Introduction to Algorithms: 6.006

Massachusetts Institute of Technology

Instructors: Zachary Abel, Erik Demaine, Jason Ku

Lecture 23: Course Review

December 6, 2018

Lecture 23: Course Review

High Level

- What is a problem? What is an algorithm? (R01)
- Analyzing running time: How to count?
 - Asymptotics (R01)
 - Recurrences (R02)
 - Model of computation: Word-RAM (R01), Comparison (R07)
- How to solve an algorithms problem
 - Reduce to a problem you know how to solve
 - * Use a data structure you know (e.g. search)
 - * Use an algorithm you know (e.g. **sort**)
 - Design a new algorithm (harder, mostly in 6.046)
 - * Brute Force
 - * Decrease & Conquer
 - * Divide & Conquer
 - * Dynamic Programming
 - * (Greedy/Incremental)
 - Some problems not solvable efficiently! (Complexity)

Data Structure

Reduce your problem to using a data structure storing a set of items, supporting certain search and dynamic operations efficiently. You should know **how** each of these data structures implement the operations they support, as well as be able to **choose** the right data structure for a given task. (R04-R08)

Sequence	Operation, Worst Case $O(\cdot)$					
Interface	Static			Space		
Data Structure	at(i)	left()	insert_at(i,x)	insert_left(x)	insert_right(x)	$\times n$
Implementation	set(i,x)	right()	delete_at(i)	delete_left()	delete_right()	
Array	1	1	n	n	n	~ 1
Linked List	n	1	n	1	1	~ 3
Dynamic Array	1	1	n	n	$1_{(a)}$	~ 4

Set Interface	Operation, Worst Case $O(\cdot)$						
	Static	Dynamic (D)		Order (O)		D+O	Space
Data Structure	find(k)	insert(x)	delete(k)	find_	find_	delete_	$\sim \times n$
Implementation				next(k)	max()	max()	
Unsorted Array	n	n	n	n	n	n	1
Linked List	n	1	n	n	n	n	3
Dynamic Array	n	$1_{(a)}$	n	n	n	n	4
Sorted Array	$\lg n$	n	n	$\lg n$	1	n	1
Max-Heap	n	$\lg n_{(a)}$	n	n	1	$\lg n$	1
Balanced BST (AVL)	$\lg n$	$\lg n$	$\lg n$	$\lg n$	(1)	$\lg n$	5
Direct Access	1	1	1	u	u	u	u/n
Hash Table	$1_{(e)}$	$1_{(e,a)}$	$1_{(e,a)}$	n	n	n	4

Algorithm

Reduce your problem to a classic problem you already know how to solve using known algorithms. You should know **how** each of these algorithms can be implemented to solve each problem, as well as be able to **choose** the right algorithm for a given task.

• Sort *n* integers (R02-R08)

Algorithm	Time $O(\cdot)$	In-place?	Stable?	Comments
Insertion Sort	n^2	Y	Y	O(nk) for k -proximate
Selection Sort	n^2	Y	N	O(n) swaps
Merge Sort	$n \lg n$	N	Y	stable, optimal comparison
Heap Sort	$n \lg n$	Y	N	low space, optimal comparison
AVL Sort	$n \lg n$	N	Y	good if also need dynamic
Counting Sort	n	N	Y	$u = \Theta(n)$ is domain of possible keys
Radix Sort	cn	N	Y	$u = \Theta(n^c)$ is domain of possible keys

- Graph exploration, count connected components
- Topological sort, Cycle detection, negative weight cycle detection
- Single Source Shortest Paths (SSSP), Relaxation framework
- All Pairs Shortest Paths (APSP), SSSP |V| times, or Johnson's

Restricti	ons		SSSP Algorith	m
Graph	Weights	Name	Running Time $O(\cdot)$	How it works
DAG	Any	DAG Relaxation	V + E	Relax in topological order
General	Unweighted	BFS	V + E	Relax level by level
General	Nonnegative	Dijkstra	$ V \log V + E $	Relax in priority order
General	Any	Bellman-Ford	V E	Relax in $ V $ rounds

Recursive Algorithm Paradigms

Class	Subproblem Dependency Graph
Brute Force	Star
Decrease & Conquer	Chain
Divide & Conquer	Tree
Dynamic Programming	DAG (Overlapping subproblems)

Dynamic Programming Steps (SR. BST)

- 1. Define **Subproblems** subproblem $x \in X$
 - Describe the meaning of a subproblem **in words**, in terms of parameters
 - Often subsets of input: prefixes, suffixes, contiguous subsequences
 - Often record partial state: add subproblems by incrementing some auxiliary variables
- 2. **Relate** Subproblems x(i) = f(x(j),...) for one or more j < i
 - State topological order to argue relations are acyclic and form a DAG
- 3. Identify **Base** Cases
 - State solutions for all reachable independent subproblems
- 4. Compute **Solution** from Subproblems
 - Compute subproblems via top-down memoized recursion or bottom-up
 - State how to compute solution from subproblems (possibly via parent pointers)
- 5. Analyze Running Time
 - $\sum_{x \in X} \operatorname{work}(x)$, or if $\operatorname{work}(x) = W$ for all $x \in X$, then $|X| \times W$