

Università degli Studi di Genova

Teoria degli Automi e Calcolabilità

Lorenzo Vaccarecci

Indice

1	Preliminari															2
	1.1 Alfabeti, stringhe, linguaggi															2

Capitolo 1

Preliminari

1.1 Alfabeti, stringhe, linguaggi

Def 1.1.1 (Alfabeto). Un alfabeto è un insieme finito non vuoto di oggetti detti simboli.

Def 1.1.2 (Stringa). Una stringa u su un alfabeto Σ è una funzione totale da [1, n] in Σ per un qualche $n \in \mathbb{N}$. n si dice lunghezza di u e si indica con |u|. Useremo σ per indicare generici simboli e u, v, w per indicare generiche stringhe. La stringa vuota (|u| = 0) si indica con Λ o ε . Σ^* è l'insieme di tutte le stringhe su Σ ed è sempre un insieme infinito.

$$\Sigma = \{a, b\} \rightarrow$$
 insieme di simboli
$$\Sigma^* = \{\varepsilon, a, b, aa, ab, \ldots\} \rightarrow$$
 insieme delle possibili combinazioni di Σ

Def 1.1.3 (Linguaggio). Un linguaggio su un alfabeto Σ è un insieme di stringhe su Σ , ossia un sottoinsieme di Σ^* . Useremo L per indicare generici linguaggi. L'insieme vuoto \emptyset e l'insieme costituito solo dalla stringa vuota $\{\varepsilon\}$ sono linguaggi su qualunque alfabeto.

In genere, scriviamo le stringhe utilizzando la rappresentazione per **giustapposizione**, cioè semplicemente scrivendo i simboli uno dopo l'altro da sinistra a destra. Questa rappresentazione è arbitraria e può risultare ambigua, mentre la definizione 1.1.2 è rigorosa e indipendente dalla rappresentazione.

Def 1.1.4 (Concatenazione).

$$u: [1..n] \to \Sigma \quad v: [1..m] \to \Sigma$$

$$u \cdot v: [1..n+m] \to \Sigma$$

$$(u \cdot v)(i) = \begin{cases} u(i) & \text{se } 1 \le i \le n \\ v(i-n) & \text{se } n < i \le n+m \end{cases}$$

Definizione induttiva: $u^0 = \epsilon, u^{n+1} = u \cdot u^n$

Def 1.1.5 (Operazioni su linguaggi). Se L e L' sono linguaggi, $L \cdot L' = \{u \cdot v | u \in L, v \in L'\}$. Scriveremo anche semplicemente LL'. Inoltre L^n , per $n \geq 0$, è definito induttivamente da $L^0 = \{\epsilon\}$, $L^{n+1} = L \cdot L^n$. Infine, la **chiusura di Kleene** L^* di un linguaggio è definita da $L^* = \bigcup_{n \geq 0} L^n$, e la **chiusura positiva** L^+ da $L^+ = \bigcup_{n \geq 0} L^n$.

Questa operazione ha come identità l'insieme $\{\epsilon\}$, mentre l'insieme vuoto costituisce uno zero dell'operazione: $L \cdot \emptyset = \emptyset \cdot L = \emptyset$