EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09157801

PUBLICATION DATE

17-06-97

APPLICATION DATE

03-10-96

APPLICATION NUMBER

08281682

APPLICANT: HITACHI METALS LTD;

INVENTOR: OONO TAKEHIRO;

INT.CL.

C22C 38/00 C22C 38/28 C22C 38/50

H01M 8/02 H01M 8/12

TITLE

STEEL FOR SEPARATOR OF SOLID

ELECTROLYTIC FUEL CELL

ABSTRACT:

PROBLEM TO BE SOLVED: To produce a steel for an inexpensive separator of solid electrolytic fuel cell in which an oxidized film having good electric conductivity at about 1000°C and furthermore having good oxidation resistance and small in a difference in thermal expansion from an electrolyte.

SOLUTION: This steel has a compsn. contg., by weight, ≤0.2% C, 0.2 to 3.0% Si, 0.2 to 1.0% Mn, 15 to 30% Cr and one or ≥ two kinds among ≤0.5% Y, ≤0.2% rare earth elements and ≤1% Zr, and the balance Fe with inevitable impurities. If required, the steel may be incorporated with ≤2% Ni, ≤1% AI, ≤1% Ti, one or ≥ two kinds of Mo and W by ≤5% Mo+1/2W and ≤2% Nb individually or in combination in each range.

COPYRIGHT: (C)1997,JPO

		•

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-157801

(43)公開日 平成9年(1997)6月17日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
C 2 2 C 38,	/00	302		C 2 2 C 3	8/00	3022	Z
38,	/28			3	8/28		
38,	/50				88/50		
I-101M 8	/02				8/02]	В
8,	/12				8/12	and program and the	
•				審查請求	未請求	請求項の数6	FD (全 10 頁)
(21)出顧番号		特顧平8-281682		(71)出願人	0000050	83	
, ,,					日立金属	高株式会社	
(22) 出願日		平成8年(1996)10	月3日		東京都日	F代凹区丸の内は	2 丁目 1 番 2 号
				(72)発明者			
(31)優先権主張	举号	特願平7-284619				安来市安来町210	
(32)優先日		平7 (1995)10月 5	Ħ	(, , , , , , , , , , , , , , , , , , ,		全社冶金研究所)	^시
(33)優先権主張	国	日本(JP)		(74)代理人	护理 士	大場 充	

(54) 【発明の名称】 固体電解質型燃料電池セパレーター用鋼

(57)【要約】

【課題】 1000℃付近において良好な電気伝導性を有する酸化被膜を形成するとともに良好な耐酸化性を有し、かつ電解質との熱膨張差が小さい安価な固体電解質型燃料電池セパレーター用鋼を提供する。

【解決手段】 重量%にてCO. 2%以下、SiO. 2 \sim 3. 0%、MnO. 2 \sim 1. 0%、 $Cr15\sim$ 30%、およびYO. 5%以下、希土類元素O. 2%以下、Zr1%以下の1種または2種以上を含み、残部Feおよび不可避的不純物からなる固体電解質型燃料電池セパレーター用鋼であり、必要に応じて、Ni2%以下、Al1%以下、Ti1%以下、MobWO1種または2種をMo+1/2Wで5%以下、Nb2%以下の各範囲で単独ないし複合して含むことができる。

【特許請求の範囲】

【請求項1】 重量%にてCO.2%以下、SiO.2~3.0%、MnO.2~1.0%、Cr15~30%、およびYO.5%以下、希土類元素O.2%以下、Zr1%以下の1種または2種以上を含み、残部Feおよび不可避的不純物からなることを特徴とする固体電解質型燃料電池セバレーター用鋼。

【請求項2】 重量%にてCO.2%以下、SiO.2~3.0%、MnO.2~1.0%、Cr15~30%、Ni2%以下、Al1%以下、Ti1%以下、MoとWの1種または2種をMo+1/2Wで5%以下、Nb2%以下を含有し、YO.5%以下、希土類元素O.2%以下、Zr1%以下の1種または2種以上を含み、残部Feおよび不可避的不純物からなることを特徴とする固体電解質型燃料電池セパレーター用鋼。

【請求項3】 重量%にて00.2%以下、Si0.2~3.0%、Mn0.2~1.0%、Cr15~30%、およびY0.5%以下、希土類元素0.2%以下、Zr1%以下の1種または2種以上を含み、残部Feおよび不可避的不純物からなり、かつ1000℃で100Hr加熱した後の100℃における酸化被膜の電気抵抗が100mΩ・cm²以下であり、さらに1100℃で100Hr加熱後に表面酸化スケールの剥離が実質的に発生しないことを特徴とする固体電解質型燃料電池セパレーター用鋼。

【請求項5】 重量%にてCO. 08%以下、SiO. 2~2.0%、MnO. 2~1.0%、Cr18~25%、NiO.9%以下、AlO.5%以下、TiO.8%以下、MoとWの1種または2種をMo+1/2Wで3%以下、ZrO.05%~O.8%を含有し、YO.01~O.3%、希土類元素O.01~O.12%の1種または2種を含み、残部Feおよび不可避的不純物からなり、かつ100℃で100Hr加熱した後の100℃における酸化被膜の電気抵抗が50mΩ·cm²以下であり、さらに1100℃で100Hr加熱後に表面酸化スケールの剥離が実質的に発生しないことを特徴とする固体電解質型燃料電池セバレーター用鋼。

【請求項6】 重量%にてCO. 08%以下、SiO.

