Package 'pwrRasch'

October 14, 2022

Type Package					
Title Statistical Power Simulation for Testing the Rasch Model					
Version 0.1-2					
Date 2015-09-28					
Author Takuya Yanagida [cre, aut], Jan Steinfeld [aut], Thomas Kiefer [ctb]					
Maintainer Takuya Yanagida <takuya.yanagida@univie.ac.at></takuya.yanagida@univie.ac.at>					
Description Statistical power simulation for testing the Rasch Model based on a three-way analysis of variance design with mixed classification.					
License GPL-3					
LazyLoad yes					
LazyData true					
Depends R (>= 3.0)					
Suggests eRm, roxygen2, utils, testthat					
NeedsCompilation no					
Repository CRAN					
Date/Publication 2015-09-28 18:46:28					
R topics documented:					
aid_st2 2 aov.rasch 2 itemtable 4 plot.pwrrasch 4 pwr.rasch 6 pwrRasch 8 reshape.rasch 9 simul.rasch 10 summary.aovrasch 11 summary.pwrrasch 12					
Index 14					

2 aov.rasch

aid_st2	Sample of test data from subtest 2 of the Adaptive Intelligence Diagnosticum (AID3; Kubinger\& Holocher-Ertl, 2014)

Description

A dataset containing the test data of 300 childen (drawn randomly from the original dataset). The variables are as follows:

Usage

aid_st2

Format

A data frame with 300 rows and 28 variables:

- ID: ID variable of each testee
- age_in_month: the age of the testperson in month
- sex: gender of the testee
- country: country of the testee
- stage: stage of the data collection
- it1...it18: items of the subtest 2

aov.rasch	Three-Way Analysis of Variance with Mixed Classification for Testing
	the Rasch Model

Description

This function applies the three-way analysis of variance with mixed classification for testing the Rasch model.

Usage

```
aov.rasch(data, group = "group", person = "person", item = "item",
  response = "response", output = TRUE)
```

Arguments

data A data frame in which the variables specified in the model will be fou	
	that data needs to be in 'long' format.
group	Column name of the data frame containing the grouping variable.
person	Column name of the data frame containing the person number variable.
item	Column name of the data frame containing the item number variable.
response	Column name of the data frame containing the response variable.
output	If TRUE, an output will be shown on the console.

aov.rasch 3

Details

The F-test in a three-way analysis of variance design $(A > B) \times C$ with mixed classification (fixed factor A = subgroup, random factor B = testees, and fixed factor C = items) is used to test the Rasch model. Rasch model fitting means that there is no interaction $A \times C$. A statistically significant interaction $A \times C$ indicates differential item functioning (DIF) of the items with respect of the two groups of testees Note, if a main effect of A (subgroup) exists, an artificially high type I risk of the $A \times C$ interaction F-test results - that is, the approach works as long as no statistically significant main effect of A occurs. Note that in case of unbalanced groups computation can take a long time.

Value

Returns an ANOVA table

Author(s)

Takuya Yanagida < takuya.yanagida@univie.ac.at>, Jan Steinfeld < jan.steinfeld@univie.ac.at>

References

Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. *Psychology Science Quarterly*, *51*, 370-384.

Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. *Educational Research and Evaluation*, *17*, 321-333.

See Also

```
reshape.rasch, pwr.rasch
```

Examples

```
## Not run:
# simulate Rasch model based data
# 100 persons, 20 items,
dat <- simul.rasch(100, items = seq(-3, 3, length.out = 20))</pre>
# reshape simulated data into 'long' format with balanced assignment
# of testees into two subgroups
dat.long <- reshape.rasch(dat, group = rep(0:1, each = nrow(dat) / 2))</pre>
# apply three-way analysis of variance with mixed classification for testing the Rasch model
aov.rasch(dat.long)
# extract variable names of items
vnames <- grep("it", names(aid_st2), value = TRUE)</pre>
# reshape aid subtest 2 data into 'long' format with split criterium sex
aid_long.sex <- reshape.rasch(aid_st2[, vnames], group = aid_st2[, "sex"])</pre>
# apply three-way analysis of variance with mixed classification for testing the Rasch model
aov.rasch(aid_long.sex)
## End(Not run)
```

plot.pwrrasch

itemtable

Summary of DIF items

Description

This function builds a table of DIF items specified in the pwrrasch object

Usage

```
itemtable(object, all = FALSE, digits = 2)
```

Arguments

object pwrrasch object

all If TRUE, all items are included in the table.

