第四章 有界线性算子

习题 4

- 1. 设 $\sup_{n\geq 1} |a_n| < \infty$, 在 l^1 上定义算子 T: y = Tx, 其中 $x = \{\xi_k\}, y = \{\eta_k\}, \eta_k = \alpha_k \xi_k (k = 1, 2, \cdots)$. 证明 $T \in l^1$ 上的有界线性算子并且 $||T|| = \sup_{n\geq 1} |a_n|$.
- 2. 设 G 是赋范空间 X 的子空间, $x_0 \in X$, 证明 $x_0 \in \overline{G}$ 当且仅当对于 X 上任一满足 f(x) = 0 $(x \in G)$ 的有界线性泛函 f 必有 $f(x_0) = 0$.
- 3. 设X为线性赋范空间, f是X上的线性泛函.证明
 - (1) f 连续的充要条件是 f 的零空间 $\mathcal{N}(f) = \{x | f(x) = 0\}$ 是 X 中闭子空间;
 - (2) 当 $f \neq 0$ 时, f 不连续的充要条件是 $\mathcal{N}(f)$ 在 X 中稠密.
- 4. 设T是C[a,b]上有界线性算子,记

$$Tt^n = f_n(t), \ n = 0, 1, 2, \cdots,$$

证明 T 完全由函数列 $\{f_n(t)\}$ 唯一确定.

- 5. 设 X,Y,Z 都是 Banach 空间, 若 $T_1 \in \mathcal{B}(X,Z), T_2 \in \mathcal{B}(Y,Z)$, 且对 $\forall x \in X$, 算子方程 $T_1x = T_2y$ 有唯一解 y = Tx, 证明 $T \in \mathcal{B}(X,Y)$.
- 6. 设 X,Y 为 Banach 空间, $T \in \mathcal{B}(X,Y)$, 若 T 是满射和单射, 证明存在正常数 a,b, 使得 对 $\forall x \in X$, 有

$$a||x|| \le ||Tx|| \le b||x||.$$

- 7. 设 M_n 表示 $n \times n$ 的实矩阵空间, 对于 $A = (a_{ij}) \in M_n$, 定义 $n(A) = \sum_{i,j} |a_{ij}|$.
 - (1) 证明 $||Ax||_1 \le n(A) ||x||_1$, 这里 $x \in \mathbb{R}^n$, \mathbb{R}^n 具有范数 $||x||_1 = \sum_{i=1}^n |x_i|_i$
 - (2) 设 $A, B \in M$. 证明 $n(AB) \leq n(A)n(B)$.
- 8. 设 $\alpha(\cdot)$ 是定义在 [a,b] 上的函数. 令

$$(Tx)(t) = \alpha(t)x(t) \ (x \in C[a, b]),$$

则 T 是由 C[a,b] 到其自身的有界线性算子的充要条件是 $\alpha(\cdot)$ 在 [a,b] 上连续.

9. 对于每个 $\alpha \in L^{\infty}[a,b]$, 定义线性算子 $T: L^p[a,b] \to L^p[a,b]$,

$$(Tx)(t) = \alpha(t)x(t), \quad \forall x \in L^p[a, b].$$

求 T 的范数.

10. 考虑算子 $T: C^1[-1,1] \to C[-1,1]$:

$$(Tx)(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}, \ \forall x \in C^1[-1,1].$$

这里 $C^{1}[-1,1]$ 是在 [-1,1] 中一阶导数连续的全体函数.

(1) 若 $C^{1}[-1,1]$ 中的范数是

$$||x||_1 = \max\{\max_{-1 \le t \le 1} |x(t)|, \max_{-1 \le t \le 1} |x'(t)|\}.$$

问 T 是否有界:

(2) 若 $C^{1}[-1,1]$ 中的范数是

$$||x||_2 = \max_{-1 \le t \le 1} |x(t)|,$$

问 T 是否有界.

11. 对 $f \in L[a,b]$, 定义

$$(Tf)(x) = \int_{a}^{x} f(t)dt.$$

证明

- (1) 若 T 为 $L[a,b] \to C[a,b]$ 的算子, 则 ||T|| = 1;
- (2) 若 T 为 $L[a, b] \to L[a, b]$ 的算子, 则 ||T|| = b a.
- 12. 在 C[0,1] 上定义线性泛函

$$f(x) = \int_0^{\frac{1}{2}} x(t) dt - \int_{\frac{1}{2}}^1 x(t) dt.$$

证明

- (1) f 是连续的;
- (2) ||f|| = 1;
- (3) 不存在 $x \in C[0,1]$, $||x|| \le 1$, f(x) = 1.
- 13. 设 $x(t) \in C[a, b], f(x) = x(a) x(b)$, 证明 $f \in C[a, b]$ 上的有界线性泛函, 并求 ||f||.
- 14. 求泛函 $f(x) = \int_0^1 \sqrt{t} x(t^2) dt$ 在以下两种情形下的范数 ||f||.
 - (1) $x(t) \in C[0,1];$
 - (2) $x(t) \in L^2[0,1]$.
- 15. 设 $\phi(t) \in C[0,1]$, 在 C[0,1] 上定义泛函

$$\Phi(f) = \int_0^1 \phi(t)f(t)dt, \ \forall f \in C[0,1],$$

求 ||Φ||.

- 16. 对任何 $f \in L[a,b]$, 作 $(Tf)(x) = \int_a^x f(t) dt$. 把 T 视为 $L[a,b] \to C[a,b]$ 的算子时, 试证明 ||T|| = 1.
- 17. 对于每个 $\alpha \in C[a,b]$, 定义线性算子 $T: L^1[a,b] \to L^1[a,b]$, $(Tx)(t) = \alpha(t)x(t)$, 证明 $||T|| = ||\alpha||$, 其中 $||\alpha||$ 表示 α 在 C[a,b] 中的范数.
- 18. 设无穷矩阵 $A = (a_{ik})$ 满足

$$M = \sup_{j} \sum_{k=1}^{\infty} |a_{jk}| < \infty.$$

对于 $\forall x = \{x_1, x_2, \dots\}, y = \{y_1, y_2, \dots\} \in l^{\infty},$ 定义线性算子 $T : l^{\infty} \to l^{\infty}, x \to y,$ 其中 $y_j = \sum_{k=1}^{\infty} a_{jk} x_k, j = 1, 2, \dots,$ 证明 ||T|| = M.

- 19. 考虑 C[0,1] 上的算子序列 $\{T_n\}$, 其中 $(T_nx)(t) = x(t^{1+\frac{1}{n}})$, 则 $\{T_n\}$ 强收敛于某一有界线性算子,但不按范数收敛于该算子.
- 20. 设 T_n 是 $L^p(\mathbb{R})(1 \le p < \infty)$ 到自身的算子.

$$(T_n f)(x) = \begin{cases} f(x), & |x| \le n, \\ 0, & |x| > n. \end{cases}$$

其中 $f \in L^p(\mathbb{R})$. 证明 T_n 强收敛于恒等算子 I, 但不一致收敛到 I.

