

Algoritmi per il Machine Learning

Ing Andrea Colleoni

Clean data

- Data preprocessing in Machine Learning refers to the technique of preparing (cleaning and organizing) the raw data to make it suitable for a building and training Machine Learning models.
- It is the first step marking the initiation of the process. Typically, real-world data is incomplete, inconsistent, inaccurate (contains errors or outliers), and often lacks specific attribute values/trends.

Pre-processing dei dati: tipi di dati

Data type constraints

Datatype	Example
Text data	First name, last name, address
Integers	# Subscribers, # products sold
Decimals	Temperature, \$ exchange rates
Binary	Is married, new customer, yes/no,
Dates	Order dates, ship dates
Categories	Marriage status, gender

Python data type
str
int
float
bool
datetime
category

- Verifica preliminare dei tipi di dati
- Rimozione di informazioni superflue es: (€ 100,00 => 100,0)
- Convalida dei dati
 es: appartenenza ad un insieme, appartenenza ad
 un range, rispetto di un limite, minimo o massimo
- Dati non validi: come rimediare?
 - Eliminazione (solo se sono pochi)
 - Impostazione a un valore di default
 - Modifica dei vincoli

- **Deleting a particular row** In this method, you remove a specific row that has a null value for a feature or a particular column where more than 75% of the values are missing. However, this method is not 100% efficient, and it is recommended that you use it only when the dataset has adequate samples.
- Calculating the mean This method is useful for features having numeric data like age, salary, year, etc. Here, you can calculate the mean, median, or mode of a particular feature or column or row that contains a missing value and replace the result for the missing value.

 I valori duplicati possono essere originati da molti fattori: errore umano o da errori di design o bug nel software.

- Finora abbiamo sempre assunto che il vettore degli attributi (ingresso) sia sempre composto di quantità reali. Può accadere però che alcune osservazioni non riguardino grandezze continue, ma qualità discrete e non ordinate (colore, sesso, specie).
- L'algoritmo KNN, per esempio, si basa però sul calcolo di una distanza in uno spazio, quindi è necessario convertire le grandezze categoriche in una o più grandezze reali.

Data Entry Errors

Parsing Errors

Membership e consistency

- Le categorie possono appartenere ad un dominio
 - Esempio del JOIN in algebra relazionale
- Errori di appartenenza
- Errori di «case»

```
Capitalization: 'married', 'Married', 'UNMARRIED', 'unmarried'...
```

Spazi in eccesso

```
Trailing spaces: 'married', 'married', 'unmarried', 'unmarried'...
```

Remapping di molte categorie in un numero
 Map categories to fewer ones: reducing categories in categorical column.

```
operating_system column is: 'Microsoft', 'MacOS', 'IOS', 'Android', 'Linux'
operating_system column should become: 'DesktopOS', 'MobileOS'
```


Uniformità e cross field validation

- Temperature su varie scale?
- Date in vari formati?
- Grandezze in diverse unità di misura?
- I dati sono legati tra loro (se non sono 1NF, 2NF,..)

```
flight_number
                economy_class business_class first_class total_passengers
         DL140
                                          60
                                                      40
                         100
                                                                      200
0
         BA248
                         130
1
                                         100
                                                      70
                                                                      300
2
        MFA124
                         100
                                          50
                                                      50
                                                                      200
3
                                          70
                                                      90
                                                                      300
                            Birthday
           user_id
                     Age
                                         100
                                                      20
                                                                      250
             32985
                      22 1998-03-02
       0
       1
             94387
                      27 1993-12-04
       2
             34236
                      42 1978-11-24
       3
                      31 1989-01-03
             12551
                      18 2002-07-02
       4
             55212
```


The techniques that you'll cover are the following:

- Replacing values
- Encoding labels
- One-Hot encoding
- Binary encoding
- Backward difference encoding
- Miscellaneous features

Replace

	carrier	tailnum	origin	dest
0	AS	N508AS	PDX	ANC
1	US	N195UW	SEA	CLT
2	UA	N37422	PDX	IAH
3	US	N547UW	PDX	CLT
4	AS	N762AS	SEA	ANC

Encoding labels

 Invece che avere una mappa, ad ogni nuovo valore della categoria, genero un nuovo valore numerico dell'etichetta

Hanno un peso questi valori numerici??

One hot (unary)

- Per ogni valore genero una colonna
- Nella colonna c'è 1 se il valore corrisponde, 0 viceversa
- Il peso è uguale per tutti

	tailnum	origin	dest	carrier_AA	carrier_AS	carrier_B6	carrier_DL	carrier_F9	carrier_HA	carrier_00	carrier_UA	carrier_US	carrier_VX	carrier_WN
0	N508AS	PDX	ANC	0	1	0	0	0	0	0	0	0	0	0
1	N195UW	SEA	CLT	0	0	0	0	0	0	0	0	1	0	0
2	N37422	PDX	IAH	0	0	0	0	0	0	0	1	0	0	0
3	N547UW	PDX	CLT	0	0	0	0	0	0	0	0	1	0	0
4	N762AS	SEA	ANC	0	1	0	0	0	0	0	0	0	0	0

Esempio

Come mappare con numeri reali i colori dei fiori?

