Лекция 7: Обобщенные линейные модели, логистическая регрессия

M

Важное предположение линейной регрессии

- Нормальное распределение ошибки с константной дисперсией:
- Часто возникающие «особенности»:
 - Несимметричные распределения отклика

- □ Гетероскедастичность
- □ Ограниченная область определения отклика

- Что делать?
 - □ Явно преобразовывать отклик: **E(g(y) | x)**

НО, в общем случае: $g^{-1}(E(g(y)|x))\neq E(y|x)$

□ Использовать функцию связи:

Пример

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv("cars0.csv",delimiter=",")
data.head()
```

	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbase	Length
	0 Acura	MDX	SUV	Asia	All	36945.0	33337.0	3.5	6.0	265	17	23	4451	106	189
	1 Acura	RSX Type S 2dr	Sedan	Asia	Front	23820.0	21761.0	2.0	4.0	200	24	31	2778	101	172
2	2 Acura	TSX 4dr	Sedan	Asia	Front	26990.0	24647.0	2.4	4.0	200	22	29	3230	105	183
	3 Acura	TL 4dr	Sedan	Asia	Front	33195.0	30299.0	3.2	6.0	270	20	28	3575	108	186
	4 Acura	3.5 RL 4dr	Sedan	Asia	Front	43755.0	39014.0	3.5	6.0	225	18	24	3880	115	197

Пример (МНК) – все плохо

Dep. Vari	able:	Invoice		R-squared:		0.704	
М	odel:	OLS		j. R-squ	ıared:	0.702	J
Met	thod:	Least Squares		F-statistic:		336.3	0
I	Date: Wed	ed, 01 Nov 2023		Prob (F-statistic):		1.06e-111	
1	Time:	01:43:0)1 Lo	g-Likeli	hood:	-4531.2	
No. Observat	ions:	42	28		AIC:	9070.	
Df Residuals: Df Model:		42	24	BIC:		9087.	
		3					
Covariance -	Гуре:	nonrobust					
	coef	std err	t	P> t	[0.0]	0.9	97:
const	2.25e+04	6682.648	3.367	0.001	9362.7	779 3.56e	+0
Weight	0.0255	1.015	0.025	0.980	-1.9	970 2.	.02
Length	-213.1397	45.054	-4.731	0.000	-301.6	96 -124	.58
Horsepower	218.3874	8.400	26.000	0.000	201.8	377 234	.89

Преобразование отклика и логнормальная регрессия

■ Распределение отклика y логнормальное, тогда распределение с.в. $\log(y)$ — нормальное: $\log(y) \sim N(\mu, \sigma^2)$

• Связь моментов исходной с.в. y и $\log(y)$:

$$E(y) = \exp(\mu + \frac{\sigma^2}{2}), D(y) = (e^{\sigma^2} - 1)(E(y))^2$$

• Это значит, что можно построить МНК регрессию для прогнозирования $\log(y) = w^T x$ и получить исходный отклик:

$$\mu = E(\log(y)|x) = w^T x \Rightarrow E(y|x) = \exp\left(w^T x + \frac{\sigma^2}{2}\right)$$

• Откуда брать σ^2 ? Можно взять оценку $\sigma^2 \approx MSE_{val}$, на валидационном наборе

Пример (логнормальная регрессия) – лучше

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X_train, X_test, y_train, y_test = train_test_split(
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    np.log(data['Invoice']),test_size=0.3)
lnr = sm.OLS(endog=y_train, exog=X_train)
lnr_results=lnr.fit()
mse=mean_squared_error(y_test, lnr_results.predict(X_test))
lnr_results.summary()
```



```
fig, ax = plt.subplots(figsize=(5, 5))
ax.scatter(np.exp(mse/2+lnr_results.predict(
    sm.add_constant(data[['Weight','Length','Horsepower']]))),
    results.resid_pearson)
plt.xlim(0, 50000)
plt.ylim(-4, 4)
ax.set_ylabel('Octatku')
ax.set_ylabel('Прогноз')
plt.axhline(y = 0, color = 'r', linestyle = '--')
```

