北京邮电大学 2014-2015 学年第 | 学期

《通信原理》期末考试试题(A卷)

考 一、参加考试须带学生证或学院证明,未带者不准进入考场。

二、必须按照监考教师指定座位就坐。

注 三、书本、参考资料、书包等与考试无关的东西一律放到考场指定位置。

意 □ 四、不得自行携带草稿纸,本试卷的背页以及最后一页可作为草稿纸。

事 五、答题必须写在规定的位置,也可做在背面并有清晰标注,不能做在草稿纸上。

项 六、不得使用计算器。

试

考试课程	通信	 原理	考试印	寸间	2015 年 1 月 16 日				
题号			111	三四		五.	六	总分	
满分	26	10	14	16	16		18	100	
得分									
阅卷教师									

部分公式及默认条件:

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt$$

若随机变量 X 在[-a, +a]内均匀分布,则其方差为 $\frac{(2a)^2}{12} = \frac{a^2}{3}$

 $n_{\rm w}(t)$ 是均值为零、双边功率谱密度为 $\frac{N_0}{2}$ 的白高斯噪声

发送数据默认是独立等概的二进制序列

默认假设载波频率fc充分大

讲制数 M 默认是 2 的整幂

一. 选择填空(每题1分,最高得26分)

将最佳答案写在下面的答题表中、写在别处不得分

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案										
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案										
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案										

姓名:	班级	:	班内序	琴号:	学号						
1. 设 8PS						平均每符号能量是 <u>(1)</u>					
焦耳,	平均发送功率是(2	<u>2)</u> 瓦。									
(1)(2)	(A) 1/3	(B) 1		(C) 2		(D) 3					
2. 设数据	速率是 10kb/s。若	基带采用矩形	脉冲,OO	K 信号的主	上瓣带宽悬	是 <u>(3)</u> ;若基带采用滚					
降因子	为 0.5 的根号升余	弦滚降,OOK	信号的带	宽是 <u>(4)</u> 。							
(3) (4)	(A) 5kHz	(B) 10kHz	((C) 15kHz		(D) 20kHz					
3. 设数据	3. 设数据速率是 10kb/s。正交 2FSK 的两个频率之差最小是(5)kHz。正交 4FSK 相邻频率之										
差最小是 <u>(6)</u> kHz。											
(5) (6)	(A) 2.5kHz	(B) 5kHz		(C) 10kHz		(D) 20kHz					
4. 假设 O	4. 假设 OQPSK 的比特间隔是 T_{b} , 复包络是 $s_{\mathrm{L}}(t)=I(t)+\mathrm{j}Q(t)$ 。 $I(t),Q(t)$ 这两个随机										
过程的	关系是 <u>(7)</u> 。										
(7)	(A) $Q(t) = I(t)$			- ()	希尔伯特变换						
(1)	(C) $I(t), Q(t)$	相关		(D) $I(t)$ -	+jQ(t)是	上解析信号					
5. 若 OOI	K 信号的载频为 1	MHz,发送功	率为 1W。	那么 OOK	【信号的单	单边功率谱密度中包					
含冲激	(线谱分量), 其	频率是 <u>(8)</u> MHz	,冲激强原	度是 <u>(9)</u> W。							
(8) (9)	(A) 0.25	(B) 0.5		(C) 1		(D) 2					
6. QPSK 5.	是两个载频正交的 <u>(</u>	<u>(10)</u> 之和。									
(10)	(A) OOK	(B) 2FSK		(C) 2PSK		(D) DPSK					
						因素引起的相移,设 ψ 的可能取值是 (11) 。					
(11)	(A) 0	(Β) π	(C) 0 或7	π (D) 区间[0,	,π]内的任意值					
8. 对 DPS	K 进行差分相干解	驿调时, <u>(12)</u> 。									
	(A) 发送端需要技	 插入导频									
(12)	(B) 接收端需要原	 月平方环提取札	目干载波								
(12)	(C) 接收端需要原	用科斯塔斯环热	是取相干载	波							
	(D) 以上都不需要	要									

9. 下列星座图中<u>(13)</u>是 4ASK, <u>(14)</u>是 8QAM, <u>(15)</u>是 8PSK, <u>(16)</u>是 16QAM, 其中的<u>(17)</u> 不满足格雷码映射规则。

