ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

361. A compound or salt thereof, wherein:

5

10

15

20

25

the compound corresponds in structure to Formula 361-1:

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylalkylcarbonyl, carbocyclylalkylcarbonyl, carbocyclylalkoxycarbonyl,

aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

E² is selected from the group consisting of a bond, alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

E⁵ is selected from the group consisting of substituted carbocyclyl and optionally-substituted heterocyclyl, wherein:

the carbocyclyl is substituted with:

2 or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyalkyl, halogen-substituted alkoxyalkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclylalkyl, and halogen-substituted carbocyclylalkyl, or

a substituent selected from the group consisting of halogen, -OH, -NO₂, -CN, -C(O)-O-R³, -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclylalkyl, and halogen-substituted carbocyclylalkyl, and

the heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, alkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyalkyl, halogen-substituted alkoxyalkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclylalkyl, and halogen-substituted carbocyclylalkyl; and

20

15

5

10

25

R³ and R⁴ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^5 is selected from the group consisting of -H, alkyl, -O- R^6 , -N(R^6)(R^7), carbocyclylalkyl, and heterocyclylalkyl, wherein the alkyl, carbocyclylalkyl, or heterocyclylalkyl optionally is substituted with one or more halogen; and

R⁶ and R⁷ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

10

15

20

25

5

362. A compound or salt thereof according to claim 361, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclylcarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^8)(R^9)$ - C_1 - C_8 -alkylcarbonyl, carbocyclyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), and $N(R^8)(R^9)$ - C_1 - C_8 -alkyl(thiocarbonyl); and

 E^2 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, cycloalkyl, C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more halogen; and

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, halo- C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, and halo- C_2 - C_{20} -alkenyl; and

E⁵ is selected from the group consisting of substituted carbocyclyl and optionally-substituted heterocyclyl, wherein:

the carbocyclyl is substituted with:

2 or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C₁-C₈-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy,

 $C_1\text{-}C_8\text{-alkoxy-}C_1\text{-}C_8\text{-alkyl}, \text{ halogen-substituted} \\ C_1\text{-}C_8\text{-alkoxy-}C_1\text{-}C_8\text{-alkyl}, \text{-}N(R^3)(R^4), \text{-}C(O)(R^5), \text{-}S\text{-}R^3, \text{-}S(O)_2\text{-}R^3, \\ \text{carbocyclyl}, \text{ halocarbocyclyl}, \text{ carbocyclyl-}C_1\text{-}C_8\text{-alkyl}, \text{ and} \\ \text{halogen-substituted carbocyclyl-}C_1\text{-}C_8\text{-alkyl}, \text{ or}$

a substituent selected from the group consisting of halogen, -OH, -NO₂, -CN, -C(O)-O-R³, -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and

the heterocyclyl optionally is substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_6 -alkyl, -N(R^3)(R^4), -C(O)(R^5), -S- R^3 , -S(O)₂- R^3 , carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

5

10

15

20

25

30

 R^5 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^6 , -N(R^6)(R^7), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

R⁶ and R⁷ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^8 and R^9 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl.

363. A compound or salt thereof according to claim 362, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N H S(0)₂
$$E^4 - E^5$$
(363-1) and

HO N S(0)₂ $E^4 - E^5$
 $E^2 - E^5$
N S(0)₂ $E^4 - E^5$
(363-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, 10 alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, 15 carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, 20 heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl,

any member (except -H) of such group optionally is substituted.

aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl,

25

364. A compound or salt thereof according to claim 363, wherein E⁵ is phenyl substituted with:

2 or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, halogen-substituted C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -N(R³)(R⁴), -C(O)(R⁵), -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl- C_1 - C_6 -alkyl, and halogen-substituted carbocyclyl- C_1 - C_6 -alkyl, or

a substituent selected from the group consisting of halogen, -OH, -NO₂, -CN, -C(O)-O-R³, -S-R³, -S(O)₂-R³, carbocyclyl, halocarbocyclyl, carbocyclyl-C₁-C₆-alkyl, and halogen-substituted carbocyclyl-C₁-C₆-alkyl.

- 365. A compound or salt thereof according to claim 364, wherein E^2 is a bond.
- 15 366. A compound or salt thereof according to claim 365, wherein E^4 is a bond.
 - 367. A compound or salt thereof according to claim 366, wherein the compound corresponds in structure to a formula selected from the group consisting of.

