Vending Machine FSM Requirements

- Accepts nickels, N, (five cents) and dimes, D (ten cents)
- Dispenses an item, I, after 15 cents has been input
- Does not give change
- Only one coin can be inserted at a time (N, D, or neither)

Determine Inputs and Outputs:

Inputs:

Nickel & Dime

Outputs:

I (ffxm)

State Transition Diagram: \$\fin \tau_n \tau_

Bits of State Memory (# of D-FFs):

Off 2 bits

State Transition Table

Current State	Encoded State		Inputs		Next State	Encoded Next State
S	$S_{1:0}$		D	N	$oldsymbol{\mathcal{S}}^*$	$S_{1:0}^*$
50	0	0	0	0	50	00
50	0	0	0	1	51	()
50	0	0	1	0	52	1 6
50	0	0	1	1	×	$\times \times$
57	0	1	0	0	5	0
51	0	1	0	1	52	10
51	0	1	1	0	53) (
1	0	1	1	1	\bowtie	XX
52	1	0	0	0	52	10
57	1	0	0	1	53	
52	1	0	1	0	53) [
32	1	0	1	1	×	XX
5.3	1	1	0	0	50	00
53	1	1	0	1	51	0 ;
53	1	1	1	0	52	j O
53	1	1	1	1	$\overline{}$	メン

State Encoding Table

State Name	Encoding $S_{1:0}$
50	00
51.	0
52	10
53	1 1

Output Table

State Name	Encoded State $oldsymbol{S}_{1:0}$	Output I
50	76	
51	0	
5,5~	10	0
ごろ	~)	j

Next State Logic $\mathcal{S}_{1:0}^*$

Output Logic *I*