2~2.0%、Mn0.2~1.0%、Cr18~25%、Ni0.9%以下、A10.5%以下、希土類元素 0.01~0.10%、Zr0.05~0.50%、残 部Feおよび不可避的不純物からなり、かつ1000℃ で100Hr加熱した後の1000℃における酸化被膜 の電気抵抗が50mΩ・cm²以下であり、さらに11 00℃で100Hr加熱後に表面酸化スケールの剥離が 実質的に発生しないことを特徴とする固体電解質型燃料 電池セパレーター用鋼。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電池のセバレーターに用いられる鋼に関する。

[0002]

【従来の技術】燃料電池は、その発電効率が高いこと、 SOx、NOx、CO2の発生量が少ないこと、負荷の変 動に対する応答性が良いこと、コンパクトであること等 の優れた特徴を有するため、火力発電の代替としての大 規模集中型、都市近郊分散配置型、および自家発電用等 の中広い発電システムへの適用が期待されている。燃料 電池の種類には用いる電解質により、りん酸型、溶融炭 酸塩型、固体電解質型、高分子固体電解質型に分類され るが、なかでも固体電解質型燃料電池は電解質として安 定化ジルコニア等のセラミックスを用いて1000℃付 近で運転されるもので、電極反応に触媒を用いる必要が ないこと、高温による化石燃料の内部改質が可能で石炭 ガス等の多様な燃料を用いることができること、高温排 熱を利用しガスタービンあるいは蒸気タービン等と組み 合わせいわゆるコンバインドサイクル発電とすることに より高効率の発電が可能となること、構成物が全て固体 であるためコンパクトであること等の優れた特徴を有 し、次世代の電力供給源として非常に有望視されてい

【0003】しかしながら固体電解質型燃料電池の実用 化のためには多くの検討課題が残されている。特に高出 力密度が可能な平板型燃料電池の場合。重要な構成要素 としてセパレーターが挙げられる。セパレーターは電解 質、燃料極、空気極の3層を支持し、ガス流路を形成す るとともに電流を流す役目を有する。従ってセパレータ 一には、高温での電気伝導性、耐酸化性、さらに電解質 との熱膨張差が小さいこと等の特性が要求される。この ような要求特性を鑑み、従来は導電性セラミックスが多 く用いられてきた。しかしながらセラミックスは加工性 が悪くまた高価であることから、燃料電池の大型化、実 用化の面から問題を残している。そのため安価で信頼性 のある金属材料によるセパレーターの開発が要求されて いる。しかし通常の金属材料を1000℃で使用する と、表面が酸化され酸化被膜を生じるが、セパレーター 材として用いるためにはこの酸化被膜が安定で酸化が進 行しないこととともに酸化被膜が電気伝導性を有するこ

とが必要である。

【0004】このような要求特性を満足させるために、特開平6-264193号には固体電解質型燃料電池用金属材料として、CO.1%以下、SiO.5~3.0%、Mn3.0%以下、Cr15~30%、Ni20~60%、A12.5~5.5%、残部Feからなるオーステナイト系ステンレス鋼が提案されている。また、特開平7~166301号には固体電解質燃料電池のセパレーターとして、Fe60~82%およびCr18~40%に前記単電池の空気極との間の接触抵抗を低減する添加元素(La、Y、CeまたはA1をそれぞれ単独で含有させる)からなる合金を使用することが提案されている。さらに、特開平7-145454号には、固体電解質型燃料電池用金属材料としてCr5~30%、Co3~45%、La1%以下、残部Feからなる材料が提案されている。

[0005]

【発明が解決しようとする課題】上記特開平6-264 193号に開示された材料はA1とCrを相当量含むために表面酸化被膜はA1系酸化物を主体とし、これにCr系酸化物を含有したものである。しかしながら後述するようにA1系酸化物は、電気伝導率が低いために固体電解質セパレーター用としては必ずしも十分といえない面があり、またオーステナイト系ステンレス鋼は、電解質の安定化ジルコニアに比較して熱膨張係数が大きいため電池の起動、停止に伴う熱サイクルによる電解質の割れ等による電池の性能低下を起しやすく、長時間使用における安定性に問題がある。さらに高価なNiを多く含むために価格的にも高く、燃料電池の実用化のためには不十分と考えられる。

【0006】これに対して、特間平7-166301号および特開平7-145454号に開示された材料は、オーステナイト系ステンレス鋼に比較して熱膨張係数が低く、電解質の安定化ジルコニアの熱膨張係数に近いため長時間使用における安定性に有利であり、また電気伝導率も良好である。しかし、長時間使用後の耐酸化性が不十分であり、特に酸化層の増大に伴う剥離現象を助長し、電池内のガス流路となるセパレーターに設けた満を決めて、電池機能を低下させる問題がある。本発明の目的は、1000℃付近において良好な電気伝導性を有する酸化被膜を形成するとともに、長時間の使用においても良好な耐酸化性、特に耐剥離性を有し、かつ電解質との熱膨張差が小さい安価な固体電解質型燃料電池セパレーター用鋼を提供することである。