- 21. 设 X,Y 是赋范线性空间, L_n $(n=1,2,\cdots)$ 是从 X 到 Y 的连续线性算子, 假定 L 是从 X 至 Y 的映射, 并且对任意 $n=1,2,\cdots$, 存在 $M_n\geqslant 0$ 使得 $\|Lx-L_nx\|\leqslant M_n\|x\|$, $\forall x\in X$. 另外 $M_n\to 0$ $(n\to\infty)$. 证明 L 是从 X 到 Y 的连续线性映射(题目说明若序列 $\{L_n\}$ 一致收敛, 则它的极限必是连续的、线性的).
- 22. (接第21题) 假若 $\lim_{n\to\infty} \|L_n x L x\| = 0, \forall x \in X$, 也就是说 L_n 强收敛于 L, 则 L 是线性的.
- 23. 设 $E \setminus E_1 \setminus E_2$ 都是 Banach 空间, $T_n \setminus T \in \mathcal{B}(E, E_1)$, $S_n, S \in \mathcal{B}(E_1, E_2)$, 若 $\{T_n\} \setminus \{S_n\}$ 分别强收敛于 $T \setminus S$, 证明 $\{S_n T_n\}$ 强收敛于 ST.
- 24. 设 X, Y 是线性赋范空间, $T_n \in \mathcal{B}(X,Y)$, A 是使 $\sup_{n \ge 1} \|T_n x\| < \infty$ 的点 x 的全体,则要么 A = X,要么 A 是 X 中的第一纲集.
- 25. 考虑序列空间 $c_0 = \{x | x = (x_1, \cdots, x_n, 0, \cdots), \ \forall x_i \in \mathbb{R}, \ n \geq 1\}$, 其中的每个元素 x 是 至多有限多个不为 0 的数字构成的无穷序列, 并且 $\|x\| = \sup_{n \geq 1} |x_n|, \ \forall x \in c_0$. 对于 c_0 上的算子序列 T_m : $c_0 \to c_0$, $T_m(x) = (0, \cdots, 0, mx_m, 0, \cdots)$.
 - (1) 计算 $||T_m||$;
 - (2) 证明对于每个 $x \in c_0$, $\sup_{m>1} ||T_m x|| < \infty$;
 - (3) 证明 c_0 自身不是第二纲的.
- 26. 设 X 是完备的距离空间. \mathfrak{F} 是 X 上的实连续函数族且具有性质: 对于每一个 $x \in X$, 存在常数 $M_x > 0$, 使得对于每一个 $F \in \mathfrak{F}$,

$$|F(x)| < M_x$$
.

证明存在开集 U 以及常数 M > 0, 使得对于每一个 $x \in U$ 及所有 $F \in \mathfrak{F}$. 有

$$|F(x)| \leq M$$
.

- 27. 设 X 是 Banach 空间, X_0 是 X 的闭子空间. 定义映射 $\Phi: X \to X/X_0$ 为 $\Phi: x \to [x], \forall x \in X$, 其中 [x] 表示含 x 的商类. 证明 Φ 是开映射.
- 28. 设 $X \in l^{\infty}$ 中只有有限多项不为零的序列构成的子空间. 定义 $T: X \to X, x = (x_1, \dots, x_n, \dots)$ $\to y = (y_1, \dots, y_n, \dots)$, 式中 $y_k = \frac{1}{k} x_k$, 证明

- (1) $T \in \mathcal{B}(X)$, 并计算 ||T||;
- $(2) T^{-1}$ 无界.

这是否与 Banach 逆算子定理矛盾?

- 29. 若 $\|\cdot\|$ 是 C[a,b] 上的另一完备范数 (原范数记为 $\|\cdot\|_{\infty}$), 并且当 $\|x_n x\| \to 0$ 时必有 $|x_n(t) x(t)| \to 0$, $\forall t \in [a,b]$, 则 $\|\cdot\| \to \|\cdot\|_{\infty}$ 等价.
- 30. 设 $H = L^2[0,1], T = i\frac{d}{dt}$

$$\mathcal{D}(T) = \{u \in H | u(0) = 0, u \in [0,1]$$
上绝对连续\}.

证明 T 是闭算子.

- 31. 设 X, Y 是线性赋范空间, $D \in X$ 的线性子空间, $T: D \to Y$ 是线性映射. 证明
 - (1) 若 T 连续, D 是闭集, 则 T 是闭算子;
 - (2) 若 T 连续且是闭算子, 则 Y 完备蕴含 D 闭.
- 32. 设 X, Y 为线性赋范空间, $T: X \to Y$ 为线性算子, 若 T 为闭算子且逆算子 $T^{-1}: Y \to X$ 存在, 证明 T^{-1} 也是闭算子.
- 33. 设 X, Y 为线性赋范空间. 若 $T_1: X \to Y$ 是闭算子且 $T_2 \in \mathcal{B}(X, Y)$, 证明 $T_1 + T_2$ 是闭算子.

第四章习题简答

1. 证明 显然 $T \in l^1$ 的 l^1 的线性算子. 因为

$$||Tx|| = \sum_{n=1}^{\infty} |\alpha_n \xi_n| \le \sup_{n} |\alpha_n| \cdot ||x||,$$

所以 T 是有界线性算子且

$$||T|| \le \sup |\alpha_n|.$$

另一方面, 取
$$e_n = (\underbrace{0, \cdots, 0, 1}_{n \notin V}, 0, \cdots) \in l^1$$
, $||e_n|| = 1$, 则

$$||T|| \ge ||Te_n|| = |\alpha_n|$$
 $(n = 1, 2, 3, \dots),$

所以

$$||T|| \ge \sup_{n} |\alpha_n|.$$

综上, $||T|| = \sup_{n>1} |a_n|$.

2. 证明 必要性. 由于 $x_0 \in \overline{G}$, 故存在 $\{x_n\} \subset G$ 使得 $x_n \to x_0$ $(n \to \infty)$. 设 $f \not\in X$ 上任 一满足 f(x) = 0 $(x \in G)$ 的有界线性泛函. 则由 f 的连续性知

$$f(x_0) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = 0.$$

充分性. 假设 $x_0 \notin \overline{G}$. 定义泛函 f 如下:

$$f(\alpha x_0 + x) = \alpha, \ \alpha \in \mathbb{C}, \ x \in G.$$

显然 f 为 $X_1=\{\alpha x_0+x|\alpha\in\mathbb{C},\ x\in G\}$ 上的线性泛函. 由于 $x_0\notin\overline{G}$, 故 $d(x_0,G)\neq 0$, 从而当 $\alpha\neq 0$ 时有

$$\|\alpha x_0 + x\| = |\alpha| \|x_0 + \frac{1}{|\alpha|} x\| \ge |\alpha| d(x_0, G).$$

所以

$$||f(\alpha x_0 + x)|| = |\alpha| \le \frac{1}{d(x_0, G)} ||\alpha x_0 + x||,$$

即 f 是有界的. 易见,

$$f(x) = f(0x_0 + x) = 0 \ (\forall x \in G), \ f(x_0) = 1.$$

这与 $f(x_0) = 0$ 矛盾. 故 $x_0 \in \overline{G}$.