368. A compound or salt thereof, wherein: the compound corresponds in structure to Formula 368-1:

A¹

$$A^2$$
 A^3
 E^1
 E^2
 E^5
(368-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -S-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E⁵ is substituted heterocyclyl; and

10

15

20

R¹ and R² are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R^1 nor R^2 forms a ring structure with E^5 .

25 369. A compound or salt thereof according to claim 368, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl,

 $\label{eq:carbocyclyl-C1-C8-alkoxycarbonyl} carbocyclyl-C_1-C_8-alkoxycarbonyl, N(R^3)(R^4)-C_1-C_8-alkylcarbonyl, C_1-C_8-alkyl(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl-C_1-C_8-alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl), heterocyclyl-C_1-C_8-alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), \\$

carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and $N(R^3)(R^4)$ - C_1 - C_8 -alkyl(thiocarbonyl); and E^2 is selected from the group consisting of C_1 - C_{20} -alkyl, cycloalkyl,

C₁-C₁₀-alkyl-cycloalkyl, cycloalkyl-C₁-C₁₀-alkyl, and

 C_1 - C_{10} -alkyl-cycloalkyl- C_1 - C_{10} -alkyl, wherein the any member of such group optionally is substituted with one or more halogen; and

E⁵ is heterocyclyl that is:

5

10

15

20

25

30

substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halo- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^5)(R^6), -C(O)(R^7), -S- R^5 , -S(O)₂- R^5 , carbocyclyl, halocarbocyclyl, and carbocyclyl- C_1 - C_6 -alkyl, and/or

substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C_5 - C_6 -cycloalkyl or halo- C_5 - C_6 -cycloalkyl; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

R⁸ and R⁹ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

370. A compound or salt thereof according to claim 369, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N
$$E^1$$
 E^2 E^2 E^3 E^4 E^3 E^4 E^3 E^4 E^4 E^3 E^4 E^4 E^4 E^5 E^4 E^5 E^5

10

15

20

5

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkyl, alkylsulfoxidoalkyl, alkylsulfoxidoalkyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocyclylthioalkyl, carbocyclylsulfoxidoalkyl, carbocyclylsulfonylalkyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclylalkoxyalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl, heterocyclylsulfonyl,

heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminoalkyl, aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

5

371. A compound or salt thereof according to claim 370, wherein the compound corresponds in structure to a formula selected from the group consisting of.

10 372. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 372-1:

A¹

$$A^2$$
 A^3
 E^1
 E^2
 E^5
(372-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E² comprises at least two carbon atoms; and

E⁵ is optionally-substituted heterocyclyl; and

 R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

neither R^1 nor R^2 forms a ring structure with E^5 .

5

10

25

30

373. A compound or salt thereof according to claim 372, wherein:

 A^1 is selected from the group consisting of -H, C_1 - C_8 -alkylcarbonyl,

 $C_1\text{-}C_8\text{-}alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl-}C_1\text{-}C_8\text{-}alkylcarbonyl,\\$

heterocyclylcarbonyl, heterocyclyl- C_1 - C_8 -alkylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^3)(R^4)$ - C_1 - C_8 -alkylcarbonyl,

 C_1 - C_8 -alkyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl),

 $car bocyclyl-C_1-C_8-alkyl (thio carbonyl),\ heterocyclyl (thio carbonyl),$

 $heterocyclyl-C_1-C_8-alkyl (thiocarbonyl),\ carbocyclyloxy (thiocarbonyl),$

carbocyclyl-C₁-C₈-alkoxy(thiocarbonyl), and N(R³)(R⁴)-C₁-C₈-alkyl(thiocarbonyl); and

E² is selected from the group consisting of C₂-C₂₀-alkyl, cycloalkyl,

 C_1 - C_{10} -alkyl-cycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and

 C_1 - C_{10} -alkyl-cycloalkyl- C_1 - C_{10} -alkyl, wherein the any member of such group optionally is substituted with one or more halogen; and

