

FCC PART 15.407 TEST REPORT

For

Iconnect

No.9, Aly. 58, Ln. 112, Ruiguang Rd., Neihu Dist., Taipei City, Taiwan

FCC ID: 2AB8788121
Tested Model: AWUS036ACH
Multiple Model: AWUS036NHU, AWUS036ACMH, NU-AC,
NU-ACM, NU-ACMH, UBDo-ACH, UBDo-ACM,
UBDo-ACMH, Tube-UACH, Tube-UACMH

Product Name: Report Type: 802.11ac ultra-Range AC1200 USB Original Report adapter Tom Tong **Test Engineer:** Tom Tang Report Number: RDG170525007B **Report Date: 2017-08-25** Henry Ding **EMC Leader** Reviewed By: Bay Area Compliance Laboratories Corp. (Chengdu) **Test Laboratory:** No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China Tel: 028-65525123, Fax: 028-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONSLOCAL SUPPORT EQUIPMENT LIST AND DETAILS	11
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	16
APPLICABLE STANDARD	16
EUT SETUP	
EMI Test Receiver Setup	
CORRECTED AMPLITUDE & MARGIN CALCULATIONTEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.407(b) –UNWANTED EMISSION	21
APPLICABLE STANDARD	21
EUT SETUP	22
EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATIONTEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.407(b)–OUT- OF-BAND EMISSIONS	
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	41
TEST DATA	
FCC §15.407(a) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	70
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	70
Test Procedure	70

TEST DATA	70
FCC §15.407(g)-FREQUENCY STABILITY	90
APPLICABLE STANDARD	90
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	90
FCC §15.407(a) -MAXIMUM CONDUCTED OUTPUT POWER	93
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §15.407(a) - POWER SPECTRAL DENSITY	97
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Iconnect*'s product, model number: AWUS036ACH (FCC ID: 2AB8788121) (the "EUT") in this report was a 802.11ac ultra-Range AC1200 USB adapter, which was measured approximately: 8.7 cm (L) × 6.2 cm (W) × 2.2 cm (H), rated input voltage: DC 5V from USB port.

Note: The series product, model AWUS036ACH, AWUS036NHU, AWUS036ACMH, NU-AC, NU-ACM, NU-ACMH, UBDo-ACH, UBDo-ACM, UBDo-ACMH, Tube-UACH, Tube-UACM, Tube-UACMH are electrically identical, the difference between them is the model name, we selected AWUS036ACH for fully testing, the details was explained in the eclaration letter.

*All measurement and test data in this report was gathered from final production sample, serial number: 170525007 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-05-26, and EUT conformed to test requirement.

Objective

This type approval report is prepared on behalf of *Iconnect* in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Rules Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AB8788121.

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All of the measurements detailed in this Test Report were performed by Bay Area Compliance Laboratories Corp. (Chengdu).

The Bay Area Compliance Laboratories Corp. Chengdu's measurement Uncertainties (calculated for a k=2 Coverage Factor corresponding to approximately 95% Coverage) were as follows:

- -For all of the AC Line Conducted Emissions Tests reported herein: ±3.17 dB.
- -For of all of the Direct Antenna Conducted Emissions Tests reported herein: ±0.56 dB.
- -For of all of the direct Radiated Emissions Tests reported herein are:

30 MHz to 200 MHz: ±4.7 dB;

200 MHz to 1 GHz: ±6.0 dB;

1 GHz to 6 GHz: ±5.13dB; and,

6 GHz to 40 GHz: ±5.47dB.

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Report No.: RDG170525007B Page 4 of 130

Test Facility

The test site used by BACL to collect test data is located No. 5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, China

BACL(Chengdu) is accredited by A2LA in accordance with the recognized international standard ISO/IEC 17025, A2LA cert No.: 4324.01. The Federal communications commission has on file and is listed under FCC Test Firm Registration No.: 910975.

BACL(Chengdu) has been fully described in reports on file and registered with the Innovation, Science and Economic Development Canada under Registration Numbers: 3062C-1.

Report No.: RDG170525007B Page 5 of 130

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The system support 802.11a/n ht20/n ht40/ac vht20/ac vht40 and ac vht80, the ac vh20/ac vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

For 5150~5250 MHz band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240
42	5210	1	1

For 5725~5850MHz band, 8 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
155	5775	165	5825

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations. Preliminary tests were perfrmed in difference data rate and all the possible configurations, the worst cases as below table and shown in the report.

Configurations	Test Mode	Data Rate	Channel	Antenna Chain
	802.11a	6Mbps	36,40,48,149, 157, 165	0, 1
SISO	802.11n ht20	MCS0	36,40,48,149, 157, 165	0, 1
	802.11n ht40	MCS0	38,46,151, 159	0, 1
	802.11ac 80	Nss1-MCS0	42, 155	0, 1
	802.11n ht20	MCS8	36,40,48,149, 157, 165	0+1
2*2 MIMO	802.11n ht40	MCS8	38,46,151, 159	0+1
	802.11ac 80	Nss2-MCS8	42, 155	0+1

Report No.: RDG170525007B Page 6 of 130

EUT Exercise Software

The software "MP_Kit_RTL11ac_8812AU_USB_v60.1" was used for testing, and the commands were provided by manufacturer. The maximum power level and duty cycle was set by commands as following table:

SISO:

UNII Band	Test Mode	Test Software Version	MP_Kit_RTL11ac_8812AU_USB_v60.1		
		Test Frequency	5180MHz	5200MHz	5240MHz
	000 44-	Data Rate	6Mbps	6Mbps	6Mbps
	802.11a	Chain 0	50	55	55
		Chain 1	54	59	59
		Test Frequency	5180MHz	5200MHz	5240MHz
	802.11n	Data Rate	MCS0	MCS0	MCS0
	ht20	Chain 0	45	55	55
5150-		Chain 1	51	59	59
5250MHz		Test Frequency	5190MHz	1	5230MHz
	802.11n	Data Rate	MCS0	1	MCS0
	ht40	Chain 0	45	1	55
		Chain 1	50	1	59
		Test Frequency	1	5210MHz	1
	802.11ac	Data Rate	1	Nss1-MCS0	/
	80	Chain 0	1	44	/
		Chain 1	1	47	/
		Test Frequency	5745MHz	5785MHz	5825MHz
	802.11a	Data Rate	6Mbps	6Mbps	6Mbps
	002.11a	Chain 0	45	43	36
		Chain 1	38	36	31
		Test Frequency	5745MHz	5785MHz	5825MHz
	802.11n	Data Rate	MCS0	MCS0	MCS0
	ht20	Chain 0	45	43	36
5725-		Chain 1	38	36	31
5850MHz		Test Frequency	5755MHz	1	5795MHz
	802.11n	Data Rate	MCS0	1	MCS0
	ht40	Chain 0	52	1	42
		Chain 1	43	1	35
		Test Frequency	1	5775MHz	1
	802.11ac	Data Rate	1	Nss1-MCS0	/
	80	Chain 0	1	48	1
		Chain 1	1	38	/

Report No.: RDG170525007B Page 7 of 130

MIMO:

UNII Band	Test Mode	Test Software Version	MP_Kit_RTL11ac_8812AU_USB_v60.1			
	802.11n	Test Frequency	5180MHz	5200MHz	5240MHz	
	ht20	Data Rate	MCS8	MCS8	MCS8	
		Chain 0&1	51	57	57	
5150-	802.11n	Test Frequency	5190MHz	/	5230MHz	
5250MHz	ht40	Data Rate	MCS8	1	MCS8	
		Chain 0&1	48	1	55	
802.11ac 80	Test Frequency	1	5210MHz	/		
	80	Data Rate	1	Nss2-MCS0	1	
		Chain 0&1	1	51	1	
	802.11n	Test Frequency	5745MHz	5785MHz	5825MHz	
	ht20	Data Rate	MCS8	MCS8	MCS8	
		Chain 0&1	43	43	37	
5725-	802.11n	Test Frequency	5755MHz	/	5795MHz	
5850MHz	ht40	Data Rate	MCS8	1	MCS8	
802.11ac 80	Chain 0&1	42	1	37		
	802.11ac	Test Frequency	1	5775MHz	1	
	Data Rate	1	Nss2-MCS0	1		
		Chain 0&1	1	47	/	

Report No.: RDG170525007B Page 8 of 130

The duty cycle as below:

Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11 a	20	20	100
802.11n ht20	20	20	100
802.11n ht40	20	20	100
802.11 ac80	20	20	100

802.11a

Report No.: RDG170525007B Page 9 of 130

te: 4.JUL.2017 19:25:16

802.11 n40

Equipment Modifications

No modification was made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	PP11L	QDS-BRCM1017

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
DC Cable	yes	No	1.3	Adapter	Laptop
USB Cable	yes	No	1.03	USB Port of PC	EUT

Report No.: RDG170525007B Page 11 of 130

Block Diagram of Test Setup

Report No.: RDG170525007B Page 12 of 130

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.407 (f) & §1.1310 & §2.1091	Maximum Permissable Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliance
§15.407(b)	Out Of Band Emissions	Compliance
§15.407(a) (1)	6 dB Emission Bandwidth	Compliance
§15.407(g)	Frequency Stability	Compliance
§15.407(a)(1),	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(5)	Power Spectral Density	Compliance

Report No.: RDG170525007B Page 13 of 130

FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE **EXPOSURE (MPE)**

Applicable Standard

According to subpart 15.407(f) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range Electric Field Magnetic Field Power Density Averaging (MHz) Strength (A/m) (mW/cm²) (minutes					
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	1	1	f/1500	30	
1500–100,000	1	1	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation Formula:

prediction of power density at the distance of the applicable MPE limit $S = PG/4\pi R^2 = power density$ (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency	Ante	nna Gain	Tune-up Power		Tune-up Power		Tune-up Power		Evaluation Distance	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	Density (mW/cm ²)	(mW/cm ²)				
2400- 2483.5	3	2.00	30	1000.00	20.00	0.40	1.0				
5150-5850	4	2.51	23	199.53	20.00	0.10	1.0				

Note: The 2.4GHz and 5GHz band can't transmit simultaneously

Result: The device meet FCC MPE at 20 cm distance

Report No.: RDG170525007B Page 14 of 130

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.407 (a)(1),if transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT have 2 dipole antennas with RP-SMA connector, all the antenna gains are 3.0 dBi in 2.4G band, 4dBi in 5GHz bands, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RDG170525007B Page 15 of 130

FCC §15.407 (b) (6) §15.207 (a) - CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), §15.407(b) (6).

