Sistemas de Computação

Mestrado Integrado em Engenharia de Telecomunicações e Informática

2020/2021

Introdução (I)

- Há uma grande variedade de dispositivos de I/O (Periféricos)
 - Comportamento: Input, output ou armazenamento
 - Com quem interagem: humanos ou com máquinas;
 - Velocidade de transferência
 - Vejamos o exemplo do teclado: input, humanos, cerca de 10 bytes por segundo

Dispositivo	Comportamento	Mbit/seg
Teclado	Input	0,0001
Rato	Input	0,0038
Scanner	Input	3,200
Ecrã/placa gráfica	Output	800,000-800,000
Placa de rede	Input/output	100,000-1000,000
Placa de rede sem fios	Input/output	11,000-54,000 11,000-6,912

Introdução (II)

Periféricos

- Há periféricos que exigem uma taxa de transferência fixa (F.C. Fluxo Contínuo)
- Os periféricos facultam informação sobre estado, em complemento à informação relativa à sua função específica. Exemplos:
 - Impressora sem papel; Drive sem diskette; Modem n\u00e3o est\u00e1 presente ...

• Performance de um sistema

- Como se mede?
- Frequentemente a performance em I/O depende da aplicação/utilização que é dada ao sistema
 - · Aplicações multimédia
 - Aplicação para registo de impostos
 - Aplicação para processamento dos pagamentos em terminais ATM

Discos (I)

Nomes:

- Disco rígido
- Disco duro
- HDD Hard Disk Drive
- Winchester
- SSD Solid-state drive

Memória de massa ou memória secundária

Não volátil

http://aldyputra.net/2011/09/cara-format-hardisk-besertalangkah-dan-tahapannya/

Discos (II)

Discos (III)

- Estrutura dos discos duros
 - N discos numa estrutura de suporte rígida
 - 5.400 a 10.000 RPM
 - Raio: 1,8" 2,5" 3,5" 5,25"
 - Divisão lógica:
 - faces
 - pistas
 - sectores divisões de uma pista
 - cilindros conjunto de pistas homólogas em todos os discos
 - Originalmente todas as pistas tinham o mesmo número de sectores.
 - Qual é o problema?
 - Sectores: 512 bytes -> 4096 bytes
 - Tamanho variável das pistas (em função do raio)
 - Número de sectores/pista varia em função da "zona" do disco
 - CAV Constant Angular Velocity usado nos discos e drives de disquetes
 - CLV Constant Linear Velocity usados nas drives óticas (CD-ROM)
 - ZCLV Zoned Constant Linear Velocity usado nos CDs de "alta velocidade" e gravadores de DVD
 - Nas versões mais recentes é Constant Angular Acceleration

Discos (IV)

- Tempo de acesso:
 - Procura seek time posicionamento das cabeças (limitações mecânicas!).
 - Tempo necessário para mover a cabeça para uma nova posição
 - Os fabricantes incluem, nos manuais, os valores mínimo, máximo e médio do seek time.
 - seek time médio: calculado com base em todas as possíveis operações de procura !!! Valores típicos teóricos 12 a 20 ms; na prática 25% a 33% desses valores, dependendo da localidade dos acessos (SO/aplicação)
 - Espera pelo sector rotational delay 1/2 do tempo de rotação: 8.3 a 3 ms
 - 5,6 ms para os discos de 5400 RPM
 - 4,2 ms para os discos de 7200 RPM
 - 2,0 ms para os discos de 15000 RPM
 - Tempo de transferência transfer time função do tamanho de bloco a transferir, velocidade de rotação, densidade e existência ou não de cache
 - Até 40 MBytes por segundo, em 1997
 - Até 125 Mbytes por segundo, em 2008
 - Tempo de transferência do controlador controller time overhead no acesso a I/O

Discos (V)

- Interfaces:
 - SCSI (Small Computer System Interface)
 - Usado em servidores, workstations, computadores Apple, etc.
 - Usado também por dispositivos externos (discos, scanners, etc.)
 - IDE (Integrated Device Electronics)
 ou melhor, ATA (AT Attachment) norma ANSI!!!
 ou PATA Parallel ATA
 - EIDE (Enhanced IDE) ou ATA-2 é uma extensão da norma para suportar o modo LBA (Logical Block Addressing); endereçamento através do número do sector (um valor de 28 bits - 0 a 268.435.455 - o que implica um limite de 256Msectores ou 128Gbytes)
 - Desadaptação entre o BIOS dos PCs e a norma ATA impôs o famoso limite de 512MBytes para os discos IDE!
 - Cabos de 40 ou 80 condutores

