Nodweddu allyriadau atmosfferig

Philip Jonathan

Prifysgol Caerhirfryn, Adran Mathemateg ac Ystadegaeth

Cynhadledd Mathemateg Cymru (Sleidiau: www.lancs.ac.uk/~jonathan)

1/26

Cydnabyddiaeth a throsolwg

Diolch

- Atmospheric monitoring services: Bill Hirst
- Caergrawnt: Clay Roberts, Oliver Shorttle, Kasey Mendel
- Shell: Matthew Jones, David Randell, Rutger Ijzermans

Gwrthdroad tebygoliaethol

- Braslun : Hirst et al. [2013b], Jones a Jonathan [2022]
- Y broblem ystadegol: Hirst et al. [2013a], Hirst et al. [2017]

Amcangyfrif $[CH_4]$ o'r gofod

o Arsylwadau o nwyon benthyg (surrogate): Roberts et al. [2022]

Cynhesu byd eang: pa nwyon sy'n broblem?

GWP values and lifetimes ◆	Lifetime (years)	Global warming potential, GWP		
		20 years ◆	100 years \$	500 years ◆
Methane (CH ₄)	12.4 ^[6]	56 ^[3] 72 ^[5] 84 / 86f ^[6] 96 ^[7]	21 ^[3] 25 ^[5] 28 / 34f ^[6] 32 ^[8] 39f (biogenic) ^[9] 40f (fossil) ^[9]	6.5 ^[3] 7.6 ^[5]
Nitrous oxide (N ₂ O)	121.0 ^[6]	280 ^[3] 289 ^[5] 264 / 268f ^[6]	310 ^[3] 298 ^[5] 265 / 298f ^[6]	170 ^[3] 153 ^[5]
HFC-134a (hydrofluorocarbon)	13.4 ^[6]	3710 / 3790f ^[6]	1300 / 1550f ^[6]	435 ^[5]
CFC-11 (chlorofluorocarbon)	45.0 ^[6]	6900 / 7020f ^[6]	4660 / 5350f ^[6]	1620 ^[5]
Carbon tetrafluoride (CF ₄ / PFC-14)	50,000 ^[6]	4880 / 4950f ^[6]	6630 / 7350f ^[6]	11,200 ^[5]
HFC-23 (hydrofluorocarbon)	222 ^[6]	12,000 ^[5] 10,800 ^[6]	14,800 ^[5] 12,400 ^[6]	12,200 ^[5]
Sulfur hexafluoride SF ₆	3,200 ^[6]	16,300 ^[5] 17,500 ^[6]	22,800 ^[5] 23,500 ^[6]	32,600 ^[5]
Hydrogen (H ₂)	4-7[10]	N/A	4.3 ^[10]	N/A

en.wikipedia.org/wiki/Global_warming_potential

Ein hatmosffer

- $[CO_2] \approx 410 \text{ ppmv (heddiw)}$
- $[CH_4] \approx 1.90 \text{ ppmv (heddiw)}$
- $[CO_2] \approx 290 \text{ ppmv (yn 1750)}$
- ∘ $[CH_4]$ ≈ 1.0 ppmv (yn 1750)
- Màs atmosfferig CO₂: CH₄ ≈ 600
- Oes CO₂ ∈ (20, 200) mlynedd
- Oes $CH_4 \approx 12$ mlynedd
- GWP: Potensial cynhesu byd eang
- $\circ \ \ CH_4$ yn amsugno pelydriad thermol llawer yn well na CO_2

《四》《圖》《意》《意》。

3 / 26

 Allyriadau CH₄ yn gyfrifol am o leiaf hanner y gwres ychwanegol a amsugnwyd o'i gymharu â'r cyfnod cyn-ddiwydiannol

Jonathan Synhwyro o bell Mai 2022

Gwrthdroad tebygoliaethol Probabilistic inversion

Beth yw'r broblem?

 Beth yw priodweddau'r ffynhonnell, wedi arsylwadau ansicr o'r crynodiad o bell a maes y gwynt?

