Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 ${\bf Experimento~5} \\ 05/12/2024$

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

2 Materiais

- National Instruments Elvis II
- $\bullet \ 2$ capacitor de $47 \mathrm{n} F$
- $\bullet~2$ resistor de 1,2k Ω

3 Procedimento

O National Instruments Elvis é usado como fonte, protoboard, e multímetro. Usa-se a função de multímetro para checar as resistências e capacitâncias dos componentes, que são marcadas na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R_1	$1,2\mathrm{k}\Omega$	$1,1718$ k Ω	2,35
R_2	$1,2\mathrm{k}\Omega$	$1,1810\Omega$	1,58
C_1	47nF	49,90nF	6,17
C_2	47nF	47,54 nF	1,15

Tabela 1: Componentes

Em seguida, os componentes são usados para montar o circuito da Figura 1.

Figura 1: Circuito em regime AC

Grandeza	Valor nominal	Valor medido	Erro (%)
Amplitude de V_1 (frequência $0,25kHz$)	0,975V	1,02V	4,62
Amplitude de V_1 (frequência $0, 5kHz$)	0,910V	0,999V	9,78
Amplitude de V_1 (frequência $1kHz$)	0,755V	0,893V	18,28
Amplitude de V_1 (frequência $2kHz$)	0,544V	0,574V	5,51
Fase de V_1 em relação a V_0 (frequência $0, 25kHz$)	-10,34°	-12,26°	18,57
Fase de V_1 em relação a V_0 (frequência $0, 5kHz$)	-19,25°	-14,38°	25,30
Fase de V_1 em relação a V_0 (frequência $1kHz$)	-32,24°	-17,30°	46,34
Fase de V_1 em relação a V_0 (frequência $2kHz$)	-42,47°	-46,07°	8,48

Tabela 2: Tensões no capacitor C_1

4 Conclusão

5 Bibliografia

Grandeza	Valor nominal	Valor medido	Erro (%)
Amplitude de V_2 (frequência $0,25kHz$)	0,972V	1,02V	4,94
Amplitude de V_2 (frequência $0, 5kHz$)	0,897V	0,935V	4,24
Amplitude de V_2 (frequência $1kHz$)	0,711V	0,744V	4,64
Amplitude de V_2 (frequência $2kHz$)	0,441V	0,489V	10,88
Fase de V_2 em relação a V_0 (frequência $0, 25kHz$)	-15,45°	-18,74°	21,29
Fase de V_2 em relação a V_0 (frequência $0, 5kHz$)	-29,88°	-38,90°	30,19
Fase de V_2 em relação a V_0 (frequência $1kHz$)	-52,08°	-57,58°	10,56
Fase de V_2 em relação a V_0 (frequência $2kHz$)	-78,36°	-80,62°	2,88

Tabela 3: Tensão no capacitor C_2