

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Statistics (WST02) Paper 01

Question Number		Scheme	Marks		
1 (a) (i)	<i>X</i> ∼ B(14,0.2)			
	$[P(X=2)=]^{14}C_2 \times 0.2^2 \times 0.8^{12}$				
		= 0.2501 awrt 0.2501	A1		
(ii)	<i>X</i> ∼ B(25,0.2)			
	P(X > 1)	3) = $1 - P(X \le 3) = 1 - 0.2340$ or $1 - (0.0038 + 0.0236 + 0.0708 + 0.1358)$	M1		
		= 0.7660 awrt 0.766	A1		
			(4)		
(b)(i)	[np = 6]	$\Rightarrow]n = \frac{6}{0.2}$	M1		
		= 30	A1		
			(2)		
(ii)	$Y \sim B(n, 0.2)$ we require $P(Y \ge 1) > 0.95$				
	1-P(Y	$= 0) > 0.95 \Rightarrow P(Y = 0) < 0.05$	M1		
	$\left[{}^{n}C_{0}\times ight.$	0.2^{0}] $\times 0.8^{n} < 0.05$	M1		
	$0.8^{14} =$	$0.04398[<0.05] n > \frac{\ln 0.05}{\ln 0.8} \Rightarrow n > 13.425$	dM1		
		n = 14	A1		
			(4)		
		Notes	Total 10		
(a) (i)	M1	For writing or using $^{14}C_2 \times 0.2^2 \times 0.8^{12}$ (Allow 91 for $^{14}C_2$)			
	A1	awrt 0.2501 NB 0.2501 with no working scores M1A1			
(ii)	M1	For writing or using $1 - P(X \le 3)$			
	A1	awrt 0.766 NB awrt 0.766 with no working scores M1A1			
(b)(i)	M1	For use of $np = 6$ e.g $0.2n = 6$ (Allow \geqslant)			
	A1	Cao			
(ii)	M1	M1 For writing or using $P(Y \ge 1) = 1 - P(Y = 0)$ (Allow $P(Y \ge 1) = 1 - P(Y \le 0)$)			
	M1	For $0.8^n < 0.05$ oe (Allow = or \leq)			
	dM1 Dependant on previous M1 For substitution of n (allow $0.8^{13} = 0.05497$) or rearranging to $n >$ (Allow = or \geqslant) If using logs allow any base e.g. $n > \log_{0.8} 0.05$				
	A1	Cao			

Question				Marks		
Number		Scheme				
2 (a)	[Mode =	le =] 4				
(b)	$\int a \int_0^4 x^3 dx$	$\int_0^4 x^3 dx = \frac{1}{2} \Rightarrow \left] a \left[\frac{x^4}{4} \right]_0^4 = \frac{1}{2}$ $a = \frac{1}{2} \Rightarrow a = \frac{1}{128} *$				
	$64a = \frac{1}{2}$	$\Rightarrow a = \frac{1}{128} *$		A1*		
				(2)		
(c)	0.5	$\frac{1}{2} \times \frac{1}{2} \times (d-4) = \frac{1}{2} \text{or} \frac{1}{2} \times \frac{1}{2} \times (d-4) + \int_0^4 ax^3 dx = 1$				
	<i>d</i> = 6			A1 (2)		
(d)	$b = \frac{-\frac{1}{2}}{\frac{1}{6} - 4} \left[= -\frac{1}{4} \right]$ $0 = \frac{1}{4} \times \frac{1}{6} + c \text{ or } \frac{1}{2} = \frac{1}{4} \times 4 + c$ $10b + 2c = 0.5 \text{ oe or } \frac{1}{6}b + c = 0.5$		4b + c = 0.5 oe	M1		
	$0 = -\frac{1}{4}$	$= -\frac{1}{4} \times 6 + c$ or $\frac{1}{2} = -\frac{1}{4} \times 4 + c$ $10b + 2c = 0.5$ oe or $6b + c = 0$ oe				
		$b = -\frac{1}{4} \text{ and } c = \frac{3}{2}$				
				(3)		
			Notes	Total 8		
(a)	B1	Cao				
(b)	M1		odf and setting = 0.5 Ignore limits	. 1.		
	A1*		tion must be seen with no errors. There must be at leasers to the final answer	ast one line		
		of correct working from the M mark to the final answer. Mark parts c and d together				
(c)	M1	For setting the area of the triangle $= 0.5$				
. ,	A1	Cao				
(d)	M1		A correct method for finding b ft their d value or $4b+c=0.5$ oe (this may be seen any part of this question) Allow $4b+c=64a$			
	M1	A correct method for finding c ft their b and d value				
	A1 For both b and c correct NB $b = -0.25$ oe and $c = 1.5$ oe will score $3/3$					

