4. Linear Algebra Application

Linear Algebra Application

Sun Woo Lim

January 16, 2021

Norm on Vector Space

A function $||\cdot||:V\to\mathbb{R}_+$ is a norm if

- **1** ||x|| > 0 if $x \neq 0$ and $||x|| = 0 \leftrightarrow x = 0$
- $||x+y|| \le ||x|| + ||y|| \text{ for } x, y \in V$
- $||\alpha x|| = |\alpha|||x|| \text{ for } \alpha \in \mathbb{R}, x \in V.$

The representative example of a norm is the l_p norm : $||x||_p = (\sum |x_k|^p)^{1/p}, p = 1, 2, 3, ..., \infty$

Useful properties of l_p norms

- ② $\forall x \in \mathbb{R}^n$, $||x||_2/\sqrt{n} \le ||x||_\infty \le ||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2 \le n||x||_\infty$

Unit balls in the l_p norms

 $B_p := \{x \in \mathbb{R}^n : ||x||_p \le 1\}$ is called an unit l_p norm ball.

Positive (Semi) Definiteness and Partial Order

For real, symmetric matrices (matrices we can orthogonally diagonalize as $U\Lambda U^T$),

- \mathbb{S}^n_+ is a set of positive semidefinite real symmetric matrices.
- \leftrightarrow All eigenvalues = diagonal entries of Λ are nonnegative
- \mathbb{S}^n_{++} is a set of positive definite real symmetric matrices.
- \leftrightarrow All eigenvalues = diagonal entries of Λ are positive

Partial Order of \mathbb{S}^n

More generally,

For
$$A, B \in S^n$$
, say $A \succeq B$ if $A - B \in \mathbb{S}^n_+ \leftrightarrow x^T A x \geq x^T B x, \forall x \in R^n$
For $A, B \in S^n$, say $A \succ B$ if $A - B \in \mathbb{S}^n_{++} \leftrightarrow x^T A x > x^T B x, \forall x \in R^n - \{0\}$

Why "more generally"?

$$A \in \mathbb{S}^n_+$$
 iff $A \succeq 0$ $A \in \mathbb{S}^n_{++}$ iff $A \succ 0$

Sun Woo Lim 4. Linear Algebra Application

Symmetric Matrices and Cone

A "Cone" $W \subseteq \mathbb{R}^n$ is a set if for $w \in W, \alpha \geq 0, \ \alpha w \in W$

A usually dealt example of a "Cone" is a "Second-Order Cone" : $K:=\{(x,t)\in\mathbb{R}^n\times\mathbb{R}:||x||_2\leq t\}$

PSD Matrices are cones!

 S_{++}^n is the interior of the cone S_{+}^n

 S^n is a subspace of $R^{n,n}$ while S^n_+ is not.

Matrix Norms

Matrix Norm

- $f(A) \ge 0$, and f(A) = 0 if and only if A = 0;
- $f(\alpha A) = |\alpha| f(A)$;
- f(A+B) < f(A) + f(B).

- A function $||\cdot||:V\to\mathbb{R}_+$ is a norm if
 - ||x|| > 0 if $x \neq 0$ and $||x|| = 0 \leftrightarrow x = 0$
 - **2** ||x+y|| < ||x|| + ||y|| for $x, y \in V$
 - $||\alpha x|| = |\alpha|||x|| \text{ for } \alpha \in \mathbb{R}, x \in V.$

Many of the popular matrix norms also satisfy a fourth condition called *sub-multiplicativity*: for any conformably sized matrices A, B

$$f(AB) \le f(A)f(B).$$

Three Popular types of Matrix Norm

For $A \in \mathbb{R}^{m,n}$.

- **1** Frobenius Norm $||A||_F:=(\sum_{i=1}^m\sum_{j=1}^n|a_{ij}|^2)^{\frac{1}{2}}=\sum \lambda_i(A^TA)=\sum \sigma_i^2$, where σ_i 's are singular values of A
- 2 Nuclear Norm $||A||_* := \sum \sigma_i$
- Induced Norm = Operator Norm $||A||_p := \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$ $||A||_2 := \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1$: largest singular value of A $||A||_1 := \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1}$: largest absolute column sum

$||A||_2$ and Eigenvalue of A^TA

$$||A||_2 := \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sup_{||x||_2 = 1} x^T A^T A x = \sqrt{\lambda_{max} A^T A}$$

I want to prove more general result:

$$\lambda_{min}(A^T A) \le \frac{||Ax||_2^2}{||x||_2^2} \le \lambda_{max}(A^T A)$$

Basic knowledge) $A^T A \in \mathbb{S}^n_+$.

