Learning FOL

Alexander Pluska

January 8, 2023

1 Multi-sorted first-order logic

1.1 Syntax

We consider a countably infinite set of sorts S, T, \ldots and for each sort a countably infinite set of variables x, y, \ldots . Furthermore for each n+1-tuple of sorts S_0, \ldots, S_n we define a countably infinite set of function symbols f, g, \ldots , we say that those functions are of sort $S_0 \times \ldots \times S_{n-1} \to S_n$. A term of sort S is defined inductively as follows:

- A variable x of sort S is a term of sort S.
- Given a function f of sort $S_0 \times ... \times S_{n-1} \to S_n$ and n terms $t_0, ..., t_{n-1}$ of sorts $S_0, ..., S_{n-1}, f(t_0, ..., t_{n-1})$ is a term of sort S_n .

Given two terms t, u of the same sort S, t = u is an equation. Given equations $t_0 = u_0, \ldots, t_m = u_m$ and $v_0 = w_0, \ldots, v_n = w_n$

$$t_0 = u_0, \dots, t_m = u_m \vdash v_0 = w_0, \dots, v_n = w_n$$

is a sequent. A set of sequents is a theory.

1.2 Semantics

An interpretation is an assignment I that maps each sort to a set, each variable x of sort S to an element $I(x) \in I(S)$ and each function f of sort $S_0 \times \ldots \times S_{n-1} \to S_n$ to a function $I(f): I(S_0) \times \ldots \times I(S_{n-1}) \to I(S_n)$. As usual t is canonically extended to terms. We write t^I for I(t).

We say that an interpretation I satisfies an equation t=u if $t^I=u^I$. We say that an interpretation I satisfies a sequent $t_0=u_0,\ldots,t_m=u_m\vdash v_0=w_0,\ldots,v_n=w_n$ if it does not satisfy one of $t_0^I=u_0^I,\ldots,t_m^I=u_m^I$ or it satisfies all of $v_0^I=w_0^I,\ldots,v_n^I=w_n^I$. We say that an interpretation I satisfies a theory \mathcal{T} if it satisfies all sequents in \mathcal{T} . A sequent is valid in a theory \mathcal{T} if every interpretation that satisfies \mathcal{T} satisfies the sequent. A theory is consistent if it has a model.