Discos (V)

- Interfaces:
 - FC (Fibre channel)
 - · Mercado empresarial
 - 1, 2, 4, 8, 16, 32 e 128 Gigabit por segundo
 - Fibra Ótica
 - Teoricamente também pode usar cabos de cobre
 - 10Gbps SFP+ (enhanced Small Form-Factor pluggable)
 - Ano: 2006 / 2009
 - 25 Gbit/s SFP28
 - 200 Gbit/s QSFP56

Discos (VI)

- Interfaces:
 - Serial ATA (SATA)
 - Desenhado para substituir o interface ATA (ou PATA Parallel ATA) oferecendo várias vantagens:
 - cabos mais pequenos (7 condutores em vez de 40);
 - hot swapping;
 - maior largura de banda
 - Muito popular no mercados de PC desktop
 - eSATA versão para uso externo
 - Versão SATA/150 | **SATA 1,5 Gbit/s** | SATA 1
 - Velocidade máxima teórica: 1,5 Gbit/s
 - Ano: 2003
 - Versão Serial ATA II" ("SATA II" ou "SATA2") | SATA 3,0 Gbit/s
 - Velocidade máxima teórica: 3 Gbit/s
 - Ano: 2004
 - Compatível com a versão anterior
 - Versão 3: 6 Gbit/s
 - Velocidade máxima teórica: 6 Gbit/s
 - Ano: 2009
 - Version 3.4 (junho 2018)
 - Interface M.2 ou NGFF (Next Generation Form Factor)
 - Substitui a interface mSATA
 - Usada por discos SSD
 - Usada em máquinas "fisicamente pequenas"

Discos (VI)

- Interfaces:
 - Serial Attached SCSI (SAS)
 - Substituição do SCSI que funcionava em paralelo
 - Serie ponto-a-ponto
 - Compatível como SATA
 - Permite ligar discos SATA a sistemas SAS
 - Preço
 - · Vários conectores
 - SAS-1
 - 3 Gbit/s
 - Ano: 2004
 - SAS-2
 - 6 Gbit/s – Ano: 2009
 - SAS-3
 - 12 Gbit/s
 - Ano: 2013
 - SAS-4
 - 22.5 Gbits/s | 24G Ano: 2017

Discos (VII)

- SSD solid-state drive
 - Substituição de HDD
 - Mesmo formato (2,5")
 - Conectores: mSATA e M.2
 - Durabilidade dos dados armazenados
 - Velocidade de início de funcionamento
 - Acesso aleatório
 - Acesso aos dados
 - Fragmentação
 - Ruído
 - Instalação
 - Custo
 - Consumo energético

Discos (VIII)

- Formatação lógica (discos magnéticos)
 - Discos são divididos em partições (1 a ...)
 - Cada partição é Formatada para um determinado Sistema de Ficheiros
 - Em todos os Sistemas de Ficheiros, os sectores são agrupados em blocos (clusters, na nomenclatura do DOS/Windows)
 - Exemplos: DOS-FAT16; DOS-FAT32; Linux Native; DOS-Extended; ...
 - Num sistema de ficheiros é instalado um Sistema Operativo (obviamente tem que ser compatível com o sistema de ficheiros em questão!)
 - É o Sistema Operativo que gere o espaço da "sua partição" e, eventualmente, de mais alguma(s) cujo formato suporte.

Discos (IX)

- Disk array / drive array Agrupar múltiplos discos
 - Melhorar a performance
 - Aumentar a fiabilidade
- RAID Redudant Array of Inexpensive Disks
- RAID Redudant Array of Independent Disks...
- RAID: Um sistema de discos com capacidade de RAID protege os dados e faculta acesso permanente não obstante a ocorrência de falha num disco (ou mais que uma falha em mais que um disco!)

Discos (X)

- Implementações:
 - − ... em software ⊗
 - − ... em hardware ☺

RAID 0 – Striping

- Não tem redundância nem verificação de erros
- Tempo de acesso
- Problema: se avariar um disco ...

