Commutative Algebra 1

Labix

October 17, 2024

Abstract

Contents

1	Basic Notions of Commutative Rings	3
	1.1 Local Rings	3
	1.2 Revisiting Ideals	4
	1.3 Radical Ideals	
	1.4 Nilradical and Jacobson Ideals	6
	1.5 Extensions and Contractions of Ideals	8
	1.6 Revisiting the Polynomial Ring	9
2	Modules over a Commutative Ring	10
	2.1 Cayley-Hamilton Theorem	10
	2.2 Nakayama's Lemma	
	2.3 Exact Sequences	
	2.4 Change of Rings	
3	Algebra Over a Commutative Ring	12
	3.1 Commutative Algebras	
	3.2 Finitely Generated Algebra	
4	Localization	14
	4.1 Localization of a Ring	
	4.2 Localization at a Prime Ideal	
	4.3 Properties of Localization	
	4.4 Localization of a Module	16
5	Noetherian Rings	17
	5.1 Ordering on the Monomials	17
	5.2 Monomial Ideals	18
	5.3 Groebner Bases	18
	5.4 Hilbert's Basis Theorem	
6	Primary Decomposition	19
•	6.1 Support of a Module	
	6.2 Associated Prime	
	6.3 Primary Ideals	
	6.4 Primary Decomposition	
7	Integral Dependence	21
	7.1 Integral Extensions	
	7.2 The Going-Up and Going-Down Theorems	
	7.3 Dedekind Domains	22
8	Discrete Valuation Rings	23
	3.1 Discrete Valuation Rings	23
9	Dimension Theory for Rings	25
	9.1 Dimension and Height	25
	9.2 Length of a Module	
	9.3 The Hilbert Polynomial	
	9.4 Global Dimension of a Ring	

1 Basic Notions of Commutative Rings

1.1 Local Rings

Definition 1.1.1: Local Rings

Let R be a commutative ring. We say that R is a local ring if it has a unique maximal ideal m. In this case, we say that R/m is the residue field of R.

Example 1.1.2

Consider the following commutative rings.

- $\mathbb{Z}/6\mathbb{Z}$ is not a local ring.
- $\mathbb{Z}/8\mathbb{Z}$ is a local ring.
- $\mathbb{Z}/24\mathbb{Z}$ is not a local ring.
- $\mathbb{R}[x]$ is not a local ring.

Proof.

- The only ideals of $\mathbb{Z}/6\mathbb{Z}$ are $(2+6\mathbb{Z})$ and $(3+6\mathbb{Z})$. They do not contain each other and so they are both maximal.
- The only ideals of $\mathbb{Z}/8\mathbb{Z}$ are $(2+8\mathbb{Z})$ and $(4+8\mathbb{Z})$. But $(2+8\mathbb{Z}) \supseteq (4+8\mathbb{Z})$. Hence $\mathbb{Z}/8\mathbb{Z}$ has a unique maximal ideal.
- A similar proof as above ensues.
- Any irreducible polynomial $f \in \mathbb{R}[x]$ is such that (f) is a maximal ideal. Indeed the evaluation homomorphism gives an isomorphism $\frac{\mathbb{R}[x]}{(f)} \cong \mathbb{R}$.

Proposition 1.1.3

Let R be a ring and I an ideal of R. Then I is the unique maximal ideal of R if and only if I is the set containing all non-units of R.

Proof. Let I be the unique maximal ideal of R. Clearly I does not contain any unit else I=R. Now suppose that r is a non-unit. Suppose that $r\notin I$. Define $J=\{sr|s\in R\}$ Clearly J is an ideal. It must be contained in some maximal ideal. Since I is the unique maximal ideal, $J\subseteq I$. But this means that $r\in I$, a contradiction. Thus every non-unit is in I.

Suppose that I contains all non-units of R. Let $r \notin I$. Then there exists $s \notin I$ such that rs = 1. Then (r+I)(s+I) = 1+I in R/I. This means that every element of R/I has a multiplicative inverse which means that R/I is a field and thus I is a maximal ideal. Now let $J \neq I$ be another maximal ideal. Then J contains some unit r. This implies that J = R and thus I is the unique maximal ideal.

Example 1.1.4

Let k be a field. Then the ring of power series k[[x]] is a local ring.

Proof. Let M be the set of all non-units of k[[x]]. I first show that $f \in M$ if and only if the constant term of f is non-zero. Let g be a power series. Then the nth coefficient of $f \cdot g$ is given by

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

If the constant term of f is 0, then $c_0 = 0$ and so $f \cdot g \neq 1$. Now if the constant term of f is

 $a_0 \neq 0$, then set $b_0 = \frac{1}{a_0}$. Now we can use the formula $0 = c_n$ to deduce

$$b_n = -\frac{\sum_{k=1}^n a_k b_{n-k}}{a_0}$$

. This is such that $a_n \cdot b_n = 0$. Define $g = \sum_{k=0}^{\infty} b_k x^k$. Then $f \cdot g = 1$. Thus f is a unit.

By the above proposition, we conclude that M is the unique maximal ideal of k[[x]].

We will discuss more of local rings in the topic of localizations.

1.2 Revisiting Ideals

Proposition 1.2.1

Let R be a commutative ring. Let $S, T \subseteq R$ be subsets of R. Then

$$\langle S \cup T \rangle = \langle S \rangle + \langle T \rangle$$

Proposition 1.2.2

Let R be a commutative ring. Let I,J be ideals of R. Suppose that $I\subseteq J$. Let \overline{J} denote the ideal of R/I corresponding to J under the correspondence theorem. Then there is an isomorphism

$$\frac{R/I}{\overline{J}} \cong \frac{R}{I+J}$$

given by the formula $(r+I) + \overline{J} \mapsto r + (I+J)$.