3. 证明 (1) 必要性显然.

充分性. 设 $\mathcal{N}(f)$ 闭, 我们证明对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 $||x|| < \delta$ 时, 有 $|f(x)| < \varepsilon$. 不妨设 $f \neq 0$, 取 $x_0 \neq 0$ 使得 $f(x_0) = \varepsilon$. 考察集合

$$\mathcal{N}(f) + x_0 = \{x_0 + x : x \in \mathcal{N}(f)\}.$$

因为 $\mathcal{N}(f)$ 闭, 所以 $\mathcal{N}(f) + x_0$ 也闭, 且 $0 \notin \mathcal{N}(f) + x_0$, 从而存在 $\delta > 0$, 使得

$$S(0,\delta) \cap (\mathcal{N}(f) + x_0) = \emptyset,$$

于是可以证明当 $x \in S(0, \delta)$ 时, $|f(x)| < \varepsilon$.

事实上, 设不然, 即存在 $x \in S(0,\delta)$, 使 $|f(x)| \ge \varepsilon$. 令 $y = \frac{\varepsilon x}{f(x)}$, 则

$$||y|| \le ||x|| < \delta$$
, $\mathbb{H} f(y - x_0) = \varepsilon - f(x_0) = 0$,

故 $y \in S(0, \delta) \cap (\mathcal{N}(f) + x_0)$, 矛盾.

(2)充分性. 用反证法. 设 f 是连续的,则由 $\mathcal{N}(f)$ 的稠密性可知,对 $\forall x \in X$ 可在 $\mathcal{N}(f)$ 中取到一序列 $\{x_n\}$,使得 $x_n \to x$ $(n \to \infty)$.于是 $\lim_{n \to \infty} f(x_n) = f(x)$,即 f(x) = 0.这与题设 $f \neq 0$ 相矛盾.

必要性. 设 f 不连续,则由线性算子连续性定理知, f 必在 x=0 处不连续.从而存在 $\varepsilon_0 > 0$ 与一个点列 $\{x_n\} \in X$,使得当 $x_n \to 0$ 时, $|f(x_n)| \ge \varepsilon_0$.

对 $\forall x \in X$, 显然 $x - \frac{f(x)}{f(x_n)} x_n \in N(f)$, 且当 $n \to \infty$ 时, $x - \frac{f(x)}{f(x_n)} x_n \to x$,故 $\mathcal{N}(f)$ 在 X中稠密.

4. 证明 设 $\forall x(t) \in C[a,b]$, 由 Weierstrass 定理存在 $\{P_n(t) = \sum_{i=1}^n \alpha_i t^i \in P[a,b]\}$ 使得

$$||P_n - x|| \to 0.$$

由于 T 是有界的, 从而连续的. 故

$$Tx(t) = T(\lim_{n \to \infty} P_n(t)) = \lim_{n \to \infty} T(\sum_{i=1}^n \alpha_i t^i) = \sum_{n=1}^\infty \alpha_n f_n(t).$$

由于对 $\forall x(t) \in C[a,b]$ 可由 $\{\alpha_n\}_{n=1}^{\infty}$ 唯一确定, 所以 T 完全由函数列 $\{f_n(t)\}$ 唯一确定.

5. 证明 设 $\forall x_1, x_2 \in X$ 对于算子方程 $T_1x_1 = T_2y_1$, $T_1x_2 = T_2y_2$ 有唯一解

$$y_1 = Tx_1, \ y_2 = Tx_2,$$

故

$$T_1(x_1 + x_2) = T_1x_1 + T_1x_2 = T_2y_1 + T_2y_2 = T_2(y_1 + y_2).$$

因此有

$$T(x_1 + x_2) = Tx_1 + Tx_2,$$

同理可得

$$T(\alpha x_1) = \alpha T(x_1), \ \forall \alpha \in \mathbb{K}.$$

则 T 是线性算子. 下面证明 T 是有界的. 事实上, 设 $x_n \to x$, $Tx_n \to y$. 由于

$$T_1 x_n = T_2(T x_n)$$

且 T_1 , T_2 连续, 所以 $T_1x = T_2y$, 即 y = Tx. 则 T 是闭的, 再由闭图像定理得 T 是有界的, 即 $T \in \mathcal{B}(X,Y)$.

6. 证明 由题设知, X,Y 是 Banach 空间. $T \in \mathcal{B}(X,Y)$ 且 T 是双射, 则由 Banach 逆算子 定理, T^{-1} 是有界的. 因为

$$1 = ||TT^{-1}|| \le ||T|| ||T^{-1}||,$$

故 $||T^{-1}|| > 0$, ||T|| > 0. 令 $a = 1/||T^{-1}||$, b = ||T||. 则可得

$$a||x|| \le ||Tx|| \le b||x||.$$

7. 证明 (1) 对于 $A = (a_{ij}) \in M_n, x = (x_j) \in \mathbb{R}^n$.

$$Ax = \left(\sum_{j=1}^{n} a_{1j} x_j, \sum_{j=1}^{n} a_{2j} x_j, \cdots\right).$$

$$\sum_{i=1}^{n} \left|\sum_{j=1}^{n} a_{ij} x_j\right| \le \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}| |x_j|\right)$$

$$||Ax||_1 = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} x_j \right| \le \sum_{i=1}^n \left(\sum_{j=1}^n |a_{ij}| |x_j| \right)$$

$$\le \sum_{i=1}^n \left(\sum_{j=1}^n |a_{ij}| \right) \cdot \left(\sum_{j=1}^n |x_j| \right)$$

$$= n(A) ||x||_1.$$

(2) 设 $A = (a_{ij}) \in M_n, B = (b_{ij}) \in M_n$ 则

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$n(AB) = \sum_{i,j} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right| \le \sum_{i,j} \left(\sum_{k=1}^{n} |a_{ik}| \right) \cdot \left(\sum_{k=1}^{n} |b_{kj}| \right)$$
$$= \left\{ \sum_{i} \sum_{k=1}^{n} |a_{ik}| \right\} \cdot \left\{ \sum_{j} \sum_{k=1}^{n} |b_{kj}| \right\}$$
$$= n(A) \cdot n(B)$$

8. 证明 必要性. 若 T 是由 C[a,b] 到其自身的线性算子. 取 $x \equiv 1 \in C[a,b]$, 则

$$(Tx)(t) = \alpha(t) \in C[a, b].$$

即 $\alpha(\cdot)$ 在 [a,b] 上连续.

