18. Liczby naturalne

Spośród wszystkich liczb kardynalnych wyodrębniamy liczby naturalne w następujący sposób. Rozważmy rodzinę klas induktywnych

$$\underline{\mathrm{Nat}} := \{ N | N : \underline{\mathrm{PClass}}(\underline{\mathrm{Card}}) \land 1 : N \land \bigwedge_{n} (n : N \Rightarrow n+1 : N) \}.$$

Z określenia klasy <u>Nat</u> wynika, że <u>Nat</u> : <u>FClass</u> i <u>Card</u> : <u>Nat</u>, a więc <u>Nat</u> : <u>FClass</u> $\setminus \{\emptyset\}$, i tym samym możemy rozważać jej przecięcie $\bigcap (\underline{Nat})$.

Definicja 18.1. Dla dowolnego $Z: \underline{\text{Univ}}, Z$ nazywamy:

- (i) $klasq\ liczb\ naturalnych:\Leftrightarrow Z=\mathbb{N}:=\bigcap(\underline{\mathrm{Nat}});$
- (ii) liczba $naturalna :\Leftrightarrow Z : \mathbb{N}$.

Uwaga 18.2. Z def. 18.1 wynika, że $\mathbb{N} \subset \underline{\operatorname{Card}}$, czyli liczby naturalne stanowią podklasę klasy wszystkich liczb kardynalnych. Ponadto 1:N dla każdego $N:\underline{\operatorname{Nat}}$, a więc $1:\bigcap(\underline{\operatorname{Nat}})=\mathbb{N}$. Zatem $\mathbb{N} \neq \emptyset$. Z określenia klasy $\underline{\operatorname{Nat}}$ wynika również, że zachodzi tzw. warunek induktywności

$$n: \mathbb{N} \Rightarrow n+1: \mathbb{N}$$
 dla $n: \underline{\text{Univ}}$.

W konsekwencji \mathbb{N} : <u>Nat</u>, i wobec ćw. 15.12, (<u>Class</u>, \subset)_min(<u>Nat</u>) = \bigcap (<u>Nat</u>) = \mathbb{N} . Innymi słowy \mathbb{N} jest najmniejszą w sensie inkluzji klasą rodziny <u>Nat</u>.

Twierdzenie 18.3. //zasada indukcji matematycznej// Dla każdego $\Phi(n)$: <u>LFun</u>(n) zmiennej n : <u>Var</u> zachodzi implikacja

(18.4)
$$\Phi(1) \wedge \bigwedge_{n:\mathbb{N}} (\Phi(n) \Rightarrow \Phi(n+1)) \Rightarrow \bigwedge_{n:\mathbb{N}} \Phi(n).$$

Dowód. Ustalmy dowolnie $\Phi(n)$: <u>LFun</u>(n) zmiennej n: <u>Var</u> i rozważmy klasę $A:=\{n|n:\mathbb{N}\wedge\Phi(n)\}$. Jeśli założenie implikacji (18.4) jest zdaniem fałszywym to implikacja (18.4) jest zdaniem prawdziwym //wartościowanie implikacji //. Załóżmy więc, że założenie implikacji (18.4) jest zdaniem prawdziwym. Wówczas $\Phi(1)$ jest zdaniem prawdziwym. Stąd 1:A, gdyż na mocy uwagi $18.2, 1:\mathbb{N}$. Ponadto dla dowolnie ustalonego $n:\mathbb{N}$ mamy:

$$n:A$$
 —//def. klasy $A/\!\!/ \to n:\mathbb{N}$ i zachodzi $\Phi(n)$ —//założenie implikacji (18.4)// → zachodzą $\Phi(n)$ i $\Phi(n) \Rightarrow \Phi(n+1)$ —// $\alpha \land (\alpha \Rightarrow \beta) \Rightarrow \beta: \underline{\text{Taut}}/\!\!/ \to \text{zachodzi}$ $\Phi(n+1)$ —// $n:\mathbb{N},$ uwaga 18.2// → $n+1:\mathbb{N}$ i zachodzi $\Phi(n+1)$ —//def. klasy $A/\!\!/ \to n+1:A.$

