Tytuł: **Drukarka**

Autorzy: Jakub Róg (JR), Jan Strączek (JS)

Ostatnia modyfikacja: 01.09.2024

Spis treści

Ι.	Repozytorium git	,. I
2.	Wstęp	1
3.	Specyfikacja	1
	3.1. Opis ogólny algorytmu	1
	3.2. Tabela zdarzeń	
4.	Architektura	
	4.1. Moduł: top	
	4.1.1. Schemat blokowy	
	4.1.2. Porty	
	a) input	
	b) output	
	4.1.3. Interfejsy	
	a) vga_if	
	4.2. Rozprowadzenie sygnału zegara	
5.	Implementacja	
	5.1. Lista zignorowanych ostrzeżeń Vivado	
	5.2. Wykorzystanie zasobów	
	5.3. Marginesy czasowe	
6	Film	Δ

1. Repozytorium git

https://github.com/Jan-Straczek/UEC_Projekt_1.git

2. Wstęp

W ramach niniejszego projektu podjęliśmy się realizacji urządzenia, które łączy w sobie elementy mechaniki, elektroniki i programowania. Pierwotnie miała to być drukarka 3d, ale niestety zatrzymał nas budżet, dlatego wykonaliśmy urządzenie które zamiast ekstrudera do filamentu wykorzystuje przymocowany długopis umożliwiający pisanie na kartce papieru, działanie i program w obu przypadkach byłoby praktycznie identyczne. Oprócz tworzenia napisu na kartce wyświetlamy go w czasie rzeczywistym na monitorze, inspiracją dla nas był popularny program graficzny 'Paint'. Zbudowane przez nas urządzenie może poruszać się w 3 osiach, oś X oraz Y zbudowana została za pomocą silników krokowych i osi pozyskanych z czytników dysków DVD, oś Z to platforma z przymocowanym narzędziem do pisania która także kontrolowana jest za pomocą silniku krokowego. "Mózgiem" naszej drukarki jest układ fpga BASYS3, który wysyła impulsy na sterowniki silników krokowych DRV8825, oraz odbiera sygnał z czujników krańcowych umożliwiających kalibrację współrzędnych wszystkich osi. Urządzenie może pracować w

trybie manualnym tzn. kontroli za pomocą przycisków, oraz w trybie automatycznym w którym urządzenie samo wypisuje zaprogramowany wcześniej napis.

3. Specyfikacja

3.1. Opis ogólny algorytmu

3.2. Tabela zdarzeń

Zdarzenie	Kategoria	Reakcja systemu
Przyciski btnU,btnD,btnL,btnR	Interface VGA	Poruszanie myszką po ekranie
Przyciski btnU,btnD,btnL,btnR	Drukarka	Poruszanie osiami X oraz Y
Switch sw1	Interface VGA	Rysowanie w białym obszarze
Switch sw1	Drukarka	Podnoszenie długopisu na osi Z
Switch sw0	Drukarka	Opuszczanie długopisu na osi Z
Switch sw13	Drukarka	Rysowanie napisu MTM
Switch sw14	Drukarka	Kalibracja osi X,Y,Z do punktu (0,0,0)
Switch sw15	Drukarka, Interface	Reset

4. Architektura

Uwaga: dobrze zrobiony projekt zawiera tylko moduły strukturalne (zbudowane z innych modułów) i funkcjonalne (zawierające bloki proceduralne always @). Staramy się nie generować bloków mieszających te dwa typy, o ile to możliwe.

Uwaga: opisujemy architekturę tylko głównego modułu oraz rozprowadzenie sygnału zegara.

