#### The 60<sup>th</sup> CORS Annual Conference

Decomposition-Based Exact Algorithms for Two-Stage Flexible Flow Shop Scheduling with Unrelated Parallel Machines

Yingcong Tan, Daria Terekhov

Department of Mechanical, Industrial and Aerospace Engineering Concordia University

Monday June 4th, 2018





## Agenda

- Introduction
- MIP Model
- 3 Decomposition
- 4 Tuning
- **5** Computational Results
- 6 Conclusion



#### **Problem Definition**

Introduction

#### Flexible Flow Shop Scheduling Problem

Flow Shop: Given a set of *jobs* to be processed on a set of *stages* following **the same route**.

Flexible: Each stage can have a single or multiple parallel machines



- 1 Identical:  $p_1 = p_2$
- **2 Uniform**:  $p_1 = \alpha * p_2$  where  $\alpha$  is machine-speed factor
- **3** Unrelated:  $p_1 \neq p_2$

Goal: Find the optimal job schedule with respect to a certain objective value

## Example of Two-Stage Flexible Flow Shop



Figure: Two Stages Manufacturing System. (Lin and Liao 2003)



Introduction

000

## **Objectives**

Introduction

① We study two-stage flexible flow shop problem with unrelated parallel machines, i.e.,  $FF2|(1,RM)|C_{max}$ 

FF2: two-stage FFSP

(1, RM): single machine in stage 1

unrelated parallel machines in stage 2

C<sub>max</sub>: makespan minimization

- 2 To the best of our knowledge, this is the first study to implement decomposition-based algorithms for solving flexible flow shop problem
  - Logic-Based Benders Decomposition
  - Branch-and-Check



## Best known Mixed-Integer Programming Model

Follow the literature (Demir and İşleyen 2013), we develop a disjunctive MIP model for  $FF2|(1,RM)|C_{max}$ 

#### Index

- $i \in \mathcal{I}$ , index for machines
- $j \in \mathcal{J}$ , index for jobs
- $k \in \mathcal{K}$ , index for stages

#### **Decision Variables**

- $C_{max} \geq 0$ , Makespan
- $S_{kij}$ ,  $C_{kij} \ge 0$ , Starting and completion time of job j on machine i in stage k
- $V_{kij} \in \{0,1\}$ , job-machine assignment E.g.,  $V_{kij} = 1$  if job j is assigned to machine i in stage k
- $X_{kijg} \in \{0, 1\}$ , job sequence variables E.g.,  $X_{kijg} = 1$  if job j precedes job g on machine i in stage k

#### Data/Input

•  $p_{kij}$ , process time of job j on machine i in stage k

Minimize

subject to  $\sum_{i} V_{2ij} = 1$ 

$$\sum_{i\in\mathcal{I}^{(2)}}\mathsf{V}_{2ij}=1$$

$$C_{max} \geq \sum i \in \mathcal{I}C_{2ij}$$

$$S_{kij} + C_{kij} \leq V_{kij}M$$

$$C_{kij} - p_{kij} \geq S_{kij} - (1 - V_{kij})M$$

$$S_{kij} \geq C_{kig} - (X_{kijg})M$$

$$S_{kig} \geq C_{kij} - (1 - X_{kijg})M$$

$$\sum_{j\in\mathcal{I}^{(2)}} S_{2ij} \geq \sum_{j\in\mathcal{I}^{(1)}} C_{1ij}$$

$$S_{kii}, C_{kii} > 0; V_{kii}, X_{kiig} \in \{0, 1\}$$

$$j \in \mathcal{J}$$
 (2)

$$j \in \mathcal{J}$$
 (3)

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (4)

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (5)

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (6)

$$j,g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (7)

$$j \in \mathcal{J}$$
 (8)

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (9)

(1)

(3)

Minimize subject to

$$C_{max}$$

 $i \in \mathcal{I}^{(2)} V_{2ii} = 1$ 

$$\sum$$

 $i \in \mathcal{J}$ 

$$\mathcal{J}$$
 (2)

