- **1.** Give an example of a binary relation $P \subseteq \mathbb{R} \times \mathbb{R}$ such that:
- a) P is not functional, injective, not total, and surjective;
- b) P is functional, not injective, total, and not surjective.

Pi's (not func: oRo and oR1

I'n)

not t-ot-al for the field {0,1,2}

sur; For the field {0,1,2}

b) Let
$$P = \{(0,0), (1,0), (2,1)\}$$

Not inj: ORO and 1RO
Lotal for the field &0,1,23

Not surj for the field &0,1,23

- **2.** Let a relation $R \subseteq A \times B$ be functional.
- a) Then $R[R^{-1}[X]] \subseteq X$ for every set X.
- b) Does the converse inclusion always hold?

a) By Functionality, \x\y\z (xRgnxRz => y=z)

CER[RI[X]] => 36(6E RI[X] 16Rc) =>

E) Fa Fb (a EX 1 bRa 1 bRc) by func. a = c

And because
$$c = a$$
, $a \in X = > c \in X = > R[R^{\frac{1}{2}}X]] \subseteq X$
b) Consider $A = \{0,13, B = \{0\}\}$ $X = \{1\}$
 $R = \{(0,0), (1,0)\}$
 $R^{-1}[X] = \{\emptyset\} = > R[\{\emptyset\}] \subseteq X = \{1\}$

3. Suppose that $f: A \to B$ and $g: A \to B$. Prove that $f \cup g: A \to B$ iff f = g.

Assume
$$f \cup g: A \rightarrow B$$
. Let $(a,b) \in f$. Since $f \cup g$ is $f \cup f \cup g$ is $f \cup f \cup g$ is $f \cup f \cup g$. As $f \cup g$ is $f \cup f \cup g$, $b = c \Rightarrow (a,b) \in g$ and $f \subseteq g$. $W \cup OG$, $g \subseteq f$ in a similar manner. $f = g$.

4. Suppose that $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is an injection, then f is an injection as well.

Assume
$$f(x) = f(y) \Rightarrow g(f(x)) = g(f(y)) \Rightarrow x = y$$

because $g \circ f$ is injective $\Rightarrow f$ is inj.

6. Suppose that $f: A \to B$ and $f^{-1}: B \to A$. Then f is a bijection from A to B.

$$f \circ f^{-1}: B \to A \to B = B \to B = id_B$$
 7 f is a bijection.

- 7. Give an example element from the following sets:
- a) $\mathbb{Q}^{\underline{3}}$;
- b) $\mathbb{R}^{\mathbb{Q}}$;
- c) $\mathbb{R}^{\mathbb{R}\times\mathbb{Z}}$

5*. Prove that a function $f: A \to B$ is an injection iff for every set C and every functions $g, h: C \to A$, from $f \circ g = f \circ h$, it follows that g = h.

Suppose
$$f$$
 is injective and $f(g(x)) = F(h(x))$
then $g(x) = h(x) \Rightarrow g = h$
Suppose f is not injective f $f(x) = f(x) = f(x)$
Let f $f(x) = f(x) = f(x)$
 $f(x) = f(x)$
Suppose f is not injective $f(x) = f(x)$
 $f(x) = f(x)$
 $f(x) = f(h(x))$
 $f(x) =$