Report page ExoTIC-ISM

W17 G141 lc 14499.txt - 190

Input parameters:

Number of systematic models: 50 Wavelength mid point = 14558.361137264274 Wavelength half width = 45.40313482374586

Planet parameters:

Rp/R* = 0.12169232Epoch (MJD) = 57957.97108811848Inclination (deg) = 87.34635Eccentricity = 0.0Omega (deg) = 0.0Period (days) = 3.73548535a/R* = 7.0780354

Stellar parameters:

FeH (dex) = -0.25Teff(K) = 6550.0log(g) (cgs) = 4.2

Output parameters:

Limb-darkening coefficients:

C1 = 1.0278610435417244C2 = -1.2278818599845784C3 = 1.0720603786374117C4 = -0.37356334006165554

Top five systematic models by their weight

Check the chi-squared values and the AIC evidence for reasonable fits.

If the chi-squared values far exceed the DOF then it is likely that the input data contains additional noise, double check the spectral extraction.

Model numbers = $[49\ 39\ 37\ 44\ 36]$

DOF = [37. 39. 41. 38. 42.]

Chi-squared = [61.02178863 63.7039091 65.85079078 62.99486357 67.1116697]

AIC evidence = [300.65484061 300.31378037 300.24033953 300.16830314 300.10990007]

Weights = [0.13300598256535937 0.09456939216082359 0.08787303870051628

0.08176560154207721 0.07712701231762759]

SDNR = [325.05987336 331.91546715 337.36913234 330.18175382 340.62428726]

Top model Noise Statistics:

White noise = 0.00045795338948650125 Red noise = 4.1893757380973306e-05

Beta = 1.0486439500019202

If the red-noise is significant it means the data is poorly fit by any of the systematic models. It is recommended that the input lightcurves are checked for additional noise sources.

Marginalised parameters:

If None, parameter was not fit for.

Rp/R* = 0.12336652006749227 +/- 0.0006140019318533637

Epoch (MJD) = 57957.97123054799 +/- 0.0005060965891004878

Inclination (rad) = None \pm -None

Inclination (deg) = None \pm -None

System density $(Ms+Mp/R^3) = None +/- None$

a/R* = None +/- None

Systematics

Marginalisation results

Top: Evidence-based weight associated with each systematic model when fit with the data. *Middle:* Standard deviation of the residuals after correcting for each systematic model. *Bottom:* Radius ratio

measured from the transit depth when the light curve has been corrected using each systematic model. *If present, grey crosses mark discarded systematic models (poor AIC evidence)*.

Lightcurves

First vs. best model

Top: Input lightcurve with no systematic model correction applied. *Middle:* Lightcurve corrected by highest weight systematic model plotted with the smooth planetary transit model centred on the mid-transit time. *Bottom:* Residuals and uncertainties associated with the middle panel lightcurve. The upper and lower standard deviation bounds are shown in dotted lines relative to zero.