

Datenbanken 1

- Kapitel 3: Relationenmodell -

Vorlesung Datenbanken 1

Phasen des Datenbankentwurfs

Anforderungsanalyse

Datenbankentwurf – Beispiel

Relationenmodell

Inhalt des Kapitels

- Grundlagen des Relationenmodell
- Abbildung des Entity-Relationship-Modells auf das Relationenmodell
- Normalformen

Lernziele

- Kennenlernen des Relationenmodells
- Selbständiges Entwerfen von relationalen Datenbankmodellen unter Berücksichtigung verschiedener Normalformen

Relationenmodell – Grundlagen

- entwickelt von E. F. Codd (1970)
- beruht auf dem mathematischen Begriff der **Relation**, den man anschaulich mit dem der Begriff **Tabelle** vergleichen kann
- alle Informationen sind in Relationen abgelegt

Definitionen

• Eine **n-stellige Relation R** ist definiert als Untermenge des kartesischen Produkts der Wertebereiche der zugehörigen Attribute A₁, A₂, ..., A_n:

$$R(A_1, A_2, ..., A_n) \subseteq W(A_1) \times W(A_2) \times ... \times W(A_n)$$

Beispiel: Student (MatrNr, Name, Geburtsdatum) ⊆ integer x string x date

Eine Element der Menge R wird als Tupel bezeichnet, d.h. t ∈ R

Beispiel: t = (123456, 'Schmidt', 30.01.2014)

Relationenmodell – Grundlagen

- Darstellungsmöglichkeit für R: n-spaltige Tabelle
- ⇒ Jede Relation kann als Tabelle dargestellt werden

PROF:	PNR	NAME	FB
	431326	Schütte	FBI
	174892	Erbs	FBI
	917384	Rebstock	FBW

- Relation ist eine Menge: Garantie der Eindeutigkeit der Tupel (Zeilen)
- ⇒ Primärschlüssel (und ggf. mehrere Schlüsselkandidaten)
- Schlüssel: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren.

Relationales Datenbankmodell – Grundregeln*

- Jede Zeile (Tupel) ist eindeutig und beschreibt ein Objekt der Miniwelt.
- Die Reihenfolge der Zeilen ist ohne Bedeutung, d.h. durch ihre Reihenfolge wird keine für den Benutzer relevante Bedeutung ausgedrückt.
- 3. Die Reihenfolge der Spalten ist ohne Bedeutung, da sie einen eindeutigen Namen tragen.
- 4. Jeder Datenwert innerhalb einer Relation ist ein *atomares* Datenelement.
- 5. Alle für den Benutzer bedeutungsvollen Informationen sind ausschließlich durch Datenwerte ausgedrückt.
- 6. Es existieren ein Primärschlüssel und ggf. weitere Schlüsselkandidaten.

Bezeichnungen

Datenbankschema: Menge von Relationenschemata

Integritätsbedingungen

- Integritätsbedingungen sind u.a. Abhängigkeiten zwischen Attributen sowohl innerhalb einer Relation als auch zwischen Relationen.
- Eine Abhängigkeit innerhalb einer Relation nennt man funktionale Abhängigkeit zwischen Attributen.
 Ein Spezialfall der funktionalen Abhängigkeit ist der Schlüssel.
- Abhängigkeiten zwischen Relationen:

PROF:	<u>PNR</u>	NAME	FBID	FB:	FBID	FBNAME	DEKAN
	431326	Schütte	FBI		FBI	Informatik	174892
	174892	Erbs	FBI		FBW	Wirtschaftswis	917384
	917384	Rebstock	FBW			senschaften	

⇒ Fremdschlüssel

Fremdschlüssel

 Ein Fremdschlüssel (foreign key) bezüglich einer Relation R₁ ist ein (ggf. zusammengesetztes) Attribut FK einer Relation R₂, für das zu jedem Zeitpunkt gilt: zu jedem Wert (ungleich NULL) von FK muss ein gleicher Wert des Primärschlüssels PS (oder eines Schlüsselkandidaten SK) in irgendeinem Tupel von Relation R₁ sein.

