Computational Finance and its implementation in Python with applications to option pricing

Andrea Mazzon

Ludwig Maximilians Universität München

Main contents

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 Antithetic variables
 - Control variates
- 2 Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Motivation

- A common problem we face in mathematical finance is the risk neutral valuation of a derivative.
- As you know, the price of a derivative is expressed by the (possibly discounted) expectation of its payoff at maturity, under a pricing measure (also called pricing, or martingale measure).
- That is, we have to compute the expectation of a random variable.
- Problem: most often, there is no way to get an analytic formula for the expectation
 of complex derivates, or even simpler derivatives written on underlying with non
 trivial dynamics.
- Broad idea: we can approximate the price by averaging some possible, simulated realizations of the payoff.
- The strong law of large numbers and some other convergence results may help us.

A bit more precisely..

- Consider a random variable $X:\Omega\to\mathbb{R}^N$ defined on a probability space (Ω,\mathcal{F},P) . The probability measure P may be viewed as a risk neutral measure.
- Also consider a (payoff) function $f: \mathbb{R}^N \to \mathbb{R}$ such that $\text{Var}[f(X)] < \infty$.
- The aim is to compute the expectation

$$\theta := \mathbb{E}^{P}[f(X)] = \int_{\Omega} f(X)dP.$$

• Suppose there is no analytic formula to derive θ above. We have to find an approximation $\hat{\theta}$.

We can define independent drawings of X

• Given $X : \Omega \to \mathbb{R}$ and (Ω, \mathcal{F}, P) as above, introduce:

$$\tilde{\Omega} := \Omega \times \Omega \times \dots \times \Omega = \{ \tilde{\omega} = (\omega_1, \dots, \omega_n), \omega_i \in \Omega \},$$

$$\tilde{\mathcal{F}} := \sigma(\mathcal{F} \times \mathcal{F} \times \dots \times \mathcal{F}),$$

$$\tilde{P}\left(\prod_{i=1}^n A_i\right) := \prod_{i=1}^n P(A_i), \quad A_i \in \mathcal{F}.$$

- Also define the random variable $\tilde{X}=(\tilde{X}_1,\ldots,\tilde{X}_n)$ by $\tilde{X}_i(\tilde{\omega}):=X(\omega_i)$.
- This is a way to see $\tilde{X}(\tilde{\omega})$ as n different realizations $X(\omega_i)$, $i=1,\ldots,n$ of one random variable X, or as one realization of n i.i.d. random variables $\tilde{X}_i(\tilde{\omega})$, $i=1,\ldots,n$.
- This interpretation is at the base of the Monte-Carlo method, as it permits to exploit the Strong Law of Large Numbers.
- ullet A similar construction and interpretation can be given for a N-dimensional random variable X.

Convergence results for sequences of i.i.d. random variables

Theorem: Strong Law of Large Numbers

Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d. integrable real valued random variables on (Ω, \mathcal{F}, P) , and set

$$\mu := \mathbb{E}^P[X_i], \quad i \in \mathbb{N}.$$

Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu \quad P - a.s.$$

Theorem: Tschebyscheff Inequality

Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d. square integrable real valued random variables on (Ω, \mathcal{F}, P) , and set

$$\mu := \mathbb{E}^P[X_i], \quad \sigma^2 := \mathbb{E}^P[(X_i - \mu)^2], \quad i \in \mathbb{N}.$$

Then for any $\epsilon,\delta>0$ we have

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right) \leq \frac{\sigma^{2}}{\epsilon^{2}n}.$$

and

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \frac{\sigma}{\delta^{1/2}n^{1/2}}\right) \leq \delta.$$

Application to Monte-Carlo

Lemma

Let $(X_i)_{i\in\mathbb{N}}$ be a collection of i.i.d. integrable real valued random variables on (Ω, \mathcal{F}, P) , and let $f: \mathbb{R}^N \to \mathbb{R}$. Then the random variables $(f(X_i))_{i\in\mathbb{N}}$ are also i.i.d.

 The lemma above, together with the convergence results of the previous slide, allows us to approximate

$$\theta := \mathbb{E}^P[f(X)] = \int_{\Omega} f(X)dP$$

by

$$\hat{\theta} := \frac{1}{n} \sum_{i=1}^{n} f(X_i),$$

where $(X_i)_{i=1,...,n}$ are independent realizations of X.

- We can generate numerically n realizations of a random variable X with a given distribution P^X , starting from a sequence of (pseudo!) random numbers.
- One must give a seed, i.e., a starting point for the pseudo-random numbers sequence.
- The realizations will not be purely random, and not purely independent.

Pro and cons of Monte-Carlo

Pro:

- It is very simple to understand and easy to implement.
- The accuracy does not depend on the domain dimension (i.e., if we simulate N-dimensional random variables the accuracy is the same).
- The accuracy can be increased by just adding more valuations without loosing the previous estimates.
- The function f does not need to be continuous, but only square integrable.

Cons:

- \bullet Look at the Tschebyscheff Inequality: we only have a probabilistic bound. The worst case error is $\infty.$
- The estimates depend on the generated random sequence. The sequence is not purely random. First, one has to find a good random number generator.
- There are techniques that can be used to increase the accuracy. In the next slides we will see few of them.

Low-discrepancy sequences

Remark

If X has uniform distribution or has a cumulative distribution function F which is easy to invert (in that case a realization x_i can be generated as $x_i = F^{-1}(u_i)$, with u_i realization of $U \sim U((0,1))$) then approximating $\mathbb{E}[f(X)]$ reduces to approximate

$$\int_0^1 G(x)dx,\tag{1}$$

for $G:[0,1]\to\mathbb{R}$.

