15

20

25

30

Antriebsstrang eines Allradfahrzeuges und Verfahren zum Steuern und Regeln eines Antriebsstranges

Die Erfindung betrifft einen Antriebsstrang eines Allradfahrzeugs mit wenigstens zwei antreibbaren Fahrzeugachsen und mit einem zwischen einer Antriebsmaschine und den Fahrzeugachsen angeordneten Hauptgetriebe und ein Verfahren zum Steuern und Regeln eines derartigen Antriebsstranges.

Bei aus der Praxis bekannten Fahrzeugen wird ein von einer Antriebsmaschine erzeugtes Antriebsmoment eines Antriebsstranges in ein Getriebe eingeleitet und in Abhängigkeit einer in dem Getriebe eingestellten Übersetzung entsprechenden umgewandelten Größe zu Antriebsrädern des Fahrzeuges geführt. Bei Fahrzeugen, wie beispielsweise Allrad-PKWs oder allradgetriebenen LKWs, die mit mehreren antreibbaren Fahrzeugachsen ausgeführt sind, wird die Leistung einer Antriebsmaschine im Antriebsstrang eines derartigen Fahrzeuges auf jeweils in den Kraftfluss zugeschaltete Fahrzeugachsen verteilt.

Zur Leistungsverteilung werden üblicherweise sogenannte Differentialgetriebe eingesetzt, wobei Längsdifferentiale in Fahrtrichtung gesehen zur Längsverteilung der Antriebsleistung der Antriebsmaschine auf mehrere angetriebene Fahrzeugachsen eines Fahrzeuges eingesetzt werden. Sogenannte Querdifferentiale bzw. Ausgleichsgetriebe werden in Bezug auf die Fahrtrichtung eines Fahrzeugs zu einer Querverteilung der Antriebsleistung auf Antriebsräder einer Fahrzeugachse verwendet.

15

20

25

30

Des Weiteren stellen sogenannte Kegelraddifferentiale, Stirnraddifferentiale in Planetenbauweise oder auch Schneckenraddifferentiale in der Praxis herkömmlich verwendete Bauarten von Differentialgetrieben dar. Insbesondere Stirnraddifferentiale werden wegen der Möglichkeit zur unsymmetrischen Momentenverteilung meist als Längsdifferentiale eingesetzt. Kegelraddifferentiale stellen dagegen mittlerweile für einen Querausgleich bei Fahrzeugen einen Standard dar und Schneckenraddifferentiale werden sowohl zur Längsverteilung als auch für eine Querverteilung eines Antriebsmomentes bzw. eines Getriebeausgangsmomentes im Antriebsstrang eingesetzt.

Mit Hilfe derartiger Verteilergetriebe besteht die Möglichkeit, ein Antriebsmoment in beliebigen und fest vorgegebenen Verhältnissen auf mehrere Antriebsachsen zu verteilen, ohne Verspannungen in einem Antriebsstrang zu erzeugen. Des Weiteren wird mit dem Einsatz von Ausgleichsgetrieben erreicht, dass Antriebsräder einer antreibbaren Fahrzeugachse mit unterschiedlichen Drehzahlen unabhängig voneinander entsprechend den verschiedenen Weglängen der linken bzw. rechten Fahrspur angetrieben werden können, wodurch das Antriebsmoment symmetrisch und somit giermomentenfrei auf beide Antriebsräder verteilbar ist.

Gängige Momentenaufteilungen zwischen Vorder- und Hinterachse liegen bei 50%: 50% bis 33%: 66%. Bei Kegelraddifferentialen liegt die Momentenverteilung fest bei 50%: 50%. Durch die Wahl eines festen Momentenverhältnisses zwischen Vorder- und Hinterachse ist die Zugkraftaufteilung nur für einen Punkt, den Auslegungspunkt, ideal.

(10

25

Das Antriebsmoment wird somit nicht proportional zu der dem momentanen Fahrzustand entsprechenden Achslast aufgeteilt. Sollen bei hohem Schlupf die Traktionsreserven vollständig ausgenutzt werden, was theoretisch nur bei variabler Momentenverteilung zwischen Vorder- und Hinterachse eines Kraftfahrzeuges möglich ist, kann das Längsdifferential gebremst oder gesperrt werden. Durch eine mit zunehmender Drehzahldifferenz kontinuierlich einsetzende Sperrwirkung, wie beispielsweise mittels einer Viskosperre, wird dabei das Fahrverhalten nicht negativ beeinflusst, und dauerhafte Verspannungen im Antriebsstrang, wie sie bei formschlüssigen Sperren auftreten, werden vermieden.

Des Weiteren sind sogenannte kupplungsgesteuerte Allradantriebe bekannt, bei welchen Kupplungen, wie beispielsweise Lamellenkupplungen, mit von außen einstellbarem Kupplungsmoment eingesetzt werden. Dabei kann das Kupplungsmoment entsprechend dem momentanen Fahrzustand des Fahrzeugs
gewählt werden. Auf diese Art und Weise ist es möglich, die
Momentenaufteilung zwischen Vorder- und Hinterachse an die
dynamischen Achslaständerungen, also abhängig von Beschleunigung, Steigung, Beladung usw., anzupassen.

Darüber hinaus sind auch Mischformen, d. h. sogenannte differential- und kupplungsgesteuerte Systeme, bekannt, bei welchen der Allradantrieb über eine elektronisch schaltbare Lamellenkupplung und/oder ein sperrbares Differential realisiert ist.

Nachteilig dabei ist jedoch, dass eine variable Momentenverteilung im Antriebsstrang durch einen Schlupfbetrieb der Kupplungen erreicht wird, was eine Wirkungsgradverschlechterung eines solchen Antriebsstranges zur Folge hat.

10

15

20

25

30

{ .

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Antriebsstrang und ein Verfahren zum Steuern und Regeln eines Antriebsstranges zur Verfügung zu stellen, mit welchen eine einfache, bedarfsgerechte und wirkungsgradoptimierte Verteilung eines Antriebsmomentes im Antriebsstrang durchführbar ist.

Erfindungsgemäß wird diese Aufgabe mit einem Antriebsstrang gemäß den Merkmalen des Patentanspruches 1 und einem Verfahren zum Steuern und Regeln eines Antriebsstranges gemäß den Merkmalen des Patentanspruches 8 gelöst.

Mit dem erfindungsgemäßen Antriebsstrang eines Allrad-Fahrzeugs, der mit wenigstens zwei antreibbaren Fahrzeugachsen, mit einem Hauptgetriebe zwischen einer Antriebsmaschine und den Fahrzeugachsen angeordneten Hauptgetriebe zum Darstellen verschiedener Übersetzungen und mit drei steuer- und regelbaren reibschlüssigen Kupplungen ausgeführt ist, wobei eine erste Kupplung zwischen dem Hauptgetriebe und einer ersten Fahrzeugachse und eine zweite Kupplung und eine dritte Kupplung jeweils zwischen einem dem Hauptgetriebe nachgeschalteten Achsgetriebe und einem Antriebsrad der zweiten Fahrzeugachse angeordnet ist, und wobei die Übertragungsfähigkeiten der Kupplungen jeweils über eine Aktuatorik einstellbar sind, ist ein Antriebsmoment der Antriebsmaschine sowohl in Längsrichtung zwischen den antreibbaren Fahrzeugachsen als auch in Querrichtung an einer der Fahrzeugachsen in Abhängigkeit der variierbaren Übertragungsfähigkeiten der Kupplungen verteilbar.

