

F10 Fiberoptik och ljuskällor

Dagens föreläsning – Fotonik

- F9 Vågledare och optiska fiber
- F10 Fiberoptik och ljuskällor
- F11 Lasern och detektorer
- F12 Fiberoptiska system
- Sammankoppling av optiska fibrer
- Förluster och dispersion i optiska fibrer
- Ljuskällor

Exempeluppgifter

- 1. En fiber har numerisk apertur 0,12 och brytningsidex 1,4 (kvarts). Kärnans diameter är $7 \mu m$.
- a) Är den en singelmod fiber för ljus med våglängden 800 nm?
- b) Är den en singelmod fiber för ljus med våglängden 1500 nm?
- 2. En fiber har numerisk apertur 0,3 och brytningsidex 1,4 (kvarts). Kärnans diameter är $62,5~\mu m$. Hur många moder kan propagera i fibern vid våglängden 1500~nm?

Sammankoppling av optiska fibrer

Vad behöver man tänka på?

- Välj kompatibla fibertyper
- Kontakt mellan fibrernas kärnor
- Korrekt linjering

Matchning av kärndiametern

Kompatibla fiber

Större till mindre

Some light cannot enter the core

Förlust:
$$L_d = -10 \log \left(\frac{d_{k,2}}{d_{k,1}}\right)^2$$

Gäller endast då $d_{k,2} < d_{k,1}$

 (μm)

Launch fiber core size (µm)

D '		9	50	62.5
Receive fiber	9	0	14.8 dB	16.8 dB
core	50	0	0	1.9 dB
size	62.5	0	0	0

Losses can be high

Matchning av numerisk apertur

Kompatibla fiber

Other fiber has a numerical aperture of 0.25° and a cone angle of 14.5°

Förlust: $L_{NA} = -10 \log \left(\frac{NA_2}{NA_1} \right)^2$

Gäller endast då $NA_2 < NA_1$

Launch fiber NA

		0.1	0.2	0.275
Receive	0.1	0	6 dB	0.36 dB
fiber	0.2	0	0	2.8 dB
NA	0.275	0	0	0

Exempeluppgift

Fiberkompabilitet

Du kopplar ihop två fibrer av märkena ITT och Quartz & Silice enligt tabellen nedan. Vad blir förlusterna i skarven då du skickar ljus i de båda riktningarna? Du får försumma förluster på grund av reflektion i ändytorna.

Manufacturer	ITT	Ericsson	Quartz & Silice
Туре	Step-index	Step-index	Step-index
Core/cladding diam. μm	100/140	100/140	600/780
Material	quartz/quartz	glass/glass	quartz/plastic
Outer diameter mm	2,5	0,3	1,1
α(850 nm) dB/km	10	15	12
Bandwidth MHz·km	15	15	9
Numerical aperture	0,27	0,31	0,40

Kontakt mellan fiberkärnor

Gap loss

• Kan reduceras med indexmatchande gel vilket också reducerar reflektioner

Förluster och dispersion

Kvalitetsfaktorer

• Förluster (dämpning)

Z

- **Dispersion** (pulsbreddning)
 - Minskar den effektiva bandbredden

Förluster

Dämpningskoefficienten

$$\alpha = -\frac{1}{L} 10 \log \left(\frac{P_{ut}}{P_{in}} \right)$$
Enhet: dB/km

Absorption

- Elektroniska övergångar (UV)
- Vibrationsövergångar (IR)
- Föroreningar, t. ex. vatten

Spridning

- Rayleighspridning p.g.a. oregelbundenheter
- Dominerar för korta våglängder
- Mekanisk påverkan (böjning)

Typiska parametrar

Förluster

Core/Cladding	Attenuation	Bandwidth	Applications/Notes	
	Multimode (raded-Index			
	@850/1300 nm	@850/1300 nm		
50/125 microns	3/1 dB/km	500/500 MHz-km	Laser-rated for GbE LANs	
50/125 microns	3/1 dB/km	2000/500 MHz-km	Optimized for 850 nm VCSELs	
62.5/125 microns	3/1 dB/km	160/500 MHz-km	Most common LAN fiber	
100/140 microns	3/1 dB/km	150/300 MHz-km	Obsolete	
	Single mode			
	@1310/1550 nm			
8-9/125 microns	0.4/0.25 dB/km	HIGH! ~100 Terahertz	Telco/CATV/long high speed LANs	
	Multimode Step-Index			
	@850 nm	@850 nm		
200/240 microns	4-6 dB/km	50 MHz-km	Slow LANs & links	
	POF (plastic ptical fiber)			
	@ 650 nm	@ 650 nm		
1 mm	~ 1 dB/m	~5 MHz-km	Short Links & Cars, TOSLINK	

Exempeluppgift

I specifikationerna för en multimodfiber anges:

 $\alpha = 3 \text{ dB/km} @ 850 \text{ nm}$

a = 1 dB/km @ 1300 nm

Om du skickar lasereffekten 2 mW in i fibern och på andra sidan har en detektor som kräver minst 0,1 mW lasereffekt för att fungera, hur mycket längre kan du skicka en signal vid våglängden 1300 nm än vid våglängden 850 nm? Försumma reflektionsförlusterna vid in- och utkoppling.

