无线串口模块 433MHz 用户手册

目录

•	模块介绍	
	1.1 模块特点	3
	1.2 模块概述	3
	1.3 基本参数	3
	1.4 系列产品	3
<u> </u>	连接说明 · 连接说明	
	2.1 工作原理简单介绍	.4
	2.2 模块 MCU 等设备的连接	
	2.3 模块之间的连接通讯	.5
	2.4 模块与 PC 连接通讯	5
=	无线串口透传	
—·	- プロステールと19 3.1 串口透传特性	- 2 2
	5.1 中口透传存住	5 5.2
四.	快速测试	
	4.1 参数架与模块连接	
	4.1 参数架与模块连接 4.2 通讯测试	
五.		
五.	4.2 通讯测试	7
五.	4.2 通讯测试	7 7
五.	4.2 通讯测试	7 7 8
五.	4.2 通讯测试	7 7 8
五.	4.2 通讯测试	7 7 8 8
	4.2 通讯测试	7 7 8 8
	4.2 通讯测试 开发利用 5.1 模块尺寸和引脚定义 5.2 天线选择 5.3 嵌入方式 5.4 贴片炉温 5.5 参考连接电路	7 7 8 8 9
	4.2 通讯测试	7 7 8 9 9

版本信息

HC-12V2.4

发布日期

2016年12月02日

修改记录

- 1. 增加 FU2 模式下发送数据时间间隔的说明。(2013.10.17)
- 2. 修正应用实例及电路中 HC-12 模块与 MCU 串口连接的线路图。(2013.12.26)
- 3. FU3 模式 1200 波特率恢复成和 1.13 版本的一样,同时增加 FU4 模式。
 FU4 模式下串口波特率固定为 1200bps,空中波特率为 500bps,可以提高通信距离。该模式下,只适用传输少量数据(每个数据包在 60 个字节以内),数据包发送时间间隔不能太短(最好在 2 秒以上),否则会造成数据丢失。(2014.09.18)
- 4. 修改了 FU2 模式下,只适用传输少量数据(每个数据包在 20 个字节以内),数据包发送时间间隔不能太短(最好在 2 秒以上),否则会造成数据丢失。(2014.09.18)
- 5. 软件版本由原来的 V2.3 升级为 V2.4。(2016.12.02)

一、模块介绍

HC-12

1.1 模块特点

- ※ 远距离无线传输(开阔地 1000 米/FU4 模式下,空中波特率 500bps)
- ※ 工作频率范围 (433.4—473.0MHz, 多达 100 个通信频道)
- ※ 最大 100mW (20dBm) 发射功率 (可设置 8 档功率)
- ※ 四种工作模式,适应不同应用场合
- ※ 内置 MCU,通过串口和外部设备进行通信
- ※ 不限一次发送的字节个数 (FU1/FU3 模式)
- ※ 模块支持一对一、一对多、多对多连接透传

1.2 模块概述

HC-12 无线串口通信模块是新一代的多通道嵌入式无线数传模块。无线工作频段为 433.4—473.0MHz,可设置多个频道,步进是 400KHz,总共 100 个。模块最大发射功率为 100mW (20dBm), 5000bps 空中波特率下接收灵敏度-116dBm,开阔地 1000 米的通信距离。

模块采用邮票孔封装方式,可贴片焊接,模块大小27.8mm×14.4mm×4mm(包括天线帽,不包括弹簧天线),很方便客户嵌入应用系统之内。模块上有PCB天线座ANT1,用户可以通过同轴线,使用433M频段外接天线;模块内也有天线焊接孔ANT2,方便用户焊接弹簧天线。用户可以根据使用要求,选择其中一种天线。

模块内部含有 MCU,用户无需对模块另外编程,各种透传模式只管收发串口数据即可,使用方便。模块采用多种串口透传模式,用户可以根据使用要求用 AT 指令进行选择。四种模式 FU1、FU2、FU3、FU4 的空闲状态下平均工作电流分别为 3.6mA、80μA、16mA 和 16mA,最大工作电流为 100mA(满功率发射状态下)

1.3 基本参数

参数名称	参数值	参数名称	参数值
型号	HC-12	模块尺寸	27.8×14.4×4mm
芯片方案	SI4463	工作频段	433.4~473.0MHz
通讯接口	UART 3.3V/5V TTL 电平	天线接口	弹簧天线/天线插座
工作电压	3.2~5.5V	睡眠电流	无睡眠模式
通信电平	3.3V/5V 电平	工作湿度	10%~90%
发射功率	20dBm (MAX)	工作温度	-25℃~+75℃
参考距离	1000m	存储温度	-40°C∼+85°C

