Tổng quan về Multi-Robot Coverage Path Planning

Lớp: KHMT - K61

Trường: ĐHBK - HN

Thành viên: Hoàng Quốc Hảo

Lê Văn Hoàng

Keywords

• CPP: Coverage Path Planning

Nội dung trình bày

- 1. Giới thiêu bài toán CPP
- 2. Ứng dụng của bài toán CPP
- 3. Bài toán Multi-Robot CPP
- 4. Một số nghiên cứu liên quan
- 5. Mô hình đề xuất
- 6. Kết quả
- 7. Nhận xét
- 8. Tài liệu tham khảo

Bài toán Coverage Path Planning (CPP)

- Bài toán tìm hành trình đi qua tất cả các điểm của một khu vực hoặc một vùng mong muốn đồng thời tránh các chướng ngại vật
- Thỏa mãn các ràng buộc về môi trường
- Tối ưu một số yếu tố: hành trình, năng lượng

Ưng dụng của bài toán CPP

- Robot hút bụi trong nhà
- Tự động trong nông nghiệp
- Tìm kiếm cứu nạn, giám sát môi trường
- Phát hiện nguy hiểm, rà phá bom mìn
- Tìm kiếm và cứu trợ: tìm kiếm và giải cứu những người sống sót sau thiên tai.

Úng dụng của bài toán CPP

Robots khám phá, tìm kiếm trong rừng

Robots trong kho hàng amazon

Single Robot & Multi-Robot CPP

Single Robot CPP

• Tổng quan:

Tìm đường đi cho **một robot**, đi qua tất cả các điểm trong một khu vực, và thoả mãn các ràng buộc :

- Robot phải di chuyển qua tất cả các điểm trong khu vực mục tiêu, bao phủ toàn bộ khu vực.
- Hạn chế lặp đường đi
- Robot hoạt động liên tục và tuần tự mà không có sự lặp lại của đường dẫn
- Tránh các chướng ngại vật

Nhược điểm:

- Hạn chế rõ rệt về thời gian hoàn thành, chiều dài đường đi, năng lượng Robot, lượng thông tin khi làm nhiệm vụ bao phủ khu vực rộng lớn.
- Độ mạnh mẽ trong xử lý lỗi

Multi Robot CPP

Tổng quan

- Tương tự Single Robot, chỉ khác về số lượng robot hoạt động (nhiều robot hơn)

• Ưu điểm so với Single Robot

- Thời gian hoàn thành nhiệm vụ nhanh hơn
- Tăng độ mạnh mẽ của toàn bộ hệ thống
- Có thể áp dụng cho khu vực rộng lớn hơn

Bài toán Multi-Robot CPP

Phát biểu bài toán:

Bài toán Multi-Robot CPP là bài toán tìm hành trình cho **nhiều robot**, đi qua tất cả các điểm trong một khu vực, và thỏa mãn một số ràng buộc :

- Các robot phải di chuyển qua tất cả các điểm trong khu vực mục tiêu, bao phủ toàn bộ khu vực.
- Tránh các chướng ngại vật
- Là bài toán NP-Complete [1]

Bài toán Multi-Robot CPP

Input

- Môi trường đã phân rã
- Số robot và vị trí xuất phát của robot
- Vị trí các chướng ngại vật
- Option: Năng lượng tối đa, vị trí trạm sạc, điều kiện môi trường: gió, khu vực ưu tiên

Output

- Hành trình của mỗi robot
- Muc tiêu
 - Bảo phủ toàn bộ môi trường
 - Tối ưu hoá quãng đường, năng lượng sử dụng

Các biến thể của bài toán multi-Robot

Keypoint : Là điểm mà tại đó có thể quan sát được các vị trí xung quanh

Dạng môi trường	Số chiều CPP	Cách di chuyển	Kiểu môi trường	Cơ sở
Địa hình bằngphẳngĐịa hình nhấpnhô	- 2D (bài toán bao phủ) - 3D (bài toán tái cấu trúc)	- Di chuyển 4 hướng (ưu tiên lựa chọn) - Di chuyển 8 hướng	- Online (đã được mô hình hóa) - Offline (chưa được mô hình hoá)	- Số sensors - Số agents (có thể bằng 0)

