Generative Adversarial Network in the Air: Deep Adversarial Learning for Wireless Signal Spoofing Scientific Project

Group: 20

Ecole Centrale Casablanca

January 19, 2024

Outline

- Research Context
- **Problematic**
- 3 Signal Theory : Multicarrier Waveforms
- Maths behind GAN
- **5** GAN and CNN baseline models
- 6 Results and Discussion
- Conclusion and perspectives

Research Context

Figure: Generated Images using Generative Adeversarial Networks

Research Context

Figure: Drawing parallels between the deceptive capabilities of deepfakes in media and the misleading nature of signal spoofing in communications.

Problematic

- Limited Application to Single Carrier Signals and Complexity of Filtered Multicarrier Systems: In wireless communications, most GAN research has concentrated on single carrier signals.
- Our intention is to create an evasion attack using Multicarrier **Waveforms**, where an adversary attempts to fool a machine learning algorithm into making a wrong decision

Methodology

Figure: Process of our experience

Multicarrier Waveforms

- Orthogonal Frequency Division Multiplexing (OFDM): renowned for its subcarrier orthogonality.
- Filter Bank Multicarrier (FBMC): FBMC uses sophisticated filtering for each subcarrier.
- Generalized Frequency Division Multiplexing (GFDM): introducing sub-symbols and circular filtering
- Universal Filtered Multicarrier (UFMC): uses individually tailored filters for each subcarrier
- Filtered-OFDM (F-OFDM): variant of OFDM that adresses some of its limitations

Mutlicarrier Modulation

 The transmitted signal in a multicarrier setup can be mathematically formulated as follows:

$$x[n] = \sum_{r=0}^{N_{\text{symbols}}-1} \sum_{q=0}^{N_c-1} s_{q,r} g_{q,r}[n]$$
 (1)

• The synthesis function gq,r[n], a crucial component in a Gabor System, is articulated as:

$$g_{q,r}[n] = g_{tx}[n - rN]e^{-j\frac{2\pi qn}{N_c}}$$
 (2)

Received signal:

$$r_{\mathsf{ch}}[n] = x[n] * h[n] \tag{3}$$

Final received signal:

$$y[n] = e^{j\frac{2\pi n\kappa}{N_c}} \cdot r_{ch}[n+\delta] + z[n]$$
 (4)

I/Q encoding

I/Q encoding is a method that separately represents a signal's in-phase (I) and quadrature (Q) components, helping to use the available frequency spectrum more efficiently.

Dataset

A 5 dimensional Dataset:

• 1st Dim: 2500 samples per class per SNR

• 2nd Dim: I components (128)

• 3rd Dim : Q components (128)

4th Dim : 5 Waveform types

• 5th Dim: 3 SNR(Signal-to-Noise Ratio) values

GAN and c-GAN architecture

Figure: GAN architecture for multicarrier waveforms

Figure: Class label conditional GAN architecture for multicarrier waveforms

Maths behind GAN

- The discriminator aims to learn the conditional probability P(Y|X=x), where X is the input and Y is the output.
- The generator aims to learn the joint probability P(X,Y).
- The discriminator is a binary classifier that distinguishes between real data (X) and generated data (\hat{X}) .
- This is the Value function : (proof 1 in annexe)

$$V(G,D) = \mathbb{E}_{x \sim P_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim P_z}[\log(1 - D(G(z)))]$$
 (5)

where x is sampled from the real data distribution P_{data} , and z is sampled from the input noise distribution P_z of the generator. The discriminator aims to maximize it while the generator aims to minimize it.

The minimax game to achieve a balance.

• Training Loop:

Fix the learning rate

For each iteration:

Inner loop for D:

- Take *m* real data samples and *m* fake data samples
- Update parameters θ_D by gradient descent:

$$\frac{\partial}{\partial \theta_D} \frac{1}{m} \left(\ln(D(x)) + \ln(1 - D(G(z))) \right)$$

Fix the learning of D (out of the inner loop for D)

- Take m fake data samples
- Update parameters θ_G by gradient descent:

$$\frac{\partial}{\partial \theta_G} \frac{1}{m} \ln(1 - D(G(z)))$$

For every k updates of the discriminator, update the generator once.

