

IN THE SPECIFICATION

Please amend the specification as marked up below:

On page 3, please delete the word "a" at the end of line 9.

The replacement paragraph reads:

Another known solution is the transfer equipment with a changeable gear ratio according to the patent documentation no. 281 220 that mainly relates to motor vehicles that contain a between the input and output, a differential mechanism that has three inputs. The disadvantage of the given solution is the high price, heavy weight, low efficiency and great complexity, especially if it contains a greater number of geared wheels with various transfer (gear) ratios as required by current industrial trends.

On page 7, line 1, please change the word "driven" to - -driving - -. The replacement paragraph, which begins on page 6 and continues to page 8 should read:

The disclosed device according to fig. no. 3 is formed of a driving eccentric geared segment 1 that is located in the axis of rotation C_1 . The axis of rotation C_1 is placed outside of the center of ~~driven~~ driving eccentric geared segment 1. On the periphery of driving eccentric geared segment 1 is formed of a driving gearing 121 that is formed of driving teeth 121 whose number is z_1 . The module of driving teeth (cogs) 121 has a value of m_1 . The driven eccentric geared segment 2 is placed in the

axis of rotation C_2 . The axis of rotation C_2 is placed outside of the center of driven eccentric geared segment 2. On the periphery of co-engaged driven eccentric geared segment 2 is formed a driven gearing 22 that is formed of driven teeth (cogs) 221 whose number is z_2 . The module of driven cogs 221 has a value of m_2 . The cogs 212 of driving gearing 12 are meshed with driven cogs 221 of the driven gearing 22 while the constant axial distance between the axis of rotation C_1 and axis of rotation C_2 is a . The module of driving cogs 121 m_1 is identical with the module of driven cogs (teeth) 221 that has a value m_2 . The spacing of driving teeth 121 has a value of t_1 is identical with the spacing t_2 of driven teeth 221 whose number is z_2 and is the same as z_1 . The center axis A_1 of the driving eccentric geared segment 1 is parallel to the center axis A_2 of the driven eccentric geared segment 2. The spacing of center axis A_1 and the axis of rotation C_1 is the eccentricity e_1 that is identical with the eccentricity e_2 that is the spacing of center axis A_2 and axis of rotation C_2 . The spacing radius r_1 of the driving eccentric geared segment 1 is changed based on the angle of turning (rotation) α and the spacing radius r_2 of the driven eccentric geared segment 2 is changed based on the angle of turning (rotation).