МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студентка гр. 8381	 Гречко В.Д.
Преподаватель	Ефремов М.А

Санкт-Петербург 2020

Цель работы.

Рассмотреть нестраничную память и способ управления динамическими разделами. Для реализации управления памятью построить список занятых и свободных участков памяти. Использовать функции ядра, обеспечивающие управление основной памятью, просматривающие и преобразующие этот список. Исследовать структуры данных и работу функций управления памятью ядра операционной системы.

Основные теоретические положения.

Учет занятой и свободной памяти ведется при помощи списка блоков у правления памятью МСВ (Memory Control Block). МСВ занимает 16 байт (параграф) и располагается всегда с адреса кратного 16 (адрес сегмента ОП) и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещение	Длина поля (байт)	Содержимое поля	
00h	1	тип МСВ:	
		5Ah, если последний в списке, 4Dh, если не	
		последний	
01h	2		
		Сегментный адрес PSP владельца участка памяти,	
		либо	
		0000h - свободный участок,	
		0006h - участок принадлежит драйверу OS XMS	
		UMB	
		0007h - участок является исключенной верхней	
		памятью драйверов 0008h - участок принадлежит MS	
		DOS FFFAh - участок занят управляющим блоком	
		386MAX UMB	
		FFFDh - участок заблокирован 386MAX FFFEh -	
		участок принадлежит 386MAX UMB	
03h	2	Размер участка в параграфах	
05h	3	Зарезервирован	
08h	8	"SC" - если участок принадлежит MS DOS, то в нем	
		системный код	
		"SD" - если участок принадлежит MS DOS, то в нем	
		системные данные	

По сегментному адресу и размеру участка памяти, контролируемого этим MCB можно определить местоположение следующего MCB в списке.

Адрес первого МСВ хранится во внутренней структуре MS DOS, называемой "List of Lists" (список списков). Доступ к указателю на эту структуру можно получить, используя функцию 52h "Get List of Lists" int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого МСВ.

Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конфигурации ПЭВМ. Объем памяти составляет 64 байта. Размер расширенной памяти в Кбайтах можно определить, обращаясь к ячейкам CMOS следующим образом:

```
mov AL,30h; запись адреса ячейки CMOS
out 70h,AL
in AL,71h; чтение младшего байта
mov BL,AL; размера расширенной памяти
mov AL,31h; запись адреса ячейки CMOS
out 70h,AL
in AL,71h; чтение старшего байта размера расширенной памяти
```

Порядок выполнения работы.

1. Для выполнения лабораторной работы был написан программный модуль типа .COM, который выбирает и распечатывает следующую информацию: количество доступной памяти, размер расширенной памяти, выводит цепочку блоков управления памятью. Результат работы программы lab3_1 представлен на рис.1.

```
T:\>lab3_1.com
Available memory: 640 kbytes
Extended memory: 15360 kbytes
MCBs:
MCB number 1
Block is occupied by MS DOS, size = 16 bytes; occupied by: no info
MCB number 2
Block is free, size = 64 bytes; occupied by: no info
MCB number 3
Block is owned by PSP = 0040, size = 256 bytes; occupied by: no info
MCB number 4
Block is owned by PSP = 0193, size = 160 bytes; occupied by: no info
MCB number 5
Block is owned by PSP = 0193, size = 648896 bytes; occupied by: LAB3_1
```

Pисунок 1 - Pезультат выполнения программы $lab3 \ 1$

2. Программы была изменена так, чтобы она освобождала память, которую она занимает. Теперь программа занимает не всю память, освобождённая память относится к новому, свободному блоку. Результат работы модифицированной программы представлен на рис. 2.

```
T:\>lab3_2.com
Available memory: 640 kbytes
Extended memory: 15360 kbytes
MCBs:
MCB number 1
Block is occupied by MS DOS, size = 16 bytes; occupied by: no info
MCB number 2
Block is free, size = 64 bytes; occupied by: no info
MCB number 3
Block is owned by PSP = 0040, size = 256 bytes; occupied by: no info
MCB number 4
Block is owned by PSP = 0193, size = 160 bytes; occupied by: no info
MCB number 5
Block is owned by PSP = 0193, size = 1072 bytes; occupied by: LAB3_2
MCB number 6
Block is free, size = 647808 bytes; occupied by: 3<sub>11</sub>3<sup>1</sup> 6B
```