At optimality, $P_G = P_{data}$ (proof in annexe).

GAN and CNN baseline models

Figure: Generator's model

Figure: Discriminator's model

- Discriminator : DR 0.3 , Adam Optimizer.
- Generator : Embedding layer of size 50.

GAN and CNN baseline models

Figure: CNN Classifier's model

 \bullet CNN: DR 0.3 , Early Stopping, Adam Opt, 80% train and 20% test, and

• Probability of Global Correct Classification (P_{gcc}):

$$P_{gcc} = \frac{N_{cc}}{N_f \times N_w} \tag{6}$$

 N_w : the total count of waveforms utilized for training the GAN. N_f : the number of fake signals generated per waveform. N_{cc} : the cumulative count of correct classifications across all waveforms.

• The Per-Class Correct Classification Probability (P_{ccc}) , defined as:

$$P_{ccc} = \frac{1}{N_f} \sum_{i=1}^{N_f} p_{c_i} \tag{7}$$

 p_{c_i} denotes the per-class probabilities reported by the CNN classifier.

\bullet Performance of the GAN . Batch size = 1280

	Epoch	Pgcc	Pccc_UFMC	Pccc_OFDM	Pccc_F-OFDM	Pccc_GFDM	Pccc_FBMC
0	20	0.61	0.67	0.023	0.65	0.50	0.75
1	40	0.62	0.73	0.035	0.77	0.55	0.78
2	60	0.66	0.74	0.021	0.89	0.57	0.80
3	80	0.67	0.60	0.037	0.92	0.70	0.82
4	100	0.71	0.74	0.070	0.95	0.73	0.85

ullet Performance of the GAN , Batch size =896

	Epoch	Pgcc	Pccc_UFMC	Pccc_OFDM	Pccc_F-OFDM	Pccc_GFDM	Pccc_FBMC
0	20	0.66	0.67	0.013	0.65	0.61	0.65
1	40	0.72	0.73	0.025	0.77	0.65	0.74
2	60	0.71	0.84	0.031	0.79	0.57	0.82
3	80	0.73	0.90	0.027	0.72	0.60	0.87
4	100	0.71	0.94	0.032	0.75	0.73	0.89

• Performance of the GAN, Batch size = 512

	Epoch	Pgcc	Pccc_UFMC	Pccc_OFDM	Pccc_F-OFDM	Pccc_GFDM	Pccc_FBMC
0	20	0.61	0.77	0.023	0.61	0.51	0.620
1	40	0.69	0.71	0.125	0.71	0.55	0.740
2	60	0.71	0.82	0.240	0.79	0.57	0.760
3	80	0.73	0.87	0.270	0.82	0.50	0.840
4	100	0.78	0.91	0.320	0.95	0.53	0.892

• Performance of the GAN , Batch size = 256

	Epoch	Pgcc	Pccc_UFMC	Pccc_OFDM	Pccc_F-OFDM	Pccc_GFDM	Pccc_FBMC
0	20	0.51	0.67	0.213	0.62	0.010	0.58
1	40	0.59	0.71	0.215	0.67	0.012	0.64
2	60	0.59	0.74	0.340	0.77	0.030	0.66
3	80	0.63	0.81	0.370	0.86	0.010	0.71
4	100	0.68	0.89	0.420	0.93	0.010	0.72

- We attribute the improved behavior of our C-DCGAN for these filtered OFDM variants, to the richer statistical features they exhibit as a result of filtering at multiple levels (subband, per subcarrier, per subsymbol).
- The generator is not able to maximize both GFDM and OFDM at the same time
- The OFDM and GFDM waveforms are the most complex among the investigated ones, indeed, in addition to the per subcarrier filtering, GFDM introduces also filtering per subsymbols.

Attack type	Success probability		
Random signals	5%		
GAN-based (Batch size 512)	78%		

Table: Success Probability of evasion attacks

Limitations and perspectives

- Time constraint: which restricted the number of epochs to 100.
- The inability to run the Inception Score (IS) and Frechet Inception Distance (FID) metrics due to their difficult adaptability to signals as opposed to images.
- Parameters variation: number of layers, number of training samples,

Thank You

Thank you for your attention.

