

Formation GBIF France dans le cadre d'Ecoscope - Valoriser ses données d'observation sur la biodiversité : qualité, standards et publication
Paris, 15-16 septembre 2015

Introduction à la qualité des données et à l'adéquation à l'usage

GBIF France (gbif@gbif.fr)

Présentation réalisée en collaboration avec Nicolas Noé Développeur - Plateforme Belge Biodiversité Global Biodiversity Information Facility (GBIF)

Pourquoi publier les données ?

21ème siècle = « siècle des données »

- La quantité de données augmente exponentiellement
- Le GBIF est un acteur de ce mouvement!
- Bien mises en forme et standardisées, ces données <u>ont le potentiel</u> d'améliorer grandement nos connaissances et aptitudes

Des données à la compréhension...

Des océans de données...

...des rivières d'informations...

... des ruisseaux de connaissances ...

...des gouttes de compréhension

Usage des données de biodiversité

Recherches
taxonomiques, modélisation/prédiction de la
distribution des espèces, espèces invasives,
dégradation des habitats, relations
interspécifiques, ...

Mais aussi...

Organisation de la conservation, gestion de l'eau, éco-tourisme, histoire des sciences, chasse et pêche, rapatriement des données,

. . .

Adéquation à l'usage - définition

« Fitness-for-use »

La qualité des données est un concept relatif qui dépend de l'usage qui est fait de ces données...

"The general intent of describing the quality of a particular dataset or record is to describe the fitness of that dataset or record for a particular use that one may have in mind for the data."

Chrisman, 1991

Adéquation à l'usage - exemple

L'espèce est-elle présente en Tasmanie ? L'espèce est-elle présente dans la réserve ?

Chaîne des données et qualité

La perte de qualité survient à chaque étape.

La responsabilité en terme de qualité de données doit être assignée le plus tôt possible dans cette chaîne.

Chaîne des données et qualité

Chaque institution devrait avoir:

- Une vision ciblant la qualité des données
 - Ne pas "réinventer la roue" et utiliser les standards
 - Chercher l'efficacité (dans la collecte et l'assurance qualité) and éviter la duplication d'effort
 - Encourager le partage (données, informations et outils)
 - Réfléchir à long terme
 - Prendre soin des utilisateurs et de leurs besoins
 - Investir dans la documentation et les métadonnées
- Une politique implémentant cette vision
- Une stratégie d'implémentation pour cette politique (échéances précises à court, moyen et long terme)

Partage des responsabilités Le collecteur:

- L'étiquetage est correct, aussi complet que possible et lisible
- Les méthodes de collecte sont largement documentées
- Les remarques sont claires et non-ambiguës
- ...

Partage des responsabilités Le conservateur: responsabilité à long-terme

- Qualité des retranscriptions dans la base de données
- Des **tests de validation** sont exécutées régulièrement et documentés.
- Les données sont sauvegardées et archivées
- Les versions précédentes sont systématiquement conservées
- **Assurer le respect** (vie privées, propriété intellectuelle, sensibilités et traditions locales, ...)
- Fournir une documentation de qualité (incluant les problèmes connus)
- Les retours utilisateurs sont pris en compte

Responsabilité de maintenance, mais aussi la responsabilité morale d'améliorer la qualité des données (si possible) pour de futurs utilisateurs et usages.

Partage des responsabilités L'utilisateur :

Informer les conservateurs:

- Erreurs et omissions dans les données et la documentation
- Définir les priorités futures
- •

A l'usage:

 Déterminer si les donnés sont adaptées à l'usage prévu et ne pas les utiliser de façon nonadéquate.

Exactitude et précision

Exactitude : véracité de l'information

Précision: décrit à quel point la valeur mesurée est proche de la « vraie » valeur (statistique ou numérique)

Exactitude faible Haute précision

Haute exactitude Basse précision

Haute exactitude Haute précision

Erreur et incertitude

Erreur

- Englobe imprécision et données inexactes
- Aléatoire ou systématique
- Inutile de tenter de lui échapper (mesure, calcul, enregistre et documente)

Incertitude

- Toujours présente (difficulté: comprendre, décrire et enregistrer)
- Nous en dit plus sur l'observateur que sur les données elles-mêmes!

