Thus random values of x are 8, 4, 5, 1, 3, 2, 1, 1, 3, 5, 1, 1, 2, 4

Observed mean
$$\bar{x} = \frac{1}{n} \sum x_i = \frac{41}{14} = 2.9286$$

Standard deviation S.D. =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\sum (x_i - \overline{x})^2 = 25.719 + 1.148 + 4.291 + 3.719 + .0051 + .8623 + 3.7195 + 3.7195 + .0051 + 4.291 + 3.7195 + 3.7195 + .8623 + 1.1479 = 57.9268$$

S.D. =
$$\sqrt{\frac{57.9268}{13}}$$
 = 2.1108
True mean = $\frac{1}{p}$ = $\frac{1}{35}$ = 2.857

True S.D. =
$$\sqrt{\frac{1-p}{p^2}} = \sqrt{\frac{1-35}{35 \times 35}} = \sqrt{5.306} = 2.304$$

Example 5.16. Generate an Exponential distribution with mean value equal to 3. **Solution :** An exponential variable x is given by

$$x = - \text{Mean} \times \ln(r)$$

where r is a random number between 0 and 1. The probability density function can be drawn by generating a large number of random observations. Larger the number of observations, more accurate will be the distribution. Fifty values of x have been generated in Table 5.14. The random numbers used have been taken from the table given in Appendix.

Based on these 50 values of x, a histogram showing the frequency distribution is plotted in Fig. 5.15. If the number of observations is increased, and the interval is further shortened, the histogram will result into a smooth curve like the one shown in Fig. 5.15.

The observed mean of the distribution,

$$\overline{x} = \frac{1}{\sum f} \sum f \cdot x = \frac{1}{50} \left[12 \times 0.5 + 11 \times 1.5 + 6 \times 2.5 + 5 \times 3.5 + 5 \times 4.5 + 3 \times 5.5 + 5 \times 6.5 + 1 \times 7.5 + 2 \times 8.5 + 0 \times 9.5 \right]$$

$$=\frac{1}{50}$$
 [151] = 3.02

Obtained standard deviation is

$$= \left[\frac{1}{49} \left[12 \left(3.02 - 0.5 \right)^2 + 11 \left(3.02 - 1.5 \right)^2 + 6 \left(3.02 - 2.5 \right)^2 + 5 \left(3.02 - 3.5 \right)^2 \right] + 5 \left(3.02 - 4.5 \right)^2 + 3 \left(3.02 - 5.5 \right)^2 + 5 \left(3.02 - 6.5 \right)^2 + \left(3.02 - 7.5 \right)^2 + 2 \left(3.02 - 8.5 \right)^2 \right]^{\frac{1}{2}}$$

$$= \sqrt{\frac{274.48}{49}} = 2.367$$
Table 15.14

Table 15.14

100		A A A SHALL STREET, SA GUE.		THY SVII IS	107-5411/18		BODWEST DE
Rand	coole x utdo	Rand	n sixing of r	or the give	Rand	9 stand	ba R. F. a
2182	4.57	7615	0.82		1955	170	4.90
1128	6.55	8508	0.48		2177		4.66
7112	1.02	6970	1.08	5 Jack	7471	0	0.87
6557	1.27	5799	1.63	TyT	8674	T J	0.43 10 14
4199	2.60	6364	1.36	0 4 9	1092	75	6.64 basil
3544	3.11	4165	2.63	H35 H	9061	18 7	0.30 10 11
1749	5.23	8354	0.54	bers from	6438	I, and	1.32
1903	0.28	9130	0.27	AL AL E	1834	todemu	5.09
0764	7.72	5826	1.62	01=	1884	umber	5.01
3492	3.16	6285	1.39	S nead col	6791	10 100	1.16
1292	6.14	7527	0.85	er A urceus	2068	BYOYE	4.73
4397	2.46	8976	0.32	The regia	7295	e auth	0.95
3807	2.90	2 apri 2327 ordi br	4.37	econd niv	3440	lw mia	3.20
4984	2.09	1182	6.41		5435	aved by	1.83
1340	6.03	3659	3.02	-	3090		3.52
0590	8.49	5924	1.57	-	0607		8.41
9566	0.13	3941	2.79	+	Three		