Wobec dowolności wyboru $n:\mathbb{N}$ wnioskujemy, że $n:A\Rightarrow n+1:A$ dla $n:\mathbb{N}$. Ponadto $A\subset\mathbb{N}$ i na mocy uwagi 18.2, $\mathbb{N}\subset\underline{\mathrm{Card}}$. Stąd $A\subset\underline{\mathrm{Card}}$. Ponieważ 1:A, więc na mocy określenia klasy $\underline{\mathrm{Nat}},\ A:\underline{\mathrm{Nat}}$. Korzystając ponownie z uwagi 18.2 stwierdzamy, że $\mathbb{N}\subset A$. Stąd na mocy określenia klasy A widzimy, że $\Phi(n)$ jest zdaniem prawdziwym dla każdego $n:\mathbb{N}$, czyli zachodzi następnik implikacji (18.4). W konsekwencji implikacja (18.4) jest zdaniem prawdziwym, c.n.d.

Korzystając z tw. 18.3 można wyprowadzić fundamentalne dla teorii liczb naturalnych oraz ważne z uwagi na zastosowania następujące twierdzenie o definiowaniu funkcji przez indukcję matematyczną (alt. przez rekurencję).

Twierdzenie 18.5. Dla dowolnych $A: \underline{Class}, \ a: A \ i \ g: A \to A \ istnieje dokładnie jedna funkcja <math>f: \mathbb{N} \to A \ spełniająca \ warunek$

(18.6)
$$f(1) = a \wedge \bigwedge_{n \in \mathbb{N}} f(n+1) = g(f(n)).$$

Dowód. Precyzyjny dowód tego twierdzenia jest dość żmudny. Ograniczymy się zatem do jego szkicu opisując istotne etapy dowodu.

I. Rozważmy klasę \mathcal{F} złożoną ze wszystkich relacji $F \subset \mathbb{N} \times A$ spełniających warunek

(18.7)
$$(1,a): F \wedge \bigwedge_{n:\mathbb{N}} \bigwedge_{x:A} ((n,x): F \Rightarrow (n+1,g(x)): F).$$

Oczywiście $\mathcal{F} \neq \emptyset$, gdyż $F := \mathbb{N} \times A$ spełnia warunek (18.7). W związku z tym możemy określić obiekt $f := \bigcap (\mathcal{F})$.

- II. Wykazujemy, że $f: \mathcal{F}$. Stąd na mocy ćw. 15.12, $f = (\underline{\text{Class}}, \subset)_{-}\min(\mathcal{F})$.
- III. Rozważamy funkcję zdaniową $\Phi(n)$: LFun(n) zmiennej n: Var określoną następująco:

$$\Phi(n) := "n : \mathbb{N} \wedge \bigvee_{x:A} \bigwedge_{y:A} ((n,y) : f \Leftrightarrow x = y)".$$

Stosując tw. 18.3 dowodzimy, że $\Phi(n)$ zachodzi dla każdego $n: \mathbb{N}$. Dlatego $f: \mathbb{N} \to A$.

- IV. Z etapu II wiemy, że $f : \mathcal{F}$. Zatem funkcja f spełnia warunek (18.7) z F := f, i dlatego f(1) = a i f(n+1) = g(f(n)) dla $n : \mathbb{N}$. To oznacza, że funkcja f spełnia warunek (18.6).
- V. Zakładając, że $f^*: \mathbb{N} \to A$ jest dowolnie ustaloną funkcją spełniającą warunek (18.6) z podstawieniem $f := f^*$, dowodzimy stosując tw. 18.3, że $f(n) = f^*(n)$ dla $n : \mathbb{N}$. Stąd na mocy ćw. 14.15, $f = f^*$. To dowodzi jedyność funkcji f, co kończy dowód.

Twierdzenie 18.8. Relacja cord jest relacja porządku w klasie \underline{Card} , czyli $(\underline{Card}, cord)$: \underline{ORel} .

