Solution for Tutorial 07 Manually Graded Questions

Question 1.9

{points: 1}

We can use the adjusted R^2 to compare the three models and conclude which one fits the data better. By looking at your metrics from **Question 1.8**, what model fits the data betters according to the adjusted R^2 and why?

Your answer goes here.

BEGIN SOLUTION

The obtained adj.r.squared value suggests that facebook_MLR_int is the best model compared to facebook_MLR_add and facebook_MLR_add_2. This adj.r.squared is 0.802 which suggests that 80.2% of the adjusted variation in the total_engagement_percentage is explained by facebook_MLR_int (assuming normality of the error terms). Note that the adj.r.squared for facebook_MLR_add and facebook_MLR_add_2 are 0.785 (78.5%) and 0.781 (78.1%) respectively, which are smaller that the one corresponding to facebook_MLR_int.

END SOLUTION

Question 1.10

{points: 1}

Do these three models fit the data better than the null model. Using your results from **Question 1.8** with a **significance level** $\alpha=0.10$, provide the three corresponding statistical conclusions of these tests.

Your answer goes here.

BEGIN SOLUTION

- facebook_MLR_add : the $p-{
 m value} < 0.10$ which indicates that this model fits the data better than the null model.
- facebook_MLR_add_2 : the $p-{
 m value} < 0.10$ which indicates that this model fits the data better than the null model.
- facebook_MLR_int : the $p-{
 m value} < 0.10$ which indicates that this model fits the data better than the null model.

END SOLUTION

Question 1.12

{points: 1}

Based in your results from **Question 1.11** with a **significance level** lpha=0.10:

- Does facebook_MLR_add_2 fit the data better than facebook_MLR_add
- Comparing facebook_MLR_add vs facebook_MLR_int , does the inclusion of interaction terms in facebook_MLR_int improve the model's fit to the data?

Your answer goes here.

BEGIN SOLUTION

The $p-{
m value}>0.10$ in the F-test of facebook_MLR_add versus facebook_MLR_add_2 , which indicates that the inclusion of share_percentage and comment_percentage does not improve the model fitting. Hence, we can proceed with another F-test of facebook_MLR_add versus facebook_MLR_int (whose $p-{
m value}<0.10$) which indicates that the inclusion of interaction terms improves the model fitting.

END SOLUTION

Question 1.13

{points: 1}

In **Question 1.7** we noted that when you fit a model with interactions the results in facebook_MLR_int_results can not be used to examine if (overall) total_engagement_percentage and page_engagement_percentage are associated.

The t-tests in the tidy() table, compares this association for different types of posts (i.e., levels of the categorical variable post_category).

If you want to answer examine the overall association, on average over different posts and the effect of other variables, you need to compare facebook_MLR_int with a model that does not contain the variable page_engagement_percentage.

1.13.0 Use lm to write the code of the nested model needed to compare with facebook_MLR_int . Give an object name to this output to be used in the next questions.

1.13.1 Write the code run an appropriate ${\cal F}$ test to answer the question above?

Your answer goes here.

BEGIN SOLUTION

1.13.0 We need to compare facebook_MLR_int with facebook_add_post <- lm(total_engagement_percentage ~ post_category, data = facebook_sample). Note that the name given may differ.

1.13.1 anova(facebook_add_post, facebook_MLR_int)

END SOLUTION