第一章:

苍生球80亿人,一人有一1536 = 19.2(台),算上电视手表、耳机等,平均一个19.21给显夸张

37.

但也不对方

```
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "assert.h"

char* attach_header(char *buffer, char *header, int *length) {
    int len = strlen(buffer);
    int hlen = strlen(header);
    *length = len + hlen;
    char *buffer2 = (char*)malloc(*length + 1);
    memcpy(buffer2, header, hlen);
    memcpy(buffer2 + hlen, buffer, len);
    buffer2[*length] = '\0';
```

```
return buffer2;
}
void physical layer send(char *buffer, int len) {
    char header[] = "physical_layer_header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach_header(buffer, header, &length);
    printf("%s\n", buffer2);
   free(buffer2);
}
void datalink layer send(char *buffer, int len) {
    char header[] = "datalink_layer_header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach header(buffer, header, &length);
    printf("%s\n", buffer2);
    physical layer send(buffer2, length);
   free(buffer2);
}
void network_layer_send(char *buffer, int len) {
    char header[] = "network_layer_header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach_header(buffer, header, &length);
    printf("%s\n", buffer2);
    datalink layer send(buffer2, length);
   free(buffer2);
}
void transport_layer_send(char *buffer, int len) {
    char header[] = "transport_layer_header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach header(buffer, header, &length);
    printf("%s\n", buffer2);
    network_layer_send(buffer2, length);
   free(buffer2);
}
```

```
void session_layer_send(char *buffer, int len) {
    char header[] = "session layer header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach_header(buffer, header, &length);
    printf("%s\n", buffer2);
    transport layer send(buffer2, length);
   free(buffer2);
}
void presentation layer send(char *buffer, int len) {
    char header[] = "presentation_layer_header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach header(buffer, header, &length);
    printf("%s\n", buffer2);
    session layer send(buffer2, length);
   free(buffer2);
}
void application layer send(char *buffer, int len) {
    static char header[] = "application_layer_header;";
    assert(strlen(buffer) == len);
    int length = 0;
    char *buffer2 = attach_header(buffer, header, &length);
    printf("%s\n", buffer2);
    presentation_layer_send(buffer2, length);
    free(buffer2);
}
void application_routine() {
    char message[] = "This is a test message!";
    application_layer_send(message, strlen(message));
}
int main(int argc, char *argv[]) {
    application_routine();
    return 0;
}
```


第二章:

7.
带完 = 一
$= \frac{3 \times 10^8}{10^{-6}} \times \frac{10^{-7}}{10^{-6}} = 3 \times 10^{13} (112)$
$= 3 \times 10^{4} (GHz)$
= 3×10·(GHz) 所以其帯寛为 3×10 ⁴ GHz.
PITM 代布克为 3 NO GHZ.
30.
解调器只接受调制的正弦波并产生数字信号,而编码器接受任意模拟信号
以转换为数字信号进行传车前,两者PF处主电的对象的范围不同。
3.5.
VT 15 的传车的旗章: 8000 frame/s × 3 祭 × 9 行 × 8 bits = 1.728 (M bps)
VT2.0白5倍铂液零,8000 frames(s × 4列 × 9作 × 8 bits = 2,304 (Mbps)
VT3.0 白色 传输速率: 8000 frames (s × b列 × 9份 × 8 bits = 3.45b (Mbps)
VT6.0 的传输液率. 8000 frames/s × 12列 × 9行 × 8 bits = 6.9/2 (Mbps)
(a) D5-1 Nk含(1.544Mbps), 省阿满足, 但 VT/1.5更过台.
(b) 欧洲的(EPT-1 服务 (2.048 Mbps), VT2.0, VT3.0, VTb.0 香阿, 但VT2.0
更合这
(c) D5-2 RR会 (6.312 Mbps), VT6.0 适合

36.	
对于计算由户	带见,京允贾宗去每一帧用于传输系统管王里信息自约前三列,P宋去SPE
第一列的路程+	F <i>毛</i> 肖。
PITH OC-12	C用户数据占有 12×90-12×3-拉1=1043 (列)
用户带	$R = 8000 \text{ frame/s} \times 1043 (TJ) \times 9 (AF) \times 8 (bits) = 600.768 (Mbp)$
	、- TOC-12C 连接的用户可用带完为 600.768 Mbps.
44.	
A=(+1+1-	H-I-I+I-I-I)
B=(+1+1-	-[+[-[-[+])
2=(+1-1	+1-1-1-1+1+1)
5= A+B+C =	: (+3+1+1+1-3-1-1+1)
结	R码片P列为(+3 +1 +1 +1 -3 -1 -1 +1)
and the second support of the second	
and the state of t	
BREAT STORY OF THE PROPERTY OF A SECTION OF THE PROPERTY OF TH	