			_				
Dep. Vari	able:	In	voice	R-s	squared:	0.76	8
М	odel:		OLS	Adj. R-	squared:	0.76	6
Met	thod:	Least Sq	uares	F∹	statistic:	325.	9
	Date: W	Wed, 01 Nov 2023		Prob (F-s	2.68e-9	3	
1	Γime:	01:	54:31	Log-Lik	elihood:	9.511	5
No. Observations:			299		-11.0	2	
Df Residuals:			295		BIC:	3.77	9
Df M	odel:		3				
Covariance 7	Туре:	nonr	obust				
	coef	std err	t	P > t	[0.025	0.975]	
const	9.6851	0.209	46.330	0.000	9.274	10.097	
Weight	0.0001	2.83e-05	4.264	0.000	6.5e-05	0.000	
Length	-0.0060	0.001	-4.324	0.000	-0.009	-0.003	
Horsepower	0.0055	0.000	22.407	0.000	0.005	0.006	

r.

Обобщенная линейная модель

Функция связи
$$g(E(y|x)) = w_0 + w_1 x_1 ... + w_k x_p = \langle x, w \rangle$$

Распределение отклика принадлежит экспоненциальному семейству $y_i \sim \text{Exp}(\theta, \phi)$, где плотность определена как:

$$p(y|\theta,\phi) = exp\left(\frac{y\theta - c(\theta)}{\phi} + h(y,\phi)\right)$$

- Математическое ожидание с.в. y зависит только от θ через некоторую монотонную ϕy нкцию связи g(.) (link function) как: $\mu = E(y) = c'(\theta) \Rightarrow \theta = g(\mu) = [c']^{-1}(\mu)$
- Дисперсия с.в. y есть функция от среднего: $D(y) = \phi c''(\theta)$
- Распределение отклика наблюдений может подсказать какую функцию связи и функцию потерь следует выбрать

Важные частные случаи

- Линейная регрессия: $p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right)$
- Логистическая регрессия: $p(y|\mu) = \mu^y (1-\mu)^{1-y}$
- Пуассоновская регрессия: $p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$
- Гамма регрессия: $p(y|\nu,\mu) = \frac{1}{\Gamma(\nu)y} \left(\frac{y\nu}{\mu}\right)^{\nu} e^{-\frac{y\nu}{\mu}}$

Регрессия	Отклик	Параметр $ heta$ (среднее)	Параметр разброса ϕ	Дисперсия	Каноническая функция связи
Линейная	непрерывный неограниченный	μ	σ	σ2	тождество g(µ)= µ
Логистическая	бинарный категориальный	μ	1	(1- μ) μ	логит g(µ)= log(µ/(1- µ))
Пуассоновская	«Счетчик» - дискретный положительный	λ	1	λ	логарифм g(µ)= log(µ)
Гамма	непрерывный положительный	μ	V	μ/ v ²	обратная g(µ)= 1/µ

10

Примеры вывода функции связи

- Суть: приведение распределения к каноническому виду $\mathrm{Exp}(\theta,\phi)$
- Линейная регрессия (нормальное распределение):

$$p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right) = \exp\left(\frac{y\mu - \frac{1}{2}\mu^2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right)$$
$$\theta = g(\mu) = \mu, c(\theta) = \frac{1}{2}\mu^2 = \frac{1}{2}\theta^2$$

Пуассоновская регрессия (распределение Пуассона):

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^{y}}{y!} = \exp\left(\frac{y\log(\lambda) - \lambda}{1} - \log(y)!\right)$$
$$\theta = g(\lambda) = \log(\lambda), c(\theta) = \lambda = e^{\theta}$$