Since $A^TA \in \mathbb{S}^n$, apply spectral thm on $A^TA = U\Lambda U^T$. $\to x^TA^TAx = x^TU\Lambda U^Tx = \tilde{x}\Lambda \tilde{x}$ where $\tilde{x} := U^Tx$

I know that $\lambda_{min} \sum \tilde{x_i}^2 \leq \sum \lambda_i \tilde{x_i}^2 \leq \lambda_{max} \tilde{x_i}^2$.

Why?) Use $A^TA \in \mathbb{S}^n_+$: All eigenvalues are nonnegative!

Using U: orthogonal: preserves length, $|\tilde{x_i}|^2 = \tilde{x}^T \tilde{x} = x^T x = ||x||_2^2$, Q.E.D.

$$\lambda_{min}(A^TA) \leq \frac{||Ax||_2^2}{||x||_2^2} \leq \lambda_{max}(A^TA)$$
 is called **Rayleigh Quotient**.

Sun Woo Lim

4. Linear Algebra Application

Variational Characterization of Eigenvalues of PSD matrices

For $B \in \mathbb{S}^n_+$, its real eigenvalues satisfy :

$$\lambda_1 \ge \lambda_2 ... \ge \lambda_n \ge 0.$$

$$\lambda_1 = \sup_{||x||_2 = 1} x^T B x$$

$$\lambda_k = \sup_{dim(\mathbb{V})=k} \inf_{x \in \mathbb{V}, ||x||_2=1} x^T B x = \inf_{dim(\mathbb{V})=n-k+1} \sup_{x \in \mathbb{V}, ||x||_2=1} x^T B x.$$

$$\lambda_n = \inf_{||x||_2 = 1} x^T B x$$

$||A||_2$ and Singular value of A

$$||A||_2 := \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sup_{||x||_2 = 1} \widehat{x^T A^T A x} = \sqrt{\lambda_{max} A^T A} = \sigma_1$$
 of is the biggest singular value.

What are singular values?

- \checkmark The roots of nonzero eigenvalues of A^TA are singular values of A.
- ✓ Since A^TA is PSD, they are the roots of positive eigenvalues of A^TA .
- ✓ Important fact that $N(A^TA) = N(A)$ by definition of null space.
- \checkmark Then, by the FTLA, $r:=rank(A)=rank(A^T)=rank(A^TA)=rank(AA^T)$
- \checkmark Thus, can align r singular values of A:

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0.$$

- \checkmark Find a relationship with spectral decomposition of A^TA
- : $A^TA = U\Lambda U^T$ and nonzero diagonal elements of $\Lambda: \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r$

January 16, 2021

8 / 25

Sun Woo Lim

4. Linear Algebra Application

Sensitivity Analysis Using Condition Number $\kappa(A)$ for invertible A

Let $A \in \mathbb{R}^{n,n}$ be an invertible matrix (Watch out! no need to be symmetric).

$$\kappa(A):=rac{\sigma_1}{\sigma_n}=||A||_2||A^{-1}||_2$$
 derived from $\sigma_{max}(A^{-1})=rac{1}{\sigma_{min}(A)}$

Sensitivity Analysis

Let x be a solution of a linear equation Ax = y for A invertible and $y \neq 0$.

Curious about what happens to x if I change y slightly by δy , in other words, $A(x + \delta x) = y + \delta y$

Solve for δx results in : $\delta x = A^{-1} \delta y$

Apply the l_2 norm and apply submultiplicativity (property of usually dealt norms) :

$$||\delta x||_2 \le ||A^{-1}||_2 ||\delta y||_2$$

Since this only considers the absolute change of the perturbation, to consider the relative change of perturbation, use : $||y||_2 \le ||A||_2 ||x||_2 \to \frac{1}{||x||_2} \le \frac{||A||_2}{||y||_2}$ which finally leads to:

$$\frac{||\delta x||_2}{||x||_2} \le ||A^{-1}||_2 ||A||_2 \frac{||\delta y||_2}{||y||_2}$$

- \checkmark When the Matrix Condition Number is big, the linear equation Ax = y has high sensitivity to perturbation in x.
- \checkmark When $\kappa(A) \to \infty$, A is near singular, a.k.a, ill-conditioned.
- ✓ Orthogonal Matrices have condition number of 1 : Favored object in Numerical Analysis

Sun Woo Lim

Compact Form SVD

First, spectral decomposition $A^T A = V \Lambda V^T$.

 $A = U_r \Sigma V_r^T$ where

- $V_r \in \mathbb{R}^{n,r}$ is the alignment of the first r columns of $V_r \in \mathbb{R}^{n,r}$ are orthonormal.
- 3 $U_r \in \mathbb{R}^{m,r}$ is alignment of its orthonormal columns $u_1, u_2, ..., u_r \in \mathbb{R}^m$ where $u_i := \frac{Av_i}{\sigma_i}, i = 1, 2, ..., r$.
- \checkmark No guarantee that V_r^T and U_r are orthogonal matrices! Watch out the rank r!
- $\checkmark V_r^T V_r = I_r$ but $V_r V_r^T$ is not necessarily I_m .

Sun Woo Lim 4. Linea

Full Form SVD

 $A = U\tilde{\Sigma}V^T$ where

$$\bullet \ \tilde{\Sigma} = \begin{bmatrix} \Sigma & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{bmatrix}$$

- $V \in \mathbb{R}^{n,n}$ is the same V as in $A^T A = V \Lambda V^T$.
- § $U \in \mathbb{R}^{m,m}$ form an orthonormal basis of \mathbb{R}^m . Obtain U from $AV = U\Sigma$
- \checkmark In Full form SVD, yes, U and V^T are orthogonal matrices.

- $\{u_1, u_2, ..., u_r\}$ form an orthonormal basis of R(A)
- $\{u_{r+1}, u_{r+2}, ..., u_m\}$ form an orthonormal basis for $N(A^T)$.
- $\{v_1, v_2, ..., v_r\}$ form an orthonormal basis for $R(A^T)$
- $\{v_{r+1}, u_{r+2}, ..., v_n\}$ form an orthonormal basis for N(A)

Sun Woo Lim 4. Linear Algebra Application January 16, 2021 11 / 25

Geometric Understanding of the Full Form SVD

 $A = U\tilde{\Sigma}V^T$, $A \in \mathbb{R}^{m,n}$.

For $x \in \mathbb{R}^n$,

- \bullet $V^T x$ represents x in the orthonormal basis of V's column vectors.
- 3 $Ax = U\Sigma V^T x$ represents a linear combination of first r columns of U, having coefficients as components of $\Sigma V^T x$.

 $\checkmark \text{ Perform a compact form full form SVD using a matrix } A = \begin{bmatrix} \sqrt{\frac{3}{2}} & \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{3}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix}$

12 / 25

Sun Woo Lim 4. Linear Algebra Application January 16, 2021

First SVD application: Principal Component Analysis

Let $X \in \mathbb{R}^{m,n}$ be the data you want to reduce dimension from.

Let $\tilde{X} := X - \bar{X}$ be the mean centered data.

$$\tilde{X} = U_r \Sigma V_r^T = U \tilde{\Sigma} V^T$$
 : SVD on \tilde{X}

$$\tilde{X}\tilde{X}^T = V\Lambda V^T$$
 : Spectral Decomposition on $\tilde{X}\tilde{X}^T$

Solve
$$\max_{z \in R^m} z^T (\tilde{X}\tilde{X}^T)z$$
 s.t. $||z||_2 = 1$

The optimal z is the eigenvector of $\tilde{X}\tilde{X}^T$ corresponding to the largest eigenvalue = column of V corresponding to the largest singular value of \tilde{X}

 $\checkmark i^{th}$ column of $U\widetilde{\Sigma} = \widetilde{X}V$ is called i^{th} principal component of X.

Second SVD application : Pseudoinverse and Least Squares

Moore - Penrose pseudoinverse of $A \in \mathbb{R}^{m,n}$

√ Reminder of the Compact Form / Full Form SVD

For
$$A \in \mathbb{R}^{m,n}$$
, $A = U_r \Sigma V_r^T = U \tilde{\Sigma} V^T$.

$$A^\dagger := V_r \Sigma^{-1} U_r^T = V \tilde{\Sigma}^\dagger U^T, \ A^\dagger \in \mathbb{R}^{n,m}$$

$$\tilde{\Sigma}^{\dagger} := \begin{bmatrix} \Sigma^{-1} & 0_{r,m-r} \\ 0_{n-r,r} & 0_{n-r,m-r} \end{bmatrix}$$

