

PATENT

1

Docket No.RSW920010086US1

**METHOD AND APPARATUS FOR SYNCHRONIZING COOKIES ACROSS MULTIPLE
CLIENT MACHINES**

Field of the Invention

The invention pertains to synchronization of cookies across multiple client machines on a network.

Background of the Invention

The Internet is a vast collection of computing resources, interconnected as a network, from sites around the world. It is used every day by millions of people. The World Wide Web (referred to herein as the "Web") is that portion of the Internet that uses the HyperText Transfer Protocol ("HTTP") as a protocol for exchanging messages. (Alternatively, the "HTTPS" protocol can be used, where this protocol is a security-enhanced version of HTTP.)

A user of the Internet typically accesses and uses the Internet by establishing a network connection through the services of an Internet Service Provider (ISP). An ISP provides computer users the ability to dial a telephone number using their computer modem (or other connection facility, such as satellite transmission), thereby establishing a connection to a remote computer owned or managed by the ISP. This remote computer then makes services available to the user's computer. Typical services include: providing a search facility to search throughout the interconnected computers of the Internet for items of interest to the user; a browse capability, for displaying information located with the search facility; and an electronic mail facility, with which the user can send and receive mail messages from other computer users.

The user working in a Web environment will have software running on his computer to allow him to create and send requests for information, and to see the results. These functions are typically combined in a software package that is referred to as a "Web browser" or "browser". After the user has created his request using the browser, the request message is sent out into the Internet for processing. The target of the request message is one of the interconnected computers in the Internet network. That computer will receive the message, attempt to find the data satisfying the user's request, format that data for display with the user's browser, and return the formatted response to the browser software running on the user's computer.

This is an example of a client-server model of computing, where the machine at which the user requests information is referred to as the client, and the computer that

10
15

20

locates the information and returns it to the client is the server. In the Web environment, the server is referred to as a "Web server".

The HTTP communications protocol uses a request/response paradigm, where the electronic messages sent between communicating computers can be categorized as either requests for information, or responses to those requests, as discussed above.

5 Requests typically take the form URLs (Universal Resource Locators). A URL is essentially an address of a server on the Internet and the name of the particular file stored at that server that is requested. It will be understood by those of skill in the art that, although the preceding sentence refers to files being "stored" at servers, many servers are smart enough to actually generate requested files in response to receipt of a request by pulling data from various databases. Other server or server systems do, in fact, have files stored therein which are retrieved and returned in response to a request for such files.

15 HTTP does not provide for maintaining any type of state information about the communications, instead treating each request/response pair as a separate and unrelated transaction. However, there are many cases for which it is desirable to associate multiple http requests from a single client to a single server with each other so as to be able to maintain state information.

Some example scenarios where state information is an absolute necessity
20 include on-line shopping, searching with successive refinement of search terms, and gathering user profile information. In on-line shopping, a user typically accesses a seller's on-line catalog, which will be displayed to him as some number of Web pages

(where a "Web page" is a file comprising the information displayable in response to a user's request). Typically, the user can display a separate page of information related to each product, to read about the details of that product. Each time the user

requests to see a page, a separate HTTP request is typically sent to the Web server

5 where the seller's product catalog is stored. This request indicates that data for a specific product should be

gathered and sent to the client machine for display. When the user wishes to order a product, he indicates his selection by clicking on an "Order" button of some type, using a mouse, for example. This causes another request message to be sent to the server, where the request indicates that this is an order for the particular item. Without the ability to maintain state information, each of these requests would be treated as unrelated to the others. There would be no efficient way to collect orders for more than one item into one large order. Further, there would be no efficient way to allow the user to enter his name, address, credit card number, etc. only one time, and have that information apply to all the ordered items.

In addition, it also is frequently desirable to be able to maintain state information across multiple visits by a particular individual to a particular Web site. For instance, many individuals visit one or more particular Web sites repeatedly. It is often desirable to determine the identity of the particular individual visiting the site so that certain information about that particular user that had been gathered during a previous visit to the Web site can be applied to the current visit. Merely as an example, it may be desirable for a retail Web site to store all of the information that it typically needs to

SEARCHED
INDEXED
MAILED
FILED
10
15

20

process a purchase order by an individual and associate that information with the individual every time he or she visits the Web site. Then the individual will not need to re-enter the same information, such as name, credit card No., billing address, shipping address, etc., every time he or she visits the Web site and purchases an item.

Accordingly, ways have been developed outside of the http protocol itself for maintaining such state information. One of the earliest ways developed for doing this was the use of cookies. Cookies are small data files that a server sends to a client machine and that the client's Web browser knows to store in a designated cookie folder or in the browser memory at the client computer. Thereafter, when that client sends a http request for a Web page to that server, the client's Web browser software sends the cookies associated with that URL to the server. The cookie might contain any particular information that the Web site operator feels the need to have in order to better service its customers. As an example, many Web sites allow individual clients to customize Web pages, such as a daily, electronic, newspaper containing only those articles that meet certain criteria selected by the customer. Those criteria can be stored in a cookie. Frequently, the cookie contains merely a session ID. A session ID is a unique character string, independent of the IP address, that uniquely identifies the particular client machine. In such a case, the Web site operator may store on its own server the actual information of interest associated with that session ID and retrieve that information when it receives a request containing a cookie bearing that particular session ID. Every computing device that communicates via the Internet, including client machines and servers, is assigned a unique IP (Internet Protocol) address.