• Логистическая регрессия (распределение Бернулли):

$$p(y|\mu) = \mu^y (1-\mu)^{1-y} = \exp\left(y \log\left(\frac{\mu}{1-\mu}\right) - \log(1-\mu)\right)$$
$$\theta = g(\mu) = \log\left(\frac{\mu}{1-\mu}\right), c(\theta) = -\log(1-\mu) = \log(1+e^{\theta})$$

Оценка отклонения (D²)

 Поиск параметров модели решается задача оптимизациитах loglik с заданным распределением и функцией связи

Распределение	$D^{2}(w) = 2[loglik(y) - loglik(\mu)]$
Normal	$D^2(\mathbf{w}) = \sum (y - \mu(\mathbf{w}))^2$
Poisson	$D^{2}(\mathbf{w}) = 2\sum \left[y \ln(y/\mu(\mathbf{w})) - (y - \mu(\mathbf{w}))\right]$
Gamma	$D^{2}(\mathbf{w}) = 2\sum \left[-\ln(y/\mu(\mathbf{w})) + (y - \mu(\mathbf{w}))/\mu(\mathbf{w})\right]$
Bernoulli	$D^{2}(\mathbf{w}) = -2\sum [y \ln(\mu(\mathbf{w})) + (1 - y) \ln(1 - \mu(\mathbf{w}))]$

- Нормализованное отклонение $D^2(w)/\phi$
 - Пля некоторых распределений ϕ известно, также можно оценить $\hat{\phi} = Pearson~\chi^2/(n-p)$, где $Pearson~\chi^2 = \frac{\sum (y-\mu(w))^2}{V(\mu(w))}$, а $V(\mu(w))$ дисперсия распределения из экспоненциального семейства (например, μ^2 для Гамма)

м

Не все так однозначно

- На практике часто используют неканонические функции связи
- Например, для логистической регрессии:
 - □ Каноническая logit
 - \square probit: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mu} z^2 dz$
 - \square log-log: $\log(-\log(1-\mu))$
- Для гамма регрессии:
 - □ Каноническая обратная
 - □ log, тождественная и др.
- Для «счетчиков»:

- Чрезмерная дисперсия может не выполнятся условие $E(y) = D(y) = \lambda$ и тогда используют отрицательно биномиальное распределение,
 где дисперсия моделируется как функция от среднего и его квадрата
- □ Может быть «смесь» счетчиков
- □ "zero inflated" смесь 0 и пуассоновского счетчика

Пример гамма регрессии

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    family=sm.families.Gamma())
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Varial	ble:	Invoic	e No.	Observa	ations:	428	
Мос	del:	GLN	Λ	Df Res	iduals:	424	
Model Fam	ily:	Gamm	а	Df	Model:	3	
Link Functi	on: inv	verse_powe	er		Scale:	0.11306	
Meth	od:	IRL	S L	og-Likel	lihood:	-5686.6	
Da	ate: Wed,	01 Nov 202	3	Dev	/iance:	310.53	
Tir	me:	02:03:0	7	Pearso	n chi2:	47.9	
No. Iteratio	ns:		8 Pseud	lo R-squ	ı. (CS):	-74.85	٦.
Covariance Ty	pe:	nonrobus	st				
		std err	_	Ds I-I	ro oo	- 0	251
	coef	sta err	Z	P> z	[0.02	0.8	975]
const	4.818e-05	6.76e-06	7.124	0.000	3.49e-0	5 6.14	e-05
Weight	-6.088e-09	5.99e-10	-10.164	0.000	-7.26e-0	9 -4.91	e-09
Length	2.391e-07	4.43e-08	5.402	0.000	1.52e-0	7 3.26	e-07
Horsepower	-1.467e-07	2.88e-09	-50.999	0.000	-1.52e-0	7 -1.416	e-07

Как считать? Ответ позже

Статистика Уальда (аналогично Стьюденту для МНК)

гетероскедастичность?

