Introducción a la estadística

Bases indispensables y uso de R

Olivier Devineau

olivier.devineau@fcdarwin.org.ec

Fundación Charles Darwin

Taller interno, 27–30 abril 2010

Noción de test estadístico

Distribución de probabilidad

• Representación de las probabilidades asociadas con los estados posibles de una variable aleatoria

Ejemplo: X = número de hijos en una familia de 2 niños

- 2♀, (1♂, 1♀), (1♀, 1♂), 2♂
- $p(X = 0 \ \text{o}) = 1/4$
- $p(X = 1 \ \sigma) = 1/4 + 1/4$ $\sum p(X) = 1$
- $p(X = 2 \circlearrowleft) = 1/4$

Distribución binomial Definición

- Serie de *n* intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p
- Distribución discontinua
- $X \sim \mathcal{B}(n,p)$
- $P(r) = \binom{n}{r} p^r (1-p)^{n-r}$

Distribución Binomial (2)

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(3, 0.39)$

5 / 49

Distribución de Poisson

Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \rightsquigarrow \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Distribución binomial

¿Cuando se aplica?

- Porcentaje de mortalidad
- Tasa de infección
- Proporción: sexos, respuesta a un tratamiento, intenciones de voto . . .

Se necesita saber cuantos individuos hay en categoría *éxito* y cuantos hay en categoría *fracaso*

6 / 49

Distribución de Poisson

¿Cuando se aplica?

- Plantas en una parcela
- Semillas comidas por una ave por minuto
- Bebes naciendo por hora en un hospital
- Errores en un texto
- Degradación de substancia radioactiva

Distribución normal

Definición

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$
- $f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$

-2

-1

0

9 / 49

11 / 49

Distribución normal

¿Cuando se aplica?

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Otras distribuciones de variables

- Lognormal (largo, peso . . .)
- Exponencial (Tiempo de fracaso)
- Gamma
- Distribución de Weibull
- Beta

14 / 49

Distribuciones de estadísticos

- Distribución z
- ullet Distribución t de Student
- Distribución del χ^2
- ullet Distribución F de Fischer

¿Qué es un test estadístico?

Herramienta para tomar decisión

- ullet Calcular un estadístico T_{obs} de una muestra
- \bullet Comparar T_{obs} con la distribución de T_{teo} cuando la hipótesis es verdadera
- \bullet La posición de T_{obs} informa sobre la probabilidad de que la hipótesis sea verdadera

15 / 49

Test estadístico: procedimiento

- Pregunta biológica: ¿Hay cóndores en el parque?
- $oldsymbol{2}$ Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- ♠ Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

Test estadístico: procedimiento

- 6 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- ${f 7}$ Decisión estadística: ¿Se puede rechazar H_0 o no?
- 8 Inferencia y explicación biológica

18 / 49

17 / 49

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- Hay cóndores en el parque
- 2 No hay cóndores en el parque
- ¡Ausencia de prueba no es prueba de ausencia!

Hipótesis nula

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- \Rightarrow La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

Elección del test

- Tipo de variables: cualitativas, cuantitativas ...
- Número y tamaño de las muestras
- Condiciones de cada test

21 / 49

Criterios de decisión (1)

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

Tipo II : Aceptar H_0 cuando es falsa

_	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β
Rechaza	Tipo I Riesgo α	Decisión correcta

Hay que comprometer . . .

Poder: Probabilidad de rechazar H_0 cuando es falsa

ullet Error I: rechazar H_0 cuando es verdadera lpha

• Error II: aceptar H_0 cuando es falsa β

• Poder: $1 - \beta$

• α y β relacionados

• Cuando $\alpha \searrow \beta \nearrow$

¿Cuando α debe ser alto?

Ejemplo: Efectos secundarios de una droga

• Test final antes de comercializar

• Grupo A: droga | Grupo B: placebo

ullet H_0 : no hay diferencia entre grupos A y B

• H_1 : A tiene mayor frecuencia de anomalías que B

25 / 49

¿Cuándo α debe ser alto?

Aceptar riesgo α más alto para reducir riesgo β

 α alto: error de tipo I

- ullet H_0 rechazada pero verdadera
- No se comercializa
- Más estudios para determinar efecto real

 β alto: error de tipo II

- ullet H_0 "aceptada" pero falsa
- Comercialización
- ¡Mucha gente sufre de los efectos secundarios!

