Summary of Asymptotic Notations

Asymptotic Bound	$ \lim_{n\to\infty}\frac{f(n)}{g(n)}=C $	Complete Definition	Asymptotic Family Relationships	Is $g(n)$ an asymptotically tight bound for $f(n)$?
ω	∞ = <i>C</i>	$\omega(g(n)) = \begin{cases} f(n) : \text{for any positive constant} \\ c > 0, \exists \text{ a constant } n_0 > 0 \text{ such that} \\ 0 \le cg(n) < f(n) \forall n \ge n_0 \end{cases}$	$\omega(g(n)) \subset \Omega(g(n))$	No; asymptotically larger (see pg 52)
Ω	0 < C ≤ ∞	$\Omega(g(n)) = \begin{cases} f(n) : \exists \text{ positive constants } c \text{ and } n_0 \\ \text{such that } 0 \le cg(n) \le f(n) \forall n \ge n_0 \end{cases}$	$\Theta(g(n)) \subseteq \Omega(g(n))$	Maybe
o	0 = <i>C</i>	$o(g(n)) = \begin{cases} f(n) : \text{for any positive constant} \\ c > 0, \exists \text{ a constant } n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) < cg(n) \forall n \ge n_0 \end{cases}$	$o(g(n)) \subset O(g(n))$	No; asymptotically smaller (see pg 52)
0	0 ≤ C < ∞	$O(g(n)) = \begin{cases} f(n) : \exists \text{ positive constants } c \text{ and } n_0 \\ \text{such that } 0 \le f(n) \le cg(n) \ \forall \ n \ge n_0 \end{cases}$	$\Theta(g(n)) \subseteq O(g(n))$	Maybe
Θ	0 < C < ∞	$\Theta(g(n)) = \begin{cases} f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \\ \text{such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0 \end{cases}$	Theorem 3.1 For any two functions $f(n)$ and $g(n)$, we have $f(n) = \Theta(g(n))$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$	Yes

Notes:

f(n) must be nonnegative whenever n is sufficiently large (asymptotically nonnegative) g(n) must be asymptotically nonnegative

if $\forall n \ge n_0$ the function f(n) is equal to g(n) to within a constant factor, then g(n) is an asymptotically tight bound for f(n)