充分性. 若 $\alpha(t) \in C[a,b]$, 易知 T 是线性的. 由于

$$||Tx|| = \max_{t \in [a,b]} |\alpha(t)x(t)| \le \max_{t \in [a,b]} |\alpha(t)| \cdot \max_{t \in [a,b]} |x(t)| = ||\alpha(t)|| \cdot ||x(t)||,$$

故 T 是有界的.

9. 解因为

$$||Tx|| = \left\{ \int_a^b |\alpha(t)x(t)|^p dt \right\}^{\frac{1}{p}} \le ||\alpha(t)||_{\infty} ||x||,$$

故 $\|T\| \leq \|\alpha(t)\|_{\infty}$. 另一方面,设 $\alpha = ess \sup_{t \in [a,b]} |\alpha(t)| = \|\alpha(t)\|_{\infty}$. 任给 $\varepsilon > 0$, 令

$$E = \{ t \in [a, b] : |\alpha(t)| > \alpha - \varepsilon \}.$$

则 mE > 0, 取 $x(t) \in L^P[a,b]$ 如下

$$x(t) = \begin{cases} sgn\alpha(t)/(mE)^{\frac{1}{p}}, & t \in E \\ 0, & t \in [a, b] - E \end{cases}$$

则 ||x|| = 1, 且

$$||T|| \ge ||Tx|| = \left\{ \int_{E} \frac{|\alpha(t)|^{p}}{mE} dt \right\}^{\frac{1}{p}} \ge \alpha - \varepsilon.$$

因为 $\varepsilon > 0$ 是任意的,故 $||T|| \ge \alpha$. 从而

$$||T|| = ||\alpha(t)||_{\infty} = ess \sup_{t \in [a,b]} |\alpha(t)|.$$

10. 解 (1) 因为对 $\forall x \in C^1[-1,1]$ 有

$$||Tx|| = ||x'|| = \max_{t \in [-1,1]} |x'(t)| \le ||x||_1,$$

所以T有界.

(2) T 是无界的. 事实上, 令 $x_n(t) = \sin nt$, 从而有

$$||x_n||_2 = \max_{-1 \le t \le 1} |x_n(t)| = \max_{-1 \le t \le 1} |\sin nt| = 1,$$

 $||Tx_n|| = \max_{-1 \le t \le 1} |n\cos nt| = n \to \infty \ (n \to \infty).$

这表明 T 是无界的.

11. 证明 (1) $\forall f \in L[a,b]$, 已知 $(Tf)(x) = \int_a^x f(t) dt$ 连续, $T \neq L[a,b] \to C[a,b]$ 的线性算子. 任取 $f \in L[a,b]$, 使得 $||f|| = \int_a^b |f(t)| dt = 1$, 则

$$||Tf|| = \max_{x \in [a,b]} |Tf(x)| = \max_{x \in [a,b]} |\int_{a}^{x} f(t)dt| \le \max_{x \in [a,b]} \int_{a}^{x} |f(t)|dt = \int_{a}^{b} |f(t)|dt = 1,$$

即得 $\|T\| \le 1$. 另一方面, 取 $f_0(t) = \frac{1}{b-a}$, 则 $f_0 \in L_{[a,b]}$, 且 $\|f_0\| = 1$, 故

$$||T|| = \sup_{||f||=1} ||Tf|| \ge ||Tf_0|| = \max_{x \in [a,b]} \int_a^x \frac{1}{b-a} dt = \int_a^b \frac{1}{b-a} dt = 1,$$

故 $||T|| \ge 1$. 综上即得 ||T|| = 1.

(2) $(Tf)(x) = \int_a^x f(t) dt$ 看作是

$$L[a,b] \rightarrow L[a,b]$$

的线性算子. 任取 $f \in L[a,b]$, 使得 $||f|| = \int_a^b |f(t)| dt = 1$, 则

$$||Tf|| = \int_a^b |\int_a^x f(t)dt|dx \le \int_a^b \int_a^x |f(t)|dtdx$$
$$\le \int_a^b \int_a^b |f(t)|dtdx = \int_a^b 1dx = b - a,$$

即得 $||T|| \le b - a$.

另一方面, 对任意使 $a + \frac{1}{n} < b$ 的自然数 n, 令

$$f_n(x) = \begin{cases} n, & x \in [a, a + \frac{1}{n}], \\ 0, & x \in [a + \frac{1}{n}, b], \end{cases}$$

则 $||f_n|| = 1$, 且

$$||Tf_n|| = \int_a^b |\int_a^x f_n(t) dt| dx = \int_a^{a+\frac{1}{n}} n(x-a) dx + \int_{a+\frac{1}{n}}^b 1 dx = b - a - \frac{1}{2n},$$

即得 $||T|| \ge b - a$. 综上得到 ||T|| = b - a.

12. 证明 (1) 因为

$$|f(x)| \le \int_0^{\frac{1}{2}} x(t) dt - \int_{\frac{1}{2}}^1 x(t) dt$$
$$= \int_0^1 |x(t)| dt \le \int_0^1 ||x|| dt = ||x||,$$

故 $||f|| \le 1$, 于是 f 是连续的.

(2) $\aleph \alpha_n = \frac{1}{2} - \frac{1}{4n}, \ \beta_n = \frac{1}{2} + \frac{1}{4n}, \ n \in \mathbb{Z}^+, \ \diamondsuit$

$$x_n(t) = \begin{cases} 1, & t \in [0, \alpha_n], \\ \frac{\beta_n + \alpha_n - 2t}{\beta_n - \alpha_n}, & t \in (\alpha_n, \beta_n), \\ -1, & t \in [\beta_n, 1], \end{cases}$$

则 $||x_n|| = 1$, 且

$$||f|| \ge |f(x_n)| = \int_0^{\alpha_n} dt + \int_{\alpha_n}^{\frac{1}{2}} 2n(1 - 2t)dt - \int_{\frac{1}{2}}^{\beta_n} 2n(1 - 2t)dt + \int_{\beta_n}^1 dt$$
$$= \alpha_n + \frac{1}{8n} + \frac{1}{8n} + (1 - \beta_n) = 1 - \frac{1}{4n},$$

令 $n \to \infty$, 则得 $||f|| \ge 1$. 结合 (1), 得到 ||f|| = 1.

