1 图与子图

下面概念描述了由原图得到其它图的方法.

Definition 1.1 (子图). 设图 $G = (V, E), V' \subseteq V, E' \subseteq E$, 则图 G' = (V', E') 称为 G 的子图. 若 $G' \neq G$, 则称 G' 为 G 的真子图.

相比子图, 导出子图的概念更常见.

Definition 1.2 (点导出子图). 设 $G = (V, E), V' \subseteq V$. 定义 V' 的点导出子图 (vertex-induced subgraph) 为 G(V') = (V', E'), 其中:

$$E' := \{(a, b) \in E \mid a, b \in V'\}.$$

换句话说, G(V') 的边集由 E 中关联 V' 中任意顶点的的边构成. 这意味着两方面: (1) V' 中任意两点若在 G 中关联, 则这条边就在导出子图中; (2) 若 (a,b) 为导出子图中的一条边, 则 a,b 在原图中也是关联的.

同理还可得到边导出子图: 设图 G 边集的子集 $E' \subseteq E(G)$, 则 E' 的边导出子集:

$$\begin{cases} V(G(E')) \coloneqq \{a \mid \exists b, (a,b) \in E'\} \\ E(G(E')) = E' \end{cases}.$$

Definition 1.3 (删除点). 对于图 G = (V, E), 设 $v \in V$. 则删掉这个点及其关联的 边, 剩下的图记作 G - v. 也即:

$$\begin{cases} V(G-v) \coloneqq V - \{v\} \\ E(G-v) \coloneqq \{(a,b) \in E \mid a \neq v \land b \neq v\} \end{cases}$$

注意: E(G-v) 的等价定义为 $\{(a,b) \in E \mid a,b \in V - \{v\}\}$.

同理还可以得到删除多个点及其中每个点关联的边得到的图, 记点集 $V' \subseteq V$. 则 G-V' 可以定义为:

$$\begin{cases} V(G - V') \coloneqq V - V' \\ E(G - V') \coloneqq \{(a, b) \in E \mid a, b \in V - V'\} \end{cases}$$

从导出子图以及删点子图的定义,不难得到下面的结论:

Proposition 1.1. 设 G = (V, E), 若 V' 和 V'' 为 V 的一个划分, 即: $V' \cap V'' = \emptyset$ 且 $V' \cup V'' = V$. 则有:

$$G(V') = V - V'',$$

$$G(V'') = V - V'.$$

也就是说, 导出子图 G(V') 可以定义为删去所有除 V' 之外的点 (即 V'') 以及其关联的边后剩下的图.

1.1 点度

Definition 1.4 (度). 无向图中,点 v 的度数定义为与这个点相关联的边的数目,记作 d(v) 或 $\deg(v)$. 有向图中,点 v 的度分为出度和入度: 出度为以 v 为起点的边的数目,记作 $d^+(v)$;入度为以 v 为终点的边的数目,记作 $d^-(v)$.

Remark. 出度为正,入度为负的规定方式和散度的正负类似.

图 G中,最大点度和最小点度定义为:

$$\Delta := \max\{d(v) \mid v \in V(G)\},\,$$

$$\delta := \min\{d(v) \mid v \in V(G)\}.$$

Theorem 1.1 (握手定理). 无向图 G = (V, E) 满足所有点度之和等于边数量的两倍:

$$\sum_{v \in V} d(v) = 2|E| = 2\varepsilon(G).$$

而在有向图中, 有类似的关系:

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = \varepsilon(G).$$

由握手定理可以得到下面的推论 (为引述方便, 称度数为奇数的点为奇点, 度数为偶数的点为偶点):

Proposition 1.2. 对于任意简单无向图, 奇点的个数一定为偶数.

2 无向图的连通性

Definition 2.1 (道路, 简单道路与路径). 定义道路 (walk) 为一系列交替的点和边的序列: $v_0, e_1, v_1, e_2, v_2, \ldots, e_n, v_n$; 其中 e_i 关联 v_{i-1} 和 v_i .

- 若道路中除首尾两个点, 没有相同的节点, 即对任意 $1 \le i, j \le n-1$, 有 $v_i \ne v_j$, 则称该道路为简单道路 (path)
- 若道路中没有重复的边,则称其为路径 (trail)
- 若道路首尾两点为同一点,则称其为回路;若简单道路的首位两点为同一点,则 称其为简单回路

Remark. 可以看出, 从道路, 到路径, 到简单道路, 条件逐渐加强.