PCT/US2001/03110
PCT/US2001/03111
PCT/US2001/03112
PCT/US2001/03113
PCT/US2001/03114
PCT/US2001/03115
PCT/US2001/03116
PCT/US2001/03117
PCT/US2001/03118
PCT/US2001/03119
PCT/US2001/03120
PCT/US2001/03121
PCT/US2001/03122
PCT/US2001/03123
PCT/US2001/03124
PCT/US2001/03125
PCT/US2001/03126
PCT/US2001/03127
PCT/US2001/03128
PCT/US2001/03129
PCT/US2001/03130
PCT/US2001/03131
PCT/US2001/03132
PCT/US2001/03133
PCT/US2001/03134
PCT/US2001/03135
PCT/US2001/03136
PCT/US2001/03137
PCT/US2001/03138
PCT/US2001/03139
PCT/US2001/03140
PCT/US2001/03141
PCT/US2001/03142
PCT/US2001/03143
PCT/US2001/03144
PCT/US2001/03145
PCT/US2001/03146
PCT/US2001/03147
PCT/US2001/03148
PCT/US2001/03149
PCT/US2001/03150
PCT/US2001/03151
PCT/US2001/03152
PCT/US2001/03153
PCT/US2001/03154
PCT/US2001/03155
PCT/US2001/03156
PCT/US2001/03157
PCT/US2001/03158
PCT/US2001/03159
PCT/US2001/03160
PCT/US2001/03161
PCT/US2001/03162
PCT/US2001/03163
PCT/US2001/03164
PCT/US2001/03165
PCT/US2001/03166
PCT/US2001/03167
PCT/US2001/03168
PCT/US2001/03169
PCT/US2001/03170
PCT/US2001/03171
PCT/US2001/03172
PCT/US2001/03173
PCT/US2001/03174
PCT/US2001/03175
PCT/US2001/03176
PCT/US2001/03177
PCT/US2001/03178
PCT/US2001/03179
PCT/US2001/03180
PCT/US2001/03181
PCT/US2001/03182
PCT/US2001/03183
PCT/US2001/03184
PCT/US2001/03185
PCT/US2001/03186
PCT/US2001/03187
PCT/US2001/03188
PCT/US2001/03189
PCT/US2001/03190
PCT/US2001/03191
PCT/US2001/03192
PCT/US2001/03193
PCT/US2001/03194
PCT/US2001/03195
PCT/US2001/03196
PCT/US2001/03197
PCT/US2001/03198
PCT/US2001/03199
PCT/US2001/03200
PCT/US2001/03201
PCT/US2001/03202
PCT/US2001/03203
PCT/US2001/03204
PCT/US2001/03205
PCT/US2001/03206
PCT/US2001/03207
PCT/US2001/03208
PCT/US2001/03209
PCT/US2001/03210
PCT/US2001/03211
PCT/US2001/03212
PCT/US2001/03213
PCT/US2001/03214
PCT/US2001/03215
PCT/US2001/03216
PCT/US2001/03217
PCT/US2001/03218
PCT/US2001/03219
PCT/US2001/03220
PCT/US2001/03221
PCT/US2001/03222
PCT/US2001/03223
PCT/US2001/03224
PCT/US2001/03225
PCT/US2001/03226
PCT/US2001/03227
PCT/US2001/03228
PCT/US2001/03229
PCT/US2001/03230
PCT/US2001/03231
PCT/US2001/03232
PCT/US2001/03233
PCT/US2001/03234
PCT/US2001/03235
PCT/US2001/03236
PCT/US2001/03237
PCT/US2001/03238
PCT/US2001/03239
PCT/US2001/03240
PCT/US2001/03241
PCT/US2001/03242
PCT/US2001/03243
PCT/US2001/03244
PCT/US2001/03245
PCT/US2001/03246
PCT/US2001/03247
PCT/US2001/03248
PCT/US2001/03249
PCT/US2001/03250
PCT/US2001/03251
PCT/US2001/03252
PCT/US2001/03253
PCT/US2001/03254
PCT/US2001/03255
PCT/US2001/03256
PCT/US2001/03257
PCT/US2001/03258
PCT/US2001/03259
PCT/US2001/03260
PCT/US2001/03261
PCT/US2001/03262
PCT/US2001/03263
PCT/US2001/03264
PCT/US2001/03265
PCT/US2001/03266
PCT/US2001/03267
PCT/US2001/03268
PCT/US2001/03269
PCT/US2001/03270
PCT/US2001/03271
PCT/US2001/03272
PCT/US2001/03273
PCT/US2001/03274
PCT/US2001/03275
PCT/US2001/03276
PCT/US2001/03277
PCT/US2001/03278
PCT/US2001/03279
PCT/US2001/03280
PCT/US2001/03281
PCT/US2001/03282
PCT/US2001/03283
PCT/US2001/03284
PCT/US2001/03285
PCT/US2001/03286
PCT/US2001/03287
PCT/US2001/03288
PCT/US2001/03289
PCT/US2001/03290
PCT/US2001/03291
PCT/US2001/03292
PCT/US2001/03293
PCT/US2001/03294
PCT/US2001/03295
PCT/US2001/03296
PCT/US2001/03297
PCT/US2001/03298
PCT/US2001/03299
PCT/US2001/03300
PCT/US2001/03301
PCT/US2001/03302
PCT/US2001/03303
PCT/US2001/03304
PCT/US2001/03305
PCT/US2001/03306
PCT/US2001/03307
PCT/US2001/03308
PCT/US2001/03309
PCT/US2001/03310
PCT/US2001/03311
PCT/US2001/03312
PCT/US2001/03313
PCT/US2001/03314
PCT/US2001/03315
PCT/US2001/03316
PCT/US2001/03317
PCT/US2001/03318
PCT/US2001/03319
PCT/US2001/03320
PCT/US2001/03321
PCT/US2001/03322
PCT/US2001/03323
PCT/US2001/03324
PCT/US2001/03325
PCT/US2001/03326
PCT/US2001/03327
PCT/US2001/03328
PCT/US2001/03329
PCT/US2001/03330
PCT/US2001/03331
PCT/US2001/03332
PCT/US2001/03333
PCT/US2001/03334
PCT/US2001/03335