10. 对于格雷映射的 8PSK, 若误符号率是 0.0003, 则误比特率近似是(18)。

(18) (A) 0.0001	(B) 0.0003	(C) 0.0006	(D) 0.0024
-----------------	------------	------------	------------

11. 下图是某 8PSK 系统发送信号的单边功率谱密度图。由图可知,该系统基带脉冲成形采用的是(19)的脉冲,数据速率是(20)Mb/s,频带利用率是(21)b/s/Hz。

	(19)	(A) 时域为矩形	3	(B) 频域为矩形		
		(C) 频域为根号升余弦滚降特性			(D) 频域为升余弦滚降特性	
	(20) (21)	(A) 1.5	(B) 2	(C)	2.25	(D) 4.5

姓名:

班级:

班内序号:

学号

12. 将二进制数据先进行差分编码,然后进行(22)调制,便形成了 DPSK。接收端先进行理想相干解调,然后进行差分译码。假设理想相干解调的误比特率是 0.0002,那么差分译码之后的误比特率近似是(23)。

(22)	(A) OOK	(B) 2PSK	(C) QPSK	(D) 2FSK
(23)	(A) 0	(B) 0.0001	(C) 0.0002	(D) 0.0004

13. 设OOK、2PSK和QPSK已调信号的主瓣带宽相同,载波幅度分别是 A_{OOK} 、 A_{2PSK} 和 A_{QPSK} 。若在相同噪声功率谱密度 N_0 的条件下最佳接收的误比特率相同,则 $\frac{A_{OOK}}{A_{2PSK}} = \underline{(24)}$,

 $\frac{A_{\text{OOK}}}{A_{\text{QPSK}}} = \underline{(25)}_{\circ}$

(24) (25) (A) 1

(B) $\sqrt{2}$

(C) 2

(D) 4

14. 下列调制方式中,只能相干解调的是(26)。

(26) (A) OOK

(B) 2DPSK

(C) 2FSK

(D) 2PSK

15. 二进制码组(1011001)与(1010000)之间的汉明距离是(27)。

(27) (A) 0

(B) 1

(C) 2

(D) 3

16. 某线性分组码的最小码距是 5, 该码可以保证纠正(28)位错。

(28) (A) 1

(B) 2

(C) 3

(D) 4

17.线性分组码的生成矩阵为 $G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$,其校验矩阵为 (29)。

随式(校正子) $s = yH^{T}$ 为_(30)。

(30) (A) 111 (B) 000 (C) 001 (D) 110

二. 判断题(每题1分,最高得10分)

答题表后面有 12 个小题。判断每个小题的称述是否正确。对于第 k 题,如果认为正确,就在答案 c_k 行中对应的序号下填 1,否则填 0。例如第 12 题的称述是正确的,故 c_{12} =1。

答题表

题号 k	1	2	3	4	5	6	7	8	9	10	11	12
答案 c_k												1

- 1. 无论发送数据是否为独立等概序列, DPSK 与 2PSK 有相同的功率谱密度。
- 2. 2FSK 的两个波形之间的归一化相关系数最小可以小于零。
- 3. 与 QPSK 相比, OQPSK 改善了包络起伏, 但频带利用率略有下降。
- 4. 固定星座点之间的最小距离,MQAM星座图中的点数 M增加一倍时,平均符号能量也增加一倍。
- 5. 对于固定的 E_s/N_0 ,MFSK 的误符号率随着 M 的增加而增加。
- 6. 对于固定的 E_s/N_0 , MQAM 的误符号率随着 M 的增加而增加。
- 7. 假设 A 律十三折线编码器的动态范围是±4096 个量化单位。若输入样值是+2015 量化单位,则编码输出是 11111001。
- 8.16QAM 可以采用差分相干解调。
- 9. 假设 2FSK 的在 $[0, T_b]$ 内的两个信号是 $s_1(t) = \cos 2\pi f_1 t$ 和 $s_2(t) = \cos 2\pi f_2 t$ 。若频差 $|f_1 f_2| = \frac{1}{2T_b}$ 时的误比特率是 P_1 ,频差 $|f_1 f_2| = \frac{1}{4T_b}$ 时的误比特率是 P_2 ,则 $P_2 > P_1$ 。
- 10. A 律或 μ 律对数量化与 Lloyd-Max 最佳量化等价。
- 11. 对于任意的(n,k)线性分组码(1 < k < n),其校验矩阵 H 的所有列线性相关。
- 12. 答题表中的 $c_1c_2\cdots c_{12}$ 构成了一个偶校验码。