Theorem: Koksma-Hlawka inequality

If G has bounded total variation on (0,1), then for any points $x_1,\ldots,x_n\in(0,1)$ it holds

$$\left| \frac{1}{n} \sum_{i=1}^{n} G(X_i) - \int_{0}^{1} G(x) dx \right| \le V(G) D^*(x_1, \dots, x_n),$$

where

$$V(G) = \sup_{S} \sum_{i} |G(y_{i+1}) - G(y_i)|$$

over all partitions $S := \{0 = y_1 < y_2 < \dots < y_n = 1\}$ and $D^*(x_1, \dots, x_n)$ is the star discrepancy

$$D^*(x_1, \dots, x_n) = \sup_{b \in (0,1)} \Big| \frac{|\#\{x_i : 0 \le x_i \le b\}|}{n} - b \Big|.$$

Low-discrepancy sequences

- The result in the previous slide also holds for higher dimensions (here we just wanted to simplify the notation).
- It gives the motivation to look for low discrepancy sequences.
- Most well known low discrepancy sequences: Van der Corput, Halton, Sobol, Hammersley, Sobol, Niederreiter.
- Here we don't focus on Low discrepancy sequences. A bit of references if you want to go deeper on this:
 - J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010
 - M. Drmota and R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Math., 1651, Springer, Berlin, 1997.
 - L. Kuipers, H. Niederreiter, *Uniform distribution of sequences*, Dover Publications, 2005.
 - ... the course Numerical Methods for Financial Mathematics at our master!
- We focus instead on variance reduction techniques.

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Motivation - 1

- Consider a random variable $X:\Omega\to\mathbb{R}^N$ defined on a probability space (Ω,\mathcal{F},P) and a (payoff) function $f:\mathbb{R}^N\to\mathbb{R}$ such that $\text{Var}[f(X)]<\infty$.
- Monte-Carlo method: choosing $n \in \mathbb{N}$ large enough, we approximate

$$\hat{\mu} := \frac{1}{n} \sum_{k=1}^{n} f(X_i) \approx \mu := \mathbb{E}^P[f(X)],$$

where $(X_i)_{i=1,...,n}$ are realizations of X, i.e., have same distribution as X.

• The estimator is of course unbiased, i.e.,

$$\mathbb{E}^{P}\left[\hat{\mu}\right] = \mathbb{E}^{P}\left[\frac{1}{n}\sum_{k=1}^{n}f(X_{i})\right] = \mathbb{E}^{P}\left[f(X)\right] =: \mu$$

We are interested in the variance of our estimator, i.e., in the quantity

$$\operatorname{Var}(\hat{\mu}) = \mathbb{E}^{P}\left[\left(\frac{1}{n}\sum_{k=1}^{n}f(X_{i}) - \mu\right)^{2}\right].$$

Motivation - 2

• We have seen that if $(X_i)_{i=1,...,n}$ are independent, we have convergence results for our estimator. Moreover,

$$\operatorname{Var}(\hat{\mu}) = \mathbb{E}^P\left[\left(\frac{1}{n}\sum_{k=1}^n f(X_i) - \mu\right)^2\right] = \frac{1}{n}\operatorname{Var}[f(X)].$$

- It makes sense: the larger the number n of simulated realizations of X, the smaller the variance of our estimator.
- In particular, we have to increase the number of simulations by a factor of C to reduce the standard deviation by a factor of \sqrt{C} .
- The question now is: can we do it better?
- Variance reduction techniques aim to reduce the variance of our estimator, without increasing the number of simulations.

Some variance reduction techniques

Three well known variance reduction techniques are:

- Antithetic variables
- Control variates
- Importance sampling

We will focus mostly on the first two techniques, together with applied examples. Here some references if you want to deepen Importance sampling:

- A, Bouhari. Adaptative Monte Carlo Method, A Variance Reduction Technique.
 Monte Carlo Methods and Their Applications. 10 (1): 1-24, 2004.
- P. J. Smith, M. Shafi, H. Gao. Quick simulation: A review of importance sampling techniques in communication systems. IEEE Journal on Selected Areas in Communications. 15 (4): 597-613, 1997.
- Again, the course Numerical Methods for Financial Mathematics at our master!

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Let's start from a simple result..

Lemma

Let $f,h:\mathbb{R}\to\mathbb{R}$ be two monotone functions, both increasing or both decraesing, and let $X:\Omega\to\mathbb{R}$ be a random variable defined on a probability space (Ω,\mathcal{F},P) . Then

$$\mathbb{E}^P[f(X)h(X)] \ge \mathbb{E}^P[f(X)]\mathbb{E}^P[h(X)].$$

Proof

The monotonicity assumption on f and h implies that for any $x,y\in\mathbb{R}$ we have

$$(f(x) - f(y)) (h(x) - h(y)) \ge 0.$$

Therefore, for any i.i.d. real valued random variables X and Y on (Ω, \mathcal{F}, P) it holds

$$(f(X) - f(Y))(h(X) - h(Y)) \ge 0$$

and then

$$\mathbb{E}\left[\left(f(X) - f(Y)\right)\left(h(X) - h(Y)\right)\right] \ge 0,$$

so that

$$\mathbb{E}\left[f(X)h(X)\right] + \mathbb{E}\left[f(Y)h(Y)\right] \geq \mathbb{E}\left[f(Y)h(X)\right] + \mathbb{E}\left[f(X)h(Y)\right].$$

Since X and Y are identically distributed, it follows that

$$2\mathbb{E}\left[f(X)h(X)\right] \ge 2\mathbb{E}\left[f(Y)h(X)\right],$$

and since they are also independent, this implies that

$$\mathbb{E}^{P}[f(X)h(X)] \ge \mathbb{E}^{P}[f(X)]\mathbb{E}^{P}[h(X)].$$

An interesting consequence

Proposition

Let $f:\mathbb{R}\to\mathbb{R}$ be a monotone function, and $X:\Omega\to\mathbb{R}$ a random variable defined on a probability space (Ω,\mathcal{F},P) . Then

$$\mathsf{Cov}[f(X), f(-X)] \le 0.$$

Proof

We have that

$$\mathsf{Cov}[f(X),f(-X)] = \mathbb{E}^P[f(X)f(-X)] - \mathbb{E}^P[f(X)]\mathbb{E}^P[f(-X)].$$

