LÓGICA MATEMÁTICA

Gustavo Aurélio Prieto

Justificando...

 Para o desenvolvimento de qualquer algoritmo e consequentemente de qualquer software são necessários conhecimentos básicos de lógica.

Teorema --> problema a ser implementado

Demonstração --> solução computacional ou algoritmo

Ou seja: se o algoritmo funciona, o problema possui solução!

Sócrates

Grécia Antiga

Platão

Aristóteles

Aristóteles (384 a.c – 322 a.c)

- Aluno de Platão;
- Tutor de Alexandre o Grande;
- Foi influenciado por Sócrates e Platão;
- Influenciou toda a filosofia ocidental.
- Somente um terço do seu trabalho chegou até os dias de hoje.

Estudos:

- Física;
- Metafísica;
- Poesia
- Drama e a Música;
- Lógica;
- Retórica;
- Governo;
- Biologia e Zoologia.

Contribuições de Aristóteles - Organon

- Estabelecimento da lógica e da terminologia científica;
- Causa e efeito;
- Pensamento Dedutivo
 - A conclusão se segue das premissas;
 - Se p então q
 - p
 - Logo, q
 - Do geral para o específico;
 - Classificação.

Lógica Booleana

- Criada por Georges Boole, matemático inglês (1815-1864);
- "The Laws of Thought" 1854
 - Evolução da Lógica Aristotélica no campo da matemática.
 - Estudos e princípios utilizados para distinguir sentenças verdadeiras de falsas.

Proposição

- Proposição é uma frase, porém nem todas as frases são proposições.
- Proposição é uma construção (sentença, frase) a qual pode-se atribuir juízo. Ou seja, admite como resposta um dos dois valores lógicos:
 - Verdadeiro (V);
 - Falso (F).

- Exemplos de Proposição:
 - A cidade de Salvador é a capital do estado do Amazonas (F);
 - O número 712 é ímpar (F);
 - Raiz quadrada de quatro é o número 2 (V).
- Frases que não são Proposições:
 - Pare!
 - Que dia é hoje?
 - Qual a cor da sua camisa?

Leis Fundamentais

Meio Excluído

 Um proposição é falsa ou verdadeira: não há meio termo.

Contradição

 Uma proposição não pode ser, simultaneamente, verdadeira e falsa.

Funcionalidade

 O valor lógico (Verdadeiro ou Falso) de uma proposição composta é unicamente determinado pelos valores lógicos de suas proposições constituintes.

Álgebra Booleana

- Álgebra Tradicional:
 - Uma variável pode assumir valores que vão de menos infinito a mais infinito.
- Álgebra Booleana:
 - Uma variável pode assumir somente dois valores Verdadeiro (V) ou Falso (F).
- Proposição → Variável Booleana.
 - Exemplo:
 - "2 + 2 é igual a 1" = a
 - "hoje é sábado" = b

Proposição

- Proposição Atômica: não pode ser decomposta em proposições menores.
 - Exemplo: Buenos Aires é a capital do Brasil.
- Proposição Composta: proposições complexas criadas a partir da combinação de proposições atômicas através do uso de conectivos (e, ou, não, etc...).
 - Exemplo: Vou comprar um desktop ou um notebook.

Conjunção - (e)

- A conjunção retorna verdade apenas quando as duas entradas são verdadeiras;
- Em todos os outros casos a conjunção retorna falso.

а	b	$a \wedge b$
F	F	F
F	V	F
V	F	F
V	V	V

 $a \wedge b$

a e b

Disjunção - (ou)

- A disjunção retorna verdade quando qualquer uma das entradas são verdadeiras;
- Somente quando as duas entradas são falsas a disjunção retorna falso.

_	_
$a \vee b$	a ou b

а	b	$a \vee b$
F	F	F
F	V	V
V	F	V
V	V	V

Negação - (não)

- A negação retorna verdade quando a entrada é falsa.
- Caso a entrada seja verdadeira a negação retorna falso.

а	$\neg a$
F	V
V	F

$$\neg a \qquad n\tilde{a}o \ a$$

Condição - (se...então)

- A condição parte da noção de que uma premissa verdadeira sempre leva a uma conclusão verdadeira.
- Caso a premissa seja falsa, nada se pode afirmar. Assim:
 - A condição retorna falso quando a premissa "a" é verdadeira e a conclusão "c" é falsa;
 - A condição retorna verdadeiro em caso contrário;

а	С	$a \to c$
F	F	V
F	V	V
V	F	F
V	V	V

 $a \rightarrow c$ se a então c

Bicondição

- A bicondição parte da noção de que é uma condição "nos dois sentidos":
 - Sentido de "ida": "a" é a premissa e "d" é a conclusão;
 - Sentido de "volta": "d" é a premissa e "a" é a conclusão;
- Assim, a bicondição retorna verdadeiro quando ambas as entradas são verdadeiras ou ambas as entradas são falsas;
- A bicondição retorna falso em caso contrário.

