

Recursive Causal Discovery with Julia

11 July 2024

Sepehr Elahi¹

¹ School of Computer and Communication Sciences, EPFL

Overview

- 1. Causality
- 2. Causal discovery
- 3. Recursive causal discovery
- 4. Recursive causal discovery with Julia
- 5. Future direction

Causation is **NOT** correlation!

correlates with

Google searches for 'how to make baby'

- ◆ The average distance between Saturn and the Sun as measured on the first day of each month · Source: Caclculated using Astropy
- Relative volume of Google searches for 'how to make baby' (Worldwide), with quotes) · Source: Google Trends
 - 2004-2023, r=0.967, r²=0.935, p<0.01 · tylervigen.com/spurious/correlation/1522

Causality: the relationship between cause and effect: cause \rightarrow effect.

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Causality: the relationship between cause and effect: cause \rightarrow effect.

Research significance:

X: Education level

Y: Income

Z: Parental socioeconomic status

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Research significance:

• Public health: Understanding if a new drug reduces the incidence of disease.

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Research significance:

- Public health: Understanding if a new drug reduces the incidence of disease.
- Education: Assessing whether smaller class sizes improve student performance.

Causality: the relationship between cause and effect: cause \rightarrow effect.

X: Education level

Y: Income

Z: Parental socioeconomic status

Research significance:

- Public health: Understanding if a new drug reduces the incidence of disease.
- Education: Assessing whether smaller class sizes improve student performance.
- Policy making: Evaluating if tax incentives stimulate business growth.

Causal graphs: causal relationships are often represented using DAGs:

Causal graphs: causal relationships are often represented using DAGs: *Directed*: only directed edges

Causal graphs: causal relationships are often represented using DAGs:

Directed: only directed edges Acyclic: no cycles

Causal graphs: causal relationships are often represented using DAGs: *Directed*: only directed edges *Acyclic*: no cycles *Graph*: set of vertices and edges

Causal graphs: causal relationships are often represented using DAGs:

Directed: only directed edges Acyclic: no cycles Graph: set of vertices and edges

Figure: Causal graph ${\cal G}$

Causal graphs: causal relationships are often represented using DAGs:

Directed: only directed edges Acyclic: no cycles Graph: set of vertices and edges

Figure: Causal graph ${\cal G}$

What if we don't know the causal graph?

Causal discovery

Causal discovery: the process of inferring causal relationships from data.

Causal discovery

Causal discovery: the process of inferring causal relationships from data.

Table: Observational data ${\cal D}$

X ₁	χ_2	X ₃	χ_4	X ₅
1	0	1	0	1
0	1	0	1	0
1	1	1	0	0
0	0	1	1	1
1	0	0	1	0
		÷		

Causal discovery

Causal discovery: the process of inferring causal relationships from data.

Table: Observational data ${\mathcal D}$

X_1	χ_2	X ₃	χ_4	X ₅
1	0	1	0	1
0	1	0	1	0
1	1	1	0	0
0	0	1	1	1
1	0	0	1	0
		÷		

Common approach: PC algorithm

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$.

Goal: learn causal graph ${\mathcal G}$ from observational data ${\mathcal D}$.

Goal: learn causal graph ${\mathcal G}$ from observational data ${\mathcal D}$. Steps:

1. Learn the skeleton:

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$. **Steps:**

1. Learn the skeleton:

 Test each pair of variables for conditional independence (CI) given a set of other variables.

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$. **Steps:**

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables.
- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y in \mathcal{G} .

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$. **Steps:**

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables.
- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y in \mathcal{G} .
- Z starts empty and is iteratively grows.

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$. **Steps:**

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables.
- If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y in \mathcal{G} .
- Z starts empty and is iteratively grows.

2. Orient edges:

 Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$. **Steps:**

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables. Very slow!
 - If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y in \mathcal{G} .
 - Z starts empty and is iteratively grows.

2. Orient edges:

 Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

PC can be very slow!

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$. **Steps:**

1. Learn the skeleton:

- Test each pair of variables for conditional independence (CI) given a set of other variables. Very slow!
 - If $X \perp Y \mid Z \Rightarrow$, there is no edge between X and Y in \mathcal{G} .
 - Z starts empty and is iteratively grows.

2. Orient edges:

 Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

PC can be very slow! Exponential complexity: $O(n^22^n)$!

Problem with the PC Algorithm

PC has exponential complexity: PC requires potentially conditioning on every subset of variables: $O(n^2 2^n)$.

