Linear System Theory

Jun Moon

Chapter 6: Controllability & Observability

Chapter 7: Minimal Realizations

March 19, 2018

Recap

- State space equation
- ► Linear Algebra
- Solutions of LTI and LTV system
- Stability

We will study

- ► Controllability & Observability
- ► Kalman Decomposition
- Minimal realizations

The first chapter dealing with the control input and output variable in the system

$$\dot{x} = Ax + Bu, \ y = Cv$$

- x: state
- ▶ *u*: control
- ▶ *y*: output

Controllability (informal): we want to know whether the state of the system is controllable or not from the input

- ▶ Analyze the system structure from the input
- With the input, we want to move the state to the desired point in a finite time.

Observability (informal): we want to observe the initial state of the system from the output and input to quantify the behavior of the system

- ▶ State: position, velocity, acceleration, etc
- Sensors are required to measure the state. We are not able to use many sensors in real applications.

Controllability & Observability

- ▶ Important concepts in control, estimation, and filtering problems
- Optimal control (LQG, Kalman filtering, etc.)

Example

$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} x + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} u, \ x = (x_1 \ x_2)^T$$

- ▶ $(b_1, b_2)^T = (-1, 1)^T$: can move both eigenvalues \Leftrightarrow can control the state x_1 and x_2
- ▶ $(b_1, b_2)^T = (1, 0)^T$: cannot move the eigenvalue $3 \Leftrightarrow$ cannot control state x_2
- ▶ $(b_1, b_2)^T = (1, 0)^T$: No matter input, x_2 diverges \Leftrightarrow we cannot control x_2

Example

$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} x, \ y = \begin{pmatrix} c_1 & c_2 \end{pmatrix} x$$

- $(c_1, c_2) = (1, 1)$: can observe the state x_1 and x_2
- $(c_1, c_2) = (1, 0)$: cannot observe the state x_2
- $(c_1, c_2) = (1, 0)$: Output is always stable, but the system is internally unstable

$$\dot{x}(t) = Ax(t) + Bu(t), \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

Definition (Definition 6.1)

The state equation with the pair (A, B) is said to be controllable if for any initial state $x(0) = x_0$, any final state x_1 , there exists an input that transfers x_0 to x_1 in a finite time.

Equivalent Definition:

A system is controllable at time t_0 if there exists a finite time t_f such that for any initial condition x_0 , and any final state x_f , there is a control input u defined on $[t_0, t_f]$ such that $x(t_f) = x_f$.

- We need an input u to transfer the state from the initial to the final state
- ▶ Given initial and finial state conditions in \mathbb{R}^n , is it possible to steer x(t) to the final state by choosing an appropriate input u(t)?

Controllability: A Preview

Discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k), \ x(0) = 0, \ x \in \mathbb{R}^{n}, \ u \in \mathbb{R}^{m}$$

$$x(1) = Bu(0)$$

$$x(2) = Ax(1) + Bu(1) = ABu(0) + Bu(1)$$

$$x(3) = A^{2}Bu(0) + ABu(1) + Bu(2)$$

$$\vdots$$

$$x(r) = A^{r-1}Bu(0) + A^{r-1}Bu(1) + \dots + Bu(r-1)$$

$$x(r) = (B \quad AB \quad \dots A^{r-1}B) \begin{pmatrix} u(r-1) \\ u(r-2) \\ \vdots \\ u(0) \end{pmatrix}$$

Controllability: A Preview

$$x(r) = \begin{pmatrix} B & AB & \cdots & A^{r-1}B \end{pmatrix} \begin{pmatrix} u(r-1) \\ u(r-2) \\ \vdots \\ u(0) \end{pmatrix}$$

$$R((B AB \cdots A^{r-1}B)) = \{z \in \mathbb{R}^n, \ z = (B AB \cdots A^{r-1}B)p, \ p \in \mathbb{R}^{nm}\}$$
If $x_f \in R((B AB \cdots A^{r-1}B))$, then x_f is reachable