Jonathan

Systemau synhwyro CH₄

Awyren Hirst et al. [2013a] (Sander Geophysics)

Drôn (Scientific Aviation)

Llinell golwg Hirst et al. [2017], Hirst et al. [2020] (Boreal Laser)

Lloeren Roberts et al. [2022] (ESA Sentinel5P TROPOMI)

Llorfudiad-trylediad

Ffrydiau mwg o danau yng Nghanada

- Maes gwynt cryf homogenaidd
- o Ffurf Gaussaidd i'r ffrwd
- Model cyflwr sefydlog yn addas

Ffrwd fwg o dân ger Rhuthun

- Gosteg / braidd dim gwynt
- Gwrthdro'n amgau'r ffrwd ym mhen uchaf yr haenen ffin atmosfferig

Jonathan Synhwyro o bell Mai 2022 7 / 26

Model cyflwr sefydlog: y ffrwd Gaussaidd

- Coch: Uchder v ffvnhonnell H
- Glas: Hanner-lled y ffynhonnell w
- Magenta: Dadleoliad dan y gwynt δ_R
- Cyan: Dadleoliad llorweddol δ_H
- Gwyrdd: Dadleoliad fertigol δ_V
- Uchder HFfA D
- Maint llorweddol $\sigma_H = \delta_R \tan(\gamma_H) + w$
- $\quad \text{ Maint fertigol } \sigma_V = \delta_R \tan(\gamma_V)$
- Onglau agor γ_H, γ_V
- Fector y gwynt U

Matrics cyplysu (e.e. Stockie [2011])

$$a = \frac{1}{2\pi |\mathbf{U}|\sigma_H \sigma_V} \exp\left\{-\frac{\delta_H^2}{2\sigma_H^2}\right\} \times \left\{ \exp\left\{-\frac{\delta_V^2}{2\sigma_V^2}\right\} + \exp\left\{-\frac{(\delta_V + 2\mathbf{H})^2}{2\sigma_V^2}\right\} + \exp\left\{-\frac{(\delta_V - 2(\mathbf{D} - \mathbf{H}))^2}{2\sigma_V^2}\right\} + \exp\left\{-\frac{(\delta_V + 2\mathbf{D})^2}{2\sigma_V^2}\right\} \right\}$$

Model mwy cyffredinol: llorfudiad-trylediad

$$\frac{\partial c}{\partial t} + \boldsymbol{\nabla} \cdot (c\boldsymbol{u} - D\boldsymbol{\nabla}c) = s$$

ar gyfer crynodiad c(x,t), maes gwynt u(x,t)=(u,v,w) (sy'n hysbys), ffynonellau s(x,t), cysonyn trylediad D ac amod ffin $c(x,0)=c_0(x)$

Datrysiad rhifiadol cyfaint meidraidd (e.e. Eymard et al. [2000])

Integreiddio:
$$\int_V \frac{\partial c}{\partial t} \ dV + \int_S (c \textbf{\textit{u}} - D \boldsymbol{\nabla} c). \textbf{\textit{n}} \ dS = \int_V s \ dV$$

$$\text{Arwahanu: } \frac{V_{ijk}}{\Delta t} \left(c_{ijk}^{(n+1)} - c_{ijk}^{(n)} \right) + A_{ijk}(c^{(n)}) - D_{ijk}(c^{(n)}) = S_{ijk}^{(n)} \,, \text{ gyda } c_{ijk}^{(n)} = \frac{1}{V_{ijk}} \int_{V_{ijk}} c \, dV_{ijk} \, dV_{$$

$$A_{ijk}(c^{(n)}) = \Delta y \Delta z \left((cu)_{i+1/2,j,k}^{(n)} - (cu)_{i-1/2,j,k}^{(n)} \right) + \dots, \qquad D_{ijk}(c^{(n)}) = D \frac{\Delta y \Delta z}{\Delta x} \left(c_{i+1,j,k}^{(n)} - 2c_{i,j,k}^{(n)} + c_{i-1,j,k}^{(n)} \right) + \dots$$

 Mae'r cyplysu rhwng ffynhonnell â grym s yn rhyw lleoliad, â'r arsylwad o bell o grynodiad c yn llinol. (Fel arall, gall y cyfrifiad gwrthdro fod yn gymhleth, cymherir â dulliau atgyd)

9/26

Jonathan Synhwyro o bell Mai 2022

Yn ystadegol

Y model

$$c = As + b + \epsilon$$

- o Fector \boldsymbol{c} o arsylwadau crynodiad ar amseroedd a lleoliadau penodol
- \circ Fector s gwasgarog o gyfraddau ffynhonnell sefydlog ar rhyw barth $\in \mathbb{R}^3$
- Matrics *A* yn cyplysu'r ffynonellau â'r arsylwadau
- \circ Fector b o grynodiad cefndirol, llyfn mewn gofod ac amser
- o Fector cyfeiliornad arsylwi Gaussiadd $\epsilon \sim N(\mathbf{0}, \lambda^{-2} \mathbf{I})$ â thrachywiredd λ^2

