	What is the minimum and maximum number of comparisons needed when merging two nonempty sorted lists of size n into a single list?		
ſ			
	Determine the order of the list after partitioning 23, 20, 6, 17, 13, 25, 14, assume you have a way to take the median of the list as the pivot.		
3. (Consider the following maximum heap: 39, 20, 37, 18, 6, 32, 13, 3, 14.		
	1. insert 25 to the heap.		
	2. delete 39 from the heap.		

4. Given the binary search tree below:

Describe the process and the outcome of the following deletion operations on the above BST.

- 1. Delete node 48 in the tree.
- 2. Delete node 16 in the tree.
- 3. Delete node 12 in the tree by using the minimum key in the right subtree.
- 4. Delete node 12 in the tree by using the maximum key in the left subtree.

1. Consider the following digraph G:

- 1. What is the order and size of G?
- 2. Identify all sources and sinks in G.
- 3. Write down the adjacency matrix representation of G.
- 4. Consider the vertex sequence 0, 2, 1, 3, 4, 5, is it a walk, path or cycle?
- 5. Give the distance of the following pairs of nodes, d(0,1), d(0,3) and d(5,6)

Consider the adjacency list of a digraph G below:
0: 1 2
1: 2
2: 1 3 4
3: 4
4:
1. Draw the digraph G.
2. Draw the sub-digraph induced by $\{1, 2, 3\}$.
3. Draw the underlying graph of G.
4. If the search forest F contains exactly the following arcs $(0,1),(1,2),(3,4)$, what the order of nodes visited?