List of Header Columns

I. OVERVIEW

The first table in this document lists the column headers that appear in the .eep.track, .iso, and .iso.cmd files, and a brief description for each. Note that not all column headers appear in each type of file. Also note that the filters in .iso.cmd are listed in a separate table, also found in this document. All logarithms that appear in this list are base 10. Surface and central abundances are averaged over the outer and inner $10^{-6}\%$ of the total stellar mass.

Theoretical isochrones are provided in two flavors: basic and full. The basic isochrones contain columns such as age, stellar mass, \dot{M} , $\log L$, $\log T_{\rm eff}$, $\log g$, and surface and central abundances of a few elements, whereas the full isochrones are much more comprehensive. Columns that appear in the basic file are marked by an asterisk (*) in the table below.

The second table in this document lists the primary equivalent evolutionary points (EEPs) and their corresponding EEP number.

The third table in this document lists the currently available filters. This is only an initial set and will expand over time. Photometric systems define their magnitude scales according to a flux standard.

TABLE I: EEP Track and Isochrone Column Headers

Column Name	Description
Appears in .track.eep Only	
star_age	Age in years
Appears in .iso.cmd Only	
Zsurf	Surface metal mass fraction
Appears in .iso and .iso.cmd Only	
EEP*	Equivalent Evolutionary Point number
${\tt initial_mass}^*$	Initial mass in M_{\odot}
log10_isochrone_age_yr*	Age of the isochrone in log years
OR	A f 4h - :h :
isochrone_age_yr*	Age of the isochrone in years
Appears in .track.eep, .iso, and .iso.o	
star_mass* star_mdot*	Current mass in M_{\odot}
	Mass loss rate in M_{\odot} /year
he_core_mass*	Mass of the helium-rich core in M_{\odot}
c_core_mass*	Mass of the carbon-rich core in M_{\odot}
o_core_mass	Mass of the oxygen-rich core in M_{\odot} Log bolometric luminosity in L_{\odot}
log_L* log_L_div_Ledd	Log ratio of bolometric luminosity in L_{\odot}
10g_L_d1v_Ledd	and Eddington luminosity, where the Eddington
	luminosity is a mass-weighted average over
	the optical depth τ between 1 and 100
log_LH*	Log hydrogen-burning luminosity in L_{\odot}
log_LHe*	Log helium-burning luminosity in L_{\odot}
log_LZ	Log total burning luminosity excluding
5	H-burn, He-burn, and photodisintegrations in L_{\odot}
log_Teff*	Log effective temperature in K
log_abs_Lgrav	Log gravitational potential luminosity in L_{\odot}
log_R*	Log radius in R_{\odot}
log_g*	Log surface gravity in cm s^{-2}
log_surf_z	Log surface mass fraction in metals
surf_avg_omega	Surface angular rotation speed
surf_avg_v_rot	Surface rotation speed
surf_num_c12_div_num_o16	Ratio of surface number densities of ¹² C and ¹⁶ O
v_wind_Km_per_s	Wind speed $v_{\rm w} \equiv \kappa \dot{M}/4\pi R \tau$,
	where $\kappa \equiv$ opacity and $\tau = 2/3$, in km/s
surf_avg_omega_crit	Surface (mass-averaged down to $\tau = 100$)
	critical angular rotation speed
surf_avg_omega_div_omega_crit	Ratio of surface and critical angular rotation speeds
surf_avg_v_crit	Surface critical/breakup rotation speed
<pre>surf_avg_v_div_v_crit surf_avg_Lrad_div_Ledd</pre>	Ratio of surface and critical rotation speeds Ratio of surface radiative luminosity and
parr_avk_prac_arv_peaa	Eddington luminosity
v_div_csound_surf	Ratio of velocity and sound speed at the surface
surface_h1*	Surface mass fraction in ¹ H
surface_he3*	Surface mass fraction in ³ He
surface_he4*	Surface mass fraction in ⁴ He
surface_li7	Surface mass fraction in ⁷ Li
· · · ·	——————————————————————————————————————