The result then follows since a direct application of the Lemma of the previous slide with h(x):=-f(-x) implies that

$$\mathbb{E}^{P}[f(X)]\mathbb{E}^{P}[f(-X)] \ge \mathbb{E}^{P}[f(X)f(-X)].$$

Application to Monte-Carlo

- Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function, and let $X: \Omega \to \mathbb{R}$ be a symmetric random variable defined on a probability space (Ω, \mathcal{F}, P) .
- From the last proposition we know that

$$Cov[f(X), f(-X)] \le 0.$$

- Idea: choose n even and generate n/2 realizations of X, call them $(X_i)_{i=1,...,n/2}$. Then define $X_{n/2+i}:=-X_i, i=1,\ldots,n/2$.
- Since *X* is symmetric, the estimator is unbiased:

$$\mathbb{E}[\hat{\mu}] = \frac{1}{n} \mathbb{E}\left[\sum_{k=1}^{n/2} f(X_i) + \sum_{k=1}^{n/2} f(-X_i)\right] = \frac{1}{n} \left(\sum_{k=1}^{n/2} \mathbb{E}[f(X_i)] + \sum_{k=1}^{n/2} \mathbb{E}[f(-X_i)]\right) = \mu.$$

What about the variance?

$$\begin{split} & \mathsf{Var}[\hat{\mu}] = \frac{1}{n^2} \mathsf{Var} \left[\sum_{k=1}^{n/2} f(X_i) + \sum_{k=1}^{n/2} f(-X_i) \right] \\ & = \frac{1}{n^2} \left(n \mathsf{Var}[f(X)] + \mathsf{Cov} \left(\sum_{k=1}^{n/2} f(X_i), \sum_{k=1}^{n/2} f(-X_i) \right) \right) \\ & = \frac{1}{n} \mathsf{Var}[f(X)] + \frac{1}{n} \mathsf{Cov}[f(X), f(-X)] \leq \frac{1}{n} \mathsf{Var}[f(X)]. \end{split}$$

Application to Monte-Carlo

• To recap: if X is symmetric, then setting $X_{n/2+i}:=-X_i$ for $i=1,\dots,n/2$ gives us an unbiased estimator $\hat{\mu}$ such that

$$\operatorname{Var}[\hat{\mu}] \leq \frac{1}{n} \operatorname{Var}[f(X)].$$

- But $\frac{1}{n} \text{Var}[f(X)]$ is the variance of the classical estimator, when we generate n i.i.d. realizations of X!
- In this way, we reduce the variance of the estimator.
- This approach is known as Antithetic variables.

Antithetic variables for not symmetric *X*

- Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function, and let $X: \Omega \to \mathbb{R}$ be a random variable defined on a probability space (Ω, \mathcal{F}, P) .
- Suppose X to be not symmetric. How can we apply Antithetic variables to reduce the variance of our estimator?
- Call F the cumulative distribution function of X. Suppose that we know (at least a
 good approximation of) F⁻¹.
- Well known result: let $U \sim \mathsf{Unif}(0,1)$ and define $Y := F^{-1}(U)$. Then X and Y have same distribution.
- Let $U \sim \mathsf{Unif}(0,1)$. Because of the result above, we have

$$\mathbb{E}^{P}[f(X)] = \mathbb{E}^{P}[h(U)]$$

with $h(x) = f \circ F^{-1}$.

 \bullet Since U is symmetric, we can approximate $\mathbb{E}^P[h(U)]$ by Antithetic variables.

Example: valuation of a call option under Black-Scholes

- We want to test the benefits of using Antithetic variables in the valuation of a call option under the Black-Scholes model.
- This is indeed a case when we have of course the benchmark of the analytic formula for a call option.
- In particular, we want to approximate the expectation $\mathbb{E}^P[g(X_T)]$ for T>0, in the case when

$$g(x) = (x - K)^+$$

with K>0 and $X=(X_t)_{0\leq t\leq T}$ is a stochastic process with initial value $X_0=x_0$ and dynamics

$$dX_t = rX_tdt + \sigma X_tdW_t, \quad 0 \le t \le T,$$

where $W = (W_t)_{0 \le t \le T}$ is *P*-Brownian motion.

• Interpretation: r is the risk free rate and P is the martingale measure, i.e., the probability measure under which the discounted process $(e^{-rt}X_t)_{0 \le t \le T}$ is a martingale.

Valuation with Antithetic variables

The problem reduces to the valuation of the expectation

$$\mathbb{E}^P[g(X-K)^+]$$

where X is the random variable

$$X = X_0 e^{(r - \sigma^2)T + \sigma\sqrt{T}Z},$$

with $Z \sim \mathcal{N}(0,1)$.

• That is, we have to valuate

$$\mathbb{E}^P\left[f(Z)\right]$$

where

$$f(z) = \left(X_0 e^{(r-\sigma^2)T + \sigma\sqrt{T}z} - K\right)^+.$$

- So, we have a function of a symmetric random variable! We can directly use Antithetic variables.
- We simulate n/2 realizations $(z_i)_{i=1,...,n/2}$ of a standard normal random variable and then define $z_{i+n/2}=-z_i,\,i=1,\ldots,n/2.$

Implementation with Python

In the Python package

montecarlovariancereduction.antitheticvariables

you can find the code relative to the comparison of Antithetic variables against the standard Monte-Carlo method.

• In particular, in the class GenerateBlackScholes we generate the values of

$$X = X_0 e^{(r - \sigma^2)T + \sigma\sqrt{T}Z},$$

starting from the ones of Z. We do this using both the standard Monte-Carlo approach and the Antithetic variables approach illustrated in the previous slide.

Note that the method

generates n returns of a standard normal random variable. In this case, we give no seed: it will be different every time this method is called.

