

SRK1201L 1-transmitter and 2-receiver 24GHz transceiver MMIC

GENERAL DESCRIPTION

The SRK1201L is a fully integrated transceiver MMIC based on the state-of-art silicon germanium process. It operates in the 24 GHz ISM band from 24.00 to 24.25 GHz. It has 1 transmitting path that delivers 9 dBm to the antenna feed and 2 receiving paths each of that provides a 29 dB voltage gain and a 9 dB noise figure. A frequency prescaler is included to generate signals with output frequencies of 1.5 GHz and 23 kHz. On-chip baluns are included to provide single-ended RF interface. The device is controlled via SPI interface. The package is a compact 40-lead, 5 mm x 5 mm QFN.

FEATURES

- 24 GHz ISM band transceiver MMIC with 1 transmitter and 2 receivers
- RX channel voltage conversion gain: 29 dB
- RX channel noise figure: 9 dB
- RX channel input P1dB: -15 dBm
- TX output power: 9 dBm
- VCO phase noise: -103 dBc @ 1 MHz offset
- Integrated balun for single-ended RF interfaces
- Prescaler with 1.5 GHz and 23 kHz outputs
- On-chip power and temperature sensors
- DC power rating: 3.3 V and 230 mA
- 40-lead, 5 mm x 5 mm QFN package
- Fully ESD protection
- AEC-Q100 qualified

APPLICATIONS

- Automotive radars
- Industrial radars
- IoT sensors

FUNCTIONAL BLOCK DIAGRAM

Figure 1 SOC Functional Block Diagram

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

TABLE OF CONTENTS

GENERAL DESCRIPTION	 1
FEATURES	1
APPLICATIONS	
FUNCTIONAL BLOCK DIAGRAM	
SPECIFICATIONS	
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS	
SPI	8
TIMING SPECIFICATIONS	
PACKAGE DIMENSIONS	
APPLICATION ROARD	17

SPECIFICATIONS

VCC = 3.3 V, GND = 0 V, dBm referred to 50 Ω , operating temperature is 25 $^{\circ}$ C, unless otherwise noted.

Power Supply

Table 1 Power Supply Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Note
Supply voltage	V_{cc}	3.135	3.3	3.465	V	
Supply current	I_{cc}		230		mA	

TX Section

Table 2 TX Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Note
VCO frequency range	f_{vco}	24.00		24.25	GHz	
VCO tuning voltage	V_{T}	0.25		2.75	V	
VCO tuning slope	$\triangle f/\triangle V_{\text{T}}$		-0.6		MHz/mV	
VCO temperature	△f/△T		1.4		MHz/°C	
drift						
VCO phase noise	P_N		-103		dBc/Hz	@ 1 MHz offset
TX port return loss	Γ_{TX}		-15		dB	with PCB matching
Max TX output power	P_{TX}		9		dBm	
TX output power			18		dB	
tuning range						
Q1 prescaler division	D_{Q1}		16			
ratio						
Q1 prescaler output	P _{Q1}		-13		dBm	
power						
Q1 output impedance	Z_{Q1}		50		Ω	
Q2 prescaler division	D_{Q2}		2^{20}			
ratio						
Q2 prescaler output	P_{Q2}		3		V	Peak-to-peak
voltage						voltage
Q2 output impedance	Z_{Q2}		1000		Ω	

RX Section

Table 3 RX Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Note
RFIN frequency range	f_{RFIN}	24.00		24.25	GHz	
RFIN port return loss	$\Gamma_{ m RFIN}$		-12		dB	with PCB matching
IF frequency range	$f_{ m IF}$	0		10	MHz	
IF output impedance	Z_{IF}		1000		Ω	
TX/RX isolation			-42		dB	

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

RFIN1 to RFIN2		-30	dB	-
isolation				
Voltage conversion	Gc	29	dB	
gain				
DSB noise figure	NF	9	dB	
Input compression	IP _{1dB}	-15	dBm	
point				
IQ phase imbalance		5	Degree	
IQ amplitude		1	dB	
imbalance				

Temperature Sensor

Table 4 Temperature Sensor Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Note
Temperature range		-40		105	°C	
Output temperature voltage	V _{OUT,TEMP}		1.55		V	@ 25 °C
Sensitivity			4.6		mV/°C	
Overall accuracy error				±15	°C	

Power Sensor

Table 5 Power Sensor Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Note
Power range		-10		15	dBm	
TX power sensor			1.65		V	@10 dBm
LO power sensor			1.32		V	@2 dBm

