Group Sequential Tests for Delayed Responses

Lisa Hampson

Department of Mathematics and Statistics, Lancaster University, UK

Chris Jennison

Department of Mathematical Sciences, University of Bath, UK

Basel, July 2012

- Group sequential tests
- Optimal designs

- Group sequential tests
- Optimal designs
- 3 Extensions

- Group sequential tests
- Optimal designs
- 3 Extensions
- Recovering efficiency

- Group sequential tests
- Optimal designs
- 3 Extensions
- Recovering efficiency
- Summary

Superiority trials

We conduct a clinical trial comparing a new treatment versus control. As the trial progresses, we accumulate responses

- $X_{A,i} \sim N(\mu_A, \sigma^2)$, i = 1, 2, ..., on the new treatment
- $X_{B,i} \sim N(\mu_B, \sigma^2)$, i = 1, 2, ..., on the control treatment.

We conduct a clinical trial comparing a new treatment versus control. As the trial progresses, we accumulate responses

- $X_{A,i} \sim N(\mu_A, \sigma^2)$, i = 1, 2, ..., on the new treatment
- $X_{B,i} \sim N(\mu_B, \sigma^2)$, i = 1, 2, ..., on the control treatment.

We assume that all responses are independent and σ^2 is known.

Define $\theta = \mu_A - \mu_B$ to be the "effect size" for the new treatment.

Superiority trials

Group sequential tests

We conduct a clinical trial comparing a new treatment versus control. As the trial progresses, we accumulate responses

- $X_{A,i} \sim N(\mu_A, \sigma^2)$, i = 1, 2, ..., on the new treatment
- $X_{B,i} \sim N(\mu_B, \sigma^2)$, i = 1, 2, ..., on the control treatment.

We assume that all responses are independent and σ^2 is known.

Define $\theta = \mu_A - \mu_B$ to be the "effect size" for the new treatment.

We wish to test

$$H_0: \theta \leq 0$$
 vs $\theta > 0$

with type I error rate α at $\theta = 0$ and power $1 - \beta$ at $\theta = \delta > 0$.

Summary

One-sided group sequential tests

A one-sided group sequential test of $H_0: \theta \leq 0$ against $\theta > 0$ is of the form

 Decision of whether to reject or accept H₀ is made on basis of responses observed at time of interim analysis.

One-sided group sequential tests

A one-sided group sequential test of $H_0: \theta \leq 0$ against $\theta > 0$ is of the form

- Decision of whether to reject or accept H₀ is made on basis of responses observed at time of interim analysis.
- "Immediate responses" fit nicely into this framework since the flow of data stops immediately on termination of recruitment.

One-sided group sequential tests

A one-sided group sequential test of $H_0: \theta \leq 0$ against $\theta > 0$ is of the form

- Decision of whether to reject or accept H₀ is made on basis of responses observed at time of interim analysis.
- "Immediate responses" fit nicely into this framework since the flow of data stops immediately on termination of recruitment.

Incorporating delayed responses into GSTs

Consider a trial where response is observed time Δ_t after treatment.

Incorporating delayed responses into GSTs

Consider a trial where response is observed time Δ_t after treatment.

We assume information is proportional to the observed number of responses.

Incorporating delayed responses into GSTs

Consider a trial where response is observed time Δ_t after treatment.

We assume information is proportional to the observed number of responses.

We will equally space interim analyses between times Δ_t and t_{max} .

Group sequential tests Optimal designs Extensions Recovering efficiency Summary

Incorporating delayed responses into GSTs

Consider a trial where response is observed time Δ_t after treatment.

We assume information is proportional to the observed number of responses.

We will equally space interim analyses between times Δ_t and t_{max} .

T.W. Anderson (*JASA*, 1964) considers sequential tests for delayed responses. We follow this basic structure to construct GSTs.

Boundaries for a Delayed Response GST

At interim analysis k, Z_k is associated with information level $\mathcal{I}_k = \text{Var}(\hat{\theta}_k)$.

Boundaries for a Delayed Response GST

At interim analysis k, Z_k is associated with information level $\mathcal{I}_k = \text{Var}(\hat{\theta}_k)$.

If $Z_k > b_k$ or $Z_k < a_k$, cease enrollment of future patients and follow-up all recruited subjects.

