

Uncertainty

Modelling

Introduction to Artificial Intelligence

Chandra Gummaluru University of Toronto

Version W22.1

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Introduction

 Part of being an intelligent agent involves being able to make decisions even in uncertain situations.

Example: Catching a Flight

- You are running late for your flight and can either:
 - Take the train
 - Take a car
- Since so many factors influence the travel time, there is no obvious choice.
- We must still make a decision, but we want to make it as rationally as possible.

Formalizing 1-Player Stochastic Games

- In every case we considered so far, our actions have deterministic consequences.
- We now consider relaxing this assumption, but to keep it simple, we will once again assume we are the only player.
- In other words, the new assumptions are:
 - there is only one player
 - the actions are non-deterministic, i.e., S(s, a), for any $a \in A(s)$ is a random variable.

Formalizing 1-player Stochastic Games (continued)

- Example: Catching a Flight
 - You are running late for your flight and can either:
 - Take the train
 - Take a car
 - Let $M \in \{\text{train}, \text{car}\}$ and $F \in \{\text{yes}, \text{no}\}$ be the method of transport we choose and whether we catch the flight or not.
 - Obviously, we want to catch the flight, but might have a preference in how we get there. For example, we might have

$$r(M) = \begin{cases} 6, M = \mathsf{train} \\ 8, M = \mathsf{car} \end{cases}$$

Suppose we knew that

$$P(F = \text{yes}|M) = \begin{cases} 0.8285, M = \text{train} \\ 0.7958, M = \text{car} \end{cases}$$

Formalizing 1-player Stochastic Games (continued)

• We can model this situation as a 2-player game in which we must choose between M = train and M = car, and the adversary (representing chance) then decides whether F = yes or F = no according to P(F = yes|M).

- We can then decide on the action using the Expect-Max strategy.
- Our expected utility is approximately 5.9652 if we choose to take the train, and 5.9685 if we choose to take the car; thus we should take the car.
- Later, we will see where we got the values for P(F = yes|M).

Review of Probability Theory

- Probability theory seeks to quantify uncertainty.
- In this context, an uncertain situation is called an **experiment**.
- The **sample space** of an experiment, denoted Ω , is the set of all outcomes:
 - When the experiment is conducted, exactly one outcome, $\omega \in \Omega$ will occur.
- ullet In general, Ω can be discrete or continuous, but we will focus only on the former.

Review of Probability Theory: Probabilities of Outcomes

• The **probability** of an event, $\omega \in \Omega$, is the limit of its relative frequency as the experiment is repeated infinitely many times, i.e.,

$$\Pr\left\{\omega\right\} = \lim_{N \to \infty} \frac{N(\omega)}{N},$$

where $N(\omega)$ denotes the number of times that ω occurs.

Review of Probability Theory: Events

- An **event**, A, is a subset of the outcomes, i.e., $A \subseteq \Omega$.
- We say that A occurs iff some outcome, $\omega \in A$ occurs.
- The probability of A is the sum of the probabilities of the outcomes that make it up:

$$\Pr\left\{A\right\} = \sum_{\omega \in A} \Pr\left\{\omega\right\}.$$

Two events can share outcomes, and hence, can occur simultaneously.

Review of Probability: The Axioms

- Actually repeating an experiment infinitely many times to calculate probabilities is not practical. Thus, we must manually assign them.
- A **probability measure** is a function, *P*, such that for each event, *A*,

$$\Pr\{A\} = P(A).$$

- The exact mapping is irrelevant, but it must satisfy a few axioms. In particular, $P:\mathcal{P}(\Omega)\to\mathbb{R}$ is a probability measure if and only if it is
 - **1 non-negative**: $P(A) \ge 0$, for any event, A
 - **2** additive: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$
 - **3** normalized: $P(\Omega) = 1, P(\emptyset) = 0$
 - **4** complimentary: $P(\neg A) = 1 P(A)$

Review of Probability Theory: Joint Probabilities

• The **joint** probability of two events, *A*, and *B*, is the probability that they both occur simultaneously, i.e.,

$$Pr\{A \text{ and } B\} = P(A \cap B).$$

- In general, we cannot determine the joint probability from P(A) and P(B):
 - We can modify A and B such that $P(A \cap B)$ is different, but P(A) and P(B) remain unchanged.
- Thus, we must manually assign joint probabilities.

Review of Probability: Conditional Probabilities

- So far, we have computed the probability of an event, A, assuming that any outcome in the sample space can occur.
- However, in many cases, we know that the outcome that occurs must be from a subset of the sample space, say B.
- Thus, as we repeat the experiment infinitely many times to compute the probabilities, we ignore the trials in which B does not occur.
- In other words, we define the **conditional** probability of *A* given *B* as:

$$\Pr\{A \text{ given } B\} = \lim_{N \to \infty} \frac{N(A \cap B)}{N(B)}.$$

Conditional Probabilities

- Notionally, we will write Pr(A given B) = P(A|B).
- We can show that P(A|B) can be expressed in terms of $P(A \cap B)$ and P(B).
- Indeed, we have