Amcan yr amcangyfrifiad

o Gyda'r fector c a'r matrics A yn hysbys, amcangyfrif lleoliadau, meintiau a chyfraddau'r ffynonellau s, y crynodiad cefndirol b a'r trachywiredd λ^2

Yn y bôn

o Gwahanu ffynonellau sy'n creu garwedd gofodol, wrth grynodiad cefndirol llyfn

an Synhwyro o bell Mai 2022

イロト イ御 トイミト イミト

10 / 26

Crynodiad cefndirol

Priodweddau

- $b \ge 0$ ym mhobman
- \circ b yn amrywio'n llyfn gydag amser a gofod
- $\circ~$ Cynrychioliad yn nhermau ffwythiannau sail: ${f b}={f P}{m eta}$
- o Cyplysiad gofodol penodol gyda chyfeiriad y gwynt

Hap-faes Gauss-Markov

$$f(\boldsymbol{\beta}) \propto \exp\{-\frac{\mu}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)^T \mathbf{J}_{\boldsymbol{\beta}}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)\}$$

- o J_{β} yn wasgarog, P = I yn y cymhwysiad presennol
- o Yr hap-faes yn rhag-fanyleb mewn casgliad Bayesaidd
- Trachywiredd μ un rheoli llyfndra

11/26

Jonathan Synhwyro o bell Mai 2022

Efelychiad awyrol

- o Awyren yn dilyn y llwybr du
- Crynodiad mewn lliw

- o Cyfeiriad y gwynt mewn glas
- o Cyfres amser crynodiad (b, c)

Jonathan Synhwyro o bell Mai 2022 12 / 26

Strategaeth y casgliad

Amcangyfrif Bayesaidd cychwynnol

- Ar gyfer s a b
- o Lleoliadau posib y ffynonellau ar grid gosodedig
- Cyfrifiant cyflym

Casgliad Bayesiadd llawn

- Ar gyfer pob paramedr o ddiddordeb
- Amcangyfrif cyd-ôl-ddosbarthiad llawn
- Nifer, lleoliadau a grymoedd y ffynonellau i'w hamcangyfrif
- Model cymysg Gaussaidd
- o Casgliad MCMC naid-wrthdroadwy

Amcangyfrif Bayesaidd cychwynnol

Rhag-fanyleb cefndirol

$$f(\boldsymbol{\beta}) \propto \exp\{-\frac{\mu}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)^T \mathbf{J}_{\boldsymbol{\beta}}(\boldsymbol{\beta} - \boldsymbol{\beta}_0)\}$$

Rhag-fanyleb grym ffynhonnell Laplace

$$f(\mathbf{s}) \propto \exp\{-\delta \|\mathbf{Q}\mathbf{s}\|_1\}$$

Tebygoliaeth Gaussaidd

$$f(\mathbf{y}|\mathbf{s}, \boldsymbol{\beta}) \propto \exp\{-\frac{\lambda^2}{2}\|\mathbf{A}\mathbf{s} + \mathbf{P}\boldsymbol{\beta} - \mathbf{y}\|^2\}$$

Cyd-ôl-ddwysedd

$$f(\mathbf{s}, \boldsymbol{\beta}|\mathbf{y}) \propto f(\mathbf{y}|\mathbf{s}, \boldsymbol{\beta}) f(\mathbf{s}) f(\boldsymbol{\beta})$$

Amcangyfrif ôl-uchafbwynt (maximum a posteriori)

$$\underset{\mathbf{s},\boldsymbol{\beta}}{\operatorname{argmin}} \ \left\{ \frac{\lambda^2}{2} \|\mathbf{A}\mathbf{s} + \mathbf{P}\boldsymbol{\beta} - \mathbf{y}\|^2 + \frac{\mu}{2} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^T \mathbf{J}_{\boldsymbol{\beta}} (\boldsymbol{\beta} - \boldsymbol{\beta}_0) + \delta \|\mathbf{Q}\mathbf{s}\|_1 \right\}$$

