aracne.networks, a data package containing gene regulatory networks assembled from TCGA data by the ARACNe algorithm

Federico M. Giorgi^{1,2}, Mariano J. Alvarez^{1,3}, and Andrea Califano¹

¹Department of Systems Biology, Columbia University, New York, USA ²CRUK, Cambridge University, Cambridge, UK ³DarwinHealth Inc., New York, USA

June 10, 2016

1 Overview of aracne.networks data package

The aracne.networks data package provides context-specific transcriptional regulatory networks (also called interactomes or regulons) reverse engineered by the ARACNe algorithm from The Cancer Genome Atlas (TCGA) RNAseq expression profiles.

ARACNe networks This package contains 24 Mutual Information-based networks assembled by ARACNe-AP [1] with default parameters (MI p-value = 10^{-8} , 100 bootstraps and permutation seed = 1). ARACNe-AP was run on RNA-Seq datasets normalized using Variance-Stabilizing Transformation [2]. The raw data was downloaded on April 15th, 2015 from the TCGA website [3]. We follow the TCGA naming convention (e.g. BRCA = Breast Carcinoma) to name the individual context-specific networks.

```
> library(aracne.networks)
> data(package="aracne.networks")$results[, "Item"]

[1] "regulonblca" "regulonbrca" "reguloncesc" "reguloncoad" "regulonesca"
[6] "regulongbm" "regulonhnsc" "regulonkirc" "regulonkirp" "regulonlaml"
[11] "regulonlihc" "regulonluad" "regulonlusc" "regulonov" "regulonpaad"
[16] "regulonpcpg" "regulonprad" "regulonread" "regulonsarc" "regulonstad"
[21] "regulontgct" "regulonthca" "regulonthym" "regulonucec"
```

Write a network to file The package contains a function to print individual networks into a file. Four columns will be printed: the Regulator id, the Target id, the Mode of Action (MoA, inferred by Spearman correlation analysis [4]) that indicates the sign of the association between regulator and target gene and ranges between -1 and +1, the Likelihood (essentially an edge weight that indicates how strong the mutual information for an edge is when compared to the maximum observed MI in the network, it ranges between 0 and 1). Further details about the regulon object as a model for transcriptional regulation are present in the manuscript [4].

In the following example, we print the first 10 interactions from the bladder carcinoma (blca) network. The network genes are identified by Entrez Gene ids.

```
> data(regulonblca)
> write.regulon(regulonblca, n = 10)
```

Regulator	Target	MoA	likelihood	
10002	2648	0.9946895912704	63 0.886774633189913	
10002	677827	0.11617534564	0136 0.707841406455471	
10002	80152	0.999770437015	603 0.950286744281199	
10002	284382	-0.0368424333	564396 0.04197620498593	333
10002	9866	0.9720665981544	48 0.442238853411591	
10002	283422	-0.5740849293	85018 0.260828476620346	3
10002	221613	-0.09592426018	820319 0.71790470654997	76
10002	348174	0.95394393409	1558 0.814491117578869	
10002	373509	0.70469138571	9852 0.244337186726846	
10002	8803	-0.9591656560869	931 0.831653033754096	

References

- [1] Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.
- [2] Anders, S and Huber W. (2010) Differential expression analysis for sequence count data. Genome Biol 2010;11(10):R106
- [3] Weinstein J.N. et al. (2013) The cancer genome atlas pan-cancer analysis project. Nature Genetics 45, 1113-1120 2013
- [4] Alvarez M.J. et al. (2016) Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nature Genetics in press.