RAID 1 – Mirror

- Mirror = espelho
- Redundância

RAID 2

- Usa códigos de correção de erros
- Discos sincronizados
- Comercialmente n\u00e3o dispon\u00edvel

Discos (XI)

RAID 3

- Cada byte é escrito num disco diferente
- Disco dedicado para a paridade dos dados
- Sistema raramente usado

RAID 4

- Um disco para paridade
- Leitura/escrita em blocos
- Vantagem: velocidade

RAID 5

- Igual ao anterior mas com a paridade distribuída pelos vários discos

- Complexidade

Fonte: By en:User:Cburnett - Own workThis W3C-unspecified vector image was created with Inkscape., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1509118

Fonte: Por Alex Freeman - Obra do próprio, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=849897

Discos (XII)

RAID 6

- Semelhante o RAID 5
- Usa o dobro dos bits de paridade
- Aumenta a fiabilidade
- Há mais alternativas

RAID 1+0 ou RAID 10

- Redundância
 - Desempenho
 - Pode falhar metade dos discos desde que não sejam do mesmo espelho

Fonte: By en:User:Cburnett - Own workThis W3C-unspecified vector image was created with Inkscape., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1509166

Fonte: Por Wheart, based on image File:RAID 0.svg by Cburnett - Obra do próprio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6411865

Discos (XIII)

RAID 0+1 ou RAID 01

- Redundância
- Desempenho
- Pode falhar 1 ou mais discos dos mesmo grupo

Fonte: https://commons.wikimedia.org/w/index.php?curid=594714

• RAID 50

Fonte: Por Kauberry - Obra do próprio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6895750

- RAID 100
- JBOD just a bunch of disks/drives

Discos (XIV)

Backups

Vídeo (I)

- Hardware para "Video"
 - Monitores
 - "Adaptador" (controlador) gráfico

Vídeo (II)

- Tecnologias utilizadas em monitores
 - CRT Cathode Ray Tube Tubo de raios catódicos

- LCD Liquid Crystal Display
- OLED Organic light-emitting diode

Vídeo (III)

- Características
 - Tamanho
 - Rácio altura/largura
 - Resolução

Adicionalmente

- Consumo energético
- Acessórios integrados (portas, etc)
- Curvatura
- 3D
- Sensível ao toque
- Formato panorâmico
- Tipo de montagem (Mesa, VESA ou Rack)
- Tempo de resposta
- Brilho ou luminância
- Ângulo de visão
- Ajustes físicos

Vídeo (IV)

- Controladores gráficos
 - "Standards"
 - CGA (Color Display Adapter)
 - EGA (Enhanced Display Adapter) 1984
 - 640x200x16
 - VGA (Video Graphics Array) 1987
 - Utiliza monitores analógicos!... melhor resolução de cor.
 - Introduz o VGA BIOS, um conjunto de rotinas destinado a facilitar a programação do controlador
 - 640x480x16
 - XGA (eXtended Graphics Array) e XGA-2
 - 1.024x768x256
 - SVGA (Super VGA)
 - 800x600x16 | 800x600x256 | 1.280x1.024x16 | 1.280x1.024x256
 - 1.024x768 com 32K ou 64K cores

• ...

VGA 320 × 240 WVGA 800 × 480 FWVGA 1024 × 600 1152 × 768 WXGA 1280 × 720 1280 × 768 WXGA 1280 × 768 WXGA 1280 × 768 WXGA 1280 × 768 1280 × 800 1240 × 960 1240 × 960 1250 × 1000 1260 × 1000 1279 1280 × 1020

http://en.wikipedia.org/wiki/Video_Graphics_Array

By Original uploader was XXV at en.wikipedia Later version(s) were uploaded by Jjalocha,
Aihtdikh at en.wikipedia. - Transferred from en.wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=4022444

Vídeo (VI)

Fonte: By Jedi787plus - https://en.wikipedia.org/wiki/File:Vector_Video_Standards4.svg, GFDL, https://commons.wikimedia.org/w/index.php?curid=37694717

Vídeo (VII)

By Based on image from Jedi787plus, which was in turn based on a work licensed under the CC ASA 3.0 license specified below. This combined work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. - This file was derived from: Vector Video Standards8.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=66290517

Vídeo (VIII)

Resolução

- XGA (Extended Graphics Array) = 1024x768
- SXGA (Super XGA) = 1280x1024
- UXGA (Ultra XGA) = 1600x1200
- QXGA (Quad XGA) = 2048x1536
- WXGA (Wide XGA) = 1280x800
- WSXGA+ (Wide SXGA plus) = 1680x1050
- WUXGA (Wide Ultra XGA) = 1920x1200
- WQHD = 2560 x 1440
- WQXGA = 2560 x 1600
- QSXGA = 2560 x 2048
- Full HD (FHD) = 1920 x 1080
- Full HD Plus (FHD+) = 1920 x 1280
- 4K Ultra HD 1 (4K UHD-1) = 3840 x 2160
- DCI 4K (DCI 4K) = 4096 x 2160
- 5K = 5120 x 2880

