week09

October 27, 2024

1 STOR 320 Introduction to Data Science

1.1 LINEAR REGRESSION IN PYTHON

This lecture is comprised of two main parts. We will see two ways of running Multiple Linear Regression: - 1. MLR with only numerical variables - 2. MLR with numerical + categorical variables

We will use the Linear Regression package from the statsmodels library. This library includes a variety of functions that are helpful for data exploration and statiscal models, its documentation can be found here: https://www.statsmodels.org/stable/index.html.

In the terminal, type the following commands to install statsmodels (change the package name to install other packages): -1. conda install -c conda-forge statsmodels, or -2. pip install statsmodels

More specifically, we will use Linear Regression to predict the quality of the wines as measured by their 'Auction Index'

```
[]: import numpy as np
import pandas as pd
import matplotlib as plt
import statsmodels.formula.api as smf
```

```
[]: wine = pd.read_csv('wine_agg.csv')
wine.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 46 entries, 0 to 45

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Year	46 non-null	int64
1	${\tt LogAuctionIndex}$	46 non-null	float64
2	WinterRain	46 non-null	float64
3	HarvestRain	46 non-null	float64
4	${ t GrowTemp}$	46 non-null	float64
5	${\tt HarvestTemp}$	46 non-null	float64
6	Age	46 non-null	int64
7	FrancePop	46 non-null	float64

8 USAlcConsump 46 non-null float64

dtypes: float64(7), int64(2)

memory usage: 3.4 KB

[]: wine.describe()

[]:		Year	LogAuction	Index	Wint	erRain	${\tt HarvestRain}$	${\tt GrowTemp}$	\
	count	46.000000	46.0	00000	46.	000000	46.000000	46.000000	
	mean	1977.195652	7.1	37596	547.	141304	150.341304	17.294348	
	std	13.889436	0.6	56632	123.	979187	76.963817	0.894670	
	min	1952.000000	5.8	68500	282.	400000	37.200000	15.270000	
	25%	1966.250000	6.6	71825	482.	025000	87.675000	16.650000	
	50%	1977.500000	7.1	50400	529.	300000	126.050000	17.280000	
	75%	1988.750000	7.5	84275	645.	025000	186.525000	17.840000	
	max	2000.000000	8.4	93700	755.	200000	341.600000	19.100000	
		${\tt HarvestTemp}$	Age	Franc	еРор	USAlcC	onsump		
	count	46.000000	46.000000	46.00	0000	46.	000000		
	mean	17.951304	37.804348	52.38	4783	9.	150870		
	std	1.525705	13.889436	4.80	8421	1.	074219		
	min	14.390000	15.000000	42.46	0000	7.	740000		
	25%	16.800000	26.250000	49.25	7500	8.	135000		
	50%	17.845000	37.500000	53.26	5000	9.	055000		
	75%	19.030000	48.750000	56.34	5000	10.	190000		
	max	21.050000	63.000000	59.05	0000	10.	950000		

[]: wine.head(5)

[]:	Year	LogAuctionIndex	WinterRain	HarvestRain	${\tt GrowTemp}$	${\tt HarvestTemp}$	Age	\
0	1952	7.4950	566.4	165.5	17.28	14.39	63	
1	1953	8.0393	653.3	75.6	16.94	17.64	62	
2	1955	7.6858	504.3	129.5	17.30	17.13	60	
3	1957	6.9845	390.8	110.4	16.31	16.47	58	
4	1958	6.7772	538.8	187.0	16.82	19.72	57	

	${\tt FrancePop}$	USAlcConsump
0	42.46	7.85
1	42.75	8.03
2	43.43	7.84
3	44.31	7.77
4	44.79	7.74

^{[]: #} Plot scatter matrix for each pair of variables off diagonal and the histograms (or density plots) on the diagonal

import seaborn as sns

[#] In ggplot2 in R, one can use ggscatmat, which also prints the correlation in the upper triangle.

sns.pairplot(wine.iloc[:,0:9],diag_kind='kde') # try diag_kind='hist' for $\rightarrow histograms$

[]: <seaborn.axisgrid.PairGrid at 0x14bfdb080>

[]: sns.pairplot(wine.iloc[:,1:9],diag_kind='hist')

[]: <seaborn.axisgrid.PairGrid at 0x150ae7e30>

[]: # If you apply .corr() directly to your dataframe, # it will return all pairwise correlations between your columns; wine.corr()

[]:		Year	LogAuctionIndex	WinterRain	HarvestRain	${\tt GrowTemp}$	\
	Year	1.000000	-0.011346	-0.032424	0.128569	0.600924	
	LogAuctionIndex	-0.011346	1.000000	0.058326	-0.525882	0.559727	
	WinterRain	-0.032424	0.058326	1.000000	-0.120258	-0.214181	
	HarvestRain	0.128569	-0.525882	-0.120258	1.000000	0.036437	
	${\tt GrowTemp}$	0.600924	0.559727	-0.214181	0.036437	1.000000	
	${\tt HarvestTemp}$	0.277000	0.469832	-0.046874	-0.410439	0.513076	
	Age	-1.000000	0.011346	0.032424	-0.128569	-0.600924	
	FrancePop	0.986137	-0.076993	-0.045196	0.112394	0.516918	

USAlcConsump	0.131949	-0.271	188 0.00	4174 -0.220185	-0.352116
	${\tt HarvestTemp}$	Age	${ t France Pop}$	${\tt USAlcConsump}$	
Year	0.277000	-1.000000	0.986137	0.131949	
${\tt LogAuctionIndex}$	0.469832	0.011346	-0.076993	-0.271188	
WinterRain	-0.046874	0.032424	-0.045196	0.004174	
HarvestRain	-0.410439	-0.128569	0.112394	-0.220185	
${\tt GrowTemp}$	0.513076	-0.600924	0.516918	-0.352116	
${\tt HarvestTemp}$	1.000000	-0.277000	0.250442	-0.035964	
Age	-0.277000	1.000000	-0.986137	-0.131949	
${ t France Pop }$	0.250442	-0.986137	1.000000	0.269647	
USAlcConsump	-0.035964	-0.131949	0.269647	1.000000	

2 Weekly class activity 1: What do you observe from the correlation table?

Age and Year have a negative correlation score of -1. FrancePop and Year(/Age) also are correlated.

2.1 1. MLR (with only numerical variables)

2.1.1 Dataset train-test splitting

Next, we will split the dataset into a training set and a test set. There are various ways of splitting the dataset, we will first do an example of chronological separation. Eventually we'll cover randomized splitting as well.

We can do chronological splitting sing Boolean predicates.

3 Weekly class activity 2: In the training set, how many wineries are older than 40?

