Category theory in context: 4.4 — Calculus of Adjunctions

Siddharth Bhat

Monsoon, second year of the plague

1 PROPOSITION 4.4.1

If F, F' are both left adjoint to G, then $F \simeq F'$. Moreover, there is a unique iso $\theta : F \simeq F'$ commuting with units and counits of adjunctions:

$$1_{C} \xrightarrow{\eta} GF \qquad FG \xrightarrow{\epsilon} 1_{D}$$

$$\downarrow^{G\theta} \qquad \thetaG \downarrow \qquad \uparrow^{\epsilon'}$$

$$GF' \qquad F'G$$

1.1 Proof by unit/counit

Let's consider the data we need to define for an iso $\theta: F \Rightarrow F'$. Drawing out the naturality square, we need the arrows:

$$Fc - \theta_c \to F'c$$

$$\downarrow^{Ff} \qquad \downarrow^{F'f}$$

$$Fc' - \theta_{c'} \to F'c'$$

By adjunction, defining a commutative diagram with $Fc \to d$ is the same as defining a commutative diagram with $c \to Gd$:

$$c \xrightarrow{\theta_c^{\#}} GF'c$$

$$f \downarrow \qquad \qquad \downarrow GF'f$$

$$c' \xrightarrow{\theta_{c'}^{\#}} GF'c'$$

We define $\theta^{\#} \equiv \eta': 1 \to GF'$, since the types match. Using this, we compute a formula for θ as the transpose of $\theta^{\#}$. [TODO: how did we compute this in the first place?]

$$\theta \equiv F \xrightarrow{F\eta'} FGF' \xrightarrow{\epsilon F'} F'$$

Exchanging the roles of F with F', η with η' , and ϵ with ϵ' , this also computes a formula for θ' given by:

$$\theta' \equiv F' \xrightarrow{F'\eta} F'GF \xrightarrow{\epsilon'F} F$$

The hope is that θ and θ' are inverse natural transforms. We need to check that $\theta' \circ \theta = 1_F$. We claim that it suffices to check that $GF(\theta' \circ \theta) \circ \eta = \eta$. [TODO: why does this suffice?]

Writing out $G(\theta' \circ \theta) \circ \eta$, which is equal to $G\theta' \circ G\theta \circ \eta$:

$$1 \xrightarrow{\eta} GF \xrightarrow{G\theta} GF' \xrightarrow{G\theta'} GF$$

$$1 \xrightarrow{\eta} GF \xrightarrow{GF\eta'} GFGF' \xrightarrow{GeF'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

We wish to swap η with $GF\eta'$ (at the first two terms) to bring the η and ϵ close together (at the first three terms) so we can use the triangle identities. To do this, we consider the commutative square, where we transport the morphism $c \xrightarrow{\eta'_c} GF'c$ along $\eta: 1_Cx \to GFx$ to give:

- See that this square contains $1 \xrightarrow{\eta} GF \xrightarrow{GF\eta'} GFGF'$, by following right and top. The commutativity
- of the square witnesses that this is equal to $1 \xrightarrow{\eta'} GF' \xrightarrow{\eta_{GF'}} GFGF'$.
- See that $\eta_{GF'}$ equals $\eta GF'$ since $\eta GF'(x) \equiv \eta_{GF'}GF'x$, which is the same as $\eta_{GF'}(GF'x)$.
- So, in total, the commutativity of this naturality square allows us to rewrite the segment $1 \stackrel{\eta}{\Rightarrow} GF' \stackrel{GF\eta'}{\Longrightarrow} GFGF'$ with $1 \stackrel{\eta'}{\Longrightarrow} GF' \stackrel{\eta GF'}{\Longrightarrow} GFGF'$.

