$https://ro-gut.github.io/turan3\ https://github.com/ro-gut/turan3\ https://ro-gut.github.io/turan3/docs$

Turán's Theorem Formalization

ro-gut

September 17, 2025

0.1 Concentrating support on a clique - Improve Operartion

Definition 1 (A better distribution). Better Given a weight function W, define $w^* := \text{Better}(W)$ such that $\text{supp}(w^*) \subseteq \text{supp}(W)$ and

$$W.\text{fw} < w^*.\text{fw}$$
.

In words: w^* is a distribution improving or preserving the edge weight and supported within that of W.

Definition 2 (Single transfer). Improve Given distinct vertices $v_j \neq v_i$, define $w' := \text{Improve}(W, v_j, v_i)$ by transferring a small amount of weight from v_j (loose) to v_i (gain):

$$w'(v_j) = W(v_j) - \varepsilon, \quad w'(v_i) = W(v_i) + \varepsilon,$$

for some small $\varepsilon > 0$, and w'(v) = W(v) for $v \neq v_i, v_j$. In words: weight is shifted from v_j to v_i preserving total weight.

Lemma 3 (Sum splitting along the partition). $Improve_partition_sum_splitThe sum overedges E$ of the function vp splits as

$$\sum_{e \in E} \mathit{vp}(w', e) = \sum_{\substack{e \in E \\ e \ni v_i}} \mathit{vp}(w', e) + \sum_{\substack{e \in E \\ e \ni v_j}} \mathit{vp}(w', e) + \sum_{\substack{e \in E \\ e \not\ni v_i, v_j}} \mathit{vp}(w', e).$$

In words: the total sum decomposes into parts incident to v_i , incident to v_j , and the rest.

the rest. $\textbf{Lemma 4} \text{ (Gain-incidence increases). } Improve_qain_contribution_increase The increment in the sum overedges increase The increa$

$$\sum_{e\ni v_i} \mathit{vp}(w',e) - \sum_{e\ni v_i} \mathit{vp}(W,e) = \varepsilon \sum_{v_k \in N(v_i)} W(v_k),$$

where $N(v_i)$ is the neighborhood of v_i . In words: the gain vertex's contribution increases by ε times the sum of weights of its neighbors.

Lemma 5 (Loose-incidence becomes zero). $Improve_loose_contribution_zeroThesumoveredgesincident tov_j$ after the transfer satisfies

$$\sum_{e\ni v_j} vp(w',e) = 0.$$

In words: the loose vertex's incident edge contributions vanish after the transfer.

Lemma 6 (Unchanged complement). $Improve_unchanged_edge_sumForedgese$ not incident to v_i or v_j ,

$$vp(w',e) = vp(W,e).$$

In words: edges outside the gain and loose neighborhoods remain unchanged.

Lemma 7 (Transfer does not decrease fw). $Improve_total_weight_nondeclem : <math>Improve_partition_sum_split, lem : I$ w'.fw. In words: the total edge weight does not decrease after applying Improve.

Lemma 8 (Improve strictly reduces support). $Improve_support_strictly_reduceddef: ImproveIftheneighborhoo |supp(W)|$. In words: the transfer strictly reduces the number of vertices with positive weight.

Theorem 9 (Support of Better is a clique). $Better_forms_cliquedef: Improve, lem: Improve_total_weight_nonder Better(W) forms a clique:$

$$\forall v_a, v_b \in \text{supp}(w^*), v_a \neq v_b \implies \{v_a, v_b\} \in E.$$

In words: every two distinct vertices with positive weight in w^* are adjacent.

0.2 The Enhance Operation

Definition 10 (Enhance). Enhance Given distinct non-adjacent vertices v_j, v_i , define $w' := \mathtt{Enhance}(W, v_j, v_i, \varepsilon)$ by transferring $\varepsilon > 0$ weight from v_j to v_i :

$$w'(v_j) = W(v_j) - \varepsilon$$
, $w'(v_i) = W(v_i) + \varepsilon$, $w'(v) = W(v)$ for $v \neq v_i, v_j$,

with the condition $\{v_j, v_i\} \notin E$. In words: Enhance transfers weight between non-adjacent vertices to increase edge weight.

Lemma 11 (Sum over support). $sum_o ver_s upport The total vertex weight satisfies <math>\sum_{v \in \text{supp}(W)} W(v) = 1$. In words: the weights sum to 1 over the support.

Lemma 12 (Supported edge partition). $supported_e dge_p artition The edge set E partitions as$

$$E = E_{v_i} \cup E_{v_i} \cup E_{rest}$$

where

$$E_{v_i} = \{e \in E : v_i \in e\}, \quad E_{v_j} = \{e \in E : v_j \in e\}, \quad E_{\text{rest}} = E \setminus (E_{v_i} \cup E_{v_j}).$$

In words: edges are split into those incident to v_i , to v_i , and the rest.

