Отчёт по лабораторной работе №4

Модель гармонических колебаний

Го Чаопен

Содержание

1	Подготовил	1	5	
	1.0.1	Го Чаопен	5	
	1.0.2	Группа НФИбд-02-20	5 5 5	
	1.0.3	Студ. билет 1032194919	5	
2	Цель работ	ы	6	
3	Теоретичес	кое введение	7	
4	Задание 4.1 Форм	улировка задания	8	
5	Выполнение лабораторной работы		9	
6	Выводы		19	
Сп	писок используемой литературы			

Список иллюстраций

5.1	Решение уравнения гармонического осциллятора первого уравнения	10
5.2	Фазовый портрет первого уравнения	10
5.3	Решение уравнения гармонического осциллятора первого уравнения	11
5.4	Фазовый портрет первого уравнения	11
5.5	Решение уравнения гармонического осциллятора первого уравнения	12
5.6	Фазовый портрет первого уравнения	13
5.7	Графики Julia для первого уравнения	14
5.8	Графики Julia для второго уравнения	16
5.9	Графики Julia для третьего уравнения	18

Список таблиц

1 Подготовил

- 1.0.1 Го Чаопен
- 1.0.2 Группа НФИбд-02-20
- 1.0.3 Студ. билет 1032194919

2 Цель работы

Изучить методы математического моделирования на основе модели линейного гармонического осциллятора.

3 Теоретическое введение

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором. [1]

4 Задание

4.1 Формулировка задания

Вариант №50

Постройте фазовый портрет гармонического осциллятора [2] и решение уравнения гармонического осциллятора для следующих случаев 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+3.5x=0$ 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+11\dot{x}+11x=0$ 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+12\dot{x}+x=2\cos0.5t$ На итнтервале $t\in[0;51]$, шаг $0.05,x_0=0,y_0=-1.2$

5 Выполнение лабораторной работы

1. Начинаем работу с OpenModelica, так как он быстрее работает. [3] Для первого случая написали следующий код:

```
model lab4_1
parameter Real omega_2 = 3.5;
parameter Real x0 = 0;
parameter Real y0 = -1.2;
Real x(start=x0);
Real y(start=y0);
equation
der(x) = y;
der(y) = -omega_2*x;
end lab4_1;
```

В симуляции получили сначала решение уравнения гармонического осциллятора (рис. 5.1), и так же фазовый портрет (рис. 5.2).

Рис. 5.1: Решение уравнения гармонического осциллятора первого уравнения

Рис. 5.2: Фазовый портрет первого уравнения

Далее написали код для второго случая:

```
model lab4_2
parameter Real omega_2 = 11;
parameter Real thetta = 11;
parameter Real x0 = 0;
parameter Real y0 = -1.2;
Real x(start=x0);
Real y(start=y0);
```

```
equation
der(x) = y;
der(y) = -thetta*y - omega_2*x;
end lab4_2;
```

В результате получили так же решение уравнения гармонического осциллятора (рис. 5.3), и фазовый портрет (рис. 5.4).

Рис. 5.3: Решение уравнения гармонического осциллятора первого уравнения

Рис. 5.4: Фазовый портрет первого уравнения

Для третьего уравнения написали следующий код

```
model lab4_3
parameter Real omega_2 = 1;
parameter Real thetta = 12;
parameter Real x0 = 0;
parameter Real y0 = -1.2;
Real x(start=x0);
Real y(start=y0);
equation
der(x) = y;
der(y) = -thetta*y - omega_2*x + 2*cos(0.5*time);
end lab4_3;
```

В результате получили сначала решение уравнения гармонического осциллятора (рис. 5.5), и так же фазовый портрет (рис. 5.6).

