Intermittency and the Value of Renewable Energy

Gowrisankaran et.al. (2016), JPE

Environmental Reading Group session 6

Sep 11, 2023

Motivation and Research Question

- To quantify the economic value of large-scale solar PV, besides investment cost:
 - how solar correlates with demand.
 - predictability of solar generation.
 - cost of backup generation.
- Comparative statics: how does the cost vary under different policy environments.

Contribution

- Joskow and Tirole (2007): unexpected failure of conventional generators.
- This paper:
 - renewable intermittency
 - stochastic demand
 - quantification of renewable cost
 - Endogenize investment decision

Set-up

- Given
 - exogenous level of solar generation capacity and retail price.
 - joint distribution of demand and renewable output computed by weather forecast.
- Decision variables:
 - Long-term
 - capacity of new backup generators.
 - Demand curtailment price.
 - Short-term:
 - for each period (1-hour), energy and reserves quantity.
 - the quantity of curtailment
- Real-time, demand, renewable output, plants breakdown realized.

Demand

$$Q^D(p,ar{D}) = egin{cases} 0 & p > v \ ar{D}p^{-\eta} & p \leq v \end{cases}$$

- $\bar{D} \sim F^D(\cdot | \overrightarrow{w})$ is a scale of demand. VOLL $= \frac{\partial S/\partial d}{\partial D/\partial d}$.
- curtailment price p_c , payment $= p_c \bar{p}$.

Supply

- J incumbent conventional generators, each is indexed by j = 1, 2, ... J:
 - capacity k_j
 - ullet marginal cost c_j (reserve costs fraction of)
 - $m_j \in \{0,1\}, on_j = 0 \Leftarrow m_j = 1$
 - probability of failure P_j^{fail}
- n^{FF} new conventional generators,
 - each has capacity k^{FF}
 - capacity cost FC^{FF}
 - marginal cost c^{FF}
- **Fixed** solar PV capacity n^{SL} :
 - capacity cost FC^{SL}/MW
 - state-contingent distribution $n^{SL}\bar{S}, \bar{S} \sim F^{S}(\cdot | \overrightarrow{w})$
 - fraction d^{SL} of total solar capacity is distributed, which lowers transmission

Operator's problem: short-term

$$W(\overrightarrow{w}, \overrightarrow{m} | n^{FF}, p_{e}) = \max_{\overrightarrow{on}, z} E[[1 - d^{\text{outage}} \text{outage}(\overrightarrow{on}, z, \overrightarrow{w})]$$

$$\times [\overline{D} \overline{p}^{-\eta} \text{VOLL} - \text{WLC}(z, p_{e})]$$

$$- PC(\overline{D} \overline{p}^{-\eta} - z - n^{SL} \overline{S} + LL(\cdot), \overrightarrow{x}(\overrightarrow{on})) | \overrightarrow{w}, \overrightarrow{m}]$$
such that $m_{j} = 1 \Rightarrow on_{j} = 0$, (6)

- which conventional generators to be dispatched \overrightarrow{oh} .
- The amount of demand to be curtailed z.

Operator's problem: long-term I

$$V(n^{FF}) = \max_{p} E[H \cdot W(\overrightarrow{w}, \overrightarrow{m} | n^{FF}, p_{\epsilon})], \tag{7}$$

• price for curtailment contract p_c .

Operator's problem: long-term II

$$V^* = \max_{n^{FF}} \left\{ \frac{1 - \beta^T}{1 - \beta} V(n^{FF}) - n^{SL} F C^{SL} - n^{FF} F C^{FF} - \text{TFC}(n^{SL}) \right\}.$$
 (8)

• new conventional generators investment decision n^{FF} .

Data

May 2011-April 2012: 58 sites in Tucson, Arizona

- Cost and failure information.
- Day-ahead weather forecast data.
- hourly load.
- emission rates for CO_2 , SO_2 , NO_x .
- ancillary service auction price.

Parameters: demand

TABLE 1
DEMAND PARAMETERS

Parameter	Interpretation	Value	Source
$\overline{\eta}$	Demand elasticity	.1	Espey and Espey (2004)
$\frac{}{p}$	Retail price per MWh	\$98.10	EIA
$ VOLL F \equiv (F^{D}, F^{S}) $	Demand growth factor Value of lost load Forecastable distribution of demand and solar	1.20 \$8,000/MWh	Based on historical rate of demand growth Cramton and Lien (2000) Estimated
	output		