E⁵ is heterocyclyl that is:

optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, keto, C₁-C₈-alkyl, halo-C₁-C₈-alkyl, C₁-C₈-alkoxy, halo-C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkyl, halogen-substituted C₁-C₈-alkoxy-C₁-C₈-alkyl, -N(R⁵)(R⁶), -C(O)(R⁷), -S-R⁵, -S(O)₂-R⁵, carbocyclyl, halocarbocyclyl, and carbocyclyl-C₁-C₆-alkyl, and/or optionally substituted on the same atom with two substituents independently selected from the group consisting of alkyl and haloalkyl, the two substituents together forming C₅-C₆-cycloalkyl or halo-C₅-C₆-cycloalkyl; and R¹ and R² are independently selected from the group consisting of -H, C₁-C₈-alkyl, and halo-C₁-C₈-alkyl; and

 R^3 and R^4 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R⁵ and R⁶ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^8 , -N(R^8)(R^9), carbocyclyl- C_1 - C_8 -alkyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein the C_1 - C_8 -alkyl, carbocyclyl- C_1 - C_8 -alkyl, or heterocyclyl- C_1 - C_8 -alkyl optionally is substituted with one or more halogen; and

R⁸ and R⁹ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

25

5

10

15

374. A compound or salt thereof according to claim 373, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N
$$E^1 - E^2 - E$$

(374-1) and

HO N $E^1 - E^2 - E$

5

(374-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, 10 alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, 15 carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, 20 heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

375. A compound or salt thereof according to claim 374, wherein the compound corresponds in structure to a formula selected from the group consisting of.

5

20

376. A compound or salt thereof, wherein:

the compound corresponds in structure to Formula 376-1:

$$A^{1}$$
 N
 A^{2}
 A^{3}
 E^{1}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
(376-1); and

A¹ is selected from the group consisting of -H, alkylcarbonyl, alkoxycarbonyl, carbocyclylcarbonyl, carbocyclylalkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, carbocyclyloxycarbonyl, carbocyclylalkoxycarbonyl, aminoalkylcarbonyl, alkyl(thiocarbonyl), alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclylalkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),

heterocyclylalkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclylalkoxy(thiocarbonyl), and aminoalkyl(thiocarbonyl), wherein any member (except -H) of such group optionally is substituted; and

A² and A³, together with the carbon atom to which they are both attached, form an optionally-substituted heterocyclyl containing from 5 to 8 ring members; and

 E^1 is selected from the group consisting of -O-, -S(O)₂-, -S(O)-, -S-, -N(R¹)-, -C(O)-N(R¹)-, -N(R¹)-C(O)-, and -C(R¹)(R²)-; and

E² is selected from the group consisting of alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, and alkylcycloalkylalkyl, wherein any member of such group optionally is substituted; and

E³ is selected from the group consisting of -C(O)-, -O-(CO)-, -C(O)-O-, -C(NR³)-, -N(R⁴)-, -N(R⁴)-C(NR³)-, -C(NR³)-N(R⁴)-, -C(O)-N(R⁴)-, -N(R⁴)-C(O)-, -S-, -S(O)-, -N(R⁴)-S(O)₂-, -S(O)₂-N(R⁴)-, -C(O)-N(R⁴)-N(R⁵)-C(O)-, -C(R⁴)(R⁶)-C(O)-, and -C(R⁷)(R⁸)-; and

E⁴ is selected from the group consisting of a bond, alkyl, and alkenyl, wherein the alkyl or alkenyl optionally is substituted; and

5

10

15

20

25

E⁵ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein the carbocyclyl and heterocyclyl are:

substituted with a substituent selected from the group consisting of optionally-substituted carbocyclyl, optionally-substituted carbocyclylalkyl, optionally-substituted heterocyclyl, and optionally-substituted heterocyclylalkyl, and

optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, alkyl, alkoxy, alkoxyalkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , carbocyclyl, carbocyclylalkyl, haloalkyl, haloalkoxy, halogen-substituted alkoxyalkyl, halocarbocyclyl, halogen-substituted carbocyclylalkyl, hydroxycarbocyclyl, and heteroaryl; and R^1 and R^2 are independently selected from the group consisting of -H and alkyl, wherein the alkyl optionally is substituted; and

R³ is selected from the group consisting of -H and -OH; and

R⁴ and R⁵ are independently selected from the group consisting of -H, alkyl, carbocyclyl, carbocyclylalkyl, heterocyclyl, and heterocyclylalkyl, wherein any member (except -H) of such group optionally is substituted; and