1.4 系列产品

型号	芯片方案	工作频率	最大功率	通信距离	产品尺寸	嵌入方式	产品特点
							配套的 PC 端
HC-12-USB	SI4463	433MHz	20dBm	1000 米		USB 2.0	虚拟串口
HC-11	CC1101	433MHz	10dBm	40 米	27.8*14.4*4mm	贴片/直插	短距离的
HC-11	CCTTOT	433101112	TOUBIII	40 🛪	27.0 14.4 411111	加力/基础	433MHz 串口

二、连接说明

HC-12

2.1 工作原理简单介绍

注:如上面图所示,HC-12 模块用于代替半双工通信时的物理连线。左边的设备向模块发送串口数据,模块的 RXD 端口收到串口数据后,自动将数据以无线电波的方式发送到空中。右边的模块能自动接收到,并从 TXD 还原最初左边设备所发的串口数据。从右到左也是一样的。模块间只能工作于半双工状态,不能同时收发数据。

2.2 模块与单片机 MCU 等设备的连接

模块可与供电系统为 3.3V 或者 5V 的 MCU 连接,串口交叉连接即可 (模块的 RX 接 MCU 的 TX、模块的 TX 接 MCU 的 RX) 注:如需串接电阻保护 MCU,请在串口端串接不大于 200Ω 的电阻即可,建议不加电阻。

2.3 模块之间的连接

2.4 模块与 PC 的连接

三、无线串口透传

3.1 串口透传特性

HC-12 模块有四种串口透传模式,用 FU1、FU2、FU3 和 FU4 表示。使用时,各个模式都是只管收发串口数据即可,不用管空中无线传送部分,但只有在同样空中波特率下才能互相通信!系统默认工作在 FU3 全速模式下,此模式可以根据串口波特率自动调节空中波特率,在低波特率下通信距离最远。

不同模式是不能互传数据的,用户可以根据实际情况选择最优模式。

模块一般两个或两个以上连接使用,以半双工的方式互相传送数据。同时,透传模式、波特率、无线通信频道必须设置成一样。出厂默认设置为 FU3、9600bps (8 位数据、无校验、1 位停止位)、CH001 (433.4MHz)。使用时一般不限定一次连续往模块串口发送的字节数。但鉴于环境干扰等因素,一次连续发送大量数据时,有可能会丢失一些字节。所以,上位机最好要有应答和重发等机制,避免信息丢失。

3.2 四种串口透传模式

HC-12 模块出厂时串口透传模式默认为 FU3。此时,模块工作于全速状态下,空闲工作电流为 16mA 左右。 在此模式下,模块会根据串口波特率自动调节无线传输空中波特率,其对应关系如下表所示:

	串口波特率	1200	2400	4800	9600	19200	38400	57600	115200
		bps	bps	bps	bps	bps	bps	bps	bps
无	线空中波特率	5000	Obps	1500	0bps	5800	0bps	23600	00bps

为了使通信距离尽量远,可以把串口波特率设为低波特率。如果是短时间传送大量数据,则把串口波特率设为 高波特率,但要牺牲通信距离。不同空中波特率条件下模块的接收灵敏度如下表所示:

串口波特率	500bps	5000bps	15000bps	58000bps	236000bps/250000bps
无线空中波特 率	-124dBm	-116dBm	-111dBm	-106dBm	-100dBm

一般来说,接收灵敏度每下降 6 dB,通信距离会减少一半。

在模块"SET"脚置低电平时,可以通过 AT 指令来设置串口透传模式(详见下面章节的介绍)。

FU1 模式为较省电模式,此时模块的空闲工作电流为 3.6mA 左右。此模式下模块同样可以设置如上面表格所示的 8 种串口波特率,但空中波特率统一为 250000bps,通信距离较短。

FU2 模式为省电模式,此时模块的空闲工作电流为 80μA 左右。此模式下模块只支持 1200 bps、2400 bps 和 4800 bps 的串口波特率,空中波特率统一为 250000bps,通信距离较短。此模式下不能设置成其它串口波特

率。同时,在 FU1 和 FU3 模式下设置为 FU2 模式时,超过 4800 bps 的串口波特率一律会被自动降低为 4800 bps。FU2 模式下,只适用传输少量数据(每个数据包在 20 个字节以内),数据包发送时间间隔不能太短(最好在 2 秒以上),否则会造成数据丢失。

FU4 模式为超远距离通信模式,串口波特率固定为 1200bps,空中波特率为 500bps。从其它模式转到 FU4 后,串口波特率会自动转为 1200bps。该模式下,只适用传输少量数据(每个数据包在 60 个字节以内),数据包发送时间间隔不能太短(最好在 2 秒以上),否则会造成数据丢失。

