R(q) = 22 p(x,k) w(x, q(x)) $q^*(x) = argmin k(x,d) = argmin 2 p(x,k) w(k,d) =$ p(1/T)p(T) p(1/T) p(T) (a) p(T/1)= $\frac{2}{k}$ p(1,k)0,2.0,01 20,02 0,2.0,01+0,1.0,99 (b) N(k,d) Y 0,8811 0,099 0,0099 1000 0,000 0,002 0,0079 $q^*(0) = argmin \frac{1}{2} 0,8811.0 + 0,0001.1000; 0,8811.1 + 6,0001.03 = Y$ 9×(1)= argmin 1 0,099 ·0 + 0,002 · 1000; 0,099.1 + 0,002.03=1 9*(2) = argmin 10,0050.0+0,0079.1000; 0,0099.1+0,0073.02=N (c) We mant to minimize Bagesian risk R(q) = 22 p(x,k) w(k, q(x))find optimal ctralegy qx = argmin R(q) to

This can be achieved by minimizing partial risk $R(x,d) = 2 p(x,k) w(x,d) \forall x$ Then $g^*(x) = argmin R(x,d)$ $=(1-q)^{n-1}q$ (b) $\max_{q} (1-q)^{k-1} q$ Log- likelihood: l= (k-1) ln(1-q) + ln q $\frac{\partial l}{\partial q} = \frac{k-1}{1-q} \cdot (-1) + \frac{1}{q} = 0$ (c) $\max_{q} (1-q)^{n} \max_{q} \xrightarrow{q} = 0$ 23] (a) Vanishing gradient problem might occur during back propagation especially when using activation functions like signoid, tanh or with very deep models

	d it one	might	usl	Relu (or skip
connection	25.				
(b) It 1s	a function	that r	eturns,	matimam	value of
some	neighbourhoods	. In son	ne as	chile chare	es used to
reduce	input dim	unsionality,			
(0) 74 10	7 / 11-	(/	1.4.		
	a fanctio		34		
	a vector				//
nhich	may be	Interpreted	das	probabilit	92S
(d) SGD i	s a method	for minin	n/zina/r	naximizina	functions
0.00	only on		//	. /1	
30.7					
[4]			Vg = 5		
(1) Initia	lize cluster	- centers	Sk		
(2) 455	in each	dada nas	at to	its ha	arest claster
	y each a	Java por	77 10	702 70	apest charge
7, =	- 1 x / // x	-Sx112	11 x - S;	112 /13	
(3) apda	te cluster	20. /440			
(3) Naa	de Craster	centers			
1 0	argmin 2	115-12112	if	7× +6	
Sx= <	US XETK				
		, , ,			
	reinitialize		=0		
(4) Term	inate if i	7 t+1 = 7 t	. Vk	otherwise	goto 2
		^	-		0
The diffe	eronce of	K-mlans-	++ +1	rom K-m	ears is that
	es cluster	Centere	in a		hah.
7-1010		0		, , , , , , , ,	

(iv) Ju & (1,2; 2,4] then 21 = 1 - [p(x/1)dx = 0,7 $\mathcal{E}_{2} = \int_{1}^{2} |p(k|2) dx = \frac{1}{8}$ $(V) \mathcal{M} \in (2,4;+\infty) \quad \text{then} \quad \mathcal{E}_{1} = 1 \quad \mathcal{E}_{2} = 0$ 14 E (0,8; 1,2] E,=0,4 E,=0,375 L2J (a) Given training data $7 = \frac{1}{3}(x_i, y_i)$ and a set of weak classifiers $\chi = \frac{1}{3}h_i$ and a 1. Initialize data weights $D_i = \frac{1}{171}$ for each data point 2. Select weak classifier with lovest error $h^{t} = \underset{h \in \mathcal{H}}{argmin} \stackrel{\text{2}}{2} \stackrel{\text{1}}{\downarrow} \stackrel{\text{1}}{\downarrow} h(x_{i}) \neq y_{i} \stackrel{\text{1}}{\downarrow}$ Denote the error &= 3 b; [ht(x;) + y;] 3. Terminate it & >0,5 4. Compute classifier weight 2 = 1 ln 1-E 5. Up date data weights $h_i \leftarrow \frac{h_i}{2(1-2)} \quad \text{if} \quad h^t(x_i) = y_i$

 $D_i \leftarrow D_i$ 2E $i \neq h^{t}(x_i) \neq g_i$ 6. Repeat steps 2-5 for specified number of iderations Resulting classifier H(x) = sign(22th(x))(b) O(nT)where n is number of iterations T is time to find sest near classifier (c) O(nT) where n is number of weak classifiers T is inference time for a weak classifier (d) Time to find a weak classifier may depend on number of data points, maybe use only a subset of them for finding the best weak classifier (idea like SGD). Time to classify depends on number of classifiers, maybe use only subset of such found weak classifiers during inference. (e) Adaboast may combine any other classifiers

(that is they one perceived as weat classifiers)

In such a nay to minimize overall classification

error with a gaaranteed upper bound.

