Lösungen der Übungsaufgaben von Kapitel 2

zu 2.1

2.1.1 Man zeige: Jede Teilfolge einer Umordnung einer Folge kann als Umordnung einer Teilfolge geschrieben werden. Geht das auch umgekehrt?

zu 2.2

- $\mathbf{2.2.1}$ Für welche reellen Zahlen x gelten folgende Ungleichungen?
 - (a) |x-5| > 0.4,
 - (b) $|x+3| \le |x-2|$,
 - (c) |2x+1| > |x-2|.
 - (a) Man unterscheidet zwei Fälle:

Für $x \in \mathbb{R}$ mit $x \ge 5$ ist |x - 5| = x - 5, also gilt für diese x:

$$|x-5| > 0.4$$

$$\stackrel{x \ge 5}{\iff} x-5 > 0.4$$

$$\iff x > 5.4$$

Die Ungleichung gilt also sicher für alle

$$x \in \{x \in \mathbb{R} \mid x \ge 5\} \cap \{x \in \mathbb{R} \mid x > 5.4\} = \{x \in \mathbb{R} \mid x > 5.4\}$$

Nun der zweite Fall: Für $x \in \mathbb{R}$ mit x < 5 ist |x - 5| = 5 - x, dann gilt

$$\begin{array}{rcl} |x-5| &>& 0.4 \\ \stackrel{x<5}{\Longleftrightarrow} & 5-x &>& 0.4 \\ \Longleftrightarrow & -x &>& -4.6 \\ \Longleftrightarrow & x &<& 4.6 \end{array}$$

Die Ungleichung gilt also insgesamt für alle

$$x \in \{x \in \mathbb{R} \mid x < 4.6 \lor x > 5.4\}$$

(b) Hier muss man drei Fälle unterscheiden:

Für $x \geq 2$ ist $x-2 \geq 0$ und $x+3 \geq 0$, dann gilt also

$$|x+3| \leq |x-2|$$

$$\stackrel{x \geq 2}{\iff} x+3 \leq x-2$$

$$\iff 3 < -2$$

Die Ungleichung gilt also für kein $x \geq 2$.

Für $x \in \mathbb{R}$ mit $-3 \le x < 2$ ist |x-2| = 2 - x und |x+3| = x + 3, also ist hier

$$|x+3| \leq |x-2|$$

$$\xrightarrow{-3 \leq x} {}^2 x + 3 \leq 2 - x$$

$$\iff 2x \leq -1$$

$$\iff x \leq -\frac{1}{2}$$

Die Ungleichung gilt also sicher für alle

$$x \in \left\{ x \in \mathbb{R} \mid -3 \le x \le -\frac{1}{2} \right\}$$

Schließlich ist für die $x\in\mathbb{R}$ mit x<-3 sowohl x+3<0 als auch x-2<0, i.e. hier ist

$$|x+3| \leq |x-2|$$

$$\stackrel{\stackrel{x}{\Longleftrightarrow} -3}{\Longleftrightarrow} -x-3 \leq 2-x$$

$$\iff -3 < 2$$

Die Ungleichung gilt damit für alle x < -3, insgesamt also für

$$x \in \left\{ x \in \mathbb{R} \mid x \le -\frac{1}{2} \right\}$$

(c) Zunächst ist |2x+1|=2|x+1/2|, man unterscheidet wieder drei Fälle:

Für $x \ge 2$ ist $x + 1/2 \ge 0$ und $x - 2 \ge 0$, also hat man hier

$$\begin{array}{cccc} |2x+1| & > & |x-2| \\ \stackrel{x \geq 2}{\Longleftrightarrow} & 2x+1 & > & x-2 \\ & \iff x & > & -3 \end{array}$$

Die Aussage gilt also sicher für die $x \geq 2$, die auch > -3 sind, also für alle $x \geq 2$.

Für $-1/2 \le x < 2$ ist $x + 1/2 \ge 0$, aber x - 2 < 0, man hat

$$|2x+1| > |x-2|$$

$$\stackrel{-1/2 \le x}{\Longleftrightarrow} 2x+1 > 2-x$$

$$\iff 3x > 1$$

$$\iff x > \frac{1}{3}$$

Die Ungleichung wird also zusätzlich auch von allen x mit 1/3 < x < 2 erfüllt.

Schließlich ist für x < -1/2 sicher x + 1/2 < 0 und x - 2 < 0, also ist

$$|2x+1| > |x-2|$$

$$\stackrel{x \leq -1/2}{\iff} -2x-1 > 2-x$$

$$\iff -x > 3$$

$$\iff x < -3$$

Die Ungleichung gilt also insgesamt genau für die

$$x \in \left\{ x \in \mathbb{R} \mid x < -3 \lor x > \frac{1}{3} \right\}$$

2.2.2 Zeigen Sie, dass Umordnungen konvergenter Folgen ebenfalls konvergent sind. Muss der Grenzwert der Umordnung mit dem Grenzwert der Ausgangsfolge übereinstimmen?

Man zeigt: Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} , die gegen $a\in\mathbb{K}$ konvergiert, und $\varphi:\mathbb{N}\to\mathbb{N}$ eine Bijektion. Dann ist $(a_{\varphi(n)})_{n\in\mathbb{N}}$ auch gegen a konvergent.

Sei also $\varepsilon > 0$, wähle wegen $a_n \to a$ ein $n_1 \in \mathbb{N}$, so dass

$$\bigvee_{n \ge n_1} |a_n - a| \le \varepsilon.$$

Setze nun

$$n_0 := 1 + \max\{\varphi^{-1}(m) \mid 1 \le m \le n_1\}$$

Sei nun $n \ge n_0$, wäre $\varphi(n) < n_1$, dann wäre aber

$$n \in \{\varphi^{-1}(m) \mid 1 \le m \le n_1\}$$

also

$$n \le \max\{\varphi^{-1}(m) \mid 1 \le m \le n_1\} < n_0,$$

also ist $\varphi(n) \geq n_1$ und damit

$$\left| a - a_{\varphi(n)} \right| \le \varepsilon$$

nach Wahl von n_1 .

Also gilt $a_{\varphi(n)} \to a$, was man zeigen wollte. Man sieht also, dass jede Umornung einer konvergenten Folge wieder konvergent mit demselben Limes ist.

2.2.3 Untersuchen Sie die nachstehenden Folgen auf Konvergenz und bestimmen Sie gegebenenfalls ihren Grenzwert.

(a)
$$a_n = \sum_{k=0}^n \left(-\frac{1}{2}\right)^k$$
.

(b)
$$b_n = \frac{r_0 + r_1 n + \ldots + r_k n^k}{s_0 + s_1 n + \ldots + s_k n^k}$$
 für gegebene r_i und s_i , $0 \le i \le k$, $s_k \ne 0$.

Dabei sei der Nenner für alle $n \in \mathbb{N}$ von 0 verschieden.

(c)
$$c_n = (-5)^n$$
.

(d)
$$d_n = \frac{2 + 1/\sqrt{n}}{\sqrt{n} + 5^{-n}}$$
.

(a) Zunächst ist für jedes $n \in \mathbb{N}$:

$$a_n = \sum_{k=0}^{n} \left(-\frac{1}{2}\right)^k = \frac{1 - (-1/2)^{n+1}}{1 + 1/2} = \frac{2}{3} \cdot \left[1 - \left(-\frac{1}{2}\right)^{n+1}\right]$$

Wegen |-1/2|=1/2<1 gilt $(-1/2)^{n+1}\to 0$, man erhält durch Anwendung der Grenzwertsätze:

$$a_n = \frac{2}{3} \cdot \left[1 - \left(-\frac{1}{2} \right)^{n+1} \right] \to \frac{2}{3} \cdot 1 = \frac{2}{3}.$$

(b) Man erhält durch Anwendung der Grenzwertsätze nach Erweitern mit n^{-k} :

$$b_{n} = \frac{\sum_{i=0}^{k} r_{i} n^{i}}{\sum_{i=0}^{k} s_{i} n^{i}} = \frac{\sum_{i=0}^{k} r_{i} n^{i-k}}{\sum_{i=0}^{k} s_{i} n^{i-k}}$$

$$= \frac{\sum_{i=0}^{k-1} r_{i} n^{i-k} + r_{k}}{\sum_{i=0}^{k-1} s_{i} n^{i-k} + s_{k}}$$

$$\xrightarrow{n \to \infty} \frac{0 + r_{k}}{0 + s_{k}} = \frac{r_{k}}{s_{k}}$$

(c) Man zeigt, dass (c_n) unbeschränkt (und damit nicht konvergent) ist: Sei M>0, wegen $5^{-n}\to 0$ (da 1/5<1) existiert $n\in\mathbb{N}$, so dass

$$5^{-n} \le \frac{1}{M} \iff 5^n \ge M$$

dann ist aber

$$|c_n| = |-5|^n = 5^n \ge M$$

Da M > 0 beliebig war, ist (c_n) unbeschränkt.

(d) Man erhält durch Anwendung der Grenzwertsätze nach Erweitern mit $n^{-1/2}$.

$$d_{n} = \frac{2 + 1/\sqrt{n}}{\sqrt{n} + 5^{-n}} = \frac{2/\sqrt{n} + 1/n}{1 + 5^{-n} \cdot 1/\sqrt{n}}$$

$$\stackrel{\text{GWS}}{\rightarrow} \frac{0 + 0}{1 + 0 \cdot 0}$$

$$= 0$$

2.2.4 Was passiert, wenn man in der Nullfolgendefinition ε durch $1/\varepsilon$ ersetzt: Welche Folgen (a_n) sind durch

"Für alle $\varepsilon>0$ gibt es ein n_0 , so dass $|a_n|\leq 1/\varepsilon$ für alle $n\geq n_0$ gilt."

charakterisiert?

Beh.: Es werden gerade die Nullfolgen charakterisiert.

Bew.:

 \Leftarrow Sei also (a_n) Nullfolge und $\varepsilon > 0$, dann ist auch $1/\varepsilon > 0$, da (a_n) Nullfolge ist, existiert zu $1/\varepsilon$ ein $n_0 \in \mathbb{N}$ mit $|a_n| \leq 1/\varepsilon$ für alle $n \geq n_0$. Das wollte man aber zeigen.

 \Rightarrow Sei nun (a_n) eine Folge in \mathbb{K} , so dass

$$\bigvee_{\varepsilon>0} \prod_{n_0 \in \mathbb{N}} \bigvee_{n>n_0} |a_n| \le \frac{1}{\varepsilon}$$

und $\varepsilon>0$, dann ist auch $1/\varepsilon>0$, nach Voraussetzung existiert $n_0\in\mathbb{N}$, so dass für alle $n\geq n_0$

$$|a_n| \le \frac{1}{1/\varepsilon} = \varepsilon$$

d.h. $a_n \to 0$, was zu zeigen war.

2.2.5 Man beweise folgende Aussagen über Teilfolgen:

- (a) Aus $\lim_{n\to\infty} a_{2n} = a$ und $\lim_{n\to\infty} a_{2n+1} = a$ folgt $\lim_{n\to\infty} a_n = a$.
- (b) Sei $a \in \mathbb{R}$. Besitzt jede Teilfolge (a_{n_k}) von (a_n) eine Teilfolge (genauer: Teilteilfolge) $(a_{n_{k_l}})$, die gegen a konvergiert, so konvergiert (a_n) selbst gegen a.
- (a) Sei $\varepsilon > 0$, dann existiert nach Voraussetzung ein $n_1 \in \mathbb{N}$ mit:

$$\bigvee_{n \ge n_1} |a_{2n}| \le \varepsilon$$

und ein $n_2 \in \mathbb{N}$ mit

$$\bigvee_{n \ge n_2} |a_{2n+1}| \le \varepsilon$$

Wähle $n_0 = \max\{2n_1, 2n_2 + 1\}$. Damit gilt für alle $n \ge n_0$:

– Im Fall n = 2m, also n gerade und $m \ge n_1$:

$$|a_n - a| = |a_{2m} - a| \stackrel{m \ge n_1}{\le} \varepsilon$$

- Im Fall n = 2m + 1, also n ungerade und $m \ge n_2$:

$$|a_n - a| = |a_{2m+1} - a| \stackrel{m \ge n_2}{\le} \varepsilon$$

Es folgt also stets $|a_n - a| \le \varepsilon$, also ist (a_n) konvergent gegen a.