Dadurch besteht vorteilhafterweise die Möglichkeit, das Antriebsmoment der Antriebsmaschine des Antriebsstranges bzw. das Getriebeausgangsmoment des Hauptgetriebes jeweils in Abhängigkeit eines Betriebszustandes des Antriebsstranges derart zu verteilen, dass selbst in kritischen Fahrsituationen eines mit dem erfindungsgemäßen Antriebsstrang versehenen Fahrzeuges ein sicherheitsoptimiertes Fahrverhalten des Fahrzeuges vorliegt.

Zusätzlich besteht bei dem erfindungsgemäßen Antriebsstrang die Möglichkeit jeweils eine der Kupplungen zum variablen Verteilen des Antriebsmomentes in Längsrichtung
zwischen den antreibbaren Fahrzeugachsen und in Querrichtung zwischen zwei Antriebsrädern einer Fahrzeugachse synchron zu betreiben ist, während die beiden anderen Kupplungen schlupfend betrieben werden.

15

1.0

5

Dadurch wird erreicht, dass die Verlustleistung des kupplungsgesteuerten Allradantriebes eines Fahrzeuges in zwei Kupplungen auftritt, während die dritte Kupplung verlustfrei in einem synchronen Zustand betrieben wird.

20

25

30

Die jeweilige Anordnung der zweiten Kupplung und der dritten Kupplung zwischen dem Achsgetriebe und jeweils einem der Antriebsräder der zweiten Fahrzeugachse ermöglicht die bedarfsgerechte Querverteilung des an der zweiten Fahrzeugachse anstehenden Antriebsmomentes im Antriebsstrang, womit das Fahrverhalten eines Fahrzeuges verschlechternden Betriebszuständen des Antriebsstranges auf einfache Art Weise entgegengewirkt und die Agilität sowie die Fahrstabilität, beispielsweise während einer Kurvenfahrt, verbessert werden kann.

Mit dem erfindungsgemäßen Verfahren zum Steuern und Regeln eines Antriebsstranges eines Allradfahrzeuges, bei

10

15

20

25

30

welchem zur Verteilung eines Antriebsmomentes zwischen den antreibbaren Fahrzeugachsen die Übertragungsfähigkeiten der drei Kupplungen derart eingestellt werden, dass eine der Kupplungen in einem synchronen Zustand betrieben wird, während die beiden anderen Kupplungen schlupfend betrieben werden, ist der Wirkungsgrad des Antriebsstranges auf einfache Art und Weise verbesserbar. Dazu wird die Übertragungsfähigkeit der Kupplungen, die schlupfend betrieben werden, zwischen einem unteren Grenzwert und einem oberen Grenzwert, der einem synchronen Zustand der beiden Kupplungen entspricht, variiert. Hierbei ist das Antriebsmoment in beliebigen Verhältnissen, d. h. mit Längsverteilungsgraden des Antriebsmomentes zwischen 0 % und 100 %, zwischen den antreibbaren Fahrzeugachsen bedarfsgerecht und wirkungsgradoptimiert verteilbar.

Zusätzlich ist ein der zweiten Fahrzeugachse zugeführter Teil des Antriebsmomentes in beliebigen Verhältnissen, d. h. mit Querverteilungsgraden des Antriebsmomentes zwischen 0 % und 100 %, zwischen den antreibbaren Antriebsrädern der zweiten Fahrzeugachse ebenfalls bedarfsgerecht und wirkungsgradoptimiert verteilbar.

Des Weiteren besteht durch das erfindungsgemäße Verfahren im Steuern und Regeln des Antriebsstranges die Möglichkeit, eine der drei Kupplungen in schlupffreiem Zustand zu betreiben, während die beiden anderen Kupplungen mit einer aus der benötigten Antriebsleistungsverteilung sich ergebenen geringen Differenzdrehzahl betrieben werden, wodurch sich vorteilhafterweise Verlustleistungen im Antriebsstrang reduzieren lassen, was zu einem guten Wirkungsgrad des Antriebsstranges führt.

Zusätzlich ist der Fahrbetrieb eines mit dem erfindungsgemäßen Antriebsstrang ausgeführten Fahrzeuges vorteilhafterweise auch dann gewährleistet, wenn zwei der drei Kupplungen einen Funktionsausfall aufweisen.

5

Weitere Vorteile und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Patentansprüchen und den unter Bezugnahme auf die Zeichnung prinzipmäßig beschriebenen Ausführungsbeispielen.

10

15

20

Es zeigt:

- Fig.1 eine stark schematisierte Darstellung eines erfindungsgemäßen Antriebsstranges eines Allradfahrzeuges;
- Fig. 2 eine grafische Darstellung eines Zusammenhanges zwischen Übertragungsfähigkeiten einer ersten Kupplung, einer zweiten und einer dritten Kupplung des Antriebsstranges gemäß Fig. 1 und einem Längsverteilungsgrad des Antriebsmomentes zwischen zwei antreibbaren Fahrzeugachsen des Antriebsstranges;

25

30

Fig.3 eine weitere grafische Darstellung eines Zusammenhanges zwischen den Übertragungsfähigkeiten der zweiten Kupplung und der dritten
Kupplung des Antriebsstranges gemäß Fig. 1 und
einem Querverteilungsgrad des Antriebsmomentes
zwischen den Antriebsrädern der zweiten Fahrzeugachse;

- Fig. 4 eine Prinzipskizze eines Teils einer Aktuatorik zum Einstellen der Übertragungsfähigkeit der zweiten Kupplung und der dritten Kupplung aus Fig. 1; und
- Fig.5 eine Prinzipskizze eines Teils einer Aktuatorik zum Einstellen der Übertragungsfähigkeit der ersten Kupplung aus Fig. 1.
- 10 Bezug nehmend auf Fig. 1 ist ein Antriebsstrang 1 eines Allradfahrzeuges in einer stark schematisierten Darstellung gezeigt. Der Antriebsstrang 1 umfasst ein Antriebsaggregat 2 und ein Hauptgetriebe 3, welches jedes an sich aus der Praxis bekannte Getriebe sein kann. Das Antriebsaggregat 2 ist bei dem in Fig. 1 dargestellten Ausführungsbeispiel als Brennkraftmaschine ausgeführt und kann bei einer vorteilhaften Weiterbildung auch als Elektromotor ausgebildet sein.
- Zwischen dem Hauptgetriebe 3, welches zur Darstellung unterschiedlicher Übersetzungen vorgesehen ist, und einer ersten antreibbaren Fahrzeugachse 4, die in bekannter Weise auf jeder Fahrzeugseite mit wenigstens einem Antriebsrad 4A, 4B verbunden ist, ist eine erste Kupplung k_VA in einem Längsantriebsstrang l_HA angeordnet. Die erste Kupplung k_VA ist zwischen dem Hauptgetriebe 3 und einer Einrichtung 6 zum Ausgleichen von Differenzdrehzahlen zwischen den Antriebsrädern 4A und 4B der ersten Fahrzeugachse 4 angeordnet, wobei die Einrichtung 6 vorliegend als ein an sich bekanntes Querverteilergetriebe ausgeführt ist.

