ARHITECTURA SISTEMELOR DE CALCUL - CURS 0x05

ÎNMULȚIREA/ÎMPĂRȚIREA NUMERELOR ÎNTREGI, REPREZENTAREA ÎN VIRGULĂ MOBILĂ

Cristian Rusu

CUPRINS

- logică secvențială + combinatorială, un exemplu
- înmulţirea numerelor întregi binare
- împărțirea numerelor întregi binare
- reprezentarea numerelor în virgulă mobilă
- lucrul cu numerele în virgulă mobilă

SECVENȚIAL, SEMINAR 0x02, EX 10

- un semnal digital A poate lua valori {0, 1} în timp iar noi vrem să detectăm dacă semnalul are valoarea 010 la un moment dat. Dacă acestă secvență de biți este detectată în A atunci o variabilă Y este setată la 1, altfel această variabilă este 0
- definim 4 stări

care sunt tranzițiile între aceste stări?

SECVENȚIAL, SEMINAR 0x02, EX 10

SECVENȚIAL, SEMINAR 0x02, EX 10

CE FACE UN PROCESOR

CE FACE UN PROCESOR

...0100001011010001010000100011001011 ...

CE FACE UN PROCESOR

cod maşină ...0100001011010001010000100011001011 ...

CONȚINUT NOU PENTRU CURS

- înmulțirea numerelor întregi binare
- împărțirea numerelor întregi binare
- reprezentarea numerelor în virgulă mobilă
- lucrul cu numerele în virgulă mobilă

- exemplu, s = a x b
 - a și b pe N biți
 - s pe 2N biţi

0 1 0 1 b

S

exemplu, s = a x b

exemplu, s = a x b

$$s = -10$$

primul pas: extindem operanzii pe 8 biţi

exemplu, s = a x b

$$a = -2$$

$$b = 5$$

$$s = -10$$

 $0\ 0\ 0\ 0\ 0\ 0\ 0$

1111110

al doilea pas: facem operația de înmulțire obișnuită

. . .

.....011110110

exemplu, s = a x b

$$a = -2$$

$$b = 5$$

$$s = -10$$

 $0\ 0\ 0\ 0\ 0\ 0\ 0$

1111110

al treilea pas: rezultatul este pe 8 biți în complement față de doi

. .

.....011110110

- circuitul combinațional
 - s = a x b, a şi b sunt numere pe 32 de biţi
 - cum facem?

- circuitul combinațional
 - s = a x b, a şi b sunt numere pe 32 de biţi

- circuitul combinațional
 - s = a x b, a şi b sunt numere pe 32 de biţi

.

ÎMPĂRȚIREA NUMERELOR ÎNTREGI

• exemplu, $s = a \div b$

100111	100111	100111	100111
11	1 1	1 1	1 1
	0	0 0	0 0 1

ÎMPĂRȚIREA NUMERELOR ÎNTREGI

- $s = a \div b$
 - ce se întâmplă dacă a sau b sunt variabile negative?
 - rezultatul este negativ dacă a și b au semne diferite (XOR logic)
 - în general
 - $a = s \times b + r$
 - semnul lui r este semnul lui a
 - circuitul pentru împărțire nici nu vom încerca să îl facem
 - din cauza acestei complexități ridicate, compilatoarele și sistemele de calcul vor face tot posibilul pentru a evita o împărțire
 - vedem mai multe exemple la seminar ...

am discutat la Seminar 0x00 despre reprezentarea în virgulă fixă

exemplu: 7.5 e scris ca 111.1

- care este problema cu acestă reprezentare?
 - partea întreagă este separată de partea fracționară
 - fiecare are nevoie de un număr de biți prestabilit
 - asta poate să fie ineficient
 - vrem ca numărul de biţi total să fie alocat "dinamic", în funcţie de numărul pe care trebuie să îl reprezentăm

- când trebuie să reprezentăm un număr real
 - nu putem să avem precizie infinită
 - avem un număr finit de biţi, deci putem să scriem biţii în circuite
 - avem nevoie de precizie variabilă
 - putem avea precizie "infinită" dacă avem numere raţionale (şi vom salva separat numărătorul şi numitor ca întregi)

- standardul: IEEE 754 Floating Point
 - densitatea nu este uniformă pe linia reală

- standardul: IEEE 754 Floating Point
 - densitatea nu este uniformă pe linia reală

- (0.1 + 0.2) == 0.3 versus (0.2 + 0.3) == 0.5 (rotunjiri)
- math.sqrt(3)*math.sqrt(3) == 3 versus math.sqrt(3*3) == 3
- (0.7 + 0.2) + 0.1 versus (0.7 + 0.1) + 0.2 (nu avem asociativitatea)
- diferența cu numere întregi
 - dacă folosim tip de date întreg: 16777216 + 1 = 16777217
 - dacă folosim tip de date FP: 16777216.0 + 1 = 16777216.0
 - float(123456789101112) + 1.0 = 123456789101113.0
 - float(1234567891011121) + 1.0 = 1234567891011122.0
 - float(12345678910111213) + 1.0 = 1.2345678910111212e+16

- reprezentarea științifică
 - $12345 = 1.2345 \times 10^4$
 - $5024 = 5.024 \times 10^3$
 - $0.00925 = 9.25 \times 10^{-3}$
 - float(12345678910111213) + 1.0 = 1.2345678910111212e+16
 - $101010 = 1.01010 \times 2^5$
 - în sistemul binar, primul bit din reprezentare este mereu 1

standardul: IEEE 754 Floating Point

exemple:

- $0.15625 = (-1)^0 \ 1.0100...0 \ 2^{b01111100 127} = 1.25 \ 2^{-3} = 1.25/8$
- alte exemple:
- $(-1)^0$ 1.1000...0 $2^{b011111100-127} = 1.5$ $2^{-3} = 1.5/8 = 0.1875$

standardul: IEEE 754 Floating Point

exemple:

- $\pi \approx 3.14159265 = (-1)^0 \ 1.100100100001111111011010 \ 2^{b10000000 \ -127}$

- signaling NaN: 0x7F800001 sau 0x7FBFFFFF sau între 0xFF800001 şi 0xFFBFFFFF
- quiet NaN: 0x7FC00000 sau 0x7FFFFFFF sau între 0xFFC00000 şi 0xFFFFFFF

mai mult exemple, la Seminarul 0x03