(b) Man kann dies durch einen Widerspruchsbeweis zeigen:

Angenommen es gäbe eine reelle Folge $(a_n)_{n\in\mathbb{N}}$, für die gilt, dass jede Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ eine Teilteilfolge $(a_{n_{k_l}})_{l\in\mathbb{N}}$ besitzt, die gegen $a\in\mathbb{R}$ konvergiert, die aber selbst nicht gegen a konvergiert, i.e.

Man definiert nun induktiv die Folge $(n_k)_{k\in\mathbb{N}}$ in \mathbb{N} mit:

$$n_1 := n_0 > 1$$
 mit $|a_{n_0} - a| > \varepsilon_0$, exsitert nach Vorraussetzung.

 $n_{k+1} := n_0 > n_k$ mit $|a_{n_0} - a| > \varepsilon_0$, wende dazu die Voraussetzung mit $n = n_k$ an.

Da $(n_k)_{k\in\mathbb{N}}$ eine nach Definition streng monoton steigende Folge (es gilt stets $n\in\mathbb{N}$) ist, ist also (a_{n_k}) eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$. Diese Teilfolge hat aber nun keine Teilteilfolge, die gegen a konvergiert:

Sei $(a_{n_{k_l}})_{l\in\mathbb{N}}$ eine beliebige Teilfolge von $(a_{n_k})_{k\in\mathbb{N}}$.

z.z.:

$$\prod_{\varepsilon_1 > 0} \bigvee_{l \in \mathbb{N}} \prod_{l_0 > l} \left| a_{n_{k_l}} - a \right| > \varepsilon_1$$

Setze $\varepsilon_1 = \varepsilon_0$, sei $l \in \mathbb{N}$ beliebig, wähle $l_0 := l+1 > l$

$$\left| a_{n_{k_{l_0}}} - a \right| > \varepsilon_0 = \varepsilon_1$$

da nach Definition von n_k für alle $k_l \in \mathbb{N}$:

$$\left| a_{n_{k_l}} - a \right| > \varepsilon_0$$

gilt. Somit ist $(a_{n_{k_l}})_{l\in\mathbb{N}}$ nicht konvergent gegen a. $(a_{n_k})_{k\in\mathbb{N}}$ hat also keine gegen a konvergente Teilfolge, dies widerspricht der Voraussetzung, damit folgt, dass die Annahme falsch war, also konvergiert $(a_n)_{n\in\mathbb{N}}$ gegen a.

2.2.6 Es sei (x_n) eine Folge reeller Zahlen und

$$a_n := \frac{1}{n} \sum_{k=1}^n x_k$$

die Folge der Mittelwerte.

- (a) Zeigen Sie, dass die Mittelwerte (a_n) konvergieren, falls die (x_n) konvergieren. (Wogegen nämlich?)
- (b) Die Umkehrung gilt nicht: Es gibt eine Folge (x_n) , so dass (a_n) konvergiert, (x_n) jedoch nicht.
- (c) Folgt aus der Konvergenz der (a_n) , dass die Folge der (x_n) beschränkt ist?
- (a) Man zeigt zunächst, dass aus $x_n \to 0$ stets $a_n \to 0$ folgt: Es sei $(x_n)_{n \in \mathbb{N}}$ eine Nullfolge in \mathbb{R} .

Es sei $\varepsilon>0$ bel., dann ist auch $\varepsilon/2>0$, und es existiert, da x_n Nullfolge ist, $n_1\in\mathbb{N}$, so dass für $n\geq n_1$

$$|x_n| \le \frac{\varepsilon}{2}.$$

Weiterhin existiert, da x_n konvergent und somit auch beschränkt ist, M>0 mit

$$\bigvee_{n\in\mathbb{N}} |x_n| \le M$$

Man wähle nun nach dem Archimedesaxiom $n_2\in\mathbb{N}$ mit $n_2>\frac{2n_1M}{\varepsilon}$ und wähle dann $n_0:=\max\{n_1,n_2\}+1$

Damit gilt für $n \ge n_0$:

$$\left| \frac{1}{n} \sum_{k=1}^{n} x_{n} \right| = \left| \frac{1}{n} \right| \cdot \left| \sum_{k=1}^{n} x_{n} \right|$$

$$\sum_{k=1}^{n} \left| x_{n} \right|$$

$$\sum_{k=1}^{n} \left| x_{n} \right|$$

$$\sum_{k=1}^{n} \left| x_{n} \right|$$

$$\sum_{k=1}^{n} \left| x_{n} \right| + \frac{1}{n} \sum_{k=n_{1}+1}^{n} \left| x_{n} \right|$$

$$\sum_{k=1}^{n} \left| x_{n} \right|$$

$$\sum_{k=1}^{n} \left| x_{n} \right|$$

$$\sum_{k=n_{1}+1}^{n} \left| x_{n} \right|$$

$$\sum_{k=$$

Also ist $(a_n)_{n\in\mathbb{N}}$ Nullfolge.

Sei nun $(x_n)_{n\in\mathbb{N}}$ konvergent gegen $x\in\mathbb{R}$, dann ist nach Definition $(x_n-x)_{n\in\mathbb{N}}$ Nullfolge, und somit auch

$$\frac{1}{n} \sum_{k=1}^{n} (x_k - x) \to 0$$

Da aber gilt

$$\frac{1}{n} \sum_{k=1}^{n} (x_k - x) = \frac{1}{n} \sum_{k=1}^{n} x_k - \frac{1}{n} \sum_{k=1}^{n} x$$
$$= \frac{1}{n} \sum_{k=1}^{n} x_n - x$$

folgt

$$\frac{1}{n}\sum_{k=1}^{n}x_{k}\to x.$$

Man erhält also insgesamt: Wenn die x_n konvergieren, konvergieren auch die Mittelwerte a_n und zwar gegen denselben Limes.

(b) Man betrachte die Folge $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} gegeben durch:

$$x_n := \begin{cases} \sqrt{n} & n \text{ ist Qudratzahl, also} & \prod_{m \in \mathbb{N}} m^2 = n \\ -\sqrt{n-1} & n-1 \text{ ist Quadratzahl, also} & \prod_{m \in \mathbb{N}} m^2 = n-1 \\ 0 & \text{sonst} \end{cases}$$

Zunächst gilt es zu bemerken, dass x_n wohldefiniert ist, da nie n und n-1 gleichzeitig Quadratzahlen sein können.

Beweis:

Wären $n=m^2$ und $n-1=k^2$ beides Quadratzahlen $(k,m\in\mathbb{N}\,,m>k),$ gälte:

$$\begin{array}{rcl} n - (n-1) & = & 1 \\ \Longleftrightarrow & m^2 - k^2 & = & 1 \\ \Longleftrightarrow & (m-k) \cdot (m+k) & = & 1 \end{array}$$

Da aber $m+k\geq 2$ wegen $m,k\in\mathbb{N}$ und somit $m,k\geq 1$ sicher gilt und aus m>k und $m,k\in\mathbb{N}$ auch $m-k\in\mathbb{N}$ und damit $m-k\geq 1$ somit also $(m+k)\cdot (m-k)\geq 2$ folgt, ist dies ein Widerspruch. Es gibt also keine Quadratzahlen mit dem Abstand 1.

Weiterhin gilt, dass $(x_n)_{n\in\mathbb{N}}$ nicht konvergiert, da $(x_n)_{n\in\mathbb{N}}$ unbeschränkt ist.

Beweis:

Zu zeigen ist:

$$\bigvee_{M \ge 0} \prod_{n \in \mathbb{N}} |x_n| > M.$$

Es sei $M \geq 0$ gegeben, dann wähle $n > M^2$ und n Quadratzahl. Damit gilt:

$$|x_n| = \left|\sqrt{n}\right| > \left|\sqrt{M^2}\right| = |M| = M$$

Somit ist x_n unbeschränkt und damit nicht konvergent.

Man betrachtet nun $(a_n)_{n\in\mathbb{N}}$, die Folge der Mittelwerte von x_n :

$$a_n = \begin{cases} \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} & \prod_{m \in \mathbb{N}} m^2 = n \\ 0 & \text{sonst} \end{cases}$$

Diese Folge ist aber eine Nullfolge, also konvergent.

Beweis:

Es sei $\varepsilon > 0$ bel., wir wissen, dass $(\frac{1}{\sqrt{n}})_{n \in \mathbb{N}}$ Nullfolge ist, also existiert n_0 mit $\left|\frac{1}{\sqrt{n}}\right| \le \varepsilon$ für alle $n \ge n_0$. Damit folgt für $n \ge n_0$:

$$|a_n| \le \left| \frac{1}{\sqrt{n}} \right| \le \varepsilon$$

Also gilt $a_n \to 0$.

(c) Folgt aus der Konvergenz der a_n dass die Folge der x_n beschränkt ist ?

Nein, wie die unter (b) beschriebene Folge $(x_n)_{n\in\mathbb{N}}$ zeigt: Sie ist unbeschränkt und trotzdem sind die a_n konvergent.

zu 2.3

2.3.1 Für $M \subset \mathbb{R}$ versteht man unter $rM, r \in \mathbb{R}$, die Menge $\{rx \in \mathbb{R} \mid x \in M\}$; weiter sei -M die Menge (-1)M.

Man beweise oder widerlege:

- (a) $\sup(-A) = -\inf(A)$, $\inf(-A) = -\sup(A)$, falls $A \neq \emptyset$ eine beschränkte Teilmenge von $\mathbb R$ ist.
- (b) Es seien a_{ij} für $i=1,\ldots,m,\ j=1,\ldots,n$ reelle Zahlen. Dann gilt

$$\sup_{1 \le i \le m} \inf_{1 \le j \le n} (a_{ij}) = \inf_{1 \le j \le n} \sup_{1 \le i \le m} (a_{ij}).$$

(c) Die a_{ij} seien wie in (b). Dann gilt

$$\sup_{1 \le i \le m} \sup_{1 \le j \le n} (a_{ij}) = \sup_{1 \le j \le n} \sup_{1 \le i \le m} (a_{ij}).$$

- (d) Ist $a_i \leq b_i$ für alle i in einer Indexmenge M, so ist $\sup a_i \leq \sup b_i$.
- (a) 1. $\sup(-A) = -\inf(A)$

Sei $A \subset \mathbb{R}$ beschränkt, dann gilt:

Man hat zu zeigen, dass $-\inf(A)$ Supremum von -A ist, also das gilt:

- (a) $-\inf(A)$ ist obere Schranke von -A
- (b) Wenn b obere Schranke von -A ist, folgt $b \ge -\inf(A)$

Man zeigt zunächst, dass $-\inf(A)$ obere Schranke von -Aist: Sei $a\in -A$ beliebig, dann gilt:

Also ist $-\inf(A)$ obere Schranke von -A.

Man zeigt nun, dass wenn $b \in \mathbb{R}$ obere Schranke von -A ist, $b \ge -\inf(A)$ folgt:

Man zeigt zunächst, dass -b untere Schranke von A ist: Sei $a \in A$ beliebig, dann gilt:

-bist also untere Schranke von A,aus der Infimumseigenschaft von $\inf(A)$ folgt

$$-b \le \inf(A) \iff b \ge -\inf(A)$$

Das war aber zu zeigen.

 $-\inf(A)$ ist also Supremum von -A es gilt also $\sup(-A) = -\inf(A)$.