限制	英文	翻译1	翻译2	闭合时	闭合时翻译
	walk	道路	道路	closed walk	回路
edge-distinct	trail	简单道路	路径	circuit	简单回路
vertex-distinct	path	基本道路	简单道路	cycle	环/圈(基本回路)

对于道路 $v_0, e_1, v_1, \ldots, v_{n-1}, e_n, v_n$, 其含有 n 条边, 称这条道路的长度为 n, 记作 $d(v_0, v_n) = n$.

下面几张示意图描述了上面几个术语之间的区别, 注意箭头并不表示有向图, 数字也不代表赋权, 此处只是形象化的表示出这条道路从起点到终点的行进过程和顺序.

Lemma 2.1. 简单图中, 任何简单回路都包含圈. (任何简单图都可分为多个圈?)

说明. 如果简单回路中不存在重复内点,则其自身就是圈.

如果简单回路不是圈,则其存在重复的内点 $v_i = v_j$. 删掉其中的回路,得到 $v_0, e_1, v_1, \dots v_i, e_{j+1}, v_{j+1}, \dots, v_n = v_0$,如果剩下的回路不是圈,则重复上面的步骤,最终能够得到一个圈.

Lemma 2.2. 边 e 在圈中 \iff e 在简单回路中.

证明. 设 e 在圈中, 由于一个圈必然是一个简单回路, 所以 e 也在简单回路中.

设边 e 为简单回路 $v_0, e_1, v_1, \ldots, e_n, v_n$ 的一条边, 任何简单回路都可以由几个圈组成, 故 e 也在其中.

Definition 2.2 (连通). 对于无向图 G 中的两点 a, b, 称这两点是连通的, 如果能够找到一条道路, 使得 a 为起点 b 为终点或 b 为起点 a 为终点. 称 G 是连通的, 当且仅当任意 $u,v \in V(G)$, u 和 v 是连通的.

例 下图中, 红黄两点为连通的, 而这两点和蓝点是不连通的.

Proposition 2.1. 图 G = (n, m), 若存在一条 v_i 到 v_j 的道路, 当且仅当一定存在一条 v_i 到 v_j 的长度不大于 n-1 的道路.

证明. 充分条件是不证自明的.

对于必要条件, 若存在一条 v_i 到 v_j 的道路, 如果其长度大于 n-1, 则其中必然存在 重复的点. 如 $v_1, v_2, \ldots, v_i, \ldots, v_j, \ldots, v_k$, 其中 $v_i = v_j$, 则可以删掉 v_i 到 v_j 的回路, 构造出一条更短的道路: $v_1, \ldots, v_i, v_{j+1}, \ldots, v_k$. 重复上面的过程, 当没有重复点的时候, 其长度必然不大于 n-1.

所以 G = (n, m) 中, u 和 v 是连通的充要条件可以等价地强化为存在一条 a 到 b 或 b 到 a 的长度不大于 n-1 的道路.

Definition 2.3 (连通分支). 设 G 为无向图, 则 G 的一个连通分支是 G 的一个子图 G', 且 G' 不是另一连通分支的子图. 换句话说, G 的连通分支是 G 的一个极大连通子图. 图 G 连通分支的个数记作为 $\omega(G)$.

例 下图用红蓝橙三种颜色标注出了三个连通分支,该图的连通分支数 $\omega(G)=3$:

2.1 连通度

Definition 2.4 (点割集/割点). 设 G = (V, E) 为无向连通图, $V' \subseteq V$. 若删去 V' 后, G - V' 不再连通, 则称 V' 为 G 的一个点割集. 若 V' 是单元素集, 则这个点 v 称为割点.

Definition 2.5 (边割集/割边). 设 G = (V, E) 为无向连通图, $E' \subseteq E$. 若删去 E' 后, G - E' 不再连通, 则称 E' 为 G 的一个边割集. 若 V' 是单元素集, 则这个边 e 称为割边或桥.

例 下图中, 删除蓝色的点, 原本的连通图变得不再连通, 所以这个点为一个割点. 删除红色的边, 图也变得不连通, 所以这条边为一条割边(或桥).

Definition 2.6 (连通度). 设 G 的点割集族为 $\{V_1, V_2, ..., V_n\}$, 则定义点连通度 (简称连通度)为:

$$\kappa(G) := \min\{|V_1|, |V_2|, \dots, |V_n|\},\,$$

即最小的点割集基数. 同理可以定义边连通度 $\lambda(G)$.

