1.4 VZÁJOMNÉ PÔSOBENIE VODIČOV S PRÚDOM

1. Vzdialenosť vodičov v kábli, ktorým prechádza prúd 25 A, je 5 mm. Akou veľkou silou je namáhaná izolácia medzi vodičmi na každom desaťmilimetrovom úseku? Relatívna permeabilita izolácie μ_r = 1.

Zápis: Riešenie: $F = \frac{\mu_0 \times \mu_r \times I_1 \times I_2 \times l}{2 \times \pi \times d}$ $I = 10 \text{ mm} = 10^{-2} \text{ m}$ I = 1 F = ? $F = \frac{4 \times \pi \times 10^{-7} \times 1 \times 25 \times 25 \times 10^{-2}}{2 \times \pi \times 5 \times 10^{-3}}$ $F = \frac{4 \times 10^{-7} \times 25^2 \times 10^{-2}}{10^{-2}}$ $F = 4 \times 10^{-7} \times 25^2$

 $F = 2.5 \cdot 10^{-4} N$

2. Medzi dvoma rovnobežnými vodičmi silnoprúdového vedenia, ktorých vzájomná vzdialenosť je 20 cm, pôsobí sila veľkosti 10 N na každý meter dĺžky vodičov. Relatívna permeabilita prostredia je 1. Určte prúd vo vedení. μ o = $4\pi.10^{-7}$ N.A⁻².

Zápis: Riešenie: d = 20 cm = 0,2 m F = 10 N I = 1 m $\mu_r = 1$ $I^2 = \frac{F \times 2 \times \pi \times d}{\mu_0 \times \mu_r \times l}$ $I^2 = \frac{F \times 2 \times \pi \times d}{\mu_0 \times \mu_r \times l}$ $I^2 = \frac{10 \times 2 \times \pi \times 0,2}{4 \times \pi \times 10^{-7} \times 1 \times 1}$ $I = \sqrt{10^7}$ I = 3162,28 A

3. V akej vzdialenosti musia byť od seba vzdialené dva rovnobežné priame vodiče, keď každým prechádza prúd 50 A a na 1 m dĺžky pôsobia navzájom silou 0,01 N.

Zápis: Riešenie:
$$I_{1} = I_{2} = 50 \text{ A}$$

$$I = 1 \text{ m}$$

$$F = 0,01 \text{ N}$$

$$d = ?$$

$$d = \frac{\mu_{0} \times \mu_{r} \times I_{1} \times I_{2} \times l}{2 \times \pi \times d}$$

$$d = \frac{\mu_{0} \times \mu_{r} \times I_{1} \times I_{2} \times l}{2 \times \pi \times F}$$

$$d = \frac{4 \times \pi \times 10^{-7} \times 1 \times 50 \times 50 \times 1}{2 \times \pi \times 0,01}$$

$$d = \frac{2 \times 10^{-7} \times 50^{2}}{0,01}$$

$$d = \mathbf{0}, \mathbf{05} \text{ m}$$

4. Dvoma rovnobežnými vodičmi vzdialenými od seba 10 cm prechádzajú rovnaké prúdy 1000 A. Určite aktívnu dĺžku vodičov, ak na ne pôsobí sila 2 N.

Zápis:
d = 10 cm = 0,1 m

$$l_1 = l_2 = 1000 \text{ A} = 10^3$$
 $F = 2 \text{ N}$
 $l = ?$
$$l = \frac{2 \times \pi \times d \times F}{\mu_0 \times \mu_r \times l_1 \times l_2}$$

$$l = \frac{2 \times \pi \times 0,1 \times 2}{4 \times \pi \times 10^{-7} \times (10^3)^2}$$

$$l = 1 m$$

5. Na dva priame rovnobežné vodiče s dĺžkou 50 m a prúdmi 300 A vo vzdialenosti 5 cm pôsobí magnetická sila 5400 N. Medzi vodičmi je vložený nikel. Určite relatívnu permeabilitu niklu.

Zápis: Riešenie:
$$I = 50 \text{ m}$$

$$I = 300 \text{ A}$$

$$G = 5 \text{ cm} = 0,05 \text{ m}$$

$$F = 5400 \text{ N}$$

$$\mu_r = ?$$

$$\mu_r = \frac{2 \times \pi \times d \times F}{\mu_0 \times I^2 \times l}$$

$$\mu_r = \frac{2 \times \pi \times 0,05 \times 5400}{4 \times \pi \times 10^{-7} \times 300^2 \times 50}$$

$$\mu_r = 300$$

- 6. Vzdialenosť vodičov v kábli, ktorými prechádza prúd 16 A je 4 mm. Akou veľkou silou je namáhaná izolácia medzi vodičmi na úseku 10 cm? μ_r = 1. μ_o = $4\pi.10^{-7}$ N.A⁻². [F = 1,28 mN]
- 7. Dvoma priamymi rovnobežnými vodičmi sériovo spojenými prechádzal prúd. Koľkokrát bolo treba zväčšiť tento prúd, aby pri zväčšení vzdialenosti vodičov na dvojnásobok pôvodnej vzdialenosti nenastala zmena veľkosti síl pôsobiacich na vodiče? $\lceil \sqrt{2} \rceil$
- 8. Medzi dvoma rovnobežnými vodičmi silnoprúdového vedenia, ktorých vzájomná vzdialenosť je 0,2 m, pôsobí sila veľkosti 16 N na každý meter dĺžky vodičov. Relatívna permeabilita prostredia je 1. Určte prúd vo vedení. $\mu_0 = 4\pi.10^{-7}$ N.A⁻². [I = 4000 A]
- 9. Dvomi dlhými rovnobežnými vodičmi vo vzájomnej vzdialenosti 16 cm prechádza rovnaký prúd veľkosti 10 A. Aká je magnetická indukcia v bode, ktorý leží uprostred medzi danými vodičmi, ak smer prúdu je a) rovnaký b) opačný. [0 T, 5.10⁻⁵ T]
- 10. Dvoma rovnobežnými vodičmi vzdialenými od seba 10 cm prechádzajú rovnaké prúdy. Určite veľkosť prúdu prechádzajúceho vodičmi, ak na 1 meter dĺžky vodičov pôsobí sila 1,8 N. [I = 949 A]
- 11. Dvoma dlhými priamymi rovnobežnými vodičmi vo vzduchu vo vzájomnej vzdialenosti 1 m prechádzajú rovnaké prúdy $I_1 = I_2 = 1$ A. Vypočítajte veľkosť sily, ktorá pôsobí na jednotku dĺžky každého vodiča. [F = 2.10^{-7} N]
- 12. Dvoma veľmi dlhými priamymi vodičmi vo vzájomnej vzdialenosti d = 10 cm pretekajú prúdy I_1 = 10 A, I_2 = 15 A v tom istom smere. Určite veľkosť intenzity magnetického poľa H v bode Q, ktorý sa nachádza v strede medzi vodičmi. [H = 200 A.m⁻¹]