The Search for Harmonic Drums

PRESENTED BY:

TOM EICHLERSMITH (HAMLINE UNIVERSITY)
OTHER CONTRIBUTORS:
MOHAMED MOHAMED (HAMLINE UNIVERSITY)
ASHWIN SRIDHAR (HAMLINE UNIVERSITY)
ALEX CAMPBELL (CENTURY COLLEGE)

Vocabulary

- Frequency Spectra
- **♥**Harmonics
- Fundamental Frequency
- Frequency Number
- Eigenmodes, eigenfrequencies
- **♥**Intensity

Mathematics

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

Circular Drums

Circular Drums

Methods

Physical

Constructing drums

Measuring frequency spectra

Analyzing spectra and comparing to calculations

Computational

Define 'good' frequency spectra

Representing border

Calculating frequency spectra

Optimization of border shape

Definition of 'Good'

Linear Fit

Frequency

Harmonic Number

▶ Neural Network

Training Sounds Good

Border Representation

Frequency Calculation

```
NDEigensystem[
   {-Laplacian[f[x, y], {x, y}],
    DirichletCondition[f[x, y] == 0, True]},
   {f}, {x, y} ∈ region, Num]
```

Optimization

- Random Search
- **♥** Differential Evolution
- Nelder Mead
- Simulated Annealing

Unforeseen Complications

Self-Cancellation

♥ Varying Intensities

Future Directions

- Run better and longer optimization routines
- Better physical testing procedures
- ▶ Define lowest audible intensity
- ♣Include self-cancellation and varying intensities in analysis

Thank you