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RDG170525007B Page 16 of 130

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

 $C_f = A_C + VDF$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	100018	2016-12-02	2017-12-01
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	DE14781	2016-10-31	2017-10-30
Unknown	Conducted Cable	Unknown	NO.5	2016-11-10	2017-11-09
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Report No.: RDG170525007B Page 17 of 130

Test Data

Environmental Conditions

Temperature:	27.4 °C
Relative Humidity:	46.9 %
ATM Pressure:	100.1 kPa

The testing was performed by Tom Tang on 2017-06-26.

Report No.: RDG170525007B Page 18 of 130

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.151200	46.3	9.000	L1	19.7	19.6	65.9	Compliance
0.193566	47.3	9.000	L1	19.7	16.6	63.9	Compliance
0.203045	51.7	9.000	L1	19.7	11.8	63.5	Compliance
0.255827	38.3	9.000	L1	19.7	23.3	61.6	Compliance
0.346296	34.8	9.000	L1	19.7	24.3	59.1	Compliance
2.662831	34.8	9.000	L1	19.7	21.2	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.166371	44.5	9.000	L1	19.7	10.6	55.1	Compliance
0.216409	34.0	9.000	L1	19.7	19.0	53.0	Compliance
0.346296	31.2	9.000	L1	19.7	17.8	49.1	Compliance
1.239175	24.9	9.000	L1	19.7	21.1	46.0	Compliance
1.289541	25.4	9.000	L1	19.7	20.6	46.0	Compliance
2.705607	25.2	9.000	L1	19.7	20.8	46.0	Compliance

Report No.: RDG170525007B Page 19 of 130

AC120 V, 60 Hz, Neutral:

requency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	46.9	9.000	N	19.7	19.1	66.0	Compliance
0.156097	45.7	9.000	N	19.7	20.0	65.7	Compliance
0.165051	45.3	9.000	N	19.7	19.9	65.2	Compliance
0.188994	45.7	9.000	N	19.6	18.4	64.1	Compliance
0.199835	41.8	9.000	N	19.6	21.8	63.6	Compliance
2.558827	35.7	9.000	N	19.7	20.3	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.219886	32.1	9.000	N	19.6	20.7	52.8	Compliance
0.422630	24.1	9.000	N	19.6	23.3	47.4	Compliance
0.774393	27.4	9.000	N	19.6	18.6	46.0	Compliance
1.239175	27.5	9.000	N	19.6	18.5	46.0	Compliance
1.289541	27.7	9.000	N	19.6	18.3	46.0	Compliance
2.662831	29.1	9.000	N	19.7	16.9	46.0	Compliance

Report No.: RDG170525007B Page 20 of 130

FCC §15.209, §15.205 & §15.407(b) -UNWANTED EMISSION

Applicable Standard

FCC §15.407; §15.209; §15.205;

- (b) *Undesirable emission limits*. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Report No.: RDG170525007B Page 21 of 130

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RDG170525007B Page 22 of 130

30-1000MHz:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP

1GHz-40GHz:

Detector	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
Ave.	>98%	1MHz	10 Hz
	<98%	1MHz	1/T

Test Procedure

During the radiated emission test, the laptop was connected to the first AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r04, emission shall be computed as: $E[dB\mu V/m] = E[RP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB

Extrapolation result = Corrected Amplitude ($dB\mu V/m$) - distance extrapolation factor (6dB)

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Extrapolation result -Limit

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A121808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-0113024	2017-06-16	2020-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2017-05-20	2018-05-19
EMCT	Semi-Anechoic Chamber	966	966-1	2015-04-24	2018-04-23
Unknown	RF Cable (below 1GHz)	Unknown	NO.1	2016-11-10	2017-11-09
Unknown	RF Cable (below 1GHz)	Unknown	NO.4	2016-11-10	2017-11-09
Unknown	RF Cable (above 1GHz)	Unknown	NO.2	2016-11-10	2017-11-09
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1312	2016-08-18	2017-08-18
Quinstar	Amplifier	QLW- 18405536-JO	15964001032	2016-08-18	2017-08-18
Agilent	Spectrum Analyzer	8564E	5943A01752	2016-08-18	2017-08-18

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Report No.: RDG170525007B Page 24 of 130

Test Data

Environmental Conditions

Temperature:	28.9~29.0 °C
Relative Humidity:	50.1~53.2 %
ATM Pressure:	100.1 kPa

^{*} The testing was performed by Tom Tang from 2017-06-30 to 2017-07-01.

Test Mode: Transmitting(Above 1GHz test performed at distance 1.5m from EUT to Antenna)

Report No.: RDG170525007B Page 25 of 130

5150-5250MHz, SISO mode: 802.11a mode(Chain 0 was the worst)

002		e(Chain 0 wa						Extraneleties		
Frequency		ceiver		ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Margin
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	(dBµV/m)	(dB)
				Low	Channe	l:5180 MHz	7			
5180	74.72	PK	Н	33.59	4.78	0.00	113.09	107.09	N/A	N/A
5180	66.17	AV	Н	33.59	4.78	0.00	104.54	98.54	N/A	N/A
5180	82.39	PK	V	33.59	4.78	0.00	120.76	114.76	N/A	N/A
5180	74.32	AV	V	33.59	4.78	0.00	112.69	106.69	N/A	N/A
5150	34.22	PK	V	33.54	4.67	0.00	72.43	66.43	74.00	7.57
5150	20.41	AV	V	33.54	4.67	0.00	58.62	52.62	54.00	1.38
10360	56.98	PK	V	38.17	6.56	36.38	65.33	59.33	74.00	14.67
10360	39.14	AV	V	38.17	6.56	36.38	47.49	41.49	54.00	12.51
15540	55.96	PK	V	38.06	8.67	38.13	64.56	58.56	74.00	15.44
15540	33.69	AV	V	38.06	8.67	38.13	42.29	36.29	54.00	17.71
8975	44.59	PK	V	37.69	6.01	36.24	52.05	46.05	74.00	27.95
8975	30.46	AV	V	37.69	6.01	36.24	37.92	31.92	54.00	22.08
210.42	51	QP	Н	11.31	0.91	27.74	35.48	35.48	43.50	8.02
282.2	45.94	QP	Н	13.92	1.20	27.51	33.55	33.55	46.00	12.45
	•			Middl		el:5200 MF			•	
5200	75.63	PK	Н	33.62	4.85	0.00	114.10	108.10	N/A	N/A
5200	67.39	AV	Н	33.62	4.85	0.00	105.86	99.86	N/A	N/A
5200	83.04	PK	V	33.62	4.85	0.00	121.51	115.51	N/A	N/A
5200	74.38	AV	V	33.62	4.85	0.00	112.85	106.85	N/A	N/A
10400	59.89	PK	V	38.18	6.57	36.39	68.25	62.25	74.00	11.75
10400	39.84	AV	V	38.18	6.57	36.39	48.20	42.20	54.00	11.80
15600	56.57	PK	V	38.00	8.64	38.04	65.17	59.17	74.00	14.83
15600	32.51	AV	V	38.00	8.64	38.04	41.11	35.11	54.00	18.89
8996	44.61	PK	V	37.70	6.01	36.25	52.07	46.07	74.00	27.93
8996	30.46	AV	V	37.70	6.01	36.25	37.92	31.92	54.00	22.08
14355	44.72	PK	V	41.53	8.44	38.40	56.29	50.29	74.00	23.71
14355	30.59	AV	V	41.53	8.44	38.40	42.16	36.16	54.00	17.84
210.42	51.27	QP	Н	11.31	0.91	27.74	35.75	35.75	43.50	7.75
282.2	46.08	QP	Н	13.92	1.20	27.51	33.69	33.69	46.00	12.31
	•					l:5240 MH:				
5240	75.66	PK	Н	33.68	4.71	0.00	114.05	108.05	N/A	N/A
5240	67.68	AV	Н	33.68	4.71	0.00	106.07	100.07	N/A	N/A
5240	82.92	PK	V	33.68	4.71	0.00	121.31	115.31	N/A	N/A
5240	74.23	AV	V	33.68	4.71	0.00	112.62	106.62	N/A	N/A
5350	28.12	PK	V	33.86	4.52	0.00	66.50	60.50	74.00	13.50
5350	15.69	AV	V	33.86	4.52	0.00	54.07	48.07	54.00	5.93
10480	60.14	PK	V	38.20	6.59	36.40	68.53	62.53	74.00	11.47
10480	39.87	AV	V	38.20	6.59	36.40	48.26	42.26	54.00	11.74
15720	55.26	PK	V	37.88	8.57	37.86	63.85	57.85	74.00	16.15
15720	33.62	AV	V	37.88	8.57	37.86	42.21	36.21	54.00	17.79
7985	44.89	PK	V	36.79	5.86	36.09	51.45	45.45	74.00	28.55
7985	30.76	AV	V	36.79	5.86	36.09	37.32	31.32	54.00	22.68
210.42	52.11	QP	Ĥ	11.31	0.91	27.74	36.59	36.59	43.50	6.91
282.2	46.5	QP	H	13.92	1.20	27.51	34.11	34.11	46.00	11.89
202.2	+0.0	الع	- ''	10.02	1.20	21.01	U=.11	U-7.11	_ →0.00	11.00

Report No.: RDG170525007B Page 26 of 130

802.11n ht20 mode(Chain 0 was the worst)

