Today's class

- ▶ Conditioning X on an event $A \in \mathcal{F}$.
- ▶ Conditional Expectation E[X|A].
- ▶ Conditioning X with disjoint partitions $\{A_i\}$ of Ω .
- ▶ Conditioning X on an event $\{X \in A\} \in \mathcal{F}'$
- ► Conditioning *X* on another random variable *Y*.
- ▶ Conditional expectation E[X|Y = y].
- ▶ Law of iterated expectation E[X|Y]
- Bayes rule revisited
- Sums of random variables.

Conditioning X on random variable Y

- Consider a discrete r.v's X and Y with joint pmfs $p_{XY}(x,y)$ and with marginal pmf $p_X(x)$ and $p_Y(y)$.
- Suppose an event $A : \{Y = y\}$ has happened and we are interested in the probability that X = x given Y = y.
- ▶ This conditional pmf is denoted by $p_{X|Y}(x|y)$.
- ▶ In fact, $p_{X|Y}(x|y) := \frac{P(X=x,Y=y)}{P(Y=y)} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$.

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

- ▶ This is essentially same as $P(A \cap B) = P(A|B)P(B)$
- ▶ Is $p_{X|Y}(x|y)$ consistent?

What if *X* and *Y* are independent?

- When do we say that X and Y are independent? When $p_{X,Y}(x,y) = p_X(x)p_Y(y)$.
- We also know that

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

- ▶ This implies that $p_{X|Y}(x|y) = p_X(x)$.
- ▶ NOTE: Independence implies E[XY] = E[X]E[Y].

Independent random variables are uncorrelated (Cov(X, Y) = 0). But Uncorrelated random variables need not be independent!! (See Example 4.13 in Bertsekas)

Conditioning X on random variable Y

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

Now summing on both sides over y, we have

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

Similarly from $p_{X,Y}(x,y) = p_{Y|X}(y|x)p_X(x)$, summing on both sides over x, we have

$$p_Y(y) = \sum_x p_{Y|X}(y|x)p_X(x)$$

Notice similarity to the law of total probability. $P(A) = \sum_{i} P(A|B_i)P(B_i)$.

Recap

$$p_{X|A}(x) := \frac{p_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \sum_{x} x p_{X|A}(x).$$

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

Conditional expectation E[X|Y=y]

It is easy to guess that

$$E[X|Y = y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[Y|X = x] := \sum_{y} y p_{Y|X}(y|x)$$

Can you write E[X] in terms of E[X|Y = y]?

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

Proof:
$$\sum_{y} p_{Y}(y) E[X|Y = y] = \sum_{y} p_{Y}(y) \sum_{x} x p_{X|Y}(x|y)$$

$$= \sum_{x} \sum_{y} x p_{X,Y}(x,y)$$

$$= \sum_{x} x p_{X}(x)$$

$$= E[X]$$

Summary

$$p_{X|A}(x) := \frac{p_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \sum_{x} x p_{X|A}(x).$$

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

$$p_{X|A}(x) := \frac{p_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \sum_{x} x p_{X|A}(x).$$

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

$$f_{X|A}(x) = \frac{f_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \sum_{x} x p_{X|A}(x).$$

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

$$f_{X|A}(x) = \frac{f_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$$

$$p_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) p_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

$$f_{X|A}(x) = \frac{f_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$$

$$f_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) f_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

$$f_{X|A}(x) = \frac{f_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$$

$$f_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) f_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$$

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$$

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

$$E[X] = \sum_{y} p_{Y}(y) E[X|Y = y]$$

$$f_{X|A}(x) = \frac{f_X(x)}{P(A)}$$
 if $x \in A$.

$$E[X/A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$$

$$f_X(x) = \sum_{i=1}^n \mathbb{P}(A_i) f_{X|A_i}(x)$$

$$E[X] = \sum_{i=1}^n \mathbb{P}(A_i) E[X|A_i]$$

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$$

$$f_X(x) = \int_y f_{X|Y}(x|y) f_Y(y) dy$$

$$E[X|Y = y] = \int_x x f_{X|Y}(x|y) dx$$

$$E[X] = \int_{y} E[X|Y = y] f_{Y}(y) dy$$

Conditional expectation E[X|Y]

Recall that

$$E[X|Y=y] := \sum_{x} x p_{X|Y}(x|y)$$

- ightharpoonup E[X|Y=y] is a constant given y.
- ightharpoonup g(y) := E[X|Y=y] is a function of y.
- Now consider the random variable E[X|Y].
- When Y takes the value y, (this happens with probability $p_Y(y)$) E[X|Y] takes the value E[X|Y=y].
- ightharpoonup E[X|Y] is a function of Y, say g(Y).
- ▶ What is the expectation of E[X|Y]?

Conditional expectation E[X|Y]

- ▶ What is E[g(Y)] = E[E[X|Y]]?
- ► $E[g(Y)] = \sum_{y} g(y)p_{Y}(y) = \sum_{y} E[X|Y=y]p_{Y}(y)$.
- ▶ This implies E[g(Y)] = E[E[X|Y]] = E[X]. This is the law of iterated expectation.

$$E[E[X|Y]] = E[X]$$

Conditional expectation E[X|Y] – Example

- Now consider an exponential random variable X with a random parameter Y.
- ▶ What is E[X]?
- $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]p_{Y}(y)$
- ▶ We have $X \sim Exp(\lambda_1)$ with probability p when $Y = \lambda_1$.
- ▶ Similarly $X \sim \textit{Exp}(\lambda_2)$ with probability 1 p when $Y = \lambda_2$.
- $\blacktriangleright E[X|Y=\lambda_i]=\tfrac{1}{\lambda_i}$
- $\blacktriangleright E[X] = \frac{p}{\lambda_1} + \frac{1-p}{\lambda_2}.$

Conditional expectation E[X|Y] – Example 2

- ▶ Consider $Y = X_1 + X_2 + ... X_N$ where N is a positive integer valued r.v. with PMF $p_N(\cdot)$ and $X_i's$ are independent and identically distributed (i.i.d) with mean E[X].
- ▶ What is E[Y]? Use E[Y] = E[E[Y|N]].
- ▶ What is E[Y|N=n]?
- \triangleright $E[Y|N=n] = E[X_1 + X_2 + ... X_n] = nE[X].$
- ▶ This implies E[Y|N] = NE[X].
- Now E[Y] = E[E[Y|N]] = E[NE[X]] = E[X]E[N].
- ▶ What is Var(Y)? (section 4.5)