UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Faculdade de Computação

Bacharelado em Ciência da Computação Bacharelado em Sistemas de Informação

Disciplina: Lógica para Computação - LC [GBC016/GSI005]

Prof. Me. Claudiney R. Tinoco

Segunda Lista de Exercícios

- 1. Sejam A e B fórmulas. Classifique as afirmações a seguir em verdadeiras ou falsas, justificando sua resposta.
 - a) Se A é satisfatível, então ¬A é satisfatível
 - b) A é tautologia se ¬A é contraditória
 - c) A é tautologia se A é satisfatível
 - d) Se A é contraditória, então ¬A é satisfatível
 - e) Se A |= B e A é tautologia implica que B é tautologia
 - f) Se A |= B e B é tautologia implica que A é tautologia
- 2. Utilizando todos os métodos de validação vistos em sala, diga se cada sentença abaixo é contraditória, satisfatível ou tautologia.

a)
$$P \rightarrow P$$

b)
$$P \rightarrow \neg P$$

c)
$$\neg P \rightarrow P$$

d)
$$P \leftrightarrow P$$

e)
$$P \to (Q \to P)$$

f)
$$(P \rightarrow (Q \lor R)) \rightarrow (P \land (Q \rightarrow \neg R))$$

g)
$$(P \lor R) \land (Q \lor R) \rightarrow (P \land Q) \lor R$$

h)
$$P \rightarrow Q \rightarrow (P \land Q)$$

$$(\neg (A \leftrightarrow B))$$

$$(A \wedge (B \leftrightarrow C))$$

$$((A \land B) \leftrightarrow (A \land C))$$

$$(((\neg A) \lor B) \to C)$$

$$((A \leftrightarrow B) \rightarrow ((\neg A) \land B))$$

3. Construa a árvore semântica associada à fórmula abaixo e diga se ela é tautologia, satisfatível ou contraditória.

$$H = (P \land Q) \rightarrow (R \land S)$$

Se for possível, forneça uma interpretação I tal que I[H] = F.

- 4. Considere as fórmulas a seguir:
 - a) $\neg P \vee Q$
 - b) $\neg Q \rightarrow P$
 - c) $P \leftrightarrow Q$
 - d) $P \rightarrow Q$
 - e) $\neg P \rightarrow \neg Q$
 - f) $P \wedge \neg Q$

Determine, utilizando o método da negação, os casos em que:

- a) $(P \land Q) \rightarrow G$ é tautologia
- b) $(P \rightarrow Q) \rightarrow G$ é tautologia
- c) $(P \vee Q) = G$
- d) $(P \leftrightarrow Q) = G$
- 5. Levando em conta o que aprendeu sobre equivalências e em particular sobre as Leis de De Morgan, escreva a negação das seguintes proposições compostas:
 - a) Se a comida é boa, então o serviço é excelente.
 - b) Ou a comida é boa, ou o serviço é excelente.
 - c) Ou a comida é boa e o serviço é excelente, ou então está caro.
 - d) Nem a comida é boa, nem o serviço é excelente.
 - e) Se é caro, então a comida é boa e o serviço é excelente.
- 6. Para as seguintes fórmulas, responda: Seja J uma interpretação que interpreta todas as fórmulas como sendo verdadeiras. Além disso, J[P] = T. O que se pode concluir a respeito de J[Q] e J[R], em cada um dos casos?
 - a) $(\neg P \lor Q) \leftrightarrow (P \rightarrow Q)$
 - b) $P \rightarrow ((Q \rightarrow R) \rightarrow ((P \rightarrow R) \rightarrow (P \rightarrow R)))$
 - c) $(P \rightarrow \neg Q) \leftrightarrow \neg P$
 - d) $(Q \rightarrow \neg P)$
 - e) $(P \rightarrow (Q \rightarrow R)) \leftrightarrow ((P \land Q) \rightarrow R)$
 - f) $(P \rightarrow Q) \rightarrow (((P \land Q) \leftrightarrow P) \land ((P \lor Q) \leftrightarrow Q))$
- 7. Faça a simplificação lógica das fórmulas abaixo utilizando as equivalências clássicas. Obs: Equivalências clássicas abaixo.

a)
$$(p \land (\neg(\neg p \lor q))) \lor (p \land q)$$

- b) $((\neg (P \land \neg Q)) \land (\neg (Q \land \neg P)))$
- 8. Demonstre, com o auxílio das equivalências clássicas, que as fórmulas abaixo são equivalentes. Obs: Equivalências clássicas abaixo.

- $\begin{array}{lll} a) & (R \to P) \wedge (R \to Q) & e & (\neg P \vee \neg Q) \to \neg R \\ b) & (\neg (P \to Q) \vee S) \wedge \neg P & e & (P \vee S) \wedge ((Q \to S) \wedge \neg P) \end{array}$

			Identificação	Fórmula H	Fórmula G
			Propriedades de	$E \rightarrow R$	¬E ∨ R
Identificação	Fórmula H	Fórmula G	Substituição	F D	(F - D) - (D - F)
Dupla Negativa	¬(¬E)	E	Gubattulção	E ↔ R	$(E \rightarrow R) \land (R \rightarrow E)$
Propriedades de Identidade	E ∨ False	E	Propriedades Comutativas	EVR	R∨E
	E ∧ True	E		EAR	R∧E
Propriedades Complementares	E∨¬E	True	Propriedades Associativas	E ∨ (R ∨ S)	(E ∨ R) ∨ S
	E∧¬E	False		$E \wedge (R \wedge S)$	$(E \wedge R) \wedge S$
Leis de Morgan	¬(E ∧ R)	¬E∨¬R	Propriedades Distributivas	$E \vee (R \wedge S)$	(E ∨ R) ∧ (E ∨ S)
	¬(E ∨ R)	¬E∧¬R		E ∧ (R ∨ S)	$(E \wedge R) \vee (E \wedge S)$
Contraposição	$E \rightarrow R$	¬R→¬E	Prova Condicional	$E \rightarrow (R \rightarrow S)$	$(E \land R) \rightarrow S$