5180 6 5180 5 5180 5 5180 6	Reading (dBμV) 69.35 57.39 79.88 69.24	Detector (PK/QP/AV) PK AV	Polar (H/V)	rtenna Factor (dB)	Cable loss (dB)	Amplifier Gain	Corrected Amplitude	Extrapolation Result	Limit	Margin
5180 5 5180 5 5180 6	57.39 79.88				(ub)	(dB)	(dBµV/m)	dBμV/m	(dBµV/m)	(dB)
5180 5 5180 5 5180 6	57.39 79.88			Low	Channe	l:5180 MHz				
5180 5 5180 6	79.88	۸۱/	Η	33.59	4.78	0.00	107.72	101.72	N/A	N/A
5180		AV	Н	33.59	4.78	0.00	95.76	89.76	N/A	N/A
	60.24	PK	V	33.59	4.78	0.00	118.25	112.25	N/A	N/A
E4E0		AV	V	33.59	4.78	0.00	107.61	101.61	N/A	N/A
	31.81	PK	V	33.54	4.67	0.00	70.02	64.02	74.00	9.98
	15.44	AV	V	33.54	4.67	0.00	53.65	47.65	54.00	6.35
	57.33	PK	V	38.17	6.56	36.38	65.68	59.68	74.00	14.32
	38.34	AV	V	38.17	6.56	36.38	46.69	40.69	54.00	13.31
	54.06	PK	V	38.06	8.67	38.13	62.66	56.66	74.00	17.34
	36.92	AV	V	38.06	8.67	38.13	45.52	39.52	54.00	14.48
	48.22	PK	V	36.49	5.64	35.99	54.36	48.36	74.00	25.64
	32.45	AV	V	36.49	5.64	35.99	38.59	32.59	54.00	21.41
	51.64	QP	Η	11.31	0.91	27.74	36.12	36.12	43.50	7.38
282.2	46.94	QP	Н	13.92	1.20	27.51	34.55	34.55	46.00	11.45
	T					el:5200 MH				
	84.43	PK	Н	33.62	4.85	0.00	122.90	116.90	N/A	N/A
	73.29	AV	Н	33.62	4.85	0.00	111.76	105.76	N/A	N/A
	85.09	PK	V	33.62	4.85	0.00	123.56	117.56	N/A	N/A
	74.86	AV	V	33.62	4.85	0.00	113.33	107.33	N/A	N/A
	59.21	PK	V	38.18	6.57	36.39	67.57	61.57	74.00	12.43
	39.53	AV	V	38.18	6.57	36.39	47.89	41.89	54.00	12.11
	65.38	PK	V .	38.00	8.64	38.04	73.98	67.98	74.00	6.02
	43.53	AV	V	38.00	8.64	38.04	52.13	46.13	54.00	7.87
	49.35	PK	V	34.29	4.74	35.84	52.54	46.54	74.00	27.46
	32.63	AV	V	34.29	4.74	35.84	35.82	29.82	54.00	24.18
	45.21	PK	V	35.79	5.47	35.97	50.50	44.50	74.00	29.50
	32.25	AV	V	35.79	5.47	35.97	37.54	31.54	54.00	22.46
	51.17	QP	H	11.31	0.91	27.74	35.65	35.65	43.50	7.85
282.2	47.38	QP	П	13.92	1.20	27.51 el:5240 MHz	34.99	34.99	46.00	11.01
5240	73.65	PK	Н	33.68	4.71	0.00	112.04	106.04	N/A	N/A
	62.89	AV	<u>п</u> Н	33.68	4.71	0.00	101.28	95.28	N/A N/A	N/A N/A
	84.41	PK	V	33.68	4.71	0.00	122.80	116.80	N/A	N/A N/A
	73.49	AV	V	33.68	4.71	0.00	111.88	105.88	N/A	N/A
	27.41	PK	V	33.86	4.71	0.00	65.79	59.79	74.00	14.21
5350	14.74	AV	V	33.86	4.52	0.00	53.12	47.12	54.00	6.88
	61.33	PK	V	38.20	6.59	36.40	69.72	63.72	74.00	10.28
	42.54	AV	V	38.20	6.59	36.40	50.93	44.93	54.00	9.07
	65.09	PK	V	37.88	8.57	37.86	73.68	67.68	74.00	6.32
	40.44	AV	V	37.88	8.57	37.86	49.03	43.03	54.00	10.97
	48.85	PK	V	34.30	4.70	35.85	52.00	46.00	74.00	28.00
	33.56	AV	V	34.30	4.70	35.85	36.71	30.71	54.00	23.29
	51.05	QP	H	11.31	0.91	27.74	35.53	35.53	43.50	7.97
	45.15	QP	H	13.92	1.20	27.51	32.76	32.76	46.00	13.24

Report No.: RDG170525007B Page 27 of 130

802.11n ht40 mode(Chain 0 was the worst)

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	,	Margin
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5190 MHz	<u> </u>			
5190	66.44	PK	Н	33.60	4.81	0.00	104.85	98.85	N/A	N/A
5190	54.91	AV	Н	33.60	4.81	0.00	93.32	87.32	N/A	N/A
5190	76.81	PK	V	33.60	4.81	0.00	115.22	109.22	N/A	N/A
5190	64.51	AV	V	33.60	4.81	0.00	102.92	96.92	N/A	N/A
5150	34.13	PK	V	33.54	4.67	0.00	72.34	66.34	74.00	7.66
5150	17.78	AV	V	33.54	4.67	0.00	55.99	49.99	54.00	4.01
10380	46.69	PK	V	38.18	6.57	36.38	55.06	49.06	74.00	24.94
10380	32.31	AV	V	38.18	6.57	36.38	40.68	34.68	54.00	19.32
15570	47.25	PK	V	38.03	8.65	38.09	55.84	49.84	74.00	24.16
15570	33.34	AV	V	38.03	8.65	38.09	41.93	35.93	54.00	18.07
6125	45.21	PK	V	34.28	4.82	35.82	48.49	42.49	74.00	31.51
6125	32.76	AV	V	34.28	4.82	35.82	36.04	30.04	54.00	23.96
210.42	51.32	QP	Н	11.31	0.91	27.74	35.80	35.80	43.50	7.70
282.2	45.29	QP	Н	13.92	1.20	27.51	32.90	32.90	46.00	13.10
				High	Channe	el:5230 MH	Z			
5230	70.11	PK	Н	33.67	4.74	0.00	108.52	102.52	N/A	N/A
5230	58.66	AV	Н	33.67	4.74	0.00	97.07	91.07	N/A	N/A
5230	81.75	PK	V	33.67	4.74	0.00	120.16	114.16	N/A	N/A
5230	69.06	AV	V	33.67	4.74	0.00	107.47	101.47	N/A	N/A
5350	33.55	PK	V	33.86	4.52	0.00	71.93	65.93	74.00	8.07
5350	14.14	AV	V	33.86	4.52	0.00	52.52	46.52	54.00	7.48
10460	54.71	PK	V	38.19	6.59	36.39	63.10	57.10	74.00	16.90
10460	40.41	AV	V	38.19	6.59	36.39	48.80	42.80	54.00	11.20
15690	58.42	PK	V	37.91	8.59	37.91	67.01	61.01	74.00	12.99
15690	39.33	AV	V	37.91	8.59	37.91	47.92	41.92	54.00	12.08
5968	46.95	PK	V	34.29	4.65	35.85	50.04	44.04	74.00	29.96
5968	33.09	AV	V	34.29	4.65	35.85	36.18	30.18	54.00	23.82
210.42	52.16	QP	Н	11.31	0.91	27.74	36.64	36.64	43.50	6.86
282.2	45.71	QP	Н	13.92	1.20	27.51	33.32	33.32	46.00	12.68

Report No.: RDG170525007B Page 28 of 130

802.11n ac80 mode(chain 0 was the worst):

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	,	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5210 MF	lz			
5210	64.19	PK	Н	33.64	4.81	0.00	102.64	96.64	N/A	N/A
5210	54.19	AV	Н	33.64	4.81	0.00	92.64	86.64	N/A	N/A
5210	73.75	PK	V	33.64	4.81	0.00	112.20	106.20	N/A	N/A
5210	62.41	AV	V	33.64	4.81	0.00	100.86	94.86	N/A	N/A
5150	32.35	PK	V	33.54	4.67	0.00	70.56	64.56	74.00	9.44
5150	19.15	AV	V	33.54	4.67	0.00	57.36	51.36	54.00	2.64
5350	28.87	PK	V	33.86	4.52	0.00	67.25	61.25	74.00	12.75
5350	14.67	AV	V	33.86	4.52	0.00	53.05	47.05	54.00	6.95
10420	46.36	PK	V	38.18	6.58	36.39	54.73	48.73	74.00	25.27
10420	32.35	AV	V	38.18	6.58	36.39	40.72	34.72	54.00	19.28
15630	46.66	PK	V	37.97	8.62	38.00	55.25	49.25	74.00	24.75
15630	32.58	AV	V	37.97	8.62	38.00	41.17	35.17	54.00	18.83
6325	45.67	PK	V	34.24	5.06	35.78	49.19	43.19	74.00	30.81
6325	33.69	AV	V	34.24	5.06	35.78	37.21	31.21	54.00	22.79
210.42	51.69	QP	Н	11.31	0.91	27.74	36.17	36.17	43.50	7.33
282.2	46.15	QP	Н	13.92	1.20	27.51	33.76	33.76	46.00	12.24

Report No.: RDG170525007B Page 29 of 130

MIMO mode: 802.11n ht20 mode

002	.11n ht20	ceiver	Ry Ai	ntenna	0-1-1-	A mana lift a	Commercial.	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	Cable loss (dB)	Amplifier Gain (dB)	Corrected Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5180 MHz	7			
5180	72.58	PK	Н	33.59	4.78	0.00	110.95	104.95	N/A	N/A
5180	61.62	AV	Н	33.59	4.78	0.00	99.99	93.99	N/A	N/A
5180	82.28	PK	V	33.59	4.78	0.00	120.65	114.65	N/A	N/A
5180	71.49	AV	V	33.59	4.78	0.00	109.86	103.86	N/A	N/A
5150	32.48	PK	V	33.54	4.67	0.00	70.69	64.69	74.00	9.31
5150	18.36	AV	V	33.54	4.67	0.00	56.57	50.57	54.00	3.43
10360	43.65	PK	V	38.17	6.56	36.38	52.00	46.00	74.00	28.00
10360	30.12	AV	V	38.17	6.56	36.38	38.47	32.47	54.00	21.53
15540	43.24	PK	V	38.06	8.67	38.13	51.84	45.84	74.00	28.16
15540	30.12	AV	V	38.06	8.67	38.13	38.72	32.72	54.00	21.28
9850	43.51	PK	V	38.04	6.39	36.30	51.64	45.64	74.00	28.36
9850	30.23	AV	V	38.04	6.39	36.30	38.36	32.36	54.00	21.64
210.42	51.22	QP	Н	11.31	0.91	27.74	35.70	35.70	43.50	7.80
282.2	46.59	QP	Н	13.92	1.20	27.51	34.20	34.20	46.00	11.80
	_			Middl	e Chann	el:5200 MF	lz	_		
5200	73.64	PK	Ι	33.62	4.85	0.00	112.11	106.11	N/A	N/A
5200	62.18	AV	Η	33.62	4.85	0.00	100.65	94.65	N/A	N/A
5200	82.37	PK	V	33.62	4.85	0.00	120.84	114.84	N/A	N/A
5200	73.79	AV	V	33.62	4.85	0.00	112.26	106.26	N/A	N/A
10400	43.85	PK	V	38.18	6.57	36.39	52.21	46.21	74.00	27.79
10400	30.32	AV	V	38.18	6.57	36.39	38.68	32.68	54.00	21.32
15600	43.44	PK	V	38.00	8.64	38.04	52.04	46.04	74.00	27.96
15600	30.22	AV	V	38.00	8.64	38.04	38.82	32.82	54.00	21.18
7895	43.71	PK	V	36.74	5.82	36.07	50.20	44.20	74.00	29.80
7895	30.43	AV	V	36.74	5.82	36.07	36.92	30.92	54.00	23.08
13315	43.52	PK	V	40.07	7.89	37.49	53.99	47.99	74.00	26.01
13315	30.17	AV	V	40.07	7.89	37.49	40.64	34.64	54.00	19.36
210.42	51.62	QP	Н	11.31	0.91	27.74	36.10	36.10	43.50	7.40
282.2	46.06	QP	Н	13.92	1.20	27.51	33.67	33.67	46.00	12.33
	I	_				el:5240 MH:			1	
5240	74.18	PK	Н	33.68	4.71	0.00	112.57	106.57	N/A	N/A
5240	62.88	AV	Н	33.68	4.71	0.00	101.27	95.27	N/A	N/A
5240	82.67	PK	V	33.68	4.71	0.00	121.06	115.06	N/A	N/A
5240	74.13	AV	V	33.68	4.71	0.00	112.52	106.52	N/A	N/A
5350	32.68	PK	V	33.86	4.52	0.00	71.06	65.06	74.00	8.94
5350	19.14	AV	V	33.86	4.52	0.00	57.52	51.52	54.00	2.48
10480	43.72	PK	V	38.20	6.59	36.40	52.11	46.11	74.00	27.89
10480	30.63	AV	V	38.20	6.59	36.40	39.02	33.02	54.00	20.98
15720	44.54	PK	V	37.88	8.57	37.86	53.13	47.13	74.00	26.87
15720	30.19	AV	V	37.88	8.57	37.86	38.78	32.78	54.00	21.22
9925	43.38	PK	V	38.07	6.42	36.32	51.55	45.55	74.00	28.45
9925	32.07	AV	V	38.07	6.42	36.32	40.24	34.24	54.00	19.76
210.42	51.89	QP	H	11.31	0.91	27.74	36.37	36.37	43.50	7.13
282.2	46.2	QP	Н	13.92	1.20	27.51	33.81	33.81	46.00	12.19