 $C_{max} \geq \sum_{i} i \in \mathcal{I}C_{2ij}$ 

 $i \in \mathcal{J}$ 

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (4)

$$S_{kij} + C_{kij} \leq V_{kij}M$$

$$C_{kii} - p_{kii} > S_{kii} - (1 - V_{kii})M$$

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (5)

$$S_{kij} \geq C_{kig} - (X_{kijg})M$$

$$j,g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (6)

$$S_{kig} \geq C_{kij} - (1 - X_{kijg})M$$

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (7)

$$\sum_{i\in\mathcal{I}^{(2)}}S_{2ij}\geq\sum_{i\in\mathcal{I}^{(1)}}C_{1ij}$$

$$j \in \mathcal{J}$$

$$S_{kij}, C_{kij} \geq 0; V_{kij}, X_{kijg} \in \{0, 1\}$$

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (9)

4 D > 4 D > 4 D > 4 D >

(1)

Minimize  $C_n$ 

subject to

$$C_{max}$$

$$\sum_{i \in \mathcal{I}^{(2)} V_{2ii} = 1}$$

 $j \in \mathcal{J}$  (2)

$$\in \mathcal{J}$$
 (2)

$$C_{max} \geq \sum i \in \mathcal{I}C_{2ij}$$

$$j \in \mathcal{J}$$
 (3)

$$S_{kij} + C_{kij} \leq V_{kij}M$$

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (4)

$$C_{kij}-p_{kij}\geq S_{kij}-(1-V_{kij})M$$

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (5)

$$S_{kij} \geq C_{kig} - (X_{kijg})M$$

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (6)

$$S_{kig} \geq C_{kij} - (1 - X_{kijg})M$$

$$j,g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (7)

$$\sum_{i \in \mathcal{I}^{(2)}} S_{2ij} \ge \sum_{i \in \mathcal{I}^{(1)}} C_{1ij}$$

$$j \in \mathcal{J}$$
 (8)

$$S_{kii}, C_{kii} > 0; V_{kii}, X_{kii\sigma} \in \{0, 1\}$$

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (9)

(2)

(3)

References

Minimize

$$C_{max}$$

subject to

$$\sum$$

 $i \in \mathcal{I}^{(2)} V_{2ii} = 1$ 

$$C_{max} \geq \sum i \in \mathcal{I}C_{2ij}$$

$$S_{kii} + C_{kii} \leq V_{kii}M$$

$$C_{kii} - p_{kii} > S_{kii} - (1 - V_{kii})M$$

$$S_{kii} \geq C_{kig} - (X_{kiig})M$$

$$S_{ki\sigma} > C_{kii} - (1 - X_{kii\sigma})M$$

$$\sum_{(i)} S_{2ij} \geq \sum_{(i)} C_{1ij}$$

$$S_{kii}, C_{kii} > 0; V_{kii}, X_{kiig} \in \{0,1\}$$

(1)

$$j \in \mathcal{J}$$

 $i \in \mathcal{J}$ 

$$j \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (4)

$$i \in \mathcal{J}, i \in \mathcal{I}^{(2)}, k \in \mathcal{K}$$
 (5)

$$j,g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (6)

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (7)

$$i \in \mathcal{J} \tag{8}$$

$$\in \mathcal{J}$$
 (8)

$$j, g \in \mathcal{J}, i \in \mathcal{I}^{(k)}, k \in \mathcal{K}$$
 (9)

#### Additional Constraints

# Job-Machine Assignment in Stage 1:

$$\sum_{j\in\mathcal{J}}V_{1ij}=0,\ i=\{2,...,n\}$$
 (10)

#### **Lower Bound Constraint:**

$$C_{max} \ge \min_{j \in \mathcal{J}} \rho_{11j} + \sum_{j \in \mathcal{J}} \rho_{2ij} V_{2ij}, \ i \in \mathcal{I}^{(2)}$$
 (11)

Sum of job process time on machine 2 in stage 2, i.e.,  $\sum_{j \in J} P_{22j} V_{22j}$ Stage 2, Machine 1

Sum of job process time on machine 1 in stage 2, i.e.,  $\sum_{j \in J} P_{22j} V_{22j}$ Stage 1