Пример гамма регрессии с неканонической тождественной функцией связи

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']])
    family=sm.families.Gamma(sm.families.links.identity()))
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:	Invoice	No. Observations:	428
Model:	GLM	Df Residuals:	424
Model Family:	Gamma	Df Model:	3
Link Function:	identity	Scale:	0.066351
Method:	IRLS	Log-Likelihood:	-4359.6
Date:	Wed, 01 Nov 2023	Deviance:	24.571
Time:	02:06:57	Pearson chi2:	28.1
No. Iterations:	19	Pseudo R-squ. (CS):	0.9438
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	2.359e+04	4377.250	5.389	0.000	1.5e+04	3.22e+04
Weight	2.8085	0.849	3.307	0.001	1.144	4.473
Length	-209.3271	31.087	-6.734	0.000	270.256	-148.398
Horsepower	161.8258	8.531	18.969	0.000	145.105	178.547

Пример гамма регрессии с неканонической функцией связи log

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    family=sm.families.Gamma(sm.families.links.Log()))
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:	Invoice	No. Observations:	428
Model:	GLM	Df Residuals:	424
Model Family:	Gamma	Df Model:	3
Link Function:	Log	Scale:	0.059580
Method:	IRLS	Log-Likelihood:	-4346.8
Date:	Wed, 01 Nov 2023	Deviance:	23.319
Time:	02:10:09	Pearson chi2:	25.3
No. Iterations:	12	Pseudo R-squ. (CS):	0.9614
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	9.6571	0.169	57.017	0.000	9.325	9.989
Weight	0.0001	2.57e-05	4.863	0.000	7.47e-05	0.000
Length	-0.0058	0.001	-5.077	0.000	-0.008	-0.004
Horsepower	0.0055	0.000	25.850	0.000	0.005	0.006

M

Максимизация правдоподобия для GLM методом Ньютона-Рафсона

Принцип максимума правдоподобия:

$$L(w) = -\log \prod_{i=1}^l p(y_i|\theta_i,\phi_i) = -\sum_{i=1}^l [y_i\theta_i - c(\theta_i)]/\phi_i o \min_w$$
 , где $\theta_i = w^T x_i$

■ Метод Ньютона-Рафсона (*t* – номер итерации):

$$w^{t+1} = w^t - \eta_t \left(\nabla^2 L(w^t) \right)^{-1} \nabla L(w^t)$$

■ Градиент $\nabla L(w^t)$:

$$\frac{\partial L(w)}{\partial w_j} = \sum_{i=1}^{l} \frac{y_i - c'(w^T x_i)}{\phi_i} x_i$$

■ Матрица Гессе $\nabla^2 L(w^t)$:

$$\frac{\partial^2 L(w)}{\partial w_j \partial w_k} = -\sum_{i=1}^l \frac{c''(w^T x_i)}{\phi_i} x_i x_k$$

Метод IRLS (Iteratively reweighted least squares)

- Обозначения:
 - \square Взвешенная (по наблюдениям) матрица признаков $\widetilde{X}=W_t X$,
 - \square где X исходная матрица данных,
 - \square $W_t = diag\left(\sqrt{rac{c\prime\prime(heta_i)}{\phi_i}}
 ight)$ веса наблюдений на t-ой итерации
 - \square $\widetilde{y_i} = \frac{y_i c`(\theta_i)}{\sqrt{\phi_i c``(\theta_i)}}$ модифицированные отклики
- Метод Ньютона-Рафсона принимает вид:

$$w^{t+1} = w^{t} - \eta_{t} \left(X^{T} W_{t} W_{t} X \right)^{-1} X^{T} W_{t} \left(\sqrt{\frac{\phi_{i}}{c``(\theta_{i})}} \frac{y_{i} - c'(\theta_{i})}{\phi_{i}} \right)$$

$$\left(\tilde{X}^{T} \tilde{X} \right)^{-1} \tilde{X}^{T}$$

 На каждом шаге - МНК линейной регрессии с взвешенными наблюдениями и модифицированными откликами:

