Linear Algebra Notes

Mario L. Gutierrez Abed

Diagonalization

EIGENVALUES AND EIGENVECTORS

Let $T \in \mathcal{L}(V^n)$. Then we want to know if there exist a basis β for V such that $[T]_{\beta}$ is a diagonal matrix. If there exists such a basis, how do we find it?

- a) Let $T \in \mathcal{L}(V^n)$. Then T is said to be diagonalizable if \exists a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
- b) Let $A \in M_{n \times n}(\mathbb{F})$. Then A is diagonalizable if L_A is diagonalizable.

Alternatively (from theorem 2.3), we can say that a square matrix A is diagonalizable if \exists an invertible Q such that $A = Q^{-1}DQ$, where D is a diagonal matrix, i.e. A is similar to a diagonal matrix.

Motivations for eigenvalues and eigenvectors:

1) Let $\beta = \{v_1, ..., v_n\}$ be a basis for V such that $T \in \mathcal{L}(V)$ is diagonalizable with respect to β , i.e.

$$[T]_{\beta} = D = \begin{pmatrix} \alpha_{11} & 0 & 0 & 0 & 0 \\ 0 & \alpha_{22} & 0 & 0 & 0 \\ 0 & 0 & . & 0 & 0 \\ 0 & 0 & 0 & . & 0 \\ 0 & 0 & 0 & 0 & \alpha_{pp} \end{pmatrix}$$

Then we have

This implies that $T v_j = \alpha_{ij} v_j$ for $1 \le j \le n$.

2) Recall *T*-invariant subspaces of V (a subspace $W \subseteq V$ is said to be *T*-invariant if $T(w) \subseteq W \ \forall \ w \in W$)

```
w_1 = \operatorname{span}(v_1)

w_2 = \operatorname{span}(v_2)

\dots \dots \dots

w_n = \operatorname{span}(v_n)
```

Thus for $w_i = \operatorname{span}(v_i)$ we have $Tv_i = \alpha_i v_i$ (same equation that we arrived to on part 1).

Definition:

- i) Let $T \in \mathcal{L}(V)$. A nonzero vector $v \in V$ is called an eigenvector of T if \exists a scalar λ such that $T v = \lambda v$. Then λ is an eigenvalue of T corresponding to v.
- ii) Let $A \in M_{n \times n}(\mathbb{F})$. Then, a nonzero vector $v \in \mathbb{F}^n$ is an eigenvector of L_A , i.e. $A v = \lambda v$, and λ is the eigenvalue of A corresponding to v.

• Theorem:

Let $T \in \mathcal{L}(V)$. Then T is diagonalizable iff \exists an ordered basis β of V consisting of only eigenvectors (β) is often called an eigenbasis).

Note: To diagonalize an operator $T \in \mathcal{L}(V)$, we must find an eigenbasis for V. In order to achieve this, we first compute the eigenvalues.

• Theorem:

Let $A \in M_{n \times n}(\mathbb{F})$. Then $\lambda \in \mathbb{F}$ is an eigenvalue of A iff $\det(A - \lambda I_n) = 0$.

Proof:

 $((\Rightarrow)$ and (\Leftarrow)

Suppose λ is an eigenvalue of A. Then \exists a nonzero vector $v \in V$ such that $Av = \lambda v$.

$$\iff$$
 $A v - \lambda v = 0$

$$\iff$$
 $A v - \lambda I_n v = 0$

$$\iff$$
 $(A - \lambda I_n) v = 0$

 \iff $L_A - \lambda I_n$ is not injective (since v is assumed to be nonzero)

 \iff $A - \lambda I_n$ is not invertible

$$\iff \det(A - \lambda I_n) = 0$$

<u>Definition</u>: Let $A \in M_{n \times n}(\mathbb{F})$. The polynomial char(A) = f(t) = det($A - tI_n$) is called the characteristic

polynomial of A. Thus, the eigenvalues of A are the zeroes/roots of char(A).

Example:

Find the eigenvalues of $A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$.