Example 1.2.3

There is an isomorphism given by

$$\frac{\mathbb{Z}[x]}{(x+1, x^2+2)} \cong \mathbb{Z}/3\mathbb{Z}$$

Proof. Using the above propositions, we have that

$$\frac{\mathbb{Z}[x]}{(x+1, x^2+2)} = \frac{\mathbb{Z}[x]}{(x+1) + (x^2+2)}$$
$$\cong \frac{\mathbb{Z}[x]/(x+1)}{(3)}$$

Indeed, the ideal (x^2+2) corresponds to the ideal (3) in $\frac{\mathbb{Z}[x]}{(x+1)}$ because the remainder of x^2+2 divided by (x+1) is (3). Now $\mathbb{Z}[x]/(x+1)\cong\mathbb{Z}$ by the evaluation homomorphism. Thus quotieting by the ideal (3) gives the field $\mathbb{Z}/3\mathbb{Z}$.

Some more important results from Groups and Rings and Rings and Modules include:

- I is a prime ideal if and only if R/I is an integral domain.
- I is a maximal ideal if and only if R/I is a field.
- If *I* and *J* are coprime, then $IJ = I \cap J$

 \bullet Chinese Remainder Theorem: If I and J are coprime, then there is an isomorphism

$$\frac{R}{I\cap J}\cong \frac{R}{I}\times \frac{R}{J}$$

1.3 Radical Ideals

The radical of an ideal is a very different notion from the radical of module.

Definition 1.3.1: Radical of an Ideal

Let I be an ideal of a ring R. Define the radical of I to be

$$\sqrt{I} = \{ r \in R | r^n \in I \text{ for some } n \in \mathbb{N} \}$$

Proposition 1.3.2

Let R be a commutative ring. Let I be an ideal. Then the following are true.

•
$$I \subseteq \sqrt{I}$$

$$\bullet \ \sqrt{\overline{\sqrt{I}}} = \sqrt{I}$$

•
$$\sqrt{I^m} = \sqrt{I}$$
 for all $m \ge 1$

•
$$\sqrt{I} = R$$
 if and only if $I = R$

Proof.

• Let $r \in I$. Then $r^1 \in I$ Thus by choosing n = 1 we shows that $r^n \in I$. Thus $r \in \sqrt{I}$.

• By the above, we already know that $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. So let $r \in \sqrt{\sqrt{I}}$. Then there exists some $n \in \mathbb{N}$ such that $r^n \in \sqrt{I}$. But $r^n \in \sqrt{I}$ means that there exists some $m \in \mathbb{N}$ such that $(r^n)^m \in I$. But $nm \in \mathbb{N}$ is a natural number such that $r^{nm} \in I$. Hence $r \in \sqrt{I}$ and so we conclude.

Proposition 1.3.3

Let R be a commutative ring. Let I, J be ideals of R. Then the following are true.

• If
$$I \subseteq J$$
 then $\sqrt{I} \subseteq \sqrt{J}$

•
$$\sqrt{IJ} = \sqrt{I \cap J}$$

$$\bullet$$
 $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$

Proof.

• Let $x \in \sqrt{IJ}$. Then $x^n \in IJ$. This means that there exists $i \in I$ and $j \in J$ such that $x^n = ij$. Since I and J are two sided ideals, we can conclude that $x^n = ij \in I$, J. Hence $x^n = ij \in I \cap J$. We conclude that $x \in \sqrt{I \cap J}$. Now let $x \in \sqrt{I \cap J}$. Then there exists $n \in \mathbb{N}$ such that $x^n \in I \cap J$. Then $x^n \in I$ and $x^n \in J$ implies that $x^{2n} = x^n \cdot x^n \in IJ$. We conclude that $x \in \sqrt{IJ}$.

Proposition 1.3.4

Let R be a commutative ring. Let I be an ideal. Then

$$\sqrt{I} = \bigcap_{\substack{p \text{ a prime ideal} \\ I \subset p \subset R}} p$$

Definition 1.3.5: Radical Ideals

Let R be a commutative ring. Let I be an ideal of R. We say that I is radical if

$$\sqrt{I} = I$$

In particular, by the above lemma it follows that the radical of an ideal is a radical ideal.

Lemma 1.3.6

Let R be a ring. Let P be a prime ideal of R. Then P is radical.

We conclude that there is an inclusion of types of ideal in which each inclusion is strict:

Theorem 1.3.7

Let R be a commutative ring. Let I be an ideal of R. Denote φ to be the inclusion preserving one-to-one bijection

$$\left\{ \substack{\text{Ideals of } R \\ \text{containing } I} \right\} \quad \stackrel{1:1}{\longleftrightarrow} \quad \left\{ \text{Ideals of } R/I \right\}$$

from the correspondence theorem for rings. In other words, $\varphi(A) = A/I$. Let $J \subseteq R$ be an ideal containing I. Then the following are true.

- J is a radical ideal if and only if $\varphi(J) = J/I$ is a radical ideal.
- J is a prime ideal if and only if $\varphi(J) = J/I$ is a prime ideal.
- J is a maximal ideal if and only if $\varphi(J) = J/I$ is a maximal ideal.

Proof.

• Let J be a radical ideal. Suppose that $r+I\in \sqrt{J/I}$. This means that $(r+I)^n=r^n+I\in J/I$ for some $n\in\mathbb{N}$. But this means that $r^n\in J$. This implies that $r\in \sqrt{J}=J$. Thus $r+I\in J/I$ and we conclude that $\sqrt{J/I}\subseteq J/I$. Since we also have $J/I\subseteq \sqrt{J/I}$, we conclude.

Now suppose that J/I is a radical ideal. Let $r \in \sqrt{J}$. This means that $r^n \in J$ for some $n \in \mathbb{N}$. Now $r^n + I = (r+I)^n \in J/I$ implies that $r+I \in \sqrt{J/I} = J/I$. Hence $r \in J$ and so $\sqrt{J} \subseteq J$. Since we also have that $J \subseteq \sqrt{J}$, we conclude.

- Let J be a prime ideal. Then R/J is an integral domain. By the second isomorphism theorem, we have that $R/J \cong (R/I)/(J/I)$ and hence (R/I)/(J/I) is also an integral domain. Hence J/I is a prime ideal. The converse is also true.
- Let J be a maximal ideal. Then R/J is a field. By the second isomorphism theorem, we have that $R/J \cong (R/I)/(J/I)$ and hence (R/I)/(J/I) is also a field. Hence J/I is a maximal ideal. The converse is also true.