$$\|\tilde{X} - \tilde{y}w\|^2 \to \min_{w}$$

м

Особенности поиска решения

- При небольшой выборке IRLS лучший вариант
- Но на больших выборках используют методы:
 - □ градиентные (в том числе стохастические)
 - □ квазиньютоновские (в том числе lbfgs)
- Есть варианты борьбы с переобучением:
 - □ L₁ и L₂ регуляризация
 - □ пошаговый отбор переменных (вместо тестов Фишера или Стьюдента – тест Уальда, информационные критерии и кроссвалидация работают как и для МНК)
- Для оценки важности переменных используются:
 - □ стандартные ошибки расчета коэффициентов (за рамками курса)
 - \square статистика для оценки важности коэффициентов $\frac{w_i}{\mathit{SE}(w_i)} \sim N(0,1)$

Пуассоновская регрессия

 Для моделирования количества наступлений события или доли (rate) наступлений события как функции от предикторов:

$$\log(E(y|x)) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_k \Rightarrow \mu(w) = e^{w_0} \cdot e^{w_1 x_1} \cdots e^{w_p x_p}$$

- Положительный (и как правило дискретный) отклик
- Функция связи: log
- Функция потерь: $L(x, y, w) = y \log \left(\frac{y}{\mu(w)}\right) (y \mu(w))$
- Интерпретация построенной модели:
 - $\ \ \, = e^w$ мультипликативный эффект на отклик от изменения предиктора на единицу
 - Папример, если $e^{w_1} = 1.2$, тогда увеличение x_1 на одну единицу вызывает 20% увеличение ожидаемого отклика, а если $e^{w_2} = 0.8$, тогда увеличение x_2 на одну единицу вызывает 20% уменьшение ожидаемого отклика

Пуассоновская регрессия

- Пуассоновская регрессия наиболее подходит для редких событий
 - □ распределение отклика должно иметь маленькое среднее (<10 или даже <5, в идеале ~1)
 - иначе гамма и логнормальное распределение может быть лучше чем пуассоновское, если распределение сильно ассиметричное или есть чрезмерная дисперсия
 - □ или нормальное, если распределение достаточно симметричное

Пример пуассоновской регрессии

dt=pd.read_csv("ships.csv",delimiter=",")
dt.head()

	type	age_period	operation_period	months	damages
0	1	1	1	127	0
1	1	1	2	63	0
2	1	2	1	1095	3
3	1	2	2	1095	4
4	1	3	1	1512	6

X.head()

	Intercept	C(type)[T.2]	C(type)[T.3]	C(type)[T.4]	C(type)[T.5]	months
0	1.0	0.0	0.0	0.0	0.0	127.0
1	1.0	0.0	0.0	0.0	0.0	63.0
2	1.0	0.0	0.0	0.0	0.0	1095.0
3	1.0	0.0	0.0	0.0	0.0	1095.0
4	1.0	0.0	0.0	0.0	0.0	1512.0

```
from patsy import dmatrices
import statsmodels.api as sm
y, X = dmatrices("damages~C(type)+months", dt, return_type="dataframe")
pois_model = sm.GLM(y,X, family=sm.families.Poisson())
pois_results = pois_model.fit()
pois_results.summary()
```

Generalized Linear Model Regression Results

Dep. Variable:		damag	es N	o. Obse	rvations:	34
Model	: GLM		.M	Df Residuals:		28
Model Family:		Poiss	on	ı	Of Model:	5
Link Function:	:	L	og		Scale:	1.0000
Method		IRI	_S	Log-Li	kelihood:	-125.73
Date	: Tue,	31 Oct 20	23		Deviance:	153.59
Time		02:55:	48	Pear	son chi2:	151.
No. Iterations			6 Pse	udo R-s	qu. (CS):	1.000
Covariance Type		nonrobu	ıst			
	coef	std err	z	P> z	[0.025	0.975]
Intercept 1.	7650	0.154	11.429	0.000	1.462	2.068
C(type)[T.2] 1.	4035	0.194	7.219	0.000	1.022	1.785
C(type)[T.3] -1.	2434	0.327	-3.798	0.000	-1.885	-0.602
C(type)[T.4] -0.	8902	0.287	-3.097	0.002	-1.454	-0.327
0/5			0.400	0.040	0.500	0.352
C(type)[T.5] -0.	1078	0.235	-0.460	0.646	-0.568	0.332