Boundaries for a Delayed Response GST

At interim analysis k, Z_k is associated with information level $\mathcal{I}_k = \text{Var}(\hat{\theta}_k)$.

If $Z_k > b_k$ or $Z_k < a_k$, cease enrollment of future patients and follow-up all recruited subjects.

At the decision analysis, based on information $\tilde{\mathcal{I}}_k$, reject H_0 if $\tilde{\mathcal{Z}}_k > c_k$.

Calculating properties of Delayed Response GSTs

Calculations of test properties (type I error rate, power, $\mathbb{E}_{\theta}(N)$) require the joint distributions of test statistic sequences:

•
$$\{Z_1, ..., Z_k, \tilde{Z}_k\}$$
, for $k = 1, ..., K - 1$,

Calculating properties of Delayed Response GSTs

Calculations of test properties (type I error rate, power, $\mathbb{E}_{\theta}(N)$) require the joint distributions of test statistic sequences:

•
$$\{Z_1, ..., Z_k, \tilde{Z}_k\}$$
, for $k = 1, ..., K - 1$,

$$\bullet \ \{Z_1,\ldots,Z_{K-1},\tilde{Z}_K\}.$$

Each sequence is based on accumulating datasets.

Given $\{\mathcal{I}_1, \dots, \mathcal{I}_k, \tilde{\mathcal{I}}_k\}$, the sequence $\{Z_1, \dots, Z_k, \tilde{Z}_k\}$ follows the canonical distribution for statistics generated by a GST for immediate responses (Jennison & Turnbull, JASA, 1997).

Calculations of test properties (type I error rate, power, $\mathbb{E}_{\theta}(N)$) require the joint distributions of test statistic sequences:

- $\{Z_1, ..., Z_k, \tilde{Z}_k\}$, for k = 1, ..., K 1,
- $\bullet \ \{Z_1,\ldots,Z_{K-1},\tilde{Z}_K\}.$

Each sequence is based on accumulating datasets.

Given $\{\mathcal{I}_1,\ldots,\mathcal{I}_k,\tilde{\mathcal{I}}_k\}$, the sequence $\{Z_1,\ldots,Z_k,\tilde{Z}_k\}$ follows the canonical distribution for statistics generated by a GST for immediate responses (Jennison & Turnbull, *JASA*, 1997).

Properties of Delayed Response GSTs can therefore be calculated using numerical routines devised for standard designs.

Reversals of anticipated final decisions

Stopping with $Z_k > b_k$ or $Z_k < a_k$ indicates our *likely* final decision but there there may be a reversal. We could observe

Reversals of anticipated final decisions

Stopping with $Z_k > b_k$ or $Z_k < a_k$ indicates our *likely* final decision but there there may be a reversal. We could observe

Reversals of anticipated final decisions

Stopping with $Z_k > b_k$ or $Z_k < a_k$ indicates our *likely* final decision but there there may be a reversal. We could observe

We optimise our designs to maximise the value of the additional pipeline responses for increasing the test's power.

Optimal Delayed Response GSTs

Let N represent the total number of subjects recruited.

Let *r* be the fraction of a test's maximum sample size in the pipeline at each interim analysis.

Optimal Delayed Response GSTs

Let *N* represent the total number of subjects recruited.

Let *r* be the fraction of a test's maximum sample size in the pipeline at each interim analysis.

Objective: For a given r, maximum sample size n_{max} , stages K and analysis schedule, we find the Delayed Response GST minimising

$$F = \int \mathbb{E}_{\theta}(N) f(\theta) d\theta$$

with type I error rate α at $\theta = 0$ and power $1 - \beta$ at $\theta = \delta$. Here $f(\theta)$ is the density of a $N(\delta/2, (\delta/2)^2)$ distribution.

Optimal Delayed Response GSTs

Let *N* represent the total number of subjects recruited.

Let *r* be the fraction of a test's maximum sample size in the pipeline at each interim analysis.

Objective: For a given r, maximum sample size n_{max} , stages K and analysis schedule, we find the Delayed Response GST minimising

$$F = \int \mathbb{E}_{\theta}(N) f(\theta) d\theta$$

with type I error rate α at $\theta = 0$ and power $1 - \beta$ at $\theta = \delta$. Here $f(\theta)$ is the density of a $N(\delta/2, (\delta/2)^2)$ distribution.

