

ເລຍເທື່ອເສລາເ

เลขทนงสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2560

วิชา	ENE	341	ระบบควบคุมเชิงเส้น
------	-----	-----	--------------------

ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันพฤหัสบดี ที่ 8 มีนาคม พ.ศ. 2561 เวลา 09:00 -12:00น.

Key 23/2/61.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 7 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน **ให้ทำทุกข้อ**
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 2 ตำแหน่ง
- **ไม่อนุญาต**ให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	25.	25	25	25	100
คะแนนที่ได้					

ชื่อ-สกล	
รหัสประจำตัว	เลขที่นั่งสอบ

รศ.ดร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ (โทร 9056)

ข้อสอบนี้ได้ผ่านกฎรประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.ราชวดี ศิลาพันธ์)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-สกล	
•	เลขที่นั่งสอบ#

(25 points) Problem 1: จงหา Transfer Function $\frac{C(s)}{R(s)}$ ของ รูปต่อไปนี้

ชื่อ-สกุล	
รหัสประจำตัว#	

(25 points) Problem 2. พิจารณารูปภาพด้านล่าง

จงหา T(s) = Y(s)/R(s) และ sensitivity $S_b^T(j\omega)$

ชื่อ-สกุล	
	เลขที่นั่งสอบ#

(25 points) Problem 3. . พิจารณารูปที่ 3 ตามภาพด้านล่าง

จงหาค่า K_1 และ K_2 ที่ทำให้ระบบมีค่า peak overshoot เท่ากับ 10% และ setting time เท่ากับ 0.05 วินาที

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

(25 points) Problem 4. จงพิจารณารูปภาพที่ 4.1 ตามภาพด้านล่าง

รูปที่ 4.1 แสดงระบบควบคุมแบบวงปิด

จงหาค่า K และ K_i ที่ทำให้ระบบมีเสถียรภาพและอยู่ภายในพื้นที่แรเงาดังรูปที่ 4.2

ชื่อ-สกุล	
รหัสประจำตัว#	

"I'm coing to good toch support."

Good Luck!!!

ชื่อ-สกุล	
รหัสประจำตัว#	เลขที่นั่งสอบ#

TABLE OF LAPLACE TRANSFORMS

f(t)	F(s)
$\delta(t)$	1
H(t-a)	e^{-as}
1	$\frac{1}{s}$ $\frac{n!}{s^{n+1}}$
t^n	$\frac{n!}{s^{n+1}}$
e^{kt}	$\frac{1}{s-k}$
$t^n e^{i t}$	$\frac{n!}{(s-k)^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$e^{it}\sin(\omega t)$.	$\frac{\omega}{\left(s-k\right)^2+\omega^2}$
$e^{it}\cos(\omega t)$	$\frac{(s-k)}{(s-k)^2+\omega^2}$
$\sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2-\omega^2}$
$t\sin(\omega t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
$t\cos(\omega t)$	$\frac{s^2-\omega^2}{\left(s^2+\omega^2\right)^2}$