CSCB63 Assignment1

Jieying Gong 1009388066

Question 1.

1.1

Proof. For all function f, g, h in $\mathbb{N} \to \mathbb{R}^+$, assume $f \in \mathcal{O}(g)$, by definition of Big-Oh, $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \leq c \cdot g(n)$. And assume $g \in \mathcal{O}(h)$, by definition, $\exists d \in \mathbb{R}^+, \exists m_0 \in \mathbb{N}, \forall m \in \mathbb{N}, m \geq m_0 \Rightarrow g(m) \leq d \cdot h(m)$.

Let $k_0 = max\{n_0, m_0\}$, $\forall k \in \mathbb{N}, k \geq k_0$, then $k \geq n_0$ and $k \geq m_0$. We have $f(k) \leq c \cdot g(k) \leq c \cdot d \cdot h(k)$. Since $c \in \mathbb{R}^+$ and $d \in \mathbb{R}^+$, let $l = c \cdot d \in \mathbb{R}^+$. Thus for all functions $f \in \mathcal{F}$, $\exists k \in \mathbb{R}^+, \exists k_0 \in \mathbb{N}, \forall k \in \mathbb{N}, k \geq k_0 \Rightarrow f(k) \leq l \cdot h(k)$. By definition of Big-Oh, $f \in \mathcal{O}(h)$ as wanted.

1.2

Proof. For all function f_1, f_2, g_1, g_2 in $\mathbb{N} \to \mathbb{R}^+$, assume $f_1 \in \mathcal{O}(g_1)$, by definition of Big-Oh, $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}$, $\forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f_1(n) \leq c \cdot g_1(n)$. And assume $f_2 \in \mathcal{O}(g_2)$, by definition, $\exists d \in \mathbb{R}^+, \exists m_0 \in \mathbb{N}, \forall m \in \mathbb{N}, m \geq m_0 \Rightarrow f_2(m) \leq d \cdot g_2(m)$.

Let $k_0 = max\{n_0, m_0\}$, $\forall k \in \mathbb{N}, k \geq k_0$, then $k \geq n_0$ and $k \geq m_0$. We have $f(k) = f_1(k) \cdot f_2(k) \leq c \cdot g_1(k) \cdot d \cdot g_2(k)$ = $cd \cdot g_1(k)g_2(k) = cd \cdot g(k)$. Since $c \in \mathbb{R}^+$ and $d \in \mathbb{R}^+$, let $l = c \cdot d \in \mathbb{R}^+$. Let $l = c \cdot d \in \mathbb{R}^+$. Thus for all functions $f \in \mathcal{F}$, $\exists k \in \mathbb{R}^+$, $\exists k_0 \in \mathbb{N}$, $\forall k \in \mathbb{N}, k \geq k_0 \Rightarrow f(k) \leq l \cdot g(k)$. By definition of Big-Oh, $f \in \mathcal{O}(g)$ as wanted.

1.3

Proof. We will use proof by contradiction. Suppose $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow 0 \leq 2^{2n} \leq c \cdot 2^n$. Now we have for all $n \geq max(n_0, 1) \geq n_0$:

$$2^{2n} \le c \cdot 2^n$$

$$\iff 2^n \le c$$
 divide 2^n by both side
$$\iff n \le lg(c)$$

Choosing $n = max(n_0, \lceil lg(c) \rceil + 1) > lg(c)$ makes a contradiction. Therefore, $2^{2n} \notin \mathcal{O}(2^n)$ as wanted.

1.4

Proof. For all function f_1, f_2, g in $\mathbb{N} \to \mathbb{R}^+$, assume $f_1 \in \mathcal{O}(g)$, by definition of Big-Oh, $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f_1(n) \leq c \cdot g(n)$. And assume $f_2 \in \mathcal{O}(g)$, by definition, $\exists d \in \mathbb{R}^+, \exists m_0 \in \mathbb{N}, \forall m \in \mathbb{N}, m \geq m_0 \Rightarrow f_2(m) \leq d \cdot g(m)$.

Let $k_0 = max(n_0, m_0)$, $\forall k \in \mathbb{N}, k \geq k_0$, then $k \geq n_0$ and $k \geq m_0$. We have $f_{max}(k) = max(f_1(k), f_2(k)) \leq f_1(k) + f_2(k) \leq c \cdot g(k) + d \cdot g(k) = (c+d) \cdot g(k)$. Since $c \in \mathbb{R}^+$ and $d \in \mathbb{R}^+$, let $l = c+d \in \mathbb{R}^+$. Thus for all functions $f_{max} \in \mathcal{F}, \exists k \in \mathbb{R}^+, \exists k_0 \in \mathbb{N}, \forall k \in \mathbb{N}, k \geq k_0 \Rightarrow f(k) \leq l \cdot g(k)$. By definition of Big-Oh, $f \in \mathcal{O}(g)$ as wanted. \square

Question 2.

2.1

Step 1: Insert node with key 9

Step 2: Insert node with key 10

Step 3: Insert node with key 12

Step 4: Rebalance, single notation counter-clockwise on node with keys $9,\,10,\,12$

Step 5: Insert node with key 14

Step 6: Insert node with key 3

Step 11: Insert node with key 20. Need double notation

Step 12: Clockwise notation on node with keys 19, 20, 34, 37 centered at 34

Step 13: Counter-clockwise notation on node with keys 12, 14, 19, 20, 34 37 centered at 19 $\,$

Question 4.

4. helper function

```
function updateMaxEnd(node):
   if node is NULL:
        return
maxEnd = node.end
if node.left is not NULL:
        maxEnd = max(maxEnd, node.left.maxEnd)
if node.right is not NULL:
        maxEnd = max(maxEnd, node.right.maxEnd)
node.maxEnd = maxEnd
```

4.3

1. insert Function:

- Correctness: The insert function correctly places a new interval [x, y] into the tree based on the start value primarily and end value secondarily, ensuring that intervals are ordered efficiently. Duplicates are not inserted multiple times, preserving the set's integrity.
- **Time Complexity**: Maintains the AVL tree's balanced property, ensuring the height of the tree remains logarithmic relative to the number of nodes, n, making the time complexity $O(\log n)$.

2. delete Function:

- Correctness: Navigates the tree to find and remove the specific interval [x, y], handling scenarios of no children, one child, and two children with the successor's substitution, thus maintaining the tree's integrity.
- Time Complexity: Like insertion, it involves updating maxEnd and rebalancing, keeping the path traversed during deletion logarithmic in the number of nodes. Hence, deletion also achieves $O(\log n)$ complexity.

3. meetAll Function:

- Correctness: Iteratively traverses the tree to check if all intervals meet the overlap condition with [l,h], with an allowance for one interval not to overlap, using a flag hasNonOverlap and examining maxEnd and start properties efficiently.
- Time Complexity: Despite iterative checks, the AVL tree's balanced nature ensures the number of nodes visited is bounded by the tree's height, $O(\log n)$. The efficient narrowing of the search space maintains the overall $O(\log n)$ complexity.