Synhwyro o bell

4日 × 4周 × 4 至 × 4 至 × 一至 Ionathan 14 / 26

Mai 2022

Casgliad Bayesaidd llawn

Paramedrau

- Nifer y ffynonellau, â'u lleoliad, ehangder a chyfradd
- Paramedrau hap-faes cefndirol
- Trachywiredd y cyfeiliornad arsylwi
- o Ac eraill, gan gynnwys e.e. cywiriad cyfeiriad gwynt
- \circ Ysgrifennir y set yn fyr fel heta, a ellir ei rannu'n $\{ heta_{\kappa}, heta_{\overline{\kappa}}\}$

Dosraniad amodol llawn

$$f(\theta_{\kappa}|\mathbf{y},\theta_{\overline{\kappa}}) \propto f(\mathbf{y}|\theta_{\kappa},\theta_{\overline{\kappa}})f(\theta_{\kappa}|\theta_{\overline{\kappa}})$$

Dulliau samplu

- o Gibbs o ddosraniadau amodol llawn
- Metropolis-Hastings o fewn Gibbs (mMALA lle'n bosib)
- MCMC naid wrthdroadwy (e.e. Jonathan [2021] yn y Gymraeg!)

Jonathan Synhwyro o bell Mai 2022 15 / 26

Datrysiad efelychiad awyrol

Gwirionedd = smotiau du

Ionathan Synhwyro o bell Mai 2022 16 / 26

Arsylwadau a datrysiad CH₄ safle tirlenwi

o Data o safle yng Nghanada

Ionathan

- o diolch i Sander Geophysics
- o Saeth ddu yw cyfeiriad y gwynt

o (c) Ôl-gwantil 2.5%, (d) Ôl-gwantil 97.5%

17 / 26

Synhwyro o bell Mai 2022

Amcangyfrif $[CH_4]$ o loeren

Yr uchelgais

Allyriadau CH_4 olew a nwy

Glas : prif piblinellau

o Oren : allyriadau

Ffrwd CH₄ yn UDA

o Nodweddion ffrwd lled-Gaussaidd

https://sentinel.esa.int/web/success-stories/-/copernicus-sentinel-5p-reveals-oil-and-gas-ultra-emitters

Jonathan Synhwyro o bell Mai 2022 19 / 26

Arslywadau TROPOMI

Ffynonellau data

- Cyhoeddus: ESA Sentinel 5P TROPOMI
- o Preifat: arsylwadau pwrpasol gan gwmnïau fel www.ghgsat.com

TROPOMI

- Arsylwi dyddiol, byd-eang
- Mesuriad "uniongyrchol" o'r crynodiad colofn-integredig
- Cydraniad gofodol ≈ 5km
- Ffynhonnell CH_4 lleiaf gellir ei chanfod $\approx 5T/hr$

Gwendidau

- Arsylwi dros ddŵr
- o Arsylwi drwy gymylau
- o Effeithiau albedo ac adlewyrchiad
- Sgil-effeithiau rhesu (striping)

Cymhwysiad cymhellol: Permian Basin, UDA

Y basn

- \circ Texas / New Mexico (2 × 10⁵ km²)
- · Ardal o weithgaredd olew a nwy
- Allyriadau CH_4 blynyddol $\approx 3 \times 10^9$ kg

Y ffigur

- Arsylw TROPOMI 31.01.2019
- Lliw: [CH₄] ppbv
- Llwyd : dim data

Y sampl llawn

o Data dyddiol ar gyfer 2019

<ロト 4回り 4回り 4 差り

≈ 1000 piscel

• Ffynonellau mawr o allyriadau tua (H,Ll) = (-102,32), ond nid oes arsylwadau o achos cymylau

Y syniad

Arsylwadau $[NO_2]$ i wella amcangyfrif $[CH_4]$

- ∘ Prosesau anthropogenig yn tueddu cynhyrchu NO_2 a CH_4 ⇒ $[NO_2]$ a $[CH_4]$ yn gyd-ddibynnol
- NO₂ yn haws i'w fesur na CH₄
 ⇒ Ceir darlun gofodol llawer llawnach ar gyfer NO₂
- Dyddiau yn unig yw oes NO₂
 ⇒ Haws nodweddi ffynhonnell

Felly

o Defnyddio $[NO_2]$ fel newidyn benthyg lleol ar gyfer $[CH_4]$

Jonathan

Y model

$$\begin{array}{lcl} \textit{Arsylw} & & & \\ N_{ij}^o & = & N_{ij} + \epsilon_{Nij}\sigma_{Nij} \\ C_{ij}^o & = & C_{ij} + \epsilon_{Cij}\sigma_{Cij} \\ \textit{System} & & \\ C_{ij} & = & \alpha_j + \beta_j N_{ij} + \epsilon_{Sij}\sigma_{Sj} \end{array}$$

