

Measuring Cross-Modal Interactions in Multimodal Models

Laura Wenderoth¹, Konstantin Hemker¹, Nikola Simidjievski^{2,1}, Mateja Jamnik¹

¹Department of Computer Science and Technology, University of Cambridge, Cambridge, UK ²PBCI, Department of Oncology, University of Cambridge, Cambridge, United Kingdom {lw457, kh701, ns779, mj201}@cam.ac.uk

Code

Paper

Problem

While numerous explainability (XAI) methods exist for unimodal models, existing XAI methods fail in multimodal settings.

AAAI-25 / IAAI-25 / EAAI-25

- Need for scalable solutions to **explain** multimodal model behavior, focusing on cross-modal interactions and modality contributions.
- Existing methods are limited to only two modalities, require labeled data, and are not performance-agnostic:

Score		Local	Unsupervised	Performance Agnostic
PID	×	×	\checkmark	\checkmark
EMAP	×	×	×	×
SHAPE	\checkmark	×	×	×
InterSHAP	\checkmark	\checkmark	\checkmark	\checkmark

Solution

Novel cross-modal interaction score,
InterSHAP, based on the Shapley
interaction index. It handles more then two
modalities, works with unlabelled data, and
provides both local and global
explanations, offering a performanceagnostic approach to understanding
cross-modal interactions and modality
contributions.

Contributions

- 1 Validated on synthetic datasets
- 2 Works > 2 modalities
- 3 Seamlessly integrates into SHAP visualization
- 4 Application to multimodal healthcare datasets

$\Phi_{ij} =$	$\left \frac{1}{N} \sum_{a=1}^{N} \phi_{ij}(m_1^a, \dots, m_M^a, f) \right $	(1)
---------------	---	-----

$$\Phi = \begin{bmatrix}
\Phi_{11} & \Phi_{12} & \dots & \Phi_{1M} \\
\Phi_{21} & \Phi_{22} & \dots & \Phi_{2M} \\
\vdots & \vdots & \ddots & \vdots \\
\Phi_{M1} & \Phi_{M2} & \dots & \Phi_{MM}
\end{bmatrix}$$
(2)

$$Interactions = \sum_{\substack{i,j=1\\i\neq j}}^{M} \Phi_{ij}, \qquad Behavior = \sum_{\substack{i,j=1}\\i\neq j}^{M} \Phi_{ij} \qquad (3)$$

$$InterSHAP = \frac{Interactions}{Behaviour} \tag{4}$$

Validated on synthetic datasets

interactions.

M2 + 0

	Uniqueness		Synergy		Redundancy	Random
	XOR	FCNN	XOR	FCNN	FCNN	FCNN
	0.0	$0.2_{\ \pm 0.1}$ $3.4_{\ \pm 5.2}$	99.7 96.9	$98.0_{\ \pm 0.5}$ $85.8_{\ \pm 12.1}$	$38.6_{\ \pm 0.5}$ $37.3_{\ \pm 25.0}$	$57.8_{\ \pm 1.1}$ $40.0_{\ \pm 13.3}$
PID	0.01	$0.01_{\ \pm 0.01}$	0.39	$0.39_{\ \pm 0.01}$	$0.14_{\ \pm 0.02}$	$0.48_{\ \pm 0.01}$
EMAP_{gap}	0	$0_{\pm 0}$	49.1	$43.5_{\ \pm 1.0}$	$1.8_{\ \pm 0.4}$	$0.6_{\ \pm0.4}$
SHAPE	1.6	$16.5_{\ \pm0.6}$	33.1	$27.6_{\ \pm 1.5}$	$\text{-}47.1 \pm 0.5$	$15.1_{\ \pm 1.9}$

Table 2: InterSHAP values as percentages for both the XOR function and FCNN with early fusion on synthetic HD-XOR datasets. Results align with expectations, confirming the effectiveness of InterSHAP.

Figure 2: Visualization of Table 2 results. M1 represents modality 1, M2 modality 2, and I

M1 + 0.01

+0.09

0.6

M2 + 0.03

0.5

M2 + 0

f(x) = 0.956

1.0

f(x) = 0.798

0.8

+0.45

(b) Synergy

(d) Random

8.0

+0.18

f(x) = 0.993

1.0

f(x) = 0.983

Seamlessly integrates into SHAP visualization

+0.49

8.0

8.0

(c) Redundancy

+0.27

(a) Uniqueness

+0.19

0.6

M2 + 0.03

Works > 2 modalities

	Uniqueness	Synergy	Redundancy
2 Modalities	$0.2_{\ \pm0.1}$	$98.0_{\ \pm0.5}$	38.6 ± 0.5
3 Modalities	$0.6_{\pm0.2}$	$88.8_{\pm0.5}$	$51.9_{\ \pm0.3}$
4 Modalities	$1.2_{\ \pm0.1}$	$64.1_{\ \pm0.8}$	$40.2_{\ \pm0.2}$

Table 3:InterSHAP values, expressed as percentages, for FCNN with early fusion on HD-XOR datasets with two, three, and four modalities. The results indicate, that InterSHAP works for more than two modalities.

4 Application to multimodal healthcare datasets

MIMIC III

- Modalities: 12 physiological measurements (e.g. heart rate, 24h), static information on patients
- Tasks: ICD and Mortality Classification

		ICD-9		Mortality		
		baseline	MVAE	baseline	MVAE	
]	InterSHAP	$1.2_{\ \pm 0.2}$	$6.8_{\ \pm 1.3}$	$11.0_{\ \pm 0.5}$	$12.3_{\pm 2.8}$	
I	PID	$0.06_{\pm 0.01}$	$0.09_{\ \pm 0.01}$	$0.10_{\ \pm 0.01}$	$0.11_{\ \pm 0.01}$	
I	EMAP_{gap}	$0_{\pm 0}$	$1.2_{\ \pm 0.0}$	$-0.8_{\ \pm 0.1}$	$0.9_{\ \pm 0.1}$	
	SHAPE	$0.2_{\ \pm 0}$	$0.6_{\pm0}$	$0.2_{\ \pm0.2}$	$0.7_{\ \pm 0.2}$	

Multimodal Single Cell Dataset

- Modalities: RNA, Protein
- Task: Cell Class Classification (B-Cell, Erythrocyte, Monocyte, Neutrophil)

	Single-Cell		
	early	intermediate	late
InterSHAP	$1.9_{\ \pm 0.4}$	$1.5_{\ \pm 0.4}$	$0.4_{\ \pm 0.1}$
PID	$0.08_{\ \pm 0.01}$	$0.08_{\ \pm 0.01}$	$0.06_{\ \pm 0.0}$
EMAP_{gab}	$0_{\pm 0}$	$0_{\pm 0}$	$0_{\pm 0}$
SHAPE	$1.0_{\ \pm 0.2}$	$0.7_{\ \pm0.2}$	$0_{\pm 0}$

Figure 3: FCNN early fusion model