Assignment - 2 Data Visualization and Data Preprocessing

Assignment Date	24 September 2022
Student Name	Meena Kaveri R
Student Roll Number	2019504549
Maximum Marks	2 Marks

Source Codes and corresponding outputs from Jupyter Notebook

1. Load The Necessary Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Load the Dataset

```
[140... df=pd.read_csv(r"Churn_Modelling.csv")
```

3. View the Dataset

41	df														
1		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	

10000 rows × 14 columns

```
In [142... df.head()
```

Out[142		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

103	df.tail()														
33		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
9	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

4. Data Visualization

a. Univariate Analysis

```
In [184... list(df.columns)
```

Output:

```
In [105...

df.hist(column=[
    'CreditScore',
    'Age',
    'Tenure',
    'Balance',
    'NumOfProducts',
    'HasCrCard',
    'IsActiveMember',
    'EstimatedSalary',
    'Exited'],bins=30, figsize=(15, 10))
```

Output:

Out[106...

In [107... sns.histplot(df.Gender,kde=True)

Out[107…

4.b. Bivariate Analysis

*Diagonal Plots are Univariate Plots, rest are Bivariate

4.c. Multivariate Analysis

```
In [110... sns.catplot(x='Geography', y='EstimatedSalary', hue='Tenure', data=df)
```



```
In [111...
sns.catplot(x='Exited', y='EstimatedSalary', hue='Gender', data=df)
```

Out[111...

In [112... sns.pairplot(df[['CustomerId', 'CreditScore', 'Geography','Gender', 'Age', 'Tenure']],hue='Geography')

5. Descriptive Statistics on Dataset

```
In [113... df.describe()
```

[113		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002,110000	0.000000
	50%	5000.50000	1.569074e+07	652,000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1,000000	199992.480000	1.000000

6. Handling Missing Values

```
In [114...
               df.isnull().any()
 Out[114... RowNumber
CustomerId
Surname
                              False
                             False
                              False
            CreditScore False
Geography False
Gender
            Gender
                              False
False
            Age
            Tenure
Balance
                             False
           NumOfProducts False
HasCrCard False
IsActiveM
            IsActiveMember False
            EstimatedSalary False
            Exited
                              False
            dtype: bool
            df.dtypes
In [115...
            df.isnull().sum()
Out[115...
           RowNumber
                                 0
           CustomerId
                                 0
           Surname
           CreditScore
                               0
           Geography
                                0
           Gender
                                0
           Age
                                0
                               0
           Tenure
           Balance
           NumOfProducts
                               0
           HasCrCard
                                0
           IsActiveMember
                                0
           EstimatedSalary
           Exited
                                 0
           dtype: int64
In [116...
      df.isnull()
```

Out[116		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	9995	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	9996	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	9997	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	9998	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	9999	False	False	False	False	False	False	False	False	False	False	False	False	False	False

10000 rows × 14 columns

*No Missing/Null values were present in the Dataset

7. Handling Outliers


```
In [145... sns.boxplot(x=df['Tenure'])
```

Out[145...

In [146... df.boxplot(column="EstimatedSalary")

Out[146...

*IsExited is a target variable and can't be dealt as an outlier, age is the next highest, hence it is considered

Out[149		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
	mean	5000,50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
	std	2886,89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1,00000	1.000000	100193.915000	0.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

In [150... sns.kdeplot(df["Age"])


```
In [151...
             q1 = df["Age"].describe()["25%"]
              q1
Out[151... 32.0
In [152...
             q3 = df["Age"].describe()["75%"]
             q3
Out[152... 44.0
 In [153...
              iqr = q3-q1 # iqr
              iqr
 Out[153... 12.0
 In [154... l_b = q1 -(1.5*iqr)
              u_b = q3 + (1.5*iqr)
 In [155...
 Out[155... 14.0
In [156...
Out[156... 62.0
 In [131...
              #handling the outliers
              #1 remove the rows
              #2 replace the outliers with (l_b,u_b,mean,meadian)
 In [157...
              df[df["Age"]<1_b]
Out [157... RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
In [158...
           df[df["Age"]>u_b]
```

