figures_and_results.md 9/23/2019

data for P(饱和蒸气压, KPa)-T(温度, °C):

T (°C)	32	40	49.99	52.46	54.98	57.48	59.95	62.48	64.96	67.49	69.98	72.49	75	77.51
P (KPa)	19.74	23.13	30.15	34.07	38.24	42.83	47.73	53.26	59.21	65.96	73.09	81.13	89.4	98.73

大气压下乙醇的沸点: 77.94°C (下降法), 78.48°C (上升法), 取均值为78.21°C.

figures and results.md 9/23/2019

初始的几个数据点 (T=32, 40, 50°C) 偏离直线,拟合的时候舍去,拟合得到的表达式为 y = -4852x + 13.8, $R^2 = 0.99999$

带入相应物理量可知,表达式为 $ln(\frac{p}{p^{\theta}})=-4852 imes \frac{1}{T}+13.8$, 若外压为 $100.0KPa~(p^{\theta})$, 则 $T_b=78.44\,^{\circ}C$.

根据 Clausius-Clapeyron 方程, 有

$$ln(rac{p}{p^{ heta}}) = -rac{\Delta_{vap}H_m}{RT} + A$$

直线的斜率为

$$-rac{\Delta_{vap}H_m}{R}$$

所以

$$\Delta_{vap}H_m = -k \times R$$

k 是直线的斜率,R 是理想气体常数

代入计算得, $\Delta_{vap}H_m=40339.5~J/mol$, 与文献值接近 ($42.3\pm0.4~KJ/mol$, 来自 NIST Chemistry WebBook)

气化熵定义为

$$\Delta_{vap}S = rac{\Delta_{vap}H_m}{T_b}$$
 $(T_b$ 是沸点 $)$

代入计算得, 气化熵 = $114.95 \ J/(mol \cdot K)$

Trouton规则:

很多种液体的气化熵是一个定值,大约是 10.5R (R 为理想气体常数), 或 85-88 $J/(mol\cdot K)$

显然乙醇不符合Trouton规则,这是合理的. 因为Trouton规则本来就不适用于能形成分子间氢键的液体: 分子间氢键会使液体的熵变小,故液体气化时的熵变增大,也就是气化熵变大.