

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Quartz Crystal Filter

Frequency Selective Circuits

Quartz Crystal aFilter

Equivalent Circuit ($C_q \ll C_0$)

(1)
$$p \approx \frac{c_q}{c_0}$$
 Very Small 10^{-3}

(1)
$$p \approx \frac{c_q}{c_0}$$
 Very Small 10^{-3}
(2) $Q = \frac{1}{r_q} \sqrt{\frac{L_q}{c_q}}$ Very Large

Quartz Crystal aFilter

Equivalent Circuit $(c_q \ll c_0)$

Series Frequency

$$\omega_q = \frac{1}{\sqrt{L_q C_q}}$$

Parallel Frequency

$$\omega_p = \frac{1}{\sqrt{L_q \frac{C_0 C_q}{C_0 + C_q}}}$$

(1) $p \approx \frac{c_q}{c_0}$ Very Small

(2)
$$Q = \frac{1}{r_q} \sqrt{\frac{L_q}{c_q}}$$
 Very Large

(3)
$$\omega_p > \omega_q$$

(4)
$$\omega_p = \omega_q \sqrt{1 + \frac{c_q}{c_0}} = \omega_q \sqrt{1 + p}$$
 $\omega_p \ \omega_q$ Very Close

Quartz Crystal aFilter

Equivalent Circuit $(c_q \ll c_0)$

Increase bandwidth

Decrease ω_q

Increase ω_p

Ceramic Filter

Frequency Selective Circuits

Ceramic Filtera

Equivalent Circuit

Series Frequency $\omega_q = \frac{1}{\sqrt{L'_q C'_q}}$

Parallel Frequency $\omega_p =$

$$\omega_p = \frac{1}{\sqrt{\frac{C'_0 C_q}{C'_0 + C_q}}}$$

• LC Resonator < Q < Quartz Crystal

Ceramic Filter

Exp1: $f_0 = 465kHz$, analyze the circuit function.

Ceramic Filter

Exp1: $f_0 = 465kHz$, analyze the circuit function.

Solve: Serices frequency of 2L=465kHzFor 465kHz, Impedance \downarrow , Negative Feedback \downarrow , Gain \uparrow

Four-terminal Ceramic Filter: Ceramic Resonator

2 Ceramic Resonator

5 Ceramic Resonator

Four-terminal Ceramic Filter

Exp2: How to design $(465 \pm 5)kHz$ filter?

Solve: For 465kHz:

 $2L_1$ Series frequency = 465kHz $2L_2$ Parallel frequency = 465kHz

$$f_{q1} = 465kHz$$
 $f_{p1} = (465 + 5)kHz$

465-5 465 465+

(b)

Ideal

Practical