PCT/US2001/03336
PCT/US2001/03337
PCT/US2001/03338
PCT/US2001/03339
PCT/US2001/03340
PCT/US2001/03341
PCT/US2001/03342
PCT/US2001/03343
PCT/US2001/03344
PCT/US2001/03345
PCT/US2001/03346
PCT/US2001/03347
PCT/US2001/03348
PCT/US2001/03349
PCT/US2001/03350
PCT/US2001/03351
PCT/US2001/03352
PCT/US2001/03353
PCT/US2001/03354
PCT/US2001/03355
PCT/US2001/03356
PCT/US2001/03357
PCT/US2001/03358
PCT/US2001/03359
PCT/US2001/03360
PCT/US2001/03361
PCT/US2001/03362
PCT/US2001/03363
PCT/US2001/03364
PCT/US2001/03365
PCT/US2001/03366
PCT/US2001/03367
PCT/US2001/03368
PCT/US2001/03369
PCT/US2001/03370
PCT/US2001/03371
PCT/US2001/03372
PCT/US2001/03373
PCT/US2001/03374
PCT/US2001/03375
PCT/US2001/03376
PCT/US2001/03377
PCT/US2001/03378
PCT/US2001/03379
PCT/US2001/03380
PCT/US2001/03381
PCT/US2001/03382
PCT/US2001/03383
PCT/US2001/03384
PCT/US2001/03385
PCT/US2001/03386
PCT/US2001/03387
PCT/US2001/03388
PCT/US2001/03389
PCT/US2001/03390
PCT/US2001/03391
PCT/US2001/03392
PCT/US2001/03393
PCT/US2001/03394
PCT/US2001/03395
PCT/US2001/03396
PCT/US2001/03397
PCT/US2001/03398
PCT/US2001/03399
PCT/US2001/03400
PCT/US2001/03401
PCT/US2001/03402
PCT/US2001/03403
PCT/US2001/03404
PCT/US2001/03405
PCT/US2001/03406
PCT/US2001/03407
PCT/US2001/03408
PCT/US2001/03409
PCT/US2001/03410
PCT/US2001/03411
PCT/US2001/03412
PCT/US2001/03413
PCT/US2001/03414
PCT/US2001/03415
PCT/US2001/03416
PCT/US2001/03417
PCT/US2001/03418
PCT/US2001/03419
PCT/US2001/03420
PCT/US2001/03421
PCT/US2001/03422
PCT/US2001/03423
PCT/US2001/03424
PCT/US2001/03425
PCT/US2001/03426
PCT/US2001/03427
PCT/US2001/03428
PCT/US2001/03429
PCT/US2001/03430
PCT/US2001/03431
PCT/US2001/03432
PCT/US2001/03433
PCT/US2001/03434
PCT/US2001/03435
PCT/US2001/03436
PCT/US2001/03437
PCT/US2001/03438
PCT/US2001/03439
PCT/US2001/03440
PCT/US2001/03441
PCT/US2001/03442
PCT/US2001/03443
PCT/US2001/03444
PCT/US2001/03445
PCT/US2001/03446
PCT/US2001/03447
PCT/US2001/03448
PCT/US2001/03449
PCT/US2001/03450
PCT/US2001/03451
PCT/US2001/03452
PCT/US2001/03453
PCT/US2001/03454
PCT/US2001/03455
PCT/US2001/03456
PCT/US2001/03457
PCT/US2001/03458
PCT/US2001/03459
PCT/US2001/03460
PCT/US2001/03461
PCT/US2001/03462
PCT/US2001/03463
PCT/US2001/03464
PCT/US2001/03465
PCT/US2001/03466
PCT/US2001/03467
PCT/US2001/03468
PCT/US2001/03469
PCT/US2001/03470
PCT/US2001/03471
PCT/US2001/03472
PCT/US2001/03473
PCT/US2001/03474
PCT/US2001/03475
PCT/US2001/03476
PCT/US2001/03477
PCT/US2001/03478
PCT/US2001/03479
PCT/US2001/03480
PCT/US2001/03481
PCT/US2001/03482
PCT/US2001/03483
PCT/US2001/03484
PCT/US2001/03485
PCT/US2001/03486
PCT/US2001/03487
PCT/US2001/03488
PCT/US2001/03489
PCT/US2001/03490
PCT/US2001/03491
PCT/US2001/03492
PCT/US2001/03493
PCT/US2001/03494
PCT/US2001/03495
PCT/US2001/03496
PCT/US2001/03497
PCT/US2001/03498
PCT/US2001/03499
PCT/US2001/03500
PCT/US2001/03501
PCT/US2001/03502
PCT/US2001/03503
PCT/US2001/03504
PCT/US2001/03505
PCT/US2001/03506
PCT/US2001/03507
PCT/US2001/03508
PCT/US2001/03509
PCT/US2001/03510
PCT/US2001/03511
PCT/US2001/03512
PCT/US2001/03513
PCT/US2001/03514
PCT/US2001/03515
PCT/US2001/03516
PCT/US2001/03517
PCT/US2001/03518
PCT/US2001/03519
PCT/US2001/03520
PCT/US2001/03521
PCT/US2001/03522
PCT/US2001/03523
PCT/US2001/03524
PCT/US2001/03525
PCT/US2001/03526
PCT/US2001/03527
PCT/US2001/03528
PCT/US2001/03529
PCT/US2001/03530
PCT/US2001/03531
PCT/US2001/03532
PCT/US2001/03533
PCT/US2001/03534
PCT/US2001/03535
PCT/US2001/03536
PCT/US2001/03537
PCT/US2001/03538
PCT/US2001/03539
PCT/US2001/03540
PCT/US2001/03541
PCT/US2001/03542
PCT/US2001/03543
PCT/US2001/03544
PCT/US2001/03545
PCT/US2001/03546
PCT/US2001/03547
PCT/US2001/03548
PCT/US2001/03549
PCT/US2001/03550
PCT/US2001/03551
PCT/US2001/03552
PCT/US2001/03553
PCT/US2001/03554
PCT/US2001/03555
PCT/US2001/03556
PCT/US2001/03557
PCT/US2001/03558
PCT/US2001/03559
PCT/US2001/03560