Các biến thể của bài toán multi-Robot

Dạng bài toán	Các vấn đề về	Ràng buộc năng	Giao tiếp giữa các	Nhiệm vụ cơ
	môi trường	Iượng	sensors	sở
- Bao phủ toàn bộ khu vực (complete) - Bao phủ 1 khu vực con (semi)	- Chướng ngại vật - Gió , địa hình , -Khu vực ưu tiên	 Hạn chế năng lượng hoặc không Được sạc lại hoặc không Giới hạn năng lượng của robot có bị hao mòn theo thời gian hoặc không 	- Các robot giao tiếp với nhau trực tiếp hoặc giao tiếp thông qua trạm trung gian(local) - Robot giao tiếp qua internet, bluetooth,(global)	- Bao phủ đường đi - Bao phủ viewpoint

Các biến thể của bài toán multi-Robot

Các vấn đề nên và cần được tối ưu hóa:

- Tổng quãng đường di chuyển
- ☐ Tổng thời gian di chuyển
- ☐ Tổng năng lượng tiêu tốn
- Số robot cần dùng
- ☐ Số trạm sạc
- Thời gian sống robot

Ngoài ra nên hạn chế rủi ro và xử lý tình huống nếu xảy ra rủi ro

Bài toán Multi-Robot CPP

Các bước giải bài toán:

Bài Toán Multi-Robot CPP

Almadhoun, R., Taha, T., Seneviratne, L. et al. A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 1, 847 (2019). https://doi.org/10.1007/s42452-019-0872-y

Bài toán 1:

- Môi trường biểu diễn dưới dạng unknown tree
- + Chỉ biết max depth
- + Không biết số node và cấu trúc cây

[1] Das, Shantanu & Dereniowski, Dariusz & Karousatou, Christina. (2017), "Collaborative Exploration of Trees by Energy-Constrained Mobile Robots", Theory of Computing Systems. 62. 10.1007/s00224-017-9816-3.

Input:

- Unknown Tree có root r0
- Infinity robot, vị trí robot xuất phát là r0
- Năng lượng mỗi robot : G

Ràng buộc:

- Ràng buộc về năng lượng mỗi robot

Output:

- Khám phá được hết cây

Mục tiêu

- Tối ưu hóa số robot sử dụng

Ý tưởng:

- Phương thức giao tiếp : Global và Local
- Thuật toán : Dùng DFS để tìm kiếm
- Cải tiến từ bao phủ trong môi trường global thành bao phủ trong môi trường local

Giao tiếp Global	Giao tiếp Local
 Khám phá DFS theo từng độ sâu của cây Mỗi lần sử dụng 1 robot Khi một robot hết năng lượng, tận dụng giao tiếp global để báo vị trí cho robot khác từ gốc đến để tiếp tục khám phá 	 Khám phá DFS theo từng độ sâu của cây Mỗi lần sử dụng 1 team robot Do hạn chế giao tiếp, robot chết k thể báo vị trí cho robot ở gốc được. Sử dụng team robot để lan truyền thông tin vị trí về root

Nhược điểm:

- Robot không có khả năng sạc lại cũng như quay lại gốc trong khi thực tế điều này rất tốn kém
- Trong môi trường local, phần lớn robot chỉ nhằm mục đích chuyển thông tin và chết trong khi còn nhiều năng lượng dẫn đến khá lãng phí
- Mô hình không giải quyết vấn đề tối ưu thời gian

Bài toán 2:

- Input:
 - + Môi trường dạng ô lưới (grid-based)
 - + N robots cùng vị trí bắt đầu
 - + Vị trí chướng ngại vật
- Output:
 - + Đường đi bao phủ tối ưu
- Ràng buộc:
 - + Tránh chướng ngại vật
- Mục tiêu:
 - + Tối ưu số lượt turn (chuyển hướng)

Gao, Chunqing & Kou, Yingxin & Li, Zhanwu & Xu, An & Li, You & Chang, Yizhe. (2018). Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree. Mathematical Problems in Engineering. 2018. 1-10. 10.1155/2018/3436429..