Darüber hinaus ist zwischen einem Achsgetriebe 7, über welches ein in Richtung einer zweiten antreibbaren Fahr-

10

15

20

25

30

ų(

zeugachse 5 geführter Teil des Antriebsmomentes der Brenn-kraftmaschine 2 in Richtung zweier Antriebsräder 5A, 5B der zweiten Fahrzeugachse 5 führbar ist, und jeweils einem der Antriebsräder 5A, 5B der zweiten Fahrzeugachse 5 eine zweite Kupplung k_HA_L bzw. eine dritte Kupplung k_HA_R in Querverteilersträngen q_HA_L und q_HA_R angeordnet.

Über das Querverteilergetriebe 6 besteht die Möglichkeit, die Antriebsräder 4A und 4B der ersten Fahrzeugachse
4 unabhängig voneinander entsprechend den verschiedenen
Weglängen der linken bzw. rechten Fahrspur mit unterschiedlichen Drehzahlen anzutreiben, wodurch das Antriebsmoment
symmetrisch und somit giermomentenfrei zwischen den Antriebsrädern 4A und 4B der ersten Fahrzeugachse 4 verteilbar ist.

Im Gegensatz dazu wird die Querverteilung des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes über die variabel einstellbaren Übertragungsfähigkeiten der beiden Kupplungen k_HA_L und k_HA_R durchgeführt, wobei vorzugsweise jeweils eine der beiden Kupplungen k_HA_L und k_HA_R in synchronem Zustand betrieben wird und die jeweils andere Kupplung k_HA_R bzw. k_HA_L schlupfend betrieben wird. Dabei ist in Abhängigkeit der Übertragungsfähigkeit der schlupfend betriebenen Kupplung k_HA_L bzw. k_HA_R der zweiten Fahrzeugachse 5 ein Querverteilungsgrad des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes zwischen 0 % bis 100 % bezogen auf eines der beiden Antriebsräder 5A oder 5B realisierbar.

Dabei steht der Querverteilungsgrad mit der Ansteuerung der zweiten Kupplung k_HA_L der dritten Kupplung k_HA_R derart in Zusammenhang, dass der gesamte Anteil des Antriebsmomentes, welcher der zweiten Fahrzeugachse 5 zugeführt wird, jenem Antriebsrad 5A oder 5B zu 100% zugeführt wird, welches der synchron betriebenen Kupplung k_HA_R bzw. k_HA_L nachgeschaltet ist, wenn die jeweils andere Kupplung k_HA_L bzw. k_HA_R der Querverteilerstränge q_HA_L und q_HA_R mit einer derartig reduzierten Übertragungsfähigkeit betrieben wird, dass über diese Kupplung kein Drehmoment übertragen wird.

10

15

5

Die drei Kupplungen k_VA, k_HA_L und k_HA_R des Antriebsstranges 1 sind vorliegend als steuer- und regelbare reibschlüssige Lamellenkupplungen ausgeführt, deren Übertragungsfähigkeiten über eine in Fig. 4 und Fig. 5 dargestellte Aktuatorik 8 einstellbar sind und die abtriebsseitig eines Getriebeausgangs eines in Fig. 1 lediglich schematisch dargestellten Verteilergetriebes 9 angeordnet sind. Mit den drei Kupplungen k_VA, k_HA_L und k_HA_R besteht die Möglichkeit, ein Antriebsmoment der Antriebsmaschine 2 bzw. ein Getriebeausgangsmoment des Hauptgetriebes 3 variabel und bedarfsgerecht zwischen den beiden antreibbaren Fahrzeugachsen 4, 5 zu verteilen.

20

25

30

Die Ansteuerung der drei Kupplungen k_VA und k_HA_L und k_HA_R sowie die daraus resultierende variable Verteilung des anliegenden Antriebsmomentes in Längsrichtung auf die beiden Fahrzeugachsen 4 und 5 wird anhand der Darstellung in Fig. 2 näher erläutert. Die vorbeschriebene Querverteilung des in Richtung der zweiten Fahrzeugachse 5 geführten Teils des Antriebsmomentes auf die beiden Antriebsräder 5A und 5B der zweiten Fahrzeugachse 5 wird später anhand der Darstellung in Fig. 3 näher beschrieben.

Fig. 2 zeigt drei stark schematisierte Verläufe, wovon ein erster Verlauf gk_VA einen Verlauf einer Übertragungsfähigkeit der ersten Kupplung k_VA zwischen einem unteren Grenzwert W(u) und einem oberen Grenzwert W(o) darstellt. Ein weiterer Verlauf gk_HA stellt den Verlauf der Übertragungsfähigkeit der zweiten Kupplung k_HA_L oder der dritten Kupplung k_HA_R dar, der mit dem Verlauf gk_VA der Übertragungsfähigkeit der ersten Kupplung k_VA korrespondiert. Ein dritter Verlauf lvt stellt den Verlauf eines Längsverteilungsgrades des Antriebsmomentes zwischen den beiden Fahrzeugachsen 4 und 5 graphisch dar, wobei die erste Fahrzeugachse 4 vorliegend die Vorderachse (VA) und die zweite Fahrzeugachse 5 die Hinterachse (HA) eines Allradfahrzeuges darstellt.

15

20

25

30

10

5

Im Punkt I des Diagramms gemäß Fig. 2, in welchem die Übertragungsfähigkeit der ersten Kupplung k_VA dem unteren Grenzwert W(u) entspricht, wird über die erste Kupplung k_VA im Wesentlichen kein Drehmoment übertragen. Gleichzeitig entspricht die Übertragungsfähigkeit der zweiten Kupplung k_HA_L oder die Übertragungsfähigkeit der dritten Kupplung $k_{HA}R$ dem oberen Grenzwert W(o), bei dem sich die zweite Kupplung k_HA_L oder die dritte Kupplung k_HA_R in einem synchronen Zustand befindet und bei dem zwischen den beiden Kupplungshälften der zweiten Kupplung k_{HA} bzw. der dritten Kupplung $k_{HA}R$ kein Schlupf auftritt. In diesem Betriebszustand der Kupplungen k_{VA} und $k_{HA}L$ bzw. k_{HA}_R wird das gesamte Antriebsmoment der Antriebsmaschine 2 auf die Hinterachse bzw. die zweite Fahrzeugachse 5 geführt und der Längsverteilungsgrad, der vorliegend auf die erste Fahrzeugachse 4 bezogen ist, ist Null.

10

15

20

25

30

ţ(

Grundprinzip der Ansteuerung der drei Kupplungen k_VA, k_HA_L und k_HA_R des Antriebsstranges ist, dass über den gesamten Betriebsbereich des Antriebsstranges 1 jeweils eine der drei Kupplungen k_VA, k_HA_L oder k_HA_R in synchronem Zustand betrieben wird, während die beiden anderen Kupplungen k_HA_R und k_HA_L oder k_HA_R und K_VA oder k_HA_L und k_VA schlupfend betrieben werden, um den Längsverteilungsgrad lvt des Antriebsmomentes zwischen den beiden Fahrzeugachsen 4 und 5 bedarfsgerecht zwischen 0 % und 100 % bezogen auf eine der beiden Fahrzeugachsen 4 oder 5 einstellen zu können.

