Abteilung Maschinelles Lernen
Institut für Softwaretechnik und theoretische Informatik
Fakultät IV, Technische Universität Berlin
Prof. Dr. Klaus-Robert Müller

 $Email: \ klaus-robert.mueller @tu-berlin.de$

Exercise Sheet 5

Exercise 1: Bias and Variance of Mean Estimators (20 P)

Assume we have an estimator $\hat{\theta}$ for a parameter θ . The bias of the estimator $\hat{\theta}$ is the difference between the true value for the estimator, and its expected value

$$Bias(\hat{\theta}) = E[\hat{\theta} - \theta].$$

If $\operatorname{Bias}(\hat{\theta}) = 0$, then $\hat{\theta}$ is called unbiased. The variance of the estimator $\hat{\theta}$ is the expected square deviation from its expected value

$$\operatorname{Var}(\hat{\theta}) = \operatorname{E}[(\hat{\theta} - \operatorname{E}[\hat{\theta}])^2].$$

The mean squared error of the estimator $\hat{\theta}$ is

$$\operatorname{Error}(\hat{\theta}) = \operatorname{E}[(\hat{\theta} - \theta)^2] = \operatorname{Bias}(\hat{\theta})^2 + \operatorname{Var}(\hat{\theta}).$$

Let X_1, \ldots, X_N be a sample of i.i.d random variables. Assume that X_i has mean μ and variance σ^2 . Calculate the bias, variance and mean squared error of the mean estimator:

$$\hat{\mu} = \alpha \cdot \frac{1}{N} \sum_{i=1}^{N} X_i$$

where α is a parameter between 0 and 1.

Exercise 2: Bias-Variance Decomposition for Classification (30 P)

The bias-variance decomposition usually applies to regression data. In this exercise, we would like to obtain similar decomposition for classification, in particular, when the prediction is given as a probability distribution over C classes. Let $P = [P_1, \dots, P_C]$ be the ground truth class distribution associated to a particular input pattern. Assume a random estimator of class probabilities $\hat{P} = [\hat{P}_1, \dots, \hat{P}_C]$ for the same input pattern. The error function is given by the expected KL-divergence between the ground truth and the estimated probability distribution:

$$Error = E[D_{KL}(P||\hat{P})] = E[\sum_{i=1}^{C} P_i \log(P_i/\hat{P}_i)].$$

First, we would like to determine the mean of of the class distribution estimator \hat{P} . We define the mean as the distribution that minimizes its expected KL divergence from the class distribution estimator, that is, the distribution R that optimizes

$$\min_{R} \ \mathrm{E} \big[D_{\mathrm{KL}}(R||\hat{P}) \big].$$

(a) Show that the solution to the optimization problem above is given by

$$R = [R_1, \dots, R_C]$$
 where $R_i = \frac{\exp \mathbb{E}[\log \hat{P}_i]}{\sum_j \exp \mathbb{E}[\log \hat{P}_j]}$ $\forall 1 \le i \le C.$

(Hint: To implement the positivity constraint on R, you can reparameterize its components as $R_i = \exp(Z_i)$, and minimize the objective w.r.t. Z.)

(b) Prove the bias-variance decomposition

$$\operatorname{Error}(\hat{P}) = \operatorname{Bias}(\hat{P}) + \operatorname{Var}(\hat{P})$$

where the error, bias and variance are given by

$$\operatorname{Error}(\hat{P}) = \operatorname{E}[D_{\operatorname{KL}}(P||\hat{P})], \qquad \operatorname{Bias}(\hat{P}) = D_{\operatorname{KL}}(P||R), \qquad \operatorname{Var}(\hat{P}) = \operatorname{E}[D_{\operatorname{KL}}(R||\hat{P})].$$

(Hint: as a first step, it can be useful to show that $E[\log R_i - \log \hat{P}_i]$ does not depend on the index i.)

Exercise 3: Programming (50 P)

Download the programming files on ISIS and follow the instructions.

