人工知能(Python言語)講座

(プログラム言語初心者)

校舎 AIP College 東京都新宿区西新宿2丁目6-1 新宿住友ビルディング19F TEL 0800-800-0815

https://aipcollege.com/

Pythong言語講座

履修経験:

研修:

研修の進め方

Python 計算時間(PythonNumpyCalTime.py)

サンプル:

設問: 実装03: Learning_Neu_0030.py

設問:実装04: Learning_Neu_0040.py

設問:実装05: Learning_Neu_0050.py

第0編 はじめに

1 本講義の全般説明

(A) Python言語講座

Python言語で使用するアプリ:

,				
python(SQLite3)	言語			
Django	Webアプリ			
Numpy	科学技術ライブラリー(人工知能)			
MatPlotLib	xy座標の作図			
MySQL	データベース			
Sakuraエディト	エディター			

本講座で使用するのは、最上項目Python言語のみである。

ただし、演習課題で詳細説明なしでMatPlotLibを使う場合がある。

(B) 使用する教科書

やさしいPython、高橋麻奈著、SB Creative社出版

(C) 講義要領

授業は、講義と演習、課題演習、人工知能の実装で構成される。

(a) 講義

本講座は、本テキストに沿って学習する。

ただし、講義はプロジェクターを用いて重要な項目およびサンプルを説明する。

(b) 課題演習

主要な項目が終了する毎に理解度を深めるために、簡単な課題演習を行う。

(c) 総合演習

最後に、人工知能の課題演習として人工知能実装を行う。

(D) 講義内容

(a) 概要

原則として下記のような項目を実施するが、履修者の理解度に応じて柔軟に対応する。

第1回 基本文法と制御処理

Python言語の基本的な文法を説明する。

変数と式・演算子の基本

制御処理としてif文, 論理演算子,

for文, while文, 処理の流れの制御

最後に、制御処理に関する課題演習を行う。

第2回 コレクションと関数

Python言語特有なコレクションと関数を説明する。

リスト, 範囲(Range)スライス,

タプル, ディクショナリの基本, セット

関数の定義と呼び出し,引数,戻り値,

変数とスコープ

最後に、リストと関数に関する課題演習を行う。

第3回 クラスとクラスの応用

オブジェクト指向プログラミングの中核をなすクラスを説明する。

クラスの基本, コンストラクタ,

クラス変数・クラスメソッド, カプセル化,

新しいクラス, モジュール, 標準ライブラリ

クラスの拡張として、文字列クラス・ファイルクラス・日付クラス・例外クラスを説明し、

最後に、クラスのメソッド呼び出しに関する課題演習を実施する。

第4回 Numpy, MatPlotLib とニューラルネットワーク

Numpy(数値演算), MatPlotLib(図)の概要、使い方を説明して、ニューラルネットワークを説明する。

Numpy, MatPlotLib

本パーセプトロン・ニューラルネットワーク(Neural network)

活性化関数

最後に、ニューラルネットワークの演習を行う。

第5回 人工知能(学習則)とその実装

第4回に引き続き、バックプロパゲーションを説明する・

活性化関数

学習則

学習則(偏微分)の数値演習

最後に、人工知能の実装を行う。

正弦波の回帰・分類問題 (モデル化・損失関数・学習則)