2.
$$\inf(-A) = -\sup(A)$$

Man zeigt zunächst:

$$\bigvee_{A \subset \mathbb{R}} A = -(-A)$$

Sei $A \subset \mathbb{R}$ beliebig, dann gilt:

- ...~"

Sei $a \in A$ beliebig, dann gilt $-a \in -A$ aufgrund der Defition von -A, damit folgt $-(-a) = a \in -(-A)$ aufgrund der Definition von -(-A). Dies war aber zu zeigen, also gilt: $A \subset -(-A)$

- "⊃ ":

Sei $a = -(-a) \in -(-A)$ beliebig, dann gilt $-a \in -A$ also auch $a \in A$ somit gilt $A \supset -(-A)$.

Also gilt A = -(-A).

Sei nun $A \subset \mathbb{R}$ beschränkt, dann gilt:

$$-\sup(A) = -\sup[-(-A)]$$

$$\stackrel{1}{=} -[-\inf(-A)]$$

$$= \inf(-A)$$

Das war aber zu zeigen.

(b) Wir vermuten, dass die Behauptung falsch ist und müssen also ein Gegenbeispiel angeben, dazu zeigt man zunächst:

obere Schranke von E ist, gilt insbesondrere $1 \leq b$, da $1 \in E$.

Die Menge $E:=\{0,1\}\subset\mathbb{R}$ hat das Supremum 1 und das Infimum 0. Wegen $1\leq 1$ und $0\leq 1$ ist 1 zunächst obere Schranke von E. Wenn $b\in\mathbb{R}$

Also gilt: $\sup\{0, 1\} = 1$.

Weiterhin gilt: Wegen $0 \le 0$ und $0 \le 1$ ist 0 untere Schranke von E. Wenn $b \in \mathbb{R}$ untere Schranke von E ist, gilt insbesondere $b \le 0$.

Zusammen folgt $\inf\{0,1\}=0$.

Setze nun m = n = 2 und $a_{11} = 0, a_{21} = 1, a_{12} = 1, a_{22} = 0$, dann gilt:

$$\inf_{1 \le i \le 2} \sup_{1 \le j \le 2} (a_{ij}) = \inf \{ \sup\{a_{11}, a_{12}\}, \sup\{a_{21}, a_{22}\} \}$$

$$= \inf \{ \sup\{0, 1\}, \sup\{1, 0\} \}$$

$$= \inf\{1, 1\}$$

$$= 1$$

$$\sup_{1 \le j \le 2} \inf_{1 \le i \le 2} (a_{ij}) = \sup\{\inf\{a_{11}, a_{21}\}, \inf\{a_{12}, a_{22}\} \}$$

$$= \sup\{\inf\{0, 1\}, \inf\{1, 0\} \}$$

$$= \sup\{0, 0\}$$

$$= 0.$$

Da aber $1 \neq 0$ gilt, ist die Aussage i.A. falsch.

(c) Sei $A:=\{a_{ij}\mid 1\leq i\leq m, 1\leq j\leq n\}$ Man zeigt zunächst, dass sup $A = \sup_{1 \le i \le m} \sup_{1 \le j \le n} (a_{ij})$

Es gilt: $\sup_{1 \le i \le m} \sup_{1 \le j \le n} (a_{ij})$ ist obere Schranke von A, da: Seien $1 \le i_0 \le m, 1 \le j_0 \le n$ beliebig, dann gilt:

$$a_{i_0j_0} \le \sup\{a_{i_0j} \mid 1 \le j \le n\} = \sup_{1 \le j \le n} a_{i_0j}$$

da jedes Element einer Menge kleiner oder gleich dem Supremum einer Menge ist. Weiter folgt analog:

$$a_{i_0j_0} \le \sup_{1 \le j \le n} a_{i_0j} \le \sup_{1 \le i \le m} \sup_{1 \le j \le n} a_{ij}$$

Also ist $\sup_{1 \le i \le m} \sup_{1 \le j \le n} a_{ij}$ obere Schranke für A.

Sei nun $b \in \mathbb{R}$ beliebige obere Schranke von A.

z.z. $\sup_{1 \le i \le m} \sup_{1 \le j \le n} \le b$

Offenbar gilt, da b obere Schranke ist:

$$\bigvee_{\substack{1 \le i \le m \\ 1 \le j \le n}} a_{ij} \le b$$

Damit folgt aber

$$\bigvee_{1 \le i \le m} \sup_{1 \le j \le n} a_{ij} \le b$$

da jedes Supremum kleiner oder gleich jeder oberen Schranke ist, und damit auch

$$\sup_{1 \le i \le m} \sup_{1 \le j \le n} \le b$$

Also gilt: $\sup A = \sup_{1 \le i \le m} \sup_{1 \le j \le n} a_{ij}$.

Man zeigt jetzt, dass sup $A = \sup_{1 \le j \le n} \sup_{1 \le i \le m} (a_{ij})$

Es gilt: $\sup_{1 \le j \le n} \sup_{1 \le i \le m} (a_{ij})$ ist obere Schranke von A, da:

Seien $1 \le i_0 \le m, 1 \le j_0 \le n$ beliebig, dann gilt:

$$a_{i_0j_0} \le \sup\{a_{ij_0} \mid 1 \le i \le m\} = \sup_{1 \le i \le m} a_{ij_0}$$

da jedes Element einer Menge kleiner oder gleich dem Supremum einer Menge ist. Weiter folgt analog:

$$a_{i_0j_0} \le \sup_{1 \le i \le m} a_{ij_0} \le \sup_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij}$$

Also ist $\sup_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij}$ obere Schranke für A.

Sei nun $b \in \mathbb{R}$ beliebige obere Schranke von A.

z.z.
$$\sup_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij} \le b$$

Offenbar gilt, da b obere Schranke ist:

$$\bigvee_{\substack{1 \le i \le m \\ 1 \le j \le n}} a_{ij} \le b$$

Damit folgt aber

$$\bigvee_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij} \le b$$

da jedes Supremum kleiner oder gleich jeder oberen Schranke ist, und damit auch

$$\sup_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij} \le b$$

Also gilt: $\sup A = \sup_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij}$.

Da das Supremum einer nach oben beschränkten Teilmenge in $\mathbb R$ eindeutig bestimmt ist, gilt:

$$\sup_{1 \le i \le m} \sup_{1 \le j \le n} a_{ij} = \sup_{1 \le j \le n} \sup_{1 \le i \le m} a_{ij}.$$

(d) Es sei $a := \sup_{i \in M} a_i$ und $b := \sup_{i \in M} b_i$ und $n \in \mathbb{N}$. Wegen a - 1/n < a ist a - 1/n keine obere Schranke der a_i , also existiert $i \in M$, so dass $a_i > a - 1/n$, es folgt, dass

$$b \ge b_i \ge a_i > a - \frac{1}{n}.$$

Also gilt a < b + 1/n für jedes $n \in \mathbb{N}$, wegen $1/n \to 0$ folgt, dass $a \le b$, q.e.d.

2.3.2 Es sei K der Körper $\mathbb{Q} + \mathbb{Q}\sqrt{2}$ (vgl. Übung 1.4.3) mit der gewöhnlichen von \mathbb{R} geerbten Ordnung. Zeigen Sie, dass nicht jede Cauchy-Folge in K konvergiert.

Man hat zu zeigen, dass im Körper K nicht jede Cauchy-Folge konvergiert, dies ist gleichwertig damit, dass nicht jeder Dedekindsche Schnitt in K eine Schnittzahl besitzt.

Sei $A := \{x \in K \mid x \le 0 \lor x^2 \le 3\}$ und $B := \{x \in K \mid x > 0 \land x^2 > 3\}.$ Man zeigt nun zunächst, dass (A, B) ein dedekinscher Schnitt ist: Dazu muss man zeigen:

- $A \neq \emptyset \land B \neq \emptyset$
- $x \in A \lor x \in B$ für jedes $x \in K$
- a < b für $a \in A$ und $b \in B$.
- Es gilt $A \neq \emptyset$, da wegen $0 \leq 0$ auch $0 \in A$ gilt. Es gilt $B \neq \emptyset$, da wegen 5 > 0 und $5^2 = 25 > 3$ auch $5 \in B$ gilt.
- Sei $x \in K$ beliebig, dann gilt stets $x \in A \lor x \notin A$. Im Fall $x \in A$ ist man fertig. Sei also $x \notin A$, z.z. $x \in B$ Es gilt:

$$\begin{array}{ccc} x \not\in A & \stackrel{\mathrm{Def,von}}{\Longleftrightarrow}^A & \neg(x \leq 0 \vee x^2 \leq 3) \\ & \Longleftrightarrow & \neg(x \leq 0) \wedge \neg(x^2 \leq 3) \\ & \Longleftrightarrow & x > 0 \wedge x^2 > 3 \\ & & \xrightarrow{\mathrm{Def,von}}^B & x \in B \end{array}$$

Also gilt stets $x \in A$ oder $x \in B$.

• Sei $a \in A, b \in B$ beliebig, z.z.: a < bAngenommen nun, es gälte b < a, wegen $b \in B$ gilt b > 0 und damit $b^2 > 0$. Wegen a > b folgt auch a > 0 und somit

$$a^2 > b^2 > 0$$

Wegen $a \in A$ gilt aber $a^2 \le 3$, da a > 0 gilt, also

$$3 \ge a^2 \ge b^2 > 3,$$

da $b \in B$, also 3 > 3, dies ist ein Widerspruch, also war die Annahme falsch, es gilt a < b.

Man hat gezeigt, dass (A, B) ein Dedekindscher Schnitt ist. Als nächstes zeigt man, dass für die Schnittzahl x von (A, B) notwendigerweise $x^2 = 3$ gelten muss.

Es gilt sicher: x > 1, da $1 \in A$. Es kann aber $x^2 < 3$ nicht gelten, da gilt: Wähle $\varepsilon := \min\left\{1, \frac{3-x^2}{4x+2}\right\} > 0$ wegen $x^2 < 3, x > 1$, gilt dann also sicher $2\varepsilon x + \varepsilon + x^2 < 3$, also auch:

$$(x+\varepsilon)^2$$
 = $x^2 + 2\varepsilon x + \varepsilon^2$
 $\stackrel{\varepsilon \leq 1}{\leq} x^2 + 2\varepsilon x + \varepsilon$
 < 3

Also gilt $x + \varepsilon \in A$ und x kann nicht Schnittzahl sein.

Sei nun $x \in K$ mit $x^2 > 3$. Auch dieses x kann nicht Schnittzahl sein, denn: Setze $\varepsilon := \min\left\{\frac{x}{2}, \frac{x^2-3}{2x}\right\} > 0$, da x > 1, also gilt $x - \varepsilon > 0$ und

$$(x - \varepsilon)^2 = x - 2\varepsilon x + \varepsilon^2$$

$$> x - 2\varepsilon x$$

$$> 3$$

Also gilt $x - \varepsilon \in B$, und x kann damit nicht Schnittzahl sein, da sonst $\varepsilon \leq 0$ gelten müsste, was ein Widerspruch zu $\varepsilon > 0$ ist.

Da es aber in K keine Zahl x mit $x^2=3$ gibt, hat (A,B) keine Schnittzahl, also ist K nicht vollständig.

Wäre nämlich $a^2=3$ für ein $a=a_1+a_2\sqrt{2}\in K$, gälte, da o.E. $a_2\neq 0$ wegen $a_1^2\neq 3$ für $a_1\in \mathbb{Q}$ und o.E. $a_1\neq 0$, da $2a_2^2\neq 3$ für $a_2\in \mathbb{Q}$, also $a_1,a_2\neq 0$.

Da aber $a_1, a_2, 3 \in \mathbb{Q}$ folgt $\frac{3-a_1^2-2a_2^2}{2a_1a_2} \in \mathbb{Q}$, da \mathbb{Q} Körper ist, also würde $\sqrt{2} \in \mathbb{Q}$ gelten, dies ist aber ein Widerspruch, da $\sqrt{2}$ irrational ist.