digits Integer indicating the number of decimal places.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>, Jan Steinfeld <jan.steinfeld@univie.ac.at>

Examples

```
## Not run:

# item parameters
ipar2 <- ipar1 <- seq(-3, 3, length.out = 20)
# model differential item function (DIF)
ipar2[10] <- ipar1[11]
ipar2[11] <- ipar1[10]
# simulation for b = 100
simres <- pwr.rasch(100, ipar = list(ipar1, ipar2))
itemtable(simres)

## End(Not run)</pre>
```

plot.pwrrasch

Plot Statistical Power Curve

Description

Generic plot function for the pwrrasch object, which plots the statistical power curve relating statistical power to sample size

plot.pwrrasch 5

Usage

```
## S3 method for class 'pwrrasch' plot(x, plot.sig.level = TRUE, type = c("b", "b"), pch = c(19, 17), lty = c(1, 3), lwd = c(1, 1), legend = "topleft", bty = "o", ...)
```

Arguments

x	pwrrasch object.
plot.sig.level	If TRUE, nominal significance level is plotted.
type	Vector indicating type of plot for the statistica power curve and the type 1 risk curve.
pch	Vector indicating plotting symbol for the statistical power curve and the type 1 risk curve.
lty	Vector indicating line type for the statistical power curve and the type 1 risk curve.
lwd	Vector indicating line width for the statistical power curve and the type 1 risk curve.
legend	Location of the legend. If FALSE, legend is omitted.
bty	Type of box to be drawn around the legend.
	Additional arguments affecting the summary produced.

Details

Graphical parameters are:

- type The following values are possible: "p" for points, "1" for lines, "b" for both point and lines
- pch see points
- 1ty Line types can be specified as an integer (0 = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash)
- 1wd Positive numbers indicating line widths
- legend Either the x and y coordinates to be used to position the legend or keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center"
- bty Allowed values are "o" (draw box around legend) and "n" (do not draw box around legend).

Author(s)

Takuya Yanagida < takuya. yanagida@univie.ac.at >, Jan Steinfeld < jan. steinfeld@univie.ac.at >

6 pwr.rasch

References

Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. *Psychology Science Quarterly*, *51*, 370-384.

Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. *Educational Research and Evaluation*, 17, 321-333.

Examples

```
## Not run:

# item parameters
ipar2 <- ipar1 <- seq(-3, 3, length.out = 20)
# model differential item function (DIF)
ipar2[10] <- ipar1[11]
ipar2[11] <- ipar1[10]
# simulation for b = 100, 200, 300, 400, 500
simres <- pwr.rasch(seq(100, 500, by = 100), ipar = list(ipar1, ipar2))
plot(simres)

## End(Not run)</pre>
```

pwr.rasch

Simulation to Estimate Statistical Power of a Rasch Model Test

Description

This function conducts a simulation to estimate statistical power of a Rasch model test for user-specified item and person parameters.

Usage

```
pwr.rasch(b, ipar = list(), ppar = list("rnorm(b, mean = 0, sd = 1.5)",
    "rnorm(b, mean = 0, sd = 1.5)"), runs = 1000, H0 = TRUE,
    sig.level = 0.05, method = c("loop", "vectorized"), output = TRUE)
```

Arguments

h	Either a vector or an	integer indica	ting the num	her of observa	ations in each group
	Entire a vector of an	micger marea	ung une mann	oci oi oosei vi	ations in each group.

ipar Item parameters in both groups specified in a list.

ppar Person parameters specified by a distribution for each group.

runs Number of simulation runs.

H0 If TRUE, null hypothesis condition is simulated.

sig.level Nominal significance level.

method Simulation method: for-loop or vectorized.

output If TRUE, output is shown.

pwr.rasch 7

Details

The F-test in a three-way analysis of variance design $(A > \mathbf{B})xC(A > \mathbf{B})xC$ with mixed classification (fixed factor A = subgroup, random factor B = testee, and fixed factor C = items) is used to simulate statistical power of a Rasch model test. This approach using a F-distributed statistic, where the sample size directly affects the degree of freedom enables determination of the sample size according to a given type I and type II risk, and according to a certain effect of model misfit which is of practical relevance. Note, that this approach works as long as there exists no main effect of A (subgroup). Otherwise an artificially high type I risk of the $A \times C$ interaction F-test results that is, the approach works as long as no statistically significant main effect of A occurs.