```
[]: count = wine_train[wine_train["Age"] > 40].count()
count.iloc[0]

[]: 20
[]: len(wine_train[wine_train["Age"] > 40])
```

[]: 20

3.0.1 Training the model

We will show two ways of passing the data into the model:

- We can select the columns of interest that will constitute our matrices
- Or we can use syntaxis that follows R-style formulas

3.0.2 1) Training the model (matrix style)

https://www.statsmodels.org/stable/examples/notebooks/generated/ols.html

OLS Regression Results

LogAuctionIndex	R-squared:	0.789
OLS	Adj. R-squared:	0.725
Least Squares	F-statistic:	12.31
Sun, 27 Oct 2024	Prob (F-statistic):	1.86e-06
16:17:32	Log-Likelihood:	-5.0600
31	AIC:	26.12
23	BIC:	37.59
7		
nonrobust		
	OLS Least Squares Sun, 27 Oct 2024 16:17:32 31 23 7	OLS Adj. R-squared: Least Squares F-statistic: Sun, 27 Oct 2024 Prob (F-statistic): 16:17:32 Log-Likelihood: 31 AIC: 23 BIC: 7

		=========			.=======	
CC	oef	std err	t	P> t	[0.025	0.975]

const	-4.9663	9.382	-0.529	0.602	-24.375	14.443
WinterRain	0.0012	0.001	2.108	0.046	2.2e-05	0.002
HarvestRain	-0.0033	0.001	-3.112	0.005	-0.006	-0.001
GrowTemp	0.6583	0.122	5.387	0.000	0.405	0.911

${\tt HarvestTemp}$	0.0044	0.060	0.074	0.942	-0.120	0.129
Age	0.0240	0.051	0.473	0.641	-0.081	0.129
${\tt FrancePop}$	-0.0290	0.137	-0.212	0.834	-0.312	0.254
USAlcConsump	0.1093	0.168	0.651	0.522	-0.238	0.457
===========			=======		========	======
Omnibus:		0.539	Durbin-V	Watson:		2.719
<pre>Prob(Omnibus):</pre>		0.764	Jarque-Bera (JB): 0.6		0.618	
Skew:		0.042	Prob(JB)):		0.734
Kurtosis:		2.313	Cond. No	ο.		9.35e+04
==========			=======		========	======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.35e+04. This might indicate that there are strong multicollinearity or other numerical problems.

3.0.3 Plot the coefficients and the confidence intervals

In R and ggplot2, one can use function ggcoef to create such graph easily. However, there is no simple solution to this task in Python. The code below is a user-defined code credit to Jessica Forrest-Baldini (https://medium.com/analytics-vidhya/create-your-own-coefficient-plot-function-in-python-aadb9fe27a77). It involves some work with Matplotlib. You are encouraged to figure out why the code works.