Controllability: A Preview

This implies that we can reach arbitrary $x_f \in \mathbb{R}^n$ at time $t_f = r$ if and only if $R((B \ AB \ \cdots \ A^{r-1}B)) = \mathbb{R}^n$ that is equivalent to $rank((B \ AB \ \cdots \ A^{r-1}B)) = n$

Rank of $(B AB \cdots A^{r-1}B)$

- ▶ By C-H theorem, A^k is a linear combination of $\{I, A, ..., A^{n-1}\}$
- ▶ For $r \ge n$, the rank of $(B \ AB \ \cdots \ A^{r-1}B))$ cannot increase

Hence, if $rank((B AB \cdots A^{n-1}B)) = n$, then we can find u for an arbitrary $x_f \in \mathbb{R}^n$ for any finite time

$$\dot{x}(t) = Ax(t) + Bu(t), \ x \in \mathbb{R}^n$$
 $x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

The system is controllable (page 213 of the textbook)

- ▶ \Leftrightarrow for any x_0 , there exists u(t) on $[t_0, t_f]$ that transfers x_0 to the origin at t_f (controllability to the origin)
- ▶ \Leftrightarrow there exists u(t) on $[t_0, t_f]$ that transfers state from the origin to any final state x_f at t_f (reachability)

Proof: Exercise!! (note that $e^{A(t-t_0)}$ is always invertible!)

Basically, we need the surjectivity of $\int_0^t e^{A(t- au)} Bu(au) d au$

$$\dot{x}(t) = Ax(t) + Bu(t), \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ x_0 = 0$$

▶ Set of reachable state for a fixed time *t*:

$$\mathcal{R}_t = \{ \xi \in \mathbb{R}^n, \text{ there exists } u \text{ such that } x(t) = \xi \}$$

Note that \mathcal{R}_t is a subspace of \mathbb{R}^n

► Controllability matrix and controllability subspace

$$C_{AB} = \{ \xi \in \mathbb{R}^n : \ \xi = \begin{pmatrix} B & AB & \cdots & A^{n-1}B \end{pmatrix} z, \ z \in \mathbb{R}^{nm} \}$$

 \mathcal{C}_{AB} : range space of \mathcal{C} , where $\mathcal{C} = (B \ AB \ \cdots \ A^{n-1}B) \in \mathbb{R}^{n \times nm}$

► Controllability Gramian

$$W_t = \int_0^t e^{A(t-\tau)}BB^T e^{A^T(t-\tau)}d\tau = \int_0^t e^{A\tau}BB^T e^{A^T\tau}d\tau \ge 0$$

 $R(W_t)$: the range space of W_t , W_t is a symmetric positive semi-definite matrix

Theorem: Controllability (Theorem 6.1 of the textbook) For each time t > 0, the following set equality holds:

$$\mathcal{R}_t = \mathcal{C}_{AB} = R(W_t).$$

- $\mathcal{C} = (B \ AB \ \cdots \ A^{n-1}B)$: controllability matrix
- ▶ Hence if dim $C_{AB} = rank((B \ AB \ \cdots \ A^{n-1}B)) = n$, the system is controllable
- ▶ Due to C_{AB} , the controllability is independent of the time
- ▶ If the system is controllable, then $\mathcal{R}_t = \mathbb{R}^n$, all the states are reachable by an appropriate choice of the control u

We will show that

 $ightharpoonup \mathcal{R}_t \subset \mathcal{C}_{AB}, \, \mathcal{C}_{AB} \subset R(W_t), \, R(W_t) \subset \mathcal{R}_t$

Required tools

▶ C-H theorem (Chapter 3), $R(A^T) = (N(A))^{\perp}$: Problem 1 in HW3

Theorem: $\mathcal{R}_t \subset \mathcal{C}_{AB}$

Proof:

Fix t > 0, and choose any reachable state $\xi \in \mathcal{R}_t$. We need to show that $\xi \in \mathcal{R}_t$ implies $\xi \in \mathcal{C}_{AB}$.

