MA 101 (Mathematics-I)

Subhamay Saha and Ayon Ganguly Department of Mathematics IIT Guwahati

Improper Integrals

(a) Type I: The interval of integration is infinite.

Example:
$$\int_1^\infty \frac{1}{x^2} dx$$
, $\int_{-\infty}^0 x^2 dx$

Improper Integrals

(a) Type I: The interval of integration is infinite.

Example:
$$\int_1^\infty \frac{1}{x^2} dx$$
, $\int_{-\infty}^0 x^2 dx$

(b) Type II: The integrand is unbounded in the (finite) interval of integration.

Example:
$$\int_{-1}^{1} \frac{1}{x^2} dx$$

Improper Integrals

(a) Type I: The interval of integration is infinite.

Example:
$$\int_1^\infty \frac{1}{x^2} dx$$
, $\int_{-\infty}^0 x^2 dx$

(b) Type II: The integrand is unbounded in the (finite) interval of integration.

Example:
$$\int_{-1}^{1} \frac{1}{x^2} dx$$

(c) Combination of Type I and Type II is possible.

Example:
$$\int_1^\infty \frac{1}{x^2-4} dx$$

Convergence of Type I improper integrals: Let $f:[a,\infty)\to\mathbb{R}$ be such that $f\in\mathcal{R}[a,x]$ for all x>a. If $\lim_{x\to\infty}\int\limits_a^x f(t)\,dt$ exists in \mathbb{R} , then $\int\limits_a^\infty f(t)\,dt$ is said to be convergent and

$$\int_{a}^{\infty} f(t) dt := \lim_{x \to \infty} \int_{a}^{x} f(t) dt.$$

Convergence of Type I improper integrals: Let $f:[a,\infty)\to\mathbb{R}$ be such that $f\in\mathcal{R}[a,x]$ for all x>a. If $\lim_{x\to\infty}\int\limits_a^x f(t)\,dt$ exists

in \mathbb{R} , then $\int_{a}^{\infty} f(t) dt$ is said to be convergent and

$$\int_{a}^{\infty} f(t) dt := \lim_{x \to \infty} \int_{a}^{x} f(t) dt.$$

Otherwise, $\int_{a}^{\infty} f(t) dt$ is said to be divergent.

Convergence of Type I improper integrals: Let $f:[a,\infty) \to \mathbb{R}$

be such that $f \in \mathcal{R}[a,x]$ for all x > a. If $\lim_{x \to \infty} \int_a^x f(t) dt$ exists

in \mathbb{R} , then $\int_{a}^{\infty} f(t) dt$ is said to be convergent and

$$\int_{a}^{\infty} f(t) dt := \lim_{x \to \infty} \int_{a}^{x} f(t) dt.$$

Otherwise, $\int_{a}^{\infty} f(t) dt$ is said to be divergent.

Similarly, we define convergence of $\int_{-\infty}^{b} f(t) dt$.

Solution: For all x > 1, we have $\int_{1}^{x} \frac{1}{t^{p}} dt = \frac{1}{1-p}(x^{1-p}-1)$ if $p \neq 1$ and $\int_{1}^{x} \frac{1}{t} dt = \log x$.

Solution: For all x > 1, we have $\int_{1}^{x} \frac{1}{t^{p}} dt = \frac{1}{1-p}(x^{1-p}-1)$ if $p \neq 1$ and $\int_{1}^{x} \frac{1}{t} dt = \log x$.

Hence
$$\lim_{x \to \infty} \int\limits_{1}^{x} \frac{1}{t^{p}} \, dt = \frac{1}{1-p} \text{ if } p > 1$$

and
$$\lim_{x\to\infty}\int\limits_1^x\frac{1}{t^p}\,dt=\infty$$
 if $p\leq 1$.

Solution: For all x > 1, we have $\int_{1}^{x} \frac{1}{t^{p}} dt = \frac{1}{1-p}(x^{1-p}-1)$ if $p \neq 1$ and $\int_{1}^{x} \frac{1}{t} dt = \log x$.

Hence
$$\lim_{x\to\infty}\int\limits_1^x\frac{1}{t^p}\,dt=\frac{1}{1-p}$$
 if $p>1$

and $\lim_{x\to\infty}\int\limits_1^x\frac{1}{t^p}\,dt=\infty$ if $p\leq 1$.

Example: The improper integral $\int_{0}^{\infty} \frac{1}{1+t^2} dt$ converges.

Solution: For all x > 1, we have $\int_{1}^{x} \frac{1}{t^{p}} dt = \frac{1}{1-p}(x^{1-p}-1)$ if $p \neq 1$ and $\int_{1}^{x} \frac{1}{t} dt = \log x$.

Hence
$$\lim_{x\to\infty}\int\limits_{1}^{x}\frac{1}{t^{p}}\,dt=\frac{1}{1-p}$$
 if $p>1$

and $\lim_{x\to\infty}\int\limits_1^x\frac{1}{t^p}\,dt=\infty$ if $p\leq 1$.

