Final Report

Chen Liang (cl4469), Xinyi Shang (xs2529), Yuki Joyama (yj2803)

Exploratory Analysis and Data Visualization

In this section, use appropriate visualization techniques to explore the dataset and identify any patterns or relationships in the data.

Table 1: Baseline Characteristics

Characteristic	A , $N = 2,000^{1}$	B , $N = 1,000^{1}$
Age	60.2 / 60.0 (4.5)	60.2 / 60.0 (4.4)
Gender	1.006 (50%)	E09 (E19/)
Female Male	1,036 (52%) 964 (48%)	508 (51%) 492 (49%)
Race	904 (4878)	432 (43 /0)
Asian	108 (5.4%)	50 (5.0%)
Black	408 (20%)	196 (20%)
Hispanic	172 (8.6%)	99 (9.9%)
White Smoking	1,312 (66%)	655`(66%)
Current smoker	218 (11%)	101 (10%)
Former smoker	557 (28%)	302 (30%)
Never smoked	1,225 (61%)	597 (60%)
Height	169.9 / 169.9 (5.9)	170.0 / 170.0 (6.0)
Weight BMI	79.9 / 79.6 (7.1) 27.8 / 27.7 (2.8)	80.0 / 80.0 (7.2) 27.8 / 27.6 (2.8)
Hypertension	27.6727.7 (2.6)	27.6727.0 (2.8)
Hypertension	1,002 (50%)	490 (49%)
No hypertension	998 (50%)	510 (51%)
Diabetes	000 (100/)	
Diabetes	322 (16%)	141 (14%)
No diabetes SBP	1,678 (84%) 130.6 / 131.0 (8.0)	859 (86%) 130.3 / 130.0 (7.9)
ĽĎĹ	110.3 / 110.0 (19.8)	110.7 / 110.0 (19.8)
Vaccine	, ,	(, , ,
Not vaccinated	797 (40%)	415 (42%)
Vaccinated	1,203`(60%)	585 (59%)
Severity Not severe	1,785 (89%)	894 (89%)
Severe	215 (11%)	106 (11%)
Recovery time	40.4 / 40.0 (11.2)	45.7 / 37.0 (36.6)

¹Mean / Median (SD); n (%)

Model Training

In this section, describe the models you used to predict the time to recovery from COVID-19. Briefly state the assumptions made by using the models. Provide a detailed description of the model training procedure and how you obtained the final model.

Results

In this section, report the final model you built to predict the time to recovery from COVID-19. Interpret the model and assess its performance.

Conclusions

In this section, summarize your findings from the model analysis and discuss the insights gained into predicting time to recovery from COVID-19.

Additional Considerations

In your modeling efforts, did you include "study" as a predictor variable? Provide a rationale for your decision, considering the variable's relevance and potential impact on model accuracy and interpretability.