We have $\xi \in \mathcal{R}_t$, which implies $\xi = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$. Then by C-H theorem, $e^{At} = \beta_0(t)I + \cdots + \beta_{n-1}(t)A^{n-1}$ ($\beta_i(t)$: scalar function).

Hence

$$\xi = B \int_0^t \beta_0(t-\tau)u(\tau)d\tau + \dots + A^{n-1}B \int_0^t \beta_{n-1}(t-\tau)u(\tau)d\tau$$

$$= (B \quad AB \quad \dots \quad A^{n-1}B) \underbrace{\begin{pmatrix} \int_0^t \beta_0(t-\tau)u(\tau)d\tau \\ \vdots \\ \int_0^t \beta_{n-1}(t-\tau)u(\tau)d\tau \end{pmatrix}}_{\in \mathbb{D}^{nm}}$$

Hence, $\xi \in \mathcal{C}_{AB}$

```
Theorem: \mathcal{C}_{AB} \subset R(W_t)

Proof:

Since \mathcal{C}_{AB} \subset R(W_t) is equivalent to \mathcal{C}_{AB}^{\perp} \supset R(W_t)^{\perp} (proof: exercise!!), we will show that \mathcal{C}_{AB}^{\perp} \supset R(W_t)^{\perp}.

From Problem 1 in HW3, R(W_t) = (N(W_t))^{\perp}, which is equivalent to (R(W_t))^{\perp} = N(W_t), and similarly, \mathcal{C}_{AB}^{\perp} = N((B AB \cdots A^{n-1}B)).

Hence we need to show that if \xi \in N(W_t), then \xi \in N((B AB \cdots A^{n-1}B)).
```

Let $\xi \in N(W_t)$, then $W_t \xi = 0 \in \mathbb{R}^n$, which also implies $\xi^T W_t \xi = 0 \in \mathbb{R}$. Then

$$0 = \xi^T \int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau \xi = \int_0^t \|B^T e^{A^T \tau} \xi\|^2 d\tau \Leftrightarrow B^T e^{A^T \tau} \xi = 0, \ \forall \tau \in [0, t]$$

Since $y(\tau) = \xi^T e^{A\tau} B = 0$, $\forall \tau \in [0, t]$, we have

$$\xi^{T} \left(\frac{d^{k}}{d\tau^{k}} e^{A\tau} \right) \Big|_{\tau=0} B = \xi^{T} A^{k} B = 0, \ \forall k \ge 0$$

$$\Rightarrow \xi^{T} \left(B \quad AB \quad \cdots \quad A^{n-1} B \right) = 0 \Rightarrow \xi \in \mathcal{N}((B \ AB \quad \cdots \quad A^{n-1} B)) = \mathcal{C}_{AB}^{\perp}$$

Theorem: $R(W_t) \subset \mathcal{R}_t$

Proof:

Let $\xi \in R(W_t)$. Then there exists $v \in \mathbb{R}^n$ such that

$$\xi = W_t v = \int_0^t e^{A\tau} B B^T e^{A^T \tau} v d\tau$$

Define $u(\tau) = B^T e^{A^T(t-\tau)} v, \ \tau \in [0, t]$

Then, since $\dot{x} = Ax + Bu$ with x(0) = 0, we have

$$x(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$
$$= \int_0^t e^{A(t-\tau)} BB^T e^{A^T(t-\tau)} v d\tau = W_t v = \xi$$

This means that $\xi \in \mathcal{R}_t$, since we have found the control u that steers the state to ξ from the origin.

