Christopher Passow

Deutsches Elektronen-Synchrotron

September 19, 2019



## Scientific perspective

- 1. Open Laptop
- 2. ...
- 3. ...
- 4. ...
- n. Do Science

## Scientific perspective

- 1. Open Laptop
- 2. ...
- 3. ...
- 4. ...
- n. Do Science

We do not care & it should be easy!

- Slurm scheduler for batch processing [1]
- Slurm submission nodes:
  - max-fsc | max-fsg
  - max-display
  - max-jhub

```
# simple job which prints hostname
[@max-wqs ~]$ cat hostname.sh
#!/bin/bash
#SBATCH --partition=maxwell
#SBATCH --time=00:10:00
                                                  # Maxi
#SBATCH --nodes=1
                                                  # Numb
##### note: from Slurm news file 17.11.0rcl:
##### Change --workdir in sbatch to be --chdir as in all
#####SBATCH --workdir /home/mmuster/slurm/output
                                                  # dire
#SBATCH --chdir /home/mmuster/slurm/output
#SBATCH --iob-name hostname
#SBATCH --output hostname-%N-%j.out
                                                  # File
                                                  # File
#SBATCH --error
                   hostname-%N-%i.err
#SBATCH --mail-type END
                                                  # Type
#SBATCH --mail-user max.muster@desv.de
                                                  # Emai
/bin/hostname
# submit to batch queue for one node with one task
# requesting 10 mins of wall time
[@max-wgs ~1$ sbatch hostname.sh
Submitted batch job 2163
[@max-wgs ~1$ ls
hostname.sh slurm-2163.out
[@max-wgs ~]$ cat slurm-2163.out
max-wn004.desv.de
```

- IPython Console
- Jupyter Notebooks
- JupyterLab

• JupyterHub @DESY [2]



- Anaconda: venvs
  - requirements.txt

#### You shall not

import mpi4py

#### Use external framework

- Dask for parallel computing.
  - Dynamic task scheduling
  - "Big Data" collections for distributed environments or larger-than-memory



computing. IIn I. gov

#### Demo

#### Demo #1

- DESY's JupyterHub
- dask.delayed as way to parallelize existing code
- fetch via: git clone https://github.com/chrispassow/dask\_demo.git

# dask.array & dask.dataframe





 $\mathsf{https:}//\mathsf{dask.org}/$ 

- for distributed environments or larger-than-memory
- most of Numpy & Pandas methods are implemented

### Demo

### Demo #2

- using a single node on Maxwell via sbatch
- compare *numpy.array* and *dask.array*

### Demo

### Demo #3

• using multipile nodes on Maxwell interactivly via dask\_jobqueue

### Terminate Idle Slurm Jobs

#### Danger Zone

"With great power there must also come – great responsibility!" [3]

Below is an (automatically generated) list of partitions and the limits applying

| Partition | # of<br>nodes | Nodes/Job | Max Number of<br>Jobs | Default<br>Time | Maximum<br>Time | Allowed groups |
|-----------|---------------|-----------|-----------------------|-----------------|-----------------|----------------|
| ps        | 35            | 1         | 5                     | 1:00:00         | 14-00:00:00     | max-ps2-users  |
| psx       | 16            | 1         | 5                     | 1:00:00         | 7-00:00:00      | max-psx2-users |

### Emergancy Commands [4]

scancel -u your\_uid

# Summary and Outlook

#### Current situation

- manual work is lengthy and prone to error
- Conda envs already simplify
- Slurm batch procession

#### The other side of the fence

- Frameworks to speed up analytics or scale to large data
- Dask as a state-of-the-art solution
- Jupyter notebooks for interactive data exploration
- JupyterHub as easy to use gateway

### Great responsibility

Be careful about the resources you allocate.

#### References

- [1] https://confluence.desy.de/display/IS/Running+Jobs+on+Maxwell
- [2] https://confluence.desy.de/display/IS/JupyterHub+on+Maxwell
- [3] Uncle Ben, Amazing Fantasy #15, Marvel Comics
- [4] https://www.rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands/