

Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE www.sathyabama.ac.in

ASSIGNMENT – I (UNIT – I, LOGIC) SMTA1302, DISCRETE MATHEMATICS

Answer All The Questions

Part A Choose the correct answer $(5 \times 1 = 5)$

Max: 15 Marks

Choose the correct unswer (5/1 - 5)		
1. The compound proposition p is	equivalent to q if	is a tautology.
a) $p \leftrightarrow q$ b) $p \rightarrow q$ c) $\neg (p \lor q)$ d) $\neg p \lor \neg q$		
2. The dual of $(P \vee F) \wedge (Q \vee T)$	T) is	
a) $(P \wedge F) \vee (Q \wedge T)$ b) $(P \wedge T) \vee (Q \wedge F)$ c) $((P \vee \neg Q) \wedge T) \vee (Q \wedge F)$ d) $((P \vee \neg Q) \wedge F) \vee (Q \wedge T)$		
3. $(p \rightarrow q) \land (r \rightarrow q)$ is logically	equivalent to	
a) $p \rightarrow (q \land r)$ b) $p \rightarrow (q \lor r)$ c) $p \land (q \lor r)$ d) $(p \lor r) \rightarrow q$		
4. The PDNF form for the followi	ing formula, $p \lor (\neg p \land q)$ is	
a) $\neg p \wedge q$ b) $(p \wedge q) \vee (p \wedge \neg q) \vee (\neg p \wedge q)$ c) p d) $(\neg p \wedge p) \vee (\neg p \wedge q) \vee (p \wedge \neg q)$	•	
5. If $M(x) : x$ is a Mammal, $W(x)$ The symbolic form of the statement a) $(\forall x)(M(x) \rightarrow W(x))$ b) $(\exists x)(M(x) \land W(x))$ c) $(\forall x)((M(x)) \land W(x))$		led" is

d) $((x)) \rightarrow M(x)$

Part B Answer the following $(5\times1=5)$

- 6. Demonstrate that R is a valid inference from the premises $P \rightarrow Q$, $Q \rightarrow R$ and P.
- 7. Let p: I will study Discrete Mathematics, q: I will watch TV, r: I am in a good mood. Write the following statements using p,q,r and logical connectives
- (i) If I do not study discrete mathematics and I watch TV, then I am in a good mood.
- (ii) If I am in a good mood, then I will study discrete mathematics or I will watch TV.
- 8. Show that p is equivalent to the following propositions:
- (i) $(p \land q) \lor (p \land \neg q)$
- (ii) $(p \lor q) \land (p \lor \neg q)$
- 9. Construct the truth table for the compound proposition and Prove that $(p \to (q \to r)) \Rightarrow (p \to q) \to (p \to r)$ is a Tautology.
- 10. Using the laws of logic simplify $(p \lor q \lor r) \land (p \lor T \lor \neg q) \land (p \lor \neg T \lor r)$

Part C Answer the following $(1 \times 5 = 5)$

11. Obtain PDNF of $P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$.