MuM Styles Forschungsversion vom 16. September 2016

Inhaltsverzeichnis

1	Einl	eitung	1
2 Beschreibung			
3	Nor	male Lateiner	1
	3.1	Kleine Lateiner mit Punkt	1
	3.2	Große Lateiner mit Punkt	1
	3.3	Kleine Lateiner mit zwei Punkten	2
	3.4	Großer Lateiner mit zwei Punkten	2
4	Fett	e Lateiner	3
	4.1	Kleine fette Lateiner	3
	4.2	Große fette Lateiner	3
	4.3	Kleine fette Lateiner mit Punkt	4
	4.4	Großer fette Lateiner mit Punkt	4
	4.5	Kleine fette Lateiner mit doppeltem Punkt	5
	4.6	Große fette Lateiner mit doppeltem Punkt	5
	4.7	Kleine fette Lateiner mit Querstrich	6
	4.8	Große fette Lateiner mit Querstrich	6
	4.9	Kleine fette Lateiner mit Schlange	7
	4.10	Große fette Lateiner mit Schlange	7
5	Fett	e Griechen	8
	5.1	Kleine fette Griechen	8
	5.2	Große fette Griechen	8
	5.3	Kleine fette Griechen mit Punkt	9
	5.4	Große fette Griechen mit Punkt	9
	5.5	Kleine fette Griechen mit doppeltem Punkt	9
	5.6	Kleine fette Griechen mit Querstrich	10

	5.7	Kleine fette Griechen mit Schlange	10
6	Eini	ge spezielle normale Griechen	11
	6.1	kleine Griechen	11
	6.2	kleine Griechen mit Punkt	11
	6.3	kleine Griechen mit doppeltem Punkt	11
	6.4	kleine Griechen mit Strich	12
	6.5	kleine Griechen mit Schlange	12
	6.6	kleine Griechen mit Dach	12
7	Men	ngen	12
8	Part	tielle Differentiale ∂	13
	8.1	Kleine Lateiner	13
	8.2	Große Lateiner	13
	8.3	Kleine fette Lateiner	14
	8.4	Große fette Lateiner	14
	8.5	Kleine Griechen	15
	8.6	Große Griechen	15
9	Klei	nes Delta δ	16
	9.1	Kleine Lateiner	16
	9.2	Große Lateiner	16
	9.3	Kleine fette Lateiner	17
	9.4	Große fette Lateiner	17
	9.5	Kleine Griechen	18
	9.6	Große Griechen	18
10	Gro	ßes Delta Δ	19
	10.1	Kleine Lateiner	19
	10.2	Große Lateiner	19
	10.3	Kleine fette Lateiner	20
	10.4	Große fette Lateiner	20
	10.5	Kleine Griechen	21
	10.6	Große Griechen	21

11	Sonderzeichen	21
	11.1 Summen	. 22
	11.2 Summe bzw. Integral mit Grenzen über dem Symbol	. 22
	11.3 Große Klammern	. 22
	11.4 Gradienten	. 22
	11.5 Indizes unten und oben	. 23
12	Befehle mit Parametern	23
	12.1 Partielle und totale Ableitungen	. 23
	12.2 Einfügen von Text	. 23
	12.3 Maßeinheiten	. 24
	12.4 $a \times b$ – Zeichen	. 24
	12.5 Zitieren einer Gleichung, einer Abbildung oder einer Tabelle	. 24
13	Farben	24
14	Sonstiges	25

1 Einleitung

In dieser PDF sind sämtliche Befehle beschrieben welche im MuM-Instituts-Style-File mum_styles.sty enthalten sind. Dieses Style-File und diese PDF werden automatisch durch abspielen des gleichnamigen MATLAB-Files mum_styles.m generiert.

WICHTIG: Alle Anderungen der Befehle also nicht in mum_styles.sty vornehmen sondern immer im Matlab-File mum_styles.m. Bitte unbedingt sinnvolle und häufig gebrauchte Befehle die fehlen integrieren bzw. sich an den Verantwortlichen für dieses Dokument wenden.

2 Beschreibung

Der neue Befehl setzt sich im allg. aus den ersten drei Buchstaben der standardmäßig vordefinierten Befehle für griechische Buchstaben und weiteren Buchstaben zusammen, die die Art des zu druckenden Griechen beschreiben: z.B. b für bold und p für einen Punkt über dem Buchstaben. Ist ein LATEX-Befehl für einen griechischen Buchstaben kürzer als drei Buchstaben, so werden eben alle vorhandenen Buchstaben eingesetzt. Griechische Buchstaben die ein "var" vorangestellt haben, z.B. varepsilon werden durch ein kleines v und den ersten beiden Buchstaben des restlichen Namens abgekürzt z.B. vep.

3 Normale Lateiner

3.1 Kleine Lateiner mit Punkt

Kleiner Buchstabe plus p für Punkt (dot).

\ap	\dot{a}	\np	\dot{n}
\bp	\dot{b}	\op	\dot{o}
\c	\dot{c}	\pp	\dot{p}
dpo	\dot{d}	db	\dot{q}
\ep	\dot{e}	$\protect\operatorname{rp}$	\dot{r}
\fp	\dot{f}	\spo	\dot{s}
\gp	\dot{g}	\tp	\dot{t}
\hp	\dot{h}	\up	\dot{u}
\ip	\dot{i}	$\backslash \mathrm{vp}$	\dot{v}
\jp	\dot{j}	\wpo	\dot{w}
\kp	\dot{k}	\xp	\dot{x}
\lp	$\dot{\ell}$	\yp	\dot{y}
$\mbox{\ensuremath{mpo}}$	\dot{m}	$\langle zp \rangle$	\dot{z}

3.2 Große Lateiner mit Punkt

Großer Buchstabe plus p für Punkt (dot).

\Ap	\dot{A}	$\backslash \mathrm{Np}$	\dot{N}
$\backslash \mathrm{Bp}$	\dot{B}	$\backslash \mathrm{Op}$	\dot{O}
\Cp	\dot{C}	\Pp	\dot{P}
$\backslash \mathrm{Dpo}$	\dot{D}	$\backslash \mathrm{Qp}$	\dot{Q}
\Ep	\dot{E}	$\backslash \mathrm{Rp}$	\dot{R}
$\backslash \mathrm{Fp}$	\dot{F}	$\backslash \mathrm{Spo}$	\dot{S}
$\backslash \mathrm{Gp}$	\dot{G}	\Tp	\dot{T}
$\backslash \mathrm{Hp}$	\dot{H}	$\setminus \mathrm{Up}$	\dot{U}
\Ip	\dot{I}	$\backslash \mathrm{Vp}$	\dot{V}
$\backslash \mathrm{Jp}$	\dot{J}	$\backslash \mathrm{Wpo}$	\dot{W}
$\backslash \mathrm{Kp}$	\dot{K}	$\backslash Xp$	\dot{X}
\Lp	\dot{L}	$\backslash \mathrm{Yp}$	\dot{Y}
$\backslash \mathrm{Mpo}$	\dot{M}	$\backslash \mathrm{Zp}$	\dot{Z}

3.3 Kleine Lateiner mit zwei Punkten

Kleiner Buchstabe plus pp für Punkt (ddot).

