Università di Napoli Federico II – Scuola Politecnica e delle Scienze di Base Corso di Laurea Magistrale in Ingegneria Informatica

Corso di Algoritmi e Strutture Dati

- La programmazione dinamica è un approccio che si può utilizzare in diversi casi per risolvere efficientemente un problema di ottimizzazione
 - Diverse soluzioni possibili per un problema
 - Ogni soluzione ha un costo, il problema è trovare *una* soluzione con il costo minimo o massimo
- Come divide-et-impera, la programmazione dinamica risolve un problema combinando le soluzioni di sottoproblemi
- Diversamente da divide-et-impera, la programmazione dinamica si applica anche quando i sottoproblemi non sono indipendenti
- La programmazione dinamica risolve i problemi in comune una sola volta, divide-et-impera più volte

- Un algoritmo di programmazione dinamica può essere sviluppato seguendo quattro passi
 - 1. Caratterizzazione della struttura di una soluzione ottima
 - 2. Definizione ricorsiva del valore di una soluzione ottima
 - Calcolo del valore di una soluzione ottima in modo bottom-up
 - 4. Costruzione di una soluzione ottima dalle informazioni calcolate
- L'ultimo passo non è necessario se è richiesto solo il valore ottimo e non una soluzione ottima

- Uno chassis deve attraversare n stazioni (su una qualunque delle due linee)
- I tempi di stazionamento sono a_{i,j}, quelli di trasferimento t_{i,j}
- Determinare un "percorso" che richiede il tempo minimo

- Il percorso più veloce è evidenziato
- Dato il percorso, calcolarne il tempo richiede Θ(n)
- Ma ci sono 2ⁿ possibili percorsi
- L'approccio forza bruta non è fattibile

Struttura di una soluzione ottima

- Consideriamo il percorso più veloce fino alla stazione S_{1,j}
 - j>1, altrimenti è banale (si entra nella linea 1)
 - Lo chassis potrebbe provenire:
 - da S_{1,j-1}
 - Lo chassis deve aver preso il percorso più veloce fino a S_{1,j-1}
 - da S_{2,j-1} e poi trasferito su linea 1
 - Lo chassis deve aver preso il percorso più veloce fino a S_{2,j-1}
- In ogni caso, la soluzione ottima di un problema contiene al suo interno la soluzione ottima di un sottoproblema
- . Il percorso più veloce fino a $S_{1,j}$ è dato da
 - Percorso più veloce fino a $S_{1,j-1}$ e poi direttamente a $S_{1,j}$, oppure
 - Percorso più veloce fino a S_{2,j-1} e poi trasferimento a S_{1,j}

Definizione ricorsiva del valore ottimo

- Si definisce il valore di una soluzione ottima in maniera ricorsiva in funzione delle soluzioni ottime dei sottoproblemi
- Sia f* il tempo minimo di completamento e f_i[j] il tempo minimo per arrivare all'uscita della stazione S_{i,i}

Definizione ricorsiva del valore ottimo

Definizione ricorsiva del valore ottimo

Si ottengono le seguenti equazioni ricorsive:

$$\begin{array}{ll} \cdot & \\ \cdot & \\ \cdot & \\ \cdot & \\ \end{array} \begin{array}{ll} e_1 + a_{1,1} & \text{se } j = 1 \\ \\ \cdot & \\ \end{array} \begin{array}{ll} \text{min } (f_1[j-1] + a_{1,j} \,,\, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{se } j \geq 2 \\ \\ \cdot & \\ \cdot &$$

- Per costruire il percorso più veloce, teniamo traccia di:
 - $l_i[j]$ la linea (1 o 2) su cui si trova la stazione (j-1) che precede $S_{i,j}$ lungo il percorso più veloce verso $S_{i,j}$
 - l* la linea su cui si trova la stazione n nel percorso più veloce

