Algorithms at Scale (Week 13)

Dimensionality Reduction

Giovanni Pagliarini Corentin

Dumery

Summary

- Motivation
- Approaches
- Johnson-Lindenstrauss Transforms
- Fast JL Transform (+ Proof)
- Experiments' Design
- Results

Dimensionality Reduction - Why?

- Reduces cpu workload and storage needed;
- Alleviates curse of dimensionality;
- Allows noise/redundancies removal.

potential performance improvement

Source: https://blog.knoldus.com/machinex-when-data-is-a-curse-to-learning/amp/

Common approaches

- Drop useless variables
 - Variables with **low variance** may not tell anything useful;
 - When variables are **highly correlated**, one of them is unnecessary;

 Derive a new set of variables 	_	Derive	a new	set of	variables
---	---	--------	-------	--------	-----------

- Factor Analysis;

- Principal Component Analysis;

- Linear Discriminant Analysis;

- ...

- Randomized Projections

d ,										
0.3	0.9		0.343							
0.9	0.2		0.43							
0.6	0.0		1.0							

A function that **reduces dimensionality**:

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

A function that **reduces dimensionality**:

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

Without **losing information**:

$$\forall u, v \in X \subset \mathbb{R}^d, (1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$$

A function that **reduces dimensionality**:

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

Without **losing information**:

$$\forall u, v \in X \subset \mathbb{R}^d, (1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$$

Johnson-Lindenstrauss Lemma:

Such a function exists.

[1] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability, New Haven, CI, 1982, Amer. Math. Soc., Providence, RI, 1984, pp. 189-206

Can we build a JL Transform?

- We call **Johnson-Lindenstrauss transform** any function that satisfies these properties.
- Recall that in the lemma f has to satisfy:

$$\forall u, v \in X \subset \mathbb{R}^d, (1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$$

Can we build a JL Transform?

- We call **Johnson-Lindenstrauss transform** any function that satisfies these properties.
- Recall that in the lemma f has to satisfy:

$$\forall u,v \in X \subset \mathbb{R}^d, (1-\epsilon)\|u-v\|^2 \leq \|f(u)-f(v)\|^2 \leq (1+\epsilon)\|u-v\|^2$$
 f depends on X!

Our data is too big, we can't go through the whole input data to define f...

Let's tweak our definition to make it easier.

A function that **reduces dimensionality**:

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

Without losing information with probability at least 3:

$$\forall u, v \in X \subset \mathbb{R}^d, (1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$$

Johnson-Lindenstrauss Lemma:

Such a function exists.

[1] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability, New Haven, CI, 1982, Amer. Math. Soc., Providence, RI, 1984, pp. 189-206

What's the simplest way of making new dimensions you can think of?

Binary coins

- Just take random linear combinations of the original dimensions.
- Very simple to implement:

buildTransform():

P is a $d \times n$ matrix pick P[i][j] in {-1,0,1} return P

transform(vector):

return P*vector

[2] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671-687, 2003.

Matrix multiplications can be slow. How can we make this faster?

The Sparsity principle

• If the matrix is sparse, the multiplication is faster to compute.

					_
0	0	0	0	0	
22	0	0	0	0	
		0			
0	0	0	0	0	3
0	0	41	0	0	
	22 0 0	22 0 0 0 0 0	22 0 0 0 0 0 0 0 0	22 0 0 0 0 0 0 17 0 0 0 0	22 0 0 0 0 0 0 0 17 0 0 0 0 0 0

The Sparsity principle

• If the matrix is sparse, the multiplication is faster to compute.

□Can simply be stored as :

- 22 in (1,1)
- 17 in (2,4)
- 41 in (4,3)

☐ If the fraction of non-zero elements is 1/k, then the multiplication is (approximately) k times faster!

The Sparsity principle

• If the matrix is sparse, the multiplication is faster to compute.

• If the coin-flip is very likely to fail, the transform matrix will be sparse and the operation will be fast.

A problem

What if we miss the 1 in all of our new dimensions?

Fast JL Transform (FJLT)

 We want to pre-process the data to avoid the previous problem (with high probability).