Experiment and results

In

antitheticVariablesTest

and

compareStandardMCWithAV

we do the following experiment:

- We fix the parameters $X_0 = K = 100$, T = 3, r = 0.05, $\sigma = 0.5$.
- For any number of simulations $n=10^3$, 10^4 , 10^5 and 10^6 , we perform 100 different valuations of the price of the call option, both with the standard and the Antithetic variables Monte-Carlo method.
- We then compute the average percentage error for both the methods.

The following table illustrates the results:

	$n = 10^3$	$n = 10^4$	$n = 10^5$	$n = 10^6$
av. % error standard MC	6.25	2.07	0.59	0.20
av. % error AV	5.51	1.77	0.53	0.17

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Setting and motivation

- Let $X,Y:\Omega\to\mathbb{R}$ be two random variables defined on a probability space $(\Omega,\mathcal{F},P).$
- Suppose you know the analytic value of

$$a:=\mathbb{E}^P[X], \qquad \sigma_X^2:= \mathrm{Var}[X], \qquad \sigma_{XY}:= \mathrm{Cov}[X,Y],$$

and also suppose $\sigma_{XY} > 0$.

Assume you want to approximate

$$b := \mathbb{E}^P[Y]$$

• The goal is to find an unbiased estimator of b which has low variance.

Control variates - 1

• Idea: simulate n realizations (x_i, y_i) , i = 1, ..., n, of (X, Y). Compute then

$$\hat{a} := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \hat{b} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Note that

$$\operatorname{Cov}[\hat{a},\hat{b}] = \frac{1}{n}\sigma_{XY}.$$

What about an estimator

$$\hat{b}_{CV} := \hat{b} - \beta(\hat{a} - a)$$

for a given $\beta > 0$?

It is unbiased:

$$\mathbb{E}^{P}[\hat{b}_{CV}] = \mathbb{E}^{P}[\hat{b}] + \beta \mathbb{E}^{P}[\hat{a} - a] = b.$$

• What about the variance?

$$\mathsf{Var}[\hat{b}_{CV}] = \frac{1}{n}\sigma_Y^2 + \beta^2 \frac{1}{n}\sigma_X^2 - 2\beta \frac{1}{n}\sigma_{XY}.$$

• It is minimized by $\beta = \frac{\sigma_{XY}}{\sigma_X^2}$. For such a value of β , we find

$$\operatorname{Var}[\hat{b}_{CV}] = \operatorname{Var}[\hat{b}] - \frac{1}{m} \frac{\sigma_{XY}^2}{\sigma_X^2}.$$

Control variates - 2

We have seen that taking

$$\hat{b}_{CV} := \hat{b} - \beta(\hat{a} - a), \qquad \beta = \frac{\sigma_{XY}}{\sigma_X^2}$$

gives an optimal variance

$$\operatorname{Var}[\hat{b}_{CV}] = \operatorname{Var}[\hat{b}] - \frac{1}{m} \frac{\sigma_{XY}^2}{\sigma_X^2}.$$

 Note that the gain of the new estimator with respect to the old one only depends on the correlation of X and Y:

$$\frac{\mathrm{Var}[\hat{b}_{CV}]}{\mathrm{Var}[\hat{b}]} = \left(1 - \frac{\sigma_{XY}^2}{\sigma_X^2}\right) = 1 - \rho_{XY}^2.$$

- Problem: we have to compute $\beta = \frac{\sigma_{XY}}{\sigma_X^2}$, but often we don't know σ_X^2 and σ_{XY} .
- Solution: estimate σ_X^2 and σ_{XY} from the generated sample, i.e., set

$$\hat{\sigma}_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{a})^2, \qquad \hat{\sigma}_{XY} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{a})(y_i - \hat{b})$$

and choose

$$\beta = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_{X}^{2}}.$$

Control variates - 3

- Note that this last choice of β actually depends on the sample $\{(x_i, y_i), i = 1, \dots, n.\}$
- For this reason, the associated estimator $\hat{b}_{CV}:=\hat{b}-\beta(\hat{a}-a)$ is unbiased only asymptotically.

Exercise: multi-dimensional control variates

Consider now the case when X has values in \mathbb{R}^N , $N \geq 1$.

Assume you know the $N \times N$ matrix $\mathrm{Cov}(X) =: \Sigma_X$ and the N-dimensional vector $\mathrm{Cov}(X) = \sigma_{X,Y}$. Also assume that Σ_X is positive definite.

Consider the estimator

$$\hat{b}_{CV} = \hat{b} - (\hat{a} - a)^T \beta,$$

where β is a N-dimensional vector.

Find the optimal β that minimizes the variance of the estimator above and compute the variance for the optimal β you found.

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Motivation

The multi-period Binomial model for option pricing is widely used by practitioners in financial applications mainly because:

- It is very easy to understand and simulate.
- It is particularly convenient to price options involving a choice of the holder, like American and Bermudan options.
- It approximates the Black-Scholes model when the length of the periods tends to zero.
- Option pricing is not based on pure Monte-Carlo techniques but relies on weighting the payoff relative to any scenario by the (analytic!) probability of the scenario.

The setting

- Consider a multi-period model with times $t=0,1,\ldots,T$, and consider a probability space $(\Omega,\mathcal{F},\mathbb{F},P)$, where $\mathbb{F}=(\mathcal{F}_t)_{t=0,\ldots,T}$ is a filtration representing information.
- Suppose there exist:
 - A risk free asset defined by $S_t^0 = (1 + \rho)^t$, $t = 0, \dots, T$, with a deterministic interest rate $\rho > 0$.
 - A risky asset adapted to F defined by

$$S_t = S_0 \cdot Y_1 \cdot \cdots \cdot Y_t, \quad t = 1, \dots, T,$$

where Y_t can take the two values d, u with $0 < d < 1 + \rho < u$, for any $t = 1, \ldots, T$, and $(Y_t)_{t=1,\ldots,T}$ are i.i.d. and such that Y_{t+1} is independent of \mathcal{F}_t .