Data to classify doesn't have to be real numbers for the Adaboost to north unlike in other methods.

This is	achlered	thanks	to a	specific	choice of	
weak c	lassifiers.			<i>I</i> .		
L3I max	$\int_{i}^{\pi} \rho(x_{i})$					
max 17	(211) de	$t(\zeta)^{\frac{1}{2}}$ e	xp(- 1 (x	- \under	$(\lambda_i - \mu)$	
which is	eguiralent	to				
max 17	$exp(-\frac{1}{2}$	(x,-y) TC	$-1(x-\mu)$)		
Log lis	kelihood					
1=	$-\frac{1}{2} - \frac{1}{2}()$	(-J1) C	1(x-h)	122 (x,-y,) C-1(x,-y,)	
ət əh	$= -\frac{1}{2} \stackrel{?}{=} 2$	(x;-ju) C	2-1 • (-1)		-u)TC-1 =	
\$	2 x7 c-1	- ½ μ ⁷	$C^{-1} = 2$	x7 C-1 -	- NyTC-1=0	
\(\lambda\)	/ u T C - 1 =	ź x; c-1	C	from the	right	
	$N_{M}T = \frac{1}{2}$	X _i	Justine	1		
the lo	west mea	cross-va n classi ange of	fication		validation	
	L3 W	N na	8		r might be	

and choose only odd numbers to avoid fics.

Initialization step: (1) Choose S, uniformly at random from T.
Set S= 3S, 3 (2) For each data point compute its distance from the nearest claster center $d_i = \min_{j \in S} ||x_i - S_j|| \quad \forall i$ (3) Construct probability distribution $p(i) = \frac{d_i^2}{j}$ And sample from it to get the index i ß X K=2 assume A is chosen as the first center. If randomly mialized, probability of suboptimal

solution is 3 (if C is chosen as next cluster center) Homever, during K-means such probability is lower and is equal to 91 Therefore on average in this example k-means++ leads to a better local minimum. [2] Assume lay-odds can be modeled as a linear function $\begin{cases} h & \rho(1/x) = N^{T}x + b = \begin{bmatrix} N^{T} \\ b \end{bmatrix}^{T} \begin{bmatrix} x \\ 1 \end{bmatrix} := N^{T}x$ Then build a classifier $q(x) = sign(\sqrt{x} + b)$ How to find parameters w, b? use maximum likelihood estimation p(-1/x) = exp(wTx) $\frac{p(1|x)}{1-p(1|x)} = exp(Nx)$ $exp(w^{T}x) - p(1/x)exp(w^{T}x) = p(1/x)$ $p(1/x)\left[1+exp(w^Tx)\right]=exp(w^Tx)$ $p(1/x) = \frac{\exp(w^T x)}{1 + \exp(w^T x)} = \frac{1}{1 + \exp(-w^T x)} = \sigma(w^T x)$ $p(-1/x) = 1 - p(1/x) = 1 - \frac{e_{xp}(w^{T}x)}{1 + e_{xp}(w^{T}x)} = \frac{1}{1 + e_{xp}(w^{T}x)} = \frac{1}{1 + e_{xp}(w^{T}x)}$

 $= \sigma(-wx)$

$$\frac{1}{2} = \frac{1}{6} = \frac{1}{6} = \frac{1}{1} = 0 \quad | \cdot \theta_{2} 0$$

$$N - \frac{1}{6} = \frac{1}{1} = 0 \quad | \cdot \theta_{2} 0$$

$$N - \frac{1}{6} = \frac{1}{1} = 0 \quad | \cdot \theta_{2} 0$$

$$1 - \frac{1}{6} = \frac{1}{1} = 1 \quad | \cdot \theta_{2} = 0$$

$$1 - \frac{1}{1+0} = \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0} = 1 \quad | \cdot \theta_{2} = 1$$