Fig. 5.15

Example 5.17. Use the one-digit random numbers 6, 3, 5, 7, 9, 9, 4, 6, 2, 7, 9, 1, 5, 8, 0, 7, 6 2, 0, 6, 2, 4, 0, 7, 1, 3, 8, 5, 2, 4; to generate random observations for each of the following situations (a) Throwing an unbiased coin 100 4 (2.1 - 20.2) 11 + (2.0 - 20.2) 211

- (b) Throwing a dice
- (c) The colour of a traffic light found by a randomly arriving car, when green is 50% of the time, yellow is 10% of the time, and red is 40% of the time. [PTU. B. Tech Dec. 2005]

Solution: (a) Throwing an unbiased coin: When an unbiased coin is tossed, the chances of getting the head (H) and tail (T) are equal that is 50:50. Using the one-digit random numbers between 0 and 9, let the first five digits 0, 1, 2, 3 and 4 stand for H and the remaining five digits 5 6, 7, 8 and 9 stand for T. For the given string of random numbers, the observations are given below in Table 5.15.

(80.5						Tab	le 5.15	S RAPE			27 A		2011
Rand. No. :	6	3	5	7	9	9	4	0.6	2	7	209	1	5 8 (
H or T :					T		Н	o To	Н	T	T27	Н	TSSS/T
Rand. No. :			2	0					7			8	5 2 4
H or T	T	T	Н	Н	T	Н	Н	H	T	Н	H	T	H H SALT

Number of heads = 14

Number of tails = 16

We

Thus out of 30 throws head comes 14 times, while tail comes 16 times.

(b) Throwing a Dice: A dice has six faces, and each face has same chance of coming up. Out of the given one-digit random numbers, let us use the numbers 1, 2, 3, 4, 5 and 6 to represent the six faces of the dice, and reject the remaining. Using the given string of random numbers the first throw results into six, while the second gives 3 and third through gives 5 etc.

6.03

ha	ve;		160
	One	\rightarrow	2 times
	Two	→	4 times
	Three	\rightarrow	2 times
	Four	\rightarrow	3 times
	Five	->	3 times
	Civ	-	4 times

(c) Traffic light is green 50% of the time, yellow 10% of the time, and red 40% of the time.

We can assign the one-digit random numbers 0, 1, 2, 3 and 4 to green (G), digit 5 to yellow (Y) and the digits 6, 7, 8 and 9 to red (R). The given string of random numbers results into the following observations of colours.

Rand. No.	:	6	3	5	7	9	9	4	6	2	7	9	1	5	8	0
Colour																
Rand. No.	:	7	6	2	0	6	2	4	0	7	1	3	8	5	2	4
Colour																

14 times Green Yellow 3 times Red 13 times

Example 5.18. The game of craps requires the players to throw two dice one or more times until a decision has been reached. The player wins the game if the first throw results in a sum of 7 or 11 or if the first sum is 4, 5, 6, 8, 9 or 10 and the same repeats before a sum of 7 has appeared.

- (a) Simulate 15 plays of the game, in the form of a table.
- (b) Develop a simulation program in any computer language and run the simulation for 100, 200 and 300 games. [PTU. B.E. 4th Sem. Elect. Dec. 20051

Solution: There are two dice, which are thrown at a time, and a throw can result into a sum of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. Sum 2 can appear only in one way i.e., 1 + 1, the probability of the same is $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$. Sum 3 can occur in two ways 1 + 2 and 2 + 1, and thus the probability of sum 3 is $2\left(\frac{1}{6} \times \frac{1}{6}\right) = \frac{2}{36}$. The ways in which a sum can occur and the corresponding probabilities were computed in Example 5.1, and the same are given below:

Sum
$$(s)$$
: 2 3 4 5 6 7 8 9 10 11 12 $p(s)$: $\frac{1}{36}$ $\frac{2}{36}$ $\frac{3}{36}$ $\frac{4}{36}$ $\frac{5}{36}$ $\frac{6}{36}$ $\frac{5}{36}$ $\frac{4}{36}$ $\frac{3}{36}$ $\frac{2}{36}$ $\frac{1}{36}$

For simulating the game, let us take the random numbers from 00 to 72, and assign these to different outcomes of the throws that is sums, as in Table 5.16.

