

Complexity Challenges of G.FAST

G.FAST Summit, Paris, May 20 - 22, 2014

Rudi Frenzel

Complexity Challenges of G.FAST

The G.FAST Application

The wideband Twisted Pair Channel

The G.FAST Standard

Silicon Technology

The Access Evolution towards G.FAST

Application Driven Requirements

Complexity Challenges of G.FAST

The G.FAST Application

The wideband Twisted Pair Channel

The G.FAST Standard

Silicon Technology

The Twisted Pair Channel above 30MHz

 The twisted pair characteristics are well known up to 30MHz from legacy xDSL2 applications

 Recently, a lot of activities are ongoing getting cable measurements for frequencies up to 200-300MHz to support accurate G.FAST performance prediction

 Obviously, a straight extrapolation of legacy two-port-models into the G.FAST band would not reflect critical direct path and xtalk path behavior

The Twisted Pair Channel above 30MHz

- Based on cable measurements up to 200-300MHz more accurate cable models are under development which cover the entire G.FAST bandwidth
- In order to reflect the in cable xtalk including all modes appropriate models need to include the MIMO behavior of the channel
- More details on a geometry based model approach can be found in "Strobel et al.,
 Wideband Modeling of Twisted-Pair Cables for MIMO Applications", Globecomm 2013.

Alien and Background Noise

- A lot of activities are ongoing to get a comprehensive view on noise sources within the G.FAST frequency band
- Region specific RF services, HAM radio, TV stations as well as FM broadcast are sources of strong RFI disturbers
- Impulse disturber in home environment
- Several reports on measurements indicate that the background / line AWGN falls below -140dBm/Hz at higher frequencies

Source: Spectral Occupancy at VHF:
 Implications for Frequency -Agile Cognitive
 Radios. Steven W. Ellingson, IEEE 2005

Challenges from the Wideband Twisted Pair Channel

Physics	VDSL	G.FAST	Complexity
Direct path characteristics	Follows well legacy two port model	MIMO system	"MIMO Processing" algorithms, e.g. PSD control
Xtalk	Well below direct path energy	Close to direct path energy for higher frequencies	Precoder: DSP algorithms and control e.g. non-linear precoding
Common Mode xtalk	NEXT between VDSL ports.	NEXT: VDSL to G.FAST G.FAST to VDSL	Common mode management versus cost and performance
Impulse disturber	Typ. 150Mbps at 10ms SHINE	Typ. 1Gbps at 10ms SHINE	RTX queue memory
Background noise and RFI	-140dBm/Hz, HAM band, AM radio	< -140dBm/Hz, HAM, AM / FM radio, TV stations	Receive dynamics, receiver sensitivity

■ The same physical media impose significantly different challenges to the G.FAST compared to VDSL2 due to the extended bandwidth range

Complexity Challenges of G.FAST

The G.FAST Application

The wideband Twisted Pair Channel

The G.FAST Standard

Silicon Technology

Generic Block Diagram of G.FAST Transmitter

Generic Block Diagram of G.FAST Transmitter

Total Interface Bandwidth - VDSL2 vs G.FAST

G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30**→**106**→**212MHz

Key Complexity Areas

Packet Processing MIPS, Memory

Mixed Signal Performance

System Design, PCB, PSU

Algorithms

Signal Processing MIPS, Memory

Chipset Interfaces

G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30**→**106**→**212MHz

Key Complexity Areas

Packet Processing MIPS, Memory

G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30**→**106**→**212MHz

Key Complexity Areas

G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30**→**106**→**212MHz

Key Complexity Areas

G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30→106→212MHz

Key Complexity Areas

```
int j;
                       long k;
                       static long iv=0;
                       static long iv[NTAB];
if (n != nold) {
                       float temp;
   oldg=gammln(en+1.0 if (*idum <= 0 || !iy) {
    nold=n;
                           if (-(*idum) < 1) *idum=1;
} if (p != pold) {
                           else *idum = -(*idum);
```

