مبانی نظریه محاسبه

پاسخ کوییز اول نمره کل: ۹ نمره

۱. یک مسئله مثال بزنید و سپس یک زبان را روی آن مسئله شرح دهید. (T نمره) السخ: یک مسئله تصمیم گیری امثال میزنیم. فرض کنید بخواهیم با ورودی گرفتن دو عدد طبیعی T و T مشخص کنیم T بر T بخش پذیر است یا خیر. مسئله پارامتر ثابت ندارد و ورودی آن دو عدد T و T و خروجی آن YES یا NO است. زبان این مسئله را میتوان به صورت زیر توصیف کرد:

$$L = \{ \langle n, k \rangle : n, k \in \mathbb{N}, k \mid n \}$$

منظور از $\langle n,k \rangle$ نوعی کد کردن ^۳ دو عدد طبیعی با یک الفبا است. به عنوان مثال یک نوع کد کردن میتواند به کمک الفبای $\Sigma = \{a,\#\}$ باشد؛ یعنی دو عدد طبیعی n و k را به صورت کردن میتواند به کمک در این صورت زبان L به صورت زیر خواهد بود:

$$L = \{a^n \# a^k : n, k \in \mathbb{N}, k \mid n\}.$$

n یک نوع دیگر میتوانست به کمک الفبای $\{\circ, 1, \#\}$ باشد و از نمایش مبنای دو اعداد $\Sigma = \{\circ, 1, \#\}$ و کنیم. در فصل ۷ خواهید دید که چگونه این نمایشها برای ورودی دادن به ماشینهای تورینگ—که مدلی ریاضی برای کامپیوتر در دستتان هستند—استفاده میشوند.

- ۲. مسئله معادل اجتماع دو زبان را چگونه توصیف میکنید؟ یک مثال بزنید. (۱ نمره) پاسخ: مسئله معادل اجتماع دو زبان را میتوان با قرار دادن کلمه «یا» بین آن دو مسئله توصیف کرد. $L_{\mathsf{Y}} = \{a^{\mathsf{W}k+\mathsf{Y}} \mid k \in \mathbb{N}\}$ و $L_{\mathsf{Y}} = \{a^{\mathsf{W}k+\mathsf{Y}} \mid k \in \mathbb{N}\}$ و $L_{\mathsf{Y}} = \{a^{\mathsf{W}k+\mathsf{Y}} \mid k \in \mathbb{N}\}$ و $L_{\mathsf{Y}} = \{a^{\mathsf{W}k+\mathsf{Y}} \mid k \in \mathbb{N}\}$ را میتوان به این صورت توصیف کرد که با ورودی گرفتن یک عدد طبیعی مانند n مشخص کنیم باقی مانده n بر n برابر ۱ یا ۲ است یا خیر.
- ۳. درستی یا نادرستی گزارههای زیر را مشخص کنید. برای پاسخ خود دلیل بیاورید؛ در صورت درستی اثبات و در غیر این صورت مثال نقض بیاورید. (هر مورد ۱ نمره و جمعاً ۵ نمره)
 - آ) برای هر زبان L^* ،L نامتناهی است.

[.] معرفی مسئله، ورودی و خروجی آن یک نمره، مشخص کردن زبان مسئله یک نمره و مشخص کردن الفبای زبان نیز یک نمره دارد.

²Decision problem

³Encoding

پاسخ: نادرست. اگر $\{\Lambda\}$ باشد، $\{\Lambda\}$ خواهد بود. اگر $\{\Lambda\}$ باشد، گزاره درست خواهد بود.

ب) Λ میتواند الفبای یک زبان باشد.

پاسخ: نادرست. Λ رشته به طول صفر است اما الفبا یک مجموعه متناهی است.

 $\Lambda \in L$ برای زبان Λ ، اگر $\Lambda \in L^*$ باشد، آنگاه (ج

 $L^*=\{\Lambda,a,aa,aaa,\cdots\}$ باشد، آنگاه $L=\{a\}$ باشد، اگر پاسخ: نادرست

د) هیچ زبانی مانند L وجود ندارد که برای هر k داشته باشیم

$$\bigcup_{i=1}^k L^i = \bigcup_{i=1}^\infty L^i.$$

پاسخ: نادرست. زبانهای $\Sigma^* = L = \{\Lambda\}$ یا $L = \{\Lambda\}$ دارای این ویژگی هستند.

 $\cdot \{a^*b^*\} = \{a^nb^n \mid n \ge \circ\} \text{ (} \bullet$

 $a^{\mathsf{r}}b^{\mathsf{f}} \notin \{a^nb^n \mid n \geq \circ\}$ اما $a^{\mathsf{r}}b^{\mathsf{f}} \in \{a^*b^*\}$. پاسخ: نادرست