(3) 反证法. 假设存在 $x_0 = x_0(t) \in C[0,1]$ 使得 $\|x_0\| = 1$, $f(x_0) = 1$, 则

$$1 = f(x_0) = \int_0^{\frac{1}{2}} x_0(t) dt - \int_{\frac{1}{2}}^1 x_0(t) dt.$$

注意到,

$$\left| \int_{0}^{\frac{1}{2}} x_{0}(t) dt \right| \leq \int_{0}^{\frac{1}{2}} |x_{0}(t)| dt \leq \int_{0}^{\frac{1}{2}} ||x_{0}|| dt = \frac{1}{2}.$$

同理 $|\int_{\frac{1}{2}}^{1} x_0(t) dt| \leq \frac{1}{2}$. 综上得到

$$\int_0^{\frac{1}{2}} x_0(t) \mathrm{d}t = \frac{1}{2}, \ \ \, \mathbb{H} \ \ \int_{\frac{1}{2}}^1 x_0(t) \mathrm{d}t = -\frac{1}{2}.$$

假设 $x_0(t)$ 在 $[0,\frac{1}{2}]$ 的某子区间 [a,b] 上有 $x_0(t) < 1$,则必定 $\int_0^{\frac{1}{2}} x_0(t) dt < \frac{1}{2}$ 矛盾. 因此 在 $[0,\frac{1}{2}]$ 上, $x_0(t) \equiv 1$. 同理在 $[\frac{1}{2},1]$ 上,有 $x_0(t) \equiv -1$. 显然这与 $x_0 \in C[0,1]$ 矛盾. 因此不存在 $x \in C[0,1]$, $||x|| \leq 1$,f(x) = 1.

13. 证明 显然 f 是线性泛函, 由于

$$|f(x)| = |x(a) - x(b)| \le |x(a)| + |x(b)| \le 2||x||,$$

所以 f 是有界的且

$$||f|| \le 2.$$

另一方面, 取 $x_0 \in C[a,b]$, $x_0(a) = 1$, $x_0(b) = -1$ 且 x_0 是单调递减函数, 则 $||x_0|| = 1$, 于是

$$||f|| \ge |f(x_0)| = |x_0(a) - x_0(b)| = 2.$$

综上 ||f|| = 2.

14. 解 (1) 设 $x(t) \in C[0,1]$. 直接计算即得

$$|f(x)| = |\int_0^1 \frac{x(\tau)}{2\sqrt[4]{\tau}} d\tau| \le ||x|| \int_0^1 \frac{1}{2\sqrt[4]{\tau}} d\tau = \frac{2}{3} ||x||,$$

即 $||f|| \leq \frac{2}{3}$. 另一方面, 取 $x_0(t) \equiv 1$, 则 $||x_0|| = 1$, 于是

$$||f|| \ge |f(x_0)| = |\int_0^1 \frac{x_0(\tau)}{2\sqrt[4]{\tau}} d\tau| = |\int_0^1 \frac{1}{2\sqrt[4]{\tau}} d\tau| = \frac{2}{3},$$

即 $||f|| \ge \frac{2}{3}$. 综上, $||f|| = \frac{2}{3}$.

(2) 直接计算即得

$$f(x) = \int_0^1 \frac{x(\tau)}{2\sqrt[4]{\tau}} d\tau \le \frac{1}{2} \left(\int_0^1 \frac{d\tau}{\sqrt{\tau}} \right)^{\frac{1}{2}} \left(\int_0^1 |x(\tau)|^2 d\tau \right)^{\frac{1}{2}} = \frac{\sqrt{2}}{2} ||x||,$$

即 $||f|| \le \frac{\sqrt{2}}{2}$. 另一方面, 取 $\dot{x}(\tau) = \frac{1}{\sqrt{2}\sqrt{2}\tau}$, 则 $||\dot{x}|| = 1$, 于是

$$||f|| \ge |f(\dot{x})| = \frac{\sqrt{2}}{2},$$

即 $||f|| \ge \frac{\sqrt{2}}{2}$. 综上 $||f|| = \frac{\sqrt{2}}{2}$.

15. 解 对 $\forall f \in C[0,1]$ 有

$$|\Phi(f)| = \Big| \int_0^1 \phi(t) f(t) dt \Big| \le \max_{t \in [0,1]} |f(t)| \int_0^1 |\phi(t)| dt = ||f|| \int_0^1 |\phi(t)| dt,$$

故

$$\|\Phi\| \le \int_0^1 |\phi(t)| dt. \tag{4.0.1}$$

另一方面,对 $\forall \varepsilon > 0$,根据 $\phi(t)$ 在[0,1]上的一致连续性, $\exists n \in N$,将[0,1] n 等分,使得函数在每一等分区间上的振幅小于 ε . 我们把所有的等分区间分为两类: 在第一类区间上不含有函数 $\phi(t)$ 的零点,这类区间记作 A; 在第二类区间上至少含有函数 $\phi(t)$ 的一个零点,这类区间记作 B. 因为函数 $\phi(t)$ 在第二类区间 B 上必有零点,所以在 B 类的每个区间上有 $|\phi(t)| < \varepsilon$. 定义 $\widetilde{f}(t) \in C[0,1]$,

$$\widetilde{f}(t) = \begin{cases} sgn\phi(t), & t \in A; \\$$
线性函数, $t \in B. \end{cases}$

同时, 如果第二类区间 B 的端点是 0 或 1, 则令 $\widetilde{f}(0) = 0$ 或 $\widetilde{f}(1) = 0$. 由此有

$$\begin{split} \Phi(\widetilde{f}) &= \int_0^1 \phi(t) \widetilde{f}(t) dt = \sum_{\forall A} \int_A \phi(t) \widetilde{f}(t) dt + \sum_{\forall B} \int_B \phi(t) \widetilde{f}(t) dt \\ &\geq \sum_{\forall A} \int_A |\phi(t)| dt - \sum_{\forall B} \int_B |\phi(t)| dt = \int_0^1 |\phi(t)| dt - 2 \sum_{\forall B} \int_B |\phi(t)| dt \\ &> \int_0^1 |\phi(t)| dt - 2\varepsilon. \end{split}$$

又因为 $\|\tilde{f}\| \le 1$, 所以 $\|\Phi\| \ge \Phi(\tilde{f})$. 联合上面两式得到

$$\|\Phi\| \ge \Phi(\widetilde{f}) > \int_0^1 |\phi(t)| dt - 2\varepsilon.$$

再令 $\varepsilon \to 0$, 便得到

$$\|\Phi\| \ge \int_0^1 |\phi(t)| dt.$$
 (4.0.2)

综合 (4.0.1), (4.0.2) 式得到

$$\|\Phi\| = \int_0^1 |\phi(t)| dt.$$

16. 证明 对 $\forall f \in L[a,b]$ 有

$$||Tf|| = \max_{a \le x \le b} \left| \int_a^x f(t)dt \right| \le \int_a^b |f(t)|dt = ||f||,$$

故 $||T|| \le 1$. 另一方面, 若取 $f \equiv 1$, 则 ||f|| = b - a, (Tf)(x) = x - a. 于是

$$b-a = ||Tf|| \le ||T|| ||f|| = ||T|| \cdot (b-a),$$

即 $||T|| \ge 1$. 因此 ||T|| = 1.

