Egzamin z ALGEBRY LINIOWEJ

lmię i nazwisko, nr:

Grupa:

UWAGA: KAŻDE ZADANIE PROSZĘ ROZWIĄZYWAĆ NA OSOBNEJ KARTCE (NIE STRONIE)

1. (15p) Niech $z_1=3+2i$, $z_2=2-2i$, $z_3=-4-i$. Oblicz a) $\sqrt[3]{z_1+z_2+z_3}$ oraz (5p)

1) $\sqrt[3]{z_1 + z_2 + z_3}$ Oraz (5

b) $(z_1 + z_2 + z_3)^{100}$. (5p)

Podaj interpretację graficzną wszystkich wykonywanych działań. (5p)

2. (20p) Niech $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = 2x_4, x_3 - 2x_2 - x_4 = 0\}$.

Sprawdź czy W jest podprzestrzenią R⁴ (**5p**).

Jeśli tak, znajdź bazę W (5p),

a następnie znajdź w tej bazie współrzędne wektorów

a) a=(1,1,1,1) oraz (5p)

b) b=(2,1,3,1) (5p)

Jeżeli jest to niemożliwe, uzasadnij.

3. (15p) Podaj rozwiązania układu równań w zależności od wartości

parametrów
$$p$$
 i q :
$$\begin{cases} px + qy = 2pq \\ qx + py = p^2 + q^2 \end{cases}$$
 (15p)

4. (20p) Dane jest przekształcenie

$$F: \mathbb{R}^3 \to \mathbb{R}^4, F(x, y, z) = (x + y - z, x - y + z, x, -y).$$

a) Udowodnij liniowść przekształcenia F, (5p)

b) Znajdź macierz przekształcenia, (3p)

c) bazy Ker F, Im F, (10p)

d) podaj $\dim Ker F$ oraz $\dim Im F$. (2p)

5. (20p) Dane jest przekształcenie liniowe

$$F: \mathbb{R}^3 \to \mathbb{R}^3, F(x, y, z) = (x, y + z, z)$$

Znajdź

a) wartości własne, (5p)

b) wektory własne, (5p)

c) przestrzenie odpowiadające wartościom własnym. (5p)

d) Czy istnieje baza przestrzeni R³ złożona z wektorów własnych. (5p) Odpowiedź uzasadnij.