Data Science Project 2. Airline Tweets

Team 4
George Hill, Koti Jaddu, Lauren Alie, Rory Tallon, David Marples, Oliver Little

The Problem

Analysis of tweets about US airlines

- Gain insights from exploratory analysis
- Compare non neural network and neural network models
- Understand public sentiment towards the airlines and reasons
- Consider future technical and business steps in this investigation

The Approach

- Discuss potential insights
- Migrate tweet data into a database
- Gather data from other datasets to explore
- Research different approaches, then assign to individuals
- Finalise model results & develop presentation

Working as a Team

- Discord
 - Discuss the task
 - Share understanding
 - Hold weekly meetings
- GitHub
 - Collaborate on code
 - Kanban board to assign tasks and keep track of progress in an agile way
- Google Slides
 - Collaborate on presentation

Preliminary Analysis

First look at the data

- JetBlue is labelled wrong
- Not all columns filled for all tweets
 - Tweet coordinates few and far between
- Tweet Location appears to be user-reported
 - e.g. Tweets from "1/1 Loner Squad" and "somewhere celebrating life"
- Sarcasm consistently classified wrong
 - \circ e.g. "plus you've added commercials to the experience... tacky." \rightarrow Positive!?

Preliminary Analysis

Worst Airlines by proportion of negative tweets

Anything you notice about data?

Neutral

Custom Location Analysis

Attempted to infer location from the text:

- Specific keywords that typically had a location mentioned before or after.
- Used lists of airport codes and city names to work out if a word was actually a location

Relatively successful:

- Over 2000 tweets in the dataset had a match in one of the location lists.
- Some locations were particularly negatively mentioned, others were positive.

Issues:

- Limited transferability to other datasets.
- Could be improved by combining with latitude/longitude location.

Latent Semantic Analysis

Process of automatically categorising the dataset into topics. Two methods:

- Singular Value Decomposition
- Latent Dirichlet Allocation

Findings:

- Same topics generally appear across the whole dataset, even if the dataset is categorised by airline.
- Some patterns visible, but issues with tweets being in the wrong category.
- Manual method produce better results.

Preprocessing

- Remove non-alphabetical characters
- Convert to lowercase
- Stopwords and length limit
- N-grams
- Stemming/Lemmatization
- TF-IDF
- Emoji Translation
- Converting #HashtagsWithTitleCase to words
- Removing some abbreviations such as w/, &, and -->
- Removing punctuation and contractions

Modelling

Baseline Modelling Approaches

All models used pre-processed text from tweets.csv as data for classification, correlating the words with the "airline_sentiment".

- 1) Dictionary-based:
 - Dictionary of all words constructed (~8200 words)
 - "Key" words ("high" frequency; strong positive or negative associations) identified (~1800 words)
 - Test tweets analysed by identifying key words to assign a classification. Accuracy 73%.
 - Vector created from the included key words for...
- 2) Simple neural net: 1 minute to train; Accuracy 80%
- 3) Naive Bayes: tweets clustered by similar word content. Training time 0.2 seconds; Accuracy 78%
- 4) Logistic Regression: Training time 3.4 seconds; Accuracy 67%

Recurrent Neural Network

Accuracy: ~90.2%

Training time: ~34 minutes

Prediction time: ~1.342s

Embedding Layer -> LSTM Layer -> LSTM Layer -> Dense Layer

Extension Data

Extension Data: Analysis

Two new sets of tweet data (Jet2, 393 tweets; Royal Caribbean, 244 tweets), graded by 3 humans.

Jet2 data:

- 103 disagreements out of 1179 ratings (~9%): so human grading is quite robust
- 18% positive, and 30% negative
- Dictionary classifier scored ~53% (with no retraining)
- Basic NN classifier scored ~57% (training on ¾, testing on ¼)

Royal Caribbean data:

- 68 disagreements out of 732 ratings (~9%)
- 36% positive, and 22% negative. Many tweets anticipated the cruise.
- Dictionary classifier scored ~52% (with no retraining)
- Basic NN classifier scored ~49% (training on ¾, testing on ¼)

Extension Data: Testing RNN

Two new sets of tweet data (Jet2, 393 tweets; Royal Caribbean, 244 tweets), graded by 3 humans.

