Next Generation Computing Models

Quantum Computing
Un qubit

1

1

qubit

- nel calcolo tradizionale un bit può essere in alternativa nello stato 0 o nello stato 1
- nel quantum computing si usano i qubit
- un qubit può essere simultaneamente nello stato
 0 e nello stato 1 (una superposition dei due stati)

qubit – ampiezze

- i due stati di base di un qubit si indicano di solito con |0> e |1>
- un qubit si trova in generale in uno stato descritto da $\alpha_0|0\rangle + \alpha_1|1\rangle$, dove α_0 e α_1 sono numeri complessi $(\alpha_0, \alpha_1 \in \mathbb{C})$ chiamati *ampiezze*
 - con il vincolo $|\alpha_0|^2 + |\alpha_1|^2 = 1$
 - si ricorda che il *modulo* di un numero complesso $\mathbf{z} = x + yi$ è definito come $|z| = \sqrt{x^2 + y^2}$
 - $\text{quindi } |z|^2 = x^2 + y^2$

3

3

qubit – esempi

- ad esempio un qubit può trovarsi nello stato $(\frac{1}{2} + \frac{1}{2}i)|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
 - si noti come $|(1/2 + 1/2 i)|^2 + |1/\sqrt{2}|^2 = (1/4 + 1/4) + 1/2 = 1$
- oppure un qubit può trovarsi nello stato $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

qubit – misura

- quando un qubit è isolato si trova in una superposition
- quando viene misurato (osservato) collassa con probabilità $|\alpha_0|^2$ a $|0\rangle$ e con probabilità $|\alpha_1|^2$ a $|1\rangle$
- dopo l'osservazione i valori di ampiezza sono irrimediabilmente perduti
 - la misura disturba lo stato del sistema

5

5

qualche esempio sui numeri complessi

ricorda che $i = \sqrt{-1}$ e che $i^2 = -1$

- semplifica z = 2 + 3i 5i + 6
 - -z = 8 2i
- semplifica $z = (2 + i)^2$

$$-z = 4 + 4i + i^2 = 4 + 4i - 1 = 3 + 4i$$

• semplifica $z = i^3(7 + 5i)$

$$-z = -i(7+5i) = -7i - 5i^2 = -7i + 5 = 5 - 7i$$

6

qualche esempio sui numeri complessi

ricorda che il *complesso coniugato* di un numero complesso z = x + yi è definito come $\overline{z} = x - yi$

- calcola il complesso coniugato di z = 2 + 3i
 - $-\bar{z}=2-3i$
- calcola il complesso coniugato di z = -i
 - $-\bar{z}=i$

-

7

qualche esempio sui qubit

- considera il qubit $|\psi\rangle = \frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle$
- quello mostrato è uno stato nel quale il qubit può effettivamente trovarsi?

- sì perché
$$\left(\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1$$

 se verrà misurato, con che probabilità il risultato della misura sarà |0>?

$$-\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}$$

qualche esempio sui qubit

- considera il qubit $|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle i\frac{1}{\sqrt{2}}|1\rangle$
- quello mostrato è uno stato nel quale il qubit può effettivamente trovarsi?

- sì perché
$$\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-i\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$$

- se viene misurato, con che probabilità il risultato della misura sarà |0>?
 - $-\frac{1}{2}$

9

C

qubit – rappresentazione vettoriale

- possiamo rappresentare lo stato descritto da $\alpha_0|0\rangle + \alpha_1|1\rangle$, in modo sintetico con il vettore di numeri complessi $\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$
- quindi lo spazio degli stati di un qubit è uno spazio *bidimensionale complesso*
 - detto spazio di Hilbert
- il vincolo di normalizzazione ci dice che il vettore di un qubit è anche *unitario*
 - un vettore è *unitario* quando ha modulo (lunghezza)
 uguale a 1; si chiama anche *versore*

qubit – stati di base

- possiamo rappresentare lo stato descritto da $\alpha_0 = 1$, e $\alpha_1 = 0$ con il vettore $\binom{1}{0}$
 - quindi scrivere $|0\rangle$ è equivalente a scrivere $\begin{pmatrix} 1\\0 \end{pmatrix}$
- inoltre possiamo rappresentare lo stato descritto da $\alpha_0 = 0$, e $\alpha_1 = 1$ con il vettore $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - quindi scrivere $|1\rangle$ è equivalente a scrivere $\begin{pmatrix} 0\\1 \end{pmatrix}$

11

11

qubit – rappresentazione vettoriale

- quindi possiamo scrivere $\alpha_0|0\rangle + \alpha_1|1\rangle$ in forma vettoriale come $\alpha_0\begin{pmatrix}1\\0\end{pmatrix} + \alpha_1\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\alpha_0\\\alpha_1\end{pmatrix}$
 - i vettori $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ sono le *basi* della rappresentazione
- la notazione con le parentesi $|x\rangle$ non è che una forma sintetica per la rappresentazione vettoriale
 - -si chiama $\mathit{ket}\text{-}\mathit{notation}$ ed è stata concepita da Dirac
 - la forma $|x\rangle$ denota con il nome x un vettore colonna

qubit – rappresentazione vettoriale

- quindi
 - un qubit è quindi un vettore unitario in uno spazio vettoriale bidimensionale *complesso*
 - la notazione usata per descrivere qubit è una notazione per descrivere vettori

13

13

es. sulla rappresentazione vettoriale

- considera il qubit $|\psi\rangle = \frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle$
- mostrane la reppresentazione vettoriale

$$- |\psi\rangle = \frac{\sqrt{3}}{2} {1 \choose 0} - \frac{1}{2} {0 \choose 1} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}$$

qubit – interpretazione geometrica

• se assumiamo, per semplicità, che α_0 e α_1 siano numeri *reali*, possiamo rappresentare $\alpha_0 {1 \choose 0} + \alpha_1 {0 \choose 1}$ con il disegno:

