Data Mining Fat prediction on steak images

Francesco Franco, 162167 Daniele Tortoli, 153371

Indice

- 1. Presentazione del dataset
- 2. Obiettivi dell'analisi
- 3. Analisi Esplorativa
- 4. PCA Esplorativa
- 5. Clustering
 - KMeans
 - DBSCAN
 - Gerarchico
- 6. Applicazione del modello

Presentazione del dataset

Il dataset è composto da due immagini (jpg, RGB) di bistecche.

A) Steak 1 (500 x 348px)

B) Steak 2 (431x341px)

Obiettivi dell'analisi (1)

- Analisi Esplorativa: utile per studiare il dataset andando a scomporre l'immagine nei suoi **tre** canali (R,G,B) osservandone la distribuzione dell'intensità dei pixel.
- PCA esplorativa: preprocessing, ricerca del miglior tradeoff tra dimensionalità e varianza espressa, scelta di un valore soglia in base agli scores per distinguere la carne dal grasso.

Obiettivi dell'analisi (2)

- Clustering: test di due algoritmi di clustering e comparazione per osservare quale distingue meglio le nostre classi.
- Applicazione del modello: costruzione modello PCA sulla classe **grasso** e proiezione della seconda immagine su tale modello.

Analisi esplorativa – Canali RGB

Divisione in canali dell'immagine steak 1.

Il canale rosso discrimina meglio la carne dallo sfondo.

I canali verde e blu distinguono meglio il grasso dal resto.

Analisi esplorativa - Istogrammi

Analizzando gli istogrammi è possibile identificare le regioni che rappresentano lo sfondo, la carne e il grasso.

Analisi esplorativa – Canali a confronto

Il canale rosso prevale ed è meno correlato agli altri due. Vi è invece una maggiore correlazione positiva tra verde e blu.

Analisi esplorativa – Scatter 3 canali RGB

PCA esplorativa - Preprocessing

Effettuato tramite mean centering per canale.

Nello specifico i valori sottratti ai vari canali sono stati i seguenti:

		R	G	В
Medi	a	67,5762	21,0495	26,8008

PCA esplorativa - Scelta delle componenti

Dalla cross validation otteniamo che il numero consigliato di PC è **1**, infatti, essa riesce ad esprimere correttamente quasi il 95% dell'informazione contenuta nei nostri dati.

PCA esplorativa – Score PCA

Gli scores della **PC1** sono gli unici in grado di distinguere bene la carne dallo sfondo.

PCA esplorativa – Loadings e residual

1) I loadings della PC1 evidenziano la netta separazione tra il rosso e gli altri due canali

2) Hotelling T² e Q Residual, colorati in base allo score

PCA esplorativa – Soglie di valori (1)

Dall'istogramma degli scores notiamo 3 gruppi:

- 1. I valori negativi rappresentano lo sfondo;
- 2. I valori compresi tra 40 e 190, rappresentano la carne;
- 3. I valori superiori a 190, rappresentano il grasso.

PCA esplorativa – Soglie di valori (2)

Abbiamo colorato sfondo, carne e grasso rispettivamente di nero, rosso e giallo secondo i valori di soglia selezionati.

Clustering – KMeans (1)

Tramite i silhoutte scores abbiamo confrontato due tipi di distance (Manhattan e Euclidea) con o senza autoscaling.

Abbiamo quindi optato per distanza euclidea **senza** autoscaling.

Clustering – KMeans (2)

Abbiamo colorato le immagini secondo i vari cluster ritornati da KMeans, che hanno confermato quanto già visto con i silhoutte scores.

Clustering – KMeans (3)

1) Scatter3D KMeans con distanza euclidea

Clustering – DBSCAN (1)

Lo stesso è stato fatto per DBSCAN impostando i parametri *eps* e *minpts* ottenuti tramite una grid search.

Tuttavia otteniamo dei risultati peggiori, quindi abbiamo scelto di procedere con KMeans.

Clustering - gerarchico

Date le dimensioni del dataset (N = 174000) non è stato possibile eseguire l'algoritmo agglomerativo in quanto ha una complessità pari a $O(n^3)$ e necessita di un quantità di memoria pari a 225 GB.

Applicazione del modello - Modello sul grasso(1)

Tramite KMeans abbiamo selezionato i pixel relativi al grasso e abbiamo costruito un modello PCA ad una componente.

1) RMSEC, RMSECV e varianza delle 3 PC

2) Hotelling T² e Q Residual

Applicazione del modello - Modello sul grasso(2)

1) Loadings del modello con solo grasso

2) Hotelling T² e Q Residual dei pixel della seconda immagine proiettati nello spazio del modello definito dal solo grasso

Applicazione del modello - Risultato

1) Immagine originale

2) In giallo i pixel accettati dal modello costruito sul grasso