INSTRUCTION DIVISION FIRST SEMESTER 2015-2016 Course Handout (Part-II)

Date: 03/08/2015

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F211

Course Title : MATHEMATICS - III Instructor-in-charge : ASHISH TIWARI

Instructor : Atasi Patra, B. K. Sharma, Balram Dubey, C. B. Gupta,

Chandra Shekhar, J. N. Bandyopadhyay, Rakhee, Sangita

Yadav, Shivi Agarwal, Suresh Kumar

1. Scopes and Objective of the Course:

This Course reviews and continues the study of differential equations with the objective of introducing classical methods for solving boundary value problems. This course serves as a basis of the applications for differential equations, Fourier series and Laplace transform in various branches of engineering and sciences. This course emphasizes the role of orthogonal polynomials in dealing with Sturm-Liouville problems.

2. **Text-Book:** Simmons G.F., Differential Equations with Applications and Historical Notes, Tata McGraw Hill, 2nd ed., 1991.

Reference Book:

- 1. Zill, Differential Equations, Thomson Learning, 5th ed., 2004
- 2. Shepley L. Ross: Differential Equations, John Willy & Sons, 3rd ed., 1984.
- **3**. Edwards & Penney: Differential Equation and Boundary value problems, Pearson Education, 3rd ed., 2009.
- 3. Course Plan: (Sections/Articles refer to Text-Book)

Lect No.	Learning Objectives	Topic	Sections	Home work (Page-questions)
		First order equations	1-7,	(Revision & self study)
1	To introduce the classical methods to	Exact differential equation.	8, 9	All, page 53, 1-4, page 59
2	solve 1 st order ordinary differential equations	Linear differential equation.	10	1 to 4, page 61
3	-	Reduction of order.	11	1 to 3, page 65

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

4-5	To introduce the	Second order equations.	14, 15	4 to 8, page 86 1 to 9, page 91
6	classical methods to	Use of a known solution.	16	All ,page 94
7-12	solve 2 nd order ordinary differential equations	Various methods to solve differential equations.	17, 18, 19, 23	1-2, page 97 & 5-7, page 98 All, page 103, All, page 106 1-25, page 135-136
13-14	Properties of solutions	Sturm Separation Theorem and Sturm Comparison Theorem.	24, 25	2-4, page 161 All, page 164
15-17	To introduce Series solutions method to	Series Solutions.	26 to 30	1-2, page 175 All, page 182 1-5, page 191 1-5, page 198
18-19	solve 2 nd order Linear differential	Hypergeometric equation.	31	All, page 203
20-22	equation with variable coefficients	Legendre Polynomials	44, 45	1-2, & 4, 341 1-5, page 347
23-25		Bessel functions	46, 47	1- 6, page 356 1- 5, page 363
26-29	Use of Laplace Transform to solve Differential Equations and Integral Equations	Laplace Transforms.	48, 49, 50, 51, 53	All, page 384 All, page 388 All, page 394 1- 4, page 397 2,3,4, page 410
30-31	To introduce system of differential equations	Systems of Equations.	54, 55, 56	1,2, page 420 5-9, page 426 1 and 5, Page 433
32-35	To introduce Fourier series		33, 34, 35, 36	1-6, page 256 1-5, page 263 All, page 269 1-7, page 274
36-37	To introduce	Eigenvalues and eigen functions, Sturm Liouville Problems.	40,43	1, page 308
38-40	classical methods to solve Partial Differential	One dimensional Wave equation One dimensional Heat	40	5, page 310
	Equations	equation Laplace's equation (Self Study)	42	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

- 4. **Home Assignment**: All problems listed are for Home work.
- 5. Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage (in %)	Date & Time	Nature of Component
1.	Mid-Sem	90 min.	35	7/10 10:00 - 11:30 AM	Close Book
	Exam.				
2.	Comprehensive	3 hrs.	45	5/12 AN	Close Book &
	Exam.				Open Book
3.	One Quiz	50 min.	20	Date will be announced	Close Book
	(Announced)			later	

- **6. Make-up:** Make-up will be given only in genuine cases.
- **7. Chamber consultation hour:** To be announced in the class.
- **8. Notices:** All notices regarding MATH F211 will be displayed on NALANDA and Mathematics department notice-board.

Instructor-In-Charge MATH F211