$$P(A|B) = \lim_{N \to \infty} \frac{N(A \cap B)}{N(B)}$$

$$= \lim_{N \to \infty} \frac{N(A \cap B)}{N} \frac{N}{N(B)}$$

$$= \lim_{N \to \infty} \frac{N(A \cap B)}{N} \lim_{N \to \infty} \frac{N}{N(B)}$$

$$= \frac{P(A \cap B)}{P(B)}, P(B) \neq 0.$$

Review of Probability Theory: Bayes' Rule

• Since $A \cap B = B \cap A$, it follows that

$$P(B \cap A) = P(A \cap B)$$

$$\Leftrightarrow P(A)P(B|A) = P(B)P(A|B)$$

$$\Leftrightarrow \underbrace{P(B|A)}_{\text{posterior of } \text{ of } B} \underbrace{P(A|B)}_{\text{liklihood}}$$

 This is called Bayes' rule; it lets us update our beliefs given new knowledge.

Review of Probability Theory: Partitions and Partitioning

• A **partition** of Ω , is a disjoint set of events, B_1, \ldots, B_n such that

$$\bigcup_{i=1}^n B_i = \Omega$$

• Given a partition, B_1, \ldots, B_n , we can write

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i),$$

for any event, A.

• In some cases, it is easiest to compute P(A) through such a partition.

Review of Probability: Independence

• Two events, A and B are **independent**, denoted $A \perp B$ (or $B \perp A$) iff

$$P(B|A) = P(B) \text{ or } P(A|B) = P(A).$$

- In other words, for independent events, knowledge of one does not influence the probability of the other.
- Two events, A and B, are **conditionally independent** given another event, C, denoted $A \perp B \mid C$ (or $B \perp A \mid C$) iff

$$P(B|A, C) = P(B|C) \text{ or } P(A|B, C) = P(A|C).$$

- In other words, for conditionally independent events, knowledge of one does not influence the probability of the other, provided the condition is satisfied.
- There is no relationship between independence and conditional independence.

Review of Probability: Random Variables

- To reason about events more mathematically, it is useful to map them to a numerical space.
- Such a mapping is called a random variable.
- Since we are assuming Ω is discrete, we can simply use $\mathbb N$ as the numerical space.
- For any (discrete) random variable, $X:\Omega\to\mathbb{N}$, we define a **probability mass** function, $p_X:\mathbb{N}\to[0,1]$ such that

$$p_X(x) := \Pr\{X = x\} = P(\{\omega \in \Omega : X(\omega) = x\}).$$

• We can similarly define a **joint probability mass function**, $p_{X,Y}: \mathbb{N}^2 \to [0,1]$ between two random variables, X,Y such that

$$p_{X,Y}(x,y) := \Pr\{X = x \text{ and } Y = y\} = P\left(\{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}\right).$$

Review of Probability: Random Variables

- The joint probability mass function, $p_{X,Y}$, provides complete information about the behaviour of X and Y.
- Indeed we can compute:
 - the conditional probability mass function, $p_{X|Y}: \mathbb{N}^2 \to [0,1]$ of X given Y, as

$$p_{X|Y}(x,y) := \frac{p_{X,Y}(x,y)}{p_{Y}(y)}, p_{Y}(y) \neq 0.$$

• the (marginal) probability mass function, p_X (or p_Y analogously) as:

$$p_X(x) = \Pr\{X = x\}$$

$$= \sum_{\forall y} \Pr\{X = x \text{ and } Y = y\}$$

$$= \sum_{\forall y} p_{X,Y}(x,y).$$

Modelling Uncertain Situations

- An uncertain situation can be modelled as a set of random, but related variables.
- In general, these relationships can be incredibly complex.

Example: Catching a Flight

- Whether we catch the flight or not depends on a multitude of factors, such as:
 - when we get to the airport, and
 - how long it takes to get through security.
- Each of the aforementioned factors, may themselves depend on other factors such as:
 - how we get to the airport, or
 - the number of bags we have.
- However, these factors influence the outcome in different ways:
 - how we get to the airport only matters if we do not know when we get there.
 - the number of bags matters even if we know long it takes to get through security since the former will influence when we get to the airport.

Modelling Uncertain Situations

- We need a systematic way to represent dependence relationships.
- A Bayesian network is a directed acyclic graph, $(\mathcal{V}, \mathcal{E})$, in which the vertices represent the related random variables, and the edges represent the dependence relationships between them:
 - If $(V_1, V_2) \in \mathcal{E}$, where $V_1, V_2 \in \mathcal{V}$, then V_1 and V_2 are dependent.
 - However, the converse is not necessarily true.
 - The directions of the arcs is technically irrelevant since dependence is commutative.
 - The arcs typically indicate the direction of causality but need not be.
- Example: Causality in a Bayesian Network
 - Both networks below indicate that X_1 and X_2 are dependent, but the left suggests that X_1 causes X_2 , while the right suggests that X_2 causes X_1 .