下面给出各种模式的一些特性参考值:

模式	FU1	FU2	FU3	FU4	备注
空闲电流	3.6mA	80μΑ	16mA	16mA	平均值
传送延时	15~25mS	500mS	4~80mS	1S	发 1 个字节
回环测试 1	31mS				串口波特 9600 , 发 1 个字节
回环测试 2	31mS				串口波特 9600 , 发 10 个字节

注:回环测延时是指,短接一模块的 TX 与 RX 引脚,发串口数据给另一模块,从开始发送串口数据计起到另一模块 TX 引脚出现返回来的数据的这段时间。

五、开发利用

HC-12

5.1 模块尺寸和引脚定义

引脚 定义 I/O 方向 说明

1	VCC		电源输入, DC3.2V—5.5V, 要求负载能力不小于 200mA。 (注:如果模块要长时间工作在发射状态,建议当电源电压超过
			4.5V 时串接一个 1N4007 二极管,避免模块内置 LDO 发热。)
2	GND		公共地
3	RXD	输入,内部 3.3k 上拉电阻	URAT 输入口, TTL 电平,内部已串接高速二极管
4	TXD	输出	URAT 输出口, TTL 电平,内部已串接 200Ω 电阻
5	SET	输入,内部 10k 上拉电阻	参数设置控制脚,低电平有效,内部已串接 1kΩ电阻
6	ANT	RF 输入/输出	433MHz 天线引脚
7	GND		公共地
8	GND		公共地
9	NC		无连接,用于固定,兼容 HC-11 模块引脚位置
ANT1	ANT	RF 输入/输出	IPEX20279-001E-03 天线插座
ANT2	ANT	RF 输入/输出	433MHz 弹簧天线焊接孔

注:

引脚 1—6 各有两个焊盘,靠外面的半孔焊盘用于贴片焊接。引脚 6 靠里面的焊盘 ANT2 用于模块贴片焊接时,可以手焊弹簧天线。引脚 1—5 靠里面的圆孔焊盘用来焊接 2.54mm 间距排针,可以直接插到用户 PCB 排座上。

5.2 天线选择

ANT1: IPEX20279-001E-03 天线插座

建议:在金属密闭空间,可使用天线座,将天

线引接到开阔的环境下。

ANT2: 433MHZ 弹簧天线焊接孔

建议:在开阔的环境下,可焊接弹簧天线使用

5.3 嵌入方式

HC-12 模块集成了焊接串孔和贴片邮票口,用户可以根据自己的需求,选择 SMD 贴片或插针式嵌入应用中。

在使用汇承 HC-USB-T 参数架测试时,模块只能焊接排针插入参数架中。

5.4 贴片炉温

建议首次大批量贴片生产的厂家,先过炉 20~30 只模块,检查炉温是否合适建议贴片锅炉炉温不得超过参考图温度,二次贴片降低 5 度左右,夏天可以再适当降低温度

5.5 **参考连接电路**

① HC-12 模块与电脑串口的连接

"SET"脚通过开关 SW1 接地可以进入参数设置状态, 悬空则退出。

② HC-12 模块与 MCU 串口的连接

MCU中"SET"控制脚平时请置高阻状态或高电平输出,进行参数设置时请置低电平。

六、AT指令介绍

AT 指令用来设置模块的参数和切换模块的功能,设置后需退出设置状态才生效。同时,参数和功能的修改, 掉电不会丢失。

6.1 进入 AT 指令的方法

第一种进入方式——正常使用(已经上电)中,把第 5 引脚"SET"置低电平;第二种进入方式——断电,第 5 引脚"SET"先置低电平再重新上电。

这两种方式都能使模块进入 AT 指令模式,释放("SET"引脚不接低电平)则退出指令模式。退出指令模式后,如果更改了模块功能,则会切到相应的功能状态。

第二种方式固定以 9600, N, 1 的串口格式进入指令模式。

注:退出指令模式后,模块处于复位状态,至少要等 200mS 后才能再次进入指令模式,否则模块有可能按照 第二种方式进入指令模式!