PCT/US2001/03561
PCT/US2001/03562
PCT/US2001/03563
PCT/US2001/03564
PCT/US2001/03565
PCT/US2001/03566
PCT/US2001/03567
PCT/US2001/03568
PCT/US2001/03569
PCT/US2001/03570
PCT/US2001/03571
PCT/US2001/03572
PCT/US2001/03573
PCT/US2001/03574
PCT/US2001/03575
PCT/US2001/03576
PCT/US2001/03577
PCT/US2001/03578
PCT/US2001/03579
PCT/US2001/03580
PCT/US2001/03581
PCT/US2001/03582
PCT/US2001/03583
PCT/US2001/03584
PCT/US2001/03585
PCT/US2001/03586
PCT/US2001/03587
PCT/US2001/03588
PCT/US2001/03589
PCT/US2001/03590
PCT/US2001/03591
PCT/US2001/03592
PCT/US2001/03593
PCT/US2001/03594
PCT/US2001/03595
PCT/US2001/03596
PCT/US2001/03597
PCT/US2001/03598
PCT/US2001/03599
PCT/US2001/03600
PCT/US2001/03601
PCT/US2001/03602
PCT/US2001/03603
PCT/US2001/03604
PCT/US2001/03605
PCT/US2001/03606
PCT/US2001/03607
PCT/US2001/03608
PCT/US2001/03609
PCT/US2001/03610
PCT/US2001/03611
PCT/US2001/03612
PCT/US2001/03613
PCT/US2001/03614
PCT/US2001/03615
PCT/US2001/03616
PCT/US2001/03617
PCT/US2001/03618
PCT/US2001/03619
PCT/US2001/03620
PCT/US2001/03621
PCT/US2001/03622
PCT/US2001/03623
PCT/US2001/03624
PCT/US2001/03625
PCT/US2001/03626
PCT/US2001/03627
PCT/US2001/03628
PCT/US2001/03629
PCT/US2001/03630
PCT/US2001/03631
PCT/US2001/03632
PCT/US2001/03633
PCT/US2001/03634
PCT/US2001/03635
PCT/US2001/03636
PCT/US2001/03637
PCT/US2001/03638
PCT/US2001/03639
PCT/US2001/03640
PCT/US2001/03641
PCT/US2001/03642
PCT/US2001/03643
PCT/US2001/03644
PCT/US2001/03645
PCT/US2001/03646
PCT/US2001/03647
PCT/US2001/03648
PCT/US2001/03649
PCT/US2001/03650
PCT/US2001/03651
PCT/US2001/03652
PCT/US2001/03653
PCT/US2001/03654
PCT/US2001/03655
PCT/US2001/03656
PCT/US2001/03657
PCT/US2001/03658
PCT/US2001/03659
PCT/US2001/03660
PCT/US2001/03661
PCT/US2001/03662
PCT/US2001/03663
PCT/US2001/03664
PCT/US2001/03665
PCT/US2001/03666
PCT/US2001/03667
PCT/US2001/03668
PCT/US2001/03669
PCT/US2001/03670
PCT/US2001/03671
PCT/US2001/03672
PCT/US2001/03673
PCT/US2001/03674
PCT/US2001/03675
PCT/US2001/03676
PCT/US2001/03677
PCT/US2001/03678
PCT/US2001/03679
PCT/US2001/03680
PCT/US2001/03681
PCT/US2001/03682
PCT/US2001/03683
PCT/US2001/03684
PCT/US2001/03685
PCT/US2001/03686
PCT/US2001/03687
PCT/US2001/03688
PCT/US2001/03689
PCT/US2001/03690
PCT/US2001/03691
PCT/US2001/03692
PCT/US2001/03693
PCT/US2001/03694
PCT/US2001/03695
PCT/US2001/03696
PCT/US2001/03697
PCT/US2001/03698
PCT/US2001/03699
PCT/US2001/03700
PCT/US2001/03701
PCT/US2001/03702
PCT/US2001/03703
PCT/US2001/03704
PCT/US2001/03705
PCT/US2001/03706
PCT/US2001/03707
PCT/US2001/03708
PCT/US2001/03709
PCT/US2001/03710
PCT/US2001/03711
PCT/US2001/03712
PCT/US2001/03713
PCT/US2001/03714
PCT/US2001/03715
PCT/US2001/03716
PCT/US2001/03717
PCT/US2001/03718
PCT/US2001/03719
PCT/US2001/03720
PCT/US2001/03721
PCT/US2001/03722
PCT/US2001/03723
PCT/US2001/03724
PCT/US2001/03725
PCT/US2001/03726
PCT/US2001/03727
PCT/US2001/03728
PCT/US2001/03729
PCT/US2001/03730
PCT/US2001/03731
PCT/US2001/03732
PCT/US2001/03733
PCT/US2001/03734
PCT/US2001/03735
PCT/US2001/03736
PCT/US2001/03737
PCT/US2001/03738
PCT/US2001/03739
PCT/US2001/03740
PCT/US2001/03741
PCT/US2001/03742
PCT/US2001/03743
PCT/US2001/03744
PCT/US2001/03745
PCT/US2001/03746
PCT/US2001/03747
PCT/US2001/03748
PCT/US2001/03749
PCT/US2001/03750
PCT/US2001/03751
PCT/US2001/03752
PCT/US2001/03753
PCT/US2001/03754
PCT/US2001/03755
PCT/US2001/03756
PCT/US2001/03757
PCT/US2001/03758
PCT/US2001/03759
PCT/US2001/03760
PCT/US2001/03761
PCT/US2001/03762
PCT/US2001/03763
PCT/US2001/03764
PCT/US2001/03765
PCT/US2001/03766
PCT/US2001/03767
PCT/US2001/03768
PCT/US2001/03769
PCT/US2001/03770
PCT/US2001/03771
PCT/US2001/03772
PCT/US2001/03773
PCT/US2001/03774
PCT/US2001/03775
PCT/US2001/03776
PCT/US2001/03777
PCT/US2001/03778
PCT/US2001/03779
PCT/US2001/03780
PCT/US2001/03781
PCT/US2001/03782
PCT/US2001/03783
PCT/US2001/03784
PCT/US2001/03785
PCT/US2001/037

