U-Net MICCAI 2015

Convolutional Networks for Biomedical Image Segmentation

U-Net?

Biomedical - Image Segmentation

End-to-End

Fully-Convolutional Network

레이블 정보가 있는 데이터가 적을 때 효율적인 data augmentation 기법을 제안

확장 경로(expanding path): 정밀한 지역화 (precise localization)가 가능하도록 합니다.

수축 경로(contracting path): 이미지에 존재하는 넓은 문맥(context) 정보를 처리합니다.

github.com/terra2007

github.com/terra2007

Person Bicycle Background

Contracting path

입력 이미지의 Context 포착 목적

FCNs 처럼 VGG-based Architecture

github.com/terra2007

Expanding Path

세밀한 Localization을 위해 구성

높은 차원의 채널을 갖는 Up-sampling

얕은 레이어의 feature map을 결합

gitinub.com/tomazoo/

FCN의 Skip Architecture 개념을 활용하여 얕은 층의 Feature map을 깊은 층의 Feature map과 결합

Architecture Detail

Contracting Path

github.com/terra2007

Skip Architechure

각 Expanding Step 마다 up-conv 된 feature map은 contracting path의 cropped된 feature map과 concatenation

Overlap-tile

Mirroring extrapolatation

FCN 특성상 입력 이미지 해상도에 제한이 없음

하지만 UNet 구조상 출력 이미지의 해상도가 입력 이미지 보다 작음

실제로 노란색 영역의 segmentation이 필요하면 더 큰 파란색 영역의 패치를 삽입합니다.

이미지의 경계 부분은 extrapolation을 사용합니다.

• 미러링(mirroring) 활용

Objective Function

$$p_k(x) = \frac{\exp(a_k(x))}{\sum_{k'=1}^K \exp(a_{k'}(x))}$$
 pixel-wise softmax

x: 픽셀의 위치, k: k 번째 특징 채널, $a_k(x)$: k번째 채널의 x위치의 activation 값

$$E = \sum_{\mathbf{x} \in \Omega} w(\mathbf{x}) \log(p_{\ell(\mathbf{x})}(\mathbf{x}))$$
ক্সব্থ সক্রম ল্বন্স মঞ্চ

l(x): 이미지의 x의 true label

학습을 위해 cross-entropy 사용 (true label만 고려하므로, 일반 cross-entropy와 동일) github.com/terra2007

세포(cell)를 명확히 구분하기 위해 작은 분리 경계(small separation border)를 학습

명확한 분리를 위해 w(x)는 인접한 셀 사이에 있는 배경 레이블에 대하여 높은 가중치를 부여함

$$\underline{w(\mathbf{x})} = w_c(\mathbf{x}) + w_0 \cdot \exp\left(-\frac{(d_1(\mathbf{x}) + d_2(\mathbf{x}))^2}{2\sigma^2}\right)$$
세포와의 거리가 가까울수록 가중치 증가

 $w_c: \Omega \to R$: The weight map to balance the class frequencies.

 $d_1: \Omega \to R$: The distance to the border of the nearest cell.

 $d_2: \Omega \to R$: The distance to the border of the second nearest cell.

의료 데이터는 학습 데이터의 수가 적은 경우가 많아서, data augmentation이 필요

일반적인 data augmentation 기술과, Elastic Deformation 방법을 사용함

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
:				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

Electorn Microscopy 대회의 데이터 셋으로 평가했을때 우수한 정확도

노란색 영역이 정답 **label** 색칠된 영역이 모델의 예측결과

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the "PhC-U373" data set. (b) Segmentation result (cyan mask) with manual ground truth (yellow border) (c) input image of the "DIC-HeLa" data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border).

ISBI cell tracking challenge 2014 & 2015에 대하여 평가를 진행한 이미지, github.com/terra2007

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	_
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

PhC-U373, DIC-HeLa 두 데이터 셋에 대해 이전 보다 높은 IOU를 보임

결과적으로 U-Net의 구조는 아주 적은 양의 학습 데이터만으로 Data

U-Net은 FCNs보다 확장된 개념의 Up-sampling과 Skip Architecture를

적용한 모델을 제안

문제에서 우수한 성능을 보여줌

결과적으로 U-Net의 구조는 아주 적은 양의 학습 데이터만으로 Data Augmentation을 활용하여 여러 Biomedical Image Segmentation

gith

감사합니다

m/terra200	7
------------	---