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$ faster by recursively removing variables and learning their neighbors.

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$ faster by recursively removing variables and learning their neighbors.

Goal: learn causal graph \mathcal{G} from observational data \mathcal{D} faster by recursively removing variables and learning their neighbors.

Steps:

• Learn the skeleton:

Goal: learn causal graph \mathcal{G} from observational data \mathcal{D} faster by recursively removing variables and learning their neighbors.

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$ faster by recursively removing variables and learning their neighbors.

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.
 - 2. Learn the neighbors of X using CI tests.

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$ faster by recursively removing variables and learning their neighbors.

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.
 - 2. Learn the neighbors of X using CI tests.
 - 3. Remove X from the graph. Go to step 1.

Recursive causal discovery

Goal: learn causal graph $\mathcal G$ from observational data $\mathcal D$ faster by recursively removing variables and learning their neighbors.

Steps:

- Learn the skeleton:
 - 1. Identify a removable variable X using CI tests.
 - 2. Learn the neighbors of X using CI tests.
 - 3. Remove X from the graph. Go to step 1.
- Orient edges:
 - Apply Meek rules to orient the edges and form a partially directed acyclic graph (PDAG).

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

Figure: Remaining variables

Figure: Learned skeleton so far by RCD

RCD: algorithms

Algorithm	Completeness	#CI tests
MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}\Delta_{\mathit{in}}^2 2^{\Delta_{\mathit{in}}})$
L-MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}(\Delta_{\mathit{in}}^+)^2 2^{\Delta_{\mathit{in}}^+})$
RSL	YES	$\mathcal{O}(n^2 + n\Delta_{in}^{m+1})$
ROL	NO	$\mathcal{O}(MAXITER \times n^3)$
PC	YES	$\mathcal{O}(n^2 2^n)$

RCD: algorithms

Algorithm	Completeness	#CI tests
MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}\Delta_{\mathit{in}}^2 2^{\Delta_{\mathit{in}}})$
L-MARVEL	YES	$\mathcal{O}(\mathit{n}^2 + \mathit{n}(\Delta_{\mathit{in}}^+)^2 2^{\Delta_{\mathit{in}}^+})$
RSL	YES	$\mathcal{O}(n^2 + n\Delta_{in}^{m+1})$
ROL	NO	$\mathcal{O}(MAXITER \times n^3)$
PC	YES	$\mathcal{O}(n^2 2^n)$

For more details, see our paper at go.epfl.ch/rcd.

rcd package: Recursive causal discovery in Python.

rcd package: Recursive causal discovery in Python. **Implemented algorithms:**

- MARVEL
- L-MARVEL
- RSI
- ROL

rcd package: Recursive causal discovery in Python. **Implemented algorithms:**

- MARVEL
- L-MARVEL
- RSL
- ROL

Getting started:

rcdpackage.com

Installation:

pip install rcd

rcd package: Recursive causal discovery in Python.

Implemented algorithms:

- MARVEL
- L-MARVEL
- RSL
- ROL

Getting started:

rcdpackage.com

Installation:

pip install rcd

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data.

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data.

Comparison: RecursiveCausalDiscovery.jl vs. rcd on learning graphs from synthetic data.

Julia is faster by a factor of 150!

RCD in Julia

Recursive Causal Discovery.jl: Recursive causal discovery in Julia.

RCD in Julia

RecursiveCausalDiscovery.jl: Recursive causal discovery in Julia. **Installation:**

] add RecursiveCausalDiscovery

RCD in Julia

Simple demo:

```
using RecursiveCausalDiscovery
using CSV
using Tables
# load data (columns are variables and rows are samples)
data = CSV.read("data.csv", Tables.matrix)
# use a Gaussian conditional independence test
sig_level = 0.01
ci_test = (x, y, cond_vec, data) -> fisher_z(x, y, cond_vec, data, sig_level)
# learn the skeleton of causal graph using RSL
learned_skeleton = learn_and_get_skeleton(data, ci_test)
```

RCD versus PC

Comparison: RCD vs. PC on learning graphs from synthetic data.

RCD versus PC

Comparison: RCD vs. PC on learning graphs from synthetic data.

Future direction

• Implement the other RCD algorithms (MARVEL, L-MARVEL, ROL).

Future direction

- Implement the other RCD algorithms (MARVEL, L-MARVEL, ROL).
- Add more CI tests.

Future direction

- Implement the other RCD algorithms (MARVEL, L-MARVEL, ROL).
- Add more CI tests.
- Integrate with CausalInference.jl.