pattern認識に関する分類問題の実装例・アヤメの3品種の分類問題の実装例

(b) カリキュラム

	項目	内容				
第]	第 I 篇 基本文法と制御処理 8時間					
1	基本文法	(1) 基礎事項				
		(2) 式と変数				
		(3) 演算子				
2	制御処理	(1) if 文	(2) for文			
		(3) while文	(4) 処理流れの制御			
			break, continue, pass			
3	特殊演算	範囲とスライス				
		課題演習				
第I	Ι篇 コレクショ	 ンと関数				
1	コレクション	(1) 概要				
		(2) リスト(List)	(3) タプル(Taple)			
		(4) 辞書(連想配列)(Dictionary)	(5) セット(Set)			
2	関数	(1) 概要				
		(2) 定義と呼び出し	(3) 引数			
		(4) 戻り値	(5) 関数オブジェクト			
3	変数とスコーフ	変数とスコープ	(3) 133213 3 ± 3 1			
	ZXXCXI >	課題演習				
笋Τ	Ⅱ篇 クラスと継					
	クラス	(1) クラスの基本				
_		(2) コンストラクタ				
		(3) クラス変数とクラスメソッド	(4) カプセルル			
2	継承	(1) 継承(extends)	(+) 757 27710			
_	小匹/子((2) モジュール化(import)				
笋T	V篇 クラスの応					
1	文字列	文字列と正規表現				
2		ファイル操作				
3	例外処理	例外処理				
4	日付と時刻	日付と時刻				
4	口小C吋刻	課題演習				
笋៶	/ · VI管 Numr	球球演音 oy と MatPlotLib				
	/ · vi扁 Nullip Numpy	数値計算用のライブラリー(行列の演算				
	• •	数値計算用のフィブブリー(1179)の演算 作図用のライブラリー	チ、 157 7 /0 月 /			
		作区用のフィフラリー ニューラルネットワーク				
	<u> </u>	ニューロンのモデル				
		ユーロンのモテル パーセプトロンとニューラルネットワ	一 力			
	トットノーク	ハーセノトロノとニューブルネットラ 課題演習				
笋V	m笆 人丁知能/	^{味起 百} 「ックプロパゲーション・学習則)				
	山扁 ヘエ和能(/ 人工知能	活性化関数				
1.		学習則				
		子音別 学習則の数値演習				
າ ⊏	⊒i ±		· 提生思数。学级时)			
Z = J	2 実装 正弦波の回帰・分類問題 (モデル化・損失関数・学習則)					
	pattern認識に関する分類問題の実装例・アヤメの3品種の分類問題の実装例					

2 講義準備

(1) インストール (済み)

python Numpy MatPlotLib sakura

(2) pythonの確認

(A) Pathの確認

下記のようにしてコマンドプロンプトを起動する。

コマンドプロンプト画面で

C:¥> python

と入力すると、下記の画面が表示されたら、pythonがインストールされていることが分かる。

```
C:¥>
C:¥>
Python
Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 18:11:49) [MSC v.1900 64 bi t (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
```

終了は「CTRL+Z」+「リターンキー」 または exit() です。

(3) Sakuraエディトの確認

デスクトップに下記のショートカットがあることを確認しなさい。

(4) プログラムを格納するフォルダの作成

C¥:にプログラムを格納するつぎのフォルダを作成する。

[C:\PythonPG]

以上で必要なソフトがインストールされており、pythonが使える状態であることが確認できた。

Python	言語講座	笙∩編	はじめに

(★) NumPyのインストール方法

(A) インストール(既にインストールされている)

pip[C:\Python3.6.3\Lib\site-packages\pip]があることを確認する。

C:\python3.6.3>pip install numpy Installing collected packages: numpy Successfully installed numpy-1.15.2 You are using pip version 9.0.1, however version 18.1 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command. C:\python3.6.3>

(B) Numpyインストール確認

Numpyの概要

インポート: import numpy as np

リストの作り方

np.arange(0,5) 0,1,2,3,4
np.arange(0, 1, 01) 0,0.1,0.2,···,0.9
np.linspace(0,1,11) [0,1]を11等分する 0, 0.1, 0.2, ···, 0.9, 1.0
arr0 = np.array([1,2,3 4,5,6, 7,8,9])
arr0.reshape(3,3) [1,2,3 4,5,6, 7,8,9]を3行3列に分解する

aa = 1 + [2,3,4] aa = [1+2, 1+3, 1+4] bb = 10/[1,2,5] bb = [10/1, 10/2, 10/5] 行列の積:

 $C = AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 10 & 1000 \\ 20 & 2000 \\ 30 & 3000 \end{bmatrix}$

ng.random.shuffle(index_list) # n-10,5,12,3,..., m (ランダムになる)

(★) MatPlotLibのインストール方法

(A) インストール(既にインストールされている)

pip[C:\Python3.6.3\Lib\site-packages\pip]があることを確認する。

C:\python3.6.3>pip install matplotlib

簡単正弦波を書いてみる。

C:¥>python

- >>>import numpy as np
- >>>import matplotlib.pyplot as plt # pltとしてインポートされるのが慣例です。
- >>>X = np.linspace(-10, 10, 1000) # 1000個がない場合は50個
- >>>y = np.sin(X) # サインの値を計算する
- >>>plt.plot(X, y) # これでプロットをする。plotで点と点同士をなめらかにつなぐ
- >>>plt.show() # グラフの表示

MatPlotLibの概要

インポート: import matplotlib.pyplot as plt

データ:

x=[?,?, ···,?] x 座標の値を格納する

y=[?,?,…,?] X座標に対応するY座標の値を格納する

タイトル

タイトル: plt.title('文字列') Xラベル: plt.xlabel('文字列') Yラベル: plt.ylabel('文字列')

描画:

plt.plot(x, y, '+')

plt.show()