Also hat (A, B) keine Schnittzahl, und nicht jede Cauchy-Folge in K ist konvergent.

2.3.3 Sei
$$a_0 = 1$$
, $a_{n+1} = \frac{1}{1 + a_n}$ für $n \in \mathbb{N}$.

(a) Zeigen Sie, dass (a_n) eine Cauchy-Folge ist.

Tipp: Man zeige zunächst, dass a_{n+2} für $n \in \mathbb{N}$ stets zwischen a_n und a_{n+1} liegt, und dann, dass $|a_n - a_{n+1}| \to 0$ für $n \to \infty$. (Warum ist (a_n) dann eine Cauchy-Folge?)

(b) Zeigen Sie, dass (a_n) gegen die positive Lösung der Gleichung $x^2 + x = 1$ konvergiert.

Bemerkung: Man berechnet damit den Wert der so genannten Kettenbruchentwicklung für den goldenen Schnitt:

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}.$$

- (a) Als allererstes zeigt man durch vollständige Induktion, dass $a_n \geq 0$ für alle $n \in \mathbb{N}$:
 - Induktionsanfang: Für n = 0 gilt: $a_0 = 1 \ge 0$
 - Induktionsvoraussetzung: Für $n \in \mathbb{N}$ gelte: $a_n > 0$
 - Induktionsschluß: z.z.: $a_{n+1} > 0$ Es gilt:

$$\begin{array}{ccc} a_n & \stackrel{\operatorname{Ind,Vor.}}{>} & 0 \\ \iff a_n+1 & > & 0 \\ \iff a_{n+1} = \frac{1}{a_n+1} & > & 0 \end{array}$$

Also gilt auch $a_{n+1} > 0$.

Es gilt also $a_n > 0$ f.a. $n \in \mathbb{N}$.

Man kann nun leicht zeigen, dass für jedes $n \in \mathbb{N}$ stets $a_n \leq 1$, da $a_0 =$ $1 \le 1$ gilt und mit $0 < a_n \le 1$ stets

$$a_{n+1} = \frac{1}{1+a_n} \stackrel{a_n > 0}{\leq} \frac{1}{1} = 1$$

Damit folgt die Behauptung nach dem Induktionsprinzip. Aus $a_n \leq 1$ f.a. $n \in \mathbb{N}$ folgt wiederum $a_n \geq \frac{1}{2}$ f.a. $n \in \mathbb{N}$, denn: $a_0 = 1 \geq \frac{1}{2}$, und mit $a_n \geq \frac{1}{2}$ gilt wegen

$$a_{n+1} = \frac{1}{1+a_n} \stackrel{a_n \le 1}{\ge} \frac{1}{2}$$

Damit folgt die Behauptung.

Man zeigt jetzt durch vollständige Induktion, dass a_{n+2} stets zwischen a_n und a_{n+1} liegt:

- Induktionsanfang: Für n = 0 gilt:

$$a_{0} = 1$$

$$a_{1} = \frac{1}{1+a_{0}}$$

$$= \frac{1}{2}$$

$$a_{2} = \frac{1}{1+a_{1}}$$

$$= \frac{1}{1+\frac{1}{2}}$$

$$= \frac{1}{\frac{3}{2}}$$

$$= \frac{2}{3}$$

Es gilt

$$\frac{1}{2} < \frac{2}{3} < 1$$

und somit auch

$$a_1 < a_2 < a_0$$

also liegt a_2 zwischen a_1 und a_0 .

– Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gelte:

$$a_n < a_{n+2} < a_{n+1} \lor a_{n+1} < a_{n+2} < a_n$$

Induktionsschlussz.z.:

$$a_{n+1} < a_{n+3} < a_{n+2} \lor a_{n+2} < a_{n+3} < a_{n+1}$$

1. Im Fall $a_n < a_{n+2} < a_{n+1}$ gilt:

$$a_{n+3} = \frac{1}{1 + a_{n+2}}$$

$$\stackrel{a_{n+2} < a_{n+1}}{>} \frac{1}{1 + a_{n+1}}$$

$$= a_{n+2}$$

$$a_{n+3} = \frac{1}{1 + a_{n+2}}$$

$$\stackrel{a_{n+2} > a_n}{<} \frac{1}{1 + a_n}$$

$$= a_{n+1}$$

Also gilt:

$$a_{n+2} < a_{n+3} < a_{n+1}$$

Das war aber zu zeigen.

2. Im Fall $a_{n+1} < a_{n+2} < a_n$ gilt:

$$a_{n+3} = \frac{1}{1 + a_{n+2}}$$

$$\stackrel{a_{n+2} > a_{n+1}}{<} \frac{1}{1 + a_{n+1}}$$

$$= a_{n+2}$$

$$a_{n+3} = \frac{1}{1 + a_{n+2}}$$

$$\stackrel{a_{n+2} < a_n}{>} \frac{1}{1 + a_n}$$

Also gilt:

$$a_{n+1} < a_{n+3} < a_{n+2}$$

Das war aber zu zeigen.

Also liegt a_{n+2} für alle $n \in \mathbb{N}$ zwischen a_n und a_{n+1} . Als Nächstes zeigt man, dass für alle natürlichen $k \geq 2$ das Element a_{n+k} zwischen a_{n+1} und a_n liegt.

- Induktionsanfang:

Für k=2 wurde die Behauptung eben bewiesen.

Für k = 3 gilt:

Im Fall: $a_n < a_{n+2} < a_{n+1}$ folgt, wie oben gezeigt $a_{n+2} < a_{n+3} <$ a_{n+1} also

$$a_n < a_{n+2} < a_{n+3} < a_{n+1}$$

Im Fall: $a_{n+1} < a_{n+2} < a_n$ folgt, wie oben gezeigt

$$a_{n+1} < a_{n+3} < a_{n+2} < a_n$$

- Induktionsvoraussetzung:

Für $k \geq 3$ gelte: a_{n+k} und a_{n+k-1} liegen zwischen a_n und a_{n+1} .

- Induktionsschluss:

Im Fall: $a_n < a_{n+k} < a_{n+1}$ und $a_n < a_{n+k-1} < a_{n+1}$ gilt, da a_{n+k+1} stets zwischen a_{n+k-1} und a_{n+k} liegt:

$$a_n < a_{n+k+1} < a_{n+1}$$

Im Fall: $a_{n+1} < a_{n+k} < a_n$ und $a_{n+1} < a_{n+k-1} < a_n$ gilt, da a_{n+k+1} stets zwischen a_{n+k-1} und a_{n+k} liegt:

$$a_{n+1} < a_{n+k+1} < a_n$$

Also liegen alle a_{n+k} für $k \in \mathbb{N}$ zwischen a_n und a_{n+1} , da a_{n+1} trivialerweise zwischen a_n und a_{n+1} liegt, da $a_{n+1} \le a_{n+1}$ und $a_{n+1} \ge a_{n+1}$. Als Nächstes zeigt man, dass $(b_n)_{n \in \mathbb{N}}$ mit $b_n = a_n - a_{n+1}$ Nullfolge ist. Dazu zeigt man zunächst durch vollständige Induktion, dass $|a_n - a_{n+1}| \le \left(\frac{4}{9}\right)^n$ für alle $n \in \mathbb{N}$ gilt.

- Induktionsanfang: Für n = 0 gilt: $a_0 = 1, a_1 = \frac{1}{2}$, also

$$|a_0 - a_1| = \frac{1}{2} \le 1 = \left(\frac{4}{9}\right)^0$$

- Induktionsvorausetzung: Für ein $n \in \mathbb{N}$ gelte:

$$|a_n - a_{n+1}| \le \left(\frac{4}{9}\right)^n$$

- Induktionsschluß:

z.z.:

$$|a_{n+1} - a_{n+2}| \le \left(\frac{4}{9}\right)^{n+1}$$

Es gilt:

$$|a_{n+1} - a_{n+2}| = \left| \frac{1}{1+a_n} - \frac{1}{1+a_{n+1}} \right|$$

$$= \left| \frac{(1+a_{n+1} - 1 - a_n)}{(1+a_n)(1+a_{n+1})} \right|$$

$$\stackrel{a_k \ge \frac{1}{2}}{\le} \frac{|a_{n+1} - a_n|}{(1+\frac{1}{2})^2}$$

$$= \frac{4}{9} \cdot |a_n - a_{n+1}|$$

$$\stackrel{\text{Ind. Vor.}}{\le} \frac{4}{9} \cdot \left(\frac{4}{9}\right)^n$$

$$= \left(\frac{4}{9}\right)^{n+1}$$

Jetzt kann man zeigen, dass b_n Nullfolge ist. Sei $\varepsilon > 0$ beliebig. Wir wissen, dass $\left[\left(\frac{4}{9}\right)^n\right]_{n \in \mathbb{N}}$ Nullfolge ist, also existiert $n_0 \in \mathbb{N}$ mit

$$\left| \left(\frac{4}{9} \right)^n \right| \le \varepsilon \text{ f.a. } n \ge n_0.$$

Dann gilt für $n \ge n_0$:

$$|b_n| = |a_n - a_{n+1}| \le \left(\frac{4}{9}\right)^n \le \varepsilon.$$

Also ist $(b_n)_{n\in\mathbb{N}}$ Nullfolge.

Jetzt kann man zeigen, dass $(a_n)_{n\in\mathbb{N}}$ Cauchy-Folge ist:

Sei $\varepsilon > 0$ beliebig. Wir wissen, dass $(a_n - a_{n+1})_{n \in \mathbb{N}}$ Nullfolge ist, also existiert $n_0 \in \mathbb{N}$ mit

$$|a_n - a_{n+1}| \le \varepsilon$$
 f.a. $n \ge n_0$.

Dann gilt für $m, n \ge n_0$, wobei o.B.d.A. m > n sei, dann ist $a_m = a_{n+k}$ für geeignetes $k \in \mathbb{N}$, a_m liegt also zwischen a_n und a_{n+1} , i.e.

$$|a_m - a_n| \le |a_n - a_{n+1}| \le \varepsilon$$

Also ist $(a_n)_{n\in\mathbb{N}}$ Cauchy-Folge.

(b) Zunächst gilt, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert, da $(a_n)_{n\in\mathbb{N}}$ Cauchy-Folge in \mathbb{R} ist und in \mathbb{R} alle Cauchy-Folgen konvergieren.

Jetzt zeigt man, dass für $a:=\lim a_n$ notwendigerweise $a\geq 0$ gelten muss, da $a_n > 0$ für jedes n gilt.

Angenommen nun es gelte a < 0, z.z. $(a_n)_{n \in \mathbb{N}}$ konvergiert nicht gegen a, d.h.