Dowód. Z ćw. 17.14 (iii) wynika, że cord jest relacją zwrotną i symetryczną. Pozostaje wykazać własność antysymetrii

(18.9)
$$(x,y) : \operatorname{card} \wedge (y,x) : \operatorname{card} \Rightarrow x = y \quad \operatorname{dla} \quad x,y : \underline{\operatorname{Card}}.$$

Ustalając dowolnie $x,y:\underline{Card}$ załóżmy, że zachodzi założenie implikacji (18.9). Wtedy na mocy def. relacji cord #\def. 17.13# stwierdzamy istnienie $A,B,A',B':\underline{Class}$ takich, że $x=\overline{A},y=\overline{B}$ i $A\subset B$ oraz $x=\overline{A'},y=\overline{B'}$ i $B'\subset A'$. Dlatego $\overline{A}=\overline{A'}$ i $\overline{B}=\overline{B'}$, a więc $A\simeq A'$ i $B\simeq B'$. To oznacza istnienie $h_1:A\xrightarrow[]{1-1} A'$ i $h_2:B\xrightarrow[]{1-1} B'$. Ponieważ $B'\subset A'$, więc $h:=h_1^{-1}\circ h_2:B\xrightarrow[]{1-1} A$. Jeśli A=B to x=y, co daje tezę implikacji w (18.9). Załóżmy więc, że $A_0:=B\backslash A\neq\emptyset$. Stosując tw. 18.5 dla $A:=\underline{PClass}(B),\ a:=h(A_0)$ i $g:=\{K\mapsto h(K)|K:\underline{PClass}(B)\}$ wnioskujemy, że istnieje dokładnie jedna funkcja $f:\mathbb{N}\to\underline{PClass}(B)$ spełniająca warunek (18.6), tzn.

(18.10)
$$f(1) = h(A_0) \wedge \bigwedge_{n \in \mathbb{N}} f(n+1) = h(f(n)),$$

gdyż g(f(n)) = h(f(n)) dla $n: \mathbb{N}$. Przyjmując $A^* := \bigcup (f(\mathbb{N}))$ wnioskujemy z warunku (18.10) i inkluzji $h(B) \subset A$, że $h(A^* \cup A_0) = h(A^*) \cup h(A_0) = A^* \subset A$. Jeśli $A^* = A$ to $A^* \cup A_0 = A \cup (B \setminus A) = B$, a więc h(B) = A. Ponieważ $h: B \xrightarrow{1-1} A$, więc $h: B \xrightarrow{1-1} A$. Stąd $A \simeq B$, i w konsekwencji $x = \overline{A} = \overline{B} = y$, co daje tezę implikacji (18.9). Pozostaje rozważyć przypadek, gdy $A^* \neq A$. Wtedy $A \setminus A^* \neq \emptyset$. Przyjmijmy $h' := \operatorname{id}_{A \setminus A^*} \cup h_{A^* \cup A_0} /\!\!/ \operatorname{tzn}$. h' jest sklejeniem funkcji id $A \setminus A^*$ i $A \setminus A^*$ i i $A \setminus A^*$ i

$$h'(B) = h'(A \setminus A^*) \cup h'(A^* \cup A_0) = \operatorname{id}(A \setminus A^*) \cup h(A^* \cup A_0) = (A \setminus A^*) \cup A^* = A,$$

czyli $h': B \xrightarrow{\text{on}} A$. Ponadto dla dowolnie ustalonych a, b: B mamy:

 $a, b: A \setminus A^*$ i $a \neq b$ — //def. funk. $h'/\!/ \to h'(a) = \operatorname{id}(a) = a \neq b = \operatorname{id}(b) = h'(b);$ $a, b: A^* \cup A_0$ i $a \neq b$ — //def. funk. $h', h: B \xrightarrow{\operatorname{on}} A /\!/ \to h'(a) = h(a) \neq h(b) = h'(b);$

$$a: A \backslash A^* \text{ i } b: A^* \cup A_0$$
 — #\def. funk. $h', h(A^* \cup A_0) = A^* /\!\!/ \to h'(a) = \operatorname{id}(a) = a: A \backslash A^* \text{ i } h'(b) = h(b): A^* - \#(A \backslash A^*) \cap A^* = \emptyset /\!\!/ \to h'(a) \neq h'(b);$

 $a: A^* \cup A_0$ i $b: A \setminus A^*$ — //analogicznie jak wyżej, zastępując miejscami a z b// \rightarrow $h'(b) \neq h'(a)$.