а	d	$a \leftrightarrow d$
F	F	V
F	V	F
V	F	F
V	V	V

 $a \leftrightarrow d$ a se e somente se d

Fórmula Lógica

- Sentença corretamente construída através de um alfabeto constituído dos seguintes símbolos:
 - Conectivos:
 - Parênteses;
 - Identificadores (variáveis);
 - Constantes.
- O resultado de uma fórmula depende tão somente das variáveis que as constituem.

Ordem de Precedência

- Parênteses (mais internos para os mais externos);
- Negação;
- Conjunção e Disjunção;
- Condição;
- Bicondição.

Tabelas-verdade

- O objetivo das tabelas-verdade é permitir o estudo passo-a-passo do comportamento de uma fórmula lógica.
- Como construir uma tabela-verdade:
 - 1. Definir a equação a ser estudada;
 - 2. Identificar as variáveis de entradas e escrever todas as possíveis combinações para as mesmas;
 - 3. Solucionar a fórmula, operador a operador, respeitando as normas de precedência.

Exemplo de Cálculo de Tabela-verdade

$$a \wedge (\neg b)$$

a	b
F	F
F	V
V	F
V	V

a	b	$\neg b$
F	/ F	V
F	V	F
V	F	V
V	\ V /	F

a	b	$\neg b$	$a \wedge (\neg b)$
/ F	F	/ V	F
I F	V	1 F	F
V	F	V	V
V/	V	F/	F

$$a \lor (b \land c) \leftrightarrow (a \lor b) \land (a \lor c)$$

а	b	С	$b \wedge c$	$a \lor (b \land c)$	$a \vee b$	$a \lor c$	$(a \vee b) \wedge (a \vee c)$	$a \lor (b \land c) \leftrightarrow (a \lor b) \land (a \lor c)$
F	F	F	F	F	F	F	F	V
F	F	V	F	F	F	V	F	V
F	V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V	V
V	F	F	F	V	V	V	V	V
V	F	V	F	V	V	V	V	V
V	V	F	F	V	V	V	V	V
V	V	V	V	V	V	V	V	V

Tautologia

- Seja uma fórmula w, então:
- Diz-se que w é uma tautologia se w é verdadeira para todas as combinações possíveis de suas sentenças variáveis.
- A fórmula:

$$a \vee \neg a$$

■ É uma tautologia.

а	$\neg a$	$a \vee \neg a$
F	V	V
V	F	V

Contradição

- Seja uma fórmula w, então:
- Diz-se que w é uma contradição se w é falsa para todas as combinações possíveis de suas sentenças variáveis.
- A fórmula:

$$a \wedge \neg a$$

■ É uma contradição.

а	$\neg a$	$a \land \neg a$
F	V	F
V	F	F

Relação de Implicação

■ Sejam a e b duas fórmulas, então a implica b, denotado por:

$$a \Rightarrow b$$
 ou $a \models b$

■ Se e somente se:

$$a \rightarrow b$$
 e' $uma\ tautologia$

Exemplo: Implicação de Adição

Adição:

$$a \Rightarrow a \vee b$$

 A implicação fica comprovada se a condição:

$$a \rightarrow a \vee b$$

■ É uma tautologia.

а	b	$a \vee b$	$a \rightarrow a \vee b$		
F	F	F	V		
F	V	V	V		
V	F	V	V		
V	V	V	V		

Exemplo: Implicação de Simplificação

■ Simplificação:

$$a \wedge b \Rightarrow a$$

 A implicação fica comprovada se a condição:

$$a \wedge b \rightarrow a$$

■ É uma tautologia.

а	b	$a \wedge b$	$a \wedge b \rightarrow a$	
F	F	F	V	
F	V	F	V	
V	F	F	V	
V	V	V	V	

Relação de Equivalência

■ Sejam a e b duas fórmulas, então a equivale a b, denotado por:

$$a \Leftrightarrow b$$

■ Se e somente se:

$$a \leftrightarrow b$$
 e' $uma\ tautologia$

$$a \lor (b \land c) \Leftrightarrow (a \lor b) \land (a \lor c)$$

Fica comprovada se a bicondição: $a \lor (b \land c) \leftrightarrow (a \lor b) \land (a \lor c)$ É uma tautologia

а	b	С	$b \wedge c$	$a \vee (b \wedge c)$	$a \vee b$	$a \lor c$	$(a \vee b) \wedge (a \vee c)$	$a \lor (b \land c) \leftrightarrow (a \lor b) \land (a \lor c)$
F	F	F	F	F	F	F	F	V
F	F	V	F	F	F	V F		V
F	V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V	V
V	F	F	F	V	V	V	V	V
V	F	V	F	V	V	V	V	V
V	V	F	F	V	V	V	V	V
V	V	V	V	V	V	V	V	V

$$a \leftrightarrow b \Leftrightarrow (a \to b) \land (b \to a)$$

Verifique se a bicondição é uma Tautologia

$$a \leftrightarrow b \leftrightarrow (a \rightarrow b) \land (b \rightarrow a)$$

Se a tautologia é confirmada, então provamos formalmente que a bicondição pode ser expressa por duas condições.