1.4 Nilradical and Jacobson Ideals

Let R be a ring. Recall that an element $r \in R$ is nilpotent if $r^n = 0_R$ for some $n \in \mathbb{N}$. When R is commutative, we can form an ideal out of nilpotent elements.

Definition 1.4.1: Nilradicals

Let R be a ring. Define the nilradical of R to be

$$N(R) = \{r \in R \mid r \text{ is nilpotent}\}$$

Note that this is different from nilpotent ideals, as nilpotency is a property of an ideal. However the Nilradical ideal is a nil ideal and every sub-ideal of the nilradical is a nil ideal.

Proposition 1.4.2

Let R be a ring and N(R) its nilradical. Then the following are true.

- N(R) is an ideal of R
- N(R/N(R)) = 0

Proof.

- Suppose that r, s are nilpotent, meaning that $r^n = 0$ and $s^m = 0$. Then $(r + s)^{n+m} = 0$. Moreover, if $t \in R$ then $t \cdot r$ is also nilpotent
- Let $r \notin N(R)$. Every element $r + N(R) \in R/N(R)$ has the property that $r^n \neq 0$. Consider $(r + N(R))^n = r^n + N(R)$. If $r^n \in N(R)$ then $r^n = u$ for some nilpotent u, which means that r^n is nilpotent and thus r is nilpotent, a contradiction. This means that $r + N(R) \notin N(R/N(R))$ for all $r \notin N(R)$ and thus N(R/N(R)) = 0

Proposition 1.4.3

Let R be a commutative ring. The nilradical of R is the intersection of all prime ideals of R.

Proof. We want to show that

$$N(R) = \bigcap_{\substack{P \text{ a prime} \\ \text{ideal of } R}} P$$

Trivially N(R) is a prime ideal. Now suppose that $r \in R$ is in the intersection of all prime ideals. Then r^n also lies in every prime ideal.

Example 1.4.4

Consider the ring

$$R = \frac{\mathbb{C}[x, y]}{(x^2 - y, xy)}$$

Then its nilradical is given by N(R) = (x, y).

Proof. Notice that in the ring R, $x^3=x(x^2)=xy=0$ and $y^3=x^6=(x^3)^2=0$ and hence x and y are both nilpotent elements of R. By definition of the nilradical, we conclude that $(x,y)\subseteq N(R)$. Now (x,y) is a maximal ideal of $\mathbb{C}[x,y]$ because $\mathbb{C}[x,y]/(x,y)\cong\mathbb{C}$. Also notice that $(x,y)\supseteq (x^2-y,xy)$ because for any element $f(x)(x^2-y)+g(x)(xy)\in (x^2-y,xy)$, we have that

$$f(x)(x^2 - y) + g(x)(xy) \in (x^2 - y, xy) = (xf(x))x - f(x)y + (g(x)x)y$$
$$= (xf(x))x + (xg(x) - f(x))y \in (x, y)$$

By the correspondence theorem, $(x,y)/(x^2-y)$ is an maximal ideal of R. In particular, (x,y) is also a prime ideal. But the N(R) is the intersection of all prime ideals and hence $N(R) \subseteq (x,y)$. We conclude that N(R) = (x,y).

Recall the notion of the Jacobson radical from Rings and Modules. Let R be a ring. The Jacobson radical of R is the radical

$$J(R) = \operatorname{rad}(R) = \bigcap_{\substack{S \le R \\ R \text{ is cosimple}}} S$$

of R considered as a left R-module. But when R is a commutative ring, this description can be simplified.

Proposition 1.4.5

Let R be a commutative ring. Then

$$J(R) = \bigcap_{\substack{m \text{ is a} \\ \text{maximal ideal}}} m$$

Proof. Submodules of R are precisely ideals of R and cosimple ideals are ideals I of R for which R/I is simple. But if R/I is simple, then R/I contains no ideals which means that R/I is a field. So I is a maximal ideal.

Recall some properties of the Jacobson radical from Rings and Modules. For a (not necessarily commutative ring R),

• J(R/J(R)) = 0

Proposition 1.4.6

Let R be a commutative ring. Then $x \in J(R)$ if and only if $1 - xy \neq 0$ for all $y \in R$.

Proof.

Extensions and Contractions of Ideals

Definition 1.5.1: Extension of Ideals

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let I be an ideal of R. Define the extension I^e of I to S to be the ideal

$$I^e = \langle f(i) \mid i \in I \rangle$$

Proposition 1.5.2

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let I, I_1, I_2 be an ideal of R. Then the following are true regarding the extension of ideals.

- Closed under sum: $(I_1 + I_2)^e = I_1^e + I_2^e$
- $(I_1 \cap I_2)^e \subseteq I_1^e \cap I_2^e$
- Closed under products: $(I_1I_2)^e = I_1^eI_2^e$
- $(I_1/I_2)^e \subseteq I_1^e/I_2^e$ $\operatorname{rad}(I)^e \subseteq \operatorname{rad}(I^e)$

Definition 1.5.3: Contraction of Ideals

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let J be an ideal of S. Define the contraction J^c of J to R to be the ideal

$$J^c = f^{-1}(J)$$

Proposition 1.5.4

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let J, J_1, J_2 be an ideal of *S*. Then the following are true regarding the extension of ideals.

- $(J_1 + J_2)^e \supseteq J_1^e + J_2^e$
- Closed under intersections: $(J_1 \cap J_2)^e = J_1^e \cap J_2^e$

- $\bullet \ (J_1J_2)^e \supseteq J_1^eJ_2^e$
- $(J_1/J_2)^e \subseteq J_1^e/J_2^e$
- Closed under taking radicals: $rad(J)^e = rad(J^e)$

Proposition 1.5.5

Let R, S be commutative rings. Let $f: R \to S$ be a ring homomorphism. Let I be an ideal of R and let J be an ideal of S. Then the following are true.

