SPRING 2022

Probability and Statistics FINAL EXAM

Notes: (1) this is an open-book/notes exam; (2) there are 8 questions with a total of 100 points; (3) suggestion: have a look at all problems and first solve the problems you feel easiest; (4) good luck!

- 1. [10 pts] Xiaoming has two coins, α and β . Coin α has P(H) = 1/3 and Coin β has P(H) = 1/4. Suppose Xiaoming picks one coin randomly and toss it for 4 times.
 - (a) [6 pts] What is the probability of observing at most 2 heads?
 - (b) [4 pts] If you ask Xiaoming, "did you have at most 2 heads observed?" He says, "yes". What is the probability that the coin that Xiaoming picked is Coin β ?
- 2. [10 pts] The pdf of a continuous random variable X is an even function, i.e., $f_X(-x) = f_X(x)$ for all $x \in \mathbb{R}$. Suppose $Var(X) = \sigma^2 < \infty$. Define Y = |X|.
 - (a) [5 pts] Please find Cov(X, Y).
 - (b) [5 pts] Are X and Y independent? Please provide your reasoning with detailed steps.
- 3. [12 pts] Suppose a random sample $\{X_i\}_{i=1}^n \sim i.i.d.N(0,\sigma^2)$. Define the following three estimators

$$S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2,$$

$$\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2,$$

and

$$\tilde{\sigma}_n^2 = n^{-1} \sum_{i=1}^n X_i^2.$$

where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

- (a) [6 pts] Check whether S_n^2 , $\hat{\sigma}_n^2$, and $\tilde{\sigma}_n^2$ are unbiased estimators for σ^2 respectively. Give your reasoning.
- (b) [6 pts] Which estimator is the most efficient? Please rank them using the MSE criterion. Give your reasoning.
- 4. [10 pts] Suppose $\{X_i\}_{i=1}^n$ is an i.i.d. random sample with the following pmf

$$f_X(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & \text{for } x = 0, 1, 2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

 $\lambda > 0$ is an unknown parameter. Define the following estimator

$$\hat{\theta} = \frac{1}{n^2} \left(\sum_{i=1}^n X_i \right) \left(\sum_{i=1}^n X_i - 1 \right).$$

Is $\hat{\theta}$ an unbiased estimator for λ^2 ? If so, please prove it. If not, please find the bias of $\hat{\theta}$ for λ^2 .

5. [10 pts] Suppose a random sample $\{X_i\}_{i=1}^n \sim i.i.d.(\mu, \sigma^2)$. Define the following estimator

$$\hat{\mu} = \frac{2}{n(n+1)} \sum_{j=1}^{n} jX_j.$$

Please show that $\hat{\mu}$ is a consistent estimator for μ .

6. [18 pts] Suppose $\{X\}_{i=1}^n$ is an i.i.d. random sample with the following marginal pdf

$$f_X(x) = \begin{cases} \frac{c}{\theta} e^{-x/\theta} & \text{for } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) [4 pts] Please find the value of c that makes the above pdf valid.
- (b) [7 pts] Please show that $2\sum_{i=1}^{n} X_i/\theta \sim \chi^2(2n)$;
- (c) [7 pts] Suppose an observable sample is obtained with sample size n=15 and sample mean $\bar{x}_n=5010$. Please find a 95% confidence interval for θ . Provide your reasoning in detail.

HINT: The MGF for a $\chi^2(n)$ RV is $M_X(t) = (1-2t)^{-n/2}$.

7. [20 pts] Suppose a product's weight follows normal distribution. Now we independently draw a sample from it and the weights are

$$481, 473, 471, 464, 500, 439, 461, 466, 485, 460.$$

- (a) [5 pts] What is the 99% confidence interval estimate for the average weight of this product? Give your reasoning.
- (b) [5 pts] What is the 95% confidence interval estimate for the variance of weight for this product? Give your reasoning.
- (c) [5 pts] What is the interpretation of the confidence interval estimates in Parts (a) and (b)?
- (d) [5 pts] Suppose one would like to test if the average weight is below 450. Please conduct a test at the 5% significance level and a conclusion by explicitly writing down hypotheses and test statistic.
- 8. [10 pts] Consider the following regression equation

$$Y_i = X_i'\beta + \varepsilon_i,$$

where Y_i is a one-dimensional random variable, X_i is a p-dimensional vector and β is an unknown p dimensional vector, and ε_i is an unobservable random variable such that it follows i.i.d. N(0,1). Furthermore, ε_i is independent of X_i . Given a dataset $\{y_i, x_i'\}_{i=1}^n$. Please find the MLE for β .

[HINT: the joint density of X_t , Y_t can be written as $f_{X_t,Y_t}(x_t, y_t) = f_{Y_t|X_t}(y_t|x_t) f_{X_t}(x_t)$. Since $f_{X_t}(x_t)$ does not depend on β , then objective function in MLE only depends on the conditional density $f_{Y_t}(y_t|x_t)$.]