R⁶ is selected from the group consisting of -CN and -OH; and

R⁷ is selected from the group consisting of -H, halogen, -OH, alkyl, alkoxy, and alkoxyalkyl, wherein the alkyl, alkoxy, or alkoxyalkyl optionally is substituted; and

R⁸ is selected from the group consisting of -OH and alkoxy, wherein the alkoxy optionally is substituted; and

R¹¹ and R¹² are independently selected from the group consisting of -H,

30 C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and

heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^{13} is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^{14} , -N(R^{14})(R^{15}), carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl; and

 R^{14} and R^{15} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

neither R¹ nor R² forms a ring structure with E², E³, E⁴, or E⁵; and neither R⁴ nor R⁵ forms a ring structure with E², E⁴, or E⁵.

377. A compound or salt thereof according to claim 376, wherein:

A¹ is selected from the group consisting of -H, C₁-C₈-alkylcarbonyl,

- 15 C_1 - C_8 -alkoxycarbonyl, carbocyclylcarbonyl, carbocyclyl- C_1 - C_8 -alkylcarbonyl, heterocyclylcarbonyl, carbocyclylcarbonyl, carbocyclyloxycarbonyl, carbocyclyl- C_1 - C_8 -alkoxycarbonyl, $N(R^9)(R^{10})$ - C_1 - C_8 -alkylcarbonyl, C_1 - C_8 -alkyl(thiocarbonyl), C_1 - C_8 -alkoxy(thiocarbonyl), carbocyclyl(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), heterocyclyl(thiocarbonyl),
- heterocyclyl- C_1 - C_8 -alkyl(thiocarbonyl), carbocyclyloxy(thiocarbonyl), carbocyclyl- C_1 - C_8 -alkoxy(thiocarbonyl), and N(R^9)(R^{10})- C_1 - C_8 -alkyl(thiocarbonyl); and E^2 is selected from the group consisting of C_2 - C_{20} -alkyl, cycloalkyl,

 C_1 - C_{10} -alkylcycloalkyl, cycloalkyl- C_1 - C_{10} -alkyl, and C_1 - C_{10} -alkylcycloalkyl- C_1 - C_{10} -alkyl, wherein any member of such group optionally is substituted with one or more substituents independently selected from the group consisting of halogen, C_1 - C_6 -alkyl, and

halo-C₁-C₆-alkyl; and

5

10

25

 E^4 is selected from the group consisting of a bond, C_1 - C_{20} -alkyl, and C_2 - C_{20} -alkenyl, wherein the C_1 - C_{20} -alkyl or C_2 - C_{20} -alkenyl optionally is substituted with one or more substituents independently selected from the group consisting of:

30 halogen, and

carbocyclyl optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halocarbocyclyl, and halogen-substituted carbocyclyl- C_1 - C_8 -alkyl; and

E⁵ is selected from the group consisting of carbocyclyl and heterocyclyl, wherein the carbocyclyl and heterocyclyl are:

5

10

15

20

25

substituted with a substituent selected from the group consisting of optionally-substituted carbocyclyl, optionally-substituted carbocyclyl-C₁-C₈-alkyl, optionally-substituted heterocyclyl, and optionally-substituted heterocyclyl-C₁-C₈-alkyl, and

optionally substituted with one or more substituents independently selected from the group consisting of halogen, -OH, -NO₂, -CN, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, -N(R^{11})(R^{12}), -C(O)(R^{13}), -S- R^{11} , -S(O)₂- R^{11} , carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halocarbocyclyl, and heteroaryl; and

 R^1 and R^2 are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, and halo- C_1 - C_8 -alkyl; and

R⁴ and R⁵ are independently selected from the group consisting of -H, C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen; and

 R^7 is selected from the group consisting of -H, halogen, -OH, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkoxy, and halogen-substituted C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl; and

 R^8 is selected from the group consisting of -OH, C_1 - C_8 -alkoxy, and halo- C_1 - C_8 -alkoxy; and

 R^9 and R^{10} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl, C_1 - C_8 -alkylcarbonyl, carbocyclyl- C_1 - C_8 -alkyl, and carbocyclyl- C_1 - C_8 -alkoxycarbonyl; and