Zatem $h': B \xrightarrow{1-1} A$, i w konsekwencji $h': B \xrightarrow[]{1-1} A$., czyli $A \simeq B$. Dlatego $x = \overline{\overline{A}} = \overline{\overline{B}} = y$, a więc w każdym z rozpatrywanych przypadków zachodzi teza implikacji (18.9), o ile jej założenie jest prawdziwe. Ostatecznie relacja cord jest zwrotna, antysymetryczna i przechodnia, a więc (Card, cord): ORel, czego należało dowieść.

Ćwiczenie 18.11. Wykazać, że:

- (i) $n = m \Leftrightarrow n + 1 = m + 1 \text{ dla } n, m : \mathbb{N};$
- (ii) $n \leq m \Leftrightarrow n+1 \leq m+1 \text{ dla } n, m : \mathbb{N}.$
- (iii) $1 \leq n \text{ dla } n : \mathbb{N};$
- (iv) $n \neq n+1$ dla $n : \mathbb{N}$;
- (v) n < n + 1 dla $n : \mathbb{N}$;

Twierdzenie 18.12. //Zasada minimum dla liczb naturalnych// Dla każdego A : Class, jeśli $\varnothing \neq A \subset \mathbb{N}$ to (\mathbb{N}, \leqslant) $\min(A) \neq \underline{\text{null}}$ //czyli każda niepusta podklasa klasy liczb naturalnych ma element najmniejszy w strukturze (\mathbb{N}, \leq) //.

Dowód. Ustalmy dowolnie $A : \underline{PClass}(\mathbb{N}) \setminus \{\emptyset\}$ i załóżmy, że $(\mathbb{N}, \leqslant)_{-} \min(A) = \underline{\operatorname{null}}$. Rozważmy funkcję zdaniową $\Phi(p):=$ " $\bigwedge_{n:A}p\leqslant n$ " zmiennej $p:\mathbb{N}.$ Z ćw. 18.11 (iii) wynika, że zachodzi $\Phi(1)$. Załóżmy, że $\Phi(p)$ zachodzi dla dowolnie ustalonego $p:\mathbb{N}$. Ustalmy dowolnie a:A. Wtedy $p \leq a$, i na mocy ćw. 17.18 (iv), a = p + b dla pewnego $b : \underline{\text{Card}}$. Z ćw. 17.21 wynika, że b = 0lub $1 \le b$. Jeśli b = 0 to $a = p \le n$ dla n : A, i tym samym (\mathbb{N}, \le) $\min(A) = a \ne \text{null}$, co przeczy założeniu (\mathbb{N}, \leq) min $(A) = \underline{\text{null}}$. Możemy więc ograniczyć się do przypadku, gdy $1 \leq b$. Z ćw. 17.22 (i) mamy $p+1 \leq p+b=a$. Zachodzi więc $\Phi(p+1)$, i tym samym dla każdego $p:\mathbb{N}$ zachodzi implikacja $\Phi(p) \Rightarrow \Phi(p+1)$. Stosując teraz Tw. 18.3 widzimy, że $\Phi(p)$ jest zdaniem prawdziwym dla każdego $p: \mathbb{N}$. Ponieważ $A \neq \emptyset$, istnieje n: A. Wtedy zachodzi $\Phi(n+1)$, a więc $n+1 \le n$. Ponieważ $0 \le 1$, więc z ćw. 17.22 (i) wynika, że $n=n+0 \le n+1$. Zatem n = n + 1, co jest niemożliwe wobec ćw. 18.11 (iv). Dlatego (\mathbb{N}, \leq) $\min(A) \neq \underline{\text{null}}$, co kończy dowód.

Wniosek 18.13. Relacja cord jest relacją porządku liniowego w klasie \mathbb{N} , czyli (\mathbb{N} , cord): LORel.

