

Melyssa Mariana <u>melyssa.mariana32@gmail.com</u> 11/11/20

TECNOLOGIAS DE COMUNICAÇÃO 10T:

Da teoria à prática

utilizando sensores, chips e softwares.

completamente encapsulado ou dedicado ao dispositivo ou sistema que ele controla.

Modelo OSI x Modelo TCP/IP

Conexão e protocolos de transporte de dados

Endereço (IP) /Roteamento

Modem, cabos

CAPACIDADE DE UM CANAL DE COMUNICAÇÃO

1 dispositivo

2 canais

1 dispositivo

1 canal

O QUE SÃO PROTOCOLOS?

V Um protocolo de comunicações é um conjunto de normas que estão obrigadas a cumprir todas as máquinas e programas que intervêm em uma comunicação de dados entre computadores sem os quais, a comunicação seria caótica e, portanto impossível.

Standard	802.11	Bluetooth	IEEE 802.15.1	IEEE 802.15.4	IEEE 802.16	Z-Wave Alliance	GSM GPRS	LoRaWA R1.0	ECMA-340 and ISO/IEC 18092
Tipo de rede:	LAN	PAN	LAN	LAN	MAN	LAN	MAN	LAN	-
Topologia	Estrela	Estrela	Mesh, Estrela, Árvore	Mesh, Estrela	Mesh	Mesh	Mesh	Estrela	Par a par
Frequencia	5–60 GHz	2.4 GHz	2.4 GHz	2.4 GHz	2.5-GHz 3.5-GHz 5.8-GHz	908.42 MHz	2.4 GHz	868/900 MHz	13.56 MHz
Consumo de energia	Baixo Alto	Baixo	Muito baixo	Muito baixo	Alto	Muito baixo	Alto	Muito Baixo	Médio
Taxa de envio de dados	1.3 Gbps	1–24 Mb/s	250 kb/s	300 kb/s	11-100mb/s	40kb/s	0.1–1 Gb/s	0.3–50 Kb/s	424 Kb/s
Alcance	100m	8–10 m	10-20m	10-20m	50km	100m	Área do sinal	<30 Km	10cm
Tipo de aplicacao	Qualquer dispositivo com capacidade de conexão	Rede para troca de dados	Sensor network de automação industrial	Sensor network de automação industrial	Conexão de Internet de marca ampla na área metropolitana	Automação residencial	Celulares	Smart cities	Cartão de crédito/ônibus
Tamanho da rede	Médio	Pequena	Muito grande	Muito grande	Grande	Grande	Muito grande	Médio	Muito pequena
Custo	Alto	Baixo	Médio	Baixo - Médio	Alto	Baixo - Médio	Médio	Médio	Baixo

1- NFC

NFC

- X NFC é uma sigla para "Near Field Communication"
- x tecnologia de troca de dados sem fio por aproximação entre dois dispositivo
- Leitura e gravação: tendo como base a comunicação passiva, permite leitura ou alteração de dados existentes em um dispositivo NFC, como um receptor que desconta créditos registrados em um cartão de viagens (como o Bilhete Único da cidade de São Paulo);
- Peer-to-peer: é um modo para troca bidirecional de informações entre os dois dispositivos, ou seja, cada um pode tanto receber quanto enviar dados para o outro.
 Pode ser útil, por exemplo, para a troca de arquivos entre dois smartphones;
- Emulação de cartão: neste modo, o dispositivo NFC pode se passar por um cartão inteligente, de forma que o aparelho leitor não consiga distinguir um do outro.

X

NFC 1- NFC

2-ZIGBEE

Zigbee é um conjunto de especificações desenvolvido pela Zigbee Alliance para utilização em residências inteligentes (smart home) e IoT, que define as camadas subsequentes às camadas estabelecidas pelo IEEE 802.15.4, oferecendo serviços de segurança, tolerância a erros e conexão de novos dispositivos. O Zigbee abrange as camadas referentes a Internet, transporte e aplicação do modelo TCP/IP.

3-WIFI

- Wireless Fidelity,
- X WLAN (Wireless Local Area Network).
- Protocolo 802.11 (a, b, g e n,)

4- WIFI

5- BLUETOOTH

Bluetooth é uma especificação de rede sem fio de âmbito pessoal (*Wireless personal area networks* – PANs) consideradas do tipo PAN ou mesmo WPAN

6-GPRS

ØPRS é a sigla de General Packet Radio Services, ou Serviços Gerais de Pacote por Rádio. GPRS é uma tecnologia que tem o objetivo de aumentar as taxas de transferência de dados entre celulares, facilitando a comunicação e o acesso a redes.