	Α	В	С	D	
1	lung petalo 💌	colore 🔻	altezza 🔻	spine 🔻	
2	2,1	rosso	5	no	
3	3,2	azzurro	5,4	no	
4	2,6	rosso	7,2	sì	
5	1,9	giallo	4,4	no	
6	3	azzurro	5,6	sì	
7	2,5	giallo	6	no	

ntazione unaria

rata in tre colonne numeriche; ale1 se l'attributo categorico è me eccezione, se l'attributo è na sola colonna numerica, ossibili valori categorici.

D	Е	F	G	Н		J	K	L	М
е				lung petalo	rosso	azzurro	giallo	altezza	spine
				2,1	1	0	0	5	0
				3,2	0	1	0	5,4	0
				2,6	1	0	0	7,2	1
				1,9	0	0	1	4,4	0
				3	0	1	0	5,6	1
				2,5	0	0	1	6	0

Binary

- Binary: un numero binario per ogni categoria, una colonna per ciascun bit
- Nella colonna c'è 1 se il valore corrisponde, 0 viceversa
- Il peso è uguale per tutti

	tailnum	origin	dest	carrier_AA	carrier_AS	carrier_B6	carrier_DL	carrier_F9	carrier_HA	carrier_00	carrier_UA	carrier_US	carrier_VX	carrier_WN
0	N508AS	PDX	ANC	0	1	0	0	0	0	0	0	0	0	0
1	N195UW	SEA	CLT	0	0	0	0	0	0	0	0	1	0	0
2	N37422	PDX	IAH	0	0	0	0	0	0	0	1	0	0	0
3	N547UW	PDX	CLT	0	0	0	0	0	0	0	0	1	0	0
4	N762AS	SEA	ANC	0	1	0	0	0	0	0	0	0	0	0

- Con normalizzazione (o ridimensionamento) intendiamo la serie di operazioni che permettono di valutare il dataset semplificandolo e impedendo ai valori sproporzionati o fuori scala di influenzare col proprio peso il resto dei dati che ha valori "normali".
- Il problema si risolve applicando il Feature Scaling.

Normalizzazione MIN-MAX

 è il metodo più semplice, i dati vengono ridimensionati e scalati su un intervallo fisso, in genere [0, 1]. Questa normalizzazione migliora l'accuratezza dell'analisi grazie alla migliore distribuzione dei dati.

$$m_j = \min_{i=1,...,m} x_{ij};$$
 $M_j = \max_{i=1,...,m} x_{ij}$ $x'_{ij} = \frac{x_{ij} - m_j}{M_j - m_j}.$

 In alcuni casi, il valore 0, anche se non compare mai nella matrice, ha un significato particolare e si desidera mantenerlo. Allora, è sufficiente porre mj= 0.

Normalizzazione MEDIA

 In alcune situazioni si può preferire mappare i dati su un intervallo [-1, 1] e utilizzando la media dei valori osservati

$$z = \frac{x - \text{media}(x)}{\max(x) - \min(x)}$$

Standardizzazione Z-SCORE

 Ridimensiona gli attributi in modo che il valore medio sia 0 e la deviazione standard 1.

$$z = \frac{x - \mu}{\sigma}$$

 Dove μ è la media dei campioni, σ è la deviazione standard dei dati di addestramento e x è il valore che si vuole standardizzare.

Difetti della Normalizzazione

- L'effetto indesiderato più importante dell'uso indiscriminato di questa tecnica è la perdita di alcuni dati.
 Infatti tenendo conto del fatto che i dati vengono compressi in piccoli intervalli, viene ridotta la variazione standard e viene imposto un "peso" uguale per tutte le caratteristiche, capiamo che non è una cosa da usare con leggerezza.
- L'effetto è detto anche sensibilità agli "outlier": se nella colonna è presente un valore molto più grande degli altri, questo viene mappato sul valore normalizzato 1, mentre tutti gli altri valori sono mappati vicino allo zero.

- se il dataset è suddiviso fra insiemi di addestramento e validazione, bisogna assicurarsi che i minimi e i massimi siano calcolati soltanto sulle righe di addestramento
- Gli stessi minimi e massimi andranno poi utilizzati anche nella normalizzazione dei valori di validazione, che potrebbero quindi uscire dall'intervallo [0,1]
- In generale, una volta ottenuti i parametri per la normalizzazione o per la standardizzazione, è fondamentale ricordarli in modo da applicare le stesse trasformazioni anche a nuovi insiemi di dati