6.2 默认出厂参数

串口波特率为 9600bps、通信频道为 C001、串口透传模式为 FU3。

6.3 AT 指令介绍

6.3.1 测试通讯

指令	响应	说明
AT	ОК	测试

6.3.2 更改串口波特率指令

指令	响应	说明
AT+Bxxxx	OK+Bxxxx	用 AT 指令设好波特率后,下次上电使用不需再设置,可以掉电保
AI + DXXXX	ON+DXXXX	存波特率。

更改串口波特率指令。可设置波特率为 1200bps、2400bps、4800bps、9600bps、19200bps、8400bps、57600bps 和 115200bps。出厂默认为 9600bps。

例:

设置模块串口波特率为 19200bps, 请发给模块指令"AT+B19200", 模块返回"OK+B19200"。

6.3.3 更改无线通信的频道

指令	响应
AT+Cxxx	OKsetname

更改无线通信的频道,从 001 到 127 可选(超过 100 以后的无线频道,通信距离不作保证)。无线频道默认值为 001,工作频率为 433.4MHz。频道的步进是 400KHz,频道 100 的工作频率为 473.0MHz。

例:

设置模块工作到频道 21,请发给模块指令"AT+C021",模块返回"OK+C021"。退出指令模式后,模块工作在第 21 通道,工作频率为 441.4 MHz。

注意:

由于 HC-12 模块的无线接收灵敏度比较高,当串口波特率大于 9600 bps 时,必须要错开 5 个相邻频道来使用。当串口波特率不大于 9600 bps 时,如果短距离(10 米以内)通信,也需要错开 5 个相邻频道使用。

6.3.4 更改模块串口透传模式

指令	响应	响应
AT+FUx	OK+FUx	可选 FU1、FU2、FU3 和 FU4 四种模式

模块默认模式是 FU3,两模块的串口透传模式必须设置为一样才能正常通信。详细介绍请查看上面"无线串口透传"部分的介绍。

例:

发给模块指令"AT+FU1", 模块返回"OK+FU1"。

6.3.5 设置模块的发射功率等级

指令	响应
AT+Px	OK+Px

设置模块的发射功率等级, x 可取 1—8, 对应模块发射功率如下:

x 值	1	2	3	4	5	6	7	8
模 块 发 射 功 率	-1	2	5	8	11	14	17	20
(dBm)								

出厂默认设置为 8,发射功率最大,通信距离最远。发射功率等级设置为 1,发射功率最小。一般来说,发射功率每下降 6dB,通信距离会减少一半。

例:

发给模块指令"AT+P5",模块返回"OK+P5"。退出指令模式后,模块发射功率为+11dBm。

6.3.6 获取模块的单项参数

指令	指令		
AT+Ry	OK+(y 所指定的参数)	y 为 B、C、F、P 中的任一字母 , 分别表示: 波特率、通信频道、 鬼口诱传模式 发射功率	
·		道、串口透传模式、发射功率。	

例 1:

发给模块指令"AT+RB",如果模块返回"OK+B9600",则查询到模块的串口波特率为 9600bps。

例 2:

发给模块指令"AT+RC",如果模块返回"OK+RC001",则查询到模块的通信频道为 001。

例 3:

发给模块指令"AT+RF",如果模块返回"OK+FU3",则查询到模块工作在串口透传模式 3。

例 4:

发给模块指令"AT+RP",如果模块返回"OK+RP: +20 dBm",则查询到模块的发射功率为+20 dBm。

6.3.7 获取模块的所有参数

指令	说明			
AT . DV	依次返回当前模块的串口透传模式、串口波特率、通信频道、			
AT+RX	发射功率等信息。			

例:

发给模块指令"AT+RX",模块返回"OK+FU3

OK+B9600

OK+C001

OK+RP: +20 dBm".

6.3.8 设置串口通信的数据位数、校验位和停止位

指令	说明
AT+Uxxx	设置串口通信的数据位数、校验位和停止位。校验位中,N代表无校验,O代表奇校验,E代表偶校验。停止位中,1代表1位停止位,2代表2位停止位,3代表1.5位停止位。

例:

要把串口格式设置成 8 位数据位,奇校验,1 个停止位,请发给模块指令"AT+U8O1",模块返回"OK+U8O1"。

6.3.9 查询模块固件版本信息

指令	响应	说明
AT+V	HC-12_V2.2	返回官网网址和固件版本号

6.3.10 设置睡眠模式

指令	响应	说明
AT+SLEEP	OK+SLEEP	收到指令后,模块在退出 AT 指令时进入睡眠模式,工作电流约 22μA,这时模块不能进行串口数据传输。再次进入 AT 设置状态 则自动退出睡眠模式。

例:

当不用无线传输数据时,为了节约电量,发给模块指令"AT+SLEEP",模块返回"OK+SLEEP"

6.3.11 将串口波特率、通信频道、串口透传模式恢复出厂默认值。

指令	响应	说明
AT+DEFAULT	OK+DEFAULT	将串口波特率、通信频道、串口透传模式恢复成出厂默认值。

例:

发给模块"AT+DEFAULT",模块返回"OK+DEFAULT",恢复出厂默认值。串口波特率为 9600bps、通信频 道为 C001、串口透传模式为 FU3。

注意事项