[0007]

【課題を解決するための手段】本発明者は種々検討の結果、まず対象とする金属材料をフェライト系とした。この理由の第1は、電解質である安定化ジルコニアの常温から1000℃までの熱膨張係数が11~12×10マイナス6乗/℃に対し、通常のオーステナイト系の金属

材料では16×10マイナス6乗以上であり、両者の熱膨張差が大きいため長時間使用中の安定性に問題があると考えたためである。第2の理由は一般にオーステナイト系は高価なNiを含むため高価であることに対し、フェライト系はFeをベースとしNiを含まないか、または含んでも少量であるため安価であることである。

【0008】次に本発明者は、形成される酸化被膜の電気伝導度について種々検討した。保護性を有する酸化被膜の代表としてはA1の酸化物とCrの酸化物が知られている。1000で付近の高温になると一般には $A1_2$ O_3 の方が保護作用が大きく有利であるが、 $A1_2O_3$ 被膜形成材の電気抵抗を測定してみると非常に大きく、セバレーターとしては使用できないことがわかった。一方 Cr_2O_3 被膜形成材の電気抵抗は、十分小さくセパレーターに使用可能であることがわかった。そこで本発明においては表面にCr系酸化物を主体とする酸化被膜を形成するフェライト系金属材料、すなわちFe-Cr系を基本とした。

【0009】次に、長時間使用する場合に問題となる耐 酸化性であるが、前述のように1000℃付近において は通常Cr系酸化被膜の耐酸化性はAI系酸化被膜より 劣る。またCr系酸化被膜を主体とする場合でもNiベ ースの合金(例えばJISNCF600に代表されるN i-Cr合金)よりもFeベースの合金(例えばSUS 430のようなFe-Cr合金)の方が耐酸化性は劣っ ている。従って上記方針に従ってFe-Cェ系を基本と すると耐酸化性を満足させることは非常に困難になる。 木発明者はこれを解決するために種々検討した結果、F e-Cr系にY、希土類元素、Zrの1種または2種以 上の添加に加え、さらにSi、Mnを一定量添加するこ とにより、Cェ系の酸化被膜を主体としながら良好な耐 酸化性、特に耐剥離性が得られ、長時間加熱後も被膜の 形成状態が安定することを見出した。特にYおよび/ま たは希土類元素にZrを複合添加した場合に耐剝離性は 最も向上する。また上記各元素の添加を行っても、形成 される酸化被膜はCr系酸化被膜が主体なので電気抵抗 もさほど大きくなることはない。

【0010】すなわち本発明の第1発明はは、重量%にてC0.2%以下、Si0.2~3.0%、Mn0.2~1.0%、Cr15~30%、およびY0.5%以下、希土類元素0.2%以下、Zr1%以下の1種または2種以上を含み、残部Feおよび不可避的不純物からなることを特徴とする固体電解質型燃料電池セパレーター用鋼である。また第2発明は、重量%にてC0.2%以下、Si0.2~3.0%、Mn0.2~1.0%、Cr15~30%、Ni2%以下、Al1%以下、Ti1%以下、MoとWの1種または2種をMo+1/2Wで5%以下、Nb2%以下を含有し、Y0.5%以下、希土類元素0.2%以下。Zr1%以下の1種または2種以上を含み、残部Feおよび不可避的不純物からなる

ことを特徴とする固体電解質型燃料電池セバレーター用鋼である。

【0011】さらに上記の第1 発明または第2 発明の組成からなる鋼の特性は、1000 でで100 H r 加熱した後の1000 でにおける酸化被膜の電気抵抗が100 m Ω · c m 2 以下であり、さらに1100 で 100 H r 加熱後に表面酸化スケールの剥離が実質的に発生しないことが望ましい。

【0012】また上記鋼のより好ましい組成と特性は、 重量%にてCO、08%以下、SiO、2~2、0%、 Mn0. 2~1. 0%, Cr18~25%, Ni0. 9 %以下、A10.5%以下、Ti0.8%以下、Moと Wの1種または2種をMo+1/2Wで3%以下、Zr 0.05%~0.8%を含有し、Y0.01~0.3 % 希上類元素0.01~0.12%の1種または2種 を含み、残部Feおよび不可避的不純物からなり、かつ 1000℃で100Hr加熱した後の1000℃におけ る酸化被膜の電気抵抗が50mΩ·cm²以下であり、 さらに1100℃で100Hr加熱後に表面酸化スケー ルの剥離が実質的に発生しないことを特徴とする固体電 解質型燃料電池セパレーター用鋼、または重量%にてC 0.08%以下、Si0.2~2.0%、Mn0.2~ 1.0%、Cr18~25%、Ni0.9%以下、A1 0.5%以下、希土類元素0.01~0.10%、Zr 0.05~0.50%、残部Feおよび不可避的不純物 からなり、かつ1000℃で100Hr加熱した後の1 ○○○℃における酸化被膜の電気抵抗が50mΩ・cm 2以下であり、さらに1100℃で100Hr加熱後に 表面酸化スケールの剥離が実質的に発生しないことを特 徴とする固体電解質型燃料電池セパレーター用鋼であ る。

[0013]