 $Dow \acute{o}d$. Na mocy tw. 18.8, (\mathbb{N}, \leq) : ORel. Ustalając dowolnie p,q: \mathbb{N} rozważny klasę A:= $\{p,q\}$. Ponieważ $\varnothing \neq A \subset \mathbb{N}$, więc z tw. 18.12 wynika, że $a := (\mathbb{N}, \leqslant)_- \min(A) \neq \underline{\text{null}}$. Stąd a:A, czyli a=p lub a=q. Jeśli a=p to $p\leqslant q$. Jeśli zaś a=q to $q\leqslant p$. Zatem $p\leqslant q$ lub $q \leq p \text{ dla } p, q : \mathbb{N}, \text{ a więc } (\mathbb{N}, \leq) : \underline{\text{LORel}}, \text{ co kończy dowód.}$

Za pomocą relacji cord określamy następujące klasy: $\mathbb{N}_p := \{n | n : \mathbb{N} \cup \{0\} \land p \leq n\}$ dla $p: \mathbb{N} \cup \{0\}$ oraz $\mathbb{N}_{p,q}:=\{n|n: \mathbb{N} \cup \{0\} \land p \leqslant n \leqslant q\}$ dla $p,q: \mathbb{N} \cup \{0\}$. W szczególności, $\mathbb{N}_1=\mathbb{N}$ i $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$; por. ćw. 18.14 (i).

Ćwiczenie 18.14. Wykazać następujące własności:

- (i) $\mathbb{N}_1 = \mathbb{N} \text{ i } \mathbb{N}_0 = \mathbb{N} \cup \{0\};$
- (ii) $\mathbb{N}_p \subset \mathbb{N}_q \Leftrightarrow q \leqslant p \text{ dla } p, q : \mathbb{N}_0;$
- (iii) $\mathbb{N}_p = \mathbb{N}_q \Leftrightarrow p = q \text{ dla } p, q : \mathbb{N}_0;$ (iv) $\mathbb{N}_p = \mathbb{N}_{p+1} \cup \{p\} \text{ dla } p : \mathbb{N}_0.$

Definicja 18.15. Dla dowolnych Z: Univ i p: \mathbb{N} , Z nazywamy klasą p początkowych liczb naturalnych (alt. klasą liczb naturalnych od 1 do p) : $\Leftrightarrow Z = \mathbb{N}_{1,p}$.

Ćwiczenie 18.16. Wykazać, że:

(i) $1, p : \mathbb{N}_{1,p}$ dla $p : \mathbb{N}$;

- (ii) $\mathbb{N}_{1,p+1} = \mathbb{N}_{1,p} \cup \{p+1\} \text{ dla } p : \mathbb{N};$
- (iii) $\mathbb{N}_{1,p} \subset \mathbb{N}_{1,p+1} \neq \mathbb{N}_{1,p} \text{ dla } p : \mathbb{N};$
- (iv) $\mathbb{N}_{1,p} \subset \mathbb{N}_{1,q} \Leftrightarrow p \leqslant q \text{ dla } p,q:\mathbb{N};$
- (v) $\mathbb{N}_{1,p} = \mathbb{N}_{1,q} \Leftrightarrow p = q \text{ dla } p, q : \mathbb{N};$
- (vi) $\mathbb{N}_{1,p} \cup \mathbb{N}_{p+1} = \mathbb{N} \text{ dla } p : \mathbb{N};$
- (vii) $\mathbb{N}_{1,p} \cap \mathbb{N}_{p+1} = \emptyset$ dla $p : \mathbb{N}$.

Ćwiczenie 18.17. Niech f będzie funkcją określoną rekurencyjnie //tw. 18.5// dla $A := \underline{PClass}(\mathbb{N}) \setminus \{\emptyset\}, \ a := \{1\} \ i \ g := \{x \mapsto y \ | \ x : A \land y = x \cup \{n \ | \bigvee_{k:x} n = k + 1\} \}.$ Wykazać, że $f(p) = \mathbb{N}_{1,p} \ dla \ p : \mathbb{N}.$

Čwiczenie 18.18. Wykazać tzw. zasadę maksimum dla liczb naturalnych: dla każdego A: Class, jeśli $\emptyset \neq A \subset \mathbb{N}_{1,p}$ dla pewnego $p: \mathbb{N}$, to $(\mathbb{N}, \operatorname{cord})_{-} \max(A) \neq \operatorname{null}$ //czyli każda niepusta podklasa klasy liczb naturalnych ograniczona od góry ma element największy w strukturze $(\mathbb{N}, \operatorname{cord})$ //.

