

ISLAMIC UNIVERSITY OF TECHNOLOGY

Course Outline and Course Plan

Name of the Teacher	Md Nazmul Haque	Position	Lecture	r		
Department	Computer Science an	Programme	B. Sc. in Software Engineering			
Course Code	SWE 4739	Course Title	Embedded Software Development			
Academic Year	2021- 2022		Semester	7 th		
Contact Hours	3.0		Credit Hours	3.0		
Text books and Reference books (if any)	1. Introduction to Embe 2. Linkers and Loaders	Authors of the books	1. E. A. Lee and S. A. Seshia 2. John R. Levine			
Prerequisites (If any)		Curriculum Requirement	Compulsory			
Course Homepage						
Teaching Mathematical	Lecture Group discussion		on Demonstration Problem solving			
Methods/ Approaches	✓ Project	Others: Presenta	tion by Students			
Teaching aids	Multi-media	media OHP		d Marker	Others	

	Course Assessment Method									
Attendance (10%)		Quiz 15	Mid Semester (25%)	Semester Final (50%)						
	1 st Quiz 2 nd Quiz 3 rd Quiz 4 th Quiz Others				ners	Week/Date	Week/Date			
Evaluate based	Week/Date	Week/Date	Week/Date	Week/Date	Assignment	Homework	week/Date	week/Date		
on the participation in the class	4 th Week	7 th Week			2 Assignments in replacement of Quiz	Will be given accordingly		As per Schedule of IUT		

Course Contents and Objectives	Contents This course covers computing elements, structures in embedded software, resource access protocols, uniprocessor scheduling, programming-language support, languages for model-driven development, worst-case execution time analysis, and overview of embedded distributed systems. Other topics include specification and design of embedded systems, specification languages, hardware/software codesign, performance estimation, co-simulation, embedded architectures, processor architectures and software synthesis, system-on-a-chip paradigm, retarget able code generation and optimization, verification and validation, environmental issues and considerations. Objectives
--------------------------------------	--

Course Outcomes	Course Outcomes (COs) CO1 - Explain CO2 - Calculate CO3 - Design
--------------------	---

	Weekly plan for course content					
Weeks	Topics	Task/Reading				
1	Introduction	Embedded Environment, Cross compilation, Tool-Chain				
2	Linkers and Loaders	Assembly, Linking, Loading, Debugging				
3	Embedded Software Development Process	Edit-Test-Debug Cycle, agile development, Testing				
4	Real time Systems	Hard and Soft Real- time systems, real time scheduling				
5	Embedded Processors and Memory Architecture	Processor architecture, DSP processor, memory, overlay				
6	Program Verification	Formal verification methods				
7	Discussions and Presentations					

Mapping of COs and POs

C (CO)		Program Outcomes (POs)										
Course Outcome (CO)	1	2	3	4	5	6	7	8	9	10	11	12
CO1:	$\sqrt{}$											
CO2:		V										
CO3:			V									

Program Outcomes (POs: PO1 ~ PO12)

PO No.	Program Outcomes (POs)
	Students graduating from the Bachelor of Science in Computer Science and Engineering (B.Sc. in CSE) program, upon graduation students will have the ability to:
PO1	Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4)
PO3	Design/development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)
PO4	Investigation: Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
PO5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6)
PO6	The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)
PO7	Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
PO9	Individual work and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Class Schedule

Day	Slot A	Slot B
Tuesday	10:00 AM - 11:130 AM	2:30 PM – 3:40 PM
Thursday	11:30 AM – 12:40 PM	2:30 PM – 3:40 PM

Instructor contact details:

Md Nazmul Haque

Lecturer

Department of Computer Science and Engineering (CSE)

Islamic University Of Technology (IUT)

Room: 504 Second Academic Building, Mobile: 01521219023,

E- mail: nazmul.haque@iut-dhaka.edu