Example: The improper integral $\int_{0}^{\infty} \frac{1}{1+t^2} dt$ converges.

Solution:
$$\int_{0}^{\infty} \frac{1}{1+t^2} dt = \lim_{x \to \infty} \int_{0}^{x} \frac{1}{1+t^2} dt = \lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}.$$

Theorem (Comparison test)

Suppose that $f,g:[a,\infty)\to\mathbb{R}$ are such that $f,g\in\mathcal{R}[a,x]$ for every x>a and $0\leq f\leq g$. If $\int\limits_a^\infty g(t)\,dt$ converges, then $\int\limits_a^\infty f(t)\,dt$ converges.

Theorem (Comparison test)

Suppose that $f,g:[a,\infty)\to\mathbb{R}$ are such that $f,g\in\mathcal{R}[a,x]$ for every x>a and $0\leq f\leq g$. If $\int\limits_a^\infty g(t)\,dt$ converges, then $\int\limits_a^\infty f(t)\,dt$ converges.

Example: The improper integral $\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$ converges.

Theorem (Comparison test)

Suppose that $f,g:[a,\infty)\to\mathbb{R}$ are such that $f,g\in\mathcal{R}[a,x]$ for every x>a and $0\leq f\leq g$. If $\int\limits_a^\infty g(t)\,dt$ converges, then $\int\limits_a^\infty f(t)\,dt$ converges.

Example: The improper integral $\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$ converges.

Solution: Since $0 \le \frac{\sin^2 t}{t^2} \le \frac{1}{t^2}$ for all $t \ge 1$ and since $\int\limits_1^\infty \frac{1}{t^2} dt$ converges, by the comparison test, $\int\limits_1^\infty \frac{\sin^2 t}{t^2} dt$ converges.

Theorem (Dirichlet's test)

Let $f,g:[a,\infty)\to\mathbb{R}$ be such that

- **a** f is decreasing and $\lim_{t\to\infty} f(t) = 0$, and
- **6** g is continuous and there exists M > 0 such that $\begin{vmatrix} x \\ y \end{vmatrix}$

$$\left|\int\limits_{a}^{x}g(t)\,dt\right|\leq M \ ext{for all } x\geq a.$$

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges.

Theorem (Dirichlet's test)

Let $f, g : [a, \infty) \to \mathbb{R}$ be such that

- a f is decreasing and $\lim_{t\to\infty} f(t) = 0$, and
- **6** g is continuous and there exists M > 0 such that $\left|\int\limits_{t}^{x}g(t)\,dt\right|\leq M$ for all $x\geq a$.

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges. Example: The improper integral $\int_{1}^{\infty} \frac{\sin t}{t} dt$ converges.

Theorem (Dirichlet's test)

Let $f, g : [a, \infty) \to \mathbb{R}$ be such that

- a f is decreasing and $\lim_{t\to\infty} f(t) = 0$, and
- **6** g is continuous and there exists M > 0 such that $\left|\int\limits_{-\infty}^{x}g(t)\,dt\right|\leq M$ for all $x\geq a$.

Then $\int_{a}^{\infty} f(t)g(t) dt$ converges. Example: The improper integral $\int_{1}^{\infty} \frac{\sin t}{t} dt$ converges.

Solution: Let $f(t) = \frac{1}{t}$ and $g(t) \stackrel{1}{=} \sin t$ for all $t \ge 1$. Then $f: [1, \infty) \to \mathbb{R}$ is decreasing and $\lim_{t \to \infty} f(t) = 0$. For $x \ge 1$,

$$\left|\int\limits_{1}^{x}g(t)\,dt\right|=|\cos 1-\cos x|\leq |\cos 1|+|\cos x|\leq 2. \text{ Hence}$$

by Dirichlet's test, $\int_{-\infty}^{\infty} f(t)g(t) dt$ converges.

Example: The integral $\int_1^\infty \frac{\sin x}{x} dx$ does not converge absolutely.

Result: If $\int_{a}^{\infty} |f(t)| dt$ converges, then $\int_{a}^{\infty} f(t) dt$ also converges.

Example: The integral $\int_1^\infty \frac{\sin x}{x} dx$ does not converge absolutely.

Solution:

$$\int_{1}^{\infty} \frac{|\sin x|}{x} dx \ge \int_{\pi}^{\infty} \frac{|\sin x|}{x} dx = \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{n=1}^{\infty} \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin x| dx = \sum_{n=2}^{\infty} \frac{1}{n\pi} \int_{0}^{\pi} \sin x \, dx = \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{1}{n}.$$

Result: If $\int_{a}^{\infty} |f(t)| dt$ converges, then $\int_{a}^{\infty} f(t) dt$ also converges.

Example: The integral $\int_1^\infty \frac{\sin x}{x} dx$ does not converge absolutely.