4.1. Moduł: top

Osoba odpowiedzialna: JR

4.1.1. Schemat blokowy

4.1.2. Porty

) Input

nazwa portu	opis		
sw0	sw0 Switch do podnoszenia długopisu (oś Z)		
sw1	Switch do opuszczania długopisu (oś Z)		
MTM	Uruchamia procedurę rysowania napisu MTM		

calib	Uruchamia procedurę kalibracji do pozycji (0,0,0)	
btnU	Sterowanie myszką na ekranie oraz osią Y na drukarce	
btnD Sterowanie myszką na ekranie oraz osią Y na drukarce		
btnL	Sterowanie myszką na ekranie oraz osią X na drukarce	
btnR	Sterowanie myszką na ekranie oraz osią X na drukarce	
x_calib	Odczytuje stan kalibracji (jeżeli stan logiczny 1 to pozycja 0)	
y_calib	Odczytuje stan kalibracji (jeżeli stan logiczny 1 to pozycja 0)	
z_calib	Odczytuje stan kalibracji (jeżeli stan logiczny 1 to pozycja 0)	

) Output

) Output	
nazwa portu	opis
x_sup	Pin stanu logicznego 1 doprowadzony do przycisku kalibrującego
y_sup	Pin stanu logicznego 1 doprowadzony do przycisku kalibrującego
z_sup	Pin stanu logicznego 1 doprowadzony do przycisku kalibrującego
JB1	Sygnał direction dla osi X
JB2	Sygnał stepper dla osi X
JB3	Sygnał direction dla osi Y
JB4	Sygnał stepper dla osi Y
JB5	Sygnał direction dla osi Z
JB6	Sygnał stepper dla osi Z
vgaBlue	Sygnał dot. koloru niebieskiego w systemie wyświetlania obrazu VGA
vgaGreen	Sygnał dot. koloru zielonego w systemie wyświetlania obrazu VGA
vgaRed	Sygnał dot. koloru czerwonego w systemie wyświetlania obrazu VGA
Vsync	Sygnał synchronizacji pionowej VGA
Hsync	Sygnał synchronizacji poziomej VGA

4.1.3. Interfejsy

) Vga_if

nazwa sygnału	opis		
vcount[10:0]	Licznik linii – aktualna pozycja pionowa na obrazie		
vsync	Sygnał synchronizacji pionowej		
vblnk	Sygnał wyłączający sygnały R,G,B – pozycja pionowa		
hcount[10:0]	Licznik linii – aktualna pozycja pozioma na obrazie		
hsync	Sygnał synchronizacji poziomej		
hblnk	Sygnał wyłączający sygnały R,G,B – pozycja pozioma		
rgb[11:0]	Informacja o kolorze, który ma zostać wyświetlony na monitorze		

4.2. Rozprowadzenie sygnału zegara

Osoba odpowiedzialna: JR

Sygnał zegarowy generowany jest przez moduł Clocking Wizard. Generowany sygnał zegara ma częstotliwość wynoszącą 40MHz i jest używany w modułach związanych z modułem top_vga. Jeżeli chodzi o drukarkę (top_printer) to z powodu konieczności użycia niższych częstotliwości impulsów sterujących pracą silnika (od 1kHz do 100kHz), w module printer_movement został zastosowany dzielnik częstotliwości a impulsy zostały wysłane przez piny wyjściowe Basys3 do wejść drukarki.

5. Implementacja

5.1. Lista zignorowanych ostrzeżeń Vivado.

Identyfikat or ostrzeżeni a	Liczba wystąpi eń	Uzasadnienie
DRC PDRC-153	2	Głównym problemem mogącym się pojawić po implementacji algorytmu z tym ostrzeżeniem jest pojawienie się opóźnień i niestabilności w generowaniu zegara. Jednak po analizie i testach doszliśmy do wniosku, że ostrzeżenie nie ma wpływu na działanie naszego projektu i nie wprowadza żadnych negatywnych skutków.

5.2. Wykorzystanie zasobów

5.3. Marginesy czasowe

Marginesy czasowe (WNS) dla setup i hold.

Timing		Setup) Hold	Pulse Width	n
Worst Negative Slack (WNS):	7.492 ns				
Total Negative Slack (TNS):	0 ns				
Number of Failing Endpoints:	0				
Total Number of Endpoints:	10949				
Implemented Timing Report					

6. Film.

Link do ściągnięcia filmu:

 $https://drive.google.com/drive/folders/1fgzBcnyS2KhsAx5ag-2SkpeAqtEANhGZ?usp=drive_link$