SICUREZZA NELLE RETI

Appello del 24 luglio 2009

Esercizio 1 punti: 10

Con proprietà di linguaggio e precisione matematica si discuta la sicurezza dell'algoritmo RSA.

Esercizio 2 punti: 12

Si consideri il sistema semplificato di roaming riportato in figura in cui una stazione mobile

M registrata presso l'home server H si trova nella cella C_V gestita dal server visited server V. Per garantire la comunicazione sicura della stazione mobile M è necessario che questa stabilisca un canale sicuro (la chiave simmetrica K_{vm}) con il visited server V. A tale proposito si assuma che:

- B. i server H e V fanno parte dell'infrastruttura e pertanto condividono la chiave k_{vh} ;
- C. la stazione mobile M ed i server H, V utilizzano lo stesso cifrario; ed infine
- D. i loro clock non sono sincronizzati.

Progettare un protocollo di distribuzione delle chiavi che soddisfi i seguenti requisiti:

- 1. permette l'autenticazione mutua di M e V quando M entra nella cella C_V ;
- 2. permette di distribuire una chiave di sessione k_{mv} tra $M \in V$;
- 3. fornisce la prova a V che M possiede k_{mv} e viceversa;
- 4. mantiene la segretezza della chiave k_{mh} ;
- 5. è resistente ad attacchi di replay.

Il candidato argomenti per mezzo della logica BAN che il protocollo proposto soddisfa i requisiti posti.

Esercizio 3 punti: 8

Si descrivano le informazioni minime che devono essere contenute in un certificato digitale ed i principali obblighi che un'autorità di certificazione deve assolvere per il rilascio di tale certificato.

Soluzione

Risposta a. Il protocollo garantisce la confidenzialità. Per determinare il valore di K_{AB} è necessario conoscere le quantità k_a e k_b . Tuttavia queste quantità viaggiano in rete in forma cifrata.

Risposta b. Il protocollo è una versione semplificata del protocollo Needham-Schroeder a chiave pubblica. Il protocollo garantisce la *key autentication*. Formalmente: $A \models B \models A \stackrel{k_a}{\mapsto} B$ **e** $B \models A \models A \stackrel{k_a}{\mapsto} B$.

Risposta c. Come si evince dalle formule sopra, il protocollo garantisce anche la key confirmation.

Risposta d. Se l'ipotesi (i) non è verificata, il protocollo non garantisce la proprietà di key authentication. Supponiamo che la quantità k_a sia riutilizzata da A e che un avversario M abbia registrato i messaggi M1 ed M2 relativi all'esecuzione del protocollo in cui k_a è stata utilizzata la prima volta. L'avversario M potrebbe eseguire il seguente attacco:

- induce A ad iniziare una nuova istanza del protocollo con B;
- quando A invia il messaggio M1' relativo alla nuova esecuzione del protocollo, contenente la quantità riutilizzata k_a , l'avversario M determina che M1=M1', e risponde con M2. Alla ricezione di questo messaggio il processo A crede di parlare effettivamente con B.

Si noti che questo attacco ha come effetto collaterale il riutilizzo della vecchia chiave di sessione K_{ab} (la quantità k_b è contenuta nel messaggio M2 replicato da M). L'avversario M potrebbe non conoscere tale chiave ma potrebbe comunque replicare vecchi messaggi relativi alla sessione K_{ab} che A considererebbe come provenienti da B. Il danno sarebbe massimo se M, per altre vie, fosse riuscito ad impadronirsi di K_{ab} .

Considerazioni simili possono essere fatte per B se questo processo riutilizza la quantità k_b .