```
# Get errors; (coef - lower bound of conf interval)
  errors = coef_df['coef'] - coef_df['[0.025']
  # Append errors column to dataframe
  coef_df['errors'] = errors
  # Drop the constant for plotting
  coef_df = coef_df.drop(['const'])
  # Sort values by coef ascending
  coef_df = coef_df.sort_values(by=['coef'])
  ### Plot Coefficients ###
  # x-labels
  variables = list(coef_df.index.values)
  # Add variables column to dataframe
  coef_df['variables'] = variables
  # Set sns plot style back to 'poster'
  # This will make bars wide on plot
  sns.set_context("poster")
  # Define figure, axes, and plot
  fig, ax = plt.subplots(figsize=(8, 5))
  # Error bars for 95% confidence interval
  # Can increase capsize to add whiskers
  coef_df.plot(x='variables', y='coef', kind='bar',
               ax=ax, color='none', fontsize=22,
               ecolor='steelblue',capsize=0,
               yerr='errors', legend=False)
  # Set title & labels
  plt.title('Coefficients of Features w/ 95% Confidence⊔
ax.set_ylabel('Coefficients',fontsize=22)
  ax.set_xlabel('',fontsize=22)
  # Coefficients
  ax.scatter(x=np.arange(coef_df.shape[0]),
             marker='o', s=80,
             y=coef_df['coef'], color='steelblue')
  # Line to define zero on the y-axis
  ax.axhline(y=0, linestyle='--', color='red', linewidth=1)
```

```
return plt.show()
```

[]: coefplot(model1)

Coefficients of Features w/ 95% Confidence Intervals

3.0.4 2) Training the model (using R-style formulas)

https://www.statsmodels.org/stable/example_formulas.html#categorical-variables

One of the main advantages of using this type of notation is the fact that categorical variables are handled automatically.

Furthermore, the constant representing the intercept is generated by default in smf.ols.

For the remaineder of this lab, we will stick with the formula style notation as presented below:

OLS Regression Results

Dep. Variable: LogAuctionIndex R-squared: 0.789

Model:	OLS	Adj. R-squared:	0.725
Method:	Least Squares	F-statistic:	12.31
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	1.86e-06
Time:	16:17:32	Log-Likelihood:	-5.0600
No. Observations:	31	AIC:	26.12
Df Residuals:	23	BIC:	37.59
Df Model:	7		

Covariance Type:

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.9663	9.382	-0.529	0.602	-24.375	14.443
WinterRain	0.0012	0.001	2.108	0.046	2.2e-05	0.002
HarvestRain	-0.0033	0.001	-3.112	0.005	-0.006	-0.001
${ t GrowTemp}$	0.6583	0.122	5.387	0.000	0.405	0.911
${\tt HarvestTemp}$	0.0044	0.060	0.074	0.942	-0.120	0.129
Age	0.0240	0.051	0.473	0.641	-0.081	0.129
FrancePop	-0.0290	0.137	-0.212	0.834	-0.312	0.254
USAlcConsump	0.1093	0.168	0.651	0.522	-0.238	0.457
						=======
Omnibus:		0.539	Durbin-V	√atson:		2.719
<pre>Prob(Omnibus):</pre>		0.764	Jarque-E	Bera (JB):		0.618
Skew:		0.042	Prob(JB)):		0.734
Kurtosis:		2.313	Cond. No	o.		9.35e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly
- [2] The condition number is large, 9.35e+04. This might indicate that there are strong multicollinearity or other numerical problems.

3.0.5 Evaluating the model

If we want to use evaluation metrics that are not contained in the standard package, such as Outof-sample R², we can manipulate our dataframe's columns and take advantage of numpy's matrix operation functions