Master Problem: job sequencing in stage 1

job-machine assignment in stage 2

Sub-problem: job sequencing in stage 2



## Mixed-Integer Programming Master Problems

**Master Problem**: relaxation of job-sequence on machines in stage 2. It provides lower bound value Z.

Minimize 
$$C_{max}$$
 (12)

Subject to

$$S_{1ij} \geq C_{1ig} - (X_{1ijg})M$$
  $j,g \in \mathcal{J}, i \in \mathcal{I}^{(1)}, \quad (13)$ 

$$S_{1ig} \geq C_{1ij} - (1 - X_{1ijg})M$$
  $j, g \in \mathcal{J}, i \in \mathcal{I}^{(1)}$  (14)

$$S_{kij}, C_{kij} \ge 0; V_{kij}, X_{kijg} \in \{0,1\}$$
  $j, g \in \mathcal{J}, i \in \mathcal{I}, k \in \mathcal{K}$  (16)



## Constraint Programming Sub-Problems

**Sub-Problems**: job-sequence on machine  $i \in \mathcal{I}$  in stage 2. It provides upper bound value  $\overline{Z}$ .

Decision Variables:

Interval Variables  $job_j = \{start, end, duration\} \quad j \in \mathcal{J}$ :

Minimize 
$$C_{max}^{ih}$$
 (17)

Subject to

$$C_{max}^{ih} \ge job_j.end$$
  $j \in \{\mathcal{J} \mid V_{2ij} = 1\}$  (18)

$$job_{j}.duration = p_{kij}$$
  $j \in \{\mathcal{J} \mid \mathbf{V}_{2ij} = \mathbf{1}\}$  (19)

$$job_{j}.start \geq C_{11j}$$
  $j \in \{\mathcal{J} \mid V_{2ij} = 1\}$  (20)

NoOverlap(
$$job_j$$
)  $j \in \{ \mathcal{J} \mid V_{2ij} = 1 \}$  (21)





## Benders Cut & Optimality Conditions

#### Benders Optimality Cuts in iteration h:

- Remove current solution in future
- Do not remove optimal solutions

$$C_{max} \geq Z_{sp}^h$$
 (1 -  $\sum_{i \in \mathcal{I}^{(2)}, j \in \mathcal{J}: \hat{V}_{2ij}^h = 1}$  (1 -  $V_{2ij}$ ) -  $\sum_{j,g \in \mathcal{J}: \hat{X}_{11jg}^h = 1}$  (1 -  $X_{11jg}$ ))

Stage 2: job assignment Solution from MP in iteration h

Optimality Conditions:  $\underline{Z} \le Z^* \le \overline{Z}$ 

### Two Different Approaches

- Logic-Based Bender Decomposition (LBBD) (Hooker 2005; Tran, Araujo, and Beck 2016)
- Branch-and-Check (BC) (Thorsteinsson 2001; Beck 2010)



### Tuning

#### Heuristic lower bound

$$oldsymbol{\mathcal{C}_{max}} \geq \sum_{j \in \mathcal{J}} oldsymbol{p}_{11j} + \min_{j \in \mathcal{J}, i \in \mathcal{I}^{(2)}} oldsymbol{p}_{2ij}$$



#### Tightening Big-M

$$V_{2ij}*M \geq S_{2ij}+C_{2ij} \quad j \in \mathcal{J}, i \in \mathcal{I}^{(2)}$$
 (4)

 $\Downarrow$ 

$$M \geq 2 * \sum_{j \in \mathcal{J}} p_{11j} + \sum_{j \in \mathcal{J}} \max_{i \in \mathcal{I}^{(2)}} p_{2ij}$$

# Computational Study MIP Model vs. LBBD vs. BC

## **Experiment Setup**

- $n = \{10, 20, 50, 100\}$  jobs,  $m = \{2, 5, 10\}$  parallel machines
  - Data generated from uniform distribution with different ranges  $p_{kij} \sim U[1, 5], U[1, 100]$
  - 100 instances for each combination (except 10 jobs and 10 machines).
     That is, 2200 instances in total.
- Solved with MIP model, LBBD and BC
  - Limit of 20 min runtime
  - All algorithm tuning features were applied to MIP, LBBD and BC
  - Intel Core i5 2.53 GHz CPU with 4 GB of main memory
  - IBM ILOG CPLEX Optimization Studio version 12.6.2