Рисунок 2 – Результат выполнения программы $lab3 \ 2$

3. Программа снова была изменена таким образом, что после освобождения памяти программа запрашивала 64Кб памяти. Результат работы новой модификации представлен на рис. 3.

```
T: \lab3_3.com
Available memory: 640 kbytes
Extended memory: 15360 kbytes
MCBs:
MCB number 1
Block is occupied by MS DOS, size = 16 bytes; occupied by: no info
MCB number 2
Block is free, size = 64 bytes; occupied by: no info
MCB number 3
Block is owned by PSP = 0040, size = 256 bytes; occupied by: no info
MCB number 4
Block is owned by PSP = 0193, size = 160 bytes; occupied by: no info
MCB number 5
Block is owned by PSP = 0193, size = 1136 bytes; occupied by: LAB3_3
MCB number 6
Block is owned by PSP = 0193, size = 65536 bytes; occupied by: LAB3_3
MCB number 7
Block is free, size = 582192 bytes; occupied by: n 79All
```

Рисунок 3 – Результат выполнения программы lab3 3

4. Программа основы была модернизирована. В этом варианте программы 64Кб памяти запрашиваются до освобождения памяти. Дополнительная память не была выделена, так как на момент попытки выделения вся доступная память уже принадлежит программе, о чём свидетельствует сообщение в начале вывода. Под программу выделено меньше 64Кб. Результат работы программы представлен на рис. 4.

```
1:\>lab3_4.com
Some error occures during memory allocating.
Available memory: 640 kbytes
Extended memory: 15360 kbytes
MCBs:
MCB number 1
Block is occupied by MS DOS, size = 16 bytes; occupied by: no info
MCB number 2
Block is free, size = 64 bytes; occupied by: no info
MCB number 3
Block is owned by PSP = 0040, size = 256 bytes; occupied by: no info
MCB number 4
Block is owned by PSP = 0193, size = 160 bytes; occupied by: no info
MCB number 5
Block is owned by PSP = 0193, size = 1136 bytes; occupied by: LAB3_4
MCB number 6
Block is free, size = 647744 bytes; occupied by: LAB3_3
```

Рисунок 4 — Результат выполнения программы lab3 4

- 5. Ответы на контрольные вопросы по лабораторной работе №3.
- А) Что означает «доступный объем памяти»?

Ответ: доступный объем памяти — объем ОП, выделенный программе.

Б) Где МСВблок Вашей программы в списке?

Ответ: принадлежность блока памяти можно определить, по адресу его владельца (расположенному со смещением в один байт в МСВ). Также название модуля-владельца может содержаться в последних восьми байтах МСВ. Как видно из вывода программы, ей обычно принадлежит два блока, первый из которых имеет фиксированный размер в 160 байт, а второй зависит от размера исходного кода. Также программе будет принадлежать запрошенная и выделенная память.

С) Какой размер памяти программа занимает в каждом случае?

Ответ: Без освобождения памяти программа занимает 160 байта и всю свободную память. После освобождения она занимает 160 байта + около 1000 байтов (в каждом случае это зависит от исходного кода), для измерения размера вычисляется ближайший к концу модуля адрес конца параграфа и к нему добавляется ещё 16 байт. Также при запросе и успешном выделении дополнительной памяти, программа также занимает и её.

Выводы.

Была рассмотрена нестраничная память и способ управления динамическими разделами. Для реализации управления памятью был построен список занятых и свободных участков памяти. При выполнении были использованы функции ядра, обеспечивающие управление основной памятью, просматривающие и преобразующие этот список, а также были исследованы структуры данных и работу функций управления памятью ядра операционной системы.