```
[]: # compute out-of-sample R-squared using the test set
     def OSR2(model, df_train, df_test, dependent_var):
         y_test = df_test[dependent_var]
         y_pred = model.predict(df_test)
         SSE = np.sum((y_test - y_pred)**2)
         SST = np.sum((y_test - np.mean(df_train[dependent_var]))**2)
         return 1 - SSE/SST
```

```
[]: OSR2(model1, wine_train, wine_test, 'LogAuctionIndex')
```

[]: 0.5377506779455627

Question: Since out-of-sample R-squared is the performance on the test set, why do we need training set as one of the inputs in OSR2 function?

It's needed to calculate the SST.

3.0.6 Variance Inflation Factor (VIF) measures multicollinearity

```
[]: WinterRain 1.295370
HarvestRain 1.578682
GrowTemp 1.700079
HarvestTemp 2.198191
Age 66.936256
FrancePop 81.792302
USAlcConsump 10.441217
dtype: float64
```

3.0.7 Refine the model

4 In-class acitivity 3: To remove variables, which should we look at first, VIF or p-value?

Multicollinearity could artificially inflate/deflate p-values, should deal with that first.

VIF(wine_train, cols) # r-squared is the same

OLS Regression Results

===========			==========
Dep. Variable:	${ t LogAuctionIndex}$	R-squared:	0.789
Model:	OLS	Adj. R-squared:	0.736
Method:	Least Squares	F-statistic:	14.95
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	4.60e-07
Time:	16:17:32	Log-Likelihood:	-5.0902
No. Observations:	31	AIC:	24.18
Df Residuals:	24	BIC:	34.22
Df Model:	6		
Covariance Type:	nonrobust		
	coef std err	t P> t	[0.025 0.975]

.036 -13.178	-0.503
.033 0.000	0.002
.003 -0.005	-0.001
.000 0.435	0.899
.972 -0.117	0.121
.068 -0.003	0.071
.532 -0.210	0.397
n:	2.726
(JB):	0.534
	0.766
	3.11e+04
1	.033

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.11e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- []: # remove USAlcConsump

 model3 = smf.ols(formula='LogAuctionIndex ~ WinterRain + HarvestRain + GrowTemp

 →+ HarvestTemp + Age',

 data=wine_train).fit()

```
print(model3.summary())

cols = ['WinterRain', 'HarvestRain', 'GrowTemp', 'HarvestTemp', 'Age']
VIF(wine_train, cols)
```

OLS Regression Results

=======================================			
Dep. Variable:	LogAuctionIndex	R-squared:	0.785
Model:	OLS	Adj. R-squared:	0.743
Method:	Least Squares	F-statistic:	18.30
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	1.21e-07
Time:	16:17:32	Log-Likelihood:	-5.3480
No. Observations:	31	AIC:	22.70
Df Residuals:	25	BIC:	31.30
Df Model:	5		
Covariance Type:	nonrobust		
=======================================	=======================================		=======================================
	coef std err	t P> t	[0.025 0.975]

	coef	std err	t	P> t	[0.025	0.975]
Intercept WinterRain HarvestRain GrowTemp HarvestTemp Age	-5.2152 0.0011 -0.0034 0.6643 -0.0067 0.0235	1.672 0.001 0.001 0.111 0.055 0.006	-3.119 2.202 -3.433 5.981 -0.120 3.820	0.005 0.037 0.002 0.000 0.905 0.001	-8.659 7.24e-05 -0.005 0.436 -0.121 0.011	-1.771 0.002 -0.001 0.893 0.108 0.036
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	1.2 0.5 0.0 2.1	46 Jarque 05 Prob(J	•		2.663 0.897 0.639 1.72e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- []: # remove HarvestTemp

 model4 = smf.ols(formula='LogAuctionIndex ~ WinterRain + HarvestRain + GrowTemp

 →+ Age',