## Instance with $p_{kij} \sim U[1,5]$

| Different classes of FFSP test instances |        | # unsol. ( #unsol. MP)* |      |      | Comp. time (s) + 95% C.I. |        |        |
|------------------------------------------|--------|-------------------------|------|------|---------------------------|--------|--------|
| n, jobs                                  | (1,RM) | MIP                     | LBBD | ВС   | MIP                       | LBBD   | ВС     |
| 10                                       | (1,2)  | 0                       | 0(0) | 0    | 0.35                      | 0.25   | 14.24  |
|                                          | (1,5)  | 0                       | 0(0) | 0    | 0.33                      | 0.11   | 0.18   |
|                                          | (1,2)  | 3                       | 1(0) | 0    | 51.33                     | 13.46  | 99.89  |
| 20                                       | (1,5)  | 0                       | 0(0) | 0    | 6.27                      | 0.32   | 0.88   |
|                                          | (1,10) | 0                       | 0(0) | 0    | 9.49                      | 0.35   | 0.63   |
|                                          | (1,2)  | 31                      | 1(0) | 0    | 500.01                    | 29.28  | 204.13 |
| 50                                       | (1,5)  | 9                       | 0(0) | 0    | 374.58                    | 9.72   | 52.58  |
|                                          | (1,10) | 1                       | 0(0) | 0    | 190.60                    | 7.98   | 36.44  |
| 100                                      | (1,2)  | 80                      | 1(1) | 0    | 1003.4                    | 122.41 | 486.16 |
|                                          | (1,5)  | 69                      | 1(0) | 3(3) | 954.01                    | 137.96 | 203.11 |
|                                          | (1,10) | 48                      | 1(0) | 0    | 961.15                    | 152.30 | 208.23 |

<sup>\*</sup>Unsol. ins. - instance that an optimal solution can not be found /proven within the limit of 20 min runtime

<sup>\*</sup>Unsol. MP - instance whose master problem can not be solved within the limit of 20 min runtime



# Instance with $p_{kij} \sim U[1, 100]$

| Different classes of FFSP test instances |        | # unsol. ( #unsol. MP) |                |       | Comp. time (s) $+$ 95% C.I. |         |         |
|------------------------------------------|--------|------------------------|----------------|-------|-----------------------------|---------|---------|
| n, jobs                                  | (1,RM) | MIP                    | LBBD           | BC    | MIP                         | LBBD    | BC      |
| 10                                       | (1,2)  | 0                      | 2(0)           | 9     | 11.88                       | 24.65   | 106.19  |
|                                          | (1,5)  | 0                      | 0(0)           | 1     | 2.97                        | 0.44    | 16.08   |
| 20                                       | (1,2)  | 32                     | 30(17)         | 20    | 402.23                      | 375.05  | 732.68  |
|                                          | (1,5)  | 29                     | 10(10)         | 9     | 373.09                      | 200.82  | 649.07  |
|                                          | (1,10) | 20                     | 11(8)          | 5     | 298.94                      | 178.8   | 581.26  |
| 50                                       | (1,2)  | 84(1)                  | <b>65</b> (45) | 93(1) | 1039.3                      | 801.55  | 1127.5  |
|                                          | (1,5)  | 86                     | <b>35</b> (31) | 79    | 1122.4                      | 445.91  | 1009.8  |
|                                          | (1,10) | 73                     | <b>15</b> (12) | 61    | 984.50                      | 231.48  | 812.16  |
| 100                                      | (1,2)  | 97                     | <b>79</b> (62) | 89(1) | 1178.9                      | 1000.50 | 1104.20 |
|                                          | (1,5)  | 98                     | <b>49</b> (45) | 83    | 1189.50                     | 766.59  | 1044.60 |
| -                                        | (1,10) | 95                     | <b>34</b> (32) | 67    | 1177.30                     | 593.57  | 937.77  |