Die gemeinsame graphische Darstellung der Übertragungsfähigkeiten der zweiten Kupplung k_HA_L und der dritten Kupplung $k_{HA}R$ in Fig. 2 wurde deshalb ausgewählt, da bei geöffneter erster Kupplung k_VA und einem synchronen Zustand jeweils einer der beiden Kupplungen k HA L oder k_HA_R das Antriebsmoment der Brennkraftmaschine 2 vollständig auf die zweite Fahrzeugachse 5 geführt wird. Das Antriebsmoment wird bei geöffneter erster Kupplung k_VA und $\verb|synchron| betriebener zweiter Kupplung k_HA_L oder dritter|\\$ Kupplung k_HA_R unabhängig von der eingestellten Übertragungsfähigkeit der dritten Kupplung $k_{HA}R$ oder der zweiten Kupplung k_HA_L vollständig in Richtung der zweiten Fahrzeugachse 5 geführt. Ein Variieren der Übertragungsfähigkeit der zweiten Kupplung k_HA_L oder dritten Kupplung k_HA_R , während die dritte Kupplung k_HA_R oder die zweite Kupplung k HA L synchron betrieben wird, führt lediglich zu einer Veränderung des in Fig. 3 dargestellten Querverteilungsgrades qvt, weshalb auf diese Funktionalität erst in der Beschreibung zu Fig. 3 eingegangen wird.

Weiter Bezug nehmend auf Fig. 2 wird die Übertragungsfähigkeit der zweiten Kupplung k_HA_L derart gesteuert und geregelt im Bereich zwischen dem Punkt I und einem zweiten Punkt II des Diagramms gemäß Fig. 2 eingestellt, dass die zweite Kupplung k_HA_L in ihrem synchronen Zustand verbleibt. Die Übertragungsfähigkeit der dritten Kupplung k_{HA}_R ist in diesem Zusammenhang nicht wesentlich für den Verlauf des Längsverteilungsgrades lvt des Antriebsmomentes und kann zur Einstellung eines gewünschten Querverteilungsgrades qvt des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes an der zweiten Fahrzeugachse 5 zwischen dem unteren Grenzwert W(u) und dem oberen Grenzwert W(o) variieren, ohne dass sich ein anderer Wert des Längsverteilungsgrades lvt einstellt. Der Längsverteilungsgrad lvt wird vorliegend zunächst nur durch die Änderung der Übertragungsfähigkeit der ersten Kupplung k_VA verändert, die in Fig. 2 durch den Verlauf gk_VA der Übertragungsfähigkeit der ersten Kupplung k_VA graphisch dargestellt ist.

20

25

30

5

10

15

Die Übertragungsfähigkeit der ersten Kupplung k_VA wird zwischen den Punkten I und II von ihrem unteren Grenzwert W(u), bei dem die erste Kupplung k_VA kein Drehmoment überträgt, in Richtung des oberen Grenzwertes W(o) der Übertragungsfähigkeit verändert, bei welchem sich die erste Kupplung k_VA ebenfalls in ihrem synchronen Zustand befindet. Das bedeutet, dass die Übertragungsfähigkeit der ersten Kupplung k_VA im Bereich zwischen dem Punkt I und dem Punkt II stetig angehoben wird. Dies hat zur Folge, dass sich der Längsverteilungsgrad lvt des Antriebsmomentes zwischen den beiden Fahrzeugachsen 4 und 5 ändert, da mit steigender Übertragungsfähigkeit der ersten Kupplung k VA

ein zunehmender Teil des Antriebsmomentes in Richtung der vorderen Fahrzeugachse 4 geführt wird.

Bei Vorliegen des Betriebszustandes des Antriebsstranges 1, der dem Punkt II des Diagramms gemäß Fig. 2 entspricht und bei dem sich die erste Kupplung k_VA und die zweite Kupplung k_HA_L jeweils in synchronem Zustand befinden, liegt ein definierter Verteilungsgrad des Antriebsmomentes zwischen den beiden Fahrzeugachsen 4 und 5 vor.

10

15

20

5

In einem Bereich zwischen dem zweiten Punkt II und einem dritten Punkt III des Diagramms gemäß Fig. 2 wird die Übertragungsfähigkeit der ersten Kupplung k_VA derart geregelt und gesteuert eingestellt, dass die erste Kupplung k_VA in ihrem Synchronzustand gehalten wird. Gleichzeitig wird die Übertragungsfähigkeit der zweiten Kupplung k_HA_L ausgehend von dem oberen Grenzwert W(o) der Übertragungsfähigkeit, bei welchem die zweite Kupplung k_HA_L synchron ist, stetig in Richtung des unteren Grenzwertes W(u) der Übertragungsfähigkeit reduziert, bei dem die zweite Kupplung k_HA_L im Wesentlichen kein Drehmoment mehr in Richtung der hinteren Fahrzeugachse 5 überträgt.

Wie der Fig. 2 zu entnehmen ist, steigt der Verlauf

lvt des Längsverteilungsgrades lvt des Antriebsmomentes
zwischen den Fahrzeugachsen 4 und 5 mit zunehmender Reduzierung der Übertragungsfähigkeit der zweiten Kupplung
k_HA_L bis hin zu seinem maximalen Wert in Punkt III an,
bei dem das Antriebmoment vollständig, d. h. zu 100 %, auf
die Vorderachse 4 übertragen wird, wobei die Übertragungsfähigkeit der dritten Kupplung k_HA_R in Punkt III ebenfalls auf den unteren Grenzwert W(u) eingestellt ist.

10

15

20

Das bedeutet wiederum, dass der Wertebereich des Längsverteilungsgrades lvt, welcher zwischen den Punkten II und III des Diagrammes gemäß Fig. 2 liegt, dadurch einstellbar ist, dass die erste Kupplung k_VA in ihrem synchronen Zustand betrieben wird und die zweite Kupplung k_HA_L und die dritte Kupplung k_HA_R gleichzeitig schlupfend betrieben werden. Das Antriebsmoment wird dann zu 100 % auf die erste Fahrzeugachse 4 geführt, wenn die zweite Kupplung k_HA_L und die dritte Kupplung k_HA_R kein Drehmoment mehr übertragen.

Mittels der vorbeschriebenen Betriebsweise der drei steuer- und regelbaren Kupplungen k_VA, k_HA_L und k_HA_R besteht die Möglichkeit, das Antriebsmoment der Brennkraft-maschine 2 bzw. das Getriebeausgangsmoment des Hauptgetriebes 3 bedarfsgerecht, stufenlos und wirkungsgradoptimiert zwischen den Fahrzeugachsen 4 und 5 zu verteilen. Des weiteren ist mit den beiden steuer- und regelbaren Kupplungen k_HA_L und k_HA_R an der zweiten Fahrzeugachse 5 eine bedarfsgerechte, stufenlose und wirkungsgradoptimierte Querverteilung des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes zwischen den beiden Antriebsrädern 5A und 5B der zweiten Fahrzeugachse 5 durchführbar.