$$1 - \frac{1}{1+0}$$

L13 (a) argmax $\eta \rho(t_i) = argmax 17 \theta e^{-\frac{t_i}{\Theta}} =$ $= \underset{\theta}{\operatorname{argmax}} \quad \underset{\theta}{\text{2}} \quad \underset{\theta}{\text{1}} \quad \underset{\theta}{\text{2}} \quad \underset{\theta}{\text{2}$ $= \underset{\theta}{\operatorname{argmax}} \stackrel{\text{def}}{\cancel{2}} - \underset{\theta}{\operatorname{ln}} \theta - 2 \stackrel{\text{def}}{\cancel{2}} = \underset{\theta}{\operatorname{argmax}} - N \underset{\theta}{\operatorname{ln}} \theta - \frac{1}{\cancel{2}} \stackrel{\text{def}}{\cancel{2}} =$ =argmin $N \ln \theta + \frac{1}{6} \stackrel{?}{\underset{i}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}}} + \frac{1}{6} \stackrel{?}{\underset{i}{\stackrel{}}{\stackrel{}}} + \frac{1}{6} \stackrel{?}{\underset{i}{\stackrel{}}} + \frac{1}{6} \stackrel{?}{\underset{i}{\stackrel{}}}} + \frac{1}{6} \stackrel{?}{\underset{i}{\stackrel{}}} + \frac{1}{6} \stackrel{?}{\underset{i}{\stackrel{}}} +$ $\frac{\partial f}{\partial \theta} = \frac{N}{\theta} + \frac{1}{2} \cdot \frac{1}{6} \cdot \left(\frac{-1}{6^2} \right) = 0 \cdot \theta^2 \neq 0$ NO - 2 +; =0 $N\Theta = 2 \cdot 6; \longrightarrow \hat{\Theta} = \frac{1}{N} \not = \frac{1}{2} \cdot \epsilon_i$ $\hat{\theta} = \frac{1}{6} (0 + 1 + 2 + 3 + 2 + 6 + 12 = 0) = 4$ (b) Probability of a bulb failing after tend = 4: $t = \int p(t) dt = \int \frac{1}{\theta} \exp(-\frac{t}{\theta}) dt = \int \frac{1$ $=\frac{1}{\theta}\left[-\theta\exp\left(-\frac{t}{\theta}\right)\right]_{4}^{+\infty}=-\left[\exp\left(-\frac{t}{\theta}\right)\right]_{4}^{+\infty}=$

$$\frac{3f}{3\theta} = \frac{4}{1-\exp(-\frac{4}{6})} \cdot -\exp(-\frac{4}{6}) \cdot (\frac{4}{6}) + \frac{8}{6^2} = 0 \quad \theta^2 \neq 0$$

$$\frac{-16}{1-\exp(-\frac{4}{6})} \cdot \exp(-\frac{4}{6}) + 8 = 0$$

$$\frac{-16}{\exp(\frac{4}{6})} - 1 = -8 \quad | \cdot (-\frac{1}{8}) |$$

$$\frac{2}{\exp(\frac{4}{6})} - 1 = 1$$

$$\exp(\frac{4}{6}) = 3 \quad | \cdot | \cdot | \cdot |$$

$$\exp(\frac{4}{6}) = 3 \quad | \cdot | \cdot |$$

$$\exp(\frac{4}{6}) = 3 \quad | \cdot | \cdot |$$

$$\exp(\frac{4}{6}) = 3 \quad | \cdot | \cdot |$$

$$\exp(\frac{4}{6}) = 3 \quad | \cdot | \cdot |$$

$$\exp(\frac{4}{6}) = 3 \quad | \cdot | \cdot |$$

$$\exp(\frac{4}{6}) = 3 \quad |$$

$$\exp(\frac{4}{6}) = 3 \quad$$

$$= \frac{1}{6} \left[-\theta t \exp(-\frac{t}{6}) \right]_{0}^{+\infty} - \frac{1}{6} \int_{0}^{+\infty} -\theta \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[-\theta \exp(-\frac{t}{6}) \right]_{0}^{+\infty} + \frac{1}{6} \exp(-\frac{t}{6}) dt = \frac{1}{6} \left[$$

IG(weather) >0,189

Solve min E,
g
subject to E, < 0,1 Minimization of ℓ_2 is achieved at $\ell_1 = 0,1$ $\ell_1 = \int p(x|1) dx = \int 2x dx = \int x^2 \int_{2}^{2} x^2 dx = \int x^2 dx = \int x^2 \int_{2}^{2} x^2 dx = \int x^2 \int_{2}^{2} x^2 dx = \int x$ $= 1 - \frac{9}{9} \mu^{2} = 0,1$ Then $\frac{9}{9} \mu^{2} = \frac{9}{10}, \quad \mu^{2} = \frac{9}{10}, \quad \mu^{2} = \frac{81}{40}$ $\mu = \sqrt{\frac{81}{40}} = \frac{9}{2\sqrt{10}}$ 9*(x) = 12 if $15x \ge 2\sqrt{70}$ g*(x) = 12 if x vio