It then holds

$$S_t^0 = S_{t-1}^0(1+\rho), \quad t = 1, \dots, T$$

and

$$S_t = S_{t-1}Y_t, \quad t = 1, \dots, T.$$

Admissible strategies

At every time t = 0, ..., T - 1, an investor can construct a portfolio of value V_t , trading on the risk-free asset S^0 and on the risky asset S.

• The value of the portfolio is given by

$$V_t = \alpha_t S_t + \beta_t S_t^0, \quad t = 1, \dots, T,$$

where $(\alpha_t)_{t=1,...,T}$ and $(\beta_t)_{t=1,...,T}$ are \mathbb{F} -predictable, discrete process.

• The strategy (α, β) must be self-financing: it must hold

$$V_t = \alpha_t S_t + \beta_t S_t^0 = \alpha_{t-1} S_t + \beta_{t-1} S_t^0, \quad t = 1, \dots, T.$$

Arbitrage theory

Definition

A portfolio V is an arbitrage if:

- V is obtained by a self-financing and predictable strategy;
- $P(V_0 = 0) = 1$;
- $P(V_t \ge 0) = 1$ and $P(V_t > 0) > 0$ for some t.

Proposition

The market is arbitrage free only if $d < 1 + \rho < u$.

• Suppose $1 + \rho \le d < u$, and consider the self-financing portfolio defined by

$$V_t = S_t - \frac{S_0}{S_0^0} S_t^0, \quad t = 0, 1, \dots, T.$$

Then we have $V_0 = 0$ and

$$V_1 = S_1 - \frac{S_0}{S_0^0} S_1^0 \ge S_0 d - S_0 (1 + \rho) \ge 0.$$

• If $d < u \le 1 + \rho$, changing the signs to the strategy above leads to an arbitrage

Equivalent martingale measure

In order for the market to be arbitrage-free and complete, there must exist a unique measure $Q \sim P$ such that $\frac{S}{S^0}$ is a martingale, i.e., such that

$$\mathbb{E}^{Q}\left[\frac{S_{t+1}}{S_{t+1}^{0}}\middle|\mathcal{F}_{t}\right] = \frac{S_{t}}{S_{t}^{0}}, \quad t = 0, \dots, T - 1.$$
(2)

Note that the measure Q is identified by the probability $q:=P(Y_t=u)$. Since

$$\mathbb{E}^{Q}\left[\frac{S_{t+1}}{S_{t+1}^{0}}\big|\mathcal{F}_{t}\right] = \frac{(qu + (1-q)d)S_{t}}{S_{t}^{0}(1+\rho)}, \quad t = 0, \dots, T-1,$$

equation (2) holds if and only if $qu + (1 - q)d = 1 + \rho$, that is,

$$q = \frac{1 + \rho - d}{u - d}.$$

Such Q exists and is unique as we have supposed $0 < d < 1 + \rho < u$, and

$$\frac{dQ}{dP}(\omega) = \left(\frac{q}{p}\right)^{n(\omega)} \left(\frac{1-q}{1-p}\right)^{T-n(\omega)},$$

where $p := P(Y_t = u)$ and $n(\omega)$ is the number of times t = 1, ..., T when $Y_t(\omega) = u$.

Replicating strategy

• Assume we want to find an admissible strategy (α_t, β_t) , $t = 0, \dots, T$, such that the value of the portfolio

$$\alpha_t S_t + \beta_t (1+\rho)^t$$

equals the value V_t of an option at every time $t = 0, \dots, T$.

- From now on, fix t = 1, ..., T, and suppose we know S_{t-1} .
- Call V_t^u the value of the option at time t when $Y_t=u$ and V_t^d the value of the option at time t when $Y_t=d$.
- It must hold

$$\begin{cases} \alpha_t u S_{t-1} + \beta_t (1+\rho)^t = V_t^u, \\ \alpha_t d S_{t-1} + \beta_t (1+\rho)^t = V_t^d. \end{cases}$$

The solution to the system above is

$$\alpha_t = \frac{V_t^u - V_t^d}{S_{t-1}(u-d)},$$

$$\beta_t = \frac{uV_t^d - dV_t^u}{(1+\rho)^t(u-d)}.$$

and gives the right replicating strategy.

Option pricing from admissibility

- Remember that our strategy (α_t, β_t) , $t = 0, \dots, T$, has to be admissible!
- This means that we must have that

$$V_{t-1} = \alpha_{t-1} S_{t-1} + \beta_{t-1} (1+\rho)^{t-1}$$

$$= \alpha_t S_{t-1} + \beta_t (1+\rho)^{t-1}$$

$$= \frac{V_t^u - V_t^d}{u - d} + \frac{u V_t^d - d V_t^u}{(1+\rho)(u - d)}$$

$$= \frac{(1+\rho)(V_t^u - V_t^d) + u V_t^d - d V_t^u}{(1+\rho)(u - d)}$$

$$= \frac{(1+\rho - d)V_t^u + (u - 1 - \rho)V_t^d}{(1+\rho)(u - d)}$$

$$= \frac{q V_t^u + (1-q)V_t^d}{1+\rho}$$

$$= \frac{1}{1+\rho} \mathbb{E}^Q [V_t | \mathcal{F}_{t-1}].$$

- Then we have that the value $(V_t)_{t=0,\dots,T}$ of the option is a martingale under Q.
- This gives us a pricing theorem.

Option pricing

Theorem

The value V_0 of a contingent claim with maturity T and payoff V_T depending on the realizations of S until time T, is given by

$$V_0 = \frac{1}{(1+\rho)^T} \mathbb{E}^Q[V_T].$$

Remark

Because of the theorem above, we always simulate our Binomial model under the risk neutral measure ${\it Q}.$

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Motivation

- Our main goal here is to get the price of European and (most importantly)
 American options written on an underlying Binomial model.
- This valuation will approximate the price of the options written on an underlying log-normal model.
- We then simulate the realizations of the underlying model in Python, and get the payoff on the realizations, along with its expectation.
- ullet Remember we have to price under the risk neutral measure Q: then we simulate the realizations of the process under Q.
- The most naive way we can imagine to do this is a brute force Monte-Carlo approximation..