LoRa (**Lo**ng **Ra**nge) é uma tecnologia de rede de área ampla de baixa potência. Baseia-se em técnicas de modulação de espectro de propagação derivadas da tecnologia chirp spread spectrum (CSS).

- X Baixo consumo de energia
- X Longo alcance (Geralmente 2~7Km)
- Possibilidade de montar sua própria rede
- X Solução para IoT em ambientes remotos
- Frequências baixas (433~968MHz)

- Dispositivo loT para monitorar vazão e fluxo de água.
 - Alcance necessário: min 2.5Km
 - X Alcance esperado: +4Km.

Minha experiência com LoRa

X Alcance na cidade: 1.5Km

(Altura do solo)

Principais benefícios:

- X Rede privada
- X Longo alcance pelo custo (Módulo RA-02 433MHz ~ R\$40,00)
- X Rede MESH possibilita maior alcance
- X Sem necessidade de infraestrutura

Implementação

- X Biblioteca para arduino
- X Protocolo LoraWan
- X Código dispositivo remoto
- X Código Gateway
- X Testes de envio entre os dois

Diferenças

COMPUTAÇÃO UBÍQUA

- Termo criado por Mark Weiser em 1991
- Dispositivos conectados em todos os lugares de forma tão transparente para o ser humano que acabaremos por não perceber que eles estão lá.

Embarcados	Comp. ubíqua	IOT
1941	1991	2009

Colaboração:
antonio_pereira@outlook.com
18/11/20

TECNOLOGIAS DE COMUNICAÇÃO IOT: PARTE PRÁTICA

2º ETAPA

ESP-NOW

- Semelhante à conectividade sem fio de baixa potência de 2,4 GHz
- Controle direto e com baixa latência
- X Sem necessidade de conexão Wi-Fi
- Comunicação entre dispositivos ESP
- X Até 200m de distância com antena onboard

ESP-NOW

ESP-NOW

Distância obtida

Fernando K, 3/2018

ESP-NOW

- Útil para automação residencial (baixas distâncias).
- Y Pode ser útil para o AirPure!

ESP-NOW(PAI)

```
void setup() {
 // Init Serial Monitor
 Serial.begin(115200);
 // Set device as a Wi-Fi Station
 WiFi.mode (WIFI STA);
 // Init ESP-NOW
 if (esp_now_init() != ESP_OK) {
   Serial.println("Error initializing ESP-NOW");
   return;
 // Once ESPNow is successfully Init, we will register for Send CB to
 // get the status of Trasnmitted packet
 esp now register send cb(OnDataSent);
 // Register peer
 esp now peer info t peerInfo;
 memcpy (peerInfo.peer addr, broadcastAddress, 6);
 peerInfo.channel = 0;
 peerInfo.encrypt = false;
 // Add peer
 if (esp now add peer(&peerInfo) != ESP OK) {
   Serial.println("Failed to add peer");
   return;
```

```
void loop() {
    // Set values to send
    strcpy(myData.a, "THIS IS A CHAR");
    myData.b = random(1,20);
    myData.c = 1.2;
    myData.d = "Hello";
    myData.e = false;

    // Send message via ESP-NOW
    esp_err_t result = esp_now_send(broadcastAddress, (uint%_t *) smyData, sizeof(myData));

if (result == ESP_OK) {
    Serial.println("Sent with success");
    }
    else {
        Serial.println("Error sending the data");
    }
    delay(2000);
}
```

ESP-NOW(FILHO)

```
// callback function that will be executed when data is received
                                                                              void setup() {
void OnDataRecv(const uint8 t * mac, const uint8 t *incomingData, int len) {
                                                                                // Initialize Serial Monitor
  memcpy(smyData, incomingData, sizeof(myData));
                                                                                Serial.begin(115200);
 Serial.print("Bytes received: ");
  Serial.println(len);
                                                                                // Set device as a Wi-Fi Station
  Serial.print("Char: ");
                                                                                WiFi.mode (WIFI STA);
  Serial.println(myData.a);
  Serial.print("Int: ");
                                                                                // Init ESP-NOW
  Serial.println(myData.b);
                                                                                if (esp now init() != ESP OK) {
  Serial.print("Float: ");
                                                                                  Serial.println("Error initializing ESP-NOW");
  Serial.println(myData.c);
                                                                                  return;
  Serial.print("String: ");
  Serial.println(myData.d);
  Serial.print("Bool: ");
                                                                                // Once ESPNow is successfully Init, we will register for recv CB to
  Serial.println(myData.e);
                                                                                // get recv packer info
  Serial.println();
                                                                                esp now register recv cb(OnDataRecv);
```

CÓDIGO

PARA BAIXAR O CÓDIGO, CLIQUE <u>AQUI</u>.

