NETFLIX

Restricted Boltzmann Machines

Markus Pawellek

January 23, 2019

Outline

Problem

The Model

Learning

Inference

Implementation

Results

Going Further

Problem

	Star Trek	The Matrix	Van Helsing	Harry Potter	The Hobbit
James T. Kirk	1	1	×	0	×
Trinity	×	1	0	1	1
Anna Valerious	×	×	1	×	0
Severus Snape	0	1	0	1	0
Thorin Oakenshield	1	1	1	×	0

	Star Trek	The Matrix	Van Helsing	Harry Potter	The Hobbit
James T. Kirk	1	1	×	0	×
Trinity	×	1	0	1	1
Anna Valerious	×	×	1	×	0
Severus Snape	0	1	0	1	0
Thorin Oakenshield	1	1	1	×	0

Goal:

	Star Trek	The Matrix	Van Helsing	Harry Potter	The Hobbit
James T. Kirk	1	1	×	0	×
Trinity	×	1	0	1	1
Anna Valerious	×	×	1	×	0
Severus Snape	0	1	0	1	0
Thorin Oakenshield	1	1	1	×	0

Goal:

approximately represent a complex probability distribution

	Star Trek	The Matrix	Van Helsing	Harry Potter	The Hobbit
James T. Kirk	1	1	×	0	×
Trinity	×	1	0	1	1
Anna Valerious	×	×	1	×	0
Severus Snape	0	1	0	1	0
Thorin Oakenshield	1	1	1	×	0

Goal:

- approximately represent a complex probability distribution
- learn probability distribution based on given samples

	Star Trek	The Matrix	Van Helsing	Harry Potter	The Hobbit
James T. Kirk	1	1	×	0	×
Trinity	×	1	0	1	1
Anna Valerious	×	×	1	×	0
Severus Snape	0	1	0	1	0
Thorin Oakenshield	1	1	1	×	0

Goal:

- approximately represent a complex probability distribution
- learn probability distribution based on given samples
- make predictions based on learned parameters

The Model

units are divided into two subsets

- units are divided into two subsets
- only connections between hidden and visible units are allowed

The Model: Idea – Inputs

The Model: Idea – Example

Movie Ratings

The Model: Parameters

The Model: Parameters

$$v \in V \coloneqq \{0,1\}^n$$
 $h \in H \coloneqq \{0,1\}^m$ $\vartheta \coloneqq (W,b,c) \in \mathbb{R}^{(n \times m) + n + m}$

The Model: Probability Distribution and Energy

$$p[\vartheta] \colon V \times H \to [0,1] \qquad p[\vartheta](v,h) \coloneqq \frac{e^{-E[\vartheta](v,h)}}{Z(\vartheta)}$$

The Model: Probability Distribution and Energy

$$p[\vartheta] \colon V \times H \to [0,1]$$
 $p[\vartheta](v,h) \coloneqq \frac{e^{-E[\vartheta](v,h)}}{Z(\vartheta)}$

$$E[\vartheta] \colon V \times H \to \mathbb{R}$$
 $E[\vartheta](v,h) \coloneqq -v^{\mathrm{T}}Wh - v^{\mathrm{T}}b - h^{\mathrm{T}}c$

The Model: Probability Distribution and Energy

$$p[\vartheta] \colon V \times H \to [0,1]$$
 $p[\vartheta](v,h) \coloneqq \frac{e^{-E[\vartheta](v,h)}}{Z(\vartheta)}$

$$E[\vartheta] \colon V \times H \to \mathbb{R}$$
 $E[\vartheta](v,h) \coloneqq -v^{\mathrm{T}}Wh - v^{\mathrm{T}}b - h^{\mathrm{T}}c$

$$Z(\vartheta) \coloneqq \sum_{v \in V} \sum_{h \in H} e^{-E[\vartheta](v,h)}$$

The Model: Probability Distribution for Visible Units

$$p[\vartheta] \colon V \to [0,1] \qquad p[\vartheta](v) \coloneqq \sum_{h \in H} p[\vartheta](v,h)$$

The Model: Posterior Probability

The Model: Posterior Probability

$$p[\vartheta](h|v) = \prod_{j=1}^{m} p[\vartheta] (h_j = 1|v)$$

Learning

Learning: Maximum Likelihood Estimation

$$S \in V^s$$
 $\mathcal{L}[S]: \mathbb{R}^{n \times m + n + m} \to \mathbb{R}$ $\mathcal{L}[S](\vartheta) := \frac{1}{s} \sum_{k=1}^s \ln p[\vartheta](S_k)$

- maximize the product of probabilities of given samples
- equivalent to maximizing log-likelihood function