surface_be9	Surface mass fraction in ⁹ Be
surface_b11	Surface mass fraction in ¹¹ B
surface_c12*	Surface mass fraction in ¹² C
surface_c13	Surface mass fraction in ¹³ C
surface_n14	Surface mass fraction in ¹⁴ N
surface_o16*	Surface mass fraction in ¹⁶ O
surface_f19	Surface mass fraction in ¹⁹ F
surface_ne20	Surface mass fraction in ²⁰ Ne
surface_na23	Surface mass fraction in ²³ Na
surface_mg24	Surface mass fraction in ²⁴ Mg
surface_si28	Surface mass fraction in ²⁸ Si
surface_s32	Surface mass fraction in ³² S
surface_ca40	Surface mass fraction in ⁴⁰ Ca
surface_ti48	Surface mass fraction in ⁴⁸ Ti
surface_fe56	Surface mass fraction in ⁵⁶ Fe
$log_center_T^*$	Log central temperature in K
$log_center_Rho^*$	Log central density in $g cm^{-3}$
$\mathtt{center_degeneracy}$	Central electron chemical potential in $k_{\rm b}T$,
	where $k_b \equiv \text{Boltzmann constant}$ and $T \equiv \text{temperature}$
center_omega	Central angular rotation speed
center_gamma*	Central plasma interaction parameter
	$\bar{Z}^2 e^2 / a_i k_b T$, where $\bar{Z} \equiv$ average ion charge,
	$e \equiv \text{electron charge}, \text{ and } a_i \equiv \text{mean ion spacing}$
mass_conv_core	Mass of the convective core in M_{\odot}
center_h1*	Center mass fraction in ¹ H
$\mathtt{center_he4}^*$	Center mass fraction in ⁴ He
center_c12*	Center mass fraction in ¹² C
center_n14	Center mass fraction in ¹⁴ N
center_o16	Center mass fraction in ¹⁶ O
center_ne20	Center mass fraction in ²⁰ Ne
center_mg24	Center mass fraction in ²⁴ Mg
center_si28	Center mass fraction in ²⁸ Si
pp	Log luminosity from pp-chain
cno	Log luminosity from CNO-cycle
tri_alfa	Log luminosity from triple α
burn_c	Log luminosity from carbon-burning
burn_n	Log luminosity from nitrogen-burning
burn_o	Log luminosity from oxygen-burning
c12_c12	Log luminosity from carbon-carbon burning
delta_nu	Large frequency separation for p-modes in μHz
delta_Pg	Period spacing for $l = 1$ g-mode in seconds
nu_max	Frequency of maximum power in μHz
	as estimated from scaling relations
acoustic_cutoff	Maximum frequency for p-modes at surface
max_conv_vel_div_csound	Maximum ratio of convective velocity
	and sound speed in the stellar interior
$ exttt{max_gradT_div_grada}$	Maximum ratio of ∇_T and $\nabla_{\rm ad}$ in the stellar interior
${ t gradT_excess_alpha}$	Denoted by α_{∇} and referred to as the "Smoothing
	parameter for MLT_{++} " in Paxton et al. 2013.
	Number between 0 and 1 describing the effectiveness
	with which the MLT_{++} prescription is used to aid the
	evolution calculations by reducing the superadiabaticity
min_Pgas_div_P	Minimum ratio of gas pressure to the total pressure
	in the stellar interior
max_L_rad_div_Ledd	Maximum ratio of radiative luminosity and

e_thermal phase*

Eddington luminosity in the interior Total thermal energy in the stellar interior in ergs FSPS phase type defined as follows: -1=PMS, 0=MS, 2=RGB, 3=CHeB, 4=EAGB, 5=TPAGB, 6=postAGB, 9=WR Caution: There may be overlap between MS and WR for very massive stars. Always double-check!

TABLE II: Primary EEPs

Primary EEP	EEP Number ^a	Phase	
1	1	pre-main sequence (PMS)	
2	202	zero age main sequence (ZAMS)	
3	353	intermediate age main sequence (IAMS)	
4	454	terminal age main sequence (TAMS)	
5	605	tip of the red giant branch (RGBTip)	
6	631	zero age core helium burning $(ZACHeB)^b$	
7	707	terminal age core helium burning (TACHeB) c	
Low Mass Type			
8	808	thermally pulsating asymptotic giant branch (TPAGB)	
9	1409	post asymptotic giant branch (post-AGB)	
10	1710	white dwarf cooling sequence (WDCS)	
High Mass Type			
8	808	carbon burning (C-burn)	

 $^{^{}a}$ Also equivalent to i+1 where i is the index of the array (zero-based) containing the evolutionary track.

TABLE III: Currently Available Filters

Name	Reference
Bessell_U	[1]
${\tt Bessell_B}$	
${\tt Bessell_V}$	
${\tt Bessell_R}$	
$Bessell_I$	
2MASS_J	[2]
2MASS_H	
2MASS_Ks	
SDSS_u	[3]
SDSS_g	
$SDSS_r$	
${ t SDSS_i}$	
SDSS_z	
WFPC2_F218W	[4]
WFPC2_F255W	
WFPC2_F300W	
WFPC2_F336W	
WFPC2_F439W	
WFPC2_F450W	
WFPC2_F555W	
WFPC2_F606W	
WFPC2_F622W	
WFPC2_F675W	

^bi.e., zero age horizontal branch; ZAHB for low-mass stars. ^cterminal age horizontal branch; TAHB.