Solution:

$$\int_{1}^{\infty} \frac{|\sin x|}{x} dx \ge \int_{\pi}^{\infty} \frac{|\sin x|}{x} dx = \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{n=1}^{\infty} \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin x| dx = \sum_{n=2}^{\infty} \frac{1}{n\pi} \int_{0}^{\pi} \sin x \, dx = \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{1}{n}.$$

Result: If $\int_{a}^{\infty} |f(t)| dt$ converges, then $\int_{a}^{\infty} f(t) dt$ also converges.

Example: The integral $\int_1^\infty \frac{\sin x}{x} dx$ does not converge absolutely.

Solution:

$$\int_{1}^{\infty} \frac{|\sin x|}{x} dx \ge \int_{\pi}^{\infty} \frac{|\sin x|}{x} dx = \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{n=1}^{\infty} \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin x| dx = \sum_{n=2}^{\infty} \frac{1}{n\pi} \int_{0}^{\pi} \sin x \, dx = \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{1}{n}.$$

Hence $\int_{1}^{\infty} \frac{|\sin x|}{x} dx$ does not converge.

Improper integrals of Type-II: Let f(x) be defined on [a,b) and $f \in \mathcal{R}[a,b-\varepsilon]$ for all $\varepsilon > 0$. Then we define

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0+} \int_{a}^{b-\varepsilon} f(x)dx.$$

 $\int_a^b f(x)dx$ is said to converge if the limit exists in \mathbb{R} .

Improper integrals of Type-II: Let f(x) be defined on [a,b) and $f \in \mathcal{R}[a,b-\varepsilon]$ for all $\varepsilon > 0$. Then we define

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0+} \int_{a}^{b-\varepsilon} f(x)dx.$$

 $\int_a^b f(x)dx$ is said to converge if the limit exists in \mathbb{R} .

Let f(x) be defined on (a, b] and $f \in \mathcal{R}[a + \varepsilon, b]$ for all $\varepsilon > 0$. Then we define

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0+} \int_{a+\varepsilon}^{b} f(x)dx.$$

Solution: $\int_0^{\infty} \frac{1}{t^p} dt$ exists (in \mathbb{R}) as a Riemann integral if $p \leq 0$.

So let
$$p>0$$
. Then for $0< x<1$, we have
$$\int\limits_{x}^{1}\frac{1}{t^{p}}\,dt=\frac{1}{1-p}(1-x^{1-p}) \text{ if } p\neq 1 \text{ and } \int\limits_{x}^{1}\frac{1}{t}\,dt=-\log x.$$
 Hence $\lim\limits_{x\to 0+}\int\limits_{x}^{1}\frac{1}{t^{p}}\,dt=\frac{1}{1-p} \text{ if } p<1 \text{ and } \lim\limits_{x\to 0+}\int\limits_{x}^{1}\frac{1}{t^{p}}\,dt=\infty \text{ if }$

Hence
$$\lim_{x o 0+}\int\limits_x^1rac{1}{t^p}\,dt=rac{1}{1-p}$$
 if $p<1$ and $\lim_{x o 0+}\int\limits_x^1rac{1}{t^p}\,dt=\infty$ in

$$p \geq 1$$
. Therefore $\int\limits_0^1 \frac{1}{t^p} \, dt$ converges iff $p < 1$.

Theorem (Comparison test for Type-II)

Suppose that $f,g:[a,b)\to\mathbb{R}$ are such that

$$f,g\in\mathcal{R}[a,b-arepsilon]$$
 for every $arepsilon>0$ and $0\leq f\leq g$. If $\int\limits_a^bg(t)\,dt$

converges, then $\int_{a}^{b} f(t) dt$ converges.

Example:
$$\int_0^\infty \frac{1}{x^2} dx = \int_0^1 \frac{1}{x^2} dx + \int_1^\infty \frac{1}{x^2} dx$$
 diverges

Example:
$$\int_0^\infty \frac{1}{x^2} dx = \int_0^1 \frac{1}{x^2} dx + \int_1^\infty \frac{1}{x^2} dx$$
 diverges

Suppose $f: \mathbb{R} \to \mathbb{R}$ is Riemann integrable over any finite interval [a,b]. To integrate over the unbounded interval $(-\infty,\infty)$, we pick any real number c and consider the improper integrals $\int_{-\infty}^{c} f(x)dx$ and $\int_{c}^{\infty} f(x)dx$.

Example:
$$\int_0^\infty \frac{1}{x^2} dx = \int_0^1 \frac{1}{x^2} dx + \int_1^\infty \frac{1}{x^2} dx$$
 diverges

Suppose $f: \mathbb{R} \to \mathbb{R}$ is Riemann integrable over any finite interval [a,b]. To integrate over the unbounded interval $(-\infty,\infty)$, we pick any real number c and consider the improper integrals $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$.

If both exist, we say that the improper integral $\int_{-\infty}^{\infty} f(x)dx$ exists and define its value by

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx.$$

Remark: The above definition does not depend on c.