【発明の実施の形態】以下に本発明における成分限定理由について述べる。Cは、炭化物を形成して高温強度を増大させる作用を有するが、逆に加工性を劣化させまたCrと結び付くことにより耐酸化性に有効なCr量を減少させる。従ってO. 2%以下に限定する。望ましくは、O. O8%以下である。Siは、セバレーターに設けた高温ガスの流路となる満の内面に、Cr系酸化層を主体とする被膜の形成に関与し、長時間の使用においても形成した酸化被膜が必要以上に成長したり、また剥離現象を誘発させない効果を有する重要な元素である。Siの効果の一つには、おそらくCr2O3酸化被膜と母材の界面付近に薄いSiO2被膜を形成して耐酸化性を向上させるものと考えられる。したがって、一旦形成させたCr系の酸化被膜は、長時間使用しても、酸化の進行が抑制されるため安定した状態で維持することができる。

【0014】また、上記 SiO_2 被膜は母材と Cr_2O_3 被膜の界面において母材、 Cr_2O_2 被膜、 SiO_2 被膜

が細かくからみ合った状態を形成しており、これによって母材との密着性を高め、 Cr_2O_3 被膜の剥離を阻止する効果がある。上記効果を得るため、Si は最低0.2 %が必要であるが、過度の添加は加工性、靭性の低下を招くとともに SiO_2 被膜が厚くなりすぎて被膜の電気伝導度が低下する問題が生じるので3.0%以下とする。望ましいSi の範囲は $0.2\sim2.0$ %であり、さらに望ましくは $0.3\sim1.5$ %である。

【0015】Mnは、Fe, Crとともに、スピネル型 酸化物を形成する。このスピネル型酸化物は、通常Cr 2Os程の保護作用はないので、耐酸化性そのものに対し ては不利に働く。しかしながら本発明鋼の場合、適量の 添加は逆に耐剥離性に対して有利に働くことが見出され た。この理由は、おそらくMnを含むスピネル型酸化物 が母材とCryOs被膜の中間の熱膨張係数を有するた め、緩衝材として働き、Cr₂O₃被膜の密着性を高める ためと思われる。この効果を得るためにMnは最低O. 2%が必要であるが、過度に添加すると前述のようにM n含有のスピネル型酸化物自体の耐酸化性不足のため耐 酸化性が悪くなる。従ってMnは1%以下に限定する。 【0016】Crは、本発明においてCr2Oa被膜の生 成により、耐酸化性および電気伝導性を維持するために 重要な元素である。そのため最低限15%を必要とす る。しかしながら過度の添加は耐酸化性向上にさほど効 果がないばかりか加工性の劣化を招くので15~30% に限定する。望ましいCrの範囲は18~25%であ る。

【〇〇17】Y、希土類元素、Zrは、少量添加により 耐酸化性を大幅に改善する効果を有する。特に適量のS i、Mn添加と組み合わせた場合の耐酸化性向上効果が 大きく、これは主に酸化被膜の密着性を改善することに よると考えられる。本発明においてはCr系酸化被膜の みで耐酸化性を持たせているが、このCr系酸化被膜の 密着性を向上させるためにY、希土類元素、Zrの単独 または複合添加は不可欠である。しかしながら過度の添 加は熱間加工性を劣化させるので、YはO.5%以下、 希土類元素は0.2%以下。2rは1%以下に限定す る。望ましくは、YO.01~0.3%、希土類元素 0. 01~0. 12%, Zr0. 05%~0. 8% ca る。さらに、YO.01~0.3%、希土類元素O.0 1~0.12%の1種または2種とZr0.05%~ 0.8%を複合で添加すると、酸化皮膜の密着性がより 向上し、長時間加熱後においても酸化被膜の剥離を防止 できる。さらに望ましくは、希土類元素0.01~0. 10%と2r0.05~0.50%の複合添加である。 また、Zrは後述のTi、Nbと同様、Cと結びついて 炭化物を形成し、C固定により加工性を向上させ、また 強度向上にも寄与する。したがって、Zrを添加する場 合には、Ti,Nbは無添加でもよい。

【0018】Ni, Al, Ti, Nb, Mo, Wの各元

素は、本発明鋼には必ずしも添加する必要はないが、以下に示す各元素の効果を有するため、必要に応じて規定範囲内で単独または複合して添加することができる。Niは、本発明鋼に少量添加することにより制性の向上に効果が有る。しかしNiはオーステナイト生成元素であり、過度の添加はフェライトーオーステナイトの2相組織となり、熱膨張係数の増加およびコストアップを招く。さらに過度のNiの添加は耐酸化性を悪くする。従ってNiは2%以下に限定する。望ましくは0.9%以下である。

【0019】A1は、通常脱酸剤として添加される。A1を多く添加すると $A1_2O_3$ 被膜が形成されるが、前述のように $A1_2O_3$ 被膜は耐酸化性に対しては有効であるが、酸化被膜の電気抵抗を増大させる。従って、本発明の場合 $A1_2O_3$ 被膜の形成を避けるためにA1は1%以下に限定する。望ましくは<math>0.5%以下である。