换句话说,点/边连通度描述了使图不再连通需要删除的最少的点/边的数量. 容易得到,对于 n 个点 $0 \le \kappa(G) \le n-1$, $0 \le \lambda(G) \le n-1$. 而如果 G 本就是不连通的,则定义 $\kappa(G) = \lambda(G) = 0$,因为无需删点/边就能达到不连通. n 个顶点的图,连通度不能为 n,因为删去所有顶点没有意义.

注意到一点, 对于完全图 K_n , 无论删去多少点, 图总是连通的, 所以定义 K_n 的点连通度和边连通度 $\kappa(K_n) = \lambda(K_n) = n-1$, 后面会说明, n 阶非完全图的最大连通度只能大到 n-2, 所以剩下的 n-1 分配给完全图是很自然的.

综上所述, 可以通过给定点连通度, 图有两种情况:

- ▲ 点连通度为 0: G 不连通或 G 只有一个顶点 (即 K₁)
- 点连通度为 1: G 最少删去 1 个顶点就不再连通, 或 G 为完全图 K_2
- 点连通度为 n: G 最少删去 n 个顶点就不再连通, 或 G 为完全图 K_{n+1}

例

Proposition 2.2. 无向图中, 下面三个命题等价:

- $\kappa(G) = n 1$
- $\lambda(G) = n 1$

G 是完全图 K_n

也就是说: 若 n 顶点图 G 不是完全图, 则 $\kappa(G) \leq n-2$, $\lambda(G) \leq n-2$.

Proposition 2.3. 设有无向图 G, 其点连通度 $\kappa(G)$, 边连通度 $\lambda(G)$ 和最小点度 $\delta(G)$ 存在不等关系:

$$\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

当(且仅当? 待证)边割集中的边无公共端点时, $\kappa(G) = \lambda(G)$.

证明. 证明 $\lambda(G) \leq \delta(G)$: 取度最小的点 $v, d(v) = \delta(G)$. 删除与 v 关联的所有边, 一定能够使图不连通. 删除了 $\delta(G)$ 条边, 边连通图 $\lambda(G) \leq \delta(G)$.

证明 $\kappa(G) \leq \lambda(G)$: 考虑最小的边割集

$${e_i \mid 1 \leqslant i \leqslant \lambda(G)}$$
.

如果删除边割集中所有边关联的对应的两个端点之一, 则整个边割集中的边也都被删去, 图也就不连通. 当边割集中的边没有公共端点时, 删去每一条边的端点会导致不连通, 因而此时 $\kappa(G) = \lambda(G)$; 而当边割集中的边存在公共端点时, 删去公共端点, 多条边被同时删去, 故此时需要删去的端点就少于边割集中边的数量, $\kappa(G) < \lambda(G)$.

3 图的表示

3.1 邻接矩阵

设 $\mathbf{A} = (a_{ij})_{n \times n}$ 为图 G 的邻接矩阵. 矩阵的幂 $\mathbf{A}^n = \mathbf{A}\mathbf{A}\cdots\mathbf{A}$ 里包含了 G 中长度为 n 的道路(不妨称其 1—道路)的信息.

 $Remark. \ \mathbf{A}^n = \mathbf{A}\mathbf{A}\cdots\mathbf{A} \ \boxtimes$ 别于 $\mathbf{A}^{[n]} = \mathbf{A}\odot\mathbf{A}\odot\cdots\odot\mathbf{A}.$

令 $w_{ij}^{(k)}$ 表示 v_i 到 v_j 的长度为 k 的道路数目. 显然: $w_{ij}^{(1)}=a_{ij}$. 考虑 $\mathbf{B}=\mathbf{A}^2$:

$$b_{ij} = \sum_{\gamma=1}^{n} a_{i\gamma} a_{\gamma j} = \sum_{\gamma=1}^{n} w_{i\gamma}^{(1)} a_{\gamma j}^{(1)}.$$

而对于每一个 $\gamma \in [1..n]$, $w_{i\gamma}^{(1)}$ 为 v_i 到 v_{γ} 的 1—道路数, $w_{\gamma j}^{(1)}$ 为 v_{γ} 到 v_j 的 1—道路数, 那么从计数原理中的乘法公式中, 可以知道: $w_{i\gamma}^{(1)}w_{\gamma j}^{(1)}$ 表示 v_i 到途经 v_{γ} 到达 v_j 的道路数, 且该道路长度为 2.

