No Title

Wen Songlin pinedog@sina.com

Contents

1	Preliminaries to Complex Analysis		
	1	Complex number and the complex plane	-
		1.1 Basic properties	
		1.2 Convergence	-
	2	Functions on the complex plane	4
		2.1 Continuous functions	2
	Cau	uchy's Theorem and Its Applications	•
	1	Goursat's theorem	٠

II CONTENTS

Chapter 1

Preliminaries to Complex Analysis

1 Complex number and the complex plane

1.1 Basic properties

1.2 Convergence

Theorem 1.1. \mathbb{C} , the complex numbers, is complete.

Proof. For a Cauchy sequence of complex numbers $\{z_n\}$, then

$$|z_n - z_m| \to 0$$
 as $n, m \to \infty$.

In other words, given $\epsilon > 0$ there exists an integer N > 0 so that $|z_n - z_m| < \epsilon$ whenever n, m > N. If assuming $z_n = x_n + iy_n, z_m = x_m + iy_m$, so we can get

$$|z_n - z_m| = \sqrt{(x_n - x_m)^2 + (y_n - y_m)^2}.$$

According to Cauchy's convergence theorem: every Cauchy sequence of real numbers converges to a real number. So we can get the Cauchy's convergence theorem of complex numbers. \Box

Theorem 1.2. The set $\Omega \subset \mathbb{C}$ is compact if and only if every sequence $\{z_n\} \subset \Omega$ has a subsequence that converges to a point in Ω .

Proof. For a compact set Ω , then it is closed and bounded.

Theorem 1.3. A set Ω is compact if and only if every open covering of Ω has a finite subcovering.

Proof.

Proposition 1.4. if $\Omega_1 \supset \Omega_2 \supset \cdots \supset \Omega_n \supset \cdots$ is a sequence of non-empty compact sets in \mathbb{C} with the property that

$$diam(\Omega_n) \to 0$$
 as $n \to \infty$,

then there exists a unique point $w \in \mathbb{C}$ such that $w \in \Omega_n$ for all n.

Proof. Choose a point z_n in each Ω_n . We prove $\{z_n\}$ is a Cauchy sequence. Because of the condition $\operatorname{diam}(\Omega_n) \to 0$, so we can get

$$\forall \epsilon > 0, \exists N \Rightarrow \operatorname{diam}(\Omega_n) < \epsilon.$$

We take two integers m, n > N, so $z_m, z_n \in \Omega_N$. We can get

$$|z_n - z_m| \le \operatorname{diam}(\Omega_n) < \epsilon.$$

 $\{z_n\}$ is a Cauchy sequence, therefore this sequence converges to a limit that we call w. Next, we will prove $w \in \Omega_n$ for all n. Finally, w is the unique point satisfying this property, for otherwise, if w' satisfied the same property with $w' \neq w$ we would have |w - w'| > 0 and the condition $\operatorname{diam}(\Omega_n) \to 0$ would be violated.

2 Functions on the complex plane

2.1 Continuous functions

Theorem 2.1. A continuous function on a compact set Ω is bounded and attains a maximum and minimum on Ω .

Proof.

Proposition 2.2. if f and g are holomorphic in Ω , then:

- (i) f + g is holomorphic in Ω and (f + g)' = f' + g'.
- (ii) fg is holomorphic in Ω and (fg)' = f'g + fg'.
- (iii) If $g(z_0) \neq 0$, then f/g is holomorphic at z_0 and

$$(f/g)' = \frac{f'g - fg'}{g^2}.$$

Moreover, if $f: \Omega \to U$ and $g: U \to \mathbb{C}$ are holomorphic, the chain rule holds

$$(g \circ f)'(z) = g'(f(z))f'(z)$$
 for all $z \in \Omega$.

Chapter 2

Cauchy's Theorem and Its Applications

1 Goursat's theorem

Theorem 1.1. If Ω is an open set in \mathbb{C} , and $T \subset \Omega$