\app	\ddot{a}	\npp	\ddot{n}
\bpp	\ddot{b}	$\operatorname{\backslash opp}$	\ddot{o}
\c	\ddot{c}	$\operatorname{\backslash ppp}$	\ddot{p}
dpp	\ddot{d}	$\operatorname{\backslash qpp}$	\ddot{q}
\ensuremath{epp}	\ddot{e}	$\protect\operatorname{rpp}$	\ddot{r}
\fpp	\ddot{f}	$\protect\operatorname{spp}$	\ddot{s}
\gpp	\ddot{g}	\tpp	\ddot{t}
$\protect\$	\ddot{h}	\upp	\ddot{u}
\ipp	\ddot{i}	$\protect\$	\ddot{v}
\jpp	\ddot{j}	$\protect\$	\ddot{w}
\kpp	\ddot{k}	$\protect\$	\ddot{x}
\lpp	$\ddot{\ell}$	\ypp	\ddot{y}
$\mbox{\em mpp}$	\ddot{m}	$\langle zpp$	\ddot{z}

3.4 Großer Lateiner mit zwei Punkten

Großer Buchstabe plus pp für Punkt (ddot).

$\backslash \mathrm{App}$	\ddot{A}	$\backslash \mathrm{Cpp}$	\ddot{C}
$\backslash \mathrm{Bpp}$	\ddot{B}	$\backslash \mathrm{Dpp}$	\ddot{D}

\Epp	\ddot{E}	\Ppp	\ddot{P}
\Fpp	\ddot{F}	\Qpp	\ddot{Q}
$\backslash Gpp$	\ddot{G}	\Rpp	\ddot{R}
$\backslash \mathrm{Hpp}$	\ddot{H}	$\backslash \mathrm{Spp}$	\ddot{S}
$\backslash Ipp$	Ϊ	\Tpp	\ddot{T}
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\ddot{J}	$\backslash \mathrm{Upp}$	\ddot{U}
\Kpp	\ddot{K}	$\backslash \mathrm{Vpp}$	\ddot{V}
\Lpp	\ddot{L}	$\backslash \mathrm{Wpp}$	\ddot{W}
$\backslash Mpp$	\ddot{M}	$\backslash Xpp$	\ddot{X}
\Npp	\ddot{N}	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\ddot{Y}
$\backslash \mathrm{Opp}$	Ö	$\backslash Zpp$	\ddot{Z}

4 Fette Lateiner

4.1 Kleine fette Lateiner

Kleiner Buchstabe plus kleines b für bold. Ausnahmen mit bo anstatt b: dbo, pbo, sbo.

\ab	$oldsymbol{a}$	\nb	$oldsymbol{n}$
\bb	\boldsymbol{b}	\ob	o
\c b	c	\pbo	p
$\backslash dbo$	d	dp/	$oldsymbol{q}$
\eb	e	\rb	r
\fb	f	\sbo	s
\gb	$oldsymbol{g}$	\tb	$oldsymbol{t}$
\hb	h	\ub	$oldsymbol{u}$
\ib	$m{i}$	\v b	$oldsymbol{v}$
\jb	$oldsymbol{j}$	\wb	$oldsymbol{w}$
\kb	$oldsymbol{k}$	\xb	$oldsymbol{x}$
\lb	ℓ	\yb	$oldsymbol{y}$
\mb	m	\zb	$oldsymbol{z}$

4.2 Große fette Lateiner

Großer Buchstabe plus kleines b für bold.

$\backslash Ab$	$oldsymbol{A}$	$\backslash \mathrm{Cb}$	$oldsymbol{C}$
$\backslash \mathrm{Bb}$	B	$\backslash \mathrm{Db}$	D

$\backslash \mathrm{Eb}$	$oldsymbol{E}$	\Pb	P
\Fb	$oldsymbol{F}$	\Qb	${\it Q}$
$\backslash \mathrm{Gb}$	${m G}$	\Rb	R
$\backslash \mathrm{Hb}$	H	\Sb	$oldsymbol{S}$
\Ib	I	\Tb	$oldsymbol{T}$
\Jb	J	\Ub	$oldsymbol{U}$
\Kb	K	$\backslash \mathrm{Vb}$	$oldsymbol{V}$
\Lb	$oldsymbol{L}$	$\backslash \mathrm{Wb}$	$oldsymbol{W}$
\Mb	$oldsymbol{M}$	$\backslash Xb$	\boldsymbol{X}
$\backslash Nb$	$oldsymbol{N}$	$\backslash \mathrm{Yb}$	$oldsymbol{Y}$
$\backslash \mathrm{Ob}$	O	$\backslash \mathrm{Zb}$	$oldsymbol{Z}$

4.3 Kleine fette Lateiner mit Punkt

Kleiner Buchstabe plus b für bold und p für Punkt (dot).

\abp	\dot{a}	\n	$\dot{m{n}}$
\bbp	\dot{b}	$\backslash obp$	\dot{o}
\c	$\dot{m{c}}$	\pbp	$\dot{m p}$
\d	\dot{d}	qbp	$\dot{m{q}}$
\ensuremath{ebp}	\dot{e}	$\rder \operatorname{rbp}$	$\dot{m{r}}$
\fbp	\dot{f}	\S	$\dot{m{s}}$
\gbp	\dot{g}	$ ag{tbp}$	\dot{t}
\hgp	\dot{h}	\ubp	$\dot{m{u}}$
\ibp	$\dot{m{i}}$	$\$	$\dot{m{v}}$
\jbp	\dot{j}	\mathbb{W}	\dot{w}
\kbp	$\dot{m{k}}$	$\xprox xpb$	$\dot{m{x}}$
\lbp	$\dot{\ell}$	\ybp	$\dot{m{y}}$
\mbp	\dot{m}	\zbp	$\dot{m{z}}$

4.4 Großer fette Lateiner mit Punkt

Großer Buchstabe plus b für bold und p für Punkt (dot).

$\backslash Abp$	\dot{A}	$\backslash \mathrm{Ebp}$	$\dot{m E}$
$\backslash \mathrm{Bbp}$	\dot{B}	$\backslash \mathrm{Fbp}$	$\dot{m{F}}$
$\$	\dot{C}	$\backslash \mathrm{Gbp}$	\dot{G}
\mathbb{D}	\dot{D}	$\backslash \mathrm{Hbp}$	\dot{H}

\Ibp	\dot{I}	$\backslash \mathrm{Rbp}$	\dot{R}
\Jbp	\dot{J}	\S	$\dot{m{S}}$
\Kbp	$\dot{m{K}}$	\Tbp	\dot{T}
\Lbp	$\dot{m{L}}$	$\backslash \mathrm{Ubp}$	$\dot{m{U}}$
$\backslash Mbp$	$\dot{m{M}}$	$\backslash \mathrm{Vbp}$	$\dot{m{V}}$
\Nbp	$\dot{m{N}}$	$\backslash \mathrm{Wbp}$	$\dot{m{W}}$
\Obp	\dot{O}	$\backslash Xbp$	\dot{X}
\Pbp	\dot{P}	$\$	$\dot{m{Y}}$
\Qbp	$\dot{m{Q}}$	\Zbp	$\dot{m{Z}}$

4.5 Kleine fette Lateiner mit doppeltem Punkt

Kleiner Buchstabe plus b für bold und pp für doppeltem Punkt (ddot).

\abpp	\ddot{a}	\n	\ddot{n}
\bbpp	$\ddot{m{b}}$	$\backslash \mathrm{obpp}$	ö
\c	\ddot{c}	$\protect\operatorname{pbpp}$	$\ddot{m{p}}$
\d	$\ddot{m{d}}$	\qbpp	\ddot{q}
\ebpp	\ddot{e}	$\protect\operatorname{rbpp}$	$\ddot{m{r}}$
\fbpp	\ddot{f}	\S	\ddot{s}
\gbpp	$\ddot{m{g}}$	$ ag{tbpp}$	\ddot{t}
\hbpp	$\ddot{m{h}}$	\ubpropty	$\ddot{m{u}}$
\ibpp	$\ddot{m{i}}$	$\vert vbpp$	$\ddot{m{v}}$
\jbpp	$\ddot{m{j}}$	\wp	$\ddot{m{w}}$
\kbpp	$\ddot{m{k}}$	$\xprox xpb$	$\ddot{m{x}}$
\lbpp	$\ddot{m{\ell}}$	\ybpp	\ddot{y}
\mbox{mbpp}	\ddot{m}	\zbpp	\ddot{z}

4.6 Große fette Lateiner mit doppeltem Punkt

Großer Buchstabe plus b für bold und pp für doppeltem Punkt (ddot).