那么 $w_{i1}^{(1)}w_{1j}^{(1)}+w_{i2}^{(1)}w_{2j}^{(1)}+\cdots+w_{in}^{(1)}w_{nj}^{(1)}$ 自然就得到 v_i 到 v_j 的 2—道路数.

Proposition 3.1. 若图 G 的邻接矩阵为 $\mathbf{A}_{n\times n}$, 则 $(\mathbf{A}^k)_{ij}$ 表示 v_i 到 v_j 的长度为 k 的道路数. 换句话说, 令 $\mathbf{B} = \mathbf{A}^k$, 则 $b_{ij} = w_{ij}^{(k)}$.

证明. 对 k 归纳. 当 k=1 时, $b_{ij}=a_{ij}=w_{ij}^{(1)}$. 这是基础情形. 现归纳地假设当 $\mathbf{B}=\mathbf{A}^k$ 时, $b_{ij}=w_{ij}^{(k)}$. 证明当 $\mathbf{B}=\mathbf{A}^{k+1}$ 时, $b_{ij}=w_{ij}^{(k+1)}$.

当 $\mathbf{B} = \mathbf{A}^{k+1}$ 时, 设 $\mathbf{C} = \mathbf{A}^k$, 于是 $\mathbf{B} = \mathbf{C}\mathbf{A}$:

$$b_{ij} = \sum_{\gamma=1}^{n} c_{i\gamma} a_{\gamma j} ,$$

而根据归纳假设和基础情形 $c_{i\gamma}=w_{i\gamma}^{(k)},\,a_{i\gamma}=w_{i\gamma}^{(1)}.$ 所以:

$$b_{ij} = \sum_{\gamma=1}^{n} w_{i\gamma}^{(k)} w_{\gamma j}^{(1)}$$
.

下面说明等式右侧就等于 $w_{ij}^{(k+1)}$. 下面为表述方便,引入记号 $\left\{u\stackrel{k}{-}v\right\}$ 表示起点为 u 终点为 v 的长度为 k 的道路集合. 我们需要证明对于任意 $1 \leqslant \alpha < \beta \leqslant n$,道路 $\left\{v_i\stackrel{k}{-}v_\alpha\stackrel{1}{-}v_j\right\}$ 和 $\left\{v_i\stackrel{k}{-}v_\beta\stackrel{1}{-}v_j\right\}$ 互斥,这样同一条道路才不会被计算多次. 使用反证法,假设存在一条 $v_i\stackrel{k}{-}v_\alpha\stackrel{1}{-}v_j$ 和一条 $v_i\stackrel{k}{-}v_\beta\stackrel{1}{-}v_j$ 相同,记作 P,于是 v_α 和 v_β 同在 P 上. 注意 $v_\alpha \neq v_\beta$,所以 v_α 和 v_β 必然一前一后,不失一般性地假设 P: $v_i,\ldots,v_\alpha,\ldots,v_\beta,\ldots,v_j$,所以 $d(v_i,v_\alpha)\neq d(v_i,v_\beta)$,这与 $d(v_i,v_\alpha)=d(v_i,v_\beta)=k$ 的假设矛盾.

所以等式右侧
$$\sum_{\gamma=1}^{n} w_{i\gamma}^{(k)} w_{\gamma j}^{(1)} = w_{ij}^{(k+1)}$$
, 这便完成了归纳.

所以我们得到了两点不连通的条件:

Corollary 3.1. 若图 G = (n, m) 的邻接矩阵为 A. 若对任意 $1 \le k \le n - 1$, 都有:

$$\left(\mathbf{A}^k\right)_{ij} = 0\,,$$

则 v_i 和 v_j 不连通. 其中: $(\mathbf{A}^k)_{ij}$ 表示 \mathbf{A}^k 的 i 行 j 列元素.

证明. 条件说明 v_i 和 v_j 间不存在长度小于 n-1 的道路, 由命题 2.1, v_i 和 v_j 之间不存在道路.

3.2 可达性矩阵与关系矩阵

图的可达性矩阵中, 若 v_i 和 v_j 连通则对应元素为 1, 这一概念与关系矩阵高度关联. 事实上, 图 G 的可达性矩阵就是 G 表示的关系 R 的传递闭包的矩阵表示, 因此可以用 Warshall 算法解决.