CHONGQING UNIVERSITY 第三章 P道机变量X代表查述次数, $\mathcal{Z}P = 0.8^{10} = 0.107$ RUX~G(0107) $X \leq X = \frac{1}{b} = \frac{0.01}{0.01} = 0.3$ 、平均需要9.3次才能传输完成。 经过比种域充后:0||| 0 | || ||00 || || ||0 ||0 17. (1) the loo 11101 生成分成长: [00] |000|0|| 六四 |00| 余|0| 侧实际传输位串为:[00][10][0] (2) 当左过第三个比华变压, AP 10111101101, 识1 10111101101 之(2) [00] 采101,不为0,能被探测。 (3) 当全安为0日,余数为0, 探测不出来。 18. (a) 前e。 CRC能检测 所有的一位结误 (b) 自己。 k最大取1036位不超过1055,能.

CHONGQING UNIVERSITY

C) 否。偶数个全当误不-定能被检测出来.
(d)能。今数个错误(过之)都能被检验出来。
(e) 能。小于32位的家族会错误能和独立划出来
(f) 否。大于22位的复数结误不定能被标题测出来。
30.
每个报文平均被传输两次。
①当A向B发送一个帧,当该帧到达BEt,B无向A发送帧
⊕此时过了一会(10毫秒), A起时,重发纸帧。
③ B 接收到 A 重发的帧, 且 B 认为 A 发结了。
● B返回-个指带ACK台3NAK经A.
⑤ 最终,A 第一次发送白9帧,得知已找收.
通过该过程可看出该协会被发送了两次

第四章

CHONGQING UNIVERSITY

(a) 信号传播速度: 3×108×0×82= 2.46×108 (mls)	
竞争时间村置长度: 2×:2×10³ = 1.626 ×10-5 = 16.26 (usec)	
RP 16,269数秒.	
(b) 信号传播速度:3×108×0.65=1.95×108 (M/s)	
竞争时间槽长度: $2 \times \frac{40 \times 10^3}{105 \times 10^8} = 410.26$ (USec)	
RP410.26%致杀b.	
当所有站者P想发送数据时,M是到达 N头准备发送数据时间:	
(N-1)d+NXI = (N-1)d+N	
最坏争((N-1)d+N)个时间单位	
. 在进二进制任1计数协议中,如果一个编号高的这和一个编号低的达同日	上 後送
数据包,且编号高的立沙原源不断地发送数据包,则编号低的过去放弃每年	仓竞争
Ď,	
(1) 发送时起测信道占用事待日中间。	
$2 \times \frac{ 000 \text{ m} }{200 \text{ m/usec}} = 5 \text{ (Usec)} \times 2 = 0 \text{ (Usec)} $	
(2) 第一位 数据到法 最收价 — 1000 M — 5 (USEC)	

页

CHONGQING UNIVERSITY

(3) 数据发送: 256战 = 25.6 (Usec)		
(4) 发展ACK使听时间、2X_loopMassec = [0[usec)		
(5) 发送第一位数据 ACK: longinusec = 5 (Usec)		
(6) 发生Ack: Johns = 3.2 (Usec)		
並計时: 10+5+25·6+10+5+3·2= 58·8(USec)		
有效数据性, 256-32 = 224 (bits)		
M 有级数据章: 224bits = 3.81(Mbps)		
[b ₁		
第1次冲突发生自分概率 P= 217		
则第 K次成功,说时前 K十次失败		
$N P(h) = 1 2^{-kh}$ $N P(k) = (1-2^{(1-k)}) \frac{1}{11} 2^{(1-k)}$)	
$EP(B) = \sum_{k=0}^{\infty} k(1-2^{(1-k)}) \cdot \prod_{i=1}^{k} 2^{(i-i)}$		
答、智K蛇结束着争的梳挥为(1-2(1-16) 芬2(1-1)		
竞争周期的平均次数为 芸 K(1-2°1-14) 式2°(+i)		
♦ 25.		
- 村内: 传输 - (大) ·		
- 帧具有 b4 Bytes X8 = 512 (bits)		
$-$ 中央 种 技工 后 $+$ 机 $+$ $ (1-(0-7)^{5/2}=5\times 0-5 $		
	第	页

CHONGQING UNIVERSITY

平均奇和传播: 11×106 bits = 21484 (帧)
平均提标: 21484× 5×10-5 = [10742(hg)
所以平均等秒有17042帧被损坏.
· · · · · · · · · · · · · · · · · · ·