Parameters: supply I

TABLE 2 Summary Statistics for TEP Generators, 2011–12

Unit Type	Number of Units	Mean Size	Mean MC	${\rm Mean} \\ {\rm NO}_x$	$\begin{array}{c} \text{Mean} \\ \text{SO}_2 \end{array}$	$\begin{array}{c} \text{Mean} \\ \text{CO}_2 \end{array}$
Solar PV	2	6.5 (.5)	0 (0)	0 (0)	0 (0)	0 (0)
Coal	6	263 (133)	23 (10)	3.0(1.7)	1.6(1.3)	1.0 (.06)
Natural gas combined cycle	1	185 (0)	35 (0)	.09 (0)	.01 (0)	.4 (0)
Natural gas		` /	` '	` /	. ,	` '
steam turbine	3	89 (13)	54 (0)	1.5(0)	.03(0)	.5 (0)
Natural gas turbine	6	39 (20)	71 (13)	3.5(2.0)	.05 (.01)	.8 (.2)
Potential new natural gas combined cycle		191	32.60	.05	.01	.4
Potential new natural gas turbine		91	47.60	.31	.01	.5

Parameters: supply II

TABLE 3 Remaining Supply Parameters

Parameter	Interpretation	Value	Source
$d^{ m outage}$	System outage hours times % of affected customers	.98	EIA
d^{SL}	Fraction of solar generation that is distributed	.3	Arizona Renewable Portfolio Standard
FC^{rr}	New combined cycle gas generator capital cost per MW	\$1,095,458	EIA
FC^{rr}	New gas turbine gas generator capital cost per MW	\$921,927	EIA
FC^{solar}	Solar capital cost per MW of DC	\$4,410,000	Baker et al. (2013), Barbose et al. (2013)
c ^r	Ratio of MC for operating reserves to production MC	.41	Calculated from ERCOT data
α	Line loss constant	.000035	Calculated fromTEP Form 10K
$\mathrm{AFC}^{\scriptscriptstyle T}$	Average transmission fixed cost per MW	\$1,259,000	Baughman and Bottaro (1976), Borenstein and Holland (2005), and TEP line loss cost
β	Discount factor	.94	
T	Lifetime of generators in years	25	

Parameter: failure and maintenance prob

TABLE 4
Mean Hourly Maintenance and Failure Probabilities

	Failure Probability, P^{fail} (%)	Maintenance Probability, P^{maint} (%)	Mean Number of Units per Hour
Natural gas generator	.0492	.0382	342
	(.01)	(.008)	
Coal generator	.099	.047	859
	(.027)	(.010)	

Social costs of solar

	Fraction of Generation from Solar			
	0%	10%	15%	20%
Forgone new gas generators (N)	0	2	2	3
Mean system outage probability	4.76e - 5	5.82e - 5	5.81e - 5	8.4e - 5
Reserves (as % of energy consumed)	30.5	32.1	33.6	35.2
Curtailment quantity (as % of total load)	.11	.19	.14	.24
Curtailment price p_e (\$/MWh)	661	469	431	804
Production costs	437.20	380.00	355.20	332.20
Reserve costs	78.10	81.50	82.80	84.80
Gas generator investment costs	2,090	1,672	1,672	1,463
Solar capacity investment costs	0	4,148	6,221	8,295
Transmission fixed costs	331.40	319.40	317.40	316.20
Loss in \$ surplus per MWh solar produced		126.70	133.70	138.40
Loss in \$ surplus per ton CO ₂ reduced		293.10	283.50	279.10

Social costs of solar: decomposition

 ${\bf TABLE~6} \\ {\bf Decomposition~of~Social~Costs~of~20~Percent~Solar}$

Experiment	Loss in \$ Surplus per MWh Solar	Number of New Gas Generators	Curtailment Price p_e (\$/MWh)
Base case—feasible solar	138.40	7	804
No unforecastable inter-			
mittency	132.30	7	792
Fully dispatchable	92.40	1	300
Equal generation profile	133.80	7	783
Eliminate distributed			
generation: $d^{SL} = 0$	118.70	7	834
Fixed costs FC^{SL} drop			
from \$4.41/W to \$2/W	39.40	7	804
Same policies as without			
solar	281.60	10	661
Rule-of-thumb policy with			
10% solar capacity			
credit	154.80	10	661
Rule-of-thumb policy with			
12.5% solar capacity			
credit	153.20	9	661

Non-dispatchable, high capacity cost

Social costs of solar: welfare-neutral

Capital cost = 1.52/W.

Robustness: policy environment

- curtail contracts
- imports/exports
- additional generator type
- different forecasts
- different VOLL

are all trivial.

Conclusion

- Re-optimization reduces the social cost of large-scale solar PV.
- With solar capital cost = \$4.41/W, social benefit of 20% renewable penetration is negative = -\$138.4.(not accounting for emission reduction.)
- Social welfare neturality when solar capital cost = 1.51/W.
- Two main ways to increase value of solar energy: lower capital cost, better storage.

Reference

Gowrisankaran, G., Reynolds, S. S., & Samano, M. (2016). Intermittency and the value of renewable energy. Journal of Political Economy, 124(4), 1187-1234.