Eigenschaften

- Fremdschlüssel und Primärschlüssel tragen wichtige interrelationale (oder intrarelationale) Informationen. Sie sind auf dem gleichen Wertebereich definiert.
- Fremdschlüssel können Nullwerte aufweisen, wenn sie nicht selbst Teil des Primärschlüssels sind oder wenn nicht explizit NOT NULL deklariert ist.
- Eine Relation kann mehrere Fremdschlüssel besitzen, welche die gleiche oder verschiedene Relationen referenzieren.
- Referenzierte und referenzierende Relationen sind nicht notwendig verschieden (self-referencing table).

Transformation ER-Modell → Relationenmodell

- Entity-Relationship-Modell dient zur Modellierung der Realität aus Sicht der Anwendung
- Relationenmodell dient als Grundlage für die Realisierung in relationalen Datenbanken
- Transformation erfolgt durch eindeutige Regeln, mit deren Hilfe jedes Entity-Relationship-Modell in ein Relationenmodell überführt werden kann.
- Mit Hilfe von Case-Tools kann diese Transformation automatisiert werden.

Transformation ER-Modell → Relationenmodell

- Abbildung von Entity-Typen und einfachen Attributen
- Abbildung Beziehungstypen
 - o M:N Beziehungen
 - o 1:N Beziehungen
 - o 1:1 Beziehungen
 - o rekursive Beziehungen
 - o mehrstellige Beziehungen
- Abbildung schwacher Entity-Typen
- Abbildung mengenwertiger und komplexer Attribute
- Abbildung Generalisierung/Spezialisierung

Abbildung von Entity-Typen

- jeder Entity-Typ wird zu einem Relationenschema
- einfache Attribute des Entity-Typs werden die Attribute des Relationenschemas
- falls Entities komplexe oder mengenwertig Attribute aufweisen, müssen diese aufgelöst werden (⇒ Diskussion später)
- ein Schlüssel (falls noch nicht im ER-Modell geschehen) ist als Primärschlüssel des Relationenschemas auszuzeichnen, alternativ ist ein zusätzliches Schlüsselattribut hinzuzufügen
- die Datentypen zu den Attributen müssen definiert werden (falls noch nicht im ER-Modell geschehen)

Abbildung von Entity-Typen (Beispiel)

MARKT (BEZEICHNUNG, STANDORT, KATEGORIE)

Abbildung M:N Beziehungstypen

Student (Matrikelnummer, Name)

Vorlesung (VorlesungsID, Bezeichnung)

- Jeder M:N Beziehungstyp wird zu einem eigenen Relationenschema
- Die Primärschlüssel der beteiligten Entity-Typen werden als Attribute hinzugefügt - diese bilden zusammen den Primärschlüssel und sind jeweils Fremdschlüssel bezogen auf die beiden aus den Entity-Typen entstandenen Relationenschemata
- Ggf. vorhanden Attribute des Beziehungstyps werden Attribute des Relationenschemas.

STUDENT (MATRIKELNUMMER, NAME)

VORLESUNG (VORLESUNGSID, BEZEICHNUNG)

BESUCHT (MATRIKELNUMMER → STUDENT, VORLESUNGSID → VORLESUNG)

Kardinalitäten?

alternative Darstellung:

Erster Ansatz: Vorgehen wie bei n:m Beziehungen

MITARBEITER (PERSNR, NAME, GEHALT)

ABTEILUNG (ABTNAME, BEREICH)

GEHOERT_ZU (PERSNR → MITARBEITER, ABTNAME → ABTEILUNG)

GEHOERT_ZU (PERSNR → MITARBEITER, ABTNAME → ABTEILUNG)

Verfeinerung durch Zusammenfassung

Regel: Relationen mit gleichem Schlüssel kann man zusammenfassen
 aber nur diese und keine anderen!

Abbildung 1:N Beziehungen

- Für 1:N Beziehungstypen wird <u>kein</u> zusätzliches Relationenschema angelegt!
- In das Relationenschema, dessen Tupel nur maximal ein Mal in der Beziehung erscheinen dürfen, wird der Primärschlüssel des anderen Relationenschemas als Fremdschlüssel hinzugefügt.
- Attribute der Beziehung werden ebenfalls in dem Relationenschema hinzugefügt, dessen Tupel nur ein Mal in der Beziehung erscheinen dürfen.