Properties of Pseudoinverse of A

- $AA^{\dagger} = U_r \Sigma V_r^T V_r \Sigma^{-1} U_r^T = U_r U_r^T$
- $AA^{\dagger}A = U_r U_r^T U_r \Sigma V_r^T = U_r \Sigma V_r^T = A$

Formula of Pseudoinverse

- If A is full column rank : $r=n \to A^{\dagger}A=I_n$ $A^{\dagger}=(A^TA)^{-1}A^T$: Left Inverse
- 2 If A is fullrow rank : $r=m \to AA^\dagger = I_m$ $A^\dagger = A^T (AA^T)^{-1}$: Right Inverse

Sun Woo Lim 4. Linear Algebra Application January 16, 2021 14 / 25

Projection Matrix in Regression

Projection Matrix

I want to project a vector $y \in \mathbb{R}^m$ onto range space of $X \in \mathbb{R}^{m,n}$ for r := rank(X) = n, full column rank.

Let x_i be columns of X. Then, $x_i^T(y - X\hat{\beta}) = 0, \forall i \in \{1, ..., n\}$

In matrix form, $X^T(y - X\hat{\beta}) = 0 \leftrightarrow X^TX\hat{\beta} = X^Ty$

$$\hat{\beta} = (X^T X)^{-1} X^T y = X^\dagger y$$
 and $\hat{y} = X \hat{\beta} = X (X^T X)^{-1} X^T y = P y$ for $P := X (X^T X)^{-1} X^T y = P y$

Properties of Projection Matrix

- $P^T = P$
- $P^2 = P$

4. Linear Algebra Application

Least Squares Regression

Least Squares : Representative Example of Projection

Let the model matrix be $X \in \mathbb{R}^{m,n}$ and the response $y \in \mathbb{R}^m$.

Define $x_i^T \in \mathbb{R}^n$ be the i^{th} row of X and $y_i \in \mathbb{R}$ be the i^{th} element of y.

$$min_{\beta \in R^n} ||X\beta - y||_2^2 = min_{\beta \in R^n} \sum_{i=1}^m (x_i^T \beta - y_i)^2$$

Solving Least Square Problems using QR decomposition

In case $m \ge n$ and rank(X) = n,

can write X = QR where

- 1) $Q \in \mathbb{R}^{m,n}$ having orthonormal columns
- 2) $R \in \mathbb{R}^{n,n}$ being upper triangular and invertible.

$$X^T X = R^T Q^T Q R = R^T R$$

Solving
$$X^TX\beta = X^Ty \leftrightarrow R^TR\beta = R^TQ^T \leftrightarrow Rx = Q^Ty$$

Solve this by Back Substitution!

January 16, 2021

Types of Least Squares

Three Types of Least Squares Problem

- **1** Squares System : # of equations = # of unknown variables. $X\beta = y$. If X is full rank, $\beta^* = X^{-1}y$.
- ② Overdetermined System (Used to this) : number of equations bigger than number of unknowns. If X is full column rank, $\beta^* = X^\dagger y = (X^T X)^{-1} X^T y$
- ① Underdetermined System: number of equations smaller than number of unknowns. Even though X is full row rank: rank(X) = m, dim(N(A)) = n m > 0, infinite number of solutions. \rightarrow Change this into another problem (ex: minimum norm solution)
 - $min_{\beta}||\beta||_2^2$ s.t. $X\beta=y$

Special Types of Least Squares

Least Squares with Equality Constraints

Find solutions to $min_{C\beta=d}||X\beta-y||_2^2$ for $X\in \mathbb{R}^{m,n}$, $C\in \mathbb{R}^{p,n}$ and $d\in \mathbb{R}^p$

Here, assume that the problem is feasible : $\exists \tilde{\beta} \in \mathbb{R}^n$ satisfying $C\tilde{\beta} = d$

The feasible set : $\{\tilde{\beta} + Nz | z \in R^l\}$ where columns of $N \in R^{n,l}$ form a basis for N(C)

Vector Derivative Practice)