- $\bullet \ \ I \subseteq I^{ec}$
- \bullet $J^{ce} \subseteq J$
- $\bullet \ I^e = I^{ece}$
- $J^c = J^{cec}$

1.6 Revisiting the Polynomial Ring

Proposition 1.6.1

Let R be a commutative ring. Then we have

$$N(R[x]) = N(R)[x]$$

Proof. Let $f = \sum_{k=0}^n a_k x^k \in N(R)[x]$. Then each a_k is nilpotent in R, and there exists $n_k \in \mathbb{N}$ such that $a_k^{n_k} = 0$. This also proves that $a_k x^k$ is nilpotent. Since the sum of nilpotents is a nilpotent, we conclude that f is nilpotent.

Now suppose that $f \in N(R[x])$. We induct on the degree of f. Let $\deg(f) = 0$. Then f is nilpotent and f lies in R. Thus $f \in N(R)[x]$. Now suppose that the claim is true for $\deg(f) \leq n-1$. Let $\deg(g) = n$ with leading coefficient b_n . Since g is nilpotent in R[x], there exists $m \in \mathbb{N}$ such that $g^m = 0$. Then in particular, $b_n^m = 0$ so that b_n is nilpotent. Then $b_n x^n$ is also nilpotent. Now since N(R[x]) is an ideal of R[x], we have that $g - b_n x^n \in N(R[x])$. By inductive hypothesis, $g - b_n x^n \in N(R)[x]$. Since N(R) is an ideal of R[x]. So $g = (g - b_n x^n) + b_n x^n \in N(R)[x]$. Thus we are done. \square

Some more important results from Groups and Rings and Rings and Modules include:

- If R is an integral domain, then R[x] is an integral domain.
- R is a UFD if and only if R[x] is a UFD
- If F is a field, then F[x] is an Euclidean domain, a PID and a UFD
- If *F* is a field, then the ideal generated by *p* is maximal if and only if *p* is irreducible.

2 Modules over a Commutative Ring

Recall from Rings and Modules that a module consists of an abelian group M and a ring R such that there is a binary operation $\cdot : R \times M \to M$ that mimic the notion of a group action:

- For $r, s \in R$, $s \cdot (r \cdot m) = (sr) \cdot m$ for all $m \in M$.
- For $1_R \in R$ the multiplicative identity, $1_R \cdot m = m$ for all $m \in M$.

When R is a commutative ring, the first axiom is relaxed so that the resulting element of M makes no difference whether you apply r first or s first. This makes module act even more similarly than fields (although one still need the notion of a basis, which appears in free modules). Therefore the first section concerns transferring techniques in linear algebra such as the Cayley Hamilton theorem to module over a ring that mimic the notion of vector spaces.

2.1 Cayley-Hamilton Theorem

Definition 2.1.1: Characteristic Polynomial

Let R be a commutative ring. Let $A \in M_{n \times n}(R)$ be a matrix. Define the characteristic polynomial of A to be the polynomial

$$c_A(x) = \det(A - xI)$$

Theorem 2.1.2: Cayley-Hamilton Theorem

Let R be a commutative ring. Let $A \in M_{n \times n}(R)$ be a matrix. Then $c_A(A) = 0$.

Corollary 2.1.3

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R. Let $\varphi \in \operatorname{End}_R(M)$. If $\varphi(M) \subseteq IM$, then there exists $a_1, \ldots, a_n \in I$ such that

$$\varphi^n + a_1 \varphi^{n-1} + \dots + a_{n-1} \varphi + \mathrm{id}_M = 0 : M \to M$$

2.2 Nakayama's Lemma

Lemma 2.2.1: Nakayama's Lemma I

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R. If IM = M, then there exists $r \in R$ such that rM = 0 and $r - 1 \in I$.

Lemma 2.2.2: Nakayama's Lemma II

Let R be a commutative ring. Let M be a finitely generated R-module. Let I be an ideal of R such that $I \subseteq J(R)$ and IM = M. Then M = 0.

Corollary 2.2.3

Let (R, m) be a local ring. Let M be a finitely generated R-module. Then the following are true.

- M/mM is a finite dimensional vector space over R/m.
- $a_1, \ldots, a_n \in M$ generates M as an R-module if and only if $a_1 + mM, \ldots, a_n + mM$ generates M/mM as a R/m vector space.

2.3 Exact Sequences

2.4 Change of Rings

Definition 2.4.1: Extension of Scalars

Let R,S be commutative rings. Let $\varphi:R\to S$ be a ring homomorphism. Let M be an R-module. Define the extension of M to the ring S to be the S-module

$$S \otimes_R M$$

Definition 2.4.2: Restriction of Scalars

Let R,S be commutative rings. Let $\varphi:R\to S$ be a ring homomorphism. Let M be an S-module. Define the restriction of M to the ring R to be the R-module M equipped with the action

$$r \cdot_R m = \varphi(r) \cdot_S m$$

for all $r \in R$.

Theorem 2.4.3

Let R,S be commutative rings. Let $\varphi:R\to S$ be a ring homomorphism. Then there is an isomorphism

$$\operatorname{Hom}_S(S \otimes_R M, N) \cong \operatorname{Hom}_R(M, N)$$

for any R-module M and S-module N given as follows.

• For $f \in \text{Hom}_S(S \otimes_R M, N)$, define the map $f^+ \in \text{Hom}_R(M, N)$ by

$$f^+(m) = f(1 \otimes m)$$

• For $g \in \operatorname{Hom}_R(M,N)$, define the map $g^- \in \operatorname{Hom}_S(S \otimes_R M,N)$ by

$$g^{-}(s \otimes m) = s \cdot g(m)$$

3 Algebra Over a Commutative Ring

3.1 Commutative Algebras

Definition 3.1.1: Commutative Algebras

Let R be a commutative ring. A commutative R-algebra is an R-algebra A that is commutative.

Proposition 3.1.2

Let R be a commutative ring. Then the following are equivalent characterizations of a commutative R-algebra.

- A is a commutative R-algebra
- A is a commutative ring together with a ring homomorphism $f: R \to A$

Proof. Suppose that A is an R-algebra. Then define a map $f: R \to A$ by $f(r) = r \cdot 1$ where $r \cdot 1$ is the module operation on A. Then clearly this is a ring homomorphism.