Dispersion

- En puls som skickas genom en fiber breddas av olika anledningar:
 - Moddispersion
 - Materialdispersion
 - Vågledardispersion

Kromatisk dispersion (beror på ljusets frekvensbredd)

- Detta påverkar bandbredden: $f_{BW} = \frac{0.35}{t_r}$
 - f_{BW} Bandbredd (Hz)
 - t_r Stigtid/svarstid (s)

Moddispersion

Multimodfiber

Olika moder har olika hastighet på grund av olika gångväg genom kärnan

• Kom ihåg (för två speglar): $v_m = c \cdot \cos \theta_m$

Typiska parametrar

Bandbredd

Core/Cladding	Attenuation	Bandwidth	Applications/Notes	
	@850/1300 nm	@850/1300 nm		
50/125 microns	3/1 dB/km	500/500 MHz-km	Laser-rated for GbE LANs	
50/125 microns	3/1 dB/km	2000/500 MHz-km	Optimized for 850 nm VCSELs	
62.5/125 microns	3/1 dB/km	160/500 MHz-km	Most common LAN fiber	
100/140 microns	3/1 dB/km	150/300 MHz-km	Obsolete	
	Single	mode		
	@1310/1550 nm			
8-9/125 microns	0.4/0.25 dB/km	HIGH! ~100 Terahertz	Telco/CATV/long high speed LANs	
	Multimode Step-Index			
	@850 nm	@850 nm		
200/240 microns	4-6 dB/km	50 MHz-km	Slow LANs & links	
	@ 650 nm	@ 650 nm		
1 mm	~ 1 dB/m	~5 MHz-km	Short Links & Cars, TOSLINK	

Gradientindex (GRIN) fiber

Motverkar moddispersion

Exempeluppgift

I specifikationerna för en multimodfiber anges att bandbredden vid 850 nm är 50 MHz·km.

- **a)** Vad blir den effektiva bandbredden för en fiber som är 1 km respektive 10 km lång?
- b) För samma fiberlängder, vad är svarstiden?

För en viss GRIN-fiber anges bandbredden till 2000 MHz·km vid 850 nm. Vad ger motsvarande uträkningar för denna?

Singelmodfiber

- Ingen moddispersion
- Används i princip uteslutande för långdistanskommunikation

$$V = \frac{\pi d_k \cdot NA}{\lambda_0} < 2,405$$

$$N_2 = \frac{1}{n_1}$$

- Men har kromatisk dispersion
 - Materialdispersion
 - Vågledardisperison

Materialdispersion

Brytningsindex är våglängdsberoende

1.9 Lanthanum dense flint LaSF9 1.8 Refractive index n Dense flint SF10 1.7 Flint F2 1.6 Barium crown BaK4 Borosilicate crown BK7 1.5 Fluorite crown FK51A 1.4 -0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Wavelength λ (μm)

Ljushastigheten: $v = \frac{c}{n}$

Materialdispersion

Spektrum från laser och LED

Vågledardispersion

- För olika våglängder är grundmoden olika stor
 - Ger skillnader i modhastighet

Kromatisk dispersion

Materialdispersion tillsammans med vågledardispersion

• Kromatiska dispersionen anges med en dispersionskoefficient:

$$D$$
 enhet ps/nm·km

• Ger en utdragen puls

$$\tau_{disp} = D \cdot \Delta \lambda \cdot L$$

Motsvarande en bandbredd

$$f_{BW} = \frac{0,44}{\tau_{disp}}$$

Exempeluppgift

Vi använder en SMF-28-10 singelmodfiber och en laser med en våglängd på 1550 nm samt en spektral bredd på 2 nm.

Vad blir den effektiva bandbredden för en fiber som är 1 km respektive 10 km lång?

THORLARS

Single Mode Fiber: 1260 to 1620 nm

Description

SMF-28-10

Thorlabs' single mode SMF-28e fiber jacketed with 900 µm yellow Hytrel tubing delivers high performance across a broad spectral range in the telecom region, and also features exceptional core / clad concentricity specifications.