Result	misS _{1,0}	Table 5.16	Game No.
Sum	Probability	Cumulative probability	Random numbers
2 associ	1 36	36	01 to 02
3 Rose I	$\frac{2}{36}$	$\frac{\frac{3}{36}}{\frac{6}{36}}$ $\frac{10}{36}$	03 to 06
4	3 36	$\frac{6}{36}$	07 to 12
5 and W	4 36	$\frac{10}{36}$	13 to 20
6	5 36	15 36	21 to 30
7	$\frac{6}{36}$	21 36	31 to 42
8	$\frac{5}{36}$	26 36	43 to 52
9//	$\frac{4}{36}$	30 36	53 to 60
10	3 0	33 36	61 to 66
11	36 2 36	36 36	67 to 70
12	$\frac{1}{36}$	36	71 to 72

The random numbers may be drawn from a random number table, or generated by some random number generation technique. The random numbers used in this simulation have been generated by a scientific calculator. In each number, the first two digits were retained. Taking the following string of random numbers 12, 62, 60, 33, 04, 33, 44, 64, 50, 72, 08, 60, 51,, etc. simulation is done as follows.

First game: The first throw of two dice, simulated by first random number 12, gives the sum as 4. It is neither 7 nor 11, hence take the 2nd throw, a random number 62 gives sum of 10. Third throw, random number 60, gives sum of 9, while 4th throw, random number 33, gives sum of 7. Since first sum '4' does not reappear before the occurrence of sum 7, player loses the first game.

Second game: Next random number is 04, which gives a sum of 3. Since, it is neither 7 or 11, nor any of 4, 5, 6, 8, 9 and 10, the player loses the second game too.

Third game: Next random number 33 results in a sum of 7. Player wins the game in the very first throw.

The simulation of the process of 15 games is given in Table 5.17. Seven times the player wins and eight times loses the game. Based on this small sample, the probability of a win is thus $\frac{7}{15} \times 100 = 46.6\%$.

However, such a small length of simulation run, cannot give very reliable results.

Table 5.17

Game No.	Random numbers	Sum	Result
an Lambe	12	4	Manachape of conday in
a participan	62	10	
	60	9	
	33	7 08	Loses
202,120	04	3 -	Loses
3	33	7	Wins
5141170	44	8 -	
	64	10	
13 to 20	50	8 00	Wins
5	72	12	Loses
6	08	4 88	
	60	9	7
	51	8 06	and the state of t
45 (n 52 m ba	01	2	
	17	5	
73 to 60	11	4	Wins
7	30	6	
61 10 16	44	8	01 2
	71		
	04	3 08	11
	20	5	
	34	7 85	Loses

				95 45 17 55
8	46	8		
	18	5		
	42	2 7		
9	56	coree'td*, f, scotel)	a bala alaya	
	12	Iwanta (III a real	or Il vesiono	11(8)
	Oceanal Laure 02	itain e el al	printf("	
	44	T TESTOOR	it (acors) a = 3	eale
	48	AMON SA BIT III		
	36	0		
10			d on D	oses
10	59	,	scored-targe	
	24	6	oom -linking	
	65	10	Natarania i	
	(1151000 0810 44	DI MOTEM OF ALL	"Illustra	
	57	9	W	ins
(cosed)	Taria Hodan capa 0,5	tal os osh esol 3	- PaningLe	oses
12	37	7	W	ins
13	49	8		
	66	L. Tor recessor break	th part u/. igi	
	06	(Maigin	YNA natitionin	d » h
	54	9	/* : (%, 35#*) is	BOA
1*20/6	07	ua sits alarange 4	would not Jan	
	43		bics work	
14	11	4	in, na:	
	55	9		
	51	8	1-83758-1	
	16	5	(int)(6*x);	
	39	7	Loan Land Lo	ses.
15	67	11	(Settle W	

```
Number of games won = 7
Number of games lost = 8
```