Рис. 5.5: Решение уравнения гармонического осциллятора первого уравнения

Рис. 5.6: Фазовый портрет первого уравнения

2. Далее пишем код на языке Julia [4]. Код программы для первого уравнения выглядит следующим образом:

```
#var 50

omega_2 = 3.5

tmin = 0

tmax = 51

T = (tmin, tmax)

x0 = 0

y0 = -1.2

u0 = [x0,y0]

function F!(du, u, p, t)
    du[1] = u[2]
    du[2] = -omega_2*u[1]
end
```

using Differential Equations

using Plots

```
sol = solve(problem, saveat = 0.05, abstol = 1e-8, reltol = 1e-8)

X = []
Y = []
for u in sol.u
    x, y = u
    push!(X, x)
    push!(Y, y)
end

TT = sol.t

plt = plot(dpi = 150, layout = (1,2), plot_title = "Модель гармонических колебани plot!(plt[1], TT, [X, Y], color=[:red:green], xlabel= "Время", label = ["x(t)" plot!(plt[2], X, Y, color = [:black], xlabel="x(t)", ylabel="y(t)", label="Фазовь savefig(plt, "lab4_1.png")
```

problem = ODEProblem(F!, u0, T)

В результате работы программы создались следующие графики (рис. 5.7):

Рис. 5.7: Графики Julia для первого уравнения

Код программы для второго уравнения выглядит следующим образом:

```
using Plots
using Differential Equations
#var 50
omega_2 = 11
thetta = 11
tmin = 0
tmax = 51
T = (tmin, tmax)
x0 = 0
y0 = -1.2
u0 = [x0, y0]
function F!(du, u, p, t)
    du[1] = u[2]
    du[2] = -thetta*u[2] - omega_2*u[1]
end
problem = ODEProblem(F!, u0, T)
sol = solve(problem, saveat = 0.05, abstol = 1e-8, reltol = 1e-8)
X = []
Y = []
for u in sol.u
    x, y = u
    push!(X, x)
    push!(Y, y)
```

```
TT = sol.t
```

```
plt = plot(dpi = 150, layout = (1,2), plot_title = "Модель гармонических колебани plot!(plt[1], TT, [X, Y], color=[ :red :green], xlabel= "Время", label = ["x(t)" plot!(plt[2], X, Y, color = [:black], xlabel="x(t)", ylabel="y(t)", label="Фазовь savefig(plt, "lab4_2.png")
```

В результате работы программы создались следующие графики (рис. 5.8):

Рис. 5.8: Графики Julia для второго уравнения

Код программы для третьего уравнения выглядит следующим образом:

```
using Plots
using DifferentialEquations
```

```
omega_2 = 1
thetta = 12
f(t) = 2*cos(0.5*t)
```

#var 50

```
tmin = 0
tmax = 51
T = (tmin, tmax)
x0 = 0
y0 = -1.2
u0 = [x0, y0]
function F!(du, u, p, t)
    du[1] = u[2]
    du[2] = -thetta*u[2] - omega_2*u[1] + f(t)
end
problem = ODEProblem(F!, u0, T)
sol = solve(problem, saveat = 0.05, abstol = 1e-8, reltol = 1e-8)
X = []
Y = \Gamma \gamma
for u in sol.u
    x, y = u
    push!(X, x)
    push!(Y, y)
end
TT = sol.t
plt = plot(dpi = 150, layout = (1,2), plot_title = "Модель гармонических колебани
plot!(plt[1], TT, [X, Y], color=[ :red :green], xlabel = "Bpems", label = ["x(t)"]
plot!(plt[2], X, Y, color = [:black], xlabel="x(t)", ylabel="y(t)", label="\phiasobb
savefig(plt, "lab4_3.png")
```

В результате работы программы создались следующие графики (рис. 5.9):

Рис. 5.9: Графики Julia для третьего уравнения

6 Выводы

Мы рассмотрели модель гармонических колебаний, провели анализ и вывод дифференциальных уравнений, а так жк построили графики зависимости наших переменных от времени и фазовые графики зависимостей.

Список используемой литературы

- 1. Теоритический материал "Модель гармонических колебаний" [Электронный ресурс]. URL: https://esystem.rudn.ru/pluginfile.php/1971729/mod_resource/content/2/%D0%9B%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D0%B0%D1%8F%20%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%20%E2%84%96%203.pdf.
- 2. Линейный гармонический оксциллятор [Электронный ресурс]. URL: https://studfile.net/preview/16471372/page:3/.
- 3. Решение ОДУ на OpenModelica [Электронный ресурс]. URL: https://habr.c om/ru/post/202596/.
- 4. Решение ОДУ на Julia [Электронный ресурс]. URL: https://events.rudn.ru/e vent/107/papers/487/files/999-ittmm-template-ru short fin.pdf.