Pays: Cameroun	Année : 2017	Épreuve : Mathématiques	
Examen : BAC, Séries D-TI	Durée : 4 h	Coefficient : 4	

EXERCICE 1 (04 points)

Le plan complexe est rapporté à un repère orthonormé (O; \vec{u} , \vec{v}). On considère les points A, B, C et D du plan complexe d'affixes respectives a = 5 + 4i, b = 4 + i, c = 3 + 3i et d = 6 + 2i.

- 1. Placer les points A, B, C et D sur le graphique.
- 2. Calculer $\frac{d-b}{d-a}$, en déduire que le triangle DAB est rectangle et isocèle.
- 3. On considère l'application f qui à tout point M d'affixe z avec $z \neq b$, associe le point M' d'affixe z' définie par $z' = \frac{z-5-4i}{z-4-i}$.
- a) Calculer l'affixe c' du point C', image de C par f et placer C' sur la figure.
- b) Déterminer l'ensemble (ε) des points M d'affixe z avec $z \neq b$ tels que |z'| = 1.
- c) Justifier que (ε) contient les points D et C. Tracer (ε) .
- **4.** On appelle J l'image du point A par la rotation r de centre D et d'angle $-\frac{\pi}{2}$.

Déterminer l'affixe de J.

EXERCICE 2 (05 points)

Lors d'une période de sécheresse, un agriculteur relève la quantité totale d'eau (en m³) utilisée pour son exploitation depuis le premier jour et donne le tableau suivant.

Nombre de jours écoulés : x	1	3	5	8	10
Volume d'eau utilisée (en m ³) : y	2,25	4,3	7	15,5	27

- 1. Représenter le nuage de points associé à cette série statistique.
- 2. Déterminer les coordonnées du point moyen G du nuage.
- **3.** Montrer que la covariance de *x* et *y* est 28,296.
- **4.** Démontrer qu'une équation de la droite de régression de y en x est $y = \frac{3537}{1330}x \frac{8381}{2660}$ sachant que la variance de x est V(x) = 10,64.
- 5. En déduire une estimation du volume d'eau utilisée pendant les 20 premiers jours.
- **6.** L'agriculteur dispose de sept ouvriers dont quatre femmes et trois hommes et il doit choisir au hasard et simultanément quatre personnes pour les primer. Calculer la probabilité des événements :
 - a) A « aucun homme n'est choisi »
 - b) B « au moins trois femmes sont choisies ».

PROBLÈME (11 points)

Partie A (06 points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = e^{\frac{3x}{2}} - 2x - 1$. On désigne par (C_f) la courbe de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$ d'unité graphique 2 cm.

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- **2.** *a*) Étudier les variations de *f* et dresser son tableau de variations.
 - b) Montrer que la droite (D) d'équation y = -2x 1 est asymptote à (C_f) en $-\infty$.
 - c) Montrer que l'équation f(x) = 0 admet deux solutions dont l'une est nulle et l'autre notée α appartient à l'intervalle [0,3;0,4].
- **3.** Tracer (C_f) et (D) dans le repère (O; \vec{i} , \vec{j}).
- **4.** Soit *m* un réel strictement inférieur à 0.
 - a) Exprimer en fonction de m l'aire A(m) en cm² de la portion du plan limitée par (C_f) , (D) et les droites d'équations x = m et x = 0.
 - b) Quelle est la limite de cette aire quand m tend vers $-\infty$?

Partie B (02,5 points)

On considère la fonction g définie sur $\left[-\frac{1}{2}; +\infty\right[\operatorname{par} g(x) = \frac{2}{3} \ln(2x+1).$

- **1.** Donner le sens de variation de g.
- **2.** Montrer que les équations f(x) = 0 et g(x) = x sont équivalentes dans $]-\frac{1}{2}$; $+\infty[$.
- 3. On considère la suite (u_n) définie par $u_0 = 4$ et pour tout entier naturel n, $u_{n+1} = g(u_n)$.
 - a) Montrer par récurrence que pour tout entier naturel n, on a : $u_n \in [\alpha; 4]$ et que (u_n) est décroissante.
 - b) Justifier que (u_n) est convergente et déterminer sa limite.

Partie C (02,5 points)

On considère les équations différentielles (E): 2y' - 3y = 0 et (E'): 2y' - 3y = 6x - 1.

- **1.** Montrer que f est solution de (E').
- **2.** Résoudre (E) sur \mathbb{R} .
- **3.** Montrer qu'une fonction h est solution de (E) si et seulement h + f est solution de (E').
- **4.** Résoudre alors (E') sur \mathbb{R} .
- **5.** Déterminer la fonction u solution de (E') telle que u(0) = 2.