Serial No. 10/019,661
Preliminary Amendment and Restriction Response dated November 17, 2003
Reply to Office Action dated July 16, 2003

Amendments to the Claims

Listing of claims:

Claim 1 (Currently Amended):

An isolated nucleic acid molecule encoding a bacterial autoinducer inactivation protein An isolated nucleic acid molecule selected from the group consisting of:

- a) a nucleic acid having the sequence of the coding portion of SEQ ID NO:1;
- b) a nucleic acid encoding the amino acid sequence of SEQ ID NO:2; and
- c) a nucleic acid that hybridizes to a) or b) above, wherein a positive hybridization signal is observed after washing with 1 X SSC and 0.1% SDS at 55°C for one hour.

Claim 2 canceled.

Claim 3 (Currently amended):

The <u>nucleic acid</u> molecule of claim 1, which further comprises a signal peptide coding region of any sequence.

Claim 4 (Currently amended):

An expression vector which comprises the nucleic acid molecule of claim 1, wherein the expression vector propagates propagates in a procaryotic or eucaryotic cell.

Claim 5 (Original):

A cell of a procaryote or eucaryote transformed or transfected with the expression

Preliminary Amendment and Restriction Response dated November 17, 2003 Reply to Office Action dated July 16, 2003

vector of claim 4.

Claim 6 (Original):

An isolated protein which has bacterial autoinduction inactivation activity, where the protein comprises the amino acid sequence of SEQ ID NO: 2.

Claim 7 (Currently amended):

A method for increasing disease resistance in a plant or animal, which method comprises introducing into a cell of such plant or animal a nucleic acid sequence which encodes a bacterial autoinducer inactivation protein in a manner which allows said cell to express said nucleic acid sequence wherein the nucleic acid sequence is selected from the group consisting of:

- a) a nucleic acid having the sequence of the coding portion of SEQ ID NO:1;
- b) a nucleic acid encoding the amino acid sequence of SEQ ID NO:2.

Claim 8 canceled.

Claim 9 (Currently amended):

The method of claim 7 or 8, wherein the nucleic acid sequence further comprises a signal peptide coding region of any sequence.

Claim 10 (Currently amended):

The method of claim 7 or 8, wherein the nucleic acid sequence further comprises a membrane attachment domain-coding region of any source.

Preliminary Amendment and Restriction Response dated November 17, 2003 Reply to Office Action dated July 16, 2003

Claim 11 (Original):

The method of claim 7, wherein the plant is susceptible to bacterial soft rot disease.

Claim 12 (Original):

The method of claim 11, wherein the plant is selected from the group consisting of potato, eggplant, Chinese cabbage, carrot and celery.

Claim 13 (Original):

The method of claim 7, wherein the plant is susceptible to a bacterial disease in which the expression of a virulence gene is regulated by an N-acyl homoserine lactone autoinducer.

Claim 14 (Currently amended):

A method of preventing or reducing bacterial damage to a plant or animal, which method comprises administering to a plant or animal in need of such prevention or reduction an effective amount of a bacterial autoinducer inactivation protein, wherein the protein comprises SEQ ID NO: 2.

Claim 15 canceled.

Claim 16 (Currently amended):

A composition for preventing or reducing bacterial damage to a plant or animal, which comprises:

a) an effective amount of a bacterial autoinducer inactivation protein; and

Preliminary Amendment and Restriction Response dated November 17, 2003 Reply to Office Action dated July 16, 2003

b) a suitable carrier, wherein the protein comprises SEQ ID NO: 2.

Claim 17. Canceled.

Claim 18 (Currently amended):

A method for screening of bacterial isolates for autoinducer inactivation activity, which comprises:

- a) isolating a single colony bacterial culture from soil or plant samples;
- b) screening the culture for autoinducer inactivation activity as expressed by the protein of SEQ ID NO:2;
 - c) preparing a crude protein extract from the culture; and
- d) confirming enzymatic inactivation of autoinducer activity by the crude protein extract.

Claim 19 (Currently amended):

A method of isolating the nucleic acid of claim 1 or claim 2, which comprises the steps of:

- a) preparing a gene bank from a donor organism that contains a nucleic acid sequence coding for a protein with an autoinducer inactivation activity in a suitable host organism;
 - b) screening the clones of the gene bank; and
- c) isolating the clones which contain a nucleic acid coding for a protein with autoinducer inactivation activity.

Claim 20 (Original):

Preliminary Amendment and Restriction Response dated November 17, 2003 Reply to Office Action dated July 16, 2003

A process as claimed in claim 19, wherein *E. coli* is used as host organism.

Claim 21 (Original):

A process as claimed in claim 19, wherein the steps of preparing a gene bank, screening the clones, and isolating the clones are performed in an *E. coli* strain that does not inactivate the autoinducer.

Claim 22 (Currently amended):

A method which comprises:

- a) introducing the nucleic acid sequence of claim 1 or claim 2 into a bacterial cell; and
- b) screening the bacterial cell obtained from step a) for changed biological function.

Claim 23 (Original):

The method of claim 22, wherein the changed biological function is a function which is lost as a result of step a).

Claim 24 (Original):

The method of claim 22, wherein the changed biological function is a function which is suppressed as a result of step a).

Claim 25 (Original):

The method of claim 22, wherein the changed biological function is a function which is enhanced as a result of step a).