Верификация искусственно сгенерированных текстовых фрагментов

Г. М. Грицай

Научный руководитель: к. ф.-м. н. А.В. Грабовой

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 09.04.01 Информатика и вычислительная техника

Поиск сгенерированных текстовых фрагментов

Исследуется проблема верификации текстовых последовательностей.

Цель исследования —

построение методов поиска, верификации и интерпретации сгенерированных текстовых последовательностей.

Требуется предложить

Метод детектирования машинно-сгенерированных текстовых последовательностей, основанный на паттернах присущих искусственно созданным фрагментам, а также метод их интерпретации и обоснования.

Метод решения

Предлагаемый метод основан на контроле длины входной последовательности, множественном тестировании сегментов исходного текста, классификации и мультизадачной регуляризации.

Задача классификации текстовых последовательностей

Пусть задан W — алфавит и множество документов:

$$\mathbb{D} = \{ [t_j]_{j=1}^n \mid t_j \in \mathbf{W}, n \in \mathbb{N} \}.$$

Задана выборка из N документов:

$$\mathbf{D} = igcup_{i=1}^N D^i, D^i \in \mathbb{D}.$$

> Детекция автора всего документа:

$$\phi: \mathbb{D} \to \mathbf{C},$$

где $\mathbf{C} = \{0,1\}$ для бинарной постановки или $\mathbf{C} = \{0,...,k-1\}$ для многоклассовой детекции и k языковых моделей-авторов.

Задача детекции фрагментов в текстовых последовательностях

Детекция фрагментов с генерацией:

Задано множество непересекающихся фрагментов документа:

$$\mathsf{T*} = \{[t_{s_j}, t_{f_j}]_{j=1}^J \mid t_{s_j} = t_{f_{j-1}}, \quad s_j \in \mathbb{N}_0, \quad f_j \in \mathbb{N}\},$$

где t_{s_j} и t_{f_j} — стартовый и завершающий индекс j-ого фрагмента, J — количество фрагментов документа.

Представим модель в виде суперпозиции двух преобразований:

$$\begin{aligned} \mathbf{f}:\mathbb{D}\to\mathbf{T^*}, & \mathbf{g}:\mathbf{T^*}\to\mathbf{C},\\ \phi:\mathbb{D}\to\mathbb{T}, & \mathbb{T}=\{[t_{s_j},t_{f_j},c_j]_{j=1}^J \mid t_{s_j}=t_{f_{j-1}}, s_j\in\mathbb{N}_0, f_j\in\mathbb{N}, c_j\in\mathbf{C}\}, \end{aligned}$$

 $\phi = \mathbf{f} \circ \mathbf{g}$

где f — разделитель текста на непересекающиеся фрагменты, g — бинарная классификация каждого текстового фрагмента.

Бинарная классификация фрагментов

Минимизируем эмпирический риск в наборе данных **D**:

$$\hat{g} = \mathop{\mathsf{argmin}}_{g \in \mathfrak{F}} \sum_{D^i \in \mathbf{D}} \sum_{x_i, c_i \in D^i} [g(t(x_j))
eq c_j], \qquad t: \mathbf{T^*} o (V)^n,$$

где x_j фрагмент документа D^i , t - токенизатор, V - словарь всевозможных токенов предобученной модели, n - фикс. длина входного вектора, а $\mathfrak F$ набор всех рассмотренных алгоритмов для классификации.

Функция потерь задачи классификации:

$$\mathcal{L}_{\mathsf{BCE}}(g, \mathbf{D}) = -rac{1}{|\mathbf{D}|} \sum_{D^i \in \mathbf{D}} \sum_{(x_i, c_j) \in D^i} \left[c_j \cdot \log(\hat{g}(t(x_j))) + (1 - c_j) \cdot \log(1 - \hat{g}(t(x_j)))
ight],$$

Отслеживаемые метрики качества: precision, recall, F_1 -score.

Постановка подхода многозадачного обучения

Пусть М задачам классификации соответствует множество датасетов $\mathbb{D}=\{d_1,d_2,...,d_M\}$. Модель мультизадачного обучения (MTL) с сильным совместным использованием параметров (HPS) состоит из общей подсети h_{θ_s} с параметрами θ_s и T специфичных сетей под конкретную задачу $g_{\theta_1},\ldots,g_{\theta_T}$ с параметрами $\{\theta_i\}$. Все параметры MTL:

$$\theta = \theta_s \cup \bigcup_{i \in [T]} \theta_i.$$

Обозначим L_1, L_2, \dots, L_T функции потерь каждой задачи. В подходе с MTL будем оптимизировать:

$$\mathcal{L}(\theta) = \sum_{\mathsf{x}_i \in \mathbb{D}} \sum_{t \in [T]} L_t(\mathsf{g}_{\theta_t} \circ \mathsf{h}_{\theta_s}(\mathsf{x}_j), c_t).$$

Теорема (Бакстер, 1997). Риск переобучения общих параметров на порядок N меньше, чем переобучение параметров конкретной задачи, где N - количество одновременно обучаемых задач.

