## Table of Contents

- **1. BITSS**
- 2. Why Reproducibility
- 3. ACRE Guidelines
- 4. ACRE Platform

## Table of Contents

- 1. BITSS
- 2. Why Reproducibility
- 3. ACRE Guidelines
- 4. ACRE Platform

## Motivation: Prevent Loss of Knowledge

Every semester, graduate students around **the world** take an Empirical/Applied [ ... ] Economics course. A typical assignment consists of reproducing the results of a paper and, possibly, testing the robustness of its results.

| Stage                        | New Knowledge                                            |
|------------------------------|----------------------------------------------------------|
| Scope<br>(select and verify) | Data and code exist?                                     |
| Assess                       | Degree of reproducibility for specific part of the paper |
| Improve                      | E.g. fixed paths, libraries, added missing files, etc.   |
| Test robustness              | Results are robust to additional specifications          |

## Table of Contents

- 1. BITSS
- 2. Why Reproducibility
- 3. ACRE Guidelines
- 4. ACRE Platform

### Context for ACRE

- American Economics Association (AEA) creates first data policy in 2006.
  - Must publish some data (waivers available)
- AEA updates policy in 2019.
  - Must post all data and code. Publication is conditional on verifying reproducibility (if confidential: must document extensively)
  - A new requirement is to post all cleaning code, even for data that is not public
  - See the AEA Data Editor Website for more information
- We should expect high levels of computational reproducibility after 2019 (AEA Journals).
- We should not demand 100% reproducibility before, but we could identify the gaps and try to improve some.

## Beyond Binary Judgments

Reproductions can easily gravitate towards adversarial exchanges.

- Early career researcher (ECR) have incentives to emphasize unsuccessful reproductions
- Original authors have a more senior position and can use it to deter in-depth reproductions from ECRs.
- The media also focuses on eye-catching headlines

#### Our approach:

We do not want to say

"Paper X is (ir)reproducible"

We do want to say

"Result Y in paper X has a high/low **level** of reproducibility according to **several** reproduction attempts. Moreover, **improvements** have been made to the original reproduction package, **increasing** its reproducibility to a higher level"

### Our Framework

Each **reproduction attempt** is centered around scientific **claims** 

One paper can contain several claims.

Each claim may be supported by various **display items**: tables, figures & inline results.

A reproduction attempt is at the claim level, and reproducers must record their **specifications** of interest.



# Stages



## Scoping

- 1. Select or be assigned a candidate paper
- 2. Check ACRE Platform for previous entries and verify availability of reproduction package (RP)
- 3. If no RP, leave a short record, and repeat with a different candidate paper
- 4. Once RP is found then candidate becomes declared paper
- 5. Only then: read the paper and select claim(s), display items and specification to reproduce

**Box 1:** Summary Report Card for

ACRE Paper Entry

Title: Sample Title

**Authors:** Jane Doe & John Doe

**Original Reproduction Package** 

Available: URL/No

[If "Yes"]

**Additional Reproduction Packages:** 

Number (eg., 2)

[If "No"]

**Contacted Authors?:** Yes/No

[If "Yes(contacted)"]

**Type of Response:** Categories (6).

**Authors Available for Further** 

**Questions for ACRE Reproductions:** 

Yes/No/Unknown



### Assessment



#### Two main parts for assessment:

- 1. Find all the elements behind a display item
- 2. Score the reproducibility of that display item

#### Identify All the Elements Behind a Display Item

Reproducers will be asked to draw a clear connection to the raw data sources mentioned in the paper and the display item under reproduction.

#### Data sources

Connect the data sources in the paper's text with specific raw data files.

#### Analytic data sets

Describe each analytic data file.

#### Code files

Inspect all code files and record all their inputs and outputs.

With all the information recorded above, reproducers can use the **ACRE Diagram Builder** to generate a **reproduction tree**.



## Reproduction Tree

```
table1.tex
   [code] analysis.R
       | analysis data.dta
          [code] final merge.do
              cleaned 1 2.dta
                [code] clean merged 1 2.do
                    merged 1 2.dta
                        [code] merge 1 2.do
                            | cleaned 1.dta
                              [code] clean_raw_1.py
                                  raw 1.dta
                            | cleaned 2.dta
                               [code] clean raw 2.py
                                   ___raw_2.dta
              cleaned 3 4.dta
                 [code] clean merged 3 4.do
                    merged 3 4.dta
                        [code] merge 3 4.do
                            | cleaned 3.dta
                             |___[code] clean_raw_3.py
                                  raw 3.dta
                            | cleaned 4.dta
                               [code] clean_raw_4.py
                                   raw 4.dta
```