R¹¹ and R¹² are independently selected from the group consisting of -H,

5 C₁-C₈-alkyl, carbocyclyl, carbocyclyl-C₁-C₈-alkyl, heterocyclyl, and
heterocyclyl-C₁-C₈-alkyl, wherein any member (except -H) of such group optionally is
substituted with one or more halogen; and

 R^{13} is selected from the group consisting of -H, C_1 - C_8 -alkyl, -O- R^{14} , -N(R^{14})(R^{15}), carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl- C_1 - C_8 -alkyl, halo- C_1 - C_8 -alkyl, halogen-substituted carbocyclyl- C_1 - C_8 -alkyl, and halogen-substituted heterocyclyl- C_1 - C_8 -alkyl; and

 R^{14} and R^{15} are independently selected from the group consisting of -H, C_1 - C_8 -alkyl, carbocyclyl, carbocyclyl- C_1 - C_8 -alkyl, heterocyclyl, and heterocyclyl- C_1 - C_8 -alkyl, wherein any member (except -H) of such group optionally is substituted with one or more halogen.

15

10

378. A compound or salt thereof according to claim 377, wherein: the compound corresponds in structure to a formula selected from the group consisting of:

HO N
$$E^1$$
 E^2 E^3 E^4 E^5

(378-1) and

20

HO
$$E^1$$
 E^2 E^3 E^4 E^5

(378-2); and

A⁴ is selected from the group consisting of -H, alkyl, alkylcarbonyl, alkylcarbonylalkyl, alkylcarbonylalkylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylalkylcarbonyl, alkylsulfonyl, alkyliminocarbonyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl, alkylsulfonylalkyl, alkylsufoxidoalkyl, alkylthioalkenyl, 5 alkylsulfoxidoalkenyl, alkylsulfonylalkenyl, carbocyclyl, carbocyclylalkyl, carbocyclylalkoxyalkyl, carbocyclylcarbonyl, carbocyclylsulfonyl, carbocyclyliminocarbonyl, carbocyclyloxycarbonyl, carbocylylthioalkyl, carbocylylsulfoxidoalkyl, carbocylylsulfonylalkyl, carbocyclylthioalkenyl, carbocyclylsulfoxidoalkenyl, carbocyclylsulfonylalkenyl, heterocyclyl, heterocyclylalkyl, 10 heterocyclylalkoxyalkyl, heterocyclylcarbonyl, heterocyclylthioalkyl, heterocyclylsulfoxidoalkyl, heterocyclylsulfonylalkyl, heterocyclylthioalkenyl, heterocyclylsulfoxidoalkenyl, heterocyclylsulfonylalkenyl, heterocyclylsulfonyl, heterocyclyliminocarbonyl, heterocyclylalkylcarbonyl, heterocyclylcarbonylalkylcarbonyl, heterocyclylsulfonyl, heterocyclylcarbonylalkyl, aminoalkylcarbonyl, aminocarbonyl, 15 aminocarbonylalkylcarbonyl, aminosulfonyl, aminosulfonylalkyl, aminoalkyl, aminocarbonylalkyl, and aminoalkylsulfonyl, wherein:

any member (except -H) of such group optionally is substituted.

379. A compound or salt thereof according to claim 378, wherein the compound corresponds in structure to a formula selected from the group consisting of.

380. A method for preventing or treating a condition associated with pathological matrix metalloprotease activity in a mammal having the condition or predisposed to having the condition, wherein:

the method comprises administering a compound or a pharmaceutically acceptable salt thereof in a therapeutically-effective amount to the mammal; and

the compound is selected from the group of compounds recited in claims 1, 122, 225, 235, 250, 260, 267, 296, 303, 308, 322, 335, 337, 344, 354, 359, 361, 368, 372, and 376.