<sup>\*</sup>Unsol. ins. - instance that an optimal solution can not be found /proven within the limit of 20 min runtime

<sup>\*</sup>Unsol. MP - instance whose master problem can not be solved within the limit of 20 min runtime



## Optimality Gap of Instance with $p_{kij} \sim U[1,100]$

| Different classes of<br>FFSP test instances |                | MIP        |               | LBBD       |              | ВС         |                |
|---------------------------------------------|----------------|------------|---------------|------------|--------------|------------|----------------|
| n, jobs                                     | (1,RM)         | # fea. sol | Ave. gap(%)   | # fea. sol | Ave. gap(%)  | # fea. sol | Ave. gap(%)    |
| 10                                          | (1,2)<br>(1,5) | 0          | NaN<br>NaN    | 2<br>0     | 1.03%<br>NaN | 9<br>1     | 1.39%<br>0.46% |
| 20                                          | (1,2)          | 32         | 0.49 %        | 13         | 3.29%        | 20         | 1.86%          |
|                                             | (1,5)          | 29         | <b>0.21</b> % | 0          | NaN          | 9          | 0.79%          |
|                                             | (1,10)         | 20         | 0.20 %        | 3          | 0.85%        | 5          | 0.46%          |
| 50                                          | (1,2)          | 83         | 0.53 %        | 20         | 5.78%        | 92         | 0.59%          |
|                                             | (1,5)          | 86         | <b>0.25</b> % | 4          | 1.04%        | 79         | 0.68%          |
|                                             | (1,10)         | 73         | <b>0.10</b> % | 3          | 1.27%        | 61         | 0.22%          |
| 100                                         | (1,2)          | 97         | 1.70%         | 17         | 2.58%        | 88         | 0.41 %         |
|                                             | (1,5)          | 98         | 0.82%         | 4          | 0.57%        | 83         | <b>0.15</b> %  |
|                                             | (1,10)         | 95         | 0.44%         | 2          | 0.39%        | 67         | <b>0.14</b> %  |

 $<sup>\</sup>ensuremath{^{*}}\xspace$  fea. sol. - instances that feasible solutions were found, but not proven to be optimal



#### Conclusion

- We studied scheduling problem of  $FF2|(1,RM)|C_{max}$
- We developed the best-known MIP model from literature
- We developed two decomposition-based algorithms ( LBBD and BC )
  - Both of the LBBD and BC algorithms outperform the best-known MIP model
  - 2 LBBD has the best performance in computational time, but suffers from an issue of unsolved master problems.
  - 3 To the best of our knowledge, this is the first study of the implementation of decomposition-based algorithms for solving FFSP.

#### Future work:

- Predict which algorithm to use, LBBD or BC? Statistic analysis or Machine Learning?
- 2 Generalization to  $FF2|(RM, RM)|C_{max}$



#### Reference I

- Beck, J Christopher (2010). "Checking-Up on Branch-and-Check." In: *CP*. Springer, pp. 84–98.
- Demir, Yunus and S Kürşat İşleyen (2013). "Evaluation of mathematical models for flexible job-shop scheduling problems". In: *Applied Mathematical Modelling* 37.3, pp. 977–988.
- Hooker, John N (2005). "A hybrid method for the planning and scheduling". In: *Constraints* 10.4, pp. 385–401.
- Lin, Hung-Tso and Ching-Jong Liao (2003). "A case study in a two-stage hybrid flow shop with setup time and dedicated machines". In: *International Journal of Production Economics* 86.2, pp. 133–143.

#### Reference II

- Thorsteinsson, Erlendur (2001). "Branch-and-check: A hybrid framework integrating mixed integer programming and constraint logic programming". In: *Principles and Practice of Constraint Programming (CP 2001)*. Springer, pp. 16–30.
- Tran, Tony T, Arthur Araujo, and J Christopher Beck (2016). "Decomposition methods for the parallel machine scheduling problem with setups". In: *INFORMS Journal on Computing* 28.1, pp. 83–95.

# Thank you