This gives us the diagram:

$$1 \xrightarrow{\eta} GF \xrightarrow{GF\eta'} GFGF' \xrightarrow{GeF'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta'} GF' \xrightarrow{\eta GF'} GFGF' \xrightarrow{GeF'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

This is regrouped using $G\epsilon \circ \eta G = 1_G$ into:

$$1 \xrightarrow{\eta'} GF' \xrightarrow{\eta GF'} GFGF' \xrightarrow{GeF'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta'} GF' \xrightarrow{\eta GF'} GFGF' \xrightarrow{GeF'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta'} GF' \xrightarrow{(\eta G;Ge)F'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

Next, we use the naturality of η to swap eta' with $GF'\eta$:

$$1 \xrightarrow{\eta'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta'} GF' \xrightarrow{GF'\eta} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta} GF \xrightarrow{\eta'GF} GF'GF \xrightarrow{Ge'F} GF$$

Finally, we use the identity $G\epsilon' \circ \eta'G = 1_G$ to reduce the equation:

$$1 \xrightarrow{\eta} GF \xrightarrow{\eta'GF} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta} GF \xrightarrow{\eta'GF} GF'GF \xrightarrow{Ge'F} GF$$

$$1 \xrightarrow{\eta} GF \xrightarrow{(\eta'G;Ge)F} GF$$

$$1 \xrightarrow{\eta} GF$$

1.2 Proof by Yoneda

- Since $F \vdash G$, we have that $D(Fc, d) \simeq C(c, Gd)$.
- Similarly, since $F' \vdash G$, we have $C(c, Gd) \simeq D(F'c, d)$.
- Together, this gives $D(Fc, d) \simeq D(F'c, d)$, natural in both c and d.
- This implies that $D(Fc,-) \simeq D(F'c,-)$, natural in c, or by Yoneda, that $Fc \simeq F'c$, natural in c.
- The naturality in *c* allows us to deduce that $F \simeq F'$.
- We can identify the morphism which sends Fc to F'c by choosing d = Fc. This will start at D(Fc, d = Fc) and ends at D(F'c, d = Fc).

We compute θ_c by contemplating the diagram below, and setting d = Fc to arrive at a morphism from $1_{Fc} \in D(Fc, d = Fc)$ to $\theta'_c \in D(F'c, d = Fc)$: [TODO: fill in the ?]

$$D(Fc,d) \longrightarrow C(c,Gd) \longrightarrow D(F'c,d)$$

$$f: Fc \to d \longmapsto c \xrightarrow{\eta_c} GFc \xrightarrow{Gf} Gd$$

$$g: c \to Gd \longmapsto F'c \xrightarrow{F'g} F'Gd \xrightarrow{\epsilon'_d} d$$

$$1_{Fc} \in D(Fc, Fc)$$
 \longrightarrow ?

2 PROPOSITION 4.4.4

Given adjunctions $F \vdash G$ and $F' \vdash G'$, their composite FF' is left adjoint to the composite GG':

$$C \xrightarrow{F \atop L} D \xrightarrow{F' \atop L} E \qquad \rightsquigarrow \qquad C \xrightarrow{F'F \atop L} E$$

2.1 Proof by unit/counit

• The only "reasonable" definition of $\overline{\eta}: 1_C \Rightarrow GG'F'F$ is given by:

$$\overline{\eta} \equiv 1_c \stackrel{\eta}{\Rightarrow} GF \stackrel{G\eta'F}{\Longrightarrow} GG'FF'$$

- A point to note: morally, the reason we build *Gη'F* is for the types to work; η': 1_D → G'F'. To mutate *GF*, it is the only type valid choice among (η'GF, Gη'F, and GFη').
- Similarly, the only reasonable definition of $\overline{\epsilon}: F'FGG' \Rightarrow 1_E$ is given by the other expression as in the text.
- I dare not perform the "entertaining" diagram chase.

2.2 Proof by Yoneda

The pleasant proof by yoneda:

$$E(F'Fc,e) \simeq D(F'c,Gd) \quad (F \vdash G)$$

 $D(F'c,d) \simeq C(c,G'Gd) \quad (F' \vdash G')$

which establishes a natural bijection $E(FF'c,e) \simeq C(c,G'Gd)$, which means $FF' \vdash G'G$ by the Hom-set definition of Yoneda.

