Cohetería Computacional

Tercera clase

Microcontroladores, sensores, actuadores, alimentación, interfaces de comunicación y programación de bajo nivel

Microcontrolador (MCU)

Otros microcontroladores

Arduino Pro mini 328

Arduino Mega

Raspberry Pi Pico

Blue Pill STM32

ESP32

Pinout de los micros

Arduino Mega

Para conectar otros elementos

Arduino Nano

Sensores

Detectan variables físicas

- Luz
- Fuerza
- Aceleración
- Temperatura
- Humedad
- Proximidad
- GPS

Actuadores

Generan un efecto físico

- Electrónicos
- Hidráulicos
- Neumáticos
- Eléctricos
- Motores
- Bombas

Motores

Existen muchos tipos

- DC
- Brushless
- Stepper
- Servo
- Lineales
- entre otros . . .

*Nunca conectar directamente al microcontrolador

Diferencias entre motores

Motor CD

- Barato
- Bajo torque
- Control de velocidad por PWM

Servomotor

- Precio intermedio
- Torque medio
- Control por PWM (maneja ángulo)

Motor a pasos (Stepper)

- Caro
- Alto torque
- Control de velocidad complejo (drivers)

Alimentación

- Baterías
- Adaptadores
- Conectores a computadora
- Fuentes
- Reguladores
- Bucks reductores o elevadores

*Les recomiendo un interruptor

Interfaces de comunicación

UART

- Asincrónico
- Bi-direcional *
- Líneas TX y RX
- Velocidad "BAUD rate" **
- Simple de usar, muy común
- Permite detección de errores
- Sólo 8 bits por mensaje
- Sólo dos dispositivos
- Lento

*Es bi-direccional, pero no simultáneo

**BAUD no debe tener diferencias mayores al 10%

SPI

- Sincrónico
- Bi-direcional simultáneo
- Líneas MOSI, MISO, SCLK, SS
- Simple de usar
- Múltiples dispositivos
- Muy rápido
- Sólo un maestro
- Ocupa muchas líneas
- No verifica mensajes

12C

- Sincrónico
- Bi-direccional
- Líneas SDA y SCL
- Múltiples dispositivos
- Puede ser más complejo
- Velocidad UART < I2C < SPI
- Múltiples maestros
- Verifica la comunicación entre maestro y esclavo

Programación de bajo nivel

Arduino facilita aprender

Arduino IDE

Placas de desarrollo integrado

Señales eléctricas

ADC para dispositivos que no tengan uno

Uso del ADC integrado en el Arduino UNO

```
// Pin digital
int valor1 = digitalRead(3);
// Pin analógico
int valor2 = analogRead(A0);
// Precisión de 10 bits de 0 a 1023
```


arduino programming notebook

The C Programming
Language Handbook

Curso Arduino desde cero en Español fácil y didáctico

77 videos • 2,990,708 views • Last updated on Aug 5, 2022

Tarea

Selección de micro controlador

Specification 21 mm × 51 mm form factor RP2040 microcontroller chip designed by Raspberry Pi in the UK Dual-core Arm Cortex-M0+ processor, flexible clock running up to 133 MHz 264kB on-chip SRAM 2MB on-board QSPI flash 2.4GHz 802.11n wireless LAN (Raspberry Pi Pico W and WH only) 26 multifunction GPIO pins, including 3 analogue inputs 2 × UART, 2 × SPI controllers, 2 × I2C controllers, 16 × PWM channels 1 × USB 1.1 controller and PHY, with host and device support 8 × Programmable I/O (PIO) state machines for custom peripheral support Supported input power 1.8-5.5V DC Operating temperature -20°C to +85°C (Raspberry Pi Pico and Pico H); -20°C to +70°C (Raspberry Pi Pico W and Pico WH) Castellated module allows soldering direct to carrier boards (Raspberry Pi Pico and Pico W only) Drag-and-drop programming using mass storage over USB Low-power sleep and dormant modes Accurate on-chip clock Temperature sensor Accelerated integer and floating-point libraries on-chip

Descripción de tarea

Investigue un posible micro controlador para colocar dentro del cohete, escriba en el google forms los siguientes datos del mismo.

- Precio (en colones, al cambio actual)
- Peso (en gramos)
- Dimensiones (en milímetros)
- Alimentación (en Volts)
- Interfaces, puertos análogos/digitales, cualquier extra

https://forms.gle/MAdcKsaqmkhudUBc9