5 Client machines that have a direct connection to the Internet as well as most servers

typically have a permanent IP address. Client machines that connect to the Internet through an ISP, however, commonly are assigned a new IP address by the ISP, termed a dynamic address, each time they log on to the Internet. In either scheme, the IP

address uniquely identifies a machine, rather than the particular individual.

Persons of skill in these arts will recognize that other mechanisms for storing state data are known. However, the use of cookies is probably the most ubiquitous of the various mechanism in use today.

Computers have become so commonplace that it is not unusual for a single individual to have several computing devices from which that individual normally accesses the Internet. This is particular true in light of the recent proliferation of portable, wireless computing devices that are designed to connect to the Internet. For instance, it would not be uncommon for a single individual to have a desktop computer at home, a second desktop computer at work, a portable notebook computer, a wireless palm top computing device, and an Internet-enabled cellular telephone, all of which are regularly used to access content via the Internet.

Since cookies are stored locally at each client machine, each time an operator visits a Web site from a different machine, a new cookie must be generated by the server and sent to the new client machine. Accordingly, the user must re-enter whatever information is required the first time he access a particular Web site from a new client machine. Even when the cookie contains only a session ID, the server must

10
15
20

generate a new cookie for each new machine. This is because the session ID identifies the machine, not the individual.

Further, cookies may be revised or otherwise updated periodically. For instance, a Web site server may detect patterns in the Web surfing habits of the individual and create cookies that the server can use to improve the user's surfing experience through that Web site. Again, however, the cookies are associated with a machine, not an individual. Therefore, whenever the individual accesses the Web site from a different machine, the cookies at that machine may be different from the cookies stored at the other machine, thus detracting from the user's Web surfing experience.

Accordingly, it is object of the present invention to provide an improved method and apparatus for Web browsing.

It is a further object of the present invention to provide a method and apparatus for synchronizing cookies across a plurality of client machines.

Summary of the Invention

In accordance with the invention, a server is maintained on a network for storing cookie change information for one or more users that register for cookie synchronization service with the server. Each user opens an account with the cookie synchronization service provider and registers all of the client machines for which he or she desires cookie synchronization under that account. Each of these client machines is equipped with software that monitors all changes made to cookies at that machine.

