桌游类小游戏开发框架

南方小智

2020年10月17日

目录

第一章	概述	4
1.1	安装与设置	4
第二章	基本元素	5
2.1	Board	5
2.2	Action	6
2.3	Status	6
2.4	Player	6
2.5	Judge	6
2.6	Game	7
第三章	卡坦岛设计	8
3.1	游戏状态转换	8
3.2	坐标系设计	9
第四章	AI 设计	10
4.1	AIPlayer	10
4.2	Evaluator	10
4.3	MaxMinAIPlayer	10
4.4	置换表	11
4.5	历史表	11
盆五音	对恋平台	12

第六章	TODO	13
6.1	基础设施	13
6.2	中国象棋	13
6.3	五子棋	14
6.4	卡坦岛	14

第一章 概述

本项目用于实现各类桌游小游戏的游戏流程,AI 玩家,对弈平台等。目前正在开发中国象棋的基本游戏流程和 AI 算法。

1.1 安装与设置

python3 -m pip install termcolor

第二章 基本元素

桌游小游戏基本元素

游戏中的基本元素有, Board, Status, Action, Player, Judge, Game 等。外部程序通过设置 Game, Players, 和 Config, 可以调用该框架。

2.1 Board

游戏中最基本的元素是 Board, 相当与棋盘, 牌桌。其中包含各类游戏物件以及他们的位置, 比如棋子, 纸牌和骰子等。

Board 提供对这些游戏物件的访问和改变, 比如改变某个物件的位置。同时也对 Board 上的基本状态进行检测, 比如在中国象棋中判断当前局面上将帅是否照面。

2.2 Action

Action 代表某个玩家可以在 Board 上的一个操作。比如把某个子移动到另一个地方,称为 MoveAction。可以通过继承 Action 实现更高级的动作,比如悔棋操作。MoveAction 应当是可以撤销的(roll_back),这样可以支持悔棋的功能,以及在 AI 搜索算法中可以利用其实现回溯。

认输也可以是一个 Action。

2.3 Status

当前游戏的所有状态,包括 Board 的格局,当前玩家,获胜玩家,Action 的历史栈等。 获得 Status 就可以知道游戏从初始到现在所有的需要的状态数据,也就是可以通过 Status 对整个游戏过程进行复盘。

2.4 Player

Player 的主要任务是,在自己为主的一轮当中,通过当前的 Status,按照顺序作出一个或多个 Action。

Player 可以是自动的 AIPlayer, 也可以接收输入的真人玩家,网络玩家等。

2.5 Judge

Judge 负责判定 Player 产生的 Action 是否合法,并最终负责执行合法的 Action。Judge 还负责判断游戏是否已经结束,谁是胜利玩家等。Judge 通过 Rule 来进行这些判定,不同的 Rule 集合可以产生略微不同的游戏规则,比如,可以在象棋中去掉将帅不可照面的规则等。

某些特殊的中国象棋残局添加了额外的限定,这种 Judge 和 Rule 解耦分开处理的方式有利于实现这些残局游戏。

Judge 还可以用于控制游戏状态和流程,比如实现回退,保存局面等。

2.6 Game

Game 控制整个游戏的流程,每个游戏由准备阶段开始,然后经过若干轮,每轮以其中一位 Player 为主,并由 Judge 执行操作。最后利用 Judge 判断游戏结束和得出胜利玩家列表。

第三章 卡坦岛设计

3.1 游戏状态转换

卡坦岛玩家状态转换

3.2 坐标系设计

第四章 AI 设计

AIPlayer 可以实现自动的游戏过程,一些通用的 AIPlayer 可以被不同的游戏重复利用。

4.1 AIPlayer

最基本的 AIPlayer 是随机的 AIPlayer。首先根据规则,获取所有可能的 Action,然后在其中随机选择一个 Action 返回。

4.2 Evaluator

Evaluator 是对当前 Board 局面的一个评估函数,返回一个 [0, 1] 的值, 0 代表是最糟糕的局面, 1 代表是最好的局面。

通过 Evaluator, 我们可以获得稍好于随机操作的 AIPlayer。同样的,可以首先根据规则,获取所有可能的 Action。然后执行每个 Action,对新的局面调用评估函数,可以得出执行哪一个 Action 会得到对自己最有利的局面,然后返回这个 Action。

4.3 MaxMinAIPlayer

通过极大极小搜索和 AlphaBeta 剪枝实现多步的搜索。同样的会在搜索的尾部,调用 Evaluator 对局面进行评估。目前的单机搜索深度能够达到 4 到 5 层。

4.4 置换表

置换表可以用于保存某个局面的搜索评分,这样,下一次搜索到同一个局面时,可以检查是否已经有可用的评分了。通过哈希函数可以将局面映射到一个哈希键值,以及为局面加锁以防止冲突局面。

4.5 历史表

历史表对每种移动走法打分,并对打分高的的走法优先搜索,使得 AlphaBeta 剪枝的效率更高。本框架未实现历史表,而是通过对 Action 导致的新局面的评估函数作为该 Action 的分数进行排序。

第五章 对弈平台

目前尚未开始这个阶段的工作。

第六章 TODO

6.1 基础设施

- 平台化
 - 制作游戏 UI。
- Better Engineering
 - 完善 Readme 文档。
 - Modify all assert to exception

6.2 中国象棋

- 将中国象棋相关代码移动到一个 folder 下。
- 判断和棋:长将,长捉,50步无吃子,双方无子可以过河等
- 棋型监测: 双炮, 马后炮, 双车错, 侧面虎等。
- 借助 latex 项目,实现静态棋盘的图片的生成,以及实现动态棋局 gif 图的生成。
- 整理以前写的Javascript 版本的象棋引擎

6.2.1 AI 设计

AI 相关内容更加复杂,需要更长时间的 test, 先 Focus 在基础设施的建设上,为 AI 的开发提供足够的工具集合。

- 添加 Unit Test,对每个部件单独进行测试,比如 player, evaluator, judge 等。现在还有许多需要改进的点,每个点都建立对应的 test cases。
- 制作工具快速添加新棋局到 data 中。

- 残局库: 将象棋软件中的残局库添加到 data 中, 可以通过残局对 AI 进行测试。
- 加强残局能力: 对将军的 action 优先搜索,或者对将军的局面提高评分。可以同时 计算所有的控子情况。通过对局面计算所有的 actions,然后对所有吃子进行加成。
- 假设后手先走,现将后手可能的杀招计算出来,从而能够对 actions 的排序更加精确。
- 如何训练和制作开局库?
- 添加多线程实现 AI 加速。
- 当 AI 意识到自己输了的时候, AI 也要选取最长路径来走。
- MCT:
 - MCT 还有很多不明确的点,先确认算法,然后实现一种更加 readable 的版本,并对每个步骤提供足够的 unit test。
 - 似乎后手的搜索不太起作用。考虑一个残局,先手优先可以吃子,但是后手可以将死先手。这时,先手陷入到了吃子的陷阱,并没有发现会被将死。测试"data/JJ象棋残局第98关.bd"。
- 实现 AI 的自动博弈,并计算每次结局的基本情况和整体胜率。
- 实现训练框架对评估函数进行训练。
- 参加中国象棋在线比赛,构建中国象棋在线比赛平台: UCCI 中国象棋通用引擎协议 版本: 3.0

6.3 五子棋

- 扩展到五子棋的游戏流程。
- 将 MaxMinAIPlayer 通用化,使得在五子棋等其他游戏中也可以直接复用。

6.4 卡坦岛