Modelling Uncertain Situations

Example: Catching a Flight

- Define the following variables:
 - whether we catch the flight or not, F
 - when we get to the airport, T
 - how long it takes to get through security, S
 - how we get to the airport, M
 - how many bags we have, N
- We can define a Bayesian network over

$$\mathcal{V} = \{F, T, S, M, N\}.$$

- One possible network is shown on the right.
- The network says the following:
 - M influences T
 - N influences T and S
 - T and S influence F

Bayesian Networks: Dependence Relationships

- When expressed as a Bayesian network, we can graphically determine the conditional dependence relationships between any subset of the variables given knowledge of another subset of the variables.
- To develop it, we shall first consider the so-called "junction" network.
- A **junction**, $\mathcal{J} = (\{X_1, X_2, X_3\}, \{(e_1, e_2)\})$ is a Bayesian network that consists of three random variables, X_1, X_2, X_3 , connected by two arcs, e_1 and e_2 .
- It turns out that conditional mutual dependence relationships between the variables are directly tied to their causal relationships.
- Three types of causal relationships are possible.

Junction Networks: Causal Chain

When one variable influences another, which in turn influences the third, as shown below, the relation is called a causal chain:

$$X_1$$
 e_1 X_2 e_2 X_3

E.g: Rain causes the grass to get wet, which then causes worms to come out.

In this case, $X_1 \not\perp X_3$ but $X_1 \perp X_3 | X_2$.

Junction Networks: Common Cause

When one variable directly influence the other two, as shown below, the relation is referred to as a common cause:

E.g: Rain causes your hair to get wet and the road to be slippery.

In this case, $X_1 \not\perp X_3$ but $X_1 \perp X_3 | X_2$.

Junction Networks: Common Effect

When one variable is directly influenced by the other two, as shown below, the relation is called a common effect:

E.g: Both rain and watering the garden can cause the grass to be wet.

In this case, $X_1 \perp X_3$, but $X_1 \not\perp X_3 \mid K$, where $K \subseteq X_2 \cup \text{des}(X_2)$ and $K \neq \emptyset$.

Bayesian Networks: Dependence Separation

- Let $\mathcal{B} = (\mathcal{V}, \mathcal{E})$ be some Bayesian network and $\mathcal{K} \subseteq \mathcal{V}$.
- A junction, $\mathcal{J} = (\{X_1, X_2, X_3\}, \{(e_1, e_2)\})$, of \mathcal{B} , is **blocked** under K if X_1 and X_2 are independent given K.
- Let a path, p, in \mathcal{B} be an ordered list of junctions,

$$\mathcal{J}^{(i)} = \left(\left\{ X_1^{(i)}, X_2^{(i)}, X_3^{(i)} \right\}, \left\{ (e_1^{(i)}, e_2^{(i)}) \right\} \right)$$

such that $X_1^{(i+1)} = X_2^{(i)}$ and $X_2^{(i+1)} = X_3^{(i)}$, or equivalently, $e_1^{(i+1)} = e_2^{(i)}$.

- The path, p, is **blocked** under K if $\mathcal{J}^{(i)}$ is blocked under K for some i.
- Theorem: Conditional Independence in Bayesian Networks
 - The variables, $V_1, V_2 \in \mathcal{V}$ are conditionally independent given K if and only if every path between V_1 and V_2 is blocked under K.

Dependence Separation: Example

Example: Dependence Separation

• We wish to determine if A and E are independent in each of the following cases:

evidence	$A \perp E$
Ø	
{ <i>C</i> }	
{ <i>G</i> , <i>C</i> }	
$\{G,C,H\}$	
$\{G,F\}$	
$\{F,D\}$	
$\{F,D,H\}$	
{ <i>B</i> }	
$\{H,B\}$	
$\{G,C,D,H,F,B\}$	

Dependence Separation: Example

Example: Dependence Separation

• We wish to determine if A and E are independent in each of the following cases:

evidence	$A \perp E$
Ø	no
{ <i>C</i> }	no
{ <i>G</i> , <i>C</i> }	yes
$\{G,C,H\}$	yes
$\{G,F\}$	no
$\{F,D\}$	yes
$\{F,D,H\}$	no
{ <i>B</i> }	yes
$\{H,B\}$	yes
$\{G,C,D,H,F,B\}$	yes

Dependence Separation: Example

Example: Catching a Flight (Dependence Separation of Variables)

- If we are given T, then F is independent of M, but dependent on N.
- If we are also given S, then F is independent of both M and N.

Consequences of Dependence Separation

• In general, we can show that any variable X, in a Bayesian network is independent of its non-descendants, given its parents, i.e.,

$$P(X|S \cup pts(X)) = P(X|pts(X)).$$

- To see this, we must first observe that every path from *X* to any of its non-descendants must contain either:
 - \bullet a causal chain or common cause junction through one of X's parents, or
 - a common effect junction through one of X's children.

Consequence of Dependence Seperation

- Thus, all paths to X from any of its non-descendants are blocked given pts(X).
- Therefore, X is independent of its non-descendants given its parents, i.e.,

$$P(X|S \cup pts(X)) = P(X|pts(X)),$$

where S is a subset of X's non-descendants.

 This is a very important property that we will exploit later on when we develop inference techniques on Bayesian networks.