Value

Returns a list with following entries:

b number of observations in each group ipar item parameters in both subgroups

c number of items

ppar distribution of person parameters runs number of simulation runs sig.level nominal significance level

H0.AC.p p-values of the interaction A x C in the null hypothesis condition (if H0 = TRUE)

H1.AC.p p-values of the interaction A x C in the alternative hypothesis condition

power estimated statistical power type1 estimated significance level

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>, Jan Steinfeld <jan.steinfeld@univie.ac.at>

References

Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. *Psychology Science Quarterly*, *51*, 370-384.

Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. *Educational Research and Evaluation*, 17, 321-333.

See Also

```
aov.rasch
```

Examples

```
## Not run:

# item parameters
ipar2 <- ipar1 <- seq(-3, 3, length.out = 20)
# model differential item function (DIF)
ipar2[10] <- ipar1[11]</pre>
```

8 pwrRasch

```
ipar2[11] <- ipar1[10]
# simulation for b = 200
pwr.rasch(200, ipar = list(ipar1, ipar2))

# simulation for b = 100, 200, 300, 400, 500
pwr.rasch(seq(100, 500, by = 100), ipar = list(ipar1, ipar2))

# simulation for b = 100, 200, 300, 400, 500
# uniform distribution [-3, 3] of person parameters
pwr.rasch(200, ipar = list(ipar1, ipar2), ppar = list("runif(b, -3, 3)", "runif(b, -3, 3)"))

## End(Not run)</pre>
```

pwrRasch

Statistical Power Simulation for Testing the Rasch Model

Description

Statistical power simulation for testing the Rasch Model based on a three-way analysis of variance design with mixed classification.

Author(s)

Takuya Yanagida [aut,cre] <takuya.yanagida@univie.ac.at>, Jan Steinfeld [aut] <jan.steinfeld@univie.ac.at>, Thomas Kiefer [ctb]

Maintainer: Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. *Psychology Science Quarterly*, *51*, 370-384.

Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. *Educational Research and Evaluation*, *17*, 321-333.

Verhelst, N. D. (2008). An efficient MCMC algorithm to sample binary matrices with fixed marginals. *Psychometrika*, 73(4), 705-728.

Verhelst, N., Hatzinger, R., & Mair, P. (2007). The Rasch sampler. *Journal of Statistical Software*, 20(4), 1-14.

See Also

aov.rasch, pwr.rasch

reshape.rasch 9

reshape.rasch Reshape data frame in wide format into a long format	reshape.rasch	Reshape data frame in wide format into a long format	_
--	---------------	--	---

Description

This function reshapes a matrix from 'wide' into a 'long' format. This is necessary for the three-way analysis of variance with mixed classification for testing the Rasch model.

Usage

```
reshape.rasch(data, group)
```

Arguments

data Matrix or data frame in 'wide' format.

group Vector which assigns each person to a certain subgroup (external split criterion).

Note, that this function is restricted to A = 2 subgroups.

Details

In order to apply the three-way analysis of variance with mixed classification for testing the Rasch model, data need to be in 'long' format. That is, Rasch model data design is interpreted as a analysis of variance design (A > B) x C, where items are levels of a fixed factor C and the testees are levels of a random factor B, nested within a fixed factor A of different subgroups.

Value

Returns a data frame with following entries:

group fixed factor A (subgroup)
person random factor B (testees)
item fixed factor C (items)

response dependent variable, 0 (item not solved) and 1 (item solved)

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>, Jan Steinfeld <jan.steinfeld@univie.ac.at>

References

Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. *Psychology Science Quarterly*, *51*, 370-384.

Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. *Educational Research and Evaluation*, *17*, 321-333.

10 simul.rasch

See Also

```
aov.rasch
```

Examples

```
## Not run:

# simulate Rasch model based data
# 100 persons, 20 items,
dat <- simul.rasch(100, items = seq(-3, 3, length.out = 20))
# reshape simulated data into 'long' format with balanced assignment
# of testees into two subgroups.
dat.long <- reshape.rasch(dat, group = rep(0:1, each = nrow(dat) / 2))
head(dat.long)

# extract variable names of items
vnames <- grep("it", names(aid_st2), value = TRUE)
# reshape aid subtest 2 data into 'long' format with split criterium sex
aid_long.sex <- reshape.rasch(aid_st2[, vnames], group = aid_st2[, "sex"])
## End(Not run)</pre>
```

simul.rasch

Simulate data according to the Rasch model

Description

This function simulates data according to the Rasch model based on user-specified item and person parameters.

