COMS 4771 Fall 2016 Homework 5 solutions (partial)

Problem 2(a)

As usual, we look at the conditional expectation

$$\mathbb{E}[\ell(Yf(X)) \mid X = x] \ = \ \mathbb{E}[e^{-Yf(x)} \mid X = x] \ = \ \eta(x)e^{-f(x)} + (1 - \eta(x))e^{f(x)}$$

for an arbitrary $x \in \mathcal{X}$. This is a convex function of f(x), and its derivative with respect to f(x) is

$$\eta(x) \cdot (-1)e^{-f(x)} + (1 - \eta(x)) \cdot e^{f(x)}$$
.

We find that the derivative is equal to zero when

$$f(x) = \frac{1}{2} \ln \frac{\eta(x)}{1 - \eta(x)}.$$

Hence, the conditional expectation is minimized at this value of f(x). We conclude that the function f that minimizes $\mathbb{E}[\ell(Yf(X))]$ is half the log-odds ratio function.

Problem 2(c)

It turns out the conditional expectation function was actually an affine function. So using square loss instead of logistic loss would give a better MAE.

Problem 3(a)

- 1. True $(y_i \mid x_i \sim P_{(w_\star, \sigma_\star^2)})$
- 2. False $(w_{\star} \text{ is not random})$
- 3. True (from lecture)
- 4. True (since \hat{w}_{ols} is unbiased estimator of w_{\star})
- 5. True (if Π is orthogonal projector to range of A, then $I \Pi$ is orthogonal projector to left null space of A; $(I \Pi)y = y \Pi y = y A\hat{w}_{ols}$)
- 6. True $(\sum_{i=1}^{n} r_i = 0 \text{ means } r \text{ is orthogonal to the all-ones vector, which is the first column of } A;$ we know r is orthogonal to every column of A)