New transform:

[3] Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302-322 (2009)

• P is the same kind of coin-flip matrix but with a very biased coin

• P : coin-flip matrix

 $H = d^{-1/2} \begin{vmatrix} +1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 & +1 & +1 & -1 & -1 \\ +1 & +1 & -1 & -1 & +1 & +1 & -1 & -1 \\ +1 & +1 & +1 & +1 & -1 & -1 & +1 & +1 \\ +1 & +1 & +1 & -1 & -1 & +1 & -1 & +1 \\ +1 & +1 & -1 & -1 & -1 & -1 & +1 & +1 \\ +1 & -1 & -1 & +1 & -1 & +1 & +1 & -1 \end{vmatrix}$

(H is a Walsh-Hadamard matrix. More formally, H is a square matrix of size d and: $H_{i,j} = d^{-1/2}(-1)^{(i-1,j-1)}$)

• P : coin-flip matrix

$$H = d^{-1/2} \begin{vmatrix} +1 & -1 & +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 & +1 & +1 & -1 & -1 \\ +1 & +1 & -1 & -1 & +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 & -1 & -1 & +1 & +1 \\ +1 & +1 & +1 & +1 & -1 & -1 & +1 & +1 \\ +1 & +1 & -1 & -1 & -1 & -1 & +1 & +1 \\ +1 & -1 & -1 & +1 & -1 & +1 & +1 & -1 \end{vmatrix}$$

(H is a Walsh-Hadamard matrix. More formally, H is a square matrix of size d and: $H_{i,j} = d^{-1/2}(-1)^{(i-1,j-1)}$)

☐H spreads out the vector:

$$\begin{bmatrix} +1 & +1 & +1 \\ +1 & -1 & +1 \\ +1 & +1 & -1 \end{bmatrix} \begin{bmatrix} -1 & +1 & +1 \\ -1 & +1 & -1 \end{bmatrix}$$

• P : coin-flip matrix

(H is a Walsh-Hadamard matrix. More formally, H is a square matrix of size d and: $H_{i,j} = d^{-1/2}(-1)^{(i-1,j-1)}$)

☐This will solve our problems

• P : coin-flip matrix

$$H = d^{-1/2} \begin{bmatrix} +1 & +1 & +1 & +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 & +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 & -1 & -1 & +1 & +1 \\ +1 & +1 & +1 & +1 & -1 & -1 & -1 & +1 \\ +1 & -1 & +1 & -1 & -1 & +1 & +1 \\ +1 & +1 & -1 & -1 & +1 & -1 & +1 & +1 \\ +1 & -1 & -1 & +1 & -1 & +1 & +1 \\ -1 & -1 & +1 & -1 & +1 & +1 & -1 \end{bmatrix}$$

$$D = \begin{bmatrix} \pm 1 & & \\ & \ddots & \\ & & \pm 1 \end{bmatrix}$$

• $D = \begin{bmatrix} \pm 1 \\ & & \\ &$

• P : coin-flip matrix

$$\frac{\varepsilon^{-1}\log n}{d}$$
 -sparse

Walsh-Hadamard is well-known: using the FFT the multiplication takes $O(d \log(d))$ time

•
$$D = \begin{bmatrix} \pm 1 & & & \\ & \ddots & & \\ & & \pm 1 \end{bmatrix}$$
 O(d) instead of $O(d^2)$

Unbiased property: $(1 - \epsilon)\alpha \|x\|_1 \le \mathrm{E}[\|y\|_1] \le (1 + \epsilon)\alpha \|x\|_1$

where α is a constant factor. $(\alpha = k\sqrt{2\pi^{-1}})$

Unbiased property: $(1 - \epsilon)\alpha ||x||_1 \le \mathrm{E}[||y||_1] \le (1 + \epsilon)\alpha ||x||_1$

where α is a constant factor. $(\alpha = k\sqrt{2\pi^{-1}})$

Sharp concentration around the mean property:

$$\Pr[(1 - \epsilon) \mathbb{E}[\|y\|_1] \le \|y\|_1 \le (1 + \epsilon) \mathbb{E}[\|y\|_1]] \ge 1 - 1/20$$

Unbiased property: $(1 - \epsilon)\alpha \|x\|_1 \le \mathrm{E}[\|y\|_1] \le (1 + \epsilon)\alpha \|x\|_1$ where α is a constant factor. $(\alpha = k\sqrt{2\pi^{-1}})$

Sharp concentration around the mean property:

$$\Pr[(1 - \epsilon) \mathbb{E}[\|y\|_1] \le \|y\|_1 \le (1 + \epsilon) \mathbb{E}[\|y\|_1]] \ge 1 - 1/20$$