\Abpp	\ddot{A}	$\backslash \mathrm{Gbpp}$	\ddot{G}
\Bbpp	\ddot{B}	$\backslash \mathrm{Hbpp}$	\ddot{H}
$\$	\ddot{C}	$\backslash \mathrm{Ibpp}$	\ddot{I}
\Dbpp	\ddot{D}	$\backslash \mathrm{Jbpp}$	$\ddot{m{J}}$
\Ebpp	\ddot{E}	$\backslash \mathrm{Kbpp}$	\ddot{K}
\Fbpp	\ddot{F}	$\backslash \mathrm{Lbpp}$	$\ddot{m{L}}$

$\backslash Mbpp$	$\ddot{m{M}}$	$\backslash \mathrm{Tbpp}$	\ddot{T}
\Nbpp	\ddot{N}	$\backslash \mathrm{Ubpp}$	$\ddot{m{U}}$
$\backslash \mathrm{Obpp}$	\ddot{O}	$\backslash Vbpp$	\ddot{V}
\Pbpp	\ddot{P}	$\backslash \mathrm{Wbpp}$	$\ddot{m{W}}$
\Qbpp	$\ddot{m{Q}}$	$\backslash \mathrm{Xbpp}$	\ddot{X}
\Rbpp	\ddot{R}	$\$	\ddot{Y}
\Sbpp	$\ddot{m{S}}$	\Zbpp	\ddot{Z}

4.7 Kleine fette Lateiner mit Querstrich

Kleiner Buchstabe plus b für bold und q für quer (bar).

$ar{a}$	\nbq	$ar{m{n}}$
$ar{m{b}}$	\obq	$ar{o}$
$ar{oldsymbol{c}}$	pdq	$ar{m{p}}$
$ar{d}$	\qbq	$ar{m{q}}$
$ar{m{e}}$	\rbq	$ar{m{r}}$
$ar{f}$	\sbq	$ar{oldsymbol{s}}$
$ar{m{g}}$	\tbq	$ar{t}$
$ar{m{h}}$	\ubq	$ar{m{u}}$
$ar{m{i}}$	\vbq	$ar{m{v}}$
$ar{m{j}}$	\wbq	$\overline{oldsymbol{w}}$
$ar{m{k}}$	\xbq	$ar{m{x}}$
$ar{\ell}$	\ybq	$ar{m{y}}$
\overline{m}	\zbq	$ar{oldsymbol{z}}$
	$egin{array}{c} ar{b} \ ar{c} \ ar{d} \ ar{e} \ ar{f} \ ar{g} \ ar{h} \ ar{i} \ ar{j} \ ar{k} \ ar{\ell} \end{array}$	$ar{m{b}}$ \phq \\ \ar{m{d}} \qu

4.8 Große fette Lateiner mit Querstrich

Große Buchstabe plus b für bold und q für quer (bar).

\Abq	$ar{A}$	$\backslash \mathrm{Ibq}$	$ar{I}$
\Bbq	$ar{B}$	$\backslash \mathrm{Jbq}$	$ar{J}$
\Cbq	$ar{C}$	\Kbq	$ar{K}$
\Dbq	$ar{D}$	$\backslash \mathrm{Lbq}$	$ar{m{L}}$
\Ebq	$ar{m{E}}$	$\backslash \mathrm{Mbq}$	\overline{M}
\Fbq	$ar{F}$	\Nbq	$ar{m{N}}$
$\backslash \mathrm{Gbq}$	$ar{G}$	$\backslash \mathrm{Obq}$	$ar{O}$
\Hbq	$ar{H}$	\Pbq	$ar{P}$

\Qbq	\overline{Q}	$\backslash Vbq$	\overline{V}
\Rbq	$ar{R}$	$\backslash Wbq$	\overline{W}
\Sbq	$ar{m{S}}$	$\backslash Xbq$	$ar{X}$
\Tbq	\overline{T}	\Ybq	$\overline{m{Y}}$
$\backslash \mathrm{Ubq}$	$\overline{oldsymbol{U}}$	$\backslash \mathrm{Zbq}$	$ar{oldsymbol{Z}}$

4.9 Kleine fette Lateiner mit Schlange

Kleiner Buchstabe plus b für bold und s für Schlange (widetilde).

\abs	$\widetilde{m{a}}$	\nbs	$\widetilde{m{n}}$
\bbs	$\widetilde{m{b}}$	ackslashobs	$\widetilde{m{o}}$
\c	$\widetilde{m{c}}$	\pbs	$\widetilde{m{p}}$
\dbs	$\widetilde{m{d}}$	\qbs	$\widetilde{m{q}}$
\ebs	$\widetilde{m{e}}$	$\$	$\widetilde{m{r}}$
\fbs	\widetilde{f}	\sbs	$\widetilde{m{s}}$
\gbs	$\widetilde{m{g}}$	$\backslash \mathrm{tbs}$	$\widetilde{m{t}}$
\hbs	$\widetilde{m{h}}$	\ubs	$\widetilde{m{u}}$
\ibs	$\widetilde{m{i}}$	\vbs	$\widetilde{m{v}}$
\jbs	$\widetilde{m{j}}$	ackslashwbs	$\widetilde{m{w}}$
\kbs	$\widetilde{m{k}}$	\xbs	$\widetilde{m{x}}$
\lbs	$\widetilde{m{\ell}}$	\ybs	$\widetilde{m{y}}$
\mathbb{L}^{n}	$\widetilde{m{m}}$	\zbs	$\widetilde{m{z}}$

4.10 Große fette Lateiner mit Schlange

Große Buchstabe plus b für bold und s für Schlange (widetilde).

$\backslash Abs$	$\widetilde{m{A}}$	\Kbs	$\widetilde{m{K}}$
$\backslash \mathrm{Bbs}$	$\widetilde{m{B}}$	$\backslash \mathrm{Lbs}$	$\widetilde{m{L}}$
$\backslash \mathrm{Cbs}$	$\widetilde{m{C}}$	$\backslash \mathrm{Mbs}$	$\widetilde{m{M}}$
$\backslash \mathrm{Dbs}$	$\widetilde{m{D}}$	\Nbs	$\widetilde{m{N}}$
\Ebs	$\widetilde{m{E}}$	$\backslash \mathrm{Obs}$	$\widetilde{m{o}}$
\Fbs	$\widetilde{m{F}}$	$\backslash \mathrm{Pbs}$	$\widetilde{m{P}}$
$\backslash \mathrm{Gbs}$	$\widetilde{m{G}}$	$\backslash \mathrm{Qbs}$	$\widetilde{m{Q}}$
$\backslash \mathrm{Hbs}$	$\widetilde{m{H}}$	$\backslash \mathrm{Rbs}$	$\widetilde{m{R}}$
\Ibs	\widetilde{I}	\S	$\widetilde{m{S}}$
$\$ Jbs	$\widetilde{m{J}}$	$\backslash \mathrm{Tbs}$	$\widetilde{m{T}}$

$\backslash \mathrm{Ubs}$	$\widetilde{m{U}}$	$\backslash Xbs$	$\widetilde{m{X}}$
\Vbs	$\widetilde{m{V}}$	\S	$\widetilde{m{Y}}$
$\backslash Wbs$	$\widetilde{oldsymbol{W}}$	\Zbs	$\widetilde{m{Z}}$

5 Fette Griechen

5.1 Kleine fette Griechen

Abkürzung des griechischen Buchstabens plus b für bold.