15

qubit – interpretazione geometrica

• ad esempio se $\alpha_0 = \frac{1}{\sqrt{2}}$ e $\alpha_1 = \frac{1}{\sqrt{2}}$ abbiamo

qubit – interpretazione geometrica

• consideriamo ora un generico stato $|\psi\rangle$ con ampiezze (per semplicità) reali ed osserviamo gli angoli della sua rappresentazione geometrica

17

17

qubit – interpretazione geometrica

- possiamo esprimere le componenti di $|\psi\rangle$ usando gli angoli che forma con gli assi
- abbiamo che $|\psi\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$

18

qubit – interpretazione geometrica

• se misuriamo $|\psi\rangle = \cos\theta |0\rangle + \sin\theta |1\rangle$ otteniamo $|0\rangle$ con probabilità $(\cos\theta)^2$ e $|1\rangle$ con probabilità $(\sin\theta)^2$

19

19

qubit – interpretazione geometrica

- possiamo riscrivere $(\sin \theta)^2 = (\cos(\pi/2 \theta))^2$
- quindi la probabilità di misurare uno |0⟩ o un |1⟩
 è data dal coseno al quadrato dell'angolo che lo stato ha con ciascuno di essi

20

qubit – interpretazione geometrica

 negli esempi ci siamo riferiti finora a valori reali, ma la proporzionalità con il coseno al quadrato rimane anche se i numeri sono complessi

21

21

qubit – basi diverse

- lo stato $|\psi\rangle$ di un qubit esiste indipendentemente dalla base nella quale lo esprimiamo
- possiamo quindi scegliere due versori (perpendicolari) $|u\rangle$ e $|u^{\perp}\rangle$ diversi da $|0\rangle$ e $|1\rangle$ ed esprimere $|\psi\rangle$ in funzione di $|u\rangle$ e $|u^{\perp}\rangle$

22

qubit – basi diverse

 la regola che lega la probabilità di misurare uno stato di base o un altro in funzione del coseno dell'angolo che lo stato ha con ciascuno di essi vale anche per versori diversi da |0> e |1>

23

23

qubit – basi diverse

• nota: la misura può essere effettuata relativamente a qualunque base

24

qubit – basi diverse

- quindi la misura di un qubit necessita della specifica della base rispetto alla quale è effettuata
- consideriamo ora il caso generale dei numeri complessi

25

25

richiamo – prodotto scalare

• il prodotto scalare tra due vettori (il primo *riga* e il secondo *colonna*) si calcola in questo modo

•
$$(a_1 \quad a_2 \quad \cdots \quad a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} =$$

$$= a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{i=1}^n a_i b_i$$

richiamo – complesso coniugato

si ricorda che il complesso coniugato di un numero complesso z = x + yi è definito come \(\bar{z} = x - yi\)

27

27

prodotto scalare tra vettori complessi

- il prodotto scalare tra due vettori complessi $|\varphi\rangle$ e $|\psi\rangle$ si calcola facendo il trasposto coniugato di $|\varphi\rangle$ e calcolando il prodotto scalare con il secondo
- se $|\varphi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ il suo trasposto coniugato è $(\bar{a}_1 \quad \bar{a}_2 \quad \cdots \quad \bar{a}_n)$

un po' di notazione

- mentre $|x\rangle$ denota un vettore colonna
- abbiamo che $\langle x |$ denota un vettore riga

29

29

qubit – basi diverse

- in generale, la probabilità che la misura di un qubit $|\psi\rangle$ dia un certo versore $|u\rangle$ la possiamo calcolare come *il quadrato del prodotto scalare* tra il versore e il qubit
 - si calcola usando il complesso coniugato del versore

30

qubit – basi diverse

- il prodotto scalare tra $|u\rangle = \beta_0 |0\rangle + \beta_1 |1\rangle$ e $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ si calcola come
 - $\left(\overline{\beta_0} \, \overline{\beta_1} \right) \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \overline{\beta_0} \alpha_0 + \overline{\beta_1} \alpha_1$
 - si ricorda che il complesso coniugato di un numero complesso $\mathbf{z} = x + yi$ è definito come $\overline{\mathbf{z}} = x yi$

31

31

qubit – basi diverse

• il prodotto scalare tra $|u\rangle$ e $|\psi\rangle$ si denota anche con $\langle u|\psi\rangle$ dove la prima parentesi angolata si chiama *bra* e le seconda *ket* (bra-ket notation, dovuta a Dirac)

qubit – basi diverse

• quindi la probabilità che la misura di un qubit $|\psi\rangle$ dia un certo versore $|u\rangle$ la possiamo denotare come $|\langle u|\psi\rangle|^2$

33

33

esempio sulla misura

- calcola la probabilità che $|0\rangle$ assuma il valore del versore $|+\rangle = {}^1/_{\sqrt{2}} |0\rangle + {}^1/_{\sqrt{2}} |1\rangle$
- abbiamo che $|0\rangle = {1 \choose 0}$
- quindi $\langle 0|+\rangle = (1 \quad 0) \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = 1/\sqrt{2}$
- $e |\langle 0|+\rangle|^2 = \frac{1}{2}$

esempio sulla misura

- calcola la probabilità che |0> assuma il valore del versore |1>
- abbiamo che $|0\rangle = {1 \choose 0}$ e $|1\rangle = {0 \choose 1}$
- quindi $\langle 0|1\rangle = (1 \quad 0) \begin{pmatrix} 0\\1 \end{pmatrix} = 0$
- $\mathbf{e} |\langle 0|1\rangle|^2 = 0$

35