§ 6.4.2 IC 计数器 74160 (M-10) (8421BCD码同步加法计数器)

模10, 其他与74161相同(同步)

$$RCO = ENT \cdot Q_3 \cdot Q_0$$

例1. 用74160 设计一个 60 s 定时器 (T_{clk}=1s) 59

例2. 求下图计数器电路的模值

- 个位: 从行始计数, 到10时, 输出一个进位给十位
- · 十位: 从0开始计数到0010=2, 等到个位计数到1001=9时, 同时清零, 所以整体为从0开始计数到2×10+8, 为模29

§ 6.4.3 IC 计数器 74163 (M-16)

同步清0, 其他与 74161相同 (模16)

图中: 5CT=0 在 5 端有效时清0

74163 功能表

CLR	ĪD	ENT	ENP	CLK	$D_0 D_1 D_2 D_3$	功能
0	X	X	X	1	XXXX	Direct set 0
1	0	X	X	†	$D_0D_1D_2D_3$	Load 预置
1	1	0	X	X	XXXX	保持 RCO=0
1	1	X	0	X(XXXX	保持
1	1	1	10	1	XXXX	M-16 计数

同步濟零0: 当 $\overline{CLR} = 0$ 时,下一个 CLK 到达,

 $Q_3Q_2Q_1Q_0 = 0000$

例1. 用74163的同步清零功能 (\overline{CLR}) 设计一个模11计数器

最大状态 1010 状态图 /RCC $Q_3Q_2Q_1Q_1$ **/0** 0000 0001 0010 **/0 /0** 0100 1010**/0 /0** 0101 (1001)0110(0111)1200 **/0**

没有毛刺

用 \overline{LD} 端,与74161相同,初始为0000

§ 6.4.4 IC 计数器 74290

1.74290 功能

模 2-5-10 异步计数器

框图

两个独立的下隆沿计数器

M-2 计数器,输出 Q_0

M-5 计数器, 输出 Q₃Q₂Q₁

符号

功能

(1) 异步清0

$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 & \text{(low)} \\ R_{0(1)} = R_{0(2)} = 1 & \text{(high)} \end{cases}$$

$$Q_3 Q_2 Q_4 Q_5 = 0000$$

(2) 异步置9

$$S_{9(1)} = S_{9(2)} = 1$$

$$Q_3 Q_2 Q_1 Q_0 = 1001$$

(3) 计数

$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 \\ R_{0(1)} \cdot R_{0(2)} = 0 \end{cases}$$

同时满足,CLK下降沿实现计数

2.74290应用

(1) 模 2 计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

CLK 从 CLK_A 接入, Q_0 输出, 实现 模 2加计数

(2) 模 5 计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

CLK 从 CLK_B 接入, $Q_3Q_2Q_1$ 输出,实现 模 5加计数

两种用法完全独立,构成更大模数时,需外接线连接

(3) 8421BCD 码模10 计数器

$$S_{9(1)} \cdot S_{9(2)} = 0$$
, $R_{0(1)} \cdot R_{0(2)} = 0$

$$CLK$$
接 CLK_A , $Q_0 \longrightarrow CLK_B$

在 Q_0 下降沿(CLK_B $1 \rightarrow 0$), M-5 计数

$$CLK_{A} \longrightarrow CLK_{B}$$

$$Q_{0} \longrightarrow CLK_{B}$$

触发 M-5 计数

输出位权

 $Q_3Q_2Q_1Q_0: 8421$

LS290

(4) 8421 BCD码任意进制计数器

"直接置 $0 R_0$ "高电平清 0

例1. M-7 计数器

- (1) $CLK \rightarrow CLK_{\Delta}$
- ②接: 8421 BCD 模10

$$Q_0 \rightarrow CLK_{\rm B}$$

- $Q_0 \to CLK_B$ $S_{9(1)} = S_{9(2)} = 0$
 - ④ 输出 Q₃Q₂Q₁Q₀ = 0111
 - → R₀ (直接清0)

不稳定状态用虚线连接

74290没有进位输出

(5) 8421 BCD 级联计数器

当计数模值>10

74290 级联

例: 用74290 设计

一个 8421BCD

码模 46 计数器

8421 十进制

进位

个位: 6 (0110) 十

十位: 4 (0100)

电路连接方式 也可以

注意: 进位

波形:

利用 Q_3 第10个CLK下降沿触发十位片的 CLK_A (不用连 Q_0Q_3)

§6.5 寄存器 Registers

· 什么是寄存器

寄存器是用于寄存一组二进制代码的逻辑部件。

一个触发器能够存储 1 位二进制代码,所以用 n 个 触发器组成的寄存器可以存储一组 n 位二进制信息。

- 寄存器的构成
 - 一般由D触发器构成
- · 寄存器的分类

并行寄存器、移位寄存器

§ 6.5.1 寄存器分类

Classifications of Registers

1. 并入/并出型寄存器 Parallel In/Qut

例如,4个D-FFs构成寄存器

74LS175

在CLK正边沿,4个数据并行输入,状态 $Q_0Q_1Q_2Q_3=D_0D_1D_2D_3$ 并行输出

2. 左移串入/串出型寄存器

Serial In/Serial Out Shift Left Registers

-个CLK到来,左移

例:

初始 $Q_3Q_2Q_1Q_0$ =1001 串入: 1011 (D_{SL})

CLK	串出	$Q_3Q_2Q_1Q_0$ 串入
1	1	$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$
2	0	
3 4	1 1	1 1 0 1

K后, $Q_3Q_2Q_1Q_0=1011$

3. 左移串入/并出型寄存器

Serial In/Parallel Out Shift Left Registers

4. 左移环型寄存器 Shift Left Ring Registers

串出端与串入端相连

各FF 输出接彩灯

初始状态为 0001, 接高电平的灯亮

灯亮顺序:绿红蓝黄

取四位中只有一个1 的状态为主循环

状态图

环形计数器

注意: n FFs $\rightarrow r$ 个状态 \rightarrow 模 n

波形图

CLK Q_0 Q_1 Q_2

节拍发生器

5. 左移扭环寄存器 Shift Left Twisted-Ring Registers

6. 右移串入/串出寄存器

Serial In/Serial Out Shift Right Registers

7. 右移串入/并出寄存器

Serial In/Parallel Out Shift Right Registers

8. 右移环型寄存器 Shift Right Ring Registers

9. 右移扭环寄存器 Shift Right Twisted-Ring Registers

扭环计数器