Chapter 9: Priority Queues ADT

CS401

Michael Y. Choi, Ph.D.

Department of Computer Science Illinois Institute of Technology

Revised Nell Dale Presentation

9.1 Priority Queues

- A priority queue is an abstract data type with an interesting accessing protocol only the *highest-priority* element can be accessed
- Priority queues are useful for any application that involves processing items by priority

The Interface

```
package ch09.priorityQueues;
public interface PriQueueInterface<T>
  void enqueue(T element);
  // Throws PriQOverflowException if this priority queue is full;
  // otherwise, adds element to this priority queue.
  T dequeue();
  // Throws PriQUnderflowException if this priority queue is empty;
  // otherwise, removes element with highest priority from this
  // priority queue and returns it.
  boolean isEmpty();
  // Returns true if this priority queue is empty; otherwise, returns false.
  boolean isFull();
  // Returns true if this priority queue is full; otherwise, returns false.
  int size();
  // Returns the number of elements in this priority queue. }
```

9.2 Priority Queue Implementations

- There are many ways to implement a priority queue
 - An Unsorted List dequeuing would require searching through the entire list
 - An Array-Based Sorted List Enqueuing is expensive
 - A Sorted Linked List Enqueuing again is 0(N)
 - A Binary Search Tree On average, 0(log₂N) steps for both enqueue and dequeue
 - A Heap (next section) guarantees 0(log₂N) steps, even in the worst case

9.3 The Heap

- Heap An implementation of a Priority Queue based on a complete binary tree, each of whose elements contains a value that is greater than or equal to the value of each of its children
- In other words, a heap is an implementation of a Priority Queue that uses a binary tree that satisfies two properties
 - the shape property: the tree must be a complete binary tree
 - the order property: for every node in the tree, the value stored in that node is greater than or equal to the value in each of its children.

Tree Terminology

A full binary tree

A complete binary tree

Two Heaps Containing the Letters 'A' through

The dequeue operation

reheapDown (element)

Effect: Adds element to the heap. Precondition: The root of the tree is empty.

The enqueue operation

reheapUp (element)

Effect: Adds element to the heap.

Precondition: The last index position of the tree is empty.

The enqueue operation

steps b, c represent the "reheap up" operation

Heap Implementation

A Non-linked Representation of Binary Trees

- A binary tree can be stored in an array in such a way
 that the relationships in the tree are not physically
 represented by link members, but are implicit in the
 algorithms that manipulate the tree stored in the array.
- We store the tree elements in the array, level by level, left-to-right. We call the array elements and store the index of the last tree element in a variable lastIndex.
- The tree elements are stored with the root in elements [0] and the last node in elements [lastIndex].

A Binary Tree and Its Array Representation

A Binary Search Tree Stored in an Array with Dummy Values

Array Representation continued

- To implement the algorithms that manipulate the tree, we must be able to find the left and right child of a node in the tree:
 - elements[index] left child is in elements[index*2 + 1]
 - elements[index] right child is in elements[index*2 + 2]
- We can also can determine the location of its parent node:
 - elements[index]'s parent is in elements[(index 1)/2].
- This representation works best, space wise, if the tree is complete (which it is for a heap)

Beginning of HeapPriQ.java

```
// HeapPriQ.java by Dale/Joyce/Weems
                                                                   Chapter
9 // Priority Queue using Heap (implemented with an ArrayList)
// Two constructors are provided: one that use the natural order of the
// elements as defined by their compareTo method and one that uses an
// ordering based on a comparator argument.
package ch09.priorityQueues;
import java.util.*; // ArrayList, Comparator
public class HeapPriO<T> implements PriOueueInterface<T>
 protected ArrayList<T> elements; // priority queue elements
 protected int lastIndex; // index of last element in priority queue
 protected int maxIndex; // index of last position in ArrayList
 protected Comparator<T> comp;
```

. .

The enqueue method

```
public void enqueue(T element) throws PriQOverflowException
// Throws PriQOverflowException if this priority queue is full;
// otherwise, adds element to this priority queue.
{
   if (lastIndex == maxIndex)
      throw new PriQOverflowException("Priority queue is full");
   else
   {
      lastIndex++;
      elements.add(lastIndex, element);
      reheapUp(element);
   }
}
```

The reheapUp algorithm is pictured on the next slide

(c) Move hole up

(d) Place element into hole

reheapUp operation

The dequeue method

```
public T dequeue() throws PriQUnderflowException
// Throws PriQUnderflowException if this priority queue is empty;
// otherwise, removes element with highest priority from this
// priority queue and returns it.
  T hold; // element to be dequeued and returned
  T toMove; // element to move down heap
  if (lastIndex == -1)
    throw new PriQUnderflowException("Priority queue is empty");
  else
    hold = elements.get(0);
                                        // remember element to be returned
    toMove = elements.remove(lastIndex); // element to reheap down
    lastIndex--;
                                         // decrease priority queue size
    if (lastIndex != -1)
       reheapDown(toMove);
                                        // restore heap properties
    return hold;
                                        // return largest element
```

The reheapDown algorithm is pictured on the next slide

(a) reheapDown (E);

(b) Move hole down

(c) Move hole down

(d) Fill in final hole

reheapDown operation

```
private int newHole(int hole, T element)
// If either child of hole is larger than element return the index
// of the larger child; otherwise return the index of hole.
  int left = (hole * 2) + 1;
  int right = (hole * 2) + 2;
  if (left > lastIndex)
    // hole has no children
    return hole;
  else
  if (left == lastIndex)
    // hole has left child only
    if (comp.compare(element, elements.get(left)) < 0)</pre>
      // element < left child</pre>
      return left;
    else
      // element >= left child
      return hole;
  else
  // hole has two children
  if (comp.compare(elements.get(left), elements.get(right)) < 0)</pre>
    // left child < right child
    if (comp.compare(elements.get(right), element) <= 0)</pre>
      // right child <= element
      return hole:
    else
      // element < right child</pre>
      return right;
  else
  // left child >= right child
  if (comp.compare(elements.get(left), element) <= 0)</pre>
    // left child <= element
    return hole;
  else
    // element < left child</pre>
    return left;
```

The newHole method

Heaps Versus Other Representations of Priority Queues

	enqueue	dequeue
Heap Linked List	O(log ₂ N) O(N)	O(log ₂ N) O(1)
Binary Search Tree		
Balanced	$O(\log_2 N)$	$O(\log_2 N)$
Skewed	O(<i>N</i>)	O(<i>N</i>)