Adéquation à l'usage et métadonnées

Métadonnées = « Données sur les données »

- Décrivent le contenu, l'accessibilité, la complétude, ...
- A propos du dataset
- Documentation de l'erreur
- Documentation des procédures de validation, de nettoyage et de correction appliquées

Les métadonnées doivent être suffisament riches pour permettre l'usage des données par des tiers sans devoir se référer à la source de ces données.

Données taxonomiques

Souvent le **nom = point d'entrée**

risque de propagation des erreurs tout au long du processus de publication des données

Erreurs possibles et solutions :

- Identification incorrectes (requiert l'aide d'un taxonomiste)
- Erreurs orthographiques (nettoyage des données)
- Mauvais format (nettoyage des données)

Les erreurs peuvent concerner noms scientifiques et noms communs, à tous les niveaux de taxonomie

Données taxonomiques

De quoi parle-t-on?

- Noms (scientifique, vernaculaire, rang, hiérarchie, ...)
- Statuts (synonymes, nom valide, ...)
- Références (auteur, date et lieu)
- Détermination (par qui et quand ?)
- Champs relatifs à la qualité (certitude, ...)

Données taxonomiques

Erreurs courantes

- Données manquantes (ex : sous-espèce renseignée mais pas l'espèce)
- Valeurs incorrectes (fautes de frappe, mauvaise colonne, symboles « ?? », …)
- Valeurs non-atomiques (ex : « subsp. bicostasa » dans un seul champ
- Incertitude sur un des noms de la nomenclature binomiale
- Valeurs dupliquées (synonymes, plusieurs noms valides...)
- Données inconsistantes suite à la fusion de deux bases de données utilisant différents référentiels

Introduction

Les données spatiales (textuelles ou géoréférencées) représentent un des aspects cruciaux pour déterminer l'adéquation à l'usage des données primaires de biodiversité:

- Modélisation de la distribution des espèces
- Sélections des zones à protéger
- Gestion de l'environnement et des ressources
- ...

De quoi s'agit-il?

- Latitude et longitude
- Aire
- Point + rayon
- Boîte englobante (bounding box = rectangle calculé à partir des coordonnées de deux points)
- Polyline
- Référence de grille

Quelques définitions

- Coordonnées : un code documentant une position sur la surface de la terre, exprimé suivant un SRS (spatial reference system). En pratique; souvent latitude/longitude
- Géoréférencement : le procédé qui consiste à assigner une référence géographique à un enregistrement donné.
- Datum (système géodésique)

Erreurs courantes

- Inversion des coordonnées
- Valeur(s) zéro
- Système géodésique/datum inconnu
- SRS inadapté
- Problèmes de conversion.

Exemples d'erreurs communes :

- Coordonnées 0/0 (méridien de Greenwich et Equateur)
- Coordonnées inversées (miroir sur la Chine et léger miroir à l'ouest du Chili)

Données de collecte et de collecteur

- Nom du collecteur
- Date de collecte
- Informations supplémentaires: habitat, sol, conditions météorologiques...

La pertinence dépend du type de jeu de données:

- Collection statique (musée): nom et ID du collecteur, date, habitat, méthode de capture ...
- **Observations**: +durée d'observation, zone, période de la journée, activité, sexe du spécimen observé...
- Echantillonage et inventaires exhaustifs :
 +méthode, taille de la grille, fréquence, si des spécimens de référence ont été collecté (+références)

Données de collecte et de collecteur

Facteurs

- Exactitude: nom du ou des collecteurs, date,...
- Cohérence: utilisation d'une terminologie (différente pour les sols, les habitats...)
- **Complétude** : certains champs sont très rarement renseignés (floraison, espèces associées...) ce qui peut limiter la réutilisation des données

Données descriptives

Données morphologiques, phénologiques, ...

- Qualité très variable : données historiques impossibles à vérifier, description trop coûteuse en temps/argent, subjectivité (estimation des couleurs, de l'abondance...)
- Souvent des données s'appliquant au niveau taxonomique et pas au niveau du spécimen
- **Complétude** : généralement impossible à atteindre sur un même spécimen
- Cohérence: attributs non consistants
 - FLOWER_COLOUR = MAUVE
 - FLOWER_COLOUR= violet clair

Merci pour votre attention