Solution:

 $char (A) = det (A - t I_n)$

Now solving for the determinant and setting it equal to 0 we get the eigenvalues:

$$\det\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} - \begin{pmatrix} t & 0 \\ 0 & t \end{bmatrix} = \det\begin{pmatrix} 3 - t & 2 \\ -1 & -t \end{pmatrix} = 0$$

$$\Rightarrow (3 - t)(-t) + 2 = t^2 - 3t + 2 = 0$$

$$\Rightarrow t = 1, 2 \Rightarrow \lambda = 1, 2 \text{ (eigenvalues)}$$

Side Note: Remember the following algebraic identity:

$$x^{n} - c^{n} = (x - c)(x^{n-1} + cx^{n-2} + c^{2}x^{n-3} + \dots + c^{n-1}).$$

• Theorem:

Let $T \in \mathcal{L}(V^n)$, with $\lambda_1, ..., \lambda_m$ distinct eigenvalues of T and $v_1, ..., v_m$ the corresponding eigenvectors of T, with $m \le n$. Then, $\{v_1, ..., v_m\}$ is linearly independent.

** Proof on Axler pg 79 and also on Friedberg pg 261 **

• Corollary:

If m = n, then $\{v_1, ..., v_m\} = \{v_1, ..., v_n\}$ is an eigenbasis, and thus T is diagonalizable. (**Note: The converse of this corollary is not true, i.e. just because T is diagonalizable, it doesn't guarantee that $\{v_1, ..., v_n\}$ is an eigenbasis. **)

** Proof on Friedberg pg 261-262 **

• Theorem:

Let $A \in M_{n \times n}(\mathbb{F})$. Then

- a) char (A) is a polynomial of degree n with leading coefficients = $(-1)^n$.
- b) A has at most n eigenvalues.

• Theorem:

Let $T \in \mathcal{L}(V)$, and λ an eigenvalue of T. Then $v \in V$ is an eigenvector corresponding to λ iff $v \in \mathcal{N}(T - \lambda I)$ and $v \neq 0$.

Proof:

$$((\Rightarrow) \text{ and } (\Leftarrow))$$

Suppose v is an eigenvector of T. Then by definition we have that $v \neq 0$ and

$$T\,v = \lambda\,v \Longleftrightarrow T\,v - \lambda\,v = 0 \Longleftrightarrow (T - \lambda\,I)\,v = 0 \Longleftrightarrow v \in \mathcal{N}(T - \lambda\,I)\;.$$

Example:

Find the eigenvalues and associated eigenvectors of $T: P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$ defined by $f(x) \mapsto f(x) + (x+1) f'(x)$.

Solution:

Let β be the standard basis for $P_2(\mathbb{R})$, i.e. $\beta = \{1, x, x^2\}$. Then let's compute $[T]_{\beta}$:

$$\rightarrow$$
 $T(1) = 1 + (x + 1) \cdot 0 = 1 = 1(1) + 0(x) + 0(x^2)$

$$\to \mathcal{T}(x) = x + (x+1) \cdot 1 = 2 \, x + 1 = 1 \, (1) + 2 \, (x) + 0 \, (x^2)$$

$$\rightarrow T(x^2) = x^2 + (x+1) \cdot 2x = 3x^2 + 2x = 0(1) + 2(x) + 3(x^2)$$

Hence
$$[T]_{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
.

We let $[T]_{\beta} = A$. Then we have $char([T]_{\beta}) = char(A)$.

Now let's solve for the eigenvalues:

$$char(A) = det(A - t I_n) = det\begin{pmatrix} 1 - t & 1 & 0\\ 0 & 2 - t & 2\\ 0 & 0 & 3 - t \end{pmatrix} = 0$$

$$char(A) = (1 - t)(2 - t)(3 - t) = 0.$$

Solving for t we have :

$$t = 1, 2, 3 \Longrightarrow \lambda = 1, 2, 3$$
. (eigenvalues of T)

Now we want to find the eigenvectors associated with each eigenvalue:

$$\rightarrow$$
 For $\lambda = 1$:

We're looking for vectors v such that $(T - t I_n) v = 0 \cong (A - \lambda I_n) \mathcal{M}_{\beta}(v) = 0$.

$$A - (1) I_n = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Now we solve

$$(A-(1)I_n)x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow x_2, x_3 = 0 \text{ and } x_1 \text{ is a free variable}$$

Then the set of all solutions is

$$\left\{ \gamma \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : \gamma \in \mathbb{R} \right\}$$
. Hence $x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector of A associated with the eigenvalue $\lambda = 1$.

