Bin Packing Problem: A general purpose Hill Climbing procedure

Lukas Schmauch, Sebastian Wolf

Seminar Modern Heuristics Dr. Rico Walter

Februar 2021

1/39

Übersicht

Was ist das Bin Packing Problem?

Hill Climbing Ansatz

Computational Studies

Zusammenfassung

Bin Packing Problem - Kurzübersicht

► Alle Items müssen verpackt werden

$$\bigcup U_i = \alpha \text{ (for } i = 1, ..., G)$$

▶ Bins enthalten nie das gleiche Item

$$U_i \cap U_j = \emptyset$$
 (for $1 \le i \ne j \le G$)

Es existieren keine leeren Bins

$$U_i \neq \emptyset$$
 (for $i = 1, ..., G$)

3 / 39

Grundidee Hill Climbing Ansatz

► Verbesserungsverfahren mit First-Fit Ansatz

 Quelle: Lewis, R. (2009): A general-purpose hill-climbing method for order independent minimum grouping problems

Ablauf Hill Climbing Verfahren

- 1. Eröffnungsverfahren (First Fit Descending)
- 2. Zufällige Auswahl von Bins
- 3. Ausführung des Verbesserungsverfahrens
- 4. Füge Gruppen wieder zusammen
- 5. Shuffle der Gruppen
- 6. Greedy Algorithmus
- 7. Wiederhole Schritt 2-6 bis Abbruchkriterium erreicht

1. Eröffnungsverfahren - First Fit Descending

- Sortierung nach absteigender Itemkapazität
- Anwendung des Greedy Algorithmus

2. Zufällige Auswahl von Bins

Standardverfahren: Auswahl eines Bins mit Wahrscheinlichkeit $p=rac{1}{\#Gruppen}$

▶ Modifikation: Bin mit minimaler Itemzahl

3. Ausführung des Verbesserungsverfahrens

4. Zusammenfügen der Gruppen

5. Shuffle der Gruppen

► Standardverfahren: 5:5:3 (Largest First, Reverse, Random)

- ► Modifikation 1: mittlere Itemkapazität (absteigend)
- Modifikation 2: inkl. mittlere Itemkapazität (absteigend)
 5:5:5:3 (Largest First, Reverse, mittlere Itemkapazität, Random)

6. Greedy Algorithmus

- Ausgangslösung: |U| = 5
- ▶ Lösung nach Greedy: |U'| = 4
- **►** Theorem 1: $|U'| \le |U|$

50 20 40 20 20 50 40 50 20 30 30

π

Ablauf Hill Climbing Verfahren

- 1. Eröffnungsverfahren (First Fit Descending)
- 2. Zufällige Auswahl von Bins
- 3. Ausführung des Verbesserungsverfahrens
- 4. Füge Gruppen wieder zusammen
- 5. Shuffle der Gruppen
- 6. Greedy Algorithmus
- 7. Wiederhole Schritt 2-6 bis Abbruchkriterium erreicht

3. Verbesserungsverfahren im Detail

```
BPP-Improvement-Procedure (\pi, \rho, C)
(1)
        for (a \leftarrow 1 \text{ to } G(\pi))
            foreach (pair of items i, j in group g in \pi)
(2)
               for (h \leftarrow 1 \text{ to } G(\rho))
(3)
(4)
                   foreach (pair of items k, l in group h in \rho)
                      \delta = s[k] + s[l] - s[i] + s[j]
(5)
                      if (\delta > 0 and F(q) + \delta < C)
(6)
                          Move items i and j into group h in \rho and move items k and l into group g in
(7)
                          \pi
(8)
            foreach (pair of items i, j in group g in \pi)
               for (h \leftarrow 1 \text{ to } G(\rho))
(9)
                   foreach (item k in group h in \rho)
(10)
                      \delta = s[k] - s[i] + s[j]
                       if (\delta > 0 and F(q) + \delta < C)
(12)
(13)
                          Move items i and j into group h in \rho and move item k into group g in \pi
(14)
            foreach (item i in group g in \pi)
               for (h \leftarrow 1 \text{ to } G(\rho))
                   foreach (item k in group h in \rho)
(16)
                      \delta = s[k] - s[i]
(17)
(18)
                      if (\delta > 0 and F(q) + \delta < C)
(19)
                          Move items i into group h in \rho and move item k into group q in \pi
```

Figure: Verbesserungsverfahren Pseudocode

2:2 Move

$$\delta = 50 + 25 - 50 - 20 = 5$$

- $if(\delta > 0 \text{ and } F(g) + \delta \leq C)$
- ightharpoonup if $(5 > 0 \text{ and } 95 + 5 \le 100)$

2:1 Move

$$\delta = 50 - 20 - 20 = 10$$

- $if(\delta > 0 \text{ and } F(g) + \delta \leq C)$
- $ightharpoonup if (10 > 0 \text{ and } 85 + 10 \le 85)$