а	b	$a \leftrightarrow b$	$(a \to b)$	$(b \to a)$	$(a \to b) \land (b \to a)$	$a \leftrightarrow b \leftrightarrow (a \to b) \land (b \to a)$
F	F	V	V	V	V	V
F	V	F	V	F	F	V
V	F	F	F	V	F	V
V	V	V	V	V	V	V

$$a \rightarrow b \Leftrightarrow \neg b \rightarrow \neg a$$

Verifique se a bicondição é uma Tautologia

$$a \rightarrow b \leftrightarrow \neg b \rightarrow \neg a$$

Se a tautologia é confirmada, então provamos formalmente a equivalência conhecida como **contraposição**.

а	b	$a \rightarrow b$	$\neg a$	$\neg b$	$\neg b \rightarrow \neg a$	$a \to b \leftrightarrow \neg b \to \neg a$
F	F	V	V	V	V	V
F	V	V	V	F	V	V
V	F	F	F	V	F	V
V	V	V	F	F	V	V

$$a \to b \Leftrightarrow a \land \neg b \to F$$

Verifique se a bicondição é uma Tautologia

$$a \to b \Leftrightarrow a \land \neg b \to F$$

Se a tautologia é confirmada, então provamos formalmente a equivalência conhecida como redução ao absurdo.

а	b	$a \rightarrow b$	$\neg b$	$a \wedge \neg b$	$a \wedge \neg b \to F$	$a \to b \leftrightarrow a \land \neg b \to F$
F	F	V	V	F	V	V
F	V	V	F	F	V	V
V	F	F	V	V	F	V
V	V	V	F	F	V	V

PROPOSIÇÕES E CONJUNTOS

Quantificadores

Considerando a sentença abaixo:

- Dependendo do valor de *n* a sentença pode assumir um valor verdadeiro ou falso.
- Assim, para cada valor de n a sentença se torna uma proposição diferente.

Proposição Sobre um Conjunto

Dado um elemento x:

$$x \in A$$

■ Pode-se definir uma proposição p que descreve uma propriedade deste elemento.

Esta proposição define dois conjuntos:

Conjunto Falsidade de p

Conjunto Verdade de p

$$\{x \in A \mid p(x) \ e' \ falsa)\}$$

$$\{x \in A \mid p(x) \ e' \ falsa)\} \qquad \{x \in A \mid p(x) \ e' \ verdadeira)\}$$

Exemplo:

■ Para a proposição:

 $\{1,2,3\}$ e' o conjunto verdade

$$\{n \in \mathbb{N} \mid n > 3\}$$
 $e' \ o \ conjunto \ falsidade$

Quantificadores

Quantificador Universal

Para todo x pertencente a A, p(x)

$$\forall x \in A, \ p(x)$$

 Ou seja, a proposição é verdadeira para todos os elementos x, pertencentes ao conjunto A.

Quantificador Existencial

Existe (pelo menos) um x pertencente a A, p(x)

$$\exists x \in A, p(x)$$

 Ou seja, a proposição é verdadeira para pelo menos um elemento x, pertencente ao conjunto A.

Exemplo Quantificadores

verificar o valor-verdade para cada uma das proposições

- P(n) = n < 1
 - Conjunto verdade: {0}
 - Conjunto falsidade: {1, 2, 3,...}

Assim,

■
$$P(n) = n + 1 > n$$

- Conjunto verdade: {0, 1, 2, ...}
- Conjunto falsidade: { }

Assim,

$$(\forall n \in \mathbb{N}) (n < 1)$$
 $e' \ falsa$

$$(\forall n \in \mathbb{N}) (n < 1)$$
 $e' \ falsa$ $(\forall n \in \mathbb{N}) (n + 1 > n)$ $e' \ verdadeira$

$$(\exists n \in \mathbb{N}) (n < 1)$$
 $e' \ verdadeira$ $(\exists n \in \mathbb{N}) (n + 1 > n)$ $e' \ verdadeira$

$$(\exists n \in \mathbb{N}) (n+1 > n)$$
 $e' verdadeira$