Notin [Arth] s.t. Gseh, AEIR , GEIR , GEIR , GEIR , Tank (A) = n

" p equality constraints"

$$J(x, \gamma) = ||Ax-b||_{2}^{2} + \gamma^{T}(Gx-h)$$

$$= (Ax-b)^{T}(Ax-b) + \gamma^{T}(Gx-h)$$

$$= (x^{T}A^{T}-b^{T})(Ax-b) + \gamma^{T}(Cx-h)$$

$$= x^{T}A^{T}Ax + (x^{T}G - 2b^{T}A) \times -\gamma^{T}h + b^{T}b$$

$$= x^{T}A^{T}Ax + (G^{T} - 2A^{T}b)^{T} \times -\gamma^{T}h + b^{T}b$$
Using convexity of the Lagrangian w.r.t. \times ,

$$\nabla_{X} J(x, r) = 2A^{T}A \times + (G^{T}r - 2A^{T}b) \times \frac{1}{|R|} \circ$$

$$x^{*} = (A^{T}A)^{-1} (A^{T}b + G^{T}(G(A^{T}A)^{-1}G^{T})^{-1} (h - G(A^{T}A)^{-1}A^{T}b)).$$

The original problem can be reformulated as $min_{z\in\mathbb{R}^l}||\tilde{X}z-\tilde{y}||_2^2$ for $\tilde{X}:=XN$ and $\tilde{y}:=y-X\tilde{\beta}$

Special Types of Least Squares

Ridge Regression

 $min_{\beta \in \mathbb{R}^n} ||X\beta - y||_2^2$ has solutions $\beta^* = X^{\dagger}y$.

Suppose $||\beta^*||_2 = ||X^{\dagger}y||_2$: big.

$$\rightarrow \text{ solve instead}: \min_{\beta \in \mathbb{R}^n} ||X\beta - y||_2^2 + \lambda ||\beta||_2^2 \leftrightarrow \min_{\beta \in \mathbb{R}^n} || \begin{bmatrix} X\beta - I_m y \\ \sqrt{\lambda} I_n \beta - 0_{n,m} \end{bmatrix} ||_2^2 = \sum_{j=1}^n || I_j - I_j$$

If
$$rank(X)=n \to {\rm rank}(\begin{bmatrix} X \\ \sqrt{\lambda}I_n \end{bmatrix})={\rm n},$$
 then ultimately get the minimizer $\beta^*=(X^TX+\lambda I_n)^{-1}X^Ty$

LASSO (Least Absolute Shrinkage and Selection Operator)

For a hyperparamter λ , Solve, $min_{\beta \in \mathbb{R}^n} ||X\beta - y||_2^2 + \lambda ||\beta||_1$

This l_1 regularization does a variable selection by making many entries of β negligible.

4. Linear Algebra Application

Convex Set

Definition of a Convex Set

 $K \subseteq \mathbb{R}^n$ is a convex set if $\forall x_1, x_2 \in K$, $\forall \lambda \in [0,1]$, $\lambda x_1 + (1-\lambda)x_2 \in K$ "The Convex Combination also is in the set".

- ✓ Which of the following is / are convex?
 - **1 Empty Set** ϕ
 - **2** A set of single point $\{x_0\}$
 - **3** $\{z \in R^n : ||z z_0||_2 \le \epsilon\}$ for some $\epsilon > 0$
 - **4** $\{z \in R^n : ||z z_0||_2 = \epsilon\}$ for some $\epsilon > 0$
 - $[-2,-1] \cup [1,2]$

Operations preserving Convexity of a set

Operations preserving Convexity of a set

- Intersection of convex sets
- 2 Hyperplane $\{x|a^Tx-b=0\}$ and Half Spaces $\{x|a^Tx-b\leq 0\}$ and $\{x|a^Tx-b>0\}$
- **3** Projection of a convex set onto a hyperplane

- **3** "Convex Hull of A" $Co(A) := \{\sum_{i=1}^m \lambda_i x_i | x_i \in A, \lambda_i \geq 0, \forall i, \sum \lambda_i = 1\}$
- **5** "Conic Hull of A" := $\{\sum_{i=1}^m \lambda_i x_i | x_i \in A, \lambda_i \geq 0, \forall i\}$
- **o** "Affine Hull of A" :={ $\sum_{i=1}^{m} \lambda_i x_i | x_i \in A, \sum \lambda_i = 1$ }
- Q) Why is a polyhedron convex?