Theorem (Theorem 6.1 of the textbook)

If (A, B) is controllable, and A is stable (eigenvalues of A have negative real parts), then there exists a unique solution of

$$AP + PA^T = -BB^T$$
,

where
$$P = \int_0^\infty e^{A au} B B^T e^{A^T au} d au > 0$$

- ▶ Note that $BB^T \ge 0$
- ▶ In Chapter 5, $AP + PA^T = -Q$ where Q > 0

```
Theorem (Theorem 6.1 of the textbook) (A, B) is controllable if and only if rank((A - \lambda I B)) = n for all eigenvalues, \lambda, of A.
```

► Hautus-Rosenbrock test

Theorem (Theorem 6.1 of the textbook) (A,B) is controllable if and only if $W_t>0$, that is, the controllability Gramian is non-singular

Theorem (Theorem 6.2 of the textbook) Let $\bar{A} = PAP^{-1}$ and $\bar{B} = PB$. Then (A, B) is controllable if and only if (\bar{A}, \bar{B}) is controllable

Controllability is invariant under the similarity transformation

Fact: The state space equation with the controllable canonical form is always controllable.

$$\dot{x} = Ax + Bu, \ G(s) = \frac{X(s)}{U(s)} = (sI - A)^{-1}B$$

Kalman Decomposition Theorem (Theorem 6.6 of the textbook): Suppose that $\mathcal{C}_{AB} = r < n$. Let

$$P = (v_1, \ldots, v_r, v_{r+1}, \ldots, v_n)$$

where v_i , i = 1, 2, ..., r is eigenvectors of C, and $v_{r+1}, ..., v_n$ are arbitrary vectors that guarantees P being nonsingular. Let z = Px.

Then

$$\begin{split} \dot{z} &= PAP^{-1}z + PBu \\ \bar{A} &= PAP^{-1} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ 0 & \bar{A}_{22} \end{pmatrix}, \ \bar{B} = PB = \begin{pmatrix} \bar{B}_1 \\ 0 \end{pmatrix} \\ \bar{A}_{11} &\in \mathbb{R}^{r \times r}, \ \bar{B}_1 \in \mathbb{R}^{r \times m} \end{split}$$

Also, $(\bar{A}_{11}, \bar{B}_1)$ is controllable, and $G(s) = (sI - \bar{A}_{11})^{-1}\bar{B}_1$.

$$\dot{x} = Ax + Bu, \ y = Cx, \ x \in \mathbb{R}^n, \ y \in \mathbb{R}^p$$

Definition (Definition 6.01)

The state-space equation is said to be observable if for any unknown initial condition, there exists a finite t_1 such that the knowledge of the input and the output over $[0, t_1]$ is suffices to determine uniquely the initial condition x(0).

W.L.G.,
$$u = 0$$
, (since u is completely known)

Note that

$$y(t) = Ce^{At}x(0)$$

Hence, if $N(Ce^{At}) = \emptyset$, i.e., $\dim(N(Ce^{At})) = nullity(Ce^{At}) = 0$, then the system is observable.

 \triangleright $N(Ce^{At})$: unobservable subspace

Let

$$\mathcal{O} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

 \mathcal{O} : Observability matrix, $\mathcal{O} \in \mathbb{R}^{pn \times n}$

Theorem: $N(Ce^{At}) = N(\mathcal{O})$

Proof: We will show that $N(Ce^{At}) \subset N(\mathcal{O})$ and $N(Ce^{At}) \supset N(\mathcal{O})$.

If $x_0 \in N(Ce^{At})$, then

$$0 = Ce^{At}x_0 \Rightarrow 0 = C\left(\frac{d}{dt}e^{At}\right)\Big|_{t=0}x_0 \Rightarrow 0 = CA^kx_0, \ \forall k \ge 0$$

Hence, $x_0 \in N(\mathcal{O})$.

If $x_0 \in N(\mathcal{O})$. then $x_0 \in N(Ce^{At})$, since by C-H Theorem, we have

$$Ce^{At} = C\beta_0(t)I + \cdots + CA^{n-1}\beta_{n-1}(t)$$

If $N(Ce^{At}) = \emptyset$, i.e., $\dim(N(Ce^{At})) = nullity(Ce^{At}) = 0$, then the system is observable.