Usando l* e l¡[j] si riesce a tracciare il percorso più veloce

Calcolo del valore ottimo

- Sfruttando le equazioni ricorsive ricavate, potremmo scrivere un algoritmo ricorsivo
- Avrebbe un tempo di esecuzione esponenziale!
 - Sia r_i(j) il numero di chiamate ricorsive per calcolare f_i[j]
 - $r_1(n) = r_2(n) = 1$
 - $r_1(j) = r_2(j) = r_1(j+1) + r_2(j+1)$ per j=1,2,...,n-1
 - Con il metodo di sostituzione si verifica che $r_i(j) = 2^{n-j}$
 - f₁[1] viene chiamata 2ⁿ⁻¹ volte!
- Si vede che il numero totale di chiamate ricorsive è Θ(2ⁿ)
- Calcolando invece f₁[j] e f₂[j] a partire da j=1 riusciamo ad ottenere un tempo di esecuzione Θ(n)

Usando l* e l_i[j] si riesce a tracciare il percorso più veloce

Pseudo-codice


```
Fastest-Way (a,t,e,x,n)
f_1[1] \leftarrow e_1 + a_{1,1}
f_2[1] \leftarrow e_2 + a_{2,1}
for j \leftarrow 2 to n
do if f_1[j-1] \le f_2[j-1] + t_{2,j-1}
      then f_1[j] \leftarrow f_1[j-1] + a_{1,i}
            l_1[j] \leftarrow 1
      else f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}
            l_1 \lceil i \rceil \leftarrow 2
if f_2[j-1] \le f_1[j-1] + t_{1,j-1}
      then f_2[j] \leftarrow f_2[j-1] + a_{2,i}
            l_2[j] \leftarrow 2
      else f_2[j] \leftarrow f_1[j-1] + t_{1,i-1} + a_{2,i}
            l_{2}[i] \leftarrow 1
if f_1[n]+x_1 \le f_2[n]+x_2
then f* = f_1[n] + x_1
     1* ← 1
else f* = f_2[n]+x_2
      1* ← 2
```

Il tempo di esecuzione è Θ(n)

Pseudo-codice

Procedura per stampare la lista di stazioni attraversate dal percorso più breve (in ordine inverso)

```
Print-Stations (1,n) i \leftarrow 1* print "line " i ", station " n for j \leftarrow n downto 2 do i \leftarrow l_i[j] print "line " i ", station " j-1
```


- È conveniente utilizzare la programmazione dinamica quando
 - Il problema esibisce una "sottostruttura" ottima
 - Si presentano sottoproblemi "sovrapposti"

Sottostruttura ottima

- Il problema esibisce una sottostruttura ottima quando una soluzione ottima del problema contiene al suo interno soluzioni ottime di sottoproblemi
- Questo è un segno che l'approccio della programmazione dinamica può essere impiegato
 - Ma si potrebbero impiegare anche divide-et-impera e approccio greedy
- La sottostruttura ottima varia da problema a problema in termini
 - del numero di sottoproblemi presenti nella soluzione ottima del problema originario (1 nel nostro esempio)
 - del numero di scelte che si hanno nel determinare quale/i sottoproblema/i è presente nella soluzione ottima (2 nel nostro esempio)

Sottostruttura ottima

- Il tempo di esecuzione di un algoritmo di programmazione dinamica è tipicamente il prodotto di due fattori:
 - Numero complessivo di sottoproblemi
 - Numero di sottoproblemi tra cui scegliere per ottenere la soluzione al problema originario
- La programmazione dinamica utilizza un approccio bottom-up
 - Gli algoritmi greedy un approccio top-down

Sottoproblemi sovrapposti

- È conveniente utilizzare la programmazione dinamica quando un algoritmo ricorsivo invocherebbe più volte uno stesso sottoproblema
 - Se ciò non accade, l'approccio divide-et-impera è adeguato
- La programmazione dinamica risolve ogni sottoproblema una sola volta e utilizza il valore calcolato quando si ripresenta lo stesso sottoproblema nell'approccio bottom-up