Hörsaalübung

Setzen Sie das folgende ER-Modell in ein Relationenschema um:

Produkt (Produktnummer, Bezeichnung, Preis)

Hersteller (<u>HerstellerID</u>, Herstellername)

Katalog (KatalogID, Katalogname)

Transformation ER-Modell→Relationenmodell

- Abbildung von Entity-Typen und einfachen Attributen
- Abbildung Beziehungstypen
 - ✓ M:N Beziehungen
 - √ 1:N Beziehungen
 - o 1:1 Beziehungen
 - o rekursive Beziehungen
 - o mehrstellige Beziehungen
- Abbildung schwacher Entity-Typen
- Abbildung mengenwertiger und komplexer Attribute
- Abbildung Generalisierung/Spezialisierung

 Mindestens einem der beiden Relationenschemata ist der Schlüssel des anderen als Fremdschlüssel hinzuzufügen (oder beiden):

```
MANAGER (<u>PERSNR</u>, NAME, GEHALT, RAUMNR → RAUM )

RAUM (<u>RAUMNR</u>, QUADRATMETER, PERSNR → MANAGER)
```

 Anmerkung: Es könnten auch alle Attribute in ein Relationenschema aufgenommen werden, d. h. aus 2 Entities wird ein Relationenschema. Ggf. sinnvoll bei einer "echten" 1:1 Beziehung (d.h. (1,1) und (1,1))

Abbildung rekursiver Beziehungstypen: Beispiel

Abbildung rekursiver Beziehungstypen: Beispiel

Abbildung rekursiver Beziehungstypen

Behandlung analog "nichtrekursiver" Beziehungstypen

⇒ Aus dem Beziehungstyp entstehendes Relationenschemata enthält zwei Fremdschlüssel auf das aus dem Entity-Typ entstehende Relationenschemata – Namen anpassen!

Abbildung rekursiver Beziehungstypen: Beispiel

TEIL

<u>TNR</u>	TBEZ	Einzelpreis
MB_538	Fahrrad	
MB_539	Reifen	
MB_540	Rahmen	
MB_541	Sattel	•••
MB_542	Antrieb	
MB_543	Gabel	•••
MB_544	Schlauch	
MB_545	Felge	
MB_546	Mantel	•••
MB_547	Speiche	•••
MB_548	Ventil	
MB_549	Lager	

BESTEHT_AUS

<u>TNR</u>	TEI_TNR	Anzahl
MB_538	MB_539	2
MB_538	MB_540	1
MB_538	MB_541	1
MB_538	MB_542	1
MB_539	MB_544	1
MB_539	MB_545	1
MB_539	MB_546	1
MB_539	MB_547	18
MB_539	MB_548	1
MB_539	MB_549	1

Mehrstellige Beziehungen

- Für den Beziehungstyp wird ein eigenes Relationenschema angelegt, in welches die Primärschlüssel aller Beteiligten Entity-Typen als Fremdschlüssel übernommen werden; diese bilden zusammen den Primärschlüssel.
- Attribute des Beziehungstyps werden ebenfalls dem Relationenschema hinzugefügt.

Abbildung schwacher Entity-Typen

Zur Erinnerung: Funktionale Beziehung ist Bestandteil des Schlüssels

 Abweichend von "normalen" 1:N Beziehungen, wird der Primärschlüssel nicht nur als Fremdschlüssel übernommen, sondern wird auch Bestandteil des Primärschlüssels auf der "N"-Seite.

Abbildung mengenwertiger und strukturierter Attribute

Abbildung mengenwertiger und strukturierter Attribute

KUNDE (KD-NUMMER, NACHNAME, STRASSE, STADT, PLZ)

VORNAME (KD-NUMMER → KUNDE, VORNAME)

Abbildung mengenwertiger und strukturierter Attribute

- Anmerkung zu Case-Tools: Die Modellierung mengenwertiger und strukturierte Attribute wird von Case-Tools häufig nicht unterstützt.
- Lösungsvariante?

