1. All Cylinders are identical (except for gas 11 them) Same cross-sectional area A. Pistons each have mass M. Each Piston is in Mechanical equilibrium.
Same Pross-sectional area A
Pistons each have was M.
Factor Piston is un Machanical equilibrium
Guerr 1, 19, 10, 10
Form = Fun - investing of ideal gas
Fdown = Fup pressure of ideal gas. Mg + PoA = PA
external pressure
In all 3 Cylinders, Fdown is the Same
The same
So PA = PB = Pe which answers parts (a) & (b)
2. Ther modynamic system: Helium; treat it as ideal gas (Mg = 4g/mol)
$(M_9 = 4g/m_9)$
State a: $T_a = 1100 k$ $V_a = 0.5 \times 10^{-3} m^3$
State b: To = 1100 k Pb = 1-0x10 5 Pa
State C! Te = 300K
0,00,0
a -> b 1sothermal (Ta = Tp)
b → c 1sochovic (Vb = Vc) C → a 1sobavic (Pc = Pa)
0) = 100 DW 10 C (C = 100)
N = Const - need to find N to determine mass of He
Presont
ı

$$N = \frac{PaVa}{RTa}$$

$$= \frac{PcVa}{RTa}$$

$$= \frac{TcPb}{Tb} \frac{Va}{RTa}$$

$$V_b = V_c, \quad \frac{P_c}{T_c} = \frac{P_b}{T_b}$$

$$= \frac{300 (1 \times 10^{5}) (0.5 \times 10^{-3})}{(100) (8.314) (1100)}$$

$$= 1.49 \times 10^{-3}$$
 moles

$$M_{He} = N \times M_g$$

= 1.49×10⁻³ woles (49/wo1)
= 5.96×10⁻³ g
 $\approx 6 \text{ mg}$.

3. a) Show that
$$\frac{dP}{dh} = -\rho g$$

Form =
$$dmg + (P+dP)A$$

= $(PAdh)g + (P+dP)A$
Fup = PA

$$= \frac{dP}{dh} = -pg \qquad - - - - - - (1)$$

b) Assume isothermal ideal, gos to show
$$(\frac{\partial P}{\partial P})_T = \frac{Mg}{RT}$$

Since $N = \frac{M}{Mg}$ & $P = \frac{M}{V}$

PV = NRT

$$= \frac{\partial P}{\partial Q} = \frac{RT}{MQ} \frac{\partial P}{\partial Q} + \frac{PR}{MQ} \frac{\partial T}{\partial Q}$$

$$Comed T = 3 dT = 0$$

$$dP = \left(\frac{\partial P}{\partial p}\right) dp + \left(\frac{\partial P}{\partial T}\right) dT$$

$$= 3 \left(\frac{\partial P}{\partial P}\right)_{T} = \frac{Mg}{RT} \quad \text{for comef} \quad T \quad - \quad - \quad - \quad \left(2\right)$$

C) from (1)
$$\xi$$
 (2) obtain $(\frac{\partial P}{\partial h})_T$

$$\frac{dP}{dh} = \frac{dP}{dP} \frac{dP}{dh}$$

Suice 9 & T are Constant

$$\frac{dP}{P} = -\frac{9Mg}{RT}dh$$

Integrate both sides

$$\int_{\rho}^{\rho} \frac{d\rho}{\rho} = \int_{0}^{h} \frac{gMg}{RT} dh.$$

$$\Rightarrow \rho = \rho \exp\left(-\frac{g M g h}{RT}\right)$$

Takmig T = 293 k, Mg = 28.96 × 10 kg/mol

$$h_0 = \frac{(8.314)(293)}{(9.8)(28.96\times10^{-3})}$$
$$= 8.58\times10^3 \text{ M}$$

Sea level: hsl = 0 Psl = 1.01×10 Pa Tsl = 20°C = 293 K

top of Burnaby mountain: h_B = 1200 feet (from city of burnaby) = 367 m

Peak of Whistler: hw = 2182 m (WWW. townsom Whistler.com)

 $\begin{array}{cccc}
P_{8l} &= \frac{N}{V} &= \frac{P_{8l}}{RT} & & & \\
&= & (1.01 \times 10^{5} P_{a}) & & & \\
\end{array}$

 $= (1.01 \times 10^{-1} \text{ fa})$ $= (8.314^{-1} \text{ mol k})(293)$

= 41.46 moles/m³ × (28.96 x 10⁻³ kg/mol)

= 1.2 kg/mol $P_B = P_{SR} \exp \left(-\frac{g_{Mg}h_B}{RT}\right)$

 $=41.46 \exp\left(-\frac{(98)(28.96\times10^{-3})(367)}{(8-314)(293)}\right)$

= 40 moles/ m^3

 $P_W = 32 \text{ moles/m}^3$

 $P_{B} = RT P_{B}$ $= 9.7 \times 10^{4} P_{a}$ = 0.96 afm

Pw = 7.8×10⁴ Pa ~ 0.77 atm.

1///	

$$T_{a} = 300 k$$
 $P_{a} = 10^{5} P_{a}$ $V_{a} = 1 \times 10^{-3} \text{ m}^{3}$

$$T_{b} = ? P_{b} = ? V_{b} = 3 \times 10^{-3} \text{ m}^{2}$$

a)
$$\Delta u = 0$$

Since
$$\Delta U = \frac{3}{2}NR\Delta T$$

$$P_b = \frac{V_a}{V_b} P_a$$

$$= \frac{10^{-3}}{3 \times 10^{-3}} 10^{6}$$

if you used
$$V_b = 2 \times 10^{-3} \text{ m}^3$$

you got $P_b = 50 \text{ kPa}$.