17. 证明 因为对 $\forall x \in L^1[a,b]$ 有

$$\|Tx\| \leq \int_a^b |\alpha(t)||x(t)|dt \leq \max_{t \in [a,b]} |\alpha(t)| \cdot \int_a^b |x(t)|dt = \|\alpha\| \cdot \|x\|,$$

故 $||T|| \le ||\alpha||$. 另一方面, 闭区间上连续函数 $|\alpha(t)|$ 的极值是可达到的, 必有 t_0 使得

$$|\alpha(t_0)| = \max_{a \le t \le b} |\alpha(t)|, \ t_0 \in [a, b].$$

因此, 对 $\forall \varepsilon > 0$, 必有区间 $I: t_0 \in I \subset [a,b]$, 当 $t \in I$ 时

$$|\alpha(t_0)| < |\alpha(t)| + \varepsilon. \tag{4.0.3}$$

记 δ 为 I 的长度, 在 L[a,b] 中取 f_{δ} 如下:

$$f_{\delta}(t) = \begin{cases} 0, & t \notin I; \\ \frac{1}{\delta}, & t \in I. \end{cases}$$

显然 $f_{\delta}(t) \geq 0$, 且 $||f_{\delta}|| = 1$. 根据 (4.0.3) 就有

$$\int_{a}^{b} (|\alpha(t_0)| - \varepsilon) f_{\delta}(t) dt \le \int_{a}^{b} |\alpha(t) f_{\delta}(t)| dt,$$

即

$$||T|| \ge ||Tf_{\delta}|| \ge |\alpha(t_0)| - \varepsilon = \max_{a < t < b} |\alpha(t)| - \varepsilon.$$

令 ε → 0, 得到 $||T|| \ge ||\alpha||$. 则 $||T|| = ||\alpha||$.

18. 证明 易知 T 是线性算子. 因为

$$||y|| = \sup_{j} |y_{j}| = \sup_{j} |\sum_{k=1}^{\infty} a_{jk} x_{k}| \le \left(\sup_{j} \sum_{k=1}^{\infty} |a_{jk}|\right) \cdot ||x||,$$

所以

$$||T|| \le \sup_{j} \sum_{k=1}^{\infty} |a_{jk}| = M.$$

另一方面,令

$$x^{(j)} = \{ sgn \ a_{j1}, sgn \ a_{j2}, \dots, sgn \ a_{jn}, \dots \},$$

则 $x^{(j)} \in l^{\infty}$,且 $||x^{(j)}|| \le 1 \quad (j = 1, 2, 3, ...)$,而

$$Tx^{(j)} = \Big\{ \sum_{k=1}^{\infty} a_{1k} sgn \ a_{jk}, \sum_{k=1}^{\infty} a_{2k} sgn \ a_{jk}, \dots \Big\},$$

$$||T|| \ge ||Tx^{(j)}|| \ge \Big|\sum_{k=1}^{\infty} a_{jk} sgn \ a_{jk}\Big| = \sum_{k=1}^{\infty} |a_{jk}| \quad (j = 1, 2, 3, \ldots).$$

故 $||T|| \ge \sup_{i} \sum_{k=1}^{\infty} |a_{ik}| = M$,从而 ||T|| = M.

19. 证明 任取 $x(t) \in C[0,1]$, 对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 $t_1, t_2 \in [0,1], |t_1 - t_2| < \delta$ 时有

$$|x(t_1) - x(t_2)| < \varepsilon$$
.

取 $0 < \delta_0 < \frac{\delta}{2}$, 则 $t \in [0, \delta_0]$ 时

$$|t^{1+\frac{1}{n}} - t| < 2t < \delta$$
 $(n = 1, 2, 3, \ldots).$

从而当 $t \in [0, \delta_0]$ 时,对所有自然数 n, 有

$$|T_n x(t) - x(t)| = |x(t^{1 + \frac{1}{n}}) - x(t)| < \varepsilon.$$

当 $t \ge \delta_0$ 时, $\exists N$, 使得 n > N 时,有 $|t^{1+\frac{1}{n}} - t| < \delta$. 于是 n > N 时,对一切 $t \in [0,1]$,有 $|x(t^{1+\frac{1}{n}}) - x(t)| < \varepsilon.$

故 T_n 强收敛于恒同算子 I. 下面我们证明 $||T_n - I||$ 不收敛于零.取定 $t_0 \in (0,1)$, 对每个 n, 我们作 C[0,1] 中函数 $x_n(t)$ 如下:

$$x_n(t) = \begin{cases} 0, & t \in [0, t_0^{1+\frac{1}{n}}]; \\ 1, & t \in [t_0, 1]; \\ \text{线性}, & t \in [t_0^{1+\frac{1}{n}}, t_0] \end{cases}$$

则 $||x_n|| = 1$, 且

$$||T_n - I|| \ge ||(T_n - I)x_n|| \ge \left| x_n(t_0^{1 + \frac{1}{n}}) - x_n(t_0) \right| = 1.$$

故 $\{T_n\}$ 不按范数收敛于 I.

20. 证明 设区间 [-n,n] 上的特征函数为 $\chi_{[-n,n]}(x)$ 则有

$$(T_n f)(x) = \chi_{[-n,n]}(x) f(x).$$

$$((I - T_n) f)(x) = (1 - \chi_{[-n,n]}(x)) f(x) = \chi_{|x| > n}(x) f(x).$$

$$||T_n f - f||^p = \int_{-\infty}^{-n} |f(x)|^p dx + \int_n^{+\infty} |f(x)|^p dx \to 0 \quad (n \to \infty)$$

$$\Rightarrow T_n \to I.$$

所以 T_n 强收敛于恒等算子 I. 注意到

$$\int_{n}^{+\infty} e^{-x} dx = e^{-n} \Rightarrow \begin{cases} e^{n} \int_{n}^{+\infty} e^{-x} dx = 1\\ e^{n} \int_{-\infty}^{-n} e^{-|x|} dx = 1 \end{cases}$$
$$\Rightarrow \frac{e^{n}}{2} \int_{|x| > n} e^{-|x|} dx = 1.$$

令 $f_n(x) = \chi_{|x|>n}(x) (\frac{e^{n-|x|}}{2})^{\frac{1}{p}}$,则有

$$||f_n||_p = \left(\int_R |f_n(x)|^p dx\right)^{\frac{1}{p}} = \left(\frac{e^n}{2} \int_{|x|>n} e^{-|x|} dx\right)^{\frac{1}{p}} = 1.$$

于是 $||I - T_n|| \ge ||f_n||_p = 1$, 故 T_n 不一致收敛到 I.

