(10th Edition)

Mathias Preiner

Armin Biere

http://fmv.jku.at/hwmcc19

Sponsored by

fmcad.19

October 22-25, 2019 San Jose, California, USA

HWMCC Editions

Previous Years

- AIGER format (http://fmv.jku.at/aiger)
- Tracks
 - □ **SINGLE** safety (bad state) property track
 - how **DEEP** model checkers go on unsolved SINGLE instances (Oski Technology award \$500)
 - □ LIVENESS track (single "justice" property)

Word-level model checking mentioned since 2012 in every HWMCC presentation.

This Year

Goal: bootstrap word-level track as part of HWMCC

- collect large set of publicly available word-level benchmarks
- encourage researchers to work on novel model checking engines
- provide a platform for comparison

Word-level Track(s)

- BTOR2 format (https://github.com/Boolector/btor2tools)
- SINGLE safety (bad state) property track
 - □ subtracks: bit-vectors, bit-vectors+arrays
 - □ BTOR2 witnesses optional
- Oski Technology award \$1000
- Intel Xeon E5-2620 v4 2.10GHz, 16 cores (32 threads), Limits: 120 GB memory, 1h wall-clock time

Word-Level Format BTOR

BTOR 1.0 [BPR'08]

- word-level generalization of the initial AIGER format
- format for quantifier-free formulas over bit-vectors and arrays
- sequential extensions

BTOR 2.0 [CAV'18]

- lifts features from the AIGER 1.9 format to word-level
 - supports invariant and fairness constraints
 - supports safety and liveness properties
 - □ initialization of registers/memories
- witness format
- tool suite: libbtor2parser, btorsim, btor2aiger, btorsplit, ...

BTOR2 Format

```
(num)
             ::= positive unsigned integer (greater than zero)
             := unsigned integer (including zero)
(uint)
             == sequence of whitespace and printable characters without '\n'
(string)
(symbol)
             == sequence of printable characters without '\n'
            := ':' (string)
(comment)
(nid)
             ::= (num)
(sid)
             := (num)
(const)
             ::= 'const' (sid) [0-1]+
(constd)
            := 'constd' (sid) ['-'](uint)
(consth)
             := 'consth' (sid) [0-9a-fA-F]+
             ::= ('input' | 'one' | 'ones' | 'zero') (sid) | (const) | (constd) | (consth)
(input)
(state)
             ::= 'state' (sid)
(bitvec)
             ::= 'bitvec' (num)
(array)
             := 'array' (sid) (sid)
(node)
             ::= (sid) 'sort' ( (array) | (bitvec) )
                | (nid) ( (input) | (state) )
                | (nid) (opidx) (sid) (nid) (uint) [(uint)]
                | (nid) (op) (sid) (nid) [(nid) [(nid)]]
                | (nid) ( 'init' | 'next' ) (sid) (nid) (nid)
                | (nid) ( 'bad' | 'constraint' | 'fair' | 'output' ) (nid)
                | (nid) 'iustice' (num) ( (nid) )+
             ::= (comment) | (node) [(symbol)] [(comment)]
(line)
             := ( (line)'\n' )+
(btor)
```

Witness Format

```
(binary-string)
                    ::= [0-1]+
(by-assignment)
                    ::= (binary-string)
(array-assignment) := '[' (binary-string) ']' (binary-string)
                    ::= (uint) ( (bv-assignment) | (array-assignment) ) [(symbol)]
(assignment)
                    ::= ( (comment)'\n' | (assignment)'\n' )+
(model)
(state part)
                    ::= '#' (uint) '\n' (model)
(input part)
                    ::= '@' (uint) '\n' (model)
(frame)
                    ::= [(state part)] (input part)
                   ::= ('b' | 'j')(uint)
(prop)
(header)
                    ::= 'sat\n' ( (prop) )+ '\n'
(witness)
                    ::= ( (comment)'\n' )+ | (header) ( (frame) )+ '.'
```

https://github.com/Boolector/btor2tools

BTOR 2.0 Example

1 sort bitvec 1		sat
2 sort bitvec 3		
3 zero 2)	b0
4 state 2 cnt	cnt = 0	#0
5 init 2 4 3		@0
	`	0 011 in@0
6 input 2 in		@1
7 add 2 4 6	cnt' = cnt + in	0 010 in@1
8 next 2 4 7	?	@2
9 ones 2		0 010 in@2
10 eq 1 4 9	bad(cnt == 7)	@3
11 bad 10)	0 000 in@3
12 constd 2 3		0 000 11100
13 ulte 1 6 12	$in \leq 3$	•
14 constraint 13	J	

Benchmarks

Submissions

- **745** new benchmarks with **4177** safety properties from Aman Goel (534/537), Makai Mann (162/162), and Clifford Wolf (49/3478)
- 688 BEEM benchmarks translated from BTOR1

Bit-blasting BTOR2 to AIGER (btor2aiger)