Пример пуассоновской регрессии

<matplotlib.lines.Line2D at 0x2e7d9070c70>

м

Логистическая регрессия

 Почему нельзя моделировать вероятность как непрерывный отклик с помощью линейной регрессии?

- □ Как представить категориальный отклик в виде числовой переменной?
- □ Если отклик закодирован (1=Yes, 0=No), а прогноз 1.1 или -0.4, что это означает?
- □ Если переменная имеет только два значения (или несколько), имеет ли смысл требовать постоянство дисперсии или нормальность ошибок?
- □ Вероятность ограничена, а линейная функция нет. Принимая во внимание ограниченность вероятности, можно ли предполагать линейную связь между предиктором и откликом?

Логистическая регрессия

Уравнение регрессии:

Функция связи (логит) и обратная ей (логистическая):

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \mu \Rightarrow$$

$$\Rightarrow p_i = \sigma(\mu) = \frac{1}{1 + e^{-\mu}} = \frac{1}{1 + e^{-x^T w}}$$

Основное предположение линейной логистической регрессии (линейная зависимость логита вероятности от предикторов):

меньше $\leftarrow \mu \rightarrow$ больше Ограничивает значение отклика

Функция потерь логистической регрессии

Функция потерь (логарифмическая) является аппроксимацией негладкой функции потерь sign(.):

$$L(y, x, w) = \log[1 + \exp(-yw^T x)] \ge$$
$$\ge \operatorname{sign}(yw^T x)$$

30 25 20 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 20 25 30

■ Градиент $\nabla Q(w)$ и матрица Гессе $\nabla^2 Q(w)$ для метода Ньютона-Рафсона:

$$w^{t+1} = w^t - \eta_t \ (\nabla^2 Q(w^t))^{-1} \nabla Q(w^t)$$

$$\frac{\partial Q(w)}{\partial w_j} = \sum_{i=1}^l (1-\sigma_i) y_i x_i, \\ \frac{\partial^2 Q(w)}{\partial w_j \partial w_k} = -\sum_{i=1}^l (1-\sigma_i) \sigma_i y_i x_i x_k$$
 где $\sigma_i = \sigma \big(y_i w^T x_i \big), \ \sigma(z) = \frac{1}{1+e^{-z}}$ - сигмоидальная функция

v

IRLS для логистической регрессии

- На каждом шаге:
 - МНК линейной регрессии с взвешенными наблюдениями и модифицированными остатками, старающийся улучшить эмпирический риск на самых «сложных» примерах:

$$Q(w) = \sum_{i=1}^{l} (1 - \sigma_i) \sigma_i \left(w^T x_i - \frac{y_i}{\sigma_i} \right)^2 \to \min_{w} \quad \leftrightarrow \quad \left\| \tilde{X} - \tilde{y}w \right\|^2 \to \min_{w}$$

- где:
 - \square Взвешенная (по наблюдениям) матрица признаков $ilde{X} = W_t X$
 - □ Х исходная матрица данных,
 - \square $W_t = diag((1-\sigma_i)\sigma_i)$ веса наблюдений на t-ой итерации,
 - поскольку $\sigma_i = P(y_i|x_i)$ вероятность правильной классификации x_i , то чем ближе x_i к границе 0.5, тем больше вес $(1-\sigma_i)\sigma_i$ и «сложнее» пример
 - $\widetilde{y}_i = \frac{y_i}{\sigma_i}$ модифицированные отклики, чем выше вероятность ошибки тем больше $\frac{1}{\sigma_i}$

