4 system study approaches

- Energy thermo
- start meds, solid state - Matter
- EM, Quartum - Wares
- Mathematical Mobiling

Diffusion Randon Walh.

Hamiltonian function Gives total energy of the system

$$\frac{1}{H(\xi\bar{r}^{2},\xi\bar{p}^{3})} = U(\xi\bar{r}^{3}) + K(\xi\bar{p}^{3})$$

Hamildon's Equations

Isolated System: No energy exchange with Surroundings.

$$\Rightarrow \frac{N}{|\vec{r}|} \left\{ \frac{\partial H}{\partial \vec{r}_i} \frac{\partial \vec{r}_i}{\partial t} + \frac{\partial H}{\partial \vec{r}_i} \cdot \frac{\partial \vec{r}_i}{\partial t} \right\} = 0.$$

$$\frac{\partial r_i}{\partial t} = \left(\frac{\partial}{\partial t} x_i, \frac{\partial}{\partial t} y_i, \frac{\partial}{\partial t} z_i \right)$$

$$\frac{\partial H}{\partial \vec{r}_i} = -\frac{\partial \vec{P}_i}{\partial t}$$

$$\frac{\partial \vec{b}}{\partial H} = \frac{\partial \vec{v}}{\partial t}$$

$$S \propto lm(\Omega(Ei))$$

 $S = V_B lm(\Omega(Ei))$

LALCULATIONS IN ISOLATED SYSTEM

m= mass of light atom

$$M = mass of (ight atom)$$

$$H(x, p) = \frac{p^2}{2m} + \frac{1}{2} k(x-n_0)^2 = E$$

Reorganisty,

$$\frac{2}{2mE} + \frac{(n-x_5)^2}{\left(\frac{2E}{K}\right)^2} = \frac{3qudm3}{2^{2q}q_K}$$

Using ellipse model,

D(E) = counterere of ellipse / SE.

or
$$\Omega(E) \propto T \left(\int \frac{2E}{K} + \int 2mE \right)$$

2. Ideal Gas Colubbe D(E) dependence on N

h= arbitary
h= Plandi's contact in am RFONE

(H-E) = 1 13 H==E | Brace CKR F

o alreadise. Delta

$$\mathcal{D}(NN'E) = \frac{1}{1} \left\{ \begin{cases} 1/(1+E) & 2 \neq 1 \neq 2 \neq 1 \end{cases} \right\}$$

Hamilbian. frud. H(rp) = 1 Z P,P;

Now,
$$\Xi P^2 = (2mE)^2$$
 = Sephere.
Surface area $\propto (\sqrt{2mE})^3 N^{-1}$
 $\propto E^{\frac{3N-1}{2}}$

DNVIE X 1 VN E 3N-1

CALCULATIONS IN A CLOSED SYST

P(Ei)
$$\propto e^{-\beta Ei}$$
, $B = \frac{1}{\kappa_6 T}$

$$P(E_i) \propto e^{-\beta E_i}$$
 $P(E_i) = \frac{-\beta E_i}{Z}$
 $P(E_i) = \frac{-\beta E_i}{Z}$
 $P(E_i) = \frac{-\beta E_i}{Z}$

$$= \frac{1}{\sqrt{3}} \int_{\xi \vec{r}} e^{-\beta H(\vec{s}\vec{r},\vec{s}\vec{p})} d\xi \vec{r} d\xi \vec{p}$$

10 Harmaic Oscillator CE>

$$Z = \sum_{i} e^{-\beta G_{i}}$$

$$= \sum E_{i} \left(\frac{e^{-\beta E_{i}}}{2} \right)$$

Covorione and
$$CV$$

$$\frac{\partial}{\partial B} \left[\sum_{i} E_{i} e^{-BE_{i}} \right] = \frac{\partial}{\partial B} \left[\sum_{i} \sum_{j} \frac{\partial}{\partial B} (uz_{j}) \right]$$

$$+ \geq E_i^2 e^{-\beta E_i} = + \left[\frac{1}{2} \frac{\partial^2 (mz)}{\partial \beta^2} + \frac{\partial z}{\partial \beta} \frac{\partial z}{\partial \beta} \right]$$

$$\langle E_{i}^{2} \rangle = \frac{d^{2}}{dR^{2}} (mz) + \left(\frac{d}{dR} (mz) \right)^{2}$$

$$\langle \pm_i^2 \rangle - \langle \mp_i \rangle^2 = \frac{d^2}{d\beta^2} (\ln 2)$$

$$\langle E^{2} \rangle - \langle E \rangle^{2} = \frac{-\frac{\delta}{\delta T} \langle E \rangle}{\frac{\delta}{\delta T} B} = \frac{-\frac{cv}{v_{0}T^{2}}}{\frac{1}{v_{0}T^{2}}}$$

$$= \frac{-\frac{v_{0}}{\delta T} \langle E \rangle}{\frac{\delta}{\delta T} \langle E \rangle}$$

$$\frac{\partial^2}{\partial \beta^2} \ln Z = -\frac{\partial}{\partial \beta} \langle E \rangle$$

$$\beta = \frac{1}{K_B T}$$

$$\frac{\partial B}{\partial T} = -\frac{1}{K_B T^2}$$

$$\bigcirc$$
 Entropy for a closed system $S = -K_B \ge P_i \ln P_i = -K_B \le \ln P >$

3) Hemboltz free energy

$$S = - K_{B} \lesssim \left(\frac{e^{-\beta E_{i}}}{Z} \right) \left(- \frac{1}{B} = - \frac{1}{M} Z \right)$$

Lagrangian Mediarios

- Lagrangian: $L(q, \dot{q}, \dot{t})$

depudence on three 15 implicits.