Question		Scheme	Marks		
Number 3 (a)(i)	3 + [0] +	29 = 32*	B1*		
(ii)	3 + 10 + 15 + 15 + 15 + 15 + 15 + 15 + 15		B1*		
(11)	3 1 13 1	<u> </u>	(2)		
(b)	$f(t) = \begin{cases} \frac{1}{15} & 32 \leqslant t \leqslant 47\\ 0 & \text{otherwise} \end{cases}$				
			(2)		
(c) (i)	[E(T) =]	39.5 oe	B1		
(ii)	Var(T)	$=$ $\left[\frac{(47-32)^2}{12}\right]$	M1		
	$\frac{75}{4} = 18.$	75	A1		
			(3)		
(d)	(40 – 32	$)\times\frac{1}{15}$	M1		
			A1		
			(2)		
		Notes	Total 9		
(a)(i)	B1*	For 3 + [0] + 29			
(ii)	B1*	For 3 + 15 + 29 Allow 32 + 15			
(b)	M1	For $f(t) = \frac{1}{15}$ $32 \le t \le 47$ Allow use of < instead of one/both \le signs. Allow the use of any letter for $f(t)$ and t (Condone inconsistent use of letters) but we must have $f(t)$ and an inequality			
	A1	Fully correct pdf $f(t) = \begin{cases} \frac{1}{15} & 32 \le t \le 42 \\ 0 & \text{otherwise} \end{cases}$ Must be $f(t)$ and t . Condone $f(T)$ and T Allow use of $<$ instead of one/both \le signs Allow equivalent for the 0 otherwise.			
(c)(i)	B1	For 39.5 oe			
(ii)	M1	For use of $Var(T) = \frac{(\beta - \alpha)^2}{12}$			
	A1	For 18.75 oe			
(d)	M1	For use of $(40-\alpha) \times \frac{1}{\beta-\alpha}$			
	A1	For $\frac{8}{15}$ oe Allow awrt 0.533			

Question Number		Scheme				Marks		
4 (a)	$0.2 \times £10 + 0.3 \times £12 + 0.5 \times £15$				M1			
	=[£]13.	10				A1		
	[]					(2)		
	10 10 1	0	12 12 12	15 15 15		(2)		
		2 (×3)						
(b)			10 12 12 (×3)			B1 B1		
	10 10 1		10 12 12 (\times)	10 13 13 (\(\delta\sigma\)				
	10 12 1	(* (*)				(2)		
(c)	P(10) = 0	0.2	P(12) = 0.3	P(15) = 0.5		B1		
. ,	Median o	can be 10, 12	or 15			B1		
				$\times 3$ or $1 - 0.8^3 - 3 \times 0.00$	$8^2 \times 0.2$	M1		
	`		$3^2 \times 0.5 \times 3 + 0.3^2 \times 0.2 $					
						M1		
	P(M=15)	$(5) = 0.5^3 + 0.5$	$6^2 \times 0.3 \times 3 + 0.5^2 \times 0.2 \times $	3 or $1-0.5^3-3\times0.5^2$	$^2 \times 0.5$	M1		
		M	10	12	15			
	P(/	M=m)	$\frac{13}{125} = 0.104$	$\frac{99}{250} = 0.396$	$\frac{1}{2} = 0.5$	A1		
				(6)				
			N	otes		(6) Total 10		
(a)	M1	For 0.2×10+			nswer	1011110		
()	A1	For $0.2 \times 10 + 0.3 \times 12 + 0.5 \times 15$ May be implied by a correct answer Cao Allow 13.1						
(b)	B1							
` /	B1							
(c)	B1	Correct probabilities – may be seen in an equation or implied by a correct probability						
	B1		ns and no extras					
	M1				lied by a correct probabili	•		
	M1				lied by 2 correct probability			
	M1	A correct method for all three probabilities (May be implied by 3 correct probabilities) or 3 probabilities that add to 1						
	A1			pabilities must be attach	ed to the correct median			
	A1 Cao Need not be in a table but probabilities must be attached to the correct median							

