MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 2 – NOVEMBER 2009 SOLUTION KEY**

Round 1

A)
$$\frac{1+2i+3i^2+4i^3}{1-2i+3i^2-4i^3} = \frac{1+2i-3-4i}{1-2i-3+4i} = \frac{-2-2i}{-2+2i} = \frac{1+i}{1-i} \cdot \left(\frac{1+i}{1+i}\right) = \frac{1+i^2+2i}{1-i^2} = \frac{2i}{2} = \underline{i}$$

B) =
$$3^{40}(1+i)^{40} = 3^{40}(2i)^{20} = 3^{40}2^{20}i^{20} = 3^{40}2^{20}(1) = 9^{20}2^{20} = 18^{20} \implies r + n = \underline{38}$$

Note: $18^{20} = (18^2)^{10} = 324^{10}$. Such equivalent expressions produce larger values of r + n.

C) If
$$z = A + Bi$$
, then $z^2 = -40 - 9i = A^2 + 2ABi - B^2 = (A^2 - B^2) + 2ABi$. But, $|z| = \sqrt{A^2 + B^2}$ and $|z^2| = \sqrt{(-40)^2 + (-9)^2} = \sqrt{41^2} = 41$ (9 - 40 - 41 is a Pythagorean Triple.)

Since $|z|^2 = |z^2|$, we have $A^2 + B^2 = 41$.

Equating the real parts, the imaginary parts and the absolute values, we have these three conditions: .
$$\begin{cases} (1) & A^2 - B^2 = -40 \\ (2) & 2AB = -9 \\ (3) & A^2 + B^2 = 41 \end{cases}$$

(2) \rightarrow A and B have opposite signs.

(2)
$$\Rightarrow$$
 A and B have opposite signs.
(1) + (3) \Rightarrow 2A² = 1, (3) - (1) \Rightarrow 2B² = 81 and (A, B) = $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{9}{\sqrt{2}}\right) \Rightarrow \left(\frac{A}{B}\right)^2 = \frac{1}{2} = \frac{1}{81}$
Proof of the fact that for any complex number, $|z|^2 = |z^2|$.
Let $z = x + yi$. Then $z^2 = (x + yi)^2 = x^2 + 2xyi + y^2i^2 = (x^2 - y^2) + (2xy)i$
 $|z|^2 = \left(\sqrt{x^2 + y^2}\right)^2 = x^2 + y^2$
 $|z^2| = \sqrt{(x^2 - y^2)^2 + (2xy)^2} = \sqrt{(x^4 - 2x^2y^2 + y^4) + 4x^2y^2} = \sqrt{x^4 + 2x^2y^2 + y^4}$
 $= \sqrt{(x^2 + y^2)^2} = x^2 + y^2$ By the transitive property, $|z|^2 = |z^2|$.

Round 2

A) Let the 4 numbers be
$$x$$
, $x + 2$, $x + 4$ and $x + 6$. Then:
 $4x + 12 = 213 + x + 6 \implies 3x = 207 \implies x = 69 \implies 69, 71, 73, 75$

B) By solving
$$x(3-x) = -10$$
 or judicious guess and check, $(x, y) = (5, -2)$ or $(-5, 2)$.
The possible values of $\frac{x}{y}$ are -2.5 or -0.4 . The larger value is -0.4 .

C) Let
$$R_2$$
 denote the new rate and R_1 the original rate.
Since $R \cdot T = D$, we have $R_2 = \frac{150}{w-2}$ and $R_1 = \frac{150}{w}$ and $\frac{150}{w-2} = \frac{150}{w} + x$
Clearing fractions, $150w = 150(w-2) + x(w)(w-2) \implies 150w = 150w - 300 + xw^2 - 2xw$
Canceling, we have $300 = xw^2 - 2xw = x(w^2 - 2w) \implies x = \frac{300}{w^2 - 2w}$ or $\frac{300}{w(w-2)}$.