Lemma 13 (Enhance gain sum). Enhance $gain_sumUnder$??, the change in the sum overedges incident to v_i satisfies

$$\sum_{e \in E_{v_i}} \mathit{vp}(w', e) - \sum_{e \in E_{v_i}} \mathit{vp}(W, e) = \varepsilon \sum_{v_k \in N(v_i)} W(v_k).$$

In words: the gain vertex's edge contribution increases by ε times the sum of its neighbors' weights.

Lemma 14 (Enhance loose sum). $Enhanceloose_sumUnder??$, the sum overedges incident to v_j satisfies

$$\sum_{e \in E_{v_j}} vp(w', e) = 0.$$

In words: the loose vertex's incident edge contributions become zero after Enhance.

Definition 15 (Bijection inside the clique). the $bijDefineabijection \phi: \{e \in E_{v_j} \setminus \{s(v_j, v_i)\}\} \rightarrow \{e \in E_{v_i} \setminus \{s(v_j, v_i)\}\}$ mapping edges incident to v_j (except $s(v_j, v_i)$) to edges incident to v_i (except $s(v_j, v_i)$). In words: this bijection pairs edges incident to v_j with edges incident to v_i within the clique.

Lemma 16 (Bijection preserves). $the_b ij_s ame For any edge e incident to <math>v_j$ (excluding $s(v_i, v_i)$), the "other" vertex weight satisfies

$$W(\text{other}(e, v_j)) = W(\text{other}(\phi(e), v_i)).$$

In words: the bijection preserves weights at the other endpoints of edges.

Lemma 17 (Loose/gain equality). $Enhance_sum_loose_gain_equal def: the_bij, lem: the_bij_sameThetotal weighttree <math>\sum_{e \in E_{v_j}} vp(w', e) + \sum_{e \in E_{v_i}} vp(w', e) \geq \sum_{e \in E_{v_j}} vp(W, e) + \sum_{e \in E_{v_i}} vp(W, e)$. In words: the combined edge contributions of loose and gain vertices do not decrease after Enhance.

Lemma 18 (Complement unchanged). $Enhance_sum_complement_unchangedForedgese \in E_{rest}$,

$$vp(w',e) = vp(W,e).$$

In words: edges not incident to v_i or v_j remain unaffected by Enhance.

Lemma 19 (Edge contribution increase). $Enhance_e dge_g ainloose_increase Thenetedge contribution satisfies <math>\sum_{e \in E_{v_i} \cup E_{v_j}} up(W, e)$. In words: the total contribution from gain and loose vertices does not decrease.

Lemma 20 (Support edges unchanged). $Enhance_support_edges_sameForanyvertexv \notin \{v_i, v_j\}$, the edge contributions satisfy

$$\sum_{e\ni v} \textit{vp}(w',e) = \sum_{e\ni v} \textit{vp}(W,e).$$

In words: vertices outside gain and loose retain their edge contributions after Enhance.

Theorem 21 (Enhance increases edge weight). $Enhance_total_weight_stricinclem: supported_edge_partition, lem <math>w'$.fw > W.fw. In words: the Enhance operation strictly improves the total edge weight.

0.3 Equalizing the weights on the clique - EnhanceD

Definition 22 (Carefully chosen ε). the epsDefine the $_{\varepsilon}:=\max\Big\{\varepsilon>0\mid w'(v_j)=W(v_j)-\varepsilon\geq 0,\quad w'(v_i)=0\}$. In words: the $_{\varepsilon}$ is the maximal ε transferring weight from the argmax vertex v_j to the argmin vertex v_i without violating support constraints.

Definition 23 (Maximising the number of uniform vertices). $\max_u niform_s upport Definem := \max\{k \mid \exists w \text{ with } \operatorname{supp}(w) \subseteq \operatorname{supp}(W), w.\operatorname{fw} \geq W.\operatorname{fw}, \text{ and } w(v) = \frac{1}{k} \text{ for at least } k \text{ vertices}\}.$ In words: m is the maximal number of vertices with uniform weight 1/k achievable without decreasing edge weight.

Lemma 24 (Best uniform distribution exists). $exists_best_uniformdef : max_uniform_supportThereexistsw_M$ with $supp(w_M) \subseteq supp(W)$, $w_M.fw \ge W.fw$, and with at least m vertices having weight 1/m. In words: a maximiser w_M achieving the maximal uniform vertex count exists.

