Intro

den 27 september 2018

En bas & VIII--, Vu3 for Rr welles en CN-bos con

 $\widehat{V}_i \cdot \widehat{V}_j = 0 \quad \forall \quad \widehat{V}_j.$

117ill=1 4i.

Dessen for fourtieble att arbeta med, men bruldervärde att fa hun. För dellen annak Grane-Schwidt sweeted, som och singer boushabtert MM myc iche-fond oldren ar IR" na en orlonomed bos. Den goir boll som feljer:

Loit B= Eun, -- , wing name en bos for 12".

2,

W.

ctc etc ...

7.11.17. forts

den 27 september 2018 13:34

	IA/I_	1 1214	. /	(==	Tr (2-5)	_	2,100 - 1, 2/		
	V/I VF∞	was row war	messora	407	Macs	M.	ovice ever pas	BALL MYLAN JUJE	2 -
6	hita) Usorelinoturafrisa			`	•		•		_

$$[\omega]_R = P_{s \rightarrow R}[\omega]_{s^2} \frac{1}{11} \begin{bmatrix} \frac{1}{1} & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \frac{5}{5} \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -\frac{5}{11} \\ -\frac{15}{11} \end{bmatrix}.$$

den 27 september 2018

13:36

Vitte den ortogonale projektionen av X=(1,2,0,-2) på

IR -delrammet

[]], [] ar an ortogenal, men sute ortenormal, bas for W.

Norma

Diar

$$P = \int_{-2}^{2} \left(\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \left(\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} - \frac{1}{2} \right) = \frac{1}{2} \left(\begin{bmatrix} \frac{3}{2} \\ \frac{3}{$$

Auranel graus-Schnidt för att göra den givna basen ortenemal.

$$\bar{\omega}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
; $\bar{\omega}_2 = \begin{bmatrix} 3 \\ 7 \\ -2 \end{bmatrix}$; $\bar{\omega}_s = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$.

Vilis [] cett uten fin.

$$\overline{V}_{3} = \overline{W}_{2} - \rho_{1} \rho_{1} \overline{W}_{1}(\overline{W}_{2}) = \overline{W}_{2} - \frac{\overline{W}_{2} \cdot \overline{V}_{1}}{||\overline{V}_{1} \cdot z||^{2}} \overline{V}_{1} = \begin{bmatrix} \frac{3}{7} \\ \frac{7}{7} \end{bmatrix} - \begin{bmatrix} \frac{3}{7} \\ \frac{7}{7} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \frac{7}{7} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{7}{7} \end{bmatrix} \cdot \begin{bmatrix}$$

Norman:
$$\overline{V}_2 = \frac{1}{||\overline{V}_2||} \cdot \overline{V}_2$$

$$\overline{V}_3 = \frac{1}{||\overline{V}_2||} \cdot \overline{V}_3$$

Diskussionsuppgifter 7.9.D6. den 27 september 2018 14:04					
Sant e	ler fa	ılskt? Motivera.			
۸\ Dot	finns	inga liniärt haraanda artanarmala mängdar i BAn			
A) Det	IIIIIIS	inga linjärt beroende ortonormala mängder i R^n.			
B) Det	finns	inga linjärt beroende ortogonala mängder i R^n.			
C) Varj	e delr	mängd av R^n har en ortonormal bas.			
D) 0	-: 1	- 2 - 2 = de entenemente coltectoro e e f ^o e e e e e e e e e e e e e e e e e e e			
		q_2, q_3 är de ortonormala vektorerna som fås genom gram schmidt av w_1, w_2, w_3 w_1 och q_3 * w_2 = 0.			
D6.	(a)	True. Any orthonormal set of vectors is linearly independent.			
	(b)	False. An orthogonal set may contain 0. However, it is true that any orthogonal set of			
	(c)	nonzero vectors is linearly independent. False. Strictly speaking, the subspace {0} has no basis, hence no orthonormal basis. However,			
	(0)	it is true that any nonzero subspace has an orthonormal basis.			
	(d)	True. The vector \mathbf{q}_3 is orthogonal to the subspace span $\{\mathbf{w}_1, \mathbf{w}_2\}$.			

Upg 5 från hemuppgifter

den 27 september 2018

Uppgift 5. Delrummet W i \mathbb{R}^5 ges som lösningsrummet till det linjära ekvationssyste-

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + x_5 = 0 \\ x_2 + x_3 + x_4 = 0 \\ x_1 - 3x_2 - 2x_3 + x_5 = 0 \end{cases}$$

Bestäm en ortonormal bas för W och den andra i W^{+} .

Uppgift 6. Bestäm en ortonormal bas för W^{-} där W är som i uppgift 5. Vad säger dimensions atsen för delrum om det här fallet (uppgift 5 och b)? Stämmer det?

Stone systemat seur matrices

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & -3 & -2 & 0 & 1 \end{bmatrix}$$

Detrumet in soher ar læringsrunet till Ax=0:

$$\begin{bmatrix}
1 & 1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 6 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

Nu hum in ponumetrique.

Ortonomen seden bida velelerenn i gor detink på torda!

En loss ax en linjart obereende mangel som spanner upp \mathbb{R}^n (idelle boll). Un net att em luijart obereende mangel av n velsterer spanner upp \mathbb{R}^n . Det interstür att visa att $\{T(\overline{v}_1), ..., T(\overline{v}_n)\}$ at linfart obereende.

un net all Tinjelitiv = her (T) = 0.

ui han shina an linjar boulination ar velbour i Cseun

Ū= h.T(ν,)+...hnT(νω) = { Thiym }= T(h, ν, +...+hn ν).

Efferson Bàr Mynt obercende sà ār h, vi+...+ hnvn \$ 0 am
inte h,..., hn = 0 & hi. Tinjeletiv >> T(h, vi+...+ hnvn) \$ 0
cm inte h, r... hn = 0 & hi. Detta an elimatent, ab linemitet,
med all

ar definitionen ar Mujart observende. Effection Con signit observende och spärmer upp IR" so är Con has fill IR", V.S.V.

Stud 7.9.29.

den 27 september 2018

Unvand Com-Schnidt for alt good foljewell has till an arturnual but:

29. Let
$$\mathbf{v}_1 = \mathbf{w}_1 = (1, 1, 1), \ \mathbf{v}_2 = \mathbf{w}_2 - \frac{\mathbf{w}_2 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 = (-1, 1, 0) - (\frac{0}{3})(1, 1, 1) = (-1, 1, 0), \text{ and}$$

$$\mathbf{v}_3 - \mathbf{w}_3 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 = (1, 2, 1) - (\frac{4}{3})(1, 1, 1) - (\frac{1}{2})(-1, 1, 0) = (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3})$$

Then $\{v_1, v_2, v_3\}$ is an orthogonal basis for R^3 , and the vectors

$$\mathbf{q}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \quad \mathbf{q}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), \quad \mathbf{q}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}})$$

form an orthonormal basis for \mathbb{R}^3 .

nnu en skitsvår gammal tentauppgift (hann inte igår) 26 september 2018 22:34			
	(5p) Låt \mathbf{I} beteckna identitetsmatrisen med n rader och n kolonner och låt \mathbf{J} beteckna en matris av samma format bestående av enbart ettor. Låt \mathbf{A} vara en matris, med minst lika många kolonner som rader, och sådan att		
	$\mathbf{A}\mathbf{A}^T = \mathbf{J} + \lambda \mathbf{I},$		
	för något reellt tal λ . Visa på vilket sätt matrisen A :s rang beror på värdet på λ .		