Sei nun a<0 beliebig, wähle $\varepsilon_0:=-\frac{a}{2}>0$. Sein nun $n\in\mathbb{N}$ beliebig, dann setze $n_0 := n$, es gilt:

$$|a_{n_0} - a|$$
 $\stackrel{a_{n_0} > 0 \text{ und}}{\stackrel{-a}{=} 0}$ $|a_{n_0}| + |a| \ge \left|\frac{a}{2}\right| = \varepsilon_0.$

Also gilt $\lim a_n \ge 0$. Weiterhin wissen wir, dass $(a_n - a_{n+1})_{n \in \mathbb{N}}$ Nullfolge ist. Anwendung der Grenzwertsätze liefert:

$$\lim(a_n - a_{n+1}) = 0$$

$$\iff \lim\left(a_n - \frac{1}{1+a_n}\right) = 0$$

$$\iff \lim a_n - \frac{\lim 1}{\lim 1 + \lim a_n} = 0$$

$$\iff a - \frac{1}{1+a} = 0$$

$$\iff a \cdot (1+a) - 1 = 0$$

$$\iff a + a^2 = 1.$$

Also ist, da $a^2 + a = 1$ gilt a Lösung von $x^2 + x = 1$, da weiterhin a > 0gilt, ist a positive Lösung von $x^2 + x = 1$. Man muss nun noch zeigen, dass $x^2 + x = 1$ nur eine postive Lösung hat:

$$x^{2} + x = 1$$

$$\iff x^{2} + x - 1 = 0$$

$$\stackrel{p - q \text{-Formel}}{\iff} x_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 1}$$

$$\iff x_{1,2} = -\frac{1}{2} \pm \frac{1}{2}\sqrt{5}$$

$$\iff x_{1} = \frac{\sqrt{5} - 1}{2} \qquad x_{2} = -\frac{1 + \sqrt{5}}{2}$$

Da $x_2 < 0$ folgt:

$$\lim a_n = a = x_1 = \frac{\sqrt{5} - 1}{2}$$

- **2.3.4** Für die geordnete Menge (M, \prec) und die Teilmenge A bestimme man $\sup(A)$ und $\inf(A)$, falls diese existieren:
 - (a) $A = \{4, 8, 10\}$, wobei $M = \mathbb{N}$, $a \prec b :\Leftrightarrow a|b$.
 - (b) $A = \{3, 6, 9, 12, \ldots\}, (M, \prec)$ wie in (a).
 - (c) $A = \{x \mid x^2 < 2\}$, wobei $M = \mathbb{R}$, $a \prec b : \Leftrightarrow a \leq b$.
 - (d) $A = \{] x, y [| -1 < x \le -\frac{1}{2}, \frac{1}{2} < y \le 2 \}$, wobei $M = \mathcal{P}(\mathbb{R}), a \prec b : \Leftrightarrow a \subset b$.
 - (a) Behauptung: $\sup(A) = 40$ Bew.:
 - -40 ist obere Schranke von A, da gilt:

$$\begin{array}{ccc} 4 \prec 40 \iff 4 \mid 40 \\ 8 \prec 40 \iff 8 \mid 40 \\ 10 \prec 40 \iff 10 \mid 40 \end{array}$$

– Wenn $b \in \mathbb{N}$ obere Schranke von A ist, gilt:

$$\begin{array}{rcl} 8 \prec b \wedge 10 \prec b & \Rightarrow & 8 \mid b \wedge 10 \mid b \\ & \Rightarrow & \mathrm{kgV}(8, 10) \mid b \\ & \Rightarrow & 40 \mid b \\ & \Rightarrow & 40 \prec b \end{array}$$

Also ist $\sup(A) = 40$.

Behauptung: $\inf(A) = 2$

Bew.:

-2 ist untere Schranke von A, da gilt:

$$2 \prec 4 \iff 2 \mid 4$$
$$2 \prec 8 \iff 2 \mid 8$$
$$2 \prec 10 \iff 2 \mid 10$$

– Wenn $b \in \mathbb{N}$ untere Schranke von A ist, gilt:

$$\begin{array}{ll} b \prec 4 \wedge b \prec 10 & \Rightarrow & b \mid 4 \wedge b \mid 10 \\ & \Rightarrow & b \mid \mathrm{ggT}(4, 10) \\ & \Rightarrow & b \mid 2 \\ & \Rightarrow & b \prec 2 \end{array}$$

Also ist $\inf(A) = 2$.

(b) Behauptung: $\sup(A)$ existiert nicht Bew.:

Würde $\sup(A)$ existieren, wäre $\sup(A)$ obere Schranke für A. Dies kann aber nicht sein, denn: Wäre k obere Schranke für A, existierte nach dem Archimedesaxiom $n \in \mathbb{N}$ mit n > k, und es wäre 3n > n > k und $3n \in A$, also hat A keine obere Schranke und erst recht kein Supremum.

Behauptung: $\inf(A) = 3$

Bew.:

- 3 ist untere Schranke von A, da für alle $n \in \mathbb{N}$ gilt:

$$3 \mid 3n \iff 3 \prec 3n$$

dies sind aber genau die Elemente von A.

- Wenn $b \in \mathbb{N}$ beliebige untere Schranke von A ist, gilt

$$\bigvee_{a \in A} b \prec a$$

also insbesondere $b \prec 3$, da $3 \in A$.

Also ist: $\inf(A) = 3$.

- (c) Behauptung: $\sup(A) = \sqrt{2}$ Bew.:
 - $\sqrt{2}$ ist obere Schranke, da: Sei $a \in A$ bel., z.z. $a \prec \sqrt{2}$ Es gilt:

$$a \in A \iff a^2 < 2 \Rightarrow |a| < \sqrt{2} \Rightarrow a < \sqrt{2} \iff a \prec \sqrt{2}$$

– Sei $b\in\mathbb{R}$ beliebige obere Schranke von A,also $a\in A:b\prec a,$ dann ist z.z.: $\sqrt{2}\prec b$

Wäre $\sqrt{2} \not\prec b$ also $b < \sqrt{2}$, gäbe es $\varepsilon > 0$ mit $b + \varepsilon \in A$, wähle z.B.

$$\varepsilon = \frac{\sqrt{2} - b}{2}$$

dann gilt:

$$(b+\varepsilon)^2 = \left(b + \frac{\sqrt{2}-b}{2}\right)^2 = \left(\frac{\sqrt{2}+b}{2}\right)^2 < 2$$

Lezteres gilt, da $0 < b < \sqrt{2}$ nach Vorraussetzung, also $\frac{b+\sqrt{2}}{2} < \sqrt{2}$. Also $b+\varepsilon \in A$, daher ist b dann keine obere Schranke, Widerspruch. Also gilt: $\sqrt{2} \prec b$.

Es gilt also $\sup(A) = \sqrt{2}$.

Behauptung: $\inf(A) = -\sqrt{2}$ Bew.:

 $-\sqrt{2}$ ist untere Schranke, da: Sei $a \in A$ bel. , z.z. $-\sqrt{2} \prec a$ Es gilt:

$$a \in A \iff a^2 < 2 \Rightarrow |a| \le \sqrt{2} \Rightarrow -\sqrt{2} \le a \iff -\sqrt{2} \prec a$$

– Sei $b \in \mathbb{R}$ beliebige untere Schranke von A, also $a \prec b$ für jedes $a \in A.$ z.z.: $b \prec -\sqrt{2}$

Wäre $b \not\prec -\sqrt{2}$ also $b > -\sqrt{2}$, gäbe es $\varepsilon > 0$ mit $b - \varepsilon \in A$, wähle z B

$$\varepsilon = \frac{b + \sqrt{2}}{2}$$

dann gilt:

$$(b-\varepsilon)^2 = \left(b - \frac{\sqrt{2} + b}{2}\right)^2 = \left(\frac{b - \sqrt{2}}{2}\right)^2 < 2$$

Lezteres gilt, da $0 > b > -\sqrt{2}$ nach Voraussetzung, also $\frac{b-\sqrt{2}}{2} >$ $-\sqrt{2}$. Also $b-\varepsilon\in A$, daher ist b dann keine untere Schranke, Widerspruch.

Also gilt: $b \prec -\sqrt{2}$

Es gilt also $\inf(A) = -\sqrt{2}$.

- Behauptung: $\sup(A) =]-1, 2[$ Bew.:
 - -] -1,2[ist obere Schranke für A, da gilt: Sei $a = [x, y \in A \text{ beliebig, z.z.: } a \prec]-1, 2[$ Es gilt: -1 < x und $y \leq 2,$ damit folgt $a \subset \,]\, -1,2\, [\iff a \prec \,]\, -1,2\, [$
 - Sei $b \in \mathcal{P}(\mathbb{R})$ beliebige obere Schranke von A. z.z.: $]-1,2[\prec b]$ Es gilt:

$$\bigvee_{1>\varepsilon>0} \big] - 1 + \varepsilon, 2 \, \big[\in A \Rightarrow \bigvee_{1>\varepsilon>0} \big] - 1 + \varepsilon, 2 \, \big[\subset b$$

da b obere Schranke ist.

Es folgt, dass

$$\bigcup_{1>\varepsilon>0}]-1+\varepsilon, 2[=]-1, 2[\subset b]$$

und damit ist

$$]-1,2[\subset b\iff]-1,2[\prec b]$$

Also gilt: $\sup(A) =]-1, 2[.$

Behauptung: $\inf(A) = [-1/2, 1/2]$ Bew.:

-] -1/2, 1/2] ist untere Schranke für A, da gilt: Sei $a = [x, y] \in A$ beliebig, z.z.: $[-1/2, 1/2] \prec a$ Es gilt: $x \le -\frac{1}{2}$ und $\frac{1}{2} < y$, damit folgt

$$\left] \frac{-1}{2}, \frac{1}{2} \right] \subset a \iff \left[\frac{-1}{2}, \frac{1}{2} \right] \prec a.$$

- Sei $b \in \mathcal{P}(\mathbb{R})$ beliebige untere Schranke von A. z.z.: $b \prec [-1/2, 1/2]$

Es sei $x \in b \subset \mathbb{R}$ beliebig, da b untere Schranke von A ist, gilt $x \in a$ für alle $a \in A$. Wäre nun $x \le -1/2$, so wäre aber $x \notin]-1/2, 2 [\in A,$ also gilt x > -1/2. Wäre x > 1/2, so gibt es $\varepsilon > 0$ mit $x > 1/2 + \varepsilon$, damit gälte aber $x \notin]-1/2,-1/2+\varepsilon [\in A.$ Also ist $x \in]-1/2,1/2],$ da $x \in b$ beliebig war, folgt

$$b \subset \left[\frac{-1}{2}, \frac{1}{2} \right] \iff b \prec \left[\frac{-1}{2}, \frac{1}{2} \right].$$

Also gilt: $\inf(A) = [-1/2, 1/2]$.

2.3.5 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} mit

$$\bigvee_{n \in \mathbb{N}} |a_n - a_{n+1}| \le q^n;$$

dabei ist $0 \le q < 1$. Dann ist $(a_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge.

Zunächst gilt $q^n \to 0$ und damit auch $q^n/(1-q) \to 0$. Weiterhin gilt für $n,k \in \mathbb{N}$:

$$|a_{n+k} - a_n| = \left| \sum_{i=0}^{k-1} a_{n+i+1} - a_{n+i} \right|$$

$$\leq \sum_{i=0}^{k-1} |a_{n+i-1} - a_{n+i}|$$

$$\leq \sum_{i=0}^{k-1} q^{n+i}$$

$$= q^n \cdot \sum_{i=0}^{k-1} q^i$$

$$\leq q^n \cdot \sum_{i=0}^{\infty} q^i$$

$$= \frac{q^n}{1-q}$$

Sei nun $\varepsilon > 0$ beliebig, wegen $q^n(1-q)^{-1} \to 0$ existiert $n_0 \in \mathbb{N}$ mit $q^n(1-q)^{-1} \le \varepsilon$ für alle $n \ge n_0$. Seien nun $n, m \ge n_0$, o.E. gelte m > n, dann ist

$$|a_m - a_n| = |a_{n+(m-n)} - a_n| \le \frac{q^n}{1-q} \le \varepsilon.$$

Also ist (a_n) Cauchy-Folge.

2.3.6 Sei M eine Menge. Man beweise, dass im geordneten Raum $(\mathcal{P}(M), \subset)$ für $A \in \mathcal{P}(M), A \neq \emptyset$ gilt:

$$\sup \mathcal{A} = \bigcup \mathcal{A}, \quad \inf \mathcal{A} = \bigcap \mathcal{A}.$$

Offensichtlich ist $\bigcup \mathcal{A}$ obere Schranke von \mathcal{A} , sei also B eine obere Schranke von \mathcal{A} , zu zeigen ist $\bigcup \mathcal{A} \subset B$, sei also $a \in \bigcup \mathcal{A}$, dann existiert $A \in \mathcal{A}$ mit $a \in A$, da B obere Schranke von \mathcal{A} ist, folgt $A \subset B$, also $a \in B$. Also gilt sup $\mathcal{A} = \bigcup \mathcal{A}$.