Specifications

Geometrical & Mechanical			
Core Diameter	8.2 µm		
Cladding Diameter	125 ± 0.7 μm		
Coating Diameter	245 ± 5 μm		
Core-Clad Concentricity	<0.5 μm		
Coating-Clad Concentricity	<12 µm		
Fiber Curl	≥4.0 m Radius of Curvature		
Operating Temperature	-60 to 85 °C		
Proof Test Level (245 coat)	≥100 kpsi (0.7 GN/m²)		
Fiber Length	10 meters		

Optical			
Numerical Aperture (nominal)	0.14		
Attenuation*	0.33 - 0.35 dB/km @ 1310 nm 0.31 - 0.35 dB/km @ 1383 nm** 0.21 - 0.24 dB/km @ 1490 nm 0.19 - 0.20 dB/km @ 1550 nm 0.20 - 0.23 dB/km @ 1625 nm		
Operating Wavelength	1260 - 1620 nm		
Mode Field Diameter	9.2 ± 0.4 µm @ 1310 nm		
Dispersion	≤18.0 ps/(nm·km) @ 1550 nm ≤22.0 ps/(nm·km) @ 1625 nm		
Link Design Value	≤0.06 ps//km		
Polarization Mode Dispersion, Maximum Individual Fiber	≤0.2 ps//km		

TO.4 ± 0.5 pin @ 1550 nin

≤18.0 ps/(nm·km) @ 1550 nm ≤22.0 ps/(nm·km) @ 1625 nm

Polarizatios Made Rispersion Lunds Tekniska Högskola

Sammanfattning – Fiberoptik

Fiberoptik

- Numerisk apertur: $NA = \sin \theta_a = \sqrt{n_k^2 n_m^2}$
- Decibel: $G = 10 \log \left(\frac{P_{ut}}{P_{in}}\right)$, G > 0 Förstärkning Dämpning
- Fiberparametern (V-parameter): $V = \frac{\pi d_k}{\lambda_0} \sqrt{n_k^2 n_m^2} = \frac{\pi d_k}{\lambda_0} \cdot NA$
- Antal moder i en stegindexfiber (för $V \gg 1$): $M \approx \frac{V^2}{2}$
- Kriterium för singelmodfiber: V < 2,405
- Bandbredd och stigtid: $f_{BW} = \frac{0.35}{t_r}$
- Dispersion: $\tau_{disp} = D \cdot \Delta \lambda \cdot L \text{ och } f_{BW} = \frac{0.44}{\tau_{disp}}$

Dagens föreläsning – Fotonik

- F9 Vågledare och optiska fiber
- F10 Fiberoptik och ljuskällor
- F11 Lasern och detektorer
- F12 Fiberoptiska system
- Sammankoppling av optiska fibrer
- Förluster och dispersion i optiska fibrer
- Ljuskällor

Ljuskällor

Temperaturstrålning

- Alla kroppar sänder ut ljus på grund av sin temperatur
- (Äldre) vanliga ljuskällor bygger på denna princip
 - Glödtrådslampor
 - Halogenlampor
 - Stearinljus

Planck och fotonen

 Temperaturstrålning (svartkroppsstrålning) beskrivs av Planck's strålningslag:

$$\rho(f) = \frac{8\pi h}{c^3} \cdot \frac{f^3}{e^{hf/(kT)} - 1}$$

• Härledningen för denna formel indikerade för första gången fotonens existens:

$$E_{ph} = hf = \frac{hc}{\lambda_0}$$

• Plancks konstant:

$$h = 6,626 \cdot 10^{-34} \text{ Js}$$

Max Planck (1858-1947)

Temperaturstrålning

Färgtemperatur

Atomer

Exempel: Väteatomen

Ljusutsändning och ljusabsorption

Elektronen byter energitillstånd

- Atomen absorberar en foton ⇒ Elektronen intar ett högre energitillstånd
- Elektronen intar ett lägre energitillstånd ⇒ Atomen emitterar en foton

Fotonens energi är densamma som skillnaden i energi mellan tillstånden

Populationsfördelningen

Termisk jämvikt

• Boltzmannfördelningen: $\frac{N_2}{N_1} = e^{-(E_2 - E_1)/(kT)} = e^{-\Delta E/(kT)}$

Ludwig Boltzmann (1844 - 1906)

Gasurladdningslampor

Lysrör och lågenergilampor

Exempeluppgift

Temperaturen i en natriumlampa är ungefär 600 °C. Beräkna kvoten mellan besättningstalen på de båda energinivåer som ger upphov till våglängden 589 nm.