Not-too-big lemma:

$$\max_{\substack{x \in X \\ \|x\|_2 = 1}} \|HDx\|_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

Unbiased property: $(1 - \epsilon)\alpha \|x\|_1 \le \mathbb{E}[\|y\|_1] \le (1 + \epsilon)\alpha \|x\|_1$ where α is a constant factor. $(\alpha = k\sqrt{2\pi^{-1}})$

Sharp concentration around the mean property:

$$\Pr[(1 - \epsilon) \mathrm{E}[\|y\|_1] \le \|y\|_1 \le (1 + \epsilon) \mathrm{E}[\|y\|_1]] \ge 1 - 1/20$$

Not-too-big lemma:

$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||Dx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

• P : coin-flip matrix

□ Problem : H may actually produce much larger values

$$D = \begin{bmatrix} \pm 1 \\ & \ddots \\ & \pm 1 \end{bmatrix}$$

Another problem

What happens if we aggregate a big value with small ones?

Claim:
$$\max_{x \in X} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

By construction: $u_1 = \sum_i \pm d^{-1/2}x_i$

$$Must$$
-remember box $f: \mathbb{R}^d o \mathbb{R}^k, k \ll d$ $u:=HDx$ $H_{i,j}=d^{-1/2}(-1)^{\langle i-1,j-1
angle}$ $D_{i,i}=\pm 1$

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

By construction: $u_1 = \sum_{i=1}^{n} \pm d^{-1/2}x_i$

 $E[e^{sdu_1}] \leftarrow Moment generating function$

$$f:\mathbb{R}^d\to\mathbb{R}^k, k\ll d$$

$$u := HDx$$

$$H_{i,j} = d^{-1/2}(-1)^{\langle i-1,j-1\rangle}$$

$$D_{i,i} = \pm 1$$

Claim: $\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$

By construction: $u_1 = \sum_{i=1}^{n} \pm d^{-1/2}x_i$

$$E[e^{sdu_1}] = \prod_{i=1}^{d} E[e^{sd(\pm d^{-1/2})x_i}]$$
$$= \prod_{i=1}^{d} (\frac{1}{2}e^{s\sqrt{d}x_i} + \frac{1}{2}e^{-s\sqrt{d}x_i})$$

Must-remember box

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

$$u:= HDx$$

$$H_{i,j} = d^{-1/2}(-1)^{\langle i-1,j-1 \rangle}$$

$$D_{i,i} = \pm 1$$

Claim: $\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$

By construction: $u_1 = \sum_{i=1}^{n} \pm d^{-1/2}x_i$

$$E[e^{sdu_1}] = \prod_{i=1}^d E[e^{sd(\pm d^{-1/2})x_i}]$$
$$= \prod_{i=1}^d \cosh(s\sqrt{d}x_i)$$

$$= \prod_{i=1}^{d} \cosh(s\sqrt{dx_i})$$

$$\leq \prod_{i=1} e^{s^2 dx_i^2/2} \qquad \text{(using } \cosh(x) \leq e^{x^2/2}) \qquad H_{i,j} = d^{-1/2} (-1)^{\langle i-1,j-1 \rangle}
\leq e^{s^2 d \|x\|_2^2/2} \qquad D_{i,i} = \pm 1$$

$$E[e^{sdu_1}] \le e^{s^2d||x||_2^2/2}$$

Must-remember box

 $f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$

u := HDx

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

$$\Pr[|u_1| \ge s) = \Pr[u_1 \ge s] + \Pr[|u_1 \le s]$$

By symmetry: $\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$

$$Must-remember box$$

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

$$u:= HDx$$

$$H_{i,j} = d^{-1/2}(-1)^{\langle i-1,j-1\rangle}$$

$$D_{i,i} = \pm 1$$

$$E[e^{sdu_1}] \leq e^{s^2d\|x\|_2^2/2}$$

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

$$\Pr[|u_1| \ge s) = \Pr[u_1 \ge s] + \Pr[|u_1 \le s]$$

By symmetry: $\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$

$$\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$$
$$\le 2\operatorname{E}[e^{sdu_1}]/e^{s^2d}$$

(Markov's inequality)

