Exam R lectures

August 23, 2016, 9.00; Prof. An Carbonez

At the end of the exam: upload the R script file (with extension .R) on Toledo > Assignment > upload R part.

BE SURE THAT THE FIRST LINE OF YOUR R SCRIPT CONTAINS YOUR NAME

We use the dataframe diamonds from the package ggplot2.

Variable	Description		
name			
price	Price in \$		
carat	Weight of diamond		
cut	Quality of cut (fair, good,		
	very good, premium,		
	ideal)		
color	Diamond colour,from J		
	(worst) to D (best)		
clarity	How clear the diamond is		

- 1. Use diamonds data frame
 - a. Create a subset diamonds_small with only the first 5000 observations. For all later questions, we only work with this diamonds_small data frame (unless specified otherwise).
 - b. Create a new variable **cut_new** by using the ifelse function in R(see table below)

cut	Cut_new
Ideal	Above average
Premium	Above average
Very Good	Very Good
Good	Below average
Fair	Below average

c. Create a data frame **diamonds_2** with only those variables specified in the view below.

> head(diamonds_2)

	carat	color	clarity	price		cut_new
1	0.23	E	SI2	326	Above	average
2	0.21	E	SI1	326	Above	average
3	0.23	Ε	VS1	327	Below	average

- d. Write these data from *diamonds_2* to an .txt file with names *diamonds.txt*.
- 2. Use the data frame **diamonds_2** (in case you were not able to make diamonds_2, then start with diamonds_small data frame)
 - a. Compute the average price for every combination of color and cut_new. Save these averages in a data frame **result**.

b. Create a data frame **combine** by combining the original data frame *diamonds_2* with the *result* data frame so that for every diamond, you see the price and next to it also the average price (based on combination of color and cut_new).

> head(combine)

```
color cut_new price price.m

D Above average 3217 2986.286

D Above average 2991 2986.286

D Above average 3509 2986.286

Above average 3160 2986.286
```

- c. Based on the information from *result* data frame. Create a green grouped box plot for *price.m* as below with *color* as grouping factor.
- d. Add the average of price.m per color as a red dot on each box plot. See below.

3. Write a function *fun1* which produces the text 'Non-negative number' if you apply fun1 to a positive number and 'negative number' if you apply fun1 to a negative number. Apply this function to the values 9 and -13 so that the result looks as:

```
> x <- 9
> fun1(x)
[1] "Non-negative number"
> x <- -13
> fun1(x)
[1] "Negative number"
```