Eine Verbesserung des Wirkungsgrades des Antriebsstranges 1 wird durch die vorbeschriebene erfindungsgemäße
Vorgehensweise bei der Steuerung und Regelung der drei
Kupplungen erreicht, da stets eine der drei Kupplungen
k_VA, k_HA_L oder k_HA_R schlupffrei betrieben wird, während die beiden anderen Kupplungen mit einer mit der betriebssituationsabhängigen Antriebsleistungsverteilung im
Antriebsstrang korrespondierenden Drehzahl betrieben werden. Mittels dieser Betriebsstrategie lassen sich die Rei-

bungsverluste mit allen Vorteilen eines kupplungsgesteuerten Allradantriebes minimieren.

Des Weiteren besteht durch den Einsatz der drei steuer- und regelbaren Kupplungen k_VA, k_HA_L und k_HA_R im
Verteilergetriebe 9 vorteilhafterweise die Möglichkeit, das
Hauptgetriebe 3 ohne ein separates Anfahrelement, wie beispielsweise einen hydrodynamischen Drehmomentwandler oder
eine reibschlüssige Anfahrkupplung, auszuführen oder ein
Anfahrelement als zusätzliches Bauelement in den Antriebsstrang integrieren zu müssen, da entweder die erste Kupplung k_VA, die zweite Kupplung k_HA_L und/oder die dritte
Kupplung k_HA_R oder alle drei Kupplungen die Funktion eines Anfahrelementes übernehmen können.

15

20

10

5

Ist das Hauptgetriebe 3 beispielsweise als ein stufenloses Getriebe mit einem Kettenvariator ausgeführt, besteht
vorteilhafterweise die Möglichkeit, den Variator bei stehendem Fahrzeug in seine Anfahrübersetzung zu verstellen,
da der stehende Abtrieb des Fahrzeuges bei geöffneten Kupplungen k_VA, k_HA_L und k_HA_R von dem Hauptgetriebe 3 getrennt ist.

Darüber hinaus ist aufgrund der erfindungsgemäßen Ausgestaltung des Antriebsstranges 1 mit den drei Kupplungen
k_VA, k_HA_L und k_HA_R eine optimale Beeinflussung der
Fahrdynamik, der Traktion sowie der Stabilität eines mit
dem erfindungsgemäßen Antriebsstranges ausgeführten Fahrzeuges gewährleistet und der Antriebsstrang ist zudem im
Vergleich zu aus der Praxis bekannten Lösungen mit einem
geringeren Gewicht ausführbar.

10

((

Ú.

30

Fig. 3 zeigt drei schematisierte Verläufe, wovon ein erster Verlauf gk_HA_L einen Verlauf einer Übertragungsfähigkeit der zweiten Kupplung k_HA_L zwischen einem unteren Grenzwert W(u) und einem oberen Grenzwert W(o) darstellt. Ein weiterer Verlauf gk_HA_R stellt den Verlauf der Übertragungsfähigkeit der dritten Kupplung k_HA_R dar, der mit dem Verlauf gk_HA_L der zweiten Kupplung k_HA_L korrespondiert. Ein dritter Verlauf qvt stellt den Verlauf eines Querverteilungsgrades des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes zwischen den beiden Antriebsrädern 5A und 5B der zweiten Fahrzeugachse 5 graphisch dar.

Im Punkt IV des Diagramms gemäß Fig. 3, in welchem die

Übertragungsfähigkeit der zweiten Kupplung k_HA_L dem unteren Grenzwert W(u) entspricht, wird über die dritte Kupplung k_HA_R im wesentlichen kein Drehmoment übertragen.
Gleichzeitig ist die Übertragungsfähigkeit der zweiten
Kupplung k_HA_L auf den oberen Grenzwert W(o) eingestellt,

bei dem sich die zweite Kupplung k_HA_L in einem synchronen
Zustand befindet und zwischen den beiden Kupplungshälften
der zweiten Kupplung k_HA_L kein Schlupf auftritt.

In diesem Betriebszustand der Kupplungen k_HA_L und

k_HA_R wird der der zweiten Fahrzeugachse 5 zugeführte Teil
des Antriebsmomentes der Antriebsmaschine 2 zu dem Antriebsrad 5A geführt, wohingegen über die dritte Kupplung
k_HA_R auf das zweite Antriebsrad 5B der zweiten Fahrzeugachse 5 kein Drehmoment geführt wird.

Im Bereich zwischen dem Punkt IV und einem Punkt V des Diagramms gemäß Fig. 3 wird die Übertragungsfähigkeit der ersten Kupplung k_HA_L derart geregelt und gesteuert einge-

10

15

stellt, dass die erste Kupplung $k_{HA}L$ in ihrem synchronen Zustand gehalten wird. Gleichzeitig wird die Übertragungsfähigkeit der dritten Kupplung $k_{HA}R$ von ihrem unteren Grenzwert W(u), bei dem sie kein Drehmoment überträgt, in Richtung des oberen Grenzwertes W(o) der Übertragungsfähigkeit verändert, bei welchem sich die dritte Kupplung $k_{HA}R$ ebenfalls in ihrem synchronen Zustand befindet.

Das bedeutet, dass die Übertragungsfähigkeit der dritten Kupplung k_HA_R im Bereich zwischen dem Punkt IV und dem Punkt V stetig angehoben wird. Dies hat zur Folge, dass sich der Verteilungsgrad des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes zwischen den beiden Antriebsrädern 5A und 5B ändert, da mit steigender Übertragungsfähigkeit der dritten Kupplung K_HA_R ein zunehmender Anteil des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes auf das zweite Antriebsrad 5B der zweiten Fahrzeugachse 5 geführt wird.

20 Bei Vorliegen des Betriebszustandes des Antriebsstranges 1 im Bereich der zweiten Fahrzeugachse 5, der dem Punkt V des Diagramms gemäß Fig. 3 entspricht und bei dem sich die zweite Kupplung k HA L und die dritte Kupplung k HA R in synchronem Zustand befinden, wird das der zweiten Fahr-25 zeugachse 5 zugeführte Antriebsmoment zu gleichen Teilen zwischen den beiden Antriebsrädern 5A und 5B der zweiten Fahrzeugachse 5 verteilt. Dieser Querverteilungsgrad qvt des Antriebsmomentes stellt sich im Betrieb des Fahrzeuges bei Geradeausfahrt und ohne nennenswerten Schlupf im Bereich der Antriebsräder 5A und 5B der zweiten Fahrzeugachse 30 5 ein, wodurch vorteilhafterweise eine Reduzierung der Verlustleistung im Antriebsstrang im Bereich der zweiten Kupplung $k_{HA}L$ und der dritten Kupplung $k_{HA}R$ auf einfache Art und Weise erreicht wird.

In einem Bereich zwischen dem Punkt V und einem Punkt VI des Diagramms gemäß Fig. 3 wird die Übertragungsfähigkeit der dritten Kupplung k_HA_R derart geregelt und gesteuert eingestellt, dass die dritte Kupplung k_HA_R in ihrem Synchronzustand gehalten wird. Gleichzeitig wird die Übertragungsfähigkeit der zweiten Kupplung k_HA_L ausgehend von dem oberen Grenzwert W(o) der Übertragungsfähigkeit, bei welchem die zweite Kupplung k_HA_L synchron ist, stetig in Richtung des unteren Grenzwertes W(u) der Übertragungsfähigkeit reduziert, bei dem die zweite Kupplung k_HA_L im Wesentlichen kein Drehmoment mehr in Richtung des ersten Antriebsrades 5A der zweiten Fahrzeugachse 5 überträgt.

