Documentation and Reporting

<u>Project Title: Weather Time Series Analysis and Temperature</u> Prediction

1. Problem Statement

The goal of this project is to develop a predictive model that accurately forecasts temperature based on weather data from the dataset. By analyzing various weather features, the model aims to predict temperature with high accuracy.

2. Expected Outcome

Develop a model that accurately predicts temperature with low error rates. The expected outcome includes detailed exploratory data analysis, preprocessing steps, model training, and evaluation metrics.

3. Data Collection

Data Source: Max Planck Weather Time Series dataset (max_planck_weather_ts.csv). Dataset:https://www.kaggle.com/datasets/arashnic/max-planck-weather-dataset?resource=download

Features: Includes T (degC), rh (%), p (mbar), VPmax (mbar), Tpot (K), Tdew (degC), VPact (mbar), VPdef (mbar), sh (g/kg), H2OC (mmol/mol), rho (g/m**3), wv (m/s), max. wv (m/s), wd (deg).

Target Variable: T (degC).

4. Data Preprocessing

Handling Missing Values

- Checked for missing values: No missing values detected.
- Dealing with Duplicate Data
- Detected and removed duplicate records:

data.drop duplicates(inplace=True)

Outlier Detection and Treatment
Identified outliers using box plots.
plt.figure(figsize=(10, 6))

sns.boxplot(data['T (degC)'])
plt.title('Box plot of Temperature (degC)')

```
plt.show()
       Removed extreme outliers using the IQR method:
               Q1 = data[['T (degC)', ...]].quantile(0.25)
               Q3 = data[['T (degC)', ...]].quantile(0.75)
               IQR = Q3 - Q1
               filter = (data[['T (degC)', ...]] >= (Q1 - 1.5 * IQR)) & (data[['T (degC)', ...]] <= (Q3 +
               1.5 * IQR))
               data filtered = data[filter.any(axis=1)]
Feature Scaling/Normalization
       Applied StandardScaler to normalize features:
               from sklearn preprocessing import StandardScaler
               scaler = StandardScaler()
               scaled_features = scaler.fit_transform(data.drop(columns=['Date Time']))
               data scaled = pd.DataFrame(scaled features, columns=data.columns[1:])
5. Exploratory Data Analysis (EDA)

    Descriptive Statistics

               Provided summary statistics:
               print(data.describe())

    Visualizations

       Box Plot of Temperature:
       Description: Highlights outliers in temperature data.
       Temperature Distribution Histogram:
               plt.hist(data_filtered['T (degC)'], bins=30, edgecolor='k')
               plt.title('Temperature Distribution')
               plt.xlabel('Temperature (°C)')
               plt.ylabel('Frequency')
               plt.show()
       Correlation Heatmap:
               plt.figure(figsize=(12, 8))
               sns.heatmap(data filtered.corr(), annot=True, cmap='coolwarm')
               plt.title('Correlation Heatmap')
               plt.show()
       Scatter Plot of Temperature vs. Pressure:
               plt.figure(figsize=(10, 6))
               plt.scatter(data['p (mbar)'], data['T (degC)'], alpha=0.5)
               plt.title('Temperature (degC) vs. Pressure (mbar)')
               plt.xlabel('Pressure (mbar)')
```

```
plt.ylabel('Temperature (degC)')
plt.show()
```

6. Feature Engineering

Converted Date Time to datetime object:

```
data['Date Time'] = pd.to_datetime(data['Date Time'])
```

7. Data Splitting

Split the dataset into 80% training and 20% testing sets:

```
from sklearn.model_selection import train_test_split

X = data_scaled.drop(columns=['T (degC)'])

y = data_scaled['T (degC)']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random state=42)
```

8. Model Selection

Chose Linear Regression, Decision Tree, and Random Forest based on problem nature and data.

9. Model Training

Trained models using the training dataset:

```
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor

Ir_model = LinearRegression()
dt_model = DecisionTreeRegressor()
rf_model = RandomForestRegressor()

Ir_model.fit(X_train, y_train)
dt_model.fit(X_train, y_train)
rf_model.fit(X_train, y_train)
```

10. Model Evaluation

Evaluation Metrics

```
Linear Regression:
       lr_predictions = lr_model.predict(X_test)
       Ir mse, Ir mae, Ir r2 = evaluate model(Ir predictions, y test)
       print(f"Linear Regression - MSE: {Ir mse}, MAE: {Ir mae}, R2: {Ir r2}")
       Decision Tree:
       dt predictions = dt model.predict(X test)
       dt mse, dt mae, dt r2 = evaluate model(dt predictions, y test)
       print(f"Decision Tree - MSE: {dt mse}, MAE: {dt mae}, R2: {dt r2}")
       Random Forest:
       rf predictions = rf model.predict(X test)
       rf mse, rf mae, rf r2 = evaluate model(rf predictions, y test)
       print(f"Random Forest - MSE: {rf_mse}, MAE: {rf_mae}, R2: {rf_r2}")
Hyperparameter Tuning
       Used GridSearchCV for hyperparameter tuning of the Random Forest model:
              from sklearn.model_selection import GridSearchCV
              param grid = {
                'n estimators': [50, 100, 200],
                'max_depth': [10, 20, 30]
              }
              grid search = GridSearchCV(rf model, param grid, cv=3,
              scoring='neg_mean_squared_error')
              grid search.fit(X train, y train)
              best rf model = grid search.best estimator
              best rf predictions = best rf model.predict(X test)
              best_rf_mse, best_rf_mae, best_rf_r2 = evaluate_model(best_rf_predictions,
              y_test)
              print(f"Best Random Forest - MSE: {best rf mse}, MAE: {best rf mae}, R2:
```

11. Model Deployment

Saved the best Random Forest model using joblib:

{best rf r2}")

import joblib
joblib.dump(best_rf_model, 'best_rf_model.pkl')
Loaded the saved model and made predictions:
loaded_model = joblib.load('best_rf_model.pkl')
final_predictions = loaded_model.predict(X_test)
Visualization of Forecasted Results

Compared actual vs predicted temperatures:

```
plt.figure(figsize=(14, 7))
plt.plot(data['Date Time'][-len(y_test):], y_test, label='Actual')
plt.plot(data['Date Time'][-len(y_test):], final_predictions, label='Predicted')
plt.xlabel('Date Time')
plt.ylabel('Temperature (degC)')
plt.title('Actual vs Predicted Temperature')
plt.legend()
plt.show()
```