Jet2 data:

• LSTM RNN classifier scored ~ 87.7%

Royal Caribbean data:

• LSTM RNN classifier scored ~ 86.5%

Next Steps

Choosing a Model: Business Factors

- Accuracy
- Training/Testing time
- Cost (including staff)
- Adaptability
- Relevant to business goals?
- Technical Constraints can we store/process the data fast enough?
- Scalability/Reusability
- Governance
- Stakeholder Satisfaction
- Easy interpretation by non-technical users

Business Next Steps

- Next steps for airline(s)
 - Data from beyond Feb '15 do opinions change over time?
 - Look at competitors in more detail are we better at something than our competitors (and can we market that?)
- Improve Topic Detection (LSA) to provide better feedback on what causes the most customer complaints.

•

Technical Next Steps

- Data from beyond Feb '15 do opinions change over time?
- NN vs Non-NN
 - NN has better performance in general
 - NN requires lots of training data
 - Training required for NN but not non-NN
 - o 2 sides
- Branch out into different industries (cruise lines, train companies, etc.) to improve accuracy and applicability to more problems
- Broaden range of topics considered in sentiment decision-making

Lessons Learned

- More loosely-defined problem than last time requires more out-of-the-box thinking
- Importance of using other datasets to validate findings
- NLP is technically challenging
- Improved teamwork
- Made use of shared code and data

Any Questions?

Convolutional Neural Network with Data Augmentation

Accuracy: ~99.7%

Training Time: 6120s

Prediction Time: 1.61s

General Structure

- Exploratory analysis
- Initial Insights
- Basic Model
- Improving our model
 - Preprocessing
- Applying model to other data (our USP!)
- Next Steps
 - Technical
 - Business
- Lessons Learned 🙄

Basic Analysis of Airline Tweets

- 1) Many more tweets during the day (~ 1000 at 9am, vs ~100 at 1am)
- 2) Most tweets to airlines are negative (~2/3 vs 1/6 positive)
- 3) They are proportionally more negative at night.
- 4) Some airlines cop it worse than others:
 - Virgin America few tweets, but most positive (30%) and fewest negative (35%):
 - Southwest and Delta ~25% positive and ~50% negative,
 - United, US Airways and American ~10% positive and ~70% negative.
- 5) Time zone analysis: some surprising blips (artifacts?). Europeans seem a little less negative, and Australians are so laid back they don't give a 4X.

Basic Analysis of Airline Tw

- 1) Many more tweets during the day (~ 1000 at 9am, vs ~ 100 at
- 2) Most tweets to airlines are negative (~2/3 vs 1/6 positive)

David's Dictionary and Keys

- 2) Gave a dictionary of ~8200 words from the given tweets, with their positive and negative associations.
- 3) Filtered to get a "key" set which
 - (a) had at least 4 uses and
 - (b) had negative or positive associations "significantly" different from the overall set.

Current set has ~1800 members.

David's Dictionary Classifier

- 1) Looks at text of tweet:
 - Find "key" words, and
 - Calculate a weighted sentiment score, and
 - Use that to classify the tweet.

Gives about 73% accuracy on the main set.

- 2) Generates:
 - Vectors (~1800 dimensions, one for each key word), and
 - "true" sentiment labels,

to allow training of a NN

David's Simple Neural Net Classifier

- 1) Feed the vectors and labels constructed above to:
- 2) A simple 3 layer neural net constructed in Tensorflow:
 - Input layer determined dynamically by vector size
 - Hidden layer of 512 neurons
 - Output layer of 3 neurons, corresponding to positive, neutral and negative sentiment
- 3) Train with $\frac{3}{4}$ of the data for 10 epochs, and test on remaining $\frac{1}{4}$.

Took ~ 1 minute to train. Achieved 80% accuracy.

Naive Model: Naive Bayes

Accuracy: ~78.2%

Training time: ~0.188s

Prediction time: ~0.043s

Naive Model: Logistic Regression

Accuracy: ~67.2%

Training time: ~3.4s

Prediction time: ~0.12s