Теорема (Грицай, 2024). МТL с HPS путем использования общего представления и признаков вносит в модель неявную регуляризацию, формируя индуктивное смещение, которое снижает сложность Радемахера по сравнению с моделями однозадачного обучения (STL).

Проблемы множественных сравнений

Ранее был получен классификатор \hat{g} , минимизирующий эмпирический риск.

Проверка гипотез: $H_0: \hat{g}(fragment) = 0,$

 H_1 : $\hat{g}(fragment) = 1$.

Оценка вероятности того, что хотя бы один из них будет неверным и контроль ошибок:

$$P(\textit{false positive}) = 1 - (1 - \alpha)^m, \quad \textit{FWER} = P(V > 0), \quad \textit{FDR} = \mathbb{E}(\frac{V}{V + S}),$$

где V — число ложно положительных результатов, а S — число истинно положительных. В текущей задаче используется метод контроля групповой вероятности ошибки: $p-value=1-\hat{g}(t(x_i))$

Бинарная классификация на основе оценки перплексии

Документ задан последовательностью токенов $D^i = [t_j]_{j=1}^{|D^i|}$, где $t_j \in \mathbf{W}$, а $|D^i|$ — количество токенов в документе D^i .

$$extit{PPL}(D^i) = \exp\left(-rac{1}{|D^i|}\sum_{j=1}^{|D^i|}\log P(t_j\mid t_1,t_2,\ldots,t_{j-1})
ight),$$

Гипотеза. Значение перплексии LLM может быть аппроксимировано статистической языковой моделью с помощью словаря N-грамм, составленному по выходам данной большой языковой модели.

$$PPL_{\mathsf{approx}}(D^i) = \exp\left(-rac{1}{K}\sum_{j=1}^K \log P(t_{\mathsf{after}\;\mathsf{n-gram}}\mid \mathsf{n-gram}_j)
ight),$$

где суммирование производится по количеству N-грамм входного текста, общее количество суммирований обозначается K.

Детекция текстовых фрагментов

Минимизируем эмпирический риск в наборе данных **D**:

$$\hat{g} = \operatorname*{argmin}_{g \in \mathfrak{F}} \sum_{D^i \in \mathbf{D}} \sum_{t_k, c_k \in D^i} \left[g(t_k)
eq c_k \right],$$

где $t_k \in V$ — токен из документа D^i , V - словарь всевозможных токенов предобученной модели, а $\mathfrak F$ набор всех рассмотренных алгоритмов для классификации.

Функция потерь задачи классификации токенов:

$$\mathcal{L}_{\mathsf{BCE}}(g, \mathbf{D}) = -rac{1}{|\mathbf{D}|} \sum_{D^i \in \mathbf{D}} \sum_{(t_k, c_k) \in D^i} \left[c_k \cdot \log(\hat{g}(t_k)) + (1 - c_k) \cdot \log(1 - \hat{g}(t_k))
ight],$$

Отслеживаемые метрики качества: precision, recall, F_1 -score.

Интерпретация сгенерированных текстовых фрагментов

Требуется

Обосновать паттерны, повлекшие срабатывание алгоритма детекции машинно-сгенерированных фрагментов.

Архитектура подхода выделяющего компоненты связности с текстами совпадающих паттернов.

Вычислительный эксперимент: архитектура

На рисунке (a) точность классификатора основанного на архитектуре трансформер возрастает с увеличением длины последовательностей, на (b) архитектура подхода детекции фрагментов с варьируемой длиной.

Вычислительный эксперимент: многозадачное обучение

Архитектура MTL и разложение по двум главным компонентам текстов на основе векторного представления. На рисунке (a) структура векторного пространства для модели deberta-v3-base, настроенной в однозадачном режиме, на рисунке (b) - та же модель, но настроенная в режиме MTL.

Результаты вычислительного эксперимента

Язык	Эксперимент	F1-score	Precision	Recall
ru	базовое решение	0.955	0.958	0.955
	мультиязычное обучение	0.964	0.964	0.966
	перевод текстов 50%	0.966	0.968	0.966
	парафраз предложений 100%	0.968	0.970	0.968
en	базовое решение	0.796	0.855	0.802
	мультиязычное обучение	0.823	0.867	0.828
	перевод текстов 50%	0.825	0.868	0.830
	парафраз предложений 100%	0.822	0.866	0.827

Эксперимент с детекцией фрагментов фиксированной длины.