1 otherwise

[2] Already discussed multiple times

[3] (a) Already done

(b) Using EM algorithm

 $E(T) = \theta$ E(T)T)tend) = E(T) + tend - memory less property

of the exponential distribution

Estimate time of failed bulbs as E(T17 > tend) = E(T) + tend = 0 + 4 = 8 New estimate of the parameter 0 is $\hat{\theta} = \frac{1}{6}(0+1+2\sqrt{3}+2) + 18+8) = 3\sqrt{7}$ New estimate of time of failed bulbs is New estimate of the parameter 6=6(0+1+2,3+2,7+7,7+7,7)~3,57 Iterate all over again 8+4=757 6 23,52 Eventually should converge to $\hat{\Theta} = 3,5$ L43 Already done

Jan	uar	ጟ	20	217																	
8		$(\mid -$,			,													_
			1			scus															
L	27	F	ive	h	la	pla pla (r	ed	de	ita		7=	- 50	(χ_i)	9;	13	t	74	to	Ni i		
	fi	nd	1	uch		pla	rl	, 1	tha	t	n	raxi	imi l) (' - 95 -	$\binom{1}{m}$) ara	()	be	tw.	un	
	da	ta	0	oint	<u>.</u>	1 (1	wii 1	le	C	lac	(ifz	ina	Ľ	hem	C	Drre	dle	١			
			/x	7	-0						0	Í					0	٠.			
	Χ	;=	1																		
	1.7		IN	7	(i	relu	Hos	h	ia C												
	~	•	L6	7	Cir	ינועי	7	Q.	7)											
		No d l		2	-2			-	ma	rgil	7										
		ma) W	([],	w()					U											
6	0. 1	,		1			7.		1		1/.		^								
*	dub	lect		to	/	g; h	/'X	<i>></i>	٤		71	ع د	0 در)							
					l	/		(0)	r.M.	ct	do	1901	fico	tion	7						
	piz	K	6	≤1.	ť	her															
				-0																	
		mo	(X	111	vII																
	h	ect	6		4	; WT)	V	\ 1		¥):i										
· ·	V				1.1																
Whic	h	Lí	é	egu	iva	lent	<i></i>	60	,d	soli	Ving	j									
											0	1									
		m	7	1)	Nι																
	sub	iect		4:1	WT)	<; >	.1		Υi												
	3-1	J		0'		17															
ZihT		car)	be	,	solv	ed	6	y	Sol	vina	i	Re	de	al	p	roble	em			
us	ing		qui	adre	nt 1		pl	ogle	an	Miy	g.										_
	U							U		(/										

Pros		Cons	
Provides optima (if it paxist	l solution	Flatures have real numbers	to be
Fast inference (thanks to		7000	
With Kernel	trick may		
With Kernel transform give high-dimensiona	2 data 60() Space		
Good general	ization		
HP. a most	he coardrican f	o other class	i Lication
methods.	be comparison be		11100(0.0-)
	alize cluster center		
2. Assign	n each data po	int to its	hearist cluster
V	xe > 1 11x-cx 11 5 11		
		J J	
		netric	
3. Up	date claster cente	213	
C _K =	argmin 2 11x-c	11	
		generic metric	
4. Term	inate if the st	t+1 /k	
	2 (1. (1)		
(b) $C_k = a$	19m/n 2 1/x-c/1/1		
The sol	1 1 1 1	is the	median of the

(c))	C	'k	7	a	79	mi	7	2 XE	1 7 _K	1)	X	-(:	2_															
			So	du	tii h	on as		WI no	th	CA	L ₂ Pos.	ld	ho -t	ממ ממ	n	1.	S S	du	he ti	() lon	9e0)hj.	eGr	ic	,	ne	di	9n	0	f,	K
	We	zis	24	n e1	d	a	lg.	01 j	Chn	h																					
		0	r o	m 1	in	<i>i</i>	3	X	(; -	-M	1/2																				
						121																									
	2	•	Co						ej9	,			v;																		
				- /	vi	=	-	11	X;	1 - 1	ml	_ 														mo (4)					
	3.	. (26	ta	М		h	ew		RS-	tir	haz			α	2	,	Vl	ig	h€e	ed	S	Un	1	of	_ /	ĐO,	inl	2		
				p	7	<			T	2 . i																					
	la.	F		: cl	1		1	1	6LV	2	- CE				·	Lo	~ (a	,	C	n.	. a L									
																											/	/.	675 . O.		
((3)	N D	ac her L	h e	- (1)	ite, N ist	rat	1015 12	n the	. n	egi un	uii nbi	res		0+	(/l	/k) in	łs,	dk	sta K	nc 1s	L	ci Ore	Om:	pu no	ta m	ti be	on!)	
	`								iti a	ons		n	rig	ht		be	2	Ц	se.	fy.	P	'n	-	Ar	ta	М					
									7.0	157																					
(f	MA	lq	dy		a	ISCO	વ(ડ્ર	ld		mo	ing	1	tik	hes															