A computer program for simulating the game of craps, developed in C language is given below.

```
#include<stdio.h>
#include<stdib.h>
#include<ctype.h>
int throw(void);
main()

{    /* Simulation of Game of Craps*/
    /* n is the number of games */

    float x;
    int i,k,n,n1,n2,score1,score2,win=0,loss=0;
    printf("\n The number of games to play n=");
```

```
scanf ("%d", &n);
for(i=0;i<=n;++i) {
scorel=throw();
printf("\n i=%d score=%d",i,score1);
if(score1==7 || score1==11) { win=win+1;
                    It is a Win"); }
      printf("
else if(score1==2 || score1==3 || score1==12) { loss+=1;
                 It is a loss"); }
else (
  do
      score2=throw();
      printf(" score2=%d", score2);
      } while(score2 != score1 && score2 != 7);
      if(score2== score1) { win+=1;
      printf(" Win by matching first score");}
      else { loss+=1;
     printf(" Lose due to failingto match first score");}
printf("\n i=%d Wins=%d Losses=%d",i,win,loss);
/* printf("\n Any digit");
 scanf("%d",k); */
/* Function throw to generate the sum of two throws of dice*/
int throw (void) {
int n1, n2;
float x;
x=rand()/32768.;
n1=1+(int)(6*x);
x=rand()/32768.;
n2=1+(int)(6*x);
return(n1+n2);
```

Some results obtained from this program are as under.

Games	Wins	Loses
50	25	25
100	51	49
200	96	104
300	148	152
200	96	10

Example 5.19. The distribution of inter arrival times in a single server model is,

T	:	1	2	3
f(t)):	$\frac{1}{4}$	1	1 1 1 1 1
, ,		4	2	4

and the distribution of service times is

S :	1	2	3	1 A JEOL
	10=2	and 10 of	us, ecorgi, acore, un	in notes, in
f(s):	2	4	of 4mag to recious of	

Complete the following table, using the two-digit random numbers 12, 40, 48, 93, 61, 17, 55, 21, 85, 88 to generate arrivals and 54, 90, 18, 38, 16, 87, 91, 41, 54, 11 to generate the corresponding service times.

Arrival number	Arrival time	Time service begins	Time service ends	Waiting time in Queue
balase	se versions mainly	d had theorem. The	versions of the centra	statistics there are many
				the conditions under a
3				of parent population an
4	states that, if ther		ly used version of the	
				sumple of size n. n bein

Solution: It is a simple case of a single server queuing simulation. Both the inter arrival and service times of the customers are random and follow the given discrete distributions.

The distribution of inter arrival times is on to notifive between the problem of the problem of

T	f(t)	F(t)	Random numbers
1	.25	.25	00 to 24
2	.50	.75	25 to 74
3	.25	1.00	75 to 99

Inter arrival times corresponding to the given random numbers are,

Random number	: ad 1:	2 40	48	93	61	191 17 ₁	55	21	85	88
Inter arrival time	:1	2	2	3	2	ndrakille	2	la ail and	W 3ioi	miu3on

The distribution of service times is, and a messed shall have and or aribnood.

S	f(s)	F(s)	Random numbers	distribition in esbel
1	.50	.50	00 to 49	is shown on Fig. 5.
2	.25	.75	50 to 74	Further, the ce
3	.25	1.00	75 to 99	which we also call a
	The state of the s	noney and the law of	1007-100-13	coor of sample size.

Service times corresponding to given random numbers are;

Random number	:	54	90	18	38	16	87	91	41	54	11
Service time		2	3	ounglases	1	astrate gran	3	3	1	2	1

Now the required table can be completed (Table 5.18). As soon as an arrival takes place, it will go into service, if the facility is idle that is the service on the previous arrival has been completed, otherwise it will wait till the facility becomes available.