We create an unconstrained Bayes problem by adding a prior on θ and costs for sampling and for making incorrect decisions. We search for the combination of prior and costs which gives a solution with frequentist error rates α and β .

Efficiency loss when there is a delay in response

It is required to test $H_0: \theta \le 0$ against $\theta > 0$ with $\alpha = 0.025$ and $\beta = 0.1$. Suppose the fixed sample test requires n_{fix} subjects and set $n_{\text{max}} = 1.1 \, n_{\text{fix}}$.

roup sequential tests Optimal designs Extensions Recovering efficiency Summary

Efficiency loss when there is a delay in response

It is required to test $H_0: \theta \le 0$ against $\theta > 0$ with $\alpha = 0.025$ and $\beta = 0.1$. Suppose the fixed sample test requires n_{fix} subjects and set $n_{\text{max}} = 1.1 \, n_{\text{fix}}$.

We plot the minima of F attained by optimal tests with K = 2, 3 and 5 stages.

When r = 0.1, almost 25% of the gains of group sequential testing are lost. When r = 0.3, this increases up to 60%.

Example A: Cholesterol reduction after 4 weeks of treatment

Responses are assumed normally distributed with variance $\sigma^2 = 2$.

It is required to test $H_0: \theta \leq 0$ against $\theta > 0$ with

- type I error rate $\alpha = 0.025$ at $\theta = 0$,
- power $1 \beta = 0.9$ at $\theta = \delta = 1.0$.

Example A: Cholesterol reduction after 4 weeks of treatment

Responses are assumed normally distributed with variance $\sigma^2 = 2$.

It is required to test $H_0: \theta \leq 0$ against $\theta > 0$ with

- type I error rate $\alpha = 0.025$ at $\theta = 0$,
- power 1 $\beta = 0.9$ at $\theta = \delta = 1.0$.

The fixed sample test needs $n_{\text{fix}} = 86$ subjects divided between the two treatments.

Example A: Cholesterol reduction after 4 weeks of treatment

Responses are assumed normally distributed with variance $\sigma^2 = 2$.

It is required to test $H_0: \theta \leq 0$ against $\theta > 0$ with

- type I error rate $\alpha = 0.025$ at $\theta = 0$,
- power $1 \beta = 0.9$ at $\theta = \delta = 1.0$.

The fixed sample test needs $n_{\text{fix}} = 86$ subjects divided between the two treatments.

We consider designs with a maximum sample size of 96, assuming a recruitment rate of 4 per week, giving $4 \times 4 = 16$ pipeline subjects at each interim analysis.

Once the trial is underway, data start to accrue after 4 weeks. Recruitment will close after 24 weeks.

Interim analyses are planned after $n_1 = 28$ and $n_2 = 54$ observed responses.

Once the trial is underway, data start to accrue after 4 weeks. Recruitment will close after 24 weeks.

Interim analyses are planned after $n_1 = 28$ and $n_2 = 54$ observed responses.

A decision analysis will be based on

- $\tilde{n}_1 = 44$ responses if recruitment stops at interim analysis 1
- $\tilde{n}_2 = 70$ responses if recruitment stops at interim analysis 2
- $\tilde{n}_3 = 96$ responses in the absence of early stopping.

Once the trial is underway, data start to accrue after 4 weeks. Recruitment will close after 24 weeks.

Interim analyses are planned after $n_1 = 28$ and $n_2 = 54$ observed responses.

A decision analysis will be based on

- $\tilde{n}_1 = 44$ responses if recruitment stops at interim analysis 1
- $\tilde{n}_2 = 70$ responses if recruitment stops at interim analysis 2
- $\tilde{n}_3 = 96$ responses in the absence of early stopping.

We derive a Delayed Response GST minimising

$$F = \int \mathbb{E}_{\theta}(N) f(\theta) d\theta,$$

where $f(\theta)$ is the density of a $N(0.5, 0.5^2)$ distribution.

Designing a Delayed Response GST

Critical values for the optimised Delayed Response GST are shown below.

