Linear Regression II

EDS 232
Instructor: Mateo Robbins
Winter 2023

Following up from last time...

More context for tidymodels

Model preprocessing

A recipe prepares your data for modeling

A recipe is a specification of intent

- Recipes allow us to specify the preprocessing steps to carry out on the data to prepare it for modeling

A recipe is a specification of intent

- Recipes allow us to specify the preprocessing steps to carry out on the data to prepare it for modeling
 - Encoding predictors
 - Computing polynomials of degree n...

Recipe code

```
example_recipe <- recipe(outcome ~ predictor, data = your_data) %>%
   step_integer(all_predictors(), zero_based = TRUE)
```

Prepping and baking your recipe

```
prep(): executes the transformations specified in your
recipe onto some data (usually training data)
```

bake(): takes a prepped recipe and applies it to a data set
(usually the test)

ML Modeling Process

- Define
 - Specify what type of model will it be. Define some parameters.
- Fit
 - Capture patterns from provided data. The heart of the modeling process.
- Predict
 - Use the model.
- Evaluate
 - How accurate are the model's predictions?

Specifying a model in tidymodels

- Specify the model based on mathematical structure
 - Linear regression, random forest, KNN, etc.
- Specify an engine for fitting the model
 - Usually which software package to use
- Declare mode of the model (when required)
 - Numeric outcome = regression, qualitative outcome = classification

Specifying a model in tidymodels

```
example_spec <- linear_reg() %>%
  set_engine("lm") %>%
  set_mode("regression")
```

Workflow Bundles Model Components

```
example_wf <- workflow() %>%
  add_recipe("some_recipe") %>%
  add_model("some_spec")
```

Why use a workflow()?

- Simplify workspace
- Prepping and fitting with a single call
- Simplified custom tuning
- Postprocessing

Why use a workflow()?

- Simplify workspace
- Prepping and fitting with a single call
- Simplified custom tuning
- Postprocessing

parsnip()

Fitting a model

- Parsnip allows us to be indifferent to the interface of the underlying model
 - Simply use fit() to estimate the model

Parsnip is tidy

Table 3.1: Heterogeneous argument names for different modeling functions.

Function	Package	Code
lda()	MASS	predict(object)
glm()	stats	<pre>predict(object, type = "response")</pre>
gbm()	gbm	<pre>predict(object, type = "response", n.trees)</pre>
mda()	mda	<pre>predict(object, type = "posterior")</pre>
rpart()	rpart	<pre>predict(object, type = "prob")</pre>
various	RWeka	<pre>predict(object, type = "probability")</pre>
logitboost()	LogitBoost	<pre>predict(object, type = "raw", nIter)</pre>
pamr.train()	pamr	<pre>pamr.predict(object, type = "posterior")</pre>

Using Model Results

Today's Lab...more pumpkins

Infographic by Dasani Madipalli