Algorithms

Copyright © Lantiq 2014. All rights reserved.

```
if (j < NTAB) iv[j] = *idum;
   sq=sqrt(2.0*am*pc);
   do {
                              iy=iv[0];
           angle=PI*ran1( k=(*idum)/IQ;
           y=tan(angle); *idum=IA*(*idum-k*IQ)-IR*k;
           em=sq*y+am;
                           if (*idum < 0) *idum += IM;
       } while (em < 0.0 j=iy/NDIV;
       em=floor(em);
                           iy=iv[j];
       t=1.2*sq*(1.0+y*y) iv[j] = *idum;
           -gammln(en-em+ if ((temp=AM*iy) > RNMX) return RNMX;
   } while (ran1(idum) >
                           else return temp;
   bnl=em:
if (p != pp) bnl=n-bnl;
return bnl:
```


G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30**→**106**→**212MHz

Key Complexity Areas

G.FAST Technology

Power

Service Profiles

System Size

Seamless Migration

MIMO Channel

Line and Alien Noise

Impulse Noise, Retx

30**→**106**→**212MHz

Key Complexity Areas

Parameters	ADSL2+	VDSL2, 17M	VDSL2 30M	Fast, 106a	Fast, 212a
Max. ATP downstream (dBm)	20,4 dBm	14,5 dBm	14,5 dBm	4 dBm	tbd
Max. ATP upstream (dBm)	12,5 dBm	14,5 dBm	14,5 dBm	4 dBm	tbd
Max aggragate data rates	25 Mbps	150 Mbps	250 Mbps	~1000Mbps	tbd
TP channel - loop lengths	> 4km	0 - 1.5km MIMO	0 - 500 m MIMO	0-250 m strong MIMO	tbd strong MIMO
Xtalk cancellation	n/a	Vectoring acc.	Vectoring acc.	Vectoring part of G.9701	Vectoring part of G.9701
Vectoring Group Sizes	n/a	up to 400	32/64 (MDU ?)	up to 48	tbd
Precoder type	n/a	linear	linear	linear	tbd (non-linear)
Max bandwidth	2,2 MHz	17,6 MHz	30 MHz	106 MHz	(212 MHz)
Number of carrier (total)	512	4096	3478 (4096)	2048	4096
Symbol rate (mandatory)	4,0588 kHz	4 kHz	8 kHz	48 kHz	48 kHz
Duplexing	FDD	FDD	FDD	TDD	TDD
QAM max constellation size	15 bit	15 bit	15 bit	12 bit	12 bit

Complexity Challenges of G.FAST

The G.FAST Application

The wideband Twisted Pair Channel

The G.FAST Standard

Silicon Technology

Silicon Technology Solution to G.FAST

- Moore's Law provides the solution to cope with the G.FAST challenges at least for the digital part of it
- What about AMS?

The Bandwidth Challenge

Sigma Delta ADCs Reach Pipeline Domain

■ Figure of Merit

$$FoM = \frac{Power}{(2 \cdot f_{BW} \cdot 2^{ENOB})} \quad \left[\frac{J}{step}\right]$$

CT SD incl. AAF out performs pipeline converters

	Pipeline ADC incl. Prefilter	Sigma delta ADC incl. prefilter
Area	2.4mm2	1.2mm2
Power	217mW	100mW
Bandwidth	30MHz	30MHz
ENOB	11.1	11.3
Clock	105MHz	600MHz
FOM incl. Filter	1.65	0.65

AFE Experiences

- Analog blocks don't scale well with technology nodes in general
- However, technology innovation enables architectural changes
 - Utilization of speed and logic
 - Innovation on converter types
- Example: Sigma Delta & PWM ADC's cover almost complete range of communication
 - Sufficient ENOB for target application
 - Superior in chip size and power compared to pipeline converters

Key Take - Aways

The G.FAST application drives complexity on chip level as well as on system level significantly compared to legacy xDSL. The key factors are:

Data rates - Bandwidth - Channel Characteristics above 30MHz

- On chip-set level the complexity increases for
 - Packet Processing MIPS, Memory
 - Algorithms and Digital Signal Processing MIPS, Memory, Architectures
 - Chipset Interfaces (data rates & power) and Mixed Signal Performance
- The CMOS technology scaling provides the means to cope with the complexities of G.FAST *today* by
 - Density, speed and power improvements for digital logic and memories
 - Enabler for innovations on architectures and circuit design for the analog / mixed signal field

