

1 Interface de apresentação e variáveis para o cálculo de Holdup utilizando Merge dos Sensores

Este documento se refere ao cálculo da fração de vazio e dos Holdups de água e querosene a partir das medidas e incertezas obtidas pelo detector de nível e dos sensores de pressão conjuntamente. Estes cálculos são baseados no algoritmo Maximum Likelihood Estimation –MLE [1]. Neste caso o algoritmo é utilizado para se obter o valor mais provável da altura de água a partir de três medidas diferentes, ou seja , serão utilizadas as medidas dos dois sensores de pressão associadas a L_L e a medida de $L_{\rm SO}$ proveniente do detector de nível, e respectivas incertezas.

A Figura 1 apresenta um exemplo da aplicação do Algoritmo no qual uma grandeza é medida por dois sensores diferentes o primeiro com incerteza 1σ e o outro com incerteza 2σ. Aplicando-se o algoritmo tem-se uma incerteza final 0,89σ. O algoritmo MLE é aplicável quando as variáveis têm distribuição normal.

Figura 1 Diminuição da incerteza usando algoritmo MLE fonte – Villanueva

A Figura 2 apresenta a interface do Sistema de Supervisão desenvolvido em Labview com destaque aos campos onde serão apresentados os resultados de Holdup que serão calculados a partir da fusão dos dados relacionados ao Procedimento de Merge. Os dados que serão recebidos do detector de nível são: L_L - Altura da coluna de líquido; L_{SO} — Altura da Coluna de água, U_{SO} - Incerteza associada à Altura da Coluna de água. Esses valores serão apresentados no campo da interface FreeScale Altura Líquido, Altura Água e incerteza da Altura da Água. A incerteza da Altura Líquido é de ± 1 mm conforme Tabela 1.

Figura 2 Imagem da Interface Labview

Tabela 1 – Variáveis e incertezas absolutas associadas.

Variável	Descrição da Variável	Unidade	Incerteza absoluta
ρ_{w}	Densidade da água	998 kg/m^3	$\pm 2 \text{ kg/m}^3$
ρ_k	Densidade do querosene	780 kg/m^3	$\pm 5 \text{ kg/m}^3$
ρ_{a}	Densidade do ar	$1,19 \text{ kg/m}^3$	± 0.05 kg/m ³
L _T	Comprimento entre tomadas de pressão	1934 mm	±1mm
P ₁	Altura da coluna de líquido sensor de pressão 1 - Faixa 0 a 2000 mmCA	mmCA	±10mm
P ₂	Altura da coluna de líquido sensor de pressão 1 - Faixa 0 a 200 mmCA	mmCA	±10mm
L_{L}	Altura da coluna de líquido - Posição do sensor ótico	0 a 1770 mm	±1,0mm

2 Procedimento de cálculo do Valor mais Provável de Lw

Valores de Lw

Teremos três valores de coluna de água que serão utilizados como entrada do algoritmo MLE para o cálculo da coluna de água mais provável Lw :

Lw_{SO} - O valor da altura da coluna de água obtido diretamente pelo Detector de Nível

Lw_{P1} - O valor da altura da coluna de água obtida a partir do medidor de Pressão1 e L_L

Lw_{P2} - O valor da altura da coluna de água obtida a partir do medidor de Pressão2 e L_L

Os valores de Lw_{P1} e Lw_{P2} serão calculados a partir da Altura da coluna de líquido (Posição do sensor ótico) e das medidas de Pressão conforme as equações 1 e 2.

$$L_{W_{Pl}} = \frac{L_{Pl} - \frac{\rho_k}{\rho_w} L_L}{1 - \frac{\rho_k}{\rho_w}} \tag{1}$$

$$L_{W_{P_2}} = \frac{L_{P_2} - \frac{\rho_k}{\rho_w} L_L}{1 - \frac{\rho_k}{\rho_w}}$$
 (2)

Cálculo das Incertezas das medidas das Alturas de água a partir dos sensores de Pressão

Teremos três Incertezas associadas às medidas Lw_{SO}; Lw_{P1}; Lw_{P2}:

 $U_{so}\,$ - O valor da incerteza da medida da altura de água obtida diretamente pelo Detector de Nível

 U_{P1} - O valor da incerteza da medida da altura de água obtida pela medida de Pressão P1 e altura da coluna de líquido L_L - Equação 3

