Εργαστηριακή Αναφορά για το Μάθημα Κβαντική-Κυματική Φυσική

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πείραμα: Μελέτη των κανονικών τρόπων ταλάντωσης με αεροτροχιά

Φοιτητής: Γκίτσος Δημήτριος (el15401) Ομάδα Α5

Τίτλος Άσκησης: Μελέτη των κανονικών τρόπων ταλάντωσης με αεροτροχιά

Ημερομηνία εκτέλεσης: 8 Μαρτίου 2017

Εργαστηριακός Διδάσκων: κ. Ανδρέας Χατζηαγαπίου

Περίληψη

Σκοπός της άσκησης είναι η μελέτη κανονικών τρόπων ταλάντωσης 2 ή 3 ταλαντωτών, η μελέτη διακροτημάτων σε 2 ταλαντωτές και ο προσδιορισμός των σταθερών των ελατηρίων του συστήματος.

Αρχικά σε σύστημα 3 ταλαντωτών θα μελετηθούν και οι 3 κανονικοί τρόποι ταλάντωσης.

Στον 1° τρόπο έχουμε:
$$\omega_1=\sqrt{2-\sqrt{2}}\,\sqrt{\frac{k}{M}}\,$$
 , A_1 = A_3 και A_2 = $\sqrt{2}A_1$

Στον 2° τρόπο έχουμε:
$$\omega_2 = \sqrt{2} \, \sqrt{\frac{k}{M}} \,$$
 , $A_1 = -A_3$ και $A_2 = 0$

Στον 3° τρόπο έχουμε:
$$ω_3 = \sqrt{2 + \sqrt{2}} \sqrt{\frac{k}{M}}$$
, $A_1 = A_3$ και $A_2 = -\sqrt{2}A_1$

Στη συνέχεια σε σύστημα 2 ταλαντωτών θα μελετηθούν οι 2 κανονικοί τρόποι ταλάντωσεις για τους οποίους,

στον 1° τρόπο έχουμε:
$$\omega_{1=}\sqrt{\frac{k}{M}}$$
 και $A_1=A_2$ και

στον 2° τρόπο έχουμε: $\omega_2 = \sqrt{\frac{k+2k'}{M}}$ με k τη σταθερά των σκληρών, ακραίων ελατηρίων και k'η σταθερά του μεσαίου, μαλακού ελατηρίου και $A_1 = -A_2$

Στο ίδιο σύστημα θα μελετηθούν διακροτήματα για τα οποία προκύπτει ότι, $T_{\delta}=2\pi/(\omega_2-\omega_1)\ T_{mod}=2T_{\delta}\ και\ T_{av}=4\pi/(\omega_1+\omega_2)$

καθώς και η ανταλλαγή ενέργειας μεταξύ των ταλαντωτών.

Σχετικά με τη μέθοδο στο σύστημα τριών ταλαντωτών, συνδέονται με ελατήρια σταθεράς k, άκρο με βαγόνι A, βαγόνια A με B, B με Γ και Γ με άλλο άκρο αεροτροχιάς. Για κάθε κανονικό τρόπο ταλάντωσης διεγείρουμε κατάλληλα τους ταλαντωτές, μετράμε τις περιόδους των κανονικών ταλαντώσεων, ενώ σε βοηθητικό πείραμα θα υπολογίσουμε και τις σταθερές ταλάντωσης k. Στο δεύτερο πείραμα έχουμε ανάλογη διάταξη, με 2 βαγόνια και σφιγκτήρα με σταθερό ακροδέκτη, ώστε να μικρύνει την απόσταση και να μην τραυματιστούν τα ελατήρια και 2 σκληρά ελατήρια μεταξύ βαγονιών και άκρων και ένα μαλακό ανάμεσα στα βαγόνια. Μετράμε και πάλι την περίοδο των κανονικών ταλαντώσεων. Έπειτα διεγείρουμε ώστε να προκαλέσουμε διακρότημα, μετράμε την περίοδο του διακροτήματος και υπολογίζουμε τη συχνότητα ανταλλαγής ενέργειας μεταξύ των ταλαντωτών. Σε τρίτο πείραμα χρησιμοποιώντας ένα μόνο βαγόνι και συνδέοντας το, πρώτα με σκληρά και μετα με μαλακά ελατήρια, σε σταθερά άκρα. Μετρώντας την περίοδο ταλάντωσης υπολογίζουμε τις σταθερές των ελατηρίων. Οι γωνιακές συχνότητες που υπολογίζονται από τις περιόδους των ΚΤΤ και των διακροτημάτων θα συγκριθούν με τις θεωρητικές τιμές.

