Particle spectrograph

Wave operator and propagator

$\Delta_3^{\#1}{}_{lphaeta\chi}$		$\Gamma_{3}^{\#1}{}_{\alpha\beta\chi}$		
$\Delta_{3}^{#1} \dagger^{\alpha\beta\chi}$	$-\frac{2}{a_0}$	$\Gamma_{3}^{#1} \dagger^{\alpha\beta\chi}$	$-\frac{a_0}{2}$	

$\Delta_{0^{\text{-}}}^{\#1}$	0	0	0	0	0	0	$-\frac{2}{a_0}$
${\mathcal T}_{0}^{\#2}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	$\frac{72ik}{a_0 (16+3k^2)^2}$	$-\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	$\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	$-\frac{36k^2}{a_0(16+3k^2)^2}$	0
${\mathcal T}^{\#1}_{0^+}$	_ <u>2 i √2</u> a 0 k	$-\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$	$\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	$8i\sqrt{\frac{2}{3}}$ $16a_0k + 3a_0k^3$	$\frac{4}{a_0 k^2}$	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	0
$\Delta_{0}^{\#4}$	$\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{32(13+3k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$	$-\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#3}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	$\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	0
$\Delta_0^{\#2}$	$4\sqrt{6}$ $16a_0+3a_0k^2$	$-\frac{144}{a_0(16+3k^2)^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$8i\sqrt{3}$ $16a_0 k + 3a_0 k^3$	$-\frac{72ik}{a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#1}$	0	$4\sqrt{6}$ $16a_0 + 3a_0 k^2$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	2 i √2 a 0 k	$\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0
	$\Delta_{0}^{\#1}$ \dagger	Δ ₀₊ ^{#2} †	Δ#3 +	Δ ₀₊ ^{#4} †	7.#1 0.+ +	T**2 +	$\Delta_{0}^{\#1} \uparrow$

Source constraints/gauge generators						
SO(3) irreps	Multiplicitie					
$2\mathcal{T}_{0^{+}}^{\#2} - \bar{\imath}k\Delta_{0^{+}}^{\#2} == 0$	1					
$\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$	1					
$6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	3					
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	3					
Total constraints:	8					

Quadratic (free) action
$S_F == \iiint (\frac{1}{4})$
$(2a_0\Gamma^{\alpha}_{\ \alpha}^{\ \beta}\Gamma^{\chi}_{\ \beta\chi} + 4h^{\alpha\beta}\mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi}(-2a_0\Gamma_{\beta\chi\alpha} + 4\Delta_{\alpha\beta\chi}) - a_0h^{\chi}_{\ \chi}\partial_{\beta}\Gamma^{\alpha}_{\ \alpha}{}^{\beta} +$
$a_0 \ h_{\chi}^{\chi} \ \partial_{\beta} \Gamma^{\alpha\beta}_{ \alpha} - 2 \ a_0 \ h_{\alpha\chi} \ \partial_{\beta} \Gamma^{\alpha\beta\chi} + 2 \ a_0 \ h_{\beta\chi} \ \partial^{\chi} \Gamma^{\alpha}_{ \alpha}{}^{\beta}))[t, \chi, y, z] \ dz \ dy \ dx \ dt$

y.						
$a_{eta\chi} \Delta_{2^{-}}^{\#2} a_{eta\chi}$	0	0	0	0	0	$\frac{4}{a_0}$
Δ_2^*	0	0	0	0	$\frac{4}{a_0}$	0
$\mathcal{T}_{2}^{\#1}$	$\frac{4i\sqrt{2}}{a_0k}$	$-\frac{4i}{\sqrt{3}}a_0k$	$\frac{4 i \sqrt{\frac{2}{3}}}{a_0 k}$	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_{2}^{\#3}{}_{\alpha\beta}$	$\frac{4}{\sqrt{3}}a_0$	$\frac{2\sqrt{2}}{3a_0}$	340	$4i\sqrt{\frac{2}{3}}$ a_0k	0	0
$\Delta_{2}^{\#1}_{+}$ $\Delta_{2}^{\#2}_{+}$ α_{β}	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8}{3a_0}$	$\frac{2\sqrt{2}}{3a_0}$	$\frac{4i}{\sqrt{3}a_0k}$	0	0
$\Delta_{2}^{\#1}{}_{\alpha\beta}$	0	$2\sqrt{\frac{2}{3}}$ a_0	4 √3 a ₀	4 i √2 a0 k	0	0
	$\Delta_2^{#1} + \alpha \beta$	$\Delta_{2}^{#2} + \alpha^{\beta}$	$\Delta_{2}^{\#3} +^{lphaeta}$	$r_{2}^{*1} + \alpha \beta$	$\Delta_{2^{\text{-}}}^{\#1} +^{\alpha\beta\chi}$	$\Delta_{2}^{#2} + \alpha \beta \chi$
	7	7	7	7	\triangleleft	◁

	$\Gamma_{2}^{\#1}{}_{lphaeta}$	$\Gamma_{2}^{\#2}{}_{\alpha\beta}$	$\Gamma_{2}^{\#3}_{\alpha\beta}$	$h_{2}^{\#1}{}_{lphaeta}$	$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	$\Gamma_{2}^{\#2}_{\alpha\beta\chi}$
$\Gamma_{2}^{#1} \dagger^{\alpha\beta}$	<u>a₀</u> 4	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$	0	- <u>a_0</u> 2	0	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
$\Gamma_{2}^{#3} \dagger^{\alpha\beta}$	0	0	<u>a₀</u> 4	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
$h_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$\Gamma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	<u>a₀</u> 4	0
$\Gamma_2^{\#2} + \alpha\beta\chi$	0	0	0	0	0	<u>a₀</u> 4
Γ#	[‡] 1 Γ [#] .	² Γ ₂ [#]	β Γ <u>#</u>	$h_{-}^{4} h_{0}^{+1}$	$h_0^{\#_2^2}$	Γ#1

	Γ ₀ +	Γ#2	Γ#3	Γ#4	$h_{0}^{\#1}$	$h_{0}^{\#2}$	Γ ₀ -1
$\Gamma_{0}^{#1}$ †	$-\frac{a_0}{2}$	0	0	0	$-\frac{i a_0 k}{2 \sqrt{2}}$	0	0
$\Gamma_{0}^{\#2}$ †	0	0	<u>a₀</u> 2	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
Γ ₀ ^{#3} †	0	<u>a₀</u> 2	0	$-\frac{a_0}{2\sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{1}{4}\bar{l}a_0k$	0
Γ ₀ ^{#4} †	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	<u>a₀</u> 2	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0
$h_{0}^{\#1}$ †	$\frac{i a_0 k}{2 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$h_{0}^{#2}$ †	0	0	<u>i a ₀ k</u> 4	$-\frac{i a_0 k}{4 \sqrt{2}}$	0	0	0
Γ ₀ -1 †	0	0	0	0	0	0	$-\frac{a_0}{2}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $a_0 < 0$

	_	