TD1

Mécanismes cryptographique de la sécurité

Exercice 1:

Soit un système de communication à N nœuds où les messages échangés entre les nœuds peuvent être facilement écoutés. Quel est le nombre de clés à maintenir par chaque nœud pour assurer une communication secrète entre chaque paire de nœuds :

- a. Pour un système à clés symétrique ?
- b. Pour un système à clé asymétrique ?

Exercice 2:

Soit **M** un message et **K** une clé aussi longue que **K**. On note $C=M \oplus K$ le message **M** chiffré avec **K**. Si m[i] est le i^{ème} bit du message m et k[i] est le i^{ème} bit de la clé K, alors le i^{ème} bit de $M \oplus K$ est égal à $(M[i] \oplus K[i])$

- 1) Montrez que le "ou exclusif 🕀 " est une technique de chiffrement symétrique.
- 2) Est-il pratique de stocker des clés symétriques aussi longues que les messages à chiffrer?
- 3) Soit le protocole suivant qui exploite le "ou exclusif ⊕ " pour le chiffrement d'un message M. Quand A veut envoyer un message M à B, il génère une clé K_A aussi longue que M. B génère aussi une clé K_B aussi longue que M.
 - c. Comment B peut-il déterminer la taille de la clé K_B?
 - d. Comment A peut-il déterminer M⊕K_B à partir de M⊕K_A⊕K_B ?
 - e. Comment B retrouve t-il M?
 - f. Si tous les messages échangés peuvent être écoutés, ce protocole permet-il la confidentialité.

Exercice 3:

Soit l'échange de messages suivant entre 3 entités A, B et C (un intrus) utilisant un système de chiffrement asymétrique. Nous utilisons le format suivant (source, destination, message)

Université Tunis Elmanar ISI

- 1) Quel est le traitement **Trt** effectué par C.
- 2) A et B se rendent-ils compte de l'existence de l'intrus C
- 3) Proposer une solution permettant de remédier à cette attaque

Exercice 4 : cryptographie symétrique

Soit **M** un message divisé en blocs $\{x_1,x_2,x_3,...x_p\}$ chacun de taille **n** bits et soit **K** une clé de même taille que les blocs (n bits). Soit $\{c_1,c_2,c_3,...c_p\}$ les cryptogrammes des blocs obtenus en appliquant la clé K aux blocs. Le chiffrement des blocs se fait selon le schéma suivant:

 C_0 = IV (valeur initiale); pour i de 1 à p, c_i = $E_K(C_{i-1} \oplus x_i)$

- 1) La fonction E_K est inversible et son inverse est D_K . Montrer que l'opération de déchiffrement est $x_j = C_{j-1} \oplus D_K$ (C_j) (rappel : $A \oplus A = 0$; $A \oplus 0 = A$, $A \oplus B = B \oplus A$)
- 2) Peut-on chiffrer un bloc quelconque du message M sans chiffrer les blocs qui le précèdent ? Expliquer ?
- 3) Peut-on déchiffrer un bloc quelconque c_i sans déchiffrer les blocs qui le précèdent ? Expliquer ?
- 4) Peut-on déchiffrer un bloc c; en l'absence des autres blocs chiffrés ? Expliquer ?
- 5) Prenons le cas où $\mathbf{E}_{K}(\mathbf{x}) = \mathbf{D}_{K}(\mathbf{x}) = \mathbf{K} \oplus \mathbf{x}$. Supposons qu'un attaquant a pu récupérer deux blocs consécutifs $(\mathbf{x}_{j-1}, \mathbf{x}_{j})$ ainsi que leurs cryptogrammes correspondants $(\mathbf{c}_{j-1}, \mathbf{c}_{j})$. Montrer que cet attaquant peut en déduire la clé de chiffrement K.
- 6) Soient A et B deux entités utilisant le procédé de chiffrement décrit dans cet exercice. La clé K doit être échangée d'une façon **sécurisé et authentifié**. Pour cela A et B font appel au chiffrement asymétrique. A calcule la clé K, la chiffre pour obtenir KC et l'envoi à B.
 - a. Avec quelle clé A doit chiffrer K?
 - b. Avec quelle clé B déchiffre KC?
 - c. Expliquer pourquoi cette méthode n'est pas authentifiée et proposer une solution ?

