106010006 黄詩瑜 電機 21

Working Item	Specification	Simulation result		Hand calculation			
	•	Simulation result		Tiana calculation			
Vdd	1.5-V						
Current (µA)	(μA)#1	2306.0					
Transimpedance gain	> 0.95KΩ	0.9507807			0.9517468		
(ΚΩ)							
core amp size (W/LN,		NMOS:W=99u L=0.27u M=4					
W/LP)		PMOS:W=26u L=0.28u M=4					
core amp gm (gmN,		NMOS:38.2993m					
gmP)		PMOS:9.8606m					
core amp ro (roN,		NMOS:902					
roP)(ohm)		PMOS:2.94k					
Bandwidth (-3dB)	>150MHz#2	724			665.91		
(MHz)							
Closed-loop			real	Img		real	Img
poles/zeros(HZ)		Pole1	-355.242M	494.767M	Pole1	-369.999M	550.862M
		Pole2	-355.242M	-494.767M	Pole2	-369.999M	-550.862M
		zero	39.4854G	0	zero	42.643G	0
Closed-loop input		48.7320			47.7753		
impedance(ohm)							
Closed-loop output		20.1021			19.7049		
impedance(ohm)							
FoM (MHz/μA)	#2/#1	0.31396					

a.

M1 W=99u L=0.27u m=4 M2 W=26u L=0.28u m=4

b.

**** small-signal transfer characteristics

v(out)/iin = -950.7807 input resistance at output resistance at v(out) iin = 48.7320 = 20.1021

c.

```
subckt
element
          0:m1n
                      0:m2p
          0:n 18.1
                      0:p 18.1
model
            Saturati
                         Saturati
region
             2.3060m
                         -2.3106m
 id
          -3.862e-19
                        2.468e-19
 ibs
           -15.9270f
                          4.4217f
 ibd
           559.8611m -940.1389m
 vgs
           564.4597m -935.5403m
 vds
 vbs
             0.
           493.2101m -516.2981m
115.2230m -402.0517m
 vth
 vdsat
            66.6510m -423.8409m
 vod
           502.8922m
                         28.9122m
 beta
 gam eff
           507.4463m
                        557.0843m
            38.9223m
                          9.8606m
 gm
                        339.8186u
             1.1090 m
 gds
             6.4751m
                          3.1587m
 gmb
           535.9406f
                        114.1288f
 cdtot
           866.0077f
                        234.3900f
 cgtot
             1.1591p
 cstot
                        312.4927f
             1.0054p
                        231.3879f
 cbtot
           639.1496f
                        185.2894f
 cgs
                        37.3719f
           144.6956f
 cgd
```


Ro: M1:902(ohm) M2:2.94K(ohm)

$$V_{in} = I_{in} (R_F // R_s)$$

$$V_{out} = -(g_{m1} + g_{m2})(r_{o1} // r_{o2} // R_F) (R_F // R_s) V_{in}$$

$$Gain = \frac{A}{1 + KA}$$

$$K = -\frac{1}{R_F} = -\frac{1}{1000}$$

$$A = -(g_{m1} + g_{m2}) \times (r_{o1}//r_{o2}//R_F) \times (R_F//R_S)$$

$$= (38.9223m + 9.8606m)X(902//2.94K//1000)X(1000//100K) = -19724.0388$$

Gain =
$$\frac{-19724.0388}{1 + \frac{1}{1000}X19724.0388} = -951.746857(ohm)$$

$$Zin = \frac{(R_F//R_S)}{1 + KA} = \frac{(1000//100K)}{1 + \frac{1}{1000}X19724.0388} = 47.7753(ohm)$$

Zout =
$$\frac{(r_{o1}//r_{o2}//R_F)}{1 + KA} = \frac{(902//2.94K//1000)}{1 + \frac{1}{1000}X19724.0388} = 19.7049(ohm)$$

模擬與手算誤差:

$$Gain = \frac{950.7807 - 951.7468}{950.7807} X100\% = -0.1016\%$$

$$Zin = \frac{47.7753 - 48.7320}{47.7753} X100\% = -2.002\%$$

$$Zout = \frac{19.7049 - 20.1021}{19.7049} X100\% = -2.0157\%$$

結果都與模擬非常接近

d.

poles	(rad/sec)	poles (hertz)				
real	imag	real	imag			
-2.23205g	3.10871g	-355.242x	494.767x			
-2.23205g	-3.10871g	-355.242x	-494.767x			
zeros	(rad/sec)	zeros	zeros (hertz)			
real	imag	real	imag			
248.094g	0.	39.4854g	0.			

