

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 80%

Natural Language Processing & Word Embeddings

LATEST SUBMISSION GRADE

Yes

80%

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words. True	1 / 1 point
	False	
	✓ Correct	
	The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.	
2.	What is t-SNE?	1 / 1 point
	A linear transformation that allows us to solve analogies on word vectors	
	A non-linear dimensionality reduction technique	
	A supervised learning algorithm for learning word embeddings	
	An open-source sequence modeling library	
	✓ Correct	

3. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

1 / 1 point

x (input text)	у (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

7. In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and 1/1 point c chosen from the training set? Pick the best answer.

- \bigcirc c and t are chosen to be nearby words.
- \bigcirc c is a sequence of several words immediately before t.
- $\bigcirc c$ is the sequence of all the words in the sentence before t.
- c is the one word that comes immediately before t.

Correct

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

1/1 point

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

lacksquare $heta_t$ and e_c are both 500 dimensional vectors.

Correct

- $igspace H_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.

Correct

- After training, we should expect θ_t to be very close to e_c when t and c are the same word.
- Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model 0 / 1 point minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- lacksquare $heta_i$ and e_j should be initialized to 0 at the beginning of training.
 - This should not be selected

The variables should not be initialized to 0 at the beginning of training.

	$_{-}$ σ_{i} and e_{j} should be initialized randomly at the beginning of training.	
	$igwedge X_{ij}$ is the number of times word j appears in the context of word i.	
	✓ Correct	
	lacksquare The weighting function $f(.)$ must satisfy $f(0)=0.$	
	Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.	
10.	You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful? $ m_1 >> m_2 $ $ m_1 << m_2 $	1 / 1 point
	✓ Correct	