姓名: 班级: 班内序号: 学号 三. (14 分) 某二进制调制系统在 $[0,T_b]$ 内等概发送 $s_1(t)=f_1(t)$ 或 $s_2(t)=-f_1(t)$ 之一, 其中 $f_1(t) = \sqrt{\frac{2}{T_{\rm b}}}\cos 2\pi f_{\rm c} t$ 是归一化基函数。发送信号叠加了白高斯噪声 $n_{\rm w}(t)$ 后成为 $r(t)=s_i(t)+n_{
m w}(t)$ 。接收框图如下所示,其中 $y=\int_0^{T_{
m b}}r(t)f_1(t){
m d}t$, $V_{
m T}$ 是判决门限, $y\geq V_{
m T}$ 时判发 $s_1(t)$, 否则判发 $s_2(t)$ 。

- (1) 求发送 $s_1(t)$ 条件下 y 的均值、方差,写出条件概率密度函数 $p(y|s_1)$;
- (2) 令 q_1 、 q_2 分别表示发送 $s_1(t)$ 、 $s_2(t)$ 条件下的错判概率。若 V_T =0,试求 q_1 、 q_2 以及平均误 比特率 P_0 ;
- (3) 若 V_T =1, 试求 q_1 、 q_2 。

四. (16 分)下图是归一化正交基下的八进制星座图,8个星座点等概出现。图(a)是 8PSK,图中圆的半径是 1。图(b)的星座图上下左右对称,外圆半径是 1, s_7 与 s_1 、 s_2 、 s_6 、 s_8 等距离。

- (1) 在图(a)中标出星座点 s_1 的最佳判决域,并求星座点之间的最小欧氏距离 d_{\min} ;
- (2) 在图(b)中标出星座点 s_1 的最佳判决域示意图,并求出内圆半径、此星座图的平均符号 能量 E_s 以及星座点之间的最小欧氏距离 d_{min} ;
- (3) 若 E_a/N_0 相同,图(a)和图(b)所对应的两个调制系统中哪个的误符号率低?
- (4) 若误符号率相同,图(a)和图(b)所对应的两个调制系统中,哪个的误比特率低?

五.(16 分)设 X 在区间(0,8)内均匀分布。将 X 通过一个 4 电平量化器后成为 $Y = Q(X) \in \{y_1, y_2, y_3, y_4\}$ 。对于k = 1, 2, 3, 4,当 X 的取值在区间[x_{k-1}, x_k]时,Y 的取值是 $y_k = \frac{1}{2}(x_k + x_{k-1})$,其中 $x_0 = 0$ 、 $x_4 = 8$ 。

- (1) 写出 X 的概率密度函数 p(x),求 X 的平均功率 $S = \mathbb{E}[X^2]$;
- (2) 若Q(X)是均匀量化,写出 y_1, y_2, y_3, y_4 的值,求量化后信号的功率 $S_q = \mathbb{E}[Y^2]$ 以及量化噪声功率 $N_q = \mathbb{E}[(X Y)^2]$;
- (3) 若对于k=1,2,3, $x_k=2^{k-1}$,写出 y_1,y_2,y_3,y_4 的值,求量化后信号的功率 $S_q=\mathbb{E}[Y^2]$ 以及量化噪声功率 $N_q=\mathbb{E}[(X-Y)^2]$ 。

六.(18 分)下图中 $m_1(t)$ 是基带信号,其最高频率为 f_1 ; $m_2(t)$ 是带通信号,其频谱范围是 [5kHz, f_2]。图中的采样速率都是 8kHz。 $m_1(t)$ 的样值采用 A 律十三折线编码,输出速率是 R_1 ; $m_2(t)$ 的样值采用 128 电平的均匀量化编码,输出速率是 R_2 。 R_1 、 R_2 与另外一路速率为 R_3 的数据复用为一路速率为 R_b =160kb/s 的数据。然后经 MQAM 调制后通过一个带宽为 50kHz 的频带信道传输。

- (1) 求 R_1 、 R_2 、 R_3 的数值;
- (2) 求能使采样不发生频谱混叠的最大 f_1 、 f_2 值;
- (3) 确定 MQAM 的进制数 M 及滚降因子 α ; (要求 M 尽量小, α 尽量大);
- (4) 画出 MQAM 调制及解调框图。