Bibiliograpghy

- [1] K. Davaslioglu and Y. E. Sagduyu, "Generative adversarial learning for spectrum sensing," IEEE International Conference on Communications (ICC), Kansas City, MO, May 20-24, 2018.
- [2] T. O'Shea, J. Corgan, and C. Clancy, "Convolutional radio modulation recognition networks," International Conference on Engineering Applications of Neural Networks, Aberdeen, United Kingdom, Sept. 2-5, 2016.
- [3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets,"
- Advances in neural information processing systems, vol. 27, 2014.
- [4] A. Smith and J. Downey, "A communication channel density estimating generative adversarial network," in IEEE Cognitive Communications for Aerospace Applications Workshop, 2019, pp. 1–7.
- [5] Tewelgn Kebede, Yihenew Wondie, Johannes Steinbrunn, Hailu Belay Kassa, Kevin T. Kornegay, "Multi-Carrier Waveforms and Multiple Access Strategies in Wireless Networks: Performance, Applications, and Challenges ", https://ieeexplore.ieee.org/document/9713895.

Bibliography

[6] "What is Multicarrier Modulation, https://www.electronicsnotes.com/articles/radio/multicarrier-modulation/basics-techniques.php. [7] " Understanding I/Q Signals and Quadrature Modulation, https://www.allaboutcircuits.com/textbook/radio-frequency-analysisdesign/radio-frequency-demodulation/understanding-i-q-signals-andquadrature-modulation/.

Annexe

Proof 1: Derivation using Binary Cross-Entropy

The binary cross-entropy loss function is commonly used in GANs. It is given by:

$$E(y, \hat{y}) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

Now, considering the two scenarios in the GAN value function:

- When y=1, $\hat{y}=D(x)$, and $E=\log(D(x))$.
- When y = 0, $\hat{y} = D(G(z))$, and $E = \log(1 D(G(z)))$.

Adding these expectations, we get the value function:

$$V(G, D) = \mathbb{E}_{x \sim P_{\mathsf{data}}}[\log D(x)] + \mathbb{E}_{z \sim P_z}[\log(1 - D(G(z)))]$$

This formulation reflects the adversarial nature of GANs, where the discriminator (D) and the generator (G) play a minimax game to achieve a balance.

Annexe

Proof 2 : Convergence at Optimality

At optimality, for a fixed G, the value function V(G, D) is maximized when $D(x) = \frac{P_{\text{data}}(x)}{P_{\text{data}}(x) + P_{C}(x)}$. The value function is given by:

$$V(G,D) = \mathbb{E}_{\mathbf{x} \sim P_{\mathsf{data}}} \left[\frac{P_{\mathsf{data}}(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_G(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x} \sim P_G} \left[\frac{\ln P_G(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_G(\mathbf{x})} \right]$$

Minimizing V with respect to G leads to:

$$\min_{G} V = \frac{1}{2}(\mathbb{E}_{\mathsf{x} \sim P_{\mathsf{data}}}[1] + \mathbb{E}_{\mathsf{x} \sim P_{G}}[1]) = 1$$

Now, consider the Jensen-Shannon Divergence (JS) between P_{data} and P_G , given by:

$$\mathsf{JS}(P_{\mathsf{data}}, P_G) = \frac{1}{2} \left(\mathsf{KL}\left(P_{\mathsf{data}} \bigg\| \frac{P_{\mathsf{data}} + P_G}{2} \right) + \mathsf{KL}\left(P_G \bigg\| \frac{P_{\mathsf{data}} + P_G}{2} \right) \right)$$

where KL is the Kullback-Leibler divergence.

Annexe

The minimum value of V is related to JS:

$$\min_{G} V = 2 \cdot \mathsf{JS}(P_{\mathsf{data}}, P_{G}) - 2 \ln 2$$

This is minimized when $P_{data} = P_G$, as the JS divergence is always non-negative.

Therefore, at optimality, $P_G = P_{data}$.

