# **Dokumen Desain Data Pipeline**

### overview

Proyek ETL Data Pipeline Optimization ini bertujuan untuk membangun sebuah pipeline data end-to-end yang dapat mengintegrasikan berbagai sumber data tambang, termasuk:

- Log Produksi Harian (berasal dari file SQL dump),
- Sensor Alat Berat (dari file CSV),
- Data Cuaca (menggunakan API dari Open-Meteo).

### Pipeline ini akan:

Extract data dari sumber-sumber di atas, Transform data menjadi berbagai metrik analitis penting, seperti:

- Total produksi harian (total\_production\_daily)
- - Rata-rata kualitas batubara (average quality grade)
- Utilisasi alat (equipment\_utilization)
- - Efisiensi bahan bakar (fuel efficiency)
- Dampak cuaca terhadap produksi (weather\_impact)

Load hasil akhirnya ke dalam ClickHouse, yaitu database OLAP yang cepat dan cocok untuk analisis skala besar.

Seluruh proses berjalan otomatis dan dapat dijalankan di lingkungan lokal menggunakan Docker untuk memastikan replikasi yang konsisten.

Pipeline ini juga terhubung ke Metabase untuk menampilkan dashboard visualisasi interaktif, sehingga tim analis atau manajemen bisa mengambil keputusan berdasarkan data yang sudah bersih dan terintegrasi.

# Tujuan

Tujuan dari proyek ini adalah membangun sebuah pipeline data ETL yang dapat mengintegrasikan data log produksi tambang, data sensor alat berat, dan data cuaca harian untuk menghasilkan metrik analitis yang berguna bagi pengambilan keputusan operasional dan strategis.

### **Arsitektur Project**



### Komponen Utama:

- Data Source:
  - File SQL (production\_logs.sql)
  - File CSV (equipment\_sensors.csv)
  - o Open-Meteo API (JSON)
- ETL Script:
  - o Dibangun menggunakan Python
  - o Menggunakan pandas, aiohttp, dan asyncio
  - o Transformasi data dilakukan untuk menghitung metrik
- Data Warehouse:
  - ClickHouse sebagai storage untuk hasil akhir
- Dashboard:
  - Metabase sebagai visualisasi data analitis

### **ETL Pipeline**

[SQL + CSV + API] --> [Python ETL Script] --> [ClickHouse] --> [Metabase Dashboard]

### Extract:

- Membaca file SQL untuk data produksi (production\_logs)
- Membaca CSV sensor alat berat (equipment\_sensors.csv)
- Mengambil data cuaca dari API berdasarkan tanggal produksi

### Transform:

- Pembersihan data (mis. tons\_extracted < 0 diubah ke 0)</li>
- Menghitung:
  - total\_production\_daily
  - average\_quality\_grade
  - equipment\_utilization
  - o fuel\_efficiency
  - o weather\_impact
- Korelasi cuaca dan produksi dihitung sebagai selisih produksi terhadap rolling average 3 hari

#### Load:

• Menyimpan hasil akhir ke dalam tabel daily\_production\_metric di ClickHouse

## Skema Tabel daily\_production\_metric



# Skema Tabel daily\_production\_metric

| Kolom                  | Tipe Data | Deskripsi                                        |  |
|------------------------|-----------|--------------------------------------------------|--|
| date                   | DateTime  | Tanggal produksi                                 |  |
| mine_id                | Integer   | ID tambang                                       |  |
| total_production_daily | Float     | Total produksi (ton)                             |  |
| average_quality_grade  | Float     | Rata-rata kualitas batubara                      |  |
| equipment_utilization  | Float (%) | Persentase alat aktif                            |  |
| fuel_efficiency        | Float     | Rasio konsumsi BBM per ton                       |  |
| rainfall_mm            | Float     | Curah hujan (mm)                                 |  |
| weather_impact         | Float     | Dampak cuaca terhadap<br>deviasi produksi harian |  |

# Cara Menggunakan Project

### **Clone Repository**

git clone https://github.com/ahmadarbain/data mining optimization.git

### selanjutnya masuk ke direktori project

cd data\_mining\_optimization

### Installasi Docker

Jika belum, kamu bisa install Docker Desktop di: https://www.docker.com/products/docker-desktop

### Jalankan docker-compose.yaml

Pada tahap ini jalankan perintah berikut untuk menggunakan clickhouse dan metabase pada docker

docker-compose up -d

Ini akan menjalankan:

- ClickHouse (Database OLAP)
- Metabase (Visualisasi Dashboard)

### Siapkan Environment Project (venv)

Gunakan Python 3.9, misalnya dengan pyenv atau venv.

```
install pypi
    pip install py
    py -3.9 -m venv venv

# aktifkan env
    source venv/bin/activate # Linux/Mac
    venv\Scripts\activate # Windows

# installasi requirements di dalam env
    pip install -r requirements.txt
```

### Running etl proses

Jalankan perintah berikut untuk menjalankan seluruh proses ETL python main.py

### Struktur Proyek

```
- datasets/  # Folder dataset mentah
- clickhouse/  # Konfigurasi Docker untuk ClickHouse
- metabase/  # Konfigurasi Docker untuk Metabase
- src/
- usecase/
- daily_production.py  # Proses utama ETL
- interface/
- database.py  # Abstraksi untuk koneksi database
- requirements.txt
- docker-compose.yml
- main.py
```

# Report

0 C O D i ...

mine\_coal\_dashboard







| Date         | Mine ID | <b>Total Production Daily</b> | Average Quality Grade | <b>Equipment Utilization</b> | Fuel Efficiency | Rainfall Mm | Weather Impac |
|--------------|---------|-------------------------------|-----------------------|------------------------------|-----------------|-------------|---------------|
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 25                           | 0.11            | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.11            | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.053           | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.034           | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.17            | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.083           | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.053           | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.27            | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.13            | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.084           | 0           |               |
| luly 1, 2024 | 1       | 235.62                        | 3.95                  | 37.5                         | 0.2             | 0           |               |