Report No.: RDG170525007B Page 30 of 130

802.11n ht40 mode

-	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1	Morein
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
	_				Channe	l:5190 MHz		_		
5190	68.17	PK	Н	33.60	4.81	0.00	106.58	100.58	N/A	N/A
5190	57.48	AV	Н	33.60	4.81	0.00	95.89	89.89	N/A	N/A
5190	76.68	PK	V	33.60	4.81	0.00	115.09	109.09	N/A	N/A
5190	66.36	AV	V	33.60	4.81	0.00	104.77	98.77	N/A	N/A
5150	30.64	PK	V	33.54	4.67	0.00	68.85	62.85	74.00	11.15
5150	17.81	AV	V	33.54	4.67	0.00	56.02	50.02	54.00	3.98
10380	43.64	PK	V	38.18	6.57	36.38	52.01	46.01	74.00	27.99
10380	30.42	AV	V	38.18	6.57	36.38	38.79	32.79	54.00	21.21
15570	43.91	PK	V	38.03	8.65	38.09	52.50	46.50	74.00	27.50
15570	30.63	AV	V	38.03	8.65	38.09	39.22	33.22	54.00	20.78
8975	43.72	PK	V	37.69	6.01	36.24	51.18	45.18	74.00	28.82
8975	30.37	AV	V	37.69	6.01	36.24	37.83	31.83	54.00	22.17
210.42	52.73	QP	Н	11.31	0.91	27.74	37.21	37.21	43.50	6.29
282.2	46.62	QP	Н	13.92	1.20	27.51	34.23	34.23	46.00	11.77
				High	Channe	el:5230 MH:	Z			
5230	69.49	PK	Н	33.67	4.74	0.00	107.90	101.90	N/A	N/A
5230	58.63	AV	Н	33.67	4.74	0.00	97.04	91.04	N/A	N/A
5230	77.84	PK	V	33.67	4.74	0.00	116.25	110.25	N/A	N/A
5230	66.79	AV	V	33.67	4.74	0.00	105.20	99.20	N/A	N/A
5350	27.23	PK	V	33.86	4.52	0.00	65.61	59.61	74.00	14.39
5350	16.63	AV	V	33.86	4.52	0.00	55.01	49.01	54.00	4.99
10460	43.45	PK	V	38.19	6.59	36.39	51.84	45.84	74.00	28.16
10460	30.42	AV	V	38.19	6.59	36.39	38.81	32.81	54.00	21.19
15690	43.51	PK	V	37.91	8.59	37.91	52.10	46.10	74.00	27.90
15690	30.63	AV	V	37.91	8.59	37.91	39.22	33.22	54.00	20.78
8695	43.64	PK	V	37.52	6.02	36.12	51.06	45.06	74.00	28.94
8695	30.32	AV	V	37.52	6.02	36.12	37.74	31.74	54.00	22.26
13455	44.28	PK	V	40.32	8.09	37.54	55.15	49.15	74.00	24.85
13455	30.54	AV	V	40.32	8.09	37.54	41.41	35.41	54.00	18.59
210.42	52.26	QP	Н	11.31	0.91	27.74	36.74	36.74	43.50	6.76
282.2	47.06	QP	Н	13.92	1.20	27.51	34.67	34.67	46.00	11.33

Report No.: RDG170525007B Page 31 of 130

802.11n ac80 mode:

E	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	,	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5210 MF	lz			
5210	68.14	PK	Н	33.64	4.81	0.00	106.59	100.59	N/A	N/A
5210	57.22	AV	Н	33.64	4.81	0.00	95.67	89.67	N/A	N/A
5210	76.63	PK	V	33.64	4.81	0.00	115.08	109.08	N/A	N/A
5210	65.42	AV	V	33.64	4.81	0.00	103.87	97.87	N/A	N/A
5150	34.36	PK	V	33.54	4.67	0.00	72.57	66.57	74.00	7.43
5150	20.23	AV	V	33.54	4.67	0.00	58.44	52.44	54.00	1.56
5350	32.25	PK	V	33.86	4.52	0.00	70.63	64.63	74.00	9.37
5350	20.18	AV	V	33.86	4.52	0.00	58.56	52.56	54.00	1.44
10420	44.35	PK	V	38.18	6.58	36.39	52.72	46.72	74.00	27.28
10420	30.72	AV	V	38.18	6.58	36.39	39.09	33.09	54.00	20.91
15630	43.68	PK	V	37.97	8.62	38.00	52.27	46.27	74.00	27.73
15630	30.43	AV	V	37.97	8.62	38.00	39.02	33.02	54.00	20.98
8865	43.79	PK	V	37.62	6.02	36.19	51.24	45.24	74.00	28.76
8865	30.38	AV	V	37.62	6.02	36.19	37.83	31.83	54.00	22.17
210.42	51.79	QP	Н	11.31	0.91	27.74	36.27	36.27	43.50	7.23
282.2	47.5	QP	Н	13.92	1.20	27.51	35.11	35.11	46.00	10.89

Report No.: RDG170525007B Page 32 of 130

5725-5850MHz,SISO: 802.11a mode (chain 0 was the worst):

		e (chain 0 wa						Extrapolation		
Frequency		ceiver		ntenna	Cable	Amplifier	Corrected	Extrapolation Result	Limit	Margin
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	dBμV/m	(dBµV/m)	(dB)
						l:5745 MHz				
5745	70.46	PK	Н	34.20	4.68	0.00	109.34	103.34	N/A	N/A
5745	60.68	AV	Н	34.20	4.68	0.00	99.56	93.56	N/A	N/A
5745	75.13	PK	V	34.20	4.68	0.00	114.01	108.01	N/A	N/A
5745	65.49	AV	V	34.20	4.68	0.00	104.37	98.37	N/A	N/A
5725	28.21	PK	V	34.19	4.67	0.00	67.07	61.07	122.20	61.13
5720	26.86	PK	V	34.19	4.66	0.00	65.71	59.71	110.80	51.09
5700	25.63	PK	V	34.18	4.65	0.00	64.46	58.46	105.20	46.74
5650	26.12	PK	V	34.16	4.60	0.00	64.88	58.88	68.20	9.32
11490	64.96	PK	V	38.99	6.85	36.60	74.20	68.20	74.00	5.80
11490	49.01	AV	V	38.99	6.85	36.60	58.25	52.25	54.00	1.75
17235	58.42	PK	V	41.56	8.68	36.97	71.69	65.69	74.00	8.31
17235	42.37	AV	V	41.56	8.68	36.97	55.64	49.64	54.00	4.36
210.42	51.34	QP	Н	11.31	0.91	27.74	35.82	35.82	43.50	7.68
282.2	45.74	QP	Н	13.92	1.20	27.51	33.35	33.35	46.00	12.65
						el:5785 MF				
5785	69.68	PK	Н	34.21	4.71	0.00	108.60	102.60	N/A	N/A
5785	59.77	AV	Н	34.21	4.71	0.00	98.69	92.69	N/A	N/A
5785	75.29	PK	V	34.21	4.71	0.00	114.21	108.21	N/A	N/A
5785	64.22	AV	V	34.21	4.71	0.00	103.14	97.14	N/A	N/A
11570	65.43	PK	V	39.00	6.87	36.61	74.69	68.69	74.00	5.31
11570	49.14	AV	V	39.00	6.87	36.61	58.40	52.40	54.00	1.60
17355	60.26	PK	V	42.26	8.67	36.79	74.40	68.40	74.00	5.60
17355	42.81	AV	V	42.26	8.67	36.79	56.95	50.95	54.00	3.05
5122	55.32	PK	V	33.50	4.57	35.68	57.71	51.71	74.00	22.29
5122	42.37	AV	V	33.50	4.57	35.68	44.76	38.76	54.00	15.24
7658	56.98	PK	V	36.59	5.71	36.02	63.26	57.26	74.00	16.74
7658	43.85	AV	V	36.59	5.71	36.02	50.13	44.13	54.00	9.87
210.42	51.61	QP	Н	11.31	0.91	27.74	36.09	36.09	43.50	7.41
282.2	45.88	QP	Н	13.92	1.20	27.51 el:5825 MHz	33.49	33.49	46.00	12.51
5825	67.12	PK	ш			0.00		100.05	NI/A	N/A
5825	67.13 55.89	AV	H	34.23 34.23	4.69 4.69	0.00	106.05 94.81	88.81	N/A N/A	N/A N/A
5825	72.68	PK	V	34.23	4.69	0.00	111.60	105.60	N/A N/A	N/A N/A
5825	61.76	AV	V	34.23	4.69	0.00	100.68	94.68	N/A N/A	N/A N/A
5850	26.33	PK	V	34.24	4.69	0.00	65.24	59.24	122.20	62.96
5855	26.69	PK	V	34.24	4.66	0.00	65.59	59.59	110.80	51.21
5875	26.69	PK PK	V	34.25	4.64	0.00	65.86	59.86	105.20	45.34
5925	26.38	PK PK	V	34.25	4.63	0.00	65.28	59.88	68.20	8.92
11650	65.17	PK	V	39.00	6.89	36.63	74.43	68.43	74.00	5.57
11650	50.06	AV	V	39.00	6.89	36.63	59.32	53.32	54.00	0.68
17475	60.51	PK	V	42.96	8.65	36.62	75.50	69.50	74.00	4.50
17475	42.65	AV	V	42.96	8.65	36.62	57.64	51.64	54.00	2.36
5512	55.72	PK	V	34.10	4.49	35.85	58.46	51.04	74.00	21.54
5512	43.13	AV	V	34.10	4.49	35.85	45.87	39.87	54.00	14.13
210.42	52.45	QP	H	11.31	0.91	27.74	36.93	36.93	43.50	6.57
282.2	46.3	QP QP	Н	13.92	1.20	27.74	33.91	33.91	46.00	12.09

