Chapter 6. Magnetic Fields in Matter

6.1	Magne	etization
	6.1.1	Diamagnets, Paramagnets, Ferromagnets
	6.1.2	Torques and Forces on Magnetic Dipoles
	6.1.3	Effect of a Magnetic Field on Atomic Orbits
	6.1.4	Magnetization
6.2	The Fi	eld of a Magnetized Object
	6.2.1	Bound Currents
	6.2.2	Physical Interpretation of Bound Currents
	6.2.3	The Magnetic Field Inside Matter
6.3	The Ai	uxiliary Field H
	6.3.1	Ampère's law in Magnetized Materials
	6.3.2	A Deceptive Parallel
	6.3.3	Boundary Conditions
6.4	Linear	and Nonlinear Media
	6.4.1	Magnetic Susceptibility and Permeability
	6.4.2	Ferromagnetism

6.3 The Auxiliary Field H

6.3.1 Ampere's law in Magnetized Materials

$$\mathbf{J} = \mathbf{J}_b + \mathbf{J}_f. \qquad \mathbf{J}_b = \nabla \times \mathbf{M}$$

$$\frac{1}{\mu_0} (\nabla \times \mathbf{B}) = \mathbf{J} = \mathbf{J}_f + \mathbf{J}_b = \mathbf{J}_f + (\nabla \times \mathbf{M}) \longrightarrow \nabla \times \left(\frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\right) = \mathbf{J}_f$$

$$\mathbf{H} \equiv \frac{\mathbf{B}}{\mu_0} - \mathbf{M} \left(\mathbf{A}/\mathbf{m} \right)$$

$$\nabla \times \mathbf{H} = \mathbf{J}_f \left(\mathbf{A} / \mathbf{m}^2 \right)$$

$$\oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{enc}}$$
: Ampere's law

- \rightarrow where $I_{f_{enc}}$ is the total free current passing through the Amperian loop.
- → H permits us to express Ampere's law in terms of the free current alone.

(p. 271)

Many authors call **H**, not **B**, the "magnetic field."

Then they have to invent a new word for **B**: the "flux density," or magnetic "induction" (an absurd choice, since that term already has at least two other meanings in electrodynamics.)

Anyway, **B** is indisputably the fundamental quantity, so I shall continue to call it the "magnetic field," as everyone does in the spoken language.

H has no sensible name: just call it "**H**".

The unhappy term 'magnetic field' for H should be avoided as far as possible. It seems to us that this term has led into error none less than Maxwell himself.

Ampere's law in Magnetized Materials

$$\nabla \times \mathbf{H} = \mathbf{J}_f \qquad \mathbf{H} \equiv \mathbf{B} / \mu_0 - \mathbf{M}$$

Problem 6.7 An infinitely long circular cylinder carries a uniform magnetization **M** parallel to its axis. Find the magnetic field (due to **M**) inside and outside the cylinder.

Problem 6.8 A long circular cylinder of radius R carries a magnetization $\mathbf{M} = ks^2\phi$, where k is a constant, s is the distance from the axis. Find the magnetic field (due to \mathbf{M}) inside and outside the cylinder.

Ampere's law in Magnetized Materials

$$\nabla \times \mathbf{H} = \mathbf{J}_f \qquad \mathbf{H} \equiv \mathbf{B} / \mu_0 - \mathbf{M}$$

Example 6.2 A long copper rod of radius *R* carries a uniformly distributed (free) current *I*. Find *H* inside and outside the rod.

Ampere's law in Magnetized Materials $\nabla \times \mathbf{H} = \mathbf{J}_f$ $\mathbf{H} = \mathbf{B} / \mu_0 - \mathbf{M}$

Problem 6.13 Suppose the field inside a large piece of magnetic material is Bo, so that $H_0 = (1/\mu_0)B_0 - M$.

(a) Now a small spherical cavity is hollowed out of the material. Find the field at the center of the cavity, in terms of $\mathbf{B_0}$ and \mathbf{M} . Also find \mathbf{H} at the center of the cavity, in terms of $\mathbf{H_0}$ and \mathbf{M} .

(b) Do the same for a long needle-shaped cavity running parallel to M.

(c) Do the same for a thin wafer-shaped cavity perpendicular to M.