Question Number		Scheme	Marks			
5 (a)	Compl	aints received are independent or occurring at a constant rate or singly	B1			
			(1)			
(b)(i)	L \	$(3 X \sim Po(6)) =]0.0620$ awrt 0.062	B1			
(ii)	$\lceil P(X) \rceil$	(0.554) = $1 - P(X \le 5)$ or $1 - 0.4457 = 0.5543$ awrt 0.554	M1A1			
			(3)			
(c)	$H_0:\lambda$	$=6$ $H_1: \lambda > 6$	B1			
	$P(X \geqslant$	12) = $1 - P(X \le 11) = [1 - 0.9799]$ or $P(X \ge 11) = 1 - P(X \le 10) = [1 - 0.9574]$	M1			
		$= 0.0201$ or $CR \ge 11$	A1			
	Reject	H ₀ /In the CR/Significant	M1			
		s sufficient evidence to suggest that the mean number of complaints received ter than 6 per week	A1ft			
			(5)			
(d)	$H_0:\lambda$	$=6 \qquad H_1: \lambda < 6$	B1			
	6 week	period is $Po(36) \Rightarrow N(36, 36)$	B1			
		$(26) \approx P(Y < 26.5) = P(Z < \frac{26.5 - 36}{6})$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$	M1 M1			
	$P(Z \cdot$	(x - 1.583) = 0.0571(Calculator 0.05667) or $x < 25.63awrt 0.057 awrt 25.6$	A1			
	Do not	reject H ₀ /Not in the CR/Not significant	M1			
		s insufficient evidence to suggest that the mean number of complaints	A1ft			
	received after the changes made is less than 6 per week					
	(7					
	Notes Total 16					
(a)	B1	A correct assumption. Must be in context so need 'complaints' and then independent/ra constant rate or singly	andom or			
(b)(i)	B1	awrt 0.062				
(ii)	M1	For writing or using $1-P(X \le 5)$ May be implied by awrt 0.554				
	A1	awrt 0.554				
(c)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ				
	M1	For writing or using $1-P(X \le 11)$ or $1-P(X \le 10)$				
	A1	For 0.0201 or CR ≥ 11				
	M1 A1ft	A correct statement – no context needed but do not allow contradicting non contextual Correct conclusion in context with the words highlighted in bold	comments			
(1)		Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of	36 rather			
(d)	B1	than 6				
	B1	For writing or using N(36, 36)	d::			
	M1	For standardising using 25.5/26/26.5, their mean and their standard deviation or standard using x –0.5/ x / x + 0.5, their mean and their standard deviation and setting equal to –1.6	•			
	M1	For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$				
	A1	awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0)				
		or CR < awrt 25.6 (Allow ≤)	aommanta			
	M1 A correct statement – no context needed but do not allow contradicting non contextual comments Correct conclusion in context with the words in bold (Allow The mean number of complaints has					
	A1ft	stayed the same/not changed oe)	-Piumus mus			