Colección de los datos

¡Acuérdense!

- Aleatorización
- Replicación

Computación del estadístico del test

Ejemplo: Prevalencia de la malaria

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A prev_B)$
- Distribución de T corresponde a H_0 verdadera

Comparación de T con la distribución teórica

- T_{obs} no está en la región de rechazo
- ullet No se puede rechazar H_0
- No es posible afirmar que hay una diferencia de prevalencia entre A y B

30 / 49

Comparación de T con la distribución teórica

- T_{obs} está en la región de rechazo
- ullet Se puede rechazar ${\cal H}_0$
- Se concluye que la prevalencia de la malaria es diferente entre A y B
- El riesgo de que esta conclusión sea falsa es $\alpha = 5\%$

Valor P

• Medida de la credibilidad de la hipótesis nula

Ejemplo

- $H_0: \mu_A = \mu_B$
- $p < 0.05 \Rightarrow$ improbable que H_0 sea verdadera: $\mu_A \neq \mu_B$
- ullet $p=0.23 \Rightarrow$ No hay suficiente evidencia para rechazar H_0

31 / 49

Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- \bullet Improbable: Occurre menos de 5% de las veces

33 / 49

¿Como elegir el test adecuado?

Algunas directrices (1)

34 / 40

¿Como elegir el test adecuado?

Algunas directrices (2)

Dependencia - Asociación

Tests asociados

- Muestras asociadas: vienen del mismo grupo
- Relacionadas por correlación o por regresión
- Conexión espacial
- Conexión temporal
- \Rightarrow Usar tests específicos: e.g., "paired t-test"

36 / 49

Comparar una muestra con una distribución teórica

- ⇒ Test de conformidad
 - Test t de conformidad
 - Test de Wilcoxon
 - Test binomial
 - Test χ^2 de conformidad
 - ...

37 / 49

Comparar dos muestras

- ⇒ Test de comparación (de homogeneidad)
 - Test t (posiblemente "asociado")
 - Test de Mann-Whitney
 - Test de Fisher
 - \bullet Test χ^2
 - . . .

38 / 49

Comparar *más* de dos muestras

- ⇒ Test de comparación (continuación)
 - Anova / Manova
 - Test de Kruskal-Wallis
 - Test de Friedman
 - $\bullet \ \ {\rm Test} \ \chi^2$
 - ...

Evaluar el grado de asociación entre variables

Muestras independientes

- ⇒ Correlación y regresión
 - Correlación de Pearson / de Spearman (n=2)
 - Regresión simple / regresión logística (n=2)
 - Regresión no paramétrica
 - Regresión múltiple / regresión logística múltiple (n|handout:1>2)
 - ...

Comparar un grupo con una distribución teórica

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial

Comparar 2 grupos asociados

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar

${\it Comparar} \ 2 \ {\it grupos} \ {\it no} \ {\it asociados}$

$\begin{matrix} Medidas \\ X \rightsquigarrow \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2

${\sf Comparar} \geqslant 3 \ {\sf grupos} \ {\sf no} \ {\sf asociados}$

$\begin{matrix} & Medidas \\ X \leadsto \mathcal{N}(\mu,\sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2

${\sf Comparar}\geqslant 3 \ {\sf grupos} \ {\sf asociados}$

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$

Predecir valor desde 1 variable

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple

Cuantificar asociación entre 2 variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	${\sf Test}\ \chi^2$
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia

Predecir valor desde varias variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple
Regresión (no)lineal multiple		Regresión logística multiple

Más recursos para elegir un test • Handbook of Biological Statistics: http://udel.edu/~mcdonald/statbigchart.html • Statistics Online Computational Resources: www.socr.ucla.edu/Applets.dir/ChoiceOfTest.html • GraphPad / Intuitive Biostatistics: www.graphpad.com/www/Book/Choose.htm • Social Research Methods: www.socialresearchmethods.net/selstat/ssstart.htm • James D. Leeper, University of Alabama: http://bama.ua.edu/~jleeper/627/choosestat.html • S. Holttum, B. Blizard, Canterbury Christ Church University: www.whichtest.info/index.html