Report No.: RDG170525007B Page 33 of 130

802.11n ht20 mode(chain 0 was the worst):

802	. I IN NLZU	mode(chain	<u>u was</u>	the wors	S():	£.	F	=	-	
Frequency	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Margin
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	(dBµV/m)	(dB)
				Low	Channe	l:5745 MHz	<u> </u>			
5745	68.23	PK	Ι	34.20	4.68	0.00	107.11	101.11	N/A	N/A
5745	57.58	AV	Ι	34.20	4.68	0.00	96.46	90.46	N/A	N/A
5745	74.47	PK	V	34.20	4.68	0.00	113.35	107.35	N/A	N/A
5745	63.66	AV	٧	34.20	4.68	0.00	102.54	96.54	N/A	N/A
5725	29.47	PK	V	34.19	4.67	0.00	68.33	62.33	122.20	59.87
5720	27.35	PK	V	34.19	4.66	0.00	66.20	60.20	110.80	50.60
5700	26.63	PK	V	34.18	4.65	0.00	65.46	59.46	105.20	45.74
5650	26.68	PK	V	34.16	4.60	0.00	65.44	59.44	68.20	8.76
11490	64.75	PK	V	38.99	6.85	36.60	73.99	67.99	74.00	6.01
11490	48.96	AV	V	38.99	6.85	36.60	58.20	52.20	54.00	1.80
17235	58.24	PK	V	41.56	8.68	36.97	71.51	65.51	74.00	8.49
17235	43.58	AV	V	41.56	8.68	36.97	56.85	50.85	54.00	3.15
210.42	51.98	QP	Н	11.31	0.91	27.74	36.46	36.46	43.50	7.04
282.2	46.74	QP	Н	13.92	1.20	27.51	34.35	34.35	46.00	11.65
		,				el:5785 MF				
5785	68.71	PK	Н	34.21	4.71	0.00	107.63	101.63	N/A	N/A
5785	58.57	AV	Η	34.21	4.71	0.00	97.49	91.49	N/A	N/A
5785	74.03	PK	V	34.21	4.71	0.00	112.95	106.95	N/A	N/A
5785	63.21	AV	V	34.21	4.71	0.00	102.13	96.13	N/A	N/A
11570	66.51	PK	V	39.00	6.87	36.61	75.77	69.77	74.00	4.23
11570	48.06	AV	V	39.00	6.87	36.61	57.32	51.32	54.00	2.68
17355	60.66	PK	V	42.26	8.67	36.79	74.80	68.80	74.00	5.20
17355	43.09	AV	V	42.26	8.67	36.79	57.23	51.23	54.00	2.77
5122	56.36	PK	V	33.50	4.57	35.68	58.75	52.75	74.00	21.25
5122	44.06	AV	V	33.50	4.57	35.68	46.45	40.45	54.00	13.55
7596	59.58	PK	V	36.56	5.68	36.01	65.81	59.81	74.00	14.19
7596	47.25	AV	V	36.56	5.68	36.01	53.48	47.48	54.00	6.52
210.42	51.51	QP	Н	11.31	0.91	27.74	35.99	35.99	43.50	7.51
282.2	47.18	QP	Н	13.92	1.20	27.51	34.79	34.79	46.00	11.21
						l:5825 MH				
5825	66.59	PK	H	34.23	4.69	0.00	105.51	99.51	N/A	N/A
5825	53.97	AV	Н	34.23	4.69	0.00	92.89	86.89	N/A	N/A
5825	72.31	PK	V	34.23	4.69	0.00	111.23	105.23	N/A	N/A
5825	60.21	AV	V	34.23	4.69	0.00	99.13	93.13	N/A	N/A
5850	27.14	PK	V	34.24	4.67	0.00	66.05	60.05	122.20	62.15
5855	27.21	PK	V	34.24	4.66	0.00	66.11	60.11	110.80	50.69
5875	27.65	PK	V	34.25	4.64	0.00	66.54	60.54	105.20	44.66
5925	27.47	PK	V	34.27	4.63	0.00	66.37	60.37	68.20	7.83
11650	65.75	PK	V	39.00	6.89	36.63	75.01	69.01	74.00	4.99
11650	49.48	AV	V	39.00	6.89	36.63	58.74	52.74	54.00	1.26
17475	60.12	PK	V	42.96	8.65	36.62	75.11	69.11	74.00	4.89
17475	41.25	AV	V	42.96	8.65	36.62	56.24	50.24	54.00	3.76
5512 5512	54.36	PK	V	34.10	4.49	35.85	57.10	51.10	74.00	22.90
5512	43.33	AV	V	34.10	4.49	35.85	46.07	40.07	54.00	13.93
210.42	52.09	QP OB	H	11.31	0.91	27.74	36.57	36.57	43.50	6.93
282.2	46.94	QP	Н	13.92	1.20	27.51	34.55	34.55	46.00	11.45

Report No.: RDG170525007B Page 34 of 130

802.11n ht40 mode(chain 0 was the worst):

		ceiver		ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5755 MHz	<u>z</u>			
5755	68.21	PK	Н	34.20	4.69	0.00	107.10	101.10	N/A	N/A
5755	58.16	AV	Н	34.20	4.69	0.00	97.05	91.05	N/A	N/A
5755	74.21	PK	V	34.20	4.69	0.00	113.10	107.10	N/A	N/A
5755	61.22	AV	V	34.20	4.69	0.00	100.11	94.11	N/A	N/A
5725	33.64	PK	V	34.19	4.67	0.00	72.50	66.50	122.20	55.70
5720	30.55	PK	V	34.19	4.66	0.00	69.40	63.40	110.80	47.40
5700	27.17	PK	V	34.18	4.65	0.00	66.00	60.00	105.20	45.20
5650	27.33	PK	V	34.16	4.60	0.00	66.09	60.09	68.20	8.11
11510	62.71	PK	V	39.00	6.85	36.60	71.96	65.96	74.00	8.04
11510	48.73	AV	V	39.00	6.85	36.60	57.98	51.98	54.00	2.02
17265	56.02	PK	V	41.74	8.68	36.92	69.52	63.52	74.00	10.48
17265	41.68	AV	V	41.74	8.68	36.92	55.18	49.18	54.00	4.82
5248	58.28	PK	V	33.70	4.68	35.74	60.92	54.92	74.00	19.08
5248	45.32	AV	V	33.70	4.68	35.74	47.96	41.96	54.00	12.04
210.42	52.36	QP	Н	11.31	0.91	27.74	36.84	36.84	43.50	6.66
282.2	47.08	QP	Н	13.92	1.20	27.51	34.69	34.69	46.00	11.31
				High	Channe	:5795 MH	Z			
5795	64.98	PK	Н	34.22	4.72	0.00	103.92	97.92	N/A	N/A
5795	54.04	AV	Н	34.22	4.72	0.00	92.98	86.98	N/A	N/A
5795	70.75	PK	V	34.22	4.72	0.00	109.69	103.69	N/A	N/A
5795	59.76	AV	V	34.22	4.72	0.00	98.70	92.70	N/A	N/A
5850	27.01	PK	V	34.24	4.67	0.00	65.92	59.92	122.20	62.28
5855	27.68	PK	V	34.24	4.66	0.00	66.58	60.58	110.80	50.22
5875	27.25	PK	V	34.25	4.64	0.00	66.14	60.14	105.20	45.06
5925	27.14	PK	V	34.27	4.63	0.00	66.04	60.04	68.20	8.16
11590	63.08	PK	V	39.00	6.88	36.62	72.34	66.34	74.00	7.66
11590	48.12	AV	V	39.00	6.88	36.62	57.38	51.38	54.00	2.62
17385	55.92	PK	V	42.43	8.66	36.75	70.26	64.26	74.00	9.74
17385	42.25	AV	V	42.43	8.66	36.75	56.59	50.59	54.00	3.41
5158	56.04	PK	V	33.55	4.70	35.70	58.59	52.59	74.00	21.41
5158	43.36	AV	V	33.55	4.70	35.70	45.91	39.91	54.00	14.09
210.42	53.2	QP	Н	11.31	0.91	27.74	37.68	37.68	43.50	5.82
282.2	47.5	QP	Н	13.92	1.20	27.51	35.11	35.11	46.00	10.89

Report No.: RDG170525007B Page 35 of 130

802.11n ac80 mode(chain 0 was the worst):

F	Red	ceiver	Rx Aı	ntenna	Cable	Amplifier	Corrected	Extrapolation	1.1	N
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBμV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5775 MH	łz			
5775	65.39	PK	Ι	34.21	4.70	0.00	104.30	98.30	N/A	N/A
5775	54.71	AV	Ι	34.21	4.70	0.00	93.62	87.62	N/A	N/A
5775	70.88	PK	V	34.21	4.70	0.00	109.79	103.79	N/A	N/A
5775	59.15	AV	V	34.21	4.70	0.00	98.06	92.06	N/A	N/A
5725	30.09	PK	V	34.19	4.67	0.00	68.95	62.95	122.20	59.25
5720	28.55	PK	V	34.19	4.66	0.00	67.40	61.40	110.80	49.40
5700	28.21	PK	V	34.18	4.65	0.00	67.04	61.04	105.20	44.16
5650	27.69	PK	V	34.16	4.60	0.00	66.45	60.45	68.20	7.75
5850	29.15	PK	V	34.24	4.67	0.00	68.06	62.06	122.20	60.14
5855	28.67	PK	V	34.24	4.66	0.00	67.57	61.57	110.80	49.23
5875	28.54	PK	V	34.25	4.64	0.00	67.43	61.43	105.20	43.77
5925	28.64	AV	V	34.27	4.63	0.00	67.54	61.54	68.20	6.66
11550	62.65	PK	V	39.00	6.86	36.61	71.90	65.90	74.00	8.10
11550	48.95	AV	V	39.00	6.86	36.61	58.20	52.20	54.00	1.80
17325	57.44	PK	V	42.09	8.67	36.84	71.36	65.36	74.00	8.64
17325	41.98	AV	V	42.09	8.67	36.84	55.90	49.90	54.00	4.10
5212	55.66	PK	V	33.64	4.81	35.72	58.39	52.39	74.00	21.61
5212	43.85	AV	V	33.64	4.81	35.72	46.58	40.58	54.00	13.42
210.42	52.73	QP	Н	11.31	0.91	27.74	37.21	37.21	43.50	6.29
282.2	47.94	QP	Н	13.92	1.20	27.51	35.55	35.55	46.00	10.45

Report No.: RDG170525007B Page 36 of 130

MIMO mode: 802.11n ht20 mode:

802	.11n ht20	mode:								
Eroguenov	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Margin
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
	•	•	•	Low	Channe	l:5745 MHz	7		•	
5745	69.37	PK	Н	34.20	4.68	0.00	108.25	102.25	N/A	N/A
5745	60.16	AV	Н	34.20	4.68	0.00	99.04	93.04	N/A	N/A
5745	78.38	PK	V	34.20	4.68	0.00	117.26	111.26	N/A	N/A
5745	69.03	AV	V	34.20	4.68	0.00	107.91	101.91	N/A	N/A
5725	37.36	PK	V	34.19	4.67	0.00	76.22	70.22	122.20	51.98
5720	34.51	PK	V	34.19	4.66	0.00	73.36	67.36	110.80	43.44
5700	31.41	PK	V	34.18	4.65	0.00	70.24	64.24	105.20	40.96
5650	29.88	PK	V	34.16	4.60	0.00	68.64	62.64	68.20	5.56
11490	64.75	PK	V	38.99	6.85	36.60	73.99	67.99	74.00	6.01
11490	49.59	AV	V	38.99	6.85	36.60	58.83	52.83	54.00	1.17
17235	58.46	PK	V	41.56	8.68	36.97	71.73	65.73	74.00	8.27
17235	44.73	AV	V	41.56	8.68	36.97	58.00	52.00	54.00	2.00
210.42	52.26	QP	Н	11.31	0.91	27.74	36.74	36.74	43.50	6.76
282.2	48.38	QP	Н	13.92	1.20	27.51	35.99	35.99	46.00	10.01
	•		•	Middl	e Chann	el:5785 MF	lz			
5785	68.61	PK	Н	34.21	4.71	0.00	107.53	101.53	N/A	N/A
5785	59.36	AV	Н	34.21	4.71	0.00	98.28	92.28	N/A	N/A
5785	78.17	PK	V	34.21	4.71	0.00	117.09	111.09	N/A	N/A
5785	68.89	AV	V	34.21	4.71	0.00	107.81	101.81	N/A	N/A
11570	63.84	PK	V	39.00	6.87	36.61	73.10	67.10	74.00	6.90
11570	49.55	AV	V	39.00	6.87	36.61	58.81	52.81	54.00	1.19
17355	58.34	PK	V	42.26	8.67	36.79	72.48	66.48	74.00	7.52
17355	44.52	AV	V	42.26	8.67	36.79	58.66	52.66	54.00	1.34
6585	53.21	PK	V	34.37	5.28	35.78	57.08	51.08	74.00	22.92
6585	42.53	AV	V	34.37	5.28	35.78	46.40	40.40	54.00	13.60
9435	46.38	PK	V	37.87	6.18	36.24	54.19	48.19	74.00	25.81
9435	34.37	AV	V	37.87	6.18	36.24	42.18	36.18	54.00	17.82
210.42	52.16	QP	Н	11.31	0.91	27.74	36.64	36.64	43.50	6.86
282.2	45.96	QP	Н	13.92	1.20	27.51	33.57	33.57	46.00	12.43
				High	Channe	:5825 MH	Z			
5825	64.39	PK	Н	34.23	4.69	0.00	103.31	97.31	N/A	N/A
5825	55.64	AV	Н	34.23	4.69	0.00	94.56	88.56	N/A	N/A
5825	74.55	PK	V	34.23	4.69	0.00	113.47	107.47	N/A	N/A
5825	65.27	AV	V	34.23	4.69	0.00	104.19	98.19	N/A	N/A
5850	36.84	PK	V	34.24	4.67	0.00	75.75	69.75	122.20	52.45
5855	33.96	PK	V	34.24	4.66	0.00	72.86	66.86	110.80	43.94
5875	31.58	PK	V	34.25	4.64	0.00	70.47	64.47	105.20	40.73
5925	29.57	PK	V	34.27	4.63	0.00	68.47	62.47	68.20	5.73
11650	63.78	PK	V	39.00	6.89	36.63	73.04	67.04	74.00	6.96
11650	49.16	AV	V	39.00	6.89	36.63	58.42	52.42	54.00	1.58
17475	54.13	PK	V	42.96	8.65	36.62	69.12	63.12	74.00	10.88
17475	41.39	AV	V	42.96	8.65	36.62	56.38	50.38	54.00	3.62
8365	46.38	PK	V	37.24	5.99	36.05	53.56	47.56	74.00	26.44
8365	32.26	AV	V	37.24	5.99	36.05	39.44	33.44	54.00	20.56
210.42	52.43	QP	Н	11.31	0.91	27.74	36.91	36.91	43.50	6.59
282.2	46.1	QP	Н	13.92	1.20	27.51	33.71	33.71	46.00	12.29

Report No.: RDG170525007B Page 37 of 130

Bay Area Compliance Laboratories Corp. (Chengdu)

802.11n ht40 mode:

	Red	ceiver	Rx Aı	ntenna	Cable	Amplifier	Corrected	Extrapolation	1.114	N. 4
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
Low Channel:5755 MHz										
5755	63.69	PK	Н	34.20	4.69	0.00	102.58	96.58	N/A	N/A
5755	54.37	AV	Н	34.20	4.69	0.00	93.26	87.26	N/A	N/A
5755	71.27	PK	V	34.20	4.69	0.00	110.16	104.16	N/A	N/A
5755	61.81	AV	V	34.20	4.69	0.00	100.70	94.70	N/A	N/A
5725	36.68	PK	V	34.19	4.67	0.00	75.54	69.54	122.20	52.66
5720	34.41	PK	V	34.19	4.66	0.00	73.26	67.26	110.80	43.54
5700	31.44	PK	V	34.18	4.65	0.00	70.27	64.27	105.20	40.93
5650	29.14	PK	V	34.16	4.60	0.00	67.90	61.90	68.20	6.30
11510	61.87	PK	V	39.00	6.85	36.60	71.12	65.12	74.00	8.88
11510	49.65	AV	V	39.00	6.85	36.60	58.90	52.90	54.00	1.10
17265	56.79	PK	V	41.74	8.68	36.92	70.29	64.29	74.00	9.71
17265	43.35	AV	V	41.74	8.68	36.92	56.85	50.85	54.00	3.15
8355	46.87	PK	V	37.23	5.98	36.05	54.03	48.03	74.00	25.97
8355	32.61	AV	V	37.23	5.98	36.05	39.77	33.77	54.00	20.23
210.42	53.27	QP	Н	11.31	0.91	27.74	37.75	37.75	43.50	5.75
282.2	46.52	QP	Н	13.92	1.20	27.51	34.13	34.13	46.00	11.87
					Channe	el:5795 MHz				
5795	63.28	PK	Н	34.22	4.72	0.00	102.22	96.22	N/A	N/A
5795	52.76	AV	Н	34.22	4.72	0.00	91.70	85.70	N/A	N/A
5795	69.97	PK	V	34.22	4.72	0.00	108.91	102.91	N/A	N/A
5795	59.82	AV	V	34.22	4.72	0.00	98.76	92.76	N/A	N/A
5850	35.43	PK	V	34.24	4.67	0.00	74.34	68.34	122.20	53.86
5855	34.14	PK	V	34.24	4.66	0.00	73.04	67.04	110.80	43.76
5875	32.14	PK	V	34.25	4.64	0.00	71.03	65.03	105.20	40.17
5925	29.85	PK	V	34.27	4.63	0.00	68.75	62.75	68.20	5.45
11590	62.62	PK	V	39.00	6.88	36.62	71.88	65.88	74.00	8.12
11590	49.38	AV	V	39.00	6.88	36.62	58.64	52.64	54.00	1.36
17385	56.34	PK	V	42.43	8.66	36.75	70.68	64.68	74.00	9.32
17385	43.13	AV	V	42.43	8.66	36.75	57.47	51.47	54.00	2.53
9145	46.56	PK	V	37.76	6.07	36.25	54.14	48.14	74.00	25.86
9145	32.28	AV	V	37.76	6.07	36.25	39.86	33.86	54.00	20.14
210.42	52.8	QP	Н	11.31	0.91	27.74	37.28	37.28	43.50	6.22
282.2	46.96	QP	Н	13.92	1.20	27.51	34.57	34.57	46.00	11.43

Report No.: RDG170525007B Page 38 of 130

Bay Area Compliance Laboratories Corp. (Chengdu)

802.11n ac80 mode:

F	Red	ceiver	Rx Antenna		Cable	Amplifier	Corrected	Extrapolation	1.114	N. 0
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5775 MF	łz			
5775	64.98	PK	Н	34.21	4.70	0.00	103.89	97.89	N/A	N/A
5775	52.76	AV	Н	34.21	4.70	0.00	91.67	85.67	N/A	N/A
5775	72.27	PK	V	34.21	4.70	0.00	111.18	105.18	N/A	N/A
5775	60.85	AV	V	34.21	4.70	0.00	99.76	93.76	N/A	N/A
5725	36.48	PK	V	34.19	4.67	0.00	75.34	69.34	122.20	52.86
5720	34.55	PK	V	34.19	4.66	0.00	73.40	67.40	110.80	43.40
5700	32.41	PK	V	34.18	4.65	0.00	71.24	65.24	105.20	39.96
5650	30.14	PK	V	34.16	4.60	0.00	68.90	62.90	68.20	5.30
5850	37.17	PK	V	34.24	4.67	0.00	76.08	70.08	122.20	52.12
5855	37.06	PK	V	34.24	4.66	0.00	75.96	69.96	110.80	40.84
5875	38.37	PK	V	34.25	4.64	0.00	77.26	71.26	105.20	33.94
5925	25.03	AV	V	34.27	4.63	0.00	63.93	57.93	68.20	10.27
11550	61.59	PK	V	39.00	6.86	36.61	70.84	64.84	74.00	9.16
11550	49.37	AV	V	39.00	6.86	36.61	58.62	52.62	54.00	1.38
17325	58.37	PK	V	42.09	8.67	36.84	72.29	66.29	74.00	7.71
17325	42.58	AV	V	42.09	8.67	36.84	56.50	50.50	54.00	3.50
7835	46.49	PK	V	36.70	5.79	36.06	52.92	46.92	74.00	27.08
7835	32.14	AV	V	36.70	5.79	36.06	38.57	32.57	54.00	21.43
210.42	52.33	QP	Н	11.31	0.91	27.74	36.81	36.81	43.50	6.69
282.2	47.4	QP	Н	13.92	1.20	27.51	35.01	35.01	46.00	10.99

Report No.: RDG170525007B Page 39 of 130

FCC §15.407(b)-OUT- OF-BAND EMISSIONS

Applicable Standard

FCC §15.407

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r04.