Uwaga 18.19. Z tw. 18.3 wynika, że dla każdego $\Psi(n)$: <u>LFun</u>(n) zmiennej n : <u>Var</u> zachodzi implikacja

(18.20)
$$\Psi(1) \wedge \bigwedge_{n:\mathbb{N}} \left(\bigwedge_{k:\mathbb{N}_{1,n}} \Psi(k) \Rightarrow \Psi(n+1) \right) \Rightarrow \bigwedge_{n:\mathbb{N}} \Psi(n).$$

Stosując bowiem tw. 18.3 dla funkcji zdaniowej $\Phi(n):=$ " $\bigwedge_{k:\mathbb{N}_{1}} \Psi(k)$ " : <u>LFun</u>(n) zmiennej

 $n: \underline{\mathrm{Var}}$ stwierdzamy, że $\Phi(n)$ zachodzi dla każdego $n: \mathbb{N}$. Stąd w szczególności $\Psi(n)$ zachodzi dla każdego $n: \mathbb{N}$, co dowodzi implikacji (18.20). Przedstawiona tutaj własność nazywa się zazwyczaj twierdzeniem o indukcji zupełnej.

Definicja 18.21. Dla dowolnych $Z: \underline{\text{Univ}}, p: \mathbb{N} \text{ i } A: \underline{\text{Class}} \setminus \{\emptyset\}, \ Z \text{ nazywamy } ciqgiem p-wyrazowym w klasie } A \text{ (alt. o wyrazach w klasie } A): \Leftrightarrow Z: \mathbb{N}_{1,p} \to A.$

Klasę wszystkich ciągów p-wyrazowych w klasie A będziemy oznaczać przez A^p , czyli $A^p:=(\mathbb{N}_{1,p}\to A).$

Definicja 18.22. Dla dowolnych $Z:\underline{\mathrm{Univ}},p:\mathbb{N},\ Z$ nazywamy $\mathit{ciągiem}\ p\text{-}\mathit{wyrazowym}:\Leftrightarrow Z:\mathbb{N}_{1,p}\to\underline{\mathrm{Univ}}\ /\!\!/\!\!/\!\!/\!\!/\!\!/\!\!/\!\!/$

Definicja 18.23. Dla dowolnych $Z : \underline{\text{Univ}} \text{ i } A : \underline{\text{Class}} \setminus \{\emptyset\}, Z \text{ nazywamy}$

- (i) ciągiem skończonym w klasie A (alt. o wyrazach w klasie A) : $\Leftrightarrow Z : \mathbb{N}_{1,p} \to A$ dla pewnego $p : \mathbb{N}$;
- (ii) ciągiem w klasie A (alt. o wyrazach w klasie A) : $\Leftrightarrow Z : \mathbb{N} \to A$.

Definicja 18.24. Dla dowolnego $Z : \underline{\text{Univ}}, Z$ nazywamy

- (i) ciągiem skończonym : $\Leftrightarrow Z : \mathbb{N}_{1,p} \to \underline{\text{Univ}}$ dla pewnego $p : \mathbb{N}$;
- (ii) $ciagiem :\Leftrightarrow Z : \mathbb{N} \to \underline{\text{Univ}}$.

Definicja 18.25. Dla dowolnych $z : \underline{\text{Univ}}, n : \mathbb{N}$ i f będącego ciągiem skończonym lub ciągiem, z nazywamy n-tym wyrazem ciągu $f :\Leftrightarrow z = f(n)$.

Uwaga 18.26. Dla oznaczenia n-tego wyrazu ciągu skończonego (odp. ciągu) f często używa się notacji indeksowej " f_n ":="f(n)" dla f, n: <u>Var</u>. Dla oznaczenia //reprezentacji// ciągów skończonych będziemy czasem stosować notację macierzową:

$$\begin{split} "(x_1) &:= \{(1,x_1)\} " \quad \text{dla } x_1 : \underline{\text{Var}}, \\ "(x_1 \ x_2) &:= \{(1,x_1),(2,x_2)\} " \quad \text{dla } x_1,x_2 : \underline{\text{Var}}, \\ "(x_1 \ x_2 \ x_3) &:= \{(1,x_1),(2,x_2),(3,x_3)\} " \quad \text{dla } x_1,x_2,x_3 : \underline{\text{Var}}, \\ "(x_1 \ x_2 \ x_3 \ x_4) &:= \{(1,x_1),(2,x_2),(3,x_3),(4,x_4)\} " \quad \text{dla } x_1,x_2,x_3,x_4 : \underline{\text{Var}} \text{ itd.} \end{split}$$