\alpb	lpha	\xib	ξ
\betb	$oldsymbol{eta}$	\pib	π
\gamb	γ	$\$	ϖ
\delb	δ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ho
\epsb	ϵ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ϱ
\vepb	arepsilon	\sigb	σ
\zetb	ζ	\vsib	ς
\etab	η	\taub	au
$\$	heta	\upsb	$oldsymbol{v}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	artheta	\phib	$oldsymbol{\phi}$
\iotb	ι	$\$	arphi
\kapb	κ	\chib	χ
\lamb	λ	\psib	$oldsymbol{\psi}$
\mub	μ	$\backslash \mathrm{omeb}$	ω
\nub	u		

5.2 Große fette Griechen

Abkürzung des griechischen Buchstabens plus b für bold. Ausnahmen: Delbo statt Delb.

$\backslash Gamb$	Γ	\Sigb	$oldsymbol{\Sigma}$
\bebo	$oldsymbol{eta}$	$\backslash \mathrm{Upsb}$	Υ
$\$	Θ	\Phib	Φ
\Lamb	Λ	\Psib	Ψ
$\backslash Xib$	Ξ	$\backslash \mathrm{Omeb}$	Ω
\Pib	Π		

5.3 Kleine fette Griechen mit Punkt

Abkürzung des griechischen Buchstabens plus b für bold und p für Punkt (dot).

\alpbp	\dot{lpha}	\xibp	$\dot{oldsymbol{\xi}}$
\betbp	$\dot{m{eta}}$	\pibp	$\dot{\pi}$
\gambp	$\dot{\boldsymbol{\gamma}}$	\vpibp	$\dot{\varpi}$
\delbp	$\dot{oldsymbol{\delta}}$	ρbp	$\dot{oldsymbol{ ho}}$
\epsbp	$\dot{m{\epsilon}}$	$\$	\dot{arrho}
\vepbp	$\dot{oldsymbol{arepsilon}}$	\sigbp	$\dot{\sigma}$
\zetbp	$\dot{\zeta}$	$\bigvee vsibp$	$\dot{\varsigma}$
\etabp	$\dot{m{\eta}}$	\taubp	$\dot{ au}$
\thebp	$\dot{m{ heta}}$	\upsdep	$\dot{m{v}}$
\vthbp	$\dot{oldsymbol{artheta}}$	\phibp	$\dot{m{\phi}}$
\iotbp	$oldsymbol{i}$	\vphbp	\dot{arphi}
\kapbp	$\dot{\kappa}$	$\$	$\dot{\chi}$
\lambp	$\dot{\lambda}$	\psibp	$\dot{m{\psi}}$
\mubp	$\dot{\mu}$	\searrow	$\dot{\omega}$
\nubp	$\dot{ u}$		

5.4 Große fette Griechen mit Punkt

Abkürzung des griechischen Buchstabens plus b für bold und p für Punkt (dot).

$\backslash Gambp$	$\dot{\boldsymbol{\Gamma}}$	\Sigbp	$\dot{\Sigma}$
\Delbp	$\dot{\boldsymbol{\Delta}}$	$\setminus \text{Upsbp}$	Ϋ́
$\$ Thebp	$\dot{oldsymbol{\Theta}}$	\Phibp	$\dot{\boldsymbol{\Phi}}$
Λ	$\dot{m{\Lambda}}$	\Psibp	$\dot{\Psi}$
\Xibp	Ė	$\backslash \mathrm{Omebp}$	$\dot{\Omega}$
\Pibp	ή		

5.5 Kleine fette Griechen mit doppeltem Punkt

Abkürzung des griechischen Buchstabens plus b für bold und pp für Punkt (ddot).

\alpbpp	\ddot{lpha}	\epsbpp	$\ddot{\epsilon}$
\betbpp	$\ddot{oldsymbol{eta}}$	\vepbpp	$\ddot{arepsilon}$
\gambpp	$\ddot{\gamma}$	\zetbpp	$\ddot{\zeta}$
\delbpp	$\ddot{oldsymbol{\delta}}$	\etabpp	$\ddot{m{\eta}}$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\ddot{m{ heta}}$	\vrhbpp	ë
\t vthbpp	$\ddot{oldsymbol{artheta}}$	\searrow	$\ddot{\sigma}$
\iotbpp	ï	\vsibpp	ς̈́
\kapbpp	$\ddot{\kappa}$	\taubpp	$\ddot{m{ au}}$
\lambpp	$\ddot{\lambda}$	\upsdry	$\ddot{m{v}}$
\mubpp	$\ddot{m{\mu}}$	\phibpp	$\ddot{\phi}$
\nubpp	$\ddot{ u}$	\vphbpp	\ddot{arphi}
\xibpp	$\ddot{oldsymbol{arepsilon}}$	\chibpp	$\ddot{\chi}$
\pibpp	$\ddot{\pi}$	\psibpp	$\ddot{oldsymbol{\psi}}$
\vpibpp	\ddot{arpi}	\searrow	$\ddot{\omega}$
\rhobpp	$\ddot{ ho}$		

5.6 Kleine fette Griechen mit Querstrich

Abkürzung des griechischen Buchstabens plus b für bold und q für quer (bar).

\alpbq	$ar{lpha}$	\xibq	$ar{m{\xi}}$
\betbq	$ar{oldsymbol{eta}}$	\pibq	$ar{\pi}$
\gambq	$ar{oldsymbol{\gamma}}$	\vpibq	$ar{arpi}$
\delbq	$ar{oldsymbol{\delta}}$	\rhobq	$ar{oldsymbol{ ho}}$
\epsbq	$ar{m{\epsilon}}$	$\$	$ar{oldsymbol{arrho}}$
\vepbq	$ar{arepsilon}$	\sigbq	$ar{oldsymbol{\sigma}}$
\zetbq	$ar{oldsymbol{\zeta}}$	\vsibq	$ar{oldsymbol{arsigma}}$
\etabq	$ar{oldsymbol{\eta}}$	\taubq	$ar{ au}$
\thebq	$ar{oldsymbol{ heta}}$	\upsbq	$ar{oldsymbol{v}}$
\vthbq	$ar{oldsymbol{artheta}}$	\phibq	$ar{oldsymbol{\phi}}$
\iotbq	$ar{m{\iota}}$	$\$	$ar{oldsymbol{arphi}}$
\kapbq	$ar{\kappa}$	$\$	$ar{m{\chi}}$
\lambq	$ar{m{\lambda}}$	\psibq	$ar{m{\psi}}$
\mubq	$ar{m{\mu}}$	\searrow	$ar{oldsymbol{\omega}}$
\nubq	$ar{ u}$		

5.7 Kleine fette Griechen mit Schlange

Abkürzung des griechischen Buchstabens plus b für bold und s für Schlange (widetilde).