```
data=wine_train).fit()
print(model4.summary())

cols = ['WinterRain', 'HarvestRain', 'GrowTemp', 'Age']
VIF(wine_train, cols)
```

OLS Regression Results

Dep. Variable:	${ t LogAuctionIndex}$	R-squared:	0.785
Model:	OLS	Adj. R-squared:	0.752
Method:	Least Squares	F-statistic:	23.78
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	2.31e-08
Time:	16:17:32	Log-Likelihood:	-5.3569
No. Observations:	31	AIC:	20.71
Df Residuals:	26	BIC:	27.88
Df Model:	4		

Covariance Type: nonrobust

=========	=======			========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-5.2164	1.640	-3.180	0.004	-8.588	-1.845
WinterRain	0.0011	0.000	2.246	0.033	9.43e-05	0.002
HarvestRain	-0.0034	0.001	-3.971	0.001	-0.005	-0.002
${\tt GrowTemp}$	0.6569	0.091	7.255	0.000	0.471	0.843
Age	0.0236	0.006	3.940	0.001	0.011	0.036
Omnibus:		1.208	Durbin	 -Watson:		2.664
Prob(Omnibus)	:	0.547	Jarque	Jarque-Bera (JB):		0.896
Skew:		-0.013	Prob(JB):			0.639
Kurtosis:		2.167	Cond. No.			1.72e+04
=========	=======	==========		=========	-========	=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- []: WinterRain 1.110834 HarvestRain 1.116268 GrowTemp 1.035367 Age 1.029810

dtype: float64

4.0.1 Feature Engineering

```
[]: # Let us add an interaction term of GrowTemp and Age, and test its predictive

power

model5 = smf.ols(formula='LogAuctionIndex ~ WinterRain * HarvestRain + GrowTemp

→+ Age',

data=wine_train).fit()

print(model5.summary())
```

OLS Regression Results

		-=====		=========	======	
Dep. Variable:	LogAuctionInd	dex F	R-squa	red:		0.803
Model:	(OLS A	Adj. R	-squared:		0.763
Method:	Least Squar	res I	-stat	istic:		20.33
Date:	Sun, 27 Oct 20	024 F	Prob (F-statistic):		4.41e-08
Time:	16:17	:32 I	Log-Li	kelihood:		-4.0580
No. Observations:		31 <i>I</i>	AIC:			20.12
Df Residuals:		25 I	BIC:			28.72
Df Model:		5				
Covariance Type:	nonrob	ıst				
========				========		
========	coef	std	orr	t	P> t	[0.025
0.975]	coei	sta	err	C	F/	[0.025
Intercept	-5.9560	1.	. 680	-3.545	0.002	-9.417
-2.496						
WinterRain	0.0025	0.	.001	2.364	0.026	0.000
0.005						
HarvestRain	0.0025	0.	.004	0.618	0.542	-0.006
0.011						
WinterRain:HarvestRa	in -1.006e-05	6.816	e-06	-1.478	0.152	-2.41e-05
3.96e-06						
GrowTemp	0.6486	0 .	.089	7.309	0.000	0.466
0.831						
Age	0.0244	0.	.006	4.159	0.000	0.012
0.037						
Omnibus:				======================================	======	2.374
Prob(Omnibus):				-Bera (JB):		0.613
Skew:	-0.0		Prob(J			0.736
Kurtosis:			Cond.			2.63e+06
=======================================				=========		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 2.63e+06. This might indicate that there are strong multicollinearity or other numerical problems.

4.1 2. MLR (with numerical + categorical variables)

For this part, we will use a second dataset, wine_disagg.csv, which contains additional information related to the Wineries. The Winery variable is a string object, but we can do some transformations that will help us fit it into the continuous model