3 4.4.5: PROMOTING EQUIVALENCE TO ADJOINT EQUIVALENCE

Any equivalence $F: C \leftrightarrow D: G$ with $\eta: 1_C \simeq GF$ and $\epsilon: FG \simeq 1_D$ can be promoted into an adjoint equivalence. This promotion involves defining ϵ' , where the natural isos (η, ϵ') now obey the triangle inequalities.

- 3.1 Proof by unit/counit: (a) $G\epsilon \circ \eta'G = 1_G$
 - If it really were an adjunction, then $G\epsilon \circ \eta G = 1_G$.
 - since we don't have an adjunction, measure the defect via $\gamma:G\Rightarrow\eta GGFG\Rightarrow G\epsilon G$
 - Define $\epsilon' \equiv FG \Rightarrow F\gamma^{-1}FG \Rightarrow \epsilon 1_G$

We will show that the following diagram commutes:

- The top row is $G \Rightarrow \eta GGFG \Rightarrow G\epsilon'G$
- The bottom is $G \Rightarrow \gamma^{-1}G \Rightarrow \gamma G = 1_G$.
- Thus, if the diagram commutes, then top equals bottom, or $G\epsilon' \circ \eta G = 1_G$, implying one of the triangle identities hold.
- The triangle to the right commutes by the definition of γ ; $\gamma = G\epsilon \circ \eta G$.
- The "triangle" to the left (which actually contains 4 elements) commutes because of *naturality* of *eta*. To see this, redraw the triangle as a commutative square:

This gives us the commutativity of the left part of the digram:

$$G \xrightarrow{\eta G} GFG \xrightarrow{Ge'} G$$

$$G \xrightarrow{\eta G} GFG \xrightarrow{\eta G} GFG$$

$$\uparrow^{-1} \qquad G$$

 together, we now have the left and right triangle commute, and thus the whole diagram commutes, which validates one of the triangle identities.

3.2 *Proof by unit/counit:* (b) $\epsilon' F \circ F \eta = 1_F$

• This is proven by showing that $\epsilon' F \circ F \eta$ is idempotent, since an idempotent invertible map is identity. This follows from $s^2 = s$ implies $s^2 s^{-1} = s s^{-1}$ or s = id.

•

Stare at the large diagram:

- Throughout this diagram, we use the equivalence between αK and α_K for functor $K: X \to Y$ and natural transformation $\alpha: L \Rightarrow M$ for $L, M: Y \to Z$ (this makes $\alpha K/\alpha_K: X \to Z$.
- The top and right witness $(\epsilon' F \circ F \eta)^2$. The bottom witnesses $(\epsilon' F \circ F \eta)$. The commutativity of the whole square witnesses idempotence.
- The top left square commutes due to the naturality of $F\eta$:

$$F(1_F) \simeq F \xrightarrow{F\eta} F(GF)$$

$$x \qquad F(1_Fx) \xrightarrow{F\eta_X} F(GFx)$$

$$\downarrow \qquad F\eta \downarrow \qquad \downarrow_{FGF\eta}$$

$$f(GFx) \xrightarrow{F\eta_{GFx}} F(GFGFx)$$

- For basically the exact same reasons, the top-right square commutes due to the naturality of $\epsilon' F$ (which is equal to ϵ'_F .
- The bottom-right square commutes due to the naturality of $\epsilon' F$.
- Now we're left with showing that the bottom-left triangle commutes. See that it asserts that $FGe_F' \circ F\eta_{GF} = 1_{FGF}$. Refactoring the equation, we can write this as $F(Ge' \circ \eta G)F = F(1_G)F$. This is true by our *previous* proof, where we showed that the first triangle identity is obeyed!
- Since every sub-square in our diagram commutes, the whole diagram commutes, and therefore we have shown the idempotence of $\epsilon' F \circ F \eta$, which implies it's equal to the identity.