Tại sao tối ưu số lượt turn (chuyển hướng):

- Robot chuyển hướng sẽ có tiêu tốn năng lượng
- Độ dài trong bao phủ trong bài toán không thay đổi (chiều dài spanning tree)

Gao, Chunqing & Kou, Yingxin & Li, Zhanwu & Xu, An & Li, You & Chang, Yizhe. (2018). Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree. Mathematical Problems in Engineering. 2018. 1-10. 10.1155/2018/3436429..

Ý tưởng 1 robot:

--> Mở rộng nhiều robot bằng cách chia khu vực thành N khu vực con rồi áp dụng ý tưởng cho từng khu vực con

(d) Final paths around the ST (by improved ACO algorithm)

Gao, Chunqing & Kou, Yingxin & Li, Zhanwu & Xu, An & Li, You & Chang, Yizhe. (2018). Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree. Mathematical Problems in Engineering. 2018. 1-10. 10.1155/2018/3436429...

- DARP Algorithm:
- + Chia thành các khu vực con đều nhau nhất có thể, liên tục
- ACO Algorithm:
- + Xây được spanning tree ít lượt turn nhất
- Trao đổi các nodes giữa các khu vực con
- + Tối ưu thêm số turn

Gao, Chunqing & Kou, Yingxin & Li, Zhanwu & Xu, An & Li, You & Chang, Yizhe. (2018). Optimal Multirobot Coverage Path Planning: Ideal-Shaped Spanning Tree. Mathematical Problems in Engineering. 2018. 1-10. 10.1155/2018/3436429..

Minh họa

Nhận xét:

- Mô hình còn khá đơn giản, hạn chế: Kích thước 2 x size robot, không trạm sạc
- Mục tiêu tối ưu (số lượt turn) phụ thuộc nhiều vào hình dạng khu vực con sau khi phân chia
- -> Cần cải tiến thuật toán bước phân chia môi trường con

Bài toán 3

Môi trường bài toán 3

Li, B., Moridian, B., Kamal, A. *et al.* Multi-Robot Mission Planning with Static Energy Replenishment. *J Intell Robot Syst* 95, 745–759 (2019).

- Nhóm tác giả [3] đề xuất mô hình khám phá đồ thị với các lưới ô cell, với các ràng buộc về năng lượng, gió, trạm sạch tĩnh, chướng ngại vật.
- Phương pháp giải : Giải thuật di truyền
- Môi trường: Đã biết và được mã hoá thành lưới cell
- Mục tiêu : Bao phủ toàn bộ môi trường với quãng đường đi ngắn nhất và tìm vị trí trạm sạc.

Điều kiện:

- Bao phủ đa robot trong thời gian dài (vấn đề sạc lại pin)
- Robot cần di chuyển sao cho mức tiêu thụ năng lượng thấp và khả năng cung cấp năng lượng hợp lí (vị trí trạm sạc)
- Cung cấp một phương pháp heuristic để lập kế hoạch bao phủ tối ưu về năng lượng và thỏa mãn các ràng buộc về môi trường :
 - + Chướng ngại vật
 - + Gió
 - + Độ ưu tiên các khu vực

Input:

- Đồ thị G (tập các đỉnh V gồm n ô cell) , khoảng cách các điểm là khoảng cách euclid
- Số trạm sạc C, vị trí robot xuất phát
- Cr: mô hình gió
- P: hàm phân phối độ ưu tiên cho mỗi đỉnh khám phá trong V
- Năng lượng mỗi robot : G