Kritik am Relationalen Modell

- Prinzip des Relationalen Modells führt dazu, dass oft zusammenhängende Inhalte auf mehrere Tabellen verteilt werden müssen.
- ⇒ Performance-Verlust
- ⇒ Entwicklung alternativer Ansätze
 - Objektorientierte Datenbanksysteme (kommend von OO-Sprachen, DER Datenbank-Hype der 90er Jahre)
 - Objektrelationale Datenbanksysteme (kommend von relationalen Datenbanksystemen – "Gegenreaktion" der Hersteller relationaler DBMS Mitte/Ende der 90er Jahre)
 - Status Quo: die allermeisten Daten sind heute weltweit in Relationalen Datenbanksystemen gespeichert (und viele Daten auch noch in DBMS mit älteren Datenmodellen wie hierarchische Datenbanken – z.B. IMS) – für bestimmte Anwendungsszenarien Verwendung objektrelationaler Datenbanksysteme (z.B. Geodaten)
 - Aktueller Trend: NoSQL-Datenbanksysteme zur Speicherung hierarchischer Daten und mit flexiblem Schema für bestimmte Anwendungen

Transformation ER-Modell → Relationenmodell

- Abbildung von Entity-Typen und einfachen Attributen
- ✓ Abbildung Beziehungstypen
 - ✓ M:N Beziehungen
 - ✓ 1:N Beziehungen
 - √ 1:1 Beziehungen
 - ✓ rekursive Beziehungen
 - ✓ mehrstellige Beziehungen
- Abbildung schwacher Entity-Typen
- ✓ Abbildung mengenwertiger und komplexer Attribute
- Abbildung Generalisierung/Spezialisierung

Darstellung im PowerDesigner:

Variante 1: "Hausklassenmodell"

Nur für die Spezialisierungen werden Relationenschemata ausgeprägt.

TM:

	PROFESSOR	
PERSNR BESOLDUNG NAME	integer character(2) variable character(20)	<u><pk></pk></u>

TECHNMITARBEITER				
PERSNR ABSCHLUSS NAME	integer variable character(10) variable character(20)	<u><pk></pk></u>		

PROF:	PERSNR	NAME	BESOLDUNG
	0814	Beckstein	C3
	0815	Küspert	C4

<u>PERSNR</u>	NAME	ABSCHLUSS
0665	Friedel	Dr. rer. nat.
0666	Mäurer	DiplMath.

- Vorteile?
- Nachteile?

Variante 2: "Partitionierungsmodell"

- Sowohl für die Spezialisierungen als auch die Generalisierung werden Relationenschemata ausgeprägt.
- In den Relationenschemata der Spezialisierungen werden die Primärschlüssel der Generalisierung als Fremdschlüssel (und gleichzeitig Primärschlüssel) übernommen.

Dipl.-Math.

0666

Variante 3: "Volle Redundanz"

- Sowohl für die Spezialisierungen als auch die Generalisierung werden Relationenschemata ausgeprägt
- In den Relationenschemata der Spezialisierungen werden <u>alle Attribute</u> der Generalisierung übernommen und die übernommenen Primärschlüssel als Fremdschlüssel (und Primärschlüssel) definiert.

- Vorteile?
- Nachteile?

<u>PERSNR</u>	NAME	ABSCHLUSS
0665	Friedel	Dr. rer. nat.
0666	Mäurer	DiplMath.

TM:

Variante 4: "Hierarchierelation"

- Es wird nur ein Relationenschema für die Generalisierung ausgeprägt
- Zusätzliches Attribut zur Typidentifikation
- Nullwerte für Attribute, welche in der zugehörigen Klasse nicht vorhanden sind.

	MITARBEITER	
PERSNR NAME ABSCHLUSS BESOLDUNG	integer variable character(20) variable character(10) character(2)	<u><pk></pk></u>

MITARBEITER:	PERSNR TYP		NAME	ABSCHLUSS	BESOLDUNG
	0665	TechnMit	Friedel	Dr. rer. nat.	1
	0666	TechnMit	Mäurer	DiplMath.	1
	0814	Professor	Beckstein	1	C3
	0815	Professor	Küspert	-	C4

- Vorteile?
- Nachteile?