$$pole1/pole2 = |355.242M + 494.767Mj| = 643.734M(HZ)$$

Cdb: M1:382fF M2:76.6f

$$\begin{split} C_{GS^{'}} &= C_{GS1} + C_{GS2} + C_L = 639.1496f + 185.2894f + 1p = 1.8244X10^{-12} \\ C_{GD^{'}} &= C_{GD1} + C_{GD2} = 144.6956f + 37.3719f + 1p = 1.182 \times 10^{-12} \\ C_{DB^{'}} &= C_{DB1} + C_{DB2} + C_L = 382f + 76.6f + 1p = 1.4586 \times 10^{-12} \end{split}$$

$$a = (R_F//R_S)(r_{o1}//r_{o2}//R_F)(C_{GS}'C_{GD}' + C_{DB}'C_{GD}' + C_{GS}'C_{DB}')$$

$$= (1000//100k)(902//2.94k//1000)(1.8244pX1.182p + 1.4586pX1.182p + 1.8244pX1.4586p) = 2.6449X10^{-18}$$

$$b = (1 + (g_{m1} + g_{m2})(r_{o1}//r_{o2}//R_F))C_{GD}'(R_F//R_S) + (R_F//R_S)C_{GS}' + (r_{o1}//r_{o2}//R_F)(C_{DB}' + C_{GD}')$$

$$= (1 + (38.9223m + 9.8606m)(902//2.94k//1000))1.182p(1000//100k)$$

$$+ (1000//100k)1.8244p + (902//2.94k//1000)(1.4586p + 1.182p) = 2.73686X10^{-8}$$

open pole1 =
$$\frac{1}{2\pi \times b}$$
 = $\frac{1}{2\pi X 2.7368 X 10^{-8}}$ = 5.815537 × 10⁷
open pole2 = $\frac{b}{2\pi \times a}$ = $\frac{2.7368 X 10^{-8}}{2\pi X 2.6449 X 10^{-18}}$ = 2.6468 × 10⁹

closed loop pole =
$$\frac{-(\text{pole1} + \text{pole2}) \pm \sqrt{(\text{pole1} + \text{pole2})^2 - 4(1 + KA)\text{pole1} \times \text{pole2}}}{2}$$
$$= -369.999M \pm 550.862Mj (HZ)$$

Bandwidth = |-369.999M + 550.862Mj| = 665.91M(HZ)

zero =
$$\frac{(g_{m1} + g_{m2})}{2\pi(C_{GD1} + C_{GD2})} = \frac{(38.9223m + 9.8606m)}{2\pi(144.6956f + 37.3719f)} = 4.2643 \times 10^{10}$$

模擬與手算誤差:

$$Pole = 實部 = \frac{-369.999 - (-355.242)}{-369.999} X100\% = 3.9888\%$$

虚部 = $\frac{550.862 - 494.767}{550.862} X100\% = 10.1831\%$
 $Zero = \frac{42.643 - 39.4854}{42.643} X100\% = 7.1702\%$

手算結果與模擬有些誤差,推測是因為電路中會有電阻及寄生電容是手算沒辦法算到的。

f.

$$\mathsf{FoM} = \frac{bandwidth(MHZ)}{current(\mu A)}$$

-3db 時,頻率為 724M(HZ)

$$FoM = \frac{724}{2306.0} = 0.31396$$

g.

$$Gain = \frac{A}{1 + KA}$$

$$A = -(g_{m1} + g_{m2}) \times (r_{o1}//r_{o2}//R_F) \times (R_F//R_S)$$
$$FoM = \frac{bandwidth(MHZ)}{current(\mu A)}$$

我一開始先想辦法讓 gain 大於 0.95K,gm1/gm2 越大 A 就越大,gain 就會越大,所以我將 M1 和 M2 的 W/L 的比值調到最大,發現都 gain 沒辦法到達 0.95K,就將 M1 和 M2 都並聯,並聯到達 m=4 時,gain 大約是 0.944K,接著我把 M1 的 L 調高一點點,Vgs-Vth 變大,gain 到達了 0.95K,這時候的 bandwidth 已經遠大於 150M(HZ)了。

接著要讓 FoM 越大越好,這時的電流很大,FoM 就很小,所以我將 M2 的 W 調小一半,電流減小了很多,但還是要讓 gain 維持在 0.95K 以上,這時的 bandwith 還是遠大於 150M(HZ)。 我的 bandwidth 遠大於 150M(HZ),跟同學的比較後,我認為是我的 gm 相對地比較小,而 gm 越小,pole 越大,所以我的 bandwidth 才很大。

.sp 檔

```
*hw6***
.prot
.lib 'cic018.1' TT
.unprot
.option
+ post=1
+ACCURATE=1
+ runlvl=6
.temp 25
.param
+ wn = 99u
+ ln = 0.27u
+ wp = 26u
+ 1p = 0.28u
+ I = 1u
M1N out in gnd gnd N_18 w=wn l=ln m=4 M2P out in Vdd Vdd P_18 w=wp l=lp m=4
RF in out 1k
Rs in gnd 100k
Cin in gnd 1p
Cout out gnd 1p
Vdd Vdd gnd 1.5V
Iin gnd in dc=I ac=1m
.probe DC
+ ro_ml = par('1/LX8(M1N)')
+ ro_m2 = par('1/LX8(M2P)')
+ Cdb1 = LX29(M1N)
+ Cdb2 =LX29(M2P)
.tf V(out) Iin
.dc Iin 1u 10u 0.1u
.print par('V(out)/I(Iin)')
.pz V(out) Iin
.ac dec 100 1 100g
.probe par('V(out)/I(Iin)')
```