Domain Adaptation and Transfer Learning in NLP

Krishnapriya V ____

The need for DA

- Part of speech tagging
- Trained on: WSJ
- Tested on: Other domains

Blitzer et al, 2006

Ruder et al, 2018

	Target domains test sets					Avg on	
Model	Answers	Emails	Newsgroups	Reviews	Weblogs	targets	WSJ
TnT*	89.36	87.38	90.85	89.67	91.37	89.73	96.57
Stanford*	89.74	87.77	91.25	90.30	92.32	90.28	97.43
Src (+glove)	90.43 ±.13	87.95 ±.18	$91.83 \pm .20$	$90.04 \pm .11$	92.44 ±.14	$90.54 \pm .15$	97.50 ±.03
Tri	91.21 \pm .06	$88.30 \pm .19$	92.18 \pm .19	$90.06 \pm .10$	92.85 \pm .02	$90.92 \pm .11$	$97.45 \pm .03$
Asym	$90.62 \pm .26$	$87.71 \pm .07$	$91.40 \pm .05$	$89.89 \pm .22$	$92.37 \pm .27$	$90.39 \pm .17$	$97.19 \pm .03$
MT-Tri	$90.53 \pm .15$	$87.90 \pm .07$	$91.45 \pm .19$	$89.77 \pm .26$	$92.35 \pm .09$	$90.40 \pm .15$	$97.37 \pm .07$
FLORS*	91.17	88.67	92.41	92.25	93.14	91.53	97.11

- Models assume train data and test data are from the same distribution
- Consider a discriminative model
- Model family: $P(Y|X, \theta)$
- Find:

$$argmax_{\theta} \int_{\chi} \sum_{\gamma} p(x, y) log p(y|x; \theta) dx$$

- We don't know p(x,y)
- Approximate it with observed p'(x,y)
- Problems when this observed data is not representative of real world p_t(x,y)

Notations

- Domain : (\chi, P(X))
- Task: $(\gamma, P(y|x))$

-

- Different domains -
 - P(X) domain adaptation
 - X multilingual setting

-

- Different tasks -
 - P(Y|X) class imbalance
 - P(Y) Multitask learning

From (Pan and Yang, 2010): A Survey on Transfer Learning

Fig. 1. Different Learning Processes between Traditional Machine Learning and Transfer Learning

Main approaches

- Feature representation
 - SCL, EasyAdapt, distributional representations
 - Finding common features/feature space
- Prior based
 - Bayesian models
 - Regularisation
- Instance based methods
 - Weight instances to make distributions similar
 - Instance selection, weighting, ruder et al

Feature representation

- Identifying common informative features
- Transforming the feature spaces of both source and target into a latent space
- Daume et al, EasyAdapt
- Structural correspondence learning (SCL)
- Distributed representations
 - Currently in focus.
- Neural SCL
- Stacked Denoising Autoencoder based methods SDA, mSDA

Prior based methods

- Explicit P(y) term in generative models
- Regularisation in discriminative models
- Pereira
- Hierarchical
- Regularisation in NN
- Highly model dependant

Instance based methods

- Select and/or weight instances to make P(y|x) or P(x) in both domains similar
- Connected to semi-supervised learning methods
- Preventing negative transfer important
- Ruder et al, 2018 Showed classic tri-training beat most methods in PoS tagging under domain shift.

Recent (neural) methods

- Domain independent representations
- Language Modeling as a proxy task
- Fine tuning
- Neural adaptations of previous methods
- Concept of pivot and non-pivot features has been highly influential
- Autoencoder-based methods
- Domain adversarial training

NLP Tasks

- Most work has focussed on sentiment analysis for different domains
- (Blitzer et al) Amazon reviews dataset with 4 domains -
 - 12 adaptation tasks
 - Transfer across these domains is uneven
- PoS tagging
 - SANCL 2012 workshop WSJ, Weblogs, Emails etc
 - Tweets
- Word Sense Disambiguation WSJ to Medical data
- Named Entity Recognition
- Parsing etc...

Related

- Multitask learning
- Transfer learning
- Semi-supervised learning
- Few-shot learning

Lot of work (and success) in computer vision tasks.

(Recent literature for NLP is very scattered - no comprehensive evaluation of all these different methods under domain shift.)

Thanks!