Για τα πειράματα χρησιμοποιήθηκαν: αεροτροχιά, 3 κατάλληλα βαγόνια που μπορούν να στέκονται συμμετρικά στην αεροτροχιά, 2 σκληρά και 2 μαλακά ελατήρια, βύσματα, βιδωτοί συνδετήρες και ακροδέκτης με σφιγκτήρα. Η μάζα των βαγονιών μαζί με τα εξαρτήματά τους έχει μετρηθεί με ακρίβεια $\pm 0.1 gr$

Αποτελέσματα

3 συζευγμένοι αρμονικοί ταλαντωτές Πίνακας Ι

Θέσεις Ισορροπίας A-46.5cm B-99.5cm Γ-151.5cm n=10 m_a =(184.5 \pm 0.1)gr m_β = (184.6 \pm 0.1)gr m_γ =(184.6 \pm 0.1)gr

	1 ^{ος} KTT	2 ^{ος} KTT	3 ^{ος} KTT
Μέτρηση 1	27.06s	14.59s	11.2s
Μέτρηση 2	27.14s	14.35s	10.39s
Μέτρηση 3	26.94s	14.39s	10.95s
Μέτρηση 4	26.84s	14.44s	11.02s
Μεση τιμή nT _i	26.995s	14.4425s	10.89s
Μέση τιμή Τ _ι	2.6995s	1.44425s	1.089s
Μέση τιμή ω _ι	2.328/s	4.35/s	5.77/s
στατιστικό σφάλμα	<u>+</u> 0.07s	±0,05s	±0.17s
σειράς μετρήσεων δτ			
σφάλμα ανάγνωσης	$\pm 0.01s$	$\pm 0.01s$	±0.01s
χρονομέτρου			
$\delta T_{\chi i}$			
Αποτέλεσμα σειράς	(2.7 <u>±</u> 0.07)s	(1.4±0.05)s	(1.09±0.17)s
μετρήσεων T _i			
στατιστικό σφάλμα	±0.006/s	±0.016/s	±0.09/s
σειράς μετρήσεων			
δω			

2 συζευγμένοι ταλαντωτές Πίνακας ΙΙ

Θέσεις Ισορροπίας: A-26cm B-86cm

n=10 n_{δ} =8 m_{a} =(184.6 \pm 0.1)gr m_{β} =(184.5 \pm 0.1)gr

	1° KTT	2° KTT	ταλαντωση με
			διακρότημα
Μέτρηση 1	20,59s	15.72s	49.94s
Μέτρηση 2	20,75s	15.66s	46.91s
Μέτρηση 3	20.72s	15.5s	47s
Μέτρηση 4	20.79s	15.47s	48.25s
Μέση τιμή nT _i	20.7125s	15.5875s	48.025s
Μέση τιμή Τ _ι	2.07125s	1.55875s	6s
Μέση τιμή ω _ι	3,03/s	4.03/s	1.05/s
σφαλμα ανάγνωσης	$\pm 0.01s$	±0.01s	±0.01s
χρονομέτρου δΤ _{χί}			
στατιστικό σφάλμα	<u>+</u> 0.04s	<u>+</u> 0.06s	<u>±</u> 0.7s
σειράς μετρήσεων δτ			
Αποτέλεσμα σειράς	T ₁ (20.71 ±0.04)s	T ₂ (15.58±0.06)s	T _δ (6±0.7)s
μετρήσεων			
στατιστικό σφάλμα	<u>+</u> 0.07/s	±0.16/s	±0.15/s
μετρήσεων δω			

Μέτρηση των σταθερών k και k' των ελατηρίων Πίνακας ΙΙΙ

n=10	$m_a = 184.6 \pm 0.$	1ør
11-10	111a-10-10.	15 I

	σκληρό ελατήριο k		μαλαι	κό ελατήριο k'
	nT	ω	nT	ω
Μέτρηση 1	14,31s	4.39/s	23.88s	2.63/s
Μέτρηση 2	14.35s	4.38/s	24.09s	2.61/s
Μέτρηση 3	14.25s	4.41/s	24.47s	2.57/s
Μέση τιμή nT _i	14	.3s		24.15s
Μέση τιμή T _i	1.4	13s		2.415s
Μέση τιμή ω _ι	4.3	9/s		2.6/s
σφάλμα ανάγνωσης	<u>±</u> 0.	01 <i>s</i>		$\pm 0.01s$
χρονομέτρου δΤ _{χi}				
στατιστικό σφάλμα σειράς	0.0	29s		0.17s
μετρήσεων δτ				
Αποτέλεσμα Σειράς	T=(1.43±0.029)s		T'=(2.41 <u>±</u> 0.17)s
Μετρήσεων				
στατιστικό σφάλμα δω	±0.009/s			<u>+</u> 0.018/s
Θέση Ισορροπίας	31	cm		31.5cm