Now since \exists an isomorphism $\mathcal{M}_{\beta}: P_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$, we can compute the inverse

$$\mathcal{M}_{\beta}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 + 0 x + 0 x^2 = \frac{1}{\text{Eigenvector of } T}.$$

 \rightarrow For $\lambda = 2$:

$$A - (2) I_n = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Then

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x_1, x_2 \text{ are free variables and } x_3 = 0.$$

Thus the solution set is $\left\{ \gamma \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : \gamma \in \mathbb{R} \right\}$. Hence $x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector of A associated with $\lambda = 2$, and by the isomorphism discussed above we have that 1 + x is an eigenvector of T.

 \rightarrow For $\lambda = 3$:

$$A - (3) I_n = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Then

$$\begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x_3 = \frac{1}{2} x_2 \text{ and } x_2 = 2 x_1$$

Thus the solution set is $\{\gamma \begin{pmatrix} 1\\2\\1 \end{pmatrix} : \gamma \in \mathbb{R} \}$. Hence

 $x = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ is an eigenvector of $A \Longrightarrow 1 + 2x + x^2$ is an eigenvector of T.

Thus T has three eigenvalues and three basis eigenvectors associated to these eigenvalues. \checkmark

** Recalling lemma previously stated **

Let $T \in \mathcal{L}(V)$, with $\lambda_1, ..., \lambda_m$ distinct eigenvalues of T and $v_1, ..., v_m$ the corresponding eigenvectors of T. Then, $\{v_1, ..., v_m\}$ is linearly independent.

By the lemma above we have that $\beta_E = \{1, 1+x, 1+2x+x^2\}$ is linearly independent; thus this is an eigenbasis for T and this in turn means that T is diagonalizable.

Then we have that $[T]_{\beta_E}$, which is the matrix representation of T with respect to the eigenbasis, is calculated as follows:

$$→ T(1) = 1$$

$$→ T(1+x) = 2x + 2 = 0 (1) + 2 (1+x) + 0 (1+2x+x^2)$$

$$→ T(1+2x+x^2) = (1+2x+x^2) + (x+1) (2+2x)$$

$$= (x+1)^2 + 2 (x+1)^2$$

$$= 3 (x+1)^2 = 0 (1) + 0 (1+x) + 3 (1+2x+x^2)$$

Hence,

$$[T]_{\beta_E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, and we can see that the diagonal entries are the eigenvalues.

<u>Definition</u>: The spectral radius of a square matrix or a bounded linear operator is the supremum of the absolute values of the elements in its spectrum, which is sometimes denoted by ρ . That is, let $\lambda_1, ..., \lambda_n$ be the (real or complex) eigenvalues of a matrix $A \in M_{n \times n}(\mathbb{F})$. Then its spectral radius $\rho(A) = \max_{i} |\lambda_i|.$

DIAGONALIZABILITY

<u>Definition:</u> A polynomial f(t) in $P(\mathbb{F})$ is said to split over \mathbb{F} if \exists scalars $c, a_1, ..., a_n \in \mathbb{F}$ such that $f(t) = c(x - a_1)(x - a_2)...(x - a_n)$. (beware: the $(x - a_i)$ terms have to be linear) Examples of polynomials that don't split over \mathbb{R} :

$$\rightarrow x^2 + 1$$
 (not factorable)

 $\rightarrow x^3 - 1 = (x - 1)(x^2 + x + 1)$ (it factors but not into linear terms, hence it doesn't split over \mathbb{R})

• Theorem:

Let $T \in \mathcal{L}(V)$ be diagonalizable. Then char(T) splits over \mathbb{F} .

Proof:

Suppose T is diagonalizable. Then \exists an eigenbasis β_E for V such that $[T]_{\beta_E} = D$ is a diagonal

Suppose that

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \cdot & 0 & 0 \\ 0 & 0 & \cdot & 0 \\ 0 & 0 & 0 & \lambda_n \end{pmatrix} ,$$

and let f(t) be the characteristic polynomial of T.

Then,

$$f(t) = \det(D - t I_n) = \det\begin{pmatrix} \lambda_1 - t & 0 & 0 & 0 \\ 0 & . & 0 & 0 \\ 0 & 0 & . & 0 \\ 0 & 0 & 0 & \lambda_n - t \end{pmatrix} = \underbrace{(-1)^n}_{c} \left(t - \underbrace{\lambda_1}_{a_1} \right) \left(t - \underbrace{\lambda_2}_{a_2} \right) \dots \left(t - \underbrace{\lambda_n}_{a_n} \right). \quad \checkmark$$

Thus char(T) splits over \mathbb{F} .