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

TOP VIEW

Figure 2 Pin Configuration

Table 5 Pin Function Descriptions

Pin No.	Mnemonic	Description								
1	DIVOUT2	Prescaler output 23 kHz								
2, 7, 9, 10, 11,	GND	RF or DC ground								
12, 14, 17, 19,										
20, 21, 22, 24,										
35, 37, 39										
3	IFIP1	In phase IF output at RX1								
4	IFIN1	Complementary in phase IF output at RX1								
5	IFQP1	Quadrature phase IF output at RX1								
6	IFQN1	Complementary quadrature phase IF output at RX1								
8	VCCRX1	Supply voltage for RX1								
13	RX1RF	RF input at RX1								
15	VT	VCO tuning input								
16	VCCVCO	Supply voltage for VCO								
18	RX2RF	RF input at RX2								
23	VCCRX2	Supply voltage for RX2								
		<u> </u>								

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

25	IFQN2	Complementary quadrature phase IF output at RX2
26	IFQP2	Quadrature phase IF output at RX2
27	IFIN2	Complementary in phase IF output at RX2
28	IFIP2	In phase IF output at RX2
29	ANA	Analog output
30	SI	SPI data input
31	CLK	SPI clock input
32	LE	SPI load enable, low active
33	VCCSPI	Supply voltage for SPI
34	TEST	Test pin, be floated
36	TXRF	RF output at TX
38	VCCTX	Supply voltage for TX
40	DIVOUT1	Prescaler output 1.5 GHz

SPI

- 1. Three control signals: SI(data), CLK(clock), LE(load enable)
- 2. The data (MSB first) is clocked into the 32-bit input shift register on each rising edge of CLK , and is written in the latches at the rising edge of LE
- 3. There are totally 8 groups of latches which determined by the state of the last 3 data bits

Register 0

	Reserved													PRESCALE1	VCO	PRESCALE2			PA				ADDRESS								
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	08d
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EZ	EN	EN	EN	V4	٧3	V2	V1	0	0	0

Register 1

Reserved														ADDRESS																	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Register 2

				Re	ser	ved						500	Vica		LO BUFFER						ָּבֶּל פולאריי							LNA		ADDRESS	
DB31	DB25 DB26 DB27 DB28 DB29 DB30				DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
0	0	0	0	0	0	0	0	0	0	0	EZ	D3	D2	D1	EN	EZ	CTRL	DCOC_I5		DCOC_I3	DCOC_I2	DCOC_I1		DCOC_Q4	DCOC_Q3		DCOC_Q1	EN	0	1	0

Register 3

				Re	ser	ved						ć	VGA		LO BUFFER						יל אויארי	OMIVED						LNA		ADDRESS	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	EZ	D3	D2	D1	ΕZ	EN	CTRL	DCOC_I5		DCOC_I3		DCOC I1	DCOC_Q5			DCOC_Q2	DCOC_Q1	EZ	0	1	1

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

Register 4

													Re	serv	/ed															ADDRESS	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Register 5

													Res	serv	ved										·			1		ADDRESS	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Register 6

								Re	serv	/ed					(\ \		COMINOL	CONTROL	MXOUT		Reserved			ENABLE	SENSOR			ADDRESS	
DB31	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CTRL3	CTRL2	CTRL1	0	0	0	EN4	EN3	EN2	EN1	1	1	0

Register 7

													Re	serv	ved															ADDRESS	
7001	DB30	DB29	DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Figure 3 Register map

Register 0 (TX Control Register)

With Register DB[2:0] set to [0,0,0], the TX control register is programmed as shown in Figure 3.

Prescaler1

Setting DB10 to 1 enables the prescaler1, setting DB10 to 0 disables the prescaler1.

vco

Setting DB9 to 1 enables the VCO, setting DB9 to 0 disables the VCO.

Prescaler2

Setting DB8 to 1 enables the prescaler2, setting DB8 to 0 disables the prescaler2.

PA

Setting DB7 to 1 enables the PA, setting DB7 to 0 disables the PA.

The PA setting is controlled by DB[6:3]. The truth table is in Table 6.

Table 6 PA setting truth table

V4	V3	V2	V1	SETTING
0	0	0	0	Minimum PA output power
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	PA power increasing
1	0	0	0	progressively
1	0 .	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	Maximum PA output power

Register 2 (RX1 Control Register)

With Register DB[2:0] set to [0,1,0], the RX1 control register is programmed as shown in Figure 3.

VGA

Setting DB20 to 1 enables the VGA, setting DB20 to 0 disables the VGA.

The VGA setting is controlled by DB[19:17]. The truth table is in Table 7.

Table 7 RX1 VGA setting truth table

D3	D2	D1	SETTING
0	0	0	Minimum gain
0	0	1	
0	1	0	
0	1	1	Gain increasing

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

1	0	0	progressively
1	0	1	
1	1	0	
1	1	1	Maximum gain

LO Buffer

Setting DB16 to 1 enables the LO Buffer, setting DB16 to 0 disables the LO Buffer.