Table 5.18

Arrival number	Arrival time $AT + T = AT$	Time service begins SB	Time service ends $SB + S = SE$	Waiting time in Queue
1	0 + 1 = 1	1 4	1 + 2 = 3	0
2	1 + 2 = 3	3	3 + 3 = 6	0
3	3 + 2 = 5	esta si a 6 sinudira	6 + 1 = 7 to 10 m	where, a Line mea
4	5 + 3 = 8	8	8+1=9	Zulves tho distance
5	8 + 2 = 10	10	10 + 1 = 11	0
6	10 + 1 = 11	25 - 11 - 22	-11 + 3 = 14	0
7	11 + 2 = 13	14 18.618	14 + 3 = 17	1
8	13 + 1 = 14	S. C. mood 17 me more	17 + 1 = 18	rapun warg arti
0	13 + 1 = 14 $14 + 3 = 17$	Dine ar 81 be end th	18 + 2 = 20	of the most is 0.486
10	17 + 3 = 17 $17 + 3 = 20$	20	20 + 1 = 21	the shade o area on I

5.20 Central Limit Theorem as mobast rigits out oft gates, slidet gained foll and atalanage

The central limit theorem is the most important theorem in statistical inferences. It sates that the average of sample of observations drawn from some population with any shape distribution approaches the normal distribution as the sample size increases. There are theoretical situations, where the central limit theorem fails, but these are rarely encountered in practice. In theoretical statistics there are many versions of the central limit theorem. These versions mainly depend upon the conditions under which the theorem is used and upon the assumptions about the distribution of parent population and the sampling techniques employed.

The most commonly used version of the central limit theorem states that, if there is a random sample of size n, n being larger than 30, drawn from an infinite population having a unit standard deviation, the standardized sample mean converges to a standard normal distribution or equivalently the sample mean approaches a normal distribution with mean equal to the population mean and standard deviation equal to standard deviation of population divided by the square root of sample size n.

The significance of the central limit theorem is that it enables us to use the sample statistics to draw inferences about the population parameters, without knowing anything about the probability distribution of the population.

Example 5.20: Fig. 5.16 (a) shows the distribution of annual commission earnings of all salesmen in a large corporation. It has a mean of Rs. 12500 and a standard deviation of Rs. 1500. The distribution is skewed to the right. A random sample of 30 salesmen has been drawn from population. What is the probability that their average earnings will be more than Rs. 13100?

According to the central limit theorem, the sampling distribution of the mean approaches normal distribution irrespective of the shape of the parent population distribution. The sampling distribution is shown on Fig. 5.16 (b).

Further, the central limit theorem states, that the sampling distribution has a standard deviation, which we also call a standard error, equal to the population standard deviation divided by the square root of sample size.

Rendom number: 54 90 18 38
$$\frac{\sigma}{\sqrt{n}} = \frac{1}{\sqrt{n}} = \frac{$$

where $\sigma_{\bar{x}}$ is the standard error of the mean and σ is the standard deviation of the population, and n is sample size.

$$\sigma_{\bar{x}} = \frac{1500}{\sqrt{30}} = 273.87$$

Now, we determine the z statistics, the standard deviation from the mean of a standard normal probability distribution

$$z = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}}$$

where, μ is the mean of the population distribution. μ is also the mean of the sample distribution. Z gives the distance of the given point from the mean.

$$z = \frac{13100 - 12500}{273.87} = 2.2$$

The area under the curve between the mean and a point 2.2 standard deviations away to the right of the mean is 0.4861 (Appendix Table A-7) the area beyond the point 2.2 is 0.5 - .4861 = 0.0139, the shaded area on Fig. 5.16 (b).

Thus, we can say that there are hardly 1.4% chances that the average annual income from commission earnings of all the salesman exceeds Rs. 13100.