```
[]: wine_new = pd.read_csv("wine_disagg.csv")
    wine_new_train = wine_new[wine_new['Year'] <= 1985]
    wine_new_test = wine_new[wine_new['Year'] > 1985]

    wine_new.info()
    wine_new.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 147 entries, 0 to 146
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Winery	147 non-null	object
1	Year	147 non-null	int64
2	Age	147 non-null	int64
3	LogAuction	147 non-null	float64
4	WinterRain	147 non-null	float64
5	HarvestRain	147 non-null	float64
6	${\tt GrowTemp}$	147 non-null	float64
7	${\tt HarvestTemp}$	147 non-null	float64
8	FrancePop	147 non-null	float64
9	USAlcConsump	147 non-null	float64
1.	(7)		. (4)

dtypes: float64(7), int64(2), object(1)

memory usage: 11.6+ KB

[]:	Winery	Year	Age	${ t LogAuction}$	WinterRain	HarvestRain	\
C	Cheval Blanc	1952	63	6.653108	566.4	165.5	
1	Lafite-Rothschild	1952	63	6.861502	566.4	165.5	
2	Cheval Blanc	1953	62	6.664192	653.3	75.6	
3	Cheval Blanc	1955	60	6.311426	504.3	129.5	
4	Lafite-Rothschild	1955	60	6.550209	504.3	129.5	

	GrowTemp	HarvestTemp	FrancePop	USAlcConsump
0	17.28	14.39	42.46	7.85
1	17.28	14.39	42.46	7.85
2	16.94	17.64	42.75	8.03
3	17.30	17.13	43.43	7.84
4	17.30	17.13	43.43	7.84

```
[]: # Simple regression using new data, not yet incorporating the Winery variable modOld = smf.ols(formula='LogAuction ~ WinterRain + HarvestRain + GrowTemp + → Age',

data=wine_new_train).fit()
print(modOld.summary())
```

OLS Regression Results

Dep. Variable:	LogAuction	R-squared:	0.222
Model:	OLS	Adj. R-squared:	0.182
Method:	Least Squares	F-statistic:	5.567
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	0.000539
Time:	16:17:32	Log-Likelihood:	-112.14
No. Observations:	83	AIC:	234.3
Df Residuals:	78	BIC:	246.4
	_		

Df Model: 4
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.2184	3.431	-0.064	0.949	-7.050	6.613
WinterRain	0.0018	0.001	1.855	0.067	-0.000	0.004
HarvestRain	0.0025	0.002	1.261	0.211	-0.001	0.006
${\tt GrowTemp}$	0.1210	0.193	0.628	0.532	-0.263	0.505
Age	0.0529	0.012	4.470	0.000	0.029	0.076
Omnibus:		7.4	97 Durbin	-Watson:		2.634
Prob(Omnibus)	:	0.0	24 Jarque	-Bera (JB):		2.891
Skew:		-0.0	27 Prob(J	B):		0.236
Kurtosis:		2.0	87 Cond.	No.		1.94e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.94e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
[]: # compute the out-of-sample R squared
OSR2(modOld,wine_new_train, wine_new_test, 'LogAuction')
```

[]: -0.5558862240672262

Next, let us plot the price of the wine versus year, by different wineries

```
[]: # Plot the responses for different events and regions
g = sns.lineplot(x="Year", y="LogAuction", hue="Winery", data=wine_new)
```

plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # This line is to_ \rightarrow display the lengend out of the graph region.

[]: <matplotlib.legend.Legend at 0x169787e60>


```
[]: # Plot the responses for different events and regions
g = sns.scatterplot(x="Year", y="LogAuction", hue="Winery", data=wine_new).

set_title('Log of Wine Price by Winary, Scatter Plot')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
```

[]: <matplotlib.legend.Legend at 0x15682ab70>

4.1.1 Two Wineries

Before constructing a complete model for all the wineries, let's first attempt to regress on only 2 wineries. We pick Cheval Blanc and Cos d'Estournel as an example

[]:	Winery	Year	Age	LogAuction	WinterRain	${\tt HarvestRain}$	${\tt GrowTemp}$	\
73	Cos d'Estournel	1983	32	4.558498	698.3	119.3	17.87	
76	Cheval Blanc	1984	31	5.558641	572.6	144.8	16.71	
77	Cos d'Estournel	1984	31	3.426865	572.6	144.8	16.71	
80	Cheval Blanc	1985	30	6.018934	667.1	37.2	17.19	
81	Cos d'Estournel	1985	30	4.885072	667.1	37.2	17.19	

	HarvestTemp	FrancePop	USAlcConsump
73	18.57	54.77	10.46
76	16.24	55.03	10.22
77	16.24	55.03	10.22
80	19.56	55.28	9.88
81	19.56	55.28	9.88

4.1.2 Passing a categorical variable

To use a categorical variables like Winery, we can simply pass it to the formula, and smf.ols will handle the variable.