6.3.2 A Deceptive Parallel

$$\nabla \times \mathbf{B} = \mathbf{J} = \mathbf{J}_f + \mathbf{J}_b \longrightarrow \mathbf{H} \equiv \mathbf{B} / \mu_0 - \mathbf{M} \longrightarrow \nabla \times \mathbf{H} = \mathbf{J}_f$$

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$$

 \rightarrow It does *not* say that $\mu_0 \mathbf{H}$ is "just like \mathbf{B} , only its source is \mathbf{J}_f instead of \mathbf{J} ."

$$\nabla \cdot \mathbf{B} = 0 \longrightarrow \nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M} \neq \mathbf{0}$$

- → The divergence of **H** is *not*, in general, zero.
- \rightarrow Only when the divergence of M vanishes is the parallel between B and μ_0 H faithful.

When you are asked to find B or H in a problem involving magnetic materials, first look for symmetry.

If the problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, Then you can get \mathbf{H} directly from $\nabla \mathbf{x} \mathbf{M} = \mathbf{J}_f$ by the usual Ampere's law methods. (Evidently, in such cases $\nabla \mathbf{M}$ is automatically zero, since the free current alone determines the answer.)

If the requisite symmetry is absent, you **must not assume** that **H** is zero just because you see no free current.

6.3.3 Boundary conditions

$$\nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M} \qquad \longrightarrow \qquad H_{\text{above}}^{\perp} - H_{\text{below}}^{\perp} = -(M_{\text{above}}^{\perp} - M_{\text{below}}^{\perp})$$

$$\nabla \times \mathbf{H} = \mathbf{J}_{f} \qquad \longrightarrow \qquad H_{\text{above}}^{\parallel} - H_{\text{below}}^{\parallel} = \mathbf{K}_{f} \times \hat{\mathbf{n}}.$$

$$\begin{aligned} \mathbf{D}_{\text{above}}^{\parallel} - \mathbf{D}_{\text{below}}^{\parallel} &= \mathbf{P}_{\text{above}}^{\parallel} - \mathbf{P}_{\text{below}}^{\parallel} \\ D_{\text{above}}^{\perp} - D_{\text{below}}^{\perp} &= \sigma_f \end{aligned}$$

$$\mathbf{E}_{\text{above}}^{\parallel} - \mathbf{E}_{\text{below}}^{\parallel} &= 0$$

$$\mathbf{E}_{\text{above}}^{\perp} - \mathbf{E}_{\text{below}}^{\perp} &= \frac{1}{\epsilon_0} \sigma$$

$$(\sigma = \sigma_f + \sigma_b)$$

Boundary conditions

Problem 6.26 At the interface between two linear magnetic materials, the magnetic field lines bend.

Show that $\mu_1 \tan \theta_2 = \mu_2 \tan \theta_1$ (Assume there is no free current at the boundary.)

For electric field lines

$$\mathbf{E}_{\text{above}}^{\parallel} - \mathbf{E}_{\text{below}}^{\parallel} = \mathbf{0} \longrightarrow E_{x_1} = E_{x_2}$$

$$D_{\text{above}}^{\perp} - D_{\text{below}}^{\perp} = \sigma_f = 0 \longrightarrow D_{y_1} = D_{y_2} \longrightarrow \epsilon_1 E_{y_1} = \epsilon_2 E_{y_2}$$

$$\frac{\tan \theta_2}{\tan \theta_1} = \frac{E_{x_2}/E_{y_2}}{E_{x_1}/E_{y_1}} = \frac{E_{y_1}}{E_{y_2}} = \frac{\epsilon_2}{\epsilon_1} \longrightarrow \varepsilon_1 \tan \theta_2 = \varepsilon_2 \tan \theta_1$$

6.4 Linear and Nonlinear Media

6.4.1 Magnetic Susceptibility and Permeability

For most substances the magnetization is *proportional* to the field, provided the field is not too strong.

 $\mathbf{M} = \chi_m \mathbf{H}$: for linear media

 χ_m : magnetic susceptibility

Material	Susceptibility	Material	Susceptibility
Diamagnetic:		Paramagnetic:	
Bismuth	-1.6×10^{-4}	Oxygen	1.9×10^{-6}
Gold	-3.4×10^{-5}	Sodium	8.5×10^{-6}
Silver	-2.4×10^{-5}	Aluminum	2.1×10^{-5}
Copper	-9.7×10^{-6}	Tungsten	7.8×10^{-5}
Water	-9.0×10^{-6}	Platinum	2.8×10^{-4}
Carbon Dioxide	-1.2×10^{-8}	Liquid Oxygen (-200° C)	3.9×10^{-3}
Hydrogen	-2.2×10^{-9}	Gadolinium	4.8×10^{-1}

$$\mathbf{B} = \mu_0 \left(\mathbf{H} + \mathbf{M} \right) = \mu_0 \left(1 + \chi_m \right) \mathbf{H}$$

$$\mu \equiv \mu_0 \left(1 + \chi_m \right)$$
 : permeability

$$\mu / \mu_0 \equiv \mu_r = (1 + \chi_m)$$
 : relative permeability

$$\mathbf{B} = \mu \mathbf{H}$$

Permeability

The permeability of most materials is very close to that of free space, μ_0 For ferromagnetic materials such as iron, nickel and cobalt, $(\mu / \mu_0) >> 1$