P≦0.04%

S≨0.03%

Cu≦0.30%

鋼に含まれても良い。

下に限定する。望ましくは3%以下である。

V≦0.5%

Ta≦0.5%

Mg≦0.02%

Ca≦0.02%

Co≦2%

【0022】ここで、従来の技術と比較する。上記特開平6-264193号に開示された材料は、前述のようにA1を含むために表面酸化被膜はA1系酸化物を主体とするため電気伝導度が十分でなく、さらにオーステナイト系の材料であるために熱膨張係数が大きいという問題を有する。また、特開平7-166301号および特開平7-145454号に開示された材料は、Fe-Cr系にLa等を含み電気伝導度は良好であるが、Si、Mnが添加されていないかあるいは制御されていないために長時間使用後の耐酸化性がまだ不十分である。さらに特開平7-145454号に開示された材料は3~20%のCoを含むが、本発明においてはCoの添加はNiと同様むしろ耐酸化性を悪くする。

【0023】本発明の鋼が対象とする固体電解質型燃料電池に用いるセパレーターは、良好な電気伝導性を評価する評価手段として、1000℃で100Hr加熱した後の1000℃における酸化被膜の電気抵抗が100m $\Omega \cdot cm^2$ 以下、望ましくは50m $\Omega \cdot cm^2$ 以下であることが重要である。また、長期使用後において、形成されたCr 系酸化被膜の酸化が進行して、表面酸化スケールとなって剥離する現象の評価手段として、1100℃で100Hr加熱後に表面酸化スケールの剥離が実質的に発生しないことが重要である。なお、「表面酸化スケールの剥離が実質的に発生しない」とは、スケールの自然剥離がないことを指し、外的衝撃が加わらない状態をいう。

【0024】 【実施例】 (実施例1)表1に示す組成の鋼を真空誘導炉にて溶製し10kgのインゴットを作製後、1100 でに加熱して30mm角の棒材に鍛仲した。なお表1において、比較鋼No.41はJ1S NCF600として知られているオーステナイト系合金である。また比較鋼No.44は特開平6-264193号に記載のものである。これらの試料の製造工程において、本発明鋼中で比較的Cr量が高いNo.3、No.17鋼、さらにLa.Zr量が比較的高いNo.23合金は鍛造により若干疵が発生し、やや加工性が悪い傾向を示した。これらの素材から試験片を切り出し各種試験を行った。

【0020】Tiは、Cと結び付いて炭化物を形成し、 C固定により加工性を向上させる。また強度向上にも寄

与する。しかしながら、1000℃付近においてはあま

り保護性のないTiOまたはTiOぇを形成し耐酸化性

を劣化させる。従ってTiは1%以下に限定する。望ま しくは0.8%以下である。Nbは、Tiと同様Cと結

び付いて炭化物を形成し、Cを固定することにより加工

性を向上させるとともに高温強度も増大させる。しかし

ながら過度の添加は耐酸化性を劣化させるので2%以下

に限定する。MoおよびWは、特に高温強度を増加させ

る作用を有するので、高温強度を重視する場合には添加 してもよい。しかしながら、過度に添加すると耐酸化

性、加工性を劣化させるので、Mo+1/2Wで5%以

【0021】なお、以下の元素は下記の範囲内で本発明

【0025】まず、直径10mm、長さ20mmの円柱状試験片を用いて、大気中1000℃で100Hrの加熱処理を行った後、表面に生成される酸化物の種類をX線回折により調べた。さらに表面酸化スケールの剥離量を測定した。また10mm×10mm×3mmの板状試料を用いて、大気中1000℃で100Hr加熱を行って表面に酸化被膜を形成させた後、1000℃における電気抵抗を測定した。なお電気抵抗は面積抵抗(mΩ・cm²)で表した。また1000℃で100Hr加熱後に酸化スケールの剥離が見られなかった試料についてはさらに加速試験として1100℃で100Hr加熱を行った後の酸化スケールの剥離量を調べた。さらにいくつかの試料については30℃から1000℃までの熱膨張係数を測定した。これらの試験結果をまとめて表2に示す。

[0026]

