数季电路与逻辑设计

Digital circuit and logic design

● 第五章 同步时序逻辑电路

主讲教师赵贻竹

■代数分析法

■表格分析法

析

- 两个J-K触发器
 - 相同的时钟端,同步时序逻辑电路
- 一个异或门
- 输入:x
- 电路的状态: y2、y1
- 电路的输出: y2、y1
- Moore型电路

函数表达式

激励函数表达式

$$J_2 = K_2 = x \oplus y_1$$

$$J_1 = K_1 = 1$$

次态方程组

$$Q^{n+1} = J\bar{Q} + \bar{K}Q$$

$$y_2^{n+1} = x \oplus y_1 \oplus y_2$$

$$y_1^{n+1} = \overline{y_1}$$

状态表和状态图

函数表达式

激励函数表达式

$$J_2 = K_2 = x \oplus y_1$$

$$J_1 = K_1 = 1$$

次态方程组

$$Q^{n+1} = J\bar{Q} + \bar{K}Q$$

$$y_2^{n+1} = x \oplus y_1 \oplus y_2$$

$$y_1^{n+1} = \overline{y_1}$$

状态表和状态图

现态	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹			
y_2y_1	<i>x</i> =	-0	x =	1
0.0	0	1	1	1
01	1	0	0	0
10	1	1	0	1
11	0	0	1	0

现态	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
00	0 1	1 1
01	1 0	0 0
10	1 1	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0 0	0 1	1.1
01	1 0	0 0
10	1 1	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0 0	0 1	1 1
01	10 00	
10	1 1	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0.0	0 1	1 1
01	10 00	
10	11	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0.0	0 1	1 1
01	1 0 0 0	
10	1 1	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0.0	0 1	1 1
01	1 0	0 0
10	1 1	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0.0	0 1	1 1
01	1 0	0 0
10	11	0 1
11	0 0	1 0

现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
y_2y_1	x=0	x=1
0.0	0 1	1 1
01	10 00	
10	1 1	0 1
11	0 0 1 0	

	现态 y ₂ y ₁	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹	
I	$y_{2}y_{1}$	x=0	x=1
I	00	0 1	1 1
I	01	1 0	0 0
E	10	11	0 1
	11	0 0	1 0

函数表达式

激励函数表达式

$$J_2 = K_2 = x \oplus y_1$$

$$J_1 = K_1 = 1$$

次态方程组

$$Q^{n+1} = J\bar{Q} + \bar{K}Q$$

$$y_2^{n+1} = x \oplus y_1 \oplus y_2$$

$$y_1^{n+1} = \overline{y_1}$$

状态表和状态图

功能评述

2位二进制数 可逆计数器

现态	次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹			
y_2y_1	<i>x</i> =	=0	<i>x</i> =	1
00	0	1	1	1
01	1	0	0	0
10	1	1	0	1
11	0	0	1	0

分析下图所示同步时序逻辑电路。

▶表格分析法

■表格分析法

析

两个D触发器 ——相同时钟端,同步时序逻辑电路

▶表格分析法

数字电路 与逻辑设计

▶表格分析法

▶表格分析法

析

电路的状态: y2、y1

■表格分析法

输出函数表达式
$$Z = \overline{x + x + x} + \overline{y_2} + y_1 = \overline{x} + \overline{y_2} + y_1 = xy_2\overline{y_1}$$

Mealy型

■表格分析法

激励函数表达式

$$D_2 = \overline{y_2 + \overline{y_1} + x} = \overline{x} \, \overline{y_2} \, y_1$$

$$D_1 = x$$

▶表格分析法

函数表达式

$$D_2 = \overline{x} \, \overline{y_2} \, y_1$$

$$D_1 = x$$

$$Z = xy_2\overline{y_1}$$

次态方程组

$$y_2^{n+1} = \overline{x} \, \overline{y_2} \, y_1$$

$$y_1^{n+1} = x$$

状态表

现态		次态/输出y	$y_2^{n+1} y_1^{n+1} / Z$
<i>y</i> ₂	y_1	x = 0	x = 1
0	0	0 0 /0	0 1 /0
0	1	1 0 /0	0 1 /0
1	0	0 0 /0	0 1 /1
1	1	0 0 /0	0 1 /0

■表格分析法

函数表达式

$$D_2 = \overline{x} \, \overline{y_2} \, y_1$$

$$D_1 = x$$

$$Z = xy_2\overline{y_1}$$

次态方程组

状态表

状态图

时间图

现态		次态/输出y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /Z								
y_2y_1		х	= ()	x = 1					
0	0	0	0	/0	0	1	/0			
0	1	1	0	/0	0	1	/0			
1	0	0	0	/0	0	1	/1			
1	1	0	0	/0	0	1	/0			

做时间图

初始状态: $y_2 y_1 = 00$

输入x为电平信号,典型输入序列为010101100

做电路的状态响应序列:

	_	_	_	$\overline{}$			70.00	-	
СР	1	2	3	4	5	6	7	8	9
х	0	1	0	1	0	1	1	0	0
<i>y</i> ₂	0	0	0	1	0	1	0	0	1
y_1	0	0	1	0	1	0	1	1	0
y_2^{n+1}	0	0	1	0	1	0	0	1	0
y_1^{n+1}	0	1	0	1	0	1	1	0	0
Z	0	0	0	1	0	1	0	0	0

数字电路 与逻辑设计

▶表格分析法

GOLDENEYE

0075

实际问题分析时,可视具体情况灵活运用,根 据给定逻辑电路的复杂程度不同,通常可以省 去某些步骤。例如,列次态真值表或画时间图 等。

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师赵贻竹