IQ Mixer

Setting DB15 to 1 enables the IQ Mixer, setting DB15 to 0 disables the IQ Mixer. Setting DB14 to 0, the voltage gain is 6dB; when setting DB14 to 1, the voltage gain is 3dB. The DB[13:9] control the I path IF value as below truth table Table 8.

Table 8 RX1 / path IF value setting truth table

DB13	DB12	DB11	DB10	DB9	IFIP	IFIN
Х	0	0	0	0	0	0
0	0	0	0	1	-ΔV	0
1	0	0	0	1	0	-ΔV
0	0	0	1	0	-2ΔV	0
1	0	0	1	0	0	2-ΔV
0	0	0	1	1	-3ΔV	0
1	0	0	1	1	0	-3∆V
0	0	1	0	0	-4ΔV	0
1	0	1	0	0	0	-4∆V
0	0	1	0	1	-5∆V	0
1	0	1	0	1	0	-5∆V
0	0	1	1	0	-6ΔV	0
1	0	1	1	0	0	-6ΔV
0	0	1	1	1	-7ΔV	0
1	0	1	1	1	0	-7∆V
0	1	0	0	0	-8ΔV	0
1	1	0	0	0	0	-8ΔV
0	1	0	0	1	-9∆V	0
1	1	0	0	1	0	-9∆V
0	1	0	1	0	-10ΔV	0
1	1	0	1	0	0	-10ΔV
0	1	0	1	1	-11ΔV	0
1	1	0	1	1	0	-11ΔV
0	1	1	0	0	-12ΔV	0
1	1	1	0	0	0	-12ΔV
0	1	1	0	1	-13ΔV	0
1	1	1	0	1	0	-13ΔV
0	1	1	1	0	-14∆V	0

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

1	1	1	1	0	0	-14∆V
0	1	1	1	1	-15∆V	0
1	1	1	1	1	0	-15∆V

The DB[8:4] control the Q path IF value as below truth table Table 9.

Table 9 RX1 Q path IF value setting truth table

<u> </u>	I				T	
DB8	DB7	DB6	DB5	DB4	IFQP	IFQN
Х	0	0	0	0	0	0
0	0	0	0	1	-ΔV	0
1	0	0	0	1	0	-ΔV
0	0	0	1	0	-2∆V	0
1	0	0	1	0	0	2-ΔV
0	0	0	1	1	-3∆V	0
1	0	0	1	1	0	-3∆V
0	0	1	0	0	-4ΔV	0
1	0	1	0	0	0	-4ΔV
0	0	1	0	1	-5 ∆ V	0
1	0	1	0	1	0	-5∆V
0	0	1	1	0	-6ΔV	0
1	0	1	1	0	0	-6ΔV
0	0	1	1	1	-7∆V	0
1	0	1	1	1	0	-7∆V
0	1	0	0	0	-8∆V	0
1	1	0	0	0	0	-8ΔV
0	1	0	0	1	-9∆V	0
1	1	0	0	1	0	-9∆V
0	1	0	1	0	-10∆V	0
1	1	0	1	0	0	-10∆V
0	1	0	1	1	-11ΔV	0
1	1	0	1	1	0	-11∆V
0	1	1	0	0	-12ΔV	0
1	1	1	0	0	0	-12∆V
0	1	1	0	1	-13ΔV	0
1	1	1	0	1	0	-13∆V
0	1	1	1	0	-14ΔV	0
1	1	1	1	0	0	-14ΔV
0	1	1	1	1	-15∆V	0
1	1	1	1	1	0	-15∆V

LNA

Setting DB3 to 1 enables the LNA, setting DB3 to 0 disables the LNA.

Register 3 (RX2 Control Register)

With Register DB[2:0] set to [0,1,1], the RX2 control register is programmed as shown in Figure 3.

VGA

Setting DB20 to 1 enables the VGA, setting DB20 to 0 disables the VGA.

The VGA setting is controlled by DB[19:17]. The truth table is in Table 10.

Table 10 RX2 VGA setting truth table

D3	D2	D1	SETTING
0	0	0	Minimum gain
0	0	1	
0	1	0	
0	1	1	Gain increasing
1	0	0	progressively
1	0	1	
1	1	0	
1	1	1	Maximum gain

LO Buffer

Setting DB16 to 1 enables the LO Buffer, setting DB16 to 0 disables the LO Buffer.

IQ Mixer

Setting DB15 to 1 enables the IQ Mixer, setting DB15 to 0 disables the IQ Mixer.

Setting DB14 to 0, the voltage gain is 6dB; when setting DB14 to 1, the voltage gain is 3dB.

The DB[13:9] control the I path IF value as below truth table Table 11.