Definition: Let λ be an eigenvalue of $T \in \mathcal{L}(V)$. Then the algebraic multiplicity of λ is the largest positive integer k for which $(t-\lambda)^k$ is a factor of char(T), i.e. the algebraic multiplicity of λ is the number of times λ appears as a root of char(T).

Example:

Let char(T) = $5(x-3)^2(x-4)(x+10)^5$. In this case we have roots 3, 4, and -10 with multiplicity 2, 1, and 5, respectively.

Note: If T is diagonalizable, each eigenvalue of T must occur on the diagonal as many times as its multiplicity.

<u>Definition</u>: Let $T \in \mathcal{L}(V)$ and λ be an eigenvalue of T.

Then define

$$E_{\lambda} = \{x \in V : T \mid x = \lambda \mid x\} = \mathcal{N}(T - \lambda \mid I).$$

 E_{λ} is called the eigenspace with respect to λ , i.e. it's the subspace that contains all the eigenvectors that correspond to λ .

• Theorem:

If λ has multiplicity m, then $1 \leq \dim(E_{\lambda}) \leq m$.

• Theorem:

Let $T \in \mathcal{L}(V)$ and let $\lambda_1, ..., \lambda_k$ be distinct eigenvalues of T. For each i = 1, ..., k, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i} . Then $S = S_1 \cup S_2 \cup ... \cup S_k = \bigcup_{i=1}^k S_i$ is a linearly independent subset of V.

$$\lambda_{1} \longrightarrow E_{\lambda_{1}} = \mathcal{N}(T - \lambda_{1} I) \supseteq S_{1}$$

$$\lambda_{2} \longrightarrow E_{\lambda_{2}} = \mathcal{N}(T - \lambda_{2} I) \supseteq S_{2}$$

$$\vdots$$

$$\lambda_{k} \longrightarrow E_{\lambda_{k}} = \mathcal{N}(T - \lambda_{k} I) \supseteq S_{k}$$

• Theorem:

T is diagonalizable iff

- a) char(T) splits over \mathbb{F}
- b) multiplicity(λ_i) = dim(E_{λ_i}) = nullity($T \lambda_i I$) \forall eigenvalues λ_i .

Alternatively,

 $\operatorname{multiplicity}(\lambda_i) = \dim(V) - \operatorname{rank}(T - \lambda_i I) = \dim(V) - \operatorname{rank}([T - \lambda_i I]_{\beta}),$ where $\dim(V) = n$ given that $[T]_{\beta}$ is an $n \times n$ matrix (see example below).

Example:

We have an operator $T \in P_2(\mathbb{R})$, which is defined by $T(f(x)) = f(1) + f'(0)x + [f'(0) + f''(0)]x^2$. Is T diagonalizable?

Solution:

Let us choose the standard basis for $P_2(\mathbb{R})$, $\beta = \{1, x, x^2\}$. Then

$$\rightarrow T(1) = 1$$

$$\rightarrow T(x) = 1 + x + x^2$$

$$\rightarrow T(x^2) = 1 + 2x^2$$

Hence
$$[T]_{\beta} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
.

Now we have

$$\operatorname{char}(T) = \det \left(\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} - \begin{pmatrix} t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t \end{pmatrix} \right) = \det \begin{pmatrix} 1 - t & 1 & 1 \\ 0 & 1 - t & 0 \\ 0 & 1 & 2 - t \end{pmatrix} = (1 - t)(1 - t)(2 - t) = 0$$

Hence we have roots t = 1, 2, with multiplicity 2 and 1, respectively.

We can see that char(T) splits over \mathbb{F} . Now we only need to check the multiplicities to determine whether T is diagonalizable:

We have $mult(1) = 2 = 3 - rank(A - 1 I_3)$

where
$$\operatorname{rank}(A - 1 I_3) = \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \operatorname{rank} \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} = 1$$
. So we have confirmed that $\operatorname{mult}(1) = 2 = 3 - 1 = 2$.

Now we check with the other eigenvalue. We have $mult(2) = 1 = 3 - rank(A - 2I_3)$

where
$$\operatorname{rank}(A - 2I_3) = \operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \operatorname{rank}\begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = 2$$
. So we have confirmed that $\operatorname{mult}(2) = 1 = 3 - 2 = 1$.

Hence, since both conditions a) and b) from the theorem above hold, we have that T is diagonalizable.