- Arslywadau N_{ij}^o ac C_{ij}^o o bicsel i ar ddiwrnod j
- Newidynnau system N_{ij} ac C_{ij} cyfatebol
- o Cyfeiliornad mesur Gaussaidd, gyda gwyriadau safonol i'w hancangyfrif
- Perthynas llinol rhwng y newidynnau system, a'r cyfeiliornad Gaussaidd yn ddibynnol ar y diwrnod yn unig, i'w amcangyfrif
- Casgliad Bayesaidd hwylus

Jonathan Synhwyro o bell

Datrysiad y cymhwysiad cymhellol

- o Llawer llai o lwyd ar y dde!
- O dan y model, mae amcagyfrif cyfanswm yr allyriadau dyddiol yn cynnyddu i ≈ 350% o'r amcangyfrif "uniongyrchol" am y flwyddyn 2019

Ar y gweill

Gwrthdroad

- Monitro amser-real o gyfres amser llinell golwg (e.e. anomaleddau)
- o Gwrthdroi o gyfres amser llinell golwg (e.e. model gofod cyflwr)

$[NO_2]$ fel newidyn benthyg

- Modelu effeithiau cydnewidynnau: tymor, lleoliad (lledred, orograffaeth, tymheredd cefndirol, gwledig-trefol)
- o Cyfuno â model hylosgiad

Cyffredinol

- o Efelychu/brasamcanu cyflym o wasgariad graddfa fechan (e.e. o gylch adeiladau)
- Cymathu (assimilate): cyfuno arsylwadau o synwyryddion gwahanol (pwynt, llinell golwg a lloeren; hwyrach awyrol a drôn hefyd) mewn un casgliad
- o Graddnodi synwyryddion llai dibynadwy (ond rhad), ac arsylwadau lloeren
- o Dylunio arosodiadau (layouts) monitro optimaidd

25 / 26

Jonathan Synhwyro o bell Mai 2022

Llyfryddiaeth

- R. Eymard, T. Gallouet, a R. Herbin. Finite volume methods. Handbook of Numerical Analysis, 7:713–1018, 2000.
- B. Hirst, P. Jonathan, F. González del Cueto, D. Randell, a O. Kosut. Locating and quantifying gas emission sources using remotely obtained concentration data. Atmospheric Environ., 74:141–158, 2013a.
- B. Hirst, P. Jonathan, a D. Randell. Blowin' in the wind. Significance, 10:17-19, 2013b.
- B. Hirst, D. Randell, M. Jones, P. Jonathan, B. King, a M. Dean. A new technique for monitoring the atmosphere above onshore carbon storage projects that can estimate the locations and mass emission rates of detected sources. *Energy Procedia*, 114: 3716–3728, 2017.
- B. Hirst, D. Randell, M. Jones, J. Chu, A. Kannath, N. Macleod, M. Dean, a D. Weidmann. Methane emissions: Remote mapping and source quantification using an open-path laser dispersion spectrometer. Geophys. Res. Let., 47:e2019GL086725, 2020.
- P. Jonathan. Cynrychioliad amharamedrig ar gyfer cyd-newidynnau aml-ddimensiynol mewn model gwerthoedd eithaf [A non-parametric representation for multidimensional covariates in an extreme value model]. Gwerddon, 33:68–84, 2021.
- M. J. Jones a P. Jonathan. Remote sensing for methane: monitoring and reducing greenhouse gas emissions, 2022. URL https://medium.com/data-centric-engineering-blog/
 remote-sensing-for-methane-monitoring-and-reducing-greenhouse-gas-emissions-f37661685281.
- C. N. Roberts, O. Shorttle, K. Mandel, M. J. Jones, R. Ijzermans, B. Hirst, a P. Jonathan. Enhanced monitoring of atmospheric methane from space over the Permian basin with hierarchical Bayesian inference. *Derbyniwyd gan Environ. Res. Lett.*, arXiv:2111.12486, 2022.
- J. M. Stockie. The mathematics of atmospheric dispersion modeling. SIAM Rev., 53:349-372, 2011.

Diolch am wrando!

Jonathan Synhwyro o bell Mai 2022 26 / 26