2.4

Suites minorées, majorées, bornées. Monotonie et convergence

Maths Spé terminale - JB Duthoit

Définition

- Une suite (u_n) est **majorée** par un nombre réel M si, pour tout $n \in \mathbb{N}$, $u_n \leq M$.
- Une suite (u_n) est **minorée** par un nombre réel m si, pour tout $n \in \mathbb{N}$, $u_n \geq m$.
- Une suite (u_n) est **bornée** si elle est à la fois majorée et minorée.

Exemple

- Une suite à termes tous positifs est minorée par 0
- Une suite croissante est minorée par son 1er terme : $u_0 \le u_1 \le u_2 \le ... \le u_n$
- Une suite décroissante est majorée par son 1 er terme : $u_0 \ge u_1 \ge u_2 \ge ... \ge u_n$

Remarque

- Les nombres m et M (appelés minorants et majorants) sont des réels indépendants de n
- Si une suite est majorée par M, elle a une infinité de majorants. En particulier, tout nombre supérieur à M est aussi un majorant de la suite.

Exercice 2.15

On considère la suite (u_n) définie par $u_0 = 1, 8$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ avec $f(x) = \frac{2}{3-x}$.

- Montrer que f est croissante sur [0;3]
- Démontrer par récurrence que la suite (u_n) est bornée par 1 et 2. Rép : récurrence
- Démontrer par récurrence que la suite (u_n) est décroissante. Rép : récurrence

Propriété

- Si une suite croissante a pour limite l, alors tous les termes de la suite sont inférieurs ou égaux à l (autrement dit, elle est majorée par l).
- De même, si une suite décroissante a pour limite l, alors tous les termes de la suite sont supérieurs ou égaux à l (autrement dit, elle est minorée par l).

Propriété Théorème de la convergence monotone

- Toute suite croissante majorée converge.
- De même, toute suite décroissante minorée converge.

Remarque

Si une suite croissante est majorée par un réel M, on sait qu'elle converge vers un réel

 $l \leq M$. On ne peut pas conclure qu'elle est égale à M. Ce théorème donne donc une condition suffisante pour qu'une suite converge mais ne

Propriété

- Une suite croissante non majorée a pour limite $+\infty$
- De même, toute suite décroissante non minorée a pour limite $-\infty$

✓ Démonstration 4- Démonstration au programme -

Soit (u_n) une suite croissante non majorée. Montrer que (u_n) a pour limite $+\infty$

Remarque

les réciproques des propriétés précédentes sont fausses. Par exemple, la suite (u_n) définie par $u_n = n^2 + (-1)^n$ diverge vers $+\infty$ mais elle n'est pas croissante.

Savoir-Faire 2.4

DÉMONTRER QU'UNE SUITE EST MAJORÉE OU MINORÉE

- 1. Soit (u_n) la suite définie pour tout $n \ge 1$ par $u_n = \frac{4n+1}{1-5n}$. Démontrer que (u_n) est minorée par $\frac{-5}{4}$.
- 2. Soit (u_n) la suite définie pour tout $n \ge 0$ par $u_{n+1} = \frac{2}{3}u_n + \frac{4}{3}$, avec $u_0 = 1$. Démontrer par récurrence que (u_n) est majorée par 4.

Exercice 2.16

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 - 2n + 3$ est minorée par 2.

Exercice 2.17

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_0 = 1$ et $u_{n+1} = 0.75u_n + 2$ est majorée par 8.

Exercice 2.18

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_n = \frac{5n}{n+1}$ est majorée par 5.

Savoir-Faire 2.5

ÉTUDIER LA CONVERGENCE D'UNE SUITE MONOTONE

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = \frac{1}{3}u_n + \frac{14}{3}$, avec $u_0 = 1$

- 1. Démontrer par récurrence que (u_n) est majorée par 7
- 2. En déduire que la suite (u_n) est croissante
- 3. Conclure quant à la convergence de la suite (u_n) .

Exercice 2.19

Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = -2$ et $u_{n+1} = 0.5u_n + 1$.

- 1. Démontrer par récurrence que la suite (u_n) est majorée par 2
- 2. En déduire que la suite (u_n) est croissante
- 3. Conclure quant à la convergence de la suite (u_n) .