

glassdoor

DS Intern Assignment – Mitali Bharali

Graduate Student – UT Dallas

Major: Data Science

mitali11bharali@gmail.com, 4693803996

Analysis Workflow

Ensemble Learning

Data Cleaning

- Remove NaN, duplicates
- Format columns, data types

Data Visualization (tableau)

- Variations across variables
- Outliers
- Correlation between columns

Data Modelling

Supervised Learning – Classification models

Model Evaluation, Boosting (python)

- Bagging, Pasting
- Adaboost, Gradient
- Cross Validation and GridSearchCV

Performance and Feature selection

- Accuracy,
 Precision, Recall and f-1 Score
- Random Forest Feature selection

Data Cleaning

	Employer ID	Number of Slots	Price Paid	Marketplace Value Delivered	Applications	Renewed?	term-length	Start Year	End Year	Start Month	End Month
0	40	125	67125.0	147711.043445	9647.7	0	393	2015	2016	2	2
1	43	100	85025.0	62214.929769	7182.2	1	365	2015	2016	12	12
2	72	125	91290.0	59242.473666	6571.3	0	730	4031	4033	4	4
3	94	35	21480.0	27519.574564	2558.8	1	365	2015	2016	12	12
4	102	50	26850.0	24337.924740	1501.1	1	365	2015	2016	5	5

Term length: calculated with start date and end date

Date and month are extracted

One hot encoding for locations if needed

 Heatmap generated for correlation judgment among various columns, usually drop one of the columns that's highly correlated

ys ys ys ys

365 days

			Price Paid	term-length
Employer ID	Employer City	Employer State		
40	Belmont	California	67125.0	393 days
43	Northbrook	Illinois	85025.0	365 days
72	New York	New York State	71600.0	365 days
	na	na	19690.0	365 days

Texas

21480.0

94

Houston

There are duplicate Employer IDs, hence to understand customer behavior, treat each customer uniquely

1) Variations across Job slot packages Using Tableau

Prices over different no of slots

Price Distribution

Term Length, Slot Package, Avg Price vs Renual Performance, count no of applicants recieved

Price & Term vs others

Even when more price is paid for higher slots, count of applicants received (encoded with size) is lesser. The variation of term length is also encoded with color, telling slot of 10 was for less duration and never renewed and also didn't obviously receive much applicants

Popular Packages

Term Length vs market value and renual

Term Length Variations

Term length vs no of applicants with renual

Left graph: market value delivery is almost as evenly distributed with term length

Right Graph: Size tells us the median no of applicants against the label of term length; dark color is renewed and light is not

2) Variations in Delivery performance

Market Value Delivered vs slots, renewal across customers

Market place value vs applications

2) Retention Analysis

Used Python

Data Modelling

Machine Learning

Data Models

Logistic, SVC(kernel), Decision Tree

- Best Accuracy for decision tree 74% test
- Easy to change colors, photos and Text.
- Model Evaluation using GridSearchCV; tuning hyper-parameters important

Ensemble Learning

Programmer

Divides dataset into several set, more accurate

Model Performance

Programmer

Accuracy, but Precision recall more for classification models

- Precision is most important in this case
- Need to predict renewed (1) correctly, reduce false positive values more, hence precision

3) Feature Selection

Factors that have the greatest impact on retention | Predicted through Random Forest feature selection

TERM LENGTH: is the most important predicting value

Start, End – Years are prominent

Applications are next

Marketplace Value Delivered

3) Feature Selection

Removing correlated columns from the models, we receive different results

4) How well does the

Prediction Model

work?

For classification models, more than accuracy, model performance through precision recall matters

74% Precision Score

We need to reduce False negative (type 1) error; recognize more of renewed = 1

Tuned Parameters to – n_estimators=500, max_leaf_nodes=16

68% Accuracy - Adaboosting on Decision Tree

Max Depth – 2 n_estimators = 500 Learning rate = 2

Random Forest				Adaboosting							
	precision	recall	f1-score	support		precision	recall	f1-score	support		
0	0.78	0.27	0.40	237	0	0.79	0.25	0.38	237		
1	0.67	0.90	0.77	402	1	0.67	0.90	0.77	402		
avg / total	0.71	0.68	0.64	690	avg / total	0.70	0.67	0.63	690		

Improve analysis

4) What other factors might you want to investigate to see if they could improve your analysis?

5)Recommendations

Based on your analysis, what modifications would you recommend we make to our ad platform algorithm to improve retention

Term length variations over slots tell which slots to concentrate,
Term length over price also tells,
the optimum price for every term
and hence a more renewal chance

Company should concentrate more on slots of 50, 25, as they show more no of applicants, term length remains longer.

They should drop less no of slots package as they have no renewal and no term length or applicants.

More data should be collected to predict price better, more no of records, and all also more features

Thank you