

planetmath.org

Math for the people, by the people.

adjunction space

Canonical name AdjunctionSpace
Date of creation 2013-03-22 13:25:56
Last modified on 2013-03-22 13:25:56
Owner antonio (1116)
Last modified by antonio (1116)

Numerical id 10

Author antonio (1116)
Entry type Definition
Classification msc 54B17
Related topic QuotientSpace
Defines adjunction

Let X and Y be topological spaces, and let A be a subspace of Y. Given a continuous function $f: A \to X$, define the space $Z := X \cup_f Y$ to be the quotient space $X \coprod Y / \sim$, where the symbol \coprod stands for disjoint union and the equivalence relation \sim is generated by

$$y \sim f(y)$$
 for all $y \in A$.

Z is called an *adjunction* of Y to X along f (or along A, if the map f is understood). This construction has the effect of gluing the subspace A of Y to its image in X under f.

Remark 1 Though the definition makes sense for arbitrary A, it is usually assumed that A is a closed subspace of Y. This results in better-behaved adjunction spaces (e.g., the quotient of X by a non-closed set is never Hausdorff).

Remark 2 The adjunction space construction is a special case of the pushout in the category of topological spaces. The two maps being pushed out are f and the inclusion map of A into Y.