DIGITAL DESIGN

Topic To Be Covered:

Optimized Master Slave D Flip Flop

Dhruv Kohli 120123054 Aman Roonwal 120123005 Rajesh Uppala 120123045 Ajinkya Shejul 120123003

Optimized Master Slave D Flip Flop*

- Design And Facts
- Working
- Graphical Analysis
- Deriving a Boolean Function Representing the Master and Slave Outputs

^{*} Analysis is done for negative-edge triggered Optimized Master Slave D Flip Flop

Design And Facts

- Master Output Represented by :
 - Output of NOR 1 and NOR 4
- Slave Output Represented by :
 - Output of NOR 5 and NOR 6
- R and S are not directly connected to Q(master) and Q(master).
- Optimized due to less number of gates used in the design.

Working

+ When Clock is High i.e. CLK1 = 1

- NOR 2 and NOR 3 outputs 0.*
- NOR 1 (acts as an inverter)
 - inputs: 0 and D
 - output : D'
- NOR 4 (acts as an inverter)
 - inputs: 0 and D'
 - output : D

+ Implications:

- -R = 0 and S = 0
- Q (slave) = HOLD
- Q (master) = D

+ Conclusions:

- D input is sampled by Master
- Slave is in HOLD state

^{*} Fact : NOR gate with one of the inputs as 1, outputs 0.

Working

+ When Clock is Low i.e. CLK1 = 0

- NOR 2 (act as an inverter)
 - inputs: D', 0 and 0
 - output : D
- NOR 3 (act as an inverter)
 - inputs: D and 0
 - output : D'
- NOR 1 outputs D'*
- NOR 4 outputs D*

+ Implications:

- R = D' and S = D
- Q (slave) = Updated accordingly
- Q (master) = D (HOLD)

+ Conclusions:

- Master is in HOLD state
- Slave is updated

^{*} Fact : A+A = A = > (A+A)' = A'

Working

+ SUMMARY:

- As expected, when Clock is High, Master samples the input D and Slave remembers the previous state.
- And when Clock goes low, Master remembers the previous state and Slave is updated.
- Q. What will happen when input D is changed while Clock is low i.e. CLK = 0 ?

Ans. NOR 1

- inputs : D and D(new) (As D(new)!=D implies D(new) = D')
- output : (D+D')' = 1' = 0

NOR 4 (act as an inverter)

- inputs: D' and 0
- output : D

NOR 3 (act as an inverter)

- inputs: D and 0
- output (R): D' (Same as the output given before when CLK = 0)

NOR 2

- inputs: 0, 0 and D' (bottom to top)
- output (S): D (Same as the output given before when CLK = 0) Hence, the new input D(new) is not able to enter the Slave Latch.

Graphical Analysis

+ Transition Point:

 The point below which Clock is considered to be 0 and above which the Clock is considered to Be 1.

+ Sampling Interval:

- It is the sum of Setup time and Hold time.
- R and S must be stable during sampling interval.
- R and S are said to be Synchronous if they change with the clock else asynchronous.

Graphical Analysis

- Suppose initially both Q(master) and Q(slave) are high (i.e. = 1).

Boolean Function Derivation

- Step 1:
Draw K-Map with C(CLK), D, Q(master(old)) and Q(slave(old)) as Inputs and Q(master(new)) and Q(slave(new)) as Outputs.

Given	State		Initial	Conditions	
Qmo	Qso	CD=00	CD=01	CD=11	CD=10
0	0	0 0	0 1	1 0	0 0
0	1	0 0	0 1	11	0 1
1	1	1 0	11	1 1	0 1
1	0	1 0	11	1 0	0 0

Boolean Function Derivation

- Step 2:

Using the Table in Step 1, Following are the derived Boolean Functions:

```
Q(master(new)) = CQ(master(old)) + CD
Q(slave(new)) = CQ(slave(old)) + C'D
```

- + SHORT NOTE
- When CLK = 0
 Q(slave(new)) = HOLD
 Q(master(new)) = D
- When CLK = 1
 Q(slave(new)) = S = D [As S=D and R=D']
 Q(master(new)) = HOLD