Locally Differentially Private Frequency Estimation via <u>Joint Randomized Response</u>

Authors: Ye Zheng, Shafizur Rahman Seeam, Yidan Hu, Rui Zhang, Yanchao Zhang

Frequency Estimation

- Social science: How many people engage in tax evasion?
 - ask one person if they had evaded tax
 - the person answers YES or NO

- People have privacy concerns on sensitive/embarrassing question
 - i.e. don't want to let the collector know
- A privacy mechanism \mathcal{M} satisfies LDP if

For any truth x_1, x_2 , and randomized answer y:

$$\max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{-\frac{y}{2}}$$

Distinguishability of x_1 (YES) and x_2 (NO) from y (randomized answer)

- People have privacy concerns on sensitive/embarrassing question
 - i.e. don't want to let the collector know
- A privacy mechanism \mathcal{M} satisfies LDP if

For any truth x_1, x_2 , and randomized answer y:

$$\max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{x_1}$$

Distinguishability of x_1 (YES) and x_2 (NO) from y (randomized answer)

- quantifiable hardness to distinguish x_1 (YES) and x_2 (NO) from the randomized answer y
- defense against inference from data collectors or adversaries

- People have privacy concerns on sensitive/embarrassing question
 - i.e. don't want to let the collector know
- Randomized Response: Randomize the truth before answering the collector

$$\max \frac{\Pr[\mathbf{RR}(x_1) = y]}{\Pr[\mathbf{RR}(x_2) = y]} \le e^{\ln \frac{p}{1-p}}$$

Private

- People have privacy concerns on sensitive/embarrassing questi
 - i.e. don't want to let the collector know
- Randomized Response: Randomize the truth before answering

RR: [Warner, 1965] answer truth with probability p

$$RR(x) = \begin{cases} x & \text{w. p. } p \\ \neg x & \text{w. p. } 1 - p \end{cases}$$

$$\max \frac{\Pr[\mathbf{RR}(x_1) = y]}{\Pr[\mathbf{RR}(x_2) = y]} \le e^{\ln \frac{p}{1-p}}$$

Private

- People have privacy concerns on sensitive/embarrassing questi
 - i.e. don't want to let the collector know

RR

Randomized Response: Randomize the truth before answering

RR: [Warner, 1965] answer truth with probability *p*

$$RR(x) = \begin{cases} x & \text{w. p. } p \\ \neg x & \text{w. p. } 1 - p \end{cases}$$

estimated frequency

$$= \frac{\text{# of YES} - \text{# } \times q}{p - q}$$

Unbiased: expectation = truth

Randomization reduces data utility

$$\operatorname{Var}\left[\frac{\# \text{ of YES} - \# \trianglerighteq \times q}{p - q}\right] = \frac{\operatorname{Var}[\# \text{ of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from all n independent randomization

Randomization reduces data utility

$$Var\left[\frac{\text{\# of YES} - \text{\# } \times q}{p - q}\right] = \frac{Var[\text{\# of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from all n independent randomization

- larger
$$p \in (0.5, 1] \to \text{lower variance} \to \text{larger privacy parameter } \epsilon$$

$$\uparrow \text{ data utility} \qquad \downarrow \text{ privacy}$$

Randomization reduces data utility

$$Var[\frac{\# \text{ of YES} - \# \ge \times q}{p - q}] = \frac{Var[\# \text{ of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from all n independent randomization

- larger
$$p \in (0.5, 1] \to \text{lower variance} \to \text{larger privacy parameter } \varepsilon$$

$$\uparrow \text{ data utility} \qquad \downarrow \text{ privacy}$$

Q: Can we improve this privacy-utility tradeoff?

Randomization reduces data utility

$$Var\left[\frac{\text{# of YES} - \text{# } \times q}{p - q}\right] = \frac{Var[\text{# of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from all n independent randomization
- larger $p \in (0.5, 1] \to \text{lower variance} \to \text{larger privacy parameter } \varepsilon$ $\uparrow \text{ data utility} \qquad \downarrow \text{ privacy}$
- Q: Can we improve this privacy-utility tradeoff?
 - yes, by correlated (joint) randomization

JRR: Better data utility by joint randomization

- JRR: Better data utility by joint randomization
- **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$	1
$T_2 = 1$	0.64 $(= p^2)$	0.16 (= pq)	
$T_2=0$	0.16 (= pq)	0.04 $(= q^2)$	

Fruthfulness of x_1

Truthfulness of x_2

- JRR: Better data utility by joint randomization
- **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$	Truthfulness of x_1
$T_2 = 1$	$0.64 = p^2$	0.16 (= <i>pq</i>)	
$T_2 = 0$	0.16 (= <i>pq</i>)	0.04 $(= q^2)$	

Truthfulness of x_2

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

- JRR: Better data utility by joint randomization
- **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	$0.64 = p^2$	0.16 (= pq)
$T_2=0$	0.16 (= <i>pq</i>)	0.04 $(= q^2)$

Truthfulness of x_2

JRR: Joint distribution

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	$0.6 $ (= $p^2 + \rho pq$)	$0.2 \\ (= pq - \rho pq)$
$T_2 = 0$	$0.2 \\ (= pq - \rho pq)$	$(=q^2 + \rho pq)$

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

JRR: Better data utility by joint randomization

Same marginal prob for each person

Example: 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.64 $(= p^2)$	0.16 (= pq)
$T_2=0$	0.16 (= <i>pq</i>)	0.04 $(= q^2)$

Truthfulness of x_2

JRR: Joint distri

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.6	0.2
12 - 1	$(=p^2+\rho pq)$	$(=pq-\rho pq)$
T = 0	0.2	0
$T_2 = 0$	$(=pq-\rho pq)$	$(=q^2+\rho pq)$

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

JRR: Better data utility by joint randomization

Same marginal prob for each person **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.64 $(= p^2)$	0.16 (= pq)
$T_2 = 0$	0.16 = pq	0.04 $(= q^2)$

Truthfulness of x_2

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

JRR: Joint distril

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	$0.6 $ (= $p^2 + \rho pq$)	
$T_2=0$	$0.2 \\ (= pq - \rho pq)$	$(=q^2 + \rho pq)$

$$P[T_1 = 0 \cap T_2 = 0] = 0 \neq P[T_1 = 0] \cdot P[T_2 = 0] = 0.04$$

NOT independent T_1 and T_2

Joint probability $\neq \Pi$ of marginal probabilities

Same estimator as RR

Same estimator as RR

$$E[\# \text{ of YES}] = \sum_{i=1}^{\#} P[y_i = \text{YES}] = n_{\text{YES}} \cdot p + (\# \ge -n_{\text{YES}}) \cdot q$$

→ Unbiased estimator
$$\hat{n}_{YES} = \frac{\text{# of YES} - 2q}{p - q}$$

Identical to RR

• Variance: (# = 2, p = 0.8)

$$Var[\hat{n}_{YES}] = \frac{Var[\# \text{ of YES}]}{(0.8 - 0.2)^2}$$

• Variance: (# = 2, p = 0.8)

• Variance: (# = 2, p = 0.8)

Distribution table:

RR

# of YES	0	1	2
Probability	0.04	0.16 + 0.16	0.64

# of YES	0	1	2
Probability	0	0.2 + 0.2	0.6

 $Var[\# \text{ of YES}] = E[(X - \mu)^2] = \mathbf{0.24}$

JRR

$$Var[\# \text{ of YES}] = E[(X - \mu)^2] = \mathbf{0.32}$$

$$= \sum_{X=0,1,2} (X-1.6)^2 \cdot \Pr[X] = \mathbf{0} + \mathbf{0}.\mathbf{14} + \mathbf{0}.\mathbf{1}$$

$$= \sum_{X=0,1,2} (X-1.6)^2 \cdot \Pr[X] \approx \mathbf{0}.\mathbf{1} + \mathbf{0}.\mathbf{12} + \mathbf{0}.\mathbf{1}$$

• Variance: (# = 2, p = 0.8)

$$Var[\hat{n}_{YES}] = \frac{Var[\# \text{ of YES}]}{(0.8 - 0.2)^2}$$

$$YES$$

$$YES$$

$$YES/NO$$

$$YES/NO$$

Distribution table:

Better utility

RR			
# of YES	0	1	2
Probability	0.04	0.16 + 0.16	0.64

# of YES	0	1	2
Probability	0	0.2 + 0.2	0.6

$$Var[\# \text{ of YES}] = E[(X - \mu)^2] = \mathbf{0.32}$$

Var[# of YES] =
$$E[(X - \mu)^2] = 0.24$$

$$= \sum_{X=0,1,2} (X-1.6)^2 \cdot \Pr[X] \approx \mathbf{0.1} + \mathbf{0.12} + \mathbf{0.1}$$

$$= \sum_{X=0,1,2} (X-1.6)^2 \cdot \Pr[X] = \mathbf{0} + \mathbf{0}.\mathbf{14} + \mathbf{0}.\mathbf{1}$$

 \mathbb{R} R (near to μ)

JRR's General Form

• Correlated randomization with 2 persons x_{2i-1} and x_{2i}

JRR: Joint distribution

		:	$\rho \in [-1,1]$:
	$T_{2i-1}=1$	$T_{2i-1}=0$	correlation coefficient
$T_{2i}=1$	$p^2 + \rho pq$	$(1-\rho)pq$	
$T_{2i}=0$	$(1-\rho)pq$	$q^2 + \rho pq$	

• RR is a special case of JRR with $\rho = 0$ (no correlation)

JRR's General Form

• Correlated randomization with 2 persons x_{2i-1} and x_{2i}

JRR: Joint distribution

			$\rho \in [-1,1]$:
	$T_{2i-1}=1$	$T_{2i-1}=0$	correlation coefficient
$T_{2i}=1$	$p^2 + \rho pq$	$(1-\rho)pq$	
$T_{2i}=0$	$(1-\rho)pq$	$q^2 + \rho pq$	

Utility Theorem. The variance of JRR's estimator \widehat{n}_{v} is

$$\operatorname{Var}[\widehat{\boldsymbol{n}}_{\boldsymbol{v}}] = \frac{pq}{(p-q)^2} \cdot \left(n + \frac{\rho((2n_{\text{YES}} - n)^2 - n)}{n-1} \right).$$

Privacy: NOT as Simple as RR

If any person can be an adversary

 T_1 : I am an adversary \bigcirc

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.6	0.2
$T_2 = 0$	0.2	0

$$\Pr[T_2 = 1 | T_1 = 0] = 1$$

When I report untruthfully $(T_1 = 0)$, My partner will report truthfully $(T_2 = 1)$

Privacy: NOT as Simple as RR

If any person can be an adversary

JRR: Joint distribution

 T_1 : I am an adversary (

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.6	0.2
$T_2 = 0$	0.2	0

$$\Pr[T_2 = 1 | T_1 = 0] = 1$$

When I report untruthfully $(T_1 = 0)$, My partner will report truthfully $(T_2 = 1)$

Correlation results in privacy leakage

Form random 2-person groups for correlated randomization

Form random 2-person groups for correlated randomization

Threat model:

- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner (after random grouping)

Form random 2-person groups for correlated randomization

Threat model:

- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner (after random grouping)

Form random 2-person groups for correlated randomization

Threat model:

- any person can be an adversary

- if a group contains an adversary, the adversary knows who is their partner (after random grouping)

Form random 2-person groups for correlated randomization

Threat model:

- if a group contains an adversary, the adversary knows who is their partner (after random grouping)
- the adversary cannot control randomness, but can infer their partner's

JRR – Formal Privacy & Utility

Privacy Theorem. Assume a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

$$\frac{\Pr[\operatorname{JRR}(x_i) \mid \mathcal{T}_m]}{\Pr[\operatorname{JRR}(x_i') \mid \mathcal{T}_m]} \le e^{\varepsilon}, \text{ where } \varepsilon = \ln \frac{mp_{\max} + (n-m-1)p}{mp_{\min} + (n-m-1)q}.$$

Privacy affected by

m	# adversaries 😇
n	# of persons 🏖
ho	Correlation coefficient

 $p_{\text{max}} = \max\{(1 - \rho)p, p + \rho q\}$: confidence of adversaries inferring a specific value