5

10

20

- 381. A method according to claim 380, wherein the compound or salt inhibits the activity of one or more of MMP-2, MMP-9, and MMP-13, while exhibiting substantially less inhibitory activity against both MMP-1 and MMP-14.
- 382. A method according to claim 381, wherein the compound or salt inhibits the activity of MMP-13, while exhibiting substantially less inhibitory activity against both MMP-1 and MMP-14.
- 15 383. A method according to claim 382, wherein the pathological condition comprises arthritis or a cardiovascular condition.
 - 384. A method according to claim 381, wherein the compound or salt inhibits the activity of both MMP-2 and MMP-9, while exhibiting substantially less inhibitory activity against both MMP-1 and MMP-14.
 - 385. A method according to claim 384, wherein the pathological condition comprises cancer, an opthalmologic condition, or a cardiovascular condition.
- 25 386. A method for preventing or treating a pathological condition in a mammal having the pathological condition or predisposed to having the pathological condition, wherein:

the method comprises administering a compound or a pharmaceutically acceptable salt thereof in a therapeutically-effective amount to the mammal; and

the compound is selected from the group of compounds recited in claims 1, 122, 225, 235, 250, 260, 267, 296, 303, 308, 322, 335, 337, 344, 354, 359, 361, 368, 372, and 376; and

the pathological condition is selected from the group consisting of tissue destruction, a fibrotic disease, matrix weakening, defective injury repair, a cardiovascular disease, a pulmonary disease, a kidney disease, a liver disease, an ophthalmologic disease, and a central nervous system disease.

387. A method for preventing or treating a pathological condition in a mammal having the pathological condition or predisposed to having the pathological condition, wherein:

the method comprises administering a compound or a pharmaceutically acceptable salt thereof in a therapeutically-effective amount to the mammal; and

the compound is selected from the group of compounds recited in claims 1, 122, 225, 235, 250, 260, 267, 296, 303, 308, 322, 335, 337, 344, 354, 359, 361, 368, 372, and 376; and

the pathological condition is selected from the group consisting of osteoarthritis, rheumatoid arthritis, septic arthritis, tumor invasion, tumor metastasis, tumor angiogenesis, a decubitis ulcer, a gastric ulcer, a corneal ulcer, periodontal disease, liver cirrhosis, fibrotic lung disease, otosclerosis, atherosclerosis, multiple sclerosis, dilated cardiomyopathy, epidermal ulceration, epidermolysis bullosa, aortic aneurysm, defective injury repair, an adhesion, scarring, congestive heart failure, post myocardial infarction, coronary thrombosis, emphysema, proteinuria, Alzheimer's disease, bone disease, and chronic obstructive pulmonary disease.

25

30

20

5

388. A method for preventing or treating a pathological condition associated with pathological TNF-α convertase activity in a mammal having the pathological condition or predisposed to having the condition, wherein:

the method comprises administering a compound or a pharmaceutically acceptable salt thereof in a therapeutically-effective amount to the mammal; and

the compound is selected from the group of compounds recited in claims 1, 122, 225, 235, 250, 260, 267, 296, 303, 308, 322, 335, 337, 344, 354, 359, 361, 368, 372, and 376.

389. A method according to claim 388, wherein the pathological condition is selected from the group consisting of inflammation, a pulmonary disease, a cardiovascular disease, an autoimmune disease, graft rejection, a fibrotic disease, multiple sclerosis, cancer, an infectious disease, fever, psoriasis, hemorrhage, coagulation, radiation damage, acute-phase responses of shock and sepsis, anorexia, and cachexia.

10

15

25

30

390. A method for preventing or treating a pathological condition associated with pathological aggrecanase activity in a mammal having the pathological condition or predisposed to having the condition, wherein:

the method comprises administering a compound or a pharmaceutically acceptable salt thereof in a therapeutically-effective amount to the mammal; and

the compound is selected from the group of compounds recited in claims 1, 122, 225, 235, 250, 260, 267, 296, 303, 308, 322, 335, 337, 344, 354, 359, 361, 368, 372, and 376.

- 20 391. A method according to claim 390, wherein the condition comprises an inflammation condition or cancer.
 - 392. A method according to claim 390, wherein the method further comprises administering the compound or salt thereof to prevent or treat a condition associated with matrix metalloprotease activity.
 - 393. A pharmaceutical composition comprising a therapeutically-effective amount of a compound or a pharmaceutically-acceptable salt thereof, wherein the compound is selected from the group of compounds recited in claims 1, 122, 225, 235, 250, 260, 267, 296, 303, 308, 322, 335, 337, 344, 354, 359, 361, 368, 372, and 376.