### Projeto da Persistência de Dados

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Introdução

- Tipos de armazenamento dos dados:
  - Arquivos
  - Bancos de Dados Relacionais. Exemplos:
    Oracle, MySQL, PostgreSQL, etc.
  - Bancos de Dados Orientados a Objetos.
    Exemplos: DB4Objects, Zope Object Data Base (ou ZODB), etc.
  - Bancos de Dados Não Relacionais (NoSQL).
    Exemplos: MongoDB, Cassandra, CouchDB, etc.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### O Modelo Relacional

 Em um modelo de dados relacional, os conjuntos de dados são representados por tabelas de valores. Cada tabela, denominada de relação, é bidimensional, sendo organizada em linhas e colunas. Esse modelo está fortemente baseado na teoria matemática sobre relações, daí o nome relacional. Os principais conceitos do modelo relacional são:



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### O Modelo Relacional

- Chave Primária: coluna ou combinação de colunas que possui a propriedade identificar de forma única uma linha da tabela e que é utilizada para estabelecer associações entre entidades via transposição de chave.
- Chave Estrangeira ou Transposta: é a forma utilizada para associar linhas de tabelas distintas. A chave primária de uma tabela é transposta como uma coluna na outra tabela, onde é considerada uma chave estrangeira.

Departamentos

| Código | Nome        |
|--------|-------------|
| INF    | Informática |
| LET    | Letras      |
| MAT    | Matemática  |

Funcionários

| Matrícula | Nome    | Cod-Depto |
|-----------|---------|-----------|
| 0158      | José    | MAT       |
| 5295      | Ricardo | INF       |
| 7712      | Rosane  | INF       |

Chave Estrangeira

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### O Modelo Relacional

 Tabela Associativa: usadas para representar relacionamentos n-para-n entre tabelas.

| $\mathbf{r}$ |   |   |   |                       |   |   |
|--------------|---|---|---|-----------------------|---|---|
| Р            | 0 | C | C | റ                     | П | C |
|              |   |   | • | $\boldsymbol{\smile}$ | u | • |

| CPF      | Nome  |
|----------|-------|
| 96100199 | José  |
| 83467187 | Maria |
| 02765140 | Luiza |

Interesses

| CPF-Pessoa | Código- |
|------------|---------|
|            | Assunto |
| 96100199   | COMP    |
| 96100199   | MUS     |
| 02765140   | ENG     |

Assuntos

| 1100   | WWW B      |
|--------|------------|
| Código | Nome       |
| ENG    | Engenharia |
| COMP   | Computação |
| MUS    | Música     |

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# O Modelo Relacional - Propriedades

- 1) Cada tabela possui um nome único.
- 2) Nenhum campo parte de uma chave primária pode ser nulo.
- 3) Cada célula pode ser vazia ou conter no máximo um único valor.
- 4) Não há duas linhas iguais.
- 5) A ordem das linhas é irrelevante.
- 6) Cada coluna tem um nome único na mesma tabela.
- 7) Usando-se os nomes para referência às colunas, a ordem destas torna-se irrelevante.
- 8) Os valores de uma coluna são do mesmo tipo.
- 9) Colunas diferentes podem possuir o mesmo tipo.
- 10) Um campo que seja chave estrangeira só pode assumir valor nulo ou um valor para o qual exista um registro na tabela onde ele é chave primária.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Mapeamento Objeto-relacional

### Diferenças:

- objetos armazenam referências a outros objetos (p.ex., endereços de memória), enquanto bancos de dados relacionais ligam tabelas por meio de chaves transpostas.
- objetos usam coleções para tratar relacionamentos e atributos multivalorados, enquanto células de uma tabela só podem ter no máximo um valor.
- existe herança no modelo orientado a objetos e não há suporte a herança no modelo relacional.
- tabelas têm de ter uma chave primária, enquanto objetos são únicos por essência (endereço de memória único), ficando transparente para o desenvolvedor a existência de identificadores.
- No mapeamento O/R, as seguintes questões devem ser abordadas: (i) mapeamento de classes e objetos; (ii) mapeamento de herança; e (iii) mapeamento de associações entre objetos.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Mapeamento de classes e objetos

- Quando não há herança 1 classe é mapeada para 1 tabela. Ou seja, cada objeto de uma classe vira uma linha dessa tabela.
- Uma questão importante que surge é a chave primária.
  Uma solução possível é eleger um campo como chave (um campo que não se repita, que seja único, que possa atuar como chave primária, como por exemplo rg ou cpf).
- Uma outra possibilidade é a criação de uma chave primária artificial, ou seja, a criação de um identificador de objeto (id) e que não faça parte da lógica do negócio. Essa abordagem facilita a construção de componentes mais genéricos de persistência.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Mapeamento de herança

# Existem 3 formas principais de Mapear Herança:

Utilizar uma tabela para toda a hierarquia

 Utilizar uma tabela por classe concreta na hierarquia

Utilizar uma tabela por classe na hierarquia

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Uma tabela para toda a hierarquia

 Todos os campos de todas as classes da hierarquia são mapeados numa única tabela.