Monte-Carlo method

- Imagine we want to valuate the discounted price of an European option with a given payoff function $f: \mathbb{R} \to \mathbb{R}$, written on the process S, with maturity T.
- Suppose we don't know any analytic formula in order to derive the price as

$$V_0 = \frac{1}{(1+\rho)^T} \mathbb{E}^Q[f(S_T)].$$

- We consider N states of the world $\omega_1, \omega_2, \ldots, \omega_N \in \Omega$.
- To any $\omega_1, \omega_2, \ldots, \omega_N$, we associate a given trajectory of the process $(S_t)_{t=0,\ldots,T}$, with dynamics given under the measure Q.
- In particular, we suppose that the trajectories $(S_t(\omega_k))_{t=0,...,T}, k=1,2,...,N$ are independent of each other.
- Strong law of large numbers:

$$\frac{1}{n}\sum_{k=1}^n f(S_T(\omega_k)) \to \mathbb{E}^Q[f(S_T)] \quad \text{a.s., when } n \to \infty.$$

• The idea is to simulate such trajectories and approximate

$$\mathbb{E}^{Q}[f(S_T)] \approx \frac{1}{N} \sum_{k=1}^{N} f(S_T(\omega_k)).$$

Monte-Carlo method for the Binomial model

- Our first goal is then to generate a sequence of random numbers in order to simulate N independent trajectories $(S_t(\omega_k))_{t=0,\ldots,T},\,k=1,2,\ldots,N$ of S under the risk neutral measure Q, and store them in a $(T+1)\times N$ matrix.
- First (not that) bad news: it is not possible to generate a sequence of perfectly random numbers, the best we can get is a sequence of *pseudo*-random numbers.
- Idea: generate (with the help of Python in our case) a sequence of $T \cdot N$ uniformly distributed, pseudo-random numbers $0 < x_{i,j} < 1, i = 1, ..., T, j = 1, ..., N$.
- Fix $\rho > 0$, $u > 1 + \rho$, d < 1, $q = \frac{1+\rho-d}{u-d}$.
- For every $i=1,\ldots,T,\,j=1,\ldots,N,$ define

$$Y_i(\omega_j) = \begin{cases} u & \text{if } x_{i,j} < q \\ d & \text{if } x_{i,j} \ge q \end{cases}$$

and

$$S_{i+1}(\omega_j) = Y_i(\omega_j)S_i(\omega_j).$$

Implementation in Python

 You can find the code relative to the simulation of the Binomial model with the pure Monte-Carlo approach described above in

binomialmodel.creationandcalibration.binomialModelMonteCarlo

• Note that the class you find there extends the one in

binomialmodel.creationandcalibration.binomialModel.

- This is done in order to implement in the parent class some methods that do not strictly depend on the way in which we simulate the process.
- In this way, we don't have to copy and paste these methods in every class where we simulate the model in some way: object oriented programming feature.

Some paths

- We plot below some paths of the Binomial model.
- In the figure at the left we take $S_0 = 3$, u = 1.1, d = 0.9, r = 0.05, T = 150, having then $q = \frac{1+\rho-d}{\mu-d} = 0.75$.
- On the right, $S_0=3,\,u=2,\,d=0.5,\,r=0.1,\,T=150,\,q=\frac{1+\rho-d}{u-d}=0.4.$

A first test

We show here the evolution of the discounted average of the process and of the probability $Q(S_{t_j} > (1+\rho)^{t_j}S_0)$, computed by using the Monte-Carlo method with 10^5 simulations, for $S_0=3,\,u=1.1,\,d=0.9,\,r=0.05,\,T=150$. In this case, we have $q=\frac{1+\rho-d}{u-d}=0.75$.

But something can go wrong..

Look at the evolution of the same quantities, again computed by using the Monte-Carlo method, choosing now $S_0=3,\,u=2,\,d=0.5,\,r=0.1,\,T=150,\,q=\frac{1+\rho-d}{u-d}=0.4.$

Why is the estimate of the average that inaccurate?

- The analytic average of the discounted process is equal to S_0 , due to many realizations such that $S_{t_i} < (1 + \rho)^{t_j} S_0$ and few, extremely high realizations.
- If you buy S at time t=0, and you hold it for 150 time steps, you make a positive gain with a very low probability, but the gain can be extremely high.
- Problem: The approximated average is strongly impacted by whether or not those paths leading to high gains are simulated or not.

Let's choose two different seeds, for the same parameters

Maybe a pure Monte-Carlo approach is not the best solution..

- We have seen that, if the volatility is high, the Monte-Carlo approach can be very inaccurate for many time steps.
- Moreover, it is time consuming (this is a problem common to all brute-force Monte-Carlo approaches)
- Idea: let us exploit some analytic properties of the Binomial model..

Some simple observations

- At the *n*-th time step, n+1 realizations of the process are possible: $S_0u^n, S_0u^{n-1}d, \ldots, S_0ud^{n-1}, S_0d^n$.
- The number of ups and downs is given by a Bernoulli distribution:

$$P(S_n = S_0 u^k d^{n-k}) = \binom{n}{k} q^k (1-p)^{n-k}.$$

Using the expression above, we can compute

$$\mathbb{E}^{Q}[f(S_{n})] = \sum_{k=0}^{n} Q(S_{n} = S_{0}u^{k}d^{n-k})f(S_{0}u^{k}d^{n-k})$$
$$= \sum_{k=0}^{n} \binom{n}{k} q^{k}(1-q)^{n-k}f(S_{0}u^{k}d^{n-k}).$$

Implementation in Python

- The idea is then to generate all the possible realizations of the process up to a given time, and to weight them by their probability.
- You can find the code relative to the this approach in

 $\verb|binomialmodel.creation| and \verb|calibration.binomialModelS| mart,$

whose class also extends the one in

binomialmodel.creationandcalibration.binomialModel.

