MA 109 Assignment 1

Kasi Reddy Sreeman Reddy

2nd year physics student http://iamsreeman.github.io/MA109

IIT Bombay

1/2

Q) Evaluate the limit $\lim_{n\to\infty}\frac{an+1}{bn+2}$ and justify your answer using the $\epsilon-N$ definition of the limit.

Sol. Evaluation:
$$\lim_{n\to\infty}\frac{an+1}{bn+2}=\lim_{n\to\infty}\frac{a+\frac{1}{n}}{b+\frac{2}{n}}=\frac{a}{b}$$

Justification: We need to show that $\forall \epsilon>0$ $\exists N_\epsilon\in\mathbb{N}$ such that $n>N_\epsilon\Rightarrow$ $\left|\frac{an+1}{bn+2}-\frac{a}{b}\right|<\epsilon$. For a given ϵ fix N_ϵ such that $N_\epsilon>\frac{|2a-b|}{b^2\epsilon}$. Now $\forall n>N_\epsilon$

$$\frac{|2a - b|}{b^2 \epsilon} < N < n$$

$$\Rightarrow \frac{|2a - b|}{b^2 n} < \epsilon$$

$$\Rightarrow \frac{|2a - b|}{b(bn + 2)} < \epsilon$$

$$\Rightarrow |\frac{an + 1}{bn + 2} - \frac{a}{b}| < \epsilon$$

Hence $\lim_{n \to \infty} \frac{an+1}{bn+2} = \frac{a}{b}$.(One way to fix N_{ϵ} is $N_{\epsilon} = \left[\frac{|2a-b|}{b^2\epsilon}\right] + 1$,[.] is G.I.F)