Многоклассовая логистическая регрессия и функция softmax

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.inspection import DecisionBoundaryDisplay

iris = datasets.load_iris()
X = iris.data[:, :2]
Y = iris.target

logreg = LogisticRegression()
logreg.fit(X, Y)

DecisionBoundaryDisplay.from_estimator(
    logreg, X, cmap="Pastel1")
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap="Set1")
plt.show()
```


 Логистическая регрессия с двумя классами обобщается на случай К классов (многомерная логистическая функция):

$$p(y = k|x) = \frac{e^{w_k^T x}}{\sum_{j=1}^{K} e^{w_j^T x}}$$

- Для каждой пары классов существует своя граница - линейная разделяющая функция, где вероятности классов совпадают
- Многоклассовая логистическая регрессия также называется мультиномиальной регрессией, а многомерная логистическая функция -softmax, которая «нормализует» Кмерный вектор так, чтобы сумма координат = 1

«Балансировка» выборки

- Варианты борьбы с дисбалансом:
 - □ Разные **веса у наблюдений** в функции потерь (обратно пропорционально общему числу наблюдений класса)
 - □ Сдвиг границы принятия решения в дискриминантной функции в сторону редкого класса пропорционально отношению размеров
 - □ «Балансировка» oversampling с помощью некой стратегии генерируем случайные наблюдения для выборки, увеличиваем маленький класс (например, SMOTE алгоритм):

 «Балансировка» undersampling – с помощью случайной выборки уменьшаем большой класс

۳

Корректировка логистической регрессии после undersamplig

- Два способа корректировки:
 - Включить параметр «сдвига» в уравнение модели

$$g(x)^{\mathrm{adj}} = g(x)_{logit} + b$$

$$\log \left(\frac{\pi_0 \rho_1}{\pi_1 \rho_0}\right) \left\{ \frac{\pi_0 \rho_1}{\pi_1 \rho_0} \right\}$$

Скорректировать вероятности на выходе модели:

$$p_1^{adj} = \frac{p_1 \pi_1 \rho_0}{p_1 \pi_1 \rho_0 + (1 - p_1) \pi_0 \rho_1}$$

 π_1,π_0 - до undersampling $ho_1,
ho_0$ - после undersampling

Оценка «силы» ассоциации между предиктором и бинарным откликом

■ **Шанс** (это не вероятность) — отношение вероятностей события к не событию:

$$Odds = \frac{p_{event}}{p_{nonevent}}$$

• Отношение шансов (тоже не вероятность) показывает насколько вероятнее в терминах шансов появления события в группе А (соответствующей набору значений предикторов) по сравнению с другой группой В:

$$Odds_{ratio} = \frac{odds(A)}{odds(B)}$$

Нет зависимости

Группа в знаменателе имеет более высокие шансы наступления события

Группа в **числителе** имеет более высокие шансы

	3a6		
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Всего Заболел Без прививки

Всего исходов Без прививки

Вероятность Заболел <u>Без прививки</u> =90÷100=0.9

	3a6		
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Вероятность Заболел Без прививки =0.90

•

Вероятность Не заболел Без прививки =0.10

<u>Шанс</u> Заболеть Без прививки = 0.90÷0.10=9

Без прививки шанс заболеть в 9 раз выше чем с прививкой

Сравнение вероятностей и шансов

	3a6		
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Total 150 30 180

<u>Шанс</u>
Заболеть с
прививкой=3

<u>Шанс</u>Заболеть Без прививки=9

Отношение шансов $=3 \div 9 = 0.3333$

Шансов заболеть с прививкой в 3 раза меньше чем без

Отношение шансов в логистической регрессии

 Используется для оценки влияния переменной на отклик и показывает как изменятся шансы при изменении i-ой переменной на 1 (равно ехр от коэффициента):