Video (IX)

Interfaces

- VGA Video Graphics Array
 - Em utilização desde 1987
 - Conectores BNC
 - Conector DE-15

By Krzysztof Burghardt - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1316965

By Evan-Amos - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11339219

Video (X)

Interfaces

- DVI Digital Visual Interface
 - Desde 1999
 - Sinais analógicos e digitais
 - DVI-D
 - DVI-A
 - DVI-I
 - Single and Dual link

By Evan-Amos - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11339267

Video (XI)

Interfaces

- HDMI High-Definition Multimedia Interface
 - 2003
 - HDCP High-bandwidth Digital Content Protection
 - Compatível com DVI-D e DVI-I
 - Versão 2
 - Setembro 2013
 - 18.0 Gbit/s
 - 4096×2160p/60 Hz
 - 32 canais audio
 - Versão 2.1
 - Janeiro/Novembro 2017
 - Maior resolução e maiores taxas de refrescamento
 - 4K 120 Hz / 8K 120 Hz / 10k 120 Hz
 - Cabos: High Speed HDMI
 - 48 Gbit/s

By NicoJenner - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41879109

Video (XII)

Interfaces

- Display Port
 - Versão 1: 2006/2007
 - Som + vídeo
 - Dados
 - Versão 1.4:
 - 8K UHD (7680×4320) @ 60Hz
 - Versão 2.0
 - 3x 10K@60Hz 77.37 Gbit/s
 - Suporta: DisplayPort Content Protection, HDCP High-bandwidth Digital Content Protection

By Belkin -

http://www.belkin.com/pressroom/releases/uploads/01_07_08DisplayPortCable.ht ml, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5488295

Interfaces de I/O (I)

• Interfaces de I/O

- Porta série: interface ponto-a-ponto série e assíncrono
 - RS-232
 - Pacotes: start bit | 7 ou 8 bits | 1 ou 1½ stop bit +/- 20% overhead!
 - Velocidades desde 300bps (bits per second) até 921.6Kbps
 - Distância: a norma define 15.24m, mas pode ir até 150m com cabos e transceivers apropriados.
 - UART Universal Asynchronous Receiver/Transmiter:
 - 8250: até 19.2 Kbps; barramento de 8 bits
 - 16450: maior velocidade; barramento de 16 bits
 - 16550: buffer interno de 16 bytes (FIFO); 16550A... sem bugs!!!
 - 16650 e 16750: buffers maiores permitem velocidades até 460Kbps particularmente útil com adaptadores RDIS; buffers externos e maiores deram origem ao ESP (Enhanced Serial Ports)... até 921.6Kbps

Fonte: http://ergocanada.com/ergo/tips/serial_port.jpg

Interfaces de I/O (II)

- Interfaces de I/O
 - Porta paralela: interface ponto-a-ponto, 8 bits em paralelo e síncrono, curtas distâncias (<10m)
 - Nomes por que ficou conhecida: Parallel Printer Adapter, Printer Port ou Centronics port
 - SSP Modo compatível
 - Comunicação unidireccional
 - Usado quase exclusivamente por impressoras
 - Algumas linhas fixas para comunicação do estado da impressora (ex: falta de papel)
 - EPP (Enhanced Parallel Port) ou Fast mode parallel port; requer hardware dedicado (por exemplo, Intel 82360SL); normalizado - EPP version 1.7 (Março, 1992); a "versão 1.9" faz parte da norma IEEE 1284
 - Interface bidirecional half-duplex
 - Até 2 MByte/s de largura de banda
 - ECP (Enhanced Capabilities Port) iniciativa da Microsoft e da Hewlett-Packard. Semelhante a EPP, mas obriga à utilização de um canal de DMA; requer hardware dedicado; está incluída na norma IEEE 1284
 - IEEE 1284 (Março, 1994) "Standard Signaling Method for a Bidirectional Parallel Peripheral Interface for Personal Computers" (Uff!); inclui EPP e ECP; permite maiores velocidades (cabos de pares entrançados até 100 M/s e uma terceira ficha mais compacta ... impressoras HP)

Fonte:

http://sgcdn.startech.com/005329/media/products/gallery_large/CB1PECP.B.jpg

Interfaces de I/O (III)