Suppose that A is a commutative ring together with a ring homomorphism $f: R \to A$. Define an action $\cdot: R \times A \to A$ by $r \cdot a = f(r)a$. Then this action clearly allows A to be an R-module.

Under the correspondence of associative algebra, the above proposition gives a another correspondence between the first one.

$$\left\{ (A,R) \;\middle|\; \substack{A \text{ is a commutative} \\ R\text{-algebra}} \right\} \;\; \stackrel{1:1}{\longleftrightarrow} \;\; \left\{ \phi:R\to A \;\middle|\; \substack{\phi \text{ is a ring homomorphism} \\ \text{such that } f(R)\subseteq Z(A)=A} \right\}$$

In particular, the construction above are inverses of each other so that it gives the one-to-one correspondence.

3.2 Finitely Generated Algebra

Definition 3.2.1: Finitely Generated Algebra

Let A be a commutative algebra over a ring R. We say that A is a finitely generated algebra if there exists a finite set of elements a_1, \ldots, a_n such that A is generated by a_1, \ldots, a_n . Explicitly, this means that for all $a \in A$, there exists $c_{i_1,\ldots,i_n} \in R$ for $i_1,\ldots,i_n \in \mathbb{N}$ such that

$$a = \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} a_1^{i_1} \cdots a_n^{i_n}$$

Finitely generated algebras are also called algebra of finite type.

Theorem 3.2.2

Let A be a commutative algebra over a ring R. Then the following are equivalent.

- \bullet A is a finitely generated algebra over R
- There exists elements $a_1, \ldots, a_n \in A$ such that the evaluation homomorphism

$$\phi: R[x_1,\ldots,x_n] \to A$$

given by $\phi(f) = f(a_1, \dots, a_n)$ is a surjection

• There is an isomorphism

$$A \cong \frac{R[x_1, \dots, x_n]}{I}$$

for some ideal I

Definition 3.2.3: Finitely Presented Algebra

Let R be a ring. Let $A=R[x_1,\ldots,x_n]/I$ be a finitely generated algebra over R for some ideal I. We say that A is finitely presented if I is finitely generated.

Lemma 3.2.4

Let R be a ring, considered as an algebra over \mathbb{Z} . If R is finitely generated over \mathbb{Z} , then R is finitely presented.

Proof. Trivial since $\ensuremath{\mathbb{Z}}$ is a principal ideal domain.

Localization 4

4.1 Localization of a Ring

Definition 4.1.1: Multiplicative Set

Let R be a commutative ring. $S \subseteq R$ is a multiplicative set if $1 \in S$ and S is closed under multiplication: $x, y \in S$ implies $xy \in S$

Definition 4.1.2: Localization of a Ring

Let R be a commutative ring and $S \subseteq R$ be a multiplicative set. Define the ring of fractions of R with respect to S by

$$S^{-1}R = \left\{ \frac{r}{s} | r \in R, s \in S \right\} / \sim$$

where \sim is defined by

$$\frac{r}{s} \sim \frac{r'}{s'}$$
 if and only if $\exists v \in S$ such that $v(ru' - r'u) = 0$

If $S = \{1, f, f^2, ...\}$ then we write $S^{-1}R = R_f = R[1/f]$.

Proposition 4.1.3

Let $S^{-1}R$ be a ring of fractions.

- ullet \sim as defined in the ring of fractions is an equivalence relation
- $(S^{-1}R,+,\times)$ is a ring The map $\phi:R\to S^{-1}R$ defined by $\phi(r)\to \frac{r}{1}$ is a ring homomorphism

Proof.

- Define addition by $\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}$ and multiplication by $\frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$. Clearly addition is abelian, and has identity $\frac{0}{1}$ and inverse $\frac{-r}{s}$ for any $\frac{r}{s} \in S^{-1}R$. Multiplication also has
- We have that $\phi(r+s) = \frac{r+s}{1} = \frac{r}{1} + \frac{s}{1} = \phi(r) + \phi(s)$ and $\phi(rs) = \frac{rs}{1} = \frac{r}{1} \cdot \frac{s}{1} = \phi(r) \cdot \phi(s)$ for any $r, s \in R$.

Let $g:A\to B$ be a ring homomorphism such that g(s) is a unit in B for all $s\in S$. Then there exists a unique ring homomorphism $h: S^{-1}A \to B$ such that $g = h \circ \phi$. In other words, the following diagram commutes:

4.2 Localization at a Prime Ideal

Lemma 4.2.1

Let *R* be a ring and *P* a prime ideal of *R*. Then $R \setminus P$ is a multiplicative set.

Proof. By definition, $xy \in P$ implies $x \in P$ or $y \in P$, since $R \setminus P$ removes all these elements, we have that $x \notin P$ and $y \notin P$ implies that $xy \notin P$.

Definition 4.2.2: Localization on Prime Ideals

Let R be a commutative ring. Let P be a prime ideal. Denote

$$R_p = (R \setminus P)^{-1}R$$

the localization of R at P.

Lemma 4.2.3

Let R be an integral domain. Then the localization

$$(R \setminus (0))^{-1}R$$

is exactly the field of fractions of R.

Proposition 4.2.4

Let R be a ring and let p be a prime ideal of R. Then R_p is a local ring.

Proof. Let I be the set of all non-units of R_p . It is sufficient to show that I is an ideal by the above lemma. Clearly if $i \in I$ then $r \cdot i$ is also not invertible. Explicitly, we have

$$I = \left\{ \frac{r}{s} \in R_p \middle| r \in p \right\}$$

Let $\frac{r_1}{s_1},\frac{r_2}{s_2}\in I$, then $\frac{r_1}{s_1}+\frac{r_2}{s_2}=\frac{r_1s_2+r_2s_1}{s_1s_2}$ is in I since $r_1,r_2\in P$ and P being an ideal implies $r_1s_2+r_2s_1\in P$.

Be wary that in general localizations does not result in a local ring. This happens only when we are localizing with respect to a prime ideal. The importance of prime ideals is not explicit in the above because only using prime ideals P can $R \setminus P$ be a multiplicative set which ultimately allows localization to make sense.