L= K(\$) - U(4)

In statespace:

Taling the less action path. $Adm(s) = \int_{-L}^{L_2} (q, \dot{q}, t) dt$

DERIVING LAGRANGE'S EQUATIONS OF MOTION

. Consider 2 paths: least total, and something else.

(q(t), q(t)) -> least action path. (q(t)+8q(t), q(t)+8q(t)) - other path.

· The palms must meet at to and to.

$$\delta q(t_1) = \delta q(t_2) = 0$$

S for east Action: I L(4, 4, t) old

. Change In S:

\$\int_{1} \left(q + \delta q, \delta + \delta q, \delta \)

to

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \left(q + \delta q, \delta + \delta q, \delta \)

\[
\text{to } \quad \qua

$$\kappa SS = \int_{-\infty}^{+\infty} \left(\frac{3L}{2L} Sq + \frac{3L}{2L} \frac{3q}{2L} \frac{dt}{dt} (Sq) \right) dt$$

$$\xi_{q}^{*} = \frac{k}{kt} (\xi_{q})$$

$$\int \frac{\partial L}{\partial \dot{q}} \frac{d}{dt} (Sq) dt$$

$$O = \left[\frac{\partial L}{\partial \dot{q}} \quad \mathcal{S}q\right]_{Q_1}^{Q_2} - \int_{Q_1}^{Q_1} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right) \mathcal{S}q \, dt.$$

Sure 80=0@ t,t2.

$$SS = \int_{1}^{2} \frac{dL}{dq} Sq dt - \int_{1}^{2} \frac{dL}{dq} \left(\frac{dL}{dq} \right) Sq dt$$

$$SS = \int_{1}^{2} \left(\frac{dL}{dq} - \frac{dL}{dq} \right) Sq dt$$

In path of least action:

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \delta.$$
LAGRANGE'S

MOTOR

FOULTON OF NO TO N.

Again,
$$\frac{\partial L}{\partial q} = -\frac{\partial U}{\partial q} \left(\frac{\chi_{m} L = K - U}{\chi_{m}} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial q} \right) = \frac{\partial L}{\partial q} \left(\frac{\partial L}{\partial$$

Derning:

$$\frac{\partial L}{\partial t} = \frac{N}{N} \frac{\partial L}{\partial q_{i}} \frac{\partial Q}{\partial t} + \frac{N}{N} \frac{\partial L}{\partial q_{i}} \frac{\partial Q}{\partial t}$$

$$= \frac{N}{N} \frac{\partial L}{\partial t} \left(\frac{\partial L}{\partial q_{i}} \right) - \frac{\partial L}{\partial t}$$

$$= \frac{N}{N} \frac{\partial L}{\partial t} \left(\frac{\partial L}{\partial q_{i}} \right) - \frac{\partial L}{\partial t} = 0$$

$$\frac{\partial L}{\partial t} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial t} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} - \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} \frac{\partial L}{\partial q_{i}} = 0$$

$$\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial \dot{q}} - L = H$$

Eg: Simple Pandulum

Step1: Construct L

K(8), U(8)

 $L(\theta,\dot{\theta}) = \kappa(\dot{\theta}) - \sigma(\theta)$

Step 2: $\frac{\partial L}{\partial \theta}$ and $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right)$

 $\frac{\partial L}{\partial \theta} = -mgl \sin \theta$

 $\frac{\partial}{\partial r} \left(\frac{\partial S}{\partial r} \right) = m_{r} \theta$

Mathematical Modelling

The process: Diffusion. Model: Random walk.

10 Rondon Walh.

£ 5 P (frieng at point, after t steps) 15 a gaussian distribution

N= total steps N1 = " " -

Displacement m = [n,-n2)/ l= length of each step

 $P(n_1, steps) = \frac{N!}{n_1! n_2!} P^{n_1} q^{n_2} = W_N(n_1)$

 $b_{N}(m) = \frac{N_{i}}{\left(\frac{M+m}{N}\right)\left(\frac{N-m}{N}\right)} b_{\frac{N+m}{N}} \delta_{\frac{N-m}{N}}$

 $\langle N_i \rangle = \sum_{N_i = 0}^{N_i = 0} w_N(N_i) N_i$ $= \sum_{N=0}^{N'; (N-N')} \frac{N'; (N-N')}{N!} \int_{V'} d_{(N-N')} N' \int_{V'} \frac{3b}{b_{N'}} \int_{V'} \frac{3b}{b_{N'}}$ $= \sum_{N'} \frac{N' (N-N)!}{N!} \delta_{(N-N)} \left[b \frac{3b}{3b} \right]$

 $= b \frac{9b}{9} \left[\leq \frac{w'i(y-w')j}{Ni} d_{y-w} b_{y'} \right]$

= bg (b4d) = bN (b4d)_4=1

Quantum Mechanics

Motivations

1. Black Body Radiation

2. Photoelectric effect

3. Hydrogen Spectrum

4. Heat capacity of soluts (at low temps)

J. Diffraction of electrons by mystals

6. Spril Angular Momentum.

If 2 If cost 10. 3.5 x 32 $f(x,y) = f(x,y) = +(-\sin x)$ $= -\sin x$