Definition 25 (UniformBetter). UniformBetter lem:exists_best_uniformDefinew_M := UniformBetter(W) as such a maximiser with maximal uniform support.

Definition 26 (Enhanced). Enhanced def:Enhance, def:the_psDefinew⁺ := Enhanced(W) := Enhance(W, v_j, v_i , the_ ε), where $v_j = \arg\max_v W(v)$, $v_i = \arg\min_v W(v)$. In words: Enhanced transfers maximal weight from the heaviest to the lightest vertex.

Lemma 27. Enhanced_unaffecteddef : Enhance, def : EnhancedForanyvertexv with $W(v) = \frac{1}{|\text{supp}(W)|}$,

$$w^+(v) = W(v).$$

In words: vertices already at uniform weight remain unchanged under Enhanced.

 $\textbf{Lemma 28.} \ Enhanced_effect_argmaxdef: Enhance, def: Enhanced The weight at the argmax vertex v_j \\ after \ Enhanced \ satisfies$

$$w^+(v_j) = \frac{1}{|\operatorname{supp}(W)|}.$$

In words: Enhanced reduces the argmax vertex's weight to the uniform level.

Lemma 29. Enhanced_i nc_u $niform_c$ ountdef: Enhanced_ilem: Enhanced_e $ffect_a$ rgmax, lem: Enhanced_unaf increases after Enhanced:

$$|\{v: w^+(v) = 1/|\operatorname{supp}(W)|\}| > |\{v: W(v) = 1/|\operatorname{supp}(W)|\}|.$$

In words: Enhanced increases the count of uniform weight vertices.

Lemma 30. def:UniformBetter The support of W forms a clique if and only if the support of $w_M = UniformBetter(W)$ forms a clique:

$$supp(W) \ clique \iff supp(w_M) \ clique.$$

In words: the clique property is preserved by UniformBetter.

Lemma 31 (Uniform weights on the support). $UniformBetter_constant_supportdef: UniformBetter, def: Enl supp(<math>w_M$),

$$w_M(v) = \frac{1}{|\text{supp}(w_M)|}.$$

In words: the weights of all support vertices in UniformBetter are uniform.

Lemma 32 (Edge values under UniformBetter). $UniformBetter_edges_valuelem : UniformBetter_constant_suppose <math>\{v_a, v_b\}$ with $v_a, v_b \in \text{supp}(w_M)$,

$$\mathit{vp}(w_M, e) = \left(\frac{1}{|\mathrm{supp}(w_M)|}\right)^2.$$

In words: every supported edge has value equal to the square of the uniform vertex weight.

Lemma 33 (Edge count in a clique). $clique_sizelem : UniformBetter_factsIf|supp(w_M)| = k, then$

$$|\{e \in E : e \subseteq \operatorname{supp}(w_M)\}| = \frac{k(k-1)}{2}.$$

In words: the supported edges form a complete graph on k vertices.

Lemma 34 (A light computation). computation For k > 0,

$$\frac{k(k-1)}{2} \cdot \left(\frac{1}{k}\right)^2 = \frac{1}{2} \left(1 - \frac{1}{k}\right).$$

In words: the total edge weight for a clique with uniform weights simplifies to $\frac{1}{2}(1-\frac{1}{k})$.

Lemma 35 (Monotonicity of the bound). bound bound_realThefunction $f(k) := \frac{1}{2} \left(1 - \frac{1}{k}\right)$ is nondecreasing for $k \ge 1$. In words: the bound increases as the clique size increases.

Theorem 36 (Final bound inside a clique). $finale_boundlem : Better_forms_clique, lem : Better_non_decr, lem :$

$$W.\text{fw} \le \frac{1}{2} \left(1 - \frac{1}{p-1} \right).$$

In words: the total edge weight is bounded by the Turán bound for cliques of size less than p.

Definition 37 (Uniform weights over all vertices). UnivFun Define

$$\mathtt{UnivFun}(G)(v) := \frac{1}{|V|} \quad \forall v \in V.$$

In words: the uniform vertex weight function assigns equal weight 1/|V| to every vertex.

Lemma 38 (Total weight under UnivFun). $UnivFun_w eight def : UnivFunThetotaledgeweight satisfies (UnivFunUnivF$

Theorem 39 (Turán's Theorem). $turans\ def: UnivFun,\ lem: UnivFun_weight,\ lem: finale_bound, lem: computationLetp <math>\geq 2$ and let G be a p-clique-free graph. Then

 $|E| \le \frac{1}{2} \left(1 - \frac{1}{p-1} \right) |V|^2.$

In words: the number of edges in a p-clique-free graph is bounded by Tur'an's theorem.