5

When a change to a cookie at a client machine is detected, the client sends a notification to the cookie synchronization server. The notification includes sufficient information to at least identify the account to which the client machine belongs and allow the cookie synchronization server to re-create the cookie. Preferably, the client simply sends the entire cookie and an account ID within the request.

The cookie synchronization server stores the changed cookie information and subsequently sends it back out to each other client machine in the account. The cookie synchronization server may send out the information to the registered client machines responsive to receipt of requests for cookie change information from the other client machines that are members of the account. The client machines update their cookies in accordance with the received cookie change information and acknowledge receipt of the changed cookie information. Thus, the server can keep track of which client machines have the latest version of each cookie so that it can send only those cookies that the client machine does not already have to a requesting client machine.

10
15

Brief Description of the Drawings

Figure 1 is a block diagram illustrating the basic components involved in communication over a distributed network, such as the Internet, in accordance with the present invention.

20

Figure 2 is a flow chart illustrating an exemplary set of steps performed at a client machine for synchronizing cookies across multiple client machines in accordance with the present invention.

Figure 3 is a flow chart illustrating an exemplary set of steps performed at a cookie synchronization server for synchronizing cookies across multiple client machines in accordance with the present invention.

Detailed Description of the Invention

5 Figure 1 is a block diagram of a network, such as the Internet, in which the present invention is implemented. The network is shown at 14 and comprises a series of interconnected computers, routers, and switches (not shown) that essentially allows any computer on the network to communicate with any other computer on the network. Computers 12a through 12e are client computers that issue requests via the Internet to server machines on the Internet. Computers 16a through 16d are servers which serve information to client machines responsive to requests received from those client machines via the Internet. Those of skill in the art will understand that some Web site operators maintain a plurality of server machines (sometimes called a server farm) to maintain a single Web site. On the other hand, other companies, such as Web hosting companies, might maintain multiple Web sites for multiple customers using a single physical server machine. In order not to obfuscate the invention, we shall assume that each server 16a-16d is operated by a single Web site operator.

15

Server 18 is a cookie synchronization server in accordance with the present invention as described herein and is also coupled to the Internet and can be accessed by the client machines 12 via the Internet 14.

20

Let us assume a single individual accesses the Internet through any one of client machines 12a, 12b and 12c. A cookie synchronization service provider operates cookie synchronization server 18 and offers a cookie synchronization service to individuals who register with that operator. Each individual who registers is assigned a unique account ID. The individual registers under that account ID each client machine that he or she wishes to have cookies that are synchronized with each other. The server assigns a unique session ID to each registered client machine and each machine stores its session ID in memory so that it can retrieve it when needed to identify itself to the cookie synchronization server. The server maintains a database of the accounts and the client machines that are members of each account. Registration can be performed by telephone, by mail, in-person or via the Internet.

In at least one embodiment, the user registers each client machine by logging on to a Web site maintained by the cookie synchronization service provider from each machine that he wishes to register. For instance, the cookie synchronization service provider can provide the individual with a unique account ID during registration of a first client machine. The individual can then log onto the Web site with each additional client machine that is to be a member of the account. A page will prompt the individual to enter the account ID in a particular field of a form and the server can then assign a unique session ID to that machine and store that session ID in a database as a member of that account. It also informs each client machine of its unique session ID so that the client machine can store the session ID and report it to the cookie synchronization

10
15
20

server as needed when updating its cookies. This is done only once for each machine that is to be a member of the account.

Each registered client machine is provided with cookie synchronization engine software that will carry out cookie synchronization in accordance with the present invention as described herein. In at least one preferred embodiment of the invention, at the time the user registers each client machine by logging on to the Web site of the cookie synchronization service provider, he or she is also instructed to download and setup this software in that machine. Alternately, the cookie synchronization software can be provided to the individual on a computer readable storage medium such as a floppy disk, or CD ROM. The cookie synchronization engine can be a plug-in module to the browser program.

The cookie synchronization engine performs two primary tasks, namely, 1) sending cookie change information to the cookie synchronization server 18 and 2) handling cookie change information received from the cookie synchronization server 18. Each of these tasks, of course, comprises a plurality of sub tasks. For instance, the task of sending cookie change information to the cookie synchronization server includes detecting when a cookie is changed. In the terminology of this specification, the term "change" includes the creation of new cookies, the deletion of preexisting cookies, the changing of information contained in cookies or any other possible change to a cookie. In one preferred embodiment, all cookies are stored in a designated folder and the software detects whenever any information is written to that folder.

The engine sends the cookie change information to the cookie synchronization server 18. This can be done in accordance with any number of schemes. For instance, the engine can cause the client machine to send an HTML request containing the cookie (as changed) to the cookie synchronization server 18 responsive to and immediately after each change is detected. In an alternative embodiment, the engine can send such requests at periodic intervals, the requests including all of the cookie changes since the last request was sent to the cookie synchronization server 18. In another embodiment, the request can be sent responsive to the user of the client machine logging off of the Internet. In this embodiment, when the user enters an instruction to log off the Internet (such as by operation of a mouse or a keyboard), the engine sends out the request to the cookie synchronization server 18 before the browser actually logs off.

