Big Data Analytics

Data Mining

1

Attention aux différents biais de vos données!

 variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - ...

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - · ...
- trouver de fausses variables explicatives

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - · ...
- trouver de fausses variables explicatives

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - ...
- trouver de fausses variables explicatives
- \rightarrow Le garder en tête pendant toute l'étude.

Meilleures données > Meilleurs modèles (trash-in, trash-out)

 \rightarrow À garder en tête pendant toute l'étude, en particulier durant l'entraı̂nement de modèles

Préparation des données

- valeurs manquantes
- préprocessing (texte, image)
- standardisation
- transformation

Gênant pour certains modèles. Plusieurs options :

supprimer les enregistrements

- supprimer les enregistrements
- remplacer par une valeur (imputation) :

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante
 - moyenne de la colonne

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante
 - moyenne de la colonne
 - prédiction d'un autre modèle

Préparation des données — préprocessing

- tokenizer, POS-tagger le texte (https://spacy.io/)
- utiliser un réseau de neurones préentraîné sur les images (https://keras.io/applications/)
- appliquer une transformée de fourier sur le son
- ٠.

Préparation des données — standardisation

Beaucoup de modèles travaillent mieux avec des données normales et sont plus efficaces autour de $\left[-5,5\right]$:

- centrer sur la moyenne puis diviser par l'écart-type
- transformation de Box-Cox en cas d'asymétrie
- transformations spécifiques en fonction de la distribution

Préparation des données — transformation

Quand un modèle n'accepte pas de données catégorielles :

- label encoding si ordinal
- one-hot encoding sinon

Préparation des données — label encoding

Si les données sont ordinales :

Température	_
Froid	
Froid	
Tiède	
Chaud	
Tiède	
	•

Label encoding:

Température		
1		
1		
2		
3		
2		

Préparation des données — one-hot encoding

Remplacer une feature par n features avec n le nombre de catégories.

Catégoriel :

One-hot:

Couleur	
Rouge	
Rouge	
Jaune	
Vert	
Jaune	

Rouge	Jaune	Vert
1	0	0
1	0	0
0	1	0
0	0	1
0	1	0

But:

 se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...
- détecter les corrélations

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...
- détecter les corrélations
- appréhender la complexité nécessaire du modèle

But:

- se rendre compte des prétraitements à effectuer (Box-Cox, imputations, etc)
- comprendre la variable de sortie : distribution, équilibre des classes, features les plus corrélées, ...
- détecter les corrélations
- appréhender la complexité nécessaire du modèle

Attention : garder des données de côté (test set) et ne pas les regarder. Sinon biais statistique énorme.

Outils

Plusieurs outils sont disponibles pour explorer des données. On utilise principalement des plots pour :

- se renseigner sur une distribution
- se renseigner sur la corrélation de deux distributions
- visualiser des corrélations linéaires

Les outils suivants sont sauf mention contraire présents dans seaborn.

Outils — count plot

Outils — dist plot

Outils — qq plot

Attention, pas seaborn mais statsmodel ou scipy.stats.

Outils — bar plot

Outils — scatter plot

Outils — violin plot

Outils — pair plot

Outils — correlation matrix

Bonnes pratiques pour explorer un dataset :

analyser la(es) variable(s) de sortie (countplot/distplot)

Bonnes pratiques pour explorer un dataset :

- analyser la(es) variable(s) de sortie (countplot/distplot)
- trouver les corrélations linéaires les plus fortes

Bonnes pratiques pour explorer un dataset :

- analyser la(es) variable(s) de sortie (countplot/distplot)
- trouver les corrélations linéaires les plus fortes
- analyser les variables correspondantes

Bonnes pratiques pour explorer un dataset :

- analyser la(es) variable(s) de sortie (countplot/distplot)
- trouver les corrélations linéaires les plus fortes
- analyser les variables correspondantes
- regarder s'il y a des outliers évidents dans ces variables