Magnetic Materials: Diamagnets, Paramagnets, Ferromagnets

- Diamagnetic, if $\mu_r \le 1$ magnetization opposite to B
 - $\chi_{\rm m} \sim -10^{-5}$
 - the orbital motion of the electrons
 - · Copper, germanium, silver, gold

- $\chi_{\rm m} \sim 10^{-5}$
- Magnetic dipole moments of the spinning electrons
- Aluminum, magnesium, titanium and tungsten

- $\chi_{\rm m} >> 1 \ (100 \sim 100,000)$
- Magnetized domains (strong coupling forces between the magnetic dipole moments of the atoms
- Nickel, cobalt, iron (pure), mumetal

(a) Unmagnetized domains

(b) Magnetized domains

Analogous Relation

• Electrostatics and Magnetostatics

Electrostatics	Magnetostatics
Е	В
D	Н
3	1/μ
Р	- M
ρ	J
V	A
•	×
×	•

Magnetic Susceptibility and Permeability in linear media

Example 6.3

An infinite solenoid (n turns per unit length, current I) is filled with linear material of susceptibility χ_m . Find the magnetic field inside the solenoid and the bound current.

$$\nabla \times \mathbf{B} = \mathbf{J}_f + \mathbf{J}_b$$
 \rightarrow We cannot compute it directly due to $\mathbf{J_b}$.

 \rightarrow This is one of those symmetrical cases in which we can get H from J_f alone.

$$\nabla \times \mathbf{H} = \mathbf{J}_f \rightarrow \oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{enc}}$$

Magnetic Susceptibility and Permeability in linear media

Problem 6.17 A current *I* flows down a long straight wire of radius *a*.

If the wire is made of linear material with susceptibility χ_m and the current is distributed uniformly, what is the magnetic field a distance s from the axis?

 χ_m

Find all the bound currents.

What is the *net* bound current flowing down the wire?

The magnetic field:

The bound currents:

The net bound current:

6.4.2 Ferromagnetism

Ferromagnets require no external fields to sustain the magnetization; the alignment is "frozen in."

Like paramagnetism, ferromagnetism involves the magnetic dipoles associated with the spins of unpaired electrons.

- → Each dipole "likes" to point in the same direction as its neighbors.
- → It would look something with all the spins pointing the same way.
- → the alignment occurs in relatively small patches, called **domains**.
- → but the domains *themselves* are randomly oriented.

Hysteresis loops

Magnetic recording

Ferromagnetic materials

Curie temperature (Curie Point): Demagnetization temperature (100 ~ 770°C)

- → Very high temperatures do destroy the alignment.
- → What is surprising is that this occurs at a precise temperature (770°C, for iron).
- → These abrupt changes in the properties of a substance, occurring at sharply defined temperatures, are known in statistical mechanics as **phase transitions**.

Problem 6.20 How would you go about demagnetizing a permanent magnet (at point c in the hysteresis loop)? That is, how could you restore it to its original state, with M = 0 at I = 0?

Parallelism between (E, D) and (B, H)

Problem 6.23 Notice the following parallel:

$$\begin{cases} \nabla \cdot \mathbf{D} = 0, & \nabla \times \mathbf{E} = 0, & \epsilon_0 \mathbf{E} = \mathbf{D} - \mathbf{P}, \\ \nabla \cdot \mathbf{B} = 0, & \nabla \times \mathbf{H} = 0, & \mu_0 \mathbf{H} = \mathbf{B} - \mu_0 \mathbf{M}, & \text{(no free charge)}; \\ \mathbf{D} \to \mathbf{B}, \mathbf{E} \to \mathbf{H}, \mathbf{P} \to \mu_0 \mathbf{M}, \epsilon_0 \to \mu_0 \end{cases}$$

: Use these relations to turn an electrostatic problem into an analogous magnetostatic one.

(a) the magnetic field inside a uniformly magnetized sphere

The electric field inside a uniformly polarized sphere,

$$\mathbf{E} = -\frac{1}{3\epsilon_0}\mathbf{P}$$

(b) the magnetic field inside a sphere of linear magnetic material in an otherwise uniform magnetic field

The electric field inside a sphere of linear dielectric in an otherwise uniform electric field is

$$\mathbf{E} = \frac{1}{1 + \chi_e/3} \mathbf{E}_0$$