

PARAMETERIZED DISTRIBUTIONS

Why

1

Definition

A distribution family (density family) on X is a family of distributions (densities) $\{p^{(\theta)}\}_{\theta\in\Theta}$ on X. We call the index set Θ (see Families) the parameters. Frequently $\Theta\subset \mathbb{R}^p$.

Similarly, a conditional distribution family (conditional density family) on Z from X is a family $\{q^{(\theta)}\}_{\theta\in\Theta}$ whose terms $q^{(\theta)}: Z\times X\to \mathbf{R}$ are such that $q^{(\theta)}(\cdot,\xi): Z\to \mathbf{R}$ is a distribution (density) for every $\xi\in X$.

Examples

For example, let $\Theta = [0, 1]$ and consider the family of distributions $\{p^{(\theta)} : \{0, 1\} \to [0, 1]\}_{\theta \in [0, 1]}$ defined by, for each $\theta \in [0, 1]$,

$$p^{(\theta)}(1) = \theta \text{ and } p^{(\theta)}(0) = 1 - \theta.$$

This family is called the *Bernoulli family* and $p^{(\theta)}$ is called a *Bernoulli distribution* with parameter θ .

For a second example, let $\Theta = \mathbf{R} \times \mathbf{R}_+$ and consider the family of densities $\{f^{(\theta)} : \mathbf{R} \to \mathbf{R}\}_{\theta \in \Theta}$ defined by, for each $\theta = (\mu, \sigma) \in \Theta$,

$$f^{(\theta)}(x) = (1/\sqrt{2\pi}\sigma) \exp((x-\mu)/\sigma^2).$$

¹Future editions will include.

This family is called the *normal family* and $f^{(\theta)}$ with $\theta = (\mu, \sigma)$ is called a *normal density* with mean μ and variance σ^2 .

Functional parameterization

A conditional distribution $q: X \times Z \to \mathbb{R}$ is functionally parametrizable if there exists a function $f: X \to \Theta$ and distribution family $\{p^{(\theta)}\}_{\theta \in \Theta}$ on Z satisfying $q(\cdot, \zeta) \equiv p^{(f(\zeta))}$. In this case we call f the parametrization function and we call $\{p^{(\theta)}\}_{\theta \in \Theta}$ the parameterized family. We call $(f, \{p^{(\theta)}\}_{\theta})$ a functionally parameterized conditional distribution on Z from X, since for each $\zeta \in Z$, $p^{f(\zeta)}: X \to [0,1]$ is a distribution

All conditional distributions $q: X \times Z \to \mathbf{R}$ are functionally parametrizable (consider $\{q(\cdot,\xi)\}_{\xi\in X}$ with parameters X and identity parameterization). Restricted families interest us.

Example

Let $Z = \{1, 2\}$ and $X = \mathbb{R}$. Let $f : \{1, 2\} \to \mathbb{R} \times \mathbb{R}_+$ be defined by $f(1) = (\mu_1, \sigma_1)$ and $f(2) = (\mu_2, \sigma_2)$. Let $\{g^{(\theta)}\}_{\theta}$ be the normal family. Then $(f, \{g^{(\theta)}\})$ is a functionally parameterized conditional density.

Parametrizing the function

If $\{f_{\phi}: X \to \Theta\}_{\phi \in \Phi}$ is a family of functions and $\{q^{(\theta)}\}$ is a family of distributions, then $\{p^{(\phi)}: X \times Z \to [0,1]\}_{\phi}$ defined by $p^{(\phi)}(\cdot,\zeta) \equiv q^{f_{\phi}(\zeta)}$ is a conditional distribution family called a functionally parameterized conditional distribution family.