Wie Fig. 3 zu entnehmen ist, steigt der Verlauf qvt des Querverteilungsgrades des der zweiten Fahrzeugachse 5 zugeführten Teils des Antriebsmomentes mit zunehmender Reduzierung der Übertragungsfähigkeit der zweiten Kupplung k_HA_L bis hin zu seinem maximalen Wert in Punkt VI an, bei dem der der zweiten Fahrzeugachse 5 zugeführte Teil des Antriebmoments vollständig auf das zweite Antriebsrad 5B der zweiten Fahrzeugachse 5 übertragen wird.

25

30

20

ď

5

10

15

(1

Eine Verbesserung des Wirkungsgrades des Antriebsstranges im Bereich der zweiten Fahrzeugachse wird durch
die vorbeschriebene erfindungsgemäße Vorgehensweise bei der
Steuerung und Regelung der zweiten und dritten Kupplung
k_HA_L oder k_HA_R erreicht, da stets eine der beiden Kupplungen k_HA_L bzw. k_HA_R schlupffrei betrieben wird, während die andere Kupplung k_HA_R bzw. k_HA_L mit einer mit
der betriebssituationsabhängigen Antriebsleistungsvertei-

10

15

20

25

30

lung im Antriebsstrang im Bereich der zweiten Fahrzeugachse 5 korrespondierenden Differenzdrehzahl betrieben wird. Mittels dieser Betriebsstrategie lassen sich die Reibungsverluste mit allen Vorteilen eines kupplungsgesteuerten Allradantriebes im Bereich einer Fahrzeugachse minimieren.

Die zweite Kupplung k_HA_L und die dritte Kupplung k_HA_R werden nur dann beide gleichzeitig schlupfend betrieben, wenn die erste Kupplung k_VA zur Einstellung eines gewünschten Längsverteilungsgrades lvt in ihrem synchronen Zustand in der zu Fig. 2 beschriebenen Art und Weise betrieben wird.

Bezug nehmend auf Fig. 4 und Fig. 5 ist jeweils ein Teil der in Fig. 1 lediglich schematisiert dargestellten Aktuatorik 8 zum Steuern und Regeln der drei Kupplungen k_VA, k_HA_L und k_HA_R dargestellt, wobei der in Fig. 4 dargestellte Teil der Aktuatorik 8 zum Betätigen der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R mittels zwei Aktuatoren 11 und 12 ausgeführt ist. Die Aktuatoren 11 und 12 treiben jeweils zwei Kugelgewindetriebe 13 und 14 zur Betätigung der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R an.

Die Ansteuerung der Aktuatoren 11 und 12 ist derart miteinander gekoppelt, dass jeweils eine Betätigung der zweiten Kupplung k_HA_L bzw. der dritten Kupplung k_HA_R mit der Betätigung der dritten Kupplung k_HA_R bzw. der zweiten Kupplung k_HA_L sowie einer Betätigung der ersten Kupplung k_VA korrespondiert. Die Betätigung der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R ist zur Veränderung des Querverteilergrades gvt derart, dass die Übertragungsfähigkeit der zweiten Kupplung k_HA_L oder der

10

15

dritten Kupplung k_HA_R variiert wird, während die Übertragungsfähigkeit der dritten Kupplung $k_{HA}R$ bzw. der zweiten Kupplung k_HA_L konstant auf einem Wert gehalten wird, der vorzugsweise einen synchronen Zustand der zweiten Kupplung k_HA_L oder der dritten Kupplung k_HA_R bewirkt.

Gleichzeitig besteht selbstverständlich auch die Möglichkeit, die Übertragungsfähigkeiten der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R zum Variieren des Längsverteilungsgrades lvt derart einzustellen, dass die zweite Kupplung k_HA_L und die dritte Kupplung k_HA_R bei synchroner erster Kupplung k_{VA} gleichzeitig schlupfend betrieben werden können.

Die Aktuatorik 8 für die zweite Kupplung k_HA_L und die dritte Kupplung $k_{HA}R$ ist mit den jeweils als Elektromotor ausgeführten Aktuatoren 11 und 12 ausgebildet, dessen rotatorische Antriebsbewegungen mittels den Kugelgewindetrieben 13 und 14 bzw. den Wandlereinrichtungen in eine lineare Betätigungsbewegung für die zweite Kupplung k_HA_L 20 und die dritte Kupplung $k_{HA}R$ umwandelbar sind. Die Kugelgewindetriebe 13 und 14 sind jeweils mit einer Mutter 13A und 14A, mit Kugelgewinden 13B, 14B sowie mit Spindeln 13C und 14C ausgeführt. Dabei sind die Muttern 13A und 14A von 25 den Elektromotoren 11, 12 rotatorisch antreibbar und in axialer Richtung festgelegt. Des weiteren stehen die Muttern 13A und 14A über die Kugelgewinde 13B und 14B mit den Spindeln 13C und 14C in Wirkverbindung. Die Spindeln 13C und 14C der Kugelgewindetriebe 13 und 14 sind derart mit gehäusefesten Bauteilen 15 drehfest verbunden und in axia-30 ler Richtung der Muttern 13A und 14A verschieblich ausgeführt, dass eine Rotation der Muttern 13A und 14A jeweils eine in axialer Richtung der Kugelgewindetriebe 13 und 14

10

15

20

25

3.0

(l

gerichtete translatorische Bewegung der Spindeln 13C und 14 C zur Folge hat.

Die vorliegend jeweils als Lamellenkupplungen ausgeführte zweite Kupplung k_HA_L und dritte Kupplung k_HA_R bzw. deren Lamellenpakete 16 und 17 sind in Abhängigkeit einer axialen Position der Spindeln 13C und 14C der Kugelgewindetriebe 13 und 14 geöffnet oder in Reibeingriff. Dabei sind Innenlamellen 16A und 17A der zweiten Kupplung k_HA_L bzw. der dritten Kupplung k_HA_R mit einer Antriebswelle 18, über welche der der zweiten Fahrzeugachse 5 zugeführte Teil des Getriebeausgangsmoments des Hauptgetriebes 3 an der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R ansteht, drehfest verbunden. Außenlamellen 16B bzw. 17B sind wiederum mit dem ersten Antriebsrad 5A oder dem zweiten Antriebsrad 5B der zweiten Fahrzeugachse 5 verbunden.