WFPC2_F791W WFPC2_F814W WFPC2_F850LP

ACS_HRC_F220W [5] ACS_HRC_F250W ACS_HRC_F330W ACS_HRC_F344N ACS_HRC_F435W ACS_HRC_F475W ACS_HRC_F502N ACS_HRC_F550M ACS_HRC_F555W ACS_HRC_F606W ACS_HRC_F625W ACS_HRC_F658N ACS_HRC_F660N ACS_HRC_F775W ACS_HRC_F814W ACS_HRC_F850LP ACS_HRC_F892N ACS_WFC_F435W ACS_WFC_F475W ACS_WFC_F502N ACS_WFC_F550M ACS_WFC_F555W ACS_WFC_F606W ACS_WFC_F625W ACS_WFC_F658N ACS_WFC_F660N ACS_WFC_F775W ACS_WFC_F814W ACS_WFC_F850LP ACS_WFC_F892N WFC3_UVIS_F200LP [6]

WFC3_UVIS_F218W

WFC3_UVIS_F225W

WFC3_UVIS_F275W

WFC3_UVIS_F280N

WFC3_UVIS_F300X

WFC3_UVIS_F336W

WFC3_UVIS_F343N

WFC3_UVIS_F350LP

WFC3_UVIS_F373N

WFC3_UVIS_F390M

WFC3_UVIS_F390W

WFC3_UVIS_F395N

WFC3_UVIS_F410M

WFC3_UVIS_F438W

WFC3_UVIS_F467M

WFC3_UVI3_F407M

WFC3_UVIS_F469N WFC3_UVIS_F475W

WI 00_0VID_I 470W

WFC3_UVIS_F475X

WFC3_UVIS_F487N

WFC3_UVIS_F502N

WFC3_UVIS_F547M

WFC3_UVIS_F555W	
WFC3_UVIS_F600LP	
WFC3_UVIS_F606W	
WFC3_UVIS_F621M	
WFC3_UVIS_F625W	
WFC3_UVIS_F631N	
WFC3_UVIS_F645N	
WFC3_UVIS_F656N	
WFC3_UVIS_F657N	
WFC3_UVIS_F658N	
WFC3_UVIS_F665N	
WFC3_UVIS_F673N	
WFC3_UVIS_F680N	
WFC3_UVIS_F689M	
WFC3_UVIS_F763M	
WFC3_UVIS_F775W	
WFC3_UVIS_F814W	
WFC3_UVIS_F845M WFC3_UVIS_F850LP	
WFC3_UVIS_F953N	
WFC3_UV15_F955N WFC3_IR_F098M	
WFC3_IR_F105W	
WFC3_IR_F110W	
WFC3_IR_F125W	
WFC3_IR_F126N	
WFC3_IR_F127M	
WFC3_IR_F128N	
WFC3_IR_F130N	
WFC3_IR_F132N	
WFC3_IR_F139M	
WFC3_IR_F140W	
WFC3_IR_F153M	
WFC3_IR_F160W	
WFC3_IR_F164N	
WFC3_IR_F167N	
IRAC_3.6	[7]
IRAC_4.5	
IRAC_5.8	
IRAC_8.0	
UKIDSS_Z	[8]
UKIDSS_Y	
$\tt UKIDSS_J$	
UKIDSS_H	
UKIDSS_K	
CFHT_u	[9]
CFHT_g	
CFHT_r	
CFHT_i_new	
$CFHT_i_old$	
CFHT_z	
WISE_W1	[10]
WISE_W2	
WISE_W3	

 $WISE_W4$

Strömgren_u	[11]
${\tt Str\"{o}mgren_v}$	
${\tt Str\"{o}mgren_b}$	
Strömgren_y	
PS_g	[12]
PS_r	
PS_i	
PS_z	
PS_y	
PS_w	
PS_open	
GALEX_FUV	[13]
GALEX_NUV	
DECam_u	[14]
DECam_g	[+ +]
DECam_r	
DECam_i	
DECam_z	
DECam_Y	
SkyMapper_u	[15]
SkyMapper_v	[10]
SkyMapper_g	
SkyMapper_r	
SkyMapper_i	
SkyMapper_z	
Washington_C	[16]
Washington_C Washington_M	[10]
Washington_H Washington_T1	
Washington_T2	
	[4 =]
DD051_vac	[17]
DD051_f31	
Kepler_Kp	[18]
Kepler_D51	
$Swift_UVW2$	[19]
$Swift_UVM2$	
$Swift_UVW1$	
$Swift_U$	
$Swift_B$	
${\tt Swift_V}$	

- $[1]\;$ Bessell & Murphy (2012); Bessell & Brett (1988)
- [2] Cohen et al. (2003)
- [3] classic.sdss.org/dr7/instruments/imager/index.html
- [4] Holtzman et al. (1995)
- [5] www.stsci.edu/hst/acs/analysis/throughputs
- [6] www.stsci.edu/hst/wfc3/ins_performance/filters/
- [7] Fazio et al. (2004)
- [8] Hewett et al. (2006)

- [9] www.cfht.hawaii.edu/Instruments/Imaging/Megacam/specsinformation.html
- [10] Wright et al. (2010)
- [11] Bessell (2011)
- [12] Tonry et al. (2012)
- [13] http://asd.gsfc.nasa.gov/archive/galex/Documents/PostLaunchResponseCurveData.html
- [14] www.ctio.noao.edu/noao/sites/default/files/DECam/DECam_filters.xlsx
- [15] Bessell et al. (2011)
- [16] Bessell et al. (2001)
- [17] www.noao.edu/kpno/mosaic/filters/
- [18] keplergo.arc.nasa.gov/CalibrationResponse.shtml
- [19] http://swift.gsfc.nasa.gov/proposals/swift_responses.html