Mit dem Sinus modellieren

Kirill Heitzler

27. Februar 2021

Inhaltsverzeichnis

1	Rüc	ckblick	
	1.1	Rechtwinkliges Dreieck - Beschriftung	
	1.2	Der Sinus	
	1.3	Der Sinus - Beispiel Aufgabe	
	1.4	Der Kosinus und der Tangens	
2	\mathbf{Ein}	Cinheitskreis	
	2.1	Einheitskreis - Beispiel	
	2.2	Der Sinus und Kosinus am Einheitskreis	
	2.3	Beziehungen zwischen Sinus, Kosinus und Tangens	
		Einheitskreis - Definition	
	2.5	Einheitskreis - Aufgabe	

1 Rückblick

1.1 Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

Das Rechtwinklige Dreieck wird folgendermaßen wie in Abbildung 1 beschriftet.

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Die anliegende Kathete zu Winkel α wir "Ankathete von α " genannt und die Kathete gegenüber von Alpha wird "Gegenkathete von α " genannt.

Die Hypothenuse liegt gegenüber des Rechten Winkel γ .

1.2 Der Sinus

Definition: In einem rechtwinkligen Dreieck nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypothenuse}} \tag{1}$$

den Sinus von α

Abbildung 2: Rechtwinkliges Dreieck

Der Sinus - Beispiel Aufgabe 1.3

Gegenkathete von α mithilfe des Sinus berechnen:

Aufgabe: Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in Abbildung 3 besitzt einen rechten Winkel(90°), die Hyptenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namen's x.

Abbildung 3: Rechtwinkliges Dreieck am MÃijnster

Rechnung:

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypothenuse}}$$

$$\sin(45) = \frac{x}{164,05m}$$

$$| \cdot 164,05m$$
(2)

$$\sin(45) = \frac{x}{164.05m} \qquad |\cdot 164.05m$$
 (2)

$$\sin(45) \cdot 164,05m = x \tag{3}$$

$$x \cong 116m \tag{4}$$

Antwort: Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

1.4 Der Kosinus und der Tangens

Sinus von α :

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypothenuse}} \tag{1}$$

Abbildung 4: Rechtwinkliges Dreieck

Cosinus von α :

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypothenuse}} \tag{1}$$

Abbildung 5: Rechtwinkliges Dreieck

Tangens von α :

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} \tag{1}$$

Abbildung 6: Rechtwinkliges Dreieck

2 Einheitskreis

2.1 Einheitskreis - Beispiel

Aufgaben-Text: Auf einem kresiförmigen Koordinatensystem eines Radarschirms Abbildung 7 wird die Lage von zwei Schiffen durch die Entfernung zum Hafen(0) und durch den Kurs gegenüber der x-Achse beschrieben.

Aufgabe: Ein Schiff **A** ist mit dem Kurs **30**° gegenüber der x-Achse **einen Kilometer** weit gefahren. Welche Koordinaten im **x-y-Kooradinatensystem** hat es?

Welche Koordinaten hat das Schiff **B**, das mit dem Kurs **75° einen Kilometer** weit gefahren ist?

Abbildung 7: Radar

Lösung:

Das Schiff A mit dem Kurs 30° befindet sich auf der x-Achse: etwa 0.86 Kilometer und y-Achse: 0.5 Kilometer. Also auf dem Punkt A(0.86|0.5)

Das Schiff **B** mit dem Kurs 75° befindet sich auf der x-Achse: etwa 0,25 Kilometer und y-Achse: 0,96 Kilometer. Also auf dem Punkt A(0,25|0,96)

2.2Der Sinus und Kosinus am Einheitskreis

Dreiecke mit der **Hypotenusenlänge 1** kann man in einem Koordinatensystem auf folgenden Weise darstellen:

- Die Endpunkte der **Hypotenuse** sind der **2**. Kreis O mit dem Radius 1 liegt. Diesen Kreis P hat somit Koordinaten $P(\cos(\alpha)|\sin(\alpha))$ nennt man den Einheitskreis.
- Die Ecke mit dem rechten Winkel liegt auf Ursprung O und ein Punkt P, der auf einem der x-Achse senkrecht unter P. Der Punkt

Abbildung 9: Sinus und Kosinus am Einheitskreis

2.3Beziehungen zwischen Sinus, Kosinus und Tangens

1. Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $sin(\alpha)$ mit wachsendem α zu und $cos(\alpha)$ ab(Abbildung 10a). $sin(0^{\circ}) = 0$, $cos(0^{\circ}) = 1$ (Abbildung 10b), $sin(90^{\circ}) = 1$, $cos(90^{\circ}) = 0$ (Abbildung 10c).

Abbildung 10: Beziehung 1

Wendet man auf das im Einheitskreis dargestellte Dreieck den Satz des Pythagoras an(Abbildung 11), so erhält man den für jede Winkelweite gültigen Zusammenhang $sin^2(\alpha) + cos^2(\alpha) = 1.$ Beispiel:

$$sin^2(\alpha) + cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1\tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1\tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1$$

$$\frac{1}{2} + \frac{1}{2} = 1$$
(5)

$$\frac{1}{2} + \frac{1}{2} = 1\tag{6}$$

$$0, 5 + 0, 5 = 1 \tag{7}$$

Abbildung 11: Einheitskreis Dreieck Satz des Pythagoras

3. In Abbildung 12 sieht man:

$$sin(90^{\circ} - \alpha) = x = cos(\alpha)$$
 und $cos(90^{\circ} - \alpha) = y = sin(\alpha)$

Beispiel:

$$sin(90^{\circ} - \alpha) = x$$
 $= cos(\alpha)$ (1)

$$sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2} = cos(30^{\circ})$$
 (2)

4. Ebenfalls in Abbildung 12: $tan(\alpha) = \frac{y}{x} = \frac{sin(\alpha)}{\cos(\alpha)}$.

Abbildung 12: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

2.4 Einheitskreis - Definition

Definition: Es gilt:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$sin(90^{\circ} - \alpha) = sin(\alpha)$$

$$tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}, \ \alpha \neq 90^{\circ}, \text{ weil: } tan(90) = \frac{sin(90)}{cos(90)} = \frac{1}{0} = \mathbf{I}$$

2.5 Einheitskreis - Aufgabe

Aufgabe: $sin(\alpha) = 0, 6$.

Bestimme:

a)
$$cos(\alpha)$$
 b) $tan(\alpha)$ c) $sin(90^{\circ} - \alpha)$ d) $cos(90^{\circ} - \alpha)$ e) $tan(90^{\circ} - \alpha)$

a) Lösung:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$0,6^2 + \cos^2(\alpha) = 1 \qquad |-0,6^2|$$

$$\cos^2(\alpha) = 1 - 0.36 \tag{3}$$

$$\cos(\alpha) = \sqrt{1 - 0.36} \tag{4}$$

$$\cos(\alpha) = \sqrt{0.64} \tag{5}$$

$$\cos(\alpha) = 0.8 \tag{6}$$

b) Lösung:

$$tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)} \tag{1}$$

$$tan(\alpha) = \frac{0.6}{0.8} = \frac{6}{8} \tag{2}$$

$$tan(\alpha) = \frac{3}{4} = 0,75 \tag{3}$$

c) Lösung:

$$sin(90 - \alpha) = cos(\alpha) = 0.8 \tag{1}$$

d) Lösung:

$$cos(90 - \alpha) = sin(\alpha) = 0, 6 \tag{1}$$

e) Lösung:

$$tan(90 - \alpha) = \frac{sin(90 - \alpha)}{cos(90 - \alpha)} = \frac{0.8}{0.6}$$
 (1)

$$\tan(90 - \alpha) = \frac{8}{6} = \frac{4}{3} \tag{2}$$