Fig. 5.16

Example 5.21: A mainframe computer includes a backup circuit to minimize the downtimes. After running the simulation of the working of a particular component, it has been found that its average service life is 4300 hours, with a standard deviation of 730 hours. The backup circuit contains two duplicate components so that in case of malfunction of one, the other component automatically gets switched on.

- (a) What is the probability that the set of components will last 14000 hours?
- (b) At the most 12000 hours?

Solution: The three identical components combined will have a life of $4300 \times 3 = 12900$ hours with the standard deviation of 730 hours.

$$\mu = 12900, \quad \sigma = 730$$

When $\bar{x} = 14000$

$$Z = (14000 - 12900)/730 = 1100/730 = 1.5.$$

The area of the tail beyond 14000 = 0.4332 from Appendix Table A-7.

Thus the possibility of life of components being more than 14000 decreased = .5000 - .4332

When $\bar{x} = 12000$,

$$Z = \frac{12000 - 12900}{730} = -1.23.$$

From Appendix Table A-7, the area under the normal curve between -1.23 and mean, μ , is 0.39. Thus the area under the curve up to the right tail is 0.89 as shown in Fig. 5.17. The probability of the life of components being 12000 hours or more is thus 89%.

Fig. 5.17

5.21 Exercises

The historical data on breakdown of machines in a machine shop over the last 100 days is given below.
 Draw the frequency distribution and determine the standard deviation and coefficient of variation.
 Breakdowns (number of) of machines for 100 days.

2	0	1	3	- 1	2	2	4	3	2
3	1	2	1	2	1	0	3	2	5
4	2	3	0		3	3	2	- 1	2
0	1	3	5	2	2	4	1	3	4
1	3	2	1	3	0	4	2	3	2
4	2	5	3	2	4	3	3	2	1
2	3	2	1	2	4	1	3	2	5
0	3	2	1	1 2	4	2	3	2	1
1	2	2	. 3	4	1	3	2	5	0
3	4	0	1	3	2	3	3	2	1

Draw a frequency distribution from the following data, grouping the data in steps of 200. Find the mean and standard deviation of the data. Also determine the mode and median of the distribution.

196	565	3229	1575	288
411	224	420	1720	723
1128	945	519	508	36
852	380	121 321 10 m	3158	598
2056	1180	417	479	1350
1106	99	717	1530	518
417	599	662	2961	93
544	245	420	16	275
1268	133	715	149	3071
174	870	1500	1968	1217

- 3. Generate 5 random observations from, among CFEA.0 = 00001 browned that add to seem and I
 - (a) a Uniform distribution between -5 and 40 destroyed and 10 of life of compounds of the state of the state
 - (b) a Uniform distribution between 20 and 60
 - (c) the distribution having the p.d.f. as,

(i)
$$f(x) =\begin{cases} \frac{1}{20}(x^2 - 5) & \text{if } 5 \le x \le 20 \end{cases}$$
 of therwise on additional particular and a solution and

(ii)
$$f(x) = \frac{7}{8}x^2 + \frac{x}{3}$$
, $1 \le x \le 2$ if a form to smooth 2000 panels shown on that it is

4. The random variables P and Q are distributed as follows:

Q ~ 12 ± 8 uniformly

Simulate 50 values of each of the random variables R and S, when,

$$R = PO$$
 and $S = P/Q$

- 5. Generate five random observations from each of the following distributions.
 - (a) Exponential with mean = 5
 - (b) Erlang with mean = 5 and k = 3
 - (c) Normal with mean = 5 and standard deviation = 4.