【表1】

No. C Si Min	57.	H	Min	1 1	ž	ð	2	=	ź	οM	3	D.	7	在上机汽器	Zz
0.05	0.39 0.51 0.25	0.51 0.25	0.25		19.24	!	0.14	0.60	,	1	1	3	ı	I,n:0.04	1
0.02 0.40	0.40 0.55 0.23	0.55 0.23	0.23		22.03		0.13	0.51	ı	ī		Bal	1	1.0:0.04	
3 0.03 0.38 0.55 0.25 25.75	0,38 0,55 0,25	0.55 0.25	0.25	11	25.75		0.10	0.54	1	1	1	[all	1	Ln:0.03	1 3
0.02 0.40	0.40 0.50 0.23	0.50 0.23	0.23		21.90		0.29	0.01	!	ł	,	3	1		0.76
0.02	0,40 0.51 0.25	0.51 0.25	0.25		21.20		0.0Н	,	ı	i	i	Bal.	1	La:0.33	0.30
	0.41 40.28 1.85	40.28 1.85	1.85		22.15		0.05	0.05	i	1	1	Bal	1		1
	0.45 0.43	0.43	i	_	21.95		0.16	0.13	1	ı	1	Į.	-	LA:0.02, Cu:0.01	1
0.06 0.33	0.33 0.50 0.25	0.50 0.25	0.25		21.23		0.21	0.23	1	4	'	Cal	0.20	1	1
0.0%	1,15 0.85 0.23	0.85 0.23	0,23		23.52		0.20	0.45	-	1	1	Bal	1	Ca:0.04	ı
0.0%	2.72 0.55 0.15	0.55 0.15	0.15		22.05		0.31	0.32		1	1	Bal	0.10	1,11:0.02	1
0.03	0.88 0.51 0.26	0.51 0.26	0.51 0.26		21.91		0.53	0.27	1		1	Sai	0.05	0.05 La:0.01, Ce:0.02	ı
0.03	0.53 0.52 0.26	0.52 0.26	0.52 0.26		22.23		0.92	0.26	ı	-	1	But	!	Co:0.0;}	0.30
	0.42 0.50 0.24	0.50 0.24	0.50 0.24		20.61		0.10	0.52	0.56	1	Ŀ	Bir	1	1,0,0,04	1
0.03	0.45 0.58 0.24	0.56 0.24	0.56 0.24		20.35	:	0.02	0.89	1	1	1	Bal	ı	Ce:0.03	1
	0.59 0.42 0.20	0.42 0.20	0.42 0.20		21.85		ı	0.25	1.72	-	1	5	ı	1,1,0,0%	1
0.03	0.42 0.52 -	0.52	0.52		17.20		i	ı	1	-	<u> </u>	Æ	1	1,0:0.12	
6.32	6.20 6.42 1.35	6.42 1.35	6.42 1.35		28.35		ı	0.00	1	1	1	THE S	1	Ln:0.02, Nd:0.01	1
0.02 0.40 0.45	0.40 0.45 0.22	0.45 0.22	0.45 0.22		22.03		0.14	0.35	ı	1	ı	-B		Ln:0.02, Co:0.02	0.05
0.01 0.46 0.50 0.21	0.46 0.50 0.21	0.50 0.21	0.50 0.21	0.21	21.85		0.22	•	1	2.50	1	B	0.07	_	0.22
0.03	0.47 0.54 0.25	0.54 0.25	0.54 0.25	0.25			0.21	,	1				١	Ln:0.0:1	0.14
	0.41 0.64 0.24	0,64 0.24	0,64 0.24	0.24			0.26	0.21	0.21	1.54			ı	Ln:0.04	1
0.0	0.48 0.52 0.26	0,52 0.26	0,52 0.26	0.26		-	0.14	0.18	,	3.48	1:24	Ě	1	Ln:0.05)
0.55 0.35	0.55 0.35 0.07	0.35 0.07	0.35 0.07	0.07		-	0.06	1	l	1	1	E.		L.n:0. i 1	0.65
	1.82 0.42 0.36	0.42 0.36	0.42 0.36	98.0		6	0.34	0.18		0.50	1	Ē	0.05	1.11:0.05	!
0.03	0.22 0.41 Bai	0.22 0.41 Bai	0.41 Bu	Car		24	0.20	0.33	1	;	1	8.72	ı	1	-
	0.49 0.65 0.20	0.49 0.65 0.20	0.62 0.20	0.20		LC !	2.53	1.22	1	1			1	-	
_	0.29 3.12 0.26	0.29 3.12 0.26	0.12 0.26	0.26		-	4.08	ļ	j	!	1	善	1		-
0.03 1.02 5.53	1.02 2.53 23.50	1.02 2.53 23.50	23.50	23.50	l		3.50	ı	1	ı	1	Ē	1	1	1
0.045 0.62 0.25	0.45 0.62 0.25	0.45 0.62 0.25	0.62 0.25	0.25	1		0.21	0.25	ı	ı	ı	æ	ı	!	;
0.04 0.45 0.43	0.45 0.43 0.21	0.43 0.21	0.43 0.21	0.21	<u> </u>	1 10	0.10	0.21	1	1	1	<u>.</u>	1	1	3
0.03 0.10 0.43 0.10	0.12 0.43 0.10	0.12 0.43 0.10	0.43	0.10	1_	10				١	ı	Bul	1	LA:0.03	-
0.04 3.42 0.56 0.23	3.42 0.56 0.23	3.42 0.56 0.23	0.56 0.23	0.23	1_	12		_	1	1	1	l3n	1	1.0:0.02	1
0.03 0.44 0.02 0.21	0.44 0.02 0.21	0.44 0.02 0.21	0.02 0.21	0.21		18	L	0.20	-	1	ı	Ë	1	1,15:0.02	1
0.03	1.15 0.21	1.15 0.21	1.75 0.21	0.21		1 3			1		1	Bul	ł	20.0:1.1	-
50 0.03 0.38 1.35 0.21 33.04 0.34	0,38 1,35 0.21 33,04	0,38 1,35 0.21 33,04	1.75 0.21 33.04	0.21 33.04	13.04	_						2		30,00,00	1

[0027]