Es ist $\bigcap \mathcal{A}$ untere Schranke von \mathcal{A} , sei nun B eine untere Schranke von \mathcal{A} , zu zeigen ist $B \subset \bigcap \mathcal{A}$, sei also $b \in B$ und $A \in \mathcal{A}$, da B untere Schranke von \mathcal{A} ist, folgt $B \subset A$, also $b \in A$ und damit $b \in \bigcap \mathcal{A}$. Also gilt inf $\mathcal{A} = \bigcap \mathcal{A}$.

zu 2.4

2.4.1 Für welche $x \in \mathbb{R}$ konvergiert, für welche divergiert die Reihe $\sum_{n=1}^{\infty} x^n/n$? Beh.: Die Reihe konergiert für $-1 \le x < 1$, ansonsten divergiert sie. Bew.:

Sei im Folgenden $(a_n)_{n\in\mathbb{N}}$ mit $a_n:=\frac{1}{n}x^n$ die Folge der Summanden. Man unterscheidet drei Fälle, nämlich |x| < 1, |x| > 1 und |x| = 1:

• |x| < 1

Man erhält in diesem Fall mit dem Wurzelkriterium, da für alle $n \in \mathbb{N}$: $n \ge 1 \iff \sqrt[n]{n} \ge 1$ gilt:

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\frac{x^n}{n}\right|}$$

$$= \sqrt[n]{\frac{|x|^n}{n}}$$

$$= \frac{|x|}{\sqrt[n]{n}}$$

$$\leq |x| = q < 1$$

Also ist das Wurzelkriterium für q = |x| < 1 erfüllt, also konvergiert

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

für |x| < 1.

• |x| > 1

Wir wissen, dass $\sqrt[n]{n} \xrightarrow{n\to\infty} 1$, d.h.

$$\bigvee_{\varepsilon>0} \prod_{n_0 \in \mathbb{N}} \bigvee_{n>n_0} \left| \sqrt[n]{n} - 1 \right| < \varepsilon$$

Da aber |x| > 1 also |x| - 1 > 0 existiert insbesondere \hat{n} mit:

$$\bigvee_{n>\hat{n}} \left|\sqrt[n]{n}-1\right| < |x|-1.$$

Wegen

$$\bigvee_{n\in\mathbb{N}} \sqrt[n]{n} \geq 1 \iff \sqrt[n]{n} - 1 \geq 0$$

ist

$$\bigvee_{n \in \mathbb{N}} \left| \sqrt[n]{n} - 1 \right| = \sqrt[n]{n} - 1$$

und damit für $n>\hat{n}$ auch

$$\sqrt[n]{n} - 1 < |x| - 1$$

$$\iff \sqrt[n]{n} < |x|.$$

Damit folgt für $n \ge \hat{n}$:

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left|\frac{x^n}{n}\right|}$$

$$= \sqrt[n]{\frac{|x|^n}{n}}$$

$$= \frac{|x|}{\sqrt[n]{n}}$$

$$\sqrt[n]{n} < |x|$$

$$> \frac{|x|}{|x|} = 1.$$

Also ist für |x| > 1 die Reihe divergent, da

$$\bigvee_{n \ge n_0} \sqrt[n]{|a_n|} > 1 \Rightarrow |a_n| > 1$$

also $(a_n)_{n\in\mathbb{N}}$ keine Nullfolge ist.

• |x| = 1Im Fall x = 1 ist $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ wegen $1^n = 1$ f.a. $n \in \mathbb{N}$, also die harmonische Reihe, damit divergent, für x = -1 die alternierende harmonische Reihe, also konvergent.

Insgamsamt folgt:

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n \quad \text{konvergiert für } -1 \le x < 1$$

- **2.4.2** Sei (a_n) eine Folge positiver Zahlen, die monoton fällt und gegen Null konvergiert.
 - (a) Zeigen Sie, dass $\sum_{n=1}^{\infty} a_n$ genau dann existiert, wenn die Reihe $\sum_{k=1}^{\infty} 2^k a_{2^k}$ existiert.

Tipp: Erinnern Sie sich daran, wie die Divergenz der harmonischen Reihe gezeigt wurde.

(b) Man nutze Teil (a), um zu zeigen, dass die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

für s > 1 konvergent ist¹⁾.

¹⁾Wir verwenden hier die allgemeine Potenz im Vorgriff.

(a) Wenn (a_n) monotone Nullfolge ist, ist entweder $a_n \geq 0$ und (a_n) monoton fallend, oder $a_n \leq 0$ und (a_n) monoton steigend. Angenommen nun zunächst, $(a_n)_{n\in\mathbb{N}}$ sei eine positive monoton fallende Nullfolge. Man hat zu zeigen, dass

$$\sum_{n=1}^{\infty} a_n \text{ konvergiert} \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ konvergiert}$$

1. " \Rightarrow " Sei also $\sum_{n=1}^{\infty}a_n$ konvergent. Da aber

$$\bigvee_{n\in\mathbb{N}} a_n \ge 0 \Rightarrow |a_n| = a_n$$

ist auch $\sum_{n=1}^{\infty} |a_n|$ konvergent. Man betrachtet nun die Folge

$$(b_k)_{k \in \mathbb{N}} = \left(\sum_{n=2^{k-1}}^{2^k - 1} a_n\right)_{k \in \mathbb{N}}$$

Die Folge ihrer Partialsummen ist offensichtlich eine Teilfolge der Partialsummenfolge von (a_n) , also ist auch die Reihe $\sum_{k=1}^{\infty} \sum_{n=2k-1}^{2^k-1} a_n$ absolut konvergent.

Man wendet nun das Majorantenkriterium für die Reihenkonvergenz an:

Es gilt:

$$\bigvee_{k \in \mathbb{N}} \left| 2^{k-1} a_{2^k} \right| \le |b_k|,$$

da $a_k, b_k \geq 0$ f.a. $k \in \mathbb{N}$ braucht man im Folgenden keine Beträge.

Bew:

Sei $k \in \mathbb{N}$ bel.

$$2^{k-1}a_{2^k} = \sum_{n=2^{k-1}}^{2^k-1} a_{2^k}$$

Nun ist aber

$$\bigvee_{2^{k-1} \leq n \leq 2^k - 1} n \leq 2^k$$

und somit aufgrund des monotonen Fallens von (a_n) :

$$\bigvee_{2^{k-1} < n < 2^k - 1} a_n \ge a_{2^k}$$

Damit ergibt sich:

$$2^{k-1}a_{2^k} = \sum_{n=2^{k-1}}^{2^k-1} a_{2^k}$$

$$\stackrel{(a_n) \text{ mon. fall.}}{\leq} \sum_{n=2^{k-1}}^{2^k-1} a_n$$

$$= b_k$$

Damit ist nach dem Majorantenkriterium auch $\sum_{k=1}^{\infty} 2^{k-1} a_{2^k}$ konvergent und somit nach den Konvergenzsätzen für Reihen auch:

$$\sum_{k=1}^{\infty} 2^k a_{2^k} = 2 \cdot \sum_{k=1}^{\infty} 2^{k-1} a_{2^k}$$

Das war aber zu zeigen.

2. "⇐"

Man zeigt dies durch logische Umkehr, i.e. man zeigt, dass

$$\sum_{n=1}^{\infty} [1] n a_n \text{ divergiert} \quad \Rightarrow \quad \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ divergiert}$$

Sei also $\sum_{n=1}^\infty a_n$ divergent. Dann ist auch $\sum_{n=2}^\infty a_n$ divergent. Betrachte nun die Folge

$$(b_k)_{k\in\mathbb{N}} = \left(\sum_{n=2^k}^{2^{k+1}-1} a_n\right)_{k\in\mathbb{N}}$$

Offensichtlich ist auch $\sum_{k=1}^{\infty} b_k$ divergent, da alle a_n positiv sind. Es gilt aber:

$$\bigvee_{k \in \mathbb{N}} b_k \le 2^k a_{2^k} \iff |b_k| \le \left| 2^k a_{2^k} \right|$$

Beweis:

Aufgrund der Monotonie von (a_n) ist $a_n \leq a_{2^k}$ für $n \geq 2^k$, damit folgt:

$$b_k = \sum_{n=2^k}^{2^{k+1}-1} a_n \ \stackrel{(a_n) \text{ mon. fall.}}{\leq} \sum_{n=2^k}^{2^{k+1}-1} a_{2^k} \ = 2^k a_{2^k}$$

Also ist, da $\sum_{k=1}^{\infty}b_k$ divergiert, auch $\sum_{k=1}^{\infty}2^ka_{2^k}$ divergent (logische Umkehrung des Majorantenkriteriums). Das war aber zu zeigen.

Für den Fall, dass (a_n) stets nicht negativ und monoton fallend ist, ist man fertig.

Im Fall, dass (a_n) stets nicht positiv und momton steigend ist, erhält man durch (i) und die Konvergenzsätze für Reihen, da dann $(-a_n)$ stets nicht negativ und wegen

$$\bigvee_{n \in \mathbb{N}} a_n \le a_{n+1} \iff -a_n \ge -a_{n+1}$$

monoton fallende Nullfolge ist:

$$\sum_{n=1}^{\infty} a_n \text{ konvergiert} \iff \sum_{n=1}^{\infty} (-a_n) \text{ konvergiert}$$

$$\iff \sum_{k=1}^{\infty} (-2^k a_{2^k}) \text{ konvergiert}$$

$$\iff \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ konvergiert}$$

Also gilt der Satz für alle monotonen Nullfolgen.

(b) Man zeigt zunächst, dass $(a_n)_{n\in\mathbb{N}}:=\left(\frac{1}{n^s}\right)_{n\in\mathbb{N}}$ für s<0 unbeschränkt ist, also keine Nullfolge ist und damit aber auch $\sum_{k=0}^{\infty}a_n$ divergiert: Es ist $a_n = n^{-s}$ mit -s > 0. Man hat zu zeigen:

$$\bigvee_{M>0} \prod_{n\in\mathbb{N}} |a_n| = a_n = n^{-s} > M$$

Sei nun M>0 geg. wähle nach dem Archimedesaxiom $n>M^{\frac{1}{-s}}$ dann ist:

$$a_n = n^{-s} \stackrel{-s}{>} {}^0 \left(M^{\frac{1}{-s}} \right)^{-s} = M$$

Also ist a_n für s < 0 unbeschränkt. Für s = 0 ist $a_n = 1$ für alle n, also (a_n) keine Nullfolge.

Also ist für $s \le 0$ $\sum_{n=1}^{\infty} a_n a_n$ divergent.

Sei nun s > 0. Zunächst einmal ist

$$\bigvee_{\substack{n \in \mathbb{N} \\ s > 0}} n < n+1 \Rightarrow n^s < (n+1)^s \Rightarrow \frac{1}{n^s} > \frac{1}{(n+1)^s}$$

Also ist a_n für s > 0 fallend, außerdem (a_n) Nullfolge:

Sei $\varepsilon > 0$ beliebig, wähle nach dem Archimedesaxiom $n_0 > \varepsilon^{-\frac{1}{s}}$ dann gilt für $n \geq n_0$:

$$|a_n| = \left|\frac{1}{n^s}\right| \le \frac{1}{n_0^s} < \frac{1}{\left(\varepsilon^{-\frac{1}{s}}\right)^s} = \varepsilon.$$

Also ist (a_n) für s>0 monotone Nullfolge, man kann also (a) anwenden, sei also s>0. Man weiß aus (a), dass $\sum_{n=1}^{\infty} \frac{1}{n^s}$ genau dann konvergiert,

wenn $\sum_{k=1}^{\infty} \frac{2^k}{(2^k)^s}$ konvergiert. Durch Umformung erhält man:

$$\sum_{k=1}^{\infty} \frac{2^k}{(2^k)^s} = \sum_{k=1}^{\infty} \frac{2^k}{2^{k \cdot s}}$$
$$= \sum_{k=1}^{\infty} \left(\frac{2}{2^s}\right)^k$$

Dies ist aber eine geometrische Reihe, die genau dann konvergiert, wenn $\frac{2}{2^s}$ kleiner als 1 ist:

$$\begin{array}{cccc} \frac{2}{2^s} & < & 1 \\ \iff 2 & < & 2^s \\ \iff 2^1 & < & 2^s \\ \iff 1 & < & s \end{array}$$

Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^s}$ ist also konvergent für alle $s \in \{x \in \mathbb{R} \mid x > 1\}$.

