Policy networks for Non-Markovian Deep RL

Reasoning Agent project

Roberto Cipollone cipollone@diag.uniroma1.it

PhD student

Sections

Markov assumptions

RL with temporal specifications

Deep RL networks

Temporal goals

General objective

Create agents capable of reaching LTL_f goals.

 $LTL_f: \Box \neg Falling \land \Diamond AtDoor$

 LDL_f : $\langle true^* \rangle (AtDoor \land \langle true^* \rangle AtDesk)$

A good execution is $\pi \models \varphi$.

Solution method: we'll do Reinforcement Learning (RL).

Reinforcement Learning

The general setting of Reinforcement Learning¹

Most RL algorithms assume the environment can be modelled with a *Markov Decision Process*.

¹Sutton and Barto, Reinforcement learning: an introduction.

Markov assumptions

Bayes nets

A representation of probabilities with Directed Acyclic Graphs.

A Markov chain:

A missing arc means that two variables are conditionally independent:

$$X_{i+1} \perp X_{i-1} \mid X_i$$

Gray nodes O are visible quantities; O are hidden quantities.

Markov Decision Process

Definition

A Markov Decision Process (MDP) is a tuple $\langle S, A, T, R, \gamma \rangle$, where:

- States S, actions A, discount factor γ ;
- Transition function T(s, a, s') = p(s' | s, a);
- Reward function $R(s, a, s') \in \mathbb{R}$.

Most RL algorithms assume an MDP model of the world.

Markov assumptions

Properties of an MDP:

$$s_{t+1} \perp s_0, \dots, s_{t-1} \mid s_t$$
 for all t
 $r_{t+1} \perp s_0, \dots, s_{t-1} \mid s_t$ for all t

About failures on POMDPs

A Partially Observable MDP:

Do the properties still hold? No!

$$S_{i+1} \not\perp S_0, \dots, S_{i-1} \mid S_i$$
 for some i
 $r_{i+1} \not\perp S_0, \dots, S_{i-1} \mid S_i$ for some i

We can't just learn a policy $\rho: S \to A$.

About failures on POMDPs

What if I do it anyway? "We have Networks after all"

Breakout

Montezuma's Revenge

- · Did I just hit the ball?
- · What is the direction of the ball?
- · Simple workaround: remember 4 frames.
- Did I open the door in room number 10?
- · Simple workaround: not exactly.

Difficult environments

Mnih et al., "Human-level control through deep reinforcement learning"

A specific class of non-Markovian environments

The general POMDP class cannot be solved.

Best to adopt a more restrict model of the environment: see Alessandro Ronca's presentation.

Here, instead, we'll only look at temporal specifications.

RL with temporal specifications

Temporal logics for reward specification

Assume we're given an MDP dynamics: $\langle S, A, T \rangle$.

How to reward behaviours

We want to define a non-Markovian reward function:

$$\bar{R}:(S\times A)^*\to\mathbb{R}$$

$$\bar{R}:\langle s_1,a_1,\ldots,a_{t-1},s_t\rangle\mapsto r_t$$

We know temporal logics have been designed to talk about desirable executions...

RL with temporal specifications

Steps:

- Define an alphabet of propositional symbols, \mathcal{F} (fluents).
- Define a labelling function $f_{\mathcal{F}}: S \times A \to 2^{\mathcal{F}}$ (grounding).

These definitions induce a trace π of propositional interpretations:

$$(S \times A)^* \xrightarrow{f_{\mathcal{F}}} (2^{\mathcal{F}})^*$$

We can now define a set $\{(\varphi^{(i)}, r^{(i)})\}_i$ to specify non-Markovian rewards²:

$$\bar{R}(\pi) := \sum_{i:\pi \models \varphi^{(i)}} r^{(i)}$$

²Brafman, De Giacomo, and Patrizi, "LTLf / LDLf non-markovian rewards".

Rewarding with automata

Any $\mathrm{LTL}_f/\mathrm{LDL}_f$ formula can be converted to a DFA that recognizes the same traces: denote with $\mathcal{A}_\varphi = \langle Q_\varphi, q_{0_\varphi}, \Sigma, F_\varphi \rangle$ the DFA for φ .

LTL_f/LDL_f rewards

A Non-Markovian Reward Decision Process (NMRDP) $\langle S, A, T, \overline{R} \rangle$, with \overline{R} defined by $\{(\varphi^{(i)}, r^{(i)})\}_{i=1}^m$, is equivalent to an MDP with state space:

$$\mathsf{S}' := \mathsf{S} \times \mathsf{Q}_{\varphi^{(1)}} \times \cdots \times \mathsf{Q}_{\varphi^{(m)}}$$

Restraining Bolt formulation

- An initial MDP is given (S, A, T, R).
- We define an additional specification $\langle \mathcal{F}, \{(\varphi^{(i)}, r^{(i)})\}_{i=1}^m \rangle$, with associated labelling function $f_{\mathcal{F}}$. Then, there exists an equivalent MDP with states S' and rewards $R + \bar{R}$.