Ràng buộc:

- Năng lượng tối đa là G và có trạm sạc tĩnh
- Ràng buộc về môi trường như: chướng ngại vật, gió, khu vực ưu tiên

Output:

- Hành trình đi của các robot và vị trí trạm sạc để khám phá hết đồ thị

Mục tiêu

- Tối ưu hoá năng lượng (quãng đường)

Phương pháp giải:

- Dùng giải thuật GA để giải quyết bài toán

Thực nghiệm 1: Bỏ qua ràng buộc, điều kiện môi trường

Fig. 7 The greedy algorithm computes the trajectories of three working robots and the placement of four charging stations

Fig. 8 The proposed algorithm computes trajectories of three working robots and the placement of four charging stations

	Greedy	Thuật toán GA đề xuất	Improve
Tổng quãng đường khám phá	235.7 km	230 km	6.5 %
Thời gian khám phá	83.3 hours	78.2 hours	6.1 %

Thực nghiệm 2: Có ràng buộc môi trường

- Thuật toán tham lam thất bại
- GA phải bổ sung thêm 1 trạm sạc
- + Quãng đường khám phá: 219 km, time 83.5h

Nhược điểm:

- Vị trí trạm sạc cố định, mất nhiều thời gian để di chuyển đến trạm sạc
- Chưa giải quyết vấn đề khi robot xảy ra sự cố
- Mới chỉ xét môi trường đã biết

Ưu điểm:

- Giải quyết khá đầy đủ các điều kiện môi trường
- Giải thuật di truyền thể hiện được tính tối ưu về đường đi và giải quyết các điều kiện môi trường (cụ thể so sánh với giải thuật tham lam)

Table 1	(continued)
---------	-------------

Paper Year Application	Type of environment	Algorithm Processing	Viewpoints Generation	CPP Approach	Evaluation
[59] 2018 coastal areas coverage	- 2D area	- Online - Centralized (initial partitioning process is executed on the ground station and the cell decomposition and coverage planning are compited on-board each UAV)	- Model-based - Two steps: 1-a growing regions algorithm performs an isotropic partitioning of the area based on the initial locations of the UAVs and their relative capabilities 2-then CDT is computed based on the largest FoV among the available UAVs	- Reward based-(AWP) isotropic cost attribution function by a step transition algorithm, starting from the initial position of each UAV, propagating towards the other UAVs or the borders of the area	- FOV projection size - Complexity - Average divergence vs num- ber of robots - Altitude - UAV Capability vs area
[21] 2012 Surveillance coverage missions over a terrain of arbitrary morphology	- 3D environment	- Online - Centralized	- Non-model based (rand- omized)	- Reward based - Two main steps that can be expressed as follows: 1- The part of the terrain that is "visible" 2- The team members are arranged so that for every point in the terrain the closest robot is as close as possible to that point	- Convergence, - Scalability - Applicability to non-convex 3D environments - Cost function - Coverage %

Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., & Rekleitis, I. (2017, September). Efficient multi-robot coverage of a known environment. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1846-1852). IEEE.