2.4.3 Die Summe der alternierend harmonischen Reihe sei mit a bezeichnet (d. h. $a:=\sum_{k=1}^{\infty}{(-1)^{k-1}/k}$). Man zeige

(a)
$$a \ge 1/2$$

und beweise folgendes Konvergenzverhalten zweier spezieller Umordnungen:

(b)
$$1 + \frac{1}{3} - \frac{1}{2} - \frac{1}{4} + \frac{1}{5} + \frac{1}{7} - - + + \dots = a$$
.

(c)
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + + - + + - \dots = \frac{3}{2}a$$
.
Hinweis: $\frac{3}{2}a = a + \frac{1}{2}a$.

(a) Es sei $(a_n)_{n\in\mathbb{N}}$ die Folge der Summanden der alternierend harmonischen Reihe, man betrachte die Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$\bigvee_{n \in \mathbb{N}} b_n := a_{2n-1} + a_{2n}$$

$$= \frac{(-1)^{2n-2}}{2n-1} + \frac{(-1)^{2n-1}}{2n}$$

$$= \frac{2n - (2n-1)}{2n(2n-1)}$$

$$= \frac{1}{4n^2 - 2n}.$$

Da aber die Partialsummenfolge von (b_n) eine Teilfolge der Partialsummenfolge von (a_n) ist und jede Teilfolge einer konvergenten Folge gegen

den Grenzwert der Folge konvergiert, konvergiert auch $\sum_{n=1}^{\infty} b_n$ gegen a. Da aber für $n \in \mathbb{N}$ stets $b_n = \frac{1}{4n^2 - 2n} \ge 0$ gilt, folgt:

$$a = \sum_{n=1}^{\infty} b_n \ge b_1 = \frac{1}{4-2} = \frac{1}{2}$$

Das war aber zu zeigen.

(b) Es sei $(a_n)_{n\in\mathbb{N}}$ die Folge der Summanden der alternierend harmonischen Reihe, $(b_n)_{n\in\mathbb{N}}$ die Folge der Summanden der zu untersuchenden Umordnung, also

$$b_n = \begin{cases} \frac{1}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 3\\ \frac{1}{n+1} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 2\\ -\frac{1}{n-1} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 1\\ -\frac{1}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m \end{cases}$$

Betrachte nun die Folge $(c_n)_{n\in\mathbb{N}}$ mit:

$$c_n := a_n - b_n = \begin{cases} 0 & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 3 \\ -\frac{1}{n} - \frac{1}{n+1} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 2 \\ \frac{1}{n} + \frac{1}{n-1} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 1 \\ 0 & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m \end{cases}$$

Wie sich durch vollständige Induktion ergibt, gilt für die Folge $(s_n)_{n\in\mathbb{N}}$ mit $s_n := \sum_{k=1}^n c_k$:

$$s_n = \sum_{k=1}^n c_k = \begin{cases} -\frac{1}{n} - \frac{1}{n+1} & \prod_{m \in \mathbb{N}} n = 4m - 2\\ 0 & \text{sonst} \end{cases}$$

Beweis durch vollständige Induktion:

- Induktionsanfang: Für n = 1 gilt:

$$s_1 = \sum_{k=1}^{1} c_k = c_1 = 0$$

- Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gelte:

$$s_n = \left\{ \begin{array}{c} -\frac{1}{n} - \frac{1}{n+1} \text{ , falls } \prod_{m \in \mathbb{N}} n = 4m-2 \\ \\ 0 \text{ , sonst} \end{array} \right.$$

Induktionsschluss:z.z.:

$$s_{n+1} = \begin{cases} -\frac{1}{n+1} - \frac{1}{n+2} & \text{, falls } \exists_{m \in \mathbb{N}} n+1 = 4m-2 \\ & \iff n = 4m-3 \\ 0 & \text{, sonst} \end{cases}$$

Man unterscheidet drei Fälle:

1. Es gibt $m \in \mathbb{N}: n=4m-2 \iff n+1=4m-1$. z.z.: $s_{n+1}=0$ Es gilt:

$$s_{n+1} = \sum_{k=1}^{n+1} c_k$$

$$= \sum_{k=1}^{n} c_k + c_{n+1}$$

$$= s_n + c_{n+1}$$
Ind. Vor.
$$\stackrel{\text{Def. } c_{n+1}}{=} -\frac{1}{n+1} - \frac{1}{n} + \frac{1}{n+1} + \frac{1}{(n+1)-1}$$

$$= 0.$$

2. Es gibt $m \in \mathbb{N}$: $n = 4m - 3 \iff n + 1 = 4m - 2$ z.z.: $s_{n+1} = -\frac{1}{n+1} - \frac{1}{n+2}$ Es gilt:

$$s_{n+1} = \sum_{k=1}^{n+1} c_k$$

$$= \sum_{k=1}^{n} c_k + c_{n+1}$$

$$= s_n + c_{n+1}$$
Ind. Vor.
$$\stackrel{\text{Def. } c_{n+1}}{=} 0 - \frac{1}{n+1} - \frac{1}{(n+1)+1}$$

$$= -\frac{1}{n+1} - \frac{1}{n+2}$$

3. Anderenfalls, d.h. es ist n=4m oder n=4m-1 für ein $m\in\mathbb{N}$. z.z.: $s_{n+1}=0$

Es gilt:

$$s_{n+1}$$
 = $\sum_{k=1}^{n+1} c_k$
= $\sum_{k=1}^{n} c_k + c_{n+1}$
= $s_n + c_{n+1}$
Ind. Vor. Def. c_{n+1}
= $0 + 0$
= 0

Es gilt also für alle $n \in \mathbb{N}$:

$$s_n = \sum_{k=1}^n c_k = \begin{cases} -\frac{1}{n} - \frac{1}{n+1} & \prod_{m \in \mathbb{N}} n = 4m - 2\\ 0 & \text{sonst} \end{cases}$$

Da nun aber für alle $n \in \mathbb{N}$:

$$|s_n| \le \frac{1}{n} + \frac{1}{n+1} = \frac{2n+1}{n(n+1)} \le \frac{2n+n}{n \cdot n} = \frac{3}{n}$$

und $\left(\frac{3}{n}\right)$ Nullfolge ist, ist nach dem Vergleichskriterium auch s_n Nullfolge, damit gilt nach Definition:

$$\sum_{n=1}^{\infty} c_n = \lim_{n \to \infty} \sum_{k=1}^{n} c_k = \lim_{n \to \infty} s_n = 0$$

Da nun aber

$$\bigvee_{n \in \mathbb{N}} b_n = a_n - c_n$$

und $\sum_{n=1}^{\infty}a_n=a$ und $\sum_{n=1}^{\infty}c_n=0$ existieren, existiert nach den Konvergenzsätzen für Reihen auch $\sum_{n=1}^{\infty}b_n$ und es gilt:

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n - c_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} c_n = a - 0 = a.$$

Das war aber zu zeigen.

(c) Man betrachte anstatt der Reihe

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + + - + + - \cdots$$

$$1 + 0 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + 0 + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + 0 + \frac{1}{11} - \frac{1}{6} + + + - + + + - \cdots$$

die offensichtlich denselben Grenzwert hat, falls er existiert. Diese entsteht durch Aufsummierung, i.e. als Partialsummenfolge, der Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n = \begin{cases} \frac{1}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 3 \\ 0 & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 2 \\ \\ \frac{1}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 1 \\ \\ -\frac{2}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m \end{cases}$$

Sei nun $(a_n)_{n\in\mathbb{N}}$ die Folge der Summanden der alternierend harmonischen Reihe und $(c_n)_{n\in\mathbb{N}}$ die durch

$$c_n := \left\{ \begin{array}{cc} 0 & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 3 \\ \\ \frac{1}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 2 \\ \\ 0 & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m - 1 \\ \\ -\frac{1}{n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 4m \end{array} \right.$$

definerte Folge. Weiterhin sei $(d_n)_{n\in\mathbb{N}}$ definiert durch:

$$d_n := \left\{ \begin{array}{cc} \frac{1}{2n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 2m - 1 \\ \\ -\frac{1}{2n} & \text{, falls } \prod_{m \in \mathbb{N}} n = 2m \end{array} \right.$$

Offensichtlich ist

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} d_n = \sum_{n=1}^{\infty} \frac{1}{2} a_n = \frac{1}{2} \sum_{n=1}^{\infty} a_n = \frac{1}{2} a$$

da die Glieder von (d_n) genau die Hälfte der der Glieder der alternierend harmonischen Folge (a_n) sind und sich (c_n) von (d_n) nur durch die zusätzlichen Nullen unterscheidet, die am Wert der Reihensumme nichts ändern. Es ist aber $b_n = a_n + c_n$ für jedes $n \in \mathbb{N}$, wie sich durch Fallunterscheidung leicht ergibt:

- Fall 1: Es gibt
$$m \in \mathbb{N}$$
 : $n = 4m - 3$
Hier gilt: $a_n + c_n = \frac{1}{n} + 0 = \frac{1}{n} = b_n$

- Fall 2: Es gibt
$$m \in \mathbb{N}$$
 : $n = 4m - 2$
Hier gilt: $a_n + c_n = -\frac{1}{n} + \frac{1}{n} = 0 = b_n$

- Fall 3: Es gibt $m \in \mathbb{N} : n = 4m - 1$ Hier gilt: $a_n + c_n = \frac{1}{n} + 0 = \frac{1}{n} = b_n$

– Fall 4: Es gibt $m \in \mathbb{N} : n = 4m$ $a_n + c_n = -\frac{1}{n} - \frac{1}{n} = -\frac{2}{n} = b_n$

Also gilt $b_n = a_n + c_n$, damit aber nach den Konvergenzsätzen für Reihen auch:

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + c_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} c_n = a + \frac{1}{2}a = \frac{3}{2}a$$

Also gilt auch für die gesuchte Summe der Reihe:

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + + - + + - \dots = \frac{3}{2}a$$

- 2.4.4 Hier soll gezeigt werden, dass es unendlich viele Primzahlen gibt. Dazu wird die Annahme, die Menge der Primzahlen sei $\{p_1, p_2, \dots, p_r\}$ (wobei $p_1 <$ $p_2 < \cdots < p_r$) für ein $r \in \mathbb{N}$ wie folgt zum Widerspruch geführt:
 - (a) Man zeigt, dass

$$\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{0 \le k_1, k_2, \dots, k_r < \infty} \frac{1}{p_1^{k_1} \cdots p_r^{k_r}}.$$

Hierbei darf ausgenutzt werden, dass jede natürliche Zahl eine eindeutige Primfaktorzerlegung hat.

(b) Dann wird bewiesen, dass

$$\sum_{0 \leq k_1, k_2, \cdots, k_r < \infty} \frac{1}{p_1^{k_1} \cdots p_r^{k_r}} \; = \; \prod_{i=1}^r \sum_{k=0}^\infty \frac{1}{p_i^k}.$$

(c) Nun ist noch ein Widerspruch aus (a) und (b) abzuleiten.

Bem.:
$$\sum_{0 \le k_1, k_2, \dots, k_r \le \infty}$$
 "steht für $\sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \dots \sum_{k_r=0}^{\infty}$ ".

(a) Jede natürliche Zahl hat eine eindeutige Primfaktorzerlegung, andererseits bestimmt jedes Produkt $\prod_{i=1}^r p_i^{k_i}$ von endlich (r) vielen natürlichen Zahlen eindeutig eine natürliche Zahl. Die Abbildung Zahl ↔ Primfaktorzerlegung ist also bijektiv.

