

Universidade Federal do Amazonas Programa de Pós-Graduação em Engenharia Elétrica

Verificação de Códigos Lua Utilizando BMCLua

Francisco Januário, Lucas Cordeiro e Eddie Filho franciscojanuario@ufam.edu.br, lucascordeiro@ufam.edu.br, eddie@ctpim.org.br

Verificação de Modelo Limitada

 Checa a negação de uma propriedade em uma dada profundidade

- Sistema de transição ${m M}$ com profundidade de ${m k}$
 - Estado: contador de programa e valor de variáveis.
- Traduzido em uma condição de verificação ψ tal que:

 ψ é satisfatível se, e se somente se, houver um contra exemplo de profundidade máxima k.

O Verificador ESBMC

 Realiza a verificação de códigos ANSI-C e C++ usando solucionadores das teorias do módulo da satisfatibilidade

- Valida programas sequencias ou multi-tarefas
 - Deadlocks

- Limites de array

Estouro aritmético

Corrida de dados

Divisão por zero

Atomicidade

- Utilizada em diversas aplicações, desde jogos até aplicações para TV Digital
 - Adobe's Photoshop Lightroom
 - Middleware Ginga
 - World of Warcraft e Angry Birds

Linguagem de extensão utilizada por outras linguagens

Interpretada, compacta e rápida, usada em diversos dispositivos

- C/C++
- NCL
- JAVA

- Mobile
- Set-Top Box

• Defeitos em aplicações interativas para *set-top box* não detectados em outras fases do desenvolvimento

 Defeitos em aplicações interativas para set-top box não detectados em outras fases do desenvolvimento

```
local counter = 0
local dx, dy = canvas:attrSize()
function handler (evt)
   if evt.class=='ncl' then
       while dx ~= dy do
            counter = counter + 1
                  canvas:drawText(10,10,'Progresso: '..counter)
        end
   end
end
end
event.register(handler)
```


 Defeitos em aplicações interativas para set-top box não detectados em outras fases do desenvolvimento

 Defeitos em aplicações interativas para set-top box não detectados em outras fases do desenvolvimento

• Impacto negativo na execução das aplicações interativas, como travamentos, etc.

Objetivos

- Estender os benefícios da verificação de modelos limitada para códigos da linguagem Lua:
 - Traduzir códigos Lua para uma linguagem modelo (ANSI-C)
 - Realizar a validação de códigos Lua através do verificador de modelos limitado ESBMC
- Implementar a metodologia BMCLua:
 - Desenvolver um Ambiente de Desenvolvimento Integrado
 - Incorporar um interpretador Lua
 - Incorporar o verificador de modelos ESBMC


```
n = 5
while n >= 0 do
    print (4/n)
    n = n - 1
end
```

```
#include <stdio.h>
void main(void) {
   int n = 5;
   while(n >= 0) {
      printf("%f",4/n);
      n = n - 1;
   }
}
```

```
Violated property:
   file /home/BMCLua/BMCLuaC.c
   division by zero
   n != 0

VERIFICATION FAILED
```

 A versão atual traduz apenas um subconjunto de comandos da linguagem Lua.

```
printif ... else ... endrepeat ... until
```

- breakwhile ... do ... enddo ... end
- returnfor ... do ... end


```
Tradução
n = 5
while n \ge 0 do
   print(4/n)
                   #include <stdio.h>
   n = n - 1
                   void main(void) {
end
                      int n = 5;
                      while (n >= 0) {
                         printf("%f",4/n);
                         n = n - 1;
```

```
Violated property:
  file /home/BMCLua/BMCLuaC.c
  division by zero
  n != 0
  VERIFICATION FAILED
```

- A versão atual traduz apenas um subconjunto comandos da linguagem Lua.
 - print – if ... else ... end
- repeat ... until

- break
- while ... do ... end– do ... end

- return
 - for ... do ... end


```
Tradução
n = 5
while n \ge 0 do
   print(4/n)
                  #include <stdio.h>
   n = n - 1
                  void main(void) {
                                                             Verificação
end
                      int n = 5;
                      while (n >= 0) {
                                             Violated property:
                         printf("%f",4/n);
                                               file /home/BMCLua/BMCLuaC.c
                         n = n - 1;
                                               division by zero
                                               n != 0
                                               VERIFICATION FAILED
```

- A versão atual traduz apenas um subconjunto de comandos da linguagem Lua.
 - printif ... else ... endrepeat ... until
 - breakwhile ... do ... enddo ... end
 - returnfor ... do ... end

- A versão atual traduz apenas um subconjunto comandos da linguagem Lua.
 - print – if ... else ... end

– repeat … until

- break
- while ... do ... end– do ... end

- return
 - for ... do ... end

Configuração e Benchmarks

- Ambiente:
 - Intel Core i3 2.5 GHz com 2 GB de RAM na plataforma
 Linux Ubuntu 32-bits
 - ESBMC v1.21 com solucionador z3 v3.2
- Utilizado *benchmarks* para testes de desempenho e precisão:
 - Bellman-Ford
 - Prim
 - BubbleSort
 - SelectionSort

Algoritmo	E	L	В	Р	TL	TE
	5	40	6	1	< 1	< 1
Bellman-Ford	10	40	11	1	< 1	< 1
Bellillali-Foru	15	40	16	1	< 1	< 1
	20	40	21	1	< 1	< 1
	4	61	5	1	< 1	< 1
	5	61	6	1	< 1	< 1
Prim	6	61	7	1	< 1	< 1
	7	61	8	1	< 1	< 1
	8	61	9	1	< 1	< 1