Table 11 RX2 / path IF value setting truth table

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

0	0	1	1	1	-7ΔV	0
1	0	1	1	1	0	-7∆V
0	1	0	0	0	-8ΔV	0
1	1	0	0	0	0	-8ΔV
0	1	0	0	1	-9∆V	0
1	1	0	0	1	0	-9∆V
0	1	0	1	0	-10∆V	0
1	1	0	1	0	0	-10∆V
0	1	0	1	1	-11ΔV	0
1	1	0	1	1	0	-11ΔV
0	1	1	0	0	-12∆V	0
1	1	1	0	0	0	-12ΔV
0	1	1	0	1	-13∆V	0
1	1	1	0	1	0	-13∆V
0	1	1	1	0	-14ΔV	0
1	1	1	1	0	0	-14ΔV
0	1	1	1	1	-15∆V	0
1	1	1	1	1	0	-15∆V

The DB[8:4] control the Q path IF value as below truth table Table 12.

Table 12 RX2 Q path IF value setting truth table

DB8	DB7	DB6	DB5	DB4	IFQP	IFQN
Χ	0	0	0	0	0	0
0	0	0	0	1	-ΔV	0
1	0	0	0	1	0	-ΔV
0	0	0	1	0	-2ΔV	0
1	0	0	1	0	0	2-ΔV
0	0	0	1	1	-3ΔV	0
1	0	0	1	1	0	-3ΔV
0	0	1	0	0	-4∆V	0
1	0	1	0	0	0	-4∆V
0	0	1	0	1	-5∆V	0
1	0	1	0	1	0	-5∆V
0	0	1	1	0	-6ΔV	0
1	0	1	1	0	0	-6ΔV
0	0	1	1	1	-7ΔV	0
1	0	1	1	1	0	-7∆V
0	1	0	0	0	-8ΔV	0
1	1	0	0	0	0	-8ΔV
0	1	0	0	1	-9∆V	0
1	1	0	0	1	0	-9∆V

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

0	1	0	1	0	-10∆V	0	
1	1	0	1	0	0	-10∆V	
0	1	0	1	1	-11ΔV	0	
1	1	0	1	1	0	-11ΔV	
0	1	1	0	0	-12∆V	0	
1	1	1	0	0	0	-12∆V	
0	1	1	0	1	-13∆V	0	
1	1	1	0	1	0	-13∆V	
0	1	1	1	0	-14∆V	0	
1	1	1	1	0	0	-14∆V	
0	1	1	1	1	-15∆V	0	
1	1	1	1	1	0	-15∆V	

LNA

Setting DB3 to 1 enables the LNA, setting DB3 to 0 disables the LNA.

Register 6 (Sensor enable and ANA output selection)

With Register DB[2:0] set to [1,1,0], the sensor enable and ANA output signal selection is programmed as shown in Figure 3.

Sensor enable

Setting DB6 to 1 enables the power sensor of PPF LO buffer input in RX1, setting DB6 to 0 disable it.

Setting DB5 to 1 enables the power sensor to PPF LO buffer input in RX2, setting DB5 to 0 disable it.

Setting DB4 to 1 enables the power sensor of PA output and temperature sensor nearby PA, setting DB4 to 0 disable them.

Setting DB3 to 1 enables the power sensor of PA buffer input, setting DB3 to 0 disable it.

ANA output selection

The DB[12:10] control the ANA output signal selection as below truth table Table 13.

Table 13 ANA output signal selection truth table

CTRL3	CTRL2	CTRL1	OUTPUT		
0	0	0	NA		
0	0	1	NA		
0	1	0	Power sensor of PA output power		
0	1	1	Temperature sensor nearby PA		
1	0	0	Power sensor of input to PPF LO Buffer in RX2		
1	0	1	Power sensor of input to PPF LO Buffer in RX1		
1	1	0	Power sensor of input to PA Buffer		
1	1	1	NA		

TIMING SPECIFICATIONS

Parameter	Symbol	Min	Max	Unit
CLK frequency	f clk		50	MHz
LE lead time	t _{LE(lead)}	20		ns
LE lag time	t _{LE(lag)}	20		ns
CLK high duration	t _{CLK(H)}	10		ns
CLK low duration	t _{CLK(L)}	10		ns
SI to CLK setup time	tsi(s)	10		ns
SI to CLK hold time	tsi(H)	10		ns

PACKAGE DIMENSIONS

Figure 4 40-Lead QFN Package Dimensions

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

APPLICATION BOARD

Figure 5 PCB stack profile

Figure 6 Matching structure dimensions

Information contained in this document is the property of SGR Semiconductors Inc. (上海矽杰微电子有限公司) and is communicated confidentially for a specific matter. The receiver is in charge of this document and not authorized to disclose it in any way to the third party.

Figure 7 Evaluation board illustration