Optimal Pre-Analysis Plans: Statistical Decisions Subject to Implementability

Maximilian Kasy Jann Spiess

June 2024

- Trial registration and pre-analysis plans (PAPs) have become a standard requirement for experimental research.
 - For clinical studies in medicine starting in the 1990s.
 - For experimental research in economics more recently.
- Standard justification: Guarantee validity of inference.
 - P-hacking, specification searching, and selective publication distort inference.
 - Tying researchers' hands prevents selective reporting.
 - Christensen and Miguel (2018); Miguel (2021).
- The widespread adoption of PAPs has not gone uncontested, however.
 - Coffman and Niederle (2015); Olken (2015); Duflo et al. (2020).

Open questions

- Why do we need a commitment device?
 Standard decision theory has no time inconsistency!
- 2. How should the structure of PAPs look like? How can we derive optimal PAPs?

Key insight:

- Single-agent decision-theory cannot make sense of these debates.
- We need to consider multiple agents, conflicts of interest, and asymmetric information.

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Setup: Notation

- Two parties, decision-maker and analyst.
- Message M ("pre-analysis plan") sent from analyst to decision-maker.
- Data $X=(X_1,\ldots,X_n)\sim \mathsf{P}_{\theta}.$
 - Unknown parameter $\theta \in \Theta$.
- Index sets:
 - $K = \{1, ..., n\}$ fixed, finite, commonly known.
 - $J \subset K$ subset of data available to the analyst, privately known.
 - $I \subset J$ subset of available data reported to the decision-maker.
- Decision $A \in A \subseteq \mathbb{R}$.

Setup: Timeline

Discussion

- The analyst can withhold information, but they cannot lie.
- The components of *X* might represent different
 - hypothesis tests,
 - estimates,
 - subgroups,
 - outcome variables, etc.
- Possible model interpretations:
 - 1. Drug approval (pharma company vs. FDA).
 - 2. Hypothesis testing (researcher vs. reader).
 - 3. Publication decision (researcher vs. journal).

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Motivating example: Normal testing

- $X_1, X_2 \sim N(\theta, 1)$.
- Prior of the decision-maker : $(J_1, J_2) \sim Ber(\eta_1) \times Ber(\eta_2)$.
- The analyst knows J.
- Null hypothesis $H_0: \theta \leq 0$.
- The analyst selectively reports, to get a rejection of the null.

Compare 5 testing rules

- 0. The optimal full data test (infeasible).
- 1. The naive test (ignores selective reporting).
- 2. The conservative test (worst-case assumptions about unreported X_{ι}).
- 3. The optimal implementable test without a PAP.
- 4. The optimal implementable test with a PAP.

Rejection probabilities for different testing rules

Degrees of freedom n = 10

Power curves for different testing rules

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Implementable decision functions

A reduced form decision function maps the full data into a decision a:

$$\bar{\mathbf{a}}(\pi, X_J, J)$$

- A reduced form decision function **ā** is **implementable**
 - if there exist a decision function a
 - with best responses m*, i*
 - such that

$$\bar{\mathbf{a}}(\pi, X_J, J) = \mathbf{a}(M^*, X_{I^*}, I^*).$$

Assumption:

The analyst is an expected utility maximizer with utility

for a (strictly) monotonically increasing function v.

Implementability without PAPs

Lemma

If no pre-analysis messages M are allowed, a reduced-form decision function $\bar{\mathbf{a}}(\pi, X_J, J)$ is implementable iff

- 1. $\bar{\mathbf{a}}$ does not depend on π , and
- 2. ā is monotonic in J,

$$\bar{\mathbf{a}}(X_{\mathbf{I}},\mathbf{I}) \leq \bar{\mathbf{a}}(X_{\mathbf{J}},\mathbf{J})$$

for almost all X, J and all $I \subseteq J$.

Implementability with PAPs

Theorem

A reduced-form decision function **ā** is implementable iff both of the following conditions hold:

1. Truthful PAP

For almost all π and all π' ,

$$\mathsf{E}[v(\bar{\mathbf{a}}(\pi',X_J,J))|\pi] \leq \mathsf{E}[v(\bar{\mathbf{a}}(\pi,X_J,J))|\pi].$$

2. Monotonicity

For almost all π , X, J, and all $I \subseteq J$

$$\bar{\mathbf{a}}(\pi, X_{\mathbf{I}}, \mathbf{I}) \leq \bar{\mathbf{a}}(\pi, X_{\mathbf{J}}, \mathbf{J})$$

Revelation and delegation

Lemma

A reduced-form decision rule **ā** can be implemented iff:

1. **Implementation by truthful revelation**It can be implemented with a decision rule **a** for which

$$\mathbf{a}(\pi, X_J, J) = \bar{\mathbf{a}}(\pi, X_J, J).$$

2. **Implementation by delegation**It can be implemented with a decision rule **a** for which

$$\mathbf{a}(b,X_J,J)=b(X_J,J),$$

where **b** is restricted to lie in some set \mathcal{B} .

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Hypothesis testing

- Null hypothesis $\theta \in \Theta_0$.
- Rejection probability a ∈ [0, 1].
- \Rightarrow w.l.o.g. $v(\mathbf{a}) = \mathbf{a}$.
 - Size control at level $\alpha \in (0,1)$:

$$\sup_{\theta \in \Theta_0} \sup_{\pi} \mathsf{E}[\bar{\mathbf{a}}(\pi, X_J, J) | \theta, \pi] \leq \alpha.$$

• Expected power:

$$\mathsf{E}[\bar{\mathbf{a}}(\pi, X_J, J)].$$

Implementing the optimal test by delegation

Theorem

- The test with maximal expected power
- subject to implementability and size control
- can be implemented by requiring the analyst to communicate a full-data test \mathbf{t} which satisfies, for all $\theta \in \Theta_0$,

$$\mathsf{E}[t(\mathsf{X})|\theta] \leq \alpha$$

and then implementing the test

$$b(X_I,I) = \min_{X'; X_I'=X_I} t(X').$$

The analyst's problem as a linear program

$$\max_{b} \int b(X_J,J) d \, \mathsf{P}_{\pi}(X,J), \qquad \qquad \text{(Interim expected power)}$$
 s.t.
$$\int b(X,K) d \, \mathsf{P}_{\theta_0}(X) \leq \alpha, \qquad \qquad \text{(Size control)}$$

$$b(X_J,J) \in [0,1] \qquad \forall \ J,X, \qquad \text{(Support)}$$

$$b(X_J,J) \leq b(X,K) \qquad \forall \ J,X. \qquad \text{(Monotonicity)}$$

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Discussion

- Conflicts of interest, private information.
 - ⇒ Not all decision rules are implementable.
- Mechanism design: Optimal implementable rules.
- Statistical reporting: Partial verifiability.
 - 1. No lying about reported statistics.
 - 2. Private information about which statistics were available.
- Pre-analysis plans:
 - No role in single-agent decision-theory.
 - But increase the set of implementable rules in multi-agent settings.
- We characterize
 - 1. implementable rules,
 - 2. optimal implementable hypothesis tests,

Thank you!