5. Aufgabenblatt vom Freitag, den 17. November 2017 zur Vorlesung

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

Abgabe: bis Freitag, den 01. Dezember 2017, 10 Uhr

1. **Hasse-Diagamm** (2 Punkte)

Zeichnen Sie das Hasse-Diagramm für die partielle Ordnung $\{(a,b)|\ a$ teilt $b\}$ auf der Menge $\{1,2,3,4,5,6,8,10,12\}$. Gibt es in diesem Poset maximale bzw. minimale Elemente, wenn ja, welche?

2. Relationen und Funktionen (4 Punkte)

In der folgenden Tabelle sind 15 Relationen $R \subseteq A \times A$ dargestellt, die sich durch Kombination von 5 definierenden Aussageformen und 3 Zahlbereichen für A ergeben (\mathbb{N} – die natürlichen Zahlen mit 0, \mathbb{Q} – die rationalen Zahlen und \mathbb{R}^+ – die positiven reellen Zahlen ohne Null). Man untersuche welche dieser Relationen Funktionen sind und wenn ja, ob sie injektiv, surjektiv oder bijektiv sind. Dazu können folgende Symbole benutzt werden:

- b falls die Relation eine bijektive Funktion von A auf A ist
- i falls die Relation eine injektive Funktion von A in A, aber nicht bijektiv ist
- s falls die Relation eine surjektive Funktion von A auf A, aber nicht bijektiv ist
- f falls die Relation eine Funktion von A in A, aber weder injektiv noch surjektiv ist
- \times falls die Relation keine Funktion von A in A ist

definierendes Prädikat	$A = \mathbb{N}$	$A = \mathbb{Q}$	$A = \mathbb{R}^+$
$\{(x,y)\in A\times A \frac{y}{x+1}=2\}$			
$\{(x,y)\in A\times A \tfrac{x}{y+1}=2\}$			
$\{(x,y) \in A \times A x^2 - y - 3 = 0\}$			
$\{(x,y) \in A \times A x - y^2 + 3 = 0\}$			
$\{(x,y) \in A \times A x^2 - y^2 = 0\}$			

3. Funktionen II (4 Punkte)

Sei $f: A \to B$ eine beliebige Funktion, A_1, A_2 Teilmengen von A. Beweisen sie:

- (a) $f(A_1) \setminus f(A_2) \subseteq f(A_1 \setminus A_2)$
- (b) $A_1 \subseteq f^{-1}(f(A_1))$. Finden Sie ein Beispiel, bei dem eine echte Inklusion auftritt.
- (c) Beweisen Sie, dass f genau dann injektiv ist, wenn für jede Menge C und zwei beliebige Funktionen $g, h: C \longrightarrow A$ aus $f \circ g = f \circ h$ die Identität g = h folgt.

4. Funktionen III, etwas schwieriger (4 Punkte)

Sei $f: A \to B$ eine beliebige Funktion.

Wir definieren eine neue Funktion $g: \mathcal{P}(B) \to \mathcal{P}(A)$. Für $N \subseteq B$ sei $g(N) = f^{-1}(N)$.

Beweisen Sie, dass f surjektiv ist genau dann, wenn g injektiv ist.

Tipp: Zeigen Sie beide Richtungen mit Kontraposition.

Hinweis: Bitte die Übungszettel immer mit den Namen aller Bearbeiter und (!) dem Namen des Tutors (+ welches Tutorium) versehen. Bitte beachten Sie den Abgabetermin!