Learning: Gradient Ascent

$$\nabla_{W} \mathcal{L}[\mathbb{S}](\vartheta) = \frac{1}{s} \sum_{k=1}^{s} \mathbb{E}_{\vartheta} \left[\mathcal{V} \mathcal{H}^{\mathrm{T}} \middle| \mathbb{S}_{k} \right] - \mathbb{E}_{\vartheta} \left[\mathcal{V} \mathcal{H}^{\mathrm{T}} \right]$$

use stochastic gradient ascent with minibatches

Learning: Gradient Ascent

$$\nabla_{W} \mathcal{L}[S](\vartheta) = \frac{1}{s} \sum_{k=1}^{s} \mathbb{E}_{\vartheta} \left[\mathcal{V} \mathcal{H}^{\mathrm{T}} \middle| S_{k} \right] - \mathbb{E}_{\vartheta} \left[\mathcal{V} \mathcal{H}^{\mathrm{T}} \right]$$

- use stochastic gradient ascent with minibatches
- evaluating the gradient introduces problems

Learning: Gibbs Sampling

 \blacktriangleright to estimate $\mathbb{E}_{\vartheta}\left[\mathcal{VH}^{T}\right]$ perform Gibbs sampling

Learning: Gibbs Sampling

- $lackbox{}{}$ to estimate $\mathbb{E}_{artheta}\left[\mathcal{V}\mathcal{H}^{\mathrm{T}}\right]$ perform Gibbs sampling
- slow because it has to reach equilibrium

Learning: Contrastive Divergence

 \blacktriangleright abort Gibbs Sampling after $v^{(k)}$ and $h^{(k)}$ are computed

Learning: Contrastive Divergence

- lacktriangle abort Gibbs Sampling after $v^{(k)}$ and $h^{(k)}$ are computed
- approximate the expectation value

Learning: Contrastive Divergence

- lacktriangle abort Gibbs Sampling after $v^{(k)}$ and $h^{(k)}$ are computed
- approximate the expectation value

$$\mathbb{E}_{\vartheta} \left[\mathcal{V} \mathcal{H}^{\mathrm{T}} \right] \approx v^{(k)} h^{(k)}^{\mathrm{T}}$$

Learning: Example

Learning: Example

one RBM for every user with connections for rated movies

Learning: Example

- one RBM for every user with connections for rated movies
- weights and biases off all RBM are tied together

Inference

Inference: Example

Inference: Example

compute hidden values only for rated movies

Inference: Example

- compute hidden values only for rated movies
- compute visible values of unrated movies based on hidden values

Implementation

Implementation

Results

Results

RBMs are a powerful and versatile tool in machine learning

Going Further

Going Further: Tweak the Learning

- Contrastive Divergence Variants
- Momentum
- Weight Decay
- Different types of units

Going Further: Applications

- language modeling and document retrieval
- classification
- reducing dimensionality of data

References

- (1) Fischer, Asja and Christian Igel: An introduction to restricted bottzmann machines. LNCS, 7441:14–36, 2012.
- (2) GroupLens: Movielens dataset, 2018. https://grouplens.org/datasets/movielens/latest/, visited on 2019-01-21.
- (3) Harper, F. Maxwell und Joseph A. Konstan: The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, Dezember 2015, ISSN 2160-6455. http://doi.acm.org/10.1145/2827872.
- (4) Hinton, Geoffrey: A practical guide to training restricted boltzmann machines: Version 1. 2010. https:// www.cs.toronto.edu/~hinton/absps/guideTR.pdf.
- (5) Montúfar, Guido: Restricted boltzmann machines: Introduction and review. CoRR, abs/1806.07066, 2018. http://arxiv.org/abs/1806.07066.
- (6) Murphy, Kevin P.: Machine Learning: A Probabilistic Perspective. MIT Press, 2012, ISBN 978-0-262-01802-9.

- (7) Nefflix: Nefflix prize, 2009. https://www.netflixprize.com/index.html, visited on 2019-01-21.
- (8) Netflix: Netflix prize dataset, 2009. https://archive.org/details/nf_prize_dataset.tar, visited on 2019-01-21.
- (9) Nefflix: Nefflix logo, 2018. https://mms.businesswire.com/media/20150827005946/en/482959/5/etflix-Logo.jpg?download=1, visited on 2019-01-21.
- (10) Oppermann, Artem: Deep learning meets physics: Restricted boltzmann machines part i, 2018. https://towardsdatascience.com/deep-learningmeets-physics-restricted-boltzmann-machinespart-i-6df5c4918c15, visited on 2019-01-22.
- (11) Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton: Restricted boltzmann machines for collaborative filtering. Proceedings of the 24th international conference on Machine learning, pages 791–798, 2007.