Работа 1.2.4

Определение главных моментов инерции твёрдых тел с помощью крутильных колебаний

Константин Ерёмин Б03-204

Ноябрь 2022

1 Введение

Цель: измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относительно нескольких осей для каждого тела, по ним найти главные моменты инерции тел и построить эллипсоид инерции.

В работе используются: установка для получения крутильных колебаний, набор исследуемых твёрдых тел, секундомер.

2 Теоретическое описание работы

Инерционные свойства тела при вращении определяет тензор инерции, матрица которого в некоторой С.О. имеет диагональный вид. Элементы этой матрицы: I_x , I_y , I_z —главные моменты инерции тела. Геометрический образ тензора инерции—эллипсоид, заданный уравнением $I_x x^2 + I_y y^2 + I_z z^2 = 1$. Знание эллипсоида инерции позволяет найти момент инерции относительно произвольной оси.

Крутильные колебания описываются уравнением:

$$(I+I_p)\frac{d^2\varphi}{dt^2} = -f\varphi \tag{1}$$

В уравнении 1 I и I_p — моменты инерции тела и рамки относительно оси вращения, φ — модуля кручения проволоки. В таком случае период крутильных колебаний можно найти по формуле:

$$T = 2\pi \sqrt{\frac{I + I_p}{f}} \tag{2}$$

На рисунке 1 показан прямоугольный параллелепипед с главными осями AA', BB', CC', которым соответствуют моменты инерции I_x , I_y , I_z . Далее приведены формулы, связывающие периоды колебаний относительно главных осей с периодами колебаний относительно некоторых других осей. Данные выражения получены с использованием формулы 2, связывающей моменты инерции с периодами колебаний.

Рис. 2: Установка

Рис. 1: Оси вращения параллелепипеда

$$(a^2 + b^2 + c^2)T_D^2 = a^2T_x^2 + b^2T_y^2 + c^2T_z^2$$
(3)

$$(b^2 + c^2) T_M^2 = b^2 T_y^2 + c^2 T_z^2$$
(4)

$$(a^2 + c^2) T_E^2 = a^2 T_x^2 + c^2 T_z^2$$
(5)

$$(a^2 + b^2) T_P^2 = a^2 T_x^2 + b^2 T_y^2$$
 (6)

Приведённые соотношения будут проверены экспериментально.

Описание установки

В данной работе используется устройство для получения крутильных колебаний (рис. 2). Рамка 1 жёстко соединена с проволокой 2, закреплённой зажимами 3, задающими начальное закручивание. В рамке с помощью планки 4, гаек 5 и винта 6 закрепляется тело 7, имеющее выемки для его закрепления под различными углами.

3 Ход работы

3.1 Измерение размеров тел

Перед исследованием крутильных колебаний были произведены измерения размеров тел (таблицы 1, 2), при этом для нахождения средних длин сторон и их погрешностей были использованы следующие формулы:

$$\langle d \rangle = \frac{\sum d_i}{N} \qquad \sigma_d = \sqrt{\frac{\sum \left(d_i - \langle d \rangle\right)^2}{N-1}} \qquad \sigma_{\langle d \rangle} = \frac{\sigma_d}{\sqrt{N}} \qquad \sigma_{\text{полн}} = \sqrt{\sigma_{\langle d \rangle}^2 + \Delta_d^2}$$

В результате были получены значения с относительной погрешностью не более 0.1%:

• Ky6: $a = 92.66 \pm 0.06$ mm

n	1	2	3	4	5	6	7	8	9	10
а, мм	92.4	92.6	92.7	92.6	92.7	92.8	92.7	92.8	92.6	92.7

Таблица 1: Измерение размеров куба

n	1	2	3	4	5	6	7	8	9	10
а, мм	150.3	150.3	150.3	150.3	150.3	150.4	150.3	150.3	150.3	150.3
b, мм	100.3	100.4	100.5	100.3	100.4	100.4	100.5	100.5	100.5	100.4
C, MM	50.4	50.5	50.5	50.6	50.6	50.5	50.6	50.5	50.5	50.5

Таблица 2: Измерение размеров параллелепипеда

• Параллелепипед: $a=150.31\pm0.05$ мм, $b=100.42\pm0.06$ мм, $c=50.51\pm0.05$ мм

Найдём моменты инерции тел, зная их размеры и массы ($m_{\text{куб}} = 1085.5 \pm 0.05$ г, $m_{\text{пар-д}} = 2081.9 \pm 0.05$ г), по формулам:

$$I_x = \frac{m}{12} (b^2 + c^2)$$
 $I_y = \frac{m}{12} (a^2 + c^2)$ $I_z = \frac{m}{12} (a^2 + b^2)$ $I_{\text{Ky6}} = \frac{ma^2}{6}$

