Discussion Forums

Get help and discuss course material with the community.

Search

← All Course Discussions

All Threads

Forums

C

```
1 % input
 2 theta = [-2; -1; 1; 2];
2 X = [ones(5,1) \ reshape(1:15,5,3)/10];
 4 y = [1;0;1;0;1] >= 0.5;
                                 % creates a logical array
 5
 6 % test the unregularized results
 7 [J grad] = lrCostFunction(theta, X, y, 0)
9 % results
10 J = 0.73482
11 grad =
12
13
       0.146561
14
       0.051442
15
       0.124722
16
       0.198003
17
18 % test the regularized results
19 lambda = 3;
20 [J grad] = lrCostFunction(theta, X, y, lambda)
21
22 % results
J = 2.5348
24 grad =
25
26
       0.14656
27
      -0.54856
28
       0.72472
29
       1.39800
```

Note: your cost function must return the gradient as a column vector (size $n \times 1$), NOT as a row vector (1 x n).

====

oneVsAll:

```
1 %input:
2 X = [magic(3); sin(1:3); cos(1:3)];
3 y = [1; 2; 2; 1; 3];
4 num_labels = 3;
5 lambda = 0.1;
6 [all_theta] = oneVsAll(X, y, num_labels, lambda)
7 %output:
8 all_theta =
9 -0.559478  0.619220 -0.550361 -0.093502
10 -5.472920 -0.471565  1.261046  0.634767
11  0.068368 -0.375582 -1.652262 -1.410138
```

====

predictOneVsAll:

Note: your prediction function should NOT include any use of a fixed threshold. Select the classifier with the maximum output.

=====

predict:

```
Theta1 = reshape(sin(0 : 0.5 : 5.9), 4, 3);
2 Theta2 = reshape(sin(0 : 0.3 : 5.9), 4, 5);
3 X = reshape(sin(1:16), 8, 2);
4 p = predict(Theta1, Theta2, X)
5 % you should see this result
6 p =
7
      4
8
      1
9
      1
10
      4
11
      4
12
      4
13
      4
      2
14
```

Note: your prediction function should NOT include any use of a fixed threshold. Select the classifier with the maximum output.

Here are the values for the "a3" layer in the test case for predict().

```
1
  a3 =
2
                       0.55725 0.56352
3
      0.53036
               0.54588
4
      0.54459
             0.54298 0.53754 0.52875
5
      0.49979 0.49616 0.49288 0.49024
6
      0.41357
              0.42199 0.43736 0.45844
7
                      0.44349 0.48911
      0.37321
               0.40368
8
      0.42073
             0.45935
                      0.50210 0.54464
9
      0.50962
               0.53216 0.55173
                                0.56659
10
      0.54882
               0.55033 0.54738 0.54021
```

=====

 $\hat{\Upsilon}$ 50 Upvotes \square Reply Follow this discussion

■This thread is closed. You cannot add any more responses.

Q

No Replies Yet

DESCRIPTION

Welcome to the course discussion forums! Ask questions, debate ideas, and find classmates who share your goals. Browse popular threads below or other forums in the sidebar.

Forum guidelines >