Exercice 5: chiffrement RSA

Question 1 : Effectuer le chiffrement et le déchiffrement en utilisant l'algorithme RSA pour les valeurs suivantes:

Les deux nombres premiers p=3 et q=11 e=7 Le message M=5

Question 2 : Soit un système à clé publique utilisant le RSA, vous interceptez le texte chiffré C=10 envoyé par un utilisateur dont la clé publique est e=5 et n=35.

Que vaut M?

Quelle est la clé privée de cet utilisateur ?

TD2: corection

Mécanismes cryptographique de la sécurité

Exercice 1:

Soit un système de communication à N nœuds où les messages échangés entre les nœuds peuvent être facilement écoutés. Quel est le nombre de clés à maintenir par chaque nœud pour assurer une communication secrète entre chaque paire de nœuds :

- g. Pour un système à clés symétrique ? → (N-1) clés
- h. Pour un système à clé asymétrique ? → 2 clés : sa clé privée et sa clé publique

Exercice 2:

Soit M un message et K une clé aussi longue que M. On note $C=M \oplus K$ le message M chiffré avec K. Si m[i] est le ième bit du message m et k[i] est le ième bit de la clé K, alors le ième bit de $M \oplus K$ est égal à $(M[i] \oplus K[i]))$

- 4) Montrez que le "ou exclusif \oplus " est une technique de chiffrement symétrique.
- → On chiffre et on déchiffre avec la même clé K : C=M⊕K → C⊕K=M⊕K ⊕K=M
 - 5) Est-il pratique de stocker des clés symétriques aussi longues que les messages à chiffrer?
- → C'est inadéquat car il faut changer la clé pour chaque message et il faut la transmettre au destinataire dans un canal sécurisé.
 - 6) Soit le protocole suivant qui exploite le "ou exclusif ⊕ " pour le chiffrement d'un message M. Quand A veut envoyer un message M à B, il génère une clé K_A aussi longue que M. B génère aussi une clé K_B aussi longue que M.
 - i. Comment B peut-il déterminer la taille de la clé K_B?
 - → même taille que M⊕K A
 - j. Comment A peut-il déterminer M⊕K_B à partir de M⊕K_A⊕K_B?
 - \rightarrow M \oplus K A \oplus K B \oplus K A=M \oplus K B
 - k. Comment B retrouve t-il M?
 - **→**M⊕K B⊕K B=M
 - 1. Si tous les messages échangés peuvent être écoutés, ce protocole permet-il la confidentialité.
 - → non, un ou exclusif entre les trois message donnera M

Exercice 3:

Soit l'échange de messages suivant entre 3 entités A, B et C (un intrus) utilisant un système de chiffrement asymétrique. Nous utilisons le format suivant (source, destination, message)

- 4) Quel est le traitement Trt effectué par C.
 - → déchiffrement avec Pub C puis chiffrement avec Pub B
- 5) A et B se rendent-ils compte de l'existence de l'intrus C
 - → non
- 6) Proposer une solution permettant de remédier à cette attaque
 - → utiliser l'authentification par certificat qui assure l'appartenance d'une clé publique à une entité

Exercice 4:

Soit **M** un message divisé en blocs $\{x_1,x_2,x_3,...x_p\}$ chacun de taille **n** bits et soit **K** une clé de même taille que les blocs (n bits). Soit $\{c_1,c_2,c_3,...c_p\}$ les cryptogrammes des blocs obtenus en appliquant la clé K aux blocs. Le chiffrement des blocs se fait selon le schéma suivant:

$$C_0$$
= IV (valeur initiale); pour i de 1 à p, c_j = $E_K(C_{j-1} \oplus x_j)$

1) La fonction E_K est inversible et son inverse est D_K . Montrer que l'opération de déchiffrement est $x_i=C_{i-1} \oplus D_K$ (C_i) (rappel : $A \oplus A=0$; $A \oplus 0=A$, $A \oplus B=B \oplus A$)