- bit-blasted all bit-vector benchmarks to AIGER
- no array support yet
- uses Boolector to synthesize AIGs
- uses AIGER library for constructing AIGER benchmarks

In total 2352 bit-vector and 2513 bit-vector+array SINGLE benchmarks

Benchmark Selection

- classified all benchmarks into 29 classes
- removed "easy" benchmarks (800 bit-vector, 817 array)
 solved by all model checkers¹ within 10s wall-clock time
- randomly selected from remaining benchmarks

□ selected
$$N * frac(N)$$
 benchmarks per class
$$N \dots \text{number of benchmarks in class}$$

$$\square \text{ BEEM benchmarks limited to 15}$$

$$\text{benchmarks}$$

$$frac(N) = \begin{cases} 1/2 & \text{if } N < 50 \\ 1/3 & \text{if } N < 100 \\ 1/4 & \text{if } N < 200 \\ 1/5 & \text{if } N < 300 \\ 1/6 & \text{else} \end{cases}$$

■ in total 317 bit-vector and 312 bit-vector+array benchmarks

¹excluding BMC-only model checkers for unsat

Benchmark Selection: Bit-Vectors

class	selected	unused	removed	total
wolf/2019C/qspiflash	73	361	45	479
goel/industry/cal	44	131	60	235
mann/data-integrity/unsafe/arbitrated_top	27	54	19	100
wolf/2018D/zipcpu	24	24	98	146
wolf/2019A/picorv32	18	36	0	54
wolf/2019C/dspfilters_fastfir_second	17	17	18	52
beem	15	515	158	688
wolf/2019C/vgasim	15	14	93	122
goel/opensource	12	12	119	143
mann/data-integrity/unsafe/shift_register_to	p 12	12	1	25
mann/data-integrity/unsafe/circular_pointer.	top 11	11	3	25
goel/industry/gen	9	9	106	124
wolf/2018A/zipcpu	8	8	34	50
wolf/2018D/picorv32	8	8	10	26
wolf/2019C/zipversa_composecrc_prf	8	8	9	25
goel/industry/mul	5	5	1	11
wolf/2019B/marlann	3	3	3	9
wolf/2018D/VexRiscv	3	3	0	6
goel/crafted	1	1	22	24
mann/unsafe	1	1	1	3
wolf/2018D/ponylink	1	1	0	2
mann/safe	1	1	0	2
mann/unknown	1	0	0	1

Benchmark Selection: Bit-Vectors+Arrays

class	selected	unused	removed	total
wolf/2019C/dblclockfft_butterfly	129	643	427	1199
wolf/2019C/zipcpu_zipcpu_piped	74	370	86	530
$wolf/2019C/zipcpu_zipcpu_dcache$	63	311	253	627
wolf/2019A/picorv32	18	36	0	54
wolf/2018A/zipcpu	9	8	40	57
wolf/2018A/picorv32	7	6	10	23
wolf/2019B/marlann	5	4	0	9
wolf/2018A/VexRiscv	3	3	0	6
mann/unsafe	1	1	1	3
wolf/2018A/ponylink	1	1	0	2
mann/safe	1	1	0	2
mann/unknown	1	0	0	1

AVR: Abstractly Verifying Reachability

- Aman Goel, Karem Sakallah (University of Michigan)
- AVR proof race: 11 parallel configurations racing for the result
 - 8 variants of IC3+SA
 word-level IC3 using syntax-guided abstraction with add-ons:
 - data abstraction
 - incremental refinement
 - interpolation

- property-directed word splitting
- extract/concat handler
- hybrid abstractions
- □ 3 variants of BMC (simple, incremental BMC)
- proof certificates (SMT-LIB), counterexample traces (BTOR2)
- SMT solvers under the hood:
 - □ Boolector (with Lingeling/CaDiCaL)
 - □ MathSAT 5

□ Yices 2

(uninterpreted functions)

(bit-vectors)

(interpolation support)

github.com/aman-goel/avr

Thanks Yices 2, Boolector, MathSAT 5, Z3, Yosys, Btor2Tools developers

CoNPS-btormc-THP

- Norbert Manthey (hobbyist, former postdoc @ TU Dresden)
- based on BtorMC, no source modification
- uses Lingeling as SAT backend for Boolector
- ConNPS-btormc-no-THP as reference without modifications
- ConNPS-btormc-THP uses huge pages for mapping memory
 - □ idea based on work from 2009
 - □ implemented using transparent huge pages
 - □ statically linked against modified glibc library
 - patches and paper to be published
- single BMC engine

CoSA2: CoreIR Symbolic Analyzer 2

- Makai Mann, Ahmed Irfan, Florian Lonsing, Clark Barrett (Stanford University)
- SMT-based hardware model checker built on solver-agnostic framework smt-switch (github.com/makaimann/smt-switch)
- runs 4 engines in parallel:
 - □ BMC
 - \square BMC + simple path
 - □ k-induction
 - □ interpolation-based
- used SMT solvers:
 - □ MathSAT 5

