

SEP 23, 2023

(In vitro kinase assay

Elias Adriaenssens¹

¹Sascha Martens lab, University of Vienna, Max Perutz Labs - Vienna

Elias Adriaenssens

Sascha Martens lab, University of Vienna, Max Perutz Labs - ...

ABSTRACT

This protocol describes in vitro kinase assay.

ATTACHMENTS

755-1923.pdf

DOI:

dx.doi.org/10.17504/protocol s.io.4r3l225xjl1y/v1

Protocol Citation: Elias Adriaenssens 2023. In vitro kinase assay. protocols.io https://dx.doi.org/10.17504/p rotocols.io.4r3l225xjl1y/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use. distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jun 27, 2023

Last Modified: Sep 23,

2023

PROTOCOL integer ID:

84091

MATERIALS

Keywords: in vitro kinase

Materials

- Recombinant proteins TBK1, ULK1 complex, and NAP1
- MgCl₂
- ATP
- dH₂0
- Nitrocellulose membranes (RPN132D, GE Healthcare)
- Mini Trans-Blot Cell (Bio-Rad).
- SDS-PAGE gels (NP0321BOX, NP0322BOX, or NP0323BOX, Thermo Fisher)
- PageRuler Prestained protein marker (Thermo Fisher)

Kinase buffer

A	В
Tris-HCl pH 7.4	20 mM
NaCl	150 mM
DTT	1 mM

Fixation solution

А
40% ethanol
10% acetic acid
50% dH ₂ O

In vitro kinase assay

25m

1 火 Mix recombinant proteins TBK1 or ULK1-complex (composed of ULK1, FIP200, ATG13, and ATG101) and NAP1 in kinase buffer.

- 2 Use the kinases at [M] 50 nanomolar (nM) and mix with [M] 250 nanomolar (nM) NAP1
- 3 Start the kinase reactions by the adding 2x ATP/MgCl₂ kinase buffer to a final concentration of

- 4 Prepare protein mixtures as master mixes and divide over the number of time points.
- To control for potential protein instability, induce the latest time point first and then go gradually to the shortest time point.
- 6 In this way, keep all protein mixtures at Room temperature for the same time, and terminate the reactions together.
- Achieve the termination of reactions by the addition of 6x Protein Loading dye and heat inactivation at \$\mathbb{g} \cdot 95 \cdot \text{C} for \text{ 60} 00:05:00 \text{ .}

- 8 Separate the samples on 4-12% SDS-PAGE gels (NP0321BOX, NP0322BOX, or NP0323BOX, Thermo Fisher) with PageRuler Prestained protein marker (Thermo Fisher).
- **9** After the run, either stain the SDS-PAGE gel with Coomassie or transfer to nitrocellulose membranes for western blot analysis.
- In the case of Coomassie staining, incubate the gel for \bigcirc 00:10:00 in Coomassie solution, fix for \bigcirc 00:10:00 with fixation solution, and then destain it \bigcirc 0vernight in dH₂O.

11 Cut the band corresponding to NAP1 from the gel with a fresh scalpel and submit for mass

spectrometry analysis.

In the case of western blotting, transfer the proteins onto nitrocellulose membranes (RPN132D, GE Healthcare) for 01:00:00 at 4 °C using the Mini Trans-Blot Cell (Bio-Rad).

1h

Process the membranes further for western blot analysis, as described in the western blot protocol.