```
[]: modTwo = smf.ols(formula='LogAuction ~ Winery + WinterRain + HarvestRain + GrowTemp + Age',

data=wine_two_train).fit()
print(modTwo.summary())
```

OLS Regression Results

Dep. Variable:	LogAuction	R-squared:	0.860
Model:	OLS	Adj. R-squared:	0.836
Method:	Least Squares	F-statistic:	35.55
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	1.62e-11
Time:	16:17:33	Log-Likelihood:	-13.178
No. Observations:	35	AIC:	38.36
Df Residuals:	29	BIC:	47.69

Covariance	Type:	nonrobust			
========			std err		P> t
[0.025	0.975]	coef	sta err	t	P> U
Intercept		-6.6292	2.391	-2.773	0.010
-11.519	-1.739				
Winery[T.C	os d'Estournel]	-1.3617	0.139	-9.770	0.000
-1.647	-1.077				
WinterRain		0.0016	0.001	2.363	0.025
0.000	0.003				
HarvestRai		-0.0016	0.002	-1.005	0.323
-0.005	0.002				
${\tt GrowTemp}$		0.6093	0.140	4.359	0.000
0.323	0.895				
Age		0.0358	0.007	4.966	0.000
0.021	0.050 				
Omnibus:		5.334			1.852
Prob(Omnib	us):	0.069	Jarque-Be	ra (JB):	3.865
Skew:		0.747	Prob(JB):		0.145
Kurtosis:		3.648	Cond. No.		2.21e+04
	==========			========	2.216.04

5

Notes:

Df Model:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.21e+04. This might indicate that there are strong multicollinearity or other numerical problems.

4.1.3 More Wineries

Now let's expand to the complete set of values that Winery can take:

```
[]: modNew = smf.ols(formula='LogAuction ~ Winery + WinterRain + HarvestRain + LogAuction ~ Winery + WinterRain + LogAuction ~ WinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinterWinte
```

OLS Regression Results

Dep. Variable:	LogAuction	R-squared:	0.851
Model:	OLS	Adj. R-squared:	0.834
Method:	Least Squares	F-statistic:	52.68
Date:	Sun, 27 Oct 2024	<pre>Prob (F-statistic):</pre>	1.73e-27

Time: No. Observations: Df Residuals: Df Model: Covariance Type:	16:17:33 83 74 8 nonrobust	Log-Likeliho AIC: BIC:		-43.659 105.3 127.1
=======================================				
[0.025 0.975]	coef	std err	t	P> t
Intercept	-4.4946	1.576	-2.852	0.006
-7.634 -1.355				
Winery[T.Cheval Blanc]	1.6425	0.152	10.819	0.000
1.340 1.945	0.0754	0.405	4 000	0.000
Winery[T.Cos d'Estournel]	0.2754	0.165	1.669	0.099
-0.053 0.604 Winery[T.Giscours]	-0.2993	0.193	-1.547	0.126
-0.685 0.086	-0.2993	0.193	-1.547	0.120
Winery[T.Lafite-Rothschild]	1.8941	0.148	12.788	0.000
1.599 2.189	2,0012	31223		
WinterRain	0.0016	0.000	3.665	0.000
0.001 0.003				
HarvestRain	0.0004	0.001	0.436	0.664
-0.001 0.002				
GrowTemp	0.3876	0.089	4.374	0.000
0.211 0.564				
Age	0.0308	0.005	5.617	0.000
0.020 0.042				
Omnibus: Prob(Omnibus): Skew: Kurtosis:	6.522 0.038 0.667 3.136	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	on: (JB):	1.725 6.227 0.0444 1.98e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.98e+04. This might indicate that there are strong multicollinearity or other numerical problems.

/var/folders/nw/5zcrqdxs7c57b12ptv8284p80000gn/T/ipykernel_56530/687993426.py:1:

SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy wine_new_train["New_winery"] = wine_new_train["Winery"] /var/folders/nw/5zcrqdxs7c57b12ptv8284p80000gn/T/ipykernel_56530/687993426.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy wine_new_train["New_winery"] [(wine_new_train["Winery"] == "Giscours") | (wine_new_train["Winery"] == "Beychevelle")] = "Baseline"

[]:		Winery	Year	. Age	LogAuction	WinterRain	HarvestRain	\
	0	Cheval Blanc	1952	2 63	6.653108	566.4	165.5	
	1	Lafite-Rothschild	1952	2 63	6.861502	566.4	165.5	
	2	Cheval Blanc	1953	62	6.664192	653.3	75.6	
	3	Cheval Blanc	1955	60	6.311426	504.3	129.5	
	4	Lafite-Rothschild	1955	60	6.550209	504.3	129.5	
		•••			•••			
	78	Lafite-Rothschild	1984	ł 31	6.194936	572.6	144.8	
	79	Beychevelle	1985	5 30	4.414736	667.1	37.2	
	80	Cheval Blanc	1985	5 30	6.018934	667.1	37.2	
	81	Cos d'Estournel	1985	5 30	4.885072	667.1	37.2	
	82	Lafite-Rothschild	1985	30	6.296612	667.1	37.2	
		GrowTemp HarvestT	emp	France	Pop USAlcCo	onsump	New_winery	
	0	17.28 14	.39	42	.46	7.85	Cheval Blanc	

	GrowTemp	HarvestTemp	FrancePop	USAlcConsump	New_winery
0	17.28	14.39	42.46	7.85	Cheval Blanc
1	17.28	14.39	42.46	7.85	Lafite-Rothschild
2	16.94	17.64	42.75	8.03	Cheval Blanc
3	17.30	17.13	43.43	7.84	Cheval Blanc
4	17.30	17.13	43.43	7.84	Lafite-Rothschild
		•••	•••	•••	•••
78	16.71	16.24	55.03	10.22	Lafite-Rothschild
78 79	16.71 17.19	16.24 19.56	55.03 55.28	10.22 9.88	Lafite-Rothschild Baseline
79	17.19	19.56	55.28	9.88	Baseline

[83 rows x 11 columns]