4.3 Properties of Localization

Proposition 4.3.1

Localization commutes with direct sum of modules and quotient modules.

4.4 Localization of a Module

Definition 4.4.1: Localization of a Module

Let R be a commutative ring and $S \subseteq R$ be a multiplicative set Let M be a R-module. Define the ring of fractions of M with respect to S by

$$S^{-1}M = \left\{ \frac{m}{s} | m \in M, s \in S \right\} / \sim$$

where \sim is defined by

$$\frac{m}{s} \sim \frac{m'}{s'}$$
 if and only if $\exists v \in S$ such that $v(mu' - m'u) = 0$

If $S = \{1, f, f^2, ...\}$ then we write $S^{-1}M = M_f = M[1/f]$.

Proposition 4.4.2

Let S be a multiplicative set of a ring R. Then localization at S preservers exact sequences.

Proposition 4.4.3

Let M be an A-module. Then the $S^{-1}A$ modules $S^{-1}M$ is isomorphic to $S^{-1}A\otimes_A M$. More precisely, there exists a unique isomorphism $f:S^{-1}A\otimes_A M\to S^{-1}M$ such that

$$f((a/s)\otimes m) = am/s$$

Noetherian Rings

Ordering on the Monomials

Recall that a monomial in $R[x_1,\ldots,x_n]$ is an element in the polynomial ring of the form $x_1^{a_1}\cdots x_n^{a_n}$. For simplicity we write this as $x^{(a_1,\dots,a_n)}$.

Definition 5.1.1: Monomial Ordering

A monomial ordering on a polynomial ring $k[x_1,\ldots,x_n]$ is a relation > on \mathbb{N}^n . This means that the following are true.

- > is a total ordering on \mathbb{N}^n
- If a > b and $c \in \mathbb{N}^n$ then a + c > b + c
- > is a well ordering on \mathbb{N}^n (any nonempty subset of \mathbb{N}^n has a smallest element)

Definition 5.1.2: Lexicographical Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathrm{lex}} b$ if in the first nonzero entry of a - b is positive.

In practise this means that the we value more powers of x_1

Definition 5.1.3: Graded Lex Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathsf{grlex}} b$ if either of the following

- $\begin{array}{ll} \bullet & |a| = \sum_{k=1}^n a_k > \sum_{k=1}^n b_k = |b| \\ \bullet & |a| = |b| \text{ and } a >_{\operatorname{lex}} b \end{array}$

Definition 5.1.4: Graded Lex Order

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ in \mathbb{N}^n . We say that $a>_{\mathsf{grlex}} b$ if either of the following

- $|a| = \sum_{k=1}^{n} a_k > \sum_{k=1}^{n} b_k = |b|$ |a| = |b| and the last nonzero entry of a-b is negative.

In practise we value lower powers of the last variable x_n .

Proposition 5.1.5

The above three orders are all monomial orderings of $k[x_1, \ldots, x_n]$.

Definition 5.1.6: Multidegree

Let $f \in k[x_1,\ldots,x_n]$ be a polynomial in the form $f = \sum_{v \in \mathbb{N}^n} c_v x^v$. Define the multidegree of

$$\mathsf{multideg}(f) = \max\{v \in \mathbb{N}^n | a_v \neq 0\}$$

where > is a monomial ordering on $k[x_1, \ldots, x_n]$.

Definition 5.1.7: Leading Objects

Let $f \in k[x_1, \dots, x_n]$ be a polynomial in the form $f = \sum_{v \in \mathbb{N}^n} c_v x^v$.

- Define the leading coefficient of f to be $LC(f) = c_{\text{multideg}(f)} \in k$
- Define the leading monomial of f to be $LM(f) = c_{multideg(f)} \in k$
- Define the leading term of f to be $LT = LC(f) \cdot LM(f)$

Proposition 5.1.8: Division Algorithm in $k[x_1, \ldots, x_n]$

5.2 Monomial Ideals

Definition 5.2.1: Monomial Ideals

An ideal $I \subset k[x_1, \dots, x_n]$ is said to be a monomial ideal if I is generated by a set of monomials $\{x^v|v\in A\}$ for some $A\subset \mathbb{N}^n$. In this case we write

$$I = \langle x^v | v \in A \rangle$$

Lemma 5.2.2

Let $I = \langle x^v | v \in A \rangle$ be an ideal of $k[x_1, \dots, x_n]$. Then a monomial x^w lies in I if and only if $x^v | x^w$ for some $v \in A$. Moreover, if $f = \sum_{w \in \mathbb{N}^n} c_w x^w \in k[x_1, \dots, x_n]$ lies in I, then each x^w is divisible by x^v for some $v \in A$.

Theorem 5.2.3: Dickson's Lemma

Every monomial ideal is finitely generated. In particular, every monomial ideal $I=\langle x^v|v\in A\rangle$ is of the form

$$I = \langle x^{v_1}, \dots, x^{v_n} \rangle$$

where $v_1, \ldots, v_n \in A$.

5.3 Groebner Bases

5.4 Hilbert's Basis Theorem

Proposition 5.4.1

If A is a Noetherian and ϕ is a homomorphism of A onto a ring B, then B is Noetherian.

Theorem 5.4.2: Hilbert's Basis Theorem

If R is a Noetherian ring, then $R[x_1, \ldots, x_n]$ is a Noetherian ring.

Proposition 5.4.3

Let R be a Noetherian ring and I be an ideal in R. Then R/I is Noetherian.

Theorem 5.4.4

Let $R = \bigoplus_{i=1}^{n} R_i$ be a graded ring. Then R is Noetherian if and only if R_0 is Noetherian and R is finitely generated as an R_0 -module.

6 Primary Decomposition

6.1 Support of a Module

Definition 6.1.1: Support of a Module

Let M be an A-module. The support of M is the subset

 $Supp(M) = \{ P \text{ a prime ideal of } A | M_P \neq 0 \}$

6.2 Associated Prime

Definition 6.2.1: Associated Prime

Let M be an A-module. An associated prime P of M is a prime ideal of A such that there exists some $m \in M$ such that $P = \operatorname{Ann}(m)$.