$$c_{j}=E_{K}(C_{j-1} \oplus x_{j}) \Rightarrow D_{K}(c_{j})=D_{K}(E_{K}(C_{j-1} \oplus x_{j}))$$

$$\Rightarrow D_{K}(c_{j})=C_{j-1} \oplus x_{j}$$

$$\Rightarrow C_{j-1} \oplus D_{K}(c_{j})=C_{j-1} \oplus C_{j-1} \oplus x_{j}$$

$$\Rightarrow C_{j-1} \oplus D_{K}(c_{j})=x_{j}$$

Université Tunis Elmanar ISI

- 2) Peut-on chiffrer un bloc quelconque du message M sans chiffrer les blocs qui le précèdent ? Expliquer ?
 - \rightarrow Non, selon la formule $x_j=C_{j-1}\oplus D_K$ (C_j), le chiffrement de x_j nécessite C_{j-1}
- 3) Peut-on déchiffrer un bloc quelconque c_i sans déchiffrer les blocs qui le précèdent ? Expliquer ?
 - → Oui, x_i ne dépend pas de x_{i-1}
- 4) Peut-on déchiffrer un bloc c_i en l'absence des autres blocs chiffrés ? Expliquer ?
 → Non, selon la formule x_i=C_{i-1}⊕D_K (C_i) , le déchiffrement de c_i nécessite C_{i-1}
- 5) Prenons le cas où $\mathbf{E_K(x)} = \mathbf{D_K(x)} = \mathbf{K} \oplus \mathbf{x}$. Supposons qu'un attaquant a pu récupérer deux blocs consécutifs (x_{j-1}, x_j) ainsi que leurs cryptogrammes correspondants (c_{j-1}, c_j) . Montrer que cet attaquant peut en déduire la clé de chiffrement K.
 - Dans ce cas : $c_j=K \oplus C_{j-1} \oplus x_j \longrightarrow K=c_j \oplus C_{j-1} \oplus x_j$
- 6) Soient A et B deux entités utilisant le procédé de chiffrement décrit dans cet exercice. La clé K doit être échangée d'une façon **sécurisé et authentifié**. Pour cela A et B font appel au chiffrement asymétrique. A calcule la clé K, la chiffre pour obtenir KC et l'envoi à B.
 - a. Avec quelle clé A doit chiffrer K ?

 avec la clé publique de B
 - b. Avec quelle clé B déchiffre KC ? → avec sa clé privée
 - c. Expliquer pourquoi cette méthode n'est pas authentifiée et proposer une solution ?
 - → Rien ne garantit l'appartenance de la clé publique de B à B.

Solution : certification de la clé publique de B.

Exercice 5: chiffrement RSA

Question 1 : Effectuer le chiffrement et le déchiffrement en utilisant l'algorithme RSA pour les valeurs suivantes:

Les deux nombres premiers p = 3 et q = 11; e = 7; Le message M = 5

- → N=pq=3*11=33 et φ =(p-1)(q-1)=2*10=20
- \rightarrow e.d=1 mod $\phi \rightarrow 7*d=1$ mod 20 \rightarrow d=3

Chiffrement : $C=M^e \mod N=5^7 \mod 33=14$

Déchiffrement : $M = C^d \mod N \rightarrow M = C^3 \mod 33 = 14^3 \mod 33 = 5$

Question 2 : Soit un système à clé publique utilisant le RSA, vous interceptez le texte chiffré C=10 envoyé par un utilisateur dont la clé publique est e = 5 et n = 35. Que vaut M ? Quelle est la clé privée de cet utilisateur ?

→ N=35 → p*q=35 → p=5 et q= 7 ou p=7 et q=5 →
$$\phi$$
=(p-1)(q-1)=6*4=24

- \rightarrow e.d=1 mod $\phi \rightarrow$ 5*d=1mod 24 \rightarrow d=5
- \rightarrow M= C^d mod N \rightarrow M= 10⁵mod 35 =5