α	$\widetilde{m{lpha}}$	\gambs	$\widetilde{oldsymbol{\gamma}}$
\betbs	$\widetilde{m{eta}}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\widetilde{oldsymbol{\delta}}$

\epsbs	$\widetilde{m{\epsilon}}$	\vpibs	\widetilde{arpi}
\vepbs	$\widetilde{oldsymbol{arepsilon}}$	\rhobs	$\widetilde{oldsymbol{ ho}}$
\zetbs	$\widetilde{oldsymbol{\zeta}}$	\vrhbs	$\widetilde{oldsymbol{arrho}}$
\etabs	$\widetilde{m{\eta}}$	\sigbs	$\widetilde{m{\sigma}}$
\thebs	$\widetilde{m{ heta}}$	\vsibs	$\widetilde{\boldsymbol{\varsigma}}$
\vthbs	$\widetilde{oldsymbol{artheta}}$	\taubs	$\widetilde{oldsymbol{ au}}$
\iotbs	$\widetilde{\iota}$	\upsbs	$\widetilde{oldsymbol{v}}$
\kapbs	$\widetilde{m{\kappa}}$	\phibs	$\widetilde{oldsymbol{\phi}}$
\lambs	$\widetilde{oldsymbol{\lambda}}$	\vphbs	$\widetilde{oldsymbol{arphi}}$
\mubs	$\widetilde{m{\mu}}$	\chibs	$\widetilde{oldsymbol{\chi}}$
\nubs	$\widetilde{m{ u}}$	\psibs	$\widetilde{oldsymbol{\psi}}$
\xibs	$\widetilde{oldsymbol{\xi}}$	\omebs	$\widetilde{m{\omega}}$
\pibs	$\widetilde{\pi}$		

6 Einige spezielle normale Griechen

6.1 kleine Griechen

Abkürzung des griechischen Buchstabens

\alp	α	\bigvee	arepsilon
\bet	eta	$\vert vph$	φ
\gam	γ	\ome	ω
\del	δ		

6.2 kleine Griechen mit Punkt

Abkürzung des griechischen Buchstabens plus p für Punkt (dot)

\alpp	\dot{lpha}	\vepp	$\dot{arepsilon}$
\betp	\dot{eta}	$\$	\dot{arphi}
\gamp	$\dot{\gamma}$	\psip	$\dot{\psi}$
\delp	$\dot{\delta}$	\omep	$\dot{\omega}$

6.3 kleine Griechen mit doppeltem Punkt

Abkürzung des griechischen Buchstabens plus pp für Punkt (ddot)

\alppp	\ddot{lpha}	$\vert vert vert vert vert vert vert vert $	$\ddot{arepsilon}$
\betpp	\ddot{eta}	\vphpp	\ddot{arphi}
\gampp	$\ddot{\gamma}$	\psipp	$\ddot{\psi}$
\ensuremath{delpp}	$\ddot{\delta}$	\searrow	$\ddot{\omega}$

6.4 kleine Griechen mit Strich

Abkürzung des griechischen Buchstabens plus q für quer (bar)

\alpq	$ar{lpha}$	\vepq	$ar{arepsilon}$
\betq	$ar{eta}$	$\$	$ar{arphi}$
\gamq	$ar{\gamma}$	\psiq	$ar{\psi}$
\delq	$ar{\delta}$	$\backslash \mathrm{omeq}$	$ar{\omega}$

6.5 kleine Griechen mit Schlange

Abkürzung des griechischen Buchstabens plus s für Schlange (widetilde)

\alps	\widetilde{lpha}	\vee	$\widetilde{arepsilon}$
\bets	\widetilde{eta}	$\$	\widetilde{arphi}
\gams	$\widetilde{\gamma}$	\psis	$\widetilde{\psi}$
\dels	$\widetilde{\delta}$	\omes	$\widetilde{\omega}$

6.6 kleine Griechen mit Dach

Abkürzung des griechischen Buchstabens plus d für Dach (hat)

\alpd	\hat{lpha}	\vepd	$\hat{arepsilon}$
\betd	\hat{eta}	$\$	\hat{arphi}
\gamd	$\hat{\gamma}$	\psid	$\hat{\psi}$
\deld	$\hat{\delta}$	$\backslash \mathrm{omed}$	$\hat{\omega}$

7 Mengen

Der Befehl Rm steht für ein R in Mengenschreibweise. Ein darauf folgendes h bedeutet, daß der nächste Buchstabe des Befehls hochgesetzt erscheint.

\Rm	\mathbb{R}	\mathbb{R}^{n}	\mathbb{R}^l
\Rmhf	\mathbb{R}^f	\mathbb{R}^{n}	\mathbb{R}^m
\Rmhg	\mathbb{R}^g	\Rmhn	\mathbb{R}^n
\Rmhh	\mathbb{R}^h	\Rmhs	\mathbb{R}^s
\mathbb{R}^{n}	\mathbb{R}^k		

8 Partielle Differentiale ∂

Das Partialzeichen wird durch ein kleines d ersetzt, welches dem gewünschten Buchstaben voransteht.

8.1 Kleine Lateiner

Kleines d
 plus kleiner Buchstabe. Ausnahmen mit "de"anstatt "d": deh, dej, deo, dep, deq.

\da	∂a	\d n	∂n
\d b	∂b	\deo	∂o
\dc	∂c	$\langle dep \rangle$	∂p
$\backslash dd$	∂d	$\backslash \deg$	∂q
\de	∂e	\dr	∂r
$\backslash df$	∂f	$\backslash ds$	∂s
\dg	∂g	$\backslash dt$	∂t
\deh	∂h	\du	∂u
\di	∂i	$\d v$	∂v
\dej	∂j	$\backslash dw$	∂w
$\backslash dk$	∂k	$\backslash dx$	∂x
\dl	$\partial \ell$	dy	∂y
\dim	∂m	dz	∂z

8.2 Große Lateiner

Kleines d plus großer Buchstabe.

$\backslash dA$	∂A	\dC	∂C
\dB	∂B	\dD	∂D

\dE	∂E	\dP	∂P
\dF	∂F	\dQ	∂Q
$\backslash dG$	∂G	\dR	∂R
\dH	∂H	\dS	∂S
dI	∂I	\dT	∂T
\dJ	∂J	\d U	∂U
\dK	∂K	\dV	∂V
\dL	∂L	\dW	∂W
$\backslash dM$	∂M	$\backslash dX$	∂X
\dN	∂N	\dY	∂Y
\dO	∂O	\dz	∂Z

8.3 Kleine fette Lateiner

Kleines d plus kleiner Buchstabe plus b für bold.

\dab	$\partial \mathbf{a}$	\dnb	$\partial \mathbf{n}$
$\backslash dbb$	$\partial \mathbf{b}$	$\backslash \mathrm{dob}$	$\partial \mathbf{o}$
\dcb	$\partial \mathbf{c}$	\dpb	$\partial \mathbf{p}$
\d	$\partial \mathbf{d}$	dqb	$\partial \mathbf{q}$
\deb	$\partial \mathbf{e}$	\drb	$\partial {f r}$
$\backslash dfb$	$\partial \mathbf{f}$	dsb	$\partial \mathbf{s}$
$\backslash dgb$	$\partial \mathbf{g}$	$\backslash dtb$	$\partial \mathbf{t}$
$\backslash dhb$	$\partial \mathbf{h}$	\dub	$\partial \mathbf{u}$
$\backslash \mathrm{dib}$	$\partial \mathbf{i}$	\dvb	$\partial \mathbf{v}$
$\backslash djb$	$\partial \mathbf{j}$	$\backslash dwb$	$\partial \mathbf{w}$
$\backslash dkb$	$\partial \mathbf{k}$	dxb	$\partial \mathbf{x}$
\dlb	$\partial oldsymbol{\ell}$	\dyb	$\partial \mathbf{y}$
$\backslash dmb$	$\partial \mathbf{m}$	\dzb	$\partial \mathbf{z}$

8.4 Große fette Lateiner

Kleines d plus großer Buchstabe plus b für bold.