JRR – Formal Privacy & Utility

Privacy Theorem. Assume a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

$$\frac{\Pr[\operatorname{JRR}(x_i) | \mathcal{T}_m]}{\Pr[\operatorname{JRR}(x_i') | \mathcal{T}_m]} \le e^{\varepsilon}, \text{ where } \varepsilon = \ln \frac{mp_{\max} + (n-m-1)p}{mp_{\min} + (n-m-1)q}.$$

Utility Theorem. The variance of JRR's estimator \widehat{n}_v is

$$\operatorname{Var}[\widehat{\boldsymbol{n}}_{\boldsymbol{v}}] = \frac{pq}{(p-q)^2} \cdot \left(n + \frac{\rho \left((2n_{\operatorname{YES}} - n)^2 - n \right)}{n-1} \right).$$

JRR – Formal Privacy & Utility

Privacy Theorem. Assume a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

privacy constraint

$$\varepsilon = \ln \frac{mp_{\max} + (n - m - 1)p}{mp_{\min} + (n - m - 1)q}.$$

Utility Theorem. The variance of JRR's estimator \widehat{n}_v is

minimize

$$\operatorname{Var}[\widehat{\boldsymbol{n}}_{\boldsymbol{v}}] = \frac{pq}{(p-q)^2} \cdot \left(n + \frac{\rho \left((2n_{\operatorname{YES}} - n)^2 - n \right)}{n-1} \right).$$

JRR - Variance Heatmap

• Effect of ρ and p (when $\varepsilon = 1$, $n = 10^4$, $n_{\rm Yes} = 200$, and m = 0 & 500)

JRR - Variance Heatmap

• Effect of ρ and p (when $\varepsilon = 1$, $n = 10^4$, $n_{\rm Yes} = 200$, and m = 0 & 500)

Experiments

• Comparison with RR under the same privacy level - JRR: $\varepsilon(n, m, \rho, p)$, RR: $\varepsilon(p)$

Real-world datasets ($\varepsilon = 0.1$)

Experiments

• Comparison with RR under the same privacy level - JRR: $\varepsilon(n, m, \rho, p)$, RR: $\varepsilon(p)$

Real-world datasets ($\varepsilon = 0.1$)

Synthetic datasets ($n = 10^4$)

Experiments

• Comparison with RR under the same privacy level - JRR: $\varepsilon(n, m, \rho, p)$, RR: $\varepsilon(p)$

- Correlated randomization can improve the data utility of frequency estimation
- JRR: Privacy & utility model for correlated randomization

Locally Differentially Private Frequency Estimation via Joint Randomized Response

This Paper: Joint RR (JRR)

 JRR: Better data utility by joint randomization Same marginal prob for each person **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

$T_1 = 1$ $T_1 = 0$ 0.16 $T_2 = 1$ 0.04 0.16 $T_2 = 0$ $(=q^2)$ Truthfulness

RR: Joint distribution

JRR: Joint distril

 $T_1 = 1$

NOT independent T_1 and T_2

Joint probability = Π of marginal probabilities requency Estimatio Joint probability $\neq \Pi$ of marginal probabilities

 $(=pq-\rho pq)$

Utility: JRR's Variance • Variance: (# = 2, p = 0.8)

JRR's General Form

• Correlated randomization with 2 persons x_{2i-1} and x_{2i}

• RR is a special case of JRR with $\rho = 0$ (no correlation)

JRR - Privacy Model in This Paper

- Randomly groups into form 2-person groups for correlated randomization
- Threat model:
- the adversary cannot control randomness, but can infer their partner's

JRR - Variance Heatmap

 $(X - 1.6)^2 \cdot \Pr[X] \approx 0.1 + 0.12 + 0.1$

• Effect of ρ and p (when $\varepsilon = 1$, $n = 10^4$, $n_{Yes} = 200$, and m = 0 & 500)

Locally Differentially Private Frequency Estimation via Joint Randomized Response

Thank you!

Privacy Model

- No need of random grouping:
 - when one person hold multiple items