 U_{P2} - O valor da incerteza da medida da altura de água obtida pela medida de Pressão P2 e altura da coluna de líquido LL— Equação 4

$$U_{P1}^{2} = \left(\frac{\rho_{w}}{\rho_{w} - \rho_{k}}\right)^{2} \cdot \left(U_{L_{p1}}\right)^{2} + \left(\frac{\rho_{w}}{\rho_{w} - \rho_{k}}\right)^{2} \cdot \left(U_{L_{L}}\right)^{2} + \left(\frac{(L_{P1} - L_{L}) \cdot \rho_{w}}{(\rho_{w} - \rho_{k})^{2}}\right)^{2} \cdot \left(U_{\rho_{k}}\right)^{2}$$
(3)

$$U_{P2}^{2} = \left(\frac{\rho_{w}}{\rho_{w} - \rho_{k}}\right)^{2} \cdot \left(U_{L_{p2}}\right)^{2} + \left(\frac{\rho_{w}}{\rho_{w} - \rho_{k}}\right)^{2} \cdot \left(U_{L_{L}}\right)^{2} + \left(\frac{(L_{P2} - L_{L}) \cdot \rho_{w}}{(\rho_{w} - \rho_{k})^{2}}\right)^{2} \cdot \left(U_{\rho_{k}}\right)^{2}$$

$$(4)$$

Onde

- $U_{Lp1,2}-$ incerteza absoluta da altura da coluna obtida pelos sensores de pressão 1 e 2 (Tabela 1)
- U_{LL} incerteza absoluta da altura da coluna obtida pelo Detector de nível (Tabela 1)
- $U_{\rho k}$ incerteza da densidade do querosene

Cálculo de Gama

Um parâmetro importante no algoritmo MLE é dado pela soma do inverso das incertezas de cada medida da altura da água ao quadrado e está representado pela equação 5. Ele aparece como um constante multiplicativa associada, e é um parâmetro usado para o cálculo da incerteza do valor mais provável dado pela equação 7.

$$\Gamma = \left(\frac{1}{U_{SO}^{2}} + \frac{1}{U_{P1}^{2}} + \frac{1}{U_{P2}^{2}}\right) \tag{5}$$

Onde U_{so} é a incerteza medida diretamente pelo Detector de Nível e U_{P1} U_{P2} são as incertezas calculadas pelas equações 3 e 4.

Cálculo do Valor mais Provável Lw

O valor mais provável da coluna de água é dado pela equação 6. Ele pode ser compreendido como uma média ponderada pelo inverso da incerteza ao quadrado. Ele é obtido a partir das três medidas de altura da coluna de água e quanto menor a incerteza da medida maior é o seu peso na equação.

$$Lw = \frac{1}{\Gamma} \cdot \left(\frac{1}{U_{SO}^{2}} L_{W_{SO}} + \frac{1}{U_{P1}^{2}} L_{W_{P1}} + \frac{1}{U_{P2}^{2}} L_{W_{P2}} \right)$$
 (6)

Onde L_{Wso} , L_{WP1} e L_{WP2} são as medidas de coluna de água e U_{so} U_{P1} U_{P2} são suas respectivas incertezas.

Incerteza do valor mais provável para medida da altura da coluna de água Lw

O valor mais provável tem uma incerteza absoluta dada pela equação 7. Esta incerteza será sempre menor que a menor incerteza das medidas utilizadas no algoritmo MLE.

$$U_{L_{w}} = \sqrt{\frac{1}{\Gamma}} \tag{7}$$

3 Cálculo dos Holdups

A fração de Vazio, primeiro campo do Merge, é dado por:

$$\alpha = \frac{L_{\rm T} - L_{\rm L}}{L_{\rm T}} \tag{8}$$

A incerteza associada à fração de vazio é dada pela equação 9.

$$U_{\alpha} = \left[\left(\frac{1}{L_{T}} \right)^{2} . U_{L_{L}}^{2} + \left(\frac{L_{L}}{L_{T}^{2}} \right)^{2} . U_{L_{T}}^{2} \right]^{0.5}$$
(9)

Onde

- U_{LT} incerteza absoluta entre o comprimento total entre as tomadas de pressão (Tabela 1)
- U_{LL} incerteza absoluta da altura da coluna de líquido (Tabela 1)

O 'holdup' da Água, terceiro campo do Merge, é dado por:

$$H_{w} = \frac{L_{w}}{L_{T}} \tag{10}$$

A incerteza associada do Holdup da água é dada pela equação 11.

$$U_{H_W} = \left[\left(\frac{1}{L_T} \right)^2 . U_{L_W}^2 + \left(\frac{L_W}{L_T^2} \right)^2 . U_{L_T}^2 \right]^{0.5}$$
 (11)

Onde

- U_{Lw} – incerteza absoluta do valor mais provável dado por equação 7

O 'holdup' da fase líquida é dado pela equação

$$H_{L} = \frac{L_{L}}{L_{T}} \tag{12}$$

O 'holdup' do querosene, H_k, segundo campo do Merge, é dado por:

$$H_{k} = H_{L} - H_{w} \tag{13}$$

A incerteza associada do Holdup do Kerosene é dado pela equação 14.

$$U_{H_K} = \left[\left(\frac{1}{L_T} \right)^2 . U_{L_L}^2 + \left(\frac{L_L}{L_T^2} \right)^2 . U_{L_T}^2 + U_{L_W}^2 \right]^{0.5}$$
(14)

4 Referências Bibliográficas

[1] J. M. M. Villanueva, S. Y. C. Catunda, e R. Tanscheit, "Maximum-likelihood data fusion of phase-difference and threshold-detection techniques for wind-speed measurement", *IEEE Trans. Instrum. Meas.*, vol. 58, no 7, p. 2189–2195, 2009.