6.3 Primary Ideals

Definition 6.3.1: Primary Ideals

Let R be a ring. An ideal Q of R is called primary if

- Q ≠ R
- $fg \in Q$ implies $f \in Q$ or $g^m \in Q$ for some m > 0

Lemma 6.3.2

If Q is primary, then \sqrt{Q} is prime.

Lemma 6.3.3

Let R be a Noetherian ring and I be a proper ideal that is not primary. Then

$$I = J_1 \cap J_2$$

for some ideals $J_1, J_2 \neq I$.

Definition 6.3.4: P-Primary Ideals

Let A be a ring and P a prime ideal. An ideal Q is P-primary if Q is primary and $Q = \operatorname{rad}(P)$

Theorem 6.3.5

Let A be a Noetherian ring and Q an ideal of A. Then Q is P-primary if and only if $Ann(A/Q) = \{P\}$.

6.4 Primary Decomposition

We want to express ideal I in R as $I = P_1^{e_1} \cdots P_n^{e_n}$ similar to a factorization of natural numbers, for some prime ideals P_1, \dots, P_n . However this notion fails and thus we have the following new type of ideal.

Definition 6.4.1: Primary Decompositions

A primary decomposition of an ideal I is an expression $I=Q_1\cap\cdots\cap Q_r$ with each Q_i primary.

The decomposition is said to be irredundant if $I \neq \bigcap_{i \neq j} Q_i$ for any j. The decomposition is said to be minimal if r is the smallest possible such decomposition for I.

Irredundant in this sense means that removing any one primary ideal in the intersection fails to become a decomposition of I.

Theorem 6.4.2

Every proper ideal in a Noetherian ring has a primary decomposition.

Lemma 6.4.3

Let $\phi:R\to S$ be a ring homomorphism and Q be a primary ideal in S. Then $\phi^{-1}(Q)$ is primary in R.

7 Integral Dependence

7.1 Integral Extensions

Definition 7.1.1: Integral Elements

Let B be a ring and let $A \subseteq B$ be a subring. Let $b \in B$. We say that b is integral over A if there exists a monic polynomial $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in A[x]$ such that p(b) = 0.

Proposition 7.1.2

Let *B* be a ring and let $A \subseteq B$. Let $b \in B$. Then the following are equivalent.

- \bullet b is integral over A
- The subring $A[b] \subseteq B$ is finite over A
- There exists an A sub-algebra $A' \subseteq B$ such that $A[b] \subseteq A'$ and A' is finite over A.

Proposition 7.1.3

Let B be a ring and let $A \subseteq B$ be a subring. Let $b_1, b_2 \in B$ be integral over A. Then $b_1 + b_2$ and b_1b_2 are both integral over A.

Definition 7.1.4: Integral Extensions

Let B be a ring and let $A \subseteq B$ be a subring. We say that B is integral over A if all elements of B are integral over A.

Lemma 7.1.5

Let $A \subseteq B \subseteq C$ be rings. If C is integral over B and B is integral over A, then C is integral over A.

Definition 7.1.6: Integral Closure

Let *B* be an *A*-algebra. Define the subring

$$\overline{A} = \{b \in B | b \text{ is integral over } A\}$$

to be the integral closure of A in B. If $\overline{A} = A$, then we say that A is integrally closed in B.

Lemma 7.1.7

Let *B* be a ring and let $A \subseteq B$ be a subring. Then \overline{A} is an integral extension of *A*.

Definition 7.1.8: Normal Domains

Let R be a domain. We say that R is normal (intergrally closed) if A is integrally closed in its field of fractions.

The integral closure of R in Frac(R) is called the normalization of R.

7.2 The Going-Up and Going-Down Theorems

7.3 Dedekind Domains

Definition 7.3.1: Dedekind Domains

Let R be a ring. We say that R is a dedekind domain if the following are true.

- \bullet R is an integral domain
- R is an integrally closed
- \bullet R is Noetherian
- ullet Every non-zero prime ideal of R is maximal

8 Discrete Valuation Rings

8.1 Discrete Valuation Rings

Definition 8.1.1: Totally Ordered Group

A totally ordered group is a group G with a total order " \leq " such that it is

- a left ordered group: $a \le b$ implies $ca \le cb$ for all $a, b, c \in G$
- a right ordered group: $a \le b$ implies $ac \le bc$ for all $a, b, c \in G$

Definition 8.1.2: Valuation on a Field

Let K be a field. Let G be a totally ordered abelian group. A valuation on K with values in G is a map $v: K \setminus \{0\} \to G$ such that for all $x, y \in K^*$, we have

- $\bullet \ v(xy) = v(x) + v(y)$
- $v(x+y) \ge \min\{v(x), v(y)\}$

We use the convention that $v(0) = \infty$.

v is said to be a discrete valuation if $G = \mathbb{Z}$.

Proposition 8.1.3

Let K be a field and $v:K\to\mathbb{Z}$ a discrete valuation. Then

$$\{x \in K | v(x) \ge 0\}$$

is a subring of K.

Definition 8.1.4: Discrete Valuation Rings

The discrete valuation ring of a discrete valuation $v: K \to \mathbb{Z}$ is the subset

$$A=\{x\in K|v(x)\geq 0\}$$

Alternatively, any ring isomorphic to a discrete valuation ring of some discrete valuation is also called a discrete valuation.

Proposition 8.1.5

Let R be a discrete valuation ring with respect to the valuation v. Let $t \in R$ be such that v(t) = 1. Then the following are true.

- A nonzero element $u \in R$ is a unit if and only if v(u) = 0
- Every non-zero ideal of R is a principal ideal of the form (t^n) for some $n \geq 0$
- Every $r \in R \setminus \{0\}$ can be written in the form $r = ut^n$ for some unit u and $n \ge 0$.

Proof.

• Let R be a discrete valuation ring. Suppose that $x \in R$ is a unit. Then $v(x^{-1}) = -v(x)$. Then $-v(x), v(x) \ge 0$ implies v(x) = 0. Now if v(y) > 0, suppose for contradiction that $u \in R$ is an inverse of y, then

$$0 = v(1) = v(uy) = v(u) + v(y)$$

But v(y) > 0 implies that v(u) < 0 which implies that $u \notin R$, a contradiction.