- Vier verschiedene Varianten der Abbildung
- Vor- und Nachteile bezüglich
 - Performance beim Zugriff auf generalisierte / spezialisierte Daten
 - Beziehungen zu anderen Klassen
 - Datenredundanz
 - Speicherbedarf

Zusammenfassung

- Relation (Tabelle)
 - alle Informationen werden ausschließlich durch atomare Werte dargestellt
 - Integritätsbedingungen werden auf/zwischen Relationen definiert
 - Referentielle Integrität als wertebasierte Beziehung
 - Kardinalitätsrestriktionen außer 0, 1 und * können nicht abgebildet werden
- Abbildung von Beziehungen durch Primärschlüssel/Fremdschlüssel
 - Alle Beziehungstypen müssen durch 1:N Beziehungen dargestellt werden
 - ⇒ M:N Beziehungstypen werden durch eigene Relationenschemata abgebildet
 - 1:N Beziehungstypen müssen nicht als eigene Relationenschema abgebildet werden
 - ⇒ 1:1 Beziehungstypen müssen nicht als eigene Relationenschema abgebildet werden; u.U. ist eine Zusammenfassung der beiden aus den Entity-Typen entstandenen Relationenschemata sinnvoll.
 - Verschiedene Abbildungsmöglichkeiten für Generalisierung/Spezialisierung (Konzept nicht wirklich "kompatibel" mit Relationenmodell)

Kapitel 3: Relationenmodell

- ✓ Grundlagen des Relationenmodell
- ✓ Abbildung des Entity-Relationship-Modells auf das Relationenmodell
- Normalformen

Normalisierung von Relationenschemata

Ziel/Motivation

- Vermeidung von Anomalien in Relationenschemata
- Anomalien:
 - Zustände in relationalen Datenbanken, in denen die Veränderung von Daten zu Datenbankzuständen führt, die nicht die gewünschte Realität darstellt
 - Unterscheidung zwischen Einfüge-, Änderungs- und Lösch-Anomalie

Weg

- Vermeidung von Anomalien in Relationenschemata wird erreicht durch systematische Vorgehensweise beim konzeptionellen Datenbankentwurf (ERM) und bei der Abbildung zum Relationalen Modell
- Entfernung von Anomalien ist nötig, wenn nicht systematisch modelliert wurde

Normalformen: Übersicht

Es existieren verschiedene Normalformen, welche jeweils aufeinander aufbauen (d.h. jede Normalform fordert, dass die vorhergehende Normalform erfüllt ist):

- 1NF (1. Normalform)
- 2NF (2. Normalform)
- 3NF (3. Normalform)
- BCNF (Boyce-Codd-Normalform)
- 4NF (4. Normalform)
- 5NF (5. Normalform)

Praktisch relevant sind insbesondere die ersten drei Normalformen!

Erste Normalform (1NF)

Eine Relationenschema ist in *erster Normalform*, wenn alle Attribute des Schemas elementar sind.

- ⇒ Für Attributwerte sind nur einfache Datentypen erlaubt, z.B. integer, real, string etc.
- ⇒ Listen, Mengen oder Relationen als Attribute sind nicht erlaubt (z.B. record- oder array-Typen).

→ Entspricht der bisher verwendeten Definition des relationalen Modells

Einfüge-Anomalie (Insert-Anomalie)

<u>Prod-Nr</u>	Produktart	Funktion	<u>Verkaufsmarkt</u>	Marktstandort	marktspez.Preis
11022	Tee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
10622	Kaffee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
20131	Schale	Deko	Rheinischer Tonmarkt	Mainz	80 €
20131	Schale	Deko	Odenwälder Töpferwelt	Erbach	50 €
20131	Schale	Deko	Internat. Tonmarkt	Strasbourg	120 €
40030	Krug	Deko	Internat. Tonmarkt	Strasbourg	100 €
40031	Krug	Deko	Odenwälder Töpferwelt	Erbach	80 €

- Ein neues Produkt wird eingeführt, aber noch nicht auf den Markt gebracht
- ⇒ Einfügen Produkt (33033, Schüssel, Gebrauch)
- Problem?
- Ursache?