- 6. Generate five random observations from a Poisson distribution, if the mean is 4.0.
- 7. Determine the probability of their being n arrivals (n = 0, 1, ..., 10) in an inter arrival time of 10 seconds, when the arrivals have a Poisson distribution with mean value of 0.4.
- Using the table of normal random numbers generate 50 numbers having a normal distribution, with mean value of 10 and standard deviation of 3. Plot the distribution of numbers.
- 9. The random variables X, Y, and Z are normally distributed as follows:

$$X \sim N \ (m = 100, s^2 = 100)$$

$$Y - N (m = 300, s^2 = 225)$$

$$Z \sim N \ (m = 40, s^2 = 64)$$

Simulate 25 values of the variable W = (X + Y)/Z

10. A, B, and C are independent identically distributed (IID) variables. A is normally distributed with mean 100 and standard deviation 20. B is a discrete uniformly distributed variable with probability p(b) = 0.2 with b = 0, 1, 2, 3 and 4. Variable C is again discrete and can take values as 10, 20, 30 and 40 with probabilities of .5, .25, .45 and .15. Use simulation to estimate the mean of a new variable D, which is defined as

$$D = (A - 25 B) / (2C)$$
.

Use a sample of size 20.

- 11. The number of customers, who arrive at a repair shop can be described by a Poisson distribution that has a mean of 4 per hour. Generate arrivals for the first 100 hours. Plot the frequency distribution.
- 12. The lifetime, in years, of a satellite placed in orbit is given by the following pdf

$$f(x) = \begin{cases} 0.4e^{-0.4x}, & x \ge 0 \\ 0, & otherwise \end{cases}$$

- (a) What is the probability of the life of satellite being more than 5 years?
- (b) What is the probability of the life of the satellite being between 3 and 6 years?
- 13. Data have been collected on service times at a drive in bank window at the Ludhiana Bank. This data are summarized into intervals as follows:

Interval	Frequency
(Seconds)	y
10 – 20	10
20 – 35	20
35 – 50	30
50 - 75	40
75 – 100	50
100 - 140	20
140 – 200	10

Generate 10 values of service time using the following random number string.

- 14. From the past records, it is known that 30% of the vehicles reporting at a filling station have diesel engines. Generate the number of diesel vehicles in each sample of 10 for 50 samples. Plot the distribution.
- 15. Write a computer program in FORTRAN or BASIC language for generating and plotting the following probability distribution:
 - (i) Normal (ii) Exponential (iii) Erlang (iv) Poisson.
- 6. It is known from the past records that the demand of an item (per day) takes place according to the following distribution:

 Demand
 0
 2
 3
 4
 5

 Probability
 $\frac{1}{10}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{10}$ $\frac{1}{20}$

Simulate the demand for 15 days.

[PTU, B.Tech. (Prod.) May 2006]

- 17. Collect the data on the inter arrival times and service times at a petrol pump. Approximate a probability density function for the inter arrival times and service times. How do the pdf vary over different time intervals of the day, like 7.00 AM to 10.00 AM, from 12.00 noon to 3.00 PM and from 5.00 PM to 8.00 PM.
- 18. Go to a major traffic intersection and determine the inter arrival times distribution, for the vehicles from each direction. Some arrivals want to go straight, some turn left, some turn right and some may take a U-turn. Based on this data design traffic lights system and develop its simulation model.

19. The electrical resistance of a copper wire increases with the increase in temperature. The experimental observations are given below:

Resistance (R)	19.10	25.00	30.10	36.00	40.00	45.10	50.00
Temperature (T)	76.30	77.80	79,75	80.80	82.35	89.90	85.10

By plotting a graph it can be seen that the relationship between R and T is almost linear. Develop the regression equation. [Ans. R = 71.14 + 0.2797]

 Generate 10 random observations from the following probability density function assuming a set of 10 random numbers.

$$f(x) = \begin{cases} 2x, & \text{if } 0 \le x \le \\ 0, & \text{otherwise} \end{cases}$$
 [P.U. ME (Mech.) 1988]

21. Use the one-digit random numbers 2, 7, 9, 5, 8, 0, 7, 6, 2, 5, 6, 3, 5, 7, 8 to generate random observations for the colour of a traffic light found by a randomly arriving car, when green is 60% of the time, yellow is 10% and red 30% of the time.

[PTU B.Tech. (Prod.) Dec 2006]

	ized into intervals as failures
	harmin (217
	10 - 20
	35 - 50
	30 75
	071 - 661
	140-200
01	140-200