【表2】

30~1000℃		No	奈彦芸 兵芸	·	1000℃×		11100,C ×	1000°C×
(×10 ⁻³ /℃) 生送転代物 スケール 1000℃における スケール 対解数 対解	İ		1	ł		後	i -	
対路数 対数 対		}	(×10 ^つ /°C)	生成酸化物				
1		Ì		1			4	!
1 13.0			}	•			_	1
		1	13.0	Cr2O3, MriFe2O4, TiO2	0.00			
3	本	2	13.0	Cr2O3, Malie2O4, TiO2	0.00	12		
1	癸	3:	<u>1</u> 3.0	Cr ₂ O ₃ , Mni e ₂ O ₄ , TiO ₂	0.00			
5	岃	4	12.7	Cr ₂ O ₃ , MnFe ₂ O ₄	0.00	15	0.00	
S	岃	5	13.0	Cr ₂ O ₃ , MnFe ₂ O ₄	0.00	39		
7	Ì	5.		Cr ₂ O ₃ , MnFe ₂ O ₄	0.00	13	0.00	
8		7		Cr ₂ O ₃ , MnFe ₂ O ₄ , TiO ₂	0.00	11		
3		_ 8		C12O3, Mr:Fe2O4, TiO2	ű.Oú	42	0.00	
10		ý		Cı ₂ O ₃ , MnFe ₂ O ₄ , TiO ₂	0.00	23		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		Cr ₂ O ₃ , MnF2 ₂ O ₄ , TiO ₂	-	51	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11		Cr_2O_3 , $MnFo_2O_4$, TiO_2	0.00	54	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12			0.00	52	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13		Ct2O3, MnFe2O4, TiO2	0.00	41	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00	23	0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15			0.00	30	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				0.00	22	0.00	0.78
19		17			0.00	15	0.00	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]				0.00		0.00	10.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19			0.00	25	0.00	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				0.00	31	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$] .				0.00		0-00	0.14
24					0.00	45	0.00	0.57
## 15.7 Cr ₂ O ₃ , MnFe ₂ O ₄ 0.00 10 0.91 -	İ				C-00	48	0.0	0.00
世 42 14.2 Al ₂ O ₃ , TiO ₂ 0.00 380 0.00 - 較 43 14.5 Al ₂ O ₃ 0.00 452 0.00 - 44 17.3 Al ₂ O ₃ , Cr ₂ O ₃ 0.00 153 0.00 - 45 13.1 Cr ₂ O ₃ , MnFe ₂ O ₄ , TiO ₂ 5.50 55 7.78 - 46 13.0 Cr ₂ O ₃ , MnFe ₂ O ₄ , TiO ₂ 0.00 29 1.92 - 47 - Cr ₂ O ₃ , MnFe ₂ O ₄ , TiO ₂ 0.00 42 1.47 - 48 - Cr ₂ O ₃ , MnFe ₂ O ₄ , TiO ₂ 0.00 109 0.00 - 49 - Cr ₂ O ₃ , TiO ₂ 0.00 26 2.70 -					0.00	56	0.00	0.15
数 $\frac{43}{44}$ $\frac{14.5}{17.3}$ $\frac{Al_2O_3}{Al_2O_3}$ $\frac{0.00}{0.00}$ $\frac{452}{13.3}$ $\frac{0.00}{0.00}$ $\frac{-}{0.00}$ $\frac{44}{0.00}$ $\frac{17.3}{0.00}$ $\frac{Al_2O_3}{0.00}$ $\frac{Cr_2O_3}{0.00}$ $\frac{17.3}{0.00}$ $\frac{17.3}$		-			0.00	10	0.91	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00	380	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00	452	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29						0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7.78	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1					29	1.92	
49 - Cr ₂ O ₂ , TiO ₂ 0.00 26 2.70 -	}					42	1.47	
	}							
$ 50 - Cr_2U_3$, $Ninte_2U_4$, $ 10_2 = 0.53$ 53 1.80 -	ļ							
		50		r ₂ O ₃ , Mn⊢e ₂ O ₄ , TiO ₂	0.53	53	1.80	

【0028】表2より本発明鋼は大気中1000 $\mathbb{C}\times 1$ 00 \mathbb{H} rの加熱により主に \mathbb{C} r $_2\mathbb{O}_3$ 被膜を形成しており、電気抵抗の値は十分小さい。一方、比較鋼No.42、43、44はA1を2%以上含むためA1 $_2\mathbb{O}_3$ 被膜を形成し、電気抵抗の値は本発明鋼の値よりはるかに大きい。また比較鋼No.48はSiが高く、表面からのX線回折では確認できなかったがおそらく厚いSiO $_2$ 被膜が形成されていると思われ、電気抵抗の値が高い。大気中1000 $\mathbb{C}\times 1$ 00 \mathbb{H} rの加熱後の表面スケール剥離量を比較すると、本発明鋼はスケールの剥離は全く観察されなかったが、比較鋼No.45は \mathbb{C} r量が少ないため剥離量が多く、長時間使用に耐えないことがわかる。また比較鋼No.50もスケールの剥離が観察されたがこれはMnが高く、Mn $_2$ Fe \mathbb{O}_4 の量が多くなったためと思われる。

【0029】さらに加速試験として行った大気中110

○℃×100日rの加熱後の表面スケール剥離量を比較すると、本発明鋼は1100℃という高温での加熱でもスケールの剥離が観察されないが、比較鋼No.41 (JIS NCF600)、45,46,47、49、50では、いずれも剥離が発生した。このうち、No.45は前述のようにCr量が低いこと、No.46はY,希土類元素またはZrが無添加であること、No.47はSi量が低いこと、No.49はMn量が低いことによりスケールの密着性が不足したためと思われる。No.50は前述のようにMnが高すぎたためと思われる。熱膨張係数の値は本発明鋼No.1~6が約13×10マイナス6乗プでであり、ジルコニアの値に近い。一方比較鋼No.41、No.44はオーステナイト系であるために熱膨張係数の値が大きい。