Usage

```
simul.rasch(persons, items, sum0 = TRUE)
```

Arguments

persons Either a vector of specified person parameters or an integer indicating the num-

ber of persons.

items Either a vector of specified item parameters or an integer indicating the number

of items.

sum0 If TRUE, specified item parameters need to be normalized to sum-0.

Details

If persons is an integer value, the corresponding parameter vector is drawn from N(0, 1.5). If items is an integer value, the corresponding parameter vector is equally spaced between [-3, 3]. Note that item parameters need to be normalized to sum-0. This precondition can be overruled using argument sum0 = FALSE.

summary.aovrasch 11

Value

Returns a 0-1 matrix according to the Rasch model.

Author(s)

Takuya Yanagida < takuya. yanagida@univie.ac.at>, Jan Steinfeld < jan. steinfeld@univie.ac.at>

References

Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. *Psychology Science Quarterly*, *51*, 370-384.

Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. *Educational Research and Evaluation*, *17*, 321-333.

See Also

```
aov.rasch, pwr.rasch
```

Examples

```
## Not run:

# simulate Rasch model based data
# 100 persons, 20 items,
# person parameter drawn from a normal distribution: N(0,1.5)
# item parameters equally spaced between [-3, 3]
simul.rasch(100, items = 20)

# simulate Rasch model based data
# 100 persons, 17 items
# person parameter drawn from a uniform distribution: U[-4, 4]
# item parameters: [-4.0, -3.5, -3.0, ..., 3.0, 3.5, 4.0]
simul.rasch(runif(100, -4, 4), items = seq(-4, 4, by = 0.5))

## End(Not run)
```

summary.aovrasch

Object Summary

Description

Generic summary function for the aovrasch object

Usage

```
## S3 method for class 'aovrasch'
summary(object, ...)
```

12 summary.pwrrasch

Arguments

object aovrasch object

... Additional arguments affecting the summary produced.

Author(s)

Takuya Yanagida < takuya. yanagida@univie.ac.at >, Jan Steinfeld < jan. steinfeld@univie.ac.at >

Examples

```
## Not run:

# simulate Rasch model based data
# 100 persons, 20 items,
dat <- simul.rasch(100, items = seq(-3, 3, length.out = 20))
# reshape simulated data into 'long' format with balanced assignment
# of examinees into two subgroups.
dat.long <- reshape.rasch(dat, group = rep(0:1, each = nrow(dat) / 2))
# apply three-way analysis of variance with mixed classification for testing the Rasch model.
res <- aov.rasch(dat.long)
summary(res)

## End(Not run)</pre>
```

summary.pwrrasch

Object Summary

Description

Generic summary function for the pwrrasch object

Usage

```
## S3 method for class 'pwrrasch'
summary(object, ...)
```

Arguments

object pwrrasch object

... Additional arguments affecting the summary produced.

Author(s)

Takuya Yanagida < takuya. yanagida@univie.ac.at >, Jan Steinfeld < jan. steinfeld@univie.ac.at >

summary.pwrrasch 13

Examples

```
## Not run:
# item parameters
ipar2 <- ipar1 <- seq(-3, 3, length.out = 20)</pre>
# model differential item function (DIF)
ipar2[9] <- ipar1[12]</pre>
ipar2[12] <- ipar1[9]</pre>
# simulation for b = 100
simres <- pwr.rasch(100, ipar = list(ipar1, ipar2))</pre>
summary(simres)
# item parameters
ipar2 <- ipar1 <- seq(-3, 3, length.out = 20)</pre>
# model differential item function (DIF)
ipar2[10] <- ipar1[11]</pre>
ipar2[11] <- ipar1[10]</pre>
\# simulation for b = 100, 200, 300, 400, 500
simres <- pwr.rasch(seq(100, 500, by = 100), ipar = list(ipar1, ipar2))</pre>
summary(simres)
## End(Not run)
```

Index

```
* datasets
    aid_st2, 2
aid_st2, 2
aov.rasch, 2, 7, 8, 10, 11
itemtable, 4

plot.pwrrasch, 4
points, 5
pwr.rasch, 3, 6, 8, 11
pwrRasch, 8
pwrRasch-package (pwrRasch), 8

reshape.rasch, 3, 9
simul.rasch, 10
summary.aovrasch, 11
summary.pwrrasch, 12
```