- We need $N(Ce^{At}) = N(\mathcal{O}) = \emptyset$
- ▶ Hence, by the rank-nullity theorem, the system is observable if $rank(\mathcal{O}) = n$
- ▶ We say that the system is observable if and only if the pair (C, A) is observable
- Observability also does not depend on the time (by C-H Theorem)

Duality Theorem (Theorem 6.5 of the textbook) The following are equivalent:

- \triangleright (C, A) is observable
- \triangleright (A^T, C^T) is controllable

Proof:
$$(A^T, C^T)$$
 is controllable if and only if
$$\mathcal{O}^T = (C^T \ A^T C^T \ \cdots \ (A^T)^{n-1} C^T)$$

$$rank(\mathcal{O}^T) = n = rank(\mathcal{O})$$

$$\mathcal{O} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

Theorem (Theorem 6.01) If (A, C) is observable, and A is stable, then there exists a unique solution of

$$A^T P + PA = -C^T C$$

where
$$P = \int_0^\infty e^{A^T \tau} C^T C e^{A \tau} d\tau > 0$$
.

Theorem (Theorem 6.O1) (C, A) is observable if and only if

$$rank \begin{pmatrix} C \\ A - \lambda I \end{pmatrix} = n$$

Theorem (Theorem 6.01) (C, A) is observable if and only if the observability Gramian

$$Q_t = \int_0^t e^{A^T \tau} C^T C e^{A \tau} d\tau > 0$$

Theorem (Theorem 6.O3) Let $\bar{A} = PAP^{-1}$ and $\bar{C} = CP^{-1}$. Then (C, A) is observable if and only if (\bar{C}, \bar{A}) is observable.

$$\dot{x} = Ax + Bu, \ y = Cx, \ G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B$$

Kalman Decomposition Theorem (Theorem 6.06 of the textbook): Suppose that $rank(\mathcal{O}) = q < n$. Let

$$P = egin{pmatrix} v_1 \ dots \ v_q \ v_{q+1} \ dots \ v_n \end{pmatrix}, \ v_1, \dots, v_q dots \ ext{eigenvectors}.$$

Let
$$z=Px$$
. Then $\dot{z}=PAP^{-1}z+PBu,\ y(t)=CP^{-1}z,$ and
$$\bar{A}=PAP^{-1}=\begin{pmatrix}\bar{A}_{11}&0\\\bar{A}_{21}&\bar{A}_{22}\end{pmatrix},\ \bar{B}=PB=\begin{pmatrix}\bar{B}_{1}\\\bar{B}_{2}\end{pmatrix},\ \bar{C}=\begin{pmatrix}\bar{C}_{1}&0\end{pmatrix}$$
 $\bar{A}_{11}\in\mathbb{R}^{q\times q},\ \bar{C}_{1}\in\mathbb{R}^{p\times q}$

Also, $(\bar{C}_1, \bar{A}_{11})$ is observable, and $G(s) = \bar{C}_1(sI - A_{11})^{-1}\bar{B}_1$.

Kalman Decomposition Theorem

Theorem (Theorem 6.7 of the textbook)
We can extract the state that is controllable and observable.

Fact: The state space equation with the observable canonical form is always observable

Discrete-Time LTI System

Discrete-time LTI system

$$x(k+1) = Ax(k) + Bu(k), \ y(k) = Cx(k)$$

- ▶ (A, B) is controllable if and only if rank(C) = n
- ▶ (C, A) is observable if and only if $rank(\mathcal{O}) = n$

Minimum Energy Control (page 189)

$$\dot{x}=Ax+Bu, \ x(0)=x_0, \ x(t_1)=x_f, \ (A,B)$$
 controllable $W_{t_1}=\int_0^{t_1}e^{A\tau}BB^Te^{A^T\tau}d au>0, \ ext{invertible}$

Let

$$u^{*}(t) = -B^{T} e^{A^{T}(t_{1}-t)} W_{t_{1}}^{-1}(e^{At_{1}}x_{0} - x_{f})$$

$$x(t_{1}) = e^{At_{1}}x_{0} - \underbrace{\left(\int_{0}^{t_{1}} e^{A(t_{1}-\tau)}BB^{T} e^{A^{T}(t_{1}-\tau)}d\tau\right)}_{W_{t_{1}}} W_{t_{1}}^{-1}(e^{At_{1}}x_{0} - x_{f}) = x_{f}$$