- Doing some tests in
 - $\verb|binomialmodel.creation| and calibration.binomial Model Smart Test.$
- you can observe that, in this way, the average of the discounted process is stable.
- Moreover, this approach is of course much faster.

Computation of $Q(S_n > S_0(1+\rho)^n)$, n = 1, ..., T

• Note that for any k = 0, ..., n it holds

$$S_n = S_0 u^k d^{n-k} > S_0 (1+\rho)^n \iff u^k d^{n-k} > (1+\rho)^n$$
$$\iff \left(\frac{u}{d}\right)^k > \left(\frac{1+\rho}{d}\right)^n$$
$$\iff k > n \log_{\frac{u}{d}} \left(\frac{1+\rho}{d}\right).$$

Then we have

$$Q(S_n > S_0(1+\rho)^n) = \sum_{k=\bar{k}}^n Q(S_n = S_0 u^k d^{n-k})$$
$$= \sum_{k=\bar{k}}^n \binom{n}{k} q^k (1-q)^{n-k} f(S_0 u^k d^{n-k}),$$

where

$$\bar{k} = \min \left\{ k \in \mathbb{N}: \ k > n \log_{\frac{u}{d}} \left(\frac{1+\rho}{d} \right) \right\} \leq n.$$

Evolution of the probability plotted with Python

We show here the evolution of the probability computed above, over 150 time steps. On the left, we have parameters $S_0=3,\,u=1.1,\,d=0.9,\,\rho=0.1,\,q=\frac{1+\rho-d}{u-d}=0.75.$ On the right, $S_0=3,\,u=2,\,d=0.5,\,\rho=0.05,\,q=\frac{1+\rho-d}{u-d}=0.4.$

European option valuation in Python

- As seen before, an application of the simulation of the Binomial model in this way is the valuation of European options, under the pricing measure Q.
- In

binomialmodel.optionValuation.europeanOption,

you can see some methods relative to this.

In particular, we compute the expectation of the payoff of European options as

$$\mathbb{E}^{Q}[f(S_n)] = \sum_{k=0}^{n} Q(S_n = S_0 u^k d^{n-k}) f(S_0 u^k d^{n-k})$$
$$= \sum_{k=0}^{n} \binom{n}{k} q^k (1-q)^{n-k} f(S_0 u^k d^{n-k}).$$

- We also compute the value of a general option for every time $t=0,\ldots,T-1$, and the corresponding self-financing, replicating strategy (α_t,β_T) , $t=0,\ldots,T-1$, described before.
- As an exercise, you can check if the final value of the portfolio given by that strategy equals the payoff, for an option of your choice.

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

Calibration of the parameters u and d

Recall that we have

$$S_t = S_0 \cdot Y_1 \cdot \dots \cdot Y_t, \quad t = 1, \dots, T,$$

where

$$Y_t = \begin{cases} u > 1 + \rho \text{ with (risk-neutral) probability } q = \frac{1+\rho-d}{u-d} \\ d < 1 \text{ with probability } 1-q \end{cases}, \quad t = 1, \dots, T.$$

• Our goal is to calibrate the up and downs parameters u and d, supposing we know the risk neutral probability $q=\frac{1+\rho-d}{u-d}$ and the interest rate $\rho>0$, and that we can observe

$$Var[log(S_T/S_0)] := \mathbb{E}^Q[log(S_T/S_0)^2] - \mathbb{E}^Q[log(S_T/S_0)]^2$$

for a given maturity T.

Observe first that since

$$\log(S_T/S_0) = \sum_{t=1}^T \log(Y_t),$$

and since $(Y_t)_{t=1,...,T}$ are equi-distributed, we get

$$\operatorname{Var}[\log(S_T/S_0)] = T^2 \operatorname{Var}[\log(Y_T)].$$

One result about variance

Proposition

Let

$$Y_t = \begin{cases} u > 1 + \rho \text{ with (risk-neutral) probability } q = \frac{1 + \rho - d}{u - d} \\ d < 1 \text{ with probability } 1 - q, \end{cases} , \quad t = 1, \dots, T.$$

Then for any t = 1, ..., T we have

$$Var[\log Y_t] = q(1-q)\log(u/d)^2.$$

Proof

$$\begin{aligned} \operatorname{Var}[\log Y_t] &= \mathbb{E}^Q[\log(Y_t)^2] - \mathbb{E}^Q[\log(Y_t)]^2 \\ &= \mathbb{E}^Q[\log(Y_t)^2] - (q\log(u) + (1-q)\log(d))^2 \\ &= q\log(u)^2 + (1-q)\log(d)^2 \\ &- q^2\log(u)^2 - (1-q)^2\log(d)^2 - 2q(1-q)\log(u)\log(d) \\ &= q(1-q)\log(u)^2 + q(1-q)\log(d)^2 - 2q(1-q)\log(u)\log(d) \\ &= q(1-q)(\log(u) - \log(d))^2 \\ &= q(1-q)\log(u/d)^2. \end{aligned}$$

Calibration with Python

Thanks to

$$q = \frac{1 + \rho - d}{u - d}$$

and to

$$Var[\log Y_t] = q(1-q)\log(u/d)^2,$$

along with

$$\sigma_{obs}^2 := \mathsf{Var}[\log(S_T/S_0)] = T^2 \mathsf{Var}[\log(Y_T)],$$

we can get u and d from q, ρ and σ_{obs}^2 by solving the nonlinear nonsystem

$$\begin{cases} \frac{1+\rho-d}{u-d} = q\\ \log(u/d)^2 = \frac{\sigma_{obs}^2}{q(1-q)} \end{cases}$$
 (4)

- We can find an approximated solution of (4) by the fsolve function of Python.
- Look at

 ${\tt binomial model.creation and calibration.binomial Model Calibration} \\ {\tt to see an implementation of the calibration of } u \ {\tt and} \ d \ {\tt as showed above}.$

- Monte-Carlo method for option pricing and variance reduction techniques
 - The Monte-Carlo method: motivation and a brief overview
 - Variance reduction techniques
 - Introduction
 - Antithetic variables
 - Control variates

- Option pricing under the Binomial model
 - Motivation and setting
 - Simulation of the Binomial model
 - Calibration of the Binomial model
 - American options valuation

American options

- The holder of an American option with payoff f and maturity T on an underlying X has the right, at any time we $t \in [0,T]$, to hold the contract or to exercise the payoff $f(X_t)$.
- The valuation of American options is more complicated than the one of European options, since it involves an optimal exercise problem.
- In order to valuate such an option at time t, indeed, the conditional expectation of the future value of the option at time t has to be computed, and then compared against the present value of the payoff.
- However, the Monte-Carlo computation of a conditional expectation is very time consuming.
- One of the strengths of the Binomial model with respect to other settings is that it permits a favourable pricing of American options.
- Also when dealing with continuous time processes, with suitable dynamics, one may approximate them with a Binomial model in order to get the price.

