

October 1987 Revised January 1999

MM74C32 Quad 2-Input OR Gate

General Description

The MM74C32 employs complementary MOS (CMOS) transistors to achieve low power and high noise margin, these gates provide the basic functions used in the implementation of digital integrated circuit systems. The N- and P-channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No DC power other than that caused by leakage current is consumed during static con-

ditions. All inputs are protected against static discharge damage.

Features

■ Wide supply voltage range: 3.0V to 15V

■ Guaranteed noise margin: 1.0V

■ High noise immunity: 0.45V V_{CC} (typ.)

■ Low power TTL compatibility: fan out of 2 driving 74L

Ordering Code:

Order Number	Package Number	Package Description
MM74C32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Absolute Maximum Ratings(Note 1)

 $\begin{tabular}{lll} \mbox{Voltage at Any Pin} & -0.3\mbox{V to V}_{\rm CC} + 0.3\mbox{V} \\ \mbox{Operating Temperature Range} & -40\mbox{°C to +85\mbox{°C}} \\ \mbox{Storage Temperature Range} & -65\mbox{°C to +150\mbox{°C}} \\ \end{tabular}$

Power Dissipation (P_D)

 $\begin{array}{ccc} \text{Dual-In-Line} & 700 \text{ mW} \\ \text{Small Outline} & 500 \text{ mW} \\ \text{Operating V}_{\text{CC}} \text{ Range} & 3.0 \text{V to } 15 \text{V} \\ \end{array}$

Absolute Maximum V_{CC} 18V Lead Temperature (Soldering, 10 seconds) 260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	MOS	•	<u> </u>	l .		
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
		V _{CC} = 10V	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		V _{CC} = 10V			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V$, $I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = 10 \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
I _{CC}	Supply Current	V _{CC} = 15V		0.05	15	μΑ
	L INTERFACE	•	•		u u	
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_{O} = 360 \mu A$			0.4	V
OUTPUT DR	IVE (see Family Characteristics D	ata Sheet) T _A = 25°C (short circuit curre	ent)			
I _{SOURCE}	Output Source Current	V _{CC} = 5.0V, V _{OUT} = 0V	-1.75	-3.3		mA
	(P-Channel)					
I _{SOURCE}	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V	-8.0	-15		mA
	(P-Channel)					
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V$, $V_{OUT} = V_{CC}$	1.75	3.6		mA
- ***	(N-Channel)					
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$	8.0	16		mA
	(N-Channel)					

AC Electrical Characteristics (Note 2)

 $\rm T_A = 25^{\circ}C, \ C_L = 50 \ pF,$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time to	V _{CC} = 5.0V		80	150	ns
	Logical "1" or "0"	V _{CC} = 10V		35	70	ns
C _{IN}	Input Capacitance	Any Input (Note 3)		5		pF
C _{PD}	Power Dissipation Capacitance	Per Gate (Note 4)		15		pF

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note—AN-90.

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 INDEX AREA 0.250 ± 0.010 (6.350±0.254) PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320(7.620 - 8.128) 0.065 0.145 - 0.200 0.060 (1.524) 4° TYP Optional (1.651) (3.683 - 5.080)95°±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508)0.125 - 0.150 $\overline{(3.175 - 3.810)}$ $\overline{(1.905 \pm 0.381)}$ 0.014-0.023 TYP (7.112)-MIN $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$ (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)} \text{ TYP}$ $0.325 ^{\,+\,0.040}_{\,-\,0.015}$ 8.255 + 1.016N14A (REV.F)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com