Definition. Given a DPI $\langle F, R, I, \text{prov}, \text{req} \rangle$, define the map $h: F \to \mathcal{A}R$ that associates to each functionality f the objective function of $\ref{eq:prop:sec:$

$$h: F \rightarrow \mathcal{A}R,$$

$$f \mapsto \min_{\leq_R} \{ \operatorname{req}(i) \mid (i \in I) \land (f \leq \operatorname{prov}(i)) \}.$$

 \leq_{R} If a certain functionality f is infeasible, then $h(f) = \emptyset$.