$$\log \operatorname{it}(p) = \log(\operatorname{odds}) = w_0 + w_i x_i + \sum_{j \neq i} w_j x_j \Rightarrow$$

$$\operatorname{odds} = \exp(w_0 + w_i x_i + \sum_{j \neq i} w_j x_j)$$

$$\log \operatorname{it}(p) = \log(\operatorname{odds}) = w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j \Rightarrow$$

$$\operatorname{odds} = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{odds} = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{odds} = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

 Если больше 1 – шансы увеличиваются, если меньше, то уменьшаются, интерпретация как в пуассоновской регрессии

Отношение шансов и важность переменных

Odds Ratio Estimates									
Effect	Point Estimate	95% Wald Confidence Limits							
Invoice	1.000	1.000 1.00							
Engine Size	0.295	0.094	0.931						
Horsepower	1.016	1.003	1.029						
Length	1.100	1.044	1.160						
Weight	1.005	1.004	1.007						
Cylinders	0.696	0.376	1.289						
Wheelbase	0.757	0.676	0.849						
MPG_City	1.270	0.929	1.736						
MPG Highway	1.295	1.036	1.618						

Invoice		<u> </u>	
EngineSize	•		
Horsepower		0	
Length		├	
Weight			
Cylinders	-		-1
Wheelbase	-	•	
MPG_City		-	•
G_Highway			•
0.0	0.5	1.0	1.5

Analysis of Maximum Likelihood Estimates Standard Wald Parameter Estimate Chi-Square Pr > ChiSq 4.6784 0.0213 Intercept -10.76865.2983 -0.00013 0.000028 21.9445 <.0001 Invoice Horsepower 0.0156 0.00666 5.4867 0.0192 0.0270 12.6146 0.0004 0.00529 0.000908 33.9767 <.0001 Cylinders -0.38250.3146 1.3275 0.2493 Wheelbase -0.27780.0580 22.9685 <.0001 0.2389 0.1595 2.2421 0.1343 MPG City 0.2584 0.1136 5.1710

exp(.)

- Можно найти не только точечную оценку ОШ (OR), но и доверительный интервал
- □ Если он содержит 1, то доверительный интервал коэффициента содержит 0,т.е. предиктор не значимый
- □ Не учитывается разброс переменной

v

Категориальные предикторы

- Схемы кодировки:
 - □ Effect coding (относительно «среднего»)

<u>Переменная</u>	<u>Значение</u>	<u>Обозначение</u>	<u>1</u>	<u>2</u>
IncLevel	1	Low Income	1	0
	2	Medium Income	0	1
	3	High Income	-1	-1

□ Reference coding (относительно «базового»)

Переменная	<u>Значение</u>	<u>Обозначение</u>	<u>1</u>	<u>2</u>
IncLevel	1	Low Income	1	0
	2	Medium Income	0	1
	3	High Income	0	0

۲

Effect coding: Пример

$$logit(p) = w_0 + w_1 * D_{Low income} + w_2 * D_{Medium income}$$

 w_0 = Общий логарифм от шанса по всем категориям

 w_1 = разница между логарифмом шанса Low income и w_0

 w_2 = разница между логарифмом шанса Medium income и общим

Analysis of Maximum Likelihood Estimates								
				Standard	Wald			
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq		
Intercept		1	-0.5363	0.1015	27.9143	<.0001		
IncLevel	1	1	-0.2259	0.1481	2.3247	0.1273		
IncLevel	2	1	-0.2200	0.1447	2.3111	0.1285		

۲

Reference coding: Пример

$$logit(p) = w_0 + w_1 * D_{Low income} + w_2 * D_{Medium income}$$

 w_0 = Логарифм шанса для High

 w_1 = Разница между логарифмами шанса Low и High

w₂ = Разница между логарифмами шанса между Medium и High

Analysis of Maximum Likelihood Estimates								
				Standard	Wald			
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq		
Intercept		1	-0.0904	0.1608	0.3159	0.5741		
IncLevel	1	1	-0.6717	0.2465	7.4242	0.0064		
IncLevel	2	1	-0.6659	0.2404	7.6722	0.0056		