\dAb	$\partial \mathbf{A}$	\d{Eb}	$\partial {f E}$
\d{Bb}	$\partial \mathbf{B}$	\d{Fb}	$\partial \mathbf{F}$
\d{Cb}	$\partial {f C}$	\dGb	$\partial \mathbf{G}$
\dDb	$\partial \mathbf{D}$	\dHb	$\partial \mathbf{H}$

\d Ib	$\partial \mathbf{I}$	\dRb	$\partial \mathbf{R}$
\d Jb	$\partial {f J}$	\dSb	$\partial \mathbf{S}$
\dKb	$\partial \mathbf{K}$	\d{Tb}	$\partial \mathbf{T}$
\d Lb	$\partial {f L}$	\d Ub	$\partial \mathbf{U}$
\dMb	$\partial \mathbf{M}$	\dVb	$\partial \mathbf{V}$
\dNb	$\partial \mathbf{N}$	\d Wb	$\partial \mathbf{W}$
dOb	$\partial \mathbf{O}$	\dXb	$\partial \mathbf{X}$
\dPb	$\partial \mathbf{P}$	\dYb	$\partial \mathbf{Y}$
\dQb	$\partial \mathbf{Q}$	\dzb	$\partial {f Z}$

8.5 Kleine Griechen

Kleines d plus Abkürzung des griechischen Buchstabens (siehe: Fette Griechen).

\dalpb	$\partial \alpha$	\dxib	$\partial \xi$
\dbetb	∂eta		$\partial\pi$
\dgamb	$\partial \gamma$	\d{vpib}	$\partial \varpi$
\ddelb	$\partial \delta$	\drhob	$\partial \rho$
\depsb	$\partial\epsilon$	\dvrhb	$\partial \varrho$
\dvepb	$\partial arepsilon$	\dsigb	$\partial \sigma$
\dzetb	$\partial \zeta$	\dvsib	$\partial \varsigma$
\detab	$\partial \eta$	\dtaub	$\partial \tau$
\dtheb	$\partial \theta$	\d upsb	∂v
\dvthb	$\partial \vartheta$	\dphib	$\partial \phi$
\diotb	$\partial\iota$	\d{vphb}	$\partial \varphi$
\dkapb	$\partial \kappa$	\dchib	$\partial \chi$
\dlamb	$\partial \lambda$	\dpsib	$\partial \psi$
\dmub	$\partial \mu$	$\backslash domeb$	$\partial \omega$
\dnub	∂u		

8.6 Große Griechen

Kleines d plus Abkürzung des griechischen Buchstabens (siehe: Fette Griechen).

$\backslash dGam$	$\partial\Gamma$	\dXi	$\partial\Xi$
\d Del	$\partial \Delta$	\dPi	$\partial\Pi$
\d The	$\partial\Theta$	$\backslash dSig$	$\partial \Sigma$
\d Lam	$\partial \Lambda$	\d Ups	$\partial \Upsilon$

\dPhi	$\partial\Phi$	\dOme	$\partial\Omega$
\dPsi	$\partial \Psi$		

9 Kleines Delta δ

Für das delta-Zeichen schreibt man del und fügt den gewünschten Buchstaben hinzu.

9.1 Kleine Lateiner

delta plus kleiner Buchstabe.

\dela	δa	\deln	δn
\delbo	δb	\delo	δo
\delc	δc	\delpo	δp
\deldo	δd	\delqo	δq
\dele	δe	\delr	δr
$\$ delf	δf	$\ensuremath{\backslash} \mathrm{delso}$	δs
\delg	δg	\delt	δt
\delh	δh	\delu	δu
\deli	δi	$\ensuremath{\backslash} \mathrm{delv}$	δv
$\ensuremath{\operatorname{delj}}$	δj	$\ensuremath{\operatorname{delw}}$	δw
$\$ delk	δk	$\langle delx \rangle$	δx
\del{dell}	$\delta\ell$	\dely	δy
\d elm	δm	$\ensuremath{\backslash} \mathrm{delz}$	δz

9.2 Große Lateiner

delta plus großer Buchstabe.

$\del A$	δA	$\ensuremath{\backslash} \mathrm{del} \mathrm{G}$	δG
\delB	δB	$\del H$	δH
$\ensuremath{\operatorname{delC}}$	δC	\delI	δI
$\del D$	δD	$\ensuremath{\operatorname{delJ}}$	δJ
\ensuremath{delE}	δE	$\$ del K	δK
$\left \operatorname{delF} \right $	δF	$\$ delL	δL

$\del M$	δM	$\del T$	δT
$\del N$	δN	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	δU
\delO	δO	$\ensuremath{\backslash} \mathrm{delV}$	δV
\delP	δP	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	δW
\delQ	δQ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	δX
$\del R$	δR	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	δY
\delS	δS	$\del Z$	δZ

9.3 Kleine fette Lateiner

delta plus kleiner Buchstabe plus b für bold.

\delab	$\delta {f a}$	\delnb	$\delta {f n}$
\delbb	$\delta {f b}$	\delob	$\delta \mathbf{o}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f c}$	\delpb	$\delta {f p}$
\deldb	$\delta {f d}$	\delqb	$\delta {f q}$
\deleb	$\delta {f e}$	\delrb	$\delta {f r}$
\delfb	$\delta {f f}$	\delsb	$\delta \mathbf{s}$
\delgb	$\delta {f g}$	\deltb	$\delta {f t}$
\delhb	$\delta {f h}$	\delub	$\delta {f u}$
\delib	$\delta {f i}$	\delvb	$\delta {f v}$
\deljb	$\delta {f j}$	\delwb	$\delta \mathbf{w}$
\delkb	$\delta {f k}$	\delxb	$\delta {f x}$
\dellb	$\delta oldsymbol{\ell}$	\delyb	$\delta {f y}$
\d elmb	$\delta {f m}$	$\ensuremath{\operatorname{delzb}}$	$\delta {f z}$

9.4 Große fette Lateiner

delta plus großer Buchstabe plus b für bold.

\delAb	$\delta {f A}$	$\ensuremath{\operatorname{delIb}}$	$\delta {f I}$
\delBb	$\delta {f B}$	$\ensuremath{\operatorname{delJb}}$	$\delta {f J}$
\delCb	$\delta {f C}$	$\$ delKb	$\delta {f K}$
\delDb	$\delta {f D}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f L}$
\delEb	$\delta {f E}$	$\$ delMb	$\delta {f M}$
\delFb	$\delta {f F}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f N}$
$\del Gb$	$\delta {f G}$	\delOb	$\delta \mathbf{O}$
\delHb	$\delta {f H}$	\delPb	$\delta {f P}$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f Q}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f V}$
$\del Rb$	$\delta {f R}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f W}$
$\del Sb$	$\delta {f S}$	$\del Xb$	$\delta {f X}$
$\del Tb$	$\delta {f T}$	\delYb	$\delta {f Y}$
\delUb	$\delta {f U}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta {f Z}$

9.5 Kleine Griechen

delta plus Abkürzung des griechischen Buchstabens (siehe: Fette Griechen).

\delalpb	$\delta lpha$	\delxib	$\delta \xi$
\delbetb	δeta	\delpib	$\delta\pi$
\delgamb	$\delta\gamma$	\delvpib	$\delta \varpi$
\deldelb	$\delta\delta$	\delrhob	δho
\delepsb	$\delta\epsilon$	\delvrhb	$\delta arrho$
\delvepb	$\delta arepsilon$	\delsigb	$\delta\sigma$
\delzetb	$\delta\zeta$	\delvsib	$\delta \varsigma$
\deletab	$\delta\eta$	\deltaub	δau
\deltheb	$\delta heta$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	δv
\delvthb	$\delta artheta$	\delphib	$\delta\phi$
\deliotb	$\delta\iota$	\delvphb	$\delta \varphi$
\delkapb	$\delta \kappa$	\delchib	$\delta \chi$
\dellamb	$\delta\lambda$	\delpsib	$\delta \psi$
\delmub	$\delta \mu$	\delomeb	$\delta \omega$
\delnub	δu		

9.6 Große Griechen

delta plus Abkürzung des griechischen Buchstabens (siehe: Fette Griechen).