Convex Functions

Convex Functions defined on the domain of a convex set

For $f: \mathbb{R}^n \to \mathbb{R}$ defined for $x \in dom(f)$: Convex set, f is convex if $\lambda f(x_1) + (1 - \lambda)f(x_2) \geq f(\lambda x_1 + (1 - \lambda)x_2)$

√ Properties of Convex Functions

- Pointwise Supremum of convex sets is a convex function
- **2** Nonnegative linear combination of Convex Functions is a convex function
- $\textbf{3} \quad f: \mathbb{R}^n \to \mathbb{R} \text{ is a convex function} \leftrightarrow epi(f) \text{ is a convex set} : \text{"Epigraph Characterization of a Convex Function"} \\ epi(f) := \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : x \in dom(f), t \in \mathbb{R}, f(x) \leq t \}$

√ Iff conditions for differentiable convex functions

For f which has an open domain and differentiable on dom(f),

- First order (gradient) condition for convexity f convex $\leftrightarrow f(y) \ge f(x) + \nabla f(x)^T (y-x), \forall x,y \in dom(f)$.
- **Second order (Hessian) condition for convexity** $f \text{ convex} \leftrightarrow \nabla^2 f(x) \succeq 0, \forall x \in dom(f). "Hessian is PSD".$

Sun Woo Lim 4. Linear Algebra Application January 16, 2021 22 / 25

Convexity of the Cost Function of Softmax Regression

$$Model) P(Y=1 \mid X) = \frac{e^{\sqrt{X}}}{1+e^{\sqrt{X}}} \iff \lim_{l \to 0} \left(\frac{P(Y=1 \mid X)}{(-P(Y=1 \mid X))} \right) = \sqrt{X} \left(Actualy, \sqrt{X} \times Can \text{ represent bias by including "1" column} \right)$$

Fows on one observation of
$$(\overline{X}i, \overline{Y}i)$$
 pair.

Loss $(P(\overline{Y}i=1|X_i), \overline{Y}i) = \begin{pmatrix} -\log(P(\overline{Y}i=1|X_i), iP_{\overline{Y}i=1} \\ -\log(I-P(\overline{Y}i=1|X_i)), iP_{\overline{Y}i=0} \end{pmatrix}$

Integrate $(P(\overline{Y}i=1|X_i), \overline{Y}i) = -Y_i \log p(X_i; W) - (I-Y) \log (I-P(X_i; W))$

The entropy loss

Official term of "loss": Case & "Cost": average loss

oo Lim 4. Linear Algebra Application

Convexity of the Cost Function of Softmax Regression

want to find the Global minimum of this C(w) using convexity of C(W) w.r.t. w

4. Linear Algebra Application

Convexity of the Cost Function of Softmax Regression Using the Convexity of log-sum-exp (Ise)

Step 1)
$$C(w)$$
 $cvx \rightleftharpoons -n \cdot C(w)$ concave $-n \cdot C(w) = \mathbb{Z}[9; (\mathbb{Z}w; X_i) - \ln(1+exp(\mathbb{Z}w; X_i))]$

Step 2) ①: Imear (affine also ok) over $w \neq (concave)$ Step 3) ② concave $\rightleftharpoons -2$ convex $p+$) $(og - Sum - exp(lse))$ of $|R^n \rightarrow IR$ is defined as:

 $|Se(\overline{w}) = In(\mathbb{Z}[e^{wi}])$, $|Se(\overline{w}) = In(\mathbb{Z}[e^{wi}])$

Second order (Hessian) condition for convexity $f \text{ convex} \leftrightarrow \nabla^2 f(x) \succeq 0, \forall x \in dom(f).$ "Hessian is PSD".

Sun Woo Lim 4. Li

Convexity of the Cost Function of Softmax Regression Using the Convexity of log-sum-exp (Ise)

$$|(st)''| \text{ gradient''} \quad \nabla f(w) = \frac{1}{Ze^{w_i}} \left(\frac{e^{w_i}}{e^{w_i}} \right)$$

$$|(st)''| \text{ Hessian''} \quad \nabla^2 f(w) = \frac{1}{Ze^{w_i}} \left[\frac{e^{w_i}}{e^{w_i}} \right] \text{ Lew} \cdot \dots \cdot e^{w_k}$$

$$|(st)''| \text{ Where } |(st)''| \text{ Lew} \cdot \text{ If } |(st)''| \text{ Lew} \cdot \text{ If } |(st)'''| \text{ Lew} \cdot \text{ If } |(st)''''| \text{ Lew} \cdot \text{ If } |(st)''''| \text{ Lew} \cdot \text{ If } |(st)''''| \text{ Lew} \cdot \text{$$

 $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$

Sun Woo Lim

Convexity of the Cost Function of Softmax Regression Using the Convexity of log-sum-exp (Ise)

9 Q (2)

Connection of the Cost Function and the Log Likelihood Function in Softmax Regression

* Note that Log Likelihood for of
$$W$$
 is

$$\frac{1}{2} \left[\frac{1}{2} \left[$$