Änderungs-Anomalie (Update-Anomalie)

<u>Prod-Nr</u>	Produktart	Funktion	<u>Verkaufsmarkt</u>	Marktstandort	marktspez.Preis
11022	Tee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
10622	Kaffee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
20131	Schale	Deko	Rheinischer Tonmarkt	Mainz	80 €
20131	Schale	Deko	Odenwälder Töpferwelt	Erbach	50 €
20131	Schale	Deko	Internat. Tonmarkt	Strasbourg	120 €
40030	Krug	Deko	Internat. Tonmarkt	Strasbourg	100 €
40031	Krug	Deko	Odenwälder Töpferwelt	Erbach	80 €

- Der Verkaufsmarkt "Odenwälder Töpferwelt" wird von Erbach nach Michelstadt verlegt
- Problem?
- Ursache?

Lösch-Anomalie (Delete-Anomalie)

<u>Prod-Nr</u>	Produktart	Funktion	<u>Verkaufsmarkt</u>	Marktstandort	marktspez.Preis
11022	Tee-Service	Gebrauch	Internat. Tonmarkt	Charabauma	200 €
_				Strasbourg	
10622	Kaffee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
20131	Schale	Deko	Rheinischer Tonmarkt	Mainz	80 €
20131	Schale	Deko	Odenwälder Töpferwelt	Erbach	50 €
20131	Schale	Deko	Internat. Tonmarkt	Strasbourg	120 €
40030	Krug	Deko	Internat. Tonmarkt	Strasbourg	100 €
40031	Krug	Deko	Odenwälder Töpferwelt	Erbach	80 €

- Produkt 20131 soll aus dem Programm genommen werden
- ⇒ Löschen des Tupels mit der Prod-Nr 20131
- Problem?
- Ursache?

Ursachen von Anomalien

Redundante Datenhaltung:

- Beispiele:
 - jedes Produkt ist mehrfach mit allen Attributen abgespeichert
 - jeder Verkaufsmarkt ist mehrfach mit allen Attributen abgespeichert.

Ungünstige funktionale Abhängigkeiten:

- Beispiel:
 - Produktart hängt funktional nur von der Produkt-Nr ab, aber nicht von Verkaufsmarkt (welcher ebenfalls Bestandteil des Schlüssels ist)

Funktionale Abhängigkeit

- Funktionale Abhängigkeit:
 - Eine Menge Y von Attributen {y₁, y₂, ..., y_n} ist funktional abhängig von einer Menge X von Attributen {x₁, x₂, ..., x_n},
 wenn es eine Funktion zwischen X und Y gibt, d.h. für alle {x₁, x₂, ..., x_n}
 Elemente aus X gibt es genau ein {y₁, y₂, ..., y_n} aus Y.
- Mit anderen Worten:
 - In einer Relation ist eine Attribut(-kombination) Y funktional abhängig von einer Attribut(-kombination) X, wenn für gleiche X-Werte jeweils gleiche Y-Werte vorhanden sind, d.h. unterscheiden sich zwei Tupel in den X-Attributen nicht, so haben sie auch gleiche Werte für alle Y-Attribute
- Notation für funktionale Abhängigkeit (functional dependency, FD)
 - $X \rightarrow Y bzw. \{x_1, x_2, ..., x_n\} \rightarrow \{y_1, y_2, ..., y_n\}$

Funktionale Abhängigkeit – Beispiel

Toepferprodukt_Markt

<u>Prod-Nr</u>	Produktart	Funktion	<u>Verkaufsmarkt</u>	Marktstandort	marktspez.Preis
11022	Tee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
10622	Kaffee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
20131	Schale	Deko	Rheinischer Tonmarkt	Mainz	80 €
20131	Schale	Deko	Odenwälder Töpferwelt	Erbach	50 €
20131	Schale	Deko	Internat. Tonmarkt	Strasbourg	120 €
40030	Krug	Deko	Internat. Tonmarkt	Strasbourg	100 €
40031	Krug	Deko	Odenwälder Töpferwelt	Erbach	80 €

T_M (PRODNR, PRODART, FUNKTION, VERKAUFSMARKT, MARKSTANDORT, MARKTSPEZPREIS)

Funktionale Abhängigkeiten:

Funktionale Abhängigkeit - Schlüssel

Formalisierung des Schlüsselbegriffs:

