ANÁLISIS NUMÉRICO II — Práctico N°3 - 2025 Normas

- 1. Demuestre que para $p \ge 1$ y $x \in \mathbb{R}^n$ vale $||x||_{\infty} \le ||x||_p$ y $||x||_p \le n^{1/p} ||x||_{\infty}$. Concluya que
 - a) $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.
 - b) $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$.
 - c) $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$.
 - d) $\lim_{p\to\infty} ||x||_p = ||x||_{\infty}$.
- 2. Grafique la bola unidad $\mathcal{B} = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\}$ para $||\cdot|| = ||\cdot||_1, ||\cdot||_2 \text{ y } ||\cdot||_{\infty}$.
- 3. a) Dada una norma vectorial $\|\cdot\|$ en \mathbb{R}^n , ¿qué condiciones debe cumplir una matriz $A \in \mathbb{R}^{m \times n}$ con m > n para que la función $\|\cdot\|_A$ definida por $\|x\|_A = \|Ax\|$, $\forall x \in \mathbb{R}^n$ sea una norma vectorial?.
 - b) Para $A \in \mathbb{R}^{n \times n}$ simétrica y definida positiva, se define $\|x\|_A = \sqrt{x^T A x}$. Demuestre que $\|\cdot\|_A$ es una norma vectorial en \mathbb{R}^n y que $\sqrt{\lambda_{\min}(A)} \|x\|_2 \le \|x\|_A \le \sqrt{\lambda_{\max}(A)} \|x\|_2$, con $\lambda_{\min}(A)$, $\lambda_{\max}(A)$ el mínimo y máximo autovalor de A. ¿Qué ocurre si A = I?.
- 4. Sea $\|\cdot\|$ una norma vectorial y sean $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Pruebe que la norma matricial inducida por $\|\cdot\|$ satisface que:
 - a) es efectivamente una norma matricial.
 - b) $||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n$.
 - c) ||AB|| < ||A|| ||B|| (submultiplicatividad).
- 5. Si $A \in \mathbb{R}^{n \times n}$, entonces $||A||_2 = \max_{||x||_2 = 1} ||Ax||_2 = \max_{||x||_2 = 1, ||y||_2 = 1} y^T A x$.
- 6. Demuestre que $||A||_{\max} = \max_{1 \leq i \leq m, 1 \leq j \leq n} |a_{ij}|$ es una norma matricial en $\mathbb{R}^{m \times n}$, pero no es submultiplicativa.
- 7. Si $A \in \mathbb{R}^{m \times n}$, demueste que:
 - a) $||A||_{\text{máx}} \le ||A||_2 \le ||A||_F \le \sqrt{mn} ||A||_{\text{máx}}$.
 - b) $\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{m} ||A||_{\infty}$.
 - c) $\frac{1}{\sqrt{m}} \|A\|_1 \le \|A\|_2 \le \sqrt{n} \|A\|_1$.
- 8. Muestre que si $0 \neq s \in \mathbb{R}^n$ y $A \in \mathbb{R}^{n \times n}$, entonces

$$\left\| A \left(I - \frac{ss^T}{s^T s} \right) \right\|_F^2 = \|A\|_F^2 - \frac{\|As\|_2^2}{\|s\|_2^2}.$$

- 9. Pruebe las siguientes afirmaciones:
 - a) $\kappa(A) = \kappa(A^{-1}),$
 - b) $\kappa(AB) \leq \kappa(A)\kappa(B)$, para toda $A, B \in \mathbb{R}^{n \times n}$ y $\|\cdot\|$ submultiplicativa,
 - c) Si A es una matriz ortogonal, entonces $\kappa_2(A) = 1$.
- 10. a) Sea $A(\epsilon) = \begin{bmatrix} 1 & 1 \epsilon \\ 0 & 1 \end{bmatrix}$ y $B(\epsilon) = \begin{bmatrix} 1/\epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$. Graficar sus determinantes y números de condición cuando $\epsilon \to 0$.
 - b) Implemente una función que, dado un ϵ como entrada, grafique la esfera unidad con norma 2 en \mathbb{R}^2 y su transformación a través de las matrices de los items anteriores. El gráfico debería mostrar las 3 esferas en la misma figura. Ejecutarla para $\epsilon \in \{0.25, 0.125, 0.0625, 1e 5\}.$