Report No.: RDG170525007B Page 40 of 130

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	25.8~28.9 °C
Relative Humidity:	51.3~58.6 %
ATM Pressure:	100.1 kPa

The testing was performed by Tom Tang from 2017-07-04 to 2017-07-05.

Test Result: Pass.

Please refer to the following tables and plots.

Report No.: RDG170525007B Page 41 of 130

SISO:

5150-5250MHz(the atenna gain was offset in the display) Chain 0:

802.11a Low Channel

802.11a High Channel

Report No.: RDG170525007B Page 42 of 130

802.11n ht20 High Channel

8802.11n ht40 High Channel

802.11n ac80 Middle Channel

Chain 1:

802.11a High Channel

Report No.: RDG170525007B Page 46 of 130

802.11n ht20 High Channel

8802.11n ht40 High Channel

802.11n ac80 Middle Channel

5725-5850MHz

Chain 0:

802.11a Low Channel

802.11a High Channel

802.11n ht20 High Channel

Page 51 of 130

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170525007B Page 53 of 130

Chain 1:

802.11a High Channel

Report No.: RDG170525007B Page 54 of 130

802.11n ht20 High Channel

802.11 ac80 Low Channel

Report No.: RDG170525007B

Page 57 of 130

MIMO Mode:(the atenna gain was offset in the display, all emissions under limit 3dB, so combined results meet the requirement)

5150-5250MHz

Chain 0:

802.11n ht20 Low Channel

802.11n ht20 High Channel

8802.11n ht40 High Channel

802.11n ac80 Middle Channel

Chain 1:

802.11n ht20 High Channel

Report No.: RDG170525007B Page 61 of 130

8802.11n ht40 High Channel

802.11n ac80 Middle Channel

Report No.: RDG170525007B

Page 63 of 130

5725-5850MHz

Chain 0:

802.11n ht20 Low Channel

802.11n ht20 High Channel

802.11 ac80 Middle Channel

Report No.: RDG170525007B

Page 66 of 130

Chain 1:

802.11n ht20 High Channel

Report No.: RDG170525007B Page 67 of 130

802.11n ht40 High Channel

802.11 ac80 Middle Channel

FCC §15.407(a) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH

Applicable Standard

15.407(a) (e)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r04.

Test Data

Environmental Conditions

Temperature:	28.6~28.9 °C
Relative Humidity:	50.8~51.3 %
ATM Pressure:	100.1 kPa

The testing was performed by Tom Tang from 2017-07-03 to 2017-07-04.

Test Result: Pass.

Please refer to the following tables and plots.

Report No.: RDG170525007B Page 70 of 130

Test mode: Transmitting (Test performed at SISO mode, chain 0)

5150-5250MHz:

Mode	Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	Low	5180	21.56	16.99
802.11 a	Middle	5200	27.25	17.15
	High	5240	27.17	17.15
	Low	5180	22.20	18.04
802.11n ht20	Middle	5200	22.85	18.04
	High	5240	26.13	18.04
000 44= 5440	Low	5190	44.73	37.52
802.11n ht40	High	5230	52.28	37.68
802.11 ac80	Middle	5210	83.05	75.67

Note: the 99% Occupied Bandwidth have not fall into the band 5250-5350MHz and 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

5725-5850MHz:

Mode	Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	6 dB Emission Bandwidth (MHz)	6dB Emission Bandwidth Limit (MHz)
	Low	5745	21.40	16.59	≥0.5
802.11 a	Middle	5785	22.53	16.59	≥0.5
	High	5825	22.61	16.59	≥0.5
	Low	5745	23.17	17.80	≥0.5
802.11n ht20	Middle	5785	23.17	17.80	≥0.5
	High	5825	23.17	17.80	≥0.5
802.11n ht40	Low	5755	44.57	36.71	≥0.5
	High	5795	44.57	36.71	≥0.5
802.11 ac80	Middle	5775	85.29	76.63	≥0.5

Note: For 5725-5850MHz band, 26dB bandwidth have not fall into the band 5470-5725MHz.

Report No.: RDG170525007B Page 71 of 130

5150-5250MHz: 26dB Emission Bandwidth:

Chain 0 - 802.11a Low Channel

Chain 0 - 802.11a Middle Channel

Report No.: RDG170525007B Page 72 of 130

Chain 0 - 802.11a High Channel

Chain 0 - 802.11n ht20 Low Channel

Report No.: RDG170525007B Page 73 of 130

Chain 0 - 802.11n ht20 Middle Channel

Chain 0 - 802.11n ht20 High Channel

Report No.: RDG170525007B Page 74 of 130

Chain 0 - 802.11n ht40 Low Channel

Chain 0 - 802.11n ht40 High Channel

Report No.: RDG170525007B Page 75 of 130

Chain 0 - 802.11ac80 Middle Channel

99% Occupied Bandwidth

Chain 0 - 802.11a Low Channel

Report No.: RDG170525007B Page 76 of 130

Chain 0 - 802.11a Middle Channel

Date: 3.JUL.2017 13:35:55

Chain 0 - 802.11a High Channel

Report No.: RDG170525007B

Chain 0 - 802.11n ht20 Low Channel

Chain 0 - 802.11n ht20 Middle Channel

Report No.: RDG170525007B Page 78 of 130

Chain 0 - 802.11n ht20 High Channel

Chain 0 - 802.11n ht40 Low Channel

Report No.: RDG170525007B Page 79 of 130

Chain 0 - 802.11n ht40 High Channel

Chain 0 - 802.11ac80 Middle Channel

Report No.: RDG170525007B Page 80 of 130

5725-5850MHz:26dB bandwidth

Chain 0 - 802.11a Low Channel

Chain 0 - 802.11a Middle Channel

Report No.: RDG170525007B Page 81 of 130

Chain 0 - 802.11a High Channel

Chain 0 - 802.11n ht20 Low Channel

Report No.: RDG170525007B Page 82 of 130

Chain 0 - 802.11n ht20 Middle Channel

Chain 0 - 802.11n ht20 High Channel

Chain 0 - 802.11n ht40 Low Channel

Chain 0 - 802.11n ht40 High Channel

Report No.: RDG170525007B Page 84 of 130

Chain 0 - 802.11ac80 Middle Channel

6dB Bandwidth:

Chain 0 - 802.11a Low Channel

Report No.: RDG170525007B Page 85 of 130

Chain 0 - 802.11a Middle Channel

Chain 0 - 802.11a High Channel

Chain 0 - 802.11n ht20 Low Channel

Chain 0 - 802.11n ht20 Middle Channel

Report No.: RDG170525007B Page 87 of 130

Chain 0 - 802.11n ht20 High Channel

Chain 0 - 802.11n ht40 Low Channel

Report No.: RDG170525007B Page 88 of 130

Chain 0 - 802.11n ht40 High Channel

Chain 0 - 802.11n ac80 Middle Channel

Report No.: RDG170525007B Page 89 of 130

FCC §15.407(g)-FREQUENCY STABILITY

Applicable Standard

FCC §15.407(g)

(g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Test Procedure

According to C63.10-2013 clause 6.8.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Unknown	RF Cable	Unknown	C-2	Each Time	/
FLUKE	Multimeter	1587	27870099	2016-12-30	2017-12-29
BACL	High Temperature Test Chamber	BTH-150	30024	2016-12-02	2017-12-01

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	28.6~28.9 °C
Relative Humidity:	50.8~51.3 %
ATM Pressure:	100.1 kPa

The testing was performed by Tom Tang from 2017-07-03 to 2017-07-04.

Test Result: Pass(Test was performed at Chain 0).

Report No.: RDG170525007B Page 90 of 130

5150-5250MHz:

802.11a

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
°C	V _{DC}	MHz	MHz	
0		5170.7412	5248.6172	
10		5170.7414	5248.6178	f _∟ and f _н Within
20	5	5170.7417	5248.6178	5150~5250MHz
30		5170.7412	5248.6177	range
40		5170.7402	5248.6165	

802.11n ht20:

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
${\mathbb C}$	V _{DC}	MHz	MHz	
0		5171.0624	5249.0178	
10		5171.0625	5249.0187	f _L and f _H Within
20	5	5171.0626	5249.0144	5150~5250MHz
30		5171.0627	5249.0175	range
40		5171.0624	5249.0184	

802.11n ht40:

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
°C	V _{DC}	MHz	MHz	
0		5171.3227	5248.3575	
10		5171.3217	5248.3575	f _L and f _H Within
20	5	5171.3218	5248.3571	5150~5250MHz
30		5171.3222	5248.3572	range
40		5171.3224	5248.3577	

802.11ac80:

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
${\mathbb C}$	V _{DC}	MHz	MHz	
0		5172.0055	5247.9974	
10		5172.0051	5247.9974	f _L and f _H Within
20	5	5172.0051	5247.9971	5150~5250MHz
30		5172.0052	5247.9972	range
40		5172.0025	5247.9973	

Note: the f_L and f_H determined by 99% Occupied bandwidth low edge at Low test channel and High edge at High test channel.

Report No.: RDG170525007B Page 91 of 130

5725-5850MHz:

802.11a					
	Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
	င	V _{DC}	MHz	MHz	
	0		5736.6273	5833.4557	
	10		5736.6257	5833.4578	f _L and f _H Within
	20	5	5736.6277	5833.4589	5725~5850MHz
	30		5736.6255	5833.4578	range
	40		5736.6225	5833.4567	

802.11n ht20:

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
${\mathbb C}$	V_{DC}	MHz	MHz	
0		5735.9817	5834.0985	
10		5735.9812	5834.0919	f _L and f _H Within
20	5	5735.9818	5834.0915	5725~5850MHz
30		5735.9818	5834.0917	range
40		5735.9813	5834.0922	

802.11n ht40:

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
${\mathbb C}$	V _{DC}	MHz	MHz	
0		5736.6433	5813.5164	
10		5736.6442	5813.5155	f _∟ and f _н Within
20	5	5736.6454	5813.5164	5725~5850MHz
30		5736.6457	5813.5152	range
40		5736.6431	5813.5172	

802.11ac80:

Temperature	Voltage	f∟ at Low Test Channel	F _H at High Test Channel	Limit
೦	V _{DC}	MHz	MHz	
0		5737.0047	5812.9952	
10		5737.0045	5812.9959	f _∟ and f _H Within
20	5	5737.0044	5812.9958	5725~5850MHz
30		5737.0042	5812.9959	range
40		5737.0043	5812.9957	

Note: the $f_{\text{\tiny L}}$ and $f_{\text{\tiny H}}$ determined by 99% Occupied bandwidth low edge at Low test channel and High edge at High test channel.