- Interfaces de I/O
 - FireWire (IEEE 1394): barramento de alto desempenho especialmente adaptado à exigências de audio e video
 - Sucessor do SCSI?
 - Cabo com apenas seis condutores
 - Plug & Play a nível de periféricos e hot-swapping
 - Suporta até 63 computadores ou dispositivos num único barramento.
 - Os dispositivos FireWire podem oferecer ou consumir até 45 W de potência
 - Poucos periféricos disponíveis (camcorders e VCRs com video digital), mas já com uma aplicação em "Home Audio Video Interoperability" bem definida.
 - Implementação da Sony: i.Link (usa apenas 4 condutores)
 - Firewire 400: 100, 200, ou 400 Mbit/s
 - FireWire 800
 - Norma IEEE 1394b
 - 786,432 Mbit/s
 - Conexão com 9 pinos

Interfaces de I/O (IV)

- Interfaces de I/O
 - USB Universal Serial Bus
 - Plug & Play a nível de periféricos e ligação dinâmica
 - Até 127 periféricos numa estrutura em árvore com alguns periféricos (Monitores ou teclados, por exemplo) a actuar como hubs
 - USB 1.1
 - Ano 1996
 - 1,5 Mbps (baixa velocidade) e 12 Mbps (Velocidade máxima)
 - USB 2.0
 - Ano: 2000
 - 480 Mbps
 - Vários tipos de conectores: A, B, Mini-A, Mini-B, Micro-A, Micro-B
 - Dimensão máxima dos cabos: 5 metros
 - Máximo: 500 mA

Interfaces de I/O (V)

- Interfaces de I/O
 - USB Universal Serial Bus
 - USB 3.0
 - Ano: 2009
 - USB SuperSpeed
 - 5 Gbps (625 MB/s)
 - Full duplex
 - Não especifica a dimensão máxima dos cabos (na prática: 3 metros)
 - Máximo: 900 mA
 - Há compatibilidade com o USB 2.0 (em alguns conectores)
 - Dupla compatibilidade
 - As portas são azuis para se distinguir da versão 2.0
 - USB 3.1
 - Super Speed+
 - USB 3.1 gen 1 (USB3.0) + USB 3.1 gen 2
 - SuperSpeed e SuperSpeed+
 - 2013
 - 10Gbps
 - Energia: bidirecional

Interfaces de I/O (VI)

- Interfaces de I/O
 - USB Universal Serial Bus
 - USB 3.2
 - 2017
 - SuperSpeed e SuperSpeed+ e dois novos modos (modos multi-link)
 - Apenas USB-C
 - USB 4.0
 - 2019
 - 40 Gbps
 - Baseado no Thunderbolt 3

Interfaces de I/O (VII)

- Interfaces
 - USB-C ou USB Type-C
 - Definição do conector e cabos
 - Até 100w de energia
 - Dados:
 - USB 2.0
 - USB 3.0
 - USB 3.x
 - USB 4.x
 - Display Port

Type-C

Interfaces de I/O (VIII)

- Interfaces de I/O
 - Thunderbolt
 - Light Peak
 - 10 Gb/
 - Dados e vídeo em um único cabo com Dual-protocol
 - Compatível com os atuais dispositivos DisplayPort
 - Fornecimento de energia

Thunderbolt 1

- 2 canais de 10Gb/s
- 2011
- · Usa o conector Mini DisplayPort

- Thunderbolt 2

- Possibilidade de combinar os dois canais num só
- · Cabos retrocompativeis
- Vídeo 4k
- 2013
- Usa o conector Mini DisplayPort

Thunderbolt 3

- 40Gb/s
- Imagem: 2 x 4K @60 hz
- Usa USB-C

Interfaces de I/O (IX)

- PCI Express Peripheral Component Interconnect Expres.
 - Motherboard
 - 1x, 2x, 4x, 8x, 16x (*lanes*)
 - Serie, bidirecional
 - PCI Express 2.0
 - 500 MB/s
 - 8.0 GB/s
 - PCI Express 3.0
 - 984.6 MB/s
 - 15.75 GB/s
 - PCI Express 4.0
 - 1969 MB/s
 - 31.51 GB/s
 - PCI Express 5.0
 - 3938 MB/s
 - 63.02 GB/s
 - Lançado em 2019
 - PCI Express 6.0

PCIe x1, x4, x8 e 16 (Imagem original: PCI-SIG)

By w:user:snickerdo - come from en.wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=923562

