Language & Logic 2017/18

Assignment 1 – Solutions Grammars & Truth Tables

1. (a) This can be derived from the grammar. The parse tree is:

(b) This cannot be derived from the existing grammar. To make this possible, we can modify the grammar by extending the F non-terminal to allow numbers without a decimal point:

$$F \rightarrow I \mid I [.] I$$

2. In addition to the existing rules:

we add the new rules:

 $Arg \rightarrow Prems [:] F$

Prems \rightarrow Prems0 | Prems1

 $Prems0 \quad \rightarrow \quad$

Prems1 \rightarrow F | F [,] Prems1

and make Arg the start symbol.

Prems1 denotes a list of 1 or more comma-separated formulas, and Prems0 an empty list.

Language & Logic 2017/18

3. We identify the following atomic propositions:

• A = Alice studies logic

• B = Bob studies logic

So the argument comprises:

• Premise 1: $A \to B$

Premise 2: $(A \vee B) \to A$

Conclusion: $A \wedge B$

The truth table is:

		P1	P2 C		
A	B	$A \rightarrow B$	$(A \lor B)$	$(A \lor B) \to A$	$A \wedge B$
T	Т	Т	Т	Т	Т
T	F	F	Γ	${ m T}$	F
F	$\mid T \mid$	T	T	F	\mathbf{F}
F	F	${f T}$	F	${f T}$	${f F}$

There are two rows where both premises are true: the first and the last. Since the conclusion is false in the last row, the argument is *invalid*.

So, a counterexample is the situation where A and B are both false, i.e., when neither Alice or Bob study logic. This makes the premises both true, but the conclusion false.

4. The argument is:

$$P \to Q, \ Q \lor R : \neg (P \land Q) \to R$$

The truth table is:

			P1	P2			\mathbf{C}
P	Q	R	$P \rightarrow Q$	$Q \vee R$	$P \wedge Q$	$\neg (P \land Q)$	$\neg (P \land Q) \to R$
T	Т	T	Т	Т	Т	F	Т
T	Т	F	T	T	Τ	F	T
T	F	T	F	T	F	${ m T}$	T
T	F	F	F	F	F	${ m T}$	F
F	T	\mathbf{T}	T	T	F	${ m T}$	T
F	Т	F	\mathbf{T}	\mathbf{T}	F	${ m T}$	${f F}$
F	F	T	Γ	Γ	F	${ m T}$	T
F	F	F	T	F	F	${ m T}$	F

This shows that the argument is *invalid* because, in the 6th row (and only this row), both premises are true, but the conclusion is not (the counterexample is when P and R are false and Q is true).

Adding, e.g. $P \wedge Q$ as an extra premise would make the argument valid, since this false for the problematic row (in which where P is are false and Q is true).