Out[158		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	58	59	15623944	T'ien	511	Spain	Female	66	4	0.00	1	1	0	1643.11	1
	0.0	06	15005054	Meluleslau	650	Conin	Econolo	75	10	0.00	2	4	4	114675 75	0

58	59	15623944	T'ien	511	Spain	Female	66	4	0.00	1	1	0	1643.11	1
85	86	15805254	Ndukaku	652	Spain	Female	75	10	0.00	2	1	1	114675.75	0
104	105	15804919	Dunbabin	670	Spain	Female	65	1	0.00	1	1	1	177655.68	1
158	159	15589975	Maclean	646	France	Female	73	6	97259.25	1	0	1	104719.66	0
181	182	15789669	Hsia	510	France	Male	65	2	0.00	2	1	1	48071.61	0
9753	9754	15705174	Chiedozie	656	Germany	Male	68	7	153545.11	1	1	1	186574.68	0
9765	9766	15777067	Thomas	445	France	Male	64	2	136770.67	1	0	1	43678.06	0
9832	9833	15814690	Chukwujekwu	595	Germany	Female	64	2	105736.32	1	1	1	89935.73	1
9894	9895	15704795	Vagin	521	France	Female	77	6	0.00	2	1	1	49054.10	0
9936	9937	15653037	Parks	609	France	Male	77	1	0.00	1	0	1	18708.76	0

359 rows × 14 columns

```
In [138…
           \# replace the outliers with (l_b, u_b, mean, meadian)
In [160...
           outlier_list = list(df[df["Age"] > u_b]["Age"])
In [161...
            outlier_list
```

```
In [162...
             outlier_dict = {}.fromkeys(outlier_list,u_b)
             outlier_dict
Out[162... {66: 62.0,
            75: 62.0,
            65: 62.0,
            73: 62.0,
            72: 62.0,
            67: 62.0,
            79: 62.0,
            80: 62.0,
            68: 62.0,
            70: 62.0,
            63: 62.0,
            64: 62.0,
            82: 62.0,
            69: 62.0,
            74: 62.0,
            71: 62.0,
            76: 62.0,
            77: 62.0,
            88: 62.0,
            85: 62.0,
            84: 62.0,
            78: 62.0,
            81: 62.0,
            92: 62.0,
            83: 62.0}
In [163...
            df["Age"] = df["Age"].replace(outlier_dict)
In [165...
           sns.boxplot(df["Age"])
```

Out[165...


```
In [166... df[df["Age"]>u_b]
```

Out [166... RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

8. Check for Categorical columns and perform encoding

*Surname is also a Categorical Field, but do not affect the result of the model, hence it's not considered

```
In [170... from sklearn.compose import ColumnTransformer

In [171... from sklearn.preprocessing import OneHotEncoder

In [172... ct=ColumnTransformer([("oh",OneHotEncoder(),[1,2])],remainder="passthrough")
```

9. Split the data into dependent and independent variables.

```
In [173... x=df.iloc[:,3:13].values
In [174... x.shape
Out[174... (10000, 10)
In [175... y=df.iloc[:,13:14].values
In [176... y.shape
Out[176... (10000, 1)
```

*Is Exited is the only Independent variable, and Row number,ID and Surname are not necessary to be considered as a dependant variable

```
Out[180... ['churnct.pkl']
```

10. Split the data into training and testing

```
In [182... from sklearn.model_selection import train_test_split

In [187... x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

In [188... x_train.shape

Out[188... (8000, 13)

In [189... x_test.shape

Out[189... (2000, 13)
```

11. Scale the independent variables

```
In [190... from sklearn.preprocessing import StandardScaler

In [191... sc=StandardScaler()

In [192... x_train=sc.fit_transform(x_train) x_test=sc.transform(x_test)

In [193... joblib.dump(sc,"churnsc.pkl")

Out[193... ['churnsc.pkl']
```