Paper Year Application	Type of environment	Algorithm Processing	Viewpoints Generation	CPP Approach	Evaluation
[45] 2018 Surveillance and mapping (persistent monitoring of terrains)	- 1.5D area	- Offline-centralized	 Model-based Visibility polygon and visibility region corresponding to a point x on the terrain A terrain can be interpreted as a function that returns an altitude value for every x 	- Reward based - VRP for planning - The UAV must repeat a certain tour in the environment - The cost function used for the ground robot is asymmetric and dependent on the slope of the terrain on	- Computational time
[20] 2015 Office like environment sym- metric hall coverage	- 2D area	- Online - Distributed	 Non-model based (rand- omized) 	 Reward based Frontier based and performing rank based allocation 	 Compared to greedy, nearest and rank based Execution time Explored area percentage
[52] 2018 MBZIRC search, pick and place	- 2D area - Area with moving objects	- Online - Decentralized	 Randomized Graph-like grid environment with edge-connected cells 	- NBV - Using PDM to plan exploratory paths on a grid representing the sum of expected scores to be found - Minimize the combined search and action time with targets found in an environ- ment using finite-horizon plan	- Reward prediction - PDM changes
[46] 2018 Sampling of water for off-site analysis	- 2D area	- Online	 Model-based—consider locations on the outer-most contour between a region with high variance and a region with low variance Or consider all the locations on a fixed planning window centered on the current position of the robot 	- NBV - An explorer that measures variables to suggest sample utility (GP frontier-based exploration) - A sampler that collects physical samples (secretary hiring problem is used for the sampler),	- Mean error in the interpolated data as a function of distance traveled - Compare the GP-frontier based explorer to two other exploration techniques: global maximum variance search, and lawnmower coverage - Sampling score - Compare the sampler with submodular secretary algorithm

Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., & Rekleitis, I. (2017, September). Efficient multi-robot coverage of a known environment. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1846-1852). IEEE.

Paper Year Application	Type of environment	Algorithm Processing	Viewpoints Generation	CPP Approach	Evaluation
[61] 2016 Search and rescue missions (disaster scenarios)	- 2D area	- Offline(CPP) - Online in the recovery relocation) - Centralized (user need to define region of interest)	- Model-based - Cell decomposition based on hexagons	- Grid based search - The lawnmower path angle is modeled as graph based problem - Subdivision of cells among agents using K-means (clustering) - TSP is used to generate path that connect each cluster internal cells centroids separately (minimum Euler path) - The lawnmower pattern is used as the basic coverage pattern for each hexagonal cell - The final 3D route is generated adding z (sum of minimum specified altitude and current position in the elevation map)	- Survey time - Recovery scheme of fulfilling tasks of damaged robots
[84] 2014 Sensor based coverage in narrow spaces	- 2D area (known and Par- tially unknown environ- ment)	 Online Centralized for prioritizing the robots 	Model-based Modeled the environment as GVD Edges of voronoi diagram need to be covered	- Reward based - The problem is capacitated ARP which is solved by (UA) - The approach modifies UA: - To add energy demands (energy, coverage) - To re-plan path utilizing the remaining energy capacity	 Analysis of tour length per the number of agents Tour length vs energy con- sumption CPU time

Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., & Rekleitis, I. (2017, September). Efficient multi-robot coverage of a known environment. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1846-1852). IEEE.

Mô hình bài toán

- Phát triển theo thuật toán mô hình hóa môi trường:
 - Biến thể của lưới ô cell , spanning tree ,Visibility Graph ,Voronoi Graph ,Tangent Graph,...
 - Các thuật toán phân rã không gian : Exact cell decomposition, Adaptive cell decomposition, Approximate cell decomposition, The coordinate transformation method...
- Phát triển theo thuật toán bao phủ :
 - Thuật toán tìm kiếm cục bộ, thuật toán tiến hóa, thuật toán tham lam, Heuristic ...
- Phát triển dựa trên mục đích sử dụng
 - Tìm kiếm máy bay (ưu tiên thời gian tìm kiếm), cảnh báo thiên tai (ưu tiên thời gian sống robot)...

Hướng phát triển

Mô hình bài toán

Input:

- Môi trường : grid-cell hoặc tree
- Số trạm sạc C (trạm sạc tĩnh), vị trí robot xuất phátNăng lượng mỗi robot : G

Ràng buộc:

- Năng lương robot
- Ràng buôc về môi trường: chướng ngai vật

Output:

- Hành trình bao phủ của các robot

Muc tiêu

- Tối ưu hoá năng lượng và quãng đường

Task Allocation

- Phương pháp Task Allocation hiệu quả giúp tận dụng hết lợi thế của Multi-robot CPP
- Một số thuật toán có thể nghiên cứu thêm: GA, DARP, K-means

Thank you!