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

$$u := HDx$$

 $H_{i,j} = d^{-1/2}(-1)^{(i-1,j-1)}$

$$D_{i,i} = \pm 1$$

$$E[e^{sdu_1}] \le e^{s^2d||x||_2^2/2}$$

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

$$\Pr[|u_1| \ge s) = \Pr[u_1 \ge s] + \Pr[|u_1 \le s]$$

By symmetry: $\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$

$$\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$$

$$\le 2\operatorname{E}[e^{sdu_1}]/e^{s^2d}$$

(Markov's inequality)
$$< 2e^{s^2d(\|x\|_2^2/2-1)}$$

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

$$u := HDx$$

$$H_{i,j} = d^{-1/2}(-1)^{\langle i-1,j-1\rangle}$$

$$D_{i,i} = \pm 1$$

$$E[e^{sdu_1}] \le e^{s^2d||x||_2^2/2}$$

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

$$\Pr[|u_1| \ge s) = \Pr[u_1 \ge s] + \Pr[|u_1 \le s]$$

(Markov's inequality)

By symmetry: $\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$

$$\Pr[|u_1| \ge s) = 2\Pr[e^{sdu_1} \ge e^{s^2d}]$$

$$\le 2\operatorname{E}[e^{sdu_1}]/e^{s^2d}$$

$$< 2e^{s^2d(\|x\|_2^2/2-1)}$$

$$\leq 2e^{-s^2d/2} \quad \text{(assuming } ||x||_2 = 1)$$

$$\Pr[|u_1| \ge d^{-1/2} \sqrt{\log(40n)}] \le 2e^{-\log(40n)/2}$$

Must-remember box

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

$$u := HDx$$

$$H_{i,j} = d^{-1/2}(-1)^{\langle i-1,j-1\rangle}$$

$$D_{i,i} = \pm 1$$

$$E[e^{sdu_1}] \le e^{s^2d||x||_2^2/2}$$

Claim:
$$\max_{\substack{x \in X \\ ||x||_2 = 1}} ||HDx||_{\infty} = O(d^{-1/2} \sqrt{\log(n)})$$

$$\Pr[|u_1| \ge d^{-1/2} \sqrt{\log(40n)}] \le 2e^{-\log(40n)/2}$$

 $\le 1/(20nd)$

$$\Pr[\|u\|_{\infty} \ge d^{-1/2} \sqrt{\log(40n)}] \le 1/(20n)$$

$$\Pr[\exists x \in X, \|HDx\|_{\infty} \ge d^{-1/2} \sqrt{\log(40n)}] \le 1/20$$

Must-remember box

$$f: \mathbb{R}^d \to \mathbb{R}^k, k \ll d$$

$$u:= HDx$$

$$H_{i,j} = d^{-1/2}(-1)^{\langle i-1,j-1\rangle}$$

$$E[e^{sdu_1}] \le e^{s^2d||x||_2^2/2}$$

 $D_{i,i} = \pm 1$

Experiments' Design

We assessed the goodness of some dim. reduction methods

Test problems

- K-means Clustering
 - Elliptical clusters
- KNN Clustering
 - Complex shaped clusters

- v-measure
 - Measure of clustering similarity

[4] Andrew Rosenberg, Julia Hirschberg, V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410–420

Datasets

- MNIST
 - d = 28*28 = 784
 - N = 10'000
 - # clusters = 10
- GISETTE
 - d = 5'000
 - -N = 7'000
 - # clusters = 2
- Synthetic high-dimensional data
 - d = ..., 256, 512, 1024
 - -N = 1024
 - # clusters = 16

Methods

- Low variance filter
 - Select the *k* most variant variables
- Sampling variables
 - Random sample *k* variables
- Coin Flip method
 - Linear project on a random *k*-hyperplane
- Fast JL Transform
 - Random projection with improved bounds
- Principal Component Analysis
 - Presumably explained about 20 minutes ago

K-Means, Synthetic data (d = 1024)

K-Means, MNIST (d = 784)

K-Nearest Neighbors MNIST (d = 784)

K-Means, GISETTE (d = 5000)

K-Means, GISETTE (d = 5000)

Bibliography

- [1] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability, New Haven, CI, 1982, Amer. Math. Soc., Providence, RI, 1984, pp. 189-206
- [2] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671-687, 2003
- [3] Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302-322 (2009)
- [4] Andrew Rosenberg, Julia Hirschberg, V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 410–420