

Voronoi-Based Foveated Volume Rendering

<u>Valentin Bruder</u>, Christoph Schulz, Ruben Bauer, Steffen Frey, Daniel Weiskopf, Thomas Ertl

Motivation

- Output devices: increase in pixel density and refresh rate
 - → Impacts volume rendering performance
- Typical acceleration techniques based on data properties
- Contributions
 - Foveated volume rendering
 - Speedup of factor 1.8 3.6
 - Barely perceptible changes in quality
 - Sampling strategy specific to volume raycasting
 - Voronoi-based sampling and reconstruction

Pipeline Overview

Pipeline Overview

Visual Acuity Fall-Off Model

Visual acuity falls off in the periphery

- We approximate the fall-off with a 2D Gaussian, using
 - Screen resolution and size
 - Viewing distance
 - Conservative foveal acuity (adults below age 50)

Pipeline Overview

Pre-processing

Model visual acuity fall-off

Approximate with Gaussian

Pre-processing

Pre-processing

Model visual acuity fall-off

Approximate with Gaussian

Pre-processing

Pre-processing

Pre-processing

Weighted Linde-Buzo-Gray Algorithm [Deussen, 2017] [Görtler, 2019]

- Arrange samples according to density function
- Little or no visible patterns
- Here: samples → ray starting position
- Voronoi

- One Voronoi cell per sample
- Integrate over each cell: How well is the density function represented?
- Adapt iteratively

Weighted Linde-Buzo-Gray Algorithm [Deussen, 2017] [Görtler, 2019]

- Arrange samples according to density function
- Little or no visible patterns
- Here: samples → ray starting position
- Voronoi

- One Voronoi cell per sample
- Integrate over each cell: How well is the density function represented?
- Adapt iteratively

Pipeline Overview

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi

$$G(x,y) = \sum_{i=0}^{k} \frac{A(S_i \cap N)}{A(N)} f(x_i, y_i)$$

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi

$$G(x,y) = \sum_{i=0}^{k} \frac{A(S_i \cap N)}{A(N)} f(x_i, y_i)$$

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi

- Natural neighbor interpolation [Sibson, 1980]
 - Smooth approximation
 - Local neighbors
 - Generally C_1 continuous
 - Voronoi
- For each pixel in sampling mask (pre-processing):
 - Save neighbor IDs and weights in map
 - Look up during runtime

Pre-processing

Pre-processing

Volume raycasting

Pre-processing

Rendering

Volume raycasting

Pre-processing

Volume raycasting

Reconstruction

Pre-processing

Regular: 38 fps Foveated: 105 fps

Measurements

Development: stationary Tobii Pro Spectrum eye tracker (1200 Hz)

- Automated performance evaluation
 - 1024² px on 24" screen
 - NVIDIA GeForce GTX 1070 (8GB VRAM)
 - 6 data sets
 - 65536 measurements
 - 256 randomly scattered gaze positions
 - 256 random camera configurations

• Reconstruction overhead: 1.5 \pm 0.157 ms

Results

			Mean fps		
	Data set	Resolution	Regular	Foveated	Speedup
	Combustion	480 x 720 x 120	73.85	154.20	0 5
	Supernova	432 x 432 x 432	37.60	105.28	
	Vortex cascade	529 x 529 x 529	33.27	104.87	(D)
	Zeiss	680 x 680 x 680	98.50	177.09	├
*	Flower	1024 x 1024 x 1024	22.79	74.08	<u> </u>
	Chameleon	1024 x 1024 x 1080	35.99	99.78	0 00 00 1 00

Results Regular Foveated

		Mean fps		
Data set	Resolution	Regular	Foveated	
Combustion	480 x 720 x 120	73.85	154.20	
Supernova	432 x 432 x 432	37.60	105.28	
Vortex cascade	529 x 529 x 529	33.27	104.87	
Zeiss	680 x 680 x 680	98.50	177.09	
Flower	1024 x 1024 x 1024	22.79	74.08	
Chameleon	1024 x 1024 x 1080	35.99	99.78	

Regular Foveated **Results**

			Mean fps		
	Data set	Resolution	Regular	Foveated	
	Combustion	480 x 720 x 120	73.85	154.20	
	Supernova	432 x 432 x 432	37.60	105.28	
	Vortex cascade	529 x 529 x 529	33.27	104.87	
	Zeiss	680 x 680 x 680	98.50	177.09	
*	Flower	1024 x 1024 x 1024	22.79	74.08	
	Chameleon	1024 x 1024 x 1080	35.99	99.78	

Results Regular Foveated

			Mea		
	Data set	Resolution	Regular	Foveated	
	Combustion	480 x 720 x 120	73.85	154.20	
	Supernova	432 x 432 x 432	37.60	105.28	
	Vortex cascade	529 x 529 x 529	33.27	104.87	
	Zeiss	680 x 680 x 680	98.50	177.09	
*	Flower	1024 x 1024 x 1024	22.79	74.08	
	Chameleon	1024 x 1024 x 1080	35.99	99.78	

Conclusion and Future Work

- Accelerate volume rendering by utilizing
 - Eye tracking
 - Acuity fall-off of the visual system
- Sampling: Linde-Buzo-Gray algorithm
- Reconstruction: natural neighbor interpolation
- Average speedups: 1.8 3.2
- Barely perceptible quality impact

Future work

- Port to head-mounted devices with integrated eye tracking
- Performance characteristics of stereo volume rendering

Thank you!

Valentin Bruder

valentin.bruder@visus.uni-stuttgart.de

https://vbruder.github.io

References

• BRUDER V., MÜLLER C., FREY S., ERTL T.: On evaluating runtime performance of interactive visualizations. IEEE Transactions on Visualization and Computer Graphics (2019), 1–1. 1, 3

- DEUSSEN O., SPICKER M., ZHENG Q.: Weighted Linde-BuzoGray stippling. ACM Transactions on Graphics 36, 6 (2017), 1–12. 2
- GÖRTLER J., SPICKER M., SCHULZ C., WEISKOPF D., DEUSSEN O.: Stippling of 2D scalar fields. IEEE Transactions on Visualization and Computer Graphics (2019).
- SIBSON R.: A vector identity for the Dirichlet tessellation. In Mathematical Proceedings of the Cambridge Philosophical Society (1980), vol. 87, Cambridge University Press, pp. 151–155. 3