Introduction to Pipelining

Welcome back to 6.004!

Reminders:

Lab 3 due Thursday, April 2nd Lab 4 due Tuesday, April 7th

Performance Measures

- Two metrics of interest when designing a system:
- 1. Latency: The *delay* from when an input enters the system until its associated output is produced
- 2. Throughput: The *rate* at which inputs or outputs are processed
- The metric to prioritize depends on the application
 - Airbag deployment system? Latency
 - General-purpose processor? Throughput (maximize instructions/second)

Performance of Combinational Logic

For combinational logic:

latency = t_{PD} throughput = $1/t_{PD}$

We can't get the answer any faster, but are we making effective use of our hardware at all times?

F & G are "idle", just holding their outputs stable while H performs its computation

Pipelined Circuits

Use registers to hold H's input stable!

Now F & G can be working on input X_{i+1} while H is performing its computation on X_i . We've created a 2-stage *pipeline*: if we have a valid input X during clock cycle j, P(X) is valid during clock j+2.

Suppose F, G, H have propagation delays of 15, 20, 25 ns and we are using ideal registers ($t_{PD} = 0$, $t_{SETUP} = 0$):

	<u>latency</u>	throughput
unpipelined	45	1/45
2-stage pipeline	50	1/25
	worse	better!

March 31, 2020 MIT 6.004 Spring 2020 L12-4

Pipeline Diagrams

The results associated with a particular set of input data moves *diagonally* through the diagram, progressing through one pipeline stage each clock cycle.

Pipeline Conventions

Definition:

A well-formed *K-Stage Pipeline* ("K-pipeline") is an acyclic circuit having exactly K registers on *every* path from an input to an output.

A combinational circuit is thus a 0-stage pipeline.

Composition convention:

Every pipeline stage, hence every K-Stage pipeline, has a register on its *output* (not on its input).

Clock period:

The clock must have a period t_{CLK} sufficient to cover the longest register to register propagation delay plus setup time.

K-pipeline latency L = K * t_{CLK} K-pipeline throughput T = 1 / t_{CLK}

Ill-Formed Pipelines

Consider a BAD job of pipelining:

For what value of K is the following circuit a K-Pipeline? none

Problem:

Successive inputs get mixed: e.g., $B(A(X_{i+1}), Y_i)$. This happens because some paths from inputs to outputs have 2 registers, and some have only 1!

This can't happen in a well-formed K pipeline!

A Pipelining Methodology

Step 1:

Draw a line that crosses every output in the circuit, and mark the endpoints as terminal points.

Step 2:

Continue to draw new lines between the terminal points across various circuit connections, ensuring that every connection crosses each line in the same direction. These lines demarcate *pipeline stages*.

Adding a pipeline register at every point where a separating line crosses a connection will always generate a valid pipeline.

Strategy:

Focus your attention on placing pipelining registers around the slowest circuit elements (bottlenecks).

Pipeline Example

	LATENCY	THROUGHPUT
0-pipe:	4	1/4
1-pipe:	4	1/4
2-pipe:	4	1/2
3-pipe:	6	1/2

OBSERVATIONS:

- 1-pipeline improves neither L nor T.
- T improved by breaking long combinational paths, allowing faster clock.
- Too many stages cost L, don't improve T.
- Back-to-back registers are sometimes needed to keep pipeline wellformed.

Pipelined Components

4-stage pipeline, throughput=1

Pipelined systems can be hierarchical:

- Replacing a slow combinational component with a kpipe version may let us decrease the clock period
- Must account for new pipeline stages in our plan

Sample Pipelining Problem

 Pipeline the following circuit for maximum throughput while minimizing latency. The number in each module is the module's latency.

• What is the latency and throughput of your pipelined circuit?

• $t_{CLK} = 4$

$$T = 1/(4)$$

 $L = 4*4 = 16$

Design Tradeoffs Introduction: Multiplier Case Study

Multiplication by repeated addition

At each step we add either 1101 or 0 to the result depending upon a bit in the multiplier

$$mi = (a[i]==0)? 0 : b;$$

We also shift the result by one position at every step

Notice, the first addition is unnecessary because it simply yields m0

Also note that these are unsigned binary numbers.

Multiplication by repeated addition circuit

Implementation of mi

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (bunch of AND gates)

Hard part: adding M N-bit partial products

Combinational Multiplier Redrawn

Increase Throughput with Pipelining - First Attempt

Increase Throughput with Pipelining

Folded Multiplier

Reduce Area With Sequential Logic

Assume the multiplicand (B) has N bits and the multiplier (A) has M bits. If we only want to invest in a single N-bit adder, we can process adds sequentially using the same adder M times. Tradeoff increased latency for reduced area.


```
Init: P←0, load A&B

Repeat M times {
   P ← P + (A<sub>LSB</sub>==1 ? B : 0)
   shift S<sub>N</sub>,P,A right one bit
}

Done: (N+M)-bit result in P,A
```

```
Using Ripple Carry Adder t_{CLK} = \Theta(N)

# stages = \Theta(N)

Latency = \Theta(N^2)

Throughput = \Theta(1/N^2)

March \mathcal{P}_{P_1} = \overline{\mathcal{P}}_{P_2} = \overline{\mathcal{P}}_{P_3} \Theta(N)
```

Using Diagonal Partial Products $t_{CLK} = \Theta(1)$ # stages = $\Theta(N)$ Latency = $\Theta(N)$ Throughput = $\Theta(1/N)$ Area = $\Theta(N)$

MIT 6.004 S

Pipelining Design Alternatives

Several combinational modules in one pipeline stage (A)

One module per pipeline stage (B)

Folded reuse a block, multicycle (C)

Clock: B ≈ C < A

Area: C < A < B

Throughput: C < A < B

Thank You!

Next Lecture: Building a Single Cycle Processor