COMP/ELEC 429 Introduction to Computer Networks

Lecture 10: Intra-domain routing

Slides from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang

Viewing Routing as a Policy

- Given multiple alternative paths, how to route information to destinations should be viewed as a policy decision
- What are some possible policies?
 - Shortest path (RIP, OSPF)
 - Most load-balanced
 - QoS routing (satisfies app requirements)
 - etc

Internet Routing

- Internet topology roughly organized as a two level hierarchy
- First lower level autonomous systems (AS's)
 - AS: region of network under a single administrative domain
- Each AS runs an intra-domain routing protocol
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Possibly others
- Second level inter-connected AS's
- Between AS's runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4

Intra-domain Routing Protocol

- Based on unreliable datagram delivery
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra's algorithm
 - Each router periodically <u>floods immediate</u> reachability information to other routers
 - Fast convergence, but high communication and computation overhead

Routing on a Graph

 Goal: determine a "good" path through the network from source to destination

- Good often means the shortest path
- Network modeled as a graph
 - Routers € nodes
 - Link @ edges
 - Edge cost: delay, congestion level,...

Link State Routing (OSPF): Flooding

- Each node knows its connectivity and cost to a direct neighbor
- Every node tells every other node this local connectivity/cost information
 - Via flooding
- In the end, every node learns the complete topology of the network
- E.g. A floods message

A connected to B cost 2 A connected to D cost 1 A connected to C cost 5

Flooding Details

- Each node periodically generates Link State Packet (LSP) contains
 - ID of node created LSP
 - List of direct neighbors and costs
 - Sequence number (64 bit, assume to never wrap around)
 - Time to live
- Flood is reliable
 - Use acknowledgement and retransmission
- Sequence number used to identify *newer* LSP
 - An older LSP is discarded
- Receiving node flood LSP to all its neighbors except the neighbor where the LSP came from
- LSP is also generated when a link's state changes (failed or restored)

A Link State Routing Algorithm

Dijkstra's algorithm

- Net topology, link costs known to all nodes
 - Accomplished via "link state flooding"
 - All nodes have same info
- Compute least cost paths from one node ('source") to all other nodes
- Repeat for all sources

Notations

- c(i,j): link cost from node i to j; cost infinite if not direct neighbors
- D(v): current value of cost of path from source to node v
- p(v): predecessor node along path from source to v, that is next to v
- S: set of nodes whose least cost path definitively known

Dijsktra's Algorithm (A "Greedy" Algorithm)

```
Initialization:
  S = \{A\};
   for all nodes v
     if v adjacent to A
      then D(v) = c(A,v);
      else D(v) = \infty;
   Loop
9
     find w not in S such that D(w) is a minimum;
10 add w to S;
    update D(v) for all v adjacent to w and not in S:
12
       D(v) = \min(D(v), D(w) + c(w,v));
       Il new cost to v is either old cost to v or known
       Il shortest path cost to w plus cost from w to v
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	∞	∞
1						
2						
3						
4						
5						


```
    2 S = {A};
    3 for all nodes v
    4 if v adjacent to A
    5 then D(v) = c(A,v);
```

6 else
$$D(v) = \infty$$
;

Initialization:

. .

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	∞
2						
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min( D(v), D(w) + c(w,v) );
13 until all nodes in S;
```

St	ер	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
	3						
	4						
	5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min( D(v), D(w) + c(w,v) );
13 until all nodes in S;
```

St	ер	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
\rightarrow	3	ADEB					
	4						
'	5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min( D(v), D(w) + c(w,v) );
13 until all nodes in S;
```

St	ер	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
	3	ADEB					
\rightarrow	4	ADEBC					
	5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min( D(v), D(w) + c(w,v) );
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	∞	∞
1	AD		4,D		2,D	∞
2	ADE		3,E			4,E
3	ADEB					
4	ADEBC					
5	ADEBCF					

eugeneng at cs.rice.edu


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min( D(v), D(w) + c(w,v) );
13 until all nodes in S;
```

Overview of Assignment

Given a set of N routers, the goal is for EACH router to:

- (a) exchange HELLO packets with neighbours
- (b) create Link State Advertisement (LSA) packets based on neighboring nodes' info
- (c) broadcast the LSA packets to all other routers in the network
- (d) construct the network topology based on the LSA packets received from other routers,
- (e) determining the routing table entries based on this topology, by using Dijkstra' algorithm

(single source –all nodes shortest paths)
If multiple equal-cost paths exist, any one of them can be reported.

Overview of Assignment

- The HELLO packets will be exchanged every x seconds
- LSA updates will be sent every y seconds
- Routing table computation will be done every z seconds

./ospf -i id -f infile -o outfile -h hi -a Isai -s spfi

The values specified in the command line are:

- -i id: Node identifier value(i)
- -f infile: Input file
- -o outfile: Output file
- -h hi: HELLO INTERVAL (in seconds)
- -a Isai: LSA INTERVAL (in seconds)
- -s spfi: SPF INTERVAL (in seconds)

Overview of Assignment

5		10		
0	2	2	8	
2	3	5	10	
3	4	6	20	
4	7	4	10	

The first entry on the first line specifies the number of routers (N) The node indices go from 0 to (N-1).

The second entry on the first line specifies the number of links.

Each subsequent row contains the tuple (i, j, MinC ij , MaxC ij). This implies a bidirectional link between nodes i and j .