CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 18

The Nuclear Overhauser Effect

NOE: <u>Nuclear Overhauser Effect or Nuclear Overhauser Enhancement</u>

- Depends on dipole-dipole relaxation (an important mechanism of \mathbf{T}_1 relaxation)
- Is based on through-space interactions that change M_z
- The NOE changes the intensities of particular signals
- The magnitude of the NOE is related to nuclear distances and molecular motions

1. <u>1D steady-state NOE experiment</u>:

Consider a two-spin system AX:

- -Assume the homonuclear case (A and X are both ¹H, although they need not be)
- -Assume no scalar coupling between A and X (J = 0)
- -Assume the internuclear A-X distance is $\leq \sim 5\text{Å}$ (NOE enhancement depends on $1/r^6$ where r is internuclear distance)

So, the simple 1D spectrum gives 2 signals with no splitting (J=0):

To establish the NOE, we will selectively saturate the 'A' transition with an RF field to equilibrate the spin populations:

What happens to the population levels when we saturate one of the signals, and what happens afterwards?

-Let's look at the energy level diagrams:

A). At equilibrium:

$$N4 = N$$

$$N3 = N + \Delta H$$

$$N2 = N + \Delta H$$

$$N1 = N + 2\Delta H$$

'A' transitions:
$$N1 - N3 = N2 - N4 = \Delta H$$

'X' transitions:
$$N1 - N2 = N3 - N4 = \Delta H$$

- 'A' and 'X' transitions are allowed and observable
- 'A' and 'X' transitions give singlets in 1D spectrum

B). After saturation of the 'A' transition:

$$N4 = N + \Delta H/2$$

$$N3 = N + 3\Delta H/2$$

$$N2 = N + \Delta H/2$$

$$N1 = N + 3\Delta H/2$$

- 'A' transitions: N1 N3 = N2 N4 = 0
- 'X' transitions: $N1 N2 = N3 N4 = \Delta H$ (same as at equilibrium)

-populations of N1, N2, N3, and N4 are now different than they were at equilibrium

C). Now, allow relaxation during saturation:

er ation $\Delta H/2$ ΔH
ation $\Delta H/2$

- W₀, W₁, and W2 are rate constants or transition probabilities
- W_1 is a one-spin transition or single quantum transition
- W₀ and W₂ are two-spin transitions
- W₀ is a zero quantum transition
- W₂ is a double quantum transition
- W_0 and W_2 are spectroscopically FORBIDDEN and cannot be observed
 - -HOWEVER, they are ALLOWED for relaxation

Let's suppose W_0 is more efficient than W_2 (<u>large molecule case</u>):

-in this case, the system will attempt to return to equilibrium by moving spins from N3 to N2 $\begin{array}{c} \beta\beta \\ \text{N4} \\ \text{X} \end{array}$ A $\begin{array}{c} \beta\alpha \\ \text{N5} \\ \text{A} \end{array}$ N3 after saturation and W₀ relaxation $\begin{array}{c} N4 = N + \Delta H/2 \\ N3 = N + 3\Delta H/2 - \delta \\ N2 = N + \Delta H/2 + \delta \\ N1 = N + 3\Delta H/2 \end{array}$ A $\begin{array}{c} \alpha\beta \\ \text{N2} \\ \text{N3} \end{array}$

'X' transitions: $N1 - N2 = N3 - N4 = \Delta H - \delta$: intensity of 'X' reduced !!

Let's suppose W_2 is more efficient than W_0 (small molecule case):

-in this case, the system will attempt to return to equilibrium by moving spins from N4 to N1

after saturation and W₀ relaxation

 $N4 = N + \Delta H/2 - \delta$

 $N3 = N + 3\Delta H/2$

 $N2 = N + \Delta H/2$

 $N1 = N + 3\Delta H/2 + \delta$

'X' transitions: $N1 - N2 = N3 - N4 = \Delta H + \delta$: intensity of 'X' increased !!

Summary:

(reminder: τ_c is the correlation time of the molecule (sec))

- for small molecules (short $\tau_{c}) \; W_{2}$ dominates
- for large molecules (large τ_c) W_0 dominates
- because $W_{\scriptscriptstyle 0}$ and $W_{\scriptscriptstyle 2}$ depend on $B_{\scriptscriptstyle 0},$ the NOE also depends on $B_{\scriptscriptstyle 0}$

2. Enhancement Factor for Small Molecules:

Maximal enhancement for small molecules (η) :

$$\eta = \gamma_a / 2\gamma_x$$
 A: saturated X: observed (γ is gyromagnetic ratio, of course)

Total Intensity (I):

$$I = (1 + \eta) I_0$$
 $I_0 = original intensity$

Examples:

a. Fractional increase in ¹³C NMR signal intensity with BB ¹H decoupling:

$$\eta = \gamma_a / 2\gamma_x$$

 $\eta = 4 / (2 \times 1) = 2$ i.e. signal increased by a factor of 2 (200%)

b. Fractional increase in ¹H NMR signal intensity with BB ¹³C decoupling:

$$\eta=1/8=0.125~$$
 i.e. signal increased by a maximum of 12.5% $I=(1+0.125)~I_0=1.125~x~I_0~$ (signal is slightly more intense)

3. Multi-Spin Systems:

Consider a homonuclear 3-spin system A-B-C

- assume no J coupling
- assume the molecule is a small molecule
- -If A is saturated, the intensity of the signal from B is increased
- -The saturation of A affects the populations of the B-C system, which causes an indirect NOE to C.
- -Thus, this indirect NOE is negative

4. <u>Dependence of Maximum ¹H-¹H Homonuclear NOE on B₀ and molecular mass:</u>

The magnitude and sign of the ¹H-¹H NOE are dependent on:

- the Larmor frequency, ν (sometimes ω), which depends on B_0
- the correlation time, $\tau_{\text{c}},$ which depends on molecular size (mass)
 - -VERY crudely, $\tau_c \approx 10^{-12}$ MW (where MW is molecular mass in Daltons)
 - -example: $\tau_c \approx 10$ ns for 10 kDa molecule

Note:

- NOE is *positive* for *small* molecules
- NOE is negative for large molecules
- NOE is zero at $\omega \tau_c \approx 1$

examples: -at 200 MHz, NOE is zero for molecules with $\tau_c \approx 5$ ns (approximately 5 kDa)

-at 800 MHz, NOE is zero for molecules with $\tau_c \approx 1.25$ ns (approximately 1.25 kDa)

5. <u>Dependence of the magnitude of the NOE on Internuclear Distance:</u>

In the absence of external relaxation:

- the maximal enhancement in achieved
- the NOE is distance independent

In the presence of external relaxation:

- two-spin steady-state NOE depends on internuclear distance

f = NOE enhancement $\propto 1/r^6$

(r = internuclear distance)

-this effect is usually observed only for ${}^{1}H$ - ${}^{1}H$ distances ≤ 5 Å

Examples of external relaxation:

- a). intermolecular relaxation caused by paramagnetic agents
 - -field at a nucleus depends on the presence of unpaired electrons
 - -examples: dissolved O₂, manganese and other metal impurities
- b). quadrupolar relaxation
 - -energy of quadrupole nuclei varies with the fluctuating electric field gradient
 - -dominant mechanism for nuclei with I > 1/2 (²H and ¹⁴N)
- c). chemical shift anisotropy (CSA)
 - -anisotropy produces a different field at the nucleus depending on the orientation of the bond relative to the applied field
 - -significant for nuclei with large CSA (19F, 31P)