第四章 金属-半导体结

一、简答题

- 1、肖特基势垒具有单向导电性(即整流特性),试进行分析。
- 2、什么是肖特基二极管的界面态(表面态)?界面态(表面态)有哪些特点?
- 3、什么是肖特基效应?解释肖特基效应的物理机制。
- 4、什么是欧姆接触?如何形成欧姆接触?对于金属-p型半导体,什么情况下是欧姆接触?什么情况是整流结?如果是金属-n型,什么情况下是欧姆接触?什么情况是整流结?

二、计算题

- 1、一个硅肖特基势垒二极管有 $0.01~cm^2$ 的接触面积,半导体中施主浓度为 $10^{16}~cm^{-3}$,设 $\varphi_0=0.7~V$, $V_R=10.3~V$ 。计算: (1) 耗尽层厚度; (2) 势垒电容; (3) 表面处的电场。 (硅相对介电常数 k=11.9, $\varepsilon_0=8.85\times 10^{-14}$, $q=1.6\times 10^{-19}~C$)。
- 2、已知肖特基二极管的下列参数: $\phi_m=5.0~eV$, $\chi_s=4.05~eV$, $N_c=10^{19}~cm^{-3}$, $N_d=10^{15}~cm^{-3}$ 。 忽略界面态密度,室温下计算: (1) 零偏时的势垒高度、内建电势差、耗尽层宽度; (2)0.3 V 正偏时的热电子发射电流密度。($V_T=0.026~V$,硅相对介电常数 k=11.9, $\varepsilon_0=8.85\times 10^{-14}$, $q=1.6\times 10^{-19}~C$, $R^*=120$)。
- 3、在一个金属-硅的接触中,势垒高度为 $q\phi_b=0.8~eV$,有效理查森常数为 $R^*=10^2~A/(cm^2\cdot K^2)$, $E_g=1.1~eV$, $N_d=10^{16}~cm^{-3}$, $N_c=N_v=10^{19}~cm^{-3}$ 。计算: (1) 室温 300 K,零偏时半导体的体电势 V_n 和内建电势差; (2) 假设 $D_p=15~cm^2/s$, $L_p=10~\mu m$,计算多数载流子电流对少数载流子电流的注入比。($V_T=0.026~V$, $q=1.6\times 10^{-19}~C$)。