Tree-like graphings of countable Borel equivalence relations An exposition to

Tree-like graphings, wallings, and median graphings of equivalence relations by Ruiyuan Chen, Antoine Poulin, Ran Tao, and Anush Tserunyan

Zhaoshen Zhai

October 1, 2024

Countable Borel Equivalence Relations

Definition

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ such that each E-class is countable.

Countable Borel Equivalence Relations

Definition

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ such that each E-class is countable.

Example

Any Borel action $\Gamma \curvearrowright X$ of a countable (discrete) group on a standard Borel space induces its *orbit equivalence relation* E_{Γ}^{X} , which is a CBER.

Countable Borel Equivalence Relations

Definition

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ such that each E-class is countable.

Example

Any Borel action $\Gamma \curvearrowright X$ of a countable (discrete) group on a standard Borel space induces its *orbit equivalence relation* E_{Γ}^{X} , which is a CBER.

Example (Smooth)

• Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.

Example (Smooth)

- Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x-y\in\mathbb{Z}$.

Example (Smooth)

- Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x-y\in\mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$.

Example (Smooth)

- Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x-y\in\mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$.

This CBER is hyperfinite: $E_0 = \bigcup_n F_n$ for an increasing sequence $F_0 \subseteq F_1 \cdots$ of finite Borel equivalence relations:

Example (Smooth)

- Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x-y\in\mathbb{Z}$.

Example (Hyperfinite)

$$E_0$$
 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$.

This CBER is hyperfinite: $E_0 = \bigcup_n F_n$ for an increasing sequence $F_0 \subseteq F_1 \cdots$ of finite Borel equivalence relations:

$$xF_ny \quad \leftrightarrow \quad \forall m \ge n : x_m = y_m.$$

Example (Smooth)

- Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x-y\in\mathbb{Z}$.

Example (Hyperfinite)

$$E_0$$
 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$.

This CBER is hyperfinite: $E_0 = \bigcup_n F_n$ for an increasing sequence $F_0 \subseteq F_1 \cdots$ of finite Borel equivalence relations:

$$xF_ny \quad \leftrightarrow \quad \forall m \ge n : x_m = y_m.$$

Theorem (Slaman-Steel, Weiss)

Let E be a CBER on a standard Borel space X. TFAE:

- 1. E is hyperfinite. $E = \bigcup_n F_n$ where $F_0 \subseteq F_1 \subseteq \cdots$ are FBERs.
- 2. E is induced by a Borel \mathbb{Z} -action. $E = E_{\mathbb{Z}}^X$ for some $\mathbb{Z} \curvearrowright X$.

Example (Smooth)

- Identity relation = on a standard Borel space, say \mathbb{R} or $2^{\mathbb{N}}$.
- \mathbb{Z} -coset equivalence on \mathbb{R} : $xE_{\mathbb{Z}}^{\mathbb{R}}y$ iff $x-y\in\mathbb{Z}$.

Example (Hyperfinite)

 E_0 on $2^{\mathbb{N}}$, where xE_0y iff $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$.

Graphing of a CBER

Definition

A graphing of a CBER E on X is a Borel graph $G \subseteq X^2$ whose connected relation is E, i.e., $xEy \leftrightarrow xG \cdots Gy$ for all $x, y \in X$.

Graphing of a CBER

Definition

A graphing of a CBER E on X is a Borel graph $G \subseteq X^2$ whose connected relation is E, i.e., $xEy \leftrightarrow xG \cdots Gy$ for all $x, y \in X$.

Treeings and Treeability

Definition

A treeing of a CBER E is an acyclic graphing, and a CBER E is said to be treeable if it admits a treeing.

Treeable CBERs

Example (Free Actions)

Any free action of a free group $F_r \curvearrowright X$.

Treeable CBERs

Example (Free Actions)

Any free action of a free group $F_r \curvearrowright X$.

F2 ~ X

Theorem (JKL02)

 $\label{lem:free_control} \textit{Free actions of virtually-free groups are treeable}.$

Treeable CBERs

Example (Free Actions)

Any free action of a free group $F_r \curvearrowright X$.

Theorem (JKL02)

Free actions of virtually-free groups are treeable.

Theorem (GdlH90)

Every finitely-generated group whose Cayley graph is a quasi-tree is virtually-free, and hence treeable.

Question (Robin Tucker-Drob; 2015)

Is the class of treeable CBERs robust under quasi-isometries?

Main Result

Theorem (Chen, Poulin, Tao, Tserunyan; 2023+)

If a CBER E admits a locally-finite graphing such that each component is a quasi-tree, then E is treeable.

The End

Thank you!