(interpolation)

□ Boolector+CaDiCaL

(for all other configurations)

Non-Competitive Model Checkers (Submitted by Organizers)

BtorMC

- Aina Niemetz, Mathias Preiner, Armin Biere (Stanford, JKU)
- btormc
 - □ based on SMT-COMP'19 branch of Boolector+CaDiCaL
 - □ single k-induction engine (new)
- btormc-master
 - □ based on master branch of Boolector+Lingeling
 - □ single BMC engine

abcsuperprove

- Robert K. Brayton, Baruch Sterin, Alan Mishchenko (Berkeley)
- winner of HWMCC'17 SINGLE track

Results

SINGLE: Bit-Vectors

SINGLE: Bit-Vectors

		solved	sat	uns	to	mo	unk	real	time	space	best	uniq
	abcsuperprove	253	48	205	64	0	0	43520	438180	89594	160	73
1	avr	156	45	111	0	0	161	34227	92687	106867	45	8
2	cosa2	131	36	95	185	1	0	41083	91351	75021	13	0
	btormc	117	40	77	200	0	0	41915	41907	33263	50	1
3	conps-btormc-thp	40	40	0	175	0	102	33984	33981	8764	0	0
	btormc-master	40	40	0	176	0	101	34993	34990	7768	1	0
	conps-btormc-no-thp	40	40	0	176	0	101	35393	35389	8660	0	0

SINGLE SAT: Bit-Vectors

SINGLE UNSAT: Bit-Vectors

SINGLE: Bit-Vectors+Arrays

SINGLE: Bit-Vectors+Arrays

		solved	sat	uns	to	mo	unk	real	time	space	best	uniq
1	cosa2	222	13	209	75	1	14	93852	198589	375490	22	11
	btormc	208	14	194	104	0	0	11723	11710	14494	191	3
2	avr	130	3	127	0	0	182	16901	49138	302430	30	17
3	conps-btormc-thp	13	13	0	121	0	178	9648	9647	2683	0	0
	btormc-master	13	13	0	122	0	177	10143	10142	2278	0	0
	conps-btormc-no-thp	13	13	0	122	0	177	10162	10161	2644	0	0

SINGLE SAT: Bit-Vectors+Arrays

SINGLE UNSAT: Bit-Vectors+Arrays

Oski Award for Overall Winner

		solved	sat	uns	to	mo	unk	real	time	space	max	best	uniq
1	cosa2	353	49	304	260	2	14	134935	289939	450511	18275	35	11
	btormc	325	54	271	304	0	0	53637	53616	47757	3648	241	4
2	avr	286	48	238	0	0	343	51128	141825	409297	37372	75	25
	abcsuperprove	253	48	205	64	0	0	43520	438180	89594	24444	160	73
3	conps-btormc-thp	53	53	0	296	0	280	43632	43627	11447	2313	0	0
	btormc-master	53	53	0	298	0	278	45136	45131	10046	2102	1	0
	conps-btormc-no-thp	53	53	0	298	0	278	45555	45550	11304	2395	0	0

Note: abcsuperprove only participated in the bit-vector track.

Oski Award for Overall Winner

		solved	sat	uns	to	mo	unk	real	time	space	max	best	uniq
1	cosa2	353	49	304	260	2	14	134935	289939	450511	18275	35	11
	btormc	325	54	271	304	0	0	53637	53616	47757	3648	241	4
2	avr	286	48	238	0	0	343	51128	141825	409297	37372	75	25
	abcsuperprove	253	48	205	64	0	0	43520	438180	89594	24444	160	73
3	conps-btormc-thp	53	53	0	296	0	280	43632	43627	11447	2313	0	0
	btormc-master	53	53	0	298	0	278	45136	45131	10046	2102	1	0
	conps-btormc-no-thp	53	53	0	298	0	278	45555	45550	11304	2395	0	0

Note: abcsuperprove only participated in the bit-vector track.

CoSA2

For solving the largest number of benchmarks.

Benchmark Contribution Award

Clifford Wolf

For contributing 3478 SINGLE benchmarks.

Conclusion

Word-level track

- finally word-level track at HWMCC
- 745 new benchmarks with 4177 safety properties
- only 3 model checker submissions

Next Edition

- bit-level and word-level tracks
- BTOR2 witnesses required
- DEEP for word-level?
- single-core track?

Thanks to all submitters!

References i

- Robert Brummayer and Armin Biere and Florian Lonsing BTOR: Bit-Precise Modelling of Word-Level Problems for Model Checking. Workshop on Bit-Precise Reasoning, 2018
- Aina Niemetz and Mathias Preiner and Clifford Wolf and Armin Biere Btor2, BtorMC and Boolector 3.0. CAV, Pages 587–595, 2018
- Armin Biere and Keijo Heljanko and Siert Wieringa AIGER 1.9 and Beyond. FMV Technical Report 11/2, 2011