- Let $t \in R$ such that v(t) = 1. Let $x \in m$ where v(x) = n > 0. Then $v(x) = nv(t) = v(t^n)$ means that every $x \in m$ is of the form t^n . Thus m = (t). Since every ideal I is a subset of this maximal ideal, any ideal is of the form $I = (t^n)$ for some n > 0.
- Follows from the fact that (t^n) is the unique maximal ideal.

Proposition 8.1.6

Let R be an integral domain. Then the following are equivalent.

- *R* is a discrete valuation ring
- *R* is a UFD with a unique irreducible element up to multiplication of a unit
- \bullet R is a Noetherian local ring with a principal maximal ideal

Proof.

• (1) \Longrightarrow (3): We have seen that the set of non-units is precisely the set $m=\{x\in K|v(x)>0\}$. We show that this is an ideal. Clearly $x,y\in m$ implies $v(x+y)=\min\{v(x),v(y)\}>0$. Let $u\in R$. Then v(ux)=v(u)+v(x)>0 since v(x)>0 and $v(u)\geq 0$.

We have seen that every ideal is of the form (t^n) for some n>0. Thus every ascending chains of ideal must be of the form

$$(t^{n_1}) \subset (t^{n_2}) \subset \dots$$

for $n_1 > n_2 > \dots$. Since n_1, n_2, \dots is strictly decreasing, the chain must eventually stabilizes. This proves that R is Noetherian and has principal maximal ideal.

 \bullet (1) \Longrightarrow (3):

9 Dimension Theory for Rings

9.1 Dimension and Height

Definition 9.1.1: Krull Dimension

Let R be a commutative ring. Define the Krull dimension of R to be

$$\dim(R) = \sup\{t \in \mathbb{N} | p_0 \subset \cdots \subset p_t \text{ for } p_0, \ldots, p_t \text{ prime ideals } \}$$

Definition 9.1.2: Height of a Prime Ideal

Let p be a prime ideal in a ring R. Define the height of p to be

$$\mathsf{ht}(p) = \sup\{t \in \mathbb{N} | p_0 \subset \dots \subset p_t = p \text{ for } p_0, \dots, p_t \text{ prime ideals } \}$$

Lemma 9.1.3

Let p be a prime ideal in a ring R. Then

$$ht(p) = \dim(R_p)$$

Theorem 9.1.4: Krull's Principal Ideal Theorem

Let R be a Noetherian ring. Let I be a proper and principal ideal of R. Let p be the smallest prime ideal containing I. Then

$$ht_R(p) \leq 1$$

9.2 Length of a Module

Definition 9.2.1: Length of a Module

Let R be a ring and let M be an R-module. Define the length of M to be

$$l_R(M) = \sup\{n \in \mathbb{N} \mid 0 = M_0 \subset M_1 \subset \cdots \subset M_n = M\}$$

Lemma 9.2.2

Let R be a ring. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of R-modules. Then

$$l_R(M) = l_R(M') + l_R(M'')$$

Lemma 9.2.3

Let (A, m) be a local ring and let M be an A-module. If mM = 0, then

$$l_A(M) = \dim_{A/m}(M)$$

Proposition 9.2.4

Let R be a ring and let M be an R-module. Then the following are equivalent.

- \bullet M is simple
- $l_R(M) = 1$
- $M \cong A/m$ for some maximal ideal m of A

9.3 The Hilbert Polynomial

Definition 9.3.1: The Hilbert Polynomial

Let $R=\bigoplus_{k=0}^{\infty}R_k$ be a Noetherian graded ring. Let $M=\bigoplus_{k=0}^{\infty}M_k$ be a graded R-module. Define the Hilbert function $H_M:\mathbb{N}\to\mathbb{N}$ of R to be the function defined by

$$H_M(n) = l_{R_0}(M_n)$$

Definition 9.3.2: The Hilbert Series

Let $R=\bigoplus_{k=0}^\infty R_k$ be a Noetherian graded ring. Let $M=\bigoplus_{k=0}^\infty M_k$ be a graded R-module. Define the Hilbert series $HS_M\in\mathbb{Z}[[t]]$ of M to be the formal series

$$HS_M(t) = \sum_{k=0}^{\infty} H_M(k)t^k = \sum_{k=0}^{\infty} l_{R_0}(M_k)t^k$$

Theorem 9.3.3

Let $R = \bigoplus_{k=0}^{\infty} R_k$ be a Noetherian graded ring such that R_0 is Artinian. Let $M = \bigoplus_{k=0}^{\infty} M_k$ be a graded R-module. Let $\lambda : \{M_i \mid i \in I\} \to \mathbb{Z}$ be an additive function Then the function

$$g(t) = \sum_{k=0}^{\infty} \lambda(M_k) t^k$$

is a rational function and can be written in the form

$$g(t) = \frac{f(t)}{\prod_{i=1}^{r} (1 - t^{d_i})}$$

for some $f(t) \in \mathbb{Z}[t]$ and $d_i \in \mathbb{N}$.

Theorem 9.3.4: The Fundamental Theorem of Dimension Theory

Let (R,m) be a local Noetherian ring. Let I be an m-primary ideal. Then the following numbers are equal.

- Let $J = \bigoplus_{k=0}^{\infty} \frac{I^k}{I^{k+1}}$. The order of the pole at 1 of the rational function HS_J .
- \bullet The minimum number of elements of R that can generate an m-primary ideal of R
- The dimension $\dim_{R/m}(R)$

The following is a generalization of Krull's principal ideal theorem. Both of the theorems can actually be deduced directly from the fundamental theorem.

Theorem 9.3.5: Krull's Height Theorem

Let R be a Noetherian ring. Let I be a proper ideal generated by n elements. Let p be the smallest prime ideal containing I. Then

$$\operatorname{ht}_R(p) \leq n$$

Theorem 9.3.6

Let (R, m) be a Noetherian local ring and let k = R/m be the residue field. Then

$$\dim(R) \le \dim_k(m/m^2)$$

9.4 Global Dimension of a Ring