LINEAR ALGEBRA: (FAIRLY DIFFICULT) PRACTICE FINAL EXAM

These are some difficult (but doable) practice problems for the linear algebra final exam. These are presented in an increasing level of difficulty.

- (1) Prove that similar matrices have the same characteristic polynomial.
- (2) Let

$$W = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix}$$

Show that W is diagonalizable, by finding a $Q \in \mathcal{M}_2(\mathbb{R})$ such that $Q^{-1}WQ$ is a diagonal matrix. Derive a formula for W^n for some arbitrary $n \in \mathbb{N}$.

- (3) Prove or disprove (ie. true or false):
 - (a) Any linear transformation on a n-dimensional vector space that has less than n distinct eigenvalues is not diagonalizable.
 - (b) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - (c) If λ and η are distinct eigenvalues of a linear transformation T, then $E_{\lambda} \cap E_{\eta} = \{0\}$, where E_{λ} is the eigenspace corresponding to the eigenvalue λ .
 - (d) Let $A \in \mathcal{M}_n(\mathbb{R})$. If A is diagonalizable, then A^{-1} is diagonalizable.
 - (e) The $m \times n$ zero matrix is the only $m \times n$ matrix of rank 0.
- (4) Prove or disprove: let $A \in \mathcal{M}_n(\mathbb{R})$.
 - (a) If A is diagonalizable, then A^2 is diagonalizable.
 - (b) If A^2 is diagonalizable, then A is diagonalizable.
- (5) Let $V = \mathcal{P}_3(\mathbb{R})$. Let $T(a+bx+cx^2+dx^3) = -d+(-c+d)x+(a+b-2c)x^2+(-b+c-2d)x^3$, and $\mathcal{B} = \left\{1-x+x^3, 1+x^2, 1, x+x^2\right\}$.

Show that T is a linear transformation. Then, find the matrix of linear transformation with respect to the basis \mathcal{B} described above.

(6) Let $V = \mathcal{M}_2(\mathbb{R})$. Let

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} -7a - 4b + 4c - 4d & b \\ -8a - 4b + 5c - 4d & d \end{bmatrix}$$

and

$$C = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \right\}$$

Show that T is a linear transformation. Then, find the matrix of linear transformation with respect to the basis \mathcal{C} described above.

(7) A scalar matrix is a square matrix of the form λI for some scalar λ .

- (a) Show that if a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$.
- (b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.
- (c) Show that

$$\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$$

is not diagonalizable.

- (8) Let $A \in \mathcal{M}_{m \times n}$, and suppose v and w are orthogonal eigenvectors of $A^{\dagger}A$. Show that Av and Aw are orthogonal.
- (9) Let V be an inner product space, and $S = \{x_i\}_{i=1}^n$ be an orthonormal subset in V. Fix $x \in V$. Then the following holds:

$$(\star) \qquad \sum_{k=1}^{n} \langle x, x_k \rangle \leqslant \|x\|^2$$

This is referred to as *Bessel's inequality*. For the purpose of the problem, assume the result has already been proven. As a reminder, $||x|| = \sqrt{\langle x, x \rangle}$.

Show that Bessel's inequality (\star) is an equality if and only if $x \in \text{span}(S)$.

Remark. Note that two consequences follow from (\star) : the series $\sum_{k=1}^{\infty} \langle x, x_k \rangle$ converges by taking limits of both sides, and just the fact that we can find an orthonormal set in V can allow us to find the norm by an less cumbersome calculation.

- (10) Let $A \in \mathcal{M}_n(\mathbb{R})$. A is nilpotent if $A^k = 0$ (where 0 is the zero matrix) for some $k \in \mathbb{N}$. For instance, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is nilpotent.
 - (a) Let λ be an eigenvalue to a nilpotent matrix A. Show that $\lambda = 0$. Hint: proceed by definition.
 - (b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. Hint: use the previous part.
 - (c) Let B be the matrix representation of the following linear transformation:

$$\begin{array}{cccc} S & : & \mathcal{P}_5(R) & \longrightarrow & \mathcal{P}_5(R) \\ & & p(x) & \longmapsto & \frac{\mathrm{d}p}{\mathrm{d}x} \end{array}$$

Without doing any calculations, explain why B must be nilpotent.