Lecture Summary: Evaluation of Maximum Likelihood Estimators (MLE)

Lecture: 9.7 - Evaluation of Maximum Likelihood Estimators (MLE)

Source: Lec8.7.pdf

Key Points

• MLE for Poisson Distribution:

- PMF of Poisson:

$$f_X(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x \in \{0, 1, 2, \dots\}.$$

- Likelihood for n samples:

$$L(\lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}.$$

- Simplification (ignoring constants not dependent on λ):

$$L(\lambda) \propto e^{-n\lambda} \lambda^{\sum_{i=1}^{n} x_i}.$$

- Log-likelihood:

$$\log L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} x_i\right) \log \lambda.$$

– MLE for λ :

$$\hat{\lambda}_{\text{MLE}} = \frac{\sum_{i=1}^{n} x_i}{n},$$

which matches the sample mean and also agrees with the Method of Moments Estimator (MME).

• MLE for Normal Distribution:

- PDF of Normal:

$$f_X(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

- Likelihood for n samples:

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}.$$

- Log-likelihood (ignoring constants):

$$\log L(\mu, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$

– MLE for μ :

$$\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}.$$

– MLE for σ^2 :

$$\hat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2,$$

which differs slightly from the sample variance formula (division by n-1).

- General Observations on MLE:
 - Advantages:
 - * Provides estimators that maximize the likelihood of observed data.
 - * Often agrees with MME for common distributions (e.g., Poisson, Normal).
 - * Consistent and asymptotically normal.
 - Challenges:
 - * Requires knowledge of the underlying distribution.
 - * Involves calculus (differentiation and solving equations) which can be non-trivial for complex models.

Simplified Explanation

Key Idea: MLE finds parameter values that make the observed data most likely, using the likelihood function.

Examples: - For Poisson, $\hat{\lambda} = \text{sample mean.}$ - For Normal, $\hat{\mu} = \text{sample mean, } \hat{\sigma}^2 = \frac{\text{sum of squared deviations}}{n}$. **Insights:** - MLE often aligns with MME but provides a formal likelihood-based foundation. - As sample size grows, MLE becomes more accurate and reliable.

Conclusion

In this lecture, we:

- Applied MLE to Poisson and Normal distributions.
- Discussed the recipe for deriving MLE, including simplifications and maximization steps.
- Highlighted the similarities and differences between MLE and MME.

MLE is a powerful and widely-used method for parameter estimation, balancing theoretical rigor with practical applicability.