Unter Berücksichtigung der zu Fig. 3 beschriebenen Steuerung und Regelung der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R ist die in axialer Richtung erfolgende Verstellung der Spindeln 13C und 14C der Kugelgewindetriebe 13 und 14 in Abhängigkeit der von den Elektromotoren 12 ausgehenden Rotationsrichtungen der Muttern 13A und 14A abhängig. Das bedeutet, dass die Elektromotoren 11 und 12 in Abhängigkeit der jeweils einzustellenden Übertragungsfähigkeiten der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R angesteuert werden. Dabei werden die Spindeln 13C und 14C jeweils in Richtung der Lamellenpakete 16 und 17 translatorisch bewegt, um die Übertragungsfähigkeit der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R zu erhöhen. Die Spindel 13C des ersten Kugelgewindetriebs 13 oder die Spindel 14C des zweiten Kugelgewinde-

triebs 14 wird jeweils in Richtung des zweiten Kugelgewindetriebs 14 oder des ersten Kugelgewindetriebes 13 bewegt, um die Übertragungsfähigkeit der zweiten Kupplung k_HA_L oder die Übertragungsfähigkeit der dritten Kupplung k_HA_R durch Verringerung der Anpresskräfte zwischen den Außenlamellen 16B und 17B und den Innenlamellen 16A und 17A zu reduzieren.

Die beiden Muttern 13A und 14A sind in axialer Rich-10 tung des in Fig. 4 dargestellten Teils der Aktuatorik 8 über Zylinderrollenlager 19 und 20 in axialer Richtung gegen ein mit der Antriebswelle 18 in Wirkverbindung stehendes Kegelzahnrad 21 abgestützt. Des Weiteren sind zwischen den Lamellenpaketen 16 und 17 der zweiten Kupplung k_HA_L und der dritten Kupplung k_HA_R jeweils weitere Kegelrol-15 lenlager 22 und 23 angeordnet, über welche jeweils eine axiale Betätigungsbewegung der Spindel 13C oder 14C auf das Lamellenpaket 16 oder 17 der zweiten Kupplung k_HA_L oder der dritten Kupplung k_HA_R aufbringbar ist. Zusätzlich sind über die Kegelrollenlager 22, 23 Differenzdrehzahlen 20 zwischen den Lamellenpaketen 16 und 17 und den Spindeln 13C und 14C nahezu verlustfrei auf einfache Art und Weise ausgleichbar.

In Fig. 5 ist ein weiterer Teil der Aktuatorik 8 dargestellt, welcher zur Ansteuerung der ersten Kupplung k_VA
vorgesehen ist. Dieser Teil der Aktuatorik 8 entspricht im
Wesentlichen dem in Fig. 4 dargestellten Teil der Aktuatorik 8, der für die Steuerung und Regelung der zweiten Kupplung k_HA_L verwendet wird.

Der in Fig. 5 dargestellte Teil der Aktuatorik 8 ist mit einem Kugelgewindetrieb 23 ausgeführt, der in derselben

10

15

20

25

(1

Art und Weise wie die Kugelgewindetriebe 13 und 14 aus Fig. 4 mit einer Mutter 23A, einem Kugelgewinde 23B und einer Spindel 23C ausgebildet ist. Die Mutter 23A ist rotatorisch von einem als Elektromotor ausgebildeten Aktuator 24 antreibbar und in axialer Richtung der Antriebswelle 18 festgelegt. Eine Rotation der Mutter 23A bewirkt eine translatorische Bewegung der drehfest gelagerten Spindel 23C, wobei die translatorische Verschiebung der Spindel 23C in Richtung eines Lamellenpaketes 25 der ersten Kupplung k_VA oder von diesem weg durch eine Links- oder Rechtsdrehung des Elektromotors 24 bewirkt wird.

Bei entsprechend eingestellter Übertragungsfähigkeit der ersten Kupplung k_VA wird ein über die Antriebswelle 18 anstehender Teil des Antriebsmomentes über Innenlamellen 25A auf Außenlamellen 25B des Lamellenpaketes 25 und von dort auf die erste Fahrzeugachse 4 übertragen. In Fig. 5 dargestellte Zylinderrollenlager 26 und 27 entsprechen in ihrer baulichen Ausführung sowie in ihrer Funktionalität den in Fig. 4 dargestellten Zylinderrollenlagern 19 und 22.

Anstatt der vorbeschriebenen elektromechanischen Ansteuerung der drei Kupplungen des erfindungsgemäßen Antriebsstranges kann es auch vorgesehen sein, dass die drei Kupplungen über eine hydraulische Aktuatorik angesteuert werden, wobei die hydraulische Aktuatorik als ein separates System ausgeführt oder in ein hydraulisches Steuerungssystem des Hauptgetriebes integriert sein kann.

Darüber hinaus besteht selbstverständlich auch die Möglichkeit, die erste Kupplung über ein elektromechanisches System und die zweite Kupplung und dritte Kupplung über ein hydraulisches Steuersystem anzusteuern. Des Weite-

ren kann die Steuerung und Regelung der drei Kupplungen über ein kombiniertes Steuerungssystem erfolgen, welches sowohl elektromechanische als auch hydraulische Komponenten umfasst.

5

Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Gegenstandes ist es vorgesehen, die Ansteuerung der drei Kupplungen mit piezoelektrischen oder elektromagnetischen Aktuatoren durchzuführen.

Bezugszeichenliste

	1	Antriebsstrang
	2	Antriebsmaschine, Brennkraftmaschine
5	3	Hauptgetriebe
	4	erste Fahrzeugachse
	4A, B	Antriebsräder der ersten Fahrzeugachse
	5	zweite Fahrzeugachse
	5A, B	Antriebsräder der zweiten Fahrzeugachse
10	6	Querverteilergetriebe
	7	Achsgetriebe
	8	Aktuatorik
	9	Verteilergetriebe
	11	Aktuator, Elektromotor
15	12	Aktuator, Elektromotor
	13	erster Kugelgewindetrieb
	13A	Mutter des ersten Kugelgewindetriebs
	13B	Kugelgewinde des ersten Kugelgewindetriebs
	13C	Spindel des ersten Kugelgewindetriebs
20	14	zweiter Kugelgewindetrieb
	14A	Mutter des zweiten Kugelgewindetriebs
	14B	Kugelgewinde des zweiten Kugelgewindetriebs
	14C	Spinel des zweiten Kugelgewindetriebs
	15	gehäusefeste Bauteile
25	16	Lamellenpaket der zweiten Kupplung
	16A	Innenlamellen der zweiten Kupplung
	16B	Außenlamellen der zweiten Kupplung
	17	Lamellenpaket der dritten Kupplung
	17A	Innenlamellen der drittten Kupplung
30	17B	Außenlamellen der dritten Kupplung
	18	Antriebswelle
	19, 20	Zylinderrollenlager
	22, 23	weitere Zylinderrollenlager

	k_VA	erste Kupplung
	k_HA_L	zweite Kupplung
	k_HA_R	dritte Kupplung
5	1_VA	Längsverteilerantriebsstrang zur Vorderachse
	lvt	Längsverteilungsgrad
	qvt	Querverteilungsgrad
	gk_VA	Verlauf der Übertragungsfähigkeit der
		ersten Kupplung
10	gk_{HA}_L	Verlauf der Übertragungsfähigkeit der
		zweiten Kupplung
	gk_HA_R	Verlauf der Übertragungsfähigkeit der
		dritten Kupplung
15	q_HA_L	Querverteilerstrang
	q_HA_R	Querverteilerstrang
	W(u)	unterer Grenzwert der Übertragungsfähigkeit der
		Kupplungen
	W(o)	oberer Grenzwert der Übertragungsfähigkeit der