Designing a Delayed Response GST

Critical values for the optimised Delayed Response GST are shown below.

Critical values c_1 and c_2 are well below b_1 and b_2 , so the probability of a reversal is small.

Designing a Delayed Response GST

Critical values for the optimised Delayed Response GST are shown below.

Critical values c_1 and c_2 are well below b_1 and b_2 , so the probability of a reversal is small.

Both c_1 and c_2 are less than 1.96. If desired, these can be raised to 1.96 with little change to the design's power curve.

Designing a Delayed Response GST

The figure shows expected sample size curves for

- the fixed sample test with $n_{\text{fix}} = 85$ patients,
- the Delayed Response GST minimising F,
- the GST for immediate responses with analyses after 32, 64 and 96 responses, also minimising F.

Designing a Delayed Response GST

The figure shows expected sample size curves for

- the fixed sample test with $n_{\text{fix}} = 85$ patients,
- the Delayed Response GST minimising F,
- the GST for immediate responses with analyses after 32, 64 and 96 responses, also minimising F.

The delay in response means savings in $\mathbb{E}_{\theta}(N)$ are smaller than they would be if response were immediate.

Making inferences on termination

How can we calculate a p-value for $H_0: \theta \leq 0$ and a CI for θ ?

On termination of the test at stage T, $(\tilde{I}_T, \tilde{Z}_T)$ is a sufficient statistic for θ . We base inferences on a "stage-wise" ordering of the test's sample space for this pair.

Making inferences on termination

How can we calculate a p-value for $H_0: \theta \leq 0$ and a CI for θ ?

On termination of the test at stage T, $(\tilde{\mathcal{I}}_T, \tilde{\mathcal{Z}}_T)$ is a sufficient statistic for θ . We base inferences on a "stage-wise" ordering of the test's sample space for this pair.

Making inferences on termination

How can we calculate a p-value for $H_0: \theta \leq 0$ and a CI for θ ?

On termination of the test at stage T, $(\tilde{\mathcal{I}}_T, \tilde{\mathcal{Z}}_T)$ is a sufficient statistic for θ . We base inferences on a "stage-wise" ordering of the test's sample space for this pair.

The sample space at $\tilde{\mathcal{I}}_{\mathcal{T}} = \tilde{\mathcal{I}}_k$ is partitioned by c_k into "high" and "low" sets.

Making inferences on termination

How can we calculate a p-value for $H_0: \theta \leq 0$ and a CI for θ ?

On termination of the test at stage T, $(\tilde{\mathcal{I}}_T, \tilde{\mathcal{Z}}_T)$ is a sufficient statistic for θ . We base inferences on a "stage-wise" ordering of the test's sample space for this pair.

The sample space at $\tilde{\mathcal{I}}_{\mathcal{T}} = \tilde{\mathcal{I}}_k$ is partitioned by c_k into "high" and "low" sets.

This ordering ensures p-value calculations do not depend on future, possibly *unpredictable*, information levels.

We design error spending Delayed Response GSTs which

- reach a target information level \mathcal{I}_{max} in absence of early stopping,
- spend error probabilities as a function of $\mathcal{I}/\mathcal{I}_{max}$.

We design error spending Delayed Response GSTs which

- reach a target information level \mathcal{I}_{max} in absence of early stopping,
- spend error probabilities as a function of $\mathcal{I}/\mathcal{I}_{max}$.

Let π_k and γ_k be cumulative type I and II error rates to be spent by stage k.

We design error spending Delayed Response GSTs which

- reach a target information level \mathcal{I}_{max} in absence of early stopping,
- spend error probabilities as a function of $\mathcal{I}/\mathcal{I}_{max}$.

Let π_k and γ_k be cumulative type I and II error rates to be spent by stage k.

Choosing c_k to balance reversal probabilities under $\theta=0$ implies we may choose (a_k,b_k) to satisfy

$$\mathbb{P}_{\theta=0}\{Z_1 \in C_1, \dots, Z_{k-1} \in C_{k-1}, Z_k \ge b_k\} = \pi_k - \pi_{k-1}$$

$$\mathbb{P}_{\theta=\delta}\{Z_1 \in C_1, \dots, Z_{k-1} \in C_{k-1}, Z_k \le a_k\} = \gamma_k - \gamma_{k-1},$$

and control the type I error rate at level α , and the type II error rate at a level just below β .