21. 证明 对 $\forall x, y \in X$ 有

$$0 \le \|L(\alpha x + \beta y) - (\alpha Lx + \beta Ly)\|$$

$$= \|L(\alpha x + \beta y) - L_n(\alpha x + \beta y) + L_n(\alpha x + \beta y) - (\alpha Lx + \beta Ly)\|$$

$$\le \|L(\alpha x + \beta y) - L_n(\alpha x + \beta y)\| + \|L_n(\alpha x) - L(\alpha x)\| + \|L_n(\beta y) - L(\beta y)\|$$

$$\le M_n \|\alpha x + \beta y\| + M_n \|\alpha x\| + M_n \|\beta y\| \to 0 \ (n \to \infty).$$

而 $M_n \to 0$, 从而 $L(\alpha x + \beta y) = \alpha Lx + \beta Ly$. 即 L 是线性映射. 又由于 $M_n \to 0$ $(n \to \infty)$, 所以 $\exists \varepsilon_0 > 0$, 使得对 $n_0 \in N$ 有 $M_{n_0} \le \varepsilon_0$. 由

$$||Lx|| - ||L_nx|| \le ||Lx - L_nx||$$

及已知条件有

$$||Lx|| \le ||L_{n_0}x|| + M_{n_0}||x|| \le ||L_{n_0}||||x|| + \varepsilon_0||x||.$$

由于 L_{n_0} 有界, 所以 L 是连续线性映射.

22. 证明 对 $\forall x, y \in X, \alpha, \beta \in \mathbb{K}$ 有

$$0 \le \|L(\alpha x + \beta y) - (\alpha Lx + \beta Ly)\|$$

$$= \|L(\alpha x + \beta y) - L_n(\alpha x + \beta y) + L_n(\alpha x + \beta y) - (\alpha Lx + \beta Ly)\|$$

$$\le \|L(\alpha x + \beta y) - L_n(\alpha x + \beta y)\| + \|L_n(\alpha x) - L(\alpha x)\| + \|L_n(\beta y) - L(\beta y)\| \to 0 \ (n \to \infty),$$

故 $L(\alpha x + \beta y) = \alpha Lx + \beta Ly$. 所以 L 是线性的.

23. 证明 由 E_1 完备及 $\{S_n\}$ 强收敛, 得出

$$\beta \triangleq \sup_{n} ||S_n|| < \infty.$$

对 $\forall x \in E$ 有

$$||S_n T_n x - STx|| \le ||S_n T_n x - S_n Tx|| + ||S_n Tx - STx||$$

$$< \beta ||T_n x - Tx|| + ||S_n (Tx) - S(Tx)|| \to 0 \ (n \to \infty).$$

可见 $S_nT_nx \to STx$. 即 $\{S_nT_n\}$ 强收敛于 ST.

24. 证明 反证法. 设 A 是第二纲集.分解 $A=\bigcup\limits_{k=1}^{\infty}A_k$, 其中 $A_k=\{x|\sup\limits_{n\geq 1}\|T_nx\|\leq k\}$. 则 A_k 为闭集. 因为 A 是第二纲的, 故必有某个 k 和 $x_0\in X, r>0$ 存在, 使得

$$\{x | \|x - x_0\| < r\} \subset \overline{A}_k = A_k.$$

则对 $\forall z \neq 0, z \in X$ 有

$$y = x_0 + \frac{r}{2} \frac{z}{\|z\|} \in A_k,$$

从而

$$\left\| T_n \left(\frac{r}{2} \frac{z}{\|z\|} \right) \right\| \le \|T_n x_0\| + \|T_n y\| \le 2k,$$

即 $||T_n z|| \le \frac{4k}{r} ||z||$, 可见 A = X. 于是知, 要么 A = X, 要么 A 为 X 中的第一纲集.

25. 证明 (1) 由于

$$||T_m x|| = |m x_m| = m|x_m| \le m||x||,$$

故得到 $\|T_m\| \le m$. 另一方面,取 $x = (0, \cdots, 0, 1, 0, \cdots)$,则 $\|x\| = 1$ 且

$$||T_m|| \ge ||T_m x|| = m.$$

综上得出 $||T_m|| = m$.

(2) 因为对于 $\forall x = (x_1, \dots, x_n, 0, \dots) \in c_0$ 有

$$||T_m x|| = m|x_m| = \begin{cases} 0, & m > n, \\ m|x_m| \le n||x||, & m \le n. \end{cases}$$

从而 $\sup_{m\geq 1} ||T_m x|| < \infty.$

(3) 假若 c_0 是第二纲集, 结合一致有界原则及 (2) 的结论得

$$\sup_{m\geq 1}\{\|T_m\|\}<\infty.$$

但由(1)知

$$\sup_{m \ge 1} \{ ||T_m|| \} = \sup_{m \ge 1} \{ m \} = \infty,$$

矛盾. 故 c_0 不是第二纲集.

26. 证明 令

$$M_k = \{x \in X | |F(x)| \le k, \ F \in \mathfrak{F}\} = \bigcap_{F \in \mathfrak{F}} \{x \in X | F(x) \le k\}.$$

因为 F(x) 是 X 上的连续函数,因此 $\{x \in X | F(x) \le k\}$ 是闭集. 由闭集的性质(定理1.3.3), M_k 是闭集,且由点点有界可知

$$X = \bigcup_{k=1}^{\infty} M_k.$$

因为 X 是完备的, 根据 Baire 纲定理 4.3.3 知道, X 是第二纲集. 因此必存在 k_0 , M_{k_0} 不是疏集, 即存在某个开集 U 使得 M_{k_0} 在 U 中稠密. 于是由 M_{k_0} 是闭集有

$$M_{k_0} = \overline{M}_{k_0} \supseteq U,$$

结合 M_{ko} 的定义结论得证.

27. 证明 用开映射定理,只需证明 Φ 是满射.

 $\forall [x] \in X/X_0$,任取 $x \in [x]$,则有 $x \in X$. 并且 $\Phi(x) = [x]$. 从而 $\Phi: X \to X/X_0$ 是满射.

28. 证明 (1) 显然 $Tx = y \in X$, 且 T 是线性的. 由于

$$||Tx|| = \sup_{k} |\frac{1}{k}x_k| \le \sup_{k} |x_k| = ||x||,$$

故 T 有界且

$$||T|| \leq 1.$$

反之取 $x = \{1, 0, \dots, 0, \dots\} \in X, ||x|| = 1.$ $Tx = \{1, 0, \dots, 0, \dots\} \in X$, 而

$$||T|| \ge ||Tx|| = 1.$$

从而得到 ||T|| = 1.

(2) 显然 T^{-1} 是存在的, 即

$$y = \{y_1, \dots, y_n, \dots\}$$
 (只有有限个 y_k 不等于零),
 $T^{-1}y = x = \{x_1, \dots, x_n, \dots\}, x_k = ky_k, (k = 1, 2, \dots)$

 $e_n = \{0, \dots, 0, 1, 0, \dots\},$ 显然 $e_n \in X$ 且 $||e_n|| = 1, (n = 1, 2, \dots).$ 因为

$$T^{-1}e_n = x_n = \{0, \dots, 0, n, 0, \dots\},\$$

所以 $||T^{-1}e_n|| = ||x_n|| = n$,则 T^{-1} 是无界算子. 这与Banach 逆算子定理并不矛盾, 因为 X 不完备. 事实上, 令

$$\{x_n\} \subset X, \ x_n = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, \dots\},\$$

$$x = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\} \in l^{\infty},$$

容易验证 $\{x_n\}$ 是 X 中的 Cauchy 列, 在 l^{∞} 中, $||x_n - x|| \to 0$ $(n \to 0)$, 其中

$$x = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\},\$$

但是 x 不属于X. 说明 X 不完备, 逆算子定理的条件不满足.