Report No.: RDG170525007B Page 92 of 130

FCC §15.407(a) –MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

Report No.: RDG170525007B Page 93 of 130

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54170074	2017-01-03	2018-01-03
Agilent	P-Series Power Meter	N1912A	MY5000798	2017-01-03	2018-01-03
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r04.

Report No.: RDG170525007B Page 94 of 130

Test Data

Environmental Conditions

Temperature:	28.6~28.9 °C
Relative Humidity:	50.8~51.3 %
ATM Pressure:	100.1 kPa

The testing was performed by Tom Tang from 2017-07-03 to 2017-07-04.

Test Mode: Transmitting

SISO mode:

UNII Band	Mode	Channel	Frequency (MHz)	RMS Channel Power (dBm)		Limit (dBm)	Result
				Chain 0	Chain 1		
		Low	5180	18.42	18.52	24	PASS
	802.11 a	Middle	5200	22.02	21.47	24	PASS
		High	5240	22.26	22.00	24	PASS
	802.11n ht20	Low	5180	17.37	17.62	24	PASS
5150-5250MHz		Middle	5200	21.90	21.00	24	PASS
		High	5240	22.50	21.80	24	PASS
	802.11n ht40	Low	5190	16.75	16.73	24	PASS
		High	5230	21.91	21.63	24	PASS
	802.11 ac80	Middle	5210	16.80	15.92	24	PASS
	802.11 a	Low	5745	14.36	15.75	30	PASS
5725-5850MHz		Middle	5785	12.77	14.03	30	PASS
		High	5825	10.12	10.60	30	PASS
	802.11n ht20	Low	5745	12.47	15.43	30	PASS
		Middle	5785	12.12	14.12	30	PASS
		High	5825	10.1	10.61	30	PASS
	802.11n ht40	Low	5755	15.14	16.05	30	PASS
		High	5795	11.21	12.4	30	PASS
	802.11 ac80	Middle	5775	13.67	14.64	30	PASS

Report No.: RDG170525007B Page 95 of 130

MIMO mode:

UNII Band	Mode	Channel	Frequency (MHz)	RMS Channel Power (dBm)		Total (dBm)	Limit (dBm)	Result
				Chain 0	Chain 1			
	802.11n ht20	Low	5180	17.73	14.18	19.32	24	PASS
		Middle	5200	17.32	17.6	20.47	24	PASS
5150- 5250MHz		High	5240	17.39	17.15	20.28	24	PASS
	802.11n ht40	Low	5190	15.39	11.4	16.85	24	PASS
		High	5230	19.12	15.88	20.81	24	PASS
	802.11 ac80	Middle	5210	16.1	13.79	18.11	24	PASS
5725- 5850MHz	802.11n ht20	Low	5745	12.16	14.37	16.41	30	PASS
		Middle	5785	9.35	13.45	14.88	30	PASS
		High	5825	7.06	10.31	11.99	30	PASS
	802.11n ht40	Low	5755	7.54	12.78	13.92	30	PASS
		High	5795	5.86	10.1	11.49	30	PASS
	802.11 ac80	Middle	5775	9.39	14.29	15.51	30	PASS

Note: the 2 antenna maximum atenna gains are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

So:

Directional gain = G_{ANT} + Array Gain = 4dBi < 6dBi

Report No.: RDG170525007B Page 96 of 130

FCC §15.407(a) - POWER SPECTRAL DENSITY

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: RDG170525007B Page 97 of 130

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r04.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Report No.: RDG170525007B Page 98 of 130

Test Data

Environmental Conditions

Temperature:	28.6~28.9 °C		
Relative Humidity:	50.8~51.3 %		
ATM Pressure:	100.1 kPa		

The testing was performed by Tom Tang from 2017-07-03 to 2017-07-04.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plot.

5150-5250MHz

SISO:

Mode	Frequency	Power Spec (dBm	Limits	
III GGG	(MHz)	Chain 0	Chain 1	(dBm/MHz)
	5180	8.53	8.63	11
802.11a	5200	10.06	10.47	11
	5240	10.29	10.09	11
	5180	7.20	7.45	11
802.11n ht20	5200	10.00	10.88	11
	5240	10.26	10.57	11
802.11n ht40	5190	3.71	3.46	11
	5230	8.79	8.49	11
802.11 ac80	5210	2.09	1.04	11

MIMO:

Mode	Frequency	Power Spec (dBm	tral Density /MHz)	Total (dBm/MHz)	Limits (dBm/MHz)	
	(MHz)	Chain 0	Chain 1	(ubili/ivinz)		
	5180	7.53	4.72	9.36	10	
802.11n ht20	5200	6.65	7.21	9.95	10	
	5240	6.76	7.18	9.99	10	
802.11n ht40	5190	2.07	-1.24	3.73	10	
	5230	5.73	3.62	7.81	10	
802.11 ac80	5210	0.62	-1.02	2.89	10	

Note: the 2 antenna maximum atenna gain are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = 10 log(NANT/NSS) dB.

So:

Directional gain = GANT + Array Gain = 4+10*log(2) = 7 dBi > 6dBi Power density Limit = 11 - (7-6) = 10dBm

Report No.: RDG170525007B Page 99 of 130

SISO:

802.11a Middle Channel - Chain0

Report No.: RDG170525007B Page 100 of 130

802.11a High Channel - Chain0

802.11n ht20 Low Channel - Chain0

802.11n ht20 Middle Channel - Chain0

802.11n ht20 High Channel - Chain0

Report No.: RDG170525007B Page 102 of 130

802.11n ht40 Low Channel - Chain0

802.11n ht40 High Channel - Chain0

802.11 ac80 Middle Channel - Chain0

802.11a Low Channel - Chain1

802.11a Middle Channel - Chain1

802.11a High Channel – Chain1

RBW 1 MHz Marker 1 [T1] RF Att 30 dB Ref Lvl 12.09 dBm VBW 3 MHz 20 dBm 5.24605210 GHz SWT 5 ms Unit dBm 1 dB Offset

4 MHz/

Date: 3.JUL.2017 13:11:27

Center 5.24 GHz

Span 40 MHz

802.11n ht20 Low Channel - Chain1

802.11n ht20 Middle Channel - Chain1

Report No.: RDG170525007B Page 106 of 130

802.11n ht20 High Channel - Chain1

802.11n ht40 Low Channel – Chain1

Report No.: RDG170525007B Page 107 of 130

802.11n ht40 High Channel - Chain1

802.11 ac80 Middle Channel - Chain1

MIMO:

802.11n ht20 Low Channel - Chain0

802.11n ht20 Middle Channel - Chain0

Report No.: RDG170525007B Page 109 of 130

802.11n ht40 Low Channel - Chain0

Report No.: RDG170525007B Page 110 of 130

ate: 3.JUL.2017 11:55:17

802.11 ac80 Middle Channel - Chain0

Date: 3.JUL.2017 09:17:43

802.11n ht20 Low Channel - Chain1

802.11n ht20 Middle Channel - Chain1

Report No.: RDG170525007B Page 112 of 130

802.11n ht40 Low Channel - Chain1

Report No.: RDG170525007B Page 113 of 130

802.11 ac80 Middle Channel - Chain1

5725-5850MHz

SISO:

Mode	Frequency (MHz)	Power Spectral Density (dBm/300kHz)		Power Spectral Density (dBm/500kHz)		Limits
	, ,	Chain 0	Chain 1	Chain 0	Chain 1	
802.11a	5745	0.77	2.15	2.97	4.35	30
	5785	-0.74	0.44	1.46	2.64	30
	5825	-3.35	-3.01	-1.15	-0.81	30
802.11n ht20	5745	-1.14	1.76	1.06	3.96	30
	5785	-1.47	0.16	0.73	2.36	30
	5825	-3.84	-2.89	-1.64	-0.69	30
802.11n ht40	5755	-1.91	-0.44	0.29	1.76	30
	5795	-5.3	-4.56	-3.1	-2.36	30
802.11 ac80	5775	-5.21	-4.48	-3.01	-2.28	30

Note 1: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500kHz/RBW)$ to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

MIMO:

Mode	Frequency (MHz)	De	Spectral nsity /300kHz)	Total (dBm/500kHz)	Limits
		Chain 0	Chain 1		
802.11n ht20	5745	-1.83	1.48	5.34	29
	5785	-4.47	0.63	4.00	29
	5825	-6.63	-2.38	1.21	29
802.11n ht40	5755	-8.85	-1.84	1.15	29
	5795	-10.73	-5.49	-2.15	29
802.11 ac80	5775	-9.76	-3.94	-0.73	29

Note 1: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Note 2:. the 2 antenna maximum atenna gain are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

So:

Directional gain = G_{ANT} + Array Gain = 4+10*log(2) =7 dBi > 6dBi Power density Limit = 30 - (7-6) = 29dBm

Report No.: RDG170525007B Page 115 of 130

SISO:

802.11a Low Channel - Chain0

802.11a Middle Channel - Chain0

Report No.: RDG170525007B Page 116 of 130

802.11a High Channel – Chain0

802.11n ht20 Low Channel - Chain0

802.11n ht20 Middle Channel - Chain0

802.11n ht20 High Channel - Chain0

802.11n ht40 Low Channel - Chain0

802.11n ht40 High Channel - Chain0

Report No.: RDG170525007B Page 119 of 130

802.11 ac80 Middle Channel - Chain0

802.11a Low Channel - Chain1

Report No.: RDG170525007B Page 120 of 130

802.11a Middle Channel - Chain1

802.11a High Channel - Chain1

802.11n ht20 Low Channel - Chain1

802.11n ht20 Middle Channel - Chain1

802.11n ht40 Low Channel - Chain1

Report No.: RDG170525007B Page 123 of 130

802.11 ac80 Middle Channel - Chain1

MIMO:

802.11n ht20 Low Channel - Chain0

802.11n ht20 Middle Channel - Chain0

Report No.: RDG170525007B Page 125 of 130

802.11n ht40 Low Channel - Chain0

Report No.: RDG170525007B Page 126 of 130

802.11 ac80 Middle Channel - Chain0

802.11n ht20 Low Channel - Chain1

802.11n ht20 Middle Channel - Chain1

802.11n ht40 Low Channel - Chain1

802.11 ac80 Middle Channel - Chain1

***** END OF REPORT *****