American options valuation under the Binomial model

- At any time $t=1,\ldots,T$, call $S_t(k)$ and $V_t(k)$ the value of the underlying and of the option, respectively, in the scenario with k ups and t-k downs up to time t.
- Idea: proceed backward.
- First we compute the payoff $f(S_T(k)) = f(S_0 u^k d^{T-k})$, for any k = 0, ..., T.
- We have of course $V_T(k) = f(S_T(k))$, for any k = 0, ..., T.
- At time T-1, for any $k=0,\ldots,T-1$ we compute

$$V_{T-1}(k) = \max \left(f(S_{T-1}(k)), \frac{1}{1+\rho} \left(qV_T(k+1) + (1-q)V_T(k) \right) \right)$$
$$= \max \left(f(S_0 u^k d^{T-1-k}), \frac{1}{1+\rho} \left(qV_T(k+1) + (1-q)V_T(k) \right) \right).$$

ullet For any $t=1,\ldots,T-2$ we compute with the same argument

$$V_t(k) = \max \left(f(S_0 u^k d^{t-k}), \frac{1}{1+\rho} \left(qV_t(k+1) + (1-q)V_t(k) \right) \right).$$

• We finally get the value of the option at initial time as

$$V_0 = \max \left(f(S_0), \frac{1}{1+\rho} \left(qV_1(1) + (1-q)V_1(0) \right) \right).$$

Implementation in Python

You can find the code relative to the the valuation of American options in

binomialmodel.optionValuation.AmericanOption,

with some tests in

binomialmodel.optionValuation.AmericanOptionTest,

Example

We consider a put option with payoff $f(x)=(20-x)^+$, and choose parameters T=3, $S_0=20,\,u=1.1,\,d=0.9,\,\rho=0.05.$

The triangular matrices below show us an analysis of an American option for the such parameters (row 3 shows the values for t=3 and so on).

The upper left and upper right matrices show the amount one would get if exercising the option or holding the contract, respectively; the lower left one the values of the option; the lower right one has 1 in the exercise region and 0 in the hold region

				ĺ	0	1	2	3
o	nan	nan	nan	0	0.564464	nan	nan	nan
1			nan	1	0.123583		nan	nan
2	0.2	3.8	nan	2		0.519048	2.84762	nan
3		2.18	5.42	3			2.18	5.42

o	nan	nan	nan
1			
2	0.2	3.8	
3		2.18	5.42

0	nan	nan	
1			
2			
3			

Approximating a Black-Scholes model with a Binomial model

• Consider a continuous, adapted stochastic process $X = (X_t)_{t \ge 0}$ with dynamics

$$dX_t = rX_t dt + \sigma X_t dW_t, \quad t \ge 0,$$

where $r, \sigma > 0$ and $W = (W_t)_{t>0}$ is a Brownian motion.

- \bullet Suppose you want to price an American option with underlying X and maturity T>0.
- It can be seen that the dynamics of $X=(X_t)_{0\leq t\leq T}$ can be approximated by N time steps of a Binomial model with parameters

$$u = e^{\sigma\sqrt{T/N}}, \qquad d = 1/d, \qquad \rho = e^{r\sqrt{T/N}},$$
 (5)

for N large enough, see for example .

- The idea is to approximate the price of the American option of maturity T with the price of an American option with maturity N written a Binomial model with parameters as in (5), for N large enough.
- Indeed, the price of the American option written on the Binomial model can be found as illustrated before.

Example: not such a nice behaviour

We consider an American put option with payoff $f(x)=(1-x)^+$ and maturity T=3, written on a Black-Scholes model with parameters $r=0.02,\,\sigma=0.7.$

The plot below shows the approximated price via the derivation under the Binomial model, for an increasing number of times steps up to N=150.

Price of an American option for a BS model, approximated via binomial model

Control variates for American call and put options

- First idea: we know the analytic price of an European put (or call) option under the Black-Scholes model. For example, call P^E the Black-Scholes formula price of an European put option.
- Also call:
 - P_N^E the price of an European put approximated by the Binomial model with N time steps:
 - PA the analytic price of an American put;
 - $\bullet \ P_N^A$ the price of an American put approximated by the Binomial model with N time steps.
- Second idea: we know the euristics $P^A P_N^A \approx P^E P_N^E$.
- We then approximate

$$P^A \approx P_N^A + (P^E - P_N^E)$$

- This approximates the price of an American put option via control variates.
- Same thing for a call option.

A nicer behaviour with control variates

We consider again an American put option with payoff $f(x)=(1-x)^+$ and maturity T=3, written on a Black-Scholes model with parameters $r=0.02,\,\sigma=0.7$: same situation as before

The plot below compares the prices introduced in the previous slide, for an increasing number of times steps up to ${\cal N}=150.$

Implementation in Python

 You can find some experiments relative to the stability of approximations of prices of American options with the Binomial model in

binomialmodel.optionValuation.AmericanOptionPriceConvergence,

• The code performing the control variates approach can be found in

binomialmodel.optionValuation.controlVariates,

with some tests in

 $\verb|binomialmodel.optionValuation.controlVariatesTest|.$