Composition of Movement Primitives

May 14, 2025

Contents

_	1.2	Recap	2
	1.3	Via-Points Modulation	2
2	Con	position of MPs	2
1	P	$ m ^{roMPs}$	
1.	1 l	ecap	
Fro	om [1	2]:	

- q_t : joint angle over time
- \dot{q}_t : joint velocity over time
- $\tau = \{q_t\}_{t=0...T}$: trajectory
- ullet w: weight vector of a single trajectory
- ϕ_t : basis function
- $\Phi_t = [\phi_t, \dot{\phi_t}]$: $n \times 2$ dimensional time-dependent basis matrix
- \bullet z(t): monotonically increasing phase variable
- $\epsilon_y \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_y)$: zero-mean i.i.d. Gaussian noise
- $p(w; \theta)$: prior over the weight vector w, with parameters θ , assumed to be Gaussian

$$\boldsymbol{y}_t = \begin{bmatrix} q_t \\ \dot{q}_t \end{bmatrix} = \boldsymbol{\Phi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y \tag{1}$$

$$p(\boldsymbol{\tau}|\boldsymbol{w}) = \prod_{t} \mathcal{N}(\boldsymbol{y}_{t}|\boldsymbol{\Phi}_{t}^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_{y})$$
(2)

$$p(\tau; \theta) = \int p(\tau | \boldsymbol{w}) \cdot p(\boldsymbol{w}; \theta) d\boldsymbol{w}$$
(3)

Eq. (3) is illustrated in Fig. 1.

Figure 1: Hierarchical Bayesian model used in ProMPs.

1.2 Coupling between joints

$$p(\boldsymbol{y}_t|\boldsymbol{w}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{y}_{1,t} \\ \vdots \\ \boldsymbol{y}_{d,t} \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\Phi}_t^{\top} & \cdots & \boldsymbol{0} \\ \vdots & \ddots & \vdots \\ \boldsymbol{0} & \cdots & \boldsymbol{\Phi}_t^{\top} \end{bmatrix} \boldsymbol{w}, \boldsymbol{\Sigma}_y \right) = \mathcal{N}\left(\boldsymbol{y}_t \middle| \boldsymbol{\Psi}_t \boldsymbol{w}, \boldsymbol{\Sigma}_y \right)$$
(4)

with:

- $\boldsymbol{w} = [\boldsymbol{w}_1^\top, \dots, \boldsymbol{w}_n^\top]^\top$: combined weight vector
- \bullet Φ_t : block-diagonal basis matrix containing the basis functions and their derivatives for each dimension
- $\mathbf{y}_{i,t} = [q_{i,t}, \dot{q}_{i,t}]^{\mathsf{T}}$: joint angle and velocity for the i^{th} joint

1.3 Via-Points Modulation

- $\boldsymbol{x}_t^{\star} = [\boldsymbol{y}_t^{\star}, \boldsymbol{\Sigma}_t^{\star}]$: desired observation
- y_t^{\star} : desired position and velocity vector at time t
- Σ_t^{\star} : accuracy of the desired observation

Using Bayes rule: $P(A|B) = \frac{p(B|A) \cdot P(A)}{P(B)}$

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) = \frac{p(\boldsymbol{x}_t^{\star}|\boldsymbol{w}) \cdot p(\boldsymbol{w})}{p(\boldsymbol{x}_t^{\star})}$$
 (5)

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) \propto \mathcal{N}\left(\boldsymbol{y}_t^{\star}|\boldsymbol{\Psi}_t^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_t^{\star}\right) \cdot p(\boldsymbol{w})$$
 (6)

$$\dots$$
 ToDo expand \dots (7)

$$\boldsymbol{\mu}_{\boldsymbol{w}}^{[new]} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Sigma}_{y}^{\star} \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(8)

$$\Sigma_{\boldsymbol{w}}^{[new]} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_t \left(\Sigma_y^* \Psi_t^\top \Sigma_{\boldsymbol{w}} \Psi_t \right)^{-1} \Psi_t^\top \Sigma_{\boldsymbol{w}}$$
(9)

2 Composition of MPs

ToDo

References

- [1] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, "Probabilistic Movement Primitives," in *Advances in Neural Information Processing Systems*, vol. 26, Curran Associates, Inc., 2013.
- [2] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, "Using probabilistic movement primitives in robotics," *Autonomous Robots*, vol. 42, pp. 529–551, Mar. 2018.