One DFA state is enough

Without restrictions, we can always define an equivalent MDP with state state $S \times Q$:

- By synchronization of the DFAs³.
- By minimization⁴.

³De Giacomo, locchi, et al., "Foundations for restraining bolts: Reinforcement learning with LTLf/LDLf restraining specifications".

⁴De Giacomo, Favorito, et al., "Temporal Logic Monitoring Rewards via Transducers".

Deep RL networks

Deep RL algorithms

Deep RL is useful when |S| is very large.

Deep RL

The main idea is to use a Neural Network to estimate functions on S. Which functions?

- State values $V(s) \approx f_{\text{net}}(s; \theta)$: value methods;
- Policies $\rho(s) \approx f_{\text{net}}(s; \theta)$: policy gradient methods;
- · Combination of both.

We'll look at DQN variants⁵.

⁵Mnih et al., "Human-level control through deep reinforcement learning".

As in classic Q-learning, for a transition $t_i = (s, a, r, s')$, we define targets:

$$Y_i := r + \gamma \max_{a' \in A} \hat{Q}(s', a')$$

and update Q to minimize the distance:

$$l_i = (\hat{Q}(s, a) - Y_i)^2$$

DQN approximates Q with a network: $Q^*(s, a) \approx \hat{Q}(s, a; \theta)$.

Careful with function approximators

Pointwise updates can have a global impact.

Techniques for improved stability

Experience replay For learning, we sample transitions from a replay buffer.

Target network For targets, Y_i , we use a network which changes more rarely.

And other minor choices which are specific to Atari games.

Many extensions since then: Double DQN, Dueling DQN, Distributional DQN, ...⁶.

Not all must be DQN!

⁶François-Lavet et al., "An Introduction to Deep Reinforcement Learning".

And supervised learning

In addition, everything about supervised learning applies:

- · Convergence to local optimum and initialization.
- · Representativeness of the dataset.
- · Underfitting, overfitting.

DQN agent for non-Markovian rewards

We need to choose the structure of ρ .

We need to design an appropriate network

The network needs to be re-designed

The baseline implementation

As baseline, we'll consider this implementation:

A number of |Q| separate "experts".

The baseline implementation

Discussion:

- · States have maximum importance.
- · High learning stability.

Downsides:

- Memory usage increases linearly with |Q|.
- Training time and samples needed increase at least with |Q|.

Possible improvements

Many possible improvements:

Improvements on the model

Let the networks share part of the weights.

Motivation:

- The first convolutional layers learn input encodings.
- Most common knowledge about the observations is shared among subtasks.

Possible improvements

Improvements on the algorithm

Prioritized experience replay

Motivation:

- The structure of s = (o, q), can be exploited to give a bias to sampling.
- · Changing DFA state is a significant change.
- Might improve training stability (to be verified).

Projects: what to do

Independent of your choice:

- Study about LTL_f/LDL_f^7 .
- Study about RL under LTL_f/LDL_f goals⁸.
- Understand the baseline implementation I'll provide.

⁷De Giacomo and Vardi, "Linear temporal logic and Linear Dynamic Logic on finite traces".

⁸De Giacomo, Iocchi, et al., "Foundations for restraining bolts: Reinforcement learning with LTLf/LDLf restraining specifications".

Projects: what to do

Of your choice:

- Choose and study a Deep RL algorithm⁹.
- · Select the implementation of your choice. I suggest among:
 - 1. TensorForce
 - 2. Stable-baselines
 - 3. TF-agents
 - 4. Keras-RL
- · Select any Gym environment.
- · Write your own temporal goals.
- · Experiment with the baseline network.
- · Propose and *motivate* an improvement from the baseline.

⁹Start from François-Lavet et al., "An Introduction to Deep Reinforcement Learning"

Policy networks for Non-Markovian Deep RL

Reasoning Agent project

Roberto Cipollone cipollone@diag.uniroma1.it

PhD student

References

Brafman, Ronen I., Giuseppe De Giacomo, and Fabio Patrizi. "LTLf / LDLf non-markovian rewards". In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018).

De Giacomo, Giuseppe, Marco Favorito, et al. "Temporal Logic Monitoring Rewards via Transducers". In: July 2020.

De Giacomo, Giuseppe, Luca Iocchi, et al. "Foundations for restraining bolts: Reinforcement learning with LTLf/LDLf restraining specifications". In: *Proceedings International Conference on Automated Planning and Scheduling, ICAPS* (2019).

De Giacomo, Giuseppe and Moshe Y. Vardi. "Linear temporal logic and Linear Dynamic Logic on finite traces". In: *IJCAI International Joint Conference on Artificial Intelligence* (2013).

François-Lavet, Vincent et al. "An Introduction to Deep Reinforcement Learning". In: Foundations and Trends in Machine Learning (2018).

Mnih, Volodymyr et al. "Human-level control through deep reinforcement learning". In: *Nature* (2015).

Sutton, Richard S. and Andrew G. Barto. Reinforcement learning: an introduction. 2018.