11 класс

Первый день

- **11.1.** На отрицательной ветви гиперболы $y=\frac{1}{x}$ отмечена точка A, а на положительной ветви этой гиперболы точки B и C так, что угол ACB треугольника ABC прямой, а начало координат точка O принадлежит катету AC. Найдите длину гипотенузы AB этого треугольника, если его площадь равна $8\sqrt{3}$.
- **11.2.** Натуральное число N назовём *хорошим*, если для него найдутся хотя бы четыре различные пары натуральных чисел (x,y), удовлетворяющих равенству

$$15x + 200y = N.$$

Найдите наименьшее хорошее число.

- **11.3.** В треугольнике ABC угол при вершине B равен 65° . Продолжение высоты, проведённой из вершины A, пересекает описанную около треугольника ABC окружность в точке A_1 , отличной от точки A. Продолжение биссектрисы, проведённой из вершины C, пересекает эту же окружность в точке C_1 , отличной от точки C. Укажите все возможные значения величины угла ACB, если $AA_1 = CC_1$.
- **11.4.** Клетки прямоугольной таблицы 5×6 раскрашены в шахматном порядке в чёрный и белый цвета. Во всех точках, являющихся вершинами клеток (всего 42 точки), расставлены числа 0 или 1 так, что сумма четырёх чисел в вершинах любой чёрной клетки чётная, а сумма чисел в вершинах любой белой клетки нечётная. Найдите все возможные значения, которые может принимать сумма чисел в четырёх вершинах данной прямоугольной таблицы.

11 класс

Второй день

11.5. Пусть x_1, x_2 — корни квадратного трёхчлена $f(x) = x^2 - 2x - 1$, а x_3, x_4 — корни квадратного трёхчлена $g(x) = x^2 - 3x - 1$. Найдите все возможные значения выражения

 $(g(x_1))^3 f(x_3) + (g(x_2))^3 f(x_4).$

- **11.6.** Две окружности касаются друг друга внутренним образом в точке C. Хорда AB большей окружности касается меньшей окружности в точке L. Отрезки AC и BC пересекают меньшую окружность в точках A_1 и B_1 соответственно. Найдите площадь треугольника ABC, если AL=7, BL=5, $A_1B_1=9$.
- **11.7.** Найдите все функции f, определённые на множестве всех положительных действительных чисел и принимающие значения в множестве неотрицательных действительных чисел, такие, что для всех положительных действительных x и y выполняется равенство

$$f(x + f(y)) = xf(y).$$

- **11.8.** Даны пять попарно различных натуральных чисел. Известно, что какие-то четыре из десяти сумм этих чисел по три равны 20, 30, 40 и 50. Найдите, какое
 - а) наименьшее,

б) наибольшее

значение может принимать сумма этих пяти чисел.