Minimum Energy Control (page 189)

We can show that the controller u^* is the minimum energy controller in the sense that for any controller u that transfers the state from x_0 to x_f , we have

$$\int_0^{t_1} \|u(t)\|^2 dt \ge \int_0^{t_1} \|u^*(t)\|^2 dt, \ \forall u$$

Stabilizability & Detectability

Weaker notions of controllability and observability

A system is stabilizable if and only if \bar{A}_{22} is stable and $(\bar{A}_{11}, \bar{B}_1)$ is controllable

A system is detectable if and only if \bar{A}_{22} is stable and $(\bar{C}_1, \bar{A}_{11})$ is observable

How about the example on pages 4-5. Is it stabilizable? Is it detectable?

Controllability & Observability: LTV system

$$\begin{split} \dot{x}(t) &= A(t)x(t) + B(t)u(t), \ y(t) = C(t)x(t) \\ W_t &= \int_0^t \Phi(t,\tau)B(\tau)B^T(\tau)\Phi^T(t,\tau)d\tau \ge 0, \ \forall t \ge 0 \\ Q_t &= \int_0^t \Phi^T(t,\tau)C^T(\tau)C(\tau)\Phi(t,\tau)d\tau \ge 0, \ \forall t \ge 0 \end{split}$$

The LTV system is

- lacktriangle is controllable if and only if there exists $t_f>0$ such that $W_{t_f}>0$
- lacktriangle is observable if and only if there exists $t_f>0$ such that $Q_{t_f}>0$
- \triangleright W_t : controllability Graminan
- ▶ *Q_t*: observability Graminan

We have seen that the realization of the state-space equation is not unique.

$$\begin{split} \dot{x} &= Ax + Bu, \ y = Cx + Du, \ x(0) = 0 \\ \dot{x} &= A_1x + B_1u, \ y = C_1x + D_1u, \ x(0) = 0 \\ y(t) &= C \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = C_1 \int_0^t e^{A_1(t-\tau)}B_1u(\tau)d\tau \end{split}$$

Lemma (not in the textbook)

▶ Two system realizations (A, B, C, D) and (A_1, B_1, C_1, D_1) are equivalent if and only if $D = D_1$ and

$$Ce^{At}B = C_1e^{A_1t}B_1, \ \forall t \geq 0$$

▶ Two system realizations (A, B, C, D) and (A_1, B_1, C_1, D_1) are equivalent if and only if $D = D_1$ and

$$CA^kB = C_1A_1^kB, \ \forall k \geq 0$$

In view of the Kalman decomposition, we have the following result: \Rightarrow Suppose (A, B, C, D) is a system realization. If either (C, A) is not observable or (A, B) is not controllable, then there exists a lower-order realization (A_1, B_1, C_1, D_1) for the system

Definition (page 233 of the textbook)

Realizations with the smallest possible dimension are called minimal realizations

```
Theorem (Theorem 7.M2 (page 254)) (A, B, C, D) is a minimial realization of the transfer function G(s) if and only if (A, B) is controllable and (C, A) is observable
```

If the system is not controllable or not observable (or not controllable and observable), then there are pole-zero cancellations in a transfer function.

MATLAB Commands

- controllability matrix: ctrb(A, B)
- ▶ observability matrix: ctrb(A^T, C^T)
- ▶ minimal realization: minreal(A, B, C, D) ⇒ reduce the system order that has only controllable and observable state
- Mostly, we use the balanced realization (Chapter 7.4) ⇒ related to controllability and observability Gramians (robust control, advanced control topic)

Conclusions

In this chapter

- Controllability
- Observability
- Duality
- ► Kalman decomposition
- Minimal realization

Next chapter: control system design

- ► Pole-placement
- observer design
- ▶ Optimum system design (LQR + Kalman filter)