

DPP SOLUTION

Subject – Physical Chemistry

 Chapter – Thermodynamics and Thermochemistry

DPP No.- 06

By – Amit Mahajan Sir

0.16 g of methane was subjected to combustion at 27°C in a bomb calorimeter system. The temperature of the calorimeter system (including water) was found to rise by 0.5°C. Heat of combustion of methane at constant pressure is (Heat capacity of the calorimeter system is 17.7 kJ K⁻¹.

capacity of the calorimeter system is
$$17.7 \, \text{R}$$
 | R⁻¹.

-890 kJ ($^{\circ}C_{H_{4}} = 0.16 \, \text{g}$ T = 300 k $^{\circ}\Delta T = 0.5 \, \text{C}$ $^{\circ}\Delta H = ?$

2 -885 kJ $^{\circ}$ $^{$

Standard enthalpy of formation is zero for

4 λ 0_3 (g

18 g of water is taken to prepare the tea. Find out the internal energy of vaporization at $\underline{100^{\circ}C}(\underline{\Delta_{\text{vap}}} \text{ H for water at } 373 \text{ K is } 40.66 \text{ kJ mol}^{-1})$

37.56 kJ mol⁻¹ $\triangle U = ?$

$$\Delta U = ?$$

$$(2)$$
 -37.56 kJ mol⁻¹

$$(2)$$
 -37.56 kJ mol⁻¹ $(3) = \frac{18}{18}$

$$(3)$$
 43.73 kJ mol⁻¹

$$4$$
 -43.76 kJ mol⁻¹

$$-43.76 \text{ kJ mol}^{-1} \qquad \Delta H = \Delta U + \Delta ng R T$$

$$=40.66 - 1 \times 25 \times 373 = 40.66 - 9325$$
 $=3000$

$$= 40.66 - 3.1 = 37.56 \text{ kg}$$
Ans. (1)

When 0.5 g of sulphur is burnt to SO₂, 4.6 kJ of heat is liberated. What is the enthalpy of formation of Sulphur dioxide.

$$(2)$$
 -147 kJ

The enthalpy change for the reaction $H_2O(s) \rightarrow H_2O(\ell)$ is called

(1) Enthalpy of formation

Enthalpy of fusion

- (3) Enthalpy of vaporisation
- 4 Enthalpy of transition

The ΔH° for the reaction, 4 S (s) + $6O_2(g) \rightarrow 4SO_3(g)$ is -1583.2 kJ.-Standard enthalpy of formation of sulphur trioxide is:

- 1) -3166.4 kJ $1S + \frac{3}{2}O_{2}(9) \longrightarrow 1SO_{3}$
- 2 3166.4 kJ
- -395.8 kJ
- (4) 395.8 kJ

Hmoll SO3 > 1583.2 KJ Heat released 1 moll So3 > 1583.2 = 395.8 KJ Heat H

DH = -395.8 KJ

Bond dissociation enthalpy is used to defining enthalpy change of a reaction as

- 4
- $\Delta H_r = \Sigma$ (Bond dissociation enthalpy)_{Reactant} Σ (Bond dissociation enthalpy)_{Product}
- $\Delta H_r = \Sigma$ (Bond dissociation enthalpy)_{Product} Σ (Bond dissociation enthalpy)_{Reactant}
- (3) $\Delta H_r = \Sigma$ (Bond dissociation enthalpy)_{Product} + Σ (Bond dissociation enthalpy)_{Reactant}
- 4 None of these

The heat released in neutralization of HCl and NaOH is 13.7kcal/mol, the heat released on neutralization of NaOH with CH_3COOH is 3.7 kcal/mol. The ΔH° of

- ionization of CH₃OOOH is
- (1) 10.2 k cal

13.7 K Cal

2 10 k cal

$$3.7 = 3.7 + (3c)$$

- (3) 3.7 k cal
- (4) 9.5 k cal

Heat of neutralization of strong acid by a strong base is equal to ΔH of

$$H^+ + OH^- \rightarrow H_2O$$

WA CH3COOH

NaOH

The Enthalpy of neutralization of acetic acid and sodium hydroxide is -55.4 kJ. What is the enthalpy of ionisation of acetic acid?

$$(4)$$
 -1.9 kJ

Which of the following acid has the lowest value (magnitude) of heat

neutralization?

- HBr

CH₃COOH most went max. w.A.

Need in dissociation

Need in dissociation

The enthalpy of neutralization of any strong acid and strong base is nearly equal to

- (1) +57.3 kJ/mol
- 2 –75.3 kJ/mol
- (3) +75.3 kJ/mol
- -57.3 kJ/eq

