ダイナミカルシステムの 過渡応答と安定性について(3)

制御工学1⑥

機械理工学専攻

細田 耕

本日の授業のゴール

- ラウスの安定判別法
- フルビッツの安定判別法

ダイナミカルシステムの 安定性

ダイナミカルシステムにおいて、有界な大きさの任意の入力|u(t)| < ∞に対して、その出力がやはり有界|y(t)| < ∞であるとき、安定と呼ぶ、

安定でないシステムを不安定と呼ぶ

全ての種類の入力についてその応答を調べることは不可能であるが、実際には、ステップ入力に対する出力が(過渡状態を含めて)無限大に発散することなく、一定値に収束することが入出力安定と等価であることが知られている.

安定な ダイナミカルシステム

$$G(s) = \frac{1}{s^2 + s + 1}$$

ステップ応答

不安定な ダイナミカルシステム

$$G(s) = \frac{1}{s^2 - 0.1s + 1}$$

ダイナミカルシステムのステップ応答(復習)

ダイナミカルシステム

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} \qquad (n \ge m)$$

分母多項式=0の解が $\sigma_1, \sigma_2, \cdots, \sigma_n$ であるとすると、ステップ応答は、

$$\mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right] = \mathcal{L}^{-1} \left[\frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{(s - \sigma_1)(s - \sigma_2) \dots (s - \sigma_2)} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{k_1}{s - \sigma_1} + \frac{k_2}{s - \sigma_2} + \dots + \frac{k_n}{s - \sigma_n} + \frac{k_0}{s} \right]$$

$$= k_0 + k_1 e^{\sigma_1 t} + k_2 e^{\sigma_2 t} + \dots$$

安定性の必要十分条件: すべての極の実部が負

安定性の必要条件

全ての係数 a_n , a_{n-1} , ..., a_0 が正

例:

不安定

$$s5 + s4 + 3s3 + 2s2 + 6s + 2 = 0$$

$$s5 + s4 + 6s3 + 3s2 + 4s + 1 = 0$$

安定

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

$\overline{S^n}$	R_{11}	R_{12}	R_{13}	R_{14}	•••
s^{n-1}	R_{21}	R_{22}	R_{23}	R_{24}	•••
s^{n-2}	R_{31}	R_{32}	R_{33}	•••	•••
s^{n-3}	R_{41}	R_{42}	R_{43}	•••	• • •
:	:	•	:		
s^2	R_{n-1}	R_{n-1} 2	0		
s^1	R_{n1}	0			
s^0	R_{n+1}	0			

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

\overline{s}^n	a_n	a_{n-2}	a_{n-4}	a_{n-6}	• • •
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	•••
s^{n-2}	R_{31}	R_{32}	R_{33}	•••	•••
s^{n-3}	R_{41}	R_{42}	R_{43}	•••	•••
:	•	•	:		
0					
s^2	R_{n-1}	R_{n-12}	0		
s^1	R_{n1}	0			
s^0	R_{n+1}	0			

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

\overline{s}^n	R_{11}	R_{12}	R ₁₃	R_{14}	•••
s^{n-1}	R_{21}	R_{22}	R_{23}	R_{24}	•••
s^{n-2}	R_{31}	$R_{11}R_2$	$\frac{1}{2} - \hat{R}_{12}R_{21}$	•••	•••
s^{n-3}	R_{41}	1 =	R_{21}	•••	•••
:	:	•	:		
s^2	D	D	0		
3	R_{n-1}	R_{n-1} 2	0		
s^1	R_{n1}	0			
s^0	R_{n+1}	0			

全ての係数 a_n , a_{n-1} , ..., a_0 が正かつ

ラウス数列(第一列目)がすべて正

全ての極の実部が負(=安定)

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

$$H = \begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots & 0 \\ a_n & a_{n-2} & a_{n-4} & a_{n-6} & \cdots & 0 \\ 0 & a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\ 0 & a_n & a_{n-2} & a_{n-4} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & \cdots & a_4 & a_2 & a_0 \end{bmatrix}$$

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

$$H = \begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots & 0 \\ a_n & a_{n-2} & a_{n-4} & a_{n-6} & \cdots & 0 \\ 0 & a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\ 0 & a_n & a_{n-2} & a_{n-4} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & \cdots & a_4 & a_2 & a_0 \end{bmatrix}$$

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

$$H = \begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots & 0 \\ a_n & a_{n-2} & a_{n-4} & a_{n-6} & \cdots & 0 \\ 0 & a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\ 0 & a_n & a_{n-2} & a_{n-4} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & \cdots & a_4 & a_2 & a_0 \end{bmatrix}$$

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 \quad (a_n > 0)$$

$$H = \begin{bmatrix} a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots & 0 \\ a_n & a_{n-2} & a_{n-4} & a_{n-6} & \cdots & 0 \\ 0 & a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\ 0 & a_n & a_{n-2} & a_{n-4} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & \cdots & a_4 & a_2 & a_0 \end{bmatrix}$$

全ての主座小行列式が正かつ係数がすべて正

本日の授業のゴール

- ラウスの安定判別法
- フルビッツの安定判別法