- ⇒ Konzept der vollen funktionalen Abhängigkeit:
 Eine Menge Y von Attributen {y₁, y₂, ..., yₙ} ist voll funktional abhängig von einer Menge X von Attributen {x₁, x₂, ..., xₙ}, wenn
 - Y funktional abhängig von X ist, d.h. $X \rightarrow Y$ und
 - X nicht mehr verkleinert werden kann, d.h. für alle $\forall x_i \in X: X \{x_i\} \rightarrow Y$
- ⇒ Falls Relation R voll funktional abhängig von X, so bezeichnet man X als Schlüsselkandidat von R.
- Im allgemeinen wird aus den Schlüsselkandidaten der Primärschlüssel ausgewählt.

Zweite Normalform (2NF)

Eine Relationenschema ist in zweiter Normalform, wenn

- es in erster Normalform ist und
- jedes Nichtschlüsselattribut voll funktional von jedem
 Schlüsselkandidat abhängt (und nicht nur von einem Teilschlüssel).

Bemerkungen

- Abhängigkeiten von einem Teil des Schlüssels (bei zusammengesetzten Schlüsseln) führen zur Anomalien.
- Intuitive Formulierung: ein Relationenschema verletzt die zweite Normalform (2NF), wenn in der Relation Informationen über mehr als ein Konzept modelliert werden.
- Hinweis: Relationenschemata, die in 1NF sind und deren Schlüssel aus einem Attribut bestehen, sind in 2NF (folgt aus der Definition).

Verletzung der 2NF

Prod-Nr	Produktart	Funktion	<u>Verkaufsmarkt</u>	Marktstandort	marktspez.Preis
11000	man Canada	G - h h	Tutawat Managalit	0 to to	200 0
11022	Tee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
10622	Kaffee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
20131	Schale	Deko	Rheinischer Tonmarkt	Mainz	80 €
20131	Schale	Deko	Odenwälder Töpferwelt	Erbach	50 €
20131	Schale	Deko	Internat. Tonmarkt	Strasbourg	120 €
40030	Krug	Deko	Internat. Tonmarkt	Strasbourg	100 €
40031	Krug	Deko	Odenwälder Töpferwelt	Erbach	80 €

- Welche Attribute sind von Schlüsselkandidaten voll funktional abhängig?
- Welche Attribute sind von Schlüsselteilen voll funktional abhängig?

Vorgehen zur Auflösung zur 2NF

Für jeden(!) Teilschlüssel für den voll funktional abhängige Attribute existieren:

- neue Relation anlegen, welche den Teilschlüssel und die von diesem voll funktional abhängigen Attribute enthält
- 2. abhängige Attribute aus der Originalrelation entfernen
- 3. Teilschlüssel in Originalrelation als Schlüssel und außerdem als Fremdschlüssel auf neue Relation deklarieren

Auflösung zur 2NF

Toepferprodukt_Markt

Prod-Nr	Produktart	Funktion	<u>Verkaufsmarkt</u>	Marktstandort	marktspez.Preis
11022	Tee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
10622	Kaffee-Service	Gebrauch	Internat. Tonmarkt	Strasbourg	200 €
20131	Schale	Deko	Rheinischer Tonmarkt	Mainz	80 €
20131	Schale	Deko	Odenwälder Töpferwelt	Erbach	50 €
20131	Schale	Deko	Internat. Tonmarkt	Strasbourg	120 €
40030	Krug	Deko	Internat. Tonmarkt	Strasbourg	100 €
40031	Krug	Deko	Odenwälder Töpferwelt	Erbach	80 €

Toepferprodukt

Krug

Prod-NrProduktartFunktion11022Tee-ServiceGebrauch10622Kaffee-ServiceGebrauch20131SchaleDeko40030KrugDeko

Toepferprodukt_Markt_Neu

Prod-Nr	<u>Verkaufsmarkt</u>	marktspez.Preis
11022	Internat. Tonmarkt	200 €
10622	Internat. Tonmarkt	200 €
20131	Rheinischer Töpfermarkt	80 €
20131	Odenwälder Töpferwelt	50 €
20131	Internat. Tonmarkt	120 €
40030	Internat. Tonmarkt	100 €
40031	Odenwälder Töpferwelt	80 €