Kupplungen

<u>Patentansprüche</u>

- 1. Antriebsstrang (1) eines Allradfahrzeuges mit wenigstens zwei antreibbaren Fahrzeugachsen (4, 5), mit einem 5 zwischen einer Antriebsmaschine (2) und den Fahrzeugachsen (4, 5) angeordneten Hauptgetriebe (3) zum Darstellen verschiedener Übersetzungen, und mit drei steuer- und regelbaren reibschlüssigen Kupplungen (k_VA, k_HA_L, k_HA_R), wo-10 bei eine erste Kupplung (k VA) zwischen dem Hauptgetriebe (3) und einer ersten Fahrzeugachse (4) und eine zweite Kupplung ($k_{HA}L$) und eine dritte Kupplung ($k_{HA}R$) jeweils zwischen einem Achsgetriebe (7) und einem Antriebsrad (5A, 5B) der zweiten Fahrzeugachse (5) angeordnet ist, und wobei 15 die Übertragungsfähigkeiten der Kupplungen (k_VA, k_HA_L, k HA R) jeweils über eine Aktuatorik (8) einstellbar sind und ein Antriebsmoment zwischen den antreibbaren Fahrzeugachsen (4, 5) in Abhängigkeit der eingestellten Übertragungsfähigkeiten der Kupplungen (k_VA , k_HA_L , k_HA_R) verteilbar ist. 20
 - 2. Antriebsstrang nach Anspruch 1, dadurch ge-kennzeich chnet, dass ein der zweiten Fahrzeugachse (5) zugeführter Anteil des Antriebsmomentes in Abhängigkeit der eingestellten Übertragungsfähigkeiten der zweiten Kupplung (k_HA_L) und der dritten Kupplung (k_HA_R) zwischen den Antriebsrädern (5A, 5B) der zweiten Fahrzeugachse (5) verteilbar ist.
- 3. Antriebsstrang nach Anspruch 2, dadurch ge-kennzeich net, dass jeweils eine Betätigung der zweiten Kupplung (k_HA_L) an die Betätigung der dritten Kupplung (k_HA_R) derart angepasst ist, dass die Übertra-

10

15

20

30

gungsfähigkeit der Kupplungen (k_HA_L bzw. k_HA_R) in Abhängigkeit eines eine Fahrstabilität verbessernden Querverteilungsgrades (qvt) eines der zweiten Fahrzeugachse (5) zugeführten Teils des Antriebsmomentes der Antriebsmaschine (2) variierbar ist.

- 4. Antriebsstrang nach einem der Ansprüche 1 bis 3, dadurch gekennzeich net, dass die Aktuatorik (8) als ein hydraulisches und/oder als ein elektromechanisches Steuersystem ausgebildet ist.
- 5. Antriebsstrang nach einem der Ansprüche 1 bis 3, dadurch gekennzeich net, dass die Aktuatorik als ein piezoelektrisches oder elektromagnetisches Steuersystem ausgeführt ist.
- 6. Antriebsstrang nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Aktuatorik (8) zum Steuern und Regeln der Übertragungsfähigkeiten der Kupplungen (k_VA, k_HA_L, k_HA_R) mit mehreren Aktuatoren (11, 12, 24) ausgebildet ist.
- 7. Antriebsstrang nach Anspruch 6, dadurch ge-kennzeich chnet, dass die Aktuatoren (11, 12, 24) jeweils als ein Elektromotor ausgeführt sind, dessen rotatorische Antriebsbewegung jeweils mittels einem Kugelgewindetrieb (13, 14, 23) in eine translatorische Betätigung für die Kupplungen (k_VA, k_HA_L, k_HA_R) umwandelbarist.
 - 8. Verfahren zum Steuern und Regeln eines Antriebsstranges (1) gemäß einem der vorstehend genannten Patentansprüche, dadurch gekennzeich net, dass

10 :

zur Längsverteilung eines Antriebsmomentes zwischen den beiden antreibbaren Fahrzeugachsen (4, 5) die Übertragungsfähigkeiten der Kupplungen (k_VA, k_HA_L, k_HA_R) derart eingestellt werden, dass eine Kupplung (k_VA bzw. k_HA_L bzw. k_HA_R) einen synchronen Zustand aufweist und die Übertragungsfähigkeiten der anderen Kupplungen (k_HA_L und k_HA_R oder k_VA und k_HA_L) zwischen einem unteren Grenzwert (W(u)) und einem oberen Grenzwert (W(o)), der einem synchronen Zustand der Kupplungen (k_VA, k_HA) entspricht, variiert werden.

- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass bei Vorliegen des unteren Grenzwerts (W(u)) der Übertragungsfähigkeit der Kupplungen

 (k_VA, k_HA_L, k_HA_R) im wesentlichen kein Drehmoment von
 den Kupplungen (k_VA, k_HA_L, k_HA_R) übertragen wird und
 in synchronem Zustand der Kupplungen (k_VA, k_HA_L, k_HA_R)
 ein an einer Kupplung (k_VA, k_HA_L, k_HA_R) anliegendes
 Antriebsmoment vollständig und wenigstens annähernd verlustfrei übertragen wird.
- 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeich net, dass ein Längsverteilungsgrad
 (lvt) des Antriebsmomentes zwischen den beiden Fahrzeugachsen (4, 5) durch Verändern der Übertragungsfähigkeit der
 ersten Kupplung (k_VA) und/oder durch Verändern der Übertragungsfähigkeiten der zweiten Kupplung (k_HA_L) und der
 dritten Kupplung (k_HA_R) variierbar ist.
- 11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass ein Querverteilungsgrad (qvt) eines auf die zweite Fahrzeugachse (5) geführten Teils des Antriebsmomentes zwischen den Antriebsrädern (5A, 5B) der

zweiten Fahrzeugachse (5) in Abhängigkeit der Übertragungsfähigkeiten der zweiten Kupplung (k_HA_L) und der dritten Kupplung (k_HA_R) einstellbar ist.

10

15

20

25

Zusammenfassung

Antriebsstrang und Verfahren zum Steuern und Regeln eines Antriebsstranges

Es wird ein Antriebsstrang (1) eines Allradfahrzeuges mit wenigstens zwei antreibbaren Fahrzeugachsen (4, 5), mit einem zwischen einer Antriebsmaschine (2) und den Fahrzeugachsen (4, 5) angeordneten Hauptgetriebe (3) zum Darstellen verschiedener Übersetzungen und mit drei steuer- und regelbaren reibschlüssigen Kupplungen (k VA, k HA L, k HA R) beschrieben. Eine erste Kupplung (k VA) ist zwischen dem Hauptgetriebe (3) und einer ersten Fahrzeugachse (4) angeordnet. Eine zweite Kupplung (k HA L) und eine dritte Kupplung (k HA R) sind jeweils zwischen einem Achsgetriebe (7) und einem Antriebsrad (5A, 5B) der zweiten Fahrzeugachse (5) angeordnet. Die Übertragungsfähigkeiten der Kupplungen (k VA, k HA L, k HA R) sind jeweils über eine Aktuatorik (8) einstellbar und ein Antriebsmoment ist zwischen den antreibbaren Fahrzeugachsen (4, 5) in Abhängigkeit der eingestellten Übertragungsfähigkeiten der Kupplungen (k VA, k HA L, k HA R) verteilbar.

Fig. 1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)