In another embodiment, these last two schemes can be combined. For instance, such requests can be sent to the cookie synchronization server 18 at periodic intervals and immediately before the client machine logs off the Internet. Of course, the engine should be designed so as not to send any request unless a change has actually been made to a cookie at the client machine since the last time it sent cookie change information to server 18.

In an even further embodiment, cookie change requests can be sent only when the operator manually indicates that they be sent. In such embodiments, the cookie synchronization engine may generate reminders on the screen notifying the operator

that cookies have been changed and asking if the operator would like to send the cookie change information to the cookie synchronization server.

In another alternate embodiment, cookie change information corresponding to a particular Web site can be sent to server 18 when the client machine exits that Web
5 site.

In at least one preferred embodiment, the cookie synchronization engine software also sends to server 18 the time that each of the changed cookies was changed. Alternately, and especially in connection with embodiments where each time a cookie is changed a request is immediately sent to server 18, no time information needs to be sent. Instead, server 18 can simply log in the time that the request was received. The request also should contain the account ID so that server 18 knows which account is at issue.

Like the cookie synchronization engine at the client machines, server 18 also can be considered to perform two principal tasks, those tasks being the complementary tasks to those performed by the cookie synchronization. The first task is to receive and store all cookie information sent to it in a database/log. Each entry in the log should include the cookies (or at least sufficient information from which the server can generate the cookie), the account ID (or at least sufficient information from which the server can determine the account), the time of the cookie change (or, at least, the time
15 that it was received by the server 18), and preferably, the session ID of the client machine from which it was received. If the client machine session IDs are maintained in the log, then it may be preferable to eliminate the account ID from the entry, since it
20

can be determined at the server from the identity of the client machine and the database in which the list of clients in each account is maintained. In addition to enabling the server to determine the corresponding account, the identity of the client machine from which a cookie update was received is useful to the server in terms of keeping track of which clients in an account sent in which updated cookie information. By tracking this information in a database, the server can avoid wasting resources sending change information about a cookie to the client that sent it in (and thus already has that information and does not need it again).

In an even further refinement of the invention, described more fully below, the server may maintain a separate database of information as to, not only which client machines sent in which cookie updates, but also which client machines already have received which cookie updates from the cookie synchronization server's log.

The server's second principal task is sending the cookie change information in the log corresponding to each account to all of the client machines registered under that account. The server 18 can send this information out in accordance with any number of schemes. For instance, each log entry may be handled individually or multiple log entries for a given account can be collected and sent together.

Before the server sends out any cookie change information, it preferably first determines which client machines already have the information contained in any of the log entries so as not to send out redundant information. There are many ways in which this can be accomplished. As one example, the server can maintain as part of the log entry or in a secondary database a record of the particular client machine from which

the data in each log entry was received. Further, in the secondary database (or, alternately, in an even further database), the server can maintain a record of the times at which each client machine last received a cookie change update from the server.

The server can run an algorithm that correlates information in the log with information

5 contained in the secondary database(s) to generate, with respect to any registered client machine, a list of all log entries that meet the following criteria: (1) they pertain to the particular account of which the requesting client machine is a member, (2) they were received by the server since the last time the server sent cookie change information to that client machine, and (3) they were not received by the server from that particular client machine. The server would send out cookie updates corresponding only to those entries that meet all three criteria. This enhancement is not a requisite since sending information to client machines that already have the information will not lead to errors. However, sending redundant information is a waste of system resources.

15 The server should also run an algorithm to delete from the log any entries that are outdated. A cookie change log entry may be considered outdated if (1) it has been received by all client machines in the corresponding account or (2) the cookie contained in a log entry has been subsequently updated (as evidenced by a subsequent log entry containing the same cookie name).

20 In a simple embodiment, the server 18 may send the cookie change information pertaining to an account to the client machines registered under that account at periodic intervals without waiting for requests for cookie change information. Each

client machine should acknowledge receipt of the cookie change information so that the server will know which machines have been updated.

The aforementioned scheme is inefficient and not preferred, especially if any of the machines in the account do not have a dedicated, full-time, connection to the network (as would most likely be the case for most client machines, and especially portable and/or wireless client machines). In such cases, the server 18 would frequently be sending information to machines that are not even coupled to the network at that time.

In a more preferred embodiment, the server 18 sends out cookie change information only in response to receipt of a request for cookie change information from a client machine. The client machines can send out requests for cookie change information in accordance with any number of possible schemes. For instance, each client machine may send out a request to server 18 for updated cookie information at periodic intervals while it is coupled to the network. Alternately or in addition, it may send a request for cookie change information each time it logs on to the network.

In an even further embodiment, each client machine may send a request for updated cookie information whenever it visits a Web site for which it already has cookies. In one such embodiment, the client machine can simply request cookie changes, if any, pertaining to that particular Web site. However, preferably, whenever a client machine requests cookie change information from server 18, the server should send all cookie change information in that account in order to minimize the number of exchanges between the server 18 and client machine.

The client machines that receive such cookie change information update the relevant cookies accordingly.

In other embodiments of the invention, the cookie change information need not be stored at a server on the network. For instance, where only two devices are to be synchronized and the two devices can be directly coupled to each other, as would be the case for a desktop computer and a palmtop computing device, synchronization generally in accordance with the present invention can be performed when the palmtop computing device is plugged into a cradle that has a direct, wired, connection to the desktop computer. In such an embodiment, the desktop computer can serve all of the previously described functions of server 18. Whenever the user plugs the palmtop computer into the cradle and/or otherwise couples it to the desktop computer, cookies can be synchronized in accordance with the present invention.