FUNCIONAMENTO (FILHO)

FUNCIONAMENTO (PAI)

FLUXOGRAMA DE UMA APLICAÇÃO

2º ETAPA

LORA (SENDER - RECEIVER)

- V Utilizando o chip SX1278;
- Funciona com Arduino ou ESP32;
- Método mais simples de funcionamento.

LORA

LORA - SENDER

```
void loop() {
#include <SPI.h>
                                                       Serial.print("Sending packet: ");
#include <LoRa.h>
                                                       Serial.println(counter);
int counter = 0;
                                                       // send packet
                                                       LoRa.beginPacket();
void setup() {
                                                       LoRa.print("hello ");
 Serial.begin(9600);
                                                       LoRa.print(counter);
 while (!Serial);
                                                       LoRa.endPacket();
 Serial.println("LoRa Sender");
                                                       counter++;
 if (!LoRa.begin(915E6)) {
                                                       delay (5000);
    Serial.println("Starting LoRa failed!");
   while (1);
```

LORA - RECEIVER

```
#include <SPI.h>
#include <LoRa.h>

void setup() {
    Serial.begin(9600);
    while (!Serial);

    Serial.println("LoRa Receiver");

    if (!LoRa.begin(915E6)) {
        Serial.println("Starting LoRa failed!");
        while (1);
    }
}
```

```
void loop() {
 // try to parse packet
 int packetSize = LoRa.parsePacket();
 if (packetSize) {
   // received a packet
    Serial.print("Received packet '");
   // read packet
    while (LoRa.available()) {
      Serial.print((char)LoRa.read());
    // print RSSI of packet
    Serial.print("' with RSSI ");
    Serial.println(LoRa.packetRssi());
```

2º ETAPA LORA (MENSAGEIRO)

LORA (MENSAGEIRO)

- V Utilizando o chip SX1278;
- V Utiliza um aplicativo chamado "Ripple Messeger" para comunicar com o ESP32.
- X O ESP32 comunica com o outro nodo, que por sua vez comunica com o outro celular.

LORA (MENSAGEIRO)

scottpowell69/Hackster.io

NFC

NFC

- X Diversas utilidades no ramo da segurança por se assemelhar com uma "chave".
- Crescente utilização no ramo de pagamentos (Ex. Apple Pay, Android Pay, etc).

NFC DIAGRAMA DE LIGAÇÃO

Filipeflop, 2014.

FUNCIONAMENTO

```
_ 🗆 🗙
oo COM3
                                                                                  Enviar
Aproxime o seu cartao do leitor...
UID da tag : ED 78 03 CA
Mensagem : Ola FILIPEFLOP !
UID da tag : BD 9B 06 7D
Mensagem : Ola Cartao !!!

▼ Rolagem automática

                                                            Sem fim de linha. → 9600 baud
```

GPS

Triangulação: Determina a localização do receptor na Terra.

três satélites enviam o sinal para o receptor, que calcula quanto tempo cada sinal demorou a chegar nele.

GPS

- Precisão de até 20m.
- X Retorno rápido da informação.
- X Amplo alcance de grande parte do mundo.

GPS

Coloque suas credenciais wi-fi (nome da rede e senha) no código-fonte, nas constantes ssid_wifi e password_wifi.

Compile o projeto e o grave na placa (utilizando como board o ESP32 Dev Module).

Com um cliente MQTT qualquer no seu smartphone ou computador, conecte-se ao broker público broker.hivemq.com na porta 1883 e se subscreva ao tópico MQTT do seu código-fonte (definido na constante topico_publish_mqtt).Segue abaixo algumas sugestões de clientes MQTT:

Computador: MQTT Lens

- Smartphone Android: MyMQTT

Observe no cliente MQTT as mensagens com a localização (latitude e longitude) e horário obtidos via GPS (considerando GMT 0, ou seja, fuso-horário de Greenwich) chegando na temporização configurada no seu código-fonte (no define TEMPO_ENTRE_POSICOES_GPS).