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta\Gamma$	\ensuremath{delSig}	$\delta \Sigma$
\delDel	$\delta\Delta$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta\Upsilon$
\delThe	$\delta\Theta$	\delPhi	$\delta\Phi$
\delLam	$\delta \Lambda$	\delPsi	$\delta\Psi$
$\del Xi$	$\delta\Xi$	\delOme	$\delta\Omega$
∖delPi	$\delta\Pi$		

10 Großes Delta Δ

Für das Delta-Zeichen schreibt man Del und fügt den gewünschten Buchstaben hinzu.

10.1 Kleine Lateiner

Delta plus kleiner Buchstabe.

\Dela	Δa	\Deln	Δn
\Delb	Δb	\Delo	Δo
\Delc	Δc	$\backslash \mathrm{Delp}$	Δp
\Deld	Δd	\Delq	Δq
\Dele	Δe	\Delr	Δr
\Delf	Δf	\Dels	Δs
\Delg	Δg	\Delt	Δt
\Delh	Δh	\Delu	Δu
\Deli	Δi	$\backslash \mathrm{Delv}$	Δv
\Delj	Δj	\Delw	Δw
\Delk	Δk	\Delx	Δx
\Dell	$\Delta \ell$	\Dely	Δy
\Delm	Δm	$\backslash \mathrm{Delz}$	Δz

10.2 Große Lateiner

Delta plus großer Buchstabe.

\DelA	ΔA	\DelL	ΔL
\DelB	ΔB	\DelM	ΔM
\DelC	ΔC	\DelN	ΔN
\DelD	ΔD	\DelO	ΔO
\DelE	ΔE	\DelP	ΔP
\DelF	ΔF	\DelQ	ΔQ
\DelG	ΔG	\DelR	ΔR
\DelH	ΔH	\DelS	ΔS
\DelI	ΔI	\DelT	ΔT
\DelJ	ΔJ	\DelU	ΔU
\DelK	ΔK	$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	ΔV

\DelW	ΔW	\DelY	ΔY
$\backslash \mathrm{DelX}$	ΔX	\DelZ	ΔZ

10.3 Kleine fette Lateiner

Delta plus kleiner Buchstabe plus b für bold.

\Delab	$\Delta \mathbf{a}$	\Delnb	$\Delta \mathbf{n}$
\Delbb	$\Delta \mathbf{b}$	\Delob	$\Delta \mathbf{o}$
\Delcb	$\Delta \mathbf{c}$	\Delpb	$\Delta \mathbf{p}$
\Deldb	$\Delta \mathbf{d}$	\Delqb	$\Delta \mathbf{q}$
\Deleb	$\Delta \mathbf{e}$	\Delrb	$\Delta \mathbf{r}$
\Delfb	$\Delta \mathbf{f}$	\Delsb	$\Delta \mathbf{s}$
\Delgb	$\Delta \mathbf{g}$	\Deltb	$\Delta \mathbf{t}$
\Delhb	$\Delta \mathbf{h}$	\Delub	$\Delta \mathbf{u}$
\Delib	$\Delta {f i}$	\Delvb	$\Delta \mathbf{v}$
\Deljb	$\Delta \mathbf{j}$	\Delwb	$\Delta \mathbf{w}$
\Delkb	$\Delta \mathbf{k}$	\Delxb	$\Delta \mathbf{x}$
\Dellb	$\Delta \ell$	\Delyb	$\Delta \mathbf{y}$
\Delmb	$\Delta \mathbf{m}$	\Delzb	$\Delta \mathbf{z}$

10.4 Große fette Lateiner

Delta plus großer Buchstabe plus b für bold.

\DelAb	$\Delta {f A}$	\DelNb	$\Delta {f N}$
\DelBb	$\Delta {f B}$	\DelOb	$\Delta \mathbf{O}$
\DelCb	$\Delta {f C}$	\DelPb	$\Delta \mathbf{P}$
\DelDb	$\Delta \mathbf{D}$	\DelQb	$\Delta \mathbf{Q}$
\DelEb	$\Delta {f E}$	$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	$\Delta {f R}$
\DelFb	$\Delta {f F}$	\DelSb	$\Delta \mathbf{S}$
\DelGb	$\Delta \mathbf{G}$	\DelTb	$\Delta \mathbf{T}$
\DelHb	$\Delta \mathbf{H}$	\DelUb	$\Delta \mathbf{U}$
\DelIb	$\Delta \mathbf{I}$	\DelVb	$\Delta {f V}$
\DelJb	$\Delta {f J}$	\DelWb	$\Delta \mathbf{W}$
\DelKb	$\Delta {f K}$	$\backslash \mathrm{DelXb}$	$\Delta \mathbf{X}$
\DelLb	$\Delta {f L}$	\DelYb	$\Delta \mathbf{Y}$
\DelMb	$\Delta \mathbf{M}$	$\$ DelZb	$\Delta {f Z}$

10.5 Kleine Griechen

Delta plus Abkürzung des griechischen Buchstabens (siehe: Fette Griechen).

$\Delta \alpha$	\Delxib	$\Delta \xi$
Δeta	\Delpib	$\Delta\pi$
$\Delta\gamma$	\Deltpib	$\Delta \varpi$
$\Delta\delta$	\Delrhob	$\Delta \rho$
$\Delta\epsilon$	\Deltrhb	$\Delta \varrho$
$\Delta arepsilon$	\Delsigb	$\Delta \sigma$
$\Delta \zeta$	\Deltsib	$\Delta \varsigma$
$\Delta \eta$	\Deltaub	$\Delta \tau$
$\Delta \theta$	\Delupsb	Δv
$\Delta \vartheta$	\Delphib	$\Delta \phi$
$\Delta\iota$	\Deltphb	$\Delta \varphi$
$\Delta \kappa$	\Delchib	$\Delta \chi$
$\Delta \lambda$	\Delpsib	$\Delta \psi$
$\Delta \mu$	\Delomeb	$\Delta\omega$
$\Delta \nu$		
	$\begin{array}{l} \Delta\beta \\ \Delta\gamma \\ \Delta\delta \\ \Delta\epsilon \\ \Delta\epsilon \\ \Delta\zeta \\ \Delta\eta \\ \Delta\theta \\ \Delta\theta \\ \Delta\lambda \\ \Delta\mu \\ \Delta\mu \\ \Delta\mu \end{array}$	$\begin{array}{ccccc} \Delta\beta & & \\ \Delta\gamma & & \\ \Delta\delta & & \\ \Delta\delta & & \\ \Delta\epsilon & & \\ \Delta\rho & & \\ \Delta\rho & & \\ \Delta\rho & & \\ \Delta\theta & & \\ \Delta\theta & & \\ \Delta\theta & & \\ \Delta\rho & & \\ \Delta\theta & & \\ \Delta\rho & & \\ \Delta$

10.6 Große Griechen

Delta plus Abkürzung des griechischen Buchstabens (siehe: Fette Griechen).

\DelGam	$\Delta\Gamma$	\DelSig	$\Delta\Sigma$
\DelDel	$\Delta\Delta$	\DelUps	$\Delta\Upsilon$
\DelThe	$\Delta\Theta$	\DelPhi	$\Delta\Phi$
$\$ DelLam	$\Delta \Lambda$	\DelPsi	$\Delta\Psi$
\DelXi	$\Delta\Xi$	\DelOme	$\Delta\Omega$
\DelPi	$\Delta\Pi$		

11 Sonderzeichen

Die Befehle "pkt"sowie "komma"bewirkeneine Leerstelle vor dem jeweiligen Zeichen. Bei "und"befindet sich vor und hinter dem gedruckten Zeichen jeweils eine Leerstelle, bei "foral"jeweils eine größere Lücke.

