

KEY TAKEAWAYS

CHAPTER TITLE

Probability Theory

LECTURE TITLE

Probability Basics

- Probability is a measure of the chance of an event happening. It ranges from 0 (impossible) to 1 (certain).
- 2 It's calculated by dividing **favorable** outcomes by **possible outcomes**.

KEY TAKEAWAYS

CHAPTER TITLE

Probability Theory

LECTURE TITLE

Addition and Multiplication Rule

Addition Rule:

Non-overlapping Events: $p(E \cup F) = p(E) + p(F)$ where event E and F don't overlap.

Overlapping Events: $p(E \cup F) = p(E) + p(F) - p(E \cap F)$

2 Multiplication Rule:

Independent Events ("And" Rule): $p(E \cap F) = p(E) * p(F)$ Dependent Events ("Conditional" Rule): $p(E \cap F) = p(E) * p(F \mid E)$

3 Complement Rule:

p(E') = 1 - p(E), where E' is the complement of event E.

KEY TAKEAWAYS

CHAPTER TITLE

Probability Theory

LECTURE TITLE

Conditional Probability and Bayes Theorem

- Conditional probability means finding the chance of an event happening when we already know that another related event has occurred.
- 2 Bayes' Theorem is a mathematical formula for determining conditional probability.
- The formula for Bayes' theorem is: $p(E \mid F) = p(F \mid E) \cdot p(E) / p(F)$

