Xiaoying Li

CS-225: Discrete Structures in CS

Homework Assignment 4, Part 1

Exercise Set 6.1: Question # 12, 16

Exercise Set 6.2: Question # 4, 10, 14

Exercise Set 6.3: Question # 12, 37, 42

• Set 6.1 – Q#12

a.
$$A \cup B = \{x \in R | -3 \le x < 2\}$$

b.
$$A \cap B = \{x \in R | -1 < x \le 0\}$$

c.
$$A^c = \{x \in R | x < -3 \text{ or } x > 0\}$$

d.
$$A \cup C = \{x \in R | -3 \le x \le 0 \text{ or } 6 < x \le 8\}$$

e.
$$A \cap C = \emptyset$$

f.
$$B^c = \{x \in R | x \le -1 \text{ or } x \ge 2\}$$

g.
$$A^c \cap B^c = \{x \in R | x < -3 \text{ or } x \ge 2\}$$

h.
$$A^c \cup B^c = \{x \in R | x \le -1 \text{ or } x > 0\}$$

i.
$$(A \cap B)^c = \{x \in R | x \le -1 \text{ or } x > 0\}$$

j.
$$(A \cup B)^c = \{x \in R | x < -3 \text{ or } x \ge 2\}$$

• Set 6.1 – Q#16

b.
$$A \cap (B \cup C) = \{b, c\}$$

$$(A\cap B)\cup C=\{b,c,e\}$$

$$(A \cap B) \cup (A \cap C) = \{b, c\}$$

Hence $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

c.
$$(A - B) - C = \{a\}$$

$$A - (B - C) = \{a, b, c\}$$

Hence $(A - B) - C \neq A - (B - C)$.

● Set 6.2 – Q#4

- (a) $A \cup B \subseteq B$, every element in $A \cup B$ is in B
- (b) $A \cup B$
- (c) $x \in B$
- (d) A
- (e) or
- (f) B
- (g) A
- (h) B
- (i) B

• Set 6.2 – Q#10

Suppose A, B and C are any sets. To show that $(A - B) \cap (C - B) = (A \cap C) - B$, we must show that $(A - B) \cap (C - B) \subseteq (A \cap C) - B$ and that $(A \cap C) - B \subseteq (A - B) \cap (C - B)$. To show $(A - B) \cap (C - B) \subseteq (A \cap C) - B$:

Suppose that x is any element in $(A - B) \cap (C - B)$, we must show that $x \in (A \cap C) - B$. By definition of intersection, $x \in A - B$ and $x \in C - B$. Then by definition of set difference, $x \in A$ and $x \notin B$ and $x \in C$ and $x \notin B$, then we have that $x \in A$ and $x \in C$ and $x \notin B$. By definition of intersection, $x \in A \cap C$. Hence $x \in A \cap C$ and $x \notin B$, and so, by definition of set difference, $x \in (A \cap C) - B$. So $(A - B) \cap (C - B) \subseteq (A \cap C) - B$. To show $(A \cap C) - B \subseteq (A - B) \cap (C - B)$:

Suppose that y is any element in $(A \cap C) - B$, we must show that $y \in (A - B) \cap (C - B)$. By definition of set difference, $y \in A \cap C$ and $y \notin B$. Then by definition of intersection, $y \in A$ and $y \in C$. Because $y \in A$ and $y \notin B$, so $y \in A - B$. Because $y \in C$ and $y \notin B$, so $y \in C - B$. Then we have that $y \in A - B$ and $y \in C - B$. By definition of intersection, $y \in (A - B) \cap (C - B)$. So $(A \cap C) - B \subseteq (A - B) \cap (C - B)$.

So as was to be shown, $(A - B) \cap (C - B) = (A \cap C) - B$.

● Set 6.2 – Q#14

Suppose A, B and C are any sets and $A \subseteq B$. Let $x \in A \cup C$. To show that $A \cup C \subseteq B \cup C$, we must show that $x \in B \cup C$. By definition of union, $x \in A$ or $x \in C$.

Case 1 $(x \in A)$:

Since $A \subseteq B$ and $x \in A$, then $x \in B$ by definition of subset. Hence $x \in B$ or $x \in C$, and so, by the definition of union, $x \in B \cup C$.

Case 1 $(x \in C)$:

Because $x \in C$, we have that $x \in B \cup C$ by definition of union.

Thus, in both cases, $x \in B \cup C$, by definition of subset, $A \cup C \subseteq B \cup C$.

• Set 6.3 – Q#12

Suppose A, B and C are any sets. To show that $A \cap (B - C) = (A \cap B) - (A \cap C)$, we must show that $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$, and that $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$. To show $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$:

Suppose that x is any element in $A \cap (B - C)$, we must show that $x \in (A \cap B) - (A \cap C)$. By definition of intersection, $x \in A$ and $x \in B - C$. Then by definition of set difference, $x \in B$ and $x \notin C$. Then we have that $x \in A$ and $x \in B$, by definition of intersection, $x \in A \cap B$. And we also have that $x \notin C$, by definition of intersection, $x \notin A \cap C$. Hence, $x \in A \cap B$ and $x \notin A \cap C$, by definition of set difference, $x \in (A \cap B) - (A \cap C)$. So $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$.

To show $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$:

Suppose that y is any element in $(A \cap B) - (A \cap C)$, we must show that $y \in A \cap (B - C)$. By definition of set difference, $y \in A \cap B$ and $y \notin A \cap C$. Then by definition of intersection, $y \in A$ and $y \in B$ for $y \in A \cap B$, $y \notin A$ or $y \notin C$ for $y \notin A \cap C$. Then we have that $y \in A$ and $y \in B$ and $y \notin C$. By definition of set difference, $y \in B - C$ because $y \in B \ and \ y \notin C$. Also $y \in A$, by definition of intersection, $y \in A \cap (B - C)$. So $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$.

So as was to be shown, $A \cap (B - C) = (A \cap B) - (A \cap C)$.

• Set 6.3 – Q#37

$$(B^c \cup (B^c - A))^c$$

- $= (B^c \cup (B^c \cap A^c))^c$ by Set Difference Law
- $= (B^c)^c$ by Absorption Law
- = *B* by Double Complement Law

• Set 6.3 – Q#42

$$(A - (A \cap B)) \cap (B - (A \cap B))$$

- $= (A \cap (A \cap B)^c) \cap (B \cap (A \cap B)^c)$ by Set Difference Law
- = $(A \cap (A^c \cup B^c)) \cap (B \cap (A^c \cup B^c))$ by De Morgan's Law
- $= ((A \cap A^c) \cup (A \cap B^c)) \cap ((B \cap A^c) \cup (B \cap B^c))$ by Distributive Law
- $= (\emptyset \cup (A \cap B^c)) \cap ((B \cap A^c) \cup \emptyset)$ by Complement Law
- $= (A \cap B^c) \cap (B \cap A^c)$ by Identity Law
- $= (A \cap A^c) \cap (B \cap B^c)$ by Associative Law
- $= \emptyset \cap \emptyset$ by Complement Law
- = Ø by Universal Bound Law