### Levels

```
Levels of Computational Reproducibility
                (P denotes "partial", C denotes "complete")
                          Availability of materials, and reproducibility
                          |Analysis| Analysis| | Cleaning| Raw
                          L1: No materials.....
L2: Only code ..... ✓
L3: Partial analysis data & code.
L4: All analysis data & code..... ✓
L5: Reproducible from analysis ... | ✓
L6: Some cleaning code..... ✓
L7: All cleaning code..... ✓
L8: Some raw data..... ✓
L10:Reproducible from raw data... |
```



## Levels: Proprietary/Confidential Data

```
Levels of Computational Reproducibility
                      with Proprietary/Confidential Data
                   (P denotes "partial", C denotes "complete")
                               Availability of materials, and reproducibility
                                      | Instr. | | Instr. |
                              |Analysis| Analysis| | Cleaning| Raw
                                      | Data | CRA | Code
L1: No materials.....
L2: Only code ..... ✓
L3*: Partial analysis data & code ✓
L4*: All analysis data & code.... ✓
L5*: Proof of third party CRA.... ✓
L6: Some cleaning code..... ✓
L7: All cleaning code..... ✓
L8*: Some instr. for raw data.... ✓
L9*: All instr. for raw data..... ✓
L10*: Proof of third party CRR.... ✓
```



## **Improvements**



### Three types of improvements:

- 1. Improvements at the paper level
- 2. Improvements at the display-item level
- 3. Specific future improvements

### **Robustness Checks**



### Two main parts for robustness:

- 1. Increase the number of possible robustness checks
- 2. Justify the appropriateness of a specific test

#### Robustness

**Robustness checks:** any possible change in a computational choice, both in data analysis and data cleaning

#### Reasonable specifications (Simonsohn et.

al., 2018):

- 1. Sensible tests of the research question
- 2. Expected to be statistically valid, and
- 3. Not redundant with other specifications in the set.

Reproducers will be able to record two types of contributions:

- Mapping the universe of robustness checks
- Justify a specific robustness check as





# Robustness & Reproducibility

#### Robustness with level 1



Robustness with levels 5-9



Robustness with levels 2-4



Robustness with level 10





## Promoting a Constructive Exchange

- 1 Contacting the original author(s) when there is no reproduction package
- 2 Contacting the original author(s) to request specific missing items of a reproduction package
- 3 Asking for additional guidance when some materials have been shared
- 4 Response when the original author has refused to share due to undisclosed reasons
- 5 Response when the original author has refused to share due to legal or ethical restrictions of the data
- 6 Contacting the original author to share the results of your reproduction exercise
- 7 Responding to hostile responses from original authors

Under development: sample responses form authors to reproducers

### Example 1: Following up on additional materials

#### **Template email:**

**Subject:** Clarification for reproduction materials for ["Title of the paper"]

Dear Dr. [Lastname of Corresponding Author],

Thank you for sharing the materials. They have been immensely helpful for my work.

Unfortunately, I ran into a few issues as I delved into the reproduction exercise, and I think your guidance would be helpful in resolving them. [Describe the issues and how you have tried to resolve them. Describe whatever files or parts of the data or code are missing. Refer to examples 1 and 2 below for more details].

Thank you in advance for your help.

Best regards,

[Reproducer]

## An example of well described issues:

Specifically, I am attempting to reproduce [display item X (e.g., table 1, figure 3)]. I found that the following components are required to reproduce to reproduce [display item X]:

I have marked with an asterisk (\*) the items that I could not find in the reproduction materials: **data\_cleaning01.R** and **admin\_01raw.csv**. After accessing these files, I will also be able to identify the name of the raw data set required to obtain output1\_part1.txt. This is to let you know that I may need to contact you again if I cannot find this file (labeled as **UNKNOWN** above) in the reproduction materials.

I understand that this request will require some work for you or somebody in your research group, but I want to assure you that I will add these missing files to the reproduction package for your paper on the ACRE platform. **Doing this will ensure that you will not be asked twice for the same missing file.** 

# Easy to grade: report 1

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

## Easy to grade: report 1

This browser does not support PDFs. PleaseThis browser does not support PDFs. Please download the PDF to view it: Download download the PDF to view it: Download PDF.

PDF.

## Table of Contents

- 1. BITSS
- 2. Why Reproducibility
- 3. ACRE Guidelines
- 4. ACRE Platform

# socialsciencereproduction.org



#### Purpose

On the Social Science Reproduction Platform, you can record and review **verifications and improvements** to the **computational reproducibility** of published social science work.

This open source platform was developed by the Berkeley Initiative for Transparency in the Social Sciences (BITSS) in collaboration with the American Economic Association Data Editor.

### **Acknowledgements**

#### **Arnold Ventures**

Everybody who has participated in the pilots so far:

Ted Miguel's Graduate Development Economic Course (2019, 2020) - UC Berkeley

Dina Pomeranz undergraduate thesis for Marc Richter - University of Zurich

Slides template: Grant McDermott.