Υπολογισμός των Σταθερών των Ελατηρίων

1. Έχουμε εκτιμήσει ένα σφάλμα ανάγνωσης του χρονομέτρου $\pm 0.01s$, ενώ το στατιστικό σφάλμα των μετρήσεων είναι $\delta T = \pm 0.029s$ και $\delta T' \pm 0.17s$ για k και k' αντίστοιχα. Το στατιστικό σφάλμα είναι αρκετά μεγαλύτερο σε κάθε περίπτωση από το σφάλμα του χρονομέτρου. Οπότε ως σφάλμα στο εξής θα χρησιμοποιήσουμε τα δT και $\delta T'$. Οπότε $T=(1.43\pm0.029)s$ και $T'=(2.41\pm0.17)s$ 2. $\omega=2\pi/T=\kappa$ και $\omega'=2\pi/T'$ και από τη μεταφορά σφάλματος προκύπτει ότι $\omega=(4.39\pm0.09)/s$ και $\omega'=(2.6\pm0.18)/s$. Τα αποτελέσματα που έχουν προκύψει από τις μετρήσεις έχουν παρουσιαστεί στον πίνακα III και είναι $\omega=(4.39\pm0.009)/s$ και $\omega'=(2.6\pm0.018)/s$

Παρακάτω θα χρησιμοποιηθούν οι τιμές που προέκυψαν από τις μετρήσεις

3. $k=M\omega^2/2$ και από τη μεταφορά του σφάλματος προκύπτει ότι

k=(184.6±0.1)*(4.39±0.009)* (4.39±0.009)/2 => k=(184.6±0.1)*(19,27±1.23)/2 => k=(1778,6±113.5) g/s² Αντίστοιχα k'=Μω'²/2 k'=(184.6±0.1)*(2.6±0.018)*(2.6±0.018)/2 => k'=(184.6±0.1)*(6.76±0.66)/2=> k'= (623.9±60.9) g/s²

Υπολογισμός των συχνοτήτων των ΚΤΤ και της ω_δ

1. Έχω
$$\omega_1 = \sqrt{2 - \sqrt{2}} \sqrt{\frac{k}{M}}$$

η μέση τιμή των μαζών είναι M=184.5gr με σφάλμα $\pm 0.1 gr$ έχω υπολογίσει ότι k=(1778,6 \pm 113.5) g/s²

$$k/M = 9.64 \pm 0.62 =>$$

 $\sqrt{\frac{k}{M}} = (3.1 \pm 0.1)/s^2$

και τελικά
$$ω_1$$
=(2,37 \pm 0.07)/s
$$ω_2$$
= $\sqrt{2} \sqrt{\frac{k}{M}}$ = (4.38 \pm 0.14)/s
$$ω_3$$
= $\sqrt{2+\sqrt{2}} \sqrt{\frac{k}{M}}$ = (5,73 \pm 0.18)/s

2. Οι τιμές θα παρουσιαστούν σε πίνακα για ευκολότερη σύγκριση

	θεωρητικές-αναμενόμενες	τιμές που προέκυψαν από
	τιμές	μετρήσεις
ω_1	(2,37±0.07)/s	(2.33±0.006)/s
ω_2	(4.38±0.14)/s	(4.35±0.016)/s
ω_3	(5,73±0.18)/s	(5.77±0.09)/s

3.
$$\omega_{1=}\sqrt{\frac{k}{M}}=(3,1\pm0.1)/s$$

$$\omega_{2}=\sqrt{\frac{k+2k\prime}{M}}$$

$$k+2k'=(1778,6\pm113.5)+(623.9\pm60.9)+(623.9\pm60.9)=(3026,4\pm142.5)gr/s^2$$

$$k+2k'/M=(16,4\pm0.77)/s^2$$

$$\omega_{2}=\sqrt{\frac{k+2k\prime}{M}}=(4.05\pm0.1)/s$$

$$\omega_{\delta}=\omega_{2}-\omega_{1}=(0,95\pm0.14)/s$$

	θεωρητικές-	τιμές που προέκυψαν από
	αναμενόμενες τιμές	μετρήσεις
ω_1	(3,1±0.1)/s	(3.03±0.07)/s
ω_2	(4.05±0.1)/s	(4.03±0.16)/s
ωδ	(0,95±0.14)/s	(1.05±0.15)/s

5. Εφόσον σε χρόνο T_δ το πλάτος, άρα και η ενέργεια κάθε σώματος κάνει μια πλήρη ταλάντωση, άρα έχουμε 2 φορές πλήρη ανταλλαγή ενέργειας. η συχνότητα ανταλλαγής ενέργειας μεταξύ των σωμάτων είναι διπλάσια από τη συχνότητα του διακροτήματος. Οπότε f_μ = ω_δ / π =(0.34 \pm 0.05)Hz ως τιμή που έχει προκύψει από τις μετρήσεις και f_θ =(0.3 \pm 0.04)Hz ως τιμή που περιμέναμε θεωρητικά να προκύψει.

(Η απάντηση του καθηγητή σε αυτό είναι ότι η ζητούμενη συχνότητα είναι ίση με τη συχνότητα διακροτήματος, γιατί θεωρεί ως ανταλλαγή ενέργειας ολόκληρη τη διαδικασία. Δέχεται και αυτήν την απάντηση με κατάλληλη δικαιολόγηση)