Laboratorio - Esercizio con SFC

Benedetta Vitale ed Emilio Meroni

12 maggio 2024

Indice

1	Itroduzione	1			
2	2.2 Stati del Sistema	2 3 3			
3	Assunzioni				
4	4 Problematiche				
5	Programma				

1 Itroduzione

Il sistema per cui abbiamo fatto lo schema di controllo tramite SFC, gestisce il carico e lo scarico delle bottiglie su dei pallet [figura: 1].

Figura 1: Schema di funzionamento

Si hanno due zone principali (carico e scarico), collegate da un nastro trasportatore. Quella a destra, serve per caricare automaticamente 10 bottiglie su un pallet, le quali vengono contate da una fotocellula. Quella a sinistra, invece, serve per lo scarico del pallet, da parte di un operatore.

Al momento che il pallet è scarico, rilevato da un sensore, e l'operatore clicca il pulsante START, il pallet torna verso la zona di carico ricominciando il ciclo di lavoro.

2 Definizione Variabili

In questa sezione definiamo e spieghiamo le diverse variabili che abbiamo utilizzato, in particolare le raggruppiamo per:

- Input e Output
- Stati
- Valori e Costanti

2.1 Input e Output

Di seguito presentiamo la tabella [2.1] contenente tutti gli input e output che abbiamo utilizzato:

Nome	Tipologia	Descrizione
RM	Output	Motore nastro trasportatore verso destra
LM	Output	Motore nastro trasportatore verso sinistra
MAI	Output	Allarme che indica la manutenzione
CELL	Input	Fotocellula che rileva il passaggio delle bottiglie
RS	Input	Sensore di fine corsa destro
LS	Input	Sensore di fine corsa sinistro
ES	Input	Sensore che rileva se il pallet è vuoto (ES=1)
start	Input	Pulsante per avviare il nastro trasportatore verso destra
MAIR	Input	Pulsante per il reset della manutenzione

2.2 Stati del Sistema

Nome	Descrizione
inizio	Stato iniziale, il quale viene eseguito solo all'avvio della macchina
attesaBottiglia	Stato nel quale siamo in attesa del passaggio di una bottiglia
conta	Incremento di 1 il contatore delle bottiglie
attesaSicurezza	Stato che garantisce i 5 secondi, per motivi di sicurezza
vaASinistra	Stato in cui il nastro trasportatore si muove verso sinistra
scarico	Momento in cui l'operatore sta scaricando il pallet
vaADestra	Stato in cui il nastro trasportatore si muove verso destra
manutenzione	Stato di manutenzione

2.3 Altre Variabili

Nome	Tipo	Descrizione
X	USINT	Contatore delle bottiglie per il carico del pallet
botPerMan	USINT	Contatore per la manutenzione

3 Assunzioni

Abbiamo deciso di creare uno stato iniziale, chiamato inizio, dove si entra solo una volta, all'accesione della macchina. Serve per assicurarsi che il pallet sia a destra inizialmente, infatti la transizione viene regolata da RS (fotocellula presenza pallet destra); in uscita dallo stato inizio abbiamo aggiunto il reset delle variabili: $x \in botPerMan$.

Dato che, nel testo non era specificato quando inserire la manutenzione, abbiamo deciso di inserirla durante il conteggio delle bottiglie; quindi il blocco del pulsante *start* viene fatto in modo implicito.

4 Problematiche

 $\label{problematica} \mbox{Durante lo svolgimento abbiamo affrontato qualche problematica, in particolare:}$

1. Nella transizione "attesaSicurezza.t>=T#5s", ci dava un errore, dicendo che attesaSicurezza doveva essere dichiarata come variabile, ma è uno

- stato. Di conseguenza abbiamo capito che il problema era che: lo stato non aveva nessuna azione da eseguire; perciò abbiamo dovuto inserire la variabile: "nonFaNulla", che non fa nulla.
- 2. Durante il debugging abbiamo notato che se x=10 e, nello stesso momento botPerMan=25, il programma andava in attesaSicurezza e non in manutenzione; perciò abbiamo inserito nella transizione anche: "AND botPerMan<25" (che abbiamo anche applicato alla transizione che da conta porta in attesaBottiglia).
- 3. Infine, abbiamo separato le 2 casistiche in cui siamo in manutenzione:
 - x < 10: in questo caso, quando la manutenzione finisce (a seguito della pressione di MAIR), ritorniamo ad attendere una nuova bottiglia.
 - $x \ge 10$ (che saranno ogni n cicli, dove n è multiplo di 6): in questo caso, essendo già dieci le bottiglie, finita la manutenzione, andremo in attesaSicurezza.

5 Programma

Di seguito presentiamo il nostro programma SFC

Project: ExeBonusSFC Cyclic.sfc

Sequential Function Chart - Cyclic : C:\projects\ExeBonusSFC\Logical\Program\Cyclic.sfc