```
[]: modNew = smf.ols(formula='LogAuction ~ New_winery + WinterRain + HarvestRain + 

GrowTemp + Age',

data=wine_new_train).fit()
```

print(modNew.summary())

OLS Regression Results							
Model: Method: Date: Sun, 27 Oct Time: No. Observations: Df Residuals: Df Model:			2024	Adj. F-st Prob	uared: R-squared: atistic: (F-statisti Likelihood:	c):	0.846 0.831 58.77 6.91e-28 -44.980 106.0 125.3
[0.025			(coef	std err	t	P> t
Intercept -7.789 New_winery[-1.463 T.Cheval 1	Blancl	-4.6 1.7	5261 7507	1.588	-2.913 12.873	0.005
1.480 New_winery[0.087	2.022			3861	0.150	2.573	0.012
New_winery[1.740	T.Lafite- 2.265	Rothschild]		0027	0.132	15.213	0.000
WinterRain 0.001 HarvestRain	0.002			0016	0.000	3.504	0.001 0.672
-0.001 GrowTemp 0.212	0.002			3904	0.001	0.425 4.367	0.000
Age 0.020	0.042		0.0	310	0.006	5.615	0.000
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):		5.596 0.061 0.605 3.157	Jarq Prob	in-Watson: ue-Bera (JB) (JB): . No.	:	1.697 5.153 0.0760 1.98e+04

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.98e+04. This might indicate that there are strong multicollinearity or other numerical problems.

4.1.4 Evaluate our final model

```
[]: # compute out-of-sample R squared
     wine_new_test["New_winery"] = wine_new_test["Winery"]
     wine_new_test["New_winery"][(wine_new_test["Winery"] == "Giscours") |__
      ⇔(wine_new_test["Winery"] == "Beychevelle")] = "Baseline"
     OSR2(modNew, wine new train, wine new test, 'LogAuction')
    /var/folders/nw/5zcrqdxs7c57b12ptv8284p80000gn/T/ipykernel_56530/478586887.py:2:
    SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      wine_new_test["New_winery"] = wine_new_test["Winery"]
    /var/folders/nw/5zcrqdxs7c57b12ptv8284p80000gn/T/ipykernel_56530/478586887.py:3:
    SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      wine_new_test["New_winery"][(wine_new_test["Winery"] == "Giscours") |
    (wine_new_test["Winery"] == "Beychevelle")] = "Baseline"
```

[]: 0.7992742850350536