We design error spending Delayed Response GSTs which

- reach a target information level \mathcal{I}_{max} in absence of early stopping,
- spend error probabilities as a function of $\mathcal{I}/\mathcal{I}_{max}$.

Let π_k and γ_k be cumulative type I and II error rates to be spent by stage k.

Choosing c_k to balance reversal probabilities under $\theta=0$ implies we may choose (a_k,b_k) to satisfy

$$\mathbb{P}_{\theta=0}\{Z_1 \in C_1, \dots, Z_{k-1} \in C_{k-1}, Z_k \ge b_k\} = \pi_k - \pi_{k-1}$$

$$\mathbb{P}_{\theta=\delta}\{Z_1 \in C_1, \dots, Z_{k-1} \in C_{k-1}, Z_k \le a_k\} = \gamma_k - \gamma_{k-1},$$

and control the type I error rate at level α , and the type II error rate at a level just below β .

Under this construction, the stage k stopping rule can be set without knowledge of $\tilde{\mathcal{I}}_k$.

Efficiency of error spending tests

In the figure below, error spending tests are designed using the $\rho\text{-family}$ of error spending functions.

Values of F are attained by tests designed and conducted with K=5, $n_{\text{max}}=1.1\,n_{\text{fix}},\,\alpha=0.025$ and $\beta=0.1$.

Error spending Delayed Response GSTs are flexible and closely match the optimal tests for savings in $\mathbb{E}_{\theta}(N)$.

Suppose a standard GST designed with \mathcal{I}_k and boundaries (a_k, b_k) stops at analysis $k^* < K$ with $Z_{k^*} > b_{k^*}$ or $Z_{k^*} < a_{k^*}$.

Suppose a standard GST designed with \mathcal{I}_k and boundaries (a_k,b_k) stops at analysis $k^* < K$ with $Z_{k^*} > b_{k^*}$ or $Z_{k^*} < a_{k^*}$.

Question: If additional data are observed, how can these be incorporated into the final analysis while preserving the type I error rate?

Suppose a standard GST designed with \mathcal{I}_k and boundaries (a_k,b_k) stops at analysis $k^* < K$ with $Z_{k^*} > b_{k^*}$ or $Z_{k^*} < a_{k^*}$.

Question: If additional data are observed, how can these be incorporated into the final analysis while preserving the type I error rate?

Solution: We partition the sample space at $\tilde{\mathcal{I}}_{k^*}$ such that

- if $\tilde{Z}_{k^*} \geq c_{k^*}$, reject H_0 ,
- if $\tilde{Z}_{k^*} \leq c_{k^*}$, accept H_0 .

Requiring c_{k^*} to balance the probabilities of reversing decisions under $\theta = 0$ at stage k^* preserves the test's overall type I error rate.

Summary

Suppose a standard GST designed with \mathcal{I}_k and boundaries (a_k,b_k) stops at analysis $k^* < K$ with $Z_{k^*} > b_{k^*}$ or $Z_{k^*} < a_{k^*}$.

Question: If additional data are observed, how can these be incorporated into the final analysis while preserving the type I error rate?

Solution: We partition the sample space at $\tilde{\mathcal{I}}_{k^*}$ such that

- if $\tilde{Z}_{k^*} \geq c_{k^*}$, reject H_0 ,
- if $\tilde{Z}_{k^*} \leq c_{k^*}$, accept H_0 .

Requiring c_{k^*} to balance the probabilities of reversing decisions under $\theta = 0$ at stage k^* preserves the test's overall type I error rate.

In addition, p-value calculations do not depend on $\tilde{\mathcal{I}}_1, \dots, \tilde{\mathcal{I}}_{k^*-1}$, nor on information levels beyond stage k^* .

Suppose a second endpoint, correlated with the primary response, is available soon after treatment.

Using a short term endpoint to recover efficiency

Suppose a second endpoint, correlated with the primary response, is available soon after treatment.

For each patient i on treatment T = A or B, we measure

a short-term response Y_{T,i}

Using a short term endpoint to recover efficiency

Suppose a second endpoint, correlated with the primary response, is available soon after treatment.