It should also be understood that the afore-described embodiments in which the cookie synchronization server 18 is on a separate physical server are merely exemplary. Such embodiments are most suitable for cases in which a cookie synchronization service provider offers this service to customers for all of their cookies. However, the service can also be provided by the operator of a particular Web site that uses cookies and can be applied only to those cookies. In such embodiments, the server 18 may be embodied directly in the same physical server machine (or server farm) that supports that Web site.

If all of the client machines in a given account have static IP addresses, then the IP addresses may be used as the session IDs and there would be no need to generate

additional, distinct session IDs. Further, since, in accordance with standard HTTP protocol, the IP address of the requesting client machine always is included in the HTTP request, there would be no need for a separate mechanism for reporting the IP address to the cookie synchronization server. In such an embodiment, the account ID also could be entirely eliminated from the client machines' requests to the cookie synchronization server (including both those requests that report cookie change information to the server as well as those requests that seek cookie change information from the server), since the server could determine the account ID from the IP address using a table/database that correlates each client machine, by IP address, to the account to which it belongs.

Figure 2 is a simplified flow chart illustrating operation of an exemplary embodiment of the cookie synchronization engine software that is run at the client machines in accordance with the present invention. This flow chart is merely exemplary and it should be understood by persons of skill in the art that many other implementations are possible. The process starts at step 201. In step 203, the software checks if a cookie has been changed (e.g., added, deleted, or modified) in the designated cookie folder for the particular client machine. While the flow chart of figure 2 shows step 203 as a step in a continuous process, in a more practical embodiment, step 203 might actually be an interrupt or similar software procedure that is initiated only when a cookie actually has been changed. In any event, if a cookie has been changed, flow proceeds to step 205, in which the cookie synchronization engine creates and sends a cookie change request to the cookie synchronization server.

POPENT
10
9
8
7
6
5
4
3
2

15

20

The second primary task of the cookie synchronization engine is illustrated in steps 207 through 215. While they are shown in the flow chart in figure 2 as following steps 203 and/or 205, in a more practical embodiment, step 207 also would be generated as an interrupt or similar software procedure. In any event, in step 207, it is determined whether it is time to request cookie change data from the cookie synchronization server. As previously noted, this may be done on a periodic basis and/or each time the client machine logs on to the relevant network or in accordance of any other reasonable scheme. In any event, when it is time to request cookie change data, flow proceeds to step 209. In step 209, the engine sends a request to the cookie synchronization server for any cookie change information. In step 211, it is determined whether a response has been received. Assuming that a response is received, the cookie synchronization engine updates the relevant cookies in step 213. Then, in step 215, it sends an acknowledgment to the cookie synchronization server so that the cookie synchronization server can keep accurate records of which cookies are at this particular client machine. The process ends at step 217.

Figure 3 is a simplified flow chart illustrating an exemplary set of steps performed at the cookie synchronization server 18 in accordance with the present invention. The process starts at step 301. In step 303, the server checks if any cookie change requests have been received. The cookie change request mentioned in step 303 refers to the reporting of cookie changes to the server. Once again, in a more practical embodiment, step 303 may actually be an interrupt that is generated when a cookie change request actually has been received. In any event, when a cookie

change request has been received, the server logs in the change as previously described. Steps 303 and 305 comprise the first principal function of the server 18.

Turning to the second principal function of the server 18, in step 307, the cookie synchronization server determines whether a request for cookie synchronization data has been received from a client machine. Again, in a more practical embodiment, step 307 would not necessarily succeed steps 303 and 305 in software flow, but probably would be interrupt driven. In any event, when a request for cookie synchronization has been received, flow proceeds to step 309. In step 309, the server finds all log entries corresponding to the account identified in the request for cookie synchronization data.

As previously noted, the account ID may be contained in the request or may be derived from the session ID or IP address of the requesting client. In step 311, the server determines whether any log entries have been superceded. For example, as previously described, if there are two entries with the same cookie name, the one with the earlier time of entry in the log should be deleted. Flow then proceeds to step 313, in which the server correlates the log entries with the data disclosing the time of last update of the cookies at the particular client machine as well as the client machine from which the log entries were received and creates a list of those log entries that are to be sent to the requesting client.

In step 315, it sends cookie change information corresponding to those log entries that meet the criteria described above to the requesting client machine. In step 317, it waits for an acknowledgment from the client machine that it has received the response.

Assuming it receives acknowledgment, in step 319, the server updates its database(s) to indicate, at least, the time of last update of that client machine.

In step 321, the server determines if any of the log entries can be deleted because all client machines in the account have now received the information contained in that log entry. If so, flow proceeds to step 323 where those log entries are deleted and then to step 325, where the process ends. . If not, the flow instead proceeds directly from step 321 to end step 325.

Having thus described a few particular embodiments of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements as are made obvious by this disclosure are intended to be part of this description though not expressly stated herein, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not limiting. The invention is limited only as defined in the following claims and equivalents thereto.

2010 RELEASE UNDER E.O. 14176