Dokładniej rzecz ujmując, definiujemy rekurencyjnie " $(x_1) := \{(1, x_1)\}$ " dla $x_1 : \underline{\text{Var}}$ i dla każdego $p : \mathbb{N}$,

"
$$(x_1 \ x_2 \ x_3 \ \dots \ x_{p+1})$$
" := " $(x_1 \ x_2 \ x_3 \ \dots \ x_p) \cup \{(p+1, x_{p+1})\}$ " dla $x : \mathbb{N}_{1,p+1} \to \underline{\text{Var}}$.

Ćwiczenie 18.27. Wykazać, że dla dowolnych $p : \mathbb{N}$ i $A : \underline{\text{Class}} \setminus \{\emptyset\}$,

$$A^p = \{f | f : \underline{\mathrm{Map}} \wedge \underline{\mathrm{D}}(f) = \mathbb{N}_{1,p} \wedge \underline{\mathrm{U}}(f) \subset A\} = \{f | f : \underline{\mathrm{Map}}(\mathbb{N}_{1,p}, A) \wedge \underline{\mathrm{D}}(f) = \mathbb{N}_{1,p}\}.$$

Ćwiczenie 18.28. Wykazać, że dla każdego $A : \underline{\text{Class}} \setminus \{\emptyset\},$

$$F_1 := \{x \mapsto y | x : A^1 \land y = x_1\} : A^1 \xrightarrow[]{\text{or}} A$$

oraz

$$F_2 := \{x \mapsto y | x : A^2 \land y = (x_1, x_2)\} : A^2 \xrightarrow{\text{1-1}} A \times A.$$

Uwaga 18.29. W związku z ćw. 18.28 klasy A^1 i A^2 utożsamia się często z klasami A i $A \times A$, odpowiednio. W szczególności $A^1 \simeq A$ i $A^2 \simeq A \times A$.

Definicja 18.30. Dla dowolnych $Z : \underline{\text{Univ}} \text{ i } p : \mathbb{N}_0, Z \text{ nazywamy } klasą p-elementową (alt. <math>klasq$ o p elementach) : $\Leftrightarrow Z : \underline{\text{Class}} \text{ i } Z_{-} \text{card} = p.$

Uwaga 18.31. Można wykazać, że dla każdego A: Class zachodzą następujące równoważności:

- (i) Ajest klasą nieskończoną \Leftrightarrow istnieje $f:\mathbb{N}\xrightarrow{\text{1-1}}A;$
- (ii) A jest klasą nieskończoną \Leftrightarrow istnieje $f: A \xrightarrow{\text{on}} \mathbb{N}$;
- (iii) A jest klasą skończoną $\Leftrightarrow A \simeq \mathbb{N}_{1,p}$ dla pewnego $p : \mathbb{N}_0$;
- (iv) A jest klasą skończoną $\Leftrightarrow \overline{A} : \mathbb{N}_0$;
- (v) A jest klasą skończoną \Leftrightarrow A jest klasą p-elementową dla pewnego $p:\mathbb{N}_0$.

Ponieważ $\overline{\overline{A}} = 0 \Leftrightarrow A \neq \emptyset$, więc A jest klasą 0-elementowa $\Leftrightarrow A = \emptyset$.

Ćwiczenie 18.32. Wykazać, że dla dowolnych $S: \underline{LORel}$ i $A: \underline{Class}$, jeśli $\emptyset \neq A \subset S_{-}$ supp i A jest klasą skończenie elementową to $S_{-}\max(A) \neq \underline{null}$ i $S_{-}\min(A) \neq \underline{null}$.

Uwaga 18.33. Stosując zasadę indukcji matematycznej //tw. 18.3// można wykazać, że dla dowolnych $p: \mathbb{N}$ i $A: \mathbb{N}_{1,p} \to \underline{\text{Class}} \setminus \{\emptyset\}$ istnieje $f: \underline{\text{Map}}$ taki, że $\underline{\mathbf{D}}(f) = \mathbb{N}_{1,p}$ i $f(k): A_k$ dla $k: \mathbb{N}_{1,p}$.