For each patient i on treatment T = A or B, we measure

- a short-term response Y_{T,i}
- a long-term response $X_{T,i}$.

Using a short term endpoint to recover efficiency

Suppose a second endpoint, correlated with the primary response, is available soon after treatment.

For each patient i on treatment T = A or B, we measure

- a short-term response Y_{T,i}
- a long-term response $X_{T,i}$.

Suppose each pair $(Y_{T,i}, X_{T,i})$ has joint distribution

$$\begin{pmatrix} Y_{T,i} \\ X_{T,i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{T,1} \\ \mu_{T,2} \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \tau \sigma_1 \sigma_2 \\ \tau \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \end{pmatrix}.$$

Suppose each pair $(Y_{T,i}, X_{T,i})$ has joint distribution

$$\begin{pmatrix} Y_{T,i} \\ X_{T,i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{T,1} \\ \mu_{T,2} \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \tau \sigma_1 \sigma_2 \\ \tau \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \end{pmatrix}.$$

At interim analysis k, we estimate $\theta = \mu_{A,2} - \mu_{B,2}$ from all available data, using maximum likelihood estimation to fit the full model then extracting $\widehat{\theta}_k$ and $\mathcal{I}_k = \text{Var}(\widehat{\theta}_k)$.

Suppose each pair $(Y_{T,i}, X_{T,i})$ has joint distribution

$$\begin{pmatrix} Y_{T,i} \\ X_{T,i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{T,1} \\ \mu_{T,2} \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \tau \sigma_1 \sigma_2 \\ \tau \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \end{pmatrix}.$$

At interim analysis k, we estimate $\theta = \mu_{A,2} - \mu_{B,2}$ from all available data, using maximum likelihood estimation to fit the full model then extracting $\widehat{\theta}_k$ and $\mathcal{I}_k = \text{Var}(\widehat{\theta}_k)$.

Given $\{\mathcal{I}_1,\ldots,\mathcal{I}_k,\tilde{\mathcal{I}}_k\}$, the sequence of estimates $\{\widehat{\theta}_k\}$ follows the canonical joint distribution for a group sequential trial.

Suppose each pair $(Y_{T,i}, X_{T,i})$ has joint distribution

$$\begin{pmatrix} Y_{T,i} \\ X_{T,i} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{T,1} \\ \mu_{T,2} \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \tau \sigma_1 \sigma_2 \\ \tau \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \end{pmatrix}.$$

At interim analysis k, we estimate $\theta = \mu_{A,2} - \mu_{B,2}$ from all available data, using maximum likelihood estimation to fit the full model then extracting $\widehat{\theta}_k$ and $\mathcal{I}_k = \text{Var}(\widehat{\theta}_k)$.

Given $\{\mathcal{I}_1,\ldots,\mathcal{I}_k,\tilde{\mathcal{I}}_k\}$, the sequence of estimates $\{\widehat{\theta}_k\}$ follows the canonical joint distribution for a group sequential trial.

At decision analysis k when all subjects are fully observed, short-term responses don't contribute any additional information for θ .

Revisiting Example A

Example A: Incorporating a second, short-term endpoint

We assume $Y_{T,i}$ and $X_{T,i}$ have correlation 0.9.

Revisiting Example A

Example A: Incorporating a second, short-term endpoint

We assume $Y_{T,i}$ and $X_{T,i}$ have correlation 0.9.

The ratio of time to short-term and long-term endpoints is κ .

Revisiting Example A

Example A: Incorporating a second, short-term endpoint

We assume $Y_{T,i}$ and $X_{T,i}$ have correlation 0.9.

The ratio of time to short-term and long-term endpoints is κ .

The solid line for $\kappa = 1$ is the case of no short-term endpoint.

Conclusions

In this presentation, we have presented

- Delayed Response GSTs as a coherent approach to handling delayed data in a sequential setting.
- Versions of Delayed Response GSTs that can accommodate unpredictable group sizes and unexpected overrunning.
- P-values and confidence intervals on termination.

The impact on efficiency of a delay in response can be ameliorated by

- incorporating information on correlated short-term endpoints
- slowing recruitment rates
- ensuring rapid data cleaning before an analysis.