Toepfermarkt

Deko

<u>Verkaufsmarkt</u>	Marktstandort
Internat. Tonmarkt	Strasbourg
Rheinischer Töpfermarkt	Mainz
Odenwälder Töpferwelt	Erbach

Uta Störl

40031

Beispiel zur 2NF

PRÜFUNG (MATRNR, LVNR, LVBEZEICHNUNG, DOZENT, RAUM, NOTE)

- Annahme: jede Vorlesung wird von genau einem Dozenten gehalten und findet in genau einem Raum statt.
- Ist das Schema in 2NF? (Welche Attribute sind von Schlüsselteilen voll funktional abhängig?)
- Ggf. Auflösung zur 2NF

Dritte Normalform (3NF)

Eine Relationenschema ist in dritter Normalform, wenn

- es in zweiter Normalform ist und
- kein Nichtschlüsselattribut transitiv von einem Schlüssel abhängt.
- Eine Attributmenge C hängt von einer Attributmenge A *transitiv* ab, wenn es eine Attributmenge B gibt, so dass gilt: $A \rightarrow B$ und $B \rightarrow C$.
- Anders ausgedrückt: ein Nichtschlüsselattribut darf nicht voll funktional abhängig von anderen Nichtschlüsselattributen sein, sondern nur von Schlüsselattributen
- Indirekte Abhängigkeiten vom Schlüssel über Nichtschlüsselattribute bedeutet i.a. dass der gleiche Fakt mehrfach gespeichert wird, d.h. Redundanz und daraus folgend Anomalien.
- Beispiel: Bestellung (B-NR, B-DATUM, LIEFERANT-NR, LIEFERANT-NAME, LIEFERANT-ADRESSE)
 {B-NR} → {B-DATUM}
 {B-NR} → {LIEFERANT-NR}
 {LIEFERANT-NR} → {LIEFERANT-NAME}
 {LIEFERANT-NR} → {LIEFERANT-ADRESSE}

Vorgehen zur Auflösung zur 3NF

Für jede(!) transitiv abhängige Attributmenge *C*:

- neue Relation anlegen, welche die transitiv abhängige Attributmenge C und die Attributmenge B (mit A → B und B → C) enthält (B wird Schlüssel in neuer Relation)
- 2. transitiv abhängige Attribute aus der Originalrelation entfernen
- 3. Attributmenge *B* in der Originalrelation als Fremdschlüssel auf die neue Relation deklarieren

Beispiel:

BESTELLUNG (B-NR, B-DATUM, LIEFERANT-NR, LIEFERANT-NAME, LIEFERANT-ADRESSE)

LIEFERANT (<u>LIEFERANT-NR</u>, LIEFERANT-NAME, LIEFERANT-ADRESSE)

BESTELLUNG_NEU (B-NR, B-DATUM, LIEFERANT-NR → LIEFERANT)

Zusammenfassung

- Im Relationenmodell ist die 1NF immer erforderlich. Ein Umwandlung in 2NF und 3NF ist immer möglich.
- Normalisierung gemäß der 2NF und 3NF unterstützt die Gewährleistung referentieller Integrität inbesondere bei schreibenden, d.h. verändernden Zugriffen – für lesende Zugriffe ist sie nicht zwingend notwendig.
- Aber auch: Normalisierung insbesondere 3NF führt u.U. zu reduzierter Laufzeit-Performance (Informationen müssen bei jedem Zugriff u.U. aus mehreren Tabellen zugesammengefügt werden)
- ⇒ In der Praxis wird zur Performance-Optimierung teilweise auf 3NF verzichtet ("Denormalisierung")

Empfehlungen

- Bereits bei der Entity-Relationship-Modellierung "normalisiert" denken!
- Zuerst normalisieren und nur bei Performance-Problemen die nachweislich auf die NF zurückzuführen sind, u.U. "denormalisieren".

Kapitel 3: Relationenmodell

- ✓ Grundlagen des Relationenmodell
- ✓ Abbildung des Entity-Relationship-Modells auf das Relationenmodell
- ✓ Normalformen

Vorlesung Datenbanken 1