29. 证明 令 $X_1 = (C[a,b], \|\cdot\|), \ X_2 = (C[a,b], \|\cdot\|_{\infty}).$ 它们都是 Banach 空间. 考虑恒等映射 $I: X_2 \to X_1$. 则 I 是线性的. 设在 $X_2 \to x_1 \to x_1$. 中 $I(x_n) \to y$. 即当 $x_n \to x_n$ 时有 $x_n \to x_n$ 和 $x_n \to x_n$ 和 x

$$||x_n - y|| = ||I(x_n) - y|| \to 0.$$

由题设条件知对每个 t 有 $x_n(t) \rightarrow y(t)$. 由于

$$|x_n(t) - x(t)| \le ||x_n - x||_{\infty} \to 0.$$

从而对每个 $t\in [a,b]$ 均有 y(t)=x(t). 因此 y=x=I(x). 即 I 是闭算子. 由闭图像定理知 I 是连续的.由逆算子定理知 I^{-1} 也是有界算子, 所以存在 $\alpha,\beta>0$, 使得对所有 x 有

$$||Ix|| \le \alpha ||x||_{\infty}. \quad ||Ix||_{\infty} \le \beta ||x||.$$

于是 || ⋅ || 与 || ⋅ ||_∞ 等价.

30. 证明 因为 $x \in AC[0,1], x(t)$ 可以表示成

$$x(t) = \alpha + \int_0^t u(\tau) d\tau, \qquad (4.0.4)$$

其中 α 是一个数, $u(t) \in H$. 假设

$$x_n \in \mathcal{D}(T), \ x_n \to x, \ Tx_n = y_n \to y,$$

由(4.0.4) 和 $x_n(t)$ 几乎处处可微,则

$$x_n(t) = x_n(0) + \int_0^t x'_n(\tau) d\tau,$$
 (4.0.5)

从而有

$$\left| \int_0^t ix_n'(\tau) \, d\tau - \int_0^t y(\tau) \, d\tau \right| \le \int_0^t |ix_n'(\tau) - y(\tau)| \, d\tau \le \int_0^1 |ix_n'(\tau) - y(\tau)| \, d\tau$$

$$\le \left(\int_0^1 |ix_n'(\tau) - y(\tau)|^2 \, d\tau \right)^{1/2} \left(\int_0^1 1^2 \, d\tau \right)^{1/2}.$$
(4.0.6)

因为 $Tx_n=ix_n'$ 在 H 中收敛到 y, 因此 (4.0.6) 说明 $\int_0^t ix_n'(\tau)\,\mathrm{d}\tau$ 一致收敛到 $\int_0^t y(\tau)\,\mathrm{d}\tau$. 于是, 由

$$x_n(0) - x_m(0) = x_n(t) - x_m(t) - \int_0^t [x'_n(\tau) - x'_m(\tau)] d\tau.$$

我们有

$$|x_n(0) - x_m(0)| = \left(\int_0^1 |x_n(0) - x_m(0)|^2 dt \right)^{\frac{1}{2}}$$

$$\leq \left(\int_0^1 |(x_n(t) - x_m(t)|^2 dt \right)^{\frac{1}{2}} + \left\{ \int_0^1 |\int_0^t [ix'_n(\tau) - ix'_m(\tau)] d\tau |^2 dt \right\}^{\frac{1}{2}}.$$

注意到 $x_n(t)$ 是 H 中的 Cauchy 列以及 (4.0.6) 推出 $\{x_n(0)\}$ 是一个 Cauchy 数列, 收敛 到 β . 于是由 (4.0.5) 和 (4.0.6) 知 $\{x_n(t)\}$ 一致收敛到z(t), 即

$$z(t) = \beta - i \int_0^t y(\tau) \, d\tau$$

且 iz'(t) 几乎处处等于 $y(t), y(t) \in L^2$ [0,1], 即 $z \in \mathcal{D}(T), Tz = y$. 再由一致收敛知

$$\int_0^1 |x_n(t) - z(t)|^2 dt \to 0,$$

即 $x_n(t)$ 按 H 中的范数收敛到 z(t), 于是 z(t) = x(t), 由定义知 T 是闭的线性算子.

31. 证明 (1) 设 T 连续, $\{x_n\} \subseteq D(T)$, $x_n \to x$, $Tx_n \to y$. 则由于 D(T) 是闭的, 所以 $x \in D(T)$; 又因为 T 连续, 所以 y = Tx. 故 T 是闭算子.

(2) 设 T 连续且是闭算子, Y 是完备的. 那么根据 B.L.T. 定理, 能唯一地延拓到 $\overline{D(T)}$ 上成为连续线性算子 T_1 , 满足 $T_1|_{D(T)}=T$, 且 $||T_1||=||T||$. 接下来结合 T 是闭算子, 证明 D(T) 闭. 设 $\{x_n\}\subseteq D(T),\ x_n\to x$, 要证明 $x\in D(T)$. 事实上, 我们有

$$Tx_n = T_1x_n \to T_1x, \quad n \to \infty.$$

因为 T 是闭的, 所以由

$$\{x_n\} \subset D(T), x_n \to x, Tx_n = T_1x_n \to T_1x, n \to \infty$$

推出 $x \in D(T)$ 且 $Tx = T_1x$.

32. 证明 任取 $\{y_n\} \subset \mathcal{D}(T^{-1}), y_n \to y \in Y, \ \mathbb{Z} T^{-1}y_n \to x \in X.$ 令 $y_n = Tx_n, \ \mathbb{D}(T), x_n \to x \ \mathbb{D}(T), x_n \to x \ \mathbb{D}(T), x_n \to y \ \mathbb{D}(T), \mathbb{D}(T), \mathbb{D}(T), \mathbb{D}(T)$ 即

$$y \in \mathcal{D}(T^{-1}), x = T^{-1}y$$

故 T^{-1} 是闭算子.

33. 证明 任取点列 $\{x_n\} \subset X$, 满足 $x_n \to x, (T_1 + T_2)x_n \to y, (n \to \infty)$. 由于 $T_2 \in \mathcal{B}(X, Y)$. 故存在 M > 0, 使得

$$||T_2x_n - T_2x||_Y \le M||x_n - x||_X \to 0 \quad (n \to \infty),$$

即 $T_2x_n \to T_2x$. 从而有 $T_1x_n \to y - T_2x$. 由 T_1 是闭算子知, $y - T_2x = T_1x$. 即 $y = (T_1 + T_2)x$. 从而 $T_1 + T_2$ 是闭算子.