GNP vs Employed Regression Report

Python Script

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import subprocess
import os
# Load input data
df = pd.read_csv("C:/Users/Robert/Desktop/longley.csv", index_col=0)
x = df[["Employed"]]
y = df["GNP"]
x = sm.add_constant(x)
lr_model = sm.OLS(y, x).fit()
print(lr model.summary())
print(lr_model.params)
# We pick 100 points equally spaced from the min to the max
x_prime = np.linspace(x["Employed"].min(), x["Employed"].max(), 100)
x_prime = sm.add_constant(x_prime) # Add constant for prediction
# We calculate the predicted value
y_hat = lr_model.predict(x_prime)
# Plot data
plt.figure()
plt.scatter(df["Employed"], df["GNP"], label="Actual Data")
plt.xlabel("Total Employment")
plt.ylabel("Gross National Product")
plt.plot(x_prime[:, 1], y_hat, color="red", alpha=0.9, label="Regression Line")
plt.legend()
plt.show()
```

Regression Model Summary

OLS Regression Results

Regression Plot

Figure 1: Regression Plot

Dep. Variable:	GNP	R-squared:	0.967
Model:	OLS	Adj. R-squared:	0.965
Method:	Least Squares	F-statistic:	415.1
Date:	Fri, 21 Feb 2025	<pre>Prob (F-statistic):</pre>	8.36e-12
Time:	12:17:12	Log-Likelihood:	-68.391
No. Observations:	16	AIC:	140.8
Df Residuals:	14	BIC:	142.3
Df Model:	1		
Covariance Type:	nonrobust		
=======================================			
CO	ef std err	t P> t [0	0.025 0.975]
const -1430.48	23 89.361 -:	16.008	2.142 -1238.822
- ·			.906 30.767
Omnibus:	1.033	======================================	1.530
Prob(Omnibus):	0.597		0.836
Skew:	-0.499	•	0.658
Kurtosis:	2.491	Cond. No.	1.26e+03
=======================================			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.26e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Model Coefficients

const -1430.482314 Employed 27.836256

dtype: float64

Regression Plot