Laboratory 4

Moodle quiz: 4/28/25 - 5/5/25

Goal

Experiment with aliasing using Matlab/Octave.

1 Sampling Sinusoids

If we sample sinusoid $x(t) = \cos(2\pi f_0 t)$ with sampling rate $f_s = 1/T_s$ then the samples are:

$$\forall n \in \mathbb{Z}, \quad x[n] = x(nT_s) = \cos(2\pi f_0 nT_s).$$

Aliasing refers to the phenomenon that frequency $f_k = f_0 + kf_s$ is indistinguishable from f_0 after sampling for all $k \in \mathbb{Z}$. In other words, in DT, frequency f_0 has infinitely many aliases. This fact is easy to see by means of trigonometry, $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$:

$$\forall k, n \in \mathbb{Z}, \cos(2\pi (f_0 + kf_s)nT_s) = \cos(2\pi f_0 nT_s + 2\pi kn)$$

$$= \cos(2\pi f_0 nT_s) \underbrace{\cos(2\pi kn)}_{=1} - \sin(2\pi f_0 nT_s) \underbrace{\sin(2\pi kn)}_{=0}$$

$$= \cos(2\pi f_0 nT_s)$$

We can experience aliasing with sampled audio signals using Matlab/Octave. Let us choose audio sampling rate $f_a=28\,\mathrm{kHz}$:

The sampling rate must match the capabilities of your audio hardware to produce a sound. Common values for f_a supported by hardware are in range $8\,\mathrm{kHz} \le f_a \le 44.1\,\mathrm{kHz}$. The following script plays pure cosines with frequencies $f_k = f_0 + kf_s$:

Each cosine of frequency f_k is sampled with audio sampling rate f_a at time points ta. The sampling theorem predicts that there is no aliasing if $f_a > 2f_k$. This is the case for all k in the for loop. Therefore, each frequency f_k produces a unique pure tone.

In contrast, if we sample the cosine with sampling rate $f_s = 700 \,\text{Hz}$ rather than f_a , we expect all frequencies f_k to be indistinguishable. The next script samples each cosine with sampling rate f_s at time points ts, even though f_s is too low for common audio hardware:

This script deals with the complication that f_s is probably too low for your audio hardware to produce an audible sound. If you call

```
sound(x, fs)
```

then Matlab/Octave complains with an error message or fails silently. We solve this problem by up-converting the sampled cosine \mathbf{x} to audio sampling rate f_a with function upconv:

Save this function in file upconv.m. Now, playing the cosines with frequencies f_k produces indistinguishable pure tones of frequency $f_0 = 200 \,\mathrm{Hz}$. This is the effect of aliasing.

Exercises

- 1. Replace the cosine with a sine function. Do you hear the difference?
- 2. Explain why negative frequencies f_k produce audible tones by expressing the corresponding cosines and sines with positive frequencies using trigonometric identities.
- 3. Which pure-tone frequency do you hear when changing f_0 to 300 Hz, 400 Hz, and 500 Hz? Explain why you hear each frequency.

ADSP Laboratory 4

2 Lab Problem

Consider a composite signal of two sinusoids:

$$x(t) = \frac{1}{2} (\cos(2\pi f_0 t) + \sin(2\pi (2f_0)t)).$$

Implement a script that plays the sound of signal x(t) for $f_0 = 400\,\mathrm{Hz}$ when sampled with different sampling rates:

$$f_s \in \{1800\,\mathrm{Hz},\ 1200\,\mathrm{Hz},\ 900\,\mathrm{Hz},\ 720\,\mathrm{Hz},\ 600\,\mathrm{Hz}\}$$

For each of the sampling frequencies, explain why you hear the sound you hear.