- Куб: $I_{\text{куб}} = 15.53 \pm 0.02 \text{ kg} \cdot \text{cm}^2$
- Параллелепипед: $I_x=21.92\pm0.03~\mathrm{kf\cdot cm^2}, I_y=43.62\pm0.06~\mathrm{kf\cdot cm^2}, I_z=56.65\pm0.08~\mathrm{kf\cdot cm^2}$

Тогда для параллелепипеда получаем следующие отношения моментов инерции главных осей:

$$I_y: I_x = 2.000 \pm 0.004$$
 $I_z: I_y = 1.299 \pm 0.003$ $I_z: I_x = 2.584 \pm 0.005$

3.2 Измерение периодов колебаний

Далее было проведено знакомство с установкой и была проверена корректность ей работы: крепление проволоки, работа устройства для возбуждения колебаний, усточивость крутильных колебаний.

Затем измерялись периоды колебаний куба и параллелепипеда вокруг различных осей. Период считался по времени 12 колебаний. Результаты можно увидеть в таблицах 3 и 4. Погрешность определения периода оценим так: абсолютная погрешность измерения составляет 0.3 с (скорость реакции), так что $\varepsilon_T = \frac{0.3}{12T} \sim \frac{0.3}{12} \approx 0.03 = 3\%$.

T, c	T^{p}	$T_{1/2}^{\mathrm{p}}$	$T_{\text{r.o.}}^{\text{K}}$	T_D^{κ}	T_E^{κ}
1	2.56	2.56	3.03	3.01	3.01
2	2.55	2.58	3.05	3.07	3.02
3	2.63	2.57	3.06	3.03	3.04
$\langle T \rangle$, c	2.58	2.57	3.05	3.04	3.02

Таблица 3: Измерения периодов колебаний рамки и куба

T, c	T_A	T_B	T_C	T_E	T_M	T_P	T_D
1	3.18	3.7	3.98	3.28	3.76	3.35	3.4
2	3.18	3.73	3.98	3.28	3.78	3.36	3.41
3	3.2	3.7	3.97	3.31	3.77	3.4	3.41
$\langle T \rangle$, c	3.19	3.71	3.98	3.29	3.77	3.37	3.41

Таблица 4: Измерения периодов колебаний параллелепипеда

3.3 Проверка теоретической зависимости

Проверим теоретическую связь между размерами тела и периодами колебаний:

$$\begin{split} \left(a^2 + b^2 + c^2\right) T_D^2 &= a^2 T_x^2 + b^2 T_y^2 + c^2 T_z^2 \\ \left(b^2 + c^2\right) T_M^2 &= b^2 T_y^2 + c^2 T_z^2 \\ \left(a^2 + c^2\right) T_E^2 &= a^2 T_x^2 + c^2 T_z^2 \\ \left(a^2 + b^2\right) T_P^2 &= a^2 T_x^2 + b^2 T_y^2 \end{split}$$

Для этого из левой части каждого равенства вычтем правую, и, пренебрегая погрешностью измерения размеров тела по сравнению с погрешностью периода колебаний, получим погрешность разности по формуле:

$$\sigma^{2} = ((a^{2} + b^{2}) 2T_{M}\sigma_{M})^{2} + (a^{2}2T_{x}\sigma_{x})^{2} + (b^{2}2T_{y}\sigma_{y})^{2}$$

для последнего равенства (для остальных формула аналогичная). Полученные разности и их погрешности занесены в таблицу 5. Все разности оказались в пределах погрешностей, так что можно считать теоретические соотношения верными.

ось	Δ	σ_{Δ}
DD'	514	8722
MM'	372	3685
EE'	1837	6611
PP'	2403	8209

Таблица 5: Проверка теории (размерности: $\text{мм}^2 \cdot \text{c}^2$)

3.4 Построение эллипсоида инерции

Для осей в главных плоскостях вычислим величину $1/\sqrt{T^2-T_{\rm p}^2}$, пропорциональную расстоянию от центра масс тела до точки пересечения эллипсоида с этой осью. В соответствующих координатах изобразим эллипсоид инерции параллелепипеда и куба (рис. 3 и 4). По длинам осей эллипсоидов находятся отношения между моментами инерции.

Рис. 3: Эллипсоид инерции параллелепипеда

Рис. 4: Эллипсоид инерции куба

4 Вывод

В ходе работы были проверены некоторые теоретические соотношения теории крутильных колебаний и построены эллипсоиды инерции, с помощью которых затем была подтверждена правильность расчётов моментов инерции относительно различных осей тел.