3.3 Yoneda based proof

• If $\eta_c: 1_C \simeq GF$ is one of the natural isos of an equivalence of categories $F: C \leftrightarrow D: G$, then we define the function:

$$\begin{array}{cccc} D(Fc,d) & \xrightarrow{G} & C(GFc,Gd) & \xrightarrow{-\circ\eta_c} & C(c,Gd) \\ f:Fc\to d & \stackrel{G}{\mapsto} & Gf:GFc\to Gd & \stackrel{-\circ\eta_c}{\mapsto} & (Gf:GFc\to Gd)\circ(\eta_c:c\to GFc):c\to Gd \end{array}$$

- This is full and faithful : G is full and faithful since it's part of an equivalence of categories, and $-\circ \eta_c$ is full and faithful
- 3.4 Example of equivalence that is not adjoint equivalence
 - Intuition: Pick an automorphism of a category, with $aut : C \to C$ on one side, and $aut^{-1} : C \to C$ on the other. These two should witness an equivalence, but they need not be adjoint.

4 4.4.6: ADJUNCTION RAISES TO ADJUNCTION OF DIAGRAMS

- Suppose $F \vdash G$ where $F : C \rightarrow D : G$.
- Then we claim that there exists an adjunction between $(J \to C)$ and $(J \to D)$, given by:

$$C \stackrel{F}{\longleftrightarrow} D$$

$$(J \to C) \xrightarrow{F \circ -} (J \to D)$$

4.1 Yoneda based proof (Exercise 4.4.iii)

- What does it mean to have such an adjunction?
- It means that we have a natural identification of hom-sets Hom_{J→D}(F_{*}d_C, d_D)
 (where d_K: J → K is for digram in category K indexed by J) with the
 hom set Hom_{J→C}(d_C, G_{*}d_D).
- Consider any $\alpha \in Hom_{J \to D}(F_*d_C, d_D)$. We must build a $\alpha^{\sharp} \in Hom_{J \to C}(d_C, G_*d_D)$ that is natural in d_C, d_D .
- What is the data involved in α^{\sharp} ? Well, it's a commutative square:

$$\begin{array}{ccc} j & & d_C j & \longrightarrow & G d_D j \\ \downarrow^a & & d_C a \downarrow & & \downarrow^{G d_D a} \\ k & & d_C k & \longrightarrow & G d_D k \end{array}$$

• But by the adjointness of $F \vdash G$, the above square commutes iff the square below commutes:

$$\begin{array}{ccc}
j & Fd_Cj & \longrightarrow & d_Dj \\
\downarrow^a & Fd_Ca \downarrow & & \downarrow^{d_Da} \\
k & Fd_Ck & \longrightarrow & d_Dk
\end{array}$$

- We can choose $(\alpha^{\sharp})_{j}^{\flat} \equiv \alpha_{j}$, since α witneses the commutativity of exactly this diagram!
- This means that the map which links the Hom-sets is the transpose map, which transposes a natural transformation pointwise: $(\alpha^{\sharp})_x \equiv (\alpha_x)^{\sharp}$.
- 4.2 unit-counit based proof (Exercise 4.4.ii
 - Denote as $F_*: (J \to C) \to (J \to D)$. (Notational note: you fall forward and down toward the star, so pushforward is lower star; you look up and fall back to look at the stars, so pull back is upper star). This is a push forward since it's like pushing forward a curve $[0,1] \to C$ via a map $F: C \to D$.
 - Similarly, denote as $G_*: (J \to D) \to (J \to C)$.
 - We must create a natural transformation $\overline{\eta}: 1_{CJ} \to G_*F_*1_{CJ}$
 - This means that to any diagram $D:C^J$, we must associate a natural transformation $\overline{\eta}_D:D\to GFD$.
 - This can be written componentwise as $(\overline{\eta}_D)_i : Dj \to GFDj$.
 - This can be written more clearly as $(\overline{\eta}_D)_j: Dj \to GFDj$.
 - This can be given by the component of $\eta: 1_C \to GF$ along Dj, which is $\eta_{Dj}: Dj \to GF(Dj)$.
 - So we define $(\overline{\eta}_D)_j \equiv \eta_{Dj}$.
- 5 EXERCISES