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

Uma tabela para cada classe concreta



Vantagem: Facilidade de processamento sobre as subclasses concretas, Ids. Desvantagem: Alteração da superclasse, muito processamento na superclasse há queda de desempenho.



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Uma tabela por classe da hierarquia



Vantagem: Fácil modificar superclasse

e acrescentar subclasses.

Desvantagem: Grande numero de tabelas,

mais tempo para acessar dados de uma classe pois há

a necessidade acessar várias tabelas.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Mapeando associações

• 1:1

# É feito transpondo uma chave primária de uma tabela para outra.

- Quando a associação for obrigatória nas duas extremidades (multiplicidade mínima 1 em ambas as extremidades), pode-se escolher qualquer das chaves para transpor.
- Quando a associação for opcional em pelo menos uma das duas extremidades (multiplicidade mínima 0), é melhor transpor a chave que dará origem a uma coluna mais densa, isto é, que terá menos valores nulos.
- Sempre que possível, deve-se transpor a chave que facilite a navegabilidade escolhida.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Mapeando associações

#### • 1: N

O mapeamento de associações 1:N é feito transpondo-se a chave primária da tabela correspondente à classe cuja extremidade da associação tem multiplicidade máxima 1 para a tabela que corresponde à classe cuja extremidade da associação tem multiplicidade máxima n



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Mapeando associações

#### • N : N

O mapeamento de associações N:N é feito utilizando-se uma tabela associativa, uma vez que bancos de dados relacionais não são capazes de manipular diretamente relacionamentos N:N.



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Exemplo de Mapeamento Objetorelacional

- Para fazer o mapeamento objeto-relacional e aplicar num banco precisaríamos de um SGBD configurado e uma ferramenta visual para comunicar com ele.
- Optaremos por uma opção mais simples: Utilizaremos o software BrModelo. Com esse software podemos desenhar o Modelo Lógico do banco sem nos preocuparmos diretamente com a tecnologia do banco em si (por exemplo: o tipo inteiro será INTEGER, NUMBER ou será mapeado em algum outro tipo? No BrModelo podemos convencionar o que quisermos).
- É importante notar que o projeto gerado no BrModelo não é executado diretamente num SGBD qualquer, ele é apenas um modelo.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

# Exemplo de Mapeamento Objetorelacional



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Mapeando a classe Conta

- A classe Conta não herda de ninguém, nesse caso uma tabela é o suficiente.
- Também optaremos pela solução de criação de uma chave artificial id. Nesse contexto tivemos o mapeamento da classe Conta na tabela Conta:





Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Mapeamento da classe Pessoa

- Podemos mapear a herança de 3 formas:
  - Utilizar uma tabela para toda a hierarquia

| Pessoa               |
|----------------------|
| 🔑 id: INTEGER        |
| nome: STRING         |
| endereco: STRING     |
| cidade: STRING       |
| estado: STRING       |
| bairro: STRING       |
| cpf: STRING          |
| cnpj: STRING         |
| inscEstadual: STRING |
|                      |





- Utilizar uma tabela por classe concreta na hierarquia
  - Utilizar uma tabela por classe na hierarquia



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Mapeando a relação



- É importante notar que se usássemos o modelo de uma tabela por classe concreta da hierarquia teríamos PessoaJuridica e PessoaFisica se relacionando diretamente com Conta\_Pessoa.
- Note também que a chave Primária de Pessoa é a chave primária (e também estrangeira) de PessoaJuridica e PessoaFisica



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Camada de Persistência

A Camada de Persistência (ou Componente de Gerência de Dados - CGD) provê a infraestrutura básica para o armazenamento e a recuperação de objetos no sistema.

Sua finalidade é isolar os impactos da tecnologia de gerenciamento de dados sobre a arquitetura do software (COAD; YOURDON, 1993).

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Camada de Persistência

- É possível implementar classes (manualmente) para fazer o trabalho de persistência ou usar frameworks para facilitar o trabalho de implementação.
- Frameworks como o Hibernate já dispõe de linguagem própria para escrita de consultas com desempenho próximo a implementação direta de classes para persistência.
- A escolha da abordagem a ser utilizada fica a cargo da equipe de desenvolvimento. Em geral é recomendado o uso de frameworks dado seu atual grau de maturidade e, em situações específicas, pode-se se utilizar a codificação mais manual por acessar de forma mais direta a tecnologia de persistência.

Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas

### Dúvidas?



Instituto Federal do Espirito Santo – Campus Colatina

Disciplina: Projeto de Sistemas Professor: Giovany Frossard Teixeira