Модель	F1-score	
TF-IDF + LogReg	60.93	
DeBERTa v3 base	78.52	
MTL	83.07	

Эксперимент с детекцией при помощи мультизадачного обучения.

Модель	F1-score
DistilBERT	0.84
Mistral w. QLoRA	0.91
XLNet	0.95
SciBERT	0.96

Эксперимент с детекцией фрагментов варьируемой длины.

Модель	F1-score	Время (с)
TD-IDF	0.90	0.36
DetectGPT	0.37	471
Binoculars	0.92	236
KenLM + ARPA	0.91	0.27

Эксперимент с детекцией при помощи статистических языковых моделей.

Заключение

Сделано:

- Предложены методы поиска и детектирования машинно-сгенерированных фрагментов в текстовых последовательностях, основанные на фиксированной и варьирумеой фрагментации, множественном тестировании и классификации сегментов.
- ▶ Выявлена зависимость качества классификации от длины входной последовательности в моделях классификации с архитектурой трансформер.
- Показано, что многозадачное обучение повышает обобщающую способность модели, формирует кластерную структуру и улучшает заданные метрики качества бинарных задач.
- Описан подход формирования обоснований срабатывания модели детекции на основе фигурирующих паттернов текста.

Планируется:

- Эксперименты с многозадачным обучение для мультиязычных задач.
- ▶ Исследовать иные методы интерпретации сгенерированных фрагментов.

Список работ по теме диссертации

Публикации по итогам конференций, индексируемые в международных базах данных

- Gritsay G., Grabovoy A., Chekhovich Y. Automatic Detection of Machine Generated Texts: Need More Tokens // 2022 Ivannikov Memorial Workshop (IVMEM). – IEEE, 2022.
- Gritsay G., Grabovoy A., et all Automated Text Identification: Multilingual Transformer-based Models Approach // CEUR Workshop Proceedings of SEPLN, 2023.
- Boeva G., Gritsai G., Grabovoy A., et all Team ap-team at PAN: LLM Adapters for Various Datasets // CEUR Workshop Proceedings of CLEF, 2024.
- Gritsai G., Grabovoy A. Automated Text Identification on Languages of the Iberian Peninsula: LLM and BERT-based Models Aggregation // CEUR Workshop Proceedings of SEPLN, 2024.
- Chekhovich Y., Grabovoy A., Gritsai G. Generative AI Models with Their Full Reveal // International Conference on Technology Enhanced Learning in Higher Education, 2024.
- Gritsai G., Grabovoy A., Khabutdinov I. Multi-head Span-based Detector for Al-generated Fragments in Scientific Papers // Workshop on Scholarly Document Processing @ ACL, 2024.
- Gritsai G., Voznyuk A., Khabutdinov I., Grabovoy A. Advacheck at GenAl Detection Task 1: Al Detection Powered by Domain-Aware Multi-Tasking // Workshop on Detecting Al Generated Content @ COLING, 2025.

Публикации в журналах ВАК

- 1. Г. М. Грицай, А. В. Грабовой и др. Поиск искусственно сгенерированных текстовых фрагментов в научных документах // Докл. РАН. Матем., информ., проц. упр., 541, 2023.
- Avetisyan K., Gritsay G., Grabovoy A. Cross-Lingual Plagiarism Detection: Two Are Better Than One // Programming and Computer Software, 2023.
- 3. Г. М. Грицай, И. А. Хабутдинов, А. В. Грабовой Stack More LLM's: Эффективное обнаружение машинно-сгенерированных текстов с помощью аппроксимации значений перплексии // Докл. РАН. Матем., информ., проц. упр., 520, 2024.

Выступления с докладом

- 1. Автоматическая детекция машинно-сгенерированных текстов: нужно больше токенов, Международная конференция «Иванниковские чтения», 2022.
- 2. Многозадачное обучение для распознавания машинно-сген. текстов «65-я научная конференция МФТИ», 2023.
- 3. Automated Text Identification: Multilingual Transformer-based Models Approach, IberLEF@SEPLN, 2023.
- 4. Внимание, документ подозрительный! Жизнь с машинной генерацией в научном сообществе, RuCode, 2024.
- 5. Multi-head Span-based Detector for Al-generated Fragments in Scientific Papers, SDP@ACL, 2024.
- 6. LLM Adapters for Various Datasets, PAN@CLEF, 2024.
- 7. Automated Text Identification on Languages of the Iberian Peninsula, IberLEF@SEPLN, 2024.