Question Number		Scheme			
6(a)	P(Y	$Y < \frac{1}{4}k \mid Y < k$ = $\frac{1}{F(k)} = \frac{\frac{1}{21}(\frac{k}{4})^2}{\frac{1}{21}k^2} = \frac{1}{16}$ oe			
(b)	$\frac{1}{21}k^2$	$= -\frac{1}{15}k^2 + \frac{4}{5}k - \frac{7}{5} \qquad \frac{d}{dy}\left(\frac{1}{21}y^2\right) = \frac{2}{21}y \text{ or } \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^2}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6 - y)$	(2) M1		
	$\Rightarrow 4k$	$\frac{d}{dy}\left(\frac{1}{21}y^2\right) = \frac{2}{21}y & \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^2}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6 - y)$	A1		
	\Rightarrow (2	$(k-7)^2 = 0$ $\frac{2}{21}k = \frac{2}{15}(6-k)$	M1		
		$k = \frac{7}{2}$ oe	A1		
			(4)		
(c)	f(y) =	$ \begin{cases} \frac{2}{21}y & 0 \leq y \leq 3.5 \\ \frac{2}{15}(6-y) & 3.5 \leq y \leq 6 \\ 0 & \text{[otherwise]} \end{cases} $	M1 M1		
	E(Y) =	$= \frac{2}{21} \int_0^{3.5} y^2 dy + \frac{2}{15} \int_{3.5}^6 (6y - y^2) dy \Rightarrow \frac{2}{21} \left[\frac{y^3}{3} \right]_0^{3.5} + \frac{2}{15} \left[3y^2 - \frac{y^3}{3} \right]_{3.5}^6$	M1 M1		
	$\frac{2}{21} \left(\frac{34}{24} \right)$	$\left(\frac{13}{4}\right) + \frac{2}{15}\left(\frac{325}{24}\right) = \frac{19}{6} = 3.166$ awrt 3.17	dM1 dA1		
			(6)		
			Total 12		
(a)	M1	For a correct probability statement or a correct ratio of probabilities			
	A1	For $=\frac{1}{16}$ oe or 0.0625			
(b)	M1	For setting the two lines of the cdf = to each other or $\frac{2}{21}y$ or $\frac{2}{15}(6-y)$ (Implied by a correction)	rect 3TQ)		
	A1	For a correct 3TQ or $\frac{2}{21}y$ and $\frac{2}{15}(6-y)$			
	M1	For solving their 3TQ. If the 3TQ is not correct, then a correct method must be shown or setting their 2 lines of the pdf = to each other			
	A1	k = 3.5 oe NB $k = 3.5$ with no incorrect working scores 4/4			
(c)	M1	Attempting to differentiate 1 of the functions. May be seen in part (b) or in an attempt to			
	M1	Attempting to differentiate both with one correct. May be seen in part (b) or in an attemption \mathbf{r}_{a}	t to find E(Y)		
	M1	For writing or using $E(Y) = \int_0^{3.5} y f(y) dy + \int_{3.5}^6 y f(y) dy$ Ignore limits			
	M1	For attempting to integrate	1 ' 1' 1		
	dM1	Dependent on previous M1. For substitution of limits, must be 0 or 6 and ft their 3.5. May by $\frac{49}{36}$ oe or $\frac{65}{36}$ oe or $\frac{19}{6}$ oe. If the integral is not correct, then we must see evidence of su			
	dA1	Dependent on previous M1. For $\frac{19}{6}$ or awrt 3.17			

Question Number		Scheme	Marks				
7(a)	$\frac{97.5-}{\sigma}$	$\frac{\mu}{\sigma} = 1.25 \qquad \frac{85.5 - \mu}{\sigma} = -0.75$	M1 M1 M1 M1 M1				
	$2\sigma = 12$	2	M1				
	$\sigma = 6 *$	$\left[\mu = 90\right]$	dA1*				
			(7)				
(b)	np = 90	0 and $np(1-p) = 36$	M1				
	1 - p =	- 0.4	M1				
	p = 0.0	6 and $n = 150$	A1				
		(3)					
		Notes	Total 10				
	NB Condone use of np for μ and $\sqrt{np(1-p)}$ for σ						
(a)	M1	For standardising using 96.5/97/97.5 and = z value, where $1 < z < 1.5$					
	M1	For standardising using $85.5/86/86.5$ and $= z$ value, where $-1 < z < -0.5$					
	M1	For use of a correct continuity correction in either equation					
	M1	For a correct z value used in either equation					
	M1	M1 An attempt at both equations with one fully correct					
	M1	For solving simultaneously eliminating μ or σ As this is a show that question then w	orking must				
	be seen.						
	dA1 Dependent on all previous M marks being awarded $\sigma = 6 *$						
(b)	M1	For $np = \mu$ and $np(1-p) = \sigma^2$ Follow through their μ (Condone $npq = \sigma^2$)					
	M1	M1 For solving simultaneously. May be implied by a correct value for <i>p</i> and <i>n</i>					
	A1	Both $p = 0.6$ and $n = 150$					