1:1 Move

$$\delta = 20 - 15 = 5$$

•
$$if(\delta > 0 \text{ and } F(g) + \delta \leq C)$$

•
$$if(5 > 0 \text{ and } 80 + 5 \le 100)$$

Computational Studies - Set-up

Тур	#Instanzen	#Items	Bin-Kapazität	Verteilung	Notation	
Uniform	20	120	150	20-100	(Unif,120,150)	
Uniform	20	250	150	20-100	(Unif,120,150)	
Uniform	20	500	150	20-100	(Unif,120,150)	
Uniform	20	1000	150	20-100	(Unif,120,150)	
Hard	10	200	100000	20000-35000	(Hard,120,150)	
Triplet	20	60	1000	*	(Trip,60,1000)	
Triplet	20	120	1000	*	(Trip,120,1000)	
Triplet	20	249	1000	*	(Trip,249,1000)	
Triplet	20	501	1000	*	(Trip,501,1000)	

- ▶ * optimale Lösung hat 3 Items pro Bin
- Python 3.8.5
- ► Intel Core i7, 8GB RAM

Übersicht der Ergebnisse

$$\blacktriangleright LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil$$

▶ Uniform: $LB = z^*$ bei **79 von 80 Instanzen** (eine Instanz mit $z^* = LB + 1$)

▶ Hard: $LB = z^*$ bei 3 von 10 Instanzen (Bei 7 von 10 $z^* = LB + 1$)

► **Triplet**: $LB = z^*$ für **alle Instanzen**

Тур	Inst.	#Items	Mittlere LB	FFD	НС	HC*	Mittlere Zeit
Unif	20	120	49.1	0.7	0.05	0.1	6.24
Unif	20	250	101.6	1.5	0.25	0.25	27.19
Unif	20	500	201.2	2.7	0.15	0.15	25.73
Unif	20	1000	400.6	4.85	0.25	0.2	42.91
Hard	10	200	55.5/56.2	4.1/3.4	0.8	0	81.04
Trip	20	60	20	3.2	1	0.85	100
Trip	20	120	40	5.8	1	1	100
Trip	20	249	83	12.1	1	1	100
Trip	20	510	167	23.05	1.1	1	100

Optimalitätsanalyse Instanzgruppe Uniform & Hard

$$LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil \tag{1}$$

Figure: Anzahl getroffener LBs

Worst Case Analyse Instanzgruppe Uniform & Hard

$$LB = \left\lceil \sum_{j=1}^{n} \frac{w_j}{C} \right\rceil \tag{2}$$

Figure: Worst Case Abweichung von LB

Lösungsgüte im Zeitverlauf Instanzgruppe Uniform & Hard

Figure: Mittlere Abweichung von LB pro Zeiteinheit

Optimalitätsanalyse Instanzgruppe Triplet

► LB wird nie getroffen

Figure: Worst Case Abweichung von LB

Lösungsgüte im Zeitverlauf Instanzgruppe Triplet

Figure: Mittlere Abweichung von LB pro Zeiteinheit

Vergleich Uniform, Hard und Triplet

Figure: Uniform und Hard

Figure: Triplet

Verteilungsfunktion

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{3}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{4}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{5}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Verfahrensänderung (Uniform)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{6}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - andere Permutationswahl

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{7}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{8}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (inkl. mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{9}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Verfahrensänderung (Triplet)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{10}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{11}$$

Figure: rel. Abweichung von LB

Verteilungsfunktion - Shuffle (inkl. mittlere Itemkapazität)

$$mit \ r = \frac{Z_{HC} - LB}{LB} * 100\% \tag{12}$$

Figure: rel. Abweichung von LB

Zusammenfassung und Ausblick

- ► HC-Ansatz zu Lösung des Bin Packing Problems
 - ► Eröffnungsheuristik: FFD
 - Verbesserunsgverfahren mit First Fit Ansatz
- Ausblick Computational Studies
 - Weitere Untersuchungen des Shuffle-Operators
 - Weglassen von Moves

Vergleich der Ergebnisse mit weiteren Verfahren

Тур	Mittlere LB	FFD	HC	HC*	IG	HGGA	MT
(Unif,120,150)	49.1	0.7	0.05	0.1	0.7	0	0.05
(Unif,250,150)	101.6	1.5	0.25	0.25	1.45	0	0.55
(Unif,500,150)	201.2	2.7	0.15	0.15	2.7	0	2.2
(Unif,1000,150)	400.6	4.85	0.25	0.2	4.85	0	3.85
(Hard,200,100000)	55.5/56.2	4.1/3.4	0.8	0	2.3	0.1	1.5
(Trip,60,1000)	20	3.2	1	0.85	2.45	0.6	1.45
(Trip,120,1000)	40	5.8	1	1	5.3	0.85	4.1
(Trip,249,1000)	83	12.1	1	1	11.25	0	7.45
(Trip,501,1000)	167	23.05	1.1	1	22.4	0	14.85

Triplet: Vergleich mit Shuffle (mittlere Itemkapazität)

Figure: Standardverfahren

Figure: mittlere Itemkapazität

Uniform: Vergleich mit anderer Permutationswahl

Figure: Random Permutation

Figure: Minimale Itemzahl

Literaturverzeichnis

Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, 2016

Convolutional neural networks: an overview and application in radiology,