【0030】(実施例2)表3に示す組成の30mm角の棒材を、実施例1に示した方法と同様の方法で作製し

た。No. 31~36は本発明鋼、No. 51は比較鋼で、No. 41と同様、JIS NCF600として知られているオーステナイト系合金である。これらの素材から直径10mm、長さ20mmの円柱状試験片を切り出し、1000℃で500時間加熱した後に試料を取り出し室温に冷却した後に、剥離したスケールの量を測定した。さらにその後、再び1000℃に加熱し、所定の時間経過後に再度取り出し、測定するというサイクルを合計加熱時間が3000Hrになるまで繰り返した。図

1に、経過時間毎の剥離したスケールの量(経過時間までの合計量)を示す。図1から、長時間保持後にはわずかにスケールの剥離が発生するが、本発明合金はいずれも比較合金より剥離量が小さく、また特にしaとZrを複合添加したNo.35合金は、3000Hr経過後にも全く剥離を起していないことがわかる。

【0031】 【表3】

	No.	С	Si	Min	Ni	Cr	ΑI	Ti	Mo	Fe_	Υ	希土類元素	Zr
	31	0.02	0.38	0.52	0.24	21.81	0.16	0.59	-	Bal		La:0.03	
本発明鋼	32		0.40	0.50	0.27	21.93	0.22		_	Bal	0.10		
<u> ጥምር ታገኝ</u> ሥ	33	0.02	0.40	0.50	0.23	21.74	0.18	1	_	Bal		Ce:0.02	
	34	0.02	0.40	0.50	0.37	21.96	0.18	0.21	_	Bal	_	La:0.04	
			0.36	0.48	0.26	21.99	0.14	_	_	Bal	_	La:0.04	0.22
•	35		0.30	0.48	0.24	22.08	0.19	0.20	1.95	Bal	_	La:0.04	
11. 04.00B	36		0.19	0.42	Bal	16.18		0.33	_	8.96			
比較鋼	51	0.03	0.17	0.4%	1 1701	1 20.10			L				

【0032】(実施例3)実施例2と同様の試料を用い、1000℃で100Hr加熱した後、常温、900℃、1000℃で引張試験を行なって表4に示す機械的性質を評価した。比較鋼No、51はオーステナイト系合金であるので、900℃、1000℃で高い強度を有しているが、本発明鋼の中で比較するとMoを添加した

No.36合金の強度が最も高く、次いでTiを添加したNo.31合金とZrを添加したNo.35の強度が高く、特に高温強度を重視する場合、Mo, Ti, Zrの添加が有効であることがわかる。

[0033]

【表4】

試験温度	No.	0.2%耐力	引張強さ	伸び	絞り
(°C)		(Mpa)	(Mpa)	(%)	(%)
常温	31	381.0	473.7	35.1	78.9
	32	280.5	402.9	38.9	6 6.8
	33	269.9	359.7	33.8	68.2
	34	294.3	398.0	38.8	73.1
	35	281.3	410.6	44.4	80.3
	36	357.4	475.6	36.7	80.5
	51	191.3	585.7	58.9	72.3
900	31	10.5	17.4	279.1	99.8
	32	10.4	15.8	165.0	95.8
	33	9.8	13.3	90.4	85.5
	34	10.4	16.0	213.1	99.0
	35	12.4	18.8	145.2	99.3
	36	20.9	26.4	187.9	99,1
	51	70.7	100.2	154.9	82.7
1000	31	6.6	11.3	136.3	98.4
	32	7.5	9.1	170.4	98.9
	33	5.3	8.6	135.4	95.4
	34	8.7	10.1	151.8	97.1
	35	5.7	10.6	179.0	99.4
	36	8.5	15.2	201.8	98.7
	51	38.9	63.1	178.3	91.9

【0034】(実施例4)本発明鋼No.2を1050 C×100Hr加熱し、その酸化被膜を観察した。SE Mによる断面観察結果を図2に示す。Siを主体とする 相が(図中B)表面のCr酸化物と母材との界面に認め られ、耐酸化性向上に寄与していることを示している。 【0035】

【発明の効果】以上述べたように本発明鋼を固体電解質

型燃料電池のセパレーターに用いることにより、1000で付近において良好な電気伝導性を有する酸化被膜を形成すると共に、長時間の使用においても良好な耐酸化性、特に耐剥離性を有し、かつ電解質との熱膨張差が小さく、燃料電池の低コスト化および高性能化を図ることができ、燃料電池の実用化、大型化に大きく寄与できる。

【図面の簡単な説明】

【図1】本発明鋼および比較鋼を大気中1000℃で所 定時間加熱した後に、剥離したスケールの量を示す図で ある。 【図2】本発明網Nの、2を1050℃×100日r加熱し、その酸化被膜部の断面状況を示す金属組織のSE M写真およびED×分析による×線写真である。

【図1】

【図2】 図面代用写真