Also werden auf beiden Seiten der Gleichung die gleichen Zahlen aufsummiert, nur in anderer Reihenfolge, da aber alle a_n posity sind und die rechte Reihe, wie unter (b) gezeigt, absolut kovergent ist, ist die Reihenfolge des Aufsummierens egal, und es gilt:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{0 \le k_1, k_2, \dots, k_r < \infty} \frac{1}{p_1^{k_1} \cdots p_r^{k_r}}$$

- (b) Man zeigt dies durch vollständige Induktion nach r:
 - Induktionsanfang: Für r = 1 gilt:

$$\prod_{i=1}^1 \sum_{k=0}^\infty \frac{1}{p_i^k} = \sum_{k=0}^\infty \frac{1}{p_1^k} = \sum_{0 \le k_1 < \infty} \frac{1}{p_1^{k_1}}$$

- Induktionsvoraussetzung: Für ein $r \in \mathbb{N}$ gelte:

$$\prod_{i=1}^{r} \sum_{k=0}^{\infty} \frac{1}{p_i^k} = \sum_{0 \le k_1, k_2, \dots, k_r < \infty} \frac{1}{p_1^{k_1} \cdots p_r^{k_r}}$$

Induktionsschluss:

z.z.:

$$\prod_{i=1}^{r+1} \sum_{k=0}^{\infty} \frac{1}{p_i^k} = \sum_{0 \le k_1, k_2, \dots, k_{r+1} < \infty} \frac{1}{p_1^{k_1} \cdots p_{r+1}^{k_{r+1}}}$$

Dann gilt für r+1, da die Reihensumme $\sum_{k=0}^{\infty} \frac{1}{p_{r+1}^k}$ existiert, da p_{r+1} Primzahl ist und somit $p_{r+1} \geq 2$, also $\left|\frac{1}{p_{r+1}}\right| < 1$ folgt.

$$\begin{split} \prod_{i=1}^{r+1} \sum_{k=0}^{\infty} \frac{1}{p_i^k} &= \sum_{k_{r+1}=0}^{\infty} \frac{1}{p_{r+1}^{k_{r+1}}} \cdot \prod_{i=1}^{r} \sum_{k=0}^{\infty} \frac{1}{p_i^k} \\ \text{Ind.Vor.} &= \sum_{k_{r+1}=0}^{\infty} \frac{1}{p_{r+1}^{k_{r+1}}} \cdot \sum_{0 \leq k_1, k_2, \dots, k_r < \infty} \frac{1}{\prod_{i=1}^{r} p_i^{k_i}} \\ \text{Konvergenzsatz} &= \sum_{0 \leq k_1, k_2, \dots, k_r < \infty} \left[\left(\sum_{k_{r+1}=1}^{\infty} \frac{1}{p_{r+1}^{k_{r+1}}} \right) \cdot \frac{1}{\prod_{i=1}^{r} p_i^{k_i}} \right] \\ \text{Konvergenzsatz} &= \sum_{0 \leq k_1, k_2, \dots, k_r < \infty} \sum_{k_{r+1}=1}^{\infty} \left(\frac{1}{p_{r+1}^{k_{r+1}}} \cdot \frac{1}{\prod_{i=1}^{r} p_i^{k_i}} \right) \\ &= \sum_{0 \leq k_1, k_2, \dots, k_{r+1} < \infty} \frac{1}{p_1^{k_1} \cdots p_{r+1}^{k_{r+1}}} \end{split}$$

(c) Offenbar gilt:

$$\bigvee_{1 \le i \le r} \sum_{k=0}^{\infty} \frac{1}{p_i^k} \in \mathbb{R}$$

da die Reihe als geometrische Reihe wegen $0<\frac{1}{p_i}<1$ existiert. Dies gilt, da $p_i>1$ f.a. $1\leq i\leq r$, da p_i Primzahl ist. Somit ist auch $\prod_{i=1}^r\sum_{k=0}^\infty\frac{1}{p_i^k}$ als Produkt von endlich vielen reellen Zahlen eine reelle Zahl, also ist wegen

$$\sum_{0 \le k_1, k_2, \dots k_r < \infty} \frac{1}{p_1^{k_1} \cdots p_r^{k_r}} = \prod_{i=1}^r \sum_{k=0}^\infty \frac{1}{p_i^k}$$

auch $\sum_{0 \le k_1, k_2, \dots, k_r < \infty} \frac{1}{p_1^{k_1} \dots p_r^{k_r}}$ eine reelle Zahl und damit auch $\sum_{k=1}^{\infty} \frac{1}{n}$. Dies ist ein Widerspruch, da die harmonische Reihe divergiert. Also gibt es unendlich viele Primzahlen.

zu 2.5

2.5.1 Man zeige, dass die Abbildung $\varphi:\ell^{\infty}\to c_0,\,(a_n)\mapsto (a_n/n)$ eine injektive lineare Abbildung ist. Ist sie surjektiv?

Man muss drei Dinge zeigen: φ ist eine Abbildung von ℓ^{∞} nach c_0 , φ ist linear und φ ist injektiv:

1. Sei also $(a_n)_{n\in\mathbb{N}}\in\ell^{\infty}$ beliebig, zu zeigen ist, dass

$$(b_n)_{n\in\mathbb{N}} := \varphi((a_n)_{n\in\mathbb{N}})) = \left(\frac{1}{n}a_n\right)_{n\in\mathbb{N}} \in c_0$$

also dass $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge ist.

Sei $\varepsilon > 0$ beliebig, nach Voraussetzung ist $(a_n)_{n \in \mathbb{N}}$ beschränkt, gelte etwa $\forall n \in \mathbb{N} : |a_n| \leq M$ mit M > 0, wähle nun nach dem Archimedesaxiom $n_0 \in \mathbb{N}$ mit $n_0 \geq \frac{M}{\varepsilon}$, dann ist für $n \geq n_0$:

$$|b_n| = \left| \frac{1}{n} a_n \right| = \frac{1}{n} |a_n| \le \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

Also ist $(b_n)_{n\in\mathbb{N}}$ eine Nullfolge, damit ist φ Abbildung von ℓ^{∞} nach c_0 .

2. φ ist linear

Seien
$$a = (a_n)_{n \in \mathbb{N}}, b = (b_n)_{n \in \mathbb{N}} \in \ell^{\infty}, \mu, \nu \in \mathbb{K}$$

z.Z: $\varphi(\mu \cdot a + \nu \cdot b) = \mu \cdot \varphi(a) + \nu \cdot \varphi(b)$.

Es gilt:

$$\varphi(\mu \cdot (a_n)_{n \in \mathbb{N}} + \nu \cdot (b_n)_{n \in \mathbb{N}}) = \varphi((\mu \cdot a_n)_{n \in \mathbb{N}} + (\nu \cdot b_n)_{n \in \mathbb{N}})
= \varphi((\mu \cdot a_n + \nu \cdot b_n)_{n \in \mathbb{N}})
= \left(\frac{1}{n} \cdot (\mu \cdot a_n + \nu \cdot b_n)\right)_{n \in \mathbb{N}}
= \left(\mu \cdot \frac{1}{n}a_n + \nu \cdot \frac{1}{n}b_n\right)_{n \in \mathbb{N}}
= \left(\mu \cdot \frac{1}{n}a_n\right)_{n \in \mathbb{N}} + \left(\nu \cdot \frac{1}{n}b_n\right)_{n \in \mathbb{N}}
= \mu \cdot \left(\frac{1}{n}a_n\right)_{n \in \mathbb{N}} + \nu \cdot \left(\frac{1}{n}b_n\right)_{n \in \mathbb{N}}
= \mu \cdot \varphi((a_n)_{n \in \mathbb{N}}) + \nu \cdot \varphi((b_n)_{n \in \mathbb{N}}).$$

Also ist $\varphi: \ell^{\infty} \to c_0$ eine lineare Abbildung.

3. φ ist injektiv

Bew.:

Seien
$$(a_n)_{n\in\mathbb{N}}$$
, $(b_n)_{n\in\mathbb{N}} \in \ell^{\infty}$ mit $\varphi((a_n)_{n\in\mathbb{N}}) = \varphi((b_n)_{n\in\mathbb{N}})$
z.Z: $(a_n)_{n\in\mathbb{N}} = (b_n)_{n\in\mathbb{N}}$

Nach Voraussetzung und der Definition von φ gilt:

$$\forall n \in \mathbb{N} : \frac{1}{n} a_n = \frac{1}{n} b_n \Rightarrow a_n = b_n$$

Also ist $(a_n)_{n\in\mathbb{N}}=(b_n)_{n\in\mathbb{N}}$ und φ ist eine injektive lineare Abbildung von ℓ^{∞} nach c_0 .

4. Ist φ surjektiv?

Beh.: φ ist nicht surjektiv

Bew.:

Man betrachte die Folge $\left(\frac{1}{\sqrt{n}}\right)_{n\in\mathbb{N}}=:(b_n)_{n\in\mathbb{N}}\in c_0$. Wäre φ surjektiv, gäbe es eine beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$\forall n \in \mathbb{N} : \frac{1}{n} a_n = \frac{1}{\sqrt{n}} \Rightarrow a_n = \sqrt{n}$$

es wäre also $(a_n)_{n\in\mathbb{N}}=(\sqrt{n})_{n\in\mathbb{N}}$ notwendig beschränkt. Das ist ein Widerspruch, also ist φ nicht surjektiv.

Insgesamt erhält man: φ ist eine injektive lineare Abbildung von ℓ^{∞} nach c_0 , die nicht surjektiv ist.

2.5.3 Man zeige:

- Die Menge der Cauchy-Folgen in Q bildet unter der gliedweisen Addition einen Q-Vektorraum.
- Der Teilraum der konvergenten Folgen ist ein echter Unterraum.
- Es bezeichne $CF_{\mathbb{Q}}$ die Menge der Cauchy-Folgen in \mathbb{Q} , um zu zeigen, dass $CF_{\mathbb{Q}}$ ein \mathbb{Q} -Vektorraum ist, seien also $a=(a_n), b=(b_n)\in CF_{\mathbb{Q}}$ und $\lambda \in \mathbb{Q}\,$ beliebig, man hat $a + \lambda b \in \mathrm{CF}_{\mathbb{Q}}\,$ zu zeigen:

Es sei also $\varepsilon>0,$ wegen $a,b\in\mathrm{CF}_{\mathbb Q}\,$ existiert $n_1\in\mathbb N\,,$ so dass für $n,m\geq n_1$

$$|a_n - a_m| \le \frac{\varepsilon}{2}$$

und $n_2 \in \mathbb{N}$, so dass für $n, m \geq n_2$ stets

$$|b_n - b_m| \le \frac{\varepsilon}{2(|\lambda| + 1)}$$

Sei $n_0 := \max\{n_1, n_2\}$; für $n, m \ge n_0$ gilt dann

$$|a_n + \lambda b_n - a_m - \lambda b_m| \leq |a_n - a_m| + |\lambda||b_n - b_m|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \frac{|\lambda|}{|\lambda| + 1}$$

$$< \varepsilon.$$

Also gilt $a+\lambda b\in\mathrm{CF}_\mathbb{Q}$ und wegen $\mathrm{CF}_\mathbb{Q}\neq\emptyset$ (es sind alle Nullfolgen sicher Cauchy-Folgen) ist $\mathrm{CF}_\mathbb{Q}$ ein Unterraum des \mathbb{Q} -Vektorraums aller Folgen in \mathbb{Q} .

• Der Teilraum aller konvergenten Folgen ist ein Unterraum, da er alle Nullfolgen enthält (und somit nicht leer ist) und wegen der Grenzwertsätze gegen Addition und \mathbb{Q} -Multiplikation abgeschlossen ist.

Er ist ein echter Unterraum, da Q nicht vollständig ist und somit nicht alle Cauchy-Folgen konvergent sind.