$\backslash \mathrm{DEF}$:=	\und	und
\FED	=:	\foral	\forall

11.1 Summen

Die Abkürzung Sum steht für eine Summe mit über dem Symbol angeschriebenen Grenzen, der vierte Buchstabe steht für die Laufvariable, die beiden nächsten Buchstaben bezeichnen die Grenzen, wobei ei die Zahl 1, dr die Zahl 3 abkürzen.

\Sumied	$\sum_{i=1}^{3}$	\Sumiem	$\sum_{i=1}^{m}$
\Sumjed	$\sum_{i=1}^{3}$	\Sumjen	$\sum_{j=1}^{n}$
\Sumien	$\sum_{i=1}^{n}$	\Sumjem	$\sum_{j=1}^{m}$

11.2 Summe bzw. Integral mit Grenzen über dem Symbol

Werden nach diesem Befehl Grenzen angegeben, so erscheinen diese automatisch über und unter dem Summen- bzw. Integralzeichen.

 Σ \Int

11.3 Große Klammern

Mit diesen Klammern kann man verschiedene Klammerungsebenen darstellen. Die ersten drei Buchstaben des Befehls stehen für linke Klammer (lef) bzw. rechte Klammer (rig). Der Zusatzbuchstabe b steht hier für brace und bezeichnet die äußerste (und damit größte), geschweifte Klammer. Eine eckige Klammer wird durch ein e abgekürzt und stellt die nächst niedere Klammerungsebene dar. Ohne Zusatz wird eine normale Klammer erzeugt deren feste Größe unter der der beiden anderen Klammern liegt.

11.4 Gradienten

Der LATEX-Befehl nabla wird durch grad abgekürzt, danach folgt evtl. ein q welches nabla quadrat symbolisiert und danach der darzustallende lateinische bzw. die Abkürzung des griechischen Buchstabens. Ein h nach dem darzustellenden Buchstaben sagt aus, daß der auf h folgende Buchstabe als Hochzahl steht. Ohne h steht der folgende Buchstabe als Index.

\gradgj	$ abla g_j$	\gradqgj	$ abla^2\!g_j$
\gradhj	$ abla h_j$	\gradqhj	$ abla^2\!h_j$
\gradvph	ablaarphi	\gradqvph	$ abla^2\!arphi$
\gradvphhi	$ ablaarphi^{(i)}$	\gradqvphi	$ abla^2\!arphi^{(i)}$

11.5 Indizes unten und oben

\fbie	$\boldsymbol{f}_i^{\mathrm{e}}$	\lbie	$\boldsymbol{\ell}_i^{\mathrm{e}}$
\fbir	$\boldsymbol{f}_{i}^{\mathrm{r}}$	\lbir	$oldsymbol{\ell}_i^{ ext{r}}$

12 Befehle mit Parametern

12.1 Partielle und totale Ableitungen

"pab" symbolisiert partielle Ableitung, "abl" totale Ableitung. Ein zw davor bedeutet zweifache Ableitung. Großer Anfangsbuchstabe bedeutet vergrößerter Bruch. Ein k am Ende setzt die Ableitung in Klammern.

$\pab{a}{b}$	$rac{\partial a}{\partial b} \ rac{\partial^2 a}{\partial^2 a}$	$\pak{a}{b}$	$\left(\frac{\partial a}{\partial b}\right)$
$\xspab\{a\}\{b\}$	$\frac{\partial^2 a}{\partial b^2}$ da	$\zwpabk{a}{b}$	$\left(\frac{\partial^2 a}{\partial b^2}\right)$
\abl{a}{b}	$\frac{\mathrm{d}a}{\mathrm{d}b}$ d^2a	$\left\{a\right\}\left\{b\right\}$	$\left(\frac{\mathrm{d}a}{\mathrm{d}b}\right)$
$\zwabl{a}{b}$	$\frac{\mathrm{d}^{2}\mathrm{d}}{\mathrm{d}b^{2}}$	$\ \ \ \ \ \ \ \ $	$\left(\frac{\mathrm{d}^2 a}{\mathrm{d}b^2}\right)$

12.2 Einfügen von Text

Mit diesem Befehl kann Text im Text-Modus innerhalb einer mathematischen Umgebung eingefügt werden. Vor und hinter den Text werden automatisch Leerstellen gesetzt. $\text{txt}\{a\}$ a

Text der Größe Large: \Lsize{a} a

Text der Größe normalsize innerhalb einer Large Umgebung: $\normalsize\{a\}$

12.3 Maßeinheiten

Mit diesem Befehl werden Maßeinheiten (me) mit sinnvollem Abstand hinter der Maßzahl platziert, aufrecht geschrieben und ein Zeilenumbruch zwischen beiden wird verhindert.

$$\mbox{\bf me[optional]{Einheit}} \Longrightarrow \mbox{mit optional} = \mbox{rund oder eckig} \\ \mbox{z.B. } 3\mbox{\bf me[eckig]{m/s}} \qquad 3\mbox{\bf [m/s]}$$

12.4 $a \times b$ – Zeichen

Kann auch im Text Modus ohne Umschalten in den Mathematischen Modus verwendet werden.

$$\kreuz{a}{b}$$

12.5 Zitieren einer Gleichung, einer Abbildung oder einer Tabelle

Ein n als letzter oder zweitletzter Buchstabe zeigt an, daß das auszugebende Wort in der Mehrzahl steht. Ein p bedeutet das das Wort abgekürzt wird.

Im folgenden wird dieses Label verwendet: (1)

Gleichung (1)	\abbp{a}	Abb. 1
Gl. (1)	\abbn{a}	Abbildungen 1
Gleichungen (1)	$\text{tab}\{a\}$	Tabelle 1
Gln. (1)	$ ap{a}$	Tab. 1
Abbildung 1	$ an{a}$	Tabellen 1
	Gl. (1) Gleichungen (1) Gln. (1)	Gl. (1) \abbn{a} Gleichungen (1) \abbn{a} Gln. (1) \abbn{a}

13 Farben

Die Farben mumred, mumblue, mumgreen und mumpurple sind wie folgt auch in der Inkscape Farbpalette mum_colors.gpl definiert.

$\text{textcolor}\{\text{mumred}\}\{\text{MuM-Rot}\}$	MuM-Rot
$\text{textcolor}\{\text{mumred}\}\{\text{MuM-Rot}\}$	MuM-Blau
\textcolor{mumgreen}{MuM-Grün}	MuM-Grün
\textcolor{mumpurple}{MuM-Purpur}	MuM-Purpur

\textcolor{mumorange}{MuM-Orange} \textcolor{mumteal}{MuM-Türkis} \textcolor{mumteal} \textcolor{mumteal}

 \implies zudem ist die Farbe lightgray definiert um Tabellen teils hellgrau einzufärben. Diese wurde z.B. verwendet in Abschnitt ??.

 $\begin{tabular}{|c|c|c|} \hline \cellcolor{lightgray} Grau & Weiß \hline \end{tabular} Grau | Weiß |$

14 Sonstiges

\MuM	MuM	\freq	$\mathrm{i}\omega$
$\backslash MKS$	Mehrkörpersystem	$\backslash MKSe$	Mehrkörpersysteme
\FMKS	flexibles Mehrkörpersystem	\FMKSe	flexible Mehrkörpersysteme
\Mbqq	$\overline{\overline{M}}$	\N	MuM} (MuM)
$\backslash w$	W	\1	ℓ
\e\e	e (Eulerzahl)	•	