Методы численного интегрирования

i.vdovin1

October 2022

Составим таблицы для каждого метода.

Шагом считаем увеличение количества точек на прямой в 2 раза. Очевидно, что чем больше точек, тем ближе мы подходим к определению интеграла (диаметр разбиения становится всё ближе к 0).

Точность (Эпсилон) считаем как разность интегралов, полученных на предыдущем шаге и на текущем.

Таблица имеет 4 колонки: N - количество точек разбиения отрезка, eps - разница с прошлым интегралом(Мы начинаем как бы со 2 шага, поэтому она определена уже на 1 шаге), p - скорость сходимости(чем она выше, тем лучше и тем более хороший этот метод в общем случае). Можно найти с помщью метода, пописанного на паре через выражение 2 эпсилон:

И последний столбец - само значение интеграла на каждом шаге

1 Метод прямоугольников

На данной таблице видно, что р сходится κ -2. Это для eps = 1e-8.

Однако, я заметил, что если уменьшить эпсилон, то метод перестаёт сходиться и скачет где-то в -15, -14 степени. вот так: Ну и на 28 итерации у меня получается 2^{28} точек, ну и очевидно, что на этом этапе компьютеру не хватает вычислительных

```
14 1.336375454741301e-12
15 3.3693675397841926e-13
16 7.979727989493313e-14
17 2.2315482794965646e-14
18 6.5593158452884236e-15
9 7.993695777301127e-15
20 1.0574874309554616e-14
21 9.18709552877317e-15
23 3.552713678809501e-15
23 1.3183898417423734e-14
24 3.63042929652462e-14
25 1.715294573045867e-14
26 1.2934098236883074e-14
27 1.5182299861749016e-14
28 4.18554080283684e-14
```

мощностей

По логике, чем меньше мы берём промежутки, тем меньше отличаются интегралы. Так почему так происходит? Моё

предположение, что функция растёт неравномерно, в каких-то местах мы уже достигли нужной точности, а в каки-то нет.

2 Метод трапеций

Тут ничего необычного, метод аналогичен методу прямоугольников: Сходимость схожа с методом Прямоугольников.

Имеется та же проблема со сходимостью для высокой точности

3 Метод Симпсона

Тут ситуация интереснее, метод сходится за значительно меньшее количество итераций

++	+	+
N eps	l p	integral
+====+=======	-+==========	+======+
4 1.37106e-05	null	0.198988
++	+	+
8 1.69668e-07	-6.336432323003417	0.198988
++	+	++
16 5.65922e-09	-4.905968328985275	0.198988
++	.+	+

За счёт скорости сходимости, тут нет проблем с высокой точностью. И для eps = 1e-16, выдается следующая таблица: Тут видно, что р сходится k -4. Значения k появляющиеся в конце и выбивающиеся из общей какртины обуславливаются

4	1.37106e-05	null	0.198988
8	1.69668e-07	-6.336432323003417	0.198988
16	5.65922e-09	-4.905968328985275	0.198988
32	2.66458e-10	-4.4086207288018215	0.198988
64	1.45493e-11	-4.194887358032029	0.198988
128	8.51347e-13	-4.095059657777784	0.198988
256	5.13201e-14	-4.052152147720504	0.198988
512	3.35842e-15	-3.933666272129601	0.198988
1024	1.66533e-16	-4.3339007365534385	0.198988
2048	5.27356e-16	1.6629650127224294	0.198988
4096	8.04912e-16	0.6100534816839867	0.198988
8192	8.32667e-17	-3.273018494406416	0.198988 +

достижением высокой точности, где эпсилон уже почти перестаёт меняться. По приколу (и чтобы проверить поведение р) я решил поставить функцию, рост которой сильно выше, но поведение знаков не отличается от исходной

l N	eps	p	integral
16	+======== 6.48541e-05	+=====================================	+======+ 0.976921
32	3.18523e-06	-4.347726708115894	0.976918
64	1.75608e-07	-4.180968129642718	0.976918
128	1.02976e-08	-4.091972817821933	0.976918
256	6.23273e-10	-4.04630681521868	0.976918
512	3.83322e-11	-4.02323423862722	0.976918
1024	2.37677e-12	-4.011486345876932	0.976918
2048	1.48992e-13	-3.9956934444412777	0.976918
4096	8.54872e-15	-4.123382415505282	0.976918
8192	6.66134e-16	-3.681824039973745	0.976918

Тут явно видно, что р сходится к 4. И так же при достижении высокой точности наблюдаются скачки

4 Производная

Функкцию я считаю исходя из стандартного определения производной в точке, а именно $\lim_{\Delta \to} \frac{(f(x+\Delta)-f(x))}{\Delta}$. Функция у которой я беру производную - x^2 , в точке $\mathbf{x}=1$ (Потому что просто считать и не является константой после дифференцирования). Если у нас имеются все данные и они точные, то получим следующее: Отлично сходится при увеличении Δ

		+	+ <u></u>					
		2.00391	-0.00390625					
		2.00195	-0.00195312					
		2.00098 2.00049	-0.000976562 -0.000488281					
		2.00024	++ -0.000244141					
		2.00012	++ -0.00012207					
		2.00006	++ -6.10352e-05					
		2.00003	++ -3.05176e-05					
	+	2.00002	++ -1.52588e-05					
f	eps	2.00001	++ -7.62939e-06					
3	-1	2	++ -3.8147e-06					
2.5	-0.5	2	++ -1.90735e-06					
2.25	-0.25	2	++ -9.53674e-07					
2.125	-0.125	2	++ -4.76837e-07	0.0 -				
 2.0625	-0.0625	2	++ -2.38419e-07	-0.1 -				
2.03125 	++ -0.03125	2	++ -1.19209e-07	-0.2 -				
2.01562	++ -0.015625	2	++ -5.96046e-08	-0.3 -				
2.00781	++ -0.0078125	2	++ -2.98023e-08	-0.4 -				
2.00391	++ -0.00390625	2	++ -1.49012e-08	-0.5 -	5	10	15	20
	++	+	+ +					

Однако, при добавленнии случайной погрешности в данные (значения функции). Ситуация меняется и начиная с некоторого Δ становится некорректной. Подберём оптимальный Δ Для разных данных. В 1 случае погрешность достаточно большая находится от [-0.1; 0.1]

Тут видно, что для большой погрешности ерѕ становится большим уже с 3 шага.

Рассмотрим ещё вариант с более адекватной погрешностью, а именно [-0,000001; 0,000001] Тут мы видим следующее:

Видно, что метод начинает расходиться на 12 шаге. Таким образом, можно сделать вывод, что скачки эпсилон надо отслеживать. И после их появления выходить из функции и выводить оптимальное значение