le cnam

Révision CNAM 09/03/2023

UTC501 - Outils mathématiques pour Informatique le cnam Ile-de-France

1. Exercice

- 1. Effectuer la division euclidienne de 2002 par 6
- 2. Déterminer la congruence de 3^4 et 3^6 modulo 7
- 3. En déduire le reste de la division euclidienne de 91234^{2002} par 7.

1. Exercice

Soit l'équation diophantienne 12648 x + 7548 y = 204

x et y des entiers

Calculer PGCD (12648, 7548), ces deux entiers sont-ils premiers entre eux?
 L'équation 12648 x + 7548 y = 204 admet-elle une solution ? justifier votre réponse.

On divisera l'équation de départ par le PGCD trouvé.

- 2. Soit l'identité de Bézout, $62 \times + 37 y = 1$ En utilisant l'algorithme d'Euclide étendu, déterminer une solution particulière de l'équation
- Déterminer toutes les solutions de l'identité de Bézout, On utilisera le théorème de Gauss.
- 4. En déduire l'ensemble des solutions de l'équation diophantienne de départ.

2. Exercice

On veut coder un mot de deux lettres selon la procédure suivante :

Étape 1 : Chaque lettre du mot est remplacée par un entier en utilisant le tableau ci-dessous :

31110					T =	TA	Tu	TI	TI	IK	L	M
A	B	C	D	E	F	G	"			L		1
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	9	R	S	T	U	V	W	X	Y	Z
13	14	15	16	-20.5 N	18	19	20	21	22	23	24	25

On obtient un couple <u>d'entiers</u> (x_v x₂) où x₁ correspond à la première lettre du mot et x₂ correspond à la deuxième lettre du mot.

Étape 2: (x1, x2) est transformé en (y1, y2) tel que :

$$\begin{cases} y_1 = 11 \ x_1 + 3 \ x_2 \pmod{26} \\ y_2 = 7 \ x_1 + 4 \ x_2 \pmod{26} \end{cases}$$
(S1)
$$\begin{cases} y_2 = 7 \ x_1 + 4 \ x_2 \pmod{26} \\ \text{avec} \quad 0 < = y_1 < = 25 \quad \text{et} \quad 0 < = y_2 < = 25. \end{cases}$$

Étape 3: (y₁, y₂) est transformé en un **mot** de deux lettres en utilisant le tableau de correspondance donné dans l'étape 1.

Exemple:

Étape 1			étape 2	1	étape 3		
TE	→	(19,4)	→	(13,19)	-	NT	

- 1. Coder le mot ST.
- 2. On admet que le système (S1) est équivalent au système

$$\begin{cases} x_1 = 16 \ y_1 + 3 \ y_2 \ (\text{mod } 26) \\ x_2 = 11 \ y_1 + 5 \ y_2 \ (\text{mod } 26) \end{cases}$$

Décoder le mot YJ

3. Exercice: raisonnement

- 1. On souhaite montrer que si un entier n^2 est impair alors n est aussi impair
 - a. Ecrire et démontrer la contraposée de la proposition qu'on souhaite démontrer.
 - b. A-t-on démontré la proposition initiale ? justifier votre réponse.
- 2. Démontrer par récurrence que pour tout entier $n \ge 1$, on a

$$S_n = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

3. Fixons un réel $x \ge 0$. Montrer par récurrence que pour tout entier $n \ge 1$, $(1+x)^n \ge 1 + nx$

4. Exercice : Chaîne de Markov

Un équipement informatique possède trois modes de fonctionnement : actif, en veille ou à l'arrêt.

Dans le cadre d'une étude énergétique, on s'intéresse au processus décrivant le mode de fonctionnement au cours du temps.

Le basculement d'un mode de fonctionnement à un autre ne peut se faire que toutes les microsecondes.

On note X_n le mode de fonctionnement dans lequel l'équipement informatique se trouve à l'instant t_n correspondant à la nième microseconde d'observation.

Si à l'instant t_n l'équipement se trouve en mode veille, il restera encore en veille à l'instant suivar t_{n+1} avec une probabilité de **0,4** et il basculera en mode actif avec une probabilité de **0,6**.

Si à l'instant t_n l'équipement se trouve en mode actif, il y reste encore à l'instant suivant avec une probabilité de **0,2** et il bascule en mode veille avec une probabilité de **0,2**.

Enfin, si à l'instant t_n il est à l'arrêt, il y reste encore à l'instant suivant avec une probabilité de **0**, et il passe en mode actif avec une probabilité de **0.4**.

On suppose que le processus des modes de fonctionnement {Xn} peut être modélisé par un chaîne de Markov homogène. Le mode veille, actif et à l'arrêt sera représenté respectivement par l'état 1, 2 et 3.

- 1) Déterminer le graphe et la matrice P de transition.
- A l'instant initial, l'équipement se trouve en mode veille avec une probabilité de 1/4 et en mode actif avec une probabilité de 1/4.

Page 3 st

le cnam Ile-de-France

Révision CNAM 09/03/2023

UTC501 - Outils mathématiques pour Informatique

Ile-de-Fran

- a. Donner la distribution de probabilité initiale
- b. Quelle est la probabilité qu'il soit en mode actif 2 microsecondes plus tard ?
- 3) On suppose qu'à un instant donné il est en mode actif. Déterminer la probabilité qu mode veille, 2 microsecondes plus tard :
 - a. par un calcul matriciel;

le cnam Ile-de-France

Révision CNAM 09/03/2023

UTC501 - Outils mathématiques pour Informatique

le cnam Ile-de-France

<u>ANNEXE</u>

Arithmétique	⇒Propriété $d \mid a, d \mid b \Rightarrow d \mid au + bv$, $\forall u, v \in \mathbb{Z}$ ⇒Théorème de Bézout Si $a \land b = 1$: il existe des entiers $\exists x, y \in tel$ que $ax + by = 1$ ⇒Identité de Bézout $\forall a, b \in \mathbb{Z}$: il existe des entiers $\exists x, y \in tel$ que $ax + by = PGCD(a,b)$ ⇒Théorème de Gauss
Proposition	a/bc , $a \wedge b = 1 \Rightarrow a/c$
Raisonnement	P⇒Q: ¬P∨Q - Par récurrence - Par contraposé - Par l'absurde - Par un contre exemple
Système linéaire GAUSS	1 di on conne exemple
Chaine de Markov	$\Box_n = \prod_0 \times M^n$