5. System is an ideal gas

process is quasistatic = quasistatic work.

Fig. 3.3: Wab =
$$-\int_{Va}^{Vb} PdV$$
 (isochoric Compression)

[dan't know what P is but I know its Constant = $P(Va - Vb)$

= $300 \times 10^3 Pa$ ($2 - 0.5$) u^3

= $+450 \times J$

Fig. 3.4.: Wab = $-\int_{Va}^{Vb} PdV$

P = $uv + Pc$

M: $(500 - 300) \times 10^3 = 1.33 \times 10^5 Pa/u^3$
 $2 - 0.5$
 $\frac{500 \times 10^3 - Pc}{2 - 0.5} = 1.53 \times 10^5$
 $\frac{500 \times 10^5 - Pc}{2 - 0.5} = 1.33 \times 10^5$
 $\frac{1.33 \times 10^5 V}{2} + 2.33 \times 10^5$
 $\frac{1.33 \times 10^5 V}{2} + 2.33 \times 10^5 (Vb - Va)$

= $-\frac{1.33 \times 10^5 V}{2} (4 - 0.25) - 2.33 \times 10^5 (2 - 0.5)$

= - 598 KJ

Fig. 3.5.;
$$V_a = 3 m^3 V_b = 1 m^3$$

Wab = Area .under Curve
=
$$P\Delta V + \frac{1}{2}\pi r^{2}$$

= $2\times10^{5}(2) + \frac{1}{2}\pi(100\times10^{3})(1)$
= 5.57×10^{5} J

$$P = \frac{k}{v^2}$$

$$Wab = -k \int \frac{1}{v^2} dv$$

$$= k \left(\frac{v_b}{v_b} - \frac{1}{v_a}\right)$$

$$PaV_a^2 = K = (50 \times 10^3 Pa)(2)^2$$

= $200 \times 10^3 Pa M^6$

$$W_{a1} = -\int_{a}^{2} P \, dV \qquad dV = 0$$

$$W_{12} = -\int_{a}^{2} P \, dV = -P \Delta V$$

$$= -(400 \times 10^{3})(3 - 1)$$

$$= -800 \times 10^{3} \text{ J}$$

$$W_{23} = 0$$

$$W_{24} = -P \Delta V$$

$$= -(200 \times 10^{3})(1 - 3)$$

$$= 400 \times 10^{3} \text{ J}$$

$$W_{ab} = (-800 + 400) \times 10^{3}$$

$$= -400 \times 10^{3} \text{ J}$$

$$W_{ab} = (-800 + 400) \times 10^{3}$$

$$= -400 \times 10^{3} \text{ J}$$

$$P = \frac{NRT}{V}$$

$$P = MV + T_{0}$$

$$M = 300 + 60 = -200$$

$$1 - 0.2$$

$$500 - T_{0} = -200 = 5 \quad T_{0} = 500$$

$$1 - 0$$

$$T = -200 V + 500$$

$$P = NR \left[-200 + \frac{500}{V} \right]$$

$$W_{ab} = -NR \int_{V_{a}}^{V_{b}} \left(-300 + \frac{500}{V} \right) \, dV$$

$$= -8.314 \left[-200(0.2 - 1) + 500 \ln \left(\frac{0.2}{1.0} \right) \right]$$

$$T_c = 360 \, \text{K}$$
 $V_a = 5 \times 10^{-4} \, \text{m}^3$
 $P_b = 100 \, \text{F}_a$

$$W_{ab} = -\int_{a}^{b} P dV$$

$$= -\int_{a}^{b} \frac{NRT}{V} dV$$

$$N = 6 \times 10^{-3} \text{g} / 4 \text{g/mo}$$

= $1.5 \times 10^{-3} \text{mo}$

$$V_b = \frac{NRT}{P_b} = \frac{1.5 \times 10^{-3} \times 8.314 \times 1700}{10^5}$$

= 1.37 \times 10^{-4} \text{ m}^3

Wab =
$$1.5 \times 10^{-3} (8-314)(1100) \ln \left(\frac{5 \times 10^{-4}}{1.37 \times 10^{-4}}\right)$$

\$\Sigma 17.76 J

$$W_{bc} = 0$$
 Since $dV = 0$

$$\hat{P}_a = \frac{NRT}{V_a} = 2.74 \times 10^4 P_a$$

$$= -2.74 \times 10^{4} (5 \times 10^{-4} - 1.37 \times 10^{-4})$$

$$= -9.95 \text{ J}$$

$$U_{bc} = \frac{3}{2}NR(T_c - T_b)$$

$$= \frac{3}{2}(P_cV_c - P_bV_b)$$

$$= -\frac{3}{2}(2.74\times10^4\times1.37\times10^{-4} - 10^5\times1.37\times10^{-4})$$

$$= -14.9 \text{ J}$$

		enevgu e	xchange p	vocest.	
Total	work input Wal	, + Wbe	t Wea =	17.76 - 9.95	7
			a	7.81 J	
Total	enengy Change	Uab	+ Ubc + L	lca = 0	
	0				