3. Laboratorijas darbs

Table of Contents

DARBA UZDEVUMS	. 1
TROKSNA SIGNALS	1
NULLES SIGNALS	. 2
SINUSOIDA	3
LINEARI MAINIGS SIGNALS	4
MAINIGAIS k=(y_a-y_b)/(t_a-t_b)	. 4
KONSTANTE	5
VEKTORU APVIENOSANA	6
3.darba uzdevuma grafiks	. 8
Secinajumi	. 8

Ri#ards Egl#tis REBCO2

DARBA UZDEVUMS

Jaizmanto datu filtracija un failu jadefine ka funkciju ar attiecigiem ieejas argumentiem un atgriezamajam vertibam

TROKSNA SIGNALS

```
t_noise = 0:0.01:0.5;
y_noise = 3*rand(size(t_noise))-1.5;
plot(t_noise, y_noise)
axis([0 6 -3 3])
hold on
```


NULLES SIGNALS

```
t_zero=0.5:0.01:2;
y_zero=0*ones(size(t_zero));
plot(t_zero, y_zero)
```


SINUSOIDA

```
t_sin = 2:0.01:4;
A0=0; A=3; T=(3-1)/3.5; f = 2/T;
delay = 1;
y_sin = A0+A*sin(2*pi*f*(t_sin-delay));
plot(t_sin, y_sin)
```


LINEARI MAINIGS SIGNALS

t_saw=4:0.01:5;

MAINIGAIS k=(y_a-y_b)/(t_a-t_b)

```
k= (2 + 2 ) / (6-8);
delay=4;
y_saw=k*(t_saw-delay);
plot(t_saw,y_saw);
```


KONSTANTE

```
t_const=5:0.01:6;
% y_const = [2.5 2.5 2.5 % 201 reizi atk#rto]
y_const = 2.5*ones(size(t_const));
plot(t_const,y_const)
```


VEKTORU APVIENOSANA

```
t = [ t_saw, t_const,];
y=[y_saw,y_const];
plot(t,y)
% hold on
```


3.darba uzdevuma grafiks

Secinajumi

3.Laboratorijas drabs sagadaja lielas grutibas delj daudziem mainigajiem. Veicot 3.laboratorijas darbu atkartoju signalu veidus, sinusoidu. Iemacijos ka attelot signalus uz x,y assim Sapratu, hold up funkciju lidz galam Iemacijos apvienot vektorus

Published with MATLAB® R2018a