Total de elementos do array

do array	E	L	В	Р	TL	TE
	5	40	6	1	< 1	< 1
Bellman-Ford	10	40	11	1	< 1	< 1
Deliman-Ford	15	40	16	1	< 1	< 1
	20	40	21	1	< 1	< 1
	4	61	5	1	< 1	< 1
	5	61	6	1	< 1	< 1
Prim	6	61	7	1	< 1	< 1
	7	61	8	1	< 1	< 1
	8	61	9	1	< 1	< 1

Total de elementos do array						
7 mgs rums	E	L	В	Р	TL	TE
	5	40	6	1	< 1	< 1
Bellman-Ford Tota	10	49	11	1	< 1	< 1
IUla	l de linhas go traduz		16	1	< 1	< 1
	20	40	21	1	< 1	< 1
	4	61	5	1	< 1	< 1
	5	61	6	1	< 1	< 1
Prim	6	61	7	1	< 1	< 1
	7	61	8	1	< 1	< 1
	8	61	9	1	< 1	< 1

Total de elementos						UFA
do array	E	L	В	Р	TL	TE
	5	40	Λ	1	< 1	< 1
Bellman-Ford Total	10	49		1	< 1	< 1
IUla	l de linhas igo traduz			1	< 1	< 1
	20	40		1	< 1	< 1
	4 Limite de iterações de loops realizada				< 1	< 1
	5		Sanzada	1	< 1	< 1
Prim	6	61	7	1	< 1	< 1
	7	61	8	1	< 1	< 1
	8	61	9	1	< 1	< 1

Total de elementos						UFA
do array	E	L	В	P	TL	TE
	5	40	Λ	/L	< 1	< 1
Bellman-Ford Tota	10	49		1	< 1	< 1
100	l de linhas igo traduz			1	< 1	< 1
	20	40		1	< 1	< 1
	•	imite de i	_	1	< 1	< 1
	5			1	< 1	< 1
Prim	6	61		Total de		< 1
	7	61	F	oropriedad verificada		< 1
	8	61	9	1	< 1	< 1

Algoritmo	E	L	В	Р	TL	TE
	5	40	6	1	< 1	< 1
Bellman-Ford	10	40	11	1	< 1	< 1
bellillali-rolu	15	40	16	1	< 1	< 1
	20	40	21	1	< 1	< 1
	4	61	5	1	< 1	< 1
	5	61	6	1	< 1	< 1
Prim	6	61	7	1	< 1	< 1
	7	61	8	1	< 1	< 1
	8	61	9	1	< 1	<1 /

Algoritmo	E	L	В	Р	TL	TE
		pos são		1	< 1	< 1
Bellman-Ford	uivalentes Lua e o	do progr Coriginal		1	< 1	< 1
Deliman-rord	15	40	16		< 1	< 1
	20	40	21	1	< 1	< 1
	4	61	5	1	< 1	< 1
	5	61	6	1	< 1	< 1
Prim	6	61	7	1	< 1	< 1
	7	61	8	1	< 1	< 1
	8	61	9	1	< 1	<1 /

Algoritmo	E	L	В	Р	TL	TE
•	12	28	13	1	< 1	< 1
	35	28	36	1	2	2
BubbleSort	50	28	51	1	5	5
Bubblesort	70	28	71	1	10	10
	140	28	+ + +	52		
	200	28	201	1	203	163
	12	31	13	1	< 1	< 1
	35	31	36	1	1	1
SelectioSort	50	31	51	1	2	2
Selectiosort	70	31	71	1	5	4
	140	31	141	1	39	25
	200	31	201	1	175	89

Algoritmo	E	L	В	Р	TL	TE
	12	28	13	1	<1	< 1
	35	28	36	1	2	2
BubbleSort	50	28	51	1	5	5
Bubblesort	70	28	71	1	10	10
	140	28	141	1	56	52
	200	28	201	1	203	163
	12	31	13	1	<1	< 1
	35	31	36	1	1	1
SelectioSort	50	31	51	1	2	2
Selectiosoft	70	31	71	1	5 1	4
	140	31	141	1	39	25
	200	31	201	1	175	89

Algoritmo	E	L	В	Р	TL	TE
	12	28	13	1	< 1	< 1
	35	28	36	1	2	2
BubbleSort	ior númer	mero de veis 71 1 5 10 empo de 1 56 0 28 201 1 203	5			
	variáveis		71	1	10	10
	ocessame	tempo de samento 1 56		56	52	
	200	28	201	1	203	163
	12	31	13	1	< 1	< 1
	35	31	36	1	7 < 1 2 5 10 56 203	1
SelectioSort	50	31	51	1	2	2
Selectiosoft	70	31	71	1	5 1	4
	140	31	141	1	39	25
	200	31	201	1	175	89

Conclusões

- O IDE BMCLua foi capaz de verificar violações de propriedades em códigos Lua
- Falta o tradutor do BMCLua incorporar outras estruturas e funcionalidades da linguagem Lua / NCLua

Trabalhos Futuros

- Adicionar uma gramática formal para analisadores (*parser* e *lexer*) de trechos de códigos com o ANTLR
- Incorporar ao *middleware* Ginga e implementar um *plug-in* para o IDE Eclipse