

Advanced Geospatial Data Analytics:

MapReduce and Geospatial data handling

Junjun Yin

CyberGIS Center for Advanced Digital and Spatial Studies
Department of Geography and Geographic Information Science
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign, IL, 61801

jyn@illinois.edu March 8th, 2016

Outline

- Python programing basics
- Hadoop Streaming API with Python
 - Take advantage of the mapper for parallel processing
- Geospatial processing in Hadoop
 - Case study
 - Existing tools and frameworks
 - Write your own geospatial processing pipeline with Python
 - Leveraging the existing geospatial libraries as packages in Python

Python Programing Basics

- For this unit, let's follow the attached document and review some basics in Python programing
- Different coding environments
 - Choose your favorite code editor

Hadoop Streaming API with Python

MapReduce

- Let's recap on what is the MapReduce paradigm
- Can you separate each step as individual process
 o If yes, how?
- Can you come up with some scenarios?

Delegation of Map and Reduce tasks

Example

```
import time
import datetime
mFile = open("ny_taxi_2013.csv","rb")
mOutput = open("ny_taxi_2013_unix.csv","wb")
for line in mFile:
    lineArray = line.split(',')
    pickup = lineArray[5]
    dropoff = lineArray[6]
    pickup_date = pickup.split(" ")[0]
    dropoff_date = dropoff.split(" ")[0]
    pickup_unix = datetime.datetime.strptime(pickup,"%Y-%m-%d %H:%M:%S").strftime("%s")
    if pickup_date > '2013-03-09' and pickup_date < '2013-11-03':
         pickup_final = int(pickup_unix) - 5 * 3600
    else:
         pickup_final = int(pickup_unix) - 6 * 3600
    newLine = line.replace("\n",",") + str(pickup_final) + ',' + str(dropoff_final) + '\n'
    mOutput.write(newLine)
```


Hadoop streaming API with Python

```
#!/usr/bin/env python
import sys
import os
import time
import datetime
for line in sys.stdin:
    lineArray = line.strip().split(',')
    pickup = lineArray[5]
    dropoff = lineArray[6]
    newLine = line.replace("\n",",") + str(pickup_final) + ',' + str(dropoff_final) + '\n'
    print newLine
```


Run Hadoop Streaming Job

- hadoop jar /usr/hdp/2.3.2.0-2602/hadoop-mapreduce/hadoop-streaming-2.7.1.2.3.2.0-2602.jar -file mapper.py -mapper mapper.py -input ny_taxi_2013.csv -output ny_taxi_2013_unix.csv
- o **yarn jar** /usr/hdp/2.3.2.0-2602/hadoop-mapreduce/hadoop-streaming-2.7.1.2.3.2.0-2602.jar **-file** mapper.py **-mapper** mapper.py **-input** ny_taxi_2013.csv **-output** ny_taxi_2013_unix.csv

Using Python libraries for data analytics

- One step further
 - Numpy, Scipy, Pandas, scikit-learn
- Problems
 - Module load does not work
 - Each node in Hadoop cluster should have the python framework enabled
- Solution
 - Virutalenv (python virtual environment)

Using Python libraries for data analytics

- >>> virtualenv-2.7 demoenv
- New python executable in demoenv/bin/python2.7
 ... done.
- >>> virtualenv-2.7 --relocatable demoenv
- >>> source demoenv/bin/activate
- >>> pip install "some module"
- >>> zip -r ../demoenv.zip *
- >>> hdfs dfs -copyFromLocal demoenv.zip

Using Python libraries for data analytics

hadoop jar /usr/hdp/2.3.2.0-2602/hadoop-mapredu ce/hadoop-streaming-2.7.1.2.3.2.0-2602.jar

....files

-archives hdfs://cg-hm11.ncsa.illinois.edu/user/jyn/demoenv.zip#demoenv

In your python script
#!./demoenv/bin/python
import your_module

Geospatial processing in Hadoop

Case study

Case study

Aggregating Twitter data to the corresponding county

Ideas?

Geospatial Operations

Topology operations

- Validating geometry, geometry relationships
- o Intersection
- o Intersect
- o Overlapping
- Touch (sharing a boundary)
- o etc.

Spatial Query

- o Geo-within (Range query)
- K-NN (nearest neighbors)
- o etc.

Open Source Geospatial Libraries

- SDBMS (spatial database management system)
- QGIS
- ArcGIS
- GRASS GIS
- Open source libraries: OSGeo
 - o GDAL
 - o Fiona
 - o Shapely
 - o Shapefile.py

Existing distributed computing resources

- SpatialHadoop
 - o http://spatialhadoop.cs.umn.edu/
- SpatialSpark
 - o https://github.com/syoummer/SpatialSpark

Shapefile.py

- Basically, instead of
- https://pypi.python.org/pypi/pyshp
- Example usage
- >>> myshp = open("shapefiles/blockgroups.shp", "rb")
- >>> mydbf = open("shapefiles/blockgroups.dbf", "rb")
- >>> r = shapefile.Reader(shp=myshp, dbf=mydbf)

Improve efficiency with spatial indexing

- The purposes of spatial index
 - Improve search efficiency
 - Deal with multi-dimensional dataset
- Different types of spatial index
 - o Quad-Tree
 - o R-Tree
 - o octree
 - o Kd-tree
 - 0
- For this course, we will demonstrate and use Quad-Tree

Illustration of Quad-Tree for indexing points

Illustration of Quad-Tree for polygons

Applications of Quad-Tree

Applications of Quad-Tree

Source: http://softwareunwound.com/2014/03/18/adventures-in-mapping-big-data-sets-in-real-time-map-controls-part-2-enter-the-quadtree/

Put things together

Step1

- We need to create spatial index (quad-tree) for the data we are about to process
- o Which data then? The point data or the polygon layer data?

Step2

- o What we should do to determine a point belongs to a specific polygon?
- o Which geospatial operation should you pick?

Step3

How can we take advantage of Hadoop Streaming API with Python

Step4

o How to run our program?

Notes

The detailed procedures will be practiced in the our lab this Thursday.